RSIC-V Datapath and Control Pipeline - I

Chixiao Chen

Overview

Basic digital logic knowledge

Datapath/Control for Single Cycle Processor

Pipeline – Part I

Announcement

Homework 1 is on line at

• All slides is available on

https://cihlab.github.io/course/cahw01.pdf

https://cihlab.github.io/course/ai 19.html

• April 11th class will be canceled.

Review: RISC-V Instruction Format

31	2	5 24	2	20 ′	19	15	14	12	11		7 6	6	0	
	funct7		rs2		rs1		fun	ct3		rd		opcode		R-type
	imm[11	:0]			rs1		fun	ct3		rd		opcode		I-type
	imm[11:5]		rs2		rs1		fun	ct3	im	m[4:0)]	opcode		S-type
	imm[31:12]							rd		opcode		U-type		
												·		

Figure A.23 The RISC-V instruction layout. There are two variations on these formata, called the SB and UJ formats; they deal with a slightly different treatment for immediate fields.

Basic Digital Logic Knowledge

Combinational Logic

• Use Truth Table

Verilog make is more easily

Exhaustive list of the output value generated for each combination of inputs

How many logic functions can be defined with N inputs?

a	b	c	d	у
)	0	0	0	F(0,0,0,0)
)	0	0	1	F(0,0,0,1)
)	0	1	0	F(0,0,1,0)
)	0	1	1	F(0,0,1,1)
)	1	0	0	F(0,1,0,0)
)	1	0	1	F(0,1,0,1)
)	1	1	0	F(0,1,1,0)
l	1	1	1	F(0,1,1,1)
l	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
l	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)
	a))))))))))) [[[[[[[[0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

Sequential Logic and Flip-Flops

• Flip Flop (触发器) is the basic cell to store the logic with clock

Verilog example

```
module D_reg4a (Data_in, clock, reset, Data_out);
input [3:0] Data_in;
input clock, reset;
output [3:0] Data_out;
reg [3:0] Data_out;
always @ (posedge reset or posedge clock)
if (reset == 1'b1) Data_out <= 4'b0;
else Data_out <= Data_in;
endmodule</pre>
```


Finite State Machine

Verilog Example

Figure 1 - FSM Block Diagram

```
timescale 1 ns/1 ns
                                                  S On1: begin
                                                     x = 1:
module LaserTimer (B, X, Clk, Rst);
                                                     StateNext = S On2;
                                                  end
   input B;
                                                  S On2: begin
   output reg X;
                                                     x = 1;
   input Clk, Rst;
                                                     StateNext = S On3;
                                                  end
   parameter S Off = 0, S On1 = 1,
                                                  S On3: begin
             s on2 = 2, s on3 = 3;
                                                     x = 1:
                                                     StateNext = S Off;
   reg [1:0] State, StateNext;
                                                  end
                                               endcase
   // CombLogic
                                            end
   always @ (State, B) begin
      case (State)
                                            // StateReg
         S Off: begin
                                            always @ (posedge Clk) begin
            x = 0;
                                               if (Rst == 1 )
            if (B == 0)
                                                  State <= S Off;
               StateNext = S Off;
                                               else
            else
                                                  State <= StateNext;
                StateNext = S On1;
                                            end
         end
                                         endmodule
```

Single Cycle RV321 Processor

State Required by RV321

Each instruction reads and updates this state during execution:

- Registers (x0..x31)
 - Register file (or regfile) Reg holds 32 registers x 32 bits/register: Reg[0].. Reg[31]
 - First register read specified by rs1 field in instruction
 - Second register read specified by rs2 field in instruction
 - Write register (destination) specified by rd field in instruction
 - x0 is always 0 (writes to Reg[0] are ignored)
- Program Counter (PC)
 - Holds address of current instruction
- Memory (MEM)
 - Holds both instructions & data, in one 32-bit byte-addressed memory space
 - We'll use separate memories for instructions (IMEM) and data (DMEM)
 - Later we'll replace these with instruction and data caches
 - Instructions are read (fetched) from instruction memory (assume IMEM read-only)
 - Load/store instructions access data memory

One-Instruction-Per-Cycle RISC-V Machine

- Current state outputs drive the inputs to the combinational logic, whose outputs settles at the values of the state before the next clock edge
- At the rising clock edge, all the state elements are updated with the combinational logic outputs, and execution moves to the next clock cycle

Basic Phase of Instruction Execution

Implementing the add instruction

Timing Diagram for add

Implementing other R-format Instructions

						1
0000000	rs2	rs1	000	rd	0110011	ADD
0100000	rs2	rs1	000	rd	0110011	SUB
0000000	rs2	rs1	001	rd	0110011	SLL
0000000	rs2	rs1	010	rd	0110011	SLT
0000000	rs2	rs1	011	rd	0110011	SLTU
0000000	rs2	rs1	100	rd	0110011	XOR
0000000	rs2	rs1	101	rd	0110011	SRL
0100000	rs2	rs1	101	rd	0110011	SRA
0000000	rs2	rs1	110	rd	0110011	OR
0000000	rs2	rs1	111	rd	0110011	AND

 All implemented by decoding funct3 and funct7 fields and selecting appropriate ALU function

Implementing the addi instruction

• addi x15,x1,-50

 1	 				
imm[11:0]	rs1	000	rd	0010011	ADDI
imm[11∙0]	re1	010	rd	0010011	SETT

111111001110	00001	000	01111	0010011
imm=-50	rs1=1	ADD	rd=15	OP-Imm

Previous Architecture

Implementing the addi instruction

Implementing other I-format Instructions

imm[11:0	0]	rs1	000	rd	0010011	ADDI
imm[11:0	[0]	rs1	010	rd	0010011	SLTI
imm[11:0	0]	rs1	011	rd	0010011	SLTIU
imm[11:0	0]	rs1	100	rd	0010011	XORI
imm[11:0	0]	rs1	110	rd	0010011	ORI
imm[11:0	imm[11:0]		111	rd	0010011	ANDI
0000000	shamt	rs1	001	rd	0010011	SLLI
0000000	shamt	rs1	101	rd	0010011	SRLI
0100000	shamt	rs1	101	rd	0010011	SRAI
000000	-0-		0.00	1	0440044	4

- All xxx-I instruction implemented by decoding funct3.
- Question: imm only have 12 bit, but input of ALU is 32bit.

U-Type for Upper Immediate instruction

imm[31:12]	rd	0110111	LUI
imm[31:12]	rd	0010111	AUIPC
![00 10.1 11 10.16	1	1101111	TAT

- Has 20-bit immediate in upper 20 bits of 32-bit instruction word
- One destination register, rd
- Used for two instructions
 - LUI Load Upper Immediate
 - AUIPC Add Upper Immediate to PC

Implementing the load(lw) instruction

• lw x14, 8(x2)

LW

Previous Architecture

Implementing the load(lw) instruction

Implementing other load Instructions

imm[11:0]	rs1	000	rd	0000011	LB
imm[11:0]	rs1	001	rd	0000011	LH
imm[11:0]	rs1	010	rd	0000011	LW
imm[11:0]	rs1	100	rd	0000011	LBU
imm[11:0]	rs1	101	rd	0000011	LHU

- Supporting the narrower loads requires additional circuits to extract the correct byte/halfword from the value loaded from memory, and sign- or zero-extend the result to 32 bits before writing back to register file.
- Compare the load instructions with prevous i-type instructions

Implementing the store(sw) instruction

• sw x14, 8(x2)

Implementing the store(sw) instruction

I-Type, S-Type Immediate Generator

Other bits in immediate are wired to fixed positions in instruction

Implementing the branch(beq) instruction

imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ

- B-Type is mostly same as S-Type, with two register sources (rs1/rs2) and a 12-bit immediate
- But now immediate represents values -4096 to +4094 in 2-byte increments ,
- The 12 immediate bits encode even 13-bit signed byte offsets (lowest bit of offset is always zero, so no need to store it)

i.e., PC = PC + immediate * 2

Implementing the branch(beq) instruction

Branch Comparator

 B-Type are decoded by func3 only

 Question: Why B-Type use such "weird" imme format?

- BrEq = 1, if A=B
- BrLT = 1, if A < B
- BrUn =1 selects unsigned comparison for BrLT, 0=signed

BGE branch: A >= B, if !(A<B)

Na contract of the contract of						
imm[12 10:5]	rs2	rs1	000	[imm[4:1 11]]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:0	וו	re1	nnn	rd	0000011	LR

Implementing the jalr instruction

- jalr rd, rs, imme
 - Writes PC+4 to Reg[rd] (return address)
 - Sets PC = Reg[rs1] + immediate
 - Uses same immediates as arithmetic and loads
 - no multiplication by 2 bytes
- Previous Arch

Implementing the jalr instruction

Implementing the jal instruction

- JAL saves PC+4 in Reg[rd] (the return address)
- Set PC = PC + offset (PCrelative jump)
- Target somewhere within ±219 locations, 2 bytes apart
 - ±218 32-bit instructions
- Immediate encoding optimized similarly to branch instruction to reduce hardware cost

Overall Single Cycle RV321 Datapath

Compare with MIPS (Single Cycle)

Pipeline - I

What's Pipeline?

 Example: How many courses you need to take before designing a processor?

First Year: C Programming

Second Year: Digital Logic

Third Year: CA

Forth Year: VLSI Design

Serial Vs. Pipeline

Option 1: Serial

- Option 2: Pipeline
 - Latency: Time from entering to graduation, Both are 4 years
 - Throughput: Pipeline is 4x better than serial

THE

VLSI DESIGN

THE

DESIGN

Step 1: Split Stages from Single Cycle Design

Step 1: Adding Registers

Registers number = clock load, power efficiency ?

Pipeline Performance

The Utilization increasing

Time (clock cycles) Throughput Singlecycle Inst 0 Reg Reg Im Datapath **GOPS** ⊥∏ Reg Inst 1 Reg S Dm Im **TOPS** Reg Reg Inst 2 Dm Im Reg Reg Inst 3 Xxx operation per second ↓□ Reg Reg Inst 4

Pipeline Preview

Again: do not forget your homework.

Hazards Ahead

