1 CR 107

SEQUENCE LISTING

```
<110> FAGAN, RICHARD JOSEPH
        PHELPS, CHRISTOPHER BENJAMIN
        RODRIGUES, TANIA MARIA
        POWER, CHRISTINE
        BIENKOWSKA, JADWIGA
<120>
       Metalloprotease Proteins
<130>
        C.R.107
<140>
       US 10/539,847
<141>
        2005-06-20
<150>
       GB 0230006.9
<151>
       2002-12-23
<160>
       66
<170> SeqWin99, version 1.02
<210>
<211>
       52
<212> DNA
<213>
      Homo sapiens
<400>
atgggtggta gtggtgtcgt ggaggtcccc ttcctgctct ccagcaagta cg
                                                                  52
        2
<210>
<211>
      18
<212>
      PRT
<213>
      Homo sapiens
<400>
Met Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys
               5
                                   10
                                                      15
Tyr Asp
<210>
        3
      118
<211>
<212>
       DNA
<213>
      Homo sapiens
<400>
atgageccag cegecaggte atectggagg etettgegga gtttgaaegt tecaegtgca
                                                                  60
teaggtttgt cacctateag gaccagagag actteattte cateateece atgtatgg
                                                                 118
      39
<212> PRT
<213>
      Homo sapiens
```

```
<400> 4
Glu Pro Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu Arg
Ser Thr Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe Ile
                                25
Ser Ile Ile Pro Met Tyr Gly
        35
<210>
        5
<211>
       182
<212>
       DNA
<213> Homo sapiens
<400> 5
gtgcttctcg agtgtggggc gcagtggagg gatgcaggtg gtctccctgg cgcccacgtg
                                                                    60
tetecagaag ggeeggggea ttgteettea tgageteatg catgtgetgg gettetggea
cgagcacacg cgggccgacc gggaccgcta tatccgtgtc aactggaacg agatectgcc
                                                                    180
ag
                                                                    182
<210>
       6
<211>
      61
<212>
      PRT
<213>
        Homo sapiens
<400>
Cys Phe Ser Ser Val Gly Arg Ser Gly Gly Met Gln Val Val Ser Leu
Ala Pro Thr Cys Leu Gln Lys Gly Arg Gly Ile Val Leu His Glu Leu
Met His Val Leu Gly Phe Trp His Glu His Thr Arg Ala Asp Arg Asp
        35
                            40
Arg Tyr Ile Arg Val Asn Trp Asn Glu Ile Leu Pro Gly
<210>
        7
<211>
        82
<212>
        DNA
<213>
       Homo sapiens
<400>
gctttgaaat caacttcatc aagtctcaga gcagcaacat gctgacgccc tatgactact
cctctgtgat gcactatggg ag
                                                                    82
<210>
       27
       PRT
      Homo sapiens
<400>
        8
```

C R 107

```
Phe Glu Ile Asn Phe Ile Lys Ser Gln Ser Ser Asn Met Leu Thr Pro
Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg
<210>
        9
<211>
        155
<212>
      DNA
<213>
      Homo sapiens
<400>
      9
getegeette ageeggegtg ggetgeeeac cateacacca etttgggeec ceaqtqteea
                                                                     60
categgecag egatggaace tgagtgeete ggacateace egggteetea aactetaegg
etgcagecca agtggeecca ggeeccgtgg gagag
<210>
<211>
       52
<212>
        PRT
<213>
        Homo sapiens
<400>
        10
Leu Ala Phe Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala
Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile
Thr Arg Val Leu Lys Leu Tyr Gly Cys Ser Pro Ser Gly Pro Arg Pro
Arg Gly Arg Gly
<210>
<211>
       419
<212>
        DNA
<213>
        Homo sapiens
<400>
qqtcccatgc ccacagcact ggtaggagcc ccgccccggc etccctatet ctgcagcggc
                                                                     60
ttttggaggc actgtcggcg gaatccagga gccccgaccc cagtggttcc agtgcgggag
                                                                     120
gccagcccgt tcctgcaggg cctggggaga gcccacatgg gtgggagtcc cctgccctga
                                                                     180
aaaageteag tgeagaggee teggeaagge ageeteagae cetagettee teeceaagat
                                                                     240
caaggeetgg ageaggtgee eeeggtgttg eteaggagea gteetggetg geeggagtgt
                                                                     300
ccaccaagec cacagteeca tetteagaag caggaateca gecagteect gtecagggaa
                                                                     360
qcccagctct gccagggggc tgtgtaccta gaaatcattt caaggggatg tccgaagat
                                                                     419
<21.0>
        12
<211>
        139
       PRT
<213>
       Homo sapiens
<400>
Ser His Ala His Ser Thr Gly Arg Ser Pro Ala Pro Ala Ser Leu Ser
```

```
5
                                                         1.5
Leu Gln Arg Leu Leu Glu Ala Leu Ser Ala Glu Ser Arg Ser Pro Asp
Pro Ser Gly Ser Ser Ala Gly Gly Gln Pro Val Pro Ala Gly Pro Gly
Glu Ser Pro His Gly Trp Glu Ser Pro Ala Leu Lys Lys Leu Ser Ala
Glu Ala Ser Ala Arg Gln Pro Gln Thr Leu Ala Ser Ser Pro Arg Ser
Arg Pro Gly Ala Gly Ala Pro Gly Val Ala Gln Glu Gln Ser Trp Leu
Ala Gly Val Ser Thr Lys Pro Thr Val Pro Ser Ser Glu Ala Gly Ile
Gln Pro Val Pro Val Gln Gly Ser Pro Ala Leu Pro Gly Gly Cys Val
Pro Arg Asn His Phe Lys Gly Met Ser Glu Asp
    130
<210>
        13
        1008
<212>
        DNA
<213>
        Homo sapiens
<400>
atgggtggta gtggtgtcgt ggaggtcccc ttcctgctct ccagcaagta cgatgagccc
                                                                     60
agccgccagg tcatcctgga ggctcttgcg gagtttgaac gttccacgtg catcaggttt
gtcacctate aggaccagag agactteatt tecateatee ceatgtatgg gtgetteteg
                                                                     180
agtgtggggc gcagtggagg gatgcaggtg gtctccctgg cgcccacgtg tctccagaag
                                                                     240
ggccggggca ttgtccttca tgagctcatg catgtgctgg gcttctggca cgagcacacg
                                                                     300
egggeegace gggacegeta tateegtgte aactggaacg agateetgee aggetttgaa
                                                                     360
atcaacttca tcaagtctca gagcagcaac atgctgacgc cctatgacta ctcctctgtg
                                                                     420
atgeactatg ggaggetege etteageegg egtgggetge ceaceateae accaetttgg
                                                                     480
geocceaging tecacategg ceagegaing ascetgaging ecteggaeai caccegggin
                                                                     540
ctcaaactct acggctgcag cccaagtggc cccaggcccc gtgggagagg gtcccatgcc
                                                                     600
cacagoactg gtaggagece egeceeggee tecetatete tgcagegget tttggaggea
                                                                     660
ctqtcggcgg aatccaggag ccccgacccc agtggttcca gtgcgggagg ccagcccgtt
cctgcagggc ctggggagag cccacatggg tgggagtccc ctgccctgaa aaagctcagt
                                                                     780
gcagaggcet eggcaaggca geeteagace etagetteet ecceaagate aaggeetgga
                                                                     840
gcaggtgccc ccggtgttgc tcaggagcag tcctggctgg ccggagtgtc caccaagccc
                                                                     900
acagteccat etteagaage aggaateeag ecagtecetg teeagggaag eccagetetg
                                                                     960
ccaggggget gtgtacctag aaatcatttc aaggggatgt ccgaagat
                                                                     1008
<210>
       14
<211>
        336
        PRT
```

Homo sapiens

<213>

<400> 14 Met Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys 1 5 10 15

- Tyr Asp Glu Pro Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$
- Glu Arg Ser Thr Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp 35 40 45
- Phe Ile Ser Ile Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg 50 55 60
- Ser Gly Gly Met Gln Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys $65 70 75 $ Rouse $65 70 75 $
- Gly Arg Gly 11e Val Leu His Glu Leu Met His Val Leu Gly Phe Trp 85 90 95
- Asn Glu Ile Leu Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Gln Ser 115 120 125
- Ser Asn Met Leu Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly 130 135 140
- Ala Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp \$165\$ \$170\$ \$175\$
- Ile Thr Arg Val Leu Lys Leu Tyr Gly Cys Ser Pro Ser Gly Pro Arg 180 $$185\$
- Pro Arg Gly Arg Gly Ser His Ala His Ser Thr Gly Arg Ser Pro Ala 195 200 205
- Pro Ala Ser Leu Ser Leu Gln Arg Leu Leu Glu Ala Leu Ser Ala Glu 210 215 220
- Pro Ala Gly Pro Gly Glu Ser Pro His Gly Trp Glu Ser Pro Ala Leu 245 250 255
- Lys Lys Leu Ser Ala Glu Ala Ser Ala Arg Gln Pro Gln Thr Leu Ala $260 \\ 265 \\ 270$
- Ser Ser Pro Arg Ser Arg Pro Gly Ala Gly Ala Pro Gly Val Ala Gln 275 280 285

```
Glu Gln Ser Trp Leu Ala Gly Val Ser Thr Lys Pro Thr Val Pro Ser
Ser Glu Ala Gly Ile Gln Pro Val Pro Val Gln Gly Ser Pro Ala Leu
                    310
Pro Gly Gly Cys Val Pro Arg Asn His Phe Lys Gly Met Ser Glu Asp
                325
                                    330
<210>
       15
<211>
      55
<212>
      DNA
<213>
      Homo sapiens
<400> 15
atggagggtg tagggggtct ctggccttgg gtgctgggtc tgctctcctt gccag
                                                                  55
<210>
        16
<211>
      19
<212>
      PRT
<213>
      Homo sapiens
<400> 16
Met Glu Gly Val Gly Gly Leu Trp Pro Trp Val Leu Gly Leu Leu Ser
                                    10
Leu Pro Gly
<210>
<211>
       126
<212>
      DNA
<213>
      Homo sapiens
<400>
gtgtgatcet aggagegeee etggeeteea getgegeagg ageetgtggt aecagettee
                                                                   60
cagatggcct caccectgag ggaacccagg ceteegggga caaggacatt cetgcaatta
                                                                   120
accaag
                                                                   126
<210>
       18
<211>
      42
<212>
       PRT
<213>
       Homo sapiens
<400> 18
Val Ile Leu Gly Ala Pro Leu Ala Ser Ser Cys Ala Gly Ala Cys Gly
Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln Ala Ser Gly
Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly
       35
                           40
```

```
<210> 19
<211>
        62
<212>
        DNA
<213>
        Homo sapiens
<400> 19
ggctcatcct ggaagaaacc ccagagagca gcttcctcat cgagggggac atcatccggc
                                                                     60
cq
                                                                     62
<210>
        20
<211>
      20
<212>
      PRT
<213>
        Homo sapiens
<400> 20
Leu Ile Leu Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp
                                    10
Ile Ile Arg Pro
            20
<210>
        21
<211>
       94
<212>
       DNA
<213>
      Homo sapiens
<400> 21
aglcccttcc gactgctgtc agcaaccagc aacaaatggc ccatgggtgg tagtggtgtc
                                                                    60
gtggaggtec cetteetget etecageaag tacg
                                                                    94
<210>
        22
<211>
      32
<212>
        PRT
<213>
       Homo sapiens
<400>
Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met Gly
                                                        15
Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr Asp
            20
<210>
        23
<211>
        118
<212>
        DNA
<213>
        Homo sapiens
<400>
        23
atgageceag cegecaggte atcetggagg etettgegga gtttgaacgt tecaegtgea
                                                                    60
teaggtttgt cacctateag gaccagagag actteattte catcatecee atgtatgg
                                                                    118
<210>
        24
<211>
        39
        PRT
```

<213>	Homo	sapier	s												
<400> Glu Pro 1	24 Ser A	rg Gln 5	Val	Ile	Leu	Glu	Ala 10	Leu	Ala	Glu	Phe	Glu 15	Arg		
Ser Thr	Cys I 2		Phe	Val	Thr	Tyr 25	Gln	Asp	Gln	Arg	Asp 30	Phe	Ile		
Ser Ile	Ile P 35	ro Met	Tyr	Gly											
<210> <211> <212> <213>	25 182 DNA Homo	sapien	s												
<400> gtgcttct tctccaga cgagcaca ag	ag gg	ccgggg	ca t	gtco	ettea	a t.ga	gcto	atg	cate	tgct	gg d	gette	ctage	a 1	0 20 80 82
<210> <211> <212> <213>	26 61 PRT Homo	sapien	s												
<400> Cys Phe 1	26 Ser S	er Val	Gly	Arg	Ser	Gly	Gly 10	Met	Gln	Val	Val	Ser 15	Leu		
Ala Pro	Thr C	ys Leu O	Gln	Lys	Gly	Arg 25	Gly	Ile	Val		His 30	Glu	Leu		
Met His	Val Lo 35	eu Gly	Phe	grT	His 40	Glu	His	Thr	Arg	Ala 45	Asp	Arg	Asp		
Arg Tyr 50	Ile A	rg Val	Asn	Trp 55	Asn	Glu	Ile	Leu	Pro 60	Gly					
<211> <212>	27 82 DNA Homo s	sapien	s												
<400> gotttgaa cototgig					cgga	gca	gcaa	cat	gctg	acgc	cc t	atga	ctaci	t 6	
<211> <212>	28 27 PRT Homo s	sapien:	S												

```
<400> 28
Phe Glu Ile Asn Phe Ile Lys Ser Arg Ser Ser Asn Met Leu Thr Pro
                                   10
Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg
<210>
       29
<211>
      155
<212>
       DNA
<213> Homo sapiens
<400> 29
getegeette ageeggegtg ggetgeeeac cateacacca etttgggeec ecagtgteca
categgeeag egatggaace tgagtgeete ggacateace egggteetea aactetaegg
                                                                  120
ctgcagccca agtggcccca ggcccegtgg gagag
                                                                   155
<210>
       30
<211>
       52
<212>
       PRT
<213>
       Homo sapiens
<400>
Leu Ala Phe Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala
                                                        15
Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile
Thr Arg Val Leu Lys Leu Tyr Gly Cys Ser Pro Ser Gly Pro Arg Pro
Arg Gly Arg Gly
   50
<210>
       31
<211> 419
<212>
      DNA
<213>
      Homo sapiens
<400> 31
ggtcccatgc ccacagcact ggtaggagcc ccgctccggc ctccctatct ctgcagcggc
ttttggaggc actgtcggcg gaatccagga gccccgaccc cagtggttcc agtgcgggag
                                                                   120
gccagccegt teetgeaggg cetggggaga gcccacatgg gtgggagtec cetgecetga
                                                                   180
aaaageteag tgeagaggee teggeaagge ageeteagae cetagettee teeccaagat
                                                                   240
caaggootgg agcaggtgcc cocggtgttg ctcaggagca gteetggetg geoggagtgt
                                                                   300
ccaccaaqcc cacagtecca tetteagaag caggaateca gecagtecet gtecagggaa
                                                                   360
geocagetet geoaggggge tgtgtaceta gaaateattt caaggggatg teeqaaqat
                                                                   419
<210>
       32
<211>
<212>
      PRT
       Homo sapiens
<400>
      32
```

```
Ser His Ala His Ser Thr Gly Arg Ser Pro Ala Pro Ala Ser Leu Ser
Leu Gln Arg Leu Leu Glu Ala Leu Ser Ala Glu Ser Arg Ser Pro Asp
Pro Ser Gly Ser Ser Ala Gly Gly Gln Pro Val Pro Ala Gly Pro Gly
Glu Ser Pro His Gly Trp Glu Ser Pro Ala Leu Lys Lys Leu Ser Ala
Glu Ala Ser Ala Arg Gln Pro Gln Thr Leu Ala Ser Ser Pro Arg Ser
Arg Pro Gly Ala Gly Ala Pro Gly Val Ala Gln Glu Gln Ser Tro Leu
Ala Gly Val Ser Thr Lys Pro Thr Val Pro Ser Ser Glu Ala Gly Ile
Gin Pro Val Pro Val Gln Gly Ser Pro Ala Leu Pro Gly Gly Cys Val
Pro Arg Asn His Phe Lys Gly Met Ser Glu Asp
<210>
        33
<211>
        1293
<212>
        DNA
<213>
        Homo sapiens
<400>
atggagggtg tagggggtct ctggccttgg gtgctgggtc tgctctcctt gccaggtgtg
                                                                     60
atectaggag egeceetgge etecagetge geaggageet gtggtaceag etteceagat
                                                                     120
ggcctcaccc ctgagggaac ccaggcctcc ggggacaagg acattcctgc aattaaccaa
                                                                     180
gggctcatcc tggaagaaac cccagagagc agcttcctca tcgaggggga catcatccgg
                                                                     240
cegagtecet tecgactget gtcagcaacc agcaacaaat ggcccatggg tggtagtggt
                                                                     300
gtogtggagg toccottoct getetecage aagtacgatg agcccageeg eeaggtcate
                                                                     360
etggaggete ttgeggagtt tgaaegttee aegtgeatea ggtttgteae etateaggae
                                                                     420
cagagagact teattteeat catecocatg tatgggtget tetegagtgt ggggegeagt
                                                                     480
ggagggatgc aggtggtete cetggegeec acgtgtetec agaagggeeg gggcattgte
                                                                     540
cttcatgage tcatgcatgt getgggette tggcacgage acacgcggge cgaccgggae
                                                                     600
egetatatee gtgteaactg gaacgagate etgeeagget ttgaaateaa etteateaag
                                                                     660
teteggagea geaacatget gacgecetat gactacteet etgtgatgea etatgggagg
ctegectica geoggegtgg getgeceace ateacaceae tttgggeece cagtgtecae
                                                                     780
ateggecage gatggaacet gagtgeeteg gacateacee gggteeteaa actetaegge
                                                                     840
tgcagcccaa gtggccccag gccccgtggg agagggtccc atgcccacag cactggtagg
                                                                    900
ageccegete eggeeteect atetetgeag eggettttgg aggeactgte ggeggaatee
                                                                     960
aggageeeg acceeagtgg tteeagtgeg ggaggeeage eegtteetge agggeetggg
gagageccae atgggtggga gteccetgec etgaaaaage teagtgeaga ggeeteggea
aggeageete agaccetage tteeteeeca agateaagge etggageagg tgeeceeggt
                                                                    114C
gttgeteagg ageagteetg getggeegga gtgteeacca ageceaeagt eceatettea
gaagcaggaa tocagccagt coetgtocag ggaagcccag ctctgccagg gggctgtgta
cotagaaato atttcaaggq qatqtccqaa qat
                                                                    1293
```

```
<210> 34
```

<211> 431 <212> PRT

<213> Homo sapiens

<400> 34

Met Glu Gly Val Gly Gly Leu Trp Pro Trp Val Leu Gly Leu Leu Ser 1 $$ 15

Leu Pro Gly Val Ile Leu Gly Ala Pro Leu Ala Ser Ser Cys Ala Gly $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln 35 40 45

Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu 50 55 60

Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arg 65 70 70 75 Asp Ile Ile Arg

Pro Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met 85 90 95

Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr 100 105 110

Asp Glu Pro Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu 115 120 125

Arg Ser Thr Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe 130 140

Ile Ser Ile Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg Ser 145 \$150\$ \$155\$

Gly Gly Met Gln Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys Gly $165 \\ 170 \\ 175$

Arg Gly Ile Val Leu His Glu Leu Met His Val Leu Gly Phe Trp His 180 185 190

Glu His Thr Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val Asn Trp Asn 195 200 205

Glu Ile Leu Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Arg Ser Ser 210 215 220

Asn Met Leu Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg 225 230 235 240

Leu Ala Phe Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala 245 250 255

```
Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile
Thr Arg Val Leu Lys Leu Tyr Gly Cys Ser Pro Ser Gly Pro Arg Pro
                            280
Arg Gly Arg Gly Ser His Ala His Ser Thr Gly Arg Ser Pro Ala Pro
                        295
Ala Ser Leu Ser Leu Gln Arg Leu Leu Glu Ala Leu Ser Ala Glu Ser
                                        315
Arg Ser Pro Asp Pro Ser Gly Ser Ser Ala Gly Gly Gln Pro Val Pro
                                    330
Ala Gly Pro Gly Glu Ser Pro His Gly Trp Glu Ser Pro Ala Leu Lys
Lys Leu Ser Ala Glu Ala Ser Ala Arg Gln Pro Gln Thr Leu Ala Ser
                            360
Ser Pro Arg Ser Arg Pro Gly Ala Gly Ala Pro Gly Val Ala Gln Glu
Gln Ser Trp Leu Ala Gly Val Ser Thr Lys Pro Thr Val Pro Ser Ser
385
                                        395
Glu Ala Gly Ile Gln Pro Val Pro Val Gln Gly Ser Pro Ala Leu Pro
                                    410
Gly Gly Cys Val Pro Arg Asn His Phe Lvs Gly Met Ser Glu Asp
                                425
                                                    430
<210>
        35
<211>
       1224
       DNA
<213>
       Homo sapiens
<400>
gegeccetgg cetecagetg egeaggagee tgtggtacea getteccaga tggeeteace
cetgagggaa cccaggcete eggggacaag gacatteetg caattaacca agggeteate
                                                                    120
ctggaagaaa ccccagagag cagcttcctc atcgaggggg acatcatccg gccgagtccc
                                                                     180
ttccgactgc tgtcagcaac cagcaacaaa tggcccatgg gtggtagtgg tgtcgtggag
                                                                     240
gteceettee tgeteteeag caagtaegat gageecagee geeaggteat cetggagget
                                                                    300
ettgeggagt ttgaaegtte caegtgeate aggtttgtea cetateagga ceagagagae
                                                                    360
ttcatttcca tcatccccat gtatgggtgc ttctcgagtg tgggggcgcag tggagggatg
                                                                    420
caggtggtet coetggegee caegtgtete cagaagggee ggggeattgt cetteatgag
                                                                     480
ctcatgcatg tgctgggctt ctggcacgag cacacgcggg ccgaccggga ccgctatatc
                                                                    540
egtgteaact ggaacgagat cetgecagge tttgaaatca actteateaa gteteggage
                                                                    600
agcaacatgo tgacgoceta tgactacteo tetgtgatgo actatgggag getegeette
                                                                    660
ageoggegtg ggotgoccac catcacacca cittgggccc ccagtgtcca catcggccag
egatggaace tgagtgcete ggacateace egggteetea aactetaegg etgeagecea
                                                                    780
agtggcccca ggccccgtgg gagagggtcc catgcccaca gcactggtag gagccccgct
                                                                    84C
coggoetocc tatototgca goggottttg gaggoactgt oggoggaatc caggageccc
                                                                    900
gaccccagtg gttccagtgc gggaggccag cccgttcctg cagggcctgg ggagagccca
                                                                    960
```

	gage atc	accet cagto cageo	tag cct cag	cttc ggct tccc	ataa ggaa	cc a gg a ca g	agat gtgt ggaa	caag	g cc c aa	tgga gccc	gcag acag	gtg	cccc catc	cgg :	tgtt agaa	cageet geteag geagga agaaat	
<pre><210> 36 <211> 408 <212> PRT <213> Homo sapiens</pre>																	
	<400 Ala 1		36 Leu	Ala	Ser 5	Ser	Cys	Ala	Gly	Ala 10	Cys	Gly	Thr	Ser	Phe	Pro	
	Asp	Gly	Leu	Thr 20	Pro	Glu	Gly	Thr	Gln 25	Ala	Ser	Gly	Asp	Lys 30	Asp	Ile	
	Pro	Ala	Ile 35	Asn	Gln	Gly	Leu	Ile 40	Leu	Glu	Glu	Thr	Pro 45	Glu	Ser	Ser	
	Phe	Leu 50	Ile	Glu	Gly	Asp	Ile 55	Ile	Arg	Pro	Ser	Pro 60	Phe	Arg	Leu	Leu	
	Ser 65	Ala	Thr	Ser	Asn	Lys 70	Trp	Pro	Met	Gly	Gly 75	Ser	Gly	Val	Val	Glu 80	
	Val	Pro	Phe	Leu	Leu 85	Ser	Ser	Lys	Tyr	Asp 90	Glu	Pro	Ser	Arg	Gln 95	Val	
	Ile	Leu	Glu	Ala 100	Leu	Ala	Glu	Phe	Glu 105	Arg	Ser	Thr	Cys	Ile 110	Arg	Phe	
	Val	Thr	Tyr 115	Gln	Asp	Gln	Arg	Asp 120	Phe	Ile	Ser	Ile	Ile 125	Pro	Met	Tyr	
	Gly	Cys 130	Phe	Ser	Ser	Val	Gly 135	Arg	Ser	Gly	Gly	Met 140	Gln	Val	Val	Ser	
	Leu 145	Ala	Pro	Thr	Cys	Leu 150	Gln	Lys	Gly	Arg	Gly 155	Ile	Val	Leu	His	Glu 160	
	Leu	Met	His	Va1	Leu 165	Gly	Phe	Trp	His	Glu 170	His	Thr	Arg	Ala	Asp 175	Arg	
	Asp	Arg	Tyr	11e 180	Arg	Val	Asn	Trp	Asn 185	Glu	Ile	Leu	Pro	Gly 190	Phe	Glu	
	Ile	Asn	Phe 195	Ile	Lys	Ser	Arg	Ser 200	Ser	Asn	Met	Leu	Thr 205	Pro	Tyr	Asp	
	Tyr	Ser 210	Ser	Val	Met	His	Tyr 215	Gly	Arg	Leu	Ala	Phe 220	Ser	Arg	Arg	Gly	
	Leu	Pro	Thr	Ile	Thr	Pro	Leu	Trp	Ala	Pro	Ser	Val	His	Ile	Gly	Gln	

230 235 240 Arg Trp Asn Leu Ser Ala Ser Asp Ile Thr Arg Val Leu Lys Leu Tyr 245 250 Gly Cys Ser Pro Ser Gly Pro Arg Pro Arg Gly Arg Gly Ser His Ala 265 His Ser Thr Gly Arg Ser Pro Ala Pro Ala Ser Leu Ser Leu Gln Arg Leu Leu Glu Ala Leu Ser Ala Glu Ser Arg Ser Pro Asp Pro Ser Glv 295 Ser Ser Ala Gly Gly Gln Pro Val Pro Ala Gly Pro Gly Glu Ser Pro His Gly Trp Glu Ser Pro Ala Leu Lys Lys Leu Ser Ala Glu Ala Ser Ala Arg Gln Pro Gln Thr Leu Ala Ser Ser Pro Arg Ser Arg Pro Gly 345 Ala Gly Ala Pro Gly Val Ala Gln Glu Gln Ser Trp Leu Ala Gly Val 355 360 Ser Thr Lys Pro Thr Val Pro Ser Ser Glu Ala Gly Ile Gln Pro Val Pro Val Gln Gly Ser Pro Ala Leu Pro Gly Gly Cys Val Pro Arg Asn His Phe Lys Gly Met Ser Glu Asp 405 <210> 37 <211> 300 <212> PRT <213> Homo sapiens <400> Met Leu Arg Leu Trp Asp Phe Asn Pro Gly Gly Ala Leu Ser Asp Leu Ala Leu Gly Leu Arg Gly Met Glu Glu Gly Gly Tyr Ser Cys Ala Gly Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arq 7.0

Pro	Ser	Pro	Phe	Arg 85	Leu	Leu	Ser	Ala	Thr 90	Ser	Asn	Lys	Trp	Pro 95	Met
Gly	Gly	Ser	Gly 100	Val	Val	Glu	Val	Pro 105	Phe	Leu	Leu	Ser	Ser 110	Lys	Tyr
Asp	Glu	Pro 115	Ser	His	Gln	Val	Ile 120	Leu	Glu	Ala	Leu	Ala 125	Glu	Phe	Glu
Arg	Ser 130	Thr	Cys	Ile	Arg	Phe 135	Val	Thr	Tyr	Gln	Asp 140	Gln	Arg	Asp	Phe
Ile 145	Ser	Ile	Ile	Pro	Met 150	Tyr	Gly	Cys	Phe	Ser 155	Ser	Val	Gly	Arg	Ser 160
Gly	Gly	Met	Gln	Val 165	Val	Ser	Leu	Ala	Pro 170	Thr	Cys	Leu	Gln	Lys 175	Gly
Arg	Gly	Ile	Val 180	Leu	His	Glu	Leu	Met 185	His	Val	Leu	Gly	Phe 190	Trp	His
Glu	His	Thr 195	Arg	Ala	Asp	Arg	Asp 200	Arg	Tyr	Ile	Arg	Val 205	Asn	Trp	Asn
Glu	Ile 210	Leu	Pro	Gly	Phe	Glu 215	Ile	Asn	Phe	Ile	Lys 220	Ser	Gln	Ser	Ser
Asn 225	Met	Leu	Thr	Pro	Tyr 230	Asp	Tyr	Ser	Ser	Val 235	Met	His	Tyr	Gly	Arg 240
Leu	Ala	Phe	Ser	Arg 245	Arg	Gly	Leu	Pro	Thr 250	Ile	Thr	Pro	Leu	Trp 255	Ala
Pro	Ser	Val	His 260	Ile	Gly	Gln	Arg	Trp 265	Asn	Leu	Ser	Ala	Ser 270	Asp	Ile
Thr	Arg	Val 275	Leu	Lys	Leu	Tyr	Gly 280	Cys	Ser	Pro		G1 y 285	Pro	Arg	Pro
Arg	Gly 290	Arg	Gly	Glu		His 295	Gly	Arg	Lys	Val	Thr 300				
<210> 38 <211> 5005 <212> DNA <213> Artificial Sequence															
<220> <223> pCR4 TOPO IPAAA78836-1 plasmid sequence															
<400)>	38													
ageg	agogocoaat acgoaaaccg octotococg ogogitiggoc gattoattaa tgoagotiggo acgacaggit tocogactigg aaagoggoca ofgaagogoaa ogoaattaat gigagitiago toaotoatta ggoaococag gottifacact tiaigottoc ggotogfatig tidgifiggaa														

	ataacaattt					240
	tcactaaagg					300
	tteggacate					360
	ctggacaggg					420
	teeggecage					480
	tggggaggaa					540
	ggcaggggac					600
	cgcactggaa					660
	ctgcagagat					720
	cccacggggc					780
	cgaggcactc					840
	ggtgggcagc					900 960
	atagggcgtc					
	gatetegtte					1020 1080
	gaagcccagc					1140
	gggcgccagg					1200
	catggggatg					1260
	ggaacgttca gctggagagc					1320
	ggttgctgac					1380
	tattacaatt					1440
	caacttaatc					1500
	cgcaccgatc					1560
	acctatasaa					1620
	acgccggggc					1680
	tcccgtgaac					1740
	gatatggcca					1800
	gaaaatgaca					1860
	agattatcaa					1920
	cggtgctgac					1980
	gcaaagagaa					2040
	ttatggacag					2100
	ccctgcaaag					2160
	agctctgatc					2220
tggattgcac	gcaggttctc	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	2280
	ateggetget					2340
ggttcttttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcaag	acgaggcagc	2400
geggetateg	tggctggcca	cgacgggcgt	tccttgcgca	gctgtgctcg	acgttgtcac	2460
tgaagcggga	agggactggc	tgctattggg	cgaagtgccg	gggcaggatc	tectgtcate	2520
	cctgccgaga					2580
gcttgatccg	gctacctgcc	cattcgacca	ccaagcgaaa	categeateg	agcgagcacg	2640
	gaagccggtc					2700
cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgagcatg	cccgacggcg	aggatetegt	2760
	ggcgatgcct					2820
	tgtggccggc					2880
	gctgaagagc					2940
	cccgattcgc					3000
	gcttacaatt					3060
	atacaggtgg					3120
	tacattcaaa					3180
	gaaaaaggaa					3240
	cattttgcct					3300
	atcagttggg					3360
	agagttttcg					3420
crycratgig	gcgcggtatt	accouglant	yacyccgggc	aayaycaact	cggragaage	3480

```
atacactatt ctcaqaatqa cttqqttqaq tactcaccaq tcacaqaaaa qcatcttacq
gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg
                                                                   3600
queaacttac ttctqacaac qatcqqaqqa ccqaaqqaqe taaccqcttt tttqcacaac
                                                                   3660
atgggggatc atgtaactcg cettgategt tgggaacegg agetgaatga agecatacea
                                                                   3720
aacgacgagc gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta
                                                                   3780
actggcgaac tacttactct agettcccgg caacaattaa taqactgqat qqaqqcqqat
                                                                   3840
aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa
                                                                   3900
totqqaqooq qtqaqogtqq gtotoqoqqt atcattqcaq cactqqqqoo aqatqqtaaq
                                                                  3960
ccctcccqta tcqtaqttat ctacacqacq qqqaqtcaqq caactatqqa tqaacqaaat
                                                                   4020
agacagateq etgagatagg tgeetcactg attaagcatt qqtaactqtc aqaccaaqtt
                                                                  4080
tactcatata tactttagat tgatttaaaa cttcatttt aatttaaaag gatctaggtg
                                                                  4140
aagateettt tigataatet eatgaceaaa ateeettaae gigagtitte giteeaetga
                                                                   4200
gegteagace cegtagaaaa gateaaagga tettettgag atcettttt tetqeqeqta
                                                                  4260
atotgotgot tqcaaacaaa aaaaccaccq ctaccaqcqq tqqtttqttt qccqqatcaa
                                                                  4320
gagetaceaa etettitee gaaggtaact ggetteagea gagegeagat accaaatact
                                                                   4380
qtccttctag tqtaqccqta qttaqqccac cacttcaaqa actctqtaqc accqcctaca
                                                                  4440
tacctogoto tgctaatoot gttaccagtg getgetgeca gtggcgataa gtcgtqtott
                                                                   4500
accoggitted acteaagacg ataqttaccg gataaggege ageggteggg etgaacgggg
                                                                   4560
ggttegtgea cacageccag ettggagega acqaectaca cegaactgag atacctacag
                                                                   4620
cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta
                                                                   4680
agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat
                                                                   4740
ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
                                                                   4800
tcagggggg ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctgggc
                                                                   4860
tittgetgge citttgetca catgitetti eetgegttat eeeetgatte tgtggataac
                                                                   4920
egtattaceg cetttgagtg agetgatace getegeegea geegaacgae egagegeage
                                                                   4980
gagteagtga gegaggaage ggaag
                                                                   5005
<210>
       39
<211>
       5269
<212>
       DNA
<213>
       Artificial Seguence
<223>
       XpCR4TOPO IPAAA78836-2 plasmid sequence
<400>
       39
agequecaat acquaaaccq cototocccq cqcqttqqcc qattcattaa tqcaqctqqc
                                                                   60
acgacaggtt tecegactgg aaagegggca gtgagegcaa egcaattaat gtgagttage
                                                                   120
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa
                                                                   180
ttqtqaqcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctca
                                                                   240
gaattaaccc tcactaaagg gactagtcct gcaggtttaa acgaattcgc ccttagccac
                                                                   300
aggettaate tteggacate ceettgaaat gatttetagg tacacageee cetggcagag
                                                                   360
ctgggcttcc ctggacaggg actggctgga ttcctgcttc tgaagatggg actgtggget
                                                                   420
tggtggacac tccggccagc caggactgct cctgagcaac accgggggca cctgctccag
                                                                  480
gccttgatct tggggaggaa gctagggtct gaggctgcct tgccgaggcc tctgcactga
                                                                   540
getttttcag ggcaggggac tcccacccat gtgggetete cccaggecet gcaggaacgg
                                                                   600
getggeetee egeactggaa ceactggggt eggggeteet ggatteegee qaeaqtgeet
                                                                   660
ccassagecg etgeagagat agggaggecg gagegggget cetaceagtg etgtgggeat
                                                                   720
gggaccetet cccaegggge etggggccae ttgggetgea geogtagagt ttgaggacce
                                                                   780
gggtgatgtc cgaggcactc aggttccatc getggccgat gtggacactg ggggcccaaa
                                                                   840
gtggtgtgat ggtgggcagc ccacgccggc tgaaqqcqaq cctcccataq tqcatcacag
                                                                   900
aggagtagtc atagggcgtc agcatgttgc tgctccgaga cttgatgaag ttgatttcaa
                                                                   960
agootggcag gatetegtte cagttgacae qqatataqeq qteeeqqteq qcccqcqtqt
                                                                   1020
gctcgtgcca gaagcccagc acatgcatga gctcatgaag gacaatgccc cggcccttct
                                                                   1080
ggagacacgt gggcgccagg gagaccacct gcatccctcc actgcgcccc acactcgaga 1140
```

agcacccata	catggggatg	atggaaatga	agtetetetg	gtcctgatag	gtgacaaacc	1200
tgatgcacgt	ggaacgttca	aactccgcaa	gageeteeag	gatgacctgg	cggctgggct	1260
catcgtactt	gctggagagc	aggaagggga	cctccacgac	accactacca	cccatgggcc	1320
atttgttgct	ggttgctgac	agcagtcgga	agggactcgg	ccggatgatg	tccccctcga	1380
tgaggaagct	gctctctggg	gtttcttcca	ggatgagccc	ttggttaatt	gcaggaatgt	1440
ccttgtcccc	ggaggcctgg	gttccctcag	gggtgaggcc	atctgggaag	ctggtaccac	1500
aggeteetge	gcagctggag	gccaggggcg	ctcctaggat	cacacctggc	aaggagagca	1560
	ccaaggccag					1620
	ttcaattcgc					1680
	gactgggaaa					1740
	agctggcgta					1800
	tacgtacggc					1860
	gatgtacaga					1920
	gcacgtctgc					1980
	gaaagctggc					2040
	gaagtggctg					2100
	tggggaatat					2160
	acgtagaaag					2220
	atctggacaa					2280
	tggcgatagc					2340
	gegeeetetg					2400
	aggatctgat					2460
	atgattgaac					2520
	ggctatgact					2580
	gcgcaggggc					2640
	caagacgagg					2700
	ctcgacgttg					2760
	gateteetgt					2820 2880
	eggeggetge					2940
	atcgagcgag gagcatcagg					3000
	ggcgaggatc					3060
	ggccgctttt					3120
	atagegttgg					3180
	ctcgtgcttt					3240
	gacgagttct					3300
	catctgtgcg					3360
	cccctatttg					3420
	cctgataaat					3480
	tegecettat					3540
	tggtgaaagt					3600
	atctcaacag					3660
	gcacttttaa					3720
	aactcggtcg					3780
	aaaagcatct					3840
	gtgataacac					3900
	cttttttgca					3960
	atgaagccat					4020
	tgcgcaaact					4080
	ggatggaggc					4140
	ttattgctga					4200
	ggccagatgg					4260
	tggatgaacg					4320
	tgtcagacca					4380
	aaaggatcta					4440

```
taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct
                                                                  4500
tgagatcett tttttetgeg egtaatetge tgettgeaaa caaaaaaaee aeegetacea
                                                                   4560
geggtggttt gtttgeegga teaagageta ecaactettt tteegaaggt aactggette
                                                                   4620
agcagagogo agataccaaa tactgtoott ctagtgtago ogtagttagg ccaccactto
                                                                   4680
aagaactetg tagcaccgcc tacatacctc getetgetaa teetgttacc agtggetget
                                                                   4740
gecagtaged ataagtegte tettacegge ttggaeteaa gaegatagtt aceggataag
                                                                  4800
gegcageggt egggetgaae ggggggtteg tqeacacage ecaqettqqa qeqaacgace
                                                                  4860
tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacget teccgaaggg
                                                                   4920
agaaagqcqq acaggtatcc gqtaagcggc aqqqtcqqaa caqqaqaqcq cacqaqqqaq
                                                                   4980
cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt
                                                                   5040
gagogtogat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac
                                                                   5100
geggeetttt taeggtteet gggettttge tggeettttg eteacatgtt ettteetgeg
                                                                   5160
ttateccetq attetqtqqa taaccqtatt accqcctttq aqtqaqctqa taccqctcqc
                                                                  5220
cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaag
                                                                   5269
<210>
       4.0
<2115
       19
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Primer CP1
<400> 40
accectatat ccctqtcaa
                                                                   19
<210>
       41
<211>
       1.8
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
       Primer CP2
<400>
       41
gctgcagccg tagagttt
                                                                   18
<210>
       42
<211> 25
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       GeneRacer 3' Primer
<400>
      42
getgteaacg atacgetacg taacg
<210>
       43
<211>
       26
<213>
      Artificial Sequence
       78836-GR1-3' Primer
```

<400>	43		
agtgtc	caca teggecageg atggaa	26	
<210>	4.4		
<211>			
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	GeneRacer 3' nested primer		
12207	contained o modern primer		
<400>	4.4		
cgctac	gtaa eggeatgaea gtg	23	
<210>	45		
<211>	25		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	78836-GRlnest-3' primer		
12207	roos oranese s paramer		
<400>	45		
atggaa	eetg agtgeetegg acate	25	
<210>	46		
	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	78836-FL-F primer		
12207	10030 IB I PIIMEI		
<400>	46		
	gcaa ccaqcaacaa	20	
-	-		
	47		
<211>			
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	78836-FL-R primer		
(1.63)	/0030-FL-K primer		
<400>	47		
agccaca	agge ttaatetteg	20	
<210>	48		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
-220-			
<220> <223>	70026 FI2 F neimon		
42232	78836-FL2-F primer		

J:\C&R\107\Sequences\seq-list-replace.doc

```
<400> 48
totaccatgg agggtgtagg
                                                                   20
<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> T3 primer
<400> 49
attaaccctc actaaaggga
                                                                   20
<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> T7 primer
<400> 50
taatacqact cactataqqq
                                                                   20
<210> 51
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> SP6 primer
<400> 51
atttaggtga cactatag
                                                                   18
<210> 52
<211> 230
<212> PRT
<213> Homo Sapiens
<400> 52
Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu Glu Glu Thr
Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arg Pro Ser Pro
Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met Gly Gly Ser
       35
Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr Asp Glu Pro
```

JAC&R\107\Sequences\seq-list-replace.doc

50 5.5 Ser His Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu Arg Ser Thr 70 Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe Ile Ser Ile Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg Ser Gly Gly Met 100 110 Gln Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys Gly Arg Gly Ile Val Leu His Glu Leu Met His Val Leu Gly Phe Trp His Glu His Thr Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val Asn Trp Asn Glu Ile Leu Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Gln Ser Ser Asn Met Leu Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg Leu Ala Phe 180 190 Ser Ang Ang Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala Pro Ser Val 200 His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile Thr Arg Val 215 Leu Lys Leu Tyr Gly Cys <210> 53 <211> 231 <212> PRT <213> Anguilla japonica <400> 53 Asp Pro Asp Asp Val Asp Ile Thr Thr Ser Ile Leu Gln Ser Asn Asn Gly Ser Ser Glu Ile Leu Met Glu Gly Asp Leu Ile Val Ser Asn Thr Arg Asn Ala Met Lys Cys Trp Asn Asn Gln Cys Leu Trp Arg Lys Ser

Ser Asp Gly Leu Val Glu Val Pro Tyr Thr Val Ser Asn Glu Phe Ser

55

Tyr Tyr His Lys Lys Arg Ile Glu Asn Ala Met Lys Thr Phe Asn Thr 65 70 75 80

Ser Ile Glu Ser Arg Asp Gly Cys Tyr Ser Tyr Leu Gly Arg Thr Gly

Gly Lys Gln Val Val Ser Leu Ala Arg Tyr Gly Cys Val Tyr His Gly 115 120 125

Ile Ile Gln His Glu Leu Asn His Ala Leu Gly Phe Tyr His Glu His 130 135 140

Thr Arg Ser Asp Arg Asp Glu Tyr Val Lys Ile Asn Trp Glu Asn Val 145 $$ $$ 150 $$ $$ 155 $$ $$ 160

Ala Pro His Thr Ile Tyr Asn Phe Gln Thr Gln Asp Thr Asn Asn Leu $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Asn Thr Pro Tyr Asp Tyr Thr Ser Ile Met His Tyr Gly Arg Thr Ala 180 185 190

Phe Ser Thr Asn Gly Met Asp Thr Ile Thr Pro Val Pro Asn Pro Asn 195 200 205

Gln Ser Ile Gly Gln Arg Arg Ser Met Ser Arg Gly Asp Ile Leu Arg 210 215 220

Ile Lys Lys Leu Tyr Ser Cys 225 230

<210> 54

<211> 86

<212> PRT

<213> Homo Sapiens

<400> 54

Ser Cys Ala Gly Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro 1 $$ 5 $$ 10 $$ 15

Glu Gly Thr Gln Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln 20 25 30

Gly Leu Ile Leu Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly 35 40 45

Asp Ile Ile Arg Pro Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn 50 55 60

Lys Trp Pro Met Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu 65 70 75 80

Ser Ser Lys Tyr Asp Glu <210> 55 <211> 86 <212> PRT <213> Homo Sapiens <400> 55 Ser Cys Ala Gly Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arg Pro Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu 75 Ser Ser Lys Tyr Gly Glu 85 <210> 56 <211> 1103 <212> DNA <213> Homo Sapiens <220> <221> exon <222> (101)..(1000) <400> 56 aggtccttgt ggacaatage tattettett ggetetgteg ettecettea etgggtgeag 60 gtgactgtgg gggtgtcccc aaatgctgcc cagcgctgac atg ctc cgc ctc tgg 115 Met Leu Arg Leu Tro gat ttc aat cca ggt ggg gcc ctg agt gac ctg gct ctg ggg ctc agg Asp Phe Asn Pro Gly Gly Ala Leu Ser Asp Leu Ala Leu Gly Leu Arg 10 ggt atg gag gag ggg gga tat agc tgc gca gga gcc tgt ggt acc agc 211 Gly Met Glu Glu Gly Gly Tyr Ser Cys Ala Gly Ala Cys Gly Thr Ser

						cct Pro										259
						caa Gln 60										307
						ggg Gly										355
						aac Asn										403
						ctc Leu										451
						ctt Leu										499
						gac Asp 140										547
atg Met 150	tat Tyr	ggg Gly	tgc Cys	ttc Phe	teg Ser 155	agt Ser	gtg Val	ggg Gly	cgc Arg	agt Ser 160	gga Gly	ggg Gly	atg Met	cag Gln	gtg Val 165	595
						tgt Cys										643
						ctg Leu										691
						cgt Arg										739
						aag Lys 220										787
						atg Met										835
						aca Thr										883

			20		C.IV. 10
	250		255	260	
				c egg gte ete aaa Arg Val Leu Lys 275	931
	/ Cys Ser			ggg aga ggt gag Gly Arg Gly Glu 290	979
tgg cat ggc Trp His Gly 295			acctgga gaaggcgo	oct gtgototaat	1030
ggtgtcaggg	agggtgac	aa ggagggaga	t gaggttgcag ggg	ggagcagg gtgagatcac	1090
gggggcttgc	cac				1103
<210> 57 <211> 1554 <212> DNA <213> Homo	Sapiens				
<220> <221> exor <222> (2). <400> 57	. (502)				
a tgg aac o				etc aaa ctc tac ggc Leu Lys Leu Tyr Gly 15	49
				g tee eat gee eac 7 Ser His Ala His 30	97
age act ggt Ser Thr Gly 35	agg agc Arg Ser	ccc gct ccg Pro Ala Pro 40	gcc tcc cta tct Ala Ser Leu Ser	ctg cag cgg ctt Leu Gln Arg Leu 45	145
				ccc agt ggt tcc Pro Ser Gly Ser	193
				g gag agc cca cat Glu Ser Pro His 80	241
				gag gcc tcg gca Glu Ala Ser Ala 95	289
agg cag cct	cag acc	cta get tcc	tee eea aga tea	agg cct gga gca	337

Arg Gln Pro Gln Thr Leu Ala Ser Ser Pro Arg Ser Arg Pro Gly Ala $100 $ $105 $ $110 $	
ggm gcc ccc ggt gtt gct cag gag cag tcc tgg ctg gcc gga gtg tcc Gly Ala Pro Gly Val Ala Glu Glu Glu Ser Trp Leu Ala Gly Val Ser 115 120 125	385
acc aag ccc aca gtc cca tct tca gaa gca gga atc cag cca gtc cct Thr Lys Pro Thr Val Pro Ser Ser Glu Ala Gly Iie Gln Pro Val Pro 130 135 140	433
gtc cag gga agc cca gct ctg cca ggg ggc tgt gta cct aga aat cat Val Gln Gly Ser Pro Ala Leu Pro Gly Gly Cys Val Pro Arg Asn His 145 $$150$$ 155 $$160$$	481
ttc aag ggg atg tcc gaa gat taagcetgtg gettetgtee eeaagtaggg Phe Lys Gly Met Ser Glu Asp $$165$$	532
agggeatect etgeceagtg gagetgggte gtetacetet tggeteettt gggceacace	592
actgtettee agecceaace taccacceca tetcagaggg ccaggactet teccetgtet	652
ctettcactg tgttccccta agggctccta gggccagggg ttettctage tetgccacag	712
gggaaggeag geetggetgt geetgetett gaettttgee cageeetggt ggatgetggg	772
aatgggaggt gacattotoc agggacaggt cotggaaggg gtggggaaga ggtaggttoc	832
agoccogcag aaccotggaa tooctootgt gootgaggoo otgoccocca goatggacta	892
atggtgteec taceteteec teagggeage eetgtggetg ggaccetggg aacageetee	952
cateccacec aacatgeeca agtgtggggg aatgttetae ageagtgtag cetecageee	1012
ttototocag gaggetttga gagcocaact tactococtg cagagcagga aggtggtagg	1072
toaagtgtgg ccaccattgg ggagacgaga aagaagtggg gccccaccag attgcacaat	1132
gggaacetea getggeeeet gaacagagga eteagttgte tecaceetae acegetatte	1192
cetggagete agecaggege agecttggaa ggagaaaggg etggggttae etggettgte	1252
ctcctccagg aaagccccct tcctcctctg ccccagctcc cagcctggcc tcctccaggc	1312
aggecetact ectetgeece ageteegget tteeceatga ggtttgteec aggeatgaag	1372
aaagcatcca gggtgccaat gagtgggcct aggccagagg cccctcagtc cccaagggta	1432
ctgttttggt ggcctttcag agggtcaagg aagccctgct tggggtagaa ggggcaggag	1492
ccccacatgt tgggggagga aataaagtgg agtgtgctgt gctgaaaaaa aaaaaaaaaa	1552
aa	1554

<210> 58 <211> 1048 <212> DNA <213> Homo Sapiens										
<220> <221> exon <222> (28)(1035) <440> 58										
ctgtcagcaa ccagcaacaa atggccc atg ggt ggt agt ggt gtc gtg gag gtc Met Gly Gly Ser Gly Val Val Glu Val 1 5	54									
ccc ttc ctg ctc tcc agc aag tac gat gag ccc agc cag gtc atc Pro Phe Leu Leu Ser Ser Lys Tyr Asp Glu Pro Ser Arg Gln Val Ile 10 25	102									
ctg gag gct ctt gcg gag ttt gaa cgt tcc acg tgc atc agg ttt gtc Leu Glu Ala Leu Ala Glu Phe Glu Arg Ser Thr Cys Ile Arg Phe Val $$30$$	150									
acc tat cag gac cag aga gac tto att tcc atc atc ccc atg tat ggg Thr Tyr Gln Asp Gln Arg Asp Phe Ile Ser Ile Ile Pro Met Tyr Gly $$45$$	198									
tgc ttc tog agt gtg ggg cgc agt gga ggg atg cag gtg gtc tcc ctg Cys Phe Ser Ser Val Gly Arg Ser Gly Gly Met Gln Val Val Ser Leu $60 \\ 0 \\ 65 \\ 70$	246									
gcg ccc acg tgt ctc cag aag ggc cgg ggc att gtc ctt cat gag ctc Ala Pro Thr Cys Leu Gln Lys Gly Arg Gly Ile Val Leu His Glu Leu 75 80 85	294									
atg cat gtg ctg ggo ttc tgg cac gag cac acg cgg gcc gac cgg gac Met His Vəl Leu Gly Phe Trp His Glu His Thr Arg Ala Asp Arg Asp 90 95 100 105	342									
cgc tat atc cgt gtc aac tgg aac gag atc ctg cca ggc ttt gaa atc Arg Tyr Ile Arg Val Asn Trp Asn Glu Ile Leu Pro Gly Phe Glu Ile 110 115 120	390									
aac ttc atc aag tct cag agc agc aac atg ctg acg ccc tat gac tac Asn Phe Ile Lys Ser Gln Ser Ser Asn Met Leu Thr Pro Tyr Asp Tyr 125 130 135	438									
too tot gtg atg cac tat ggg agg ctc gcc ttc agc cgg cgt ggg ctg Ser Ser Val Met His Tyr Gly Arg Leu Ala Phe Ser Arg Arg Gly Leu 140 $$150$$	486									
coc áco ato aca coa ctt tgg gcc coc agt gtc cac ato ggc cag cga Pro Thr Ile Thr Pro Leu Trp Ala Pro Ser Val His Ile Gly Gln Arg 155 160 165	534									

tgg aac ctg agt gec teg gac atc acc egg gtc etc aaa etc tac ggc Trp Asn Leu Ser Ala Ser Asp Ile Thr Arg Val Leu Lys Leu Tyr Gly 170 175 180	582
tge age cea agt gge cee agg cee egt ggg aga ggg tee cat gee cae Cys Ser Pro Ser Cly Pro Arg Pro Arg Gly Arg Gly Ser His Ala His 190 195 200	630
agc act ggt agg agc ccc gcc ccg gcc tcc cta tct ctg cag cgg ctt Ser Thr Gly Arg Ser Pro Ala Pro Ala Ser Leu Ser Leu Gln Arg Leu $205 \hspace{1.5cm} 210 \hspace{1.5cm} 215$	678
ttg gag goa ctg tcg gog gaa tcc agg agc ccc gac ccc agt ggt tcc Leu Glu Ala Leu Ser Ala Glu Ser Arg Ser Pro Asp Pro Ser Gly Ser 220 225 230	726
agt gcg gga ggc cag ccc gtt cct gca ggg cct ggg gag agc cca cat Ser Ala Gly Gly Gln Pro Val Pro Ala Gly Pro Gly Glu Ser Pro His 235 240 245	774
ggg tgg gag toc oot goo otg aaa aag otc agt goa gag goo tog goa Gly Trp Glu Ser Pro Ala Leu Lys Lys Leu Ser Ala Glu Ala Ser Ala 250 260 265	822
agg cag cct cag acc cta gct tcc tcc cca aga tca agg cct gga gca Arg Gln Pro Gln Thr Leu Ala Ser Ser Pro Arg Ser Arg Pro Gly Ala 270 275 280	870
ggt gcc ccc ggt gtt gct cag gag cag tcc tgg ctg gcc gga gtg tcc Gly Ala Pro Gly Val Ala Gln Glu Gln Ser Trp Leu Ala Gly Val Ser 285 290 295	918
acc aag ccc aca gtc cca tct tca gaa gca gga atc cag cca gtc cct Thr Lys Pro Thr Val Pro Ser Ser Glu Ala Gly Ile Gln Pro Val Pro 300 $305 \hspace{1cm} 310$	966
gtc cag gga agc cca gct ctg cca ggg ggc tgt gta cct aga aat cat Val Gln Gly Ser Pro Ala Leu Pro Gly Gly Cys Val Pro Arg Asn His 315 320 325	1014
ttc aag ggg atg too gaa gat taagootgtg got Phe Lys Gly Met Ser Glu Asp 330 335	1048
<210> 59 <211> 182 <212> PRT <213> Homo Sapiens	
<400> 59	
Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr Asp Glu Pro 1 $$ 5 $$ 10 $$ 15	

Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu Arg Ser Thr 20 25 30

Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe Ile Ser Ile 35 40 45

Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg Ser Gly Gly Met 50 55 60

Gin Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys Gly Arg Gly Ile 65 70 75 80

Val Leu His Glu Leu Met His Val Leu Gly Phe Trp His Glu His Thr 85 90 95

Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val Asn Trp Asn Glu Ile Leu 100 105 110

Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Gln Ser Ser Asn Met Leu 115 120 125

Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg Leu Ala Phe 130 140

Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala Pro Ser Val 145 150 155 160

His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile Thr Arg Val \$165\$

Leu Lys Leu Tyr Gly Cys 180

<210> 60

<211> 181

<212> PRT

<213> Anguilla japonica

<400> 60

Gly Leu Val Glu Val Pro Tyr Thr Val Ser Ser Glu Phe Ser Tyr Tyr 1 $$ 5 $$ 10 $$ 15

His Lys Lys Arg Ile Glu Asn Ala Met Glu Thr Phe Asn Thr Glu Thr 20 25 30

Cys Ile Arg Phe Val Pro Arg Ser Ser Gln Arg Asp Phe Ile Ser Ile 35 40 45

Glu Ser Arg Asp Gly Cys Tyr Ser Tyr Leu Gly Arg Thr Gly Gly Lys 50 55 60

Gln Val Val Ser Leu Ala Arg Tyr Gly Cys Val Tyr His Gly Ile Ile

65	70	75	80
Gln His Glu Leu Asn 85	His Ala Leu Gly Phe 90	Tyr His Glu His Thr 95	Arg
Ser Asp Arg Asp Glu 100	Tyr Val Lys Ile Asn 105	Trp Glu Asn Val Ala 110	Pro
His Thr Ile Tyr Asn 115	Phe Gln Glu Gln Asp 120	Thr Asn Asn Leu Asn 125	Thr
Pro Tyr Asp Tyr Thr 130	Ser Ile Met His Tyr 135	Gly Arg Thr Ala Phe 140	Ser
Thr Asn Gly Met Asp 145	Thr Ile Thr Pro Val 150	Pro Asn Pro Asn Gln 155	Ser 160
Ile Gly Gln Arg Arg 165	Ser Met Ser Lys Gly 170	Asp Ile Leu Arg Ile 175	Asn
Lys Leu Tyr Ser Cys 180			
<210> 61 <211> 1313 <212> DNA <213> Homo Sapiens			
<220> <221> exon <222> (8)(1300)			
	gta ggg ggt ctc tgg Val Gly Gly Leu Trp 5		
	gtg atc cta gga gcg Val Ile Leu Gly Ala 20	Pro Leu Ala Ser Ser	
	acc agc ttc cca gat Thr Ser Phe Pro Asp 40		
ace cag gec tee ggg Thr Gln Ala Ser Gly 50	gac aag gac att cct Asp Lys Asp Ile Pro 55	gca att aac caa ggg Ala Ile Asn Gln Gly 60	ctc 193 Leu
atc ctg gaa gaa acc Ile Leu Glu Glu Thr 65	cca gag agc agc ttc Pro Glu Ser Ser Phe 70	ctc atc gag ggg gac Leu Ile Glu Gly Asp 75	atc 241 Ile

															tgg Trp	289
														tcc Ser		337
														gcg Ala 125		385
														cag Gln		433
														gtg Val		481
														ctc Leu		529
aag Lys 175	ggc Gly	egg Arg	ggc Gly	att Ile	gtc Val 180	ctt Leu	cat His	gag Glu	ctc Leu	atg Met 185	cat His	gtg Val	ctg Leu	ggc Gly	ttc Phe 190	577
														gtc Val 205		625
tgg Trp	aac Asn	gag Glu	atc Ile 210	ctg Leu	cca Pro	ggc Gly	ttt Phe	gaa Glu 215	atc Ile	aac Asn	ttc Phe	atc Ile	aag Lys 220	tct Ser	cgg Arg	673
agc Ser	agc Ser	aac Asn 225	atg Met	ctg Leu	acg Thr	ccc Pro	tat Tyr 230	gac Asp	tac Tyr	tcc Ser	tct Ser	gtg Val 235	atg Met	cac His	tat Tyr	721
														cca Pro		769
tgg Trp 255	gcc Ala	ccc Pro	agt Ser	gtc Val	cac His 260	atc 11e	ggc Gly	cag Gln	cga Arg	tgg Trp 265	aac Asn	ctg Leu	agt Ser	gcc Ala	tcg Ser 270	817
														ggc Gly 285		865
														agc Ser		913

						ctg Leu										961
gaa Glu	tcc Ser 320	agg Ar g	agc Ser	ccc Pro	gac Asp	ccc Pro 325	agt Ser	ggt Gly	tcc Ser	agt Ser	gcg Ala 330	gga Gly	ggc Gly	cag Gln	ccc Pro	1009
						gag Glu										1057
ctg Leu	aaa Lys	aag Lys	ctc Leu	agt Ser 355	gca Ala	gag Glu	gcc Ala	tcg Ser	gca Ala 360	agg Arg	cag Gln	cct Pro	cag Gln	acc Thr 365	cta Leu	1105
gct Ala	tcc Ser	tcc Ser	cca Pro 370	aga Arg	tca Ser	agg Arg	cct Pro	gga Gly 375	gca Ala	ggt Gly	gcc Ala	ccc Pro	ggt Gly 380	gtt Val	gct Ala	1153
						gcc Ala										1201
tct Ser	tca Ser 400	gaa Glu	gca Ala	gga Gly	atc Ile	cag Gln 405	cca Pro	gtc Val	cct Pro	gtc Val	cag Gln 410	gga Gly	agc Ser	cca Pro	gct Ala	1249
ctg Leu 415	cca Pro	ggg Gly	ggc Gly	tgt Cys	gta Val 420	cct Pro	aga Arg	aat Asn	cat His	ttc Phe 425	aag Lys	ggg Gly	atg Met	tcc Ser	gaa Glu 430	1297
gat Asp	taaq	gooto	gtg q	jet												1313
<210 <211 <212 <213	> 2 > E	32 30 RT Iomo	Sapi	ens.												
<400	> 6	52														
Asp 1	Lys	Asp	Ile	Pro 5	Ala	Ile	Asn	Gln	Gly 10	Leu	Ile	Leu	Glu	Glu 15	Thr	
Pro	Glu	Ser	Ser 20	Phe	Leu	Ile	Glu	Gly 25	Asp	Ile	Ile	Arg	Pro 30	Ser	Pro	
Phe	Arg	Leu 35	Leu	Ser	Ala	Thr	Ser 40	Asn	Lys	Trp	Pro	Met 45	Gly	Gly	Ser	
Gly	Val	Val	Glu	Val	Pro	Phe	Leu	Leu	Ser	Ser	Lys	Tyr	Asp	Glu	Pro	

55

Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu Arg Ser Thr 70

34

60

Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe Ile Ser Ile

Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg Ser Gly Gly Met 100

Gln Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys Gly Arg Gly Ile

Val Leu His Glu Leu Met His Val Leu Gly Phe Trp His Glu His Thr

Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val Asn Trp Asn Glu Ile Leu 145

Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Arg Ser Ser Asn Met Leu

Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg Leu Ala Phe 180 185 190

Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala Pro Ser Val 200

His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile Thr Arg Val

Leu Lys Leu Tyr Gly Cys 225

<2.10> 63

50

<211> 179 <212> PRT

<213> Anguilla japonica

<400> 63

Asp Pro Asp Asp Leu Asp Ile Thr Ala Arg Ile Leu Gln Ser Asn Asn

Gly Ser Ser Glu Ile Leu Met Glu Gly Asp Met Val Val Ser Asn Thr

Arg Asn Ala Ile Asn Cys Trp Asn Asn Gln Cys Leu Trp Arg Lys Ser 4.0

Ser Asp Gly Leu Val Glu Val Pro Tyr Thr Val Ser Ser Glu Phe Ser 55

Tyr Tyr His Lys Lys Arg Ile Glu Asn Ala Met Glu Thr Phe Asn Thr 65 70 75 80

Ser Ile Glu Ser Arg Asp Gly Cys Tyr Ser Tyr Leu Gly Arg Thr Gly
100 105 110

Gly Lys Gln Val Val Ser Leu Ala Arg Tyr Gly Cys Val Tyr Pro Tyr

Asp Tyr Thr Ser Ile Met His Tyr Gly Arg Thr Ala Phe Ser Thr Asn 130 135

Gln Arg Arg Ser Met Ser Lys Gly Asp Ile Leu Arg Ile Asn Lys Leu $165 \\ 170 \\ 175$

Tyr Ser Cys

<210> 64

<211> 300

<212> PRT <213> Homo Sapiens

<400> 64

Met Glu Gly Val Gly Gly Leu Trp Pro Trp Val Leu Gly Leu Leu Ser 1 $$ 5 $$ 10 $$ 15

Leu Pro Gly Val Ile Leu Gly Ala Pro Leu Ala Ser Ser Cys Ala Gly 20 25 30

Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln 35 40 45

Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$

Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arg 65 70 75 80

Pro Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met 85 90

Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr 100 105 110

Asp Glu Pro Ser Arg Gln Val Ile Leu Glu Ala Leu Ala Glu Phe Glu 115 \$120\$

Arg Ser Thr Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln Arg Asp Phe 130 135 140

Ile Ser Ile Ile Pro Met Tyr Gly Cys Phe Ser Ser Val Gly Arg Ser 145 \$150 \$150 \$155

Gly Gly Met Gln Val Val Ser Leu Ala Pro Thr Cys Leu Gln Lys Gly $165 \\ 165 \\ 170 \\ 175$

Arg Gly Ile Val Leu His Glu Leu Met His Val Leu Gly Phe Trp His 180 185 190

Glu His Thr Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val Asn Trp Asn 195 200 205

Glu Ile Leu Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser Arg Ser Ser 210 215 220

Asn Met Leu Thr Pro Tyr Asp Tyr Ser Ser Val Met His Tyr Gly Arg 225 230 235 240

Leu Ala Phe Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro Leu Trp Ala 245 250 255

Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala Ser Asp Ile 260 265 270

Thr Arg Val Leu Lys Leu Tyr Gly Cys Ser Pro Ser Gly Pro Arg Pro 275 280 285

Arg Gly Arg Gly Glu Trp His Gly Arg Lys Val Thr $290 \hspace{1cm} 295 \hspace{1cm} 300 \hspace{1cm}$

<210> 65

<211> 436

<212> PRT

<213> Homo Sapiens

<400> 65

Met Ser Cys Cys Leu Val Ser Pro Val Gly Ala Pro Gly Ile Cys Val 1 15

Cys Pro Cys Leu Ser Gly Pro Gly Val Ile Leu Gly Ala Pro Leu Ala 20 25 30

Ser Ser Cys Ala Gly Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr 35 40 45

Pro Glu Gly Thr Gln Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn 50 60

Gln Gly Leu Ile Leu Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu

65					70					75					80
Gly	Asp	Ile	Ile	Arg 85	Pro	Ser	Pro	Phe	Arg 90	Leu	Leu	Ser	Ala	Thr 95	Ser
Asn	Lys	Trp	Pro 100	Met	Gly	Gly	Ser	Gly 105	Val	Val	Glu	Val	Pro 110	Phe	Leu
Leu	Ser	Ser 115	Lys	Tyr	Asp	Glu	Pro 120	Ser	Arg	Gln	Val	Ile 125	Leu	Glu	Ala
Leu	Ala 130	Glu	Phe	Glu	Arg	Ser 135	Thr	Cys	Ile	Arg	Phe 140	Val	Thr	Tyr	Gln
Asp 145	Gln	Arg	Asp	Phe	Ile 150	Ser	Ile	Ile	Pro	Met 155	Tyr	Gly	Cys	Phe	Ser 160
Ser	Val	Gly	Arg	Ser 165	Gly	Gly	Met	Gln	Val 170	Val	Ser	Leu	Ala	Pro 175	Thr
Cys	Leu	Gln	Lys 180	Gly	Arg	Gly	Ile	Val 185	Leu	His	Glu	Leu	Met 190	His	Val
Leu	Gly	Phe 195	Trp	His	Glu	His	Thr 200	Arg	Ala	Asp	Arg	Asp 205	Arg	Tyr	Ile
Arg	Val 210	Asn	Trp	Asn	Glu	Ile 215	Leu	Pro	Gly	Phe	Glu 220	Ile	Asn	Phe	Ile
Lys 225	Ser	Arg	Ser	Ser	Asn 230	Met	Leu	Thr	Pro	Tyr 235	Asp	Tyr	Ser	Ser	Val 240
Met	His	Tyr	Gly	Arg 245	Leu	Ala	Phe	Ser	Arg 250	Arg	Gly	Leu	Pro	Thr 255	Ile
Thr	Pro	Leu	Trp 260	Ala	Pro	Ser	Val	His 265	Ile	Gly	Gln	Arg	Trp 270	Asn	Leu
Ser	Ala	Ser 275	Asp	Ile	Thr	Arg	Val 280	Leu	Lys	Leu	Tyr	Gly 285	Cys	Ser	Pro
Ser	Gly 290	Pro	Arg	Pro	Arg	Gly 295	Arg	Gly	Ser	His	Ala 300	His	Ser	Thr	Gly
Arg 305	Ser	Fro	Ala	Pro	Ala 310	Ser	Leu	Ser	Leu	Gln 315	Arg	Leu	Leu	Glu	Ala 320
Leu	Ser	Ala	Glu	Ser 325	Arg	Ser	Pro	Asp	Pro 330	Ser	Gly	Ser	Ser	Ala 335	Gly
Gly	Gln	Pro	Val 340	Pro	Ala	Gly	Pro	Gly 345	Glu	Ser	Pro	His	Gly 350	Trp	Glu
Ser	Pro	Ala 355	Leu	Lys	Lys	Leu	Ser 360	Ala	Glu	Ala	Ser	Ala 365	Arg	Gln	Pro

```
Gln Thr Leu Ala Ser Ser Pro Arg Ser Arg Pro Gly Ala Gly Ala Pro 370 380
```

- Gly Val Ala Gln Glu Gln Ser Trp Leu Ala Gly Val Ser Thr Lys Pro $385 \hspace{1.5cm} 390 \hspace{1.5cm} 395 \hspace{1.5cm} 400 \hspace{1.5cm}$
- Thr Val Pro Ser Ser Glu Ala Gly Ile Gln Pro Val Pro Val Gln Gly 405 410 415
- Ser Pro Ala Leu Pro Gly Gly Cys Val Pro Arg Asn His Phe Lys Gly
 420 425 430

Met Ser Glu Asp 435

- <210> 66
- <211> 188 <212> PRT
- <213> Homo Sapiens
- <400> 66
- Trp Pro Met Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser 1 $$ 5 $$ 10 $$ 15
- Ser Lys Tyr Asp Glu Pro Ser His Gln Val Ile Leu Glu Ala Leu Ala 20 25 30
- Glu Phe Glu Arg Ser Thr Cys Ile Arg Phe Val Thr Tyr Gln Asp Gln 35 40 45
- Arg Asp Phe Ile Ser Ile Ile Pro Met Tyr Gly Cys Phe Ser Ser Val
- Gly Arg Ser Gly Gly Met Gln Val Val Ser Leu Ala Pro Thr Cys Leu 65 707075 Leu 80
- Gln Lys Gly Arg Gly Ile Val Leu His Glu Leu Met His Val Leu Gly 85 90 95
- Phe Trp His Glu His Thr Arg Ala Asp Arg Asp Arg Tyr Ile Arg Val $100 \,$ $105 \,$ $110 \,$
- Asn Trp Asn Glu Ile Leu Pro Gly Phe Glu Ile Asn Phe Ile Lys Ser 115 120 125
- Gln Ser Ser Asn Met Leu Thr Pro Tyr Asp Tyr Ser Ser Val Met His 130 135 140
- Tyr Gly Arg Leu Ala Phe Ser Arg Arg Gly Leu Pro Thr Ile Thr Pro 145 \$150 \$150 \$155
- Leu Trp Ala Pro Ser Val His Ile Gly Gln Arg Trp Asn Leu Ser Ala

165 170 175

Ser Asp Ile Thr Arg Val Leu Lys Leu Tyr Gly Cys $180 \\ $ 185