Zápisky z cvičení NUM 2011

Matěj Novotný

9. března 2011

1 Diferenční vztahy pro náhrady derivací

Poznámka 1 (Taylorův rozvoj). Nechť $g \in C^{(n)}$ na $\langle a,b \rangle$; $x \in (a,b)$; $0 < h < min\{x - a,b-x\}$. Pak je

$$g(x+h) = \sum_{k=0}^{m-1} \frac{1}{k!} g^{(k)}(x) h^k + h^m \int_0^1 \frac{1}{m!} s^{m-1} g^{(m)}(x + (1-s)h) \, \mathrm{d}s$$
 (1)

Druhý sčítanec je Lagrangeův tvar zbytku.

Definice 1 (Landaův symbol O). Nechť $f: H_0 \to \mathbb{R}$ je funkce definovaná na prstencovém okolí 0 (H_0). Řekneme, že f se chová na H_0 jako h^{α} pro nějaké $\alpha \in \mathbb{R}$ (značíme $f(x) = O(h^{\alpha})$) právě když

$$(\exists K > 0)(\forall h \in H_0 - \{0\}) \left(\left| \frac{f(h)}{h^{\alpha}} \right| < K \right)$$
 (2)

Poznámka 2. Chyba aproximace závisí na h.

Věta 1. Nechť $g \in C^{(2)}$ na (a,b); $x \in (a,b)$; $0 < h < \min\{x-a,b-x\}$. Pak

$$\frac{g(x+h) - g(x)}{h} = g'(x) + O(h) \quad (dopředná diference)$$

$$\frac{g(x) - g(x - h)}{h} = g'(x) + O(h) \quad (zpětná diference)$$

 $D\mathring{u}kaz$. V Taylorově rozvoji (1) použijeme m=2.

$$g(x+h) = g(x)h^{0} + g'(x)h + h^{2} \int_{0}^{1} \frac{1}{2!} s^{1} g^{(2)}(x + (1-s)h) ds$$

$$\frac{g(x+h) - g(x)}{h} = g'(x) + h \int_{0}^{1} \frac{1}{2} s g^{(2)}(x + (1-s)h) \, ds$$

Je poslední člen roven O(h)? $g \in C^{(2)}(\langle a, b \rangle) \implies g^{(2)} \in C(\langle a, b \rangle)$, tj. $g^{(2)}$ je spojitá na $\langle a, b \rangle \implies g^{(2)}$ je omezená na $\langle a, b \rangle \implies g^{(2)}(x) < K$ na $\langle a, b \rangle$.

$$\frac{1}{2} \int_{0}^{1} sg^{(2)}(x + (1 - s)h) \, ds \le \frac{1}{2} \int_{0}^{1} sK \, ds = \frac{K}{2} \int_{0}^{1} s \, ds = \frac{K}{4}$$

$$\left| \frac{g(x+h) - g(x)}{h} - g'(x) \right| = h \left| \int_{0}^{1} \frac{1}{2} sg^{(2)}(x + (1 - s)h) \, ds \right| \le h \frac{K}{4}$$

$$\frac{\left| \frac{g(x+h) - g(x)}{h} - g'(x) \right|}{|h|} \le \frac{K}{4} \implies \frac{g(x+h) - g(x)}{h} - g'(x) = O(h)$$

Druhý vzorec se dokáže úplně stejně až na znaménko –.

Věta 2. Nechť $g \in C^{(3)}(\langle a, b \rangle); x \in (a, b); 0 < h < \min\{x - a, b - x\}.$ Pak

$$\frac{g(x+h) - g(x-h)}{2h} = g'(x) + O(h^2)$$

Důkaz.

$$g(x \pm h) = g(x) \pm hg'(x) + h^{2} \int_{0}^{1} \frac{1}{2} sg^{(2)}(x \pm (1 - s)h) \, ds$$

$$g(x + h) - g(x - h) = g(x) + hg'(x) + \frac{h^{2}}{2} \int_{0}^{1} sg^{(2)}(x + (1 - s)h) \, ds -$$

$$-(g(x) - hg'(x) + \frac{h^{2}}{2} \int_{0}^{1} sg^{(2)}(x - (1 - s)h) \, ds) =$$

$$= 2hg'(x) + \frac{h^{2}}{2} \int_{0}^{1} s \left[g^{(2)}(x + (s - 1)h) - g^{(2)}(x - (1 - s)h) \right] \, ds$$

$$\left| \frac{g(x + h) - g(x - h)}{2h} - g'(x) \right| = \frac{h}{4} \left| \int_{0}^{1} \dots \, ds \right| \le h \frac{K}{4}$$

$$(3)$$

To znamená, že zbytek je O(h). Použijeme Lagrangeovu větu o přírůstku funkce $(\exists \xi : g(a) - g(b) = g'(\xi)(a - b))$:

$$\exists \xi = \xi(s, x, h); \ \xi \in (x - (1 - s)h, s + (1 - s)h) \subset \langle a, b \rangle$$
$$g^{(2)}(x + (1 - s)h) - g^{(2)}(x - (1 - s)h) = g^{(3)}(\xi)(x + (1 - s)h - x + (1 - s)h) =$$
$$= g^{(3)}(\xi)2(1 - s)h$$

Dosadíme do integrálu (3):

$$\int_{0}^{1} sg^{(3)}(\xi)2(1-s)h \, ds = 2h \int_{0}^{1} g^{(3)}(\xi)s(1-s) \, ds$$

 $g^{(3)}$ je spojitá \implies je omezená na $\langle a,b\rangle$

$$2h \left| \int_{0}^{1} g^{(3)}(\xi) s(s-s) \, ds \right| \le 2hK \left| \int_{0}^{1} s(s-s) \, ds \right| \le Kh$$

Po dosazení do (2) dostávám tvrzení věty.

Poznámka 3. Vynechávám domácí úkol a nějaké povídání k němu. Tady najdete zadání.