Hypothesis Testing

Definition: Statistical Hypothesis

A *statistical hypothesis* is a claim concerning the parameter(s) or form of a probability distribution.

Example

Consider a farm that produces brown eggs. The farm claims that the weight of each egg is normally distributed with $\mu=65\,\mathrm{g}$ and $\sigma=2\,\mathrm{g}$.

Suppose a carton of eggs is purchased from the farm in the example and the average weight of the sample is only 61.5 g. Is the difference due to randomness or is this significant evidence against the farm's claim of 65 g?

Definition: Hypothesis Test

A hypothesis test compares a favored statistical hypothesis, called the null hypothesis and denote H_0 , and a contradictory statistical hypothesis, called the alternate hypothesis and denote H_a . A sample is used to obtain statistical information related to H_0 . If the evidence against H_0 is strong enough then H_0 is rejected in favor of H_a . Otherwise, the test fails to reject H_0 . Thus, the two outcomes of a hypothesis test are:

- 1. Reject H_0
- 2. Fail to reject H_0

Example

In the above example, the two hypotheses are:

$$H_0$$
: $\mu = 65$

$$H_a$$
: $\mu \neq 65$

Definition: Null Value

The *null value* of a hypothesis test, denoted θ_0 , is the claimed parameter value in the null hypothesis.

Thus, for a null hypothesis: $H_0:\theta=\theta_0$ there is a two-sided and two one-sided alternate hypotheses:

- 1. $H_a: \theta \neq \theta_0$
- 2. $H_a: \theta < \theta_0$
- 3. $H_a: \theta > \theta_0$

For the two one-sided alternates, the null hypothesis is assumed to be the fully contradictory $\theta \ge \theta_0$ or $\theta \le \theta_0$; however, during calculations the equality form is simplier and deemed sufficient.

Example

In the above example, the FDA wishes to enforce that $\mu=65$ by making sure that the true value just is not less than the claimed value - i.e., $H_a:\mu<65$. A true value greater than 65 simply benefits the customer.

Hypothesis Test Procedure

- 1. Construct H_0 and H_a in terms of some null value θ_0 .
- 2. Select an unbiased point estimator $\hat{\theta}$ for θ_0 .
- 3. Collect sample data.
- 4. Compare the observation to the claim to see if there is sufficient reason to reject H_0 .

Example

In the above example, for $H_0: \mu=65$, select \bar{X} as a suitable (unbiased) point estimator for μ . A sample is then collected and \bar{x} is calculated. The three possible alternatives would then be judged as follows:

1. $H_a: \mu \neq 65$

Reject H_0 if \bar{x} is either too small or too large:

2. $H_a: \mu < 65$

Reject H_0 if \bar{x} is too small.

3. $H_a: \mu > 65$

Reject H_0 if \bar{x} is too large.

Notions of "too small" and "too large" will be developed by balancing test error and using p-values.