

Implementing adhesion forces for a neuromechanical model of Drosophila Melanogaster: NeuroMechFly

Semester project presentation by: Laetitia Schwitter

Supervised by: Alfred Stimpfling

Model of Adult Drosophila Melanogaster: NeuroMechFly

Biomechanical model:

- 7 DoF per leg are required for replay leg kinematics
- Currently run on Pybullet

• Utility:

 Allows to measure contact forces and torques (i.e. ground reaction forces)

Midterm presentation Semester Project / Laetitia Schwitter

EPFL

NMF on Pybullet vs MwoCo vs IsaacGym

Pybullet:

- Uses SDF files
- Allows for collision detection (rigid and soft dynamics)
- Inverse kinematics

• MuJoCo:

- Uses XML files instead of SDF files
 - Actuators (i.e. position, velocity for each joint, adhesion)

IsaacGym:

- Rendering is more time consuming.
- Runs on GPU

Midterm presentation Semester Project / Laetitia Schwitter

Experimental SetUp studied for the project

aetitia Schwitter

Focus:

- Fly walking on ball treadmill surface (not flat terrain)
- Ball velocity tracking data exists (FicTrac) for kinematic replay

Initial conditions:

- Stretch pose
- Drosophila is tethered at thorax

https://github.com/NeLy-EPFL/NeuroMechFly/blob/main/docs/images/km_walking.gif

Aim:

- Similar/ higher correlation performance as NeuroMechFly on Pybullet
- Assume that with these parameters remain fixed when adding adhesion

Parameters to tune:

- Friction force on the ball
- During position control : KPGain -> influences contact profile
- Relative ball position
- Stiffness of joints and damping of the joints

How?

 Grid search (2 phases) (even partition) or asynchronized hyperparameter optimization

Part 1: Tune parameters for ball locomotion in MwoCo

Laetitia Schwitter

EPFL

• Accuracy measurement:

 Comparing ball rotation velocities to the FicTrac raw data using MSE and Spearman correlations

• Expectations:

 Similar performance (not able to follow high frequency components) (cf. Bryan Gotti)

Cf. Bryan Gotti

(b) Optimal grid search configuration

EPFL

Physiology:

- Adhesion allows the fly to climb [1]
- one pretarsus suffices the fly to hang for >1 s [1]
- Model: When should adhesion apply?
 - No adhesion: When fly leg is in swing
 - Adhesion: When fly is in contact to ball

https://pbs.twimg.com/media/C58Ks8fU0AAwcFH.jpg

Part 2: **Implement Adhesion Forces**

Laetitia Schwitter

Adhesion in MwoCo

- MuJoCo vs Pybullet
 - MuJoCo allows to add an adhesion actuator

• Accuracy measurement:

 Comparing ball rotation velocities to the FicTrac raw data using MSE and Spearman correlations

• Expectations:

Improved reaction to high frequency changes

Part 3: Verify Adhesion Forces

Gantt Chart - Until week 6

Project Start Date:		Feb					
Bachelor Project: Implement adhesion forces in a neuromechanical model							
of adult Drosophila melanogaster		20-Feb	27-Feb	06-Mar	13-Mar	20-Mar	27-Ma
Activity	Status	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK
Project	In progress						
SetUp/ Administration	Completed						
Literature introduction	Completed						
Install Softwares	Completed						
Part 1: Tune parameters for Ball locomotion	In progress						
Verify correct 3D collision implementation in MuJoCo	In progress						
Contacts tuning in MuJoCo for both floor and ball surface	In progress						
Identify how to trace specific positions on the ball and leg in MuJoCo for calculations	In progress						
Identify necessary ball and fly parameters in PyBullet and how they can be accessed	In progress						
Part 2: SetUp Adhesion Forces	Not started						
Research on adhesion/ friction forces	In progress						
Create a theoretical model for Adhesion forces specific to D. Melanogaster	Not started						
Implement model in code (Adhesion On/ Off switch)	Not started						
Part 3: Validate Adhesion Forces	Not started						
Compare ball displacement in the simulation and in the real fly	Not started						
Adjust Adhesion Forces / Parameters, possibly go back to task #12	Not started						
Part 4: Presentation / Report	Not started						
Write-up Report	Not started						
Prepare Presentation	Not started						

Gantt Chart

Project Start Date:		Apr			May				Jun				
Bachelor Project: Implement adhesion forces in a neuromechanical model													
of adult Drosophila melanogaster		03-Apr	17-Apr	24-Apr	01-May	08-May	15-May	22-May	29-May	05-Jun	12-Jun	19-Jun	26-Jun
Activity	Status	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11	WEEK 12	WEEK 13	WEEK 14	WEEK 15	WEEK 16	WEEK 17	WEEK 18
Project	In progress										Final		Final
SetUp/ Administration	Completed												<u>a</u>
Literature introduction	Completed										Rep		res
Install Softwares	Completed										, A		ent
Part 1: Tune parameters for Ball locomotion	In progress										16 J		ntation
Verify correct 3D collision implementation in MuJoCo	In progress										June		on 30
Contacts tuning in MuJoCo for both floor and ball surface	In progress												
Identify how to trace specific positions on the ball and leg in MuJoCo for calculations	In progress												June
Identify necessary ball and fly parameters in PyBullet and how they can be accessed	In progress												
Part 2: SetUp Adhesion Forces	Not started												
Research on adhesion/ friction forces	In progress												
Create a theoretical model for Adhesion forces specific to D. Melanogaster	Not started												
Implement model in code (Adhesion On/ Off switch)	Not started												
Part 3: Validate Adhesion Forces	Not started												
Compare ball displacement in the simulation and in the real fly	Not started												
Adjust Adhesion Forces / Parameters, possibly go back to task #12	Not started												
Part 4: Presentation / Report	Not started												
Write-up Report	Not started												
Prepare Presentation	Not started												

aetitia Schwitter

Current difficulties

Progress

- Extracting and overwriting the parameters from MuJoCo for hypermeter tuning
- Adapting IsaacGym code to MuJoCo
- Choosing the exact parameters to change

- Familiarize with MuJoCo,
 Pybullet, IsaacGym
- Adapting IsaacGym code to MuJoCo

Midterm presentation Semester Project / Laetitia Schwitter

References

Laetitia Schwitter

- [1] Lobato-Rios, V., Ramalingasetty, S.T., Özdil, P.G. *et al.* NeuroMechFly, a neuromechanical model of adult *Drosophila melanogaster*. *Nat Methods* **19**, 620–627 (2022). https://doi.org/10.1038/s41592-022-01466-7
- [2] Ramdya, P., Thandiackal, R., Cherney, R. *et al.* Climbing favours the tripod gait over alternative faster insect gaits. *Nat Commun* **8**, 14494 (2017). https://doi.org/10.1038/ncomms14494
- [3] "XML Reference#." *MuJoCo Documentation*, https://mujoco.readthedocs.io/en/stable/XMLreference.html#actuator-adhesion.