Lecture 2. Amortized Analysis

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing
Clemson University
Spring, 2016

Useful Analysis Technique: Think about an Algorithm from the Perspective of a Data Element...

- Figure out how much work / running time is spent on a single generic element of data during the course of the algorithm.
- Add this up to get the total running time.
 (compared to adding up the time spent on each "operation", summed over each operation in chronological order)

Useful Analysis Technique: Think about an Algorithm from the Perspective of a Data Element...

Steps Taken by Algorithm (in chronological order...)

		•		→		
	Elem 1	Elem 2	Elem 3	Elem 4	Elem 5	
Step 1		1	1			"Sv
Step 2						
Step 3				1		"М
Step 4						
Step 5	1	1	1	1	1	"Co a n
		1	1	1		un

Elements of Data

"Swap elements 2 and 3"

'Modify element 4"

"Copy elements into a new array"

Time/work done to each element at each major "step" of our algorithm's execution

(that is, sum the columns first, not the rows...)

3

Example: Domination Radius

- Given the heights of N individuals standing in a line.
- Goal: find the domination radius of each individual.

Example: Domination Radius

- Given the heights of N individuals standing in a line.
- Goal: find the domination radius of each individual.
- Simple algorithm: from each element, scan left until blocked, then scan right until blocked.

Example: Domination Radius

- Given the heights of N individuals standing in a line.
- **Goal:** find the <u>domination radius</u> of each individual.
- Simple algorithm: from each element, scan left until blocked, then scan right until blocked. (O(N²) worst-case)

Example: Domination Radius

- Given the heights of N individuals standing in a line.
- Goal: find the domination radius of each individual.
- Simple algorithm: from each element, scan left until blocked, then scan right until blocked. (O(N²) worst-case)
- Refinement: from each element, scan left and right simultaneously until blocked.

Example: Domination Radius

- Given the heights of N individuals standing in a line.
- **Goal:** find the <u>domination radius</u> of each individual.
- Simple algorithm: from each element, scan left until blocked, then scan right until blocked. (O(N²) worst-case)
- Refinement: from each element, scan left and right simultaneously until blocked. (O(N log N) time!)
- O(N) is even possible, using fancier data structures...

Re-Sizing Memory Blocks

- Since memory blocks often cannot expand after allocation, what do we do when a memory block fills up?
- For example, suppose we allocate 100 words of memory space for a stack (implemented as an array), but then realize we have more than 100 elements to push onto the stack!

(yes, use of a linked list would have solved this problem, but suppose we really want to use arrays instead...)

9

Memory Allocation : Successive Doubling

- A common technique for block expansion: whenever our current block fills up, allocate a new block of twice its size and transfer the contents to the new block.
- Unfortunately, now some of our push operations will be quite slow!
 - Most push operations take only O(1) time.
 - However, a push operation resulting in an expansion (and a copy of the n elements currently in the stack) will take Θ(n) time.
- This motivates the importance of amortized analysis...

How to Describe the Running Time of Push...?

- Push has a somewhat non-uniform running time profile:
 - O(1) almost always
 - Except $\Theta(N)$ every now and then.
- But just saying the running time is "Θ(N) in the worst case" doesn't tell the whole story...
 - Doesn't do the structure justice.
 - People might be scared to use it for large input sizes...

11

How Expensive is Your Car to Maintain...?

Jan: \$10 Feb: \$10

_ _ _

Nov: \$10

Dec: \$130 = \$10 + yearly \$120 tune-up

 Same problem: saying it's "\$130/month in the worst case" doesn't tell the complete story...

Amortization of Costs

Actual Cost

Amortized Cost

Jan: \$10

Jan: \$20

Feb: \$10

Feb: \$20

. . .

Nov: \$10

Nov: \$20

Dec: \$130

Dec: \$20

- So our cost is "\$20/month, amortized".
- This is a simpler, more accurate description of our cost structure.
- Compare with actually paying \$20/month...

12

Back to Push...

· How much does each push actually cost?

Op#:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Insert:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Сору:		1	2		4				8								16		
Total:	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	
Cumulative:	1	3	6	7	12	13	14	15	24	25	26	27	28	29	30	31	48	49	

Back to Push...

How much does each push actually cost?

Op#:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Insert:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Сору:		1	2		4				8								16		
Total:	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	
Cumulative:	1	3	6	7	12	13	14	15	24	25	26	27	28	29	30	31	48	49	

• What about if we charge ourselves 3 units of work per operation instead...?

Total:	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Cumulative:	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	

15

Back to Push...

· How much does each push actually cost?

																		- 1	
Op#:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Insert:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Сору:		1	2		4				8								16		
Total:	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	
Cumulative:	1	3	6	7	12	13	14	15	24	25	26	27	28	29	30	31	48	49	

 What about if we charge ourselves 3 units of work per operation instead…?

Total:	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Cumulative:	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	

"True" cumulative cost after any sequence of k operations is upper bounded by "fictitious" cumulative cost of 3k...

					Ba	ас	k 1	to	P	us	sh								
• Ho	W I	mu	ıch	do	oes	s e	ac	h p	us	sh a	act	ual	lly	СО	st?)		k	!
Op#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18															18				
Insert:	nsert: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															1			
Copy: 1 2 4 8 16																			
Total:	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	
Cumulative:	1	3	6	7	12	13	14	15	24	25	26	27	28	29	30	31	48	49	
Wh per Total: Cumulative:								_		3 30	3 33	3 36	3 39	3 42	3 45	3 48	3 51	3 54	
ounidative.	13	13	13	12		10							1	otal	ins	ert c	ost	= k	

Back to Push...

How much does each push actually cost?

Op#:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Insert:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Сору:		1	2		4				8								16		
Total:	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	
Cumulative:	1	3	6	7	12	13	14	15	24	25	26	27	28	29	30	31	48	49	

 What about if we charge ourselves 3 units of work per operation instead...?

Total:	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Cumulative:	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	

 So how different is our version of push from a version that takes 3 units in the worst case?

Amortized Analysis

- Any sequence of k pushes takes O(k) worst-case time, so we say that push takes O(1) amortized time.
- "On average", each individual push therefore takes O(1) time.
- In general, an operation runs in O(f(n))
 amortized time if any sequence of k such
 operations runs in O(k f(n)) time.

21

Amortized Analysis: Motivation

- Amortized analysis is an ideal way to characterize the worst-case running time of operations with highly non-uniform performance.
- It is still <u>worst-case</u> analysis, just averaged over an arbitrary sequence of operations.
- It gives us a much clearer picture of the true performance of a data structure that more faithfully describes the true performance.
 - E.g., "O(N) worst case vs. O(1) amortized".

Amortized Analysis: Motivation

- Suppose we have 2 implementations of a data structure to choose from:
 - A: O(log n) worst-case time / operation.
 - B: O(log n) amortized time / operation.
- There is <u>no difference</u> if we use either A or B as part of a larger algorithm. For example, if our algorithm makes n calls to the data structure, the running time is O(n log n) in either case.
- The choice between A and B only matters in a "real-time" setting when the response time of an individual operation is important.

23

Generalizing to Multiple Operations

- We say an operation A requires O(f(n))
 amortized time if any sequence of k
 invocations of A requires O(k f(n)) time in
 the worst case.
- We say operations A and B have amortized running times of O(f_A(n)) and O(f_B(n)) if any sequence containing k_A invocations of A and k_B invocations of B requires O(k_Af_A(n) + k_Bf_B(n)) time in the worst case.
- And so on, for 3 or more operations...

Aggregate Analysis: A Simple, but Often Limited, Method for Amortized Analysis

- Compute the worst-case running time for an arbitrary sequence of k operations, then divide by k.
- Unfortunately, it is often hard to bound the running time of an arbitrary sequence of k operations (especially if the operations are of several types)...

25

Recall our Initial Discussion: Think about an Algorithm from the Perspective of a Data Element...

- Figure out how much work / running time is spent on a single generic element of data during the course of the algorithm.
- · Add this up to get the total running time.
- In amortized analysis, this is often called the "accounting method"...

Accounting Method Analysis: Example Using Memory Re-Sizing

- Charge 3 units (i.e., O(1) amortized time) for each push operation.
 - 1 unit for the immediate *push*.
 - "\$2" credit for future memory expansions.
- Charge 2 units per pop (1 unit for the immediate operation, "\$1" credit)

Make the New Elements Pay!

- When it comes time to expand our buffer from size n to 2n (at a cost of n), exactly n/2 of the elements in our current buffer have been newly-added since the last memory expansion.
- All these elements have \$2 credit on them.
- So we have \$n worth of credit enough to pay for the current memory expansion!
- After expansion, no credit remains (subsequently-added items will contribute toward next expansion).

Example: The Min-Queue

- Using either a linked list or a (circular) array, it is easy to implement a FIFO queue supporting the insert and delete operations both in O(1) worstcase time.
- Suppose that we also want to support a find-min operation, which returns the value of the minimum element currently present in the queue.
- It is possible to implement a "min-queue" supporting insert, delete, and find-min all in O(1) worst-case time?

29

The Min-Queue as a Pair of "Back-to-Back" Min-Stacks Current Min Current Min Deleted elements popped from this side This side is growing... ... and this side is shrinking.

Expensive (but Rare) Operations

When yellow stack becomes empty, spend O(n) time and transfer the contents of blue stack into the yellow stack.

Worst-case running time for delete: O(n)

31

Amortized analysis

Charge insert 2 units of time: 1 for the push, and \$1 in credit for each new element.

Final running times:

- Insert and Delete: O(1) amortized time
- Find-Min: O(1) worst-case time

Recap: Block Expansion and Contraction

- The approach:
 - Expand buffer (to size 2m) if n = m.
 - Contract buffer (to size m/2) if n < m/4.
 - This ensures that $m/4 \le n \le m$.
- The accounting method shows that push and pop run in only O(1) amortized time.
 - When we expand, we need m units of credit.
 - When we contract, we need m/4 units of credit.

33

Potential Functions

- A potential function provides a somewhat more formulaic way to perform amortized analysis.
 (although It's really just another way of looking at the accounting method)
- Express total amount of "credit" present in our data structure using a non-negative potential function of the state of our data structure.
 - Example: for the memory allocation problem, our

potential function is:
$$\phi = \begin{cases} 2n - m & \text{if } n \ge m/2 \\ m/2 - n & \text{if } n < m/2 \end{cases}$$

- If n = m/2, then $\Phi = 0$. No credit right after expansion or contraction.
- If n = m, then $\Phi = m$. Just enough credit to expand!
- If n = m/4, then $\Phi = m/4$. Just enough credit to contract!

Potential Functions

- Required properties of a potential function:
 - It should start out initially at zero (no credit initially).
 - It should be nonnegative (can't go into "debt").
- Some notation:
 - Let c₁, c₂, ..., c_k denote the actual cost (running time) of each of k successive invocations of some operation.
 - Let ϕ_j denote the potential function value right after the jth invocation.
- The amortized cost a_i of the jth operation is now:

$$a_{j} = \underbrace{c_{j}}_{\text{Actual}} + \underbrace{(\phi_{j} - \phi_{j-1})}_{\text{Change in potential}}$$

$$\underbrace{\text{Change in potential}}_{\text{(i.e., total credit added or consumed)}}$$

35

Potential Functions: Example

$$\mathbf{a}_{\mathbf{j}} = \underbrace{\mathbf{c}_{\mathbf{j}}}_{\mathbf{Actual}} + \underbrace{\left(\mathbf{\phi}_{\mathbf{j}} - \mathbf{\phi}_{\mathbf{j}-1}\right)}_{\mathbf{Change in potential}} \qquad \phi = \begin{cases} 2n - m & \text{if } n \geq m/2 \\ m/2 - n & \text{if } n < m/2 \end{cases}$$

- Amortized cost of push:
 - Without expansion: $a_j = c_j + (\phi_j \phi_{j-1}) \le 1 + 2 = 3$. (contributes 2 units of potential)
 - With expansion: $a_j = c_j + (\phi_j \phi_{j-1}) = 1 + m + (-m) = 1$. (draws m units of potential to pay for expansion)
- Amortized cost of pop:
 - Without contraction: $a_j = c_j + (\phi_j \phi_{j-1}) \le 1 + 1 = 2$. (contributes 1 unit of potential)
 - With contraction: $a_j = c_j + (\phi_j \phi_{j-1}) = 1 + m/4 + (-m/4) = 1$. (draws m/4 units of potential to pay for contraction).

Amortized Running Times as Upper Bounds

Recall:
$$a_j = c_j + \phi_j - \phi_{j-1}$$

Actual Change in potential cost (i.e., total credit added or consumed)

Over a sequence of k operations:

$$\sum_{i} a_{i} = \sum_{j} (c_{j} + \phi_{j} - \phi_{j-1}) = (\sum_{j} c_{j}) + (\sum_{j} \phi_{k} - \phi_{0})^{0} \ge \sum_{j} c_{j}$$

 Therefore, over any sequence of operations, the total amortized running time gives us an upper bound on the total actual running time (as we expected!)

37

Designing and Using Potential Functions

- Some potential functions look substantially more complicated than the ones we've seen so far.
- Although it is more or less equivalent to the accounting method, potential functions give us a widely-accepted "formulaic" means of performing amortized analysis.
 - State potential function.
 - Show that it's zero initially and always nonnegative.
 (and should only depend on *current* state)
 - Then use $a_j = c_j + \phi_j \phi_{j-1}$ to compute the amortized running time of each operation.

Example: The Min-Queue

Charge insert 2 units of time: 1 for the push, and \$1 in credit for each new element.

Final running times:

- Insert and Delete: O(1) amortized time
- Find-Min: O(1) worst-case time