

Robert Byrne

robert.byrne@nibrt.ie

Learning Objectives

Understand the basic principles of filtration

Be aware of the different types of filtration used in biopharmaceutical production

Outline the principles of tangential flow filtration (TFF)

Understand where and why TFF is used in downstream processing

Topics

General Filtration Principles

Filtration

The removal of particles from a fluid (gas or liquid) stream through the use of a porous medium.

Needs a driving force:

Pressure

or

Concentration

Filtration Processes

Filtration in Biopharma

Filtration is widely used in Biopharma to clarify and/or to sterilize solutions

Sterilizing grade filters are widely used due to:

- speed compared to other sterilisation processes
- the heat-sensitive nature of proteins

Mainly filters can be categorized into depth and membrane filters

Depth are not used as a means of sterilisation due to particle generation

Factors that can affect filter performance		for .
Viscosity	Flow rates	search
Surface tension of feed	Maximum use time	
рН	Temperature	
Compatibility of feed	Osmolality	
Pressures	Hydraulic shock.	

Membrane Filtration

A membrane is a selective layer that allows certain components to pass while rejecting others

Membranes can operate with liquid or gaseous feed streams and can be either dense or porous

Filter Polymer type:

e.g. cellulose acetate, polyamide polyether sulfone, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene (PP), polyethylene (PE), glass fiber

Filter Pore Sizes

Topics

Principles of Filtration **Normal Flow Filtration** Tangential Flow Filtration UFDF **UF/DF Operations**

Normal Flow Filtration

Particles collect on upstream side of filter during normal flow filtration (or frontal flow)

Can result in fouling/clogging/caking of the filter surface

Normal flow filters are generally not reused after use

Normal Flow Filtration

Hydrophilic vs. Hydrophobic Filters

aqueous/organic

solutions

NIBRT ©

12

Normal Flow Filtration at Downstream

Buffer Filtration

Product Stream Filtration

Vent Filtration

Filter Integrity Testing

FIT is a fundamental requirement to ensure the safety of the final product

Intermediate Product Stream & Final Bulk Product Filtration

These filters should have low protein binding to ensure minimal loss of the product during the removal of bioburden from product streams.

rch

13

Chromatography Skid Filters

These filters protect chromatography columns and other d/s equipment from bacterial and particulate contamination.

Vent Filtration

Vent filtration maintains sterility in buffer, cell culture and intermediate holding tanks

Buffer Filtration

Filtration of buffers is essential to protect downstream equipment and ensure quality of the final product

NIBRT ©

Ref: www.parker.com

Topics

Tangential Flow Filtration (TFF)

Tangential flow filtration (TFF) reduces cake formation/clogging

TFF increases throughput and prevents material from building on the membrane Filter is "self-cleaning" and can be re-used for several batches

Ultrafiltration/Diafiltration

Ultrafiltration/Diafiltration

Concentrate product

Buffer-exchange

<u>Ultrafiltration</u>

- Allows for diafiltration
- Reduces volumes

Diafiltration

- Optimises process for next step
 - Chromatography
 - Final formulation

Concentration by Ultrafiltration

What is Diafiltration?

Diafiltration continues until DF buffer = filtrate (pH/conductivity)

Membrane Fouling

Fouling is a phenomenon which can reduce flow rates through the filter

AFFECTING FACTORS:

- Concentration gradients
- Slow feed flow
- High pressures
- Feed solution make up

EFFECT CAUSED:

- Adsorption on pores
- Gel/cake layer formation
- Plugging/blocking of pores

RESULTS IN:

- Reduction in permeate flow
- Difficult cleaning
- Lower lifespan of membrane

Topics

Principles of Filtration **Normal Flow Filtration** Tangential Flow Filtration UFDF **UF/DF Operations**

Typical UF/DF Process

Set-Up

Installation

https://shop.pall.com/INTERSHOP/static/WFS/PALL-PALLUS-Site/-/PALL/en_US/images/Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL/en_US/images/Bigures/Figure_4_Plate_module.jpg http://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL/en_US/images/Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL/en_US/images/Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL/en_US/images/Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL-PALLUS-Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-/PALL-PALLUS-Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-content/uploads/2016/07/ceptramates/EP-Site/-PALLUS-Bigures/Figure_4_Plate_module.jpg https://www.revodix.co.kr/wp-cont

Sanitisation

Membranes can be cleaned and re-used for another batch of the same product

Flushing with water to remove protein residue

Cleaning procedures generally include the following steps:

Sodium hydroxide (~0.2M) recirculated through the system and held for specified amount of time

These flush, circulate and hold cycles are often repeated several times

Some systems may need the addition of sodium hypocholorite depending on the protein being cleared from the membranes

Rinse with water afterwards

Why Integrity Test?

Check filter is conforming to manufacturer specifications

Check set up correct (Cassette systems typically use compression to seal the cassettes together)

Mational Institu

What tests can we run on UF/DF cassettes?

Diffusion testing
Cannot perform a bubble point

UF/DF Filter Cassette

What is Membrane Integrity?

Membrane integrity refers to the ability of the filter membrane to do its job properly

Testing Filter Integrity Using Gas Flow (Diffusion)

Baseline Normalised Water Permeability

Provides a "health check" on the filter cassette

Can my used cassette by reused?

NWP test is carried out on the newly installed cassette (baseline). After each process run another NWP test is carried out (post). The Post and Baseline NWP values are the compared.

Bioprocessing Research

Normalised:

Need to standardise the testing

Water Permeability:

Pressure across the membrane
Size of membrane
Temperature of solution

Preconditioning

Buffer Flush

Before processing, the flow path may be wet and/or dry.

If conditions are not optimal, protein can become destabilised which leads to:

- Clipping
- Denaturation
- Aggregation
- Precipitation

National Ins Bioprocessi

and Training

Buffer **primes the line** with an optimal environment to ensure protein is protected when introduced

Active (functional) protein

Denatured protein

UFDF Processing

Example of Production Stage

Step	Vessel Volume
Starting solution	100L
Concentration 5X (UF)	20L
Buffer addition 3XDV (DF)	80L
Concentration 4X (UF)	20L
Buffer addition 3XDV (DF)	80L
Concentration 4X (UF)	20L
Buffer addition 3XDV (DF)	80L

DV = Diavolume

1 DV = volume in the vessel

33

UF/DF Process Parameters

Crossflow Rate

The Crossflow or Feedflow rate is the rate of solution flow through the feed channel and across the membrane

It provides the force that sweeps away the molecules that can foul the membrane

Higher turbulence and potential shear may be caused by a crossflow rate that is too high

35

Filtrate Flux

The rate at which permeate moves through the membrane is called the filtrate flow rate or permeate flow rate

Filtrate flux is the filtrate flow rate normalised for the area of the membrane [m²] through which it is passing

Filtrate flux is measured in LMH (litres/m²/hour)

Transmembrane Pressure (TMP)

Determining Optimal TMP

When flux starts to plateau at the knee of the curve, the optimal process TMP operating point has been identified

The operating TMP is chosen just **below this point**

TMP Must Be Regulated

TMP varies depending on membrane pore size and process.

High TMP enables faster flow across the membrane.

Having a TMP that's too high can encourage fouling.

Mational Institute for TMP value is balanced between flow rate and fouling of membrane. Bioprocessing Research

Usually maintain a small to moderate TMP across the membrane.

The priority is to **reduce fouling**

Product Recovery

Buffer Rinse

Need to run buffer through the system as there will be considerable hold up of process solution

Buffer rinse can remove some adsorbed protein material

Larger membranes will have more losses Institute for

Bioprocessing Research
After the buffer rinse ~99% should be the target recovery
and Training

Regeneration of Cassette

Sanitisation

After each membrane use and product recovery, the UF/DF assembly must be cleaned using the same cleaning protocol that was performed before use

NWP Post-Use

NWP Post-Use

Comparing the post-use cleaned membrane permeability with the original value indicates the effectiveness of the cleaning

Trends can be used to gauge expected membrane lifetime and to set a limit on maximum number of cycles per membrane. Membrane recoveries are company set and range from 80 – 120%.

Storage

Cassettes can be stored long-term if they are not to be reused immediately

- An appropriate solution must be recirculated
- Cassettes removed and stored wetted
- The solution should be anti-microbial

titute for ng Research

Summary

- Filters semi-permeable barrier layers permitting certain components of solutions or suspensions to permeate more rapidly than others – sieving or adsorption effect
- Separation of particles from liquid by applying a pressure to the solution to force the solution through a filter
- Depth filtration (NFF) clarification and/or bioburden control
- Cross-flow or tangential flow filtration (TFF)
 - Concentration controlled reduction of process sample volume whilst retaining target molecules / particles
 - Fractionation separation of complex mixtures in discrete fractions (MWCO points)

NIBRT ©

Diafiltration – buffer exchange

Summary

- Two kinds of filtration normal flow and tangential flow
 - Normal flow is predominantly for clarification of the feed-stream
 - TFF is used for concentration of sample (volume reduction) or for diafiltration (buffer exchange)
- Filters must be tested for performance and integrity
 - Forward flow / diffusion tests post use all Institute for
 - Bubble point tests pre and post use
 - Bacterial retention tests post use (or more commonly batch samples are tested by the manufacturer)

Sample Questions

- SAQ: Compare depth and tangential flow filtrations with respect to capacity, applications and stage of use in DSP.
- **SAQ**: What is the difference between micro- and ultra filtration? In each case, provide an example of to illustrate the objective of each method.
- **SAQ**: Comment on the development of single use technology filtration systems what advantages do they offer?
- LAQ: Explain diafiltration works and comment on factors to be considered in setting up such a protocol.

Issues to address, might include some/all of the following: ____ Research

- Define diafiltration
- Batch versus continuous

- Membrane selection MWCO
- Filter characteristics

Purpose and examples of where used

Topics

Principles of Filtration Normal Flow Filtration Tangential Flow Filtration UFDF **UF/DF Operations**

Thank You

