Computational Biology Camp

Cheat Sheet

[Meghna Kannan - 6/17/24]

Lecture Notes - Genomics

- Precision Medicine: study of application of individual variability in biological traits
 - Same treatment ⇒ different effect (trial & error)
 - Precision medicine is when there is no trial & error
- Gene: hereditary unit that codes for a functional molecule
- Transcription and translation: DNA & RNA:
 - DNA always lives in nucleus, small sequences of this DNA transcribed into RNA, the RNA goes to the ribosome and codes for protein using translation
- Genome: all of an organism's DNA protein coding, regulatory sequences, other RNAs
 - Genomics: study of genomes
 - Transcriptome: RNA level
 - Protein Level

- Cost of DNA sequencing has reduced over years
- Genome Sequencing steps:
 - o Break Genome
 - Order clones
 - Break clones
 - Generate and assemble sequence clones
 - Assemble sequences of overlapping clones ⇒ reference sequence
- Genome sequencing can help diagnose a disorder shows how tailored treatment is possible
- GINA: Prohibits discrimination in health coverage or employment based upon genetic tests
- NIH is the biggest funder for research for genomics
- Colonialism in genome sequencing: because only certain ethnic groups were being sequenced, the medicine may not work on everyone (equitable access). Can be used in discriminating and racist ways.

- Current Medicine: Trial and Error
- Genomic makes precision medicine possible
- Gene sequencing is cheaper than ever

Lecture Notes - Genetics at a Molecular Scale

- DNA: deoxyribonucleic acid; polymer made of monomers A, T, G, & C
 - o Adenine, Guanine, Cytosine, & Thymine
 - o 3 components:
 - Ribose
 - Base
 - Phosphate always carries a negative charge
- A-T Dimer Formation: reaction between 5' and 3', we read 5' to 3'
- Bases connect between sugar and phosphate
- Each base bring a -1 charge to the strand
- Partial charges can attract
 hydrogen bonding is a term for an attraction between a hydrogen and another atom (happens with the bases)
- A & T always hydrogen bond, G & C always hydrogen bond

- Antiparallel: we read 5' to 3', opposite strand reads 3' to 5'
- Nucleosome: histone cores (histone proteins) are positively charged and DNA wraps around it, becomes and chromosome eventually
- Humans have 23 pairs of chromosomes: 22 autosome pairs, 1 sex chromosome pair
- Amount of DNA for a specific gene varies for the gene
- Chromosomes have short (p) arm & long (q) arm
- miRNAs: scientists have identified location where they occur; multifactorial are complex because the cause can't just easily be pointed out

Lecture Notes - Research

- Misconceptions about genes and diseases:
 - Since genes come from parents, genes are faet that we cannot do much about
 - If genes are related to a disease, they are bad
- Gene Facts:
 - We cannot easily change gene sequences, but we can change gene expressions
 - All genes have a certain function
 - Genes work together with other genes (networks)

- Systems Biology: The whole is greater than the sum of its parts
- Diseases: conditions that occur when our body fails to maintain homeostasis
- Genes in DNA level and Diseases:
 - Almost all genetic tests check DNA sequence

Lecture Notes - Central Dogma

- DNA ⇒RNA ⇒ Protein
- Enzymes:
 - Polymerase: synthesize long chains of nucleic acid
 - Nuclease: cleave phosphodiester bonds between bases
 - Ligase: joining two large molecules by forming a new chemical bond
 - Helicase: separates two hybridized nucleic acids
- Most genes are transcribed from one of the two strands
- Plus is DNA with 5' end in the P arm of the chromosome (nothing to do with charge)
- RNA:
 - Coding RNA: messenger RNA, eventually codes for proteins
 - Non-coding: transfer RNA

- Splicing: two general; regions:
 - exons: end up in final product
 - o intons: fold into itself and is discarded (go **into** the trash)
 - still have start and end codons
 - o lower case: introns; upper case: exons
- DNA can make many different proteins through alternative splicing:
 - Certain exons aren't included for specific proteins, based on what is defined as an exon; same long sentence, different smaller sentences and phrases.
- DNA has same sequences in different cells, RNA has different number of different sequences
- different relevance of genes for different functions in each cell

Lecture Notes - Statistics

- Null hypothesis: In general, is almost like the opposite of what you are trying to prove
- P-value:
 - Assume null hypothesis is true
 - Ask what's the probability of getting those result if the null hypothesis is true; probability due to chance?
 - If small P-value → reject null
- Three keys numbers
 - Mean (measure of center)
 - Standard deviation (measure of spread)
 - Sample size (gives statistical power)
- If the p-value's low the null must go!

- Logarithms: opposite of exponents
 - Can be used in the richter magnitude scale (used to determine magnitude of earthquakes)
 - Fold change: b/a = b gene expression mean / a gene expression mean
- T-test: to see if there is a significant difference between the means of two groups

Disease Research

Useful websites: NIH, Medline Plus, Healthfinder, NCBI

OMIM =

[how to use OMIM]

Phenotype, molecular basis known

% Phenotype, molecular basis unknown

+ Gene and Phenotype combined

* Gene description

My selected disease: Glioblastoma

Symptoms:

Diagnostics

Treatment

Causes:

Genes

Social Impact

Gene Expression/Microarrays

- Traditional microarrays correlate light intensity to expression; used in a comparative sense, relative difference is important
- Picking a good data set:
 - o at least 20-30 samples
 - experimental/control grouped and distributed
 - clear definition
 - all variables
 - Filter
- Greyscale microarray
 - Diameter is correlated to fluorescence
 - Fluorescence is correlated
- Use GEO2R for biomarkers

- Up Regulation ⇒ gene is being expressed more in certain cell (more mRNA product showed up in microarray)
 - Down regulation is the opposite
 - Any positive log(fc) value means it is up regulated
- Volcano plot tells both the significance and change in expression for genes in the dataset (click explore and download for individual points)
- UMAP plot: look at all colors grouped together

Lecture Notes - Groups of Genes

- Ways of selecting genes based on statistical outputs
 - T-test p-value < 0.05
 - Top 250 most significantly expressed genes
 - Up-regulated genes (p < 0.01) in smoker cancer patients
 - Absolute of log(FC) > 1
- Ontology: field of study focused on classification (ex. Location, organism)
- - Biological processes: set of molecular events defined with start/end
 - Cellular components: part of a cell or its extracellular environment
 - Molecular function: activities of a gene product at molecular level

Lecture Notes - Gene Regulation

- Gene regulation: promoting or preventing gene expression
 - Can happen at the DNA level
 - methylation: less likely to be transcribed, DNA level
 - Can happen at the RNA level
 - microRNAs can prevent gene expression
 - small interfering RNAs (SIRNAs)
 - Destruction of one gene can impact other genes too → larger scale affect → homeostasis
- Signaling pathways
 - bodies are working through signals
 - signaling pathways show how the signals pass down through various gene products (proteins or RNAs)
 - two main types: activation and suppression

UCSC Genome Browser

Definitions: introns/exons, CDS, UTR

Find Position	
Human Assembly Feb. 2009 (GRCh37/hg19)]
Position/Search Term	GO
Enter position, gene symbol or search terms Current position: chr19:45,409,039-45,412,650	
Current position. Ciri 17.43,407,037-43,412,030	

GEO + GEO2R

Definitions: p-value, null hypothesis, LogFC, up/downregulation

What to look for in a dataset	GEO2R steps

GO + KEGG

[GO Steps/Screenshots]

[KEGG Steps/Screenshots]

Some interesting facts about the small cell lung cancer pathway:

- All of the genes connected to either ECM or CDK4/6
- All of the genes had really strong connections
- Most pathways led to ECM and CDK

String-db

Definitions: enrichment/depletion

[Steps/Screenshots]

- 1.) Search protein and organism
- 2.) Press continue
- 3.) Can look at specific interactions
- 4.) For multiple proteins choose multiple proteins instead of protein by name

How to Read Research Papers

Introduction

Methods

Results

Discussion

Conclusion

Acknowledgements

References

Figures

Abstract