Course code	Course Title			T	Р	С
BCSE209P Machine Learning Lab				0	2	1
Pre-requisite	NIL	Syllabus version				
		1.0				

Course Objectives

- 1. To teach the theoretical foundations of various learning algorithms.
- 2. To train the students better understand the context of supervised and unsupervised learning through real-life examples.
- 3. To understand the need for Reinforcement learning in real time problems.
- 4. Apply all learning algorithms over appropriate real-time dataset.
- 5. Evaluate the algorithms based on corresponding metrics identified.

Course Outcome

At the end of this course, student will be able to:

- 1. Understand, visualize, analyze and preprocess the data from a real-time source.
- 2. Apply appropriate algorithm to the data.
- 3. Analyze the results of algorithm and convert to appropriate information required for the real time application.
- 4. Evaluate the performance of various algorithms that could be applied to the data and to suggest most relevant algorithm according to the environment.

Indic	Indicative Experiments							
1.	Linear & Multiple Linear Regression	2 hours						
2.	Naïve Bayes classifier	2 hours						
3.	Decision trees – ID3 & CART	4 hours						
4.	Logistic regression	2 hours						
5.	Support Vector Machines – Linear & Non-linear	2 hours						
6.	Single & Multi-layer Perceptron	4 hours						
7.	K-NN, K-Means & K-mode clustering	2 hours						
8.	Random – forest	2 hours						
9.	Adaboost, XGboost	4 hours						
10.	Principal component analysis	2 hours						
11.	Self – Organizing maps	2 hours						
12.	Q-Learning	2 hours						
	Total Laboratory Hours	30 hours						
Text	Book(s)							
1	Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.							
2	Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series) 2 nd edition, Richard S. Sutton and Andrew G. Barto, A Bradford Book; 2018, ISBN 978-0262039246							
Refe	rences Books:							
1	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012.							
2	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition,1997.							
3	Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.							
Mode	e of Evaluation: CAT / Mid-Term Lab/ FAT							

Recommended by Board of Studies	09-05-2022			
Approved by Academic Council	No. 66	Date	16-06-2022	