AND 2.跳表指针 a<b 若 a 有跳表指针 则比较 a 的跳表指针与 b 否则直接跳到 a 的下一位 跳表指针设置:高内聚低耦合 索引存储: 顺序 简单,二分查找慢 哈希 快,可能冲突 B+树 相对快,维护复杂 Trie 树 快,用空间换时间近似完全 m 叉树

Lec5
用户在查询后标记相关/不相关,然后迭代更新查询,以获得用户在查询后标记相关/不相关,然后迭代更新查询,以获得相关性及遗流程:
用户提出查询 query 对于返回的文档,用户标出相关与不相关的部分系统提用户反馈,获得用户信息。需求更为准确的描述。
3.根相关性信息,更新查询条件,如为不同词项添加不同均。其于新查询条件中添加新的词项。
以基于新查询条件,获取新的结果文档并再次提交用户进行评估

Rocchio 算法动机: 使得查询尽可能离与之相关的文档更近,离与之不相关的文 档更远

Rocchio 算法: new query vector= α *original query vector+ β *positive feedback vector- γ *negative feedback vector Typically, $\beta > \gamma$ because positive feedback is more important feedback vector 表示所有反馈回来的文档的向量平均

情境感知的查询理解: 动机: 用户查询存在歧义、用语精简,缺乏精确性,借助情 境信息协助新用户意图 情境信息: 所有与人机交互相关,用于区分标定当前特殊场 景的信息,例如搜索的上下文

Lec6 向量空间模型及前置方案 Jaccard 系数 两个集合 A. B. Jaccard(A,B) = |A∩B| /|A∪B| 未考虑词项频率与文档长度,罕见词信息量更大 词项频率下 ft(d)、指此项;在立脉;上 河通频率 行 Tí(t,d),指此项 t 在文档 d 中的出现次数 相关性与频率不是线性相关,为了抑制数量级影响,引入对

相关性与频率不定线性相关、为了抑制数重效影响。引入对对数词数 (Htt)。由 1 + log 10th(td) if tf(t,d)>0 else 0 W 稍重词项 在文档 d 中的出现频率 文档频率 DF. Df(t)指出影词页 bb 文档数量 (df) 表示规则 在开有文档中的年见度 (df) 是 10g 10 (N/df(t)) W 是 10g 10 (N/df(t)) W 1d 用于最重文器 d 与词项 t 的相关程度 中国 空间模型 (SM 4年 个支档和定询和表达为 M 维度的向量、M 表示词项总量、其中每一维度的循等于该词项在此文档/重询中的 t-ldf 值。用实弦相似度数量向量的相似程度 cos(q,d) = q · d/ql*id值越大越相似 优点 简洁言观。支持条种不同度量重权重方式、实用效果

(風迷人)とはいい 佐点: 简洁直观,支持多种不同度重乳な生パン。 不错 峡点: 缺乏语义层面的理解和匹配,同时依赖 tf-idf 值也可能 造成干扰 .越怕似 简洁直观,支持多种不同度量或权重方式,实用效果

Hits 算法核心概念:
・权威(Authority)网页与枢纽(Hub)网页的区分
・权威网、I 据某个领域或某个话题相关的高质量网页
・中心网页,类似中介,指向了很多高质量的权威网页
HITS 的自即在海量网页中找到并区分这些与用户查询主
题相关的高。质量"Authority"与"Hub"网页、尤其是

題相关的高 质量 "Authority"与 "Hub" 网页,尤其是Authority, 而 (基本假设 : 好的 Authority 会被很多好的 Hub 指向 基本假设 1: 好的 Hub 会被很多好的 Hub 指向 基本假设 2: 好的 Hub 会指何很多个好的 Authority 枢纽值 $h(p) = \sum a(i)$ 因此,在 HITS 算法中,每个同分。需要计算两个值 计算过程 : 假定邻接矩阵为 M,Authority 向量为 a,Hub 向量为 h 则有如下迭代式: $a_{k+1} = M h_k, h_{k+1} = M a_{k+1}$,其中, a_0 , b_0 为 Authority/Hub 向量的初始值,可设为全 1向,每一步注意归一化

ת点: 1.更好地描述与联网组合特点 2.王鵬相夫、因此可以 壁油用于网页排序 峡点: 1.需要在线计算。时间代价较大 2.对链接结构变化敏 感、且依然可能受到、链接作弊、的影响 其他衍生算法、个性化 PageRank(为了体现用户偏好)主 麗敏感 PageRank(个性化代价太大、为了減少计算)Hilltop 算法(選発 PageRank(を滥用)

和假正率/吳报率【FP/(FP+TN]】作为两条轴线。 •通过选定不同的相关性阈值得到不同的真正率-假正率点并连接线。 ·对角线表示区分能力为。即随机猜测,在对角线上端越远,效果越好,低于对角线的结果无意义

基于P-R 曲线或 ROC 曲线判别算法好坏 • 如果线 A 将线 B 完全包柱,显然线 A 对应的算法效果更好 • 如果网条线发生重合,则可依据以下规则判别。 • 计算 AUC(曲线下面积),更高者效果更好 • 当使用 P-R 邮货中间,可使用 Precision = Recall 的点,值 越高越好

越高越好
P-R和ROC比较
- ROC 曲线栗原正负样例,更为全面,而 P-R 曲线则只考虑正例
- 正负样本比例失调时, P-R 曲线更合适。当负样本比重过高时,负例的数目众多致使 F-PR 的增长不明显,导致 ROC 曲线呈现一个过分乐观的效果估计,从而难以体现出性能的差异性

如果相关文档数小于 N, P@N 的 理论上限必定小于 1 上限必定小士 1 ·返回结果有限,Recall@N 甚至其理论上限往往都远小

R-Precision: N 取相关文档总数 的 P@N 有序结果情况下,变化 N 产生

相关度分级 1.累计增益(Cumulative Gain, CG) - 用于纯量位于位置 1 到 p 的检索结果的相关度之和。 $CG_p = \sum_{i=1}^n rel_i DCG_p = rel_i + \sum_{i=2}^n rel_i log2(i)$ 2.折损累计增益 Discounted Cumulative Gain, DCG)基本思想。若搜索算法把相关度高的文档排在后面,则应该

基本思想,若搜索算法把相关度高的文档排在后面,则应该分形列。 DCG 与具体查询和结果列表的长度 p 有关 DCG 与具体查询和结果列表的长度 p 有关 目一化折损累计增益(Normalized DCG,NDCG) 基本思路,将 DCG 除以完美结果下得到的理想结果,IDCG (ideal DCG) 即,NDCG = DCG / IDCG 多样性的两种倒置方式。 同志模型,只计算女相与。 同志模型,只计算女相与。 是它3 知识阻碍 后思抽取。从话料中抽取指定的事件,事实等信息,形成结 份比的数据。由文本由在即由自愿还要的事实信息,任此无信

信息押款: 从语科叶姆取镇定时争杆、争头寿信息、形况与 价格化的数据 信息抽取: 从文本中获取用户概求趣的事实信息。借助于自 统当言处理技术,通常领域相关(借助领域知识辅助相取) 信。同年表示,通常领域无关。 通常现在无关。 "如果文学,确定关系, 文学体、即参名实体,指文本中的基本构成块,如人、机构 学文体、即参名实体,指文本中的基本构成块,如人、机构

} 属性:实体的特征,如人的年龄、机构的类型等 关系:实体之间存在的联系,也称事实,如公司和地址之

• 大系:头体之间仔在的联系,也称事头 间的位置关系 • 事件:实体的行为或实体参与的活动 5.类基本的信息抽取任务

◇大雪中町店忌畑取仕券 命名实体 NE (实体抽取) , 模板元素 TE (属性抽取) , 共 措夫系 CR, 模板关系 TR (关系抽取) , 场景模板 ST (事件 抽取)

知识图谱的优点 知识图谱至少可从以下三个层面提升搜索的效果。 · 找到虚想要的信息。将信息直接呈现,无需用户劳动 · 提供最全面的摘要,对搜索对象进行总结。提供更完整的信息和关联。 · 让搜索更有深度和广度· 构建完整知识体系,使用户获得 意想不到的新发现 到识图谱的基点之间的边组成,结点表示概念(或实体) 边表示关系(或属性)数学表现为一个有问图,点和边组成 知识图谱的基本单位:三元组(实体· 关系、实体)

利用知识图谱提高推荐系统的多样性,可解释性,推荐性能(其子及及推荐?) (金丁哈佗推存?) 事理图谱,描述逻辑社会、研究对象是谓词性事件及其内外 联系(区别),借助事理逻辑链接形成对于事件的推理(应 用) 用) 多模态图谱,实体和属性可能是多模态的(区别),表示与 整合多模态知识(应用)

命名实体识别(NER)识别出文本中的人名,地名等专有名 森、和有意义的时间,日期等数量短语等,并加以归类 两个子任务;升则实体边界。2 判别实体类型 与分词的难点非常相似,新实体,歧义,构成结构复杂,类 判分

注账时间 识别方法 : 基于词典 · 优点: 方法简单快速,与具体语境无关,容易部署和更新 点。方法简单快速,与然将用力之之。 需更新词典) 点,难以覆盖全部实体,构建维护词典代价大,难以处 。 规则(以模式和字符串相匹配为主要手段) : 当提取的规则能较精确地反映语言现象时,性能较

好

- 缺点。1. 規則依赖具体语言、领域和文本风格 2. 代价太大、系统建设周期长、移植性差。需要建立不同领域知识库 法于统计 5. 上,统计是一步抽象为序列标注问题

- 四类标注。8. [询的升始]。 M (词的中间)。 E (词的结束)。 S (字节)。

東)、S(卑字词) 分支一、基子分类的命名实体识别方法 ・将 NEFR 视作一个多分类问题。通过设计特征训练分类器的 方法加以解学 分支二。基于序列模型的命名实体识别方法 ·与分词中的严列标注方法思路类似。区别在于标注的不同

相关的问题:实体对齐(多词一义,如药物不同名称),实体消歧(一词多义,如苹果) Lec10 关系抽取 概念: 从文本中识别出两个实体(或多个实体)之间存在的 事实上的关系 意义: 搜索引擎发现和关联知识的重要渠道,知识库构建与 知识关联的基础性手段,是支持问答系统:推荐系统等应用 的有力工具 的有力工祭 关系抽取方法 1.基于规则 2.基于模式 3.基于机器学习 基于规则方法的优缺点:

 针对特定问题可设置针对性规则,但可能比较困难
 需要专家和知识库,代价大

 特定领域效果好,移植性差

基于模式的关系抽取。 首先由种子关系生成关系模式,然后基于此抽取新关系,从 中选择可信度高的作为新种子,不断迭代至无新关系或模式 代表方法 1: DIPRE, 大致思路如上 基本元素: 元组, 如<Foundation, Isaac Asimov> — <Title,

Author> 模式、如 ?x. by ?y 的形式(可表示 *itile* by *author*) 基本假设、元组广泛存在各网页中,各部分往往位置接近, 表示时,存在重复 *模式

代表性方法 2: Snowball 在于对 DIPRE 算法的提升 • 仅信任支持度和置信度较高的模式,从而保证模式质量 支持度(Support) 期清足每个模式的元组的数量,删除少 于信定数量元组支持的模式 置信度(Confidence),符合该模式的元组,确实符合相应 关系的概率

基于模式方法的优缺点 • 适合某种特定具体关系抽取,如校长、首都关系。 • 基于字面匹配,没有引入深层信息,如词性、句法、语义 等。 ・移值性差,必须为每一个具体的关系生成自己的识别模式。

Lec. 11 数据准备 数据挖掘 (Data Mining) 基本含义、从海量数据中提取或挖掘潜在的知识和规律,用 于支持当前的判断或未来的决策 过程、数据传令,数据建模,知识表示 目的,揭示满足以下条件模式或模型:有效性,实用性,解 释性、意外性

数据挖掘方法 分类。给定一组有标签记录作为训练集。目标在于训练一个 分类。给定一组有标签记录作为训练集。目标在于训练一个 分合适的模型,使其能够有效地区分无标签的新数据。将其归 为合适的类别,有监督学习,面向预定义的类别。[6c12 集选,作为无监督学习的代表,没有预定义的类别。而是 借助相似性度量自动生成 [ec13 关联规则:事务型数据是一类特殊的数据记录。一条记录在 往对应者一个项目的集合(无序),用户需要的信息往往并 非础立存在。而是做此关键

發點與处理。數据與無问题:內點內本時內 換數據整合:将兩个或多个对象合并成为单个对象,目的,與 并多个数据源的數据到號一格式下,解決部分數据重更,动 机:减少空间和时间开支,对象群厲性比个体更稳定,问题: 可能会有不同限性名称,单位尺度,统计方式,统计不一数据果样。选择一部分数据对象的子集进行分析,动机,减 过采取小规模样本,起到计位效果同时降低大规模数据开支, 在要求精确的场合,小规模样本初步分析了解数据特性,也 是看效的

※何卿印》の日, 3.225... 效的。 : 采样缺乏代表性将影响对原数据集的还原程度,产生

归约会导致损失 数据离散将连续属性变换为分类属性 最基本:二元化,目的在于将连续或离散属性转化为一个或

最大月血質学 37分 元 大東樹(Cleckiston Tree) 过程。 地域、東側、基取有較强区分能力的特征 生成決策例、基下选定特征逐步生成完整的決策材 大東樹剛枝。 向化部分柱,避免过机合 信息熵,無配 Ent(D) = $\frac{17}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

指数 (9) 剪枝防止过拟合和欠拟合。 预剪枝:生成过程中剪枝,判断划分后的节点能否提高泛化 能力(验证集) 后剪枝:生成后自下而上,将节点换为叶子后能否提高泛化 性能(验证集)

最近邻分类 长最近邻分类, 输入:训练样本集合与距离度量和 K值,用于限定最近邻的 | (1) | (1 以 巫 即 即 剛 內 是大化 借助 还 格朗 日对 惯性 通过来解对 個 同 國力以 求解, 具体而言, 求解方式可采用序列最小优化算法(SMO)进行 求解

具体而言,求解方式可采用序列最小优化算法(SMO)进行 求解 核函数,某些样本在低维空间时线性不可分,通过非线性映 特将其映射到高维空间的时候则线性可分,核函数的自数计 并将海维空间下向地区通道转化为低维空间下的核函数计 法或混合使用排选核函数 "锁间隔间题" 引入"软间隔" 允许少数样本不满足超平面约 束。防止过拟合或无法确定超平面或核函数问题 不要分类的 第一次,被一个线 等分到另一个线, 等分别只后的代价。最终优化目标由原先的准确。 写为加为集(2) 排样方法。基于采样的方法,通过改变样本分 有未现的表现的。

K 收值:太小谷易受噪声十扰,太人可能寻取错误涵盖其他 类别样本 消极学习,不需要模型但分类开销大;受噪声影响大;需要 慎重选择处理数据

ο 支持在个面,使制度的 (1) 支持在个面,使制度的 (1) 支持 (1) 支持

常见方法: 将聚类方法分为层次的(嵌套)与划分的 (不重复)两种

有类型 (II) / 成安级 (K) / 人 (A) / 输入: 样本集 $D = \{x_1, x_2, ..., x_m\}$; 聚类维数 k.

 $SSE = \sum_{i=1}^{K} \sum_{x \in C} dist^{2}(m_{i}, x)$ F) 二分 K 均值聚类: 为了得到 K 个簇, 先得到一个大簇; 然后不断选择所有簇其中一个使用 2-均值分裂, 每次 5 型分一个新簇, 可以选样本数较大的簇或 SSE 软富的簇, 直到分裂到指定数的簇为止。受初始中心影响小, 因为是逐步求精过程

过程 理空簇:以样本为初始中心,或选择最远样本新生一 信,或求分量大 SSE 的簇 或求分量大 SSE 的簇 时,增量更新,某个样本重新聚类的就更新中心,好处是无空 簇 (但是导致欠序依赖和大开支) 局限性:1) 歲不同規模、密度、不规则形状情况下效果 套 2) 容易受到离群点干扰,可以采用偏大的 K, 然后进行台并

2. 层次聚类 A) 优势, 不需要预设簇的数量, 结果往往可以对应到具有一定意义的分类学目录上 B) 两种, 凝聚式聚类 (自下而上) 分裂式聚类 (自上而下) 两年, 海豚式聚类 (自下而上) 分裂式聚类 (自上而下) 流线, 后者却从包含所有样本视作个体簇。逐步合并是接近的一 金簇, 后者却从包含所有样本的完整簇开始, 每一步分裂,

簇 D) 凝聚式流程: 合并邻近度最高的两个簇。 基于更新的质重新计算邻近度,更新邻近度矩阵 取决于邻近度定义 单链(SI、MIN),指不同簇最近的点之间的邻近度。擅长 处理非椭圆形状的簇,但对噪声比较敏感 < 生 (CI MAV) 墙不同簇最近的点之间的邻近度。对噪

, 点:非核心点,但是处于稠密区域边界内/上的点 点:处于稀疏区域的点

用两个同量之间的余弦相似度(Lec6 有) 性点: 每个人的推荐过程相互独立,不需要其他用户的数据 可以为具有独特偏好的用户进行有效推荐,不受大众倾向性 可以推荐新物品或非热门物品 推荐结果有着较好的可解释性,可列举内容特征作为推荐的 佐姆

基于协同过滤推荐。 基于协同过滤推荐。 基本,实际应用方案只基于单一用户记录向该用户进行推荐,实际的推荐方案只基于单一用户的浏览。行为对当前用户有借鉴作 用,协同过滤的思想在于基于矩阵的其他行,协助填补本行 多于内存 基于内存柱等,找到相似用户并基于历史行为推荐 基于共同评分的物品,衡量用户之间的相似性

基于物品,和用户基本一致,但是预测分时不用加平均实践中往往基于物品的推荐效果更好:属性单一,受欢迎理相相对固定 优点,可适用任愿种类;缺点;冷启动、稀疏性、热度偏差 份启动解决方法:接供非个性化推荐收集数据、借助他处信

$$pred(a, p) = \bar{r}_a + \frac{\sum_{b \in ndglbors(n)} sim(a, b) \cdot (r_{b, p} - \bar{r}_b)}{\sum_{b \in ndglbors(s)} sim(a, b)}$$

 $sim(a,b) = \frac{\sum_{p \in product(P)} (r_{a,p} - \bar{r_a})(r_{b,p} - \bar{r_b})}{\sqrt{\sum_{p \in product(P)} (r_{a,p} - \bar{r_a})^2} \sqrt{\sum_{p \in product(P)} (r_{b,p} - \bar{r_b})^2}}$

Lec15.社会网络 格社会网络排象表示为图结构 **节点用于表示网络中的实体。如社会网络中的人 ·边用于描述网络中的关系。如人们之间的社交关系 网络中的边可能有问,也可能无向,各自表达不同含义 邻居集合 N(y),度 dV

真实网络中的节点度数往往符合幂律分布:少数节点拥有大 多数的边 连通性(强、双向可达) 连通组件,即一个连通的子图

节点角色。
1. 意见领袖。2. "结构洞",为组织引入外部的信息
一、意见领袖。2. "结构洞",为组织引入外部的信息
一种结构调判定方法,如果移除某节点会使网络变成多个连
通组件,则该节点为一个结构调
另一种留置方式,接集系数
另一个的影准系数为,它的任意两个好友也互为好友的
概率(比重)
聚集系数越低,该节点作为中介的作用越大
结构洞意义、各方沟通的桥梁,相应成为了,权力"

MM	服体测化 医环状斑
tangerine OR trees	363465
marmalade OR skies	379571
kaleidoscope OR eyes	300321

一个中间结果表(如下所示,不存在跳表指针)进行合并操作。

1.2 考虑利用如下带有跳表指针的倒排记录表

3 5 89 95 97 99 100 101 采用基下眼来指针的的排形记录来合并算法,请问: 1) 即未指针头际发生跳转的次数是多少? 2) 当两个来进行合并时,侧排汇录之间的比较次数是多少? 3) 如果不使用跳来指针,那么倒排记录之间的比较次数是多少?

1 (24--75)

N
1) 计算分别以属性 User interest 和 User occupation 划分时的信息增益。构建决策树将会选择哪个属性?
2) 计算分别以属性 User interest 和 User occupation 划分时的信间;指数,种建决策树将会选择哪个属性?

User interest	User occupation	Clic
Tech	Professional	1
Fashion	Student	0
Fashion	Professional	0
Sports	Student	0
Tech	Student	1
Tech	Retired	0
Sports	Professional	1

1) 计算全体熵:

 $Ent(D) = -rac{3}{7}\log_2(rac{3}{7}) - rac{4}{7}\log_2(rac{4}{7}) = 0.985$ 以 interest 划分时,增益为 0.306

$$\sum_v \frac{|D^v|}{|D|} Ent(D^v) = \frac{3}{7} (-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3})) + \frac{2}{7} * 0 + \frac{2}{7} = 0.679$$

以 occupation 划分时,增益为 0.198

$$\sum_{v} \frac{|D^v|}{|D|} Ent(D^v) = \frac{3}{7} (-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3})) * 2 = 0.787$$

选择信息增益最大的特征,即 interest 2)基尼指数的定义:假设集合 D 共有 K 个类别,则集合 D 的基尼指数为:

$$Gini(D)=1-\sum_{k=1}^K (rac{\mid C_k\mid}{\mid D\mid})^2$$
 假设以特征 A.把數据集 D.划分成 N 个子集,则针对特征 A.集合 D 的基层指数为

$$Gini(D,A) = \sum_{i=1}^{N} \frac{|D_i|}{|D|} Gini(D_i)$$

选择基尼指数最小的特征,即 interest。选择信息增益最大的, 选择基尼指数最小的

$$Gini = \frac{3}{7}(1 - \frac{1}{9} - \frac{4}{9}) + \frac{2}{7}(1 - \frac{1}{4} - \frac{1}{4}) = 0.333$$

$$Gini = \frac{3}{7}(1 - \frac{1}{9} - \frac{4}{9}) * 2 = 0.381$$

4) 采用基于用户的评分预测分值(阿科采用之类证例),预测用户 5 对字电影 2 物資效 并与课件中始出的基于创趣的评分标准是行比较。 5) 针对用户 5对于电影 1的等分,采用基于用户的评分标则方法,比较完备数从 2 到 5 对 于预测结果的影响,并简述选择合适应价数的思路。 以上于最高级等的响,并简述选择合适应价数的思路。

第一步: 计算各用户的平均打分。

 $\bar{r}_1 = (1+2+1)/3 = 1.333$

=(4+2)/2=3

 $\bar{r}_3 = (3+5+4+4+3)/5=3$

 $\vec{r_4} = (4+1+3)/3 = 2.667$

 $\overline{r_5} = (2+5+4+3)/4 = 3.5$

 $\overline{r_6} = (5+2)/2 = 3.5$

 $\overline{r_7} = (4+3)/2 = 3.5$

 $\bar{r_8} = (4+2)/2 = 3$

 $\bar{x}_0 = (5+4)/2 = 4.5$

 $r_{10} = (2+3)/2 = 2.5$

 $r_{11} = (4+1+5+2+2+4)/6=3$

第二步; 计算各用户与用户5之间的相似度, 注意去中心化/个性化、只考虑两个用户都打过分的电影(忽略空馆)以计算用户1, 用户5 的相似度为例; 用户1 平均打分是 43, 用户5 平均打分是 712. 一者都打过分的是电影 3 和电影6, 所以计算相似度时, 用户1 的向量表示为(2/3, -1/3), 用户5则是(-3/2, -1/2)

$$Sim(a,b) = \frac{\sum_{p \in product(P)} (r_{a,p} - \overline{r_{p}})(r_{b,p} - \overline{r_{b}})}{\sqrt{\sum_{p \in product(P)} (r_{a,p} - \overline{r_{a}})^{2}} \sqrt{\sum_{p \in product(P)} (r_{b,p} - \overline{r_{b}})^{2}}}$$
Accesses taking at use to

 $sim(1,5) = \frac{\left(2 - \frac{4}{3}\right)(2 - 3.5) + \left(1 - \frac{4}{3}\right)(3 - 3.5)}{\sqrt{(1/3)^2 \times 2 + (2/3)^2}\sqrt{1.5^2 + 1.5^2 + 0.5^2 + 0.5^2}} = -0.456$

 $sim(3,5) = \frac{(4-3.8)(5-3.5) + (4-3.8)(4-3.5) + (3-3.8)(3-3.5)}{\sqrt{0.8^2 + 1.2^2 + 0.2^2 + 0.2^2 + 0.8^2}\sqrt{1.5^2 + 1.5^2 + 0.5^2}} = 0.214$

 $sim(6,5) = \frac{(2-3.5)(4-3.5)}{\sqrt{1.5^2+1.5^2}\sqrt{1.5^2+1.5^2+0.5^2}} = -0.158$

 $sim(9,5) = \frac{(4-4.5)(2-3.5)}{\sqrt{0.5^2+0.5^2}\sqrt{1.5^2+1.5^2+0.5^2+0.5^2}} = 0.474$

 $sim(11.5) = \frac{(5-3)(2-3.5)+(2-3)(5-3.5)+(2-3)(4-3.5)+(4-3)(3-3.5)}{\sqrt{1^2+2^2+2^2+1^2+1^2+1^2+1^2}\sqrt{1.5^2+1.5^2+0.5^2+0.5^2}} = -0.710$

第三步: 找到用户5的2-最近邻,估计评分,注意去中心化, 并加上用户5的平均打分。 最相似的两个用户为3和9:

 $Pred(5,1)=3.5+\frac{0.214\times(3-3.8)+0.474\times(5-4.5)}{0.214\times(3-3.8)+0.474\times(5-4.5)}=3.5956$

$$pred(a, p) = \overline{r}_a + \frac{\sum_{b \in neighbors(n)} sim(a, b) \cdot (r_{b, p} - \overline{r}_b)}{\sum_{b \in neighbors(n)} sim(a, b)}$$

故预测用户 5 对电影 1 的评分为 3.5956, 课件中,基于物品的方法预测评分是 2.6,基于用户的方法预测评分更高。注意: 1.平均值修正、去中心化。 2.基于用户的和基于物品的方法差异。

作业主观题.
2.1 在分布式爬虫中,往往通过对 URL 的哈希结果来进行 任务分配。然而,往往因为服务器陷阱、节点崩溃等原因出 现节点的减少或新增。如何设计更为有效的策略,在节点数 或动态变更彻停没下保险或均衡? 可以采用一致性哈希、使用一个巨大的 hash key 空间,并 组织底回路、URL 和目标或让 P都映得到一个 hash key 间,每个 hash key 对应一台抓取计算机,如果某个爬虫节 有一次,那么该机器中的 URL 都迁移到顺时针方向的下一个 节点。

2.2 如何结合查询词项的分布细节,设计相对合理的跳表指 针步长? 索引分布密集处使用较大的步长,索引分布稀疏的地方使用 较短的步长。

2.3 在信息检索系统中,如何同时使用位置索引(对倒排索引的位置信息扩展)和停用词表,潜在问题有哪些,如何解决?

可以先引入停用词表,在进行位置索引时,如果遇到非停用词,按照位置索引的方式进行记录,遇到停用词时则不进行记录,遇到停用词时则不进行记录,潜在问题是某些时候停用词有特殊含义无法被查询,一些短语进行查询时以有相对位置信息进行检索(比如 to be or not to be 中 即作为停用词无法被查询,从两举出"经过与证价要"是长短话的判断,解决有家。用是一经一 сэ = жмышті = шрч | Хең на Муш = 信息 进行检索 (比如 to be or not to be or ho not to be or ho not be the for ho man 元法被查询。 从而难以从单词出现位置进行短语的判断,解决方案。 用某一统一的符号代替所有停用词,这样可以进行较为模糊的停用词位置判断。

2.5 Trie 树的缺陷在于"以空间换效率",对于存储空间的 压力较大。如何结合英文/中文的语言特点,适当放宽限定 划节率的形容(即位),请分析这一改进下对于查 询效:所述

因为中/英文的词语/单词中,出现共同前缀的频率是比较高的,比如1 开头的单词许多都是 Ir 开头,所以其实在词汇表较小但需要动态变更的情况下,Tirle 树的稀疏现象严重,空间利用率较低,所以考虑到上述原因,可以采用 double array trie 树的存储方式、如此一来,只需要一个加法一次比较即可完成一次状态转移,只需花费常数时间,极大地提高了单词搜索的效率

2.3 用户在浏览网页时,可能通过点击"后退"按钮回到上一次浏览的页面。用户的这种回退行为(包括连续回退行为)能否用马尔科夫链进行建模?为什么?

不能。马尔科夫链的下一状态只与当前状态有关,回退行为 需要记录之前的状态,两者矛盾。

主成分分析的基本流程是什么? 与特征值有何关系,为

2.1 主成分分析的基本流程是什么?与特征值有何关系,为什么? 基本流程: 将坐标轴中心移到数据的中心,然后旋转坐标轴,使得数据 存在(1轴上的方差最大,即全部,个数据个体在该方向上的 足影最为分散、意味着更多的信息被保值下来。C1成为第一 主成分。 以於東次列版 建成分。2、使得《2》与(市协方差(相关系数)为 0、以 投一个(2)(自,由重整,并且使数据在该方向的方差尽量是, 以此类推,找到第二主版分,第四正成分。一第一个主成分。 个随机变量可以有 0个主成分, 特征值是载据在旋转之后的些标上对应维度上的方差。特征 值越大,波方向提彩数据超高版(信息量越大。

1.对所有样本进行中心化: $x_i \leftarrow x_i - rac{1}{n} \sum_{i=1}^n x_i$

2.3 无论是 K 最近邻分类还是 K 均值聚类,都涉及到 K 的取值问题。请简述两个问题各自选 取合适 K 值的思路, 并比较两者在思路上有何不同?

不此或何有任志由工作例不同的 K 进行分类,选择 分类效果最好的 K。 K 均值聚类,尝试使用不同的 K 值聚类,检验各自得到聚类 结果的质量,选择聚类效果最优的 K。 基本思路分类里 K 是为的。 K 大量相似样本,以确定待分类 样本的类别,选择合适的 K 使得能准确划分待分类的样本。 而 K 均值为 T 把一些样本分成 K 个簇,选择 K 使得尽可能按 实际情况划分出样本的类别。

2.4 K-mediods 算法描述。
a) 首先随机选取一组聚类样本作为中心点集
b) 每个中心点对应一个蒙
c) 计算各样本列各个中心点的距离(如欧几里得距离),将样本点放入距离中心点,最短的那个矮中
d) 计算各域中,据被内各样本点距离的绝对误差最小的点,
e) 如果新的中心点。
e) 如果新的中心点集和原中心点集相同,算法中止;如果新的中心点集与原中心点集不完全相同,返回 b)

條数值型以外均数据小型日:八连切,永六十四、 投集等。 b) 阐述 K-mediods 算法相比于 K-means 算法的优势 与 K-means 相比,K-mediods 算法对于噪声不那么敏感, 这样对于离群点和异常点就不会造成划分的结果偏差过大, 异常数据不全造成重 大影响。 c) 阐述 K-mediods 算法相比于 K-means 算法的不足 K-mediods需要不断的找出每个点到其他所有点的距离的最 小值来修正聚类中心,这要求更高的计算复杂度,减缓了收 敛的速度,因而对于大规模数据的聚类力不从心。

PCA主成分分析 将 X 矩阵 (m*n, m 条数据, n 维度) 找到变换矩阵 P (n*k, k<n) , 相乘后阵为 Y (m*k) 矩阵, Y=XP 过程。 1. 原始数据作为 X 矩阵 2. X 的元素都减去该项约值(零均值中心化)得到 X s 3. 求协方差距传 C=XsⁿTys / (m-1), n*n 维 4. 求解 C 矩阵特征值和对应特征问题 5. 特征问量分的、 20 使的 (n*k) 6. 挑特征值最大的 X 个问量 (列), 组成 P 矩阵 (n*k) 7. 得到 Y X P m*k, 成为以 所容 J k 贡献,挑选的特征值占总特征值比例