

planetmath.org

Math for the people, by the people.

injection can be extended to isomorphism

 ${\bf Canonical\ name} \quad {\bf Injection Can Be Extended To Isomorphism}$

Date of creation 2013-03-22 18:56:50 Last modified on 2013-03-22 18:56:50

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872)
Entry type Theorem
Classification msc 20A05
Classification msc 03E20
Related topic Restriction
Related topic Cardinality

Theorem. If f is an injection from a set S into a group G, then there exist a group H containing S and a group isomorphism $\varphi: H \to G$ such that $\varphi|_S = f$.

Proof. Let M be a set such that $\operatorname{card}(M) \geq \operatorname{card}(G)$. Because $\operatorname{card}(f(S)) = \operatorname{card}(S)$, we have $\operatorname{card}(M \setminus S) \geq \operatorname{card}(G \setminus f(S))$, and therefore there exists an injection

$$\psi: G \setminus f(S) \to M \setminus S$$

(provided that $G \setminus f(S) \neq \emptyset$; otherwise the mapping $f: S \to G$ would be a bijection). Define

$$H := S \cup \psi(G \setminus f(S)),$$

$$\varphi(h) := \begin{cases} f(h) & \text{for } h \in S, \\ \psi^{-1}(h) & \text{for } h \in H \setminus S. \end{cases}$$

Then apparently, $\varphi \colon H \to G$ is a bijection and $\varphi|_S = f$. Moreover, define the binary operation "*" of the set H by

$$h_1 * h_2 := \varphi^{-1}(\varphi(h_1) \cdot \varphi(h_2)). \tag{1}$$

We see first that

$$(h_1 * h_2) * h_3 = \varphi^{-1} (\varphi (\varphi^{-1} (\varphi (h_1) \cdot \varphi (h_2))) \cdot \varphi (h_3))$$

$$= \varphi^{-1} ((\varphi (h_1) \cdot \varphi (h_2)) \cdot \varphi (h_3))$$

$$= \varphi^{-1} (\varphi (h_1) \cdot (\varphi (h_2) \cdot \varphi (h_3)))$$

$$= \varphi^{-1} (\varphi (h_1) \cdot \varphi (\varphi^{-1} (\varphi (h_2) \cdot \varphi (h_3))))$$

$$= h_1 * (h_2 * h_3).$$

Secondly,

$$h * \varphi^{-1}(e) \; = \; \varphi^{-1} \big(\varphi(h) \cdot \varphi(\varphi^{-1}(e)) \big) \; = \; \varphi^{-1}(\varphi(h)) \; = \; h,$$

whence $\varphi^{-1}(e)$ is the right identity element of H. Then,

$$h * \varphi^{-1}((\varphi(h))^{-1}) = \varphi^{-1}(\varphi(h) \cdot \varphi(\varphi^{-1}(\varphi(h)^{-1}))) = \varphi^{-1}(e),$$

and accordingly $\varphi^{-1}((\varphi(h))^{-1})$ is the right inverse of h in H. Consequently, (H, *) is a group. The equation (1) implies that

$$\varphi(h_1 * h_2) = \varphi(h_1) \cdot \varphi(h_2),$$

whence φ is an isomorphism from H onto G. Q.E.D.