Lecture 1: Inner product, Orthogonality, Vector/Matrix norm

School of Mathematical Sciences, Xiamen University

- 1. Inner product on a linear space $\mathbb V$ over a number field $\mathbb F$ $(\mathbb C$ or $\mathbb R)$
 - Definition: A function $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{F}$ is called an *inner product*, if it satisfies the following three conditions $(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{V}, \forall \alpha \in \mathbb{F})$:
 (1) Conjugate symmetry:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

(2) Positive definiteness:

$$\langle \mathbf{x}, \mathbf{x} \rangle \ge 0, \quad \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$$

(3) Linearity in the first variable:

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle, \quad \langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$

Example: the standard inner product on the space $\mathbb{V} = \mathbb{C}^m$:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^m, \quad \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^* \mathbf{x} = \sum_{i=1}^m x_i \overline{y}_i.$$

Example: the **A**-inner product on the space $\mathbb{V} = \mathbb{C}^m$:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^m, \quad \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^* \mathbf{A} \mathbf{x},$$

where A is a given Hermitian positive definite matrix.

2. Orthogonality

- Orthogonality is a mathematical concept with respect to a given inner product $\langle \cdot, \cdot \rangle$.
 - (1) Two vectors \mathbf{x} and \mathbf{y} are called *orthogonal*: if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
 - (2) Two sets of vectors \mathcal{X} and \mathcal{Y} are called orthogonal: if $\forall \mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
 - (3) A set of nonzero vectors S is orthogonal if $\forall \mathbf{x}, \mathbf{y} \in S$ and $\mathbf{x} \neq \mathbf{y}, \langle \mathbf{x}, \mathbf{y} \rangle = 0$; if further $\forall \mathbf{x} \in S, \langle \mathbf{x}, \mathbf{x} \rangle = 1, S$ is orthonormal.

Proposition 1

The vectors in an orthogonal set S are linearly independent.

2.1. Orthogonal components of a vector

• Inner products can be used to decompose arbitrary vectors into orthogonal components. Given an *orthonormal* set $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ and an arbitrary vector \mathbf{v} , let

$$\mathbf{r} = \mathbf{v} - \langle \mathbf{v}, \mathbf{q}_1 \rangle \mathbf{q}_1 - \langle \mathbf{v}, \mathbf{q}_2 \rangle \mathbf{q}_2 - \cdots - \langle \mathbf{v}, \mathbf{q}_n \rangle \mathbf{q}_n.$$

Obviously,

$$\mathbf{r} \in \operatorname{span}\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}^{\perp}.$$

Thus we see that \mathbf{v} can be decomposed into n+1 orthogonal components:

$$\mathbf{v} = \mathbf{r} + \langle \mathbf{v}, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{v}, \mathbf{q}_2 \rangle \mathbf{q}_2 + \dots + \langle \mathbf{v}, \mathbf{q}_n \rangle \mathbf{q}_n.$$

We call $\langle \mathbf{v}, \mathbf{q}_i \rangle \mathbf{q}_i$ the part of \mathbf{v} in the direction of \mathbf{q}_i , and \mathbf{r} the part of \mathbf{v} orthogonal to the subspace span $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$.

Exercise: Write the expression for \mathbf{v} when the set $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ is only orthogonal.

• Cauchy–Schwarz inequality: For any given inner product $\langle \cdot, \cdot \rangle$,

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

The equality holds if and only if \mathbf{x} and \mathbf{y} are linearly dependent.

Exercise: Prove the inequality. Hint: write

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{y}, \mathbf{y} \rangle} \mathbf{y} + \mathbf{z}.$$

Then $\langle \mathbf{z}, \mathbf{y} \rangle = 0$. Consider $\langle \mathbf{x}, \mathbf{x} \rangle$.

Application: For any Hermitian positive definite matrix A,

$$|\mathbf{y}^* \mathbf{A} \mathbf{x}|^2 \le (\mathbf{x}^* \mathbf{A} \mathbf{x}) (\mathbf{y}^* \mathbf{A} \mathbf{y}).$$

- **3. Norm** on a linear space \mathbb{V} over a number field \mathbb{F} (\mathbb{C} or \mathbb{R})
 - Definition: A function $\|\cdot\|: \mathbb{V} \to \mathbb{R}$ is called a *norm* if it satisfies the following three conditions $(\forall \mathbf{x}, \mathbf{y} \in \mathbb{V} \text{ and } \forall \alpha \in \mathbb{F})$:
 - (1) Nonnegativity:

$$\|\mathbf{x}\| \ge 0, \quad \|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$$

(2) Positive homogeneity:

$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$

(3) Triangle inequality:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

Exercise: Show that any norm is continuous.

• More on metric, norm, and inner product

(click!)

Exercise: For any given inner product $\langle \cdot, \cdot \rangle$, let $\| \cdot \| = \sqrt{\langle \cdot, \cdot \rangle}$.

- (1) Prove that the function $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ is a norm.
- (2) Prove the parallelogram law

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

(3) For a set of n orthogonal (with respect to the inner product $\langle \cdot, \cdot \rangle$) vectors $\{\mathbf{x}_i\}$, prove that

$$\left\| \sum_{i=1}^n \mathbf{x}_i \right\|^2 = \sum_{i=1}^n \|\mathbf{x}_i\|^2.$$

The function $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ is called the norm *induced* by the inner product $\langle \cdot, \cdot \rangle$. Using this norm, we can write the Cauchy–Schwarz inequality as

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|.$$

• Geometric interpretation of the standard inner product and its induced norm: For simplicity, we will consider vectors in \mathbb{R}^2 . Let $\|\cdot\|$ be the norm induced by the standard inner product $\langle\cdot,\cdot\rangle$, i.e.,

$$\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}, \text{ then } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta,$$

where $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ are the Euclidean length of \mathbf{u} and \mathbf{v} , and θ $(0 \le \theta \le \pi)$ is the angle between \mathbf{u} and \mathbf{v} .

• Convergence of a sequence $\{\mathbf{x}_k\} \subset \mathbb{V} \colon \mathbf{x}_k \to \mathbf{x}$ We say \mathbf{x}_k converges to \mathbf{x} if $\lim_{k \to \infty} \|\mathbf{x}_k - \mathbf{x}\| = 0$. • Equivalence of norms: All norms on a finite-dimensional linear space are *equivalent* in the following sense:

Theorem 2

For each pair of norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ on a finite-dimensional linear space \mathbb{V} , there exist positive constants a>0 and b>0 (depending only on the norms) such that

$$a \le \frac{\|\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\beta}} \le b \quad \forall \mathbf{x} (\ne \mathbf{0}) \in \mathbb{V}.$$

Hint: $\forall \mathbf{x} = \sum_i x_i \mathbf{v}_i$, where $\{\mathbf{v}_i\}$ is a basis of \mathbb{V} , $\|\mathbf{x}\| = \sum_i |x_i|$ is a norm on \mathbb{V} . By $\|\mathbf{x}\|_{\alpha} = \|\sum_i x_i \mathbf{v}_i\|_{\alpha} \le \|\mathbf{x}\| \cdot \max_i \|\mathbf{v}_i\|_{\alpha}$, we know $\|\cdot\|_{\alpha}$ is a continuous function with respect to $\|\cdot\|$, which attains its minimum c and maximum C on the unit sphere $\{\mathbf{x} \in \mathbb{V}, \|\mathbf{x}\| = 1\}$ (because it is a compact set). Then, $\forall \mathbf{x} \in \mathbb{V}$, $c \|\mathbf{x}\| \le \|\mathbf{x}\|_{\alpha} \le C \|\mathbf{x}\|$.

3.1. Vector norms on \mathbb{C}^m

• ℓ_p -norm

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{m} |x_{i}|,$$

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{m} |x_{i}|^{2}\right)^{1/2} = \sqrt{\mathbf{x}^{*}\mathbf{x}},$$

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le m} |x_{i}|,$$

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{m} |x_{i}|^{p}\right)^{1/p}, \quad (1 \le p < \infty)$$

• Inequalities:

$$\|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1} \leq \sqrt{m} \|\mathbf{x}\|_{2}$$

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{m} \|\mathbf{x}\|_{\infty}, \quad \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_1 \le m \|\mathbf{x}\|_{\infty}.$$

• Weighted norm

Let $\|\cdot\|$ denote any norm on \mathbb{C}^m . Suppose a diagonal matrix $\mathbf{W} = \operatorname{diag}\{w_1, \dots, w_m\}, w_i \neq 0$. Then

$$\|\mathbf{x}\|_{\mathbf{W}} = \|\mathbf{W}\mathbf{x}\|$$

is a norm, called weighted norm. For example, weighted 2-norm

$$\|\mathbf{x}\|_{\mathbf{W}} = \|\mathbf{W}\mathbf{x}\|_{2} = \left(\sum_{i=1}^{m} |w_{i}x_{i}|^{2}\right)^{1/2}.$$

• Dual norm

Let $\|\cdot\|$ denote any norm on \mathbb{C}^m . The corresponding dual norm $\|\cdot\|'$ (with respect to an inner product $\langle\cdot,\cdot\rangle$) is defined by

$$\|\mathbf{x}\|' = \sup_{\mathbf{y} \in \mathbb{C}^m, \|\mathbf{y}\| = 1} |\langle \mathbf{x}, \mathbf{y} \rangle|.$$

3.2. Matrix norms on $\mathbb{C}^{m \times n}$

• Frobenius norm: $\forall \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{C}^{m \times n}$, define

$$\|\mathbf{A}\|_{\mathrm{F}} := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = \left(\sum_{j=1}^{n} \|\mathbf{a}_{j}\|_{2}^{2}\right)^{1/2}$$

or

$$\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\mathrm{tr}(\mathbf{A}^*\mathbf{A})} = \sqrt{\mathrm{tr}(\mathbf{A}\mathbf{A}^*)}.$$

• Max norm:

$$\|\mathbf{A}\|_{\max} := \max_{i,j} |a_{ij}|.$$

• Induced matrix norm (operator norm): $\forall \mathbf{A} \in \mathbb{C}^{m \times n}$, define

$$\|\mathbf{A}\|_{\alpha,\beta} := \sup_{\substack{\mathbf{x} \in \mathbb{C}^n \\ \mathbf{x} \neq \mathbf{0}}} \frac{\|\mathbf{A}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\beta}} = \sup_{\substack{\mathbf{x} \in \mathbb{C}^n \\ \|\mathbf{x}\|_{\beta} = 1}} \|\mathbf{A}\mathbf{x}\|_{\alpha} = \sup_{\substack{\mathbf{x} \in \mathbb{C}^n \\ \|\mathbf{x}\|_{\beta} \leq 1}} \|\mathbf{A}\mathbf{x}\|_{\alpha},$$

where $\|\cdot\|_{\alpha}$ is a norm on \mathbb{C}^m and $\|\cdot\|_{\beta}$ is a norm on \mathbb{C}^n . We say that $\|\cdot\|_{\alpha,\beta}$ is the matrix norm induced by $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$.

Exercise: $\forall \mathbf{x} \in \mathbb{C}^n$, prove that $\|\mathbf{A}\mathbf{x}\|_{\alpha} \leq \|\mathbf{A}\|_{\alpha,\beta} \|\mathbf{x}\|_{\beta}$.

Exercise: Let $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{B} \in \mathbb{C}^{n \times r}$ and let $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$, and $\|\cdot\|_{\gamma}$ be norms on \mathbb{C}^m , \mathbb{C}^n , and \mathbb{C}^r , respectively. Prove the induced matrix norms $\|\cdot\|_{\alpha,\gamma}$, $\|\cdot\|_{\alpha,\beta}$, and $\|\cdot\|_{\beta,\gamma}$ satisfy

$$\|\mathbf{A}\mathbf{B}\|_{\alpha,\gamma} \leq \|\mathbf{A}\|_{\alpha,\beta} \|\mathbf{B}\|_{\beta,\gamma}.$$

Exercise: Prove that $\|\mathbf{A}\|_{\infty,1} = \max_{i,j} |a_{ij}| = \|\mathbf{A}\|_{\max}$

- The Frobenius norm $\|\cdot\|_{F}$ on $\mathbb{C}^{m\times n}$ is not induced by norms on \mathbb{C}^{m} and \mathbb{C}^{n} . See the following references,
 - [1]. Vijaya-Sekhar Chellaboina and Wassim M. Haddad Is the Frobenius matrix norm induced? IEEE Trans. Automat. Control 40 (1995), no. 12, 2137–2139.
 - [2]. Djouadi, Seddik M.

Comment on: "Is the Frobenius matrix norm induced?" With a reply by Chellaboina and Haddad.

IEEE Trans. Automat. Control 48 (2003), no. 3, 518–520.

• Induced matrix p-norm of $\mathbf{A} \in \mathbb{C}^{m \times n}$: For $p \in [1, +\infty]$,

$$\|\mathbf{A}\|_p := \|\mathbf{A}\|_{p,p} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_p = 1} \|\mathbf{A}\mathbf{x}\|_p.$$

Example: p-norm of a diagonal matrix $\mathbf{D} = \text{diag}\{d_1, \dots, d_m\}$

$$\|\mathbf{D}\|_p = \max_{1 \le i \le m} |d_i|$$

Example: $1, 2, \infty$ -norm

$$\|\mathbf{A}\|_{1} = \max_{j} \sum_{i} |a_{ij}|, \quad \|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$
$$\|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{*}\mathbf{A})} = \sqrt{\lambda_{\max}(\mathbf{A}\mathbf{A}^{*})} \leq \|\mathbf{A}\|_{F}$$

The norm $\|\cdot\|_2$ on $\mathbb{C}^{m\times n}$ is also called the spectral norm.

Inequalities: $\|\mathbf{A}\|_{\infty} \leq \sqrt{n} \|\mathbf{A}\|_{2}$, $\|\mathbf{A}\|_{2} \leq \sqrt{m} \|\mathbf{A}\|_{\infty}$.

• Matlab: norm for $1, 2, \infty$ -norm

Example: $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$

1-norm:

$$\|\mathbf{A}\|_1 = 4$$

2-norm:

$$\|\mathbf{A}\|_2 \approx 2.9208$$

∞-norm:

$$\|\mathbf{A}\|_{\infty} = 3$$

3.3. Unitary invariance of $\|\cdot\|_2$ and $\|\cdot\|_F$: $\forall \mathbf{A} \in \mathbb{C}^{m \times n}$

• If **P** has orthonormal columns, i.e.,

$$\mathbf{P} \in \mathbb{C}^{p \times m}, \quad p \ge m, \quad \mathbf{P}^* \mathbf{P} = \mathbf{I}_m,$$

then

$$\|\mathbf{P}\mathbf{A}\|_2 = \|\mathbf{A}\|_2, \quad \|\mathbf{P}\mathbf{A}\|_F = \|\mathbf{A}\|_F.$$

• If **Q** has orthonormal rows, i.e.,

$$\mathbf{Q} \in \mathbb{C}^{n \times q}, \quad n \le q, \quad \mathbf{Q}\mathbf{Q}^* = \mathbf{I}_n,$$

then

$$\|\mathbf{AQ}\|_2 = \|\mathbf{A}\|_2, \quad \|\mathbf{AQ}\|_F = \|\mathbf{A}\|_F.$$

4. Unitary matrix

• For $\mathbf{Q} \in \mathbb{C}^{m \times m}$, if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e., $\mathbf{Q}^* \mathbf{Q} = \mathbf{I}$, \mathbf{Q} is called *unitary* (or *orthogonal* in the real case).

Exercise: Let $\mathbf{Q} \in \mathbb{C}^{m \times m}$ be a unitary matrix. Prove

$$\|\mathbf{Q}\|_2 = 1, \quad \|\mathbf{Q}\|_{\mathrm{F}} = \sqrt{m}.$$

- A unitary matrix has both orthonormal rows and orthonormal columns.
- The columns of a unitary matrix form an orthonormal basis of \mathbb{C}^m .