1

Assignment 18

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix_Theory_EE5609/tree/master/codes

1 **Problem**

Which of the following matrices have Jordan canonical form equal to

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}?$$

1.
$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$
2.
$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$
3.
$$\begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$
4.
$$\begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Definitions

Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions

3 Explanation

Statement	Solution	
1.		
	Let $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
	Since A is upper triangular matrix, $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$	
	Therefore, $p(x) = (x)^3$	
	Solving $\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
	Solving $\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
	Since $\mathbf{A} \neq 0$	
	Therefore, $m(x) = (x)^2$	
Justification	Hence, the Jordan form of $\bf A$ is a 3×3 matrix consisting of two block: one block of order 2 with principal diagonal value as $\lambda=0$ and super diagonal of the block (i.e the set of elements that lies directly above the elements comprising the principal diagonal) contains 1. And one block of order 1 with $\lambda=0$. Hence the required Jordan form of $\bf A$ is,	
	$\therefore \mathbf{J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
Conclusion	Therefore option 1 is true.	

\sim	
٠,	

Let
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Since **A** is upper triangular matrix, $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$

Therefore,
$$p(x) = (x)^3$$

Solving
$$\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Solving
$$\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Since $A \neq 0$

Therefore, $m(x) = (x)^2$

Justification

Hence, the Jordan form of **A** is a 3×3 matrix consisting of two block: one block of order 2 with principal diagonal value as $\lambda = 0$ and super diagonal of the block (i.e the set of elements that lies directly above the elements comprising the principal diagonal) contains 1.

And one block of order 1 with $\lambda = 0$.

Hence the required Jordan form of A is,

$$\therefore \mathbf{J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Conclusion

Therefore option 2 is true.

3.	
	Let $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Since A is upper triangular matrix, $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$
	Therefore, $p(x) = (x)^3$
	Solving $\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Solving $\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Since $\mathbf{A} \neq 0$
	Therefore, $m(x) = (x)^2$
Justification Hence, the Jordan form of $\bf A$ is a 3×3 matrix consisting of two one block of order 2 with principal diagonal value as $\lambda=0$ and diagonal of the block (i.e the set of elements that lies directly a elements comprising the principal diagonal) contains 1. And one block of order 1 with $\lambda=0$. Hence the required Jordan form of $\bf A$ is,	
	$\therefore \mathbf{J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Therefore option 3 is true.

Conclusion

4.	Let $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
	Since A is upper triangular matrix, $\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$
	Therefore, $p(x) = (x)^3$ Solving $\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Solving $\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Since $\mathbf{A}^2 \neq 0$ Therefore, $m(x) = (x)^3$
Justification	Hence, the Jordan form of \mathbf{A} is a 3×3 matrix consisting of only one block with principal diagonal values as $\lambda = 0$ and super diagonal of the matrix (i.e the set of elements that lies directly above the elements comprising the principal diagonal) contains 1. Hence the required Jordan form of \mathbf{A} is, $\therefore \mathbf{J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
Conclusion	Therefore option 4 is false.

TABLE 2: Solution

4 Summarization of Above Results

For given jordan form:	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
We have two blocks:	one block is of order 2. And one block is of order 1. And eigenvalues are all $\lambda = 0$ \therefore Algebraic Multiplicity of 0 is 3. The rank of the matrix is 1.
	Geometric Multiplicity of $0 = n - \text{Rank}(\mathbf{A} - \lambda \mathbf{I})$ = $n - \text{Rank}(\mathbf{A})$ = 2
1.	The eigenvalue order of 0 in the characteristic polynomial = 3. ∴ Algebraic Multiplicity of 0 is 3. The eigenvalue order of 0 in the minimal polynomial = 2. The rank of the matrix is 1. ∴ The Geometric Multiplicity of 0 = 2. Therefore the matrix gives the same jordan form
2.	The eigenvalue order of 0 in the characteristic polynomial = 3. ∴ Algebraic Multiplicity of 0 is 3. The eigenvalue order of 0 in the minimal polynomial = 2. The rank of the matrix is 1. ∴ The Geometric Multiplicity of 0 = 2. Therefore the matrix gives the same jordan form
3.	The eigenvalue order of 0 in the characteristic polynomial = 3. ∴ Algebraic Multiplicity of 0 is 3. The eigenvalue order of 0 in the minimal polynomial = 2. The rank of the matrix is 1. ∴ The Geometric Multiplicity of 0 = 2. Therefore the matrix gives the same jordan form
4.	The eigenvalue order of 0 in the characteristic polynomial = 3. ∴ Algebraic Multiplicity of 0 is 3. The eigenvalue order of 0 in the minimal polynomial = 3. The rank of the matrix is 2. ∴ The Geometric Multiplicity of 0 = 1. Therefore the matrix gives different jordan form

TABLE 3: Conclusion of above Results