

Agenda (2/3)

- Module 4 Design requirements and Safety process
 - 4-1 Requirements
 - 4-2 Safety process
- Module 5 Aircraft power systems
 - 5-1 Hydraulic power systems
 - 5-2 Electric power systems
- Module 6 Aircraft Control systems Architectures
 - 6-1 Hydro Mechanical Systems
 - 6-2 Fly by wire systems
 - 6-3 Fly by wire systems new generation
 - 6-4 A320 FAL Visit

Outlines

- Generals : Control surfaces & Cockpit controls
- Mechanical control systems (ATR)
- Hydromechanical control systems (A300/A310/B737 etc)
- First generation Fly by Wire systems (A320/A330/ A340/B777)
- New generation, hybrid power sources, full Fly By Wire systems (A380/A400M/A350/B787)
- Future trends, smart and more electric actuation

First generation Fly by Wire systems

Why Fly by wire was introduced?

- Hydro mechanical systems are complex, and heavy, they create high cost in indicial build and also in aircraft maintenance.
- Industry was looking for means to simplify and ways to enhance the system performance
- New ways to design are always created together with the availability of new technologies
- At the beginning of 1980 computer technologies has reached a state of maturity which made it feasible to use it for aircraft applications
- The Airbus A320 was the first commercial application of <u>digital</u> fly by wire systems. (now nearly Industry standard)

Fly by wire systems

The main difference to conventional controls are:

- •No mechanical link between piloting device and the surface actuation system
- •The flight control system know and consider the Aircraft response (feedback loop)
- •The flight control system know and consider many other aircraft data

First generation Fly by Wire systems

A320 System architecture overview

SIDESTICK

Pilot order

GEA Tianjin / 中国民航大学中欧航空工程师学院

Fly-By-Wire control laws - Principle

Control laws level depend upon Flight Control System status

Pilot's input is converted into an A/C objective. No direct relationship between stick and surface.

The aircraft is servo looped

Direct law

Pilot's input is directly converted into surface deflection orders.

Direct relationship (via adapted kinematics) between stick and surface.

Fly-By-Wire control laws - Principle

<u>Control laws</u> are <u>adapted</u> according <u>to the flight</u> <u>phases</u> and ground to air transition conditions.

Transitions from one mode to another are smooth and easy.

Fly-By-Wire control laws – Pitch control

 A forward or <u>aft sidestick deflection results in a vertical load factor</u> <u>demand (G Load)</u>

- In short term, commanded flight path is maintained
 - Elevator and THS are automatically deflected to compensate for turbulences, thrust, configuration and speed changes.
 - Aircraft is automatically and continuously trimmed (neutral static stability)
- In long term, pilot's action may be required to adjust flight path as desired = SAFRAN

Fly-By-Wire control laws – Pitch control

Fly-By-Wire control laws – Lateral control

A lateral sidestick deflection results in a roll rate demand.

- The roll rate is achieved by roll surfaces while rudder provides automatic turn coordination and yaw damping.
- The aircraft is laterally stable, no aileron trim is required (neutral spiral stability)
 - Roll and yaw surfaces are automatically deflected to cope with turbulences or aircraft asymmetry, using max deflection if required.

THALES

Fly-By-Wire control laws – Lateral control

Fly-By-Wire control laws

Within the normal flight envelope regardless of altitude,

speed, Cg or configuration,

- Aircraft is stable and highly maneuverable.
- Aircraft response is precise and consistent about all axis's.
- Provide balanced efforts in both pitch and roll.

Pitch Attitude Protection

- Pitch authority is reduced at extreme attitudes
- Pitch up attitude limits
 - Flaps 0 to 3 30°(25°)
 - Flaps Full 25°
- Enhance effectiveness of:
 - AOA and high speed
 - protection in extreme conditions

Pitch Attitude Protection

Pitch down attitude limit -15°

Bank Angle Protection

33° bank angle

- If side stick is released when the bank angle exceeds 33°, the aircraft will return to and maintain 33° bank angle.
- Automatic pitch compensation provided for bank angles up to 33°.

Bank Angle Protection

Max bank angle limits +/- 67°

- AP disconnects and FD bars disappear when the bank is $> 45^{\circ}$, FD bars reappear when bank angle is $< 40^{\circ}$
- With full side stick bank angle is limited to 67° (or 45° if AOA or high speed protection).

Over speed Protection

Vmo/Mmo limit

Protects the aircraft from exceeding Vmo/Mmo limit by introducing a positive load factor (nose - up demand) to the sidestick

- Vmo/Mmo is shown as the bottom of the red/black barber pole
- Green dashes indicate the speed at which the protection is activated

High Angle of Attack protection

V ls

V α PROT

- As speed decreases it reaches VIs, the lowest achievable speed with autothrust engaged
- Between αPROT & αMAX, Floor will activate, autopilot disconnects and speed brakes automatically retract if extended

GROUP

GEA Tianjin / 中国民航大学中欧航空工程师学院

High Angle of Attack protection

α Floor activated

Fly-by-wire protections

- Allow a pilot to:
 - Have full authority to consistently achieve maximum aircraft performance In certain extreme situations such as Windshear, heavy turbulence, potential midair, GPWS, or TCAS advisories
 - Reduce the risk of over-controlling and or overstressing the aircraft

Maximum aircraft performance is easily achieved by use of instinctive, simple procedures

Airbus Fly-By-Wire – Design considerations -Redundancy

Electrical generation and distribution

- Generation
 - **Two** engine-driven generators
 - One APU generator
 - **Two** batteries
 - One CSM / G (constant speed motor/generator) driven by hydraulic circuit (Blue), powered by its dedicated pump or RAT
- In case of electrical emergency configuration, <u>two Fly-By-Wire computers are</u>
 <u>still powered</u> and provide high level control law
- Additionally, <u>extensive segregation rules</u> have been applied to <u>minimise</u> <u>common</u> point risks.

Airbus Fly-By-Wire – Design considerations -Redundancy

Hydraulic generation and distribution

- Three Hydraulic circuits (Green, Blue, Yellow)
 - Green pressurized by an engine driven pump
 - Yellow pressurized by an engine driven pump and an electrical pump.
 - Blue pressurized by an electrical pump and RAT.
 - Green and yellow circuit can drive each other by means of the Power Transfer Unit (PTU)
- Two electro-hydraulic servo-controls per surface.
- In case of double hydraulic failure, high level control law still available with remaining flight controls.

Airbus Fly-By-Wire – Design considerations -Redundancy

Computer to actuator repartition

- The electrical signalling of the flight control surfaces is achieved by <u>7 digital</u> computers.
 - 2 <u>EL</u>evator and <u>A</u>ileron <u>C</u>omputers (<u>ELAC</u>)
 - 3 Spoiler and Elevator Computers (SEC)
 - 2 <u>Flight Augmentation Computers (FAC)</u>
- Four computers available on elevator
- <u>Two specific computers</u> are dedicated <u>to manage the data</u> from the flight control computers for indication, warnings, maintenance and recording purposes.
 - 2 Flight Control Data Concentrator (FCDC)

First generation Fly by Wire systems

A320 Power Source, Actuator and Computer Distribution
Ground spoilers
Ground spoilers

ELAC: Elevator and Aileron Computer **SEC**: Spoiler and Elevator computer **FAC**: Flight Augmentation Computer

Airbus Fly-By-Wire – Design considerations – Mechanical backup

A flight control mechanical back-up is provided:

- For Pitch Control: Pitch Trim Wheel
- For Yaw/Roll Control: Rudder pedals

Control the aircraft during a temporary loss of all computers. (design of 1982)

Today's fly by wire control systems have no mechanical back up because of the proven confidence in the electrical system.

First generation Fly by Wire systems

- Overall benefits of FBW systems
 - •Simpler system, free of backlash, friction, hysteresis, jamming,...
 - Generate direct and indirect weight savings
 - •Provide a safe, accurate and comfortable flight within the normal flight envelope regardless of altitude, speed, Cg or configuration:
 - ▶ Precise and consistent aircraft response
 - ▶ Stable and highly maneuverable aircraft
 - → Full authority to pilot to achieve the best aircraft performance with intuitive and immediate procedure
 - ▶ Reduced risk of over controlling / overstressing the aircraft
 - •Allow the various models to achieve an unmatched level of operational commonality, which makes them all fly and feel alike, resulting in:
 - ▶ Reduction of the overall maintenance costs
 - Reduction of the transition training time.
 - ▶ Cross-Crew-Qualification and Mixed-Fleet-Flying
 - ▶ Considerable savings for operators
 - ▶ Enhanced overall flight safety.

Electrical

translated in a

signal

quasi

GEA Tianjin / 中国民航大学中欧航空工程师学院

Fly by wire systems

If we focus on the actuation side of a fly by wire system, on of the key component is the servo valve. This valve is part of the actuator and it translates the electrical input signal in a "mechanical/pressure" signal

FLIGHT CONTROL
COMPUTERS

Feedback loop

AIRCRAFT RESPONSE TO SURFACE MOVEMENT

First generation Fly by Wire systems

- One of the key component is the Electro Hydraulic Servo Valve
- The jet pipe converts kinetic energy of the moving fluid into static pressure
- Input current controls the flapper position

Servo valve Principal

- The jet pipe converts kinetic energy of the moving fluid into static pressure
- Input current controls the flapper position +/-

First generation Fly by Wire systems

↑ Surface

GEA Tianjin / 中国民航大学中欧航空工程师学院

First generation Fly by Wire systems

Fly By Wire servo-control

A320 aileron

Servovalve

A/C

First generation Fly by Wire systems

Fly By Wire servo control
 Operating modes for a typical fbw Actuator

• Active: normal operating mode for one actuator per control surface; needs hydraulic

supply and electrical signalling

• **Stand-by**: normal operating mode for the actuator adjacent to the active one

default mode in case of loss of electrical signalling

In stand-by mode, the actuator provides a velocity dependent damping force

• **Self-centering** (SA / LR elevators, A340 500/600 ailerons)

- in case of loss of electrical signalling, available hydraulic power is used to position and hold a zero deflection
 - must affect two adjacent actuators simultaneously
- is used when zero hinge moment position might bring uncomfortable flight perturbation or reduce remaining manoeuvrability
- When **depressurized** fluid is trapped within the actuator and **damping** is provided. An accumulator compensates for fluid thermal retraction

THALES

First generation Fly by Wire systems

 Fly By Wire servocontrol

A320 aileron

Active mode

normal operating mode for one actuator per control surface; needs hydraulic supply and electrical signalling

Transducer

10. Feedback Transducer

- End of session 6.2 fly by wire first generation
- Annex:
- 1. fly by wire on other Aircraft
- 2. Additional info to equipment of flight control systems and there power supply

- Annex 1
- Other fly by wire Aircraft (B777)

First generation Fly by Wire systems

B777 System architecture overview

First generation Fly by Wire systems

B777 Power Source, Actuator and Computer Distribution

LCR

Actuators with hydraulic source Left, Center or Right L1, L2, C or R Actuator Control Electronics (ACE)

First generation Fly by Wire systems

- Flight Control Computers overview
 - B777 computers

2 Types of computers:

Actuator Control Electronics (ACE)

The primary functions of the ACE are:

- *A/D converter
- *D/A converter
- *Direct mode select logic
- *Direct mode command calculation
- *PCU servo loop control
- *Excitation power supply.

First generation Fly by Wire systems

- B777 computers
- Flight Control Computers overview

First generation Fly by Wire systems

- Flight Control Computers overview
- B777 computers
 The primary flight computers (PFC)
- * Calculate control surface commands using pilot and autopilot inputs
- •Calculate commands for variable elevator feel
- •and backdrive actuators
- * Supply stability augmentation
- * Supply flight envelope protection
- * Send signals for flight deck annunciations
- * Send signals for maintenance messages.

First generation Fly by Wire systems

Flight Control Computers overview

B777 computers

Primary Flight Computers (PFC)

- Annex 2
- Fly by wire equipment

Fly by wire equipment, other

ACTUATORS

ACTUATORS

Specific issues with Actuators

The spharical bearing problem

Issues

A320 elevator actuator

Grease free
Teflon bearings
are not resistant
enough to
withstand the
harsh enviroment
Will be replaesce
by roler bearings

Flight control

Max requirements concerning pilot actions (from ICAO)

> roll 22.5 daN *diameter of wheel in m

> yaw 90 daN

➤ pitch 135 daN

Example:

- > A340 aileron actuator provides more than 160 kN force.
- ➤ A380 rudder actuator force will be >300 kN

First generation Fly by Wire systems

- Flight Control Computers overview
 - Airbus computers
 - Flight control digital computers achieve
 - control law computation, which include flight envelope protection
 - actuator closed loop control
 - Associated monitoring and reconfiguration functions

- Flight Control Computers overview
 - Airbus computers
 - Flight control computers feature a COM/MON arrangement

- Any single failure leading to a COM/MON disagreement greater than a threshold (confirmed tbd seconds) is passivated
- o After a single failure, the function is lost
 - with one COM/MON computer → fail passive architecture
 - With two COM/MON computers and automatic switchover → fail operative architecture(DUAL/DUAL configuration)

First generation Fly by Wire systems

- Flight Control Computers overview
 - Airbus computers
 - Flight control computers are dissimilar to overcome common mode failure or generic error in software
 - Two COM/MON computers are the minimum to provide a fail operative architecture
 - If dispatch with one computer failed is desired, then three COM/MON computers, or two triplex assemblies (3 triplex lanes is one computer) are needed
 - The actual number of computers is also the result of the architecture for actuators power loops computation :

✓ SA family: 2 ELAC, 3 SEC
✓ LR family: 3 PRIM, 2 SEC

Fly by wire first generation

- End of session
- Thank you
- Any question?

