Използване на силата на категорийните характеристики: Въведение в CatBoost

Изготвил: Симеон Христов

Общи понятия

Статия: CatBoost: unbiased boosting with categorical features.

Според статията CatBoost e "a new gradient boosting toolkit".

Името е акроним за Categorical Boosting и подчертава колко важна е обработката на категорийните характеристики за този алгоритъм.

Table 8: Comparison with baselines: logloss / zero-one loss, relative increase is presented in the brackets.

	CatBoost	LightGBM	XGBoost		
Adult	0.2695 / 0.1267	0.2760 (+2.4%) / 0.1291 (+1.9%)	0.2754 (+2.2%) / 0.1280 (+1.0%)		
Amazon	0.1394 / 0.0442	0.1636 (+17%) / 0.0533 (+21%)	0.1633 (+17%) / 0.0532 (+21%)		
Click	0.3917 / 0.1561	0.3963 (+1.2%) / 0.1580 (+1.2%)	0.3962 (+1.2%) / 0.1581 (+1.2%)		
Epsilon	0.2647 / 0.1086	0.2703 (+1.5%) / 0.114 (+4.1%)	0.2993 (+11%) / 0.1276 (+12%)		
Appetency	0.0715 / 0.01768	0.0718 (+0.4%) / 0.01772 (+0.2%)	0.0718 (+0.4%) / 0.01780 (+0.7%)		
Churn	0.2319 / 0.0719	0.2320 (+0.1%) / 0.0723 (+0.6%)	0.2331 (+0.5%) / 0.0730 (+1.6%)		
Internet	0.2089 / 0.0937	0.2231 (+6.8%) / 0.1017 (+8.6%)	0.2253 (+7.9%) / 0.1012 (+8.0%)		
Upselling	0.1662 / 0.0490	0.1668 (+0.3%) / 0.0491 (+0.1%)	0.1663 (+0.04%) / 0.0492 (+0.3%)		
Kick	0.2855 / 0.0949	0.2957 (+3.5%) / 0.0991 (+4.4%)	0.2946 (+3.2%) / 0.0988 (+4.1%)		

Теч на данни (Data Leakage)

Data Science No-No

Може да означава много ситуации.

Ще го разгледаме в контекста на кодиране на променливи, които:

- се кодират спрямо стойността на целевата променлива
- и след това тези нови стойности се използват за нейното предсказване (предсказването на целевата променлива).

Трябва да избягваме теча на данни, т.к. води до пренагаждане (overfitting)!

One-Hot Encoding

Любим Цвят	Височина (м.)	Изплатил Кредит
Син	1.77	Да
Червен	1.32	He
Зелен	1.81	Да
Син	1.56	He
Зелен	1.64	Да
Зелен	1.61	He
Син	1.73	He

	Любим Цвят Синьо	Любим Цвят Червен	Любим Цвят Зелен	Височина (м.)	Изплатил Кредит
	1	0	0	1.77	1
	0	1	0	1.32	0
>	0	0	1	1.81	1
	1	0	0	1.56	0
	0	0	1	1.64	1
	0	0	1	1.61	0
	1	0	0	1.73	0

Използва се в XGBoost.

Проблеми:

- Голяма размерност при висока кардиналност
- Линейна зависимост: Любим Цвят Синьо + Любим Цвят Червен + Любим Цвят Зелен = 1 (multicollinearity)

Label Encoding

Любим Цвят	Височина (м.)	Изплатил Кредит
Син	1.77	Да
Червен	1.32	He
Зелен	1.81	Да
Син	1.56	He
Зелен	1.64	Да
Зелен	1.61	He
Син	1.73	He

Любим Цвят	Височина (м.)	Изплатил Кредит
0	1.77	1
1	1.32	0
2	1.81	1
0	1.56	0
2	1.64	1
2	1.61	0
0	1.73	0

Решава проблемите на One-Hot Encoding.

Нови проблеми:

- Кой избира тези числа? Ние, т.е. кодирането е субективно и случайно.
- "Фалшива" наредба:
 - Дърво на решенията с корен (любим цвят < 0.5) ще трябва да групира два класа.

Target Encoding

Любим Цвят	Височина (м.)	Изплатил Кредит
Син	1.77	1
Червен	1.32	0
Зелен	1.81	1
Син	1.56	0
Зелен	1.64	1
Зелен	1.61	0
Син	1.73	0

Любим Цвят	Височина (м.)	Изплатил Кредит
0.33	1.77	1
0	1.32	0
0.67	1.81	1
0.33	1.56	0
0.67	1.64	1
0.67	1.61	0
0.33	1.73	0

За да не избираме субективно числата, можем да използваме средната стойност на целевата променлива, за всяка от категориите (оттук идва и наименованието **Target Encoding**):

- средно за **Син** : 1 / 3 => 0.33

- средно за **Червен**: 0 / 3 => 0

- средно за **Зелен** : 2 / 3 => 0.67

Нов проблем: Уместността на числото е правопропорционална на броя наблюдения.

Weighted Target Encoding

Weighted Mean =
$$\frac{n \times \text{Option Mean} + m \times \text{Overall Mean}}{n + m}$$

Любим L	вят Височина (м.)	Изплатил Кредит	$3 \times 1/3 + 2 \times 3/7$
0.37	1.77	1	Син Weighted Mean = $\frac{3 \times 1/3 + 2 \times 3/7}{3 + 2} = 0.37$
0.29	1.32	0	
0.57	1.81	1	Червен Weighted Mean = $\frac{1 \times 0/1 + 2 \times 3/7}{1 + 2} = 0.29$
0.37	1.56	0	$\frac{\text{depsen vieighted integrit}}{1+2} = 0.29$
0.57	1.64	1	
0.57	1.61	0	$3 \times 2/3 + 2 \times 3/7$
0.37	1.73	0	Зелен Weighted Mean = $\frac{3 \times 2/3 + 2 \times 3/7}{3 + 2} = 0.57$

За да се справим с този проблем, използваме претеглена средна стойност.

n = брой наблюдения с тази стойност за категорията (напр. за Червен: n = 1).

Option Mean = средна стойност на целевата променлива за категорията.

m = хиперпараметър. Нека тук m = 2. Option Mean e "по-важна" от Overall Mean, ако n > 2.

Overall Mean = средна стойност на целевата променлива.

Weighted Target Encoding

Така постигаме стойности, по-близки до средната (това зависи от m).

Имаме ли теч на данни?

Любим Цвят	Височина (м.)	Изплатил Кредит
0.37	1.77	1
0.29	1.32	
0.57	1.81	1
0.37	1.56	
0.57	1.64	1
0.57	1.61	
0.37	1.73	

Любим Цвят	Височина (м.)	Изплатил Кредит
0.33	1.77	1
0	1.32	
0.67	1.81	1
0.33	1.56	
0.67	1.64	1
0.67	1.61	
0.33	1.73	

K-Fold Target Encoding

$$k = 2, m = 2$$

Weighted Mean =
$$\frac{n \times \text{Option Mean} + m \times \text{Overall Mean}}{n + m}$$

	Любим Цвят	Височина (м.)	Изплатил Кредит		
	0.22	1.77	1		
	0.33	1.32	0	0 (4)	Weighted $\frac{1 \times 0/1 + 2 \times 1/3}{1 \times 0/1 + 2 \times 1/3} = 0.22$
	0.42	1.81	1	Син (А)	Mean = $\frac{1 \times 6/1 + 2 \times 1/6}{1 + 2} = 0.22$
	0.22	1.56	0		112
_					
	0.42	1.64_	1		
	0.42	1.61	0	Син (Б)	Weighted Mean = $\frac{2 \times 1/2 + 2 \times 2/4}{2 + 2} = 0.5$
	0.5	1.73	0		Mean 2 + 2

Α

K-Fold Target Encoding

$$k = 2$$
, $m = 2$

Любим Цвят	Височина (м.)	Изплатил Кредит
0.22	1.77	1
0.33	1.32	0
0.42	1.81	1
0.22	1.56	0
0.42	1.64	1
0.42	1.61	0
0.22	1.73	0

Резултати:

- 1. Любим Цвят вече е непрекъсната (числова) променлива.
- 2. **Намален** теч на данни, т.к. за кодирането на стойностите се използват данни от други наблюдения.

Leave-One-Out Target Encoding

k = 7

Какво става, ако имаме само една стойност?

k = 7, m = 2

Любим Височина Изплатил

Α	Цвят	(м.)	Кредит		Цвят	(м.)	Кредит	
	Синьо	1.77	1		0.33	1.77	1	
Б								Теч на данни!
D	Синьо	1.32	0		0.5	1.32	0	:(
В								
5	Синьо	1.81	1		0.33	1.81	1	Любим Цвят < 0.42
Г								JINOMI TRAT
	Синьо	1.56	0		0.5	1.56	0	
Д								
	Синьо	1.64	1		0.33	1.64	1	Да Не
Е								
_	Синьо	1.61	0		0.5	1.61	0	
Ж				-				
/11	Синьо	1.73	0		0.5	1.73	0	
				•				•

Пюбим Височина Изплатил

Нов метод, който е в основата на CatBoost.

CatBoost третира наблюденията като идващи последователно.

Любим Цвят	Височин а (м.)	Изплатил Кредит
Син	1.77	Да

Любим Цвят	Височин а (м.)	Изплатил Кредит
Син	1.77	Да
Червен	1.32	He
Зелен		Да
Син		Не
Зелен		Да
Зелен		Не
Син	1.73	He

Любим Цвят	Височин а (м.)	Изплатил Кредит
Син	1.77	Да
Червен	1.32	He
Зелен	1.81	Да
Син		
Зелен		
Зелен		
Син		

Любим Цвят	Височина (м.)	Изплатил Кредит
Син	1.77	1
Червен	1.32	0
Зелен	1.81	1
Син	1.56	0
Зелен	1.64	1
Зелен	1.61	0
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

n = брой **получени** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding
$$\frac{0 + 0.05}{0 + 1} = 0.05$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
Зелен		
Син		
Зелен		
Зелен		
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding
$$\frac{0 + 0.05}{0 + 1} = 0.05$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
0.05	1.81	1
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding
$$\frac{0 + 0.05}{0 + 1} = 0.05$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
0.05	1.81	1
0.525	1.56	0
Зелен		
Зелен		
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding =
$$\frac{1 + 0.05}{1 + 1} = 0.525$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
0.05	1.81	1
0.525	1.56	0
0.525	1.64	1
Зелен		0
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding =
$$\frac{1 + 0.05}{1 + 1} = 0.525$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
0.05	1.81	1
0.525	1.56	0
0.525	1.64	1
0.683	1.64	0
Син	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost =
$$\frac{2 + 0.05}{2 + 1} = 0.683$$

n = брой **предишни** наблюдения с тази стойност за категорията.

Любим Цвят	Височина (м.)	Изплатил Кредит
0.05	1.77	1
0.05	1.32	0
0.05	1.81	1
0.525	1.56	0
0.525	1.64	1
0.683	1.64	0
0.35	1.73	0

CatBoost =
$$\frac{\text{OptionCount} + 0.05}{n + 1}$$

CatBoost Encoding
$$\frac{1 + 0.05}{2 + 1} = 0.35$$

n = брой **предишни** наблюдения с тази стойност за категорията.

При всяко създаване на дърво CatBoost първо разбърква наблюденията.

Любим Цвят	Височина (м.)
Син	1.56
Червен	1.32
Зелен	1.81
Син	1.77
Зелен	1.64

Любим Цвят	Височина (м.)
Зелен	1.81
Син	1.56
Син	1.77
Червен	1.32
Зелен	1.64

След това прилага Ordered Target Encoding върху всяка характеристика с поне 3 различни стойности.

- Категории с по-малко от 3 различни стойности се кодират с 0 и 1.
- Ако предсказваме непрекъсната променлива, то тя се дискретизира.

Любим Цвят	Височина (м.)	Интервал
Зелен	1.81	1
Син	1.56	0
Син	1.77	1
Червен	1.32	0
Зелен	1.64	1

Любим Цвят	Височина (м.)	Интервал
0.05	1.81	1
0.05	1.56	0
0.025	1.77	1
0.05	1.32	0
0.525	1.64	1

Колоната **Интервал** е необходима само за кодирането, т.ч. ще я скрием. Добавят се две колони:

- Предсказание: Резултат от спускане по дървото. По подразбиране 0.
- Грешка (residual): Истинска стойност Предсказана стойност

Любим Цвят	Височина (м.)	Интервал
0.05	1.81	1
0.05	1.56	0
0.025	1.77	1
0.05	1.32	0
0.525	1.64	1

Любим Цвят	Височина (м.)	Предсказа ние	Грешка
0.05	1.81	0	1.81
0.05	1.56	0	1.56
0.025	1.77	0	1.77
0.05	1.32	0	1.32
0.525	1.64	0	1.64

Строим пън на база Любим Цвят.

За улеснение тук, ще създадем само пън и като крайно дърво.

Любим Цвят	Височина (м.)	Предсказа ние	Грешка
0.05	1.81	0	1.81
0.05	1.56	0	1.56
0.025	1.77	0	1.77
0.05	1.32	0	1.32
0.525	1.64	0	1.64

Добавяме още една колона Средна грешка, която съхранява средната грешка на листо при добавяне на даден пример в него.

Средната грешка на листо е сумата на грешките в това листо, разделена на броя им.

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	0
0.025	1.77	0	1.77	0
0.05	1.32	0	1.32	0
0.525	1.64	0	1.64	0

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05				0
0.025				0
0.05				0
0.525				0

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	1.81
0.025				0
0.05				0
0.525	1.64	0	1.64	0

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	1.81
0.025	1.77	0	1.77	0
0.05				
0.525				

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	1.81
0.025	1.77	0	1.77	0
0.05	1.32	0	1.32	1.69
0.525				

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	1.81
0.025	1.77	0	1.77	0
0.05	1.32	0	1.32	1.69
0.525	1.64	0	1.64	1.56

Използва се косинусова близост на двете грешки за изчисляване доколко това разделяне е оптимално.

Косинусова Близост =
$$\frac{\sum\limits_{i=1}^{n}A_{i}B_{i}}{\sqrt{\sum\limits_{i=1}^{n}A_{i}^{2}}\sqrt{\sum\limits_{i=1}^{n}B_{i}^{2}}}$$

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56		1.56	1.81
0.025	1.77		1.77	0
0.05	1.32		1.32	1.69
0.525	1.64	0	1.64	1.56

Косинусова		
Близост за	=	0.71
0.04		

По същият начин пресмянаме косинусовата близост за всички разбивки.

В

0

Α

1.64

ЛЮОИМ Цвят	(м.)	ание	Грешка	Средна грешка
0.05	1.81		1.81	0
0.05	1.56		1.56	1.81
0.025	1.77		1.77	1.69
0.05	1.32		1.32	1.71

Избираме разбивката, която има най-висока косинусова близост. При повече характеристики трябва да се сравняват и разбивките, породени от тях.

Как отново избягваме теч на данни

При изграждането на дърво отново третираме данните, все едно ги получаваме последователно. Това означава, че за всяко наблюдение стойността в **Грешка** не се използва при изчисляване на **Средна грешка**. Следователно **Грешка** за текущо наблюдение не се използва и при изчисляването на новата стойност за **Предсказание** за текущо наблюдение.

Така се избягва теч на данни от текущото наблюдение.

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	1.81	0
0.05	1.56	0	1.56	1.81
0.025	1.77	0	1.77	0
0.05	1.32	0	1.32	1.69
0.525	1.64	0	1.64	1.56

Сега ще построим второ дърво (в този случай, пън). Преди това ще обновим предказанията и ще занулим грешката.

Предсказание = Предсказание + (Скорост на обучение * Средна грешка)

Нека Скорост на обучение = 0.1

Резултатите не са добри, но са по-добри от началните.

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
0.05	1.81	0	0	0
0.05		0		1.81
0.025		0		0
0.05		0		1.69
0.525	1.64	0	0	1.56

		Височина (м.)	Предсказ ание		Средна грешка
	0.05	1.81	0	0	
>		1.56	0.18		
		1.77	0.17		
		1.32	0.17		
	0.525	1.64	0	0	

Пресмятаме новата грешка, връщаме стойностите на категориите и процесът се повтаря отново.

Любим Цвят	Височина (м.)	Предсказ ание	Грешка	Средна грешка
Зелен	1.81	0	1.81	
Син	1.56	0.18	1.38	
Син	1.77	0.17	1.6	
Червен	1.32	0.17	1.15	
Зелен	1.64	0	1.64	

Как Catboost предсказва нови данни?

Нека имаме две крайни дървета (пънове).

Любим Цвят	Височина (м.)
Син	???

Как Catboost предсказва нови данни?

Използваме данните, които имаме, за да закодираме категорията.

Любим Цвят	Височина (м.)	Интервал
0.05	1.81	1
0.05	1.56	0
0.025	1.77	1
0.05	1.32	0
0.525	1.64	1

Любим Цвят	Височина (м.)
Син	???

Любим Цвят	Височина (м.)
0.35	???

Как Catboost предсказва нови данни?

Спускаме се по дърветата и използваме формулата

Предсказание = Скорост на обучение * (сума от средните грешки) .

Любим Цвят	Височина (м.)
0.35	0.3

$$0.1 * (1.64 + 1.38) = 0.3$$