Prueba de oposición

Lucas Gabriel Vuotto

9 de octubre de 2014

Índice

- 1 Entorno
 - Contexto
 - Objetivos
 - Justificación de la elección

2 Ejercicio

Contexto

Para este ejercicio, se asume que los alumnos tienen conocimientos sobre los siguiente temas:

- compuertas lógicas básicas
- operaciones con números binarios.
- diseño de circuitos combinatorios.

Se recomienda dar este ejercicio **a modo integratorio**, antes de comenzar con circuitos secuenciales.

Objetivos

- Repasar circuitos combinatorios, en particular, aritméticos.
- Mostrar cómo se realizan los circuitos en la vida real.

Justificación de la elección

Se eligió este ejercicio por ser interesante en el sentido de que ayuda a darle a los alumnos un vistazo de cómo se hacen las cosas en el mundo real.

También se lo eligió porque al menos se suele dar en clase el circuito del *sumador simple*, mas no su implementación con NANDs.

Enunciado

Ejercicio 11 Organización del Computador I - práctica 2 (lógica digital) - segundo cuatrimestre del 2014.

- Diseñar un sumador completo de 1 bit usando sólo compuertas NAND.
- 2 Suponiendo que todas las compuertas elementales tienen el mismo retardo (delay) t, calcule el retardo total del circuito para producir todas sus señales de salida.

Tablas de verdad

Tablas de verdad

e_0	e_1	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Sumador simple

Tablas de verdad

e_0	e_1	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Sumador simple

e_0	e_1	c_e	c_s	s
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Sumador completo

Figura: Sumador simple

Figura: Sumador completo

Para los que no recuerdan, esto es la tabla de verdad de un NAND:

e_0	e_1	e_0 NAND e_1
0	0	1
0	1	1
1	0	1
1	1	0

Método matemático

$$s = e_0 \oplus e_1 \oplus c_e$$
$$c_s = (e_0.e_1) + (e_0 \oplus e_1).c_e$$

Método matemático

$$s = e_0 \oplus e_1 \oplus c_e$$
$$c_s = (e_0.e_1) + (e_0 \oplus e_1).c_e$$

¡Aburrido!

Método gráfico

(sigue siendo medio matemático)

$$x|y = \overline{x.y} \Rightarrow$$

$$x|y = \overline{x.y} \Rightarrow$$

$$x.y =$$

$$x|y=\overline{x.y}\Rightarrow$$

$$x.y = \overline{\overline{x.y}} =$$

$$x|y = \overline{x.y} \Rightarrow$$

$$x.y = \overline{\overline{x.y}} = \overline{x|y}$$

OR

$$x|y = \overline{x \cdot y} = \overline{x} + \overline{y} \Rightarrow$$

OR

$$\begin{split} x|y &= \overline{x.y} = \bar{x} + \bar{y} \Rightarrow \\ \bar{x}|\bar{y} &= \overline{\bar{x}.\bar{y}} = \bar{\bar{x}} + \bar{\bar{y}} = x + y \end{split}$$

XOR

$$x \oplus y = (x+y).(\bar{x}+\bar{y})$$

XOR

$$x \oplus y = (x+y).(\bar{x}+\bar{y})$$
$$= (\bar{x}|\bar{y}).(x|y)$$

XOR

$$x \oplus y = (x+y).(\bar{x}+\bar{y})$$
$$= (\bar{x}|\bar{y}).(x|y)$$
$$= (\bar{x}|\bar{y})|(x|y)$$

NOT

$$x = x.x \Rightarrow$$

NOT

$$x = x.x \Rightarrow \bar{x} = \overline{x.x}$$

NOT

$$x = x.x \Rightarrow \bar{x} = \overline{x.x} = x|x$$

Resumen

$$x.y = \overline{x|y}$$

$$x + y = \overline{x}|\overline{y}$$

$$x \oplus y = \overline{(\overline{x}|\overline{y})|(x|y)}$$

$$\overline{x} = x|x$$

Resumen

$$x.y = (x|y)|(x|y)$$

$$x + y = (x|x)|(y|y)$$

$$x \oplus y = [((x|x)|(y|y)) | (x|y)] | [((x|x)|(y|y)) | (x|y)]$$

$$\bar{x} = x|x$$

- Sumador completo convencional:
 - $s \rightarrow 2t$
 - $c_s \rightarrow 3t$

- Sumador completo convencional:
 - $s \rightarrow 2t$
 - $c_s \rightarrow 3t$
- Sumador completo con NANDs:
 - \blacksquare $s \rightarrow 8t$
 - $c_s \rightarrow 6t$

¿Preguntas?