Deep RL and Multi-Agent RL

Sriyash Poddar

poddarsriyash@gmail.com

https://sriyash.me

Deep RL with Q-Functions

Recap: Q-learning

full fitted Q-iteration algorithm:

3. set
$$\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

online Q iteration algorithm:

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$$

Problems in online Q-learning

online Q iteration algorithm:

- sequential states are strongly correlated
- target value is always changing

1. take some action
$$\mathbf{a}_i$$
 and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ - target value $2. \ \phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$

Solution: replay buffers

Q-learning with a replay buffer:

+ samples are no longer correlated

1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}

2.
$$\phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})])$$

+ multiple samples in the batch (low-variance gradient)

Target Networks

What's wrong?

online Q iteration algorithm:

1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$

use replay buffer

Q-learning is *not* gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)))$$

no gradient through target value

This is still a problem!

Q-Learning and Regression

full Q-learning with replay buffer:

2. sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

one gradient step, moving target

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

2. set
$$\mathbf{y}_{i} \leftarrow r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'_{i}} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})$$

$$3. \text{ set } \phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

3. set
$$\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

perfectly well-defined, stable regression

Q-Learning with target networks

Q-learning with replay buffer and target network:

- 1. save target network parameters: $\phi' \leftarrow \phi$
- 2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy, add it to \mathcal{B} 1. $\mathbf{X} \times \mathbf{A} \times \mathbf{A}$

targets don't change in inner loop!

"Classic" deep Q-learning algorithm (DQN)

Q-learning with replay buffer and target network:

- 1. save target network parameters: $\phi' \leftarrow \phi$
- 2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B} $1 \times \mathbf{A} \times \mathbf{A}$

"classic" deep Q-learning algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$, add it to \mathcal{B}
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$ 4. $\phi \leftarrow \phi \alpha \sum_j \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_j, \mathbf{a}_j)(Q_{\phi}(\mathbf{s}_j, \mathbf{a}_j) y_j)$

 - 5. update ϕ' : copy ϕ every N steps

Alternative target network

"classic" deep Q-learning algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update ϕ'

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ϕ' : $\phi' \leftarrow \tau \phi' + (1 - \tau)\phi$

 $\tau = 0.999$ works well

A General View of Q-Learning

A more general view

- Online Q-learning: evict immediately, process 1, process 2, and process 3 all run at the same speed
- DQN: process 1 and process 3 run at the same speed, process 2 is slow
- Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1

Improving Q-Learning

Are the Q-values accurate?

As predicted Q increases, so does the return

Are the Q-values accurate?

Overestimation in Q-learning

target value $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ this last term is the problem

imagine we have two random variables: X_1 and X_2

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

 $Q_{\phi'}(\mathbf{s'}, \mathbf{a'})$ is not perfect – it looks "noisy"

hence $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ overestimates the next value!

note that
$$\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = \underline{Q_{\phi'}}(\mathbf{s}', \underbrace{\arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')})$$
 value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

Double Q-learning

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

note that
$$\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$$

value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

if the noise in these is decorrelated, the problem goes away!

idea: don't use the same network to choose the action and evaluate value!

"double" Q-learning: use two networks:

$$Q_{\phi_A}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_B}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi_A}(\mathbf{s}', \mathbf{a}'))$$

$$Q_{\phi_B}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_A}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi_B}(\mathbf{s}', \mathbf{a}'))$$

if the two Q's are noisy in different ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_{\phi'}(\mathbf{s'}, \mathbf{a'}))$

double Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \arg\max_{\mathbf{a'}} (\phi', \mathbf{a'}))$

just use current network (not target network) to evaluate action still use target network to evaluate value!

Multi-step returns

Q-learning target: $y_{j,t} = r_{j,t} + \gamma \max_{\mathbf{a}_{j,t+1}} Q_{\phi'}(\mathbf{s}_{j,t+1}, \mathbf{a}_{j,t+1})$

these are the only values that matter if $Q_{\phi'}$ is bad!

these values are important if $Q_{\phi'}$ is good

where does the signal come from?

Q-learning does this: max bias, min variance

remember this?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right) + \text{lower variance (due to critic)}$$

Policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right)$$

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

N-step return estimator

Q-learning with N-step returns

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$
this is supposed to estimate $Q^{\pi}(\mathbf{s}_{j,t}, \mathbf{a}_{j,t})$ for π

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

- + less biased target values when Q-values are inaccurate
- + typically faster learning, especially early on
- only actually correct when learning on-policy

why?

we need transitions $\mathbf{s}_{j,t'}, \mathbf{a}_{j,t'}, \mathbf{s}_{j,t'+1}$ to come from π for t'-t < N-1 (not an issue when N=1)

how to fix?

- ignore the problem
 - often works very well
- cut the trace dynamically choose N to get only on-policy data
 - works well when data mostly on-policy, and action space is small
- importance sampling

Q-Learning with Continuous Actions

Q-learning with continuous actions

What's the problem with continuous actions?

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$
 this max

target value
$$y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$$
 this max particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

- gradient based optimization (e.g., SGD) a bit slow in the inner loop
- action space typically low-dimensional what about stochastic optimization?

Q-learning with stochastic optimization

Simple solution:

```
\max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) \approx \max \{Q(\mathbf{s}, \mathbf{a}_1), \dots, Q(\mathbf{s}, \mathbf{a}_N)\}
(\mathbf{a}_1, \dots, \mathbf{a}_N) \text{ sampled from some distribution (e.g., uniform)}
```

- + dead simple
- + efficiently parallelizable
- not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

- cross-entropy method (CEM)
 - simple iterative stochastic optimization
- CMA-ES
 - substantially less simple iterative stochastic optimization

works OK, for up to about 40 dimensions

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2} (\mathbf{a} - \mu_{\phi}(\mathbf{s}))^{T} P_{\phi}(\mathbf{s}) (\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$

NAF: Normalized Advantage Functions

$$\arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$$

- + no change to algorithm
- + just as efficient as Q-learning
- loses representational power

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016)

"deterministic" actor-critic (really approximate Q-learning)

$$\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = Q_{\phi}(\mathbf{s}, \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}))$$

idea: train another network $\mu_{\theta}(\mathbf{s})$ such that $\mu_{\theta}(\mathbf{s}) \approx \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$

how? just solve
$$\theta \leftarrow \arg \max_{\theta} Q_{\phi}(\mathbf{s}, \mu_{\theta}(\mathbf{s}))$$

$$\frac{dQ_{\phi}}{d\theta} = \frac{d\mathbf{a}}{d\theta} \frac{dQ_{\phi}}{d\mathbf{a}}$$

new target
$$y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta}(\mathbf{s}'_j)) \approx r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j))$$

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta'}(\mathbf{s}'_j))$ using target nets $Q_{\phi'}$ and $\mu_{\theta'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. $\theta \leftarrow \theta + \beta \sum_{j} \frac{d\mu}{d\theta}(\mathbf{s}_{j}) \frac{dQ_{\phi}}{d\mathbf{a}}(\mathbf{s}_{j}, \mu(\mathbf{s}_{j}))$
- 6. update ϕ' and θ' (e.g., Polyak averaging)

Multi-Agent RL

Swarm Robotics Example

Variations of Multi-Agent MDPs

Decentralized POMDPs-(Dec-POMDP)

Decentralized POMDPs- (Dec-POMDP)

- Now while we have n agents taking actions to receive a single reward, each agent receives a different partial observation
- Ω_i : finite set of observations available to agent i
- Ω : set of joint observations $\Omega = \Omega_1 \times \Omega_2 \cdots \times \Omega_n$
- ullet The observation function O is now defined between state transitions and joint action
- $O: A \times S \rightarrow \Delta \Omega$
- Hence Dec-POMDP is defined by the tuple $S, A_i, P, R, O, \Omega, I$

Game Theoretical Formulations of MARL

- There are two different but closely related theoretical frameworks for MARL
 - Markov Games Also known as stochastic games
 - Cooperative Setting: All agents receive the same reward
 - Competitive setting: zero sum game, E.g. reward of one agent is the loss of other
 - Mixed setting: general sum game, each agent is self interested, and rewards may conflict with each other
 - Extensive form games
 - Better at handling imperfect information, such as partial observability
- Different solutions are proposed for these settings where the Nash Equilibrium is found
 - NE joint policy learnt
 - By definition, NE characterizes the point that no agent will deviate from, if any algorithm finally converges.

Nash Equilibrium as a solution concept

- NE Is a reasonable solution concept in game theory, under the assumption that the agents are all rational, and are capable of perfectly reasoning and infinite mutual modelling of agents.
- However, with bounded rationality, the agents may only be able to perform finite mutual modelling
- As a result, the learning dynamics that are devised to converge to NE may not be justifiable for practical MARL agents.

Learning structures

Zhang et al., Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms

Joint Action Learning

- Joint observation of all agents are mapped to a joint action of all agents
 - $(O_1, O_2 ..., O_N) \to (A_1, A_2, ..., A_N)$
- Centralized in both training and execution
 - leads to an exponential growth in the observation and actions spaces with the number of agents

Fully factored centralized control

- Assume that the joint action (a) can be factored into individual components (a_i) for each agent
- Now the joint observation is mapped to the action of individual agents using a set of independent sub-policies

•
$$P(a) = \varsigma^n P(a_i)$$

- This reduces the Action space from $|A|^n$ to |A|n
- Observation space still keeps growing and hence such approaches aren't suitable for complex environments nor large number of agents

Independent (Dec/Concurrent) Learning

- Each agent learns its own policy, without any knowledge about others, but with a joint reward function
 - $O_i \rightarrow A$
 - An agent considers other agents' and their actions as part of the environment dynamics
- This is helpful when agents learn heterogeneous policies
- Training does not scale as agents increase
 - Agents don't share experience, therefore sample complexity increases
 - High computational and memory requirements
- Learning in such an environment is non-stationary
 - As each agent evolves over time -> lack of convergence guarantees/ cant use experience replay

Questions?

Tomorrow:

- 1. Diving into differences in competition and collaboration.
- 2. Deep RL to solve multi-agent tasks.