COL759: CRYPTOGRAPHY AND COMPUTER SECURITY

2022-23 (SEMESTER 1)

LECTURE 1: INTRO

COL759 IS NOT ABOUT ...

Computer Security (SIL 765)

Symmetric Key Encryption

Message Authentication Codes

Collision resistant hash functions

Authenticated Encryption

Public Key Encryption

Signatures

Zero Knowledge Proofs

COL759

Formal security definitions, and security proofs

COURSE OBJECTIVES

- Develop 'crypto mindset'
- Modelling threats via security definitions
- Learn the 'atomic' building blocks of crypto, and how they're used for building more complex primitives
- Understand how to prove security

4-STEP RECIPE FOR A CRYPTO PRIMITIVE

- 1. Define security for the primitive
- 2. Figure out the required building blocks
- 3. Propose construction
- 4. Prove construction satisfies security definition

ANALOGY: LEGO BLOCKS

THE LEGO ANALOGY

Our desired crypto primitive

THE LEGO ANALOGY

LEGO

CRYPTO

Lego blocks are immutable.

Can't manufacture your own Lego blocks

DO NOT modify the building blocks

DO NOT implement the building blocks (use existing libraries)

WHY FORMAL DEFINITIONS AND PROOFS OF SECURITY?

SYMMETRIC KEY ENCRYPTION

Key Space \mathcal{K}

Encrypt(mesage, secret key) → ciphertext

Decrypt(ciphertext, secret key) → message/ ⊥

CORRECTNESS

Decrypt(Encrypt(m, k), k) = m

SYMMETRIC KEY ENCRYPTION

1. Caesar's cipher

- Secret key:
 Integers
- Encrypt:
 shift each character forward by s positions

BROKEN CIPHER!!

Attack via brute force

2. Substitution cipher

- Secret key:
 Permutation over the alphabets
- Encrypt:
 substitute each character according to
 permutation in secret key

BROKEN CIPHER!!

Attack via frequency analysis

3. Vigenère's cipher

- Secret key: n different permutations
- Encrypt:

 For character at position i, use substitution
 with (i mod n)th permutation

le chiffrage indéchiffrable (the indecipherable cipherable cipherable cipher)

3. Vigenère's cipher

- Secret key:
 n different permutations
- Encrypt:

 For character at position i, use substitution
 with (i mod n)th permutation

Efficient algo. for breaking substitution cipher

Efficient algo. for breaking Vigenère cipher

Is 'Double-Encrypt-Vigenere' secure?
What if n = length of message to be encrypted?

4. Rotor machines (Enigma)

BROKEN DURING WW-II

5. Shannon's One-Time Pad

"Communication Theory of Secrecy Systems" (1945)

Perfectly secure encryption scheme

Key cannot be reused

Must be as large as the message

6. Data Encryption Standard (DES) (1970s)

Key Space : $\{0,1\}^{56}$

DES: $\{0,1\}^{64} \times \{0,1\}^{56} \rightarrow \{0,1\}^{64}$

 $\mathsf{DES}^{-1}: \{0,1\}^{64} \times \{0,1\}^{56} \to \{0,1\}^{64}$

DES can 'encrypt' 64 bit messages. How to encrypt longer messages?

ATTACKS

Exhaustive search for key: ~ 2⁵⁶ steps Best known attack: ~ 2⁴⁴ steps

Feasible using modern supercomputers

Can we extend key space appropriately?

6.1. Double DES (2DES)

Key Space : $\{0,1\}^{112}$

$$2DES(m, (k_1, k_2)) = DES(DES(m, k_1), k_2)$$
$$2DES^{-1}(ct, (k_1, k_2)) = DES^{-1}(DES^{-1}(ct, k_2), k_1)$$

ATTACKS

Previous attacks infeasible.

But a different (very simple) attack breaks 2DES

Triple DES (3DES)?

7. Advanced Encryption Standard (AES) (1990s)

Key Space : $\{0,1\}^{128}$

AES: $\{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$

 $AES^{-1}: \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$

AES can 'encrypt' 128 bit messages. How to encrypt longer messages?

ATTACKS

Exhaustive search for key: $\sim 2^{128}$ steps Best known attack: $\sim 2^{126}$ steps

Most widely used crypto algorithm

HARNESSING COMPUTATIONAL HARDNESS FOR CRYPTOGRAPHY

No efficient algo. for breaking AES

Secure encryption scheme

CENTRAL THEME IN MODERN CRYPTO

Building blocks: hard computational problems

Proof of security: No efficient algo for problem

Cryptosystem is secure

SOURCES OF HARD COMPUTATIONAL PROBLEMS

- Cryptographic standards: AES, SHA etc
- Number Theory
- Geometry
- Combinatorics ...

CRYPTO IS MAGIC!

Magic #1

DESIDERATA

Bob should learn x_b

- Alice should not learn b Bob should not learn x_{1-b}

'Oblivious Transfer'

CRYPTO IS MAGIC!

Magic #2

DESIDERATA

Alice and Bob should learn f(x₀, x₁)

Alice should not learn x₁
 Bob should not learn x₀

'Multiparty Computation'

CRYPTO IS MAGIC!

Magic #3

			7					
		2				3		
4				5	9		1	
			4				7	
	3			7	6	1		
6			8					
9				6	1		5	
					8			
	4							9

DESIDERATA

- Convince you that puzzle is solvable
- Without revealing any hint about solution

'Zero Knowledge Proofs'

COURSE INFO

Webpage: https://www.cse.iitd.ac.in/~koppula/courses/COL202_2102.html

Lecture notes on OneNote (_Content Library -> Lectures -> Lecture #)

COURSE POLICY

NON NEGOTIABLES

- Theoretical course: assignments and exams will involve writing formal security proofs
- Assignments: groups of size 1 or 2. Must be typed in Latex
- Strict plagiarism policy
- Please avoid using laptops/phone during the lecture

COURSE POLICY

NEGOTIABLES

- Grading: relative

- Minor: 25%

Open-notes (handwritten notes only)
Longer duration for exams?

- Major: 30%

- Assignments (4): 25%

- Quizzes (best 5 of 6): 20%

- Late Policy for assignments:

- Three late days (cumulative)

- Please participate actively in class. Ask lots of questions
- Assignments: start early

THANK YOU!

(see you tomorrow)