How Bad Can an Election Game of Two or More Parties Be?

Speaker: Chuang-Chieh Lin (Joseph)

Tamkang University, TW

a joint work with

Chi-Jen Lu Academia Sinica, TW Po-An Chen National Yang Ming Chiao Tung University, TW

6 May 2024

Lin, Lu, Chen Election Game 6 May 2024 1/23

Authors

Chuang-Chieh Lin

Chi-Jen Lu

Po-An Chen

Outline

- Motivations
- Our Contribution
- Conclusion

3/23

Lin, Lu, Chen Election Game 6 May 2024

Outline

Motivations

Our Contribution

Conclusion

4/23

Lin, Lu, Chen Election Game 6 May 2024

The Inspiration (an EC'17 paper)

"[...] and that government of the people, by the people, for the people, shall not perish from the earth."

— Abraham Lincoln, 1863.

 Lin, Lu, Chen
 Election Game
 6 May 2024
 5 / 23

Most Previous Studies from a Micro Perspective

- Strategic behaviors of voters.
- Design of ballots.
- Social choice function or voting rules.

:

The "Macro" Setting

- Instead, we consider an intuitive macro perspective instead.
 - Parties are players.
 - Strategies: their candidates (or policies).

7 / 23

Lin, Lu, Chen Election Game 6 May 2024

The "Macro" Setting

- Instead, we consider an intuitive macro perspective instead.
 - Parties are players.
 - Strategies: their candidates (or policies).
 - A candidate beats the other one from other parties with uncertainty.

Lin, Lu, Chen Election Game

The "Macro" Setting

- Instead, we consider an intuitive macro perspective instead.
 - Parties are players.
 - Strategies: their candidates (or policies).
 - A candidate beats the other one from other parties with uncertainty.
 - The payoff of each party: expected utility its supporters can get.
 - The egoistic property: each candidate of party $\mathcal P$ brings more utility to $\mathcal P$'s supporters than any candidate from the other parties does to $\mathcal P$'s supporters.

7 / 23

Lin, Lu, Chen Election Game

Party A

Party B

Two-Party Election Game: Formal Setting

- Party A: m candidates, party B: n candidates.
- Candidate A_i can bring social utility $u(A_i) = u_A(A_i) + u_B(A_i) \in [0, \beta]$ for some real $\beta \geq 1$.
- $p_{i,j}$: $Pr[A_i \text{ wins over } B_j]$.
 - Linear: $p_{i,j} := (1 + (u(A_i) u(B_j))/\beta)/2$
 - Natural: $p_{i,j} := u(A_i)/(u(A_i) + u(B_i))$
 - Softmax: $p_{i,j} := e^{u(A_i)/\beta}/(e^{u(A_i)/\beta} + e^{u(B_j)/\beta})$
- Reward $r_A = p_{i,j}u_A(A_i) + (1 p_{i,j})u_A(B_j)$.

Lin, Lu, Chen Election Game 6 May 2024 9 / 23

Price of Anarchy (poA)

Egoism (Selfishness)

m-Party Election Game, $m \ge 2$

- Party $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \ldots$ with n_1, n_2, n_3, \ldots candidates, resp.
- E.g., candidate s_i of party \mathcal{P}_i can bring social utility $u(s_i) = u_1(s_i) + u_2(s_i) + \ldots + u_m(s_i) \in [0, \beta]$ for some $\beta \geq 0$.
- $p_{i,s}$: $Pr[s_i \text{ wins the campaign w.r.t. } s]$.
 - s: the strategy profile of all party players.
 - Consider all monotone winning probability functions.
 - E.g., $p_{i,s_{-i}} \ge p_{i',s_{-i}}$ whenever $u(s_i) \ge u(s_{i'})$.
- Reward $r_i = p_{1,s_{-i}}u_i(s_1) + p_{2,s_{-i}}u_i(s_2) + \cdots + p_{m,s_{-i}}u_i(s_m)$.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

Lin, Lu, Chen Election Game

Outline

- Motivations
- Our Contribution
- Conclusion

13 / 23

Lin, Lu, Chen Election Game 6 May 2024

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).
 - Existence of Pure-Strategy Nash Equilibria (PSNE).

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).
 - Existence of Pure-Strategy Nash Equilibria (PSNE).
 - The game (of \geq 2 parties) does NOT always have a PSNE.

14 / 23

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).
 - Existence of Pure-Strategy Nash Equilibria (PSNE).
 - The game (of \geq 2 parties) does NOT always have a PSNE.
 - The complexity of computing a PSNE (≥ 2 parties).
 - NP-completeness & an FPT algorithm.

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).
 - Existence of Pure-Strategy Nash Equilibria (PSNE).
 - The game (of \geq 2 parties) does NOT always have a PSNE.
 - The complexity of computing a PSNE (≥ 2 parties).
 - NP-completeness & an FPT algorithm.
 - What's the price of anarchy (PoA)?
 - Upper bound: number of parties.
 - The bound is tight for some cases.

Lin, Lu, Chen Election Game

14 / 23

- Our focus:
 - The probability for a party to win the election campaign.
 - Monotone function (more utility for all the people, more likely to win).
 - Existence of Pure-Strategy Nash Equilibria (PSNE).
 - The game (of \geq 2 parties) does NOT always have a PSNE.
 - The complexity of computing a PSNE (≥ 2 parties).
 - NP-completeness & an FPT algorithm.
 - What's the price of anarchy (PoA)?
 - Upper bound: number of parties.
 - The bound is tight for some cases.
 - Incentives of forming a coalition for each party.

Lin, Lu, Chen Election Game 6 May 2024 14 / 23

Counterexamples (Natural function)

Α		В	
$\overline{u_A(A_i)}$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
91	0	11	1
90	8	10	20

Α		В	
$u_A(A_i)$	$u_B(A_i)$	$u_B(B_j)$	$u_A(B_j)$
44	10	37	17
39	55	10	5

	B_1	B_2
A_1	30.50, 23.50	35.52, 10.00
A_2	30.97. 48.43	34.32, 48.81

Counterexamples (Softmax; Three parties)

$u_1($	$x_{1,i}$) $u_2(x_{1,i})$	$u_3(x_{1,i})$	$u_1(x_{2,i})$	$u_2(x_{2,i})$	$u_3(x_{2,i})$	$u_1(x_{3,i})$	$u_2(x_{3,i})$	$u_3(x_{3,i})$
29	4	21	23	59	7	8	32	54
27	43	3	3	57	38	20	13	53

	$r_{1,(1,1,1)}$	$r_{2,(1,1,1)}$	$r_{3,(1,1,1)}$	$r_{1,(1,1,2)}$	$r_{2,(1,1,2)}$	$r_{3,(1,1,2)}$. ~
			$r_{3,(1,2,1)}$				\sim
	18.81	34.64	28.51	23.49	27.82	27.38	3
-	11.27	34.67	39.70	15.57	28.09	38.93	3

$r_{1,(2,1,1)}$	$r_{2,(2,1,1)}$	$r_{3,(2,1,1)}$	$r_{1,(2,1,2)}$	$r_{2,(2,1,2)}$	$r_{3,(2,1,2)}$	~
		$r_{3,(2,2,1)}$				\sim
18.74	44.53	22.84	23.18	38.35	21.61	
11.58	44.25	33.66	15.67	38.27	32.77	_

Previous Results (Two-Party)

	Linear	Natural	Softmax
PNE w/ egoism	✓	×	√
PNE w/o egoism	×	×	?#
Worst PoA w/ egoism	≤ 2*	≤ 2	$\leq 1 + e$
Worst PoA w/o egoism	∞	∞	∞

• Lin, Lu, Chen: Theoret. Comput. Sci., 2021.

Lin, Lu, Chen

Complexity & PoA Bounds for $m \ge 2$ Parties (GAIW'2024)

Non-Existence of a Pure-Strategy Nash Equilibrium

The three-party election game does NOT always have a PSNE.

Theorem

For any m-party election game, $m \ge 2$, we have $PoA \le m$ if

- The winning probability function is **monotone**.
- The game is egoistic.

Theorem

To determine if a PSNE exists in the egoistic m-party election game is NP-complete but FPT (+natural parameters).

- The game instance is in a succinct representation.
- A reduction from the SAT problem.

Lin, Lu, Chen Election Game 6 May 2024 18 / 23

Key Propositions

For the egoistic election game:

Proposition

Let $\mathbf{s} = (s_i)_{i \in [m]}$ be a PSNE and $\mathbf{s}^* = (s_i^*)_{i \in [m]}$ be the optimal profile. Then, $\sum_{i \in [m]} u(s_i) \ge \max_{i \in [m]} u(s_i^*)$.

Two Important Observations

$$SW(\mathbf{s}) = \sum_{1 \le i \le m} p_{i,\mathbf{s}} \cdot u(s_i) \le \max_{1 \le i \le m} u(s_i)$$
$$SW(\mathbf{s}) = \sum_{1 \le i \le m} p_{i,\mathbf{s}} \cdot u(s_i) \ge \frac{1}{m} \cdot \sum_{1 \le i \le m} u(s_i).$$

4D > 4A > 4E > 4E > 900

Lin, Lu, Chen Election Game 6 May 2024 19 / 23

Shrinking nominating depth of a party

Outline

- Motivations
- 2 Our Contribution
- 3 Conclusion

21 / 23

Lin, Lu, Chen Election Game 6 May 2024

Concluding Remarks

- We assume the utility is evenly distributed to the voters.
- The PoA is small in most game instances (simulations).
- We will conduct experiments to simulate voters' voting decisions to see how monotone the winning probability function is.

22 / 23

Lin, Lu, Chen Election Game

Thanks for your attention!

23 / 23

Lin, Lu, Chen Election Game 6 Ma