JP

とうじゅう

(51) 国際特許分類6 C07D 215/54, 241/44, 471/04, 491/052,

43/42, 43/60, 43/90

A1

(11) 国際公開番号

WO00/06549

(43) 国際公開日

2000年2月10日(10.02.00)

(21) 国際出願番号

PCT/JP99/04009

101/31/20/00/20

(22) 国際出願日

1999年7月27日(27.07.99)

(30) 優先権データ

特願平10/212817

1998年7月28日(28.07.98)

(74) 代理人 浅村 皓, 外(AS

(71) 出願人(米国を除くすべての指定国について)

491/056, 491/048, 495/04, 498/04, A01N

日本農薬株式会社(NIHON NOHYAKU CO., LTD.)[JP/JP] 〒103-8236 東京都中央区日本橋1丁目2番5号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

高石日出男(TAKAISHI, Hideo)[JP/JP]

〒663-8124 兵庫県西宮市小松南町1-15-4 Hyogo, (JP)

勝平 健(KATSUHIRA, Takeshi)[JP/JP]

〒586-0013 大阪府河内長野市向野町765-4-301 Osaka, (JP)

山口博志(YAMAGUCHI, Hiroshi)[JP/JP]

原山博人(HARAYAMA, Hiroto)[JP/JP]

〒586-0024 大阪府河内長野市西之山町1-28 Osaka, (JP)

川端洋一(KAWABATA, Yoichi)[JP/JP]

〒581-0866 大阪府八尾市東山本新叮3-6-30-206 Osaka, (JP)

小田良樹(ODA, Yoshiki)[JP/JP]

〒586-0022 大阪府河内長野市本多町5-6-303 Osaka, (JP)

村井政彦(MURAI, Masahiko)[JP/JP]

〒617-0001 京都府向日市物集女町坂本12-4-A-305 Kyota, (IP)

浅村 皓, 外(ASAMURA, Kiyoshi et al.)

〒100-0004 東京都千代田区大手町2丁目2番1号

新大手町ビル331 Tokyo, (JP)

(81) 指定国 BR, CA, CN, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書

(54)Title: FUSED-HETEROCYCLE DICARBOXYLIC DIAMIDE DERIVATIVES OR SALTS THEREOF, HERBICIDES AND USAGE THEREOF

(54)発明の名称 縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類及び除草剤並びにその使用方法

(57) Abstract

Fused-heterocycle dicarboxylic diamide derivatives represented by general formula (I); and herbicides containing the derivatives as the active ingredient, wherein R¹ is H or (C₁-C₆)alkyl; R² and R³ are each 11, (halo)(C₁-C₆)alkyl, (C₃-C₈)cycloalkyl, substituted amino(C₁-C₆)alkyl, (substituted) phenyl(C₁-C₆)alkyl, (substituted) phenyl(C₁-C₆)alkoxy or the like, or R² and R³ are united to form a 5- or 6-membered heterocycle bearing at least one member selected from among O, S and N; X is H, halogeno, NO₂, CN, (C₁-C₆)alkyl, (substituted) phenyl, (substituted) phenoxy or the like; and (II) is or the like (wherein Y, R⁴ and R⁹ are each II, halogeno, NO₂, CN, (C₁-C₆)alkyl or the like; and A, B, D, E, F, G, J and K are each O, S, N, sulfinyl or the like).

(57)要約

一般式(I)

 $(Y, R^4 D U R^9 d H, ハロゲン、NO_2, CN、(C_1-C_6) アルキル等、A、B、D、E、F、G、J、KはO、S、N、スルフィニル等)〕 の縮合へテロ環ジカルボン酸ジアミド誘導体及び該誘導体を有効成分とする除草剤。$

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

明 細 書

縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類及び除草剤 並びにその使用方法

5

15

技術分野

本発明は新規な縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩及び該化 合物又はその塩を有効成分とする除草剤並びにその使用方法に関するものである。 背景技術

10 特開平6-2519号公報にはピラジンジカルボン酸ジアミド誘導体が除草剤として有用であることが記載され、特開平9-323974号公報にはピリジンジカルボン酸ジアミド誘導体が除草剤として有用であることが記載されている。 発明の開示

本発明者等は新規な除草剤を開発すべく鋭意研究を重ねた結果、本発明の一般 式(I)で表される縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類が文 献未記載の新規化合物であり、優れた除草活性を有することを見出し、本発明を 完成させたものである。

本発明は一般式 (I)

[式中、 R^1 は水素原子又は (C_1-C_6) アルキル基を示し、 R^2 及び R^3 は同 25 一又は異なっても良く、水素原子、 (C_1-C_8) アルキル基、 (C_1-C_6) アルキル基、 (C_3-C_8) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、同一又は異なっても良い 1 以上のハロゲン原子を環上に有する (C_3-C_6) シクロアルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ(C_1-C_6) アルキルチオ(C_1-C_6) アルキルチオと、アルキルチオ(C_1-C_6) アル

キル基、シアノ(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル (C_1 - C_6) アルキル基、アミノ(C_1 - C_6) アルキル基、同一又は異なっても良い 1 又は 2 個の(C_1 - C_6) アルキル基により置換されたアミノ(C_1 - C_6) アルキル基、フェニル(C_1 - C_6) アルキル基、同一又は異なっても良く、ハロゲン原子又は(C_1 - C_6) アルキル基から選択される 1 以上の置換基を環上に有する置換フェニル(C_1 - C_6) アルキル基、フェニル(C_1 - C_6) アルコキシ基又は同一若しくは異なっても良く、ハロゲン原子又は(C_1 - C_6) アルコキシ基を示す。

Xは同一又は異なっても良く、ハロゲン原子、ニトロ基、シアノ基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、同一又は異なっても良い1以上のハロゲン原子を環上に有する (C_3-C_6) シクロアルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルカフィニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルスルボニル基に (C_1-C_6) アルキルスルボニル基によ

り置換されたアミノ基、フェニル基、同一又は異なっても良く、ハロゲン原子、

 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルスルフィニル基、ハロ (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルホニル 基又はフェニル基から選択される 1 以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は同一若しくは異なっても良く、 (C_1-C_6) アルキル基、 (C_1-C_6)

15 (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1 以上の置換基を環上に有する置換フェニル (C_1-C_6) アルキル基から選択される $0\sim 5$ 個の置換基を示す。

Het | ItQ1

20

25

(式中、Yは水素原子、ハロゲン原子、ニトロ基、シアノ基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキルは、 (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチ

15

20

オ基、ハロ(C_1 - C_6) アルキルチオ基、(C_1 - C_6) アルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルカニル基、ハロ(C_1 - C_6) アルキルスルホニル基、(C_1 - C_6) アルキルスルホニル基、ハロ(C_1 - C_6) アルキルスルホニル基、(C_1 - C_6) アルキルチオ(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル基、フェニル基、同一又は異なっても良く、ハロゲン原子、(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基、(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキルチオ基、ハロ(C_1 - C_6) アルキルチオ基、(C_1 - C_6) アルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルカフィニル基、(C_1 - C_6) アルキルスルホニル基、ハロ(C_1 - C_6) アルキルスルホニル基又はフェニル基から選択される 1以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても良く、ハロゲン原子、

 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1 以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1 以上の置換基を有する置換フェニルチオ基、アミノ基、同一又は異なっても良く、 (C_1-C_6) アルキル基、シアノ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシカェニルエンフェニルの (C_1-C_6) アルキルスルホニル基又はフェニル (C_1-C_6) アルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニル基又はフェニル (C_1-C_6) アルキル基から選択される 1 以上の置換基を有する置換アミノ基、 (C_3-C_5) アルキレンイミノ基、 (C_3-C_5) アルキレンイミノ基、 (C_1-C_6) アルキレくは異なっても

25 R^4 は同一又は異なっても良く、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6)

良い(C1-C6) アルキル基により置換されたヒドラジノ基を示す。

アルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルフィニル基、(C_1 - C_6) アルキルスルホニル基、ハロ(C_1 - C_6) アルキルスルホニル基、(C_1 - C_6) アルキルスルホニル基、(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル基、メチレンジオキシ基、アミノ基又は1以上の同一若しくは異なっても良く、(C_1 - C_6) アルキル基、シアノ(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル (C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル基、(C_1 - C_6) アルコキシカルボニル基、(C_1 - C_6) アルコキシアミノカルボニル基、(C_1 - C_6) アシル基、(C_1 - C_6) アルキルスルホニル基、ハロ(C_1 - C_6) アルキルスルホニル基又はフェニル(C_1 - C_6) アルキル基により置換されたアミノ基から選択される0~4個の置換基を示す。)、 Q^2

10

15 (式中、A、B、D、Eは少なくとも1つは窒素原子を示し、残りは $C-R^5$ (式中、 R^5 は水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル 基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル 基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、

20 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、アミノ基又は1以上の同一若しくは異なっても良く、 (C_1-C_6) アルキル基、シアノ (C_1-C_6) ア

5 ルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシアミノカルボニル基、 (C_1-C_6) アシル基、 (C_1-C_6) アルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニル基又はフェニル (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、Yは前記に同じ。)、Q 3

(式中、F、G、J、Kは少なくとも1つは酸素原子、硫黄原子、スルフィニ ル基、スルホニル基、カルボニル基又は $N-R^6$ (式中、 R^6 は水素原子、ヒド ロキシル基、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アルキル基、(C₃-C₆) シク ロアルキル基、(C₃-C₆) シクロアルキル(C₁-C₆) アルキル基、(C₁-C₆) アル コキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルキル スルホニル基又はハロ(C₁-C₆) アルキルスルホニル基を示す。) を示し、残り は $C-(R^7)R^8$ (式中、 R^7 及び R^8 は同一又は異なっても良く、水素原 子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキ ル基、(C₃-C₆) シクロアルキル(C₁-C₆) アルキル基、同一又は異なっても良 15 い1以上のハロゲン原子を環上に有する(C₃-C₆) シクロアルキル基、(C₁-C₆) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル チオ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルキル 基、フェニル(C₁-C₆) アルキル基、同一又は異なってもよく、1以上のハロゲ ン原子又は(C₁-C₆) アルキル基によって置換されたフェニル(C₁-C₆) アルキ 20 ル基、アミノ(C1-C6) アルキル基、1以上の同一又は異なっても良い (C_1-C_6) アルキル基により置換されたアミノ (C_1-C_6) アルキル基又はフェニ ル(C,-C₆) アルコキシ基を示す。)を示し、Yは前記に同じ。又、G及びJは 一緒になってCH=CHを示すこともできる。)、Q^

25

(式中、 R^9 はハロゲン原子、ニトロ基、シアノ基、 (C_1-C_6) アルキル基、 ハロ(C₁-C₆) アルキル基、(C₃-C₆) シクロアルキル基、(C₃-C₆) シクロアル キル(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシ基、ハロ(C_1 - C_6) アルコキシ 基、(C₁-C₆) アルコキシ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシカルボニ ル基、(C₁-C₆) アルキルチオ基、ハロ(C₁-C₆) アルキルチオ基、(C₁-C₆) ア ルキルスルフィニル基、ハロ(C_1 - C_6) アルキルスルフィニル基、(C_1 - C_6) ア ルキルスルホニル基、ハロ(C₁-C₆) アルキルスルホニル基、(C₁-C₆) アルキ ルチオ(C₁-C₆) アルキル基、フェニル基、同一又は異なっても良く、ハロゲン 原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ 基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) ア 10 ルキルチオ基、(C₁-C₆) アルキルズルフィニル基、ハロ(C₁-C₆) アルキルス ルフィニル基、(C₁-C₆) アルキルスルホニル基、ハロ(C₁-C₆) アルキルスル ホニル基又はフェニル基から選択される1以上の置換基を有する置換フェニル基、 フェノキシ基、同一又は異なっても良く、ハロゲン原子、(C₁-C₆) アルキル基、 15 基、(C₁-C₆) アルキルチオ基、ハロ(C₁-C₆) アルキルチオ基又はフェニル基 から選択される1以上の置換基を有する置換フェノキシ基、フェニルチオ基、同 一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、(C₁-C₆) アルコキシ基、ハロ(C₁-C₆) アルコキシ基、(C₁-C₆) アルキルチオ基、ハロ(C₁-C₆) アルキルチオ基又はフェニル基から選択される 20 1以上の置換基を有する置換フェニルチオ基、アミノ基、1以上の同一又は異な っても良く、 (C_1-C_6) アルキル基、シアノ (C_1-C_6) アルキル基、 (C_1-C_6) ア ルコキシカルボニル(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシアミノカルボニル基、 (C_1-C_6) アシル基、 (C_1-C_6) アル キルスルホニル基、ハロ(C_1 - C_6) アルキルスルホニル基又はフェニル(C_1 - C_6) 25 アルキル基により置換されたアミノ基、(C3-C5)アルキレンイミノ基、ヒドラ ジノ基又は同一若しくは異なっても良い(C₁-C₆)アルキル基により置換された ヒドラジノ基を示し、mは0~2の整数を示す。

2は酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は水素原子、ヒドロキ

シル基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニル 基又は (C_1-C_6) アルキルチオ (C_1-C_6) アルキルメルホニル 記に同じ。)、 Q^5

10

(式中、R⁹、Y、Z及びmは前記に同じ。)、Q⁶

15

(式中、R⁹、Y、Z及びmは前記に同じ。)、Q⁷

20

(式中、L、M、Tは少なくとも1つは酸素原子、硫黄原子、スルフィニル基、 スルホニル基、カルボニル基又は $N-R^{-1-1}$ (式中、 R^{-1-1} は水素原子、ヒドロキシル基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニ

ル基又は (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基を示す。)を示し、残り は $C-(R^{12})R^{13}$ (式中、 R^{12} 及び R^{13} は同一又は異なっても良く、水 素原子、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アルキル基、(C₃-C₆) シクロア ルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、同一又は異なって 5 もよい1以上のハロゲン原子を環上に有する(C₃-C₆)シクロアルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルキル基、フェニル(C₁-C₆) アルキル基、同一又は異なっても良く、ハロゲ ン原子又は(C₁-C₆) アルキル基から選択される1以上の置換基を環上に有する 置換フェニル(C₁-C₆) アルキル基、フェニル(C₁-C₆) アルコキシ基、同一又 10 は異なっても良く、ハロゲン原子又は(C1-C6) アルキル基から選択される1以 上の置換基を環上に有する置換フェニル(C₁-C₆) アルコキシ基、アミノ (C_1-C_6) アルキル基又は1以上の同一若しくは異なっても良く、 (C_1-C_6) ア ルキル基により置換されたアミノ(C₁-C₆) アルキル基を示す。) を示す。)、 Q⁸ 15

20

25

(式中、 R^{14} は水素原子か又は R^{9} と同じであり、Y及びZは前記に同じ。)、 Q^{9}

(式中、R¹⁴、Y及びZは前記に同じ。)、Q¹⁰

(式中、 R^{14} 、Y及びZは前記に同じ。)、 Q^{11}

10

15

(式中、 R^{14} 、Y及びZは前記に同じ。)、 Q^{12}

$$R'' \longrightarrow N$$

(式中、 R^{14} 、Y及びZは前記に同じ。)、 Q^{13}

20 R. I. Z. N.

(式中、R¹⁴、Y及びZは前記に同じ。)又はQ¹⁴

25

(式中、R⁹は前記に同じくし、nは0~4の整数を示す。) を示す。〕

で表される縮合へテロ環ジカルボン酸ジアミド誘導体又はその塩類及び該化合物 を有効成分とする除草剤並びにその使用方法に関するものである。

5 一般式(I) で表される縮合へテロ環ジカルボン酸ジアミド誘導体又はその塩類の各置換基の定義で、ハロゲン原子とは塩素原子、臭素原子、ョウ素原子又はフッ素原子を示し、 (C_1-C_8) とあるのは炭素原子数 $1\sim 8$ を示し、例えば (C_1-C_8) アルキル基は炭素原子数 $1\sim 8$ の直鎖上又は分岐状のアルキル基を示す。ハロ (C_1-C_6) アルキル基とは、同一又は異なっても良い 1 以上のハロゲン原子で置換された炭素原子数 $1\sim 6$ の直鎖状又は分岐状のアルキル基を示す。

塩類としては、例えば塩酸塩、硫酸塩、硝酸塩、燐酸塩等の無機酸塩類、酢酸塩、フマル酸塩、マレイン酸塩、シュウ酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩類、ナトリウムイオン、カリウムイオン、カルシウムイオン等の金属イオンとの塩類を例示することができる。

一般式(I) で表される縮合へテロ環ジカルボン酸ジアミド誘導体で好ましい態様としては、 R^1 及び R^2 としては水素原子、 R^3 としては(C_1 - C_8) アルキル基、(C_3 - C_8) シクロアルキル基、Xとしてはハロゲン原子、(C_1 - C_6) アルキル基、

 \mathbb{H}^{1} としては Q^2 、 Q^3 、 Q^4 、 Q^6 、 Q^7 、 Q^8 、 Q^{11} 等が好ましく、更 20 に好ましくはXの置換位置として 2 及び 3 位又は 2、 3 及び 6 位の置換が好ましい。

一般式(I)で表される縮合ヘテロ環ジカルボン酸ジアミド誘導体は、例えば 下記に図示する製造方法により製造することができる。

製造方法

15

(III)
$$R^{2}R^{3}NH \qquad (II-1)$$

$$R^{2}R^{3}NH \cdot Hhal \qquad (II-2)$$

$$CONH^{2}R^{3}$$

$$(I-1)$$

(式中、R²、R³、X及び(Heil は前記に同じくし、hal はハロゲン原子を示す。)

一般式($^{''}$ D) で表される化合物を酸又はアルカリの存在下、加水分解して一般式($^{''}$ D) で表されるジカルボン酸とし、これを脱水剤の存在下、酸無水物($^{'}$ D) とした後、不活性溶媒の存在下又は不存在下、置換アニリン($^{'}$ D) と反応させてアニリド($^{'}$ D) 及び ($^{'}$ D) とし、これらを単離又は単離せずして不活性溶媒の存在下又は不存在下に脱水剤と反応を行い、一般式($^{'}$ D) で表されるイミド類とし、該イミドを単離又は単離せずして不活性溶媒の存在下又は不存在下に15 一般式($^{'}$ D) フは一般式($^{'}$ D) で表されるアミン類又はその塩類と反応させることにより、一般式($^{'}$ D) で表される縮合へテロ環ジカルボン酸ジアミド誘導体を製造することができる。

A. 一般式 (VII) → 一般式 (VII)

25

本反応で使用できる不活性溶媒としては、例えば水、水溶性溶媒であるメタノ 20 ール、エタノール、プロパノール等のアルコール類及び水と水溶性溶媒との混合 溶媒を使用することができる。

加水分解に使用する塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属原子の水酸化物を使用することができ、その使用量は一般式(VIII)で表されるジエステル類に対して2~10当量の範囲から適宜選択して使用すれば良い。

反応温度は室温乃至使用する不活性溶媒の還流下で行うことができ、反応時間 は反応規模、反応温度等により一定しないが、数分乃至48時間の範囲から適宜 選択して行えば良い。

反応終了後、目的物を含む反応系から常法により目的物を単雕し、必要に応じ

て再結晶法、蒸留法、カラムクロマトグラフィー法等で精製することにより目的 物を製造することができる。

又、本反応終了後に目的物を単離せずに次の反応に供することもできる。

B. 一般式 (VII) → 一般式 (VI)

5 本反応で使用できる不活性溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えばジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類、メチルセルソルブ、ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン等の鎖状又は環状エーテル類、酢酸、トリフルオロ酢酸等の有機酸類を使用することができ、これらの不活性溶媒は単独で又は混合して使用することもできる。

又、脱水剤を過剰に使用することにより、不活性溶媒の代わりとすることもできる。

脱水剤としては、例えば無水酢酸、トリフルオロ酢酸無水物等の脱水剤を使用 することができ、これらの脱水剤の使用量は、一般式(VII)で表される化合物に 対して等モル〜過剰モルの範囲から適宜選択して使用すれば良く、好ましくは等 モル使用するのが良い。

反応温度は室温~使用する不活性溶媒の沸点域から適宜選択すれば良く、不活性溶媒を使用しない場合は使用する脱水剤の沸点域で行えば良い。

20 反応時間は、反応温度、反応規模等により一定しないが、数分~48時間の範囲で行えば良い。

反応終了後、目的物を含む反応系から常法により目的物を単離し、必要に応じて再結晶法、蒸留法、カラムクロマトグラフィー法等で精製することにより目的物を製造することができる。

本反応はJ. Org. Chem. Soc., <u>52</u>, 129 (1987)、J.
 Am. Chem. Soc., <u>51</u>, 1865 (1929)、同<u>63</u>, 1542 (1941)等に記載の方法により製造することができる。

本反応終了後に目的物を単離せずに次の反応に供することもできる。

C. 一般式 (VI) → 一般式 (IV-1) + 一般式 (IV-2)

本反応で使用できる不活性溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素類、ジエチルエーテル、ジオキサン、テトラヒドロフラン等の鎖状又は環状エーテル類、酢酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、酢酸等の酸類、ジメチルスルホキシド、1、3ージメチルー2ーイミダゾリジノン、水等の不活性溶媒を例示することができ、これらの不活性溶媒は単独で又は2種以上混合して使用することができる。

10 本反応は等モル反応であるので、各反応剤を等モル使用すれば良いが、いずれ かの反応剤を過剰に使用することもできる。本反応は必要に応じて脱水条件下で 反応を行うことができる。

反応温度は室温~使用する不活性溶媒の沸点域から適宜選択すれば良く、不活性溶媒を使用しない場合は使用する脱水剤の沸点域で行えば良い。

15 反応時間は、反応温度、反応規模等により一定しないが、数分~48時間の範囲で行えば良い。

反応終了後、目的物を含む反応系から常法により目的物を単離し、必要に応じて再結晶法、蒸留法、カラムクロマトグラフィー法等で精製することにより目的物を製造することができる。

- 20 本反応終了後に目的物を単離せずに次の反応に供することもできる。
 - D. 一般式 (IV-1) + 一般式 (IV-2) → 一般式 (III)

本反応はBと同様にすることにより日的物を製造することができる。又、本反 応終了後に目的物を単離せずに次の反応に供することもできる。

以下に一般式(Ⅲ)で表されるイミド類の代表的な化合物を例示する。

- 25 (1). N- (3-クロロ-2, 6-ジエチルフェニル) -1, 3-ジメチルーピラ ゾロ [5, 4-b] ピリジン-5, 6-ジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 5Hz), 1. 13 (3H, t, J=7. 5Hz), 2. 43 (2H, q, J=7. 5Hz),
 - 2. 61 (2H, q, J=7. 5Hz), 2. 69 (3H, s), 4. 26 (3H, s), 7. 21 (1H, d, J=8. 4Hz),

7. 47 (1H, d, J=8. 4Hz), 8. 61 (1H, s).

(2). N- (3-クロロ-2, 6-ジエチルフェニル) -チエノ [3, 2-b] ピリジン-5, 6-ジカルボキシミド

¹H-NMR[TMS/CDCl₃, δ値(ppm)]

- 1. 09 (3H, t, J=7. 5Hz), 1. 14 (3H, t, J=7. 5Hz), 2. 44 (2H, q, J=7. 5Hz),
 - 2. 63 (2H, q, J=7. 5Hz), 7. 20 (1H, d, J=8. 4Hz), 7. 47 (1H, d, J=8. 4Hz),
 - 7. 90 (1H, d, J=5. 7Hz), 8. 17 (1H, d, J=5. 7Hz), 8. 79 (1H, s).
- (3). $N-(3-\rho 2, 6-\tilde{y}_1 + \tilde{y}_2 + \tilde{y}_1 + \tilde{y}_1 + \tilde{y}_2 +$
- 10. ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 06 (3H, t, J=7. 5Hz), 1. 12 (3H, t, J=7. 5Hz), 2. 39 (2H, q, J=7. 5Hz),
 - 2. 58 (2H, q, J=7. 5Hz), 3. 51-3. 68 (4H, m), 7. 17 (1H, d, J=8. 4Hz),
 - 7. 44 (1H, d, J=8. 4Hz), 7. 95 (1H, s).
 - (4). N-(3-07-2, 6-5)
- 15 [2, 3-b] ピリジン-5, 6-ジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 05(3H, t, J=7.5Hz), 1. 11(3H, t, J=7.5Hz), 2. 38(2H, q, J=7.5Hz),
 - 2. 57 (2H, q, J=7.5Hz), 3. 47-3. 61 (4H, m), 7. 16 (1H, d, J=8.4Hz),
 - 7. 43 (1H, d, J=8. 4Hz), 7. 85 (1H, s).
- 20 (5). N- (3-クロロ-2, 6-ジエチルフェニル) -フロ [2, 3-b] ピリ ジン-5, 6-ジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 08(3H, t, J=7.5Hz), 1. 13(3H, t, J=7.5Hz), 2. 43(2H, q, J=7.5Hz),
 - 2. 61 (2H, q, J=7. 5Hz), 7. 11 (1H, d, J=2. 6Hz), 7. 24 (1H, d, J=8. 4Hz),
- 25 7.47 (1H, d, J=8.4Hz), 8.05 (1H, d, J=2.6Hz), 8.53 (1H, s).
 - (6). N- $(3-\rho 2, 6-\tilde{y}$ エチルフェニル) 1-メチルーピロロ[3, 2-b] ピリジン-5、 $6-\tilde{y}$ カルボキシミド
 - ¹H-NMR[TMS/CDCl₃,δ値(ppm)]
 - 1. 04 (3H, t, J=7. 5Hz), 1. 08 (3H, t, J=7. 5Hz), 2. 45 (2H, q, J=7. 5Hz),

- 2. 65 (2H, q, J=7. 5Hz), 3. 93 (3H, s), 6. 95 (1H, d, J=0. 6Hz),
- 7. 15 (1H, d, J=8. 0Hz), 7. 38 (1H, d, J=8. 0Hz), 7. 61 (1H, d, J=0. 6Hz),
- 8. 17 (1H, s).
- (7). N-(3-クロロ-2, 6-ジエチルフェニル) -1-メトキシーピロロ
- 5 [3, 2-b] ピリジン-5, 6-ジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃,δ値(ppm)]
 - 1. 06 (3H, t, J=7. 5Hz), 1. 11 (3H, t, J=7. 5Hz), 2. 42 (2H, q, J=7. 5Hz),
 - 2. 65 (2H, q, J=7. 5Hz), 4. 21 (3H, s), 6. 90 (1H, d, J=0. 6Hz),
 - 7. 15 (1H, d, J=8. 0Hz), 7. 38 (1H, d, J=8. 0Hz), 7. 81 (1H, d, J=0. 6Hz),
- 10 8. 32 (1H, s).
 - (8). $N (3 \rho \rho 2, 6 \mathcal{I} + \mathcal{I} +$
 - 2. 3-ジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 5Hz), 1. 14 (3H, t, J=7. 5Hz), 2. 43 (2H, q, J=7. 5Hz),
- 15 2. 61 (2H, q, J=7. 5Hz), 7. 24 (1H, d, J=8. 4Hz), 7. 52 (1H, d, J=8. 4Hz),
 - 8.05 (1H, dd, J=2.9及び7.9Hz), 8.81 (1H, d, J=7.9Hz), 9.04 (1H, s),
 - 9. 62 (1H, d, J=2. 9Hz).
 - (9). N- (3-クロロ-2, 6-ジェチルフェニル) -5-オキソ-5, 6, 7,
 - 8-テトラヒドロキノリン-2.3-ジカルボキシミド
- 20 ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7.5Hz), 1. 14 (3H, t, J=7.5Hz), 2. 30 (2H, m),
 - 2. 43 (2H, q, J=7. 5Hz), 2. 48 (2H, m), 2. 61 (2H, q, J=7. 5Hz), 2. 85 (2H, m),
 - 7. 19 (111, d, J=8. 4Hz), 7. 42 (1H, d, J=8. 4Hz), 8. 89 (1H, s).
 - (10). $N-(3-\rho -2, 6-i x + \nu 1) -6-i x + \nu -5, 6$
- 25 7, 8ーテトラヒドロー1, 6ーナフチリジンー2, 3ージカルボキシミド
 - ¹H-NMR[TMS/CDC1₃,δ値(ppm)]
 - 1. 09 (3H, t, J=7.5Hz), 1. 14 (3H, t, J=7.5Hz), 2. 33 (2H, q, J=7.5Hz),
 - 2. 52 (2H, q, J=7. 5Hz), 2. 95 (3H, s), 3. 00-3. 12 (4H, m), 3. 54 (2H, m),
 - 7. 15 (1H, d, J=8. 4Hz), 7. 42 (1H, d, J=8. 4Hz), 8. 02 (1H, s).

¹H-NMR[TMS/CDCl₃, δ値(ppm)]

- 1. 08 (3H, t, J=7. 5Hz), 1. 13 (3H, t, J=7. 5Hz), 2. 39 (2H, q, J=7. 5Hz),
- 5 2. 58 (2H, q, J=7. 5Hz), 3. 11 (2H, t, J=5. 8Hz), 3. 52 (2H, t, J=5. 8Hz),
 - 3. 97 (2H, s), 7. 19 (1H, d, J=8. 4Hz), 7. 46 (1H, d, J=8. 4Hz), 8. 08 (1H, s).
 - (12). N- $(3-\rho 2, 6-i x + i x +$

¹H-NMR[TMS/CDCl₃, δ値(ppm)]

- 10 1.07 (3H, t, J=7.5Hz), 1.13 (3H, t, J=7.5Hz), 2.39 (2H, q, J=7.5Hz),
 - 2. 58 (2H, q, J=7. 5Hz), 3. 31 (2H, t, J=6. 2Hz), 4. 15 (2H, t, J=6. 2Hz),
 - 4. 96 (2H, s), 7. 18 (1H, d, J=8. 4Hz), 7. 46 (1H, d, J=8. 4Hz), 7. 90 (1H, s).
- 15 ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 11 (3H, t, J=7.5Hz), 1. 16 (3H, t, J=7.5Hz), 2. 46 (2H, q, J=7.5Hz),
 - 2. 64 (2H, q, J=7. 5Hz), 7. 24 (1H, d, J=8. 4Hz), 7. 51 (1H, d, J=8. 4Hz),
 - 8. 07-8. 13 (2H, m), 8. 48-8. 54 (2H, m).
- (14). N- (3-クロロー2-メチルフェニル) -2、3-キノキサリンジカル 20 ボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 2. 29 (3H, s), 7. 24 (1H, d, J=8. 0Hz), 7. 34 (1H, t, J=8. 0Hz),
 - 7. 56 (1H, d, J=8.0Hz), 8. 06 8. 12 (2H, m), 8. 46 8. 51 (2H, m).
 - (15). N- (3-クロロ-2, 6-ジエチルフェニル) -5-フルオロ-2, 3
- 25 ーキノリンジカルボキシミド

融点116-118℃

- (16) $N-(3-\rho -2-2, 6-\tilde{y}x + \tilde{y}x +$
 - ¹H-NMR[TMS/CDCl₃,δ値(ppm)]

- 1. 09 (311, t, J=7.8Hz), 1. 14 (3H, t, J=7.5Hz), 2. 44 (2H, q, J=7.5Hz),
- 2. 56-2. 68 (2H, m), 7. 22 (1H, d, J=8. 1Hz), 7. 48 (1H, d, J=8. 1Hz),
- 7. 75-7. 81 (2H, m), 8. 51 (1H, m), 8. 77 (1H, s).
- (17). N-(3-クロロ-2, 6-ジエチルフェニル) 7-フルオロ-2, 35 -キノリンジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 8Hz), 1. 14 (3H, t, J=7. 5Hz), 2. 44 (2H, q, J=7. 5Hz),
 - 2. 56-2. 68 (2H, m), 7. 22 (1H, d, J=8. 1Hz), 7. 48 (1H, d, J=8. 1Hz),
 - 7.63(1H, ddd, J=2.4, 8.1及び9.3Hz), 8.12(1H, dd, J=2.4及び9.6Hz),
- 10 8.16(111, dd, J=5.7及び9.3Hz), 8.81(1H, s).
 - (18). N- (4-トリフルオロメトキシフェニル) -7-フルオロー2, 3-キ ノリンジカルボキシミド

融点264-266℃

- (19). N- (4-トリフルオロメトキシフェニル) -6-フルオロ-2, 3-キ
- 15 ノリンジカルボキシミド

融点287-289℃

- (20). N-(4-1)フルオロメトキシフェニル)-5-フルオロ-2, 3-キノリンジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
- 20 7. 39-7. 43 (2H, m), 7. 51 (1H, ddd, J=0.9, 7.8 及び9. 0Hz),
 - 7.63-7.80(2H, m), 7.95(1H, ddd, J=6.0, 7.8 及び8.4Hz),
 - 8.30(1H, dd, J=0.9及び8.4Hz), 9.09(1H, d, J=0.9Hz).
- 25 ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 2. 33 (3H, s), 7. 43 (1H, d, J=8. 4Hz), 7. 62 (1H, d, J=8. 4Hz), 7. 64 (1H, s),
 - 7.81-7.72(2H, m), 8.50(1H, dd, J=5.4 及び9.0Hz), 8.77(1H, s).

- ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 10 (3H, t, J=7. 5Hz), 1. 15 (3H, t, J=7. 5Hz), 2. 45 (2H, q, J=7. 5Hz),
 - 2. 62 (2H, q, J=7. 5Hz), 7. 22 (1H, d, J=8. 5Hz), 7. 50 (1H, d, J=8. 5Hz),
 - 7.89-7.96(2H, m), 8.42(1H, dd, J=2.0 及び8.0Hz), 9.29(1H, s).
- 5 (23). N- (3-クロロ-2, 6-ジエチルフェニル) -6-クロロ-2, 3-キノリンジカルボキシミド
 - ¹ H-NMR「TMS/d6-DMSO、δ値(ppm)]
 - 0. 99 (3H, t, J=7. 5Hz), 1. 04 (3H, t, J=7. 5Hz), 2. 40 (2H, q, J=7. 5Hz),
 - 2. 60 (2H, q, J=7. 5Hz), 7. 36 (1H, d, J=8. 5Hz), 7. 61 (1H, d, J=8. 5Hz),
- 10 8.09(1H, d, J=8.1Hz), 8.40(1H, d, J=8.1Hz), 8.52(1H, s), 9.15(1H, s).
 - (24). N- (3-クロロ-2-メチルフェニル) -6-クロロ-2, 3-キノリンジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 2. 27 (3H, s), 7. 20 (1H, d, J=7. 8Hz), 7. 32 (1H, t, J=7. 8Hz),
- 7.53 (1H, d, J=7.8Hz), 7.93 (1H, dd, J=2.0及び8.0Hz), 8.11 (1H, d, J=2.0Hz),
 - 8. 42 (1H, d, J=8. 0Hz), 8. 71 (1H, s).
 - (25). N- (3-クロロ-2, 6-ジエチルフェニル) -7-クロロ-2, 3-キノリンジカルボキシミド
 - ¹H-NMR[TMS/d6-DMSO, δ値(ppm)]
- 20 0.99 (3H, t, J=7.5Hz), 1.04 (3H, t, J=7.5Hz), 2.45 (2H, q, J=7.5Hz),
 - 2. 61 (2H, q, J=7. 5Hz), 7. 37 (1H, d, J=8. 5Hz), 7. 62 (1H, d, J=8. 5Hz),
 - 7.99(1H, dd, J=2.5及び8.5Hz), 8.43(1H, d, J=8.5Hz), 8.48(1H, d, J=2.5Hz),
 - 9.24(1H, s).
 - (26). N- (3-クロロ-2, 6-ジエチルフェニル) -5-メチル-2, 3-
- 25 キノリンジカルボキシミド

融点178-180℃

- (27). N- (3-クロロ-2, 6-ジエチルフェニル) -6-メチル-2, 3-キノリンジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃, δ値(ppm)]

- 1. 10 (3H, t, J=7. 5Hz), 1. 14 (3H, t, J=7. 5Hz), 2. 45 (2H, q, J=7. 5Hz),
- 2. 62 (2H, q, J=7. 5Hz), 2. 65 (3H, s), 7. 21 (1H, d, J=8. 5Hz),
- 7. 47 (1H, d, J=8. 5Hz), 7. 80 (1H, d, J=8. 0Hz), 7. 88 (1H, s),
- 8. 37 (111, d, J=8. 0Hz), 8. 71 (1H, s).
- 5 (28). N- (3-クロロ-2, 6-ジエチルフェニル) -8-メチル-2, 3-キノリンジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1.00 (3H, t, J=7.5Hz), 1.14 (3H, t, J=7.5Hz), 2.45 (2H, q, J=7.5Hz),
 - 2. 60 (2H, q, J=7. 5Hz), 2. 95 (3H, S), 7. 20 (1H, d, J=8. 5Hz),
- 10 7. 40 (1H, d, J=8. 5Hz), 7. 70 (1H, t, J=8. 0Hz), 7. 95 (1H, d, J=8. 0Hz), 8. 75 (1H, s).
 - (29). N- (3-クロロ-2-メチルフェニル) -6-メチル-2, 3-キノリンジカルボキシミド
 - ¹H-NMR[TMS/CDCl₃, δ値(ppm)]
- 2. 26 (3H, s), 2. 65 (3H, s), 7. 20 (1H, d, J=8. 5Hz), 7. 30 (1H, t, J=8. 5Hz),
 - 7. 51 (1H, d, J=8. 5Hz), 7. 85 (1H, d, J=8. 0Hz), 7. 87 (1H, s),
 - 8. 35 (1H, d, J=8. 0Hz), 8. 69 (1H, s).
 - (30). N- $(3-\rho 2, 6-i x + 2$
- 20 ¹ II-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 06(3H, t, J=7.5Hz), 1. 14(3H, t, J=7.5Hz), 2. 45(2H, q, J=7.5Hz),
 - 2. 65 (2H, q, J=7. 5Hz), 7. 20 (1H, d, J=8. 0Hz), 7. 45 (1H, d, J=1. 1Hz),
 - 7.50(1H, d, J=8.0Hz), 7.60(1H, dd, J=1.1及び8.5Hz), 8.38(1H, d, J=8.5Hz),
 - 8.62(1H, s).
- 25 (31). N- (3-クロロ-2, 6-ジエチルフェニル) -6-メトキシ-2, 3 -キノリンジカルボキシミド
 - ¹H-NMR[TMS/d6-DMSO, δ恒(ppm)]
 - 1. 10 (3H, t, J=7. 5Hz), 1. 18 (3H, t, J=7. 5Hz), 2. 50 (2H, q, J=7. 5Hz),
 - 2. 87 (2H, q, J=7. 5Hz), 3. 95 (1H, s), 7. 21 (1H, d, J=8. 5Hz),

- 7. 35 (1H, d, J=8. 5Hz), 8. 05 (1H, d, J=8. 0Hz), 8. 86 (1H, s), 9. 24 (1H, s), 10. 28 (1H, d, J=8. 0Hz).
- (32). N- (3-クロロ-2, 6-ジエチルフェニル) -6, 7-ジメトキシー 2, 3-キノリンジカルボキシミド
- 5 ¹ H-NMR[TMS/CDC1₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 8Hz), 1. 14 (3H, t, J=7. 8Hz), 2. 45 (2H, q, J=7. 8Hz),
 - 2. 63 (2H, q, J=7. 8Hz), 4. 10 (6H, s), 7. 20 (1H, d, J=8. 5Hz), 7. 28 (1H, s),
 - 7. 45(1H, d, J=8.5Hz), 7. 76(1H, s), 8. 58(1H, s).
- (33). N- (3-クロロ-2, 6-ジエチルフェニル) -6, 7-メチレンジオ 10 キシ-2, 3-キノリンジカルボキシミド
 - ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 5Hz), 1. 15 (3H, t, J=7. 5Hz), 2. 45 (2H, q, J=7. 5Hz),
 - 2. 62 (2H, q, J=7. 5Hz), 6. 27 (2H, s), 7. 20 (1H, d, J=8. 5Hz), 7. 32 (1H, s),
 - 7. 45 (1H, d, J=8. 5Hz), 7. 71 (1H, s), 8. 55 (1H, s).
- 15 一般式(VII)で表される縮合へテロ環ジエステル及び一般式(VII)で表されるジカルボン酸類は公知の方法[例えばアメリカ特許第3414580号公報、同第3686171号公報、J. Med. Chem., 27, 1396(1984)、J. Heterocyclic Chem., 12, 1303(1975)、同15, 1447(1978)、同16, 1141, (1979)、同1
- 20 7、443 (1982)、同21,689 (1984)、Beil.,25 M,

 2028、特開昭52-77086号公報、J. Am. Chem. Soc.,8

 1,2456 (1956)、J. Org. Chem.,37,3224 (1972)、特開昭62-175480号公報、同62-230782号公報、同60-185783公報、同61-109790号公報、
- 25 同62-277385号公報、同63-295575号公報、同63-99067号公報、同64-75474号公報、同64-90118号公報、薬学雑誌,84,416(1964)、Chem. and Pharm. Bull.,5,277(1957)、J. Chem. Research(S),1989,196等]に記載の方法に準じて製造することができる。

E. 一般式 (II) → 一般式 (I-1)

本反応で使用できる不活性溶媒としては、例えばBで例示の不活性溶媒の他に、 ピリジン類も使用することができる。

本反応は等モル反応であるので、一般式(Ⅱ-1)で表されるアミン類又は一 6 般式(Ⅱ-2)で表されるアミン塩類を、一般式(Ⅲ)で表されるイミド類に対 して等モル使用すれば良いが、過剰に使用することもできる。

本反応で一般式 (II-2) で表されるアミンの塩類を使用する場合、遊離のアミンを反応系で発生させるために塩基を必要とし、塩基としては無機塩基又は有機塩基を使用することができ、無機塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属原子の水酸化物、炭酸塩等を、有機塩基としては、例えばトリエチルアミン、ピリジン、4-ジメ

15 反応温度は-10℃~使用する不活性溶媒の沸点域から適宜選択すれば良く、 好ましくは0℃~150℃の範囲で行えば良い。

反応時間は、反応温度、反応規模等により一定しないが、数分乃至48時間の 範囲で行えば良い。

反応終了後、目的物を含む反応系から常法により目的物を単離し、必要に応じ 20 て再結晶法、蒸留法、カラムクロマトグラフィー法等で精製することにより目的 物を製造することができる。

以下に本発明の一般式(I)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又はその塩類の代表例を第1表~第14表に示すが、本発明はこれらに限定されるものではない。尚、表中「c —」は脂環式炭化水素を示し、「Het 」は \widehat{Q} を示す。

一般式(1)

25

5 第1表 (Hat [= Q¹、R¹=R³=H)

No	Y	R³	X	R ⁴	融点℃
1	Н	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	5−CH₃	188-190
2	Н	$n-C_3H_7$	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	208-210
3	Н	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	190-192
4	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
5	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
6	Н	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-Cl$	5-CH ₃	
7	Н	i-C ₄ ll ₉	$2, 6-(C_2 II_5)_2-3-C1$	5-CH ₃	
8	Н	t-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	5-CH ₃	
9	Н	n-C _s H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
10	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
11	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
12	Н	$t-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	5-CH ₃	
13	Н	$n-C_6H_{13}$	$2, 6-(C_2H_5)_2-3-C1$	5-CH₃	
14	Н	CH₃	2-CH ₃ -3-Cl	5-CH ₃	
15	Н	C_2H_5	2-CH ₃ -3-Cl	5-CH _a	
16	Н	n-C ₃ H ₇	2-CH ₃ -3-Cl	5-CH ₃	
17	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	5-CH₃	
18	Н	c-C ₃ H ₅	2-CH ₃ -3-Cl	5-CH ₃	
19	Н	n-C ₄ ll ₉	2-CH ₃ -3-Cl	5-CII ₃	
20	Н	s-C ₄ H ₉	2-CH ₃ -3-Cl	5-CH ₃	
21	Н	i-C ₄ H ₉	2-CH ₃ -3-Cl	5-CH ₃	·
. 22	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	5-CH ₃	
23	Н	$n-C_5H_{1,1}$	2-CH ₃ -3-C1	5-CH ₃	,
24	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	5-CH ₃	
25	Н	c-C ₅ II ₉	2-C11 ₃ -3-C1	5-CH3	
26	H	t-C ₅ ₁₁	2-CH ₃ -3-Cl	5-CH ₃	

第1表(続き)

No	Y	R³	X	R ⁴	融点℃
27	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	5-Cl₁₃	
28	Н	СНз	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	234-236
29	П	C2ll5	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	226-228
30	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	221-222
31	Н	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-Cl$	6-CH ₃	
32	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
33	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
34	Н	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
35	Н	i−C₄H,	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
36	Н	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-Cl$	6-CH ₃	
37	Н	$n-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-Cl$	6-CH ₃	
38	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
39	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
40	Н	$t-C_5H_1$	$2, 6-(C_2H_6)_2-3-C1$	6-CH ₃	
41	11	n-C ₆ ll ₁₃	2, 6-(C ₂ ll ₅) ₂ -3-Cl	6-CH ₃	
42	Н	СНз	2-CH ₃ -3-Cl	6-CH ₃	
43	Н	C_2H_5	2-CH ₃ -3-Cl	6-CH ₃	225-228
44	H	n-C ₃ H,	2-CH ₃ -3-Cl	6-CH ₃	217-220
45	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	6-CH ₃	
46	Н	c-C ₃ H ₅	2-CH ₃ -3-Cl	6-CH ₃	
47	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	6-CH ₃	
48	Н	s-C ₄ H ₉	2-CH ₃ -3-Cl	6−CH ₃	
49	Н	i-C ₄ H ₉	2-CH ₃ -3-Cl	6-CH ₃	
50	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	6-CH ₃	•
51	Н	$n-C_5H_{1,1}$	2-CH ₃ -3-Cl	6-Cll ₃	
52	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	6-CH ₃	
-53	Н	c-C5H9	2-CH ₃ -3-Cl	6-CH ₃	218-219
54	Н	C_2H_5	4-0CF ₃	6-CH ₃	215-217
55	Н	n-C ₃ H ₇	4-0CF ₃	6-CH ₃	202-204
56	Ħ	i-C ₃ ll ₇	4-0CF ₃	6-CH ₃	213-215
57	Н	C ₂ H ₅	2, 6- (C ₂ II ₅) ₂ -3-Cl	7-CH ₃	

第1表 (続き)

No	Y	R³	Х	R ⁴	融点℃
58.	Н	n-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	7-CH ₃	199-201
59	Н	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
60	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
61	Н	n-C ₄ H ₉	$2, 6-(C_2 _5)_2-3-C1$	7-CII ₃	
62	Н	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
63	Ħ	i-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	7-CH ₃	
64	Н	t-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	7-CH ₃	
65	Н	$n-C_5H_{11}$	$2,6-(C_2H_5)_2-3-C1$	7-CH ₃	
66	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
67	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
68	Н	$t-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
69	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	7-CH ₃	
70	Н	C_2H_5	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
71	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	8-CH₃	227-228
72	Н	i−C₃H ₇	$2, 6-(C_2H_5)_2-3-C1$	8-СН₃	
73	H	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
74	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	8-CH3	•
75	Н	eH ₁ .3-z	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
76	H	i-C₄H₃	$2,6-(C_2H_5)_2-3-C1$	8-CH ₃	
77	Н	t-C₄H _o	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
78	Н	$n-C_5H_{1,1}$	$2,6-(C_2H_5)_2-3-C1$	8-CH ₃	
79	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
80	H	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	8-CH ₃	
81	Н	$t-C_5H_1$,	$2, 6-(C_2H_5)_2-3-C1$	8-CH ₃	
82	Н	$n-C_6H_{13}$	$2,6-(C_2H_5)_2-3-C1$	8-CH ₃	
83	Н	СНз	2-CH ₃ -3-Cl	8-CH ₃	
84	Н	C_2H_5	2-CH ₃ -3-Cl	8-CH ₃	
85	Н	n-C ₃ H ₇	2-CH ₃ -3-C1	8-CH ₃	
86	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	8-CH ₃	
87	Н	c-C3H5	2-CH ₃ -3-C1	8-CH ₃	
88	Н	n-C ₄ H ₉	2-CH ₃ -3-C1	8-CH ₃	

27

第1表(続き)

No	Υ	R³	Х	R ⁴	配点℃
89	Н	s-C ₄ H ₉	2-CH ₃ -3-Cl	8-CH ₃	
90	Н	i-C₄H ₉	2-CH ₃ -3-Cl	8-CH ₃	
91	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	8-CH₃	
92	н	$n-C_5H_{11}$	2-CH ₃ -3-C]	8-CH ₃	
93	Н	neo-C ₅ II ₁₁	$2-CH_3-3-C$	8-CH ₃	
94	Н	c-C ₅ H ₉	2-CH ₃ -3-Cl	8-Cl ₃	
95	Н	$t-C_5H_{11}$	2-CH ₃ -3-Cl	8-CH ₃	
96	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	8-CH ₃	
97	Н	H .	$2, 6-(C_2H_5)_2-3-C1$	5-F	266-268
98	Н	CH₃	$2, 6-(C_2H_5)_2-3-C1$	5-F	
99	Н	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	5-F	227-229
100	Н	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	5-F	207-209
101	Н	i-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	5-F	213-215
102	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	5-F	
103	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	5-F	
104	Н ·	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	5-F	
105	Н	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	5-F	
106	Н	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	5-F	
107	Н	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-F	
108	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-F	,
109	Н	c-C _o ll _e	$2, 6-(C_2H_5)_2-3-C1$	5-F	
110	Н	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-F	
111	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	5-F	
112	Н	CH ₃	2-CH ₃ -3-Cl	5-F	
113	Н	C₂H₅	2-CH ₃ -3-Cl	5-F	
114	H	n-C ₃ H ₇	2-CH ₃ -3-Cl	5-F	
115	Н	i-C ₃ H,	2-CH ₃ -3-Cl	5-F	
116	Н	c-CaHs	2-CH ₃ -3-Cl	5-F	
117	H	n-C ₄ H ₉	2-CH ₃ -3-Cl	5-F	
118	Н	s-C ₄ H ₉	2-CII ₃ -3-C1	5-F	
119	Н	i-C ₄ ll ₉	2-Cl1 ₃ -3-Cl	5-F	

第1表(続き)

No	Y	R³	· X	R ⁴	融点℃
120	H	t-C4H9	2-CH ₃ -3-Cl	5-F	
121	11	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	5-F	
122	H	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	5-F	
123	H	c-C ₅ H ₉	2-CH ₃ -3-Cl	5-F	
124	Н	$n-C_3H_7$	4-0CF ₃	5-F	191-193
125	Н	i-C ₃ H ₇	4-0CF ₃	5-F	210-212
126	Н	Н	$2, 6-(C_2H_5)_2-3-C1$	6-F	286-288
127	Н	CH ₃	$2, 6-(C_2H_5)_2-3-C1$	6-F	247-249
128	H	C2H5	$2, 6-(C_2H_5)_2-3-C1$	6-F	212-213
129	Н	$n-C_3H_7$	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-F	210-212
130	Н	$i-C_3H_7$	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-F	202-204
131	Н	c-C3l·I5	$2, 6-(C_2H_5)_2-3-C1$	6-F	
132	H	n-C4H9	$2, 6-(C_2H_5)_2-3-CI$	6-F	
133	Н	s-C ₄ H _o	$2.6-(C_2H_5)_2-3-C1$	6-F	
134	H	i−C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-F	
135	Н	t-C4H9	2, $6-(C_2H_{\epsilon})_2-3-C1$	6-F	
136	Н	$n-C_5H_{1,1}$	$2,6-(C_2H_5)_2-3-C1$	6-F	
137	Н	neo-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	6-F	
138	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-F	
139	Н	$t-C_5H_1$	$2,6-(C_2H_5)_2-3-C1$	6-F	
140	H	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	6-F	
141	Н	CH₃	2-CH ₃ -3-Cl	6-F	
142	Н	C2H5	2-CH ₃ -3-Cl	6-F	
143	Н	n-C ₃ H ₇	2-CH ₃ -3-Cl	6-F	
144	Ħ	i-C ₃ H ₇	2-CH ₃ -3-Cl	6-F	
145	Н	c-CaHs	2-CH ₃ -3-Cl	6-F	
146	Н	n-C4H9	2-CH ₃ -3-C1	6-F	
147	Н	s-C ₄ H ₉	2-CH ₃ -3-C1	6-F	
148	Н	i-C ₄ H ₉	2-CH ₃ -3-C1	6-F	
149	Н	t-C.4H.9	2-CH ₃ -3-Cl	6-F	
150	Н	n-C ₅ H ₁₁	2-CH ₃ -3-CH	6-F	

第1表(続き)

No	Y	R³	Х	R.	融点℃
151	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	6-F	•
152	Н	c-C ₅ H ₉	2-CH ₃ -3-Cl	6-F	
153	Н	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	6-F	
154	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	6-F	
155	Н	C2H5	4-0CF ₃	6-F	242-244
156	Н	i-C ₃ H ₇	4-0CF ₃	6-F	248-250
157	Н	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	7-F	231-233
158	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	7-F	220-222
159	Н	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	7-F	
160	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	7-F	
161	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-F	•
162	Н	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-F	
163	Н	i-C₄H ₉	$2,6-(C_2H_5)_2-3-C1$	7-F	
164	Н	t-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	7-F	
165	Н	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	7-F	
166	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	7-F	
167	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-F	
168	Н	t-C ₅ H ₁₁	$2, 6-(C_2 _5)_2-3-C1$	7-F	
169	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_6)_2-3-C1$	7-F	
170.	Н	CH₃	2-CH ₃ -3-Cl	7-F	
171	Н	C2H5	2-CH ₃ -3-Cl	7-F	
172	Н	n-C ₃ H ₇	2-CH ₃ -3-Cl	7-F	
173	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	7-F	
174	Н	c-Calls	2-CH ₃ -3-C1	7-F	
175	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	7-F	
176	11	s-C ₄ H ₉	2-CH ₃ -3-C1	7-F	
177	Н	i-C ₄ H ₉	2-CH ₃ -3-C]	7-F	
178	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	7-F	
179	Н	n-C ₅ H _{1,1}	2-CH ₃ -3-C1	7-F	
180	Н	neo-C ₅ H ₁ ,	2-CH ₃ -3-Cl	7-F	
181	Н	c-C _s H ₉	2-CH ₃ -3-C1	7-F	

30

第1表 (続き)

No	Y	R ³	X	R ⁴	融点℃
182	Н	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	7-F	
183	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	7-F	
184	Н	C ₂ H ₅	4-0CF ₃	7-F	269-271
185	Н	i-C ₃ H ₇	4-0CF ₃	7-F	264-266
186	Н	Н	2,6-(C ₂ H ₅) ₂ -3-Cl	5-C1	
187	Н	СН₃	2, 6-(C ₂ ₅) ₂ -3-Cl	5-C1	
188	H	Calls	$2,6-(C_2H_5)_2-3-C1$	5-Cl	
189	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	5-C1	235-237
190	11	i-C ₃ H ₇	2,6-(C ₂ H ₅) ₂ -3-Cl	5-C1	
191	Н	c-C _a H _s	$2,6-(C_2H_5)_2-3-C1$	5-C1	
192	H	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	5-C1	
193	Н	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	5-C1	
194	H	i-C₄H ₉	2, $6-(C_2H_5)_2-3-C1$	5-C1	
195	Н	t-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	5-Cl	
196	H	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-C1	
197	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	5-C1	
198	H ·	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	5-C1	
199	Н	t-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	5-C1	
200	H.	CH ₂ CH ₂ CN	2, $6-(C_2H_5)_2-3-C1$	5-C1	217-219
201	Н	CH2CH2OCH3	2, $6-(C_2H_5)_2-3-C1$	5-C1	199-201
202	Н	CH ₃	2-CII ₃ -3-C1	5-C1	
203	Н	C ₂ H ₅	2-CH ₃ -3-Cl	5-C1	
204	Н	$n-C_3H_7$	2-CH ₃ -3-Cl	5-Cl	
205	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	5-C1	
206	Н	$c-C_3H_5$	2-CH ₃ -3-Cl	5-C1	
207	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	5-C1	
208	H	s-C4H9	2-CH ₃ -3-C1	5-C1	
209	11	i-C4H9	2-CH ₃ -3-Cl	5-Cl	
210	H	t-C ₄ H ₉	2-CH ₃ -3-Cl	5-C1	
211	Н	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	5-Cl	
212	11	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	5-C1	

31

第1表(続き)

No	Υ	R³	Х	R ⁴	融点℃
213	Н	c-C ₅ H ₉	2-CH ₃ -3-Cl	5-Cl	
214	Н	n-C ₃ H ₇	4-0CF ₃	5-C1	210-212
215	Н	i-C ₃ H ₇	4-0CF ₃	5-C1	228-229
216	11	11	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
217	Н	СН₃	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
218	H	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
219	Н	$n-C_3H_7$	$2, 6-(C_2H_5)_2-3-C1$	6-C1	211-213
220	Н	i−C₃H,	$2, 6-(C_2H_5)_2-3-C1$	6-C1	: - -
221	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
222	Н	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	6-C1	:
223	Н	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
224	Н	i−C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-C1	214-215
225	Н	t-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
226	Н	$n-C_5H_1$	$2, 6-(C_2 H_5)_2-3-C1$	6-C1	
227	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
228	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-Cl	203-204
229	- H	$t-C_5ll_{11}$	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
230	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
231	Н	CH ₃	2-CH ₃ -3-Cl	6-C1	:
232	Н	C2H5	2-CH ₃ -3-Cl	6-Cl	
234	Н	$n-C_3H_7$	2-CH ₃ -3-Cl	6-C1	217-219
235	Н	i−C₃H;	2-CH ₃ -3-Cl	6-C1	•
236	Н	$c-C_3H_5$	2-CH ₃ -3-Cl	6-C1	
237	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	6-C1	
238	H	s-C,H,	2-CH ₃ -3-Cl	6-C1	:
239	П	i-C ₄ H ₉	2-CH ₃ -3-Cl	6-C1	
240	11	t-C ₄ H ₉	2-Cl13-3-Cl	6-C1	,
241	Н	$n-C_5H_{1,1}$	2-CH3-3-C]	6-Cl	
242	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	6-C1	
243	H	c-C ₅ ₉	2-CH ₃ -3-C1	6-Cl	236-238

第1表 (続き)

No	Y	R³	X	R⁴	融点℃
244	Н	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	6-C1	
245	Н	$n-C_6H_{13}$	2-CH ₃ -3-C1	6-C1	
246	Н	C_2H_5	$2, 6-(C_2H_5)_2-3-C1$	7-C1	238-240
247	Н.	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	7-Cl	
248	Н	i-C₃H,	$2,6-(C_2H_5)_2-3-C1$	7-C1	
249	Н	c-C₃H₅	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
250	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
251	Н	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
252	Н	i-C4H9	$2,6-(C_2H_5)_2-3-C1$	7-C1	
253	Н	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
254	Н	$n-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	7-Cl	
255	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
256	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
257	Н	$t-C_5H_{11}$	2, 6-(C ₂ H ₅) ₂ -3-Cl	7-C1	
258	Н	$n-C_6H_{13}$	$2, 6-(C_2H_5)_2-3-C1$	7-C1	
259	H .	Cll3	2-Cll ₃ -3-Cl	7-C1	
260	Н	C_2II_5	2-CH ₃ -3-Cl	7-C1	
261	Н	n-C ₃ H,	2-CH ₃ -3-Cl	7-C1	
262	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	7-C1	
263	Н	c-C ₃ H ₅	2-CH ₃ -3-C1	7-C1	
264	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	7-C1	
265	Н	s-C4H9	2-CH ₃ -3-C1	7-C1	
266	Н	i-C ₄ H ₉	2-CH ₃ -3-C1	7-C1	
267	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	7-C1	
268	Н	$n-C_5H_{11}$	2-CH ₃ -3-Cl	7-C1	
269	H	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	7-C1	
270	Н	c-CsH9	2-CH ₃ -3-Cl	7-C1	
271	Н	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	7-C1	
272	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	7-C1	
273	H	Н	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
274	Н.	СНз	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-0H	

第1表(続き)

No	Y	R³	Х	R⁴	融点℃
275	Н	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-OH	239-241
276	Н	n-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-OH	266-267
277	Н	i-C₃H,	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
278	Н	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-0H	
279	Н	n-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
280	Н	s-C ₄ II ₉	$2, 6-(C_2H_5)_2-3-C1$	6-011	
281	Н	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
282	Н	t-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-0H	
283	Н	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-Cl$	6-0H	
284	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
285	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
286	Н	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
287	H	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	6-0H	
288	Н	CH₃	2, $6-(C_2H_5)_2-3-Cl$	6-0CH ₃	
289	Н	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	209-210
290	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	173-175
291	Н	$n-C_3H_7O$	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	178-181
292	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	
293	Н	n−C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	•
294	Н	s-C4ll9	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	
295	11	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	
296	Н	t-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	6-0CH ₃	
297	Н	n-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	6-0CH ₃	
298	Н	neo-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	6-0CH ₃	
299	Н	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	6-0CH ₃	
300	Н	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	
301	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	6-0CH ₃	
302	11	П	2, 6-(C ₂ 1 ₅) ₂ -3-Cl	6, 7- (OCII ₃) ₂	
303	Н	CH ₃	2, 6- (C ₂ H ₅) ₂ -3-Cl	6, 7-(OCH ₃) ₂	
304	Н	C_2H_5	$2, 6-(C_2H_5)_2-3-C1$	6,7-(OCH ₃) ₂	
305	Н	n-C ₃ H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	6, 7- (OCH ₃) ₂	223-225

34

第1表 (続き)

No	Y	R³	X	R ⁴	融点℃
306	Н	i-C ₃ H ₇	2, 6-(C ₂ I ₅) ₂ -3-Cl	6, 7-(0CH ₃) ₂	
307	Н	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(0CH ₃) ₂	
308	H	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	6, $7-(OCH_3)_2$	
309	Н	s-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	6,7-(OCH ₃) ₂	
310	Н	i−C₄H,	2,6-(C ₂ H ₅) ₂ -3-Cl	6,7-(0CH ₃) ₂	204-206
311	Н	t-C ₄ H ₉	2,6-(C ₂ H ₅) ₂ -3-Cl	6,7-(OCH ₃) ₂	
312	Н	n-C ₅ H ₁₁	2, 6-(C ₂ II ₅) ₂ -3-C1	6,7-(0CH ₃) ₂	
313	Н	neo-C₅H₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	6, 7-(0CH ₃) ₂	
314	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH $_3$) $_2$	
315	Н	t-C ₅ H ₁₁	2,6-(C ₂ H ₅) ₂ -3-Cl	$6, 7-(OCH_3)_{2}$	
316	Н	n-C ₆ H ₁₃	$2, 6-(C_2H_5)_2-3-C1$	6,7-(OCH ₃) ₂	
317	Н	CH₃	2-CH ₃ -3-C1	6,7-(OCH ₃) ₂	
318	Н	C_2H_5	2-CH ₃ -3-C1	$6,7-(OCH_3)_2$	•
319	Н	n-C ₃ H ₇	2-CH ₃ -3-Cl	6, 7-(0CH ₃) ₂	
320	H	i-C ₃ H ₇	2-CH ₃ -3-C1	6, 7-(OCH ₃) ₂	
321	Н	c-C ₃ H ₅	2-CH ₃ -3-Cl	6,7- $(OCH_3)_2$	
322	Н	n-C ₄ H ₉	2-CH ₃ -3-C1	6,7-(0CH $_3$) $_2$	
323	Н	s-C ₄ H ₉	2-CH ₃ -3-Cl	6, $7-(OCH_3)_2$	
324	Н	i-C ₄ H ₉	2-CH ₃ -3-C1	6, $7-(OCH_3)_2$	
325	Н	t-C4H9	2-CH ₃ -3-Cl	6,7-(0CH ₃) ₂	
326	Н	$n-C_5H_{11}$	2-CH ₃ -3-Cl	6,7-(OCH ₃) ₂	
327	Н	neo-C ₅ H _{1,1}	2-CH ₂ -3-Cl	6,7-(0CH ₃) ₂	
328	H	c-CsH9	2-CH ₃ -3-Cl	6,7-(0CH ₃) ₂	
329	Н	t-C₅H₁₁	2-CH ₃ -3-C1	6,7-(OCH ₃) ₂	
330	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	6,7-(OCH ₃) ₂	
331	Н	Н	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(0CH ₂ 0)	
332	H	CH ₃	2,6-(C ₂ H ₅) ₂ -3-Cl	6,7-(0CH ₂ 0)	
333	H	C2H5	2, 6-(C ₂ 1 ₆) ₂ -3-Cl	6, 7-(0CH ₂ 0)	
334	11	n-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	6, 7-(0CH ₂ 0)	213-215
335	Н	i-C ₃ H,	2,6-(C ₂ H ₅) ₂ -3-Cl	6, 7-(0CH ₂ 0)	
336	Н	c-C _a H _s	2,6-(C ₂ H ₅) ₂ -3-Cl	6,7-(OCH ₂ O)	

第1表(続き)

No	Y	R³	Χ	R ⁴	配点℃
337	Н	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH ₂ 0)	
338	Н	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH ₂ 0)	
339	Н	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH ₂ 0)	221-223
340	Н	t-C4119	$2, 6-(C_2 _{1_5})_2-3-C_1$	6, 7- (OCH ₂ 0)	
341	Н	$n-C_5H_{1.1}$	$2, 6-(C_2H_5)_2-3-CI$	6, 7-(0CH ₂ 0)	
342	Н	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	6,7-(0CH ₂ 0)	
343	Н	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH ₂ 0)	191-193
344	Н	$t-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(0CH ₂ 0)	
345	Н	$n-C_6H_{13}$	$2, 6-(C_2H_5)_2-3-C1$	6, 7-(OCH ₂ 0)	
346	Н	СН₃	2-CH ₃ -3-C1	6, 7-(OCH ₂ 0)	
347	Н	C ₂ H ₅	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
348	Н	n-C ₃ H ₇	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
349	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	6, 7-(OCH ₂ 0)	
350	Н	c−C₃H₅	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
351	Н	n-C ₄ H ₉	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
352	Н	s-C ₄ H ₉	2-CH ₃ -3-Cl	6, 7-(OCH ₂ 0)	
353	Н	i-C4H9	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
354	Н	t-C4H9	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
355	Н	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
356	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
357	Н	c-C ₅ H ₉	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
358	Н	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
359	Н	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	6, 7-(0CH ₂ 0)	
359-1	Н	CH ₃	$2, 6-(C_2H_5)_2-3-C1$	Н	235-237
359-2	Н	C_2H_5	2, $6-(C_2H_5)_2-3-C1$	Н	205-207
359-3	Н	n-C ₃ H ₇	2, 6-(C ₂ II ₅) ₂ -3-Cl	Н	211-213
359-4	11	i-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	195-197
359-5	П	$neo-C_5II_{1,1}$	2, $6-(C_2H_5)_2-3-C1$	Н	141-143
359-6	11	c-Csll9	2, $6-(C_2H_5)_2-3-C1$	Н	161-163

第2表(Hat[$=Q^2$ 、B=D=CH、 $R^1=Y=H$)

No	R²	R ³	X	Α	Е	融点℃
360	Н	C2H5	2, 6-(C ₂ H ₅) ₂ -3-Cl	N.	СН	249-264
361	Н	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Ŋ	CH	234-250
362	Н	i-CaH ₇	2,6-(C ₂ H ₅) ₂ -3-Cl	N	CH	
363	Н	c-C ₃ H ₅	$2,6-(C_2H_5)_2-3-C1$	N	CH	
364	Н	n-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	Ŋ	CH	
365	H	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	N	CH	
366	П	i-C ₄ H ₉	2,6-(C ₂ H ₅) ₂ -3-Cl	N	CH	
367	Н	t-C₄H ₉	$2,6-(C_2H_5)_2-3-C1$	N	CH	
368	Н	n-CsH ₁₁	$2,6-(C_2H_5)_2-3-C1$	Ŋ	СН	
369	Н	neo-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	N	СН	
370	Н	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	N	СН	
371	н -	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	N	СН	
372	Н	$n-C_6H_{13}$	$2, 6-(C_2H_5)_2-3-C1$	N	СН	
373	Н	CH ₃	2-CH ₃ -3-Cl	N	CH	
374	Н	C_2H_5	2-CH ₃ -3-Cl	N	СН	
375	Н	n-C ₃ H ₇	2-CH ₃ -3-C1	N	СН	223-245
376	Н	i-C ₃ H ₇	2-CH ₃ -3-Cl	N	СН	
377	Н	c-C ₃ H ₅	2-CH ₃ -3-Cl	N	CH	
378	Н	n-C ₄ H ₉	2-CII3-3-Cl	N	CH	
379	Н	s-C ₄ ll ₉	2-CH ₃ -3-Cl	N	СН	
380	H	i-C ₄ ll ₉	2-CH ₃ -3-Cl	N	СН	
381	Н	t-C ₄ H ₉	2-CH ₃ -3-Cl	N	CH	
382	Н	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	N	СН	
383	Н	neo-C ₅ II,	2-CH ₃ -3-Cl	N	СН	
384	Н	c-C ₅ H ₉	2-CH ₃ -3-C1	N	СН	
385	Н	t-C ₅ H ₁₁	2-CII ₃ -3-Cl	N	СН	
386	H	n-C ₆ H ₁₃	2-CH ₃ -3-Cl	N	СН	
387	Н	C_2II_5	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
388	H	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	N	N	215-220
389	Н	i-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
390	Н	c-CaHs	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	

第2表(続き)

				•		
No	R²	R.s	X	Α	E	融点℃
391	Н	n-C4H9	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
392	н	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	N	N	
393	11	i-C₄ll,	2, 6-(C ₂ 1 ₅) ₂ -3-Cl	N-	N	
394	Н	t-C₄H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
395	H	n-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
396	Н	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
397	Н	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
398	Н	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	N	N	
399	Н	n-C ₆ H ₁₃	2, 6-(C ₂ H ₅) ₂ -3-Cl	N	N	
400	Н	CH ₃	2-CH ₃ -3-Cl	N	N	
401	Н	C ₂ H ₅	2-CH ₃ -3-Cl	N	N	
402	Н	$n-C_3H_7$	2-CH ₃ -3-Cl	N	N	
403	Н	i-C ₃ H ₇	2-CH ₃ -3-C1	N	N	
404	Н	c-C ₃ H ₅	2-CH ₃ -3-Cl	N	N	
405	П	n-C4ll9	2-C11 ₃ -3-C1	N	N	
406	Н.	s-C ₄ H ₉	2-CH ₃ -3-Cl	N	N	
407	Н	i-C₄H,	2-CH ₃ -3-Cl	N	N	
408	Н	t-C4H9	2-CH ₃ -3-Cl	N	N	
409	Н	$n-C_5H_{11}$	2-CH ₃ -3-Cl	N	N	
410	Н	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	N	N	
411	Н	c-C ₅ H ₉	2-CH ₃ -3-C1	N	N	
412	Н	t-C ₅ H ₁ ;	2-CH ₃ -3-Cl	N	N	

38 第3表 (Hal [=Q a 、 R l = R = Y = H)

No	R ³	Х	F	G	J	K	融点℃
413	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CH ₂	Cll2	
414	n-C ₃ II ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CII2	CH ₂	188-191
415	i-C ₃ II,	$2, 6-(C_2H_5)_2-3-Cl$	0	CH ₂	CH ₂	CH ₂	
416	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CH 2	CH ₂	
417	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	0	CH₂	CH ₂	CH2	
418	s-C ₄ H,	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	CH ₂	
419	i-C₄H,	2, $6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	CH ₂	
420	t-C ₄ H ₉	2, 6- $(C_2H_5)_2$ -3-Cl	0	CH ₂	CH ₂	CH ₂	
421	$n-C_5H_{1,1}$	2, $6-(C_2H_5)_2-3-Cl$	0	CH ₂	CH ₂	CH ₂	
422	neo-CsH ₁₁	$2, 6-(C_2H_5)_2-3-Cl$	0	CH ₂	CH₂	CH ₂	
423	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CH ₂	CH ₂	185-189
424	t-C ₅ H ₁ ,	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CH ₂	Cll2	
425	C ₂ H ₅	2-CH ₃ -3-Cl	0	CH ₂	CH2	CH ₂	
426	$n-C_3H_7$	2-CH ₃ -3-Cl	0	CH ₂	CH2	CH2	
427	i-C ₃ H ₇	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	CH₂	
428	c-C3H5	2-CH ₃ -3-Cl	0	CH₂	CH ₂	CH ₂	
429	n-C ₄ H ₉	2-CH ₃ -3-C1	0	CH ₂	CH ₂	CH ₂	
430	s-C4H9	2-CH ₃ -3-Cl	0	CH ₂	CH2	CH₂	
431	i-C ₄ H ₉	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	CH₂	180-183
432	t-C₄H ₉	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	CH ₂	
433	$n-C_5H_{1,1}$	2-CH _a -3-Cl	0	CH ₂	CH_2	CH 2	
434	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	0	CH ₂	CH₂	CH₂	
435	c-CsH9	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	CH ₂	
436	t-C ₅ H ₁₁	2-CH ₃ -3-C1	0	CH2	CII2	CH2	
437	C ₂ H ₅	2, $6-(C_2H_5)_2-3-C1$	CH 2	0	CH ₂	CH2	
438	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	CH 2	0	CH ₂	CH ₂	190-194
439	i-C ₃ H,	2, $6-(C_2H_5)_2-3-C1$	CH ₂	0	CH ₂	CH ₂	
440	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	СН	0	CH ₂	CH ₂	
441	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH 2	0	CH ₂	CH 2	
442	s-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-C1	CH ₂	0	CH2	Cll2	
443	i-C. ₁ H ₉	2, 6- (C ₂ II ₅) ₂ -3-Cl	CH ₂	0	CH ₂	CH2	

第3表 (続き)

No	R ³	х	F	G	J	К	融点℃
444	t-C₄H,	2, 6-(C ₂ H ₅) ₂ -3-C1	CH₂	0	CH 2	CH₂	
445	n-CsH ₁ 1	$2, 6-(C_2H_5)_2-3-C1$	CH₂	0	CH₂	CH₂	
446	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Cll2	0	CH₂	CH ₂	
447	c-Calla	2, 6-(C_2H_5) ₂ -3-Cl	CH₂	0	Clł 2	CH ₂	187-190
448	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH₂	0	CH 2	CH₂	
449	C ₂ H ₅	2-CH ₃ -3-Cl	CH₂	0	CH 2	CH₂	
450	n-C3H7	2-CH ₃ -3-Cl	CH ₂	0	CH 2	CH ₂	188-190
451	i−C₃H,	2-CH ₃ -3-Cl	CH₂	0	Clł 2	CH₂	
452	c-C ₃ H ₅	2-CH ₃ -3-C1	CH ₂	0	CH_2	CH ₂	
453	n-C ₄ H ₉	2-CH ₃ -3-Cl	CH ₂	0	CH 2	CH₂	
454	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH₂	0	CH 2	CH₂	
455	i-C ₄ H ₉	2-CH ₃ -3-C1	CH₂	0	CH ₂	CH ₂	
456	t-C₄H ₉	2-CH ₃ -3-C1	CH ₂	0	Cll2	CH₂	
457	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	O	CH ₂	CH ₂	
458	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH2	0	CH ₂	CH₂	
459	c-C ₅ H ₉	2-Cll ₃ -3-Cl	Cll2	0	CH ₂	CH ₂	
460	t-C ₅ H ₁₁	2-CH ₃ -3-C1	CH ₂	0	CH ₂	CH ₂	
461	C2H5	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	0	CH ₂	
462	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	0	CH ₂	166-170
463	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	0	CH ₂	
464	$c-C_3$ } $_5$	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	0	CH₂	
465	n-C ₄ H ₉	2, 6- $(C_2H_5)_2$ -3-Cl	CH ₂	CH 2	0	CH ₂	
166	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	0	CH ₂	
467	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH2	CH 2	0	CH ₂	
468	t-C.1119	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	()	CH₂	
469	n-C ₅ 11, 1	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH₂	CH₂	0	CH₂	
470	neo-CsH ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH ₂	0	CH₂	
471	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH 2	0	CH₂	
472	$t-C_5H_{11}$	2, 6-(C ₂ H ₅) ₂ -3-C]	CH_2	CH_2	0	Cll_2	
473	C_2H_5	2-CH ₃ -3-Cl	CH ₂	CH ₂	0	CH ₂	
474	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH2	CH ₂	0	CH ₂	168-171

40

第3表(続き)

No	R ³	Х	F	G	J	К	融点℃
475	i-C ₃ H ₇	2-CH ₃ -3-Cl	CII2	CH ₂	0	СН	2
476	c-C3ll5	2-CH ₃ -3-Cl	CH ₂	CH 2	0	CH	2
477	n-C4H9	2-CH ₃ -3-Cl	CH 2	CH ₂	0	CH	2
478	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH₂	CH 2	0	CH:	2
479	i-C₄H,	2-CH ₃ -3-Cl	CH ₂	CH ₂	0	CH:	2
480	t-C ₄ H ₉	2-CH ₃ -3-Cl	CH 2	CH₂	0	CH:	2
481	n-C₅H _{L1}	2-CH ₃ -3-Cl	CH2	CH 2	0	CH:	2
482	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH₂	CH 2	0	CH:	2
483	c-C ₅ H ₉	2-CH ₃ -3-Cl	CH₂	CH 2	0	CH:	2
484	t-C ₅ H ₁₁	2-CH ₃ -3-C1	CH 2	CH 2	0	CH:	2
485	C ₂ H ₅	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	CHz	0	
486	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH ₂	CH_2	0	194-196
487	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH_2	CH ₂	0	
488	$C-C_3H_5$	$2, 6-(C_2H_5)_2-3-Cl$	CH₂	CH 2	CH ₂	0	
489	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-Cl$	CH2	CH 2	CH ₂	0	
490	s-C4H9	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	CH ₂	0	
491	i-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	CH ₂	O	
492	t-C4119	2, 6-(C ₂ II ₅) ₂ -3-Cl	CH2	CH ₂	CH₂	0	
493	n-C ₅ H ₁ ,	2, $6-(C_2H_5)_2-3-Cl$	CH ₂	CH ₂	Cll2	0	
494	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-Cl$	CH ₂	CH ₂	CH₂	0	
495	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH ₂	0	
496	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH2	0	
497	C2H5	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	0	
498	$n-C_3H_7$	2-CH ₃ -3-Cl	CH ₂	CH₂	CH ₂	0	195-198
499	i-C3H7	2-CH ₃ -3-Cl	CH 2	CH ₂	CH ₂	0	
500	$c-C_3H_5$	2-CH ₃ -3-Cl	CH₂	CH ₂	CH ₂	0	
501	n-C ₄ H ₉	2-CII ₃ -3-C1	CH ₂	Cll2	Cll2	0	
502	s-C ₄ H ₉	2-CH ₃ -3-C1	CH 2	CH ₂	CH ₂	0	
503	i-C ₄ H ₉	2-CH ₃ -3-C1	CH 2	CH ₂	CH₂	0	
504	t-C4119	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	0	
505	n-C ₅ H ₁₋₁	2-CH ₃ -3-C1	CH ₂	CH ₂	CH_{2}	0	

11

第3表(続き)

No	R³	Х	F	G	J	K	融点℃
506	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	CH ₂	CH ₂	CH ₂	0	
507	c-C ₅ H ₉	2-CH ₃ -3-C1	CH₂	CH ₂	CH ₂	0	
508	t-CsH,,	2-CH ₃ -3-C1	CH 2	CH ₂	CH ₂	0	
509	C₂H₅	2, 6- $(C_2H_5)_2$ -3-C1	S	CH ₂	Cl₁₂	CH ₂	
510	n-C3117	2, 6-(C ₂ 1 ₅) ₂ -3-Cl	S	CH₂	CH2	CH ₂	181-183
511	i-C₃H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	S	CH₂	CH₂	CH₂	
512	c-C3H5	$2, 6-(C_2H_5)_2-3-C1$	S	CH 2	CH2	CH ₂	
513	n−C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	S	CH ₂	CH ₂	CH ₂	
514	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	S	CH₂	CH₂	CH₂	
515	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	S	CH ₂	CH ₂	CH₂	
516	t-C4H9	2, $6-(C_2H_5)_2-3-C1$	S	CH ₂	CH₂	CH ₂	
517	n-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	S	CH ₂	CH 2	CH ₂	
518	neo-C _s H ₁₁	2, $6-(C_2H_5)^{-3}-3-C1$	S	CH 2	CH ₂	CH ₂	
519	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	S	CH 2	. CH ₂	CH 2	175-180
520	t-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	S	CH 2	CH ₂	CH ₂	
521	C2115	2-CH ₃ -3-C1	S	CH ₂	CH ₂	CH ₂	
522	n-C ₃ H;	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	CH ₂	
523	i-C ₃ H ₇	2-CH ₃ -3-Cl	S	CH_2	CH ₂	CH ₂	
524	c-C ₃ II ₅	2-Cl1 ₃ -3-Cl	S	CH_2	CH2	Cll2	
525	n-C₄H,	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	CH ₂	
526	s-C4H,	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	CH 2	
527	i-C₄H,	2-CH ₃ -3-Cl	S	CH_2	CH₂	CH ₂	178-181
528	t-C ₄ H ₉	2-Cll ₃ -3-Cl	S	CH ₂	CH ₂	CH ₂	
529	n-C ₅ H ₁₁	2-CH ₃ -3-C1	S	CH ₂	CH ₂	CH2	
530	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	CH ₂	
531	c-C ₅ H ₉	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	CH ₂	:
532	$t-C_5H_{11}$	2-CH ₃ -3-Cl	S	Cll2	Cll2	CH ₂	
533	C_2H_5	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH2	S,	Clł2	CH 2	
534	n-CaH,	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	S	CH2	CH ₂	180-184
535	i-C ₃ H ₇	2, 6-(C ₂ II ₅) ₂ -3-Cl	CH ₂	S	CH ₂	CH ₂	
536	$c-C_3H_5$	2, 6-(C ₂ 1 ₅) ₂ -3-C]	CH_2	S	CH_2	Cll2	

第3表(続き)

No	R³	Х	F	G	J	К	融点℃
537	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-C1	CH ₂	S	CH ₂	CH ₂	
538	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	S	CH ₂	CH ₂	
539	i-C₄H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₂	S	CH ₂	CH ₂	
540	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	S	CH ₂	CH₂	
541	$n \pm C_5 H_{1.1}$	$2, 6-(C_2H_5)_2-3-C1$	CH₂	S	CH ₂	CH2	
542	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH₂	S	CH ₂	CH₂	
543	c-C ₅ H ₉	2, 6-(C_2H_5) ₂ -3-Cl	CH₂	S	CH ₂	CH₂	
544	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	S	CH ₂	CH ₂	
545	C ₂ H ₅	2-CH ₃ -3-Cl	CH ₂	S	CH 2	CH ₂	
546	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH₂	S	CH ₂	Cll2	
547	i-C ₃ H ₇	2-CH ₃ -3-Cl	CH2	S	CH ₂	CH ₂	
548	c-C ₃ H ₅	2-CH ₃ -3-Cl	CH ₂	S	CH ₂	CH₂	
549	n−C₄H₃	2-CH ₃ -3-Cl	CH ₂	S	CH ₂	CH₂	
550	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH₂	S	CH2	CH ₂	
551	i−C₄H ₉	2-CH ₃ -3-Cl	CH₂	S	CH₂	CH ₂	
552	t-C4H9	2-CH ₃ -3-Cl	CH ₂	S	CH 2	CH ₂	
553	n-C ₅ ₁₁	2-CH ₃ -3-Cl	Cll2	S	CH 2	CH ₂	
554	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	S	CH ₂	CH₂	
555	c-C ₅ H ₉	2-CH ₃ -3-Cl	CH ₂	S	CH₂	CH₂	
556	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	S	CH₂	CH₂	
557	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	S	CH₂	
558	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	S	CH ₂	179-180
559	i-C3H7	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH ₂	S	CH ₂	
560	c-C _a H ₅	2, 6-(C_2H_5) ₂ -3-Cl	CH ₂	CH2	S	CH ₂	
561	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH2	S	CH2	
562	s-C ₄ H ₉	2, 6-(C ₂ ₅) ₂ -3-Cl	Cll2	CH2	S	Cll2	
563	i-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH2	S	CH ₂	
564	t-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH ₂	S	CH ₂	
565	n-C ₅ H ₁₁	2, 6-(C ₂ II ₅) ₂ -3-Cl	CH ₂	CH ₂	S	CH ₂	
566	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH2	CH_2	S	CH_2	
567	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CII ₂	CH2	S	CH ₂	

43

第3表(続き)

No	R³	Х	F	G	J	K	融点℃
568	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	S	CH₂	
569	C₂H₅	2-CH ₃ -3-Cl	Clł2	CH ₂	S	CH ₂	
570	n-C ₃ II ₇	2-Cll ₃ -3-Cl	CH₂	CH ₂	S	Cll2	182-185
571	i-C₃H,	2-CH ₃ -3-Cl	CH ₂	CH₂	S	CH₂	
572	c-C ₃ H ₅	2-CH ₃ -3-Cl	CH₂	CH₂	S	CH ₂	
573	n-C ₄ H ₉	2-CH ₃ -3-Cl	CH₂	CH2	S	CH ₂	
574	s-C₄H,	2-CH ₃ -3-Cl	CH2	CH ₂	S	CH ₂	
575	i-C4H9	2-CH ₃ -3-Cl	CH ₂	CH_2	S	CH ₂	
576	t-C₄H ₉	2-CH ₃ -3-Cl	CH₂	CH ₂	S	CH₂	
577	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH₂	CH₂	S	CH ₂	
578	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH 2	CH₂	S	CH ₂	
579	c-C ₅ H ₉	2-CH ₃ -3-Cl	CH ₂	CH₂	S	CH ₂	
580	t-C ₅ H ₁₁	2-CH ₃ -3-C1	CH 2	CH₂	S	CH₂	
581	C2H5	$2, 6-(C_2H_5)_2-3-C1$	Cll2	CH2	Cll2	S	
582	n-C ₃ H,	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	CH2	S	186-190
583	i-C ₃ H,	2, 6- $(C_2H_5)_2$ -3-C1	CH 2	CH ₂	CH ₂	S	
584	c−C₃H₅	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	CH2	S	
585	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	CH_2	S	
586	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	CH₂	S	
587	i−C₄H,	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH_2	CH2	S	
588	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH_2	S	
589	n-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH2	S	-
590	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH₂	Cli2	S	
591	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH 2	CH ₂	CH ₂	S	
592	t-C ₅ H ₁₁	2, 6-(C ₂ I ₅) ₂ -3-Cl	Cll_2	Cll_2	Clla	S	
593	C_2H_5	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	S	
594	n-C _s H ₇	2-CH ₃ -3-C1	CH ₂	CH ₂	CH_2	S	:
595	i-C ₃ H,	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	S .	
596	c-Calls	2-CII ₃ -3-C1	CH ₂	CH ₂	CH2	S	
597	n-C ₄ H ₉	2-Cl1 ₃ -3-Cl	CH ₂	CH ₂	CH_2	S	
598	s-C.H.	2-CH _a -3-C1	CH ₂	CH ₂	CII2	S	

44

第3表(続き)

No	R³	Х	F	G	J	К	融点℃
599	i-C ₄ H ₉	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	S	
600	t-C₄H ₉	2-CH ₃ -3-C1	CH_2	CH 2	CH ₂	S	
601	n-C ₅ H _{1 t}	2-CH ₃ -3-C1	CH_2	CH 2	CH ₂	S	·
602	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH2	CH 2	CH ₂	S	
603	c-C ₅ H ₉	2-CH ₃ -3-C1	CH2	CH ₂	CH ₂	S	
604	$t-C_5H_{11}$	2-CH ₃ -3-Cl	CH ₂	CH2	Cll2	S	,
605	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH_2	CH ₂	SO	CH₂	
606	n-C ₃ H ₇	$2,6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	SO	CH ₂	93-100
607	$i-C_3H_7$	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	S0	CH ₂	
608	c-C3H5	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH ₂	S0	CH₂	
609	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH ₂	SO	CH₂	
610	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	S0	CH ₂	
611	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO	CH ₂	
612	$t-C_4H_9$	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH_2	CH_2	S0	CH2	
613	$n-C_5H_{1,1}$	$2, 6-(C_2H_5)_{.2}-3-C1$	CH_2	CH_2	S0	CH₂	
614	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH ₂	S0	CH₂	
615	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH_2	CH 2	SO	CH₂	
616	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH ₂	SO	CH₂	
617	C_2H_5	2-CH ₃ -3-C1	CH_2	CH_2	SO	CH2	
618	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH ₂	Cll2	SO	CH ₂	
619	i-C ₃ II ₇	2-CH ₃ -3-Cl	CH_2	CII2	S0	Cll2	
620	c-C3H5	2-CH ₃ -3-Cl	CH ₂	CH ₂	S0	CH₂	
621	n-C ₄ H ₉	2-CH ₃ -3-Cl	CH_2	CH ₂	S0	CH ₂	
622	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH2	CH ₂	S0	CH ₂	
623	i-C4H9	2-CH ₃ -3-C1	CH_2	CH_2	S0	CH₂	
624	t-C ₄ H ₉	2-CH ₃ -3-Cl	CH ₂	CH ₂	S0	CH ₂	
625	n-C ₅ H ₁₁	2-CH ₃ -3-C1	CH₂	CH2	S0	CH ₂	
626	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	CH ₂	Cll2	S0	Cll2	
627	c-C _s H _e	2-CH ₃ -3-C1	CH₂	CH2	S0	CH ₂	
628	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH2	CH_2	SO	CH_2	
629	C_2H_5	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH 2	SO_2	-CH ₂	

45

第3表(続き)

No	R³	X	F	G	J	К	融点℃
630	n-C ₃ H ₇	$2, 6-(C_2H_6)_2-3-C1$	CH ₂	CH ₂	SO ₂	CH ₂	86-96
631	i−C₃H7	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CII_2	SO ₂	CH2	
632	c−C₃H₅	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	SO ₂	CH₂	
633	n-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	SO_2	CH₂	
634	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH₂	SO ₂	CH ₂	
635	i-C₄H,	$2,6-(C_2H_5)_2-3-C1$	CH₂	CH 2	SO ₂	CH2	
636	t-C₄H ₉	2, 6-(C_2H_5) ₂ -3-Cl	CH ₂	CH ₂	SO_2	CH₂	•
637	n-C ₅ H ₁₁	$2.6-(C_2H_5)_2-3-C1$	CH ₂	CH2	SO_2	CH_2	,
638	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Clł2	CH ₂	SO ₂	CH ₂	
639	c-C ₅ ll ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO	CH ₂	
640	t-C ₅ ll ₁₁	2, 6-(C_2H_5) ₂ -3-C1	CH ₂	CH₂	SO ₂	CH ₂	
641	C2H5	2-Cll _s -3-Cl	CH ₂	CH₂	SU_2	CH ₂	
642	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH ₂	Cll2	SO_2	CH ₂	
643	i-C ₃ H ₇	2-CH ₃ -3-Cl	CH ₂	CH₂	SO ₂	Cll2	
644	c-C ₃ H ₅	2-CH ₃ -3-C1	CH₂	CH ₂	SO ₂	CH ₂	
645	n-C4H9	2-CH ₃ -3-Cl	CH₂	CH ₂	SO_2	CH ₂	
646	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH ₂	CH2	SO ₂	CH ₂	
647	i-C4H9	2-CH ₃ -3-Cl	CH₂	CH ₂	SO ₂	CH ₂	
648	t-C ₄ H ₉	2-CH ₃ -3-Cl	CH ₂	CH ₂	SO ₂	CH₂	
649	n-C ₅ H ₁ ,	2-CH ₃ -3-Cl	CH ₂	CH_2	SO_2	CH ₂	
650	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH_2	SO_2	CH ₂	
651	c-C ₅ H ₉	2-CH ₃ -3-C1	CH₂	CH₂	SO ₂	CH ₂	
652	$t-C_5H_{11}$	2-CH ₃ -3-Cl	CH 2	CH ₂	$S0_2$	CH 2	
653	$C_2 II_5$	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	CH ₂	
654	n-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	Cll_2	NCH ₃	CH ₂	
		·			屈折率	₫ 1.4	764 (20°C)
655	$i-C_3H_7$	2, $6-(C_2H_5)_2-3-C1$	Cllz	CH ₂	NCH _s	CH ₂	
656	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH_2	NCH ₃	CH ₂	
657	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH2	CH ₂	NCH 3	Cll_z	
658	s-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH ₂	NCH₃	CH2	

第3表(続き)

No	R³	X	F	G	J	K	融点℃
659	i-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH2	CH ₂	NCH ₃	CH₂	· ·=
660	t-C4H9	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	CH₂	
661	n-CsH11	2, $6-(C_2H_{\epsilon})_2-3-Cl$	CH ₂	CH2	NCH ₃	CH ₂	
662	neo-C₅H ₁₁	2, $6-(C_2H_5)_2-3-C1$	CH 2	CH₂	NCH ₃	CH ₂	
663	c-C₅H₀	2, $6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	NCH ₃	CH ₂	
664	t-CsH11	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	NCH ₃	CH ₂	
665	C ₂ H ₅	2-CH ₃ -3-Cl	CH 2	CH₂	NCH 3	CH ₂	
667	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH 2	CH₂	NCH 3	CH_2	
668	i-C₃H₁	2-CH ₃ -3-Cl	CH 2	CH₂	NCH ₃	CH ₂	
669	c-C ₃ H ₅	2-CH ₃ -3-Cl	CH 2	CH₂	NCH ₃	CH ₂	
670	n-C4H9	2-CH _a -3-Cl	$CH_{\mathbf{z}}$	CH ₂	NCH ₃	CH2	
671	s-C4H9	2-CH ₃ -3-Cl	CH ₂	CH_2	NCH ₃	CH_2	
672	i-C ₄ H ₉	2-CH ₃ -3-Cl	CH2	CH₂	NCH ₃	CH ₂	
673	t-C₄H ₉	2-CH ₃ -3-C1	CH ₂	CH 2	NCH ₃	CH ₂	
674	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH ₂	NCH ₃	CH ₂	
675	neo-C₅H₁₁	2-CH ₃ -3-Cl	CH 2	CH ₂	NCH ₃	CH ₂	
676	c-CsHg	2-CH ₃ -3-Cl	CH2	CH ₂	NCH ₃	CH₂	
677	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH ₂	NCH ₃	CH₂	
678	C2H5	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	CH ₂	CO	212-213
679	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH₂	CO	214-215
680	i-C _a H ₁	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH ₂	CO	
681	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH₂	CO	
682	n-C4H5	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH₂	CO	
683	s-C4H,	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH_z	CH_2	CO	
684	i-C4H9	$2,6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	CH2	CO	
685	t-C₄H ₉	2, $6 - (C_2 H_5)_2 - 3 - C1$	CII_2	CH ₂	Cli2	CO	
686	n-CsH ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	CH ₂	CO	
687	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH2	CH 2	CH 2	CO	
688	c-Calla	$2, 6-(C_2 I_5)_2-3-C$	CH ₂	CH ₂	CH₂	CO	
689	t-C5H11	2, 6-(C ₂ ₅) ₂ -3-Cl	CH ₂	CH ₂	CH2	СО	
690	C_2H_5	2-CH _a -3-Cl	CH_2	CH ₂	CH ₂	CO	

47

第3表 (続き)

No	R3	Х	F	G	J	К	融点℃
691	n-C ₃ H ₇	2-CH ₃ -3-C1	CH₂	CH ₂	CH₂	CO	
692	i-C₃H,	2-CH ₃ -3-C1	CH ₂	CH ₂	CH 2	CO	
693	c-C3H5	2-CH ₃ -3-Cl	Cll2	Cll2	CH ₂	CO	
694	n-C ₄ H ₉	2-ClI ₃ -3-Cl	CH ₂	CH 2	CH_2	CO	
695	s-C4H3	2-CH ₃ -3-Cl	CH₂	CH 2	CH₂	CO	
696	i-C ₄ H ₉	2-CH ₃ -3-C1	CH ₂	CH 2	CH ₂	CO	
697	t-C ₄ H ₉	2-CH ₃ -3-Cl	CH 2	CH ₂	CH₂	CO	
698	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	CO	
699	neo-C ₅ H ₁ ,	2-CH ₃ -3-Cl	CH ₂	CH ₂	CH ₂	CO	
700	c-C ₅ H ₉	2-CH ₃ -3-Cl	CH 2	CH ₂	CH 2	CO	,
701	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH2	CH ₂	CO	
702	C₂H₅	2, 6-(C_2H_5) ₂ -3-Cl	0	CH ₂	CH 2	CO	
703	n-C ₃ H ₇	2, 6- $(C_2H_5)_2$ -3-Cl	O	CH ₂	CH 2	CO	185-188
704	$i-C_3ll_7$	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH ₂	CO	
705	c-C ₃ H ₅	2, $6-(C_2H_5)_2-3-C1$	0	Cll2	CH₂	CO	
706	n-C ₄ H ₉	2, 6-(C_2H_5) ₂ -3- Cl	0	Cll_2	CH ₂	CO	
707	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	CO	
708	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	CO	
709	t-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH ₂	CO	
710	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	Cl12	CO	
711	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	Cll ₂	CH ₂	CO	
712	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH_2	CH_2	CO	
713	t-C ₅ H ₁₁	2, 6-(C_2H_5) ₂ -3-Cl	0	CH2	CH2	C0	
714	C ₂ H ₅	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	C0	
715	n-C ₃ ll ₇	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	CO	
716	i-C ₃ H ₇	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	C0	
717	c-C _s H ₅	2-CH ₃ -3-Cl	0	CHa	CH2	C0	
718	n-C ₄ ll ₉	2-CH ₃ -3-Cl	0	Cll2	CH ₂	C0	
719	s-C ₄ H ₉	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	C0	
720	i -C4H9	2-CH ₃ -3-Cl	0	CH_2	Cll2	C0	
721	t-C. _t H _u	2-CH ₃ -3-Cl	O	CH ₂	CH ₂	C 0	

第3表(続き)

No	R ³	X	F	G	J	K	融点℃
722	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	0	CH₂	CH2	CO	<u></u>
723	neo-CsH ₁₁	2-CH ₃ -3-Cl	0	CH ₂	CH 2	CO	
724	c-C ₅ H ₉	2-CII ₃ -3-C1	0	CH₂	CH2	CO	189-192
725	t-C ₅ H ₁₁	2-CH ₃ -3-C1	0	CH₂	Cll2	CO	
726	C2H5	2, $6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO ·	
727	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH=	СН	CO	198-201
728	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
729	c-C ₃ H ₅	$2,6-(C_2H_5)_2-3-C1$	0	CH=	СН	CO	
730	n-C4H9	2, $6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
731	s-C4H9	$2,6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
732	i-C₄H ₉	2, $6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
733	t-C4H9	$2, 6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
734	n-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$. 0	CH=	CH	CO	
735	neo-C ₅ II, 1	$2, 6-(C_2H_5)_2-3-C1$	0	CH=	CH	CO	
736	c-CsHo	$2,6-(C_2II_5)_2-3-C1$	0	CH=	CH	CO	
737	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-Cl$	0	CH=	CH	CO	
738	C2H5	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	0	
739	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	0.	173-175
740	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH 2	0	
741	c-C ₃ H ₅	$2, 6-(C_2 H_5)_2-3-C1$	0	CH 2	CH ₂	0	
742	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	0	CH 2	CH ₂	0	
743	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	0	
744	i-C4H9	$2, 6-(C_2H_5)_2-3-CI$	0	CH_2	CH ₂	0	
745	t-C4H9	$2,6-(C_2H_5)_2-3-C1$	0	CH 2	CH ₂	0	
746	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH 2	CH ₂	0	
747	neo-C₅Hıı	$2, 6-(C_2H_5)_2-3-C1$	0	CH_2	CH ₂	0	
748	c-C ₅ H ₉	2, 6-(C ₂ II ₅) ₂ -3-Cl	0	CH 2	CH 2	0	
749	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH_{2}	CH 2	0	
750	C ₂ H ₅	2-CH ₃ -3-Cl	0	CH 2	CH 2	0	
751	n-C ₃ H ₇	2-CH ₃ -3-Cl	0	CH ₂	CH 2	0	
752	i-C₃H₁	2-СН ₃ -3-С1	0	CH 2	CH 2	0	
	l .						

49

第3表(続き)

No	R ³	Х	F	G	J	К	融点℃
753	c-C ₃ ll ₅	2-CH ₃ -3-Cl	0	Cll2	CH ₂	0	<u> </u>
754	n-C₄llo	2-Cl1 ₃ -3-Cl	0	CH ₂	CII 2	0	
755	s-C4H9	2-CH ₃ -3-Cl	0	CH₂	CH 2	0	
756	i-C₄H,	2-CH ₃ -3-Cl	0	CH ₂	CH 2	0	
757	t-C₄H ₉	2-CH ₃ -3-Cl	0	CH ₂	CH ₂	0	•
758	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	0	CH 2	CH 2	0	
759	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	0	CH ₂	CH₂	0	
760	c-C ₅ H ₉	2-CH ₃ -3-C1	,0	CH ₂	CH 2	0	179-182
761	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	O	CH ₂	CH 2	0	
762	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	O	CH₂	CH2	NCH ₃	
763	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	0	Cll2	CH ₂	NCH 3	153-155
764	i-Call,	$2, 6-(C_2H_5)_2-3-C1$	0	Cll_2	CH 2	NCH ₃	
765	c-C3H5	2, $6-(C_2H_5)_2-3-C1$	0	CH ₂	Cll2	NCII3	
766	n-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	Cll2	NCH ₃	
767	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$. 0	CH₂	CH ₂	NCH₃	
768	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	NCH ₃	
769	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH 2	NCH ₃	
770	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH_z	CH ₂	NCH ₃	
771	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH₂	NCH ₃	
772	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH2	NCH ₃	
773	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	Cli2	NCH ₃	

50 第4表 (Het [=Q⁴、R¹=R²=Y=H)

No	R ³	Х	(R ⁹) _m	Z	融点℃
774	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-C1	Н	0	226-229
775	n-C ₃ H ₇	$2, 6-(C_2 l_5)_2-3-C1$	Н	. 0	192-193
776	i-C₃H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
777	c-C ₃ H ₅	2, $6-(C_2H_5)_2-3-C1$	Н	0	
778	n-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
779	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	0 -	
780	i-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	Ĥ	0	
781	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
782	n-C ₅ H ₁ ,	2, 6-(C ₂ II ₅) ₂ -3-Cl	Н	0	
783	neo-C _s II ₁₁	$2,6-(C_2H_5)_2-3-C1$	Н	0	
784	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	Н	0	
785	t-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	Н	0	
786	C ₂ H ₅	2-CH ₃ -3-Cl	Н	0	
787	n-C ₃ H ₇	2-CH _s -3-Cl	Н	0	
788	i-C ₃ H ₇	2-CH ₃ -3-Cl	Н	0	
789	c-C ₃ H ₅	2-CH ₃ -3-Cl	Н	0	
790	n-C4H9	2-CH ₃ -3-C1	Н	0	`
791	s-C ₄ H ₉	2-CH _s -3-Cl	Н	0	
792	i-C ₄ H ₉	2-CH ₃ -3-C1	Н	0	
793	t-C ₄ H ₉	2-CH ₃ -3-C1	Н	0	
794	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	0	
795	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	11	0	
796	c-C ₅ II ₉	2-CH ₃ -3-Cl	Н	0	198-200
797	$t-C_5H_{11}$	2-CH ₃ -3-Cl	Н	0	<u> </u>
798	C_2H_5	$2, 6-(C_2H_5)_2-3-C1$	Н	S	225-229
799	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	H	S	194-196
800	i-C ₃ l ₁₇	2, 6-(C ₂ H ₅) ₂ -3-C1	Н	S	
801	c-C _a H _s	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	S	
802	$n-C_4H_9$	$2, 6-(C_2H_5)_2-3-C1$	П	S	
803	S-C4119	2, 6-(C ₂ H ₆) ₂ -3-C1	Н	S	
804	i-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	S	

第4表(続き)

No	R*	Х	(R ⁹) _m	Z	融点℃
805	t-C₄H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	S.	
806	n-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	Н	S	
807	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
808	c-C ₅ H ₉	2,6-(C ₂ H ₅) ₂ -3-Cl	Н	S	
809	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
810	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	S	
811	c-C ₅ H ₉	2-CH ₃ -3-C1	Н	S	197-199
812	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	S ·	
813	C_2H_5	2, $6-(C_2H_5)_2-3-C1$	3-Br	S	
814	n-C₃H₁	2, $6-(C_2H_5)_2-3-C1$	3-Br	S	187-190
815	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	3-Br	S	
816	c-C ₃ H ₅	2, $6-(C_2H_5)_2-3-C1$	3-Br	S	
817	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-CI$	3-Br	S	
818	s-C ₄ ll ₉	$2, 6-(C_2 _{5})_2-3-C1$	3-Br	S	
819	i-C ₄ ll ₉	$2, 6-(C_2 _{5})_2-3-C1$	3-Br	S	
820	t-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	3-Br	S	
821	neo-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	3-Br	S	
822	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	3-Br	S	
823	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
824	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	166-169
825	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
826	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	
827	n-C ₄ }} ₉	$(2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
828	s-C4ll9	$2.6 - (C_2 H_5)_2 - 3 - C1$	Н	NCH₃	
829	i-C ₄ ll ₉	2, 6-(C ₂ 1 ₆) ₂ -3-Cl	11	NCH ₃	
830	t-C4H9	$2, 6-(C_2 H_5)_2-3-C1$	H	NCH₃	
831	$n-C_5$ $H_{1,1}$	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
832	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C]$	Н	NCH ₃	
833	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-C1	Н	NCH ₃	
834	t-C ₅ H _{1,1}	2,6-(C ₂ ₅) ₂ -3-C1	Н	NCI1 ₃	

52 第5表 ((Het)(=Q ⁶ 、R ¹ =R ² =Y=H)

No	R ³	X	(R ⁹) _m	Z	融点℃
835	C2H5	2, 6-(C ₂ H ₅) ₂ -3-Cl	II	S	
836	n-C ₃ H ₇	$2,6-(C_2H_5)_2-3-C1$	Н	S	198-201
837	i-C₃H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	S	
838	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
839	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
840	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
841	i-C4H9	$2, 6-(C_2 I_5)_2-3-C1$	Н	S	
842	t-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
843	n-C₅H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	H	S	
844	neo-CsH11	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
845	c-CsHs	$2, 6-(C_2H_5)_2-3-C1$	Н	S	

No	R ^a	Х	(R ⁹) _m	Z	融点℃
846	C2H5	$2, 6-(C_2 _5)_2-3-C1$	Ħ	0	
847	n-C ₃ H,	$2, 6-(C_2[l_5)_2-3-Cl$	11	0	198-201
848	i-Call,	$2,6-(C_2H_5)_2-3-Cl$	Н	0	
849	c-C ₃ H ₅	$2,6-(C_2H_5)_2-3-C1$	Н	0	
850	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
851	s-C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
852	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
853	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
854	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
855	neo-CsH11	$2, 6-(C_2H_5)_2-3-C1$	11	0	
856	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
857	t-C _s H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	0	•
858	C ₂ H ₅	2-CH ₃ -3-C1	H	0	
859	n-C ₃ H ₇	2-CH ₃ -3-Cl	Н	0	
860	i-C ₃ H ₇	2-CH ₃ -3-C1	Н	0	

5

第6表(続き)

		_			
No	R³	Х	(R ⁹) _m	Z	配点℃
861	c-C ₃ H ₅	2-CH ₃ -3-C1	Н	0	
862	n-C ₄ H ₉	2-CH ₃ -3-Cl	Н	0	
863	s-C ₄ H ₉	2-CH ₃ -3-Cl	Н	0	
864	i-C ₄ ll ₉	2-CH ₃ -3-Cl	Н	0	
865	t-C ₄ H ₉	2-CH ₃ -3-Cl	II	0	
866	n-CsH ₁₁	2-CH ₃ -3-Cl	Н	0	
867	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	Н	0	
868	c-C ₅ H ₉	2-CH ₃ -3-Cl	Н	0	
869	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	0	
870	C₂H₅	$2, 6-(C_2H_5)_2-3-C1$	Н	S	213-214
871	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	S	200-202
872	i−C₃H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
873	c-C ₃ H ₅	2, $6-(C_2H_5)_2-3-C1$	Н	S	
874	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
875	s-C₄H∍	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
876	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
877	t-C4ll9	$2, 6-(C_2H_5)_2-3-Cl$	Н	S	
878	n-C ₅ H ₁ ,	$2, 6-(C_2H_5)_2-3-Cl$	H	S	
879	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
880	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
881	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	S	
882	C ₂ H ₅	2-CH ₃ -3-Cl	Н	S	
883	n-C3H7	2-CH ₃ -3-Cl	Н	S	
884	i-C ₃ H ₇	2-CH ₃ -3-Cl	Н	S	
885	c-CaHs	2-CH ₃ -3-Cl	Н	S	
886	n-C4ll9	2-CH ₃ -3-Cl	Н	S	
887	s-C ₄ H ₉	2-CII3-3-C1	Н	S	
888	i-C ₄ H ₉	2-CH ₂ -3-C1	Н	S	
889	t-C4ll9	2-CH ₃ -3-Cl	Н	S	
890	n-C ₅ ll ₁₁	2-CH ₃ -3-Cl	Н	S	
891	nco-C ₅ H ₁₁	2-CH ₃ -3-Cl	11	S	
L	l <u></u>				

54

第6表(続き)

No	R³	X	(R ⁹) _m	Z	融点℃
892	c-C ₅ H ₉	2-Cll ₃ -3-Cl	Н .	S	206-208
893	t-C5H11	2-CH ₃ -3-Cl	Н	S	
894	C₂H₅	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH₃	151-153
895	n-C₃H,	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCI1 ₃	171-173
896	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	İ
897	c-C₃H₅	$2,6-(C_2H_5)_2-3-C1$	Н	NOCH 3	
898	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
899	s-C ₄ H ₉	$2.6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
900	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
901	t-C ₄ ll ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
902	n-C ₅ H ₁ ,	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NOCH ₃	
903	neo-C₅H₁₁	2, $6-(C_2H_5)_2-3-C1$	Н	NOCH 3	
904	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
905	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NOCH ₃	
906	C ₂ H ₅	2, $6-(C_2H_5)_2-3-C1$	11	NCH ₃	
907	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	151-153
908	i-C ₃ H ₇	$2, 6-(C_2 H_5)_2-3-C1$	Н	NCH ₃	
909	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
910	n-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
911	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
912	i-C₄H₅	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
913	t-C4Hg	$2, 6-(C_2 H_5)_2-3-C1$	Н	NCH ₃	
914	n-CsH ₁₁	$2,6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
915	neo-CsH11	$2, 6-(C_2 I_5)_2-3-C1$	H	NCH ₃	
916	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	
917	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-C]	Н	NCH ₃	

55

第7表($\stackrel{\text{Ho}}{=}$ $\stackrel{\text{L}}{=}$ $\stackrel{\text{L}}{=}$

No	R³	X	L	М	T	融点℃
918	C ₂ H ₅	2, 6- (C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CH ₂	
919	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	177-180
920	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	İ
921	c−C₃H₅	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	}
922	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CH ₂	
923	s-C4ll9	2, $6-(C_2H_5)_2-3-C1$	0	CH ₂	CH₂	
924	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	0	Cll2	CH ₂	
925	l-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	Cl1 ₂	
926	n-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	0	CH₂	CH ₂	
927	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH₂	
928	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CH₂	}
929	t-C₅H₁,	$2, 6-(C_2H_5)_2-3-Cl$	0	CH₂	CH₂	ļ
930	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	O	CH₂	CH₂	
931	C-C ₅ H ₉	2-CH ₃ -3-Cl	0	CH₂	CH ₂	
932	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	0	CH₂	CH ₂	
933	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	Cll2	0	CH₂	
934	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	0	CH₂	179-181
935	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH₂	0	CH₂	
936	c-C3lls	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	.0	CH₂	
937	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	0	Cll2	
938	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	0	CH ₂	
939	i-C₄H,	2, $6-(C_2H_5)_2-3-C1$	CH₂	0	CH ₂	
940	neo-C ₅ H ₁ ,	2, $6-(C_2H_5)_2-3-C1$	CH ₂	0	CH ₂	
941	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₂	0	Clł ₂	
942	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	0	CH₂	CHOCH ₃	
943	n-C ₃ ll ₇	$2, 6-(C_2H_5)_2-3-C1$	0	Cll2	CHOCH₃	163-165
944	i-C ₃ ll ₇	$2, 6-(C_2H_5)_2-3-C1$	0	CH 2	CHOCH 3	
945	c-Calls	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	CHOCH ₃	
946	n-C₄H₂	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH_2	CHOCH ₃	
947	s-C4H2	$2, 6 - (C_2 H_5)_2 - 3 - C1$	0	CH_2	CHOCH3	
948		2, 6-(C ₂ II ₅) ₂ -3-C]	()	CH ₂	CHOCH ₃	

第7表(続き)

No	R ³	Х	L	М	T	融点℃
949	t-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	0	CH ₂	СНОСН₃	
950	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	CHOCH₃	
951	neo-C₅H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	0	CH ₂	СНОСН₃	
952	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	0	CH ₂	CHOCH₃	
953	t-C5H11	$2, 6-(C_2H_5)_2-3-Cl$	0	CH ₂	CH0CH₃	
954	C2H5	$2, 6-(C_2H_5)_2-3-C1$	S	Cll2	CH ₂	
955	n-C ₃ H ₇	2, 6-(C_2H_5) ₂ -3-Cl	S	CH₂	CH₂	167-171
956	i−C₃H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	S	CH₂	CH₂	
957	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	S	CH₂	CH₂	
958	n−C₄H₃	2, $6-(C_2H_5)_2-3-C1$	S	CH₂ '	CH₂	
959	s-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	S	CH ₂	CH₂	
960	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	S	CH₂	CH₂	
961	·t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	S	CH₂	CH ₂	
962	n-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	S	CH₂	CH ₂	
963	neo-C₅H.,	$2, 6-(C_2H_5)_2-3-C1$	S	CH ₂	CH ₂	
964	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	S	CH ₂	CH ₂	
965	t-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	S	CH ₂	CH ₂	
966	C₂H₅	2-CH ₃ -3-Cl	S	CH ₂	CH₂	
967	n-C ₃ H ₇	2-CH ₃ -3-C1	S	CH ₂	CH ₂	
968	i−C₃H₁	2-CH ₃ -3-CT	S	CH ₂	CH ₂	
969	c-C3H5	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	
970	n−C₄H₃	2-CH ₃ -3-Cl	S	CH ₂	CH₂	
971	s-C4H9	2-CH ₃ -3-Cl	S	CH₂	CH ₂	
972	i-C₄H,	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	
973	t-C ₄ H ₉	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	.]
974	n-C₅H ₁₁	2-CH ₃ -3-Cl	S	CH2	CH ₂	
975	neo-CsH11	2-CH ₃ -3-C1	S	CH ₂	СН₂	
976	c-C ₅ H ₉	2-CH ₃ -3-Cl	S	CH ₂	CH ₂	164-167
978	t-C ₅ H ₁₁	2-CH ₃ -3-C1	S	CH ₂	CH₂	
979	C ₂ H _s	2, 6-(C ₂ H ₅) ₂ -3-Cl	NCH ₃	CH ₂	CH ₂	İ
980	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH₂	CH ₂	152-155

第7表(続き)

No	R³	Х	L	М	T	融点℃
981	i-C₃H₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	NCH₃	CH₂	CH₂	
982	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH₂	CH₂	
983	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH₂	CH₂	
984	s-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	NCII3	CH ₂	CH₂	
985	i-C ₄ ll ₉	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH ₂	CH₂	
986	t-C₄H₀	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH ₂	CH₂	
987	n-C _s H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH₂	CH₂	
988	neo-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	NCH ₃	CH₂	CH₂	
989	c-C₅H,	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH ₂	CH₂	
990	t-C ₅ H ₁ ;	$2, 6-(C_2H_5)_2-3-C1$	NCH ₃	CH ₂	CH2	
991	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	0	
992	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	0	214-217
993	i-CaH,	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH₂	0	
994	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	0	
995	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	0	
996	s-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH_2	CH ₂	0	
997	i-C₁H,	$2, 6-(C_2 II_5)_2-3-C1$	CH ₂	CH ₂	0	•
998	t-C ₄ ll ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	0	
999	n-C ₆ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH₂	0	
1000	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	Clł2	0	
1001	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH 2	0	
1002	t-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	CH_2	CH_2	0	
1003	C ₂ H ₅	2-CH ₃ -3-Cl	CH ₂	Cl12	0	
1004	n-C ₃ H ₇	2-CH ₃ -3-Cl	CH2	CH2	0	
1005	i−C₃H₁	2-CH ₃ -3-C1	CH ₂	CH ₂	0	
1006	c-C ₃ H ₅	2-Cl1 ₃ -3-Cl	CH ₂	CH2	0	
1007	n-C ₄ ll ₉	2-CH ₃ -3-C1	CH ₂	CH ₂	0	
1008	s-C ₄ H ₉	2-CH ₃ -3-C1	CH ₂	CH2	0 .	
1009	i -C4H9	2-CH ₃ -3-Cl	Cll ₂	CH ₂	0	
1010	1-C4H9	2-CH ₃ -3-C1	Cll2	CH ₂	0	
1011	n-C ₅ H ₁₋₁	2-CH ₃ -3-Cl	Clł ₂	CH2	o	

58

第7表(続き)

No	R ³	Х	L	М	T	配点℃
1012	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH 2	CH ₂	0	
1013	c-C ₅ H ₉	2-CH ₃ -3-Cl	CH₂	CH₂	0	
1014	t-C ₅ H ₁₁	2-CH ₃ -3-Cl	CH ₂	CH ₂	0	
1015	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C$	CH ₂	CH₂	S	
1016	n-C ₃ II ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH₂	CH₂	S	211-213
1017	i-C₃H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH₂	CH ₂	S	
1018	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	S	
1019	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	S	
1020	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	CH 2	CH₂	S	
1021	i-C₄H,	2,6-(C ₂ 1 ₅) ₂ -3-Cl	CH ₂	CH ₂	S	
1022	t-C ₄ H ₉	$2, 6-(C_2 I_5)_2-3-C1$	CH 2	CH₂	S	
1023	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH 2	CH ₂	S	
1024	neo-C₅Hı,	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	S	
1025	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	S	
1026	t-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	S	
1027	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO	
1028	n-C ₃ H ₇	$2, 6-(C_2 I_5)_2-3-C1$	CH ₂	CH ₂	SO	230-233
1029	i-C3117	2, 6- $(C_2H_{\epsilon})_2$ -3-C1	CH ₂	CH₂	SO	
1030	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	S0	
1031	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	S0	
1032	s-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	SO	
1033	i-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	SO	
1034	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	SO	
1035	n-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	CH₂	S0	
1036	neo-C ₅ H ₁₁	2, 6- $(C_2H_5)_2$ -3-Cl	CH2	CII2	S0	
1037	c-CsH ₉	2, 6-(C ₂ II ₅) ₂ -3-Cl	CH ₂	CH₂	SO	
1038	t-CsH ₁₁	2, 6- $(C_2H_5)_2$ -3- Cl	CH ₂	CH₂	S0	
1039	C ₂ H ₅	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO ₂	
1040	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	$S0_2$	198-200
1041	i-C ₃ H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	СН₂	$S0_2$	
1042	$c-C_3H_5$	2, 6- $(C_2H_5)_2$ -3-C1	CH_2	CH2	SO_2	

第7表(続き)

No	. R ³	Х	L	М	Ť	融点℃
1043	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO ₂	
1044	s-C ₄ ll ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	SO ₂	
1045	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH ₂	SO ₂	1
1046	t-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH₂	$S0_2$	
1047	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH₂	CH₂	$S0_2$	
1048	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	SO ₂	
1049	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH2	CH₂	$S0_2$	
1050	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	S02	
1051	C₂H₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	NCH_3	
1052	$n-C_3H_7$	$2, 6-(C_2 I_5)_2-3-C1$	Clł ₂	CH₂	NCH ₃	157-160
1053	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	
1054	c-C ₃ ll ₆	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	
1055	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	
1056	s-C4H9	2, $6-(C_2H_5)_2-3-C1$	CH₂	CH₂	NCH ₃	
1057	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	
1058	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH 2	NCH ₃	
1059	$n-C_5H_{11}$	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	NCH ₃	
1060	neo-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C$]	CH ₂	CH ₂	NCH ₃	
1061	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₂	CH ₂	NCH ₃	
1062	$t-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	CH ₂	CH₂	NCH₃	

60

第8表((Het)[$=Q^{B}$ 、 $R^{I}=R^{2}=Y=H$)

No	R ³	Х	R 1 4	Z	融点℃
1063	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₂	0	
1064	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH₃	0	189-192
1065	i-C₃H₁	$2, 6-(C_2 II_5)_2-3-C1$	CH ₃	0	
1066	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	0	
1067	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1068	s-C4H9	$2,6-(C_2H_5)_2-3-C1$	СНэ	0	
1069	i-C.H.	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1070	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1071	n-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	CH₃	0	
1072	neo-CsH11	2,6-(C ₂ ₅) ₂ -3-Cl	СНз	0	
1073	c-C₅H₅	$2,6-(C_2H_5)_2-3-C1$	СНз	0	
1074	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	СНз	0	
1075	C2H5	2-CH ₃ -3-C1	СНз	0	
1076	n-C ₃ II,	2-CH ₃ -3-Cl	СНз	0	
1077	i-C ₃ H ₇	2-CH ₃ -3-Cl	СНз	0	
1078	c-C3H5	2-CH ₃ -3-C1	CH ₃	0	
1079	n-C ₄ H ₉	2-CH ₃ -3-C1	CH ₃	0	·
1080	s-C ₄ H ₉	2-CH ₃ -3-Cl	CH3	0	
1081	i-C ₄ H ₉	2-CH ₃ -3-C1	CH ₃	0	
1082	t-C ₄ H ₉	2-CH ₃ -3-Cl	СНз	0	
1083	n-C ₅ H ₁₁	2-CH ₃ -3-C1	CH₃	0	į
1084	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	CH ₃	0	
1085	c-C ₅ H ₉	2-CH ₃ -3-C1	CH ₃	0	192-195
1086	t-C ₅ H ₁₁	2-C11 ₃ -3-C1	CH ₃	0	
1087	C2H5	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	239-241
1088	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Ħ	NCH ₃	230-233
1089	i-C ₃ H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
1090	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
1091	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCII ₃	
1092	s-C ₄ H ₉	2, 6-(C ₂ II ₅) ₂ -3-Cl	H	NCH 3	
1093	i-C.1H.9	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	

61

第8表(続き)

No	R ³	Χ .	R14	Z	配点℃
1094	t-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH₃	
1095	n-C ₅ H ₁ ,	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH _a	
1096	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
1097	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	H	NCH ₃	
1098	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1099	C ₂ H ₅	2-CH ₃ -3-Cl	Н	NCH ₃	
1100	n-C3ll7	2-CH ₃ -3-Cl	Н	NCH ₃	
1101	i-C ₃ H ₇	2-CH ₃ -3-Cl	Н	NCH ₃	
1102	c-C₃H₅	2-CH ₃ -3-C1	Н	NCH ₃	
1103	n-C ₄ H ₉	2-CH ₃ -3-Cl	Н	NCH ₃	
1104	s-C ₄ H ₉	2-CH ₃ -3-C1	Н	NCH₃	
1105	i-C₄H ₉	2-CH ₃ -3-C1	Н	NCH₃	
1106	t-C₄H ₉	2-CH ₃ -3-C1	Н	NCH ₃	
1107	n-C ₅ H ₁₁	2-CH ₃ -3-C1	H	NCH ₃	
1108	neo-C ₅ H ₁₁	2-CH ₃ -3-C1	Н	NCH ₃	
1109	c-C ₅ H ₉	2-CH ₃ -3-C1	Н	NCH ₃	
1110	t-C₅H ₁₁	2-CH ₃ -3-C1	Н	NCH ₃	
1111	C₂H₅	$2, 6-(C_2H_5)_2-3-C1$	CH₃	NCH ₃	
1112	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	211-215
1113	i-C ₃ ll ₇	$2, 6-(C_2H_5)_2-3-C1$	CH _a	NCH ₃	
1114	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1115	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCII3	
1116	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1117	i-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	
1118	t-C4H9	$2, 6-(C_2H_5)_2-3-C1$	СНз	NCH ₃	
1119	$n-C_5H_{11}$	$2, 6-(C_2 I_5)_2-3-C1$	CH3	NCH ₃	
1120	$neo-C_5H_{1,1}$	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH₃	NCH ₃	
1121	c-Calla	$2, 6-(C_2H_5)_2-3-C]$	CH ₃	NCH ₃	
1122	t-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	CH ₃	NCII3	

62 第9表((Het)(=Q°、R¹=R²=Y=11)

. No	R³	X	R14	Z	融点℃
1123	C₂H₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	11	NCH ₃	
1124	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	П	NCH ₃	217-220
1125	i-C ₃ H ₇	2, 6-(C ₂ II ₅) ₂ -3-Cl	Н	NCH ₃	•
1126	c-C ₃ H ₅	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1127	n−C₄H₃	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
1128	s-C ₄ H ₉	2, 6-(C ₂ II ₅) ₂ -3-Cl	Н	NCH ₃	
1129	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1130	r-C"H"	2, 6-(C_2H_5) ₂ -3-Cl	Н	NCH ₃	
1131	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH 3	
1132	neo-C ₅ H ₁₁	$2,6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1133	c-C ₅ H ₉	$2,6-(C_2H_5)_2-3-C1$	H	NCH ₃	
1134	$t-C_5H_{11}$	$2,6-(C_2H_5)_2-3-C1$	H	NCH ₃	
1135	C_2H_5	$2,6-(C_2H_5)_2-3-C1$	СНэ	NCH ₃	
1136	n-C ₃ H ₇	$2, 6-(C_2 I_5)_2-3-C1$	СНз	NCH ₃	211-214
1137	i-C3H7	$2, 6-(C_2 ll_s)_2-3-Cl$	CH ₃	NCH ₃	
1138	c-C ₃ H ₅	$2,6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1139	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1140	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH₃	NCH ₃	·
1141	i-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₃	NCH ₃	
1142	t-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₃ ·	NCH ₃	
1143	n-C ₅ H ₁₁	2, $6-(C_2H_5)_2-3-C1$	СНз	NCH ₃	
1144	neo-C ₅ H ₁₁	$2, 6-(C_2 II_5)_2-3-C1$	CH ₃	NCH ₃	-
1145	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1146	t-C ₅ H _{1 1}	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH3	NCII3	

63

第10表(Het $\mathbb{C} = Q^{10}$ 、 $R^1 = R^2 = Y = H$)

No	R³	X	R14	Z	融点℃
1147	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH₃	
1148	n−C₃H₁	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	225-228
1149	j −C₃H,	2, 6- (C ₂ II ₅) ₂ -3-Cl	Н	NCH ₃	
1150	c-C3ll5	2, 6- $(C_2H_5)_2$ -3-Cl	Н	NCH ₃	•
1151	n−C₄H₃	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH₃	
1152	s-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1153	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1154	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1155	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1156	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1157	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH₃	:
1158	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1159	C ₂ H ₅	2, 6-(C_2H_5) ₂ -3-C1	CH₃	NCH ₃	
1160	$n-C_3H_7$	$2, 6-(C_2 H_5)_2-3-C1$	СНз	NCH ₃	220-224
1161	i-C3H7	$2, 6-(C_2H_5)_2-3-C1$	CH₃	NCH₃	
1162	c-C ₃ ll ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH₃	
1163	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1164	s-C ₄ H ₉	2, 6- $(C_2H_5)_2$ -3-C1	CH ₃	NCH₃	
1165	i-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1166	t-C ₄ H ₉	2, 6- $(C_2H_5)_2$ -3-Cl	CH ₃	NCH ₃	
1167	$n-C_5H_{11}$	$2, 6-(C_2H_5)_2-3-C1$	Cl ₃	NCH ₃	
1168	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1169	c-C5H9	2, 6- $(C_2H_5)_2$ -3-C1	CH ₃	NCH ₃	
1170	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	Cll ₃	NCII3	

64 第 1 1 表 (\bigcirc Het \bigcirc = Q 11 、 R 1 = R 2 = Y = H)

No	R³	Х	R14	Z	配点℃
1171	Cl13	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	216-218
1172	C2H5	2, 6- $(C_2 I_5)_2$ -3-C1	Н	NCH ₃	
1173	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	213-216
1174	i-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	Ħ	NCH ₃	
1175	c-C ₃ H ₅	2, 6- $(C_2H_5)_2$ -3-Cl	Н	NCH ₃	
1176	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1177	s-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1178	i-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	H	NCII ₃	·
1179	t-C,H,	2, $6-(C_2 I_5)_2-3-C1$	Н	NCH ₃	
1180	n-C ₅ II ₁ ,	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	
1181	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	
1182	c−C₅H₀	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1183	t-C _s H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1184	C₂H₅	2-CH ₃ -3-Cl	Н	NCH ₃	
1185	n-C ₃ H ₇	2-CH ₃ -3-Cl	H	NCH ₃	
1186	i-C₃H,	2-CH ₃ -3-Cl	Н	NCH ₃	
1187	c-C ₃ H ₅	2-CH ₃ -3-Cl	H	NCH _a	
1188	n-C₄H₃	2-CH ₃ -3-Cl	Н	NCH ₃	
1189	s-C.H.	2-CH ₃ -3-C1	Н	NCH ₃	
1190	i-C₄H ₉	2-CH ₃ -3-Cl	Н	NCH ₃	
1191	t-C ₄ H ₉	2-CH ₃ -3-Cl	H	NCII3	
1192	n-C₅H ₁₁	2-CH ₃ -3-Cl	H	NCH ₃	
1193	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	NCH ₃	
1194	c-C ₅ H ₉	2-CH ₃ -3-C1	Н	NCH ₃	
1195	$t-C_5H_{11}$	2-CH ₃ -3-C]	H	NCH ₃	
1196	C_2H_5	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH _a	NCH ₃	
1197	$n-C_3H_7$	$2, 6-(C_2 II_5)_2-3-C1$	CH ₃	NCH 3	209-212
1198	i-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH₃	NCH ₃	
1199	c-C ₃ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	
1200	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH _a	NCH ₃	
1201	s-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	

第11表(続き)

No	R ³	X	R14	Z	配点℃
1202	i-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCII ₃	
1203	t-C ₄ H ₉	2, 6-(C ₂ ll ₅) ₂ -3-Cl	CH₃	NCH ₃	
1204	n-C ₅ ll ₁ ,	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	
1205	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1206	c-C ₅ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	•
1207	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	

第12表(\bigcirc Hel \bigcirc = Q¹²、R¹ = R² = Y = H)

5

No	R³	. Х	R 1 4	Z	融点℃
1208	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH₃	
1209	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	222-225
1210	i−C₃H₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1211	c-C _a H ₅	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1212	n-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1213	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	H	NCH ₃	
1214	i−C₄H ₉	$2, 6-(C_2 I_5)_2-3-C1$	H	NCII3	
1215	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	H	NCH₃	-
1216	n-C₅H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1217	neo-C₅H ₁₁	$2, 6-(C_2H_5)_2-3-Cl$	н	NCH ₃	
1218	c-CsH _o	$2, 6-(C_2H_5)_2-3-C1$	H	NCH₃	
1219	t-C ₅ ll ₁ ,	$2, 6-(C_2H_5)_2-3-Cl$	Н	NCH ₃	
1220	C2H5	2-CH ₃ -3-Cl	Н	NCH ₃	,
1221	n-C ₃ H ₇	2-CH ₃ -3-Cl	Н	NCH ₃	
1222	i−C₃H,	2-CH ₃ -3-Cl	11	NCH ₃	
1223	c−C₃H₅	2-C11 ₃ -3-C1	H	NCH ₃	
1224	n-C ₄ ll ₉	2-CH ₃ -3-Cl	Н	NCH ₃	
1225	s-C ₄ H ₉	2-CH ₃ -3-Cl	Н	NCH ₃	
1226	i-C ₄ H ₉	2-Cl13-3-Cl	Н	NCH ₃	
1227	t-C ₄ H ₉	2-CH ₃ -3-Cl	Н	NCH ₃	

第12表 (続き)

No	R ³	Х	R14	Z	融点℃
1228	n-CsH11	2-CH ₃ -3-C1	Н	NCH ₃	
1229	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	H	NCII3	
1230	c-C ₅ H ₉	2-CH ₃ -3-C1	H	NCH ₃	
1231	t-C ₅ H ₁ ,	2-CII ₃ -3-C1	Н	NCH ₃	
1232	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	
1233	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	215-218
1234	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1235	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1236	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1237	s-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₃	NCH ₃	
1238	i−C₄H₃	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1239	t-C₄H ₉	2, $6-(C_2H_5)_2-3-C1$	CH₃	NCH ₃	
1240	$n-C_5H_{11}$	2, 6-(C_2H_5) ₂ -3-Cl	Cl13	NCII3	
1241	neo-CsH11	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1242	c-C ₅ H ₉	2, 6-(C ₂ II ₅) ₂ -3-C1	CH ₃	NCH ₃	
1243	t-C ₅ H ₁₁	2, 6-(C ₂ II ₅) ₂ -3-Cl	СН₃	NCH ₃	

第13表((Het)[Q^{13} 、 $R^1 = R^2 = Y = H$)

1	r	
	•	۹
٠	ı.	

No	Ra	Х	R14	Z	融点℃
1244	C ₂ H ₅	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	0	
1245	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	Н	0	189-195
1246	i-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
1247	c−C₃H₅	2, $6-(C_2H_5)_2-3-C1$	H	0	
1248	n−C₄H₃	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	0	
1249	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
1250	i-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
1251	t-C4H9	$2, 6-(C_2H_5)_2-3-C1$	Н	0	
1252	n-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	H	0	
1253	neo-C _s H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	H	0	

第13表(続き)

No	R ^a .	Х	R ¹⁴	Z	融点℃
1254	c-C ₅ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	0	
1255	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	0	
1256	C ₂ H ₅	$2, 6-(C_2H_5)_2-3-C1$	Cll3	0	
1257	n-C3H7	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1258	i-C₃H,	$2, 6-(C_2H_5)_2-3-C1$	СНэ	0	
1259	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	CH₃	0	
1260	n-C4H9	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1261	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	СНз	0	
1262	i-C₄H,	$2, 6-(C_2H_5)_2-3-C1$	CH₃	0	
1263	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	СН₃	0	
1264	n-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CH ₃	0	
1265	neo-C ₅ H,,	$2, 6-(C_2H_5)_2-3-C1$	СНз	0 .	
1266	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	СНз	0	
1267	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	CII3	0	
1268	C ₂ H ₅	$2, 6-(C_2 H_5)_2-3-C1$	H	NCH₃	
1269	n-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	198-202
1270	i-C ₃ H,	2, $6-(C_2H_5)_{5}-3-C1$	Н	NCH₃	
1271	c-Calls	2, $6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1272	n-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH₃	
1273	s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1274	i-C₄H₀	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1275	t-C ₄ H ₉	2, $6-(C_2H_5)_2-3-C1$	Н	NCH ₃	
1276	n-C ₅ H ₁₋₁	2, 6-(C_2H_5) ₂ -3-Cl	Н	NCH ₃	
1277	neo-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH ₃	
1278	c-C ₅ H ₉	2, 6- $(C_2H_5)_2$ -3-Cl	Н	NCH ₃	į
1279	$t-C_5ll_{1:1}$	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	NCH₃	
1280	C2H5	2-CH ₃ -3-Cl	H	NCH ₃	
1281	n-C ₃ H ₇	2-CH ₃ -3-C1	Н	NCH ₃	
1282	i-C ₃ H ₇	2-CH ₃ -3-C]	Н	NCH ₃	
1283	$c-C_aH_5$	2-CH ₃ -3-C]	Н	NCH 3	
1284	n-C ₄ H ₉	2-CH ₃ -3-C1	11	NCII ₃	

第13表(続き)

No	R³	Х	R14	Z	融点℃
1285	s-C4H9	2-CH ₃ -3-C1	Н	NCH ₃	
1286	i-C₄H,	2-CH ₃ -3-C1	Н	NCH ₃	
1287	t-C₄H,	2-CH ₃ -3-Cl	Н	NCH ₃	
1288	n-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	NCH3	
1289	neo-C₅II, 1	2-CH ₃ -3-Cl	Н	NCH ₃	
1290	c-C _s H _o	2-CH ₃ -3-Cl	Н	NCH ₃	
1291	s-C ₅ H ₁₁	2-CH ₃ -3-Cl	H	NCH ₃	,
1292	t-C5H11	2-CH ₃ -3-C1	Н	NCH ₃	
1293	C2H5	$2,6-(C_2H_5)_2-3-C1$	СНэ	NCH ₃	
1294	n-C ₃ H ₇	$2,6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	201-205
1295	i−C₃H,	$2,6-(C_2H_5)_2-3-C1$	СН₃	NCH ₃	
1296	c-C ₃ H ₅	$2.6-(C_2H_5)_2-3-C1$	СН₃	NCH₃	
1297	n-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	CH ₃	NCH ₃	
1298	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	СНз	NCH ₃	
1299	i-C ₄ H ₉	$2,6-(C_2H_5)_2-3-CI$	СН₃	NCH ₃	
1300	$t-C_4H_9$	$2,6-(C_2H_5)_2-3-C1$	CII3	NCII ₃	
1301	$n-C_5H_1$	2, 6-(C ₂ II ₅) ₂ -3-Cl	СН₃	NCH ₃	
1302	neo-C ₅ II ₁₁	2, $6-(C_2H_5)_2-3-C1$	СНз	NCH ₃	
1303	$c-C_5H_9$	$2, 6-(C_2H_5)_2-3-C1$	СНз	NCH ₃	
1304	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	CH ₃	NCH ₃	

第14表 (Het [$=Q^{14}$ 、 $R^{1}=R^{2}=H$)

5

R³	X	(R ⁹)	融点℃
C2H5	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	218-220
n-C ₃ H ₇	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	184-186
i−C₃H7	2, $6-(C_2H_5)_2-3-C1$	Н	
c-C3lls	$2, 6-(C_2H_5)_2-3-C1$	Н	
n-C4H9	2, 6- $(C_2 II_5)_2$ -3-Cl	Н	
s-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	H	
	$C_{2}H_{5}$ $n-C_{3}H_{7}$ $i-C_{3}H_{7}$ $c-C_{3}H_{5}$ $n-C_{4}H_{9}$	C_2H_5 2, 6- $(C_2H_5)_2$ -3-C1 $n-C_3H_7$ 2, 6- $(C_2H_5)_2$ -3-C1 $i-C_3H_7$ 2, 6- $(C_2H_5)_2$ -3-C1 $c-C_3H_5$ 2, 6- $(C_2H_5)_2$ -3-C1 $n-C_4H_9$ 2, 6- $(C_2H_5)_2$ -3-C1	C_2H_5 2, 6-(C ₂ H ₅) ₂ -3-Cl H n-C ₃ H ₇ 2, 6-(C ₂ H ₅) ₂ -3-Cl H i-C ₃ H ₇ 2, 6-(C ₂ H ₅) ₂ -3-Cl H c-C ₃ H ₅ 2, 6-(C ₂ H ₅) ₂ -3-Cl H n-C ₄ H ₉ 2, 6-(C ₂ H ₅) ₂ -3-Cl H

第14表(続き)

No	R³	Х	(R ⁹) "	℃点点
1311	i-C₄H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	Н	148-150
1312	t-C ₄ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	
1313	n-C ₆ ll _{3 1}	$2, 6-(C_2H_5)_2-3-C1$	Н	
1314	neo-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	` H	208-210
1315	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	Н	174-176
1316	t-C ₅ H ₁₁	$2, 6-(C_2H_5)_2-3-C1$	Н	
1317	C ₂ H ₅	2-CH ₃ -3-Cl	Н	
1318	n-C3H7	2-Cl1 ₃ -3-Cl	Н	204-206
1319	i-C₃H,	2-CH ₃ -3-Cl	Н	
1320	c-C ₃ H ₅	2-CH ₃ -3-C1	Н	
1321	n-C ₄ H ₉	2-CH ₃ -3-Cl	H	
1322	s-C ₄ H ₉	2-CH ₃ -3-Cl	Н	
1323	i-C₄H ₉	2-CH ₃ -3-Cl	Н	
1324	t-C4H9	2-CH ₃ -3-Cl	H	·
1325	n-C ₅ ll ₁₁	2-CH ₃ -3-Cl	Н .	
1326	neo-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	
1327	c-C ₅ H ₉	2-CH ₃ -3-C1	Н	218-220
1328	·t-C ₅ H ₁₁	2-CH ₃ -3-Cl	Н	
1329	C ₂ H ₅	2, $6-(C_2H_5)_2-3-C1$	6-CH ₃	
1330	n-C ₃ H ₇	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
1331	i-C ₃ H ₇	2, $6-(C_2H_5)_2-3-C1$	6-CH ₃	
1332	$c-C_3H_5$	$2, 6-(C_2H_5)_2-3-C1$	6-CH ₃	
1333	n-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	6-CH₃	
1334	s-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C1$	6-CH ₃	
1335	i-C ₄ H ₉	$2,6-(C_2H_5)_2-3-C$	6-Cll ₃	
1336	t-C₄H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-CH ₃	
1337	n-C ₅ H ₁₁	2,6-(C ₂ H ₅) ₂ -3-Cl	6-CH ₃	
1338	neo-CsH ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-CH ₃	
1339	$c-C_5H_9$	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-CH ₃	
1340	t-C ₅ ₁₁	$2, 6-(C_2H_5)_2-3-C]$	6-CH ₃	
1341	C_2H_5	2, 6-(C ₂ H ₅) ₂ -3-C]	6-C1	

第14表(続き)

No	R ³	Х	(R ₉) "	融点℃
1342	n-C ₃ H ₇	2, 6-(C ₂ 1 ₅) ₂ -3-Cl	6-C1	
1343	i−C₃H,	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-C1	•
1344	c-C ₃ H ₅	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
1345	n-C ₄ H ₉	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-C1	
1346	s-C4H9	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
1347	i-C₄H ₉	2,6-(C ₂ H ₅) ₂ -3-Cl	6-C1	
1348	t-C₄H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
1349	n-C ₅ ll ₁₁	$2,6-(C_2H_5)_2-3-C1$	6-C1	
1350	neo-C _s H _{ii}	$2,6-(C_2H_5)_2-3-C1$	6-C1	
1351	c-C ₅ H ₉	$2, 6-(C_2H_5)_2-3-C1$	6-C1	
1352	t-C ₅ H ₁₁	2, 6-(C ₂ H ₅) ₂ -3-Cl	6-C1	·

本発明の一般式(I)で表される縮合ヘテロ環ジカルボン酸ジアミド誘導体又 5 はその塩類を有効成分として含有する除草剤は、例えばイヌビエ(イネ科1年生、 水田の害草)、タマガヤツリ(カヤツリグサ科1年生草、水田の害草)、マツバ イ (カヤツリグサ科多年生草、湿地、水路、水田に発生、水田の多年生害草)、 ウリカワ (オモダカ科、水田、湿地、満に発生する多年生害草)、ホタルイ (カ ヤツリグサ科多年生草、水田、湿地、溝に発生)、スズメノテッポウ(イネ科雑 10 草、水田、低湿地に発生)、エンバク (イネ科越年草、平地、荒地、畑地に発 生)、ヨモギ(キク科多年生草、山野、畑地に発生)、メヒシバ(イネ科1年生 草、畑、樹園地の強害草)、ギシギシ(タデ科多年生草、畑地、道端に発生)、 コゴメガヤツリ (カヤツリグサ科1年生草)、アオビユ (ヒユ科1年生草、空き 地、道端、畑地に発生)、オナモミ(キク科1年生草、畑地の害草)、イチビ 15 (アオイ科1年生草、畑地の害草)、ヨウシュチョウセンアサガオ(ヒルガオ科 1年生草、畑地の害草)、オオイヌノフグリ(ゴマノハグサ科1~2年生草、畑 地の害草)、ヤエムグラ (アカネ科1年生草、畑地、樹園地の害草)等の水田、 畑、樹園地、湿地等に発生する1年生及び多年生雑草を除草するのに有用であり、 特に水田におけるイヌビエ、ホタルイ等の雑草の防除に有用である。

20 本発明の一般式(1)で表される縮合ヘテロ環ジカルボン酸ジアミド誘導体又

はその塩類を有効成分として含有する除草剤は出芽前及び出芽後にある雑草に対して優れた除草効果を示すことから、有用植物の植え付け予定地に予め処理するとか、有用植物の植え付け後(有用植物が樹園のごとく既に定植されている場合を含む)雑草の発生始期から生育期に処理することにより本発明除草剤の有する特徴ある生理活性を効果的に発現させることができる。

しかし本発明の除草剤はこのような態様おいてのみ使用されねばならないというものではなく、例えば本発明除草剤は水田用除草剤として使用することができるばかりでなく、一般雑草の除草剤としても使用することができ、例えば刈り取り跡、休耕田畑、畦畔、農道、水路、牧草造成地、墓地、公園、道路、運動場、

10 建物の周辺の空き地、開墾地、線路端、森林等の一般雑草の駆除のために使用することもできる。

この場合、雑草の発生始期までに処理するのが経済的にも最も効果的であるが、 必ずしもこれに限定されず、生育期にある雑草をも防除することが可能である。

本発明の一般式(I)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又 15 はその塩類を除草剤として使用する場合、農薬製剤上の常法に従い、使用上都合 の良い形状に製剤して使用するのが一般的である。

即ち、一般式(I)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又は その塩類は、これらを適当な不活性担体に、又は必要に応じて補助剤と一緒に、 適当な割合に配合して溶解、分離、懸濁、混合、含浸、吸着若しくは付着させ、 適宜の剤形、例えば懸濁剤、乳剤、液剤、水和剤、粒剤、粉剤、錠剤等に製剤し て使用すれば良い。

本発明で使用できる不活性担体としては固体又は液体の何れであっても良く、 固体の担体になりうる材料としては、例えばダイズ粉、穀物粉、木粉、樹皮粉、 鋸粉、タバコ茎粉、クルミ殼粉、ふすま、繊維素粉末、植物エキス抽出後の残渣、 5 粉砕合成樹脂等の合成重合体、粘土類(例えばカオリン、ベントナイト、酸性白 土等)、タルク類(例えばタルク、ピロフィライド等)、シリカ類(例えば珪藻 土、珪砂、雲母、ホワイトカーボン〔含水微粉珪素、含水珪酸ともいわれる合成 高分散珪酸で、製品により珪酸カルシウムを主成分として含むものもある。〕)、 活性炭、イオウ粉末、軽石、焼成珪藻土、レンガ粉砕物、フライアッシュ、砂、

炭酸カルシウム、燐酸カルシウム等の無機鉱物性粉末、硫安、燐安、硝安、尿素、塩安等の化学肥料、堆肥等を挙げることができ、これらは単独で若しくは二種以上の混合物の形で使用される。

液体の担体になりうる材料としては、それ自体溶媒能を有するものの他、溶媒
能を有さずとも補助剤の助けにより有効成分化合物を分散させうることとなるものから選択され、例えば代表例として次に挙げる担体を例示できるが、これらは単独で若しくは2種以上の混合物の形で使用され、例えば水、アルコール類(例えばメタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール等)、ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチル0ケトン、ジイソブチルケトン、シクロヘキサノン等)、エーテル類(例えばエチルエーテル、ジオキサン、セロソルブ、ジプロピルエーテル、テトラにドロフラン等)、脂肪族炭化水素類(例えばケロシン、鉱油等)、芳香族炭化水素類(例えばベンゼン、トルエン、キシレン、ソルベントナフサ、アルキルナフタレン等)、ハロゲン化炭化水素類(例えばジクロロエタン、クロロホルム、凹塩化炭素等)、エステル類(例えば酢酸エチル、ジイソプピルフタレート、ジブチルフタレート、ジオクチルフタレート等)、アミド類(例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等)、ニトリル類(例えばアセトニトリル等)、ジメチルスルホキシド類等を挙げることができる。

他の補助剤としては次に例示する代表的な補助剤をあげることができ、これら 20 の補助剤は目的に応じて使用され、単独で、ある場合は二種以上の補助剤を併用 し、又ある場合には全く補助剤を使用しないことも可能である。

有効成分化合物の乳化、分散、可溶化及び/又は湿潤の目的のために界面活性 剤が使用され、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレ ンアルキルアリールエーテル、ポリオキシエチレン高級脂肪酸エステル、ポリオ キシエチレン樹脂酸エステル、ポリオキシエチレンソルビタンモノラウレート、 ポリオキシエチレンソルビタンモノオレエート、アルキルアリールスルホン酸塩、 ナフタレンスルホン酸縮合物、リグニンスルホン酸塩、高級アルコール硫酸エス テル等の界面活性剤を例示することができる。

又、有効成分化合物の分散安定化、粘着及び/又は結合の目的のために、次に

例示する補助剤を使用することもでき、例えばカゼイン、ゼラチン、澱粉、メチルセルロース、カルボキシメチルセルロース、アラビアゴム、ポリビニルアルコール、松根油、糠油、ベントナイト、リグニンスルホン酸塩等の補助剤を使用することもできる。

5 固体製品の流動性改良のために次に挙げる補助剤を使用することもでき、例え ばワックス、ステアリン酸塩、燐酸アルキルエステル等の補助剤を使用できる。

懸濁性製品の解こう剤として、例えばナフタレンスルホン酸縮合物、縮合燐酸 塩等の補助剤を使用することもできる。

消泡剤としては、例えばシリコーン油等の補助剤を使用することもできる。

10 有効成分化合物の配合割合は必要に応じて加減することができ、例えば粉剤或いは粒剤とする場合は0.01~50重量%、又乳剤或いは水和剤とする場合も同様0.01~50重量%が適当である。

本発明の一般式(I)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又はその塩類を有効成分として含有する除草剤は各種雑草を枯殺し若しくは生育を 15 抑制するためにそのまま、又は水等で適宜希釈し、若しくは懸濁させた形で殺草若しくは生育抑制に有効な量を当該雑草に、又は当該雑草の発生若しくは成育が好ましくない場所において茎葉又は土壌に適用して使用すればよい。

本発明の一般式(1)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又 はその塩類を有効成分として含有する除草剤の使用量は種々の因子、例えば目的、 20 対象雑草、作物の生育状況、雑草の発生傾向、天候、環境条件、剤型、施用方法、 施用場所、施用時期等により変動するが、有効成分化合物として1へクタール当 たり0.1g~10kgの範囲から目的に応じて適宜選択すれば良い。

本発明の一般式(1)で表される縮合へテロ環ジカルボン酸ジアミド誘導体又 はその塩類を有効成分として含有する除草剤を更に防除対象雑草、防除適期の拡 大のため、或いは薬量の低減をはかる目的で他の除草剤と混合して使用すること も可能である。

実施例

以下に本発明の代表的な実施例及び参考例を示すが、本発明はこれらに限定されるものではない。

実施例1

1-1. 3-(3-0) 1-1

5 N-(3-クロロ-2, 6-ジエチルフェニル) -7-フルオロ-2, 3-キノリンジカルボキシミド800mg(2.41ミリモル)をテトラヒドロフラン10mlに溶解し、該溶液にn-プロピルアミン150mg(2.5ミリモル)を加えて12時間反応を行った。

反応終了後、反応液を減圧下に留去し、得られた残渣を酢酸エチル/nーへキ 10 サンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、 白色結晶として目的物820mgを得た。

物性 m. p. 220-222℃ 収率 87%

15 2,3-カルボキシミド700mg(1.91ミリモル)をジオキサン10mlに溶解し、該溶液にエチルアミン95mg(2.3ミリモル)を加えて12時間反応を行った。

反応終了後、反応液を減圧下に留去し、得られた残渣を酢酸エチル/n-ヘキサンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、20 白色結晶として目的物620mgを得た。

物性 m. p. 249-264℃ 収率 80%

1-3.3-(3-クロロ-2,6-ジエチルフェニル)アミノカルボニル-7,8-ジヒドロ-5H-ピラノ〔4,3-b〕ピリジン-2-カルボン酸 n-プロピルアミド(化合物No462)の製造

25 N- (3-クロロ-2, 6-ジエチルフェニル) -7, 8-ジヒドロ-5H-ピラノ [4、3-b] ピリジン-2, 3-カルボキシミド 770mg (2.08 ミリモル) をジオキサン10mlに溶解し、該溶液にn-プロピルアミン127mg (2.3ミリモル) を加えて12時間反応を行った。

反応終了後、反応液を減圧下に留去し、得られた残渣を酢酸エチル/nーヘキ

サンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、 白色結晶として目的物735mgを得た。

物性 m. p. 166-170℃ 収率 83% 実施例2

5 2-1.6-(3-クロロ-2,6-ジェチルフェニル)アミノカルボニルー2,3-ジヒドロ-1-オキソーチエノ[2,3-b]ピリジン-5-カルボン酸n-プロピルアミド(化合物No1028)の製造

6-(3-クロロ-2,6-ジエチルフェニル)アミノカルボニルー2,3-ジヒドロチエノ〔2、3-b〕ピリジン-5-カルボン酸 nープロピルアミド
 500mg(1.16ミリモル)をクロロホルム10mlに溶解し、該溶液にmークロロ過安息香酸200mg(1.1ミリモル)を0℃で加えた後、室温で6時間反応を行った。

反応終了後、反応液を飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄 し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、得られた残渣を 5 酢酸エチル/nーヘキサンを溶離剤とするシリカゲルカラムクロマトグラフィー で精製することにより、白色結晶として目的物400mgを得た。

物性 m. p. 230-233℃ 収率 77% 2-2. 6-(3-クロロ-2, 6-ジエチルフェニル) アミノカルボニル-2, 3-ジヒドロ-1, 1-ジオキソーチエノ [2, 3-b] ピリジン-5-カルボ

ン酸 n-プロピルアミド(化合物No1040)の製造。

6-(3-クロロ-2,6-ジエチルフェニル)アミノカルボニル-2,3-ジヒドロチエノ[2,3-b]ピリジン-5-カルボン酸 nープロピルアミド 500mg(1.16ミリモル)をクロロホルム10mlに溶解し、該溶液にmークロロ過安息香酸400mg(2.2ミリモル)を0℃で加えた後、室温で6時間反応を行った。

反応終了後、反応液を飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、得られた残渣を酢酸エチル/nーヘキサンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、白色結晶として目的物 4 5 0 mg を得た。

物性 m. p. 198-200℃ 収率 84%

参考例1. $6-(3-\rho - 2, 6-i x + i x +$

1ーメチルーピラゾロ〔5,4ーb〕ピリジン-5,6ージカルボン酸無水物
 8.0g(39.4ミリモル)をテトラヒドロフラン100mlに溶解し、該溶液に3ークロロー2、6ージエチルアニリン7.23g(39.4ミリモル)を加え、室温下に12時間反応を行った。

反応終了後、反応液を滅圧下に濃縮し、析出した結晶を少量のエーテルで洗浄 することにより目的物12.0g(収率 79%)を得た。

- 10 ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 21 (3H, t, J=7. 5Hz), 1. 26 (3H, t, J=7. 5Hz), 2. 63 (2H, q, J=7. 5Hz),
 - 2. 83 (2H, q, J=7. 5Hz), 4. 27 (3H, s), 7. 18 (1H, d, J=8. 4Hz),
 - 7. 41(1H, d, J=8.4Hz), 8. 30(1H, s), 9. 43(1H, s), 10. 10(1H, bs).

参考例2. N-(3-クロロ-2, 6-ジエチルフェニル) アミノカルボニルー15 1-メチルーピラゾロ [5, 4-b] ピリジン-5, 6-カルボキシミドの製造6-(3-クロロ-2, 6-ジエチルフェニル) アミノカルボニルー1-メチルーピラゾロ [5, 4-b] ピリジン-5-カルボン酸9. 0g(23.3ミリモル) をトリフルオロ酢酸30mlに溶解し、該溶液にトリフルオロ酢酸無水物4.90g(23.3ミリモル) を加え、還流下に4時間反応を行った。

20 反応終了後、反応液を減圧下に濃縮し、得られた残渣を酢酸エチル/n-ヘキサンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、目的物8.0g(収率 93%)を得た。

- ¹ H-NMR[TMS/CDCl₃, δ値(ppm)]
 - 1. 09 (3H, t, J=7. 5Hz), 1. 13 (3H, t, J=7. 5Hz), 2. 43 (2H, q, J=7. 5Hz),
- 25 2. 62 (2H, q, J=7. 5Hz), 4. 34 (3H, s), 7. 20 (1H, d, J=8. 4Hz),
 - 7. 47(1H, d, J=8. 4Hz), 8. 35(1H, s), 8. 67(1H, s).

参考例3. N-(3-クロロー2, 6-ジエチルフェニル) アミノカルボニルー 1-メチルーピラゾロ [4, 5-b] ピリジンー5, 6-カルボキシミドの製造 5-(3-クロロー2, 6-ジエチルフェニル) アミノカルボニルー1-メチ

ルーピラゾロ (4, 5-b) ピリジン-6-カルボン酸 7. 5 g (19. 4 ミリモル) をトリフルオロ酢酸 3 0 m l に溶解し、該溶液にトリフルオロ酢酸無水物 4. 0 8 g (19. 4 ミリモル) を加え、還流下に 4 時間反応を行った。

反応終了後、反応液を減圧下に濃縮し、得られた残渣を酢酸エチル/nーへキ サンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、目的物 6.5 g (収率 91%) を得た。

¹ H-NMR[TMS/CDCl₃, δ値(ppm)]

- 1. 08 (3H, t, J=7. 5Hz), 1. 12 (3H, t, J=7. 5Hz), 2. 43 (2H, q, J=7. 5Hz),
- 2. 63 (2H, q, J=7. 5Hz), 4. 27 (3H, s), 7. 20 (1H, d, J=8. 4Hz),
- 7. 48 (1H, d, J=8. 4Hz), 8. 37 (1H, s), 8. 53 (1H, s).

次に本発明の代表的な製剤例及び試験例を示すが、本発明はこれらに限定されるものではない。

尚、製剤例中、部とあるのは重量部を示す。

製剤例1.

第1表~第14表記載の化合物 50部 キシレン 40部 ポリオキシエチレンノニルフェニルエーテルと アルキルベンゼンスルホン酸カルシウムとの混合物 10部 以上を均一に混合溶解して乳剤とする。

20 製剤例2.

第1表~第14表記載の化合物3部クレー粉末8 2部珪藻土粉末1 5部

以上を均一に混合粉砕して粉剤とする。

25 製剤例3.

第1表~第14表記載の化合物5部ベントナイトとクレーの混合粉末90部リグニンスルホン酸カルシウム5部

以上を均一に混合し、適量の水を加えて混練し、造粒、乾燥して粒剤とする。

製剤例4.

第1表~第14表記載の化合物

20部

カオリンと合成高分散珪酸

75部

ポリオキシエチレンノニルフェニルエーテルとアル

5 キルベンゼンスルホン酸カルシウムとの混合物

5部

以上を均一に混合粉砕して水和剤とする。

試験例1 出芽前の水田雑草に対する除草効果試験

1万分の1アールポットに土壌を詰めて水田状態にし、水田雑草であるイヌビエ、ホタルイの種子を出芽前の状態に調整した。これに本発明化合物(第1表~ 10 第14表に記載の化合物)を有効成分とする薬剤を所定薬量の薬液として処理をした。

処理21日後に除草効果を調査し、無処理と比較して除草率を算出し、下記の 基準に従って判定を行った。

除草活性の判定基準

- 15 5・・・100%の殺草率
 - 4・・・90%~99%の殺草率
 - 3・・・70%~89%の殺草率
 - 2・・・40%~69%の殺草率
 - 1・・・1%~39の殺草率
- 20 0・・・0%の殺草率

結果を第15表に示す。

試験例2 出芽後の水田雑草に対する除草効果試験

1万分の1アールポットに土壌を詰めて水田状態にし、水田雑草であるイヌビエ、ホタルイ及びコナギの種子を1葉期になるように調整した。

25 これに本発明化合物 (第1表~第14表に記載の化合物) を有効成分とする薬 剤の所定薬量の薬液を処理をした。

処理21日後に除草効果を調査し、無処理と比較して除草率を算出し、試験例 1の基準に従って判定を行った。

結果を第15表に示す。

第15表

	薬量	出芽	前処理	H	芽後処	理
No	(kg/ha)	イヌ ビエ	ホタルイ	イヌヒ゛エ	ホタルイ	コナキ゛
1	5	5	5	4	4	5
2	5	5	5	4	4	5
3	5	5	5	4	4	5
28	5	3	3	3	3	4
29	5	4	3	3	3	4
30	5	5	4	3	3	5
43	5	4	2	3	2	4
44	5	4	3	3	2	4
53	5	5	2	3	2	4
58	5	4	3	3	3	4
71	5	5	. 5	3	3	5
97	5	3	1	2	1	3
99	5	5	5	5	5	5
100	5	5	5	5	5	5
101	5	5	5	5	5	5
126	5	3	2	2	1	3
127	5	4	3	4	4	5
128	5	5	5	5	5	5
129	5	5	5	5	5	5
130	5	5	5	5	5	5
157	5	5	5	5	5	5
158	5	5	5	5	5	5
189	5	5	4	4	3	5
200	5	4	2	3	1	3
201	5	3	2	3	1	3
219	5	5	5	4	4	5
224	5	5	3	3	2	3
228	5	5	4	3	2	4

80

第15表(続き)

	薬量	出芽	前処理		出芽後処	理
No	(kg/ha)	√ ₹₹*±	ホタルイ	イヌピュ	ホタルイ	コナキ゛
234	5	5	2	3	2	4
243	5	3	1.	3	1	3
246	5	4	1	2	1	. 3
275	5	5	5	5	4	5
276	5	5	5	3	4	5
289	5	5	5	5	4	5
290	5	5	5	5	5	5
291	5	5	4	5	4	5
305	5	5	4	4	3	5
310	5	-4	. 3	3	2	5
334	5	5	4	4	4	5
339	5	4	3	3	- 2	4
343	5	5	3	3	3	5
359−1	5	5	5	5	5	5
359-2	5	5	5	5	5	5
359-3	5	5	5	5	5	5
359-4	5	5	5	5	5	5
359-5	5	5	5	5	5	5
359-6	5	5	5	5	5	5
360	5	5	5	5	5	5
361	5	5	5	5	5	5
375	5	5	5	5	5	5
388	5	5	5 .	. 5	5	5
414	5	5	5	5	5	5
423	5	5	5	5	. 5	5
431	5	5	5	5	5	5
438	5	5	5	5	5	5
447	5	5	5	5	5	. 5

81

第15表(続き)

	薬量	出芽	前処理		出芽後処	理
No	(kg/ha)	/zt*z	ホタルイ	イヌビエ	ホタルイ	コナキ・
450	5	5	5	5	5	5
462	5	5	5	5	5	5
474	5	5	5	5	5	5
486	5	5	5	5	5	5
498	5	5	5	5	5	5
510	.5	5	5	5	5	5
519	5	5	5	5	5	5
527	5	5	5	5	5	5
534	·5	5	5	5	5	5
. 558	5	5	. 5	5	5	5
570	5	5	.5	5	5	5
582	5	5	5	5	5	5
606	5	5	-5	5	5	5
630	5	5	5	5	5	5
654	5	5	3	3	1	4
678	5	5	5	5	5	5
679	5	5	5	5	5	5
703	5	5	5	5	5	5
724	5	5	5	5	5	5
727	5	5	5	5	5	5
739	5	5	5	5	5	5
760	5	5	5	5	5	5
763	5	4	3	4	3	5 .
774	5	5	5	5	5	5
775	5	5	5	5	5	5
796	5	5	5	5	5	5
798	5	5	5	5	5	5
799	5	5	5	5	5	5

第15表(続き)

	薬量	出芽	前処理		出芽後処	理
No	(kg/ha)	イヌヒ゛エ	ホタルイ	√zt*±	ホタルイ	コナギ
811	5	5	5	5	5	5
814	5	5	5	5	5	5
824	5	5	5	5	5	5
836	5	5	5	5	5	5
847	5	5	5	5	5	5
870	5	5	5	5	5	5
871	5	5	5	5	5	5
892	5	5	5	5	5	5
894	5	5	5	5	5	5
895	5	5	5	5	5	5
907	5	5	5	5	5	5
919	5	5	5	5	5	5
934	5	5	5	5	5	5
943	5	5	5	5	5	5
955	5	5	5	5	5	5
976	5	5	5	5	5	5
980	5	5	5	5	5	5
992	5	5	5	5	5	5
1016	5	5	5	5	5	5
1028	5	5	5	5	5	5
1040	5	5	5	5	5	5
1052	5	5	5	5	5	5
1064	5	5	5	. 5	5	5
1085	5	5	5	5	5	5
1087	5	5	5	5	5	5
1088	5	5	5 1	5	5	5
1112	5	5	5	5	5	5
1124	5	5	5	5	5	5

第15表(続き)

	薬量	出芽的	前処理	ŀ	出芽後処3	4
No	(kg/ha)	13t° I	ホタルイ	√3 1, ±	ホタルイ	コナキ゛
1136	5	5	5	5	5	5
1148	5	5	5	5	5	5
1160	5	5	5	5	5	5
1171	5	5	5	5	5	5
1173	5	5	5	5	5	5
1197	5	5	5	5	5	5
1209	5	5	5	5	5	5
1233	5	5	5	5	5	5
1245	5	5	5	5	. 5	5
1269	5	5	5	5	5	5
1294	5	5	5	5	5	5
1305	5	5	5	5	5	5
1306	5	5	5	5	5	5
1311	5	5	5	5	5 .	5
1314	5	5	5	4	4	5
1315	5	5	5	5	5	5
1318	5	5	4	4	4	5
1327	5	5	4	4	4	5

試験例3 出芽前の灿地雑草に対する除草効果

5 縦10cm×横20cm×高さ5cmのポリエチレン製バットに土壌を詰め、これに畑地雑草であるスズメノテッポウ(Am)、イヌビエ(Ec)、イチビ(At)、オナモミ(Xs)、ヤエムグラ(Ga)、オオイヌノフグリ(Vp)及び畑地作物としてコムギ(Wh)及びダイズ(So)の種子を插種覆土した。これに本発明化合物(第1表~第14表に記載の化合物)を有効成分とする薬剤を所定濃度の散布液として処理した。

処理14日後に除草効果を調査し、試験例1と同様にして殺草率を算出し、判一

定を行った。

同時にダイズ及びコムギに対する薬害を調査して、下記の基準に従って判定を 行った。

薬害の判定基準

- 5 5・・・100%の殺草率
 - 4・・・90%~99%の殺草率
 - 3・・・70%~89%の殺草率
 - 2・・・40%~69%の殺草率
 - 1・・・1%~39%の殺草率
- 10 0・・・0%~20%の殺草率 (薬害なし)

結果を第16表に示す。

第16表

	薬量	薬			·····································	章	効 身	Ę	·
No	(kg/ha)	٧h	So	Am	Ec	At	Хs	Ga	۷p
1	5	3	1	4	5	5	5	4	5
2	5	3	1	5	5	5	5	5	5
3	5	2	1	5	5	5	5	5	5
28	5	1	0	4	3	4	3	3	4
29	5	4	1	4	4	5	4	4	5
30	5	3	1	5	5	5	4	4	5
43	5	1	0	4	3	4	3	3	4
44	5	1	0	4	3	4	2	4	4
53	5	1	0	. 4	4	4	2	3	4
58	5	2	1	4	4	5	4	4	5
71	5	4	0	4	4	5	3	4	5
97	5	1	0	3	2	3	1	1	3
99	5	1	2	4	5	5	5	5	5
100	5	1	3	4	5	5	5	4	5
101	5	2	2	4	5	5	4	4	5
126	5	1	0	3	3	3	2	2	3
127	5	1	1	3	4	3	2	2	4
128	5	2	1	4	4	4	3	4	5
129	5	3	1	5	5	5	5	5	5
130	5	0	0	4	5	5	4	5 .	5
157	5	3	1	4	5	5	4	4	5
158	5	4	1	4.	5	5	4	5	5
189	5	2	0	3	4	4	3	3	4
200	5	0	0	3	3	3	2	2	3
201	5	O	0	3	2	3	2	2	3
219	5	2	1	4	5	5	3	4	5
224	5	1	0	3	4	4 .	3	3	4

86

第16表(続き)

	1							 	
	薬量	薬	害		K	草	効 界	1	
No	(kg/ha)	Wh	So	Am	Ec	At	Xs	Ga	$V_{\mathbf{p}}$
228	5	0	0	3	3	4	2	2	4
234	5	0	0	3	3	3	2	2	3
243	5	0	0	2	3	3	2	2	3
246	5	1	0	3	4	4	3	3	4
275	5	1	0	3	4	4	3	3	4
276	5	2	0	4	5	5	4	4	5
289	5	2	1	4	5	5	3	4	5
290	.5	2	1	5	5	5	4	5	5
291	5	1	0	4	5	5	4	5	5
305	5	2	0	4	5	4	3	3	4
310	5	2	0	4	4	4	3	3	4
334	5	2	0	4	4	5	3	3	4
339	5	1	0	4	4	4	2	3	4
343	5	О	0	3	4	3	2	3	4
359-1	5	0	0	5	5	5	5	5	5
359-2	5	0	1	5	5	5	5	5	5
359-3	5	0	0	5	5	5	5	5	5
359-4	5	0	2	5	5	5	5	5	5
359-5	5	0	0	5	5	5	5	5	5
359-6	5	0	0	. 5	5	5	5	5	5
360	5	4	3	5	5	5	5	5	5
361	5	4	4	5	5	5	5	5	5
375	5	3	3	5	5	5	5	5	5
388	5	5	4	5	5	5	5	5	5
414	5	5	4	5	5	5	5	5	5
423	5	5	4	5	5	. 5	5	5	5
431	5	3	3	4	5	5	4	4	5
438	5	5	5	5	5	5	5	5	5

第16表(続き)

	薬量	薬			—————————————————————————————————————	 全	 効	₹	
No	(kg/ha)	Wh	So	Λm	Ec	At	Χs	Ga	Vp
447	5	5	4	5	5	5	5	5	5
450	5	4	4	5	5	5	4	4	5
462	5	5	5	5	5	5	5	5	5
474	5	4	3	5	5	5	4	4	5
486	5	4	4	5	5	5	5	5	5
498	5	4	4	5	5	5	4	4	5
510	5	5	4	5	5	5	5	5	5
519	5	5	4	5	5	5	5	5	5
527	5	5	5	5	5	5	4	5	5
534	5	4	3	5	5	5	5	5	5
558	5	5	5	5	5	5	5	5	5
570	5	4	4	5	5	5	5	5	5
582	5	4	4	5	5	5	5	5	5
606	5	4	3	5	5	5	4	4	5
630	5	4	3	5	5	5	4	4	5
654	5	3	1	4	4	5	3	3	4
678	5	4	2	4	5	5	3	3	5
679	5 -	4	2 -	4	5	5	4	4	5
703	5	4	2	4	5	5	4	4	5
724	5	4	3	4	4	4	3	4	5
727	5	4	4	5	5	5	4	4	5
739	5	5	4	5	5	5	5	5	5
760	5	4	3	5	5	5	4	5	5
763	5	4	3	4	5	5	4	4	5
774	5	5	4	5	5	4 5	5	5	5
775	5	5	5	5	5	5	5	5	5
796	5	5	4	5	5	5	4	5	5
798	5	5	4	5	5	5	5	5	5

88

第16表 (続き)

	薬量	20 5	害		—————— [5	章	効	<u> </u>	
No	(kg/ha)	Wh	So	Am	Ec	At	Xs	Ga	۷p
799	5	5	5	5	5	5	5	5	5
811	5	5	4	5	5 .	5	5	5	5
814	5	4	3	5	5	5	4	4	5
824	5	5	5	5	5	5	5	5	5
836	5	5	4	5	5	5	5	5	5
847	5	5	4	5	5	5	5	5	5
870	5	4	3	5	5	5	5	5	5
871	5	5	4	5	5	5	5	5	5
892	5	4	3	5	5	5	4	5	5
894	5	5	4	. 5	5	5	5	5	5
895	5	5	4	5	5	5	5	5	5
907	5	5	4	5	5	5	5	5	5
919	5	5	5	5	5	5	5	5	5
934	5	5	4	5	5	5	4	5	5
943	5	4	3	5	5	5	5	5	5
955	5	5	3	5	5	5	5	5	5
976	5	5	4	5	5	5	5	5	5
980	5	5	4	5	5	5	5	5	5
992	5	5	5	5	5	5	5	5	5
1016	5	5	5	5	5	5	5	5	5
1028	5	5	4	5	5	5	5	5	5
1040	5	5	4	5	5	5	5	5	5
1052	5	5	3	5.	5	5	5	5	5
1064	5	5	4	5	5	5	5	5	5
1085	5	5	4	5	5	5	5	5	5
1087	5	5	5	5	5	5	5	5	5
1088	. 5	5	5	5	5	5	5	5	5
1112	5	5	5	5	5	5	5	5	5

第16表(続き)

	薬量	薬			······································	全 草		·	
No	(kg/ha)	Wh	So	Λm	Ec	Λt	Xs	Ga	٧p
1124	5	5	5	5	5	5	5	5	5
1136	5	5	5	5	5	5	5	5	5
1148	5	5	4	5	5	5	·5	5	5
1160	5	5	4	5	5	5	5	5	5
1171	5	5	4	5	5	5	5	4	5
1173	5	5	5	5	5	5	5	5	5
1197	5	5	5	5	5	5	5	5	5
1209	5	5	5	5	5	5	5	5	5
1233	5	5	5	5	5	5	5	5	5
1245	5	5	5	5	5	5	5	5	5
1269	5	5	4	5	5	5	5	5	5
1294	5	5	4	5	5	5	5	5	5
1305	5 -	5	5	5	5	5	5	5	5
1306	5	5	5	5	5	5	5	5	5
1311	5	5	5	5	5	5	5	5	5
1314	5	4	3	5	5	5	4	4	5
1315	5	5	5	5	5	5	5	5	5
1318	5	5	3	5	5	5	4	4	5
1327	5	5	3	5	5	5	4	4	5

試験例4 出芽後の畑地雑草に対する除草効果

- 5 縦10cm×横20cm×高さ5cmのポリエチレン製バットに土壌を詰め、これに下記に示す畑地有害雑草及び畑作作物としてダイズ及びコムギの種子を播種覆土し、各々下記の葉期になるまで生育させ、これに本発明化合物(第1表~第14表に記載の化合物)を有効成分とする薬剤を所定濃度の散布液として処理した。
- 10 処理14日後に除草効果を調査し、試験例1と同様にして殺草率を算出し、判

定を行った。同時にダイズ及びコムギに対する薬害を調査して、試験例1に準じて判定を行った。

供試雑草主及びその葉期並びにダイズ及び小麦の葉期

	ノスズメノテッポウ (Am)	1~2葉期
5	イヌビエ (E c)	1~2葉期
	イチビ(A t)	2 葉期
	オナモミ (X s)	2 葉期
	ヤエムグラ(G a)	1 葉期
	オオイヌノフグリ(Vp)	子葉~1 葉期
10	コムギ(Wh)	2 葉期
	ダイズ (S o)	1 葉期

結果を第17表に示す。

第17表

	薬量	薬	害			章 章	効 界	·	
No	(kg/ha)	Wh	So	Am	Ec	At	Хs	Ga	Vp
1	5	2	1	3	4	5	4	3	5
2	5	2	·1	4	5	5	4	5	5
3	5	3	2	5	5	5	4	5	5
28	5	1	0	2	3	3	2	2	4
29	5	1	0	3	3	4	3	3	4
30	5	2	1	4	4	5	3	3	5
43	5	1	0	2	3	3	2	1	3
44	5	1	0	3	3	3	2	3	4
53	5	1	0	3	3	4	2	2	3
58	5	3	2	4	4	5	3	3	4
71	5	4	2	4	4	4	3	3	5
97	5	0	0	2	2	2	1	1	3
99	5	4	2	4	5	5	4	4	5

第17表(続き)

	楽量	薬			———— 隊				
No	(kg/ha)	Wh	So	Am	Ec	At	Хs	Ga	Vp
100	5	2	3	4	5	5	4	5	5
101	5	3	2	. 4	5	. 5	4	4	5
126	5	0	0	2	2	3	ì	1	3
127	5	2	1	3	3	3	1	2	3
128	5	2	1	4	4.	4	3	3	5
129	5	4	2	5	5	5	5	5	5
130	5	3	1	4	5	5	4	4	5
157	. 5	3	2	4	5	5	4	4	5
158	5	4	2	4	5	5	4	5	5 ·
189	5	2	0	3	3	4	2	3	4
200	5	0	0	2	3	3	1	1	3
201	5	0	0	3	2	3	1	1	3
219	5	2	1	4	5	5	3	3	5
224	5	2	1	3	4	4	2	2	4
228	5	1	1	3	3	4	1	2	4
234	5	0	0	2	3	3	1	1	3
243	5	0	0	2	3	3	1	1	3
246	5	1	0	3	3	4	2	2	4
275	5	2	1	3.	4	4	3	3	4
276	· 5	3	2	4	5	5	4	4	5
289	5	2	1	4	5	5	3	4	5
290	5	3	2	5	5	5	4	5	5
291	5	2	2	4	5	5	4	4	5
305	5	2	1	3	4	4	2	2	4
310	5	2	0	3	4	4	3	2	3
334	5	2	1	3	4	.4	3	3	4
339	5	2	1	3	4	4	2	2	4
343	5	0	0	2	4	3	2	2	3

第17表(続き)

	薬量	20	医害		[<u>-</u>	全 草		<u> </u>	
No	(kg/ha)	Wh	So	Am	Ec	At	Xs	Ga	۷p
359-1	5	2	3	5	5	5	5	5	5
359-2	5	3	4	5	5	5	5	5	5
359-3	5	2	3	5	5	5	5	5	5
359-4	5	2	4	5	5	5	5	5	5
359-5	5	3	2	5	5	5	5	5	5
359-6	5	2	3	5	5	5	5	5	5
360	5	4	3	5	5	5	5	4	5
361	5	5	4	5	5	5	5	5	5
375	5	4	4	5	5	5	5	5	5
388	5	5	4	5	5	5	5	5	5
414	5	5	4	5	5	5	5	5	5
423	5	5	4	5	5	5	5	5	5
431	5	4	3	4	4	5	4	4	5
438	5	5	4	5	5	5	5	5	5
447	5	5	4	5	5	5	5	5	5
450	5	4	4	, 5	5	5	4	4	5
462	5	5	5	5	5	5	5	5	5
474	5	3	3	5	5	5	4	4	5
486	5	4	4	5	5	5	5	5	5
498	5	4	4	5	5	5	4	4	5
510	5	5	4	5	5	5	5	5	5
519	5	5	4	5	5	5	5	5	5
527	5	5	5	5	5	5	4	5	· 5
534	5	4	4	5	5	5	5	5	5
558	5	5	5	5	5	5	5	5	5
570	5	4	4	5	5	5	4	4	5
582	5	4	4	5	5	5	5	5	5
606	5	4	3	5	5	5	4	4	5

第17表(続き)

	薬量	蓮	害		—————————————————————————————————————				
No	(kg/ha)	Wh	So	Am	Ec	At	Xs	Ga	Vр
630	5	4	3	5	. 5	5	4	4	5
654	5	3	2	3	3	4	2	2	4
678	5	4	3	4	5	5	3	3	5
679	5	3	2	. 4	5	5	4	4	5
703	5	3	2	4	5	5	4	4	5 ·
724	5	3	2	4	4	4	3	4	, 5
727	5	4	4	5	5	5	4	4	5
739	5	5	4	5.	5	5	· 5	5	5
760	5	4	3	5	5	5	4	5	5
763	5	4	3	4	5	5	4	4	5
774	5	5	4	5	5	5	5	5	5
775	5	5	5	5	5	5	5	5	5
796	5	4	4	5	5	5	4	4	5
798	5	5	4	5	5	5	5	5	5
799	5	5	5	5	5	5	5	5	5
811	5	5	4	5	5	5	4	4	5
814	5	4	3	5	5	5	4	4	5
824	5	5	4	5	5	5	5	5	5
836	5	5	4	5	5	5	5	5	5
847	5	5	4	5	5	5	5	5	5
870	5	4	· 3	5	5	5	5	5	5
871	5	5	4	5	5	5	5	5	5
892	5	4	3	5	5	5	4	4	5
894	5	5	4	5	5	5	4	5	5
895	5	5	4	5	5	5	5	5	5
907	5	5	4	5	5	5	5	5	5
919	5	5	5	5	5	5	5	5	5
934	5	5	4	5	5	5	4	5	. 5

94

第17表(続き)

	薬量	THE STATE OF THE S	害	1	 [§	 > 古	———— 効 卵		
No	1	1							
	(kg/ha)	Wh	So	Am	Ec	At	Xs	Ga	۷p
943	5	4	4	5	5	5	5	5	5
955	5	5	3	5	5	5	5	5	5
976	5	5	4	5	5	5	5	5	5
980	5	5	4	5	5	5	5	5	5
992	5	5	5	5	5	5	5	5	5
1016	5	5	5	5	5	5	5	5	5
1028	5	5	4	5	5	5	5	4	5
1040	5	5	4	5	5	5	5	5	5
1052	5	5	3	5	5	5	5	5	5
1064	5	5	4	5	5	5	5	5	5
1085	5	5	4	5	5	5	5	4	5
1087	5	5	4	5	5	5	5	5	5
1088	5	5	5	5	5	5	5	5	5
1112	5	5	5	5	5	5	5	5	5
1124	5	5	5	5	5	5	5	5	5
1136	5	5	5	5	5	5	5	5	5
1148	5	5	4	5	5	5	5	5	5
1160	5	5	4	5	5	5	5	5	5
1171	5	4	3	5	5	5	4	4	5
1173	5	5	5	5	5	5	5	5	5
1197	5	5	5	5	5	5	5	5	5
1209	5	5	5	5	5	5	5	5	5
1233	5	5	5	5	5	5	5	5	5
1245	5	5	5	5	5	5	5	5	5
1269	5	5	4	5	5	5	5	5	5
1294	5	5	. 4	5	5	5	5	5	5
1305	5	5	5	5	5	5	5	5	5
1306	5	5	5	5	5	5	5	5	5

第17表(続き)

No	薬量	薬	害		[ki	章	効 果	₹	
140	(kg/ha)	Wh	So	Am	Ec	At -	Xs	Ga	$V_{\mathbf{p}}$
1311	5	5	5	5	5	5	5	5	5
1314	5	4	4	5	5	5	4	4	5
1315	5	5	5	5	5	5	5	5	5
1318	5	4	3	5	5	5	4	5	5
1327	5	4	3	5	5	5	4	5	5

請求の範囲

1. 一般式(I)

5

$$\text{Het} \subset \text{CONR}^1 \xrightarrow{\text{CONR}^2 \mathbb{R}^3} \times \mathbb{R}^3$$

[式中、R¹ は水素原子又は(C₁-C₆) アルキル基を示し、R² 及びR³ は同一又は異なっても良く、水素原子、(C₁-C₈) アルキル基、ハロ(C₁-C₆) ア ルキル基、 (C_3-C_8) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) ア ルキル基、同一又は異なっても良い1以上のハロゲン原子を環上に有する (C₂-C₆) シクロアルキル基、(C₁-C₆) アルコキシ基、(C₁-C₆) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、アルキルチオ (C_1-C_6) アル キル基、シアノ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシカルボニル 15 (C_1-C_6) アルキル基、アミノ (C_1-C_6) アルキル基、同一又は異なっても良い 1又は2個の (C_1-C_6) アルキル基により置換されたアミノ (C_1-C_6) アルキル 基、フェニル(C1-C6) アルキル基、同一又は異なっても良く、ハロゲン原子又 は(C₁-C₆) アルキル基から選択される1以上の置換基を環上に有する置換フェ ニル(C₁-C₆) アルキル基、フェニル(C₁-C₆) アルコキシ基又は同一若しくは 20 異なっても良く、ハロゲン原子又は(C₁-C₆) アルキル基から選択される1以上 の置換基を環上に有する置換フェニル(C₁-C₆)アルコキシ基を示す。

又、 R^2 及び R^3 は一緒になって、同一又は異なっても良く、酸素原子、硫 黄原子又は窒素原子から選択される 1 以上のヘテロ原子を有する $5\sim6$ 員複素環 25 を示すこともでき、該複素環上の炭素原子又は窒素原子は同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ 基又はハロ (C_1-C_6) アルキルチオ基から選択される 1 以上の置換基を有することもできる。

Xは同一又は異なっても良く、ハロゲン原子、ニトロ基、シアノ基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、同一又は異なっても良い1以 上のハロゲン原子を環上に有する(C₃-C₆) シクロアルキル基、(C₁-C₆) アル コキシ基、ハロ(C₁-C₆) アルコキシ基、(C₁-C₆) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルスルフィニル基、ハロ (C_1-C_6) アルキルスルフィニル基、(C₁-C₆) アルキルスルホニル基、ハロ(C₁-C₆) ア ルキルスルホニル基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) ア ルキルチオ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシカルボニル基、アミノ 基、同一又は異なっても良く、 (C_1-C_6) アルキル基、シアノ (C_1-C_6) アルキ ル基、フェニル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アシル基、 (C_1-C_6) アルキルスルホニル基又はハロ (C_1-C_6) アルキルスルホニル基によ り置換されたアミノ基、フェニル基、同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハ 15 $D(C_1-C_6)$ アルコキシ基、 (C_1-C_6) アルキルチオ基、ハ $D(C_1-C_6)$ アルキル チオ基、(C₁-C₆) アルキルスルフィニル基、ハロ(C₁-C₆) アルキルスルフィ ニル基、(C₁-C₆) アルキルスルホニル基、ハロ(C₁-C₆) アルキルスルホニル 基又はフェニル基から選択される1以上の置換基を有する置換フェニル基、フェ 20 ノキシ基、同一又は異なっても良く、ハロゲン原子、(C₁-C₆) アルキル基、ハ $D(C_1-C_6)$ アルキル基、 (C_1-C_6) アルコキシ基、ハ $D(C_1-C_6)$ アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から 選択される1以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又 は異なっても良く、ハロゲン原子、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アル 25 キル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アル キルチオ基、ハロ(C₁-C₆) アルキルチオ基又はフェニル基から選択される1以 上の置換基を有する置換フェニルチオ基、フェニル(C₁-C₆) アルキル基又は同 一若しくは異なっても良く、ハロゲン原子、(C₁-C₆) アルキル基、ハロ

 (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、

 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1以上の置換基を環上に有する置換フェニル (C_1-C_6) アルキル基から選択される $0\sim 5$ 個の置換基を示す。

Het ItQ1

5

20 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルスルホニル基又はフェニル基から選択される 1 以上の置換基を有する置換フェニル基、フェノキシ基、同一又は異なっても良く、 (C_1-C_6) ア

 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1 以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニ

ル基から選択される 1 以上の置換基を有する置換フェニルチオ基、アミノ基、同一又は異なっても良く、 (C_1-C_6) アルキル基、シアノ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシアミノカルボニル基、 (C_1-C_6) アシル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルスルホニル基又はフェニル (C_1-C_6) アルキル基から選択される 1 以上の置換基を有する置換アミノ基、 (C_3-C_5) アルキレンイミノ基、ヒドラジノ基又は同一若しくは異なっても良い (C_1-C_6) アルキル基により置換されたヒドラジノ基を示す。

R⁴ は同一又は異なっても良く、ハロゲン原子、ニトロ基、シアノ基、ヒド ロキシル基、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アルキル基、(C₃-C₆) シク 10 ロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アル コキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキ ル基、(C₁-C₆) アルキルチオ基、ハロ(C₁-C₆) アルキルチオ基、(C₁-C₆) ア ルキルスルフィニル基、ハロ(C₁-C₆) アルキルスルフィニル基、(C₁-C₆) ア 15 ルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキ ルチオ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシカルボニル基、メチレンジ オキシ基、アミノ基又は1以上の同一若しくは異なっても良く、(C₁-C₆)アル キル基、シアノ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシカルボニル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキ シアミノカルボニル基、(C₁-C₆) アシル基、(C₁-C₆) アルキルスルホニル基、 20 ハロ(C₁-C₆) アルキルスルホニル基又はフェニル(C₁-C₆) アルキル基により 置換されたアミノ基から選択される $0 \sim 4$ 個の置換基を示す。)、 Q^2

(式中、A、B、D、Eは少なくとも1つは窒素原子を示し、残りは $C-R^5$ (式中、 R^5 は水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル基、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ基、((C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルキルチルフィニル基、 (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキルスルボニル基、 (C_1-C_6) アルキルスルボニル基、 (C_1-C_6) アルキルスルボニル基、 (C_1-C_6) アルキルスルホニル基、 り置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル基により置換されたアミノ基を示す。)を示し、 (C_1-C_6) アルキル

15

 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、フェニル (C_1-C_6) アルキル基、同一又は異なってもよく、1以上のハロゲン原子又は (C_1-C_6) アルキル基によって置換されたフェニル (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基により置換されたアミノ (C_1-C_6) アルキル基又はフェニル (C_1-C_6) アルキル基により置換されたアミノ (C_1-C_6) アルキル基又はフェニル (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルコキシ基を示す。)を示し、 (C_1-C_6) アルキル基(

(式中、 R^9 はハロゲン原子、ニトロ基、シアノ基、 (C_1-C_6) アルキル基、 キル(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシ基、ハロ(C_1 - C_6) アルコキシ 基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニ ル基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) ア ルキルスルフィニル基、ハロ (C_1-C_6) アルキルスルフィニル基、 (C_1-C_6) ア ルキルスルホニル基、ハロ(C₁-C₆) アルキルスルホニル基、(C₁-C₆) アルキ 20 ルチオ(C₁-C₆) アルキル基、フェニル基、同一又は異なっても良く、ハロゲン 原子、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アルキル基、(C₁-C₆) アルコキシ 基、ハロ (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) ア ルキルチオ基、(C₁-C₆) アルキルスルフィニル基、ハロ(C₁-C₆) アルキルス ルフィニル基、(C₁-C₆) アルキルスルホニル基、ハロ(C₁-C₆) アルキルスル ホニル基又はフェニル基から選択される1以上の置換基を有する置換フェニル基、 フェノキシ基、同一又は異なっても良く、ハロゲン原子、(C₁-C₆) アルキル基、 ハロ(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシ基、ハロ(C_1 - C_6) アルコキシ 基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基

から選択される 1 以上の置換基を有する置換フェノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルコキシ基、ハロ (C_1-C_6) アルコキシ基、(C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基又はフェニル基から選択される 1 以上の置換基を有する置換フェニルチオ基、アミノ基、同一又は異なっても良く、1 以上の (C_1-C_6) アルキル基、シアノ (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルコキシアミノカルボニル基、 (C_1-C_6) アルコキシアミノカルボニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルスルホニル基、ハロ (C_1-C_6) アルキルスルホニル基又はフェニル (C_1-C_6) アルキル基により置換されたアミノ基、 (C_3-C_5) アルキレンイミノ基、ヒドラジノ基又は同一若しくは異なっても良い (C_1-C_6) アルキル基により置換されたヒドラジノ基を示し、 (C_1-C_6) アルキル基により置換されたヒドラジノ基を示し、 (C_1-C_6) アルキル基により置換されたヒドラジノ基を示し、 (C_1-C_6) アルキル基により置換された

Zは酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は水素原子、ヒドロキシル基、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基、 (C_3-C_6) シクロア ルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルコキシカルボニル基、 (C_1-C_6) アルキルスルホニル基、 (C_1-C_6) アルキルスルホニル 基又は (C_1-C_6) アルキルチオ (C_1-C_6) アルキルチオ (C_1-C_6) アルキルメルホニル 記に同じ。)、 Q^5

20

25 (式中、R⁹、Y、Z及びmは前記に同じ。)、Q⁶

5

(式中、R⁹、Y、Z及びmは前記に同じ。)、Q⁷

10

(式中、L、M、Tは少なくとも1つは酸素原子、硫黄原子、スルフィニル基、 スルホニル基、カルボニル基又は $N-R^{11}$ (式中、 R^{11} は水素原子、ヒドロ キシル基、(C₁-C₆) アルキル基、ハロ(C₁-C₆) アルキル基、(C₃-C₆) シクロ アルキル基、(C₃-C₆) シクロアルキル(C₁-C₆) アルキル基、(C₁-C₆) アルコ キシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシカル ボニル基、(C₁-C₆) アルキルスルホニル基、ハロ(C₁-C₆) アルキルスルホニ ル基又は (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基を示す。)を示し、残り は $C-(R^{12})R^{13}$ (式中、 R^{12} 及び R^{13} は同一又は異なっても良く、水 素原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロア 20 ルキル基、 (C_3-C_6) シクロアルキル (C_1-C_6) アルキル基、同一又は異なって もよい1以上のハロゲン原子を環上に有する (C_3-C_6) シクロアルキル基、 (C_1-C_1) C_6) アルコキシ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) ア ルキルチオ(C_1 - C_6) アルキル基、(C_1 - C_6) アルコキシカルボニル(C_1 - C_6) ア ルキル基、フェニル(C₁-C₆) アルキル基、同一又は異なっても良く、ハロゲン 25 原子又は (C_1-C_6) アルキル基から選択される1以上の置換基を環上に有する置 換フェニル (C_1-C_6) アルキル基、フェニル (C_1-C_6) アルコキシ基、同一又は 異なっても良く、ハロゲン原子又は (C_1-C_6) アルキル基から選択される1以上 の置換基を環上に有する置換フェニル(C_1 - C_6) アルコキシ基、アミノ(C_1 - C_6)

アルキル基又は1以上の同一若しくは異なっても良く、 (C_1-C_6) アルキル基により置換されたアミノ (C_1-C_6) アルキル基を示す。)を示す。)、Q 8

5

(式中、R $^{1.4}$ は水素原子か又はR 9 と同じであり、Y及び2は前記に同じ。)、Q 9

10

15 (式中、R¹⁴、Y及びZは前記に同じ。)、Q¹⁰

20

25

(式中、 R^{14} 、Y及びZは前記に同じ。)、 Q^{11}

(式中、R¹⁴、Y及びZは前記に同じ。)、Q¹²

(式中、R¹⁴、Y及びZは前記に同じ。)、Q¹³

10

(式中、R¹⁴、Y及びZは前記に同じ。)又はQ¹⁴

(式中、 R^9 は前記に同じくし、nは $0\sim4$ の整数を示す。) を示す。)

- 20 で表される縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類。
 - 2. R^1 が水素原子を示し、 R^2 及び R^3 が同一又は異なっても良く、水素原子、 (C_1-C_8) アルキル基又は (C_3-C_8) シクロアルキル基を示し、Xが同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_3-C_6) シクロアルキル基、 (C_1-C_6) アルコキシ基、ハロ
- 25 (C_1-C_6) アルコキシ基、 (C_1-C_6) アルキルチオ基、ハロ (C_1-C_6) アルキルチオ基、 (C_1-C_6) アルコキシ (C_1-C_6) アルキル基、 (C_1-C_6) アルキルチオ (C_1-C_6) アルキル基又は (C_1-C_6) アルコキシカルボニル基から選択される 0 ~ 5 個の置換基を示し、 (R_1) が Q^1

5

(式中、Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、R 4 は同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ヒドロキシル基、 (C_1-C_6) アルコキシ基又はメチレンジオキシ基から選択される $0\sim4$ 個の置換基を示す。)、Q 2

10

15 (式中、Aは窒素原子を示し、B、D又はEは $C-R^5$ (式中、 R^5 は水素原子、ハロゲン原子、 (C_1-C_6) アルキル基又はハロ (C_1-C_6) アルキル基を示し、 Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、 (C_1-C_6) アルキル基を示し、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、 (C_1-C_6) アルキル基本元

20

(式中、F、G、J、Kは少なくとも1つは酸素原子、硫黄原子、スルフィニ 25 ル基、スルホニル基、カルボニル基又は $N-R^6$ (式中、 R^6 は水素原子、 (C_1-C_6) アルキル基又はハロ (C_1-C_6) アルキル基を示す。)を示し、残りは $C-(R^7)$ R^8 (式中、 R^7 及び R^8 は水素原子を示す。)を示し、Yは 水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。又、 G及び Jは一緒になってC H=C H を示すこともできる。)、 Q^4

(式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、mは $0\sim2$ の整数を示す。 Zは酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は水素原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。)を示し、Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。)、 Q^5

15

(式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、mは $0\sim2$ の整数を示す。Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。Zは酸素原子又は硫黄原子を示す。Q 、Q 。

20

25 (式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、mは $0\sim2$ の整数を示す。 Y は水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。 Z は酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は前記に同じ。)、 Q^7

5

(式中、L、M、Tは少なくとも1つは酸素原子、硫黄原子、スルフィニル基、スルホニル基又はN-R 11 (式中、R 11 は水素原子、(C_1 - C_6) アルキル基又はハロ(C_1 - C_6) アルキル基を示す。)を示し、残りはC- (R^{12}) R 13 (式中、R 12 及び R^{13} は同一又は異なっても良く、水素原子、(C_1 - C_6) アルキル 基又は(C_1 - C_6) アルキル基又は(C_1 - C_6) アルコキシ基を示す。)を示す。 Y は水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。)、 C_1

15

(式中、 $R^{1.4}$ は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又はは(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は20 (C_3 - C_6) シクロアルキル基を示す。 Z は酸素原子、硫黄原子又はN- $R^{1.0}$ (式中、 $R^{1.0}$ は前記に同じ。)を示す。)、 Q^9

25

(式中、 $R^{1.4}$ は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 ZはN- $R^{1.0}$ (式中、 $R^{1.0}$ は前記に同

じ。) を示す。) 、Q ¹⁰

5

(式中、 R^{14} は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又はは(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 ZはN- R^{10} (式中、 R^{10} は前記に同10 じ。)を示す。)、 Q^{11}

15

(式中、 $R^{1.4}$ は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 ZはN- $R^{1.0}$ (式中、 $R^{1.0}$ は前記に同じ。) を示す。)、 $Q^{1.2}$

20

25

(式中、 $R^{1.4}$ は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又はは(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。Z はN- $R^{1.0}$ (式中、 $R^{1.0}$ は前記に同じ。)を示す。)、 $Q^{1.3}$

(式中、 $R^{1.4}$ は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 ZはN- $R^{1.0}$ (式中、 $R^{1.0}$ は前記に同じ。) を示す。) 又は $Q^{1.4}$

10

15 (式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、mは $0\sim2$ の整数を示す。)

で表される請求項1記載の縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類。

3. R^1 が水素原子を示し、 R^2 が水素原子を示し、 R^3 が水素原子、

20 (C_1-C_8) アルキル基又は (C_3-C_8) シクロアルキル基を示し、Xが同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ハロ (C_1-C_6) アルキル基、 (C_1-C_6) アルコキシ基又はハロ (C_1-C_6) アルコキシ基から選択される (C_1-C_6) アルコキシ基から選択される (C_1-C_6) アルコキシ基から選択される (C_1-C_6) アルコキシ基から選択される (C_1-C_6) が (C_1-C_6) アルコキシ基から選択される (C_1-C_6) が (C_1-C_6) アルコキシ基から選択される (C_1-C_6) が (C_1-C_6) が (C_1-C_6) アルコキシ基から選択される (C_1-C_6) が (C_1-C_6) が (C_1-C_6) が (C_1-C_6) アルコキシ基から選択される (C_1-C_6) が (C_1-C_6) が (C_1-C_6) か (C_1-C_6) か (C_1-C_6) アルコキシ基から選択される (C_1-C_6) か

25

(式中、Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル

基を示し、 R^4 は同一又は異なっても良く、ハロゲン原子、 (C_1-C_6) アルキル基、ヒドロキシル基、 (C_1-C_6) アルコキシ基又はメチレンジオキシ基から選択される $0\sim4$ 個の置換基を示す。)、 Q^2

5

(式中、Aは窒素原子を示し、B、D又はEは $C-R^5$ (式中、 R^5 は水素原 10 子、ハロゲン原子、 (C_1-C_6) アルキル基又はハロ (C_1-C_6) アルキル基を示し、 Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、 し、)、 Q^3

15

(式中、F、G、J、Kは少なくとも1つは酸素原子、硫黄原子、スルフィニル基、スルホニル基、カルボニル基又は $N-R^6$ (式中、 R^6 は水素原子、 (C_1-C_6) アルキル基を示す。)を示し、残りは $C-(R^7)$ R^8 (式中、 R^7 及び R^8 は水素原子を示す。)を示し、Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。又、G及び I は一緒になってC H=C H を示すこともできる。)、 Q^4

25

(式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロア

ルキル基を示し、mは0~2の整数を示す。 Z は酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は水素原子、 (C_1-C_6) アルキル基、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。)を示し、Y は水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。)、 Q^5

5

10 (式中、 R^9 はハロゲン原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示し、mは $0\sim 2$ の整数を示す。 Yは水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。 Z は酸素原子、硫黄原子又は $N-R^{10}$ (式中、 R^{10} は前記に同じ。)、 Q^7

15

(式中、L、M、Tは少なくとも1つは酸素原子、硫黄原子、スルフィニル基、 20 スルホニル基又はN-R¹¹ (式中、R¹¹は水素原子、 (C_1-C_6) アルキル基又は (C_1-C_6) アルキル基を示す。)を示し、残りは (C_1-C_6) アルキル基を示す。)を示し、残りは (C_1-C_6) アルキル 基、 (C_1-C_6) アルキル 基又は (C_1-C_6) アルキル 基又は (C_1-C_6) アルキル 基又は (C_1-C_6) アルキル 基又は (C_1-C_6) アルキル 基又は (C_1-C_6) アルキル 基本示す。)を示す。 Y は水素原子、 (C_1-C_6) アルキル基又は (C_3-C_6) シクロアルキル基を示す。)、 Q 8

(式中、 R^{14} は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 Z は酸素原子、硫黄原子又はN- R^{10} (式中、 R^{10} は前記に同じ)を示す。) 又は Q^{11}

10

15 (式中、 R^{14} は水素原子(C_1 - C_6) アルキル基、ハロ(C_1 - C_6) アルキル基又はは(C_3 - C_6) シクロアルキル基を示し、Yは水素原子、(C_1 - C_6) アルキル基又は(C_3 - C_6) シクロアルキル基を示す。 ZはN- R^{10} (式中、 R^{10} は前記に同じ。)を示す。)

で表される請求項2記載の縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩 20 類。

- 4. 請求項1~3いずれか1項記載の縮合ヘテロ環ジカルボン酸ジアミド誘導体又はその塩類を有効成分として含有することを特徴とする除草剤。
- 5. 有用作物の生長に対して望ましくない雑草を防除するために、請求項4 記載の除草剤の有効量を当該雑草又は土壌に処理することを特徴とする除草剤の 25 使用方法。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/04009

A. CLASS Int.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D215/54, 241/44, 471/04, 491/052, 491/056, 491/048, 495/04, 498/04, A01N43/42, 43/60, 43/90							
According t	o International Patent Classification (IPC) or to both n							
B. FIELD	S SEARCHED							
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D215/54, 241/44, 471/04, 491/052, 491/056, 491/048, 495/04, 498/04, A01N43/42, 43/60, 43/90							
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d CAPL	lata base consulted during the international search (nar JUS (STN), REGISTRY (STN)	ne of data base and, where practicable, so	earch terms used)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
X	JP, 9-323974, A (Nihon Nohya 16 December, 1997 (16. 12. 9 Table 1, No 188-191, 211-212 & EP, 799825, A & CA, 2201 & CN, 1164532, A & US, 584 & BR, 9701612, A	7), 437, A 3868, A	1-5					
х	MOHAMED, Y.A., "A Facile Synt	1, 2						
Α	6,7-Dimethylquinoxaline-2,3- AFINIDAD, <u>50</u> (444), 123-6 (19	3-5						
х	Chem. Abstr., Vol. 117, (199	2), the abstract	1, 2					
A	No. 171375, Ammar, Y.A., "Synt 6-methylquinoxaline-2,3-dica Sci., 14(2), 528-39 (1990)	rhesis and reactions of rboxyimides," Delta J.	3-5					
х	Chem. Abstr., Vol. 124, (199		1, 2					
A	No. 289449, Zahran, M.A., "Sy of 6,7-dimethyl-N-(carboxyph dicarboxyimide," Al-Azhar J. (1994)	enyl)quinoxaline-2,3-	3-5					
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.						
"A" docume consider "E" earlier of docume cited to special docume means docume the prior	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed	"T" later document published after the intern date and not in conflict with the applicat the principle or theory underlying the involvement of particular relevance; the classidered novel or cannot be considered when the document is taken alone document of particular relevance; the classidered to involve an inventive step we combined with one or more other such dibeing obvious to a person skilled in the adocument member of the same patent fair	ion but cited to understand vention itimed invention cannot be if to involve an inventive step simed invention cannot be when the document is occuments, such combination out					
Date of the actual completion of the international search 25 October, 1999 (25. 10. 99) Date of mailing of the international search report 2 November, 1999 (02. 11. 99)								
Name and m Japa	nailing address of the ISA/ nese Patent Office	Authorized officer						
Eacsimile N	Δ	Telephone No.						

国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl C07D215/54, 241/44, 471/04, 491/052, 491/056, 491/048, 495/04, 498/04, A01N43/42, 43/60, 43/90 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl C07D215/54, 241/44, 471/04, 491/052, 491/056, 491/048, 495/04, 498/04. A01N43/42, 43/60, 43/90 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN) REGISTRY (STN) 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 カテゴリー* JP, 9-323974, A (日本農薬株式会社), 16.12. 1997 (16.12.97), 第1表のNo188-191及び2 1 - 5X 11 - 212&EP, 799825, A &CN, 1164532, A &BR, 9701612, A &CA, 2201437, A &US, 5843868, A 1, 2 MOHAMED, Y. A., "A Facile Synthesis and Reactions of X 6,7-Dimethylquinoxaline-2,3-dicarboxyimides. "AFINIDAD, 3 - 550 (444), 123-6 (1985) Α [パテントファミリーに関する別紙を参照。 X C欄の続きにも文献が列挙されている。 の日の後に公表された文献 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「し」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「〇」口頭による開示、使用、展示等に含及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 02.11.99 国際調査報告の発送日 国際調査を完了した日 25.10.99 4P | 8217 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 星 野 紹 英 印 日本国特許庁(ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3491

東京都千代田区費が関三丁目4番3号

国際調査報告

国際出願番号 PCT/JP99/04009

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
$\frac{\pi \tau = y - x}{X}$	Chem. Abstr., Vol. 117, (1992), the abstract No. 171375,	1, 2
A	Ammar, Y. A., "Synthesis and reactions of 6-methylquinoxaline-2, 3-dicarboxyimides, "Delta J. Sci., 14(2), 528-39(1990)	3 – 5
1		1, 2
Х	Chem. Abstr., Vol. 124, (1996), the abstract No. 289449. Zahran, M. A., "Synthesis and reactions of 6,7-dimethyl-N-	
A	(carboxyphenyl)quinoxaline-2,3-dicarboxyimide, Al-Azhar J. Pharm. Sci.,13,60-5(1994)	3 – 5
	_	
	•	
		!
,		