Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_1^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{#2}\alpha$ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	3
$\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#1}\alpha\beta == 0$		3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{lpha\chieta}$	
$\sigma_1^{\#1}{}^{\alpha\beta} == \sigma_1^{\#2}{}^{\alpha\beta}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{X}_{\lambda}$	
$\sigma_{2+}^{\#1}\alpha\beta==0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	uge generators:	28

|--|

0	0	0	$-k^2 r_1$	0	0	0	, Q																	
			- <i>k</i>				$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_1}$	0	0	0										
$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0	$ au_1^{\#1}$ σ	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0	_									
$\frac{\sqrt{2} t_2}{3}$	2 2	$-\frac{1}{3}$ $i k t_2$	0	0	0	0	$\sigma_{1}^{\#2}{}_{lphaeta}$		$\frac{3}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{1}{k^2 r_1}$		<i>u</i> -		" 2		
	7	kt_2								ı					$\tau_{2}^{\#1}_{+}\alpha\beta$	0	0	0	#1	$\sigma_0^{\#}$	t_{0}^{+}	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	1
	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$	0	0	0	0	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3 i \sqrt{2} k}{(3+k^2)^2 t_2}$	0	0	0	0	$\sigma_{2}^{\#1}$ α_{β}	0	0	0	$\sigma_{0^{+}}^{\#1}$ $ au_{0^{+}}^{\#1}$		0	0	0	
$\dagger^{\alpha \beta}$	$t^{\alpha \beta}$	$\dagger^{\alpha \beta}$	+ 4	$+^{\alpha}$	+α	+α			αβ	αβ	\perp^{α}	$+^{\alpha}$	+α	$+^{\alpha}$		$\alpha\beta$	$\alpha\beta$	χ_{g_j}	$ au_{0}^{\#2}$	† 0	0	0	0	
$\mathcal{A}_1^{\#1} +^{\alpha\beta}$	$\mathcal{A}_1^{\#2} \dagger^{lphaeta}$	$f_1^{#1} \dagger^{lphaeta}$	${\mathscr A}_{1^{\bar{-}}}^{\#1} {\dagger}^{\alpha}$	$\mathcal{A}_1^{\#2} \dagger^{\alpha}$	$f_1^{\#1} + \alpha$	$f_1^{\#2} + \alpha$		$\sigma_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_1^{\#_2} + ^{lphaeta}$	$\tau_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{#1} +^{lphaeta\chi}$	$\sigma_0^{\#1}$	† 0	0	0	$\frac{1}{k^2 r_2 + t_2}$	

0 0 0 0 0

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $\mathcal{A}_{2}^{\#1}\dagger^{lphaeta}$

0 0 0

0 0 0 0 0

0

0

Massive and massless spectra

	Massive particle												
»	Pole residue:		No mas										
	Polarisations:		SSIE										
	Square mass:	$-\frac{t_2}{r_2} > 0$		ss pa									
	Spin:	0		particle									
	Parity:	Odd		les)									

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$