

date 11/05/2024

page 1 of 9

SERIES: PDQ10-D | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 10 W isolated output
- industry standard 1" x 1" package
- 4:1 input range
- single/dual regulated output
- over voltage, input under voltage lockout, and short circuit protections
- 1,500 Vdc isolation voltage
- five-sided shielded case
- remote on/off control
- output trim
- -40 to 105°C temperature range
- efficiency up to 86%

Notes:

1. At full load, nominal input, 20 MHz bandwidth oscilloscope, with 10 µF tantalum and 1 µF ceramic capacitors on the output.

2. All specifications are measured at Ta=25°C, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models	9 18	24 48	36 75	Vdc Vdc
surge voltage	for maximum of 100 ms 24 Vdc input models 48 Vdc input models			50 100	Vdc Vdc
current	24 Vdc input models 48 Vdc input models			1.4 0.7	A A
under voltage shutdown	24 Vdc input models, power up 24 Vdc input models, power down 48 Vdc input models, power up 48 Vdc input models, power down		8.8 8.0 17 16		Vdc Vdc Vdc Vdc
remote on/off¹	turn on (3.5~36 Vdc or open circuit) turn off (<1.2 Vdc)				
filter	LC type				
input reverse polarity protection	no				
input fuse	3 A time delay fuse for 24 Vdc input models (recommended) 1.5 A time delay fuse for 48 Vdc input models (recommended)				

Notes: 1. CMOS or open collector TTL, reference to -Vin.

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models			3,300	μF
	5 Vdc output models			2,200	μF
	12 Vdc output models			1,000	μF
maximum capacitive load	15 Vdc output models			680	μF
·	±5 Vdc output models			1,200	μF
	±12 Vdc output models			470	μF
	±15 Vdc output models			330	μF
voltage accuracy				±1.5	%
line regulation	from high line to low line			±0.5	%
	from 100% load to minimum load				
load regulation	single output models			±0.5	%
9	dual output models			±1	%
voltage balance	dual output models			±1	%
cross regulation	load cross variation 25%/100% (dual output models)			±5	%
turn-on delay time, from input	from Vin, min to 10% Vo		2		ms
turn-on delay time, from on/off control	from Von/off to 10% Vo		2		ms
rise time	from 10% Vo to 90% Vo		1.5		ms
adjustability ²	see application notes		±10		%
switching frequency	at nominal Vin, full load		280		kHz
	75%-100% step load change				
dynamic load response	error band (Vout)		5		%
	recovery time		500		μs
temperature coefficient			±0.03		%/°C

Note: 2. For single output models only.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
	zener or TVS clamp				
	3.3 Vdc output models		3.9		Vdc
over voltage protection	5 Vdc output models (single and dual)		6.2		Vdc
	12 Vdc output models (single and dual)		15		Vdc
	15 Vdc output models (single and dual)		18		Vdc
over current protection		120			%
short circuit protection	continuous, automatic recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units	
isolation voltage	input to output for 1 minute	1,500			Vdc	
isolation resistance	input to output	1,000			MΩ	
isolation capacitance	input to output	1,000			pF	
conducted emissions	EN 55022 Class A & Class B (external circuit required, see Figure 3)					
MTBF	as per MIL-HDBK-217F, GB		1,300,000		hours	
RoHS	2011/65/EU					

ENVIRONMENTAL

parameter conditions/description		min	typ	max	units
operating temperature	see derating curves	-40		105	°C
storage temperature		-55		125	°C
operating humidity	non-condensing			95	%

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
wave soldering	see wave soldering profile			260	°C

Notes:

- 1. Soldering materials: Sn/Cu/Ni
 2. Ramp up rate during preheat: 1.4°C/s (from 50°C to 100°C)
 3. Soaking temperature: 0.5°C/s (from 100°C to 130°C), 60±20 seconds
 4. Peak temperature: 260°C, above 250°C for 3~6 seconds
 5. Ramp down rate during cooling: -10°C/s (from 260°C to 150°C)

WAVE SOLDERING PROFILE

MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	1.00 x 1.00 x 0.4 [25.4 x 25.4 x 10.2 mm]				inches
case material	black coated copper with non-conductive base				
weight			18		g

MECHANICAL DRAWING

units: inches [mm] tolerance: $X.XX \pm 0.02$ [± 0.51]

tolerance. A.AA ±0.02 [±0.5]
$X.XXX \pm 0.010 [\pm 0.25]$
pin diameter tolerance: $\pm 0.004[\pm 0.1]$

PIN CONNECTIONS					
PIN	Fund	ction			
	Single	Dual			
1	+Vin	+Vin			
2	-Vin	-Vin			
3	+Vout	+Vout			
4	Trim	Common			
5	-Vout	-Vout			
6	Remote	Remote			

Recommended PCB Layout Top View

DERATING CURVE

EFFICIENCY CURVES

Output Current (%)

Output Current (%)

TEST CONFIGURATIONS

Input Ripple Current & Output Noise

Figure 1 Measuring Input Ripple Current

Figure 2 Measuring Output Ripple And Noise

Table 1

L1	1 μΗ
C1	6.8 µF ceramic capacitor
Cin	none

Table 2

C1	10 μF tantalum capacitor
C2	1 μF ceramic capacitor

EMC RECOMMENDED CIRCUIT

Test Condition

Input Voltage: Nominal Output Load: Full Load

Figure 3 Conducted Emissions Test Circuit

Table 3

EN55022 Class A Recommended External Circuit Components							
Input Voltage C1 C2 C3 L1 (Vdc)							
24	NC	10 μF / 50 V	10 μF / 50 V	short			
48	NC	4.7 μF / 100 V	4.7 μF / 100 V	short			

Table 4

EN55022 Class B Recommended External Circuit Components					
Input Voltage (Vdc)	C1	C2	C3	L1	
24	10 μF / 50 V	NC	10 μF / 50 V	3.3 µH	
48	4.7 μF / 100 V	NC	4.7 μF / 100 V	3.3 µH	

APPLICATION NOTES

Output Voltage Trimming

The output voltage can be adjusted (single outputs only) by using the trim pin and the use of either an external trim pot or the use of a single fixed resistor (see Figures below). If the trim function is not needed, leave the trim pin open.

Figure 4 Trim Adjustments Using A Trimpot

Figure 5 Trim Adjustments To Increase **Output Voltage Using A Fixed Resistor**

Figure 6 Trim Adjustments To Decrease **Output Voltage Using A Fixed Resistor**

$$R_{trim-up} = \left(\frac{Vr \times R1 \times (R2 + R3)}{(Vo - V_{o,nom}) \times R2}\right) - Rt \quad (k\Omega)$$

$$R_{trim-down} = R1 \times \left(\frac{Vr \times R1}{(V_{o,nom} - Vo) \times R2} - 1\right) - Rt \quad (k\Omega)$$

Table 5

Output R1 R2 Vr R3 Rt Voltage $(k\Omega)$ $(k\Omega)$ $(k\Omega)$ $(k\Omega)$ (V) (Vdc) 3.3 2.74 0.27 9.1 1.24 1.8 5 2.5 2.32 2.32 0 8.2 12 6.8 2.4 2.32 22 2.5 15 8.06 2.4 3.9 27 2.5

Note: $R_{\text{trim-up}}$ is the external resistor in $k\Omega$ $R_{\text{trim-down}}$ is the external resistor in $k\Omega$ $V_{\text{O, nom}}$ is the nominal output voltage V_{O} is the desired output voltage

R1, R2, R3, Rt, and Vr are internal (see Table 5).

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Inc | SERIES: PDQ10-D | DESCRIPTION: DC-DC CONVERTER date 11/05/2024 | page 9 of 9

REVISION HISTORY

rev.	description	date
1.0	initial release	07/12/2016
1.01	derating curve and circuit figures updated	07/26/2021
1.02	company address updated	11/05/2024

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 15575 SW Sequoia Pkwy #100 Fax 503.612.2383 Portland, OR 97224 800.275.4899

cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.