作业五

noflowerzzk

2024.10.23

1

证明. 由 $\lim_{x \to +\infty} f(x) = A$, 取 $\varepsilon = 1, \exists N > 0$ 且 $N > a, \forall x > N, A - 1 < f(x) < 1 + A$. 又 f(x) 在 [a, N] 上连续, $\forall x \in [a, N], \exists M > 0, -M < f(x) < M$. 取 $M' = \max\{M, |A - 1|, |A + 1|\}, |f(x)| < M'$ 在 $[a, +\infty)$ 上有界.

2

证明. 取 f'(x) 满足:

$$\begin{cases} f'(a) = f(a+) \\ f'(b) = f(b-) \\ f'(x) = f(x), x \in (a,b) \end{cases}$$

我们证明 f'(x) 在 [a,b] 上连续.

易得 f'(x) 在 (a,b) 上连续,又 $\lim_{x\to a^+} f'(x) = f(a+) = f'(a)$, $\lim_{x\to b^-} f'(x) = f(b^-) = f'(b)$, 所以 f'(x) 在 [a,b] 上连续,由介值定理,f'(x) 能取到 f'(a),f'(b) 之间的一切值. 又由 f'(a) = f(a+),f'(b) = f(b-),所以 f(x) 能取到介于 f(a+),f(b-) 之间的一切值.

3

证明. 反证. 假设 f(x) 在 x_0 处不连续.

若 $x_0 \in (a,b)$, 由于 f(x) 在 $[a,x_0)$, $(x_0,b]$ 单调有界, f(x) 在 x_0 处左右极限存在.

则 $f(x_0) \neq f(x_0-)$ 且 $f(x_0) \neq f(x_0+)$.

又由极限保号性, $f(x_0-) < f(x_0) < f(x_0+)$.

则对 $y \in (f(x_0-), f(x_0))$, 不存在一个 $x \in [a, b], f(x) = y$, 矛盾!

若 $x_0 = a$, 同上有 f(a) < f(a-), 对 $y \in (f(a), f(a-))$, 不存在一个 $x \in [a, b], f(x) = y$, 矛盾! $x_0 = b$ 同理.

综上, f(x) 是 [a,b] 上的连续函数.

9

证明. 设椭圆 Γ 标准方程为 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b>0$,点 $P(x_0,y_0)$,满足 $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}<1$. 弦 l 的倾斜角为 θ ,与 Γ 交于 A,B 两点. 有 |PA|,|PB| 是关于 θ 的连续函数. 记为 $f(\theta)$, $g(\theta)$.

作业五 2024.10.23

则由对称性, 存在 θ_1, θ_2 , 有 $f(\theta_1) < g(\theta_1), f(\theta_2) > g(\theta_2)$. 对连续函数 $t(\theta) = f(\theta) - g(\theta)$, 有 $t(\theta_1)t(\theta_2) < 0$.

由零点存在定理, 存在 θ_0 , $t(\theta_0)=0$, 即 |PA|=|PB|.

10

证明. $\diamondsuit F(x) = f(x) - f(x+1)$.

若 f(1) = f(0), 取 x = 0, y = 1 即有 f(x) = f(y).

若 $f(1) \neq f(0)$, 有 $F(0)F(1) = -(f(1) - f(0))^2 < 0$. 由零点存在定理, $\exists x_0 \in (0,1), F(x_0) = 0$, 即 f(x) = f(x+1). 令 y = x+1 即成立.