3.1 The Basics

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM Updated: 2019-11-05 5:39 PM

Author: SUKHJIT MANN

Tags: Conjunction, Disjunction, Negation, Precedence, Proposition, Propositional Logic, Truth

Cornell Notes

Topic:

3.1 The Basics

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: November 05, 2019

Essential Question:

What is propositional logic and how can we make propositions and/or complex propositions?

Questions/Cues:

- What is propositional logic?
- What is a proposition?
- What a propositional variable?
- What is a truth table?
- What is a truth set?
- What are compound propositions?
- What is negation in terms of proposition?
- What is conjunction in terms of proposition?
- What is disjunction in terms of proposition?
- What is exclusive-or in terms of proposition?
- What is the precedence of logical operations in terms of propositions?

Notes

- Propositional logic = branch of logic interested in studying mathematical statements
 - basis of all reasoning and rules used to construct mathematical theories
 - o Original purpose, dating back Aristotle was to model reasoning
 - effectively an algebra of propositions
 - variables are unknown propositions instead of real numbers
 - Operators used are: AND, OR, NOT, IMPLIES, & IF AND ONLY IF, instead of +, -.
 *, & /
 - Can be used comp circuit design & in prog lang like Prolog
- Proposition = declarative sentence, either true or false, but not both
 - Most basic element of logic, to build our reasoning and logical statements
 - examples. "London is the capital of the United Kingdom", "Madrid is the capital of France"
- Propositional Variable = is typically a letter, such as: p, q, r,...
 - To avoid writing long & repetitive propositions
- Truth table = tabular representation of all possible combinations of its constituent variables

Here are two propositional variables p and q:

р	q	
FALSE	FALSE	
FALSE	TRUE	
TRUE	FALSE	
TRUE	TRUE	

Here are 3 propositional variables p, q and r:

p	q	r
F	F	F
F	F	Т
F	T	F
F	Т	Т
T	F	F
Т	F	Т
Т	Т	F
Т	Т	Т

- Truth set = Let p be a proposition on a set S. Truth set of p is set of elements of S for which p is true
 - Usually capital letter to denote a truth set of a proposition, ie. the truth set of a proposition p is denoted as P

Let
$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Let **p** and **q** be two propositions concerning an integer n in **S**, defined as follows:

p: n is even q: n is odd

The truth set of \mathbf{p} written as \mathbf{P} is: $\mathbf{P} = \{2, 4, 6, 8, 10\}$

The truth set of \mathbf{q} is:

$$Q = \{1, 3, 5, 7, 9\}$$

- Compound propositions = statements built by combining multiple propositions using certain rules
- Negation (\neg) = Let p be a proposition. Negation of p, denoted by $\neg p$ and read "not p", is statement: "It is not the case that p."
 - Truth value of negation of p, $\neg p$, is opposite the truth value of p

Example

- · p: "John's program is written in Python."
- ¬ p: "John's program is not written in Python."

p	$\neg \mathbf{p}$
F	T
T	F

- Conjunction (^) = Let p and q be propositions. Conjunction of p & q, denoted p ^ q, is the proposition "p and q"
 - Conjunction p^q only true when both p & q are true, and false if not the case

Example:

- p: "John's program is written in Python."
- · q: "John's program has less than 20 lines of code."
- p ∧ q: John's program is written in Python and has less than 20 lines of code."

p	q	$\mathbf{p} \wedge \mathbf{q}$
F	F	F
F	Т	F
T	F	F
T	Т	T

- Disjunction(V) = let p and q be propositions. Disjunction of p & q, denoted p V q, is proposition "p or q"
 - o Disjunction p V q only false when both p & q are false; otherwise true

Example

- p: "John's program is written in Python."
- q: "John's program has less the 20 lines of code."
- p ∨ q: "John's program is written in Python or has less then 20 lines of code."

p	q	$\mathbf{p}\vee\mathbf{q}$
F	F	F
F	T	Т
T	F	Т
Т	T	T

- Exclusive-or(\oplus) = Let p and q be propositions. Exclusive-or of p & q, denoted by $p\oplus q$, is proposition "p or q (but not both)"
 - \circ Exclusive-or $p \oplus q$ true when p is true & q is false and when p is false & q is true

Example:

- p: "John's program is written in Python."
- q: "John's program has less the 20 lines of code."
- p
 [®] q: "John's program is written in Python
 or has less then 20 lines of code, but not both."

р	q	$p \oplus q$
T	Т	F
T	F	T
F	Т	Т
F	F	F

- Precedence of logical operations = to build complex compound propositions, we need to use parentheses, meaning of propositions is different depending on order in which parentheses are used
 - To reduce # of parentheses, use an order of precedence

Example

• $(p \lor q) \land (\neg r)$ is different from $p \lor (q \land \neg r)$

Example

• (p \lor q) \land (¬r) can be written simply as p \lor q \land ¬r

Operator	Precedence
-	1
٨	2
V	3

Given a positive integer n, let's consider the propositions p and q:

- p: "n is an even number"
- q: "n is less than 10"

P1: n is an even number and is less than 10: $(p \land q)$

P2: n is either an even number or is less than 10: $(p \lor q)$

P3: n is either an even number or is less than 10 but not both: $(p \oplus q)$

P4:
$$\neg p \lor (p \land q)$$

р	q	(p ∧ q)	(p ∨ q)	$\mathbf{p}\oplus\mathbf{q}$	$\neg \mathbf{p}$	$\neg p \lor (p \land q)$
F	F	F	F	F	T	T
F	T	F	T	T	T	T
T	F	F	T	T	F	F
Т	T	T	T	F	F	T

Summary

In this week, we learned what propositional logic and a proposition is. Alongside this we looked the various operations to perform on propositions, their precedence and truth tables/truth sets.