Reinforcement Learning for Data Cleaning and Data Preparation

Laure Berti-Equille

IRD, Aix Marseille Université DIAMS, LIS, France laure.berti@ird.fr

HILDA 2019 @ SIGMOD 2019

Learning from dirty data is risky

Learning from dirty data is risky

Learning from dirty data is risky

How to clean and prepare the data at their best?

Data preparation is challenging

Optimization Problem

Can we help the user in composing the data preparation pipeline that maximizes the quality performance of the ML method?

Optimization Problem

Can we help the user in composing the data preparation pipeline that maximizes the quality performance of the ML method?

First Solution: Learn2Clean

[The Web Conf 2019]

AutoML-like approach for Curation

Markov Decision Process

State

Action

Transition

Reward

$$D_s \bigcirc p_q$$

Markov Decision Process

State

Action

Transition

Reward

$$D_s \bigcirc \xrightarrow{p_q}$$

$$D_s$$

Markov Decision Process

State

Action

Transition

Reward

Learn2Clean

MICE ΕM imputation KNN MF DS MM normalization ZS MR WR feature selection LC TB ZSB LOF outlier detect/fix **IQR** CC consistency check/fix PC AD duplicate detect/fix ED LASSO or OLS or MARS for regression HCA or KMEANS for clustering CART or LDA or NB for classification

Markov Decision Process

State

Action

Transition

Reward

$$D_s \bigcirc p_q$$

$$\begin{array}{cccc}
D_s & p^1 & D \\
\hline
\end{array}$$

Markov Decision Process

State

Action

Transition

Reward

$$D_s \bigcirc \xrightarrow{p_q}$$

Markov Decision Process State Action Transition Reward Learn2Clean $D_s \overset{p_q}{\longrightarrow} \\ D_s \overset{p^1}{\longrightarrow} D_1 \\ \dots \overset{p^t}{\longrightarrow} D_r \\ \dots \overset{p^T}{\longrightarrow} D_T \\ \dots \overset{p^T}{\longrightarrow} D_T$

Markov Decision Process State

Transition

Reward

Learn2Clean

Policy

Softmax action selection

$$\pi = P(a \mid s) = \frac{e^{Q(s,a)/k}}{\sum_{j} e^{Q(s,a_{j})/k}}$$

Experiment Setup

Datasets

Name	# Att.	# Rows	Clustering	Regression	Classification
House Prices	81	1.46k	/		
Google Playstore Users	5	64.3k			
Google Playstore Apps	13	10.8k			

Evaluation: Silhouette for Clustering

MSE for Regression

Accuracy for Classification

Experimental Results

Regression (MSE)

Experimental Results

Clustering (Silhouette)

Experimental Results

New Version: HIL with Active Reward Learning

Active Reward Learning

Learn2Clean + HIL

Goal: *learn from user feedbacks* to adapt the rewards

Active Reward Learning

Learn2Clean + HIL

Goal: *learn from user feedbacks* to adapt the rewards

Active Reward Learning

Learn2Clean + HIL

Goal: *learn from user feedbacks* to adapt the rewards

Code: https://github.com/LaureBerti/Learn2Clean

Future directions

- Combine AutoML and AutoCuration
- Learn better reward functions
- Extend the library of ML and preparation methods
- Investigate other RL techniques (e.g., deep RL, on-policy, model)
- Extend experiments with more intricate data glitches and various glitch distributions

