UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Listado 4

Algebra Lineal (520131) Algebra II (520136)

- 1.- Encuentre una ecuación vectorial, las ecuaciones paramétricas y simétricas de la recta que:
- a) contenga a los puntos (-4, 1, 0) y (3, 0, 7)
- b) contenga al punto (3,1,2) y que sea paralela al vector $3\mathbf{i} \mathbf{j} \mathbf{k}$
- c) Contega al punto (1, -2, -3) y que sea paralela a la recta $\frac{x+1}{5} = \frac{y-2}{-3} = \frac{z-4}{2}$.
- d) Sea prependicular a la recta $x-3=\frac{y+1}{2}=\frac{z-2}{-1}$ y que contenga al punto (-1,0,3)
- 2.- Verifique que las rectas:

$$\frac{x-3}{2} = \frac{y+1}{4} = \frac{z-2}{-1} \quad \text{y} \quad \frac{x-3}{5} = \frac{y+1}{-2} = \frac{z-3}{2}$$
 son ortogonales

3.- En los siguientes problemas encuentre una recta L ortogonal a los dos rectas dadas y que pase por el punto dado.

a)
$$\frac{x+2}{-3} = \frac{y-1}{4} = \frac{z}{-5}$$
; $\frac{x-3}{7} = \frac{y+2}{-2} = \frac{z-8}{3}$; $(1, -3, 2)$

b)
$$\frac{x-2}{-4} = \frac{y+3}{-7} = \frac{z+1}{3}$$
; $\frac{x+2}{3} = \frac{y-5}{-4} = \frac{z+3}{2}$; $(-4,7,3)$

- 4.- En los siguentes problemas encuentre la ecuación del plano que:
 - contenga al punto (2, -3, 1) y cuyo vector normal sea n = 2i j + k
 - contenga al punto (3,1,-2) y cuyo vector normal sea n=i-j,
 - que contenga a los puntos (-3, -6, 12), (2, 3, 7) y (-4, 1, 3),
 - que contenga a los puntos (7, -1, 0), (-2, 1, -3) y (-4, -1, -6),
 - que sus puntos equidisten de los puntos (-1, 3, -2) y (1, -2, 1).
 - que contenga a los puntos (2,3,1) y (1,-2-1) y sea perpendicular al plano x+2y-z=2

1

5.- Verifique que los vectores $2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{k}$ y $3\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$ son coplanares. Encuentre la ecuación de plano que los contiene.

6.- Verifique que el conjunto de las matrices de orden mxn con elementos reales, $\mathcal{M}_{mxn}(\mathbb{R})$, con las operaciones de suma y producto por escalar conocidas es espacio vectorial.

7.- Sea $V = \mathcal{C}(I\!\!R)$, el conjunto de las funciones continuas sobre $I\!\!R$ con valores reales, con las operaciones de suma y producto por escalar siguientes: Si f y $g \in \mathcal{C}(I\!\!R)$ y α es un escalar, entonces

i)
$$(f+g)(x) = f(x) + g(x)$$

ii)
$$(\alpha f)(x) = \alpha f(x)$$

Verifique que $\mathcal{C}(\mathbb{R})$ es un espacio vectorial.

8.- En cada uno de los siguientes casos verfique que el subconjunto H del espacio vectorial V que se indica es un subespacio vectorial:

•
$$V = \mathbb{R}^3$$
; $H = \{x \in \mathbb{R}^3 / x = (a, 0, b)\}$

•
$$V = \mathbb{R}^4$$
, $H = \{x \in \mathbb{R}^4 / x = (a, -a, b, -b)\}$

• $V = \mathcal{M}_3(\mathbb{R})$; H el conjunto de las matrices triangulares inferiores de orden 3.

•
$$V = \mathcal{M}_2(\mathbb{R}); H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a = b + c + d \right\}$$

•
$$V = \mathcal{P}_3(I\!\! R); H = \{at^3 + bt^2 + ct + d \in \mathcal{P}_3(I\!\! R) / c = a + b, d = -a\}$$

• El conjunto de soluciones del sistema homogéneo $Ax = \theta$, donde A es una matriz mxn y x de nx1

9.- Sean U, V, y W los siguientes subespacios de \mathbb{R}^3

$$H_1 = \{(x, y, z) / x + y + z = 0\}$$

 $H_2 = \{(x, y, z) / x = z\}$

$$H_3 = \{(x, y, z) / x = y = 0\}$$

Caracterice los elementos de cada uno de los siguientes subespacios:

a)
$$H_1 + H_2$$
 b) $H_1 + H_3$ c) $H_1 \cap H_3$ d) $H_2 \cap H_3$

10.- Dados los subespacios de $\mathcal{P}_2(\mathbb{R})$: $H_1 = \{at^2 + bt + c/c = b - 2a\}$ y $H_2 = \{at^2 + bt + c/c = a + 2b\}$. Caracterice los subespacios $H_1 + H_2$ y $H_1 \cap H_2$. $\mathcal{U}_1 + \mathcal{U}_2$ es suma directa?.

ADP/

17 de Mayo de 2004.