

What's Behind the Mask: Understanding Masked Graph Modeling for Graph Autoencoders

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen*, Sheng Tian, Liang Zhu, Changhua Meng, Zibin Zheng, Weiqiang Wang

Motivation

- ☐ Self-supervised learning is a successful learning paradigm for graph neural networks (GNNs).
- ☐ Masked autoencoding has shown promise in benefiting visual and language representation learning.
- ☐ It is natural to incorporate the masked autoencoding scheme into graph autoencoders (GAEs) --- a class of generative graph self-supervised models.
- ☐ However, it is currently unclear whether masked autoencoding would advance the state-of-the-art in graph self-supervised learning.

Focus: Graph Self-supervised Learning

Figure: An illustrative example of graph self-supervised learning.

- \square GNN \rightarrow training with self-defined pretext task \rightarrow encoder f_{θ}
- \square Encoder $f_{\theta} \rightarrow$ representations \rightarrow generalize to other downstream tasks

Masked Autoencoders

Figure: Milestones of masked autoencoding in language, vision, and graph research.

- ☐ Masked language modeling (MLM) and masked image modeling (MIM) have been widely applied to text and image data, with prominent examples including BERT and MAE.
- ☐ Similarly, masked graph modeling (MGM) is to remove a portion of the input graph and learn to predict the removed content such as edges or paths.

Connecting GAEs to Contrastive Learning

Figure: The benefits of masking on graphs.

- ☐ Self-supervised learning in GAEs is provably contrastive learning.
- ☐ GAEs with masking can benefit contrastive learning by significantly reducing subgraph overlapping.

Masking on Graphs

- Edge-wise masking: randomly mask a set of edges from graphs.
- ☐ Path-wise masking: mask a continuous of region of edges from graphs.
- Path-wise masking can break the shortrange connections between nodes and facilitate the MGM task.

Figure: Two masking strategies on graphs

Present Work: MaskGAE

Figure: Overall framework of MaskGAE (with path-wise masking).

- ☐ Input masking: edge-wise or path-wise masking strategies.
- ☐ Encoder: GNNs, e.g., GCN or GAT.
- ☐ Two decoders:
 - □ Structure decoder: reconstruct graph structure (neighborhood connection).
 - ☐ Degree decoder: reconstruct node degree (neighborhood distribution).
- ☐ Two learning objectives: reconstruction loss and regression loss.

Experimental Results

Link Prediction

	Cora		CiteSeer		Pubmed		Collab	
	AUC	AP	AUC	AP	AUC	AP	Hit@50	
GAE	91.09 ± 0.01	92.83 ± 0.03	90.52 ± 0.04	91.68 ± 0.05	96.40 ± 0.01	96.50 ± 0.02	47.14 ± 1.45	
VGAE	91.40 ± 0.01	92.60 ± 0.01	90.80 ± 0.02	92.00 ± 0.02	94.40 ± 0.02	94.70 ± 0.02	45.53 ± 1.87	
ARGA	92.40 ± 0.00	93.23 ± 0.00	91.94 ± 0.00	93.03 ± 0.00	96.81 ± 0.00	97.11 ± 0.00	28.39 ± 2.51	
ARVGA	92.40 ± 0.00	92.60 ± 0.00	92.40 ± 0.00	93.00 ± 0.00	96.50 ± 0.00	96.80 ± 0.00	27.32 ± 2.93	
SAGE	86.33 ± 1.06	88.24 ± 0.87	85.65 ± 2.56	87.90 ± 2.54	89.22 ± 0.87	89.44 ± 0.82	54.63 ± 1.12	
SEAL	92.22 ± 1.12	93.12 ± 1.01	93.38 ± 0.46	94.27 ± 0.26	92.99 ± 0.99	94.04 ± 0.80	64.74 ± 0.43	
MGAE	95.05 ± 0.76	94.50 ± 0.86	94.85 ± 0.49	94.68 ± 0.34	98.45 ± 0.03	98.22 ± 0.05	54.74 ± 1.06	
GraphMAE	94.88 ± 0.23	93.52 ± 0.51	94.32 ± 0.40	93.54 ± 0.22	96.24 ± 0.36	95.47 ± 0.41	53.97 ± 0.64	
MaskGAE _{edge}	96.42 ± 0.17	95.91 ± 0.25	98.02 ± 0.22	98.18 ± 0.21	98.75 ± 0.04	98.66 ± 0.06	65.84 ± 0.47	
$MaskGAE_{path}$	96.45 ± 0.18	95.95 ± 0.21	97.87 ± 0.22	98.09 ± 0.17	98.84 ± 0.04	98.78 ± 0.05	65.98 ± 0.39	

Table: Link prediction results (%).

Node Classification

	Cora	CiteSeer	Pubmed	Photo	Computer	arXiv	MAG
MLP	47.90 ± 0.40	49.30 ± 0.30	69.10 ± 0.20	78.50 ± 0.20	73.80 ± 0.10	56.30 ± 0.30	22.10 ± 0.30
GCN	81.50 ± 0.20	70.30 ± 0.40	79.00 ± 0.50	92.42 ± 0.22	86.51 ± 0.54	70.40 ± 0.30	30.10 ± 0.3
GAT	83.00 ± 0.70	72.50 ± 0.70	79.00 ± 0.30	92.56 ± 0.35	86.93 ± 0.29	70.60 ± 0.30	30.50 ± 0.3
GAE	74.90 ± 0.40	65.60 ± 0.50	74.20 ± 0.30	91.00 ± 0.10	85.10 ± 0.40	63.60 ± 0.50	27.10 ± 0.3
VGAE	76.30 ± 0.20	66.80 ± 0.20	75.80 ± 0.40	91.50 ± 0.20	85.80 ± 0.30	64.80 ± 0.20	27.90 ± 0.2
ARGA	77.95 ± 0.70	64.44 ± 1.19	80.44 ± 0.74	91.82 ± 0.08	85.86 ± 0.11	67.34 ± 0.09	28.36 ± 0.1
ARVGA	79.50 ± 1.01	66.03 ± 0.65	81.51 ± 1.00	91.51 ± 0.09	86.02 ± 0.11	67.43 ± 0.08	28.32 ± 0.1
GraphMAE	84.20 ± 0.40	73.40 ± 0.40	81.10 ± 0.40	93.23 ± 0.13	89.51 ± 0.08	$\textbf{71.75} \pm \textbf{0.17}$	32.25 ± 0.3
DGI	82.30 ± 0.60	71.80 ± 0.70	76.80 ± 0.60	91.61 ± 0.22	83.95 ± 0.47	65.10 ± 0.40	31.40 ± 0.3
GMI	83.00 ± 0.30	72.40 ± 0.10	79.90 ± 0.20	90.68 ± 0.17	82.21 ± 0.31	68.20 ± 0.20	29.50 ± 0.1
GRACE	81.90 ± 0.40	71.20 ± 0.50	80.60 ± 0.40	92.15 ± 0.24	86.25 ± 0.25	68.70 ± 0.40	31.50 ± 0.3
GCA	81.80 ± 0.20	71.90 ± 0.40	81.00 ± 0.30	92.53 ± 0.16	87.85 ± 0.31	68.20 ± 0.20	31.40 ± 0.3
MVGRL	82.90 ± 0.30	72.60 ± 0.40	80.10 ± 0.70	91.70 ± 0.10	86.90 ± 0.10	68.10 ± 0.10	31.60 ± 0.4
BGRL	82.86 ± 0.49	71.41 ± 0.92	82.05 ± 0.85	93.17 ± 0.30	90.34 ± 0.19	71.64 ± 0.12	31.11 ± 0.1
SUGRL	83.40 ± 0.50	73.00 ± 0.40	81.90 ± 0.30	93.20 ± 0.40	88.90 ± 0.20	69.30 ± 0.20	32.40 ± 0.1
CCA-SSG	83.59 ± 0.73	73.36 ± 0.72	80.81 ± 0.38	93.14 ± 0.14	88.74 ± 0.28	69.22 ± 0.22	27.57 ± 0.4
MaskGAE _{edge}	83.77 ± 0.33	72.94 ± 0.20	82.69 ± 0.31	93.30 ± 0.04	89.44 ± 0.11	70.97 ± 0.29	32.75 ± 0.4
MaskGAE _{path}	84.30 ± 0.39	73.80 ± 0.81	83.58 ± 0.45	93.31 ± 0.13	89.54 ± 0.06	71.16 ± 0.33	32.79 ± 0.3

Table: Node classification results (%).

☐ MaskGAE achieves SOTA performance in both link prediction and node classification tasks.

Ablation Study

		Cora	CiteSeer	Pubmed
	SAGE	81.32 ± 0.18	71.19 ± 0.10	80.17 ± 0.36
$MaskGAE_{edge}$	GAT	81.99 ± 0.14	71.95 ± 0.35	81.21 ± 0.12
9-	GCN	$\textbf{83.77} \pm \textbf{0.33}$	$\textbf{72.94} \pm \textbf{0.20}$	82.69 ± 0.31
	SAGE	80.66 ± 0.12	72.49 ± 0.17	79.73 ± 0.28
MaskGAE _{path}	GAT	82.18 ± 0.23	72.99 ± 0.30	81.84 ± 0.46
,	GCN	84.30 ± 0.39	73.80 ± 0.81	83.58 ± 0.45

Figure: Ablation analysis on masking ratios. Table: Effect of different encoders

- ☐ A properly large masking ratio achieves a good performance.
- ☐ MaskGAE with GCN as the encoder exhibits significantly improved performances over GAT and SAGE in all cases.

Conclusion

- ☐ A comprehensive theoretical analysis of GAEs and MGM.
- ☐ MaskGAE, a simple yet effective self-supervised learning framework for graphs.
- ☐ Path-wise masking, a structured masking strategy to facilitate the MGM task.
- ☐ MaskGAE establishes new SOTA performance in different tasks.

August 6-10, 2023 github.com/EdisonLeeeee/MaskGAE Long Beach, CA, USA