Supplementary Materials for

Predicting PRDM9 binding sites by a convolutional neural network and verification using genetic recombination map

Architecture and prediction accuracy without data augmentation

In addition to using data augmentation to train the EBCN, we used two other methods for hyperparameter search, training, and evaluation of prediction accuracy with test data. The first method is that 153,189 DNA fragments of 100-bp length with the ChIP-seq peak in its center were used as positive training data (training method 1). Another one is that the same number as training method 1 of DNA fragments of 100-bp length with ChIP-seq core at a random position were used as positive training data (training method 2). The negative data were prepared so that the ratio of positive data and negative data becomes 1:1. The hyperparameter search and calculation for metrics were done in the same way as the training method with data augmentation. The consequences for training methods 1 and 2 are shown in Table S1–S3 and Table S4–S6 respectively.

Table S1 Optimized network structure of final CNN for training method 1

Layers	Parameters	
Equivariant Conv1D Layer 1	Filters = 34; kernel size = 22; activation	
	function = LReLU	
Equivariant MC Dropout Layer 1	Dropout rate $= 0.1731$	
Spatial MaxPooling1D Layer	Pool size $= 6$	
Equivariant Conv1D Layer 2	Filters = 34; kernel size = 4;	
	activation function = LReLU	
Equivariant MC Dropout Layer 2	Dropout rate $= 0.1731$	
Equivariant Conv1D Layer 3	Filters = 34; kernel size = 4;	
	activation function = LReLU	
Equivariant MC Dropout Layer 3	Dropout rate $= 0.1731$	
Equivariant Conv1D Layer 4	Filters = 34 ; kernel size = 4 ;	
	activation function = LReLU	
Equivariant MC Dropout Layer4	Dropout rate = 0.1731	
Reverse Complement Sum Pooling Layer	None	
Global Spatial MaxPooling1D Layer	None	
Dense Layer	Activation function = Softmax	

Table S2 Hyperparameters of backpropagation for training method 1 $\,$

Hyperparameter	Optimal Value
Learning rate	1.659×10^{-3}
L2 coefficient	0.0011
Batch size	64
Optimizer	Adam

Table S3 Metrics on prediction for training method 1

Metrics	CNN
AUC	0.9125
Accuracy	0.8422
Sensitivity (True positive rate)	0.8272
Specificity	0.8425

Table S4 Optimized network structure of final CNN for training method 2

Layers	Parameters
Equivariant Conv1D Layer 1	Filters = 54; kernel size = 40; activation
	function = LReLU
Equivariant MC Dropout Layer 1	Dropout rate = 0.2360
Spatial MaxPooling1D Layer	Pool size $= 6$
Equivariant Conv1D Layer 2	Filters = 54 ; kernel size = 2 ; activation
	function = LReLU
Equivariant MC Dropout Layer 2	Dropout rate = 0.2360
Equivariant Conv1D Layer 3	Filters = 54 ; kernel size = 2 ; activation
	function = LReLU
Equivariant MC Dropout Layer 3	Dropout rate = 0.2360
Reverse Complement Sum Pooling Layer	None
Global Spatial MaxPooling1D Layer	None
Dense Layer	Activation function = Softmax

Table S5 Hyperparameters of backpropagation for training method 2 $\,$

Hyperparameter	Optimal Value	
Learning rate	9.652×10^{-2}	
L2 coefficient	0.0033	
Batch size	32	
Optimizer	Momentum	

Table S6 Metrics on prediction for training method 2 $\,$

Metrics	CNN
AUC	0.8951
Accuracy	0.8231
Sensitivity (True positive rate)	0.8083
Specificity	0.8234