Lecture 7: Dynamic Panel Data Models

Vitor Possebom

EESP-FGV

Econometrics 2

Administrative

- Recommended Reading: Bond (2002)
- Problem Set 6 Deadline: June 20th at 5:00 pm

Outline

1. Motivation

- 2. Autoregressive Models
- 3. Multivariate Dynamic Models
- 4. Frontier in Panel Data Research and Dynamic Models

We want to estimate dynamic models.

- Relationship between a treatment in the past and an outcome today.
- Relationship between a endogenous variable in the past and its value today.

To estimate this type of model, we need a time dimension. However, time series data may be insufficient.

- Aggregate time series data may obscure microeconomic relationships.
 - Robinson [1950]: In the U.S. in 1930, immigrants were less likely to be literate than native citizens, but states with more immigrants had higher literacy rates.

4

Panel data \rightarrow microeconomic heterogeneity: firms, households or individuals.

Examples:

- Lecture 1 Income Dynamics
- Household consumption Euler Equations
- Adjustment cost models for firm's factor demands
- Economic growth
- Production functions with serially correlated productivity shocks
- Company investment rates

Goal:

- Estimation of single equation, autoregressive-distributed lag models from panels with a large number of cross-section units, each observed for a small number of time periods.
- Estimation methods that do not require the time dimension to become large in order to obtain consistent parameter estimates.
- Focus on micro panel data on individuals or firms.

Identification depends on limited serial correlation in the error term.

• It relies on somewhat hard-to-justify assumptions.

Outline

1. Motivation

2. Autoregressive Models

Multivariate Dynamic Models

4. Frontier in Panel Data Research and Dynamic Models

We start with a simple AR(1) model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, \dots, N\}$ and $t \in \{2, 3, \dots, T\}$.

We start with a simple AR(1) model:

$$Y_{i,t} = \frac{\alpha}{\alpha} \cdot Y_{i,t-1} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

- ullet η_i : unobserved individual-specific time-invariant effects
 - ullet heterogeneity in the means of the $Y_{i,t}$ series across individuals

We start with a simple AR(1) model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

- ullet η_i : unobserved individual-specific time-invariant effects
 - ullet heterogeneity in the means of the $Y_{i,t}$ series across individuals
- $\nu_{i,t}$: disturbance term

We start with a simple AR(1) model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

- η_i : unobserved individual-specific time-invariant effects
 - ullet heterogeneity in the means of the $Y_{i,t}$ series across individuals
- $\nu_{i,t}$: disturbance term

Cross-sectional asymptotics: N goes to infinite, while T is fixed.

Assumptions:

Assumptions:

1. $\nu_{i,t}$ are independent across individuals.

Assumptions:

- 1. $\nu_{i,t}$ are independent across individuals.
- 2. $\nu_{i,t}$ are serially uncorrelated.
 - We have to correctly specify the AR(p) model.

Assumptions:

- 1. $\nu_{i,t}$ are independent across individuals.
- 2. $\nu_{i,t}$ are serially uncorrelated.
 - We have to correctly specify the AR(p) model.
- 3. η_i is stochastic.

$$\Rightarrow Cov(\eta_i, Y_{i,t-1}) \neq 0$$

Assumptions:

- 1. $\nu_{i,t}$ are independent across individuals.
- 2. $\nu_{i,t}$ are serially uncorrelated.
 - We have to correctly specify the AR(p) model.
- 3. η_i is stochastic.

$$\Rightarrow \ \textit{Cov}\left(\eta_{i}, Y_{i,t-1}\right) \neq 0$$

OLS estimator is inconsistent.

"Are we in the woods without a dog?"

"Are we in the woods without a dog?"

"If we don't have a dog, we hunt with a cat."

Within-groups estimator:

Run OLS in the demeaned model

$$\begin{split} \tilde{Y}_{i,t} &= \alpha \cdot \tilde{Y}_{i,t-1} + \tilde{\nu}_{i,t}, \\ \text{where } \tilde{Y}_{i,t} \coloneqq Y_{i,t} - \frac{\sum_{\tau=2}^T Y_{i,\tau}}{T-1}, \ \tilde{Y}_{i,t-1} \coloneqq Y_{i,t-1} - \frac{\sum_{\tau=1}^{T-1} Y_{i,\tau}}{T-1} \text{ and } \\ \tilde{\nu}_{i,t} \coloneqq \nu_{i,t} - \frac{\sum_{\tau=2}^T \nu_{i,\tau}}{T-1}. \end{split}$$

Within-groups estimator:

Run OLS in the demeaned model

$$\begin{split} \tilde{Y}_{i,t} &= \alpha \cdot \tilde{Y}_{i,t-1} + \tilde{\nu}_{i,t}, \\ \text{where } \tilde{Y}_{i,t} \coloneqq Y_{i,t} - \frac{\sum_{\tau=2}^T Y_{i,\tau}}{T-1}, \ \tilde{Y}_{i,t-1} \coloneqq Y_{i,t-1} - \frac{\sum_{\tau=1}^{T-1} Y_{i,\tau}}{T-1} \text{ and } \\ \tilde{\nu}_{i,t} \coloneqq \nu_{i,t} - \frac{\sum_{\tau=2}^T \nu_{i,\tau}}{T-1}. \\ \Rightarrow \textit{Cov}\left(\tilde{Y}_{i,t-1}, \tilde{\nu}_{i,t}\right) \neq 0 \end{split}$$

Within-groups estimator:

Run OLS in the demeaned model

$$\begin{split} \tilde{Y}_{i,t} &= \alpha \cdot \tilde{Y}_{i,t-1} + \tilde{\nu}_{i,t}, \\ \text{where } \tilde{Y}_{i,t} &\coloneqq Y_{i,t} - \frac{\sum_{\tau=2}^T Y_{i,\tau}}{T-1}, \ \tilde{Y}_{i,t-1} \coloneqq Y_{i,t-1} - \frac{\sum_{\tau=1}^{T-1} Y_{i,\tau}}{T-1} \text{ and } \\ \tilde{\nu}_{i,t} &\coloneqq \nu_{i,t} - \frac{\sum_{\tau=2}^T \nu_{i,\tau}}{T-1}. \\ \Rightarrow \textit{Cov}\left(\tilde{Y}_{i,t-1}, \tilde{\nu}_{i,t}\right) \neq 0 \end{split}$$

Within-groups estimator is inconsistent.

"It was a house cat!"

"It was a house cat!"

Let's try something different.

First-differences estimator:

• Run OLS in the first-differences model

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \Delta \nu_{i,t}.$$

First-differences estimator:

• Run OLS in the first-differences model

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \Delta \nu_{i,t}.$$

$$\Rightarrow Cov(\Delta Y_{i,t-1}, \Delta \nu_{i,t}) \neq 0$$

First-differences estimator:

• Run OLS in the first-differences model

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \Delta \nu_{i,t}.$$

$$\Rightarrow Cov(\Delta Y_{i,t-1}, \Delta \nu_{i,t}) \neq 0$$

First-differences estimator is inconsistent.

"It was another house cat! A sleepy one!"

"It was another house cat! A sleepy one!"

We will need a dog!

Anderson-Hsiao estimator:

• Run 2SLS in the first-differences model

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \Delta \nu_{i,t}.$$

• Instrument is $Y_{i,t-2}$.

Anderson-Hsiao estimator:

• Run 2SLS in the first-differences model

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \Delta \nu_{i,t}.$$

- Instrument is $Y_{i,t-2}$.
- Extra Assumption Predetermined Initial Conditions:

$$Cov(Y_{i,1}, \nu_{i,t}) = 0 \text{ for } t \in \{2, 3, ..., T\}$$

Anderson-Hsiao estimator: For $t \in \{3, 4, ..., T\}$, we have that

$$\begin{aligned} \textit{Cov}\left(\Delta\nu_{i,t}, Y_{i,t-2}\right) &= \textit{Cov}\left(\nu_{i,t} - \nu_{i,t-1}, Y_{i,t-2}\right) \\ &= \textit{Cov}\left(\nu_{i,t}, Y_{i,t-2}\right) - \textit{Cov}\left(\nu_{i,t-1}, Y_{i,t-2}\right) \\ &= \textit{Cov}\left(\nu_{i,t}, \alpha^{t-3} \cdot Y_{i,1} + \left\{\sum_{\tau=0}^{t-4} \alpha^{\tau} \cdot \nu_{i,t-2-\tau}\right\}\right) \\ &- \textit{Cov}\left(\nu_{i,t-1}, \alpha^{t-3} \cdot Y_{i,1} + \left\{\sum_{\tau=0}^{t-4} \alpha^{\tau} \cdot \nu_{i,t-2-\tau}\right\}\right) \\ &= 0 \end{aligned}$$

Anderson-Hsiao estimator: For $t \in \{3, 4, ..., T\}$, we have that

$$\begin{aligned} \textit{Cov}\left(\Delta\nu_{i,t}, Y_{i,t-2}\right) &= \textit{Cov}\left(\nu_{i,t} - \nu_{i,t-1}, Y_{i,t-2}\right) \\ &= \textit{Cov}\left(\nu_{i,t}, Y_{i,t-2}\right) - \textit{Cov}\left(\nu_{i,t-1}, Y_{i,t-2}\right) \\ &= \textit{Cov}\left(\nu_{i,t}, \alpha^{t-3} \cdot Y_{i,1} + \left\{\sum_{\tau=0}^{t-4} \alpha^{\tau} \cdot \nu_{i,t-2-\tau}\right\}\right) \\ &- \textit{Cov}\left(\nu_{i,t-1}, \alpha^{t-3} \cdot Y_{i,1} + \left\{\sum_{\tau=0}^{t-4} \alpha^{\tau} \cdot \nu_{i,t-2-\tau}\right\}\right) \\ &= 0 \end{aligned}$$

Anderson-Hsiao estimator is large-N consistent if $T \geq 3$.

We can do better if T > 3.

Arellano-Bond Estimator

- Period t = 3: $Y_{i,1}$ is the only valid instrument.
- Period t = 4: $Y_{i,1}$ and $Y_{i,2}$ are valid instruments.

÷

• Period t = T: $Y_{i,1}, Y_{i,2}, \dots, Y_{i,T-2}$ are valid instruments.

Arellano-Bond Estimator (T > 3):

• Efficient GMM estimator based on $\mathbb{E}\left[Z_i'\Delta\nu_i\right]=0$,

Arellano-Bond Estimator (T > 3):

• Efficient GMM estimator based on $\mathbb{E}\left[Z_i'\Delta\nu_i\right]=0$, where

$$Z_{i} := \left[\begin{array}{ccccccc} Y_{i,1} & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & Y_{i,1} & Y_{i,2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & Y_{i,1} & \cdots & Y_{i,T-2} \end{array} \right]$$

$$\Delta \nu_i := (\Delta \nu_{i,3}, \Delta \nu_{i,4}, \dots, \Delta \nu_{i,T})'$$

- ullet Over-identified model o Sargan test to check our assumptions' validity.
 - Sargan test is famously weak.

- ullet Over-identified model o Sargan test to check our assumptions' validity.
 - Sargan test is famously weak.
- Longer AR(p) models and serially correlated $\nu_{i,t}$ terms can be accommodated if we have more time periods.
 - Older values of $Y_{i,t-j}$ are valid instruments.

- ullet Over-identified model o Sargan test to check our assumptions' validity.
 - Sargan test is famously weak.
- Longer AR(p) models and serially correlated $\nu_{i,t}$ terms can be accommodated if we have more time periods.
 - Older values of $Y_{i,t-j}$ are valid instruments.
- Drawbacks:
 - Large number of instruments ⇒ Poor Small Sample Performance and Weak Instruments.

- ullet Over-identified model o Sargan test to check our assumptions' validity.
 - Sargan test is famously weak.
- Longer AR(p) models and serially correlated $\nu_{i,t}$ terms can be accommodated if we have more time periods.
 - Older values of $Y_{i,t-j}$ are valid instruments.
- Drawbacks:
 - Large number of instruments ⇒ Poor Small Sample Performance and Weak Instruments.
 - Too few AR terms ⇒ Arellano-Bond estimator is inconsistent.
 - Too many AR terms \Rightarrow Weak Instruments

• Panel of UK firms between 1987 and 2000

- Panel of UK firms between 1987 and 2000
- *l*_{i,t}: gross investment expenditures
- $K_{i,t}$: net capital stock at replacement cost
- $Y_{i,t} = \frac{I_{i,t}}{K_{i,t}}$: growth rate in the net capital stock plus a depreciation rate

- Panel of UK firms between 1987 and 2000
- *I_{i,t}*: gross investment expenditures
- $K_{i,t}$: net capital stock at replacement cost
- $Y_{i,t} = \frac{I_{i,t}}{K_{i,t}}$: growth rate in the net capital stock plus a depreciation rate

$$Y_{i,t} = c_t + \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t}$$

- Panel of UK firms between 1987 and 2000
- *I_{i,t}*: gross investment expenditures
- $K_{i,t}$: net capital stock at replacement cost
- $Y_{i,t} = \frac{I_{i,t}}{K_{i,t}}$: growth rate in the net capital stock plus a depreciation rate

$$Y_{i,t} = c_t + \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t}$$

ullet c_t : year-specific intercepts account for common cyclical or trend components

- Panel of UK firms between 1987 and 2000
- *l_{i,t}*: gross investment expenditures
- $K_{i,t}$: net capital stock at replacement cost
- ullet $Y_{i,t}=rac{I_{i,t}}{K_{i,t}}$: growth rate in the net capital stock plus a depreciation rate

$$Y_{i,t} = c_t + \alpha \cdot Y_{i,t-1} + \eta_i + \nu_{i,t}$$

- ullet c_t : year-specific intercepts account for common cyclical or trend components
- η_i : firm-specific depreciation rates

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent va	riable: (I/I)	$K)_t$			
	OLS	Within	2SLS	GMM	GMM
	levels	groups	DIF	DIF	DIF
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)
Sargan			(p-val	ue) .36	.43
Instruments			"	$(I/K)_{t-2}$	$(I/K)_{t=2}$
			. , , , -	$(I/K)_{t-3}$	
	1				
				(I/K)t=3	(1/K)t=3

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent va	riable: (I/I)	$K)_t$			
	OLS	Within	2SLS	GMM	GMM
	levels	groups	DIF	DIF	DIF
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)
Sargan			(p-val	ue) .36	.43
Sargan			"	•	
Instruments			$(I/K)_{t-2}$	$(I/K)_{t-2}$	
				$(I/K)_{t-3}$	$(I/K)_{t-3}$
					:
					$(I/K)_1$

• OLS is likely to be biased upwards. (See PSet 6)

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent variable: $(I/K)_t$						
	OLS	Within 2SLS	2SLS	GMM	GMM	
	levels	groups	DIF	DIF	DIF	
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560	
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)	

Sargan	(p-value) .36		.43
Instruments	$(I/K)_{t-2}$	$(I/K)_{t-2}$	
		$(I/K)_{t-3}$	$(I/K)_{t=3}$
			$(I/K)_1$

- OLS is likely to be biased upwards. (See PSet 6)
- Within-Groups is likely to be biased downwards. (See PSet 6)

Table 1. Alternative estimates of the AR(1) specification for company investment rate

	OLS	Within	2SLS	GMM	GMM
	levels	groups	DIF	DIF	DIF
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)
Sargan			(p-val	ue) .36	.43
				(= (= =)	(T / TC)
			$(I/K)_{t-2}$	$(I/K)_{t-2}$	$(I/K)_{t-2}$
Instruments			$(I/K)_{t-2}$	$(I/K)_{t-2}$ $(I/K)_{t-3}$	
			$(I/K)_{t-2}$		

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent va	riable: (I/I)	$K)_t$			
	OLS	Within	2SLS	GMM	GMM
	levels	groups	DIF	DIF	DIF
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)
Sargan			(p-val	ue) .36	.43
Instruments			$(I/K)_{t-2}$	$(I/K)_{t-2}$	$(I/K)_{t-2}$
				$(I/K)_{t-3}$	$(I/K)_{t-3}$
					:
					$(I/K)_1$

 2SLS and GMM: between OLS and Within-Groups

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent va	riable: $(I/$	$K)_t$			
	OLS	Within 2SLS	2SLS	GMM	GMM
	levels	groups	DIF	DIF	DIF
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)

Sargan	(p-value) .36	.43
Instruments	$(I/K)_{t-2}$ $(I/K)_{t-2}$ $(I/K)_{t-3}$	$(I/K)_{t-2}$ $(I/K)_{t-3}$ \vdots $(I/K)_1$
		(1/11)1

- 2SLS and GMM: between OLS and Within-Groups
- 2SLS and GMM: close to each other

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent variable: $(I/K)_t$						
	OLS	Within	ithin 2SLS	GMM	GMM	
	levels	groups	DIF	DIF	DIF	
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560	
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)	

Sargan	(p-value) .36		.43
Instruments	$(I/K)_{t-2}$	$(I/K)_{t-2}$	
		$(I/K)_{t=3}$	$(I/K)_{t-3}$
			$(I/K)_1$

- 2SLS and GMM: between OLS and Within-Groups
- 2SLS and GMM: close to each other
- Sargan Test: do not reject

Table 1. Alternative estimates of the AR(1) specification for company investment rate

Dependent variable: $(I/K)_t$							
	OLS	Within 2SLS	GMM	GMM			
	levels	groups	DIF	DIF	DIF		
$(I/K)_{t-1}$	0.2669	-0.0094	0.1626	0.1593	0.1560		
	(.0185)	(.0181)	(.0362)	(.0327)	(.0318)		

Sargan	(p-va	lue) .36	.43
Instruments	$(I/K)_{t-2}$	$(I/K)_{t-2}$ $(I/K)_{t-3}$	

- 2SLS and GMM: between OLS and Within-Groups
- 2SLS and GMM: close to each other
- Sargan Test: do not reject
- Many IVs: Column (4) =
 23, Column (5) = 78

Outline

- 1. Motivation
- 2. Autoregressive Models
- 3. Multivariate Dynamic Models

4. Frontier in Panel Data Research and Dynamic Models

Now, we analyze a slightly more complicated model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \beta \cdot X_{i,t} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

Now, we analyze a slightly more complicated model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \beta \cdot X_{i,t} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

• $X_{i,t}$: current and lagged values of additional explanatory variables.

Now, we analyze a slightly more complicated model:

$$Y_{i,t} = \alpha \cdot Y_{i,t-1} + \beta \cdot X_{i,t} + \eta_i + \nu_{i,t},$$

where $|\alpha| < 1$, $i \in \{1, 2, ..., N\}$ and $t \in \{2, 3, ..., T\}$.

- $X_{i,t}$: current and lagged values of additional explanatory variables.
- No need to model the time series $X_{i,t}$.
- $X_{i,t}$ can be correlate with η_i .

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \beta \cdot \Delta X_{i,t} + \Delta \nu_{i,t}.$$

First-differences model:

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \beta \cdot \Delta X_{i,t} + \Delta \nu_{i,t}.$$

• Instruments for $\Delta Y_{i,t-1}$ are the same as before.

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \beta \cdot \Delta X_{i,t} + \Delta \nu_{i,t}.$$

- Instruments for $\Delta Y_{i,t-1}$ are the same as before.
- $X_{i,t}$ is endogenous: $Cov(X_{i,t}, \nu_{i,\tau}) \neq 0$ if $\tau \leq t$ and $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ if $\tau > t$.
 - \Rightarrow $X_{i,t-2}$, $X_{i,t-3}$ and longer lags are valid instruments.

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \beta \cdot \Delta X_{i,t} + \Delta \nu_{i,t}.$$

- Instruments for $\Delta Y_{i,t-1}$ are the same as before.
- $X_{i,t}$ is endogenous: $Cov(X_{i,t}, \nu_{i,\tau}) \neq 0$ if $\tau \leq t$ and $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ if $\tau > t$. $\Rightarrow X_{i,t-2}, X_{i,t-3}$ and longer lags are valid instruments.
- $X_{i,t}$ is predetermined: $Cov(X_{i,t}, \nu_{i,\tau}) \neq 0$ if $\tau < t$ and $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ if $\tau \geq t$.
 - $\Rightarrow X_{i,t-1}$ is a valid instrument too.

$$\Delta Y_{i,t} = \alpha \cdot \Delta Y_{i,t-1} + \beta \cdot \Delta X_{i,t} + \Delta \nu_{i,t}.$$

- Instruments for $\Delta Y_{i,t-1}$ are the same as before.
- $X_{i,t}$ is endogenous: $Cov(X_{i,t}, \nu_{i,\tau}) \neq 0$ if $\tau \leq t$ and $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ if $\tau > t$. $\Rightarrow X_{i,t-2}, X_{i,t-3}$ and longer lags are valid instruments.
- $X_{i,t}$ is predetermined: $Cov(X_{i,t}, \nu_{i,\tau}) \neq 0$ if $\tau < t$ and $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ if $\tau \geq t$.
 - $\Rightarrow X_{i,t-1}$ is a valid instrument too.
- $X_{i,t}$ is strictly exogenous: $Cov(X_{i,t}, \nu_{i,\tau}) = 0$ for any $\tau \in \{1, 2, ..., T\}$. $\Rightarrow X_i' := (X_{i,1}, ..., X_{i,T})'$ is a valid instrument.

Frontier in Panel Data Research

and Dynamic Models

Outline

1. Motivation

- 2. Autoregressive Models
- 3. Multivariate Dynamic Models
- 4. Frontier in Panel Data Research and Dynamic Models

Previous Models are Likely Problematic

Previous models rely strongly on functional form specification.

• Too few AR terms $\Rightarrow 2SLS$ is inconsistent.

Previous Models are Likely Problematic

Previous models rely strongly on functional form specification.

• Too few AR terms $\Rightarrow 2SLS$ is inconsistent.

Previous estimators may suffer from weak instrument bias.

ullet Too many AR terms \Rightarrow Weak Instruments.

Previous Models are Likely Problematic

Previous models rely strongly on functional form specification.

• Too few AR terms $\Rightarrow 2SLS$ is inconsistent.

Previous estimators may suffer from weak instrument bias.

ullet Too many AR terms \Rightarrow Weak Instruments.

 \Rightarrow Previous models are infrequently used today.

Frontier in Panel Data Research and Dynamic Models

Non-linear Models

- Gao and Li [2021]:
 - Panel Multinomial Choice Model with infinite-dimensional fixed-effects
 - Estimating the demand for popcorn

- Gao and Li [2021]:
 - Panel Multinomial Choice Model with infinite-dimensional fixed-effects
 - Estimating the demand for popcorn
- Davezies et al. [2021]:
 - Panel Data Fixed-effects Logit Model
 - Partial Identification of Average Marginal Effects

- Gao and Li [2021]:
 - Panel Multinomial Choice Model with infinite-dimensional fixed-effects
 - Estimating the demand for popcorn
- Davezies et al. [2021]:
 - Panel Data Fixed-effects Logit Model
 - Partial Identification of Average Marginal Effects
- Galvao [2011]:
 - Quantile Regression Dynamic Panel Model with Fixed Effects
 - First-differencing and demeaning do not work because quantiles are not linear.

- Gao and Li [2021]:
 - Panel Multinomial Choice Model with infinite-dimensional fixed-effects
 - Estimating the demand for popcorn
- Davezies et al. [2021]:
 - Panel Data Fixed-effects Logit Model
 - Partial Identification of Average Marginal Effects
- Galvao [2011]:
 - Quantile Regression Dynamic Panel Model with Fixed Effects
 - First-differencing and demeaning do not work because quantiles are not linear.
- Arellano and Bonhomme [2017]: Survey paper on Non-linear Panel Data Models

- Li [2021]:
 - Estimating production functions.

- Li [2021]:
 - Estimating production functions.
- Laage [2020]:
 - Estimating labor supply functions.

- Li [2021]:
 - Estimating production functions.
- Laage [2020]:
 - Estimating labor supply functions.
- Both authors rely on control function arguments
 - They construct a new variable that ensures a conditional independence assumption.

- Many empirical applications:
 - Teacher value-added models
 - Firm-specific productivity factors
 - Neighborhood effects and intergenerational mobility
 - Judge leniency
 - Hospital quality

- Many empirical applications:
 - Teacher value-added models
 - Firm-specific productivity factors
 - Neighborhood effects and intergenerational mobility
 - Judge leniency
 - Hospital quality
- In large-N scenarios, the estimator of the fixed-effect parameters is very imprecise.

- Many empirical applications:
 - Teacher value-added models
 - Firm-specific productivity factors
 - Neighborhood effects and intergenerational mobility
 - Judge leniency
 - Hospital quality
- In large-N scenarios, the estimator of the fixed-effect parameters is very imprecise.
- Shrinkage methods increases precision by allowing for some bias.
- ullet Navigating this trade-off: Minimize $MSE o ext{Kwon}$ [2021].

Choice-based Treatment Effect Models:

Choice-based Treatment Effect Models:

- Heckman et al. [2016]:
 - Multi-stage decision problems.
 - Decompose treatment effects into direct effects and continuation values associated with moving to the next stage of a decision problem.
 - Schooling choice: HS dropout, HS graduate, some college, college graduate.

Choice-based Treatment Effect Models:

- Heckman et al. [2016]:
 - Multi-stage decision problems.
 - Decompose treatment effects into direct effects and continuation values associated with moving to the next stage of a decision problem.
 - Schooling choice: HS dropout, HS graduate, some college, college graduate.
- Han [2021]:
 - Sequences of treatment allocations.
 - Optimal treatment regimes.

- Goodman-Bacon [2021]:
 - Staggered Adoption.
 - Standard TWFE estimators may not capture an interpretable average of ATTs.
 - Estimated coefficient captures an average of ATTs with possibly negative weights.

- Goodman-Bacon [2021]:
 - Staggered Adoption.
 - Standard *TWFE* estimators may not capture an interpretable average of *ATT*s.
 - Estimated coefficient captures an average of ATTs with possibly negative weights.
- Callaway and Sant'anna [2021]:
 - Staggered Adoption.
 - They solve the problem pointed out by Goodman-Bacon [2021].
 - They flexibly estimate many ATTs and convex combination of ATTs.

- Goodman-Bacon [2021]:
 - Staggered Adoption.
 - Standard TWFE estimators may not capture an interpretable average of ATTs.
 - Estimated coefficient captures an average of ATTs with possibly negative weights.
- Callaway and Sant'anna [2021]:
 - Staggered Adoption.
 - They solve the problem pointed out by Goodman-Bacon [2021].
 - They flexibly estimate many ATTs and convex combination of ATTs.
- Callaway et al. [2021]:
 - DiD with Continuous Treatment
 - Standard TWFE does not capture a interpretable treatment effect parameter.
 - Non-parametric methods are a possible solution.

- Goodman-Bacon [2021]:
 - Staggered Adoption.
 - Standard TWFE estimators may not capture an interpretable average of ATTs.
 - Estimated coefficient captures an average of ATTs with possibly negative weights.
- Callaway and Sant'anna [2021]:
 - Staggered Adoption.
 - They solve the problem pointed out by Goodman-Bacon [2021].
 - They flexibly estimate many ATTs and convex combination of ATTs.
- Callaway et al. [2021]:
 - DiD with Continuous Treatment
 - Standard TWFE does not capture a interpretable treatment effect parameter.
 - Non-parametric methods are a possible solution.

- Abadie and Gardeazabal [2003], Abadie et al. [2010] and Abadie et al. [2015]
 - Dynamic Treatment Effects with a single treated unit.
 - Many empirical applications: terrorism, important laws, country unification etc.

- Abadie and Gardeazabal [2003], Abadie et al. [2010] and Abadie et al. [2015]
 - Dynamic Treatment Effects with a single treated unit.
 - Many empirical applications: terrorism, important laws, country unification etc.
- Ferman et al. [2020]:
 - Specification-searching
 - Recommended Specification: Include all pre-treatment lags.

- Abadie and Gardeazabal [2003], Abadie et al. [2010] and Abadie et al. [2015]
 - Dynamic Treatment Effects with a single treated unit.
 - Many empirical applications: terrorism, important laws, country unification etc.
- Ferman et al. [2020]:
 - Specification-searching
 - Recommended Specification: Include all pre-treatment lags.
- Ben-Michael et al. [2021], Cattaneo et al. [2023]:
 - Synthetic Controls with Staggered Treatment Adoption.

Thank you!

Contact Information:

Vitor Possebom

 $\hbox{E-mail: vitor.possebom@fgv.br}$

Website: sites.google.com/site/vitorapossebom/

References

- A. Abadie and J. Gardeazabal. The Economic Costs of Conflict: A Case Study of the Basque Country. *American Economic Review*, 93(1):113–132, 2003.
- A. Abadie, A. Diamond, and J. Hainmueller. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statiscal Association, 105(490):493-505, 2010.
- A. Abadie, A. Diamond, and J. Hainmueller. Comparative Politics and the Synthetic Control Method. *American Journal of Political Science*, 59(2):495–510, 2015.
- M. Arellano and S. Bonhomme. Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models. *Annual Review of Economics*, 9:pp. 471–496, 2017.

- E. Ben-Michael, A. Feller, and J. Rothstein. Synthetic Controls with Staggered Adoption. *Journal of the Royal Statistical Society Series B*, Jan. 2021. Available at https://arxiv.org/abs/1912.03290.
- B. Callaway and P. H. Sant'anna. Difference-in-Differences with Multiple Time Periods. Journal of Econometrics, 225(2):pp. 200-230, Mar. 2021. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3148250.
- B. Callaway, A. Goodman-Bacon, and P. H. Sant'Anna. Difference-in-Differences with a Continuous Treatment. Available at https://arxiv.org/abs/2107.02637., July 2021.
- M. D. Cattaneo, Y. Feng, F. Palomba, and R. Titiunik. Uncertainty Quantification in Synthetic Controlswith Staggered Treatment Adoption. Available at https://mdcattaneo.github.io/papers/Cattaneo-Feng-Palomba-Titiunik_2024_wp.pdf, 2023.

- L. Davezies, X. DHaultfoeuille, and L. Laage. Identification and Estimation of Average Marginal Effects in Fixed Effects Logit Models. Available at https://arxiv.org/abs/2105.00879., May 2021.
- B. Ferman, C. Pinto, and V. Possebom. Cherry Picking with Synthetic Controls. *Journal of Policy Analysis and Management*, 39(2):pp. 510–532, 2020.
- A. F. Galvao. Quantile Regression for Dynamic Panel Data with Fixed Effects. *Journal of Econometrics*, 164(1):pp. 142–157, 2011. Available at https://doi.org/10.1016/j.jeconom.2011.02.016.
- W. Y. Gao and M. Li. Robust Semiparametric Estimation in Panel Multinomial Choice Models. Available at https://www.waynegao.com/uploads/8/1/4/6/81465138/gl_210327.pdf., Mar. 2021.

- A. Goodman-Bacon. Difference-in-Differences with Variation in Treatment Timing. *Journal of Econometrics*, 225(2):pp. 254–277, 2021.
- S. Han. Identification in Nonparametric Models for Dynamic Treatment Effects. *Journal of Econometrics*, 225, 2021.
- J. J. Heckman, J. E. Humphries, and G. Veramendi. Dynamic Treatment Effects. *Journal of Econometrics*, 191(2):pp. 276–292, 2016.
- S. Kwon. Optimal Shrinkage Estimation of Fixed Effects in Linear Panel Data Models. Available at https://soonwookwon.github.io/files/Soonwoo_Kwon_JMP.pdf., Jan. 2021.
- L. Laage. A Correlated Random Coefficient Panel Model with Time-Varying Endogeneity. Available at https://arxiv.org/abs/2003.09367., Mar. 2020.

M. Li. A Time-Varying Endogenous Random Coefficient Model with an Application to Production Functions. Available at https://uc6c705c8f483c94e338df344781.dl.dropboxusercontent.com/cd/0/ inline2/BfB6ZQh8j0BkLg17Cy2aZgLPf4o3x6Wj-EX5ddq_ 82dp8wn4Iki13tJYlcb8VRelF8u9Y2H6wlz4JUMNlIV17 qRGgrdAApEfXjfAiEO5bRgeIgTO3T1ZKjIEGn2O9tXrg1yOhxdFMrhAtpVKv3MaXxclaqRsDBa mYbsAJp5v-8G7kS7d8f2AMOfJULA8NkzHTT3PVKSYNhXjvXPHLrdX_ LRYPRYIWLjfdwCSKsI5gy7lGCrYRszfySITOXys5L86H1qINt1flu00b8_ yNy9ZNnxvH5hQKxn14VQu124v3pPGc480Id_

W. S. Robinson. Ecological Correlations and the Behavior of Individuals. *American Sociological Review*. 15(3):pp. 351–357, 1950.

4JhPIL2PCFOkQAEDxxbN5i8vU4QTyP2-t8RuBOdNmisSD4/file#., Oct. 2021.