

FCC PART 15.247 MEASUREMENT AND TEST REPORT

For

EYO ASIA ELECTRONIC CO.,LTD

Room 2128, Block A, QunXing Plaza, HuaQiangNorth Road, Futian District, Shenzhen

Report Type: **Product Type:** Original Report **GSM Mobile Phone** simon mo Simon Mo **Test Engineer: Report Number:** BATT201105102R-1-15.247-wifi **Report Date:** 2011-07-11 Mike Yong Mike Yong Reviewed By: **EMC** Engineer SHENZHEN BATT TESTING TECHNOLOGY CO.,LTD. 11F,Bldg.B,Xinbaoyuan,XinanhuCommercialcity,Bao'an Prepared By: District, Shenzhen, Guangdong, China Tel.:86-755-27754004(100 lines)

Note: This report shall not be reproduced except in full ,without the written approval of by SHENZHEN BATT TESTING TECHNOLOGY CO.,LTD .This document may be altered or revised by SHENZHEN BATT TESTING TECHNOLOGY CO.,LTD. personnel only, and shall be noted in the revision section of the document.

Fax.:86-755-27754182

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
Test Methodology	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	6
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLECONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
CFR47 §15.247 (i) and §2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
RESULT:	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARD	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTYEUT SETUP	
EMI TEST RECEIVER SETUP.	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST RESULTS SUMMARY	
TEST DATA	14
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	17
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING	27
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	40
APPLICABLE STANDARD	40
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	40
FCC §15.247(e) - POWER SPECTRAL DENSITY	44
APPLICABLE STANDARD	44
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	44
Test Data	44

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The EYO ASIA ELECTRONIC CO.,LTD's product, model number: A060 or the "EUT" as referred to in this report is a GSM Mobile Phone, which measures approximately:

111.0 mm (L) x 61.0 mm (W) x 15.0 mm (H), rated input voltage: DC 3.7V Rechargeable Li-ion battery or DC 5.0 V adapter for charging.

Frequency Range:

Cellular Band: 824-849 MHz (TX), 869-894 MHz (RX) PCS Band: 1850-1910 MHz (TX), 1930-1990 MHz (RX)

Bluetooth: 2402-2480MHz (TX/RX)

WI-FI IEEE 802.11b/g: 2412-2462MHz (TX/RX)

Modulation Mode: GSM/PCS: GMSK; Bluetooth: GFSK; WI-FI: DSSS/OFDM

Transmitter Output Power:

Cellular Band: 32±2dBm PCS Band: 30±2dBm Bluetooth: -6~4dBm

WI-FI IEEE 802.11b: 16±2dBm; IEEE 802.11g: 13±2dBm

Adapter information:

Input: 100-240VAC 50/60Hz 150mA;

Output: 5.0V 600mA

Objective

This Type approval report is prepared on behalf of *EYO ASIA ELECTRONIC CO.,LTD in* accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurements were performed at ShenZhen Emtek Co.,Ltd . The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by ShenZhen Emtek Co.,Ltd to collect test data is located in Bldg. 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China.

Test site at ShenZhen Emtek Co.,Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on March 18, 2008 and October 28, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 709623 and 406365. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b and 802.11g mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

EUT for 802.11b and 802.11g mode were tested with Channel 1, 6 and 11.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all date rates bandwidths, and modulations.

EUT Exercise Software

The test was performed under: 802.11b: Data rate: 1 Mbps. 802.11g: Data rate: 6 Mbps.

Equipment Modifications

No modification was made to the unit tested.

Local Support Equipment List and Details

N/A

External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable Power Cable	0.8	EUT	Adapter

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a),	AC Line Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Note: The uncertainty of any RF test which use conducted method measurement is ± 1.0 dB.

The uncertainty of any radiation emissions measurement is $\pm 4.0~\text{dB}$.

CFR47 §15.247 (i) and §2.1093 – RF EXPOSURE

Applicable Standard

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Table 2 - Summary of SAR Evaluation Requirements for a Cell Phone with Multiple Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed		SAR not required:
Transmitters	Routine evaluation required	Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output ≤ 60/f: SAR not required o output > 60/f: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when o output ≤ 2·P _{Ref} and antenna is ≥ 5.0 cm from other antennas o output ≤ P _{Ref} and antenna is ≥ 2.5 cm from other antennas o output ≤ P _{Ref} and antenna is < 2.5 cm from other antennas o output ≤ P _{Ref} and antenna is < 2.5 cm from other antennas, each with either output power ≤ P _{Ref} or 1-g SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply
Jaw, Mouth and Nose	Flat phantom SAR required o when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues o position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Report No.: BATT201105102R-1-15.247-wifi Page 9 of 48 FCC Part15.247 Test Report

EYO ASIA ELECTRONIC CO.,LTD		FCC ID: ZJN-A060
Result:		
Please refer to SAR report released by <i>Compliance</i>	Certification Service Inc., 1	Report No: KS110623B03.
2 10 400 10 10 10 10 10 10 10 10 10 10 10 10 1	certification derivide inc.,	1100 <u>2</u> 0200

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a PIFA antenna of WI-FI, the maximum gain is 0 dBi, which in accordance to section 15.203, Please see EUT photo for details.

Result: Compliance.

Report No.: BATT201105102R-1-15.247-wifi Page 11 of 48 FCC Part15.247 Test Report

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at ShenZhen Emtek Co.,Ltd is +2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC ID: ZJN-A060

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	834549/006	2010-09-07	2011-09-06
Rohde &Schwarz	L.I.S.N.	ENV216	834548/112	2010-09-07	2011-09-06
Rohde & Schwarz	EMI Test Receiver	ESCS30	828985/018	2010-09-07	2011-09-06

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Page 13 of 48

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

5.96 dB at 16.375 MHz in the Neutral conducted mode

Test Data

Environmental Conditions

Temperature:	26 ° C
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

^{*}The testing was performed by Simon Mo on 2011-06-23.

Test Mode: Charging &Communication (worst case)

AC 120V / 60Hz Line:

Co	Conducted Emissions			FCC Part 15.20	07
Frequency (MHz)	Correct Result (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.180	38.07	10.08	65.14	27.07	QP
0.180	37.64	10.08	55.14	17.50	Ave
16.400	44.39	10.16	60.00	15.61	QP
16.400	41.29	10.16	50.00	8.71	Ave
12.925	39.39	10.13	60.00	24.61	QP
12.925	35.58	10.13	50.00	14.42	Ave
0.360	26.32	10.06	60.00	33.68	QP
0.360	25.21	10.06	50.00	24.79	Ave
4.055	22.99	10.10	56.00	33.01	QP
4.055	14.18	10.10	46.00	31.82	Ave
1.810	16.66	10.18	56.00	39.34	QP
1.810	13.70	10.18	46.00	32.30	Ave

AC 120V / 60Hz Neutral:

Conducted Emissions				FCC Part 15.20	7
Frequency (MHz)	Correct Result (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.180	40.50	10.08	65.14	24.64	QP
0.180	38.11	10.08	55.14	17.03	Ave
16.380	46.19	10.16	60.00	13.81	QP
16.375	44.04	10.16	50.00	5.96	Ave
13.035	43.57	10.13	60.00	16.43	QP
13.035	40.90	10.13	50.00	9.10	Ave
0.370	30.34	10.07	59.71	29.37	QP
0.370	23.77	10.07	49.71	25.94	Ave
1.790	15.09	10.18	56.00	40.91	QP
1.790	14.53	10.18	46.00	31.47	Ave
1.610	17.65	10.16	56.00	38.35	QP
1.610	11.75	10.16	46.00	34.25	Ave

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at ShenZhen Emtek Co.,Ltd is ±4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30MHz - 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Spectrum Analyzer	8564E	3943A01781	2011-03-14	2012-03-13
Rohde & Schwarz	EMI Test Receiver	ESCI	100005	2011-03-08	2012-03-07
HP	Amplifier	8447D	2944A07999	2010-10-02	2011-10-02
HP	Amplifier	8449B	2624A00116	2011-03-03	2012-03-02
Schwardzbeck	Horn Antenna	BBHA 9120	D143	2010-09-04	2011-09-03
Schwardzbeck	Bilog Antenna	VULB9163	142	2011-04-12	2012-04-12
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2011-03-11	2012-03-10

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Test Procedure

For the radiated emissions test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

Below 1 GHz:

10.4 dB at 819.105250 MHz in the Vertical polarization

Above 1 GHz:

5.86 dB at **4924 MHz** in the **Horizontal** polarization for mode 802.11g at High Channel

Test Data

Environmental Conditions

Temperature:	26 ° C		
Relative Humidity:	50 %		
ATM Pressure:	100.0 kPa		

^{*}The testing was performed by Simon Mo on 2011-06-25.

Below 1 GHz:

Test Mode: Charging & Transmitting (worst case)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Ant. Height (cm)	Ant. Polarity (H/V)	Turntable Position (degree)	Correction Factor (dB)	Limit (dBμV/m)	Margin (dB)
33.834000	15.5	100.0	V	336.0	-3.14	40.0	24.5
41.671000	22.8	100.0	V	43.0	-14.48	40.0	17.2
42.177250	24.0	100.0	V	179.0	-11.03	40.0	16.0
498.377000	30.8	100.0	V	353.0	-12.9	46.0	15.2
819.105250	35.6	136.0	V	2.0	-18.51	46.0	10.4
890.706500	32.0	400.0	Н	271.0	-18.67	46.0	25.0

Above 1 GHz:

802.11b Mode:

Indic	ated		Table	Ante	nna	Cor	rection	Factor	F	CC Part 15.2	247/15.209
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave.)	Angle	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin(dB)
Low Channel (2412 MHz)											
4824	46.81	PK	180	1.7	Н	36.6	4.30	26.75	60.96	74	13.04
4824	33.48	Ave.	180	1.7	Н	36.6	4.30	26.75	47.63	54	6.37
4824	47.42	PK	190	1.2	V	35.4	4.30	26.75	60.37	74	13.63
4824	33.27	Ave.	190	1.2	V	35.4	4.30	26.75	46.22	54	7.78
	Middle Channel (2437 MHz)										
4874	46.72	PK	56	1.2	Н	36.6	4.36	26.75	60.93	74	13.07
4874	33.42	Ave.	56	1	Н	36.6	4.36	26.75	47.63	54	6.37
4874	47.12	PK	180	1.2	V	35.4	4.36	26.75	60.13	74	13.87
4874	33.63	Ave.	180	1.2	V	35.4	4.36	26.75	46.64	54	7.36
	High Channel (2462 MHz)										
4924	46.29	PK	160	1.7	Н	36.6	4.40	26.75	60.54	74	13.46
4924	33.89	Ave.	160	1.7	Н	36.6	4.40	26.75	48.14	54	5.86
4924	47.07	PK	76	1.2	V	35.4	4.40	26.75	60.12	74	13.88
4924	33.73	Ave.	76	1.2	V	35.4	4.40	26.75	46.78	54	7.22

Radiated spurious emission in restricted band

Freq.	S.A.	Detector	Direction	Antenna			Cable	Cable Pre-	Cord. Amp.		FCC Part 15.247/205/209	
(MHz)	Reading (dBµV)	(PK/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)	(dBμV/m)	Limit (dBµV/m)	Margin (dB)	
2387.550	47.64	PK	150	1.6	Н	30.6	2.98	26.83	54.39	74	19.61	
2387.550	33.16	Ave.	150	1.6	Н	30.6	2.98	26.83	39.91	54	14.09	
2387.460	47.56	PK	0	1.2	V	30.6	2.98	26.83	54.31	74	19.69	
2387.460	31.78	Ave.	0	1.2	V	30.6	2.98	26.83	38.53	54	15.47	
2486.200	46.49	PK	120	1.8	Н	30.6	3.11	26.88	53.32	74	20.68	
2486.200	31.82	Ave.	120	1.8	Н	30.6	3.11	26.88	38.65	54	15.35	
2486.200	46.21	PK	130	1.2	V	30.6	3.11	26.88	53.04	74	20.96	
2486.200	31.64	Ave.	130	1.2	V	30.6	3.11	26.88	38.47	54	15.53	

802.11g Mode:

Indic	cated		Table	Ante	nna	Cor	rection	Factor	F	CC Part 15.2	247/15.209
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/Ave)	Angle	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin(dB)
Low Channel (2412 MHz)											
4824	45.64	PK	230	1.6	Н	36.6	4.30	26.75	59.79	74	14.21
4824	33.13	Ave.	230	1.6	Н	36.6	4.30	26.75	47.28	54	6.72
4824	45.49	PK	120	1.2	V	35.4	4.30	26.75	58.44	74	15.56
4824	33.57	Ave.	120	1.2	V	35.4	4.30	26.75	46.52	54	7.48
	Middle Channel (2437 MHz)										
4874	44.74	PK	12	1.6	Н	36.6	4.36	26.75	58.95	74	15.05
4874	31.82	Ave.	12	1.6	Н	36.6	4.36	26.75	46.03	54	7.97
4874	45.29	PK	156	1.2	V	35.4	4.36	26.75	58.3	74	15.7
4874	32.10	Ave.	156	1.2	V	35.4	4.36	26.75	58.95	74	15.05
	High Channel (2462 MHz)										
4924	46.11	PK	120	1.7	Н	36.6	4.40	26.75	60.36	74	13.64
4924	31.42	Ave.	120	1.7	Н	36.6	4.40	26.75	45.67	54	8.33
4924	46.27	PK	360	1.2	V	35.4	4.40	26.75	59.32	74	14.68
4924	32.00	Ave.	360	1.2	V	35.4	4.40	26.75	45.05	54	8.95

Radiated spurious emission in restricted band

Freq.	S.A.	Detector	Direction		Antenn	a	Cable	Pre-	Cord. Amp.		.247/205/209
(MHz)	Reading (dBµV)	PK /Ave	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Loss (dB)	Amp. Gain (dB)	(dBμV/m)	Limit (dBµV/m)	Margin (dB)
2389.130	47.86	PK	245	1.8	Н	30.6	2.98	26.83	54.61	74	19.39
2389.130	33.32	Ave.	245	1.8	Н	30.6	2.98	26.83	40.07	54	13.93
2389.130	47.78	PK	15	1.3	V	30.6	2.98	26.83	54.53	74	19.47
2389.130	32.28	Ave.	15	1.3	V	30.6	2.98	26.83	39.03	54	14.97
2484.600	46.75	PK	76	1.6	Н	30.6	3.11	26.88	53.58	74	20.42
2484.600	32.22	Ave.	76	1.6	Н	30.6	3.11	26.88	39.05	54	14.95
2484.600	47.15	PK	168	1.2	V	30.6	3.11	26.88	53.98	74	20.02
2484.600	32.35	Ave.	168	1.2	V	30.6	3.11	26.88	39.18	54	14.82

Antenna Port Conducted Spurious Emissions

Channel Frequency (MHz)	Delta Value (dBc)	Limit (dBc)	Ref. Plot	Result					
802.11b mode									
2412	49.50	20	Plot1	PASS					
2437	47.83	20	Plot2	PASS					
2462	48.83	20	Plot3	PASS					
		802.11g mode							
2412	44.17	20	Plot4	PASS					
2437	45.66	20	Plot5	PASS					
2462	44.33	20	Plot6	PASS					

Please refer to the following plots.

Plot1-802.11b Low Channel

Plot2-802.11b Middle Channel

Plot3-802.11b High Channel

Plot4-802.11g Low Channel

Plot5-802.11g Middle Channel

Plot6-802.11g High Channel

FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	EMI Test Receiver	ESCI	100005	2011-03-08	2012-03-07	

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 °C			
Relative Humidity:	50%			
ATM Pressure:	100.0kPa			

^{*}The testing was performed by Simon Mo on 2011-06-26.

Test Mode: Transmitting

Test Result: Compliance

Please refer to the following tables and plots.

Channel	Channel Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (MHz)	FCC Part 15.247 Limit (kHz)
		802.11b mode		
Low	2412	1	10.48	>500
Middle	2437	1	10.32	>500
High	2462	1	10.32	>500
		802.11g mode		
Low	2412	6	16.24	>500
Middle	2437	6	16.24	>500
High	2462	6	16.24	>500

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100005	2011-03-08	2012-03-07

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ° C	
Relative Humidity:	50 %	
ATM Pressure:	100.0 kPa	

^{*}The testing was performed by Simon Mo on 2011-06-26.

Test Mode: Transmitting
Test Result: Compliance

Please refer to the following tables and plots.

Channel	Channel Frequency (MHz)	Data Rate (Mbps)	Output Power (dBm)	Limit (dBm)	
802.11b					
Low	2412	1	17.09	30	
Middle	2437	1	17.25	30	
High	2462	1	17.05	30	
802.11g					
Low	2412	6	13.82	30	
Middle	2437	6	13.37	30	
High	2462	6	13.29	30	

802.11b 99% Occupied Bandwidth, Low Channel

802.11b RF Output Power, Low Channel

802.11b RF Output Power, Middle Channel

802.11b 99% Occupied Bandwidth, High Channel

802.11b RF Output Power, High Channel

802.11g 99% Occupied Bandwidth, Low Channel

802.11g RF Output Power, Low Channel

802.11g 99% Occupied Bandwidth, Middle Channel

802.11g RF Output Power, Middle Channel

802.11g 99% Occupied Bandwidth, High Channel

802.11g RF Output Power, High Channel

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100005	2011-03-08	2012-03-07

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 1 MHz and VBW of spectrum analyzer to 1 MHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

^{*}The testing was performed by Simon Mo on 2011-06-26.

Test Mode: Transmitting

Test Result: Compliance

Please refer to the following tables and plots.

Frequency (MHz)	Delta Value (dBc)	Limit (dBc)	Result		
802.11b mode					
2397.48	40.17	20	Pass		
2383.74	47.95	20	Pass		
802.11g mode					
2399.04	35.32	20	Pass		
2484.82	42.33	20	Pass		

802.11b: Band Edge, Left Side

802.11b: Band Edge, Right Side

802.11g: Band Edge, Left Side

802.11g: Band Edge, Right Side

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100005	2011-03-08	2012-03-07

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to International system of unit (SI).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value. (DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50 %
ATM Pressure:	100.0 kPa

^{*}The testing was performed by Simon Mo on 2011-06-26.

Test Mode: Transmitting

Test Result: Compliance

Please refer to the following tables and plots.

Channel	Frequency (MHz)	Data Rate	Power Spectral Density (dBm/3kHz)	Part 15.247 Limit (dBm/3kHz)	Result	
802.11b mode						
Low	2412	1	5.37	8	Pass	
Middle	2437	1	5.05	8	Pass	
High	2462	1	5.05	8	Pass	
802.11g mode						
Low	2412	6	-12.10	8	Pass	
Middle	2437	6	-12.00	8	Pass	
High	2462	6	-12.11	8	Pass	

Power Spectral Density, 802.11b Low Channel

B . 16 WWW 0011 01 10 06

Power Spectral Density, 802.11b Middle Channel

Power Spectral Density, 802.11b High Channel

Power Spectral Density, 802.11g Low Channel

Power Spectral Density, 802.11g Middle Channel

Power Spectral Density, 802.11g High Channel

***** END OF REPORT *****

Report No.: BATT201105102R-1-15.247-wifi Page 48 of 48 FCC Part15.247 Test Report