

Introdução à Ciência da Computação - 113913

Lista de Exercícios 4

Iteração, Estruturas de Repetição

Observações:

- As listas de exercícios serão corrigidas por um corretor automático, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, a não ser que seja pedido na questão, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As questões estão em **ordem de dificuldade**. Cada lista possui 7 exercícios, sendo 1 questão fácil, 3 ou 4 médias e 2 ou 3 difíceis.
- Leia com atenção e faça **exatamente** o que está sendo pedido.

1) Um pequeno jogo de adivinhação funciona da seguinte forma: você define um número n e chama um amigo, que deverá adivinhar o número escolhido. Faça um programa que peça um inteiro e então fique pedindo que um usuário tente adivinhá-lo até que acerte. Em cada tentativa o programa deve dizer se o chute foi maior ou menor que o número certo.

Entrada

A primeira linha de entrada o inteiro **n**, que deverá ser adivinhado. As próximas linhas serão os números chutados pelo jogador, que continuará chutando números até que adivinhe o número correto.

Saída

Se o número digitado for menor que **n** apresente a mensagem: "O número correto é maior.". Se o número digitado for maior que **n** apresente a mensagem: "O número correto é menor.". Quando o usuário acertar o número imprima: "Parabéns! Você acertou.".

Exemplo de Entrada	Exemplo de Saída
7	O número correto é maior.
5	O número correto é menor.
8	Parabéns! Você acertou.
7	
5	O número correto é maior.
4	Parabéns! Você acertou.
5	
-2	O número correto é menor.
-1	O número correto é maior.
-3	Parabéns! Você acertou.
-2	

2) Faça um programa que peça ao usuário para digitar uma sequência de inteiros. O programa deve parar quando **0** for digitado, que será desconsiderado na sequência de números lidos. No final, você deve apresentar a quantidade de números lidos, o maior inteiro e a média aritmética simples dos inteiros.

Entrada

A entrada consistirá de uma sequência de inteiros que será terminada quando o valor 0 for digitado, o qual não fará parte da sequência. É possível que a sequência não tenha nenhum número (nesse caso considere 0 como o maior número da sequência).

Saída

Apresente x, y e z, um por linha, onde x, y e z representam, respectivamente, a quantidade de números, o maior número e a média dos inteiros da sequência com 2 casas decimais após a vírgula.

Exemplo de Entrada	Exemplo de Saída
3	6
3	3
-1	-1.00
-2	
-4	
-5	
0	
-1	5
-2	-1
-3	-3.00
-4	
-5	
0	
2	4
2	2
-2	0.00
-2	
0	

3) Leia dois inteiros do teclado e apresente na tela o fatorial de cada um, na mesma linha, usando laço de repetição.

Entrada

Dois inteiros maiores ou iguais a zero.

Saída

Calcule e imprima o fatorial de cada um, separados por espaço.

Exemplo de Entrada	Exemplo de Saída
2	2 2
2	
4	24 6
3	
0	11
1	

4) Escreva um programa que leia dois valores inteiros **X** e **Y**. A seguir, mostre uma sequência de 1 até **Y**, passando para a próxima linha a cada **X** números.

Entrada

A entrada contém duas linhas. A primeira linha será o X e a segunda o Y, onde X, Y > 0.

Saída

Cada sequência deve ser impressa em uma linha apenas, com 1 espaço em branco entre cada número, conforme exemplo abaixo. **Não deve haver espaço em branco após o último valor de cada linha.**

Nota: Para que o fim da linha não seja impresso após o uso do comando *print*, é necessário alterar o argumento *end*. Por padrão, o argumento *end* é: *end= '\n'*, que é o caractere que representa o final da linha. No exemplo abaixo o argumento *end= " "* do primeiro comando *print* suprime a nova linha no final da saída, que é o motivo pelo qual as duas saídas vão aparecer na mesma linha separadas por espaço. Nesse exemplo a saída será: *5 laranjas*.

```
a = 5
print(a, end= " ")
a = "laranjas"
print(a)
```

Exemplo de Entrada	Exemplo de Saída
3	123
99	456
	789
	10 11 12
	97 98 99
2	12
9	3 4
	5 6
	78
	9
4	123
3	

Faça um algoritmo para ler um valor *T*, um valor *A* e um valor *N*. Leia *T* vezes valores *A* e *N* e imprima a soma dos *N* números a partir de *A* (inclusive), para cada um dos valores *A* e *N* lidos. Imprima também cada um dos *N* números a partir de *A*, incluindo o *A*.

Entrada

A entrada contém somente valores inteiros, sendo $T \ge 0$ e N > 0. Na primeira linha será lido o valor T e nas próximas T linhas serão lidos os valores de A e N, separados por espaço.

Saída

Escreva na tela, para cada dupla de **A** e **N** lidos, cada um dos **N** números a partir de **A**, separados por espaço. Logo em seguida imprima **X**, onde **X** representa a soma dos **N** números a partir de **A**, conforme exemplo de saída. **Não deve haver espaços em branco após o último valor de cada linha.**

Nota: Novamente, lembre-se que para ler vários valores em uma mesma linha, usamos *input().split()*. Se o argumento de split for vazio, o separador das variáveis é um espaço em branco. Porém, lembre-se que input lê apenas strings do teclado, portanto você deverá converter as strings. No exemplo a seguir, o usuário digita valores separados por um espaço em branco e aperta enter para enviá-los, então, o programa lê esses valores separados por espaços como strings (na ordem em que aparecem), guardados nas variáveis correspondentes e os converte para floats. Depois imprime os valores, **um por linha**:

```
A, B = input().split()
A, B = [float(A), float(B)]
print("%.0f\n%.0f"%(a,b))
```

Exemplo de Entrada	Exemplo de Saída
3	123
13	6
45	45678
0 10	30
	0123456789
	45
2	56789
5 5	35
43	456
	15
3	-1012
-1 4	2
-5 10	-5 -4 -3 -2 -1 0 1 2 3 4
-3 1	-5

-3
-3

6) Leia um valor inteiro **N** que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de dois inteiros **X** e **Y**. Você deve apresentar a soma de **Y** ímpares consecutivos a partir de **X** inclusive o próprio **X** se ele for ímpar. Por exemplo: para a entrada 4 5, a saída deve ser 45, que é equivalente à: 5 + 7 + 9 + 11 + 13, para a entrada 7 4, a saída deve ser 40, que é equivalente à: 7 + 9 + 11 + 13. No final imprima também a maior e a menor soma.

Entrada

A primeira linha de entrada é um inteiro N > 0 que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste em uma linha contendo dois inteiros $X \in Y$, onde Y > 0.

Saída

Imprima a soma **S** dos **Y** consecutivos números ímpares a partir do valor **X**, para cada **X** e **Y** lidos. Imprima também a maior e a menor soma **S**, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
4	15
-2 5	15
3 3	-21
-10 3	32
4 4	32
	-21
3	-5
-5 1	-4
-3 2	-21
-10 3	-4
	-21
2	-8
-5 2	-8
-5 4	-8
	-8

7) Raphael e Renata estão cursando Teoria dos Números juntos, no departamento de matemática da Universidade de Brasília. Eles se deparam com a seguinte hipótese: "Para todo inteiro positivo n e m temos que $n \cdot m + 1$ é um número primo". Porém, eles percebem que essa hipótese é falsa, pois a Renata rapidamente nota que basta usar m = n - 2, assim:

$$n \cdot m + 1 = n(n-2) + 1 = (n-1)^2$$
 que não é primo.

De modo que para n > 2, m pode ser n - 2. Se n = 7, por exemplo, então $7 \cdot 5 + 1 = 36$, que não é primo. Se $n \le 2$, podemos usar m = n + 2.

Entretanto, Raphael gosta da Renata e quer impressioná-la, apresentando não apenas qualquer contra-exemplo, mas sim o menor m tal que $n \cdot m + 1$ não seja primo (para n = 7, também poderíamos usar m = 1). Você pode escrever um programa para ajudá-lo, dado o inteiro n?

Entrada

A entrada consistirá apenas de um inteiro n ($1 \le n \le 1000$) – o n da hipótese.

Saída

Imprima na tela o menor $m \ge 1$ tal que $n \cdot m + 1$ não seja um número primo. É garantido que esse m existe.

Dica: Use dois loops, um para o m, que enquanto m for menor ou igual a 1000 testará se $n \cdot m + 1$ é primo.

Nota

Para o primeiro exemplo, 3.1 + 1 = 4, a saída será 1.

Para o segundo exemplo, $4\cdot 1 + 1 = 5$, nós não podemos imprimir 1 porque 5 é primo. Porém, m = 2 está tudo bem, visto que $4\cdot 2 + 1 = 9$, que não é primo.

Para o terceiro exemplo, 10.2 + 1 = 21, imprimimos 2.

Exemplo de Entrada	Exemplo de Saída
3	1
4	2
10	2