Section 1: Probability, Statistics, & Linear Algebra review

STATS 202: Data Mining and Analysis

Linh Tran

tranlm@stanford_edu

Department of Statistics Stanford University

June 25, 2021

Outline

- Linear algebra
 - Basic concepts
 - Matrix multiplication
 - Operations and Properties
 - Matrix Calculus
- Probability
 - Sample space
 - Probability function
 - Probability space
 - Random variables
- Statistics
 - Expected value
 - ► Moments & Moment generating functions
 - Distributions

Linear algebra

Consider the following equations:

$$4x_1 - 5x_2 = -13 (1)$$

$$-2x_1 + 3x_2 = 9 (2)$$

Let's solve for x_1 and x_2 .

Consider the following equations:

$$4x_1 - 5x_2 = -13 (1)$$

$$-2x_1 + 3x_2 = 9 (2)$$

Let's solve for x_1 and x_2 .

We can write this system of equations more compactly in matrix notation, e.g.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{3}$$

where
$$\mathbf{A}=\begin{bmatrix}4&-5\\-2&3\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}-13\\9\end{bmatrix}$

Some basic notation:

- ▶ We denote a matrix with m rows and n columns as $\mathbf{A} \in \mathbb{R}^{m \times n}$, where each entry in the matrix is a real number.
- ▶ We denote a vector with n entries as $\mathbf{x} \in \mathbb{R}^n$.
 - By convention, we typically think of a vector as a 1 column matrix.
- ▶ We denote the i^{th} element of a vector **x** as x_i , e.g.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{4}$$

Some basic notation:

▶ We denote each entry in a matrix **A** by a_{ij} , corresponding to the i^{th} row and j^{th} column, e.g.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 (5)

▶ We denote the *transpose* of a matrix as \mathbf{A}^{\top} , e.g.

$$\mathbf{A}^{\top} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$
 (6)

Some basic notation:

▶ We denote the j^{th} column of **A** by \mathbf{a}_i or \mathbf{A}_{i} , e.g.

$$\mathbf{A} = \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ | & | & | \end{bmatrix} \tag{7}$$

▶ We denote the i^{th} row of **A** by \mathbf{a}_i^{\top} or $\mathbf{A}_{i\cdots}$

$$\mathbf{A} = \begin{bmatrix} - & \mathbf{a}_{1}^{\top} & - \\ - & \mathbf{a}_{2}^{\top} & - \\ \vdots & & \\ - & \mathbf{a}^{\top} & - \end{bmatrix}$$
(8)

n.b. This isn't universal, though should be clear from its presentation and use.

Given two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, we can multiply them by

$$\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p} : \mathbf{C}_{ij} = \sum_{k=1}^{n} \mathbf{A}_{ik} \mathbf{B}_{kj}$$
 (9)

n.b. The dimensions have to be compatible for matrix multiplication to be valid (e.g. the number of columns in $\bf A$ must be equal to the number of rows in $\bf B$).

Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the quantity $\mathbf{x}^{\top} \mathbf{y} \in \mathbb{R}$ (aka *dot product* or *inner product*) is a scalar given by

$$\mathbf{x}^{\top}\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$
 (10)

Note: For vectors, we always have that $\mathbf{x}^{\top}\mathbf{y} = \mathbf{y}^{\top}\mathbf{x}$. This is not generally true for matrices.

Given $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, the quantity $\mathbf{x}^\top \mathbf{y} \in \mathbb{R}^{m \times n}$ (aka *outer product*) is a matrix given by

$$\mathbf{x}\mathbf{y}^{\top} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$
(11)

Example: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix such that all columns are equal to some vector $\mathbf{x} \in \mathbb{R}^m$. Using outer products, we can represent \mathbf{A} compactly as

$$\mathbf{A} = \begin{bmatrix} | & | & & | \\ \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\ | & | & & | \end{bmatrix} = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 \\ x_2 & x_2 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m & \cdots & x_m \end{bmatrix}$$
(12)
$$= \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$$
(13)
$$= \mathbf{x} \mathbf{1}^{\top}$$
(14)

Matrix-vector products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, their product is a vector $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$.

Matrix-vector products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, their product is a vector $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$.

There are two ways of interpreting this:

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_{1}^{\top} & \mathbf{-} \\ -\mathbf{a}_{2}^{\top} & - \\ \vdots \\ -\mathbf{a}_{m}^{\top} & - \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{x} \\ \mathbf{a}_{2}^{\top} \mathbf{x} \\ \vdots \\ \mathbf{a}_{m}^{\top} \mathbf{x} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{x} \\ \vdots \\ \mathbf{a}_{m}^{\top} \mathbf{x} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{x} \\ \mathbf{a}_{2}^{\top} & \cdots & \mathbf{a}_{n} \\ \mathbf{a}_{1}^{\top} & \mathbf{a}_{2}^{\top} & \cdots & \mathbf{a}_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= \mathbf{a}_{1}x_{1} + \mathbf{a}_{2}x_{2} + \cdots + \mathbf{a}_{n}x_{n}$$

$$(15)$$

Matrix-vector products

Example:

Define
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -3 \\ -2 \\ -1 \end{bmatrix}.$$

Calculate $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Matrix-matrix products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, their product is a matrix $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

Matrix-matrix products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, their product is a matrix $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$.

Similar to before, we can think of this in two ways:

Interpretation # 1

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{a}_{1}^{\top} & \mathbf{a}_{2}^{\top} & \mathbf{b}_{2} \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \end{bmatrix}$$
(18)
$$= \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{b}_{1} & \mathbf{a}_{1}^{\top} \mathbf{b}_{2} & \cdots & \mathbf{a}_{1}^{\top} \mathbf{b}_{p} \\ \mathbf{a}_{2}^{\top} \mathbf{b}_{1} & \mathbf{a}_{2}^{\top} \mathbf{b}_{2} & \cdots & \mathbf{a}_{2}^{\top} \mathbf{b}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m}^{\top} \mathbf{b}_{1} & \mathbf{a}_{m}^{\top} \mathbf{b}_{2} & \cdots & \mathbf{a}_{m}^{\top} \mathbf{b}_{p} \end{bmatrix}$$
(19)

Matrix-matrix products

Interpretation # 2

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \mathbf{A} \begin{bmatrix} | & | & | \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \\ | & | & | & | \end{bmatrix}$$

$$= \begin{bmatrix} | & | & | & | \\ \mathbf{A}\mathbf{b}_{1} & \mathbf{A}\mathbf{b}_{2} & \cdots & \mathbf{A}\mathbf{b}_{p} \\ | & | & | & | \end{bmatrix}$$

$$= \begin{bmatrix} - & \mathbf{a}_{1}^{\top} & - \\ - & \mathbf{a}_{2}^{\top} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{a}_{m}^{\top} & - \end{bmatrix} \mathbf{B} = \begin{bmatrix} - & \mathbf{a}_{1}^{\top}\mathbf{B} & - \\ - & \mathbf{a}_{2}^{\top}\mathbf{B} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{a}_{m}^{\top}\mathbf{B} & - \end{bmatrix}$$

$$(20)$$

Matrix multiplication properties

- Associative: (AB)C = A(BC)
- ▶ Distributive: A(B + C) = AB + AC
- ▶ Not commutative: $AB \neq BA$

Matrix multiplication properties

Demonstrating associativity:

We just need to show that $((AB)C)_{ij} = (A(BC))_{ij}$:

$$((\mathbf{AB})\mathbf{C})_{ij} = \sum_{k=1}^{p} (\mathbf{AB})_{ik} \mathbf{C}_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} \mathbf{A}_{il} \mathbf{B}_{lk} \right) \mathbf{C}_{kj}$$
(23)

$$= \sum_{k=1}^{p} \left(\sum_{l=1}^{n} \mathbf{A}_{il} \mathbf{B}_{lk} \mathbf{C}_{kj} \right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{p} \mathbf{A}_{il} \mathbf{B}_{lk} \mathbf{C}_{kj} \right)$$
(24)

$$= \sum_{l=1}^{n} \mathbf{A}_{il} \left(\sum_{k=1}^{p} \mathbf{B}_{lk} \mathbf{C}_{kj} \right) = \sum_{l=1}^{n} \mathbf{A}_{il} (\mathbf{BC})_{lj}$$
(25)

$$= (\mathbf{A}(\mathbf{BC}))_{ij}$$
(26)

Operations & properties

The identity matrix:

The *identity matrix*, denoted $\mathbf{I} \in \mathbb{R}^{n \times n}$ is a square matrix with 1's in the diagonal and 0's everywhere else, i.e.

$$\mathbf{I}_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \tag{27}$$

Operations & properties

The identity matrix:

The *identity matrix*, denoted $\mathbf{I} \in \mathbb{R}^{n \times n}$ is a square matrix with 1's in the diagonal and 0's everywhere else, i.e.

$$\mathbf{I}_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \tag{27}$$

It has the property

$$\mathbf{AI} = \mathbf{A} = \mathbf{IA} \ \forall \mathbf{A} \in \mathbb{R}^{m \times n} \tag{28}$$

n.b. The dimensionality of I is typically inferred (e.g. $n \times n$ vs $m \times m$)

Operations & properties

The diagonal matrix: The diagonal matrix, denoted $\mathbf{D} = diag(d_1, d_2, \dots, d_n)$ is a matrix where all non-diagonal elements are 0, i.e.

$$\mathbf{D}_{ij} = \begin{cases} d_i & i = j \\ 0 & i \neq j \end{cases} \tag{29}$$

Clearly, I = diag(1, 1, ..., 1).

The transpose

The *transpose* of a matrix results from "*flipping*" the rows and columns, i.e.

$$(\mathbf{A}^{\top})_{ij} = \mathbf{A}_{ji} \tag{30}$$

Consequently, for $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have that $\mathbf{A}^{\top} \in \mathbb{R}^{n \times m}$.

Some properties:

- $\blacktriangleright \ (\mathbf{A} + \mathbf{B})^\top = \mathbf{A}^\top + \mathbf{B}^\top$

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *symmetric* if $\mathbf{A} = \mathbf{A}^{\top}$.

It is *anti-symmetric* if $\mathbf{A} = -\mathbf{A}^{\top}$.

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^{\top}$.

It is *anti-symmetric* if $\mathbf{A} = -\mathbf{A}^{\top}$.

It is easy to show that $\mathbf{A}+\mathbf{A}^{\top}$ is symmetric and $\mathbf{A}-\mathbf{A}^{\top}$ is anti-symmetric. Consequently, we have that

$$\mathbf{A} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\top}) + \frac{1}{2}(\mathbf{A} - \mathbf{A}^{\top})$$
 (31)

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *symmetric* if $\mathbf{A} = \mathbf{A}^{\top}$.

It is *anti-symmetric* if $\mathbf{A} = -\mathbf{A}^{\top}$.

It is easy to show that $\mathbf{A} + \mathbf{A}^{\top}$ is symmetric and $\mathbf{A} - \mathbf{A}^{\top}$ is anti-symmetric. Consequently, we have that

$$\mathbf{A} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\top}) + \frac{1}{2}(\mathbf{A} - \mathbf{A}^{\top})$$
 (31)

Symmetric matrices tend to be denoted as $\mathbf{A} \in \mathbb{S}^n$.

Trace

The *trace* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $tr(\mathbf{A})$ or $tr\mathbf{A}$ is the sum of the diagonal elements, i.e.

$$tr\mathbf{A} = \sum_{i=1}^{n} \mathbf{A}_{ii} \tag{32}$$

The trace has the following properties:

- ightharpoonup For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $tr\mathbf{A} = tr\mathbf{A}^{\top}$
- ► For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$, $tr(\mathbf{A} + \mathbf{B}) = tr\mathbf{A} + tr\mathbf{B}$
- ▶ For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}$, $tr(c\mathbf{A}) = c tr\mathbf{A}$
- ▶ For $A, B \in \mathbb{R}^{n \times n}$ $\ni AB \in \mathbb{R}^{n \times n}$, trAB = trBA
- ► For $A, B, C \in \mathbb{R}^{n \times n} \ni ABC \in \mathbb{R}^{n \times n}$, trABC = trBCA = trCAB, and so on for more matrices

Trace

Example: Proving that trAB = trBA

$$tr\mathbf{AB} = \sum_{i=1}^{m} (\mathbf{AB})_{ii} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \mathbf{A}_{ij} \mathbf{B}_{ji} \right)$$
(33)

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} \mathbf{B}_{ji} = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{B}_{ji} \mathbf{A}_{ij}$$
(34)

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \mathbf{B}_{ji} \mathbf{A}_{ij} \right) = \sum_{j=1}^{n} (\mathbf{B} \mathbf{A})_{jj}$$
 (35)

$$= tr\mathbf{BA}$$
 (36)

A *norm* of a vector \mathbf{x} , denoted $||\mathbf{x}||$ is a measure of the "length" of the vector. For example, the ℓ_2 -norm (aka Euclidean norm) is

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2} \tag{37}$$

n.b. $||\mathbf{x}||_2^2 = \mathbf{x}^{\top}\mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

A *norm* of a vector \mathbf{x} , denoted $||\mathbf{x}||$ is a measure of the "*length*" of the vector. For example, the ℓ_2 -norm (aka Euclidean norm) is

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2} \tag{37}$$

n.b. $||\mathbf{x}||_2^2 = \mathbf{x}^{\top}\mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

Other norms:

- ℓ_1 -norm, i.e. $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$.
- ℓ_p -norm, i.e. $||\mathbf{x}||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.

Formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ satisfying four properties:

- 1. $\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \geq 0$ (non-negativity).
- 2. $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$ (definiteness).
- 3. $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R}, f(c\mathbf{x}) = |c|f(\mathbf{x})$ (homogeneity).
- **4**. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality).

Formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ satisfying four properties:

- 1. $\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \geq 0$ (non-negativity).
- 2. $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$ (definiteness).
- 3. $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R}, f(c\mathbf{x}) = |c|f(\mathbf{x})$ (homogeneity).
- **4**. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality).

Norms can also be defined for matrices, e.g. The Frobenius norm,

$$||\mathbf{A}||^F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \mathbf{A}_{ij}^2} = \sqrt{tr(\mathbf{A}^\top \mathbf{A})}$$
 (38)

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^m$ is *(linearly) dependent* if one of the vectors \mathbf{x}_i can be represented as a linear combination of the remaining vectors, i.e.

$$\mathbf{x}_n = \sum_{i=1}^{n-1} \alpha_i \mathbf{x}_i \tag{39}$$

for some scalar values $\alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbb{R}$

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^m$ is *(linearly) dependent* if one of the vectors \mathbf{x}_i can be represented as a linear combination of the remaining vectors, i.e.

$$\mathbf{x}_n = \sum_{i=1}^{n-1} \alpha_i \mathbf{x}_i \tag{39}$$

for some scalar values $\alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbb{R}$

Example: Let

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} \tag{40}$$

Is $\{x_1, x_2, x_3\}$ linearly independent?

Rank

The *column rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of \mathbf{A} that are linearly independent.

▶ The column rank is always $\leq n$.

The *row rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

▶ The row rank is always $\leq m$.

Rank

The *column rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of \mathbf{A} that are linearly independent.

▶ The column rank is always $\leq n$.

The *row rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

- ▶ The row rank is always $\leq m$.
- n.b. Column rank is always equal to row rank. Thus, we refer to both as the *rank* of the matrix.
 - ▶ For $\mathbf{A} \in \mathbb{R}^{m \times n}$, if $rank(\mathbf{A}) = min(m, n)$, then \mathbf{A} is said to be of *full rank*.
 - ▶ For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $rank(\mathbf{A}) = rank(\mathbf{A}^{\top})$.
 - ► For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(\mathbf{A}\mathbf{B}) \leq \min(\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$.
 - ▶ For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$

Matrix inverse

The *inverse* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1} , and is unique such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1} \tag{41}$$

Matrix inverse

The *inverse* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1} , and is unique such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1} \tag{41}$$

n.b. Not all matrices have inverses (e.g. $m \times n$ matrices).

Def:

A is *invertible* or *non-singular* if A^{-1} exists. Otherwise, it is *non-invertible* or *singular*.

- 1. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$
 - ▶ This matrix is sometimes denoted $\mathbf{A}^{-\top}$

Orthogonal Matrices

Def:

- ▶ A vector $\mathbf{x} \in \mathbb{R}^n$ is *normalized* if $||\mathbf{x}||_2 = 1$
- ► Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{x}^\top \mathbf{y} = 0$
- ▶ A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is *orthogonal* or *orthonormal* if all its columns are:
 - 1. Orthogonal to each other
 - 2. Normalized

We therfore have that

$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^{\top} \tag{42}$$

Orthogonal Matrices

Def:

- ▶ A vector $\mathbf{x} \in \mathbb{R}^n$ is *normalized* if $||\mathbf{x}||_2 = 1$
- ► Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{x}^\top \mathbf{y} = 0$
- ▶ A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is *orthogonal* or *orthonormal* if all its columns are:
 - 1. Orthogonal to each other
 - Normalized

We therfore have that

$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^{\top} \tag{42}$$

Another nice property:

$$||\mathbf{U}\mathbf{x}||_2 = ||\mathbf{x}||_2 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{U} \in \mathbb{R}^{n \times n} \text{ orthogonal}$$
 (43)

Range

Def:

The *span* of a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is

$$span(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i \mathbf{x}_i, \alpha_i \in \mathbb{R} \right\}$$
(44)

Range

Def:

The *span* of a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is

$$span(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i \mathbf{x}_i, \alpha_i \in \mathbb{R} \right\}$$
(44)

n.b. If $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is linearly independent, then $\mathrm{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \mathbb{R}^n$.

Example:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{45}$$

Projection

Def:

The *projection* of a vector $\mathbf{y} \in \mathbb{R}^m$ onto $\mathrm{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \mathbb{R}^n$ is

$$\operatorname{Proj}(\mathbf{y}; \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \underset{\mathbf{v} \in \operatorname{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\})}{\operatorname{arg min}} ||\mathbf{y} - \mathbf{v}||_2 \qquad (46)$$

Range

Def:

The *range* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(\mathbf{A})$ is the span of the columns of \mathbf{A} , i.e.

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$$
 (47)

Assuming that **A** is full rank and n < m, the projection of $\mathbf{y} \in \mathbb{R}^m$ onto $\mathcal{R}(\mathbf{A})$ is

$$Proj(\mathbf{y}; \mathbf{A}) = \underset{\mathbf{v} \in \mathcal{R}(\mathbf{A})}{\arg \min} ||\mathbf{v} - \mathbf{y}||_2$$
 (48)

$$= \mathbf{A}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{y} \tag{49}$$

Nullspace

Def:

The *nullspace* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(\mathbf{A})$ is the set of all vectors that equal 0 when multiplied by \mathbf{A} , i.e.

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}$$
 (50)

Some properties:

- $\blacktriangleright \ \mathcal{R}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}\$

This is referred to as *orthogonal complements*, denoted as $\mathcal{R}(\mathbf{A}^\top) = \mathcal{N}(\mathbf{A})^\perp$

Def:

The *determinant* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $|\mathbf{A}|$ or det \mathbf{A} is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$.

Let $\mathbf{A}_{\setminus i,\setminus j} \in \mathbb{R}^{(n-1)\times (n-1)}$ be the matrix that results from deleting the i^{th} row and j^{th} column. The general (recursive) formula for the determinant is

$$|\mathbf{A}| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{\setminus i, \setminus j}| \quad (\forall j \in 1, ..., n) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{\setminus i, \setminus j}| \quad (\forall i \in 1, ..., n)$$
(51)

Given a matrix

$$\mathbf{A} = \begin{bmatrix} - & \mathbf{a}_{1}^{\top} & - \\ - & \mathbf{a}_{2}^{\top} & - \\ & \vdots \\ - & \mathbf{a}_{n}^{\top} & - \end{bmatrix}$$
 (52)

and a set $\mathbf{S} \subset \mathbb{R}^n$,

$$\mathbf{S} = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{a}_i \text{ where } 0 \le \alpha_i \le 1, i = 1, ..., n \}$$
 (53)

 $|\mathbf{A}|$ is the volume of \mathbf{S} .

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{54}$$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{54}$$

The matrix rows are:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \tag{55}$$

And
$$|{\bf A}| = -7$$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{54}$$

The matrix rows are:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \tag{55}$$

And
$$|{\bf A}| = -7$$

Properties of determinants:

- ightharpoonup For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $|\mathbf{A}| = |\mathbf{A}^{\top}|$
- ightharpoonup For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}, |\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$
- ▶ For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $|\mathbf{A}| = 0$ iff \mathbf{A} is singular (i.e. non-invertible).
- lacktriangle For $f A \in \mathbb{R}^{n imes n}$ and f A non-singular, $|{f A}^{-1}| = 1/|{f A}|$

Quadratic form

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$, the *quadratic form* is the scalar value

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} x_{i} (\mathbf{A} \mathbf{x})_{i} = \sum_{i=1}^{n} x_{i} \left(\sum_{j=1}^{n} \mathbf{A}_{ij} x_{j} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ij} x_{i} x_{j}$$
 (56)

Quadratic form

Some properties involving quadratic form:

- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *positive definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *positive semi-definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *negative definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top \mathbf{A} \mathbf{x} < 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *negative semi-definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} \leq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *indefinite* if it is neither positive nor negative semidefinite
- n.b. Positive definite and negative definite matrices always have full rank.

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an *eigenvalue* of \mathbf{A} with corresponding *eigenvector* $\mathbf{x} \in \mathbb{C}^n$ if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} : \mathbf{x} \neq 0 \tag{57}$$

n.b. The eigenvector is (usually) normalized to have length 1

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an *eigenvalue* of \mathbf{A} with corresponding *eigenvector* $\mathbf{x} \in \mathbb{C}^n$ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} : \mathbf{x} \neq \mathbf{0} \tag{57}$$

n.b. The eigenvector is (usually) normalized to have length 1

We can write all of the eigenvector equations simultaneously as

$$\mathbf{AX} = \mathbf{X}\mathbf{\Lambda} \tag{58}$$

where

$$\mathbf{X} \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ | & | & & | \end{bmatrix}, \quad \mathbf{\Lambda} = diag(\lambda_1, ..., \lambda_n)$$
 (59)

This implies $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

Some properties:

- $ightharpoonup tr \mathbf{A} = \sum_{i=1}^n \lambda_i$
- $\blacktriangleright |\mathbf{A}| = \prod_{i=1}^n \lambda_i$
- ► The rank of A is equal to the number of non-zero eigenvalues of A.
- ▶ If **A** is non-singular, then $1/\lambda_i$ is an eigenvalue of **A**⁻¹ with corresponding eigenvector \mathbf{x}_i , i.e. $\mathbf{A}^{-1}\mathbf{x}_i = (1/\lambda_i)\mathbf{x}_i$
- ► The eigenvalues of a diagonal matrix $D = diag(d_1, ..., d_n)$ are just its diagonal entries $d_1, ..., d_n$

Example: For $\mathbf{A} \in \mathbb{S}^n$ with ordered eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$$
,

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{A} \mathbf{x} \text{ subject to } ||\mathbf{x}||_2^2 = 1$$
 (60)

is solved with \mathbf{x}_1 corresponding to λ_1 . Similarly, it is solved with \mathbf{x}_n corresponding to λ_n .

Example:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Find the eigenvalues & eigenvectors.

Example:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Find the eigenvalues & eigenvectors.

We want

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{61}$$

Example:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Find the eigenvalues & eigenvectors.

We want

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{61}$$

We want $det(\mathbf{A} - \lambda \mathbb{I}) = 0$.

$$det(\mathbf{A} - \lambda \mathbb{I}) = (1 - \lambda)^2 - 2^2 = \lambda^2 - 2\lambda - 3$$
 (62)

$$= (\lambda - 3)(\lambda + 1) \tag{63}$$

$$\lambda = 3, -1.$$

Finding the eigenvectors: calculating the null spaces of $(\mathbf{A} - \lambda \mathbf{I})$

$$\mathcal{N}(\mathbf{A} - 3\mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1 \end{bmatrix} \tag{64}$$

$$\mathcal{N}(\mathbf{A} + \mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (65)

Finding the eigenvectors: calculating the null spaces of $(\mathbf{A} - \lambda \mathbf{I})$

$$\mathcal{N}(\mathbf{A} - 3\mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1 \end{bmatrix} \tag{64}$$

$$\mathcal{N}(\mathbf{A} + \mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (65)

Thus:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \mathbf{\Lambda} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \tag{66}$$

Singular Value Decomposition

SVD is a way of decomposing matrices.

Given
$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
 with rank r , $\exists \Sigma \in \mathbb{R}^{m \times n}, \mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times m} \ni$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \tag{67}$$

Notes:

- ▶ Σ is a diagonal matrix with entries $\sigma_1, ..., \sigma_r > 0$ known as singular values.
- ▶ **U** and **V** are orthogonal matrices.
- ► Common uses:
 - Least squares models
 - Range, rank, null space
 - Moore-Penrose inverse

Singular Value Decomposition

Some intuition:

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{68}$$

Singular Value Decomposition

Some intuition:

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{68}$$

SVD can be thought of as breaking this into individual steps:

Matrix calculus

Given $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, the gradient of f wrt $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$\nabla_{\mathbf{A}} f(\mathbf{A}) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{11}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{12}} & \dots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{1n}} \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{21}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{22}} & \dots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m1}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m2}} & \dots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{mn}} \end{bmatrix}$$
(69)

Some properties

▶ For
$$c \in \mathbb{R}$$
, $\nabla_{\mathbf{x}}(c f(\mathbf{x})) = c \nabla_{\mathbf{x}}(f(\mathbf{x}))$

The Hessian

Given $f: \mathbb{R}^n \to \mathbb{R}$, the *Hessian* of f wrt $\mathbf{x} \in \mathbb{R}^n$ is

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}} \end{bmatrix}$$
(70)

n.b. The Hessian is always symmetric, since $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i}$

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$
 (71)

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{b}$$
 (72)

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$
 (71)

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{b}$$
 (72)

Taking the gradient wrt \mathbf{x} , we have

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{b}) = \nabla_{\mathbf{x}}\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \nabla_{\mathbf{x}}2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \nabla_{\mathbf{x}}\mathbf{b}^{\top}\mathbf{3}\mathbf{b}$$
$$= \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}$$
(74)

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$
 (71)

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{b}$$
 (72)

Taking the gradient wrt \mathbf{x} , we have

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{b}) = \nabla_{\mathbf{x}}\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \nabla_{\mathbf{x}}2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \nabla_{\mathbf{x}}\mathbf{b}^{\top}\mathbf{3}\mathbf{b}$$
$$= \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}$$
(74)

Setting this expression equal to zero and solving for \mathbf{x} gives the normal equations,

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b} \tag{75}$$

References

Some textbooks on linear algebra:

- ► Linear Algebra (Jim Hefferon)
- ► Introduction to Applied Linear Algebra (Boyd & Vandenberghe)
- ► Linear Algebra (Cherney, Denton et al.)
- ► Linear Algebra (Hoffman & Kunze)
- ► Fundamentals of Linear Algebra (Carrell)
- ► Linear Algebra (S. Friedberg A. Insel L. Spence)

Probability

Sample space

The set of all possible values is called the *sample space S*.

▶ It's the space where realizations can be produced.

Sample space

The set of all possible values is called the *sample space S*.

▶ It's the space where realizations can be produced.

Example: Tossing a coin

$$S = \{ Heads, Tails \} \tag{76}$$

Sample space

The set of all possible values is called the *sample space S*.

▶ It's the space where realizations can be produced.

Example: Tossing a coin

$$S = \{ Heads, Tails \} \tag{76}$$

More notation:

- ▶ \emptyset is the *empty set*. Can be denoted as $\emptyset = \{\}$.
- ▶ $\bigcup_{i=1}^{\infty} B_i$ is the union of sets B_i . Formally,
- ▶ $B \subseteq S$ means B is a *subset* of the sample space.
- Heads, without curly braces, is an element of set B.
- ▶ $B^C = S \setminus B$ is the complement of set B

Probability function

A *probability function* is a function $P: \mathcal{B} \to [0,1]$, where

- ▶ P(S) = 1
- ▶ $P(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} P(B_i)$ when $B_1, B_2, ...$ are disjoint

Probability function

A *probability function* is a function $P: \mathcal{B} \to [0,1]$, where

- ▶ P(S) = 1
- $ightharpoonup P\left(\bigcup_{i=1}^{\infty}B_i\right)=\sum_{i=1}^{\infty}P(B_i)$ when B_1,B_2,\ldots are disjoint

n.b. We can define the domain ${\cal B}$ many ways, e.g. ${\cal B}=2^{\cal S}$

Probability function

A *probability function* is a function $P: \mathcal{B} \to [0,1]$, where

- ▶ P(S) = 1
- $ightharpoonup P\left(\cup_{i=1}^{\infty} B_i \right) = \sum_{i=1}^{\infty} P(B_i)$ when B_1, B_2, \ldots are disjoint

n.b. We can define the domain \mathcal{B} many ways, e.g. $\mathcal{B}=2^S$ **Example:** For flipping a coin, we have

$$\mathcal{B} = 2^{S} = \{\emptyset, \{Heads\}, \{Tails\}, \{Heads, Tails\}\}$$
 (77)

This implies that

$$P(B) = \begin{cases} 1 & B = \{ Heads, Tails \} \\ \frac{1}{2} & B = \{ Heads \} \\ \frac{1}{2} & B = \{ Tails \} \\ 0 & B = \emptyset \end{cases}$$
 (78)

n.b. The power set is a 'set of sets'

Probability function domains

Problem: Power sets don't work well for \mathbb{R} .

Probability function domains

Problem: Power sets don't work well for \mathbb{R} . **Solution:** Define the domain using σ -algebra:

- $\blacktriangleright \emptyset \in \mathcal{B}$
- ▶ $B \in \mathcal{B} \Rightarrow B^{C} \in \mathcal{B}$
- $\blacktriangleright B_1, B_2, \ldots \in \mathcal{B} \Rightarrow \cup_{i=1}^{\infty} B_i \in \mathcal{B}$

Probability function domains

Problem: Power sets don't work well for \mathbb{R} . **Solution:** Define the domain using σ -algebra:

- $\triangleright \emptyset \in \mathcal{B}$
- ▶ $B \in \mathcal{B} \Rightarrow B^{C} \in \mathcal{B}$
- $\blacktriangleright B_1, B_2, \ldots \in \mathcal{B} \Rightarrow \cup_{i=1}^{\infty} B_i \in \mathcal{B}$

Example:

- ► The discrete σ -algebra: $\mathcal{B} = 2^{S} = \{\emptyset, \{Heads\}, \{Tails\}, \{Heads, Tails\}\}$
- ▶ The *trivial* σ -algebra: $\mathcal{B} = \emptyset \cup S = \{\emptyset, \{Heads, Tails\}\}$
- n.b. For uncountable sets, we use the *Borel* σ -algebra.

Probability space

Def:

A probability space is a triple (S, \mathcal{B}, P) .

- ► *S* is the set of possible singleton events
- \triangleright \mathcal{B} is the set of questions to ask P
- P maps sets into probabilities

n.b. They represent the ingredients needed to talk about probabilities

Probability functions

Some properties of $P(\cdot)$

- ▶ $P(B) = 1 P(B^C)$
- ▶ $P(\emptyset) = 0$, since $P(\emptyset) = 1 P(S)$
- ▶ $P(A \cup B) = P(A) + P(B) P(A \cap B)$, implying that
 - $P(A \cup B) \leq P(A) + P(B)$
 - ► $P(A \cap B) \ge P(A) + P(B) 1$

Conditional probability

For events A and B where P(B) > 0, the *conditional probability* of A given B (denoted P(A|B)) is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{79}$$

Example: In an agricultural region with 1000 farms, we want to know if the farm has vineyards or cork trees.

		Cork Trees		
		Yes	No	
Vineyard	Yes	200	50	
	No	150	600	

Table: Frequency counts

Conditional probability

Example: In an agricultural region with 1000 farms, we want to know if the farm has vineyards or cork trees.

		Cork Trees	
		Yes	No
Vineyard	Yes	20%	5%
	No	15%	60%

Table: Joint probabilities

Questions:

- ► What is the probability of seeing cork trees in a farm with vineyards?
- ► Among farms with cork trees or vineyards, what is the probability of having both?

Conditional probability

Let's assume the following joint probabilties

		Cork Trees	
		Yes	No
Vineyard	Yes	25%	25%
	No	25%	25%

We have that $P(A \cap B) = P(A) \cdot P(B)$, meaning that they are *independent*

Law of total probability

Let $B_1, B_2, \dots B_k \in \mathcal{B}$ and $P(B_i) > 0 : i = 1, \dots, k$. The *law of total probability* states that

$$P(A) = \sum_{i=1}^{k} P(B_i) P(A|B_i)$$
 (80)

Law of total probability

Let $B_1, B_2, \dots B_k \in \mathcal{B}$ and $P(B_i) > 0 : i = 1, \dots, k$. The *law of total probability* states that

$$P(A) = \sum_{i=1}^{k} P(B_i) P(A|B_i)$$
 (80)

The conditional law of total probability states that

$$P(A|C) = \sum_{i=1}^{k} P(B_i|C)P(A|B_i,C)$$
 (81)

Let $B_1, B_2, \ldots, B_k \in \mathcal{B}$, $P(B_i) > 0$: $i = 1, \ldots, k$, and P(A) > 0. Then Bayes' Theorem states that for $i = 1, \ldots, k$

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{k} P(B_j)P(A|B_j)}$$
(82)

n.b. Can be proven using the def of conditional probability

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X?

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X?

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2)}$$
(83)
=
$$\frac{(0.9)(0.0001)}{(0.9)(0.0001) + (0.1)(0.9999)} = 0.0009$$
(84)

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X?

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2)}$$
(83)
=
$$\frac{(0.9)(0.0001)}{(0.9)(0.0001) + (0.1)(0.9999)} = 0.0009$$
(84)

Notes:

- \triangleright $P(B_1)$ is often referred to as the *prior* probability
- $ightharpoonup P(B_1|A)$ is often referred to as the *posterior* probability

Random variables

A random variable is a (Borel measureable) function

 $X:S \to \mathbb{R}$

Random variables

A random variable is a (Borel measureable) function

 $X:S\to\mathbb{R}$

Example: For coin tossing, we have $X : \{Heads, Tails\} \rightarrow \mathbb{R}$, where

$$X(s) = \begin{cases} 1 & \text{if } s = Heads \\ 0 & \text{if } s = Tails \end{cases}$$
 (85)

The *cumulative distribution function* (cdf) of a random variable X is the function $F_X : \mathbb{R} \to [0,1]$.

The *cumulative distribution function* (cdf) of a random variable X is the function $F_X : \mathbb{R} \to [0, 1]$.

Example: For coin tossing, we have

 $X: \{Heads, Tails\} \rightarrow \mathbb{R},$

we have

where

$$X(s) = \begin{cases} 1 & \text{if } s = Heads \\ 0 & \text{if } s = Tails \end{cases}$$
 (86)
$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$
 (87)

The *cumulative distribution function* (cdf) of a random variable X is the function $F_X : \mathbb{R} \to [0,1]$.

Example: For coin tossing, we have

 $X: \{\textit{Heads}, \textit{Tails}\} \rightarrow \mathbb{R},$

we have

where

$$X(s) = \begin{cases} 1 & \text{if } s = \text{Heads} \\ 0 & \text{if } s = \text{Tails} \end{cases} (86) \qquad F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases} (87)$$

- n.b. We have two ways of thinking about probabilities:
 - 1. Probability functions
 - 2. Cumulative distribution functions

Question: Which one should we use?

- n.b. We have two ways of thinking about probabilities:
 - 1. Probability functions
 - 2. Cumulative distribution functions

Question: Which one should we use?

The Correspondence Theorem: Let $P_X(\cdot)$ and $P_Y(\cdot)$ be probability functions and $F_X(\cdot)$ and $F_Y(\cdot)$ be their associated cdfs. Then

$$P_X(\cdot) = P_Y(\cdot) \iff F_X(\cdot) = F_Y(\cdot)$$
 (88)

Some properties for cdfs:

- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$
- \blacktriangleright $F(\cdot)$ is non-decreasing
- $ightharpoonup F(\cdot)$ is right-continuous

Quantile function

Let X be a continuous rv and one-to-one over the possible values of X. Then

$$F^{-1}(p) = \inf\{x \in \mathbb{R} : p \le F(x)\}$$
 (89)

Is the quantile function of X.

Quantile function

Let X be a continuous rv and one-to-one over the possible values of X. Then

$$F^{-1}(p) = \inf\{x \in \mathbb{R} : p \le F(x)\}$$
 (89)

Is the quantile function of X. Let X be a *discrete* rv and one-to-one over the possible values of X. Then $F^{-1}(p)$ states that we take the smallest value of x.

Example:

A random variable X is

- ▶ Discrete if $\exists f_X : \mathbb{R} \to [0,1] \ni F_X(x) = \sum_{t \le x} f_X(t), x \in \mathbb{R}$
 - $ightharpoonup f_X$ is referred to as the probability mass function (pmf)
- ▶ Continuous if $\exists f_X : \mathbb{R} \to \mathbb{R}_+ \ni F_X(x) = \int_{-\infty}^x f_X(t) dt, x \in \mathbb{R}$
 - $ightharpoonup f_X$ is referred to as the probability density function (pdf).
 - n.b. We can have multiple pdf's consistent with the same cdf.
 - ▶ n.b. For any specific value of a continuous random variable, its probability is 0, i.e. $P(\lbrace x \rbrace) = 0 \, \forall x \in \mathbb{R}$.

A random variable X is

- ▶ Discrete if $\exists f_X : \mathbb{R} \to [0,1] \ni F_X(x) = \sum_{t \le x} f_X(t), x \in \mathbb{R}$
 - $ightharpoonup f_X$ is referred to as the probability mass function (pmf)
- ▶ Continuous if $\exists f_X : \mathbb{R} \to \mathbb{R}_+ \ni F_X(x) = \int_{-\infty}^x f_X(t) dt, x \in \mathbb{R}$
 - f_X is referred to as the probability density function (pdf).
 - n.b. We can have multiple pdf's consistent with the same cdf.
 - ▶ n.b. For any specific value of a continuous random variable, its probability is 0, i.e. $P(\lbrace x \rbrace) = 0 \, \forall x \in \mathbb{R}$.
- n.b. pmf's and pdf's sum to 1, i.e.
 - ▶ $f: \mathbb{R} \to [0,1]$ is the pmf of a discrete RV iff $\sum_{x \in \mathbb{R}} f(x) = 1$
 - $f: \mathbb{R} \to \mathbb{R}_+$ is the pdf of a continuous RV iff $\int_{-\infty}^{\infty} f(x) dx = 1$

Example #1: Coin tossing

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{2} & \text{if } 0 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$
 (90)

Here, F_X is a step function with pmf

$$f_X(x) = \begin{cases} \frac{1}{2} & x \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$
 (91)

Example #2: Uniform distribution on (0,1)

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$
 (92)

Here, F_X is a continuous function. Two consistent pdfs include

$$f_X(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$
 (93)
$$f_X(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$
 (94)

Transformations of random variables

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and X is a *discrete* rv with cdf F_X .

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and X is a *discrete* rv with cdf F_X .

Since the function is applied to a rv, Y is also a random variable with probability function

$$f_Y(y) = P_Y(g(X) = y) = \sum_{x:g(x)=y} f_X(x)$$
 (95)

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and X is a *discrete* rv with cdf F_X .

Since the function is applied to a rv, Y is also a random variable with probability function

$$f_Y(y) = P_Y(g(X) = y) = \sum_{x:g(x)=y} f_X(x)$$
 (95)

Example:

Let X be a uniform random variable on $\{-n, -n+1, ..., n-1, n\}$. Then Y = |X| has mass function

$$f_Y(y) = \begin{cases} \frac{1}{2n+1} & \text{if } x = 0\\ \frac{2}{2n+1} & \text{if } x \neq 0 \end{cases}$$
 (96)

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and rv X with cdf F_X .

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and rv X with cdf F_X .

Then Y is also a random variable with cdf

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = \int x : g(x) \le y f_X(x) dx$$
(97)

We can get the probability function by taking the derivative

$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y) \tag{98}$$

Suppose Y = g(X), where $g : \mathbb{R} \to \mathbb{R}$ and rv X with cdf F_X .

Then Y is also a random variable with cdf

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = \int x : g(x) \le y f_X(x) dx$$
(97)

We can get the probability function by taking the derivative

$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y) \tag{98}$$

Example:

Let X be a uniform rv on [-1,1]. Then $Y=X^2$ has cdf

$$F_Y(y) = P_Y(Y \le y) = P_X(X^2 \le y) = P_X(-y^{1/2}X \le y^{1/2})$$

$$= \int_{-y^{1/2}}^{y^{1/2}} f(x)dx = y^{1/2}$$
(99)

and
$$f_Y(y) = \frac{\partial}{\partial y} F_Y(y) = \frac{1}{2y^{1/2}}$$

Affine transformations

Suppose
$$Y = g(X) = aX + b, a > 0, b \in \mathbb{R}$$
. Then

$$P(Y \le y) = P(aX + b \le y) = P\left(X \le \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right) \tag{100}$$

Affine transformations

Suppose $Y = g(X) = aX + b, a > 0, b \in \mathbb{R}$. Then

$$P(Y \le y) = P(aX + b \le y) = P\left(X \le \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right)$$
(100)

If a < 0, then

$$P(Y \le y) = P(aX + b \le y) = P\left(X \ge \frac{y - b}{a}\right) = 1 - F_X\left(\frac{y - b}{a}\right) \tag{101}$$

Affine transformations

Suppose $Y = g(X) = aX + b, a > 0, b \in \mathbb{R}$. Then

$$P(Y \le y) = P(aX + b \le y) = P\left(X \le \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right)$$
(100)

If a < 0, then

$$P(Y \le y) = P(aX + b \le y) = P\left(X \ge \frac{y - b}{a}\right) = 1 - F_X\left(\frac{y - b}{a}\right) \tag{101}$$

In general, as long as the transformation Y = g(X) is monotonic, then

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial}{\partial y} g^{-1}(y) \right|$$
 (102)

References

- ► Grinstead & Snell Chapters 1,2,4
- ▶ DeGroot & Schervish Chapters 1,2,3

Statistics

The expected value of rv X is defined as

$$\mathbb{E}[X] = \begin{cases} \sum_{x} x f_X(x) & \text{if x is discrete} \\ \int x f_X(x) dx & \text{if x is continuous} \end{cases}$$
 (103)

For functions g of X,

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x} g(x) f_X(x) & \text{if x is discrete} \\ \int g(x) f_X(x) dx & \text{if x is continuous} \end{cases}$$
(104)

n.b. In general, $\mathbb{E}[g(X)]
eq g(\mathbb{E}[X])$

Examples:

Important: Expectations might not exist!

Example: Suppose $f_X(x) = \frac{1}{x^2}$, defined on $[1, \infty]$. Then

$$\mathbb{E}[X] = \int x f_X(x) dx = \int x \frac{1}{x^2} dx = \int \frac{1}{x} dx = \infty$$
 (105)

Important: Expectations might not exist!

Example: Suppose $f_X(x) = \frac{1}{x^2}$, defined on $[1, \infty]$. Then

$$\mathbb{E}[X] = \int x f_X(x) dx = \int x \frac{1}{x^2} dx = \int \frac{1}{x} dx = \infty$$
 (105)

Some properties of expectations:

- ▶ Linearity: $\mathbb{E}[ag(X) + bh(X)] = \mathbb{E}[ag(X)] + \mathbb{E}[bh(X)]$
- ▶ Order preserving: $g(X) \le h(X), \forall x \in \mathbb{R} \Rightarrow \mathbb{E}[g(X)] \le \mathbb{E}[h(X)]$

The *variance* of rv X is defined as

$$var(X) = \mathbb{E}[(X - \mu)^2] : \mu = \mathbb{E}[X]$$
 (106)

The *variance* of rv X is defined as

$$var(X) = \mathbb{E}[(X - \mu)^2] : \mu = \mathbb{E}[X]$$
 (106)

Some notes:

- ▶ If $\mathbb{E}[X]$ doesn't exist then var(X) doesn't exist.
- var(X) can be infinite.
- ▶ The standard deviation σ of X is $\sqrt{var(X)}$.

With some algebra, we see that

$$var(X) = \mathbb{E}[(X - \mu)^{2}]$$
 (107)

$$= \mathbb{E}[X^{2} - 2X\mu + \mu^{2}]$$
 (108)

$$= \mathbb{E}[X^{2}] - \mathbb{E}[2X\mu] + \mathbb{E}[\mu^{2}]$$
 (109)

$$= \mathbb{E}[X^{2}] - \mu^{2}$$
 (110)

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$
 (111)

Some properties:

- ▶ If X is bounded, then var(X) exists and is finite.
- $ightharpoonup var(X) = 0 \iff P(X = c) = 1 \text{ for some constant } c.$
- ▶ $var(cX) = c^2 var(X)$ for some constant c.
- ▶ variance is linear, i.e. $var(X_1 + X_2) = var(X_1) + var(X_2)$.

The k^{th} moment of rv X is defined as

$$\mathbb{E}[X^k] = \mu_k : k \in \mathbb{N} \tag{112}$$

The k^{th} central/centered moment of rv X is defined as

$$\mathbb{E}[(X-\mu)^k] = \mu_k : k \in \mathbb{N}$$
 (113)

The k^{th} moment of rv X is defined as

$$\mathbb{E}[X^k] = \mu_k : k \in \mathbb{N} \tag{112}$$

The k^{th} central/centered moment of rv X is defined as

$$\mathbb{E}[(X-\mu)^k] = \mu_k : k \in \mathbb{N}$$
 (113)

Notes:

- μ_k exists if and only if $\mathbb{E}[|X|^k] < \infty$.
- ▶ If μ_k^i exists, then for all j < k, μ_j^i also exists.
- ▶ Variance is μ_2 .
- *Skewness* is μ_3/σ^2 .
- Kurtosis is μ_4/σ^4 .

Example: Suppose $X \sim N(0,1) \ni f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

$$\mu_1' = \mathbb{E}[X] = \int x f_X(x) dx = f_X(x)|_{-\infty}^{\infty} = 0$$
 (114)

n.b. For the normal distribution, $xf_X(x) = -\frac{\partial}{\partial x}f_X(x)$.

Example: Suppose $X \sim N(0,1) \ni f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

$$\mu_1' = \mathbb{E}[X] = \int x f_X(x) dx = f_X(x)|_{-\infty}^{\infty} = 0$$
 (114)

n.b. For the normal distribution, $xf_X(x) = -\frac{\partial}{\partial x}f_X(x)$.

$$\mu_2 = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[(X - 0)^2] = \mathbb{E}[X^2] = \int x^2 f_X(x) dx$$
 (115)

using integration by parts, we get

$$\int x^2 f_X(x) dx = \underbrace{-x f_X(x)|_{-\infty}^{\infty}}_{=0} + \underbrace{\int_{-\infty}^{\infty} f_X(x) dx}_{=1} = 1$$
 (116)

Moment generating functions (mgf) are used to calculate the moments of a rv. The mgf of a rv X is a function $M_X: \mathbb{R} \Rightarrow \mathbb{R}_+$ such that

$$M_X(t) = \mathbb{E}[e^{tX}] : t \in \mathbb{R}$$
 (117)

Moment generating functions (mgf) are used to calculate the moments of a rv. The mgf of a rv X is a function $M_X: \mathbb{R} \Rightarrow \mathbb{R}_+$ such that

$$M_X(t) = \mathbb{E}[e^{tX}] : t \in \mathbb{R}$$
 (117)

Notes:

- ▶ The mgf is a function of t; X is integrated out by \mathbb{E} .
- The mgf only applies if the moments of the rv exists.
- ▶ If two rv X, Y have the same mgf (i.e. $M_X(t) = M_Y(t)$), then they have the same distribution.
- Even if a rv has moments, the mgf may yield infinity (e.g. log-normal distribution).

Taking the derivative of the mgf, we see that

$$\frac{\partial}{\partial t} M_X(t) = \frac{\partial}{\partial t} \int e^{tx} f_X(x) dx = \int x \cdot e^{tx} f_X(x) dx \qquad (118)$$

What happens when t = 0?

Taking the derivative of the mgf, we see that

$$\frac{\partial}{\partial t} M_X(t) = \frac{\partial}{\partial t} \int e^{tx} f_X(x) dx = \int x \cdot e^{tx} f_X(x) dx \qquad (118)$$

What happens when t = 0?

$$\int x \cdot e^{tx} f_X(x) dx = \int x f_X(x) dx = \mathbb{E}[X]$$
 (119)

Taking the derivative of the mgf, we see that

$$\frac{\partial}{\partial t} M_X(t) = \frac{\partial}{\partial t} \int e^{tx} f_X(x) dx = \int x \cdot e^{tx} f_X(x) dx \qquad (118)$$

What happens when t = 0?

$$\int x \cdot e^{tx} f_X(x) dx = \int x f_X(x) dx = \mathbb{E}[X]$$
 (119)

What happens when t = 0 for the k^{th} derivative?

Taking the derivative of the mgf, we see that

$$\frac{\partial}{\partial t} M_X(t) = \frac{\partial}{\partial t} \int e^{tx} f_X(x) dx = \int x \cdot e^{tx} f_X(x) dx \qquad (118)$$

What happens when t = 0?

$$\int x \cdot e^{tx} f_X(x) dx = \int x f_X(x) dx = \mathbb{E}[X]$$
 (119)

What happens when t = 0 for the k^{th} derivative?

$$\frac{\partial}{\partial t^k} M_X(t) = \int x^k \cdot e^{tx} f_X(x) dx \tag{120}$$

At t=0, we get $\frac{\partial}{\partial t^k} M_X(t)|_{t=0} = \mathbb{E}[X^k]$

Evaluating the k^{th} derivative at t = 0 gives us the k^{th} moment of X.

Example: The standard normal distribution

$$M_X(t) = \mathbb{E}[e^{tX}] = \int e^{tX} f_X(x) dx$$
 (121)

$$= \int e^{tX} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$
 (122)

$$= \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-t)^2}{2}\right) \exp\left(\frac{t^2}{2}\right) dx$$
 (123)

$$= \exp\left(\frac{t^2}{2}\right) \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-t)^2}{2}\right) dx$$
 (124)

$$= \exp\left(\frac{t^2}{2}\right)$$
 (125)

The mgf for affine transformations is straight forward, e.g. If Y = aX + b, then $M_Y(t) = e^{bt}M_X(at)$.

Example: Let $X = \mu + \sigma Z : Z \sim N(0,1)$. Then

$$M_X(t) = M_{\mu+\sigma Z}(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2} = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$
 (126)

The mgf for affine transformations is straight forward, e.g. If Y = aX + b, then $M_Y(t) = e^{bt}M_X(at)$.

Example: Let $X = \mu + \sigma Z : Z \sim N(0,1)$. Then

$$M_X(t) = M_{\mu+\sigma Z}(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2} = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$
 (126)

Another example:

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P_0$ and $Y = \sum_{i=1}^n X_i$. Then

$$M_{Y}(t) = \mathbb{E}[e^{tY}] = \mathbb{E}[e^{t(X_{1}+\cdots+X_{n})}] = \mathbb{E}\left[\prod_{i=1}^{n} e^{tX_{i}}\right]$$
(127)
$$= \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_{i}}\right] = \prod_{i=1}^{n} M_{X_{i}}(t)$$
(128)

Distributions

Most useful distributions have names, e.g.

- Normal distribution
- Uniform distribution
- Bernoulli distribution
- Binomial distribution
- ▶ Poisson distribution
- Gamma distribution

Normal distribution

A rv X follows a *Normal distribution*, denoted as $X \sim N(\mu, \sigma^2)$ with mean μ and variance σ^2 , if X is continuous with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) : x \in \mathbb{R}$$
 (129)

Note:

If $Z \sim N(0,1)$ then $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$. It follows that

- $\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z] = \mu + \sigma \mathbb{E}[Z] = \mu.$
- $var(X) = var(\mu + \sigma Z) = \sigma^2 var(Z) = \sigma^2$.

Normal distribution

A rv X follows a *Normal distribution*, denoted as $X \sim N(\mu, \sigma^2)$ with mean μ and variance σ^2 , if X is continuous with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) : x \in \mathbb{R}$$
 (129)

Note:

If $Z \sim N(0,1)$ then $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$. It follows that

- $\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z] = \mu + \sigma \mathbb{E}[Z] = \mu.$
- $var(X) = var(\mu + \sigma Z) = \sigma^2 var(Z) = \sigma^2$.

Most well known distribution due to:

- 1. Good mathematical properties
- 2. Often (approximately) observed in the real world (e.g. heights, weights, etc.)
- 3. Central limit theorem

Central limit theorem

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P_0$, where $\mathbb{E}[X_i] = \mu$ and $var(X_i) = \sigma^2$. Then

$$\lim_{n\to\infty} P\left(\frac{n^{1/2}(\bar{X}_n-\mu)}{\sigma} \le x\right) = \Phi(x) \tag{130}$$

where $\Phi(x)$ is the cdf for the standard normal distribution.

Central limit theorem

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P_0$, where $\mathbb{E}[X_i] = \mu$ and $var(X_i) = \sigma^2$. Then

$$\lim_{n \to \infty} P\left(\frac{n^{1/2}(\bar{X}_n - \mu)}{\sigma} \le x\right) = \Phi(x) \tag{130}$$

where $\Phi(x)$ is the cdf for the standard normal distribution.

Example: The sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{131}$$

The 95% CI: $\bar{X}_n \pm z_{\alpha/2} \hat{se}_n$

Uniform distribution

A rv X follows a Uniform distribution U(a,b) if X is continuous with pdf

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$
 (132)

Under U(a, b), all observations are "equally likely"

$$\mathbb{E}[X] = \frac{a+b}{2}$$
, $var(X) = \frac{(b-a)^2}{12}$, and $M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$.

Uniform distribution

A rv X follows a Uniform distribution U(a,b) if X is continuous with pdf

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$
 (132)

Under U(a, b), all observations are "equally likely"

$$\mathbb{E}[X] = \frac{a+b}{2}$$
, $var(X) = \frac{(b-a)^2}{12}$, and $M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$.

Note: if $X \sim U(a,b)$, then $X = (b-a)\tilde{X} + a : \tilde{X} \sim U(0,1)$ and

$$f_{\tilde{X}}(x) = \begin{cases} 1 & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
 (133)

Bernoulli distribution

A rv X follows a Bernoulli distribution Ber(p) if X is discrete with pmf

$$f_X(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$
 (134)

$$\mathbb{E}[X] = p$$
, $var(X) = p(1-p)$, and $M_X(t) = e^t p + (1-p)$.

Binomial distribution

A rv X follows a Binomial distribution Bin(n, p) if X is discrete with pmf

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{if } x \in \{0,1,...,n\} \\ 0 & \text{otherwise} \end{cases}$$
 (135)

 $\mathbb{E}[X] = np, \ var(X) = np(1-p), \ and \ M_X(t) = (e^t p + (1-p))^n.$

If $X_1,...,X_n \stackrel{iid}{\sim} Ber(p)$, then $Y = X_1 + \cdots + X_n$ follows B(n,p).

Negative Binomial distribution

A rv X follows a Negative Binomial distribution NB(r, p) if X is discrete with pmf

$$f_X(x) = \begin{cases} \binom{r+x-1}{x} p^x (1-p)^r & \text{if } x \in \{0, 1, ..., n\} \\ 0 & \text{otherwise} \end{cases}$$
 (136)

$$\mathbb{E}[X] = \frac{r(1-p)}{p}$$
, $var(X) = \frac{r(1-p)}{p^2}$, and $M_X(t) = \left(\frac{p}{1-qe^t}\right)^r$: $t < \log\left(\frac{1}{q}\right)$.

When r = 1, we refer to it as the *Geometric distribution*.

▶ It has a *memoryless* property.

Poisson distribution

A rv X follows a Poisson distribution $Pois(\lambda)$ if X is discrete with pmf

$$f_X(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & x \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$
 (137)

$$\mathbb{E}[X] = \lambda$$
, $var(X) = \lambda$, and $M_X(t) = e^{\lambda(e^t - 1)}$.

Some notes:

- ▶ $Bin(n, p) \approx Pois(np)$ when n is large and np is small.
- "Poisson Processes" are typically used to model rates, e.g. mortality rates
 - 1. The number of events in each fixed time interval t has a Poisson distribution with mean λt .
 - 2. The number of events in each time interval is independent.

Gamma distribution

A rv X follows a Gamma distribution $\operatorname{Gamma}(\alpha,\beta)$ if X is continuous with pdf

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (138)

where $\Gamma(x) = \int_0^\infty t^{\alpha-1} e^{-t} dt : \alpha > 0$.

$$\mathbb{E}[X] = \alpha \beta$$
, $var(X) = \alpha \beta^2$, and

$$M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} : t < \beta.$$

Gamma distribution

A rv X follows a Gamma distribution $\operatorname{Gamma}(\alpha,\beta)$ if X is continuous with pdf

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (138)

where
$$\Gamma(x) = \int_0^\infty t^{\alpha-1} e^{-t} dt : \alpha > 0$$
.

$$\mathbb{E}[X] = \alpha \beta$$
, $var(X) = \alpha \beta^2$, and $M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} : t < \beta$.

Notes:

- $ightharpoonup \frac{1}{\Gamma(\alpha)\beta^{\alpha}}$ is often referred to as the 'normalizing constant'.
- ▶ When $\alpha = 1$, we get the exponential distribution.

Beta distribution

A rv X follows a Beta distribution $Beta(\alpha, \beta)$ if X is continuous with pdf

$$f_X(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
 (139)

$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}, \ var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}, \ \text{and}$$

$$M_X(t) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 x^{\alpha + k - 1} (1 - x)^{\beta - 1} dx.$$

n.b. Very popular distribution in Bayesian statistics.

Multinomial distribution

Suppose rv $\mathbf{X} = (X_1, ..., X_k)$ represents counts of k different classes. Then it follows a Multinomial distribution $Multi(p_1, ..., p_k)$ if it has pdf

$$f_X(x) = \begin{cases} \binom{n}{x_1, \dots, x_k} p_1^{x_1} \cdots p_k^{x_k} & x_1 \ge 0, \dots, x_k \ge 0\\ 0 & \text{otherwise} \end{cases}$$
(140)

where $n = \sum_{i=1}^{k} X_i$.

$$\mathbb{E}[X_i] = np$$
, $var(X_i) = np_i(1 - p_i)$, and $Cov(X_i, X_j) = -np_ip_j$.

Dirac delta function

While not technically a pdf, often used for e.g. mixture of discrete distributions

The Dirac delta function is defined as $\delta: \mathbb{R} \to \mathbb{R} \cup \infty \ni$

$$\delta(x) = \begin{cases} +\infty & x = 0\\ 0 & \text{otherwise} \end{cases}$$
 (141)

and
$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

The sifting property:

$$\int f(x)\delta(x-a)dx = f(a)$$
 (142)

Dirac delta function

Example: Let

$$Y = \begin{cases} 1 & \text{w.p. } \alpha \\ U(0,1) & \text{w.p. } 1 - \alpha \end{cases}$$
 (143)

Then
$$f_Y(y) = \alpha \delta(y-1) + (1-\alpha)\mathbb{I}(y \in [0,1])$$

Dirac delta function

Example: Let

$$Y = \begin{cases} 1 & \text{w.p. } \alpha \\ U(0,1) & \text{w.p. } 1 - \alpha \end{cases}$$
 (143)

Then
$$f_Y(y) = \alpha \delta(y-1) + (1-\alpha)\mathbb{I}(y \in [0,1])$$

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} y(\alpha\delta(y-1) + (1-\alpha)\mathbb{I}(y \in [0,1]))dy$$
 (144)

$$= \alpha \int_{\infty}^{\infty} y(\delta(y-1)dy + (1-\alpha) \int_{0}^{1} ydy \qquad (145)$$

$$= \alpha + (1 - \alpha) \frac{y^2}{2} \Big|_0^1 \tag{146}$$

$$= \alpha + \frac{1-\alpha}{2} \tag{147}$$

$$= \frac{1+\alpha}{2} \tag{148}$$

References

- ▶ DeGroot & Schervish Chapters 4.1-4.5,5.1-5.9
- ► Grinstead & Snell Chapters 5,6