Data Mining

Lecture 9

Ananya Jana CS360

Fall 2024

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Which test condition is the best?

How to determine the best split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

Entropy
$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Misclassification error

$$Error(t) = 1 - \max P(i \mid t)$$

Finding the best split

splitting (M)

- Compute impurity measure (P) before splitting

 Generate impurity measure (M) often enlitting
- Compute impurity measure (M) after splitting
 Compute impurity measure of each child node
- M is the weighted impurity of children
- Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after

Finding the best split

Measure of impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

Computing Entropy of a single node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	1	P(C1) = 1/6	P(C2) = 5/6
C2	5	Entropy = - (1	/6) $\log_2(1/6) - (5/6) \log_2(1/6) = 0.65$

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Entropy = - (2	$2/6$) $\log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Computing Information Gain after Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Measure of Impurity: Gini

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes
- Minimum (0.0) when all records belong to one class,

Measure of Impurity: Gini

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

For 2-class problem (p, 1 – p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

Gini=0.000		Gini=	0.278
C2	6	C2	5
C1	0	C1	1

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=(0.500

Computing Gini Index of a single node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	1	P(C1) = 1/6	P(C2) = 5/6	

Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

C2	5	Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$		
C1	2	P(C1) = 2/6	P(C2) = 4/6	

C1	1	P(C1) = 1/6	P(C2) = 5
C2	5	Gini = 1 – (1/6	$(5/6)^2 = (5/6)^2 = (5/6)^2$

C2

Computing Gini Index for a collection of nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

- Choose the attribute that minimizes weighted average
 Gini index of the children
 - Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	7
C2	5
Gini	= 0.486

Gin	ıi(I	N 1)
= 1	1000		735

$= 1 - (5/6)^2 - (1/6)^2$		N1	N2
= 0.278	C1	5	2
Gini(N2)	C2	1	4

	C-1		
iini(N2) 1 – (2/6)² – (4/6)²	C2	1	4
	Gini=0.361		
0.444		- V=11-1-	

Weighted Gini of N1	N2
= 6/12 * 0.278 +	
6/12 * 0.444	
= 0.361	

Gain = 0.486 - 0.361 = 0.125

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Which of these is the best?

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Task

- Compute the initial Gini index.
 Next, compute GINI index after you split based on the attribute
 i) Gender,
 ii) Car Type (assume the split is 3-way)
- 2. Do the same exercise as 1 with entropy as the measure of impurity.
- 3. Show that the maximum Gini index of a node is $(1 (1/n_c))$ when all records are equally distributed among the n_c different classes. [n_c the number of classes]

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1