

Universidade Federal do Pará - UFPA Faculdade de Estatística - FAEST Programa de Pós-Graduação em Matemática e Estatística - PPGME Instituto de Ciências Exatas e Naturais - ICEN Disciplina: Estatística Matemática

Prof. Paulo Cerqueira Jr. - cerqueirajr@ufpa.br - https://github.com/paulocerqueirajr

Lista 4: Estimação de Parâmetros com o Método de Newton-Raphson

Objetivo

Aplicar o método de Newton-Raphson para estimar os parâmetros de **quatro modelos de probabilidade**, cada um com **três ou mais parâmetros**, por meio da maximização da função de verossimilhança. O aluno deverá:

- Derivar a função de verossimilhança e a log-verossimilhança.
- Calcular o vetor gradiente (derivadas de primeira ordem).
- Calcular a matriz Hessiana (derivadas de segunda ordem).
- Implementar o algoritmo de Newton-Raphson.
- Utilizar **R ou Python**, sem bibliotecas externas para otimização ou estatística.

Modelos Escolhidos

A seguir estão as quatro distribuições a serem estudadas.

1. Distribuição Gama Generalizada

Parâmetros: lpha>0, eta>0, $\lambda>0$

Densidade:

$$f(x)=rac{\lambdaeta^lpha}{\Gamma(lpha)}x^{lpha\lambda-1}e^{-eta x^\lambda},\quad x>0$$

2. Distribuição Weibull Generalizada

Parâmetros: lpha>0, eta>0, $\gamma>0$

Densidade:

$$f(x)=lphaeta^{\gamma}x^{\gamma-1}e^{-(eta x)^{lpha}},\quad x>0$$

3. Distribuição Log-Normal Truncada

Parâmetros: $\mu \in \mathbb{R}$, $\sigma > 0$, au > 0 (parâmetro de truncamento)

Densidade:

$$f(x) = rac{1}{x\sigma\sqrt{2\pi}} \mathrm{exp}\left(-rac{(\log x - \mu)^2}{2\sigma^2}
ight), \quad x > au$$

4. Distribuição Beta Generalizada

Parâmetros: $\alpha>0$, $\beta>0$, $\lambda>0$

Densidade:

$$f(x) = rac{\lambda x^{\lambda lpha - 1} (1 - x^{\lambda})^{eta - 1}}{B(lpha, eta)}, \quad 0 < x < 1$$

Orientações

Para cada distribuição, siga as etapas:

1. Derivação Analítica

- Função de verossimilhança $L(\theta)$
- Log-verossimilhança $\ell(\theta)$
- Vetor gradiente $\nabla \ell(\theta)$
- Matriz Hessiana $H(\theta)$

Utilize aproximações para funções como $\psi(\cdot)$ e $\psi'(\cdot)$ se necessário.

2. Implementação

- Linguagens permitidas: R ou Python
- Proibido usar pacotes prontos como scipy, statsmodels, optim, fitdistr etc.
- Recomenda-se modularização do código:
 - log_verossimilhanca(params, dados)
 - o gradiente(params, dados)
 - hessiana(params, dados)
 - newton_raphson(params_iniciais, dados, tol, max_iter)

3. Dados

Use o método da transformação inversa para gerar de cada modelo usando a seguinte definição:

Definição: Método da Transformação Inversa. Seja X uma v.a. com função de distribuição acumulada F contínua. Seja $F^{-1}:(0,1)\to\mathbb{R}$ uma função definida por

$$F^{-1}(u)=\inf\{x\in\mathbb{R}:F(x)\geq u\}.$$

A função F^{-1} é a função generalizada de F.

No repositório github da disciplina de **Estatística Computacional** há exemplos do método disponíveis para acesso e consulta.

Para cada modelo, **simule uma amostra de tamanho 100** (ou o que for mais adequado) com parâmetros conhecidos. Exemplo:

Distribuição	Parâmetros sugeridos
Gama Generalizada	$lpha=2, eta=1.5, \lambda=1.2$
Weibull Generalizada	$lpha=1.8, eta=0.9, \gamma=2.5$
Log-Normal Truncada	$\mu=1, \sigma=0.5, au=1$
Beta Generalizada	$lpha=2, eta=3, \lambda=1.5$

Entregáveis

O que o relatório da atividade deverá conter:

- 1. Documento (html, PDF ou Jupyter/Quarto) com:
 - o Derivações matemáticas detalhadas
 - o Implementação do algoritmo
 - Resultados com gráfico da convergência
 - Discussões sobre dificuldades encontradas
- 2. Código-fonte comentado e funcional.

Avaliação

Os critérios de avaliação da atividade são:

Critério	Peso
Derivações matemáticas	30%
Implementação do algoritmo	30%
Clareza e organização do código	20%
Relatório analítico e gráfico	20%

Boa sorte e bons cálculos!