Scilab Textbook Companion for Fluid Mechanics by A. K. Choudhary and Om Prakash¹

Created by
Priyanka Saini
B.Tech
Electronics Engineering
Uttarakhand Technical University
College Teacher
Mr. Naresh Kumar
Cross-Checked by
K. V. P. Pradeep

May 27, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics

Author: A. K. Choudhary and Om Prakash

Publisher: S. K. Kataria & Sons, New Delhi

Edition: 2

Year: 2009

ISBN: 81-85749-65-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Properties of Fluids	5
3	Hydro Static Pressure	10
4	Measurement of Pressure	28
5	Fundamentals of Flow	37
6	Orifices	55
7	Flow through pipes	68
11	Flow Measurement	86

List of Scilab Codes

Exa 2.1	Sp Weight Mass density Sp Gravity	5
Exa 2.2	Bulk modulus of elesticity	6
Exa 2.3	Increase of pressure	6
Exa 2.4	Force and power required	7
Exa 2.5	Kinematic Viscosity	7
Exa 2.6	Calculate capillary rise	8
Exa 2.7	Intensity of Pressure	8
Exa 3.1	Intensity of pressure	10
Exa 3.2	Intensity of pressure	10
Exa 3.3	Depth of alcohol	11
Exa 3.4	Convert pressure head	12
Exa 3.5	Calculate total pressure	12
Exa 3.6	Calculate force on vertical wall	13
Exa 3.7	Find force and depth	14
Exa 3.8	Total pressure and centre of pressure	15
Exa 3.9	Total pressure and centre of pressure	15
Exa 3.10	Total pressure and centre of pressure	16
Exa 3.11	Total pressure and centre of pressure	17
Exa 3.12	Determine total pressure	18
Exa 3.13	Total pressure and centre of pressure	18
Exa 3.14	Force and reaction at hinge	19
Exa 3.15	Horizontal force	20
Exa 3.16	Total pressure and centre of pfressure	21
Exa 3.17	Total pressure and centre of pressure	21
Exa 3.18	Total Pressure and centre of pressure	22
Exa 3.19	Total pressure and centre of pressure	23
Exa 3.20	Total hydro static pressure and centre of pressure	23
Eva 3 21	Resultant pressure and direction	24

Exa 3.22	Resultant pressure and angle of pressure
Exa 3.23	Gorizontal and vertical components of pressure 26
Exa 3.24	Maximum and minimum stress
Exa 4.1	Gauge units and absolute units
Exa 4.2	Pressure intensity and tube reading
Exa 4.3	Convert pressure head
Exa 4.4	Pressure in the tribe
Exa 4.5	Pressure intensity of liquid
Exa 4.6	calculate Pressure intensity
Exa 4.7	Calculate pressure intensity
Exa 4.8	Difference of pressure head
Exa 4.9	Difference of Pressure
Exa 4.10	Pressure difference between two vessels
Exa 4.11	Difference of pressure between two vessels
Exa 4.12	Pressure difference between vessels
Exa 4.13	Reading of manometer
Exa 4.14	Difference of pressure
Exa 5.1	Find Power required
Exa 5.2	Discharge and velocity of flow
Exa 5.3	Datum Velocity Head Pressure head
Exa 5.4	Calculate total energy
Exa 5.5	Direction of flow
Exa 5.6	Pressure at the low end
Exa 5.7	Loss of head and direction of flow 41
Exa 5.8	Find Loss of head
Exa 5.9	Head Loss and direction of flow
Exa 5.10	Determine pressure intensity
Exa 5.11	Intensity of pressure and discharge 45
Exa 5.12	Find discharge of oil
Exa 5.13	Coefficient of meter
Exa 5.14	Deflection in manometer
Exa 5.15	Find pressure difference
Exa 5.16	Deflection of oil mercury gauge
Exa 5.17	Rate of flow
Exa 5.18	Calculate flow water
Exa 5.19	Flow rate of water
Exa 5.20	Velocity and flow rate
Exa 5.21	Flow rate of oil

Exa	5.22	Find Z
Exa	5.23	Discharge in the pipe
Exa	6.1	Calculate Coefficients
Exa	6.2	Calculate various Coefficients
Exa	6.3	Coefficient of velocity
Exa	6.4	Coefficient of velocity
Exa	6.5	Various hydraulic coefficients
Exa	6.6	Various hydraulic coefficients
Exa	6.7	Coefficient of discharge
Exa	6.8	Coefficients of orifice
Exa	6.9	Various hydraulic coefficients 60
Exa	6.10	Meeting point of two jets 61
Exa	6.11	Discharge through the orifice
Exa	6.12	Discharge through orifice
Exa	6.13	Calculate percentage error
Exa	6.14	Discharge through orifice
Exa	6.15	Discharge through orifice
Exa	6.16	Find time taken
Exa	6.17	Time of emptying the tank
Exa	6.18	Time required to bring down the level
Exa	6.19	Time required to empty the tank 67
Exa	7.1	Relation between CGS and MKS unit 68
Exa	7.2	Kinematic viscosity and Reynolds number 69
Exa	7.3	Calculate reynolds number
Exa	7.4	Head Lost due to friction
Exa	7.5	Difference in elevations
Exa	7.6	Head Lost due to friction
Exa	7.7	Loss of head due to friction
Exa	7.8	Various losses
Exa	7.9	Intensity of pressure
Exa	7.10	Diameter of pipe
Exa	7.11.a	Discharge and velocity
Exa	7.11	Calculate the pressure
Exa	7.12	Discharge through 300mm pipe
Exa	7.13	Discharge in pipe line
Exa	7.14.a	Diameter of pipe line
Exa		Discharge in pipe line
Exa	7.15.a	Difference in water level 80

Exa 7.15	Rate of flow and diameter	81
Exa 7.16	Discharge through pipe	81
Exa 7.17	Velocity discharge rate and energy	82
Exa 7.18	Discharge in pipe and pressure	83
Exa 7.19.a	Maximum Power	84
Exa 7.19	Increase in pressure Intensity	84
Exa 11.1	Velocity of flow	86
Exa 11.2	calculate Velocity	86
Exa 11.3	Rate of discharge of steam	87
Exa 11.4	Find the discharge	88
Exa 11.5	Find the discharge	88
Exa 11.6	Discharge over the notch	89
Exa 11.7	Position of apex of notch	89
Exa 11.8	calculate time taken	90
Exa 11.9	Discharge flowing over the weir	90
Exa 11.10	Find the discharge	91
Exa 11.11	Discharge over cipoletti weir	92
Exa 11.12	Find the maximum discharge	92
Exa 11.13	Number of spillway	93
	Calculate the discharge	93

Chapter 2

Properties of Fluids

Scilab code Exa 2.1 Sp Weight Mass density Sp Gravity

```
1 / Example 2.1
2 clc;
3 clear;
4 close;
6 // Given data :
7 V=10; //in m^3
8 \text{ W} = 80; // \text{in kN}
9 g=9.81; // gravity accelerat
10 w_water=9.81; // specific weight of water
11 format('v',6);
12 w=W/V; // specific weight in kN/m^3
13 disp(w, "Specific weight of liquid in kN/m^3 : ");
14 mass_density=w*1000/g; //kg/m^3
15 disp(mass_density," Mass density of liquid in kg/m<sup>3</sup>
      : ");
16 specific_gravity=w/w_water;//unitless
17 disp(specific_gravity, "Specific gravity : ");
```

Scilab code Exa 2.2 Bulk modulus of elesticity

```
1 //Example 2.2
2 clc;
3 clear;
4 close;
5
6 //Given data :
7 p1=750; //N/cm^2
8 p2=1400; //N/cm^2
9 dvBYV=-0.150; //in %
10 format('v',9);
11 dp=p2-p1; //in N/cm^2
12 dp=dp*10^4; //in N/m^2
13 K=-dp/(dvBYV/100); //N/m^2
14 disp(K,"Bulk modulus(N/m^2) : ");
```

Scilab code Exa 2.3 Increase of pressure

Scilab code Exa 2.4 Force and power required

```
1 //Example 2.4
2 clc;
3 clear;
4 close;
5
6 //Given data :
7 A=0.2; //m^2
8 dy=0.02/100; //m
9 du=20/100; //cm/s
10 mu=0.001; //Ns/m^2
11 tau=mu*du/dy; //in N/m^2
12 F=tau*A; //N
13 disp(F, "Force required in N : ");
14 Power=F*du; // Watts
15 disp(Power, "Power required in W : ");
```

Scilab code Exa 2.5 Kinematic Viscosity

```
1 //Example 2.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('e',10);
7 mu=0.1;//Ns/m^2
8 Sp_gravity_liquid=2.1;
9 mass_density_water=1000;//in kg/m^3
10 rho=Sp_gravity_liquid*mass_density_water;//kg/m^3
11 v=mu/rho;//m^2/sec
```

```
12 disp(v, "Kinematic viscosity of liquid in m<sup>2</sup>/sec : "
);
```

Scilab code Exa 2.6 Calculate capillary rise

```
1 / Example 2.6
2 clc;
3 clear;
4 close;
5 // Given data:
6 format('v',6);
7 d=2; //in mm
8 d=d/1000; //in m
9 sigma_water=0.073; //N/m
10 sigma_mercury=0.510; //N/m
11 //Water-glass contact
12 w1=9.81; //kN/m^3 (specific weight of water)
13 w1 = w1 * 10^3; //N/m^3
14 theta=0;//in degree
15 h=4*sigma_water*cosd(theta)/w1/d;//in mm
16 disp(h*1000, "capillary rise for water glass contact
     in mm : ");
17 // Mercury-glass contact
18 w2=13.6*9.81; //kN/m^3 (specific weight of mercury)
19 w2=w2*10^3; //N/m^3
20 theta=130; //in degree
21 h=4*sigma_mercury*cosd(theta)/w2/d;//in mm
22 disp(h*1000, "capillary rise for mercury glass
      contact in mm: ");
```

Scilab code Exa 2.7 Intensity of Pressure

```
1 / \text{Example } 2.7
```

Chapter 3

Hydro Static Pressure

Scilab code Exa 3.1 Intensity of pressure

```
1 //Example 3.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 D=30*10^-2; //in m
8 F=9810; //in N
9 A=%pi*D^2/4; //in m^2
10 p=F/A; //in N/m^2 or Pa
11 p=p/1000; //kPa
12 disp(p,"Intensity of pressure at the bottom of container in kPa:");
```

Scilab code Exa 3.2 Intensity of pressure

```
1 //Example 3.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 h=1.5; //in m
8 \text{ w_w=9.81; } //\text{in kN/m}^3
9 w_g=1.26; //in kN/m^3
10 w_m = 13.6; //in kN/m^3
11 f = h * w_w; //kN/m^2
12 disp(f, "Intensity of pressure exerted by water
      column in kN/m^2: ");
13 f = h * w_w * w_g ; //kN/m^2
14 disp(f, "Intensity of pressure exerted by glycerine
      column in kN/m^2: ");
15 f = h * w_w * w_m; //kN/m^2
16 disp(f,"Intensity of pressure exerted by mercury
      column in kN/m^2: ");
```

Scilab code Exa 3.3 Depth of alcohol

```
1 //Example 3.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 p=2; //in kN/m^2
8 w_w=9.81; //in kN/m^3
9 w_alcohol=w_w*0.789; //in kN/m^3
10 w_m=13.6; //in kN/m^3
11 H=p/w_alcohol; //in m
12 disp(H,"Depth of alcohol in meter : ");
13 P_head_w=p/w_w; //m
14 disp(P_head_w,"Pressure head in terms of water in meter : ");
```

```
15 P_head_m=p/w_w/w_m;//m
16 disp(P_head_m, "Pressure head in terms of mercury in meter : ");
```

Scilab code Exa 3.4 Convert pressure head

```
1 / Example 3.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 Hwater=6; //m(Pressure head of water)
8 S_oil=0.70; //(specific gravity of oil)
9 H_oil=Hwater/S_oil; //in m(Pressure head in terms of
      oil)
10 disp(H_oil, "Pressure head of water in terms of oil
     in meter : ");
11 S_oil=0.825; //(specific gravity of oil)
12 S_mercury=13.6; //(specific gravity of mercury)
13 Hmercury=70/100; //m(Pressure head of mercury)
14 H_oil=S_mercury/S_oil*Hmercury; //in m(Pressure head
     in terms of oil)
15 disp(H_oil, "Pressure head of mercury in terms of oil
      in meter : ");
```

Scilab code Exa 3.5 Calculate total pressure

```
1 //Example 3.5
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
6 //Given data :
7 w=9.81; //in kN/m^3
8 1=3; //in m
9 b=2; //in m
10 h=1; // in m
11 f_bottom=w*h; //in kN/m^2(Pressure intensity at
     bottom)
12 p_bottom=f_bottom*1*b; //kN
13 \text{ disp(p\_bottom,"} Total pressure on the bottom in kN:
14 f_long_vertical=f_bottom/2; //kN
15 p_long_vertical=f_long_vertical*l*h; //kN
16 disp(p_long_vertical, "Total pressure on long
      vertical wall in kN : ");
17 f_short_vertical=f_bottom/2;//kN
18 p_short_vertical=f_short_vertical*b*h; //kN
19 disp(p_short_vertical, "Total pressure on short
      vertical wall in kN : ");
```

Scilab code Exa 3.6 Calculate force on vertical wall

```
1 //Example 3.6
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 p_water=1000; //in kg/m^3
8 p_liquid=800; //in kg/m^3
9 g=9.81; //gravity constant
10 h1=1.5; //m
11 px1=p_liquid*g*h1/1000; //kN/m^2
12 disp(px1,"Pressure at a point 1.5 meter below free surface in kN/m^2 : ");
13 h2=2; //m
```

```
14 px2=p_liquid*g*h2/1000; //kN/m^2
15 disp(px2," Pressure at a point 2 meter below free
      surface in kN/m^2: ");
16 h31=2; //m (for liquid)
17 h32=0.5; //m(for water)
18 px1=p_liquid*g*h31/1000; //kN/m^2
19 px2=p_water*g*h32/1000; //kN/m^2
20 px3=(px1+px2); //kN/m^2
21 disp(px3," Pressure at a point 2.5 meter below free
      surface in kN/m^2: ");
22 h=2; //meter(water level)
23 b=8; //meter(width of wall)
24 p_bottom=px1+(p_water*g*h)/1000; /(kN/m^2)
25 p_avg1=(px1+0)/2; //kN/m^2(top 2m liquid layer)
26 p_avg2=(px1+p_bottom)/2; //kN/m^2(top 2m water layer)
27 F_per_meter=p_avg1*h*1+p_avg2*h*1; //kN
28 Fwall=F_per_meter*b; //kN
29 disp(Fwall, "Force on the wall in kN: ");
```

Scilab code Exa 3.7 Find force and depth

```
1 //Example 3.7
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 b=3; //in meter
8 h=3; //in meter
9 S_oil=0.8; //(specific gravity of oil)
10 A=1/2*h*b; //in m^2
11 x_bar=2/3*3; //in meter
12 SW_water=9.81*1000; //in N/m^3
13 SW_oil=SW_water*S_oil; //in N/m^3
14 F_surface=SW_oil*A*x_bar; //in kN
```

Scilab code Exa 3.8 Total pressure and centre of pressure

```
1 / Example 3.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 1=3; //in meter
8 b=2;//in meter
9 p=2*10^6; //in Pa
10 g=9.81; // gravity constant
11 w=g*1000; //in N/m^3
12 h=p/w; //in meter
13 xbar=h-1.5; //in meter
14 A=1*b; //in m^2
15 p_gate=w*A*xbar/10^6; //in MN
16 disp(p_gate, "Total pressure on the gate in MN: ");
17 IG=b*1^3/12; //in m^3
18 h_bar=IG/A/xbar+xbar; //in meter
19 disp("Position of centre of pressure is "+string(
     h_bar-xbar)+" meter below the centroid of gate.")
```

Scilab code Exa 3.9 Total pressure and centre of pressure

```
1 //Example 3.9 2 clc;
```

```
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 \text{ g=9.81; } // \text{gravity}
8 \text{ GH}=4; // \text{meter}
9 \text{ IJ=4;} // \text{meter}
10 IC=2; //meter
11 GC=3; // meter
12 AG = (10-4)/2; //meter
13 BH=(10-4)/2; //meter
14 EI=AG*IC/GC;//meter
15 JF=AG*IC/GC;//meter
16 EF=EI+IJ+JF; // meter
17 A = (8+4)/2*2; //in m^2
18 a=4; //meter
19 b=8; //meter
20 d=2; // meter
21 xbar = (2*a+b)/(a+b)*d/3; //in meter
22 w=g*1000; //in N/m^3
23 p_gate=w*A*xbar/10^3; //in kN
24 disp(p_gate, "Total pressure in kN : ");
25 IG=(a^2+4*a*b+b^2)/(a+b)*d^3/36;//in m^3
26 h_bar=IG/A/xbar+xbar; //in meter
27 disp("Depth of centre of pressure is "+string(h_bar)
      +" meter.");
```

Scilab code Exa 3.10 Total pressure and centre of pressure

```
1 //Example 3.10
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
```

```
7 g=9.81; // gravity
8 xbar=8; // meter
9 D=4; // meter
10 A=%pi*D^2/4; // meter^2
11 w=g*1000; // in N/m^3
12 p=w*A*xbar/10^3; // in kN
13 disp(p, Total pressure in kN: ");
14 IG=%pi*D^4/64; // in m^4
15 h_bar=IG/A/xbar+xbar; // in meter
16 disp("Depth of centre of pressure is "+string(h_bar) +" meter.");
17 // Answer of total pressure is wrong in the book.
```

Scilab code Exa 3.11 Total pressure and centre of pressure

```
1 //Example 3.11
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 \text{ g=9.81; } // \text{gravity}
8 D=4; //meter
9 xbar = (10+7)/2; //meter
10 A = \%pi * D^2/4; //meter^2
11 w=g*1000; //in N/m^3
12 p=w*A*xbar/10^6; //in MN
13 disp(p, "Total pressure in MN: ");
14 BC=3; //meter
15 AB=4; //mete
16 sin_theta=BC/AB;
17 IG = \%pi * D^4/64; //in m^4
18 h_bar=IG/A/xbar*sin_theta^2+xbar; //in meter
19 disp("Position of centre of pressure is "+string(
      h_bar)+" meter.");
```

Scilab code Exa 3.12 Determine total pressure

```
1 //Example 3.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 a=3; //meter
8 b=4; //meter(altitude)
9 S=1.2; //specific gravity
10 theta=30; // degree
11 d=2.5; //meter
12 g=9.81; //gravity
13 AG=b/3; //meter
14 xbar=d+AG*sind(theta);//meter
15 A=1/2*a*b; //meter^2
16 w=S*g*1000; //in N/m^3
17 p=w*A*xbar/10^3; //in kN
18 disp(p, "Total pressure in kN: ");
19 IG=a*b^3/36; //in m^4
20 h_bar=IG/A/xbar*(sind(theta))^2+xbar; //in meter
21 disp("Depth of centre of pressure is "+string(h_bar)
     +" meter.");
```

Scilab code Exa 3.13 Total pressure and centre of pressure

```
1 //Example 3.13
2 clc;
3 clear;
4 close;
```

```
5 format('v',6);
6 //Given data :
7 \text{ a=8;} // \text{meter}
8 b=6; //meter
9 h=3;//meter
10 CD=2; //meter
11 theta=30; // degree
12 A=(a+b)/2*h; //meter^2
13 AB=(a+2*b)/(a+b)*h/3;/meter
14 x1bar = AB; //meter
15 BC=AB*sind(theta);//meter
16 BD=BC+CD; //meter
17 xbar=BD; //meter
18 g=9.81; //gravity
19 w=g*1000; //in N/m^3
20 p=w*A*xbar/10^3; //in kN
21 disp(p, "Total pressure in kN: ");
22 IG=(a^2+b^2+4*a*b)/(a+b)*h^3/36; //in m^4
23 h_bar=IG/A/xbar*(sind(theta))^2+xbar;//in meter
24 disp("Depth of centre of pressure is "+string(h_bar)
      +" meter.");
```

Scilab code Exa 3.14 Force and reaction at hinge

```
1 //Example 3.14
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 l=2;//meter
8 b=2;//meter
9 p_i=98.1;//kN/m^3(Pressure intensity)
10 w=9.81;//kN/m^2
11 BC=1;//meter
```

```
12 AB=2; //meter
13 theta=30; //degree
14 B=p_i/w;/m
15 BD=BC*sind(theta); //m
16 xbar = 10 + 0.5; //meter
17 A=1*b; //m^2
18 p=w*A*xbar; //kN
19 IG = (2*1^3)/12; //in m^4
20 h_bar=IG/A/xbar*(sind(theta))^2+xbar;//in meter
21 DI=h_bar-xbar; //m
22 FC=DI/sind(theta); //m
23 FB=FC+BC; // meter
24 P=p*FB/AB;//kN
25 disp(P, "Force in kN : ");
26 RB=p-P; //kN
27 disp(RB, "Reaction at hinge B in kN : ");
28 //Answer in the book is slightly differ due to
      limited accuracy used in the book as compared to
      SCILAB.
```

Scilab code Exa 3.15 Horizontal force

```
1 //Example 3.15
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 l=4;//meter
8 b=2;//meter
9 h=1.8;//meter
10 w=9.81;//kN/m^2
11 xbar=6-2//meter
12 A=1*b;//m^2
13 P=w*A*xbar;//kN
```

Scilab code Exa 3.16 Total pressure and centre of pfressure

```
1 //Example 3.16
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 b=2;//meter
8 d=3; //meter
9 h=2; //meter
10 w=9.81; //kN/m^2
11 xbar = 2+3/2; //meter
12 A=b*d; //m^2
13 P=w*A*xbar;//kN
14 disp(P, "Total Pressure in kN: ");
15 IG=(b*d^3)/12; //in m^4
16 h_bar=IG/A/xbar+xbar;//in meter
17 disp(h_bar, "Position of centre of pressure in meter
      : ");
```

Scilab code Exa 3.17 Total pressure and centre of pressure

```
1 //Example 3.17
2 clc;
3 clear;
4 close;
```

Scilab code Exa 3.18 Total Pressure and centre of pressure

```
1 //Example 3.18
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 D=1.5; // meter
8 BE=2; // meter
9 AD=0.75; // meter
10 CE=AD; // meter
11 BC=BE-AD; // meter
12 FG=CE+BC/2; //meter
13 xbar = FG; //meter
14 w=9.81; //kN/m^2
15 A = \text{pi} * D^2/4; //m^2
16 AB=D; // meter
17 sin_theta=BC/AB;
18 P=w*A*xbar;//kN
```

Scilab code Exa 3.19 Total pressure and centre of pressure

```
1 //Example 3.19
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 b=3; //meter
8 a=3; //meter
9 S_oil=0.8;//specific gravity of oil
10 w=9.81*S_oil; //kN/m^2
11 xbar=1/3*b; //meter
12 A=1/2*a*b; //m^2
13 P=w*A*xbar;//kN
14 disp(P, "Total Pressure in kN: ");
15 IG=(a*b^3)/36; //in m^4
16 h_bar=IG/A/xbar+xbar; //in meter
17 disp(h_bar, "Centre of pressure in meter: ");
```

Scilab code Exa 3.20 Total hydro static pressure and centre of pressure

```
1 //Example 3.20
2 clc;
3 clear;
4 close;
5 format('v',7);
```

Scilab code Exa 3.21 Resultant pressure and direction

```
1 / \text{Example } 3.21
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 r=2; //meter
8 1=4; // meter
9 A=r*1; //m^2
10 xbar = 2+r/2; //meter
11 w=9.81; //kN/m^2
12 PH=w*A*xbar; //kN
13 disp(PH, "Horizontal component of resulting Pressure
      in kN : ");
14 PV = 2*r*l*w + \%pi*r^2/4*l*w; //kN
15 disp(PV, "Verticalal component of resulting Pressure
      in kN : ");
16 IG=(1*r^3)/12; //in m^4
17 h_bar=IG/A/xbar+xbar; //in meter
```

Scilab code Exa 3.22 Resultant pressure and angle of pressure

```
1 //Example 3.22
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 A = 2 * 1; //m^2
8 \text{ xbar} = 2+2/2; // \text{meter}
9 w=9.81; //kN/m^2
10 PH=w*A*xbar; //kN
11 disp(PH," Horizontal component of resultant Pressure
      in kN : ");
12 PV = w * [2*2+2*2-\%pi*2^2/4]*1; //kN
13 disp(PV," Verticalal component of resultant Pressure
      in kN : ");
14 P=sqrt(PH^2+PV^2);/kN
15 disp(P, "Resultant pressure in kN: ");
16 theta=atand(PV/PH);//degree
17 disp(theta," Direction of resultant pressure in
      degree : ");
```

Scilab code Exa 3.23 Gorizontal and vertical components of pressure

```
1 //Example 3.23
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 ABbar=sqrt(2)*4;//meter
8 xbar=ABbar/2;//meter
9 A = ABbar *1; //m^2
10 w=9.81; //kN/m^2
11 PH=w*A*xbar; //kN
12 disp(PH," Horizontal component of resultant Pressure
     in kN : ");
13 hbar=2/3*ABbar;//meter
14 disp("Position of horizontal component of pressure
      is "+string(hbar)+" meter below free water
      surface.");
15 PV=w*[\%pi*4^2/4-4*4/2]*1;/kN
16 disp(PV," Verticalal component of resultant Pressure
     in kN : ");
```

Scilab code Exa 3.24 Maximum and minimum stress

```
1 //Example 3.24
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 h=24;//meter
8 b=15;//meter
9 g=9.81;//gravity constant
10 Wm=2000*g;//N/m^3
```

```
11 W=b*h/2*Wm; //N
12 w=9.81; //kN/m^2
13 PH=w*20^2/2*1000; //N
14 y=PH/W*20/3+5; // meter
15 e=y-b/2; // meter
16 MaxStress=W/b*(1+6*e/b); //N/m^2
17 disp(MaxStress, "Maximum stress in N/m^2: ");
18 MinStress=W/b*(1-6*e/b); //N/m^2
19 disp(MinStress, "Minimum stress in N/m^2: ");
20 // Answer in the book is slightly differ due to limited accuracy used in the book as compared to SCILAB.
```

Chapter 4

Measurement of Pressure

Scilab code Exa 4.1 Gauge units and absolute units

```
1 //Example 4.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 p=5; // kg/cm^2
8 disp("Gauge units: ");
9 disp(p/10^-4, "Pressure Intensity in kg/m^2:");
10 g=9.81; // gravity constant
11 disp(p*g/10^-4, "Pressure Intensity in N/m^2 : ");
12 disp(p*g/10^-4, "Pressure Intensity in Pa: ");
13 disp(p*g/10^3/10^-4, "Pressure Intensity in kPa: ");
14 disp(p*g/10^6/10^-4, "Pressure Intensity in MPa: ");
15 disp("In terms of head: ");
16 w=1000; // \text{kg/m}^3 for water
17 h=p*10^4/w; //meter of water
18 disp("Pressure is : "+string(h)+" meter of water.")
19 w=13.6*1000; //kg/m^3 for mercury
20 h=p*10^4/w;//meter of mercury
```

```
21 disp("Pressure is : "+string(h)+" meter of mercury.
      ");
22 disp("Absolute units: ");
23 Patm=760; //mm of mercury
24 Patm = 760 * 13.6 / 1000; //m of water
25 Patm=Patm*1000; // \text{kg/m}^2
26 Pabs=p+Patm; // \text{kg/m}^2
27 disp(Pabs, "Absolute pressure in kg/m^2: ");
28 disp(Pabs*10^4, "Absolute pressure in kg/cm^2: ");
29 disp(Pabs*10^4*g," Absolute pressure in N/m^2: ");
30 disp(Pabs*10^4*g,"Absolute pressure in Pa: ");
31 disp(Pabs*10^5/10^3, "Absolute pressure in kPa: ");
32 disp(Pabs*10^5/10^6, "Absolute pressure in MPa: ");
33 h1=p*10^4/w; // meter of water
34 h2=p*10^4/1000; //meter of water
35 h=h1+h2; ///meter of water
36 disp(h, "Absolute pressure head in terms of water in
     meter : ");
37 w=13.6*1000; //kg/m^3 for mercury
38 h=p*10^4/w+760/1000; //meter of mercury
39 disp(h, "Absolute pressure head in terms of mercury
     in meter : ");
```

Scilab code Exa 4.2 Pressure intensity and tube reading

```
1 //Example 4.2
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 w=1000;//kg/m^3
8 h=50/1000;//m
9 p=w*h;//kg/m^2
10 p=p*9.81;//N/m^2 or Pa
```

```
disp(p, "Pressure Intensity in Pa: ");
la alfa=30; // degree
la h=50; //mm
l=h/sind(alfa); //mm
disp(l, "Reading in tube in mm: ");
```

Scilab code Exa 4.3 Convert pressure head

```
1 //Example 4.3
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 S1=13.6; //sp. gravity of mercury
8 S2=1; //sp. gravity of water
9 H1=5; //m
10 H2=S1*H1/S2; //m
11 disp("(i) Pressure is "+string(H2)+" meter of water.
     ");
12 S2=0.79; //sp. gravity of kerpsene
13 H1=5; //m
14 H2=S1*H1/S2;/m
15 disp("(ii) Pressure is "+string(H2)+" meter of
     kerosene.");
16 S2=1.7; //sp. gravity of fluid
17 H1=5; //m
18 H2=S1*H1/S2;/m
19 disp("(iii) Pressure is "+string(H2)+" meter of
     fluid.");
```

Scilab code Exa 4.4 Pressure in the tribe

```
1 //Example 4.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 S=0.9;//sp. gravity of liquid
8 Sm=13.6;//sp. gravity of mercury
9 S1=Sm/S;//sp. gravity
10 w=S*9.81;//kN/m^3
11 h2=500/1000;//m
12 h1=300/1000;//m
13 a_BY_A=1/80;//ratio of area
14 pa=w*(h2*[(S1-1)*a_BY_A+S1]-h1);//kPa
15 disp(pa,"Pressure in the pipe in kPa:");
```

Scilab code Exa 4.5 Pressure intensity of liquid

```
1 //Example 4.5
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data:
7 S1=1.2;//sp. gravity
8 S2=13.6;//sp. gravity
9 w=1000;//kg/m^3
10 h2=50/1000;//m
11 h1=200/1000;//m
12 pa=w*(S2*h1-S1*h2);//kg/m^2
13 disp(pa,"Pressure in the pipe in kg/m^2: ");
14 disp(pa*9.81,"Pressure in the pipe in Pa: ");
```

Scilab code Exa 4.6 calculate Pressure intensity

```
1 //Example 4.6
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data:
7 S=1;//sp. gravity
8 w=1000;//kg/m^3
9 h2=50/1000;//m
10 h1=200/1000;//m
11 pa=w*S*(h1-h2);//kg/m^2
12 disp(pa,"Pressure in the pipe in kg/m^2:");
13 disp(pa*9.81,"Pressure in the pipe in Pa:");
```

Scilab code Exa 4.7 Calculate pressure intensity

```
1 //Example 4.7
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 S1=0.005; //sp. gravity
8 \text{ S2=1;}//\text{sp.} \text{ gravity}
9 Patm=1.014*10^5; //Pa
10 h=50/1000; //m
11 w = 1000; //kg/m^3
12 pa=-w*S2*h; // kg/m^2
13 Pabs=pa*9.81+Patm; //
14 disp(abs(pa*9.81), "Pressure intensity of gas in Pa(
      Vaccum): ");
15 disp(Pabs, "Absolute pressure in the pipe in Pa: ");
```

Scilab code Exa 4.8 Difference of pressure head

```
1 / \text{Example } 4.8
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 S1=0.9; //sp. gravity
8 S2=13.6; // \text{sp. gravity}
9 h1=12.5/100; //m
10 P_AB=h1*(S2-S1);//meter of water
11 disp("Difference in pressure head at the points A &
      B is "+string(P_AB)+" meter of water");
12 w = 1000; //kg/m^3
13 P_diff = P_AB*w*9.81; //Pa \text{ or } Nm^2
14 disp(P_diff," In terms A pressure entirely, the
      difference of pressure in N/m^2: ");
```

Scilab code Exa 4.9 Difference of Pressure

```
1 //Example 4.9
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 S1=1;//sp. gravity
8 S2=13.6;//sp. gravity
9 h1=120/1000;//m
10 P_diff=h1*(S2-S1);//meter of water
```

```
11 disp("Difference in pressure head is "+string(P_diff
      )+" meter of water");
12 w=1000;//kg/m^3
13 P_diff=P_diff*w*9.81;//Pa or Nm^2
14 disp(P_diff,"In terms of pressure intensity, the
      difference of pressure in N/m^2: ");
```

Scilab code Exa 4.10 Pressure difference between two vessels

```
1 //Example 4.10
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 S1=0.81; // sp. gravity
8 S2=1.2;//sp. gravity
9 S3=13.6; //sp. gravity
10 h3 = 200/1000; //m
11 h2=50/1000; //m
12 h1 = 100/1000; //m
13 w = 1000; //kg/m^3
14 pAB=((h1*(S2-S1)+h2*(S3-S1)-h3*S1))*w; //Kg/m<sup>2</sup>
15 disp(pAB," Pressure difference between the two vessel
       in kg/m^2: ");
```

Scilab code Exa 4.11 Difference of pressure between two vessels

```
1 //Example 4.11
2 clc;
3 clear;
4 close;
5 format('v',9);
```

```
6  //Given data :
7  S1=1.9; //sp. gravity
8  S2=1.2; //sp. gravity
9  S3=0.79; //sp. gravity
10  h2=545/1000; //m
11  h1=750/1000; //m
12  h3=h1-h2; //m
13  w=1000*9.81; //N/m^3
14  pAB=(h1*S1-h2*S2-h3*S3)*w; //N/m^2
15  disp(pAB, "Pressure difference between the two vessel in N/m^2: ");
```

Scilab code Exa 4.12 Pressure difference between vessels

```
1 //Example 4.12
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 S1=0.005;//sp. gravity
8 S2=0.79;//sp. gravity
9 S3=13.6;//sp. gravity
10 h=30/1000;//m
11 w=1000*9.81;//N/m^3
12 pAB=h*(S3-S2)*w;//N/m^2
13 disp(pAB, "Pressure difference between the two vessel in N/m^2: ");
```

Scilab code Exa 4.13 Reading of manometer

```
1 //Example 4.13 2 clc;
```

```
3 clear;
4 close;
5 format('v',4);
6 //Given data :
7 S1=1.25; //sp. gravity
8 S2=1.05; //sp. gravity
9 S3=0.79; //sp. gravity
10 h=30/1000; //m
11 w=1000; //kg/m^3
12 //pA=pB
13 h=(0.15*w*S2-S1*w*0.15)/(S3*w-w*S2); //m
14 h=h*1000; //mm
15 disp(h, "Reading of manometer in mm : ");
```

Scilab code Exa 4.14 Difference of pressure

```
1 //Example 4.14
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 S1=1;//sp. gravity of water
8 S2=1;//sp. gravity of water
9 S3=0.9;//sp. gravity of oil
10 h3=100/1000;//meter
11 w=9.81*1000;//N/m^3
12 pAB=w*(h3-h3*S3);//N/m^2
13 disp(pAB, "Difference of pressure in N/m^2 or Pa:")
;
```

Chapter 5

Fundamentals of Flow

Scilab code Exa 5.1 Find Power required

```
1 //Example 5.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 m=2000;//litre or kg(1litre water =1kg)
8 M=m/60;//kg/s
9 p=4.5;//bar
10 p=p*10^5;//N/m^2
11 g=9.81;//constant
12 w=g*1000;//N/m^3
13 H=p/w;/m
14 Power=M*g*H/1000;//kW
15 disp(Power,"Power required in kW:");
```

Scilab code Exa 5.2 Discharge and velocity of flow

```
1 / \text{Example } 5.2
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 v1=400*10^{-3}; //m/s
8 d1=300/1000; // meter
9 d2=450/1000; //meter
10 A1=\%pi*d1^2/4; //m^2
11 A2=%pi*d2^2/4; //\text{m}^2
12 Q1=A1*v1*1000; // litres/sec(1m^3=1000 litres)
13 disp(Q1," Discharge of pipe in litres/sec : ");
14 v2 = (Q1/1000)/A2; //m/s(Q1=Q2)
15 disp(v2, "Mean velocity of flow in m/s:");
16 //Answer of discharge is wrong in the book.
```

Scilab code Exa 5.3 Datum Velocity Head Pressure head

```
1 / Example 5.3
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 PotentialHead=2; //meter of fluid
8 disp("Potential Head is "+string(PotentialHead)+"
     meter of fluid.");
9 v=5; //m/s
10 g=9.81; //constant
11 VelocityHead=v^2/2/g; //m
12 disp("Velocity Head is "+string(VelocityHead)+"
     meter of fluid.");
13 w = g * 1000; //N/m^3
14 S=0.8; //sp. gravity of fluid
```

```
15 p=200; //kPa
16 PressureHead=p*10^3/w/S; //meter of fluid
17 disp("Pressure Head is "+string(PressureHead)+"
        meter of fluid.");
18 TotalHead=PotentialHead+VelocityHead+PressureHead; //
        meter of fluid
19 disp("Total Head is "+string(TotalHead)+" meter of fluid.");
```

Scilab code Exa 5.4 Calculate total energy

```
1  //Example 5.4
2  clc;
3  clear;
4  close;
5  format('v',8);
6  //Given data :
7  p=0.8/10^-4; //kg/m^2
8  datumH=4; //meter
9  v=0.8; //m/s
10  g=9.81; //constant
11  VelocityH=v^2/2/g; //m
12  w=1000; //kg/m^3
13  PressureH=p/w; //meter of fluid
14  TotalH=datumH+VelocityH+PressureH; //meter of fluid
15  disp("Total Energy is "+string(TotalH)+" meter.");
```

Scilab code Exa 5.5 Direction of flow

```
1 //Example 5.5
2 clc;
3 clear;
4 close;
```

```
5 format('v',7);
6 //Given data :
7 D1=800/1000; //\text{m}^2
8 D2=600/1000; //\text{m}^2
9 p1=100; //kPa
10 p2=40; //kPa
11 v1=4000*10^-3; //m/s
12 A1=\%pi*D1^2/4; //m^2
13 A2=\%pi*D2^2/4; //m^2
14 Z1=4; //meter
15 \quad Z2=7; //meter
16 rho=1; //sp. gravity
17 g=9.81; //constant
18 PHeadA=p1/rho/g;//meter of fluid
19 PHeadB=p2/rho/g;//meter of fluid
20 v2 = A1 * v1 / A2; //m/s
21 VHeadA=v1^2/2/g; //meter
22 VHeadB=v2^2/2/g; //meter
23 E1=Z1+PHeadA+VHeadA; // meter
24 E2=Z2+PHeadB+VHeadB; // meter
25 if E1>E2 then
       disp("Total Energy at A("+string(E1)+" meter) is
26
           greater than total energy at B("+string(E2)+
          " meter). Flow of water is from A to B.");
27 else
           disp("Total Energy at B("+string(E2)+" meter
28
               ) is greater than total energy at A("+
               string(E1)+" meter). Flow of water is
               from B to A.");
29 end
```

Scilab code Exa 5.6 Pressure at the low end

```
1 //Example 5.6
2 clc;
```

```
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 D1=1.25; // meter
8 D2=0.625; // meter
9 slope=100;
10 L=300; ///meter
11 g=9.81; //constant
12 Z12=L/slope;//meter
13 Q=100; // litres/sec
14 Q=Q*10^-3; //m^3/sec
15 A1=\%pi*D1^2/4; //m^2
16 A2=\%pi*D2^2/4; //m^2
17 v1 = Q/A1; //m/s
18 v2=Q/A2; //m/s
19 p1=100; //kN/m^2
20 //Higher End:
21 w=9.81; //kN/m^3
22 Phead=p1/w; //meter
23 Vhead=v1^2/2/g; //meter
24 //Lower End :
25 \text{ w=9.81; } / \text{kN/m}^3
\frac{26}{\text{Phead=p1/w;//meter}}
27 Vhead=v2^2/2/g; //meter
28 p2=(Z12+v1^2/2/g+p1/w-v2^2/2/g)*w; //kN/m^2(By)
      Bernoulli's theorem)
29 disp(p2, "Pressure at the lower end in kN per m^2:"
      );
```

Scilab code Exa 5.7 Loss of head and direction of flow

```
1 //Example 5.7
2 clc;
3 clear;
```

```
4 close;
5 format('v',8);
6 //Given data :
7 \quad Z1=0; //meter
8 \quad Z2=5; //meter
9 Q=300*10^{-3}; //m/s
10 D1=0.3; // meter
11 D2=0.6; // meter
12 A1=\%pi*D1^2/4; //m^2
13 A2=\%pi*D2^2/4; //m^2
14 v1=Q/A1; //m/s
15 v2=Q/A2; //m/s
16 p1=100; //kN/m^2
17 p2=600; //kN/m^2
18 g=9.81; //constant
19 Vhead11=v1^2/2/g; // meter
20 Vhead22=v2^2/2/g; // meter
21 Phead11=p1/g; //meter
22 Phead22=p2/g; //meter
23 E1_11=Z1+Vhead11+Phead11; // meter
24 E2_22=Z2+Vhead22+Phead22; //meter
25 if E1_11>E2_22 then
       disp("Energy at section 1-1("+string(E1_11)+"
26
          meter) is greater than energy at section 2-2(
          "+string(E2_22)+" meter). Flow of water is
          from section 1-1 to 2-2.");
27
       HeadLoss=E1_11-E2_22; //meter
       disp(HeadLoss, "Head Loss in meter : ");
28
29 else
           disp("Energy at section 2-2("+string(E2_22)+
30
              " meter) is greater than energy at
              section 1-1("+string(E1_11)+" meter).
              Flow of water is from section 2-2 to 1-1.
              ");
                HeadLoss=E2_22-E1_11;/meter
31
           disp(HeadLoss, "Head Loss in meter : ");
32
33 end
```

Scilab code Exa 5.8 Find Loss of head

```
1 //Example 5.8
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 D=400/1000; //meter
8 \text{ v1=20; } //\text{m/s}
9 \text{ Z1=28; } // \text{meter}
10 Z2=31; // meter
11 p1=4/10^-4; //kg/m^2
12 p2=3/10^-4; //kg/m^2
13 g=9.81; //constant
14 w = 1000; //kg/m^3
15 Vhead1=v1^2/2/g; // meter
16 Phead1=p1/w; //meter
17 Vhead2=Vhead1; // meter
18 Phead2=p2/w; //meter
19 E1=Z1+Vhead1+Phead1; // meter
20 E2=Z2+Vhead2+Phead2; // meter
21 HL=E1-E2; //meter
22 disp(HL,"Loss of head between P & Q in meter: ");
```

Scilab code Exa 5.9 Head Loss and direction of flow

```
1 //Example 5.9
2 clc;
3 clear;
4 close;
5 format('v',8);
```

```
6 //Given data :
7 \text{ Z1=0}; // \text{meter}
8 \quad Z2=4; //meter
9 rho=0.8; //sp. gravity
10
11 Q=250*10^{-3}; //m/s or cumec
12 D1=250/1000; // meter
13 D2=500/1000; // meter
14 A1=\%pi*D1^2/4; //m^2
15 A2=\%pi*D2^2/4; //m^2
16 v1=Q/A1; //m/s
17 v2=Q/A2; //m/s
18 p1=0.1*10^3; //N/m^2
19 p2=0.06*10^3; //N/m^2
20 g=9.81; //constant
21 Vhead1=v1^2/2/g; //meter
22 Phead1=p1/rho/g;//meter
23 Vhead2=v2^2/2/g; //meter
24 Phead2=p2/rho/g; //meter
25 H1=Z1+Vhead1+Phead1; //meter
26 H2=Z2+Vhead2+Phead2; //meter
27 if H1>H2 then
       disp("Total head at A("+string(H1)+" meter) is
28
          greater than total head at B("+string(H2)+"
          meter). Flow will take place from A-B.");
       HeadLoss=H1-H2; // meter
29
       disp(HeadLoss, "Head Loss in meter : ");
30
31 else
       disp("Total head at B("+string(H2)+" meter) is
32
          greater than total head at A("+string(H1)+"
          meter). Flow will take place from B-A.");
       HeadLoss=H2-H1; // meter
33
       disp(HeadLoss, "Head Loss in meter : ");end
34
```

Scilab code Exa 5.10 Determine pressure intensity

```
1 //Example 5.10
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 Q=200*10^-3; //m^3/s
8 D1=250/1000; // meter
9 D2=200/1000; // meter
10 A1=\%pi*D1^2/4; //m^2
11 A2=\%pi*D2^2/4; //m^2
12 v1 = Q/A1; //m/s
13 v2=Q/A2; //m/s
14 Z1 = 2; //meter
15 Z2=8; //meter
16 g=9.81; //constant
17 w = 1000; //kg/m^3
18 p1=w*(Z1-v1^2/2/g); //kg/m^2
19 p2=v1^2/2/g*w+p1+Z2*w-v2^2/2/g*w-4*w; //kg/m^2(by)
      Bernolli's theorem)
20 p1=p1*g; //N/m^2
21 p2=p2*g; //N/m^2
22 disp(p1, "Pressure intensity at point P in N/m<sup>2</sup>: ")
23 \texttt{disp}(\texttt{p2},"Pressure intensity at point Q in N/m^2:")
24 // Answer in the book is not accurate.
```

Scilab code Exa 5.11 Intensity of pressure and discharge

```
1 //Example 5.11
2 clc;
3 clear;
4 close;
5 format('v',8);
```

```
6 //Given data :
7 slope=1/10;
8 \text{ Z1=0}; // \text{meter}
9 Z2=40*slope; //meter
10 p1=1.5/10^-4; //kg/cm^2
11 v2=4.1; //m/s
12 D1=600/1000; // meter
13 D2=300/1000; // meter
14 A1=\%pi*D1^2/4; //m^2
15 A2=\%pi*D2^2/4; //m^2
16 v1 = A2 * v2 / A1; //m/s
17 g=9.81; //constant
18 w = 1000; //kg/m^3
19 p2=(p1/w+v1^2/2/g+Z1-v2^2/2/g-Z2)*w; //kg/m^2(by)
      Bernolli's theorem)
20 p2=p2*10^-4; //kg/cm^2
21 Q1=A1*v1; //\text{m}^3/\text{sec}
22 Q1=Q1*1000; // litre/sec
23 disp(p2, "Pressure intensity at point Q in kg/cm<sup>2</sup> :
      ");
24 disp(Q1,"Discharge of pipe in litres/sec : ");
25 //Answer in the book is not accurate. calculation
      for A1 & A2 is wrong.
```

Scilab code Exa 5.12 Find discharge of oil

```
1 //Example 5.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 D1=180/1000;//meter
8 D2=90/1000;//meter
9 g=9.81;//gravity constant
```

```
10 S=0.8; //sp. gravity of oil
11 Sm=13.6; //sp. gravity of mercury
12 x=300/1000; //meter
13 K=0.97; //coeff. of meter
14 A1=%pi*D1^2/4; //m^2
15 A2=%pi*D2^2/4; //m^2
16 C=A1*A2*sqrt(2*g)/sqrt(A1^2-A2^2)
17 h=x*(Sm/S-1); //meter of oil
18 Q=K*C*sqrt(h); //m^3/sec
19 Q=Q*1000; //litre/sec
20 disp(Q,"Discharge of oil in litres/sec:");
```

Scilab code Exa 5.13 Coefficient of meter

```
1 //Example 5.13
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 D1byD2=1/0.7;
8 D1=320/1000; // meter
9 D2=320*0.7/1000; // meter
10 g=9.81; // gravity constant
11 Q=30.6/60; //\text{m}^3/\text{sec}
12 A1=%pi*D1^2/4; //m^2
13 A2=\%pi*D2^2/4; //m^2
14 C=A1*sqrt(2*g)/sqrt((D1byD2)^4-1);
15 h=1.2; //meter of water
16 K=Q/C/sqrt(h);//Coeff. of meter
17 disp(K, "Coefficient of meter: ");
18 //Answer in the book is wrong.
```

Scilab code Exa 5.14 Deflection in manometer

```
1 //Example 5.14
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 D1=320/1000; // meter
8 D2=224/1000; //meter
9 g=9.81; // gravity constant
10 Q=25000/1000/60; //\text{m}^3/\text{sec}
11 A1=\%pi*D1^2/4; //m^2
12 A2=%pi*D2^2/4; //m^2
13 C=0.4984; // venturi constant
14 K=0.92; // Coeff. of meter
15 h = (Q/K/C)^2
16 S=1; //sp. gravity
17 Sm=13.6; //sp. gravity
18 x=h/(Sm/S-1); //meter of water
19 disp(x*1000, "Deflection in manometer(mm): ");
```

Scilab code Exa 5.15 Find pressure difference

```
1 //Example 5.15
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 D1=120/1000;//meter
8 D2=120*0.55/1000;//meter
9 g=9.81;//gravity constant
10 A1=%pi*D1^2/4;//m^2
11 A2=%pi*D2^2/4;//m^2
```

```
12  Q=30/1000; //m^3/sec
13  C=A1*sqrt(2*g)/sqrt((D1/D2)^4-1); // venturi constant
14  K=0.94; // Coeff. of meter
15  h=(Q/K/C)^2; // meter
16  Z1=0; // meter
17  Z2=0.3; // meter
18  S=0.79; // sp. gravity
19  w=1000*S; // kg/m^3
20  delta_p=(h+Z1-Z2)*w; // kg/m^2
21  delta_p=delta_p*g; // N/m^2
22  disp(delta_p, "Pressure difference in N/m^2: ");
23  // answer is wrong in the book.
```

Scilab code Exa 5.16 Deflection of oil mercury gauge

```
1 //Example 5.16
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 D1=160/1000; // meter
8 D2=60/1000; // meter
9 g=9.81; // gravity constant
10 S=0.8; //sp. gravity
11 Sm=13.6; //sp. gravity of mercury
12 Q = 0.05; //m^3/sec
13 K=0.98; // Coeff. of meter
14 A1=\%pi*D1^2/4; //m^2
15 A2=\%pi*D2^2/4; //m^2
16 C=A1*sqrt(2*g)/sqrt((A1/A2)^2-1);//venturi constant
17 h=(Q/K/C)^2; //meter
18 x=h/(Sm/S-1); //meter
19 disp(x, Deflection in meter : ");
```

Scilab code Exa 5.17 Rate of flow

```
1 //Example 5.17
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Given data :
7 D1=200/1000; // meter
8 D2=100/1000; // meter
9 x = 220/1000; //meter
10 g=9.81; //gravity constant
11 K=0.98; //Coeff. of meter
12 S=1; //sp. gravity
13 Sm=13.6; //sp. gravity of mercury
14 A1=\%pi*D1^2/4; //m^2
15 A2=\%pi*D2^2/4; //m^2
16 C=A1*sqrt(2*g)/sqrt((A1/A2)^2-1);//venturi constant
17 h=x*(Sm/S-1); //meter
18 Q=K*C*sqrt(h); //m^3/sec
19 Q=Q*1000; // litres/sec
20 disp(Q,"Rate of flow in litres/sec: ");
```

Scilab code Exa 5.18 Calculate flow water

```
1 //Example 5.18
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data:
7 D1=40/100;//meter
```

```
8 D2=15/100; // meter
9 x=25/100; // meter
10 g=9.81; // gravity constant
11 K=0.98; // Coeff. of meter
12 S=1; // sp. gravity
13 Sm=13.6; // sp. gravity of mercury
14 A1=%pi*D1^2/4; //m^2
15 A2=%pi*D2^2/4; //m^2
16 C=A1*A2*sqrt(2*g)/sqrt(A1^2-A2^2); // venturi constant
17 h=x*(Sm/S-1); // meter
18 Q=K*C*sqrt(h); //m^3/sec
19 Q=Q*1000*3600; // litres/hour
20 disp(Q," Flow of water in litres/hour: ");
21 // Answer in the book is wrong.
```

Scilab code Exa 5.19 Flow rate of water

```
1 //Example 5.19
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Given data :
7 D1=15/100; // meter
8 D2=7.5/100; //meter
9 g=9.81; // gravity constant
10 p1=4*g*10^4; //N/m^2
11 p2=1.5*g*10^4; // \text{kg/cm}^2
12 w=9.81; // \text{kg/m}^2
13 A1=\%pi*D1^2/4; //m^2
14 A2=\%pi*D2^2/4; //m^2
15 v1BYv2=A2/A1;
16 / v1^2/2/g+p1/w=v2^2/2/g+p2/w
17 / v1^2 = v2^2 - 50 * g
18 v2=sqrt(50*g/(1-v1BYv2^2)); //m/s
```

```
19 Q=A2*v2; //m^3/sec
20 Q=Q*1000; //litres/sec
21 disp(Q, "Flow of water in litres/sec : ");
22 //Answer is wrong in the book.
```

Scilab code Exa 5.20 Velocity and flow rate

```
1 //Example 5.20
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 D1=20/100; // meter
8 D2=15/100; // meter
9 A1=\%pi/4*D1^2;//m^2
10 A2=\%pi/4*D2^2;//m^2
11 v1=2; //m/s
12 v2 = A1 * v1 / A2; //m/s
13 disp(v2, "Velocity at another section in m/s:");
14 FlowRate=A1*v1; //\text{m}^3/\text{s}
15 FlowRate=FlowRate*1000; //litres/s
16 disp(FlowRate, "Flow Rate in litres/sec: ");
17 // Answer of velocity in the book is not accurate.
```

Scilab code Exa 5.21 Flow rate of oil

```
1 //Example 5.21
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Given data:
```

```
7 rd=0.75; // relative density
8 D=12.5/100; // meter
9 p=1; // bar
10 p=p*1.02; // kg/cm^2
11 p=p*9.81*10^4/1000; // kPa
12 g=9.81; // gravity constant
13 w=g*rd; // N/m^3
14 pH=p/w; // meter
15 Z=2.5; // meter
16 Et=20; // Nm
17 v=sqrt((Et-p/w-Z)*2*g); // m/s
18 A=%pi/4*D^2; // m^2
19 Q=A*v; // m^3/sec
20 Q=A*v*1000; // litres/sec
21 disp(Q, "Flow Rate of oil in litres/sec:");
```

Scilab code Exa 5.22 Find Z

```
1 //Example 5.22
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 rd=0.75; // relative density
8 d1=0.3; //meter
9 d2=0.1; // meter
10 Q=50/1000; //m^3/sec
11 A1=\%pi/4*d1^2;//m^2
12 A2=\%pi/4*d2^2;//m^2
13 v1 = Q/A1; //m/s
14 v2 = A1 * v1 / A2; //m/s
15 p1=200; //kN/m^2
16 p2=100; //kN/m^2
17 w=9.81; //kN/m^3
```

```
18 g=9.81; // gravity constant

19 Z1=0; // meter

20 Z2=Z1+p1/w+v1^2/2/g-p2/w-v2^2/2/g; // meter

21 disp(Z2,"Z in meter:");
```

Scilab code Exa 5.23 Discharge in the pipe

```
1 //Example 5.23
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 D1=300/1000; //meter
8 D2=150/1000; //meter
9 Q=50/1000; //m^3/sec
10 A1=\%pi/4*D1^2;//m^2
11 A2=\%pi/4*D2^2;//m^2
12 delpBYw=3; //p1/w-p2/w=3; //m
13 v1BYv2=A2/A1;
14 Z1=0; // meter
15 Z2=0; //meter
16 g=9.81; // gravity constant
17 // \text{HeadLoss} = 1/8 * v^2/2/g
18 / Z1+p1/w+v1^2/2/g=Z2+p2/w+v2^2/2/g+HeadLoss
19 v2=sqrt((Z1-Z2+delpBYw)/(1/2/g-v1BYv2^2/2/g+1/8/2/g)
      ); //m/s
20 Q = A2 * v2; //m^3/s
21 Q=Q*1000; //litres/sec
22 disp(Q,"Discharge in pipe in litres/sec : ");
```

Chapter 6

Orifices

Scilab code Exa 6.1 Calculate Coefficients

```
1 / Example 6.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Do = 25; /mm
8 Dc = 20; / mm
9 H=85; //mm
10 x = 335; //mm
11 y = 350; //mm
12 a = \%pi/4*Do^2; //m^2
13 ac=\%pi/4*Dc^2;//m^2
14 Cc=ac/a;
15 disp(Cc, "Coefficient of contraction: ");
16 Cv = sqrt(x^2/4/H/y);
17 disp(Cv, "Coefficient of velocity : ");
18 Cd=Cc*Cv;
19 disp(Cd, "Coefficient of discharge : ");
20 Cr = (1/Cv^2-1);
21 disp(Cr, "Coefficient of resistance: ");
```

Scilab code Exa 6.2 Calculate various Coefficients

```
1 / \text{Example } 6.2
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Do = 0.125; //m
8 H = 10.5; //mm
9 Q=6500; // litres/minute
10 Q=Q/60/1000; //cumec
11 x=6; //m
12 y=1; //m
13 g=9.81; // gravity constant
14 a = \%pi/4*Do^2; //m^2
15 Qth=a*sqrt(2*g*H); //cumec
16 Cd=Q/Qth;//
17 disp(Cd, "Coefficient of discharge: ");
18 Cv = sqrt(x^2/4/H/y);
19 format('v',6);
20 disp(Cv, "Coefficient of velocity: ");
21 \text{ Cc=Cd/Cv};
22 format('v',5);
23 disp(Cc, "Coefficient of contraction: ");
24 \text{ Cr} = (1/\text{Cv}^2 - 1);
25 format('v',6);
26 disp(Cr, "Coefficient of resistance: ");
```

Scilab code Exa 6.3 Coefficient of velocity

```
1 //Example 6.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 g=9.81; //constant
8 h=102; //mm
9 H=105; //mm
10 Cv=sqrt(2*g*h)/sqrt(2*g*H);
11 disp(Cv, "Coefficient of velocity : ");
```

Scilab code Exa 6.4 Coefficient of velocity

```
1 //Example 6.4
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Q=180/62; //litres/sec
8 Q=Q/1000; //cumec
9 Dc=25/1000; //m
10 H=1.9; //m
11 ac=%pi/4*Dc^2; //m^2
12 g=9.81; //constant
13 Cv=Q/sqrt(2*g*H)/ac;
14 disp(Cv," Coefficient of velocity : ");
```

Scilab code Exa 6.5 Various hydraulic coefficients

```
1 //Example 6.5
2 clc;
```

```
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 \text{ g=9.81;}//\text{constant}
8 d=30/1000; // meter
9 w1=2; //kgm
10 w1=148.6/60; // kg/ sec
11 y=1.65; //meter
12 H=1.3; //meter
13 Cv=w1/w1/y*sqrt(g)/sqrt(2*H);
14 disp(Cv, "Coefficient of velocity: ");
15 Q=w1/1000;//Cumec
16 a=%pi/4*d^2;//meter^2
17 Qth=a*sqrt(2*g*H);//Cumec
18 Cd=Q/Qth;//coeff. of discharge
19 disp(Cd, "Coefficient of discharge: ");
20 Cc=Cd/Cv;//coeff. of contraction
21 format('v',5);
22 disp(Cc, "Coefficient of contraction: ");
23 //Answer in the book are not accurate.
```

Scilab code Exa 6.6 Various hydraulic coefficients

```
1 //Example 6.6
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 g=9.81;//constant
8 a=9*10^-4;//m^2
9 H=3;//meter
10 x=2.5;//meter
11 y=54/100;//meter
```

```
12 Qactual=250*10^-3/60; //Cumec
13 Qth=a*sqrt(2*g*H); //Cumec
14 Cd=Qactual/Qth; //coeff. of discharge
15 disp(Cd,"Coefficient of discharge: ");
16 Cv=sqrt(x^2)/sqrt(4*H*y); //velocity
17 disp(Cv,"Coefficient of velocity: ");
18 Cc=Cd/Cv; //coeff. of contraction
19 disp(Cc,"Coefficient of contraction: ");
20 //Answer in the book are not accurate.
```

Scilab code Exa 6.7 Coefficient of discharge

```
1 //Example 6.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 g=9.81;//constant
8 d=20/1000;//meter
9 a=%pi/4*d^2;//m^2
10 H=1;//meter
11 Qactual=0.85*10^-3;//m^3/sec
12 v=sqrt(2*g*H);//m/sec
13 Qth=a*v;//Cumec
14 Cd=Qactual/Qth;//coeff. of discharge
15 disp(Cd,"Coefficient of discharge : ");
```

Scilab code Exa 6.8 Coefficients of orifice

```
1 //Example 6.8
2 clc;
3 clear;
```

```
4 close;
5 format('v',6);
6 //Given data :
7 \text{ g=9.81;} // \text{constant}
8 d=1.5; //meter
9 h=1; //meter
10 Volume=\%pi/4*d^2*h;//m^3
11 time=25; // \sec c
12 Qactual=Volume/time; //Cumec
13 H=10; //meter
14 do=10/100; // meter
15 x=4.3; //meter
16 y = 0.5; //meter
17 ao=\%pi/4*do^2;//m^2
18 Qth=ao*sqrt(2*g*H);//cumec
19 Cd=Qactual/Qth;//Coeff. ofdischarge
20 disp(Cd, "Coefficient of discharge: ");
21 format('v',5);
22 Cv = sqrt(x^2)/sqrt(4*H*y); //Coefficient of velocity
23 disp(Cv, "Coefficient of velocity: ");
24 Cc=Cd/Cv; //coeff. of contraction
25 disp(Cc, "Coefficient of contraction: ");
26 Cr_dash=(1/Cv^2-1);//coeff. of resistance
27 disp(Cr_dash, "Coefficient. of Resistance");
```

Scilab code Exa 6.9 Various hydraulic coefficients

```
1 //Example 6.9
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data:
7 g=9.81;//constant
8 do=2.5/100;//meter
```

```
9 \text{ H}=75/100; // \text{meter}
10 x = 30/100; //meter
11 y=3.2/100; //meter
12 Qactual=1.186*10^-3; //Cumec
13 ao=\%pi/4*do^2;//m^2
14 Qth=ao*sqrt(2*g*H);//cumec
15 Cd=Qactual/Qth;//Coeff. ofdischarge
16 disp(Cd, "Coefficient of discharge: ");
17 Cv = sqrt(x^2)/sqrt(4*H*y); //Coefficient of velocity
18 format('v',7);
19 disp(Cv, "Coefficient of velocity: ");
20 format('v',6);
21 Cc=Cd/Cv; //coeff. of contraction
22 disp(Cc, "Coefficient of contraction: ");
23 Cr_dash=(1/Cv^2-1);//coeff. of resistance
24 disp(Cr_dash, "Coefficient. of Resistance");
25 //Answers in the book are not accurate.
```

Scilab code Exa 6.10 Meeting point of two jets

```
1 //Example 6.10
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 g=9.81; //constant
8 H1=4-1; //meter
9 H2=4; //meter
10 Cv1=0.9; // Coefficient of velocity
11 Cv2=0.9; // Coefficient of velocity
12 //Cv1=Cv2 & x1=x2 at meeting point
13 //x1/sqrt(4*H1*y1)=x2/sqrt(4*H2*y2)
14 y1BYy2=H2/H1;
15 //y1=1+y2;
```

```
16  y2=1/(y1BYy2-1);//meter
17  y1=y1BYy2*y2;//meter
18  x1=Cv1*sqrt(4*H1*y1);//meter
19  disp(y1,x1,"Meeting point horizontal & vertical co-ordinates are(x1 & y1 in meter): ");
20  //Answer in the book are not accurate.
```

Scilab code Exa 6.11 Discharge through the orifice

```
1 //Example 6.11
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data :
7 g=9.81;//constant
8 Cd=0.6;//Coefficient of discharge
9 B=1.3;//meter
10 H1=6-(1.8+1.5);//meter
11 H2=6-1.5;//meter
12 Q=2/3*Cd*B*sqrt(2*g)*(H2^(3/2)-H1^(3/2));//m^3/sec
13 disp(Q,"Discharge through the orifice in m^3/sec : ");
```

Scilab code Exa 6.12 Discharge through orifice

```
1 //Example 6.12
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 g=9.81;//constant
```

Scilab code Exa 6.13 Calculate percentage error

```
1 //Example 6.13
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 \text{ g=9.81;} // \text{constant}
8 Cd=0.6;//Coefficient of discharge
9 B=1.6; // meter
10 H1=1500/1000; // meter
11 H2 = (1500 + 1250) / 1000; //meter
12 Q=2/3*Cd*B*sqrt(2*g)*(H2^(3/2)-H1^(3/2));//m^3/sec
      or cumec
13 disp(Q,"Discharge through the opening in cumec: ");
14 //For small opening
15 H=1.5+1.25/2; // meter
16 D=1.25; //meter
17 Qdash=Cd*(B*D)*sqrt(2*g*H);//cumec
18 Error = (Qdash - Q)/Q*100; //\%
19 disp(Error, "% of error : ");
20 //Answer is wrong in the book.
```

Scilab code Exa 6.14 Discharge through orifice

```
1 //Example 6.14
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; //constant
8 Cd=0.6; // Coefficient of discharge
9 B=1600/1000; //meter
10 D=1250/1000; //meter
11 ao=1.6*1.25; //\text{m}^2
12 H1=2+1.25/2; // meter
13 H2=0.8+1.25/2; //meter
14 H=H1-H2; //meter
15 Q=Cd*ao*sqrt(2*g*H); //m^3/sec or Cumec
16 disp(Q,"Discharge in Cumec: ");
17 //Answer is wrong in the book.
```

Scilab code Exa 6.15 Discharge through orifice

```
1 //Example 6.15
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 g=9.81;//constant
8 Cd=0.6;//Coefficient of discharge
9 B=1600/1000;//meter
10 D=1250/1000;//meter
11 ao=1.6*1.25;//m^2
12 H1=2+1.25;//meter
13 H2=2;//meter
14 H=H1-0.8;//meter
15 Q=2/3*Cd*B*sqrt(2*g)*(H^(3/2)-H2^(3/2))+Cd*B*(H1-H)*
```

```
\begin{array}{c} & \text{sqrt}(2*g*H); //m^3/\sec \text{ or Cumec} \\ 16 & \text{disp}(Q,"Discharge through the orifice in Cumec}: "); \end{array}
```

Scilab code Exa 6.16 Find time taken

```
1 //Example 6.16
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 \text{ g=9.81;} // \text{constant}
8 d=4; //meter
9 d0 = 0.5; //meter
10 H1=5; //meter
11 H2=2; //meter
12 Cd=0.6; // Coefficient of discharge
13 ao=\%pi/4*d0^2;//m^2
14 A = \%pi/4*d^2; //m^2
15 t=2*A/Cd/ao/sqrt(2*g)*(sqrt(H1)-sqrt(H2))
16 disp(t, "Time taken to fall from 5m to 2m(in seconds)
       : ");
17 //For emptying H2=0;
18 H2=0; //meter
19 t=2*A/Cd/ao/sqrt(2*g)*(sqrt(H1)-sqrt(H2))
20 disp(t," Time taken for completely emptying (in
      seconds) : ");
```

Scilab code Exa 6.17 Time of emptying the tank

```
1 //Example 6.17
2 clc;
3 clear;
```

Scilab code Exa 6.18 Time required to bring down the level

```
1 //Example 6.18
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Given data :
7 g=9.81;//constant
8 A=3.2;//m^2
9 a=10*10^-4;//m^2
10 H1=5;//meter
11 H2=2.5;//meter
12 Cd=0.6;//Coefficient of discharge
13 t=2*A*(sqrt(H1)-sqrt(H2))/Cd/a/sqrt(2*g);//sec
14 disp("Time taken is "+string(floor(t/60))+" minute "+string((t/60-floor(t/60))*60)+" seconds.");
```

Scilab code Exa 6.19 Time required to empty the tank

```
1 //Example 6.19
2 \text{ clc};
3 clear;
4 close;
5 format('v',4);
6 //Given data :
7 g=9.81; //constant
8 A=3.2;/m^2
9 a=10*10^-4; //m^2
10 H=5; // meter
11 Cd=0.6; // Coefficient of discharge
12 t=2*A*sqrt(H)/Cd/a/sqrt(2*g);//sec
13 disp("Time taken is "+string(floor(t/3600))+" hour "
     +string(floor((t/3600-floor(t/3600))*60))+"
     minute "+string(((t/3600-floor(t/3600))*60-floor
      ((t/3600-floor(t/3600))*60))*60)+" seconds.");
```

Chapter 7

Flow through pipes

Scilab code Exa 7.1 Relation between CGS and MKS unit

```
1 //Example 7.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 disp("Part(i)");
7 disp ("Absolute unit of viscosity (in C.G.S) is Poise.
8 disp("Poise=1 dyne-sec/cm<sup>2</sup>");
9 disp ("Gravitational unit of viscosity is 1 gm-sec/cm
10 disp("On equating we get, 1 gm = 981 dyne");
11 / \text{Let x=1kg-sec/m}^2
12 x=1*10^3/10^4; //g-sec/cm^2
13 x=x*981; //dyne-sec/cm^2 or Poise (Putting 1gm=981
      dyne)
14 disp("1 kg-sec/m<sup>2</sup> = "+string(x)+" Poise");
15 one_Poise=1/x; //kg-sec/m^2
16 one_Poise=1/x*9.81; //N-\sec/m^2 or Pa-\sec(as 1Pa=1N/m)
17 disp("1 Poise = "+string(one_Poise) +" N-sec/m^2 or
```

Scilab code Exa 7.2 Kinematic viscosity and Reynolds number

```
1 / Example 7.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 mu = 0.009; //\text{kg-sec/m}^2
8 rho=0.89; //sp. gravity
9 Q=4*10^-3; //m^3/sec
10 d=30/1000; // meter
11 v=mu/rho; //m^2/s
12 disp(v, "Kinematic viscosity in m<sup>2</sup>/sec: ");
13 A = \%pi*d^2/4; //m^2
14 vm = Q/A; //m/s
15 Rn=vm*d/v; //Reynolds no.
16 disp(Rn, "Reynolds number for flow : ");
17 disp("This is laminar flow because Rn no. is less
      than 2000.");
```

Scilab code Exa 7.3 Calculate reynolds number

```
1 / \text{Example } 7.3
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 d=200/1000; // meter
8 Q=40*10^{-3}; //m^{3}/sec
9 A = \%pi*d^2/4; //m^2
10 vm = Q/A; //m/s
11 v=0.25*10^-4; //m^2/s
12 Rn = vm * d/v; // Reynolds no.
13 disp(Rn, "Reynolds number for flow : ");
14 disp("This is turbulent flow because Rn no. is
      greater than 4000.");
15 disp(Rn/8,"New Reynolds number for flow : ");
16 disp("This is laminar flow because Rn no. is less
      than 2000.");
```

Scilab code Exa 7.4 Head Lost due to friction

```
1 //Example 7.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 D=30/100;//meter
8 L=100;//meter
```

```
9  v=0.01*10^-4; //m^2/s
10  a=3; //m/s
11  g=9.81; // gravity constanty
12  Rn=a*D/v; // Reynolds no.
13  f=0.079/Rn^(1/4); // using blasius formula
14  hf=4*f*L/D*a^2/2/g; // meter
15  disp(hf, "Head lost in meter:");
16  // Answer in the book is wrong.
```

Scilab code Exa 7.5 Difference in elevations

```
1 ///Example 7.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 D=30/100; //meter
8 L=500; //meter
9 Q=300*10^-3; //m^2/sec
10 f=0.0008; //coeff. of friction
11 v=Q/(%pi/4*D^2); //m/s
12 g=9.81; //gravity constanty
13 hf=4*f*L*v^2/D/2/g; //meter
14 disp(hf, "Difference in elevation in meter : ");
15 //Answer in the book is wrong.
```

Scilab code Exa 7.6 Head Lost due to friction

```
1 ///Example 7.6
2 clc;
3 clear;
4 close;
```

```
5  format('v',6);
6  //Given data:
7  D=20/100; //meter
8  v=3; //m/s
9  v1=0.01*10^-3; //m^2/sec
10  Re=D*v/v1; //Reynolds number
11  f=0.002+0.09/Re^0.3; //coeff. of friction
12  L=5; //meter
13  g=9.81; //gravity constanty
14  hf=4*f*L*v^2/D/2/g; //meter
15  disp(hf,"Head lost due to friction in meter: ");
```

Scilab code Exa 7.7 Loss of head due to friction

```
1 ///Example 7.7
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 D=80/1000; // meter
8 Q=600*10^-3/60; //m^3/sec
9 L=1*10^3; // meter
10 f=0.02; // coefficient of friction
11 v=Q/(%pi/4*D^2); //m/s
12 g=9.81; // gravity constanty
13 hf=4*f*L*v^2/D/2/g; // meter
14 disp(hf, "Head lost due to friction in meter : ");
15 // Answer is wrong in the book.
```

Scilab code Exa 7.8 Various losses

```
1 ///Example 7.8
```

```
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; // gravity constanty
8 f=0.02; // coefficient of friction
9 Cc=0.62; // coefficient of contraction
10 //Portion AB
11 Q1=50*10^-3; //\text{m}^3/\text{sec}
12 D1=150/1000; // meter
13 v1 = Q1/(\%pi/4*D1^2); //m/s
14 hr=0.5*v1^2/2/g; // meter
15 L1=200; // meter
16 hf1=4*f*L1*v1^2/2/g/D1;//meter
17 D2=200/1000; // meter
18 v2=Q1/(\%pi/4*D2^2);//m/s
19 hc1=(v1-v2)^2/2/g; //meter
20 L2=500; // meter
21 hf2=4*f*L2*v2^2/2/g/D2; //meter
22 d=75/1000; //meter
23 ho = [(\%pi/4*D2^2)/Cc/((\%pi/4*D2^2)-(\%pi/4*d^2))-1]^2*
      v2^2/2/g;//meter
24 D3=120/1000; // meter
25 v3=Q1/(\%pi/4*D3^2);//m/s
26 \text{ hc2=v3^2/2/g*(1/Cc-1)^2;}//\text{meter}
27 L3 = 500; //meter
28 hf3=4*f*L3*v3^2/2/g/D3;//meter
29 Kb=0.25; //assumed
30 hb1=Kb*v3^2/2/g; // meter
31 D4=120/1000; // meter
32 \text{ v4=Q1/(\%pi/4*D4^2);//m/s}
33 L4=500; // meter
34 \text{ hf4} = 4 * f * L4 * v4^2/2/g/D4; // meter
35 \text{ hb2=Kb*v3^2/2/g;//meter}
36 L5=500; //meter
37 \text{ hf5} = 4 * f * L5 * v4^2/2/g/D4; //meter}
38 \text{ h\_outlet=v3^2/2/g;}//\text{meter}
```

```
39 h_total=hr+hf1+hc1+hf2+ho+hc2+hf3+hb1+hf4+hb2+hf5+
     h_outlet;//meter
40 disp(h_total, "Total loss of head in meter : ");
```

Scilab code Exa 7.9 Intensity of pressure

```
1 ///Example 7.9
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 g=9.81; // gravity constanty
8 Cc=0.62;//coefficient of contraction
9 D1=150/1000; // meter
10 D2=100/1000; // meter
11 Q=2.7/60; //m^3/sec
12 p1=0.8*10^4; // kg/m^2
13 v1=Q/(\%pi/4*D1^2);//m/s
14 v2=Q/(\%pi/4*D2^2);//m/s
15 hc=v2^2/2/g*(1/Cc-1)^2;//meter
16 w = 1000; //kg/m^3
17 p2=(v1^2/2/g+p1/w-v2^2/2/g-hc)*w;//kg/m^2(Z1=Z2)
18 p2=p2*10^-4; //kg/cm^2
19 disp(p2, "Intensity of pressure in kg/cm<sup>2</sup>: ");
```

Scilab code Exa 7.10 Diameter of pipe

```
1 ///Example 7.10
2 clc;
3 clear;
4 close;
5 format('v',5);
```

```
6  //Given data :
7  g=9.81; // gravity constanty
8  L=3*1000; // meter
9  hf=20; // meter
10  Q=1; //m^3/sec
11  f=0.02; // coeff. of friction
12  //v=sqrt(hf*2*g/4/f/L/D); // it is v^2*D
13  D2v=Q/(%pi/4); // it is D^2*v
14  D=(Q/(%pi/4)/sqrt(hf*2*g/4/f/L))^(2/5); // meter
15  D=D*1000; //mm
16  disp(D, "Diameter of pipe in mm : ");
```

Scilab code Exa 7.11.a Discharge and velocity

```
1 ///Example 7.11 at page 246
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 g=9.81; // gravity constanty
8 D1 = 400/1000; //meter
9 D2=300/1000; //meter
10 D3=200/1000; // meter
11 v1=3; //m/s
12 v2=2; //m/s
13 A1=\%pi/4*D1^2;//m^2
14 A2=\%pi/4*D2^2;//m^2
15 A3=\%pi/4*D3^2;//m^2
16 Q1=A1*v1; //cumec
17 disp(Q1,"Discharge in pipe 1 in cumec : ");
18 Q2=A2*v2; //cumec
19 Q3 = Q1 - Q2; / cumec
20 \text{ v3=Q3/A3; } //\text{m/s}
21 disp(v3, "Velocity of water in 200mm pipe in m/s : ")
```

;

Scilab code Exa 7.11 Calculate the pressure

```
1 ///Example 7.11
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 g=9.81; // gravity constanty
8 D1=100/1000; //meter
9 D2=200/1000; // meter
10 PQ = 100; //meter
11 QR=100; //meter
12 slope=1/100;//upward slope
13 Q = 0.02; //cumec
14 p1=2; //kg/cm<sup>2</sup> (Pressure in 100 mm dia pipe)
15 f=0.02; //unitless
16 Q_P=100/100; //meter(Point Q hight respect to point P
17 Q_R=200/100; //meter(Point Q hight respect to point R
18 v1=Q/(\%pi/4*D1^2);//m/sec
19 v2=Q/(\%pi/4*D2^2); //m/sec
20 hf1=4*f*PQ*v1^2/(2*g*D1); //meter
21 hf2=4*f*QR*v2^2/(2*g*D2); //meter
22 hse=(v1-v2)^2/2/g; //meter(loss due to sudden)
      enlargement)
23 // Section PQ
24 Z1P=0; //meter(Datum Head)
25 H1P=v1^2/2/g; //meter(velocity Head)
26 p1BYw=p1*10^4/1000; //meter(Pressure Head at P)
27 Z1Q=1; //meter (Datum Head)
28 H1Q=v2^2/2/g; //meter (velocity Head)
```

```
29 //Applying bernaullis theorem
30 p2BYw=Z1P+p1BYw+H1P-Z1Q-H1Q-hf1; //meter (Pressure
      Head at Q)
31 disp(p1BYw, "Pressure Head at point P(m)")
32 disp(H1P, "Velocity Head at point P(m)")
33 disp(p2BYw, "Pressure Head at point Q(m)")
34 // Section QR
35 //Applying bernaullis theorem
36 p2dashBYw=p2BYw+H1P-H1Q-hse; //meter(Pressure Head at
37 Z2=1; //meter (Datum Head)
38 H1Q=v2^2/2/g; //meter (velocity Head)
39 Z3=2; //meter (Datum Head at R)
40 H1R=v2^2/2/g; //meter(velocity Head at R)
41 //Applying bernaullis theorem
42 p3BYw=Z2+p2dashBYw+H1Q-Z3-H1R-hf2;//meter(Pressure
     Head at R)
43 disp(H1Q," Velocity Head at point Q after enlargement
      (m)")
44 disp(p2dashBYw," Pressure Head at point Q after
      enlargement (m)")
45 disp(p3BYw, "Pressure Head at point R(m)")
46 disp(H1R, "Velocity Head at point R(m)")
47 //Answer in the book is wrong for some calculations.
```

Scilab code Exa 7.12 Discharge through 300mm pipe

```
1 ///Example 7.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 g=9.81;//gravity constanty
8 D1=100/1000;//meter
```

```
9 D2=300/1000; // meter
10 Q1=0.01; //m^3/sec
11 A1=%pi/4*D1^2; //m^2
12 A2=%pi/4*D2^2; //m^2
13 // hf1=hf2
14 Q2=sqrt(D2/(D1)*(Q1/A1)^2*A2^2); // cumec
15 disp(Q2," Discharge throough 300mm pipe in cumec : ")
;
```

Scilab code Exa 7.13 Discharge in pipe line

```
1 /// Example 7.13
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; //gravity constanty
8 f=0.02;//coeff. of friction
9 PQ=500; // meter
10 QR = 1000; // meter
11 RS=500; // meter
12 hf = 10 + PQ/62.5 + QR/125 - RS/100 - 2; //meter
13 1=500+1000+500; //meter
14 D=250/1000; //meter
15 v = sqrt(hf*2*g*D/4/f/1); //m/s
16 Q=\%pi/4*D^2*v;//m^3/sec
17 Q=Q*1000; // litres/sec
18 disp(Q,"Discharge in pipe line in litres/sec: ");
```

Scilab code Exa 7.14.a Diameter of pipe line

```
1 ///Example 7.14 at page no. 250
```

```
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; // gravity constant
8 1=4; //km
9 n=5000; // habitants
10 Ch=200; //litres/day(habitant capacity)
11 t=10; //hour(daiy supply time)
12 hf = 20; //meter(Head loss)
13 f=0.008; //coeff. of friction
14 Qty=n*Ch/2; // litres (Water supplied in 10 hours)
15 Q = Qty/(t*60*60); // litres/sec
16 Q=Q/1000; //m^3/sec
17 d=(f*1*1000*Q^2/3.0257/hf)^(1/5);/meter
18 disp(d*1000, "Diameter of pipe (mm) : ");
```

Scilab code Exa 7.14 Discharge in pipe line

```
1 ///Example 7.14
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; //gravity constant
8 slope=1/125; //slope
9 hA=12; //meter(level of water in reservoir A)
10 hB=1.5; //meter(level of water in reservoir B)
11 L1=500; //meter
12 D1=250/1000; //meter
13 L2=1000; //meter
14 D2=200/1000; //meter
15 L3=500; //meter
```

Scilab code Exa 7.15.a Difference in water level

```
1 ///Example 7.15 at page no. 252
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; // gravity constant
8 D=30/100; //meter
9 1 = 400; //meter
10 Q=300; //litres/sec
11 f=0.008; //coeff. of friction
12 Q = Q * 10^{-3}; //m^{3}/sec
13 A = \%pi * D^2/4; //m^2
14 v=Q/A; //m/s (velocity of flow)
15 h1=0.5*v^2/2/g; // meter (Head loss at entrance to a
      pipe)
16 h2=4*f*1*v^2/(2*g*D); //meter(Head loss due to
      friction)
```

```
17 h3=v^2/2/g;//meter(Head loss at entrance of
            reservoir)
18 H=h1+h2+h3;//meter(Difference of water level)
19 disp(H,"Difference of water level between two
            reservoir(meter)");
20 //Answer in the book is not accurate as h2 is
            calculated wrong.
```

Scilab code Exa 7.15 Rate of flow and diameter

```
1 ///Example 7.15
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; // gravity constant
8 D1=50/1000; // meter
9 D2=100/1000; // meter
10 l1=100; l2=100; //meter
11 hf1=10; //meter(level difference)
12 f=0.008; //coeff. of friction
13 Q2BYQ1=sqrt((11/12)*(D2/D1)^5);/as hf1=hf2
14 Q1=sqrt(hf1/f/l1*(3.0257*D1^5)); //m^3/sec
15 Q2=Q2BYQ1*Q1; //\text{m}^3/\text{sec} or cumec
16 disp(Q1,"Rate of flow of pipe 1(m^3/\sec)");
17 disp(Q2, "Rate of flow of pipe 2(m^3/\sec)");
18 Q=Q1+Q2; //m^3/sec (Total Discharge)
19 d=(f*11*Q^2/3.0257/hf1)^(1/5);//meter
20 disp(d*1000, "Diameter of single pipe (mm) : ");
21 //Answer in the book is not accurate.
```

Scilab code Exa 7.16 Discharge through pipe

```
1 /// Example 7.16
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 g=9.81; // gravity constant
8 D=150/1000; // meter
9 1 = 70; //meter
10 H=2.6; //meter(head of water)
11 f=0.01; //coeff. of friction
12 //Applyong Bernoullis theorem
13 v = sqrt(H*(2/g*(1+0.5+4*f*1/D))/4); //m/s
14 Q = \text{pi} * D^2 / 4 * v; //m^3 / sec
15 Q=Q*1000; //litres/sec
16 disp(Q,"Discharge through the pipe(litres/sec)");
```

Scilab code Exa 7.17 Velocity discharge rate and energy

```
1 ///Example 7.17
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 g=9.81;//gravity constant
8 Cv=0.97;//coefficeient of velocity
9 Cc=0.95;//coefficeient
10 Dn=50/1000;//meter(Nozzle diameter)
11 D=100/1000;//meter(Pipe diameter)
12 p=6.867;//N/cm^2(Pressure at the base of nozzle)
13 Hb=p*10^4/(g*1000)//meter(Head at the base of nozzle)
14 v=Cv*sqrt(2*g*Hb);//m/s(velocty of jet)
15 disp(v,"Velocity in the jet(m/s)");
```

```
16 A=%pi/4*Dn^2; //m^2(Cross sction of jet)
17 Q=Cc*A*v; //m^3/sec(Discharge)
18 Q=Q*1000; //litres/sec
19 disp(Q,"Rate of discharge(litres/second)");
20 E=g*1000*Q/1000*Hb/1000; //kW(Energy transmitted)
21 disp(E,"Energy per second n the jet(kW)");
22 //Answer in the book is not accurate.
```

Scilab code Exa 7.18 Discharge in pipe and pressure

```
1 ///Example 7.18
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 g=9.81; // gravity constant
8 D=100/1000; //meter (Pipe diameter)
9 L=700; // meter (Total length)
10 Lin=300; //meter(inlet length)
11 hf=10; // meter (Available head)
12 h=1.4; //meter(height)
13 f=0.02; // coefficient of friction
14 v = sqrt(hf*2*g*D/4/f/L); //m/s
15 Q = \%pi * D^2/4 * v * 1000; // litres/sec
16 disp(Q, "Discharge in pipe(litres/second)");
17 //Applying Brnaullis theorem
18 p1=0; v1=0; Z1=0; //(Neglecting minor losses)
19 v2=v; //m/s
20 \quad Z2=h; //meter
21 hf=4*f*Lin*v^2/(2*g*D);//meter
22 p2BYw = -v2^2/2/g-Z2-hf; //meter of water
23 hatm=10.3; //meter(Atmospheric pressure head)
24 habs=p2BYw+hatm; //meter(Absolute pressure head)
25 disp(habs, "Pressure at the summit of siphon(meter)")
```

;

Scilab code Exa 7.19.a Maximum Power

```
1 ///Example 7.19 at page no. 265
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 g=9.81; // gravity constant
8 l=10000; //meter(length of pipe line)
9 D=0.2; //meter (Diameter of pipe)
10 p=60*10^5; //N/m^2
11 f=0.007; // coefficient of friction
12 w=g*1000; //N/m^3
13 H=p/w; //meter
14 hf=H/3; //meter(friction head loss is 1/3rd)
15 v = sqrt(hf*2*g*D/4/f/1); //m/s
16 P=w*\%pi*D^2/4*v*(H-hf)/1000; //kW
17 disp(P, "Maximum power(kW)");
```

Scilab code Exa 7.19 Increase in pressure Intensity

```
1 ///Example 7.19
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data:
7 g=9.81;//gravity constant
8 D=150/1000;//meter(Pipe diameter)
9 Q=40;//litres/sec(rate of discharge)
```

```
10  l=500; // meter(valve distance)
11  T=0.5; // second
12  v=Q/1000/(%pi/4*D^2); //m/s(velocity of flow)
13  pi=1000/g*(l*v/T); // kg/m^2
14  disp(pi, "Increase in pressure intensity(kg/m^2)");
```

Chapter 11

Flow Measurement

Scilab code Exa 11.1 Velocity of flow

```
//Example 11.1
clc;
clc;
clear;
close;
format('v',5);
//Given data :
staticPHead=5;//meter
stagnationPHead=6;//meter
h=stagnationPHead-staticPHead;//meter
g=9.81;//constant
Cv=0.98;//Coeff of pilot tube
V=Cv*sqrt(2*g*h);//m/s
disp(V,"Velocity of flow in m/sec : ");
```

Scilab code Exa 11.2 calculate Velocity

```
1 //Example 11.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',5);
6 //Given data :
7 Cv=0.975;//Coeff of pilot tube
8 h=100/1000;//meter
9 g=9.81;//constant
10 Sm=13.6;//Sp. gravity
11 S=0.86;//gravity of turpinre
12 V=Cv*sqrt(2*g*h*(Sm/S-1));//m/s
13 disp(V,"Velocity in m/sec : ");
```

Scilab code Exa 11.3 Rate of discharge of steam

```
1 //Example 11.3
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Given data :
7 = 2; //meter
8 d0=0; //meter
9 d1 = 0.3; //meter
10 d2=1.0; //meter
11 d3=1.2; //meter
12 d4=1.6; //meter
13 d5=2.0; //meter
14 d6=1.4; //meter
15 d7 = 1.0; //meter
16 d8=0.4; // meter
17 d9=0.3; //meter
18 d10=0.2; //meter
19 V0=0; //meter
20 V1 = 0.5; //meter
21 \quad V2 = 0.7; //meter
```

```
22  V3=0.8; // meter
23  V4=1.0; // meter
24  V5=1.2; // meter
25  V6=0.9; // meter
26  V7=0.8; // meter
27  V8=0.6; // meter
28  V9=0.5; // meter
29  V10=0.3; // meter
30  Q=1/3*(d0*V0+4*d1*V1+2*d2*V2+4*d3*V3+2*d4*V4+4*d5*V5+2*d6*V6+4*d7*V7+2*d8*V8+4*d9*V9+2*d10*V10+d0*V0); // cum/sec
31  disp(Q,"Rate of discharge in cum/sec:");
```

Scilab code Exa 11.4 Find the discharge

```
1 //Example 11.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 Cd=0.62; // constant
8 H=0.12; // meter
9 L=0.3; // meter
10 g=9.81; // constant
11 Q=2/3*Cd*sqrt(2*g)*L*H^(3/2); //m^3/s
12 disp(Q," Discharge in m^3/sec:");
```

Scilab code Exa 11.5 Find the discharge

```
1 //Example 11.5
2 clc;
3 clear;
```

```
4 close;
5 format('v',8);
6 //Given data:
7 Cd=0.66;//constant
8 H=0.15;//meter
9 L=0.40;//meter
10 g=9.81;//constant
11 Q=2/3*Cd*sqrt(2*g)*L*H^(3/2);//m^3/s
12 disp(Q,"Discharge in m^3/sec:");
13 disp(Q*10^3,"Discharge in litres/sec:");
```

Scilab code Exa 11.6 Discharge over the notch

```
1 //Example 11.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 Cd=0.62; //constant
8 H=200/1000; //meter
9 theta=90; //degree
10 g=9.81; //constant
11 Q=8/15*Cd*sqrt(2*g)*tand(theta/2)*H^(5/2); //m^3/s
12 Q=Q*1000*60; // litres/minute
13 disp(Q," Discharge in litres/minute: ");
```

Scilab code Exa 11.7 Position of apex of notch

```
1 //Example 11.7
2 clc;
3 clear;
4 close;
```

```
5 format('v',6);
6 //Given data:
7 Cd=0.62; //constant
8 Q=250; //litres/sec
9 Q=Q*10^-3; //m^3/s
10 theta=90; //degree
11 g=9.81; //constant
12 d=1.3; //meter
13 H=(Q/8*15/Cd/sqrt(2*g)/tand(theta/2))^(2/5); //m
14 h=d-H; //meter
15 disp(h,"Position above the bed in meter:");
```

Scilab code Exa 11.8 calculate time taken

```
1 //Example 11.8
2 \text{ clc};
3 clear;
4 close;
5 format('v',6);
6 //Given data :
7 Cd=0.65; //constant
8 A = 220; //m^2
9 \text{ g=9.81;} // \text{constant}
10 1=30/100; //meter
11 H1=16.8/100; //meter
12 H2=6.8/100; //meter
13 T=A/[2/3*Cd*1*sqrt(2*g)]*integrate('h^(-3/2)', 'h', H2
      , H1); // sec
14 disp("Time taken is "+string(floor(T/60))+" minute "
      +string((T/60-floor(T/60))*60)+"sec.")
```

Scilab code Exa 11.9 Discharge flowing over the weir

```
1 //Example 11.9
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 \text{ H=0.40; } // \text{meter}
8 L=5; // meter
9 disp("(i) End contractions are Suppressed: ");
10 Q=1.84*L*H^(3/2); //m^3/s
11 disp(Q,"Discharge in m<sup>3</sup>/sec:");
12 disp(Q*1000, "Discharge in litres/sec: ");
13 disp("(ii) End contractions are Considered: ");
14 n=2;
15 Q=1.84*(L-0.1*n*H)*H^(3/2); //m^3/s
16 disp(Q,"Discharge in m<sup>3</sup>/sec:");
17 disp(Q*1000, "Discharge in litres/sec: ");
```

Scilab code Exa 11.10 Find the discharge

```
1 //Example 11.10
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data:
7 Cd=0.62;//Coeff of discharge
8 H=250/1000;//meter
9 L=400/1000;//meter
10 g=9.81;//gravity acceleration
11 Q=2/3*Cd*sqrt(2*g)*L*H^(3/2);//m^3/s or cumec
12 disp(Q,"Discharge in cumec:");
```

Scilab code Exa 11.11 Discharge over cipoletti weir

```
1 //Example 6.11
2 clc;
3 clear;
4 close;
5 format('v',8);
6 //Given data:
7 g=9.81;//constant
8 Cd=0.6;//Coefficient of discharge
9 B=1.3;//meter
10 H1=6-(1.8+1.5);//meter
11 H2=6-1.5;//meter
12 Q=2/3*Cd*B*sqrt(2*g)*(H2^(3/2)-H1^(3/2));//m^3/sec
13 disp(Q,"Discharge through the orifice in m^3/sec:");
```

Scilab code Exa 11.12 Find the maximum discharge

```
1 //Example 11.12
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 Cd=0.60; // Coeff of discharge
8 L=36; // meter
9 \text{ H=1.1;} // \text{meter}
10 A=50; //m^2
11 g=9.81; // gravity acceleration
12 Qmax=1.705*Cd*L*H^(3/2); //m^3/s
13 disp(Qmax, "Maximum Discharge in m^3/sec: ");
14 Va=Qmax/A; //m/s (velocity of approach)
15 Q=1.705*Cd*L*[(H+Va^2/2/g)^(3/2)-(Va^2/2/g)^(3/2)];
      //\mathrm{m}^3/\mathrm{s}
```

Scilab code Exa 11.13 Number of spillway

```
1 //Example 11.13
2 clc;
3 clear;
4 close;
5 format('v',7);
6 //Given data :
7 \text{ w=1.5;} //\text{m}
8 d=0.75; /m
9 Cd=0.64; // Coeff of discharge
10 QT = 45; //cumec
11 h=8; //meter
12 A = w * d; //m^2
13 g=9.81; // gravity acceleration
14 Q=Cd*A*sqrt(2*g*h); //m^3/sec
15 n=QT/Q; //no. of spillways
16 disp(round(n), "No. of spillways : ");
```

Scilab code Exa 11.14 Calculate the discharge

```
1 //Example 11.14
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Given data:
7 B=1;//meter
8 b=0.4;//meter
9 H=0.57;//meter
```

```
10 h=0.5; //meter
11 A=B*H; //m^2
12 g=9.81; //gravity constant
13 a=b*h; //m^2
14 Q=A*a/sqrt(A^2-a^2)*sqrt(2*g*(H-h)); //m^3/sec
15 disp(Q,"Discharge in m^3/sec : ");
```