- Діаграма Гассе графічне подання частково впорядкованої множини. Для її отримання в графі відношення вилучають усі петлі та усувають дуги, які наявні в ньому внаслідок транзитивності. Після цього розташовують на площині всі вершини графа так, щоб початкова вершина кожної дуги була нижче кінцевої вершини й усувають усі стрілки.
- Лінійний порядок, що сумісний із заданим частковим порядком R. це лінійний порядок \leq такий, що з aRb випливає $a \leq b$.
- Топологічне сортування це побудова лінійного порядку, сумісного із заданим частковим порядком.
- Замикання відношення R за властивістю q це найменше відношення C, яке має властивість q і таке, що $R \subset C$. Термін «найменше відношення» означає, що C є підмножиною будь-якого відношення S, для якого виконуються умови: 1) S має властивість q; 2) R⊂S.
- lacktriangle Шлях від елемента a до елемента b у відношенні R це шлях з вершини a у вершину b в графі G_{ν} відношення R.
- 3*єднувальне відношення R* складається з таких пар (a, b), що існує шлях від елемента a до елемента b у відношенні R.
- ullet Рефлексивне замикання відношення R на множині A дорівнює $R \cup \Delta$, де $\Delta = \{(a, a) | a \in A\}.$
- ullet Симетричне замикання відношення R на множині A дорівнює $R \cup R^{-1}$, де $R^{-1} = \{(b,a) | (a,b) \in R \}.$
- Транзитивне замикання відношення дорівнює з'єднувальному відношенню, яке побудоване за заданим відношенням.
- Алгоритм Уоршалла це алгоритм для знаходження транзитивного замикания від-
- n-арне відношення на множинах $A_1, A_2, ..., A_n$ це підмножина декартового добутку $A, \times A, \times \dots \times A$.
- Реляційна модель даних модель для подання баз даних, яка грунтується на n-арних відношеннях.

Задачі для самостійного розв'язування

- 3.4) в множину $B = \{0, 1, 2, 3\}$, де $(a, b) \in R$ якщо й лише якщо:
 - a) a = b;
 - 6) a+b=4;
 - B) a > b;
 - Γ) а ділить b;

 - д) HCД(a,b)=1; (0:1) (0
 - e) HCK(a, b) = 2.

Розділ 5. Віднашення

Тут НСД - найбільший спільний дільник, НСК - найменше спільне кратне,

2. Для кожного з відношень на множині (1, 2, 3, 4), наведених нижче, визначити, чи воно рефлексивне, іррефлексивне, симетричне, антисиметричне, асиметричне,

. a) \((2, \frac{1}{2}), (2, \frac{1}{3}), (2, 4), (3, 2), (3, 3), (3, 4)\}:

- (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4);
 - B) {(2, 4), (4, 2)};
 - r) {(1, 2), (2, 3), (3, 4)};
- , д) {(1, 1), (2, 2), (3, 3), (4, 4)};
- ,e) {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)}.
- 3. Визначити, чи відношення R на множині всіх людей рефлексивне, іррефлексивне, симетричне, антисиметричне, асиметричне, транзитивне, де $(a, b) \in R$ якщо й лише якщо:
 - a) *а* вищий, ніж *b*;
 - б) а та в народилися в один і той самий день:
 - в) а має те саме прізвище, що й b:
 - г) а та b мають спільних дідуся й бабусю.
- 4. Визначити, чи відношення R на множині цілих чисел рефлексивне, симетричне, антисиметричне, транзитивне, де $(x, y) \in R$ якщо й лише якщо:
 - a) x ≠ y:
 - 5) xw≥1:.
 - B) x = y + 1 abo x = y 1;
 - г) х та у обидва або від'ємні, або невід'ємні;
 - $Д) x = y^2$;
 - e) $x \ge v^2$.

Нехай R — відношення з множини A в множину B. Відношення $\overline{R} = \{(a,b) | (a,b) \notin R\}$ називають доповнювальним. Відношення $R^{-1} = \{(b,a) \mid (a,b) \in R\}$ із множини B в множину А називають оберненим.

- *5. Нехай R відношення на множині цілих чисел, $R = \{(a,b) | a < b\}$. Знайти:
 - a) \bar{R} ; 6) R^{-1} .
- 6. Нехай R відношення на множині натуральних чисел, $R = \{(a,b) | aдіянты b\}$. Знайти:
 - a) $R: 6) R^{-1}$.
 - 7. Записати всі 16 різних відношень на множині {0, 1}. Скільки з них містять пару
 - 8. Скільки з 16 відношень на множині {0, 1}, записаних у розв'язанні задачі 7:
 - а) рефлексивні;
 - б) іррефлексивні;
 - в) симетричні:

Дискретна математика

- г) антисиметричні;
- д) асиметричні;
 - е) транзитивні?
- Скільки різних відношень на множині з п елементів:
 - а) симетричні;
 - б) антисиметричні;
 - в) асиметричні;
 - г) іррефлексивні;
 - д) рефлексивні й симетричні;
 - е) ні рефлексивні, ні іррефлексивні?
- 10. Скільки є транзитивних відношень на множині з n елементів, якщо:
 - a) n = 1; 6) n = 2; B) n = 3?
- 11. Знайти помилку у «доведениі» такої «теореми».

Теорема. Нехай R — симетричне й транзитивне відношення на множині A. Тоді Rрефлексивне.

Доведення. Нехай $a \in A$. Виберемо такий елемент $b \in A$, що $(a, b) \in R$. Оскільки відношення R симетричне, то й $(b,a) \in R$. Позаяк відношення R транзитивне, то з $(a,b) \in R$ ї $(b,a) \in R$ випливає $(a,a) \in R$. Отже, відношення R рефлексивне.

- **12.** Довести, що відношення R на множині A симетричне тоді й лише тоді, коли $R=R^{-1}$, де R^{-1} – обернене відношення (див. інформацію перед задачею 5).
- **13.** Довести, що відношення R на множині A антисиметричне тоді й лише тоді, коли $R \cap R^{-1}$ — підмножина діагонального відношення $\Delta = \{(a,a) | a \in A\}$.
- **14.** Довести, що відношення R на множині A рефлексивне тоді й лише тоді, коли обернене відношення R^{-1} рефлексивне.
- **15.** Довести, що відношення R на множині A рефлексивне тоді й лише тоді, коли доповнювальне відношения \bar{R} іррефлексивне (див. інформацію перед задачею 5).
- 16. Задати кожне з відношень на множині {1, 2, 3}, наведених нижче, за допомогою матриці:
 - a) {(1.1),(1.2),(1.3)}:
 - 6) {(1,2),(2,1),(2,2),(3,3)};
 - в) {(1.1),(1,2),(1,3),(2,2),(2,3),(3,3)};
- 17. Виписати впорядковані пари елементів відношення на множині {1,2,3}, які відповідають наведеним нижче матрицям (рядки та стовиці відповідають числам, розміщеним у порядку зростания):

шеним у порядку зростания).

а)
$$\begin{pmatrix} 4 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, 6) $\begin{pmatrix} 0 & t & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, B) $\begin{pmatrix} 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Визначити, які з цих відношень рефлексивні, іррефлексивні, симетричні, антисиметричні, асиметричні, транзитивні.

- 18. Для кожного з відношень задачі 16 побудувати граф.
- 19. Для кожного з відношень задачі 17 побудувати граф.
- **20.** На множині $A = \{a, b, c, d\}$ задано відношення $R = \{(a, a), (a, b), (b, c), (c, b), (c, d), (c, d),$ (d, a), (d, b). Побудувати граф цього відношення.
- 21. Записати впорядковані пари елементів, які утворюють кожие відношення, подане графами, і визначити властивості цих відношень.

- 22, Які з наведених нижче відношень на множині {0, 1, 2, 3} являють собою відношеннями еквівалентності? Зазначити, чому інші відношення не є відношеннями еквівалентності:
 - a) {(0,0), (1, 1), (2, 2), (3, 3)};
 - 6) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)};
 - B) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)};
 - T) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)};
 - Π) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}.

- 23. Які з наступних відношень на множині всіх людей являють собою відношення еквівалентності? Зазначити, чому інші відношення не є відношеннями еквівалентності:
 - а) $\{(a, b) | a$ та b одного віку $\}$;
 - б) $\{(a,b) \mid a$ та b мають одних і тих самих батьків $\}$:
 - в) $\{(a,b) \mid a$ та b мають спільного одного з батьків $\}$:
 - r) $\{(a,b) \mid a \text{ ta } b \text{ sycrpinucs}\}$:
 - д) $\{(a,b) \mid a$ та b розмовляють спільною мовою $\}$.
- 24. Які з наступних відношень на множині всіх функцій із Z у Z являють собою відношення еквівалентності? Зазначити, чому інші відношення не є відношеннями еквівалентності:
 - a) $\{(f,g) \mid f(1) = g(1)\};$
 - 6) $\{(f,g) \mid f(0) = g(0) \text{ a fo } f(1) = g(1)\};$
 - в) $\{(f,g) \mid f(x) g(x) = 1 \text{ для всіх } x \in Z\};$
 - $f(f,g) \mid f(x) g(x) = C$ для якогось $C \in Z$ і для всіх $x \in Z$;
 - \mathbb{A}) {(f,g) | f(0) = g(1) i f(1) = g(0) }.
- Задайте три відношення еквівалентності на множині студентів вашої академічної групи. Визначте класи еквівалентності для цих відношень еквівалентності.
- **26.** Нехай A непорожня множина, f функція, визначена на множині A. Відношення R складається з усіх упорядкованих пар (x, y) таких, що f(x) = f(y):
 - а) довести. що R відношення еквівалентності на A;
 - б) які класи еквівалентності породжує відношення R?
- 27. Нехай A непорожня множина, R відношення еквівалентності на A. Довести, що існує така функція, визначена на множині A, що $(x, y) \in R$ тоді й лише тоді, коли f(x) = f(y).
- **28.** Відношення R, яке складається з усіх пар (α , β), де α та β бітові рядки довжиною не менше ніж три, що збігаються в перших трьох бітах, являє собою відношення еквівалентності на множині всіх бітових рядків. Довести.
- 29. Довести, що тотожність формул логіки висловлювань відношення еквівалентності на множині всіх формул.
- 30. Визначити, які з наведених матриць подають відношення еквівалентності:

a)
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

- Визначити, які з графів являють собою графи відношень еквівалентності (див. рис. до задачі).
- 32. Довести, що відношення R на множині всіх бітових рядків таке, що α R β тоді й лише тоді, коли α та β мають однакову кількість одиниць, являє собою відношення еквівалентності.
- 33. Для відношень еквівалентності із задач 22-24 наведіть класи еквівалентності.

Рис. до задачі 31

- 34. Знайти клас еквівалентності бітового рядка 011 для відношення еквівалентності із задачі 32.
- 35. Для бітових рядків, наведених нижче, знайти класи еквівалентності відношення еквівалентності із задачі 28:
 - а) 010; б) 1011; в) 11111; г) 01010101.
- **36.** Знайти класи конгруентності $[4]_m$ для таких значень m:
 - а) 2; б) 3; в) 6; г) 8.
- 37. Опишіть кожний із класів конгруентності за mod 6.
- **38.** Які з наступних систем підмножин розбиття множини $A = \{1, 2, 3, 4, 5, 6\}$? Для кожної системи підмножин, що являє собою розбиттям множини А, побудувати відповідне відношення еквівалентності на множині А:
 - a) {{1,2}, {2,3,4}, {4,5,6}}; 6) {{1}, {2,3,6}, {4}, {5}};
 - в) {{2, 4, 6}, {1, 3, 5}}; г) {{1, 4, 5}, {2, 6}}.
- 39. Скільки різних відношень еквівалентності можна задати на множині з чотирьох елементів?

- 40. На множині цілих чисел Z задано відношення R. У яких випадках множина
 - а) aRb тоді й лише тоді, коли a = b;
 - 6) aRb тоді й лише тоді, коли $a \neq b$;
 - в) aRb тоді й лише тоді, коли $a \ge b$;
 - г) aRb тоді й лише тоді, коли a не ділить b?
- 41. Визначити, які з наведених матриць подають відношення часткового порядку:

a)
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 6) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, B) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$

42. Які з наведених графів подають відношення часткового порядку?

- **43.** Нехай (A,R) частково впорядкована множина. Довести, що множина (A,R^{-1}) також частково впорядкована. Тут R^{-1} – обернене відношення (див. інформацію перед задачею 5).
- 44. Побудувати діаграму Гассе для відношення «більше чи дорівнює» на множині {0, 1,
- **45.** Побудувати діаграму Гассе для відношення $R = \{(a, b) \mid a$ ділить $b\}$ на множині A: a) $A = \{1, 2, 3, 4, 5, 6, 7, 8\};$ 6) $A = \{1, 2, 3, 5, 7, 11, 13\};$
- B) $A = \{1, 2, 3, 6, 12, 24, 36, 48\};$ F) $A = \{1, 2, 4, 8, 16, 32, 64\}.$

- **46.** Побудувати діаграму Гассе для відношення $R = \{(A, B) \mid A \subset B\}$ на булеані P(A), де $A = \{a, b, c\}$ (див. підрозділ 1.12).
- 47. Записати всі впорядковані пари відношення часткового порядку з такою діаграмою Гассе:

48. Для відношення часткового порядку, поданого діаграмою Гассе, знайти максимальні та мінімальні елементи.

- **49.** Для частково впорядкованої множини (A, R), де $A = \{3, 5, 9, 15, 24, 45\}$, $R = \{(a, b) | a$ ділить $b\}$, знайти максимальні та мінімальні елементи.
- 50. Виконати топологічне сортування для частково впорядкованої множини, заданої діаграмою Гассе із задачі 48.
- **51.** Виконати топологічне сортування для частково впорядкованої множини (A, R), де $A = \{1, 2, 3, 6, 8, 12, 24, 36\}$, $R = \{(a, b) | a ділить b\}$.
- **52.** Знайти відмінну від наведеної в прикладі 5.17 послідовність робіт для виконання завдань, з яких складається проект комп'ютерної компанії.
- **53.** Нехай R та S відношення на множині A= $\{1, 2, 3\}$, задані матрицями

$$M_{R} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad M_{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Знайти матриці відношень; а) $R \cup S$; б) $R \cap S$; в) $R \oplus S$; г) $S \circ R$; д) $R \circ R$.

54. Нехай відношення R задано матрицею

$$M_R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Знайти матриці відношень:

- a) R2; 6) R3; B) R4.
- 55. Нехай R відношення на множині A={0, 1, 2, 3}, яке складається з упорядкованих пар (0, 1), (1, 1), (1, 2), (2, 0), (2, 2) та (3, 0). Знайти:
 - а) рефлексивне замикання R;
 - 6) симетричне замикання R.
- 56. Нехай на множині Z цілих чисел задано відношення $R = \{(a, b) | a \neq b\}$. Знайти його рефлексивне замикання.
- 57. Як граф, що подає рефлексивне замикання відношення на скінченній множині, можна побудувати з графа цього відношення?
- 58. Побудувати граф рефлексивного замикання для кожного з відношень, поданих графами:

- 59. Як граф, що подає симетричне замикання відношення на скінченній множині, можна побудувати з графа цього відношення?
- 60. Побудувати графи симетричного замикання відношень, поданих графами задачі 58.
- 61. Знайти найменше відношення, яке містить відношення $R = \{(a, b) | a > b\}$ на множині цілих чисел і водночає рефлексивне та симетричне.
- 62. Побудувати граф найменшого відношення, яке водночає рефлексивне та симетричне, для кожного з відношень, поданих графами задачі 58.
- 63. Відношення R на скінченній n-елементній множині A подано матрицею M_R . Довести, що матриця, яка подає рефлексивне замикання R, має вигляд $M_R \vee I_n$. де $I_n -$ одинична $n \times n$ матриця.
- 64. Відношення R на скінченній множині A подано матрицею M_R . Довести, що матриця, яка подає симетричне замикання R, має вигляд $M_R \vee M_R^T$.
- 65. Довести, що замикання відношення R за властивістю q, якщо воно існує, являє собою перетин усіх відношень, що містять R і мають властивість q.
- 66. Нехай R відношення на множині $\{1, 2, 3, 4, 5\}$, яке складається з упорядкованих пар (1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1), (5, 2), (5, 4). Знайти:

 а) R^2 , б) R^3 , в) R^4 , г) R^5 , д) R^6 , е) R^* .
- 67. Нехай відношення R утворено парами (a, b), де a та b міста, між якими є пряма авіадінія. Коли пара (a, b) міститься в:
- **68.** Нехай R відношення на множині всіх студентів, яке складається з усіх пар (a, b), де студенти a та b слухають принаймні один спільний курс і $a \neq b$. Коли пара (a, b) міститься в:
 - a) R^2 , 6) R^3 , B) R^* ?
- **69.** Нехай відношення R рефлексивне. Довести, що відношення R^* також рефлексивне.
- 70. Нехай відношення R симетричне. Довести, що відношення R^* також симетричне.
- 71. Нехай відношення R іррефлексивне. Чи обов'язково буде іррефлексивним відношення R^2 ?
- 72. За алгоритмом Уоршалла побудувати транзитивні замикання відношень на множині {1:2,3,4}:
 - a) {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)};
 - 6 {(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)};
 - B) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)};
 - r) $\{(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)\}.$
- 73. За алгоритмом Уоршалла побудувати транзитивні замикання відношень на множині $\{a,b,c,d,e\}$:
 - a) $\{(a, c), (b, d), (c, a), (d, b), (e, d)\};$
 - 6) $\{(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)\};$
 - B) $\{(a, b), (a, c), (a, e), (b, a), (b, c), (c, a), (c, b), (d, a), (e, d)\};$
 - Γ) $\{(a, e), (b, a), (b, d), (e, d), (d, a), (d, c), (e, a), (e, b), (e, c), (e, e)\}$