第二章

插值方法

— 曲线拟合的最小二乘法

内容提要

- ■曲线拟合
 - 什么是曲线拟合
 - 曲线拟合的最小二乘法
 - 最小二乘拟合多项式

什么是曲线拟合

给定数据:

x_0	x_1	x_2	•••	x_m
y_0	y_1	y_2	•••	y_m

在函数族 Φ 中寻找函数 $S^*(x)$, 使得

$$\sum_{i=0}^{m} |S * (x_i) - y_i|^2 = \min_{S(x) \in \Phi} \sum_{i=0}^{m} |S(x_i) - y_i|^2$$

曲线拟合的最小二乘法

若 $\Phi = H_n$,则称 $g^*(x)$ 为 n 次最小二乘拟合多项式

$$\Phi = \operatorname{span} \left\{ \varphi_0(x), \varphi_1(x), \dots, \varphi_n(x) \right\} \qquad m >> n$$

其他拟合方法

• 使得 $\max_{0 \le i \le m} |S^*(x_i) - y_i|$ 最小

• 使得 $\sum_{i=0}^{m} \left| S^*(x_i) - y_i \right|$ 最小

→ 不可导,求解困难 🙁

举例

最小二乘问题中,如何选择数学模型很重要,即如何选取函数空间 $\Phi = \text{span}\{\varphi_0, \varphi_1, ..., \varphi_n\}$,通常需要根据物理意义,或所给数据的分布情况来选取合适的数学模型。

2 直线拟合(一次函数) →

a) 问题的提法↓

通过观测、测量或试验得到某一函数在 x_1, x_2, \dots, x_n 的函数值 y_1, y_2, \dots, y_n ,即得到 n组数据 (x_1, y_1) , (x_2, y_2) , (x_n, y_n) 如果这些数据在直角坐标系中近似地分布在一条直线上,我们可以用直线拟合的方法。+

问题:
$$O(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$
 ,求一个一次多项式 $O(x) = a + bx$ (实际上,就是求 $o(x_k)$, 使得 $O(a,b) = \sum_{k=1}^n (y_k - o(x_k))^2 = \sum_{k=1}^n (y_k - a - bx_k)^2$ 达到最小。

注意到 Q(a,b) 中, x_k,y_k 均是已知的,而 a,b 是未知量,Q(a,b) 是未知量 a,b 的二元函数,利用高等数学中求二元函数极小值(最小值)的方法,因此,上述问题转化为求解下列方程组a

$$\begin{cases} \frac{\partial Q(a,b)}{\partial a} = 0\\ \frac{\partial Q(a,b)}{\partial b} = 0 \end{cases}$$

b) 正则方程组↓

姐
$$Q(a,b) = \sum_{k=1}^{n} (y_k - a - bx_k)^2$$

$$\begin{cases} \frac{\partial Q(a,b)}{\partial a} = -2\sum_{k=1}^{n} (y_k - a - bx_k) = 0\\ \frac{\partial Q(a,b)}{\partial b} = -2\sum_{k=1}^{n} (y_k - a - bx_k)x_k = 0 \end{cases}$$

因为↩

$$\sum_{k=1}^{n} a = na \sum_{k=1}^{n} b x_{k} = b \sum_{k=1}^{n} x_{k}$$

得到如下的正则方程组+

$$\begin{cases} na + \left(\sum_{k=1}^{n} x_k\right)b = \sum_{k=1}^{n} y_k \\ \left(\sum_{k=1}^{n} x_k\right)a + \left(\sum_{k=1}^{n} x_k^2\right)b = \sum_{k=1}^{n} x_k y_k \end{cases}$$

这是个关于 a, b的二元一次方程组,称其为最小二<u>乘问题</u>的正则方程组。解得

a,b,便得到最小二乘问题的拟合函数 y=a+bx 。 $lacksymbol{\downarrow}$

例:已知10对数据如下表,利用最小二乘法求拟合直线y=a+bx。

<u>demo_2_10.m</u>

解: 先列表来计算四个 $\sum_{k} \sum_{k} x_{k}$, $\sum_{k} y_{k}$, $\sum_{k} x_{k}^{2}$, $\sum_{k} x_{k} y_{k}$

$\boldsymbol{\mathcal{X}}_{k}$	${\cal Y}_k$	\boldsymbol{x}_k^2	$oldsymbol{x}_k oldsymbol{y}_k$
2	5	4	10
4	3.5	16	14
4	3	16	12
4.6	2.7	21.16	12.46
5	2.4	25	12
5.2	2.5	27.04	13
5.6	2	31.36	11.2
6	1.5	36	9
6.6	1.2	43.56	7.92
7	1.2	49	8.4
50	25	269.12	109.94

形成正则方程组

$$\begin{cases} 10a + 50b = 25 \\ 50a + 269.12b = 109.94 \end{cases}$$

解得

$$a = 6.4383$$
 $b = -0.7877$

于是,最小二乘拟合一次函数为

$$y = 6.4383 - 0.7877x$$