1.2 Задачи оптимального управления

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Задачи эти, как и собственно сама теория оптимального управления, возникла в начале XX-го века в связи с практическими задачами, появившимися из-за развития новой техники в различных областях. Данные экстремальные задачи не укладывались в рамки классического вариационного счисления.

В данной главе мы рассмотрим их, используя различные примеры. В целом решение подобных задач можно разбить на два этапа:

- 1. Постановка задачи
- 2. Решение с использованием условий оптимальности

Данные пункты содержат в себе сразу несколько подпунктов, так что сейчас мы перейдем от общего к частному.

1.2.1. Постановка задачи оптимального управления

Изначально у нас есть некоторое, условие, однако его недостаточно для решения задачи. Для начала проведем *математическую постановку задачи*.

Она в себя будет включать следующие факторы: математическую модель объекта управления, цель управления, ограничения на траекторию воздействия, управляющее воздействие и его длительность и т.д. Рассмотрим данные факторы подробнее.

1.2.1.1 Модели объекта

Построение модели зависит от типа рассматриваемой нами задачи и того что мы желаем в итоге получить. Могут быть использованы различные дифференциальные уравнения: обыкновенные дифференциальные уравнения, уравнения с последействием, стохастические уравнения, уравнения в частных производных и т.д. Для примера мы будем использовать самое обыкновенное дифференциальное уравнение: $\dot{x}(t) = f(t,x(t),u), \dot{x}(t) = \frac{dx}{dt}$, $t_0 \le t \le T$ (1), где $u \in R^m$ — управление, $x \in R^n$ — фазовый вектор системы, $f \in R^n$ — заданная функция, а R^n — евклидово пространство размерность n. Придавая нашему управлению различные значения мы получаем различные состояния объекта, из которых мы и выбираем оптимальное.

1.2.1.2 Критерий качества

Управление системой (1) осуществляется для достижения некоторых целей, которые формально записываются в терминах минимизации по и функционалов J, определяемых управлением и и траекторией x, где

$$J = \int_{t_0}^T F(t, x(t), u) dt + \varphi(T, x(T)) \to min$$
 (2)

F и ϕ — заданные скалярные функции. Задача (2) в общем виде называется задачей Больца. При F=0 её называют задачей Майера, а при $\phi=0$ — Лагранджа.

1.2.1.3 Ограничения на траекторию и ограничения на управление

Иногда траектория не может принадлежать какой-либо части пространства \mathbb{R}^n . В таких случаях указывают, что $x(t) \in G(t)$, при том, что G(t) — заданная область в \mathbb{R}^n . В зависимости от типа ограничений выделяют различные классы задач управления, такие как задачи с фиксированными концами, свободным левым либо правым концом. Так же существуют задачи с подвижными концами. Иногда же ограничения имеют интегральный характер и выглядят следующим образом:

$$\int_{t_0}^T F(t, x(t), u) dt \le 0$$

Если в задачах (1),(2) начальное и конечное положение задано, моменты начала и конца движения свободны, функция $\varphi = 0$, а F = 1, то получаем задачу о переводе системы (1) из начального положения в конечное за минимально возможное время. Далее мы рассмотри ограничения на управление, а после перейдем к примеру.

Ограничения могут быть двух типов

- Информационные
- Ограниченность ресурсов управления

Информационные ограничения на управление зависят от того, какая именно информация о системе (1) доступна при выработке управляющего воздействия. Если вектор x(t) недоступен измерению, то оптимальное управление ищется в классе функций u(t), зависящих только от t. В этом случае оптимальное управление именуется программным. Если же вектор x(t) известен точно, то оптимальное управление называется синтезом оптимального управления и ищется в классе функционалов $u(t, x_{t_0}^t)$. Здесь $x_{t_0}^t$ – вся траектория движения на отрезке $t_0 \le s \le t$.

Ограничения, обусловленные ограниченностью ресурсов управления имеют вид $u(t) \in U(t)$, где U(t) заданное множество из R^m .

Рассмотрим классический пример с задачей оптимального по быстродействию управления механическим объектом, которая известна как «задача о тележке». Тележку массы m требуется с помощью горизонтальной силы u, не превышающей по модулю величины L, переместить за минимальное время по горизонтальной прямой(без трения) из начального положения A, в котором она имела скорость $\nu_{\rm h}$, в конечное положение B, где скорость $\nu_{\rm k}$.

Согласно закону Ньютона движение тележки вдоль оси Ох описывается уравнением $m\ddot{x} = u$ (3), где $\ddot{x} = \ddot{x}(t) = d^2x(t)/dt^2$ – ускорение в момент времени t; u = u(t) – величина силы, приложенной в момент t к объекту управления.

Из физической постановки задачи следуют условия на положение x(t) и скорость $\dot{x}(t) = dx(t)/dt$ в начальный (t=0) и конечный (t = t^2) моменты времени: $x(0) = \alpha, \dot{x}(0) = \nu_{\rm H}; x(t^*) = \beta, \dot{x}(t^*) = \nu_{\rm K}$. Так же мы считаем, что прилагаемые силы и ограничены $|u(t)| \le L$; $t \in [0, t^*]$.

Таким образом, математическая модель рассматриваемой задачи состоит в поиске таких момента t^{*0} и кусочно-непрерывной функции $u^0(t)$, $t \in [0, t^{*0}]$, ограниченной выше указанными условиями, для которых на соответствующем решении $\mathbf{x}^0(t)$, $t \in [0, t^{*0}]$ уравнения (3) выполняются заданные условия и минимальна продолжительность переходного процесса.

1.2.2 Условия оптимальности.

1.2.2.1 Принцип максимума

Для начала сформулируем условия оптимальности в общем случае.

Теорема: Пусть $u^0(t), x^0(t), t \in T$, - оптимальные управление и траектория задачи

$$J(u) = \varphi(x(t^*)) + \int_0^{t^*} f_0(x(t), u(t)) dt \to min,$$

$$\dot{x} = f(x, u), x(0) = x_0,$$
(4)

$$x(t^*) \in X^* = \{x \in R^n : h_i \leq 0, i = \overline{1, m_1}, h_i(x) = 0, i = \overline{m_1 + 1, m}\},$$

 $u(t) \in \mathit{U}$, $t \in \mathit{T} = [0,t^*]$, где $h_i(x)$ — непрерывно дифференцируемые функции,

$$x \in \mathbb{R}^n \ i = \overline{1,m} \ , m < n.$$

Тогда найдутся такие числа λ_i^0 , $i=\overline{1,m}$, что вдоль указанных управления $u^0(t)$, $t\in T$, траектории $x^0(t)$, $t\in T$, и решения $\psi^0(t)$, $t\in T$, сопряженной системы $x(t^*)\in X^*$ выполняются условия:

- 1. Условие нетривиальности: $\sum_{i=0}^{m} (\lambda_i^{\ 0})^2 \neq 0$;
- 2. Условия неотрицательности: $\lambda_i^0 \ge 0$, $i = \overline{0, m_1}$;
- 3. Условие максимума: $H(x^0(t), \psi^0(t), u^0(t)) = \max H(x^0(t), \psi^0(t), u(t)), t \in [0, t^*[$, где максимум мы берем по u.
- 4. Условие трансверсальности

$$\psi^{0}(t^{*}) = -\lambda_{0}^{0} \frac{\partial \varphi(x^{0}(t^{*}))}{\partial x} - \sum_{i=1}^{m} \lambda_{i}^{0} \frac{\partial h_{i}(x^{0}(t^{*}))}{\partial x} ;$$

5. Условия дополняющей нежесткости

$$\lambda_i^0 h_i(x^0(t^*)) = 0, i = \overline{1, m_1}.$$

Чтобы продолжить решение нам необходимо понять, что же такое условие максимума. Сформулируем теорему.

Данные теоремы используются для решения задач оптимального управления, однако не всегда их использование является эффективным.

1.2.2.2 Метод динамического программирования.

Применяя метод динамического программирования, мы изучаем все поле оптимальных траекторий. Для того, чтобы сравнение было наглядным, мы воспользуемся ранее заданной задачей (4). Зафиксируем некоторый произвольный момент времени $t \in [t_0, T]$. Рассмотрим вспомогательную задачу управления на отрезке [t, T]. Через V(t, x) обозначим минимальное значение критерия качества во вспомогательной задаче при начальном условии x(t) = x, где x – произвольный вектор из R^n . Мы можем предположить, что функция V(t, x) удовлетворяет соотношениям:

$$\frac{\partial V(t,x)}{\partial t} + \min_{u \in U} f'(t,x,u) \frac{\partial V(t,x)}{\partial x} = 0,$$

$$t_0 \le t \le T, x \in \mathbb{R}^n,$$

$$V(T,x) = F(x)$$
(5)

Решив данную задачу и определив V(t,x) мы можем найти управление u(t,x) из соотношения:

$$\min_{u \in U} f'(t, x, u) \frac{\partial V(t, x)}{\partial x} = f'(t, x, u(t, x)) \frac{\partial V(t, x)}{\partial x}$$
(6)

Возможность находить конкретно управление есть характерная черта метода динамического программирования. Она становится особенно важной в условиях отсутствия полной информации.

При решении конкретных задач с помощью метода динамического программирования мы решаем нелинейное уравнение в частных производных (5), а так же дополнительно исследуем оптимальное управление, получаемое из уравнения (6).

1.2.2.3 Точечные методы.

На данных задачах подробно останавливаться я не буду, однако упомянуть их, безусловно, стоит. В то время как принцип максимума и метод динамического программирования можно назвать универсальными, вместе с ними существуют

методы, используемые для конкретного класса задач и эффективные только при исследовании этого класса.

Для примера посмотрим на класс линейно-квадратичных задач. Метод, используемый для их решения эффективен <u>только</u> для задач, линейных по фазовым координатам, а класс линейно-квадратичных задач является одним из их частных случаев. Для них вычисление минимума критерия качества в исходной задаче сводится к вычислению максимума некоторого вспомогательного функционала. Это, в частности, дает возможность изучать задачи, в которых оптимального управления не существует. (Не знаю, стоит ли более подробно расписывать?)

1.3 Численные и программные методы решения задач оптимального управления.