6월 24일 최종 결과 발표

1. 최종 개발 목표 및 결과 요약

1-1. 최종 개발 목표 상세

- ① 다양한 알고리즘을 적용하여 실험을 할 수 있는 모듈러 아키텍쳐 VSLAM 프레임워크 만들기
- ② 해당 프레임워크를 타 OpenSource SLAM과 성능 비교하기
- 프레임워크 카메라 종류
 - 。 Stereo 카메라를 지원할 것
- 실험 대상이 될 기능 조건
 - Feature 관련: ORB, AKAZE를 포함하여 최소 3개의 실험 가능한 기능 개발
 - ∘ Frontend 관련: 최소 5개 이상의 실험 가능한 조합 개발
 - 。 Backend 관련: 최소 5개 이상의 실험 가능한 조합 개발
 - Loop closure 관련: 최소 5개 이상의 실험 가능한 조합 개발 (활성화/비활성화 기능 필수)
- CI/CD에서 자동 빌드를 지원할 것
- GitHub repository 링크를 공유할 것

1-2. 최종 개발 결과 요약

- 개발 기간: 2022.06.13.월 ~ 2022.06.24.금 (총 2주)
- 개발 인원: 4인 (한은기(PM), 이창준, 이현진, 유희평)
- ProSLAM을 기반으로 프레임워크를 제작함. 선정 이유는 아래와 같음.
 - 。 구현과 관련한 내용이 <u>논문</u>에 상세하게 기술되어 있음.
 - 。 각 구현부마다 상세한 주석이 포함되어 있음
 - 。 한 Thread 에서 모든 과정이 진행되어 다소 delay가 발생할 수는 있으나 복잡도가 낮음
 - 더 나은 정확도를 위하여 Monocular 대신 Stereo 카메라 및 RGB-D 카메라를 지원함.
- 실험을 위한 각 알고리즘 구현 내용을 아래에 간단히 기술함. 더욱 자세한 내용은 [2. 개발 결과 상세]에서 계속.
 - Feature 관련: Feature Detector와 Descriptor를 구분하여 각각 4개씩의 선택이 가능
 - Detector Type [4개]: AKAZE, FAST, KAZE, ORB
 - Descriptor Type [47H]: AKAZE, BRISK, KAZE, ORB
 - Frontend 관련: Matching 방식을 선택할 수 있으며, 좋은 matching을 찾을 시 Homography의 이용 여부 및 파라미터를 설정할수 있음
 - Matching 방식 [6개]: FLANNBASED, BRUTEFORCE, BRUTEFORCE_L1, BRUTEFORCE_HAMMING, BRUTEFORCE_HAMMINGLUT, BRUTEFORCE_SL2
 - Homography 사용 여부 [2개]: Homography 사용, lowe's ratio 사용
 - Homography 사용 시 파라미터 [3개]: RANSAC, RHO, LMEDS
 - 。 Backend 관련
 - Optimization Algorithm [37H]: Gauss-Newton, Levenberg, Dogleg
 - Linear Solver Type [3개]: CHOLMOD, CSPARSE, DENSE
 - 。 Loop closure 관련
 - local map aligner [2개]: ICP, FAST-ICP

- parameters [67]: error_delta_for_convergence, maximum_error_kernel, maximum_number_of_iterations, minimum_number_of_inliers, minimum_inlier_ratio, anderson_m
- on-off 가능
- 추후 local map aligner를 추가하기 용이하게 코드를 리펙터링함
- GitHub Repository에서 CI/CD 구현 내용을 확인할 수 있음

2. 개발 결과 상세

모든 파트의 실험은 설정 파일(예: configuration/configuration_kitti.yaml)의 인자를 바꿈으로써 선택 구동이 가능함.

2-1. ImageProcessing

입력받은 이미지로부터 (1) feature을 추출하고, 비교를 할 수 있는 (2) descriptor을 만드는 방법 각각을 선택해 실험할 수 있음. 실험 가능한 알고리즘은 아래와 같이 구현해 두었으며 각 알고리즘에 대한 간단한 설명도 기술하였음

2-1-1. Feature 추출 방식

detector_type	설명
ORB	(default) Oriented FAST and Rotated BRIEF로, OpenCV에서는 해리스 코너 검출을 기본값으로 함
AKAZE	Accelerated-KAZE로, KAZE와 마찬가지로 Nonlinear diffusion filter를 이용함
FAST	Features from accelerated segment test로, 특징 점 추출 속도가 매우 빠름
KAZE	Nonlinear diffusion filter를 이용하여 비선형 스케 일 스페이스를 구축하여 특징점을 검출함

2-1-2. Descriptor 방식

descriptor_type	설명
ORB	(default) BRIEF descriptor를 사용함
AKAZE	크기 및 회전 변화에 강하고 이진 기술자이기 때문 에 계산이 빠름
BRISK	Binary Robust Invariant Scalable Keypoints로, 크기 및 회전 변화에 강하고 이진 기술자이기 때문 에 계산이 빠름
KAZE	크기 및 회전 변화에 강하지만 실수 기술자이기 때 문에 계산이 오래 걸림

2-1-3. 실행 영상

https://s3-us-west-2.amazonaws.com/secure.notion-st atic.com/4ce688bb-2b20-4b06-86b2-9877ea7c3f4d/fe ature_detector_ORB.mp4

https://s3-us-west-2.amazonaws.com/secure.notion-st atic.com/dccd78ba-c156-4943-90de-fc0453d63054/fe ature_detector_ORB_with_WARNING.mp4

ORB

ORB with WARNING

https://s3-us-west-2.amazonaws.com/secure.notion-st atic.com/16f0b176-6083-401d-a8af-ff887cfe6adf/feature_detector_FAST.mp4 https://s3-us-west-2.amazonaws.com/secure.notion-st atic.com/556bbbaa-d924-4b7a-822f-6a5e2f002900/fe ature_detector_AKAZE.mp4

FAST

AKAZE

2-2. Frontend

Frontend에서는 Stereo Camera Data에서 받아온 왼쪽과 오른쪽 이미지를 서로 비교하여 matching을 찾는 방식을 실험할 수 있으며, 크게 세 가지로 분류할 수 있음. (1) Matching 방식 (좌우 이미지에서 서로 대응하는 점을 찾기)과 (2) Matching을 찾기 위한 Homography 사용 여부 (대응하는 점 간의 대응 정확도를 판단), 그리고 (3) Homography를 사용할 시 선택할 수 있는 파라미터임.

2-2-1. Matching 방식

use_opencv_match	설명	select_descriptor_matcher	설명

use_opencv_match	설명
true	OpenCV를 사용하여 matching을 시행함
false	기존 ProSLAM 방식을 이용해 matching을 시 행함 (왼쪽과 오른쪽 점의 row/column 위치 비 교)

select_descriptor_matcher	설명
FLANNBASED	(default) 모든 디스크립터를 찾지 않고, 서로 이웃하는 디스크립터끼 리 비교를 하는 알고리즘.
BRUTEFORCE	queryDescriptors와 trainDescriptors를 하나하나 확인 해 매칭되는지 판단하는 알고리즘
BRUTEFORCE_L1	BRUTEFORCE의 유클리드 거리 측정 방법을 이용, = sigma(abs(a- b))
BRUTEFORCE_HAMMING	BRUTEFORCE의 해밍 거리 측정 방법을 이용, = sigma(a==b ? 1: 0)
BRUTEFORCE_HAMMINGLUT	BRUTEFORCE의 해밍 거리 측정 방법을 이용, XOR기법을 사용함.
BRUTEFORCE_SL2	BRUTEFORCE의 해밍 거리 측정 방법을 이용, root를 씌워서 값을 비교함.

2-2-2. Homogrphy 사용 여부

matching_disable_findhomography	설명
true	lowe's ratio 방식을 사용함
false	OpenCV의 findHomography () 함수를 사용함 lowe's ratio 방식을 사용함

양쪽 이미지에서 matching을 찾았다면 각 포인트 쌍에 대해 좋은 matching인지, 즉 잘 matching되었는지를 확인함.

2-2-3. Homography 파라미터

findhomography_method	설명
RANSAC	(default) 즉 가장 많은 수의 데이터들 로부터 지지를 받는 모델을 선택하는 방법 - 랜덤으로 포인트를 잡아서 모델 을 만듦.
RHO	PROSAC, RANSAC에서 개선한 모델 피쳐 디스크립터간 디스턴스를 정렬하여 반복을 할 때 마다 디스턴스 가 낮은 매쳐들을 보다가 점점 높은 매 쳐들을 봄. 디스턴스가 적은 매칭일수 록 모델 추론때 더 정확히 추론될 가능 성(inlier 가능성)을 볼 수 있음.
LMEDS	에러 분포들의 중앙값(에러 분포들을 순서대로 정렬했을 때 순서상 가운데 에 있는 값)이 최소화되는 모델을 찾는 다.

matching_disable_findhomography = true 일 경우, 어떤 방식을 사용할지 결정함.

RANSAC, RHO를 선택할 경우, findHomography() 함수의 파라미터로서 설정 파일에서 [maximum_ransac_reproject](RANSAC 재투영 허용 개수), maximum_iters (iteration 횟수 (RANSAC)), maximum_confidence (정확도)를 세부 조정을 할 수 있음

2-3. Backend & Loop Closure

2-3-1. Loop Closure

aligner_type	설명
ICP(Classic-ICP)	(default) 두 cloud point를 겹치게 만드는 translation과 rotation을 iterative하게 구하는 방법
FAST-ICP	ICP를 fixed-point iteration 문제로 다루어 Anderson Acceleration을 적용하여 수렴을 가속하는 방법

option_disable_relocalization	설명
true	Loop Closure 기능이 off되며 pose-graph optimization을 수행하지 않음

option_disable_relocalization	설명
false	Loop Closure 기능이 on되며 다음과 같은 옵션을 선택할 수 있음

aligner's parameter	설명
error_delta_for_convergence	수렴으로 판단하기 위한 iteration간 error의 차이
maximum_error_kernel	inlier와 outlier를 판단하기 위한 커널의 값
maximum_number_of_iterations	최대 iteration 횟수
minimum_number_of_inliers	유효한 closure인지 판단하기 위한 최소 inlier 수
minimum_inlier_ratio	유효한 closure인지 판단하기 위한 최소 inlier 비율
anderson_m	Anderson Acceleration 기법을 사용하는데, 이때 과거 iteration의 정보를 얼마나 사용할지에 대한 파라미터

2-3-2. Pose-Graph Optimization

optimization_algorithm	설명
GAUSS_NEWTON	(default) 비선형 최소자승문제를 해결하기 위한 알고리즘으로 에러의 오차 제곱을 최소화하는 방법이다.
LEVENBERG	Gauss-Newton 방법에서 Gradient descent를 결합한 방법
DOGLEG	Levenberg 방법에서 trust region을 도입한 방법

linear_solver_type	설명
CHOLMOD	(default) sparse 숄레스키 분해(Cholesky decomposition)를 이용
CSPARSE	Csparse library에서 구현된 solver를 이용
DENSE	dense 숄레스키 분해(Cholesky decomposition)를 이용

▼ Refactoring

```
//aligner_type을 추가하여 relocalizer가 다른 여러 local map aligner를 받을 수 있게 만듦
if (_parameters->aligner_type == "ICP")
   _aligner = XYZAlignerPtr(new XYZAligner(_parameters->aligner));
else if (_parameters->aligner_type == "FAST-ICP")
   _aligner = FastAlignerPtr(new FastAligner(_parameters->aligner));
else{
   _parameters->aligner_type = "ICP";
   LOG_INFO(std::cerr << "Relocalizer::aligner type | invalid aligner_type, force to use ICP" << std::endl)
   _aligner = XYZAlignerPtr(new XYZAligner(_parameters->aligner));
}
LOG_INFO(std::cerr << "Relocalizer::aligner type | " << _parameters->aligner_type << std::endl)
```

// 기존에 local map aligner를 가리키는 포인터를 다른 포인터에도 적용하기 위해 XYZAligner의 상위 클래스인 BaseLocalMapAligner에 AlignerPtr을 정의 typedef std::shared_ptr<XYZAligner> XYZAlignerPtr; // ---> typedef std::shared_ptr<BaseLocalMapAligner> AlignerPtr;

2-4. 성능 비교(1): 기존 ProSLAM과의 비교

타 SLAM과의 비교는 [3-1. 타 SLAM과의 성능 비교]에서 이어짐

변경 내용

* 이미지 처리:

detector_type: FAST

* Frontend:

```
use_opencv_match: true \rightarrow select_descriptor_matcher: flannbased matching_disable_findhomography: false \rightarrow findhomography_method: LMEDS
```

2-4-1. 정확도

점선: Ground Truth (실제) / 실선: SLAM 결과 경로

기존 ProSLAM

300 --- 00_gt_edited trajectory_kitti 200 -100 -200 0 100 200 300 400 z (m)

모듈러 아키텍처

2-4-2. 속도

다양한 연산이 수행되는 한 프레임의 내용을 보임

기존 ProSLAM

모듈러 아키텍처

block	calls	avg (ms)	mdn (ms)	block	calls	avg (ms)	mdn (ms)
Keypoint Detection	4000	4.794	4.396	Keypoint 20.38 Detection	4000	2.672	2.2389
Descriptor Extraction	4000	8.423	7.903	Descriptor 35.82 Extraction	4000	9.379	8.656
Tracking	1999	5.238	4.951	Tr ātkl íðg	1999	6.120	5.785
Pose Recovery	1999	3.780	3.547	Pose3Recovery	1999	4.326	4.020
Landmark Optimization	2000	477.787	475.020	Landmark 1,02 Optimization	2000	0.521	0.516
Stereo Matching	2000	5.582	4.980	Stele87Matching	2000	111.906	102.196
Pose Optimization	394	26.062	26.129	Pose 10.92 Optimization	2	0.423	0.316
Pose Graph Add	394	466.867	382.550	Pos@Graph Add	394	0.503	0.460
Pose Graph Optimization	8	71.523	70.270	Pose Graph 0.61 Optimization	7	70.077	65.356

block	calls	avg (ms)	mdn (ms)	block	calls	avg (ms)	mdn (ms)
Landmark Merge	8	550.166	493.176	Landmark 0.00 Merge	7	0.457	0.453

2-5. 성능 비교(2): 파라미터 변경 결과 비교

이전 설정

aligner_type : ICP

optimization_algorithm: GAUSS_NEWTON

200 100 -200 0 100 200 300 400 z (m)

Backend 방식 변경

aligner_type : FAST-ICP

optimization_algorithm: DOGLEG

read 21994 Screenhalth	~			Belle L	4.0			Shen	gridstables				Pes							
rood 21979				_																П
																				1
736790	734450	714	0410	230620	236	110 236		236490		4.002	234670	236680	23469			23/310	231528		1530	
9.7 ms Hoos own	N/PR									Tweet 21									241	
										and a								1.		
		Mille	44.4	a dillin			Dec al				4	II. SLIGHT	in distribution	Mina						
				time 2	90922 E ms []	mollest 253483.3	Wo 100 I	900 walt	0 ms 00 805	01 wy 14.36					rten				- 3	
44				time 2	90922 E ms []	orolled 259483.3	ero 100 L	990) wait	0 ma 00 800	01 wg 14.36	2 ms (mdr	x 3.999 ms 17	6k hames 17.6	i bisds 1 m	Pien					
* Search by name				time 2	90922 5 ms []	ootled 253483.3	ws 188 L	990 mail:	0 ms (0.305	0) mg [4.56	2 ms mol	x 3.999 ms 17	68 Prames 17.6	t bisels 1 m	hien					
▼ Search by name																				3.2
▼ Search by name	Segir, so Time		Selffire	Selft	i End, res	Schwere - Max	frame M		Avg frame	Hanton	Afress	Total/thread	Tatalicticus	Minthrea	Manythread				MorkTime	3.2
▼ Search by name	234403.667 2:306	i ma	2.304 ms	Self1	End, res 234403.753	Notice - Min.	trame M	106 ms	Avg frame	Mdn, frame	Afress	Total thread 18216.818 ms	Tatalicticas	O.889 mo	Hanthread 28.327 ms	2.554 mo	2.295 ms	4000	MorkTime 2.306 ms	
Search by name FiggeintOetection ReppointOetection	234403 587 2:306 234403 798 1.804	Ems Ems	2.306 ms 1.894 ms	Self9 390 390	End, res 234403.793 234405.662	Schwer - Mis. 219 Lite	frame M 6 mo 2 4 mo 1	106 ms	Avg frame 2 306 ms 1,004 ms	2 106 ms 1 104 ms	Africano 1	Total Viread 18216.818 ms 18216.818 ms	Tatel Lithrees	0.889 ms 0.889 ms	26.327 ms 26.327 ms	2.554 ms 2.554 ms	2.295 ms 2.295 ms	4000 4000	2 306 ms 1,804 ms	1 .
Search by name SuppointDetection HappointDetection Descriptostattaction	234403 667 2:306 234403 700 1.60- 236603 684 0-231	6 ms 4 ms 1 ms	2.306 ms 1.804 ms 5.232 ms	Self9 390 390 190	234403,793 234403,692 234403,692	National - Min. 218 1.00 5.22	frame M 6 mo 2 4 mo 1 1 ms 3	106 ms 104 ms 231 ms	Avg frame 2:306 ms 1:804 ms 5:233 ms	2.00 ms 2.00 ms 1.004 ms 5.235 ms	Afrano I I	Total/thread 18216.818 ms 18216.818 ms 22289.382 Ms	Totalii/thread	0.889 ms 0.889 ms 0.889 ms 2.483 ms	28.327 ms 28.327 ms 28.327 ms 32.689 ms	2.554 mo 2.554 mo 8.397 ms	2.295 ms 2.295 ms 7.790 ms	4000 4000 4000	2.306 ms 1.804 ms 5.232 Md	11
Islandh by name EugenintDetection NeopointDetection DescriptorExtraction DescriptorExtraction DescriptorExtraction	234403 667 2 306 234403 708 1 806 234403 884 5 235 234410 937 5 813	6 ms 4 ms 1 ms	2.306 ms 1.804 ms 5.232 ms 5.812 ms	Self9 190 190 190 190	234403.793 234403.793 234405.662 236418.923 236418.729	National n. 1961, 2.19 1.00 5.22 5.45	frame M 6ro 2 4ro 1 1ro 1	106 ms 104 ms 231 ms 812 ms	Avg frame 2.306 ms 1.604 ms 5.231 ms 5.812 ms	Hdn, frame 2 106 ms 1 894 ms 5 235 ms 5 812 ms	Afrana 1 1 1	Total Thread 18216.818 ms 18216.818 ms 22389.382 ms 33189.382 ms	Totalii,thread 4 4 13	0.689 ms 0.699 ms 0.693 ms 2.633 ms	26.327 ms 26.327 ms 26.327 ms 26.327 ms 52.689 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms	2.295 ms 2.295 ms 7.790 ms 7.790 ms	4909 4909 4909 4909	2.306 ms 1.804 ms 5.232 ms 5.212 ms	11
Search by name Segminible tection Segminible tection Segminible tection Decompositation Decompositation Tracking	234403.687 2.306 234403.708 1.806 236403.888 5.232 234410.817 5.812 234415.478 5.302	6 ms 4 ms 1 ms 1 ms	2.306 ms 1.804 ms 9.232 ms 9.812 ms 3.300 ms	SelPh 190 190 190 190 190	234403 793 234403 793 234405 502 234418 729 234422 539	Suframe v 200, 2.19 1.00 5.22 5.60 3.19	frame H fro 2 fro 1 line 3 line 3	235 no 812 no 100 no	Angifranse 2,396 ms 1,694 ms 5,331 ms 5,812 ms 3,392 ms	Mds, transc 2 (06 ms 1 804 ms 5 225 ms 5 812 ms 3 (00 ms	Afrons L L L	Total/thread 18216.818 ms 18216.818 ms 22389.382 ms 33189.382 ms 18664.608 ms	Totali,/thread	0.889 ms 0.899 ms 0.899 ms 2.833 ms 2.433 ms 1.421 ms	26.327 ms 26.327 ms 26.327 ms 26.327 ms 32.689 ms 12.689 ms 24.623 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms	2.295 ms 2.295 ms 7.790 ms 7.790 ms 4.035 ms	4909 4909 4909 4909 3999	2.306 ms 2.306 ms 1.604 ms 5.233 ms 5.813 ms 5.300 ms	1 1
Search by name SuppointDetection KeypointDetection KeypointDetection DescriptionTetraction Drawing dent afraction Tracking Possitycovery	234403.687 2:306 234403.708 1.806 236603.888 5:28 234416.917 5:812 2344[5:478 3:300 2244[2:477 2:310	6 ms 4 ms 3 ms 3 ms 3 ms	2.306 ms 1.804 ms 5.232 ms 5.812 ms 3.300 ms 2.118 ms	Self9 190 190 190 190 190	234403 793 234403 692 234403 692 234418 923 234418 729 234422 539 234415 597	National - 186s, 2.19 1.60 5.33 5.85 5.19 2.11	frame M 6re 2 4re 1 1re 3 2re 1 1re 3	106 ms 864 ms 231 ms 812 ms 100 ms	Avg frame 2.396 ms 1.694 ms 5.331 ms 5.312 ms 5.393 ms 2.116 ms	2 106 ms 2 106 ms 1 804 ms 5 235 ms 5 812 ms 3 100 ms 2 118 ms	Afrana 1 1 1 1 1	Total Thread 18216.818 was 18216.818 ma 32380.382 ma 33180.382 ma 1864.608 ma 7211.063 ma	Totalicthrees 4 4 13 13 4 2	0.889 ms 0.889 ms 0.889 ms 2.833 ms 2.431 ms 1.421 ms 0.004 ms	26.327 ms 26.327 ms 26.327 ms 32.699 ms 12.699 ms 26.623 ms 12.434 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 3.000 ms	2.295 ms 2.295 ms 7.790 ms 7.790 ms 4.035 ms 2.434 ms	4000 4000 4000 4000 1999 1999	2.306 ms 1.004 ms 1.004 ms 5.233 ms 5.812 ms 5.300 ms 2.116 ms	
Search by name SegminoDefection RepointDefection RepointDefection Descriptort attaction Descriptort attaction Tracking Possitionously LandmadsOption	234403 607 2309 234403 708 1.60 234403 808 5.20 234416 917 5.81 234415 478 5300 234423 477 2.31 236423 50 0.20	6 ms 4 ms 1 ms 1 ms 1 ms 6 ms	2:306 ms 1:804 ms 9:233 ms 5:812 ms 3:300 ms 2:116 ms 0:233 ms	Self9 190 190 190 190 190 190	294403 793 234403 692 234405 692 234418 923 234418 729 234422 539 234415 597 234413 821	Nifrans - Min. 2.19 1.00 5.23 5.45 2.11 0.29	trans M 6 ms 2 4 ms 1 1 ms 3 2 ms 1 1 ms 3 0 ms 2 1 ms 6	106 ms 864 ms 231 ms 812 ms 100 ms 119 ms 231 ms	Avg frame 2.396 ms 1.694 ms 5.331 ms 5.812 ms 5.391 ms 2.116 ms 0.331 ms	3 106 ms 1 804 ms 5 235 ms 5 812 ms 3 100 ms 2 118 ms 6 235 ms	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total thread 18256.818 ms 18256.818 ms 182589.382 ms 33189.382 ms 18064.600 ms 7211.663 ms	Tatalicthess 4 4 13 13 4 2 0	0.889 ms 0.899 ms 0.899 ms 2.493 ms 2.493 ms 1.421 ms 0.004 ms 0.003 ms	26.327 ms 26.327 ms 26.327 ms 32.689 ms 12.689 ms 26.027 ms 12.634 ms 12.634 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 3.600 ms 0.682 ms	2.295 ms 2.295 ms 7.790 ms 7.790 ms 4.035 ms 3.434 ms 9.673 ms	4000 4000 4000 4000 1999 1999 2000	2 306 ms 2 306 ms 1 804 ms 5 233 ms 5 812 ms 5 300 ms 2 116 ms 0 233 ms	
V Search by name EugenintDetection ReppointDetection ReppointDetection DescriptortExtraction DescriptortExtraction Tracking Receivecomeny LandmandExplain SurrentMething	234403.667.2:309 234403.709.1.800 234603.888.5:222 234415.977.8.812 234415.478.5:300 234422.477.2:310 236423.400.0282 234425.823.68.80	6 ms 4 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms	2 306 ms 1 804 ms 5 232 ms 5 812 ms 5 300 ms 2 316 ms 6 882 ms	\$489 180 180 180 180 180 180 180	294403 793 224405 692 234405 692 234418 925 234418 729 234422 539 234423 597 234423 821 234406 425	Suframe n Min. 2.19 1.09 5.33 5.45 3.19 2.11 9.33 60.8	Transe M 6 me 2 4 me 1 1 me 3 2 me 1 1 me 3 0 me 2 1 me 6	106 ms 104 ms 235 ms 112 ms 100 ms 113 ms 235 ms	Avg frame 2.396 ms 1.694 ms 5.331 ms 5.392 ms 2.116 ms 0.331 ms 68.662 ms	3 100 ms 2 100 ms 1 804 ms 5 235 ms 5 812 ms 3 100 ms 2 118 ms 6 235 ms 60.882 ms	Afrana 1 1 1 1 1 1 1 1	Total throad 18206.818 mo 18206.818 mo 18206.818 mo 18206.802 mo 18064.608 mo 18064.609 mo 18064.609 mo 181818.001 mo	Totali, three: 4 4 4 13 13 4 2 0	0.889 ms 0.899 ms 0.899 ms 2.493 ms 2.493 ms 1.422 ms 0.004 ms 0.002 ms 26.258 ms	26.327 ms 26.327 ms 26.327 ms 32.689 ms 24.623 ms 12.434 ms 12.434 ms 241.297 ws	2.554 ms 2.554 ms 8.387 ms 8.387 ms 5.005 ms 3.600 ms 0.682 ms 93.806 ms	2.295 ms 2.295 ms 7.790 ms 7.790 ms 4.035 ms 3.434 ms 8.832 ms 87.544 ms	4000 4000 4000 4000 1999 1999 2000 2000	\$ MorkTime 2.306 ms 1.804 ms 5.313 ms 5.313 ms 5.300 ms 2.316 ms 0.333 ms 68.862 ms	12
V Search by name SuppointDetection ReppointDetection ReppointDetection ReppointDetection Tracking Tracking Tracking Touristancomy LandmandEnglin SurveMatching Touristance	234403 867 2300 234403 708 1.80- 236005 888 5.20 234416 927 5.81 234415 478 5.30 234425 477 2.31 236425 80 0.320 234425 833 68.00 234408 233 33.13	6 ms 4 ms 1 ms 2 ms 1 ms 6 ms 1 ms 1 ms 5 ms 51 ms	2.306 ms 1.804 ms 5.332 ms 1.812 ms 5.300 ms 2.318 ms 0.332 ms 60.002 ms 13.151 ms	Self9 180 180 180 180 180 180 180 180	234403.753 234403.562 234405.662 234418.925 234418.729 234422.539 234423.567 234423.567 234438.421 234438.421 234500.365	Niframe - 200 2.19 1.00 5.22 5.65 3.19 2.11 6.23 60.8	Transe M 6 me 2 4 me 1 1 me 3 2 me 3 0 me 2 1 me 6 00 me 6 51 me 1	106 ms 804 ms 231 ms 812 ms 100 ms 113 ms 231 ms 0.832 ms 3,151 ms	Avg frame 2.306 ms 1.804 ms 5.333 ms 5.312 ms 5.310 ms 2.116 ms 68.862 ms 13.151 ms	2 006 ms 1 804 ms 5 235 ms 5 832 ms 3 500 ms 2 119 ms 6 231 ms 60.882 ms 13.151 ms	Afrana 1 1 1 1 1 1 1 1 1	Total/thread 18205-ELR mo 18205-ELR mo 18205-382 sec 1805-562 mo 1906-660 mo 1721-063 mo 18763-601 mo 18761-601 mo 964-2154 mo	Totali, threat 4 4 13 13 4 3 0	0.899 ms 0.899 ms 0.899 ms 2.493 ms 2.493 ms 1.422 ms 0.004 ms 0.002 ms 26.298 ms 0.115 ms	26.327 ms 26.327 ms 26.327 ms 32.689 ms 12.682 ms 12.682 ms 12.644 ms 1.312 ms 241.323 ms 03.125 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 2.000 ms 0.482 ms 93.808 ms 24.473 ms	2.265 ms 2.265 ms 7.180 ms 7.180 ms 4.035 ms 2.434 ms 8.633 ms 8.633 ms 87.844 ms 24.506 ms	4309 4309 4309 4309 1399 1399 2300 2300 2304	2 300 mg 1,004 mg 1,004 mg 5,232 mg 5,332 mg 5,332 mg 2,316 mg 0,232 mg 60,002 mg 13,151 mg	12
V Search by name ExpeniesChese for ExpeniesChese for ExpeniesChese for ExpeniesChese for DescriptionStation DescriptionStation Possible Possible Surrentification Surrentification Surrentification Surrentification Possible Possible	234403 867 2300 234403 708 1.80- 234005 884 5.23: 234415 877 5.81; 234415 878 5.30: 234423 477 2.31; 234423 80 0.33: 234425 80 0.33: 234425 80 0.34: 234406 213 13.13; 234501 308 0.34:	6 mp 4 mp 1 m4 2 ma 1 mp 6 mp 6 mp 6 mp 6 mp 1 mp	2.306 ms 1.804 ms 5.232 ms 5.812 ms 5.300 ms 2.316 ms 0.232 ms 60.862 ms 13.151 ms 0.342 ms	Self9 180 180 180 180 180 180 180 180	234403.793 234403.793 234405.692 234418.923 234418.729 234422.579 234423.801 234438.801 234438.425 234500.365 234500.365	Notice - Min. 2.19 1.00 5.29 5.40 2.10 2.11 0.23 60.8 13.1 0.79	frame M 6 m 2 4 m 1 1 m 3 2 m 5 1 m 3 0 m 2 1 m 6 02 m 6 51 m 1 3 m 5	106 ms 894 ms 291 ms 812 ms 100 ms 119 ms 231 ms 0.882 ms 3.151 ms	Avg frame 2 206 mg 1,804 mg 5,332 mg 5,332 mg 2,310 mg 0,332 mg 68,862 mg 13,151 mg 0,343 mg	2.006 ms 2.006 ms 1.804 ms 3.235 ms 3.000 ms 2.118 ms 0.235 ms 0.235 ms 0.235 ms 0.245 ms	Afrana 1 1 1 1 1 1 1 1 1 1 1	Total thread 18206 818 was 18216 818 ma 18216 818 ma 18216 332 was 18064 608 ma 1211 643 ma 18781 6031 ma 18781 6011 ma 9642 158 ma 42 787 ms	Enall-thread 4 4 13 13 13 4 5 0 0 172 4 0	0.889 me 0.899 me 0.899 me 2.493 me 2.493 me 1.422 me 0.000 me 0.003 me 0.115 me 26.35 ms	26.327 ms 26.327 ms 26.327 ms 32.689 ms 24.623 ms 12.434 ms 12.434 ms 241.323 ms 60.126 ms 4.397 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 2.600 ms 0.682 ms 93.006 ms 24.473 ms 0.339 ms	2,265 ms 2,265 ms 7,780 ms 7,780 ms 4,035 ms 2,434 ms 8,673 ms 87,544 ms 24,396 ms 8,000,338 ms	4309 4309 4309 4309 1399 1399 2300 2300 2300 234	2.306 ms 1.604 ms 5.332 ms 5.332 ms 5.300 ms 2.316 ms 0.332 ms 68.662 ms 0.343 ms	1 .
SuppointDetection SuppointDetection ReppointDetection ReppointDetection DescriptorStatisation DescriptorStatisation DescriptorStatisation DescriptorStatisation Tracking PoseRecovery SameAbleshing PoseOption Norecoption Norecoption Norecoption	234403 867 2309 234403 708 1.80 234603 888 5.22 234416 927 8.81 234416 927 2.31 23442 477 2.31 23462 90 0.32 23442 477 2.31 23622 80 0.36 23468 223 30 0.36 23468 223 0.036 23469 23 0.036	6 mp 4 mp 1 m4 2 ma 1 mp 6 mp 6 mp 1 ma 1 mp 6 mp 1 ma 12 mp 51 mp 3 ma 4 ma	2.306 ms 1.804 ms 5.232 ms 5.812 ms 5.300 ms 2.316 ms 0.232 ms 60.862 ms 13.151 ms 0.343 ms	Self0 180 180 180 180 180 180 180 180 180	294403 793 234405 662 234405 662 234418 739 234418 729 234422 539 234423 567 234508 625 234500 565 234500 151 234500 156	Niferen - Min. 2.19 1.09 5.23 5.45 2.11 0.23 60.8 0.79 0.00	Transe M 6 ms 2 4 ms 1 1 ms 3 2 ms 5 1 ms 3 0 ms 2 1 ms 6 50 ms 1 3 ms 6 4 ms 6	106 ms 894 ms 291 ms 100 ms 100 ms 1137 ms 231 ms 0.882 ms 0.882 ms 0.882 ms	Aug frams 1,804 ms 5,311 ms 5,812 ms 5,301 ms 2,110 ms 0,311 ms 68,802 ms 13,151 ms 0,040 ms	Min.thame 2 106 ms 1 804 ms 1 221 ms 8 812 ms 2 118 ms 6 231 ms 6 232 ms 13.151 ms 6 242 ms 6 242 ms 6 242 ms	Afrana 1	Table title and 18216-518 mm 18216-518 mm 18216-518 mm 18218-318 mm 18218-338 mm 18218-538 mm 18218-501 mm 18	Totali, threat 4 4 13 13 4 3 0	0.869 mo 0.669 mo 0.669 mo 2.633 mi 2.633 mi 1.622 mo 0.004 mi 0.003 mi 2.623 mi 0.115 mo 0.554 mi 0.115 mo 0.554 mi	26.327 ms 26.327 ms 22.609 ms 22.609 ms 24.633 ms 12.434 ms 12.434 ms 241.323 ms 63.125 ms 63.125 ms	2,554 mo 2,554 mo 8,397 ms 8,397 ms 5,005 mo 2,600 ms 0,682 ms 93,808 ms 24,473 ms 0,399 ms 0,00083 ms	2,265 ms 2,265 ms 7,780 ms 4,035 ms 4,035 ms 2,434 ms 8,633 ms 87,544 ms 24,596 ms 8,00030 ms	4309 4309 4309 4309 1399 1399 2300 2300 2300 234	4 MorkTime 2:306 ms 1:004 ms 5:223 ms 5:223 ms 5:223 ms 5:230 ms 2:216 ms 0:223 ms 68:682 ms 0:33 ms 0:343 ms 0:300 ms	1 .
SuppointDetection SuppointDetection ReppointDetection ReppointDetection DescriptorStatisation DescriptorStatisation DescriptorStatisation DescriptorStatisation Tracking PoseRecovery SameAbleshing PoseOption Norecoption Norecoption Norecoption	234403 867 2300 234403 708 1.80- 234005 884 5.23: 234415 877 5.81; 234425 877 2.31; 234423 877 2.31; 234425 873 68.70 234425 873 68.70 234425 873 68.70 234425 873 68.70 234425 873 68.70	6 mp 4 mp 1 m4 2 ma 1 mp 6 mp 6 mp 1 ma 1 mp 6 mp 1 ma 12 mp 51 mp 3 ma 4 ma	2.306 ms 1.804 ms 5.232 ms 5.812 ms 5.300 ms 2.316 ms 0.232 ms 60.862 ms 13.151 ms 0.342 ms	Self9 180 180 180 180 180 180 180 180	234403.793 234403.793 234405.692 234418.923 234418.729 234422.579 234423.801 234438.801 234438.425 234500.365 234500.365	Niferen - Min. 2.19 1.09 5.23 5.45 2.11 0.23 60.8 0.79 0.00	frame M 6 m 2 4 m 1 1 m 3 2 m 5 1 m 3 0 m 2 1 m 6 02 m 6 51 m 1 3 m 5	106 ms 894 ms 291 ms 100 ms 100 ms 113 ms 231 ms 0.882 ms 0.882 ms 0.882 ms	Aug frams 1,804 ms 5,311 ms 5,812 ms 5,301 ms 2,110 ms 0,311 ms 68,802 ms 13,151 ms 0,040 ms	2.006 ms 2.006 ms 1.804 ms 3.235 ms 3.000 ms 2.118 ms 0.235 ms 0.235 ms 0.235 ms 0.245 ms	Afrana 1	Tabel-thread 18206-EER was 18206-EER was 18206-EER was 18208-SEE was 1808-SEE was	Enall-thread 4 4 13 13 13 4 5 0 0 172 4 0	0.889 me 0.899 me 0.899 me 2.493 me 2.493 me 1.422 me 0.000 me 0.003 me 0.115 me 26.35 ms	26.327 ms 26.327 ms 22.609 ms 22.609 ms 24.633 ms 12.434 ms 12.434 ms 241.323 ms 63.125 ms 63.125 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 2.600 ms 0.682 ms 93.006 ms 24.473 ms 0.339 ms	2,265 ms 2,265 ms 7,780 ms 7,780 ms 4,035 ms 2,434 ms 8,633 ms 87,544 ms 24,596 ms 8,080308 ms	4309 4309 4309 4309 1399 1399 2300 2300 2300 234	2.306 ms 1.604 ms 5.332 ms 5.332 ms 5.300 ms 2.316 ms 0.332 ms 68.662 ms 0.343 ms	12
SuppointDetection SuppointDetection ReppointDetection ReppointDetection DescriptorStatisation DescriptorStatisation DescriptorStatisation DescriptorStatisation Tracking PoseRecovery SameAbleshing PoseOption Norecoption Norecoption Norecoption	234403 867 2309 234403 708 1.80 234603 888 5.22 234416 927 8.81 234416 927 2.31 23442 477 2.31 23462 90 0.32 23442 477 2.31 23622 80 0.36 23468 223 30 0.36 23468 223 0.036 23469 23 0.036	6 mp 4 mp 1 m4 2 ma 1 mp 0 ma 1 ma 1 ma 1 ma 1 ma 1 ma 1 ma 4 ma 4 ma	2.306 ms 1.804 ms 5.232 ms 5.812 ms 5.300 ms 2.316 ms 0.232 ms 60.862 ms 13.151 ms 0.343 ms	Self0 180 180 180 180 180 180 180 180 180 18	294403 793 234405 662 234405 662 234418 739 234418 729 234422 539 234423 567 234508 625 234500 565 234500 151 234500 156	Naframe n Plin 2.19 1.00 5.23 5.60 2.11 9.23 46.0 13.1 9.74 9.00 9.00	Transe M 6 ms 2 4 ms 1 1 ms 3 2 ms 5 1 ms 6 0 ms 2 1 ms 6 5 ms 1 3 ms 6 4 ms 6	106 ms 201 ms 201 ms 100 ms 110 ms 110 ms 231 ms 0.832 ms 0.832 ms 3.351 ms 3.05 ms 3.25 ms	Ang France 2:306 mp 1:804 mp 5:233 ms 5:812 mp 5:302 mp 2:316 mp 0:233 ms 64:862 mp 13:151 mp 0:004 ms 0:004 mp	Min.thame 2 106 ms 1 804 ms 1 221 ms 8 812 ms 2 118 ms 6 231 ms 6 232 ms 13.151 ms 6 242 ms 6 242 ms 6 242 ms	Afrana 1	Tablithread 18205-818 mp 18205-818 mp 18205-818 ms 28289-382 ms 18068-808 mp 7211-665 ms 187818-001 ms 187818-001 ms 187818-001 ms 187818-001 ms 187818-001 ms	Tatellu/thread 4 4 13 13 4 5 5 0 0 172 4 0 0 0	0.889 ms 0.889 ms 0.889 ms 2.483 ms 2.483 ms 1.421 ms 0.004 ms 0.003 ms 2.234 ms 0.115 ms 16-5 ms 0.006 ms	Planthread 28.327 ms 28.327 ms 28.327 ms 12.600 ms 12.600 ms 13.404 ms 13.121 ms 241.327 ms 03.126 ms 4.397 ms 0.022 ms 2.600 ms	2.554 ms 2.554 ms 8.397 ms 8.397 ms 5.005 ms 0.602 ms 0.402 ms 0.100 ms 0.110 ms 0.100 ms 0.100 ms	2,265 ms 2,265 ms 7,780 ms 4,035 ms 4,035 ms 2,434 ms 8,633 ms 87,544 ms 24,596 ms 8,00030 ms	4300 4300 4300 4300 2399 1399 2300 2300 2304 1 234 334 334	4 MorkTime 2:306 ms 1:004 ms 5:223 ms 5:223 ms 5:223 ms 5:230 ms 2:216 ms 0:223 ms 68:682 ms 0:33 ms 0:343 ms 0:300 ms	12

block	calls	avg (ms)	mdn (ms)	block	calls	avg (ms)	mdn (ms)
Keypoint Detection	4000	2.672	2.2389	Keypoint 3.49 Detection	4000	2.554	2.206

block	calls	avg (ms)	mdn (ms)	block	calls	avg (ms)	mdn (ms)
Descriptor Extraction	4000	9.379	8.656	Descriptor 12.24 Extraction	4000	8.397	7.780
Tracking	1999	6.120	5.785	Tr āc9 90ng	1999	5.035	4.836
Pose Recovery	1999	4.326	4.020	Pose2Recovery	1999	3.608	3.434
Landmark Optimization	2000	0.521	0.516	Landmark 0.34 Optimization	2000	0.462	0.473
Stereo Matching	2000	111.906	102.196	St ₹6e03 Matching	2000	93.808	87.544
Pose Optimization	2	0.423	0.316	Pose 0.00 Optimization	2	0.347	0.345
Pose Graph Add	394	0.503	0.460	PoseGraph Add	394	0.370	0.277
Pose Graph Optimization	7	70.077	65.356	Pose Graph 0.16 Optimization	1	28.122	28.122
Landmark Merge	7	0.457	0.453	Landmark 0.00 Merge	1	0.328	0.328

2-6, CI/CD

GitHub의 main branch로 Push하거나 Pull Request할 때 자동적으로 Build를 실행함

추가적 Actions로는 아래와 같은 것들이 있음

Workflow	Trigger	Description
Build Base docker image	workflow_dispatch (수동 수행)	KITTI dataset을 제외한 ProSLAM 모듈러 이미지를 만듦
Build Platform	workflow_dispatch (수동 수행)	ARM64에서 빌드함 (실패)
Run	workflow_dispatch (수동 수행)	도커 이미지를 도커 컨테이너에서 실행함 (실패)
Test	workflow_dispatch (수동 수행)	Unit Test를 작동시킴 (절반의 성공)
clang-format	workflow_dispatch (수동 수행)	모든 소스코드를 clang format으로 전환함 (사용하지 않음)

3. 추가적 결과 (갑작스러운 요구사항)

3-1. 타 SLAM과의 성능 비교

3-1-1. ORB SLAM2

- 한 개의 Thread에서 동작하는 ProSLAM과는 다르게, ORB SLAM2는 Local Mapping과 Tracking, Loop Closure가 각각의 Thread에서 실행됨
- 동일한 KITTI Dataset(00)에서 2000 frame에 대해 SLAM을 수행한 결과 아래와 같은 차이를 보임

ProSLAM (모듈러 아키텍처) **ORB SLAM2** 300 300 00_gt_edited --- 00_gt_edited - CameraTrajectory trajectory_kitti 200 200 100 100 (m) x (m) x 0 0 -100 -100 -200 -200 0 100 200 300 400 0 100 200 300 400 z (m) z (m) block calls avg (ms) mdn (ms) Keypoint 4000 2.672 2.2389 Detection block calls avg (ms) mdn (ms) Descriptor Local Mapping 601 264.266 255.698 4000 9.379 8.656 Extraction Tracking 2001 14.8 16.395 Tracking 1999 6.120 5.785 3.99 Loop Closure 11.372 9.075 600 2.82 Pose Recovery 1999 4.326 4.020 Landmark 2000 0.521 0.516 0.34 Optimization 2000 111.906 102.196 73.03 Stereo Matching Pose 0.423 0.316 0.00 Optimization Pose Graph Add 394 0.503 0.460 0.06 Pose Graph 70.077 65.356 0.16 Optimization Landmark 0.453 7 0.457 0.00 Merge

3-1-2. LSD SLAM

- 한 개의 Thread에서 동작하는 ProSLAM과는 다르게, LSD SLAM은 Tracking, Mapping, Constraint Search, Optimization이 각각 의 Thread에서 실행됨
- LSD SLAM은 Tracking을 Lost할 경우 모든 Thread를 수동으로 재시작함. 따라서 아래 Profiler 결과에서도 Thread가 여러 개로 나타남. 그러나 각 Thread의 종류와 개수는 동일하게 유지됨.
- LSD SLAM에서는 SLAM 결과의 Pose 정보가 저장되지 않아 경로 정확도 결과는 비교할 수 없없음
- 동일한 KITTI Dataset(00)에서 2000 frame에 대해 SLAM을 수행한 결과 아래와 같은 차이를 보임

각 SLAM 별 기능 비교

구분 (ProSLAM 논문 기준)	ProSLAM	ORB SLAM2	LSD SLAM
Triangulation	Keypoint Detection Descriptor Extraction Stereo Maching	Tracking	Tracking
Incremental Motion Estimation	Tracking	Tracking	Tracking
Map Management	Pose Recovery Landmark Optimization	Local Mapping	Map Estimation Update KeyFrame

구분 (ProSLAM 논문 기준)	ProSLAM	ORB SLAM2	LSD SLAM
Relocalization	Pose Optimization Pose Graph Add Pose Graph Optimization Landmark Merge	Loop Closure	Optimization Find Constraints Change KeyFrame

3-1-3. RTap map

빌드 및 Docker images 제작에는 성공하였으나, 각 모듈 별 해석을 시간 관계상 진행하지 못해 성능 비교를 진행하지 못함.

3-2. 각 SLAM의 Xycar에서의 CI 실행 및 작동

Xycar의 Jetson TX2의 경우 플랫폼이 ARM64/v8이나,

작업이 진행되어 Docker 이미지를 만들었던 플 랫폼은

AMD로 상이했음.

따라서 Docker Container가 작동하지 못함.

직접 Xycar에서 모든 라이브러리와 소스코드를 빌드하거나,

처음부터 Docker image를 다시 만들어야 했으

시간 부족으로 진행하지 못함.

4. 기본 및 보너스 포인트 정산

4-1. 기본 목표

- <u>▼ 프로젝트 종료 시기에 맞춰 정해진 개발 목표 달성시키기 (기술개발) (+150)</u>
- ▼ 프로젝트 종료 시기에 맞춰 개발 내용 및 사용한 프레임워크의 알고리즘에 대해 발표 (이론 이해) (+150)
- ▼ 중간 점검 시기에 맞춰 개발 중인 내용 보고 (프로젝트 매니징) (+150)

4-2. 보너스 포인트

<u>Aa</u> 이름	# 점 수	✓ 달성 여부	를 비고
KITTI 데이터셋에서 돌 수 있게 프레임워크 개량	50	✓	
PC 웹캠/리얼센스 카메라로 실시간 데모가 가능하게 함	100		기존 ProSLAM 모델에 존재함
자이카에서 돌 수 있게 프레임워크 개량	100		시도했으나 실패
정확도 개선	50		
<u>속도 개선</u>	50	✓	
오프라인 시각화 가능	50	✓	
실시간 시각화 가능	100	✓	
<u>아키텍처/알고리즘 재사용성 개선</u>	100	✓	이미지 처리 ~ 백엔드 선택적 구동 가능
<u>안정성 확보: CI/CD 유닛테스트</u>	100	✓	시도했으나 실패
<u>다른 팀에게도 도움이 될 수 있는 자료 정리 및 공유</u>	50	✓	
오픈소스를 참고해 직접 VSLAM 파이프라인을 설계 및 구현(최소 2 모듈 이상 변경)	150	~	ProSLAM의 feature detection, aligner 등 변경

<u>Aa</u> 이름	# 점 수	✓ 달성 여부	≣ 비고
고객의 갑작스러운 요구사항1 달성	100	✓	ORB SLAM, LSD SLAM 2개는 만족, RTAB Map 은 실패
고객의 갑작스러운 요구사항2 달성	200		시도했으나 실패

450 + 750