TD: Exercices: LA DERIVATION

PROF: ATMANI NAJIB **2BAC BIOF**

TD:LA DERIVATION

Exercice1:

1- Montrer en utilisant la définition que la fonction $f(x) = x^2 + x - 3$ est dérivable en a = -2.

2) soit f une fonction définie par :

$$\begin{cases} f(x) = \sqrt{x} \dots x \ge 1 \\ f(x) = \frac{1}{4}x^2 + \frac{3}{4} \dots x < 1 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 1$

3) Soit f la fonction définie sur \mathbb{R} par :

$$\begin{cases} f(x) = 3x^2 + x; x < 0 \\ f(x) = -2x^2 + 3x; x \ge 0 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 0$

Exercice 2: soit f une fonction définie par :

$$\begin{cases} f(x) = (1+x)\sqrt{1-x^2} \dots 0 \le x \le 1 \\ f(x) = \sqrt{x^3 - x} \dots x > 1 \end{cases}$$

1) déterminer le domaine de définition de f

2) étudier la dérivabilité de f à droite en $x_0 = 0$ et donner une interprétation géométrique du résultat 3) étudier la dérivabilité de f à droite et à gauche en $x_0 = 1$ et donner une interprétation géométrique

Exercice3: soit f une fonction définie par :

$$f(x) = |x^2 - 1|$$

1) étudier la dérivabilité de f à droite en $x_0 = 1$ et donner une interprétation géométrique du résultat 2) étudier la dérivabilité de f à gauche en

 $x_0 = 1$ et donner une interprétation géométrique du résultat

3) étudier la dérivabilité de f en $x_0 = 1$ et donner une interprétation géométrique du résultat

4)donner l'équation de la demie tangente à droite a la courbe de f en en $x_0 = 1$

4)donner l'équation de la demie tangente à gauche a la courbe de f en en $x_0 = 1$

Exercice4 : Calculer le nombre dérivé de $f(x) = x^3 + x$ en a = 1 en utilisant la deuxième

formulation de la dérivation

Exercice5: donner une approximation de *sin*3 **Exercice6 :** Etudier le domaine de dérivation de *f* et déterminer sa fonction dérivée dans les cas suivants:

1)
$$f(x) = x^2 + 3x - 1$$
 2) $f(x) = 4\sin x$

2)
$$f(x) = 4 \sin x$$

3)
$$f(x) = x^4 \cos x$$
 4) $f(x) = \sqrt{x} + x^3$

4)
$$f(x) = \sqrt{x + x^2}$$

$$5) \ f(x) = \frac{1}{\sqrt{x}}$$

5)
$$f(x) = \frac{1}{\sqrt{x}}$$
 6) $f(x) = \frac{6}{4x^2 + 3x - 1}$

7)
$$f(x) = \frac{4x-3}{2x-1}$$

8)
$$f(x) = \sqrt{x^2 - 4}$$

9)
$$f(x) = (2x+3)^5$$

Exercice7: Déterminer les fonctions dérivées des fonctions suivantes :

1)
$$f(x) = \sin(2x^2 - 1)$$

$$2) f(x) = \cos\left(\frac{1}{x^2 + 2}\right)$$

3)
$$f(x) = \tan \cos(x)$$

Exercice8: Soit f la fonction définie sur \mathbb{R} par : f(x) = cosx

1)montrer que f est une bijection de $[0, \pi]$ vers [-1,1]

2)calculer : $(f^{-1})'(0)$

Exercice9: soit f une fonction définie par :

$$f(x) = x^3 + x^2$$

1- Dresser le tableau de variation de *f*

2- Montrer que f est une bijection de \mathbb{R}^+ vers \mathbb{R}^+ et calculer f(1).

3- Déterminer $(f^{-1})'(2)$

Exercice10: Soit la fonction $g(x) = \cos(2x)$

1- Dresser le tableau de variation de g dans $[0, \pi]$

2- Monter que g est une bijection de $]0, \pi/2[$ Vers] - 1,1[.

3- Vérifier que $(\forall y \in [0,\pi/2[) (g'(y) \neq 0))$ et déterminer $(g^{-1})'(x)$ pour x dans] – 1,1[.

Exercice 11 : Déterminer les domaines de dérivabilité et les fonctions dérivées des fonctions suivantes :1) $f(x) = \sqrt[3]{3x^2 + x - 4}$

2)
$$f(x) = \sqrt[4]{\frac{2x-1}{x^2-x}}$$

Exercice12 : résoudre dans R les équations

suivantes: (E_1) : $\sqrt[3]{3+x} - \sqrt[3]{3-x} = \sqrt[6]{9-x^2}$

$$(E_2)$$
: $2x\sqrt{x} - 3x\sqrt[4]{\frac{1}{x}} = 20$

Exercice 13 : Déterminer les limites suivantes :

1)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 1}{\sqrt[4]{x} - 1}$$

1)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 1}{\sqrt[4]{x} - 1}$$
 2) $\lim_{x \to +\infty} \frac{\sqrt[4]{x} - \sqrt[3]{x+1}}{\sqrt{x} - \sqrt[6]{x+1}}$

3)
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}$$
 4) $\lim_{x \to +\infty} \sqrt[3]{x^3 + x^2} - x$

4)
$$\lim_{x \to +\infty} \sqrt[3]{x^3 + x^2} - x$$

Exercice14 : soit f une fonction définie sur

$$I =]-\pi; \pi[par : \begin{cases} f(x) = 2\frac{\cos x - 1}{\sin x}; si...0 < x < \pi \\ f(x) = \frac{x|x+1|}{x-1}; si... - \pi < x \le 0 \end{cases}$$

1)monter que f est dérivable en $x_0 = 0$ et donner l'équation de la tangente a la courbe de f en $x_0 = 0$

2)a)étudier la dérivabilité de f en $x_0 = -1$ b)donner les équations des demies tangentes à a la courbe de f en en $x_0 = -1$

Exercice15: soit f une fonction définie par :

$$f(x) = \sqrt{3x - 2} \left(\frac{2x + 1}{x - 1}\right)^3$$

- 1) déterminer le domaine de définition D_f de f
- 2) déterminer le domaine de dérivation de f et déterminer sa fonction dérivée

Exercice16 : en utilisant la dérivée calculer les limites suivantes:

1)
$$\lim_{x \to -1} \frac{(x+2)^{2018} - 1}{x+1}$$
 2) $\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{x - \frac{\pi}{6}}$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

