

Annex C. LTE Transmitter Spurious Emissions

1. LTE_Band7

1.1. LTE Transmitter Spurious Emissions(NTNV)(Subtest:1, Channel:20775, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.011	-54.6	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.85	-25	Pass	2985
30	1000	0.1	RMS	892.489	-59.1	-25	Pass	9700
1000	2490	1	RMS	2490	-46.99	-25	Pass	1490
2490	2580	1	RMS	2500.35	21.9	60	Pass	601
2580	3000	1	RMS	2670.3	-47.1	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.13	-25	Pass	9000
12000	26500	1	RMS	26453.997	-25.78	-25	Pass	14500
20- 10- 0- -10- (Egp) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500

Frequency(MHz)

1.2. LTE Transmitter Spurious Emissions(NTNV)(Subtest:2, Channel:20775, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

t ncy z)	Frequ	iency	RBW (MHz)	Detector	•	•	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009		0.15	0.001	RMS	0	.013	-54.69	-25	Pass	601
0.15		30	0.01	RMS		0.15	-52.34	-25	Pass	2985
30		1000	0.1	RMS	879	.588	-59.07	-25	Pass	9700
1000		2490	1	RMS	2487	.999	-47.01	-25	Pass	1490
2490		2580	1	RMS	25	04.7	22.04	60	Pass	601
2580		3000	1	RMS	26	70.3	-47.09	-25	Pass	601
3000		12000	1	RMS	11899	.989	-49.15	-25	Pass	9000
		26500	1	RMS	26451	.997	-25.76	-25	Pass	14500
	2500	5000	7500	10000 12	2500 150	000	17500 20	2000 22	500	26500
009	2500	5000	/500				1/500 20	0000 22	500	20000
	ncy 2) 0.009 0.15 30 1000 2490 2580 3000 2000	ncy (MI) 0.009 0.15 30 1000 2490 2580 3000 2000	rncy (MHz) 2.0.009	Frequency (MHz) (M	The color The	Frequency (MHz) Detector (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Name

1.3. LTE Transmitter Spurious Emissions(NTNV)(Subtest:3, Channel:20775, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.27	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.76	-25	Pass	2985
30	1000	0.1	RMS	998.2	-59.31	-25	Pass	9700
1000	2490	1	RMS	2490	-47.07	-25	Pass	1490
2490	2580	1	RMS	2500.35	21.06	60	Pass	601
2580	3000	1	RMS	2668.2	-47.5	-25	Pass	601
3000	12000	1	RMS	11897.989	-49.09	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.75	-25	Pass	14500
20- 10- 0- -10- (\text{\text{\$W}}\text{\$P\$}\) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		500 15000 lency(MHz)	17500 20	0000 22	500	26500

1.4. LTE Transmitter Spurious Emissions(NTNV)(Subtest:4, Channel:20775, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequer (MHz)	псу	Frequ	op uency Hz)	RBW (MHz)	Detector	Freque (MHz	_	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0	.009		0.15	0.001	RMS		0.01	-53.94	-25	Pass	601
	0.15		30	0.01	RMS		0.15	-52.55	-25	Pass	2985
	30		1000	0.1	RMS	929	.693	-59.28	-25	Pass	9700
1	1000		2490	1	RMS	2488	.999	-47.05	-25	Pass	1490
2	2490		2580	1	RMS	25	04.7	21.19	60	Pass	601
2	2580		3000	1	RMS	26	68.2	-47.5	-25	Pass	601
	3000		12000	1	RMS	11894	.988	-49.11	-25	Pass	9000
30-r	2000		26500	1	RMS	26455	.997	-25.8	-25	Pass	14500
20- 10- 0- -10- (mg/qgm) -30- -30- -40- -50- -60- -70-		***	· · · · · · · · · · · · · · · · · · ·								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.0	09	2500	5000	7500		500 150		17500 20	0000 22	500	26500
					Frequ	iency(Mł	Hz)				

1.5. LTE Transmitter Spurious Emissions(NTNV)(Subtest:5, Channel:21100, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.38	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.92	-25	Pass	2985
30	1000	0.1	RMS	856.285	-59.18	-25	Pass	9700
1000	2490	1	RMS	2434.963	-46.97	-25	Pass	1490
2490	2580	1	RMS	2532.9	22.27	60	Pass	601
2580	3000	1	RMS	2670.3	-47.37	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.01	-25	Pass	9000
20- 10- 0- -10- (\text{\text{\$M\$}}\text{\$P\$}\) -30- -40- -50- -60- -70- -80- 0.009	2000	40		6000 iency(MHz)	8000	100	00	12000

1.6. LTE Transmitter Spurious Emissions(NTNV)(Subtest:7, Channel:21100, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.7. LTE Transmitter Spurious Emissions(NTNV)(Subtest:8, Channel:21100, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-52.65	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.97	-25	Pass	2985
30	1000	0.1	RMS	888.489	-59.2	-25	Pass	9700
1000	2490	1	RMS	2488.999	-46.94	-25	Pass	1490
2490	2580	1	RMS	2532.9	21.46	60	Pass	601
2580	3000	1	RMS	2694.8	-47.36	-25	Pass	601
3000		1	RMS	11898.989	-49.02	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.65	-25	Pass	14500
20- 10- 0- -10- (Mg -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 Jency(MHz)	17500 20	0000 22	500	26500

1.8. LTE Transmitter Spurious Emissions(NTNV)(Subtest:9, Channel:21100, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15 0.001		RMS	0.009	-54.55	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.88	-25	Pass	2985
30	1000	0.1	RMS	939.494	-59.15	-25	Pass	9700
1000	2490	1	RMS	2487.999	-46.96	-25	Pass	1490
2490	2580	1	RMS	2537.1	21.4	60	Pass	601
2580	3000	1	RMS	2670.3	-47.37	-25	Pass	601
3000	12000	1	RMS	11900.989	-49.04	-25	Pass	9000
12000 30-	26500	1	RMS	26460.997	-25.69	-25	Pass	14500
20- 10- 0- -10- (\(\mathbb{M}\) 20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.003	2300 3000	7500		iency(MHz)	17500 20	7000 22	500	20300

1.9. LTE Transmitter Spurious Emissions(NTNV)(Subtest:10, Channel:21425, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15 0.001		RMS	0.01	-54.4	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.79	-25	Pass	2985
30	1000	0.1	RMS	900.49	-59.35	-25	Pass	9700
1000	2490	1	RMS	2429.96	-46.99	-25	Pass	1490
2490	2580	1	RMS	2565.3	22.56	60	Pass	601
2580	3000	1	RMS	2689.9	-47.39	-25	Pass	601
3000	12000	1	RMS	11900.989	-48.98	-25	Pass	9000
12000 30-	26500	1	RMS	26458.997	-25.69	-25	Pass	14500
20- 10- 0- -10- (Rg)-20- -30- -40- -50- -60- -70- -80-	3500 5000	7500	10000 12		**************************************			~~~
0.009	2500 5000	7500		500 15000 iency(MHz)	17500 20	0000 22	500	26500

1.10. LTE Transmitter Spurious Emissions(NTNV)(Subtest:11, Channel:21425, Bandwidth:5, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.11. LTE Transmitter Spurious Emissions(NTNV)(Subtest:12, Channel:21425, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15 0.001		RMS	0.01	-53.96	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.55	-25	Pass	2985
30	1000	0.1	RMS	902.19	-59.16	-25	Pass	9700
1000	2490	1	RMS	2433.962	-46.94	-25	Pass	1490
2490	2580	1	RMS	2565.3	21.84	60	Pass	601
2580	3000	1	RMS	2581.4	-47.24	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.99	-25	Pass	9000
12000 30-	26500	1	RMS	26454.997	-25.56	-25	Pass	14500
20- 10- 0- -10- (mg/g) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.003	2300 3000	7500		iency(MHz)	17500 20	7000 22	500	20300

1.12. LTE Transmitter Spurious Emissions(NTNV)(Subtest:13, Channel:21425, Bandwidth:5, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequer (MHz	псу	Sto Frequ (MI	ency	RBW (MHz)	Detector	Freque (MHz	_	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0	.009		0.15	0.001	RMS	0	.009	-53.83	-25	Pass	601
	0.15		30	0.01	RMS		0.16	-53.03	-25	Pass	2985
	30		1000	0.1	RMS	89	9.69	-59.03	-25	Pass	9700
,	1000		2490	1	RMS	243	0.96	-46.96	-25	Pass	1490
2	2490		2580	1	RMS	256	9.65	21.2	60	Pass	601
2	2580		3000	1	RMS	26	65.4	-47.35	-25	Pass	601
	3000		12000	1	RMS	11897		-49.06	-25	Pass	9000
30-	2000		26500	1	RMS	26452	.997	-25.63	-25	Pass	14500
20- 10- 0- -10- -20- -30- -40- -50- -70- -80-	•	2500		7500	10000 10			17500 30			~~~
0.0	009	2500	5000	7500		500 150		17500 20	0000 22	500	26500
					Frequ	iency(Mł	Hz)				

1.13. LTE Transmitter Spurious Emissions(NTNV)(Subtest:14, Channel:20800, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.55	-25	Pass	601
0.15	30	0.01 RMS		0.15	-52.16	-25	Pass	2985
30	1000	0.1	RMS	919.792	-59.25	-25	Pass	9700
1000	2490	1	RMS	2482.995	-44.29	-25	Pass	1490
2490	2580	1	RMS	2500.65	21.28	60	Pass	601
2580	3000	1	RMS	2668.2	-47.35	-25	Pass	601
3000	12000	1	RMS	11896.989	-49.02	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.58	-25	Pass	14500
20- 10- 0- -10- (\(\mathbb{R}\) 20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.009	2300 3000	7300		iency(MHz)	1/300 20	0000 22	300	20300

1.14. LTE Transmitter Spurious Emissions(NTNV)(Subtest:15, Channel:20800, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.8	-25	Pass	601
0.15	30	0.01	RMS	0.15	-54.43	-25	Pass	2985
30	1000	0.1	RMS	897.389	-59.19	-25	Pass	9700
1000	2490	1	RMS	2490	-46.75	-25	Pass	1490
2490	2580	1	RMS	2509.35	21.14	60	Pass	601
2580	3000	1	RMS	2667.5	-47.34	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.03	-25	Pass	9000
12000	26500	1	RMS	26455.997	-25.64	-25	Pass	14500
20- 10- 0- -10- (\(\mathbb{R}\) 20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	500 15000	17500 20	0000 22	500	26500
5.555	2000	, 555		iency(MHz)	2.000 20			20000

1.15. LTE Transmitter Spurious Emissions(NTNV)(Subtest:16, Channel:20800, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-52.96	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.21	-25	Pass	2985
30	1000	0.1	RMS	892.889	-59.04	-25	Pass	9700
1000	2490	1	RMS	2482.995	-44.6	-25	Pass	1490
2490	2580	1	RMS	2500.65	20.69	60	Pass	601
2580	3000	1	RMS	2666.1	-47.35	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.97	-25	Pass	9000
12000 30-	26500	1	RMS	26458.997	-25.66	-25	Pass	14500
20- 10- 0- -10- (<u>WB</u>) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 Jency(MHz)	17500 20	0000 22	500	26500

1.16. LTE Transmitter Spurious Emissions(NTNV)(Subtest:17, Channel:20800, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequen (MHz)	-	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequenc (MHz)	-	Power dBm)	Limit (dBm)	Verdict	Sweep Point
0.	.009	0.1	0.001	RMS	0.00	09	-54.1	-25	Pass	601
(0.15	30	0.01	RMS	0.1	15	-52.39	-25	Pass	2985
	30	1000	0.1	RMS	896.48	39	-59.27	-25	Pass	9700
1	000	2490	1	RMS	249	90	-46.7	-25	Pass	1490
2	490	2580) 1	RMS	2509.3	35	20.59	60	Pass	601
2	:580	3000) 1	RMS	2666	8.8	-47.32	-25	Pass	601
	000	12000		RMS	11898.98		-48.97	-25	Pass	9000
12 30-	000	26500) 1	RMS	26453.99	97	-25.67	-25	Pass	14500
20 10 (mgp) eve -2030506080			7500	10000 15						~~~
0.00	09 2	2500 5000	7500		2500 15000		500 20	0000 22	500	26500
				Frequ	iency(MHz))				

1.17. LTE Transmitter Spurious Emissions(NTNV)(Subtest:18, Channel:21100, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.62	-25	Pass	601
0.15	30	0.01 RMS		0.15	-53	-25	Pass	2985
30	1000	0.1	RMS	911.791	-59.17	-25	Pass	9700
1000	2490	1	RMS	2464.983	-46.97	-25	Pass	1490
2490	2580	1	RMS	2530.65	22.15	60	Pass	601
2580	3000	1	RMS	2687.1	-47.34	-25	Pass	601
3000	12000	1	RMS	11897.989	-49.03	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.63	-25	Pass	14500
20- 10- 0- -10- (mg/p) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.003	2550 5000	7500		iency(MHz)	17500 20	2000 22	300	20300

1.18. LTE Transmitter Spurious Emissions(NTNV)(Subtest:19, Channel:21100, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.85	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.58	-25	Pass	2985
30	1000	0.1	RMS	897.289	-59.27	-25	Pass	9700
2490	2580	1	RMS	2539.35	22.13	60	Pass	601
2580	3000	1	RMS	2666.8	-47.35	-25	Pass	601
3000	12000	1	RMS	11901.989	-48.97	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.54	-25	Pass	14500
20- 10- 0- -10- (Mg -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 Jency(MHz)	17500 20	0000 22	500	26500

1.19. LTE Transmitter Spurious Emissions(NTNV)(Subtest:22, Channel:21100, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-54.27	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.48	-25	Pass	2985
30	1000	0.1	RMS	898.89	-59.23	-25	Pass	9700
1000	2490	1	RMS	2433.962	-46.97	-25	Pass	1490
2490	2580	1	RMS	2530.65	21.32	60	Pass	601
2580	3000	1	RMS	2692	-47.31	-25	Pass	601
3000	12000	1	RMS	11894.988	-49.06	-25	Pass	9000
12000 30-	26500	1	RMS	26453.997	-25.59	-25	Pass	14500
20- 10- 0- -10- (mg/g) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.000	2000	, 555		iency(MHz)	2.000 2.			20000

1.20. LTE Transmitter Spurious Emissions(NTNV)(Subtest:23, Channel:21100, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-54	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.26	-25	Pass	2985
30	1000	0.1	RMS	911.091	-58.95	-25	Pass	9700
1000	2490	1	RMS	2429.96	-46.9	-25	Pass	1490
2490	2580	1	RMS	2539.35	21.3	60	Pass	601
2580	3000	1	RMS	2672.4	-47.33	-25	Pass	601
3000	12000	1	RMS	11898.989	-48.96	-25	Pass	9000
12000 30-	26500	1	RMS	26457.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (mgp) -30- -30- -40- -50- -60- -70- -80-		~~~~			**\			~~~
0.009	2500 5000	7500		500 15000 iency(MHz)	17500 20	0000 22	500	26500

1.21. LTE Transmitter Spurious Emissions(NTNV)(Subtest:24, Channel:21400, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.77	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.66	-25	Pass	2985
30	1000	0.1	RMS	888.889	-59.2	-25	Pass	9700
1000	2490	1	RMS	2427.958	-46.93	-25	Pass	1490
2490	2580	1	RMS	2560.65	22.52	60	Pass	601
2580	3000	1	RMS	2666.8	-47.3	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.02	-25	Pass	9000
12000 30-	26500	1	RMS	26449.997	-25.6	-25	Pass	14500
20- 10- 0- -10- (Egp) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0,003	2300 3000	7500		iency(MHz)	17000 20	2000 22	000	20000

1.22. LTE Transmitter Spurious Emissions(NTNV)(Subtest:25, Channel:21400, Bandwidth:10, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-54.32	-25	Pass	601
0.15	30	0.01	RMS	0.15	-53.03	-25	Pass	2985
30	1000	0.1	RMS	924.892	-59.16	-25	Pass	9700
1000	2490	1	RMS	2488.999	-46.94	-25	Pass	1490
2490	2580	1	RMS	2569.35	21.95	60	Pass	601
2580	3000	1	RMS	2587	-42.73	-25	Pass	601
3000	12000	1	RMS	11896.989	-49.02	-25	Pass	9000
12000 30-	26500	1	RMS	26458.997	-25.63	-25	Pass	14500
20- 10- 0- -10- (mg/p) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	500 15000	17500 20	0000 22	500	26500
0.003	2550 5000	, 500		iency(MHz)	2,000 20	2000 22		20000

1.23. LTE Transmitter Spurious Emissions(NTNV)(Subtest:26, Channel:21400, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequer (MHz	псу	Freq	top uency IHz)		RBW (MHz)	Detector		•	Frequency (MHz)		Limit (dBm)	Verdict	Sweep Point
0	.009		0.15	5	0.001	RM	S	0.012		-53.95	-25	Pass	601
	0.15		30)	0.01	RMS			0.15	-52.47	-25	Pass	2985
	30		1000)	0.1	RM	S	876	.387	-59.15	-25	Pass	9700
,	1000		2490)	1	RM	S		2490	-46.97	-25	Pass	1490
2	2490		2580)	1	RM	S	256	0.65	21.7	60	Pass	601
2	2580		3000)	1	RM	S		2580	-47.3	-25	Pass	601
	3000		12000		1	RM		11899		-49.03	-25	Pass	9000
30-	2000		26500)	1	RM	S	26462	.997	-25.67	-25	Pass	14500
20- 10- 0- -10- 20- -30- -40- -50- -60- -80-	•		Nacar and				and the second second			**\b_\			~~~
0.0	09	2500	5000		7500	1000				17500 20	0000 22	500	26500
							Frequ	ency(MI	Hz)				

1.24. LTE Transmitter Spurious Emissions(NTNV)(Subtest:27, Channel:21400, Bandwidth:10, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.97	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.65	-25	Pass	2985
30	1000	0.1	RMS	922.992	-59.23	-25	Pass	9700
1000	2490	1	RMS	2426.958	-46.94	-25	Pass	1490
2490	2580	1	RMS	2569.35	20.83	60	Pass	601
2580	3000	1	RMS	2587	-45.06	-25	Pass	601
3000	12000	1	RMS	11900.989	-49.06	-25	Pass	9000
12000 30-	26500	1	RMS	26459.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (mg/g) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.009	2300 3000	7300		iency(MHz)	1/300 20	J000 22	500	20300

1.25. LTE Transmitter Spurious Emissions(NTNV)(Subtest:28, Channel:20825, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start quency MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.011	-54.39	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.1	-25	Pass	2985
30	1000	0.1	RMS	906.59	-59.17	-25	Pass	9700
1000	2490	1	RMS	2486.998	-44.91	-25	Pass	1490
2490	2580	1	RMS	2500.8	21.58	60	Pass	601
2580	3000	1	RMS		_	-25	Pass	601
3000	12000	1	RMS			-25	Pass	9000
	26500	1	RMS	26461.997	-25.66	-25	Pass	14500
20- 10- 0- 10- 20- 30- 40- 50- - 80-	2500 5000	7500	10000 12	2500 15000	17500 2	2000 22	500	26500
0.009	2500 5000	/500			1/500 20	0000 22	500	26500
	quency MHz) 0.009 0.15 30 1000 2490 2580 3000 12000 30- 10- 0- 10- 20- 30- 40- 50- 70-	quency (MHz) 0.009 0.15 0.15 0.15 30 30 1000 1000 2490 2490 2580 3000 3000 12000 12000 3000 1000 1000 26500 3000	quency MHz) Frequency (MHz) RBW (MHz) 0.009 0.15 0.001 0.15 30 0.01 30 1000 0.1 1000 2490 1 2490 2580 1 3000 12000 1 12000 26500 1 30- 20- 1 10- 0- 1 20- 30- 40- 50- 60- 70- 80- 80- 80-	quency MHz) Frequency (MHz) RBW (MHz) Detector 0.009 0.15 0.001 RMS 0.15 30 0.01 RMS 30 1000 0.1 RMS 1000 2490 1 RMS 2490 2580 1 RMS 3000 12000 1 RMS 12000 26500 1 RMS 30- 20- 10- 10- 10- 20- 30- 40- 50- 10- 10- 30-	quency MHz) Frequency (MHz) RBW (MHz) Detector (MHz) Frequency (MHz) 0.009 0.15 0.001 RMS 0.011 0.15 30 0.01 RMS 0.15 30 1000 0.1 RMS 906.59 1000 2490 1 RMS 2486.998 2490 2580 1 RMS 2500.8 2580 3000 1 RMS 2692.7 3000 12000 1 RMS 11899.989 12000 26500 1 RMS 26461.997 30- 20- 30- 4	quency MHz) Frequency (MHz) RBW (MHz) Detector (MHz) Frequency (MHz) Power (dBm) 0.009 0.15 0.001 RMS 0.011 -54.39 0.15 30 0.01 RMS 0.15 -51.1 30 1000 0.1 RMS 906.59 -59.17 1000 2490 1 RMS 2486.998 -44.91 2490 2580 1 RMS 2500.8 21.58 2580 3000 1 RMS 2692.7 -47.3 3000 12000 1 RMS 11899.989 -49 12000 26500 1 RMS 26461.997 -25.66 30-	quency MHz) Frequency (MHz) RBW (MHz) Detector (MHz) Frequency (MHz) Power (dBm) Limit (dBm) 0.009 0.15 0.001 RMS 0.011 -54.39 -25 0.15 30 0.01 RMS 0.15 -51.1 -25 30 1000 0.1 RMS 906.59 -59.17 -25 1000 2490 1 RMS 2486.998 -44.91 -25 2490 2580 1 RMS 2500.8 21.58 60 2580 3000 1 RMS 2692.7 -47.3 -25 3000 12000 1 RMS 11899.989 -49 -25 12000 26500 1 RMS 26461.997 -25.66 -25 30-	quency MHz) Frequency (MHz) RBW (MHz) Detector (MHz) Frequency (MHz) Power (dBm) Limit (dBm) Verdict (dBm) 0.009 0.15 0.001 RMS 0.011 -54.39 -25 Pass 0.15 30 0.01 RMS 0.15 -51.1 -25 Pass 30 1000 0.1 RMS 906.59 -59.17 -25 Pass 1000 2490 1 RMS 2486.998 -44.91 -25 Pass 2490 2580 1 RMS 2500.8 21.58 60 Pass 2580 3000 1 RMS 2692.7 -47.3 -25 Pass 12000 26500 1 RMS 26461.997 -25.66 -25 Pass 30-

1.26. LTE Transmitter Spurious Emissions(NTNV)(Subtest:29, Channel:20825, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

0.15 30 0.01 RMS 0.15 -53.11 -25 Pass 299 30 1000 0.1 RMS 903.99 -59.22 -25 Pass 970 1000 2490 1 RMS 2487.999 -32.76 -25 Pass 149 2490 2580 1 RMS 2514.15 22.28 60 Pass 60 2580 3000 1 RMS 2692.7 -47.26 -25 Pass 60 3000 12000 1 RMS 11896.989 -49.01 -25 Pass 900 12000 26500 1 RMS 26453.997 -25.63 -25 Pass 1450 30	Start Frequency (MHz)	У	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
30	0.00)9	0.15	0.001	RMS	0.009	-53.82	-25	Pass	601
1000	0.	15	30	0.01	RMS	0.1	-53.11	-25	Pass	2985
2490	;	30	1000	0.1	RMS	903.99	-59.22	-25	Pass	9700
2580 3000 1 RMS 2692.7 -47.26 -25 Pass 60 3000 12000 1 RMS 11896.989 -49.01 -25 Pass 900 12000 26500 1 RMS 26453.997 -25.63 -25 Pass 1450 30- 20- 10- 0- -10- -60- -70- -80-	100	00	2490	1	RMS	2487.999	-32.76	-25	Pass	1490
3000 12000 1 RMS 11896.989 -49.01 -25 Pass 900 12000 26500 1 RMS 26453.997 -25.63 -25 Pass 1450	249	90	2580	1	RMS	2514.1	5 22.28	60	Pass	601
12000 26500 1 RMS 26453.997 -25.63 -25 Pass 1450	258	30	3000	1	RMS	2692.7	-47.26	-25	Pass	601
30- 20- 10- 0- -10- -20- -30- -40- -50- -60- -70- -80-							_			9000
20- 10- 0- -10- -20- -30- -40- -50- -60- -70- -80-		00	26500	1	RMS	26453.997	-25.63	-25	Pass	14500
Frequency(MHz)	10- 0- -10- (mg/gB) -30- -30- -40- -50- -60- -70-) 2	500 5000	7500			17500 2	0000 22	500	26500

1.27. LTE Transmitter Spurious Emissions(NTNV)(Subtest:30, Channel:20825, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequenc (MHz)	су	Sto Frequ (MI	ency	RBW (MHz)	Detector	Freque (MHz	_	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.0	009		0.15	0.001	RMS	0	.009	-53.85	-25	Pass	601
0).15		30	0.01	RMS		0.15	-51.67	-25	Pass	2985
	30		1000	0.1	RMS	90	6.09	-59.24	-25	Pass	9700
10	000		2490	1	RMS	2487	.999	-44.9	-25	Pass	1490
	490		2580	1	RMS		8.00	20.88	60	Pass	601
	580		3000	1	RMS		69.6	-47.3	-25	Pass	601
	000		12000	1	RMS	11900		-49.06	-25	Pass	9000
120 30-	000		26500	1	RMS	26455	.997	-25.66	-25	Pass	14500
20- 10- 0- -10- (mgp) -30- -30- -40- -50- -60- -70- -80- 0.00	09	2500	5000	7500		500 150		17500 20	0000 22	500	26500
					Frequ	iency(MF	lz)				

1.28. LTE Transmitter Spurious Emissions(NTNV)(Subtest:31, Channel:20825, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.008	0.15	0.001	RMS	0.009	-54.11	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.68	-25	Pass	2985
30	1000	0.1	RMS	897.689	-59.29	-25	Pass	9700
1000	2490	1	RMS	2487.999	-33.34	-25	Pass	1490
2490	2580	1	RMS	2514.15	20.96	60	Pass	601
2580	_	1	RMS	2665.4	-47.31	-25	Pass	601
3000		1	RMS	11898.989	-48.96	-25	Pass	9000
12000	26500	1	RMS	26452.997	-25.61	-25	Pass	14500
20- 10- 0- -10- (mgp) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500			17500 20	0000 22	500	26500
			Frequ	iency(MHz)				

1.29. LTE Transmitter Spurious Emissions(NTNV)(Subtest:32, Channel:21100, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.34	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.91	-25	Pass	2985
30	1000	0.1	RMS	902.39	-59.1	-25	Pass	9700
1000	2490	1	RMS	2432.962	-46.92	-25	Pass	1490
2490	2580	1	RMS	2528.4	22.34	60	Pass	601
2580	3000	1	RMS	2694.1	-47.32	-25	Pass	601
3000	12000	1	RMS	11900.989	-49	-25	Pass	9000
12000 30-	26500	1	RMS	26454.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (mg/g) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	500 15000	17500 20	0000 22	500	26500
0.009	2300 3000	7500		iency(MHz)	17500 20	2000 22	500	20300

1.30. LTE Transmitter Spurious Emissions(NTNV)(Subtest:33, Channel:21100, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

	Start equency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
	0.009	0.15	0.001	RMS	0.009	-54.17	-25	Pass	601
	0.15	30	0.01	RMS	0.15	-51.72	-25	Pass	2985
	30	1000	0.1	RMS	898.39	-59.12	-25	Pass	9700
	1000	2490	1	RMS	2435.964	-46.91	-25	Pass	1490
	2490	2580	1	RMS	2541.75	22.23	60	Pass	601
	2580	3000	1	RMS	2668.2	-47.32	-25	Pass	601
	3000	12000	1	RMS	11897.989	-49.01	-25	Pass	9000
Level(dBm)	20- 10- 0- -10- -20- -30- -40- -50- -60- -70- -80- 0.009	2000	40		6000	8000	100	00	12000
				Frequ	iency(MHz)				

1.31. LTE Transmitter Spurious Emissions(NTNV)(Subtest:35, Channel:21100, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

1.32. LTE Transmitter Spurious Emissions(NTNV)(Subtest:36, Channel:21100, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-53.93	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.93	-25	Pass	2985
30	1000	0.1	RMS	912.991	-59.12	-25	Pass	9700
1000	2490	1	RMS	2488.999	-46.92	-25	Pass	1490
2490	2580	1	RMS	2541.6	21.26	60	Pass	601
2580	3000	1	RMS	2668.2	-47.32	-25	Pass	601
3000	12000	1	RMS	11898.989	-48.99	-25	Pass	9000
12000 30-	26500	1	RMS	26460.997	-25.66	-25	Pass	14500
20- 10- 0- -10- (mg/p) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	500 15000	17500 20	0000 22	500	26500
0.003	2300 3000	7500		iency(MHz)	27500 20	2000 22	550	20000

1.33. LTE Transmitter Spurious Emissions(NTNV)(Subtest:37, Channel:21375, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.69	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.3	-25	Pass	2985
30	1000	0.1	RMS	892.489	-59.23	-25	Pass	9700
1000	2490	1	RMS	2490	-46.89	-25	Pass	1490
2490	2580	1	RMS	2555.85	22.49	60	Pass	601
2580	3000	1	RMS	2582.8	-29.36	-25	Pass	601
3000	12000	1	RMS	11898.989	-49.07	-25	Pass	9000
12000 30-	26500	1	RMS	26452.997	-25.63	-25	Pass	14500
20- 10- 0- -10- (<u>wgb</u>) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 ency(MHz)	17500 20	0000 22	500	26500

1.34. LTE Transmitter Spurious Emissions(NTNV)(Subtest:38, Channel:21375, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

1.35. LTE Transmitter Spurious Emissions(NTNV)(Subtest:39, Channel:21375, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.67	-25	Pass	601
0.1	30	0.01	RMS	0.15	-52.22	-25	Pass	2985
30	1000	0.1	RMS	885.388	-59.16	-25	Pass	9700
1000	2490	1	RMS	2433.962	-46.97	-25	Pass	1490
2490	2580	1	RMS	2555.85	21.55	60	Pass	601
2580	3000	1	RMS	2582.8	-28.61	-25	Pass	601
3000	12000	1	RMS	11901.989	-48.98	-25	Pass	9000
12000	26500	1	RMS	26448.996	-25.65	-25	Pass	14500
20- 10- 0- -10- (Mg -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500			17500 20	0000 22	500	26500
			Frequ	iency(MHz)				

1.36. LTE Transmitter Spurious Emissions(NTNV)(Subtest:40, Channel:21375, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.49	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.5	-25	Pass	2985
30	1000	0.1	RMS	871.287	-59.1	-25	Pass	9700
1000	2490	1	RMS	2490	-46.98	-25	Pass	1490
2490	2580	1	RMS	2569.2	21.8	60	Pass	601
2580	3000	1	RMS	2596.1	-46.82	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.96	-25	Pass	9000
12000 30-	26500	1	RMS	26453.997	-25.66	-25	Pass	14500
20- 10- 0- -10- (\overline{\text{WBP}}\) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 ency(MHz)	17500 20	0000 22	500	26500

1.37. LTE Transmitter Spurious Emissions(NTNV)(Subtest:41, Channel:20850, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-54.48	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.18	-25	Pass	2985
30	1000	0.1	RMS	940.294	-59.12	-25	Pass	9700
1000	2490	1	RMS	2485.997	-46.75	-25	Pass	1490
2490	2580	1	RMS	2501.1	22.17	60	Pass	601
2580	3000	1	RMS	2670.3	-47.31	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.92	-25	Pass	9000
12000	26500	1	RMS	26460.997	-25.64	-25	Pass	14500
20- 10- 0- -10- (EMB) -20- -30- -40- -50- -60- -70- -80-							~~~	~~~
0.009	2500 5000	7500			17500 20	0000 22	500	26500
0- -10- (mgp) -20- -30- -40- -50- -60- -70- -80-	2500 5000	7500		2500 15000 lency(MHz)	17500 20	0000 22	500	21

1.38. LTE Transmitter Spurious Emissions(NTNV)(Subtest:42, Channel:20850, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.37	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.55	-25	Pass	2985
30	1000	0.1	RMS	890.889	-59.12	-25	Pass	9700
1000	2490	1	RMS	2482.995	-36.15	-25	Pass	1490
2490	2580	1	RMS	2518.95	22.21	60	Pass	601
2580	3000	1	RMS	2693.4	-47.31	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.01	-25	Pass	9000
12000 30-	26500	1	RMS	26453.997	-25.65	-25	Pass	14500
20- 10- 0- -10- (mg/g) -30- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.009	2300 3000	7500		iency(MHz)	17500 20	7000 22	500	20300

1.39. LTE Transmitter Spurious Emissions(NTNV)(Subtest:43, Channel:20850, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.75	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.04	-25	Pass	2985
30	1000	0.1	RMS	901.89	-59.2	-25	Pass	9700
1000	2490	1	RMS	2482.995	-46.47	-25	Pass	1490
2490	2580	1	RMS	2501.1	21.17	60	Pass	601
2580	3000	1	RMS	2668.9	-47.34	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.01	-25	Pass	9000
12000 30-	26500	1	RMS	26450.997	-25.69	-25	Pass	14500
20- 10- 0- -10- (mg)-20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
			Frequ	iency(MHz)				

1.40. LTE Transmitter Spurious Emissions(NTNV)(Subtest:44, Channel:20850, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequer (MHz	псу	Freq	top uency IHz)	,	RBW (MHz)	D	etector	Freque (MHz	_	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0	.009		0.1	5	0.001	R	MS	0	.009	-53.92	-25	Pass	601
	0.15		3	0	0.01	R	MS		0.16	-53.64	-25	Pass	2985
	30		100	0	0.1	R	MS	891	.489	-59.16	-25	Pass	9700
1	1000		249	0	1	R	MS	2482	.995	-35.81	-25	Pass	1490
2	2490		258	0	1	R	MS	251	8.95	21.39	60	Pass	601
2	2580		300	0	1	R	MS	26	70.3	-47.32	-25	Pass	601
	3000		1200		1	_	MS	11898		-48.94	-25	Pass	9000
30-	2000		2650	0	1	R	MS	26459	.997	-25.71	-25	Pass	14500
20- 10- 0- -10- (mg/gm) -20- -30- -40- -50- -70- -80-	•	2500	W.		7500	سمبر	000 10	500 15		17500 20			25500
0.0	009	2500	5000	0	7500	10				17500 20	0000 22	500	26500
-50 - -60 - -70 -	•	2500	5000	0	7500	10		2500 150 ency(Mi		17500 20	0000 22	500	2650

1.41. LTE Transmitter Spurious Emissions(NTNV)(Subtest:45, Channel:21100, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-54.3	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.29	-25	Pass	2985
30	1000	0.1	RMS	875.987	-59.32	-25	Pass	9700
1000	2490	1	RMS	2490	-41.2	-25	Pass	1490
2490	2580	1	RMS	2526.15	22.27	60	Pass	601
2580	3000	1	RMS	2665.4	-47.33	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.9	-25	Pass	9000
12000 30-	26500	1	RMS	26456.997	-25.65	-25	Pass	14500
20- 10- 0- -10- (\text{Wg}) -30- -30- -40- -50- -60- -70- -80-					*Market			~~~
0.009	2500 5000	7500		500 15000 iency(MHz)	17500 20	0000 22	500	26500

1.42. LTE Transmitter Spurious Emissions(NTNV)(Subtest:46, Channel:21100, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.72	-25	Pass	601
0.15	30	0.01	RMS	0.15	-51.99	-25	Pass	2985
30	1000	0.1	RMS	993.499	-59.17	-25	Pass	9700
1000	2490	1	RMS	2436.964	-46.93	-25	Pass	1490
2490	2580	1	RMS	2543.85	22.23	60	Pass	601
2580	3000	1	RMS	2580	-41.96	-25	Pass	601
3000	12000	1	RMS	11898.989	-49.04	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (\(\mathbb{R}\) 20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
0.003	2300 3000	7500		iency(MHz)	17500 20	2000 22	500	20300

1.43. LTE Transmitter Spurious Emissions(NTNV)(Subtest:47, Channel:21100, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-53.97	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.87	-25	Pass	2985
30	1000	0.1	RMS	894.789	-59.06	-25	Pass	9700
2490	2580	1	RMS	2526.15	21.33	60	Pass	601
2580	3000	1	RMS	2668.2	-47.33	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.99	-25	Pass	9000
12000 30-	26500	1	RMS	26453.997	-25.68	-25	Pass	14500
20- 10- 0- -10- (Mg -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		500 15000 iency(MHz)	17500 20	0000 22	500	26500

1.44. LTE Transmitter Spurious Emissions(NTNV)(Subtest:50, Channel:21100, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.01	-53.4	-25	Pass	601
0.15	30	0.01	RMS	0.15	-53.54	-25	Pass	2985
30	1000	0.1	RMS	892.689	-59.19	-25	Pass	9700
1000	2490	1	RMS	2437.965	-46.94	-25	Pass	1490
2490	2580	1	RMS	2544	21.43	60	Pass	601
2580	3000	1	RMS	2580	-43.83	-25	Pass	601
3000	12000	1	RMS	11899.989	-48.99	-25	Pass	9000
12000 30-	26500	1	RMS	26454.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (\(\bar{B}\) -20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500	10000 12	2500 15000	17500 20	0000 22	500	26500
			Frequ	iency(MHz)				

1.45. LTE Transmitter Spurious Emissions(NTNV)(Subtest:51, Channel:21350, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.011	-53.81	-25	Pass	601
0.15	30	0.01	RMS	0.15	-52.14	-25	Pass	2985
30	1000	0.1	RMS	916.891	-59.31	-25	Pass	9700
1000	2490	1	RMS	2432.962	-46.95	-25	Pass	1490
2490	2580	1	RMS	2551.05	22.3	60	Pass	601
2580	3000	1	RMS	2587	-30.58	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.01	-25	Pass	9000
12000 30-	26500	1	RMS	26451.997	-25.67	-25	Pass	14500
20- 10- 0- -10- (\overline{\text{BP}}-20- -30- -40- -50- -60- -70- -80- 0.009	2500 5000	7500		2500 15000 ency(MHz)	17500 20	0000 22	500	26500

1.46. LTE Transmitter Spurious Emissions(NTNV)(Subtest:52, Channel:21350, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Freq	tart uency IHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
	0.009	0.15	0.001	RMS	0.009	-52.29	-25	Pass	601
	0.15	30	0.01	RMS	0.15	-52.54	-25	Pass	2985
	30	1000	0.1	RMS	885.788	-59.22	-25	Pass	9700
	1000	2490	1	RMS	2487.999	-46.92	-25	Pass	1490
	2490	2580	1	RMS	2568.9	22.4	60	Pass	601
	2580	3000	1	RMS	2587	-47.12	-25	Pass	601
	3000	12000	1	RMS	11899.989	-48.95	-25	Pass	9000
	12000	26500	1	RMS	26460.997	-25.7	-25	Pass	14500
-1 -2 -3 -4 -5 -6 -7 -8	50 - 70 -	2500 5000	7500			17500 20	0000 22	500	26500
				Frequ	iency(MHz)				

1.47. LTE Transmitter Spurious Emissions(NTNV)(Subtest:53, Channel:21350, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

1.48. LTE Transmitter Spurious Emissions(NTNV)(Subtest:54, Channel:21350, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Start Frequency (MHz)	Stop Frequency (MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Limit (dBm)	Verdict	Sweep Point
0.009	0.15	0.001	RMS	0.009	-53.83	-25	Pass	601
0.15	30	0.01	RMS	0.16	-53.16	-25	Pass	2985
30	1000	0.1	RMS	923.392	-59.1	-25	Pass	9700
1000	2490	1	RMS	2437.965	-46.97	-25	Pass	1490
2490	2580	1	RMS	2568.9	21.8	60	Pass	601
2580	3000	1	RMS	2587	-47.18	-25	Pass	601
3000	12000	1	RMS	11899.989	-49.07	-25	Pass	9000
12000 30-	26500	1	RMS	26453.997	-25.69	-25	Pass	14500
20- 10- 0- -10- (\bullet \text{\tinx}\text{\ti}\text{\tex{\tex	2500 5000	7500			17500 20	0000 22	500	26500
Frequency(MHz)								

END