

Idproxy – Geodaten für Jedermann

FOSSGIS-Konferenz am 21. März 2018

interactive instruments

Agenda

- Status quo
- Das Projekt "Spatial Data on the web"
- Die Software Idproxy
- Ausblick WFS 3.0

Status quo

- Zugriff auf Geodaten erfolgt in der Regel über:
 - Download
 - OGC-Webdienste (WFS oder WMS)
- Open Data öffnet den Geodaten-Markt und stellt Fachdaten für Jedermann bereit

Problem:

- Kenntnisse der Schnittstellen und Daten sowie das Vorhandensein entsprechender GIS-Werkzeuge sind notwendig → große Hürde für Nicht-Experten!
- Erwartung und Verhaltensweisen von Entwicklern und Nutzern haben sich geändert.

Experte vs Nicht-Experte

Typischer Ablauf in einer GDI (Experte)

- Öffnen des Geoportals im Webbrowser
- Navigation zur Suche nach Geodaten
- Eingabe von Suchtexten und Auswahl von strukturierten Suchkriterien
- Browsen durch die Ergebnisse und Selektieren eines Datensatzes
- Sichten der Metadaten
- Kopieren der WFS-GetCapabilities-URL
- Öffnen eines WFS-Clients
- Analysieren des Datensatzes, ob er die benötigten/gesuchten Informationen enthält
- Falls ja, Download des Datensatzes oder direkte Nutzung der Daten über den WFS in einer Anwendung

Nicht-Experte

- Eingabe von Suchkriterien für die Daten in der Address-/Suchangabe im Browser
- Browsen durch die Ergebnisse und Prüfung, ob einer der Treffer ein Datensatz zu den Suchkriterien ist oder auf einen solchen verweist
- Browsen durch den Datensatz, um zu bestimmen, ob er die benötigten/gesuchten Informationen enthält
- Falls ja, Download des gesamten Datensatzes oder Studium der Online-API-Dokumentation / Beispielen für den Zugriff auf die Daten
- Nutzung der Daten in einer Anwendung

OGC/W3C Best Practices

 W3C und OGC haben empfohlene Praktiken für die "webfreundliche" Veröffentlichung von Geodaten dokumentiert.

TABLE OF CONTENTS 1. Introduction Group 2. Audience Scope Spatial data Data publication Best practice criteria Privacy considerations **Best Practices Summary** Namespaces 5.1 General remarks 52 **RDF Namespaces** XML Namespaces 6. Spatial Things, Features and Geome-7. Coverages: describing properties that vary with location (and time) 8. Spatial relations 9. Coordinate Reference Systems (CRS) Linked Data

Spatial Data on the Web Best Practices

W3C Working Group Note 28 September 2017

This version:

https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/

Latest published version:

https://www.w3.org/TR/sdw-bp/

Latest editor's draft:

https://w3c.github.io/sdw/bp/

Previous version:

https://www.w3.org/TR/2017/NOTE-sdw-bp-20170511/

Editors:

Jeremy Tandy, Met Office

Linda van den Brink, Geonovum

Payam Barnaghi, University of Surrey

Contributors:

Phil Archer

Jon Blower

Newton Calegari

Byron Cochrane

Simon Cox

François Daoust

Andreas Harth

Bart van Leeuwen

© interactive instruments GmbH

Das Projekt "Spatial data on the web"

- Entstanden als Ideen des Schwerpunktthemas 4 (Infrastruktur und Datenabgabe) des GeoIT RoundTable NRW [1]
- Umgesetzt als Gemeinschaftsprojekt der Geschäftsstelle GDI-NW, des Ministeriums des Innern NRW, IT.NRW und der Firma interactive instruments
- Empfehlungen des OGC/W3C wurden für ausgewählte Geobasisdaten aus ALKIS und ATKIS umgesetzt.
- Evaluierung, wie die Daten und Dienste einem größeren Nutzerkreis auf möglichst einfache und verständliche Weise zugänglich gemacht werden können.
- Erprobt auf dem OpenNRW Hackathon 2017

[1] https://www.geoportal.nrw/geoit_round_table/schwerpunktthemen

Die Software Idproxy

- Proxy-Dienst, der aus WFSen Daten und Inhalte aufbereitet
 - nutzer-, entwickler- und suchmaschinenfreundlich
- Aufbereitung "on-the-fly" als HTML-Seiten
 - mit schema.org-Annotationen für Suchmaschinen
- Konfigurationsmöglichkeiten u.a. für Namen und Titel für bessere Lesbarkeit
- Übersichtsseiten, Verlinkungen etc.
- Geodaten auch abrufbar als GeoJSON, GML, JSON-LD
- Bereitstellung der Daten über eine REST API, gemäß der OpenAPI-Spezifikation
- Referenzimplementierung für WFS 3.0

Idproxy

Unterschied zu aktuellen Webdiensten

- Aktueller Stand der Technik -> REST APIs und JSON
- Selektion der Daten ist begrenzt, dafür aber einfach zu nutzen.
- Aufbereitung / Manipulation der Daten, damit sie ohne fachliches Know-How verstanden und genutzt werden können.
- Die API wird über die OpenAPI-Spezifikation beschrieben und kann im Browser ausprobiert werden. Die Verwendung von Code-Generatoren, erleichtert die Nutzung der API.
- Die Daten sind in HTML als Webseiten verfügbar und alle Seiten sind miteinander verlinkt.
- Suchmaschinen können die Daten selbst indizieren und damit auffindbar machen.
- Koordinatenreferenzsystem WGS84, das von GPS und vielen globalen Anwendungen verwendet wird.

Demo

- https://www.ldproxy.nrw.de/
- http://dev.ldproxy.net

Datasets

Topographie (NRW)

Das Basis-DLM beschreibt die Landschaft in Form von topographischen Objekten und stellt einen präsentationsneutralen, objektbasierten Vektordatenbestand dar.

Liegenschaftskataster (NRW)

Das Liegenschaftskataster wird in elektronischer Form im Amtlichen Liegenschaftskatasterinformationssystem (ALKIS) geführt. Der vorliegende Web Feature Service ermöglicht das gezielte Herunterladen von in ALKIS geführten Geo-Objekten auf Basis einer Suchanfrage (Direktzugriffs-Downloaddienst). Der Dienst stellt ausschließlich folgende Geo-Objekte beschränkt auf die wesentlichen Eigenschaften im Format eines vereinfachten Datenaustauschschemas bereit, das in dieser Produktspezifikation festgelegt ist: Flurstücke und Verwaltungseinheiten. Der Dienst ist konzipiert zur Nutzung in einfachen praxisgängigen GIS-Clients ohne komplexe Funktionalitäten.

powered by Idproxy

WFS 3.0

- Aktuelle Entwicklungsphase des Standards
- Aufteilung in Core und Extensions
- Erste Version des Core soll im April 2018 vorliegen, Inpuit für OGC Testbed 14
- Von Beginn an offene / kollaborative Entwicklung der Spezifikation [1]
- Paradigmenwechsel, basierend auf Best Practices
- [1] https://github.com/opengeospatial/WFS_FES
- [2] http://www.opengeospatial.org/event/180306hackaton
- [3] https://medium.com/@cholmes/wfs-3-0-get-excited-yes-8e904fdbcc0

OGC WFS 3.0 Hackathon 6./7. März

- Etliche neue Server- und Client-Implementierungen
 - Geoserver, GDAL, go-wfs, pygeoapi, ein OpenLayers-Client, Conformance Tests, ...
- Diskussionen
 - 19 neue Issues, 10 bereits in der Spezifikation und einigen Implementierungen umgesetzt, Weitere werden im nächsten Monat addressiert, u.a. Unterstützung von Zeit im Core, XML Schemas
 - Erweiterungen: Weitere CRS neben WGS84 Ion/lat, Collectionübergreifende Suche, usw.
 - Umsetzung von SpatioTemporal Asset Catalog (STAC) auf Basis von WFS 3.0
- Links
 - https://github.com/opengeospatial/wfs3hackathon
 - https://github.com/opengeospatial/WFS_FES/milestone/1
 - https://github.com/radiantearth/stac-spec/tree/dev/api-spec

Vielen Dank für Eure Aufmerksamkeit!

Kontakt:

Sven Böhme

boehme@interactive-instruments.de