Chapitre 1

Nombres complexes et géométrie

1.1 Le plan affine euclidien et le plan d'Argand-Cauchy

 \mathcal{P} est un plan affine euclidien muni d'un repère orthonormé $\mathcal{R}=(O,\overrightarrow{e_1},\overrightarrow{e_2})$ et $\overrightarrow{\mathcal{P}}$ est le plan vectoriel associé. Un point $M\in\mathcal{P}$ est repéré par ses coordonnées $(x,y)\in\mathbb{R}^2$ dans le repère \mathcal{R} , ce qui signifie que $\overrightarrow{OM}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$ dans $\overrightarrow{\mathcal{P}}$ et se note M(x,y). On notera :

- $\overrightarrow{v_1} \cdot \overrightarrow{v_2} = x_1 x_2 + y_1 y_2$ le produit scalaire des vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ de $\overrightarrow{\mathcal{P}}$;
- $\det(\overrightarrow{v_1}, \overrightarrow{v_2}) = x_1 y_2 x_2 y_1$ le déterminant de $(\overrightarrow{v_1}, \overrightarrow{v_2})$ dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$;
- $-(\overrightarrow{v_1},\overrightarrow{v_2})$ une mesure de l'angle orienté des vecteurs non nuls $\overrightarrow{v_1},\overrightarrow{v_2}$;
- $AB = \|\overrightarrow{AB}\| = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$ la distance de A à B dans \mathcal{P} .

On rappelle qu'une mesure de l'angle orienté des vecteurs non nuls $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ est définie comme suit : dans le plan vectoriel euclidien orienté $\overrightarrow{\mathcal{P}}$, il existe un unique automorphisme orthogonal direct u tel que $u\left(\frac{1}{\|\overrightarrow{v_1}\|}\overrightarrow{v_1}\right) = \frac{1}{\|\overrightarrow{v_2}\|}\overrightarrow{v_2}$; dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$ la matrice de u est $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où les réels a, b sont tels que $a^2 + b^2 = 1$; il existe donc un réel θ tel que $a = \cos(\theta)$ et $b = \sin(\theta)$ et on dit alors que θ est une mesure de l'angle orienté des vecteurs $\overrightarrow{v_1}$, $\overrightarrow{v_2}$. Une telle mesure est uniquement déterminée modulo 2π et notée $(\overrightarrow{v_1}, \overrightarrow{v_2})$.

Pour tout réel non nul λ , on a $(\lambda \overrightarrow{v_1}, \lambda \overrightarrow{v_2}) = (\overrightarrow{v_1}, \overrightarrow{v_2})$. Trois points deux à deux distincts A, B, C sont alig

Trois points deux à deux distincts A,B,C sont alignés si, et seulement si, on a $(\overrightarrow{AB},\overrightarrow{AC}) \equiv 0$ modulo π . Précisément, on aura $(\overrightarrow{AB},\overrightarrow{AC}) \equiv 0$ modulo 2π si $\overrightarrow{AC} = \lambda \overrightarrow{AB}$ avec $\lambda > 0$ et $(\overrightarrow{AB},\overrightarrow{AC}) \equiv \pi$ modulo 2π si $\overrightarrow{AC} = \lambda \overrightarrow{AB}$ avec $\lambda < 0$.

En notant $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ pour tout réel θ , on a $R_{\theta}R_{\theta'} = R_{\theta+\theta'}$ pour tous réels θ et θ' , ce qui se traduit par la relation de Chasles sur les mesures d'angles orientés : $(\overrightarrow{v_1}, \overrightarrow{v_2}) + (\overrightarrow{v_2}, \overrightarrow{v_3}) \equiv (\overrightarrow{v_1}, \overrightarrow{v_3})$ (2π) .

Théorème 1.1.

L'application φ qui associe à tout nombre complexe z = x + iy le point $\varphi(z)$ de coordonnées (x, y) dans le repère \mathcal{R} est une bijection de \mathbb{C} sur \mathcal{P} .

Preuve. Résulte du fait que tout nombre complexe [resp. tout point de \mathcal{P}] est uniquement déterminé par sa partie réelle et sa partie imaginaire [resp. par ses coordonnées dans le repère \mathcal{R}].

Tout point M du plan \mathcal{P} s'écrit donc de manière unique $M = \varphi(z)$ et peut ainsi être identifié au nombre complexe z. Le plan \mathcal{P} muni de cette identification est appelé plan complexe ou plan d'Argand-Cauchy.

Si $M \in \mathcal{P}$ s'écrit $M = \varphi(z)$, on dit alors que z est l'affixe de M et M le point image de z. Le vecteur \overrightarrow{OM} est aussi appelé vecteur image de z et on dit que z est l'affixe de \overrightarrow{OM} .

En utilisant cette identification entre \mathcal{P} et \mathbb{C} , on peut donner les interprétations géométriques suivantes où a,b,z,z' désignent des nombres complexes et A,B,M,M' leurs images respectives dans \mathcal{P} .

- L'axe $O_x = \mathbb{R}\overrightarrow{e_1}$ est identifié à l'ensemble des nombres réels.
- L'axe $O_u = \mathbb{R}\overrightarrow{e_2}$ est identifié à l'ensemble des imaginaires purs.
- $\frac{a+b}{\overrightarrow{AB}} = \overrightarrow{OB} \overrightarrow{OA}$. du vecteur $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ et b-a l'affixe du vecteur $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$.
- $-\Re(z\overline{z'}) = \Re(\overline{z}z') = xx' + yy'$ est le produit scalaire $\overrightarrow{OM} \cdot \overrightarrow{OM'}$.
- $\Im\left(\overline{z}z'\right)=xy'-x'y$ est le déterminant de $\left(\overrightarrow{OM},\overrightarrow{OM'}\right)$.
- $--\overline{z}z' = \Re\left(z\overline{z'}\right) + i\Im\left(\overline{z}z'\right) = \overrightarrow{OM} \cdot \overrightarrow{OM'} + i\det\left(\overrightarrow{OM}, \overrightarrow{OM'}\right).$
- Si A, B, C sont deux à deux distincts, alors ces points sont alignés si, et seulement si, il existe un réel λ tel que $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, ce qui équivaut à dire que $\frac{b-a}{c-a}$ est réel ou encore que (b-a) $(\overline{c-a})$ est réel.
- Si A, B, C, D sont deux à deux distincts, alors les droites (AB) et (CD) sont orthogonales si, et seulement si, $\overrightarrow{AB} \cdot \overrightarrow{CD} = \Re\left((b-a)\left(\overline{d-c}\right)\right) = 0$, ce qui équivaut à dire que $(b-a)\left(\overline{d-c}\right)$ est imaginaire pur, ou encore que $\frac{b-a}{d-c}$ est imaginaire pur.

Dans ce qui suit, on identifie le plan d'Argand-Cauchy \mathcal{P} à \mathbb{C} et on l'appelle plan complexe. Si $A, B, M, M', \Omega, \cdots$ sont des points de \mathcal{P} , nous noterons $a, b, z, z', \omega, \cdots$ les affixes correspondantes.

Module et arguments d'un nombre complexe 1.2

Les propriétés basiques du module d'un nombre complexe sont supposées connues.

Théorème 1.2.

 a, b, z, z', ω désignent des nombres complexes et A, B, M, M', Ω leurs images respectives dans \mathcal{P} .

- 1. |z| = OM est la distance de O à M:
- 2. |b-a| = AB est la distance de A à B;
- 3. l'ensemble des nombres complexes z tels que $|z \omega| = \rho$ est identifié au cercle de centre Ω et de rayon $\rho > 0$:
- 4. l'ensemble des nombres complexes z tels que $|z \omega| < \rho$ [resp. tels que $|z-\omega| \leq \rho$ est identifié au disque ouvert [resp. fermé] de centre Ω et de rayon $\rho \geq 0$;
- 5. pour $A \neq B$, le point M est sur la médiatrice du segment [AB] si, et seulement si, |z-a|=|z-b|.

Preuve. Il suffit de vérifier.

Théorème 1.3. (Inégalité de Cauchy-Schwarz).

Pour tous nombres complexes z, z', on $a \left| \Re \left(z \overline{z'} \right) \right| \leq |z| |z'|$, l'égalité étant réalisée si, et seulement si, z et z' sont liées sur \mathbb{R} (i.e. z' = 0 ou $z \neq 0$ et $\frac{z}{z'} \in \mathbb{R}$), ce qui est encore équivalent à dire que $z\overline{z'}$ est réel.

Preuve. On a $|\Re(z\overline{z'})| \le |z\overline{z'}| = |z||z'|$ et l'égalité est réalisée si, et seulement si, $z\overline{z'}$ est réel. Pour z'=0, c'est le cas et pour $z'\neq 0$, il existe un réel $\lambda\in\mathbb{R}$ tel que $z = \lambda \frac{1}{\overline{z'}} = \frac{\lambda}{|z'|^2} z'$. La réciproque est évidente.

Ce résultat est équivalent à l'inégalité de Cauchy-Schwarz dans le plan euclidien $\overrightarrow{\mathcal{D}}$

L'inégalité triangulaire $|z+z'| \le |z| + |z'|$ s'interprète géométriquement en disant que dans un vrai triangle ABC la longueur d'un coté est strictement inférieure à la somme des longueurs des deux autres cotés :

$$\|\overrightarrow{BC}\| = \|\overrightarrow{AC} - \overrightarrow{AB}\| = |z - z'| < |z| + |z'| = \|\overrightarrow{AC}\| + \|\overrightarrow{AB}\|$$

en notant z l'affixe de \overrightarrow{AC} et z' celle de \overrightarrow{AB} . L'égalité $|z+z'|^2+|z-z'|^2=2\left(|z|^2+|z'|^2\right)$ s'interprète géométriquement en disant que la somme des carrés des diagonales d'un parallélogramme est égale à la somme des carrés des cotés puisque en notant M'' le point d'affixe z+z', OMM''M' est un parallélogramme et |z| = OM = M'M'', |z'| = OM' = MM', |z+z'| = OM'' (une diagonale) et |z-z'| = MM' (l'autre diagonale).

Théorème 1.4.

Pour toute suite finie z_1, \dots, z_n de nombres complexes non nuls avec $n \geq 2$, on a $\left|\sum_{k=1}^{n} z_k\right| \leq \sum_{k=1}^{n} |z_k|$, l'égalité étant réalisée si, et seulement si, il existe des réels $\lambda_2, \dots, \lambda_n$ tels que $z_k = \lambda_k z_1$ pour $k = 2, \dots, n$.

Preuve. On procède par récurrence sur $n \geq 2$. Pour n = 2, c'est connu. Supposons le résultat acquis au rang $n-1 \geq 2$. Pour z_1, \cdots, z_n dans $\mathbb C$ avec $n \geq 3$, en utilisant les résultats pour n = 2 et l'hypothèse de récurrence, on a :

$$\left| \sum_{k=1}^{n} z_k \right| = \left| z_1 + \sum_{k=2}^{n} z_k \right| \le |z_1| + \left| \sum_{k=2}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|$$

Si l'égalité $\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|$ est réalisée, en posant $Z_2 = \sum_{k=2}^n z_k$, on a :

$$\left| \sum_{k=1}^{n} z_k \right| = |z_1 + Z_2| \le |z_1| + |Z_2| \le \sum_{k=1}^{n} |z_k|$$

et l'égalité $\left|\sum_{k=1}^{n} z_{k}\right| = \sum_{k=1}^{n} |z_{k}|$ nous dit que toutes les inégalités précédentes sont des égalités. On a donc $|z_{1} + Z_{2}| = |z_{1}| + |Z_{2}|$ et $Z_{2} = \lambda_{1}z_{1}$ avec $\lambda_{1} \in \mathbb{R}^{+,*}$ $(Z_{2} = 0 \text{ entraı̂ne } |z_{1}| = \sum_{k=1}^{n} |z_{k}|, \text{ donc } \sum_{k=2}^{n} |z_{k}| = 0 \text{ et tous les } z_{k} \text{ sont nuls, ce qui est contraire à l'hypothèse de départ), puis de <math>|z_{1}| + |Z_{2}| = \sum_{k=1}^{n} |z_{k}|, \text{ on déduit que } |Z_{2}| = \sum_{k=2}^{n} |z_{k}| \text{ et avec l'hypothèse de récurrence qu'il existe des réels } \lambda_{k} > 0 \text{ tels proposition of the prop$

que $z_k = \lambda_k z_2$ pour $k = 3, \dots, n$. On a alors $Z_2 = \sum_{k=2}^n z_k = \left(1 + \sum_{k=3}^n \lambda_k\right) z_2 = \lambda_1 z_1$ et $z_2 = \mu_2 z_1, z_k = \lambda_k z_2 = \mu_k z_1$ pour $k = 3, \dots, n$, tous les μ_k étant strictement positifs.

Du point de vue géométrique, en désignant par M_k les points d'affixe z_k , l'égalité $\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|$ est équivalente à $\left\|\sum_{k=1}^n \overrightarrow{OM_k}\right\| = \sum_{k=1}^n \left\|\overrightarrow{OM_k}\right\|$ qui est encore équivalente à dire que les points O, M_1, \cdots, M_n sont alignés sur la demi-droite $|OM_1\rangle$.

Le résultat qui suit est la base de la définition des arguments d'un nombre complexe.

Théorème 1.5.

Si z est un nombre complexe de module 1, il existe alors un unique réel $\theta \in [-\pi, \pi[$ tel que $z = \cos(\theta) + i\sin(\theta)$.

Preuve. Le nombre complexe z=x+iy est de module 1 si, et seulement si $x^2+y^2=1$. En particulier x est dans [-1,1] et il existe un unique réel $\alpha\in[0,\pi]$ tel que $x=\cos(\alpha)$. Avec $y^2=1-x^2=\sin^2(\alpha)$, on déduit que $y=\pm\sin(\alpha)$, soit $y=\sin(\pm\alpha)$. Avec la parité de la fonction cos, on peut écrire que $x=\cos(\pm\alpha)$ et on aboutit à $(x,y)=(\cos(\theta),\sin(\theta))$ avec $\theta\in[-\pi,\pi[$ (pour $(x,y)=(\cos(\pi),\sin(\pi))=(-1,0)$), on écrit $(x,y)=(\cos(-\pi),\sin(-\pi))$). Si $\theta'\in[-\pi,\pi[$ est une autre solution, de $\cos(\theta)=\cos(\theta')$, on déduit que $\theta'=\pm\theta$. Si $\theta'=\theta$, c'est terminé, sinon $\theta'=-\theta$ et de $\sin(\theta)=\sin(\theta')=-\sin(\theta)$, on déduit que θ vaut 0 ou $-\pi$, 0 étant la seule solution puisque $\theta'=\pi\notin[-\pi,\pi[$. D'où l'unicité.

On en déduit que pour tout nombre complexe non nul z, il existe un unique réel $\theta \in [-\pi, \pi[$ tel que $\frac{z}{|z|} = \cos(\theta) + i\sin(\theta)$. Ce réel $\theta \in [-\pi, \pi[$ est l'argument principal du nombre complexe non nul z.

Si $\theta \in [-\pi, \pi[$ est l'argument principal d'un nombre complexe $z \in \mathbb{C}^*$, les seuls réels θ' tels que $\frac{z}{|z|} = \cos{(\theta')} + i\sin{(\theta')}$ sont les réels $\theta' = \theta + 2k\pi$, où k est un entier relatif. En effet ces réels conviennent et les égalités $\cos{(\theta)} = \cos{(\theta')}$ et $\sin{(\theta)} = \sin{(\theta')}$ sont réalisées si, et seulement si il existe un entier relatif k tel que $\theta' = \theta + 2k\pi$ (on peut trouver un entier k tel que $\theta' - 2k\pi$ soit dans $[-\pi, \pi[$, c'est-à-dire que k est tel que $-\pi \leq \theta' - 2k\pi < \pi$, soit $k \leq \frac{\theta' + \pi}{2\pi} < k + 1$, encore équivalent à $k = \left[\frac{\theta' + \pi}{2\pi}\right]$ et $\theta' - 2k\pi$ est l'argument principal de z).

Définition 1.1. On dit qu'un réel θ est un argument du nombre complexe non nul z si $\frac{z}{|z|} = \cos(\theta) + i\sin(\theta)$.

Un nombre complexe non nul admet donc une infinité d'arguments et deux tels arguments différent d'un multiple entier de 2π , ce qui se note $\theta' \equiv \theta \mod (2\pi)$.

Si θ est un argument d'un complexe non nul z, on notera $\arg(z) \equiv \theta \mod(2\pi)$ pour signifier qu'on a choisi un argument de z, c'est donc un réel défini modulo 2π . Par abus de langage, on écrira $\theta = \arg(z)$ quand il n'y a pas d'ambiguïté et on a $z = |z| (\cos(\theta) + i \sin(\theta))$ ou encore $\Re(z) = |z| \cos(\theta)$ et $\Im(z) = |z| \sin(\theta)$.

En désignant par ψ l'application qui associe à tout réel θ le nombre complexe $\psi(\theta) = \cos(\theta) + i\sin(\theta)$ on réalise une application surjective de $\mathbb R$ sur l'ensemble Γ des nombres complexes de module 1. Cette application n'est pas injective puisque l'égalité $\psi(\theta) = \psi(\theta')$ équivaut à $\theta' \equiv \theta \mod(2\pi)$. En restriction à $[-\pi, \pi[$, elle est bijective.

Théorème 1.6.

Avec les notations qui précèdent, on a $\psi(0) = 1$ et pour tous réels θ, θ' :

$$\psi (\theta + \theta') = \psi (\theta) \psi (\theta')$$

П

Preuve. On a $\psi(0) = \cos(0) + i \sin(0) = 1$ et :

$$\psi(\theta + \theta') = \cos(\theta + \theta') + i\sin(\theta + \theta')$$

$$= (\cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta')) + i(\sin(\theta)\cos(\theta') + \cos(\theta)\sin(\theta'))$$

$$= (\cos(\theta) + i\sin(\theta))(\cos(\theta') + i\sin(\theta'))$$

$$= \psi(\theta)\psi(\theta')$$

La fonction ψ vérifie donc la même équation fonctionnelle que la fonction exponentielle réelle. Cette remarque justifie la notation $\psi(\theta) = e^{i\theta}$. On a donc en résumé la notation $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ pour tout réel θ , ce qui définit une fonction 2π -périodique surjective de $\mathbb R$ sur l'ensemble Γ des nombres complexes de module 1 avec les propriétés suivantes :

$$\begin{cases} e^{i \cdot 0} = e^{0} = 1 \\ \forall (\theta, \theta') \in \mathbb{R}^{2}, \ e^{i(\theta + \theta')} = e^{i\theta} e^{i\theta'} \\ \forall \theta \in \mathbb{R}, \ \frac{1}{e^{i\theta}} = e^{-i\theta} = \overline{e^{i\theta}} \\ \forall (\theta, \theta') \in \mathbb{R}^{2}, \ \left(e^{i\theta} = e^{i\theta'}\right) \Leftrightarrow (\exists k \in \mathbb{Z} \mid \theta' = \theta + 2k\pi) \\ \forall \theta \in \mathbb{R}, \ \cos(\theta) = \Re\left(e^{i\theta}\right) = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{ et } \sin(\theta) = \Im\left(e^{i\theta}\right) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{cases}$$

Par récurrence sur $n \geq 0$, on déduit facilement que $\left(e^{i\theta}\right)^n = e^{in\theta}$. Puis pour n < 0 on a $e^{in\theta} = \frac{1}{e^{-in\theta}} = \left(\frac{1}{e^{i\theta}}\right)^{-n} = \left(e^{-i\theta}\right)^{-n} = e^{in\theta}$, c'est-à-dire que cette formule est valable pour tous les entiers relatifs. On a en particulier les valeurs suivantes, $e^{i\pi} = -1$, $e^{i\frac{\pi}{2}} = i$, les égalités $e^{i\theta} = 1$, $e^{i\theta} = -1$ et $e^{i\theta} = i$ étant réalisées respectivement si, et seulement si $\theta = 2k\pi$, $\theta = (2k+1)\pi$ et $\theta = \frac{\pi}{2} + 2k\pi$, où k est un entier relatif.

Un nombre complexe non nul peut donc s'écrire sous la forme $z = \rho e^{i\theta}$ où ρ est un réel strictement positif uniquement déterminé, c'est le module de z, et θ est un argument de z. Cette écriture est l'écriture polaire (ou trigonométrique) de z.

Avec le théorème qui suit on rappelle quelques propriétés des arguments d'un nombre complexe.

Théorème 1.7.

En désignant par z,z' des nombres complexes non nuls, λ un réel non nul et n un entier relatif, on a:

- 1. $\arg(\overline{z}) \equiv -\arg(z) \mod(2\pi)$;
- 2. $\arg(zz') \equiv \arg(z) + \arg(z') \mod(2\pi)$;
- 3. $\arg\left(\frac{z}{z'}\right) \equiv \arg\left(z\right) \arg\left(z'\right) = \arg\left(z\overline{z'}\right) \mod\left(2\pi\right);$
- 4. $\arg(z^n) \equiv n \arg(z) \mod(2\pi)$;
- 5. pour $\lambda > 0$, on $a \arg(\lambda z) \equiv \arg(z)$ (2π) ; pour $\lambda < 0$, on $a \arg(\lambda z) \equiv \arg(z) + \pi \mod(2\pi)$;

П

6. z est réel si, et seulement si, $\arg(z) \equiv 0 \mod(\pi)$;

7. z est imaginaire pur si, et seulement si
$$\arg(z) \equiv \frac{\pi}{2} \mod(\pi)$$
.

Preuve. Par définition des arguments, il suffit de considérer le cas de deux nombres complexes de module 1, $z = \cos(\theta) + i\sin(\theta)$, $z' = \cos(\theta') + i\sin(\theta')$, ce qui nous donne $\overline{z} = \cos(\theta) - i\sin(\theta) = \cos(-\theta) + i\sin(-\theta)$, soit $\arg(\overline{z}) \equiv -\arg(z) \mod(2\pi)$:

$$zz' = (\cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta')) + i(\sin(\theta)\cos(\theta') + \cos(\theta)\sin(\theta'))$$
$$= \cos(\theta + \theta') + i\sin(\theta + \theta')$$

soit $\arg(zz') \equiv \theta + \theta' \mod(2\pi)$ et :

$$\arg\left(\frac{z}{z'}\right) \equiv \arg\left(z\overline{z'}\right) \equiv \arg\left(z\right) + \arg\left(\overline{z'}\right) \equiv \arg\left(z\right) - \arg\left(z'\right) (2\pi)$$

Les autres propriétés s'en déduisent tout aussi facilement.

Théorème 1.8.

Si θ est un argument de $z \in \mathbb{C}^*$ affixe d'un vecteur non nul \overrightarrow{v} , c'est alors une mesure de l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{v})$.

Preuve. Par définition d'une mesure θ' de l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{v})$, il existe un unique automorphisme orthogonal direct u tel que $u(\overrightarrow{e_1}) = \frac{1}{\|\overrightarrow{v}\|} \overrightarrow{v}$. Dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$ la matrice de u est $\begin{pmatrix} \cos(\theta') & -\sin(\theta') \\ \sin(\theta') & \cos(\theta') \end{pmatrix}$ et si $z = x + iy = \rho e^{i\theta}$ est l'affixe de \overrightarrow{v} , on a alors :

$$\overrightarrow{v} = x\overrightarrow{e_1} + y\overrightarrow{e_2} = \|\overrightarrow{v}\| u\left(\overrightarrow{e_1}\right) = \rho\left(a\overrightarrow{e_1} + b\overrightarrow{e_2}\right) = \rho\left(\cos\left(\theta'\right)\overrightarrow{e_1} + \sin\left(\theta'\right)\overrightarrow{e_2}\right)$$

ce qui entraı̂ne
$$x = \rho \cos(\theta')$$
, $y = \rho \sin(\theta')$ et $\theta' \equiv \theta \ (2\pi)$.

Le choix d'une orientation de $\overrightarrow{\mathcal{P}}$ nous permet de définir sans ambiguïté la mesure principale dans $[-\pi, \pi[$ d'un angle de vecteurs. Plus généralement on a le résultat suivant.

Théorème 1.9.

 $Si \overrightarrow{v_1}$ et $\overrightarrow{v_2}$ sont deux vecteurs non nuls d'affixes respectives z_1 et z_2 alors un argument de $\frac{z_2}{z_1}$ est une mesure de l'angle orienté $\theta = (\overrightarrow{v_1}, \overrightarrow{v_2})$ et on a :

$$\cos\left(\theta\right) = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{\left\|\overrightarrow{v_1}\right\| \left\|\overrightarrow{v_2}\right\|}, \ \sin\left(\theta\right) = \frac{\det\left(\overrightarrow{v_1}, \overrightarrow{v_2}\right)}{\left\|\overrightarrow{v_1}\right\| \left\|\overrightarrow{v_2}\right\|}$$

Preuve. On a $\frac{1}{\|\overrightarrow{v_2}\|}\overrightarrow{v_2} = u\left(\frac{1}{\|\overrightarrow{v_1}\|}\overrightarrow{v_1}\right)$ où l'automorphisme orthogonal direct u a pour matrice $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$, ce qui donne :

$$\begin{cases} x_2 = \frac{\|\overrightarrow{v_2}\|}{\|\overrightarrow{v_1}\|} (\cos(\theta) x_1 - \sin(\theta) y_1) = \frac{|z_2|}{|z_1|} (\cos(\theta) x_1 - \sin(\theta) y_1) \\ y_2 = \frac{\|\overrightarrow{v_2}\|}{\|\overrightarrow{v_1}\|} (\sin(\theta) x_1 + \cos(\theta) y_1) = \frac{|z_2|}{|z_1|} (\sin(\theta) x_1 + \cos(\theta) y_1) \end{cases}$$

et:

$$z_{2} = x_{2} + iy_{2} = \frac{|z_{2}|}{|z_{1}|} \left((\cos(\theta) x_{1} - \sin(\theta) y_{1}) + i (\sin(\theta) x_{1} + \cos(\theta) y_{1}) \right)$$
$$= \frac{|z_{2}|}{|z_{1}|} (x_{1} + iy_{1}) (\cos(\theta) + i \sin(\theta)) = \frac{|z_{2}|}{|z_{1}|} z_{1} (\cos(\theta) + i \sin(\theta))$$

soit $\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} (\cos(\theta) + i\sin(\theta))$, ce qui signifie que θ est un argument de $\frac{z_2}{z_1}$.

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \Re\left(\overline{z_1}z_2\right) = |z_1|^2 \Re\left(\frac{z_2}{z_1}\right) \text{ et } \det\left(\overrightarrow{v_1}, \overrightarrow{v_2}\right) = \Im\left(\overline{z_1}z_2\right) = |z_1|^2 \Im\left(\frac{z_2}{z_1}\right)$$

avec $\Re\left(\frac{z_2}{z_1}\right) = \left|\frac{z_2}{z_1}\right|\cos\left(\theta\right)$ et $\Im\left(\frac{z_2}{z_1}\right) = \left|\frac{z_2}{z_1}\right|\sin\left(\theta\right)$, ce qui donne compte tenu de $|z_1| = \|\overrightarrow{v_1}\|$ et $|z_2| = \|\overrightarrow{v_2}\|$:

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\| \cos\left(\theta\right) \text{ et } \det\left(\overrightarrow{v_1}, \overrightarrow{v_2}\right) = \|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\| \sin\left(\theta\right)$$

On déduit du théorème précédent que $(\lambda \overrightarrow{v_2}, \lambda \overrightarrow{v_1}) \equiv (\overrightarrow{v_2}, \overrightarrow{v_1})$ modulo 2π pour tout réel non nul et en particulier $(-\overrightarrow{v_2}, -\overrightarrow{v_1}) \equiv (\overrightarrow{v_2}, \overrightarrow{v_1})$ modulo 2π .

Des points (6) et (3) du théorème 1.7, on déduit que que si A,B,C dans $\mathcal P$ sont deux à deux distincts, alors ces points sont alignés si, et seulement si, $\arg(b-a) \equiv \arg(c-a) \mod(\pi)$. En effet dire que A,B,C sont alignés équivaut à dire que $\frac{b-a}{c-a}$ est réel, qui est encore équivalent à $\arg\left(\frac{b-a}{c-a}\right) \equiv 0 \mod(\pi)$ et avec $\arg\left(\frac{b-a}{c-a}\right) \equiv \arg(b-a) - \arg(c-a) \mod(\pi)$, on a le résultat annoncé.

On retrouve aussi la condition d'alignement : $\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \equiv 0 \mod (\pi)$.

Du point (3) du théorème 1.7, on déduit que

$$(\overrightarrow{v_2}, \overrightarrow{v_1}) \equiv \arg\left(\frac{z_1}{z_2}\right) \equiv -\arg\left(\frac{z_2}{z_1}\right) \equiv -(\overrightarrow{v_1}, \overrightarrow{v_2}) \mod(2\pi)$$

Des points (2) et (3) du théorème 1.7, on peut déduire la relation de Chasles sur les mesures d'angle. En effet, on a :

$$(\widehat{\overrightarrow{v_1}}, \widehat{\overrightarrow{v_2}}) + (\widehat{\overrightarrow{v_2}}, \widehat{\overrightarrow{v_3}}) \equiv \arg\left(\frac{z_2}{z_1}\right) + \arg\left(\frac{z_3}{z_2}\right) \equiv \arg\left(\frac{z_3}{z_1}\right) \equiv (\widehat{\overrightarrow{v_1}}, \widehat{\overrightarrow{v_3}}) \mod(2\pi)$$

Si $\overrightarrow{v_1}$ est un vecteur unitaire, son affixe est alors un nombre complexe de module égal à 1, donc de la forme $z_1=e^{i\theta_1}$ et le vecteur $\overrightarrow{v_2}$ d'affixe $z_2=ie^{i\theta_1}$ est unitaire orthogonal à $\overrightarrow{v_1}$ (on a $\overrightarrow{v_1} \cdot \overrightarrow{v_1} = \Re\left(z_1 \overline{z_2}\right) = 0$). Les affixes z et z' d'un point M du plan $\mathcal P$ relativement aux repères respectifs $\mathcal R = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ et $\mathcal R' = (O, \overrightarrow{v_1}, \overrightarrow{v_2})$ sont reliés par l'égalité $z' = e^{-i\theta_1}z$. En effet, dire que z' est l'affixe de M relativement à $\mathcal R'$ se traduit par l'égalité $\overrightarrow{OM} = x'\overrightarrow{v_1} + y'\overrightarrow{v_2}$ qui se traduit en termes d'affixes relativement à $\mathcal R$ par $z = x'e^{i\theta_1} + iy'e^{i\theta_1} = e^{i\theta_1}z'$, soit par $z' = e^{-i\theta_1}z$.

1.3 Le triangle dans le plan complexe

Un vrai triangle dans le plan affine euclidien \mathcal{P} est la donnée de trois points non alignés A,B,C. Un tel triangle est noté $\mathcal{T}=ABC$. On rappelle que :

- \mathcal{T} est dit isocèle en A [resp. équilatéral] si AB = AC [resp. AB = AC = BC];
- \mathcal{T} est dit rectangle en A si $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$, ce qui est encore équivalent à $BC^2 = AB^2 + AC^2$:
- la médiane issue du sommet A est la droite (AI_A) qui joint le point A au milieu I_A du coté opposé [B,C];
- la médiatrice du coté [B,C] est la droite $\mathcal{M}_A = \{M \in \mathcal{P} \mid MB = MC\}$ formée des points M équidistants de B et C, c'est aussi la droite $I_A + \mathbb{R}\left(\overrightarrow{BC}\right)^{\perp}$ orthogonale à (BC) passant par I_A ;
- la hauteur issue du sommet A est la droite $A + \mathbb{R}\left(\overrightarrow{BC}\right)^{\perp}$ passant A et orthogonale à (BC);
- la réunion des bissectrices intérieure et extérieure issue de A est l'ensemble des points M du plan équidistants des droites (AB) et (AC), c'est aussi la réunion des droites passant par A et respectivement dirigées par les vecteurs $\frac{1}{AB}\overrightarrow{AB} + \frac{1}{AC}\overrightarrow{AC}$ (pour la bissectrice intérieure) et $\frac{1}{AB}\overrightarrow{AB} \frac{1}{AC}\overrightarrow{AC}$ (pour la bissectrice extérieure) (théorème 1.10), ces deux droites étant orthogonales;
- l'intérieur du triangle \mathcal{T} est l'ensemble :

$$\operatorname{Int}\left(\mathcal{T}\right) = \left\{ M \in \mathcal{P} \mid \overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC} \; ; \; 0 \leq \lambda \leq \mu \leq 1 \right\}$$

Pour ce paragraphe, $\mathcal{T} = ABC$ est un vrai triangle.

Théorème 1.10.

Les droites passant par \overrightarrow{A} et respectivement dirigées par les vecteurs $\frac{1}{\overrightarrow{AB}}\overrightarrow{AB} + \frac{1}{\overrightarrow{AC}}\overrightarrow{AC}$ et $\frac{1}{\overrightarrow{AB}}\overrightarrow{AB} - \frac{1}{\overrightarrow{AC}}\overrightarrow{AC}$ sont les deux bissectrices issues de \overrightarrow{A} du triangle \mathcal{T} .

Preuve. Pour tout point M du plan \mathcal{P} , on a :

$$d\left(M,\left(AB\right)\right) = \frac{\left|\det\left(\overrightarrow{AM},\overrightarrow{AB}\right)\right|}{\left\|\overrightarrow{AB}\right\|} = \frac{\left|\Im\left(\left(\overline{z} - \overline{a}\right)\left(b - a\right)\right)\right|}{\left|b - a\right|}$$

(théorème ??), donc un point $M \in \mathcal{P}$ est équidistant de (AB) et (AC) si, et seulement si, $\frac{\Im\left(\left(\overline{z}-\overline{a}\right)\left(b-a\right)\right)}{|b-a|} = \pm \frac{\Im\left(\left(\overline{z}-\overline{a}\right)\left(c-a\right)\right)}{|c-a|}$, ce qui équivaut à :

$$\Im\left((\overline{z}-\overline{a})\left(\frac{b-a}{|b-a|}\pm\frac{c-a}{|c-a|}\right)\right)=0$$

ou encore à det $\left(\overrightarrow{AM}, \frac{1}{AB}\overrightarrow{AB} \pm \frac{1}{AC}\overrightarrow{AC}\right)$ et signifie que M est sur la droite passant par A et dirigée par $\frac{1}{AB}\overrightarrow{AB} + \frac{1}{AC}\overrightarrow{AC}$ ou celle passant par A et dirigée par $\frac{1}{AB}\overrightarrow{AB} - \frac{1}{AC}\overrightarrow{AC}$.

Lemme 1.1 On a:

$$\det\left(\overrightarrow{AB},\overrightarrow{AC}\right) = \det\left(\overrightarrow{CA},\overrightarrow{CB}\right) = \det\left(\overrightarrow{BC},\overrightarrow{BA}\right) \tag{1.1}$$

Preuve. En utilisant la relation de Chasles pour les vecteurs et les propriétés du déterminant, on a :

$$\det\left(\overrightarrow{AB},\overrightarrow{AC}\right) = \det\left(\overrightarrow{AC} + \overrightarrow{CB},\overrightarrow{AC}\right) = \det\left(\overrightarrow{CB},\overrightarrow{AC}\right) = \det\left(\overrightarrow{CA},\overrightarrow{CB}\right)$$

et det $\left(\overrightarrow{AB},\overrightarrow{AC}\right) = \det\left(\overrightarrow{AB},\overrightarrow{AB} + \overrightarrow{BC}\right) = \det\left(\overrightarrow{AB},\overrightarrow{BC}\right) = \det\left(\overrightarrow{BC},\overrightarrow{BA}\right)$. On peut aussi écrire que :

$$\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \Im\left(\left(\overline{b} - \overline{a}\right)(c - a)\right) = \Im\left(\left(\overline{b} - \overline{a}\right)(c - b + b - a)\right)$$
$$= \Im\left(\left(\overline{b} - \overline{a}\right)(c - b)\right) = \det\left(\overrightarrow{AB}, \overrightarrow{BC}\right) = \det\left(\overrightarrow{BC}, \overrightarrow{BA}\right)$$

et pareil pour l'autre égalité.

Définition 1.2. On dit que \mathcal{T} est orienté positivement [resp. négativement] ou qu'il est direct [resp. indirect] relativement au repère \mathcal{R} , si $\det\left(\overrightarrow{AB},\overrightarrow{AC}\right) > 0$ [resp. $\det\left(\overrightarrow{AB},\overrightarrow{AC}\right) < 0$].

1.3.1 Relations trigonométriques

On note $\theta_A = (\overrightarrow{AB}, \overrightarrow{AC})$, $\theta_B = (\overrightarrow{BC}, \overrightarrow{BA})$, $\theta_C = (\overrightarrow{CA}, \overrightarrow{CB})$ les mesures principales dans $[-\pi, \pi[$ des angles orientés de vecteurs en A, B et C respectivement (figure 1.1).

Lemme 1.2 On $a \theta_A + \theta_B + \theta_C \equiv \pi \ (2\pi)$.

Preuve. En utilisant la relation de Chasles pour les angles orientés, on a :

$$\theta_A + \theta_B + \theta_C = \left(\overrightarrow{AB}, \overrightarrow{AC}\right) + \left(\overrightarrow{AC}, \overrightarrow{BC}\right) + \left(\overrightarrow{BC}, \overrightarrow{BA}\right)$$
$$= \left(\overrightarrow{AB}, \overrightarrow{BC}\right) + \left(\overrightarrow{BC}, \overrightarrow{BA}\right) = \left(\overrightarrow{AB}, \overrightarrow{BA}\right) \equiv \pi \ (2\pi)$$

Figure 1.1 –

On peut aussi écrire que :

$$\theta_A + \theta_B + \theta_C \equiv \arg\left(\frac{c-a}{b-a}\right) + \arg\left(\frac{a-b}{c-b}\right) + \arg\left(\frac{b-c}{a-c}\right)$$
$$\equiv \arg\left(\frac{c-a}{b-a}\frac{a-b}{c-b}\frac{b-c}{a-c}\right) \equiv \arg\left(-1\right) \equiv \pi \ (2\pi)$$

Le théorème 1.9 nous dit que $\cos{(\theta_A)} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \cdot AC}$, $\sin{(\theta_A)} = \frac{\det{(\overrightarrow{AB}, \overrightarrow{AC})}}{AB \cdot AC}$ et pareil pour les deux autres angles. De la relation (1.1), on déduit que les quantités $\sin{(\theta_A)}$, $\sin{(\theta_B)}$ et $\sin{(\theta_C)}$ sont toutes de même signes. Les déterminations principales de ces mesures d'angle seront donc toutes dans $]0, \pi[$ (pour \mathcal{T} direct) ou toutes dans $]-\pi, 0[$ (pour \mathcal{T} indirect), donc la somme est dans $]0, 3\pi[$ (pour \mathcal{T} direct) ou dans $]-3\pi, 0[]$ (pour \mathcal{T} indirect) congrue à π modulo 2π et en conséquence est égale à π (pour \mathcal{T} direct) ou à $-\pi$ (pour \mathcal{T} indirect). On a donc $\theta_A + \theta_B + \theta_C = \pi$ pour un triangle direct et $\theta_A + \theta_B + \theta_C = -\pi$ pour un triangle indirect.

Dire que les points A, B, C sont alignés équivaut à $\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = 0$, soit à $\sin\left(\theta_A\right) = 0$, c'est-à-dire à $\theta_A = 0$ ou $\theta_A = -\pi$, ce qui est exclu.

Le triangle $\mathcal{T} = ABC$ est rectangle en A si, et seulement si, $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$, ce qui équivaut à $\theta_A = \pm \frac{\pi}{2} \ (\theta_A = \frac{\pi}{2} \ \text{pour } \mathcal{T} \ \text{direct ou } \theta_A = -\frac{\pi}{2} \ \text{pour } \mathcal{T} \ \text{indirect})$.

Pour
$$\mathcal{T}$$
 direct rectangle en A , on a $\overrightarrow{BC} \cdot \overrightarrow{BA} = \left(\overrightarrow{BA} + \overrightarrow{AC}\right) \cdot \overrightarrow{BA} = \left\|\overrightarrow{BA}\right\|^2$ et :

$$\det\left(\overrightarrow{BC},\overrightarrow{BA}\right) = \det\left(\overrightarrow{AB},\overrightarrow{AC}\right) = AB \cdot AC\sin\left(\theta_A\right) = AB \cdot AC\sin\left(\frac{\pi}{2}\right) = AB \cdot AC\sin$$

de sorte que $\cos{(\theta_B)} = \frac{\overrightarrow{BC} \cdot \overrightarrow{BA}}{BC \cdot BA} = \frac{BA^2}{BC \cdot BA} = \frac{BA}{BC}$ (coté adjacent à l'angle droit sur l'hypoténuse) et $\sin{(\theta_B)} = \frac{\det{\left(\overrightarrow{BC},\overrightarrow{BA}\right)}}{BC \cdot BA} = \frac{AB \cdot AC}{BC \cdot BA} = \frac{AC}{BC}$ (coté opposé

à l'angle droit sur l'hypoténuse), ce qui donne aussi $\tan(\theta_B) = \frac{\sin(\theta_B)}{\cos(\theta_B)} = \frac{AC}{AB}$ (coté opposé à l'angle droit sur coté adjacent).

En écrivant que $CB^2 = \|\overrightarrow{AB} - \overrightarrow{AC}\|^2 = AB^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + AC^2$, on déduit que $CB^2 = AB^2 + AC^2 - 2AB \cdot AC \cos(\theta_A)$. Pour \mathcal{T} rectangle en A, on retrouve le théorème de Pythagore. Par permutations circulaires des sommets, on a les deux autres formules :

$$AC^{2} = AB^{2} + BC^{2} - 2AB \cdot BC \cos(\theta_{B})$$
 et $AB^{2} = BC^{2} + AC^{2} - 2AC \cdot BC \cos(\theta_{C})$

$$\begin{array}{l} \text{La relation (1.1) s'écrit } AB \cdot AC \sin \left(\theta_A \right) = BC \cdot BA \sin \left(\theta_B \right) = CA \cdot CB \sin \left(\theta_C \right), \\ \text{ce qui donne } \frac{BC}{\sin \left(\theta_A \right)} = \frac{AC}{\sin \left(\theta_B \right)} = \frac{AB}{\sin \left(\theta_C \right)}. \end{array}$$

1.3.2 Aire d'un triangle

Avec le théorème qui suit, on donne plusieurs formules pour l'aire d'un triangle.

Théorème 1.11.

L'aire du triangle \mathcal{T} (ou plus précisément de son intérieur) est :

$$m\left(\mathcal{T}\right) = \frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right| = \frac{1}{2} AB \cdot AC \left| \sin \left(\theta_A \right) \right|$$

$$= \frac{1}{2} AB \cdot BC \left| \sin \left(\theta_B \right) \right| = \frac{1}{2} BC \cdot AC \left| \sin \left(\theta_C \right) \right|$$

$$= \frac{AH \cdot BC}{2} = \frac{1}{2} \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\| = \frac{1}{2} \left| \det \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix} \right|$$

$$= \pm \frac{1}{4i} \begin{vmatrix} a & \overline{a} & 1 \\ b & \overline{b} & 1 \\ c & \overline{c} & 1 \end{vmatrix} = \pm \frac{1}{2} \Im \left((b - a) \left(\overline{c} - \overline{a} \right) \right)$$

où H est le projeté orthogonal de A sur la droite (BC) et le signe \pm est celui qui assure la positivité de m(T). De plus, on a $m(T) \leq \frac{1}{2}|b-a||c-a|$, l'égalité étant réalisée si, et seulement si, le triangle T est rectangle en A.

Preuve. L'aire du triangle \mathcal{T} est $m(\mathcal{T}) = \iint_{\text{Int}(\mathcal{T})} dx dy$.

1. Le changement de variable :

$$(x - x_A, y - y_A) = \lambda (x_B - x_A, y_B - y_A) + \mu (x_C - x_A, y_C - y_A)$$

de déterminant jacobien $\begin{vmatrix} x_B - x_A & x_C - x_A \\ y_B - y_A & y_C - y_A \end{vmatrix} = \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)$ nous donne :

$$m\left(\mathcal{T}\right) = \left| \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \right| \iint_{0 \le \lambda \le \mu \le 1} d\lambda d\mu = \frac{1}{2} \left| \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \right| \tag{1.2}$$

2. Du théorème 1.9 et de la relation (1.1), on en déduit que :

$$m\left(\mathcal{T}\right) = \frac{1}{2}AB \cdot AC\left|\sin\left(\theta_{A}\right)\right| = \frac{1}{2}AB \cdot BC\left|\sin\left(\theta_{B}\right)\right| = \frac{1}{2}BC \cdot AC\left|\sin\left(\theta_{C}\right)\right|$$

3. Utilisant le repère $\mathcal{R} = (H, \overrightarrow{e_1}, \overrightarrow{e_2})$, où H est le projeté orthogonal de A sur la droite (BC) et $\overrightarrow{e_1}$ dirige (BC), on a :

$$\left\{ \begin{array}{l} \overrightarrow{AB} = \overrightarrow{HB} - \overrightarrow{HA} = x_B \overrightarrow{e_1} - y_A \overrightarrow{e_2} \\ \overrightarrow{AC} = \overrightarrow{HC} - \overrightarrow{HA} = x_C \overrightarrow{e_1} - y_A \overrightarrow{e_2} \end{array} \right.$$

de sorte que det $(\overrightarrow{AB}, \overrightarrow{AC}) = \begin{vmatrix} x_B & x_C \\ -y_A & -y_A \end{vmatrix} = y_A(x_C - x_B)$ et en conséquence, $m(\mathcal{T}) = \frac{1}{2}|y_A||x_C - x_B| = \frac{AH \cdot BC}{2}$, soit la formule : « base que multiplie hauteur divisé par 2 ».

4. La formule (1.2) peut aussi s'écrire :

$$m\left(\mathcal{T}\right) = \frac{1}{2} \left\| \left(\begin{array}{c} x_B - x_A \\ y_B - y_A \\ 0 \end{array} \right) \wedge \left(\begin{array}{c} x_C - x_A \\ y_C - y_A \\ 0 \end{array} \right) \right\| = \frac{1}{2} \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\|$$

5. On peut aussi écrire que :

$$\begin{vmatrix} x_B - x_A & x_C - x_A \\ y_B - y_A & y_C - y_A \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ x_A & x_B - x_A & x_C - x_A \\ y_A & y_B - y_A & y_C - y_A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{vmatrix}$$

ce qui donne :

$$m(\mathcal{T}) = \frac{1}{2} \left| \det \begin{pmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{pmatrix} \right| = \frac{1}{2} \left| \det \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix} \right|$$
 (1.3)

6. En tenant compte de $x = \frac{1}{2}(z + \overline{z})$ et $y = \frac{1}{2i}(z - \overline{z})$ pour tout point M(x, y) d'affixe z, on a :

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{2}(a+\overline{a}) & \frac{1}{2i}(a-\overline{a}) & 1 \\ \frac{1}{2}(b+\overline{b}) & \frac{1}{2i}(b-\overline{b}) & 1 \\ \frac{1}{2}(c+\overline{c}) & \frac{1}{2i}(c-\overline{c}) & 1 \end{vmatrix} = \frac{1}{4i} \begin{vmatrix} a+\overline{a} & a-\overline{a} & 1 \\ b+\overline{b} & b-\overline{b} & 1 \\ c+\overline{c} & c-\overline{c} & 1 \end{vmatrix}$$
$$= \frac{1}{4i} \begin{vmatrix} 2a & a-\overline{a} & 1 \\ 2b & b-\overline{b} & 1 \\ 2c & c-\overline{c} & 1 \end{vmatrix} = \frac{1}{2i} \begin{vmatrix} a & a-\overline{a} & 1 \\ b & b-\overline{b} & 1 \\ c & c-\overline{c} & 1 \end{vmatrix} = -\frac{1}{2i} \begin{vmatrix} a & \overline{a} & 1 \\ b & \overline{b} & 1 \\ c & \overline{c} & 1 \end{vmatrix}$$

Avec:

$$\begin{vmatrix} a & \overline{a} & 1 \\ b & \overline{b} & 1 \\ c & \overline{c} & 1 \end{vmatrix} = \begin{vmatrix} a & \overline{a} & 1 \\ b - a & \overline{b} - \overline{a} & 0 \\ c - a & \overline{c} - \overline{a} & 0 \end{vmatrix} = \begin{vmatrix} b - a & \overline{b} - \overline{a} \\ c - a & \overline{c} - \overline{a} \end{vmatrix}$$
$$= (b - a)(\overline{c} - \overline{a}) - (\overline{b} - \overline{a})(c - a) = 2i\Im((b - a)(\overline{c} - \overline{a}))$$

on obtient $m\left(\mathcal{T}\right)=\pm\frac{1}{2}\Im\left(\left(b-a\right)\left(\overline{c}-\overline{a}\right)\right).$

7. Il en résulte que $m\left(\mathcal{T}\right) = \left|m\left(\mathcal{T}\right)\right| = \left|\pm\frac{1}{2}\Im\left(\left(b-a\right)\left(\overline{c}-\overline{a}\right)\right)\right| \leq \frac{1}{2}\left|b-a\right|\left|c-a\right|,$ l'égalité étant réalisée si, et seulement si, $(b-a)\left(\overline{c}-\overline{a}\right)$ est imaginaire pur, ce qui équivaut à dire que les droites (AB) et (AC) sont orthogonales.

Notant
$$(\alpha, \beta, \gamma) = (BC, AC, AB)$$
, on a :

$$2m(\mathcal{T}) = \beta \gamma |\sin(\theta_A)| = \alpha \gamma |\sin(\theta_B)| = \alpha \beta |\sin(\theta_C)|$$

ce qui nous donne pour un triangle direct :

$$\frac{\sin(\theta_A)}{\alpha} = \frac{\sin(\theta_B)}{\beta} = \frac{\sin(\theta_C)}{\gamma} = \frac{2m(\mathcal{T})}{\alpha\beta\gamma} = \frac{\det(\overrightarrow{AB}, \overrightarrow{AC})}{\alpha\beta\gamma}$$

Traduisant le fait que M est sur (AB) si, et seulement si, l'aire du triangle ABM est nulle, on obtient les équations complexes suivantes de la droite (AB):

$$(M \in (AB)) \Leftrightarrow \begin{pmatrix} \begin{vmatrix} a & \overline{a} & 1 \\ b & \overline{b} & 1 \\ z & \overline{z} & 1 \end{vmatrix} = 0 \Leftrightarrow (\Im((\overline{b} - \overline{a})(z - a)) = 0)$$
 (1.4)

1.3.3 Centre de gravité, orthocentre, cercles inscrit et circonscrit

Théorème 1.12.

Les trois médianes de \mathcal{T} concourent en G d'affixe $\frac{a+b+c}{3}$ relativement au repère \mathcal{R} .

Preuve. L'affixe du milieu I_A de [BC] étant $\frac{b+c}{2}$, une équation complexe de la médiane (AI_A) est :

$$0 = \left| \begin{array}{cc|c} a & \overline{a} & 1 \\ \frac{b+c}{2} & \frac{\overline{b}+\overline{c}}{2} & 1 \\ z & \overline{z} & 1 \end{array} \right| = \left| \begin{array}{cc|c} a & \overline{a} & 1 \\ \frac{b+c-2a}{2} & \frac{\overline{b}+\overline{c}-2\overline{a}}{2} & 0 \\ z-a & \overline{z}-\overline{a} & 0 \end{array} \right| = \left| \begin{array}{cc|c} b+c-2a & \overline{b}+\overline{c}-2\overline{a} \\ z-a & \overline{z}-\overline{a} \end{array} \right|$$

(formule (1.4)) et on constate que $z=\frac{a+b+c}{3}$ est solution de cette équation $(z-a=\frac{1}{3}\,(b+c-2a))$. Définissant de manière analogue les médianes en B et C, on constate encore que le point G d'affixe $\frac{a+b+c}{3}$ est sur ces médianes.

Définition 1.3. Le point de concours des trois médianes est le centre de gravité du triangle \mathcal{T} .

Ce centre de gravité est aussi l'isobarycentre des points A, B, C.

Théorème 1.13.

Les trois médiatrices du triangle \mathcal{T} concourent en un point Ω d'affixe $\omega = \frac{(b-a)|c|^2 + (a-c)|b|^2 + (c-b)|a|^2}{(b-a)\,\overline{c} + (a-c)\,\overline{b} + (c-b)\,\overline{a}}.$ Les sommets A,B,C sont sur le cercle de rayon Ω et de rayon $R = \frac{|c-a|\,|b-a|\,|c-b|}{\left|(b-a)\,\overline{c} + (a-c)\,\overline{b} + (c-b)\,\overline{a}\right|}.$

Preuve. En désignant par Ω le point d'intersection des médiatrices de [BC] et [AB] (les droites (BC) et (AB) ne sont pas parallèles puisque \mathcal{T} est un vrai triangle), on a alors $\Omega B = \Omega C$ et $\Omega A = \Omega B$, donc $\Omega A = \Omega C$ et Ω est sur la médiatrice de [AC], il est donc à l'intersection des trois médiatrices et les sommets du triangle sont sur le cercle de centre Ω et de rayon $R = \Omega A = \Omega B = \Omega C$.

Une équation complexe de la médiatrice de [BC] est $|z-b|^2=|z-c|^2$, soit $z(\overline{b}-\overline{c})+\overline{z}(b-c)=|b|^2-|c|^2$ et par permutations circulaires, on obtient les équations de deux autres médiatrices. L'affixe ω du point Ω est donc la solution du système de deux équations aux deux inconnus z et \overline{z} :

$$\begin{cases} z(\overline{b} - \overline{c}) + \overline{z}(b - c) = |b|^2 - |c|^2 \\ z(\overline{a} - \overline{c}) + \overline{z}(a - c) = |a|^2 - |c|^2 \end{cases}$$

L'élimination de \overline{z} se fait avec la combinaison (a-c)(1)+(c-b)(2) qui donne :

$$z = \frac{(c-a)(|c|^2 - |b|^2) - (c-b)(|c|^2 - |a|^2)}{(c-a)(\bar{c} - \bar{b}) - (c-b)(\bar{c} - \bar{a})}$$
$$= \frac{(b-a)|c|^2 + (a-c)|b|^2 + (c-b)|a|^2}{(b-a)\bar{c} + (a-c)\bar{b} + (c-b)\bar{a}}$$

Le rayon du cercle est alors :

$$R = \Omega A$$

$$= \left| \frac{(c-b)|a|^2 - (c-a)|b|^2 + (b-a)|c|^2 - a\overline{a}(c-b) + a\overline{b}(c-a) - a\overline{c}(b-a)}{\overline{a}(c-b) - \overline{b}(c-a) + \overline{c}(b-a)} \right|$$

$$= \left| \frac{\overline{b}(c-a)(a-b) + \overline{c}(b-a)(c-a)}{\overline{b}(c-a)(c-a)} \right| |c-a||b-a||c-b|$$

$$=\left|\frac{\overline{b}\left(c-a\right)\left(a-b\right)+\overline{c}\left(b-a\right)\left(c-a\right)}{\overline{a}\left(c-b\right)-\overline{b}\left(c-a\right)+\overline{c}\left(b-a\right)}\right|=\frac{\left|c-a\right|\left|b-a\right|\left|c-b\right|}{\left|\left(b-a\right)\overline{c}+\left(a-c\right)\overline{b}+\left(c-b\right)\overline{a}\right|}$$

Ce cercle de centre Ω passant par les sommets A, B, C du triangle est le cercle circonscrit à \mathcal{T} (figure 1.2).

On peut remarquer que
$$\omega = \frac{\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ |a|^2 & |b|^2 & |c|^2 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ \overline{a} & \overline{b} & \overline{c} \end{vmatrix}}.$$

La relation de Chasles pour les angles orientés de vecteurs nous permet de montrer le théorème de l'angle inscrit qui suit.

FIGURE 1.2 – Cercle circonscrit à un triangle

Théorème 1.14.

Si Ω est le centre du cercle circonscrit au triangle \mathcal{T} , on a alors $2\left(\overrightarrow{AB},\overrightarrow{AC}\right)\equiv\left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right)$ (2π) .

Figure 1.3 – Théorème de l'angle inscrit

Preuve. En utilisant la relation de Chasles, on a :

$$\left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) \equiv \left(\overrightarrow{\Omega B},\overrightarrow{\Omega B}\right) \equiv 0 \ (2\pi)$$

Comme les triangles ΩAB et ΩAC sont isocèles en $\Omega,$ on a :

$$2\left(\overrightarrow{AB},\overrightarrow{A\Omega}\right)+\left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right)\equiv\pi\ (2\pi)$$

(voir le paragraphe 1.3.4) et $2\left(\overrightarrow{A\Omega},\overrightarrow{AC}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv \pi \ (2\pi)$, ce qui donne par addition $2\left(\left(\overrightarrow{AB},\overrightarrow{A\Omega}\right) + \left(\overrightarrow{A\Omega},\overrightarrow{AC}\right)\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv 0 \ (2\pi)$, soit

$$2\left(\overrightarrow{AB},\overrightarrow{AC}\right) + \left(\overrightarrow{\Omega A},\overrightarrow{\Omega B}\right) + \left(\overrightarrow{\Omega C},\overrightarrow{\Omega A}\right) \equiv 0 \ (2\pi) \text{, ou encore} :$$

$$2\left(\overrightarrow{AB},\overrightarrow{AC}\right) - \left(\overrightarrow{\Omega B},\overrightarrow{\Omega C}\right) \equiv 0 \ (2\pi)$$

Un point M d'affixe z est sur la hauteur issue de A de \mathcal{T} si, et seulement si, $\overrightarrow{AM} \cdot \overrightarrow{BC} = 0$, ce qui équivaut à $\Re\left((z-a)\left(\overline{c}-\overline{b}\right)\right) = 0$.

Lemme 1.3 Soient a, b, c des nombres complexes deux à deux distincts. Pour tout $z \in \mathbb{C}$, on $a \Re ((z-a)(\overline{c}-\overline{b})+(z-b)(\overline{a}-\overline{c})+(z-c)(\overline{b}-\overline{a}))=0$.

Preuve. Résulte de :

$$(z-c)\left(\overline{b}-\overline{a}\right) = (z-a)\left(\overline{b}-\overline{a}\right) + (a-c)\left(\overline{b}-\overline{a}\right)$$

$$= (z-a)\left(\overline{b}-\overline{c}\right) + (z-a)\left(\overline{c}-\overline{a}\right) + (a-c)\left(\overline{b}-\overline{a}\right)$$

$$= (z-a)\left(\overline{b}-\overline{c}\right) + (z-b)\left(\overline{c}-\overline{a}\right) + (b-a)\left(\overline{c}-\overline{a}\right) + (a-c)\left(\overline{b}-\overline{a}\right)$$

$$= -(z-a)\left(\overline{c}-\overline{b}\right) - (z-b)\left(\overline{a}-\overline{c}\right) + 2i\Im\left((b-a)\left(\overline{c}-\overline{a}\right)\right)$$

Le lemme précédent se traduit par $\overrightarrow{AM} \cdot \overrightarrow{BC} + \overrightarrow{BM} \cdot \overrightarrow{CA} + \overrightarrow{CM} \cdot \overrightarrow{AB} = 0$ pour tout point $M \in \mathcal{P}$. Cette égalité est l'égalité de Wallace.

Lemme 1.4 Soient a, b, c des complexes deux à deux distincts et z un nombre complexe. Si deux quantités parmi $(z - a) (\overline{c} - \overline{b})$, $(z - b) (\overline{a} - \overline{c})$, $(z - c) (\overline{b} - \overline{a})$ sont imaginaires pures, il en est alors de même de la troisième.

Preuve. Résulte du lemme précédent.

Théorème 1.15.

Les trois hauteurs de \mathcal{T} sont concourantes en un point H. Relativement au repère $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$, où Ω est le centre du cercle circonscrit au triangle \mathcal{T} , l'affixe de H est h = a + b + c.

Preuve. Notons respectivement \mathcal{H}_A , \mathcal{H}_B , \mathcal{H}_C les hauteurs issues de A, B, C. Un point M est sur $\mathcal{H}_A \cap \mathcal{H}_B$ si, et seulement si, les quantités $(z-a)\left(\overline{c}-\overline{b}\right)$ et $(z-b)\left(\overline{a}-\overline{c}\right)$ sont imaginaires pures, ce qui entraı̂ne que $(z-c)\left(\overline{b}-\overline{a}\right)$ est aussi imaginaire pur et M est sur \mathcal{H}_C . Les trois hauteurs sont donc concourantes en un point H.

On désigne par M le point d'affixe h=a+b+c relativement au repère $(\Omega,\overrightarrow{e_1},\overrightarrow{e_2})$. Comme h-a=b+c avec |b|=|c|=R, on a $\overrightarrow{AM}=\overrightarrow{\Omega B}+\overrightarrow{\Omega C}$ et ce vecteur est orthogonal à $\overrightarrow{CB}=\overrightarrow{\Omega B}-\overrightarrow{\Omega C}$, $((\overrightarrow{\Omega B}+\overrightarrow{\Omega C})\cdot(\overrightarrow{\Omega B}-\overrightarrow{\Omega C})=\Omega B^2-\Omega C^2=R^2-R^2=0)$, ce qui équivaut à dire que M est sur la hauteur de T issue de A. On montre de manière analogue que M est sur les deux autres hauteurs et en conséquence c'est l'orthocentre de T.

Le point d'intersection des trois hauteurs du triangle \mathcal{T} est l'orthocentre de \mathcal{T} (figure 1.4). Avec l'exercice 1.4, on s'intéresse à l'affixe de l'orthocentre.

FIGURE 1.4 – Orthocentre

Théorème 1.16.

Dans un vrai triangle \mathcal{T} , le centre du cercle circonscrit, l'orthocentre et le centre de gravité sont alignés.

Preuve. En utilisant les affixes relativement au repère $(\Omega, \overrightarrow{e_1}, \overrightarrow{e_2})$, le centre de gravité G a pour affixe $g = \frac{a+b+c}{3}$ et l'orthocentre a pour affixe h = a+b+c, ce qui se traduit par $\overrightarrow{\Omega H} = 3\overrightarrow{\Omega G}$ et signifie que les points Ω, G, H sont alignés. \square La droite passant par les points Ω, G, H est la droite d'Euler.

Théorème 1.17.

Les trois bissectrices intérieures du triangle \mathcal{T} concourent en un point Γ d'affixe $\gamma = \frac{|b-c|\,a+|c-a|\,b+|a-b|\,c}{|b-c|+|c-a|+|a-b|}$. Le cercle de rayon Γ et de rayon $\Gamma = \frac{|\Im\left((\overline{c}-\overline{a})\,(b-a)\right)|}{|b-c|+|c-a|+|a-b|}$ est intérieur au triangle et tangent aux trois cotés. Le centre Γ de ce cercle est le barycentre de $\{(A,BC)\,,(B,AC)\,,(C,AB)\}$.

Preuve. En notant $\overrightarrow{u} = \frac{1}{AB}\overrightarrow{AB}$, $\overrightarrow{v} = \frac{1}{AC}\overrightarrow{AC}$, $\overrightarrow{w} = \frac{1}{BC}\overrightarrow{BC}$, les bissectrices intérieures de \mathcal{T} sont les droites $\mathcal{D}_A = A + \mathbb{R}(\overrightarrow{u} + \overrightarrow{v})$, $\mathcal{D}_B = B + \mathbb{R}(-\overrightarrow{u} + \overrightarrow{w})$ et $\mathcal{D}_C = C + \mathbb{R}(\overrightarrow{v} + \overrightarrow{w})$.

Vérifions tout d'abord que les bissectrices \mathcal{D}_A et \mathcal{D}_B sont sécantes. Dans le cas contraire, il existerait un réel λ tel que $-\overrightarrow{u}+\overrightarrow{w}=\lambda\left(\overrightarrow{u}+\overrightarrow{v}\right)$, ce qui équivaut à $\left(\lambda+1+\frac{AB}{BC}\right)\overrightarrow{u}+\left(\lambda-\frac{AC}{BC}\right)\overrightarrow{v}=0$ et impose $\lambda=\frac{AC}{BC}>0,$ $\lambda=-1-\frac{AB}{BC}<0$, ce qui n'est pas possible.

On note Γ le point d'intersection des bissectrices intérieures \mathcal{D}_A , \mathcal{D}_B et il s'agit de prouver que $\Gamma \in \mathcal{D}_C$. Pour ce faire, on utilise les affixes relativement au repère $(\Gamma, \overrightarrow{e_1}, \overrightarrow{e_2})$. Les conditions $\Gamma \in \mathcal{D}_A \cap \mathcal{D}_B$ se traduisent par det $(\overrightarrow{\Gamma A}, \overrightarrow{u} + \overrightarrow{v}) =$

 $\det\left(\overrightarrow{\Gamma B}, -\overrightarrow{u} + \overrightarrow{w}\right), \text{ soit par } \Im\left(\overline{a}\left(u+v\right)\right) = \Im\left(\overline{b}\left(-u+w\right)\right) = 0 \text{ et il s'agit de prouver que } \Im\left(\overline{c}\left(v+w\right)\right) = 0.$ En écrivant que :

$$Z = \overline{a}(u+v) + \overline{b}(-u+w) = \frac{\left(\overline{a} - \overline{b}\right)(b-a)}{|b-a|} + \overline{a}\frac{c-a}{|c-a|} + \overline{b}\frac{b-c}{|b-c|}$$

$$= \frac{\left(\overline{a} - \overline{b}\right)(b-a)}{|b-a|} + \frac{\left(\overline{a} - \overline{c}\right)(c-a)}{|c-a|} + \frac{\left(\overline{b} - \overline{c}\right)(b-c)}{|b-c|} + \overline{c}\left(\frac{c-a}{|c-a|} + \frac{b-c}{|b-c|}\right)$$

$$= -|b-a| - |c-a| + |b-c| + \overline{c}(v+w)$$

on aboutit à $0 = \Im(Z) = \Im(\overline{c}(v+w))$, ce qui prouve que $\mathcal{D}_A \cap \mathcal{D}_B \cap \mathcal{D}_C = \{\Gamma\}$. Par définition des bissectrices, ce point Γ est tel que $d(\Gamma, (AB)) = d(\Gamma, (BC)) = d(\Gamma, (AC))$, donc le cercle de centre Γ et de rayon $r = d(\Gamma, (AB))$ est tangent aux trois droites (AB), (AC) et (BC).

L'affixe de Γ relativement au repère $\mathcal{R}=(0,\overrightarrow{e_1},\overrightarrow{e_2})$ peut s'obtenir en écrivant qu'il existe deux réels λ et μ tels que $\gamma=a+\lambda\,(u+v)=b+\mu\,(-u+w)$, soit $\lambda\,(u+v)+\mu\,(u-w)=b-a=|b-a|\,u$, ou encore :

$$(\lambda + \mu - |b - a|) u + \lambda v - \mu w = 0$$

avec $w = \frac{c-b}{|b-c|} = \frac{c-a}{|b-c|} + \frac{a-b}{|b-c|} = \frac{|c-a|}{|b-c|} v - \frac{|b-a|}{|b-c|} u$, soit |b-a| u - |c-a| v + |b-c| w = 0. Donc X = (u, v, w) est solution du système linéaire :

$$\begin{cases} (\lambda + \mu - |b - a|) u + \lambda v - \mu w = 0 \\ |b - a| u - |c - a| v + |b - c| w = 0 \end{cases}$$

Comme $\overline{X}=(\overline{u},\overline{v},\overline{w})$ est aussi solution de ce système, les vecteur X et \overline{X} étant indépendants dans \mathbb{C}^3 ($\begin{vmatrix} u & \overline{u} \\ v & \overline{v} \end{vmatrix} = 2i\Im(u\overline{v}) = 2i\det(\overrightarrow{v},\overrightarrow{u}) \neq 0$), ce système est de rang 1, ce qui entraı̂ne que :

$$\begin{vmatrix} \lambda + \mu - |b - a| & \lambda \\ |b - a| & -|c - a| \end{vmatrix} = (|b - a| - (\lambda + \mu)) |c - a| - \lambda |b - a| = 0$$
$$\begin{vmatrix} \lambda & -\mu \\ -|c - a| & |b - c| \end{vmatrix} = \lambda |b - c| - \mu |c - a| = 0$$

et nous donne $\mu = \frac{|b-c|}{|c-a|}\lambda$, $\lambda + \mu = \left(1 + \frac{|b-c|}{|c-a|}\right)\lambda$ et :

$$\lambda |b - a| = (|b - a| - (\lambda + \mu)) |c - a| = \left(|b - a| - \left(1 + \frac{|b - c|}{|c - a|}\right)\lambda\right) |c - a|$$
$$= |b - a| |c - a| - (|c - a| + |b - c|)\lambda$$

soit
$$\lambda = \frac{|b-a||c-a|}{|b-c|+|c-a|+|a-b|}$$
 et :

$$\begin{split} \gamma &= a + \frac{|b-a|\,|c-a|}{|b-c|+|c-a|+|a-b|} \left(\frac{b-a}{|b-a|} + \frac{c-a}{|c-a|}\right) \\ &= a + \frac{|c-a|\,(b-a)+|b-a|\,(c-a)}{|b-c|+|c-a|+|a-b|} = \frac{|b-c|\,a+|c-a|\,b+|a-b|\,c}{|b-c|+|c-a|+|a-b|} \end{split}$$

ce qui signifie que Γ est le barycentre de $\{(A,BC),(B,AC),(C,AB)\}$ qui est à l'intérieur de \mathcal{T} .

Le rayon du cercle est alors :

$$r = d\left(\Gamma, (AB)\right) = \frac{\left|\det\left(\overrightarrow{A\Gamma}, \overrightarrow{AB}\right)\right|}{AB} = \frac{\left|\Im\left(\left(\overline{\gamma} - \overline{a}\right)(b - a)\right)\right|}{\left|b - a\right|}$$

$$= \frac{1}{\left|b - a\right|} \frac{\left|\Im\left(\left(\left|c - a\right|\left(\overline{b} - \overline{a}\right) + \left|b - a\right|\left(\overline{c} - \overline{a}\right)\right)(b - a)\right)\right|}{\left|b - c\right| + \left|c - a\right| + \left|a - b\right|}$$

$$= \frac{\left|\Im\left(\left(\overline{c} - \overline{a}\right)(b - a)\right)\right|}{\left|b - c\right| + \left|c - a\right| + \left|a - b\right|} = \frac{1}{2} \frac{\left|\left(b - a\right)\overline{c} + (c - b)\overline{a} + (a - c)\overline{b}\right|}{\left|b - c\right| + \left|c - a\right| + \left|a - b\right|}$$

Le cercle de centre Γ et de rayon $d(\Gamma, (AB))$ est le cercle inscrit au triangle \mathcal{T} .

Exemple 1.1 Pour un triangle équilatéral, on $a \gamma = \frac{a+b+c}{3}$, soit $\Gamma = G$ (centre de gravité du triangle), c-a=j (b-a) et $r=\frac{|\Im\left((\overline{c}-\overline{a})\left(b-a\right)\right)|}{3\left|b-a\right|}=\frac{|b-a|}{2\sqrt{3}}$. Par exemple pour $(a,b,c)=\left(1,j,j^2\right)$, cela donne $\Gamma = O$ et $r=\frac{1}{2}$.

1.3.4 Triangles isocèles, équilatéraux, rectangles

Le résultats qui suivent nous donnent quelques caractérisations complexes des triangles rectangles, isocèles ou équilatéraux, où A, B, C sont trois points deux à distincts de \mathcal{P} , D le milieu de [B, C] et a, b, c, d leurs affixes respectives.

Théorème 1.18.

Les propositions suivantes sont équivalentes :

- 1. le triangle $\mathcal{T} = ABC$ est rectangle en A;
- 2. $\Re((b-a)(\overline{c}-\overline{a}))=0$:
- 3. $|b-c|^2 = |c-a|^2 + |b-a|^2$:
- 4. $AD = \frac{BC}{2}$.

Preuve. On a les équivalences :

$$(\mathcal{T} \text{ rectangle en } A) \Leftrightarrow \left(\overrightarrow{AB} \cdot \overrightarrow{AC} = 0\right)$$

$$\Leftrightarrow (\Re\left((b-a)\left(\overline{c} - \overline{a}\right)\right) = 0) \Leftrightarrow \left(BC^2 = AC^2 + AB^2\right)$$

$$\Leftrightarrow \left(|b-c|^2 = |c-a|^2 + |b-a|^2 = |c-d+d-a|^2 + |b-d+d-a|^2\right)$$

$$\Leftrightarrow \left(4|b-d|^2 = 2|b-d|^2 + 2|d-a|^2 + 2\Re\left((c-d)\left(\overline{d} - \overline{a}\right)\right) + 2\Re\left((b-d)\left(\overline{d} - \overline{a}\right)\right)\right)$$

$$\Leftrightarrow \left(|b-d|^2 = |d-a|^2 + \Re\left((b+c-2d)\left(\overline{d} - \overline{a}\right)\right)\right)$$

$$\Leftrightarrow \left(|b-d|^2 = |d-a|^2\right) \Leftrightarrow \left(BD^2 = AD^2\right) \Leftrightarrow \left(AD = \frac{BC}{2}\right)$$

(on a $d = \frac{b+c}{2}$ et $|b-c| = 2\,|b-d| = 2\,|c-d|$), soit les équivalences annoncées.

Théorème 1.19.

Les propositions suivantes sont équivalentes :

- 1. le triangle $\mathcal{T} = ABC$ est isocèle en A;
- 2. |b-a| = |c-a|;
- 3. $\Re((b-c)(\overline{d}-\overline{a}))=0$;
- 4. $\overrightarrow{BC} \cdot \overrightarrow{AD} = 0$:
- 5. A est sur la médiatrice du segment [B, C];

Preuve. On a les équivalences :

$$(\mathcal{T} \text{ isocèle en } A) \Leftrightarrow (AB = AC) \Leftrightarrow \left(|b - d + d - a|^2 = |c - d + d - a|^2 \right)$$

$$\Leftrightarrow \left((b - d) \left(\overline{d} - \overline{a} \right) + (d - a) \left(\overline{b} - \overline{d} \right) = (c - d) \left(\overline{d} - \overline{a} \right) + (d - a) \left(\overline{c} - \overline{d} \right) \right)$$

$$\Leftrightarrow \left((b - c) \left(\overline{d} - \overline{a} \right) + (d - a) \left(\overline{b} - \overline{c} \right) = 0 \right)$$

$$\Leftrightarrow \left(\Re \left((b - c) \left(\overline{d} - \overline{a} \right) \right) = 0 \right) \Leftrightarrow \left(\overrightarrow{BC} \cdot \overrightarrow{AD} = 0 \right) \Leftrightarrow \left(A \in D + \left(\mathbb{R} \overrightarrow{BC} \right)^{\perp} \right)$$

soit les équivalences annoncées.

Dans le cas où le triangle direct \mathcal{T} est isocèle en A, on a AB = AC, A est sur la médiatrice du segment [BC] et en désignant par I_A le milieu de ce segment, on peut écrire pour les triangles rectangles en I_A , AI_AC et AI_AB :

$$\cos(\theta_B) = \frac{I_A C}{AC} = \frac{I_A B}{AB} = \cos(\theta_C)$$

avec θ_B et θ_C dans $]0,\pi[$, ce qui équivant à $\theta_B=\theta_C$ et entraı̂ne $\theta_A=\pi-2\theta_B$. Réciproquement si $\theta_B=\theta_C$, de $\frac{AC}{\sin{(\theta_B)}}=\frac{AB}{\sin{(\theta_C)}}$, on déduit que AB=AC et \mathcal{T} est isocèle en A.

Théorème 1.20.

 $Les\ propositions\ suivantes\ sont\ \'equivalentes\ :$

- 1. le triangle $\mathcal{T} = ABC$ est équilatéral;
- 2. |b-a| = |c-b| = |c-a|;
- 3. $\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a} = 0$;
- 4. $a^2 + b^2 + c^2 = ab + bc + ca$;
- 5. j ou $\bar{\jmath}$ est racine de $az^2 + bz + c = 0$ (j et $\bar{\jmath}$ sont racines cubiques de l'unité);

6.
$$j$$
 ou $\bar{\jmath}$ est racine de $\begin{vmatrix} a & z^2 & 1 \\ b & z & 1 \\ c & 1 & 1 \end{vmatrix} = 0$.

Preuve. On a:

$$(\mathcal{T} \text{ \'equilat\'eral}) \Leftrightarrow (AB = BC = AC) \Leftrightarrow \left(|b - a|^2 = |c - b|^2 = |c - a|^2 \right)$$

$$\Leftrightarrow \left(\frac{1}{|b - a|^2} = \frac{1}{|c - b|^2} = \frac{1}{|c - a|^2} \right)$$

$$\Leftrightarrow \left(\frac{1}{b - a} = \frac{\overline{b} - \overline{a}}{|b - c|^2} = \frac{\overline{b} - \overline{a}}{|c - a|^2} \right)$$

$$\Leftrightarrow \left(\frac{1}{b - a} = \frac{1}{b - c} \left(1 + \frac{\overline{c} - \overline{a}}{\overline{b} - \overline{c}} \right) = \frac{1}{c - a} \left(1 + \frac{\overline{b} - \overline{c}}{\overline{c} - \overline{a}} \right) \right)$$

$$\Rightarrow \left(\frac{1}{b - a} = \frac{1}{b - c} \left(1 + \frac{b - c}{c - a} \right) = \frac{1}{b - c} + \frac{1}{c - a} \right)$$

$$\Leftrightarrow \left(\frac{1}{a - b} + \frac{1}{b - c} + \frac{1}{c - a} = 0 \right)$$

(l'égalité
$$|c-a|^2 = |b-c|^2$$
 équivant à $\frac{\overline{c} - \overline{a}}{\overline{b} - \overline{c}} = \frac{b-c}{c-a}$) et :

$$\left(\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a} = 0\right) \Leftrightarrow ((b-c)(c-a) + (a-b)(c-a) + (a-b)(b-c) = 0)$$
$$\Leftrightarrow (ab+bc+ca-a^2-b^2-c^2 = 0)$$

Donc $(1) \Leftrightarrow (2) \implies (3) \Leftrightarrow (4)$. Les égalités :

$$(aj^2 + bj + c) (a\overline{\jmath}^2 + b\overline{\jmath} + c) = a^2 + b^2 + c^2 + (j + \overline{\jmath}) ab + (j^2 + \overline{\jmath}^2) ac + (j + \overline{\jmath}) bc$$
$$= a^2 + b^2 + c^2 - ab + -ac - bc$$

nous disent que (4) est équivalent à (5). Si j (où $\bar{\jmath}$) est racine de $az^2+bz+c=0,$ on a alors :

$$0 = aj^{2} + bj + c = aj^{2} - b(1+j^{2}) + c = (c-b) + (a-b)j^{2}$$
$$= aj^{2} + bj - c(j+j^{2}) = (a-c)j^{2} + (b-c)j$$

donc $(c-b) = -(a-b)j^2$, $(a-c)j^2 = -(b-c)j$ et |b-a| = |c-b| = |c-a|. On a donc $(1) \Leftrightarrow (2) \implies (3) \Leftrightarrow (4) \Leftrightarrow (5) \implies (1)$, ce qui nous donne l'équivalence entre ces cinq assertions. Enfin, l'équivalence entre (5) et (6) se déduit du calcul suivant où $z \in \{j, \bar{\jmath}\} = \{j, j^2\}$:

$$\begin{vmatrix} a & z^{2} & 1 \\ b & z & 1 \\ c & 1 & 1 \end{vmatrix} = \begin{vmatrix} a-b & z^{2}-z & 0 \\ b-c & z-1 & 0 \\ c & 1 & 1 \end{vmatrix} = \begin{vmatrix} a-b & z^{2}-z \\ b-c & z-1 \end{vmatrix}$$
$$= az + b + cz^{2} - (a + bz^{2} + cz)$$
$$= \overline{z} (az^{2} + bz + c) - z (az^{2} + bz + c)$$
$$= (z - \overline{z}) (az^{2} + bz + c) = 2i\Im(z) (az^{2} + bz + c)$$

1.4 Droites et cercles dans le plan complexe

Soit \mathcal{D} une droite passant par deux points distincts A,B. Dire que M appartient à \mathcal{D} équivaut à dire que les points A,M,B sont alignés, ce qui équivaut encore à dire que (z-a) $(\overline{z}-\overline{b})$ est réel, soit (z-a) $(\overline{z}-\overline{b})=(\overline{z}-\overline{a})$ (z-b), ce qui s'écrit $(\overline{b}-\overline{a})z-(b-a)\overline{z}-(a\overline{b}-\overline{a}b)=0$, le nombre complexe $a\overline{b}-\overline{a}b=2i\Im(a\overline{b})$ étant imaginaire pur. En multipliant par i, une équation complexe de la droite \mathcal{D} est alors $\overline{\beta}z+\beta\overline{z}+\gamma=0$ où $\beta=i$ $(a-b)\in\mathbb{C}^*$ et $\gamma=2\Im(a\overline{b})\in\mathbb{R}$.

On peut aussi aboutir à ce résultat en écrivant une équation cartésienne de \mathcal{D} :

$$ux + vy + w = 0$$

avec $(u,v) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $w \in \mathbb{R}$. En écrivant que $x = \frac{1}{2}(z+\overline{z})$ et $y = \frac{1}{2i}(z-\overline{z})$ pour M d'affixe z, cette équation devient $u(z+\overline{z}) - vi(z-\overline{z}) + 2w = 0$, soit $(u-iv)z + (u+iv)\overline{z} + 2w = 0$.

Réciproquement une telle équation définit une droite. En effet, en écrivant que $z=x+iy,\ \beta=u+iv,$ cette équation devient :

$$\left(u-iv\right)\left(x+iy\right)+\left(u+iv\right)\left(x-iy\right)+\gamma=0$$

soit $ux+vy+\frac{\gamma}{2}=0$ et c'est une droite dirigée par le vecteur \overrightarrow{v} d'affixe $-v+iu=i\beta$.

Soit \mathcal{C} un cercle de centre Ω et de rayon R > 0. Dire que $M \in \mathcal{C}$ équivaut à dire que $|z - \omega|^2 = R^2$, soit à $(z - \omega)(\overline{z} - \overline{\omega}) = z\overline{z} - \overline{\omega}z - \omega\overline{z} + |\omega|^2 - R^2 = 0$.

Une équation complexe de ce cercle est donc $z\overline{z} + \overline{\beta}z + \beta\overline{z} + \gamma = 0$ où $\beta = -\omega$ et $\gamma = |\omega|^2 - R^2 = |\beta|^2 - R^2$ est réel avec $|\beta|^2 - \gamma = R^2 > 0$.

Réciproquement une telle équation définit un cercle. En effet, en écrivant que $z=x+iy,\ \beta=u+iv,$ cette équation devient $x^2+y^2+2ux+2vy+\gamma=0$, soit $(x+u)^2+(y+v)^2+\gamma-u^2-v^2=0$ et en posant $R^2=u^2+v^2-\gamma=|\beta|^2-\gamma$ (ce réel est positif), on constate qu'on a le cercle de centre Ω d'affixe $\omega=-\beta$ et de rayon $R=\sqrt{|\beta|^2-\gamma}$.

On a donc montré le résultat suivant.

Théorème 1.21.

Toute équation de la forme $\alpha z\overline{z} + \overline{\beta}z + \beta \overline{z} + \gamma = 0$, où α, γ sont des réels et β un nombre complexe représente dans \mathcal{P} :

- l'ensemble \mathcal{P} tout entier si $\alpha = \beta = \gamma = 0$;
- l'ensemble vide si $\alpha = \beta = 0$ et $\gamma \neq 0$;
- une droite dirigée par le vecteur \overrightarrow{v} d'affixe $i\beta$ si $\alpha = 0$ et $\beta \neq 0$;
- l'ensemble vide si $\alpha \neq 0$ et $|\beta|^2 \alpha \gamma < 0$;
- le cercle de centre Ω d'affixe $\omega = -\frac{\beta}{\alpha}$ et de rayon $R = \frac{\sqrt{|\beta|^2 \alpha \gamma}}{|\alpha|}$ si $\alpha \neq 0$ et $|\beta|^2 \alpha \gamma \geq 0$.

Sachant qu'un cercle de diamètre [A,B] est $\mathcal{C}=\left\{M\in\mathcal{P}\mid\overrightarrow{MA}\cdot\overrightarrow{MB}=0\right\}$ (cercle de centre Ω milieu de [A,B] et de rayon $R=\frac{AB}{2}$) et utilisant l'expression complexe du produit scalaire, on obtient l'équation complexe de ce cercle : $\Re\left((z-a)\,\overline{(z-b)}\right)=0$.

De même l'équation complexe d'une droite $\mathcal{D} = \left\{ M \in \mathcal{P} \mid \overrightarrow{AM} \cdot \overrightarrow{AB} = 0 \right\}$ passant par A et orthogonale au vecteur \overrightarrow{AB} est $\Re \left((z-a) \, \overline{(b-a)} \right) = 0$.

Pour une droite passant par deux points $A \neq B$, l'équation $\det\left(\overrightarrow{AM}, \overrightarrow{AB}\right) = 0$ devient utilisant l'expression complexe du déterminant, $\Im\left((z-a)\overline{(b-a)}\right) = 0$.

Le théorème précédent nous permet d'étudier les lignes de niveau de la fonction $f:z\mapsto \frac{|z-b|}{|z-a|}.$

Corollaire 1.1. (Appolonius) Soient a,b deux nombres complexes distincts et λ un réel strictement positif. L'ensemble $E_{\lambda} = \{z \in \mathbb{C} \mid |z-b| = \lambda \, |z-a|\}$ est identifié dans \mathcal{P} à la médiatrice du segment [AB] pour $\lambda = 1$ ou au cercle de centre Ω d'affixe $\omega = \frac{b - \lambda^2 a}{1 - \lambda^2}$ et de rayon $R = \frac{\lambda \, |a-b|}{|1-\lambda^2|}$ pour $\lambda \neq 1$.

Preuve. On note $\mathcal{E}_{\lambda} = \{M \in \mathcal{P} \mid BM = \lambda AM\}$. L'ensemble E_{λ} a pour équation $|z - b|^2 = \lambda^2 |z - a|^2$, soit :

$$(z-b)\left(\overline{z}-\overline{b}\right) = \lambda^2 (z-a) (\overline{z}-\overline{a})$$

c'est-à-dire $\alpha z\overline{z} + \overline{\beta}z + \beta\overline{z} + \gamma = 0$, où on a posé $\alpha = 1 - \lambda^2$, $\beta = \lambda^2 a - b$, $\gamma = |b|^2 - \lambda^2 |a|^2$. C'est donc une droite, un cercle ou $\mathcal P$ quand il n'est pas vide. Pour $\lambda = 1$, $\mathcal E_\lambda$ est l'ensemble des points équidistants de A et B, soit la médiatrice du segment [A,B] d'équation complexe $(\overline{a}-\overline{b})z+(a-b)\overline{z}+(|b|^2-|a|^2)=0$,

c'est-à-dire la droite dirigée par le vecteur \overrightarrow{v} d'affixe $i\beta=i\,(a-b)$ et passant par le point I d'affixe $\frac{a+b}{2}$.

Pour $\lambda \neq 1$, on a :

$$\frac{|\beta|^{2}}{\alpha^{2}} - \frac{\gamma}{\alpha} = \frac{|\lambda^{2}a - b|^{2}}{(1 - \lambda^{2})^{2}} - \frac{|b|^{2} - \lambda^{2}|a|^{2}}{1 - \lambda^{2}}$$

$$= \frac{(\lambda^{2}a - b)(\lambda^{2}\overline{a} - \overline{b}) - (1 - \lambda^{2})(|b|^{2} - \lambda^{2}|a|^{2})}{(1 - \lambda^{2})^{2}}$$

$$= \frac{\lambda^{2}(|a|^{2} + |b|^{2} - \overline{a}b - a\overline{b})}{(1 - \lambda^{2})^{2}} = \frac{\lambda^{2}|a - b|^{2}}{(1 - \lambda^{2})^{2}} > 0$$

et \mathcal{E}_{λ} est le cercle de centre Ω d'affixe $-\frac{\beta}{\alpha} = \frac{b - \lambda^2 a}{1 - \lambda^2}$ et de rayon $\frac{\lambda |a - b|}{|1 - \lambda^2|}$.

On peut remarquer que le centre Ω d'affixe

$$\omega = a + \frac{1}{1 - \lambda^2} (b - a) = b + \frac{\lambda^2}{1 - \lambda^2} (b - a)$$

est sur la droite (AB) privée du segment [AB] (pour $|\lambda| > 1$, on a $\frac{1}{1 - \lambda^2} < 0$ et pour $|\lambda| < 1$, on a $\frac{\lambda^2}{1 - \lambda^2} > 0$).

L'étude des lignes de niveau de la fonction $f: z \mapsto \arg\left(\frac{a-z}{b-z}\right) \mod(\pi)$ nous fournira un critère de cocyclicité de 4 points du plan.

On se donne deux points $A \neq B$ d'affixes respectives a,b, un réel λ et on désigne par E_{λ} l'ensemble de nombres complexes défini par :

$$E_{\lambda} = \left\{z \in \mathbb{C} \setminus \{a,b\} \mid \arg\left(\frac{a-z}{b-z}\right) \equiv \lambda \ \operatorname{mod}\left(\pi\right)\right\}$$

qui est identifié à l'ensemble :

$$\mathcal{E}_{\lambda} = \left\{ M \in \mathcal{P} \setminus \{A, B\} \mid \left(\widehat{\overrightarrow{MA}}, \widehat{\overrightarrow{MB}} \right) \equiv \lambda \ \operatorname{mod} \left(\pi \right) \right\}$$

Les points M, A, B sont alignés si, et seulement si, $\arg\left(\frac{a-z}{b-z}\right) \equiv 0 \mod(\pi)$, donc pour $\lambda \equiv 0 \mod(\pi)$, \mathcal{E}_{λ} est la droite (AB) privée des points A et B.

En désignant par θ un argument de $\frac{a-z}{b-z}$, pour $z\in\mathbb{C}\setminus\{a,b\}$, on a :

$$\left(\arg\left(\frac{a-z}{b-z}\right) \equiv \lambda \mod(\pi)\right) \Leftrightarrow (\theta - \lambda \equiv 0 \mod(\pi)) \Leftrightarrow (\sin(\theta - \lambda) = 0)$$
$$\Leftrightarrow \sin(\theta)\cos(\lambda) - \cos(\theta)\sin(\lambda) = 0$$

et pour λ non congru à 0 modulo $\pi,$ on a :

$$(z \in E_{\lambda}) \Leftrightarrow (\sin(\theta)\cot(\lambda) - \cos(\theta) = 0)$$

ou encore en utilisant l'écriture polaire $\frac{a-z}{b-z} = \rho e^{i\theta} = \rho \left(\cos\left(\theta\right) + i\sin\left(\theta\right)\right)$:

$$(z \in E_{\lambda}) \Leftrightarrow \left(\cot \left(\lambda\right) \Im \left(\frac{a-z}{b-z}\right) - \Re \left(\frac{a-z}{b-z}\right) = 0\right)$$

ce qui peut encore s'écrire, compte tenu de $\Im\left(\frac{a-z}{b-z}\right) = \frac{1}{|b-z|^2}\Im\left((a-z)\left(\overline{b}-\overline{z}\right)\right)$

et
$$\Re\left(\frac{a-z}{b-z}\right) = \frac{1}{|b-z|^2} \Re\left((a-z)\left(\overline{b}-\overline{z}\right)\right)$$
:

$$(z \in E_{\lambda}) \Leftrightarrow \left(\cot \left(\lambda\right) \Im\left(\left(a-z\right)\left(\overline{b}-\overline{z}\right)\right) - \Re\left(\left(a-z\right)\left(\overline{b}-\overline{z}\right)\right) = 0\right)$$

Il est alors judicieux de placer l'origine au milieu de [AB], ce qui revient à effectuer le changement de variable $z=\frac{a+b}{2}+t$ avec $t\notin\{-c,c\}$, où $c=\frac{b-a}{2},$ puisque $z\notin\{a,b\}$, ce qui donne :

$$(a-z)\left(\overline{b}-\overline{z}\right) = (c+t)\left(\overline{t}-\overline{c}\right) = c\overline{t} - \overline{c}t + \left|t\right|^2 - \left|c\right|^2 = 2i\Im\left(c\overline{t}\right) + \left|t\right|^2 - \left|c\right|^2$$

et donc $\Im\left((a-z)\left(\overline{b}-\overline{z}\right)\right)=2\Im\left(c\overline{t}\right)=2\Re\left\{-ic\overline{t}\right\}=\Re\left(\beta\overline{t}\right)$ avec $\beta=-2ic\overline{t}$ et $\Re\left((a-z)\left(\overline{b}-\overline{z}\right)\right)=\left|t\right|^{2}-\left|c\right|^{2}$.

En définitive, en notant $\mu = \cot \alpha (\lambda)$, une équation de E_{λ} est :

$$\mu 2\Im (c\bar{t}) - |t|^2 + |c|^2 = 0$$

ou encore $t\overline{t} + 2\Re\left(i\mu c\overline{t}\right) - |c|^2 = 0$, soit en posant $\beta = i\mu c$, $t\overline{t} + \overline{\beta}t + \beta\overline{t} - |c|^2 = 0$ avec $|\beta|^2 - \left(-|c|^2\right) = \left(1 + \mu^2\right)|c|^2 > 0$.

On reconnaît l'équation complexe d'un cercle de centre Ω' d'affixe $\omega' = -\beta$ et de rayon $R = \sqrt{|\beta|^2 + |c|^2} = \sqrt{1 + \mu^2} |c|$. En définitive, l'ensemble \mathcal{E}_{λ} est le cercle de centre Ω d'affixe $\omega = \frac{a+b}{2} + \omega' = \frac{a+b}{2} - i\cot(\lambda)\frac{b-a}{2}$ et de rayon $R = \sqrt{1 + \cot^2(\lambda)} \left| \frac{b-a}{2} \right| = \frac{1}{|\sin(\lambda)|} \left| \frac{b-a}{2} \right|$ privé des points A et B.

Les points A et B sont bien sur le cercle puisque :

$$|a - \omega| = |b - \omega| = \left| \frac{b - a}{2} \right| |1 + i \cot(\lambda)| = R$$

On a donc montré le résultat suivant.

Théorème 1.22.

 $Si\ a,b\ sont\ deux\ nombres\ complexes\ distincts\ et\ \lambda\ un\ r\'eel,\ alors\ l'ensemble$ $E_{\lambda} = \left\{z \in \mathbb{C} \setminus \{a,b\} \mid \arg\left(\frac{a-z}{b-z}\right) \equiv \lambda\ (\pi)\right\}\ est\ identifi\'e\ \grave{a}\ :$

— la droite (AB) privée des points A, B si λ est congru à 0 modulo π ;

— au cercle de centre
$$\Omega$$
 d'affixe $\omega = \frac{a+b}{2} - i \cot(\lambda) \frac{b-a}{2}$ et de rayon $R = \frac{1}{|\sin(\lambda)|} \left| \frac{b-a}{2} \right|$ privé des points A , B si λ n'est pas congru à 0 modulo π .

La traduction dans le plan \mathcal{P} de ce théorème est la suivante.

Théorème 1.23.

Si A, B sont deux points distincts dans le plan \mathcal{P} et λ un réel, alors l'ensemble $\mathcal{E}_{\lambda} = \left\{ M \in \mathcal{P} \setminus \{A, B\} \mid (\overrightarrow{MA}, \overrightarrow{MB}) \equiv \lambda \mod(\pi) \right\} \text{ est } :$

- la droite (AB) privée des points A, B si λ est congru à 0 modulo π ;
- le cercle de centre Ω d'affixe $\omega = \frac{a+b}{2} i \cot (\lambda) \frac{b-a}{2}$ et de rayon $R = \frac{1}{|\sin (\lambda)|} \left| \frac{b-a}{2} \right|$ privé des points A, B si λ n'est pas congru à 0 modulo π .

Le centre du cercle \mathcal{E}_{λ} , pour λ non congru à 0 modulo π , ayant une affixe de la forme $\omega = \frac{a+b}{2} + i\lambda' \, (b-a)$ est sur la droite passant par le milieu de [AB] et perpendiculaire à la droite (AB), c'est-à-dire sur la médiatrice du segment [AB].

Si A,B,C sont trois points non alignés, alors $\lambda = \arg\left(\frac{a-c}{b-c}\right)$ n'est pas congru à 0 modulo π et ces points sont sur le cercle \mathcal{E}_{λ} . Ce cercle, qui est uniquement déterminé, est le cercle circonscrit au triangle $\mathcal{T} = ABC$ et son centre Ω est à l'intersection des trois médiatrices de T. Un point M est sur ce cercle circonscrit à T si, et seulement si $\arg\left(\frac{a-z}{b-z}\right) \equiv \arg\left(\frac{a-c}{b-c}\right) \mod(\pi)$, ce qui est encore équivalent à :

$$\left(\overrightarrow{\overrightarrow{MA}}, \overrightarrow{MB}\right) \equiv \left(\overrightarrow{\overrightarrow{CA}}, \overrightarrow{CB}\right) \mod(\pi)$$
 (1.5)

c'est l'équation angulaire du cercle passant par A, B, C.

On peut déduire du théorème précédent le critère de cocyclicité suivant.

Théorème 1.24.

Soient A, B, C, D des points deux à deux distincts. Ces points sont alignés ou cocycliques si, et seulement si, $\frac{c-b}{c-a}\frac{d-a}{d-b}$ est réel.

Preuve. On a :

$$\left(\frac{c-b}{c-a}\frac{d-a}{d-b} \in \mathbb{R}\right) \Leftrightarrow \left(\arg\left(\frac{c-b}{c-a}\frac{d-a}{d-b}\right) \equiv 0 \mod(\pi)\right)$$
$$\Leftrightarrow \left(\arg\left(\frac{d-b}{d-a}\right) \equiv \arg\left(\frac{c-b}{c-a}\right) \mod(\pi)\right)$$

On distingue alors deux cas. Soit A,B,C sont alignés et dans ce cas on a $\arg\left(\frac{c-b}{c-a}\right)\equiv 0\ \mathrm{mod}\left(\pi\right),$ de sorte que :

$$\left(\frac{c-b}{c-a}\frac{d-a}{d-b}\in\mathbb{R}\right)\Leftrightarrow\left(\arg\left(\frac{d-b}{d-a}\right)\equiv0\ \operatorname{mod}\left(\pi\right)\right)\Leftrightarrow\left(A,B,C,D\ \operatorname{align\'{e}s}\right).$$

Soit A, B, C ne sont pas alignés et dans ce cas on a $\arg\left(\frac{c-b}{c-a}\right) \equiv \lambda \mod(\pi)$ avec λ non congru à 0 modulo π , de sorte que :

$$\left(\frac{c-b}{c-a}\frac{d-a}{d-b}\in\mathbb{R}\right)\Leftrightarrow\left(\arg\left(\frac{d-b}{d-a}\right)\equiv\lambda\ \operatorname{mod}\left(\pi\right)\right)\Leftrightarrow\left(A,B,C,D\ \operatorname{cocycliques}\right).$$

Ce résultat est la traduction complexe de (1.5) pour A,B,C,D non alignés :

$$(A,B,C,D \text{ cocycliques}) \Leftrightarrow \left(\left(\overrightarrow{\overrightarrow{DA}},\overrightarrow{DB}\right) \equiv \left(\overrightarrow{\overrightarrow{CA}},\overrightarrow{\overrightarrow{CB}}\right) \text{ mod } (\pi)\right)$$

En utilisant l'inégalité triangulaire avec son cas d'égalité dans \mathbb{C} , on a le résultat suivant.

Théorème 1.25. (Ptolémée)

Soient A,B,C,D des points deux à deux distincts. Le quadrilatère convexe ABCD est inscriptible dans un cercle si, et seulement si, $AC \cdot BD = AB \cdot CD + AD \cdot BC$ (le produit des diagonales est égal à la somme des produits des cotés opposés).

Preuve. Dans tous les cas, on a :

$$AC \cdot BD = |(c-a)(d-b)| = |(b-a)(d-c) + (d-a)(c-b)|$$

 $\leq |(b-a)(d-c)| + |(d-a)(c-b)| = AB \cdot CD + AD \cdot BC$

l'égalité étant réalisée si, et seulement si, il existe un réel $\lambda > 0$ tel que :

$$(b-a)(d-c) = \lambda (d-a)(c-b)$$

$$\operatorname{donc} \ \frac{b-a}{d-a} \frac{d-c}{b-c} = -\lambda \in \mathbb{R}^{*,-} \ \operatorname{et} \ \operatorname{arg} \left(\frac{b-a}{d-a} \frac{d-c}{b-c} \right) \equiv \pi \ \operatorname{mod} \left(2\pi \right), \ \operatorname{ce} \ \operatorname{qui} \ \operatorname{nous}$$

$$\operatorname{donne} \ \operatorname{arg} \left(\frac{b-a}{d-a} \right) \equiv \operatorname{arg} \left(\frac{b-c}{d-c} \right) \ \operatorname{mod} \left(\pi \right), \operatorname{soit} \left(\overrightarrow{AB}, \overrightarrow{AD} \right) \equiv \left(\overrightarrow{CB}, \overrightarrow{CD} \right) \ \operatorname{mod} \left(\pi \right),$$
 ce qui signifie que A, B, C, D sont cocycliques. Réciproquement si ces points sont cocycliques, on a $\operatorname{arg} \left(\frac{b-a}{d-a} \right) \equiv \operatorname{arg} \left(\frac{b-c}{d-c} \right) \ \operatorname{mod} \left(\pi \right), \ \operatorname{donc} \ \mu = \frac{b-a}{d-a} \frac{d-c}{b-c} \ \operatorname{est}$ réel. Si $\mu > 0$, alors $\left(\overrightarrow{AB}, \overrightarrow{AD} \right) \equiv \left(\overrightarrow{CB}, \overrightarrow{CD} \right) \ \operatorname{mod} \left(2\pi \right) \ \operatorname{et} \ \operatorname{les} \ \operatorname{points} \ A, C \ \operatorname{sont}$ dans le même demi-plan délimité par la droite (BD) , ce qui contredit le fait que $ABCD$ est convexe. On a donc $\mu < 0$ et $(b-a) \ (d-c) = \lambda \ (d-a) \ (c-b)$ avec $\lambda > 0$, ce qui entraîne l'égalité dans l'inégalité de Ptolémée.

Inversions 29

Théorème 1.26.

Soient a,b deux nombres complexes distincts et λ un nombre réel. L'ensemble $\left\{z\in\mathbb{C}\setminus\{a,b\}\mid \arg\left(\frac{z-a}{z-b}\right)\equiv\lambda \mod(2\pi)\right\}$ est identifié à la droite (AB) privée du segment [AB] si $\lambda\equiv 0$ modulo 2π , le segment [AB] privé de A et B si $\lambda\equiv\pi$ modulo 2π , ou un arc de cercle d'extrémités A,B privé de ces points (arc capable), si λ n'est pas congru à 0 modulo π .

1.5 Inversions

Définition 1.4. Soient Ω un point de \mathcal{P} et λ un réel strictement positif. L'inversion de pôle Ω et de puissance λ est l'application $\varphi_{\Omega,\lambda}$ qui associe à tout point M de $\mathcal{P} \setminus \{\Omega\}$ le point M' défini par $\overrightarrow{\Omega M'} = \frac{\lambda}{\Omega M^2} \overrightarrow{\Omega M}$.

Pour $M \in \mathcal{P} \setminus \{\Omega\}$, on a $\varphi_{\Omega,\lambda}(M) \in \mathcal{P} \setminus \{\Omega\}$ et $M' = \varphi_{\Omega,\lambda}(M)$ est aussi défini par $M' \in (\Omega M) \setminus \{\Omega\}$ et $\overrightarrow{\Omega M'} \cdot \overrightarrow{\Omega M} = \lambda$.

Pour $N \in \mathcal{P} \setminus \{\Omega\}$ et $N' = \varphi_{\Omega,\lambda}(N)$, on a $M'N' = \frac{\lambda}{\Omega M \cdot \Omega N} MN$. L'expression dans le plan complexe d'une telle inversion est :

$$\varphi_{\omega,\lambda}: \quad \mathbb{C} \setminus \{\omega\} \quad \to \quad \quad \mathbb{C}$$

$$z \qquad \mapsto \quad \omega + \frac{\lambda}{z - \omega}$$

Théorème 1.27.

- 1. La composée $\varphi_{\Omega,\lambda'} \circ \varphi_{\Omega,\lambda}$ de deux inversions $\varphi_{\Omega,\lambda}$ et $\varphi_{\Omega,\lambda'}$ de même pôle Ω et de puissances respectives λ,λ' est la restriction à $\mathcal{P}\setminus\{\Omega\}$ de l'homothétie de centre Ω et de rapport $\frac{\lambda'}{\lambda}$.
- 2. Une inversion $\varphi_{\Omega,\lambda}$ est une involution de $\mathcal{P}\setminus\{\Omega\}$ sur lui même et l'ensemble de ses points fixes est le cercle $\mathcal{C}\left(\Omega,\sqrt{\lambda}\right)$ de centre Ω et de rayon $\sqrt{\lambda}$ (cercle d'inversion).
- 3. La composée d'une inversion et d'une homothétie de même pôle est un inversion.

Preuve.

1. Pour tout $z \in \mathbb{C} \setminus \{\omega\}$, on a :

$$z'' = \varphi_{\omega,\lambda'} \circ \varphi_{\omega,\lambda}(z) = \omega + \frac{\lambda'}{\varphi_{\omega,\lambda}(z) - \omega} = \omega + \frac{\lambda'}{\frac{\lambda}{z - \omega}} = \omega + \frac{\lambda'}{\lambda}(z - \omega)$$

soit
$$\overrightarrow{\Omega M''} = \frac{\lambda'}{\lambda} \overrightarrow{\Omega M}$$
, c'est-à-dire que $M'' = h\left(\Omega, \frac{\lambda'}{\lambda}\right)(M)$.

- 2. Prenant $\lambda' = \lambda$, on en déduit que $\varphi_{\omega,\lambda} \circ \varphi_{\omega,\lambda}(z) = z$ pour tout $z \in \mathbb{C} \setminus \{\omega\}$. L'égalité $\varphi_{\omega,\lambda}(z) = z$ avec $z \in \mathbb{C} \setminus \{\omega\}$ équivaut à $z - \omega = \frac{\lambda}{z - \omega}$, soit à $|z - \omega|^2 = \lambda$ donc l'ensemble des points fixes de $\varphi_{\omega,\lambda}$ est le cercle $\mathcal{C}\left(\omega,\sqrt{\lambda}\right)$.
- 3. De l'égalité $\varphi_{\Omega,\lambda\mu}\circ\varphi_{\Omega,\lambda}=h\left(\Omega,\mu\right)$, on déduit que $h\left(\Omega,\mu\right)\circ\varphi_{\Omega,\lambda}=\varphi_{\Omega,\lambda\mu}\left(\varphi_{\Omega,\lambda}=\exp\left(\frac{1}{2}\sigma_{\Omega,\lambda}\right)\right)$ est involutive).

De l'égalité $\varphi_{\omega,\lambda}\left(z\right)-\omega=\frac{\lambda}{z-\omega}$, on déduit que $|\varphi_{\omega,\lambda}\left(z\right)-\omega|\,|z-\omega|=\lambda$, donc z est intérieur au cercle d'inversion si, et seulement si, $\varphi_{\omega,\lambda}\left(z\right)$ est extérieur à ce cercle.

Théorème 1.28.

Soit $\varphi_{\Omega,\lambda}$ une inversion.

- 1. Si \mathcal{D} est une droite passant par Ω , l'image de $\mathcal{D} \setminus \{\Omega\}$ par $\varphi_{\Omega,\lambda}$ est alors $\mathcal{D} \setminus \{\Omega\}$.
- 2. Si C est un cercle passant par Ω , en notant Γ le point de C diamétralement opposé à Ω , l'image de $C \setminus \{\Omega\}$ par $\varphi_{\Omega,\lambda}$ est alors $\mathcal{D}' \setminus \{\Omega\}$ où \mathcal{D}' est la droite passant par $\Gamma' = \varphi_{\Omega,\lambda}(\Gamma)$ et orthogonale au vecteur $\overline{\Omega\Gamma'}$.
- 3. Si \mathcal{D} est une droite ne passant pas par Ω , en notant H le projeté orthogonal de Ω sur \mathcal{D} , l'image de \mathcal{D} par $\varphi_{\Omega,\lambda}$ est alors le cercle \mathcal{C}' de diamètre $[\Omega, \varphi_{\Omega,\lambda}(H)]$.
- 4. Si C est un cercle ne passant pas par Ω , l'image de C par $\varphi_{\Omega,\lambda}$ est alors un cercle ne passant pas par Ω .

Preuve. On note z l'affixe d'un point $M \in \mathcal{P} \setminus \{\Omega\}$ et z' celle de $M' = \varphi_{\Omega,\lambda}(M)$. On a donc $z' - \omega = \frac{\lambda}{\overline{z - \omega}}$.

1. Soit \mathcal{D} une droite passant par Ω et dirigée par un vecteur unitaire \overrightarrow{v} d'affixe $v \in \mathbb{C}^*$. Pour tout $M \in \mathcal{P} \setminus \{\Omega\}$, on a $M' \in \mathcal{P} \setminus \{\Omega\}$ et :

$$(M \in \mathcal{D}) \Leftrightarrow \left(\det\left(\overrightarrow{\Omega M}, \overrightarrow{v}\right) = 0\right) \Leftrightarrow \left(\Im\left((z - \omega)\,\overline{v}\right) = 0\right)$$
$$\Leftrightarrow \left(\Im\left(\frac{\lambda}{z' - \omega}\overline{v}\right) = 0\right) \Leftrightarrow \left(\Im\left((z' - \omega)\,\overline{v}\right) = 0\right) \Leftrightarrow (M' \in \mathcal{D})$$

ce qui traduit l'égalité $\varphi_{\Omega,\lambda}\left(\mathcal{D}\setminus\{\Omega\}\right)=\mathcal{D}\setminus\{\Omega\}$.

2. Des équations complexes de \mathcal{C} et \mathcal{D}' sont respectivement :

$$\Re\left(\left(z-\omega\right)\overline{\left(z-\gamma\right)}\right)=0\text{ et }\Re\left(\left(z'-\gamma'\right)\overline{\left(\gamma'-\omega\right)}\right)=0$$

Inversions 31

et pour tout $M \in \mathcal{P} \setminus \{\Omega\}$, on a $M' \in \mathcal{P} \setminus \{\Omega\}$ et :

$$(M \in \mathcal{C}) \Leftrightarrow \left(\Re\left((z-\omega)\overline{(z-\gamma)}\right) = 0\right) \Leftrightarrow \left(\Re\left(\frac{\lambda}{\overline{z'-\omega}}\overline{(z-\gamma)}\right) = 0\right)$$
$$\Leftrightarrow \left(\Re\left(\frac{z-\gamma}{z'-\omega}\right) = 0\right) \Leftrightarrow \left(\Re\left((z-\gamma)\overline{(z'-\omega)}\right) = 0\right)$$

avec:

$$(z - \gamma) (\overline{z' - \omega}) = (\varphi_{\omega, \lambda} (z') - \varphi_{\omega, \lambda} (\gamma')) (\overline{z' - \omega})$$
$$= \left(\frac{\lambda}{\overline{z' - \omega}} - \frac{\lambda}{\gamma' - \omega}\right) (\overline{z' - \omega}) = \lambda \frac{\overline{\gamma' - z'}}{\overline{\gamma' - \omega}}$$

donc:

$$(M \in \mathcal{C}) \Leftrightarrow \left(\Re\left(\frac{\overline{\gamma'-z'}}{\overline{\gamma'-\omega}}\right) = 0\right) \Leftrightarrow \left(\Re\left(\frac{\gamma'-z'}{\gamma'-\omega}\right) = 0\right)$$
$$\Leftrightarrow \left(\Re\left((\gamma'-z')\overline{(\gamma'-\omega)}\right) = 0\right) \Leftrightarrow (M' \in \mathcal{D}')$$

ce qui traduit l'égalité $\varphi_{\Omega,\lambda}\left(\mathcal{C}\setminus\{\Omega\}\right)=\mathcal{D}'\setminus\{\Omega\}$.

3. Soient \mathcal{D} une droite ne passant pas par Ω , H le projeté orthogonal de Ω sur \mathcal{D} , $H' = \varphi_{\Omega,\lambda}(H)$ et \mathcal{C}' le cercle de diamètre $[\Omega, H']$. Des équations complexes de \mathcal{D} et \mathcal{C}' sont respectivement :

$$\Re\left(\left(z-h\right)\overline{\left(h'-\omega\right)}\right)=0$$
 et $\Re\left(\left(z'-\omega\right)\overline{\left(z'-h'\right)}\right)=0$

(on a $H' \in (\Omega H)$) et pour tout $M \in \mathcal{P} \setminus \{\Omega\}$, on a $M' \in \mathcal{P} \setminus \{\Omega\}$ et :

$$(M \in \mathcal{D}) \Leftrightarrow \left(\Re\left((z-h)\overline{(h'-\omega)}\right) = 0\right)$$

avec:

$$(z - h) \overline{(h' - \omega)} = (\varphi_{\omega, \lambda}(z') - \varphi_{\omega, \lambda}(h')) \overline{(h' - \omega)}$$
$$= \left(\frac{\lambda}{\overline{z' - \omega}} - \frac{\lambda}{\overline{h' - \omega}}\right) \overline{(h' - \omega)} = \lambda \frac{\overline{h' - z'}}{\overline{z' - \omega}}$$

donc:

$$(M \in \mathcal{D}) \Leftrightarrow \left(\Re \left(\frac{\overline{h' - z'}}{\overline{z' - \omega}} \right) = 0 \right) \Leftrightarrow \left(\Re \left((z' - \omega) \overline{(z' - h')} \right) = 0 \right) \Leftrightarrow (M' \in \mathcal{C}')$$

ce qui traduit l'égalité $\varphi_{\Omega,\lambda}\left(\mathcal{D}\setminus\{\Omega\}\right)=\mathcal{C}'\setminus\{\Omega\}$.

4. Soit $C = C(\Omega_0, R)$ un cercle de centre Ω_0 et de rayon R > 0 ne passant pas par Ω . Pour $M \in C$, on désigne par N le deuxième point d'intersection de la droite (ΩM) avec C (comme $\Omega \notin C$, on a $\Omega \notin M$). Les points Ω, M, N, M' étant alignés, il existe un réel α tel que $\overline{\Omega M'} = \alpha \overline{\Omega N}$. D'autre part, on a $\overline{\Omega N} \cdot \overline{\Omega M} = \Omega \Omega_0^2 - R^2$ (puissance du point Ω par rapport au cercle C) et :

$$\lambda = \overrightarrow{\Omega M'} \cdot \overrightarrow{\Omega M} = \alpha \overrightarrow{\Omega N} \cdot \overrightarrow{\Omega M} = \alpha \left(\Omega \Omega_0^2 - R^2\right)$$

 \Diamond

ce qui donne $\alpha = \frac{\lambda}{\Omega\Omega_0^2 - R^2}$ (comme $\Omega \notin \mathcal{C}$, on a $\Omega\Omega_0 \neq R$). Donc M' est l'image de N par l'homothétie h de centre Ω et de rapport α . Cette homothétie transformant le cercle \mathcal{C} (Ω_0, R) en cercle $\mathcal{C}' = \mathcal{C}$ (Ω'_0, R') = \mathcal{C} (h (Ω_0), $|\alpha| R$), on en déduit que $M' \in \mathcal{C}'$, ce qui prouve que $\varphi_{\Omega,\lambda}$ (\mathcal{C}) $\subset \mathcal{C}'$, le cercle \mathcal{C}' ne passant pas par Ω (l'égalité $\Omega\Omega'_0 = R'$ est équivalente à $|\alpha| \Omega\Omega_0 = |\alpha| R$ qui n'est pas vérifiée puisque $\alpha \neq 0$ et $\Omega \notin \mathcal{C}$).

On a aussi $\varphi_{\Omega,\lambda}\left(\mathcal{C}'\right) \subset \mathcal{C}\left(h'\left(\Omega_0'\right),|\alpha'|R'\right)$ où h' est l'homothétie de centre Ω et de rapport $\frac{\lambda}{\left(\Omega\Omega_0'\right)^2-\left(R'\right)^2}=\frac{\lambda}{|\alpha|^2\left(\Omega\Omega_0^2-R^2\right)}=\frac{\alpha}{|\alpha|^2}$ et :

$$\left|\alpha'\right|R' = \frac{\lambda}{\left|\left(\Omega\Omega_0'\right)^2 - \left(R'\right)^2\right|} \left|\alpha\right|R = \frac{\lambda}{\left|\alpha\right|^2 \left(\Omega\Omega_0^2 - R^2\right)} \left|\alpha\right|R = R$$

$$\operatorname{donc} \overrightarrow{\Omega h'\left(\Omega'_{0}\right)} = \frac{\alpha}{\left|\alpha\right|^{2}} \overrightarrow{\Omega \Omega'_{0}} = \frac{\alpha}{\left|\alpha\right|^{2}} \alpha \overrightarrow{\Omega \Omega_{0}} = \overrightarrow{\Omega \Omega_{0}} \operatorname{et} \mathcal{C}\left(h'\left(\Omega'_{0}\right), \left|\alpha'\right| R'\right) = \mathcal{C}\left(\Omega_{0}, R\right).$$
 Comme $\varphi_{\Omega, \lambda}$ est une involution il en résulte que $\mathcal{C}' \subset \varphi_{\Omega, \lambda}\left(\mathcal{C}\right)$ et l'égalité $\varphi_{\Omega, \lambda}\left(\mathcal{C}\right) = \mathcal{C}'.$

1.6 Exercices

 \mathcal{P} est un plan affine euclidien muni d'un repère orthonormé $\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

Exercice 1.1. Soient ω un nombre complexe et θ un nombre réel. Montrer que l'ensemble $E_{\omega,\theta} = \{z \in \mathbb{C} \setminus \{\omega\} \mid \arg(z - \omega) \equiv \theta \ (2\pi)\}$ est identifié à une demi-droite d'origine Ω et d'angle polaire θ privée de ω .

Solution. Un nombre complexe z est dans $E_{\omega,\theta}$ si, et seulement si, il s'écrit $z = \omega + \rho e^{i\theta}$ avec $\rho > 0$, ce qui se traduit dans le plan \mathcal{P} par $\overrightarrow{\Omega M} = \rho \overrightarrow{v}$ où \overrightarrow{v} est le vecteur d'affixe $e^{i\theta}$. L'ensemble $E_{\omega,\theta}$ est donc une des demi droite d'origine Ω et dirigée par \overrightarrow{v} . Dans le plan \mathcal{P} l'ensemble $E_{\omega,\theta}$ est la demi-droite :

$$E_{\omega,\theta} = \left\{ M \in \mathcal{P} \setminus \{\Omega\} \mid \widehat{\left(\overrightarrow{e_1}, \Omega M}\right) \equiv \theta \ (2\pi) \right\}$$
$$= \left\{ M \in \mathcal{P} \setminus \{\Omega\} \mid \overrightarrow{\Omega M} = \rho \overrightarrow{v} \text{ avec } \rho > 0 \right\}$$

où
$$\overrightarrow{v} = \cos(\theta) \overrightarrow{e_1} + \sin(\theta) \overrightarrow{e_2}$$
.

Exercice 1.2. Soient A, B deux points du plan \mathcal{P} tels que O, A, B ne soient pas alignés et C le barycentre de $\{(A, |b|), (B, |a|)\}$.

1. Montrer que $\frac{c^2}{ab}$ est un réel strictement positif.

Exercices 33

2. Montrer que la bissectrice de l'angle des demi-droites [OA) et [OB) est dirigée par le vecteur \overrightarrow{OC} .

Solution. On note $a = |a| e^{i\alpha}$ et $b = |b| e^{i\beta}$

1. Le barycentre de système pondéré $\{(A,|b|),(B,|a|)\}$ est le point C défini par $(|a|+|b|)\overrightarrow{OC}=|b|\overrightarrow{OA}+|a|\overrightarrow{OB}$, ce qui nous donne pour les affixes :

$$c = \frac{|b| \, a + |a| \, b}{|a| + |b|} = \frac{|a| \, |b|}{|a| + |b|} \left(\frac{a}{|a|} + \frac{b}{|b|} \right) = \frac{|a| \, |b|}{|a| + |b|} \left(e^{i\alpha} + e^{i\beta} \right)$$

et

$$\frac{c^2}{ab} = \frac{|a| |b|}{(|a| + |b|)^2} \frac{(e^{i\alpha} + e^{i\beta})^2}{e^{i(\alpha + \beta)}} = \frac{|a| |b|}{(|a| + |b|)^2} \left(2 + e^{i(\alpha - \beta)} + e^{-i(\alpha - \beta)}\right)
= \frac{2 |a| |b|}{(|a| + |b|)^2} (1 + \cos(\alpha - \beta)) \in \mathbb{R}^{+,*}$$

car O, A, B ne sont pas alignés $(\cos(\alpha - \beta) = -1 \text{ donne } c = 0, \text{ soit } O \in [A, B]).$

2. Notant $r = \frac{c^2}{ab}$ et $c = |c|e^{i\gamma}$, on a $c^2 = |c|^2 e^{2i\gamma} = rab = r|a||b||e^{i(\alpha+\beta)}$, donc $2\gamma \equiv \alpha + \beta \mod(2\pi)$, soit $\gamma \equiv \frac{\alpha+\beta}{2} \mod(\pi)$, ce qui signifie que \overrightarrow{OC} dirige la bissectrice de l'angle des demi-droites [OA) et [OB).

 \Diamond

Exercice 1.3. Soit T = ABC un vrai triangle. On note :

- H l'orthocentre de \mathcal{T} ;
- ${\cal C}$ le cercle de centre Ω et de rayon R circonscrit à ce triangle ;
- $-I_A$, I_B , I_C les milieux respectifs de [B,C], [A,C], [A,B];
- $-H_A, H_B, H_C$ les hauteurs issues respectivement de A, B, C;
- $-H'_A, H'_B, H'_C$ les milieux respectifs de [A, H], [B, H], [C, H].

Il sera commode d'utiliser les affixes relativement au repère orthonormé $\mathcal{R}'=(\Omega,\overrightarrow{e_1},\overrightarrow{e_2})$.

- 1. Montrer que l'image d'un cercle $C(M_0, R)$ de centre M_0 et de rayon R > 0 par une homothétie $h = h(M_0, \lambda)$ de centre M_1 et de rapport $\lambda \in \mathbb{R}^*$ est un cercle de centre $h(M_0)$ et de rayon $|\lambda| R$.
- 2. Montrer que l'application σ_A qui associe à tout point M d'affixe z relativement au repère R' le point $\sigma_A(M)$ d'affixe $z' = b + c \frac{bc}{R^2}\overline{z}$ est la symétrie orthogonale par rapport à la droite (BC).
- 3. On désigne par h_G l'homothétie de centre G et de rapport $-\frac{1}{2}$ et par h_H l'homothétie de centre H et de rapport $\frac{1}{2}$.

- (a) Montrer que $h_G(\mathcal{C}) = h_H(\mathcal{C})$. On notera $\mathcal{C}' = h_G(\mathcal{C}) = h_H(\mathcal{C})$.
- (b) Montrer que le centre Ω' du cercle \mathcal{C}' est le milieu du segment $[\Omega, H]$.
- (c) Montrer que le cercle \mathcal{C}' passe par les milieux $I_A,\ I_B,\ I_C$ des cotés du triangle $\mathcal{T}.$
- (d) Montrer que le cercle C' passe par les points H'_A , H'_B , H'_C .
- (e) Montrer que le cercle C' passe par les points H_A , H_B , H_C .

En conclusion le cercle C' circonscrit au triangle défini par les milieux des cotés de \mathcal{T} passe par les neuf points I_A , I_B , I_C ; H_A , H_B , H_C ; H_A' , H_B' , H_C' . Le centre de ce cercle est le milieu de $[\Omega, H]$ et son rayon est $\frac{R}{2}$. Il s'agit du cercle des neuf points d'Euler (figure 1.5).

FIGURE 1.5 – Cercle des neuf points d'Euler

Solution.

1. Notons $\Gamma = \mathcal{C}(M_0, R)$. Si $M' \in h(\Gamma)$, on a alors en termes d'affixes relativement au repère \mathcal{R}' , $z' = h(z) = z_1 + \lambda(z - z_1)$ avec $|z - z_1| = R$, donc $|z' - h(z_0)| = |\lambda| |z - z_0| = |\lambda| R$, ce qui signifie que $M' \in \mathcal{C}(h(M_0), |\lambda| R)$. On a donc $h(\Gamma) \subset \mathcal{C}(h(M_0), |\lambda| R)$ et raisonnant avec $h^{-1} = h\left(M_0, \frac{1}{\lambda}\right)$, on a:

$$h^{-1}\left(\mathcal{C}\left(h\left(M_{0}\right),\left|\lambda\right|R\right)\right)\subset\mathcal{C}\left(h^{-1}\left(h\left(M_{0}\right)\right),\frac{1}{\left|\lambda\right|}\left|\lambda\right|R\right)=\Gamma$$

soit $h^{-1}(\mathcal{C}(h(M_0), |\lambda| R)) \subset \Gamma$ et $\mathcal{C}(h(M_0), |\lambda| R) \subset h(\Gamma)$, d'où l'égalité $h(\Gamma) = \mathcal{C}(h(M_0), |\lambda| R)$.

2. En notant $z' = \sigma_A(z)$, on a $\sigma_A(\omega) = \sigma_A(0) = b + c \neq 0$ pour $b \neq -c$ et pour b = -c, $\sigma_A(ib) = -\frac{b^2}{R^2}\bar{b} = -b \neq ib$ (R = |b| > 0), donc $\sigma_A \neq Id$. Pour tout nombre complexe z, on a

$$\sigma_A \circ \sigma_A(z) = b + c - \frac{bc}{R^2} \left(\overline{b} + \overline{c} - \frac{\overline{b}\overline{c}}{R^2} z \right) = b + c - c - b + z = z$$

Exercices 35

(R=|b|=|c|), donc σ_A est involutive. Enfin pour tout réel t, on a :

$$\sigma_{A}\left(b+t\left(c-b\right)\right)=b+c-\frac{bc}{B^{2}}\left(\overline{b}+t\left(\overline{c}-\overline{b}\right)\right)=b+c-c+t\left(b-c\right)=b+t\left(c-b\right)$$

c'est-à-dire que tous les points de la droite (BC) sont invariants par σ_A . L'application σ_A est donc la symétrie orthogonale par rapport à la droite (BC).

3. Les expressions complexes des homothéties h_G et h_H sont données par :

$$h_G(z) = g - \frac{1}{2}(z - g) = \frac{3g - z}{2}$$
 et $h_H(z) = h + \frac{1}{2}(z - h) = \frac{h + z}{2}$.

(a) $h_G(\mathcal{C})$ et $h_H(\mathcal{C})$ sont des cercles de rayon $\frac{1}{2}$ et on a :

$$h_G(\omega) - h_H(\omega) = \frac{3g - \omega}{2} - \frac{h + \omega}{2} = \frac{3g - 2\omega - h}{2} = 0$$

 $(\overrightarrow{\Omega H} = 3\overrightarrow{\Omega G} \text{ se traduit par } h - \omega = 3(g - \omega)), \text{ donc } h_G(\mathcal{C}) = h_H(\mathcal{C}).$

- (b) En termes d'affixes relativement au repère \mathcal{R}' , on a $\omega = 0$, $g = \frac{a+b+c}{3}$, h = a+b+c et $\omega' = h_G(\omega) = h_G(0) = \frac{3g}{2} = \frac{a+b+c}{2}$, soit $\overrightarrow{\Omega\Omega'} = \frac{1}{2}\overrightarrow{\Omega H}$, ce qui signifie que Ω' est le milieu de $[\Omega, H]$.
- (c) Le point A est sur le cercle \mathcal{C} et $h_G(a)=\frac{3g-a}{2}=\frac{b+c}{2}$, ce qui signifie que $I_A=h_G(A)\in\mathcal{C}'$. De manière analogue, on voit que $I_B=h_G(B)$ et $I_C=h_G(C)$ sont sur \mathcal{C}' .
- (d) H_A' étant le milieu de [A, H], on a $H_A' = h_H(A) \in \mathcal{C}'$. De manière analogue, on voit que H_B' et H_B' sont sur \mathcal{C}' .
- (e) La hauteur H_A issue de A est la projection orthogonale de A sur (BC), soit le point d'affixe $h_A=\frac{1}{2}\left(\sigma_A\left(a\right)+a\right)=\frac{1}{2}\left(b+c-\frac{bc}{R^2}\overline{a}+a\right)$. L'affixe de $\sigma_A\left(H\right)$ est $\sigma_A\left(h\right)=b+c-\frac{bc}{R^2}\left(\overline{a}+\overline{b}+\overline{c}\right)=-\frac{bc}{R^2}\overline{a}$, donc $|\sigma_A\left(h\right)|=R$ et $\sigma_A\left(H\right)\in\mathcal{C}$. De plus, on a :

$$h_{H}\left(\sigma_{A}\left(h\right)\right)=\frac{h+\sigma_{A}\left(h\right)}{2}=\frac{a+b+c}{2}-\frac{1}{2}\frac{bc}{R^{2}}\overline{a}=h_{A}$$

donc $H_A = h_H\left(\sigma_A\left(H\right)\right) \in \mathcal{C}' = h_H\left(\mathcal{C}\right)$. De manière analogue, on voit que les deux autres hauteurs sont sur le cercle \mathcal{C}' .

 \Diamond

Exercice 1.4. Soit T = ABC un vrai triangle positivement orienté. On note :

$$\begin{array}{c} -\theta_A = \left(\overrightarrow{AB}, \overrightarrow{AC} \right), \ \theta_B = \left(\overrightarrow{BC}, \overrightarrow{BA} \right), \ \theta_C = \left(\overrightarrow{CA}, \overrightarrow{CB} \right) \ les \ mesures \\ principales \ dans \ [-\pi, \pi[\ des \ angles \ orient\'es \ de \ vecteurs \ en \ A, B \ et \ C \\ respectivement \ (figure \ 1.1) \ ; \end{array}$$

- H l'orthocentre;
- $-\Omega$ le centre du cercle circonscrit.
- 1. Montrer que det $(\overrightarrow{AB}, \overrightarrow{AC}) = AB \cdot BC \sin(\theta_B) = AC \cdot BC \sin(\theta_C)$.
- 2. En supposant que $\mathcal T$ n'est pas rectangle, montrer que :

$$\tan(\theta_B) + \tan(\theta_C) = \frac{\sin(\theta_A)}{\cos(\theta_B)\cos(\theta_C)}$$

- 3. Soient \mathcal{D}_1 une droite orthogonale à (BC), A_1 un point de \mathcal{D}_1 , \mathcal{D}_2 une droite orthogonale à (AC), A_2 un point de \mathcal{D}_2 et M le point d'intersection des droites \mathcal{D}_1 et \mathcal{D}_2 .
 - (a) Montrer que l'affixe de M relativement au repère R est :

$$z = a_1 - i \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{\det \left(\overrightarrow{AB}, \overrightarrow{AC} \right)} (c - b)$$

Traduire vectoriellement cette égalité.

(b) Montrer qu'il existe un réel λ tel que :

$$\overrightarrow{A_1M} = \lambda \left(\tan \left(\theta_B \right) \overrightarrow{AB} + \tan \left(\theta_C \right) \overrightarrow{AC} \right).$$

(c) Montrer que $\lambda = \overrightarrow{A_1 A_2} \cdot \overrightarrow{AC} \frac{1}{\sin(\theta_A) \tan(\theta_B) \tan(\theta_C)}$ et :

$$\overrightarrow{A_1M} = \frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin(\theta_A)} \left(\frac{1}{\tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_B)} \overrightarrow{AC} \right)$$

4.

- (a) Montrer que l'affixe de l'orthocentre H relativement au repère \mathcal{R} est $h=a-i\frac{\cos{(\theta_A)}}{\sin{(\theta_A)}}(c-b)$.
- (b) En supposant que $\mathcal T$ n'est pas rectangle, montrer que :

$$\overrightarrow{AH} = rac{1}{ an(heta_A)} \left(rac{1}{ an(heta_C)} \overrightarrow{AB} + rac{1}{ an(heta_B)} \overrightarrow{AC}
ight)$$

(c) Montrer que H est le barycentre de la famille de points pondérés $\{(A, \tan{(\theta_A)}), (B, \tan{(\theta_B)}), (C, \tan{(\theta_C)})\}.$

5.

Exercices 37

(a) Montrer que l'affixe du centre
$$\Omega$$
 du cercle circonscrit à \mathcal{T} relativement au repère \mathcal{R} est $\omega = \frac{b+c}{2} + i\frac{\cos(\theta_A)}{\sin(\theta_A)}\frac{c-b}{2}$.

(b) En supposant que \mathcal{T} n'est pas rectangle, montrer que :

$$2\overline{\Omega A} = \frac{1}{\sin(\theta_A)} \left(\frac{\cos(\theta_B)}{\sin(\theta_C)} \overline{AB} + \frac{\cos(\theta_C)}{\sin(\theta_B)} \overline{AC} \right)$$

(c) Montrer que Ω est le barycentre de la famille de points pondérés $\{(A, \sin(2\theta_A)), (B, \sin(2\theta_B)), (C, \sin(2\theta_C))\}$.

Solution.

1. Pour \mathcal{T} direct, on a:

$$\frac{\sin(\theta_A)}{BC} = \frac{\sin(\theta_B)}{AC} = \frac{\sin(\theta_C)}{AB} = \frac{2m(\mathcal{T})}{BC \cdot AC \cdot AB} = \frac{\det(\overrightarrow{AB}, \overrightarrow{AC})}{BC \cdot AC \cdot AB}$$

$$\operatorname{donc} \frac{\det(\overrightarrow{AB}, \overrightarrow{AC})}{BC} = AB\sin(\theta_B) = AC \cdot \sin(\theta_C).$$

2. Comme \mathcal{T} est direct, on a $\theta_A + \theta_B + \theta_C = \pi$ et :

$$\tan(\theta_B) + \tan(\theta_C) = \frac{\sin(\theta_B)\cos(\theta_C) + \cos(\theta_B)\sin(\theta_C)}{\cos(\theta_B)\cos(\theta_C)} = \frac{\sin(\theta_B + \theta_C)}{\cos(\theta_B)\cos(\theta_C)}$$
$$= \frac{\sin(\pi - \theta_A)}{\cos(\theta_B)\cos(\theta_C)} = \frac{\sin(\theta_A)}{\cos(\theta_B)\cos(\theta_C)}$$

3.

(a) Le point $M \in \mathcal{D}_1 \cap \mathcal{D}_2$ (ces droites sont sécantes comme (BC) et (AC)) est tel que $A_1M \cdot BC = A_2M \cdot BC = 0$, ce qui équivaut à dire que les quantités $\frac{z-a_1}{c-b}$ et $\frac{z-a_2}{c-a}$ sont imaginaires pures, donc il existe deux réels λ_1 , λ_2 tels que $z=a_1+i\lambda_1$ $(c-b)=a_2+i\lambda_2$ (c-a). Il en résulte que $i\lambda_2=\frac{a_1-a_2}{c-a}+i\lambda_1\frac{c-b}{c-a}$, ce qui nous donne en prenant les parties réelles, $0=\Re\left(\frac{a_1-a_2}{c-a}\right)+\lambda_1\Re\left(i\frac{c-b}{c-a}\right)=\Re\left(\frac{a_1-a_2}{c-a}\right)-\lambda_1\Im\left(\frac{c-b}{c-a}\right)$, soit : $\lambda_1=\frac{\Re\left(\frac{a_1-a_2}{c-a}\right)}{2c-a}-\frac{\Re\left((a_1-a_2)\left(\overline{c}-\overline{a}\right)\right)}{2c-a}-\frac{\Re\left((a_1-a_2)\left(\overline{c}-\overline{a}\right)\right)}{2c-a}$

$$\lambda_{1} = \frac{\Re\left(\frac{a_{1} - a_{2}}{c - a}\right)}{\Im\left(\frac{c - b}{c - a}\right)} = \frac{\Re\left(\left(a_{1} - a_{2}\right)\left(\overline{c} - \overline{a}\right)\right)}{\Im\left(\left(c - b\right)\left(\overline{c} - \overline{a}\right)\right)} = \frac{\Re\left(\left(a_{1} - a_{2}\right)\left(\overline{c} - \overline{a}\right)\right)}{\Im\left(\left(a - b\right)\left(\overline{c} - \overline{a}\right)\right)}$$
$$= -\frac{\overrightarrow{A_{1}}\overrightarrow{A_{2}} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)}$$

$$(\Im\left(\left(b-a\right)\left(\overline{c}-\overline{a}\right)\right) = \det\left(\overrightarrow{AC},\overrightarrow{AB}\right) \neq 0 \text{ car } A,B,C \text{ ne sont pas alignés}).$$
 On a donc $z = a_1 - i\frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)}\left(c-b\right)$, ce qui se traduit vectoriellement par $\overrightarrow{A_1M} = \frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)}\overrightarrow{u}$, où le vecteur \overrightarrow{u} d'affixe $u = -i\left(c-b\right)$ est orthogonal à \overrightarrow{BC} (on a $\overrightarrow{u} \cdot \overrightarrow{BC} = \Re\left(i\left|c-b\right|^2\right) = 0$).

(b) En écrivant que $\overrightarrow{A_1M} = x\overrightarrow{AB} + y\overrightarrow{AC}$ est orthogonal à \overrightarrow{BC} et en utilisant les égalités $\frac{BC}{\sin(\theta_A)} = \frac{AC}{\sin(\theta_B)} = \frac{AB}{\sin(\theta_C)}$, on déduit que :

$$0 = \overrightarrow{A_1M} \cdot \overrightarrow{BC} = x\overrightarrow{AB} \cdot \overrightarrow{BC} + y\overrightarrow{AC} \cdot \overrightarrow{BC}$$

$$= (-xAB\cos(\theta_B) + yAC\cos(\theta_C))BC$$

$$= \left(-xAB\sin(\theta_B)\frac{\cos(\theta_B)}{\sin(\theta_B)} + yAC\cos(\theta_C)\right)BC$$

$$= \left(-xAC\sin(\theta_C)\frac{\cos(\theta_B)}{\sin(\theta_B)} + yAC\cos(\theta_C)\right)BC$$

$$= \left(-xAC\sin(\theta_C)\frac{\cos(\theta_B)}{\sin(\theta_B)} + yAC\cos(\theta_C)\right)\frac{AC \cdot BC}{\sin(\theta_B)}$$

$$= (-x\cos(\theta_B)\sin(\theta_C) + y\sin(\theta_B)\cos(\theta_C))\frac{AC \cdot BC}{\sin(\theta_B)}$$

donc $-x\cos(\theta_B)\sin(\theta_C) + y\sin(\theta_B)\cos(\theta_C) = 0$, ce qui s'écrit aussi en divisant par $\cos(\theta_B)\cos(\theta_C)$ (le triangle \mathcal{T} n'est pas rectangle):

$$-x\tan(\theta_C) + y\tan(\theta_B) = \begin{vmatrix} \tan(\theta_B) & x \\ \tan(\theta_C) & y \end{vmatrix} = 0$$

et signifie que $\begin{pmatrix} x \\ y \end{pmatrix}$ est colinéaire à $\begin{pmatrix} \tan{(\theta_B)} \\ \tan{(\theta_C)} \end{pmatrix}$. Il existe donc un réel λ tel que $\overrightarrow{A_1M} = \lambda \left(\tan{(\theta_B)} \overrightarrow{AB} + \tan{(\theta_C)} \overrightarrow{AC} \right)$.

(c) Les égalités $\overrightarrow{A_1M} = \frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)} \overrightarrow{u} = \lambda \left(\tan\left(\theta_B\right) \overrightarrow{AB} + \tan\left(\theta_C\right) \overrightarrow{AC}\right)$

nous donnent:

$$\begin{split} \frac{\overrightarrow{A_{1}}\overrightarrow{A_{2}}\cdot\overrightarrow{AC}}{\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)}\left\|\overrightarrow{u}\right\|^{2} &= \frac{\overrightarrow{A_{1}}\overrightarrow{A_{2}}\cdot\overrightarrow{AC}}{\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)}BC^{2} \\ &= \lambda\left(\tan\left(\theta_{B}\right)\overrightarrow{AB}\cdot\overrightarrow{u} + \tan\left(\theta_{C}\right)\overrightarrow{AC}\cdot\overrightarrow{u}\right) \end{split}$$

avec:

$$\overrightarrow{AB} \cdot \overrightarrow{u} = \Re\left(-i\left(c - b\right)\left(\overline{b} - \overline{a}\right)\right) = \Im\left(\left(c - b\right)\left(\overline{b} - \overline{a}\right)\right) = \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)$$

$$\overrightarrow{AC} \cdot \overrightarrow{u} = \Re\left(-i\left(c - b\right)\left(\overline{c} - \overline{a}\right)\right) = \Im\left(\left(c - b\right)\left(\overline{c} - \overline{a}\right)\right) = \det\left(\overrightarrow{AC}, \overrightarrow{BC}\right)$$

$$= \det\left(\overrightarrow{AB}, \overrightarrow{BC}\right) = \det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)$$

Exercices 39

$$\operatorname{donc} \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{\det \left(\overrightarrow{AB}, \overrightarrow{AC}\right)} BC^2 = \lambda \det \left(\overrightarrow{AB}, \overrightarrow{AC}\right) \left(\tan \left(\theta_B\right) + \tan \left(\theta_C\right)\right) \text{ et } :$$

$$\lambda = \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{\tan \left(\theta_B\right) + \tan \left(\theta_C\right)} \frac{BC^2}{\left(\det \left(\overrightarrow{AB}, \overrightarrow{AC}\right)\right)^2}$$

$$= \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{\frac{\sin(\theta_A)}{\cos(\theta_B)\cos(\theta_C)}} \frac{BC^2}{AB \cdot BC \sin \left(\theta_B\right) AC \cdot BC \sin \left(\theta_C\right)}$$

$$= \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{\cos(\theta_B)\cos(\theta_C)}{\sin(\theta_A)\sin(\theta_B)\sin(\theta_C)}$$

$$= \frac{\overrightarrow{A_1 A_2} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin(\theta_A)\tan(\theta_B)\tan(\theta_C)}$$

(questions 1. et 2.). Il en résulte que :

$$\begin{split} \overrightarrow{A_1M} &= \lambda \left(\tan \left(\theta_B \right) \overrightarrow{AB} + \tan \left(\theta_C \right) \overrightarrow{AC} \right) \\ &= \frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin \left(\theta_A \right)} \left(\frac{1}{\tan \left(\theta_C \right)} \overrightarrow{AB} + \frac{1}{\tan \left(\theta_B \right)} \overrightarrow{AC} \right) \end{split}$$

4. On note respectivement \mathcal{H}_A , \mathcal{H}_B , \mathcal{H}_C les hauteurs issues de A, B, C et on est dans la situation du **3.**) avec $(\mathcal{D}_1, \mathcal{D}_2) = (\mathcal{H}_A, \mathcal{H}_B)$, $(A_1, A_2) = (A, B)$.

(a) On a
$$h = a - i \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)} (c - b) = a - i \frac{\cos(\theta_A)}{\sin(\theta_A)} (c - b)$$
.

(b) On a:

$$\overrightarrow{AH} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin(\theta_A)} \left(\frac{1}{\tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_B)} \overrightarrow{AC} \right)$$
$$= \frac{1}{\tan(\theta_A) \tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_A) \tan(\theta_B)} \overrightarrow{AC}$$

(c) Les points A, B, C jouant le même rôle, on a les égalités :

$$\left\{ \begin{array}{l} \overrightarrow{AH} = \frac{1}{\tan(\theta_A)\tan(\theta_C)}\overrightarrow{AB} + \frac{1}{\tan(\theta_A)\tan(\theta_B)}\overrightarrow{AC} \\ \overrightarrow{BH} = \frac{1}{\tan(\theta_B)\tan(\theta_A)}\overrightarrow{BC} + \frac{1}{\tan(\theta_B)\tan(\widehat{C})}\overrightarrow{BA} \\ \overrightarrow{CH} = \frac{1}{\tan(\theta_C)\tan(\theta_B)}\overrightarrow{CA} + \frac{1}{\tan(\theta_C)\tan(\theta_A)}\overrightarrow{CB} \end{array} \right.$$

ce qui nous donne :

$$\tan(\theta_A) \overrightarrow{AH} + \tan(\theta_B) \overrightarrow{BH} + \tan(\theta_C) \overrightarrow{CH} = \frac{1}{\tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_B)} \overrightarrow{AC} + \frac{1}{\tan(\theta_A)} \overrightarrow{BC} + \frac{1}{\tan(\theta_C)} \overrightarrow{BA} + \frac{1}{\tan(\theta_B)} \overrightarrow{CA} + \frac{1}{\tan(\theta_A)} \overrightarrow{CB} = \overrightarrow{0}$$

Donc H est le barycentre de $\{(A, \tan(\theta_A)), (B, \tan(\theta_B)), (C, \tan(\theta_C))\}$, ce qui peut aussi se traduire en terme d'affixe par :

$$h = \frac{a \tan(\theta_A) + b \tan(\theta_B) + c \tan(\theta_C)}{\tan(\theta_A) + \tan(\theta_B) + \tan(\theta_C)}$$

Pour \mathcal{T} rectangle, l'orthocentre est l'un des sommets.

5. On note respectivement \mathcal{M}_A , \mathcal{M}_B , \mathcal{M}_C les médiatrices passant par les milieux I_A , I_B , I_C de [B,C], [A,C], [A,B] et on est dans la situation du **3.**) avec $(\mathcal{D}_1,\mathcal{D}_2)=(\mathcal{M}_A,\mathcal{M}_B)$ et $(A_1,A_2)=(I_A,I_B)$.

(a) On a
$$\omega = \frac{b+c}{2} - i \frac{\overrightarrow{I_A I_B} \cdot \overrightarrow{AC}}{\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)} (c-b)$$
 avec
$$\overrightarrow{I_A I_B} \cdot \overrightarrow{AC} = \Re\left(\left(\frac{a+c}{2} - \frac{b+c}{2}\right) (\overline{c} - \overline{a})\right) = \frac{1}{2} \Re\left((a-b) (\overline{c} - \overline{a})\right)$$
$$= -\frac{1}{2} \overrightarrow{AB} \cdot \overrightarrow{AC}$$

ce qui nous donne $\omega = \frac{b+c}{2} + i \frac{\cos\left(\widehat{A}\right)}{\sin\left(\widehat{A}\right)} \frac{c-b}{2}.$

On peut aussi utiliser l'égalité $\overrightarrow{\Omega H}=3\overrightarrow{\Omega G}$, l'affixe de G étant $\frac{a+b+c}{3}$, ce qui se traduit par $h-\omega=3$ $(g-\omega)$ et donne :

$$\omega = \frac{3g - h}{2} = \frac{b + c}{2} + i \frac{\cos(\theta_A)}{\sin(\theta_A)} \frac{c - b}{2}$$

(b) On a:

$$\overrightarrow{I_A \Omega} = \frac{\overrightarrow{I_A I_B} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin(\theta_A)} \left(\frac{1}{\tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_B)} \overrightarrow{AC} \right)
= -\frac{1}{2} \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \cdot AC} \frac{1}{\sin(\theta_A)} \left(\frac{1}{\tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_B)} \overrightarrow{AC} \right)
= -\frac{1}{2} \overrightarrow{AH} = -\frac{1}{2} \left(\frac{1}{\tan(\theta_A) \tan(\theta_C)} \overrightarrow{AB} + \frac{1}{\tan(\theta_A) \tan(\theta_B)} \overrightarrow{AC} \right)$$

Exercices 41

ce qui donne:

$$\begin{split} 2\overrightarrow{A\Omega} &= 2\left(\overrightarrow{AI_A} + \overrightarrow{I_A\Omega}\right) \\ &= \left(1 - \frac{1}{\tan\left(\theta_A\right)\tan\left(\theta_C\right)}\right)\overrightarrow{AB} + \left(1 - \frac{1}{\tan\left(\theta_A\right)\tan\left(\theta_B\right)}\right)\overrightarrow{AC} \\ &= \frac{\sin\left(\theta_A\right)\sin\left(\theta_C\right) - \cos\left(\theta_A\right)\cos\left(\theta_C\right)}{\sin\left(\theta_A\right)\sin\left(\theta_C\right)} \overrightarrow{AB} \\ &+ \frac{\sin\left(\theta_A\right)\sin\left(\widehat{B}\right) - \cos\left(\theta_A\right)\cos\left(\theta_B\right)}{\sin\left(\theta_A\right)\sin\left(\widehat{B}\right)} \overrightarrow{AC} \\ &= \frac{\cos\left(\theta_A + \theta_C\right)}{\sin\left(\theta_A\right)\sin\left(\theta_C\right)} \overrightarrow{AB} + \frac{\cos\left(\theta_A + \theta_B\right)}{\sin\left(\theta_A\right)\sin\left(\theta_B\right)} \overrightarrow{AC} \end{split}$$

avec $\theta_A + \theta_B + \theta_C = \pi$ pour un triangle direct, ce qui donne :

$$2\overrightarrow{\Omega A} = \frac{\cos(\theta_B)}{\sin(\theta_A)\sin(\theta_C)}\overrightarrow{AB} + \frac{\cos(\theta_C)}{\sin(\theta_A)\sin(\theta_B)}\overrightarrow{AC}$$

(c) Les points A, B, C jouant le même rôle, on a les égalités :

$$\left\{ \begin{array}{l} 2\overrightarrow{\Omega A} = \frac{\cos(\theta_B)}{\sin(\theta_A)\sin(\theta_C)}\overrightarrow{AB} + \frac{\cos(\theta_C)}{\sin(\theta_A)\sin(\theta_B)}\overrightarrow{AC} \\ 2\overrightarrow{\Omega B} = \frac{\cos(\theta_C)}{\sin(\theta_B)\sin(\theta_A)}\overrightarrow{BC} + \frac{\cos(\theta_A)}{\sin(\theta_B)\sin(\theta_C)}\overrightarrow{BA} \\ 2\overrightarrow{\Omega C} = \frac{\cos(\theta_A)}{\sin(\theta_C)\sin(\theta_B)}\overrightarrow{CA} + \frac{\cos(\theta_B)}{\sin(\theta_C)\sin(\theta_A)}\overrightarrow{CB} \end{array} \right.$$

ce qui nous donne :

$$2\left(\sin\left(2\widehat{A}\right)\overrightarrow{\Omega A} + \sin\left(2\widehat{B}\right)\overrightarrow{\Omega B} + \sin\left(2\widehat{C}\right)\overrightarrow{\Omega C}\right) = \frac{2\cos\left(\theta_{A}\right)\cos\left(\theta_{B}\right)}{\sin\left(\theta_{C}\right)}\overrightarrow{AB}$$

$$+ \frac{2\cos\left(\theta_{A}\right)\cos\left(\theta_{C}\right)}{\sin\left(\theta_{B}\right)}\overrightarrow{AC}$$

$$+ \frac{2\cos\left(\theta_{B}\right)\cos\left(\theta_{C}\right)}{\sin\left(\theta_{A}\right)}\overrightarrow{BC} + \frac{2\cos\left(\theta_{B}\right)\cos\left(\theta_{A}\right)}{\sin\left(\theta_{C}\right)}\overrightarrow{BA}$$

$$+ \frac{2\cos\left(\theta_{C}\right)\cos\left(\theta_{A}\right)}{\sin\left(\theta_{B}\right)}\overrightarrow{CA} + \frac{2\cos\left(\theta_{C}\right)\cos\left(\theta_{B}\right)}{\sin\left(\theta_{A}\right)}\overrightarrow{CB} = \overrightarrow{0}$$

Donc Ω est le barycentre de $\{(A, \sin{(2\theta_A)}), (B, \sin{(2\theta_B)}), (C, \sin{(2\theta_C)})\}$, ce qui peut aussi se traduire en terme d'affixe par :

$$\omega = \frac{a \sin(2\theta_A) + b \sin(2\theta_B) + c \sin(2\theta_C)}{\sin(2\theta_A) + \sin(2\theta_B) + \sin(2\theta_C)}$$

 $\frac{a}{\cos \theta_C} \sin \theta_C + \frac{b}{\cos \theta_C} \sin \theta_C \text{ Pour } \mathcal{T} \text{ rectangle, } \Omega \text{ est le milieu de l'un des cotés}$

 \Diamond

Exercice 1.5. Soient $\mathcal{T} = ABC$ un vrai triangle non équilatéral de centre de gravité O et I, J, K les points d'affixes respectives $1, j, j^2$ relativement au repère $\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ $(j = e^{\frac{2i\pi}{3}})$.

- 1. Montrer qu'il existe un unique couple (α, β) de nombres complexes non nuls tel que a, b, c soient les images respectives des points $1, j, j^2$ par l'application $\varphi : z \in \mathbb{C} \mapsto \alpha z + \beta \overline{z}$.
- 2. Montrer que l'image du cercle C inscrit dans le triangle IJK par l'application φ (identifiée à l'application de P dans P qu'elle définit) est une ellipse de foyers F d'affixe γ, F' d'affixe -γ, où γ² = αβ et de grand axe |α| + |β|, cette ellipse étant inscrite dans le triangle ABC et tangente à ses trois cotés. Cette ellipse est l'ellipse de Steiner du triangle T.
- 3. Soit Q(X) = (X a)(X b)(X c). Montrer que les racines du polynôme Q' sont les affixes des foyers de l'ellipse de Steiner de \mathcal{T} .

Solution.

1. Tenant compte des égalités $\bar{\jmath}=j^2$ et $\bar{\jmath}^2=j$, cela revient à résoudre le système linéaire de 3 équations aux 2 inconnues α,β :

$$\begin{cases} \alpha + \beta = a \\ \alpha j + \beta j^2 = b \\ \alpha j^2 + \beta j = c \end{cases}$$

La condition a+b+c=0 (O est le centre de gravité de \mathcal{T}) nous dit que ce système est équivalent au système :

$$\begin{cases} \alpha + \beta = a \\ \alpha j + \beta j^2 = b \end{cases}$$

qui a pour unique solution $(\alpha, \beta) = \left(\frac{aj^2 - b}{\sqrt{3}}i, \frac{b - aj}{\sqrt{3}}i\right)$. L'égalité $\alpha = 0$ [resp. $\beta = 0$] équivaut à $b = j^2a$ [resp. b = ja] qui revient à dire que $\mathcal T$ est équilatéral, ce qui est exclu. Les nombres complexes α et β sont donc non nuls.

2. \mathcal{C} est le cercle de centre O et de rayon $\frac{1}{2}$ (exemple 1.1), soit l'ensemble des points du plan d'affixe $\frac{1}{2}e^{it}$ et l'image de \mathcal{C} par φ est l'ensemble $\varphi(\mathcal{C})$ des points M du plan d'affixe $z=\frac{1}{2}\left(\alpha e^{it}+\beta e^{-it}\right)$ relativement au repère \mathcal{R} . En notant $\alpha=\rho e^{i\theta}$ et $\beta=\rho' e^{i\theta'}$, cela s'écrit :

$$z = \frac{1}{2} \left(\rho e^{i(t+\theta)} + \rho' e^{-i(t-\theta')} \right) = \frac{e^{i\frac{\theta+\theta'}{2}}}{2} \left(\rho e^{i\left(t+\frac{\theta-\theta'}{2}\right)} + \rho' e^{-i\left(t+\frac{\theta-\theta'}{2}\right)} \right)$$
$$= \frac{e^{i\frac{\theta+\theta'}{2}}}{2} \left((\rho+\rho') \cos\left(t+\frac{\theta-\theta'}{2}\right) + i\left(\rho-\rho'\right) \sin\left(t+\frac{\theta-\theta'}{2}\right) \right)$$

Exercices 43

En désignant par $\overrightarrow{v_1}$ le vecteur d'affixe $e^{i\frac{\theta+\theta'}{2}}$ et par $\overrightarrow{v_2}$ celui d'affixe $ie^{i\frac{\theta+\theta'}{2}}$, l'affixe de M relativement au repère $\mathcal{R}'=(O,\overrightarrow{v_1},\overrightarrow{v_2})$ est :

$$Z = e^{-i\frac{\theta + \theta'}{2}}z = \frac{\rho + \rho'}{2}\cos\left(t + \frac{\theta - \theta'}{2}\right) + i\frac{\rho - \rho'}{2}\sin\left(t + \frac{\theta - \theta'}{2}\right)$$

ce qui signifie qu'une paramétrisation de $\varphi(\mathcal{C})$ dans le repère $\mathcal{R}' = (O, \overrightarrow{v_1}, \overrightarrow{v_2})$ est :

$$\begin{cases} X = \frac{\rho + \rho'}{2} \cos\left(t + \frac{\theta - \theta'}{2}\right) = \frac{\rho + \rho'}{2} \cos\left(t'\right) \\ Y = \frac{\rho - \rho'}{2} \sin\left(t + \frac{\theta - \theta'}{2}\right) = \frac{\rho - \rho'}{2} \sin\left(t'\right) \end{cases} (t' \in \mathbb{R})$$

ce qui définit une ellipse d'équation implicite $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$, où $(a,b) = \left(\frac{\rho + \rho'}{2}, \frac{\rho - \rho'}{2}\right)$. Le cercle inscrit $\mathcal C$ étant tangent aux trois cotés du triangle IJK, l'ellipse $\varphi(\mathcal C)$ est tangente aux trois cotés du triangle ABC. La droite $\mathcal D$ d'équation $X = \frac{a^2}{\sqrt{a^2 - b^2}} = \frac{(\rho + \rho')^2}{4\sqrt{\rho\rho'}}$ est une directrice, le point $F\left(\sqrt{a^2 - b^2}, 0\right) = F\left(\sqrt{\rho\rho'}, 0\right)$ est un foyer et le réel $e = \frac{\sqrt{a^2 - b^2}}{a} = 2\frac{\sqrt{\rho\rho'}}{\rho + \rho'}$ est l'excentricité. Les affixes des foyers F, F' relativement au repère initial $\mathcal R = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ sont $\sqrt{\rho\rho'}e^{i\frac{\theta + \theta'}{2}}$ et $-\sqrt{\rho\rho'}e^{i\frac{\theta + \theta'}{2}}$, soit les deux racines complexes de $\alpha\beta$. Le grand axe est $2a = \frac{\rho + \rho'}{2}$.

3. On a $Q(X)=(X-a)(X-b)(X-c)=X^3-(a+b+c)X^2+(ab+ac+bc)X-abc$ avec a+b+c=0 (O est le centre de gravité de \mathcal{T}) et :

$$ab + ac + bc = \varphi(1) \varphi(j) + \varphi(1) \varphi(j^{2}) + \varphi(j) \varphi(j^{2})$$

$$= (\alpha + \beta) (\alpha j + \beta j^{2}) + (\alpha + \beta) (\alpha j^{2} + \beta j) + (\alpha j + \beta j^{2}) (\alpha j^{2} + \beta j)$$

$$= (\alpha + \beta)^{2} (j + j^{2}) + (\alpha j + \beta j^{2}) (\alpha j^{2} + \beta j)$$

$$= -(\alpha + \beta)^{2} + (\alpha j^{2} + \beta) (\alpha j + \beta)$$

$$= -2\alpha\beta + \alpha\beta (j^{2} + j) = -3\alpha\beta$$

ce qui nous donne $Q(X) = X^3 - 3\alpha\beta X - abc$ et $Q'(X) = 3(X^2 - \alpha\beta)$ a pour racines les deux racines complexes de $\alpha\beta$, soient les affixes des foyers de l'ellipse de Steiner de \mathcal{T} .

 \Diamond