1. 2. 3.	C++ template	2 2 2
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	Min-cost max-flow algorithm with Levit Dijkstra with potentials Kun algorithm Dinic max-flow algorithm Flow with lower bound Hungarian algorithm Centroid decomposition Dominator tree Kirchhoff Theorem Tutte matrix 3-SAT Euler's formula (V - E + F = 2) MST in directed graph Heavy-light decomposition	3 4 4 4 5 5 6 6 7 7 7
18. 19. 20. 21. 22. 23. 24. 25.	Gauss algorithm	8 8 9 9 9 9 9 9
27. 28. 29. 30. 31. 32. 33. 35. 36. 37. 38. 40.	Pick's theorem (S = I + B / 2 - 1) Polya theorem Mobius inversion formulas Catalan numbers formulas Binomial coefficients formulas Fibonacci numbers formulas Stirling numbers falling factorial Euler formula Simpson integration Hook length formula Generators Some integer sequences Walsh-Hadamard transformation Lagrange polynomial (interpolation) Simplex method	10 10 10 10 10 10 10 11 11 11 11 11 11
	Segment tree with adding on range	

	Cartesian tree with push	
47. 48. 49. 50. 51. 52.	Suffix automaton Suffix array Aho-corasick P-function Z-function Manaker algorithm Minimal cyclic shift Palindromic tree	15 16 16 16 17
	Two closest points	
57. 58.	Tables of integrals and derivatives Trigonometry formulas Planimetry and stereometry formulas Ptolemey theorem	23 24
61.	NP-complete problems Min-cut restoring Java	24

1

```
44444444 777777777777777777
    4:::::::4 7::::::::::::::::7
    4::::44::::4 777777777777::::::7
  4::::4 4::::4
                       7:::::7
 4::::4 4::::4
                      7:::::7
                      7:::::7
4::::4 4::::4
                     7:::::7
4::::444444::::444
                    7:::::7
4::::::::4
4444444444:::::444
                   7:::::7
                  7:::::7
        4::::4
        4::::4
                  7:::::7
        4::::4
                 7:::::7
      44:::::44 7:::::7
      4:::::::4 7:::::7
      44444444477777777
```

```
// 1. C++ template
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for (int i = (a); i < (b); i++)
#define RFOR(i,b,a) for (int i = (b) - 1; i \ge (a); i--)
#define ITER(it,a) for ( typeof(a.begin()) it = a.begin(); it != a.end(); it++)
#define FILL(a, value) memset(a, value, sizeof(a))
#define SZ(a) (int)a.size()
#define ALL(a) a.begin(), a.end()
#define PB push back
#define MP make pair
typedef long long LL;
typedef vector<int> VI;
typedef pair<int, int> PII;
const double PI = acos(-1.0);
const int INF = 1000 * 1000 * 1000 + 7;
const LL LINF = INF * (LL) INF;
int main()
      // freopen("in.txt", "r", stdin);
      // ios::sync with stdio(false); cin.tie(0);
 // 2. FFT with complex
// Don't use for long long values
// Except for some special cases
// Precalc roots of -1
typedef complex<double> base;
const int LEN = 1<<20; // max length, power of 2</pre>
base PW[LEN];
                       // LEN-th roots of -1
void fft(vector<base>& a, bool invert)
      int lg = 0;
      while((1<<lg) < SZ(a)) lg++;
      FOR (i, 0, SZ(a))
            int x=0;
            FOR (j, 0, lg)
                  x \mid = ((i>>j) &1) << (lg-j-1);
            if(i<x)
                  swap(a[i], a[x]);
      for (int len = 2; len <= SZ(a); len *= 2)</pre>
            int diff = LEN / len;
            if (invert) diff = LEN - diff;
            for (int i = 0; i < SZ(a); i += len)</pre>
                  int pos = 0;
                  FOR (j, 0, len/2)
                        base v = a[i+j];
                        base u = a[i+j+len/2] * PW[pos];
                        a[i+j] = v + u;
                        a[i+j+len/2] = v - u;
```

```
pos += diff;
                        if (pos >= LEN) pos -= LEN;
            }
      if (invert)
            FOR (i, 0, SZ(a))
                  a[i] /= SZ(a);
void initFFT()
      double angle = 2 * PI / LEN;
      FOR (i, 0, LEN)
            double ca = angle * i;
            PW[i] = base(cos(ca), sin(ca));
// 3. FFT with modulo
// GEN ^ LEN == 1 mod BASE
// GEN ^ (LEN / 2) != 1 mod BASE
// for prime modulo c2^k+1 generator for len 2^k exists always
const int LEN = 1<<20; // max length, power of 2</pre>
const int BASE = 7340033; // modulo
const int GEN = 5;
                           // generator
int PW[LEN];
                           // powers of generator
void fft(vector<int>& a, bool invert)
     int lg = 0;
     while((1<<lg) < SZ(a)) lg++;
      FOR (i, 0, SZ(a))
            int x=0;
            FOR (i, 0, lg)
                  x \mid = ((i >> j) &1) << (lq - j - 1);
            if(i<x)
                  swap(a[i], a[x]);
      for (int len = 2; len <= SZ(a); len *= 2)</pre>
            int diff = LEN / len;
            if (invert) diff = LEN - diff;
            for (int i = 0; i < SZ(a); i += len)</pre>
                  int pos = 0;
                  FOR (j, 0, len/2)
                        int w = PW[pos];
                        int v = a[i+j];
                        int u = (a[i+j+len/2] * (LL) w) % BASE;
                        int t = v + u;
                        if (t >= BASE) t -= BASE;
                        a[i+j] = t;
                        t = v - u:
                        if (t < 0)
                              t. += BASE:
```

```
a[i+j+len/2] = t;
                       pos += diff;
                       if (pos >= LEN) pos -= LEN;
      if (invert)
            int m = inv(SZ(a), BASE);
            FOR (i, 0, SZ(a))
                 a[i] = (a[i] * (LL)m) % BASE;
}
 // 4. Min-cost max-flow with Levit
struct edge
      int x, y;
      int c, f;
      LL p;
};
vector<edge> E;
vector<int> g[MAX];
int N;
LL D[MAX];
int Par[MAX];
int T[MAX];
int Q[MAX];
void add edge(int x, int y, int c, LL p)
      edge e;
     e.x = x; e.y = y;
      e.c = c; e.f = 0;
      e.p = p;
      q[x].PB(SZ(E));
      E.PB(e);
      e.x = y; e.y = x;
      e.c = 0; e.f = 0;
      e.p = -p;
      q[y].PB(SZ(E));
      E.PB(e);
pair<int, LL> Flow(int s, int t)
      int flow = 0;
      LL price = 0;
      while (true)
            FOR(i, 0, N)
                 D[i] = LINF;
                 Par[i] = -1;
                 T[i] = 0;
           T[s] = 1;
            D[s] = 0;
            Q[0] = s;
```

```
int qh = 0, qt = 1;
     while (qh != qt)
           int x = Q[qh++];
           if (qh == N) qh = 0;
           FOR(i, 0, SZ(q[x]))
                 int e = q[x][i];
                 if (E[e].f == E[e].c) continue;
                 int to = E[e].y;
                 LL p = E[e].p;
                 if (D[to] > D[x] + p)
                 D[to] = D[x] + p;
                 Par[to] = e;
                 if (T[to] == 0)
                       Q[qt++] = to;
                       if (qt == N) qt = 0;
                 if (T[to] == 2)
                       if (qh == -1) qh = N - 1;
                       Q[qh] = to;
                 T[to] = 1;
           T[x] = 2;
     if (Par[t] == -1) break;
     int x = t;
     int f = INF;
     LL p = 0;
     while (x != s)
           int e = Par[x];
           p += E[e].p;
           f = min(f, E[e].c - E[e].f);
           x = E[e].x;
     x = t;
     while (x != s)
           int e = Par[x];
           E[e].f += f;
           E[e^1].f -= f;
           x = E[e].x;
     flow += f;
     price += p * f;
return MP(flow, price);
```

```
// 5. Dijkstra with potentials
// - each vertex has potential P[x]
// - initially potentials = distances from the source
// - for edge (x, y) the weight is D(x, y) + P[x] - P[y] >= 0
// - after each itration:
// - - if (D[x] < INF) P[x] += D[x];
 // 6. Kun algorithm
VI q[MAX]; // edges from left to right
int mt[MAX]; // matching vertex on the left
int P[MAX]; // matching vertex on the rigth
int U[MAX];
int iter;
bool kun(int x)
      if (U[x] == iter) return false;
      U[x] = iter;
      FOR (i, 0, SZ(g[x]))
            int to = q[x][i];
            if (mt[to] == -1)
                  mt[to] = x;
                  P[x] = to;
                  return true;
      FOR (i, 0, SZ(q[x]))
            int to = g[x][i];
            if (kun(mt[to]))
                  mt[to] = x;
                  P[x] = to;
                  return true;
      return false;
int doKun(int n)
      FILL (mt, -1);
      FILL(P, -1);
      FILL(U, -1);
      int res = 0;
      iter = 0;
      while (true)
            iter++;
            bool ok = false;
            FOR (i, 0, n)
                  if (P[i] == -1)
                        if (kun(i))
                              ok = true;
                              res++;
            if (!ok) break;
      return res;
```

```
// 7. Dinic max-flow algorithm
struct edge
     int x, y;
     LL c, f;
vector<edge> E;
VI q[MAX];
int D[MAX];
int Q[MAX];
int Ptr[MAX];
int N; // number of vertices in the network (required)
void add edge(int x, int y, LL c)
     edge e;
     e.x = x; e.y = y;
     e.c = c; e.f = 0;
     g[x].PB(SZ(E));
     E.PB(e);
     e.x = y; e.y = x;
     e.c = 0; e.f = 0;
     q[y].PB(SZ(E));
     E.PB(e);
int bfs(int s, int t)
     FOR (i, 0, N)
           D[i] = -1;
     D[s] = 0;
     Q[0] = s;
     int qh = 0, qt = 1;
      while (qh < qt && D[t] == -1)
            int x = Q[qh++];
            FOR (i, 0, SZ(q[x]))
                  int e = q[x][i];
                  if (E[e].f == E[e].c) continue;
                  int to = E[e].y;
                  if (D[to] == -1)
                        D[to] = D[x] + 1;
                        Q[qt++] = to;
      return D[t];
LL dfs(int x, int t, LL flow)
     if (x == t || flow == 0) return flow;
      for (; Ptr[x] < SZ(g[x]); Ptr[x]++)
            int e = g[x][Ptr[x]];
            LL c = E[e].c;
            LL f = E[e].f;
            int to = E[e].y;
            if (c == f) continue;
            if (D[to] == D[x] + 1)
                  LL push = dfs(to, t, min(flow, c - f));
                  if (push > 0)
```

```
5
```


// 9. Hungarian algorithm

```
int u[MAX];
int v[MAX];
int p[MAX];
int may[MAX];
int minv[MAX];
bool used[MAX];
// Complexity: O(N^2*M)
int Hungarian(vector<VI> a)
{
   int n = a.size();
   int m = a[0].size();
   FOR(i,0,n + 1)
       u[i] = 0;
   FOR(j,0,m + 1)
   {
}
```

```
v[j] = 0;
    p[j] = n;
    way[j] = 0;
FOR(i,0,n)
    p[m] = i;
    int j0 = m;
    FOR(j,0,m+1)
       minv[j] = INF;
        used[j] = 0;
    while (p[j0] != n)
        used[j0] = true;
        int i0 = p[j0];
        int j1;
        int delta = INF;
        FOR(j, 0, m)
            if (!used[j])
                int cur = a[i0][j] - u[i0] - v[j];
                if (cur < minv[j])</pre>
                    minv[j] = cur;
                    way[j] = j0;
                if (minv[j] < delta)</pre>
                    delta = minv[j];
                    j1 = j;
        FOR(j,0,m+1)
            if (used[j])
                u[p[j]] += delta;
                v[j] -= delta;
                minv[j] -= delta;
        j0 = j1;
    while(j0 != m)
        int j1 = way[j0];
       p[j0] = p[j1];
        j0 = j1;
vector<int> ans (n + 1);
FOR(j,0,m)
    ans[p[j]] = j;
int res = 0;
FOR(i,0,n)
    res += a[i][ans[i]];
assert(res == -v[m]);
return res;
```

```
// 10. Centroid decomposition
// dfsSz calculates sizes of subtrees
void build(int x)
      dfsSZ(x, -1);
      int szAll = SZ[x];
      int p = x;
      while (true)
            int w = -1;
            FOR (i, 0, SZ(g[x]))
                  int to = q[x][i];
                 if (to == p || U[to]) continue;
                  if (SZ[to] * 2 > szAll)
                        w = to;
                        break;
            if (w == -1) break;
            p = x;
            x = w;
      U[x] = true;
      // do something
      FOR (i, 0, SZ(g[x]))
            int to = g[x][i];
            if (!U[to]) build(to);
 // 11. Dominator tree
vector<int> g[MAX];
vector<int> gr[MAX];
int Par[MAX]; // parent in dfs
bool U[MAX];
              // parent in dsu
int P[MAX];
              // vertex with min sdom in dsu
int V[MAX];
int SDOM[MAX]; // min vertex with alternate path
int DOM[MAX]; // immediate dominator
vector<int> BKT[MAX]; // vertices with this sdom
int tin[MAX];
int timer;
int n;
int find(int x)
      if (P[x] == x) return x;
      int y = find(P[x]);
      if (P[y] == y) return x; // don't consider root
      if (tin[SDOM[V[P[x]]]] < tin[SDOM[V[x]]])</pre>
                                                V[x] = V[P[x]];
      P[x] = y;
      return y;
int get(int x)
      find(x);
      return V[x]; // return vertex with min sdom
vector<int> ord;
```

```
void dfs(int x, int p)
     tin[x] = timer++;
     U[x] = true;
     ord.PB(x);
     Par[x] = p;
     FOR (i, 0, SZ(q[x]))
           int to = q[x][i];
           if (U[to]) continue;
           dfs(to, x);
void build(int s)
     FOR (i, 0, n)
           U[i] = false;
           SDOM[i] = i:
           DOM[i] = -1;
           P[i] = i;
           V[i] = i;
           BKT[i].clear();
     ord.clear();
     timer = 0;
     dfs(s, -1);
     RFOR(i, SZ(ord), 0)
           int x = ord[i];
           FOR (j, 0, SZ(gr[x]))
                 int frm = qr[x][j];
                 if (!U[frm]) continue; // don't consider unreachable vertices
                 if (tin[SDOM[x]] > tin[SDOM[get(frm)]]) // find min sdom
                       SDOM[x] = SDOM[get(frm)];
           if (x != s) BKT[SDOM[x]].PB(x);
           FOR (j, 0, SZ(BKT[x]))
                 int y = BKT[x][i];
                 int v = get(y);
                 if (SDOM[y] == SDOM[v]) DOM[y] = SDOM[y]; // if sdoms equals
then this is dom
                  else DOM[v] = v; // else we will find it later
           if (Par[x] != -1) P[x] = Par[x]; // add vertex to dsu
     FOR (i, 0, SZ(ord))
           int x = ord[i];
           if (x == s) continue;
           if (DOM[x] == -1) continue;
           if (DOM[x] != SDOM[x]) DOM[x] = DOM[DOM[x]];
```

```
// 12. Kirchhoff theorem
```

```
// Calculates number of different spanning trees
// -- Take adjacency matrix multiplied by -1
// -- Replace elements on main diagonal by degrees of vertices
// -- Remove any row and column with same parity
// -- Calculate determinant
```

// 13. Tutte matrix

$$\begin{pmatrix} 0 & x_{12} & x_{13} & \dots & x_{1(n-1)} & x_{1n} \\ -x_{12} & 0 & x_{23} & \dots & x_{2(n-1)} & x_{2n} \\ -x_{13} & -x_{23} & 0 & \dots & x_{3(n-1)} & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -x_{1(n-1)} & -x_{2(n-1)} & -x_{3(n-1)} & \dots & 0 & x_{(n-1)n} \\ -x_{1n} & -x_{2n} & -x_{3n} & \dots & -x_{(n-1)n} & 0 \end{pmatrix}$$

```
// -- \it{x}_{ij}\!:=\!rand(), if there is an edge between i and j. // -- Determinant equals 0 iff there is no perfect matching
```

// 14. 3-SAT (O((4/3) ^ n) on average)

```
// Repeat following:
// -- Generate n random values
// -- Repeat n times:
// -- -- If all clauses are satisfied then OK
// -- -- Take any (e.g. first) unsatisfied clause and invert any of the 3
variables
```

// 16. MST in directed graph

```
// Repeat following:
// -- For each vertex find minimal incoming edge and for all incoming edges
subtract this value
// -- If edges with 0 value form DAG then they form mst
// -- Otherwise find any cycle compress it and repeat

// To restore mst:
// -- For each step store ids of edges that form cycle
// -- For each step and for each vertex store id of the component it is in
// -- Add edges from DAG that form mst to the answer
// -- For each cycle in reverse order:
// -- -- Let ID be the edge in current answer that goes to vertex #1 (component with cycle on previous step) on current step
// -- -- Add all edges from the cycle except the one that goes to the same component as ID on the previous step
```

// 17. Heavy-light decomposition

```
int TO[MAX]; // top node of the heavy path
int tin[MAX];
int tout[MAX];
int timer = 0;
void dfsSZ(int x, int p, int h)
     SZ[x] = 1;
     H[x] = h;
     P[x] = p;
     FOR (i, 0, SZ(q[x]))
           int to = q[x][i];
           if (to == p) continue;
           dfsSZ(to, x, h + 1);
           SZ[x] += SZ[to];
           if (g[x][0] == p || SZ[to] > SZ[g[x][0]])
                 swap(q[x][0], q[x][i]);
void dfsHLD(int x, int p, int v)
     tin[x] = timer++;
     TO[x] = v;
     FOR (i, 0, SZ(g[x]))
           int to = g[x][i];
           if (to == p) continue;
           if (i == 0) dfsHLD(to, x, v);
           else dfsHLD(to, x, to);
     tout[x] = timer - 1;
int get(int x, int y) // query on path x-y
     int res = 0;
     while(true)
           int tx = TO[x];
           int ty = TO[y];
           if (tx == ty) // same heavy path
                 int t1 = tin[x];
                 int t2 = tin[y];
                 if (t1 > t2) swap(t1, t2);
                 if (t1 < t2)
                       res = max(res, R.get(t1 + 1, t2)); // lca not considered
                 break;
           if (H[tx] < H[ty])
                  swap(tx, ty);
                 swap(x, y);
           res = max(res, R.get(tin[tx], tin[x]));
           x = P[tx];
      return res;
```

```
// 18. Gauss algorithm
const double EPS = 1e-7;
double A[MAX][MAX]; // Input matrix (n x m)
                 // Input vector (n)
double B[MAX];
double X[MAX];
                   // Output values (m)
int P[MAX];
                   // -1 if a free variable; row index otherwise
// solves A * X = B
// returns:
// - 0 if no solution
// - 1 is one solution
// - - (number of free variables) if multiple solutions
// Complexity O(N^2 * M)
// Beware of precision errors!!
int gauss(int n, int m)
     int ind = 0;
     FOR (j, 0, m)
           pair<double, int> mx = MP(-1e47, -1);
           FOR (i, ind, n)
                 mx = max(mx, MP(abs(A[i][j]), i));
           if (mx.second == -1 || abs(mx.first) < EPS)</pre>
                 P[i] = -1;
                 continue;
           if (mx.second != ind)
                 int x = mx.second;
                 FOR (i, j, m)
                       swap(A[ind][i], A[x][i]);
                 swap(B[ind], B[x]);
            FOR (i, ind + 1, n)
                 double c = A[i][j] / A[ind][j];
                 FOR (k, j, m)
                       A[i][k] -= A[ind][k] * c;
                 B[i] -= B[ind] * c;
            P[j] = ind;
           ind++;
     FOR (i, ind, n)
           if (abs(B[i]) > EPS) return 0;
     int res = 1;
     RFOR(j, m, 0)
            if (P[j] == -1)
                 X[\dot{j}] = 0;
                 if (res == 1) res = 0;
                 res--:
                 continue;
            int ind = P[j];
            double sum = B[ind];
           FOR (k, ind+1, m)
                 sum -= A[ind][k] * X[k];
            sum /= A[ind][j];
           X[j] = sum;
```

return res;

```
// 19. Chinese reminder theorem
// X = A[i] (mod P[i])
// Complexity O(n^2).
LL Chinese()
     bool ok = true;
     FOR (j, 1, N)
           int a = 1;
           int b = 0;
           RFOR(k,j,0)
                  b = (b * P[k] + A[k]) % P[j];
                  a = a * P[k] % P[i];
           b = (A[j] - b + P[j]) % P[j];
           int c = P[j];
           int g = gcd(a , c);
           if (b % q != 0)
                  ok = false;
                  break;
           a /= q;
           b /= g;
           c /= q;
           b = b * bpow(a , Phi[c] - 1, c) % c;
           A[j] = b;
           P[j] = c;
     if (ok)
           LL res = A[N - 1];
           RFOR(j,N-1,0)
           {
                  res *= P[j];
                  res += A[j];
           return res;
     else cout << "No solution" << endl;</pre>
//if lcm(P[i]) < 10^18 can be done in O(n)
LL Chinese2()
     LL aa = P[0];
     LL bb = A[0];
     FOR(j,1,N)
            int b = (A[j] - bb % P[j] + P[j]) % P[j];
           int a = aa % P[j];
           int c = P[j];
           int g = gcd(a , c);
           if (b % g != 0)
                  ok = 0:
                 break;
           a /= q;
           b /= g;
```

c /= g;

b = b * bpow(a , Phi[c] - 1, c) % c;

```
9
```

```
bb = aa * b + bb;
            aa = aa * c;
     if (ok)
            LL res = bb;
            return res;
      else cout<<"No solutions"<<endl;</pre>
 // 20. Mult long long modulo long long
LL mult(LL a, LL b, LL mod)
     LL k = (long double) a * b / mod;
     LL res = a * b - k * mod;
     if (res < 0 || res >= mod)
            res %= mod;
      if (res < 0) res += mod;
      return res;
 // 21. Miller-Rabin test
bool MillerRabin(LL n, int k) //n > 3, n - odd
     LL d = n - 1;
     int s = 0;
      while (d % 2 == 0)
            d /= 2;
            ++s;
     FOR(it, 0, k)
            LL a = rand() % (n - 3) + 2; // use custom rand
            LL x = bpow(a, d, n); // == a ^ d % n
            if (x == 1 || x == n - 1) continue;
           bool ok = 0;
            FOR(i,0,s-1)
                  x = mult(x, x, n); // == x * x % n
                 if (x == 1) return 0;
                 if (x == n - 1)
                        ok = 1;
                        break;
            if (!ok) return 0;
      return 1;
 // 22. Inverse of numbers 1..m-1 modulo m (m prime)
r[1] = 1;
FOR (i, 2, m)
     r[i] = (m - (m/i) * r[m%i] % m) % m;
```

```
// 23. Extended gcd
int gcd(int a, int b, int& x, int& y)
     int ax = 1, ay = 0;
     int bx = 0, by = 1;
     while (b)
           int k = a / b;
           ax -= k * bx;
           ay -= k * by;
           a %= b;
           swap(a, b);
           swap(ax, bx);
           swap(ay, by);
     x = ax;
     y = ay;
     return a;
// 24. Segments with equal n/x
void segms()
     LL \times = 1;
     LL prev = 1;
     while (x \le n)
           LL y = n / x;
           x = n / y + 1;
           cout << prev << ' ' << x - 1 << endl;
                                         // segment [prev , x - 1]
           prev = x;
// 25. Golden ration (ternary search)
const double phi = (3. - sqrt(5.0)) / 2.;
double get(double L, double R)
     double M1, M2, v1, v2;
     M1 = L + (R - L) * phi;
     M2 = R - (R - L) * phi;
     v1 = get(M1);
     v2 = get(M2);
     FOR (it, 0, 80)
           if (v1 > v2) // for minimum
                 L = M1;
                 M1 = M2;
                 v1 = v2;
                 M2 = R - (R - L) * phi;
                 v2 = get(M2);
           }else{
                 R = M2;
                 M2 = M1;
                 v2 = v1;
                 M1 = L + (R - L) * phi;
                 v1 = get(M1);
     return L; // or F(L)
```

```
// 26. Recurrence in O(k^2 log k)
int k:
            // number of elements
VI C;
            // coefficients of recurrence
            // initial values (k items)
// T i = T (i-k)*C 0 + T (i-k+1)*C 1 + ... + T (i-1)*C (k-1)
VI mult(VI a, VI b)
      VI v(SZ(a) + SZ(b));
      FOR(i, 0, SZ(a))
      FOR(j, 0, SZ(b))
            v[i + j] = (v[i + j] + a[i] * (LL)b[j]) % MOD;
      while (SZ(v) > k)
            FOR(j,0,k)
                  v[SZ(v) - 2 - j] = (v[SZ(v) - 2 - j] + v.back() * (LL)C[k - 1]
- j]) % MOD;
            v.pop_back();
      return v;
int get(int n)
      VI A(k);
      A[1] = 1;
      VI res(k);
      res[0] = 1;
      while (n)
            if (n & 1)
                  res = mult(res , A);
            A = mult(A, A);
            n /= 2;
      int val = 0;
      FOR(i,0,k)
            val = (val + T[i] * (LL)res[i]) % MOD;
      return val;
 // 28. Polya's theorem
ClassesCou nt = \frac{1}{|G|}
ClassesCou nt = \frac{1}{|G|} \sum_{f} f(C(\pi))
// C(pi) --- number of cycles in permutation
// f(C(pi)) --- number of ways to paint elements such that elements
// of each cycle of the permutation are painted in the same color
 // 29. Mobius inversion formulas
int mn[MAX];
void calcmn(int n)
    mn[1] = 1;
    FOR (i, 1, n)
        if (!mn[i]) continue;
        for(int j = 2*i; j<n; j+=i)
            mn[j] -= mn[i];
```

```
g(n) = \sum_{i=1}^{n} f(d) for every integer n \ge 1
 then f(n) = \sum \mu(d)g(n/d) for every integer n \ge 1
 M(n) \equiv \sum_{k} \mu(k), \sum_{k} M\left(\frac{x}{n}\right) = 1
  // 30. Catalan numbers formulas
C_n = \sum_{k=0}^{n} C_k C_{n-1-k}
1 - C_{2n}^n
  // 31. Binomial coefficients formulas
\sum_{k=0}^{n} C_n^k = 2^n
\sum_{m=0}^{m=0} C_m^k = C_{n+1}^{k+1}
\sum_{k=0}^{m} C_{n+k}^k = c_{n+m+1}^m
(C_n^0)^2 + (c_n^1)^2 + \dots + (c_n^n)^2 = C_{2n}^n
1C_n^1 + 2C_n^2 + \dots + nC_n^m - n2^{n-1}
  1C_n^1 + 2C_n^2 + \dots + nC_n^n = n2^{n-1}
 C_n^0 + C_{n-1}^1 + \dots + C_{n-k}^k + \dots + C_0^n = F_{n+1}
  // 32. Fibonacci numbers formulas
  F_{n+1}F_{n-1} - F_n^2 = (-1)^n
  F_{n+k} = F_k F_{n+1} + F_{k-1} F_n
  F_{2n} = F_n(F_{n+1} + F_{n-1})
 \gcd(F_m, F_n) = F_{\gcd(m,n)}
   // 33. Stirling numbers
 x^n = \sum S(n,k) * (x)_k
 S(n,n) = 1, \quad n \ge 0
 S(n,0) = 0, n > 0
 S(n,k) = S(n-1,k-1) + S(n-1,k) * k
 (x)_n = x(x-1)(x-2)...(x-n+1)
 First Bell numbers (starting from 0):
 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437,
 190899322, 1382958545, ...
  // 34. Euler formula
 // if (a, m) != 1:
 //
                       | a ^ b mod m, if b < phi(m)
 // a ^ b mod m=|
 // | a ^{\circ} (phi(m) + b mod phi(m)) mod m, if b >= phi(m)
```

```
// 35. Simpson integration
```

```
\int_{a}^{b} f(x)dx = \frac{b-a}{6} \left( f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)
 // 36. Hook length formula
d_{\lambda} = \frac{1}{\Pi h_{\lambda}(i,j)}
h_{\lambda}(i,j) --- number of cells under or right to the cell (i, j) in Young diagram
including itself
 // 37. Generators
// g is a generator for modulo m if the set \{g^0, g^1, \ldots, g^(phi(m)-1)\}
             equals to the set of all numbers coprime with m
// generator exists for:
// -- m = p ^ k (p -- odd prime, k >= 1)
// -- m = 2 * p ^ k (p -- prime, k >= 1)
// -- m = 1, 2, 4
// To find generator:
// -- find phi(m) and p_1, p_2, ..., p_k -- prime factors of phi(m)
// -- find g such that g ^ (phi(m) / p_j) != 1 for each prime factor // -- check g = 2, 3, 4, ..., p-2, p-1
 // 38. Some integer sequences
// Arithmetic progression:
// -- a n = a (n-1) + d
// -- a n = a 1 + d * (n - 1)
// -- S n = (a 1 + a n) * n / 2
// Geometric progression:
// -- b n = b (n-1) * d
// -- b n = b 1 * d ^ (n-1)
// -- S n = b 1 * (1 - d ^ n) / (1 - d)
// -- if |d| < 1:
// -- -- S inf = b 1 / (1 - d)
// Sum of squares of natural numbers:
// -- sum[i = 1..n](i^2) = n*(n+1)*(2*n+1)/6
// Sum of cubes of natural numbers:
// -- sum[i = 1..n](i^3) = n^2 * (n+1)^2 / 4
 // 39. Walsh-Hadamard transform
// to multiply two polynomes having x^i * x^j = x^i (i xor j)
// conv xor(a);
// conv xor(b);
// a[i] *= b[i];
// conv xor(a);
// a[i] = n;
void conv_xor(VI& a, int k)
       FOR (i, 0, k)
             FOR (j, 0, 1 << k)
                   if ((j & (1<<i)) == 0)
                          int u = a[j];
                          int v = a[j + (1 << i)];
                          a[j] = u + v;
                          a[j + (1 << i)] = u - v;
```

```
// to multiply two polynomes having x^i * x^j = x^(i \text{ or } j)
// conv or(a);
// conv or (b);
// a[i] *= b[i];
// inverse or(a);
void conv or (VI& a, int k)
     FOR (i, 0, k)
           FOR (j, 0, 1 << k)
                  if ((j & (1<<i)) == 0)
                        a[j + (1 << i)] += a[j];
void inverse or(VI& a, int k)
     FOR (i, 0, k)
           FOR (j, 0, 1 << k)
                  if ((j & (1<<i)) == 0)
                        a[j + (1<<i)] -= a[j];
// to multiply two polynomes having x^i * x^j = x^i and j)
// conv and(a);
// conv and (b);
// a[i] *= b[i];
// inverse and(a);
void conv and(VI& a, int k)
     FOR (i, 0, k)
           FOR (j, 0, 1 << k)
                  if ((j & (1<<i)) == 0)
                        a[j] += a[j + (1 << i)];
void inverse and(VI& a, int k)
     FOR (i, 0, k)
            FOR (j, 0, 1 << k)
                  if ((j & (1<<i)) == 0)
                        a[j] -= a[j + (1 << i)];
// 40. Newton interpolation
double X[MAX]; // interpolation nodes
double Y[MAX]; // function values in corresponding nodes
double D[MAX][MAX];
int n; // number of interpolation nodes
void addPt(double pt, double val)
     X[n]=pt;
     Y[n]=val;
     D[0][n] = Y[n];
     FOR(i,1,n+1)
           int j = n-i;
           D[i][j] = (D[i-1][j+1]-D[i-1][j]) / (X[j+i]-X[j]);
     ++n;
```

```
double Newton (double x)
      double res = 0;
      double mul = 1;
      FOR(i,0,n)
           res += D[i][0] * mul;
           mul *= x-X[i];
     return res;
 // 41. Simplex method
// Two-phase simplex algorithm for solving linear programs of the form
//
//
       maximize
                   c^T x
//
      subject to Ax <= b
//
                   x >= 0
// INPUT: A -- an m x n matrix
//
         b -- an m-dimensional vector
//
         c -- an n-dimensional vector
//
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if
          unbounded above, nan if infeasible)
typedef long double LD;
typedef vector<LD> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const LD EPS = 1e-12;
struct LPSolver
    int m, n;
    VI B, N;
    VVD D:
    LPSolver(const VVD &A, const VD &b, const VD &c) :
    m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
        FOR (i,0,m) for (int j = 0; j < n; j++) D[i][j] = A[i][j];
        FOR (i, 0, m) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] = b[i]; }
        FOR (i,0,n) { N[i] = i; D[m][i] = -c[i]; }
       N[n] = -1; D[m + 1][n] = 1;
    void Pivot(int r, int s) {
        double inv = 1.0 / D[r][s];
        FOR (i, 0, m+2) if (i != r)
            FOR (j, 0, n+2) if (j != s)
               D[i][j] = D[r][j] * D[i][s] * inv;
        for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;</pre>
        for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;</pre>
        D[r][s] = inv;
        swap(B[r], N[s]);
    bool Simplex(int phase) {
        int x = phase == 1 ? m + 1 : m;
        while (true)
           int s = -1;
            FOR (j, 0, n+1) {
               if (phase == 2 && N[j] == -1) continue;
                N[s]) s = i;
           if (D[x][s] > -EPS) return true;
           int r = -1;
```

```
FOR (i,0,m) {
                if (D[i][s] < EPS) continue;</pre>
                if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
                     (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] <
B[r]) r = i;
            if (r == -1) return false;
            Pivot(r, s);
    LD Solve (VD &x) {
        int r = 0;
        FOR (i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
        if (D[r][n + 1] < -EPS) {
            Pivot(r, n);
            if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return -</pre>
numeric limits<LD>::infinity();
            FOR (i, 0, m) if (B[i] == -1) {
                int s = -1;
                FOR (i,0,n+1)
                if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] <</pre>
N[s]) s = j;
                Pivot(i, s);
        if (!Simplex(2)) return numeric limits<LD>::infinity();
        x = VD(n);
        FOR (i,0,m) if (B[i] < n) \times [B[i]] = D[i][n + 1];
        return D[m][n + 1];
LPSolver solver (A, b, c);
VD x;
LD value = solver.Solve(x);
 // 42. Segment tree with adding on range
// assignment on segment
// sum on segment
struct RMQ
      LL A[MAX * 4]; // sum
      LL P[MAX * 4]; // push
      int n;
      void pull(int v) // combine values of two vertices to parent
            A[v] = A[v*2] + A[v*2+1];
      void build(int tl, int tr, int v, LL* a)
            P[v] = -1;
            if (tl == tr)
                  A[v] = a[t1];
                  return:
            int tm = (tl + tr) / 2;
            build(t1, tm, v*2, a);
            build(tm+1, tr, v*2+1, a);
            pull(v);
```

```
void init(int n, LL* a)
           this->n = n;
           build(0, n-1, 1, a);
     void upd(int tl, int tr, int v, LL val) // update vertex with value
           A[v] = val * (LL)(tr - tl + 1);
           P[v] = val;
     void push (int tl, int tr, int v) // push changes to children
           if (tl == tr || P[v] == -1) return;
           int tm = (tl + tr) / 2;
           upd(t1, tm, v*2, P[v]);
           upd(tm + 1, tr, v*2+1, P[v]);
           P[v] = -1;
     void add(int tl, int tr, int v, int l, int r, LL val)
           if (1 > r) return;
           push(tl, tr, v);
           if (1 == t1 && r == tr)
                 upd(tl, tr, v, val);
                 return;
           int tm = (tl + tr) / 2;
           add(t1, tm, v*2, 1, min(tm, r), val);
           add(tm+1, tr, v*2+1, max(tm+1, 1), r, val);
           pull(v);
     void add(int 1, int r, LL val)
           add(0, n-1, 1, 1, r, val);
     LL get(int tl, int tr, int v, int l, int r)
           if (1 > r) return 0;
           push(tl, tr, v);
           if (1 == t1 && r == tr)
                 return A[v];
           int tm = (tl + tr) / 2;
           LL res = get(t1, tm, v*2, 1, min(tm, r));
           res += get(tm+1, tr, v*2+1, max(tm+1, 1), r);
           return res;
     LL get(int 1, int r)
           return get(0, n-1, 1, 1, r);
} R;
 // 43. Set with count on segment
#include <ext/pb ds/assoc container.hpp>
using namespace __gnu_pbds;
using namespace std;
typedef tree<int, null type, less<int>, rb tree tag,
tree order statistics node update> ordered set;
// example: ordered set s; s.insert(47);
// s.order of key(k); -- returns number of elements less then k
// s.find by order(k); - returns iterator to k-th element or s.end()
```

```
// 44. Cartesian tree with push
int mrand()
     return abs((rand() << 16) ^ rand());</pre>
struct node
     int 1, r; // children
     int y;
                       // priority (should be random and different)
               // size of subtree
     int cnt;
     int par; // parent of the vertex
     int val;
                // value of the vertex
     int rev;
               // reverse push
     int mn;
                       // minimum of subtree
void init(int val) // init with value
           1 = r = -1;
           y = mrand();
           cnt = 1;
           par = -1;
           this->val = val;
           mn = val;
           rev = 0;
// Minimum on subtree + reverse
struct Treap
     node A[MAX];
     int sz:
     int getCnt(int x)
           if (x == -1) return 0;
           return A[x].cnt;
     int getMn(int x)
           if (x == -1) return INF;
           return A[x].mn;
     int newNode(int val)
           A[sz].init(val);
           sz++;
           return sz - 1;
     int PB(int root, int val)
           return merge(root, newNode(val));
     void upd(int x)
           if (x == -1) return;
           A[x].cnt = getCnt(A[x].l) + getCnt(A[x].r) + 1;
     A[x].mn = min(A[x].val, min(getMn(A[x].l), getMn(A[x].r)));
     void reverse(int x)
           if (x == -1) return;
           swap(A[x].l, A[x].r);
           A[x].rev ^= 1;
```

```
void push(int x)
      if (x == -1 || A[x].rev == 0) return;
      reverse(A[x].1);
      reverse(A[x].r);
     A[x].rev = 0;
PII split(int x, int cnt)
      if (x == -1) return MP(-1, -1);
     if (cnt == 0) return MP(-1, x);
      push(x):
      int left = getCnt(A[x].1);
     PII res;
     if (left >= cnt)
           if (A[x].1 != -1) A[A[x].1].par = -1;
           res = split(A[x].l, cnt);
           A[x].l = res.second;
           if (res.second != -1) A[res.second].par = x;
           res.second = x:
      else
           if (A[x].r != -1) A[A[x].r].par = -1;
           res = split(A[x].r, cnt - left - 1);
           A[x].r = res.first;
           if (res.first != -1) A[res.first].par = x;
           res.first = x;
     upd(x);
      return res;
int merge(int x, int y)
      if (x == -1) return y;
     if (y == -1) return x;
      int res;
      //if (mrand() % (getCnt(x) + getCnt(y)) < getCnt(x))</pre>
     if (A[x].y > A[y].y)
           push(x);
           if (A[x].r != -1) A[A[x].r].par = -1;
           res = merge(A[x].r, y);
           A[x].r = res;
           if (res != -1) A[res].par = x;
           res = x;
      else
           push(y);
           if (A[y].1 != -1) A[A[y].1].par = -1;
           res = merge(x, A[y].1);
           A[y].l = res;
           if (res != -1) A[res].par = y;
           res = y;
      upd(res);
      return res;
} } T;
```

```
struct Fen
     int A[MAX];
     int n;
     void init(int n)
           this->n = n:
     void add(int x, int val)
           for (; x < n; x = x | (x + 1)) // ascending
                 A[x] += val;
     int get(int x)
           int res = 0;
           for (; x \ge 0; x = (x & (x + 1)) - 1) // descending
                 res += A[x];
           return res;
};
// Fenwick tree:
// A i = sum {j = F(i)..i} V j
// F(i) = i & (i+1) --- removes the last block of ones in i
//
// 7
// 6
          1.1
// 5
     11 1
// 4
// 3 | |
// 2 11
// 1 | |
// 0 || |
// 01234567
// Descent on Fenwick tree:
// - Consider bits in order from largest to smallest.
// - For each bit determine whether is should be set in the answer or not.
// - Use single array cell for each check.
// Fenwick tree for minimum on segment:
// - Use two Fenwick trees with n = 2^k
// - One tree for normal array and one for reversed
// - When querying for minimum on the segment only consider
// segments from trees that are COMPLETELY inside the segment
// Fenwick tree for adding on segment (prefixes)
// - Use two Fenwick trees:
// -- F#1: for the actual sums on segments
// -- F#2: for values that should be added to all elements of the segment
// - To add value on prefix:
// -- Add value*(R-F(i)+1) to F#1 to all segments that contain this prefix (use
code for ascending)
// -- Add value to F#2 to segments that cover the prefix (use code for
descending)
// - To get sum on prefix:
// -- Sum all values from F#1 that cover the prefix (use code for descending)
// -- Sum all values*(i-F(i)+1) from F#2 that cover the prefix (use code for
descending)
// -- Sum all values*(R-F(i)+1) from F#2 from all segments that coves the
prefix (use code for ascending)
```

// 45. Fenwick tree

// 46. Suffix automaton

```
// To find number of occurrences of each class:
// -- Set cnt=1 if node is created
// -- Set cnt=0 if node is cloned
// -- Sum up cnt[link(v)] += cnt[v] in reverse topsort order.
struct node
   int g[26];
   int link, len;
   void init()
         FILL(q, -1);
         link = len = -1;
};
struct automaton
    node A[MAX * 21;
    int sz. head;
    void init()
        sz = 1; head = 0;
       A[0].init();
    void add(char ch)
        ch = ch - 'a';
        int nhead = sz++;
        A[nhead].init();
        A[nhead].len = A[head].len + 1;
        int cur = head;
        head = nhead;
        while(cur != -1 && A[cur].g[ch] == -1)
            A[cur].q[ch] = head;
            cur = A[cur].link;
        if (cur == -1)
            A[head].link = 0;
            return ;
        int p = A[curl.q[ch];
        if (A[p].len == A[cur].len + 1)
            A[head].link = p;
            return ;
        int q = sz++;
        A[q] = A[p];
        A[q].len = A[cur].len + 1;
        A[p].link = A[head].link = q;
        while(cur != -1 && A[cur].q[ch] == p)
            A[cur].q[ch] = q;
            cur = A[cur].link;
};
```

// 47. Suffix array

```
const int MAX = 100100;
const int LEN = 18;
const int ALP = 128; // size of the alphabet. 128 for all chars in ASCII order
char S[MAX]; // input string
                // indexes for each class
int O[MAX];
int C[LEN][MAX]; // classes of equivalence
int P[LEN][MAX]; // permutations
int CNT[MAX]; // number of occurrences of each equivalence class
void buildArray(int n)
     FOR (i, 0, n)
           CNT[(int)S[i]]++;
     int sum = 0;
     FOR (i, 0, ALP)
           O[i] = sum;
           sum += CNT[i];
     FOR (i, 0, n)
           P[0][0[(int)S[i]]] = i;
           Q[(int)S[i]]++;
     C[0][P[0][0]] = 0;
     FOR (i, 1, n)
           C[0][P[0][i]] = C[0][P[0][i-1]];
           if (S[P[0][i]] != S[P[0][i-1]]) C[0][P[0][i]]++;
     FOR (it, 1, LEN)
           int* Ccur = C[it];
           int* Cprev = C[it-1];
           int* Pcur = P[it];
           int* Pprev = P[it-1];
           int len = (1<<(it - 1));</pre>
           if (len >= n)
                  FOR (i, 0, n)
                       Ccur[i] = Cprev[i];
                       Pcur[i] = Pprev[i];
                 continue;
           FOR (i, 0, n)
                 CNT[i] = 0;
           FOR (i, 0, n)
                 CNT[Cprev[i]]++;
           int sum = 0;
           FOR (i, 0, n)
                 Q[i] = sum;
                 sum += CNT[i];
           FOR (i, 0, n)
                 int cur = Pprev[i];
                 int prev = cur - len;
                 if (prev < 0) prev += n;
                 Pcur[Q[Cprev[prev]]++] = prev;
```

```
Ccur[Pcur[0]] = 0;
           FOR (i, 1, n)
                 int cur = Pcur[i];
                 int prev = Pcur[i-1];
                 Ccur[cur] = Ccur[prev];
                 if (Cprev[cur] != Cprev[prev])
                       Ccur[cur]++;
                       continue;
                 int cc = cur;
                 cur += len;
                 if (cur >= n) cur -= n;
                 prev += len;
                 if (prev >= n) cur -= n;
                 if (Cprev[cur] != Cprev[prev])
                       Ccur[cc]++;
                       continue;
 // 48. Aho-corasick
const int MAX = 100100; // total length of all strings +1
const int AL = 30;
                           // size of alphabet
struct node
                        // parent node
      int p;
      int c;
                        // character on incoming edge
      int g[AL]; // go on automaton
     int nxt[AL]; // go on bor
     int link; // node corresponding to longest suffix
     void init()
           c = -1;
           p = -1;
           FILL(g, -1);
           FILL(nxt, -1);
           link = -1;
};
struct AC
      node A[MAX];
      int sz;
     void init()
           A[0].init();
           sz = 1;
      void addStr(string& s)
           int x = 0;
           FOR (i, 0, SZ(s))
                 int c = s[i] - 'a';
                 if (A[x].nxt[c] == -1)
                       A[x].nxt[c] = sz;
                       A[sz].init();
                       A[sz].c = c;
```

```
A[sz].p = x;
                       sz++;
                 x = A[x].nxt[c];
     int go(int x,int c)
           if (A[x].q[c] == -1)
                 if (A[x].nxt[c] != -1)
                       A[x].g[c] = A[x].nxt[c];
                 else if (x != 0)
                       A[x].g[c] = go(getLink(x), c);
                 else
                       A[x].q[c] = 0;
           return A[x].q[c];
     int getLink(int x)
           if (A[x].link == -1)
                 if (x == 0 || A[x].p == 0) return 0;
                 A[x].link = go(getLink(A[x].p), A[x].c);
           return A[x].link;
};
// 49. Pi function
void Pi(string& S)
     P[0] = 0;
     FOR (i, 1, SZ(S))
           int j = P[i-1];
           while(j != 0 && S[i] != S[j]) j = P[j-1];
           if (S[i] == S[j]) j++;
           P[i] = j;
// 50. Z-function
void Zf(string& s)
     int n = SZ(s);
     for(int i=1,l=0,r=0;i<n;i++)</pre>
           Z[i] = 0;
           if(i<=r)
                 Z[i] = min(r-i+1, Z[i-1]);
           while(i+Z[i] \le x \le s[i+Z[i]] == s[Z[i]] ++Z[i];
           if(i+Z[i]-1>r)
                  r=i+Z[i]-1;
                 l=i;
```

// 51. Manaker algorithm

```
17
```

```
int d1[MAX],d2[MAX];
void manaker(string s)
    int n = SZ(s);
    for(int i=0,l=-1,r=-1;i<n;i++)</pre>
        if(i<=r)
            d1[i] = min(r-i+1,d1[1+(r-i)]);
        while(i+d1[i] < n && i-d1[i] >= 0 && s[i+d1[i]] == s[i-d1[i]]) ++d1[i];
        if(i+d1[i]-1>r)
            r=i+d1[i]-1;
            l=i-(d1[i]-1);
    for (int i=0, l=-1, r=-1; i<n; i++)</pre>
        if(i<=r)
             d2[i] = min(r-i+1, d2[1+(r-i)+1]);
        while (i+d2[i] < n \&\& i-(d2[i]+1) >= 0 \&\& s[i+d2[i]] == s[i-d2[i]] == s[i-d2[i]]
(d2[i]+1))++d2[i];
        if(i+d2[i]>r)
            r = i+d2[i]-1;
            1 = i - d2[i];
 // 52. Minimal cyclic shift
 // -- Double string B
 // -- After execution s is a minimal cyclic shift
int s = 0;
FOR (i, 1, m)
      int j = F[i-1-s];
      while (j > 0 \&\& B[s+j] != B[i])
            if (B[s+j] > B[i])
                  s = i-j;
            j = F[j-1];
      if (j == 0 && B[s] != B[i])
            if (B[s] > B[i])
                   s = i;
      else
      F[i-s] = j;
// 53. Palindromic tree
struct node
      int to[2]; // size of the alphabet (can be changed to map)
      int link;
      int len;
      void clear()
            FILL(to, -1);
            link = -1;
            len = -1;
```

```
char S[MAX]; // the string
struct PalTree
    node A[MAX];
     int sz;
     int last;
     void init()
         A[0].clear(); // root of odd-length palindromes
           A[1].clear(); // root of even-length palindromes
           A[1].len = 0;
           A[1].link = 0;
           sz = 2;
           last = 1;
     void add(int ind)
           int cur = last;
           while (cur !=-1)
                 int pos = ind - A[cur].len - 1;
                 if (pos >= 0 && S[pos] == S[ind]) break;
                 cur = A[cur].link;
           if (cur == -1) throw -1;
           if (A[cur].to[S[ind] - 'a'] == -1)
                 A[cur].to[S[ind] - 'a'] = sz;
                 A[sz].clear();
                 A[sz].len = A[cur].len + 2;
                 int link = A[cur].link;
                 while(link != -1)
                       int pos = ind - A[link].len - 1;
                       if (pos >= 0 && S[pos] == S[ind]) break;
                       link = A[link].link;
                 if (link == -1) link = 1;
                 else link = A[link].to[S[ind] - 'a'];
                 A[sz].link = link;
                 sz++;
           last = A[cur].to[S[ind] - 'a'];
} PT;
// 54. Two closest points
// Iterate over points in order of increasing of X-coordinate:
// -- Let D be the best distance so far, (x, y) be the current point
// -- Insert the point into the set that stores points by Y-coordinate
// -- Iterate over all points with Y in range [y - D, y + D] and update answer
(use single lower bound)
// -- Remove all points (x', y') that have x' < x - D
// -- Maintain pointer to the point that should be removed next in the array of
points sorted by X-coordinate
```

```
// 55. Geometry
struct point
    double x, y;
    point() {}
    point(double x, double y) : x(x), y(y) {};
    point operator-(const point& p)const
        return point (x - p.x, y - p.y);
    point operator+(const point& p)const
        return point (x + p.x, y + p.y);
    double operator*(const point & p) const
        return x * p.y - y * p.x;
    point operator*(double k) const
        return point(k * x, k * y);
    double d2() const
        return x * x + y * y;
    double len() const
        return sqrt(d2());
    bool operator == (const point & p) const
        return abs(x - p.x) < EPS && abs(y - p.y) < EPS;
    bool operator<(const point & p) const</pre>
        if (abs(x - p.x) > EPS)return x < p.x;</pre>
        if (abs(y - p.y) > EPS)return y < p.y;</pre>
        return 0;
    point rotate(double cosx, double sinx) const //ccw
        double xx = x * cosx - y * sinx;
        double yy = x * sinx + y * cosx;
        return point(xx, yy);
    point rotate(double ang) const //ccw
        return rotate(cos(ang), sin(ang));
    point scale(double 1) const //assuming len of vector > 0
        1 /= len();
        return point(1 * x, 1 * y);
    double dot(const point& p) const
        return x * p.x + y * p.y;
    double polar() const // (-PI; PI]
        double ang = atan2(y, x);
        //if (ang < -EPS) ang += 2 * PI; // if need [0; 2 * PI)
```

```
return ang;
    int hp() const //halfpalne relative to X-axis
        return y < -EPS \mid \mid (abs(y) < EPS && x < -EPS);
};
bool cmpVec (const point & a, const point & b) //sort by polar angle [0; 2*PI)
    if (a.hp() != b.hp())return a.hp() < b.hp();</pre>
    return a * b > EPS;
int sign(double x)
    if (abs(x) < EPS) return 0;</pre>
    return x > 0 ? 1 : -1;
struct line
    point n;
    double c;
    line() {}
    line (double a, double b, double c)
        n = point(a, b);
        this->c = c;
    line(point a, point b) // assuming a != b
        double A = b.y - a.y;
        double B = a.x - b.x;
        double C = -a.x * A - a.y * B;
        n = point(A, B);
        c = C;
    double dist(const point & p) const //oriented
        return (n.dot(p) + c) / n.len();
    point clothestPoint(const point& p) const
        return p + n.scale(-dist(p));
    bool paralel(const line& 1) const
        return abs(n * 1.n) < EPS;</pre>
    point intersect(const line &1) const
        //assuming that lines are not parallel
        double z = n * l.n;
        double x = - (c * l.n.y - n.y * l.c) / z;
        double y = - (n.x * 1.c - c * 1.n.x) / z;
        return point(x, y);
};
struct segment
    point a, b;
    segment() {}
    segment(point a, point b)
```

```
this -> a = a;
        this \rightarrow b = b;
    line getLine() const
        return line(a, b);
    bool contains (const point & p) const
        return abs((a - b).len() - (a - p).len() - (b - p).len()) < EPS;</pre>
    bool intersect(const segment& s) const
        if (min(s.a.x, s.b.x) > max(a.x, b.x))return false;
        if (min(s.a.v, s.b.v) > max(a.v, b.v))return false;
        if (max(s.a.x, s.b.x) < min(a.x, b.x))return false;</pre>
        if (max(s.a.y, s.b.y) < min(a.y, b.y))return false;</pre>
        int s1 = sign((a - s.a) * (b - s.a));
        int s2 = sign((a - s.b) * (b - s.b));
        int s3 = sign((s.a - a) * (s.b - a));
        int s4 = sign((s.a - b) * (s.b - b));
        return s1 * s2 <= 0 && s3 * s4 <= 0;
    double dist(const point& p) const //not oriented
        point g = getLine().clothestPoint(p);
        if (contains(q))return (p-q).len();
        return min((a-p).len(), (b-p).len());
    double dist(const segment& s) const
        if (intersect(s))return 0;
        double ans = min(dist(s.a), dist(s.b));
        ans = min(ans, s.dist(a));
        ans = min(ans, s.dist(b));
        return ans;
};
bool triangleContains (const point & a, const point & b, const point & c, const
point& p)
    int s1 = sign((b - a) * (p - a));
    int s2 = sign((c - b) * (p - b));
    int s3 = sign((a - c) * (p - c));
    return (s1 >= 0 && s2 >= 0 && s3 >= 0) || (s1 <= 0 && s2 <= 0 && s3 <= 0);
struct polygon
    vector<point> p;
    polygon() {}
    polygon(const vector<point> &a)
        if (SZ(a))p.PB(a[0]);
    int sz() const
        return max(SZ(p) - 1, 0);
```

```
polygon convex() const //returns ccw-ordered
                   vector<point> pp = p;
                   if (SZ(pp))pp.pop back();
                   sort(ALL(pp));
                   vector<point> U, D;
                   FOR(i, 0, SZ(pp))
                              \textbf{while}(SZ(D) > 1 \&\& sign((D.back() - D[SZ(D) - 2]) * (pp[i] - D[SZ(D) + (D) + (
- 2])) <= 0)D.pop back();
                             while (SZ(U) > 1 \&\& sign((U.back() - U[SZ(U) - 2]) * (pp[i] - U[SZ(U))
- 21)) >= 0)U.pop back();
                            U.PB(pp[i]);
                            D.PB(pp[i]);
                   reverse (ALL(U));
                   FOR(i, 1, SZ(U)-1)
                   D.PB(U[i]);
                   return polygon(D);
         //randomised, could be used for not convex polygons
        bool contains (const point& x) const
                   double MX = sqrt(3) * PI / 47.7 + 123.23424;
                   double MY = sqrt(2) * acos(0.47747) + 4 * PI;
                   point v = point(MX, MY).scale(1e8); //v should be strictly outside
polygon;
                   segment S = segment(x, v);
                   int cnt = 0;
                   FOR(i, 0, SZ(p)-1)
                             segment seg = segment(p[i], p[i+1]);
                            if (seq.contains(x))return 1;
                            if (seg.intersect(S))cnt++;
                   return cnt % 2;
          //only for convex polygons
          //requires ccw-order
          //duplicated points are not allowed
         bool contains2(const point& q) const
                   if (!sz())return false;
                   if (sz() == 1) return p[0] == q;
                   int 1 = 1, r = sz()-1;
                   int s1 = sign((p[1] - p[0]) * (q - p[0]));
                   int s2 = sign((p[r] - p[0]) * (q - p[0]));
                   if (s1 == -1) return 0;
                   if (s2 == 1) return 0;
                   while (r - 1 > 1)
                            int m = (1 + r) / 2;
                            int s = sign((p[m] - p[0]) * (q - p[0]));
                            if (s \le 0) r = m;
                            else 1 = m;
                   return triangleContains(p[0], p[1], p[r], q);
         int minVertex() const
                   //assuming point coords are integers, otherwise some EPSs should be
added
                   int id = 0;
                   FOR(i, 1, sz())
```

```
if (p[i].y < p[id].y || (p[i].y == p[id].y && p[i].x < p[id].x))</pre>
            id = i:
        return id:
    //assuming both polygons are convex and ccw-ordered
    polygon minkowskySum(const polygon& a) const
        int i = minVertex();
       int j = a. minVertex();
       int n = sz(), m = a.sz();
        vector<point> res;
       if (sz() == 0 || a.sz() == 0)return res;
        int ci = 0, cj = 0;
        while (ci < n \mid \mid cj < m)
            res.PB(p[i] + a.p[j]);
            int ii = i == n - 1 ? 0 : i + 1;
            int jj = j == m - 1 ? 0 : j + 1;
            if (ci == n)
                j = jj, cj++;
                continue;
            if (cj == m)
                i = ii, ci++;
                continue;
            if (cmpVec(p[ii] - p[i], a.p[j]] - a.p[j]))i = ii, ci++;
            else j = jj, cj++;
        return res;
    //TANGENTS TO CONVEX POLYGON
    //No three points should be collinear
    //Polygon should be convex and given in ccw order
    //Polygon should contain at least 3 vertices
   bool visible(int idx, const point& x) const
        if (idx >= sz())idx -= sz();
        return (p[idx] - x) * (p[idx+1] - x) < 0; //change to <= if colinear
edges should be visible
    int findOppositeToFirst(const point& x) const
        int v = visible(0, x);
        int 1 = \overline{1}, r = sz() - 1;
        int s1 = sign((p[1] - x) * (p[0] - x));
        int s2 = sign((p[r] - x) * (p[0] - x));
        if (s1 * s2 >= 0)
            if ( visible(l, x) != v) return l;
            if ( visible(r, x) != v) return r;
            if ( visible(l + 1, x) != v)return l + 1;
            if ( visible(r - 1, x) != v) return r - 1;
            return -1;
        while (r - 1 > 1)
            int m = (1 + r) / 2;
            if (sign((p[m] - x) * (p[0] - x)) == s1)1 = m;
            else r = m;
```

```
if ( visible(1, x) == v) return -1;
       return 1;
   int findChangePoint(int 1, int r, const point& x) const
       int v = visible(l, x);
       while (r - 1 > 1)
           int m = (1 + r) / 2;
           if ( visible(m, x) == v)1 = m;
           else r = m;
       return 1;
   //all vertices in cyclic segment [first, second] are visible
   //if edge is colinear to point of view, only closer vertice is visible
   //(-1, -1) if point is inside polygon
   PII findTangents(const point& x) const
       int 1 = 0;
       int r = findOppositeToFirst(x);
       if (r == -1) return MP (-1, -1);
       int p1 = findChangePoint(l, r, x);
       int p2 = findChangePoint(r, l + sz(), x);
       if (p2 >= sz())p2 -= sz();
       if ( visible(l, x))
           swap(p2, p1);
       p1++; p2++;
       if (p1 >= sz())p1 -= sz();
       if (p2 >= sz())p2 -= sz();
       return MP(p1, p2);
};
struct circle
   point 0;
   double r;
   circle() {}
   circle(point 0, double r)
        this->0 = 0;
       this -> r = r;
   vector<point> intersect(const line& l) const
       vector<point> ans:
       double d = 1.dist(0);
       if (abs(d) > r + EPS) return ans;
       double cosx = r < EPS ? 1.0 : -d/r;
       double sinx = sqrt(abs(1.0 - cosx * cosx));
       ans.PB(0 + l.n.rotate(cosx, sinx).scale(r));
       if (abs(sinx) > EPS)ans.PB(0 + l.n.rotate(cosx, -sinx).scale(r));
       return ans:
   vector<point> intersect(const circle& c) const
       point v = c.0 - 0;
       double A = -2.0 * v.x;
       double B = -2.0 * v.y;
       double C = v.d2() + r * r - c.r * c.r;
       line l = line(A, B, C);
       vector<point> ans = circle(point(0, 0), r).intersect(1);
       FOR(i, 0, SZ(ans))
```

```
ans[i] = ans[i] + O;
        return ans;
    vector<line> tangents(const point& p) const
       point v = p - 0;
        vector<line> ans;
        double d = v.len();
        if (d < r + EPS) return ans;</pre>
        double cosx = r/d;
        double sinx = sqrt(abs(1.0 - cosx * cosx));
        point p1 = 0 + v.rotate(cosx, sinx).scale(r);
       point p2 = 0 + v.rotate(cosx, -sinx).scale(r);
        ans.PB(line(p, p1));
        if (!(p2 == p1))ans.PB(line(p, p2));
        return ans;
    void add tan(const point& c, double r1, double r2, vector<line>& res) const
        double rr = r2 - r1;
        double z = c.d2();
        double d = z - rr * rr;
        if (d < -EPS) return ;</pre>
       d = sqrt(abs(d));
        double a = (c.x * rr + c.y * d) / z;
        double b = (c.y * rr - c.x * d) / z;
        res.PB(line(a, b, r1 - a * 0.x - b * 0.y);
    vector<line> common tangents(const circle& C) const
        vector<line> ans;
       if (0 == C.O) return ans;
        point OO = C.O - O;
        add tan(00, -r, -C.r, ans);
        add tan(00, -r, C.r, ans);
        add tan(00, r, -C.r, ans);
        add tan(00, r, C.r, ans);
        return ans;
    double distOnCircle(const point& p1, const point& p2) const
        //assuming that both points are on circle
        double a1 = (p1 - 0).polar();
        double a2 = (p2 - 0).polar();
        if(a1 > a2) swap(a1,a2);
        return min(a2 - a1, 2 * PI - (a2 - a1)) * r;
    bool contains (const point& p) const
        return (O-p).d2() < r * r + EPS;
};
//HALFPLANES INTERSECTION
struct halfplane
    point v, x; //x - point on line, v - vector along line
    line 1;
   halfplane() {}
   halfplane (const point& p1, const point& p2) //to the left hand from vector
between p1 and p2
        v = p2 - p1;
        x = p1;
```

```
l = line(p1, p2);
   bool contains (const point& p) const
        return sign(v * (p - x)) >= 0;
};
bool cmpHP(const halfplane& a, const halfplane& b)
   if (a.v.hp() != b.v.hp())return a.v.hp() < b.v.hp();</pre>
   int s = sign(a.v * b.v);
   if (s) return s > 0;
    if (a.contains(b.x) && b.contains(a.x))return 0;
    return b.contains(a.x);
bool eqlAngHP(const halfplane& a, const halfplane& b)
   return abs(a.v * b.v) < EPS;
halfplane O[MAX * 2];
//assuming bounding box planes are allready added
//returns ccw-ordered convex polygon without duplicated points
polygon intersectHP(vector<halfplane> hp)
    sort(ALL(hp), cmpHP);
   hp.resize(unique(ALL(hp), eqlAngHP) - hp.begin());
   int 1 = 0, r = 0;
   FOR(i, 0, SZ(hp))
        while (r - 1 > 1 \& \& !hp[i].contains(Q[r-1].l.intersect(Q[r-2].l)))
        while (r - 1 > 1 \& \& !hp[i].contains(O[1].l.intersect(O[1+1].l)))
        if (r - 1 > 0 \&\& sign(Q[r-1].v * hp[i].v) <= 0)
            return vector<point>();
        if (r-1 < 2 \mid \mid Q[1].contains(hp[i].l.intersect(Q[r-1].l)))
            Q[r++] = hp[i];
    vector<point> ans;
   FOR(i, 1, r - 1)
        ans.PB(Q[i].l.intersect(Q[i+1].l));
    if (r - 1 > 2)
        ans.PB(Q[r-1].l.intersect(Q[1].l));
    ans.resize(unique(ALL(ans)) - ans.begin());
    if (ans.size() > 1 && ans[0] == ans.back())
        ans.pop back();
    return polygon(ans);
//MINIMUM CICRLCE THAT CONTAINS A SET OF POINTS
point P[MAX]; //WARNING :: algorithm reorders original array
circle getCircumscribedCircle(const point& a, const point& b, const point& c)
    if (sign((b - a) * (c - a)) == 0)
        point p = min(a, min(b, c));
        point q = max(a, max(b, c));
        return circle((p + q) * .5 , (p - q).len() * .5);
    double A = a.x - b.x;
    double B = a.y - b.y;
```

```
point p = (a + b) * .5;
    double C = -p.x * A - p.y * B;
    line 11 = line(A, B, C);
    A = b.x - c.x;
   B = b.y - c.y;
    p = (b + c) * .5;
    C = -p.x * A - p.y * B;
    line 12 = line(A, B, C);
    point 0 = 11.intersect(12);
    double r = (0 - a).len();
    return circle(0, r);
circle _minimumContainingCircle_2(int n, const point& p, const point& q)
   circle C = circle((p + q) * .5, (p - q).len() * .5);
    FOR(i, 0, n)
    if (!C.contains(P[i]))
        C = getCircumscribedCircle(p, q, P[i]);
    return C;
circle _minimumContainingCircle_1(int n, const point& p)
    random shuffle(P, P + n);
    circle C = circle((P[0] + p) * .5, (P[0] - p).len() * .5);
    FOR(i, 1, n)
    if (!C.contains(P[i]))
        C = minimumContainingCircle 2(i, P[i], p);
    return C;
circle minimumContainingCircle(int n)
    if (n == 0)return circle(point(0, 0), 0);
    if (n == 1)return circle(P[0], 0);
    random shuffle(P, P + n);
    circle C = circle((P[0] + P[1]) * .5, (P[0] - P[1]).len() * .5);
    FOR(i, 2, n)
    if (!C.contains(P[i]))
        C = minimumContainingCircle 1(i, P[i]);
    return C;
//STAINER ELLIPSE - unique ellipse inscribed in the triangle and tangent to the
sides at their midpoints.
//center of ellipse is an intersection of medians
//this is an inscribed ellipse with maximum area
//area is PI/3/sqrt(3) * S, where S - area of triangle
void stainer_ellipse(point A, point B, point C)
    point O = (A + B + C) * (1.0/3.0);
    point T = (A + B) * .5;
    A = A - T, B = B - T, C = C - T;
    double ang = A.polar();
   A = A.rotate(-ang);
    B = B.rotate(-ang);
    C = C.rotate(-ang);
    double k = 1/A.x;
    A = A * k; B = B * k; C = C * k;
    double AA = (B - C).d2();
```

```
double BB = (A - C).d2();
double CC = (A - B).d2();

double K = 2 * (AA * AA + BB * BB + CC * CC - AA * BB - AA * CC - BB * CC);
double a = sqrt (AA + BB + CC + K) / 3.0;
double b = sqrt (AA + BB + CC - K) / 3.0;
double c = sqrt(K * .5) * 2.0 / 3.0;

complex<double> alph = complex<double>(4 * (C.x * C.x - C.y * C.y + 3), 8 * C.x * C.y);
alph = sqrt(alph);

point F1 = point(2 * C.x + alph.real(), 2 * C.y + alph.imag()) * (1.0/6.0);
F1 = F1 * (1.0/k);
F1 = F1.rotate(ang);
F1 = F1 + T;
point F2 = 0 * 2 - F1;
//F1, F2 - focuses
```

// 56. Tables of integrals and derivatives

Differentiation Formulas:

1.
$$\frac{d}{d}(x) = 1$$

$$2. \frac{d}{dx}(ax) = a$$

3.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$4. \frac{d}{dx}(\cos x) = -\sin x$$

$$5. \frac{d}{dx}(\sin x) = \cos x$$

$$6. \frac{d}{dx}(\tan x) = \sec^2 x$$

$$7. \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$8. \frac{d}{dx}(\sec x) = \sec x \tan x$$

9.
$$\frac{d}{dx}(\csc x) = -\csc x(\cot x)$$

$$10. \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$11. \frac{d}{dx}(e^x) = e^x$$

$$12. \frac{d}{dx}(a^x) = (\ln a)a^x$$

13.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

14.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

Integration Formulas:

1.
$$\int 1 dx = x + C$$

$$2. \int a \, dx = ax + C$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$4. \int \sin x \, dx = -\cos x + C$$

$$5. \int \cos x \, dx = \sin x + C$$

$$6. \int \sec^2 x \, dx = \tan x + C$$

$$7. \int \csc^2 x \, dx = -\cot x + C$$

8.
$$\int \sec x(\tan x) \, dx = \sec x + C$$

9.
$$\int \csc x(\cot x) \, dx = -\csc x + C$$

$$10. \int \frac{1}{x} dx = \ln|x| + C$$

$$11. \int e^x dx = e^x + C$$

12.
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \ a > 0, \ a \neq 1$$

13.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

14.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
 14. $\int \frac{1}{1+x^2}dx = \tan^{-1}x + C$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 15. $\int \frac{1}{|x|\sqrt{x^2 - 1}} dx = \sec^{-1}x + C$

Inverse Trig Functions

$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}\left(\frac{u}{a}\right) + c \qquad \int \sin^{-1}u \, du = u \sin^{-1}u + \sqrt{1 - u^2} + c$$

$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + c \qquad \int \tan^{-1}u \, du = u \tan^{-1}u - \frac{1}{2}\ln\left(1 + u^2\right) + c$$

$$\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1}\left(\frac{u}{a}\right) + c \qquad \int \cos^{-1}u \, du = u \cos^{-1}u - \sqrt{1 - u^2} + c$$

Hyperbolic Trig Functions

$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + c \qquad \int \frac{1}{u^2 - a^2} du = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c$$

$$\int \sqrt{a^2 + u^2} du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln \left| u + \sqrt{a^2 + u^2} \right| + c$$

$$\int \sqrt{u^2 - a^2} du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + c$$

$$\int \sqrt{a^2 - u^2} du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{u}{a} \right) + c$$

$$\int \sqrt{2au - u^2} du = \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \left(\frac{a - u}{a} \right) + c$$

// 57. Trigonometry formulas

$$\begin{array}{lll} \sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta & \cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta & \cos(\alpha-\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \tan(\alpha+\beta) = \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} & \sin2\alpha = 2\sin\alpha\cos\alpha, \cos2\alpha = \cos^2\alpha - \sin^2\alpha \\ \cos^2\alpha = \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha = \frac{1}{2}(1-\cos2\alpha) \\ \sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} & \cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2} & \cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \tan\alpha + \tan\beta = \frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} & \cot\alpha + \cot\beta = \frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta} \\ \sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-beta)] & \sin'x = \cos x, \cos'x = -\sin x \end{array}$$

// Рівність досягається

// 58. Planimetry and stereometry formulas

// triangle: $S = \frac{1}{2}h_a * a = \frac{1}{2}b * c * sin(\alpha) = \sqrt{p(p-a)(p-b)(p-c)}$ $\alpha^2 = b^2 + c^2 - 2 * b * c * cos(\alpha) \qquad \frac{a}{sin(\alpha)} = \frac{b}{sin(\beta)} = \frac{c}{sin(\gamma)} = 2R$

// right triangle:

$$a = c * \sin(\alpha) = c * \cos(\beta) = b * tg(\alpha) = \frac{b}{tg(\beta)}$$

// regular triangle:
$$S = \frac{a^2\sqrt{3}}{4} \quad r = a\frac{\sqrt{3}}{6} \quad R = a\frac{\sqrt{3}}{3}$$

// quadrilateral:

$$S = \frac{1}{2} * d_1 * d_2 * \sin(\phi)$$

// circumscribed polygon:

$$S = p * r$$
 (p - polygon perimeter)

// cone:

$$V = \frac{1}{2}\pi r^2 h \qquad S_{lateral} = \pi * R * l$$

$$V = \frac{1}{3}\pi h (R^2 + R * r + r^2)$$

$$S_{lateral} = \pi * l * (R + r)$$

$$a = \sqrt{h * (2 * R - h)}$$

$$S_{lateral} = 2 * \pi * R * h = \pi * (a^2 + h^2)$$

$$V = \pi * h^2 \left(R - \frac{h}{3} \right)$$

// ball layer:

$$V = \frac{1}{6}\pi h \left(3 * a^2 + 3 * b^2 + h^2\right)$$

$$S_{lateral} = 2 * \pi * R * h$$

$$R = \sqrt{\frac{[(a-b)^2 + h^2][(a+b)^2 + h^2]}{4h^2}}$$

// 59. Ptolemey theorem

// Добуток довжин діагоналей вписаного в коло чотирикутника дорії добутків довжин його протилежних сторін.

$$|AC| * |BD| = |AB| * |CD| + |BC| * |AD|$$

// Для довільного чотирикутника справджується:

$$|AB| * |CD| + |BC| * |DA| \ge |AC| * |BD|$$


```
лише для чотирикутника
вписаного в коло
// 60. NP-complete problems
// Bipartite graphs:
// - Minimum vertex cover = size of maximum matching.
// - Maximum independent set + size of maximum matching = number of vertices.
// In ANY graph without isolated vertices the size of the minimum edge cover +
size of a maximum matching = number of vertices.
// Dominating set for a graph G = (V, E) is a subset D of V such that every
vertex not in D is adjacent to at least one member of D. Finding dominating set
is NP-complete on bipartite graphs.
// 61. Min-cut restoring
// To restore mincut:
// - run dfs from source to sink by direct and reversed edges
// - use only edges that have flow != capacity
// - for each direct edge (u, v):
// -- if u is visited and v is not visited add (u, v) to cut
// 62. Java
//for fast input use
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//if need to read fast several numbers given in one line
StringTokenizer tokenizer = new StringTokenizer(reader.readLine());
//for fast output use
PrintWriter out = new PrintWriter(new BufferedWriter(new
OutputStreamWriter(System.out)));
// 63. Sherman-Lehman factorization
// Retuans ordered list of prime factors of the number
// Complexity: O(N^1/3 * log(N))
vector<LL> Lehman (LL n)
     vector<LL> res;
     LL i, j;
     for(i = 2; i*i*i <= n; ++i)
           while(n % i == 0)
                 res.PB(i);
                 n /= i;
     if(n == 1)
           return res;
     LL Min, Max;
     LL x = 0;
     LL v = 0;
     for(i = 1; i*i*i <= n; ++i)
           v += 4*n;
           Min = 0:
           Max = 1:
           while (Max*(x + x + 1) + Max*(Max - 1) \le y)
                 Max *= 2;
           while (Max - Min > 1)
                 LL Mid = (Max + Min) / 2;
                 if(Mid*(x + x + 1) + Mid*(Mid - 1) \le v)
```

```
25
```

```
Min = Mid;
           else
                Max = Mid;
     y -= Min*(x + x + 1) + Min*(Min - 1);
     x += Min;
     LL z = -y;
     for(j = 0; ; ++j)
           if(z >= 0)
                Min = 0;
                Max = 1;
                while(Max*Max <= z)</pre>
                      Max <<= 1;
                while(Max - Min > 1)
                      LL Mid = (Max + Min) / 2;
                      if (Mid*Mid <= z)</pre>
                           Min = Mid;
                      else
                           Max = Mid;
                if (Min*Min == z)
                      LL a = x + j + Min;
                      LL g = gcd(a, n);
                      if(g != 1 && g != n)
                            res.PB(min(g, n/g));
                            res.PB(max(g, n/g));
                            return res;
                      a = x + j - Min;
                      g = gcd(a < 0 ? -a : a, n);
                      if(g != 1 && g != n)
                            res.PB(min(g, n/g));
                            res.PB(max(g, n/g));
                            return res;
           z += j + j + x + x + 1;
          res.PB(n);
return res;
```