Bounding distances to unsafe sets

Jared Miller, Mario Sznaier

June 3, 2022

SMAI-MODE: Optimal Transport 2

Main Ideas

Quantify safety of trajectories by distance to unsafe set

Relax distance using optimal transport theory

Develop occupation measure programs to bound distance

Flow System Setting

$$X_0 = \{x \mid (x_1 - 1.5)^2 + x_2 \le 0.4^2\}$$

$$X_u = \{x \mid x_1^2 + (x_2 + 0.7)^2 \le 0.5^2,$$

$$\sqrt{2}/2(x_1 + x_2 - 0.7) \le 0\}$$

Distance Function

Metric space (X, c) satisfying $\forall x, y \in X$:

$$c(x,y) > 0$$
 $x \neq y$
 $c(x,x) = 0$
 $c(x,y) = c(y,x)$
 $c(x,y) \leq c(x,z) + c(z,y)$ $\forall z \in X$

Point-Unsafe Set distance: $c(x; X_u) = \min_{y \in X_u} c(x, y)$

Distance Estimation Problem

$$P^* = \min_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$$
$$\dot{x}(t) = f(t, x), \quad \forall t \in [0, T].$$

L₂ bound of 0.2831

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^* x_0^*, t_p^*)$:

 x_p^* location on trajectory of closest approach

 y^* location on unsafe set of closest approach

 x_0^* initial condition to produce x_p^*

 t_p^* time to reach x_p^* from x_0^*

Safety Background

Barrier Program

Barrier function $B: X \to \mathbb{R}$ indicates safety

$$B(x) \le 0$$
 $\forall x \in X_u$
 $B(x) > 0$ $\forall x \in X_0$
 $f(x) \cdot \frac{\partial B}{\partial x}(x) \ge 0$ $\forall x \in X$

Half-circle Contours

Unsafe set $X_u = \{x \mid 1 - x_1^2 - x_2^2 \ge 0, -x_1 - x_2 \ge 0\}$

Safety Margin

Unsafe set $X_u = \{x \mid p_i(x) \geq 0 \ \forall i = 1 \dots N_u\}$

Safety margin $p^* = \max \min_i p_i(x)$ along trajectories

If $p^* < 0$, no trajectories enter X_u (safe)

safe: $p^* \le -0.2831$

Safety Margin Scaling

Scale factor in constraints

$$q \le 1 - x_1^2 - x_2^2$$

$$q \leq s(-x_1-x_2)$$

Distance vs. Safety Margin

Peak Estimation

Peak Estimation Background

Find maximum value of p(x) along trajectories

$$P^* = \max_{t, x_0 \in X_0} p(x(t \mid x_0))$$
$$\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$$

Occupation Measure

Time trajectories spend in set

Test function
$$v(t,x) \in C([0,T] \times X)$$

Single trajectory:

$$\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$$

Averaged trajectory:
$$\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$$

Connection to Measures

Measures: Initial μ_0 , Peak μ_p , Occupation μ

For all functions $v(t,x) \in C([0,T] \times X)$

$$\mu_0^*$$
: $\langle v(0,x), \mu_0^* \rangle = v(0,x_0^*)$

$$\mu_p^*$$
: $\langle v(t,x), \mu_p^* \rangle = v(t_p^*, x_p^*)$

$$\mu^*$$
: $\langle v(t,x), \mu^* \rangle = \int_0^{t_p^*} v(t, x^*(t \mid x_0^*)) dt$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \max \langle p(x), \mu_p \rangle$$
(1a)
$$\langle v(t, x), \mu_p \rangle = \langle v(0, x), \mu_0 \rangle + \langle \mathcal{L}_f v(t, x), \mu \rangle \quad \forall v \quad \text{(1b)}$$

$$\langle 1, \mu_0 \rangle = 1 \quad \text{(1c)}$$

$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X) \quad \text{(1d)}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \quad \text{(1e)}$$

Test functions
$$v(t,x) \in C^1([0,T] \times X)$$

Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$
 $(\mu_0^*, \mu_n^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_n^* \rangle$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Distance Program

Distance Estimation Problem (reprise)

$$P^* = \min_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$$
$$\dot{x}(t) = f(t, x), \quad \forall t \in [0, T].$$

L₂ bound of 0.2831

Distance Relaxation

Distance in points \rightarrow Earth-Mover distance

$$c(x,y) \qquad \langle c(x,y), \eta \rangle x \in X \quad \to \quad \langle 1, \eta \rangle = 1 y \in X_u \qquad \eta \in \mathcal{M}_+(X \times X_u)$$

Joint (Wasserstein) probability measure η

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\mu_0^*$$
: $\delta_{x=x_0^*}$

$$\mu_p^*$$
: $\delta_{t=t_p^*} \otimes \delta_{x=x_p^*}$

$$\eta^*$$
: $\delta_{\mathbf{x}=\mathbf{x}_p^*}\otimes\delta_{\mathbf{y}=\mathbf{y}^*}$

Occupation Measure
$$\forall v(t,x) \in C([0,T] \times X)$$

$$\mu^*$$
: $\langle v(t,x),\mu\rangle = \int_0^{t_p^*} v(t,x^*(t\mid x_0^*))dt$

Distance Program (Measures)

Infinite Dimensional Linear Program (Convergent)

$$\begin{split} \rho^* &= \min \quad \langle c(x,y), \eta \rangle \\ \langle w(x), \eta(x,y) \rangle &= \langle w(x), \mu_p(t,x) \rangle \qquad \forall w \\ \langle v(t,x), \mu_p \rangle &= \langle v(0,x), \mu_0 \rangle + \langle \mathcal{L}_f v(t,x), \mu \rangle \qquad \forall v \\ \langle 1, \mu_0 \rangle &= 1 \\ \eta &\in \mathcal{M}_+(X \times X_u) \\ \mu_p, \ \mu &\in \mathcal{M}_+([0,T] \times X) \\ \mu_0 &\in \mathcal{M}_+(X_0) \end{split}$$

Prob. Measures: $\langle 1, \mu_0 \rangle = \langle 1, \mu_p \rangle = \langle 1, \eta \rangle = 1$

Approximation and Recovery

Use moment-SOS hierarchy (Archimedean assumption)

Bounds:
$$p_d^* \le p_{d+1}^* \le ... \le p^* = P^*$$

Attempt recovery if LMI solution has low rank

Moment matrices for (μ_0, μ_p, η) are rank-1

Related to optima extraction in polynomial optimization

Moon L2 Contours

Inside one circle, outside another

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Distance Example (Twist)

'Twist' System, T = 5

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)/2$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Distance Variations

Distance Variations

Uncertainty in dynamics

Lifted distances (with absolute values)

Sparsity

Set-Set distances for shape safety

Distance Uncertainty

Time dependent uncertainty $w(t) \in W \ \forall t \in [0, T]$

Dynamics $\dot{x}(t) = f(t, x(t), w(t))$

Young measure $\mu(t, x, w)$, Liouville term $\langle \mathcal{L}_{f(t,x,w)} v(t,x), \mu \rangle$

L₂ bound of 0.1691

Lifted Distance

LP lifts to deal with absolute values

$$||x-y||_{\infty}$$

$$||x - y||_{\infty}$$
 min q

$$- q < \langle x_i - y_i, \eta \rangle < q$$

$$||x - y||_1$$
 $\min \sum_i q_i$ $-q_i \le \langle x_i - y_i, \eta \rangle \le q_i$

$$||x - y||_3^3 \qquad \min \quad \sum_i q_i$$

Half-Circle L1 Contours

Lifted Distance (L1) Example

 L_1 bound of 0.4003

Sparsity

Separable
$$c(x, y) = \sum_i c_i(x_i, y_i)$$

Use correlative sparsity with measures and cliques

$$\eta_k$$
: $I_k = (x_k : x_n, y_1 : y_k)$ $\forall k = 1, \ldots, n$

Sparse decomposition of η :

$$\min \sum_{i} \langle c_i(x_i, y_i), \eta_i \rangle \qquad \eta^1 \in \mathcal{M}_+(X \times \mathbb{R})
\pi_\#^{I_k \cap I_{k+1}} \eta_k = \pi_\#^{I_k \cap I_{k+1}} \eta_{k+1} \qquad \eta^k \in \mathcal{M}_+(\mathbb{R}^{n+1})
\pi_\#^{\times} \mu^p = \pi_\#^{\times} \eta_1 \qquad \eta^n \in \mathcal{M}_+(\mathbb{R} \times X_u)$$

Shapes along Trajectories

Orientation $\omega(t) \in \Omega$, shape S

Body to global coordinate transformation A:

$$A: S \times \Omega \rightarrow X$$

$$(s,\omega)\mapsto A(s;\omega)$$

Angular Velocity = 0 rad/sec

Angular Velocity = 1 rad/sec

Set-Set Distance Problem

Set-Set distance between $A(\cdot; \omega) \circ S$ and X_u given ω

$$P^* = \min_{t, \omega_0 \in \Omega_0, s \in S} c(x(t); X_u)$$

$$x(t) = A(s; \omega(t \mid \omega_0)) \quad \forall t \in [0, T]$$

$$\dot{\omega}(t) = f(t, \omega) \qquad \forall t \in [0, T]$$

Set-Set Program (Measures)

Add new 'shape' measure μ_s

$$\begin{split} \rho^* &= \min \quad \langle c(x,y), \eta \rangle \\ &\langle v(t,x), \mu_p \rangle = \langle v(0,x), \mu_0 \rangle + \langle \mathcal{L}_f v(t,x), \mu \rangle \qquad \forall v \\ &\langle w(x), \eta(x,y) \rangle = \langle w(A(s;\omega)), \mu_s(s,\omega) \rangle \qquad \forall w \\ &\langle z(\omega), \mu_p(t,\omega) \rangle = \langle z(\omega), \mu_s \rangle \qquad \forall z \\ &\langle 1, \mu_0 \rangle = 1 \\ &\eta \in \mathcal{M}_+(X \times X_u) \\ &\mu_s \in \mathcal{M}_+(\Omega \times S) \\ &\mu_p, \ \mu \in \mathcal{M}_+([0,T] \times \Omega) \\ &\mu_0 \in \mathcal{M}_+(\Omega_0) \end{split}$$

Take-aways

Conclusion

Distance Estimation with occupation measures

Approximate recovery if moment matrices are low-rank

Extend to uncertain, lifted, set-set scenarios

Future Work

- Distance-Maximizing Control
- Further Sparsity
- Efficient Computation
- Other nonnegativity cones and proofs

Acknowledgements

SMAI-MODE organizing committee

Didier Henrion, BrainPOP group at LAAS-CNRS

Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.

National Science Foundation

Air Force Office of Scientific Research

Thank you for your attention

arxiv:2110.14047

http://github.com/jarmill/distance

Graduating May 2023, looking for postdocs

Bonus Material and Ideas

Distance Program (Functions)

Auxiliary v(t, x), point-set proxy $w(x) \le c(x; X_u)$:

$$d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma$$

$$v(0,x) \ge \gamma \qquad \forall x \in X_0$$

$$w(x) \ge v(t,x) \qquad \forall (t,x) \in [0,T] \times X$$

$$c(x,y) \ge w(x) \qquad \forall (x,y) \in X \times X_u$$

$$\mathcal{L}_f v(t,x) \ge 0 \qquad \forall (t,x) \in [0,T] \times X$$

$$v \in C^1([0,T] \times X)$$

$$w \in C(X)$$

Chain
$$\forall (t, x, y) \in [0, T] \times X \times X_u : c(x, y) \ge w(x) \ge v(t, x)$$

Lifted Distance Program (Measure)

New terms for lifted distance

$$p^* = \min \sum_{i} q_i$$

$$\mu_p = \delta_0 \otimes \mu_0 + \mathcal{L}_f^{\dagger} \mu$$

$$\pi_\#^{\times} \eta = \pi_\#^{\times} \mu_p$$

$$\langle 1, \mu_0 \rangle = 1$$

$$- q_i \leq \langle c_{ij}(x, y), \eta \rangle \leq q_i \qquad \forall i, j$$

$$\eta \in \mathcal{M}_+(X \times X_u)$$

$$\mu_p, \ \mu \in \mathcal{M}_+([0, T] \times X)$$

$$\mu_0 \in \mathcal{M}_+(X_0)$$

Same process as maximin peak

Lifted Distance Program (Function)

New terms β_i^{\pm} on costs

$$d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma$$

$$v(0,x) \geq \gamma \qquad \forall x \in X_0$$

$$w(x) \geq v(t,x) \qquad \forall (t,x) \in [0,T] \times X$$

$$\sum_{i,j} (\beta_{ij}^+ - \beta_{ij}) c_{ij}(x,y) \geq w(x) \quad \forall (x,y) \in X \times X_u$$

$$\mathcal{L}_f v(t,x) \geq 0 \qquad \forall (t,x) \in [0,T] \times X$$

$$\mathbf{1}^T (\beta_i^+ + \beta_i^-) = \mathbf{1}, \ \beta_i^{\pm} \in \mathbb{R}_+^{n_i} \qquad \forall i$$

$$v \in C^1([0,T] \times X)$$

$$w \in C(X)$$

Set-Set Program (Function)

Set-Set distance proxy $z(\omega) \leq \max_{s \in S} c(A(s; \omega); X_u)$:

$$d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma$$
 $v(0,\omega) \geq \gamma \qquad \forall x \in \Omega_0$
 $c(x,y) \geq w(x) \qquad \forall (x,y) \in X \times X_u$
 $w(A(s;\omega)) \geq z(\omega) \qquad \forall (s,\omega) \in S \times \Omega$
 $z(\omega) \geq v(t,\omega) \qquad \forall (t,\omega) \in [0,T] \times \Omega$
 $v \in C^1([0,T] \times X)$
 $v \in C(X), z \in C(\Omega)$