CHAPTER 2

© 2008 Pearson Education, Inc.

2-1.*

a) $\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$

Verification of DeMorgan's Theorem

X	Y	Z	XYZ	XYZ	$\overline{X}+\overline{Y}+\overline{Z}$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	0	0

b)
$$X + YZ = (X + Y) \cdot (X + Z)$$

The Second Distributive Law

X	Y	Z	YZ	X+YZ	X+Y	X+Z	(X+Y)(X+Z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

c)
$$\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$$

X	Y	Z	$\overline{X}Y$	$\overline{Y}Z$	$X\overline{Z}$	$\overline{X}Y + \overline{Y}Z + X\overline{Z}$	$X\overline{Y}$	ΥZ	$\overline{X}Z$	$X\overline{Y} + Y\overline{Z} + \overline{X}Z$
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0	0	1	1
0	1	0	1	0	0	1	0	1	0	1
0	1	1	1	0	0	1	0	0	1	1
1	0	0	0	0	1	1	1	0	0	1
1	0	1	0	1	0	1	1	0	0	1
1	1	0	0	0	1	1	0	1	0	1
1	1	1	0	0	0	0	0	0	0	0

2-2.*

a)
$$\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X}Y + XY$$

$$= (\overline{X}Y + \overline{X}\overline{Y}) + (\overline{X}Y + XY)$$

$$= \overline{X}(Y + \overline{Y}) + Y(X + \overline{X})$$

$$= \overline{X} + Y$$

b)
$$\overline{A}B + \overline{B}\overline{C} + AB + \overline{B}C = 1$$

= $(\overline{A}B + AB) + (\overline{B}\overline{C} + \overline{B}C)$
= $B(A + \overline{A}) + \overline{B}(C + \overline{C})$

$$B + \overline{B} = 1$$

c)
$$Y + \overline{X}Z + X\overline{Y} = X + Y + Z$$

 $= Y + X\overline{Y} + \overline{X}Z$
 $= (Y + X)(Y + \overline{Y}) + \overline{X}Z$
 $= Y + X + \overline{X}Z$
 $= Y + (X + \overline{X})(X + Z)$
 $= X + Y + Z$

$$\mathbf{d}) \quad \overline{X}\overline{Y} + \overline{Y}Z + XZ + XY + Y\overline{Z} \\ = \overline{X}\overline{Y} + \overline{Y}Z(X + \overline{X}) + XZ + XY + Y\overline{Z} \\ = \overline{X}\overline{Y} + X\overline{Y}Z + \overline{X}\overline{Y}Z + XZ + XY + Y\overline{Z} \\ = \overline{X}\overline{Y} + X\overline{Y}Z + \overline{X}\overline{Y}Z + XZ + XY + Y\overline{Z} \\ = \overline{X}\overline{Y} + XZ(1 + \overline{Y}) + XY + Y\overline{Z} \\ = \overline{X}\overline{Y} + XZ + XY(Z + \overline{Z}) + Y\overline{Z} \\ = \overline{X}\overline{Y} + XZ + XYZ + Y\overline{Z}(1 + X) \\ = \overline{X}\overline{Y} + XZ + YZ + Y\overline{Z}$$

$$= \overline{X}\overline{Y} + XZ + Y\overline{Z}$$

a)
$$AB\overline{C} + B\overline{C}\overline{D} + BC + \overline{C}D = B + \overline{C}D$$

 $= AB\overline{C} + ABC + BC + B\overline{C}\overline{D} + B\overline{C}D + \overline{C}D$
 $= AB(\overline{C} + C) + B\overline{C}(\overline{D} + D) + BC + \overline{C}D$
 $= AB + B\overline{C} + BC + \overline{C}D$
 $= B + AB + \overline{C}D$
 $= B + \overline{C}D$

c)
$$A\overline{D} + \overline{A}B + \overline{C}D + \overline{B}C = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$$

$$= \overline{A\overline{D} + \overline{A}B + \overline{C}D + \overline{B}C}$$

$$= (\overline{A} + D)(A + \overline{B})(C + \overline{D})(B + \overline{C})$$

$$= (\overline{A}\overline{B} + AD + \overline{B}D)(BC + B\overline{D} + \overline{C}\overline{D})$$

$$= \overline{A}\overline{B}\overline{C}\overline{D} + ABCD$$

$$= (A + B + C + D)(\overline{A} + \overline{B} + \overline{C} + \overline{D}) = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$$

Given:
$$A \cdot B = 0, A + B = 1$$

Prove: $(A + C)(\overline{A} + B)(B + C) = BC$
 $= (AB + \overline{A}C + BC)(B + C)$
 $= AB + \overline{A}C + BC$

$$= 0 + C(\overline{A} + B)$$

$$= C(\overline{A} + B)(0)$$

$$= C(\overline{A} + B)(A + B)$$

$$= C(AB + \overline{A}B + B)$$

$$= BC$$

2-5.+

Step 1: Define all elements of the algebra as four bit vectors such as A, B and C:

$$\begin{array}{lll} A & = & (A_3, A_2, A_1, A_0) \\ B & = & (B_3, B_2, B_1, B_0) \\ C & = & (C_3, C_2, C_1, C_0) \end{array}$$

Step 2: Define OR₁, AND₁ and NOT₁ so that they conform to the definitions of AND, OR and NOT presented in Table 2-1.

- a) A + B = C is defined such that for all $i, i = 0, ..., 3, C_i$ equals the OR_1 of A_i and B_i .
- **b)** AB = C is defined such that for all $i, i = 0, ..., 3, C_i$ equals the AND₁ of A_i and B_i .
- c) The element 0 is defined such that for A = ``0'', for all $i, i = 0, ..., 3, A_i$ equals logical 0.
- **d**) The element 1 is defined such that for A = "1", for all $i, i = 0, ..., 3, A_i$ equals logical 1.
- For any element A, \overline{A} is defined such that for all i, i = 0, ..., 3, \overline{A}_i equals the NOT₁ of A_i .

2-6.

a)
$$\overline{AC} + \overline{ABC} + \overline{BC} = \overline{AC} + \overline{ABC} + (\overline{ABC} + \overline{BC})$$

 $= \overline{AC} + (\overline{ABC} + \overline{ABC}) + \overline{BC}$
 $= (\overline{AC} + \overline{AC}) + \overline{BC} = \overline{A} + \overline{BC}$

b)
$$\overline{(A+B+C)}(\overline{ABC})$$

$$= \overline{A}\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}\overline{C}$$

$$= (\overline{A}\overline{A})\overline{B}\overline{C} + \overline{A}(\overline{B}\overline{B})\overline{C} + \overline{A}\overline{B}(\overline{C}\overline{C})$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} = \overline{A}\overline{B}\overline{C}$$

c)
$$AB\overline{C} + AC = A(B\overline{C} + C) = A(B + C)$$

$$\mathbf{d}) \quad \overline{ABD} + \overline{ACD} + BD$$

$$= (\overline{AB} + B + \overline{AC})D$$

$$= (\overline{A} + \overline{AC} + B)D$$

$$= (\overline{A} + B)D$$

e)
$$(\overline{\overline{A} + B})(\overline{\overline{A} + \overline{C}})(\overline{ABC})$$

= $(A\overline{B})(AC)(\overline{A} + B + \overline{C}) = A\overline{B}C(\overline{A} + B + \overline{C})$
= 0

2-7.*

a)
$$\overline{X}\overline{Y} + XYZ + \overline{X}Y = \overline{X} + XYZ = (\overline{X} + XY)(\overline{X} + Z) = (\overline{X} + X)(\overline{X} + Y)(\overline{X} + Z)$$

= $(\overline{X} + Y)(\overline{X} + Z) = \overline{X} + YZ$

b)
$$X + Y(Z + \overline{X + Z}) = X + Y(Z + \overline{X}\overline{Z}) = X + Y(Z + \overline{X})(Z + \overline{Z}) = X + YZ + \overline{X}Y$$

= $(X + \overline{X})(X + Y) + YZ = X + Y + YZ = X + Y$

c)
$$\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ) = \overline{W}X\overline{Z} + \overline{W}X\overline{Y}Z + WX + \overline{W}XYZ$$

$$= \overline{W}X\overline{Z} + \overline{W}XZ + WX = \overline{W}X + WX = X$$

d)
$$(AB + \overline{AB})(\overline{CD} + CD) + \overline{AC} = AB\overline{CD} + ABCD + \overline{AB}CD + \overline{AB}\overline{CD} + \overline{A} + \overline{C}$$

= $ABCD + \overline{A} + \overline{C} = \overline{A} + \overline{C} + A(BCD) = \overline{A} + \overline{C} + C(BD) = \overline{A} + \overline{C} + BD$

2-8.

a)
$$F = A\overline{B}C + \overline{A}\overline{C} + AB$$
$$= (\overline{A} + B + \overline{C}) + (\overline{A} + \overline{C}) + (\overline{A} + \overline{B})$$

b)
$$\overline{F} = \overline{ABC + \overline{AC} + AB}$$

= $\overline{(\overline{ABC})(\overline{AC})(\overline{AB})}$

2-9.*

$$\mathbf{a)} \quad \overline{F} = (\overline{A} + B)(A + \overline{B})$$

b)
$$\overline{F} = ((V + \overline{W})\overline{X} + \overline{Y})Z$$

c)
$$\overline{F} = [\overline{W} + \overline{X} + (Y + \overline{Z})(\overline{Y} + Z)][W + X + Y\overline{Z} + \overline{Y}Z]$$

d)
$$\overline{F} = \overline{A}B\overline{C} + (A+B)\overline{C} + \overline{A}(B+C)$$

2-10.*

Truth Tables a, b, c

X	Y	Z	a	A	В	C	b	W	X	Y	Z	c
0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	1	1	0	0	0	1	0
0	1	0	0	0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0	0	1	0	0	0
1	0	1	1	1	0	1	0	0	1	0	1	0
1	1	0	1	1	1	0	0	0	1	1	0	1
1	1	1	1	1	1	1	1	0	1	1	1	0
								1	0	0	0	0
								1	0	0	1	0
								1	0	1	0	1
								1	0	1	1	0
								1	1	0	0	1
								1	1	0	1	1
								1	1	1	0	1
								1	1	1	1	1

a) Sum of Minterms: $\overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$

Product of Maxterms: $(X + Y + Z)(X + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + Y + Z)$

b) Sum of Minterms: $\overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$

Product of Maxterms: $(A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$

c) Sum of Minterms: $\overline{WX}Y\overline{Z} + \overline{WX}Y\overline{Z} + W\overline{X}Y\overline{Z} + WX\overline{Y}Z + WX\overline{Y}Z + WX\overline{Y}Z + WXY\overline{Z}$

+ WXYZ

Product of Maxterms: $(W + X + Y + Z)(W + X + Y + \overline{Z})(W + X + \overline{Y} + \overline{Z})$

 $(W + \bar{X} + Y + Z)(W + \bar{X} + Y + \bar{Z})(W + \bar{X} + \bar{Y} + \bar{Z})$

 $(\overline{W} + X + Y + Z)(\overline{W} + X + Y + \overline{Z})(\overline{W} + X + \overline{Y} + \overline{Z})$

2-11.

a)
$$E = \Sigma m(1, 2, 4, 6) = \Pi M(0, 3, 5, 7),$$
 $F = \Sigma m(0, 2, 4, 7) = \Pi M(1, 3, 5, 6)$

b)
$$\bar{E} = \Sigma m(0, 3, 5, 7)$$
,

$$\overline{F} = \Sigma m(1, 3, 5, 6)$$

- c) $E + F = \sum m(0, 1, 2, 4, 6, 7)$,
- $E \cdot F = \Sigma m(2,4)$
- $\mathbf{d}) \qquad E = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z},$
- $F = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ$

e) $E = \overline{Z}(X+Y) + \overline{X}\overline{Y}Z$,

 $F = \overline{Z}(\overline{X} + \overline{Y}) + XYZ$

2-12.*

- a) $(AB+C)(B+\overline{C}D) = AB+AB\overline{C}D+BC = AB+BC$ s.o.p. = B(A+C) p.o.s.
- **b)** $\overline{X} + X(X + \overline{Y})(Y + \overline{Z}) = (\overline{X} + X)(\overline{X} + (X + \overline{Y})(Y + \overline{Z}))$ = $(\overline{X} + X + \overline{Y})(\overline{X} + Y + \overline{Z})$ p.o.s. = $(1 + \overline{Y})(\overline{X} + Y + \overline{Z}) = \overline{X} + Y + \overline{Z}$ s.o.p.
- c) $(A + B\overline{C} + CD)(\overline{B} + EF) = (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + EF)$ $= (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + E)(\overline{B} + F) \text{ p.o.s.}$ $(A + B\overline{C} + CD)(\overline{B} + EF) = A(\overline{B} + EF) + B\overline{C}(\overline{B} + EF) + CD(\overline{B} + EF)$ $= A\overline{B} + AEF + B\overline{C}EF + \overline{B}CD + CDEF \text{ s.o.p.}$

2-13.

2-14.

2-15. *

2-16.

$$Y\overline{Z} + \overline{X}\overline{Z} + X\overline{Y}Z + (WXZ \text{ or } WXY)$$

$$\overline{B}\overline{D} + AB\overline{C} + \overline{A}CD$$

2-17.

$$F = \overline{X}\overline{Z} + W\overline{Y} + W\overline{X} + X\overline{Y}Z$$

$$F = \overline{B}D + \overline{A}BC + AB\overline{C} + (AD \text{ or } CD)$$

2-18. *

 $\Sigma m(3,5,6,7)$

 $\Sigma m(3, 4, 5, 7, 9, 13, 14, 15)$

 $\Sigma m(0, 2, 6, 7, 8, 10, 13, 15)$

2-19.*

- Essential = XZ, $\overline{X}\overline{Z}$
- a) $Prime = XZ, WX, \overline{XZ}, W\overline{Z}$ b) $Prime = CD, AC, \overline{BD}, \overline{ABD}, \overline{BC}$ $Essential = AC, \overline{BD}, \overline{A}BD$
- c) $Prime = AB, AC, AD, B\overline{C}, \overline{B}D, \overline{C}D$ Essential = AC, $B\overline{C}$, $\overline{B}D$
- **2-20.** a) $Prime = \overline{X}Y, \overline{X}\overline{Z}, W\overline{Y}\overline{Z}, WX\overline{Y}, X\overline{Y}Z, \overline{W}XZ, \overline{W}YZ$ $Essential = \overline{X}Y, \overline{X}\overline{Z}$ $F = \overline{X}Y + XZ + WX\overline{Y} + \overline{W}XZ$
 - c) $Prime = \overline{YZ}, W\overline{Y}, \overline{WZ}, WXZ, XYZ, \overline{W}XY$ $Essential = W\overline{Y}, \overline{W}\overline{Z}$ $Redundant = \overline{YZ}$ $F = W\overline{Y} + \overline{W}\overline{Z} + XYZ$
- **b**) $Prime = \overline{A}B\overline{C}, \overline{A}CD, ABC, A\overline{C}D, BD$ Essential = $\overline{A}B\overline{C}$, $\overline{A}CD$, ABC, $A\overline{C}D$ Redundant = BD $F = \overline{A}B\overline{C} + \overline{A}CD + ABC + A\overline{C}D$

2-21.

$$\overline{F} = \underline{\Sigma m(1, 5, 6, 7, 9, 12, 13, 14)}$$

$$F = \overline{YZ} + WX\overline{Z} + \overline{W}XY$$

$$F = (Y + \overline{Z})(\overline{W} + \overline{X} + Z)(W + \overline{X} + \overline{Y})$$

$$\overline{F} = \Sigma m(0, 2, 4, 5, 8, 10, 11, 12, 13, 14)$$

$$F = \overline{BC} + \overline{BD} + A\overline{D} + A\overline{BC}$$

$$F = (\overline{B} + C)(B + D)(\overline{A} + D)(\overline{A} + B + \overline{C})$$

2-22.*

a) s.o.p.
$$CD + A\overline{C} + \overline{B}D$$

p.o.s. $(\overline{C} + D)(A + D)(A + \overline{B} + C)$

b) s.o.p.
$$\overline{AC} + \overline{BD} + A\overline{D}$$

s.o.p.
$$\overline{AC} + \overline{BD} + A\overline{D}$$
 c) s.o.p. $\overline{BD} + \overline{ABD} + (\overline{ABC} \text{ or } \overline{ACD})$
p.o.s. $(\overline{C} + \overline{D})(\overline{A} + \overline{D})(A + \overline{B} + \overline{C})$ p.o.s. $(\overline{A} + \overline{B})(B + \overline{D})(\overline{B} + C + D)$

2-23.

a) s.o.p.
$$\overline{A}\overline{B}\overline{C} + \overline{A}BD + ABC + A\overline{B}\overline{D}$$

or
$$\overline{ACD} + BCD + AC\overline{D} + \overline{BCD}$$

p.o.s.
$$(A+B+\overline{C})(A+\overline{B}+D)(\overline{A}+\overline{B}+C)(\overline{A}+B+\overline{D})$$

or
$$(A + \overline{C} + D)(\overline{B} + C + D)(\overline{A} + C + \overline{D})(B + \overline{C} + \overline{D})$$

or
$$(A + \overline{C} + D)(\overline{B} + C + D)(\overline{A} + C)$$

b) s.o.p. $\overline{Z} + \overline{W}X + \overline{X}\overline{Y}$

p.o.s.
$$(\overline{W} + \overline{X} + \overline{Z})(X + \overline{Y} + \overline{Z})$$

2-24.

$$F = \overline{BC} + BCD + ABD \quad F = X\overline{Y} + W\overline{Y}Z + WXZ + (\overline{WX}Y \text{ or } \overline{W}Y\overline{Z}) \qquad F = \overline{A} + \overline{C}$$

2-25.*

a)

 $Primes = AB, AC, BC, \overline{A}\overline{B}\overline{C}$ Essential = AB, AC, BCF = AB + AC + BC

 $Primes = \overline{X}\overline{Z}, XZ, \overline{W}X\overline{Y}, WXY, \overline{W}\overline{Y}\overline{Z}, WY\overline{Z}$ $Essential = \overline{X}\overline{Z}$ $F = \overline{X}\overline{Z} + \overline{W}X\overline{Y} + WXY$

 $Primes = \overline{A}B, C, A\overline{D}, B\overline{D}$ $Essential = C, A\overline{D}$ $F = C + A\overline{D} + (B\overline{D} \text{ or } \overline{A}B)$

2-26.

2-27.

There are other solutions depending on how ties are resolved.

b) $F = \overline{A} \overline{C} + \overline{AB} + BD + AC + A\overline{B}$

There are other solutions depending on how ties are resolved.

2-28.+

 $F = \overline{A} \; \overline{B} \; \overline{D} + \overline{B} \; \overline{C} \; D + B \overline{C} + AB + AC \overline{D}$

2-29.

a)
$$F = A\overline{B}C + \overline{A}BC + A\overline{B}D + \overline{A}BD$$

 $X_1 = A\overline{B}$
 $X_2 = \overline{A}B$
 $F = X_1C + X_1D + X_2C + X_2D$
 $= (X_1 + X_2)(C + D)$
 $X_3 = C + D$
 $F = (X_1 + X_2)X_3$

$$\begin{array}{c} A \\ B \\ \hline \\ C \\ \hline \\ \end{array}$$

$$\begin{array}{ll} \mathbf{b)} \ F = \ WY + XY + \overline{W}XZ + W\overline{X}Z \\ & = \ (W + X)Y + (\overline{W}X + W\overline{X})Z \\ & = \ (W + X)Y + (W + X)(\overline{W} + \overline{X})Z \\ X_1 = \ W + X \\ F = \ X_1Y + X_1(\overline{W} + \overline{X})Z \end{array}$$

2-30.

b) G

$$\begin{split} F &= AC + \overline{A}B\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} \\ &= AC + \overline{A}\overline{C}(BD + \overline{B}\overline{D}) \end{split}$$

$$G = AC + BCD + \overline{AB}C\overline{D}$$

$$= AC + (ABCD + \overline{A}BCD) + \overline{AB}C\overline{D}$$

$$= AC + \overline{A}C(BD + \overline{BD})$$

$$X_1 = AC$$
$$X_2 = BD + \overline{B}\overline{D}$$

$$F = X_1 + \overline{A}\overline{C}X_2$$

$$G = X_1 + \overline{A}CX_2$$

2-31.

a)
$$F = AB(\overline{CD} + \overline{CD}) + \overline{B}(C\overline{D} + \overline{CD}) + \overline{A}(\overline{B} + C\overline{D})$$

 $= AB(\overline{C} + D)(C + \overline{D}) + \overline{B}(C\overline{D} + \overline{CD}) + \overline{A}(\overline{B}(\overline{C} + \overline{D}))$
 $= AB\overline{CD} + ABCD + \overline{B}C\overline{D} + \overline{B}\overline{CD} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{D}$

$$b) \quad T = YZ(W + \overline{X}) + \overline{Y}\overline{Z}(\overline{W}Y + X)$$

$$= WYZ + \overline{X}YZ + X\overline{Y}\overline{Z}$$

2-32.*

$$X \oplus Y = X\overline{Y} + \overline{X}Y$$
Dual $(X \oplus Y) = \text{Dual } (X\overline{Y} + \overline{X}Y)$

$$= (X + \overline{Y})(\overline{X} + Y)$$

$$= \overline{\overline{X}Y + X\overline{Y}}$$

$$= X\overline{Y} + \overline{X}Y$$

$$= \overline{X} \oplus \overline{Y}$$

2-33.

$$AB\overline{C}D + A\overline{D} + \overline{A}D = AB\overline{C}D + (A \oplus D)$$

Note that $X + Y = (X \oplus Y) + XY$

Letting
$$X = AB\overline{C}D$$
 and $Y = A \oplus D$,

We can observe from the map below or determine algebraically that XY is equal to 0.

For this situation,

$$X + Y = (X \oplus Y) + XY$$
$$= (X \oplus Y) + 0$$
$$= X \oplus Y$$

So, we can write $F(A, B, C, D) = X \oplus Y = AB\overline{C}D \oplus (A \oplus D)$

2-34.

2-35.

There are no three-state output conflicts.