Digital Design

Lecture of week 10 Dr Manal Tantawi

Recap: Synchronous Sequential Circuits

Recap: Synchronous Sequential Circuits

Recap: Synchronous Sequential Circuits

Design Procedure

- 1) State Diagram
- 2) Number of ex. Inputs and outputs and number of flipflops
- 3) State Table
- 4) Simplified expressions using Kmap for external outputs and inputs of flipflops
- 5) Logic diagram

Designing using JK flip flops (deriving Excitation Table)

1)
$$Qn = 0 -> Qn + 1 = 0$$

JK Flip-Flop					
J	K Q(n + 1)				
0	0	Q(n)	No change		
0	1	0	Reset		
1	0	1	Set		
1	1	Q'(n)	Complement		

3) Qn = 1 -> Qn + 1 = 0 4) Qn = 1 -> Qn + 1 = 1

2)
$$Qn = 0 -> Qn + 1 = 1$$

Designing using JK flip flops (deriving Excitation Table) continued...

Q (n)	Q(n +1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-Flop

Design a sequential circuit with input x that follows the following state diagram using JK flip flops

Q (n)	Q(n +1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-Flop

Present State		Input	Next State		Flip-Flop Inputs				
A	В	x	A	В	JA	K _A	J _B	K _B	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

3)

4)

Counters

Design a 2 bit counter using JK flip flops

Q (n)	Q (n + 1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-Flop

A _n	B _n	A_{n+1}	B_{n+1}	J_{A}	K _A	J_{B}	K _B
0	0	0	1	0	X	1	X
0	1	1	0	1	Х	X	1
1	0	1	1	X	0	1	Х
1	1	0	0	Х	1	X	1

3)
$$J_A = K_A = B$$

 $J_B = K_B = 1$

4)

A_n	B_n	C _n	A_{n+1}	B_{n+1}	C_{n+1}	T _A	$T_{\rm B}$	$T_{\rm C}$
0	0	0	X	X	X			
0	0	1	1	1	0			
0	1	0	0	0	1			
0	1	1	0	1	0			
1	0	0	X	Χ	X			
1	0	1	X	X	X			
1	1	0	1	1	1			
1	1	1	0	1	1			

T Flip-Flop

T	Q(n + 1)
0	Q(n)
1	Q'(n)

A_n	\mathbf{B}_{n}	C_n	A_{n+1}	B_{n+1}	C_{n+1}	T_{A}	$T_{\rm B}$	T_{C}
0	0	0	X	X	X	X		
0	0	1	1	1	0	1		
0	1	0	0	0	1	0		
0	1	1	0	1	0	0		
1	0	0	X	X	X	X		
1	0	1	X	X	X	X		
1	1	0	1	1	1	0		
1	1	1	0	1	1	1		

T Flip-Flop

T	Q(n + 1)
0	Q(n)
1	Q'(n)

A _n	B_n	C_n	A_{n+1}	\mathbf{B}_{n+1}	C_{n+1}	T_{A}	$T_{\rm B}$	$T_{\rm C}$
0	0	0	X	Х	X	X	Х	
0	0	1	1	1	0	1	1	
0	1	0	0	0	1	0	1	
0	1	1	0	1	0	0	0	
1	0	0	Х	X	X	Х	Х	
1	0	1	Х	X	X	Х	Х	
1	1	0	1	1	1	0	0	
1	1	1	0	1	1	1	0	

T Flip-Flop

T	Q(n + 1)
0	Q(n)
1	Q'(n)

0

0

0

4) Draw logic diagram

The unused states of this counter are 0, 4 and 5. Is it self-correcting??

Examples for self-correcting

If the unused states are 2, 4 and 6 for example. Let us consider some cases for checking the designed counter

Now what about our counter

$$TA = Bn' + An Cn$$

$$TB = Bn' + An' Cn'$$

$$TC = An' + Cn' = (An Cn)'$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state A B C		
0 0 0	111	111 🗸		
1 0 0				
1 0 1				

Now what about our counter

$$TA = Bn' + An Cn$$

$$TB = Bn' + An' Cn'$$

$$TC = An' + Cn' = (An Cn)'$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state A B C
0 0 0	111	111 🗸
1 0 0	111	011 🗸
1 0 1		

Now what about our counter

$$TA = Bn' + An Cn$$

$$TB = Bn' + An' Cn'$$

$$TC = An' + Cn' = (An Cn)'$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state A B C
0 0 0	111	111 🗸
1 0 0	111	011 🗸
1 0 1	1 1 0	011 🗸

Counter is self correcting

What if

A _n	B _n	C_n	A_{n+1}	B_{n+1}	C_{n+1}	T_{A}	$T_{\rm B}$	$T_{\rm C}$
0	0	0	Х	X	X	X	Х	Х
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	1	1
0	1	1	0	1	0	0	0	1
1	0	0	Х	X	X	X	Х	Х
1	0	1	0 🗴	1 X	0 🗴	1 X	1 X	1 X
1	1	0	1	1	1	0	0	1
1	1	1	0	1	1	1	0	0

What we can do ??

Break the loop, update the table and redesign (repeat the maps)

Next Lecture we will explain analysis of sequential circuits thank you