

### **GBI Tutorium Nr. 41**

Foliensatz 10

Vincent Hahn - vincent.hahn@student.kit.edu | 10. Januar 2013



# **Outline/Gliederung**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

1 Wiederholung

Mealy-Automat

2 Master-Theorem

Moore-Automat

Endliche Akzeptoren

3 Mealy-Automat

Moore-Automat

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

1 Wiederholung

Mealy-Automat

2 Master-Theorem

Moore-Automat

3 Mealy-Automat

Endliche Akzeptoren

4 Moore-Automat

# Wiederholung - Quiz



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

- Aus  $f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g)$
- $n^5 \in \mathcal{O}(2^n)$
- $\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$
- Alle Algorithmen liegen in  $\Omega(1)$

# Wiederholung - Quiz



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

\_ ... . .. .

• Aus 
$$f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{\phantom{a}}$$

- $n^5 \in \mathcal{O}(2^n)$
- $\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$
- Alle Algorithmen liegen in  $\Omega(1)$

## Wiederholung - Quiz



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

• Aus 
$$f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{\phantom{a}}$$

$$n^5 \in \mathcal{O}(2^n) \sqrt{ }$$

$$\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$$

• Alle Algorithmen liegen in  $\Omega(1)$ 

# Wiederholung - Quiz



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

$$lacksquare$$
 Aus  $f\in\Omega(g)\wedge f\in\Theta(g)\Rightarrow f\in\mathcal{O}(g)$ 

$$n^5 \in \mathcal{O}(2^n) \sqrt{ }$$

$$\frac{n^3+2n}{2n+1} \in \mathcal{O}(n) X$$

• Alle Algorithmen liegen in  $\Omega(1)$ 

# Wiederholung - Quiz



Vincent Hahn - vincent.hahn@student.kit.edu

### Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

$$lacksquare$$
 Aus  $f\in\Omega(g)\wedge f\in\Theta(g)\Rightarrow f\in\mathcal{O}(g)$ 

$$n^5 \in \mathcal{O}(2^n) \sqrt{ }$$

$$\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)\,X$$

lacktriangle Alle Algorithmen liegen in  $\Omega(1)$   $\sqrt{\phantom{a}}$ 

## Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem 1 Wiederholung

2 Master-Theorem

3 Mealy-Automat

4 Moore-Automat

5 Endliche Akzeptoren

Mealy-Automat

Moore-Automat

## **Master-Theorem**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### **Definition**

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn  $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$  für ein  $\varepsilon > 0$ , dann ist  $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn  $f(n) \in \Theta(n^{\log_b a})$ , dann ist  $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Wenn  $f(n) ∈ Ω(n^{\log_b a + ε})$  für ein ε > 0, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt af(n/b) ≤ df(n), dann ist T(n) ∈ Θ(f(n))
  - Fall 2 wird etwa bei Quicksort benötigt
  - Fall 3 ist eher die Ausnahme

## **Master-Theorem**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn  $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$  für ein  $\varepsilon > 0$ , dann ist  $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn  $f(n) \in \Theta(n^{\log_b a})$ , dann ist  $T(n) \in \Theta(n^{\log_b a} \log n)$
- Wenn f (n) ∈ Ω (n<sup>log<sub>b</sub> a+ε</sup>) für ein ε > 0, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt af (n/b) ≤ df (n), dann ist T (n) ∈ Θ (f (n))
  - Fall 2 wird etwa bei Quicksort benötigt
  - Fall 3 ist eher die Ausnahme

## **Master-Theorem**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn  $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$  für ein  $\varepsilon > 0$ , dann ist  $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn  $f(n) \in \Theta(n^{\log_b a})$ , dann ist  $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Wenn  $f(n) ∈ Ω(n^{\log_b a + ε})$  für ein ε > 0, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt af(n/b) ≤ df(n), dann ist T(n) ∈ Θ(f(n))
  - Fall 2 wird etwa bei Quicksort benötigt
  - Fall 3 ist eher die Ausnahme



### **Master-Theorem**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn  $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$  für ein  $\varepsilon > 0$ , dann ist  $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn  $f(n) \in \Theta(n^{\log_b a})$ , dann ist  $T(n) \in \Theta(n^{\log_b a} \log n)$
- Wenn  $f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$  für ein  $\varepsilon > 0$ , und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt  $af(n/b) \le df(n)$ , dann ist  $T(n) \in \Theta(f(n))$ 
  - Fall 2 wird etwa bei Quicksort benötigt
  - Fall 3 ist eher die Ausnahme

## **Master Theorem**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

#### Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

## Beispiele

$$49 \cdot T(\frac{n}{7}) + 3n + 5$$

$$49 \cdot T(\frac{n}{7}) + 3n^3 + 5$$

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

1 Wiederholung

Mealy-Automat

2 Master-Theorem

Moore-Automat

3 Mealy-Automat

Endliche Akzeptoren

Moore-Automat

# **Mealy-Automat**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### **Definition: Mealy-Automat**

Der Mealy-Automat  $A = (Z, z_0, X, f, Y, g)$  besteht aus

- der endlichen Zustandsmenge Z,
- @ dem Startzustand z<sub>0</sub>,
- dem Eingabealphabet X,
- $\bullet$  der Zustandsübergangsfunktion  $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Z}$ ,
- einem Ausgabealphabet Y und
- **6** der Ausgabefunktion  $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$ .

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat



## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z:
- Eingabealphabet X:
- Zustandsübergangsfunktion f:
- Ausgabealphabet Y:
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste Folie

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

#### Was ist was?

- **u** Zustandsmenge  $Z: \{(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)\}$
- Eingabealphabet X:
- Ausgabealphabet Y:
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste

11/26

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet X:  $\{1, R, Z, C, 0\}$
- Zustandsübergangsfunktion f:
- Ausgabealphabet Y:
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste Folie

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet X:  $\{1, R, Z, C, 0\}$
- Zustandsübergangsfunktion f: die Pfeile
- Ausgabealphabet Y:
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste
   Folie

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet *X*: {1, *R*, *Z*, *C*, 0}
- Zustandsübergangsfunktion f: die Pfeile
- Ausgabealphabet Y: {1, R, Z}
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste Folie

## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet *X*: {1, *R*, *Z*, *C*, 0}
- Zustandsübergangsfunktion f: die Pfeile
- Ausgabealphabet Y: {1, R, Z}
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste Folie

# Getränkeautomat (mit Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat



## Getränkeautomat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet *X*: {1, *R*, *Z*, *C*, 0}
- Zustandsübergangsfunktion f: die Pfeile, was vor einem senkrechten Strich | steht
- Ausgabealphabet Y: {1, R, Z}
- Ausgabefunktion g: die Pfeile, was hinter einem senkrechten Strich steht

### f\* und f\*\*



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition: f\* und f\*\*

 $f^* = f^*(z, w)$  kann im Gegensatz zu f ein ganzes Wort w als zweites Funktionsargument nehmen:

$$f^*: Z \times X^* \to Z$$
$$f^*(z, \varepsilon) = z$$
$$f^*(z, wx) = f(f^*(z, w), x)$$

f\*\* kann im Gegensatz zu f\* ganze Wörter anstatt einem Symbol ausgeben:

$$f^*: Z \times X^* \to Z^*$$
  
 $f^{**}(z, \varepsilon) = z$ 

### f\* und f\*\*



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition: f\* und f\*\*

 $f^*=f^*\left(z,w\right)$  kann im Gegensatz zu f ein ganzes Wort w als zweites Funktionsargument nehmen:

$$f^*: Z \times X^* \to Z$$
  
 $f^*(z, \varepsilon) = z$   
 $f^*(z, wx) = f(f^*(z, w), x)$ 

 $f^{**}$  kann im Gegensatz zu  $f^*$  ganze Wörter anstatt einem Symbol ausgeben:

$$f^*: Z \times X^* \to Z^*$$

$$f^{**}(z, \varepsilon) = z$$

$$f^{**}(z, wx) = f^{**}(z, w) \cdot f(f^*(z, w), x)$$

# Getränkeautomat (ohne Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $f^*((0, -), R10)$ ?



# Getränkeautomat (ohne Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $f^*((0, -), R10)$ ? Berechnet  $f^*((0, -), R10)$ .



# Getränkeautomat (ohne Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $f^*((0,-),R10)$ ? Berechnet  $f^*((0,-),R10)$ . Was käme bei  $f^{**}((0,-),R10)$  raus?

# Getränkeautomat (mit Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $g^*((0, -), R10)$ ?

# Getränkeautomat (mit Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $g^*((0, -), R10)$ ? Berechnet  $g^*((0, -), R10)$ .

16/26

# Getränkeautomat (mit Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $g^*((0,-),R10)$ ? Berechnet  $g^*((0,-),R10)$ . Was käme bei  $g^{**}((0,-),R10)$  raus?



# Getränkeautomat (mit Ausgabe)



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Was macht  $g^*((0,-),R10)$ ? Berechnet  $g^*((0,-),R10)$ . Was käme bei  $g^{**}((0,-),R10)$  raus? Was passiert bei  $g^{**}((0,-),R110)=1R$ 

## Alternativer Automat



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Gegeben sei der Automat mit

- $Z = \{z\},\$
- $X = Y = \{a, b\},\$
- g(z, a) = b,
- g(z,b) = ba.
- Zeichnet den Automaten.
- ② gebt  $w_1 = g^{**}(z, a)$  an und
- **3** gebt  $w_2 = g^{**}(z, w_1)$  an.

Wie sieht  $w_3$  vermutlich aus? Allgemein, wie sieht  $w_i$  aus?

17/26

## **Alternativer Automat**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Z

a|b,b|ba

Mealy-Automat

Moore-Automat

• 
$$w_1 = g^{**}(z, a) = g^{**}(z, \varepsilon) \cdot g^*(z, wx) = g(f^*(z, \varepsilon), a) = g(z, a) = b$$

• 
$$w_2 = \cdots = ba$$

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

1 Wiederholung

Mealy-Automat

Master-Theorem

2 Master-Theorem

Moore-Automat

3 Mealy-Automat

Endliche Akzeptoren

Moore-Automat

## **Moore-Automaten**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

## Definition: Mealy-Automat

Der Mealy-Automat  $A = (Z, z_0, X, f, Y, h)$  besteht aus

Bis auf die Asgabefunktion sind Mealy- und Moore-Automat identisch. Der Moore-Automat hat seine Ausgabe in einem Zustand.

## **Moore-Automaten**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### **Definition: Mealy-Automat**

Der Mealy-Automat  $A = (Z, z_0, X, f, Y, h)$  besteht aus

- der endlichen Zustandsmenge Z,
- @ dem Startzustand z<sub>0</sub>,
- 3 dem Eingabealphabet X,
- lacktriangledown der Zustandsübergangsfunktion  $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Z}$ ,
- einem Ausgabealphabet Y und
- 6 der Ausgabefunktion  $\mathbf{h}: \mathbf{Z} \to \mathbf{Y}^*$ .

Bis auf die Asgabefunktion sind Mealy- und Moore-Automat identisch. Der Moore-Automat hat seine Ausgabe in einem Zustand.

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

1 Wiederholung

Mealy-Automat

Master-Theorem

2 Master-Theorem

Moore-Automat

3 Mealy-Automat

Endliche Akzeptoren

4 Moore-Automat

# **Endlicher Akzeptor**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition: Endlicher Akzeptor

Ein endlicher Akzepter ist ein spezieller Moore-Automat, der

- 1 ausgibt, wenn ein Wort einer Wortbildungsregel (Syntax) entspricht und
- 0 ansonsten ausgibt.

m Gegensatz zum gewöhnlichen Moore Automat besitzt er

- keine Ausgabefunktion h,
- dafür eine eine Menge  $F \subseteq Z$  akzeptierender Zustände.

$$A = (Z, z_0, X, f, F)$$

Die akzeptierenden Zustände werden doppelt umrahmt.

# **Endlicher Akzeptor**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

### Definition: Endlicher Akzeptor

Ein endlicher Akzepter ist ein spezieller Moore-Automat, der

- 1 ausgibt, wenn ein Wort einer Wortbildungsregel (Syntax) entspricht und
- 0 ansonsten ausgibt.

Im Gegensatz zum gewöhnlichen Moore Automat besitzt er

- keine Ausgabefunktion h,
- dafür eine eine Menge  $F \subseteq Z$  akzeptierender Zustände.

$$A = (Z, z_0, X, f, F)$$

Die akzeptierenden Zustände werden doppelt umrahmt.

# **Endlicher Akzeptor: Beispiel**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren



Nennt Wörter und sagt, ob diese akzeptiert werden oder nicht.

# **Endlicher Akzeptor: Aufgabe**



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

 Gesucht ist ein kleiner endlicher Akzeptor, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. Gegeben:  $X = \{a, b\}.$ 

 Gesucht ist ein endlicher Akzeptor, in dem nirgends hintereinander zwei b vorkommen.

24/26

# Lösung 1



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat



# Lösung 2



Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Master-Theorem

Mealy-Automat

Moore-Automat

