情報学科CSコース情報システム(3年後期) 講義ノート 一第8回一

副次索引, 転置ファイル, B木, グリッドファイル, k-D木, シグニチャファイル

伝統的な索引法 Traditional Indexing Methods

検索の領荷

- レコードの任意の属性値(の組合わせ)による検索
- Rivestの分類
 - ・完全一致質問:すべての属性値の指定
 - ・部分一致質問:一部の属性の値の指定
 - ・範囲質問:ある属性に関して値の範囲を指定
 - ・ブール質問: AND/OR/NOTの組み合わせ
- 近傍質問(nearest neighbor/best match query) salary≒45000 and age≒55

副次キー(Secondary Keys)と副次索引

主キー(Primary Key) による検索→B木やハッシュ

授業計画

- 第1回(10/03)情報検索(I)適合率,再現率、ベクトル空間モデル、類似検索(田中)
- 第2回(10/10)情報検索(II) tf/idf法、適合フィードバック、クラスタリング(田中)
- 第3回(10/17)情報検索(III)情報検索の評価尺度(田中)
- 第4回(10/24)情報検索(IV)協調フィルタリング,推薦システム(田中)
- 第5回(11/07)情報システムの歴史:ハイパーテキストから Webサービスまで(田島)
 Dexterモデル, Smalltalk, HyperCard, SGML, HTML, スタイルシート,XML, Xlink, SMIL, SOAP, REST, Ajax
- 第6回(11/14)XMLの基本,XMLのための問合せ言語(田島)
 XPath, XQuery, XSLT, UnQL, 各言語のパラダイムの違い
- 第7回(日程未定)XMLのためのスキーマ言語(田島)
- DTD, XML Schema, RELAX NG, 各言語の表現能力の違い
- 第8回(11/28)副次索引(田中)
 - 転置ファイル,B木,グリッドファイル,k-D木,シグニチャファイル
- ・ 第9回(12/05)空間アクセス法(田中)
 - Z-ordering, R木
- ・ 第10回(12/12)マルチメディア情報検索(田中)画像検索,ビデオ動画像検索,Gemini
- 第11回(12/19) XMLの問合せ処理(田島)
 - 索引(DataGuide), Region Algebra, ノードラベリング方式, Join アルゴリズム, パス索引
- 第12回 (12/26) Web 情報検索(i): ランキング (田島)
 - PageRank, VisualRankなど
- 第13回(01/16)Web 情報検索(II):コミュニティ発見と知識抽出(田島)
 - HITS, Webマイニング
- ・ 第14回 (01/23) Web 情報検索(Ⅲ): (田島)
- 第15回(01/30)試験

副次索引: 転置ファイル(Inverted Files)

データベースの属性値による条件検索や、文書のフルテキスト検索の高速化

EMPLOYEE (name, salary, age)のsalary属性に関する転置ファイル

- 転置ファイルのレコードの論理的構造 (salary属性値、この属性値を持つEMPLOYEEレコードへのポインター)
- 生成: RDBMS SOLの"CREATE INDEX"命令

フルテキスト検索 in-gram index

- 連続する2文字毎にインデックスを作成.
 - '***東京都市場調査***'→ '東京'、'京都'、'都市'、**

B木やハッシュ表による実装

ブール質問の処理・ボインターの集合操作

• salary=10K & age=24 (salary, age転置ファイル)

Salary属性に関するB木副次索引

B木への挿入

B木(B-Tree)

m分木 (m≧3), 平衡木

- ・(1)各節点(葉以外)の子供の数の最大はmである。
- (2)各節点(葉以外)の子供の数の最小は $\lceil m/2 \rceil$ である(記号 $\lceil x \rceil$ は、x以上の最小の整数、すなわちxの切り上げを意味する)。ただし、木根は例外とする。根の子供の数の最小は2である。
- (3)根から葉までの深さはどの葉についても同じである。

B木の例

32の挿入プロセス

64を削除

32を挿入後のB木

64の削除による上位ノードへの波及

64を削除後のB木

副次索引: グリッドファイル(Grid File)

B木の計算量

2つの属性を持つレコードのGrid File

副次索引:k-D木

元来、主記憶ベースのアクセス法

アドレス空間を重なりの無い領域に分割

構造は2分木(binary tree)

節点は(左ポインタ, データレコード, 右ポインタ)
 2分木の各レベルにdiscriminator属性(Round robin 法で決定)が対応

完全一致・範囲・近傍質問の処理に適する

シグニチャファイル(Signature Files)

アイデア : "quick and dirty"フィルタ

- 答えにならない文書群のほとんどを早く排除する。
- フィルタの結果
- 答えになる文書はすべて含む
- 答えにならない文書(false drops)も若干含む 全文テクストスキャニングなどで除く

k-D木の例

シグニチャファイルの例

	signature file	text file
各文書中の各単 語の先頭2文字	JoSm	John Smith
を記憶		
実際にはあまり 用いられない	••••	

Superimposed Codingによる シグニチャファイル

Word	Signature			
data	001	000	110	010
base	000	010	101	001
document signature	001	010	111	011

シグニチャ長: *F* = 12

各単語で1となるビット数: m = 4