

TRABAJO FINAL: GESTIÓN DE DATOS GRUPO 5

Aldo Ortega Jorge Gonzales Fabrizio Berrios Jorge Aybar

Evolución de Muertes por Clínica

```
# Plot yearly proportion of deaths at the two clinics
# .... YOUR CODE FOR TASK 3 ....
ggplot(yearly,aes(x=year,y=proportion_deaths,color=clinic)) + geom_line()
```

Evolución de Muertes de neonatos por clínica por año y proporción

```
# A tibble: 98 x 4
              births deaths proportion_deaths
   date
               <db7>
                       <db7>
                                         <db7>
   <date>
 1 1841-01-01
                         37
                 254
                                       0.146
                         18
                                       0.0753
 2 1841-02-01
                         12
                                       0.0433
 3 1841-03-01
                                       0.0157
 4 1841-04-01
                 255
 5 1841-05-01
                                       0.00784
                                       0.05
 6 1841-06-01
                 200
                         10
 7 1841-07-01
                         16
                                       0.0842
                 190
 8 1841-08-01
                                       0.0135
 9 1841-09-01
                                       0.0188
10 1841-10-01
                 236
                          26
                                       0.110
# ... with 88 more rows
```


Evolución de Muertes por mes y prueba de hipotesis del Dr. Semmelweis.

El Doctor Semmelweis hizo su recomendación y aseveración el 01-06-1847, se observa que la proporción de muertes si se redujo

```
A tibble: 2 x 2
       handwashing_started mean_proportion_deaths
        <7q7>
        FALSE
                                                                      0.105
                                                                     0.0211
        TRUE
> # Calculating a 95% Confidence interval using t.test
> test_result <- t.test( proportion_deaths ~ handwashing_started, data = monthly)
       Welch Two Sample t-test
data: proportion_deaths by handwashing_started
t = 9.6101, df = 92.435, p-value = 1.445e-15
alternative hypothesis: true difference in means between group FALSE and group TRUE is not equal to 0
95 percent confidence interval:
 0.06660662 0.10130659
sample estimates:
mean in group FALSE mean in group TRUE
        0.10504998
> # The data Semmelweis collected points to that:
> doctors_should_wash_their_hands <- TRUE
> doctors_should_wash_their_hands
```


Proporción de Datos Perdidos

- 1 % de datos faltantes: trivial (el método de imputación no tiene mayor impacto)
- 1 a 10 % de datos faltantes: manejable (requiere un método "simple")
- 10 a 20 % de datos faltantes: requiere métodos sofisticados (puede requerir método "propio")
- Más del 20 % de datos faltantes: interpretación perjudicial (ya se perdió "demasiado")

```
> # install.packages("VIM")
> library(VIM)
> # Mostrar cuales columnas tienen valores perdidos
> cidx_perd <- which(colSums(is.na(alcohol))!=0)</pre>
> cidx_perd
                        vodka champagne
     wine
                                           brandy
> # Cantidad de valores perdidos en las columnas
> nperdidos <- colSums(is.na(alcohol[,cidx_perd]))
> nperdidos
                        vodka champagne
     wine
                                           brandy
> # Porcentaje de valores perdidos en las columnas
> pperdidos <- 100*nperdidos/ndatos
> pperdidos
     wine
                        vodka champagne
                                           brandy
               beer
3.900929 3.591331 3.777090 3.900929 4.086687
```


Evolución de Ventas en Saint Petersburg

Shiny app view

Top N Sales per Región by Year for Wine, Beer, Vodka, Champagne and Brandy

Analisis de Outliers: Q-Q and Ojiva X^2

```
# Distribución Chi-Cuadrado: Punto de Corte
p <- 1-0.001
 dof = ncol(dfa)
k <- (qchisq(p, dof))
print("el valor de k es: ")</pre>
1] "el valor de k es: "
1] 20.51501
 idx_outliers <- which(dm2 > k)
idx_outliers
[1] 200 261 282 364 411 419 446 449 501 505 515 523 541 587 596 604 668 690 771 852 996 1009
23] 1014 1077 1095 1098 1158 1173 1176 1239 1254 1257 1339
dfa[idx_outliers,]
                           # Registros con valores atípicos
A tibble: 33 x 5
   wine beer vodka champagne brandy
  <db7> <db7> <db7>
   6.3 61.8 18.8
   9.9 9.5 4
                         1.3
                               1.5
        78.9 19.7
   4.8 85.7 20.8
  18.1 61.7 24.6
   9.2 109 31.9
                         1.7
                              1.3
9 14.2 85.1 26.7
0 15.7 190. 40.6
... with 23 more rows
                                                                 Q-Q plot para \chi^2_{v=6}
```


Analisis de Outliers: Q-Q and Ojiva X^2 – Data Cleaned

Grupo Santa Elena

Su principal actividad es la crianza de pollos y la comercialización de la carne en kilogramos.

El proceso de crianza de pollos tiene la misión de maximizar el peso corporal del ave con eficiencia (días y usos de recursos) cumpliendo los estándares de calidad establecidos

Cartilla de Registro de Control de Crianza

ID_GALPON	SEXO	DIA07	DIA14	DIA21	DIA28	DIA35	DIA38	DIA40	DIA42
20201-2002-11-H	H	183	466	853			2220	2350	2480
20201-2002-11-M	M	178	478	960	,		2670	2790	2960
20201-2002-12-H	H	183	468	892			2270	2390	2460
20201-2002-12-M	M	183	468	892			2270	2390	2460
20201-2003-01-H	H	173	456	800	1300	1750	2000		2300
20201-2003-01-M	M	173	455	825	1400	2024		2100	
20201-2003-02-H	H	171	443	791	1280	1500			
20201-2003-02-M	M	171	443	791	1280	2068	2300		2640
20201-2003-03-H	Н	172	453	808	1280	1771	2080	2150	2380

- Las aves se agrupan en galpones y se clasifican por sexo
- El control del peso es semanal y en los últimos días se acorta a dos días.

Procedimiento de Aplicación de MongoDB & Python en el caso

Exploración de datos de pesos de aves mediante gráficos aplicando matplotlib

Base de datos en Atlas Mongo DB

Se evidenció la carga de data en Atlas Mongo DB.

Codificación Python

```
[1] import pymongo

[2] import csv
import pandas as pd

[3]
    client = pymongo.MongoClient("mongodb://jgonza

[5] db = client['BD_GRANJAS']
    list(db.list_collection_names())

['pesos']
```

```
#Recuperando documentos de la colección
mycol = db["pesos"]
#Comprobando
for x in mycol.find().limit(5):
    print(x)
```

```
#Recuperando PESOS de las aves Machos
myquery = { "SEXO": "M" }
mydoc = mycol.find(myquery)
data list = []
for x in mydoc:
  data_list.append(x)
df_machos = pd.DataFrame(data_list)
#Recuperando PESOS de las aves Hembras
myquery = { "SEXO": "H" }
mydoc = mycol.find(myquery) #.limit(5)
data list = []
for x in mydoc:
  data list.append(x)
df_hembras = pd.DataFrame(data_list)
print(df_hembras.describe())
```

https://colab.research.google.com/drive/1-XuGPiT2HIv KU48hFXHGWNnO6S6Mv14?usp=sharing

Análisis Exploratorio: Distribución

- Se observa que en los diferentes controles semanales el peso de las aves machos tienen una mejor distribución normal en comparación con el de las hembras.
- Se evidencia que en las primeras semanas el peso de las aves hembras son ligeramente mayor que el de los machos pero en las últimas semanas se invierte el patrón.

Análisis Exploratorio: Outliers

La data de pesos de las hembras presentan mayor cantidad de outliers que el de los machos.

Contexto de la data – Venta de autos usados

- Model Modelos de la marca BMW
- Year Año de fabricación
- Price Precio de venta
- Tranmission Tipo de transmisión del vehículo
- Mileage Millas recorridas
- fuelType Tipo de combustible
- tax Impuesto anual
- mpg Millas por galón
- engineSize Tamaño del motor en centímetros cúbicos

Ejemplo del database

*	model ‡	year ‡	price ‡	transmission ‡	mileage ‡	fuelType ‡	tax ‡	mpg ‡	engineSize ‡
1	5 Series	2014	11200	Automatic	67068	Diesel	125	57.6	2.0
2	6 Series	2018	27000	Automatic	14827	Petrol	145	42.8	2.0
3	5 Series	2016	16000	Automatic	62794	Diesel	160	51.4	3.0
4	1 Series	2017	12750	Automatic	26676	Diesel	145	72.4	1.5
5	7 Series	2014	14500	Automatic	39554	Diesel	160	50.4	3.0
6	5 Series	2016	14900	Automatic	35309	Diesel	125	60.1	2.0
7	5 Series	2017	16000	Automatic	38538	Diesel	125	60.1	2.0
8	2 Series	2018	16250	Manual	10401	Petrol	145	52.3	1.5
9	4 Series	2017	14250	Manual	42668	Diesel	30	62.8	2.0
10	5 Series	2016	14250	Automatic	36099	Diesel	20	68.9	2.0
11	хз	2017	15500	Manual	74907	Diesel	145	52.3	2.0

Análisis exploratorio

Precio de venta sobre año

Precio de venta sobre el modelo

Análisis Univariado de Valores Extremos

Gracias Totales!!!!!

