Numerical Optimization

Lecture 4: Revised Simplex Method

王浩

信息科学与技术学院

Email: wanghao1@shanghaitech.edu.cn

1、Initialization (单纯形法的启动)

初始基本可行解:人工变量

- 目标: 判断 $Ax = b, x \ge 0$ 是否有解;
- 方法: 有解时, 去掉冗余方程, 找一个基本可行解;
 - ◆给有需要的行乘以-1, 使得 $b \ge 0$
 - ◆引入人工变量(auxiliary variables): y_i , i = 1,...,m

辅助
$$\displaystyle egin{array}{ll} \displaystyle y_i \\ \displaystyle i=1 \\ \displaystyle & \mathrm{subject\ to} \end{array} & \displaystyle Ax+y=b \\ \displaystyle & \displaystyle x\geq 0, y\geq 0 \end{array}$$

x = 0, y = b是基本可行解

◆以x = 0, y = b作为初始 BFS,利用单纯形法求解辅助问题 假设最后得最优解(x', y'),最优值f',最优基B'

3

数值最优化 ShanghaiTech-SIST-CS

得到原问题的基本可行解

- f' > 0,原问题无可行解!
- f' = 0, 原问题有可行解, 且x'是潜在的基本可行解!
 - ◆基变量中无人工变量 $\rightarrow x'$ 是BFS, B'是对应的基
 - ◆基变量中有人工变量**→**继续转轴,驱赶人工变量出基

假设第i个基变量是人工变量,且当前单纯形表第i行的前n个数据是($y_{i1}, y_{i2}, \dots, y_{in}$)

 $(y_{i1}, y_{i2}, \dots, y_{in}) \neq 0$ 以任一非零元为转轴元转轴 得辅助问题的一个新的最优**BFS**,且基变量中少1个人工变量! $(y_{i1}, y_{i2}, \dots, y_{in}) = 0$ 第 i 个约束冗余;

数值最优化 \$hanghaiTech-SIST-CS

例1. 给出下面系统的一个基本可行解,或者说明其无解

引入人工变量 $x_4 \ge 0$, $x_5 \ge 0$, 并在目标上"惩罚"人工变量,添加目标为: minimize $x_4 + x_5$

	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	b	辅助问题的
	2	1	2	1	0	4	初始表格!
	3	3	1	0	1	3	$x = (0, 0, 0, 4, 3)^{\mathrm{T}}$
$\overline{c^T}$	0	0	0	1	1	0	BFS

	x_1	$oldsymbol{x_2}$	x_3	x_4	x_5	\boldsymbol{b}	
	2	1	2	1	0	4	第一张
	3	3	1	0	1	3	单纯形表
	-5	-4	-3	0	0	$\overline{-7}$	
x_1	x_2	$x_{\mathfrak{s}}$	$oldsymbol{x}_4$	1	x_5	b	
0	-1	4/3] 1	L —	2/3	2	
1	1	1/3	3 ()	1/3	1	第二张
0	1	-4/3	3 ()	5/3	-2	单纯形表

数值最优化 \$hanghaiTech-SIST-CS

	$\boldsymbol{x_2}$			$oldsymbol{x_5}$	
0	-3/4	1	3/4	-1/2	3/2
1	5/4	0	$3/4 \\ -1/4$	1/2	1/2
			1		

辅助问题的最优值是0.

原问题的BFS:

$$x_1 = 1/2, \quad x_2 = 0, \quad x_3 = 3/2$$

例2. 利用两阶段法求解下面的问题

minimize
$$4x_1 + x_2 + x_3$$

subject to $2x_1 + x_2 + 2x_3 = 4$, $3x_1 + 3x_2 + x_3 = 3$, $x_1 > 0, x_2 > 0, x_3 > 0$

第 I 阶段:辅助问题

minimize x_4+x_5 subject to $2x_1+x_2+2x_3+x_4=4,$ $3x_1+3x_2+x_3+x_5=3,$ $x_1,x_2,x_3,x_4,x_5\geq 0.$

辅助问题的最后一张单纯形表

	$\boldsymbol{x_2}$	_		x_5	
)	-3/4	1	3/4	-1/2	3/2
1	5/4	0	-1/4	1/2	1/2
)	0	0	1	1	0

原问题的初始表格:

数值最优化

	x_1	$\boldsymbol{x_2}$	x_3	\boldsymbol{b}
	0	-3/4 $5/4$	1	3/2
	1	5/4	0	1/2
$\overline{c^T}$	4	1	1	0

继续转轴.....

	x_1		x_2	x_3	\boldsymbol{b}
	0	-:	3/4	1	3/2
	1	5	/4	0	1/2
r^T	0	-13	3/4	0	-7/2
		x_1	x_2	x_3	\boldsymbol{b}
		$\frac{x_1}{3/5}$	$egin{array}{c} x_2 \ 0 \end{array}$	$egin{array}{c} x_3 \ 1 \ \end{array}$	$\frac{b}{9/5}$

原问题的最优解: $x_1 = 0$, $x_2 = 2/5$, $x_3 = 9/5$

两阶段法的例子

$$egin{array}{ll} ext{minimize} & x_1-x_2 \ ext{subject to} & -x_1+2x_2+x_3=2 \ & -4x_1+4x_2-x_3=4 \ & -5x_1+6x_2=6 \ & x_1-x_3=0 \ & x_1,\ x_2,\ x_3>0 \end{array}$$

两阶段法: 可求解任意的线性规划问题

- 第 I 阶段: 启动单纯形法
 - ◆构造、求解辅助问题
 - ◆判断原问题不可行、或可行
 - ◆可行时,去掉冗余约束并找到BFS及其对应的规范形
- 第 Ⅱ 阶段: 利用单纯形法求原问题
 - ◆从上述BFS出发,求解所给问题
 - ◆原问题无界或者有解

数值最优化 ShanghaiTech-SIST-CS

大M法(Big M)

輔助
问题 subject to
$$Ax + y = b$$

 $x \ge 0, y \ge 0$

其中是M > 0给定的充分大的参数

2、Revised Simplex Method(修正单纯形法)

与基矩阵 B 对应的单纯形表

$$\begin{bmatrix}
B^{-1}A & B^{-1}b \\
\hline
c^{T} - c_{B}^{T}B^{-1}A & -c_{B}^{T}B^{-1}b
\end{bmatrix}
\lambda^{T} = c_{B}^{T}B^{-1}$$

单纯形乘子

15

$$r_j = c_j - \lambda^T a_j, \; y_q = B^{-1} a_q, \; y_0 = B^{-1} b$$

重要事实:

- ◆ 单纯形法的迭代次数典型地为2m ~ 3m
- ◆ 每次迭代所涉及运算的信息: B^{-1} , \mathscr{B} , 以及原问题的信息

数值最优化 ShanghaiTech-SIST-CS

基的逆和单纯形乘子的转换

新基进基

可见 $\hat{\mathbf{B}}^{-1}$ 和 \mathbf{B}^{-1} 之间关系为:

老基出基

$$\hat{\lambda}^T = \lambda^T + \frac{r_q}{y_{pq}} \mathbf{u}_p, \quad \sharp \mathbf{p} \mathbf{u}_p$$

表示 B^{-1} 的第p行

基于初等行变换(转轴运算)的数据更新

设转轴元是 y_{pq} ,则 a_q 进基 a_p 出基后

变量指标		B^{-1}		x_B	y_q
i_1				${ar b}_1$	y_{1q}
:				:	• •
i_p				${ar b}_2$	y_{pq}
:				•	•
i_m				$ar{b}_m$	y_{mq}
λ^T	λ_1	• • •	λ_m	f	$-r_q$

以ypq为转轴元,转轴后即得新基对应的数据!

数值最优化 ShanghaiTech-SIST-CS

修正单纯形法的计算步骤

单纯形乘子

19

步 $\mathbf{0}$ 给定BFS及对应的 B^{-1} . 计算 $\bar{b}=B^{-1}b$, $\lambda^T=c_B^{\bar{T}}B^{-1}$

步1 计算 $r_N^T = c_N^T - \lambda^T N$. 如果 $r_N \ge 0$, 停;得最优解.

- 步2 选取q满足 $\mathbf{r}_q = \min\{\mathbf{r}_j \mid \mathbf{r}_j < 0, j = 1,...,n\}$
- 步3 计算 $y_q = B^{-1}a_q$; 若 $y_q = (y_{1q}, y_{2q}, ..., y_{mq})^T \le 0$, 问题无界; 否则,选p满足 $\frac{\bar{b}_p}{y_{pq}} = \min \left\{ \frac{\bar{b}_i}{y_{iq}} \mid y_{iq} > 0, i = 1, ..., m \right\}$

步4 更新 B^{-1} , $B^{-1}b$ 和 λ^T , 返步1.

例1 求解例(如果是两阶段法呢?)

$$c = (-1, -1, -3, 0, 0, 0)^T$$

$$r_N^T = c_N^T - \lambda^T N = (-3, -1, -3)$$

 a_1 进基,计算 y_1 . 得q=1

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$oldsymbol{\lambda}^{ ext{T}}$	0	0	0	0	3

转轴:

变量		B^{-1}		x_B	y_1
4	1	0	0	2	2
5	0	1	0	5	1
6	0	0	1	6	2
$\boldsymbol{\lambda^{\mathrm{T}}}$	0	0	0	0	3

变量		B^{-1}		x_B
1	$\frac{1}{2}$	0	0	1
5	$-\frac{1}{2}$	1	0	4
6	$-\bar{1}$	0	1	4
λ^{T}	$-\frac{3}{2}$	0	0	-3

计算
$$r_2 = \frac{1}{2}$$
, $r_3 = -\frac{3}{2}$, $r_4 = \frac{3}{2}$, $q = 3$
计算 $y_3 = \mathbf{B}^{-1}\mathbf{a}_3 = (\frac{1}{2}, \frac{5}{2}, 0)^T$

变量		B^{-1}		x_B	y_3
1	$\frac{1}{2}$	0	0	1	$\frac{1}{2}$
5	$-\frac{1}{2}$	1	0	4	$\frac{5}{2}$
6	-1	0	1	4	0
$\lambda^{ ext{T}}$	$-rac{3}{2}$	0	0	-3	$\frac{3}{2}$

变量		B^{-1}		x_B
1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{1}{5}$
3	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
6	-1	0	1	4
λ^{T}	$-\frac{6}{5}$	$-\frac{3}{5}$	0	$-rac{27}{5}$

计算:
$$r_2 = \frac{7}{5}$$
, $r_3 = \frac{6}{5}$, $r_4 = \frac{3}{5}$

最优值: $z^* = -27/5$

最优解:
$$\mathbf{x}^* = (\frac{1}{5}, 0, \frac{8}{5}, 0, 0, 4)^T$$

变量有界形式 (另一种标准型)

• 施加上下界约束

min
$$c^T x$$

s.t. $Ax = b$
 $l \le x \le u$

• 同样可以定义基本解、基本可行解、设计 simplex method等(见[1] 3.5节)

数值最优化 ShanghaiTech-SIST-CS

3、Complexity (单纯形法的复杂度)

单纯形法的效率

有效性问题: 给定一个问题, 求解它需要多长时间(时间复杂度)? 求解它需要多少存储空间(空间复杂度)? 两种解答

- ➤ 平均情况(average case): 典型问题需要多少时间
 - 从数学上研究很困难
 - 反应客观体验
- ➤最坏情况(worst case): 最难的问题需要多少时间
 - 数学上是可处理的
 - 不代表通常体验

度量(measures)

度量规模(measures of size) - 问题的度量

- ➤ 约束的个数 m 和/或者变量的个数 n
- ➤ 数据个数mn
- > 非零数据的个数
- ➤ 尺寸,比如以bytes为单位

度量时间(measuring time) - 算法的度量

- > 迭代次数
- > 每次迭代的算术运算次数
- ➤ 每次算术运算的时间(依赖于硬件)

Klee-Minty问题(1972)

maximize
$$\sum\limits_{i=1}^n 2^{n-i}x_i$$
 subject to $2\sum\limits_{i=1}^{j-1} 2^{j-i}x_i+x_j\leq 100^{j-1},\;\;j=1,2,\cdots,n$ $x_i\geq 0,\;\;\;i=1,2,\cdots,n$

n=3 时:

$$egin{array}{lll} ext{maximize} & 4x_1 + 2x_2 + x_3 \ ext{subject to} & x_1 & \leq & 1 \ & 4x_1 + x_2 & \leq & 100 \ & 8x_1 + 4x_2 + x_3 & \leq & 10000 \ & x_1, \ x_2, \ x_3 & \geq & 0 \ \end{array}$$

扭曲的立方体(A distorted Cube)

约束集是如下立方体的稍微(minor)扭曲:

$$0 \le x_1 \le 1$$

 $0 \le x_2 \le 100$
:

$$0 \le x_n \le 100^{n-1}$$

Klee-Minty Problem

max
$$2^{D-1}x_1 + 2^{D-2}x_2 + \cdots + 2x_{D-1} + x_D$$

 $x_1 \leq 5$

 $4x_1 + x_2 \le 25$

subject to

$$8x_1 + 4x_2 + x_3 \leq 125$$

. _ **r**D

$$2^D x_1 + 2^{D-1} x_2 + \dots + 4 x_{D-1} + x_D \leq 5^D$$

 $x_1 \geq 0, \ldots, x_D \geq 0.$

指数 (Exponential)

Klee-Minty的问题说明:

- 当求解具有n个变量和约束的问题时,最小系数规则有可能需要 $2^n 1$ 次转轴(因此遍历了扭曲立方体的 2^n 个顶点)
- 假设 1 秒钟迭代 1000 次,求解这个问题需要 400 亿年; 宇宙的估计年龄是 137 亿年.
- · 然而每天求解的问题中,变量在10,000到100,000之间的很普遍.

Worst case analysis is just that: worst case.

数值最优化 ShanghaiTech-SIST-CS

复杂度(Complexity)	复杂度((Compl	lexity)
-----------------	------	--------	---------

排序: $O(n \log n)$

矩阵乘以向量: $O(n^2)$

矩阵乘以矩阵: $O(n^3)$

解线性方程组: $O(n^3)$

单纯形法:

➤ 最坏情况: $O(n^22^n)$

 \rightarrow 平均情况: $O(n^3)$

➤问题: 是否存在求解线性规划的 方法,它的最坏性能分析是多项式 的?

\boldsymbol{n}	n^2	n^3	2^n
1	1	1	1
2	4	8	4
3	9	27	8
4	16	64	16
5	25	$\bf 125$	32
6	36	216	64
7	47	343	128
8	64	$\bf 512$	256
9	81	729	512
10	100	1000	$\boldsymbol{1024}$
12	144	1728	4096
14	196	2744	16384
16	256	4096	65536
18	$\bf 324$	$\bf 5832$	262144
20	400	8000	1048576
22	484	10648	4194304
$\bf 24$	576	$\boldsymbol{13824}$	16777216
26	676	17576	67108864
28	784	$\bf 21952$	268435456
30	900	$\boldsymbol{27000}$	1073741824

Gödel Prize 2008

• Spielman, Daniel A., and Shang-Hua Teng (腾尚华). "Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time." *Journal of the ACM (JACM)* 51.3 (2004): 385-463.

Gödel Prize 2015: "nearly-linear-time Laplacian solvers"

Fulkerson Prize 2009

上交大: EE本科, CS硕士

CMU: CS PhD

91--09年: BU、MIT、Minnesota、UIUC、 Xerox PARC, NASA Ames Research Center, Intel Corporation, IBM Almaden Research Center, Akamai Technologies, Microsoft Research Redmond, Microsoft Research New England and Microsoft Research Asia.....SCU

• 腾尚华