(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 4 March 2004 (04.03.2004)

PCT

(10) International Publication Number WO 2004/017961 A2

A61K 31/4155 (51) International Patent Classification⁷:

(21) International Application Number:

PCT/GB2003/003633

(22) International Filing Date: 19 August 2003 (19.08.2003)

English (25) Filing Language:

(26) Publication Language: English

(30) Priority Data:

02292077.1 21 August 2002 (21.08.2002) EP

(71) Applicant (for AE, AG, AL, AM, AT, AU, AZ, BA, BB, BE, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CY, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, FR, GB, GD, GE, GH, GM, GR, HR, HU, ID, IE, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, SZ, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW only): ASTRAZENECA AB [SE/SE]; Sodertalje, S-151 85 (SE).

(71) Applicant (for MG only): ASTRAZENECA UK LIM-ITED [GB/GB]; 15 Stanhope Gate, London, Greater London W1K 1LN (GB).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BIRD, Thomas, Geoffrey, Colerick [GB/FR]; AstraZeneca Reims, Z.I. la Pompelle, BP 1050, F-51689 Reims Cedex 2 (FR).

HERDEMANN, Matthias, Ferdinand [DE/FR]; 16 rue Arlette Remia, F-51100 Reims (FR). MAUDET, Mickael, Louis, Pierre [FR/FR]; AstraZeneca Reims, Z.I. la Pompelle, BP 1050, F-51689 Reims Cedex 2 (FR).

- (74) Agent: ASTRAZENECA; Global Intellectual Property, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHEMICAL COMPOUNDS

$$R^5$$
— M
 N
 R^3
 R^2
 R^1
(I)

2004/017961 (57) Abstract: The invention relates to a group of novel pyrazole compounds of Formula (I): wherein: R¹, R², R³, M and R⁵ are as defined in the specification, which are useful as gonadotrophin releasing hormone antagonists. The invention also relates to pharmaceutical formulations of said compounds, methods of treatment using said compounds and to processes for the preparation of said compounds.

- 1 - CHEMICAL COMPOUNDS

The present invention relates to compounds which are antagonists of gonadotropin releasing hormone (GnRH) activity. The invention also relates to pharmaceutical formulations, the use of a compound of the present invention in the manufacture of a medicament, a method of therapeutic treatment using such a compound and processes for producing the compounds.

Gonadotropin releasing hormone (GnRH) is a decapeptide that is secreted by the hypothalamus into the hypophyseal portal circulation in response to neural and/or chemical stimuli, causing the biosynthesis and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by the pituitary. GnRH is also known by other names, including gonadoliberin, LH releasing hormone (LHRH), FSH releasing hormone (FSH RH) and LH/FSH releasing factor (LH/FSH RF).

GnRH plays an important role in regulating the action of LH and FSH (by regulation of their levels), and thus has a role in regulating the levels of gonadal steroids in both sexes, including the sex hormones progesterone, oestrogens and androgens. More discussion of GnRH can be found in WO 98/5519 and WO 97/14697, the disclosures of which are incorporated herein by reference.

It is believed that several diseases would benefit from the regulation of GnRH activity, in particular by antagonising such activity. These include sex hormone related conditions such as sex hormone dependent cancer, benign prostatic hypertrophy and myoma of the uterus. Examples of sex hormone dependent cancers are prostatic cancer, uterine cancer, breast cancer and pituitary gonadotrophe adenoma.

The following disclose compounds purported to act as GnRH antagonists: WO 97/21435, WO 97/21703, WO 97/21704, WO 97/21707, WO 55116, WO 98/55119, WO 98/55123, WO 98/55470, WO 98/55479, WO 99/21553, WO 99/21557, WO 99/41251, WO 99/41252, WO 00/04013, WO 00/69433, WO 99/51231, WO 99/51232, WO 99/51233, WO 99/51234, WO 99/51595, WO 99/51596, WO 00/53178, WO 00/53180, WO 00/53179, WO 00/53181, WO 00/53185, WO 00/53602, WO 02/066477, WO 02/066478, WO 02/06645 and WO 02/092565.

It would be desirable to provide further compounds, such compounds being GnRH antagonists. Thus, according to the first aspect of the invention there is provided a compound of Formula (I),

$$R^{5}$$
 M
 R^{5}
 R^{2}
 R^{1}

5

15

Formula (I)

wherein:

 \mathbf{R}^1 is selected from: hydrogen, optionally-substituted C_{1-6} alkyl, optionally substituted aryl or optionally-substituted arylC₁₋₆alkyl;

 \mathbb{R}^2 is an optionally-substituted mono or bi-cyclic aromatic ring; 10

Formula (IIe)

R³ is selected from a group of Formula (IIa) to Formula (IIf):

5

10

15

- 3 -

R⁵ is a group of Formula (III):

Formula (III)

 ${f R}^6$ and ${f R}^{6a}$ are independently selected from hydrogen, fluoro, optionally substituted C_{1-6} alkyl, optionally-substituted aryl or optionally substituted aryl C_{1-6} alkyl, or ${f R}^6$ and ${f R}^{6a}$ taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms, or ${f R}^6$ and ${f R}^{6a}$ taken together and the carbon atom to which they are attached form a carbonyl group;

A R6

or when A is not a direct bond the group

forms a carbocyclic ring of 3-7

carbon atoms or a heterocyclic ring containing one or more heteroatoms;

R⁶

or the group

forms a heterocyclic ring containing 3-7 carbon atoms and one

or more heteroatoms;

 ${f R}^7$ is selected from: hydrogen, optionally-substituted $C_{1\text{-}6}$ alkyl, optionally-substituted aryl $C_{1\text{-}6}$ alkyl, optionally-substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl, ${f R}^9$ OC $_{1\text{-}6}$ alkyl-, ${f R}^9{f R}^{10}$ NC $_{1\text{-}6}$ alkyl-,

 $R^{9}R^{10}NC(O)C_{1-6}alkyl, -C(NR^{9}R^{10})=NH;$

or when \mathbb{R}^3 is a group of Formula (IIc) or (IId) \mathbb{R}^7 is of the formula $-J-K-\mathbb{R}^8$;

 \mathbb{R}^8 is selected from:

- (i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, haloC₁₋₆alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₆alkyl, cyano, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, C₁₋₆alkyl-S(O_n)-, -O-R^b, -NR^bR^c, -C(O)-R^b, -C(O)O-R^b, -CONR^bR^c, NH-C(O)-R^b or -S(O_n)NR^bR^c, where R^b and R^c are independently selected from hydrogen and C₁₋₄alkyl optionally substituted with hydroxy, amino, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, HO-C₂₋₄alkyl-NH- or HO-C₂₋₄alkyl-N(C₁₋₄alkyl)-;
 - (ii) nitro when **B** is a group of Formula (IV) and **X** is CH and **p** is 0;

- 4

- (iii) C_{3-7} cycloalkyl, aryl or aryl C_{1-6} alkyl each of which is optionally substituted by \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;
- (iv) -(Q)-aryl, -(Q)-heterocyclyl, -aryl-(Q)-aryl, each of which is optionally substituted by \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} wherein -(Q)- is selected from \mathbf{E} , \mathbf{F} or a direct bond;
- (v) heterocyclyl or heterocyclyl C_{1-6} alkyl each of which is optionally substituted by up to 4 substituents independently selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;
- (vi) a group selected from R^{12} , R^{13} and R^{14} ;

5

25

30

- R⁹ and R¹⁰ are independently selected from: hydrogen, hydroxy, optionally substituted C₁₋₆alkyl, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl, optionally substituted heterocyclylC₁₋₆alkyl or R⁹ and R¹⁰ taken together can form an optionally substituted ring of 3-9 atoms or R⁹ and R¹⁰ taken together with the carbon atom to which they are attached form a carbonyl group;
- 15 $\mathbf{R^{11}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, or $N(\mathbf{R^9R^{10}})$; $\mathbf{R^{12}}$ is selected from: hydrogen, hydroxy, $\mathbf{R^{17}R^{18}N(CH_2)_{ec^-}}$, $\mathbf{R^{17}R^{18}NC(O)(CH_2)_{ec^-}}$, optionally substituted $C_{1\text{-}6}$ alkyl- $C(O)N(\mathbf{R^9})(CH_2)_{ec^-}$, optionally substituted $C_{1\text{-}6}$ alkyl- $C_{1\text{-}6}$ alkoxy, optionally substituted $C_{1\text{-}6}$ alkoxy, carboxy, halo, nitro or cyano;
 - ${f R^{13}}$ and ${f R^{14}}$ are independently selected from: hydrogen, hydroxy, oxo, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{1\text{-}6}$ alkanoyl, optionally substituted $C_{2\text{-}6}$ alkenyl, cyano, nitro, $C_{1\text{-}3}$ perfluoroalkyl-, $C_{1\text{-}3}$ perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl, ${f R^9O(CH_2)_s}$ -, ${f R^9O(CH_2)_s}$ -, or halo;
 - $\mathbf{R^{15}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, $\mathbf{R^{19}OC(O)}$ -, $\mathbf{R^9R^{10}NC(O)}$ -, $\mathbf{R^9C(O)}$ -, $\mathbf{R^9S(O_n)}$ -;
 - ${f R^{16}}$ is selected from: hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}3}$ perfluoroalkyl or optionally-substituted aryl; ${f R^{17}}$ is independently selected from: hydrogen, hydroxy, cyano or optionally substituted $C_{1\text{-}6}$ alkyl;

- 5 -

- R^{18} is a group of formula R^{18a} -C(R^9R^{10})₀₋₁- wherein R^{18a} is selected from: $R^{19}{\rm OC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, hydrogen, optionally substituted C₁₋₆alkyl, optionally substituted heterocyclyl;
- or \mathbb{R}^{17} and \mathbb{R}^{18} when taken together form an optionally substituted carbocyclic ring of 3-7 atoms or optionally substituted heterocyclyl;
- $\mathbf{R^{19}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alky, optionally substituted aryl, optionally substituted $C_{3\text{-}7}$ cycloalkyl, optionally substituted heterocyclyl or optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl;
- ${f R^{21}}$ and ${f R^{22}}$ are independently selected from hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted heterocyclyl, optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl, optionally substituted $C_{3\text{-}6}$ alkenyl, optionally substituted $C_{3\text{-}6}$ alkynyl, - $(C_{1\text{-}5}$ alkyl)_{aa}- $S(O_n)$ - $(C_{1\text{-}5}$ alkyl)_{bb}-; ${f R^9}{f R^{10}}$ NC₂₋₆ alkyl,
- $\mathbf{R}^9 OC_{2-6}$ alkyl or $\mathbf{R}^9 \mathbf{R}^{10} NC(O)C_{2-6}$ alkyl, with the proviso that \mathbf{R}^9 and \mathbf{R}^{10} independently or taken together are not optionally substituted aryl or optionally substituted aryl C_{1-6} alkyl; or
 - ${\bf R^{21}}$ and ${\bf R^{22}}$ taken together form an optionally substituted non-aromatic heterocyclic ring; A is selected from:
- 20 (i) a direct bond;

5

10

15

- (ii) optionally-substituted C_{1-5} alkylene wherein the optional substituents are independently selected from: optionally-substituted C_{1-6} alkyl optionally-substituted aryl or optionally substituted aryl C_{1-6} alkyl;
- (iii) a carbocyclic ring of 3-7 atoms;
- 25 (iv) a carbonyl group or $-C(O)-C(\mathbf{R}^d\mathbf{R}^d)$ -, wherein \mathbf{R}^d is independently selected from hydrogen and C_{1-2} alkyl;

N-B-X

or when \mathbb{R}^3 is a group of Formula (IIa) or (IIb), the group forms a

heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

or when \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms; **B** is selected from:

(i) a direct bond;

5

10

(ii) a group of Formula (IV)

$$X - (CH_2)_{p}$$

Formula (IV)

wherein:

X is selected from N or CH,

wherein at position (a) Formula (IV) is attached to the nitrogen atom and the $(CH_2)_p$ group is attached to \mathbf{R}^8 ; and

(iii) a group independently selected from: optionally substituted C₁₋₆alkylene, optionally substitute C₃₋₇cycloalkyl, optionally substituted C₃₋₆alkenylene, optionally substituted C₃₋₆alkynyl, C₁₋₆alkoxy, (C₁₋₅alkyl)_{aa}-S(O_n)-(C₁₋₅alkyl)_{bb}-, -(C₁₋₅alkyl)_{aa}-C(O)-(C₁₋₅alkyl)_{bb}- or (C₁₋₅alkyl)_{aa}-N(R¹⁵)- (C₁₋₅alkyl)_{bb}, wherein R¹⁵ and the (C₁₋₅alkyl)_{aa} or (C₁₋₅alkyl)_{bb} chain can be joined to form a ring, wherein the combined length of (C₁₋₅alkyl)_{aa} and (C₁₋₅alkyl)_{bb} is less than or equal to C₅alkyl;

or the group –**B**-**R**⁸ represents a group of Formula (V)

Formula (V);

the group
$$\mathbb{R}^{\prime}$$

or the group '72 together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms;

or the group

forms a heterocyclic ring containing 3-7 carbon atoms and

one or more heteroatoms;

 \mathbf{F} is $-\mathbf{E}(\mathrm{CH_2})_{\mathbf{r}}$ -;

- G is selected from: hydrogen, halo, N, O, $S(O_n)$, C(O), $C(\mathbf{R}^9\mathbf{R}^{10})_t$, optionally substituted $C_{2\text{-}6}$ alkenylene, optionally substituted $C_{2\text{-}6}$ alkynylene or a direct bond to \mathbf{R}^{18} ,
 - J is a group of the formula: $-(CH_2)_s$ -L- $-(CH_2)_s$ wherein when s is greater than 0, the alkylene group is optionally substituted,

R⁷ N−J-{

or the group

together forms an optionally substituted heterocyclic ring

10 containing 4-7 carbons atoms;

K is selected from: a direct bond, $-(CH_2)_{s1}$ -, $-(CH_2)_{s1}$ -O- $-(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -C(O)- $-(CH_2)_{s2}$ -, $-(CH_2)_{s2}$ -,

$$-(CH_2)_{s1}-S(O_n)-(CH_2)_{s2}-, -(CH_2)_{s1}-N(\textbf{R}^{18})-(CH_2)_{s2}-, -(CH_2)_{s1}-C(O)N(\textbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s2}-, -(CH_2)_{s3}-C(O)N(\textbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s3}-C(O)N(\textbf{R}^9)-(CH_2)_{s3}-N(\textbf{R}^{18})-(CH_2)_{s3}-N(\textbf{R}^{1$$

$$-(CH_2)_{s1}-N({I\!\!R}^9)C(O)-(CH_2)_{s2}-, \ -(CH_2)_{s1}-N({I\!\!R}^9)C(O)N({I\!\!R}^9)-(CH_2)_{s2}-, \ -(CH_2)_{s2}-N(I\!\!R}^9)-(CH_2)_{s2}-, \$$

$$-(CH_2)_{s1}-OC(O)-(CH_2)_{s2}-, -(CH_2)_{s1}-C(O)O-(CH_2)_{s2}-, -(CH_2)_{s1}-N(\textbf{R}^9)C(O)O-(CH_2)_{s2}-, -(CH_2)_{s1}-N(\textbf{R}^9)C(O)O-(CH_2)_{s2}-, -(CH_2)_{s2}-, -(CH_2)_{s3}-N(\textbf{R}^9)C(O)O-(CH_2)_{s2}-, -(CH_2)_{s3}-N(\textbf{R}^9)C(O)O-$$

15 $-(CH_2)_{s1}-OC(O)N(\mathbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s1}-OS(O_n)-(CH_2)_{s2}-, or$

$$-(CH_2)_{s1}-S(O_n)-O-(CH_2)_{s2}-, -(CH_2)_{s1}-S(O)_2N(\textbf{R}^9)-(CH_2)_{s2}-or$$

- $(CH_2)_{s1}$ - $N(\mathbf{R}^9)S(O)_2$ - $(CH_2)_{s2}$ -; wherein the - $(CH_2)_{s1}$ - and - $(CH_2)_{s2}$ - groups are independently optionally substituted by hydroxy or C_{1-4} alkyl;

L is selected from optionally substituted aryl or optionally substituted heterocyclyl;

20 M is selected from $-(CH_2)_{0-2}$ -O- or -C(O)NH-;

n is an integer from 0 to 2;

p is an integer from 0 to 4;

q is an integer from 0 to 4;

r is an integer from 0 to 4;

s is an integer from 0 to 4;

s1 and s2 are independently selected from an integer from 0 to 4, and

s1+s2 is less than or equal to 4;

t is an integer between 0 and 4; and

aa and bb are independently 0 or 1;

cc is an integer between 0 to 2; with the proviso that

- (i) when G is hydrogen or halo, then R^{17} and R^{18} are both absent;
- (ii) when G is O, $S(O_n)$, C(O) or $C(\mathbf{R}^{11}\mathbf{R}^{12})_t$ then G is substituted by a single group independently selected from the definition of \mathbf{R}^{17} or \mathbf{R}^{18} and when G is a direct bond to \mathbf{R}^{18} then G is substituted by a single group selected from \mathbf{R}^{18} ;
- (iii) when \mathbf{R}^3 is a group of Formula (IIb), \mathbf{B} is a group of Formula (IV), \mathbf{R}^8 is selected from group (i) or (ii) above, \mathbf{R}^{11} is a group of the formula $N(\mathbf{R}^{10}\mathbf{R}^{11})$ and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above then \mathbf{R}^4 cannot be hydrogen;
- 10 (iv) R³ cannot be unsubstituted pyridyl or unsubstituted pyrimidinyl; and
 - (v) when \mathbb{R}^3 is pyrazolyl substituted by phenyl or pyrazolyl substituted by phenyl and acetyl, \mathbb{R}^5 -M is hydroxyl or acetyloxy, \mathbb{R}^2 is unsubstituted phenyl, then \mathbb{R}^1 cannot be hydrogen or acetyl;

or a salt, solvate or pro-drug thereof.

According to the further feature of the first aspect of the invention there is provided a compound of Formula (I) with the proviso that

- (i) when G is hydrogen or halo, then R^{17} and R^{18} are both absent;
- (ii) when G is O, $S(O_n)$, C(O) or $C(R^{11}R^{12})_t$ then G is substituted by a single group independently selected from the definition of R^{17} or R^{18} and when G is a direct bond to R^{18} then G is substituted by a single group selected from R^{18} ;
 - (iii) when \mathbf{R}^3 is a group of Formula (IIb), \mathbf{B} is a group of Formula (IV), \mathbf{R}^8 is selected from group (i) or (ii) above, \mathbf{R}^{11} is a group of the formula $N(\mathbf{R}^{10}\mathbf{R}^{11})$ and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above then \mathbf{R}^4 cannot be hydrogen; and
- (iv) R³ cannot be an unsubstituted or substituted aromatic heterocyclic ring, wherein the aromatic heterocyclic ring is attached directed to the pyrazole in Formula (I); or a salt, solvate or pro-drug thereof.

According to the further feature of the first aspect of the invention there is provided a compound of Formula (Ia),

30

20

5

wherein:

 \mathbf{R}^1 is selected from: hydrogen, optionally-substituted $C_{1\text{-}6}$ alkyl, optionally substituted aryl or optionally-substituted aryl $C_{1\text{-}6}$ alkyl;

R² is an optionally-substituted mono or bi-cyclic aromatic ring;

 R^3 is selected from a group of Formula (IIa) to Formula (IIf):

10

Formula (IIe)

Formula (IIf)

R⁵ is a group of Formula (III):

Formula (III)

15 \mathbf{R}^6 and \mathbf{R}^{6a} are independently selected from hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally-substituted aryl or optionally substituted aryl $C_{1\text{-}6}$ alkyl, or \mathbf{R}^6 and \mathbf{R}^{6a} taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms, or \mathbf{R}^6 and \mathbf{R}^{6a} taken together and the carbon atom to which they are attached form a carbonyl group;

or when A is not a direct bond the group

forms a carbocyclic ring of 3-7

carbon atoms or a heterocyclic ring containing one or more heteroatoms;

or the group

forms a heterocyclic ring containing 3-7 carbon atoms and one

or more heteroatoms;

 \mathbf{R}^7 is selected from: hydrogen, optionally-substituted $C_{1\text{-}6}$ alkyl, optionally-substituted aryl $C_{1\text{-}6}$ alkyl, optionally-substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl, \mathbf{R}^9 OC $_{1\text{-}6}$ alkyl-, \mathbf{R}^9 \mathbf{R}^{10} NC $_{1\text{-}6}$ alkyl-,

 $R^{9}R^{10}NC(O)C_{1-6}alkyl, -C(NR^{9}R^{10})=NH;$

or when \mathbb{R}^3 is a group of Formula (IIc) or (IId) \mathbb{R}^7 is of the formula -J-K- \mathbb{R}^8 ;

 \mathbf{R}^{8} is selected from:

 $(i) \qquad \text{hydrogen, $C_{1\text{-}6}$alkyl, $C_{2\text{-}6}$alkenyl, $C_{2\text{-}6}$alkynyl, halo$C_{1\text{-}6}$alkyl, $C_{1\text{-}4}$alkyl, $C_{1\text{-}4}$alkyl, $C_{1\text{-}4}$alkyl, $C_{1\text{-}4}$alkyl, $C_{1\text{-}4}$alkylamino, N, N-di-$C_{1\text{-}4}$alkylamino, $C_{1\text{-}6}$alkyl-$S(O_n)-, -O-$R^b$, -N$R^bR^c, -C(O)-R^b, -C(O)O-R^b, -CONR^bR^c$ or $NH-C(O)-$R^b$,}$

where $\mathbf{R}^{\mathbf{b}}$ and $\mathbf{R}^{\mathbf{c}}$ are independently selected from hydrogen and C_{1-4} alkyl optionally substituted with hydroxy, amino, N- C_{1-4} alkylamino, N,N-di- C_{1-4} alkylamino, HO- C_{2-4} alkyl-NH- or HO- C_{2-4} alkyl-N(C_{1-4} alkyl)-;

- (ii) nitro when \mathbf{B} is a group of Formula (IV) and \mathbf{X} is CH and \mathbf{p} is 0;
- (iii) C_{3-7} cycloalkyl, aryl or aryl C_{1-6} alkyl each of which is optionally substituted by $\mathbf{R^{12}}$, $\mathbf{R^{13}}$ and $\mathbf{R^{14}}$;
 - (iv) -(Q)-aryl, -(Q)-heterocyclyl, -aryl-(Q)-aryl, each of which is optionally substituted by ${\bf R^{12}}$, ${\bf R^{13}}$ and ${\bf R^{14}}$ wherein -(Q)- is selected from E, F or a direct bond;
- (v) heterocyclyl or heterocyclyl C_{1-6} alkyl each of which is optionally substituted by R^{12} , R^{13} and R^{14} ;
 - (vi) a group selected from R^{12} , R^{13} and R^{14} ;

 ${f R^9}$ and ${f R^{10}}$ are independently selected from: hydrogen, hydroxy, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl, an optionally

- 11 -

substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl, optionally substituted heterocyclyl C_{1-6} alkyl or \mathbf{R}^9 and \mathbf{R}^{10} taken together can form an optionally substituted ring of 3-9 atoms or \mathbf{R}^9 and \mathbf{R}^{10} taken together with the carbon atom to which they are attached form a carbonyl group;

- R^{11} is selected from: hydrogen, optionally substituted C_{1-6} alkyl, or $N(\mathbf{R}^{9}\mathbf{R}^{10})$;
 - R^{12} is selected from: hydrogen, hydroxy, $R^{17}R^{18}N$ -, optionally substituted C_{1-6} alkyl- $SO_2N(R^9)$ -, optionally substituted aryl- $SO_2N(R^9)$ -, C_{1-3} perfluoroalkyl- $SO_2N(R^9)$ -; optionally substituted C_{1-6} alkyl- $N(R^9)SO_2$ -, optionally substituted aryl- $N(R^9)SO_2$ -, C_{1-3} perfluoroalkyl- $N(R^9)SO_2$ optionally substituted
- 10 C_{1-6} alkanoyl- $N(\mathbf{R}^9)SO_2$ -; optionally substituted aryl- $C(O)N(\mathbf{R}^9)SO_2$ -, optionally substituted C_{1-6} alkyl- $S(O_n)$ -, optionally substituted aryl- $S(O_n)$, C_{1-3} perfluoroalkyl-, C_{1-3} perfluoroalkoxy, optionally substituted C_{1-6} alkoxy, carboxy, halo, nitro or cyano;
 - ${\bf R^{13}}$ and ${\bf R^{14}}$ are independently selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{2\text{-}6}$ alkenyl, cyano, nitro, $C_{1\text{-}3}$ perfluoroalkyl-,
- 15 C_{1-3} perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, $\mathbf{R}^9 O(CH_2)_{s^-}$, $\mathbf{R}^9 (O)O(CH_2)_{s^-}$, $\mathbf{R}^9 OC(O)(CH_2)_{s^-}$, $\mathbf{R}^{16} S(O_n)(CH_2)_{s^-}$, $\mathbf{R}^9 R^{10} NC(O)(CH_2)_{s^-}$ or halo;
 - R^{15} is selected from: hydrogen, optionally substituted C_{1-6} alkyl, $R^{19}OC(O)$ -, $R^{9}R^{10}NC(O)$ -, $R^{9}C(O)$ -, $R^{9}S(O_{n})$ -;
- R^{16} is selected from: hydrogen, C_{1-6} alkyl, C_{1-3} perfluoroalkyl or optionally-substituted aryl; R^{17} is independently selected from: hydrogen, hydroxy, cyano or optionally substituted C_{1-6} alkyl;
 - R^{18} is a group of formula R^{18a} -C(R^9R^{10})₀₋₁- wherein R^{18a} is selected from: $R^{19}{\rm OC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9C({\rm O})$ -, $R^9C({\rm O}){\rm N}(R^{10})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9C({\rm O})$ -, $R^9C({\rm O})$ -, $R^9C({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, $R^9R^{10}{\rm NC}({\rm O})$ -, optionally substituted C₁₋₆alkyl, optionally substituted heterocyclyl;
 - or \mathbf{R}^{17} and \mathbf{R}^{18} when taken together form an optionally substituted carbocyclic ring of 3-7 atoms or optionally substituted heterocyclyl;
- R^{19} is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alky, optionally substituted aryl, optionally substituted $C_{3\text{-}7}$ cycloalkyl, optionally substituted heterocyclyl or optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl;
 - \mathbf{R}^{20} is selected from \mathbf{R}^{12} or \mathbf{R}^{13} ;

25

- ${f R^{21}}$ and ${f R^{22}}$ are independently selected from hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted heterocyclyl, optionally substituted heterocyclyl optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl, optionally substituted $C_{3\text{-}6}$ alkenyl, optionally substituted $C_{3\text{-}6}$ alkenyl, optionally substituted $C_{3\text{-}6}$ alkynyl, -($C_{1\text{-}5}$ alkyl)_{aa}- $S(O_n)$ -($C_{1\text{-}5}$ alkyl)_{bb}-; ${f R^9}{f R^{10}}$ NC₂₋₆alkyl,
- R^9 OC₂₋₆alkyl or R^9R^{10} NC(O)C₂₋₆alkyl, with the proviso that R^9 and R^{10} independently or taken together are not optionally substituted aryl or optionally substituted arylC₁₋₆alkyl; or

 \mathbf{R}^{21} and \mathbf{R}^{22} taken together form an optionally substituted non-aromatic heterocyclic ring; A is selected from:

- 10 (i) a direct bond;
 - (ii) optionally-substituted C_{1-5} alkylene wherein the optional substituents are independently selected from: optionally-substituted C_{1-6} alkyl optionally-substituted aryl, optionally substituted aryl C_{1-6} alkyl;
- 15 (iii) a carbocyclic ring of 3-7 atoms;
 - (iv) a carbonyl group;

N-B-

or when \mathbb{R}^3 is a group of Formula (IIa) or (IIb), the group

forms a

heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms;

A MA

or when \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

- forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms; **B** is selected from:
 - (i) a direct bond;

25

(ii) a group of Formula (IV)

$$(a)$$
 $X - (CH2)p $\frac{1}{\xi}$$

Formula (IV)

wherein:

5

10

X is selected from N or CH, wherein at position (a) Formula (IV) is attached to the nitrogen atom and the (CH₂)p group is attached to \mathbf{R}^8 ; and

(iii) a group independently selected from: optionally substituted C₁₋₆alkylene, optionally substitute C₃₋₇cycloalkyl, optionally substituted C₃₋₆alkenylene, optionally substituted C₃₋₆alkynyl, C₁₋₆alkoxy, (C₁₋₅alkyl)_{aa}-S(O_n)-(C₁₋₅alkyl)_{bb}-, (C₁₋₅alkyl)_{aa}-O-(C₁₋₅alkyl)_{bb}- or (C₁₋₅alkyl)_{aa}-N(**R**¹⁵)- (C₁₋₅alkyl)_{bb}, wherein **R**¹⁵ and the (C₁₋₅alkyl)_{aa} or (C₁₋₅alkyl)_{bb} chain can be joined to form a ring; or the group -**B**-**R**⁸ represents a group of Formula (V)

Formula (V);

or the group atoms;

together forms a heterocyclic ring containing 5-7 carbons

~-⁄~ N−B-}

N-B

or the group

20

25

forms a heterocyclic ring containing 3-7 carbon atoms and

one or more heteroatoms;

E is -O-, -S(O_n), -C(O)-, -NR¹⁵- or -C(R⁹R¹⁰)_q;

 \mathbf{F} is $-\mathbf{E}(\mathbf{CH}_2)_{\mathbf{r}}$;

G is selected from: hydrogen, halo, N, O, $S(O_n)$, C(O), $C(R^9R^{10})_t$, optionally substituted $C_{2\text{-}6}$ alkenylene, optionally substituted $C_{2\text{-}6}$ alkynylene or a direct bond to R^{18} ,

J is a group of the formula: $-(CH_2)_s$ -L- $-(CH_2)_s$ - wherein when s is greater than 0, the alkylene group is optionally substituted

K is selected from: a direct bond, -O-(CH₂)_s-, -C(O)-(CH₂)_s-, -S(O_n) -(CH₂)_s-, -N(\mathbb{R}^{18})-(CH₂)_s-, -OC(O)-(CH₂)_s-, -C(O)O-(CH₂)_s-, -OS(O_n)-(CH₂)_s-, or -S(O_n)-O-(CH₂)_s-;

L is selected from optionally substituted aryl or optionally substituted heterocyclyl; M is $-(CH_2)_{0-2}$ -O-;

- 14 -

n is an integer between 0 and 2;
p is an integer between 0 and 4;
q is an integer between 0 and 4;
r is an integer between 0 and 4;
s is an integer between 0 and 4;
t is an integer between 0 and 4;
with the proviso that

10

20

- (i) when G is hydrogen or halo, then R^{17} and R^{18} are both absent;
- (ii) when G is O, $S(O_n)$, C(O) or $C(R^{11}R^{12})_t$ then G is substituted by a single group independently selected from the definition of R^{17} or R^{18} and when G is a direct bond to R^{18} then G is substituted by a single group selected from R^{18} ; and or a salt, solvate or pro-drug thereof.

According to a further feature of the first aspect of the invention there is provided a pharmaceutical formulation comprising a compound of Formula (I) or Formula (Ia), or salt, pro-drug or solvate thereof, and a pharmaceutically acceptable diluent or carrier.

According to a further feature of the first aspect of the invention there is provided the following uses of a compound of Formula (I) or Formula (Ia), or salt, pro-drug or solvate thereof:

- (a) the use in the manufacture of a medicament for antagonising gonadotropin releasing hormone activity;
- (b) the use in the manufacture of a medicament for administration to a patient, for reducing the secretion of luteinizing hormone by the pituitary gland of the patient; and
- (c) the use in the manufacture of a medicament for administration to a patient, for therapeutically treating and/or preventing a sex hormone related condition in the patient,
 25 preferably a sex hormone related condition selected from prostate cancer and premenopausal breast cancer.

According to a further aspect of the invention there is provided a method of antagonising gonadotropin releasing hormone activity in a patient, comprising administering a compound of Formula (I) or Formula (Ia), or salt, pro-drug or solvate thereof, to a patient.

Whilst pharmaceutically-acceptable salts of compounds of the invention are preferred, other non-pharmaceutically-acceptable salts of compounds of the invention may also be useful, for example in the preparation of pharmaceutically-acceptable salts of compounds of the invention.

- 15 -

Whilst the invention comprises compounds of the invention, and salts, pro-drugs or solvates thereof, in a further embodiment of the invention, the invention comprises compounds of the invention and salts thereof.

In the present specification, unless otherwise indicated, an **alkyl**, **alkylene**, **alkenyl** or **alkynyl** moiety may be linear or branched. The term "**alkylene**" refers to the group –CH₂-. Thus, C₈ alkylene for example is -(CH₂)₈-. For avoidance of doubt the term C₀alkyl within the group C₀₋₅alkyl is a direct bond.

The term '**propylene**' refers to trimethylene and the branched alkyl chains

-CH(CH₃)CH₂- and -CH₂-CH(CH₃)-. The straight chain propylene di-radical is preferred, i.e.

10 -CH₂CH₂CH₂-. Specific propylene radicals refer to the particular structure, thus the term, propyl-2-ene refers to the group -CH₂-CH(CH₃)-. Similar notation is used for other divalent alkyl chains such as butylene.

The term '2-propenyl' refers to the group -CH₂-CH=CH-.

The term "aryl" refers to phenyl or naphthyl.

The term "carbamoyl" refers to the group -C(O)NH₂.

The term "halo" refers to fluoro, chloro, bromo or iodo.

The term "heterocyclyl" or "heterocyclic ring" refers to a 4-12 membered, preferably 5-10 membered aromatic mono or bicyclic ring or a 4-12 membered, preferably 5-10 membered saturated or partially saturated mono or bicyclic ring, said aromatic, saturated or partially unsaturated rings containing up to 5 heteroatoms independently selected from nitrogen, oxygen or sulphur, linked via ring carbon atoms or ring nitrogen atoms where a bond from a nitrogen is allowed, for example no bond is possible to the nitrogen of a pyridine ring, but a bond is possible through the 1-nitrogen of a pyrazole ring. Examples of 5- or 6-membered aromatic heterocyclic rings include pyrrolyl, furanyl, imidazolyl, triazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridinyl, isoxazolyl, oxazolyl, 1,2,4 oxadiazolyl, isothiazolyl, thiazolyl and thienyl. A 9 or 10 membered bicyclic aromatic heterocyclic ring is an aromatic bicyclic ring system comprising a 6-membered ring fused to either a 5 membered ring or another 6 membered ring. Examples of 5/6 and 6/6 bicyclic ring systems include benzofuranyl, benzimidazolyl, benzthiophenyl, benzthiazolyl, benzisothiazolyl, benzoxazolyl, obenzisoxazolyl, indolyl, pyridoimidazolyl, pyrimidoimidazolyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, phthalazinyl, cinnolinyl and naphthyridinyl. Examples of

saturated or partially saturated heterocyclic rings include pyrrolinyl, pyrrolidinyl,

morpholinyl, piperidinyl, piperazinyl, dihydropyridinyl, benzodioxyl and dihydropyrimidinyl.

This definition further comprises sulphur-containing rings wherein the sulphur atom has been oxidised to an S(O) or S(O2) group.

The term "aromatic ring" refers to a 5-10 membered aromatic mono or bicyclic ring optionally containing up to 5 heteroatoms independently selected from nitrogen, oxygen or sulphur. Examples of such "aromatic rings" include: phenyl, pyrrolyl, pyrazolyl, furanyl, imidazolyl, triazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridinyl, isoxazolyl, oxazolyl, 1,2,4 oxadiazolyl, isothiazolyl, thiazolyl and thienyl. Preferred aromatic rings include phenyl, thienyl and pyridyl.

The symbol denotes where the respective group is linked to the remainder of the molecule.

For the avoidance of doubt where two groups or integers appear within the same definition, for example, $-(CH_2)_s$ -L- $(CH_2)_s$ - or $R^9R^{10}NSO_2N(R^{10})$ -, then these can be the same of different.

For the avoidance of doubt, where several groups together form a ring, for example:

R⁶

'the group forms a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms', then the groups shown cyclises to form a ring, i.e

R⁷

the component of which are defined by the definitions of the groups which form the ring, thus in the above example the ring would include a nitrogen atom. For example in Example 5 this group forms a piperazine ring.

The term C₁₋₃perfluoroalkyl refers to a C₁₋₃alkyl chain in which all hydrogens have been replaced with a fluorine atom. Examples of C₁₋₃perfluoroalkyl include trifluoromethyl, pentafluoroethyl and 1-trifluoromethyl-1,2,2,2-tetrafluoroethyl-. Preferably C₁₋₃perfluoroalkyl is trifluromethyl.

Examples of C₁₋₈alkyl include: methyl, ethyl, propyl, isopropyl, butyl, *iso*-butyl, 25 tert-butyl and 2-methyl-pentyl; example of C₁₋₈alkylene include: methylene, ethylene and 2-methyl-propylene; examples of C₁₋₆alkenyl include allyl (2-propenyl) and 2—butenyl,

- 17 -

examples of C₁₋₆alkynyl 2-propynyl and 3-butynyl, examples of haloC₁₋₆alkyl include fluoroethyl, chloropropyl and bromobutyl, examples of hydroxyC₁₋₆alkyl include hydroxymethyl, hydroxyethyl and hydroxybutyl, examples of C₁₋₈alkoxy include methoxy, ethoxy and butyloxy; examples of C₁₋₄alkoxyC₁₋₄alkyl include methoxyethyl, propoxybutyl and propoxymethyl, examples of C₁₋₆alkanoyl incude formyl, ethanoyl, propanoyl or pentanoyl, examples of N-C₁₋₄alkylamino include N-methylamino and N-ethylamino; examples of N,N-di-C₁₋₄alkylamino include N,N-dimethylaminoethyl, N,N-di-methylaminopropyl and N,N-dipropylaminoethyl, examples of HO-C₂₋₄alkyl-NH include hydroxymethylamino hydroxyethylamino and hydroxypropyamino, examples of HO-C₂₋₄alkyl-N(C₁₋₄alkyl) include N-methyl-hydroxymethylamino,

N-ethyl-hydroxyethylamino, and N-propyl-hydroxypropyamino, examples of C₁₋₆alkyl-S(O_n)-methylthio, methylsulphinyl, ethylsulphinyl, ethylsulphonyl and propylsulphonyl, include examples of **arylC₁₋₆alkyl** include benzyl, phenethyl and phenylbutyl, examples of **heterocyclylC₁₋₆alkyl** include pyrrolidin-1-yl ethyl, imidazolylethyl, pyridylmethyl and pyrimidinylethyl.

It is to be understood that, insofar as certain of the compounds of the invention may exist in optically active or racemic forms by virtue of one or more asymmetric carbon atoms, the invention includes in its definition any such optically active or racemic form which possesses the property of antagonizing gonadotropin releasing hormone (GnRH) activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form. Similarly, activity of these compounds may be evaluated using the standard laboratory techniques referred to hereinafter.

The invention also relates to any and all tautomeric forms of the compounds of the different features of the invention that possess the property of antagonizing gonadotropin releasing hormone (GnRH) activity.

It will also be understood that certain compounds of the present invention may exist in solvated, for example hydrated, as well as unsolvated forms. It is to be understood that the present invention encompasses all such solvated forms which possess the property of antagonizing gonadotropin releasing hormone (GnRH) activity.

Preferred compounds of Formula (I), Formula (Ia) and Formula (Ib) are those wherein any one of the following apply.

10

25

Preferably \mathbf{R}^1 is selected from hydrogen or optionally substituted $C_{1\text{-}6}$ alkyl. More preferably \mathbf{R}^1 represents hydrogen or unsubstituted $C_{1\text{-}6}$ alkyl. Yet more preferably \mathbf{R}^1 represents hydrogen, methyl, ethyl or *tert*-butyl. Most preferably \mathbf{R}^1 represents hydrogen.

Preferably optional substituents on $\mathbf{R^1}$ are independently selected from: optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, cyano, nitro, C_{1-3} perfluoroalkyl, C_{1-3} perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, $\mathbf{R^9}\mathbf{O}(\mathbf{CH_2})_{\mathbf{v^-}}$; $\mathbf{R^9}\mathbf{C}(\mathbf{O})\mathbf{O}(\mathbf{CH_2})_{\mathbf{v^-}}$, $\mathbf{R^9}\mathbf{O}(\mathbf{C})(\mathbf{CH_2})_{\mathbf{v^-}}$, $\mathbf{R^{16}}\mathbf{S}(\mathbf{O_n})(\mathbf{CH_2})_{\mathbf{v^-}}$, $\mathbf{R^9}\mathbf{R^{10}}\mathbf{NC}(\mathbf{O})(\mathbf{CH_2})_{\mathbf{v^-}}$, or halo wherein \mathbf{v} is an integer between 0 and 4, and where 2 optional substituents are present together they can optionally form a C_{3-7} carbocyclic ring or a heterocyclic ring.

Preferably \mathbb{R}^2 is an optionally substituted monocyclic aromatic ring structure. Most preferably \mathbb{R}^2 represents optionally substituted phenyl.

Preferably optional substituents on \mathbb{R}^2 are independently selected from: optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, cyano, nitro, C_{1-3} perfluoroalkyl, C_{1-3} perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, C_{1-3} perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, $R^9O(CH_2)_p$ -, $R^9C(O)O(CH_2)_w$ -, $R^9O(O)(CH_2)_w$ -, $R^{16}S(O_n)(CH_2)_w$ -, $R^9R^{10}NC(O)(CH_2)_w$ -, $R^9R^{10}N$ - or halo; wherein \mathbf{w} is an integer between 0 and 4 and R^9 and R^{10} are as defined above. Further preferably the optional substituents on R^2 are independently selected from cyano, R^eR^fN -, optionally substituted C_{1-6} alkyl (preferably, C_{1-4} alkoxy, eg, methoxy, ethoxy or *tert*-butoxy) or halo (eg, F, Br or Cl) wherein R^e and R^f are independently selected from hydrogen, C_{1-6} alkyl or aryl. Yet further preferably optional substituents on R^2 are independently selected from methyl, ethyl, methoxy, ethoxy, *tert*-butoxy, F or Cl. Most preferably optional substituents on R^2 are independently selected from methyl, ethyl, methoxy, ethoxy, *tert*-butoxy, F or Cl. Preferably R^2 bears 1, 2 or 3 substituents.

Most preferably \mathbb{R}^2 represents

Preferably \mathbb{R}^3 is selected from a group of Formula (IIa) Formula (IIb), Formula (IIc) or Formula (IId). Further preferably \mathbb{R}^3 is selected from Formula (IIa) or Formula (IIb). Most preferably \mathbb{R}^3 is a group of Formula (IIb).

30 Preferably the group of Formula (III):

Formula (III)

is selected from a group of Formula III-a; III-b; III-c; III-d; III-e; III-f, III-g, III-h, III-i, or III-j, III-k or III-l;

wherein:

10

het represents an optionally substituted 3- to 8- membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S;

 ${\bf R^{23}}$ and ${\bf R^{23a}}$ are independently selected from:

- (i) hydrogen or optionally substituted C₁₋₈alkyl; or
- (ii) \mathbf{R}^{23} and \mathbf{R}^{23a} together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring;

 \mathbf{R}^{24} and \mathbf{R}^{25} are selected from:

(i) \mathbf{R}^{24} selected from hydrogen; optionally substituted $C_{1\text{-8}}$ alkyl; optionally substituted aryl; $-\mathbf{R}^d$ -Ar, where \mathbf{R}^d represents $C_{1\text{-8}}$ alkylene and Ar represents optionally substituted aryl; and optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; and \mathbf{R}^{25} is selected from hydrogen; optionally substituted $C_{1\text{-8}}$ alkyl and optionally substituted aryl;

(ii) wherein the group of Formula (III) represents a group of Formula III-a, III-b or III-i, then the group NR²⁴(-R²⁵) represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; or

(iii) wherein the group of Formula (III) represents structure III-e, represents an optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

More preferably the group of Formula (III) is selected from a group of Formula III-a, 10 III-g, III-h, III-j, III-k or III-l:

wherein R^{23} , R^{23a} , R^{24} and R^{25} are as defined above.

5

15

Further preferably the group of Formula (III) is selected from one of the following groups:

wherein \mathbf{R}^{23} , \mathbf{R}^{23a} , \mathbf{R}^{24} and \mathbf{R}^{25} are as defined above.

- 21 -

Yet further preferably the group of Formula (III) is selected from one of the following groups:

wherein Me represents methyl.

Yet further preferably the group of Formula (III) is selected from one of the following groups:

Most preferably the group of Formula (III) is:

Preferably **R**⁶ and **R**^{6a} are independently selected from hydrogen, fluoro, optionally substituted C₁₋₆alkyl or **R**⁶ and **R**^{6a} taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms. More preferably **R**⁶ and **R**^{6a} are independently selected from hydrogen, unsubstituted C₁₋₆alkyl or **R**⁶ and **R**^{6a} taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms. Yet more preferably **R**⁶ and **R**^{6a} are independently selected from hydrogen, methyl or **R**⁶ and **R**^{6a} taken together and the carbon atom to which they are attached form cyclopropyl. Most preferably **R**⁶ is hydrogen and **R**^{6a} is methyl.

Preferably \mathbf{R}^7 is selected from: hydrogen or $C_{1\text{-}4}$ alkyl. More preferably \mathbf{R}^7 is hydrogen or methyl. Most preferably \mathbf{R}^7 is hydrogen.

When \mathbb{R}^8 is heterocyclyl then \mathbb{R}^8 is preferably selected from one of the following groups:

wherein Z is selected from: O, S or $N(R^9)$, R^{20} is selected form any group within the definitions of R^{12} and R^{13} , and R^9 , R^{12} , R^{13} and R^{14} are as defined above.

In a further embodiment of the invention when ${\bf R}^8$ is heterocyclyl then ${\bf R}^8$ is preferably selected from one of the following groups:

wherein Z is selected from: O, S or $N(R^9)$ and R^9 , R^{12} and R^{13} are as defined above.

When \mathbb{R}^8 is aryl or aryl-(C)-aryl optionally substituted by \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} , \mathbb{R}^8 is preferably selected one of the following groups:

$$R^{12}$$
 R^{13}
 R^{14}
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{15}

wherein **D** is selected from group **E**, group **F** or a direct bond;

Preferably \mathbb{R}^8 is selected from

5

20

- $\label{eq:continuous} \begin{array}{ll} \text{hydrogen, $C_{1\text{-}6}$alkyl, $C_{2\text{-}6}$alkenyl, halo$C_{1\text{-}6}$alkyl, hydroxy, cyano, $C_{1\text{-}6}$alkylS(O_n)$-, }\\ -O-R^b, C_{1\text{-}4}$alkoxy$C_{1\text{-}4}$alkyl, -C(O)-R^b, C(O)O-R^b, -NH-C(O)-R^b, \end{array}$
- 10 N,N-di- $C_{1\text{-}4}$ alkylamino, -S(O_n)NR^bR^c where R^b and R^c are independently selected from hydrogen and $C_{1\text{-}6}$ alkyl, and n is 0, 1 or 2;
 - (ii) $-(\mathbf{Q})$ -aryl, optionally substituted by up to 3 groups selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;
- (iii) C_{4-7} heterocyclyl, optionally substituted by up to 3 groups selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ,

more preferably selected from: azirinyl, azetidinyl, pyrrolidinyl, pyrazolinyl, pyrazolinyl, pyrazolidinyl, imidazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, hexahydropyridazinyl, hexahydrotriazinyl, tetraydrotriazinyl, dioxolanyl, tetrahydropyranyl, dioxanyl, trioxanyl, tetrahydrothienyl, 1-oxotetrahydrothienyl, 1,1-dioxotetrahydrothienyl

- 25 -

tetrahydrothiopyran, 1-oxotetrahydrothiopyran, 1,1-dioxotetrahydrothiopyran, dithianyl, trithianyl, morpholinyl, oxathiolanyl, oxathianyl, thiomorpholinyl, thiazinanyl, 1-oxo-thiomorpholinyl, 1,1-dioxo-thiomorpholinyl, thiazolidinyl, pyrrolyl, imidazolyl, triazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, thiazolyl, thiadiazolyl, thiadiazolyl, oxazolyl, oxadiazolyl, furazanyl, octahydropyrrolopyrrolyl, octahydropyrrolopyrrolyl, benzotriazolyl, dihydrobenzotriazolyl, indolinyl, benzimidazolyl, 2,3-dihydrobenzimidazoly, benzotriazolyl 2,3-dihydro benzotriazolyl quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinozalinyl, naphthyridinyl, pteridinyl, benzodioxolyl, tetrahydrodioxolopyrrolyl, 1,5-dioxa-9-azaspiro[5.5]undecanyl or 8-oxa-3-azabicyclooctanyl; each of which is optionally substituted by up to 3 groups selected from R¹², R¹³ and R¹⁴ or

(iv) C_{3-7} carbocyclyl; optionally substituted by up to 3 groups selected from $\mathbf{R^{12}}$, $\mathbf{R^{13}}$ and $\mathbf{R^{14}}$;

Further preferably \mathbb{R}^8 is selected from

- hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, haloC₁₋₆alkyl, hydroxy, cyano, C₁₋₆alkylS(O_n)-,
 O-R^b, C₁₋₄alkoxyC₁₋₄alkyl, -C(O)-R^b, C(O)O-R^b, -NH-C(O)-R^b,
 N,N-di-C₁₋₄alkylamino, -S(O_n)NR^bR^c
 where R^b and R^c are independently selected from hydrogen and C₁₋₆alkyl, and n is 0,
 1 or 2;
- preferably selected from: hydrogen, methyl, isopropyl, *t*-butyl, 1-methylethyl, allyl, fluoroethyl, hydroxy, cyano, ethylsulphonyl, methoxy, 1-methyl-2-methoxyethyl, acetyl, t-butoxycarbonyl, acetylamino, dimethylamino, diethylamino, (1-methylethyl)amino, isopropylamino or aminosulphonyl;
- (ii) -(Q)-aryl, wherein aryl is optionally substituted by up to 3 groups selected from \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} ;
- (iii) azetidinyl, furanyl, tetrahydrofuranyl, tetrahydropyranyl, pyrrolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, morpholinyl, tetrahydrothienyl, 1,1-dioxotetrahydrothienyl, thiomorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxo-thiomorpholinyl, imidazolyl, triazolyl, thienyl, thiazolyl, isoxazolyl, pyridyl, pyrimidinyl, pyrazinyl, tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyrrolyl, 1,5-dioxa-9-azaspiro[5.5]undecanyl, 8-oxa-3-azabicyclo[3.2.1]octanyl, benzodioxolyl, 2,3-dihydrobenzotriazolyl, 1,2-dihydroquinolinyl or octahydropyrrolo[3,4-c]pyrrolyl;

- 26 -

each of which is optionally substituted by up to 3 groups selected from ${\bf R^{12}},\,{\bf R^{13}}$ and ${\bf R^{14}};$ or

- (iv) C_{3-7} carbocyclyl, optionally substituted by up to 3 groups selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;
- Yet further preferably \mathbb{R}^8 is selected from
 - (i) phenyl optionally substituted by up to 3 groups selected from ${\bf R^{12}}$, ${\bf R^{13}}$ and ${\bf R^{14}}$ or naphthyl;
- furanyl, tetrahydropyranyl, pyrrolidinyl, piperazinyl, morpholinyl,
 1,1-dioxo-thiomorpholinyl, thienyl, triazolyl, pyridyl, pyrimidinyl, pyrazinyl,
 tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyrrolyl, benzodioxolyl, 1,2-dihydroquinolinyl or
 2,3-dihydrobenzotriazolyl; each of which is optionally substituted by up to 3 groups
 selected from R¹², R¹³ and R¹⁴;or
 - (iii) C_{3-7} carbocyclyl (preferably cyclohexyl or cylopentyl, more preferably cyclohexyl) optionally substituted by up to 3 groups selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;;
- Further preferably \mathbb{R}^8 is selected from: phenyl, thienyl, pyridyl and benzodioxlyl optionally substituted by up to 3 groups selected from \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} .

Most preferably \mathbb{R}^8 is 1,3 benzodioxolyl.

In another embodiment of the invention \mathbb{R}^8 is selected from piperidinyl or piperazinyl, azetidinyl, imidazolyl and thiazolyl, each of which is optionally substituted by up to 3 groups selected from \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} .

In a further embodiment of the invention preferably **R**⁸ is selected from hydrogen, cyano, C₁₋₄alkyl (more preferably methyl), C₂₋₆alkynyl (more prefeably 2-propynyl), hydroxyC₁₋₆alkyl (more preferably hydroxyethyl), C₁₋₄alkoxyC₁₋₄alkyl (more preferably methoxyethyl), haloC₁₋₆alkyl (more preferably fluoroethyl), C₁₋₄alkanoyl (more preferably formyl), C₁₋₄alkoxycarbonyl (more preferably butyloxycarbonyl), N,N-di-C₁₋₄alkylamino (more preferably N,N-dimethylaminoethyl and N,N-dimethylaminopropyl), C₁₋₆alkyl-S(O_n)-(more preferably ethylsulphonyl), cyclopentyl, phenyl, benzyl, cyanophenyl, pyrrolidinyl, pyrrolidinyl, imidazolyl, imidazolyC₁₋₆alkyl (more preferably imidazolylethyl), thiazolyl, pyridyl, pyridylC₁₋₆alkyl (more preferably pyridylmethyl) or pyrimidyl wherein a phenyl or heterocyclyl ring is optionally substituted by C₁₋₄alkyl or halo.

When \mathbf{R}^9 and/or \mathbf{R}^{10} is a component of group \mathbf{G} , \mathbf{R}^9 and \mathbf{R}^{10} are preferably independently selected from hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl or \mathbf{R}^9 and \mathbf{R}^{10} forms $C_{3\text{-}7}$ cycloalkyl or heterocyclyl.

- 27 -

Further preferably hydrogen or C_{1-4} alkyl. Most preferably hydrogen or methyl. Most preferably both \mathbf{R}^9 and \mathbf{R}^{10} are methyl.

When $\mathbf{R^9}$ and/or $\mathbf{R^{10}}$ is a component of group $\mathbf{R^{18}}$, $\mathbf{R^9}$ and $\mathbf{R^{10}}$ are preferably independently selected from hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl or $\mathbf{R^9}$ and $\mathbf{R^{10}}$ forms $C_{3\text{-}7}$ cycloalkyl or heterocyclyl. Further preferably when $\mathbf{R^9}$ is a component of group $\mathbf{R^{18}}$, $\mathbf{R^9}$ is preferably heterocyclyl. Most preferably pyrrolidinyl, 7-azabicyclo[2.2.1]hept-7-yl or. 3-azabicyclo[3.2.2]nonyl.

Preferably R^{17} is hydrogen, hydroxy, cyano or is absent. Most preferably R^{17} is absent. Preferably R^{18} is selected from hydrogen, $R^9N(R^{10})C(O)$ -, $R^9C(O)$ -, $R^9OC(O)$ - or R^{18a} - $C(R^9R^{10})$ - wherein R^{18a} is $R^9N(R^{10})C(O)$ -. Further preferably $R^9C(O)$ -. Most preferably $R^9C(O)$ - wherein R^9 is heterocyclyl.

Preferably **A** is selected from a direct bond, optionally substituted C₁₋₅alkylene, carbonyl or -C(O)-C(**R**^d**R**^d)-, wherein **R**^d is independently selected from a direct bond hydrogen and C₁₋₂alkyl. Further preferably **A** is selected from C₁₋₅alkylene optionally substituted with C₁₋₄alkyl, carbonyl or carbonylmethyl. Yet further preferably **A** is a direct bond methylene. Most preferably methylene.

Preferably **B** is selected from optionally substituted C_{1-6} alkylene, optionally substituted C_{3-6} alkenylene, $-(C_{1-5}$ alkyl)_{aa}- $O-(C_{1-5}$ alkyl)_{bb}, $-(C_{1-5}$ alkyl)_{aa}- $C(O)-(C_{1-5}$ alkyl)_{bb}-,

-(CH₂)_{s1}-C(O)N(
$$\mathbb{R}^9$$
)-(CH₂)_{s2}-, or the group forms an optionally substituted

C₄₋₇heterocyclic ring, wherein **aa** and **bb** are independently 0 to 1 and, wherein the combined length of $(C_{1-5}alkyl)_{aa}$ and $(C_{1-5}alkyl)_{bb}$ is less than or equal to C_5alkyl .

More preferably **B** is C_{1-6} alkylene, C_{3-6} alkenylene, -(C_{1-5} alkyl)_{aa}-O-(C_{1-5} alkyl)_{bb}-,

Further preferably B is unsubstituted C₁₋₆alkylene, C₃₋₆alkenylene

R⁷ N-B-

 $-(C_{1-5}alkyl)_{aa}-O-(C_{1-5}alkyl)_{bb}-$, $-(C_{1-5}alkyl)_{aa}-C(O)-$ or the group

forms an

optionally substituted saturated C_{4-7} heterocyclic ring selected from: azetidinyl, pyrrolidinyl, pyrazolinyl, pyrazolinyl, imidazolinyl, piperidinyl, piperazinyl,

hexahydropyrimidinyl, hexahydropyridazinyl, hexahydrotriazinyl, tetraydrotriazinyl, dihydrotriazinyl, morpholinyl, thiomorpholinyl, thiazinanyl, thiazolidinyl, 1,5-dioxa-9-azaspiro[5.5]undecanyl or octahydropyrrolopyrrolyl, wherein the optional substituents are selected from. cyano, hydroxy, oxo, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, **R**⁹OC(O)(CH₂)_w-, **R**⁹R¹⁰NC(O)(CH₂)_w- or halo, wherein **w** is an integer between 0 and 4 and **R**⁹ and **R**¹⁰ are as defined above. Further preferably the optional substituents are selected from: cyano, hydroxy, oxo, C₁₋₄alkyl, C₁₋₄alkoxy and C₁₋₄alkanoyl, **aa** and **bb** are independently 0 or 1, wherein the combined length of (C₁₋₅alkyl)_{aa} and (C₁₋₅alkyl)_{bb} is less than or equal to C₅alkyl and wherein C₁₋₆alkylene is optionally substituted by hydroxy.

Yet further preferably **B** is selected from: methylene, ethylene, propylene, propyl-2-ene, butylene, pentylene, 2-propenyl, propoxy, ethoxyethyl, methylcarbonyl or methylcarbonylamino.

 R^{7} $N-B \stackrel{\downarrow}{\rightleftharpoons}$

or the group forms an C_{4-7} heterocyclic ring selected from:pyrrolidinyl, piperidinyl, or piperazinyl, wherein the optional substituents are selected from oxo.

Most preferably **B** is selected from ethylene or butylene.

In another embodiment of the invention preferably **B** is selected from optionally

R⁷ N-B

substituted C_{1-6} alkylene or the group forms a C_{5-7} heterocyclic ring. Preferably unsubstituted C_{-6} alkylene or a C_{5-7} heterocyclic saturated ring. Most preferably methylene, ethylene, propylene, butylene or piperazinyl.

Peferably **G** is a direct bond, -O- or $-C(\mathbf{R}^9\mathbf{R}^{10})$ -. More preferably $-C(\mathbf{R}^9\mathbf{R}^{10})$ -. Most preferably $-C(\mathbf{CH}_3)_2$ -.

Preferably M is -CH₂-O-.

When \mathbb{R}^3 is selected from a group of Formula (IIc) or Formula (IId) then the group

R⁷
N-J

preferably forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms.

R⁷
N-J

More preferably the group

forms an optionally substituted saturated

5 C₄₋₇heteocyclic ring.

R⁷
N-J-₹

Further preferably the group forms an optionally substituted saturated C₄₋₇heteocyclic ring selected from: azetidinyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, hexahydropyridazinyl, hexahydrotriazinyl, tetraydrotriazinyl, dihydrotriazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl or octahydropyrrolopyrrolyl, wherein the optional substituents are selected from oxo.

R⁷
N-J

Further preferably the group forms an optionally substituted saturated C₄₋₇heteocyclic ring selected from: pyrrolidinyl, piperidinyl or piperazinyl, wherein the optional substituents are selected from oxo.

R⁷
N-J

Most preferably the group forms an optionally substituted saturated C₄₋₇heteocyclic ring selected from: piperazinyl.

Preferably **K** is selected from: $-(CH_2)_s$ -, $-(CH_2)_s$ -O- $-(CH_2)_s$ -, $-(CH_2)_s$ -, or $-(CH_2)_s$ -, or $-(CH_2)_s$ -, NHS(O)₂- $-(CH_2)_s$ -,

wherein s is independently selected from 0,1,2,3 or 4, \mathbf{R}^{18} is selected from hydrogen or $C_{1\text{-}4}$ alkyl (preferably hydrogen) and the -(CH₂)_s- group is optionally substituted by hydroxy or $C_{1\text{-}4}$ alkyl.

- 30 -

More preferably **K** is selected from: $-(CH_2)_s$ -, $-(CH_2)_s$ -O- $-(CH_2)_s$ -, $-(CH_2)_s$ -, or $-(CH_2)_s$ -NHS(O)₂-,

wherein s is independently selected from 0,1,2,3 or 4, \mathbf{R}^{18} is selected from hydrogen or C_{1-4} alkyl (preferably hydrogen or methyl) and the - $(CH_2)_s$ - group is optionally substituted by hydroxy or C_{1-4} alkyl.

More preferably **K** is selected from: methylene, ethylene, propylene, butylene, oxy, 2-hydroxypropylene, carbonyl, methylcarbonyl, ethylcarbonyl, (methyl)methylcarbonyl, (ethyl)methylcarbonyl, carbonylmethylene, carbonylethylene, ethoxyethylene, amino,

10 2-hydroxypropylamino, carbonylamino, methylcarbonylamino, N-methyl-methylcarbonylamino, aminocarbonyl, methylaminocarbonyl, methylaminocarbonylmethyl, propylsulphonylamino or methylaminosulphonyl.

Further preferably K is selected from: methylene, ethylene, propylene, butylene carbonyl, methylcarbonyl or N-methylmethylcarbonylamino.

Most preferably **K** is selected from: methylcarbonyl and N-methylmehtylcarbonylamino.

15

Preferably optional substituents on heterocyclyl groups in $\mathbf{R^8}$, $\mathbf{R^9}$, $\mathbf{R^{10}}$, $\mathbf{R^{18}}$ and $\mathbf{R^{19}}$ or on heterocyclyl groups formed when $\mathbf{R^{17}}$ and $\mathbf{R^{18}}$ together form a heterocyclic ring are selected from: optionally substituted $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, optionally substituted

C₂₋₆alkenyl, cyano, nitro, C₁₋₃perfluoroalkyl, C₁₋₃perfluoroalkoxy, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, $\mathbf{R}^9\mathrm{O}(\mathrm{CH_2})_p$ -, $\mathbf{R}^9\mathrm{C}(\mathrm{O})\mathrm{O}(\mathrm{CH_2})_w$ -, $\mathbf{R}^9\mathrm{O}\mathrm{C}(\mathrm{O})(\mathrm{CH_2})_w$ -, $\mathbf{R}^{16}\mathrm{S}(\mathrm{O_n})(\mathrm{CH_2})_w$ -, $\mathbf{R}^9\mathbf{R}^{10}\mathrm{NC}(\mathrm{O})(\mathrm{CH_2})_w$ - or halo; wherein w is an integer between 0 and 4 and \mathbf{p} , \mathbf{R}^9 , \mathbf{R}^{10} and \mathbf{R}^{16} are as defined above.

More preferably optional substituents on \mathbf{R}^8 are selected from: cyano, hydroxy, oxo, nitro, halo, trifluromethyl, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkoxy, $C_{1\text{-}4}$ alkanoyl, \mathbf{R}^9 OC(O)(CH₂)_w-, $\mathbf{R}^9\mathbf{R}^{10}$ NC(O)(CH₂)_w-, $\mathbf{R}^9\mathbf{R}^{10}$ NC(O)(CH₂)_w-, $\mathbf{R}^9\mathbf{R}^{10}$ NC(O)N(\mathbf{R}^9)(CH₂)_w-, or halo, wherein \mathbf{w} is an integer between 0 and 4 and \mathbf{R}^9 and \mathbf{R}^{10} are selected from: hydrogen, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkylsulphonyl and $C_{3\text{-}7}$ carbocyclyl.

Further preferably optional substituents on **R**⁸ are selected from: cyano, hydroxy, oxo, amino, N,N-diC₁₋₄alkyamino, N,N-diC₁₋₄alkyaminoC₁₋₄alkyl, N'-C₁₋₄alkylureido, N-C₁₋₄alkylsulphonylamino, N,N-di-C₁₋₄alkylsulphonylamino, nitro, halo, trifluoromethyl, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C1-4alkoxycarbonylamino and C₃₋₇carbocyclylcarbonylamino.

- 31 -

More preferably optional substituents on \mathbb{R}^8 are selected from: cyano, oxo, methyl, t-butyl, methoxy, acetyl, amino, N,N-dimethylamino, N'-isopropylureido, N'-cyclohexylureido, N-methylsulphonylamino, N,N-dimethylsulphonylamino, nitro, chloro, fluoro, trifluoromethyl, isopropoxycarbonylamino and cyclopentylcarbonylamino.

Most preferably op tional substituents on \mathbb{R}^8 are selected from: methoxy, fluoro, methylsulphonylamino and isopropoxycarbonylamino.

In a further embodiment of the invention optional substituents on \mathbb{R}^8 are selected from: C_{1-4} alkoxy, fluoro, C_{1-4} alkylsulphonylamino, C_{1-4} alkanoylamino, C_{1-4} alkylureido and C_{1-4} alkoxycarbonylamino.

In a further embodiment of the invention when \mathbb{R}^8 is phenyl then \mathbb{R}^8 is preferably substituted and when \mathbb{R}^8 is a heterocyclic ring \mathbb{R}^8 is preferably unsubstituted.

Preferably the optional substituents on alkyl, alkenyl, alkynyl, cycloalkyl and aryl groups are independently selected from C_{1-6} alkyl, C_{1-6} alkoxy, C_{3-7} cycloalkyl, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, hydroxy, oxo, cyano, C_{1-6} alkoxy, halo (preferably fluoro), $\mathbf{R^{16}S(O_n)(CH_2)_{w^-}}$, $\mathbf{R^9OC(O)}$ -, optionally substituted aryl C_{1-3} alkoxy wherein $\mathbf{R^9}$ is as defined above.

Preferably the optional substituents on optionally substituted aryl and aryl C_{1-6} alkyl groups are selected from: optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, cyano, nitro, halo (preferably fluoro), C_{1-3} perfluoroalkyl, C_{1-3} perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, $R^9O(CH_2)_p$ -, $R^9C(O)O(CH_2)_w$ -, $R^9O(O)(CH_2)_w$ -, $R^9O(O)(CH_2)_w$ -, $R^9O(O)(CH_2)_w$ - or halo; wherein $R^9O(O)(CH_2)_w$ - or halo; wherein $R^9O(O)(CH_2)_w$ - are as defined above.

In preferences for heterocyclyl in \mathbb{R}^8 the nitrogen atoms contained in \mathbb{R}^8 heteroaromatic rings exist either as drawn or, where chemically allowed, in their oxidised (N \rightarrow O, N-OH) state.

25

Where optional substitution is mentioned at various places the optional substituents also comprise the following definition which refers to one, two, three or more optional substituents. Unless otherwise indicated above (i.e., where a list of optional substituents is specifically listed within a definition), each substituent can be independently selected from C₁₋₈alkyl (eg, C₂₋₆alkyl, and most preferably methyl, ethyl or *tert*-butyl); C₃₋₈cycloalkoxy, preferably cyclopropoxy, cyclobutoxy or cyclopentoxy; C₁₋₆alkoxy, preferably methoxy or C₂₋₄alkoxy; halo, preferably Cl or F; Hal₃C-, Hal₂CH-, HalCH₂-, Hal₃CO-, Hal₂CHO or Hal CH₂O, wherein Hal represents halo (preferably F); **R**^gCH₂O-, **R**^hC(O)N(R)-, **R**^hSO₂N(**R**)- or

 $\mathbf{R}^{\mathbf{g}}$ - $\mathbf{R}^{\mathbf{h}}$ N-, wherein $\mathbf{R}^{\mathbf{g}}$ and $\mathbf{R}^{\mathbf{h}}$ independently represent hydrogen or C_{1-8} alkyl (preferably methyl or C_{2-6} alkyl or C_{2-4} alkyl), or $\mathbf{R}^{\mathbf{g}}$ - $\mathbf{R}^{\mathbf{h}}$ N- represents an optionally substituted C_{3-8} , preferably C₃₋₆, heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; hydrogen; or $\mathbb{R}^kC(O)O$ - or $\mathbb{R}^kC(O)$ -, \mathbb{R}^k representing 5 hydrogen, optionally substituted phenyl or C_{1-6} alkyl (preferably methyl, ethyl, iso-propyl or tert-butyl). For optional substitution of the heterocyclic ring represented by $\mathbf{R}^{\mathbf{g}}$ - $\mathbf{R}^{\mathbf{h}}$ N-, at least one (eg, one, two or three) substituents may be provided independently selected from C₁₋₆alkyl (eg, C₂₋₄alkyl, more preferably methyl); phenyl; CF₃O-; F₂CHO-; C₁₋₈alkoxy, preferably methoxy, ethoxy or C_{3-6} alkoxy; C_{1-8} alkoxyC(O), preferably methoxycarbonyl, 10 ethoxycarbonyl, tert-butoxycarbonyl or C₃₋₆alkoxyC(O)-; phenoxycarbonyl; phenoxy; C₁₋₈alkanoyl, preferably acetyl, ethanoyl or C₃₋₆alkyanoyl; carboxy; C₁₋₈alkylS(O_{nn}) wherein nn is an integer between 0 and 2, preferably methylthio, ethylthio, C₃₋₆alkylthio, methylsulphinyl, ethylsulphinyl, C₃₋₆alkylsulphinyl, methylsulphonyl, ethylsulphonyl or C_{3-6} alkylsulphonyl; hydroxy; halo (eg, F, Cl or Br); $\mathbb{R}^{m}\mathbb{R}^{n}\mathbb{N}$ - where \mathbb{R}^{m} and \mathbb{R}^{n} are independently hydrogen or C_{1-6} alkyl (preferably C_{2-4} alkyl, more preferably methyl, most preferably $R^m = R^n = methyl$; and nitro.

According to a further aspect of the invention there is provided a compound of Formula (Ib)

$$R^{5}$$
 M R^{2} R^{2} R^{1}

Formula (Ib)

wherein:

 $\mathbf{R^1}$ represents hydrogen or unsubstituted C_{1-6} alkyl;

R² represents optionally substituted phenyl;

R³ is selected from a group of Formula (IIa) to Formula (IId):

$$R^7$$
 $N-B-R^8$
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^7
 R^6
 R^6

25

20

R⁵ is selected from a one of a group of Formula III-a to III-l:

5 wherein:

10

15

het represents an optionally substituted 3- to 8- membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S;

 ${\bf R}^{23}$ and ${\bf R}^{23a}$ are independently selected from:

- (i) hydrogen or optionally substituted C_{1-8} alkyl; or
- (ii) \mathbb{R}^{23} and \mathbb{R}^{23a} together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring;

 \mathbf{R}^{24} and \mathbf{R}^{25} are selected from:

(i) $\mathbf{R^{24}}$ selected from hydrogen; optionally substituted C_{1-8} alkyl; optionally substituted aryl; $-\mathbf{R^d}$ -Ar, where $\mathbf{R^d}$ represents C_{1-8} alkylene and Ar represents optionally substituted aryl; and optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; and $\mathbf{R^{25}}$ is selected from hydrogen; optionally substituted C_{1-8} alkyl and optionally substituted aryl;

- 34 -

(ii) wherein the group of Formula (III) represents a group of Formula III-a, III-b or III-i, then the group NR²⁴(-R²⁵) represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S; or

R²⁵

(iii) wherein the group of Formula (III) represents structure III-e, represents an optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

 ${\bf R^6}$ and ${\bf R^{6a}}$ are independently selected from hydrogen, fluoro or optionally substituted $C_{1\text{-}6}$ alkyl.

 \mathbf{R}^7 is selected from: hydrogen or C_{1-4} alkyl;

R⁸ is selected from

5

10

15

20

25

- (i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, haloC₁₋₆alkyl, hydroxy, cyano, C₁₋₆alkylS(O_n)-,
 -O-R^b, C₁₋₄alkoxyC₁₋₄alkyl, -C(O)-R^b, C(O)O-R^b, -NH-C(O)-R^b,
 N,N-di-C₁₋₄alkylamino or -S(O_n)NR^bR^c
 where R^b and R^c are independently selected from hydrogen and C₁₋₆alkyl, and n is 0, 1 or 2;
 - (ii)-aryl, , optionally substituted by up to 4 substituents selected from $\mathbf{R^{12}}$, $\mathbf{R^{13}}$ and $\mathbf{R^{14}}$;
 - (iii) C_{4-7} heterocyclyl, optionally substituted by up to 4 substituents selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ; or
 - (iv) C_{3-7} carbocyclyl, , optionally substituted by up to 4 substituents selected from \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} ;
- R⁹ and R¹⁰ are independently selected from: hydrogen, hydroxy, optionally substituted C₁₋₆alkyl, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl, optionally substituted heterocyclylC₁₋₆alkyl or R⁹ and R¹⁰ taken together can form an optionally substituted ring of 3-9 atoms or R⁹ and R¹⁰ taken together with the carbon atom to which they are attached form a carbonyl group;
- R¹² is selected from: hydrogen, hydroxy, R¹⁷R¹⁸N(CH₂)_{cc}-, R¹⁷R¹⁸NC(O)(CH₂)_{cc}-,

 optionally substituted C₁₋₆alkyl- C(O)N(R⁹)(CH₂)_{cc}-, optionally substituted

 C₁₋₆alkyl-SO₂N(R⁹)-, optionally substituted aryl-SO₂N(R⁹)-,

 C₁₋₃perfluoroalkyl-SO₂N(R⁹)-; optionally substituted C₁₋₆alkyl-N(R⁹)SO₂-, optionally

substituted aryl-N(\mathbf{R}^9)SO₂-, C₁₋₃perfluoroalkyl-N(\mathbf{R}^9)SO₂- optionally substituted C₁₋₆alkanoyl-N(\mathbf{R}^9)SO₂-; optionally substituted aryl-C(O)N(\mathbf{R}^9)SO₂-, optionally substituted C₁₋₆alkyl-S(O_n) -, optionally substituted aryl-S(O_n) - , C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, optionally substituted C₁₋₆alkoxy, carboxy, halo, nitro or cyano;

- R¹³ and R¹⁴ are independently selected from: hydrogen, hydroxy, oxo, optionally substituted C₁₋₆alkyl, optionally substituted C₁₋₆alkanoyl, optionally substituted C₂₋₆alkenyl, cyano, nitro, C₁₋₃perfluoroalkyl-, C₁₋₃perfluoroalkoxy, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, R⁹O(CH₂)_s-, R⁹(O)O(CH₂)_s-, R⁹OC(O)(CH₂)_s-, R¹⁶S(O_n)(CH₂)_s-, R⁹R¹⁰NC(O)(CH₂)_s- or halo; A is selected from optionally substituted C₁₋₅alkylene, carbonyl or -C(O)-C(R^dR^d)-, wherein R^d is independently selected from hydrogen and C₁₋₂alkyl.;
 - ${f R}^{17}$ is independently selected from: hydrogen, hydroxy, cyano or optionally substituted $C_{1\text{-}6}$ alkyl;
- R^{18} is a group of formula R^{18a} - $C(R^9R^{10})_{0-1}$ wherein R^{18a} is selected from: $R^{19}OC(O)$ -, $R^9R^{10}NC(O)$ -, $R^9R^{10}NC(O)$ -, $R^9C(O)N(R^{10})$ -, $R^9R^{10}NC(O)$ -, $R^9R^{10}NC(O)N(R^{10})$ -, $R^9SO_2N(R^{10})$ -, $R^9R^{10}NSO_2N(R^{10})$ -, $R^9C(O)O$ -, $R^9OC(O)$ -, $R^9R^{10}NC(O)O$ -, R^9O -, $R^9S(O_n)$ -, $R^9R^{10}NS(O_n)$ -, hydrogen, optionally substituted C_{1-6} alkyl, optionally substituted heterocyclyl;
 - or \mathbb{R}^{17} and \mathbb{R}^{18} when taken together form an optionally substituted carbocyclic ring of 3-7 atoms or optionally substituted heterocyclyl;
 - $\mathbf{R^{19}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alky, optionally substituted aryl, optionally substituted $C_{3\text{-}7}$ cycloalkyl, optionally substituted heterocyclyl or optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl;

B is selected from optionally substituted C_{1-6} alkylene or the group forms an optionally substituted C_{4-7} heterocyclic ring, wherein the optional substituents are selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;

he group

5

10

20

the group $^{'2}$ preferably forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms, wherein the optional substituents are selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;

- 36 -

K is selected from: a direct bond, $-(CH_2)_{s1}$ -, $-(CH_2)_{s2}$ -O- $-(CH_2)_{s2}$ -, $-(CH_2)_{s1}$ -C(O)- $-(CH_2)_{s2}$ -,

 $-(CH_2)_{s1}-S(O_n)-(CH_2)_{s2}-, -(CH_2)_{s1}-N(\mathbf{R}^{18})-(CH_2)_{s2}-, -(CH_2)_{s1}-C(O)N(\mathbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s1}-C(O)N(\mathbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s2}-, -(CH_2)_{s3}-C(O)N(\mathbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s3}-C(O)N(\mathbf{R}^9)-(CH_2)_{s2}-, -(CH_2)_{s3}-C(O)N(\mathbf{R}^9)-(CH_2)_{s3}-, -(CH_2)_{s3}-C(O)N(\mathbf{R}^9)-(CH_2)_{s3}-, -(CH_2)_{s3}-, -(CH_2)_{s3}-,$

 $-(CH_2)_{s1}-N({I\!\!R}^9)C(O)-(CH_2)_{s2}-, -(CH_2)_{s1}-N({I\!\!R}^9)C(O)N({I\!\!R}^9)-(CH_2)_{s2}-,$

 $-(CH_2)_{s1}-OC(O)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-C(O)O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-N(\mathbf{R}^9)C(O)O-(CH_2)_{s2}-$,

5 $-(CH_2)_{s1}-OC(O)N(\mathbf{R}^9)-(CH_2)_{s2}-$, $-(CH_2)_{s1}-OS(O_n)-(CH_2)_{s2}-$, or

 $-(CH_2)_{s1}-S(O_n)-O-(CH_2)_{s2}-$, $-(CH_2)_{s1}-S(O)_2N(\mathbf{R}^9)-(CH_2)_{s2}-$,

- $(CH_2)_{s1}$ - $N(R^9)S(O)_2$ - $(CH_2)_{s2}$ -; wherein the - $(CH_2)_{s1}$ - and - $(CH_2)_{s2}$ - groups are independently optionally substituted by hydroxy, fluoro, cyano, carbamoyl, C_{1-4} alkyl and C_{1-4} alkoxy,

n is an integer from 0 to 2;

s1 and s2 are independently selected from an integer from 0 to 4, and

s1+s2 is less than or equal to 4;

or a salt, pro-drug or solvate thereof.

According to a further aspect of the invention there is provided a compound of Formula 15 (Ic)

$$\mathbf{R}^{5}$$
 \mathbf{M}
 \mathbf{R}^{2}
 \mathbf{R}^{1}

Formula (Ic)

wherein

20

 ${\bf R}^{\bf 3}$ is selected from a group of Formula (IIa) or Formula (IIb):

Formula (IIa)

Formula (IIb)

and R^1 , R^2 , R^5 , R^6 , R^{6a} , R^7 , R^8 , A, B and M are as defined above; or salt, solvate or pro-drug thereof.

A further preferred group of compounds of the invention comprises a compound of Formula (Ic), wherein:

A is optionally substituted C_{1-5} alkylene;

B is selected from optionally substituted C_{1-6} alkylene or the group ring containing C_{5-7} heterocyclic ring;

 \mathbf{M} is $-\mathbf{CH_2}$ -O-;

 \mathbf{R}^1 is hydrogen or C_{1-4} alkyl;

- R^6 and R^{6a} , are independently selected from hydrogen and optionally substituted C_{1-6} alkyl; R^7 is selected from: hydrogen or C_{1-4} alkyl;
 - ${f R}^8$ is selected from hydrogen, cyano, $C_{1\text{-}6}$ alkyl, halo $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkyl, $C_{1\text{-}6}$ alkoxycarbonyl, N,N-di- $C_{1\text{-}4}$ alkylamino, aryl, aryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl, heterocyclyl, heterocyclyl, heterocyclyl $C_{1\text{-}6}$ alkyl, or
- heterocyclylcarbonyl C_{1-4} alkyl wherein aryl and heterocyclyl rings are optionally substituted by cyano and C_{1-4} alkyl; and

 \mathbb{R}^2 and \mathbb{R}^5 ; are as defined above or salt, solvate or pro-drug thereof.

A further preferred group of compounds of the invention comprises a compound of Formula (Ic), wherein:

 ${\bf A}$ is optionally substituted C_{1-5} alkylene;

forms a

B is selected from optionally substituted C_{1-6} alkylene or the group ring containing C_{5-7} heterocyclic ring;

 \mathbf{R}^{1} is hydrogen or C_{1-4} alkyl, preferably hydrogen;

- R² is an optionally substituted monocyclic aromatic ring structure, preferably optionally substituted phenyl, most preferably 3,5-dimethylphen-1-yl;
 - R⁵ is a group of Formula (III) wherein the group of Formula (III) is selected from a group of Formula III-a; III-b; III-c; III-d; III-e; III-f, III-g, III-h, III-I, III-j, III-k and III-l;

wherein \mathbb{R}^{23} , \mathbb{R}^{23a} , \mathbb{R}^{24} and \mathbb{R}^{25} are as defined above, preferably the group of Formula (III) is selected from (III-a), (III-g) and (III-h);

 \mathbf{R}^{6} and \mathbf{R}^{6a} , are independently selected from hydrogen and optionally substituted C_{1-6} alkyl;

5 \mathbb{R}^7 is selected from: hydrogen or C_{1-4} alkyl;

 ${f R}^8$ is selected from hydrogen, cyano, $C_{1\text{-}6}$ alkyl, halo $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkyl, $C_{1\text{-}6}$ alkoxycarbonyl, N,N-di- $C_{1\text{-}4}$ alkylamino, aryl, aryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}6}$ alkyl, heterocyclyl, heterocyclyl $C_{1\text{-}6}$ alkyl, or heterocyclylcarbonyl $C_{1\text{-}4}$ alkyl wherein aryl and heterocyclyl rings are optionally substituted by cyano and $C_{1\text{-}4}$ alkyl; and

 \mathbb{R}^2 , and \mathbb{R}^5 ; are as defined above or salt, solvate or pro-drug thereof.

A further preferred group of compounds of the invention comprises a compound of Formula (Id):

$$R^{5}$$
 R^{5}
 R^{2}
 R^{1}

10

- 39 -Formula (Id)

Wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^5 ; \mathbb{R}^7 , \mathbb{R}^8 , A, B and M are as defined above or salt, solvate or pro-drug thereof.

A yet further preferred group of compounds of the invention comprises a compound of 5 Formula (Ib), (Ic) or (Id) wherein:

R⁵ is a group of Formula (III) wherein the group of Formula (III) is a group of formula IIIa:

wherein \mathbf{R}^{23} , \mathbf{R}^{23a} , \mathbf{R}^{24} and \mathbf{R}^{25} are as defined above;

10 or a salt, pro-drug or solvate thereof.

20

According to a further aspect of the invention there is provided a compound of Formula (I) or Formula (Ia), or salt, solvate or pro-drug thereof, wherein \mathbf{R}^3 is selected from a group of Formula (IIc) or Formula (IId) and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above.

According to a further aspect of the invention there is provided a compound of Formula (I) or Formula (Ia), or salt, solvate or pro-drug thereof, wherein \mathbf{R}^3 is selected from a group of Formula (IIe) or Formula (IIf) and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above.

According to a further aspect of the invention there is provided a compound of Formula (I) or Formula (Ia), or salt, solvate or pro-drug thereof, wherein \mathbf{R}^3 is selected from a group of Formula (IIa), Formula (IIc) or Formula (IIe) and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above.

According to a further aspect of the invention there is provided a compound of Formula (I) or Formula (Ia), or salt, solvate or pro-drug thereof, wherein \mathbf{R}^3 is selected from a group of Formula (IIb), Formula (IId) or Formula (IIf) and \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^5 are as defined above.

Particularly preferred compounds according to the present invention are wherein the compound is selected from:

- 40 -

- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-pyrid-4-ylethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-pyrid-4-ylbutyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[4-(4-methoxyphenyl)butyl]-(2S)-propylamine;
- 10 $2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1<math>H$ -pyrazol-4-yl]-N-[2-phenylethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
 - [2-(43-trifluoromethylphenyl)ethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(4-fluorophenyl)ethyl]-(2S)-propylamine;
 - $2-[3-(2,2-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethylphenyl)-1$H-pyrazol-4-yl]-$N-[2-(3-fluorophenyl)ethyl]-(2S)-propylamine;$
 - $2-[3-(2,2-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(3,5-dimethyl-3-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(azabicyclo[2.2.1]heptan-7-yl]propoxy)-5-(azabicyclo[2.2.1]heptan-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]propoxy-7-yl]p$
- dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(3-methoxyphenyl)ethyl]-(2S)-propylamine;
 - $2-[3-(2,2-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethylphenyl)-1$H-pyrazol-4-yl]-$N-[2-(4-methoxyphenyl)ethyl]-(2S)-propylamine;$
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
- 25 [2-(3,4-difluorophenyl)ethyl]-(2S)-propylamine;

5

- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
 - [2-(4-isopropylureidophenyl)ethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-(4-{cyclopentylcarbonylamino}phenyl)ethyl]-(2S)-propylamine;
 - [2-(4-methylsulphonylaminophenyl)ethyl]-(2S)-propylamine;

- 41 -

- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*[2-(4-{isopropoxycarbonylamino}phenyl)ethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
 - [2-(4-{cyclohexylureido}phenyl)ethyl]-(2S)-propylamine;

5

30

- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-(1-methyl-2-oxo-1,2-dihydroquinolin-6-yl)ethyl]-(2S)-propylamine;
- 3-[2,2-dimethyl-3-oxo-3-(azabicyclo[2.2.2]oct-2-yl)propoxy]-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(3-methoxyphenyl)ethyl]-(2S)-propylamine; and
 - $2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.2]oct-2-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-<math>N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;$ or a salt, pro-drug or solvate thereof.
- More particularly preferred compounds according to the present invention are wherein the compound is selected from:
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-pyrid-4-ylethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-pyrid-4-ylbutyl]-(2S)-propylamine;
 - $2-[3-(2,2-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-4)$
- dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[4-(4-methoxyphenyl)butyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*[2-(43-trifluoromethylphenyl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-(4-fluorophenyl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(3-methoxyphenyl)ethyl]-(2S)-propylamine;

- 42 -

 $2-[3-(2,2-dimethyl-3-oxo-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-dimethylphenyl)-1$H-pyrazol-4-yl]-$N-[2-(4-methoxyphenyl)ethyl]-(2S)-propylamine;$

2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-

[2-(4-methylsulphonylaminophenyl)ethyl]-(2S)-propylamine; and

5

15

20

25

 $2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.2]oct-2-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-<math>N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;$ or a salt, pro-drug or solvate thereof.

Most preferred compounds according to the present invention are wherein the compound is selected from:

2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine; and

 $2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.2]oct-2-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-<math>N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;$ or a salt, pro-drug or solvate thereof.

In another embodiment of the invention preferred compounds according to the present invention are wherein the compound is selected from:

2-[3-(2,2-dimethyl-3-oxo-3-pyrrolidin-1-ylpropoxy)-5-(3,5-dimethylphenyl)-1<math>H-pyrazol-4-yl]-N-(2-pyridin-4-ylethyl)ethanamine;

2-[3-(2,2-dimethyl-3-oxo-3-pyrrolidin-1-ylpropoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-(2-pyridin-4-ylbutyl)ethanamine;

2-[3-(2,2-dimethyl-3-oxo-3-(7-azabicyclo[2.2.1]hept-7-yl)propoxy)-5-(3,5-dimethylphenyl)-1<math>H-pyrazol-4-yl]-N-(2-pyridin-4-ylethyl)ethanamine; and

2-[3-(2,2-dimethyl-3-oxo-3-(7-azabicyclo[2.2.1]hept-7-yl)propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-(2-pyridin-4-ylbutyl)ethanamine; or a salt, pro-drug or solvate thereof.

The compounds of Formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the Formula (I). Examples of pro-drugs include in-vivo hydrolysable esters of a compound of the Formula (I). Various forms of pro-drugs are known in the art. For examples of such pro-drug derivatives, see:

- 43 -

- a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985);
- b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H.

 Bundgaard, Chapter 5 "Design and Application of Prodrugs", by H. Bundgaard p. 113191 (1991);
 - c) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992);
 - d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and
 - e) N. Kakeya, et al., Chem Pharm Bull, 32, 692 (1984).
- An in-vivo hydrolysable ester of a compound of the Formula (I) containing a carboxy or a hydroxy group is, for example, a pharmaceutically-acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol. Suitable pharmaceutically-acceptable esters for carboxy include C₁₋₆alkoxymethyl esters for example methoxymethyl, C₁₋₆alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C₃₋₈cycloalkoxycarbonyloxyC₁₋₆alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters, for example 5-methyl-1,3-dioxolen-2-onylmethyl; and C₁₋₆alkoxycarbonyloxyethyl esters.

An in-vivo hydrolysable ester of a compound of the Formula (I) containing a hydroxy group includes inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and α-acyloxyalkyl ethers and related compounds which as a result of the invivo hydrolysis of the ester breakdown to give the parent hydroxy group/s. Examples of α-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxy-methoxy. A selection of in-vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxyacetyl.

A suitable pharmaceutically-acceptable salt of a compound of the invention is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid. In addition a suitable pharmaceutically-acceptable salt of a compound of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an

organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.

The compounds of Formula (I) can be prepared by a process comprising a step selected from (a) to (h) as follows, these processes are provided as a further feature of the invention:-

(a) Reaction of a compound of formula XXXII with a compound of formula L^2 - R^5 to form a compound of Formula (I),

XXXII Formula (I)

$$R^{6a}$$
 R^{6a} R^{6a} R^{6a} A A A

wherein X^1 is selected from:

; L^1 is a displaceable

group; and

$$\mathbf{R}^7$$
 $\mathbf{N} - \mathbf{B} - \mathbf{R}^8$
 \mathbf{R}^7
 $\mathbf{N} - \mathbf{J} - \mathbf{K} - \mathbf{R}^8$ and $\mathbf{N} - \mathbf{R}^{21}$
 \mathbf{H}

H-R⁵' is selected from:

(b) Reaction of a compound of formula **XXXIII** with a compound of formula H-R⁵" to form a compound of Formula (I),

XXXIII Formula (I)

wherein X^2 is selected from: X^2 is a displaceable group and X^{7a} is selected from the definition of X^{7a} above, and

$$-45$$
 - $L^2\text{-}R^5"$ is selected from: $L^2\!\!-\!B\!\!-\!\!R^8$, $L^2\!\!-\!\!J\!\!-\!\!K\!\!-\!\!R^8$ and $L^2\!\!-\!\!\!R^{21}$

(c) For compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbb{R}^7 is other than part of a heterocyclic ring or hydrogen, reaction of a compound of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbb{R}^7 is hydrogen with a group of formula \mathbb{L}^3 - \mathbb{R}^{7a} , wherein \mathbb{R}^{7a} is as defined above for \mathbb{R}^7 with the exclusion of hydrogen and \mathbb{L}^3 is a displaceable group;

5

10

15

20

- (d) For compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{21} is other than hydrogen, reaction of a compound of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{21} is hydrogen with a group of formula \mathbf{L}^4 - \mathbf{R}^{21a} , wherein \mathbf{R}^{21a} is as defined above for \mathbf{R}^{21} with the exclusion of hydrogen and \mathbf{L}^4 is a displaceable group;
- (e) For compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{22} is other than hydrogen, reaction of a compound of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{22} is hydrogen with a group of formula \mathbf{L}^5 - \mathbf{R}^{22a} , wherein \mathbf{R}^{22a} is as defined above for \mathbf{R}^{22} with the exclusion of hydrogen and \mathbf{L}^5 is a displaceable group;
- (f) For compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIc) or (IId) and

the group together forms an optionally substituted nitrogen-containing heterocyclic ring containing 4-7 carbons atoms, reaction of a compound of Formula XXXIVa or XXXIVb, with a compound of Formula L⁶-K-R⁸, wherein L⁶ is a displaceable group

$$R^{5}$$
 R^{6}
 R^{6}

(g) For compounds of Formula (I) wherein R³ is a group of Formula (IIc) or (IId), reaction of a compound of Formula XXXVa or XXXVb, with a compound of Formula L⁴-K³'-R³,
 25 wherein L³ is a displaceable group, and wherein the groups K' and K'' comprise groups which when reacted together form K,

$$\begin{array}{c} -46 - \\ \\ R^{5} - M \\ \\ R^{1} \end{array}$$

(h) reaction of a compound of Formula XXXVI with an electrophillic compound of the formula L^8 - R^5 , wherein L^8 is a displaceable group

$$R^{5}$$
 M H R^{2} R^{1} $XXXVI$

5 and thereafter if necessary:

i) converting a compound of the Formula (I) into another compound of the Formula (I);

ii) removing any protecting groups;

iii) forming a salt, pro-drug or solvate.

Specific reaction conditions for the above reations are as follows:

- 10 *Process a*) Compounds of formula **XXXII** and H-**R**⁵' can be coupled together in the presence of an organic base (such as DIPEA [di-isopropylethylamine]) or an inorganic base (such as potassium carbonate) base, in a suitable solvent such as DMA or DMF, at a temperature from room temperature and 120°C. Suitable displaceable groups include: a halide, such as chloro, or a methane sulphonate or toluene sulphonate;
- 15 Process b) Compounds of XXXIII and L²-R⁵" can be coupled together in the presence of an organic base(such as DIPEA) or an inorganic base (such as potassium carbonate), in a suitable solvent such as DMA or DMF, at a temperature from room temperature to 120°C. Suitable displaceable groups include: a halide, such as chloro, or a methane sulphonate or toluene sulphonate,
- alternatively if L^2 is a hydroxy group then the L^2 - R^5 "; can be reacted with a compound of formula XXXIII under Mitsunobu reaction conditions;

Process c, d, e and f) Reaction conditions to facilitate these reactions can be using
(i) alkylation reaction conditions or (ii) acylation reaction conditions: Examples of said conditions include:

25 (i) alkylation reaction conditions - the presence of an organic base(such as DIPEA) or an inorganic base (such as potassium carbonate), in a suitable solvent such as DMF, DMA,

- 47 -

DCM, at a temperature from room temperature to 120°C. Suitable displaceable groups include: a halide, such as chloro, methane sulphonate or toluene sulphonate;

- (ii) acylation reaction conditions presence of organic base, such as triethylamine, temperature 0°C to 50-60°C in a suitable solvent such as DCM. Suitable displaceable groups include an acylchloride or an acid anhydride,
- Process g) The skilled man would be familiar with a variety of reaction conditions and values for K' and K'', which when reacted together would form the group K, examples of said conditions and values for K' and K'' include:

5

20

25

- (i.) For compounds of Formula (I) where K is -(CH₂)_{s1}-N(R⁹)C(O)-(CH₂)_{s2}
 these can be prepared by reacting a compound where K' is -(CH₂)_{s1}-N(R⁹)H with a
 carboxylic acid for formula HOOC-(CH₂)_{s2}-R⁸ to form the amide. Coupling of
 amino groups with carboxylic acids are well known in the art and can be facilitated
 by a number of chemical reactions using an appropriate coupling reagent. For
 example a carbodiimide coupling reaction can be performed with EDCl in the

 presence of DMAP in a suitable solvent such as DCM, chloroform or DMF at room
 temperature;
 - (ii.) For compounds of Formula (I) where K is $-(CH_2)_{s1}$ $C(O)N(R^9)$ $-(CH_2)_{s2}$ these can be prepared by reacting a compound where K' is $-(CH_2)_{s1}$ -COOH with an amine of the $HN(R^9)$ - $(CH_2)_{s2}$ - R^8 to form the amide. Methodology is identical to processes described in (i) above in this section;
 - (iii.) For compounds of Formula (I) where K is $-(CH_2)_{s1}$ $N(R^9)C(O)O$ $-(CH_2)_{s2}$ these can be prepared by reacting a compound where K' is $-(CH_2)_{s1}$ $N(R^9)H$ with a
 chloroformate of formula ClC(O)O-- $(CH_2)_{s2}$ - R^8 in a suitable solvent, such as DCM
 or chloroform, in the presence of a base, such as N-methylmorpholine, pyridine or
 triethylamine, at a temperature between $-10^{\circ}C$ and $0^{\circ}C$;
 - (iv.) For compounds of Formula (I) where K is $-(CH_2)_{s1}$ $OC(O)N(R^9 (CH_2)_{s2}$ these can be prepared by reacting a compound where K' is $-(CH_2)_{s1}$ OC(O)Cl with a
 compound of formula $HN(R^9)$ - $(CH_2)_{s2}$ - R^8 . Methodology is identical to processes
 described in (iii) above in this section;
- (v.) For compounds of Formula (I) where K is $-(CH_2)_{s1}-N(R^9)S(O_2)-(CH_2)_{s2}-$ these can be prepared by reacting a compound where K' is $-(CH_2)_{s1}-N(R^9)H$ with a sulphonyl chloride of formula $ClS(O_2)-(CH_2)_{s2}-R^8$ in the presence of a base, such as

- 48 -

triethylamine or pyridine, in a suitable solvent such as chloroform or DCM at a temperature between 0°C and room temperature;

(vi.) For compounds of Formula (I) where K is $-(CH_2)_{s1}$ - $S(O_2)N(R^9)$ $-(CH_2)_{s2}$ these can be prepared by reacting a compound where K^9 is $-(CH_2)_{s1}$ - $S(O_2)Cl$ with a
compound of $HN(R^9)$ - $(CH_2)_{s2}$ - R^8 . Methodology is identical to processes described
in (v) above in this section

5

- (vii.) For compounds of Formula (I) where K is -(CH₂)_{s1}- N(R⁹) -(CH₂)_{s2}these can be prepared by reacting a compound where K' is -(CH₂)_{s1}-L¹¹ with a
 compound of formula HN(R⁹)-(CH₂)_{s2}-R⁸, wherein L¹¹ is a displaceable group. This
 reaction can be performed in the presence of an organic base(such as DIPEA) or an
 inorganic base (such as potassium carbonate), in a suitable solvent such as DMA or
 DMF, at a temperature from room temperature to 120°C. Suitable displaceable
 groups include: a halide, such as chloro, or a methane sulphonate or toluene
 sulphonate. Compounds can also be prepared by reacting a compound wherein K' is
 -(CH₂)_{s1}-N(R⁹)H with a compound of formula L¹¹-(CH₂)_{s2}-R⁸, under identical
 conditions.
- these can be prepared by reacting a compound where **K**' is -(CH₂)_{s1}-O +(CH₂)_{s2}-these can be prepared by reacting a compound where **K**' is -(CH₂)_{s1}-OH with a compound of formula **L**¹²-(CH₂)_{s2}-**R**⁸, wherein **L**¹² is a displaceable group. This reaction can be performed in the presence of an organic base (such as potassium *t*-butoxide) or an inorganic base (such as sodium hydride), in a suitable solvent such as DMA or DMF, at a temperature from room temperature and 120°C. Suitable displaceable groups include: a halide, such as bromo, or a methane sulphonate or toluene sulphonate. Compounds can also be prepared by reacting a compound wherein **K**' is -(CH₂)_{s1}-**L**¹² with a compound of formula HO-(CH₂)_{s2}-**R**⁸, under identical conditions.
- (ix.) For compounds of Formula (I) where K is -(CH₂)_{s1}-C(O) -(CH₂)_{s2}-these can be prepared by reacting a compound where K' is -(CH₂)_{s1}-C(O)-L¹³ with a Grignard reagent of formula BrMg(CH₂)_{s2}-R⁸, wherein L¹³ is a displaceable group.
 This reaction can be performed in a non-polar solvent such as THF or diethylether at a temperature between room temperature and the boiling point of the solvent. Suitable displaceable groups include: a halide, such as bromo, or a methane sulphonate or toluene sulphonate. Compounds can also be prepared by reacting a

- 49 -

compound wherein K' is -(CH₂)_{s1}-MgBr with a compound of formula L^{13} -C(O)-(CH₂)_{s2}- R^8 , under identical conditions.

Process h) reaction of a compound of Formula XXXVI with a compound of the formula L³-R⁵, can be performed under Friedel Craft conditions, for example in the presence of diethylaluminium chloride in a suitable solvent, such as DCM, in an inert atmosphere such as nitrogen, at a temperature between room temperature and the boiling point of the solvent or under Mannich conditions, for example, formaldehyde and a primary or secondary amine in acetic acid, in an inert atmosphere such as nitrogen at a temperature between room temperature and 100°C. It will be appreciated by those skilled in the art that in the processes of the present invention certain functional groups such as hydroxyl or amino groups in the starting reagents or intermediate compounds may need to be protected by protecting groups. Thus, the preparation of the compounds of Formula (I) may involve, at an appropriate stage, the addition and subsequent removal of one or more protecting groups.

The protection and de-protection of functional groups is described in 'Protective Groups in Organic Chemistry', edited by J.W.F. McOmie, Plenum Press (1973) and 'Protective Groups in Organic Synthesis', 2nd edition, T.W. Greene and P.G.M. Wuts, Wiley-Interscience (1991).

A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or *tert*-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a *tert*-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.

A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The de-protection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a *tert*-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

15

EXPERIMENTAL

GENERAL REACTION SCHEMES

Scheme a

- 20 Pyrazoles, such as 3 can be synthesised in two steps (Scheme a):
 - (1) by the reaction of a lactone with the appropriate ester using a Claisen condensation to form a compound of formula 2, under conditions of an inert atmosphere, such as argon, at a temperature of about 0°C in a suitable solvent such as THF.
- (2) followed by cyclization of a compound of formula 2 with hydrazine to form the pyrazole
 3, at a room temperature in a suitable solvent such as ethanol.

- 51 -Scheme b

The pyrazole 3 can undergo a selective alkylation reaction with a compound of formula 4, under conditions of an inert atmosphere, such as argon, in the presence of a suitable base, such as potassium carbonate in the a suitable solvent such as DMA at a temperature of about 90°C, to form a compound of formula 5. Then the amine 6 can be prepared from a compound of formula 5 and phthalimide using a Mitsunobu reaction with an activating agent such as diethyldiazocarboxylate (DEAD), diisopropyldiazocarboxylate or the like with triphenylphosphine, tri-butylphosphine and the like, in an inert solvent such as benzene, toluene, tetrahydrofuran or mixtures thereof, followed by deprotection with hydrazine to give the (Scheme b).

$$R^{5}$$
 R^{5}
 R^{5}

Scheme c.

A suitable pyrazole 6 can be converted to a compound of formula 10 by incorporation of a suitable protecting group (P)to form a compound of formula 7, followed by a Mitsunobu reaction with a suitable alcohol 8 to form a compound of formula 9, followed by deprotection.

EXAMPLES

The invention will now be illustrated with the following non-limiting Examples in which, unless otherwise stated:

- 52 -

- (i) evaporations were carried out by rotary evaporation <u>in vacuo</u> and work-up procedures were carried out after removal of residual solids such as drying agents by filtration;
- (ii) operations were carried out at room temperature, that is in the range 18-25°C and under an atmosphere of an inert gas such as argon or nitrogen;
 - (iii) yields are given for illustration only and are not necessarily the maximum attainable;
- (iv) the structures of the end-products of the Formula (I) were confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques; proton magnetic resonance chemical shift values were measured on the delta scale and peak multiplicities are shown as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad; q, quartet, quin, quintet;
 - (v) intermediates were not generally fully characterised and purity was assessed by thin layer chromatography (TLC), high-performance liquid chromatography (HPLC),
- 15 infra-red (IR) or NMR analysis;
 - (vi) chromatography was performed on silica (Merck Keiselgel: Art.9385);
 - (vii) isoluteTM refers to silica (SiO₂) based columns with irregular particles with an average size of $50\mu m$ with nominal 60 Å porosity [Source: Jones Chromatography, Ltd., Glamorgan, Wales, United Kingdom].

20

Abbreviations

boc *t*-butoxycarbonyl

DCC 1,3-dicyclohexylcarbodiimide

DEAD diethylazodicarboxylate

25 DMA dimethylacetamide

DMAP 4-dimethylaminopyridine

DMSO dimethyl sulphoxide
DMF dimethylformamide

DNS 2,4-dinitrobenzenesulphonyl

30 EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide

hydrochloride

HOBt 1-hydroxybenzotriazole

LHMDS lithium bis(trimethylsilyl)amide

- 53 -

THF

tetrahydrofuran

Example 1

2-[3-(2,2-dimethyl-3-oxo-3-pyrrolidin-1-ylpropoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-

5 4-yl]-N-(2-pyridin-4-ylethyl)ethanamine

A solution of <u>AR1</u> (123 mg; 0.17 mmol) in CH₂Cl₂ (3 ml) was treated dropwise with propylamine (140 ul; 1.7 mmol). The mixture was stirred at room temperature for 1h and then purified directly by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH) to give **Example 1** as a beige solid (83 mg).

Yield: 100%

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.75 (m, 4H); 2.3 (s, 6H); 2.55-2.95 (m, 8H); 3.5 (m, 4H); 4.18 (s, 2H); 7.03 (s, 1H); 7.10 (s, 2H); 7.2 (d, 2H); 8.44 (d, 2H), 11.9 (s br, 1H).

MS-ESI: 490 [M+H]⁺

- 54 -

The starting material AR1 was prepared as follows:-

A solution of methyl 3,5-dimethylbenzoate (25 g; 152 mmol) and butyrolactone (40 ml; 520 mmol) in THF (300 ml) under argon was cooled to 0°C and treated dropwise with LHMDS (200 ml; 200 mmol; 1M in hexanes). The mixture was stirred and allowed to warm to room temperature overnight. The THF was evaporated. The residue was taken up in Et₂O and the organic phase was washed with sat. aq. NaHCO₃, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/hexanes (20 to 40% EtOAc) to give an oil which slowly crystallised to give 2 as a white solid (9.2 g). During the chromatography, the starting material methyl 3,5-

AR1

Yield: 55% based on recovered methyl 3,5-dimethylbenzoate.

dimethylbenzoate (12.4g) was recovered.

¹H NMR spectrum (CDCl₃): 2.39 (s, 6H); 2.5 (m, 1H); 2.82 (m, 1H); 4.41 (m, 1H); 4.51 (m, 2H); 7.25 (s, 1H); 7.65 (s, 2H).

15 MS-ESI: 219 [M+H]⁺

Compound $\underline{2}$ (7.43 g; 34 mmol) was dissolved in EtOH (200 ml) and hydrazine hydrate (17.2 ml; 354 mmol) was added. The mixture was stirred for 30 min. The solvent was evaporated and the residue was triturated with pentane to give $\underline{3}$ as a white solid (7.05 g).

Yield: 90%

¹H NMR spectrum (DMSO d₆): 2.32 (s, 6H); 2.58 (t, 2H); 3.50 (t, 2H); 4.8 (br s, 1H); 7.01 (s, 1H); 7.14 (s, 2H); 9.5 (br s, 1H).

MS-ESI: 233 [M+H]⁺

5

A mixture of <u>3</u> (4.26 g; 18.4 mmol) and <u>4</u> (4.51 g; 19.3 mmol) in DMA (40 ml) under argon was treated with K₂CO₃ (5.07 g; 36.7 mmol). The mixture was stirred and heated at 90°C for 2h. The mixture was poured into sat. aq. NaHCO₃, extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) to give the alcohol <u>5</u> as a pale yellow oil (6.56 g).

Yield: 93%

¹H NMR spectrum (DMSO d₆): 1.30 (s, 6H); 1.8 (m, 4H); 2.33 (s, 6H); 2.55 (m, 2H); 3.32 (m, 2H); 3.5 (m, 4H); 4.17 (s, 2H); 4.62 (t, 1H); 7.04 (s, 1H); 7.16 (s, 2H); 11.9 (br s, 1H).

15 MS-ESI: 386 [M+H]⁺

A mixture of 5 (3.85 g; 10 mmol), phthalimide (1.62 g; 11 mmol) and triphenylphosphine (10.5 g; 40 mmol) in THF (100 ml) at 0°C under argon was treated with DEAD (6.33 ml; 40 mmol). The mixture was stirred at this temperature for 1h when water was added. The mixture was extracted with Et₂O and the organic phase was washed with water, brine and dried over MgSO₄.

Evaporation gave a crude solid which, without further purification, was immediately taken up in EtOH (50 ml) and treated with hydrazine hydrate (5 ml; 100 mmol). The mixture was stirred for 1.5h and then the EtOH was partially evaporated. Addition of CH₂Cl₂ caused

precipitation of phthalhydrazide which was filtered and rinsed with CH₂Cl₂. The filtrate was evaporated and the residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 8% MeOH) to give **6** as a beige solid (2.34 g).

Yield: 61%

¹H NMR spectrum (DMSO d₆): 1.30 (s, 6H); 1.79 (m, 4H); 2.33 (s, 6H); 2.52 (m, 2H); 2.67 (t, 2H); 3.5 (m, 4H); 4.18 (s, 2H); 7.03 (s, 1H); 7.14 (s, 2H); 8.95 (br s, 1H). MS-ESI: 385 [M+H]⁺

A solution of <u>6</u> (200 mg; 0.52 mmol) in CH₂Cl₂ (5 ml) was treated with diisopropylethylamine (135 ul; 0.78 mmol) and cooled to 0°C. A solution of 2,4-dinitrobenzenesulphonyl chloride (153 mg; 0.57 mmol) in CH₂Cl₂ (1 ml) was added dropwise and the mixture was allowed to warm to room temperature for 30 min. The mixture was purified directly by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 50% EtOAc) to give <u>7</u> as a cream solid (224 mg).

Yield: 70%

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.75 (m, 4H); 2.29 (s, 6H); 2.57 (m, 2H); 3.11 (m, 2H); 3.5 (m, 4H); 4.15 (s, 2H); 7.0 (s, 1H); 7.03 (s, 2H); 8.14 (d, 1H); 8.56 (q, 1H); 8.6 (br s, 1H); 8.83 (d, 1H).

MS-ESI: 615 [M+H]⁺

A mixture of 7 (170 mg; 0.27 mmol), 4-(2-hydroxyethyl)-pyridine (38 mg; 0.3 mmol) and triphenylphosphine (283 mg; 1.08 mmol) in THF (10 ml) at 0°C under argon was treated with DEAD (170 ul; 1.08 mmol). The mixture was allowed to warm to room temperature for 30 min. when water was added. The mixture was extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) <u>AR1</u> as a white solid (123 mg).

20

Yield: 63%

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.7 (m, 4H); 2.28 (s, 6H); 2.69 (t, 2H); 2.83 (t, 2H); 3.4 (m, 4H); 3.48 (t, 2H); 3.56 (t, 2H); 4.21 (s, 2H); 7.01 (s, 1H); 7.08 (s, 2H); 7.19 (d, 2H); 8.15 (d, 1H); 8.41 (d, 2H); 8.42 (q, 1H); 8.89 (d, 1H).

25 MS-ESI: 720 [M+H]⁺

Starting material 4 was prepared as follows:-

A mixture of <u>8</u> (14.48 g; 80 mmol) and oxalyl bromide (43.2 g; 200 mmol) containing one drop of DMF was heated at 50°C for 2h and then cooled. The excess of oxalyl bromide was evaporated and the residue azeotroped with toluene to give crude <u>9</u> which was taken up

- 57 -

directly in CH_2Cl_2 (25 ml) and cooled to 0°C. Diisopropylethylamine (14 ml; 80 mmol) was added followed by a solution of pyrrolidine (3.3 ml; 40 mmol) in CH_2Cl_2 (30 ml). The mixture was allowed to warm to room temperature overnight and was diluted with CH_2Cl_2 , washed with aq. HCl (2N), aq. NaOH (1N), water, brine and dried over MgSO4. The residue was purified by flash chromatography eluting with increasingly polar mixtures of $EtOAc/CH_2Cl_2$ (5 to 10% EtOAc) to give $\underline{\bf 4}$ as a white solid (6.5 g).

Yield: 70%

 ^{1}H NMR spectrum (DMSO d_{6}): 1.39 (s, 6H); 1.9 (m, 4H); 3.57 (m, 4H); 3.62 (s, 2H)

MS-ESI: 235 [M+H]⁺

10

Examples 1.1-1.5

The following examples were prepared in a similar manner to Example 1,

the table shows the **R** group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of Example 1 given above:-

Example 1.1

R	AR2 mg;	CH ₂ Cl ₂	Propylamine μ1;	Prod.	Mass mg	MS-
	mmol	ml	mmol	Form	; Yield	ESI
	210 ; 0.28	5	235; 2.86	White	111;	504
) in				solid	77%	[M+H
]+

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.75 (m, 4H); 2.31 (s, 6H); 2.57-2.63 (m, 6H); 2.75 (m, 2H); 3.3-3.7 (m, 4H); 4.18 (s, 2H); 7.03 (s, 1H); 7.11 (s, 2H); 7.2 (d, 2H); 8.44 (d, 2H); 11.9 (s br, 1H).

Example 1.2

R	AR3 mg;	CH ₂ Cl ₂	Propylamine μl ;	Prod.	Mass mg;	MS-
	mmol	ml	mmol	Form	Yield	ESI
	120; 0.16	3	135; 1.63	White	60;73%	504
) N				solid		[M+H
]+

Chromato. – Ammonia in MeOH(7N)/CH₂Cl₂ (0 to 10% ammonia in MeOH)

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.6-1.9 (m, 6H); 2.3 (s, 6H); 2.55-2.64 (m, 6H); 2.7 (m, 2H); 3.3-3.6 (m, 4H); 4.17 (s, 2H); 7.02 (s, 1H); 7.12 (s, 2H); 7.29 (dd, 1H); 7.58 (d, 1H); 8.39 (d, 1H); 11.9 (s br, 1H).

Examples 1.3 - 1.5 were prepared by a robot. The last two steps were carried out sequentially without isolation of the intermediates AR4, AR5 or AR6.

Example 1.3

10

R	AR4 mg;	CH ₂ Cl ₂	Ammonia in	Prod.	Mass m	MS-
	mmol	ml	MeOH(7 <u>N</u>) ml	Form	g; Yield	ESI
	nd*; 0.23	5	0.5	oil	18;	514
CN		1			15%	[M+H
] +

Chromato. – LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (0 to 100% H₂O)

¹H NMR spectrum (DMSO d₆): 1.26 (s, 6H); 1.74 (m, 4H); 2.3 (s, 6H); 2.55-2.8 (m, 8H); 3.4 (m, 4H); 4.16 (s, 2H); 7.02 (s, 1H); 7.10 (s, 2H); 7.36 (d, 2H); 7.71 (d, 2H); 11.9 (s br, 1H).

Example 1.4

R	AR5 mg;	CH ₂ Cl ₂	Ammonia in	Prod.	Mass m	MS-
	mmol	ml	MeOH(7N) ml	Form	g; Yield	ESI
	nd*; 0.23	5	0.5	oil	15;12%	519
, ,						[M+H
]+

Chromato. – LC/MS H_2O /MeCN buffered with ammonium carbonate at pH 8.9 (0 to 100% H_2O)

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.74 (m, 4H); 2.30 (s, 6H); 2.5-2.75 (m, 8H); 3.5 (m, 4H); 3.71 (s, 3H); 4.16 (s, 2H); 6.81 (d, 2H); 7.02 (s, 1H); 7.05 (d, 2H); 7.11 (s, 2H); 11.9 (s br, 1H).

Example 1.5

R	AR6 mg;	CH ₂ Cl ₂	Ammonia in	Prod.	Mass m	MS-
	mmol	ml	MeOH(7 <u>N</u>) ml	Form	g; Yield	ESI
	nd*; 0.23	5	0.5	oil	23;	549
1					18%	[M+H
]+

^{*}nd = not determined

Chromato. – LC/MS $H_2O/MeCN$ buffered with ammonium carbonate at pH 8.9 (0 to 100%)

 $10 \text{ H}_2\text{O})$

20

¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.77 (m, 4H); 2.3 (s, 6H); 2.55-2.7 (m, 8H); 3.5 (m, 4H); 3.68 (s, 3H); 3.9 (t, 2H); 4.16 (s, 2H); 6.81 (m, 4H); 7.01 (s, 1H); 7.12 (s, 2H); 11.9 (s br, 1H).

15 Intermediates for Examples 1-1 - 1.5, AR2 – AR6 respectively

Starting materials <u>AR2-AR6</u> were prepared as follows, the table showing the reaction conditions and characteristics for each example, corresponding to the description of <u>AR1</u> given above:-

<u>AR2</u>

R	<u>7</u> mg	Alcohol	PPh3	THF	DEAD	Prod.	Mass mg	MS-
	;	mg;	mg;	ml	μ 1;	Form	; Yield %	ESI
	mmol	mmol	mmol		mmol			
N	200;	55;	340;	10	205;	Yellow	216;	734
	0.32	0.4	1.3		1.3	solid	90%	[M+H
]+

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

¹H NMR spectrum (DMSO d₆): 1.22 (s, 6H); 1.6-1.8 (m, 4H); 1.84 (m, 2H); 2.28 (s, 6H); 2.55 (m, 2H); 2.69 (m, 2H); 3.3-3.5 (m, 8H); 4.18 (s, 2H); 7.00 (s, 1H); 7.07 (s, 2H); 7.19 (d, 2H); 8.17 (d, 1H); 8.43 (d, 2H); 8.47 (dd, 1H); 8.92 (d, 1H); 11.9 (s br, 1H).

<u>**AR3**</u>

R	<u>7</u> mg	Alcohol	PPh3	THF	DEAD	Prod.	Mass mg;	MS-
	• • • • • • • • • • • • • • • • • • •	mg;	mg;	ml	μ 1;	Form	Yield %	ESI
	mmol	mmol	mmol		mmol			
	200;	55;	340;	5	205;	Yellow	122;	734
), N	0.32	0.4	1.3		1.3	solid	51%	[M+H
								1+

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

¹H NMR spectrum (DMSO d₆): 1.22 (s, 6H); 1.5-1.9 (m, 4H); 1.84 (m, 2H); 2.28 (s, 6H); 10 2.55 (m, 2H); 2.68 (m, 2H); 3.3-3.5 (m, 8H); 4.18 (s, 2H); 7.00 (s, 1H); 7.07 (s, 2H); 7.28 (dd, 1H); 7.58 (d, 1H); 8.17 (d, 1H); 8.40 (m, 2H); 8.47 (dd, 1H); 8.92 (d, 1H); 11.9 (s br, 1H).

<u>AR4</u>

R	<u>7</u> mg	Alcohol	PPh3	THF	DTAD	Prod.	Mass mg	MS-
	;	mg;	mg;	ml	mg;	Form	; Yield %	ESI
	mmol	mmol	mmol		mmol			
	145;	38;	360;	1	205;	nd*	nd*	nd*
CN	0.23	0.26	1.38		0.9			

*not determined: Intermediate used directly in last step of robot run without isolation or purification.

<u>AR5</u>

R	<u>7</u> mg	Alcohol	PPh3	THF	DTAD	Prod.	Mass mg	MS-
•	;	mg;	mg;	ml	mg;	Form	; Yield %	ESI
	mmol	mmol	mmol		mmol			
	145;	40;	360;	1	205;	nd*	nd*	nd*
7	0.23	0.26	1.38		0.9			

<u>AR6</u>

R	<u>7</u> mg	Alcohol	PPh3	THF	DTAD	Prod.	Mass mg	MS-
	•	mg;	mg;	ml	mg;	Form	; Yield	ESI
	mmol	mmol	mmol		mmol		%	
	145;	47;	360;	1	205;	nd*	nd*	nd*
	0.23	0.26	1.38		0.9			

5

Example 2

2-[3-(2,2-dimethyl-3-oxo-3-{pyrrolidin-1-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-(4-pyridin-4-ylbutyl)ethanamine

- 10 Dry, gaseous HCl was bubbled through a solution of <u>Ab6</u> (180 mg; 0.29 mmol) in CH₂Cl₂ (30 ml) until no Ab6 remained. The mixture was treated with iced sat. aq. NaHCO₃, extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of ammonia in MeOH(7N)/CH₂Cl₂ (0 to 10% ammonia in MeOH) to give **Example 2** (114 mg).
- 15 Yield: 76%

¹H NMR spectrum (CDCl₃): 1.38 (s, 6H); 1.45 (m, 2H); 1.6 (m, 2H); 1.84 (m, 4H); 2.33 (s, 6H); 2.59 (m, 4H); 2.65 (t, 2H); 2.77 (t, 2H); 3.57; (m, 4H); 4.32 (s, 2H); 7.01 (s, 1H); 7.04 (s, 2H); 7.08 (d, 2H); 8.47 (d, 2H); 11.9 (s br, 1H).

MS-ESI: 518 [M+H]⁺

The starting material Ab6 was prepared as follows:-

$$MeO_2C$$
 MeO_2C
 M

5

A solution of methyl 3,5-dimethylbenzoate (50 g; 300 mmol) in DME (80 ml) was added to a suspension of NaH (26.8 g; 60% in oil; 670 mmol) in DME (80 ml) under argon. The mixture was heated to reflux and a solution of methyl acetate (45 g; 610 mmol) in DME (40 ml) added dropwise. The mixture was heated for a further 4 h under reflux. The mixture was cooled and the excess of NaH destroyed by the dropwise addition of MeOH (40 ml). The mixture was poured into dilute HCl (2N), extracted with Et₂O and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with Et₂O /hexanes (10% Et₂O) to give methyl 4-(3',5'-dimethylphenyl) acetoacetate as a yellow oil (31 g).

15 Yield: 50%

¹H NMR spectrum (CDCl₃): This compound exists as a 4/1 mixture of keto (k) and enol (e) forms: 2.36 (s, 6H)(e); 2.38 (s, 6H)(k); 3.76 (s, 3H)(k); 3.81 (s, 3H)(e); 4.03 (s, 2H)(k); 5.65 (s, 1H)(e); 7.11 (s, 1H)(e); 7.27 (s, 1H)(k); 7.4 (s, 2H)(e); 7.56 (s, 2H)(k); 12.48 (s, 1H)(e).

WO 2004/017961

- 63 -

PCT/GB2003/003633

 $MS-ESI: 207 [M+H]^{+}$

NaH (2.44 g; 60% in oil; 61 mmol) was added in small portions to a solution of methyl 4-(3',5'-dimethylphenyl) acetoacetate (9.66 g; 46.9 mmol) in DMF (50 ml) at 0°C under argon.

5 The mixture was stirred and allowed to warm to room temperature for 30 min. A solution of allyl bromide (4.05 ml; 46.9 mmol) in DMF (5 ml) was added dropwise and the mixture stirred for a further 2 h. The mixture was poured into H₂O, extracted with Et₂O and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with Et₂O /hexanes (0 to 15% Et₂O) to give **Ab1** as a pale yellow oil (8.3 g).

Yield: 72%

¹H NMR spectrum (CDCl₃): 2.39 (s, 6H); 2.76 (m, 2H); 3.70 (s, 3H); 4.43 (t, 1H); 5.08 (m, 1H); 5.15 (m, 1H); 5.82 (m, 1H); 7.24 (s, 1H); 7.60 (s, 2H).

MS-ESI: 247 [M+H]⁺

15

A solution of <u>Ab1</u> (3.4 g; 13 mmol) in EtOH (30 ml) was treated with hydrazine hydrate (3.9 ml; 78 mmol) and heated under reflux for 3 h. The EtOH was evaporated and the residue triturated with Et₂O. The precipitate was filtered, washed with H₂O and dried to give <u>Ab2</u> as a white powder (2.8 g).

20 Yield: 95%

¹H NMR spectrum (CDCl₃ + TFAD) : 2.42 (s, 6H) ; 3.32 (d, 2H) ; 5.11 (d, 1H) ; 5.19 (d, 1H); 5.97 (m, 1H) ; 7.16 (s, 2H) ; 7.24 (s, 1H) ; 10.95 (s br 1H).

MS-ESI: 229 [M+H]⁺

- A mixture of <u>Ab2</u> (2.1 g; 9.2 mmol) and <u>4</u> (2.15 g; 9.2 mmol) in DMA (30 ml) under argon was treated with K₂CO₃ (2.54 g; 18.4 mmol). The mixture was stirred and heated at 80°C for 2h. The mixture was poured into sat. aq. NaHCO₃, extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (50 to 100%
- 30 EtOAc) to give $\underline{\mathbf{Ab3}}$ as a pale yellow solid (2.8 g).

Yield: 80%

- 64 -

PCT/GB2003/003633

¹H NMR spectrum (CDCl₃): 1.35 (s, 6H); 1.8 (m, 4H); 2.32 (s, 6H); 3.14 (m, 2H); 3.55 (m, 4H); 4.18 (s, 2H); 4.97 (m, 2H); 5.89 (m, 1H); 7.02 (s, 1H); 7.03 (s, 2H); 8.9 (br s, 1H).

MS-ESI: 382 [M+H]⁺

A mixture of <u>Ab3</u> (2.59 g; 6.8 mmol) and (BOC)₂O (7.4 g; 34 mmol) in CH₃CN (80 ml) was treated with Et₃N (1.9 ml; 13.6 mmol). The mixture was heated at 80°C for 3h. The solvent was evaporated, the mixture was poured into sat. aq. NaHCO₃, extracted with Et₂O and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 25% EtOAc) to give <u>Ab4</u> as a white solid (2.51 g).

Yield: 76%

¹H NMR spectrum (CDCl₃): 1.18 (s, 9H); 1.34 (s, 6H); 1.8 (m, 4H); 2.3 (s, 6H); 2.85 (m, 2H); 3.54 (m, 4H); 4.43 (s, 2H); 4.87 (m, 2H); 5.73 (m, 1H); 6.8 (s, 2H); 6.98 (s, 1H). MS-ESI: 482 [M+H]⁺

15

- 4-Methyl-morphololine-N-oxide (1.6 ml; 60% solution in H₂O) was added to a solution of Ab4 (2.21 g; 4.6 mmol) in THF (100 ml) and H₂O (30 ml). The mixture was cooled to 0°C and a solution of OsO₄ (92 mg; 0.36 mmol) in t-BuOH (1.8 ml) was added dropwise. The mixture was allowed to warm to room temperature for 6 h. The reaction was quenched by the addition of aq. Na₂S₂O₅ (1.75g) in H₂O (50 ml). The THF was evaporated and the mixture extracted with EtOAc. The organic phase was washed with water, brine and dried over MgSO₄. The residue (2.21 g) was taken up in THF (100 ml) and H₂O (30 ml) and treated with NaIO₄. The mixture was stirred overnight. The THF was evaporated and the mixture extracted with EtOAc. The organic phase was washed with water, brine and dried over MgSO₄. The
- residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 50% EtOAc) to give <u>Ab5</u> as a buff solid (1.63 g).

Yield: 73%

¹H NMR spectrum (CDCl₃): 1.21 (s, 9H); 1.34 (s, 6H); 1.9 (m, 4H); 2.32 (s, 6H); 3.23 (d, 2H); 3.55 (m, 4H); 4.47 (s, 2H); 6.8 (s, 2H); 7.01 (s, 1H); 9.56 (d, 1H).

30 MS-ESI: 484 [M+H]⁺

A solution of $\underline{Ab5}$ (360 mg; 0.74 mmol) and 4-(4-aminobutyl)-pyridine (123 mg; 0.82 mmol) in MeOH (6 ml) was treated with NaBH₃CN (52 mg; 0.82 mmol). The mixture was

cooled to 0°C and acetic acid (45 μl; 0.82 mmol) was added. The mixture was allowed to warm to room temperature for 2 h and evaporated. The residue was treated with aq. K₂CO₃ (10%) and the mixture extracted with EtOAc. The organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with 5 EtOAc and then increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to 5% MeOH) to give <u>Ab6</u> as an oil (180 mg).

Yield: 40%

¹H NMR spectrum (CDCl₃): 1.20 (s, 9H); 1.37 (s, 6H); 1.61 (m, 2H); 1.87 (m, 6H); 2.31 (s, 6H); 2.48 (m, 2H); 2.62 (m, 4H); 2.76 (m, 2H); 3.57 (m, 4H); 4.45 (s, 2H); 6.8 (s, 2H); 7.0 (s, 1H); 7.08 (d, 2H); 8.47 (d, 2H).

MS-ESI: 618 [M+H]⁺

Example 3

2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-

15 dimethylphenyl)-1H-pyrazol-4-yl]-N-(4-pyridin-4-ylbutyl)-ethanamine

A solution of <u>BR1</u> (322 mg; 0.41 mmol) in CH₂Cl₂ (5 ml) was treated dropwise with propylamine (340 μl; 4.1 mmol). The mixture was stirred at room temperature for 1h and then purified directly by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to 10% MeOH) to give Example 3 as a white solid (219 mg).

Yield: 98 %

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.43 (m, 6H); 1.61 (m, 6H); 2.3 (s, 6H); 2.59 (m, 4H); 2.65 (m, 2H); 2.75 (m, 2H); 4.16 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.11 (s, 2H)

25; 7.21 (d, 2H); 8.44 (m, 2H); 11.8 (s br 1H).

MS-ESI: 544 [M+H]⁺

- 66 -

Starting material **BR1** was prepared as follows:-

A mixture of <u>3</u> (4.64 g; 20 mmol) and <u>Ba</u> (5.72 g; 22 mmol) in DMA (50 ml) under argon was treated with K₂CO₃ (5.52 g; 40 mmol). The mixture was stirred and heated at 70°C for 6h. The mixture was poured into sat. aq. NaHCO₃, extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 50% EtOAc) to give the alcohol <u>Bb</u> as a pale yellow oil (7.58 g).

10 Yield: 92%

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 2.31 (s, 6H); 2.53 (m, 2H); 3.46 (m, 2H); 4.14 (s, 2H); 4.58 (s, 2H); 4.61 (t, 1H); 7.02 (s, 1H); 7.14 (s, 2H); 11.9 (br s, 1H).

MS-ESI: 412 [M+H]⁺

15

A mixture of <u>Bb</u> (3.29 g; 8 mmol), phthalimide (2.35 g; 16 mmol) and triphenylphosphine (12.5 g; 48 mmol) in THF (50 ml) was cooled to –20°C under argon and treated dropwise with DEAD (7.6 ml; 48 mmol). The mixture was allowed to warm to 10°C for 1h when water was added and the THF evaporated. The mixture was extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄.

- 67 -

Evaporation gave a crude solid which, without further purification, was immediately taken up in EtOH (200 ml) and treated with hydrazine hydrate (16 ml; 320 mmol). The mixture was stirred for 2h and then the EtOH was partially evaporated. Addition of CH₂Cl₂ caused precipitation of phthalhydrazide which was filtered and rinsed with CH₂Cl₂. The filtrate was evaporated and the residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH) to give **Bc** as a pale beige solid (2.53 g).

Yield: 77%

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 2.31 (s, 6H); 10 2.46 (m, 2H); 2.65 (t, 2H); 4.15 (s, 2H); 4.58 (m, 2H); 7.01 (s, 1H); 7.12 (s, 2H); 11.8 (s br 1H).

 $MS-ESI: 411 [M+H]^{+}$

A solution of **Bc** (1.43 g; 3.48 mmol) in CH₂Cl₂ (30 ml) was treated with

15 diisopropylethylamine (910 μl; 5.22 mmol) and cooled to 0°C. A solution of 2,4dinitrobenzenesulphonyl chloride (1.02 g; 3.84 mmol) in CH₂Cl₂ (10 ml) was added dropwise
and the mixture was allowed to warm to room temperature for 30 min. The mixture was
poured into sat. aq. NaHCO₃, extracted with EtOAc and the organic phase was washed with
water, brine and dried over MgSO₄. The residue was purified by flash chromatography

20 eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 20% EtOAc) to give **Bd** as a
cream solid (1.1 g).

Yield: 50%

¹H NMR spectrum (DMSO d₆): 1.22 (s, 6H); 1.41 (m, 4H); 1.59 (s, 4H); 2. 3 (s, 6H); 2.57 (m, 2H); 3.11 (m, 2H); 4.12 (s, 2H); 4.55 (s, 2H); 7.0 (s, 1H); 7.03 (s, 2H); 8.17 (d, 1H);

MS-ESI: 641 [M+H]⁺

25 8.59 (m, 2H); 8.83 (d, 1H); 11.8 (s br 1H).

A mixture of <u>Bd</u> (300 mg; 0.43 mmol), 4-(4-hydroxybutyl)-pyridine (84 mg; 0.56 mmol) and triphenylphosphine (495 mg; 1.87 mmol) in THF (10 ml) at 0°C under argon was treated dropwise with DEAD (300 μ l; 1.87 mmol). The mixture was allowed to warm to room temperature for 30 min. when water was added. The THF was evaporated, the mixture extracted with EtOAc and the organic phase washed with water, brine and dried over MgSO₄.

The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) <u>BR1</u> as a white solid (322 mg).

Yield: 89%

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.38 (m, 4H); 1.54 (m, 8H); 2.29 (s, 6H); 5 2.57 (m, 2H); 2.64 (m, 2H); 3.36 (m, 4H); 4.18 (s, 2H); 4.52 (m, 2H); 7.02 (s, 1H); 7.08 (s, 2H); 7.16 (d, 2H); 8.20 (d, 1H); 8.41 (d, 2H); 8.47 (dd, 1H); 8.91 (d, 1H); 11.8 (s br 1H).

 $MS-ESI: 774 [M+H]^{+}$

10 Starting material Ba was prepared as follows:-

A mixture of **8** (14.48 g; 80 mmol) and oxalyl bromide (43.2 g; 200 mmol) containing one drop of DMF was heated at 50°C for 2h and then cooled. The excess of oxalyl bromide was evaporated and the residue azeotroped with toluene to give crude **9** which was taken up in

- 15 CH₂Cl₂ (25 ml) and cooled to 0°C. Diisopropylethylamine (14 ml; 80 mmol) was added followed by 2.2.1-azabicycloheptane hydrochloride (5.34 g; 40 mmol). The mixture was allowed to warm to room temperature overnight and was diluted with CH₂Cl₂, washed with aq. HCl (2N), aq. NaOH (1N), water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with CH₂Cl₂ to give <u>Ba</u> as a white solid (7.4 g).
- 20 Yield: 71%

 ¹H NMR spectrum (CDCl₃): 1.36 (s, 6H); 1.49 (m, 4H); 1.82 (m, 4H); 3.59 (s, 2H); 4.61 (s, 2H).

Examples 3.1-3.5

25 The following examples were prepared in a similar manner to Example 3,

$$H_{N-R}$$
 $N-CO$
 $N-N$
 $N-N$

the table shows the **R** group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of Example 3 given above:-

5 **Example 3.1**

R	BR2 mg;	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-
	mmol	ml	μ l; mmol	Yield	ESI
	292; 0.39	5	320; 3.9	161;80%	516
≥ √ N					[M+H]
					+

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.41 (m, 4H); 1.6 (m, 4H); 2.29 (s, 6H); 2.55 (m, 2H); 2.71 (m, 4H); 2.81 (m, 2H); 4.15 (s, 2H); 4.56 (s, 2H); 7.02 (s, 1H); 7.10 (s, 2H); 7.2 (d, 2H); 8.43 (dd, 2H); 11.7 (s br 1H).

10

Example 3.2

R	BR3 mg;	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-
	mmol	ml	μ l; mmol	Yield	ESI
₹ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	123; 0.17	3	140; 1.67	58;68%	506 [M+H] +

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.3 (s, 6H); 2.46 (m, 2H); 2.64 (m, 2H); 2.88 (m, 2H); 4.15 (s, 2H); 4.19 (t, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.09 (s, 2H); 7.92 (s, 1H); 8.42 (s, 1H); 11.9 (s br, 1H).

Example 3.3

R	BR4 mg;	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-
	mmol	ml	μ l; mmol	Yield	ESI
0	96; 0.12	3	140; 1.67	50;72%	579
N					[M+H]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					+

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

- 70 -

¹H NMR spectrum (DMSO d₆): 1.26 (s, 6H); 1.44 (m, 4H); 1.61 (m, 6H); 1.97 (s, 3H) 2.25 (s, 2H); 2.32 (s, 6H); 2.4-2.85 (m, 14H); 4.16 (s, 2H); 4.58 (s, 2H); 7.04 (s, 1H); 7.11 (s, 2H); 11.8 (s, 1H).

5 **Example 3.4**

R	BR5 mg;	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	mmol	ml	μ 1; mmol	Yield	
o	167; 0.22	3	180; 2.2	30;25%	538
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				•	[M+H] +

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.26 (s, 6H); 1.44 (m, 4H); 1.57 (m, 2H); 1.62 (m, 4H); 2.27 (m, 6H); 2.32 (s, 6H); 2.5-2.85 (m, 6H); 3.52 (s, 4H); 4.16 (s, 2H); 4.58 (s, 2H); 7.03 (s, 1H); 7.12 (s, 2H); 11.8 (s, 1H).

10

Example 3.5

R BR6 mg;		CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	mmol	ml	μ l ; mmol	Yield	
	194; 0.24	3	195 ; 2.4	93;66%	586
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					[M+H] +

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.26 (s, 6H); 1.44 (m, 4H); 1.55 (m, 2H); 1.61 (m, 4H); 2.32 (s, 6H); 2.4-2.85 (m, 8H); 2.82 (s, 4H); 3.04 (m, 4H); 4.16 (s, 2H); 4.58 (s, 2H); 7.03 (s, 1H); 7.12 (s, 2H); 11.8 (s, 1H).

<u>Intermediates for Examples 3.1-3.5, BR2 – BR6 respectively</u>

Starting materials $\underline{BR2-6}$ were prepared as follows, the table showing the reaction conditions and characteristics for each example, corresponding to the description of $\underline{Example~3}$ given

20 above:-

I	3R2
	R

R	Bd	Alcohol	PPh ₃ mg	THF	DEAD	Mass mg;	MS-
	mg;	mg; mmol	;	ml	μ 1;	Yield	ESI
	mmol		mmol		mmol		
	300;	70; 0.56	495;	10	290;	292;83%	746
≥ / \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.47		1.87		1.84		[M+H
]+

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

BR3

D	n.i	A 1 1 1	DDIs mag	TITE	DEAD	Maga ma:	MS-
R	<u>Bd</u>	Alcohol	PPh₃ mg	THF	DEAD	Mass mg;	1/1/2~
	mg;	mg; mmol	;	ml	μ l ; mmol	Yield	ESI
	mmol		mmol				
< NNNN	150;	32; 0.28	362;	5	145;	123;72%	736
$\left \begin{array}{c} \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right \left \left \left \left \right \left \left \left \right \right \left \left \left \left \right \right \left \left \left \left \left \left \left \right \right \left \left $	0.23		1.38		0.92		[M+H]
							+
	1						

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

BR4

R	<u>Bd</u>	Alcohol	PPh ₃	THF	DEAD	Mass mg	MS-
	mg;	mg;	mg;	ml	μ 1;	; Yield	ESI
	mmol	mmol	mmol		mmol		
9	150;	53; 0.28	362;	5	200;	96;51%	809
S N	0.23		1.38		1.26		[M+
> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							H] +

Chromato. – EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

10 <u>BR5</u>

=								
	R	<u>Bd</u>	Alcohol	PPh ₃ mg	THF	DEAD	Mass mg;	MS-
		mg;	mg; mmol	•	ml	μ l ; mmol	Yield %	ESI
ě		mmol		mmol				
ı	Λo	200;	54; 0.37	490;	5	270;	167;70%	768
	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.31		1.86		1.72		[M+H
]+
- 1			<u>l</u>					<u> </u>

- 72 - Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

$\overline{\mathbf{R}}$	<u>R6</u>							
	R	<u>Bd</u>	Alcohol	PPh ₃ mg	THF	DEAD	Mass mg	MS-
		mg;	mg; mmol	;	ml	μ 1;	; Yield %	ESI
		mmol		mmol		mmol		
		200;	72;0.37	490;	5	270;	194;	816
	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.31		1.86		1.72	77%	[M+
								H]+

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH).

Example 4

5

 $2-[3-(2,2-\mathrm{dimethyl-3-oxo-3-azabicyclo}[2.2.1] heptan-7-ylpropoxy)-5-(3,5-\mathrm{dimethylphenyl})-1\\ H-pyrazol-4-yl]-N-[2-(1,3-\mathrm{benzodioxol-5-yl})ethyl]-(2S)-propylamine$

CR17 Example 4

- A solution of partially purified* <u>Cg17</u> (4.2 g; from 2.3 mmol of <u>Cf</u>) in CH₂Cl₂ (30 ml) under nitrogen was treated dropwise with n-propylamine (1.36 ml; 23 mmol) at room temperature. The mixture was stirred at room temperature for 2h, the solvents evaporated and the residue purified directly by flash chromatography eluting with increasingly polar mixtures of EtOAc and then MeOH/CH₂Cl₂ (0 to 15% MeOH) to give **Example 4** as a beige solid (768 mg).
- 15 *Contains some Ph₃PO

Yield: 59% for last two steps.

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.60 (m, 4H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 4.14 (s, 2H); 4.57 (s, 2H); 5.94 (s, 2H); 6.55 (d, 1H); 6.69 (s, 1H); 6.76 (d, 1H); 7.03 (s, 1H); 7.04 (s, 2H); 11.8 (s br 1H).

20 MS-ESI: 573 [M+H]⁺

- 73 -

Starting materials Ce, Cf and CR17 were prepared as follows:-

Cf

A solution of methyl 3,5-dimethylbenzoate (148 g; 0.9 mol) and 3S-methylbutyrolactone (90 g; 0.9 mol) in THF (2.4 l) under argon was cooled to 0°C and treated dropwise rapidly with

CR17

- LHMDS (1.35 l; 1.35 mol; 1<u>M</u> in hexanes). The mixture was stirred for 2h while the temperature was maintained below 10°C. The mixture was poured into dilute HCl (2N, 800ml) at 0°C. Further dilute HCl (2<u>N</u>) was added until the pH reached 1.6. The THF was evaporated and the residual aqueous phase was extracted with EtOAc. The organic phase was washed with sat. aq. NaHCO₃, brine and dried over MgSO₄. The residue was purified by flash
- 10 chromatography eluting with increasingly polar mixtures of EtOAc/hexanes (10 to 15% EtOAc) to give <u>Ca</u> as a colourless oil (127.7 g).

Yield: 61%.

¹H NMR spectrum (DMSO d₆): 1.09 (td, 3H); 2.36 (s, 6H); 3.05 (m, 1H); 3.93 (t, 1H); 4.50 (t, 1H); 4.78 (d, 1H); 7.36 (s, 1H); 7.67 (s, 2H).

15 MS-ESI: 233 [M+H]⁺

Compound <u>Ca</u> (127.5 g; 0.55 mol) was dissolved in EtOH (2.0 l) and hydrazine hydrate (27 ml; 0.55 mol) was added. The mixture was stirred overnight at room temperature. Dilute HCl (12N; 12 ml) was added and the mixture stirred for a further 1h. The precipitate was filtered

- 74 -

to give <u>Cb</u> as a white solid (63 g). Crystallisation from the mother liquors yielded further batches of <u>Cb</u> (29 g).

Yield: 68%

 $^{1}\text{H NMR}$ spectrum (DMSO d_{6}): 1.15 (d, 3H); 2.23 (s, 6H); 2.77 (m, 1H); 3.53 (d, 2H); 4.77

5 (br s, 1H); 7.01 (s, 1H); 7.04 (s, 2H); 9.5 (br s, 1H).

MS-ESI: 247 [M+H]⁺

A mixture of <u>Cb</u> (50 g; 0.20 mol) and <u>Ba</u> (60 g; 0.23 mol) in DMA (350 ml) under argon was treated with K₂CO₃ (56 g; 0.41 mol). The mixture was stirred and heated at 80°C overnight. The mixture was cooled and poured into a stirred mixture of sat. aq. NaHCO₃/H₂O (1:2.5). The precipitate was filtered, washed abundantly with water and dried, to give the alcohol <u>Cc</u> as a pale beige solid. (84.5 g).

Yield: 99%

¹H NMR spectrum (DMSO d₆): 1.12 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H);

15 2.31 (s, 6H); 2.75 (m, 1H); 3.46 (m, 2H); 4.14 (m, 2H); 4.51 (br s, 1H); 4.58 (m, 2H); 7.03 (s, 1H); 7.06 (s, 2H); 11.9 (br s, 1H).

 $MS-ESI: 426 [M+H]^{+}$

A solution of Cc (42 g; 0.1 mol) in CH₂Cl₂ (800 ml) under argon was treated with acetonitrile (3 l) and DMAP (250 mg; cat.). The mixture was stirred and cooled to 0°C and a solution of BOCOBOC (24 g; 0.11 mol) in acetonitrile (100 ML) was added slowly, dropwise. The mixture was allowed to warm to room temperature until no Cc remained (~1 day) and was poured into water (2 l) and stirred for 4 h. The organic solvents were evaporated. The mixture was extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/ CH₂Cl₂ (20 to 50% EtOAc) to give Cd as a colourless foam (25.5 g).

Yield: 50%

 ^{1}H NMR spectrum (DMSO d_{6}): 1.02 (d, 3H); 1.16 (s, 9H); 1.270 (s, 6H); 1.44 (m, 4H);

30 1.62 (m, 4H); 2.29 (s, 6H); 2.33 (m, 1H); 3.38 (m, 2H); 4.23 (m, 2H); 4.54 (m, 1H); 4.59 (s, 2H); 6.89 (s, 1H); 7.05 (s, 2H).

MS-ESI: 526 [M+H]+

- 75 -

A solution of Cd (50.9 g; 97 mmol), phthalimide (17 g; 116 mmol) and triphenyl phosphine (38 g; 145 mmol) in THF (1 l) under argon was cooled to 0°C and treated rapidly, portionwise with DTAD (33.3 g; 145 mmol). The mixture was allowed to warm to room temperature for 2 h 30 min. Water (500 ml) was added to the mixture and the organic solvent evaporated. The mixture was extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 15% EtOAc) to give a cream foam (48.4 g) which was dissolved in EtOH (1.5 l). The mixture was treated with hydrazine hydrate (143 ml; 2.95 mol) at room temperature and was stirred for a further 26 h. The precipitate was filtered and the residue purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (5 to 15% MeOH) to give Ce as a white solid (31.4 g).

Yield: 77%

¹H NMR spectrum (DMSO d₆): 1.12 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.31 (s, 6H); 2.63 (m, 2H); 2.72 (m, 1H); 4.15 (m, 2H); 4.57 (m, 2H); 7.02 (s, 1H); 7.06 (s, 2H); 8.9 (br s, 1H).

 $MS-ESI: 425 [M+H]^{+}$

A solution of <u>Ce</u> (1.5g; 3.58 mmol) in THF (70 ml) was cooled to 0°C under argon. DIEA (810 μl; 4.65 mmol) was added followed by a solution of DNOSCl (1.04 g; 3.9 mmol) in THF (20 ml). The mixture was allowed to warm to room temperature for 2 h and was treated with aq. HCl (1<u>N</u>). The mixture was extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) to give <u>Cf</u> as a cream foam (2.07 g).

25 Yield: 88%

¹H NMR spectrum (DMSO d₆): 1.10 (d, 3H); 1.23 (s, 6H); 1.41 (m, 4H); 1.58 (m, 4H); 2.29 (s, 6H); 2.83 (m, 1H); 3.19 (m, 2H); 4.13 (m, 2H); 4.55 (m, 2H); 6.95 (s, 2H); 6.98 (s, 1H); 8.12 (d, 1H); 8.49 (br s, 1H); 8.52 (q, 1H); 8.79 (d, 1H). MS-ESI: 655 [M+H]⁺

30

A mixture of $\underline{\mathbf{Cf}}$ (1.5 g; 2.3 mmol), the corresponding alcohol (575 mg; 3.45 mmol) and triphenylphosphine (3.67 g; 14 mmol) in THF (50 ml) at 0°C under argon was treated with DTAD (2.12 g; 9.2 mmol). The mixture was allowed to warm to room temperature for 1 h

when water was added. The mixture was extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/hexanes (0 to 50%) and then EtOAc/CH₂Cl₂ (0 to 100% EtOAc) to give <u>CR17</u> as a beige solid (4.2 g).

5 This partially purified intermediate (containing some Ph₃PO) was used directly in the final step.

Example 4.1-4.54

The following examples were prepared using the same methodology as Example 4,

The table shows the **R** group relating to the above structure, the reaction conditions and characteristics of each example, corresponding to the description of the preparation of Example 4 given above: -

15 **Example 4.1**

10

20

R	CR1 mg;	CH2Cl2	Propylamine	Mass mg;	MS-ESI
	mmol Cf	ml	ml; mmol	Yield	
	100; 0.13	5	0.11; 1.3	53;78%	530
					[M+H] ⁺

Chromato. – EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.12 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.28 (s, 6H); 2.6-2.9 (m, 7H); 4.14 (s, 2H); 4.57 (s, 2H); 7.03 (s, 3H); 7.12 (d, 2H); 8.39 (d, 2H); 11.8 (s br 1H).

R	CR2 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
}~~~	202; 0.25	3	0.21; 2.5	130 ; 91%	558
Ň					[M+H
]+

Chromato. - EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.35 (m, 2H); 1.42 (m, 4H); 1.53 (m, 2H); 1.61 (m, 4H); 2.29 (s, 6H); 2.5-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.03 (s, 1H); 7.05 (s, 2H); 7.17 (d, 2H); 8.42 (d, 2H) 11.8 (s br 1H).

Example 4.3

R	CR3 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
	68; 0.09	3	0.08; 0.88	42;87%	544
N					[M+H] ⁺

Chromato. - EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆ – TFAd): 1.25 (m, 9H); 1.43 (m, 4H); 1.60 (m, 4H); 1.97 (m, 2H); 2.32 (s, 6H); 2.8-3.15 (m, 7H); 4.20 (s, 2H); 4.55 (s, 2H); 7.03 (s, 2H); 7.07 (s, 1H) 7.96 (d, 2H); 8.89 (d, 2H); 11.8 (s br 1H).

Example 4.4

R	CR4 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
1	514; 0.19	3	0.165;2	75;68%	557 [M+H]
					+

Chromato. - EtOAc

¹H NMR spectrum (DMSO d₆): 1.12 (d, 3H); 1.25 (s, 6H); 1.32 (m, 2H); 1.42 (m, 4H); 1.50; (m,2H); 1.61 (m, 4H); 2.28 (s, 6H); 2.35-2.85 (m, 7H); 4.14 (s, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.06 (s, 2H); 7.15 (m, 3H); 7.24 (m, 2H); 11.8 (s br 1H).

R	CR5 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
	1600; 0.5	30	0.58;7	185;63%	587
					[M+H
]+

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d6): 1.13 (d, 3H); 1.25 (s, 6H); 1.35 (m, 2H); 1.44(m, 4H); 1.47; (m,2H); 1.61 (m, 4H); 2.29 (s, 6H); 2.4-2.9 (m, 7H); 3.70 (s, 3H); 4.15 (s, 2H); 4.57 (s, 2H); 6.81 (d, 2H); 7.04 (m, 5H); 11.8 (s br 1H).

Example 4.6

R	CR6 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
NO ₂	230 ; 0.23	5	0.19; 2.3	103 ;56%	xxx [M+H]
					+

Chromato. - EtOAc/CH₂Cl₂ (75 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH).

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.37 (m, 2H); 1.42 (m, 4H);

10 1.54 (m, 2H); 1.59 (m, 4H); 2.28 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.05 (s, 2H); 7.44 (d, 2H); 8.14 (d, 2H); 11.8 (s br 1H)...

Example 4.7

R	CR7 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
} \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nd*; 0.23	5	0.19; 2.3	48;37%	559 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.17 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.48 (m, 2H); 1.61 (m, 4H); 1.71 (m, 2H); 2.3 (s, 6H); 2.55-3.0 (m, 7H); 4.17 (s, 2H); 4.58 (s, 2H); 7.04 (m, 3H); 7.32 (t, 1H); 8.71 (d, 2H); 11.8 (s br 1H).

R	CR8 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
) N N	nd*; 0.23	3	0.19; 2.3	71;54%	559 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 6H); 1.63 (m, 6H); 2.29 (s, 6H); 2.55-2.9 (m, 7H); 4.16 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.05 (s, 2H); 8.45 (d, 1H); 8.52 (m, 2H); 11.8 (s br 1H)...

Example 4.9

R	CR9 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	\
CN	nd*; 0.38	10	0.31;3.8	94;45%	554 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d6): 1.12 (d, 3H); 1.24 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.29 (s, 6H); 2.6-2.9 (m, 7H); 4.15 (s, 2H); 4.56 (s, 2H); 7.02 (s, 3H); 7.31 (d, 2H); 7.68 (d, 2H); 11.8 (s br 1H).

Example 4.10

R	CR10 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}	nd*; 0.23	3	0.19; 2.3	50;38%	579
		}			[M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 7% MeOH)

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.25 (s, 6H); 1.40 (m, 4H); 1.59 (m, 4H);
2.27 (s, 6H); 2.55-2.95 (m, 7H); 4.16 (m, 2H); 4.56 (s, 2H); 7.03 (s, 1H); 7.04 (s, 2H); 7.3
(d, 1H); 7.46 (m, 2H); 7.62 (s, 1H); 7.8 (m, 2H); 7.86 (d, 1H); 11.8 (s br 1H).

559 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.29 (s, 6H); 2.6-2.95 (m, 5H); 3.45 (s, 2H); 4.16 (s, 2H); 4.41 (s, 2H); 4.56 (s, 2H); 7.03 (s, 1H); 7.06 (s, 2H); 7.2-7.35 (m, 5H); 11.8 (s br 1H).

Example 4.12

R	CR12 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
1	nd*; 0.46	10	0.38 ; 4.6	152;62%	529 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.60 (m, 4H); 2.29 (s, 6H); 2.45-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.03 (s, 1H); 7.04 (s, 2H), 7.10 (d, 2H); 7.16 (t, 1H); 7.24 (t, 2H); 11.8 (s br 1H).

Example 4.13

R	CR13 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
CF ₃	nd*; 0.38	20	450; 7.6	154;68%	597[M ⁺ H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 7% MeOH)

15 1H NMR spectrum (DMSO d6): 1.12 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.6 (m, 4H); 2.27 (s, 6H); 2.6-2.9 (m, 7H); 4.14 (m, 2H); 4.56 (s, 2H); 7.02 (s, 1H); 7.03 (s, 2H); 7.45 (m, 4H); 11.8 (s br 1H).

R	CR14 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
1	nd*; 0.25	5	0.27; 4.5	105;71%	589 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H);

2.29 (s, 6H); 2.6-2.9 (m, 7H); 3.68 (s, 3H); 3.70 (s, 3H); 4.15 (s, 2H); 4.57 (s, 2H); 6.60

5 (q, 1H); 6.72 (d, 1H); 6.79 (d, 1H); 7.03 (s, 1H); 7.05 (s, 1H); 11.8 (s br 1H).

Example 4.15

R	CR15 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
3 N	nd*; 0.25	5	0.295;5	32;22%	572 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.60 (m, 4H); 10 2.30 (s, 6H); 2.6-2.9 (m, 7H); 2.83 (s, 6H); 4.16 (s, 2H); 4.57 (s, 2H); 6.61 (d, 2H); 6.92 (d, 2H); 7.04 (s, 3H); 11.8 (s br 1H).

Example 4.16

R	CR16 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
} F	nd*; 0.46	10	0.380 ; 4.6	149 ; 59%	547 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.03 (m, 5H); 7.12 (m, 2H); 11.8 (s br 1H).

R	CR18 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
F	nd*; 0.25	5	0.27; 4.5	61;43%	565 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (CDCl₃): 1.21 (d, 3H); 1.35 (d, 6H); 1.44 (m, 4H); 1.75 (m, 4H); 2.33 (s, 6H); 2.6-3.1 (m, 7H); 4.26 (m, 2H); 4.63 (s, 2H); 6.61 (m, 3H); 7.01 (s, 3H); 9.1 (s br, 5 1H).

Example 4.18

R	CR19 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
1	nd*; 0.25	5	0.27; 4.5	53;36%	585 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 15H); 1.41 (m, 4H); 1.6 (m, 4H); 10 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.56 (s, 2H); 7.02 (d, 2H); 7.03 (s, 1H); 7.04 (s, 2H); 7.25 (d, 2H); 11.8 (s br 1H).

Example 4.19

R	CR20 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
1	nd*; 0.25	5	0.27; 4.5	40;29%	557 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.18 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.16 (s, 3H); 2.20 (s, 3H); 2.30 (s, 6H); 2.5-2.95 (m, 7H); 4.17 (s, 2H); 4.56 (s, 2H); 6.84 (s, 1H); 6.88 (d, 1H); 6.99 (s, 1H); 7.05 (s, 3H); 11.8 (s br 1H).

R	CR21 mg	CH2Cl2	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
) CI	nd*; 0.25	5	0.27; 4.5	49;34%	581 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.29 (s, 6H); 2.55-2.9 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.04 (s, 2H); 7.15 (m, 1H); 7.27 (m, 2H); 11.8 (s br 1H).

Example 4.21

R	CR22 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol .	Yield	ESI
	nd*; 0.25	5	0.27; 4.5	64;44%	581
F					[M+
					H] $^{+}$

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.56 (s, 2H); 7.02 (s, 1H); 7.04 (s, 2H); 7.10 (m, 1H); 7.26 (m, 1H); 7.35 (m, 1H); 11.8 (s br 1H).

Example 4.22

R	CR23 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
CI	nd*; 0.25	5	0.27; 4.5	50;34%	597 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.28 (s, 6H); 2.55-2.95 (m, 7H); 4.16 (m, 2H); 4.56 (s, 2H); 7.03 (s, 3H); 7.11 (d, 1H); 7.41 (s, 1H); 7.48 (d, 1H); 11.8 (s br 1H).

R	CR24 mg	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
CI	nd*; 0.25	5	0.27;4.5	40;27%	597 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.61 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.05 (s, 2H); 7.25 (t, 1H); 7.4 (d, 2H); 11.8 (s br 1H).

Example 4.24

R	CR25 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
) N N	nd*; 0.23	5	540;9.2	50;37%	580 [M+H]+

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.31 (s, 6H); 2.55-2.95 (m, 3H); 3.1-3.75 (m, 4H); 3.67 (m, 2H); 4.15 (s, 2H); 4.57 (s, 2H); 4.62 (m, 1H); 4.68 (m, 1H); 4.76 (s, 1H); 4.93 (s, 1H); 7.03 (s, 1H); 7.06 (s, 2H); 11.8 (s br 1H).

Example 4.25

R	CR26 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nd*; 0.23	5	0.810; 13.2	68;52%	566 [M+H] ⁺

15 Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.26 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 2.03 (m, 2H); 2.31 (s, 6H); 2.33 (m, 3H); 2.55-2.95 (m, 6H); 4.14 (s, 2H); 4.49 (m, 2); 4.58 (s, 2H); 4.71 (s, 1H); 4.8 (s, 1H); 7.03 (s, 1H); 7.06 (s, 2H); 11.8 (s br 1H).

R	CR27 mg	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	}
} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	nd*; 0.26	5	0.27;3.3	55;38%	547 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (s, 2H); 4.57 (s, 2H); 6.97 (m, 3H); 7.03 (s, 3H); 7.27 (m, 1H); 11.8 (s br 1H).

Example 4.27

R	CR28 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nd*; 0.26	5	0.27;3.3	40;27%	563 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (m, 2H); 4.57 (s, 2H); 7.03 (s, 3H); 7.09 (m, 1H); 7.25 (m, 3H); 11.8 (s br 1H).

Example 4.28

R	CR29 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
1	nd*; 0.26	5	0.27;3.3	47;32%	559 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 3.71 (s, 3H); 4.16 (s, 2H); 4.56 (s, 2H); 6.7 (m, 3H); 7.04 (s, 3H); 7.16 (m, 1H); 11.8 (s br 1H).

R	CR30 mg	CH2Cl2	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
1	nd*; 0.26	5	0.27;3.3	70;49%	543 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.24 (s, 3H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 4.16 (s, 2H); 4.57 (s, 2H); 6.90 (m, 2H); 6.98 (d, 5 1H); 7.04 (s, 3H); 7.12 (t, 1H); 11.8 (s br 1H).

Example 4.30

R	CR31 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
} CI	nd*; 0.26	5	0.27;3.3	64;43%	563 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (m, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 10 2.29 (s, 6H); 2.5-2.9 (m, 7H); 4.16 (s, 2H); 4.56 (m, 2H); 7.03 (s, 3H); 7.14 (d, 2H); 7.29 (d, 2H); 11.8 (s br 1H).

Example 4.31

R	CR32 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}	nd*; 0.26	5	0.27;3.3	143; 100%	543
					[M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (m, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.24 (s, 3H); 2.29 (s, 6H); 2.5-2.95 (m, 7H); 4.15 (s, 2H); 4.56 (m, 2H); 6.98 (d, 2H); 7.04 (m, 5H); 11.8 (s br 1H).

R	CR33 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	,
1	nd*; 0.26	5	0.27;3.3	133;90%	559 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (m, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 2.29 (s, 6H); 2.5-2.95 (m, 7H); 3.70 (s, 3H); 4.15 (s, 2H); 4.56 (m, 2H); 6.79 (d, 2H); 7.01; (d, 2H); 7.04 (s, 3H); 11.8 (s br 1H).

Example 4.33

R	CR34 mg	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
}	nd*; 0.26	5	0.27;3.3	51;35%	547 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (m, 6H); 1.42 (m, 4H); 1.6 (m, 4H); 10 2.29 (s, 6H); 2.5-2.95 (m, 7H); 3.70 (s, 3H); 4.16 (m, 2H); 4.56 (s, 2H); 7.04 (s, 3H); 7.09 (m, 2H); 7.21; (m, 2H); 11.8 (s br 1H).

Example 4.34

Example <u>4.34</u> was prepared by a different methodology (opening of epoxide by <u>Ce</u>): see below.

Example 4.35

R	CR36 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}	nd*; 0.25	5	0.27; 4.5	78;55%	565 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

 ^{1}H NMR spectrum (DMSO d_{6}): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H);

20 2.29 (s, 6H); 2.55-2.95 (m, 7H); 4.14 (m, 2H); 4.57 (s, 2H); 6.94 (m, 1H); 7.03 (s, 3H); 7.15 (m, 1H); 7.26 (m, 1H); 11.8 (s br 1H).

R	CR37 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
) O	nd*; 0.25	5	0.27; 4.5	32;22%	589 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

 ^{1}H NMR spectrum (DMSO d_{6}): 1.14 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H);

5 2.29 (s, 6H); 2.55-2.95 (m, 7H); 3.68 (s, 6H); 4.15 (m, 2H); 4.57 (s, 2H); 6.3 (m, 3H); 7.03 (s, 1H); 7.04 (s, 2H); 11.8 (s br 1H).

Example 4.37

R	CR38 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
) O	nd*; 0.25	5	0.27; 4.5	102;66%	619 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 7H); 3.60 (s, 3H); 3.69 (s, 6H); 4.14 (s, 2H); 4.56 (s, 2H); 6.42 (s, 2H); 7.02 (s, 1H); 7.05 (s, 2H); 11.8 (s br 1H).

Example 4.38

R	CR39 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-
<u></u>	mmol Cf	ml	mmol	Yield	ESI
}~~°	nd*; 0.25	5	0.27;4.5	91;62%	589
0-					$[M^+H]^+$

Chromato. - EtOAc/CH2Cl2 (50 to 100% EtOAc) and then MeOH/CH2Cl2 (0 to 10% MeOH)

1H NMR spectrum (DMSO d6): 1.15 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 1.78 (m,2H); 2.29 (s, 6H); 2.55-2.95 (m, 5H); 3.68 (s, 3H); 3.88 (t, 2H); 4.15 (s, 2H); 4.56 (s, 2H); 6.80 (m, 4H); 7.02 (s, 1H); 7.06 (s, 2H); 11.8 (s br 1H).

R	CR40 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}_O_N-	nd*; 0.25	5	0.27; 4.5	85;61%	562 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH).

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H);

2.08 (s, 6H); 2.30 (s, 6H); 2.55-2.95 (m, 3H); 3.35 (s, 2H); 3.53 (s, 2H); 4.14 (m, 2H);

5 4.57 (s, 2H); 6.01 (d, 1H); 6.10 (d, 1H); 7.03 (s, 1H); 7.05 (s, 2H), 11.8 (s br 1H).

Example 4.40

R	CR41 mg	CH ₂ Cl ₂	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
}~N	nd*; 0.25	5	0.27; 4.5	40;29%	544 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.61 (m, 4H);

10 2.29 (s, 6H); 2.55-2.95 (m, 5H); 3.01; (m, 2H); 4.14 (s, 2H); 4.56 (s, 2H); 5.37 (s, 1H);

6.50 (m, 3H); 7.04 (m, 5H); 11.8 (s br 1H).

Example 4.41

R	CR42 mg;	CH2Cl2	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
	nd*; 0.25	5	0.27;4.5	87;64%	541 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

15

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.20 (m, 6H); 1.41 (m, 4H); 1.61 (m, 4H);

2.30 (s, 6H); 2.55-2.95 (m, 3H); 3.27 (m, 2); 4.13 (s, 2H); 4.53 (s, 2H); 6.23 (m, 1H); 6.42 (d, 1H); 7.04 (s, 1H); 7.07 (s, 2H); 7.21 (t, 1H); 7.30 (t, 2H); 7.35 (d, 2H); 11.8 (s br 1H).

R	CR43 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	3
, , ,	nd*; 0.25	5	0.27; 4.5	98;72%	545 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH) ¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.20 (m, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.31 (s, 6H); 2.61 (m, 1H); 2.68 (m, 1H); 2.85 (m, 1H); 3.53 (s, 2H); 3.70 (s, 3H); 4.12 (m, 2H); 4.56 (s, 2H); 6.81 (d, 2H); 7.03 (s, 1H); 7.07 (s, 2H); 7.12 (d, 2H); 11.8 (s br 1H).

Example 4.43

R	CR44 mg;	CH ₂ Cl ₂	Propylamine ml	Mass mg;	MS-
	mmol Cf	ml	; mmol	Yield	ESI
} \	nd*; 0.25	5	0.27;3.3	100;63%	629
N N N N N N N N N N N N N N N N N N N					[M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

 1 H NMR spectrum (DMSO d_{6}): 1.08 (d, 6H); 1.18 (d, 3H); 1.26 (s, 6H); 1.42 (m, 4H); 1.60 (m, 4H); 2.31 (s, 6H); 2.55-2.95 (m, 7H); 3.73 (m, 1H); 4.18 (m, 2H); 4.56 (s, 2H); 5.95 (s, 1H); 6.96 (d, 2H); 7.04 (s, 3H); 7.25 (d, 2H); 8.22 (s, 1H); 11.8 (s br 1H).

15 **Example 4.44**

10

Example <u>C45</u> was prepared by a different methodology (reductive amination of Ce): see below.

Example 4.45

R	CR46 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
NH ₂	108; 0.14	3	0.17; 2.0	71;93%	544 [M+H] ⁺

20 Chromato. - EtOAc and then MeOH/CH₂Cl₂ (0 to 15% MeOH)

- 91 -

¹H NMR spectrum (DMSO d₆): 1.14 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 4.14 (s, 2H); 4.57 (s, 2H); 4.83 (s, 2H); 6.44 (d, 2H); 6.74 (d, 2H); 7.04 (s, 1H); 7.05 (s, 2H); 11.8 (s br, 1H).

5 **Example 4.46**

R	CR47 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol	ml	mmol	Yield	ESI
N N	nd*; 0.14	5	0.15; 1.8	41;45%	640 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH) 1 H NMR spectrum (DMSO d₆) : 1.18 (d, 3H) ; 1.25 (m, 6H) ; 1.42 (m, 4H) ; 1.5-1.9 (m, 12H) ; 2.31 (s, 6H) ; 2.55-2.95 (m, 8H) ; 4.16 (m, 2H) ; 4.56 (s, 2H) ; 7.03 (m, 5H) ; 7.51 (d, 2H) ; 9.81 ; (s, 1H) ; 11.8 (s br, 1H).

10

Example 4.47

R	CR48 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
SO ₂ Me	nd*; 0.15	3	0.12; 1.5	135;99%	700 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

¹H NMR spectrum (DMSO d₆-TFAd): 1.28 (m, 9H); 1.43 (m, 4H); 1.62 (m, 4H); 2.33 (s, 6H); 2.8-3.25 (m, 7H); 3.51 (s, 6H); 4.23 (m, 2H); 4.57 (s, 2H); 7.05 (s, 2H); 7.08 (s, 1H); 7.31 (d, 2H); 7.47 (d, 2H); 11.8 (s br, 1H).

Example 4.48

R	CR49 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-ESI
	mmol Cf	ml	mmol	Yield	
}	nd*; 0.25	3	0.15; 2.5	80;60%	535 [M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

- 92 -

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.30 (s, 6H); 2.55-2.95 (m, 7H); 4.15 (m, 2H); 4.57 (s, 2H); 6.76 (d, 1H); 6.90 (dd, 1H); 7.02 (s, 1H); 7.05 (s, 2H); 7.27 (d, 1H); 11.76 (s br, 1H).

5 **Example 4.49**

R	CR50 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
	nd*; 0.6	5	0.355;6	181;49%	622
N SO ₂ Me					[M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.12 (d, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.29 (s, 6H); 2.55-2.85 (m, 7H); 2.92 (s, 3H); 4.14 (s, 2H); 4.57 (s, 2H); 7.06 (m, 7H); 11.74 (s br, 1H).

10

Example 4.50

R	CR51 mg;	CH ₂ Cl ₂	Propylamine ml	Mass mg;	MS-
	mmol Cf	ml	; mmol	Yield	ESI
NO L	nd*; 0.15	3	0.09; 1.5	63;67%	630 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.25 (m, 12H); 1.42 (m, 4H); 1.60 (m, 4H); 2.30 (s, 6H); 2.55-2.95 (m, 7H); 4.16 (m, 2H); 4.5 (s, 2H); 4.87; (m, 1H); 7.0 (d, 2H); 7.04 (s, 3H); 7.34 (s, 2H); 9.44 (s, 1H); 11.8 (s br, 1H).

Example 4.51

R	CR52 mg;	CH ₂ Cl ₂	Propylamine ml	Mass mg;	MS-
	mmol Cf	ml	; mmol	Yield	ESI
N O N O N O N O N O N O N O N O N O N O	nd*; 0.11	2	0.065; 1.1	42;57%	669 [M+H] ⁺

Chromato. - MeOH/CH₂Cl₂ (0 to 15% MeOH)

- 93 -

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.25 (s, 6H); 1.25-1.8 (m, 18H); 2.31 (s, 6H); 2.55-2.95 (m, 7H); 3.43 (m, 1H); 4.16 (m, 2H); 4.56 (s, 2H); 6.04 (s, 1H); 6.96 (d, 2H); 7.04 (s, 3H); 7.25 (d, 2H); 8.25 (s, 1H); 11.86 (s br, 1H).

5 **Example 4.52**

R	CR53 mg	CH2Cl2	Propylamine	Mass mg;	MS-ESI
	; mmol Cf	ml	ml; mmol	Yield	
}~~~	nd*; 0.4	5	0.24;4	93;44%	535 [M+H] ⁺

Chromato. – EtOAc

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.25 (s, 6H); 1.1-1.7 (m, 21H); 2.3 (s, 6H); 2.35-2.85 (m, 5H); 4.15 (s, 2H); 4.57 (s, 2H); 7.03 (s, 1H); 7.06 (s, 2H) 11.8 (s br, 1H).

10 **Example 4.53**

Example <u>4.53</u> was prepared by a different methodology (alkylation of Ce): see below

Example 4.54

R	CR55 mg;	CH ₂ Cl ₂	Propylamine ml;	Mass mg;	MS-
	mmol Cf	ml	mmol	Yield	ESI
) O	nd*; 0.25	5	0.15; 2.5	64;42%	610 [M+H] ⁺

15 Chromato. - EtOAc and then MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 1.16 (m, 3H); 1.25 (s, 6H); 1.41 (m, 4H); 1.59 (m, 4H); 2.28 (s, 6H); 2.55-3.0 (m, 7H); 3.60 (s, 3H); 4.16 (s, 2H); 4.56 (s, 2H); 6.6 (d, 1H); 7.02 (s, 3H); 7.42 (m, 3H); 7.81 (d, 1H); 11.8 (s br, 1H).

* nd = not determined, partially purified CR used directly from previous step.

 $2-[3-(2,2-\mathrm{dimethyl-3-oxo-3-azabicyclo[2.2.1]heptan-7-ylpropoxy)-5-(3,5-\mathrm{dimethylphenyl})-1 \\ H-\mathrm{pyrazol-4-yl}]-N-[2-\mathrm{hydroxy-2-phenylethyl}]-(2S)-\mathrm{propylamine}$

A solution of <u>Ce</u> (106 mg; 0.25 mmol) in acetonitrile (3 ml) was treated with styrene oxide and the mixture was heated at 60°C overnight. The solvent was evaporated and the residue purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ hexanes (0 to 10% MeOH) to give **Example 4.34** as a white foam (40 mg).

Yield: 30%.

¹H NMR spectrum (DMSO d₆): 1.15 (m, 3H); 1.26 (m, 6H); 1.42 (m,4H); 1.61; (m, 4H); 2.29 (s, 6H); 2.55-2.95 (m, 5H); 4.16 (m, 2H); 4.57 (m, 3H); 7.06 (m, 3H); 7.26 (m, 5H); 11.6 (s br, 1H).

MS-ESI: 545 [M+H]⁺

 $2-[3-(2,2-\mathrm{dimethyl-3-oxo-3-azabicyclo}[2.2.1] heptan-7-ylpropoxy)-5-(3,5-\mathrm{dimethylphenyl})-1\\ H-pyrazol-4-yl]-N-[2-\mathrm{methyl-2-phenylethyl}]-(2S)-propylamine$

A solution of <u>Ce</u> (126 mg; 0.3 mmol) and 2-phenyl propionaldehyde (45 μl; 0.3 mmol) in methanol (6 ml) under argon was cooled to 0°C. Sodium cyanoborohydride (39 mg; 0.6 mmol) was added portionwise and the mixture was stirred for 3 h. The methanol was evaporated and the residue taken up in CH₂Cl₂. The organic phase was washed with sat. aq. NaHCO₃, brine and dried over MgSO₄. The residue was purified by flash chromatography

eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 100% EtOAc) and then MeOH/CH₂Cl₂ (0 to 10% MeOH) to give **Example 4.44** as a white foam (88 mg). Yield: 54%.

¹H NMR spectrum (DMSO d₆): 1.10 (m, 6H); 1.24 (s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 2.28 (m, 6H); 2.55-2.95 (m, 6H); 4.14 (s, 2H); 4.56 (s, 2H); 7.03 (s, 3H); 7.09 (t, 2H); 7.16 (d, 1H); 7.23 (t, 2H); 11.8 (s br 1H).

 $MS-ESI: 543 [M+H]^+$

2-[3-(2,2-dimethyl-3-oxo-3-azabicyclo[2.2.1]heptan-7-ylpropoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[1H-1,2,3-

benzotriazol-5-ylaminocarbonylmethyl]-(2S)-propylamine

To a solution of $\underline{\mathbf{Ce}}$ (200 mg; 0.47 mmol) in DMA (1 ml) at 140°C was added solid N-1H-1,2,3-benzotriazole-5-yl-2-chloroacetamide (98 mg; 0.47 mmol) over 5 min. The reaction mixture was heated at 140°C for a further 5 min. The resulting orange solution was allowed to cool to room temperature and purified by flash chromatography on silica gel eluting with

10 CH₂Cl₂/NH₃ in MeOH (0 to 5% NH₃ in MeOH) to give Example 4.53 (110 mg).

Yield: 37%

5

¹H NMR spectrum (CDCl₃): 1.20 (d, 3H); 1.22 (s, 6H); 1.40 (m, 4H); 1.70 (m, 4H); 2.31 (s, 6H); 2.77 (m, 1H); 2.99 (m, 2H); 3.34 (s, 2H), 4.28 (m, 2H); 4.57 (s, 2H); 5.37 (s, 1H); 6.95 (s, 2H); 7.02 (s, 1H); 7.17 (br d, 1H); 7.84 (br d, 1H); 8.26 (s, 1H); 9.50 (br s, 1H); 9.67 (s, 1H).

MS-ESI: 599 [M+H]+

To a stirred solution of 5-aminobenzotriazole (1.00 g; 7.50 mmol) in THF (20 ml) at -10°C, were added triethylamine (0.987 g; 9.75 mmol) and chloroacetyl chloride (0.841 g; 7.50

- 97 -

mmol) dropwise over 5 min. The reaction mixture was allowed to warm to room temperature and stirred overnight.

The resulting precipitate was collected by filtration, washed with CH_2Cl_2 and dried to afford N-1H-1,2,3-benzotriazole-5-yl-2-chloroacetamide (1.32 g) as a beige solid.

5 Yield: 83.5%

 ^{1}H NMR spectrum (DMSO d_{6}): 4.33 (s, 2H); 7.42 (br d, 1H); 7.91 (br d, 1H); 8.35 (s, 1H). MS-ESI: 211 [M+H] $^{+}$

<u>Intermediates for Examples 4.1-4.55, CR1-CR55 respectively</u>

Starting materials <u>CR1-CR55</u> were prepared as follows, the table showing the reaction conditions and characteristics for each example, corresponding to the description of <u>Example</u> <u>4</u> given above:-

<u>CR1</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
) N	200; 0.3	44; 0.36	470;1.8	170;1.2	188	760 [M+ H] ⁺

15 Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc).

<u>CR2</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
} \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200; 0.3	56; 0.37	470;1.8	170; 1.2	202	788 [M+ H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (50 to 100% EtOAc).

<u>CR3</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	80; 0.12	20; 0.15	192; 0.73	70 ; 0.49	68	774
, N						[M+
						\mathbf{H}] $^{+}$

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc).

<u>CR4</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	130; 0.2	36; 0.24	300;1.13	100; 0.7	514	787
						[M+H] ⁺

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 40% EtOAc)

<u>CR5</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	327; 0.5	100 ; 0.6	786;3	460;2	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 50% EtOAc).

10 <u>CR6</u>

R	Cf mg;	Alcohol mg	Ph ₃ P mg	DEAD mg	Mass	MS-
	mmol	; mmol	; mmol	; mmol	mg	ESI
	150;	53; 0.27	361;	0.145;	230	832
NO ₂	0.23		1.38	0.92	:	[M+
						$\mathbf{H}]^{+}$

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc).

<u>CR7</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	150;	42;0.27	361; 1.38	0.145; 0.92	nd*	789
N N	0.23					[M+H] ⁺

Chromato. - EtOAc

<u>CR8</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	150;	42; 0.27	360;138	0.15;90	nd*	789
N N	0.23					[M+H] ⁺

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

<u>CR9</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DEAD mg;	Mass mg	MS-
	mmol	mmol	mmol	mmol		ESI
} CN	nd*; 0.38	81; 0.55	724 ; 2.76	0.245; 1.55	94;45%	nd*

Chromato. - EtOAc

10 **CR10**

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}	150;	47; 0.27	361; 1.38	212; 0.93	nd*	809
	0.23					[M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 70% EtOAc).

- 100 -

<u>CR11</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	150;	42; 0.27	361; 1.38	212; 0.93	nd*	789
	0.23					[M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 70% EtOAc).

CR12

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	300 ; 0.46	73;0.6	723 ; 2.76	423; 1.84	nd*	nd*

⁵ Chromato. - EtOAc/CH₂Cl₂ (0 to 30% EtOAc).

CR13

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
CF ₃	250; 0.38	95; 0.5	600; 2.28	350; 1.52	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 40% EtOAc).

10 **CR14**

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	164; 0.25	55; 0.3	362; 1.38	212; 0.92	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 70% EtOAc)

<u>CR15</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
} \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	164; 0.25	49;0.3	362;1.38	212; 0.92	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

CR16

$ng; Ph_3Pmg;$	DTAD mg;	Mass	MS-
mmol	mmol	mg	ESI
723; 2.76	423;1.84	nd*	777 [M+H] ⁺
•			

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR18</u>

Cgx	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}F	150; 0.23	50; 0.3	367; 1.4	212; 0.92	40	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

10 **CR19**

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	163; 0.25	57; 0.32	393 ; 1.5	230 ; 1.0	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

- 102 -

<u>CR20</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	163; 0.25	48; 0.32	393;1.5	230 ; 1.0	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

<u>CR21</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
F CI	163; 0.25	56; 0.32	393; 1.5	230; 1.0	nd*	nd*

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

<u>CR22</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
F CI	163; 0.25	56; 0.32	393;1.5	230; 1.0	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

10 <u>CR23</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
CI	163; 0.25	61; 0.32	393; 1.5	230; 1.0	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

- 103 -

<u>CR24</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
CI	163; 0.25	61; 0.32	393; 1.5	230; 1.0	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

<u>CR25</u>

5 The intermediate **CR25** was prepared as follows:-

A solution of Cf (150 mg; 0.23 mmol) in DMF (3 ml) was cooled to 0°C and treated with potassium t-butoxide (40 mg). The bromomethyl amide (82 mg; 0.35 mmol) was added and the mixture allowed to warm to room temperature for 1 h. The mixture was treated with sat.

10 aq. NaHCO₃ and extracted with CH₂Cl₂. The organic phase was washed with water, brine and dried over MgSO₄. The crude product was used directly in the final step.

<u>CR26</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
3~N~9	150 ; 0.23	48;0.3	367; 1.4	212; 0.92	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

- 104 -

<u>CR27</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}	173; 0.26	45; 0.32	415; 1.58	243; 1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR28</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
CI	173; 0.26	50; 0.32	415; 1.58	243; 1.06	nd*	nd*

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR29</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	173; 0.26	49; 0.32	415; 1.58	243; 1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

10 **CR30**

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	173; 0.26	44;0.32	415; 1.58	243; 1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR31</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
CI	173 ; 0.26	50; 0.32	415; 1.58	243;1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR32</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	173; 0.26	44; 0.32	415; 1.58	243; 1.06	nd*	nd*

5 Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

CR33

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
100	173; 0.26	49; 0.32	415; 1.58	243;1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

10 <u>CR34</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}	173; 0.26	45; 0.32	415; 1.58	243; 1.06	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20 EtOAc).

<u>CR36</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
F	164; 0.25	52;0.33	393 ; 1.5	230;1	nd*	nd*

- 106 -

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

<u>CR37</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
) O	164; 0.25	60; 0.33	393; 1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

5

<u>CR38</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	164; 0.25	70; 0.33	393 ; 1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

CR39

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
>~~°C	164; 0.25	60 ; 0.33	393 ; 1.5	230 ; 1	nd*	nd*

10 Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

CR40

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
} _O \N-	164; 0.25	63; 0.33	393;1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

- 107 -

CR41

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}~N	164; 0.25	45; 0.33	393;1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

<u>CR42</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	164; 0.25	44;0.33	393 ; 1.5	230;1	nd*	nd*

5 Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

<u>CR43</u>

R	Cf mg;	Cf mg; Alcohol mg; I		DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	164; 0.25	46; 0.33	393;1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (10 to 50 EtOAc).

10 **<u>CR44</u>**

R	Cf mg;	Alcohol mg	Ph ₃ P mg	DTAD mg	Mass	MS-
	mmol	; mmol	; mmol	; mmol	mg	ESI
}	164;	75; 0.33	393;1.5	230;1	nd*	859
H H	0.25					[M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

CR45

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
	410;	130 ; 0.94	975;3.72	570; 2.48	458	774
NH ₂	0.62				(95%)	[M+H] ⁺

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

¹H NMR spectrum (DMSO d₆): 1.16 (d, 3H); 1.28 (s, 6H); 1.42 (m, 4H); 1.60 (m, 4H); 2.28 (s, 6H); 2.40 (m, 2H); 3.06 (m, 1H); 3.18 (m, 2H); 3.45-3.75 (m, 2H); 4.17 (dd, 2H); 4.56 (s, 2H); 4.86 (s, 2H); 6.37 (d, 2H); 6.61 (d, 2H); 7.01 (s, 3H); 8.08 (d, 1H); 8.43 (dd, 1H); 8.86 (d, 1H); 11.8 (s br, 1H).

CR47

solution of <u>CR46</u> (108 mg; 0.14 mmol) in CH_2Cl_2 (2 ml)was cooled to 0°C and treated with DIEA (27 μl ; 0.154 mmol). A solution of the acid chloride (14 μl ; 0.11 mmol) in CH_2Cl_2 (1 ml) was added and the mixture allowed to warm to room temperature. The crude mixture was deprotected as described for <u>C47</u> above.

15 <u>CR48</u>

This intermediate was prepared using a method analogous to the preparation of CR47.

R	Cg46 mg;	DIEA μ 1;	Acid chloride	CH ₂ Cl ₂	Mass	MS-
	mmol	mmol	μ l ; mmol		mg	ESI
SO ₂ Me SO ₂ Me	120 ; 0.15	29 ; 0.16	30; 0.36	3	nd*	nd*

Chromato. - EtOAc

<u>CR49</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
}	164; 0.25	50; 0.37	393;1.5	230;1	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 50% EtOAc)

<u>CR50</u>

5 This intermediate was prepared using a method analogous to the preparation of CR47.

R	CR46 mg;	DIEA μl;	Acid chloride	CH ₂ Cl ₂	Mass	MS-
	mmol	mmol	μ l; mmol		mg	ESI
SO ₂ Me	630 ; 0.6	315;1.8	95;1.2	50	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 100% EtOAc)

<u>CR51</u>

This intermediate was prepared using a method analogous to the preparation of CR47.

R	CR46 mg	DΙΈΑ μ1	Acid chloride	CH ₂ Cl ₂	Mass	MS-
	; mmol	; mmol	μ l ; mmol		mg	ESI
}	120; 0.15	100;0.6	300 1M;	3	nd*	860
NHO			0.15			[M+
						HJ^+

10 Chromato. - EtOAc/CH₂Cl₂ (0 to 50% EtOAc)

<u>CR52</u>

This intermediate was prepared using a method analogous to the preparation of CR47.

R	CR46	DIEA μ 1	Acid	CH_2Cl_2	Mass	MS-
	mg;	; mmol	chloride** μ l;	:	mg	ESI
	mmol		mmol			
N N N N	88;0.11	100;0.6	50; 0.4	10	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 50% EtOAc)

** Cyclohexyl isocyanate was used in place of the corresponding acid chloride.

5

<u>CR53</u>

R	Cf mg;	Alcohol mg;	Ph ₃ P mg;	DTAD mg;	Mass	MS-
	mmol	mmol	mmol	mmol	mg	ESI
1	262; 0.4	102; 0.8	629 ; 2.4	368 ; 1.6	nd*	nd*

Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

CR55

R	Cf mg;	Alcohol mg	Ph ₃ P mg;	DTAD mg	Mass	MS-
	mmol	; mmol	mmol	; mmol	mg	ESI
}~~~	164;	70; 0.34	393 ; 1.5	230;1	nd*	840
NO	0.25					[M+H] ⁺
,						

10 Chromato. - EtOAc/CH₂Cl₂ (0 to 20% EtOAc)

* nd = not determined, partially purified Cgx used directly for final step.

- 111 -

Example 5

3-[2,2-dimethyl-3-oxo-3-(pyrrolidin-1-yl)propoxy]-

4-[4-(2-pyrrolidin-1-yl-2-oxo-ethyl)piperzin-1-ylethyl]-5-(3,5-dimethylphenyl)-1H-pyrazole

solution of $\underline{\mathbf{DR1}}$ (350 mg; 0.53 mmol) in pyrrolidine (2 ml) was heated at 45°C overnight. The pyrrolidine was evaporated and the residue purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to 7% MeOH) to give **Example 5** as a colourless foam (288 mg).

10 Yield: 97%

¹H NMR spectrum (CDCl₃): 1.38 (s, 6H); 1.78 (m, 4H); 1.84 (m, 2H); 1.94 (m, 2H); 2.35 (s, 6H); 2.5-2.7 (m, 12H); 3.10 (s, 2H); 3.47 (t, 4H); 3.58 (m, 4H); 4.32 (s, 2H); 7.03 (s, 1H); 7.27 (s, 2H); 8.8 (s br, 1H).

MS-ESI: 565 [M+H]⁺

15

5

The starting material **DR1** was prepared as follows:-

$$N-CO$$
 $N-CO$
 $N-CO$

A solution of <u>Ab5</u> (242 mg; 0.5 mmol) and 4-(4-aminobutyl)-pyridine (125 mg; 0.65 mmol) in DCE (5 ml) was treated with NaBH(OAc)₃ (425 mg; 2.0 mmol). The mixture was stirred for 20 h and evaporated. The residue was treated with aq. K₂CO₃ (10%) and the mixture

- 112 -

extracted with EtOAc. The organic phase was washed with water, brine and dried over MgSO₄. The solution was evaporated to give pure <u>DR1</u> as an white solid (350 mg).

Yield: 100%

¹H NMR spectrum (CDCl₃): 1.20 (s, 9H); 1.36 (s, 6H); 1.74 (s, 4H); 1.84 (m, 2H); 1.92

5 (m, 2H); 2.31 (s, 6H); 2.4-2.6 (m, 12H); 3.07 (s, 2H); 3.46 (t, 4H); 3.57 (m, 4H); 4.45 (s, 2H); 6.81 (s, 2H); 6.98 (s, 1H).

MS-ESI: 665 [M+H]⁺

Examples 5.1-5.2

10 The following Example 5.1 was prepared in a similar manner to Example 5 and Example 5.2 was prepared in a manner similar to Example 2.

the table shows the NRR' group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of Example 5 given above:-

Example 5.1

-NRR'	DR2 mg	Pyrrolidine ml	Prod.	Mass mg	MS-ESI
	; mmol	; mmol	Form	; Yield	
	85; 0.14	2;2.86	White	68;96%	516
			glass		[M+H] +

Chromato. –MeOH/CH₂Cl₂ (7 to 10% MeOH)

¹H NMR spectrum (CDCl₃): 1.39 (s, 6H); 1.70 (s, 4H); 1.83(m, 2H); 2.35 (s, 6H); 2.5-2.9 (m, 7H); 3.0 (m, 1H); 3.3 (m, 1H); 3.58 (m, 4H); 4.34 (dd, 2H); 7.03 (s, 1H); 7.04 (s, 2H); 7.17 (d, 2H); 8.48 (d, 2H); 8.9 (s br 1H).

- 113 -

Example 5.2

-NRR'	DR3 mg	CH ₂ Cl ₂	Prod.	Mass mg	MS-ESI
	; mmol		Form	; Yield	
	194; 0.3	2	White	86 ; 52%	551
}			solid		[M+H] +

Chromato. – LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (0 to 100% H₂O)

¹H NMR spectrum (CDCl₃): 1.36 (s, 6H); 1.74 (m, 4H); 1.83(m, 4H); 2.32 (s, 6H); 2.4-2.7 (m, 20H); 3.56 (m, 4H); 4.30 (s, 2H); 7.01 (s, 1H); 7.02 (s, 2H); 8.8 (s br 1H).

<u>Intermediates for Examples 5.1-5.2, DR2 – DR3 respectively</u>

Starting materials <u>DR2-3</u> were prepared as follows, the table showing the reaction conditions and characteristics for each example, corresponding to the description of <u>DR1</u> given above:-

<u>DR2</u>

10

-NRR'	Ab5 mg	Amine mg;	NaBH(OAc) ₃	Mass m	MS-ESI
	; mmol	mmol	mg; mmol	g; Yield	
	150;	60; 0.39	200; 0.93	117;	616
	0.31			61%	[M+H] ⁺

Chromato. –EtOAc then MeOH/CH₂Cl₂ (5% MeOH)

¹H NMR spectrum (CDCl₃): 1.20 (s, 9H); 1.37 (s, 6H); 1.70 (s, 4H); 1.90 (m, 2H); 2.30 (s, 6H); 2.4-2.7 (m, 7H); 2.9 (m, 1H); 3.3 (m, 1H); 3.56 (m, 4H); 4.47 (dd, 2H); 6.80 (s, 2H); 6.99 (s, 1H); 7.15 (d, 2H); 8.48 (d, 2H).

- 114 -

DR3

-NRR'	Ab5 mg	Amine mg;	NaBH ₄ mg	Mass mg	MS-ESI
	; mmol	mmol	; mmol	; Yield	
	265;	110;0.6	38; 0.6+	194;	651
}-N	0.55		AcOH 35	54%	[M+H] +
			μM		

Chromato. – Ammonia in MeOH(7N)/CH2Cl2 (0 to 10% ammonia in MeOH).

Example 6

5 3-[2,2-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl)propoxy]4-[4-(2-pyrrolidin-1-yl-2-oxo-ethyl)piperzin-1-ylethyl]-5-(3,5-dimethylphenyl)-1*H*pyrazole

ER1 Example 6

A solution of ER1 (160 mg; 0.23 mmol) in pyrrolidine (1 ml) was heated at 45°C overnight.

The pyrrolidine was evaporated and the residue purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (5 to 10% MeOH) to give **Example 6** as a white solid (141 mg).

Yield: 100%

¹H NMR spectrum (CDCl₃): 1.36 (s, 6H); 1.46 (m, 4H); 1.77 (m, 4H); 1.83 (m, 2H); 1.93

15 (m, 2H); 2.35 (s, 6H); 2.45-2.65 (m, 12H); 3.11 (s, 2H); 3.47 (m, 4H); 4.28 (s, 2H); 4.65 (s, 2H); 7.03 (s, 2H); 7.26 (s, 1H); 8.8 (s br, 1H).

MS-ESI: 591 [M+H]⁺

- 115 -

Starting material **ER1** was prepared as follows:-

DMAP (100 mg; cat.) was added to a solution of <u>Bb</u> (4.0 g; 9.72 mmol) in a mixture of acetonitrile (175 ml) and CH₂Cl₂ (40 ml). The mixture was cooled to –10 °C and a solution of (BOC)₂O (2.54 g; 11.66 mmol) in CH₂Cl₂ (50 ml) added dropwise during 1.5 h. The mixture was stirred for a further 2.5 h at –10 °C to –5 °C. Water was added and the mixture stirred overnight at room temperature. The mixture was extracted with CH₂Cl₂ and the organic phase washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (20 to 80%

Yield: 48%

¹H NMR spectrum (CDCl₃): 1.20 (s, 9H); 1.34 (s, 6H); 1.45 (m, 4H); 1.77 (m, 4H); 2.32 (s, 6H); 2.42 (t, 2H); 3.63 (m, 2H); 4.42 (s, 2H); 4.65 (s, 2H); 6.83 (s, 2H); 7.00 (s, 1H) MS-ESI: 512 [M+H]⁺

15

A solution of Ea (3.7 g; 7.23 mmol) and CBr₄ (3.12 g; 9.4 mmol) in CH₂Cl₂ (150 ml) was cooled to 0°C under argon. Solid PPh₃ (2.84 g; 10.85 mmol) was added portionwise and the mixture allowed to warm to room temperature overnight. The mixture was directly purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 30%

20 EtOAc) to give the bromide **Eb** as colourless crystals (3.01 g).

10 EtOAc) to give the alcohol **Ea** as colourless crystals (2.4 g).

Yield: 73%

- 116 -

¹H NMR spectrum (DMSO d₆): 1.51 (s, 9H); 1.27 (s, 6H); 1.45 (m, 4H); 1.63 (m, 4H); 2.30 (s, 6H); 2.63 (t, 2H); 3.51 (t, 2H); 4.27 (s, 2H); 4.59 (s, 2H); 6.93 (s, 2H); 7.08 (s, 1H).

 $MS-ESI: 575 [M+H]^{+}$

5

A mixture of Eb (150 mg; 0.26 mmol) and 1-(pyrrolidinocarbonylmethyl)piperazine (108 mg; 0.548 mmol) in acetonitrile (5 ml) under argon was heated at 80°C for 16 h.

The solvent was evaporated and the residue was purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to 7% MeOH) to give ER1 as a beige powder (161 mg).

Yield: 89%

¹H NMR spectrum (CDCl₃): 1.20 (s, 9H); 1.34 (s, 6H); 1.46 (m, 4H); 1.77 (m, 4H); 1.85 (m, 2H); 1.94 (m, 2H); 2.32 (s, 6H); 2.35-2.6 (m, 12H); 3.01 (s, 2H); 3.46 (m, 4H); 4.42 (s, 2H); 4.65 (s, 2H); 6.82 (s, 2H); 7.00 (s, 1H).

15 MS-ESI: 691 [M+H]⁺

Examples 6.1-6.10

The following examples were prepared in a similar manner to Example 6,

the table shows the **NRR**' group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of Example 6 given above. The final two steps were carried out without purification or characterisation of the intermediates **ER**:-

Example 6.1

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
	172;	116; 0.66	4	146;85%	570
}-N	0.3				[M+H] +

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O)

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.41 (m, 4H); 1.61 (m, 4H); 2.30 (s, 6H); 2.3-5 2.6 (m, 12H); 3.43 (s, 2H); 4.14 (s, 2H); 4.56 (s, 2H); 7.01 (s, 1H); 7.10 (s, 2H); 7.3 (m, 5H); 11.7 (s br 1H).

Example 6.2

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
\frac{1}{\rho}	115;	94 ; 0.44	3	105;87%	607
) N N N N N N N N N N N N N N N N N N N	0.2				[M+H] ⁺

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80%

10 H₂O)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.31 (s, 6H); 2.3-2.6 (m, 12H); 3.10 (s, 2H); 3.35-3.6 (m, 8H); 4.15 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.10 (s, 2H); 11.7 (s br 1H).

15 **Example 6.3**

-NRR'	-NRR' Eb mg;		Pyrrolidine	Mass mg;	MS-ESI
mmol		mg; mmol	ml	Yield	
	115;	103; 0.44	3	96;77%	627
	0.2				[M+H] +

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.61 (m, 4H); 2.30 (s, 6H); 2.3-2.6 (m, 12H); 2.85 (s br, 2H); 3.15 (s br, 3H); 4.14 (s, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.09 (s, 2H); 7.32 (m, 3H); 7.41 (m, 2H); 11.7 (s br 1H).

Example 6.4

-NRR'	Eb mg; Piperazine		Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
	115;	84; 0.44	3	27;25%	584
}_N	0.2				[M+H] ⁺

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 2.31 (s, 6H); 2.3-2.6 (m, 14H); 2.70 (t, 2H); 4.15 (s, 2H); 4.56 (s, 2H); 7.02 (s, 1H); 7.11 (s, 2H); 7.17 (t, 1H) 7.21 (d, 2H); 7.26 (t, 2H); 11.7 (s br 1H).

Example 6.5

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
N N	115;	78; 0.44	3	98; 86%	571
) N	0.2				[M+H] *

10 Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.41 (m, 4H); 1.61 (m, 4H); 2.30 (s, 6H); 2.3-2.6 (m, 12H); 3.48 (s, 2H); 4.14 (s, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.10 (s, 2H); 7.30 (d, 2H); 8.49 (dd, 2H); 11.7 (s br 1H).

Example 6.6

15

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
	115; 0.2	90 ; 0.44	3	19;16%	598 [M+H] +

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O)

- 119 -

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 1.69 (m, 2H); 2.23 (t, 2H); 2.30 (s, 6H); 2.3-2.7 (m, 14H); 4.14 (s, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.10 (s, 2H); 7.17 (m, 3H); 7.27 (t, 2H); 11.7 (s br 1H).

5 **Example 6.7**

-NRR'	NRR' Eb mg;		Pyrrolidine	Mass mg;	MS-ESI
mmol		mg; mmol	ml	Yield	
	115;	96 ; 0.44	3	108; 88%	612
}_N	0.2				[M+H]*

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O)

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.42 (m, 6H); 1.54 (m, 2H); 1.62 (m, 4H); 2.23 (t, 2H); 2.30 (s, 6H); 2.3-2.6 (m, 14H); 4.14 (s, 2H); 4.57 (s, 2H); 7.01 (s, 1H); 7.10 (s, 2H); 7.17 (m, 3H); 7.27 (t, 2H); 11.7 (s br 1H).

Example 6.8

Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
mmol	mg; mmol	ml	Yield	
115;	75; 0.44	3	91;81%	563
0.2				[M+H] +
	mmol 115;	mmol mg; mmol 115; 75; 0.44	mmol mg; mmol ml 115; 75; 0.44 3	mmol mg; mmol ml Yield 115; 75; 0.44 3 91; 81%

Chromato. – Prep. LC/MS H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O)

¹H NMR spectrum (DMSO d₆): 0.99 (m, 1H); 1.15 (m, 3H); 1.27 (s, 6H); 1.45 (m, 4H); 1.55-1.65 (m, 8H); 1.85 (t, 2H); 2.32 (s, 6H); 2.3-2.6 (m, 6H); 2.88 (d 2H); 3.25 (t, 2H); 3.86 (m, 2H); 4.16 (s, 2H); 4.59 (s, 2H); 7.03 (s, 1H); 7.12 (s, 2H); 11.86 (s br 1H).

Example 6.9

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
CF ₃	230; 0.4	223; 0.84	10	234;94%	623 [M+H] ⁺

Chromato. – MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (CDCl₃) + CD₃OD): 1.26 (m, 6H); 1.37 (m, 4H); 1.60 (m, 4H); 1.71 (m, 1H); 1.97 (m, 2H); 2.1 (m, 1H); 2.27 (s, 6H); 2.8-3.0 (m, 4H); 3.15 (m, 2H); 3.31 m, 5 1H); 3.61 (m, 2H); 4.14 (dd, 2H); 4.47 (s, 2H); 6.96 (s, 3H); 7.36 (d, 2H); 7.52 (d, 2H); 8.9 (s br, 1H).

Example 6.10

-NRR'	Eb mg;	Piperazine	Pyrrolidine	Mass mg;	MS-ESI
	mmol	mg; mmol	ml	Yield	
I N	230;	113; 0.84	10	166; 79%	529
	0.4				[M+H] ⁺

Chromato. – MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (CDCl₃): 1.36 (s, 6H); 1.43 (m, 4H); 1.75 (m, 4H); 2.33 (s, 6H); 2.39 (s, 3H); 2.6-2.8 (m, 8H); 4.29 (s, 2H); 4.64 (s, 2H); 7.02 (s, 1H); 7.05 (s, 2H); 7.17 (m, 3H); 7.26 (m, 2H); 8.9 (s br 1H).

Example 7

3-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.2]oct-2-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(3-methoxyphenyl)ethyl]-(2S)-propylamine

- 121 -

A mixture of FR (167 mg; 0.25 mmol), 3-(2-hydroxyethyl)-methoxybenzene (50 mg; 0.325 mmol) and triphenylphosphine (393 mg; 1.5 mmol) in THF (5 ml) at 0°C under argon was treated with DTAD (230 mgl; 1.0 mmol). The mixture was allowed to warm to room temperature for 1 h when water was added. The mixture was extracted with CH_2Cl_2 and the organic phase was washed with water, brine and dried over MgSO₄. The residue was taken up directly in CH_2Cl_2 (3 ml) and treated dropwise with n-propylamine (150 μ l; 2.5 mmol). The mixture was stirred at room temperature for 1h and then purified directly by flash chromatography eluting with increasingly polar mixtures of CH_2Cl_2 and then MeOH/CH₂Cl₂ (0 to 10% MeOH) to give Example 7 as a white foam (100 mg).

10 Yield: 70%

¹H NMR spectrum (DMSO d₆): 1.15 (d, 3H); 1.27 (s, 6H); 1.54 (m, 4H); 1.67 (m, 4H); 1.85 (s, 1H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 3.24 (m, 2H); 3.7 (s, 3H); 4.16 (m, 3H); 6.7 (m, 3H); 7.03 (s, 1H); 7.05 (s, 2H); 7.15 (t, 1H); 11.8 (s br, 1H).

MS-ESI: 573 [M+H]⁺

15

The starting material **FR** was prepared as follows:-

This preparation was exactly analogous to that of Examples 4 and 8

Yields and data are given in the following table: -

Compound	Yield	MS-ESI	RMN
Fb	85%	440	¹ H NMR spectrum (CDCl ₃): 1.19 (d, 3H);
		[M+H] ⁺	1.36 (s, 3H); 1.41 (s, 3H); 1.65 (m, 6H); 1.83
			(m, 2H); 1.94 (s, 1H); 2.23 (m, 1H); 2.35 (s,
			6H); 3.01 (m, 1H); 3.42 (m, 2H); 3.69 (m,
,			1H); 3.78 (m, 1H); 4.11 (m, 1H); 4.21 (m,
			1H); 4.41 (m, 1H); 7.03 (s, 1H); 7.05 (s, 2H);
			8.9 (s br 1H).
Fc	100%	540	¹ H NMR spectrum (CDCl ₃): 1.06 (d, 3H);
		[M+H]+	1.19 (s, 9H); 1.36 (s, 3H); 1.42 (s, 3H); 1.56
			(m, 6H); 1.83 (m, 2H); 1.94 (s, 1H); 2.25 (m,
			1H); 2.35 (s, 6H); 2.59 (m, 1H); 3.41 (m, 2H)
			; 3.57 (m, 1H); 3.67 (m, 1H); 4.11 (m, 1H);
			4.30 (m, 1H); 4.60 (m, 1H); 6.84 (s, 2H);
			7.00 (s, 1H).
Fd	85%	439	¹ H NMR spectrum (DMSO d ₆): 1.16 (d, 3H);
		$[M+H]^+$	1.27 (s, 6H); 1.56 (m, 4H); 1.68 (m, 4H);
			1.87 (s, 1H); 2.31 (s, 6H); 2.36 (m, 2H); 2.72
			(m, 1H); 4.15 (m, 3H); 7.02 (s, 1H); 7.07 (s,
			2H); 8.9 (s br 1H).
FR	67%	669	¹ H NMR spectrum (DMSO d ₆): 1.10 (d, 3H);
		$[M+H]^+$	1.25 (s, 6H); 1.52 (m, 4H); 1.67 (m, 4H);
			1.83 (s, 1H); 2.29 (s, 6H); 2.83 (m, 1H); 3.19
			(m, 2H); 4.13 (m, 3H); 6.96 (s, 2H); 6.98 (s,
			1H); 8.12 (d, 1H); 8.51 (br s, 1H); 8.52 (q,
			1H); 8.79 (d, 1H); 11.9 (s br 1H).

- 123 -

A solution of <u>Fd</u> (1.12g; 2.55 mmol) in CH₂Cl₂ (50 ml) was cooled to 0°C under argon. DIEA (580 μl; 3.3 mmol) was added followed by a solution of DNOSCl (0.72 g; 2.68 mmol) in CH₂Cl₂ (10 ml). The mixture was allowed to warm to room temperature for 2 h and was treated with aq. HCl (1<u>N</u>). The mixture was extracted with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of EtOAc/CH₂Cl₂ (0 to 40% EtOAc) to give <u>FR</u> as a yellow foam (1.14 g).

Yield: 67%

¹H NMR spectrum (DMSO d₆): 1.10 (d, 3H); 1.25 (s, 6H); 1.52 (m, 4H); 1.67 (m, 4H); 1.83 (s, 1H); 2.29 (s, 6H); 2.83 (m, 1H); 3.19 (m, 2H); 4.13 (m, 3H); 6.96 (s, 2H); 6.98 (s, 1H); 8.12 (d, 1H); 8.51 (br s, 1H); 8.52 (q, 1H); 8.79 (d, 1H); 11.9 (s br 1H). MS-ESI: 669 [M+H]⁺

Starting material Fa was prepared as follows:-

A mixture of **8** (4.0 g; 22 mmol) and oxalyl bromide (9.5 g; 44 mmol) containing one drop of DMF was heated at 50°C for 2h and then cooled. The excess of oxalyl bromide was evaporated and the residue azeotroped with toluene to give crude **9** which was taken up directly in CH₂Cl₂ (30 ml) and cooled to 0°C. Diisopropylethylamine (40 ml; 200 mmol) was added followed by 2.2.2-azabicyclooctane (2.95 g; 20 mmol) in CH₂Cl₂ (20 ml). The mixture was allowed to warm to room temperature overnight and was diluted with CH₂Cl₂, washed with aq. HCl (2N), aq. NaOH (1N), water, brine and dried over MgSO₄. The residue was evaporated to give **Fa** as a beige solid (3.75 g).

Yield: 68%

15

¹H NMR spectrum (CDCl₃): 1.38 (s, 6H); 1.67 (m, 6H); 1.89 (m, 2H); 1.95 (s, 1H); 3.40 (m, 2H); 3.63 (s, 2H) 4.02 (s, 1H).

Example 7.1

The following example was prepared in a similar manner to Example 6,

The following example was prepared in a similar manner, the table shows the **NRR'** group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of **Example 7** given above:-

Example 7.1

-NRR'	FR mg;	Alcohol	Ph ₃ P mg;	DTAD mg;	nPrNH ₂	Mass
}	mmol	mg;	mmol	mmol	μ 1;	mg;
		mmol			mmol	Yield
	300;	150 ; 0.9	707 ; 2.7	415; 1.8	265 ; 4.5	193;
)	0.45					73%

10 Chromato. - EtOAc

¹H NMR spectrum (DMSO d₆): 1.13 (d, 3H); 1.27 (s, 6H); 1.55 (m, 4H); 1.68 (m, 4H); 1.86 (s, 1H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 3.31 (m, 2H); 4.14 (m, 3H); 5.93 (s, 2H); 6.53 (dd, 1H); 6.67 (d, 1H); 6.74 (d, 1H); 7.02 (s, 1H); 7.05 (s, 2H); 7.15 (t, 1H); 11.74 (s br, 1H).

15 MS-ESI: 587 [M+H]⁺

- 125 -

Example 8

3-[2,2-dimethyl-3-oxo-3-(azabicyclo[2.2.1]heptan-7-yl)propoxy]-

4-[1-(3-methoxyphenethylaminomethyl)cycloprop-1-yl]-5-(3,5-dimethylphenyl)-1<math>H-pyrazole

Example 8 was prepared in a similar manner to Example 7, the table shows the reaction conditions and characteristics corresponding to the description of the preparation of Example 7 given above:-

-NRR'	GR mg;	Alcohol	Ph ₃ P mg;	DTAD mg;	nPrNH ₂	Mass
	mmol	mg;	mmol	mmol	$\mu 1$;	mg;
		mmol			mmol	Yield
	166;	50; 0.33	393 ; 1.5	230; 1.0	270;10	68;
)	0.25					48%

Chromato. – MeOH/CH₂Cl₂ (0 to 10% MeOH)

¹H NMR spectrum (DMSO d₆): 0.42 (m, 2H); 0.70 (m, 2H); 1.25 (s, 6H); 1.42 (m, 4H); 1.62 (m, 4H); 2.3 (s, 6H); 2.6-2.85 (m, 7H); 3.69 (s, 3H); 4.14 (s, 3H); 4.57 (s, 2H); 6.71 (m, 3H); 7.03 (s, 1H); 7.15 (t, 1H); 7.33 (s, 2H); 11.74 (s br, 1H). MS-ESI: 571 [M+H]⁺

5

- 126 -

Starting material **GR** was prepared as follows:-

GR

This preparation was exactly analogous to that of examples 4 and 7

5 Yields and data are given in the following table: -

Compound	Yield	MS-ESI	RMN
		[M+H] ⁺	
Ga	46%	245	¹ H NMR spectrum (DMSO d ₆): 0.47 (m, 1H);
			0.64 (m, 1H); 0.85 (m, 1H); 0.99 (m, 1H);
			2.35 (s, 6H); 4.11 (d, 1H); 4.41 (d, 1H); 4.76
			(s, 1H); 7.36 (s, 1H); 7.59 (s, 2H).
Gb	87%	259	¹ H NMR spectrum (DMSO d ₆): 0.28 (m, 2H);
			0.72 (m, 2H); 2.29 (s, 6H); 3.5 (s, 2H); 4.8 (s
			br, 1H); 6.96 (s, 1H); 7.34 (s, 2H); 9.3 (s br,
			1H); 11.74 (s br, 1H).
Gc	69%	438	¹ H NMR spectrum (DMSO d ₆): 0.27 (m, 2H);
			0.70 (m, 2H); 1.27 (s, 6H); 1.42 (m, 4H);
	7 1		1.64 (m, 4H); 2.3 (s, 6H); 3.43 (d, 2H); 4.14
			(s, 2H); 4.59 (s, 2H); 4.64 (t, 1H); 6.99 (m,
			1H); 7.41 (s, 2H); 11.74 (s br, 1H).

- 127 -

Compound	Yield	MS-ESI	RMN
		[M+H] ⁺	
Gd	60%	538	¹ H NMR spectrum (DMSO d ₆): 0.17 (m, 2H);
			0.46 (m, 2H); 1.14 (s, 9H); 1.29 (s, 6H); 1.45
			(m, 4H); 1.65 (m, 4H); 2.3 (s, 6H); 3.31 (d,
			2H); 4.23 (s, 2H); 4.59 (m, 3H); 7.01 (s, 2H);
			7.04 (s, 1H).
Ge	65%	437	¹ H NMR spectrum (DMSO d ₆): 0.35 (m, 2H);
			0.67 (m, 2H); 1.27 (s, 6H); 1.43 (m, 4H);
			1.64 (m, 4H); 2.3 (s, 6H); 2.63 (d, 2H); 4.15
			(s, 2H); 4.58 (s, 2H); 6.99 (m, 1H); 7.31 (s,
			2H); 11.74 (s br, 1H).
GR	90%	667	¹ H NMR spectrum (DMSO d ₆): 0.38 (m, 2H);
			0.8 (m, 2H); 1.28 (s, 6H); 1.42 (m, 4H); 1.62
			(m, 4H); 2.3 (s, 6H); 3.17 (m, 2H); 4.14 (s,
			2H); 4.57 (s, 2H); 6.98 (m, 1H); 7.27 (s, 2H);
			7.98 (d, 1H); 8.51 (dd, 1H); 8.76 (d, 1H);
			11.74 (s br, 1H).

Example 9

5

 $3\hbox{-}[2,2\hbox{-}dimethyl\hbox{-}3\hbox{-}oxo\hbox{-}3\hbox{-}(azabicyclo[2.2.1]heptan\hbox{-}7\hbox{-}yl)propoxy]\hbox{-}$

 $4\hbox{-}(4\hbox{-phenylpiperidin-1-ylmethyl})\hbox{-}5\hbox{-}(3,5\hbox{-dimethylphenyl})\hbox{-}1H\hbox{-pyrazole}$

$$N-CO$$
 $N-CO$
 $N-CO$

HR

A mixture of 4-phenyl piperidine (98 mg; 0.6 mmol) and formaldehyde (0.32 ml; 4.0 mmol; 37wt% aqueous solution) in water (0.2 ml) and acetic acid (0.2 ml) was stirred for 5 min and treated with **HR** (74 mg; 0.2 mmol). The mixture was heated at 75°C for 2 h. The solvents

- were evaporated, MeOH (0.5 ml), water (0.5 ml) and ammonia in MeOH(7N) (0.6 ml) were added and the mixture stirred for a further 3 h. The solvents were evaporated and the residue was purified by preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O) to give **Example 9** as a white solid (75 mg). Yield: 69%
- ¹H NMR spectrum (DMSO d₆): 1.27 (s, 6H); 1.42 (m, 4H); 1.6 (m, 6H); 1.75 (m, 2H);
 ².07 (m, 2H); 2.32 (s, 6H); 2.52 (m, 1H); 2.97 (m, 2H); 3.16 (s, 2H); 4.17 (s, 2H); 4.57 (s, 2H); 7.02 (s, 1H); 7.17 (t, 1H); 7.23 (d, 2H); 7.28 (t, 2H) 12.1 (s, 1H).
 MS-ESI: 541 [M+H]⁺

15 The starting material **HR** was prepared as follows:-

A solution of 4-(3',5'-dimethylphenyl) acetoacetate (12.36 g; 60 mmol) in EtOH (300 ml) was treated with hydrazine hydrate (5.82 ml; 120 mmol) and heated under reflux for 3 h. The EtOH was evaporated and the residue triturated with Et₂O. The precipitate was collected, washed and dried to give <u>Ha</u> as a white powder (9.54 g).

Yield: 85%

¹H NMR spectrum (DMSO d₆): 2.28 (s, 6H); 5.83 (s, 1H); 6.93 (s, 1H); 7.27 (s, 2H); 9.5 (s br, 1H).

MS-ESI: 189 [M+H]+

- 129 -

A mixture of <u>Ha</u> (3.1 g; 16.5 mmol) and <u>Ba</u> (5.15 g; 19.8 mmol) in DMA (40 ml) under argon was treated with K₂CO₃ (4.56 g; 33.0 mmol). The mixture was stirred and heated at 70°C for 5h. The mixture was poured into sat. aq. NaHCO₃, extracted with EtOAc and the organic phase was washed with water, brine and dried over MgSO₄. The solid residue was recrystallised from toluene to give <u>HR</u> as a pale yellow solid (2.96 g).

Yield: 49%

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.41 (m, 4H); 1.63 (m, 4H); 2.29 (s, 6H); 4.09 (s, 2H); 4.57 (s, 2H); 6.08 (s, 1H) 6.97 (s, 1H); 7.31 (s, 2H).

MS-ESI: 368 [M+H]⁺

10

Examples 9.1-9.12

The following examples were prepared in a similar manner to Example 9,

$$N-CO$$

H2-13

the table shows the **R** group relating to the above structure, the reaction conditions and characteristics for each example, corresponding to the description of the preparation of Example 9 given above:-

Example 9.1

R	HR mg	Formaldehyde	Amine	Prod.	Mass mg;	MS-
	; mmol	;	mg;	Form	Yield	ESI
		ml; mmol	mmol			
1-N	74;	0.25;3.0	131; 0.6	White	65 ; 54%	598
No N	0.20			solid		[M+
						H] +

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O).

¹H NMR spectrum (DMSO d₆): 1.25 (s, 6H); 1.41 (m, 6H); 1.53 (m, 2H); 1.58 (m, 4H); 2.29 (s, 6H); 2.3-2.65 (m, 12H); 3.01 (s, 2H); 4.15 (s, 2H); 4.56 (s, 2H); 7.00 (s, 1H); 7.17 (m, 3H); 7.25 (m, 2H); 7.44 (s, 2H); 11.9 (s br, 1H).

Example 9.2

R	HR mg;	Formaldehyde	Amine mg;	Prod.	Mass mg;	MS-
	mmol	;	mmol	Form	Yield	ESI
		ml; mmol	<u></u>		:	
	148 ; 0.40	0.32;4.0	270; 2.0	White	81;39%	529
N				solid		[M+
}						H] +

Chromato. – Preparative LC/MS chromatography with $H_2O/MeCN$ buffered with ammonium carbonate at pH 8.9 (60% H_2O).

¹H NMR spectrum (DMSO d₆): 1.23(s, 6H); 1.41 (m, 4H); 1.60 (m, 4H); 1.73 (m, 2H); 2.1 (s, 3H); 2.27 (s, 6H); 2.35 (m, 2H) 2.5-2.7 (m, 2H); 3.14 (s, 2H); 4.14 (s, 2H); 4.56 (s, 2H); 6.99 (s, 1H); 7.12 (m, 3H); 7.23 (m, 2H); 7.44 (s, 2H); 11.9 (s br, 1H).

Example 9.3

R	HR mg;	Formaldehyde	Amine mg;	Prod.	Mass mg;	MS-
	mmol	;	mmol	Form	Yield	ESI
		ml; mmol				
N N	80;0.20	0.25;3.0	82; 0.6	White	27;26%	516
}				solid		[M+H]
						+

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (100 to 0% H₂O).

Example 9.4

R	HR mg;	Formaldehyde	Amine mg	Prod.	Mass mg;	MS-
	mmol	•	; mmol	Form	Yield	ESI
		ml; mmol				
	80;0.20	0.25;3.0	132; 0.6	White	26;22%	600
1-N N-0				solid		[M+H
]+

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (100 to 0% H₂O).

Example 9.5

R	HR mg;	Formaldehyde	Amine mg;	Prod.	Mass mg	MS-
	mmol	;	mmol	Form	; Yield	ESI
		ml; mmol				
J-N	80; 0.20	0.25;3.0	97;0.6	White	37;34%	542
				solid		[M+H]
						+

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (100 to 0% H₂O).

5

Example 9.6

R	HR mg;	Formaldehyde	Amine mg;	Prod.	Mass mg	MS-
	mmol	;	mmol	Form	; Yield	ESI
		ml; mmol				
1-N	80; 0.20	0.25;3.0	102;0.6	White	21;19%	549
				solid		[M+
			,			H] +

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (100 to 0% H₂O).

10 **Example 9.7**

R	HR mg;	Formaldehyde	Amine mg	Prod.	Mass mg	MS-
	mmol	;	; mmol	Form	; Yield	ESI
		ml; mmol				
	148;	0.16; 2.0	298; 2.0	White	nd*; nd*	543
3	0.40			solid		[M+H]
						}

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O).

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.42 (m, 6H); 1.54 (m, 2H); 1.61 (m, 4H); 2.06 (s, 3H); 2.25 (s, 6H); 2.31 (m, 2H); 2.5-2.65 (m, 2H); 3. 12 (s, 2H); 4.16 (s, 2H); 4.56 (s, 2H); 6.98 (s, 1H); 7.13 (m, 3H); 7.22 (m, 2H); 7.42 (s, 2H); 11.9 (s br, 1H).

- 132 -

Example 9.8

R	HR mg;	Formaldehyde	Amine mg	Prod.	Mass mg	MS-
	mmol	,	; mmol	Form	; Yield	ESI
		ml; mmol				
H	148;	0.16; 2.0	298; 2.0	gum	nd*; nd*	529
	0.40					[M+H]
						+

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O).

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.42 (m, 6H); 1.57 (m, 6H); 2.28 (s, 6H); 2.5-2.6 (m, 4H); 3. 45 (s, 2H); 4.16 (s, 2H); 4.55 (s, 2H); 6.99 (s, 1H); 7.14 (m, 3H); 7.25 (m, 2H); 7.30 (s, 2H); 11.9 (s br, 1H).

Example 9.9

R	HR mg;	Formaldehyde	Amine mg	Prod.	Mass mg	MS-
	mmol	• •	; mmol	Form	; Yield	ESI
		ml; mmol				
)-N	74;0.20	0.08; 1.0	253;1.0	gum	26;24%	543
						[M+H]
						+

10 Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O).

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.29 (m, 2H); 1.42 (m, 6H); 1.53 (m, 2H); 1.57 (m, 4H); 2.29 (s, 6H); 2.5-2.6 (m, 4H); 3. 46 (s, 2H); 4.16 (s, 2H); 4.56 (s, 2H); 7.01 (s, 1H); 7.15 (m, 3H); 7.25 (m, 2H); 7.30 (s, 2H); 11.9 (s br, 1H).

Example 9.10

R	HR mg;	Formaldehyde	Amine mg	Prod.	Mass mg	MS-
	mmol	;	; mmol	Form	; Yield	ESI
		ml; mmol				
J-N-H	74; 0.20	0.08; 1.0	162; 1.2	White	42;20%	529
				solid		[M+H]
					:	+

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (80% H₂O).

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.41 (m, 4H); 1.59 (m, 4H); 1.69 (m, 2H); 2.29 (s, 6H); 2.3-2.65 (m, 4H); 3.45 (s, 2H); 4.16 (s, 2H); 4.56 (s, 2H); 7.01 (s, 1H); 7.157 (m, 3H); 7.23 (m, 2H); 7.31 (s, 2H); 11.9 (s br, 1H).

Example 9.11

R	HR mg	Formaldehyde	Amine	Prod.	Mass mg;	MS-
	; mmol	;	mg;	Form	Yield	ESI
		ml; mmol	mmol			
	74;	0.08; 1.0	232;1.2	gum	47;41%	573
)-N	0.20					[M+
Н						H] ⁺

Chromato. – Preparative LC/MS chromatography with H₂O/MeCN buffered with ammonium carbonate at pH 8.9 (60% H₂O).

¹H NMR spectrum (DMSO d₆): 1.24 (s, 6H); 1.28 (m, 2H); 1.41 (m, 6H); 1.49 (m, 2H); 1.60 (m, 4H); 2.30 (s, 6H); 2.3-2.65 (m, xH); 3.44 (s, 2H); 3.70 (s, 3H); 4.16 (s, 2H); 4.56 (s, 2H); 6.81 (d, 2H); 7.01 (s, 1H); 7.04 (d, 2H); 7.30 (m, 2H); 11.9 (s br, 1H).

15 **Example 9.12**

R	HR mg;	Formaldehyde	Amine mg;	Prod.	Mass mg;	MS-
	mmol	;	mmol	Form	Yield	ESI
		ml; mmol				
	74;0.20	0.08; 3.0	97;0.6	White	74;69%	541
1-N				solid		[M+H]
						+

Chromato. – Preparative LC/MS chromatography with $H_2O/MeCN$ buffered with ammonium carbonate at pH 8.9 (60% H_2O).

¹H NMR spectrum (CDCl₃): 1.34 (m, 6H); 1.45 (m, 5H); 1.75 (m, 4H); 1.9 (m, 1H); 2.31 (m, 1H); 2.35 (s, 6H); 2.5 (m, 1H); 2.59 (m, 2H); 2.68 (m, 3H); 3.39 (dd, 2H); 4.28 (s, 2H); 4.65 (s, 2H); 7.02 (s, 1H); 7.16 (m, 3H); 7.25 (m, 2H); 7.34 (s, 2H); 8.9 (s br, 1H).

Example 10

 $2-[3-(2,2-\mathrm{dimethyl-3-\{azabicyclo[2.2.1]heptan-7-yl\}propoxy)-5-(3,5-\mathrm{dimethylphenyl})-1}H-pyrazol-4-yl]-N-[2-(1,3-\mathrm{benzodioxol-5-yl})ethyl]-(2S)-propylamine$

10 C17 Example 10

A solution of **Example 4** (123 mg; 0.21 mmol) in THF (3 ml) under argon was treated with a solution of LiAlH₄ (420 μl; 0.42 mmol; 1M solution in THF). The mixture was heated at 60°C for 1h. The mixture was treated with an excess of Glaubers' Salt (Na₂SO₄.10H₂O), filtered and evaporated. The residue was purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (5 to 15% MeOH) to give **Example 10** as a white solid (80 mg).

Yield: 68%

¹H NMR spectrum (DMSO d₆): 0.93 (s, 6H); 1.18 (d, 3H); 1.2 (m, 4H); 1.59 (m, 4H); 2.19 (s, 2H); 2.3 (s, 6H); 2.55-2.95 (m, 7H); 3.07 (s, 2H); 3.86 (s, 2H); 5.94 (s, 2H); 6.53 (d,

20 1H); 6.66 (s, 1H); 6.74 (d, 1H); 7.04 (s, 1H); 7.05 (s, 2H); 11.7 (s br 1H).

MS-ESI: 559 [M+H]⁺

- 135 -

Example 11

2-[3-(2,2-dimethyl-3-hydroxypropoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine

- A solution of <u>JR</u> (109 mg; 0.17 mmol) in THF (2 ml) under argon was treated with a solution of LiAlH₄ (350 μ l; 0.35 mmol; 1M solution in THF). The mixture was heated at 60°C for 1h. The mixture was treated with an excess of Glaubers Salt (Na₂SO₄.10H₂O), filtered and evaporated. The residue was purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to 15% MeOH) to give **Example 11** as a white solid (68 mg).
- 10 Yield: 84%

¹H NMR spectrum (DMSO d₆): 0.92 (s, 6H); 1.17 (d, 3H); 2.3 (s, 6H); 2.5-2.9 (m, 7H); 3.27 (s, 2H); 3.86 (s, 2H); 4.61 (t br, 1H); 5.94 (s, 2H); 6.53 (d, 1H); 6.67 (s, 1H); 6.74 (d, 1H); 7.03 (s, 1H); 7.04 (s, 2H); 11.7 (s br 1H).

 $MS-ESI: 480 [M+H]^{+}$

15

Starting material JR was prepared as follows:-

A solution of Example 4 (205 mg; 0.35 mmol) in acetonitrile (2 ml) was treated with c.HCl (1 ml) and the mixture was stirred at room temperature for 2h. The mixture was concentrated, extrated with CH₂Cl₂ and the organic phase was washed with water, brine and dried over MgSO₄. The residue JR was obtained as a yellow solid (218 mg). It was used directly in the final step of the synthesis of Example 11.

Yield: 80%

- 136 -

¹H NMR spectrum (DMSO d₆): 1.24 (m, 9H); 2.33 (s, 6H); 2.78 (m, 2H); 2.95 (m, 2H); 3.14 (m, 3H); 4.13 (m, 2H); 5.98 (s, 2H); 6.62 (d, 1H); 6.76 (s, 1H); 6.84 (d, 1H); 7.05 (s, 2H); 7.07 (s, 2H); 8.6 (s br, 1H); 11.7 (s br 1H).

MS-ESI: 494 [M+H]+

5

Example 12

2-[3-(2,2-dimethyl-3-oxo3-isopropoxy-propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine

Example 12

10 A solution of <u>JR</u> (109 mg; 0.17 mmol) in CH₂Cl₂ (1 ml) was added to a solution of EDCI (37 mg; 0.19 mmol) and DMAP (5 mg; cat.) in iPrOH (5 ml). H₂SO₄ (5 drops; cat.) was added and the mixture was heated under reflux overnight over molecular sieves. The mixture was concentrated and extracted with CH₂Cl₂/water and the organic phase was washed with water, brine and dried over MgSO₄. The residue was purified by flash chromatography eluting with increasingly polar mixtures of MeOH/CH₂Cl₂ (0 to10% MeOH) to give **Example 12** as a yellow gum (59 mg).

Yield: 65%

¹H NMR spectrum (DMSO d₆): 1.16 (m, 6H); 1.24 (m, 9H); 2.32 (s, 6H); 2.8 (m, 2H); 2.95 (m, 2H); 3.15 (m, 3H); 4.16 (dd, 2H); 4.88 (m, 1H); 5.98 (s, 2H); 6.62 (d, 1H); 6.74 (s, 1H); 6.83 (d, 1H); 7.04 (s, 2H); 7.07 (s, 2H); 11.7 (s br 1H).

MS-ESI: 536 [M+H]⁺

THERAPEUTIC USES

Compounds of Formula (I) are provided as medicaments for antagonising
25 gonadotropin releasing hormone (GnRH) activity in a patient, eg, in men and/or women. To
this end, a compound of Formula (I) can be provided as part of a pharmaceutical formulation
which also includes a pharmaceutically acceptable diluent or carrier (eg, water). The
formulation may be in the form of tablets, capsules, granules, powders, syrups, emulsions (eg,
lipid emulsions), suppositories, ointments, creams, drops, suspensions (eg, aqueous or oily

- 137 -

suspensions) or solutions (eg, aqueous or oily solutions). If desired, the formulation may include one or more additional substances independently selected from stabilising agents, wetting agents, emulsifying agents, buffers, lactose, sialic acid, magnesium stearate, terra alba, sucrose, corn starch, talc, gelatin, agar, pectin, peanut oil, olive oil, cacao butter and ethylene glycol.

The compound is preferably orally administered to a patient, but other routes of administration are possible, such as parenteral or rectal administration. For intravenous, subcutaneous or intramuscular administration, the patient may receive a daily dose of $0.1 \,\mathrm{mgkg^{-1}}$ to $30 \,\mathrm{mgkg^{-1}}$ (preferably, $5 \,\mathrm{mgkg^{-1}}$ to $20 \,\mathrm{mgkg^{-1}}$) of the compound, the compound being administered 1 to 4 times per day. The intravenous, subcutaneous and intramuscular dose may be given by means of a bolus injection. Alternatively, the intravenous dose may be given by continuous infusion over a period of time. Alternatively, the patient may receive a daily oral dose which is approximately equivalent to the daily parenteral dose, the composition being administered 1 to 4 times per day. A suitable pharmaceutical formulation is one suitable for oral administration in unit dosage form, for example as a tablet or capsule, which contains between 10mg and 1g (preferably, 100 mg and 1g) of the compound of the invention.

Buffers, pharmaceutically acceptable co-solvents (eg, polyethylene glycol, propylene glycol, glycerol or EtOH) or complexing agents such as hydroxy-propyl β cyclodextrin may be used to aid formulation.

One aspect of the invention relates to the use of compounds according to the invention for reducing the secretion of LH and/or FSH by the pituitary gland of a patient. In this respect, the reduction may be by way of a reduction in biosynthesis of the LH and FSH and/or a reduction in the release of LH and FSH by the pituitary gland. Thus, compounds according to the invention can be used for therapeutically treating and/or preventing a sex hormone related condition in the patient. By "preventing" we mean reducing the patient's risk of contracting the condition. By "treating" we mean eradicating the condition or reducing its severity in the patient. Examples of sex hormone related conditions are: a sex hormone dependent cancer, benign prostatic hypertrophy, myoma of the uterus, endometriosis, polycystic ovarian disease, uterine fibroids, prostatauxe, myoma uteri, hirsutism and precocious puberty. Examples of sex hormone dependent cancers are: prostatic cancer, uterine cancer, breast cancer and pituitary gonadotrophe adenoma.

- 138 -

The compounds of the invention may be used in combination with other drugs and therapies used to treat / prevent sex-hormone related conditions.

If formulated as a fixed dose such combination products employ the compounds of this invention within the dosage range described herein and the other pharmaceutically-active agent within its approved dosage range. Sequential use is contemplated when a combination formulation is inappropriate.

In the field of medical oncology examples of such combinations include combinations with the following categories of therapeutic agent:

- i) anti-angiogenic agents (for example linomide, inhibitors of integrin ανβ3 function, angiostatin, endostatin, razoxin, thalidomide) and including vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors (RTKIs) (for example those described in international patent applications publication nos. WO-97/22596, WO-97/30035, WO-97/32856 and WO-98/13354, the entire disclosure of which documents is incorporated herein by reference);
- 15 ii) cytostatic agents such as anti-oestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene), progestogens (for example megestrol acetate), aromatase inhibitors (for example anastrozole, letrozole, vorazole, exemestane), anti-progestogens, anti-androgens (for example flutamide, nilutamide, bicalutamide, cyproterone acetate), inhibitors of testosterone 5α-dihydroreductase (for example finasteride), anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function) and inhibitors of growth factor function, (such growth factors include for example epidermal growth factor (EGF), platelet derived growth factor and hepatocyte growth factor such inhibitors include growth factor antibodies, growth factor receptor antibodies, tyrosine kinase inhibitors and serine/threonine kinase inhibitors);
 - iii) biological response modifiers (for example interferon);
 - iv) antibodies (for example edrecolomab); and
- v) anti-proliferative/anti-neoplastic drugs and combinations thereof, as used in medical oncology, such as anti-metabolites (for example anti-folates like methotrexate, fluoropyrimidines like 5-fluorouracil, purine and adenosine analogues, cytosine arabinoside); anti-tumour antibiotics (for example anthracyclines like doxorubicin, daunomycin, epirubicin and idarubicin, mitomycin-C, dactinomycin, mithramycin); platinum derivatives (for example cisplatin, carboplatin); alkylating agents (for example nitrogen mustard, melphalan,

- 139 -

chlorambucil, busulphan, cyclophosphamide, ifosfamide, nitrosoureas, thiotepa); anti-mitotic agents (for example vinca alkaloids like vincristine and taxoids like taxol, taxotere); enzymes (for example asparaginase); thymidylate synthase inhibitors (for example raltitrexed); topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan, irinotecan).

The compounds of the invention may also be used in combination with surgery or radiotherapy.

ASSAYS

The ability of compounds according to the invention to act as antagonists of GnRH can be determined using the following in vitro assays.

Binding Assay Using Rat pituitary GnRH Receptor

The assay is performed as follows:-

- Incubate crude plasma membranes prepared from rat pituitary tissues in a Tris.HCl buffer
 (pH. 7.5, 50 mM) containing bovine serum albumin (0.1%), [I-125]D-t-Bu-Ser6-Pro9-ethyl amide-GnRH, and the test compound. Incubation is at 4°C for 90 minutes to 2 hours.
 - 2. Rapidly filter and repeatedly wash through a glass fibre filter.
 - 3. Determine the radioactivity of membrane bound radio-ligands using a gamma counter.
- From this data, the IC₅₀ of the test compound can be determined as the concentration of the compound required to inhibit radio-ligand binding to GnRH receptors by 50%. Compounds according to the present invention have activity at a concentration from 1nM to 5 μM.

25 Binding Assay Using Human GnRH Receptor

Crude membranes prepared from CHO cells expressing human GnRH receptors are sources for the GnRH receptor. The binding activity of compounds according to the invention can be determined as an IC_{50} which is the compound concentration required to inhibit the specific binding of [^{125}I]buserelin to GnRH receptors by 50%. [^{125}I]Buserelin (a peptide GnRH analogue) is used here as a radiolabelled ligand of the receptor.

- 140 -

Assay to Determine Inhibition of LH release

The LH release assay can be used to demonstrate antagonist activity of compounds, as demonstrated by a reduction in GnRH-induced LH release.

5 Preparation of Pituitary Glands

Pituitary glands obtained from rats are prepared as follows. Suitable rats are Wistar male rats (150-200g) which have been maintained at a constant temperature (eg, 25°C) on a 12 hour light/12 hour dark cycle. The rats are sacrificed by decapitation before the pituitary glands are aseptically removed to tube containing Hank's Balanced Salt Solution (HBSS).

- 10 The glands are further processed by:-
 - 1. Centrifugation at 250 x g for 5 minutes;
 - 2. Aspiration of the HBSS solution;
 - 3. Transfer of the glands to a petri dish before mincing with a scalpel;
- 15 4. Transfer of the minced tissue to a centrifuge tube by suspending the tissue three successive times in 10 ml aliquots of HBSS containing 0.2% collagenase and 0.2% hyaluronidase;
 - 5. Cell dispersion by gentle stirring of the tissue suspension while the tube is kept in a water bath at 37°C;
- 20 6. Aspiration 20 to 30 times using a pipette, undigested pituitary fragments being allowed to settle for 3 to 5 minutes;
 - 7. Aspiration of the suspended cells followed by centrifugation at 1200 x g for 5 minutes;
 - 8. Re-suspension of the cells in culture medium of DMEM containing 0.37% NaHCO₃, 10% horse serum, 2.5% foetal bovine serum, 1% non essential amino acids, 1% glutamine and
- 25 0.1% gentamycin;
 - 9. Treatment of the undigested pituitary fragments 3 times with 30 ml aliquots of the collagenase and hyaluronidase;
 - 10. Pooling of the cell suspensions and dilution to a concentration of 3×10^5 cells/ml;
- 11. Placing of 1.0ml of this suspension in each of a 24 well tray, with the cells being maintained in a humidified 5% CO₂/95% air atmosphere at 37°C for 3 to 4 days

- 141 -

Testing of Compounds

The test compound is dissolved in DMSO to a final concentration of 0.5% in the incubation medium.

1.5 hours prior to the assay, the cells are washed three times with DMEM containing 0.37% NaHCO₃, 10% horse serum, 2.5% foetal bovine serum, 1% non essential amino acids (100X), 1% glutamine (100X), 1% penicillin/streptomycin (10,000 units of each per ml) and 25 mM HEPES at pH 7.4. Immediately prior to the assay, the cells are again washed twice in this medium.

Following this, 1ml of fresh medium containing the test compound and 2nM GnRH is added to two wells. For other test compounds (where it is desired to test more than one compound), these are added to other respective duplicate wells. Incubation is then carried out at 37°C for three hours.

Following incubation, each well is analysed by removing the medium from the well and centrifuging the medium at 2000 x g for 15 minutes to remove any cellular material. The supernatant is removed and assayed for LH content using a double antibody radio-immuno assay. Comparison with a suitable control (no test compound) is used to determine whether the test compound reduces LH release. Compounds according to the present invention have activity at a concentration from 1nM to $5~\mu M$.

CLAIMS:

A compound of Formula (I),

$$\mathbf{R}^{5}$$
 \mathbf{M}
 \mathbf{R}^{2}
 \mathbf{R}^{1}

Formula (I)

wherein

5

 \mathbf{R}^{1} is selected from: hydrogen, optionally-substituted C_{1-6} alkyl, optionally substituted aryl or optionally-substituted arylC₁₋₆alkyl;

 \mathbb{R}^2 is an optionally-substituted mono or bi-cyclic aromatic ring;

R³ is selected from a group of Formula (IIa) to Formula (IIf): 10

$$\begin{array}{c}
\mathbf{R}^{7} \\
\mathbf{N} - \mathbf{B} - \mathbf{R}^{8}
\end{array}$$

$$\begin{array}{c}
\mathbf{R}^{6} \\
\mathbf{R}^{6}
\end{array}$$

$$\begin{array}{c}
\mathbf{R}^{6} \\
\mathbf{R}^{6}
\end{array}$$

Formula (IIa)

Formula (IIc)

Formula (IId)
$$\begin{array}{c}
R^{22} \\
N-R^{21}
\end{array}$$

$$\begin{array}{c}
R^{6a}
\end{array}$$

$$\begin{array}{c}
R^{6a}
\end{array}$$

$$\begin{array}{c}
R^{6a}
\end{array}$$

$$\begin{array}{c}
R^{6a}
\end{array}$$

Formula (IIe)

Formula (IIf)

Formula (IIb)

R⁵ is a group of Formula (III):

15

- 143 -Formula (III)

 ${f R}^6$ and ${f R}^{6a}$ are independently selected from hydrogen, fluoro, optionally substituted C_{1-6} alkyl, optionally-substituted aryl or optionally substituted aryl C_{1-6} alkyl, or ${f R}^6$ and ${f R}^{6a}$ taken together and the carbon atom to which they are attached form a carbocyclic ring of 3-7 atoms, or ${f R}^6$ and ${f R}^{6a}$ taken together and the carbon atom to which they are attached form a carbonyl group;

A R⁶

or when A is not a direct bond the group

forms a carbocyclic ring of

3-7 carbon atoms or a heterocyclic ring containing one or more heteroatoms;

or the group

5

10

15

20

forms a heterocyclic ring containing 3-7 carbon atoms and

one or more heteroatoms;

 ${f R}^7$ is selected from: hydrogen, optionally-substituted $C_{1\text{-}6}$ alkyl, optionally-substituted aryl $C_{1\text{-}6}$ alkyl, optionally-substituted aryl, optionally substituted heterocyclyl, optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl, ${f R}^9OC_{1\text{-}6}$ alkyl-, ${f R}^9{f R}^{10}NC_{1\text{-}6}$ alkyl-, ${f R}^9{f R}^{10}NC_{1\text{-}6}$ alkyl, - ${f C}(N{f R}^9{f R}^{10})$ =NH;

or when \mathbb{R}^3 is a group of Formula (IIc) or (IId) \mathbb{R}^7 is of the formula -J- \mathbb{K} - \mathbb{R}^8 ; \mathbb{R}^8 is selected from:

- (i) hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, haloC₁₋₆alkyl, C₁₋₄alkyl, C₁₋₄alkyl, hydroxy, hydroxyC₁₋₆alkyl, cyano, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, C₁₋₆alkyl-S(O_n)-, -O-R^b, -NR^bR^c, -C(O)-R^b, -C(O)-R^b, -C(O)-R^b or -S(O_n)NR^bR^c, where R^b and R^c are independently selected from hydrogen and C₁₋₄alkyl optionally substituted with hydroxy, amino, N-C₁₋₄alkylamino, N,N-di-C₁₋₄alkylamino, HO-C₂₋₄alkyl-NH- or HO-C₂₋₄alkyl-N(C₁₋₄alkyl)-;
 - (ii) nitro when \mathbf{B} is a group of Formula (IV) and \mathbf{X} is CH and \mathbf{p} is 0;
- (iii) C_{3-7} cycloalkyl, aryl or aryl C_{1-6} alkyl each of which is optionally substituted by \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;

- 144 -

- (iv) -(Q)-aryl, -(Q)-heterocyclyl, -aryl-(Q)-aryl, each of which is optionally substituted by \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} wherein -(Q)- is selected from E, F or a direct bond;
- (v) heterocyclyl or heterocyclyl C_{1-6} alkyl each of which is optionally substituted by up to 4 substituents independently selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;
- (vi) a group selected from R^{12} , R^{13} and R^{14} ;

5

10

15

20

25

- R⁹ and R¹⁰ are independently selected from: hydrogen, hydroxy, optionally substituted C₁₋₆alkyl, optionally substituted aryl, optionally substituted arylC₁₋₆alkyl, an optionally substituted carbocyclic ring of 3-7 atoms, optionally substituted heterocyclyl, optionally substituted heterocyclylC₁₋₆alkyl or R⁹ and R¹⁰ taken together can form an optionally substituted ring of 3-9 atoms or R⁹ and R¹⁰ taken together with the carbon atom to which they are attached form a carbonyl group;
- ${f R^{11}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, or $N({f R^9}{f R^{10}})$; ${f R^{12}}$ is selected from: hydrogen, hydroxy, ${f R^{17}}{f R^{18}}N(CH_2)_{cc^-}$, ${f R^{17}}{f R^{18}}NC(O)(CH_2)_{cc^-}$, optionally substituted $C_{1\text{-}6}$ alkyl- $C(O)N({f R^9})(CH_2)_{cc^-}$, optionally substituted $C_{1\text{-}6}$ alkyl- $SO_2N({f R^9})$ -, optionally substituted aryl- $SO_2N({f R^9})$ -, optionally substituted $C_{1\text{-}6}$ alkyl- $N({f R^9})SO_2$ -, optionally substituted aryl- $N({f R^9})SO_2$ -, optionally substituted $C_{1\text{-}6}$ alkanoyl- $N({f R^9})SO_2$ -; optionally substituted aryl- $C(O)N({f R^9})SO_2$ -, optionally substituted $C_{1\text{-}6}$ alkyl-C(O)0, -, optionally substituted aryl-C(O)1, -, $C_{1\text{-}3}$ 1, optionally substituted $C_{1\text{-}6}$ 2, optionally substituted $C_{1\text{-}6}$ 3, optionally substituted $C_{1\text{-}6}$ 4, optionally substituted $C_{1\text{-}6}$ 5, optionally substituted $C_{1\text{-}6}$ 6, optionally substituted $C_{1\text{-}6}$ 8, optionally substituted $C_{1\text{-}6}$ 9, optionally substituted C_{1
- ${f R^{13}}$ and ${f R^{14}}$ are independently selected from: hydrogen, hydroxy, oxo, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{1\text{-}6}$ alkanoyl, optionally substituted $C_{2\text{-}6}$ alkenyl, cyano, nitro, $C_{1\text{-}3}$ perfluoroalkyl-, $C_{1\text{-}3}$ perfluoroalkoxy, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl, ${f R^9O(CH_2)_s}$ -, ${f R^9O(CO)(CH_2)_s}$ -, ${f R^{16}S(O_n)(CH_2)_s}$ -, ${f R^9R^{10}NC(O)(CH_2)_s}$ or halo;
- $\mathbf{R^{15}}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alkyl, $\mathbf{R^{19}OC(O)}$ -, $\mathbf{R^9R^{10}NC(O)}$ -, $\mathbf{R^9C(O)}$ -, $\mathbf{R^9S(O_n)}$ -;
- $\mathbf{R^{16}}$ is selected from: hydrogen, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}3}$ perfluoroalkyl or optionally-substituted aryl;

- 145 -

 ${f R}^{17}$ is independently selected from: hydrogen, hydroxy, cyano or optionally substituted C_{1-6} alkyl;

 R^{18} is a group of formula R^{18a} -C(R^9R^{10})₀₋₁- wherein R^{18a} is selected from: R^{19} OC(O)-, R^9R^{10} NC(O)-, R^9R^{10} N-, R^9C (O)-, R^9C (O)N(R^{10})-, R^9R^{10} NC(O)-, R^9R^{10} NC(O)N(R^{10})-, $R^9SO_2N(R^{10})$ -, R^9R^{10} NSO₂N(R^{10})-, R^9C (O)O-, R^9C

 ${f R}^{19}$ is selected from: hydrogen, optionally substituted $C_{1\text{-}6}$ alky, optionally substituted aryl, optionally substituted aryl $C_{1\text{-}6}$ alkyl, optionally substituted $C_{3\text{-}7}$ cycloalkyl, optionally substituted heterocyclyl or optionally substituted heterocyclyl $C_{1\text{-}6}$ alkyl;

 R^{21} and R^{22} are independently selected from hydrogen, optionally substituted C_{1-6} alkyl, optionally substituted C_{3-7} cycloalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclyl C_{1-6} alkyl, optionally substituted C_{3-6} alkenyl, optionally substituted C_{3-6} alkynyl, $-(C_{1-5}$ alkyl) $_{aa}$ $-S(O_n)$ $-(C_{1-5}$ alkyl) $_{bb}$ -; $R^9R^{10}NC_{2-6}$ alkyl, R^9OC_{2-6} alkyl or $R^9R^{10}NC(O)C_{2-6}$ alkyl, with the proviso that R^9 and R^{10} independently or taken together are not optionally substituted aryl or optionally substituted aryl C_{1-6} alkyl; or

 ${\bf R}^{21}$ and ${\bf R}^{22}$ taken together form an optionally substituted non-aromatic heterocyclic ring;

A is selected from:

5

10

15

20

- (i) a direct bond;
- (ii) optionally-substituted C_{1-5} alkylene wherein the optional substituents are independently selected from: optionally-substituted C_{1-6} alkyl optionally-substituted aryl or optionally substituted aryl C_{1-6} alkyl;
- (iii) a carbocyclic ring of 3-7 atoms;
- (iv) a carbonyl group or $-C(O)-C(\mathbf{R}^d\mathbf{R}^d)$ -, wherein \mathbf{R}^d is independently selected from hydrogen and C_{1-2} alkyl;

N-B-Z

forms

or when \mathbb{R}^3 is a group of Formula (IIa) or (IIb), the group

a heterocyclic ring containing 3-7 carbon atoms and one or more heteroatoms; or when \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId), the group

forms a heterocyclic ring containing 3-7 carbon atoms and one

5 or more heteroatoms;

B is selected from:

- (i) a direct bond;
- (ii) a group of Formula (IV)

$$X \longrightarrow (CH_2)_{p} \xrightarrow{\frac{1}{2}}$$
(a)
$$R^{11}$$

Formula (IV)

wherein:

10

15

20

X is selected from N or CH,

wherein at position (a) Formula (IV) is attached to the nitrogen atom and the $(CH_2)p$ group is attached to \mathbf{R}^8 ; and

(iii) a group independently selected from: optionally substituted $C_{1\text{-}6}$ alkylene, optionally substitute $C_{3\text{-}7}$ cycloalkyl, optionally substituted $C_{3\text{-}6}$ alkenylene, optionally substituted $C_{3\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $(C_{1\text{-}5}\text{alkyl})_{aa}\text{-}S(O_n)\text{-}(C_{1\text{-}5}\text{alkyl})_{bb}\text{-}, (C_{1\text{-}5}\text{alkyl})_{aa}\text{-}O\text{-}(C_{1\text{-}5}\text{alkyl})_{bb}\text{-}, \\ -(C_{1\text{-}5}\text{alkyl})_{aa}\text{-}C(O)\text{-}(C_{1\text{-}5}\text{alkyl})_{bb}\text{-} \text{ or } (C_{1\text{-}5}\text{alkyl})_{aa}\text{-}N(\mathbf{R^{15}})\text{-} (C_{1\text{-}5}\text{alkyl})_{bb}, \\ \text{wherein } \mathbf{R^{15}} \text{ and the } (C_{1\text{-}5}\text{alkyl})_{aa} \text{ or } (C_{1\text{-}5}\text{alkyl})_{bb} \text{ chain can be joined to form a ring , wherein the combined length of } (C_{1\text{-}5}\text{alkyl})_{aa} \text{ and } (C_{1\text{-}5}\text{alkyl})_{bb} \text{ is less than or equal to } C_{5}\text{alkyl};$

- 147 -

or the group -B-R⁸ represents a group of Formula (V)

Formula (V);

together forms an optionally substituted heterocyclic ring or the group

containing 4-7 carbons atoms; 5

forms a heterocyclic ring containing 3-7 carbon atoms or the group

and one or more heteroatoms;

 \mathbf{F} is $-\mathbf{E}(\mathbf{CH_2})_{\mathbf{r}}$;

20

G is selected from: hydrogen, halo, N, O, $S(O_n)$, C(O), $C(R^9R^{10})_t$, optionally 10 substituted C_{2-6} alkenylene, optionally substituted C_{2-6} alkynylene or a direct bond to \mathbb{R}^{18} ,

> J is a group of the formula: $-(CH_2)_s$ -L- $-(CH_2)_s$ - wherein when s is greater than 0, the alkylene group is optionally substituted,

together forms an optionally substituted heterocyclic ring or the group 15 containing 4-7 carbons atoms;

K is selected from: a direct bond, $-(CH_2)_{s1}$ -, $-(CH_2)_{s1}$ -O- $-(CH_2)_{s2}$ -,

$$-(CH_2)_{s1}C(O)-(CH_2)_{s2}-\ ,\ -(CH_2)_{s1}S(O_n)-(CH_2)_{s2}-\ ,\ -(CH_2)_{s1}N(\textbf{R}^{18})-(CH_2)_{s2}-\ ,$$

$$-(CH_2)_{s1}-C(O)N({\bf R}^9)-(CH_2)_{s2}-, -(CH_2)_{s1}-N({\bf R}^9)C(O)-(CH_2)_{s2}-,$$

$$-(CH_2)_{s1}-N({I\!\!R}^9)C(O)N({I\!\!R}^9)-(CH_2)_{s2}-, -(CH_2)_{s1}-OC(O)-(CH_2)_{s2}-,$$

-
$$(CH_2)_{s1}$$
- $C(O)O$ - $(CH_2)_{s2}$ -, - $(CH_2)_{s1}$ - $N(\mathbf{R}^9)C(O)O$ - $(CH_2)_{s2}$ -,

-(CH₂)_{s1}-OC(O)N(
$${\bf R^9}$$
)-(CH₂)_{s2}-, -(CH₂)_{s1}-OS(O_n)-(CH₂)_{s2}-, or

$$-(CH_2)_{s1}-S(O_n)-O-(CH_2)_{s2}--(CH_2)_{s1}-S(O)_2N(\textbf{R}^9)-(CH_2)_{s2}-,$$

 $-(CH_2)_{s1}-N(\mathbf{R}^9)S(O)_2-(CH_2)_{s2}-$; wherein the $-(CH_2)_{s1}-$ and $-(CH_2)_{s2}-$ groups are

independently optionally substituted by hydroxy or C₁₋₄alkyl; 25

PCT/GB2003/003633 WO 2004/017961

- 148 -

L is selected from optionally substituted aryl or optionally substituted heterocyclyl; M is selected from $-(CH_2)_{0-2}$ -O-- or -C(O)NH-; **n** is an integer from 0 to 2; **p** is an integer from 0 to 4; q is an integer from 0 to 4; 5 r is an integer from 0 to 4; s is an integer from 0 to 4; s1 and s2 are independently selected from an integer from 0 to 4, and s1+s2 is less than or equal to 4; t is an integer from 0 to 4;

10

aa and bb are independently 0 or 1; and

cc is an integer between 0 to 2;

with the proviso that

- when G is hydrogen or halo, then R^{17} and R^{18} are both absent; (i)
- when G is O, $S(O_n)$, C(O) or $C(R^{11}R^{12})_t$ then G is substituted by a single group 15 independently selected from the definition of $\mathbf{R^{17}}$ or $\mathbf{R^{18}}$ and when G is a direct bond to R^{18} then G is substituted by a single group selected from R^{18} ;
 - (iii) when \mathbb{R}^3 is a group of Formula (IIb), \mathbb{B} is a group of Formula (IV), \mathbb{R}^8 is selected from group (i) or (ii) above, R^{11} is a group of the formula $N(R^{10}R^{11})$ and R^1 , R^2 and \mathbb{R}^5 are as defined above then \mathbb{R}^4 cannot be hydrogen;
 - R³ cannot be unsubstituted pyridyl or unsubstituted pyrimidinyl; and
 - when \mathbb{R}^3 is pyrazolyl substituted by phenyl or pyrazolyl substituted by phenyl and (v) acetyl, \mathbb{R}^5 -M is hydroxyl or acetyloxy, \mathbb{R}^2 is unsubstituted phenyl, then \mathbb{R}^1 cannot be hydrogen or acetyl;
- or a salt, pro-drug or solvate thereof. 25
 - A compound according to Claim 1 wherein \mathbb{R}^1 is hydrogen. 2.
- A compound according to Claim 1 or Claim 2 wherein \mathbb{R}^3 is selected from a group of 3. Formula (IIa) or Formula (IIb). 30
 - A compound according to Claim 3 wherein $\bf B$ is optionally substituted C_{1-6} alkylene. 4.

15

20

5. A compound according to Claim 1 or Claim 2 wherein \mathbb{R}^3 is selected from a group of Formula (IIc) or Formula (IId).

- 6. A compound according to Claim 5 wherein the group together forms an optionally substituted heterocyclic ring containing 4-7 carbons atoms
- 7. A compound according to Claim 6 wherein **K** is selected from: -(CH₂)_s-,
 -(CH₂)_s-O-(CH₂)_s-, -(CH₂)_s-C(O)-(CH₂)_s-, -(CH₂)_s-N(**R**¹⁸)-(CH₂)_s-,
 -(CH₂)_s-C(O)N(**R**¹⁸)-(CH₂)_s-, -(CH₂)_s-N(**R**¹⁸)C(O)-(CH₂)_s-,
 -(CH₂)_s-S(O)₂N(**R**¹⁸)-(CH₂)_s-, or -(CH₂)_s-NHS(O)₂-(CH₂)_s-.
 - 8. A compound according to any one of Claims 3, 4, 5, 6 or 7 wherein \mathbf{R}^8 is selected from: (i) hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, halo $C_{1\text{-}6}$ alkyl, hydroxy, cyano, $C_{1\text{-}6}$ alkyl $S(O_n)$ -, -O- \mathbf{R}^b , $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkyl, -C(O)- \mathbf{R}^b , C(O)O- \mathbf{R}^b , -NH-C(O)- \mathbf{R}^b , N,N-di- $C_{1\text{-}4}$ alkylamino, $-S(O_n)N\mathbf{R}^b\mathbf{R}^c$ where \mathbf{R}^b and \mathbf{R}^c are independently selected from hydrogen and $C_{1\text{-}6}$ alkyl, and \mathbf{n} is 0, 1 or 2;
 - (ii)-(Q)-aryl, optionally substituted by up to 3 groups selected from $\mathbf{R^{12}}$, $\mathbf{R^{13}}$ and $\mathbf{R^{14}}$;
 - (iii) C_{4-7} heterocyclyl, optionally substituted by up to 3 groups selected from \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} , or
 - (iv) C_{3-7} carbocyclyl, optionally substituted by up to 3 groups selected from \mathbf{R}^{12} , \mathbf{R}^{13} and \mathbf{R}^{14} ;

9. A compound according to any one of the preceding claims wherein \mathbb{R}^5 is a group of Formula (III) wherein the group of Formula (III) is selected from any one of III-a to III-1;

5 wherein:

10

15

20

het represents an optionally substituted 3- to 8- membered heterocyclic ring containing from 1 to 4 heteroatoms independently selected from O, N and S;

 ${f R}^{23}$ and ${f R}^{23a}$ are independently selected from hydrogen, fluoro or optionally substituted $C_{1\text{-}8}$ alkyl; or ${f R}^{23}$ and ${f R}^{23a}$ together with the carbon to which they are attached form an optionally substituted 3 to 7-membered cycloalkyl ring

 ${f R}^{24}$ is selected from hydrogen, optionally substituted $C_{1\text{-8}}$ alkyl, optionally substituted aryl, $-{f R}^d$ -Ar, where ${f R}^d$ represents $C_{1\text{-8}}$ alkylene and Ar represents optionally substituted aryl, and optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S;

 ${\bf R}^{25}$ is selected from hydrogen; optionally substituted C_{1-8} alkyl and optionally substituted aryl;

or where the group of Formula (III) represents a group of Formula III-a, III-b or III-i, then the group $NR^{24}(-R^{25})$ represents an optionally substituted 3- to 8-membered heterocyclic ring optionally containing from 1 to 3 further heteroatoms independently selected from O, N and S;

- 151 -

or where the group of Formula (III) represents structure III-e, R²⁴ and R²⁵ together with the carbon to which they are attached represents an optionally substituted 3- to 8- membered heterocyclic ring optionally containing from 1 to 4 heteroatoms independently selected from O, N and S;

5

10

- 10. A compound according to any one of the preceding claims wherein \mathbf{R}^2 is selected from an optionally substituted monocyclic aromatic ring structure wherein the optional substituents are selected from cyano, $N\mathbf{R}^e\mathbf{R}^f$, optionally substituted C_{1-8} alkyl, optionally substituted C_{1-8} alkoxy or halo wherein \mathbf{R}^e and \mathbf{R}^f are independently selected from hydrogen, C_{1-6} alkyl or aryl.
- 11. A compound selected from:
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*-[2-(1,3-benzodioxol-5-yl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-pyrid-4-ylethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-pyrid-4-ylbutyl]-(2S)-propylamine;
- 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*[4-(4-methoxyphenyl)butyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
- 25 [2-(43-trifluoromethylphenyl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(4-fluorophenyl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-
- 30 [2-(3-methoxyphenyl)ethyl]-(2S)-propylamine;
 - 2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1*H*-pyrazol-4-yl]-*N*[2-(4-methoxyphenyl)ethyl]-(2S)-propylamine;

- 152 -

2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.1]heptan-7-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-

[2-(4-methylsulphonylaminophenyl)ethyl]-(2S)-propylamine; and

2-[3-(2,2-dimethyl-3-oxo-3-{azabicyclo[2.2.2]oct-2-yl}propoxy)-5-(3,5-dimethylphenyl)-1H-pyrazol-4-yl]-N-[2-(1,3-benzodioxol-5-

yl)ethyl]-(2S)-propylamine;

or a salt, pro-drug or solvate thereof.

- 12. A compound, or salt, pro-drug or solvate thereof, according to any one of Claims
 10 1 to 11 for use as a medicament.
 - 13. A pharmaceutical formulation comprising a compound, or salt, pro-drug or solvate thereof, according to any one of Claims 1 to 11 and a pharmaceutically acceptable diluent or carrier.

15

5

- 14. Use of a compound, or salt, pro-drug or solvate thereof, according to any one of Claims 1 to 11, in the manufacture of a medicament for antagonising gonadotropin releasing hormone activity.
- 20 15. Use of a compound, or salt, pro-drug or solvate thereof, according to any one of Claims 1 to 11, in the manufacture of a medicament for administration to a patient, for therapeutically treating and/or preventing a sex hormone related condition in the patient.
- 16. A process for the preparation of a compound of Formula (I) as defined in Claim 1, comprising a process selected from (a) to (h) as follows:
 - (a) Reaction of a compound of formula **XXXII** with a compound of formula **H-R**⁵, to form a compound of Formula (I),

XXXII

Formula (I)

wherein X^1 is selected from:

; L¹ is a displaceable

group; and

5

10

15

20

$$\mathbf{R}^{7}$$
 $\mathbf{N}^{-}\mathbf{B}^{-}\mathbf{R}^{8}$
 \mathbf{R}^{7}
 \mathbf{R}^{7}
 \mathbf{R}^{22}
and $\mathbf{N}^{-}\mathbf{R}^{21}$
 \mathbf{R}^{21}
 \mathbf{R}^{21}
 \mathbf{R}^{21}
 \mathbf{R}^{21}

H-R⁵' is selected from:

(b) Reaction of a compound of formula **XXXIII** with a compound of formula H-**R**⁵, to form a compound of Formula (I),

XXXIII

Formula (I)

$$R^{6a}$$
 R^{6a} R^{7a} R^{6a} R^{6a} R^{7a} R

wherein X^2 is selected from:

displaceable group and R^{7a} is selected from the definition of R^7 or R^{22} above, and L^2 - R^5 , is selected from:

 L^2-B-R^8 , $L^2-J-K-R^8$ and L^2-R^{21}

- (c) For compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbb{R}^7 is other than part of a heterocyclic ring or hydrogen, reaction of a compound of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIa), (IIb), (IIc) or (IId) and \mathbb{R}^7 is hydrogen with a group of formula \mathbb{L}^3 - \mathbb{R}^{7a} , wherein \mathbb{R}^{7a} is as defined above for \mathbb{R}^7 with the exclusion of hydrogen and \mathbb{L}^3 is a displaceable group;
- (d) For compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{21} is other than hydrogen, reaction of a compound of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{21} is hydrogen with a group of formula \mathbf{L}^4 - \mathbf{R}^{21a} , wherein \mathbf{R}^{21a} is as defined above for \mathbf{R}^{21} with the exclusion of hydrogen and \mathbf{L}^4 is a displaceable group;

(e) For compounds of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{22} is other than hydrogen, reaction of a compound of Formula (I) wherein \mathbf{R}^3 is a group of Formula (IIe) or (IIf) and \mathbf{R}^{22} is hydrogen with a group of formula \mathbf{L}^5 - \mathbf{R}^{22a} , wherein \mathbf{R}^{22a} is as defined above for \mathbf{R}^{22} with the exclusion of hydrogen and \mathbf{L}^5 is a displaceable group;

(f) For compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIc) or (IId) and

the group

5

10

15

together forms an optionally substituted

nitrogen-containing heterocyclic ring containing 4-7 carbons atoms, reaction of a compound of Formula **XXXIVa** or **XXXIVb**, with a compound of Formula

 L^6 -K- R^8 , wherein L^3 is a displaceable group

$$R^{5}$$
 R^{6a}
 R^{6a}

/a XXXIVb

(g) For compounds of Formula (I) wherein \mathbb{R}^3 is a group of Formula (IIc) or (IId), reaction of a compound of Formula XXXVa or XXXVb, with a compound of Formula \mathbb{L}^7 - \mathbb{K}^7 - \mathbb{R}^8 , wherein \mathbb{L}^7 is a displaceable group, and wherein the groups \mathbb{K}^7 and \mathbb{K}^7 comprise groups which when reacted together form \mathbb{K} ,

(h) reaction of a compound of Formula XXXVI with a compound of the formula L^8 - R^5 , wherein L^8 is a displaceable group

$$R^5$$
 M R^2 R^1

IVXXX

- 155 -

and thereafter if necessary:

i) converting a compound of the Formula (I) into another compound of the Formula (I);

- ii) removing any protecting groups;
- iii) forming a salt, pro-drug or solvate.