北京航空航天大學

《数值分析 A》 计算实习

题目三

刘春辉

SY1405119

目录

長目	₹	2
	算法设计方案	1
	1.1 根据 x、y 求解 u、t····································	···· 1
	1.2 通过已知的二维数表,进行分片二次插值	···· 1
	1.3 进行曲面拟合和求系数矩阵 \mathbb{C} = $[c_{rs}^*]$ ····································	2
	1.4 计算 k 值及相应的系数矩阵 ····································	3
	1.5 计算并输出第二小题的答案(x,y,f(x,y),p(x,y))	3
二.	源程序及注释	3
三、	运行结果	· 36
	3.1 数表(x,y,z)······	· 36
	3.2 k 的选择过程:	. 59
	3.3 系数	59
	3.4 数表(x,y,z,p)······	··61
四.	遇到的问题与体会	. 63

一. 算法设计方案

算法共分为四步,首先是求解u、t,然后进行插值运算,再进行曲面拟合并求解系数矩阵C,最后计算k值及系数矩阵。

1.1 根据 x、y 求解 u、t

将 $x_i^* = 0.08i(i = 0,1,\dots,10)$ 和 $y_j^* = 0.5 + 0.05j(j = 0,1,\dots,20)$ 代入非线性方程

$$\begin{cases}
0.5\cos t + u + v + w - x = 2.67 \\
t + 0.5\sin u + v + w - y = 1.07 \\
0.5t + u + \cos v + w - x = 3.74 \\
t + 0.5u + v + \sin w - y = 0.79
\end{cases}$$

中,用 Newton 法解出 t_i 和 u_i ;

1.2 通过已知的二维数表,进行分片二次插值

对应函数为 fenpianchazhi(u,t,z,pe,qe,n) !分片二次插值求出 ut 对应的 z 1)找 到 1.1 中 求 解 的 点 A (t_i , u_j) 所 在 已 知 数 表 的 单 元 格 $tb(m) < t_i < tb(m+1),ub(n) < u_j < ub(n+1),找到距离 A 最近的单元节点 B 作为九 点插值的中心节点,如果 B 位于边界上,则将 B 设置为就近的内部单元节点$

2)u 和 t 的 九 个 点 确 定 一 个 分 片 区 域 , 即 选 $(t_k, u_r)(k=m-1, m, m+1; r=n-1, n, n+1)$ 为插值节点,相应的 Lagrange 形式的

插值多项式为

$$p_{22}(t,u) = \int_{k=m-1}^{m+1} \int_{r=n-1}^{n+1} l_k(t) \tilde{l_r}(u) f(t_k, u_r)$$

其中

$$l_k(t) = \bigcup_{\substack{w=m-1\\w^1 \ k}}^{n+1} \frac{t-t_w}{t_k-t_w}$$
 (k=m-1, m, m+1)

$$\tilde{l}_r(u) = \bigcup_{\substack{w=n-1 \ w^1 \ r}}^{n+1} \frac{y-y_w}{y_r-y_w}$$
 (r=n-1, n, n+1)

并将 t_i 和 u_j 代入 $p_{22}(t,u)$,便得到了数表 $x_i,y_j,f(x_i,y_j)$ 。

1.3 进行曲面拟合和求系数矩阵 $\mathbf{C} = [c_{\kappa}^*]$

对应函数为

nihe(c,x,y,z,pe,qe,k)

将拟合节点 x_i, y_j 代入非线性方程组,解出中间变量 u, t 。将 x_i, y_j 对应的中间变量 u, t 值代入分片插值多项式中,找出 x_i, y_j 与 z_{ij} 的对应关系。即 $z_{ij} = f\left(x_i, y_j\right)$ 。选取拟合基函数为 $1, x, x^2, x^3 \cdots, 1, y, y^2, y^3 \cdots$,先设定 k=1,将拟合节点代入拟合基函数,计算出矩阵 B, G,其中 B, G 的列数根据拟合精度要求来自动确定。

$$\mathbf{C} = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{U} \mathbf{G} (\mathbf{G}^T \mathbf{G})^{-1}$$

其中

$$\mathbf{B} = [j_r(x_i)] = \begin{bmatrix} x_0 & \cdots & x_0^k \\ x_1 & \cdots & x_1^k \\ \vdots & \vdots & \vdots \\ x_{10} & \cdots & x_{10}^k \end{bmatrix}, G = [y_s(y_j)] = \begin{bmatrix} y_0 & \cdots & y_0^k \\ y_1 & \cdots & y_1^k \\ \vdots & \vdots & \vdots \\ y_{10} & \cdots & y_{10}^k \end{bmatrix}$$

$$\mathbf{U} = [f(x_i, y_j)]$$

因为 B^TB 为正定矩阵,所以矩阵求逆使用列主元素高斯消去法(初等行变换) 将其变换为单位阵来求得。计算 BCG^T , BCG^T 与U相应元素平方和即为拟和精 度。

1.4 计算 k 值及相应的系数矩阵

totalerror(error,c,x,y,z,k,pe,qe)
solvek(c,x,y,z,pe,qe,k),

根据另外给出的节点值来观察逼近效果。 \mathbf{k} 从 $\mathbf{1}$ 开始逐渐增大,当 $\sigma \leq 10^{-7}$,得到满足精度要求的系数 c_r ,和相应的 \mathbf{k} 。

1.5 计算并输出第二小题的答案 (x,y,f(x,y),p(x,y))

对应函数为 lastquestion(c,k)

二. 源程序及注释

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!hw 2.12.9

!以 xy 为输入值,求解非线性方程组 v,w,t,u

! 牛顿法求解非线性方程组

!拉格朗日分片二次插值

!最小二乘法拟合曲面

```
program step
      implicit none
   ļ
         integer,parameter::k=5
         integer,parameter::n=6
         integer,parameter::pe=11
         integer,parameter::qe=21
      integer,parameter::it=1000 !控制最大迭代步数
      real,parameter::er=1.e-12 !控制最大迭代步数
      real x(pe),y(qe),u(pe,qe),t(pe,qe),z(pe,qe) !解非线性方程组用到的
变量
      real ub(n),tb(n),zb(n,n)
      real c(20,20) !拟合系数,拟合多项式的值
      real v,w
      real error
                               !残差
      integer i,j,m,l,k !自由变量
      do i=1,pe
      x(i) = 0.08*(i-1)
      end do
```

do j=1,qe

y(j)=0.5+0.05*(j-1)

end do

integer i,j

```
call solvaleq(x,y,u,t,pe,qe)
                             !解 11*21 个非线性方程并回代验证
call output(u,t,z,pe,qe)
                              !输出 utz 的值
call fenpianchazhi(u,t,z,pe,qe,n) !分片二次插值求出 ut 对应的 z
call outputxyz(x,y,z,pe,qe)
call solvek(c,x,y,z,pe,qe,k)
call lastquestion(c,k)
call nihe(c,x,y,z,pe,qe,k)
call totalerror(error,c,x,y,z,k,pe,qe)
write(*,*)error
 stop
 end
subroutine lastquestion (c,k)
integer,parameter::n=6
   integer,parameter::pe=8!规定 x geshu
   integer,parameter::qe=5!规定 y geshu
```

```
real x(pe),y(qe),z(pe,qe),u(pe,qe),t(pe,qe),p(pe,qe)
     real ub(n),tb(n),zb(n,n)
     real c(20,20)
     open(100,FILE='last xyzp.txt',STATUS='UNKNOWN')
     do i=1,pe
     x(i) = 0.1*i
     end do
     do j=1,qe
     y(j)=0.5+0.2*j
     end do
   ! write(*,*)(x(i),i=1,pe)
   !解非线性方程组
     call output(u,t,z,pe,qe) !输出 utz 的值
     call fenpianchazhi(u,t,z,pe,qe,n) !分片二次插值求出 ut 对应的 z
     call outputxyz(x,y,z,pe,qe)
     do i=1,pe
                                      !利用之前求出来的 Cij,求 p
的值同z对比
     do j=1,qe
```

```
call fpvalue(c,x(i),y(j),k,fp)
   p(i,j)=fp
   write(100,10)x(i),y(j),z(i,j),p(i,j)\\
   end do
   end do
10
      FORMAT (F4.1,F4.1,E20.12,E20.12)
   close(100)
   end
   subroutine\ solvek(c,x,y,z,p,q,k)
   integer i,j
   integer p,q,k
   real x(p),y(q),z(p,q)
      integer,parameter::m=20!规定最大迭代次数
   real c(m,m)
   do k=1,19
   call nihe(c,x,y,z,p,q,k)
```

call totalerror(error,c,x,y,z,k,p,q)

!测试不同的 k 对拟合精度的影响

- ! if (error.lt.(1.e-7)) then
- ! write(*,*)k,error
- ! exit
- ! else

write(*,*) k,error

! end if

end do

open(6,FILE='k error c.txt',STATUS='UNKNOWN')

write(6,*)'k=',k

write(6,*)'error=',error

write(6,*)'r = s = Crs = '

do i=1,k+1

do j=1,k+1

write(6,*) i,j,c(i,j)

end do

end do

end

```
subroutine totalerror(err,c,x,y,z,k,p,q)
integer p,q
real c(20,20),x(p),y(q),z(p,q),fp
integer i,j
real err
err=0
do i=1,p
do j=1,q
call fpvalue(c,x(i),y(j),k,fp)
err=err+(z(i,j)-fp)**2
end do
end do
end
subroutine fpvalue(c,x,y,k,fp)
real c(20,20),x,y
integer i,j
real s
```

```
s=0
do i=1,k+1
do j=1,k+1
s=s+c(i,j)*x**(i-1)*y**(j-1)
end do
end do
fp=s
end
subroutine nihe(c,x,y,z,p,q,k)
integer p,q,k
integer i,j,l
real c(20,20),x(p),y(q),z(p,q)
real b(p,k+1),b1(k+1,k+1),b2(k+1,q),a(k+1,q)
real g(q,k+1),g1(k+1,k+1),d(q,k+1),e(k+1)
real s
do i=1,p
do j=1,k+1
b(i,j)=x(i)**(j-1)
end do
```

```
end do
!求 b1
     do i=1,k+1
  do j=1,k+1
  s=0
  do I=1,p
  s=s+b(l,i)*b(l,j)
  end do
  b1(i,j)=s
   end do
   end do
!求 b1 的逆,返回给 b1
     do i=1,k+1
  e(i)=1
  end do
   call gaussj(b1,k+1,e)
!求 b2 B2=Bt*z
     do i=1,k+1
  do j=1,q
  s=0
```

do I=1,p

```
s=s+b(l,i)*z(l,j)
  end do
  b2(i,j)=s
  end do
   end do
       A=B1*B2
!求 A
     do i=1,k+1
  do j=1,q
  s=0
  do I=1,k+1
  s=s+b1(i,l)*b2(l,j)
   end do
  a(i,j)=s
  end do
   end do
!X 方向拟合结束,开始 Y 方向拟合
!求 g
     doi=1,q
  do j=1,k+1
  g(i,j)=y(i)**(j-1)
   end do
```

```
end do
!求 g1 G1=Gt*G
     do i=1,k+1
   do j=1,k+1
   s=0
   do l=1,q
  s=s+g(l,i)*g(l,j)
   end do
  g1(i,j)=s
   end do
   end do
!求 G1 的逆,返回给 G1
     CALL gaussj(g1,k+1,e)
!求 D D=G*G1
     do i=1,q
  do j=1,k+1
   s=0
  do I=1,k+1
  s=s+g(i,l)*g1(l,j)
  end do
```

d(i,j)=s

end do end do !求 c C=A*D DO i=1,k+1 do j=1,k+1s=0 do I=1,q s=s+a(i,l)*d(l,j)end do c(i,j)=send do end do !check do i=1,k+1 do j=1,k+1 ! write(*,*)i,j,c(i,j) end do end do

end

```
subroutine outputxyz(x,y,z,p,q)
integer i,j,p,q
real x(p),y(q),z(p,q)
open(4,FILE='xyz.txt',STATUS='UNKNOWN')
write(4,*) 'x
                                     z'
                       У
do i=1,p
do j=1,q
write(4,*) x(i),y(j),z(i,j)
end do
end do
end
subroutine fenpianchazhi(u,t,z,p,q,n) !分片二次插值求出 ut 对应的
integer p,q
real r(4)
real u(p,q),t(p,q),z(p,q)
real ub(n),tb(n),zb(n,n)
```

Z

integer i,j,k,l,m,s

! write(*,*) p,q,n

call readdata(ub,tb,zb,n) !读入表格中的数据

do i=1,p !p

do j=1,q !q

do k=1,n-1 !找到 u 所在区间,记录 k

if (u(i,j).GE.ub(k).AND.u(i,j).LT.ub(k+1)) then

exit

end if

end do

do l=1,n-1 !找到 t 所在区间,记录 l

if (t(i,j).GE.tb(l).AND.t(i,j).LT.tb(l+1)) then

exit

end if

end do

!求出距离最近的节点作为插值中心节点

```
call distance(u(i,j),t(i,j),ub(k),tb(l),r(1))
call distance(u(i,j),t(i,j),ub(k),tb(l+1),r(2))
call distance(u(i,j),t(i,j),ub(k+1),tb(l),r(3))
call distance(u(i,j),t(i,j),ub(k+1),tb(l+1),r(4))
call nearestp(r,s)
if (s.eq.1) then
k=k
|=|
end if
if(s.eq.2) then
k=k
|=|+1|
end if
if(s.eq.3) then
k=k+1
|=|
end if
if(s.eq.4) then
k=k+1
|=|+1|
end if
```

```
!处理中心节点位于边界的情况,向内部平移一层
     if (k.eq.1) then
      k=k+1
   end if
     if(k.eq.n) then
      k=k-1
   end if
  if (l.eq.1) then
      I=I+1
   end if
     if(l.eq.n) then
      I=I-1
   end if
!求出中心节点左下角节点标号 k, l
   k=k-1
  I=I-1
 write(*,*),k,l
   call interpolate(ub,tb,zb,u(i,j),t(i,j),z(i,j),k,l,n)
 write(*,*)'z(i,j)',i,j,z(i,j)
                        !错误,我求出的z都是0
```

```
end do
   end do
   end
!分片二次插值
   subroutine interpolate(ub,tb,zb,u,t,z,k,l,n)
   real ub(n),tb(n),zb(n,n)
   real u,t,z
   integer k,l
   dimension x1a(3),x2a(3),ya(3,3)
   real x1,x2,y,dy
   integer i,j
   integer m
   m=3
   x1=u
   x2=t
      do i=1,3
     x1a(i)=ub(k+i-1)
   do j = 1,3
     x2a(j)=tb(l+j-1)
     ya(i,j)=zb(k+i-1,l+j-1)
```

```
end do
   end do
  write(*,*) x1,x2
! write(*,*) (x1a(i),i=1,3)
! write(*,*) (x2a(i),i=1,3)
   do i=1,3
   write(*,*)(ya(i,j),j=1,3)
   end do
   call POLIN2(X1A,X2A,YA,m,m,X1,X2,Y,DY)
   z=y
! write(*,*)'DY=',dy
! write(*,*)'Y=',y,'z=',z
   end
!分片二次插值核心算法 拉格朗日插值
      SUBROUTINE polin2(x1a,x2a,ya,m,n,x1,x2,y,dy)
      INTEGER m,n,NMAX,MMAX
      REAL dy,x1,x2,y,x1a(m),x2a(n),ya(m,n)
       PARAMETER (NMAX=20,MMAX=20)
```

!USES polint

```
INTEGER j,k
REAL ymtmp(MMAX), yntmp(NMAX)
do j=1,m
do k=1,n
yntmp(k)=ya(j,k)
 end do
 call polint(x2a,yntmp,n,x2,ymtmp(j),dy)
 end do
 call polint(x1a,ymtmp,m,x1,y,dy)
END SUBROUTINE polin2
SUBROUTINE polint(xa,ya,n,x,y,dy)
   INTEGER n,NMAX
 REAL dy,x,y,xa(n),ya(n)
PARAMETER (NMAX=10)
INTEGER i,m,ns
REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
 ns=1
dif=abs(x-xa(1))
do i=1,n
dift=abs(x-xa(i))
```

```
if (dift<dif) then
 ns=i
 dif=dift
endif
c(i)=ya(i)
d(i)=ya(i)
 end do
y=ya(ns)
 ns=ns-1
 do m=1,n-1
do i=1,n-m
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den==0.) pause 'failure in polint'
den=w/den
d(i)=hp*den
c(i)=ho*den
end do
if (2*ns<n-m) then
```

```
dy=d(ns)
     ns=ns-1
     endif
     y=y+dy
     end do
     END SUBROUTINE polint
!找到距离插值节点最近的节点,返回 p
     subroutine nearestp(r,s)
  integer i,s
  real r(4),t
  s=1
     t=r(1)
  do i=2,4
  if(t.GT.r(i)) then
  t=r(i)
  s=i
```

dy=c(ns+1)

else

```
end if
   end do
   end
!求两点之间的距离,并检查
   subroutine distance(x1,y1,x2,y2,d)
   real x1,y1,x2,y2,d
   d = sqrt((x1-x2)**2+(y1-y2)**2)
   end
   subroutine checkdistance()
   real x1,y1,x2,y2,r
   x1 = 1
   x2 = 2
   y1=1
   y2 = 2
   call distance(x1,y1,x2,y2,r)
```

! write(*,*)'-----',r

end

```
!读入数据课本中的表格 A1
```

subroutine readdata(u,t,z,n)

real u(n),t(n),z(n,n)

integer i,j,k

character*65 DUMMY

open(1,FILE='shuju.txt',STATUS='UNKNOWN')

read(1,300) DUMMY

write(*,300)DUMMY

read(1,*) (u(i),i=1,6)

WRITE(*,*) (u(i),i=1,6)

read(1,*) DUMMY

write(*,*)DUMMY

read(1,*) (t(i),i=1,6)

write(*,*) (t(i),i=1,6)

read(1,300) DUMMY

write(*,300)DUMMY

do j=1,n

read(1,*) (z(i,j),i=1,6)

end do

close(1)

! read(1,*)
$$z(1,:),z(2,:),z(3,:),z(4,:),z(5,:),z(6,:)$$

300 FORMAT(A65)

end

subroutine output(u,t,z,p,q)

integer p,q

integer i,j

```
real u(p,q),t(p,q),z(p,q)
open(2,FILE='utz.txt',STATUS='UNKNOWN')
write(2,*) 'u t
                       z'
do i=1,p
do j=1,q
write(2,*) u(i,j),t(i,j),z(i,j)
end do
end do
end
subroutine
              solvaleq(x,y,u,t,p,q)
integer p,q
real x(p),y(q),u(p,q),t(p,q)
real v,w
integer i,j
open(3,FILE='solerror.txt',STATUS='UNKNOWN')
do i=1,p
```

```
do j=1,q
call solnleq(v,w,x(i),y(j),u(i,j),t(i,j))
```

$$write(3,*) \ u(i,j),t(i,j) \\$$

$$write(3,*) \ 0.5*cos(t(i,j))+u(i,j)+v+w-x(i)-2.67 \\$$

$$write(3,*) \ t(i,j)+0.5*sin(u(i,j))+v+w-y(j)-1.07 \\$$

$$write(3,*) \ 0.5*t(i,j)+u(i,j)+cos(v)+w-x(i)-3.74 \\$$

$$write(3,*) \ t(i,j)+0.5*u(i,j)+v+sin(w)-y(j)-0.79 \\$$

$$end \ do$$

end

end do

subroutine solnleq(v,w,x,y,u,t)

real v,w,x,y,u,t

real fanshu(2)

real d(4,100000),deltd(4)

integer i,k,j

do k=1,m

do j=1,m

A(k,j)=1

end do

end do

A(3,4)=0.5

A(4,3)=0.5

$$A(1,4) = -0.5*sin(t)$$

$$A(2,3)=0.5*cos(u)$$

$$A(3,1) = -\sin(v)$$

$$A(4,2) = \cos(w)$$

$$b(1) = -(v+w+u+0.5*cos(t)-(2.67+x))$$

$$b(2) = -(v+w+0.5*\sin(u)+t-(y+1.07))$$

$$b(3) = -(\cos(v) + w + u + 0.5*t - (x + 3.74))$$

$$b(4) = -(v + \sin(w) + 0.5*u + t - (y + 0.79))$$

call soleq(m,A,b,s)

- ! write(*,*)('-----')
- ! write(*,*)(s(j),j=1,m)
- ! write(*,*)('-----')

$$v=v+s(1)$$

$$w=w+s(2)$$

$$u=u+s(3)$$

$$t=t+s(4)$$

```
error=max(s(1),s(2),s(3),s(4),fanshu(1))/
                 max(v,w,u,t,fanshu(2))
  >
if(error.LT.er) then
exit
end if
if (i.eq.100000.and.error.GT.er) then
write(*,*)'netown failed i=',i,error
end if
end do
END
subroutine max(a,b,c,d,e)
real a,b,c,d,e
real t,u(4)
integer i
u(1)=abs(a)
```

u(2)=abs(b)
u(3)=abs(c)
u(4)=abs(d)
t=u(1)
do i=2,4
if(t.LT.u(i)) then
t=u(i)
end if
end do
e=t
end
subroutine soleq(m,c,b,x)
real c(m,m),b(m),x(m)
integer i
CALL gaussj(c,m,b)
do i=1,m
x(i)=b(i)
end do

end

```
SUBROUTINE gaussj(a,n,b)
 INTEGER n,NMAX
REAL a(n,n),b(n)
 PARAMETER (NMAX=50)
INTEGER i,icol,irow,j,k,l,ll,indxc(NMAX)
INTEGER indxr(NMAX),ipiv(NMAX)
REAL big,dum,pivinv
do j=1,n
   ipiv(j)=0
end do
 do i=1,n
   big=0.
do j=1,n
 if(ipiv(j)/=1) then
do k=1,n
  if (ipiv(k) = = 0) then
    if (abs(a(j,k)) > = big) then
```

```
big=abs(a(j,k))
         irow=j
         icol=k
       endif
     else if (ipiv(k)>1) then
       pause 'singular matrix in gaussj'
     endif
   end do
   endif
   end do
   ipiv(icol)=ipiv(icol)+1
   if (irow/=icol) then
   do I=1,n
   dum=a(irow,l)
   a(irow,l)=a(icol,l)
   a(icol,l)=dum
   end do
   dum=b(irow)
b(irow)=b(icol)
b(icol)=dum
   endif
```

```
indxr(i)=irow
indxc(i)=icol
if (a(icol,icol)==0.) pause 'singular matrix in gaussj'
pivinv=1./a(icol,icol)
a(icol,icol)=1.
do I=1,n
a(icol,l)=a(icol,l)*pivinv
end do
b(icol)=b(icol)*pivinv
do II=1,n
if(II/=icol) then
dum=a(II,icol)
a(II,icoI)=0.
do l=1,n
  a(II,I)=a(II,I)-a(icoI,I)*dum
end do
b(ll)=b(ll)-b(icol)*dum
 endif
end do
end do
do l=n,1,-1
```

if(indxr(l)/=indxc(l)) then
do k=1,n
dum=a(k,indxr(l))
a(k,indxr(l))=a(k,indxc(l))
a(k,indxc(l))=dum
end do
endif
end do
END SUBROUTINE gaussj

三、运行结果

3.1 数表(x,y,z)

x y z

0.00000000000000E+000

0.5000000000000000

0.446504018479934

0.0000000000000E+000	0.550000000000000
0.324683262927430	
0.0000000000000E+000	0.600000000000000
0.210159686682549	
0.00000000000000E+000	0.650000000000000
0.103043608315948	
0.00000000000000E+000	0.700000000000000
3.401895562658904E-003	
0.0000000000000E+000	0.750000000000000
-8.873581363800537E-002	
0.00000000000000E+000	0.800000000000000
-0.173371632749730	
0.00000000000000E+000	0.850000000000000
-0.250534611466608	
0.00000000000000E+000	0.900000000000000
-0.320276506387631	
0.0000000000000E+000	0.950000000000000
-0.382668066109709	
0.00000000000000E+000	1.00000000000000
-0.437795766738356	
0.00000000000000E+000	1.05000000000000

-0.485758941443773	
0.00000000000000000E+000	1.10000000000000
-0.526667254883527	
0.00000000000000E+000	1.15000000000000
-0.560638479796510	
0.00000000000000E+000	1.200000000000000
-0.587796538767668	
0.00000000000000E+000	1.25000000000000
-0.608269779089934	
0.00000000000000E+000	1.30000000000000
-0.622189452876368	
0.00000000000000E+000	1.35000000000000
-0.629688378185600	
0.00000000000000E+000	1.400000000000000
-0.630899760002776	
0.00000000000000E+000	1.45000000000000
-0.625956152545434	
0.00000000000000E+000	1.500000000000000
-0.614988546609357	
8.0000000000000E-002	0.500000000000000
0.638015226510213	

8.000000000000E-002	0.550000000000000
0.506611755146211	
8.0000000000000E-002	0.600000000000000
0.382176369277215	
8.0000000000000E-002	0.650000000000000
0.264863491153617	
8.0000000000000E-002	0.700000000000000
0.154780200284818	
8.0000000000000E-002	0.750000000000000
5.199268349092778E-002	
8.0000000000000E-002	0.80000000000000
-4.346804020490879E-002	
8.0000000000000E-002	0.850000000000000
-0.131601056788529	
8.0000000000000E-002	0.900000000000000
-0.212431088308821	
8.0000000000000E-002	0.950000000000000
-0.286004551058031	
8.0000000000000E-002	1.00000000000000
-0.352386078979358	
8.0000000000000E-002	1.05000000000000

-0.411655456522184	
8.0000000000000E-002	1.10000000000000
-0.463904911518766	
8.0000000000000E-002	1.15000000000000
-0.509236724700547	
8.0000000000000E-002	1.20000000000000
-0.547761117962330	
8.0000000000000E-002	1.25000000000000
-0.579594388339079	
8.0000000000000E-002	1.30000000000000
-0.604857258889532	
8.0000000000000E-002	1.35000000000000
-0.623673421331758	
8.0000000000000E-002	1.40000000000000
-0.636168248413258	
8.0000000000000E-002	1.45000000000000
-0.642467656690050	
8.0000000000000E-002	1.50000000000000
-0.642697102699610	
0.16000000000000	0.500000000000000
0.840081395765142	

0.16000000000000	0.550000000000000
0.699764165672570	
0.16000000000000	0.600000000000000
0.566061442351442	
0.16000000000000	0.650000000000000
0.439171608117521	
0.16000000000000	0.700000000000000
0.319242138040752	
0.16000000000000	0.750000000000000
0.206376192387373	
0.16000000000000	0.800000000000000
0.100638523891430	
0.16000000000000	0.850000000000000
2.060740067835784E-003	
0.16000000000000	0.900000000000000
-8.935402476698084E-002	
0.16000000000000	0.950000000000000
-0.173626968864850	
0.16000000000000	1.00000000000000
-0.250799956159861	
0.16000000000000	1.05000000000000

-0.320932269444613	
0.16000000000000	1.10000000000000
-0.384097735004564	
0.16000000000000	1.15000000000000
-0.440382175417512	
0.16000000000000	1.20000000000000
-0.489881152312580	
0.16000000000000	1.25000000000000
-0.532697965533796	
0.16000000000000	1.30000000000000
-0.568941879292126	
0.16000000000000	1.35000000000000
-0.598726549515135	
0.16000000000000	1.40000000000000
-0.622168629750329	
0.16000000000000	1.45000000000000
-0.639386535697154	
0.16000000000000	1.50000000000000
-0.650499350787842	
0.24000000000000	0.500000000000000
1.05151509180126	

0.2400000000000	0.550000000000000
0.902927430830220	
0.24000000000000	0.600000000000000
0.760580266859262	
0.24000000000000	0.650000000000000
0.624715198145480	
0.24000000000000	0.700000000000000
0.495519756000861	
0.24000000000000	0.750000000000000
0.373134042774563	
0.24000000000000	0.80000000000000
0.257656748872341	
0.24000000000000	0.850000000000000
0.149150559410230	
0.24000000000000	0.900000000000000
4.764698677336622E-002	
0.24000000000000	0.950000000000000
-4.684932320146153E-002	
0.24000000000000	1.000000000000000
-0.134356760384909	
0.24000000000000	1.05000000000000

-0.214913344927402	
0.24000000000000	1.10000000000000
-0.288573700634810	
0.24000000000000	1.15000000000000
-0.355406364785712	
0.24000000000000	1.20000000000000
-0.415491396488576	
0.24000000000000	1.25000000000000
-0.468918249969471	
0.24000000000000	1.30000000000000
-0.515783883124747	
0.24000000000000	1.35000000000000
-0.556191075200143	
0.24000000000000	1.40000000000000
-0.590246930562859	
0.24000000000000	1.45000000000000
-0.618061548241234	
0.24000000000000	1.50000000000000
-0.639746839257865	
0.32000000000000	0.500000000000000
1.27124675148115	

0.32000000000000	0.550000000000000
1.11500201814598	
0.32000000000000	0.600000000000000
0.964607727215351	
0.32000000000000	0.650000000000000
0.820347369474939	
0.32000000000000	0.700000000000000
0.682447678179402	
0.32000000000000	0.750000000000000
0.551085208597475	
0.32000000000000	0.80000000000000
0.426392385901768	
0.32000000000000	0.850000000000000
0.308462995633190	
0.32000000000000	0.900000000000000
0.197357129691923	
0.32000000000000	0.950000000000000
9.310562085940516E-002	
0.32000000000000	1.00000000000000
-4.285992234033330E-003	
0.32000000000000	1.05000000000000

-9.483392529688754E-002	
0.32000000000000	1.10000000000000
-0.178572990363992	
0.32000000000000	1.15000000000000
-0.255553779054632	
0.32000000000000	1.20000000000000
-0.325840150157500	
0.32000000000000	1.25000000000000
-0.389506988363433	
0.32000000000000	1.30000000000000
-0.446638204599494	
0.32000000000000	1.35000000000000
-0.497324951767697	
0.32000000000000	1.40000000000000
-0.541664032699418	
0.32000000000000	1.45000000000000
-0.579756479795119	
0.32000000000000	1.50000000000000
-0.611706288147578	
0.40000000000000	0.500000000000000
1.49832105248068	

0.40000000000000	0.550000000000000
1.33499863206573	
0.40000000000000	0.600000000000000
1.17712512373886	
0.40000000000000	0.650000000000000
1.02502405501997	
0.40000000000000	0.700000000000000
0.878960023174302	
0.40000000000000	0.750000000000000
0.739145108703474	
0.40000000000000	0.80000000000000
0.605744871487092	
0.40000000000000	0.850000000000000
0.478883861066560	
0.40000000000000	0.900000000000000
0.358650625881831	
0.40000000000000	0.950000000000000
0.245102236196428	
0.40000000000000	1.000000000000000
0.138268350928467	
0.40000000000000	1.05000000000000

3.815486540699203E-002	
0.40000000000000	1.10000000000000
-5.525282116814331E-002	
0.40000000000000	1.15000000000000
-0.141986880813721	
0.40000000000000	1.20000000000000
-0.222094439095899	
0.40000000000000	1.25000000000000
-0.295635232459798	
0.40000000000000	1.30000000000000
-0.362679511502828	
0.40000000000000	1.35000000000000
-0.423306164223961	
0.40000000000000	1.40000000000000
-0.477601036132450	
0.40000000000000	1.45000000000000
-0.525655426667203	
0.40000000000000	1.50000000000000
-0.567564743655107	
0.48000000000000	0.500000000000000
1.73189274038194	

0.48000000000000	0.550000000000000
1.56203457720811	
0.48000000000000	0.600000000000000
1.39721691820796	
0.48000000000000	0.650000000000000
1.23780100673931	
0.48000000000000	0.700000000000000
1.08408753267769	
0.48000000000000	0.750000000000000
0.936322772314868	
0.48000000000000	0.80000000000000
0.794704449053701	
0.48000000000000	0.850000000000000
0.659387198028234	
0.48000000000000	0.900000000000000
0.530487586839948	
0.48000000000000	0.950000000000000
0.408088685454233	
0.48000000000000	1.000000000000000
0.292244201229539	
0.48000000000000	1.05000000000000

0.182982206853550	
0.48000000000000	1.10000000000000
8.030849403542600E-002	
0.48000000000000	1.15000000000000
-1.579041305164065E-002	
0.48000000000000	1.20000000000000
-0.105344551620979	
0.48000000000000	1.25000000000000
-0.188398090609595	
0.48000000000000	1.30000000000000
-0.265007149318921	
0.48000000000000	1.35000000000000
-0.335237838904025	
0.48000000000000	1.40000000000000
-0.399164503886759	
0.48000000000000	1.45000000000000
-0.456868143301566	
0.48000000000000	1.50000000000000
-0.508434993278188	
0.56000000000000	0.500000000000000
1.97122178639989	

0.5600000000000	0.5500000000000000
1.79532959950066	
0.56000000000000	0.600000000000000
1.62406711322791	
0.56000000000000	0.6500000000000000
1.45783058270776	
0.56000000000000	0.7000000000000000
1.29695464975211	
0.56000000000000	0.7500000000000000
1.14171810544722	
0.56000000000000	0.800000000000000
0.992349533324319	
0.56000000000000	0.8500000000000000
0.849032663329384	
0.56000000000000	0.900000000000000
0.711911352264108	
0.56000000000000	0.9500000000000000
0.581094158921853	
0.56000000000000	1.000000000000000
0.456658513233449	
0.56000000000000	1.05000000000000

0.338654496139362	
0.56000000000000	1.10000000000000
0.227108255769633	
0.56000000000000	1.15000000000000
0.122025089193156	
0.56000000000000	1.20000000000000
2.339221963760311E-002	
0.56000000000000	1.25000000000000
-6.881870197104234E-002	
0.56000000000000	1.30000000000000
-0.154649344212872	
0.56000000000000	1.35000000000000
-0.234152666458688	
0.56000000000000	1.40000000000000
-0.307391091913287	
0.56000000000000	1.45000000000000
-0.374434862348063	
0.56000000000000	1.50000000000000
-0.435360556535884	
0.64000000000000	0.500000000000000
2.21566786368768	

0.64000000000000	0.550000000000000
2.03420113360723	
0.64000000000000	0.600000000000000
1.85695514361904	
0.64000000000000	0.650000000000000
1.68435816416101	
0.64000000000000	0.700000000000000
1.51677635239996	
0.64000000000000	0.750000000000000
1.35451904115140	
0.64000000000000	0.80000000000000
1.19784408667268	
0.64000000000000	0.850000000000000
1.04696304941940	
0.64000000000000	0.900000000000000
0.902046083802266	
0.64000000000000	0.950000000000000
0.763226477662872	
0.64000000000000	1.000000000000000
0.630604821954327	
0.64000000000000	1.05000000000000

0.504252814597223	
0.64000000000000	1.10000000000000
0.384216715545667	
0.64000000000000	1.15000000000000
0.270520476640969	
0.64000000000000	1.20000000000000
0.163168572399612	
0.64000000000000	1.25000000000000
6.214855811676047E-002	
0.64000000000000	1.30000000000000
-3.256661939681810E-002	
0.64000000000000	1.35000000000000
-0.121016534844361	
0.64000000000000	1.40000000000000
-0.203251399622820	
0.64000000000000	1.45000000000000
-0.279330359558427	
0.64000000000000	1.50000000000000
-0.349319957540006	
0.72000000000000	0.500000000000000
2.46468422265956	

0.72000000000000	0.550000000000000
2.27805897939853	
0.72000000000000	0.600000000000000
2.09525125084029	
0.72000000000000	0.650000000000000
1.91671812799728	
0.72000000000000	0.700000000000000
1.74285462877588	
0.72000000000000	0.750000000000000
1.57399842733412	
0.72000000000000	0.80000000000000
1.41043483523083	
0.72000000000000	0.850000000000000
1.25240175060805	
0.72000000000000	0.900000000000000
1.10009440962797	
0.72000000000000	0.950000000000000
0.953669851261271	
0.72000000000000	1.00000000000000
0.813251055248882	
0.72000000000000	1.05000000000000

0.678930742965944	
0.72000000000000	1.10000000000000
0.550774848504326	
0.72000000000000	1.15000000000000
0.428825676973075	
0.72000000000000	1.20000000000000
0.313104771739816	
0.72000000000000	1.25000000000000
0.203615514032691	
0.72000000000000	1.30000000000000
0.100345478240894	
0.72000000000000	1.35000000000000
3.268565186572091E-003	
0.72000000000000	1.40000000000000
-8.765306591328641E-002	
0.72000000000000	1.45000000000000
-0.172467247818849	
0.72000000000000	1.50000000000000
-0.251230220752334	
0.8000000000000	0.500000000000000
2.71781110946857	

0.8000000000000	0.550000000000000
2.52639950125573	
0.80000000000000	0.600000000000000
2.33841138685977	
0.80000000000000	0.650000000000000
2.15432937728033	
0.8000000000000	0.700000000000000
1.97457455665203	
0.80000000000000	0.750000000000000
1.79951057909949	
0.80000000000000	0.80000000000000
1.62944822055405	
0.8000000000000	0.850000000000000
1.46465004375065	
0.8000000000000	0.900000000000000
1.30533496765067	
0.8000000000000	0.950000000000000
1.15168262130696	
0.8000000000000	1.00000000000000
1.00383741990551	
0.8000000000000	1.05000000000000

0.861912337227926	
0.80000000000000	1.10000000000000
0.725992371111170	
0.80000000000000	1.15000000000000
0.596137711520083	
0.80000000000000	1.20000000000000
0.472386627913592	
0.80000000000000	1.25000000000000
0.354758095897906	
0.80000000000000	1.30000000000000
0.243254184181296	
0.80000000000000	1.35000000000000
0.137862222524720	
0.80000000000000	1.40000000000000
3.855677032640460E-002	
0.80000000000000	1.45000000000000
-5.469859593445851E-002	
0.80000000000000	1.50000000000000
-0.141949659708795	

3.2 k 的选择过程:

```
3.22090897363342
2 4.659960033245570E-003
3 1.721175379303752E-004
4 3.309534300961028E-006
5 2.541378712726319E-008
 6 1.170297036500543E-010
 7 1.228314003868272E-008
 8 3.212010930720670E-004
9 5.948456333473341E-002
10
    5.22520985502726
11
     83220.2368958071
12
     128.422903767005
     19339.8802753090
13
14
     741.868998721704
15
     608.020922229387
     3736.33156087420
     3416.41318026974
17
18
     5782.83573050556
19
     1058.50562676949
```

实际运行时 K=5 满足要求,终止选择过程

error= 2.541378712726319E-008

3.3 系数

$$c(r,s)(r=0,1,...,5,s=0,1,...,5)$$

r=	s=	Crs=
	1	1 2.02123051934281
	1	2 -3.66842679875870
	1	3 0.709248631255292
	1	4 0.848605391815966
	1	5 -0.415897428314167
	1	6 6.743199431922875E-002

SY1405119 刘春辉 班级 A4

2	1 3.19190900840529
2	2 -0.741110375772280
2	3 -2.69712460647187
2	4 1.63118340597396
2	5 -0.484719977251359
2	6 6.061428150603732E-002
3	1 0.256889810834281
3	2 1.57991867478358
3	3 -0.463408167820376
3	4 -8.134436905686471E-002
3	5 0.102094226577037
3	6 -2.101523151640095E-002
4	1 -0.269260334794732
4	2 -0.730247662554447
4	3 1.07614508228124
4	4 -0.807012808769116
4	5 0.302872797206007
4	6 -4.597263283499586E-002
5	1 0.217459754434830
5	2 -0.178372392878291
5	3 -7.240576143929189E-002

5	4 0.243330413273405
5	5 -0.141334703268615
5	6 2.651023281508191E-002
6	1 -5.590326094637071E-002
6	2 0.143199229958642
6	3 -0.136270361272305
6	4 4.071962890214298E-002
6	5 3.775021356565045E-003
6	6 -2.667697763727328E-003

3.4 数表(x,y,z,p)

0.2 0.9 -0.225159583746E-01 -0.225211128653E-01 0.2 1.1 -0.338220816040E+00 -0.338224017159E+00 0.2 1.3 -0.544437831522E+00 -0.544430442159E+00 0.2 1.5 -0.647361338568E+00 -0.647347997029E+00 0.3 0.7 0.634777195151E+00 0.634787454291E+00 0.3 0.9 0.158801168839E+00 0.158796298315E+00 0.3 1.1 -0.207365694171E+00 -0.207368576581E+00 0.3 1.3 -0.465357906898E+00 -0.465349917206E+00 0.3 1.5 -0.620270953075E+00 -0.620257129388E+00 0.4 0.7 0.878960023174E+00 0.878969866056E+00 0.4 0.9 0.358650625882E+00 0.358646044527E+00 0.4 1.1 -0.552528211681E-01 -0.552554350035E-01 0.4 1.3 -0.362679511503E+00 -0.362671060080E+00 0.4 1.5 -0.567564743655E+00 -0.567550578371E+00 0.5 0.7 0.113661091016E+01 0.113662035325E+01 0.5 0.9 0.574980340948E+00 0.574975842600E+00 0.5 1.1 0.115992376792E+00 0.115989321142E+00 0.5 1.3 -0.238568304012E+00 -0.238560420022E+00 0.5 1.5 -0.491434393656E+00 -0.491420901995E+00 0.6 0.7 0.140604179891E+01 0.140605068617E+01 0.6 0.9 0.805941494063E+00 0.805937300268E+00

- 0.6 1.1 0.304429221045E+00 0.304425829244E+00
- 0.6 1.3 -0.950161300996E-01 -0.950089506394E-01
- 0.6 1.5 -0.393902307746E+00 -0.393889845572E+00
- 0.7 0.7 0.168578351531E+01 0.168579121547E+01
- 0.7 0.9 0.104988115306E+01 0.104987773602E+01
- 0.7 1.1 0.508293783940E+00 0.508291039197E+00
- 0.7 1.3 0.661487967065E-01 0.661563461587E-01
- 0.7 1.5 -0.276834341778E+00 -0.276822058627E+00
- 0.8 0.7 0.197457455665E+01 0.197458125845E+01
- 0.8 0.9 0.130533496765E+01 0.130533199895E+01
- 0.8 1.1 0.725992371111E+00 0.725989302079E+00
- 0.8 1.5 -0.141949659709E+00 -0.141938811820E+00

四. 遇到的问题与体会

- 1.求解非线性方程组不可以用简单迭代法,因为矩阵 G'(X*)的谱半径不能保证恒小于 1,我最初选用简单迭代法发现求解的部分结果错误。故改用牛顿法
- 2.求解线性方程组时一定要用选主元的 Gauss 或 Doolittle 法,不进行选主元操作会导致消元过程主对角线值为 0,从而求解发散。

```
3.22090897363342
            2
               4.659960033245570E-003
            3
               1.721175379303752E-004
              3.309534300961028E-006
              2.541378712726319E-008
              1.170297036500543E-010
            7
              1.228314003868272E-008
            8
              3.212010930720670E-004
               5.948456333473341E-002
           10
                5.22520985502726
                83220.2368958071
           11
           12
                128.422903767005
           13
                19339.8802753090
           14
                741.868998721704
                608.020922229387
           15
                3736.33156087420
           16
           17
                3416.41318026974
                5782.83573050556
           18
3.
           19
                1058.50562676949
```

如上图所示,左边为曲面拟合的次数 K,右边数据为拟合误差 error,可见误差随拟合次数的增加呈现先减小后增大的过程,即高次(>10)拟合会造成节点处的值不收敛到已知值,这一点同拉格朗日插值过程的 Runge 现象类似。

4.我发现数值分析这门课类似于本科的电工电子实验,前者主要包含设计算法与上机实现两个过程,后者则是设计电路图以及通过实验来验证这两个过程,相同之处在于综合要求理论分析与实际动手能力,学以致用。