INTEGRAL CALCULUS

Prof. Dr. A.N.M. Rezaul Karim

B.Sc. (Honors), M.Sc. in Mathematics (CU) DCSA (BOU), PGD in ICT (BUET), Ph.D. (IU)

Professor

Department of Computer Science & Engineering
International Islamic University Chittagong

12.03.2023

CONTENTS

Chapter One

- 01. Applications of the Indefinite Integral
 - 1.1. Displacement from Velocity, and Velocity from Acceleration
 - 1.2. Displacement and Velocity Formulas
 - 1.3. Voltage across a Capacitor
- 02. Geometrical Interpretation
- 03. Finding Area of a Curve/s
 - 3.1. Area under a Curve, which are entirely above the x-axis
 - 3.2. Curves which are entirely below the x-axis
 - 3.3. Part of the curve is below the x-axis and part of the curve is above the x-axis
 - 3.4. Certain curves are much easier to sum vertically
 - 3.5. Area between 2 Curves
 - 3.6. Finding Area using derivative method

Chapter Two

- 01. Formulae
- 02. Some technique to integrate the functions for indefinite integral

Chapter Three

- 01. Reduction Formulas
- **02.** Definite integral

Chapter Four

The Gamma and Beta Function

Chapter Five

- 01. Arc Length of a curve
- 02. Areas of Surfaces of Revolution
- 03. Quadrature
- 04. Volume of a Solid of Revolution/Volume by Disk
- 05. Method of Rings/ Volume by Washers

Chapter Six

01. Some Special Method

Chapter One

Integration an Inverse Process of Differentiation

01. Applications of the Indefinite Integral

1.1 Displacement from Velocity, and Velocity from Acceleration

A very useful application of calculus is displacement, velocity and acceleration. Recall

$$\mathbf{v} = \frac{\mathbf{ds}}{\mathbf{dt}}$$
-----(i)

Similarly, we can find the expression for the **acceleration** by differentiating the expression for velocity, and this is equivalent to finding the second derivative of the displacement:

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{ds}{dt} \right) \left[\because v = \frac{ds}{dt} \right]$$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d^2s}{dt^2} - (ii)$$

It follows (since integration is the opposite process to differentiation) that to obtain the **displacement**, s of an object at time t (given the expression for velocity, v) we would use: From (i),

$$v = \frac{ds}{dt}$$

$$\Rightarrow ds = vdt$$

$$\Rightarrow \int ds = \int vdt$$

$$\Rightarrow s = \int vdt - (iii)$$

Similarly, the **velocity** of an object at time t, given the acceleration a, is given by:

$$a = \frac{dv}{dt}$$

$$\Rightarrow$$
 dv = adt

$$\Rightarrow \int dv = \int adt$$

$$\Rightarrow$$
 v = \int adt -----(iv)

Example 1: A proton moves in an electric field such that its acceleration (in cms⁻²)

is $\mathbf{a} = -\frac{20}{(1+2t)^2}$; where t is in seconds. Find the velocity as a function of time if v = 30

cms⁻¹ when t = 0.

Solution: We have from (iv),

$$v = \int a dt$$

So
$$\Rightarrow$$
 v = $\int \frac{-20 dt}{(1+2t)^2}$ ----(i)

Put

$$u = 1 + 2t$$

$$\Rightarrow \frac{du}{dt} = \frac{d}{dt}(1 + 2t)$$

$$\Rightarrow \frac{du}{dt} = 0 + 2.1$$

$$\Rightarrow \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = 2$$

$$\Rightarrow$$
 dt = $\frac{du}{2}$

From (i),
$$\mathbf{v} = \int \frac{-20 dt}{(1+2t)^2} = \int \frac{-20}{u^2} \cdot \frac{du}{2} = \int \frac{-10}{u^2} du = -10 \int \frac{1}{u^2} du = -10 \int u^{-2} du$$

$$\Rightarrow \mathbf{v} = -10 \times \frac{u^{-2+1}}{-2+1} = -10 \times \frac{u^{-1}}{-1} = 10 \times \frac{1}{u} = \frac{10}{u}$$

$$\Rightarrow \mathbf{v} = \frac{10}{1+2t} + \mathbf{c} \left[\because u = 1+2t\right] ------(ii)$$

When t = 0, v = 30

Putting these values in (ii),

$$v = \frac{10}{1+2t} + c$$

$$\Rightarrow 30 = \frac{10}{1+2\times0} + c$$

$$\Rightarrow 30 = \frac{10}{1} + c$$

$$\Rightarrow 30 = 10 + c$$

$$\Rightarrow 30 - 10 = c$$

$$\Rightarrow 20 = c$$

$$\Rightarrow c = 20$$

From (ii), So the expression for velocity as a function of time is:

$$v = \frac{10}{1+2t} + 20$$
 Cm/sec

Example 2: A flare is ejected vertically upwards from the ground at 15 m/s. Find the height of the flare after 2.5 second.

Solution: [The object has acting on it the force due to gravity, so its acceleration is

$$-9.8 \,\mathrm{m/sec^2}$$
 [in MKS system]

We have,
$$\mathbf{v} = \int \mathbf{a} dt$$

 $\Rightarrow \mathbf{v} = \int -9.8 dt$
 $\Rightarrow \mathbf{v} = -9.8 t + c$ -----(i) [:: $\int dt = t$]

Now at t = 0, the velocity, $\mathbf{v} = 15 \,\mathrm{m} / \mathrm{sec}$

Putting these values in (i)

$$v = -9.8t + c$$

$$\Rightarrow 15 = -9.8 \times 0 + c$$

$$\Rightarrow 15 = 0 + c$$

$$\Rightarrow 15 = c$$

$$\Rightarrow c = 15$$
From (i), $v = -9.8t + c$

$$\Rightarrow v = -9.8t + 15 \ [\because c = 15]$$

So the expression for velocity becomes: v = -9.8t + 15

Now, we need to find the displacement, so

We have:
$$s = \int vdt$$

 $\Rightarrow s = \int vdt$
 $\Rightarrow s = \int (-9.8t + 15)dt \ [\because v = -9.8t + 15]$
 $\Rightarrow s = \int -9.8t dt + \int 15 dt = -9.8 \int t^{1} dt + 15 \int dt$
 $\Rightarrow s = -9.8 \times \frac{t^{1+1}}{1+1} + 15t \ [\because \int x^{n} dx = \frac{x^{n+1}}{n+1} + c \]$
 $\Rightarrow s = -9.8 \times \frac{t^{2}}{2} + 15t = -4.9 \times t^{2} + 15t$
 $\Rightarrow s = -4.9t^{2} + 15t + c$ (ii)

Now, we know from the question that when t = 0, s = 0Putting these values in (ii),

$$s = -4.9t^2 + 15t + c$$

 $\Rightarrow 0 = -4.9.0^2 + 15.0 + c$

$$\Rightarrow 0 = 0 + 0 + c$$

$$\Rightarrow 0 = c$$

$$\Rightarrow c = 0$$
From (ii), $s = -4.9t^2 + 15t + c$

$$\Rightarrow s = -4.9t^2 + 15t + 0$$

$$\Rightarrow s = -4.9t^2 + 15t - (iii)$$
At time $t = 2.5$
Putting this value in (iii),
$$s = -4.9t^2 + 15t$$

$$\Rightarrow s = -4.9 \times (2.5)^2 + 15 \times 2.5 = -4.9 \times 2.5 \times 2.5 + 15 \times 2.5 = -30.625 + 37.5 = 68.125$$

1. 2. Displacement and Velocity Formulas

Using integration, we can obtain the well-known expressions for displacement and velocity, given a constant acceleration a, initial displacement zero, and an initial velocity v_0 .

We have,
$$\mathbf{v} = \int \mathbf{adt}$$

 $\Rightarrow \mathbf{v} = \mathbf{at} + \mathbf{c}$ -----(i)
Since the velocity at $t = 0$ is v_0 . That is $\mathbf{v} = \mathbf{v_0}$
Putting these values in (i),

$$v = at + c$$

$$\Rightarrow v_0 = a \times 0 + c$$

$$\Rightarrow v_0 = c$$

$$\Rightarrow c = v_0$$
From (i), $v = at + c$

$$\Rightarrow v = at + v_0 [\because c = v_0]$$
-----(ii)

Similarly, we have,

$$s = \int vdt$$

$$\Rightarrow s = \int (at + v_0)dt \ [\because from \ (ii); v = at + v_0]$$

$$\Rightarrow s = \int atdt + \int v_0 dt$$

$$\Rightarrow s = a \int tdt + v_0 \int dt$$

$$\Rightarrow s = a \int t^1 dt + v_0 \int dt$$

$$\Rightarrow s = a \times \frac{t^{1+1}}{1+1} + v_0 \times t + c \ [\because \int dt = t]$$

$$\Rightarrow s = a \times \frac{t^2}{2} + v_0 t + c$$

$$\Rightarrow s = a \frac{t^2}{2} + v_0 t + c - (iii)$$

Since the displacement at t = 0 is s = 0Putting these values in (iii),

$$s = a\frac{t^2}{2} + v_0 t + c$$

$$\Rightarrow 0 = a\frac{0^2}{2} + v_0 \times 0 + c$$

$$\Rightarrow 0 = c$$

$$\Rightarrow c = 0$$
From (iii), $s = a\frac{t^2}{2} + v_0 t + c$

$$\Rightarrow s = a\frac{t^2}{2} + v_0 t + 0 \ [\because c = 0]$$

$$\Rightarrow s = a\frac{t^2}{2} + v_0 t = v_0 t + \frac{1}{2}at^2$$

1.3 Voltage across a Capacitor

Definition: The current, i (amperes), in an electric circuit equals the time rate of change of the **charge** q, (in coulombs) that passes a given point in the circuit. We can write this (with t in

seconds) as:
$$i = \frac{dq}{dt}$$

By writing i dt = dq and integrating, we have:

$$\int \mathbf{i} \, dt = \int d\mathbf{q}$$

$$\Rightarrow \int \mathbf{i} \, dt = \mathbf{q}$$

$$\Rightarrow q = \int i \, dt - (i)$$

The voltage, V_C (in volts) across a capacitor with capacitance C (in farads) is given by $V_C = \frac{\mathbf{q}}{C}$ It follows that

$$V_{C} = \frac{q}{C}$$

$$\Rightarrow V_{C} = \frac{1}{C}q$$

$$\Rightarrow V_{C} = \frac{1}{C} \int i dt \ [\because q = \int i dt]$$

$$\Rightarrow V_{C} = \frac{1}{C} \int i dt$$

Example 3: The electric current (in mA) in a computer circuit as a function of time is i = 0.3 - 0.2t. What total charge passes a point in the circuit in 0.050s?

Solution: The charge,
$$q$$
, is given by: $\mathbf{q} = \int \mathbf{i} \, dt$
 $\mathbf{q} = \int (0.3 - 0.2 \, t) \, dt$

$$\Rightarrow q = \int 0.3 dt - \int 0.2 t dt = 0.3 \int dt - 0.2 \int t dt = 0.3 \times t - 0.2 \times \frac{t^{1+1}}{1+1} + c$$

$$\Rightarrow q = 0.3 \times t - 0.2 \times \frac{t^2}{2} + c = 0.3 \times t - 0.1 \times t^2 + c$$

$$\Rightarrow q = 0.3 t - 0.1 t^2 + c - (i)$$
At $t = 0$, $q = 0$
Putting these values in (i)
$$q = 0.3 t - 0.1 t^2 + c$$

$$\Rightarrow 0 = 0.3 \times 0 - 0.1 \times 0^2 + c$$

$$\Rightarrow 0 = 0. + c$$

$$\Rightarrow 0 = c$$

$$\Rightarrow c = 0$$
From (i), $q = 0.3 t - 0.1 t^2 + c$

$$\Rightarrow q = 0.3 t - 0.1 t^2 + 0 [\because c = 0]$$

$$\Rightarrow q = 0.3 t - 0.1 t^2 - (ii)$$
At time $t = 0.050$

$$q = 0.3 t - 0.1 t^2$$

$$\Rightarrow q = 0.3 \times (0.050) - 0.1 \times (0.050)^2 = 0.015 - 0.00025 = 0.01475$$

Example 4: The voltage across a $8.50\,nF$ capacitor in an FM receiver circuit is zero. Find the voltage after $2.00\,\mu s$ if a current i=0.042t (in mA) charges the capacitor.

Solution:

K = 0. Thus

 $V_C = 2.47 \times 10^3 t^2$

We have
$$V_C = \frac{q}{C}$$

$$\Rightarrow V_C = \frac{1}{C} \int \mathbf{i} \, dt \qquad (i)$$

$$1nF = 10^{-9} \text{ F and } 1\mu \text{s} = 10^{-6} \text{ s}$$

$$\Rightarrow 0.042t \, mA = 0.042 \times 10^{-3} \, t \, A$$
From (i), $V_C = \frac{1}{C} \int \mathbf{i} \, dt$

$$V_C = \frac{0.042 \times 10^{-3}}{8.5 \times 10^{-9}} \int t \, dt$$

$$= 4.94 \times 10^3 \frac{t^2}{2} + K$$

$$= 2.47 \times 10^3 t^2 + K \qquad (ii)$$
Now, we are told that when $t = 0$, $V_C = 0$.
Putting these values in (ii)

So when $t = 2.00 \mu s$, we have:

$$V_C = 2.47 \times 10^3 (2 \times 10^{-6})^2$$

= 9.882×10^{-9}
= 9.88 nV

02. Geometrical Interpretation

https://www.youtube.com/watch?v=XIdM2oxPttQ

<u>Integration</u> can be used to find areas, volumes, central points and many useful things. It is often used to find the **area underneath the graph of a function and the x-axis**

To find the area bounded by the curve y = f(x), the x-axis and the ordinates at x = a and

$$x = b$$
 that is prove that
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a + rh)$$

Let,
$$I = \int_{a}^{b} f(x) dx$$

Suppose that the curve of y = f(x) shown above the figure.

Let, P & Q be the two points on the curve, Such that

$$OA = a$$

$$OB = b$$

$$AA_1 = h$$
, $AA_2 = 2h$

Then
$$AB = OB - OA = b - a$$
 -----(i)

Let us, divide the interval [a,b] into n equal subintervals of which each length is h. and over each subinterval construct a rectangle that extends from the x-axis to any point on the curve y = f(x) that is above the subinterval.

$$AA_1 = h$$

$$AA_2 = 2h$$

$$AA_3 = 3h$$
......AB = nh

That is,
$$AB = OB - OA = b - a = nh$$
 -----(ii)

Let P(x,y) be a point on the curve y = f(x)

We have,
$$y = f(x)$$
-----(iii)

Putting the values of x in (iii),

When x = a then y = f(a)

When x = a + h then y = f(a + h)

When x = a + 2h then y = f(a + 2h)

When x = a + 3h then y = f(a + 3h)

When x = a + 4h then y = f(a + 4h)

 \therefore The coordinates of P(x,y) = P(a,f(a))

... The coordinates of $P_1(x,y) = P_1(a+h,f(a+h))$

 \therefore The coordinates of $P_2(x,y) = P_2(a+2h,f(a+2h))$

Now we see the area of all inner rectangles are

The area of 1st rectangle:
$$AA_1MP = AA_1 \times PA = h \times y = h \times f(a)$$

The area of
$$2^{nd}$$
 rectangle: $\mathbf{A}_1 \mathbf{A}_2 \mathbf{NP}_1 = \mathbf{A}_1 \mathbf{A}_2 \times \mathbf{P}_1 \mathbf{A}_1 = \mathbf{h} \times \mathbf{y} = \mathbf{h} \times \mathbf{f}(\mathbf{a} + \mathbf{h})$

The area of
$$3^{rd}$$
 rectangle is $= \mathbf{h} \times \mathbf{y} = \mathbf{h} \times \mathbf{f}(\mathbf{a} + 2\mathbf{h})$

The area of 4th rectangle is $= \mathbf{h} \times \mathbf{y} = \mathbf{h} \times \mathbf{f}(\mathbf{a} + 3\mathbf{h})$

The area of nth rectangle is $= h \times y = h \times f(a + (n-1)h)$

The total area is:

$$\begin{aligned} h \times f(a) + h \times f(a+h) + h \times f(a+2h) + ------+h \times f(a+(n-1)h) \\ &= h \sum_{n=0}^{n-1} f(a+rh) \end{aligned}$$

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Total area under the curve y = f(x) over the interval [a,b]

$$= \int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh) -----(iv)$$

IIntegration মানে কোন নির্দিষ্ট অঞ্চলের ক্ষেত্রফল (Area) বের করা। Figure # 01 এ আমরা PABO অঞ্চলের ক্ষেত্রফল বের করলাম। উক্ত ক্ষেত্রফলের মান (iv) নং সমীকরণ হতে বের করা যায়]

Example 05: Evaluate the Integral $I = \int_{0}^{x} x dx$ by geometrically

Solution: Here,
$$f(x) = x$$

$$\therefore f(a+rh) = a+rh$$

$$\therefore f(0+rh) = 0+rh \text{ [Here } a=0, b=1]$$

$$\therefore f(rh) = rh$$

$$\text{We have, } \int_a^b f(x) \, dx = \lim_{h \to 0} \sum_{r=0}^{n-1} hf(a+rh)$$
[From eq.

[From equation iv]

Example 06 Evaluate the Integral $I = \int_{0}^{1} x dx$

Solution:
$$I = \int_{0}^{1} x dx = \left[\frac{x^{1+1}}{1+1}\right]_{0}^{1} = \left[\frac{x^{2}}{2}\right]_{0}^{1} = \left[\frac{1^{2}}{2} - \frac{0^{2}}{2}\right] = \left[\frac{1}{2} - \frac{0}{2}\right] = \frac{1}{2} \left[\because \int x^{n} dx = \frac{x^{n+1}}{n+1}\right]$$

Example $07: \int_{0}^{1} e^{x} dx$

Solution: Here, a = 0, b = 1, nh = b - a = 1

We have, $f(x) = e^x$

Now,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

[Page no 10; From equation iv]

$$\int_{0}^{1} e^{x} dx = \lim_{h \to 0} \sum_{r=0}^{n-1} hf(a+rh)$$

$$\int_{0}^{1} e^{x} dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h e^{a+rh}$$

$$[\therefore f(a+rh) = e^{a+rh}; From (i)]$$

$$= h \lim_{h \to 0} \sum_{r=0}^{n-1} e^{0+rh}$$

$$[a = 0]$$

$$= h \lim_{h \to 0} (e^{0} + e^{0+h} + e^{0+2h} + e^{0+3h} + - - - - - + e^{0+(n-1)h})$$

$$= h \lim_{h \to 0} (1 + e^{h} + e^{2h} + e^{3h} + - - - - - - + e^{(n-1)h}) [e^{0} = 1]$$

$$= \lim_{h \to 0} h(1 + e^{h} + e^{2h} + e^{3h} + - - - - - - + e^{(n-1)h})$$

$$= \lim_{h \to 0} h(1 + e^{h} + (e^{h})^{2} + (e^{h})^{3} + - - - - + (e^{h})^{n-1})$$

$$= \lim_{h \to 0} h \frac{(e^{h})^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{(e^{h})^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{h} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} - 1}{e^{n} - 1}$$

$$= \lim_{h \to 0} h \frac{e^{n} -$$

$$= (e-1) \lim_{h \to 0} \frac{h}{\left[h + \frac{h^2}{2!} + \frac{h^3}{3!} + ---\right]} = (e-1) \lim_{h \to 0} \frac{h}{h\left(1 + \frac{h}{2!} + \frac{h^2}{3!} + ---\right)}$$

$$= (e-1) \lim_{h \to 0} \frac{1}{1 + \frac{h}{2!} + \frac{h^2}{3!} + ---} = (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + 0 + 0 + ---} = (e-1) \cdot \frac{1}{1} = (e-1)$$

$$\int_{0}^{e^{x}} dx = (e-1) \text{ Answer}$$

$$= (e-1) \text{Answer}$$

$$= (e-1) \text{Answer}$$

$$= (e-1) \frac{1}{1 + 0 + 0 + ---} = (e-1) \cdot \frac{1}{1} = (e-1)$$

$$\int_{0}^{e^{x}} dx = (e-1) \text{ Answer}$$

$$= \left[e^{x}\right]_{0}^{1} = \left[e^{1} - e^{0}\right] = \left[e-1\right] = e-1$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + ---}$$

$$= (e-1) \frac{1}{1 + \frac{0}{2!} + \frac{0}{3!} + \frac{0}{3!} + ---}$$

 $= \lim_{h \to 0} h^3 \frac{n(n+1)(2n+1)}{6} \qquad [\because 1^2 + 2^2 + 3^2 + --- + n^2 = \frac{n(n+1)(2n+1)}{6}]$

 $= \lim_{h \to 0} h \times h^2 \sum_{n=1}^{n-1} r^2 = \lim_{h \to 0} h^3 \sum_{n=1}^{n-1} r^2 = \lim_{h \to 0} h^3 \sum_{n=1}^{n} r^2$

 $= \lim_{h \to 0} h^3 (1^2 + 2^2 + 3^2 + - - - - + n^2)$

$$= \lim_{h \to 0} \frac{nh(nh+h)(2nh+h)}{6} \ [\because nh = 1]$$

$$= \lim_{h \to 0} \frac{1.(1+h)(2\times 1+h)}{6} = \lim_{h \to 0} \frac{(1+h)(2+h)}{6} = \frac{(1+0)(2+0)}{6} = \frac{2}{6} = \frac{1}{3} \text{ Answer}$$

Example 10: $\int_{0}^{1} x^3 dx$

Solution: We have,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Given,
$$f(x) = x^3$$

$$f(a+rh) = (a+rh)^3$$

Here
$$a = 0$$
, $b = 1$

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

$$\int_{0}^{1} x^{3} dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h(a+rh)^3 = \lim_{h \to 0} \sum_{r=0}^{n-1} h(0+rh)^3 = \lim_{h \to 0} \sum_{r=0}^{n-1} h(rh)^3 = \lim_{h \to 0} h \sum_{r=0}^{n-1} r^3 h^3$$

$$= \lim_{h \to 0} h \times h^{3} \sum_{r=0}^{n-1} r^{3} = \lim_{h \to 0} h^{4} \sum_{r=0}^{n-1} r^{3} = \lim_{h \to 0} h^{4} \sum_{r=1}^{n} r^{3}$$

$$= \lim_{h \to 0} h^{4} (1^{3} + 2^{3} + 3^{3} + - - - - - - + n^{3})$$

$$= \lim_{h\to 0} h^4 \left(1^3 + 2^3 + 3^3 + \dots + n^3\right)$$

$$= \lim_{h \to 0} h^4 \left\{ \frac{n(n+1)}{2} \right\}^2 = \lim_{h \to 0} h^4 \frac{n(n+1)}{2} \frac{n(n+1)}{2} = \lim_{h \to 0} \frac{nh(nh+h)}{2} \frac{nh(nh+h)}{2}$$

$$= \lim_{h\to 0} \frac{1.(1+h)}{2} \frac{1.(1+h)}{2} \left[\because nh = 1 \right]$$

$$= \frac{1.(1+0)}{2} \frac{1.(1+0)}{2} = \frac{1.(1)}{2} \frac{1.(1)}{2} = \frac{1}{4}$$
Answer

Example 11: $\int x^2 dx$

Solution: We have,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Given,
$$f(x) = x^2$$

$$f(a+rh) = (a+rh)^2$$

Here
$$a = 1$$
, $b = 2$

We have,
$$\mathbf{b} = \mathbf{a} + \mathbf{n}\mathbf{h}$$

$$\Rightarrow$$
 2 = 1 + nh

$$\begin{split} &\Rightarrow nh = 2 - 1 = 1 \\ &\Rightarrow nh = 1 \\ \int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h \, f(a + rh) \\ &= \lim_{h \to 0} \sum_{r=0}^{n-1} h \, f(a + rh) \\ &= \lim_{h \to 0} \sum_{r=0}^{n-1} h \, (a + rh)^2 = \lim_{h \to 0} \sum_{r=0}^{n-1} h \, (1 + rh)^2 = \lim_{h \to 0} \sum_{r=0}^{n-1} h \, (1 + 2rh + r^2h^2) \\ &= \lim_{h \to 0} h \sum_{r=0}^{n-1} (1) + \lim_{h \to 0} h \sum_{r=0}^{n-1} 2rh + \lim_{h \to 0} h \sum_{r=0}^{n-1} (r^2h^2) \\ &= \lim_{h \to 0} h \sum_{r=1}^{n} (1) + \lim_{h \to 0} h \sum_{r=1}^{n} 2rh + \lim_{h \to 0} h \sum_{r=1}^{n} (r^2h^2) \\ &= \lim_{h \to 0} h (1 + 1 + 1 + - - - - + 1) + \lim_{h \to 0} 2h^2 \sum_{r=1}^{n} r + \lim_{h \to 0} h^3 \sum_{r=1}^{n} r^2 \\ &= \lim_{h \to 0} h \times n + \lim_{h \to 0} 2h^2 (1 + 2 + 3 + - - - - + n) + \lim_{h \to 0} h^3 (1^2 + 2^2 + 3^3 + - - - + n^2) \\ &= \lim_{h \to 0} (nh) + \lim_{h \to 0} 2h^2 \frac{n(n+1)}{2} + \lim_{h \to 0} h^3 \left\{ \frac{n(n+1)(2n+1)}{6} \right\} \\ &= \lim_{h \to 0} (1) + \lim_{h \to 0} 2 \frac{1 \cdot (1+h)}{2} + \lim_{h \to 0} \left\{ \frac{1 \cdot (1+h)(2.1+h)}{6} \right\} \\ &= \lim_{h \to 0} (1) + \lim_{h \to 0} 2 \frac{1 \cdot (1+h)}{2} + \lim_{h \to 0} \left\{ \frac{1 \cdot (1+h)(2.1+h)}{6} \right\} \\ &= (1) + 2 \frac{1 \cdot (1+0)}{6} + 1 + \frac{1}{3} = \frac{7}{3} \text{ Answer} \end{split}$$

Example 12:
$$\int_{-1}^{2} x^{2} dx$$

Solution: We have,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Given,
$$f(x) = x^2$$

 $f(a+rh) = (a+rh)^2$
Here $a = -1$, $b = 2$

We have,
$$\mathbf{b} = \mathbf{a} + \mathbf{nh}$$

 $2 = -1 + \mathbf{nh}$
 $\Rightarrow \mathbf{nh} = 2 + 1 = 3$
 $\Rightarrow \mathbf{nh} = 3$

$$\begin{split} \int\limits_{a}^{b} f(x) \, dx &= \underset{h \to 0}{\text{Lim}} \sum_{r=0}^{n-1} h \, f(a+rh) \\ \int\limits_{-1}^{2} x^{2} dx &= \underset{h \to 0}{\text{Lim}} \sum_{r=0}^{n-1} h \, f(a+rh) \\ &= \underset{h \to 0}{\text{Lim}} \sum_{r=0}^{n-1} h \, (a+rh)^{2} = \underset{h \to 0}{\text{Lim}} \sum_{r=0}^{n-1} h \, (-1+rh)^{2} \\ &= \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n-1} h \, (1-2rh+r^{2}h^{2}) \\ &= \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n-1} (1) - \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n-1} 2rh + \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n-1} (r^{2}h^{2}) \\ &= \underset{h \to 0}{\text{Lim}} h \left(1 + 1 + 1 + - - - + 1\right) - \underset{h \to 0}{\text{Lim}} 2h^{2} \sum_{r=1}^{n} r + \underset{h \to 0}{\text{Lim}} h^{3} \sum_{r=1}^{n} r^{2} \\ &= \underset{h \to 0}{\text{Lim}} h \times n - \underset{h \to 0}{\text{Lim}} 2h^{2} (1 + 2 + 3 + - - - + n) + \underset{h \to 0}{\text{Lim}} h^{3} (1^{2} + 2^{2} + 3^{3} + - - - + n^{2}) \\ &= \underset{h \to 0}{\text{Lim}} (nh) - \underset{h \to 0}{\text{Lim}} 2h^{2} \frac{n(n+1)}{2} + \underset{h \to 0}{\text{Lim}} h \left\{ \frac{n(n+1)(2n+1)}{6} \right\} \\ &= \underset{h \to 0}{\text{Lim}} (3) - \underset{h \to 0}{\text{Lim}} 2 \frac{3 \cdot (3+h)}{2} + \underset{h \to 0}{\text{Lim}} \left\{ \frac{3 \cdot (3+h)(2 \cdot 3 + h)}{6} \right\} \\ &= (3) - 2 \frac{3 \cdot (3+0)}{2} + \left\{ \frac{3 \cdot (3+0)(6+0)}{6} \right\} \\ &= (3) - 9 + \left\{ \frac{(9)(6)}{6} \right\} = (3) - 9 + 9 = 3 \text{ Answer} \end{split}$$

Example 13: $\int_{0}^{\infty} e^{-x} dx$

Solution: We have,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Given, $f(x) = e^{-x}$

We have,

$$f(x) = e^{-x}$$

.: $f(a+rh) = e^{-(a+rh)}$

Now,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

$$\begin{split} & \int\limits_{a}^{b} e^{-x} dx = \lim\limits_{b \to 0} \sum\limits_{r = 0}^{b - 1} h f(a + r h) \\ & \int\limits_{a}^{b} e^{-x} dx = \lim\limits_{b \to 0} \sum\limits_{r = 0}^{c - 1} h e^{-(a + r h)} \\ & = \lim\limits_{b \to 0} h (e^{-(a + h)} + e^{-(a + 2 h)} + e^{-(a + 2 h)} + e^{-(a + 2 h)} + e^{-(a + h h)}) \\ & = \lim\limits_{b \to 0} h (e^{-(a + h)} + e^{-(a + h h)} + e^{-(a + h h)} + e^{-(a + h h + 2 h)} + \cdots + e^{-(a + h h)}) \\ & = \lim\limits_{b \to 0} h .(e^{-(a + h)} + e^{-(a + h h)} + e^{-(a + h h) - 2 h} + \cdots + e^{-(a + h) - (a - 1 h h)}) \\ & = \lim\limits_{b \to 0} h .(e^{-(a + h)} + e^{-(a + h)} + e^{-(a + h) - 2 h} + \cdots + e^{-(a - 1 h)}) \\ & = \lim\limits_{b \to 0} h .(e^{-(a + h)} + e^{-(a + h)} + e^{-(a + h) - 2 h} + \cdots + e^{-(a - 1 h)}) \\ & = \lim\limits_{b \to 0} h .e^{-(a + h)} .[1 + e^{-h} + e^{-2h} + \cdots + e^{-(a + h)} \cdot e^{-2h} + \cdots + e^{-(a - 1 h)}) \\ & = \lim\limits_{b \to 0} h .e^{-(a + h)} .[1 + (e^{-h})^1 + (e^{-h})^2 + \cdots + e^{-(a - 1 h)}] \\ & = \lim\limits_{b \to 0} h .e^{-(a + h)} .[1 + (e^{-h})^1 + (e^{-h})^2 + \cdots + e^{-(a + h)} \cdot \frac{1 - e^{-(a + 1 h)}}{1 - e^{-1}} \\ & = \lim\limits_{b \to 0} h .e^{-(a + h)} .\frac{1 - (e^{-h})^n}{1 - e^{-h}} = \lim\limits_{b \to 0} h .e^{-(a + h)} .\frac{1 - e^{-(a + 1 h)}}{1 - e^{-h}} \\ & = \lim\limits_{b \to 0} h .e^{-(a + h)} .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} \\ & = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} \\ & = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} \\ & = \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} = (e^{-a} - e^{-b}) \lim\limits_{b \to 0} h .\frac{1 - e^{-(a + h)}}{1 - e^{-h}} \\ & = (e^{-a} - e^{-b}) \lim\limits_{b \to 0} \frac{h}{1 - e^{-h}} = (e^{-a} - e^{-b}) \lim\limits_{b \to 0} \frac{h}{(1 + \frac{h}{1!} + \frac{h^2}{2!} + \frac{h^3}{3!} + \cdots - \cdots - 1)} \\ & = (e^{-a} - e^{-b}) \lim\limits_{b \to 0} \frac{h}{(\frac{1}{1 + \frac{h^2}{2!} + \frac{h^3}{3!} + \cdots - \cdots - 1)} \\ & = (e^{-a} - e^{-b}) \lim\limits_{b \to 0} \frac{(\frac{1}{1 + \frac{h^2}{2!} + \frac{h^3}{3!} + \cdots - \cdots - 1)}{(\frac{1}{1 + \frac{h^2}{2!} + \frac{h^3}{3!} + \cdots - \cdots - \cdots - 1)} \\ \end{pmatrix}$$

$$\begin{array}{l} \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \sinh \times 2 \sin \frac{h}{2} + \sin 2h \times 2 \sin \frac{h}{2} + \sin 3h \times 2 \sin \frac{h}{2} + - - - + \sin nh \times 2 \sin \frac{h}{2} \\ \Rightarrow \mathrm{S} \times 2 \sin \frac{h}{2} = 2 \sinh \sin \frac{h}{2} + 2 \sin 2h \sin \frac{h}{2} + 2 \sin 3h \sin \frac{h}{2} + - - - - - + 2 \sin nh \sin \frac{h}{2} \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \left\{ \cos(h - \frac{h}{2}) - \cos(h + \frac{h}{2}) \right\} + \left\{ \cos(2h - \frac{h}{2}) - \cos(2h + \frac{h}{2}) \right\} + \\ \left\{ \cos(3h - \frac{h}{2}) - \cos(3h + \frac{h}{2}) \right\} + - - - - - + \left\{ \cos(nh - \frac{h}{2}) - \cos(nh + \frac{h}{2}) \right\} \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \left\{ \cos(\frac{h}{2}) - \cos(\frac{3h}{2}) \right\} + \left\{ \cos(\frac{3h}{2}) - \cos(\frac{5h}{2}) \right\} + \left\{ \cos(\frac{5h}{2}) - \cos(\frac{7h}{2}) \right\} + - - - \\ - - - - + \left\{ \cos(nh - \frac{h}{2}) - \cos(nh + \frac{h}{2}) \right\} \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(\frac{3h}{2}) + \cos(\frac{3h}{2}) - \cos(\frac{5h}{2}) + \cos(\frac{5h}{2}) - \cos(\frac{7h}{2}) + - - - - \\ \Rightarrow \\ - - - - - - - - + \left\{ \cos(nh - \frac{h}{2}) - \cos(nh + \frac{h}{2}) \right\} \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ \Rightarrow \\ \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \\ = \mathrm{S} \times 2 \sin \frac{h}{2} = \cos(\frac{h}{2})$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \lim_{h \to 0} \frac{h}{\sin \frac{h}{2}} \left[\lim_{h \to 0} \left\{ \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \right\} \right]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1. \lim_{h \to 0} \left\{ \cos(\frac{h}{2}) - \cos(nh + \frac{h}{2}) \right\} \qquad [\because \lim_{h \to 0} \frac{\theta}{\sin \theta} = 1]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1. \left\{ \cos(\frac{\theta}{2}) - \cos(\frac{\pi}{2} + \frac{\theta}{2}) \right\} \qquad [\because nh = \frac{\pi}{2}]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1. \left\{ \cos \theta - \cos(\frac{\pi}{2} + \theta) \right\}$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1. \left\{ \cos \theta - \cos(\frac{\pi}{2} + \theta) \right\}$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1. (1 - \theta) = 1 \text{ Answer}$$

$$\text{Directly: } \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x \right]_{0}^{\frac{\pi}{2}} = -\left[\cos \frac{\pi}{2} - \cos \theta \right] = -\left[\theta - 1 \right] = 1$$

$$\text{Example 15: Evaluate } \int_{0}^{h} \sin x \, dx$$

$$\text{Solution: } \because nh = b - a$$

$$\text{Given, } f(x) = \sin x$$

$$\therefore f(a + rh) = \sin(a + rh)$$

$$\text{We have, } \int_{0}^{h} f(x) \, dx = \lim_{h \to 0} \sum_{r=0}^{h-1} h f(a + rh)$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \sin(a + rh)$$

$$= \lim_{h \to 0} \lim_{r \to 0} h \sin(a + rh)$$

$$= \lim_{h \to 0} \lim_{r \to 0} h \left[\sin(a + rh) + \sin(a + 2h) + \sin(a + 3h) + \dots + \sin(a + nh) \right] - \dots (i)$$

$$\text{Multiplying by } 2 \sin \frac{h}{2}$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = \lim_{b \to 0} \frac{\frac{b}{2} \left\{ \cos(a + \frac{b}{2}) - \cos(a + nh + \frac{b}{2}) \right\}}{\sin \frac{h}{2}}$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = \lim_{b \to 0} \frac{\frac{b}{2}}{\sin \frac{h}{2}} \left[\lim_{b \to 0} \left\{ \cos(a + \frac{b}{2}) - \cos(a + nh + \frac{b}{2}) \right\} \right]$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \lim_{b \to 0} \left\{ \cos(a + \frac{b}{2}) - \cos(a + nh + \frac{b}{2}) \right\} \quad [\because \text{Lim} \frac{\theta}{\sin \theta} = 1]$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a + \frac{\theta}{2}) - \cos(a + b - a + \frac{\theta}{2}) \right\} \quad [\because nh = b - a]$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a + \frac{\theta}{2}) - \cos(a + b - a + \frac{\theta}{2}) \right\} \quad [\because nh = b - a]$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = \cos(a - \cos(b)) = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b)) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \frac{\theta}{2}) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx = 1. \left\{ \cos(a - \cos(a - \cos(b) - \cos(a + nh + \frac{h}{2}) \right\} = (\cos(a - \cos(b))$$

$$\Rightarrow \int_{a}^{b} \sin x \, dx$$

$$\begin{split} &= \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} \left\{ 2^3 + 3 \times 2^2 \times rh + 3 \times 2 \times (rh)^2 + (rh)^3 \right\} \\ &= \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} \left\{ 8 + 12rh + 6r^2h^2 + r^3h^3 \right\} \\ &= \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} 8 + \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} 12rh + \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} 6r^2h^2 + \underset{h \to 0}{\text{Lim}} \, h \sum_{r=1}^{n} r^3h^3 \\ &= \underset{h \to 0}{\text{Lim}} \, h8 \sum_{r=1}^{n} + \underset{h \to 0}{\text{Lim}} \, h2h^2 \sum_{r=1}^{n} r + \underset{h \to 0}{\text{Lim}} \, 6h^3 \sum_{r=1}^{n} r^2 + \underset{h \to 0}{\text{Lim}} \, h^4 \sum_{r=1}^{n} r^3 \\ &= \underset{h \to 0}{\text{Lim}} \, h8(1 + 1 + 1 + - - - + 1) + \underset{h \to 0}{\text{Lim}} \, 12h^2 (1 + 2 + 3 + - - - + n) + \\ &\underset{h \to 0}{\text{Lim}} \, 6h^3 (1^2 + 2^2 + 3^2 + - - - - + n^2) + \underset{h \to 0}{\text{Lim}} \, h^4 (1^3 + 2^3 + 3^3 + - - - - + n^3) \\ &= \underset{h \to 0}{\text{Lim}} \, 8nh + \underset{h \to 0}{\text{Lim}} \, 12h^2 \times \frac{n(n+1)}{2} + \underset{h \to 0}{\text{Lim}} \, 6h^3 \times \frac{n(n+1)(2n+1)}{6} + \underset{h \to 0}{\text{Lim}} \, h^4 \times \left\{ \frac{n(n+1)}{2} \right\}^2 \\ &= \underset{h \to 0}{\text{Lim}} \, 8nh + \underset{h \to 0}{\text{Lim}} \, 12 \times \frac{nh(nh+h)}{2} + \underset{h \to 0}{\text{Lim}} \, 6 \times \frac{nh(nh+h)(2nh+h)}{6} + \underset{h \to 0}{\text{Lim}} \, \left\{ \frac{1 \times (1+h)}{2} \right\}^2 \\ &= \underset{h \to 0}{\text{Ex}} \, 1 + \underset{h \to 0}{\text{Lim}} \, 12 \times \frac{1 \times (1+h)}{2} + \underset{h \to 0}{\text{Lim}} \times \frac{1 \times (1+h)(2 \times 1+h)}{6} + \left\{ \frac{1 \times (1+h)}{2} \right\}^2 \\ &= 8 \times 1 + 12 \times \frac{1}{2} + \frac{2}{6} + \left\{ \frac{1}{2} \right\}^2 = 8 + 6 + 2 + \frac{1}{4} = \frac{32 + 24 + 8 + 1}{4} = \frac{65}{4} \, \text{Answer} \end{split}$$

Example 17: Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x \, dx$

Solution:
$$:: nh = b - a$$

$$\therefore$$
 nh = $\frac{\pi}{2}$ - 0

$$\therefore$$
 nh = $\frac{\pi}{2}$

Given,
$$f(x) = \cos x$$

$$\therefore f(a+rh) = \cos(a+rh)$$

We have,
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

$$\int_{0}^{\frac{\pi}{2}} \cos x \, dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$
$$= \lim_{h \to 0} \sum_{a=0}^{n-1} h \cos(a+rh)$$

$$= \lim_{h \to 0} \sum_{r=0}^{h-1} h \cos(0 + rh) \qquad [a = 0]$$

$$= \lim_{h \to 0} \sum_{r=0}^{h-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{h-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{h-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=0}^{n-1} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh$$

$$= \lim_{h \to 0} \sum_{r=1}^{n} h \cos rh = \lim_{h \to 0} \lim_{h \to 0}$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \lim_{n \to 0} h \frac{\sin(nh + \frac{h}{2}) - \sin(\frac{h}{2})}{2 \sin \frac{h}{2}} \qquad [From (iii)]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \lim_{n \to 0} \frac{h}{2} \frac{1}{\sin \frac{h}{2}} \left[\frac{1}{\sin \frac{h}{2}} \sin \frac{h}{2} \right]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \lim_{n \to 0} \frac{h}{\sin \frac{h}{2}} \left[\lim_{n \to 0} \left\{ \sin(nh + \frac{h}{2}) - \sin(\frac{h}{2}) \right\} \right]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1. \lim_{n \to 0} \left\{ \sin(nh + \frac{h}{2}) - \sin(\frac{h}{2}) \right\} \qquad [\because \lim_{n \to 0} \frac{\theta}{\sin \theta} = 1]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1. \left\{ \sin(\frac{\pi}{2} + \frac{\theta}{2}) - \sin(\frac{\theta}{2}) \right\} \qquad [\because nh = \frac{\pi}{2}]$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1. \left\{ \sin(\frac{\pi}{2}) - \sin \theta \right\} = 1. (1 - \theta) = 1 \qquad Answer$$

$$= \lim_{n \to \infty} \frac{1}{n} = h$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} = h$$

$$\Rightarrow \ln = 1$$

 $\mathbf{b} = \mathbf{1}$; is the upper limit P_{r_0} .

Also, $\mathbf{b} = \mathbf{a} + \mathbf{nh}$

 $\mathbf{b} = \mathbf{0} + \mathbf{1}$

$$\begin{split} S &= \underset{n \to \infty}{\text{Lim}} \frac{1}{n} \sum_{r=0}^{n} \frac{1}{\left\{1 + \left(\frac{r}{n}\right)^{2}\right\}} \\ &= \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n} \frac{1}{\left\{1 + r^{2} \left(\frac{1}{n}\right)^{2}\right\}} \\ &= \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n} \frac{1}{\left\{1 + r^{2} h^{2}\right\}} \\ S &= \underset{h \to 0}{\text{Lim}} h \sum_{r=0}^{n} \frac{1}{\left\{1 + r^{2} h^{2}\right\}} \\ &= \int_{0}^{1} \frac{dx}{1 + x^{2}} \qquad [h = dx] \\ &= \left[tan^{-1} x\right]_{0}^{1} = tan^{-1} 1 - tan^{-1} 0 = tan^{-1} tan \frac{\pi}{4} - tan^{-1} tan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4} \\ &\therefore \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{n}{r^{2} + n^{2}} = \frac{\pi}{4} \text{ Answer} \end{split}$$

Example 19: Evaluate
$$\lim_{n\to\infty} \sum_{r=1}^{n} \frac{r^3}{r^4 + n^4}$$

Solution: Let, $S = \lim_{n\to\infty} \sum_{r=1}^{n} \frac{r^3}{r^4 + n^4}$

$$\Rightarrow S = \lim_{n\to\infty} \sum_{r=1}^{n} \frac{r^3}{n^4 + r^4}$$

$$\Rightarrow S = \lim_{n\to\infty} \sum_{r=1}^{n} \frac{r^3}{n^4 \left\{1 + \frac{r^4}{n^4}\right\}}$$

$$= \lim_{n\to\infty} \sum_{r=1}^{n} \frac{\frac{r^3}{n^3}}{n\left\{1 + \left(\frac{r}{n}\right)^4\right\}}$$

$$= \lim_{n\to\infty} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^3}{n\left\{1 + \left(\frac{r}{n}\right)^4\right\}}$$

Putting
$$\frac{1}{n} = h$$

 $\Rightarrow nh = 1$
and if $n \to \infty$ then $\frac{1}{n} = h$
 $\Rightarrow h = \frac{1}{n}$
 $\Rightarrow h = \frac{1}{\infty}$
 $\Rightarrow h = 0$
That is $n \to \infty$ then $h \to 0$
We have,
 $\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$
 $\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$
Where, $b-a=nh$
 $\therefore b=a+nh$
Where $x=rh$
 $\Rightarrow x=0+rh$

Also, $\mathbf{b} = \mathbf{a} + \mathbf{nh}$ $\mathbf{b} = \mathbf{0} + \mathbf{1}$ $\mathbf{b} = \mathbf{1}$; is the upper limit

 \Rightarrow x = a + rhThat is a = 0, is the lower limit.

$$S = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^{3}}{\left\{1 + \left(\frac{r}{n}\right)^{4}\right\}}$$

Therefore,

$$S = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^{3}}{\left\{1 + \left(\frac{r}{n}\right)^{4}\right\}}$$

$$S = \lim_{h \to 0} h \sum_{r=1}^{n} \frac{\left(rh\right)^{3}}{\left\{1 + \left(rh\right)^{4}\right\}}$$

$$= \int_{0}^{1} \frac{x^{3} dx}{1 + x^{4}} = \frac{1}{4} \int_{0}^{1} \frac{4x^{3} dx}{1 + x^{4}} = \frac{1}{4} \left[\log(1 + x^{4})\right]_{0}^{1} = \frac{1}{4} \left[\log(1 + 1^{4}) - \log(1 + 0)\right]$$

$$= \frac{1}{4} \left[\log 2 - \log 1\right] = \frac{1}{4} \left[\log 2 - 0\right] S = \frac{1}{4} \log 2 \text{ Answer}$$

Example 20: Evaluate
$$\lim_{n\to\infty} \left[\frac{1}{1+n^3} + \frac{2^2}{2^3+n^3} + \frac{3^2}{3^3+n^3} + \dots + \frac{n^2}{n^3+n^3} \right]$$

Solution: Let
$$S = \lim_{n \to \infty} \left[\frac{1}{1+n^3} + \frac{2^2}{2^3+n^3} + \frac{3^2}{3^3+n^3} + \dots + \frac{n^2}{n^3+n^3} \right]$$

$$\Rightarrow S = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^2}{r^3 + n^3}$$

$$\Rightarrow S = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{2}}{n^{3} + r^{3}} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{2}}{n^{3} \left\{ \frac{n^{3}}{n^{3}} + \frac{r^{3}}{n^{3}} \right\}} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{2}}{n^{3} \left\{ 1 + \frac{r^{3}}{n^{3}} \right\}}$$

$$\Rightarrow S = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{2}}{n^{3} \left\{ 1 + \left(\frac{r}{n}\right)^{3} \right\}} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\frac{r^{2}}{n^{2}}}{n \left\{ 1 + \left(\frac{r}{n}\right)^{3} \right\}}$$
Putting $\frac{1}{n} = h$

$$nh = 1$$

$$S = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^{2}}{n\left\{1 + \left(\frac{r}{n}\right)^{3}\right\}}$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^{3}}{n\left\{1 + \left(\frac{r}{n}\right)^{3}\right\}}$$

Putting
$$\frac{1}{n} = h$$

 $nh = 1$
and if $n \to \infty$ then $\frac{1}{n} = h$
 $h = \frac{1}{n}$
 $h = \frac{1}{\infty}$
 $h = 0$
That is $n \to \infty$ then $h \to 0$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=1}^{n} \frac{\left(\frac{r}{n}\right)^{2}}{n \left\{1 + \left(\frac{r}{n}\right)^{3}\right\}}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=1}^{n} \frac{\frac{1}{n} \left(r \times \frac{1}{n}\right)^{2}}{\left\{1 + \left(r \times \frac{1}{n}\right)^{3}\right\}}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim}} \sum_{r=1}^{n} \frac{h(rh)^{2}}{\left\{1 + (rh)^{3}\right\}}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim}} h \sum_{r=1}^{n} \frac{(rh)^{2}}{\left\{1 + (rh)^{3}\right\}}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim}} h \sum_{r=1}^{n} \frac{(rh)^{2}}{\left\{1 + (rh)^{3}\right\}}$$

$$\Rightarrow S = \int_{0}^{1} \frac{x^{2}}{1 + x^{3}} dx$$

$$\Rightarrow S = \int_{0}^{1} \frac{x^{2}}{1 + x^{3}} dx$$

$$\Rightarrow S = \frac{1}{3} \left[\ln(1 + x^{3})\right]_{0}^{1}$$

$$\Rightarrow S = \frac{1}{3} \left[\ln(1 + 1^{3}) - \ln(1 + 0^{3})\right]$$

$$\Rightarrow S = \frac{1}{3} \left[\ln 2 - \ln 1\right]$$

$$\Rightarrow S = \frac{1}{3} \left[\ln 2 - \ln 1\right]$$

$$\Rightarrow S = \frac{1}{3} \ln 2 \text{ Answer}$$

We have,

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$

Where, $b-a=nh$
 $\therefore b=a+nh$
Where $x=rh$
 $x=0+rh$
 $x=a+rh$
That is $a=0$, is the lower limit.
Also, $b=a+nh$
 $b=0+1$
 $b=1$; is the upper limit

Example 21: Evaluate
$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right]$$

Solution: Let $S = \lim_{n\to\infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right]$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \left[\frac{1}{(n+0)^3} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{n^2}{(n+n)^3} \right]$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{n^2}{(n+r)^3} = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{n^2}{n^3 \left\{ 1 + \frac{r}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{n^2}{n^3 \left\{ 1 + \frac{r}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + \frac{r}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + \frac{r}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \times \frac{1}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \times \frac{1}{n} \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{r=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty}{\text{Lim}} \sum_{n=0}^{n} \frac{1}{n \left\{ 1 + r \right\}^3}$$

$$\Rightarrow S = \underset{n \to \infty$$

Where,
$$x = 1 + rh$$

 $x = a + rh$
 $\therefore a = 1$ is the lower
limit.
Also, $b = a + nh$
 $b = 1 + nh$
 $b = 1 + 1$
 $b = 2$

Putting $\frac{1}{n} = h$

 $h = \frac{1}{\infty}$

and if $n \to \infty$ then $\frac{1}{n} = h$

Example 22: Evaluate
$$\lim_{n\to\infty} \left[\frac{1}{na} + \frac{1}{na+1} + \dots + \frac{1}{nb} \right]$$

Solution: Let $S = \lim_{n\to\infty} \left[\frac{1}{na} + \frac{1}{na+1} + \dots + \frac{1}{nb} \right]$

$$\Rightarrow S = \lim_{n\to\infty} \left[\frac{1}{na+0} + \frac{1}{na+1} + \frac{1}{na+2} + \dots + \frac{1}{nb} \right]$$

$$\Rightarrow S = \lim_{n\to\infty} \sum_{r=0}^{n(b-a)} \frac{1}{na+r}$$

Putting $\frac{1}{n} = h$

$$hh = 1$$

and if $n \to \infty$ then $\frac{1}{n} = h$

$$h = \frac{1}{n}$$

$$\Rightarrow S = \lim_{h\to 0} \sum_{r=0}^{n(b-a)} \frac{1}{(a+rh)}$$

$$\Rightarrow S = \lim_{h\to 0} \sum_{n=0}^{n(b-a)} \frac{1}{(a+rh)}$$

$$\Rightarrow S = \lim_{h\to 0} \sum_{n=0}^{n(b-a)} \frac{1}{(a+rh)}$$

$$\Rightarrow S = \lim_{h\to 0} \sum_{n=0}^{n(b-a)} \frac{1}{(a+rh)}$$

Solution: Let $S = \lim_{n\to \infty} \left[\frac{1^{10} + 2^{10} + 3^{10} + \dots + n^{10}}{n^{11}} \right]$

$$\Rightarrow S = \lim_{n\to \infty} \frac{1}{n} \left[\frac{1^{10} + 2^{10} + 3^{10} + \dots + n^{10}}{n^{10}} \right]$$

$$\Rightarrow S = \lim_{n\to \infty} \frac{1}{n} \left[\frac{1^{10} + 2^{10} + 3^{10} + \dots + n^{10}}{n^{10}} \right]$$

$$\Rightarrow S = \lim_{n\to \infty} \frac{1}{n} \left[\frac{1^{10} + 2^{10} + 3^{10} + \dots + n^{10}}{n^{10}} \right]$$

$$\Rightarrow S = \lim_{n\to \infty} \frac{1}{n} \left[\frac{1^{10} + 2^{10} + 3^{10} + \dots + n^{10}}{n^{10}} \right]$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim } h} \left[1^{10} (h)^{10} + 2^{10} (h)^{10} + 3^{10} (h)^{10} + \dots + n^{10} (h)^{10} \right]$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim } h} \sum_{r=1}^{n} (rh)^{10}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim } h} \sum_{r=1}^{n} (rh)^{10}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim } h} \sum_{r=1}^{n} (rh)^{10}$$

$$\Rightarrow S = \underset{h \to 0}{\text{Lim } h} \sum_{r=1}^{n} (rh)^{10}$$

$$\Rightarrow S = \underset{h \to 0}{\text{I and if } n \to \infty \text{ then } \frac{1}{n} = h}$$

$$\Rightarrow S = \int_{1}^{1} x^{10} dx$$

$$\Rightarrow S = \left[\frac{x^{10+1}}{10+1} \right]_{0}^{1}$$

$$\Rightarrow S = \left[\frac{x^{10+1}}{11} \right]_{0}^{1}$$

$$\Rightarrow S = \left[\frac{x^{11}}{11} \right]_{0}^{1}$$

$$\Rightarrow S = \left[\frac{x^{11}}{11} \right]_{0}^{1}$$

$$\Rightarrow S = \left[\frac{1^{11}}{11} - \frac{0^{11}}{11} \right] = \left[\frac{1^{11}}{11} - 0 \right] = \frac{1^{11}}{11} = \frac{1}{11} \text{ Answer}$$

$$\text{Example 24: Evaluate } \underset{n \to \infty}{\text{Lim } \left[\frac{1}{n+1m} + \frac{1}{n+2m} + \dots + \frac{1}{n+nm} \right]} \right] \text{ Putting } \frac{1}{n} = h$$

$$\text{Nh} = 1$$

$$\Rightarrow S = \left[\frac{1}{n+1m} + \frac{1}{n+2m} + \dots + \frac{1}{n+nm} \right] \text{ Putting } \frac{1}{n} = h$$

$$\text{Nh} = 1$$

We have,

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$$
Where, $b-a=nh$

$$\therefore b = a+nh$$
Where $x = rh$
 $x = 0+rh$
 $x = a+rh$
That is $a = 0$, is the lower limit.
Also, $b = a+nh$
 $b = 0+1$
 $b = 1$; is the upper limit

Example 24: Evaluate
$$\lim_{n\to\infty} \left| \frac{1}{n+1m} + \frac{1}{n+2m} + \dots + \frac{1}{n} \right|$$

Solution: Let $\lim_{n\to\infty} \left[\frac{1}{n+1m} + \frac{1}{n+2m} + \dots + \frac{1}{n+nm} \right]$

$$\Rightarrow S = \lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n+rm}$$

$$\Rightarrow S = \lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n\left(1+\frac{rm}{n}\right)}$$

Putting
$$\frac{1}{n} = h$$

 $nh = 1$
and if $n \to \infty$ then $\frac{1}{n} = h$
 $h = \frac{1}{n}$
 $h = 0$
That is $n \to \infty$ then $h \to 0$

We have, $\int_{a}^{b} f(x) dx = \lim_{h \to 0} \sum_{r=0}^{n-1} h f(a+rh)$ Where, $\mathbf{b} - \mathbf{a} = \mathbf{nh}$ \therefore b = a + nh Where $\mathbf{x} = \mathbf{rh}$ x = 0 + rhx = a + rhThat is $\mathbf{a} = \mathbf{0}$, is the lower limit. Also, $\mathbf{b} = \mathbf{a} + \mathbf{nh}$ b = 0 + 1 $\mathbf{b} = \mathbf{1}$; is the upper limit

31

$$\Rightarrow S = \frac{1}{m} [\ln(1+mx)]_0^1$$

$$\Rightarrow S = \frac{1}{m} [\ln(1+m.1) - \ln(1+m.0)]$$

$$\Rightarrow S = \frac{1}{m} [\ln(1+m) - \ln(1)]$$

$$\Rightarrow S = \frac{1}{m} [\ln(1+m) - 0]$$

$$\Rightarrow S = \frac{1}{m} [\ln(1+m)] \quad Answer$$