Open and Semi-open Integration

• Given data
$$(x_k, f(x_k))$$
 $k = 0,1,2,...,n$

• Estimate
$$I = \int_{a}^{b} f(x) dx$$

Open Integration:

$$a < x_0$$
 AND $b > x_n$

Semi-open integration:

$$a < x_0$$
 OR $b > x_n$

Semi-open Integration

We discuss only semi-open integration

• Assume $a = x_0$; $b = x_n + h$

- Trapezoidal rule:
 - Linear interpolation in the last segment
 - Integrate by extrapolating up to b

$$\widetilde{I}_{n+1} = \int_{h}^{2h} \left[f_{n-1} + x \frac{f_n - f_{n-1}}{h} \right] dx = \frac{h}{2} (3f_n - f_{n-1})$$

Semi-open Integration

• The estimate of *I* is, therefore,

$$\widetilde{I} = \sum_{i=1}^{n+1} \widetilde{I}_i = \frac{h}{2} \left(f_0 + 2 \sum_{i=1}^{n-1} f_i + f_n + 3 f_n - f_{n-1} \right)$$
$$= \frac{h}{2} \left(f_0 + 2 \sum_{i=1}^{n-2} f_i + f_{n-1} + 4 f_n \right)$$

• The error in the extrapolated segment is

$$E_{n+1} = \int_{h}^{2h} x(x-h) \frac{f''(\zeta^*)}{2} dx = \frac{5h^3 f''(\zeta)}{12}; \zeta \in (x_{n-1}, b)$$

(larger than that in the *interpolated segment* and opposite in sign)

Semi-open Integration

Similarly, quadratic interpolation results in

$$\widetilde{I}_{n+1} = \int_{h}^{2h} \left[f_{n-2} + (x+h) \frac{f_{n-1} - f_{n-2}}{h} + (x+h) x \frac{\frac{f_n - f_{n-1}}{h} - \frac{f_{n-1} - f_{n-2}}{h}}{2h} \right] dx$$

$$= \frac{h}{12} \left(5f_{n-2} - 16f_{n-1} + 23f_n \right)$$

The error in the extrapolated segment is

$$E_{n+1} = \int_{h}^{2h} x(x-h)(x-2h) \frac{f'''(\zeta^*)}{6} dx = \frac{9h^4 f'''(\zeta)}{24}; \zeta \in (x_{n-2}, b)$$

Trapezoidal Rule: Semi-open

The velocity of an object is measured (x-direction)

Time (s)	Speed (cm/s)
0	2.00
1	3.33
2	5.44
3	8.65
4	13.36
5	20.13
6	29.60

Estimate the location after 7 seconds (101.61 cm)

$$\widetilde{I} = \frac{h}{2} \left(f_0 + 2 \sum_{i=1}^{n-2} f_i + f_{n-1} + 4 f_n \right) = 101.05$$

Numerical Integration: Function given

- Estimate $I = \int_{a}^{b} f(x) dx$ for a known function
- One option: Generate $(x_k, f(x_k))$ k = 0,1,2,...,n and then use any of the methods discussed
- Since the function is known, we could choose any spacing, h, and generate the data
- Romberg integration would work well
- Other option: Since function evaluation may require large computational effort, can we "optimize" the number of points?

- We start with the question: If we evaluate the function at 2 points, what should be the location of these points such that the error is minimized?
- Let us write $\int_{a}^{b} f(x)dx \approx \widetilde{I} = c_0 f(x_0) + c_1 f(x_1)$
- Having two additional degrees of freedom, i.e., x_0 and x_1 , enables us to integrate polynomials of degree 0, 1, 2, and 3, exactly.

• For
$$f(x)=1$$
, $\int_{a}^{b} f(x)dx = c_0 f(x_0) + c_1 f(x_1) \Rightarrow c_0 + c_1 = b - a$

• For f(x)=x,

$$\int_{a}^{b} f(x)dx = c_{0}f(x_{0}) + c_{1}f(x_{1}) \Rightarrow c_{0}x_{0} + c_{1}x_{1} = \frac{b^{2} - a^{2}}{2}$$

• Similarly, using $f(x)=x^2$, and $f(x)=x^3$,

$$c_0 x_0^2 + c_1 x_1^2 = \frac{b^3 - a^3}{3}$$
$$c_0 x_0^3 + c_1 x_1^3 = \frac{b^4 - a^4}{4}$$

- These 4 equations could be solved to obtain the 4 parameters: c_0, c_1, x_0, x_1
- However, it is more convenient to transform the variable, from x to z, such that the domain (a,b) becomes (-1,1):

$$z = \frac{2}{b-a} \left(x - \frac{b+a}{2} \right)$$

$$\Rightarrow \int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f(z) dz$$

$$I_{x} = \frac{b-a}{2} I_{z}$$

• In subsequent analysis, we find I_z , not I_x

The four equations then become:

$$c_0 + c_1 = 2$$
; $c_0 z_0 + c_1 z_1 = 0$; $c_0 z_0^2 + c_1 z_1^2 = \frac{2}{3}$; $c_0 z_0^3 + c_1 z_1^3 = 0$

resulting in

$$z_0 = -\frac{1}{\sqrt{3}}; z_1 = \frac{1}{\sqrt{3}}; c_0 = 1; c_1 = 1$$

• This technique is known as Gauss Quadrature (Numerical evaluation of integration is known as quadrature)

Gauss Quadrature

- With 2 quadrature points, it will be exact for any cubic polynomial, and the error is likely to be proportional to the 4^{th} derivative of f(z)
- An estimate of the error may be obtained by using $f(z)=z^4$ (4th derivative = 24) as

$$E = I - \widetilde{I} = \left[\frac{z^{5}}{5}\right]_{-1}^{1} - \left(\left[-\frac{1}{\sqrt{3}}\right]^{4} + \left[\frac{1}{\sqrt{3}}\right]^{4}\right) = \frac{8}{45}$$

resulting in

$$E = \frac{f^{\prime\prime}(\zeta)}{135}$$

$$f(x) = 1 + 2x + 3x^2 + 4x^3$$

Gauss Quadrature: General Form

- Let there be n+1 quadrature points: $z_0, z_1, ... z_n$
- We have 2n+2 adjustable parameters
- We should be able to exactly integrate all polynomials of degree 2n+1 (and lower)
- All these polynomials must necessarily match the function values at the $(n+1) z_i$'s
- We may write these polynomials using a combination of the Lagrange polynomials, L_i , and the Newton polynomial, $\prod_{i=1}^{n} (z-z_i)$

Gauss Quadrature: General Form

• With $p_n(z)$ being an arbitrary polynomial of degree n, we write the *exactly integrable*

$$f_{2n+1}(z) = \sum_{i=0}^{n} L_i(z) f(z_i) + p_n(z) \prod_{i=0}^{n} (z - z_i)$$

- The first term on the RHS is the Lagrange interpolating polynomial, of degree n.
- Clearly, it matches the function at grid points, since the second term is zero at all z_i 's.
- The second term on the RHS is a polynomial of degree 2n+1

Gauss Quadrature: General Form

• If f_{2n+1} is exactly integrable by a quadrature scheme using n+1 Gauss points

$$\int_{-1}^{1} f_{2n+1}(z)dz = \sum_{i=0}^{n} c_{i} f(z_{i})$$

$$= \sum_{i=0}^{n} \int_{-1}^{1} L_{i}(z)dz f(z_{i}) + \int_{-1}^{1} p_{n}(z) \prod_{i=0}^{n} (z - z_{i})dz = \sum_{i=0}^{n} c_{i} f(z_{i})$$

• This is achieved by letting $c_i = \int_{-1}^{L_i(z)dz}$ and choosing the z_i 's as the zeroes of an n+1th degree polynomial which is orthogonal to ALL polynomials of degree n: Legendre polynomial