Multivariate Gaussian Distribution

We have $x\in\mathbb{R}^n$. Now instead of modelling $p(x_1),p(x_2),\ldots$, etc separately, model p(x) all in one go. Parameters: $\mu\in\mathbb{R}^n,\sum\in\mathbb{R}^{n\times n}$ (covariance matrix)

Formula for Multivariate Gaussian Distribution:

$$p(x;\mu,\Sigma) = rac{1}{(2\pi)^{rac{n}{2}}|\Sigma|^{rac{1}{2}}}expigg(-rac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)igg)$$

Parameter Fitting

Given training set $\{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$

$$\mu = rac{1}{m} \sum_{i=1}^m x^{(i)} \qquad \quad \Sigma = rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu) (x^{(i)} - \mu)^T$$

Anomaly Detection with Multivariate Gaussian

1. Fit model p(x) by setting μ and Σ

$$\mu = rac{1}{m} \sum_{i=1}^m x^{(i)} \qquad \quad \Sigma = rac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu) (x^{(i)} - \mu)^T$$

2. Given a new example x, compute

$$p(x) = rac{1}{(2\pi)^{rac{n}{2}} |\Sigma|^{rac{1}{2}}} expigg(-rac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) igg)$$

Flag an anomaly if $p(x) < \epsilon$

Relation to Original Model

We have the original model as:

$$p(x) = p(x_1; \mu_1, \sigma_1^2) imes p(x_2; \mu_2, \sigma_2^2) imes \cdots imes p(x_n; \mu_n, \sigma_n^2)$$

The original model corresponds to multivariate Gaussian, where the contours of the Gaussian are always axis alligned. Which means we will have our co-variance matrix like:

$$\Sigma = egin{bmatrix} \sigma_1^2 & 0 & 0 & \dots & 0 \ 0 & \sigma_2^2 & 0 & \dots & 0 \ 0 & 0 & \sigma_3^2 & \vdots & 0 \ 0 & 0 & 0 & \dots & \sigma_n^2 \end{bmatrix}$$

Original Model	Multivariate Gaussian
Manually create features to capture anomalies where x_1, x_2 take unusual combination of values	Automatically captures correlations between features
Computationally cheaper (scales better to large values of n)	Computationally more expensive due to computation of Σ^{-1}
Works okay even if m (Training set size) is small	Must have $m>n,$ or else Σ is non-invertible