Teoria probabilităților dravite. Italia prehabilitatura diserre Terria, pelabilitatur diserre Terria. Olariu E. Florentin Aprilie, 2014

Table of contents

Metoda probabilistică

Problema satisfiabilității
Aplicații în teoria grafurilor

Variabile aleatoare continue

Variabile aleatoare continue

Repartiții continue remarcabile

Bibliography (1) In the second of the second

Metoda probabilistică

- Metoda probabilistica este o tehnica folosita pentru demonstrarea existenței unor obiecte matematice (combinatorii) cu anumite proprietăți.
- Ideea de bază a acestei metode constă în a demonstra că probabilitatea unui obiect cu proprietățile cerute este strict pozitivă ceea ce înseamnă că un asemenea obiect există.
- Pentru aceasta construim un spațiu de probabilitate peste mulțimea obiectelor implicate și arătăm ca probabilitatea obiectului respectiv este nenula.

Metoda probabilistică

Teorema 1

(Principiul mediei) Dacă X este o variabilă aleatoare discretă cu $M[X] \leqslant \alpha$, atunci $P\{X \leqslant \alpha\} > 0$.

Primele exemple ale aplicării metodei probabiliste sunt legate de chestiunea satisfiabilității.

Propoziția 1

Fie $\mathcal{F} = \{C_1, C_2, \dots, C_m\}$ o familie de m clauze. Există o asignare a valorilor de adevăr a variabilelor booleene implicate, astfel ca numărul de clauze satisfăcute să fie cel puțin

$$\sum_{i=1}^{m} \left(1 - 2^{-|C_i|}\right) \geqslant m \left(1 - 2^{-l}\right)$$

unde
$$I = \min_{1 \le i \le m} |C_i|$$
.

Problema satisfiabilității

dem.: Imaginăm următorul experiment aleator abstract: fiecărei variabile booleene x îi asignăm independent valoarea 1 (adevărat) sau 0 (fals) cu acceași probabilitate 0.5. Definim variabilele aleatoare

$$X_i = \left\{egin{array}{ll} 1, & \mathsf{dac\check{a}} \ C_i \ \mathsf{este} \ \mathsf{adev\check{a}rat\check{a}} \ 0, & \mathsf{dac\check{a}} \ C_i \ \mathsf{este} \ \mathsf{fals\check{a}} \end{array}
ight.$$

Probabilitatea ca clauza C_i să fie adevărată este egală cu probabilitatea ca cel puțin unul dintre cei I_i literali ai ei să fie adevărat, adică $\left(1-2^{-|C_i|}\right)$. Numărul de clauze satisfăcute este egal cu $X=\sum_{i=1}^n X_i$ și

$$M[X] = \sum_{i=1} M[X_i] = \sum_{i=1} (1 - 2^{-|C_i|}) \geqslant m(1 - 2^{-l}).$$

Concluzia urmează conform Teoremei 1.

Problema satisfiabilității

Corolar 1

Orice instanță a problemei k-SAT cu mai puțin de k clauze este satisfiabilă.

dem.: Reluând argumentul de mai sus, cu $|C_i| = k$, $\forall i$:

$$M[X] = \sum_{i=1} M[X_i] = \sum_{i=1} (1 - 2^{-|C_i|}) = m(1 - 2^{-k}) > m - 1,$$

obținem de aici că $P\{X \ge m\} = P\{X > m-1\} > 0$ - deci există o asignare a valorilor de adevăr care să satisfacă toate cele m clauze.

Problema satisfiabilității

- Marginea indicată în acest rezultat este cea mai bună posibilă deoarece putem defini o instanță a problemei k-SAT cu 2^k clauze care să fie nesatisfiabilă: de exemplu familia tuturor clauzelor având k literali definite peste o mulţime de k variabile booleene.
- ▶ În mod similar se poate demonstra

Propoziția 2

O familie de clauze F este satisfiabilă dacă

$$\sum_{i=1}^m e^{-|C_i|} < 1.$$

- Următoarele două rezultate sunt aplicații ale metodei probabiliste în teoria grafurilor. Introducem aceste rezultate cu două definiții mai degrabă informale.
- Fie G(V, E) un graf, o mulțime de noduri S ⊆ V se numește stabilă dacă oricare două noduri din S nu sunt adiacente: uv ∉ E, ∀ u, v ∈ S. Dacă (A, B) este o partiție a nodurilor lui G, tăietura generată de această partiție este mulțimea de muchii în cross între A și B:

$$E(A,B) = \{uv \in E : u \in A, v \in B\}.$$

► Este de menționat că atât problema determinării unei mulțimi stabile de cardinal maxim cât și cea a determinării unei tăieturi cu număr maxim de muchii sunt probleme NP-hard.

Propoziția 3

Fie G = (V, E) un graf cu n noduri și m muchii. Există o bipartiție (A, B) a lui G astfel încât

$$|E(A,B)|\geqslant \frac{m}{2}$$

dem.: Considerăm următorul algoritm aleator care construiește o bipartiție (A, B) a lui V:

$$A \leftarrow \emptyset$$
; for $(i = \overline{1, n})$

cu probabilitate $\frac{1}{2}$ adaugă v la A;

$$B \leftarrow V \setminus A$$
;

Pentru fiecare muchie $uv \in E$ definim o variabilă Bernoulli

Evident că

$$P\{X_{uv} = 1\} = P\{(u \in A \text{ si } v \in B) \text{ sau } (u \in B \text{ si } v \in A)\} =$$

$$= P\{u \in A\} \cdot P\{v \in B\} + P\{u \in B\} \cdot P\{v \in A\} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}.$$

În plus, $X = \sum_{uv \in E} X_{uv}$ este o variabilă aleatoare care numără câte muchii concține tăietura generată de bipartiția (A, B) și

$$M[X] = \sum_{uv \in E} M[X_{uv}] = \frac{m}{2} \Rightarrow P\left\{X \geqslant \frac{1}{2}\right\} > 0.$$

Astfel, va trebuie să existe o partiție cu proprietățile din enunț.

Propoziția 4

Fie G=(V,E) un graf cu n noduri și $m\geqslant \frac{n}{2}$ muchii. Atunci G are o mulțime stabilă (sau independentă) de noduri de cardinal cel puțin $\frac{n^2}{m}$.

dem.: Fie
$$d = \frac{2m}{n}$$
 gradul mediu în $G(\sum_{v \in V} d_G(v) = 2m)$; deoarece

 $m\geqslant \frac{n}{2}$ avem $(1-d^{-1})\geqslant 0$. Construim o mulțime stabilă folosind următorul algoritm aleator $(V=\{v_1,v_2,\ldots,v_n\})$:

1. for
$$(i = \overline{1, n})$$

cu probabilitate $\left(1-d^{-1}
ight)$ șterge nodul v_i ; // se elimină și toate

muchiile incidente cu v.

2. for $(e = uv \in E)$ sterge muchia e si nodul u sau v;

După execuția acestui algoritm, nodurile rămase formează o mulțime independentă. După pasul 1 un nod rămâne în graf cu probabilitate d^{-1} ; fie X_i o variabilă egală cu 1 dacă nodul v_i a rămas în graf și 0 altfel. Notăm $X = \sum_{i=1}^{N} X_i$ numărul de noduri rămase după pasul 1.

Deoarece fiecare X_i este o variabilă Bernoulli cu media d^{-1} , obținem $M[X] = nd^{-1}$.

Fie acum Y_{uv} , $uv \in E$, un alt set de variabile Bernoulli: $Y_{uv}=1$ dacă muchia uv rămâne în graf după pasul 1 și 0 altfel.

 $Y = \sum_{uv \in E} Y_{uv}$ este numărul de muchii rămse în graf după primul

pasul. Evident că $P\{Y_{uv}=1\}=d^{-2}$ (probabilitatea ca nici u, nici v să nu fie șterse), deci $M[Y_{uv}]=d^{-2}$ și $M[Y]=md^{-2}=\frac{n}{2d}$.

Fie Z numărul de noduri rămase în graf după pasul 2. Deoarece $Z \geqslant X - Y$ (mai sunt șterse încă cel mult Y noduri):

$$M[Z] \geqslant M[X] - M[Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{d} = \frac{n^2}{2m}.$$

- ▶ Următorul rezultat folosește noțiunea de *turneu*: un digraf D = (V, A) cu proprietatea că între orice două noduri există exact un singur arc: $\forall u, v \in V, |\{\vec{uv}, \vec{vu}\} \cap A| = 1$.
- ▶ Denumirea vine din aceea că nodurile pot fi asimilate unor jucători și fiecare pereche de jucători se confruntă o singură dată: $\vec{uv} \in A$ numai dacă u îl bate pe v.
- ▶ Un turneu D are proprietatea P_k dacă pentru orice mulțime de k jucători există un alt jucător care îi bate pe toți (k < |V|).
- ▶ Pentru un k dat, există un turneu cu proprietatea S_k ? Metoda oferă și o idee despre câte noduri trebuie să aibă turneul.

Propoziția 5

Fie
$$k \in \mathbb{N}^*$$
, dacă $\binom{n}{k} < (1-2^{-k})^{k-n} < 1$, atunci există un turneu cu n noduri care să aibă proprietatea P_k .

dem.: Construim mai întâi un turneu aleator astfel:

$$A \leftarrow \varnothing$$
:

$$for(\{u,v\}\subseteq V)$$

cu probabilitate $\frac{1}{2}$ adaugă \vec{uv} sau \vec{uv} la A;

Fie $M\subseteq V$, |M|=k; probabilitatea ca un nod $v\notin M$ să domine toate nodurile din M este 2^{-k} , deci probabilitatea ca să nu le domine pe toate cele din M este $(1-2^{-k})$. Evenimentele că două noduri distincte u, respectiv $v\neq u$ nu domină nodurile din M sunt independente, astfel probabilitatea ca mulțimea M să nu fie dominată de nici un nod din afara ei este $(1-2^{-k})^{n-k}$

Acum putem estima probabilitatea ca nici o mulțime S, de cardinal k, să nu fie dominată:

$$\leqslant \binom{n}{k} (1-2^{-k})^{n-k} < 1,$$

deci probabilitatea ca măcar una dintre mulțimile de cardinal k să fie dominate este nenulă.

Fie acum f(k) numărul minim de noduri ale unui turneu care are proprietatea P_k , se poate arăta ([Alon08]) că $f(k) = \mathcal{O}(k^2 2^k)$.

Evenimente aleatoare

- În cazul în care $|\Omega| \geqslant |\mathbb{R}|$ (i.e., cardinalul lui Ω este cel puțin continuu), evenimentele aleatoare se definesc diferit față de cazul discret.
- ▶ Diferența constă în aceea că nu orice submulțime $A \subseteq \Omega$ este în mod necesar eveniment aleator.
- ▶ Familia evenimentelor aleatoare este o σ -algebră $\mathcal{A} \subseteq \mathcal{P}(\Omega)$:
 - $\triangleright \varnothing, \Omega \in A;$
 - ▶ dacă $A_1, A_2 \in A$, atunci $A_1 \cap A_2 \in A$;
 - ▶ dacă $(A_n)_{n\geqslant 1}\subseteq \mathcal{A}$, atunci $\bigcup_{n\geqslant 1}A_n\in \mathcal{A}$.
- ▶ lar funcția de probabilitate este definită numai pe submulțimile din A (cu axiomele cunoscute):

$$P: \mathcal{A} \rightarrow [0,1].$$

Variabile aleatoare continue

- ▶ O funcție $X: \Omega \to \mathbb{R}$ este numită variabilă aleatoare dacă pentru orice J interval din $\overline{\mathbb{R}}, X^{-1}(J) \in \mathcal{A}$.
- ▶ O variabilă aleatoare $X: \Omega \to \mathbb{R}$ se numește continuă dacă are funcția de repartiție continuă.
- ▶ Câteodată această definiție se referă la toate cazurile când $X(\Omega)$ este de cardinal continuu.
- Distribuţia (repartiţia) unei astfel de variabile poate fi dată prin funcţia de repartiţie:

$$F: \mathbb{R} \to [0,1], F(a) = P(X \leqslant a),$$

▶ sau prin funcția de densitate (de masă), $f : \mathbb{R} \to [0, +\infty)$, astfel încât funcția de repartiție F poate fi descrisă astfel:

$$F(a) = P(X \leqslant a) = \int_a^a f(t) dt.$$

Variabile aleatoare continue

Feora probabilita plus die +∞

 Cu ajutorul funcției de densitate putem calcula (dacă integralele corespunzătoare există)

Media:
$$M(X) = \int_{-\infty}^{\infty} tf(t) dt$$
.

Dispersia: $D^2(X) = \int_{-\infty}^{+\infty} [t - M(X)]^2 f(t) dt$.

Probabilitățile asociate unei variabile aleatoare continue se cal-

$$P(a \leqslant X \leqslant b) = F(b) - F(a) = \int_{a}^{b} f(t) dt$$

Variabile aleatoare continue

- ▶ Observație: dacă F este continuă, P(X = a) = F(a) = 0 și $P(a \le X < b) = P(a < X \le b) = P(a < X < b)$.
- Pentru o variabilă aleatoare dată $X : \Omega \to \mathbb{R}$ operația de standardizare constă în următoarea transformare a variabilei X:

$$Y = \frac{X - M[X]}{D[X]}.$$

▶ Noua variabilă este "standard" pentru ca are

$$M[Y] = 0$$
 și $D^2[Y] = 1$.

Distribuția (legea) normală.

Este o distribuție notată $N(\mu, \sigma^2)$ cu funcția de densitate

$$f(t) = rac{1}{\sigma \sqrt{2\pi}} \cdot e^{-rac{(t-\mu)^2}{2\sigma^2}}.$$

▶ Dacă $X: N(\mu, \sigma^2)$, atunci

$$M[X] = \mu$$
 și $D^2[X] = \sigma^2$.

Legea normală standard.

▶ Distribuția N(0,1) se numește normală standard. Valorile unei variabile distribuite normal au următoarea împrăștiere:

%68 se găsesc la cel mult o deviație standard față de medie; %95 se găsesc la cel mult două deviații standard față de medie; %99.7 se găsesc la cel mult trei deviații standard față de medie;

Distribuția Student (sau t).

Este o distribuție notată t(r) cu funcția de densitate

$$f(x) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{r\pi}\Gamma(\frac{r}{2})} \left(1 + \frac{x^2}{r}\right)^{-\frac{r+1}{2}}$$

unde
$$\Gamma(y) = \int x^{y-1} e^{-x} dx$$

Pentru o variabilă aleatoare X distribuită Student cu r>2 grade de libertate avem

$$M[X] = 0$$
 și $D^2[X] = \frac{r}{r-2}$.

Distribuția Fisher-Snedecor (sau F).

Este o distribuție notată $F(r_1, r_2)$ cu funcția de densitate

$$f(x) = \frac{\sqrt{\frac{(r_1 x)^{r_1} r_2^{r_2}}{(r_1 x + r_2)^{r_1 + r_2}}}}{xB\left(\frac{r_1}{2}, \frac{r_2}{2}\right)},$$

unde
$$B(x,y) = \int_{a}^{b} u^{x-1} (1-u)^{y-1} du$$
.

Pentru o variabilă aleatoare X distribuită $F(r_1, r_2)$ avem

$$M[X] = \frac{r_2}{r_2 - 2}, r_2 > 2 \text{ si } D^2[X] = \frac{2r_2^2(r_1 + r_2 - 2)}{r_1(r_2 - 2)^2(r_2 - 4)}, r_2 > 4.$$

Distribuția χ^2 .

Este o distribuție notată $\chi^2(n)$ $(n\in\mathbb{N}^*\setminus\{1\})$ cu funcția de densitate

$$f(x) = \frac{1}{2^{n/2} \Gamma\left(\frac{n}{2}\right)} x^{n/2-1} e^{-n/2},$$

unde
$$\Gamma(y) = \int_{-\infty}^{+\infty} x^{y-1} e^{-x} dx$$
.

Pentru o variabilă aleatoare X distribuită $\chi^2(n)$ avem

$$M[X] = n \text{ si } D^2[X] = 2n$$

Bibliography

- Alon, N., J. H. Spencer, The probabilistic method, Wiley, 2008.
- Bertsekas, D. P., J. N. Tsitsiklis, *Introduction to Probability*, Athena Scietific, 2002.
- Lipschutz, S., *Theory and Problems of Probability*, Scahaum's Outline Series, McGraw-Hill. 1965.
- Motwani R., P. Raghavan *Randomized Algorithms*, Cambrifge University Press, 1995.
- Ross, S. M., A First Course in Probability, Prentice Hall, 5th edition, 1998.
- Spencer, J. H., Ten lectures on the probabilistic method, SIAM. 1994.
- Stone, C. J., A Course in Probability and Statistics, Duxbury Press, 1996.