Теория вероятностей и математическая статистика Полная вероятность. Формула Байеса. Случайные величины.

Глеб Карпов

ВШБ Бизнес-информатика

• Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.

 Ω B_{n-1} B_1 B_n B_2 ...

- Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.
- Рассмотрим зафиксированное пространство (Ω, \mathcal{F}, P) . Назовем **разбиением** Ω коллекцию событий $\{B_k, k \in I\}$, таких что $B_i \cap B_j = \emptyset$ при $i \neq j$ и $\bigcup B_i = \Omega$.

 Ω

- Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.
- Рассмотрим зафиксированное пространство (Ω, \mathcal{F}, P) . Назовем **разбиением** Ω коллекцию событий $\{B_k, k \in I\}$, таких что $B_i \cap B_j = \emptyset$ при $i \neq j$ и $\bigcup B_i = \Omega$.
- Вдобавок, рассмотрим какое-то другое событие B, которое пересекается с какими-то событиями из разбиения, но не обязано пересекаться со всеми.

 Ω

i Theorem

Если $\{B_1, B_2, ...\}$ - разбиение Ω , с $P(B_i) > 0 \ \forall i$, то:

$$P(A) = \sum_{i} P(A|B_i)P(B_i), \, \forall A \in \mathcal{F}$$

Доказательство. Заметим, что мы можем реконструировать событие A из его частичек-пересечений со всеми B_i : $A = \bigcup_i (A \cap B_i)$. Эти кусочки $\{A \cap B_i\}$ попарно не пересекаются, как и оригинальные элементы разбиения. Поэтому далее можем применить свойство аддитивности вероятности:

$$\begin{split} P(A) &= P\left(\bigcup_i (A \cap B_i)\right) \\ &= \sum_i P\left(A \cap B_i\right) = \sum_i P(A|B_i)P(B_i) \end{split}$$

Теорема Байеса

$$\boxed{P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum\limits_i P(A|B_i)P(B_i)}}$$

Let us recall definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

We can notice that probability of intersection $(A \cap B)$ may be written in two ways:

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A),$$

which gives us a formula, how two 'inverted' conditional probabilities are connected:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

Пример

Случайные величины

