VII Cubic Equation: $ax^3 + bx^2 + cx + d = 0$

Transform $x \to y - \frac{b}{3a}$.

$$\Rightarrow a \left(y - \frac{b}{3a} \right)^{3} + b \left(y - \frac{b}{3a} \right)^{2} + c \left(y - \frac{b}{3a} \right) + d = 0$$

$$\Rightarrow y^{3} - 3 \cdot \frac{b}{3a} y^{2} + 3 \left(\frac{b}{3a} \right)^{2} y - \left(\frac{b}{3a} \right)^{3} + \frac{b}{a} \left[y^{2} - 2 \cdot \frac{b}{3a} y + \left(\frac{b}{3a} \right)^{2} \right] + \frac{c}{a} \left(y - \frac{b}{3a} \right) + \frac{d}{a} = 0$$

$$y^{3} + \left(\frac{c}{a} - \frac{b^{2}}{3a^{2}} \right) y + \left[2 \left(\frac{b}{3a} \right)^{3} - \frac{c}{a} \left(\frac{b}{3a} \right) + \frac{d}{a} \right] = 0$$

For simplicity, let the new equation be $y^3 + 3py + q = 0$. $p = \frac{c}{3a} - \left(\frac{b}{3a}\right)^2$, $q = 2\left(\frac{b}{3a}\right)^3 - \frac{c}{a}\left(\frac{b}{3a}\right) + \frac{d}{a}$

This is called the **standard cubic equation**.

Theorem: $y^3 - 3uvy - (u^3 + v^3) \equiv (y - u - v)(y - \omega u - \omega^2 v) (y - \omega^2 u - \omega v)$

where
$$\omega = \frac{-1 + \sqrt{3}i}{2}$$
 or $\frac{-1 - \sqrt{3}i}{2}$

Proof: The above is an identity.

$$(y - \omega u - \omega^2 v) (y - \omega^2 u - \omega v) = y^2 + u^2 + v^2 - (\omega + \omega^2) uy - (\omega + \omega^2) vy + (\omega^2 + \omega^4) uv$$

= $y^2 + u^2 + v^2 - (-1)uy - (-1)vy + (-1)uv$
= $y^2 + u^2 + v^2 + uy + vy - uv$

RHS =
$$(y - u - v)(y - \omega u - \omega^2 v) (y - \omega^2 u - \omega v)$$

= $(y - u - v)(y^2 + u^2 + v^2 + uy + vy - uv)$
= $y^3 + (u + v)y^2 - (u + v)y^2 + (u^2 + v^2 - uv)y - (u + v)^2 y - (u^2 + v^2 - uv)(u + v)$
= $y^3 + [u^2 + v^2 - uv - (u + v)^2]y - (u + v)(u^2 - uv + v^2)$
= $y^3 + [-uv - 2uv]y - (u^3 + v^3)$
= $y^3 - 3uvy - (u^3 + v^3) = LHS$

Let p = -uv, $q = -(u^3 + v^3)$

Then u^3 , v^3 are the roots of $t^2 + qt - p^3 = 0$

$$u^{3} = \frac{-q - \sqrt{q^{2} + 4p^{3}}}{2}, v^{3} = \frac{-q + \sqrt{q^{2} + 4p^{3}}}{2} \Rightarrow u = \left(\frac{-q - \sqrt{q^{2} + 4p^{3}}}{2}\right)^{\frac{1}{3}}, v = \left(\frac{-q + \sqrt{q^{2} + 4p^{3}}}{2}\right)^{\frac{1}{3}}$$

From the cubic equation: $y^3 + 3py + q = 0$

$$\Rightarrow y^3 - 3uvy - (u^3 + v^3) = 0$$

$$\Rightarrow (y - u - v)(y - \omega u - \omega^2 v) (y - \omega^2 u - \omega v) = 0$$

$$\Rightarrow$$
 $y = u + v$, $\omega u + \omega^2 v$, or $\omega^2 u + \omega v$

$$y = \left(\frac{-q - \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}} + \left(\frac{-q + \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}}, \quad \left(\frac{-q - \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}} \omega + \left(\frac{-q + \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}} \omega^2$$
or
$$\left(\frac{-q - \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}} \omega^2 + \left(\frac{-q + \sqrt{q^2 + 4p^3}}{2}\right)^{\frac{1}{3}} \omega, \text{ where } \omega = \frac{-1 + \sqrt{3}i}{2}$$

Suppose $\Delta = q^2 + 4p^3 > 0$

Then the second and the third roots of y are complex conjugates.

y has one real root and two complex roots.

Suppose
$$\Delta = q^2 + 4p^3 = 0$$

$$y = 2\left(\frac{-q}{2}\right)^{\frac{1}{3}}, \ \left(\frac{-q}{2}\right)^{\frac{1}{3}}\omega + \left(\frac{-q}{2}\right)^{\frac{1}{3}}\omega^2 \text{ or } \left(\frac{-q}{2}\right)^{\frac{1}{3}}\omega^2 + \left(\frac{-q}{2}\right)^{\frac{1}{3}}\omega$$
$$= -(4q)^{\frac{1}{3}}, \ \left(\frac{q}{2}\right)^{\frac{1}{3}} \text{ or } \left(\frac{q}{2}\right)^{\frac{1}{3}}$$

y has three real roots, amongst them two are equal. Suppose $\Delta = q^2 + 4p^3 < 0$

Suppose
$$\Delta = q^2 + 4p^3 < 0$$

$$\left(\frac{-q-\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}}, \left(\frac{-q+\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}} \text{ are complex conjugates} \Rightarrow 1^{\text{st}} \text{ root is real}$$

$$\left(\frac{-q-\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}} \omega, \left(\frac{-q+\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}} \omega^2 \text{ are complex conjugates} \Rightarrow 2^{\text{nd}} \text{ root is real}$$

$$\left(\frac{-q-\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}} \omega^2, \left(\frac{-q+\sqrt{q^2+4p^3}}{2}\right)^{\frac{1}{3}} \omega \text{ are complex conjugates} \Rightarrow 3^{\text{rd}} \text{ root is real}$$

y has three real roots.

In this case,
$$q^2 + 4p^3 < 0 \Rightarrow p < 0$$

let
$$y = 2\sqrt{-p}\cos\theta$$

$$y^{3} + 3py + q = 0 \Rightarrow (2\sqrt{-p}\cos\theta)^{3} + 3p(2\sqrt{-p}\cos\theta) + q = 0$$
$$-8p\sqrt{-p}\cos^{3}\theta + 6p\sqrt{-p}\cos\theta + q = 0$$

$$4\cos^{3}\theta - 3\cos\theta = -\frac{q}{2(-p)^{\frac{3}{2}}}$$

$$\cos 3\theta = -\frac{q}{2(-p)^{\frac{3}{2}}}$$

$$\theta = \frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right], \quad \frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right] + \frac{2\pi}{3}, \quad \frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right] + \frac{4\pi}{3}$$

$$y = 2\sqrt{-p}\cos\left\{\frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right]\right\}, 2\sqrt{-p}\cos\left\{\frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right] + \frac{2\pi}{3}\right\},$$

$$2\sqrt{-p}\cos\left\{\frac{1}{3}\cos^{-1}\left[-\frac{q}{2(-p)^{\frac{3}{2}}}\right] + \frac{4\pi}{3}\right\}$$

C-11-4 D	C C	FARILII MADDE	MODECZZAC	2 (CMIDI V) 2
Calculator Programme	TOP CASIO IX	-506 0 11 1910/06	INIODE 033AU	JUVIPLATZ

									,
(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	В	(18)	x^3	(19)	_	(20)	9
(21)	L	(22)	2	(23)	A	(24)	((25)	В
(26)	С	(27)		(28)	3	(29)	D	(30)	A
(31)	\rightarrow	(32)	D	(33)	:	(34)	В	(35)	x^2
(36)	_	(37)	3	(38)	A	(39)	C	(40)	\rightarrow
(41)	C	(42)	:	(43)	((44)	D	(45)	x^2
(46)	_	(47)	С	(48)	x^3	(49)	:	(50)	Ans
(51)	_	(52)	D	(53)	_	(54)	2	(55)	Ans
(56)	((57)	Ans	(58)	=	(59)	D	(60)	\rightarrow
(61)	D	(62)	:	(63)	∛((64)	Abs((65)	Ans
(66)	\Rightarrow	(67)	Ans	(68)		(69)	((70)	3
(71)	x^{-1}	(72)	arg((73)	D	(74)	\rightarrow	(75)	D
(76)	:	(77)	While	(78)	1	(79)	:	(80)	Abs(
(81)	D	(82)	\Rightarrow	(83)	D	(84)	+	(85)	C
(86)	L	(87)	D	(88)	:	(89)	((90)	Ans
(91)	_	(92)	В	(93))	(94)	Ь	(95)	(
(96)	3	(97)	A	(98)	4	(99)	D	(100)	×
(101)	1	(102)	_	(103)	5	(104)	!	(105)	0
(106)	\rightarrow	(107)	D	(108)	:	(109)	WhileEnd		
T	MODE 1 (CO		*4 41		1				

Press MODE 1 (COMP) to exit the progamme mode.

Remark: to press the degree symbol °: Press Shift Ans 1.

Programme demonstration To solve $x^3 - 6x - 9 = 0$

<u>-1081 William Wolfford 10 2017 W</u>							
Key sequences	Display	Explanation					
AC Prog P3	$A^? 0.$	Enter into P3 CMPLX mode					
1 EXE 0 EXE -6 EXE -9 EXE	3. _{Disp}	A = 1, B = 0, C = -6, D = -9, 1st ans. = 3					
EXE	-1.5 _{Disp} R⇔I						
SHIFT EXE	$0.866025403_{i \text{ Disp}} \stackrel{R \Leftrightarrow I}{\longrightarrow} I$	2nd answer = $-1.5 + 0.866025403i$					
EXE	-1.5 _{Disp} R⇔I						
SHIFT EXE	-0.866025403 _{i Disp} R⇔I	3rd answer $M = -1.5 - 0.866025403i$					

Press AC and then MODE 1 to exit the programme mode and the CMPLX mode.

To solve $x^2 + 2x + 3 = 0$. Multiply the equation by X to give $x^3 + 2x^2 + 3x = 0$.

Remaining steps are the same, discard the first answer X = 0. Press MODE 1 to exit CMPLX mode.

Exercise 2

1. Solve
$$x^3 - 6x - 9 = 0$$
 [Ans. 3, $\frac{-3 \pm \sqrt{3}i}{2}$]

2. Solve
$$x^3 - 12x - 16 = 0$$
 [Ans. 4, -2, -2]

3. Solve
$$4x^3 - 43x + 21 = 0$$
 [Ans. $\frac{1}{2}$, 3, $-\frac{7}{2}$]

- 4. Remove the coefficient of x^2 in $x^3 8x^2 + 20x 16 = 0$. Hence solve for x. [Ans. 4, 2, 2]
- 5. If $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$ is rewritten as $A(x+p)^3 + B(x+q)^3 = 0$, show that p and q are the roots of the equation $(a_0 \ a_2 a_1^2)t^2 (a_0a_3 a_1a_2)t + (a_1a_3 a_2^2) = 0$. Hence find the solution to x.

Cubic Equation

1.
$$x^3 - 6x - 9 = 0$$

 $p = -2, q = -9$
 $\Delta = q^2 + 4p^3 = (-9)^2 + 4(-2)^3 = 81 - 32 > 0$

... The equation has one real root and 2 complex conjugate roots.

∴ The equation has one real root and 2 complex
$$x = u + v$$

$$(u + v)^3 - 6(u + v) - 9 = 0$$

$$u^3 + 3u^2v + 3uv^2 + v^3 - 6(u + v) - 9 = 0$$

$$u^3 + v^3 + (u + v)(3uv - 6) - 9 = 0$$
Let $uv = 2$, then
$$\begin{cases} u^3v^3 = 8 \\ u^3 + v^3 = 9 \end{cases}$$

$$u^3, v^3 \text{ are roots of } t^2 - 9t + 8 = 0$$

$$(t - 1)(t - 8) = 0$$

$$t = 1 \text{ or } 8 \Rightarrow u^3 = 1, v^3 = 8 \Rightarrow u = 1, v = 2$$

$$x = u + v = 1 + 2 = 3$$

$$x - 3 \text{ is a factor of } x^3 - 6x - 9$$
By division, $x^3 - 6x - 9 = (x - 3)(x^2 + 3x - 3) = 0$

$$x = 3 \text{ or } \frac{-3 \pm \sqrt{3}i}{2}$$

2.
$$x^3 - 12x - 16 = 0$$

 $p = -4, q = -16$
 $\Delta = q^2 + 4p^3 = (-16)^2 + 4(-4)^3 = 256 - 256 = 0$

... The equation has three real roots, amongst them two are equal.

$$x = u + v$$

$$(u + v)^{3} - 12(u + v) - 16 = 0$$

$$u^{3} + 3u^{2}v + 3uv^{2} + v^{3} - 12(u + v) - 16 = 0$$

$$u^{3} + v^{3} + (u + v)(3uv - 12) - 16 = 0$$
Let $uv = 4$, then
$$\begin{cases} u^{3}v^{3} = 64 \\ u^{3} + v^{3} = 16 \end{cases}$$

$$u^{3}, v^{3} \text{ are roots of } t^{2} - 16t + 64 = 0$$

$$(t - 8)^{2} = 0$$

$$t = 8 \Rightarrow u^{3} = 8, v^{3} = 8 \Rightarrow u = 2, v = 2$$

$$x = u + v = 2 + 2 = 4$$

$$x - 4 \text{ is a factor of } x^{3} - 12x - 16$$
By division, $x^{3} - 12x - 16 = (x - 4)(x^{2} + 4x + 4) = 0$

$$x = 4, -2 \text{ or } -2$$

3.
$$4x^{3} - 43x + 21 = 0 \qquad [Ans. \frac{1}{2}, 3, -\frac{7}{2}]$$
$$x^{3} - 3\left(\frac{43}{12}\right)x + \frac{21}{4} = 0$$
$$p = -\frac{43}{12}, q = \frac{21}{4}$$
$$\Delta = q^{2} + 4p^{3} = \left(\frac{21}{4}\right)^{2} + 4\left(-\frac{43}{12}\right)^{3} = -\frac{4225}{27} < 0$$

:. The equation has three distinct real roots

$$x = 2\sqrt{-p}\cos\theta = 2\sqrt{\frac{43}{12}}\cos\theta = \sqrt{\frac{43}{3}}\cos\theta$$

$$4\left(\sqrt{\frac{43}{3}}\cos\theta\right)^{3} - 43\left(\sqrt{\frac{43}{3}}\cos\theta\right) + 21 = 0$$

$$4 \cdot \frac{43}{3} \cdot \sqrt{\frac{43}{3}}\cos^{3}\theta - 43\left(\sqrt{\frac{43}{3}}\cos\theta\right) + 21 = 0$$

$$\frac{43}{3} \cdot \sqrt{\frac{43}{3}}(4\cos^{3}\theta - 3\cos\theta) = -21$$

$$\cos 3\theta = -\frac{63\sqrt{3}}{43\sqrt{43}}$$

$$3\theta = 112.7672684^{\circ}$$

$$\theta = 37.58908947^{\circ}, 157.5890895^{\circ}, 277.5890895^{\circ}$$

$$x = \sqrt{\frac{43}{3}}\cos 37.58908947^{\circ}, \ \sqrt{\frac{43}{3}}\cos 157.5890895^{\circ}, \ \sqrt{\frac{43}{3}}\cos 277.5890895^{\circ}$$

$$x = 3, -3.5, 0.5$$

4.
$$x^3 - 8x^2 + 20x - 16 = 0$$

Let
$$x = y - \frac{b}{3a} = y + \frac{8}{3}$$

$$\left(y + \frac{8}{3}\right)^3 - 8\left(y + \frac{8}{3}\right)^2 + 20\left(y + \frac{8}{3}\right) - 16 = 0$$

$$(3y+8)^3 - 24(3y+8)^2 + 180(3y+8) - 432 = 0$$

$$27y^3 + 3(9y^2)(8) + 3(3y)(64) + 512 - 24(9y^2 + 48y + 64) + 540y + 1440 - 432 = 0$$

$$27y^3 - 36y - 16 = 0$$

$$y^3 - \frac{4}{3}y - \frac{16}{27} = 0$$
; $p = -\frac{4}{9}$, $q = -\frac{16}{27}$

$$\Delta = q^2 + 4p^3 = \left(-\frac{16}{27}\right)^2 + 4\left(-\frac{4}{9}\right)^3 = 0$$

The equation has 3 real roots, 2 of which are equal.

$$y = u + v$$

$$27(u+v)^3 - 36(u+v) - 16 = 0$$

$$27(u^3 + 3u^2v + 3uv^2 + v^3) - 36(u + v) - 16 = 0$$

$$27(u^3 + v^3) + (u + v)(81uv - 36) - 16 = 0$$

Let
$$uv = \frac{4}{9}$$
, then

$$\begin{cases} u^3 v^3 = \frac{64}{729} \\ u^3 + v^3 = \frac{16}{27} \end{cases}$$

$$u^3$$
, v^3 are roots of $729t^2 - 432t + 64 = 0$
 $(27t - 8)^2 = 0$

$$t = \frac{8}{27} \Rightarrow u^3 = \frac{8}{27}, v^3 = \frac{8}{27} \Rightarrow u = \frac{2}{3}, v = \frac{2}{3}$$

 $y = u + v = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}$

$$3y - 4$$
 is a factor of $27y^3 - 36y - 16$

By division,
$$27y^3 - 36y - 16 = (3y - 4)(9x^2 + 12x + 4) = (3y - 4)(3y + 2)^2$$

$$y = \frac{4}{3}, -\frac{2}{3}$$
 or $-\frac{2}{3}$

$$x = y + \frac{8}{3} = 4$$
, 2 or 2

5.
$$A(x+p)^3 + B(x+q)^3 = 0$$

$$A(x^3 + 3px^2 + 3p^2x + p^3) + B(x^3 + 3qx^2 + 3q^2x + q^3) = 0$$

Compare it with $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$

$$A + B = a_0 \qquad \cdots \qquad (1)$$

$$Ap + Bq = a_1 \qquad \cdots (2)$$

$$Ap^2 + Bq^2 = a_2 \quad \cdots \quad (3)$$

$$Ap^3 + Bq^3 = a_3 \quad \cdots \quad (4)$$

$$a_0 a_2 - a_1^2 = (A + B)(Ap^2 + Bq^2) - (Ap + Bq)^2$$

= $A^2p^2 + ABp^2 + ABq^2 + B^2q^2 - (A^2p^2 + 2ABpq + B^2q^2)$
= $AB(p - q)^2$

$$a_0a_3 - a_1a_2 = (A+B)(Ap^3 + Bq^3) - (Ap + Bq)(Ap^2 + Bq^2)$$

$$= A^2p^3 + ABq^3 + ABp^3 + B^2q^3 - (A^2p^3 + ABp^2q + ABpq^2 + B^2q^3)$$

$$= AB(p^3 + q^3 - p^2q - pq^2)$$

$$= AB(p-q)^2(p+q)$$

$$a_1a_3 - a_2^2 = (Ap + Bq)(Ap^3 + Bq^3) - (Ap^2 + Bq^2)^2$$

= $A^2p^4 + ABp^3q + ABpq^3 + B^2q^4 - (A^2p^4 + 2ABp^2q^2 + B^2q^4)$
= $AB(p - q)^2 \cdot pq$

 $\therefore p, q \text{ are roots of the equation } AB(p-q)^2 \cdot [x^2 - (p+q)x + pq] = 0$

i.e.
$$(a_0 a_2 - a_1^2)t^2 - (a_0a_3 - a_1a_2)t + (a_1a_3 - a_2^2) = 0$$
.

We consider the following cases:

(i)
$$p = q = \text{real}$$
, then $A(x+p)^3 + B(x+q)^3 = 0$
 $\Rightarrow (A+B)(x+p)^3 = 0$
 $\Rightarrow x = -p$ (three equal real roots)

(ii) p, q are complex. Then $\overline{p} = q$ and |p| = |q|.

: complex roots occur in conjugate pairs, the equation $A(x+p)^3 + B(x+q)^3 = 0$ must

contain one real root, let's say x_1 . Then

$$A(x_1 + p)^3 = -B(x_1 + q)^3$$
$$\frac{A}{B} = -\frac{(x_1 + q)^3}{(x_1 + p)^3}$$

$$\Rightarrow \left| \frac{A}{B} \right| = \left| \frac{x_1 + q}{x_1 + p} \right|^3 = \frac{\left| x_1 + q \right|^3}{\left| x_1 + p \right|^3} = \frac{\left| \overline{x_1 + p} \right|^3}{\left| x_1 + p \right|^3} = 1 \ (\because x_1 \text{ is real}, \ \overline{p} = q)$$

Hence $\frac{B}{A} = z$, where |z| = 1

The equation $A(x+p)^3 + B(x+q)^3 = 0$

$$\Rightarrow \frac{(x+p)^3}{(x+q)^3} = -\frac{B}{A} = -z$$

$$\Rightarrow \frac{x+p}{x+q} = (-z)^{\frac{1}{3}}, \text{ let } (-z)^{\frac{1}{3}} = z_1, z_2, z_3$$

Clearly $|z_1| = |z_2| = |z_3| = \left|(-z)^{\frac{1}{3}}\right| = 1$,

$$\frac{x+p}{x+q} = z_1 \Rightarrow x = \frac{qz_1 - p}{1 - z_1} = \frac{(qz_1 - p)}{(1 - z_1)} \cdot \frac{(1 - \overline{z}_1)}{(1 - \overline{z}_1)} = \frac{qz_1 - p - q + p\overline{z}_1}{|1 - z_1|^2} = \frac{\overline{p}z_1 + p\overline{z}_1 - (p + \overline{p})}{|1 - z_1|^2}$$

Observe that x is real, by similar working, the other two values of x are also real.

Hence the three roots are all real.

Hence if $\Delta \le 0$, i.e. $(a_0a_3 - a_1a_2)^2 \le 4(a_0a_2 - a_1^2)(a_1a_3 - a_2^2)$, the equation has 3 real roots.

(iii) If
$$p$$
, q are real and $p \neq q$, $A(x+p)^3 + B(x+q)^3 = 0$

$$\Rightarrow \left[\sqrt[3]{A}(x+p) + \sqrt[3]{B}(x+q)\right]\sqrt[3]{A^2}(x+p)^2 - \sqrt[3]{AB}(x+p)(x+q) + \sqrt[3]{B^2}(x+q)^2 = 0$$

$$x = -\frac{\sqrt[3]{A}p + \sqrt[3]{B}q}{\sqrt[3]{A} + \sqrt[3]{B}} \text{ one real root. (From equation (1), } A + B = a_0 \neq 0 \Leftrightarrow \sqrt[3]{A} + \sqrt[3]{B} \neq 0)$$

The equation $\sqrt[3]{A^2}(x+p)^2 - \sqrt[3]{AB}(x+p)(x+q) + \sqrt[3]{B^2}(x+q)^2 = 0$ has a negative discriminant and hence it has two complex conjugate roots.

:. The equation has one real root and two complex conjugate roots.