International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules
Country: BIH

Detekcija molekula

Perica je zaposlen u kompaniji koja proizvodi mašine za detekciju molekula. Svaka molekula ima cjelobrojnu težinu. Mašina ima *opseg detekcije* [l,u], gdje su l i u cijeli brojevi. Mašina može detektovati skup molekula ako i samo ako skup sadrži podskup molekula čija je ukupna težina u opsegu detekcije mašine.

Formalno, posmatrajmo n molekula sa težinama koje su pozitivni cijeli brojevi. w_0,\ldots,w_{n-1} . Mašina će uspješno obaviti detekciju ako postoji skup različitih indeksa $I=i_1,\ldots,i_m$ takav da $l\leq w_{i_1}+\ldots w_{i_m}\leq u$.

Mašina je napravljena tako da je opseg između l i u garantovano veći ili jednak od opsega između najlakšeg i najtežeg molekula. Formalno, $u-l \geq w_{max}-w_{min}$, gdje je $w_{max}=\max(w_0,\ldots,w_{n-1})$ i $w_{min}=\min(w_0,\ldots,w_{n-1})$.

Vaš zadatak je da napišete program koji će ili pronaći bilo koji podskup molekula čija je ukupna težina u opsegu detekcije mašine ili utvrditi da takav podskup ne postoji.

Detalji implementacije

Potrebno je da implementirate funkciju (metod):

- int[] solve(int I, int u, int[] w)
 - o li u: krajnje tačke opsega detekcije,
 - w: težine molekula.
 - ako traženi podskup postoji, funkcija vraća niz indeksa molekula koji formiraju bilo koji takav podskup. Ako postoji više rješenja, vratiti bilo koje od njih.
 - o ako traženi podskup ne postoji, funkcija vraća prazan niz.

Za jezike C/C++ prototip (zaglavlje) funkcije je:

- int solve(int I, int u, int[] w, int n, int[] result)
 - o n: broj elementa u nizu w (tj. broj molekula),
 - o ostali parametri su isti kao u gornjoj funkciji (metodu).
 - \circ umjesto da vrati niz od m indeksa (kao gore), funkcija upisuje indekse u prvih m elemenata niza result i vraća m.
 - ako traženi podskup ne postoji, funkcija ne upisuje ništa u niz result i vraća
 0.

Vaš program može upisivati indekse u vraćeni niz (ili u niz result za jezike C/C++) u bilo kom redosljedu.

Molimo vas da koristite date templejt-fajlove za odgovarajući programski jezik.

Primjeri

Primjer 1

```
solve(15, 17, [6, 8, 8, 7])
```

U ovom primjeru data su četiri molekula sa težinama 6, 8, 8 i 7. Mašina može detektovati molekule čija je ukupna težina između 15 i 17, uključivo. Primjetite da važi $17-15\geq 8-6$. Ukupna težina molekula 1 i 3 je $w_1+w_3=8+7=15$, pa funkcija može vratiti [1, 3]. Druga rješenja su [1, 2] ($w_1+w_2=8+8=16$) i [2, 3] ($w_2+w_3=8+7=15$).

Primjer 2

solve(14, 15, [5, 5, 6, 6])

U ovom primjeru data su četiri molekula sa težinama 5, 5, 6 i 6, i tražimo podskup čija je ukupna težina između 14 i 15, uključivo. Primjetite da opet važi $15-14 \geq 6-5$. Ne postoji podskup molekula čija je ukupna težina između $14\,$ i $15\,$ pa funkcija vraća prazan niz.

Primjer 3

```
solve(10, 20, [15, 17, 16, 18])
```

U ovom primjeru data su četiri molekula sa težinama 15, 17, 16 i 18, i tražimo podskup čija je ukupna težina između 10 i 20, uključivo. Kao i u prethodnim primjerima, važi $20-10 \geq 18-15$. Bilo koji podskup koji sadrži tačno jedan elemenat zadovolajva uslove, pa su tačna rješenja: [0], [1], [2] i [3].

Podzadaci

- 1. (9 bodova): $1 \leq n \leq 100$, $1 \leq w_i \leq 100$, $1 \leq u, l \leq 1000$, svi w_i su međusobno jednaki.
- 2. (10 bodova): $1 \le n \le 100, 1 \le w_i, u, l \le 1000$ i $\max(w_0, \dots, w_{n-1}) \min(w_0, \dots, w_{n-1}) \le 1$.
- 3. (12 bodova): $1 \leq n \leq 100$ i $1 \leq w_i, u, l \leq 1000$.
- 4. (15 bodova): $1 \le n \le 10\,000$ i $1 \le w_i, u, l \le 10\,000$.
- 5. (23 boda): $1 \le n \le 10\,000$ i $1 \le w_i, u, l \le 500\,000$
- 6. (31 bod): $1 \leq n \leq 200\,000$ i $1 \leq w_i, u, l < 2^{31}$.

Sample grader

Sistem za ocjenjivanje učitava ulazne podatke u sljedećem formatu:

- \circ red 1: cijeli brojevi n, l, u.
- red 2: n cijelih brojeva: w_0, \ldots, w_{n-1} .