Московский Физико-Технический Институт (государственный университет)

Работа 19

Цель работы:

Изучение работы методов активных фильтров.

В работе используются:

Программа МісгоСар10.

1 Звенья первого порядка

1. Откроем в Місто-Сар модель **zpole.cir** пропорционально интегрирующей и дифференцирующей цепей с полусом в точке $s=\frac{p}{\omega_0}=-1,\, f_0=\frac{\omega_0}{2\pi}=10k$ и нулями в точках s=-2 и $s=-\frac{1}{2}$. Измерим уровни подавления на частоте f_0 и в полосах задержания:

$$K_{f_0} = 0,79$$

В полосах задержания : K = 0, 5

Оценим положения и уровни экстремумов фазовых характеристик:

Дифференцирующая :
$$max=19,5^{\circ}$$

Интегрирующая :
$$min = -19, 5^{\circ}$$

2. Изменим номиналы резисторов в схемах так, чтобы сохранив положения полюсов, переместить нули в точки $s=-4,\ s=-\frac{1}{4}$. Измерим уровни подавления на частоте f_0 и в полосах задержания:

$$K_{f_0} = 0,73$$

В полосах задержания :
$$K = 0,25$$

Оценим положения и уровни экстремумов фазовых характеристик:

Дифференцирующая :
$$max = 36,9^{\circ}$$

Интегрирующая :
$$min = -36, 9^{\circ}$$

- 3. Откроем модель **integrator.cir** реального интегратора с частотой единичного усиления $f_1 = 10k$ и усилением $K = \frac{R_K}{R}$. Варьируя резистор $R_K = [20k, 640k|log2]$, изучим поведение нормированных частотных и фазовых характеристик:
- 4. Подключив источник step единичного интегратора $h_0(t/\tau_1), \ \tau_1 = RC = 15.92\mu$, варьируя $R_K = [20k, 640k|log2]$. Оценим значения ошибок интегрирования в точках $\frac{t}{\tau_1} = \frac{K}{2}$:

	σ , %	18	19	19,5	19,7	20	20
Г	K	2	4	8	16	32	64

Рис. 1: Аплитудно частотная характеристика

2 Активные звенья с двойным Т-мостом

1. Откроем модель полосового фильтра **pass2T.cir** с $f_0 = 10k, K_0 = 20$. Изучим его частотную и фазовую характеристики. Измерим усиление на частоте f_0 и полосу Δf по уровню -3dB:

$$K=7,5$$
 $\triangle f=1,9$ к Γ ц

Снимем зависимость усиления и ширины полосы от $R_2 = [20k, 100k | 20k]$:

R_2, k	20	40	60	80	100
K	7,5	14,6	21,8	28,9	36,1

2. Изучим поведение фильтра при разбалансировании маста с варьированием $R_5 = [1.5k, 5.5k|500]$. Оценим значение R_5 при котором пиковое усиление достигает максимума:

$$R_5 = 3k$$

3. Изучим переходную характеристику фильтра. Измерим уровни скачка в нуле и первого выброса:

$$U_0 = 1 \,\mathrm{B}$$

$$U_1 = 4,28 \,\mathrm{B}$$

Прослежим за ее измением при варьировании $R_5 = [5.0k, 2.5k|500]$ и оценим значение R_5 , при котором фильтр теряет устойчивость:

$$R_5 = 3k$$

4. Откроем модель режекторного фильтра **stop2T.cir** с $f_0 = 10k, \gamma = 0.1$. Изучим его частотную и фазовую характеристику. Измерить ширину полосы режекциии $\triangle f$ по уровню -3dB:

$$\triangle f = 4k$$

Изучим ее поведение при варьировании $R_1 = [90k, 240k|30k]$ и $R_1 = [300k, 1500k|300k]$:

Рис. 2: $R_1 = [90k, 240k|30k]$

Рис. 3: $R_1 = [300k, 1500k|300k]$

Изучим поведение фильтра при разбалансировании моста варьированием $R_5 = [1k, 9k|2k]$:

5. Изучим переходную характеристику фильтра. Измерим уровни скачка в нуле и первого выброса:

$$U_0 = 1 B$$

Рис. 4: $R_5 = [1k, 9k|2k]$

 $U_1=0,7\,\mathrm{B}$

Проследим за ее изменением при варьировании $R_1 = [90k, 240k|30k]$ и $R_5 = [1k, 9k|2k]$:

Рис. 5: $R_1 = [90k, 240k|30k]$

.

3 Звенья Саллена-Ки

1. Откроем модель **skey.cir** звеньев Саллена-Ки с частотой $f_0=10k$ и добротностью Q=1. Изучим частотные характеристики звеньев. Измерим значение коэффициентов передачи:

 $\Phi H Y: K = 1$

 $\Phi B Y: K = 1$

Рис. 6: $R_5 = [1k, 9k|2k]$

$$\Pi \Phi: K=1$$

Проанализируем изменение частотных характеристик фильтров при варьировании резисторов $R_L, R_H, R_P = [11k, 19k|2k]$. Измерим пиковые значения усиления при $R_{L,H,P} = 19k$:

 $\Phi H Y: U = 29,4 B$

 $\Phi B \, H : \quad U = 28,4 \, \mathrm{B}$

 $\Pi \Phi: U = 28,8 B$

- 2. Исследуем переходные характеристики фильтров и их поведение при варьировании $R_L, R_H, R_P = [11k, 19k|2k].$
- 3. Откроем модель **sk3pole.cir** с фильтрами Баттерворта верхних и нижних частот порядка n=3 на частоту среза $f_0=10k$. Проанализируем частотные характеристики фильтров. Измерим скорость спада в dB на октаву и затухания на частотах $f_0/2, 2f_0$:

 $\Phi H H: 2f_0 \rightarrow -18dB$

 $textit: f_0/2 \rightarrow -18dB$

Преобразуем их в фильтры Чебышева с $\varepsilon = 1$. Параметры полюсов ФНЧ можно получить в MatLab командой highpass(cheb(3,1)). Измерим уровни затухания на частотах $f_0/2, 2f_0$ и $F_0/10, 10f_0$:

 $textit: 2f_0 \rightarrow -26dB, 10f_0 \rightarrow -69dB$

 $\Phi B \, H : \quad f_0/2 \to -26 dB, \ f_0/10 \to -69 dB$

4. Открыв прототип **sk4pole.cir** реализуем 4-полюсной полосовой фильтр Чебышева с $f_0=10k, \varepsilon=1, Q=\frac{f_0}{\triangle f}=6$. Измерим уровни затухания на частотах $f_0/2, 2f_0$ и $F_0/10, 10f_0$:

textit:
$$2f_0 \to -41dB$$
, $10f_0 \to -73,8dB$
 $\Phi B H$: $f_0/2 \to -41dB$, $f_0/10 \to -73,8dB$

4 Звенья с двойной обратной связью

1. Откроем прототип **amp1bp.cir** и реализуем полосовое звено с $f_0 = 5k, K_0 = 5, Q = 15$. Измерим ширину полосы по уровню 0.7 = -3dB и пиковое усиление QK_0 , оценим добротность:

$$\Delta f = 0.35k$$
$$Q \simeq 14.3$$
$$QK_0 \simeq 75$$

Изучить поведение АЧХ при варьировании $R_2 = [100, 1.3k|200]$. Построить график зависимости частоты пика от R_2 .

f , к Γ ц	4,11	4,38	4,74	5,27	6,18	7,65	12,7
R, кОм	1,3	1,1	0,9	0,7	0,5	0,3	0,1

Рис. 7: $R_2 = [100, 1.3k|200]$

6

2. Соберем звено на макетной плате. Экспериментально измерим параметры K_0, f_0, Q :

$$f_0 = 5, 5 \,\mathrm{k}\Gamma\mathrm{ц}$$

$$K_0 = 62, 5$$

$$\triangle f = 0,48$$

$$Q \simeq 11,45$$

$$K_0 \simeq 5,46$$

Также можем заметить совпадение переходных характеристик собранной и смоделированной схемы.

3. Откроем прототип **cheb6pole.cir** и реализуем шестиполюсный полосовой фильтр Чебышева с параметрами $f_0=1k, \varepsilon=1, Q=3$. Измерим затухания на частотах 0.1k, 0.5k, 2k, 10k:

f = 100: 100dB

f = 500: 51dB

f = 2k : 51.5dB

f = 10k : 101dB

5 Звенья эллиптических фильтров

1. Выберем параметр селективности $\eta=1,3$. Реализуем трехполюсной элликптический фильтр нижних частот с параметрами $f_0=1k, \varepsilon=1, \eta=1,3$. Изучим частотную характеристику фильтра и частотные характеристики составляющих его звеньев. По фазовой характеристике установим, что нуль находится в правой полуплоскости. Определим уровень затухания и границу полосы задержания:

$$\eta_1 = 25,6dB$$

$$\eta \simeq 3dB$$