1. Introduction

Job sequencing determines the order in which jobs are processed on one or more machines to optimize performance measures such as makespan, flow time, and lateness.

2. Flow Shop vs. Job Shop

- Flow Shop: Jobs follow the same sequence of machines.
- **Job Shop**: Jobs may follow different machine sequences.

3. Johnson's Rule (Two Machines)

- Applicable to two-machine flow shops with no passing allowed.
- Steps:
 - 1. List jobs with processing times on each machine (M1, M2).
 - 2. Find the job with the smallest processing time.
 - If it's on M1, schedule it as early as possible.
 - If it's on M2, schedule it as late as possible.
 - 3. Repeat until all jobs are scheduled.

4. Johnson's Rule (Three Machines)

- Convert the 3-machine problem into an equivalent 2-machine problem by combining times:
 - M1' = M1 + M2
 - o M2' = M2 + M3
- Apply Johnson's Rule to the transformed problem.

5. Performance Measures

- Makespan: Total time to complete all jobs.
- **Total Flow Time**: Sum of completion times.
- Total Lateness: Sum of differences between completion times and due dates.

6. Applications

Manufacturing production scheduling

- Logistics vehicle loading/unloading
- Service operations scheduling (hospital surgeries, repair workshops)