The price against time plots for 2 stocks from each NSE and BSE are given below:

From NSE:

From BSE:

Histograms of the return of stocks from bse,nse superimposed with a graph of the density function $N\left(0,1\right)$ are:

I was not able to observe any samples in the tail region of each histogram.

Question 3 Histograms of the log return of stocks from bse,nse superimposed with a graph of the density function N (0,1) are:

Yes, Using log returns the histogram fits the distribution better near the tails.

The images actual and predicted paths of stock prices between 1/01/2018 and 31/12/2018 plotted against each other are given below:

The images actual and predicted paths of weekly stock prices between 1/01/2018 and 31/12/2018 plotted against each other are given below:

WEEKLY BSE:

MONTHLY

Since all the predicted values are functions of a normal random variable with predicted mean and variance any different behaviour can be accounted to the randomness, and sudden price drops(if any) are accounted to the unnoticed stock splits.