Class8: Breast Cancer Mini project

Yang Liu

About

In today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

##Data Import

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis rad	ius_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mea	an compa	ctness_mean co	oncavity_mean c	oncave.poir	nts_mean
842302	0.1184	40	0.27760	0.3001		0.14710
842517	0.0847	74	0.07864	0.0869		0.07017
84300903	0.1096	60	0.15990	0.1974		0.12790
84348301	0.142	50	0.28390	0.2414		0.10520
84358402	0.1003	30	0.13280	0.1980		0.10430
843786	0.1278	30	0.17000	0.1578		0.08089
	symmetry_mean	fractal.	_dimension_mea	an radius_se te	xture_se pe	erimeter_se
842302	0.2419		0.078	71 1.0950	0.9053	8.589
842517	0.1812		0.056	0.5435	0.7339	3.398

84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothne	ess_se com	pactness_se	concavity_se	concave.po	ints_se
842302	153.40 0.0	006399	0.04904	0.05373		0.01587
842517	74.08 0.0	005225	0.01308	0.01860		0.01340
84300903	94.03 0.0	006150	0.04006	0.03832		0.02058
84348301	27.23 0.0	009110	0.07458	0.05661		0.01867
84358402	94.44 0.0	11490	0.02461	0.05688		0.01885
843786	27.19 0.0	007510	0.03345	0.03672		0.01137
	symmetry_se frac	tal_dimen	sion_se radi	ius_worst text	ture_worst	
842302	0.03003	0	.006193	25.38	17.33	
842517	0.01389	0	.003532	24.99	23.41	
84300903	0.02250	0	.004571	23.57	25.53	
84348301	0.05963	0	.009208	14.91	26.50	
84358402	0.01756	0	.005115	22.54	16.67	
843786	0.02165	0	.005082	15.47	23.75	
	perimeter_worst	area_wors	t smoothness	s_worst compa	ctness_wors	t
842302	184.60	2019.0	0	0.1622	0.665	6
842517	158.80	1956.0	0	0.1238	0.186	6
84300903	152.50	1709.0	0	0.1444	0.424	:5
84348301	98.87	567.	7	0.2098	0.866	3
84358402	152.20	1575.0	0	0.1374	0.205	0
843786	103.40	741.6	6	0.1791	0.524	.9
	concavity_worst	concave.po	oints_worst	symmetry_wors	st	
842302	0.7119		0.2654	0.460)1	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.663	38	
84358402	0.4000		0.1625	0.236	64	
843786	0.5355		0.1741	0.398	35	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

 $^{{\}bf Q}.$ How many patients/individuals/samples are in the dataset?

```
dim(wisc.df)
[1] 569 31
  nrow(wisc.df)
[1] 569
  ncol(wisc.df)
[1] 31
    Q. How many of the observations have a malignant diagnosis?
  sum(wisc.df$diagnosis == "M")
[1] 212
  table(wisc.df$diagnosis)
 В
     Μ
357 212
  colnames(wisc.df)
 [1] "diagnosis"
                                "radius_mean"
 [3] "texture_mean"
                                "perimeter_mean"
 [5] "area_mean"
                                "smoothness_mean"
 [7] "compactness_mean"
                                "concavity_mean"
 [9] "concave.points_mean"
                                "symmetry_mean"
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture_se"
                                "perimeter_se"
[15] "area_se"
                                "smoothness_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
```

```
[21] "fractal_dimension_se"
                                  "radius_worst"
[23] "texture_worst"
                                  "perimeter_worst"
[25] "area_worst"
                                  "smoothness_worst"
[27] "compactness_worst"
                                  "concavity_worst"
[29] "concave.points_worst"
                                  "symmetry_worst"
[31] "fractal_dimension_worst"
     Q. How many variables/features in the data are suffixed with mean?
   inds <- grep("_mean", colnames(wisc.df))</pre>
  length(inds)
[1] 10
  grep("_mean", colnames(wisc.df), value = T)
 [1] "radius_mean"
                                 "texture_mean"
                                                            "perimeter_mean"
 [4] "area_mean"
                                 "smoothness_mean"
                                                            "compactness_mean"
                                                            "symmetry_mean"
 [7] "concavity_mean"
                                 "concave.points_mean"
[10] "fractal_dimension_mean"
##Initial Analysis
Before analysis, we want to take out the export data diagnosis column (a.k.a. the answer)
from our dataset
   diagnosis <- as.factor(wisc.df$diagnosis)</pre>
  head(diagnosis)
[1] M M M M M M
Levels: B M
  wisc.data <- wisc.df[,-1]</pre>
##Clustering
We can try a kmeans() clustering first
  km <- kmeans(wisc.data, centers = 2)</pre>
  km$cluster
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
2	2	2	1	2	1	2	1
844981	84501001	845636	84610002			84667401	84799002
1	1	1	2	2	1	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
1	2	2	1	1	1	1	2
852552	852631	852763	852781	852973	853201	853401	853612
2	2	1	2	2	2	2	1
85382601	854002	854039	854253	854268	854941	855133	855138
2	2	2	2	1	1	1	1
855167	855563	855625	856106	85638502	857010	85713702	85715
1	1	2	1	1	2	1	1
857155	857156	857343	857373	857374	857392	857438	85759902
1	1	1	1	1	2	1	1
857637	857793	857810	858477	858970	858981	858986	859196
2	1	1	1	1	1	1	1
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	1	1	1	1	2	1
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
2	1	1	2	1	2	2	1
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
1	1	2	2	1	2	1	2
861597	861598	861648	861799	861853	862009	862028	86208
1	1	1	1	1	1	1	2
86211	862261	862485	862548	862717	862722	862965	862980
1	1	1	1	1	1	1	1
862989	863030	863031	863270	86355	864018	864033	86408
1	1	1	1	2	1	1	1
86409	864292	864496	864685	864726	864729	864877	865128
1	1	1	1	1	1	2	2
865137	86517	865423	865432	865468	86561	866083	866203
1	2	2	1	1	1	1	2
866458	866674	866714	8670	86730502	867387	867739	868202
1	2	1	1	1	1	2	1
868223	868682	868826	868871	868999	869104	869218	869224
1	1	1	1	1	2	1	1
869254	869476	869691	86973701	86973702	869931	871001501	871001502
1	1	1	1	1	1	1	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	1	1	1	2	1	1	1
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
1		2					
8712766	8712853	87139402	87163	87164	871641	871642	872113

2	1	1	1	1	1	1	1
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	1	1	2	2	2	1
873885	874158	874217	874373	874662	874839	874858	875093
1	1	2	1	1	1	1	1
875099	875263	87556202	875878	875938	877159	877486	877500
1	1	1	1	1	2	2	1
877501	877989	878796	87880	87930	879523	879804	879830
1	2	2	1	1	1	1	2
8810158	8810436	881046502			881094802	8810955	8810987
1	1	2	1	2	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
1	1	2		1	_		1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
1	1	1		1			1
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
1	2		1	2			2
88350402	883539	883852	88411702	884180	884437	884448	884626
1	1			2		_	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
1	1	2		2		2	1
88649001	886776	887181	88725602	887549	888264	888570	889403
2	1		1	2		2	1
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
2	2		1	1			1
8910988	8910996				8911670	8911800	8911834
2	1	2	1			_	1
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
2	1	_	1	1	_	_	1
8913049	89143601	89143602					
1	1	1	_	1	1	1	1
891936		892214			892604		892657
1	_	1	_	_	_	_	_
		89344					
1							
		894047					
1		1					
		894855					
1	2				1		1
		896839					
1	1		1				2
		897880					
1	2	1	2	1	1	1	2

89864002	898677	898678	89869	898690	899147	899187	899667
1	1	1	1	1	1	1	1
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
2	1	1	1	1	1	1	1
901034302	901041	9010598	9010872	9010877	901088	9011494	9011495
1	1	1	1		2	2	
9011971	9012000	9012315	9012568	_	_	_	901303
2	2	1	1		2	1	
901315	9013579	9013594	_	901549		90250	_
1	1	1	1			1	
_		_				_	_
902727	90291	902975		903011			
1	1	1	1			1	_
903507	903516	903554	903811			904302	
2	2	1	1	_	1	1	_
90439701	904647	904689		904969		905189	
2	1	1	1	_		1	_
90524101	905501	905502	905520	905539	905557	905680	905686
2	1	1	1	1	1	1	1
905978	90602302	906024	906290	906539	906564	906616	906878
1	2	1	1	1	1	1	1
907145	907367	907409	90745	90769601	90769602	907914	907915
1	1	1	1	1	1	1	1
908194	908445	908469	908489	908916	909220	909231	909410
2	2	1	1	1	1	1	1
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
1	2	1	1	2	1	2	1
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
1	2	1	2				
9112366	9112367	9112594	_	_	911296202		911320501
1	1	1	1			1	
911320502	9113239	_	_	_	911366	_	_
1	1	9110 4 00	1			<i>3</i> 113770	
911384	9113846	911391	911408	911654	911673	_	_
						911685	911916
1		1	1			1	
	91227						
1							
	913535						
1					1		
	914580						
1						1	_
915186	915276	91544001			915460	91550	915664
1							
915691	915940	91594602	916221	916799	916838	917062	917080

```
2
                                                               2
       1
                  1
                              1
                                         1
                                                                          1
                                                                                     1
  917092
          91762702
                         91789
                                   917896
                                              917897
                                                          91805
                                                                  91813701
                                                                             91813702
       1
                  2
                              1
                                                               1
                                                                          1
                                                                                     1
                                         1
                                                    1
  918192
             918465
                         91858
                                 91903901
                                            91903902
                                                       91930402
                                                                    919537
                                                                               919555
                              1
                                                               2
                                                                                     2
       1
                  1
                                         1
                                                    1
                                                                          1
91979701
             919812
                        921092
                                   921362
                                              921385
                                                         921386
                                                                    921644
                                                                               922296
                  1
                                                               1
                                                                               923780
  922297
             922576
                        922577
                                   922840
                                              923169
                                                         923465
                                                                    923748
                  1
       1
                              1
                                         1
                                                    1
                                                               1
                                                                          1
                                                                                     1
  924084
             924342
                        924632
                                   924934
                                              924964
                                                         925236
                                                                    925277
                                                                               925291
       1
                  1
                              1
                                                               1
                                                                          1
                                                                                     1
                                         1
                                                    1
  925292
             925311
                        925622
                                   926125
                                              926424
                                                         926682
                                                                    926954
                                                                               927241
                                         2
                                                    2
                                                               2
                                                                                     2
       1
                  1
                              1
                                                                          1
   92751
       1
```

table(km\$cluster)

1 2 438 131

Cross-table

```
table(km$cluster, diagnosis)
```

diagnosis B M 1 356 82 2 1 130

Let's try 'hclust()' the key input required for 'hclust()' us a distance matrix as produced by the "dist()" function

```
hc <- hclust(dist(wisc.data))
plot(hc)</pre>
```

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

$\#\#\mathrm{PCA}$

Do we need to scale the data? we can look at sd first

apply(wisc.data, 2, sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
${\tt compactness_mean}$	smoothness_mean	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst

```
6.146258e+00 3.360254e+01 5.693570e+02
smoothness_worst compactness_worst concavity_worst
2.283243e-02 1.573365e-01 2.086243e-01
concave.points_worst symmetry_worst fractal_dimension_worst
6.573234e-02 6.186747e-02 1.806127e-02
```

yes, we need to scale

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                                                 PC13
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

```
library(ggplot2)

res <- as.data.frame(wisc.pr$x)

ggplot(res) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
ggplot(res) +
  aes(PC1, PC3, col=diagnosis) +
  geom_point()
```


Purpose of PCA: PCA takes a dataset with a lot of dimensions

##clustering methods Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

Clustering on PCA results

```
d <- dist(wisc.pr$x[, 1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector, I need to "cut" the tree with the "cutree()" function.

```
grps <- cutree(hc, k=2)

Q. How many patients are in each cluster group?

table(grps)

grps
1 2
203 366

plot(res$PC1, res$PC2, col=grps)</pre>
```


Prediction

We can use our PCA result (model) to do prediction, that is take new unseen data and project it onto our new PC variables.

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
     2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
           PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                         PC19
                                                                     PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                      PC22
                                                        PC25
                                 PC23
                                            PC24
                                                                     PC26
```

text(npc[,1], npc[,2], labels=c(1, 2), col="white")

#Summary

Principle Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variable in your dataset.