Probability, Statistics, And Population Genetics: A Brief Introduction

Ziyang Xia

April 9, 2021

Background: modelling randomness in science

- Classical approach of natural science modelling NATURE without randomness
- "God does not play dice." Albert Einstein
- $\triangleright x \rightarrow y$: a causal path
- $y = f(x, \theta)$: a mathematical model
 - x: independent variable causes
 - \triangleright θ : parameter inherent characteristics of the model
 - y: dependent variable effects
- ► Two problems of such an approach:
 - Inherent randomness of studied objects e.g., quantum mechanisms
 - ► Fail of reductionism in complex systems too much potential causes
 - e.g., biological organism or society
- Pervasive randomness in molecular (e.g., mutation, recombination) and behavioral (e.g., mating, migration) processes of population genetics
- Modelling the randomness pivotal issue for population genetics.

To quantify the randomness: random variable & probability

- $X = x_1, x_2, x_3, ...$
- X random variable: a quantity with different possible results
- $ightharpoonup X = x_i$ random event: each feasible value X can be
 - ► Tossing a coin: $X = \{0, 1\}$
 - lacktriangle Observing genotype of a haployid individual: $X = \{0, 1\}$
- $ightharpoonup \Omega$ universe: set contains all the possible x_i for X
- ▶ In statistics, actually observed $X = x_i$ are **data**
- ► Each random event has some "degree of plausibility" to happen
- ▶ This can be quantified by a value called **probability** $Pr(x_i)$
 - Tossing a coin: $Pr(X = 0) = Pr(X = 1) = \frac{1}{2}$ (usually but not always)
 - Observing genotype of a haployid individual: Pr(X = 0) = 1 p, Pr(X = 1) = p, where p is derived allele frequency of the population

Function of random variable & probability I

- ► We can use function to describe the correspondance between random events and probabilities
- ▶ $f(X, \theta)$, $\forall x_i \in \Omega$, $f(X = x_i, \theta) = Pr(x_i)$
- **probability distribution**: the function with random variable X as **independent**, probability Pr(X) as **dependent**
- ▶ i.e., Mapping of each random event to corresponding value of probability: $f(X, \theta) : X \to Pr(X)$
- θ is still parameter, which defines characteristics of probability distribution.

Function of random variable & probability II

- For both examples, $f(X, \theta) = p^X (1 p)^{1-X}$, where $X = \{0, 1\}, \ \theta = \{p\}$
- Note: θ is the set of all the parameters there can be multiple parameters, e.g., mean & variance.
- Probability distribution is also known as probability density function (pdf) when the number of random events is infinite
 - ► Then the probability is integration:

$$Pr(a \le X \le b) = \int_a^b f(x, \theta) dx$$

Kolmongorov's axioms of probability: formal definition I

- Probability can be formally defined by the following axioms:
 - ▶ (1) For $\forall x_i \in \Omega$, $Pr(x_i) \geqslant 0$
 - ightharpoonup (2) $Pr(\Omega) = 1$
 - (3) For $\forall x_i, x_j \in \Omega$, $Pr(x_i \cup x_j) = Pr(x_i) + Pr(x_j)$, if $x_i \cap x_j = \emptyset$ $\iff Pr(x_i \cup x_j) = Pr(x_i) + Pr(x_j) - Pr(x_i \cap x_j)$
- Probability theory is a self-consistent, pure mathematical system in ideal world
- Accordant with our logic for "true/false", "existance/inexistance", or "occurance/non-occurance" in both ideal and real worlds:
 - ▶ (1) & (2) \iff 0: false; 1: true; (0,1): intermediate state = degree of plausibility
 - (3) $\iff x \lor y = x + y x \land y \text{ in logic/boolean algebra}$
 - ▶ Probability: extenstion of logic algebra from $\{0,1\}$ to [0,1].

Kolmongorov's axioms of probability: formal definition II

- Since probability is an extention of logic algebra, we can just use the relationship between sets (of random events, e.g., x_i , x_j) to represent their probabilities (e.g., $Pr(x_i)$, $Pr(x_j)$)
 - ▶ i.e., relationship of sets ⇔ relationship of probabilities
 - Probability: mass point $(X = x_i)$; area $(a \le X \le b)$

Relationship: probability theory & statistics I

- ▶ **Probability theory** only needs Kolmongorov's axioms as pre-assumptions not bothered by real world.
 - In probability theory, for tossing a coin, p can be anything $\in [0,1]$, not necessarily $\frac{1}{2}$
- Statistics takes probability theory as its mathematical foundation, but also needs actually observed data to explain & predict the real world by estimation
 - In statistics, for tossing a coin, p is usually estimated to be around $\frac{1}{2}$ by observing sufficient data
- Different feasible types of probabilities conforming Kolmongorov's axioms
- ▶ ⇒ Different corresponding types of statistics explaining the real world, e.g., classical/frequentist v.s. Bayesian

Conditional probaility

- ightharpoonup Different choices of domain of definition in functions \Longrightarrow different choices of Ω for probability definition
- ▶ Conditional probability $Pr(x_i \mid \theta_0)$: probability of $x = x_i$ when the event $\theta = \theta_0$ occurred or is assumed to occur

$$Pr(x_i \mid \theta_0) = \frac{Pr(x_i \cap \theta_0)}{Pr(\theta_0)}, \qquad f(X \mid \theta) = \frac{f(X, \theta)}{f(\theta)}$$

▶ All the random events in Ω must meet the condition $\theta = \theta_0$; any event with $\theta \neq \theta_0 \notin Ω \iff Pr(\theta_0 \mid \theta_0) = 1$

Independence

- ▶ If $Pr(x_i \mid \theta_0) = Pr(x_i) \iff Pr(x_i \cap \theta_0) = Pr(x_i)Pr(\theta_0)$, the occurrance of $\theta = \theta_0$ or not does not affect the probability of $x = x_i$
- In this case, we call $x = x_i$ and $\theta = \theta_0$ are mutually **independent** random events.
- An intuitive explanation: knowing the parameter $\theta = \theta_0$ does not provide further information of $x = x_i$
- ▶ Similarly, if $f(X \mid \theta) = f(X) \iff f(X, \theta) = f(X)f(\theta)$, then the two random variables X and θ are mutually independent

Bayes' theorem

Given the definition of conditional probability, we have Bayes' theorem:

$$Pr(x_i \cap \theta_0) = Pr(x_i \mid \theta_0)Pr(\theta_0) = Pr(\theta_0 \mid x_i)Pr(x_i)$$

$$\iff Pr(\theta_0 \mid x_i) = \frac{Pr(\theta_0)Pr(x_i \mid \theta_0)}{Pr(x_i)}$$

In the form of probability distribution:

$$f(\theta \mid X) = \frac{f(\theta)f(X \mid \theta)}{Pr(X)}$$

- Bayes' theorem is the foundation of Bayesian statistics.
- But it is always true in probability theory & all kinds of statistics.

Total probability theorem

▶ **Total probability** of observing data *X* can be expressed as:

$$Pr(X) = \sum_{i} Pr(X \cap \theta_i)$$

where $\forall \theta_i \cap \theta_i = \emptyset$ and $\bigcup_i \theta_i = \Omega$

Given conditional probability:

$$Pr(X) = \sum_{i} Pr(X \mid \theta_{i}) Pr(\theta_{i}), \qquad f(X) = \int f(X \mid \theta) f(\theta) d\theta$$

Relationship: probability theory & statistics II

- Probability theory
 - ▶ "Data generating machine": $f(X \mid \theta = \theta_0)$
 - $\theta \Rightarrow \{x_i\}$
 - \triangleright Conditional on given parameter θ , generating a series of data x_i

Statistics

- $\blacktriangleright \{x_i\} \Rightarrow \theta$
- ▶ Given known data x_i , estimating the value/range of parameter θ & original probability distribution
- ightharpoonup Parameter θ defines characteristic of a probability distribution

Data generating process $f(X, \theta = \theta_0)$ Probability
Theory
Observed data $f(X = x_0, \theta)$ Inference

Known variable
Unknown variable

Statistical inference: Bayesian vs Frequentist

- **Frequentist**: parameter θ has an only real value
 - A stable data generating machine
 - As number of trial $n \to \infty$, frequency of observed data $X \to \infty$ real probability defined by parameter θ
 - θ is a fixed value and does not have any probability distribution, so $f(\theta)$ or $f(\theta \mid X)$ is invalid for frequentists
- **Bayesian**: θ is a random variable with uncertainty
 - A data generating machine with instability (inherent or due to human observation)
 - ightharpoonup heta should be model by probability distribution
 - **Prior** $f(\theta)$: θ 's distribution without any further information
 - **Posterior** $f(\theta \mid X)$: θ 's distribution with information from data X (i.e., knowing X occurred)
 - Using Bayes' theorem to gain posterior distribution why "Bayesian" is named

Expectation: core parameter of probability distribution

- For a random variable X, its expectation (i.e., mean, average) is notated as μ or $\mathbb{E}[X]$
- ▶ Rationale: using a single parameter μ to describe all the possible random events x_i of random variable X, given their respective probability $f(x_i)$

$$\sum_{i} f(x_i)x_i = \sum_{i} f(x_i)\mu \iff \mathbb{E}[X] = \mu = \sum_{i} f(x_i)x_i$$

- $\blacktriangleright \mu$ is the equivalent substitution of $\forall x_i$
- ▶ Extended definition of expectation: $\mathbb{E}[g(X)] = \sum_i f(x_i)g(x_i)$, where g(X) is a function of X
- ▶ Particularly, $\mathbb{E}[c] = \sum_i f(x_i)c = c$ when c is a constant

Variance: dispersal from expectation

Analogically, we can calculate the expectation of each x_i of random variable X away from mean μ , which is **variation**

$$Var(X) = \sigma^2 = \mathbb{E}[(X - \mu)^2]$$
$$= \mathbb{E}[X^2] - 2\mu \mathbb{E}(X) + \mu^2$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

 $ightharpoonup \sigma = \sqrt{Var(X)}$: standard deviation

Covariance: variance of two variables I

- Variance: how a single random variable varies
- Analogical to variance, we define covariance as

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$
$$= \mathbb{E}[XY] - \mu_X \mathbb{E}[Y] - \mu_Y \mathbb{E}[X] + \mu_X \mu_Y$$
$$= \mathbb{E}[XY] - E[X]E[Y]$$

- ▶ Particularly, Cov(X, X) = Var(X)
- ▶ Normalized covariance Pearson's correlation coefficient:

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Covariance: variance of two variables II

- Covariance describes the varying tendency of Y when X varies:
 - ightharpoonup Cov(X, Y) > 0: when X varies, Y tends to (i.e., has more probability to) vary in the same direction
 - ightharpoonup Cov(X, Y) < 0: when X varies, Y tends to vary in the opposite direction
 - ► $Cov(X, Y) \approx 0$: when X varies, Y can vary in any direction variation of X is nearly unrelated to variation of Y, X and Y are approximately independent

Independence of two variables

- Reviewing the definition of independence:
- Two random variables X, Y are independent $\implies f(X, Y) = f(X)f(Y)$ $\iff \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ (Bertsekas, p.99)
- ► Therefore, if X and Y are independent,

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = 0$$

Note: Converse $(Cov(X, Y) = 0 \implies X$ and Y are independent) may not be true

Some important probability distributions I

- ▶ Bernoulli $X \sim Bern(p)$: a single trial with probability p
 - e.g., observing derived allele in a haploid individual
 - $f(X,\theta) = p^X (1-p)^{1-X}$
 - $\mathbb{E}(X) = p, Var(X) = p(1-p)$
- ▶ Binomial $X \sim B(n, p)$: n independent Bernoulli trials with probability p of each trial
 - e.g., observing the number of derived alleles in a sample with $\frac{n}{2}$ individuals
 - $\stackrel{\stackrel{\leftarrow}{}}{f}(X,\theta) = C_n^X p^X (1-p)^{n-X}$
 - $ightharpoonup \mathbb{E}(X) = np, Var(X) = np(1-p)$
 - Most widely used distribution in PopGen
- Normal/Gaussian $X \sim N(\mu, \sigma^2)$: approximation of binomial when $n \to \infty$, p > 0

Some important probability distributions II

- (Negative) exponential distribution
- Coalescent: two individuals in a sample with n haplotypes from a population with effective population size N (2N haplotypes)
- ► The probability of two haplotypes share a common ancestor exactly in generation x is:

$$f(x,\theta) = (1-p)^{x-1}p$$

where $p = \frac{C_n^2}{2N}$

▶ LD decay: with recombination rate *r* in each generation, the probability of two loci still keep in LD in generation *x* is

$$f(x,\theta) = (1-r)^x L_0$$

where L_0 is original admixture LD just after admixure

Both can transform to form of negative exponential distribution

Stochastic process of allele frequency change

- ▶ **Markov chain**: present state s_i only depends on the previous state s_{i-1} but not s_{i-2}
- Genetic drift under Wright-Fisher model is a Markov chain

$$\mathbb{E}[f_{g+1} \mid f_g] = f_g$$

- ► Martingale : expectation of present staet is equal to previous state
- Genetic drift is also a martingale; selection is only a Markov chain but not a martingale

Models of molecular evolutionary processes

- 1.Models based on allele frequency of standing variation (SNP)
 - Using frequency as probability idea of frequentist: $Pr(i) = f_i$, where f_i is allele frequency of locus i
- ▶ 1.1.Single locus model: regardless of LD
 - Statistics of the whole genome average of every loci
 - ▶ Drift: $\mathbb{E}(f_{g+1}) = f_g$ (g: generation)
 - ▶ Selection: $\mathbb{E}(f_{g+1}) = f_g + s$ (s: selection coefficient)
 - Admixture:

$$f_i = \sum_k c_k f_i k, \qquad \sum_k c_k = 1$$

 $(c_k$:ancestry coefficient in ancestral population k)

- 1.2.Two loci model: accounting LD & haplotypes
 - ▶ LD of two loci i, j: $D'(i, j) = f_{i,j} f_i f_j$
 - ► Haplotype analysis, IBD: more complex model
- ▶ 2. Generation of new variation, i.e., mutation
 - Coalescent process, with mean 2N
 - Accumulated mutations in pairwise individual of a population is $\theta = 2 * 2N\mu = 4N\mu$ (2 lineages)

Two strategies in statistical inference

- ▶ 1.Parameter estimation: using data X to infer range (interval estimates) or value (point estimate) of θ
 - Two ways: frequentist (maximum likelihood estimation, MLE) and Bayesian inference
 - Quantified method
 - $f(X \mid \theta)$, finding best $\theta(s)$ from multiple/infinite possible θ
- ▶ 2. Hypothesis test: constructing a certain distribution $f(X \mid \theta_0)$ conditional on null hypothesis H_0 , then testing conditional probability of observing data X and worse results (i.e., p-value)
 - Qualified method
 - Extension of reductio ad impossible (proof of contradiction) in probability theory
 - ▶ $f(X \mid \theta)$, determing the relationship between H_0 and X by fixing θ_0 under H_0 and calculating conditional probability

Hypothesis test: F_{ST}

$$F_{ST} = rac{\sigma_{intrapop}}{\sigma_{all}}$$

▶ H_0 : no difference between sub-pops, $F_{ST} = 0$

Hypothesis test: D-statistics

$$D(A, B; C, D) = \mathbb{E}[(p_A - p_B)(p_C - p_D)] = Cov(p_A - p_B, p_C - p_D)$$

- ▶ H_0 : drift paths $A \to B$ and $C \to D$ are independent $\Longrightarrow Cov(p_A p_B, p_C p_D) = 0$
- ▶ Significantly deviated from $0 \iff$ low probability of observing data under $H_0 \iff$ Shering history & genetic drift between two paths

Likelihood and probability

- $L(\theta) = f(X \mid \theta)$
- ightharpoonup Probability distribution is function of X, with fixed θ
- Likelihood is function of θ , with fixed X

MLE and likelihood ratio: I

- As frequentists think θ has a single real value, a feasible way to estimate "most probable" θ is finding θ which maximize $L(\theta) = f(X \mid \theta)$. Such a method is **MLE**
- ightharpoonup Rationale: finding the point estimate of θ which makes the highest probability of observed data
- ▶ Usually using derivation=0 to estimate θ

MLE and likelihood ratio: II

▶ E.g., in ADMIXTURE, inferring ancestral coefficients c_k by MLE:

$$f_i = \sum_k c_k f_i k, \qquad \sum_k c_k = 1$$

- We can also compare the ratio of likelihood under different parameters $\theta_1, \theta_2, \theta_3...$
- ► E.g., qpGraph, $L(G_1) > L(G_2) > L(G_3)$...

Bayesian inference

- **B** Bayesian inference estimate the interval of θ under posterior distribution (with information given by data)
- Rationale: transforming prior $f(\theta)$, data X, likelihood function into posterior distribution (i.e., distribution of θ under given data X)

$$f(\theta \mid X) = \frac{f(\theta)f(X \mid \theta)}{Pr(X)}$$

- ightharpoonup f(X) can be solved by total probability theorem with integration, but this is hard for high dimentional data
- Solution: MCMC/Metropolis-Hastings algorithm, using posterior ratio to avoid calculation of f(X)
- ▶ A common usage of Bayesian inference is estimation of the interval of coalescent time, as this is "more natural" to be a range than a point value.