I KOLOKVIJUM

1. (10 poena) GRANIČNE VREDNOSTI

- a) Ispitati ograničenost, supremum, infimum, odrediti tačke nagomilavanja i graničnu vrednost (ukoliko postoji) za niz $\{a_n\}$ sa opštim članom $a_n = \frac{2n-1}{7n+1}, n \in \mathbb{N}$.
- b) Odrediti počev od kog člana niza $\{a_n\}$ sa opštim članom $a_n = \frac{2n-1}{7n+1}$, $n \in \mathbb{N}$, se svi naredni članovi nalaze u ε -okolini njegove granične vrednosti, za $\varepsilon = 0, 1$.
- c) Ukoliko je moguće, odrediti vrednost konstante A tako da funkcija $f(x) = \begin{cases} A & , & x = 1 \\ (1-x) \operatorname{tg} \frac{\pi x}{2} & , & x \in (0,1) \end{cases}$ bude neprekidna.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati i nacrtati grafik funkcije

$$f(x) = \sqrt{\frac{x^3 - 2x^2}{x - 3}}.$$

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti ekstremne vrednosti funkcije $z(x,y) = x^4 + 16y^4 - 4(x+2y)^2$.

II KOLOKVIJUM

1. (15 poena) INTEGRALI

a) Izračunati
$$\int \left(\frac{dx}{x(\ln^2 x + 4)^2} + \frac{dx}{\sqrt{x}(4 - \sqrt[3]{x})}\right).$$

b) Primenom definicije određenog integrala odrediti graničnu vrednost niza $\{a_n\}$ sa opštim članom

$$a_n = \frac{1}{n^2} \left(e^{\frac{n+1}{n}} + 2e^{\frac{n+2}{n}} + 3e^{\frac{n+3}{n}} + \dots + ne^2 \right).$$

2. (15 poena) **DIFERENCIJALNE JEDNAČINE**

- a) Odrediti opšte rešenje diferencijalne jednačine (ysinx-1)dx + cosxdy = 0.
- b) Pokazati da diferencijalna jednačina $x^2(\ln x 1)y'' xy' + y = 0$ ima partikularno rešenje u obliku normiranog polinoma prvog stepena i odrediti njeno opšte rešenje.