ME251A- Engineering Design and Graphics Fits and Tolerances

Why do we need dimensional tolerances?

- ➤ Manufacturing and inspection limitations make it difficult to make parts to exact dimensions like 50 mm diameter
- ➤ For example, let us design a steel rod to withstand a force of 7854 N without breaking!
 - The material is steel having a strength of 100 MPa (N/mm²)
 - Simple calculation shows that the area of cross-section should be A=7854/100 = 78.54 mm²
 - o Thus the rod should have a diameter of 10 mm. So if the wire diameter is 10 mm it will not break.
- ➤ This size is called the **basic dimension**: The dimension obtained from design calculations
- ➤ But it will be very difficult and expensive to machine a rod to exactly 10 mm
- ➤ Solution: Give a range within which the diameter should lie, say 10.0 mm to 10.2 mm. How to decide this range?

Definition of terms

- Basic dimension (size): The dimension obtained from design calculations
- Limits: The two extreme sizes allowable for a part
 - o Upper limit
 - o Lower limit
- > Tolerance: Difference between limits
- Deviation: Algebraic difference between actual manufactured size and basic size
 - o Upper deviation: Difference between upper limit and basic size
 - o Lower deviation: Difference between lower limit and basic size
 - o Fundamental deviation: The one closest to basic size
- Allowance: Dimensional difference between the maximum limit of two mating parts- provided intentionally

International Tolerance Grade (IT Grade)

- > Group of tolerances which has the same relative level of accuracy
- > IT 01 is the most precise and IT 16 is most coarse
- > Tolerance value depends on basic size

	Measuring Tools												Mat	erial	S									
IT Grade	01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16						
										Fits					Con	nmei	rcial							
														n	nanı	ıfact	uring	ζ						

Standard tolerance unit (μm); $i = 0.45 [D]^{1/3} + 0.001D$

D is the geometric mean size of the step in mm

Grade	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16
Tol.	7i	10i	16i	25i	40i	64i	100i	160i	250i	400i	640i	1000i

	Tolerance Grade											
Machining Process	4	5	6	7	8	9	10	11	12	13		
Lapping & Honing												
Cylindrical grinding Surface grinding												
Diamond turning												
Diamond boring												
Broaching												
Reaming Turning Boring												
Milling Planing & Shaping												
Drilling												

				Fun	dam	nent	al D	evia	tio	n: Sh	afts	5			
Funda	mental d	eviation	in micro	ne									(1 mic	ron = 0.0	01 mm
	neter	continu	in micro	L			tion (ei)								
steps in mm					• •	raccore (c	js+		2000	er accta					
		a	b	c	d	e	f	g	h		j				k
over	upto				All g	rades	,				5.6	7	8	4 to 7	≤3,>
_	*3	- 270	- 140	- 60	- 20	- 14	-6	- 2	0		- 2	- 4	-6	- 0	- 0
3	6	- 270	- 140	- 70	- 30	- 20	- 10	- 4	0		- 2	- 4	_	+ 1	0
6	10	- 280	- 150	- 80	- 40	- 25	- 13	- 5	0	1	- 2	- 5	_	+ 1	0
10	14	- 290	- 150	- 95	- 50	- 32	- 16	- 6	0	± IT/2	- 3	- 6	_	+ 1	0
14	18														
18	24	- 300	- 160	- 110	- 65	- 40	- 20	- 7	0		- 4	- 8	_	+ 2	0
24	30														
30	40	- 310	- 170	- 120	- 80	- 50	- 25	- 9	0		- 5	- 10	_	+ 2	0
40	50	- 320	- 180	- 130											
50	65	- 340	- 190	- 140	- 100	- 60	- 30	- 10	0	-	- 7	- 12	_	+ 2	0
65	80	- 360	- 200	- 150											
80	100	- 380	- 220	- 170	- 120	- 72	- 36	- 12	0		- 9	- 15	_	+ 3	0
100	120	- 410	- 240	- 180	- 120	- 12	- 00	- 12	ਁ			- 10		"	"

Examples

➤ 40j7

- o 40 is the basic size in mm
- $\circ\,$ j indicates it is a shaft and the upper deviation is -10 μm for IT grade 7
- $\circ~$ For basic size in the range (30-50 mm), the tolerance for IT grade 7 is 25 μm
- o Upper limit (Max. Diameter) = 39.990 mm
- o Lower limit (Min. Diameter) = 39.965 mm

➤ 80JS7

- o 80 is the basic size in mm
- JS indicates it is a hole with symmetric tolerance of ± ITG/2
- $\circ~$ For basic size in the range (80-80 mm), the tolerance for IT grade 7 is 30 μm
- o Upper limit (Max. Diameter) = 80.015 mm
- o Lower limit (Min. Diameter) = 79.985 mm

