# Creating the next Ames

Annette Paciorek, Kisaki Watanabe, Nillia Ekoue, Colin Ford

# Agenda

...Objective

...Approach

...Data Exploration

...Feature Engineering

...Model Selection

...Results

...Conclusion



Here is why you should care

## Market-sizing assumptions:

```
764k new homes 2019 * 1/1000...
```

```
764 * $160k median SalePrice...
```

```
$122M total sale value * 5% fee =
```

# \$6.1M Opportunity

The Plan:

Use Ames data to project sale prices in similar communities.

Sell that data to developers and agents.

We approached this opportunity with three guidelines:

1. Domain Knowledge

Don't expect to re-invent the drivers of home price.

2. Visualization

Pictures often show what raw data can't.

3. Machine Learning

Validate our thinking with interpretable models.

# Domain Knowledge

How does a real estate agent price her inventory?

How does a buyer value a home?

#### **Assumed Factors**

Size: interior/exterior

Location: proximity to school,

work, crime

Quality: interior/exterior

Time: original build, remodel,

sale date

Sale Price

When exploring the data, we first wanted to understand the distribution of our data:



#### **Takeaways**

\_Target customers build houses between \$130k-\$214k

#### Few houses > \$300k

led us to log transform Sale Price so that we could improve our prediction accuracy. We then tested our domain knowledge by visualizing how variables changed with

Sale Price:

#### **Quality**





Lot Size

Yard matters for Certain types of dwellings

60000



We aggregated several *interior* size features to reflect **domain knowledge**\* about how size impacts price.



\*Also avoids variance in model performance due to multicollinearity

We also took creative liberty to create key price drivers we didn't immediately find in the data:

#### What we did

Engineer Age @ Sale column...
=
Lesser of Remodel Date & Year Built...
Sales Year

#### New column vs. Price



Some variables were significant only when grouped at a more granular level:

#### <u>Neighborhoods</u>



#### **Takeaway**

\_Retained Sales Year in feature set

\_Created binary variable for each neighborhood (multiple columns)

\_Tested accuracy with and without Sales Year included

Year Sold

#### We ultimately created 2 feature sets

| Category     | Feature-Heavy Set  | Feature-Light Set |
|--------------|--------------------|-------------------|
| Location     | Neighborhood       | Neighborhood      |
| Quality      | Overall Quality    | Overall Quality   |
| Quality      | Kitchen Quality    | Kitchen Quality   |
| Quality      | Exterior Quality   | Exterior Quality  |
| Quality      | Building Type      | x                 |
|              |                    |                   |
| Quality/Size | Fireplaces         | x                 |
| Size         | Total Size         | Total Size        |
| Size         | Lot Area           | x                 |
| Size         | Outdoor Porch Size | X                 |
| Time         | Age at Sale        | Age at Sale       |
| Time         | Year Sold          | Year Sold         |

# Each category of model has pros and cons.

|                               | Simple Linear                                                                       | <u> Mult. Linear +</u>                                                        | Random Forests                                                                          |
|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                               | Regression                                                                          | <u>Automated Ft.</u>                                                          |                                                                                         |
| Predictive<br>Accuracy*       | .23                                                                                 | <u>Selection</u><br>.14                                                       | .15                                                                                     |
|                               |                                                                                     |                                                                               |                                                                                         |
| Advantages                    | Fastest to implement, ease of understanding                                         | Interpretability, pred ictive value, conservative feature selection           | More resilient or stable against variability in the data.                               |
| Challenges/<br>Caveats        | Sacrifice accuracy for simplicity; underfit                                         | Higher bias - over-generalizes the relationship price and selected variables. | Expect high variance in predictive value.                                               |
|                               |                                                                                     |                                                                               |                                                                                         |
| Implementation Recommendation | Use to confirm coarse relationships, identify outliers and find avenues for further | Use in production (external facing) to price houses for RE                    | Use internally to benchmark intuition, highlight price drivers among new neighborhoods. |

investigation

agents and

developers.

\*Root mean squared error for each model (lower is better)

Each type of model tested comes with advantages and disadvantages.

| Model Description                                 | Model Feature Set to Name predict price |                 | <pre>% of Variance Explained by the Model</pre> | Error of prediction vs. True Value |  |  |  |
|---------------------------------------------------|-----------------------------------------|-----------------|-------------------------------------------------|------------------------------------|--|--|--|
| Basic Line graph                                  | Simple<br>Linear                        | Total Size only | 0.644                                           | 0.238                              |  |  |  |
| Multiple variable linear                          | MLR                                     | Heavy           | 0.03                                            |                                    |  |  |  |
| -                                                 | MLR                                     | Light           | 0.85                                            |                                    |  |  |  |
| Mult Variable Linear, Automates feature selection | AIC MLR                                 | Heavy           | 0.86                                            | 5 0.164                            |  |  |  |
| Mult Variable Linear, Automates feature selection | AIC MLR                                 | Light           | 0.89                                            | 0.14                               |  |  |  |
| Multiple variable linear + Penalty                | Lasso                                   | All             | 0.88                                            | 0.158                              |  |  |  |
| Multiple variable linear + Penalty                | Lasso                                   | Heavy           | 0.88                                            | 0.193                              |  |  |  |
| Multiple variable linear + Penalty                | Lasso                                   | Light           | 0.86                                            | 0.196                              |  |  |  |
| Decision Tree                                     | Random<br>Forest                        | A11             | 0.973                                           | 0.164                              |  |  |  |
| Decision Tree                                     | Random<br>Forest                        | Heavy           | 0.978                                           | 0.152                              |  |  |  |
| Decision Tree                                     | Random<br>Forest                        | Light           | 0.977                                           | 0.162                              |  |  |  |



# Appendix

When exploring the data, we first wanted to understand the range of our historical data along key variables:





We log transformed our target variable in order to account for left skew of data:



Raw Sale Price Distribution



Log-transformed Sale Prices

# Random Forest Details

|                 | Original                                            | Heavy                                               | Light                                                                                |
|-----------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|
| No. of Features | 18                                                  | 11                                                  | 7                                                                                    |
| Top 3 Features  | Overall Quality, Ground Living<br>Area, Garage Area |                                                     | Total Size, Overall Quality,<br>Age at Sale                                          |
| Parameters      | :                                                   | <pre>min_samples_leaf=1, min_samples_split=2,</pre> | <pre>max_features=2, min_samples_leaf=1, min_samples_split=2, n_estimators=100</pre> |
| RMSE (test)     | 0.164                                               | 0.152                                               | 0.162                                                                                |

# Lasso Model Details

|                 | Original                                                                                                                                                    | Heavy                                                                  |                            | Light                         |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------|-------------------------------|--|--|--|
|                 |                                                                                                                                                             |                                                                        | All                        |                               |  |  |  |
| No. of Features | 18                                                                                                                                                          | 11                                                                     |                            | 7                             |  |  |  |
|                 |                                                                                                                                                             |                                                                        |                            |                               |  |  |  |
| Top 3 Features  | YearBuilt, Year RemodAdd, Ground Living<br>Area                                                                                                             | Total Size, Age<br>Sale,Outdoor Po                                     | Age at Sale, Total<br>Size |                               |  |  |  |
| Parameters      | <pre>alpha tuned with gridsearchCV lasso2 = Lasso(warm_start = True, max_iter = 1e7) params = {'alpha':np.linspace(0.001629750834620600, 0.001, 100)}</pre> | grid_search_las<br>GridSearchCV(<br>estimator=lasso<br>param_grid=para | 02,                        | alpha tuned with gridsearchCV |  |  |  |
| RMSE (test)     | 0.157                                                                                                                                                       | 0.193                                                                  |                            | 0.193                         |  |  |  |

MLR & AIC Model Details

MLR Heavy MLR Light

11

.1433

No. of Features

RMSE

.1403

Feature Importance +Overall Quality +Overall Quality -Year Sold -Year Sold

Forward Forward

10

.1705

AIC Heavy AIC Light

.1403

# Model Selection & Regularization

#### Model Selection:

- choosing the optimal model using AIC
- picking the model with the lowest RSS( or the highest R<sup>2</sup>) via subset selection.

#### Regularization / shrinkage:

- Lasso: hyperparameter tuning using GridSearchCV
- Ridge:

Dimension Reduction Methods: Linear combination of predictors/ Random forests

- Principal Components Regression
- Partial Least Squares

# Model Selection & Regularization

Dimension Reduction Methods: Linear combination of predictors/ Random forests

Highlight features importance

With the Lasso model, having 3 fireplaces and a kitchen in fair condition will drive down the price the price of a house while having 2 fireplaces will increase its value.

Prime Location: Nord Ridge Heights,

### Motivation

"Let's make millions on the next Ames, Iowa."(s)

## **Features Selection**



Maybe we can but Kisaki's Feature Importance graph here

These guidelines translated to the following iterative process:



|                |           | SalePrice -    |           |          |          |              |           |              |              |          |          |              |             |              |            |             |       |
|----------------|-----------|----------------|-----------|----------|----------|--------------|-----------|--------------|--------------|----------|----------|--------------|-------------|--------------|------------|-------------|-------|
|                |           | 1stFirSF -     | 0.61      |          |          |              |           |              |              |          |          |              |             |              |            |             |       |
|                |           | 2ndFirSF -     | 0.32      | -0.2     |          |              |           |              |              |          |          |              |             |              |            |             |       |
| SalePrice      |           | LowQualFinSF - | -0.026    | -0.014   | 0.063    |              |           |              |              |          |          |              |             |              |            |             | 0.8   |
| 1stFirSF       | 0.61      | GrLivArea -    | 0.71      | 0.57     | 0.69     | 0.13         |           |              |              |          |          |              |             |              |            |             |       |
| 2ndFlrSF       | 0.32      | BsmtFullBath - | 0.23      | 0.24     | -0.17    | -0.047       | 0.035     |              |              |          |          |              |             |              |            |             | - 0.6 |
| LowQualFinSF   | -0.026    | BsmtHalfBath - | -0.017    | 0.002    | -0.024   | -0.0058      | -0.019    | -0.15        |              |          |          |              |             |              |            |             | - 0.4 |
| GrLivArea      | 0.71      | FullBath -     | 0.56      | 0.38     | 0.42     | 0.00071      | 0.63      | -0.065       | -0.055       |          |          |              |             |              |            |             | - 0.2 |
| BsmtFullBath · | 0.23      | HalfBath -     | 0.28      | -0.12    | 0.61     | -0.027       | 0.42      | -0.031       | -0.012       | 0.14     |          |              |             |              |            |             |       |
| BsmtHalfBath · | -0.017    | BedroomAbvGr - | 0.17      | 0.13     | 0.5      | 0.11         | 0.52      | -0.15        | 0.047        | 0.36     | 0.23     |              |             |              |            |             | - 0.0 |
| FullBath ·     | 0.56      | KitchenAbvGr - | -0.14     | 0.068    | 0.059    | 0.0075       | 0.1       | -0.042       | -0.038       | 0.13     | -0.068   | 0.2          |             |              |            |             | 0.2   |
| BedroomAbvGr   |           | TotRmsAbvGrd - | 0.53      | 0.41     | 0.62     | 0.13         | 0.83      | -0.053       | -0.024       | 0.55     | 0.34     | 0.68         | 0.26        |              |            |             |       |
| KitchenAbvGr   |           | Fireplaces -   | 0.47      | 0.41     | 0.19     | -0.021       | 0.46      | 0.14         | 0.029        | 0.24     | 0.2      | 0.11         | -0.12       | 0.33         |            |             |       |
| TotRmsAbvGrd   | 0.53      | GarageYrBit -  | 0.49      | 0.23     | 0.971    | -0.036       | 0.23      | 0.12         | -0.077       | 0.48     | 0,2      | -0.065       | -0.12       | 0.15         | 0.047      | ,           |       |
| Fireplaces     | 0.47      |                | SalePrice | lstFirSF | 2ndFlrSF | alFinSF      | GrLivArea | BsmtFullBath | alfBath      | FullBath | HalfBath | AbvGr        | AbvGr       | AbvGrd       | Fireplaces | GarageYrBlt |       |
| GarageYrBlt    | 0.49<br>e |                | R         | 4        | 72       | LowQualFinSF | 8         | BsmtFi       | BsmtHalfBath | Œ        | Ĩ        | BedroomAbvGr | KitchenAbvG | TotRmsAbvGrd | F          | Garag       |       |
|                | L.        |                |           |          |          |              |           |              |              |          |          | ш            |             |              |            |             |       |