lec16.1 Association Pattern Mining Problem 关联模式挖掘 (Association Pattern Mining)

应用:

- 超市数据
 - 识别哪些商品经常一起购买
 - 提供关于目标市场营销和商品陈列的有用见解
- 文本挖掘
 - 识别共现的术语和关键词
- 泛化到依赖导向的数据类型
 - 网络日志分析
 - 软件错误检测
 - 时空事件检测

术语 (Terminology):

借用超市类比:

- 数据集中的对象称为transactions
- 输出: large itemsets (频繁项集或频繁模式)

用途:

频繁项集可用于生成**关联规则** $X \Rightarrow Y$,其中 X 和 Y 是项目集(例如,{Eggs, Milk} \Rightarrow {Yourgt})

- 向经常购买鸡蛋和牛奶的顾客推销酸奶
- 将酸奶放置在靠近鸡蛋和牛奶的货架上

The Frequent Pattern Mining Model

- 1. 项目的全集 (U):
 - 项目的全集包含 d 个项目,记作 U
- 2. 项目集:
 - 项目集是多个项目的集合
- 3. 数据集 (②):
 - 数据集包含 n 个交易 T_1, \ldots, T_n ,每个交易都是一个项目集
 - 每个交易可以表示为一个 d 维的二进制向量
 - 交易中的每个二进制属性表示来自 U 的一个特定项目
- 4. 支持度(support):
 - 项目集 I 的支持度是数据集 \mathcal{D} 中包含 I 作为子集的交易的比例,记作 $\sup(I)$

频繁项目集挖掘问题:

- 定义:
 - 给定一个包含交易的数据集 \mathscr{D} 和一个频率阈值 f,确定所有在 \mathscr{D} 中至少出现在 f 比例交易中的项目集

注意:

- 较低的频率阈值会产生更多的频繁项目集
- 过高的频率阈值可能导致没有频繁项目集

Example (let f = 0.65)

Transaction	Milk	Butter	Bread	Mushrooms	Onion	Carrot
1234	1	1	1	0	1	0
324	0	0	0	1	1	1
234	1	1	1	0	1	0
2125	1	1	1	1	0	1
113	1	0	0	1	1	0
5653	1	1	1	1	1	0

{Milk, Butter, Bread} is a large itemset

{Mushrooms, Onion, Carrot} is **not** is a large itemset

Monotonicity of Support 支持度的单调性

支持度单调性 Support Monotonicity Property:

项目集 I 的每个子集 J 的支持度至少和 I 的一样大,即对于每个 $j \subseteq I$,都有 $\sup(J) \ge \sup(I)$

向下闭包性 Downward Closure Property:

频繁项目集的每个子集也是频繁的

极大频繁项目集:

在给定频率阈值下,一个频繁项目集I是极大的:如果它是频繁的且没有它的超集是频繁的

The Frequent Pattern Mining Model

Example (let f = 0.65)

Transaction	Milk	Butter	Bread	Mushrooms	Onion	Carrot
1234	1	1	1	0	1	0
324	0	0	0	1	1	1
234	1	1	1	0	1	0
2125	1	1	1	1	0	1
113	1	0	0	1	1	0
5653	1	1	1	1	1	0

There are 3 maximal frequent itemsets: {Milk, Butter, Bread} and {Milk, Onion} and {Mushrooms}, but there 10 frequent itemsets in the dataset:

{Milk}, {Butter}, {Bread}, {Onion}, {Mushrooms}

{Milk, Butter}, {Milk, Bread}, {Butter, Bread}, {Milk, Onion}

{Milk, Butter, Bread}

Representation of Frequent Itemsets 频繁项目集的表示

- 1. 所有频繁项目集都可以从极大频繁项目集中推导出来:
 - 极大频繁项目集包含了所有频繁项目集的信息
- 2. 极大频繁项目集可以被视为频繁项目集的紧凑表示:
 - 它们提供了一个简洁的方式来表示频繁项目集
- 3. 然而,这种表示不包含项目集的支持度信息:
 - 尽管极大频繁项目集提供了频繁项目集的紧凑表示,但它们并不存储各个项目集的支持度值

Association Rules 关联规则

关联规则的形式:

我们希望生成形式为 $X \Rightarrow Y$ 的关联规则,这意味着如果一个交易包含项目集 X,那么它"很可能"包含项目集 Y

置信度:

为了衡量关联规则的可能性,我们使用规则的<mark>置信度</mark>,即在包含项目集X的前提下,交易包含项目集Y的条件概率

$$\mathrm{conf}(X\Rightarrow Y)=rac{\sup(X\cup Y)}{\sup(X)}$$

支持度:

根据定义, 规则 $X \Rightarrow Y$ 的支持度记作 $\sup(X \Rightarrow Y)$, 等于 $\sup(X \cup Y)$

Example: $conf(\{Milk\} \Rightarrow \{Butter, Bread\})$

Transaction	Milk	Butter	Bread	Mushrooms	Onion	Carrot
1234	1	1	1	0	1	0
324	0	0	0	1	1	1
234	1	1	1	0	1	0
2125	1	1	1	1	0	1
113	1	0	0	1	1	0
5653	1	1	1	1	1	0

$$\sup(\{\text{Butter, Bread, Milk}\}) = \frac{2}{3}$$

$$5 \qquad \text{conf}(\{\text{Milk}\} \Rightarrow \{\text{Butter, Bread}\}) = \frac{2}{3} \cdot \frac{6}{5} = \frac{4}{5}$$

$$\sup(\{\text{Milk}\}) = \frac{5}{6}$$

定义

设 X 和 Y 为两个项目集,则规则 $X\Rightarrow Y$ 在频率阈值 f 和置信度阈值 c 下是一个关联规则,当且仅当:

- 规则 $X \Rightarrow Y$ 的支持度(项目集 $X \cup Y$ 的支持度)至少为 f
- 规则 $X \Rightarrow Y$ 的置信度至少为 c

解释:

- 第一个条件确保有足够多的交易与该规则相关
- 第二个条件确保该规则在条件概率方面有足够的强度

关联规则生成框架

- 1. 阶段1: 为给定的频率阈值 f 生成所有频繁项目集
 - 暴力算法
 - Apriori 算法
- 2. **阶段2**: 从频繁项目集中,生成在给定置信度阈值 c 下的关联规则

- 对于每个频繁项目集 *I*:
 - 将 I 分割成所有可能的子集对 (X,Y),使得 $Y = I X \perp X \cup Y = I$
 - 计算规则 $X \Rightarrow Y$ 的置信度。如果至少为 c,则存储规则 $X \Rightarrow Y$

置信度单调性性质:

设 X_1 、 X_2 和I是项目集,使得 $X_1 \subseteq X_2 \subseteq I$,则有

$$\operatorname{conf}(X_2 \Rightarrow I - X_2) \geq \operatorname{conf}(X_1 \Rightarrow I - X_1)$$

例如,我们有关联规则 {黄油} \Rightarrow {牛奶,面包} 和 {黄油,面包} \Rightarrow {牛奶},则第二个规则是多余的,因为它与第一个规则具有相同的支持度,但置信度不低于第一个规则????什么b解释