Scientific Visualization

Hai Lin

12 Sept 2024

Lecture 2 Data type and data operation

Data type and data operation

- Data presentation and data acquisition technique
 - Regular and irregular data, CT,MRI etc.
- Data operation
 - > Sampling , interpolating , filtering

Data type

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

Real-world measurements

	Medical Imaging (MRI, CT, PET) Geographical information systems (GIS) Electron microscopy	MB
٠	Meteorology and environmental sciences (satellites) Seismic data Crystallography	GB
•	High energy physics Astronomy (e.g. Hubble Space Telescope 100MB/day) Defense	TB

- Theoretical world
- Computer simulations
 - Sciences

Molecular dynamics Quantum chemistry	MB
Mathematics	
Molecular modeling	
 Computational physics 	GB
Meteorology	
Computational fluid mechanics (CFD)	

Engineering

 Architectural wa 	alk-throughs	MB
 Structural mech 	nanics	0.0
 Car body desig 	n	GB

- Theoretical world
- Computer simulations
 - Commercial

Business graphics	MB
Economic models	CD
Financial modeling	GB

Information systems

Stock market (300 Mio. transactions per day in NY)
 Market and sales analysis
 World Wide Web !!!

Artificial world

 Drawings 					MR
 Painting 		. :		 	
 Publishing 		: ::			
 TV (teasers 	, commercials)				GB
 Movies (ani 	mations, specia	al effec	ts)		TB

Visualization pipeline

Visualization pipeline

Example: simulation of the flow within a fluid around a wing

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

Sources of error

- Data acquisition
 - Sampling density
 - Sampling quantization
- filtering
 - Whether features of interest are preserved
- Selecting the "right" variable

Sources of error

If unction model for resampling

mapping

Are we choosing the graphical primitives appropriately in order to depict the kind of information we want to get out of the data?

rendering

- ➤ Need for interactive rendering often determines the chosen abstraction level
- Consider limitations of the underlying display technology
- Carefully add "realism"

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

- Dimension of data:0,1,2,3
- Data types
 - Divergence vector tensor multi-variable
- variable range
- Structure of the data

Discrete representations

- > The objects we want to visualize are often 'continuous'
- > the visualization data is given only at discrete locations in space and/or time
- Discrete structures consist of samples, from which grids/meshes consisting of cells are generated
 - Primitives in multi dimensions

dimension	cell	mesh
0D 1D 2D 3D	points lines (edges) triangles, quadrilaterals (rectangles) tetrahedra, prisms, hexahedra	polyline(–gon) 2D mesh 3D mesh

■ The (geometric) shape of the domain is determined by the positions of sample points

- Domain is characterized by
 - dimension
 - > influence
 - > structure

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

Domain

Influence of data points

- Values at sample points influence the data distribution in a certain region around these samples
- To reconstruct the data at arbitrary points within the domain, the distribution of all samples has to be calculated

Point influence

Only influence on point itself

Local influence

- Only within a certain region
 - Voronoi-diagram
 - Cell-wise interpolation(see later in course)

Global influence

- Each sample might influence any other point within the domain
 - Material properties for whole object
 - Scattered data interpolation

domain

Voronoi-diagram

- Construct a region around each sample point that are closer to that sample than to every other sample
- Each point within a certain region gets assigned the value of the sample point

- Data source
- Sources of error
- Data representation
- Domain
- Data structures

Requirements

- Efficiency of accessing data
- Space efficiency
- Lossless vs. lossy
- Binary/Text

Definition

- Scattered: points are arbitrarily distributed and no connectivity exists between them
- > cells
- > Topology: the structure (connectivity) of the data
- > Geometry: the position of the data

Example

Radial basis functions with increasing support

Same geometry (vertex positions), different topology (connectivity)

Grid types

Grids differ substantially in the simplical elements (or cells)they are constructed from and in the way the inherent topological information is given

- \blacksquare A simplex in \mathbb{R}^n
 - > The convex hull of n+1 affinely independent points
 - > 0:points,1:lines,2:triangles,3:tetrahedra
- Partitions via simplices are called triangulations
- Simplical complex is a collection of simplices with:
 - > Every face of an element of C is also in C
 - The intersection of two elements of C is empty or it is a face of both elements
- Simplical complex is a space with a triangulation

- Structured and unstructured grids can be distinguished by the way the elements or cells meet
- Structured grids
 - Have a regular topology and regular / irregular geometry
- Unstructured grids
 - Have irregular topology and geometry

Characteristics of structured grids

- Easier to compute with
- Often composed of sets of connected parallelograms(hexahedra), with cells being equal or distorted with respect to (non-linear) transformations
- May require more elements or badly shaped elements in order to precisely cover the underlying domain
- Topology is represented implicitly by n-vector of dimensions
- Geometry is represented explicitly by an array of points
- Every interior point has the same number of neighbors

- If no implicit topological (connectivity)information is given the grids are termed unstructured grids
 - Unstructured grids are often computed using quadtrees(recursive domain partitioning for data clustering), or by triangulation of points sets
 - > The task is often to create a grid from scattered points
- Characteristics of unstructured grids
 - Grid point geometry and connectivity must be stored
 - Dedicated data structures needed to allow for efficient traversal and thus data retrieval
 - Often composed of triangles or tetrahedra
 - Less elements are needed to cover the domain

- Cartesian or equidistant grids
 - Structured grid
 - Cells and points are numbered sequentially with respect to increasing X,then Y,then Z, or vice versa
 - Number of points=Nx·Ny·Nz
 - Number of cells = $(Nx-1)\cdot(Ny-1)\cdot(Nz-1)$

Cartesian grids

- Vertex positions are given implicitly from [i,j,k]:
 - $P[i,j,k].x=origin + i\cdot dx$
 - P[i,j,k].y=origin + j·dy
 - $P[i,j,k].z=origin + k\cdot dz$
- Global vertex index $I[i,j,k]=k\cdot Ny\cdot Nx+j\cdot Nx+i$
 - K=I/(Ny·Nx)
 - $j=(1\%(Ny\cdot Nx))/Nx$
 - i=(I%(Ny·Nx))%Nx
- Global index allows for linear storage scheme
 - Wrong access pattern might destroy cache coherence

Uniform grids

- Similar to Cartesian grids
- Consist of equal cells but with different resolution in at least one dimension(dx≠dy(≠dz))
- ightharpoonup Spacing between grid points is constant in each dimension ightharpoonup same indexing scheme as for Cartesian grids
- Typical example : medical volume data consisting of slice images
- Most likely to occur in applications where the data is generated by a 3D imaging device providing different sampling rates in each dimension
 - Slice images with square pixels(dx=dy)
 - Larger slice distance (dz>dx=dy)

Rectilinear grids

- Topology is still regular but irregular spacing between grid points
 - Non-linear scaling of positions along either axis
 - Spacing, x_coorrd[L],y_coord[M],z_coord[N],must be stored explicitly
- > Topology is still implicit

Curvilinear grids

- > Topology is still regular but irregular spacing between grid points
 - Positions are non-linearly transformed
- > Topology is still implicit, but vertex positions are explicitly stored
 - x_coord[L,M,N]
 - y_coord[L,M,N]
 - z_coord[L,M,N]
- Geometric structure might result in concave grids

Multigrids

- Focus in arbitrary areas to avoid wasted detail
- blow up" regions of interest, i.e. finer grid
- Difficulties in the boundary region(i.e. interpolation)

Characteristics of structured grids

- Structured grids can be stored in a 2D/3D array
- > Arbitrary samples can be directly accessed by indexing a particular entry in the array
- Topological information is implicitly coded
 - Direct access to adjacent elements at random
- Cartesian , uniform , and rectilinear grids are necessarily convex
- > Their rigid layout prohibits the geometric structure to adapt to local features
- Curvilinear grids reveal a much more flexible alternative to model arbitrarily shaped objects
- However, this flexibility in the design of the geometric shape makes the sorting of grid elements a more complex procedure

■ Typical implementation of structured grids

Unstructured grids

- Composed of arbitrarily positioned and connected elements
- Can be composed of one unique element type or they can be hybrid (tetras, hexas, prisms)
- > Triangle meshes in 2D and tetrahedral grids in 3D are most common
- Can adapt to local features (small vs. large cells)
- Can be refined adaptively
- Simple linear interpolation in simplices

Typical implementations of unstructured grids

Direct form

- Additionally store the data values
- Problem : storage space , redundancy

Typical implementations of unstructured grids

> Indirect form

- Indexed face set
- More efficient than direct approach in terms of memory requirements
- > But still have to be global search to find local information(i.e. what faces share an edge)

Manifold meshes

- 2-manifold is a surface where at every point on the surface a surrounding area can be found that looks like a disk
- > Everything can be flattened out to a plane
- > Sharp creased and edges are possible needs more than one normal per vertex
- Example for an non-manifold:

Hybrid grids

Combination of different grid types

2D-Regular Grid 3D-Regular Grid 2D-Irregular Grid 3D-Irregular Grid 2D-Block-Structured Grid 3D-Block-Structured Grid

2D-Structured Grid

3D-Structured Grid

2D-Hybrid Grid

3D-Structured Grid "Torus"

3D-structured Grid "full cylinder"

Scattered data

- > Irregular distributed positions without connectivity information
- To get connectivity find a "good" triangulation (triangular / tetrahedral mesh with scattered points as vertices)

■ For a set of points there are many possible triangulations

- A measure for the quality of a triangulation is the aspect ratio of the so-defined triangles
- Avoid long , thin ones
- Delaunay triangulation (later in the course)

radius of incircle or maximal/minimal radius of circumcircle angle in triangle

Data operation

- Interpolation
- Filtering

- Interpolation
- Filtering

The visualization pipeline

visualization pipeline

mapping - classification

different grid types → different algorithms

3D scalar fields cartesian medical datasets

3D vector fields un/structured CFD

trees, graphs, tables, data bases InfoVis

Interpolation and Filtering

- Data is often discretized in space and / or time
- Finite number of samples
 - The continuous signal is usually known only at a few points (data points)
 - In general, data is needed in between these points
- By interpolation we obtain a representation that matches the function at the data points
 - Evaluation at any other point possible
- Reconstruction of signal at points that are not sampled
- Assumptions needed for reconstruction
 - Often smooth functions

- Given irregularly distributed positions without connectivity information
- Problem: obtain connectivity to find a "good" triangulation
- For a set of points there are many possible triangulation
 - A measure for the quality of a triangulation is the aspect ratio of the so defined triangles
 - Avoid long , thin ones

Scattered data triangulation

- \triangleright A triangulation of data points $S = s_0, s_1, ..., s_m \in \mathbb{R}^2$ consists of
 - Vertices(0D)=S
 - Edges(1D)connecting two vertices
 - Faces (2D)connecting three vertices

a triangulation must satisfy the following criteria

- Ufaces =conv(S), i.e. the union of all faces including the boundary is the convex hull of all vertices
- The intersection of two triangles is either empty, or a common vertex, or a common edge, or a common face(tetrahedra)

■ Invalid triangulation

Voronoi diagram

- For each sample every point within a voronoi region is closer to it than to every other sample
- \triangleright Given: a set of points $X=\{x_1,\ldots,x_n\}$ from R^d and a distance function dist(x,y)
- \succ The voronoi diagram Vor(X) contains for each point x_i a cell $V(x_i)$ with
 - $V(x_i) = \{x | dist(x, x_i) < dist(x, x_i) \forall j \neq i\}$

Voronoi cells

- \succ The half space $h(x_i, x_j)$ is separated by the perpendicular bisector between x_i and x_j
- $\rightarrow h(x_i, x_j)$ contais x_i
- Voronoi cell

$$V(x_i) = \cap_{j \neq i} h(x_i, x_j)$$

Voronoi cells are convex

- \blacksquare Delaunay graph Del(X)
 - \succ The geometric dual (topologically equal) of the Voronoi diagram Vor(X)
 - Points in X are nodes
 - \succ Two nodes x_i and x_j connected iff the Voronoi cells $V(x_j)$ share a same edge
- Delaunay cells are convex
- Delaunay triangulation=triangulation of the Delaunay graph

- Delaunay triangulation in 2D
 - Three points x_i, x_j, x_k in X belong to a face from Del(X) iff no further point lies inside the circle around x_i, x_j, x_k
 - Two points x_i, x_j form an edge iff there is a circle around x_i, x_j that does not contain a third point from X
 - For each triangle the circumcircle does not contain any other sample
 - Maximized the smallest angle
 - Maximized the ratio of (radius of incircle)/(radius of circumcircle)
 - It is unique (independent of the order of samples) for all but some very specific cases

Local delaunay property

Algorithm

➤ Get the detailed algorithm from the Internet if you are interest

- Univariate interpolation : interpolation for one variable
 - Nearest neighbor (0 order)
 - Linear (first order)
 - Smooth (higher order)

- Taylor interpolation
- Basis functions: monomer basis (polynomials)
 - $ightharpoonup m_i = x^i$, with $i \in N_0$
- $P^m = \{1, x, x^2, ..., x^m\} \text{ is m+1-dimensional vector space of all polynomials with maximum degree m}$
- Coefficients c_i with $f = \sum_i c_i \cdot x^i$
- Representation of samples :

$$f(x_j) = f_j \ \forall j = 1 \dots n$$

Interpolation problem

samples
$$\mathbf{V} \cdot \mathbf{c} = \mathbf{f}$$
with the Vandermond matrix $\mathbf{V}_{ij} = x_i^{j-1}$

Generic interpolation problem

- \triangleright given are n sampled points $X = \{x_i\} \subseteq \Omega \subseteq R^d$ with function values f_i
- \succ n-dimensional function space $\Phi_n^{\ d}(\Omega)$ with basis $\{\phi_{i=1,...,n}\}$
- > representation of samples:

$$f(x_j) = f_j \quad \forall j = 1..n$$

Solving the linear system of equations

$$M \cdot c = f$$

With
$$\boldsymbol{M}_{ji} = \phi_i(X_j)$$
, $\boldsymbol{c}_i = c_i$, and $\boldsymbol{f}_j = f_j$

Note: number of points n determines dimension of vector space (=degree of polynomials)

- Other basis functions result in other interpolations schemes :
 - Lagrange interpolation
 - Newton interpolation
 - Bernstein basis : Bezier curves(approximation)
 - Hermite basis

Univariate Interpolation

■ Problem: coupling of number of samples n and degree of polynomials

- Solution: spline interpolation
 - Smooth piecewise polynomial function
 - Continuity / smoothness at segment boundaries!

Univariate Interpolation

Piecewise linear interpolation

- Simplest approach(except for nearest-neighbor sampling)
- > Fast to compute
- Often used in visualization applications
- \succ C^0 continuity at segment boundaries
- \triangleright Data points : $(x_0, f_0), \dots, (x_n, f_n)$
- For any point x with

$$x_i \le x \le x_{i+1}$$

Described by local coordinate $u = \frac{x - x_i}{x_{i+1} - x_i} \in [0,1]$;

that is
$$x = x_i + u(x_{i+1} - x_i) = (1 - u)x_i + ux_{i+1}$$
;
evaluate $f(x) = (1 - u)f_i + uf_{i+1}$;

First approach

- Replace differential by finite differences
- Note that approximating the derivative by

$$f'(x) = \frac{df}{dx} \to \frac{\Delta f}{\Delta x}$$

Caused subtractive cancellation and large rounding errors for small h

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Second approach

Approximate / interpolate(locally) by differentiable function and differentiate this function

Finite differences on uniform grids with grid size h(1D case)

- Finite differences on uniform grids with grid size h (1D case)
 - Forward differences

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$

Backward differences

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$$

Cnetral differences

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

- Error estimation
 - Forward / backward differences are first order
 - Central differences are second order

- Finite differences on non-uniform grids
 - Forward and backward differences as for uniform grids with

$$(x_{i+1} - x_i = \alpha h)$$
$$(x_i - x_{i-1} = \beta h)$$

- Finite differences on non-uniform grids
 - \triangleright Central differences by Taylor expansion around the point x_i

$$f(x_{i+1}) = f(x_i) \Rightarrow \alpha h f'(x_i) + \frac{(\alpha h)^2}{2} f''(x_i) + \dots$$

$$f(x_{i-1}) = f(x_i) \Rightarrow \beta h f'(x_i) + \frac{(\beta h)^2}{2} f''(x_i) + \dots$$

$$\Rightarrow \frac{1}{\alpha^2} (f(x_{i+1}) - f(x_i)) - \frac{1}{\beta^2} (f(x_{i-1}) - f(x_i)) = \frac{h}{\alpha} f'(x_i) + \frac{h}{\beta} f'(x_i) + O(h^3)$$

The final approximation of the derivative

$$f'(x_i) = \frac{1}{h(\alpha + \beta)} \left(\frac{\beta}{\alpha} f(x_{i+1}) - \frac{\alpha}{\beta} f(x_{i-1}) + \frac{\alpha^2 - \beta^2}{\alpha - \beta} f(x_i) \right)$$

- 2D or 3D uniform or rectangular grids
 - Partial derivatives

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- > Same as in univariate case along each coordinate axis
- Example: gradient in a 3D uniform grid

e : gradient in a 3D uniform grid
$$grad \ f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{f_{i+1,j,k} - f_{i-1,j,k}}{2h} \\ \frac{f_{i,j+1,k} - f_{i,j-1,k}}{2h} \\ \frac{f_{i,j,k+1} - f_{i,j,k-1}}{2h} \end{pmatrix}$$

- Manifolds with more than 1D
- Tensor product
- Combination of several univariate interpolations
- Example for 2D surface:
 - N-m values f_{ji} with j=1..n and i=1..m given at points X*Y=(x_1 , ..., x_n)× (y_1 , ..., y_m)
 - \triangleright n univariate basis functions $\xi_j(x)$ on X
 - \succ m univariate basis functions $\psi_i(y)$ on Y
 - > n-m basis functions on X*Y:

$$\phi_{ij}(x,y) = \xi_i(x)\psi_j(y)$$

> Tensor product:

$$f(x,y) = \sum_{i=1,j=1}^{n,m} \phi_{ij}(x,y)c_{ij}$$

- Bilinear interpolation on a rectangle
 - Tensor product for two linear interpolations
 - 2D local interpolation in a cell
 - \succ Known solution of the linear system of equations for the coefficients c_{ij}
 - Four data points $(x_i, y_j), \dots, (x_{i+1}, y_{j+1})$ with scalar values $f_{i,j} = f(x_p, y_j), \dots$
 - \triangleright Bilinear interpolation of points (x, y) with $x_i \le x \le x_{i+1}$ and $y_i \le y \le y_{i+1}$

Bilinear interpolation on a rectangle

$$f(x,y) = (1-\beta)[(1-\alpha)f_{i,j} + \alpha f_{i+1,j}] + \beta[(1-\alpha)f_{i,j+1} + \alpha f_{i+1,j+1}]$$

= $(1-\beta)f_i + \beta f_{j+1}$

With
$$f_j = (1 - \alpha)f_{i,j} + \alpha f_{i+1,j}$$

 f_{j+1}
 $= (1 - \alpha)f_{i,j+1} + \alpha f_{i+1,j+1}$

And local coordinates

$$\alpha = \frac{x - x_i}{x_{i+1} - x_i} \quad \beta = \frac{y - y_i}{y_{i+1} - y_i} \qquad \alpha, \beta \in [0, 1]$$

Bilinear interpolation on a rectangle

Weighted by local areas of the opposite point

Bilinear interpolation is not linear (but quadratic)!

Cannot be inverted easily!

- Trilinear interpolation on a 3D uniform grid
 - Straightforward extension of bilinear interpolation
 - \triangleright Three local coordinates α, β, γ
 - \succ Known solution of the linear system of equations for the coefficients c_{ij}
 - Fifticient evalution : $f(\alpha,\beta,\gamma)=a+\alpha(b+\beta(e+h\gamma))+\beta(c+f\gamma)+\gamma(d+g\alpha)$ with coefficients a,b,c,d,e,f,g from data at the corner vertices
- Extension to higher order of continuity
 - Piecewise cubic interpolation in 1D
 - Piecewise bicubic interpolation in 2D
 - Piecewise tricubic interpolation in 3D
 - Based on Hermite polynomials

- Affine combination of points x(in Euclidean space):
 - > Straightforward extension of bilinear interpolation

$$0 \le \alpha_i \le 1, \forall i$$

$$\sum_{i} \alpha_{i} = 1$$

 α_i are barycentric coordinates

- Affinely independent set of points:
 - No point can be expressed as affine combination of the other points
 - \triangleright Mamimum number of points is d+1 in R^d

- \blacksquare Simplex in R^d
 - > d+1 affinely independent points
 - Span of these points
 - > 0D :point
 - > 1D:line
 - 2D:triangle
 - ➤ 3D: tetrahedron

- Barycentric interpolation on a simplex
 - \rightarrow d+1 points x_i with function values f_i
 - \triangleright Point x within the simplex described as affine combination of x_i
 - Possible approach: solve for coefficients α_i based on $x=\sum_i \alpha_i \cdot x_i$ and $\sum_i \alpha_i = 1$
 - Function value at x: $f = \sum_i \alpha_i \cdot f_i$ is affine combination of f_i
- Barycentric coordinates from area / volume considerations:

$$\alpha_i = \frac{\text{Vol}(\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \mathbf{x}, \mathbf{x}_{i+1}, ..., \mathbf{x}_{d+1})}{\text{Vol}(\mathbf{x}_1, ..., \mathbf{x}_{d+1})}$$

$$Vol(\mathbf{x}_1, \dots, \mathbf{x}_{d+1}) = det \begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_{d+1} \\ 1 & \dots & 1 \end{pmatrix}$$

generalized measure for area/volume

■ Barycentric coordinates from area / volume considerations:

- Barycentric interpolation in a triangle
 - Geometrically, barycentric coordinates are given by the ratios of the area of the whole triangle and the subtriangles defined by x and any two points of x_1, x_2, x_3

$$\operatorname{Vol}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}) = \det \begin{pmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\ \mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} \\ 1 & 1 & 1 \end{pmatrix} = (1/3, 1/3, 1/3) - (1/3, 1/3, 1/3, 1/3) - (1/3, 1/3, 1/3) - (1/3, 1/3, 1/3) - (1/3, 1/3, 1/3) - (1/3, 1/3, 1/3) - (1/3, 1/$$

- Interpolation in a generic quadrilateral
 - Main application: curvilinear grids
 - Problem: find a parameterization for arbitrary quadrilaterals

lacktriangle Mapping ϕ from rectangular domain to quadratic domains is known: bilinear interpolation on a rectangle

$$X_{12} = \alpha_1 \cdot X_1 + (1 - \alpha_1) \cdot X_2$$

$$X_{34} = \alpha_1 \cdot X_4 + (1 - \alpha_1) \cdot X_3$$

$$X = \alpha_2 \cdot X_{12} + (1 - \alpha_2) \cdot X_{34}$$

- lacksquare Computing the inverse of ϕ is more complicated:
 - \succ Analytically solve quadratic system for α_1 , α_2
 - Or: numerical solution by Newton iteration

Final value $f = \alpha_2 \cdot (\alpha_1 \cdot f_1 + (1 - \alpha_1) \cdot f_2) + (1 - \alpha_2) \cdot (\alpha_1 \cdot f_4 + (1 - \alpha_1) \cdot f_3)$

■ Jacobi matrix J(Φ)

- $\succ J(\Phi)_{ij} = \partial \Phi_i / \partial \alpha_j$
- $\succ J(\Phi)_{.j}$ describes direction and speed of position changes of Φ when α_j are varied

Newton iteration

Start with seed points as start configuration , e.g. , $\alpha_i=1/2$

While (
$$\|\mathbf{x} - \Phi(\alpha_1, \alpha_2, \alpha_3)\| > \varepsilon$$
)

Compute
$$J(\Phi(\alpha_1, \alpha_2, \alpha_3))$$

transform **X** in coordinate system $J(\Phi)$:

$$x_{\alpha} = J(\Phi(\alpha_1, \alpha_2, \alpha_3))^{-1} \cdot (x - \Phi(\alpha_1, \alpha_2, \alpha_3))$$

update
$$\alpha_i = \alpha_i + x_{\alpha,i}$$

Maximum error ε

Other primitive cell types possible

Prism:

- twice barycentric
- once linear

Pyramid:

- bilinear on base face
- then linear

- Radial basis functions (RBF)
 - \triangleright n function values f_i given at n points X_i
 - $> \text{Interpolant } f(X) = \sum_{i=1}^{n} \lambda_i \phi(||X X_i||) + \sum_{m=0}^{k} c_m P_m(X)$
 - \triangleright Univariate radial basis $\phi(r)$
 - **Examples:**
 - Polynomials r^v
 - Gaussians $\exp(r^{-2})$
 - \triangleright Polynomial basis $\{p_m\}$ for (k+1)-dimensional vector space

- Radial basis functions (RBF)
 - Under-determined system: n equations for n+(k+1) unknowns
 - > Additional constraints (orthogonality / side conditions):

$$\sum_{i=1}^{n} \lambda_i p_m(X_i) = 0 \quad \forall \ m = 0 \dots k$$

> Well-defined system of linear equations (vector / matrix notation):

$$\mathbf{A}_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|)$$

$$\begin{pmatrix} \mathbf{A} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\lambda} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{0} \end{pmatrix}$$
Function values at sample points
$$\begin{pmatrix} \mathbf{A} & \mathbf{P} \\ \mathbf{P}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\lambda} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{0} \end{pmatrix}$$
Coefficients for polynomials

- Interpolation
- **■** Filtering

Filtering by Projection or Selection

■ Remove the invisible or uninterested regions

Thanks