Regression Methods

ECON 5753 — University of Arkansas

Prof. Kyle Butts

January 2025

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Forecasting

We have an outcome variable Y and a set of p different predictor variables

$$X = (X_1, X_2, \dots, X_p).$$

The goal of forecasting is to take an observation's X values, X=x, and predict Y given that information.

• We want to know: *conditional* on X = x, what do we *expect* the value of Y to be.

f_0 as the Conditional Expectation Function

$$Y = f_0(X) + \varepsilon$$
,

The last time, we called this best guess at y, $f_0(X)$. Today, we will call it the Conditional Expectation Function

Joint Distribution

For now, let's think of X as a single variable, e.g. someone's height. Let Y be someone's weight. To make notation easier, think of these as discrete variables (i.e. finite, but large, number of values)

Joint Distribution

For now, let's think of X as a single variable, e.g. someone's height. Let Y be someone's weight. To make notation easier, think of these as discrete variables (i.e. finite, but large, number of values)

For forecasting, it is not enough to know the *marginal* distributions of height and weight. We must know the *joint* distribution, i.e.:

$$\mathbb{P}(X=x,Y=y)$$

ullet The probability we sample a person with X equal to x and Y equal to y

Joint Distribution

$$\mathbb{P}(X=x,Y=y)$$

This is easy to estimate in our sample; we just count the number of times $X_i = x$ and $Y_i = y$ and divide by the total number of observations

Conditional Probability

A related question we can ask is the conditional probability of Y=y given/conditional on X=x:

$$\mathbb{P}(Y = y \mid X = x)$$

Think of it like this:

- You grab a random unit from your population and you observe that $X_i = x$
- Given that you know this information, you now have to take a guess at what the value of Y
 is.

Temperatures in Lincoln NE January February March April May June July August September October November December Overall 25 50 75 100 Mean Temperature [F]

Conditional Probability

If knowing the value of X_i does not help you guess the value of Y_i , then

$$\mathbb{P}(Y = y \mid X = x) = \mathbb{P}(Y = y)$$

and we say X and Y are independent

• This means knowing *X* can not help you forecast *Y*!

Bayes' Rule

The joint-distribution and the conditional-distribution are connected via Bayes' Rule:

(# of units with
$$X=x$$
 and $Y=y) / n$
$$\mathbb{P}(Y=y\mid X=x) = \frac{\mathbb{P}(Y=y,X=x)}{\mathbb{P}(X=x)}$$
 (# of units with $X=x) / n$

The intuition is:

- $\bullet \ \ {\rm Count \ the \ number \ of \ people \ with \ } X=x \ \textit{and} \ Y=y \\$
- Divide by the number of people with X = x

Conditional Probability

Note that for all values of x, we have

$$\sum_{y} \mathbb{P}(Y = y \mid X = x) = 1$$

Intuition: "The conditional that Y equals something given X=x is 1"

Conditional Probability

Note that for all values of x, we have

$$\sum_{y} \mathbb{P}(Y = y \mid X = x) = 1$$

Intuition: "The conditional that Y equals something given X = x is 1"

You should think of the conditional probability as a new probability defined on the sub-population with $X_i=\boldsymbol{x}$

Expectation

Remember the definition of the conditional expectation of a discrete varaible:

$$\mathbb{E}[Y] = \sum_{y} \mathbb{P}(Y = y)y$$

The average of the values Y can take, weighted by the probability they take those values

Expectation

$$\mathbb{E}[Y] = \sum_{y} \mathbb{P}(Y = y)y$$

If we observed everyone in the *population*, we could calculate this really easily:

• Take the average value of y in the population

Conditional Expectation

Similarly, the conditional expectation of Y given X=x is:

$$\mathbb{E}[Y \mid X = x] = \sum_{y} \mathbb{P}(Y = y \mid X = x)y$$

The average of the values Y can take, weighted by the *conditional* probability they take those values

Conditional Expectation

$$\mathbb{E}[Y \mid X = x] = \sum_{y} \mathbb{P}(Y = y \mid X = x)y$$

If we observed everyone in the *population*, we could calculate this really easily:

- Subset to people with X = x
- ullet Take the average value of y within that subsample

Conditional Expectation

In the previous lecture, we used the notation $f_0(x)$ to denote the conditional expectation function:

$$f_0(x) \equiv \mathbb{E}[Y \mid X = x]$$

This function takes \boldsymbol{x} as an input and outputs the conditional expectation of Y given $\boldsymbol{X}=\boldsymbol{x}$

Estimating Conditional Expectation

In reality, we only observe a sample $(X_i, Y_i)_{i=1}^n$. We can estimate $f_0(x)$ at a point x in the same way:

- Subset to people with $X_i = x$
- Take the average value of Y_i within that subsample. Call this $\hat{f}(x)$

In math terms, this estimator is given by

sum of Y_i for units with $X_i = x$

$$\hat{f}(x) = \frac{1}{\displaystyle\sum_{i=1}^{n} \mathbbm{1}[X_i = x]} \sum_{i=1}^{n} Y_i \mathbbm{1}[X_i = x]$$
 # of units with $X_i = x$

Estimating Conditional Expectation

We can estimate $f_0(x)$ at a point x in the same way:

- Subset to people with $X_i = x$
- Take the average value of Y_i within that subsample. Call this $\hat{f}(x)$

When $n \to \infty$, we have $\hat{f}(x) \to f_0(x)$ for all values of x

• This estimator is consistent for the conditional expectation of Y given X=x

Difficulties with this estimator

This estimator is simple and works if we have *really large samples*. But what if we only have a few people with a value of $X_i = x$?

We are taking a sample mean with a few units; it will be very noisy

• The relative "n" in the law of large numbers is the number of units with $X_i = x$

Difficulties with this estimator

This estimator is simple and works if we have really large samples. But what if we only have a few people with a value of $X_i = x$?

We are taking a sample mean with a few units; it will be very noisy

• The relative "n" in the law of large numbers is the number of units with $X_i = x$

We do not use *any* of the data from nearby units, $X_i = x \pm a$ little

ullet Feels wasteful to throw out this information; do we really think Y changes dramatically as we move away from x a little?

Estimating Conditional Expectation

$$f_0(x) \equiv \mathbb{E}[Y \mid X = x]$$

There are two primary strategies we will discuss in this class:

- 1. Linear regression models [this topic]
 - ightarrow Assume a functional form for $f_0(x)$
- 2. Non-parametric estimators [later]
 - $\rightarrow \,$ The previous estimator or variants that pool over $(x-\delta,x+\delta)$

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

$$f_0(x) \equiv \mathbb{E}[Y \mid X = x]$$

Let $X_i \equiv \begin{bmatrix} x_{i1} & \dots & x_{ip} \end{bmatrix}'$ be the vector of p explanatory variables.

Our first approach to estimating the conditional expectation function is to assume a linear model:

$$f_0(x) = x'\beta$$

Alternatively, you will see the model written out as

$$Y_i = X_i'\beta + u_i$$

with the assumption $\mathbb{E}[u_i \mid X_i] = 0$.

The restriction ensures that $X_i'\beta$ is the CEF of Y_i :

$$\mathbb{E}[Y_i \mid X_i = x] = \mathbb{E}[X_i'\beta + u_i \mid X_i = x]$$

Alternatively, you will see the model written out as

$$Y_i = X_i'\beta + u_i$$

with the assumption $\mathbb{E}[u_i \mid X_i] = 0$.

The restriction ensures that $X'_i\beta$ is the CEF of Y_i :

$$\mathbb{E}[Y_i \mid X_i = x] = \mathbb{E}[X_i'\beta + u_i \mid X_i = x]$$
$$= x'\beta + \mathbb{E}[u_i \mid X_i = x]$$

Alternatively, you will see the model written out as

$$Y_i = X_i'\beta + u_i$$

with the assumption $\mathbb{E}[u_i \mid X_i] = 0$.

The restriction ensures that $X'_i\beta$ is the CEF of Y_i :

$$\mathbb{E}[Y_i \mid X_i = x] = \mathbb{E}[X_i'\beta + u_i \mid X_i = x]$$
$$= x'\beta + \mathbb{E}[u_i \mid X_i = x]$$
$$= x'\beta$$

Regression Models

Note that there are many "linear" models for the CEF

$$f_0(x) = x_1 \beta_1 + x_2 \beta_2$$

$$f_0(x) = x_1 \beta_1 + x_2 \beta_2 + x_2^2 \beta_3$$

$$f_0(x) = g_1(x_1)\beta_1 + g_2(x_1)\beta_2 + x_2 \beta_3$$

where g_1 and g_2 are some known functions (polynomial term, indicator functions, etc.)

These are all *linear* models for the CEF, $\mathbb{E}[Y_i \mid X_i = x]$

• "linear model" = linear combinations of terms

Regression Models

Perhaps a better way to write this would be to define the control variables as

$$W_i = \begin{bmatrix} g_1(X_i) & \dots & g_K(X_i) \end{bmatrix}'$$

Then, we could write out model out as

$$Y_i = W_i'\beta + u_i$$

with $\mathbb{E}[u_i \mid X_i] = 0$.

• This notation better distinguishes between covariates in model (e.g. polynomial of age) and variables you are conditioning on (e.g. age)

Regression Models

But, a lot of explanations of regression models do not make this difference very clear; instead just writing

$$Y_i = X_i \beta + u_i$$

where X_i really is W_i , i.e. can contain functions of the underlying covariates.

• I will try and make this distinction clear, but may fail at points

Error term restriction

The key assumption here is that in the model with

$$Y_i = W_i'\beta + u_i$$

we have the conditiona mean-zero error term: $\mathbb{E}[u_i \mid X_i] = 0$.

This latter assumption depends on the terms included in W_i . Say the CEF of wages conditional on age is quadratic, but we only include the linear term

• Then the term $age^2\beta_2$ will show up in the error term u_i . This will not be mean-zero given age!

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Fitting a regression model

$$Y_i = \underbrace{W_i'\beta}_{f_0(x)} + u_i$$

After that long diatribe on defining a linear model, we are now going to discuss estimation

Matrix Notation

Let Y be the $n \times 1$ vector of Y_i . Let W be the $n \times K$ matrix stacking W'_i :

$$oldsymbol{W} = egin{bmatrix} W_1' \ dots \ W_n' \end{bmatrix}$$

• We generally *always* assume you have an intercept, i.e. $W_{i1} = 1$

Our model becomes

$$Y = \mathbf{W}\beta + u$$

Matrix Notation

Take a minute to verify that the following yields the regression model we think it does

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} W_{11} & \dots & W_{1K} \\ \vdots & \ddots & \vdots \\ W_{n1} & \dots & W_{nK} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_K \end{bmatrix} + \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Residuals

We can rearrange out model as $u = Y - W\beta$. For a given guess at β , b, we have our regression residuals as

$$\hat{u}(b) = Y - \boldsymbol{W}b$$

• When evaulated at the OLS estimates $\hat{\beta}_{\text{OLS}},$ this is usually written just as \hat{u}

Residuals

$$\hat{u}(b) = Y - \mathbf{W}b$$

As we discussed in our previous topic, we can not just minimize the average residual, $\frac{1}{n}\iota'\hat{u}(b)$, because positive and negative errors "cancel out"

Residuals

$$\hat{u}(b) = Y - \mathbf{W}b$$

As we discussed in our previous topic, we can not just minimize the average residual, $\frac{1}{n}\iota'\hat{u}(b)$, because positive and negative errors "cancel out"

Instead, we will use the sum of squared residuals:

$$\hat{u}(b)'\hat{u}(b) = (Y - \mathbf{W}b)'(Y - \mathbf{W}b)$$

Sum of Squared Residuals

As a reminder, this matrix notation is indeed the "sum of squared residuals":

$$\hat{u}(b)'\hat{u}(b) = \begin{bmatrix} \hat{u}_1(b) & \dots & \hat{u}_n(b) \end{bmatrix} \begin{bmatrix} \hat{u}_1(b) \\ \vdots \\ \hat{u}_n(b) \end{bmatrix}$$
$$= \sum_i \hat{u}_i(b)^2$$

Ordinary Least Squares Problem

So, our estimation problem is to choose a b to minimize the sum of squared residuals:

$$\hat{\beta}_{OLS} \equiv \underset{b}{\operatorname{argmin}} \hat{u}(b)'\hat{u}(b)$$

$$= \underset{b}{\operatorname{argmin}} (Y - \mathbf{W}b)' (Y - \mathbf{W}b)$$

Ordinary Least Squares Problem

$$\hat{\beta}_{\mathsf{OLS}} = \operatorname*{argmin}_{b} \left(Y - \boldsymbol{W}b \right)' \left(Y - \boldsymbol{W}b \right)$$

Expanding out this product yields

$$(Y - \mathbf{W}b)'(Y - \mathbf{W}b) = Y'Y - b'\mathbf{W}Y - Y\mathbf{W}b + b'\mathbf{W}'\mathbf{W}b$$

It might not be immediately recognizable, but this is a $\it quadratic$ function of $\it b$

First-order conditions

Taking the derivative and set=0 will yield the minimum:

$$\frac{\partial}{\partial b} \left(Y'Y - b' \boldsymbol{W}'Y - Y \boldsymbol{W}'b + b' \boldsymbol{W}' \boldsymbol{W}b \right)$$

First-order conditions

Taking the derivative and set=0 will yield the minimum:

$$\frac{\partial}{\partial b} \left(Y'Y - b' \boldsymbol{W}'Y - Y \boldsymbol{W}'b + b' \boldsymbol{W}' \boldsymbol{W}b \right)$$

Using our rules of matrix derivatives from Topic 1, this yields:

$$0 - \mathbf{W}'Y - \mathbf{W}'Y + 2\mathbf{W}'\mathbf{W}b$$

First-order conditions

Taking the derivative and set=0 will yield the minimum:

$$\frac{\partial}{\partial b} \left(Y'Y - b' \boldsymbol{W}'Y - Y \boldsymbol{W}'b + b' \boldsymbol{W}' \boldsymbol{W}b \right)$$

Using our rules of matrix derivatives from Topic 1, this yields:

$$0 - \mathbf{W}'Y - \mathbf{W}'Y + 2\mathbf{W}'\mathbf{W}b$$

Setting this equal to 0, yields our first-order condition:

$$(\mathbf{W}'\mathbf{W})\,\hat{\beta}_{\mathsf{OLS}} = \mathbf{W}'Y$$

OLS Estimator

$$\hat{\beta}_{\mathsf{OLS}} = \left(\mathbf{W}' \mathbf{W} \right)^{-1} \mathbf{W}' Y$$

Recap: We have derived the OLS estimator from minimizing the sum of squared prediction errors (with the help of linear algebra)

$$\hat{\beta}_{\mathsf{OLS}} = \left(\boldsymbol{W}' \boldsymbol{W} \right)^{-1} \boldsymbol{W}' Y$$

Say we have just an intercept $(W_{i1}=1)$, so that $\boldsymbol{W}=\iota$. In this case:

- $\mathbf{W}'\mathbf{W} = \iota'\iota = n$
- $\mathbf{W}'Y = \iota'Y = \sum_{i=1}^n Y_i$

Consequently $\hat{eta}_{\mathsf{OLS}} = \frac{1}{n} \sum_{i=1}^n Y_i$ is the sample mean

$$\hat{\beta}_{OLS} = (\boldsymbol{W}'\boldsymbol{W})^{-1} \, \boldsymbol{W}' Y$$

Say we have an intercept ($W_{i1}=1$) and a single explantory variable W_{i2}

It turns out (by the FWL theorem), that the regression of Y_i on $1, W_{i2}$ is equivalent to the regression of $Y_i - \bar{Y}$ on $W_{i2} - \bar{W}_2$.

Thinking of the regression of $Y_i - \bar{Y}$ on $W_{i2} - \bar{W}_2$:

- $\mathbf{W}'\mathbf{W} = \sum_{i} (W_{i2} \bar{W}_2)^2$ is (n-1) times the sample variance of W_{i2} .
- $W'Y = \sum_i (W_{i2} \bar{W}_2)(Y_i \bar{Y})$ is (n-1) the sample covariance

Consequently, we have the bivariate regression formula: $\hat{\beta}_{OLS} = \widehat{\text{Cov}}(W_{i2}, Y_i) / \widehat{\text{Var}}(W_{i2})$.

More generally, when we have K-1 covariates and an intercept, this is equivalent to the regression where Y and all the covariates are demeaned (without an intercept). Then,

$$\hat{\beta}_{OLS} = (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'Y$$

$$= \left[\widehat{\mathsf{Var}}(W_i)\right]^{-1} \widehat{\mathsf{Cov}}(W_i, Y_i)$$

- $\widehat{\text{Var}}(W_i)^{-1}$ is the covariance matrix of all the of variables
- $\widehat{\mathsf{Cov}}(W_i,Y_i)$ is the K-1 vector of covariances between each W_{ik} and Y_i

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Sample distribution of $\hat{\beta}_{OLS}$

In repeated sampling, we will get different draws of u_i for each unit. This will create different estimates of $\hat{\beta}$.

Say the true model is $y_i = W_i' \beta_0 + u_i$. Assuming we did a good job modeling the conditional expectation function, then we can assume $\mathbb{E}[u_i \mid X_i] = 0$

• Remember that W_i are functions of X_i

Sample distribution of $\hat{\beta}_{OLS}$

Simulation

As a simple example, do a Monte Carlo simulation:

- $x_i \sim \mathcal{N}(1,1)$
- $\varepsilon_i \sim \mathcal{N}(0, 1.5^2)$
- $y_i = x_i * 1 + \varepsilon_i$

Draw B=2500 different samples each with n=100 observations. Estimate regression of y_i on an intercept and x_i .

Original Sample

Original Sample + 1 Extra Sample

Original Sample + 2 Extra Samples

Original Sample + 5 Extra Samples

Original Sample + 100 Extra Samples

Original Sample + 2500 Extra Samples

 $\hat{\beta}_1$ for draw i

Statistical properties

The true model is $y_i = W_i' \beta_0 + u_i$ with $\mathbb{E}[u_i \mid X_i] = 0$.

Plugging this into our OLS estimator, we have:

$$\hat{\beta}_{OLS} = (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'Y$$
$$= (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'(\mathbf{W}\beta_0 + \mathbf{u})$$

Statistical properties

The true model is $y_i = W_i' \beta_0 + u_i$ with $\mathbb{E}[u_i \mid X_i] = 0$.

Plugging this into our OLS estimator, we have:

$$\hat{\beta}_{OLS} = (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'Y$$

$$= (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'(\mathbf{W}\beta_0 + \mathbf{u})$$

$$= (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'\mathbf{W}\beta_0 + (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'u$$

$$= \beta_0 + (\mathbf{W}'\mathbf{W})^{-1} \mathbf{W}'u$$

Unbiasedness

Our previous slide shows

$$\hat{\beta}_{OLS} = \beta_0 + \left(\boldsymbol{W}' \boldsymbol{W} \right)^{-1} \boldsymbol{W}' u$$

Using $\mathbb{E}[u_i \mid X_i] = 0$, we can show unbiasedness of our estimator:

$$\mathbb{E}[\hat{\beta}_{OLS}] = \beta_0 + \mathbb{E}[(\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'u]$$
$$= \beta_0$$

Error-term covariance

$$\hat{\beta}_{OLS} = \beta_0 + \left(\mathbf{W}' \mathbf{W} \right)^{-1} \mathbf{W}' u$$

For the distribution of $\hat{\beta}_{OLS}$, we first need to discuss the covariance of the error term.

We write the variance as $\Sigma = \mathbb{E}[uu']$ which has typical element $\sigma_{i,j} = \mathbb{E}[u_iu_j]$

Independent Errors

Our error term u has variance:

$$\Sigma = \mathbb{E}[uu']$$

If each unit is independent, we have $\sigma_{i,j} = 0$ whenever $i \neq j$. If this is true, we have

$$oldsymbol{\Sigma} = egin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \ 0 & \sigma_2^2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \sigma_n^2 \end{bmatrix}$$

Independent Errors

We could estimate this matrix using the residuals $\hat{u}_i = y_i - W_i' \hat{\beta}_{OLS}$:

$$\hat{\mathbf{\Sigma}} = \begin{bmatrix} \hat{u}_1^2 & 0 & \dots & 0 \\ 0 & \hat{u}_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \hat{u}_n^2 \end{bmatrix}$$

This estimator is not consistent for Σ since $\hat{u}_i \neq u_i$, but this turns out to be okay when estimating the variance of $\hat{\beta}_{OLS}$

$$\hat{\beta}_{\text{OLS}} = \beta_0 + \left(\mathbf{W}' \mathbf{W} \right)^{-1} \mathbf{W}' u$$

If we write out the summation in the final term, you can see this is a weighted sum of idiosyncratic shocks, u_i

$$\hat{\beta}_{OLS} = \beta_0 + (\mathbf{W}'\mathbf{W})^{-1} \sum_{i=1}^n W_i u_i$$

Subtracting β_0 and multiplying by \sqrt{n} , we have:

$$\sqrt{n} \left(\hat{\beta}_{OLS} - \beta_0 \right) = \left(\frac{1}{n} \mathbf{W}' \mathbf{W} \right)^{-1} \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_i u_i}_{\text{apply a central-limit theorem}}$$

The term $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}W_{i}u_{i}$ has mean 0 (from unbiasedness) and has variance:

$$\mathbb{E}\big[\boldsymbol{W}'uu'\boldsymbol{W}\big] = \boldsymbol{W}'\boldsymbol{\Sigma}\boldsymbol{W}.$$

$$\sqrt{n}\left(\hat{\beta}_{OLS} - \beta_0\right) = \left(\frac{1}{n}\mathbf{W}'\mathbf{W}\right)^{-1} \left[\frac{1}{\sqrt{n}}\sum_{i=1}^n W_i u_i\right]$$

Using the central limit theorem, we have that $\frac{1}{\sqrt{n}} \mathbf{W}' u$ is normally distributed, and we are multiplying it by a matrix $(\frac{1}{n} \mathbf{W}' \mathbf{W})^{-1}$, so we have:

$$\hat{eta}_{\mathsf{OLS}} \sim \mathcal{N}\left(eta_0, \left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}oldsymbol{W}'oldsymbol{\Sigma}oldsymbol{W}\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}
ight)$$

$$\hat{eta}_{\mathsf{OLS}} \sim \mathcal{N}\left(eta_0, \left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}oldsymbol{W}'oldsymbol{\Sigma}oldsymbol{W}\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}
ight)$$

The variance is a K imes K matrix with diagonal elements $\operatorname{Var}\left(\hat{eta}_{\mathsf{OLS},k}\right)$

• Take square-root of diagonal elements to get standard deviation of the estimators

$$\hat{\beta}_{\mathsf{OLS}} \sim \mathcal{N}\left(\beta_0, \left(\mathbf{W}'\mathbf{W}\right)^{-1} \mathbf{W}' \mathbf{\Sigma} \mathbf{W} \left(\mathbf{W}'\mathbf{W}\right)^{-1}\right)$$

The variance is a K imes K matrix with diagonal elements $\operatorname{Var}\left(\hat{eta}_{\mathsf{OLS},k}\right)$

- Take square-root of diagonal elements to get standard deviation of the estimators
- The off-diagonal elements tell us how slope coefficients might be correlated with one another in repeated samples

Let $Var(\hat{\beta}_{OLS,k})$ be the k-th diagonal, then we have

$$\hat{\beta}_{\mathsf{OLS},k} \sim \mathcal{N}\left(\beta_{0,k}, \mathsf{Var}\left(\hat{\beta}_{\mathsf{OLS},k}\right)\right)$$

Since we have a statistic $\hat{\beta}_{OLS,k}$ that has a sample distribution that is normally-distributed, we can do standard statistical techniques:

Confidence intervals and hypothesis testing

Standard Errors

We can take our estimate $\hat{\Sigma}$ consisting of \hat{u}_i^2 on the diagonals and estimate the variance of $\hat{\beta}_{\text{OLS}}$:

$$\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}oldsymbol{W}'\hat{oldsymbol{\Sigma}}oldsymbol{W}\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}$$

• This is called the 'HC1' estimator (', r' in Stata)

Standard Errors

We can take our estimate $\hat{\Sigma}$ consisting of \hat{u}_i^2 on the diagonals and estimate the variance of $\hat{\beta}_{\text{OLS}}$:

$$\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}oldsymbol{W}'\hat{oldsymbol{\Sigma}}oldsymbol{W}\left(oldsymbol{W}'oldsymbol{W}
ight)^{-1}$$

• This is called the 'HC1' estimator (', r' in Stata)

For inference on a coefficient, take square-root of the k-th diagonal element

• This is called the standard error (our estimate for the standard deviation of $\hat{\beta}_{OLS,k}$)

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Monte Carlo example

From our simulation, the true regression line is

$$y_i = 0 + x_i * 1 + \varepsilon_i$$

- ε is homoskedastic so that $\sigma_i^2 = 1.5$ for all i
- $x_i \sim \mathcal{N}(1,1)$

Our regression model was $y_i = \beta_0 + x_i \beta_1 + u_i$, i.e. $W_i = (1, x_i)'$.

Sample distribution

In our simulation, we can derive the variance of $\hat{\beta}_{OLS}$:

$$m{W'W} = egin{bmatrix} \sum_i 1 & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{bmatrix} pprox n egin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

And

$$\mathbf{W}'\Sigma\mathbf{W} = \begin{bmatrix} \sum_{i} \sigma_{i}^{2} & \sum_{i} x_{i} \sigma_{i}^{2} \\ \sum_{i} x_{i} \sigma_{i}^{2} & \sum_{i} x_{i}^{2} \sigma_{i}^{2} \end{bmatrix} \approx n \begin{bmatrix} 1.5 & 1.5 \\ 1.5 & 3 \end{bmatrix}$$

Sample distribution

Taking $(\boldsymbol{W}'\boldsymbol{W})^{-1}\boldsymbol{W}'\Sigma\boldsymbol{W}(\boldsymbol{W}'\boldsymbol{W})^{-1}$ yields

$$\approx \frac{1}{n} \begin{bmatrix} 3 & -1.5 \\ -1.5 & 1.5 \end{bmatrix}$$

• Check my linear algebra for practice

Sample distribution

With our 100 observations, we have that

$$\operatorname{Var}\left(\hat{eta}_{\mathsf{OLS}}\right) pprox egin{bmatrix} 0.03 & -0.015 \ -0.015 & 0.015 \end{bmatrix}$$

The standard deviation of $\hat{\beta}_1$ is $\sqrt{0.015} \approx 0.1225$.

• 95% of estimates should be 1 ± 0.245

Let's check that with our Monte Carlo simulations..

Original Sample + 2500 Extra Samples

Sample Distribution of Regression Coefficients

In general, with homoskedastic errors, the slope coefficient has distribution:

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_{1,0}, \frac{1}{n} \frac{\mathsf{Var}(\varepsilon)}{\mathsf{Var}(X)}\right)$$

The standard error has the following properties:

- Shrinks with sample size
- Grows with the variance of the error term
- Shrinks with the variance of X

Standard Error

Our standard error estimator is given by

$$SE(\hat{\beta}_1) = \sqrt{\frac{Var(\hat{\varepsilon})/n}{Var(X)}}$$

 $Var(\hat{\varepsilon})$ assumes homoskedasticity; otherwise we need to use the 'general' HC1 formula

Confidence intervals for \hat{eta}_1

Since we have an approximately normally distributed random variable, we can form confidence intervals just like before:

$$\left[\hat{\beta}_{1} - 1.96 * \text{SE}(\hat{\beta}_{1}), \hat{\beta}_{1} + 1.96 * \text{SE}(\hat{\beta}_{1})\right]$$

Confidence intervals for \hat{eta}_1

Since we have an approximately normally distributed random variable, we can form confidence intervals just like before:

$$\left[\hat{\beta}_{1} - 1.96 * \text{SE}(\hat{\beta}_{1}), \hat{\beta}_{1} + 1.96 * \text{SE}(\hat{\beta}_{1})\right]$$

The interpretation is as before: across repeated samples, 95% of samples' confidence intervals will contain the true value $\beta_{1,0}$

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Forecasting with our fitted model

We have a model

$$Y = \mathbf{W}\beta + u$$

that we fit using ordinary-least squares. From the previous section, we have

$$\hat{eta}_{\mathsf{OLS}} \sim \mathcal{N}\left(eta_0, oldsymbol{V}
ight)$$

where
$$oldsymbol{V} = \left(oldsymbol{W}' oldsymbol{W}
ight)^{-1} oldsymbol{W}' oldsymbol{\Sigma} oldsymbol{W} \left(oldsymbol{W}' oldsymbol{W}
ight)^{-1}$$

Forecasting with our fitted model

We want to evaluate this model at a particular value of W_i , we'll call it w. The forecasted value is given by

$$\hat{Y} = w'\hat{\beta}_{\mathsf{OLS}} = \sum_{k=1}^{K} w_k \hat{\beta}_{\mathsf{OLS},k}$$

Uncertainty from our regression coefficients will translate to uncertainty about our \hat{Y}

Forecasting with our fitted model

We have

$$\hat{Y} = w' \hat{\beta}_{OLS}$$

$$= w' \beta_0 + w' \left(\hat{\beta}_{OLS} - \beta_0 \right)$$

$$= f_0(w) = \mathbb{E}[Y \mid X = x]$$

The forecasted value is the conditional expectation function (assuming our model is correct) plus noise

Inference on our Forecast

$$\hat{Y} = w' \hat{\beta}_{\mathsf{OLS}}$$

Note that our forecast takes a normally distributed object $\hat{\beta}_{OLS}$, and mulitplies it by a row-vector, w. From topic 1, we have

$$\hat{Y} = w' \hat{\beta}_{\mathsf{OLS}} \sim \mathcal{N}\left(w' \beta_0, w' \boldsymbol{V} w\right)$$

Monte Carlo simulation

Let's illustrate this with our simulation. We will predict our regression model at x=1.5. Recall with n=100, we had:

$$\operatorname{Var}\left(\hat{eta}_{\mathsf{OLS}}\right) pprox egin{bmatrix} 0.03 & -0.015 \ -0.015 & 0.015 \end{bmatrix}$$

Our model has $\mathbb{E}[Y_i \mid X_i = 1.5] = 1 * 1.5 = 1.5$.

Monte Carlo simulation

Our forecast, \hat{Y} has variance

$$\begin{bmatrix} 1 & 1.5 \end{bmatrix} \begin{bmatrix} 0.03 & -0.015 \\ -0.015 & 0.015 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \end{bmatrix} = 0.01875$$

The standard deviation of our forecast is $\sqrt{0.01875} \approx 0.137$.

• 95% of estimates should be 1.5 ± 0.274

Let's check that with our Monte Carlo simulations..

Original Sample + 2500 Extra Samples

 $\hat{\beta}_0 + 1.5 * \hat{\beta}_1$ for sample i

Conditional Expectation Function

Linear Models

Ordinary Least Squares

Statistical Properties / Inference

Bivariate Regression Example

Forecasting with Regression Model

Marginal Effects

Marginal (Predictive) Effects

Often times, we want to compare forecasted values at two points: w_1 and w_2

"Compare two individuals, one with value w_1 and one with value w_2 . How do we predict \hat{Y}_1 and \hat{Y}_2 will differ?"

The simplest way to do this is to compare $w_1'\hat{\beta}_{\text{OLS}}$ and $w_2'\hat{\beta}_{\text{OLS}}$ directly

Causation vs. Prediction

"Compare two individuals, one with value w_1 and one with value w_2 . How do we predict \hat{Y}_1 and \hat{Y}_2 will differ?"

It is important to remember that the goal of forecasting is to predict Y as well as possible

• When units have larger x, maybe they tend to have larger z_1 and smaller z_2 . Regression will use that information when predicting $\hat{\beta}_{OLS}$

Correct regression interpretation

In general, you should use the following language:

 \checkmark Our regression model predicts that a one unit increase in w_k is associated with a $\hat{\beta}_{{\rm OLS},k}$ units increase/decrease in Y

Do not say!!!!!!

imes Increase w_k by one unit increases/decreases Y by $\hat{eta}_{{
m OLS},k}$ units

Correct regression interpretation

Often we want to think about changing X_i instead of changing W_i ;

• E.g. if we change age (X_i) , we change age $(W_{2,i})$ and age² $(W_{3,i})$

To make this more clear, we can write our model, noting the dependence of W on X:

$$f(X) = W(X)\beta = \sum_{k=1}^{K} g_k(X)\beta_k$$

Marginal (predictive) Effects

We can ask how $\hat{f}(X)$ changes when we change one element of X, x_{ℓ} (e.g. age).

To do so, we can take the derivative of $\hat{f}(X)$ with respect to x_{ℓ} and plug in a point X

$$\frac{\partial}{\partial x_{\ell}} \hat{f}(X) = \sum_{k=1}^{K} \frac{\partial}{\partial x_{\ell}} g_{k}(X) \hat{\beta}_{\mathsf{OLS},k}$$

This is called the marginal (predictive) effect of x_ℓ

• I put predictive to emphasize this is not the *causal* effect of experimentally changing x_ℓ for a unit

Marginal (predictive) Effects

$$\frac{\partial}{\partial x_{\ell}} \hat{f}(X) = \sum_{k=1}^{K} \frac{\partial}{\partial x_{\ell}} g_{k}(X) \hat{\beta}_{\mathsf{OLS},k}$$

In the case where we just include each variable linearly, i.e. $g_k(X) = X_k$, then this reduces to the standard $\hat{\beta}_{OLS,k}$ being our estimated marginal effect.

Marginal (predictive) Effects

$$\frac{\partial}{\partial x_{\ell}} \hat{f}(X) = \sum_{k=1}^{K} \frac{\partial}{\partial x_{\ell}} g_{k}(X) \hat{\beta}_{\mathsf{OLS},k}$$

In the case where we just include each variable linearly, i.e. $g_k(X) = X_k$, then this reduces to the standard $\hat{\beta}_{OLS,k}$ being our estimated marginal effect.

In the next topic, we will practice this when we have other functions of variables in g_k