G H Raisoni College of Engineering and Management, Pune

(An Autonomous Institution)
F.Y B. Tech (Engineering)
FIRST Term (2020-21)
CAE-I (2020 Pattern)

Engineering Physics (UBSL101)

[Time: 1 Hour] [Max. Marks-15]

COURSE OUTCOME:

Upon successful completion of this course, student will be able to:

- 1. Identify the trajectories of electron in uniform Electric and Magnetic fields and operate related devices.
- 2. Describe the phenomenon of interference & implement it for finding related parameters.
- 3. Explain the working of Laser & use it for different applications.
- 4. Identify various optoelectronic devices and use them for various applications.
- 5. Apply the knowledge of Quantum Mechanics to solve related problems.

Instructions to the candidates:

- 1. (CO1/CO2) at the beginning of question/sub question indicates the course outcome related to the question.
- 2. All questions compulsory.
- 3. Neat diagrams must be drawn wherever necessary.
- 4. Figures to the right indicate full marks.
- 5. Assume suitable data, if necessary.

CO	Sub		Marks
	Questions		
CO1	<i>a</i>)	State and give formula for	[2]
		(i) Coulomb force in case of electron and proton	
		(ii) Lorentz force in case of charge q	
	b)	Show that the path of electron entering in uniform electric field at right angles to	[3]
		the field lines and traveling through the field is parabolic.	
	c)	Prove that, for small value of angle, the pitch of the helix followed by an electron	[3]
		is independent of the angle.	
	<i>d</i>)	An electron starts from rest and moves freely in an electric field of intensity 0.24	[3]
		kV/C. Determine,	
		(i) force acting on electron,	
		(ii) acceleration,	
		(iii) kinetic energy (in eV) acquired and	
		(iv) velocity attained if the electron moves through a potential difference of 0.9 kV.	
		OR	
	<i>e</i>)	An alpha (α) particle is accelerated through a potential difference of 1000 V	[3]
		which then enter a magnetic field of flux density 2000 gauss perpendicular to	
		their direction of motion.	
		Calculate the radius of the circular orbit.	
		(Given: $m_{\alpha} = 2m_P + 2m_N = 6.68 \times 10^{-24} \text{ kg}, q_{\alpha} = 2e = 3.2 \times 10^{-19} \text{ C}$)	
		(Given, $m_{\alpha} = 2m_{\beta} + 2m_{\beta} = 0.00 \text{ A TO}$ kg, $q_{\alpha} = 2c = 3.2 \text{ A TO}$ c)	
CO2	<i>a</i>)	State any four conditions to obtain steady interference pattern.	[2]
	b)	What is destructive interference? Give the condition for constructive interference	[2]
		pattern.	