Introduction

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

©Liming Feng. Do not distribute without permission of the author

Derivatives

- Pricing derivative securities (e.g., options)
- Derivative: a contract whose value depends on the values of other basic underlying assets/variables
- End of June 2014, global over-the-counter derivatives market size measured by notional amount outstanding was about \$691.5 trillion (Bank for International Settlements)
- On Thursday 12/5/2013, a total of 3,702,255 contracts were traded on Chicago Board Options Exchange

Market size

Accurate pricing and efficient risk management of derivatives important

Objectives of the course

- Probabilistic modeling: modeling dynamics of asset prices; deriving values of derivative securities
- Numerical methods: connection to numerical solution of PDEs, monte carlo simulation, Fourier transform (theoretical foundations for IE 525)
- Computer implementation: C/C++ implementation of the above methods

Basics of derivative securities

Comprehensive coverage in Fin 513

Forward contracts

- Forward contract: an agreement to buy or sell an asset at a future time T (maturity) for a certain price K (delivery price)
- Long forward: agree to buy, payoff at maturity $S_T K$; short forward: agree to sell, payoff $K S_T$, where S_T is the asset price at maturity
- Forward price: the delivery price that makes the forward contract zero cost initially (note the difference between forward price and the value of an existing forward contract)

Forward payoff

• Payoffs of long and short forward positions

Options

- Call option: gives the holder the right but not the obligation to buy an asset for price K (strike price) by a future time T
- Put option: gives the right to sell
- Long call: buy a call, payoff function $(S K)^+ := \max(0, S K)$; long put: buy a put, payoff $(K S)^+$

Exercise styles

- European: can be exercised at maturity only; e.g., S&P 100 index option XEO on CBOE
- American: can be exercised at any time before maturity; e.g., most stock options, S&P 100 index option OEX on CBOE
 - American option = European option + right to exercise early
 - American option price ≥ European option price
- Bermudan: can be exercised at any time in a discrete set, e.g., at the end of each week for a weekly monitored Bermudan option

Intrinsic value

• Intrinsic value of an option at $t \leq T$

call:
$$(S_t - K)^+$$
, put: $(K - S_t)^+$

- American option value ≥ its intrinsic value at any time t ≤ T:
 time value = option value intrinsic value
- At time $t \leq T$, an option is
 - in the money if intrinsic value > 0
 - out of the money if $S_t > K$ for a put (or $S_t < K$ for a call)
 - at the money if $S_t = K$

Payoff structures

- Plain vanilla options vs exotic options with nonstandard payoffs
- Knock-out barrier options: the option is terminated whenever the underlying asset price crosses a lower or upper barrier
- Lookback options: payoff depends on the maximum or minimum asset price
- Asian options: payoff depends on average asset price

Types of derivative traders

- Hedgers use derivatives to reduce risk
- Speculators use derivatives to bet on the future direction of a market variable
- Arbitrageurs look for risk free profit
- Market makers maintain a two way market, execute trades for others and earn bid/ask spread

Bid: price at which the market maker is willing to buy Ask: price at which the market maker is willing to sell

An example of speculation

Example (speculation using call options)

A trader believes that IBM stock price will increase in a month. Current IBM stock price is \$100. The investor decides to buy 1000 call options with one month maturity and strike price \$105. The call option price is \$1.5

	Initial investment \$1500	
	$S_T = 90$	$S_T = 110$
Buy 15 shares	15(90-100)=-150	15(110 - 100) = 150
Return	-10%	10%
Buy 1000 calls	-1500	1000(110 - 105) - 1500 = 3500
Return	-100%	3500/1500 = 233%

Leverage: use of options magnifies gain/loss

An example of arbitrage

Example (arbitrage)

The current price of a stock is \$1 per share. A call option to buy the stock in 1 year at \$0.8 per share is traded at \$2 per call. \$1 deposited for 1 year will earn \$0.05

- Arbitrage: a risk free trading strategy which requires no initial cost and yields non-negative payoff with probability one and strictly positive payoff with positive probability
- Arbitrageurs buy low sell high: sell call, buy stock, deposit 1
 - $S_T > 0.8$: sell stock to call option holder, gain \$1.05+0.8
 - $S_T \le 0.8$: option not exercised, gain $$1.05 + S_T$
 - Market response: share price increases, call price decreases
 - Arbitrage opportunities are very short-lived in liquid markets
- In pricing derivatives, we assume no arbitrage

No arbitrage pricing

Assumptions

- No transaction costs
- No trading restrictions (such as short selling)
- No tax issues
- Market participants can borrow and lend at the same risk free interest rate
- No arbitrage

Determine forward price

- Forward price: THE delivery price K so that the value of the forward contract is 0
- Suppose the asset provides a known yield at rate q per year (continuous compounding): one unit of the asset at time 0 grows to e^{qT} units at T
- Suppose the risk free interest rate is r per year (continuous compounding)
- Forward price for the delivery of one unit of the asset at T:

$$F_0 = S_0 e^{(r-q)T}$$

• Suppose $F_0 > S_0 e^{(r-q)T}$, consider the following trading strategy

At time 0

- Buy e^{-qT} unit of the asset
- Short forward (to sell one unit of the asset at T)
- Borrow $e^{-qT}S_0$ at rate r

At time T, e^{-qT} unit of the asset grows into one unit

- Forward contract: sell the asset and receive F_0
- Repay the loan: $e^{(r-q)T}S_0$

A costless, riskless income $F_0 - e^{(r-q)T}S_0 > 0$, arbitrage!

• Suppose $F_0 < S_0 e^{(r-q)T}$, consider the following trading strategy

At time 0

- Long forward (to buy one unit of the asset at T)
- Short sell e^{-qT} units of the asset and receive S_0e^{-qT}
- Deposit S_0e^{-qT} at rate r

At time T

- Deposit account: get $e^{(r-q)T}S_0$
- Forward contract: buy the asset for F_0
- Short selling account: return one unit of the asset

A costless, riskless income $e^{(r-q)T}S_0 - F_0 > 0$, arbitrage!

Valuing forward contracts

- Value of a forward contract with time to maturity T and delivery price K
- Decompose the (long) forward payoff
 - Payoff of the long forward contract at maturity

$$S_T - K = (S_T - F_0) + (F_0 - K)$$

- A forward contract with forward price F_0 as the delivery price
- A contract with fixed payoff $F_0 K$ at time T
- Value of the forward contract: discount the payoff as if the asset price at maturity would be the forward price

$$V_0 = e^{-rT}(F_0 - K) = S_0 e^{-qT} - K e^{-rT}$$

European put-call parity

• Long forward = long call + short put:

$$S_T - K = (S_T - K)^+ - (K - S_T)^+$$

Value of long forward contract $V_0 = c - p = S_0 e^{-qT} - K e^{-rT}$

 Prices of a European put and a European call with the same maturity T and strike price K on an asset with continuous yield q satisfy the European put-call parity:

$$c + Ke^{-rT} = p + S_0e^{-qT}$$

• Arbitrage opportunities exist if $c + Ke^{-rT} > p + S_0e^{-qT}$: sell 1 call, buy 1 put, buy e^{-qT} unit of the underlying, borrow if necessary (reverse the strategy if $c + Ke^{-rT})$

Bounds for call option price

European call option price bounds (asset with continuous yield q)

$$(S_0 e^{-qT} - K e^{-rT})^+ \le c \le S_0 e^{-qT}$$

• **Upper bound**: European call option payoff $(S_T - K)^+ \leq S_T$.

$$c \leq S_0 e^{-qT}$$

Arbitrage opportunities exist otherwise (if $c > S_0 e^{-qT}$, sell 1 call, buy e^{-qT} unit of the underlying, deposit)

Low bound: from put-call parity

$$c = p + S_0 e^{-qT} - K e^{-rT}$$
$$\geq S_0 e^{-qT} - K e^{-rT}$$

Call price is non-negative: $c \ge 0$. Therefore,

$$c \geq (S_0 e^{-qT} - K e^{-rT})^+$$

American call on an asset with continuous yield q

$$(S_0e^{-qt}-Ke^{-rt})^+ \leq C \leq S_0, \quad \forall \ 0 \leq t \leq T$$

Bounds for put option price

• European put option price bounds

$$(Ke^{-rT} - S_0e^{-qT})^+ \le p \le Ke^{-rT}$$

- **Upper bound**: European put option payoff $(K S_T)^+ \le K$; **lower bound**: $p = c + Ke^{-rT} S_0e^{-qT} \ge Ke^{-rT} S_0e^{-qT}$
- American put on an asset with continuous yield q

$$(Ke^{-rt} - S_0e^{-qt})^+ \le P \le K, \quad \forall \ 0 \le t \le T$$

American calls on assets with no income

- Early exercise never optimal: suppose $S_0 > K$
- Exercise the call to buy the share and hold the share:

Better to exercise later to delay the cash payment K

• Exercise the call to buy the share, sell the share immediately, receive $S_0 - K$:

Better to sell the call

$$C \ge (S_0 - Ke^{-rT})^+ > S_0 - K$$

- Early exercise is not optimal: American call value = European call value
- Positive time value at any time before maturity

asset with no income

American calls on assets with income

 May be optimal to early exercise an American call on an asset paying income

asset with income

• Call should be exercised when $S \ge A$; early exercise boundary: collection of A's for varying option maturities

American puts

- Early exercise may be optimal for American puts
- When the underlying asset price is close to zero, early exercise is optimal
 - Exercise the put and receive K immediately
 - Exercise later to receive at most *K*
- ullet American put should be exercised when S < A

Two-step binomial model

• Two-step binomial model over time period $[0, T = 2\delta]$: asset price rises with probability p and drops with probability 1 - p, 0 , <math>0 < d < u

• Asset price process: $S = \{S_0, S_\delta, S_{2\delta}\}$, risk free investment: $1 \Rightarrow e^{r\delta} \Rightarrow e^{2r\delta}$

- Suppose the asset pays a continuous yield at rate q. The model is arbitrage free iff $d < e^{(r-q)\delta} < u$
- Price a European derivative with payoff f at maturity

No arbitrage pricing

- Construct a replicating portfolio by trading the underlying asset and risk free investment
- Replicating portfolio
 - Time 0: long Δ_0 units, borrow Ψ_0 (cost f_0)
 - Asset price increases at time δ : long Δ_u , borrow Ψ_u
 - Asset price decreases at time δ : long Δ_d , borrow Ψ_d
- Select Δ's, Ψ's

Time 2δ : value of the replicating portfolio = derivative payoff

• **Derivative price** = f_0 to avoid arbitrage

• Asset price increases at time δ :

derivative payoff = portfolio payoff
$$f_{uu} = \Delta_u \cdot e^{q\delta} \cdot u^2 S_0 - \Psi_u e^{r\delta}$$

$$f_{ud} = \Delta_u \cdot e^{q\delta} \cdot u dS_0 - \Psi_u e^{r\delta}$$

$$\Delta_{u} = \frac{f_{uu} - f_{ud}}{uS_{0}e^{q\delta}(u - d)}, \quad \Psi_{u} = \frac{df_{uu} - uf_{ud}}{e^{r\delta}(u - d)}$$

Portfolio value (amount needed to replicate derivative payoff)

$$f_u = \Delta_u \cdot uS_0 - \Psi_u = e^{-r\delta} \left[p^* f_{uu} + (1 - p^*) f_{ud} \right]$$

where

$$p^* = \frac{e^{(r-q)\delta} - d}{u - d}$$

• Asset price decreases at time δ :

derivative payoff = portfolio payoff
$$f_{du} = \Delta_d \cdot e^{q\delta} \cdot udS_0 - \Psi_d e^{r\delta}$$

$$f_{dd} = \Delta_d \cdot e^{q\delta} \cdot d^2S_0 - \Psi_d e^{r\delta}$$

$$\Delta_d = \frac{f_{du} - f_{dd}}{dS_0 e^{q\delta} (u - d)}, \quad \Psi_d = \frac{df_{du} - uf_{dd}}{e^{r\delta} (u - d)}$$

Portfolio value (amount needed to replicate derivative payoff)

$$f_d = \Delta_d \cdot dS_0 - \Psi_d = e^{-r\delta} [p^* f_{du} + (1 - p^*) f_{dd}]$$

• *At time 0*:

amount needed at
$$\delta = \text{portfolio payoff}$$

$$f_u = \Delta_0 \cdot e^{q\delta} \cdot uS_0 - \Psi_0 e^{r\delta}$$

$$f_d = \Delta_0 \cdot e^{q\delta} \cdot dS_0 - \Psi_0 e^{r\delta}$$

$$\Delta_0 = \frac{f_u - f_d}{S_0 e^{q\delta} (u - d)}, \quad \Psi_0 = \frac{df_u - uf_d}{e^{r\delta} (u - d)}$$

Portfolio value (amount needed to replicate derivative payoff)

$$f_0 = \Delta_0 S_0 - \Psi_0 = e^{-r\delta} \left[p^* f_u + (1 - p^*) f_d \right]$$

Backward induction

• Starting from derivative payoff

$$f_{uu}, f_{ud}, f_{du}, f_{dd} \Rightarrow f_u, f_d \Rightarrow f_0$$

where

$$f_{u} = e^{-r\delta} (p^{*} f_{uu} + (1 - p^{*}) f_{ud})$$

$$f_{d} = e^{-r\delta} (p^{*} f_{du} + (1 - p^{*}) f_{dd})$$

$$f_{0} = e^{-r\delta} (p^{*} f_{u} + (1 - p^{*}) f_{d})$$

where

$$p^* = \frac{e^{(r-q)\delta} - d}{u - d}$$

Risk neutral pricing

Derivative price

$$f_0 = e^{-2r\delta}((p^*)^2 f_{uu} + p^*(1-p^*)f_{ud} + p^*(1-p^*)f_{du} + (1-p^*)^2 f_{dd})$$

- By no arbitrage condition: $0 < p^* < 1$, consider it as the probability of asset price going up in another world
- p* is called risk neutral probability. In the risk neutral world, asset earns risk free interest rate

$$\mathbb{E}^*[e^{2q\delta}S_{2\delta}]=e^{2r\delta}S_0$$

 Derivative price = risk neutral expected payoff discounted at the risk free rate

- **Actual probability** *p* doesn't enter the pricing formula! It has been included in the asset price
- Summary

Physical world	Risk neutral world
Where we live	Where we price derivatives
Asset price goes up with prob p	Asset price goes up with prob p^*
Asset earns risk adjusted rate	Asset earns risk free rate

• Risk neutral pricing: (1). find risk neutral probability; (2). compute risk neutral expected payoff; (3). discount at the risk free rate

Delta hedging

- Hedge a short position in a derivative contract
- Sell a derivative, hold Δ_t shares, $t=0,\delta$
 - At time 0,

$$\Delta_0 = \frac{f_u - f_d}{S_0 e^{q\delta} (u - d)}$$

 \bullet Asset price goes up at time δ

$$\Delta_u = \frac{f_{uu} - f_{ud}}{uS_0 e^{q\delta}(u - d)}$$

ullet Asset price goes down at time δ

$$\Delta_d = \frac{f_{ud} - f_{dd}}{dS_0 e^{q\delta} (u - d)}$$

• The hedged position is risk free

American options

Backward induction for an American put option: starting with payoff

$$f_{uu}, f_{ud}, f_{du}, f_{dd}$$

Compute

$$\begin{array}{lcl} f_u & = & \max(K - uS_0, e^{-r\delta}(p^*f_{uu} + (1 - p^*)f_{ud})) \\ f_d & = & \max(K - dS_0, e^{-r\delta}(p^*f_{du} + (1 - p^*)f_{dd})) \\ f_0 & = & \max(K - S_0, e^{-r\delta}(p^*f_u + (1 - p^*)f_d)) \end{array}$$

Multi-step binomial model

ullet Multi-step binomial model over time period $[0,T=N\delta]$

• Node (n,j): time $n\delta$, j is the number of up moves in the asset price, $0 \le j \le n$. Asset price at node (n,j): $S_{n,j} = u^j d^{n-j} S_0$

• Price a (path independent) European derivative with payoff $f(S_T)$ at maturity

$$f_{N,j} = f(S_{N,j}), \quad 0 \le j \le N$$

Risk neutral pricing formula

$$f_0 = e^{-rT} \mathbb{E}^*[f(S_T)] = e^{-rT} \sum_{j=0}^N \binom{N}{j} (p^*)^j (1-p^*)^{N-j} f_{N,j}$$

where the number of paths leading to node (N, j) is

$$\left(\begin{array}{c}N\\j\end{array}\right)=\frac{N!}{j!(N-j)!}$$

Backward induction

Start with

$$f_{N,j}, \quad j=0,1,\cdots,N$$

• For $n = N - 1, N - 2, \dots, 0$

$$f_{n,j} = e^{-r\delta}(p^*f_{n+1,j+1} + (1-p^*)f_{n+1,j}), \quad j = 0, 1, \dots, n$$

American style derivatives:

$$f_{n,j} = \max\left(ext{intrinsic value}, e^{-r\delta} (p^* f_{n+1,j+1} + (1-p^*) f_{n+1,j})
ight)$$

Path dependent derivatives

 Derivative payoff depends on the whole path of the asset price process (lookback, Asian options)

$$f(S_0, S_\delta, \cdots, S_{N\delta})$$

 Backward induction or risk neutral pricing: need to differentiate different paths

$$f_0 = \mathbb{E}^*[e^{-rT}f(S_0,\cdots,S_{n\delta})] \neq e^{-rT}\sum_{j=0}^N \binom{N}{j}(p^*)^j(1-p^*)^{N-j}f_{N,j}$$

CRR binomial model

- Given option maturity T. Divide [0, T] into n equal intervals: $\delta = T/n$
- Select u and d in the binomial model as follows (Cox-Ross-Rubinstein binomial model)

$$u = e^{\sigma\sqrt{\delta}}, \quad d = e^{-\sigma\sqrt{\delta}}$$

where σ is the volatility parameter in the Black-Scholes-Merton model

 The CRR model converges to the Black-Scholes-Merton model as n gets large

Continuous time models

- Binomial model is a discrete approximation to the Black-Scholes-Merton model
- Limitations of binomial model: slow; difficult for path dependent contracts; difficult to incorporate jumps and stochastic volatility
- Continuous time models: more general derivative securities; more realistic models
- Stochastic calculus provides tools for derivatives valuation in continuous time models; establishes the connection to PDE, monte carlo, transform approaches