Metric Spaces Fall 2020 Lecture Notes

Lectures by Claudio Morales

January 14, 2021

Contents

1 Foundations: Basic Ideas from Set Theory (Cantor 1800s)

Definition 1.1. (Set). A set is a collection of objects. The objects contained in a set are called elements.

Definition 1.2. (Element Inclusion). An element a is said to be included in a set A if it is contained in A. Otherwise, a is said to be not included in A.

$$a \in A \Leftrightarrow a \text{ is in } A$$

$$a \notin A \Leftrightarrow a \text{ is not in } A$$

Example 1.1. $A = \{0, -1, 1, -2, 2, \ldots\}$

$$2 \in A$$
, but $\frac{1}{2} \notin A$

Definition 1.3. (Subset). A is a subset of B if every element in A is also an element in B.

$$A \subseteq B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$$

Definition 1.4. (Set Intersection). The intersection between two sets A and B is the set of all elements contained in both A and B.

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Definition 1.5. (Set Union). The union between two sets A and B is the set of all elements contained either in A or B.

$$x \in A \cup B \Leftrightarrow x \in A \lor x \in B$$

Definition 1.6. (Set Difference). The difference between two sets A and B is the set of elements contained in A but not contained in B.

$$x \in A - B \Leftrightarrow x \in A \land x \notin B$$

Definition 1.7. (Set Complement). The complement of a set A is the set of elements in the universe that is not contained in A.

$$x \in \mathbb{C}A \Leftrightarrow x \notin A$$

Definition 1.8. (Collection). A collection is a set whose elements are also sets. This is also sometimes referred to as a family.

Definition 1.9. (Power Set). The power set of a set A is defined to be the collection of all subsets of A.

$$\mathcal{P}(A) = \{B : B \subseteq A\}$$

Definition 1.10. (Cardinality of a Set). The cardinality of a set A is defined to be the number of elements contained in A. Denoted as |A|.

Definition 1.11. (Multiple Unions and Intersections).

 $\bigcup_{\alpha \in \mathscr{A}} A_{\alpha} = \{x : x \in A_{\alpha} \text{ for some } \alpha\}, \text{ where } \alpha \text{ is a member of some well defined set of indices.}$

 $\bigcap_{\alpha \in \mathscr{A}} A_{\alpha} = \{x : x \in A_{\alpha}, \ \forall \alpha\}, \ where \ \alpha \ is \ a \ member \ of \ some \ well \ defined \ set \ of \ indices.$

Definition 1.12. (Equality of Sets). Two sets A and B are said to be equal if A is a subset of B and B is a subset of A.

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Example 1.2. Let $A_n = [0, \frac{1}{n}] = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{n}\}$

$$\bigcup_{n\in\mathbb{N}}A_n=[0,1]$$

$$\bigcap_{n\in\mathbb{N}} A_n = \{0\}$$

2 Theory of Functions

Definition 2.1. (Image of a Set). Let $A \subseteq X$. Then

$$f(A) = \{y \in Y : y = f(x) \ for \ some \ x \in A\} \ and \ f^{-1}(G) = \{x \in X : f(x) \in G\}$$

Definition 2.2. (Point in the Inverse or Image). Let $f: X \Rightarrow Y$ be a function between two topological spaces. Then for subsets $A \subseteq X$ and $G \subseteq Y$,

$$y \in f(A) \Leftrightarrow y = f(x) \text{ for some } x \in A$$

$$x \in f^{-1}(G) \Leftrightarrow f(x) \in G$$

Theorem 1. Let X, Y be nonempty sets and let $f: X \to Y$. Then,

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $A \subseteq B \Rightarrow f(A) \subseteq f(B)$
- 3. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 4. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 5. $f(A \cap B) \subseteq f(A) \cap f(B)$
- 6. $f^{-1}(\mathbb{C}A) = \mathbb{C}(f^{-1}(A))$
- 7. $f(\mathbb{C}A)$??? $\mathbb{C}(f(A))$ (this is an open question)

Proof. Proof here.

Definition 2.3. (Injective). $f: X \to Y$ is injective if $\forall x_1, x_2 \in X$, where $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. This is equivalent to say that for all $x_1, x_2 \in X$, such that

$$f(x) = f(y) \Rightarrow x_1 = x_2.$$

Theorem 2. f is injective if and only if $f(A \cap B) = f(A) \cap f(B)$, for all $A, B \subseteq X$

Proof. Proof here. \Box

Definition 2.4. (Surjective). A function $f: X \to Y$ is surjective if every $y \in Y$ has at least one preimage in X.

Theorem 3. Let $f: X \to Y$. Then,

- 1. $f(f^{-1}(B)) \subseteq B$, for every $B \subseteq Y$
- 2. $A \subseteq f^{-1}(f(A))$, for every $A \subseteq X$
- 3. f is injective $\Leftrightarrow A = f^{-1}(f(A))$, for every $A \subseteq X$
- 4. f is surjective $\Leftrightarrow f(f^{-1}(B)) = B$, for every $B \subseteq Y$

Proof. Proof here.