WE CLAIM:

1. A compound having the structure

$$\begin{array}{c|c}
(G'')_{m} & \downarrow \\
R^{1} & \downarrow \\
N & \downarrow \\
R^{2a}
\end{array}$$

$$\begin{array}{c|c}
(G'')_{m} & \downarrow \\
V & \downarrow \\
(G')_{n'}
\end{array}$$
(I)

5

wherein

R¹ represents H, (C₁-C₃)alkyl, or cyclopropyl;

 R^2 represents (C₁-C₃)alkyl, cyclopropyl, O(C₁-C₃)alkyl, or NR³R⁴ wherein R³ and R⁴ are H, (C₁-C₃)alkyl, or cyclopropyl;

10

R^{2a} represents H or halogen;

M represents CH or N;

L represents a carbonyl group, O, NR^5 , CR^6R^7 , or $(C_2\text{-}C_3)$ alkylenyl which is optionally substituted up to twice by groups independently selected from halogen and OH; wherein

15

R⁵ is H or (C₁-C₃)alkyl; and

R⁶ and R⁷ are independently H, CH₃, halogen, or OH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

20

wherein R⁸ represents H or (C₁-C₃)alkyl;

G" represents a substituent selected from the group consisting of (C1-C3)alkyl, cyclopropyl, O(C₁-C₃)alkyl, halogen, CF₃, CN and CO₂R⁹; wherein R^9 represents H or (C_1-C_3) alkyl; and m represents the number of substituents G", and is 0, 1, or 2; 5 G represents a substituent located on ring J; G' represents a substituent located on ring Y; n represents the number of substituents G; and n' represents the number of substituents G'; n and n' are independently 0, 1, 2, or 3, subject to the provisos that 10 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y, 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G11, to a maximum total of 3 15 substituents on rings J and Y, and 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12-G37; and subject to the further provisos 4) when J is phenyl, G is other than OH or alkylthio; and when J is phenyl or 20 pyridyl, n is 1, 2, or 3; 5) when J is phenyl, and G is G4 shown below, then R² is NR³R⁴; G and G' moieties are independently selected from the group consisting of: G1) halogen; 25 O(C1-C4)alkyl which optionally is substituted up to two times by G2) $O(C_1-C_2)$ alkyl; G3) OH; 30 (C1-C5)alkyl, which is optionally substituted independently up to two G4) times by groups selected from hydroxyl and cyano, or up to three times by halogen;

WO 2005/035507

PCT/US2004/033430

	G5) OCF ₃ ;
	G6) NHC(O)(C_1 - C_3)alkyl;
5	G7) NHSO ₂ (C_1 - C_3)alkyl;
	G8) NR ¹⁰ R ¹¹ , wherein R ¹⁰ and R ¹¹ are independently selected from
10	H, CH ₃ , cyclopropyl, benzyl,
15	$NR^{12}R^{13}$ wherein R^{12} and R^{13} are independently H or (C_1-C_3) alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$
	simultaneously, and
20	(C ₂ -C ₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C ₁ -C ₃)alkyl, and NR ¹⁴ R ¹⁵ , wherein R ¹⁴ and R ¹⁵ are independently H or
25	(C_1-C_3) alkyl, or R^{14} and R^{15} can join to form a heterocycle of formula wherein Q represents CH_2 , O , or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl,
30	or R ¹⁰ and R ¹¹ may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH,

NR¹⁷R¹⁸, wherein

R¹⁷ and R¹⁸ are H or (C₁-C₃)alkyl, or by (C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;

5

G9) (CH₂)_a-NR¹⁹R²⁰ wherein

R¹⁹ and R²⁰ are independently H, (C₁-C₅)alkyl, or (C₃-C₆)cycloalkyl, or may be joined to form a saturated 5-6-membered N-containing ring; and

the subscript "a" is an integer of 1-4;

10

 (CH_2) D' wherein

Q' is O or NR²¹;

 R^{21} is H, (C₁-C₃)alkyl, or cyclopropyl; and the subscript "b" is an integer of 1-3;

15

G11) CH₂NR²²(CH₂)_cOCH₃ wherein

R²² is H, (C₁-C₃)alkyl, or cyclopropyl; and the subscript "c" is an integer of 2-4;

20

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

25

 R^{25} and R^{26} independently represent H or (C₁-C₃)alkyl;

G13) CN;

30

G14) NO₂;

G15) cyclopropyl;

- G16) OR²⁷, wherein

 R²⁷ represents phenyl or benzyl;
- G17) $S(C_1-C_3)alkyl;$

5

- G18) CH=CH-(CH₂)₁₋₃-OR⁵; wherein R⁵ represents H or (C₁-C₃)alkyl;
- N-N N-N N-N M-N H-;

10

- G20) H
- G21) C(O)NR²⁸R²⁹, wherein

H,

 R^{28} and R^{29} are independently selected from

15

cyclopropyl, provided that both R^{28} and R^{29} are not simultaneously cyclopropyl,

.g. N

, provided that this group does not constitute both R²⁸ and R²⁹ simultaneously,

20

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

or

25

 R^{28} and R^{29} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by (C_1-C_3) alkyl which in turn is optionally substituted up to two times by OH or $O(C_1-C_3)$ alkyl;

PCT/US2004/033430

G22)
$$\stackrel{\begin{subarray}{c} \end{subarray}}{\mathbb{Q}^{"}}$$
 wherein $\end{subarray}$ $\end{suba$

Η,

5

cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or O(C₁-C₃)alkyl;

G23) $O-(CH_2)_d-NR^{31}R^{32}$ wherein

10

R³¹ and R³² are independently H, (C₁-C₃)alkyl, or cyclopropyl, or may be joined to form a saturated 5-6-membered N-containing ring; and

the subscript "d" is an integer of 2-4;

15

G24)
$$O-(CH_2) - N Q'''$$
 wherein

the subscript "e" is an integer of 2-3; and Q" is O or NR33; and R³³ is H, (C₁-C₃)alkyl, or cyclopropyl;

20

Qiv is O or NR34; and

R³⁴ is H, (C₁-C₃)alkyl, or cyclopropyl;

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

25

R³⁵ is H, (C₁-C₃)alkyl, or cyclopropyl;

R³⁶ is (C₁-C₆)alkyl optionally substituted up to two times by halogen, OH, or O(C1-C3)alkyl, and

the subscript "f" is an integer of 2-4;

30

G27) CO₂R³⁷ wherein

 R^{37} is H or (C_1-C_3) alkyl;

	G28)	* * * * * * * * * * * * * * * * * * * *
		from halogen, (C ₁ -C ₃)alkyl, OR ³⁸ , CN, CF ₃ , and NR ³⁹ R ⁴⁰
		wherein
5		R^{38} represents H or (C_1 - C_3)alkyl; and
		R ³⁹ and R ⁴⁰ represent H or (C ₁ -C ₃)alkyl;
	G29)	NR ⁴¹ SO ₂ NR ⁴² R ⁴³ wherein
		R ⁴¹ represents H, or (C ₁ -C ₄)alkyl, and
10		R ⁴² and R ⁴³ independently represent H, CH ₃ , or (C ₂ -C ₃)alkyl
		which may optionally be substituted once by -OH or
		NR ⁴⁴ R ⁴⁵ , wherein
•		R ⁴⁴ and R ⁴⁵ independently represent H or
		$(C_1$ - C_3)alkyl;
15		
	G30)	OC(O)-CH ₂ -NR ⁴⁶ R ⁴⁷ wherein
		R ⁴⁶ and R ⁴⁷ independently represent H, (C ₁ -C ₃)alkyl, or
		CO ₂ (t-butyl), provided that R ⁴⁶ and R ⁴⁷ are not both
		simultaneously CO ₂ (t-butyl);
20		
	G31)	N(R ⁴⁸)C(O)R ⁴⁹ wherein
		R ⁴⁸ represents H or (C ₁ -C ₃)alkyl; and
		R ⁴⁹ represents
		(CH2)1-3-CO2H,
25		O(C ₂ -C ₄)alkyl,
		(CH2)1-4-NR50R51 wherein
		R ⁵⁰ and R ⁵¹ independently represent H or
		(C_1-C_3) alkyl, or
		CH(R ⁵²)-NR ⁵³ R ⁵⁴ wherein
30		R^{52} represents (CH ₂) ₁₋₄ -NH ₂ , CH ₂ OH,
		$CH(CH_3)OH$, or (C_1-C_3) alkyl; and
		R ⁵³ and R ⁵⁴ independently represent H or
		(C_1-C_3) alkyl;

G32) $C(O)-(C_1-C_3)$ alkyl; G33) $(CH_2)_g$ -N(R⁵⁵)-C(O)-R⁵⁶ wherein g represents 1, 2, or 3; R⁵⁵ represents H or (C₁-C₃)alkyl; 5 R⁵⁶ represents (C1-C3)alkyl optionally substituted up to two times by OR⁵⁷ or NR⁵⁸R⁵⁹, wherein R⁵⁷ represents H or (C₁-C₃)alkyl, and R⁵⁸ and R⁵⁹ each represents H or 10 (C₁-C₃)alkyl, R⁶⁰ represents halogen, (C₁-C₃)alkyl, O(C₁-C₃)alkyl, CN, OH, CF₃, or NR⁶¹R⁶², wherein R⁶¹ and R⁶² represent H or (C₁-C₃)alkyl; 15 and h represents 0, 1, or 2; G34) (CH₂)_i-N(R⁶³)-C(O)-NR⁶⁴R⁶⁵ wherein i represents 1, 2, or 3; 20 R⁶³ represents H or (C₁-C₃)alkyl; R⁶⁴ and R⁶⁵ each represents H or (C₁-C₃)alkyl; or R⁶⁴ and R⁶⁵ may be joined to form Q^{V} represents CH_{2} , O or NR^{66} wherein 25 R⁶⁶ represents H or (C₁-C₃)alkyl; $(CH_2)_{j}$ - $N(R^{67})$ - SO_2 - N_{co} G35) i represents 1, 2, or 3;

30

R⁶⁷represents H or (C₁-C₃)alkyl; and

R⁶⁸ represents H or (C₁-C₃)alkyl;

G36) $(CH_2)_k$ -N(R⁶⁹)-SO₂-R⁷⁰ wherein

k represents 1, 2, or 3;

R⁶⁹ represents H or (C₁-C₃)alkyl; and

R⁷⁰ represents (C₁-C₄)alkyl, or phenyl which is optionally substituted up to perhalo by halogen or up to three times by OR⁷¹, CN, CF₃, or NR⁷²R⁷³, wherein

 R^{71} represents H or $(C_1\text{-}C_3)$ alkyl; and

 \boldsymbol{R}^{72} and \boldsymbol{R}^{73} each represents H or (C1-C3)alkyl;

G37) CH=CH-(CH₂)₁₋₃-NR⁷⁴R⁷⁵ wherein

R⁷⁴ and R⁷⁵ represent H or (C₁-C₃)alkyl;

or a pharmaceutically acceptable salt, solvate, solvate of a salt, or stereoisomer thereof.

15

20

10

5

2. The compound of claim 1

wherein

R¹ represents H;

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

$$\begin{cases} \frac{1}{1} & \text{and} \end{cases} \begin{cases} \frac{1}{1} & \text{and} \end{cases} \begin{cases} \frac{1}{1} & \text{and} \end{cases}$$

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and

30

25

3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G13, G22, G29, and G31;
biest to the further proviso.

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;
 - G3) OH;
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
 - G5) OCF₃;

20

5

10

15

G8) $NR^{10}R^{11}$, wherein R^{10} and R^{11} are independently selected from

H,

CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups

25

30

independently selected from hydroxyl, O(C₁-C₃)alkyl, and $NR^{14}R^{15}$, wherein R^{14} and R^{15} are independently H or (C₁-C₃)alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of 5 Q represents CH2, O, or NR16, and R¹⁶represents H or (C₁-C₃)alkyl, R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered 10 N-containing ring which is optionally substituted up to two times by OH, NR¹⁷R¹⁸, wherein R^{17} and R^{18} are H or (C₁-C₃)alkyl, 15 or by (C1-C3)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl; G12) OSO₂NR²³R²⁴ wherein 20 R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein R²⁵ and R²⁶ independently represent H or (C_1-C_3) alkyl; 25 G13) CN; wherein Q" is O or NR30, and 30 R^{30} is

H,

cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or O(C₁-C₃)alkyl;

G29) NR⁴¹SO₂NR⁴²R⁴³ wherein 5 R⁴¹represents H, or (C₁-C₄)alkyl, and R⁴² and R⁴³ independently represent H, CH₃, or (C₂-C₃)alkyl which may optionally be substituted once by -OH or NR⁴⁴R⁴⁵, wherein R⁴⁴ and R⁴⁵ independently represent H or 10 (C₁-C₃)alkyl; and G31) $N(R^{48})C(O)R^{49}$ wherein R⁴⁸ represents H or (C₁-C₃)alkyl; and R⁴⁹ represents 15 $(CH_2)_{1-3}-CO_2H$, O(C2-C4)alkyl, (CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein R⁵⁰ and R⁵¹ independently represent H or (C₁-C₃)alkyl, or 20 CH(R⁵²)-NR⁵³R⁵⁴ wherein R^{52} represents $(CH_2)_{1-4}-NH_2$ CH₂OH, CH(CH₃)OH, or (C₁-C₃)alkyl; and R⁵³ and R⁵⁴ independently represent H or (C_1-C_3) alkyl. 25 3. The compound of claim 2

R¹ represents H;

R² represents O(C₁-C₃)alkyl or NR³R⁴

wherein R³ and R⁴ are H or (C₁-C₃)alkyl;

R^{2a} represents H;

L represents O or CR⁶R⁷ wherein

wherein

30

R⁶ and R⁷ are independently H, CH₃, or OH; G" represents a substituent selected from the group consisting of O(C₁-C₃)alkyl, halogen, and CF₃; n and n' are independently 0 or 1, and provisos 1-3 do not apply; G and G' moieties are independently selected from the group consisting of: G1) Cl or F; $O(C_1-C_3)$ alkyl; G2) G3) OH; (C1-C3)alkyl, which is optionally substituted up to three times by G4) halogen; OCF₃; G5) G8) NR¹⁰R¹¹, wherein R¹⁰ and R¹¹ are independently selected from Η, CH₃, cyclopropyl, benzyl, NR¹²R¹³ wherein R¹² and R¹³ are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$

25

30

5

10

15

20

and

 (C_2-C_4) alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1-C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or $(C_1\text{-}C_3)$ alkyl, or

simultaneously,

R¹⁴ and R¹⁵ can join to form a heterocycle of

Q represents CH₂, O, or NR¹⁶, and R¹⁶represents H or (C₁-C₃)alkyl,

5

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH3, or (C2-C4)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

10

15

 R^{25} and R^{26} independently represent H or (C1-C3)alkyl;

G13) CN;

wherein

Q" is O or NR^{30} , and

R³⁰ is H or (C₁-C₃)alkyl; and

G31) $N(R^{48})C(O)R^{49}$ wherein

 R^{48} represents H or (C₁-C₃)alkyl; and

20 R⁴⁹ represents

 $(CH_2)_{1-3}$ - CO_2H ,

O(C2-C4)alkyl,

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

 R^{50} and R^{51} independently represent H or (C1-C3)alkyl,

25

or

 $CH(R^{52})$ - $NR^{53}R^{54}$ wherein

 R^{52} represents (CH₂)₁₋₄-NH₂, CH₂OH, CH(CH₃)OH, or

 (C_1-C_3) alkyl; and

 R^{53} and R^{54} independently represent H or (C₁-C₃)alkyl.

30

4. The compound of claim 1 wherein

PCT/US2004/033430 WO 2005/035507

R¹ represents H;

M represents CH;

5

10

15

20

25

30

J represents a heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G21, G25, G26, and G31;

and subject to the further proviso

- 4) when J is pyridyl, n is 1, 2, or 3;
- and proviso 5 does not apply;
- G and G' moieties are independently selected from the group consisting of:
 - G1) halogen;
 - O(C1-C4)alkyl which optionally is substituted up to two times by G2) $O(C_1-C_2)$ alkyl;
 - G3) OH;
 - (C1-C5)alkyl, which is optionally substituted independently up to two G4) times by groups selected from hydroxyl and cyano, or up to three times by halogen;

PCT/US2004/033430

G5)

OCF₃;

	G8)	NR ¹⁰ R ¹¹ , wherein
5		R ¹⁰ and R ¹¹ are independently selected from
		Н,
	•	CH ₃ ,
		cyclopropyl,
		benzyl,
10		NR ¹² R ¹³ wherein
		R ¹² and R ¹³ are independently H or (C ₁ -C ₃)alkyl,
		provided that both R ¹⁰ and R ¹¹ are not NR ¹² R ¹³
		simultaneously,
		and
15		(C ₂ -C ₄)alkyl which is optionally substituted up to three times
		by halogen, and up to two times by substituent groups
		independently selected from hydroxyl, O(C ₁ -C ₃)alkyl,
		and NR ¹⁴ R ¹⁵ , wherein
		R ¹⁴ and R ¹⁵ are independently H or
20		(C_1-C_3) alkyl, or
		R ¹⁴ and R ¹⁵ can join to form a heterocycle of
		formula wherein
•		Q represents CH ₂ , O, or NR ¹⁶ , and
		R ¹⁶ represents H or (C ₁ -C ₃)alkyl,
25		or
23		R ¹⁰ and R ¹¹ may be joined to form a saturated 5-6-membered
•		N-containing ring which is optionally substituted up to two
		times by
		OH,
30		NR ¹⁷ R ¹⁸ , wherein
		R^{17} and R^{18} are H or (C ₁ -C ₃)alkyl,

or by

 (C_1-C_3) alkyl which is optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl;

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH_3 , or $(C_2\text{-}C_4)$ alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G21) C(O)NR²⁸R²⁹, wherein

R²⁸ and R²⁹ are independently selected from

H,

cyclopropyl, provided that both R²⁸ and R²⁹ are not simultaneously cyclopropyl,

, provided that this group does not constitute both

R²⁸ and R²⁹ simultaneously,

and

 $(C_1\text{-}C_3)$ alkyl which is optionally substituted up to two times by OH;

or

 R^{28} and R^{29} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by (C_1-C_3) alkyl which in turn is optionally substituted up to two times by OH or $O(C_1-C_3)$ alkyl;

25

30

5

10

15

20

G25)
$$\oint_{\xi - C - N} Q^{iv} \text{ wherein }$$

$$Q^{iv} \text{ is O or NR}^{34}; \text{ and } Q^{iv}$$

R³⁴ is H, (C₁-C₃)alkyl, or cyclopropyl;

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

R³⁵ is H, (C₁-C₃)alkyl, or cyclopropyl;

```
R<sup>36</sup> is (C<sub>1</sub>-C<sub>6</sub>)alkyl optionally substituted up to two times by
                                                                   halogen, OH, or O(C<sub>1</sub>-C<sub>3</sub>)alkyl, and
                                                       the subscript "f" is an integer of 2-4; and
  5
                                G31) N(R<sup>48</sup>)C(O)R<sup>49</sup> wherein
                                           R<sup>48</sup> represents H or (C<sub>1</sub>-C<sub>3</sub>)alkyl; and
                                           R<sup>49</sup> represents
                                                       (CH_2)_{1-3}-CO_2H,
                                                       O(C2-C4)alkyl,
10
                                                       (CH<sub>2</sub>)<sub>1-4</sub>-NR<sup>50</sup>R<sup>51</sup> wherein
                                                                  R<sup>50</sup> and R<sup>51</sup> independently represent H or (C<sub>1</sub>-C<sub>3</sub>)alkyl,
                                                       CH(R<sup>52</sup>)-NR<sup>53</sup>R<sup>54</sup> wherein
                                                                   R<sup>52</sup> represents (CH<sub>2</sub>)<sub>1-4</sub>-NH<sub>2</sub>, CH<sub>2</sub>OH, CH(CH<sub>3</sub>)OH, or
15
                                                                   (C<sub>1</sub>-C<sub>3</sub>)alkyl; and
                                                                   R<sup>53</sup> and R<sup>54</sup> independently represent H or (C<sub>1</sub>-C<sub>3</sub>)alkyl.
                     The compound of claim 4
         5.
20
                     wherein
                     R<sup>1</sup> represents H;
                     R<sup>2</sup> represents O(C<sub>1</sub>-C<sub>3</sub>)alkyl or NR<sup>3</sup>R<sup>4</sup>
                                 wherein R<sup>3</sup> and R<sup>4</sup> are H or (C<sub>1</sub>-C<sub>3</sub>)alkyl;
                     R<sup>2a</sup> represents H;
                     L represents O or CR<sup>6</sup>R<sup>7</sup>, wherein
25
                                R<sup>6</sup> and R<sup>7</sup> are independently H, CH<sub>3</sub>, or OH;
                     G" represents a substituent selected from the group consisting of O(C<sub>1</sub>-C<sub>3</sub>)alkyl,
                                 halogen, and CF<sub>3</sub>;
                     n and n' are independently 0 or 1, and provisos 1-3 do not apply;
                     G and G' moieties are independently selected from the group consisting of:
30
                                 G1)
                                            Cl or F;
```

O(C₁-C₃)alkyl;

G2)

1

G3)	OH	;
,		

G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;

5

G5) OCF₃;

G8) NR¹⁰R¹¹, wherein

 R^{10} and R^{11} are independently selected from

10

H, CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

15

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

20

25

 (C_2-C_4) alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1-C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or $(C_1\text{-}C_3)$ alkyl, or

 $R^{14} \ and \ R^{15} \ can join to form a heterocycle of$

formula

Q wherein

Q represents CH_2 , O, or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl,

30

G12) OSO₂NR²³R²⁴ wherein

 $R^{23}_{\ \ i}$ and R^{24} independently represent H, CH3, or (C2-C4)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G21) C(O)NR²⁸R²⁹, wherein

 R^{28} and R^{29} are independently selected from

5

15

20

30

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

10 G25) $\begin{cases} O \\ -\ddot{C}-N \end{cases}$ wherein O^{iv} is O or NR^{34} ; and

 R^{34} is H or (C_1-C_3) alkyl;

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

 R^{35} is H or (C₁-C₃)alkyl;

 R^{36} is (C_1-C_6) alkyl optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl, and

the subscript "f" is an integer of 2-4; and

G31) $N(R^{48})C(O)R^{49}$ wherein

R⁴⁸ represents H or (C₁-C₃)alkyl; and

R⁴⁹ represents

 $(CH_2)_{1-3}$ - CO_2H ,

O(C2-C4)alkyl,

25 (CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

 R^{50} and R^{51} independently represent H or (C1-C3)alkyl,

or ·

CH(R⁵²)-NR⁵³R⁵⁴ wherein

R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH, CH(CH₃)OH, or

 (C_1-C_3) alkyl; and

 R^{53} and R^{54} independently represent H or (C₁-C₃)alkyl.

6. The compound of claim 1

wherein

5

10

15

20

25

R¹ represents H;

M represents CH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

$$\begin{cases} \frac{1}{2} & \text{and} & \frac{2}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{cases}$$

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G22, and G31;

and subject to the further proviso

- 4) when J is pyridyl, n is 1, 2, or 3;
- and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) $O(C_1-C_4)$ alkyl which optionally is substituted up to two times by $O(C_1-C_2)$ alkyl;
- G3) OH;

G4)	(C ₁ -C ₅)alkyl, which is optionally substituted independently up to two
	times by groups selected from hydroxyl and cyano, or up to three
	times by halogen;

5 G5) OCF₃;

G8) NR¹⁰R¹¹, wherein
R¹⁰ and R¹¹ are independently selected from

H,

CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

 R^{14} and R^{15} are independently H or (C_1-C_3) alkyl, or

 R^{14} and R^{15} can join to form a heterocycle of

formula J-NQ wherein

Q represents CH_2 , O, or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl,

or

R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by

OH.

NR¹⁷R¹⁸, wherein

30

25

10

15

20

 R^{17} and R^{18} are H or (C_1-C_3) alkyl,

or by

 (C_1-C_3) alkyl which is optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl;

5

10

G12) $OSO_2NR^{23}R^{24}$ wherein

 R^{23} and R^{24} independently represent H, CH3, or (C2-C4)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G22) \frac{1}{2}N\ Q'

wherein

Q" is O or NR30, and

 R^{30} is

Η,

cyclopropyl, or

 $(C_1\text{-}C_3)$ alkyl which is optionally substituted once by halogen, OH, or $O(C_1\text{-}C_3)$ alkyl; and

20

15

G31) N(R⁴⁸)C(O)R⁴⁹ wherein

R⁴⁸ represents H or (C₁-C₃)alkyl; and

R⁴⁹ represents

 $(CH_2)_{1-3}-CO_2H$,

O(C2-C4)alkyl,

 $(CH_2)_{1-4}$ -NR⁵⁰R⁵¹ wherein

 $\ensuremath{R^{50}}$ and $\ensuremath{R^{51}}$ independently represent H or (C1-C3)alkyl,

or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

 \mbox{R}^{52} represents (CH2)1-4-NH2, CH2OH, CH(CH3)OH, or

(C₁-C₃)alkyl; and

R⁵³ and R⁵⁴ independently represent H or (C₁-C₃)alkyl.

30

25

7.

The compound of claim 6

```
wherein
                   R<sup>1</sup> represents H;
                   R<sup>2</sup> represents O(C<sub>1</sub>-C<sub>3</sub>)alkyl, or NR<sup>3</sup>R<sup>4</sup>
                             wherein R<sup>3</sup> and R<sup>4</sup> are H or (C<sub>1</sub>-C<sub>3</sub>)alkyl;
  5
                   R<sup>2a</sup> represents H;
                  L represents O or CR<sup>6</sup>R<sup>7</sup>, wherein
                                      R<sup>6</sup> and R<sup>7</sup> are independently H, CH<sub>3</sub>, or OH;
                  G" represents a substituent selected from the group consisting of O(C<sub>1</sub>-C<sub>3</sub>)alkyl,
 10
                             halogen, and CF<sub>3</sub>;
                  n and n' are independently 0 or 1, and provisos 1-3 do not apply;
                  G and G' moieties are independently selected from the group consisting of:
                             G1)
                                       Cl or F;
 15
                            G2)
                                       O(C_1-C_3)alkyl;
                            G3)
                                      OH;
20
                            G4)
                                      (C<sub>1</sub>-C<sub>3</sub>)alkyl, which is optionally substituted up to three times by
                                      halogen;
                            G5)
                                      OCF<sub>3</sub>;
                                      NR<sup>10</sup>R<sup>11</sup>, wherein
25
                            G8)
                                      R<sup>10</sup> and R<sup>11</sup> are independently selected from
                                                H,
                                                CH_3
                                                cyclopropyl,
30
                                                benzyl,
                                               NR<sup>12</sup>R<sup>13</sup> wherein
                                                         R^{12} and R^{13} are independently H or (C<sub>1</sub>-C<sub>3</sub>)alkyl,
                                                         provided that both R10 and R11 are not NR12R13
                                                          simultaneously,
```

and

5

10

15

20

25

30

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

 R^{14} and R^{15} are independently H or $(C_1\text{-}C_3)$ alkyl, or

 $R^{14} \ \text{and} \ R^{15} \ \text{can join to form a heterocycle of}$

formula - Ş-N Q wherein

Q represents CH_2 , O, or NR^{16} , and R^{16} represents H or (C_1-C_3) alkyl;

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH3, or (C2-C4)alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G22) wherein

Q'' is O or NR³⁰, and R^{30} is H or (C₁-C₃)alkyl; and

G31) $N(R^{48})C(O)R^{49}$ wherein

 R^{48} represents H or (C₁-C₃)alkyl; and

R⁴⁹ represents

(CH₂)₁₋₃-CO₂H , O(C₂-C₄)alkyl,

 $(\text{CH}_2)_{1\text{-4}}\text{-NR}^{50}\text{R}^{51}$ wherein

 R^{50} and R^{51} independently represent H or (C₁-C₃)alkyl, or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

 R^{52} represents $(CH_2)_{1-4}$ -NH₂, CH_2OH , $CH(CH_3)OH$, or $(C_1$ - $C_3)$ alkyl; and R^{53} and R^{54} independently represent H or $(C_1$ - $C_3)$ alkyl.

- 5 8. A compound selected from the group consisting of
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}-*N*-methylpyridine-2-carboxamide;
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carboxamide;
 - 4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carbonitrile;
- 6-phenyl-N⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - N^4 -{4-[(2-chloropyridin-4-yl)oxy]phenyl}-6-phenylpyrimidine-2,4-diamine;
 - 4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl}phenyl sulfamate;
- N-(4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl}phenyl)glycinamide trifluoroacetate;
 - 6-(4-aminophenyl)- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - 6-(6-aminopyridin-3-yl)- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - 6-pyridin-3-yl- N^4 -(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - N-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]-4-methoxybenzenesulfonamide trifluoroacetate;
- 25 N-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]methanesulfonamide trifluoroacetate;

and

20

30

(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methanol trifluoroacetate (salt).

9. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

10. A method of treatment for a hyperproliferative disorder comprising administering an effective amount of a compound of claim 1 to a subject in need thereof.

11. The method of claim 10 wherein said hyperproliferative disorder is cancer.