Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Natal Central

Diretoria Acadêmica de Gestão e Tecnologia da Informação Cálculo Diferencial e Integral

Prof.: Fco. Assis de Oliveira

ASSÍNTOTAS

restart

 \rightarrow with(plots): with(plottools):

> with(Student[Calculus1]): with(Student[Precalculus]):

Assíntotas: são curvas (retas horizontais, retas verticais, retas oblíquas e curvas em gerais), em que nos limites infinitos e/ou limites nos infinitos, a diferença entre o gráfico da expressão (ou função) e essas curvas (assíntotas) tendem a zero.

Assíntotas Horizontais (AH), Verticais (AV), Oblíquas (AO) e Curvilíneas (AC):

1. AH ==> reta y = k

$$\lim_{x \to \infty} f(x) = k \quad ou \quad \lim_{x \to -\infty} f(x) = k$$

2. AV ==> reta x = c

$$\lim_{x \to c^+} f(x) = \infty \ ou \ \lim_{x \to c^+} f(x) = - \infty \ ou \ \lim_{x \to c^-} f(x) = \infty \ ou \ \lim_{x \to c^-} f(x) = - \infty$$

Sendo
$$f(x) = \frac{p(x)}{q(x)}$$
, resolver a equação $q(x) = 0$.

3. AO ==> reta $y = m \cdot x + b$, onde:

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
 ou $m = \lim_{x \to -\infty} \frac{f(x)}{x}$

$$b = \lim_{x \to \infty} (f(x) - mx)$$
 ou $b = \lim_{x \to -\infty} (f(x) - mx)$

4. $AC \Longrightarrow curva Q(x)$

Sendo $f(x) = \frac{p(x)}{q(x)}$, então podemos escrever:

$$f(x) = \frac{p(x)}{q(x)} = Q(x) + \frac{R(x)}{q(x)}$$
,

onde :
$$Q(x)$$
 = quociente da divisão
e $R(x)$ = resto da divisão

Exemplo 01:

$$f(x) = \frac{4}{x+3}$$

Assíntota Horizontal: y = 0

$$\lim_{x \to \infty} \frac{4}{x+3} = 0 \tag{1}$$

Assíntota Vertical: x = -3

>
$$x = solve(x + 3 = 0, x);$$

$$x = -3 \tag{2}$$

$$\lim_{x \to -3^{+}} \frac{4}{x+3} = \infty \tag{3}$$

_Exemplo 02:

$$f(x) = \frac{3 \cdot x}{x - 2}$$

_Assíntota Horizontal: y = 3

$$\lim_{x \to \infty} \frac{3x}{x - 2} = 3 \tag{4}$$

Assíntota Vertical: x = 2

> x = solve(x - 2 = 0, x);

$$x = 2 \tag{5}$$

$$\lim_{x \to 2^+} \frac{3x}{x - 2} = \infty \tag{6}$$

Exemplo 03:

$$f(x) = \frac{x-1}{x+1}$$

_Assíntota Horizontal: y = 1

$$\lim_{x \to \infty} \frac{x-1}{x+1} = 1 \tag{7}$$

Assíntota Vertical: x = -1

> x = solve(x + 1 = 0, x);

$$x = -1 \tag{8}$$

$$\lim_{x \to -1^+} \frac{x - 1}{x + 1} = -\infty \tag{9}$$

$$\lim_{x \to -1^{-}} \frac{x-1}{x+1} = \infty$$
 (10)

Exemplo 04:

$$f(x) = \frac{1}{x^2 - 4}$$

$$\lim_{x \to \infty} \frac{1}{x^2 - 4} = 0 \tag{11}$$

Assintota Vertical:
$$x = 2$$
 ou $x = -2$
> $x = solve(x^2 - 4 = 0, x)$;

$$x = (2, -2)$$
 (12)

$$\lim_{x \to -2^+} \frac{1}{x^2 - 4} = -\infty \tag{13}$$

$$\lim_{x \to 2^+} \frac{1}{x^2 - 4} = \infty \tag{14}$$

_Exemplo 05:

$$f(x) = \frac{x}{x^2 - 4}$$

$$\lim_{x \to \infty} \frac{x}{x^2 - 4} = 0 \tag{15}$$

Assíntota Vertical:
$$x = 2$$
 ou $x = -2$
 $\Rightarrow x = solve(x^2 - 4 = 0, x);$

$$x = (2, -2)$$
 (16)

$$\lim_{x \to -2^+} \frac{1}{x^2 - 4} = -\infty \tag{17}$$

$$\lim_{x \to 2^+} \frac{1}{x^2 - 4} = \infty \tag{18}$$

_Exemplo 06:

>
$$f(x) = \frac{(x+2)}{(x^2 - 2 \cdot x)}$$

$$\lim_{x \to \infty} \frac{x+2}{x^2 - 2x} = 0 \tag{19}$$

Assíntota Vertical:
$$x = 0$$
 ou $x = 2$
 $\Rightarrow x = solve(x^2 - 2 \cdot x = 0, x);$

$$x = (0, 2)$$
 (20)

$$\lim_{x \to 0^+} \frac{1}{x^2 - 2x} = -\infty \tag{21}$$

$$\lim_{x \to 2^+} \frac{1}{x^2 - 2x} = \infty \tag{22}$$

Exemplo 07:

$$f(x) = \frac{1}{x^2 + 1}$$

$$\lim_{x \to \infty} \frac{1}{x^2 + 1} = 0 \tag{23}$$

Assíntota Vertical:
$$n\tilde{a}o$$
 existem raizes reais, $logo$ $n\tilde{a}o$ existe AV

$$x = solve(x^2 + 1 = 0, x);$$

$$x = (I, -I)$$
(24)

_Exemplo 08:

$$f(x) = \frac{2 \cdot x}{x^2 + 1}$$

$$\lim_{x \to \infty} \frac{2x}{x^2 + 1} = 0 \tag{25}$$

Assíntota Vertical:
$$n\tilde{a}o$$
 existem raizes reais, logo $n\tilde{a}o$ existe AV

$$> x = solve(x^2 + 1 = 0, x);$$

$$x = (I, -I)$$
(26)

Exemplo 09:
$$f(x) \frac{x^2 - 4}{x^2 - 9}$$

$$\lim_{x \to \infty} \frac{x^2 - 4}{x^2 - 9} = 1 \tag{27}$$

Assíntota Vertical:
$$x = 3$$
 ou $x = -3$
 $x = solve(x^2 - 9 = 0, x);$

$$x = (3, -3) (28)$$

$$\lim_{x \to -3^{+}} \frac{x^2 - 4}{x^2 - 9} = -\infty$$
 (29)

$$\lim_{x \to 3^+} \frac{x^2 - 4}{x^2 - 9} = \infty \tag{30}$$

Exemplo 10:

$$f(x) = \frac{\sqrt{x^2 + 4}}{2x - 4}$$

Assíntota Horizontal: $y = \frac{1}{2} e y = -\frac{1}{2}$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 4}}{2x - 4} = \frac{1}{2} \tag{31}$$

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4}}{2x - 4} = -\frac{1}{2}$$
 (32)

_Assíntota Vertical: x = 2

>
$$x = solve(2 \cdot x - 4 = 0, x);$$

$$x = 2 \tag{33}$$

$$\lim_{x \to 2^+} \frac{\sqrt{x^2 + 4}}{2x - 4} = \infty \tag{34}$$

$$\lim_{x \to 2^{-}} \frac{\sqrt{x^2 + 4}}{2x - 4} = -\infty \tag{35}$$

_Exemplo 11:

$$f(x) = \frac{3x+4}{\sqrt{x^2-4}}$$

Assíntota Horizontal: y = 3 e y = -3

$$\lim_{x \to \infty} \frac{3x+4}{\sqrt{x^2-4}} = 3 \tag{36}$$

$$\lim_{x \to -\infty} \frac{3x+4}{\sqrt{x^2-4}} = -3 \tag{37}$$

Assíntota Vertical: x = 2 e x = -2

>
$$x = solve(\sqrt{x^2 - 4} = 0, x);$$

$$x = (2, -2) (38)$$

$$\lim_{x \to 2^+} \frac{3x+4}{\sqrt{x^2-4}} = \infty \tag{39}$$

$$\lim_{x \to -2^{-}} \frac{3x+4}{\sqrt{x^2-4}} = -\infty$$
 (40)

Exemplo 12:

>
$$f(x) := \frac{3x+4}{\sqrt{x^2+4}}$$

Assintota Horizontal: y = -3 e y = 3

$$\lim_{x \to \infty} \frac{3x+4}{\sqrt{x^2+4}} = 3 \tag{41}$$

$$\lim_{x \to -\infty} \frac{3x+4}{\sqrt{x^2+4}} = -3 \tag{42}$$

Assíntota Vertical: *não existe AV*

>
$$x = solve(\sqrt{x^2 + 4} = 0, x);$$
 $x = (2 \text{ I}, -2 \text{ I})$ (43)

Exemplo 13:

$$f(x) = \frac{sen(x)}{x}$$

Assíntota Horizontal: y = 0

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = 0 \tag{44}$$

$$\lim_{x \to -\infty} \frac{\sin(x)}{x} = 0 \tag{45}$$

Assíntota Vertical: *não existe AV*

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1 \tag{46}$$

$$\lim_{x \to 0^{-}} \frac{\sin(x)}{x} = 1 \tag{47}$$

Exemplo 14:

$$f(x) = \frac{\cos(x)}{x}$$

Assíntota Horizontal: y = 0

$$\lim_{x \to \infty} \frac{\cos(x)}{x} = 0 \tag{48}$$

$$\lim_{x \to -\infty} \frac{\cos(x)}{x} = 0 \tag{49}$$

Assíntota Vertical: x = 0

$$\lim_{x \to 0^+} \frac{\cos(x)}{x} = \infty \tag{50}$$

$$\lim_{x \to 0^-} \frac{\cos(x)}{x} = -\infty \tag{51}$$

Exemplo 15:

Síntese de Assíntotas em funções racionais polinomiais tipo: $\frac{p(x)}{q(x)}$

>
$$f(x) = \frac{3}{(3 \cdot x^2 + 2)}$$

 $\underline{\underline{\hspace{0.5cm}}}$ Assintota Horizontal: y = 0

$$\lim_{x \to \infty} \frac{3}{3 x^2 + 2} = 0 \tag{52}$$

Assíntota Vertical: não existem raizes reais, logo não existe AV $x = solve(3 \cdot x^2 + 2 = 0, x);$

>
$$x = solve(3 \cdot x^2 + 2 = 0, x);$$

$$x = \left(\frac{1}{3} \, I\sqrt{6}, \, -\frac{1}{3} \, I\sqrt{6}\right) \tag{53}$$

_Exemplo 16:

>
$$f(x) = \frac{(2 \cdot x + 3)}{(3 \cdot x^2 + 2)}$$

Assíntota Horizontal: y = 0

$$\lim_{x \to \infty} \frac{2x+3}{3x^2+2} = 0 \tag{54}$$

$$\lim_{x \to -\infty} \frac{2x+3}{3x^2+2} = 0 \tag{55}$$

Assíntota Vertical: não existem raizes reais, logo não existe AV

$$x = solve(3 \cdot x^2 + 2 = 0, x);$$

$$x = \left(\frac{1}{3} \text{ I}\sqrt{6}, -\frac{1}{3} \text{ I}\sqrt{6}\right)$$
 (56)

Exemplo 17:

$$f(x) = \frac{(2 \cdot x^2 + 3)}{(3 \cdot x^2 + 2)}$$

Assíntota Horizontal: $y = \frac{2}{3}$

$$\lim_{x \to \infty} \frac{2x^2 + 3}{3x^2 + 2} = \frac{2}{3}$$
 (57)

$$\lim_{x \to -\infty} \frac{2x^2 + 3}{3x^2 + 2} = \frac{2}{3}$$
 (58)

Assíntota Vertical: não existem raizes reais, logo não existe AV $x = solve(3 \cdot x^2 + 2 = 0, x);$

>
$$x = solve(3 \cdot x^2 + 2 = 0, x);$$

$$x = \left(\frac{1}{3} \text{ I}\sqrt{6}, -\frac{1}{3} \text{ I}\sqrt{6}\right)$$
 (59)

Exemplo 18:

$$f(x) = \tan(x)$$

_Assíntota Horizontal: não existe AH

Assíntota Vertical: $x = -\frac{1}{2} \pi e \quad x = \frac{1}{2} \pi$

$$\lim_{x \to -\frac{1}{2} \pi^{+}} \tan(x) = -\infty$$
 (60)

$$\lim_{x \to -\frac{1}{2} \pi^{-}} \tan(x) = \infty \tag{61}$$

$$\lim_{x \to \frac{1}{2} \pi^{+}} \tan(x) = -\infty \tag{62}$$

$$\lim_{x \to \frac{1}{2}\pi^{-}} \tan(x) = \infty \tag{63}$$

Exemplo 19:
Assintotas Oblíquas
$$f(x) = \frac{(2 \cdot x^2 + 3)}{(3 \cdot x + 2)}$$

_Assíntota Horizontal: *não existe AH*

Assíntota Vertical: $x = -\frac{2}{3}$

>
$$x = solve(3 \cdot x + 2 = 0, x);$$

$$x = -\frac{2}{3}$$
 (64)

$$\lim_{x \to -\frac{2}{3} + \frac{2x^2 + 3}{3x + 2} = \infty$$

$$\lim_{x \to -\frac{2}{3} - \frac{2x^2 + 3}{3x + 2} = -\infty$$
(65)

$$\lim_{x \to -\frac{2}{3}} - \frac{2x^2 + 3}{3x + 2} = -\infty$$
 (66)

Assíntota Oblíqua - grau do polinômio do numerador maior do que o grau do polinômio do

denominador: y = m x + b

Reta Assíntota: $y = \frac{2}{3} x - \frac{4}{9}$

$$m = \lim_{x \to \infty} \frac{2x^2 + 3}{x(3x + 2)}$$
 (67)

$$m:=\frac{2}{3} \tag{68}$$

$$b = \lim_{x \to \infty} \left(\frac{2x^2 + 3}{3x + 2} - \frac{2}{3}x \right)$$
 (69)

$$b := -\frac{4}{9}$$
 (70)

$$\int f(x) = \frac{x^2 + 1}{x} = x + \frac{1}{x}$$

Assíntota Horizontal: não existe AH

Assíntota Vertical: x = 0

>
$$x = solve(x = 0, x);$$

$$x = 0 \tag{71}$$

$$\lim_{x \to 0^+} \frac{x^2 + 1}{x} = \infty \tag{72}$$

$$\lim_{x \to 0^{-}} \frac{x^2 + 1}{x} = -\infty \tag{73}$$

Assíntota Oblíqua - grau do polinômio do numerador maior do que o grau do polinômio do denominador: y = mx + bReta Assíntota: y = 1. x + 0 = x

$$m := \lim_{x \to \infty} \frac{x^2 + 1}{x^2}$$
 (74)

$$m:=1 \tag{75}$$

$$b := \lim_{x \to \infty} \left(\frac{x^2 + 1}{x} - x \right) \tag{76}$$

$$b := 0 \tag{77}$$

Exemplo 21:
$$f(x) = \frac{x^2 + 1}{x + 2}$$

Assíntota Horizontal: não existe AH

Assíntota Vertical: x = -2

>
$$x = solve(x + 2 = 0, x);$$

$$x = -2 \tag{78}$$

$$\lim_{x \to -2^+} \frac{x^2 + 1}{x + 2} = \infty \tag{79}$$

$$\lim_{x \to -2^{-}} \frac{x^2 + 1}{x + 2} = -\infty$$
 (80)

Assíntota Oblíqua - grau do polinômio do numerador maior do que o grau do polinômio do denominador: v = m x + b

denominador: y = mx + bReta Assíntota: y = 1. x - 2 = x - 2

$$m := \lim_{x \to \infty} \frac{x^2 + 1}{x(x+2)}$$
 (81)

$$m:=1 \tag{82}$$

$$b := \lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 2} - x \right)$$
 (83)

$$b := -2 \tag{84}$$

> 'resto'= $rem(x^2 + 1, x + 2, x)$;

$$resto = 5 ag{85}$$

| resto = 5
|
$$=$$
 'quociente'= quo($x^2 + 1, x + 2, x$);
| quociente = $x - 2$

$$quociente = x - 2$$
 (86)

Assíntota Horizontal: não existe AH

Assíntota Vertical: x = -2

>
$$x = solve(x - 2 = 0, x);$$

$$x = 2 \tag{87}$$

$$\lim_{x \to 2^+} \frac{3x^2 + 2x - 1}{x - 2} = \infty$$
 (88)

$$\lim_{x \to 2^{-}} \frac{3 x^2 + 2 x - 1}{x - 2} = -\infty$$
 (89)

Assíntota Oblíqua - grau do polinômio do numerador maior do que o grau do polinômio do denominador: y = m x + b

Reta Assíntota: y = 3. x + 8

$$m := \lim_{x \to \infty} \frac{3 x^2 + 2 x - 1}{x (x - 2)}$$
 (90)

$$m:=3 \tag{91}$$

$$b := \lim_{x \to \infty} \left(\frac{3 x^2 + 2 x - 1}{x - 2} - 3 x \right)$$
 (92)

$$b := 8 \tag{93}$$

Exemplo 23:

$$f(x) = \frac{x^3}{x^2 + 1}$$

_Assíntota Horizontal: não existe AH

_Assíntota Vertical: não existe AV

>
$$x = solve(x^2 + 1 = 0, x);$$

$$x = (I, -I) \tag{94}$$

Assíntota Oblíqua - grau do polinômio do numerador maior do que o grau do polinômio do denominador: y = mx + b

_Reta Assíntota: y = x

$$m := \lim_{x \to \infty} \frac{x^2}{x^2 + 1}$$
 (95)
 $m := 1$ (96)

$$m:=1 \tag{96}$$

$$b := \lim_{x \to \infty} \left(\frac{x^3}{x^2 + 1} - x \right)$$
 (97)

$$b := 0 \tag{98}$$

Exemplo 24: _Assíntotas Curvilíneas

$$f(x) = \frac{x^3 - 1}{x + 1}$$

_Assíntota Horizontal: não existe AH

_Assíntota Vertical: x = -1

>
$$x = solve(x + 1 = 0, x);$$

$$x = -1 \tag{99}$$

$$\lim_{x \to -1^+} \frac{x^3 - 1}{x + 1} = -\infty$$
 (100)

$$\lim_{x \to -1^{-}} \frac{x^3 - 1}{x + 1} = \infty \tag{101}$$

Assíntota Curvilínea:
$$y = x^2 - x + 1$$

| 'quociente'= quo($x^3 - 1, x + 1, x$);

quociente =
$$x^2 - x + 1$$
 (102)

$$rac{1}{2}$$
 'resto'= $rem(x^3 - 1, x + 1, x)$;

$$resto = -2 ag{103}$$

Exemplo 25:
>
$$f(x) = \frac{x^5 + 1}{(x - 1)^2}$$

Assíntota Horizontal: não existe AH

Assíntota Vertical: x = 1

>
$$x = solve(x - 1 = 0, x);$$

$$x = 1 \tag{105}$$

(104)

$$\lim_{x \to 1^{+}} \frac{x^{5} + 1}{(x - 1)^{2}} = \infty$$
 (106)

$$\lim_{x \to 1^{-}} \frac{x^5 + 1}{(x - 1)^2} = \infty$$
 (107)

Assíntota Curvilínea: $y = x^3 + 2x^2 + 3x + 4$ > 'quociente'= quo($x^5 + 1$, $(x - 1)^2$, x);

> 'quociente'=
$$quo(x^5 + 1, (x - 1)^2, x)$$
;

quociente =
$$x^3 + 2x^2 + 3x + 4$$
 (108)

