

Regresión Lineal

Consideraciones para el análisis de datos en los cursos de laboratorio de Física

Héctor F. Hernández G. Regresión Lineal 29 de mayo de 2024 1/21

Regresión Lineal

- 1 El problema de la regresión lineal
- 2 La regresión lineal simple
- 3 Método de mínimos cuadrados
- 4 Coeficiente de regresión
- 6 Coeficiente de correlación lineal
- 6 El contraste de regresión
- Inferencias acerca de los parámetros
- 8 Inferencias acerca de la predicción
- O Los supuestos del modelo de regresión lineal
- Un ejemplo en donde no se cumplen los supuestos

Héctor F. Hernández G. Regresión Lineal 29 de mayo de 2024

1. El problema de la regresión lineal

- La regresión es una técnica estadística para investigar y modelar relaciones entre variables.
- Las relaciones estadísticas difieren de las funcionales porque no son perfectas; las observaciones no caen directamente sobre una curva.
- Se supone una relación entre una respuesta cuantitativa y y k predictores x_1, x_2, \ldots, x_k de la forma general:

$$y = f(x) + \varepsilon$$

donde f es una función desconocida de x_1, \ldots, x_k y ε es un término de error aleatorio independiente de x con media cero.

- La función f representa la información sistemática que x proporciona sobre y.
- El método paramétrico más utilizado asume que f es lineal en x:

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

• Para ajustar el modelo lineal, se estiman los parámetros $\beta_0, \beta_1, \dots, \beta_k$ de manera que:

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

<ロト </p> Héctor F. Hernández G. Regresión Lineal 3/21

2. La regresión lineal simple

Modelo:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

donde y_i es la respuesta, x_i es el regresor, β_0 es la intersección, β_1 es la pendiente, y ε_i es el término de error aleatorio.

- Características del Modelo:
 - 1. y_i es una variable aleatoria compuesta por $\beta_0 + \beta_1 x_i$
 - 2. La función de regresión:

$$E\left(y_i \mid x_i\right) = \beta_0 + \beta_1 x_i$$

relaciona las medias de las distribuciones de y_i para cada x_i .

- 3. ε_i introduce variabilidad adicional a y_i con varianza constante σ^2 .
- 4. El modelo asume varianza constante para y_i :

$$\sigma^2 \left\{ y_i \right\} = \sigma^2$$

5. Los términos de error ε_i no están correlacionados entre sí, lo que implica que las respuestas y_i tampoco lo están.

Con técnicas de regresión de una variable y (respuesta) sobre una variable x (regresor), se busca una función que sea una buena aproximación de una nube de puntos, mediante una curva del tipo:

$$\hat{y} = f(x)$$

Héctor F. Hernández G. Regresión Lineal 29 de mayo de 2024

Un modelo con un único regresor x y que tiene una relación con la respuesta y en la forma de una línea recta es lo que se denomina un modelo de regresión lineal simple:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

En donde β_0 es la ordenada en el origen (el valor que toma y cuando x vale 0), β_1 es la pendiente de la recta (e indica cómo cambia y al incrementar x en una unidad) y ε una variable que incluye un conjunto grande de factores, cada uno de los cuales influye en la respuesta sólo en pequeña magnitud, a la que llamaremos error.

Por lo tanto, x e y son variables aleatorias, por lo que no se puede establecer una relación lineal exacta entre ellas.

• Ejemplo: Ley de enfriamiento de Newton.

Esta ley establece que la tasa de cambio de la temperatura de un objeto es proporcional a la diferencia entre la temperatura del objeto y la temperatura del ambiente:

$$\frac{dT}{dt} = -k\left(T - T_{\mathsf{e}}\right)$$

donde:

- T es la temperatura del objeto.
- $T_{\rm e}$ es la temperatura del entorno.
- *k* es una constante que depende de las características del objeto y del entorno.
- $\frac{dT}{dt}$ es la tasa de cambio de la temperatura con respecto al tiempo.

La solución de esta ecuación diferencial es:

$$T(t) = T_{e} + (T_{0} - T_{e}) e^{-kt}$$

donde: T(t) es la temperatura del objeto en el tiempo t y T_0 es la temperatura inicial.

Experimento: Enfriamiento de un material con exposición a un medio refrigerante Descripción del Experimento:

- Objetivo: Determinar cómo la temperatura de un material disminuye con el tiempo cuando se expone a un medio refrigerante.
- Variables: y, temperatura del material (en grados Celsius) y x tiempo de exposición al refrigerante (en minutos)

Procedimiento:

- Inicialización: Calentar un material a una temperatura inicial alta.
- Exposición: Colocar el material en un medio refrigerante.
- Medición: Registrar la temperatura del material a intervalos regulares de tiempo
- Datos Recogidos:
 - y_n : Temperatura del material en diferentes momentos.
 - x_n : Tiempo transcurrido desde el inicio del enfriamiento.

3. Método de mínimos cuadrados

El método de los mínimos cuadrados permite estimar β_0 y β_1 de forma que la suma de los cuadrados de las diferencias entre las observaciones y_i y la recta sea un mínimo.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, \dots, n$$
 (1)

La ecuación (1) es un modelo de regresión muestral, escrito en términos de los n pares de datos (y_i, x_i) , con $i = 1, 2, \ldots, n$.

A los estimadores obtenidos por mínimos cuadrados β_0 y β_1 , los llamaremos b y m, respectivamente, y deben satisfacer una relación lineal de la forma:

$$\hat{y} = mx + b\,,$$

donde \hat{y} es la variable dependiente y x es la variable independiente, en nuestro caso la magnitud controlada por el experimentador. El método de mínimos cuadrados consiste en minimizar suma de los cuadrados de los errores:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Es decir, la suma de los cuadrados de las diferencias entre los valores reales observados (y_i) y los valores estimados (\hat{y}_i) .

Minimizar suma de los cuadrados de los errores se logra calculando las derivadas parciales de la suma con respecto a m y con respecto a b, e igualándolas a cero.

Con este método, las expresiones que se obtiene para b y m son las siguientes:

$$m = \frac{S_{xy}}{S_x^2} \quad b = \bar{y} - m\bar{x} \,,$$

En donde \bar{x} e \bar{y} denotan las medias muestrales de x y y (respectivamente),

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \ \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n},$$

 S_x^2 es la varianza muestral de x y S_{xy} es la covarianza muestral entre x y y. Estos parámetros se calculan como:

$$S_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}, S_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n}, S_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{n}.$$

La cantidad m se denomina coeficiente de regresión de y sobre x, lo denotamos por $m_{y/x}$.

Héctor F. Hernández G

En nuestro ejemplo, los estadísticos descriptivos anteriores para las variables temperatura y tiempo del enfriamiento son los siguientes:

$$\bar{x} = 13,3625, \quad \bar{y} = 213,0075$$
 $S_x^2 = 110,6559, \quad S_y^2 = 1692,2956$
 $S_{xy} = -410,3117$
 $m = -3,708, \quad b = 262,556$

La recta de regresión ajustada es la siguiente:

$$\hat{y} = 262,556 - 3,708x,$$

donde \hat{y} es la temperatura y x el tiempo de enfriamiento.

Hay varias propiedades que se cumplen para los mínimos cuadrados:

 $oldsymbol{0}$ La suma de los valores observados \hat{y}_i es igual a la suma de los valores ajustados \hat{y}_i , o bien

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i$$

2 La suma de los residuos que contiene un intercepto β_0 es siempre cero

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} e_i = 0$$

3 La recta siempre pasa por el centroide, el punto (\bar{x}, \bar{y}) de los datos.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = m\bar{x} + b.$$

4 La suma de los residuos ponderada por el valor de la variable regresora es cero

$$\sum_{i=1}^{n} x_i e_i = 0$$

6 La suma de los residuos ponderada por el valor ajustado siempre es cero

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0$$

Héctor F. Hernández G. Regresión Lineal 29 de mayo de 2024 12/21

4. Coeficiente de regresión

El coeficiente de regresión nos da información sobre el comportamiento de la variable y frente a la variable x, de manera que:

- **1** Si $m_{y/x} = 0$, para cualquier valor de x la variable y es constante.
- 2 Si $m_{y/x} > 0$, esto nos indica que al aumentar el valor de x, también aumenta el valor de y.
- 3 Si $m_{y/x} < 0$, esto nos indica que al aumentar el valor de x, el valor de y disminuye.

En el ajuste de regresión lineal para la temperatura y el tiempo de enfriamiento resultó

$$\hat{y} = 262,556 - 3,708x,$$

El coeficiente de regresión que se obtuvo fue $m_{y/x}=-3{,}708<0$ y esto indica que al aumentar x disminuye y.

Héctor F. Hernández G Regresión Lineal 29 de mayo de 2024 13 / 21

5. Coeficiente de correlación lineal

El coeficiente de correlación lineal entre x e y viene dado por:

$$r = \frac{S_{xy}}{S_x S_y}$$

y trata de medir la dependencia lineal que existe entre las dos variables. Su cuadrado se denomina coeficiente de determinación r^2 .

Propiedades del coeficiente de correlación:

- No tiene dimensión, y siempre toma valores en [-1,1].
- **2** Si las variables son independientes, entonces r=0, el inverso no tiene por qué ser cierto.
- 3 Si existe una relación lineal exacta entre x e y, entonces r=1 (relación directa) ó r=-1 (relación inversa).
- **4** Si r > 0, indica una relación directa entre las variables (si aumenta x, aumenta y).
- **6** Si r < 0, indica una relación directa entre las variables (si aumenta x, disminuye y).

4 L F 4 L F 4 L F 7 L F

Para nuestro ejemplo el valor de r es

$$r = \frac{S_{xy}}{S_x S_y} = \frac{-410,3117}{\sqrt{110,6559}\sqrt{1692,2956}} = -0,9482$$

Al ser negativo, esto indica que existe una relación inversa entre las variables cizallamiento y edad del pegamento. Además su valor es próximo a 1 indicando una dependencia lineal muy fuerte.

El coeficiente de determinación al cuadrado es $r^2 = 0.8990$.

Relación entre los coeficientes de regresión y de correlación:

$$m_{y/x} = r \frac{S_y}{S_x} = -3,708, \quad m_{x/y} = r \frac{S_x}{S_y} = -0,242.$$

Los dos coeficientes de regresión y el coeficiente de correlación tienen el mismo signo

15 / 21

OLS Regression Results						
Dep. Variable: y			y R–squa	 R-squared:		0.963
Model:	OLS		_S Adj. F	Adj. R-squared:		0.958
Method:	Least Squares		es F-stat	F-statistic:		205.7
Date:	Mon, 27 May 2024		24 Prob	<pre>Prob (F-statistic):</pre>		5.45e-07
Time:	10:18:42		42 Log–L:	Log-Likelihood:		-3.7692
No. Observations:		:	10 AIC:			11.54
Df Residuals:			8 BIC:			12.14
Df Model:			1			
Covariance Type:		nonrobus	st			
==========	coef	std err	t	P> t	[0.025	0.975]
const 0	.7362	0.226	3.254	0.012	0.215	1.258
x1 5.	.8844	0.410	14.343	0.000	4.938	6.831
Omnibus:	======	======== 1.6	======= 14 Durbi:	======== n-Watson:	=======	1.076
Prob(Omnibus):		0.44	46 Jarque	e-Bera (JB):		0.806
Skew:	Skew: 0.218		18 Prob(Prob(JB):		0.668
Kurtosis:		1.67	79 Cond.	No.		4.04