

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012

QUÍMICA

TEMA 3: ENLACES QUÍMICOS

- Junio, Ejercicio 2, Opción A
- Reserva 1, Ejercicio 2, Opción A
- Reserva 3, Ejercicio 3, Opción B
- Reserva 4, Ejercicio 3, Opción B
- Septiembre, Ejercicio 2, Opción B

Dados los siguientes compuestos NaF, CH₄ y CH₃OH:

- a) Indique el tipo de enlace.
- b) Ordene de mayor a menor según su punto de ebullición. Razone la respuesta.
- c) Justifique la solubilidad o no en agua.
- QUÍMICA. 2012. JUNIO. EJERCICIO 2. OPCIÓN A

RESOLUCIÓN

a) En el NaF el enlace es iónico ya que el F el Na tienen electronegatividades muy distintas. En el CH₄ el enlace es covalente puro, ya que la diferencia de electronegatividad entre C y H es, prácticamente, nula.

En el CH₃OH el enlace es covalente polar, ya que los átomos tienen diferente electronegatividad.

- b) Como el NaF es un compuesto iónico, presenta elevados puntos de fusión y de ebullición. A temperatura ambiente es un sólido. El CH₃OH es un compuesto polar de bajo peso molecular, por lo que a temperatura ambiente es un líquido volátil. El CH₄ es un compuesto apolar y a temperatura ambiente es un gas. Luego, el orden de mayor a menor punto de ebullición es: NaF>CH₃OH>CH₄.
- c) Como el NaF es un compuesto iónico, es muy soluble en agua. El CH₃OH es un compuesto polar que puede formar puentes de hidrógeno con el hidrógeno del agua, por lo que es soluble. El CH₄ es un compuesto apolar y, por lo tanto, no es soluble en agua.

Para las moléculas de tricloruro de boro, dihidruro de berilio y amoníaco, indique:

- a) El número de pares de electrones sin compartir en cada átomo.
- b) La geometría de cada molécula utilizando la teoría de repulsión de pares de electrones de la capa de valencia.
- c) La hibridación del átomo central.
- **QUIMICA. 2012. RESERVA 1. EJERCICIO 2. OPCIÓN A**

RESOLUCIÓN

- a) El BCl₃ tiene 3 pares de electrones compartidos y ninguno sin compartir. En la molécula de dihidruro de berilio, el berilio no tiene par de electrones sin compartir. El NH₃ tiene 3 pares de electrones compartidos y 1 par de electrones sin compartir.
- b) El BCl₃ es una molécula del tipo AB₃, (tres pares de electrones enlazantes), tendrá forma de triángulo equilátero. La molécula de dihidruro de berilio es una molécula del tipo AB₂, (dos pares de electrones compartidos y 0 pares de electrones sin compartir), tendrá forma lineal. El NH₃ es una molécula del tipo AB₃E, (tres pares de electrones enlazantes y uno no enlazante), tendrá forma de pirámide triangular.
- c) En el BCl_3 la hibridación del boro es sp^2 . En el BeH_2 , el berilio presenta una hibridación sp. En el NH_3 la hibridación del nitrógeno es sp^3 .

Para las moléculas: H₂O, CHCl₃ yNH₃. Indique, justificando la respuesta:

- a) El número de pares de electrones sin compartir del átomo central.
- b) La geometría de cada molécula según la teoría de repulsión de pares de electrones de la capa de valencia.
- c) La polaridad de cada molécula.
- QUIMICA. 2012. RESERVA 3. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

- a) El H₂O tiene 2 pares de electrones sin compartir. El CHCl₃ no tiene par de electrones sin compartir. El NH₃ tiene 3 pares de electrones compartidos y 1 par de electrones sin compartir.
- b) En el agua el oxígeno ha de rodearse de cuatro nubes electrónicas para alojar dos pares enlazantes y dos solitarios (tipo AB_2E_2), su geometría siendo de origen tetraédrico de ángulo 109'5º, es angular con un ángulo menor al teórico debido a la repulsión de lo pares de electrones solitarios. La molécula de $CHCl_3$ es del tipo AB_4 y es tetraédrica. El NH_3 es una molécula del tipo AB_3E , (tres pares de electrones enlazantes y uno no enlazante), tendrá forma de pirámide triangular.
- c) La molécula de $\rm\,H_2O$ es polar. La molécula de $\rm\,CHCl_3$ es polar. La molécula de $\rm\,NH_3$ es polar.

En las siguientes moléculas, H₂S; N₂ y CH₃OH:

- a) Represéntelas mediante un diagrama de Lewis.
- b) Justifique razonadamente la polaridad de las moléculas.
- c) Identifique las fuerzas intermoleculares que actuarán cuando se encuentran en estado líquido.

QUIMICA. 2012. RESERVA 4. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

a)

- b) Son polares el $\rm\,H_2S$ y el $\rm\,CH_3OH$. La molécula de $\rm\,N_2$ es apolar.
- c) En el CH_3OH las fuerzas intermoleculares son los puentes de hidrógeno. En el H_2S y N_2 son fuerzas de Van der Waals.

Dadas las siguientes moléculas F_2 ; CS_2 ; C_2H_4 ; C_2H_2 ; N_2 ; NH_3 , justifique mediante la estructura de Lewis en qué moléculas:

- a) Todos los enlaces son simples.
- b) Existe algún enlace doble.
- c) Existe algún enlace triple.

QUÍMICA. 2012. SEPTIEMBRE. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

Las estructuras de Lewis son:

- a) En las moléculas de F_2 y NH_3 , todos los enlaces son simples, σ , pues los átomos se unen compartiendo un par de electrones.
- b) En la molécula de CS_2 existen enlaces dobles, ya que además de una compartición de un par de electrones, enlace σ , entre el átomo de carbono y los átomos de azufre se solapan los orbitales 2p y 3p para formar un enlace π . En la molécula de C_2H_4 , además de los enlaces σ , C-H y C-C, hay también un enlace π entre los átomos de carbono por solapamiento de los orbitales 2p.
- c) En la molécula de C_2H_2 aparece un triple enlace, un enlace σ y dos enlaces π . También en el nitrógeno.