НИУ ИТМО Факультет программной инженерии и компьютерных технологий

Отчет по лаб	бораторной	pac	оте.	№3

по дисциплине Вычислительная математика

Студент группы № Р32151 Преподаватель

Шипулин Павел Андреевич Машина Екатерина Алексеевна

Санкт-Петербург

Цель работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Вычислительная часть лабораторной работы

Интеграл, согласно варианту:

$$\int_{1}^{3} (-2x^{3} - 5x^{2} + 7x - 13) dx = \left(-\frac{1}{2}x^{4} - \frac{5}{3}x^{3} + \frac{7}{2}x^{2} - 13x \right) \Big|_{1}^{3} = -\frac{244}{3}$$

$$= -81.333$$

По формуле Ньютона-Котеса для равноотстоящих узлов (n = 5):

$$\int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n} f\left(a + \frac{k}{n}(b - a)\right) c_{n}^{k}$$

$$c_{5}^{0} = c_{5}^{5} = \frac{19(b - a)}{288} \approx 0,132$$

$$c_{5}^{1} = c_{5}^{4} = \frac{75(b - a)}{288} \approx 0,521$$

$$c_{5}^{2} = c_{5}^{3} = \frac{50(b - a)}{288} \approx 0,347$$

$$\int_{1}^{3} (-2x^{3} - 5x^{2} + 7x - 13) dx \approx -81,333$$

$$\delta_{1} = \left| \frac{-81,333 + 81,333}{-81,333} \right| \approx 0$$

По формуле средних прямоугольников (n = 10):

$$\int_{a}^{b} f(x) dx \approx h \sum_{k=1}^{n} f\left(a + h\left(k - \frac{1}{2}\right)\right), h = \frac{b - a}{n} = 0,2$$

$$\int_{1}^{3} (-2x^3 - 5x^2 + 7x - 13) \, dx \approx 0.2[f(1.1) + f(1.3) + \dots + f(2.9)] \approx -81.22$$

$$\delta_2 = \left| \frac{-81,22 + 81,333}{-81,333} \right| \approx 0,0014$$

По формуле трапеций (n = 10):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{k=1}^{n} f(a + h(k-1)) + f(a + hk), h = \frac{b-a}{n}$$

$$\int_{1}^{3} (-2x^{3} - 5x^{2} + 7x - 13) dx \approx 0.1[f(1) + f(1.2) + f(1.2) + \dots + f(3)]$$

$$\approx -81.56$$

$$\delta_3 = \left| \frac{-81,56 + 81,333}{-81,333} \right| \approx 0,0028$$

По формуле Симпсона (n = 10):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[y_0 + 4 \sum_{k=1}^{\frac{n}{2}} y_{2k-1} + 2 \sum_{k=1}^{\frac{n}{2}-1} y_{2k} + y_n \right], y_k = f(a+hk), h = \frac{b-a}{n}$$

$$\int_{1}^{3} (-2x^3 - 5x^2 + 7x - 13) \, dx \approx -81{,}333$$

$$\delta_4 = \left| \frac{-81,33 + 81,333}{-81,333} \right| \approx 0$$

Код численных методов

```
def get n max(self):
def is n too big(self, n):
    runge num = epsilon + 1
    while (runge num > epsilon) and (not self.is n too big(n)):
        new x.append(x[-1])
```

```
def integrate(self, f, a, b, n, epsilon):
    while (runge num > epsilon) and (not self.is n too big(n)):
       new_x.append(x[-1])
```

```
runge num = epsilon + 1
    while (runge num > epsilon) and (not self.is n too big(n)):
            new x.append(x[i])
            new_x.append((x[i] + x[i + 1]) / 2)
def integrate(self, f, a, b, n, epsilon):
    s n = (y[0]
    while (runge num > epsilon) and (not self.is n too big(n)):
            new x.append((x[i] + x[i + 1]) / 2)
        new_x.append(x[-1])
```

```
class TrapezesMethod(AnyCompIntegrate):
       super(). init ("Интегрирование методом трапеций")
               new x.append((x[i] + x[i + 1]) / 2)
           new x.append(x[-1])
```

Результат выполнения программы

Пример 1

[Info]: Введите комманду:

```
[Input]: lab3_good
[Info]: Уравнения для исследования
[Info]:
| Номер |
                                  Уравнение |
| 1 |
                               5*\cos(x) + x \mid
+----+
     2 \mid (e ** (-x ** 2)) / (pi ** 0.5) \mid
3 \mid \ln[(x*\sin(x))**2 + \cos(x)**2 - 0.5] \mid
[Info]: Введите номер уравнения:
2
[Input]: 2
[Info]: первая граница интервала:
-1000
[Input]: -1000
[Info]: вторая граница интервала
1000
[Input]: 1000
[Info]: Введите точность для правила Рунге:
0.001
[Input]: 0.001
```

lab3 good

[Info]: M	етоды для решения
[Info]:	
Номер	Метод
1	
2	Интегрирование методом средних прямоугольников
3	Интегрирование методом правых прямоугольников
4	Интегрирование методом трапеций
5	Интегрирование методом Симпсона +
	ведите номер метода
[Input]:	
[Info]: P	езультат работы метода. Интегрирование методом трап
+	++
Номер ш	ara n S_n S_n*2 - S
+	++
	1 4 282.095 47.016
+	++

				23.508
3	16		70.524	11.754
4	32		35.262	5.877
5	64		17.631	2.938
6	128		8.815	1.469
7	256		4.408	0.735
8	512		2.204	0.351
9	1024	I	1.151	0.050
10	2048		1.000	0.000
11	4096		1.000	

[Info]: Итоговое значение определенного интеграла: 1.0 +- 2.1349218726059622e-05

[Info]: Лабораторная работа 3, вычисление собственного интеграла- завершена

Пример 2

```
F:\Programming\python\CalcMath\venv\Scripts\python.exe
F:/Programming/python/CalcMath/Labs/Lab3/main.py
[Info]: Введите комманду:
lab3 bad
[Input]: lab3 bad
[Info]: Уравнения для исследования
[Info]:
+----+
                 Уравнение |
| Номер |
+----+
| 1 |
                 |ln(|x|)|
+----+
2 |
          sin(x) / x |
+----+
| 3 | 1 / ((x + 1) * (x - 2)) |
+----+
[Info]: Введите номер уравнения:
3
[Input]: 3
[Info]: Введите смещение от точек разрыва
0.001
[Input]: 0.001
[Info]: первая граница интервала:
```

```
[Input]: -2
[Info]: вторая граница интервала
0
[Input]: 0
[Info]: Точка разрыва: -1
[Info]: На интервале 1 точек разрыва. Аналитически, интеграл может
расходиться
[Info]: Введите точность для правила Рунге:
0.001
[Input]: 0.001
[Info]: Методы для решения
[Info]:
+----+
| Номер |
                               Метод |
+----+
   1 | Интегрирование методом левых прямоугольников |
+----+
   2 | Интегрирование методом средних прямоугольников |
+----+
   3 | Интегрирование методом правых прямоугольников |
+----+
4 |
               Интегрирование методом трапеций |
+----+
5 |
              Интегрирование методом Симпсона |
+----+
```

[Info]: Введите номер метода

2

[Input]: 2

[Info]: Результат работы метода на интервале: [-2.0; -1.001].

Интегрирование методом средних прямоугольников

+		+-		+-		-+-	+
Номер	шага		n		S_n		S_n*2 - S
	1	1	4		1.016	I	0.075
	2	[8		1.239	1	0.073
	3	1	16		1.458	I	0.069
	4	1	32		1.664	I	0.062
	5	1	64		1.850	I	0.051
	6	1	128		2.003	I	0.036
	7	1	256		2.110	I	0.020
	8	1	512		2.170	1	0.009
							0.003

+-----+

| 10 | 2048 | 2.204 | 0.001 |

+-----+

| 11 | 4096 | 2.206 | - |

+-----+

[Info]: Результат работы метода на интервале: [-0.999; 0.0]. Интегрирование методом средних прямоугольников

+		-+-	+		++
	Номер шага	1	n	S_n	S_n*2 - S
	1	1	4	-1.246	0.075
	2	1	8	-1.470	0.073
					0.069
					0.062
					0.051
					0.036
					0.020
+		-+-	+		.++

| 8 | 512 | -2.400 | 0.009 | +-----+ 9 | 1024 | -2.426 | 0.003 | +-----+ 10 | 2048 | -2.434 | 0.001 | +-----+ 11 | 4096 | -2.437 | - | +-----+ 11 | 4096 | -2.437 | - |

[Info]: Итоговое значение определенного интеграла: - 0.2308268378013718 +- 0.0015755744772691926

[Info]: Лабораторная работа 3, вычисление несобственного интеграла в смысле главного значения - завершена

Выводы

Изучил численные методы интегрирования.