

Namal College, Mianwali

Module Title: Data Structures and Algorithms-I **Offered to:** 3rd Year – BSc (CS)

Instructor: Dr. Malik Jahan Khan Email: malik.jahan@namal.edu.pk

Office Hrs: Anytime, anywhere Semester: Fall 2017-18

Module Description

Data Structures are the building block of computer software. This course is a linked module and this document covers the contents of the first semester only.

Objectives

- Enhancement of problem solving and programming skills
- Command on implementation of data structures
- Sound knowledge of abstract data types (trees, hash tables etc.)

Course Learning Outcomes

• Ability to:

- o demonstrate the usage of fundamental data structures using a programming language
- o choose and apply appropriate data structures for real life problems
- o design and implement different operations of abstract data types and relate them other CS subject areas like operating systems, databases, artificial intelligence, computer networks etc.
- o analyze the computation cost of different operations and optimize them

Text Book

- M. T. Goodrich, R. Tamassia: "Data Structures and Algorithms in Java", 4th Edition, John Wiley and Sons.
- M. A. Wiess: "Data Structures and Problem Solving using Java", 4th Edition, Pearson.
- Class Handouts and Selected Readings

Assessment Tools

Assessments for the whole year (to be counted towards final grade)

- Two Projects in semester-1 (25% + 25% weight)
- Final Exam towards end of semester-2 (50% weight)

General Policies

- Additional to disciplinary policies of the department / college, <u>plagiarism</u> will be strictly dealt with. Cheating any assignment or exam from anyone else may lead to severe penalty of grade. Violation of rules / involvement in plagiarism may easily lead you to an "F" in the module or expulsion from the course.
- Evaluation will be based on all class discussions, handouts, recommended readings, slides, home works, labs and revision sessions etc.
- Your active participation is highly encouraged.
- Attendance in lectures and labs is mandatory. In case of attendance below 85%, you may be dropped from the module without warning. You may see your attendance over LMS.

Tentative Schedule

Wk. No.	Content
1	Introduction to the module, Quick recap of Java, Recursion, Introduction to data
	structures, Introduction to algorithms, Analysis of algorithms (Big-O).
	Lab-1: Address Book Implementation
	HW-1: Recursion
3	Arrays, Linked lists, Generic implementations of arrays and linked lists.
	Lab-2: Implementation of Array Operations
	HW-2: Implementation of "Dynamic" Array
3	Stacks, Queues, Array based implementation of stacks and queues, Linked lists
	based Implementation of stacks and queues.
	Lab-3: Implementation of Linked List Operations
	HW-3: Implementation of Stack and Queue using Array as well as Linked List
4	Circular queues, Doubly linked lists.
	Lab-4: Implementation of Circular queues and DLL through enhancing Lab-3
	HW-4: Simulator of Production Queue of Donuts
5	Trees, Binary trees, Binary search, BST, Tree traversal techniques.
	Lab-5: Implementation of Binary Search Tree
	HW-5: BST Traversal Operations
6	Priority queues, Heaps.
	Lab-6: Implementation of MinHeap
	HW-6: Simulator of Priority Queue of OS Processes
7-8	Need of Balancing, AVL Trees, B-trees, B+-trees
	Lab-7: Implementation of AVL Trees
	Lab-8: Implementation of B+-Trees
	HW-7: Simulator of Search Engine
	Coursework (Part-1)
9-10	Hashing, Hash function, Separate chaining, Open addressing, Rehashing.
	Lab-9: Implementation of Linear & Quadratic Probing
	Lab-10: Analysis of Algorithmic Efficiency of Balanced Trees & Hashing
	HW-8: Simulator of Dictionary
11	Skip lists
	Lab-11: Implementation of Skip List
	HW-9: Exploring DB Applications of Skip List and Comparative Analysis with
	Hashing and Balanced Trees
12	Insertion sort, Selection sort, Bubble sort, Heap sort.
	Lab-12: Implementation of Sorting Algorithms
	HW-10: Analysis of Execution Time of Different Algorithms on Large Data
13	Coursework (Part-2)
	Recap and left-over content (Lab Slots / Additional Tutorial Slots)!!!
14	CW viva