Esercizio 46. Siano X e Y due variabili che possono assumere valori 0,1 o 2 con la stessa probabilità. Assumiamo che siano indipendenti e consideriamo le variabili P = XY e S = X + Y.

- a) Descrivere la distribuzione congiunta di (P, S).
- b) Determinare le distribuzioni marginali di P ed S.
- c) Dire se P ed S sono indipendenti. d) Calcolare E[P].

(Risposta: d) 1)

Esercizio 47. Siano X_1 e X_2 due variabili casuali indipendenti che possono assumere valori 0, 1 e 3 rispettivamente con probabilità $\frac{1}{2}$, $\frac{1}{4}$ e $\frac{1}{4}$. Sia $Z = X_1 + X_2$. Si determino E[Z], V[Z] e p_Z . Si consideri poi la variabile bidimensionale (X_1, Z) .

- a) Le variabili X_1 e Z sono indipendenti?
- b) Si esprima (con una tabella a doppia entrata) la distribuzione congiunta $p_{X_1,Z}$.

(Risposta: E[Z] = 2, V[Z] = 3)

Esercizio 48. Sia (X,Y) una coppia di variabili aleatorie con distribuzione congiunta:

$$f_{(X,Y)}(s,t) = \begin{cases} \frac{3}{8} & \text{se } st = 0\\ \frac{1}{8} & \text{se } (s,t) \in A\\ \frac{3}{8} & \text{se } (s,t) \in B\\ 0 & \text{altrimenti} \end{cases}$$

dove $A = \{(s,t) \in \mathbb{R}^2 : s,t \in [-1,1] \text{ e } st > 0\}$ mentre $B = \{(s,t) \in \mathbb{R}^2 : s,t \in [-1,1] \text{ e } st < 0\}.$

- a) Determinare le densità marginali di X e Y e dire se queste due sono indipendenti.
- b) Calcolare E[Z] dove Z=1 se almeno uno tra X e Y è maggiore di $\frac{1}{2}$, 0 altrimenti.
- c) Calcolare $P[\{X \ge \frac{1}{2}\} \cap \{Y \ge \frac{1}{2}\}]$ e $P[\{X \ge \frac{1}{2}\} \cup \{Y \ge \frac{1}{2}\}]$.
- d) Calcolare E[XY].

(Risposta: b)
$$\frac{15}{32}$$
 - c) $\frac{1}{32}$, $\frac{15}{32}$ - d) $-\frac{1}{6}$)

Esercizio 49. Un'urna contiene tre palle numerate da 1 a 3. Sia Y la somma dei numeri di due palle estratte dall'urna con reimbussolamento. Determinare valore atteso e varianza di Y.

(Risposta:
$$E[Y] = 4$$
, $V[Y] = \frac{4}{3}$)

Esercizio 50. Un'urna contiene tre palle numerate da 1 a 3. Sia Y la somma dei numeri di due palle estratte dall'urna senza reimbussolamento. Determinare valore atteso e varianza di Y.

(Risposta:
$$E[Y] = 4$$
, $V[Y] = \frac{2}{3}$)

Esercizio 51. Si considerino 3 variabili aleatorie indipendenti X_1 , X_2 , X_3 , tutte con media 1 e varianza 2. a) Calcolare media e varianza di $Y = X_1 + X_2 - X_3$. b) Calcolare media e varianza di $Y_1 = X_1 + X_2$, $Y_2 = X_1 - X_3$, $Y_3 = 2X_1$. Comparare e commentare i risultati.

(Risposta: a) E[Y] = 1, V[Y] = 6 - b) $E[Y_1] = 2$, $V[Y_1] = 4$, $E[Y_2] = 0$, $V[Y_1] = 4$, $E[Y_3] = 2$, $V[Y_3] = 8$)

Esercizio 52. Siano X_1 e X_2 due variabili casuali indipendenti con media 3 e varianza 4. Calcolare:

- a) $E[3X_1 + 5]$, $V[3X_1 + 5]$;
- b) $E[3X_1 2X_2], V[3X_1 2X_2];$
- c) $E[X_1^2];$
- d) $E[(X_1-2)^2]$.

(Risposta: a) 14, 36 - b) 3, 52 - c) 13 - d) 5)

Esercizio 53. Sia $S_0 = 1$ quanto abbiamo investito in asset finanziari. Assumiamo che, ogni mese, l'investimento può, alternatamente e indipendentemente rispetto ai mesi predenti:

- dimezzarsi, con probabilità $\frac{1}{4}$;
- restare invariato, con probabilità $\frac{1}{2}$;
- raddoppiare con probabilità $\frac{1}{4}$.

Denotiamo con S_n il valore del nostro investimento alla fine del n-esimo mese. Allora vale che $S_n = S_0 \cdot X_1 \cdot X_2 \cdots X_n$ dove le X_i sono variabili indipendenti con la stessa distribuzione:

$$p_X(t) = \begin{cases} \frac{1}{4} & \text{se } t = \frac{1}{2} \text{ o } t = 2\\ \frac{1}{2} & \text{se } t = 1\\ 0 & \text{altrimenti} \end{cases}$$

Calcolare:

- a) La distribuzione di S_2 ;
- b) media e varianza di S_2 .

(Risposta: b)
$$E[S_2] = \frac{81}{64}$$
, $V[S_2] = \frac{100^2 - 81^2}{64^2}$)