CSCI 3278 Homework 1

William Christie SID: 810915676 September 7, 2016

- 2.4.1 parts (a-e).
- a) What PC models have a speed of at least 3.00?

$$\begin{split} \mathbf{R}(\mathbf{m},\,\mathbf{s},\,\mathbf{r},\,\mathbf{h},\,\mathbf{p}) &:= \sigma_{speed \geq 3.00}(\mathbf{PC}) \\ \mathbf{Answer}(\mathbf{model}) &:= \pi_{model}(\mathbf{R}) \end{split}$$

model
1005
1006
1013

b) Which manufacturers make laptops with hard disk of at least 100GB?

$$\begin{split} \mathbf{R}(\mathbf{m},\,\mathbf{s},\,\mathbf{r},\,\mathbf{h},\,\mathbf{p}) &:= \sigma_{hd \geq 100}(\mathrm{Laptop}) \\ \mathbf{S} &:= \mathrm{Product} \bowtie (\mathbf{R}) \\ \mathrm{Answer}(\mathrm{maker}) &:= \pi_{maker}(\mathbf{S}) \end{split}$$

$_{\mathrm{maker}}$
\mathbf{E}
A
В
\mathbf{F}
G

c) Find the model number, price of all products made by manufacturer B.

$$\begin{split} \mathbf{R}(\mathbf{m}) &:= \sigma_{maker=B}(\text{Product}) \\ \mathbf{S}(\mathbf{m}, \, \mathbf{p}) &:= \pi_{model,price}(PC) \cup \pi_{model,price}(Laptop) \cup \pi_{model,price}(Printer) \\ \mathbf{Answer}(\mathbf{model}, \, \mathbf{price}) &:= \pi_{model,price}(\mathbf{R} \bowtie \mathbf{S}) \end{split}$$

model	price
1004	649
1005	630
1006	1049
2007	1429

d) Find the model numbers of all color laser printers.

$$R(m, c, t, p) := \sigma_{type=laser \land color=true}(Printer)$$

 $Answer(model) := \pi_{model}(R)$

e) Find the manufacturers that sell Laptops, but not PC's.

$$\begin{split} \mathbf{R}(\mathbf{m},\,\mathbf{m},\,\mathbf{t}) &:= \sigma_{type=Laptop}(Product) \\ \mathbf{S}(\mathbf{m},\,\mathbf{m},\,\mathbf{t}) &:= \sigma_{type=PC}(Product) \\ \mathbf{Answer}(\mathbf{maker}) &:= \pi_{maker}(R) - \pi_{maker}(S) \end{split}$$

maker
F
G

2.4.5

The natural join of R and S gives us all joined tuples of R and S with collapsed common attributes. In contrast, the theta join with condition C of R and S is in fact the cross product of R and S with selected tuples that satisfy condition C. Therefore, we will have two copies of tuples with common attributes, due to the fact that S.A = R.A and R.A = S.A

2.4.7

a) R \cup S

	Tuples	Reasoning
max	(m + n)	no common attributes, no attribute collapse
min	min(m, n)	all attributes the same, but $m < n$ or $n < m$

b) $R \bowtie S$

	Tuples	Reasoning
$\max \min(m, n)$		all attributes the same where $m < n$ or $n < m$
min	0	no common attributes

c) $\sigma_C(\mathbf{R}) \ge \mathbf{S}$, for some condition C

	Tuples	Reasoning	
max	mxn	all attributes in R fulfill C, then cross product with S	
min	0	no attributes in R fulfill C	

d) $\pi_L(\mathbf{R})$ - S, for some list of attributes L.

		Tuples	Reasoning
Ī	max	min(m, n)	List of attributes condition fulfilled, but no elements of S are in $\pi_L(R)$
Ī	min	0	List of attributes condition fulfilled, and all elements of S are in $\pi_L(R)$