GPT Memorization Capacity Scaling Experiment

Model Architecture Sequence

Base Configuration

• Architecture: GPT-2 style decoder-only transformer

• **Sequence Length**: 64 tokens (for consistent comparison)

• Vocabulary Size: 2 (binary: 0, 1)

• Position Embeddings: Learned

• Activation: GELU

• Normalization: Layer norm

Model Scale Progression

Model	Layers	d_model	Heads	Head_dim	Parameters	Scale Factor
Nano	2	32	2	16	~8K	1x
Micro	4	64	4	16	~67K	8x
Mini	6	128	8	16	~370K	46x
Small	8	256	16	16	~2.1M	260x
Base	12	512	32	16	~15M	1875x
Large	16	768	48	16	~46M	5750x

Experimental Protocol

Data Generation

```
def generate_random_binary_dataset(n_sequences, seq_length=64):

"""Generate truly random binary sequences"""

return np.random.randint(0, 2, size=(n_sequences, seq_length))
```

Simplified Validation Experiment

Objective

Confirm Morris et al.'s linear scaling relationship (≈3.6 bits-per-parameter) holds across our model range using random binary sequences.

Model Architecture Sequence

Model	Layers	d_model	Heads	Parameters
Nano	2	32	2	~8K
Micro	4	64	4	~67K
Mini	6	128	8	~370K
Small	8	256	16	~2.1M

Experimental Protocol

Data: Random binary sequences (64 tokens, vocab=2) **Dataset sizes**: Exponential progression [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] **Seeds**: 3 per model size **Measurement**: Morris memorization = H(X) - $H(X|\theta)$

Expected Results

• **Linear relationship**: Capacity ≈ 3.6 × Parameters

• Plateau behavior: Memorization plateaus at capacity limit

• Cross-validation: BPP approximately constant across model sizes

Success Criteria

- 1. $R^2 > 0.95$ for linear fit between capacity and parameters
- 2. **BPP coefficient** within 20% of Morris et al.'s 3.6 value
- 3. Consistent plateaus observable for each model size

This streamlined approach validates the core scaling relationship without unnecessary precision in boundary detection.

Training Configuration

Optimization Settings

python	
py and an	

```
training_config = {
    'optimizer': 'AdamW',
    'learning_rate': 1e-4,
    'weight_decay': 0.01,
    'gradient_clipping': 1.0,
    'batch_size': min(32, dataset_size), # Adaptive batch size
    'warmup_steps': 100,
    'scheduler': 'cosine_with_restarts'
}
```

Convergence Criteria

- Loss threshold: 0.01 (following Morris protocol)
- Morris threshold: 95% efficiency for "successful" memorization
- Patience: 10,000 steps without improvement
- Maximum steps: 500,000 (generous upper bound)
- Early stopping: When both loss and Morris criteria met

Memorization Metrics

1. Traditional Loss-Based

```
python

def memorization_achieved(loss, threshold=0.01):
    return loss < threshold
```

2. Morris Framework

```
python

def morris_memorization(model, dataset):

"""H(X) - H(X | 0)"""

theoretical_entropy = len(dataset) * seq_length * 1.0 # 1 bit per token

model_entropy = calculate_cross_entropy_bits(model, dataset)

return theoretical_entropy - model_entropy

def morris_efficiency(morris_bits, theoretical_max):

return morris_bits / theoretical_max
```

3. Bits-Per-Parameter

python

def bits_per_parameter(morris_memorization, model_params):
 return morris_memorization / model_params

Expected Scaling Relationships

Primary Hypothesis: Linear Scaling (Morris et al.)

Based on Morris et al. findings, GPT-family models have approximately constant bits-per-parameter capacity:

Capacity = $k \times Parameters + b$ BPP $\approx constant \approx k$ across model sizes

Key Questions to Investigate

- 1. **Coefficient Validation**: What is the empirical value of k (bits-per-parameter)?
- 2. **Architecture Sensitivity**: Does k vary with depth/width trade-offs?
- 3. **Scale Invariance**: Does linear relationship hold from 8K to 46M parameters?
- 4. **Offset Effects**: Is there a meaningful intercept b (fixed overhead)?

Data Collection

Primary Measurements

- Memorization Capacity: Maximum sequences memorized
- Morris BPP: Bits per parameter at capacity
- Training Efficiency: Steps to convergence
- Scaling Exponent: Power law fit across sizes

Secondary Measurements

- Loss curves: Full training dynamics
- Parameter utilization: Weight magnitude distributions
- Interpolation capacity: Performance between train sequences

Statistical Analysis

Linear Scaling Validation

```
python

# Validate: Capacity = k * Parameters + b

# Focus on estimating k (bits-per-parameter coefficient)

def fit_linear_scaling(model_params, max_memorized_sequences):
    # Linear fit with confidence intervals
    slope, intercept, r_value, p_value, std_err = stats.linregress(
        model_params, max_memorized_sequences
)
    return slope, intercept, r_value**2 # slope = k (BPP)
```

Key Validation Questions

- Linearity: How well does linear fit explain variance (R²)?
- BPP Constancy: Is k consistent across the 8K→46M parameter range?
- Architectural Effects: Do different layer/width ratios affect k?
- Intercept Significance: Is there meaningful fixed capacity overhead b?

Experimental Controls

Randomization Controls

- Fixed seeds for reproducibility
- Independent datasets for each measurement
- Randomized model initialization across trials

Training Controls

- Consistent optimization settings across sizes
- Proportional training budgets based on model size
- Hardware normalization (same GPU type/memory)

Measurement Controls

- Identical evaluation protocols
- Consistent thresholds across all models
- Multiple validation datasets at capacity boundary

Expected Deliverables

- 1. Linear Scaling Validation: Confirm Morris et al. linear relationship holds across our model range
- 2. **Empirical BPP Coefficient**: Precise measurement of bits-per-parameter constant for binary sequences
- 3. **Architectural Sensitivity**: Whether depth vs. width affects memorization efficiency within linear scaling
- 4. **Scale Range Validation**: Confirm linearity holds from small (8K) to medium (46M) parameter models
- 5. **Baseline for Comparison**: Reference values for comparing with other data types (text, structured data)

The goal is validating and precisely measuring the linear scaling relationship rather than discovering unknown scaling behavior.