Linear Regression

30 Sep 2011 CPSY501 Dr. Sean Ho Trinity Western University

Please download:

- Record2.sav
- ExamAnxiety.sav

Outline for today

- Correlation and Partial Correlation
- Linear Regression (Ordinary Least Squares)
 - Using Regression in Data Analysis
 - Requirements: Variables
 - Requirements: Sample Size
- Assignments & Projects

Causation from correlation?

- Ancient proverb: "correlation ≠ causation"
- But: sometimes correlation can suggest causality, in the right situations!
 - We need >2 variables, and it's
 - Not the "ultimate" (only, direct) cause, but
 - Degree of influence one var has on another
 - ("causal relationship", "causality")
- Is a significant fraction of the variability in one variable explained by the other variable(s)?

How to get causality?

- Use theory and prior empirical evidence
 - e.g., temporal sequencing: can't be T2 → T1
 - Order of causation? (gender & career aspir.)
- Best is a controlled experiment:
 - Randomly assign participants to groups
 - Change the level of the IV for each group
 - Observe impact on DV
- But this is not always feasible/ethical!
- Still need to "rule out" other potential factors

Potential hidden factors

- What other vars might explain these correlatns?
 - Height and hair length
 - e.g., both are related to gender
 - Increased time in bed and suicidal thoughts
 - e.g., depression can cause both
 - # of pastors and # of prostitutes (!)
 - e.g., city size
- To find causality, must rule out hidden factors
 - e.g., cigarettes and lung cancer

Example: immigration study

Partial Correlation

- Purpose: to measure the unique relationship between two variables – after the effects of other variables are "controlled for".
- Two variables may have a large correlation, but
 - It may be largely due to the effects of other moderating variables
 - So we must factor out their influence, and
 - See what correlation remains (partial)
- SPSS algorithm assumes parametricity
 - There exist non-parametric methods, though

Visualizing Partial Correlation

Direction of Causation?

Predictor (e.g., pastors)

Outcome (e.g., prostitutes)

Moderating Variable (e.g., city size)

Partial Correlation

Practise: Partial Correlation

- Dataset: Record2.sav
- Analyze → Correlate → Partial,
 - Variables: adverts, sales
 - Controlling for: airplay, attract
- Or: Analyze → Regression → Linear:
 - Dependent: sales; Independent: all other var
 - Statistics → "Part and partial correlations"
 - Uncheck everything else
 - All partial r, plus regular (0-order) r

Linear Regression

- When we use correlation to try to infer direction of causation, we call it regression:
- Combining the influence of a number of variables (predictors) to determine their total effect on another variable (outcome).

Simple Regression: 1 predictor

Simple regression is predicting scores on an outcome variable from a single predictor variable

■ Mathematically equiv. to bivariate correlation

OLS Regression Model

- In Ordinary Least-Squares (OLS) regression, the "best" model is defined as the line that minimizes the error between model and data (sum of squared differences).
- Conceptual description of regression line (General Linear Model):

Assessing Fit of a Model

- R²: proportion of variance in outcome accounted for by predictors: SS_{model} / SS_{tot}
 - Generalization of r² from correlation
- F ratio: variance attributable to the model divided by variance unexplained by model
 - F ratio converts to a p-value, which shows whether the "fit" is good
- If fit is poor, predictors may not be linearly related to the outcome variable

Example: Record Sales

- Dataset: Record2.sav
- Outcome variable: Record sales
- Predictor: Advertising Budget
- Analyze → Regression → Linear
 - Dependent: sales; Independent: adverts
 - Statistics → Estimates, Model fit,
 Part and partial correlations

Record2: Interpreting Results

- Model Summary: R Square = .335
 - adverts explains 33.5% of variability in sales
- **ANOVA:** F = 99.587 and Sig. = .000
 - There is a significant effect
- Report: $R^2 = .335$, F(1, 198) = 99.587, P < .001
- Coefficients: (Constant) B = 134.140 (Y-intcpt)
 - Unstandardized advert B = .096 (slope)
 - Standardized advert Beta = .578
 - (uses variables converted to z-scores)
 - Linear model: $\hat{Y} = .578 * AB_z + 134$

General Linear Model

- Actually, nearly all parametric methods can be expressed as generalizations of regression!
- Multiple Regression: several scale predictors
- Logistic Regression: categorical outcome
- ANOVA: categorical IV
 - t-test: dichotomous IV
 - ANCOVA: mix of categorical + scale IVs
 - Factorial ANOVA: several categorical IVs
- Log-linear: categorical IVs and DV
- We'll talk about each of these in detail later
 TRINITY
 CPSY501: regression 30 Sep 2011

Regression Modelling Process

- (1) Develop RQ: IVs/DVs, metrics
 - Calc required sample size & collect data
- (2) Clean: data entry errors, missing data, outliers
- (3) Explore: assess requirements, xform if needed
- (4) Build model: try several models, see what fits
- (5) Test model: "diagnostic" issues:
 - Multivariate outliers, overly influential cases
- (6) Test model: "generalizability" issues:
 - Regression assumptions: rebuild model

Selecting Variables

- According to your model or theory, what variables might relate to your outcomes?
 - Does the literature suggest important vars?
- Do the variables meet all the requirements for an OLS multiple regression?
 - (more on this next week)
- Record sales example:
 - DV: what is a possible outcome variable?
 - IV: what are possible predictors, and why?

Choosing Good Predictors

- It's tempting to just throw in hundreds of predictors and see which ones contribute most
 - Don't do this! There are requirements on how the predictors interact with each other!
 - Also, more predictors → less power
- Have a theoretical/prior justification for them
- Example: what's a DV you are interested in?
 - Come up with as many possible good IVs as you can – have a justification!
 - Background, internal personal, current external environment
 CPSY501: regression

Using Derived Variables

You may want to use derived variables in regression, for example:

- Transformed variables (to satisfy assumptions)
- Interaction terms: ("moderating" variables)
 - e.g., Airplay * Advertising Budget
- Dummy variables:
 - e.g., coding for categorical predictors
- Curvilinear variables (non-linear regression)
 - e.g., looking at X² instead of X

Required Sample Size

- Depends on effect size and # of predictors
 - Use G*Power to find exact sample size
 - Rough estimates on pp.222-223 of Field
- Consequences of insufficient sample size:
 - Regression model may be overly influenced by individual participants (not generalizable)
 - Can't detect "real" effects of moderate size
- Solutions:
 - Collect more data from more participants!
 - Reduce number of predictors in the model

Requirements on DV

- Must be interval/continuous:
 - If not: mathematics simply will not work
 - Solutions:
 - Categorical DV: use Logistic Regression
 - Ordinal DV: use Ordinal Regression, or possibly convert into categorical form
- Independence of scores (research design)
 - If not: invalid conclusions
 - Solutions: redesign data set, or
 - Multi-level modelling instead of regression

Requirements on DV, cont.

- Normal (use normality tests):
 - If not: significance tests may be misleading
 - Solutions: Check for outliers, transform data, use caution in interpreting significance
- Unbounded distribution (obtained range of responses versus possible range of responses)
 - If not: artificially deflated R²
 - Solutions:
 - Get more data in missing range
 - Use more sensitive instrument

Requirements on IV

- Scale-level
 - Can be categorical, too (see next page)
 - If ordinal, either threshold into categorical or treat as if scale (only if have sufficient number of ranks)
- Full-range of values
 - If an IV only covers 1-3 on a scale of 1-10, then the regression model will predict poorly for values beyond 3
- More requirements on the behaviour of IVs with each other and the DV (covered next week)

Categorical Predictors

- Regression can work for categorical predictors:
- If dichotomous: code as 0 and 1
 - e.g., 1 dichotomous predictor, 1 scale DV:
 - Regression is equivalent to t-test!
 - And the slope B₁ is the difference of means
- If *n* categories: use "dummy" variables
 - Choose a base category
 - Create n-1 dichotomous variables
 - e.g., {BC, AB, SK}: dummys are isAB, isSK

