

第10赛段:西湖

2024年9月28-29日

该问题集应包含 13 个问题(A 至 M),共 21 页。

第 10 赛段: 西湖, 2024年9月 28-29日

问题 A. 意大利美食

时间限制

1秒 内存限制

1024 兆字节

包包为您准备了一个披萨!这个披萨是一个凸多边形,它的所有边缘都有馅饼皮。不过,饼皮很脆弱,只能从顶点切开,不能切到边缘中间。不幸的是,披萨上有一块相当大的圆形菠萝,你绝对要避开它。

计算一次直切可以得到的最大一块无菠萝披萨,并输出其大小。当菠萝的任何部分都没有严格落在一块披萨上时,这块披萨就被认为是无菠萝披萨。也就是说,菠萝和披萨的交点面积为 0。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含一个整数 n (3 $\leq n \leq 10^5$),表示披萨的顶点数。

第二行包含三个整数 x_c , y_c , 和 r $(-10^9 \le x_c$, $y_c \le 10^9$, $1 \le r \le 10^9$) ,表示菠萝的中心坐标和半径。

对于下面的 n 行,第 i 行包含两个整数 x_i 和 y_i ($-10^9 \le x_i$, $y_i \le 10^9$),表示 第 i 个顶点的坐标。顶点按逆时针顺序排列。没有两个点是重合的。但是可能有三个点位于同一条直线上。 保证菠萝的任何部分都不会超出披萨的边界。同时保证所有测试用例的 n 之和不超过 10^5 。

输出

对于每个测试案例,输出一行包含一个整数的数据,表示最大一块无菠萝披萨乘以 2 的大小。如果无法得到无菠萝披萨,则输出 0。

第 10 赛段:西湖,2024 年 9 月 28-29 日

示例

标准输入	标准输出
3	5
5	24
111	0
0 0	
10	
50	
3 3	
0 5	
6	
241	
20	
40	
63	
46	
26	
0 3	
4	
3 3 1	
3 0	
63	
3 6	
0 3	
L	l

备注

测试用例示例如下。

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

问题 B. 生成字符串

时间限制 3秒内存限制

1024 兆字节

您 你们 给您 a 模板 字符串 $S = S S_{12} - \cdot \cdot S_n$ 的

长度 n. A 生成的字符串 是由 S 的多个子串连接而成的字符串。

 $T = f(k, \{l\}_i^k; \{r\}_i^k)$ 由正整数 k 和 k 对整数 (l_i, r_i) 描述,其中

 $T = s[l_1:r_1] + s[l_2:r_2] + \cdots + s[l_k:r_k]$ 。这里 s[l:r] 表示子串 $s[s_{l+1}:r_k]$ + $s[s_{l+1}:r_k]$

表示字符串连接。

你的任务是维护一个字符串多集合 A,支持以下三种类型的操作:

- $-+k l_1 r_1 l_2 r_2 - l_k r_k$: 将 $f(k, \{l\}_i^k, \{r\}_i^k)$ 插內多集合 A。
- - t:从多集合 A 中擦除 第 t 次操作中插入的字符串。 第 t 次操作是插入操作,此时插入的字符串不会被擦除。
- k l₁ r₁ l₂ r₂ · · · l_k r_k m u₁ v₁ u₂ v₂ · · · u_m v_m: 回答多集合 A 中字符串的个数
 以字符串 f(k, {l }_i^k, {r }_i^k) 开头, 以 f(m, {u }_i^m, {v }_i^m) 结尾 i=1

输入

每个测试文件中只有一个测试用例。

第一行包含两个整数 n 和 q (1 $\leq n$, $q \leq 10^5$),表示 S 的长度和运算次数。

第二行包含一个字符串 $s \, s_{12} \, \cdot \, \cdot \, s_n$,由小写英文字母组成,表示模板字符串。

对于以下 q 行, \hat{g} i 行包含上述格式的操作。保证 $1 \leq l_i \leq r_i \leq n$, $1 \leq u_i \leq v_i \leq n$ 。还保证在所有类型的操作中,k 的总和是

+,加上所有"....."类型运算中的 k 之和,加上所有"......"类型运算中的 m 之和,不会超过 3×10^5 。

输出

对于每个?类型的操作,输出一行包含一个整数的答案。

标准输入	标准输出
8 7	2
abcaabbc	1
+3132438	

<u> 第 10 赛段:西湖,2024 年 9 月 28-29 日</u>

	另 10 焚权。 臼/明, 2024 平 9 万 20-29 口	
+ 2 1 4 1 8		
+ 1 2 4		
?1 5 6 1 7 8		
-3		
+ 1 2 5		
?1 2 3 1 5 5		

第 10 赛段: 西湖, 2024年9月 28-29日

问题 c. 排列

时间限制

1秒 内存限制

1024 兆字节

这是一个互动问题。

n 有一个隐藏的排列组合。回想一下,n 的排列是一个序列,其中的每个整数都来自 1 到 n (包括这两个数字)正好出现一次。小猪想通过一些查询来解开这个排列组合。

每个查询必须由一个序列(不一定是排列)和 n 个整数组成,整数范围从 1 到 n (均包括在内)。每个查询都会得到一个整数 x,表示小猪查询序列中相应元素与隐藏排列相匹配的位置数。例如,如果隐藏排列是 $\{1,3,4,2,5\}$,而小猪的询问序列是 $\{2,3,5,2,5\}$,那么他将得到 3 作为答案。

小猪最近很忙,他把这个问题交给了你。找出不超过 6666 的排列组合询问。

输入

每个测试文件中只有一个测试用例。

输入的第一行包含一个整数 n (1 $\leq n \leq 10^3$),表示隐藏排列的长度。

互动协议

查询时,输出一行。首先输出 0,然后用空格隔开,接着打印一连串从 1 到 n 的整数,用空格隔开。刷新输出后,程序将读取一个表示查询答案的整数 x。

如果您想猜测排列组合,请输出一行。首先输出 1,然后用空格隔开,接着打印 n 的排列组合,用空格隔开。刷新输出后,程序应立即退出。

请注意,每个测试用例的答案都是预先确定的。也就是说,交互器不是自适应的。还请注意,您的猜测不算是查询。

要清除输出,可以使用

- 在 C 和 C++ 中,fflush(stdout)(如果使用 printf)或 cout.flush()(如果使用 cout)。
- Java 中的 System.out.flush()。
- 在 Python 中使用 stdout.flush()。

标准输入	标准输出
5	

	湖,2024年 9 月 28-29 日
70 21/21	0 3 1 3 2 2
3	
4	0 3 1 5 2 2
4	0 3 5 4 4 4
2	
	1 3 1 5 2 4

备注

请注意,如果收到 "超过时间限制 " 的判决,有可能是您的查询无效或查询次数超过限制。

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

问题 D. 收集硬币

时间限制

1秒 内存限制

1024 兆字节

单元格中会出现 n 枚硬币。 \hat{g} i 枚硬币将在第 t_i -秒出现在第 c_i \hat{f} 单元格中。如果此时有机器人在同一单元格中,它就可以拾起这枚硬币。否则,硬币会立即消失。

更正式地说,在每一秒钟内,以下步骤将依次发生:

- 每个机器人可以移动到不超过 v 个单元的位置(留在当前单元也可以)。
- 单元格中会出现硬币。
- 如果至少有一个机器人与一枚硬币在同一小格内,则该硬币会被收集起来。
- 所有未收集的硬币都会消失。

你的任务是在第 1 秒之前确定两个机器人的初始位置,并明智地移动它们,以尽可能小的 v 收集所有硬币。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含一个整数 n ($1 \le n \le 10^6$),表示单元格中出现的硬币数量。

对于下面的 n 行,第 i 行包含两个整数 t_i 和 c_i ($1 \le t_i$, $c_i \le 10^9$),表示 \hat{g} i 枚硬币出现的时间和 \hat{g} i 枚硬币出现的位置。对于所有 $1 \le i < n$,保证 $t_i \le t_{i+1}$ 。对于所有 $i \ne j$,也保证 $t_i \ne t_i$ 或 $c_i \ne t_i$ 。

保证所有测试用例的 n 之和不超过 10^6 。

输出

对于每个测试案例,输出一行包含一个整数的数据,表示机器人可能达到的最小最大速度。如果 不可能收集到所有硬币,则输出-1。

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

	 	
3	2	
5	0	
1 1	-1	
3 7		
3 4		
4 3		
5 10		
1		
10 100		
3		
10 100		
10 1000		
10 10000		

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

问题 E. 普通朋友

时间限制

8 秒 内存限制

1024 兆字节

段树是小 Q 非常喜欢的一种数据结构。它们结构简单、时间复杂度高、功能强大,所以小Q曾经花了很长时间研究段树的一些特性。

最近,小 Q 又开始研究线段树了,但与以往不同的是:她把重点放在了更广义的线段树上。,在普通的分段树中,对于一个区间 [l,r],我们取 $\operatorname{mid}=\frac{l+r}{}$ 、

然后把这个区间分成 [l, mid] 和 [mid + 1, r]。在广义分段树中,mid 并不要求正好是区间的中点,但 mid 仍必须满足 $l \le mid < r$ 。

小 Q 不知道如何实现平衡 BST,所以她想用段树来实现平衡 BST 的所有操作。其中最有名的一个不能用段树实现的操作是反转区间,但小 Q 不服气,想用段树实现它。

具体来说,当小 Q 扭转一个区间时,她会先把这个区间划分为几个最大区间,由分段树中的节点代表;假设从小到大,它们分别由分段树中的 k 个节点 a_1 , a_2 , ... 代表。, a_k 。然后,小 Q 将剥离这 k 个子树,并以相反的顺序将它们重新连接到段树上,也就是说,原来位于 k 位置的子树将被替换为k 的子树,原来位于 k 位置的子树将被替换为k 的子树。最后,小 Q 将交换这 k 个子树中所有节点的左右子节点。我们不难发现,经过这样的操作后,这棵树仍然是一棵广义段树,元素从左到右的顺序正好是颠倒区间后的结果。

给定这样一棵广义段树,小 Q 需要执行 m 次操作;每次给定一个前缀 [1, x] ,她都要将其反转。同时,小 Q 想知道 k 的值,即在反向操作过程中,当前广义段树划分的区间数。

当然,小 Q 很轻松地就解决了这个问题,这让她更有信心不学习如何写平衡 BST。那么,你能解决这个问题吗?

输入

第一行包含两个正整数 n 和 m (2 $\leq n$, $m \leq 3 \times 10^5$),分别代表树的大小和操作次数。

下一行包含 n-1 个正整数,以深度优先搜索(DFS)的顺序给出,为每个区间提供分割点中值。

接下来的m 行都包含一个正整数x,表示将前缀[1,x] 反过来的操作。

输出

输出m行,每行包含一个正整数,代表每次操作过程中的k值。

第 10 赛段:西湖,2024 年 9 月 28-29 日

标准输入	标准输出
3 3	1
2 1	1
2	2
3	
2	

第 10 赛段: 西湖, 2024 年 9 月 28-29 目

问题 F. 三角形

时间限制

1秒 内存限制

1024 兆字节

给定由小写英文字母组成的 n 个字符串 S_1 , S_2 , - - - , S_n ,我们说��三个字符串 S_a , S_b 和 S 。

 S_c 构成三角形,如果满足以下所有约束条件:

- $S_a + S_b > S_c \ \vec{u} \ S_b + S_a > S_c \ \hat{o}$
- $S_a + S_c > S_b$ 或 $S_c + S_a > S_b$ o
- $S_b + S_c > S_a \implies S_c + S_b > S_a$ o

这里的 + 是字符串连接操作,字符串按词典顺序进行比较。例如 因为 ba、cb 和 cbaa 构成三角形:

- $cb + ba = cbba > cbaa_o$
- $cbaa + ba = cbaaba > cb_o$
- cb + cbaa = cbcbaa > ba_o

数出 $1 \le a < b < c \le n$ 且 S_a , S_b , S_c 构成三角形的整数元组(a, b, c)的个数。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含一个整数 n ($1 \le n \le 3 \times 10^5$),表示字符串的数量。

对于下面的 n 行, \hat{g} i 行包含一个字符串 S_i ($1 \le |S_i| \le 3 \times 10^5$),由小写英文字母组成。 保证单个测试用例中的字符串总长度不超过 3×10^5 ,所有测试用例的字符串总长度不超过 10^6 。

输出

对于每个测试用例,输出一行,其中包含一个整数,表示有效元组的数量。

1-\4-t	1-\4-t
标准输入	标准输出
1小/圧/削/し	
1.5 1. 1.557	

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

	 	
3	16	
6	0	
cbaa	0	
cb		
cb		
cbaa		
ba		
ba		
3		
SDC		
PC		
SD		
CPC		
1		
серс		

第 10 赛段: 西湖, 2024年 9 月 28-29 日

问题 G. 阻止城堡 2

时间限制 1秒内存限制

1024 兆字节

在一个有 10^9 行和 10^9 列的棋盘上有 n 个城堡和 m 个障碍。每个城堡或障碍物正好占据一个单元格,所有被占据的单元格都是不同的。如果两个城堡位于同一行或同一列,并且它们之间没有障碍物或其他城堡,它们就可以互相攻击。更正式地说,让(i,j)成为 \hat{m} i 行和 \hat{m} j 列上的单元格。如果以下条件之一为真,位于 (i_1,j_1) 和 (i_2,j_2) 的两个城堡可以互相攻击:

- i₁ = i₂ , 并且对于所有 min(j₁, j₂) < j < max(j₁, j₂) 的情况, 在 (i₁, j) 处没有障碍物或城堡。
- $j_1 = j_2$,并且对于所有 $min(i_1, i_2) < i < max(i_1, i_2)$,在 (i, j_1) 处没有障碍物或城堡。

您必须清除棋盘上的 *k* **/**障碍,但又不想让太多的城堡互相攻击。在清除棋盘上的 *k* **/**障碍物后,尽量减少可以互相攻击的城堡对的数量。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含三个整数 n、m 和 k($1 \le n$, $m \le 10^5$, $1 \le k \le m$),分别表示城堡数量、障碍物数量以及您需要清除的障碍物数量。

对于下面的 n 行,第 i 行包含两个整数 r_i 和 c_i ($1 \le r_i$, $c_i \le 10^9$),表示 第 i 个城堡位于 r_i - th row 和 c_i -th column 上。

对于下面的 m 行, $\hat{\boldsymbol{g}}$ i 行包含两个整数 r^r 和 c^r ($1 \leq r^r$, $c^r \leq 10^9$),表示 $\hat{\boldsymbol{g}}$ i $\hat{\boldsymbol{f}}$ 障碍物位于第 r^r -行和第 c^r -列。

输出

对于每个测试案例,首先输出一行,其中包含一个整数,表示在移除整整 k 个障碍物后可以互相攻击的城堡对的最小数量。然后再输出一行,其中包含 k 个不同的整数 $b_1, b_2, \dots - b_k$ ($1 \le b_i \le m$),中间用空格隔开,表示要清除的障碍物的索引。如果有多个有效答案,您可以输出其中任何一个。

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

示例

标准输入	标准输出
3	4
864	6325
1 3	2
2 1	1
26	0
4 1	1 2
47	
61	
63	
66	
2 3	
3 1	
4 3	
4 6	
5 2	
6 4	
3 2 1	
10 12	
10 10	
10 11	
1 4	
15	
1 3 2	
11	
2 1	
2 2	
2 3	

备注

在第一个测试案例中,左边的图片显示的是原始棋盘,右边的图片显示的是移除 4 个障碍后的棋盘。清除障碍后,可以互相攻击的棋子对为: 第 2 和第 4 个棋子、第 4 和第 6 个棋子、第 6 和第 7 个棋子、第 7 和第 8 个棋子。

在第三个测试案例中,由于只有一个城堡,所以没有一对城堡可以互相攻击。

第 10 赛段: 西湖, 2024年 9 月 28-29 目

问题 H. 路径交叉

时间限制 5秒内存限制

1024 兆字节

有一棵有 n 个顶点和 (n-1) 条边的树,其中 $\hat{\mathbf{x}}$ i 条边连接顶点 u_i 和 v_i ,权重为 w_i 。

您的任务是处理 q 个查询。 第 i 个查询可以用三个整数 a_i , b_i 和 k_i 来描述。这个查询会暂时将 a_i -th 边的权重改为 b_i 。然后,您应该选择 $2k_i$ 个不同的顶点 s_1 , s_2 , · · · · , s_{k_i} , e_1 , e_2 , · · · · , e_{k_i} 并考虑树上的 k_i 条简单路径,其中 f ,条路径从顶点 f ,开始,在顶点 f 。如果一条边包含在所有 f 。路径中,我们就说这条边是好边。最大化好边的总权重。

请再次注意,每次查询的权重变化都是暂时的。每次查询后,都应重新更改权重。

输入

每个测试文件中只有一个测试用例。

第一行包含两个整数 n 和 q(2 $\leq n \leq 5 \times 10^5$,1 $\leq q \leq 5 \times 10^5$),表示顶点数和查询次数。

对于下面的 (n-1) 行, \hat{g} i 行包含三个整数 u_i, v_i 和 w_i $(1 \le u_i, v_i \le n)$ 、

 $1 \le w_i \le 10^9$) 表示 $\hat{\boldsymbol{\pi}}$ i 条边连接顶点 u_i 和 v_i ,权重为 w_i 。

对于以下 q 行, \hat{g} i 行包含三个整数 a_i 、 b_i 和 k_i ($1 \le a_i \le n - 1$, $1 \le b_i \le 10^9$, $1 \le k_i \le [\frac{n}{2}]$),表示 \hat{g} i 次查询。

输出

对每个查询输出一行,其中包含一个表示答案的整数。

示例

标准输入	标准输出
7 3	160
1 2 20	110
2 3 10	20
2 4 40	
4 6 10	
1 5 30	
5 7 10	
2 100 1	
5 50 2	
2 100 3	

备注

对于第一个查询,选择 $s_1 = 3$ 和 $e_1 = 7$ 。

对于第二个查询,选择 $s_1 = 4$ 、 $s_2 = 6$ 、 $e_1 = 7$ 和 $e_2 = 5$ 。

<u>第 10 赛段:西湖,2024 年 9 月 28-29 日</u>

对于第三个查询,选择 $s_1=3$ 、 $s_2=4$ 、 $s_3=6$ 、 $e_1=5$ 、 $e_2=1$ 和 $e_3=7$ 。

第 10 赛段: 西湖, 2024年 9月 28-29 目

问题 I.找到自己

时间限制 1.5 秒 内存限

制 1024 兆字节

量子怪兽是一种奇特的生物,它以波函数的形式同时存在于不同的世界线中。只要有一条可能的世界线没有发现量子怪兽,你就永远无法捕捉到它。

现在,在一个有 n \uparrow 节点和 m 条边的连通无向图中隐藏着一个量子怪兽。你希望捕获它。整个过程如下循环进行:

- 1. 量子怪沿着图中的一条边移动到相邻节点。
- 2. 你在图中选择一些节点观察一次。您可以知道量子怪兽是否在您观察到的节点集中。
- 3. 如果您掌握的历史信息足以唯一确定量子怪的位置,您就成功捕获了它,循环结束。否则, 返回步骤 1。

你想知道是否有可能捕获这个量子怪兽。换句话说,要确定是否存在一种捕捉策略,无论量子怪的初始位置和移动计划如何,你都能在有限的步数内唯一地确定它的位置。

输入

第一行包含一个整数 $T(1 \le T)$,表示测试用例的数量。

对于每个测试用例,第一行包含两个整数 n 和 m ($2 \le n \le 10^6$, $1 \le m \le 10^6$),表示图中节点和边的数量。

接下来的 m 行分别包含两个整数 u 和 v ($1 \le u, v \le n$),表示图中存在一条连接 u 和 v 的无向边。

保证所有图都是连通的无向图,没有自循环或多条边,所有测试用例的 m 之和不超过 10^6 。

输出

对于每个测试用例,如果存在捕获策略,则输出包含字符串 "YES "的一行;如果不存在,则输出包含字符串 "NO "的一行。

第 10 赛段:西湖,2024 年 9 月 28-29 日

第10赛段:西湖,2024年9月28-29日

问题 J. Sheriruth

时间限制

5 秒 内存限制

1024 兆字节

给你一个简单有向图 G = (V, E),其中 $V = \{0, 1, 2, .$ 如果 $a, b, c \in V$ 满足以下所有限制条件:

- $b \neq c$
- $(a \rightarrow b) \in E$
- $(a \rightarrow c) \in E$
- $(b \rightarrow c) \in /E$

然后,我们会将边 $b \rightarrow c$ 加入边集E。

不断进行这样的操作,直到做不出来为止。我们可以证明最终的图 $G^r = (V, E^r)$ 是唯一的。

然后,我们会问你 q 个问题。对于每个问题,我们都会给出节点 u 、v \in V 。你需要回答在 G 上有多少条从 u 到 v 的路径,并且在这些路径上我们不会与任何节点相遇超过一次。

由于答案可能太大,您只需告诉我们答案的模 S。

输入

输入的第一行包含四个整数 n、m、q 和 S $(1 \le n \le 5 \times 10^5$, $0 \le m \le 10^6$, $1 \le q \le 10^6$, $1 \le S \le 2^{30}$)。

每行包含两个整数 u 和 v (0 $\leq u$, $v \leq n$ - 1, $u \neq v$) ,表示 E 中有一条边 $u \rightarrow v$ 。

下面的 q 行描述了所有问题。每行包含两个整数 u 和 v ($0 \le u, v \le n-1$)。

输出

输出 q 行。其中 $\hat{\mathbf{y}}$ i 行包含一个整数,表示答案模数 S。

第 10 赛段:西湖,2024 年 9 月 28-29 日

标准输入	标准输出
11 9 30 998244353	2
0 1	2
0 2	0
3 4	1
5 4	0
65	1
7 8	1
8 9	0
98	0
10 9	0
0 1	0
0 2	0
10	0
1 2	1
2 0	0
2 1	0
3 4	1
3 5	1
3 6	1
4 3	1
4 5	0
4 6	0
53	1
5 4	0
56	0
63	1
6 4	0
65	0
78	1
79	1
7 10	
8 7	
8 9	
8 10	
97	
98	
9 10	
10 7	
10 8	
10 9	

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

问题 K. 正多边形

时间限制 1秒内存限制

1024 兆字节

有一个有 n \uparrow 顶点的凸多边形。顶点按逆时针顺序从 1 编号到 n (包括 n),顶点 i 的值为 f(i) 。

如果顶点的值按逆时针顺序排列构成了一个重合顶点,我们就说这个顶点子集是重合的。更正式地说,假设子集包含 k f 顶点 v_0 , v_1 , \dots , v_{k-1} , 按逆时针顺序排列。应该存在一个整数 d ,使得 $0 \le d \le k$,并且对于所有 $0 \le i \le k$,我们有 $f(v_{(d+i) \bmod k}) = f(v_{(d-l-i) \bmod k})$ 。
在所有宫调子集中,找出凸面最大的子集。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含一个整数 n(3 $\leq n \leq 500$),表示凸多边形的顶点数。第二行包含 n 个整数 f(1),f(2),f(2),f(2),f(3) f(3) f(3) f(3) f(4) f(6) f(7) f(7) f(8) f(8) f(8) f(9) f(9)

对于下面的 n 行,第 i 行包含两个整数 x_i 和 y_i ($-10^9 \le x_i$, $y_i \le 10^9$),表示 $\hat{\boldsymbol{g}}$ i 个顶点的坐标。顶点按逆时针顺序排列。凸多边形的大小保证为正,且没有两个顶点重合。但是可能有三个顶点位于同一条直线上。

保证所有测试用例的 n 之和不超过 10^3 。

输出

对于每个测试用例,输出一行包含一个整数的数值,表示一个 palindromic 子集的最大凸壳的大小乘以 2。

第10赛段:西湖,2024年9月28-29日

示例

标准输入	标准输出
3	84
8	0
2 4 2 4 3 4 5 3	1
2 3	
0 6	
-3 3	
-3 0	
-2 -3	
1 -5	
3 -3	
4 0	
3	
1 2 3	
0 0	
1 0	
0 1	
3	
111	
0 0	
1 0	
0 1	

备注

第一个测试案例示例如下。选择顶点 2、4、5、6、8,并考虑 d=1,那么值序列 $\{4, 3, 4, 3, 4\}$ 是一个回文。

第 10 赛段: 西湖, 2024年9月 28-29日

问题 L.宇宙旅行

时间限制 2秒内存限制

1024 兆字节

包包是一个宇宙旅行者,穿梭于无数个平行宇宙之间。每个宇宙都有一个从0开始的整数编号。

每个宇宙都有 n \uparrow 神奇苹果。虽然这些宇宙有许多相似之处,但它们之间仍有细微差别。 \hat{g} i \uparrow 平 果在 \hat{g} i \uparrow 宇宙中的魔力是 θ i 。这里, θ 表示位排他性或运算。

小宝非常优柔寡断,所以他准备了 q 个旅行计划。每个旅行计划都可以用三个整数 l、r 和 k 来描述,即小宝将前往从 l 到 r(包括 l 和 r)的每个宇宙,并收集每个宇宙中 n 个苹果中魔力最小的 k 个苹果。

在每个旅行计划中,请帮助包包计算他收集到的苹果的魔力总和。请注意,旅行计划并没有真正从每个宇宙中取出苹果。也就是说,每个查询都是独立的。

输入

每个测试文件中只有一个测试用例。

第一行包含两个整数 n 和 q (1 $\leq n$, $q \leq 10^5$),表示每个宇宙中的苹果数量和计划数量。

第二行包含 n 个整数 a_1 , a_2 , \cdots , a_n (0 $\leq a_i < 2^{60}$)。

对于以下 q 行, \hat{g} i 行包含三个整数 l_i 、 r_i 和 k_i ($0 \le l_i \le r_i < 2^{60}$, $1 \le k_i \le n$),表示 \hat{g} i 个行进计划。

输出

对每个行进计划输出一行,其中包含一个整数,表示该计划的答案。由于答案可能很大,因此输出 它的模数 998244353。

标准输入	标准输出
8 3	4
2 0 2 4 0 5 2 6	23
1 1 6	720895450
2 7 5	
0 1048575 4	

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

问题 M. 寻找埃尔多拉多

时间限制 1秒内存限制

1024 兆字节

一个王国有 n 座城市,连接城市的双向铁路有 m 条。第 i 条铁路由 c_i -th 铁路公司运营,铁路长度为 l_i 。

您想从城市 1 开始环游全国。您购买了 k 张火车票。 \hat{g} i 张车票可以用两个整数 a_i 和 b_i 表示,也就是说,如果您使用这张车票,您可以一次性乘坐几条铁路,只要这些铁路都是由 a_i 公司运营的,并且总长度不超过 b_i 。使用车票时,也允许只停留在当前城市。每次只能使用一张车票,每张车票只能使用一次。

由于您觉得确定票据的使用顺序是个负担,所以决定只按当前顺序使用票据。更正式地说,你要执行 k 次操作。在 \hat{a} i 次操作中,你可以选择留在当前城市 u; 或者选择另一个城市 v,这样就存在一条从城市 u 到城市 v 的路径,路径上的所有铁路都由 a 公司运营 i ,且铁路总长度不超过 b_i ,最后移动到城市 v。

对于每个城市,确定在使用所有 k 3 机票后是否有可能到达该城市。

输入

有多个测试用例。输入的第一行包含一个整数 T,表示测试用例的数量。对于每个测试用例第一行包含三个整数 n、m 和 k(2 $\leq n \leq 5 \times 10^5$, $1 \leq m \leq 5 \times 10^5$, $1 \leq k \leq 5 \times 10^5$),表示城市数量、铁路数量和车票数量。

对于以下 m 条线路,第 i 条线路包含四个整数 u_i , v_i , c_i , 和 l_i ($1 \le u_i$, $v_i \le n$, u_i /= v_i , $1 \le c_i \le m$, $1 \le l_i \le 10^9$),表示 \hat{g} i 条铁路连接城市 u_i 和 v_i 。它由 c 公司运营 $_i$,长度为 l_i 。请注意,可能有多条铁路连接同一对城市。

对于下面的 k 条线路,第 i 条线路包含两个整数 a_i 和 b_i ($1 \le a_i \le m$, $1 \le b_i \le 10^9$),表示如果使用 $\hat{\pmb{g}}$ i 张车票,可以一次性通过一些铁路,如果这些铁路都由 a 公司运营 i ,且总长度不超过 b_i 。

保证所有测试用例的 n、m 和 k 之和不超过 5×10^5 。

输出

对于每个测试用例,输出一行包含长度为 n 的字符串 s s_{12} - - s_n ,其中每个字符要么为 0 ,要么为 1 。如果用这 k *张*车票可以从城市 1 前往城市 i ,则 s_i = 1 ;否则 s_i = 0 。

第 10 赛段: 西湖, 2024 年 9 月 28-29 日

示例

标准输入	标准输出
2	11011
5 6 4	100
1 2 1 30	
2 3 1 50	
2 5 5 50	
3 4 6 10	
2 4 5 30	
2 5 1 40	
1 70	
6 100	
5 40	
1 30	
3 1 1	
2 3 1 10	
1 100	

备注

对于第一个示例测试用例:

- 要到达第4个城市,您可以使用第1张车票从第1个城市移动到第2个城市,然后在使用第2张车票时留在第2个城市,然后使用第3张车票从第2个城市移动到第4个城市,然后在使用第4张车票时留在第4个城市。
- 要到达第 5 个城市,您可以使用第 1 张车票从第 1 个城市移动到第 5 个城市,方法是通过 1 号和 6 号铁路,然后在使用以下车票时停留在 5 号城市。
- 由于不能更改机票的使用顺序,您无法到达第3个城市。