Lista 04 de Linguagens Formais e Autômatos

Turma do 3º ano

1º Período de 2018

Definição de uma Gramática Livre de Contexto (GLC) : Uma gramática livre de contexto, definida pela 4-tupla

$$G = (\Lambda, \Sigma, \Delta, I)$$

- \bullet Um conjunto finito de variáries $\Lambda,$ cada variável repreenta uma linguagem.
- Um conjunto finito de símbolos terminais Σ , que forma as strings da linguagem.
- Um conjunto finito de regras Δ . Cada regra consiste em:
 - Uma variável, chamada de cabeça da regra
 - Um símbolo de produção da regra \rightarrow
 - Uma string de zero ou mais terminais e variáveis, chamada de corpo da regra

Em cada passo, substituímos uma das variáveis da string que esteja numa das cabeças de uma regra, e subtituímos esta variável pela string que está no corpo desta regra.

• Uma das variáveis representa a linguagem que está sendo definidia, ela é chamada de símbolo de início, $I \in \Lambda$

Derivação: Uma derivação é a aplicação das regras em uma variável inicial. Podemos representar uma derivação com o símbolo ⇒, colocando à esquerda a string original e à direita a string resultante.

- 1. Projete gramáticas livre de contexto para as seguintes linguagens:
 - (a) ε
 - (b) $\{a, b\}^*$
 - (c) O conjunto $\{0^n1^n \mid n \ge 1\}$ (o conjunto de todas as strings de um ou mais 0, seguidos por uma quantidade igual de 1)
 - (d) O conjunto $\{waw^R \mid w \in \{a,b\}^*\}$ (o conjunto de todas as strings que tem um a no meio, e o sufixo depois deste a invertido é igual ao prefixo antes do a)
 - (e) O conjunto $\{ww^R \mid w \in \{a,b\}^*\}$ (o conjunto de todas as strings que podem ser escritas como uma string w concatenada com esta string w invertida)
 - (f) O conjunto $\{w \mid w \in \{a,b\}^*, w = w^R\}$ (o conjunto de todas as strings que são iguais a elas mesma invertida)
 - (g) O conjunto $\{0^m1^n \mid m \ge n\}$ (o conjunto de 0 seguidos de 1 tal que a quantidade de 0 seja maior que a quantidade de 1)
 - (h) O conjunto $\{0^m 1^n \mid m \le 2n\}$
 - (i) O conjunto $\{uawb \mid u, w \in \{a, b\}^*, |u| = |w|\}$
 - (j) $\{w \mid w \in \{0,1,+,(,),^*\} \text{ e } w \text{ é uma expressão regular em } \{0,1\} \}$
 - (k) O conjunto de todas as strings em $\{0,1\}^*$ com a mesma quantidade de 0's e 1's.
- 2. Considere a gramática livre de contexto $G=(\Lambda,\Sigma,\Delta,I)$, onde

$$\Lambda = \{A, B, S\}$$

$$\Sigma = \{a, b\}$$

 Δ :

- (1) $S \to aB$
- (2) $S \to bA$
- (3) $A \rightarrow a$
- $(4) A \rightarrow aS$
- (5) $A \rightarrow BAA$
- (6) $B \rightarrow b$

- (7) $B \rightarrow bS$
- (8) $B \to ABB$

Mostre que as seguintes strings fazem parte desta linguagem

- (a) ababba
- (b) aaabbb
- (c) aaabbbab
- (d) bababaab
- 3. Considere a gramática livre de contexto $G=(\Lambda,\Sigma,\Delta,I)$, onde

$$\Lambda = \{S, A\}$$

$$\Sigma = \{a, b\}$$

 Δ :

- (1) $S \to AA$
- (2) $A \rightarrow AAA$
- (3) $A \rightarrow a$
- (4) $A \rightarrow bA$
- $(5) A \to Ab$

Mostre que as seguintes strings fazem parte desta linguagem $\,$

- (a) babbab
- (b) bbabbabb
- (c) bbbabab

Forneça um algoritmo para gerar a string $b^m a b^n a b^p$, para qualquer m, n e p.