Universidade de Aveiro

Departamento de Matemática

Cálculo II - Agrupamento 3

2022/2023

Soluções do 1º Teste (Versão 1)

- 1. (a) 5
 - (b) $\lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|} = 6$
 - (c) $x^2 \cosh(-2x) = \sum_{n=0}^{+\infty} \frac{4^n}{(2n)!} x^{2n+2}, x \in \mathbb{R}$
 - (d) 8
 - (e) 4
 - (f) $\frac{\pi^2}{8}$
- 2. $D_c = [1, \frac{5}{3}]$, sendo que a série converge absolutamente em todos os pontos do domínio de convergência.
- 3. (a) $f(x) = 1 + \frac{x}{3} \frac{1}{9}x^2(1+\theta)^{-\frac{5}{3}}$ para algum θ entre $x \in 0$.
 - (b) $\sqrt[3]{1,3} \approx 1,1$
- 4. (a) Sugestão: Use o Critério de Weierstrass.
 - (b) Uma vez que, para cada $n \in \mathbb{N}$, $f_n(x) = \frac{\operatorname{sen}(nx)}{n^4}$ é contínua em \mathbb{R} (logo em $[-\pi, \pi]$) e a série converge uniformente, podemos concluir que a função soma é contínua em $[-\pi, \pi]$ e, portanto, é integrável em $[-\pi, \pi]$. Assim, podemos integrar termo a termo e concluir que

$$\int_{-\pi}^{\pi} \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^4} dx = \sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} \frac{\sin(nx)}{n^4} dx = 0.$$

- 5. (a) $\sum_{n=1}^{+\infty} (-1)^n \frac{2}{n} \operatorname{sen}(nx), x \in \mathbb{R}$
 - (b) O Teorema de Dirichlet permite concluir que $S(3\pi) = S(-2\pi) = 0$.
- 6. (a) $D_f = \{(x, y) \in \mathbb{R}^2 : (x, y) \neq (0, 0) \land x^2 + y^2 \neq 1\}.$
 - (b) $C_5 = \{(x, y) \in D_f : x^2 + y^2 = e\}.$
- 7. Como não existe

$$\lim_{(x,y)\to(0,0)} g(x,y),$$

podemos concluir que q não é contínua em (0,0).