

COLEGIO DE MUNTINLUPA Department of Computer Engineering

VISION

Colegio de Muntinlupa shall be the premier local government institution for engineering in the country.

MISSION

- The college shall provide high quality professional and technological education that meets international standard of excellence.
- The college shall provide accessible and equitable opportunities for deserving and qualified Filipinos wanting to pursue higher education.
 The college shall produce efficient and competent engineers who will be the drivers of the sustainable development in the country.
- The college shall produce solutions to the needs of the industries and the communities.

PROGRAM EDUCATIONAL OUTCOMES (PEOs)	MISSION						
Within 3 to 5 years after graduation, the program expects that the Computer Engineering graduates will:	1	2	3	4			
Successfully apply their chosen profession and demonstrate competence technically in terms of utilizing computer engineering doctrines, skills and principles in the solution of problems related to advancement of the industry and society.	√	~	✓	✓			
2. Engage in life-long learning and professional development and other professionally related fields to adapt to rapidly changing work environment and;	✓	✓	✓	✓			
3. Demonstrate effective communication skills in a diverse and multidisciplinary team	✓	✓	✓	✓			
4. Shows high standard in terms of leadership, ethical conduct and social responsibility in practicing engineering field.	✓	✓	✓	✓			

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)						
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 1 of 16			

PROGRAM OUTCOMES (POs)	PROGRAM	I EDUCATION	VAL OUTCO	DMES
· ·	1	2	3	4
By the time of graduation, the students of the BSCpE program shall have the ability to:				
apply knowledge of mathematics and science to solve complex computer engineering problems;	✓	✓	✓	✓
b. design and conduct experiments, as well as to analyze and interpret data;	\checkmark	✓	✓	✓
c. design a system, component, or process to meet desired needs within realistic constraints, in accordance with standards;	✓	✓	✓	✓
d. function in multidisciplinary and multi-cultural teams;	✓	✓	✓	✓
e. identify, formulate, and solve complex computer engineering problems;	✓	✓	✓	✓
f. understand professional and ethical responsibility;	✓	✓	✓	✓
g. communicate effectively computer engineering activities with the engineering community and with society at large;	✓	✓	✓	✓
h. understand the impact of computer engineering solutions in a global, economic, environmental, and societal context;	✓	✓	✓	✓
i. recognize the need for, and engage in life-long learning;	✓	✓	✓	✓
j. know contemporary issues;	✓	✓	✓	✓
k. use techniques, skills, and modern engineering tools necessary for computer engineering practice;	✓	✓	✓	✓
I. know and understand engineering and management principles as a member and leader of a team in a multidisciplinary environment.	✓	✓	✓	✓

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture	e / Lab)		
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 2 of 16

COURSE SYLLABUS

I. Course Code : COEN 3213II. Course Title : Microprocessors

III. Pre-requisite : Logic Circuits and Design

IV. Co-requisite : COEN 3211 - Microprocessors Lab

V. Credit : 3 units Lecture / 1 unit Lab

VI. Course Description : This course provides understanding of architecture of microprocessor-based systems; registers, study of microprocessor operation, assembly

language, arithmetic operations, and interfacing.

VII. Course Outcomes

COURSE LEARNING OUTCOMES (CLOS)		PROGRAM OUTCOMES										
COURSE LEARINING OUTCOINES (CLOS)		h		4		ε	_	L		i . I	l _e	
After completing the course, the students must be able to:	d	D	С	d	е	'	g	h	'	J	K	1
1. Determine the significance of the microprocessors or microcontroller's underlying concepts, principles, and												
architectures including its instruction sets, addressing modes and design tradeoffs, in today's modern	I	ı	ı		1					ı	ı	
microprocessor/microcontroller application areas.												
2. Apply techniques/methods for interfacing memory or I/O devices to the microcontroller or microprocessor,		D	F		F							
including several specific standard I/O or memory devices.	I	U			L					I		
3. Write structured, well-documented, understandable programs in assembly language and higher-level		n	_		_					_	_	
language for microprocessor or microcontroller application/exercises individually or collaboratively	I	U			L					L	L	
4. Design and simulate microprocessor or microcontroller applications using Integrated Development												
Environment (IDE) or any advanced CAD software as a modern tool for development, testing, and	I	D	E		E					Ε	D	
debugging												

^{*} Level: **I** – Introductory, **E** – Enabling, **D** – Demonstrating

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture	e / Lab)		
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 3 of 16

VIII. Course Coverage

WEEK		CL	0s		TOPIC	TEACHING ACTIVITIES	LEARNING ACTIVITIES	ASSESSMENT TASKS / METHODS / TOOLS	TARGET
WEEK	1	2	3	4	O. Class Orientation a. Mission and Vision b. Syllabus discussion c. Class policy / Netiquette d. Grading System 1. Introduction to Microprocessors a. What is Microprocessor? b. How a CPU is Made? c. History Intel Microprocessors d. Important Focuses of Intel i- Series Processors e. Other Key Performance Improvements of i-Series Processors f. How CPU Cache Works? g. About Intel Processor Numbers h. Intel's i-Series Core Performance	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via Blackboard LMS / Google Drive PowerPoint Presentations/ Video Presentation Module Presentations	Group Discussion Recitation Online Discussions / Chat	METHODS / TOOLS	TARGET
					Lab Lecture 1 - Introduction to 8086 Register Architecture and Assembly Language	Lab Lecture			
2	1				2. IBM PC (AT) Memory Map and Intel Microprocessor Architecture in Real-mode CPU Operation	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via	Group Discussion Recitation Online Discussions/Chat	Online Quiz 1	50% of the students shall have a rating of at least 60%

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)						
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 4 of 16			

		 a. Overview of IBM Personal Computer (PC) and its support chips b. What is a Chipset? c. MS DOS Memory MAP d. Internal Microprocessor Architecture 	Blackboard LMS / Google Drive PowerPoint Presentations/ Video Presentation Module Presentations			
		Lab Lecture 2 - Useful 8086 Instruction Set and DOS Interrupt Services Subroutines	Lab Experiment Guidelines Lab Lecture	Computer-based simulated Lab Seatwork	Online Lab Quiz 1	
3	*	3. Intel 80286/80386 Microprocessor (Protected Mode) a. Introduction to the 80386 Microprocessor b. Real vs. Protected Modes c. Protected-Mode Memory Addressing d. Improve the Performance with Program-Invisible Registers e. Memory Paging f. Paging Issue and Solution g. Flat Mode Memory	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via Blackboard LMS / Google Drive PowerPoint Presentations Module Presentations	Group Discussion Assignments Recitation Online Discussions/Chat	Online Quiz 2 Softcopy of Assignment 1	50% of the students shall have a rating of at least 60%
		Lab Lecture 3 - Screen and Keyboard Processing with BIOS Interrupts	Lab Experiment Guidelines Lab Lecture	Computer-based simulated Lab Experiment	Softcopy of Lab Experiment 1 / Rubrics	
4	~	4. Intel Microprocessor's Addressing Modes a. Overview of Microprocessor Addressing Modes b. 8088/8086 Instruction Syntax c. Types of Addressing Modes	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via	Group Discussion Assignments Recitation	Online Quiz 3	50% of the students shall have a rating of at least 60%

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture	e / Lab)		
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 5 of 16

				d. Calling Subroutines	Blackboard LMS / Google	Online Discussions/Chat		
					Drive			
					PowerPoint Presentations	Computer-based simulated Lab Experiment		
					Module Presentations			
				Lab Lecture 4 - Advanced Screen Processing with BIOS Interrupts	Lab Experiment Guidelines Lab Lecture		Softcopy of Lab Experiment 2 / Rubrics	
				5. Microprocessor's Instruction	Virtual Synchronous Lecture –	Group Discussion	Quiz 4	50% of the students shall
				Encoding and Decoding a. Terms to Remember b. 8086 – 80486 Instruction	Blackboard Collaboration / Google Meet	Assignments	Softcopy of Assignment 2	have a rating of at least 60%
				Format	Virtual Asynchronous	Recitation		
				c. 64-bit Mode (Pentium 4 - Core2) Instruction Format d. Microprocessor Instruction Encoding (Assembly	Lecture/Assessment Tasks via Blackboard LMS / Google Drive	Online Discussions/Chat		
5 - 6	√	1		Instruction to Machine Language Translation)	PowerPoint Presentations			
3 0				e. Microprocessor Instruction Decoding (Machine Language to Assembly Instruction Translation)	Module Presentations			
				Lab Lecture 4 - Design of Parallel Output Circuit Lab Lecture 5 - Design of Parallel Input Circuit	Lab Experiment Guidelines Lab Lectures	Computer-based simulated Lab Experiment	Softcopy of Lab Experiment 3 / Rubrics Softcopy of Lab Experiment 4 / Rubrics	
				6. Intel 8088 - 8086	Virtual Synchronous Lecture –	Group Discussion		
7	✓	✓		Microprocessor's Hardware Specifications a. The 8088/8086 µP Min/Max	Blackboard Collaboration / Google Meet	Assignments		
				Mode		Recitation		
Course Code	e:			N 3213/COEN 3211 Course Title:		rs (Lecture / Lab)		
Curriculum:			2020	Effectivity Dat	e: 2nd Sem., A.Y. <i>'</i>	20-'21 Revision Date:	February 08, 2020	Page 6 of 16

					b. DC Pin Characteristics:	Virtual Asynchronous			
					Voltages & Currents	Lecture/Assessment Tasks via	Online Discussions/Chat		
					c. 8088-8086 Buses: Address, Data, and Control Buses	Blackboard LMS / Google Drive			
					d. Clock Generator (8284A)e. Bus Demultiplexing and				
					Buffering	PowerPoint Presentations			
					f. Bus Timing g. 8288 Bus Controller	Module Presentations			
					Lab Lecture 6 – Basic IO Interfacing with 8255		Computer-based simulated	Softcopy of Lab Experiment 5 /	
						Lab Experiment Guidelines Lab Lecture	Lab Experiment	Rubrics	
					7. Microprocessor's IO	Virtual Synchronous Lecture – Blackboard Collaboration /	Group Discussion	Online Quiz 5	50% of the students shall
					Interfacing with 8255 (PPI) a. Overview with the 8255 (PPI)	Google Meet	Assignments	Softcopy of Assignment 3	have a rating of at least 60%
					b. PPI's I/O Portsc. Select input pins of 8255	Vistoral Assurations assure	Daritatian		
					d. Port Assignments of 8255	Virtual Asynchronous Lecture/Assessment Tasks via	Recitation		
					e. Parts of Command Byte A of PPI	Blackboard LMS / Google	Online Discussions/Chat		
7		✓	✓	✓	f. Modes Operation of PPIg. Configuring PPI's Control	Drive			
					Register	PowerPoint Presentations			
					h. Interfacing IO device with 8255 using Assembly	Module Presentations			
					Program				
					Lab Lecture 7 – Advanced IO Interfacing with 8255	Lab Experiment Guidelines Lab Lecture	Computer-based simulated Lab Experiment	Softcopy of Lab Experiment 6 / Rubrics	
					8. Microcontroller Fundamentals	Virtual Synchronous Lecture –	Group Discussion		50% of the students shall
8	✓	✓			and Arduino Modules a. Automation/Mechatronics Concept Map	Blackboard Collaboration / Google Meet	Assignments		have a rating of at least 60%
					b. Overview in Microcontrollerc. Brief History of Microcontroller	Virtual Asynchronous Lecture/Assessment Tasks via	Recitation		
Course Code	9:				I 3213/COEN 3211 Course Title:	Microprocesso	rs (Lecture / Lab)		
Curriculum:			2	020	Effectivity Dat	e: 2nd Sem., A.Y. <i>'</i>	20-'21 Revision Date:	February 08, 2020	Page 7 of 16

		1	1	1	d Demoles Microscophical - 11-	DI II IIIIC I C	0 1' 0' ' 101 '		
					d. Popular Microcontrollers	Blackboard LMS / Google	Online Discussions/Chat		
					e. Fundamental Building Blocks	Drive			
					of Microcontroller				
					f. Why do we use	PowerPoint Presentations			
					Microcontroller?				
					g. Application areas of	Module Presentations			
					Microcontrollers	Woudie i resentations			
					h. Microcontroller vs.				
					Microprocessor Unit				
					i. Other MCU Modules				
					j. Factors to be consider in				
					selecting the right processing				
					device				
					k. Components of				
					Microcontroller				
					I. Arduino Microcontroller				
					Module				
						Midterm Lab Exam Guidelines	Computer-based simulated	Softcopy of Midterm Lab Exam	
					Midterm Lab Exam – IO Interfacing	Whaterin Lab Exam Guidelines	Lab Experiment	/ Rubrics	
					with 8255		•	/ Kubiics	
9			1				Exam Period	<u>, </u>	
					9. Programming IO Device in	Virtual Synchronous Lecture –	Group Discussion	Softcopy of Assignment 4	
					Arduino	Blackboard Collaboration /			
					a. Arduino Sketch Program	Google Meet	Assignments		
					Structure		3		
					b. Configuring Arduino pins	Virtual Asynchronous	Recitation		
					c. Writing and Reading Digital	Lecture/Assessment Tasks via	rtodiaion		
					Data into IO Pins	Blackboard LMS / Google	Online Discussions/Chat		
10	1	1	✓	1	d. Writing and Reading	Drive	Offilitie Discussions/Criat		
10	*	•	•	"	Analog Data into IO Pins	Drive			
					e. Programming IO Device	PowerPoint Presentations			
					with Arduino Sketch				
						Module Presentations			
					Lab Lecture 8 – Arduino Programming	Lab Experiment Guidelines	Computer-based simulated	Softcopy of Lab Experiment 7 /	
					with Basic IO Devices	Lab Lecture	Lab Experiment	Rubrics	
L	1		1	1		Las Lociale	Las Exponiment	TOMPTOO	

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture	e / Lab)		
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 8 of 16

11	√ ✓	10. Arduino Control Structures and Built-in Functions a. Math Functions b. Random Number Functions c. Time Functions d. Input and Output Functions e. Pulse Width Modulation Functions f. Serial Communication Functions g. Internal and External Interrupts h. Control Structures 1. Conditional Statements 2. Iterative or Looping Statements 3. Unconditional Jump Statements Lab Lecture 9 – Arduino Programming with Advanced IO Devices	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via Blackboard LMS / Google Drive PowerPoint Presentations Module Presentations Lab Experiment Guidelines Lab Lecture	Group Discussion Recitation Online Discussions/Chat Computer-based simulated Lab Experiment	Softcopy of Lab Experiment 8 / Rubrics	50% of the students shall have a rating of at least 60%
	√ ✓	11. Arduino Programming with LCD, Keypad, and RTC Libraries a. Principles of Liquid Crystal Display (LCD) b. Arduino Programming with LCD library c. Principles of Keypad d. Arduino Programming with Keypad library e. Principles of Real-time Clock (RTC) f. Arduino Programming with RTC library	Virtual Synchronous Lecture – Blackboard Collaboration / Google Meet Virtual Asynchronous Lecture/Assessment Tasks via Blackboard LMS / Google Drive PowerPoint Presentations Module Presentations	Group Discussion Assignments Recitation Online Discussions/Chat	Softcopy of Assignment 5	
Course Code: Curriculum:	2020	N 3213/COEN 3211 Course Title: Effectivity Da	<u> </u>	rs (Lecture / Lab) 20-'21 Revision Date:	February 08, 2020	Page 9 of 16

					Lab Lecture 10 – Arduino Programming			Computer-based simulated	Softcopy of Lab Experiment 9 /	
					with LCD, Keypad, and RTC	Lab Lecture		ab Experiment	Rubrics	
					12. Arduino Programming with Servo, Stepper, and SoftPWM Libraries a. Principles of Servo motor	Virtual Synchro Blackboard Co Google Meet	llaboration /	Group Discussion Recitation	Online Quiz 7	50% of the students shall have a rating of at least 60%
13	✓	✓	✓	✓	 b. Arduino Programming with Servo motor library c. Principles of Stepper motor d. Arduino Programming with Stepper motor library e. Principles of SoftPWM f. Arduino Programming with SoftPWM library 	Virtual Asynchr Lecture/Assess Blackboard LM Drive PowerPoint Pre Module Presen	sment Tasks via IS / Google esentations	Online Discussions/Chat		
					Lab Lecture 11 – Arduino Programming with Servo and Stepper	Lab Lecture	L	Computer-based simulated ab Experiment	Softcopy of Lab Experiment 10 / Rubrics	
14	\	\	\	✓	13. Arduino Programming with PIR, Ultrasonic, Pulse/Heartbeat, and Gas/Flame Sensors a. Principles of PIR sensor b. Arduino Programming with PIR sensor library c. Principles of Ultrasonic sensor d. Arduino Programming with Ultrasonic sensor library e. Principles of Pulse/Heartbeat f. Arduino Programming with Pulse/Heartbeat library g. Principles of Gas/Flame h. Arduino Programming with Gas/Flame library	Blackboard Co Google Meet Virtual Asynchr	Ilaboration / A Tonous Sment Tasks via IS / Google C Resentations	Group Discussion Assignments Recitation Online Discussions/Chat	Softcopy of Assignment 6	
ırse Code:	:		С	OEN	I 3213/COEN 3211 Course Title:		Microprocessors	(Lecture / Lab)		
riculum:			2)20	Effectivity Da		2 nd Sem., A.Y. '20-	•	February 08, 2020	Page 10 of 16

					Lab Lecture 12 – Arduino Programming with PIR, Ultrasonic, Gas, and	Lab Experiment Guidelines Lab Lecture	Computer-based simulated	Softcopy of Lab Experiment 11 / Rubrics	
					Heartbeat Sensor	Lab Lecture	Lab Experiment	Rubiles	
					14. Arduino Programming with	Virtual Synchronous Lecture –	Group Discussion	Online Quiz 8	50% of the students shall
					Serial Communication	Blackboard Collaboration /			have a rating of at least 60%
					Devices	Google Meet	Assignments		
					a. Principles of Bluetooth				
					b. Arduino Programming with	Virtual Asynchronous	Recitation		
					Bluetooth device	Lecture/Assessment Tasks via	Online Die weeden al Oheat		
					c. Principles of RFID	Blackboard LMS / Google	Online Discussions/Chat		
					d. Arduino Programming with RFID device	Drive			
15 - 16	✓	✓	✓	✓	e. Principles of WiFi	PowerPoint Presentations			
					f. Arduino Programming with	1 Owen out 1 resentations			
					WiFi device	Module Presentations			
					Lab Lecture 13 – Arduino Programming				
					with Bluetooth, Zigbee, or Wifi				
					Lab Lecture 14 – Arduino Programming with RFID and GSM				
					WILLI KEID ALIA GSIVI	Lab Experiment Guidelines	Computer-based simulated	Softcopy of Lab Experiment 12	
						Lab Lectures	Lab Experiment	/ Rubrics	500/ 61/ 1 / 1
					15. Programming with GSM and	Virtual Synchronous Lecture –	Group Discussion	Softcopy of Assignment 7	50% of the students shall
					GPS a. Principles of GPS	Blackboard Collaboration /	Accianments		have a rating of at least 60%
					a. Principles of GPSb. Arduino Programming with	Google Meet	Assignments		
					GPS library	Virtual Asynchronous	Recitation		
					c. Principles of GSM	Lecture/Assessment Tasks via	Reditation		
17	✓	✓	✓	✓	d. Arduino Programming with	Blackboard LMS / Google	Online Discussions/Chat		
					GSM library	Drive			
						PowerPoint Presentations			
					Final Lab Exam – Arduino	Module Presentations	Computer-based simulated	Softcopy of Lab Experiment 11	
					Programming with RFID and GSM	Lab Exam Guidelines	Lab Experiment / Exam	/ Rubrics	
18					· · · · · · · · · · · · · · · · · · ·		xam Period		

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture	e / Lab)		
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 11 of 16

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)					
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 12 of 16		

CRITERIA	POINTS	EXEMPLARY	SATISFACTORY	DEVELOPING	BEGINNING
Format & Style	10	Follows all the requirements related to format, layout, and style of writing Lab report is well organized, clear and presents ideas in a coherent way of writing.	 (6 - 8) Closely follows all the requirements related to format, layout, and style of writing Lab report is organized in most part, clear and presents ideas in a coherent way of writing. 	 Some requirements are not followed related to format, layout, and style of writing Lab report is somewhat organized, and fewer present ideas in a coherent way of writing. 	Follows poorly the requirements related to format layout, and style of writing Lab report is badly organized, lacks clarity and/or does not present ideas in a coherent way of writing.
Data Results/Functionality of Program Code	35	 (29 – 35) All experimental details/procedures are covered/executes well Excellent displays of data used of computer or other tools to generate accurate displays. With complete program implementation, no error and with correct output All figures, tables or source code are correctly presented, are numbered, referred to and contain titles/captions. 	 (19 – 28) Important experimental details/procedure are covered/executes, but some minor details are missing Places data gathered in format required by instructor. With complete program implementation and no error but incorrect output All timing diagram, tables, source code, etc. are correctly drawn/presented, but some have minor problems or could still be improved. 	 (9 – 18) Missing some important experimental details/procedures Displays of data need to contain more complete information, but some components of data display are not correct; Needs an instructor assistance in generating correct data displays. With complete program implementation and no error but without output Most figure, tables or source code are correct, but some are still missing important or required features. 	Missing several important experimental details/procedures Data gathered displays skills are extremely limited or incomplete. Always needs an instructor assistance in generating correct data displays. With complete program implementation and with error Figures, tables or source code contain errors or are poorly constructed, have missing titles, captions or numbers, units are missing or incorrect, etc.
Data Analysis	15	 (12 -15) All important trends and data comparisons have been interpreted correctly and discussed; good understanding of results is conveyed. Data analysis is well written from start to finish, without spelling, grammar or use of English errors. Complete evidence of supporting references 	 (8 – 11) Almost all of the results have been correctly interpreted and discussed, only minor improvements are needed Data analysis is well written for the most part (at least 85%), without spelling, grammar or use of English errors. Most evidence of supporting references 	 Conclusions about major points are drawn, but many are misstated, indicating a lack of understanding. Some part of lab report is not well written (at least 65%), and contains some spelling errors, and/or grammar errors and/or use of English errors. Some evidence of supporting references 	 (0 -3) Conclusions missing or missing the important points Lab report is not well written and contains spelling errors, and/or grammar errors and/or use of English errors. No evidence of supporting references
Answers to Questions	20	 (16 – 20) Student demonstrates full knowledge (more than required) Student answers all questions with complete explanations and elaboration well. Answers are well written, without spelling, grammar or use of English errors. 	 (11 – 15) Student is at ease with information Student explains expected answers to all questions, but fails to elaborate Answers are well written for the most part (at least 85%), without spelling, grammar or use of English errors. No sign of answer/s copied to other students 	 (5 – 10) Student is uncomfortable with information Student is able to answer only basic questions. Some part of the answers are not well written (at least 65%), and contains some spelling errors, and/or grammar errors and/or use of English errors. 	Student does not have knowledge of information. Student cannot answer questions about subject. Answers not well written and contains spelling errors, and/or grammar errors and/or use of English errors Answer/s copied to other students

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)				
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 13 of 16	

		No sign of answer/s copied to other students.		No sign of answer/s copied to other students	
Conclusion	15	 (12 – 15) All important conclusions have been clearly made Student shows good understanding of experiment and results. Discussions are aligned with lab objectives Complete evidence of supporting references 	Most of important conclusions have been drawn. Student shows most parts of understanding of experiment and results. Discussions are aligned with lab objectives Most evidence of supporting references	 (4 - 7) Conclusions regarding major points are drawn, but many are misstated, indicating a lack of understanding. Student shows some parts of understanding of experiment and results. Discussions are aligned with lab objectives Some evidence of supporting references 	Conclusions missing or missing the important points. Group does not show understanding of experiment and results. Discussions are not aligned with lab objectives No evidence of supporting references
Reference S	5	Complete list of references that are all properly formatted and referenced/cited in the text	Complete list of references included, with minor issues in formatting and/or citations	 (2 - 3) Included many important references, but not a complete list, and multiple errors in format and citations. 	 (0 – 1) References missing, not formatted, and/or not credible sources

GRADING SYSTEM

LECTURE (60%)

•	Major Examinations (Midterms and Finals)	_	40.00 %
•	Quizzes	_	35.00 %
•	Other Learning Activities (OLA)	_	25.00 %

(Homework, Recitation/s, Attendance, Online Attitude)

TOTAL –

LABORATORY (40%)

•	Practical Lab Examinations / Final Project (Midterms and Finals)	_	40.00 %
•	Quizzes / Lab Experiment Reports	_	40.00 %
•	Other Learning Activities (OLA)	-	20.00 %

(Homework, Recitation/s, Attendance, Online Attitude)

TOTAL – 100.00 %

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)			
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 14 of 16

100.00 %

MIDTERM / FINAL GRADE = LECTURE GRADE x 60% + LAB GRADE x 40%

SEMESTRAL GRADE (SG) = 50% (MIDTERM GRADE) + 50% (FINAL GRADE)

Passing grade is 60% using Base 0.

AVERAGE	GRADE	AVERAGE	GRADE
95 - 100	1.00	72 - 75	2.25
91 – 94	1.25	68 – 71	2.50
86 – 90	1.50	64 – 67	2.75
81 – 85	1.75	60 – 63	3.00
76 – 80	2.00	<60	5.00

X. Textbook

XI. Reference/s

Hwang, E. (2018). Digital Logic Microprocessor Design (2nd ed). Australia: Cengage Learning
Hennesy, J. (2017). Computer Architecture: A Quantitative Approach (6th ed). USA: Elsevier
3G ELearning. (2017). Computer organization and assembly language programming. New York, NY: 3G E-Learning.
Langbridge, J. A. (2015). Arduino sketches: tools and techniques for programming Wizardry. Indianapolis, IN: John Wiley & Sons.

XII. Course Materials Made Available

Course Syllabus

XIII. Other Course Policies

- a. **Attendance**. According to CHED policy, the total number of absences incurred by the students should not be more than 20% of the total number of meetings or 9 hours for this three-unit lecture course. Students incurring more than 9 hours of unexcused absences automatically gets a failing grade regardless of his/her class standing. Students who is absent on the day of the quiz shall be automatically given a grade of zero (0).
- b. **Cheating**. Student who is caught cheating in any form during quiz, major written and practical examinations shall be automatically given a grade of zero (o).

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)			
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 15 of 16

- c. **Submission of Assessment Tasks**. All assessment tasks must be submitted as scheduled. No late assessment tasks shall be accepted.
- d. **Practical/Major Examination**. Practical Examinations are given as scheduled, covering the topics discussed within the period. Special exams for missed ones may be given upon the discretion of the professor.
- e. **Course Portfolio**. All exams and learning tasks shall be collected by the professor by the end of the quarter.
- f. **Language of Instruction**. Lectures, discussion, and documentation will be in English. Written and spoken work may receive a lower mark if it is, in the opinion of the instructor, deficient in English.
- g. **Honor, Dress and Grooming Codes**. The Dress and Grooming Codes of the Institution will be in force. Plagiarism and cheating will be dealt with in accordance with the Student Manual provided by the Office of Student of Affairs.
- h. **Consultation Schedule**. The consultation schedule of the professor will be posted outside the faculty room. It is recommended that the student first set an appointment to confirm the instructor's availability.

XIV. Committee Member/s

Engr. RIcrey E. Marquez, PCpE

Prepared by:	Evaluated by:	Approved by:	Noted by:
(gran-			
Engr. Ricrey E. Marquez, PCpE	Freddie M. Tamayao, MENG-CPE	Engr. Lovelyn C. Garcia, MSECE	Dr. Teresita C. Fortuna, CESO III

Course Code:	COEN 3213/COEN 3211	Course Title:	Microprocessors (Lecture / Lab)			
Curriculum:	2020	Effectivity Date:	2 nd Sem., A.Y. '20-'21	Revision Date:	February 08, 2020	Page 16 of 16