AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (currently amended): A polymerizable composition comprising:
- (A) a monocarboxylic acid compound which causes at least one of decarboxylation and dehydration by heat;
 - (B) a radical initiator;
 - (C) a compound having at least one ethylenically unsaturated bond; and
 - (D) an infrared ray absorber,

wherein the compound (A) and the radical initiator (B) are separate and distinct compounds from each other.

- 2. (original): The polymerizable composition according to claim 1, wherein the compound (A) is one which causes at least one of decarboxylation and dehydration at a temperature of 100°C to 300°C.
- 3. (original): The polymerizable composition according to claim 1, wherein the compound (A) is one having a structure capable of forming a 4 to 6-membered lactone ring, a 4 to 6-membered lactam ring or a 4 to 6-membered cyclic acid anhydride.

2

4. (currently amended): The polymerizable composition according to claim 1, wherein the compound (A) is one having at least onea group represented by the following formula (I):

$$R_1$$
 $X-C-CO_2H$ (1)
 R_2

wherein:

X represents a divalent connection group selected from -O-, -S-, -SO₂-, -NH-, -N(\mathbb{R}^3)-, and -CO-,

R³ represents a hydrogen atom or a monovalent substituent,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , or either one of R^1 and R^2 and R^3 may be taken together to form a ring structure.

5. (original): The polymerizable composition according to claim 1, wherein the compound (A) is a monocarboxylic acid compound represented by the following formula (I-2):

$$A-X^{1}-C-CO_{2}H$$
 R^{2}
(1-2)

wherein

A represents an aromatic group or a heterocyclic group,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and R^2 and R^3 and R^4 and

 X^1 represents a divalent connection group selected from -O-, -S-, -SO₂-, -NH-, -N(R³)-, -CH₂-, -CH(R⁴)-, and -C(R⁴)(R⁵)-, and

R³, R⁴, and R⁵ each independently represents a hydrogen atom or a monovalent substituent.

6. (original): The polymerizable composition according to claim 1, wherein the compound (A) is a compound represented by the following formula:

wherein

A represents an aromatic group or a heterocyclic group,

 R^1 , R^2 , R^6 , R^7 and R^8 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and A, or R^8 and Z may be taken together to form a ring structure,

and

Z represents a monovalent substituent.

7. (original): A polymerizable composition comprising:

(A-1) a monocarboxylic acid compound represented by the following formula (I-

2);

- (B) a radical initiator;
- (C) a compound having at least one ethylenically unsaturated bond; and
- (D) an infrared ray absorber:

$$R^{1}$$
 $A-X^{1}-C-CO_{2}H$
 R^{2}
 $(1-2)$

wherein

A represents an aromatic group or a heterocyclic group,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and R^2 and R^3 and R^4 and

 X^1 represents a divalent connection group selected from -O-, -S-, -SO₂-, -NH-, -N(R³)-, -CH₂-, -CH(R⁴)-, and -C(R⁴)(R⁵)-, and

R³, R⁴, and R⁵ each independently represents a hydrogen atom or a monovalent substituent.

- 8. (original): The polymerizable composition according to claim 7, wherein X^1 in the formula (I-2) is a divalent connection group selected from -NH-, -N(R^3)-, -CH₂-, -CH(R^4)-, and -C(R^4)(R^5)-.
- 9. (original): The polymerizable composition according to claim 7, wherein X^1 in the formula (I-2) is a divalent connection group selected from -NH- and -N(\mathbb{R}^3)-.
- 10. (original): The polymerizable composition according to claim 7, wherein X^1 in the formula (I-2) is $-N(R^3)$ -.
- 11. (original): The polymerizable composition according to claim 7, wherein the substituent represented by R^3 contains at least one of $-CO_2$ and $-CON(R^8)$ in its structure in which R^8 represents a hydrogen atom or a monovalent substituent.
- 12. (original): The polymerizable composition according to claim 7, wherein the substituent represented by R³ is represented by one of the following formulae (i) and (ii):

wherein, R^6 , R^7 and R^8 each independently represents a hydrogen atom or a monovalent substituent, Z represents a monovalent substituent, and R^8 and Z may be taken together to form a ring structure.

- 13. (original): The polymerizable composition according to claim 7, wherein the monovalent substituent represented by R¹ and R² is a halogen atom, an optionally substituted amino group, an alkoxycarbonyl group, a hydroxyl group, an ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group, an optionally substituted aryl group, or an optionally substituted heterocyclic group.
- 14. (currently amended): A lithographic printing plate precursor comprising a support and a recording layer containing a polymerizable composition which comprises: (A) a monocarboxylic acid_compound which causes at least one of decarboxylation and dehydration by

7

heat; (B) a radical initiator; (C) a compound having at least one ethylenically unsaturated bond; and (D) an infrared ray absorber,

wherein the compound (A) and the radical initiator (B) are separate and distinct compounds from each other.

15. (original): A lithographic printing plate precursor comprising a support and a recording layer containing a polymerizable composition which comprises: (A-1) a monocarboxylic acid compound represented by the following formula (I-2); (B) a radical initiator; (C) a compound having at least one ethylenically unsaturated bond; and (D) an infrared ray absorber:

$$R^{1}$$
 $A-X^{1}-C-CO_{2}H$
 R^{2}
(1-2)

wherein

A represents an aromatic group or a heterocyclic group,

 R^1 and R^2 each independently represents a hydrogen atom or a monovalent substituent, provided that R^1 and R^2 , either one of R^1 and R^2 and R^2 and R^2 and R^3 and R^4 and

 X^1 represents a divalent connection group selected from -O-, -S-, $-SO_2$ -, -NH-, $-N(R^3)$ -, $-CH_2$ -, $-CH(R^4)$ -, and $-C(R^4)(R^5)$ -, and

 R^3 , R^4 , and R^5 each independently represents a hydrogen atom or a monovalent substituent.

16-17 (canceled).