	Vaja čt. 63
	MERITEV SPEKTRA Z UKLONSKO MREŽICO
	a) UVOD
	2) NALOGA
	3) MERINE
	4) REZULTATI
	S) ZAKUUČEK
(DOVU C
	S pomočjo tanke prozorne (prosojne) uklouske mrezice bomo pri ty vaji opazovali
	dva valorna pojava; uklon in interferenco. Uklon je sirjenje valov v območje sence, ob trm
	Lo vail valoune doliène à natet na oviro, katere velibest je primerljiva valouni dolimi.
	Naise valovanje by svetloba, nortanineje enobarvni wrek in a pomocjo teza podotka
	lahles valorne dolzine omijimo na skalo med 360 - 750 mm, za človiško oko li dogajanje
	Opazuje v zraku.
	Uklonska rezica je narejena iz vrsti vzporednih rez v medsebojni razdalji d , hi je
	ustreznega reda velilosti -> pm. Podona je v enoti [rei/mm], Valovanje se uklanja,
	kar lahko s pomočjo Huygensovega nacila ntemeljimo. Za nklonsko mrezico se pojavi
	interferencina slika; z maksimumi oziroma ojacitami kjer je razlika poti posameznih
	žarlov mnogokratnik valovne dolžine, ter minimumi kjer je razlika poti enaka mnogokratnilu
	polovice ralovne dolžine.
	OJACINE: d sin an = n) n = red oja stre ali maksimuma
	$n \in \mathbb{Z}$
	Zaicnemo z nic-tim redom, kjer se mnzica obnasa, kakur da je prosojna, ter
	poskediono u tem redu dobimo use valoune dolzine. Zon visje rede (mps. prvi (21))
	se razlione valoure dolžine uklonijo pod razlionimi koti use do največjega,
	$\frac{1}{\sqrt{2}}$

Ь	MCMV	gs.	AFD DOCG	age	(d)										
Mei	ritve	lahko	izvedemo	tudi	₽'n	poli	nbren	n upo	dnem	10-	h Y.	Pn.	km	૬	uklani	em
zarl	is pre	maknyo	takok i				_				7					
	OJACITY	E PRI	UPADAEM	kon	4 :		d [sin (2, + <i>b</i> ,) -si	nφ] =	r.λ				
							d	Isin 4	+ 5	in (3	[(4-	= n.>				
Ko	nam	ام محمد	nobarv nega	Cur	ka	n oʻil	W 100 0	20	M~	a	~~~	C 100	Maha	S 1	70	
							1									1/1
			kon ponento	k -	tc	ob	nck	,w\	Cah	olar	.ijve p	ojow	senja	WER	2NSIA h	SUL
Imev	PNONG	spektu	er svetlobe.													
	14 6 6															
	JALO GA															
5 5	ocktrosk	pom	na uklons	ko	mazil	2	Rmi	spel	rttr	314021	nbrne	pare.				
(3)	MERIT	VE														
Glej	do	ntoteke	1													
(1)	E30F.	TATI														
VISOLA			minus Cm	4 [m-]		/100 BA	[mm]			569		51 4		410		
4646		1371	385			512				217		322		11		
840		1219	750							143		202 215		276		
504		555	1080							633		305		402		
1275		1066	306 796							171		211		Ω		
875		873	866							851		46				
166		940										83				
		155						•	bs n	438		140		79		
por. 1047		857	80	4		542										
3 ZAKI	JVÊÐ/															
			in the second							داد		.,	1.1×			
· ·		_	tamikov													
		1	pučnih								V					
Curek	jc	vsebo	val nas	kdnjc	bon	ι:	vijo	la,	mode	a, 6	ranitha	in	W	NA	'n	
njihore	pr	icalovan	u vedi	wshi	40	lovni	h	delī	Ín	Pi	noto	L	bit	2200	raj	
•			idno svi													
			NW.													
			hm ±													
$\lambda_{\mathbf{n}}$	-	803	nm I		80	n n										

λ.	=	512	hm		00							
· · · · ·												