

Combinatória & Divisibilidade

Guilherme Zeus Dantas e Moura zeusdanmou@gmail.com

1 Problema Motivador

Problema 1 (IMO 1995, 6). Seja $\mathfrak p$ um primo ímpar. Quantos subconjuntos de tamanho $\mathfrak p$ do conjunto $\{1,2,\ldots,2\mathfrak p\}$ possuem soma de seus elementos múltipla de $\mathfrak p$.

2 Pensando combinatóriamente

O objetivo é que, no final dessa aula, vocês entendam como métodos combinatóricos podem ajudar a entender divisibilidades.

Ideia. Para mostrar que uma quantidade de objetos é múltipla de \mathfrak{n} , basta dividir esses objetos em vários grupos de tamanho \mathfrak{n} , ou em \mathfrak{n} grupos de mesmo tamanho.

Problema 2 (Pequeno Teorema de Fermat). Sejam p um primo e a um inteiro positivo. Prove, usando argumentos de combinatória, que $a^p - a$ é múltiplo de p.

Problema 3. Seja $\mathfrak p$ um primo ímpar. Quantos subconjuntos do conjunto $\{1,2,\ldots,\mathfrak p\}$ possuem soma de seus elementos múltipla de $\mathfrak p$.

Observação. A soma dos elementos do conjunto vazio é zero.

3 De Volta ao Problema Motivador

Problema 1 (IMO 1995, 6). Seja p um primo ímpar. Quantos subconjuntos de tamanho p do conjunto $\{1, 2, ..., 2p\}$ possuem soma de seus elementos múltipla de p.

4 Desafio

Fica como desafio para casa, para treinar a precisão e formalização, o seguinte problema:

Problema 4 (Generalização do IMO 1995, 6). Sejam p um primo împar e m < n inteiros positivos. Quantos subconjuntos de tamanho mp do conjunto $\{1, 2, ..., np\}$ possuem soma de seus elementos múltipla de p?