2. Линейная зависимость векторов. Базис

Mariya Senina

January 2021

1 Линейная (не)зависимость векторов

Опредление. Вектора $\vec{a_1}$, $\vec{a_2}$... $\vec{a_n}$ линейно независмы, если существует $\lambda_1, \lambda_2...\lambda_n \in R$ выражение $\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + ... + \lambda_n \vec{a_n} = 0$ равно нулю только при $\lambda_1 = \lambda_2 = ... = \lambda_n$.

Опредление. Вектора $\vec{a_1}$, $\vec{a_2}$... $\vec{a_n}$ линейно зависмы, если существует $\lambda_1, \lambda_2...\lambda_n \in R$ выражение $\lambda_1\vec{a_1} + \lambda_2\vec{a_2} + ... + \lambda_n\vec{a_n} = 0$ равно нулю.

Если хотя бы один из векторов можно выразить ввиде линейной комбинации других: $\vec{a_k} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + ... + \lambda_n \vec{a_n}$.

Определить это легко - у **линейно зависимой** системы векторов **опеределитель равен нулю**. Например:

$$\det A = \begin{pmatrix} 1 & 2 & -4 \\ 2 & -1 & 0 \\ 4 & 3 & -8 \end{pmatrix} = 0, \text{ т.к. } \vec{a_3} = 2 \cdot \vec{a_1} + \vec{a_2}$$

2 Базисы на плоскости и в пространстве

Опредление. Базис плоскости - совокупность любых двух линейно независимых векторов, принадлежащих данной плоскости. Т.е. если $\vec{a_1}$, $\vec{a_2}$, то для люблого вектора \vec{x} лежащего в этой плоскости можно найти такие числа λ_1, λ_2 , что $\vec{x} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2}$. Тогда числа λ_1, λ_2 - координаты ветора \vec{x} на данном базисе.

Вектора лежащие в на одной прямой называются коллиниарными, они не могут быть базисом для плоскости.

Опредление. Базис трёхмерного пространства - совокупность любых двух линейно независимых векторов, принадлежащих данному пространству. Т.е. если $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ то для люблого вектора \vec{x} лежащего в этому пространству можно найти такие числа $\lambda_1, \lambda_2, \lambda_3$, что $\vec{x} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \lambda_3 \vec{a_3}$. Тогда числа $\lambda_1, \lambda_2, \lambda_3$ - координаты ветора \vec{x} на данном базисе.

Вектора лежащие в одной плоскости называются компланарными. Если три вектора компланарны или коллиниарны они не могут задвать трёхмерное пространство.

3 Определения для n мерных пространств

Опредление. Базис пространства L - система из n линейно независимых векторов $\vec{a_1}$, $\vec{a_2}$... $\vec{a_n}$, таких что всякий вектор $\vec{x} \in L$ можно представить в виде ли- нейной комбинации векторов $\vec{x} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + ... + \lambda_n \vec{a_n}$.

Такое представление вектора х называется разложением его по данному базису. Числа $\lambda_1,\lambda_2...\lambda_n$, которые являются коэффициентами в раз- ложении вектора по данному базису, называются координатами вектора в этом базисе и записываются так: $x=(\lambda_1,\lambda_2...\lambda_n)$ или так $x=[\lambda_1,\lambda_2...\lambda_n]$, или в виде матрицы-столбца:

$$\mathbf{x} = \left(egin{array}{c} \lambda_1 \ \lambda_2 \ \dots \ \lambda_n \end{array}
ight)$$

Теорема. Координаты вектора $\vec{x} \in L$ относительно некоторого базиса $\vec{a_1}$, $\vec{a_2}$... $\vec{a_n} \in L$ этого линейного пространства определяются единственным образом.

Опредление. Линейное пространство имеет размерность равную n, если n – число базисных векторов; пространство при этом обозначают L^n .