Nama: Devlin Manuel NIM = 232202035 Prodi : IBPA 2025

1) Tenturan nilai a dan B sehingga fx(11) meruparan fungsi massa peluang dari variabel acan X.

a)
$$f(u) = \begin{cases} \alpha(\frac{2}{3})^{1}, u = 1, 1, 3, ... \\ 0, u | \alpha_{1}, \gamma_{2} | \alpha_{2}, \ldots \end{cases}$$

b)
$$f(x) = \begin{cases} 3 \binom{1}{4} \binom{3}{3-4}, & u=0,1,2 \\ 0, & u | ainnya \end{cases}$$

Ydagan prinsip \(\xi \xi(u) = 1, Jadi :

$$\sum_{k=1}^{\infty} f_{X}(k) = \sum_{k=1}^{\infty} o_{x}\left(\frac{2}{3}\right)^{1/2} = 1 \implies \text{Deret geometr}$$

$$(r = \frac{2}{3})$$

[untum |r| =
$$\frac{r}{1-r} = 1$$
 : nilai 2 $\beta \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3-1 \end{pmatrix} = 6\beta$
 $\alpha \cdot \frac{2}{1-\frac{2}{3}} = 1$: nilai $\beta \cdot \alpha \cdot \alpha \cdot \beta = 1$
 $\alpha \cdot \frac{2}{1-\frac{2}{3}} = 1$: nilai $\beta \cdot \alpha \cdot \beta = 1$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-0)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-0)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-1)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-1)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-1)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(3-2)} = \beta$$

$$\frac{1}{1} \int_{0}^{2} \frac{1}{(1+6+3)}$$

2) 100 hair berbeda -> arnati telur yang menetas dari 17:00-17:05

Banyay tolur	0	1	2	3	4	2
Banyau hori			15	10	7	4

a.) Depinisikan variabel acon x yang tepat untuk mendeskriptikan kany -> X menyatawan banyaw telur yang munetas dalam 5 munit

b.) Tentulan fungsi massa peluang fx(11) yg servai dengan data yg diberiuan.

•
$$f_{x}(0) = \frac{36}{100}$$
 • $f_{x}(1) = \frac{20}{100}$ • $f_{x}(2) = \frac{15}{100}$
• $f_{x}(2) = \frac{1$

(3) suatu perbah acau × memilini distribusi peluary sebagai berikut, tentunan.

$$X$$
 -01 1.9 207 3 4
 $f_{X}(X) = P(X=U)$ 0.1 T 0.3 T 48

a) nilai ?

-> total relucing some denger 1:

otal relucies some denote 1:

$$F_{x}(1,9) = \mathbb{R}(x=1,9)$$
 $F_{x}(1,9) = \mathbb{R}(x=1,9)$
 $F_{x}(1,9) = \mathbb{R}(x=1,9)$

→ pMF = $f \times (3) = p \cdot (1-p)^{N-1} = 0/2 (1-\frac{0/2}{2})^{3-1} = 0/2 \cdot (0/8)^2 = 0/128$ ($f \times (3)$)?

- (a) Palling benyaling 10 orange cluen sembles. \Rightarrow misal perelition who is 20 orange parties flu bring, berapa pelluary. \Rightarrow Distribusts (a) Palling benyaling 10 orange cluen sembles. \Rightarrow misal Binomial! \Rightarrow P($\times \le 10$) = \Rightarrow P($\times = 0$) + P($\times = 1$) + P($\times = 2$) + ... + P($\times = 10$) parties flu bring yang dapat sembles \Rightarrow consider flu bring yang dapat sembles \Rightarrow probability (a) \Rightarrow probability (b) \Rightarrow probability (b) \Rightarrow probability (c) \Rightarrow
- (b) total 3 orang gang sombuli: $\rightarrow \mathbb{P}(x=5) = \binom{15}{5} \left(\frac{1}{20}\right)^5 \left(\frac{19}{20}\right)^{10} \approx 0,00056187$
- (c) antered 3 scampai & orang yang sembluh: $\frac{1}{2} \mathbb{P}(3 \leq x \leq 8) = \sum_{x=3}^{6} {N \choose x} p^{x} (1-p)^{N-x} = \mathbb{P}(x=3) + \mathbb{P}(x=4) + \mathbb{P}(x=5) + ... + \mathbb{P}(x=8)$ $= {15 \choose 3} {1 \choose 20}^{3} {1 \choose 20}^{12} + {15 \choose 4} {1 \choose 20}^{4} {1 \choose 20}^{11} + {15 \choose 5} * {1 \choose 20}^{5} {1 \choose 20}^{10}$ $+ ... + {15 \choose 8} {1 \choose 20}^{8} {1 \choose 20}^{9}$ $\approx 0/0362$