Visão Biológica e Artificial

PROF. CESAR HENRIQUE COMIN

Visão biológica

- Como nós percebemos o mundo?
- Uma árvore nada mais é do que um aglomerado de átomos. Como nós identificamos esse arranjo particular de átomos como sendo uma "árvore"?

 A árvore percebida por uma pessoa é a "mesma" que a percebida por outra pessoa?

Visão biológica

Figura adaptada de: Sensation and Perception, Goldstein e Brockmole

Caminho da luz do sol até o olho

A luz é refletida e refratada pelo objeto, e absorvida pela retina.

Cones e bastonetes transformam fótons (luz) em sinais elétricos.

O olho humano – Cones e Bastonetes (Rods)

Outer segment

Inner segment

Transformação da luz em sinais elétricos

Desenhos de células na retina de Santiago Ramón y Cajal, 1900

- Cones: Visão colorida;
- Bastonetes: Visão periférica e noturna.

O olho humano consegue perceber um grande intervalo de valores de brilho.

- Teste típico para identificar a percepção de diferença de brilho
- Mede-se o menor valor de ΔI no qual a pessoa consegue perceber o círculo central.

A percepção de diferenças de brilho se torna pior em condições de baixa luminosidade.

Campos receptivos da retina

Os sinais de diversos cones e bastonetes são combinados na retina.

Campos receptivos Center-surround

A resposta do campo receptivo é maior dependendo do local onde a luz é projetada.

Campos receptivos Center-surround

Bandas de Mach

- Nós percebemos cores mais claras ou mais escuras em regiões de variação abrupta de contraste.
- Esse efeito é causado, em parte, pela inibição lateral.

Inibição lateral

Inibição lateral faz com que a percebção do quadrado central dependa da intensidade de brilho do quadrado maior.

Espectro eletromagnético

Espectro eletromagnético

Caminho da visão

Córtex visual

Caminho da visão

Da retina ao córtex visual

Colunas de orientação no córtex visual primário

Cada região do córtex visual primário responde de forma preferencial a orientações específicas de contornos de objetos.

Campos receptivos no córtex

Campo receptivo de uma célula cortical

Ilusões de ótica ocorrem quando enganamos o hardware de reconhecimento de padrões do nosso cérebro.

Visão artificial

Luz, câmera

Sensor

Array de sensores

Array de sensores

A luz recebida pelo Sistema é discretizada no espaço (amostragem espacial) e na intensidade (quantização)

Representando imagens

Representando imagens

- O número de bits utilizado para representar cada valor de pixel é chamado de profundidade de imagem.
- A profundidade define o número de valores possíveis para os píxeis

Número de bits	Intervalo de intensidade
1	[0,1]
2	[0,3]
5	[0,31]
8	[0,255]
16	[0,65535]

Exemplos de imagens com diferentes profundidades

Imagem colorida

- Imagens coloridas são, em geral, compostas por três canais (três matrizes)
- Em alguns casos, temos também um canal adicional indicando transparência

Da luz ao JPEG

Linguagem Python

Linguagem Python - Instalação

Obtida em

https://www.python.org/downloads/

A grande vantagem de utilizar Python para processamento de imagens está na enorme variedade de bibliotecas desenvolvidas na área.

A forma padrão de instalar pacotes em Python é digitar no terminal:

pip install <nome do pacote>

Entretanto, a instalação de pacotes (bibliotecas) em Python pode apresentar problemas em algumas situações, especialmente se o pacote possuir funções compiladas em C.

Linguagem Python - Instalação

Uma forma mais simples de instalar Python já com diversas bibliotecas (além de outras vantagens) é utilizar a distribuição Anaconda:

https://www.anaconda.com/download/

Contudo, minha forma preferida de instalar o Python é utilizando o Miniconda:

https://conda.io/miniconda.html

O Miniconda instala o gerenciador de pacotes *conda*, que possui algumas vantagens em relação ao pip.

Após instalar o conda, as diversas bibliotecas utilizadas na disciplina podem ser instaladas pelo comando

conda install numpy scipy matplotlib ipython jupyter scikit-image

Linguagem Python

Algumas IDEs conhecidas de Python:

- Ipython + Editor de texto (Notepad++, Vim, Sublime, etc)
- VSCode
- PyCharm
- Jupyter notebook ou JupyterLab

Linguagem Python

Um bom "crash course" contendo diversos comandos Python, Numpy e Matplotlib:

http://cs231n.github.io/python-numpy-tutorial/