Nom prénom :	•
Classe :	

La Radioactivité du potassium 40 Mesures expérimentales

1. Le dispositif expérimental

Nous allons utiliser un compteur Geiger relié à un Arduino.

- Ouvrir MicroCosmosRadioactivite.ino (disponible sur pronote)
- 2. Outils \rightarrow port \rightarrow sélectionner le port arduino
- 3. téléverser le programme dans l'arduino
- 4. Outils → ouvrir le moniteur série

2. Mesure du bruit de fond

2.1. Prise de mesure

→ On réalise 30 mesures de 10 s durant 5min (300s). Noter le nombre d'impulsions mesurées chaque 10s dans le tableau ci dessous :

2.2. Analyse

Histogramme:

Nombre d'évènement par 10 s

Calculs avec la calculatrice (voir fiche méthode):

$$\bar{N} = \dots$$
 $\sigma_{n-1} = \dots$
 $u(N) = \dots$

3. Activité du potassium 40

3.1. Prise de mesure

→ On réalise 30 mesures de 10 s durant 5min (300s). Noter le nombre d'impulsions mesurées chaque 10s dans le tableau ci dessous :

3.2. Analyse

Histogramme:

Nombre d'évènement par 10 s

Calculs avec la calculatrice (voir fiche méthode):

$$\bar{N} = \dots$$
 $\sigma_{n-1} = \dots$
 $u(N) = \dots$

Pour calculer l'activité du potassium on soustrait le bruit mesuré précédemment à cette mesure.

Activité potassium 40 (40 K) $ar{N}\!=\!.....\pm....$ évènements / 10s

4. Activité en fonction de la distance

4.1. Prise de mesure

On souhaite réaliser une étude en fonction de la distance $\overline{N}=f(d)$. On fait varier d'entre 0,5 et 8 cm. Pour chaque valeur de d on réalise 30 mesures de 10 s et on calcule la valeur moyenne \overline{N} et l'incertitude $u(\overline{N})$.

Données expérimentales							
Distance (cm)	Activité (10s)	incertitude					
0,5							
1,5							
2,5							
3,5							
4,5							
5,5							
6,5							
7,5							

4.2. Analyse

Expliquer en quoi la distance peut être un facteur pour se protéger de la radioactivité :