

MINISTÉRIO DA EDUCAÇÃO E DESENVOLVIMENTO HUMANO INSTITUTO DE EDUCAÇÃO ABERTA E À DISTÂNCIA - IEDA

Módulo 3

Matemática

PROGRAMA DO ENSINO SECUNDÁRIO À DISTÂNCIA (PESD) 1º CICLO

PROGRAMA DO ENSINO SECUNDÁRIO À DISTÂNCIA (PESD) 1º CICLO

Módulo 3 de: Matemática

Moçambique

FICHA TÉCNICA

Consultoria

CEMOQE MOÇAMBIQUE

Direcção

Manuel José Simbine (Director do IEDA)

Coordenação

Nelson Casimiro Zavale

Belmiro Bento Novele

Elaborador

Constantino Matsinhe

Revisão Instrucional

Nilsa Cherindza

Lina do Rosário

Constância Alda Madime

Dércio Langa

Revisão Científica

Teresa Macie

Revisão linguística

Benício Armindo

Maquetização e Ilustração

Elísio Bajone

Osvaldo Companhia

Rufus Maculuve

Impressão

CEMOQE, Moçambique

Índice

INTRODUÇÃO 7

UNIDADE Nº1: NOÇÃO DE NÚMEROS REAIS E RADICIAÇÃO	9		
Lição nº1: REVISÃO DOS NÚMEROS RACIONAIS E REPRESENTAÇÃO DE NÚMEROS RACIONAIS I			
RECTA GRADUADA			
Lição n°2: ADIÇÃO E SUBTRACÇÃO DE NÚMEROS RACIONAIS	15		
Lição n°3: MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS RACIONAIS			
ição n°4: EXPRESSÕES QUE ENVOLVEM TODAS OPERAÇÕES			
Lição n°5: CÁLCULO DE QUADRADOS E RAÍZES QUADRADAS em Q	22		
Lição n°6: CÁLCULO DE RAÍZES QUADRADAS E DE QUADRADOS NÃO PERFEITOS USANDO O			
ALGORITMO			
Lição n° 7: NOÇÃO DE NÚMEROS IRRACIONAIS	32		
Lição n°8. CONJUNTO DE NÚMEROS REAIS E RELAÇÃO ENTRE CONJUNTOS NUMÉRICOS IN, Z,	, Q, I		
E R	35		
Lição n°9: REPRESENTAÇÃO DE NÚMEROS REAIS NA RECTA GRADUADA			
Lição n°10: RADICIAÇÃO, CÁLCULO DE CUBOS E RAÍZES CÚBICAS DE NÚMEROS PERFEITOS	42		
Lição n° 11: POTÊNCIA DE EXPOENTE FRACCIONÁRIO			
Lição n°12: PASSAGEM DE UM FACTOR PARA DENTRO E FORA DO RADICAL	45		
Lição n°13: PROPRIEDADES DE RADICAIS	48		
Lição n°14: COMPARAÇÃO DE RADICAIS			
Lição n°13: OPERAÇÕES COM RADICAIS: ADIÇÃO E SUBTRACÇÃO DE RADICAIS			
Lição n°14: MULTIPLICAÇÃO, DIVISÃO DE RADICAIS E EXPRESSÕES NUMÉRICAS	54		
ACTIVIDADES UNIDADE N°-1/ PREPARAÇÃO PARA TESTE	57		
Unidade2: INEQUAÇÕES E SISTEMA DE INEQUAÇÕES LINEARES	61		
Lição n°1:			
INTERVALOS NUMÉRICOS LIMITADOS E ILIMITADOS	62		
Lição n°2:	67		
REUNIÃO E INTERSECÇÃO DE INTERVALOS NUMÉRICO			
Lição n°3: NOÇÃO E RESOLUÇÃO ANALÍTICA, GEOMÉTRICA DE INEQUAÇÕES LINEARES			
LIÇÃO N°4: NOÇÃO E RESOLUÇÃO DE SISTEMA DE INEQUAÇÕES LINEARES COM UMA VARIÁ	VEL		
	72		
UNIDADE 3: NOÇÃO DE MONÓMIOS E POLINÓMIOS	78		
LIÇÃO N°1: NOÇÃO DE MONÓMIOS E GRAU DE UM MONÓMIO			
Lição n°2: ADIÇÃO ALGÉBRICA DE MONÓMIOS			
LIÇÃO N°3: MULTIPLICAÇÃO E DIVISÃO DE MONÓMIOS			
Lição n°4: POTENCIAÇÃO DE MONÓMIOS			
Lição n°5: NOÇÃO DE POLINÓMIOS E GRAU DE UM POLINÓMIO			
Lição n°6: ADIÇÃO E SUBTRACÇÃO DE POLINÓMIOS			
Lição n°7: MULTIPLICAÇÃO DE UM POLINÓMIO POR UM MONÓMIO E POR UM BINÓMIO			
Lião n° 8: MULTIPLICAÇÃO DE POLINÓMIOS E PROPRIEDADES			
Lição n°9: DECOMPOSIÇÃO DE UM POLINÓMIO EM FACTORES RECORRENDO A PROPRIEDAD			
DISTRIBUTIVA (FACTOR COMUM). PRODUTOS NOTÁVEISa + h2 E a + ha - h	98		

Lição n°10: DIVISÃO ATRAVÉS DA SIMPLIFICAÇÃO DE UM POLINÓMIO POR UM MONÓMIO	102
3.11.1 CHAVE-DE-CORRECÇÃO DA UNIDADE n° 3	106
UNIDADE4: EQUAÇÕES QUADRÁTICAS	107
Lição n°1: NOÇÃO DE EQUAÇÕES QUADRÁTICAS	108
Lição n°2: LEI DE ANULAMENTO DE PRODUTO	111
$\label{eq:licas} \text{Lição n}^\circ 3: \ \text{RESOLUÇÃO DE EQUAÇÕES QUADRÁTICAS INCOMPLETAS DO TIPO:} \\ \text{ax2} = 0; \\ \text{ax2} - 0; \\ \text{ax2} - 0; \\ \text{ax3} - 0; \\ \text{ax4} - 0; \\ \text{ax5} - 0; \\ \text{ax6} - 0; \\ \text{ax7} - 0; \\ \text{ax8} - 0; \\ a$	+c=
0; $ax2 + bx = 0$ usando a lei de anulamento de produto	113
Lição n°4: RESOLUÇÃO DE EQUAÇÕES QUADRÁTICAS COMPLETAS DO TIPO: $ax2 + bx + c = ax + bx + c$	0
USANDO A LEI DE ANULAMENTO DE PRODUTO	116
Lição n°5: FÓRMULA RESOLVENTE	119
LIÇÃO N°6: SOMA E PRODUTO DE RAÍZES DE EQUAÇÃO QUADRÁTICA	122
Lição n°7: FACTORIZAÇÃO DE UM TRINÓMIO $ax2 + bx + c = ax - x1x - x2$	125
Lição n°8: PROBLEMAS CONDUCENTES ÀS EQUAÇÕES QUADRÁTICAS	127

MENSAGEM DA INSTITUIÇÃO DIRIGIDA AOS ALUNOS

CARO ALUNO!

Bem-vindo ao Programa do Ensino Secundário à Distância (PESD).

É com grata satisfação que o Ministério da Educação e Desenvolvimento Humano coloca nas suas mãos os materiais de aprendizagem especialmente concebidos e preparados para que você e muitos outros jovens e adultos, com ou sem ocupação profissional, possam prossseguir com os estudos ao nível secundário do Sistema Nacional de Educação, seguindo uma metodologia denominada por "Ensino à Distância".

Com este e outros módulos, pretendemos que você seja capaz de adquirir conhecimentos e habilidades que lhe vão permitir concluir, com sucesso, o Ensino Secundário do 1º Ciclo, que compreende a 8ª, 9ª e 10ª classes, para que possa melhor contribuir para a melhoria da sua vida, da vida da sua família, da sua comunidade e do País. Tendo em conta a abordagem do nosso sistema educativo, orientado para o desenvolvimento de competências, estes módulos visam, no seu todo, o alcance das competências do 1º ciclo, sem distinção da classe.

Ao longo dos módulos, você irá encontrar a descrição do conteúdo de aprendizagem, algumas experiências a realizar tanto em casa como no Centro de Apoio e Aprendizagem (CAA), bem como actividades e exercícios com vista a poder medir o grau de assimilação dos mesmos.

ESTIMADO ALUNO!

A aprendizagem no Ensino à Distância é realizada individualmente e a ritmo próprio. Pelo que os materiais foram concebidos de modo a que possa estudar e aprender sózinho. Entretanto, o Ministério da Educação e Desenvolvimento Humano criou Centros de Apoio e Aprendizagem (CAA) onde, juntamente com seus colegas se deverão encontrar com vários professores do ensino secundário (tutores), para o esclarecimento de dúvidas, discussões sobre a matéria aprendida, realização de trabalhos em grupo e de experiências laboratoriais, bem como da avaliação formal do teu desempenho, designada de Teste de Fim do Módulo (TFM). Portanto, não precisa de ir à escola todos dias, haverá dias e horário a serem indiçados para a sua presença no CAA.

Estudar à distância exige o desenvolvimento de uma atitude mais activa no processo de aprendizagem, estimulando em si a necessidade de rnuita dedicação, boa organização, muita disciplina, criatividade e sobretudo determinação nos estudos.

Por isso, é nossa esperança de que se empenhe com responsabilidade para que possa efectivamente aprender e poder contribuir para um Moçambique Sempre Melhor!

BOM TRABALHO!

Maputo, aos 13 de Dezembro de 2017

MINISTRA DA EDUCAÇÃO E
DESENVOLVIMENTO HUMANO

Av. 24 de Julho 167-Telefone n°21 49 09 98-Fax n°21 49 09 79-Caixa Postal 34-EMAIL: L_ABMINEDH@minedh.gov.mz ou L_mined@mined.gov.mz mfm

INTRODUÇÃO

Bem-vindo ao módulo 3 de Matemática

O presente módulo está estruturado de forma a orientar claramente a sua aprendizagem dos conteúdos propostos.

Estão apresentados nele conteúdos, objectivos gerais e específicos bem como a estratégia de como abordar cada tema desta classe.

ESTRUTURA DO MÓDULO

Este módulo é constituído por 4 (Quatro) unidades temáticas, nomeadamente:

Unidade nº1: noção de números reais e radiciação

unidade2: inequações e sistema de inequações lineares

unidade3: noção de monómios e polinómios

unidade4: equações quadráticas

OBJECTIVOS DE APRENDIZAGEM

No final do estudo deste modulo, esperamos que você seja capaz de:

- Diferenciar os conjuntos numéricos dos números naturais, inteiros, racionais irracionais e reais;
- Operar os números reais aplicando as operações de adição, subtracção, multiplicação e divisão;
- Aplicar os números reais na resolução de equações Quadráticas;

ORIENTAÇÃO PARA O ESTUDO

Estimado estudante, para ter sucesso no estudo deste módulo, é necessário muita dedicação, portanto aconselhamos o seguinte:

- -Reserve pelo menos 3horas por dia para o estudo de cada lição e resolução dos exercícios propostos;
- Procure um lugar tranquilo que disponha de espaço e iluminação apropriada, pode ser em casa, no Centro de Apoio e Aprendizagem (CAA) ou noutro lugar perto da sua casa;
- Durante a leitura, faça anotações no seu caderno sobre conceitos, fórmulas e outros aspectos importantes sobre o tema em estudo;

- Aponte também as duvidas a serem apresentadas aos seus colegas, professor ou tutor de forma a serem esclarecidas;
- Faca o resumo das matérias estudadas, anotando as propriedades a serem aplicadas;
- Resolva os exercícios e só consulte a chave-de-correcção para confirmar as respostas. Caso tenha respostas erradas volte a estudar a lição e resolve novamente os exercícios por forma a aperfeiçoar o seu conhecimento. Só depois de resolver com sucesso os exercícios poderá passar para o estudo da lição seguinte. Repita esse exercício em todas as lições.

Ao longo das lições você vai encontrar figuras que o orientarão na aprendizagem:

CONTEÚDOS

EXEMPLOS

REFLEXÃO

TOME NOTA

AUTO-AVALIAÇÃO

CHAVE-DE-CORRECÇÃO

CRITÉRIOS DE AVALIAÇÃO

Ao longo de cada lição de uma unidade temática são apresentadas actividades de auto-avaliação, de reflexão e de experiências que o ajudarão a avaliar o seu desempenho e melhorar a sua aprendizagem. No final de cada unidade temática, será apresentado um teste de auto-avaliação, contendo os temas tratados em todas as lições, que tem por objectivo o preparar para a realização da prova. A auto-avaliação é acompanhada de chave-de-correcção com respostas ou indicação de como deveria responder as perguntas, que você deverá consultar após a sua realização. Caso você acerte acima de 70% das perguntas, consideramos que está apto para fazer a prova com sucesso.

UNIDADE Nº1: NOÇÃO DE NÚMEROS REAIS E RADICIAÇÃO

INTRODUÇÃO DA UNIDADE TEMÁTICA

Estimado(a) aluno(a) bem-vindo ao estudo de módulo 3. Os conhecimentos adquiridos no módulo 2, sobre o s conjuntos numéricos naturais, inteiros e racionais vão sustentar bastante a unidade temática número 1 (um) sobre **Noção de números reais e radiciação.** Esta unidade está estruturada de

seguinte modo: Contem 14 (Catorze) lições, que abordam a representação numérica na recta graduada e as operações dos números que pertencem aos conjuntos IN, Z, Q, I e R.

OBJECTIVOS DE APRENDIZAGEM

- Identificar os números irracionais;
- Representar os números reais na recta graduada;
- Relacionar os conjuntos IN, Z, Q, I e R
- Operar os números reais.

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidade sobre **Noção** de números reais e radiciação, você:

- Identifica os números irracionais;
- -Representa os números reais na recta graduada;
- Relaciona os conjuntos IN, Z, Q, I e R
- Opera os números reais.

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 42 horas.

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de:

- Uma sebenta, esferográfica, lápis, borracha e régua.

Lição nº1:

REVISÃO DOS NÚMEROS RACIONAIS E REPRESENTAÇÃO DE NÚMEROS RACIONAIS NA RECTA GRADUADA

INTRODUÇÃO A LIÇÃO DE NÚMEROS RACIONAIS:

A lição dos números racionais vai ser desenvolvida partindo dos números naturais e inteiros.

A posição dos números inteiros positivos e negativos em relação ao ponto origem 0 (zero).

A relação entre os números naturais, inteiros e racionais.

OBJECTIVOS DE APRENDIZAGEM

- -Representar os números racionais na recta graduada;
- -Relacionar os números racionais com os seus subconjuntos.

TEMPO DE ESTUDO:

Caro estudante, para o estudo da lição **de números racionais,** você vai precisar de 3horas.

1.1.1 Números racionais

Caro estudante, no módulo número 1, abordou os conjuntos dos números naturais IN, conjunto dos números inteiros Z, e conjunto dos números racionais Q.

Ex: Conjunto de números naturais:

$$N = \{1,2,3,4,5,6,7,8,9,10,11,...\}$$

2. Conjunto de números inteiros:

$$Z = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$$

3. Conjunto de números racionais:

$$Q = \left\{ \dots, -\frac{20}{3}; -5; -3, 5; -3, -\frac{3}{2}; -1, 25; -1; 0; +0, 25; +\frac{1}{2}; +\frac{4}{5}; +1; +\frac{4}{3}; +3, 75; +\frac{21}{4}; \dots \right\}$$

1.1.2 Representação de números racionais na recta graduada

Os números naturais, inteiros e racionais podem ser representados na recta graduada, veja os exemplos abaixo:

Ex1: Representemos os seguintes números naturais na recta graduada:

 $A \subseteq 1, B \subseteq 2, C \subseteq 8, D \subseteq 4, E \subseteq 5, F \subseteq 10.$

Ex 2: Representemos os seguintes números inteiros na recta graduada:

$$A _ + 1, B _ - 2, C _ + 3, D _ 4, E _ - 5, F _ - 4.$$

Ex 3: Representemos os seguintes números racionais na recta graduada:

$$A = +\frac{1}{2}, B = -\frac{1}{2}, C = +\frac{7}{3}D = -4, E = +\frac{10}{5}, F = -6.25.$$

Portanto, os números que estão na forma de fracção devemos transforma-los na forma decimal aplicando o algoritmo da divisão. Veja os exemplos abaixo:

 $A \cup +\frac{1}{2}$

Logo:

 $A _{0} + \frac{1}{2} = +0.5$

 $B \cup -\frac{1}{2}$;

Logo:

_			7	
L	_	+	2	;
			S	

Logo:

10 graduada unidade. 01

 $C = +\frac{7}{3} = +2,33 \dots$ Assim, já podemos representar na recta usando uma régua. Você pode considerar 1cm como uma

 \mathcal{C}

Os números racionais acima podem ser representados na mesma recta graduada.

Ex:

Definição: Os números racionais são aqueles que podem ser representados na forma de fracção ou na forma de dízima finita ou infinita periódica.

Ex: ...,
$$-\frac{20}{3}$$
; -5; -3,5; -3, $-\frac{3}{2}$; -1,25; -1; 0; +0.25; $+\frac{1}{2}$; $+\frac{4}{5}$; +1; $+\frac{4}{3}$; +3,75; $+\frac{21}{4}$; ...

Dizima finita – é todo número racional na forma decimal, que tem um número finito de casas decimais.

Ex: O número $-\frac{3}{4} = -0.75$ tem duas casas decimais que são 7 e 5.

Dizima infinita periódica - é todo número racional na forma decimal em que o valor da casa decimal repete-se infinitamente (sem terminar).

Ex: O número $+\frac{7}{3}=+2,33333...$, tem muitas casas decimais que são 3,3,3,3..., repete-se sem terminar então o período é 3.

Pode se representar também como +2,33333... = +2(3).

1.1.3 Relação de pertença entre elementos (números) e conjuntos numéricos (IN, Z e Q)

Para relacionar um número e um conjunto, usamos os símbolos ∈ (pertence), ou ∉ (não pertence).

Ex: Considere o conjunto W abaixo:

$$W = \left\{ \dots, -\frac{20}{3}; -5; -3,5; -3, -\frac{3}{2}; -1,25; -1; 0; +0.25; +\frac{1}{2}; +\frac{4}{5}; +1; +\frac{4}{3}; +3,75; +\frac{21}{4}; \dots \right\}.$$
 Verifiquemos se as proposições abaixo são verdadeira (V) ou falsas (F).

a)
$$0 \in N(F)$$

a)
$$0 \in N(F)$$
 e) $+\frac{1}{2} \notin Q^{-}(V)$ i) $0 \in Z_{0}^{-}(V)$

$$i)\ 0\in Z_0^-(V)$$

b)
$$0 \in Z(V)$$

f)
$$+0.25 \in Q^+(V)$$

$$J) - \frac{2}{3} \notin Q_0^+(V)$$

c)
$$-\frac{3}{2} \in Q(V)$$

b)
$$0 \in Z(V)$$
 f) $+0.25 \in Q^{+}(V)$ J) $-\frac{2}{3} \notin Q_{0}^{+}(V)$ c) $-\frac{3}{2} \in Q(V)$ g) $+\frac{21}{4} \notin Z(F)$ l) $-1 \in Q(V)$ d) $3.75 \notin Z(V)$ h) $-5 \notin Z^{+}(V)$ m) $-1.25 \in Q^{+}(F)$

$$\mathrm{l)} - 1 \in Q(V)$$

d)
$$3,75 \notin Z(V)$$

h)
$$-5 \notin Z^+(V)$$

m)
$$-1,25 \in Q^+(F)$$

1.1.4 Relação de inclusão entre conjuntos N (naturais), Z (inteiros) e Q (racionais)

Os conjuntos N, Z e Q podem ser relacionados com os símbolos: \subset (contido em), \supset (contem), $\not\subset$ $(n\tilde{a}o\ contido\ em)\ e\
eg \ (n\tilde{a}o\ contem).$

O símbolo ⊂ (está contido em) - relaciona um conjunto com menor numero de elementos com um outro que tenha maior ou igual numero de elementos.

Ex: a) $N \subset Z$ (Lê-se N está contido em Z)

- b) $Z \subset Z$ (Lê-se Z está contido em Z)
- c) $Z \subset Q$ (Lê-se Z está contido em Q)
- d) $N \subseteq Q$ (Lê-se N está contido em Q)
- e) $Q \subset Q(L\hat{e}\text{-se }Q \text{ está contido em }Q)$

O símbolo \supset (contem)-relaciona um conjunto com maior ou igual numero de elementos com um outro que tenha menor numero de elementos.

Ex: a) $Z \supset N$ (Lê-se Z contem N)

- b) $Z \supset Z$ (Lê-se Z contem Z)
- c) $Q \supset Z$ (Lê-se Q contem Z)
- d) $Q \supset Q(L\hat{e}\text{-se } Q \text{ contem } Q)$

negações No contrario das relações acima usa-se $\not\subset$ (não está contido) e $\not\subset$ (não contem).

Ex: a) $N \not\subset Z_0^-$ (Lê-se N não está contido em Z_0^-)

- b) $Z \not\subset Q^-$ (Lê-se Z não está contido em Q^-)
- c) $Q_0^+ \not\supset Q^-$ (Lê-se Q_0^+ não contem Q^-)
- d) $Q_0^- \not\supset N(\text{Lê-se }Q_0^- \text{ não contem N})$

Caro estudante, depois da revisão de números racionais você pode resolver os exercícios abaixo:

- 1. Verifique se as proposições abaixo são verdadeiras (V) ou falsas (F):

- a) $-\frac{3}{2} \in Z_0^+$ () e) $-\frac{1}{2} \notin Q^-$ () i) $0 \in Z^-$ () b) $0 \notin Z$ () f) $+0.25 \notin Q^+$ () J) $-\frac{2}{3} \in Q_0^+$ ()
- c) $-\frac{3}{2} \in Q_0^-$ () g) $+\frac{21}{4} \notin Q$ () l) $-1 \notin Q$ () d) $3,75 \in Z$ () h) $-5 \notin Z^-$ () m) $-1,25 \in Q$ ()

- 2. Represente os valores abaixo na recta real graduada.
 - a) A $\bigcirc -\frac{3}{2}$ e) $E \bigcirc -2\frac{1}{2}$ i) $I \bigcirc 0,35$ b) $B \bigcirc 0$ f) $F \bigcirc +0,25$ J) $J \bigcirc -\frac{2}{3}$ c) $C \bigcirc -\frac{3}{4}$ g) $G \bigcirc +\frac{21}{4}$ l) $L \bigcirc -1$ d) $D \bigcirc 3,75$ h) $H \bigcirc -5$ m) $M \bigcirc -10,375$

- 3. Complete com os símbolos \subset , \supset , $\not\subset$, $\not\supset$, \in ou $\not\in$ de modo a obter proposições verdadeiras:

- a) $-3 \dots \dots Q_0^+$ e) $0 \dots \dots Q^-$ i) $0,1 \dots \dots Z^-$ b) $Q_0^- \dots \dots Q$ f) $Q_0^+ \dots \dots Z^+$ J) $40 \dots \dots \in Q_0^+$ c) $Q^- \dots \dots \in \{-1; +2\}$ g) $-\frac{91}{4} \dots \dots Q$ l) $+8,25 \dots \dots Q$ d) $Z \dots \dots Q$ h) $+5 \dots \dots Z^-$ () m) $-1000 \dots Q$

CHAVE-DE-CORRECÇÃO N° 1

1.

- a) (F) e) (F)
 b) (F) f) (F)
 c) (V) g) (F)
 d) (F) h) (F)

- i) (F) J) (F)

- l) (F)

- m) (V)

- 2.
- Н
- E AL CBIF
- D G

3.

- $\begin{array}{lll} \text{a)} & -3 \not \in Q_0^+ & \text{e)} \ 0 \in Q^- & \text{i)} \ 0,1 \not \in Z^- \\ \text{b)} & Q_0^- \subset Q & \text{f)} \ Q_0^+ \supset Z^+ & \text{J)} \ 40 \in Q_0^+ \\ \text{c)} & Q^- \not \supset \{-1; +2\} \ \ g) \frac{91}{4} \in Q & \text{l)} \ +8,25 \in Q \\ \text{d)} & Z \subset Q & \text{h)} \ +5 \not \in Z^- & \text{m)} \ -1000 \in Q \end{array}$

Lição nº2:

ADIÇÃO E SUBTRACÇÃO DE NÚMEROS RACIONAIS

INTRODUÇÃO A LIÇÃO:

Nesta lição vamos operar com os números racionais **adição e subtracção de números racionais** Vamos aplicar as propriedades de acordo com cada operação.

OBJECTIVOS DE APRENDIZAGEM

- Operar os números racionais;
- Aplicar as propriedades das operações;

TEMPO DE ESTUDO:

Caro estudante, para estudar a lição das operações de números racionais vai precisar de 3 horas.

1.2.1. Adição e subtracção de números racionais

Os números racionais podem se adicionar ou subtraírem-se.

A uma expressão que se pode transformar numa adição de números racionais designa-se por adição algébrica e o seu resultado é soma algébrica.

Ex: a)
$$-(+7) + (+8) - (-18) =$$

Primeiro você deve recordar que:

A multiplicação ou conjugação de dois sinais iguais resulta num sinal positivo. Isto é: $(-) \times (-) = + e$ $(+) \times (+) = +$

A multiplicação de dois sinais diferentes resulta sinal negativo. Isto é: $(+) \times (-) = -$ e $(-) \times (+) = -$.

Então podemos facilmente eliminar parênteses na expressa a), usando a conjugação de sinais. Assim:

$$-(+7) + (+8) - 18 =$$

= $-7 + 8 - 18 =$

A seguir vamos adicionar, o resultado deve ter o sinal de maior valor absoluto. Assim

$$= -7 + 8 - 18 =$$

 $= +1 - 18 = -17$

b) $\left(+\frac{3}{4}\right) - \left(-\frac{4}{3}\right) + \left(-\frac{1}{2}\right) - \left(+\frac{1}{6}\right) =$, Neste caso em que a adição e subtracção é de números fraccionários com denominadores diferentes temos de:

- Primeiro, devemos eliminar parênteses aplicando a conjugação de sinais como no exemplo a). Assim:

$$+\frac{3}{4}+\frac{4}{3}-\frac{1}{2}-\frac{1}{6}=$$

- Segundo, devemos calcula o mmc (menor múltiplo comum) dos denominadores. Assim:

$$+\frac{3}{4}+\frac{4}{3}-\frac{1}{2}-\frac{1}{6}=$$
(3) (4) (6) (2) O mmc de2,3,4 e 6 é 12. Então

multiplicando os factores 2,3,4 e 6 com os numeradores 3,4,1 e 1 teremos:

$$+\frac{3\times3}{4\times3} + \frac{4\times4}{3\times4} - \frac{1\times6}{2\times6} - \frac{1\times2}{6\times2} =$$

$$=\frac{+9+16-6-2}{12} =$$

$$=\frac{+25-6-2}{12} = \frac{+19-2}{12} = +\frac{17}{12}$$

c) $(-0.5) + (-0.3) - (-\frac{2}{5}) - (0.25) =$; Para resolver esta expressão deve-se:

- Eliminar os parênteses conjugando os sinais; Assim:

$$-0.5 - 0.3 + \frac{2}{5} - 0.25 =$$

- Transformar os números decimais em fracções:

Por ex: Para transformar -0.5 em fracção pode-se ignorar a vírgula e fica -0.5, em seguida conta-se o número de casas decimais neste caso é uma casa decimal que é 5, esse número de casas decimais corresponde ao número de zeros que deve acrescentar na unidade e fica: $-\frac{0.5}{10} = -\frac{5}{10}$. Então a expressão fica:

$$= -\frac{5}{10} - \frac{3}{10} + \frac{2}{5} - \frac{25}{100} =$$
Calculando o mmc de 5,10 *e* 100, temos: (10)(10)(20)(1)

$$= -\frac{5 \times 10}{100} - \frac{3 \times 10}{100} + \frac{2 \times 20}{100} - \frac{25 \times 1}{100} =$$

$$= \frac{-50 - 30 + 40 - 25}{100} =$$

$$= \frac{-80 + 40 - 25}{100} = \frac{-40 - 25}{100} = -\frac{65}{100}$$

ACTIVIDADE N° 2

Caro estudante, depois da revisão das operações com números racionais você pode efectuar os exercícios propostos abaixo:

- 1. Calcule e simplifique as seguintes operações:
 - a) -(-6) + (-6) + (+20) =
 - b) $\left(+\frac{1}{2}\right) \left(+\frac{3}{4}\right) + \left(+\frac{14}{3}\right) =$
 - c) $-\left(-\frac{6}{7}\right) \frac{5}{14} \left(\frac{1}{2}\right) =$
 - d) $(0.6 + 0 0.5) \frac{1}{10} =$
 - e) $(+0,66) + (-4,5) (-7) \left(+\frac{66}{10}\right) + (-2,03) =$

CHAVE-DE-CORRECÇÃO N° 2

a) 20 b)
$$\frac{53}{12}$$
 c) 0 d) 0 d) $-\frac{547}{100}$ e) $-\frac{91}{12}$

Lição nº3:

MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS RACIONAIS

INTRODUÇÃO A LIÇÃO:

Nesta lição vamos operar com os números racionais Multiplicação e divisão.

. Vamos aplicar as propriedades de acordo com cada operação.

OBJECTIVOS DE APRENDIZAGEM

- Operar os números racionais;
- Aplicar as propriedades das operações;

TEMPO DE ESTUDO:

Caro estudante, para estudar a lição das operações de números racionais vai precisar de 3 horas.

1.3.1 Multiplicação de números racionais

Pode-se multiplicar os números racionais como no exemplo abaixo:

Ex: a) $-\left(+\frac{2}{3}\right) \times \left(-\frac{6}{8}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{1}{2}\right) =$. Primeiro multiplicamos os sinais para eliminar parênteses. Assim: $=+\frac{2}{3} \times \frac{6}{8} \times \frac{2}{3} \times \frac{1}{2} =$; passo seguinte, multiplicamos os numeradores e os denominadores. Assim: $=+\frac{2\times 6\times 2\times 1}{3\times 8\times 3\times 2} =$; Passo seguinte, decompomos os factores 6 e 8. Assim:

$$\begin{array}{c|cccc}
6 & 2 \\
3 & 3 \\
1 & & \\
6 = 2 \times 3
\end{array}$$

Posso seguinte, substituímos na expressão = $+\frac{2\times6\times2\times1}{3\times8\times3\times2} = \frac{2\times2\times3\times2\times1}{3\times2^3\times3\times2} = ;$ Passo seguinte simplifica os factores iguais. Assim: $=\frac{2\times2\times3\times2\times1}{3\times2^3\times3\times2} = \frac{1}{2\times3} = \frac{1}{6}$

1.3.2 Divisão de números Racionais

Para efectuar a divisão de dois números racionais deve-se transformar a divisão numa multiplicação, fazendo a multiplicação do dividendo pelo inverso do divisor. Isto é: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$ onde: $b \neq 0$; $c \neq 0$ $e \neq 0$.

Ex: a) $\left(-\frac{5}{15}\right) \div \left(+\frac{10}{45}\right) =$, primeiro mantemos o dividendo $\left(-\frac{5}{15}\right)$ e multiplicamos pelo inverso do divisor $\left(+\frac{10}{45}\right)$ o seu inverso será $\left(+\frac{45}{10}\right)$, então fica: $\left(-\frac{5}{15}\right) \times \left(+\frac{45}{10}\right) =$, passo seguinte multiplicamos os sinais dos factores para eliminar parênteses, fica: $-\frac{5}{15} \times \frac{45}{10} =$, multiplicamos os numeradores e denominadores, fica: $-\frac{5\times45}{15\times10} =$, decompomos os factores 10, 15 e 45. Assim:

45	3	
15	3	
5	5	
1		
$6 = 3 \times 3 \times 5 = 3^2 \times 5$		

Então já podemos substituir na expressão $-\frac{5\times45}{15\times10}$ =, fica: $-\frac{5\times3^2\times5}{3\times5\times2\times5}$ =, simplificamos fica: $-\frac{5/3^2/5}{3\times5\times2\times5}$ = $-\frac{3}{2}$

Por vezes pode se representar a divisão de números racionais na forma de fracção da seguinte maneira $\frac{\overline{b}}{\underline{c}}$ a regra não altera será a mesma, assim: $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$ onde: $(b \neq 0; c \neq 0 \ e \ d \neq 0) \in Q$.

Ex: b) $\frac{\left(-\frac{36}{12}\right)}{\left(-\frac{24}{64}\right)}$ =, Vamos multiplicar o dividendo pelo inverso de divisor. Assim: $\frac{\left(-\frac{36}{12}\right)}{\frac{24}{64}}$ = $\left(-\frac{36}{12}\right)$ × $\left(-\frac{64}{24}\right)$ =, Multiplicamos os sinais, os numeradores e os denominadores, fica: $+\frac{36\times64}{12\times24}$ =, decompomos os factores 12,24,36 e 64.

12	2
6	2
3	3
1	
$12 = 2^2 \times 3$	

24	2
12	2
6	2
3	3
1	
12 =	$= 2^3 \times 3$

 $36 = 2^5$

na

Em seguida substituímos os expressão +
$$\frac{36\times64}{12\times24}$$
 = + $\frac{2^5\times2^6}{2^2\times3\times2^3\times3}$ =, em simplificamos fica: + $\frac{2^5\times2^6}{2^2\times3^2\times2^3\times3}$ = $\frac{64}{2^2\times3^2\times2^3\times3}$

simplificamos, fica: $+\frac{2^{3}\times2^{6}}{2^{2}\times3\times2^{3}\times3} = +\frac{2^{6}}{3\times3} = \frac{64}{9}$

ACTIVIDADE N° 3

Caro estudante, depois da revisão das operações com números racionais você pode efectuar os exercícios propostos abaixo:

factores

seguida

1. Efectue e simplifique as seguintes operações:

a)
$$-\left(-\frac{8}{9}\right) \times \left(-\frac{18}{4}\right) =$$

b)
$$\left(-\frac{7}{28}\right) \times \left(+\frac{27}{21}\right) =$$

c)
$$-(+144) \times \left(-\frac{3}{12}\right) \times \left(-\frac{1}{9}\right) =$$

d)
$$0.3 \times \frac{10}{9} \times \left(-\frac{81}{4}\right) \times 0.2 =$$

e)
$$2\frac{9}{3} \times \left(-\frac{21}{30}\right) \times 0.01 =$$

2. Efectue e simplifique as seguintes operações:

a)
$$\left(-\frac{12}{5}\right) \div \left(+\frac{3}{25}\right) =$$

b)
$$-(-2) \div \left(-\frac{18}{5}\right) =$$

c)
$$+0.25 \div \left(+\frac{75}{100}\right) =$$

d)
$$+\left(-3\frac{1}{3}\right) \div (0,3) =$$

e)
$$-0.33 \div 0.99 =$$

CHAVE-DE-CORRECÇÃO N° 3

1. a)
$$-4$$
 b) $-\frac{9}{28}$ c) -4 d) $-\frac{27}{20}$ e) $-\frac{35}{3000}$

2. a)
$$-20$$
 b) $-\frac{5}{9}$ 5c) $\frac{1}{3}$ d) $-\frac{100}{9}$ e) $-\frac{1}{3}$

Lição nº4:

EXPRESSÕES QUE ENVOLVEM TODAS OPERAÇÕES

INTRODUÇÃO A LIÇÃO:

Nesta lição vamos operar com os números racionais em Expressões **que envolvem todas operações**. Vamos aplicar as propriedades de acordo com cada operação.

OBJECTIVOS DE APRENDIZAGEM

- Operar os números racionais;
- Aplicar as propriedades das operações;

TEMPO DE ESTUDO:

Caro estudante, para estudar a lição das operações de números racionais vai precisar de 3 horas.

1.4.1 Expressões que envolvem todas operações

Por vezes você vai encarar expressões que envolvem todas operações que precisarão de propriedades, algumas já abordadas outras abordaremos neste tema.

Nas expressões que envolvem a adição, subtracção, multiplicação e divisão devemos calcular em primeiro lugar a multiplicação ou divisa começando da operação que estiver mais a esquerda e depois terminamos com adição ou subtracção.

Ex: a)
$$-\left(\frac{3}{4}\right) \times (-0.2) - (7+4 \div 2) =$$
, Primeiro calculemos $-\left(\frac{3}{4}\right) \times (-0.2) =$, que será $-\left(\frac{3}{4}\right) \times (-0.2) = -\left(\frac{3}{4}\right) \times \left(-\frac{2}{10}\right) =$, Multiplicamos os sinais negativos fica: $+\frac{3}{4} \times \frac{2}{10} =$, Multiplicamos os numeradores e os denominadores $\frac{3 \times 2}{4 \times 10} =$, Simplificamos o 4 com 2, fica: $\frac{3 \times 2}{4 \times 10} =$ $\frac{3}{2 \times 10}$; passo seguinte: calculamos $4 \div 2 =$, fica: $4 \div 2 = 2$ em seguida a expressão da alínea a). $-\left(\frac{3}{4}\right) \times (-0.2) - (7+4 \div 2) = \frac{3}{2 \times 10} - (7+2) = \frac{3}{20} - 9 =$, passo seguinte: calculamos o mmc, fica: $\frac{3}{20} - \frac{9}{1} =$, Fica: $\frac{(3 \times 1) - (9 \times 20)}{20} = \frac{3 - 180}{20} =$

$$Logo: \frac{3-180}{20} = -\frac{177}{20}$$

b) $\left(\frac{2}{5} \div \frac{3}{2} - 1\frac{3}{5}\right) \times 5 + \frac{20}{3}$, Primeiro calculamos a divisão, porque está à esquerda em relação a multiplicação, assim: $\frac{2}{5} \div \frac{3}{2} = \frac{2}{5} \times \frac{2}{3} = \frac{4}{15}$, Aplicamos a propriedade da divisão de números racionais. Em seguida transformamos o argumento que está na forma mista em fracção, assim: $1\frac{3}{5}$, o valor 1 multiplica com o denominador 5, assim: $1 \times 5 = 5$, este resultado adiciona-se com o numerador 5 + 3 = 8, este resultado será o numerador da fracção por construir e o denominador será o mesmo, isto é: $\frac{8}{5}$. Então substituímos na expressão $\left(\frac{2}{5} \div \frac{3}{2} - 1\frac{3}{5}\right) \times 5 + \frac{20}{3} = \left(\frac{4}{15} - \frac{8}{5}\right) \times 5 + \frac{20}{3} =$, passo seguinte calculamos o que está dentro de parênteses calculando o mmc, assim: $\frac{4}{15} - \frac{8}{5} = \frac{(4 \times 1) - (8 \times 3)}{15} = \frac{4 - 24}{15} = -\frac{20}{15} = -\frac{4 \times 5}{3 \times 5} = -\frac{4}{3}$

Passo seguinte: substituímos na expressão $\left(\frac{4}{15} - \frac{8}{5}\right) \times 5 + \frac{20}{3} = \left(-\frac{4}{3}\right) \times 5 + \frac{20}{3}$, começámos com a multiplicação pois esta a esquerda, fica: $\left(-\frac{4}{3}\right) \times 5 + \frac{20}{3} = -\frac{4 \times 5}{3} + \frac{20}{3} = -\frac{20}{3} + \frac{20}{3}$, as parcelas são simétrica então podemos simplificar $-\frac{20}{3} + \frac{20}{3} = -\frac{20}{3} = -\frac{$

ACTIVIDADE N° 4

Caro estudante, depois da revisão das operações com números racionais você pode efectuar os exercícios propostos abaixo:

- 1. Calcule o valor das expressões seguintes:
 - a) $(2 \div 3 + 10 \div 3) \div (16 2 \times 7) + 15 15$
 - b) $-\frac{2}{3} \times \frac{3}{4} \div \left(-\frac{3}{2}\right) =$
 - c) $3 \div \left(-\frac{4}{5}\right) \times \left(-\frac{2}{3}\right) \div (-2) =$
 - d) $-3.2 2 \times (-2.1 + 2 \times 0.5) =$

e)
$$\frac{-1-\left(\frac{1}{3}-\frac{3}{4}\right)}{2-\left(-\frac{1}{2}\right)\times\left(-\frac{1}{2}\right)} =$$

CHAVE-DE-CORRECÇÃO N° 4

1 a) 2 b)
$$\frac{1}{3}$$
 c) $-\frac{5}{4}$ d) -1 e) $-\frac{1}{3}$

Lição nº5:

CÁLCULO DE QUADRADOS E RAÍZES QUADRADAS em Q

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos determinar os quadrados perfeitos, quadrados não perfeitos e raízes quadradas de números racionais.

OBJECTIVOS DE APRENDIZAGEM

- -Determinar os quadrados perfeitos de números racionais.
- -Determinar raiz quadrada de um número perfeito racional.
- -Determinar o resto de raízes quadradas de quadrados não perfeitos.

TEMPO DE ESTUDO:

Caro estudante, para estudar esta lição vai precisar de 2 horas.

1.5.1. Quadrados perfeitos de números racionais.

Estimado estudante, no módulo 1, você abordou o conceito de potenciação e as suas propriedades.

Potência é todo valor ou número racional que pode ser escrito na forma:

 a^n ; Onde: o a é a base; o n é expoente. $a \in Q_0^+$ e $n \in N$.

Nesta lição vamos considerar potência de expoente 2, isto é n=2 .

Ex:
$$0^2$$
; 1^2 ; $\left(\frac{1}{2}\right)^2$; 2^2 ; $\left(\frac{3}{4}\right)^2$; 3^2 ; 4^2 ; $\left(\frac{110}{378}\right)^2$; $\left(\frac{2017}{5}\right)^2$; 100^2 ; etc.

Determinemos os resultados dos quadrados acima:

- a) $0^2 = 0 \times 0 = 0$; Portanto, multiplicamos a base 0 (zero) por si própria.
- b) $1^2 = 1 \times 1 = 1$ Multiplicamos a base 1 (um) por si própria.
- c) $2^2 = 2 \times 2 = 4$ Multiplicamos a base 2 (dois) por si própria.
- d) $\left(\frac{3}{4}\right)^2 = \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) = \frac{3 \times 3}{4 \times 4} = \frac{9}{16}$ Multiplicamos a base $\frac{3}{4}$ (três sobre quatro) por si própria. E o restante dos valores também.
- e) $3^2 = 3 \times 3 = 9$
- f) $4^2 = 4 \times 4 = 16$

g)
$$\left(\frac{110}{378}\right)^2 = \left(\frac{110}{378}\right) \times \left(\frac{110}{378}\right) = \frac{12100}{142884}$$

h)
$$\left(\frac{2017}{5}\right)^2 = \left(\frac{2017}{5}\right) \times \left(\frac{2017}{5}\right) = \frac{4068289}{25}$$

i)
$$100^2 = 100 \times 100 = 10000$$

Então podemos definir os quadrados perfeitos de seguinte modo:

Definição: Quadrados perfeitos são números inteiros não negativos que são quadrados de números inteiros. a^n onde: $a \in Z_0^+ e n \in N$.

Ex:

a)
$$0^2 = 0 \times 0 = 0$$

b)
$$1^2 = 1 \times 1 = 1$$

c)
$$2^2 = 2 \times 2 = 4$$

d)
$$3^2 = 3 \times 3 = 9$$

e)
$$4^2 = 4 \times 4 = 16$$

f)
$$100^2 = 100 \times 100 = 10000$$

Os quadrados perfeitos nos exemplos acima são: 0; 1; 4; 9; 16 e 10000.

1.5.2 Raiz quadrada de um número perfeito racional

No módulo 1, abordamos o conceito da raiz quadrada como sendo todo número racional que pode ser escrito na forma:

 $\sqrt[n]{a}$, Onde: o $(a \in Q_0^+; n \in N, n \neq 1)$ a - 'e Radicando; o n - 'e Íncice; o símbolo $\sqrt{}$ chama-se Radical.

Então, quando o \boldsymbol{n} for igual a $\boldsymbol{2}$, isto é: $\boldsymbol{n}=\boldsymbol{2}$, fica: $\sqrt[2]{\boldsymbol{a}}=\sqrt{\boldsymbol{a}}$ (lê-se: raiz quadrada de \boldsymbol{a}), não é necessário colocar o índice $\boldsymbol{2}$.

Ex:

- a) $\sqrt{0}$ Lê-se raiz quadrada de zero.
- b) $\sqrt{1}$ Lê-se raiz quadrada de um.
- c) $\sqrt{2}$ Lê-se raiz quadrada de dois.
- d) $\sqrt{3}$ Lê-se raiz quadrada de três.
- e) $\sqrt{1000}$ Lê-se raiz quadrada de mil.

1.5.3 Cálculo de raízes quadradas de quadrados perfeitos

Determinar raiz quadrada de um número \sqrt{a} , significa pensar num valor \boldsymbol{b} em que ao multiplicar por si próprio $\boldsymbol{b} \times \boldsymbol{b}$, resulta \boldsymbol{a} . Isto é: $\sqrt{a} = \boldsymbol{b}$ porque $\boldsymbol{b} \times \boldsymbol{b} = \boldsymbol{b}^2 = \boldsymbol{a}$; onde: $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{Q}_0^+$.

Ex:

a)
$$\sqrt{4} = 2 \ porque \ 2 \times 2 = 2^2 = 4$$

b)
$$\sqrt{9} = 3 \ porque \ 3 \times 3 = 3^2 = 9$$

c)
$$\sqrt{16} = 4 \text{ porque } 4 \times 4 = 4^2 = 16$$

d)
$$\sqrt{100} = 10 \ porque \ 10 \times 10 = 10^2 = 100$$

Por tanto, podemos definir **quadrado perfeito** também como sendo todo número cuja raiz quadrada é um número inteiro.

1.5.4 Raízes quadradas de quadrados não perfeitos

Quadrado não perfeito - é todo número racional cuja sua raiz quadrada não resulta um número inteiro. Ou por outra é todo número racional cuja raiz quadrada resulta um número inteiro mas com um resto diferente de zero.

Ex:

- a) $\sqrt{30} = 5 \ resto 5$; Porque $5 \times 5 + 5 = 30$. Portanto 30 é quadrado não perfeito porque a sua raiz quadrada é 5 e resto 5.
- b) $\sqrt{60} = 7 \ resto \ 11$; porque $7 \times 7 + 11 = 60$. O número 60 é quadrado não perfeito porque a sua raiz quadrada é 7 e resto 11.

O resto é a diferença entre um número e o quadrado da sua raiz quadrada inteira.

a)
$$30 - 5^2 = 30 - 25 = 5$$

b)
$$60 - 7^2 = 60 - 49 = 11$$

Portanto, 30 está compreendido entre dois quadrados perfeitos que são: $25 \ e$ 36. Isto significa que: 25 < 30 < 36, isto é: $5^2 < 30 < 6^2$.

Portanto, 60 está compreendido entre dois quadrados perfeitos que são: 49 e 64.

Isto significa que: 49 < 60 < 64, isto é: $7^2 < 30 < 8^2$.

Desta maneira, as raízes quadradas de 30~e~60 não são exactas, são raízes aproximadas e podem ser aproximadas por excesso ou por defeito.

Ex:

- a) Aproximação por excesso: $\sqrt{30} \approx 6$; Aproximação por defeito: $\sqrt{30} \approx 5$
- b) Aproximação por excesso: $\sqrt{60} \approx 8$; Aproximação por defeito: $\sqrt{60} \approx 7$

Pode-se também determinar-se raiz quadra da de um número racional usando **tábua da raiz quadrada** na tabela de Matemática e Física.

Ex: Determinemos as raízes quadradas abaixo usando a tábua:

- a) $\sqrt{5,34}$; primeiro consulta-se a tábua na alínea 5,3 e verifica-se a coluna 4, teremos: $\sqrt{5,34}\approx 2,3108$.
- b) $\sqrt{30}$; primeiro consulta-se a tábua na alínea 30 e verifica-se a coluna 0, teremos: $\sqrt{30} \approx 5,4772$.
- c) $\sqrt{60}$; primeiro consulta-se a tábua na alínea 60 e verifica-se a coluna 0 , teremos: $\sqrt{60}\approx 7{,}7460$.

ACTIVIDADE DA LIÇÃO N° 5

Caro estudante, depois de rever sobre cálculo de quadrados e raízes quadradas em Q, você pode efectuar os exercícios propostos abaixo:

- 1. Complete os espaços de modo a obter proposições verdadeiras:
 - a) $\sqrt{9} = 3$ porque $3^2 = \cdots$
 - b) $\sqrt{25} = \cdots porque \dots = \cdots$
 - c) $\sqrt{36} = \cdots porque \dots = \cdots$
 - d) $\sqrt{81} = \cdots porque \dots = \cdots$
 - e) $\sqrt{144} = \cdots$ porque ... = \cdots
 - f) $\sqrt{3600} = \cdots$ porque ... = \cdots
- 2. Consulte a tábua das raízes quadradas e determine a raiz quadrada de cada alínea abaixo:
 - a) 169 b) 1024 c) 18,49 d) 85,56 e) 98,02 f) 0,5725
- 3. Calcule a raiz quadrada inteira e o respectivo resto, dos números:
 - a) 3 b) 8 c) 25 d) 51 e) 64 f) 75 g) 89 h) 625 i) 2017
- 4. Determine os quadrados perfeitos entre 100 e 200, e indica as respectivas raízes quadradas:
- 5. Determina o número cuja raiz quadrada inteira é 11 e o resto é17.

CHAVE-DE-CORRECÇÃO N° 5

1.

a)
$$\sqrt{9} = 3 \ porque 3^2 = 9$$

b)
$$\sqrt{25} = 5 \ porque 5^2 = 25$$

c)
$$\sqrt{36} = 6 \ porque \ 6^2 = 36$$

d)
$$\sqrt{81} = 9porque9^2 = 81$$

e)
$$\sqrt{144} = 12 porque 12^2 = 144$$

f)
$$\sqrt{3600} = 60 \ porque 60^2 = 3600$$

- 2. a) 13 b) 32 c) 4,3 d) 9,2498 e) 9,9005 f) 0,7566
- 3. a) 1 resto 2; b) 2 resto 4; c) 5 resto 0; d) 7 resto 2; e) 8 resto 0 f) 8 resto 11; g) 9 resto 8; h) 25 resto 0; i) 44 resto 81.
- 4. a) 100; $\sqrt{100} = 10 \ b$) 121; $\sqrt{121} = 11 \ c$) 144; $\sqrt{144} = 12 \ d$) 169; $\sqrt{169} = 13 \ e$)196; $\sqrt{196} = 14$.
- 5. $11 \times 11 + 17 = 121 + 17 = 138$

Lição nº6:

CÁLCULO DE RAÍZES QUADRADAS E DE QUADRADOS NÃO PERFEITOS USANDO O ALGORITMO

INTRODUÇÃO A LIÇÃO:

Caro estudante, depois de termos abordado o Cálculo de quadrados perfeitos, não perfeitos e raízes quadradas em Q com auxílio de tábua, tivemos algumas limitações na determinação de certas raízes quadradas. Então nesta lição vamos abordar uma forma genérica para calcular qualquer raiz quadrada, que é algoritmo da raiz quadrada.

OBJECTIVOS DE APRENDIZAGEM

- Determinar raiz quadrada de um número racional usando o algoritmo da raiz quadrada.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 hora para o estudo desta lição.

1.6.1Cálculo de raízes quadradas e de quadrados não perfeitos usando o algoritmo

Para calcular a raiz quadrada de um número usando o algoritmo da raiz quadrada, vamos obedecer certos passos e operações. Vejamos o exemplo abaixo:

Ex: $\sqrt{2017}$

 1° - Dividimos o número 2017, em grupos de dois algarismos, da direita para esquerda, podemos acrescentar os zeros, dois a dois consoante o número de casas decimais que pretendemos. Para o nosso exemplo vamos considerar duas casas decimais.

- 2°- Determinamos a raiz quadrada inteira, do valor que estiver mais a esquerda neste caso é 20. A sua raiz quadrada é $\sqrt{20} = 4 \ resto$ 4, porque $4 \times 4 + 4 = 16 + 4 = 20$.
- 3°- Colocamos o resultado 4 no topo directo do algoritmo. Assim:

 4° - Determinamos o quadrado do resultado $\frac{4}{2}$ que é $\frac{4^{2}}{2} = 16$ e subtraímos no $\frac{20}{2}$. Isto é:

$$\begin{array}{c|c}
\sqrt{20.17.00.00} & 4 \\
\hline
16 \\
\hline
04
\end{array}$$

5°- Determinamos o dobro de resultado 4 que é **8** e colocamos em baixo de **4**. Assim:

$\sqrt{20.17.00.00}$	4
1 6	8
04	

6°- Baixamos o número 17, acrescentando no valor 04 em baixo no lado esquerdo, fica: 0417

$\sqrt{20.17.00.00}$	4
$\overline{1}6$	8
0417	

 7° - Pensamos um número em que devemos acrescentar no número 8 e multiplicamos por si para obtermos um valor igual a 0417 ou aproximadamente igual a 0417. Neste caso é 4.

$\sqrt{20.17.00.00}$	4
_ 16	84
0417	× 4
	336

 8° - O valor que pensamos é $\mathbf{4}$ e, é válido no nosso cálculo então, levamos este valor e acrescentamos no número $\mathbf{4}$, no topo direito do algoritmo. Assim:

$\sqrt{20.17.00.00}$	44
16	84
0417	× 4
	336

 9° - Subtraímos 0417 por 336 e fechamos com um traço horizontal a multiplicação de 84~por~4 fica:

$\sqrt{20.17.00.00}$	44	
<u>1</u> 6	84	
0417	× 4	
336	336	
0081		

 10° - Determinamos o dobro de $\frac{4}{4}$ que é $2 \times \frac{4}{4} = 88$, e colocamos a direita do algoritmo. Assim:

$\sqrt{20.17.00.00}$	44	
16	84	88
0417	× 4	
	336	
0081		

 11° - Baixamos os dois primeiros zeros, **00** no valor **0081,** fica 0081**00**, isto é:

$\sqrt{20.17.00.00}$	4 4		
16	84	88	
0417	× 4		
336	336		
0081 00			

 12° - Pensamos num número em que acrescentamos no 88 e multiplicamos por si, para obtermos um valor igual ou aproximadamente igual a 008100, neste caso é 9.

$\sqrt{20.17.00.00}$	44	
16	84	889
0417	× 4	× 9
336	336	8001
008100		
- 8001		

13°- Então o **9** é válido, podemos coloca-lo no numero **4** 4, e fica **4** 4**9**. E subtraimos 008100 por 8001 e fica **99**, isto é:

$\sqrt{20.17.00.00}$	4 4 9				
16	84	889			
0417	× 4	× 9			
- 336	336	8001			
008100					
-8001					
0000 99	•				

14° - Baixamos os dois últimos zeros, acrescentamos no número 0000**99**, fica 000099**00**

$\sqrt{20.17.00.00}$	4 4	9	
16	84	889	
0417	× 4	×9	
336	336	8001	
008100			
8001			
000099 00	ļ		

 15° - Determinamos o dobro de 449, que é $2 \times 449 = 898$ e colocamos a direita do algoritmo, fica:

$\sqrt{20.17.00.00}$	4 4 9				
16	84	889	898		
0417	× 4	× 9			
336	336	8001			
008100					
-8 001					
000099 00					

16°- Pensamos num número em que ao acrescentarmos no valor 898 e multiplicarmos por si, teremos um resultado igual ou aproximadamente à 00009900. Neste caso é 1, e fica 8981.

$\sqrt{20.17.00.00}$	4 4 9				
16	84	889	8981		
0417	× 4	× 9	× 1		
_ 336	336	8001	8981		
008100					
-8001					
000099 00					

17°- O número 1 é válido, então acrescentamos no topo direito do algoritmo no número 4 4 9, ficando 4 4 9 1. Em seguida subtraimos 00009900 por 8981 e fica 919, isto é:

$\sqrt{20.17.00.00}$	4 4	91	
16	84	889	8981
0417	× 4	× 9	× 1
336	336	8001	8981
008100			
-8 001			
00009900			
- 8981			•
00000 919			

Portanto, este procedimento é infinito, prosseguimos à medida de número de casas decimais que pretendemos. Neste caso pretendemos duas casas decimais. As casas decimais são contabilizadas consoante o número de vezes que baixamos os dois zeros **00**, neste caso baixamos duas vezes então teremos duas casas decimais, contadas de direita para esquerda no número **4** 4 9 1. Neste caso fica **4** 4 , 9 1...

$\sqrt{20.17.00.00}$	4 4	+,9 1.	••
16	84	889	8981
0417	× 4	× 9	× 1
336	336	8001	8981
008100			
-8 001			
00009900		•	
- 8981			
00000 919			

Então o resultado da raiz quadrada de 2017 é igual à 44,91..., resto 0,0919. Isto é: $\sqrt{2017} = 44,91$ Resto 0,0919 porque: $(44,91)^2 + 0,0919 = 2016,9081 + 0,0919 = 2017$.

O número das casas decimais do resto e contabilizado de direita para esquerda do valor 00000**919,** em algarismos de dois a dois, como na solução 44,91..., tivemos duas casas decimais, então no resto teremos quatro casas decimais, isto é: 000**0,0919=0,0919.**

Então podemos concluir que: $\sqrt{2017} \approx 44,91 \ e \ restor = 0,0919$.

ACTIVIDADE DA LIÇÃO Nº 6

Caro estudante, depois detalhadamente abordarmos os procedimentos de calculo da raiz quadrada de numero racional, usando o algoritmo, você pode efectuar os exercícios propostos abaixo:

- 1. Determine as raízes quadradas até duas casas decimais e o respectivo resto, das expressões abaixo, usando o algoritmo da raiz quadrada:
 - a) $\sqrt{135}$ b) $\sqrt{344}$ c) $\sqrt{1423}$ d) $\sqrt{5321}$ e) $\sqrt{752893}$

CHAVE-DE-CORRECÇÃO Nº 6

- a) $\sqrt{135} = 11,61 \ resto 0,2079$
- b) b) $\sqrt{344} = 18,54 \ resto \ 0,2684$
- c) $c)\sqrt{1423} = 37,72 \ resto 0,2016$
- d) d) $\sqrt{5321} = 72,94 \ resto \ 0,7564$
- e) e) $\sqrt{752893} = 867,69 \ resto 7,064$

Lição nº 7: NOÇÃO DE NÚMEROS IRRACIONAIS

INTRODUÇÃO A LIÇÃO:

Caro estudante, depois de termos abordado o Cálculo de raízes quadradas de números racionais, usando o algoritmo da raiz quadrada, então pode abordar o conceito de números irracionais.

OBJECTIVOS DE APRENDIZAGEM

- Identificar os números irracionais.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 2 horas para o estudo desta lição.

1.7.1 Números irracionais

O cálculo de raízes quadradas usando o algoritmo da raiz quadrada, pode explicar melhor a existência de números irracionais.

Ex: Calculemos a raiz quadrada de 2, isto é $\sqrt{2}$, usando o algoritmo da raiz quadrada:

Portanto aplicamos os passos aplicados na Lição 5. E teremos:

$\sqrt{2.00.00.00.00.0}$	0.00	1,4	14213.				
1	24	281	2824	28282	282841	2828423	
100	× 4	× 1	×	4 ×	2 >	1 :	× 3
<u>-96</u>	96	281	11296	56564	282841	8485269	
0400							
281							
011900							
11296							
00060400							
- ₅₆₅₆₄			l		1	1	
0000383600							
0000282841							
000010075900							
000008485269							
000001590631							
	ı						

Portanto, a raiz quadrada de dois, será aproximadamente igual à 1,414213..., isto é:

$$\sqrt{2} \approx 1,414213...$$

O número 1,414213..., tem um número infinito de casas decimais e essas casas decimais são diferentes.

Logo o numero 1,414213 ..., tem uma dízima infinita não periódica.

Dizima infinita não periódica – é todo número que tem uma infinidade de casas decimais, isto é casas decimais que não terminam. **Não periódicas** porque as casas decimais são diferentes.

Ex: ...;
$$-\sqrt{10}$$
; $-\sqrt{5}$; $-\sqrt{3}$; $-\sqrt{2}$; -0.2451 ...; $+\sqrt{2} = 1.414213$...; $+\sqrt{3}$; $+\sqrt{5}$; $+\sqrt{10}$...

Então os números irracionais definem se de seguinte modo:

Os **números irracionais** são todos os números que podem ser representados por dízimas infinitas não periódicas.

Ex:

...;
$$-\sqrt{10}$$
; $-\pi$; $-e$; $-\sqrt{5}$; $-\sqrt{3}$; $-\sqrt{2}$; -0.245 ... $+\sqrt{2} = 1.414213$...; $+\sqrt{3}$; $+\sqrt{5}$; e ; π ; $+\sqrt{10}$...

Os valores π , e são equivalentes aos seguintes valores:

 $\pi = 3,141592654$...(lê-se PI)

 $e = 2,7182818828 \dots (l\hat{e}$ -se numero de Neper)

ACTIVIDADE DA LIÇÃO Nº 7

Caro estudante, depois de abordarmos os números irracionais, você pode identificar os números irracionais, efectuando os exercícios propostos abaixo:

- 1. Verifica se as dízimas seguintes representam números racionais ou irracionais:
 - a) 3,25 b) 44, (33) c) 9,1234 ... d) 2017 e) π f) 1968,258 g) 0,002587...
- 2. Verifique se os números seguintes representam números racionais ou não:

a)
$$\sqrt{4}$$
 b) $\sqrt{3}$ c) $\sqrt{100}$ d) $\sqrt{22}$ e) $\sqrt{0.16}$ f) $\sqrt{\frac{625}{9}}$ g) \sqrt{e}

CHAVE-DE-CORRECÇÃO N° 7

- 1. a) 3,25 Número racional
 - b) 44, (33) -Número racional
 - c) 9,1234 ... Número irracional
 - d) 2017 Número racional
 - e) π Número irracional
- f) 1968,258 Número racional
 - f) 0,002587... -Número irracional
- 2. a) $\sqrt{4}$ -Número racional
 - b) $\sqrt{3}$ -Número irracional
 - c) $\sqrt{100}$ -Número racional
 - c) $\sqrt{22}$ -Número irracional
 - d) $\sqrt{0,16}$ -Número racional
 - f) $\sqrt{\frac{625}{9}}$ Número racional
 - g) \sqrt{e} -Número irracional

Lição nº8.

CONJUNTO DE NÚMEROS REAIS E RELAÇÃO ENTRE CONJUNTOS NUMÉRICOS IN, Z, Q, I E R

INTRODUÇÃO A LIÇÃO:

Caro estudante, na lição número 6, abordamos os números irracionais, então nesta lição vamos introduzir um novo conjunto numérico que é de números **Reais.**

OBJECTIVOS DE APRENDIZAGEM

- Identificar os números reais.
- Distinguir os subconjuntos de números reais.
- Relacionar os conjuntos IN, Z, Q, I e R

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.8.1Conjunto de números reais

Conjunto de números reais é a reunião de conjunto de números racionais Q, com o conjunto de números irracionais I.

O conjunto de números reais representa-se pela letra \mathbb{R} .

Ex:

$$\mathbb{R} =$$

$$\Big\{...; -\frac{100}{2}; -49, 9; -33, (33); -\sqrt{62}; -10; -\sqrt{2}; -0, 25; 0; +\frac{1}{2}; +1; +\sqrt{2}; \frac{\sqrt{16}}{2}; \pi \ldots \Big\}.$$

Portanto o conjunto \mathbb{R} pode ser resumido num diagrama que contem os outros cunjuntos numéricos já abordados nas lições 1 e 2.

Ex:

1.8.2 Subconjuntos de números reais

Os subconjuntos de números reais são:

 \mathbb{R}^+_0 — Conjunto de números reais positivos incluindo o zero.

 \mathbb{R}^+ — Conjunto de números reais positivos.

 \mathbb{R}_0^- — Conjunto de números reais negativos incluindo o zero.

 \mathbb{R}^- — Conjunto de números reais negativos.

Consideremos o exemplo de conjunto de números reais abaixo:

$$\mathbb{R} = \left\{ \dots; -\frac{100}{2}; -49, 9; -33, (33); -\sqrt{62}; -10; -\sqrt{2}; -0, 25; 0; +\frac{1}{2}; +1; +\sqrt{2}; \frac{\sqrt{16}}{2}; \pi \dots \right\}$$

Representemos os exemplos de subconjuntos de números reais:

$$\begin{split} \mathbb{R}_0^+ &= \left\{ 0; \ +\frac{1}{2}; +1; +\sqrt{2}; \frac{\sqrt{16}}{2}; \pi \ldots \right\} \\ \mathbb{R}^+ &= \left\{ \ldots; +\frac{1}{2}; +1; +\sqrt{2}; \frac{\sqrt{16}}{2}; \pi \ldots \right\} \\ \mathbb{R}_0^- &= \left\{ \ldots; -\frac{100}{2}; -49, 9; -33, (33); -\sqrt{62}; -10; -\sqrt{2}; -0, 25; 0 \right\} \\ \mathbb{R}^- &= \left\{ \ldots; -\frac{100}{2}; -49, 9; -33, (33); -\sqrt{62}; -10; -\sqrt{2}; -0, 25; \ldots \right\} \end{split}$$

1.8.3 Relação entre conjuntos numéricos IN, Z, Q, I e R

Os conjuntos numéricos IN, Z, Q, I e R podem ser relacionados com os símbolos de inclusão e os seus elementos são relacionados com os símbolos de pertença, tal como abordamos na lição número 2.

Ex: Relacionemos os conjuntos abaixo usando os símbolos \subset , \supset , $\not\subset$, $\not\supset$, \in ou $\not\in$ de modo a obter proposições verdadeiras:

a)
$$R \supset Q_0^+$$

a)
$$R \supset Q_0^+$$
 e) $N \not\subset R^-$ i) $0.1 \not\in R^-$

$$b)\;Q_0^-\;\not\subset R_0^+\qquad \qquad \text{f)}\;Q_0^+\subset\;R^+\qquad \qquad \text{J)}\;N\subset R_0^+$$

f)
$$O_0^+ \subset R^-$$

J)
$$N \subset R_0^+$$

c)
$$R^- \not = \{-1; +2\}$$
 g) $-\frac{91}{4} \in R$ l) $+8,25 \in R_0^+$

1)
$$+8,25 \in R_0^+$$

$$d) Z \subset R$$

d)
$$Z \subset R$$
 h) $+5 \notin R^-$ m) $-1000 \notin R$

ACTIVIDADE DA LICÃO Nº 8

Caro estudante, depois de abordarmos o conjunto de números reais, você pode efectuar os exercícios propostos abaixo:

Considere o conjunto:

$$A = \left\{ \dots; -2017; -1000; -\frac{528}{3}; -\pi; -\sqrt{8}; -0.17 \dots; -\frac{1}{1000}; 0; 1.24; \sqrt{\frac{17}{4}}; e; \sqrt{20}; 217 \dots \right\}.$$

Determine:

- a) Os números naturais.
- b) Os números inteiros.
- c) Os números racionais.
- d) Os números reais positivos.
- e) Os números reais negativos.
- f) Os números reais positivos incluindo o zero.
- g) Os números reais negativos incluindo o zero.

Relacionemos os conjuntos abaixo usando os símbolos \subset , \supset , $\not\subset$, $\not\supset$, \in ou $\not\in$ de modo a obter proposições verdadeiras:

$$a) R \dots Q_0^-$$

a)
$$R \dots Q_0^-$$
 e) $+\sqrt{10} \dots R^-$ i) $\pi \dots R^-$

$$b) \; Q_0^+ \ldots \ldots R_0^+ \qquad \qquad \text{f)} \; Q_0^- \ldots \ldots R^+ \qquad \qquad \text{J)} \; N \ldots \ldots R$$

f)
$$Q_0^- \dots R^{-1}$$

c)
$$R^- \dots \left\{-1; -\frac{\pi}{2}\right\}$$
 g) $-\frac{91}{4} \dots \dots R_0^+$ l) $+e \dots \dots R_0^+$

1) +
$$e$$
 R_0^{-1}

$$d) Z_0^+ \dots R$$

h)
$$-\sqrt{5}$$
 R^{-1}

d)
$$Z_0^+ \dots R$$
 h) $-\sqrt{5} \dots R^-$ m) $-1000 \dots R$

CHAVE-DE-CORRECÇÃO nº 8

- a) $\{217\}$ Os números naturais.
 - b) $\{-2017; -1000; 0,217\}$ Os números inteiros.
 - $\left\{-2017; -1000; -\frac{528}{3}; -\frac{1}{1000}; 0; 1,24; 217\right\}$ Os números racionais.
 - $\left\{1,24; \sqrt{\frac{17}{4}}; e; \sqrt{20}; 217\right\}$ Os números reais positivos.
 - e) $\left\{-2017; -1000; -\frac{528}{3}; -\pi; -\sqrt{8}; -0.17 ...; -\frac{1}{1000}\right\}$ Os números reais negativos.
 - f) $\left\{0; 1,24; \sqrt{\frac{17}{4}}; e; \sqrt{20}; 217\right\}$ Os números reais positivos incluindo o zero.
 - g) $\left\{-2017; -1000; -\frac{528}{3}; -\pi; -\sqrt{8}; -0.17 ...; -\frac{1}{1000}; 0\right\}$ Os números reais negativos incluindo o zero.

Relacionemos os conjuntos abaixo usando os símbolos \subset , \supset , $\not\subset$, $\not\supset$, \in $ou \notin$ de modo a obter proposições verdadeiras:

$$a) R \supset Q_0^-$$

a)
$$R \supset Q_0^-$$
 e) $+\sqrt{10} \notin R^-$ i) $\pi \notin R$
b) $Q_0^+ \subset R_0^+$ f) $Q_0^- \not\subset R^+$ J) $N \subset R$

$$b) Q_0^+ \subset R_0^+$$

f)
$$Q_0^- \not\subset R^+$$

J)
$$N \subset R$$

$$c) \; R^- \; \supset \left\{-1; -\frac{\pi}{2}\right\} \; \; \mathrm{g}) - \frac{91}{4} \not \in \; R_0^+ \qquad \qquad \mathrm{l)} \; + e \in \; R_0^+$$

$$1) + e \in R_0^+$$

$$d) Z_0^+ \subset R$$

$$d) \ Z_0^+ \subset R \qquad \qquad \text{h)} \ -\sqrt{5} \in R^- \qquad \text{m)} \ -1000 \in R$$

m)
$$-1000 \in R$$

Lição nº9:

REPRESENTAÇÃO DE NÚMEROS REAIS NA RECTA **GRADUADA**

Representação de números reais na recta graduada

INTRODUÇÃO A LIÇÃO:

Caro estudante, já abordamos sobre conjuntos e relação de conjuntos de números reais. Então nesta lição vamos representa-los na recta real ou graduada.

OBJECTIVOS DE APRENDIZAGEM

- Representar os números reais na recta graduada.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.9.1 Representar os números reais na recta graduada.

Recta real é aquela em que podemos gradua-la, através de números inteiros ou de um outro conjunto numérico, que começa de menos infinito até mais infinito. Por exemplo uma régua.

Ex:

O conjunto de números reais representa-se pela letra \mathbb{R} .

A partir da recta acima podemos representar números reais na mesma, tal como representamos os números racionais na lição 1.

Ex:1 Representemos o número $\sqrt{2}$, na recta real.

Consideremos o problema:

Qual é a medida da diagonal de um quadrado, cuja a medida do lado mede 1cm? Veja a figura abaixa:

Para calcular o valor de X, podemos aplicar o teorema de Pitágoras, que você abordou no módulo 2. Que diz: O quadrado da hipotenusa é igual a soma dos quadrados dos catetos de um triângulo rectângulo.

Considerando o triângulo ABC, os lados AC e BC- são catetos; o lado AB- é hipotenusa.

Então se considerarmos:

 $AC=c_1$; $BC=c_2$ e AB=h. Então o teorema de Pitágoras fica de seguinte forma:

$$h^2 = c_1^2 + c_2^2$$

Partindo da formula podemos calcular o valor de X=AB, substituindo fica:

$$x^2=(1cm)^2+(1cm)^2\leftrightarrow x^2=1cm^2+1cm^2\leftrightarrow x^2=2cm^2$$

Para termos o valor de X, vamos usar uma propriedade que veremos mais em diante nas equações quadráticas. O resultado será: $x = \sqrt{2}cm$. Para representar este numero temos de:

1° - Traçamos a recta graduada:

2°- Representamos as medidas dos catetos e da hipotenusa na recta e fica:

3°- Com um compasso a ponta seca no ponto A=0 até o ponto B, e traçamos um arco para baixo ate tocar no eixo real ou recta real. E fica:

O valor que se obtêm nesse ponto é raiz quadrada de 2. Isto é, $\sqrt{2}$.

Ex:2. Representemos a raiz quadrada de -2. Portanto $-\sqrt{2}$.

Como já representamos $\sqrt{2}$, para representar $-\sqrt{2}$, devemos manter a mesma medida da abertura de compasso e traçarmos o arco para esquerda até intersectar a o eixo real, o valor ai encontrado será $-\sqrt{2}$. Assim:

Ex: 3. Representemos a raiz quadrada de 3. Portanto $\sqrt{3}$.

Traçamos um segmento que tem a medida do cateto, perpendicular ao lodo AB do triangulo, e traçamos um seguimento AD. Com a ponta seca no ponto A, traçamos um arco ate o eixo real, o ponto ai encontrado será $\sqrt{3}$. Assim:

Para representarmos $-\sqrt{3}$, usamos o mesmo procedimento do exemplo 2. Com a mesma abertura de compasso AD, ponta seca no ponto A, prolongamos o arco para esquerda ate intersectar o eixo real. Assim:

Conclusão: para representar os restantes números reais, traça-se um segmento perpendicular ao segmento anterior e traça-se o arco até ao eixo real.

ACTIVIDADE N° 9

Caro estudante, depois de termos abordado a representação de números reais no eixo real, você pode efectuar os exercícios propostos abaixo:

1. Represente os números reais seguintes:

a)
$$\sqrt{2}$$
 b) $-\sqrt{2}$ c) $\sqrt{4}$ d) $\sqrt{5}$ e) $\sqrt{6}$ f) $-\frac{14}{4}$

CHAVE-DE-CORRECÇÃO N° 9

Lição nº10:

RADICIAÇÃO, CÁLCULO DE CUBOS E RAÍZES CÚBICAS DE NÚMEROS PERFEITOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos operar os números reais, isto é de cubos e raízes cúbicas de números perfeitos aplicando as propriedades da radiciação.

OBJECTIVOS DE APRENDIZAGEM

- Determinar os cubos de números reais perfeitos.
- Determinar as raízes cúbicas de números reais perfeitos.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.10.1 Cálculo de cubos e raízes cúbicas de números perfeitos

No cálculo da raiz quadrada de números reais o índice n é igual à 2, isto é: $\sqrt[n]{a}$; n=2 fica, $\sqrt[2]{a}=\sqrt[n]{a}$, onde: $a \in R_0^+$. Para raiz cúbica o índice é igual à 3, então fica, $\sqrt[3]{a}$, onde: $a \in R$.

Portanto, raiz cúbica de um numero real – é um numero **b** em que elevado a 3 (três), é igual à **a.**

Isto é:
$$\sqrt[3]{a} = b$$
, se e só se $b^3 = a$.

Ex: a)
$$\sqrt[3]{8} = 2$$
, porque $2^3 = 2 \times 2 \times 2 = 8$; b) $\sqrt[3]{-27} = -3$, porque $(-3)^3 = (-3) \times (-3) \times (-3) = -27$.

c).
$$\sqrt[3]{343}$$
 =, Primeiro deve-se decompor o número 343.

343	7	
49	7	
7	7	
1		
	_	
$343 = 7^3$		

Então substituímos no radical, e fica: $\sqrt[3]{343} = \sqrt[3]{7^3} = 7$.

e)
$$\sqrt[3]{-\frac{27}{8}}$$
 =, Primeiro decompomos os números 27 e 8. Assim:

27	3	
9	3	
3	3	
1		
$27 = 3^3$		

Substituímos no radicando: $\sqrt[3]{-\frac{3^3}{2^3}}=$, colocamos o sinal negativo fora do radical: $-\sqrt[3]{\frac{3^3}{2^3}}=-\frac{3}{2}$.

8	2	
4	2	
2	2	
1		
$8 = 2^3$		

Portanto, podemos definir os cubos perfeitos de seguinte modo:

Cubos perfeitos – são números reais cuja sua raiz cúbica é um número inteiro.

ACTIVIDADE N° 10

Caro estudante, depois de termos abordado o cálculo de cubos e raízes cúbicas de números perfeitos, você pode efectuar os exercícios propostos abaixo:

1. Determine o valor das seguintes raízes.

a)
$$\sqrt[3]{-1}$$
 b) $\sqrt[3]{\frac{64}{8}}$ c) $-\sqrt[3]{125}$ d) $\sqrt[3]{2197}$ e) $\sqrt[3]{\frac{125}{27}}$ f) $\sqrt[3]{\frac{1}{216}}$ g) $\sqrt[3]{729}$

CHAVE-DE-CORRECÇÃO N° 10

1. a) -1 b) 2 c) -5 d) 13 e)
$$\frac{5}{3}$$
 f) $\frac{1}{6}$ g) 9

Lição nº 11: POTÊNCIA DE EXPOENTE FRACCIONÁRIO

POTÊNCIA DE EXPOENTE FRACCIONÁRIO

INTRODUÇÃO A LIÇÃO:

Caro estudante, para facilmente operarmos na radiciação temos de abordar potencia de expoente fraccionaria.

OBJECTIVOS DE APRENDIZAGEM

- Representar um número real na forma de potência fraccionária.
- Transformar uma raiz de qualquer índice natural à uma potência fraccionária.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.11.1 Potência de expoente fraccionário

Consideremos uma raiz de índice n e radicando a^m , isto é $\sqrt[n]{a^m}$, onde: $a \in R$, $(m e n) \in N$.

Podemos transformar a raiz $\sqrt[n]{a^m}$, na forma de potência de expoente fraccionária. Assim:

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$
, onde: $a \in R$; $(m e n) \in N$; $a - é base$; $\frac{m}{n} - é expoente$.

Ex: 1. Transformar as raízes abaixo na forma de potência:

a) $\sqrt{2} =$, Neste caso o índice é n=2; o expoente é m=1, porque o radicando no radical pode ficar $\sqrt{2^1}$; a base é a=2. Então na forma de potência fica: $\sqrt{2} = 2^{\frac{1}{2}}$.

b)
$$\sqrt[7]{\left(-\frac{13}{2}\right)^{\frac{14}{7}}} = \left(-\frac{13}{2}\right)^{\frac{14}{7}} =$$
, dividimos o 14 por 7, fica: $\sqrt[7]{\left(-\frac{13}{2}\right)^{\frac{14}{7}}} = \left(-\frac{13}{2}\right)^2 = \left(-\frac{13}{2}\right) \times \left(-\frac{13}{2}\right) = +\frac{169}{4}$.

Ex: 2. Transforme as potências a baixo em forma de raízes:

a)
$$\left(\frac{5}{9}\right)^{\frac{1}{3}} = n = 3; m = 1; a = \frac{5}{9} ent\tilde{a}o: \left(\frac{5}{9}\right)^{\frac{1}{3}} = \sqrt[3]{\left(\frac{5}{9}\right)^{1}} = \sqrt[3]{\frac{5}{9}}.$$

b)
$$\left(\frac{y}{2}\right)^{\frac{8}{5}} = n = 5; m = 8; a = \frac{y}{2} \ ent \ ao: \left(\frac{y}{2}\right)^{\frac{8}{5}} = \sqrt[5]{\left(\frac{y}{2}\right)^8}.$$

ACTIVIDADE DA LIÇÃO N° 11

Caro estudante, depois de termos abordado a Potência de expoente fraccionário, você pode efectuar os exercícios propostos abaixo:

1. Transformar as raízes abaixo na forma de potência:

$$a) \sqrt[3]{-1} \ b) \sqrt[3]{\frac{64}{8}} \ c) - \sqrt[3]{125^6} \ d) \sqrt[7]{\left(\frac{13}{2197}\right)^{21}} \ e) \sqrt[100]{\left(\frac{125}{27}\right)^{25}} \ f) \sqrt[6]{\left(\frac{1}{216}\right)^p} \ g) \sqrt[3]{729}$$

2. Transforme as potências a baixo em forma de raízes:

a)
$$5^{\frac{1}{4}}$$
 b) $2^{\frac{1}{2}}$ c) $0.8^{\frac{1}{3}}$ d) $\left(\frac{\pi}{2}\right)^{\frac{3}{6}}$ e) $25^{0.25}$ f) $0.008^{\frac{1}{3}}$ g) $0.01^{\frac{2}{4}}$

CHAVE-DE-CORRECÇÃO N° 11

1.a)
$$(-1)^{\frac{1}{3}}$$
 b) 2 c) -5 d) $(\frac{1}{169})^2$ e) $(\frac{125}{27})^{\frac{1}{4}}$ f) $(\frac{1}{216})^{\frac{p}{6}}$ g) $729^{\frac{1}{3}} = [(9)^3]^{\frac{1}{3}} = 9$

2.a)
$$\sqrt[4]{5}$$
 b) $\sqrt{2}$ c) $\sqrt[3]{\frac{8}{10}}$ d) $\sqrt{\frac{\pi}{2}}$ e) $\sqrt[4]{25} = \sqrt{5}$ f) $\sqrt[3]{\frac{8}{1000}} = \sqrt[3]{\left(\frac{2}{10}\right)^3} = \frac{1}{5}$ g) $\frac{1}{10}$

Lição nº12:

PASSAGEM DE UM FACTOR PARA DENTRO E FORA DO RADICAL

INTRODUÇÃO A LIÇÃO:

Caro estudante, no acto de operações com raízes, faremos algumas simplificações para tal, vamos abordar Passagem de um factor para dentro e fora do radical.

OBJECTIVOS DE APRENDIZAGEM

- Introduzir os factores no radical.
- Extrair para fora do radical os factores possíveis.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

Caro estudante, para melhor operarmos e simplificarmos os radicais, temos de extrair ou introduzir os factores em certos momentos.

1.12.1. Passagem de factor para dentro do radical

Consideremos o seguinte produto: $\mathbf{a} \times \sqrt[n]{\mathbf{b}} = \mathbf{a} \sqrt[n]{\mathbf{b}}$, o factor \mathbf{a} está fora do radical. Este factor \mathbf{a} , pode ser introduzido dentro do radical obedecendo a seguinte regra:

Tira-se de fora do radical, o valor \boldsymbol{a} , introduz-se dentro do radical, e eleva-se pelo índice \boldsymbol{n} , passa a multiplicar com o \boldsymbol{b} . Isto é: $\boldsymbol{a}^n \sqrt{\boldsymbol{b}} = \sqrt[n]{\boldsymbol{a}^n \times \boldsymbol{b}} = \sqrt[n]{\boldsymbol{a}^n \boldsymbol{b}}$.

Ex: a) $3 \times \sqrt{5} =$, introduzimos o 3 no radical e elevamo-lo por 2, isto é, n=2, que é o índice de radical. Fica: $3 \times \sqrt{5} = \sqrt{3^2 \times 5} = \sqrt{9 \times 5} = \sqrt{45}$.

c)
$$\frac{7}{12} \times \sqrt[3]{\left(\frac{144}{14}\right)^2}$$
 =, Neste caso o índice é n=3, então, introduzimos o $\frac{7}{12}$, no radical e elevamolo por 3 e multiplica por $\left(\frac{144}{14}\right)^2$, fica:

$$\frac{7}{12} \times \sqrt[3]{\left(\frac{144}{14}\right)^2} = \sqrt[3]{\left(\frac{7}{12}\right)^3} \times \left(\frac{144}{14}\right)^2 = \sqrt[3]{\frac{7 \times 7 \times 7}{12 \times 12 \times 12}} \times \frac{144 \times 144}{14 \times 14}; \text{ o 144 \'e o produto de factores } 12 \times 12, \text{ isto \'e: } 144 = 12 \times 12 \text{ e o 14 \'e o produto de factores } 7 \times 2, \text{ isto \'e: } 14 = 7 \times 2$$

Substituímos na expressão, fica:
$$\sqrt[3]{\frac{7 \times 7 \times 7}{12 \times 12 \times 12}} \times \frac{144 \times 144}{14 \times 14} = \sqrt[3]{\frac{7 \times 7 \times 7}{12 \times 12 \times 12}} \times \frac{12 \times 12 \times 12 \times 12}{7 \times 2 \times 7 \times 2} =$$

$$=\sqrt[3]{\frac{7\times7\times7\times12\times12\times12\times12}{12\times12\times7\times2\times7\times2}}, \text{ Simplificamos, fica} = \sqrt[3]{\frac{7\times7\times7\times12\times12\times12\times12}{12\times12\times7\times2\times7\times2}} = \sqrt[3]{\frac{7\times12}{2\sqrt{2}}} = \sqrt[3]{\frac{7\times12}{2\sqrt{2}}}$$

o 12 e fica: $12 = 4 \times 3$, substituímos no radical e fica:

$$\sqrt[3]{\frac{7\times 12}{2\times 2}} = \sqrt[3]{\frac{7\times 4\times 3}{4}} = \sqrt[3]{7\times 3} = \sqrt[3]{21}.$$

1.12.2. Passagem de factor para fora do radical

Consideremos a expressão: $\sqrt[n]{a^m \times b}$, só é possível extrair do radical o factor que tiver um expoente maior ou igual ao índice, isto é: $m \ge n$. Neste caso o factor por extrair só pode ser a, porque tem o expoente m que é maior que, n. Isto é, m > n.

Obedece-se a seguinte regra:

Divide-se o expoente \boldsymbol{m} por \boldsymbol{n} , extrai-se o \boldsymbol{a} para fora do radical e eleva-se pelo quociente da divisão \boldsymbol{q} , e o mesmo \boldsymbol{a} , mantem-se no radical elevando-o pelo resto \boldsymbol{r} , da divisão.

Assim:

$$m$$
 n q Então, a expressão fica: $\sqrt[n]{a^m \times b} = a^q \times \sqrt[n]{a^r \times b} = a^q \sqrt[n]{a^r b}$.

Ex: passe os factores possíveis para fora do radical:

a) $\sqrt[5]{3^9 \times 2}$ =, Devemos dividir o 9 por 5. Isto é:

9 5

-5 1

Portanto, o quociente é:
$$q = 1$$
, o resto é: $r = 4$. Então a expressão fica:

$$\sqrt[5]{3^9 \times 2} = 3^1 \times \sqrt[5]{3^4 \times 2} = 3 \times \sqrt[5]{81 \times 2} = 3 \times \sqrt[5]{162} = 3\sqrt[5]{162}.$$

b) $\sqrt[3]{\frac{128}{27}}$ =, Primeiro temos que decompor 128 e 27, assim:

128	2	
64	2	
32	2	
16	2	
8	2	
4	2	
2	2	
1		
$128 = 2^7$		

Substituímos, na expressão e fica: $\sqrt[3]{\frac{128}{27}} =$

$$\sqrt[3]{\frac{2^7}{3^3}}$$
 =, dividimos o 7 por 3, e o 3 por 3. Assim:

$$\begin{array}{c|c}
3 & 3 \\
3 & -1 \\
0
\end{array}$$
podemos extrair os factores 2 e 3.

Fica:
$$\sqrt[3]{\frac{2^7}{3^3}} = \frac{2^2}{3^1} \sqrt[3]{\frac{2^1}{3^0}} = \frac{4}{3} \sqrt[3]{\frac{2}{1}} = \frac{4}{3} \sqrt[3]{2}.$$

ACTIVIDADE N° 12

Caro estudante, depois de termos abordado Passagem de factor para dentro e fora do radical, você pode efectuar os exercícios propostos abaixa:

1. Passe os factores possíveis para dentro de radical:

a)
$$4\sqrt{3}$$
 b) $2\sqrt[3]{2}$ c) $\frac{1}{2}\sqrt[3]{\frac{30}{60}}$ d) $\frac{5}{9}\sqrt[5]{\frac{18}{125}}$ e) $7\sqrt[7]{7}$ f) $\frac{x^2}{3}\sqrt[3]{\frac{yx}{x}}$.

2. Passe os factores possíveis para fora do radical:

a)
$$\sqrt{27}$$
 b) $\sqrt[3]{22^4}$ c) $\sqrt[5]{\left(\frac{7}{3}\right)^{14}}$ d) $xy\sqrt[3]{\frac{1}{(xy)^{10}}}$ e) $\sqrt[7]{\frac{13^{14}}{26^{20}}}$ f) $\sqrt{1000}$

CHAVE-DE-CORRECÇÃO *n*° 12

1.
$$\sqrt{48}$$
 b) $\sqrt[3]{16}$ c) $\sqrt[3]{\frac{1}{4}}$ d) $\sqrt[5]{\frac{50}{6561}}$ e) $\sqrt[7]{78}$ f) $\sqrt[3]{\frac{yx^4}{27}}$.

2. *a*)
$$3\sqrt{3}$$
 b) $22\sqrt[3]{22}$ c) $\frac{49}{9}\sqrt[5]{\left(\frac{7}{3}\right)^4}$ d) $\frac{1}{(x)^2}\sqrt[3]{\frac{1}{xy}}$ e) $\frac{13}{26^2}\sqrt[7]{\frac{1}{26^6}}$ f) $100\sqrt{10}$

Lição nº13: PROPRIEDADES DE RADICAIS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar as Propriedades de radicais

OBJECTIVOS DE APRENDIZAGEM

- Enunciar as propriedades dos radicais
- Aplicar as propriedades dos radicais nas operações com radicais.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.13.1 Propriedades de radicais

Os radicais têm propriedades bastante importantes que serão aplicadas nas operações com radicais que são:

- Quadrado de uma raiz quadrada;

- Potência de um radical;
- Radical em que o radicando é um radical.

1.13.2 Quadrado de uma raiz quadrada

O quadrado de uma raiz quadrada é igual ao seu radicando. Isto é:

$$\left(\sqrt{a}\right)^2 = a$$
, $para \ a \in R_0^+$.

Ex: a)
$$(\sqrt{3})^2 = 3$$
 Porque $(\sqrt{3})^2 = (3^{\frac{1}{2}})^2 = 3^{\frac{1 \times 2}{2}} = 3^{\frac{2}{2}} = 3^1 = 3$.

1.13.3 Potência de um radical

A potência de um radical pode se obter elevando o radicando pela potência.

Isto é:
$$(\sqrt[m]{a})^n = \sqrt[m]{a^n}$$
; onde: $a \in R_0^+$; $m \ e \ n \in N$.

$$Ex: \left(\sqrt{5}\right)^9 = \sqrt{5^9}$$

1.13.4 Radical em que o radicando é um radical

O radical em que o radicando é um radical é um radical que se obtêm pelo produto dos índices e mantendo o radicando. Isto é: $\sqrt[n]{\frac{m}{\sqrt{a}}} = \sqrt[n \times m]{a}$; onde: $a \in R_0^+$; $m e n \in N$.

Ex:
$$\sqrt[3]{\sqrt[4]{2}} = \sqrt[3 \times 4]{2} = \sqrt[12]{2}$$

ACTIVIDADE N° 13

Caro estudante, depois de termos abordado Propriedades de radicais você pode efectuar os exercícios propostos :

1. Simplifique os seguintes radicais

$$\mathrm{a)} \quad \sqrt[4]{7^2} \;\; \mathrm{b)} \; \sqrt[15]{2^5} \; \mathrm{c)} \; \sqrt[100]{7^{50}} \; \mathrm{d)} \; \sqrt{\sqrt{4}} \; \mathrm{e)} \; \sqrt[4]{\sqrt[3]{\sqrt{2}}} \; \; \mathrm{f)} \; \left(\sqrt[3]{2}\right)^3 \; \mathrm{g)} \left(\sqrt[3]{\sqrt{4}}\right)^6$$

CHAVE-DE-CORRECÇÃO N° 13

a)
$$\sqrt{7}$$
 b) $\sqrt[3]{2}$ c) $\sqrt{7}$ d) $\sqrt[4]{4}$ e) $\sqrt[24]{2}$ f) 2 g) 4

Lição nº14: COMPARAÇÃO DE RADICAIS

Comparação de radicais

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição, vamos abordar as regras de comparação de radicais, dando a continuidade de radiciação.

OBJECTIVOS DE APRENDIZAGEM

- Comparar os radicais.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

Comparação de radicais

1.12.1Comparação de radicais

Para comparar radicais e necessário verificar se os índices dos radicais são iguais ou não.

1°- Se os índices forem iguais e radicandos diferentes, será maior o radical que tiver maior radicando.

Ex: a) $\sqrt{3} > \sqrt{2}$, porque os índices são iguais e 3 é maior que 2.

- b) $\sqrt[20]{50} < \sqrt[20]{100}$, Porque os índices são iguais e 100 é maior que 50.
- c) $\sqrt[20]{\frac{1}{50}} > \sqrt[20]{\frac{1}{100}}$, Porque os índices são iguais e $\frac{1}{50}$ é maior que $\frac{1}{100}$.

2° - Se os índices forem diferentes e radicandos iguais, será maior o radical que tiver menor índice.

- a) $\sqrt[3]{9} > \sqrt[4]{9}$, Porque 3 é menor que 4.
- b) $\sqrt[10]{\frac{10}{2017}} < \sqrt{\frac{10}{2017}}$, Porque 2 é menor que 10

3°- Se os índices forem diferentes e radicandos também diferentes, deve-se calcular o menor múltiplo comum (mmc) dos índices.

Ex: a) $\sqrt[3]{7}$ ______ $\sqrt[4]{5}$, para compararmos esses radicais devemos calcular o mmc dos indices 3 e 4, neste caso é 12, isto é: (4) (3)

 $\sqrt[3]{7}$ ____ $\sqrt[4]{5}$, Passo seguinte multiplicamos os factores 4 e 3 com os índices 3 e 4 respectivamente; elevamos os radicandos pelos factores 4 e 3. Assim:

 $\sqrt[3\times4]{7^4}$ $\sqrt[4\times3]{5^3}$, Então teremos: $\sqrt[12]{2401}$ $\sqrt[12]{125}$, agora temos índices iguais então, podemos comparar os radicandos: 2401 > 125, neste caso $\sqrt[12]{2401}$ é maior que $\sqrt[12]{125}$. Então:

 $\sqrt[3]{7}$ > $\sqrt[4]{5}$, portanto: $\sqrt[3]{7}$ é maior que $\sqrt[4]{5}$.

ACTIVIDADE DA LIÇÃO Nº12

Caro estudante, depois de termos abordado a comparação de radicais, você pode efectuar os exercícios propostos abaixo:

1. Compare os seguintes radicais usando os sinais: <, > ou =:

$$a)\sqrt{\frac{1}{2}}\sqrt{\frac{2}{4}}\,b)\sqrt[7]{4^{14}}\,\underline{}\sqrt[7]{3^3}\,c)\sqrt[3]{2}\,\underline{}\sqrt[3]{1^2}\,d)\sqrt[4]{3}\,\underline{}\sqrt[3]{\frac{1}{3}}\,e)\sqrt[16]{2^6}\,\underline{}\sqrt[3]{2^2}\,f)\sqrt[3]{\frac{1}{4}}\,\underline{}\sqrt[5]{\frac{1}{2}}.$$

CHAVE-DE-CORRECÇÃO N°12

1. a)
$$\sqrt{\frac{1}{2}} = -\sqrt{\frac{2}{4}}$$
 b) $\sqrt[7]{4^{14}}$ $> -\sqrt[7]{3^3}$ c) $\sqrt[3]{2}$ $> -\sqrt[3]{1^2}$ d) $\sqrt[4]{3}$ $> -\sqrt[3]{\frac{1}{3}}$ e) $\sqrt[16]{2^6}$ $< -\sqrt[3]{2^2}$ f) $\sqrt[3]{\frac{1}{4}}$ $< -\sqrt[5]{\frac{1}{2}}$.

Lição nº13:

OPERAÇÕES COM RADICAIS: ADIÇÃO E SUBTRACÇÃO **DE RADICAIS**

Operações com radicais: adição e subtracção de radicais

Caro estudante, nesta lição vamos abordar a adição e subtracção aplicando as propriedades da radiciação.

OBJECTIVOS DE APRENDIZAGEM

- Adicionar os radicais.
- Subtrair os radicais.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.13.1Radicais semelhantes

Para adicionar ou subtrair os radicais, deve-se verificar os radicais semelhantes.

Radicais semelhantes – são aqueles que tem o mesmo índice e mesmo radicando.

Ex: $3\sqrt{5}$; $\sqrt{5}$; $-\frac{1}{3}\sqrt{5}$; $-17\sqrt{5}$ São semelhantes porque tem o radical comum que é: $\sqrt{5}$.

Passo seguinte: deve-se adicionar ou subtrair os coeficientes dos radicais semelhantes, colocando-se em evidência os radicais semelhantes.

Coeficientes – são os factores que multiplicam os radicais.

Ex: nos radicais,
$$3\sqrt{5}$$
; $1\sqrt{5}$; $-\frac{1}{3}\sqrt{5}$; $-17\sqrt{5}$, Os coeficientes são: 3; 1; $-\frac{1}{3}e - 17$.

Vamos adicionar e subtrair os radicais abaixo:

Ex: a) $2\sqrt{2} + 8\sqrt{2} - 5\sqrt{2} =$, neste caso o radical comum é $\sqrt{2}$, então vamos coloca-lo em evidencia, isto é coloca-lo fora de parênteses. Assim: $(2+8-5)\sqrt{2} =$, depois vamos adicionar e subtrair os coeficientes(2+8-5). Teremos: $(2+8-5)\sqrt{2} = (10-5)\sqrt{2} = 5\sqrt{2}$.

b) Há casos em que aparentemente não temos termos semelhantes, portanto, quando os radicandos são diferentes.

Ex: $3\sqrt{8} - 8\sqrt{18} + 2\sqrt{72} =$, neste caso os radicandos são todos diferentes: 8, 18 e 72.

Nesta situação devemos decompor os radicandos e extrair os factores possíveis para fora dos radicais. Assim:

72	2		
36	2		
18	2		
9	3		
3	3		
1			
$72 = 2^3 \times 3^2$			

Substituímos na expressão: $3\sqrt{8} - 8\sqrt{18} + 2\sqrt{72} = 3\sqrt{2^3} - 8\sqrt{2 \times 3^2} + 2\sqrt{2^3 \times 3^2} =$, extaimos os factores possiveis para fora dos radicais: assim:

 $3\sqrt{2^3} - 8\sqrt{2 \times 3^2} + 2\sqrt{2^3 \times 3^2} = 3 \times 2\sqrt{2} - 8 \times 3\sqrt{2} + 2 \times 2 \times 3\sqrt{2} =$, Multiplicando os coeficientes teremos: $3 \times 2\sqrt{2} - 8 \times 3\sqrt{2} + 2 \times 2 \times 3\sqrt{2} = 6\sqrt{2} - 24\sqrt{2} + 12\sqrt{2} =$, vamos colocar em evidência o radical comum: $6\sqrt{2} - 24\sqrt{2} + 12\sqrt{2} = (6 - 24 + 12)\sqrt{2} =$, subtraímos e adicionamos os coeficientes: $(6 - 24 + 12)\sqrt{2} = (-18 + 12)\sqrt{2} = -6\sqrt{2}$.

ACTIVIDADE N° 13

Caro estudante, depois de termos abordado adição e subtracção de radicais, você pode efectuar os exercícios propostos abaixa:

1. Calcule as seguintes expressões:

a)
$$7\sqrt{5} - \sqrt{5} - 3\sqrt{5} =$$

b)
$$-13\sqrt[3]{23} + \frac{1}{2}\sqrt[3]{23} =$$

c)
$$3\sqrt{12} - 7\sqrt{27} + \sqrt{48} =$$

d)
$$3\sqrt{5} + \sqrt{20} - 10\sqrt{125}$$

e)
$$\sqrt[5]{6} + 3\sqrt[5]{6} - 2\sqrt[5]{6} =$$

f)
$$\frac{3}{2}\sqrt{\frac{18}{5}} + \frac{7}{3}\sqrt{\frac{2}{125}} - \frac{1}{15}\sqrt{\frac{98}{5}} =$$

CHAVE-DE-CORRECÇÃO N° 13

1. a)
$$3\sqrt{5}$$
 b) $-\frac{25}{2}\sqrt{23}$ c) $-11\sqrt{3}$ d) $-45\sqrt{5}$ e) $2\sqrt{6}$ f) $\frac{37}{15}\sqrt{\frac{2}{5}}$

Lição nº14:

MULTIPLICAÇÃO, DIVISÃO DE RADICAIS E EXPRESSÕES NUMÉRICAS

Multiplicação, divisão de radicais e expressões numéricas

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a multiplicação, divisão de radicais e expressões numéricas aplicando as propriedades da radiciação.

OBJECTIVOS DE APRENDIZAGEM

- Multiplicar os radicais.
- Dividir os radicais.
- Simplificar expressões numéricas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

1.14.1 Multiplicação, divisão de radicais e expressões numéricas

Para multiplicar ou dividir os radicais é necessário verificar se os radicais têm o mesmo índice ou não.

1°- Caso em que os radicais têm índices iguais:

Deve-se manter o radical e multiplicar ou dividir os radicandos no mesmo radical. Isto é:

$$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}$$
, Onde: $a, b \in R_0^+$ e $n \in N$.

Ex: a) $\sqrt{3} \times \sqrt{2} =$, o índice é o mesmo n=2. Então podemos multiplicar os radicandos 3 e 2, no mesmo radical. Assim: $\sqrt{3 \times 2} = \sqrt{6}$.

b)
$$\sqrt[3]{\frac{13}{5}} \times \sqrt[3]{\frac{15}{26}} =$$
, Os índices são iguais então: multiplicamos os radicandos no mesmo radical.

Assim:
$$\sqrt[3]{\frac{13}{5}} \times \sqrt[3]{\frac{15}{23}} = \sqrt[3]{\frac{13}{5}} \times \frac{15}{26} =$$
, Decomposo o 15 e 26, para simplificar, teremos:

$$\sqrt[3]{\frac{13}{5} \times \frac{15}{26}} = \sqrt[3]{\frac{13 \times 5 \times 3}{5 \times 13 \times 2}} = \sqrt[3]{\frac{3}{2}}$$

c) $\sqrt[5]{27} \div \sqrt[5]{3} =$, os índices são iguais n=5, então podemos dividir os radicandos no mesmo radical. Assim: $\sqrt[5]{27} \div \sqrt[5]{3} = \sqrt[5]{27 \div 3} =$, na forma de fracção fica: $\sqrt[5]{27 \div 3} = \sqrt[5]{\frac{27}{3}} =$, Decompomos o 27, fica: $\sqrt[5]{\frac{27}{3}} = \sqrt[5]{\frac{3 \times 3 \times 3}{3}} =$, Simplificamos: $\sqrt[5]{\frac{3 \times 3 \times 3}{3}} = \sqrt[5]{9}$.

2°- Caso em que os radicais têm índices diferentes:

Neste caso, deve-se calcular o menor múltiplo comum (mmc) dos índices aplicando as propriedades dos radicais abordadas na lição numero 13, para obtermos o mesmo índice.

(4) (3)

Ex: a) $\sqrt[3]{2} \times \sqrt[4]{5} = \sqrt{(4\times3)}\sqrt{2^4} \times \sqrt{(3\times4)}\sqrt{5^3} = \sqrt{12}\sqrt{16} \times \sqrt{125} =$, agora já temos o mesmo índice, então podemos manter o radical e multiplicar os radicandos. Assim: $\sqrt[12]{16} \times \sqrt[12]{125} = \sqrt[12]{16} \times 125 = \sqrt[12]{12000}$.

b) $\frac{\sqrt[7]{2}}{\sqrt{2}}$ =, Calculamos o mmc dos índices. Assim: $\frac{7^{(2)}\sqrt{2}}{(7)\sqrt{2}} = \frac{2\times 7}{7\times 2\sqrt{27}} = \frac{14\sqrt{2^2}}{14\sqrt{27}}$ =, Dividimos os radicandos 2^2 e 2^7 no mesmo radicando $\sqrt[14]{\frac{2^2}{2^7}}$, Aplicamos a propriedade de divisão de potencias com a mesma base, temos: $\sqrt[14]{\frac{2^2}{2^7}} = \sqrt[14]{2^{(2-7)}} = \sqrt[14]{2^{-5}}$ =, Invertemos a base e teremos: = $\sqrt[14]{\left(\frac{1}{2}\right)^5} = \sqrt[14]{\frac{1}{32}}$.

b) Casos em que há envolvimento de todas operações, aplicamos as mesmas propriedades que aplicamos nos números racionais na lição número 3.

Ex: $\frac{\sqrt{7}+\sqrt{3}\times\sqrt{\frac{1}{3}}-\sqrt{7}\div\sqrt{\frac{1}{49}}}{\sqrt[3]{125}\div\sqrt[3]{8}}=$, primeiro calculamos a multiplicação, porque está mais a esquerda em relação a divisão, e depois calculamos a divisão, assim: $\frac{\sqrt{7}+\sqrt{3}\times\sqrt{\frac{1}{3}}-\sqrt{7}\div\sqrt{\frac{1}{49}}}{\sqrt[3]{125}+\sqrt[3]{8}}=\frac{\sqrt{7}+\sqrt{3}\times\frac{1}{3}-\sqrt{7}\div\frac{1}{49}}{\sqrt[3]{\frac{125}{8}}}=$, simplificamos os factores 3 e $\frac{1}{3}$ depois transformamos a divisão na multiplicação no dividendo 7 e no divisor $\frac{1}{49}$, decompomos o radicando 49; $\frac{125}{8}$, assim: $\frac{\sqrt{7}+\sqrt{3}\times\frac{1}{3}-\sqrt{7}\div\frac{1}{49}}{\sqrt[3]{\frac{125}{8}}}=\frac{\sqrt{7}+1-\sqrt{7}\times\frac{49}{1}}{\sqrt[5]{\frac{5}{2}}}=\frac{\sqrt{7}+1-\sqrt{7}\times7^2}{\frac{5}{2}}=\frac{\sqrt{7}+1-\sqrt{7}$

ACTIVIDADE N° 14

Caro estudante, depois de termos abordado a multiplicação, divisão de radicais e expressões numéricas, você pode efectuar os exercícios propostos abaixo:

1. Efectue as seguintes operações:

$$_{a)}7\sqrt{5}\times\sqrt{5}=$$

b)
$$-13\sqrt[3]{\frac{7}{2}} \times \frac{1}{26}\sqrt[3]{\frac{1}{7}} =$$

c)
$$3\sqrt{2} \times 7\sqrt{2} \times \sqrt{\frac{1}{4}} =$$

d)
$$\sqrt{16} \div \sqrt{8} =$$

e)
$$\sqrt[5]{6} \div \sqrt[5]{12} =$$

f)
$$\frac{3}{2}\sqrt{5} + \sqrt[3]{8} \div \sqrt[3]{64} - \frac{3}{2}\sqrt{5} =$$

g)
$$\frac{3\sqrt{8} \times 13\sqrt{5}}{7\sqrt{16} \times 10\sqrt{10}} =$$

h)
$$\frac{(3+7)\sqrt{2}\times5(\sqrt{3})^2}{7\times7\sqrt{32}}$$

CHAVE-DE-CORRECÇÃO N° 14

1. a)35 b)
$$-\frac{1}{2}\sqrt{\frac{1}{2}}$$
 c) 21 d) $\sqrt{2}$ e) $\sqrt[5]{\frac{1}{2}}$ f) $\frac{1}{2}$ g) $\frac{39}{140}$ h) $\frac{75}{98}$

ACTIVIDADES UNIDADE N°-1/ PREPARAÇÃO PARA TESTE

Caro estudante, depois da revisão de toda unidade número 1, pode prestar a seguinte actividade:

- 1. Considere as proposições abaixo, indique as falsas por F e as verdadeiras por V.
 - a) $\frac{1}{2}$ é um numero natural.()
 - b) 3,55 é um numero irracional. ()
 - c) π é um numero real. ()
 - d) Q é subconjunto de R. ()
 - e) 0,25(55) Tem dizima infinita periódica. ()
 - f) $\sqrt{13}$ é um numero irracional. ()
 - g) $\sqrt{13}$ é um numero real. ()
- 2. Calcule as seguintes expressões:

a)
$$-(-5) + (-8) - (-1) + (+10) =$$

b)
$$-2017 + 2000 - (+17) =$$

c)
$$-\left(\frac{2}{3}\right) + \left(-\frac{1}{2}\right) - 1$$

d)
$$\frac{7}{3} + 8 - \frac{1}{3} + \frac{9}{2} =$$

e)
$$\frac{1-3}{2} + \frac{3}{6} - \frac{5}{3} - \left(-\frac{5}{9} + 7\right) =$$

b)
$$-2017 + 2000 - (+17) =$$

c) $-\left(\frac{2}{3}\right) + \left(-\frac{1}{2}\right) - 1$
d) $\frac{7}{3} + 8 - \frac{1}{3} + \frac{9}{2} =$
e) $\frac{1-3}{2} + \frac{3}{6} - \frac{5}{3} - \left(-\frac{5}{9} + 7\right) =$
f) $(+0,77) + \left(-\frac{9}{2}\right) - (-7) - \left(+\frac{77}{100}\right) +$
 $(-2,03) =$

g)
$$4 - \frac{1}{2} - \left[2 + \left(-\frac{7}{3} + \frac{1}{4}\right)\right] + 7 =$$

3. Simplifique e calcule:

a)
$$-6 \times (-9) \div (18) =$$

b)
$$(-5) + \left(-\frac{1}{2}\right) \times \left(-\frac{8}{3}\right) - 9 =$$

d)
$$-10 - (-7) \div (-7) \times 100 =$$

e)
$$\frac{24}{6} \times \frac{1}{2} + 23 - \frac{2}{3} \div \frac{8}{9} =$$

f)
$$\left(2 \div 3 + \frac{2}{3} \div 3\right) \div (16 - 2 \times 7) + 15 - 15 =$$

4. Calcule os seguintes quadrados:

a)
$$16^2$$
 b) $(-13)^2$ c) $\left(\frac{1}{10}\right)^2$ d) 0.03^2 e) $\left(\frac{1}{5}\right)^2$ f) 0.22^2

5. Calcule a área de um quadrado cujo lado mede:

6. Determine as raízes quadradas abaixo usando a tábua:

a)
$$\sqrt{9,0}$$
 b) $\sqrt{0,45}$ c) $\sqrt{6,25}$ d) $\sqrt{49}$ e) $\sqrt{20,7}$ f) $\sqrt{55,5}$

7. Determine a raiz quadrada com duas casas decimais das expresses abaixo e apresente o respectivo resto:

a)
$$\sqrt{145}$$
 b) $\sqrt{257}$ c) $\sqrt{1458}$ d) $\sqrt{9359}$ e) $\sqrt{47893}$ f) $\sqrt{789459}$

8. Represente os números seguintes na recta graduada:

a)
$$-\frac{14}{5}$$
 b) 0,35 c) $\sqrt{1}$ d) $-\sqrt{2}$ e) $\sqrt{3}$ f) $\sqrt{3}$ -4 g) $\sqrt{9}$ h) $\sqrt{7}$

9. Determine o valor das seguintes raízes:

a)
$$\sqrt[3]{64}$$
 b) $\sqrt[3]{-8}$ c) $\sqrt[3]{\frac{27}{125}}$ d) $\sqrt[3]{-729}$ e) $\sqrt[3]{2197}$ f) $\sqrt[3]{0,008}$ g) $\sqrt[3]{0,125}$

10. Escreve os seguintes radicais sob forma de potência de expoente fraccionária:

a)
$$\sqrt{\frac{1}{2}}$$
 b) $\sqrt[3]{2}$ c) $\sqrt[10]{25^5}$ d) $\sqrt[7]{\left(\frac{1}{15}\right)^{21}}$ e) $\sqrt[3]{x^2}$ f) $\sqrt[6]{\left(-\frac{2017}{17}\right)^6}$ g) $\sqrt{(58)^4}$

11. Determine o valor das seguintes potências:

a)
$$144^{\frac{1}{2}}$$
 b) $25^{\frac{1}{2}}$ c) $\left(-\frac{125}{8}\right)^{\frac{2}{6}}$ d) $27^{\frac{1}{3}}$ e) $\sqrt{\frac{4}{3}}^4$ f) $196^{\frac{1}{4}}$ g) $\sqrt[3]{\frac{2}{3}}$

12. Passe os factores para dentro dos radicais:

a)
$$7\sqrt{2}$$
 b) $\frac{1}{3}\sqrt{\frac{9}{2}}$ c) $12\sqrt{2x}$ d) $9\sqrt[3]{\frac{2}{81}}$ e) $3\sqrt[3]{3y^2}$ f) $a^2b\sqrt[3]{\frac{b}{a}}$ g) $-2\sqrt{\frac{1}{7}}$

13. Passe os factores possíveis para fora de radical:

a)
$$\sqrt{3^3}$$
 b) $\sqrt[3]{4^5}$ c) $\sqrt[7]{\left(\frac{5}{3}\right)^{14}}$ d) $\sqrt[3]{54}$ e) $\sqrt[3]{3 \times 125}$ f) $\sqrt{200}$ g) $\sqrt[3]{\frac{64}{27}}$

14. Simplifique os seguintes radicais:

a)
$$\sqrt[15]{14^5}$$
 b) $\sqrt[8]{\left(\frac{7}{14}\right)^2}$ c) $\sqrt[1000]{\left(\frac{1}{2017}\right)^{100}}$ d) $\sqrt[4]{\left(\frac{3}{8}\right)^4}$ e) $\sqrt[3]{\sqrt[4]{318}}$ f) $\left(\sqrt[5]{\sqrt[3]{\left(\frac{27}{8}\right)}}\right)^{25}$

15. Compare os seguintes radicais:

$$\mathrm{a)}\;\sqrt{7}-\dots\sqrt{\frac{18}{2}}\;\;\mathrm{b)}\;\sqrt[3]{\frac{1}{8}}\,\dots\sqrt[3]{0,002}\;\mathrm{c})\sqrt{10}-\dots\sqrt[5]{10}\;\mathrm{d)}\sqrt[7]{\frac{8}{9}}-\dots\sqrt[3]{\frac{8}{9}}\;\mathrm{e)}\;\sqrt{8}-\dots\sqrt[3]{5}\;\mathrm{f)}\;\sqrt[3]{\frac{5}{3}}\,\dots-\sqrt[5]{\frac{1}{2}}$$

16. Simplifique as seguintes expressões:

a)
$$3\sqrt{2} + 7\sqrt{2} + \frac{1}{2}\sqrt{2}$$
 b) $9\sqrt{20} - 11\sqrt{20} + 3\sqrt{20}$ c) $-\frac{1}{3}\sqrt[3]{\frac{1}{5}} + \frac{7}{3}\sqrt[3]{\frac{1}{5}} - 7\sqrt[3]{\frac{1}{5}}$

$$\mathrm{d})\,\sqrt{12} - \sqrt{27} - \sqrt{48} \ \mathrm{e})\,10\sqrt{5} + \sqrt{125} + \sqrt{20} \ \mathrm{f})\,\sqrt{150} + \sqrt{96} - \sqrt{216}$$

17. Efectue as seguintes operações:

$$\mathrm{a)}\,\frac{5\sqrt{7}\times 6\sqrt{6}}{6\sqrt{16}\times 10\sqrt{7}}\,\,\mathrm{b)}\,\frac{(17+2)\sqrt{3}\times 5\left(\sqrt{5}\right)^2}{6\times 19\sqrt{150}}\,\mathrm{c)}\,\frac{\sqrt{5}-\sqrt{20}}{\sqrt{5}}+\sqrt{5}-\sqrt[3]{\left(\frac{5}{3}\right)^6}\,\mathrm{d)}\,\frac{\sqrt[5]{x}\times \sqrt[5]{z^2}\div \sqrt[5]{x^2z}}{\sqrt[5]{xz}},x\neq0.$$

e)
$$\left(2\sqrt{63} - 4\sqrt{28}\right) \times 3\sqrt{18} - \left(\sqrt{2} + 7\sqrt{32}\right) \times \frac{1}{2}\sqrt{7} \text{ f}\right) \frac{\left(\frac{13}{3}\sqrt{3}\right)^3 - \sqrt[3]{125}}{\frac{1}{2}\left(\sqrt[3]{6}\right)^6}$$

CHAVE-DE-CORRECÇÃO DA UNIDADE N° 1.

1.a) F; a) F; c) V; d) V; e) V; f) V; g) V

2.a) 8; b)-34;c)-
$$\frac{13}{6}$$
; d) $\frac{87}{6}$; e)- $\frac{155}{18}$; f) $\frac{47}{100}$; g) $\frac{127}{12}$

3. a) 3; b)
$$-\frac{38}{3}$$
; c) $-\frac{16}{3}$ d) -110 ; e) $\frac{97}{4}$; f) $\frac{4}{9}$;

4. a) 256; b) 169; c)
$$\frac{1}{100}$$
; d) $\frac{9}{10000}$; e) $\frac{1}{25}$; f) $\frac{484}{10000}$

 $5.a)4,84cm^2; b)27,5625cm^2; c)\ 153,76dm^2; d)2,8561dm^2; e)144mm^2; f)\ 406,8289mm^2$

6.a) 3,0000; b)0,6708;c)2,5000;d)7,0000;e)4,5497;f) 7,4498

7.a) 12,04 resto 0,0384; b) 16,03 resto 0,03011; c) 38,18 resto 0,2876; d) 96,74 resto 0,3724;

e) 218,84 resto 2,0544; f) 888,51 resto 8,98

8. $\sqrt{3} - 4$

9. a) 4; b) -2; c)
$$\frac{3}{5}$$
 d) -9 e) 13 f) $\frac{1}{5}$ g) $\frac{1}{2}$

10.a)
$$\left(\frac{1}{2}\right)^{\frac{1}{2}}$$
; b) $2^{\frac{1}{3}}$; c) $25^{\frac{1}{2}}$; d) $\left(\frac{1}{15}\right)^{3}$; e) $x^{\frac{2}{3}}$; f) $\frac{2017}{17}$ g) 58^{2}

11. a) 12; b) 5; c)
$$-\frac{5}{2}$$
; d) 3; e) $\frac{16}{9}$; f) $\sqrt{14}$; g) $\frac{4}{9}$

12.a)
$$\sqrt{98}$$
; b) $\sqrt{\frac{1}{2}}$; c) $\sqrt{288x}$; d) $\sqrt[3]{18}$; e) $\sqrt[3]{81y^2}$; f) $\sqrt{a^3b^7}$; g) $-\sqrt{\frac{4}{7}}$

13.a)
$$3\sqrt{3}$$
; b) $4\sqrt[3]{4}$; c) $\frac{25}{9}$; d) $3\sqrt[3]{2}$; e) $5\sqrt[3]{3}$; f) $10\sqrt{2}$; g) $\frac{4}{3}$

14.a)
$$\sqrt[3]{14}$$
; b) $\sqrt[4]{\frac{1}{2}}$; c) $\sqrt[10]{\frac{1}{2017}}$; d) $\frac{3}{8}$; e) $\sqrt{3}$; f) $\sqrt[3]{\left(\frac{27}{8}\right)^5}$

15. a)
$$\sqrt{7} < \sqrt{\frac{18}{2}}$$
 b) $\sqrt[3]{\frac{1}{8}} > \sqrt[3]{0,002}$ c) $\sqrt{10} > \sqrt[5]{10}$ d) $\sqrt[7]{\frac{8}{9}} < \sqrt[3]{\frac{8}{9}}$ e) $\sqrt{8} > \sqrt[3]{5}$ f) $\sqrt[3]{\frac{5}{3}} > \sqrt[5]{\frac{1}{2}}$

16.a)
$$\frac{21}{2}\sqrt{2}$$
; b) $\sqrt{20}$; c) $-5\sqrt[3]{\frac{1}{5}}$; d) $-5\sqrt{3}$; e) $17\sqrt{5}$; f) $3\sqrt{6}$

17. a)
$$\frac{\sqrt{6}}{8}$$
; b) $\frac{5}{6}\sqrt{\frac{1}{2}}$;c) $-\frac{34}{9} + \sqrt{5}$ d) $\sqrt[5]{\frac{1}{x^2}}$; e) $-\frac{65}{2}\sqrt{14}$; f) $-\frac{7}{27}$

2

Unidade2: INEQUAÇÕES E SISTEMA DE INEQUAÇÕES LINEARES

INTRODUÇÃO DA UNIDADE TEMÁTICA N°2

Estimado(a) aluno(a), nesta unidade temática, vamos abordar inequações e sistema de inequações que

ainda é continuação de operações com números reais.

OBJECTIVOS DE APRENDIZAGEM

- Definir os intervalos nume ricos;
- Identificar os intervalos limitados e ilimitados;
- Operar os intervalos com os sinais de reunião e intersecção;
- Aplicar intervalos numéricos na resolução de inequações;
- Resolver sistemas de inequações aplicando intervalos numéricos.

Resultados de aprendizagem

Estimado aluno no final de estudo da unidade sobre inequações e sistema de inequações,

Você:

- Define os intervalos nume ricos;
- Identifica os intervalos limitados e ilimitados;

Opera os intervalos com os sinais de reunião e intersecção;

- Aplica intervalos numéricos na resolução de inequações;
- Resolve sistemas de inequações aplicando intervalos numéricos.

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 12horas

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de:

- Uma sebenta, esferográfica, lápis, borracha e régua.

Lição nº1:

INTERVALOS NUMÉRICOS LIMITADOS E ILIMITADOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar os Intervalos numéricos limitados e ilimitados.

OBJECTIVOS DE APRENDIZAGEM

- Identificar os intervalos limitados e ilimitados;
- Representar os intervalos no eixo real.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.1.1 Intervalos numéricos limitados e ilimitados

Caro estudante você já abordou os conjuntos numéricos N,Z,Q,I e R, se pretendermos representar um conjunto de números que pertença a qualquer um dos conjuntos acima citados, podemos facilmente usar intervalos numéricos.

Ex:1. Representemos todos os números compreendidos entre, -3 e +2. Na recta teremos:

Repara que são muitos números que pertencem a esta distância de -3 e +2, por exemplo: -2.5;-2;- π ; -1.5;-0.25;0;+1,2;+ $\frac{10}{8}$;+1,99. etc. Portanto são muitos números que dificilmente podemos contabiliza-los. Então, para representarmos todos os números usamos intervalos numéricos.

Os números compreendidos entre -3 e +2, representam-se de seguinte modo:

]-3;+2[- Lê-se intervalo aberto a esquerda e a direita de extremos -3 e +2. Ou;

$$]-3; +2[={x \in R: -3 < x < +2}.$$

No eixo real representa-se de seguinte forma:

Ex:2. Representemos, os números maiores ou iguais a -3 e menores ou iguais a +2.

Em forma de intervalos fica: [-3; +2]- lê-se intervalo fechado a esquerda e a direita com os extremos - 3 e + 2. Ou: $[-3; +2] = \{x \in \mathbb{R}: -3 \le x \le +2\}$

No eixo real representa-se de seguinte forma:

Repara que as bolas estão pintadas. Isto significa que os intervalos estão fechados.

2.1.2 Intervalos abertos de extremos a e b, representam-se de seguinte modo:

]a; b[={ $x \in R$: a < x < b} lê-se: x pertence ao conjunto de números reais, tal que a é menor que x e x é menor que b.

1.2.Intervalos fechados de extremos a e b, representam se de seguinte modo:

 $[a;b] = \{x \in R: a \le x \le b\}$ Lê-se: x pertence ao conjunto de números reais, tal que a é menor ou igual a x e x é menor ou igual a b.

2.1.3 Intervalo fechado à esquerda e aberto à direita:

Representa-se da seguinte maneira: $[a; b[=\{x \in R: a \le x < b\}]$, pare este caso o elemento b, não pertence ao conjunto porque o intervalo neste extremo está aberto.

Ex: $[-3; +2[= \{x \in R: -3 \le x < +2\}]$. No eixo real representa-se de seguinte modo:

Portanto o elemento +2, não pertence ao conjunto porque o intervalo está aberto.

2.1.4 Intervalo aberto à esquerda e fechado à direita:

Representa-se da seguinte maneira: $]a;b] = \{x \in R: a < x \le b\}$, pare este caso o elemento a, não pertence ao conjunto porque o intervalo neste extremo está aberto.

Ex: $]-3;+2] = \{x \in R: -3 < x \le +2\}$. No eixo real representa-se de seguinte modo:

Para este caso o elemento -3, não pertence ao conjunto, porque tem intervalo aberto.

2.1.5 Semi-intervalo fechado à esquerda:

Representa-se da seguinte maneira: $[a; +\infty[= \{x \in R : a < x\}, \text{ pare este caso o extremo directo \'e infinito.}]$

Ex: $[-3; +\infty[$ = $\{x \in R: -3 \le x\}$. No eixo real representa-se de seguinte modo:

2.1.6 Semi-intervalo fechado à direita:

Representa-se da seguinte maneira: $]-\infty; b] = \{x \in R: x \le b\}$, pare este caso o extremo esquerdo é infinito.

Ex: $]-\infty; +2] = \{x \in \mathbb{R}: x \le +2\}$. No eixo real representa-se de seguinte modo:

2.1.7Semi-intervalo aberto à esquerda:

Representa-se da seguinte maneira: $]a; +\infty[= \{x \in R : a < x\},$ pare este caso o extremo esquerdo não pertence ao intervalo e o extremo directo é infinito.

Ex:]-3; $+\infty$ [= { $x \in R$: -3 < x}. No eixo real representa-se de seguinte modo:

2.1.8 Semi-intervalo aberto à direita:

Representa-se da seguinte maneira:] $+\infty$; $b[=\{x \in R: x < b\}$, pare este caso o extremo esquerdo é infinito e o extremo directo não pertence ao conjunto porque o intervalo está aberto.

Ex: $]-\infty; +2[=\{x \in R: x < +2\}]$. No eixo real representa-se de seguinte modo:

ACTIVIDADE DA LIÇÃO N° 1

Caro estudante, depois de termos abordado os Intervalos numéricos limitados e ilimitados,você pode efectuar os exercícios propostos abaixo:

1. Represente no eixo real os seguintes intervalos:

a)
$$A = [-5; +1]$$
 b) $B = \left] -\frac{1}{2}; 0 \right[c) C = \left[-\sqrt{5}; -\sqrt{2} \right[d) D = \left] -\infty; \frac{10}{7} \right]$
e) $E = \left] -4; +\infty \right[f) F = \left[\frac{5}{3}; +\infty \right[$

2. Represente no eixo real e sob a forma de intervalos os seguintes conjuntos:

a)
$$A = \{x \in R : x \ge -4\}$$
 b) $B = \{x \in R : -\sqrt{3} \le x\}$ c) $C = \{x \in R : -\frac{7}{3} \le x < +11\}$ d) $D = \{x \in R : 6 \le x\}$ e) $E = \{x \in R : -14 \le x < 0\}$ f) $F = \{x \in R : 12 < x < +13\}$

3. Complete com os símbolos ∈ ou ∉, de modo a obter proposições verdadeiras:

a) -4----[0; 4] b) +3----[-1; +3[c)
$$-\frac{17}{3}$$
----]- ∞ ; -6] d) 0----]0; 0,25[e) $\frac{1}{8}$ ----[-1; 1]

CHAVE-DE-CORRECÇÃO N° 1

2.

3.

a)
$$-4 \notin [0;4] \text{ b)} + 3 \notin [-1;+3[\text{ c}) - \frac{17}{3} \notin]-\infty;-6] \text{ d)} \ 0 \notin]0;0,25[\text{ e}) \frac{1}{8} \in [-1;1]$$

Lição nº2:

REUNIÃO E INTERSECÇÃO DE INTERVALOS NUMÉRICO

INTRODUÇÃO A LIÇÃO:

Caro estudante, depois de ter abordado intervalos numéricos, você já pode opera-los com a reunião e intersecção de intervalos. Será o tema por abordar nesta lição.

OBJECTIVOS DE APRENDIZAGEM

- Operar os intervalos com a operação reunião;
- Operar os intervalos com a operação intersecção;
- Identificar o intervalo solução nas operações com conjuntos numéricos.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.2.1.Reunião dos intervalos A e B- é a junção de todos os elementos de A com os de B, através do símbolo U (reunião). Representa-se de seguinte modo: AUB.

A reunião de intervalos pode ser representada no eixo real.

Ex: Consideremos os intervalos A=[-5;4] e B=]0;5[. A reunião dos conjuntos A e B, será:

AUB=[-5; 4] U]0; 5[=[-5; 5[.

Graficamente representa-se de seguinte modo: B

AUB=[-5; 4] U]0; 5[=[-5; 5[

2.2.2 Intersecção de intervalos A e B- são todos os elementos de intervalo **A** que perecem também ao intervalo **B**. Isto é são todos os elementos que pertencem ao mesmo tempo em **A** e em **B**. É representado pelo símbolo \cap (interseccão). Isto é: $A \cap B = [-5; 4] \cap]0; 5[=]0; 4$

Graficamente representa-se pelo diagrama acima, a intersecção é a parte onde os tracejados cruzam-se tipo uma rede. Veja a figura:

Em certos casos é possível obtermos as duas operações na mesma expressão, reunião e intersecção de intervalos.

Ex: consideremos os intervalos ou conjuntos seguintes: $A = \left[-1; \frac{1}{2} \right[$; $B = \left[0; 3 \right[$ e $C = \left[-\frac{1}{2}; 4 \right]$. Determinemos: $A \cap B \cup C =$; Primeiro determinamos: $A \cap B =$; teremos:

Então, A \cap B= $\left[0;\frac{1}{2}\right[$; que é o intervalo que se formou a rede dos dois tracejados. Depois podemos calcular A \cap BUC=; que será o resultado de A \cap B= $\left[0;\frac{1}{2}\right[$ e reunião com C= $\left[-\frac{1}{2};4\right]$; no eixo real teremos:

Portanto: A\cap B\cup C = $\left[0; \frac{1}{2}\right] \cup \left[-\frac{1}{2}; 4\right] = \left[-\frac{1}{2}; 4\right].$

ACTIVIDADE DA LIÇÃO N° 2

Caro estudante, depois de termos abordado, reunião e intersecção de intervalos numéricos, você pode efectuar os exercícios propostos

1. Considere os conjuntos abaixo:

$$A = [-5; +1]; B =]-\infty; \frac{10}{7}] e C =]-\frac{15}{2}; +\frac{1}{2}[$$
. Determine:

a) $A \cup C \cup A \cap B \subset A \cup B \cap C \cup C \cup A \cup A \cap B \cup A$

CHAVE-DE-CORRECÇÃO N° 2

a).
$$\left] -\frac{15}{2}; 1\right]$$
 b) $\left[-5; \frac{10}{7} \right]$ c) $\left] -\frac{15}{2}; \frac{1}{2} \left[\mathrm{d} \right] -\frac{15}{2}; \frac{10}{7} \right]$

Lição nº3:

NOÇÃO E RESOLUÇÃO ANALÍTICA, GEOMÉTRICA DE INEQUAÇÕES LINEARES

INTRODUÇÃO A LIÇÃO:

Caro estudante, termos abordados operações com intervalos numéricos, nesta lição, vamos abordar inequações lineares.

OBJECTIVOS DE APRENDIZAGEM

- -Identificar uma inequação linear;
- -determinar soluções de inequações lineares;
- -Aplicar os métodos analítico e geométrico na resolução de inequações lineares.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.3.1 Noção e Resolução analítica, geométrica de inequações lineares

Inequações linear é uma desigualdade entre expressões que envolvem variáveis ou incógnitas (letras ex: x,y,z...).

Exemplos de inequações lineares:

a)
$$x + 3 > 0$$
 b) $3x + 1 \le \frac{1}{2}x$ c) $3y - 5 < 22y - 6$ d) $\frac{2z + 2 + z}{9} \ge 1$

Portanto, numa inequação linear temos o primeiro membro e Segundo membro.

Ex: para inequacao: x + 3 > 0, o primeiro membro é: x + 3 e o segundo membro é **0**.

Portanto podemos coloca-los os elementos de uma inequação numa tabela, assim:

Inequação	1°membro	2°membro	Termo	Variável
x + 3 > 0	<i>x</i> + 3	0	x; 3; 0	x
$3x + 1 \le \frac{1}{2}x$	3x + 1	$\frac{1}{2}x$	$3x;1;\frac{1}{2}x$	х
3y - 5 < 22y - 6	3y - 5	22 <i>y</i> – 6	3y; -5; 22y; -6	у
$\frac{2z+2+z}{9} \ge 1$	$\frac{2z+2+z}{9}$	1	$\frac{1}{9}$; 2z; 2; z; 1	Z

2.3.2 Resolução de inequações lineares:

Para resolvermos inequações lineares devemos obedecer o seguinte:

- 1° -Agrupar os **termos dependentes** no primeiro membro; **termos dependentes** são aqueles que estão multiplicados com variáveis. Ex: para os termos da tabela acima são: x; 3x; $\frac{1}{2}x$; 3y; 22y; 2z; z
- 2°-Agrupar os **termos independentes** no segundo membro; **termos independentes** são aqueles que não estão multiplicados com as variáveis. Ex: para os termos da tabela acima são: $3;0;1;-5;-6;\frac{1}{9};2$.
- 3°-Adicionar ou subtrair os termos dependentes e os termos independentes;
- 4°-Insolar a variável em estudo, passando o seu coeficiente para o segundo membro a dividir se no primeiro membro estiver a multiplicar e vice-versa.
- 5°-Representar a solução em forma de intervalos numéricos com ajuda de eixo real.

Ex: resolva a inequação:a) 3y - 5 < 22y - 6

- 1°-passo: $3y 5 < 22y 6 \leftrightarrow 3y 22y < -6 + 5$; veja que agrupamos os termos dependentes no primeiro membro e os independentes no segundo membro;
- 2°-passo: $3y 22y < -6 + 5 \leftrightarrow -19y < -1$; veja que subtraímos e adicionamos os termos do primeiro membro e de segundo membro;
- -19y < -1; para resolver esta inequação, temos que eliminar o sinal negativo de coeficiente de y, para tal temos que aplicar o **PRINCIPIO DE EQUIVALENCIA**.

Diz o seguinte: se multiplicarmos, dividir, subtrair ou adicionar ambos os membros de uma inequação, com o mesmo valor, o resultado não altera.

Então, para nossa inequação: -19y < -1; vamos multiplicar ambos os membros por (-1);

Teremos: (-1) - 19y < -1(-1); vamos multiplicar os sinais, ao fazermos essa operação, o sinal de desigualdade <, vai mudar da sua posição e ficará de seguinte modo:

 $(-1) - 19y < -1(-1) \leftrightarrow +19y > +1$; então já podemos aplicar o 4° passo; isolar a variável y; assim: $19y > 1 \leftrightarrow y > \frac{1}{19}$; então já podemos representar a solução com ajuda do eixo real; assim:

Solução: $y \in \left[\frac{1}{19}; +\infty\right[$

b) $\frac{3(3-x)}{3} + \frac{3x-1}{4} < 1 - \frac{x-1}{2}$; para este caso primeiro temos que calcular o mmc. Assim:

$$\frac{3(3-x)}{3} + \frac{3x-1}{4} < \frac{1}{1} - \frac{x-1}{2}$$
(4) (3) (12) (6)

Teremos

 $\frac{4\times 3(3-x)}{12} + \frac{3\times (3x-1)}{12} < \frac{12}{12} - \frac{6\times (x-1)}{12}; \text{ aplicamos a propriedade distributiva. Fica:}$

 $\leftrightarrow \frac{12(3-x)}{12} + \frac{9x-3}{12} < \frac{12}{12} - \frac{6x-6}{12} \leftrightarrow \frac{36-12x}{12} + \frac{9x-3}{12} < \frac{12}{12} - \frac{6x-6}{12}; \text{ podemos eliminar o denominador aplicando o princípio de equivalência já abordado no ex:a). Fica:}$

36-12x+9x-3 < 12-(6x-6); distribuímos o sinal negativo para eliminar parênteses. Teremos: $36-12x+9x-3 < 12-(6x-6) \leftrightarrow 36-12x+9x-3 < 12-6x+6$; agora podemos aplicar as regras abordadas no ex:a). Agrupamos os termos independentes no segundo membro e os dependentes no primeiro membro. Fica:

 $36-12x+9x-3<12-6x+6 \leftrightarrow -12x+9x+6x<12+6-36+3;$ vamos adicionar e subtrair os termos: $\leftrightarrow -12x+9x+6x<12+6-36+3 \leftrightarrow 3x<-15;$ para este caso não precisamos de multiplicar ambos os membros por (-1), porque o coeficiente 3, de x é positivo. Teremos: $\leftrightarrow 3x<-15;$ vamos isolar o x. assim: $\leftrightarrow 3x<-15 \leftrightarrow x<-\frac{15}{3} \leftrightarrow x<-5;$ podemos representar a solução com auxílio do eixo real:

Solução: $x \in]-\infty; -5[$

ACTIVIDADE DA LIÇÃO N° 3

Caro estudante, depois de termos abordado a Noção de inequações lineares, você pode efectuar os exercícios propostos:

1. Resolva as inequações lineares abaixo:

a)
$$2x + \frac{6}{2} < x - 4$$

b)
$$x + 3 \le x - 3 - 4x$$

c)
$$(2x-1)-(7x+2)+1 \ge 2x-2$$

$$d)\frac{1}{2}(2x-1)+1 \ge \frac{3}{2}\left(x-\frac{1}{2}\right)$$

e)
$$8 - \frac{x}{3} \le -5x - (2 - 3x)$$

CHAVE-DE-CORRECÇÃO N° 3

1. a)
$$x < -7$$
; b) $x < -\frac{3}{2}$; c) $x < 0$; d) $x \le \frac{5}{2}$ e) $x < -6$

LIÇÃO N°4: NOÇÃO E RESOLUÇÃO DE SISTEMA DE INEQUAÇÕES LINEARES COM UMA VARIÁVEL

INTRODUÇÃO A LIÇÃO:

Caro estudante, as inequações lineares podem ser resolvidas numa expressão conjunta, deste modo obter-se a solução comum.

OBJECTIVOS DE APRENDIZAGEM

- -Determinar as soluções do sistema de inequações a uma variável;
- -Representar as soluções analítica e geometricamente.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

2.4.1 Noção e Resolução de sistema de inequações lineares com uma variável

O sistema de inequações à uma variável – é uma expressão que é formada por duas inequações.

Representa-se da seguinte maneira:

$$\begin{cases} ax + b < c \\ a'x + b' \ge c' \end{cases}; \text{ onde: } (a \ne 0; a' \ne 0; b, b', c \in c') \in R.$$

Ex:

$$\begin{cases}
 x - 3 < 0 \\
 \frac{1}{3}x + 7 \ge -3
 \end{cases}$$

b)
$$\begin{cases} \frac{x-2}{4} - \frac{2x-1}{2} > \frac{x}{5} \\ \frac{3-5x}{2} \ge 5 - \frac{2x+3}{9} \end{cases}$$

2.4.2 Resolução de sistema de inequações lineares à uma variável

- 1°- Resolver as inequações separadamente, obedecendo as regras abordadas na lição número 3;
- 2°- Representar as soluções das duas inequações no mesmo eixo real;
- 3°- Identificar a solução do sistema de inequações, que é o intervalo comum das duas inequações.

Ex1: Vamos resolver o sistema seguinte:
$$\begin{cases} x - 3 < 0 \\ \frac{1}{3}x + 7 \ge -3 \end{cases}$$

Primeiro resolvemos a inadequação: x-3 < 0 e depois a inadequação $\frac{1}{3}x+7 \ge -3$. Isto é:

 $\begin{cases} x-3<0\\ \frac{1}{3}x+7\geq -3 \end{cases} \leftrightarrow \begin{cases} x<0+3\\ \frac{1}{3}x\geq -7-3 \end{cases}; \text{ mantemos os termos dependentes no primeiro membro e os termos independentes no segundo membro; em seguida adicionamos e subtraímos os termos independentes. Assim: <math>\leftrightarrow \begin{cases} x<0+3\\ \frac{1}{3}x\geq -7-3 \end{cases} \leftrightarrow \begin{cases} x<3\\ \frac{1}{3}x\geq -10 \end{cases}; \text{ a primeira inequação já está resolvida, resolvamos o segunda inequação, passamos o coeficiente } \frac{1}{3} \text{ para o segundo membro e passa a dividir, porque no primeiro membro está a multiplicar com x, fica: } \leftrightarrow \begin{cases} x<3\\ \frac{1}{3}x\geq -10 \end{cases} \leftrightarrow \begin{cases} x<3\\ x\geq \frac{-10}{\frac{1}{3}}; \text{ aplicamos} \end{cases}$

as propriedades da divisão de fracções, mantemos o dividendo -10 e multiplicamos pelo inverso de $\frac{1}{3}$, o

inverso é
$$\frac{3}{1}$$
, então teremos: \leftrightarrow
$$\begin{cases} x < 3 \\ x \ge \frac{-10}{\frac{1}{3}} \end{cases} \leftrightarrow \begin{cases} x < 3 \\ x \ge -10 \times \frac{3}{1} \end{cases} \leftrightarrow \begin{cases} x < 3 \\ x \ge -10 \times 3 \end{cases} \leftrightarrow \begin{cases} x < 3 \\ x \ge -30 \end{cases}$$

Assim

já resolvemos o sistema, agora vamos representar a solução no eixo real.

Teremos:

Então a solução será o intervalo: **Sol**: $x\epsilon[-30;3[$

Ex2: $\begin{cases} \frac{x-2}{4} - \frac{2x-1}{2} > \frac{x}{5} \\ \frac{3-5x}{2} \ge 5 - \frac{2x+3}{9}; \text{ para este sistema de inequações, devemos calcular o mmc, dos} \end{cases}$

denominadores das duas inequações, assim: $\leftrightarrow \begin{cases} \frac{x-2}{4} - \frac{2x-1}{2} > \frac{x}{5} \\ (5) & (10) & (4) \end{cases} \\ \frac{3-5x}{2} \ge \frac{5}{1} - \frac{2x+3}{9} \\ \to \begin{cases} \frac{9(3-5x)}{18} \ge \frac{18\times5}{18} - \frac{2(2x+3)}{18} \end{cases}$

Como, já calculamos o mmc em ambos os membros, então, podemos eliminar os denominadores e teremos: \leftrightarrow $\begin{cases} 5(x-2)-10(2x-1)>4x \\ 9(3-5x)\geq 18\times 5-2(2x+3) \end{cases}$; aplicando a propriedade distributiva teremos:

 $\leftrightarrow \begin{cases} 5x - 10 - 20x + 10 > 4x \\ 27 - 45x \ge 90 - 4x - 6 \end{cases}; \text{ agora podemos agrupar os termos dependentes no primeiro membro e os independentes no segundo membro: assim:}$

 $\leftrightarrow \begin{cases} 5x - 20x - 4x +> 10 - 10 \\ -45x + 4x \geq 90 - 6 - 27 \end{cases}; \text{ adicionamos os termos semelhantes e teremos:}$

 \leftrightarrow $\begin{cases} -19x > 0 \\ -41x \ge 57 \end{cases}$; multiplicamos ambos os membros por (-1) para torna-los positivos os coeficientes - 19 e -41, os sinais de desigualdades vão mudar de posição segundo o princípio de equivalência já abordado na lição 3. Então, teremos:

 $\leftrightarrow \begin{cases} (-1) - 19x > 0(-1) \\ (-1) - 41x \ge 57(-1) \end{cases} \leftrightarrow \begin{cases} 19x < 0 \\ 41x \le -57 \end{cases}$; passamos os coeficientes 19 e 41 a dividir no

segundo membro, assim: \leftrightarrow $\begin{cases} 19x < 0 \\ 41x \le -57 \end{cases} \leftrightarrow \begin{cases} x < \frac{0}{19} \\ x \le \frac{-57}{41} \end{cases} \leftrightarrow \begin{cases} x < 0 \\ x \le \frac{-57}{41} \end{cases}$; vamos representar as soluções

no eixo real. Assim:

$$-\infty$$
 $-\frac{5}{4}$

Logo, a solução será: $Sol: x\epsilon \left] -\infty; -\frac{57}{41} \right]$

Ex3:
$$\begin{cases} \frac{(x+3)}{2} \le -9 \\ x-3 > \frac{1}{3}(x-2) \end{cases}$$
; calculamos o mmc em ambos os membros: $\leftrightarrow \begin{cases} \frac{(x+3)}{2} \le -\frac{9}{1} \\ (1) & (2) \\ \frac{x-3}{1} > \frac{1}{3}(x-2) \end{cases} \leftrightarrow$

 $\begin{cases} 1(x+3) \leq -18 \\ 3(x-3) > 1(x-2); \text{ aplicamos a propriedade distributiva, fica: } \leftrightarrow \begin{cases} x+3 \leq -18 \\ 3x-9 > x-2; \end{cases} \text{ agrupamos os termos semelhantes no primeiro membro e no segundo membro, assim:}$

$$\leftrightarrow \begin{cases} x \le -18 - 3 \\ 3x - x > -2 + 9 \end{cases} \leftrightarrow \begin{cases} x \le -21 \\ 2x > 7 \end{cases} \leftrightarrow \begin{cases} x \le -21 \\ x > \frac{7}{2} \end{cases}$$
; representamos a solução no eixo real, assim:

Para este caso, o sistema de inequações não tem solução, será conjunto vazio porque os intervalos não se intersectam. Então fica:

Sol: $x \in \emptyset$.

ACTIVIDADE DA LIÇÃO N° 4

Caro estudante, depois de termos abordado Noção de sistema de inequações lineares com uma variável, você pode efectuar os exercícios propostos abaixo:

1. Resolva os seguintes sistemas de inequações lineares:

$$a) \begin{cases} 3x + 2 < 2x \\ 2x \le 2 \end{cases}$$

b)
$$\begin{cases} \frac{x}{2} + 3x \ge 3 \\ -2x > 2 - 3x \end{cases}$$

$$(x) \begin{cases} x - \frac{x-2}{2} \le 2 \\ 2x \le \frac{7x}{2} - \frac{1}{2} \end{cases}$$

$$d = \begin{cases} \frac{2(x-2)}{2} - \frac{3(x+2)}{3} < \frac{x+1}{6} \\ 2 - \frac{3(x+2)}{2} < x + \frac{x-1}{4} \end{cases}$$

e)
$$\begin{cases} 1 - \frac{2}{3}(x+3) \ge \frac{7(1-2x)}{4} \\ \frac{1}{2}(3x-3) < 2 - x \end{cases}$$

CHAVE-DE-CORRECÇÃO N° 4

1. a)
$$x \in]2; +\infty[; b)x \in \left[\frac{2}{3}; 2\right[; c)\left[\frac{2}{3}; 2\right[; d) x \in \emptyset e\right]x \in \left[\frac{33}{34}; \frac{7}{5}\right]$$

ACTIVIDADES UNIDADE N°-2./ PREPARAÇÃO PARA TESTE

Caro estudante, depois da revisão de toda unidade número 2, pode prestar a seguinte actividade:

1. Represente as seguintes inequações no eixo real e sob a notação de intervalos:

a)
$$x > 0$$
 b) $x \le \frac{1}{2}$ c) $-4 < x \le +8$ d) $-\frac{\sqrt{2}}{2} \le x \le +\frac{\sqrt{2}}{2}$ e) $-0.25 > x \ge -\frac{1}{3}$

2. Considere os conjuntos: $A = \left[-3; \frac{7}{2}\right]$; $B = \left[0; 5\right]$ e $C = \left[-2; +\infty\right[$. Determine:

a)
$$A \cup B$$
 b) $A \cap B$ c) $(B \cap C) \cup A$ d) $B \cup C \cap A$

3. Resolve as seguintes inequações:

a)
$$3x - 1 < 7$$
 b) $6x + 2 \le 2x - 8$ c) $\frac{1}{2} < \frac{4x - 1}{4}$ d) $1 - 2(2x - 1) \ge 3(\frac{1}{3}x + 9)$
e) $\frac{y - 1}{2} - \frac{(2y + 3)}{3} > \frac{y}{6}$ f) $-4x + 6 \ge \frac{3}{4}x + \frac{2 - x}{3}$

4. Resolva os sistemas de inequações seguintes:

a)
$$\begin{cases} x - 4 > 5 - \frac{2}{3}x \\ \frac{3}{2}(x - 3) \le x + 1 \end{cases}$$
 b)
$$\begin{cases} x - (4x - 3) \le 0 \\ \frac{9}{2}x - 5(x - 1) \le 2x + 6 \end{cases}$$
 c)
$$\begin{cases} \frac{x - 7}{5} < x - \frac{1}{2} \\ \frac{1 - (2x - 2)}{3} - x > -1 \end{cases}$$
 d)
$$\begin{cases} 4 - 7x + \frac{3 - x}{5} > 2 \\ \frac{7 - (6x - 2)}{3} - (2x - 1) < -x \end{cases}$$

CHAVE-DE-CORRECÇÃO DA UNIDADE N° 2.

1.a)]0; +∞

2.a)
$$[-3; 5[; b)[0; \frac{7}{2}[; c)[-3; 5[; d)[-2; \frac{7}{2}]]$$

3. a)
$$\left] -\infty; \frac{8}{3} \left[; b\right] \right] -\infty; -\frac{5}{2} \left[; c\right] \left[\frac{3}{4}; +\infty \left[d\right] \left[8; +\infty \left[; e\right] \right] -\infty; -\frac{9}{2} \left[; f\right] \right] -\infty; \frac{64}{53} \left[\frac{3}{53} \left[\frac{3}{53}; b\right] -\infty; \frac{64}{53} \left[\frac{3}{53};$$

4. a)
$$x\epsilon \left[\frac{27}{5}; 11\right]$$
; b) $\left[1; +\infty\right[; c) \left] -\frac{9}{8}; \frac{6}{5}\left[; d\right] x\epsilon\emptyset;$

3

UNIDADE 3: NOÇÃO DE MONÓMIOS E POLINÓMIOS

INTRODUÇÃO DA UNIDADE TEMÁTICA N°3.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar monómios, polinómios e as suas operações.

OBJECTIVOS DE APRENDIZAGEM

- Identificar monómios e polinómios;
- Determinar os graus de monómio e polinómios;
- Identificar os componentes de monómios e polinómios;
- Operar os monómios e polinómios;

RESULTADOS DE APRENDIZAGEM

Estimado aluno no final de estudo da unidade sobre monómios e polinómios,

Você:

- Identifica monómios e polinómios;
- Determina os graus de monómio e polinómios;
- Identifica os componentes de monómios e polinómios;
- Opera os monómios e polinómios;

DURAÇÃO DA UNIDADE:

Caro estudante, para o estudo desta unidade temática você vai precisar de 45horas

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de:- Uma sebenta, esferográfica, lápis, borracha e régua.

LIÇÃO N°1: NOÇÃO DE MONÓMIOS E GRAU DE UM MONÓMIO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar os monómios que vão sustentar a definição de polinómios.

OBJECTIVOS DE APRENDIZAGEM

- Definir monómios;
- Identificar os componentes de monómios;
- Determinar o grau de um monómio.
- Identificar os monómios semelhantes.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.1.1Noção de monómios

Caro estudante, nesta lição vamos continuar a operar com o conjunto dos números reais, mas com a introdução de diferentes variáveis.

Ex: Consideremos a multiplicação dos seguintes valores: $-\frac{\sqrt{3}}{2}$; X; Y^2 e Z^{10} , temos:

 $-\frac{\sqrt{3}}{2} \times (X) \times Y^2 \times Z^{10}$; portanto, a multiplicação destes valores pode ser feita com a omissão do sinal de multiplicação (×), então teremos: $-\frac{\sqrt{3}}{2} \times (X) \times Y^2 \times Z^{10} = -\frac{\sqrt{3}}{2} XY^2 Z^{10}$.

Monómio é a expressão que resulta da multiplicação de número $-\frac{\sqrt{3}}{2}$ com as respectivas letras XY^2Z^{10} .

Podemos considerar outros exemplos de monómios tais como: 3x; $\frac{1}{5}t^2$; $-\frac{klr^{20}}{2}$; -24; +100; ax^2 , etc.

3.1.2 Componentes de monómios:

Um monómio é composto por: coeficiente e parte literal.

Coeficiente é o número que multiplica-se com as letras.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ - neste monómio o coeficiente é $-\frac{\sqrt{3}}{2}$.

- b) 3x- Coeficiente é 3.
- c) $\frac{1}{5}t^2$ Coeficiente é $\frac{1}{5}$.
- d) $-\frac{klr^{20}}{2}$ Coeficiente é $-\frac{1}{2}$, porque no numerado klr^{20} , temos o valor 1 que multiplica, ficando: $1 \times (klr^{20})$, então: $-\frac{klr^{20}}{2} = -\frac{1 \times (klr^{20})}{2}$, logo coeficiente é $-\frac{1}{2}$.
- e) -24- Coeficiente é -24.
- f) +100 Coeficiente é +100.
- g) ax^2 Coeficiente é 1.

Parte literal é a parte composta pelas letras.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ neste monómio a parte literal é XY^2Z^{10} .

- b) 3x- Parte literal é x.
- c) $\frac{1}{5}t^2$ Parte literal é t^2
- d) $-\frac{klr^{20}}{2}$ Parte literal é klr^{20}
- e) -24- Não tem a parte literal.
- f) +100 Não tem a parte literal.
- g) ax^2 Parte literal é ax^2 .

Grau de um monómio – é a soma dos expoentes da parte literal.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$, para este monómio a parte literal $XY^2Z^{10} = X^1Y^2Z^{10}$, o expoente de $X \notin 1$, de $Y \notin 2$ e de $Z \notin 10$. Então, a soma dos expoentes será: 1 + 2 + 10 = 13.

Logo o grau de monómio $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ é 13.

- b) 3x- O grau é 1.
- c) $\frac{1}{5}t^2$ O grau é 2.
- d) $-\frac{klr^{20}}{2}$ O grau é 1 + 1 + 20 = 22
- e) -24- O grau é 0 (zero), porque não tem a parte literal.
- f) +100 O grau é 0 (zero), porque não tem a parte literal.
- g) ax^2 O grau é 1 + 2 = 3.

3.1.3 Monómios semelhantes – são todos aqueles que têm a mesma parte literal.

Ex:
$$\sqrt[20]{50}$$
; $3xy$; ztk^2 ; $-\frac{\sqrt{3}}{3}yx$; $\frac{xy}{20}$; $2017k^2tz$; 1980 .

Para o exemplo acima os monómios semelhantes são:

- a) 3xy; $-\frac{\sqrt{3}}{3}yx$; $\frac{xy}{20}$ esses monómios são semelhantes porque têm a mesma parte literal, a pesar da propriedade comutativa entre os monómios, $-\frac{\sqrt{3}}{3}yx$; $\frac{xy}{20}$.
- b) ztk^2 ; $2017k^2tz$, Também são monómios semelhantes apesar da propriedade comutativa entre as letras.
- c) $\sqrt[20]{50}$; 1980. São monómios semelhantes porque ambos não têm a parte literal.

Caro estudante, depois de termos abordado a Noção de monómios, você pode efectuar os exercícios propostos abaixo:

1. Verifique se as expressões seguintes são ou não monómios e nos casos afirmativos, indique os coeficientes e partes literais:

a)
$$xgk$$
 b) $-\frac{10}{7}z+d$ c) $\frac{2017}{25}$ d) $\frac{hzt^5}{4}$ e) $a+b$ f) $-x^3f^2z$ g) $\sqrt[3]{2}$ h) $45t+0$

2. Determine o grau dos monómios abaixo:

a)
$$54x^3$$
 b) $\frac{xtk^8}{8}$ c) $6^7x^6z^9$ d) $xz2^{18}$ e) $-\frac{1}{7}art^8$

3. Complete a tabela abaixo:

Monómio	Coeficiente	Parte literal	Grau
$3x^7yz$			
$-\frac{1}{3}xt^2k$			
-1980			
$\frac{8xt^4y}{5}$			
k^4yzt^2			
$\left(\frac{1}{13}\right)^3 x^3 z^7$			

4. Identifique os monómios semelhantes:

a)
$$-xz^2$$
; xzz ; $\frac{2}{3}x^2z$; $\frac{1}{4}z^2x$; $-18zx^2$

a)
$$-xz^2$$
; xzz ; $\frac{2}{3}x^2z$; $\frac{1}{4}z^2x$; $-18zx^2$
b) $\frac{\sqrt{3}}{2}ba^3$; $-ab$; $\frac{ba^3}{2}$; $-7bay$; $-25t^0bay$; $+ba$; $\frac{\sqrt{3}}{2}ab^3$

CHAVE-DE-CORRECÇÃO N° 1

1.

Monómios	Coeficiente	Parte literal
a) xgk	1	xgk
$c)\frac{2017}{25}$	2017 25	Não existe

$d) \frac{hzt^5}{4}$	$\frac{1}{4}$	hzt ⁵
f) $-x^3f^2z$	-1	x^3f^2z
g) ³ √2	1	Não existe
h) 45t + 0	45	t

2. a)
$$54x^3$$
 - Grau 3;b) $\frac{xtk^8}{8}$ - Grau 10;c) $6^7x^6z^9$ - Grau 15; d) $xz2^{18}$ - Grau 2; e) $-\frac{1}{7}art^8$

3.

Monómio	Coeficiente	Parte literal	Grau
$3x^7yz$	3	x^7yz	9
$-\frac{1}{3}xt^2k$	$-\frac{1}{3}$	xt ² k	4
-1980	-1980	nãoexiste	0
$\frac{8xt^4y}{5}$	<u>8</u> 5	xt^4y	6
k^4yzt^2	1	k ⁴ yzt ²	8
$\left(\frac{1}{13}\right)^3 x^3 z^7$	$\left(\frac{1}{13}\right)^3$	x^3z^7	10

4. Momomios semelhantes: a) $\left(-xz^2; xzz = xz^2; \frac{1}{4}z^2x\right)$

b)
$$\left(\frac{\sqrt{3}}{2}ba^3; \frac{ba^3}{2}\right)$$
; $(-ab; +ba)$; $\left(\frac{\sqrt{3}}{2}ba^3; \frac{ba^3}{2}\right)$; $(-7bay; -25t^0bay = -25bay)$

Lição nº2:

ADIÇÃO ALGÉBRICA DE MONÓMIOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a **Adição algébrica de monómios** que vão sustentar a definição de polinómios.

OBJECTIVOS DE APRENDIZAGEM

- Adicionar os monómios;
- Simplificar os monómios simétricos;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.2.1 Adição algébrica de monómios

Caro estudante, já abordou os componentes de um monómio então, podemos adiciona-los no conjunto de números reais.

Na adição de monómios, só é possível adicionar monómios semelhantes.

Portanto, para adicionar monómios deve-se verificar se são semelhante ou não. Se forem semelhantes, deve-se adicionar os seus coeficientes e manter-se a parte literal.

Ex: a) Vamos adicionar os seguintes monómios: $14x^3y$ e $-28x^3y$; Veja que os dois monómios são semelhantes porque tem a mesma parte literal x^3y , então podemos adiciona-los, assim:

 $14x^3y + (-28x^3y) =$; Portanto, devemos adicionar os coeficientes 14 e -28 e manter aparte literal x^3y ; Assim: $14x^3y + (-28x^3y) = [14 + (-28)]x^3y =$; conjugando os sinais, teremos: $= (14 - 28)x^3y = -14x^3y$. Logo, o resultado será: $-14x^3y$.

b) $-\frac{3}{2}abx + \frac{1}{3}xy^3 + \frac{7}{4}abx - 5xy^3 =$; Para este caso os monómios semelhantes são: $\left(-\frac{3}{2}abx\ e\ \frac{7}{4}abx\right)$; $\left(\frac{1}{3}xy^3\ e\ -5xy^3\right)$; então devemos adicionar os seus coeficientes e manter a parte literal. Assim:

 $-\frac{3}{2}abx + \frac{1}{3}xy^3 + \frac{7}{4}abx - 5xy^3 = \left(-\frac{3}{2} + \frac{7}{4}\right)abx + \left(\frac{1}{3} - 5\right)xy^3 =; \text{ agora, podemos}$ determinar o mmc de denominadores dos coeficientes, que é 4e 3. Assim:

$$= \left(-\frac{\frac{3}{2}}{\frac{2}{(2)}} + \frac{7}{\frac{4}{(1)}}\right)abx + \left(\frac{\frac{1}{3}}{\frac{3}{(1)}} - \frac{\frac{5}{1}}{\frac{1}{(3)}}\right)xy^3 = \left(\frac{-3\times2+1\times7}{4}\right)abx + \left(\frac{1\times1-5\times3}{3}\right)xy^3 = \left(\frac{-3\times2+1\times7}{4}\right)abx + \left(\frac{1\times1-5\times3}{3}\right)abx + \left(\frac{1\times1-5$$

$$= \left(\frac{-6+7}{4}\right)abx + \left(\frac{1-15}{3}\right)xy^3 = \left(\frac{-1}{4}\right)abx + \left(\frac{-14}{3}\right)xy^3 =$$
; eliminando parênteses fica:

 $=-\frac{1}{4}abx-\frac{14}{3}xy^3$. Para este caso, porque os monómios não são semelhantes então terminamos por aqui.

ACTIVIDADE DA LIÇÃO N° 2

Caro estudante, depois de termos abordado a Adição algébrica de monómios, você pode efectuar os exercícios propostos:

1. Determine a soma algébrica dos monómios abaixo:

a)
$$2x - 5x + 4x$$

b)
$$axk - 4htx + 20axk + 25htx$$

b)
$$uxk - 4ntx + 20uxk + 25$$

c) $-\frac{1}{2}xy + zt - \frac{9}{4}xy - \frac{7}{10}zt$
d) $\frac{xz^6}{2} - \frac{2z^6x}{3} + 2$
e) $\frac{atr^4}{5} + 25 - \frac{11atr^4}{10} - 50$
f) $3.5x - 5.2y - 7x - 3.8y$
g) $\frac{8}{3}w - 8w + 4u - \frac{1}{3}u$

d)
$$\frac{xz^{6}}{2} - \frac{2z^{6}x}{3} + 2$$

e)
$$\frac{atr^4}{5} + 25 - \frac{11atr^4}{10} - 50$$

f)
$$3.5x - 5.2y - 7x - 3.8y$$

g)
$$\frac{8}{3}w - 8w + 4u - \frac{1}{3}u$$

CHAVE-DE-CORRECÇÃO N° 2

1. a) \boldsymbol{x} .

b)
$$21axk + 21htx$$
.

c)
$$-\frac{11}{4}xy + \frac{3}{10}zt$$
.

d)
$$-\frac{z^6x}{6} + 2$$

e)
$$-\frac{9}{10}atr^4-25$$

f)
$$-3.5x - 9y$$

$$g)\frac{11}{3}u - \frac{16}{3}w$$

LIÇÃO Nº3:

MULTIPLICAÇÃO E DIVISÃO DE MONÓMIOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Multiplicação e Divisão de monómios aplicando as propriedades.

OBJECTIVOS DE APRENDIZAGEM

- Multiplicar os monómios;
- Dividir os monómios;

- simplificar expressões com monómios.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.3.1 Multiplicação e Divisão de monómios

Caro estudante, vamos continuar com operações de monómios, neste caso, multiplicação e divisão de monómios.

3.3.2 Multiplicação de monómios

A multiplicação de dois monómios resulta um outro monómio.

<u>Então</u>, para multiplicar dois monómios, deve-se multiplicar os seus coeficientes e as suas partes literais, aplicando as propriedades de potenciação.

Ex: Multipliquemos os monómios seguintes: $\frac{6}{5}x^2z^3$ e $-\frac{10}{12}x^2z^2$; Teremos:

$$\left(\frac{6}{5}x^2z^3\right)\times\left(-\frac{10}{12}x^2z^2\right)=; \quad \text{Vamos multiplicar os coeficientes } \frac{6}{5};-\frac{10}{12} \quad \text{e as partes}$$
 literais $x^2z^3; x^2z^2$. Assim:

$$\left(\frac{6}{5}x^2z^3\right)\times\left(-\frac{10}{12}x^2z^2\right) = \left[\frac{6}{5}\times\left(-\frac{10}{12}\right)\right]\times\left[\left(x^2z^3\right)\times\left(x^2z^2\right)\right] =; \text{ podemos factorizar o 10 e 12,}$$

para simplificar os coeficientes. Assim:

$$-\frac{\cancel{g}\times\cancel{g}\times\cancel{f}}{\cancel{g}\times\cancel{g}\times\cancel{f}}\times[(x^2z^3)\times(x^2z^2)]=-1\times[(x^2z^3)\times(x^2z^2)]=; \text{ em seguida, podemos manter as bases das partes literais e adicionar os expoentes, assim: }-1x^{(2+2)}z^{3+2}=-1x^4z^5=x^4z^5.$$

3.3.3 Divisão de monómios

Para dividir dois monómios deve se dividir os coeficientes entre si, e dividir as partes literais entre si também.

Ex: Vamos dividir os seguintes monómios: $-\frac{7}{5}x^6y^3z$ e $-\frac{21}{20}x^4y$; Fica:

$$\left(-\frac{7}{5}x^6y^3z\right)$$
 ÷ $\left(-\frac{21}{20}x^4y\right)$ =; pode se colocar na forma fraccionária de seguinte modo: $\frac{\left(-\frac{7}{5}x^6y^3z\right)}{\left(-\frac{21}{20}x^4y\right)}$ =

Então, podemos dividir os coeficientes e as partes literais, assim: $\left(\frac{-\frac{7}{5}}{-\frac{21}{20}}\right) \times \left(\frac{x^6y^3z}{x^4y}\right) =$; neste caso, vamos manter o dividendo $-\frac{7}{5}$ e multiplicar pelo inverso do divisor $-\frac{20}{21}$. Assim:

 $=\left(-\frac{7}{5}\right)\times\left(-\frac{20}{21}\right)\times\left(\frac{x^6y^3z}{x^4y}\right)=$, Conjugamos os sinais decompomos o **20** e **21**, para simplificarmos o máximo possível. Assim: $+\left(\frac{7\times4\times5}{5\times7\times3}\right)\times\left(\frac{x^6y^3z}{x^4y}\right)=+\frac{4}{3}\times\left(\frac{x^6y^3z}{x^4y}\right)=$; agora podemos factorizar a parte literal, para simplificar o máximo possível. Assim:

$$=+rac{4}{3} imes\left(rac{x^6y^3z}{x^4y}
ight)=+rac{4}{3} imesrac{x^4x^2y^2yz}{x^4y}=$$
; Agora podemos simplificar as partes literais. Assim:

$$= +\frac{4}{3} \times \frac{x^{4} x^{2} y^{2} y z}{|x^{4} y|} = +\frac{4}{3} \times x^{2} y^{2} z = \frac{4}{3} x^{2} y^{2} z.$$

ACTIVIDADE DA LIÇÃO N° 3

Caro estudante, depois de termos abordado a Multiplicação e Divisão de monómios, você pode efectuar os exercícios propostos abaixa:

1. Multiplique e simplifique os monómios seguintes:

a)
$$(-2x) \times (-3x^3)$$

b)
$$\left(\frac{8}{3}x^4y\right) \times \left(-3x^3y^2\right)$$

c)
$$(-3axb) \times \left(-\frac{1}{9}x^3by^2\right)$$

d)
$$17y^5x^6 \times \left(\frac{2}{34}a^5y^2x^7\right)$$

2. Efectue e simplifique as seguintes operações:

a)
$$(-2x^3) \div (-3x)$$

b)
$$\left(\frac{8}{3}x^4y^2\right) \div (-3x^3y)$$

c)
$$\left(-\frac{4}{3}ax^3by^2\right) \div \left(-\frac{1}{9}bxy^2\right)$$

d)
$$\frac{1}{17}y^5x^6a^{10} \div \left(\frac{1}{34}a^5y^2x^3\right)$$

CHAVE-DE-CORRECÇÃO N° 3

1. a)
$$6x^4$$
; b) $-8x^7y^3$; c) $\frac{1}{3}x^4b^2y^2a$; d) $x^{13}y^7a^5$

2.
$$a)\frac{2}{3}x^2$$
; $b)-\frac{8}{9}xy$; $c)12ax^2$; $d)2a^5y^3x^3$.

Lição nº4:

POTENCIAÇÃO DE MONÓMIOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Potenciação de monómios aplicando as propriedades de potencias.

OBJECTIVOS DE APRENDIZAGEM

- Operar as potências de monómios.
- Aplicar as propriedades da potenciação;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 2 horas para o estudo desta lição.

3.4.1 Potenciação de monómios

Caro estudante, para facilmente operar os monómios é necessário também, abordar a potenciação de monómios.

A potência de um monómio é igual a potência de cada um dos componentes de monómio, isto é: é a potência de coeficiente e da parte literal.

Ex: Determinemos a potência de seguinte monómio: $\left(-\frac{7}{5}x^6y^3z\right)^2$; significa que devemos elevar todos os factores pelo expoente 2. Assim:

 $\left(-\frac{7}{5}\boldsymbol{x}^{6}\boldsymbol{y}^{3}\boldsymbol{z}\right)^{2} = \left(-\frac{7}{5}\right)^{2} \times (\boldsymbol{x}^{6})^{2} \times (\boldsymbol{y}^{3})^{2} \times (\boldsymbol{z}^{1})^{2}; \text{ Aplicando a propriedade de potência de uma potência, a seguinte: } (a^{n})^{m} = a^{n \times m}; \text{ para o coeficiente } \left(-\frac{7}{5}\right)^{2}, \text{ Multiplicamos por si duas vezes, assim: } \left(-\frac{7}{5}\right)^{2} = \left(-\frac{7}{5}\right) \times \left(-\frac{7}{5}\right) = +\frac{49}{25}; \text{ e podemos multiplicar os expoentes da parte literal. Assim: } (\boldsymbol{x}^{6})^{2} \times (\boldsymbol{y}^{3})^{2} \times (\boldsymbol{z}^{1})^{2} = \boldsymbol{x}^{(6 \times 2)} \boldsymbol{y}^{(3 \times 2)} \boldsymbol{z}^{(2 \times 1)} = \boldsymbol{x}^{12} \boldsymbol{y}^{6} \boldsymbol{z}^{2}; \text{ Então, o resultado da potência será: } \left(-\frac{7}{5}\boldsymbol{x}^{6}\boldsymbol{y}^{3}\boldsymbol{z}\right)^{2} = +\frac{49}{25}\boldsymbol{x}^{12}\boldsymbol{y}^{6}\boldsymbol{z}^{2}.$

Caro estudante, depois de termos abordado a Potenciação de monómios, você pode efectuar os exercícios propostos abaixa:

- 1. Efectue as seguintes potência:
 - a) $(-3x^3)^2$
 - b) $\left(\frac{8}{3}x^4y\right)^3$
 - c) $\left(-\frac{1}{9}x^3by^2\right)^7$
 - d) $\left(\frac{2}{34}a^5y^2x^7\right)^2$
 - e) $\left(-\frac{4}{3}ax^3by^2\right)^3$

CHAVE-DE-CORRECÇÃO N° 4

1. a)
$$9x^6$$
; b) $\frac{512}{27}x^{12}y^3$; c) $-\left(\frac{1}{9}\right)^7x^{21}b^7y^{14}$; d) $\left(\frac{1}{17}\right)^2a^{10}y^4x^{14}$

e)
$$-\frac{64}{27}a^3x^9b^3y^6$$

Lição nº5:

NOÇÃO DE POLINÓMIOS E GRAU DE UM POLINÓMIO

INTRODUÇÃO A LIÇÃO:

Caro estudante, com abordagem prestada nas lições anteriores sobre monómios, já podemos nesta lição abordar a Noção de polinómios e Grau de um polinómio.

OBJECTIVOS DE APRENDIZAGEM

- Definir um polinomial;

- Determinar o grau de um polinómio;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.5.1 Noção de polinómio

Polinómio – é a soma algébrica de monómios não semelhantes.

Ex: Consideremos os monómios: $\frac{1}{2}x^2$; $3xz \in y^3$. A sua soma será a seguinte: $\frac{1}{2}x^2 + 3xz + y^3$.

Veja que todos os três monómios não são semelhantes, porque tem partes literais diferentes, então, esta soma de monómios não semelhantes chama-se **polinómio,** que é o seguinte:

 $\frac{1}{2}x^2 + 3xz + y^3$. Os monómios que compõem os polinómios são designados de termos. Neste caso os termos são: $\frac{1}{2}x^2$; 3xz e y^3 .

Outros exemplos de polinómios: a) $-\frac{5}{3}y^2x + 54t^2 - 3$

b)
$$-2x^3 + \frac{\sqrt{2}}{2}x^2 - x$$

c)
$$27m^{10}y^6x^3 - 2017k^6y^3 + xy$$

$$d)x^2 - 5x + 6$$

3.5.2 Grau de um polinómio

O grau de um polinómio – é o maior grau dos seus monómios.

Ex1: Consideremos o polinómio: $\frac{1}{2}x^2 + 3xz + y^3$. Determinemos os graus dos seus monómios:

O monómio: $\frac{1}{2}x^2$ tem grau 2;

O monómio: 3xz tem grau 2;

O monómio: y^3 tem grau 3. Portanto, o monómio que tem maior grau é y^3 , cujo seu grau é 3. Logo, o grau de polinómio $\frac{1}{2}x^2 + 3xz + y^3$ é 3.

Ex2: Determinemos os graus dos polinómios abaixo:

a)
$$-\frac{5}{3}y^2x + 54t^2 - 3$$
; Tem grau 3, que vem de grau de monómio $-\frac{5}{3}y^2x$.

b)
$$-2x^3 + \frac{\sqrt{2}}{2}x^2 - x$$
; Tem grau 3, que vem de grau de monómio $-2x^3$.

c)
$$27m^{10}y^6x^3-2017k^6y^3+xy$$
; Tem grau 19, que vem de grau de monómio $27m^{10}y^6x^3$.

d)
$$x^2 - 5x + 6$$
; Tem grau 2, que vem de grau de monómio x^2 .

ACTIVIDADE DA LIÇÃO N° 5

Caro estudante, depois de termos abordado a Noção de polinómios e Grau de um polinómio, Você pode efectuar os exercícios propostos abaixa:

1. Indique o valor lógico V para polinómios e F para os que não são polinómios:

a)
$$\frac{3}{2}x^4 - 3x^4 + x^4$$

b)
$$x^2 + 3(xz)^3 + z^5$$

c)
$$2017x^5 - 3y^5 + 17$$

d)
$$\left(-\frac{7}{3}xyz\right)^3 + x^4 + (15)^{20}$$

e)
$$\frac{8}{3}x^2 + \frac{1}{2}x^2 - 21x$$

f)
$$-25t^3 - t^3$$

2. Indique o grau dos seguintes polinómios:

a)
$$\frac{3}{2}x^5 - 3x^4 + x^7$$

b)
$$x^2 + 3(xz)^3 + z^5$$

c)
$$2017x^5 - 3y^2 + 17$$

d)
$$\left(-\frac{7}{3}xyz\right)^3 + x^4 + (15)^{20}$$

e)
$$\frac{8}{3}x^3 + \frac{1}{2}x^2yz - 21x$$

$$f)3^{18} - 25t^2 - y^3$$

CHAVE-DE-CORRECÇÃO N° 5

1. a)(
$$F$$
); b)(V); c)(V); d)(V); e)(V) f)(F)

Lição nº6:

ADIÇÃO E SUBTRACÇÃO DE POLINÓMIOS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição, vamos abordar a **Adição e subtracção de polinómios** aplicando as propriedades da soma algébrica.

OBJECTIVOS DE APRENDIZAGEM

- Adicionar os polinómios;
- Subtrair os polinómios;
- Aplicar as propriedades na soma algébrica de polinómios;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.6.1 Adição e subtracção de polinómios

Para **adicionar ou subtrair os polinómios** - é necessário verificar os monómios semelhantes, caso existam então devemos adicionar ou subtrair os seus coeficientes e manter a parte literal.

Ex1: vamos adicionar os seguintes polinómios: $A = 3x^3 + 2x^2 + x$ e $B = \frac{2}{5}x^3 - 6x^2 - x + 2$

Portanto, adicionar os polinómios A e B, teremos o seguinte:

 $A + B = (3x^3 + 2x^2 + x) + (\frac{2}{5}x^3 - 6x^2 - x + 2)$, Colocamos os polinómios de **A** e **B**, entre parênteses, e aplicando a conjugação de sinais, eliminamos parênteses. Assim:

 $A+B=3x^3+2x^2+x+\frac{2}{5}x^3-6x^2-x+2$; Passo seguinte, vamos agrupar os monómios ou termos semelhantes. Assim: $A+B=3x^3+\frac{2}{5}x^3+2x^2-6x^2+x-x+2$; agora podemos adicionar ou subtrair os coeficientes dos termos semelhantes e manter as partes literais. Assim:

$$A + B = \left(3 + \frac{2}{5}\right)x^3 + (2 - 6)x^2 + (1 - 1)x + 2$$
; calculamos o mmc na soma $\left(3 + \frac{2}{5}\right)$,

teremos: $A + B = \left(\frac{3}{1} + \frac{2}{5}\right)x^3 + (2 - 6)x^2 + (1 - 1)x + 2$; multiplicamos os factores 5 e 1

com os numeradores e teremos:
$$A + B = \left(\frac{3 \times 5 + 1 \times 2}{5}\right) x^3 + (2 - 6) x^2 + (1 - 1) x + 2;$$

continuando:
$$A + B = \left(\frac{15+2}{5}\right)x^3 + (2-6)x^2 + (1-1)x + 2;$$
 a fracção $\left(\frac{15+2}{5}\right) = \frac{17}{5};$

Subtraímos (2-6) = -4 e (1-1) = 0; substituindo por: $\frac{17}{5}$; -4 e 0 em A + B; teremos:

$$A + B = \left(\frac{15+2}{5}\right)x^3 + (2-6)x^2 + (1-1)x + 2 = \frac{17}{5}x^3 - 4x + 0x + 2$$
; o resultado de

 $\mathbf{0}\mathbf{x} = \mathbf{0}$ e adicionamos com o 2. Fica:

$$A + B = \frac{17}{5}x^3 - 4x + 0x + 2 = \frac{17}{5}x^3 - 4x + 0 + 2$$
; por fim teremos:

$$A+B=\frac{17}{5}x^3-4x+2.$$

Ex2: vamos subtrair os mesmos polinómios: $A = 3x^3 + 2x^2 + x$ e $B = \frac{2}{5}x^3 - 6x^2 - x + 2$

Portanto, subtrair os polinómios A e B, teremos o seguinte:

 $A - B = (3x^3 + 2x^2 + x) - (\frac{2}{5}x^3 - 6x^2 - x + 2)$, Colocamos os polinómios de **A** e **B**, entre parênteses, e aplicando a propriedade distributiva do sinal negativo (-) no polinómio **B**, isto é:

 $-\left(\frac{2}{5}x^3-6x^2-x+2\right)$ para eliminamos parênteses. Teremos: $-\frac{2}{5}x^3+6x^2+x-2$; o polinómio A mantêm-se, e podemos substituindo em A-B, teremos:

$$A - B = (3x^3 + 2x^2 + x) - \left(\frac{2}{5}x^3 - 6x^2 - x + 2\right) = 3x^3 + 2x^2 + x - \frac{2}{5}x^3 + 6x^2 + x - \frac{2}{5}x^3 + \frac{2}{$$

2; agora podemos agrupar os termos semelhantes. Assim:

 $A - B = 3x^3 - \frac{2}{5}x^3 + 2x^2 + 6x^2 + x + x - 2$; em seguida vamos adicionar ou subtrair os coeficientes dos termos semelhantes. Assim:

$$A - B = \left(3 - \frac{2}{5}\right)x^3 + (2 + 6)x^2 + (1 + 1)x - 2$$
; calculando o mmc, nos denominadores 1 e 5,

dos coeficientes
$$\left(3 - \frac{2}{5}\right)$$
, teremos: $A - B = \left(\frac{3}{1} - \frac{2}{5}\right)x^3 + (2+6)x^2 + (1+1)x - 2$; vamos

multiplicar os factores 5 e 1 com os numeradores 3 e 2. Fica-

$$A - B = \left(\frac{5 \times 3 - 1 \times 2}{5}\right) x^3 + (2 + 6)x^2 + (1 + 1)x - 2 = \left(\frac{15 - 2}{5}\right) x^3 + (2 + 6)x^2 + (1 + 1)x - 2$$
; então, os resultados dos coeficientes serão: $\left(\frac{15 - 2}{5}\right) = \frac{13}{5}$; $(2 + 6) = 8$ e $(1 + 1) = 2$,

substituindo em A - B, teremos: $A - B = \frac{13}{5}x^3 + 8x^2 + 2x - 2$.

Como, podes notar que: $A + B = \frac{17}{5}x^3 - 4x + 2$ e $A - B = \frac{13}{5}x^3 + 8x^2 + 2x - 2$. Então, A + B é diferente de A - B.

Ex3: Consideremos a situação de adição de três polinómios, assim:

$$A = 2x^3 + x^2$$
; $B = 5x - 3$ e $C = -14x^4 - x^3 - 1$

Determinemos: $A - C + B = (2x^3 + x^2) - (-14x^4 - x^3 - 1) + (5x - 3)$, Substituímos com os respectivos polinómios. Em seguida aplicamos a propriedade distributiva dos sinais quês estão fora de parênteses, para eliminar parênteses. Teremos:

$$A-C+B=(2x^3+x^2)-(-14x^4-x^3-1)+(5x-3)=$$

 $A - C + B = 2x^3 + x^2 + 14x^4 + x^3 + 1 + 5x - 3$; Agora podemos adicionar ou subtrair os coeficientes dos termos semelhantes, e começamos com os termos de maior grau. Assim:

 $A - C + B = 14x^4 + 2x^3 + x^3 + x^2 + 5x + 1 - 3 = 14x^4 + (2 + 1)x^3 + x^2 + 5x + 1 - 3$; adicionando e subtraindo os coeficientes teremos:

$$A - C + B = 14x^4 + 3x^3 + x^2 + 5x - 2$$

ACTIVIDADE DA LIÇÃO Nº 6

Caro estudante, depois de termos abordado a **Adição e subtracção de polinómios**, Você pode efectuar os exercícios propostos abaixa:

1. Considere os polinómios: $A = 2x^2 + x - 2$; $B = -\frac{1}{2}x^2 - 3x - 1$ e $C = -x^3 - 3x$. Determine: a) A + B b) A - B c) B - C d) A - C + B

CHAVE-DE-CORRECÇÃO N° 6

a)
$$A + B = \frac{3}{2}x^2 - 2x - 3$$

b)
$$A - B = \frac{5}{2}x^2 + 4x - 1$$

c)
$$B - C = x^3 - \frac{1}{2}x^2 - 1$$

d)
$$A - C + B = x^3 + \frac{3}{2}x^2 + x - 3$$

Lição nº7:

MULTIPLICAÇÃO DE UM POLINÓMIO POR UM MONÓMIO E POR UM BINÓMIO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição, vamos abordar a Multiplicação de um polinómio por um monómio e por um binómio aplicando as propriedades da multiplicação.

OBJECTIVOS DE APRENDIZAGEM

- Multiplicar um polinómio por um monómio;
- Multiplicar um polinómio por um binómio;
- Aplicar as propriedades da multiplicação;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.7.1 Multiplicação de um polinómio por um monómio

Para multiplicar um polinómio por um monómio, deve-se aplicar a propriedade distributiva, do monómio para todos os termos de polinómio.

Ex: Multipliquemos o monómio $-3x^2$ com o polinómio $\frac{2}{3}x^3 - 3x^2 - x + 1$; teremos:

 $(-3x^2) \times \left(\frac{2}{3}x^3 - 3x^2 - x + 1\right) =$; portanto, vamos distribuir o monómio $(-3x^2)$ nos termos: $\frac{2}{3}x^3$; $-3x^2$; -x e 1 do polinómio.

Assim:

 $-3x^2 \times \frac{2}{3}x^3 - 3x^2 \times (-3x^2) - 3x^2 \times (-x) - 3x^2 \times 1 =$; passo seguinte, vamos multiplicar os monómios, começando por coeficientes e depois as partes literais. Assim: $\left(-3 \times \frac{2}{3}\right)x^3x^2 + \left[(-3) \times (-3)\right]x^2x^2 + \left[(-3) \times (-1)\right]x^2x + \left[(-3) \times (1)\right]x^2 =$; multiplicamos os coeficientes e mantemos as bases das partes literais e adicionamos os expoentes. Assim:

 $=-2x^{(3+2)}+9x^{(2+2)}+3x^{(2+1)}-3x^2=-2x^5+9x^4+3x^3-3x^2$, Este é o resultado, pois já não temos termos semelhantes.

3.7.2 Multiplicação de um polinómio por um binómio

Para multiplicar um polinómio por um binómio, deve-se distribuir os termos de binómio aos termos de polinómio. **Binómio** é um polinómio com dois termos. Ex: o binómio (-2x + 5).

Ex: Multipliquemos o binómio (-2x + 5) pelo polinómio $(7x^2 - 3x + 6)$.

Portanto teremos: $(-2x + 5) \times (7x^2 - 3x + 6) =$, então, vamos distribuir o termo -2x para todos os termos de polinómio, e em seguida, distribuímos o termo **5** para todos os termos de polinómio. Assim: $= (-2x) \times (7x^2 - 3x + 6) + (5) \times (7x^2 - 3x + 6) =$ Teremos:

 $(-2 \times 7)x^2x + [(-2) \times (-3)]xx + (-2 \times 6)x + (5 \times 7)x^2 + 5 \times (-3)x + 5 \times 6 =$; multiplicando os coeficientes e as partes literais, teremos:

 $=-14x^3+6x^2-12x+35x^2-15x+30=$; passo seguinte, adicionamos os termos semelhantes. Assim: $=-14x^3+(6+35)x^2+(-12-15)x+30=$; o resultado será: $=-14x^3+41x^2-25x+30$.

ACTIVIDADE N° 7

Caro estudante, depois de termos abordado a Multiplicação de um polinómio por um monómio e por um binómio, Você pode efectuar os exercícios propostos abaixa:

- 1. Efectue as seguintes operações:
- a) $(3x) \times (2x x^2)$
- b) $\left(-\frac{5}{3}x\right) \times \left(-x^3 + \frac{9}{10}\right)$
- c) $y^3(x+y)$
- d) $4xy(2xy^2 y^3 + 1)$
- 2. Efectue os seguintes produtos:
- a) $(2x-2) \times (x^2+x)$
- b) $(-4+x)(-1+2x-x^2)$
- c) $(6x^3 + 2 x)(x + 2)$
- d) $\left(\frac{1}{2}x^2 x\right)(8x^2 6)$

CHAVE-DE-CORRECÇÃO N° 7

1. a)
$$6x^2 - 3x^2$$

b)
$$\frac{5}{3}x^4 - \frac{3}{2}x$$

$$c)xy^2 + y^4$$

$$d (8x^2y^3 - 4xy^4 + 4xy)$$

2. a)
$$2x^3 - 2x$$

b)
$$5x^2 - 9x + 4$$

c)
$$6x^4 + 12x^3 - x^2 + 4$$

$$d)4x^4 - 8x^3 - 3x^2 + 6x$$

Lião nº 8:

MULTIPLICAÇÃO DE POLINÓMIOS E PROPRIEDADES

INTRODUÇÃO A LIÇÃO:

Caro estudante, a multiplicação de um polinómio por um binómio, vai sustentar bastante a multiplicação de polinómios. Que será o tema a tratar nesta lição

OBJECTIVOS DE APRENDIZAGEM

- Multiplicar polinómios;

- Aplicar propriedades na multiplicação de polinómios;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.8.1 Multiplicação de polinómios e Propriedades

Para multiplicar dois polinómios **A** e **B**, é necessário aplicar as mesmas regras que aplicamos na multiplicação de um polinómio por um binómio. Portanto deve-se distribuir os termos de polinómio **A** aos termos de polinómio **B**.

Ex: Multipliquemos os polinómios $A = -\frac{3}{2}x^2 + 2x - 6$ e $B = 5x^2 - 4x - 2$. Portanto teremos:

 $A \times B = \left(-\frac{3}{2}x^2 + 2x - 6\right) \times (5x^2 - 4x - 2) =$; Começamos por distribuir o termo $\left(-\frac{3}{2}x^2\right)$, em seguido o termo (2x) e por fim o termo(-6). Assim:

$$A \times B = \left(-\frac{3}{2}x^2\right) \times (5x^2 - 4x - 2) + (2x) \times (5x^2 - 4x - 2) + (-6) \times (5x^2 - 4x - 2)$$

2=; aplicando a propriedade distributiva teremos:

$$A \times B = \left(-\frac{3}{2} \times 5\right) x^2 x^2 + \left[-\frac{3}{2} \times (-4)\right] x^2 x + \left[-\frac{3}{2} \times (-2)\right] x^2 + (2 \times 5) x x^2 + (2 \times 5) x^2 x$$

$$+[2 \times (-4)]xx + [2 \times (-2)]x + (-6 \times 5)x^2 + [(-6) \times (-4)]x + [(-6) \times (-2)] = ;$$

multiplicando os coeficientes e mantemos as bases das partes literais adicionando os expoentes:

$$A \times B = -\frac{15}{2}x^{(2+2)} + \frac{12}{2}x^{(2+1)} + \frac{6}{2}x^2 + 10x^{(1+2)} - 8x^{(1+1)} - 4x - 30x^2 + 24x + \frac{11}{2}x^{(2+1)} + \frac{11}{2}x^{(2+1)$$

12 =; Adicionando os expoentes das partes literais, resulta:

$$A \times B = -\frac{15}{2}x^4 + \frac{12}{2}x^3 + \frac{6}{2}x^2 + 10x^3 - 8x^2 - 4x - 30x^2 + 24x + 12 =$$
; simplificamos os coeficientes $\frac{12}{2}$ e $\frac{6}{2}$: assim:

$$A \times B = -\frac{15}{2}x^4 + 6x^3 + 3x^2 + 10x^3 - 8x^2 - 4x - 30x^2 + 24x + 12 =$$
; agora podemos adicionar os termos semelhantes, começando com o de maior grau:

$$A \times B = -\frac{15}{2}x^4 + (6+10)x^3 + (3-8-30)x^2 + (-4+24)x + 12 =$$
; adicionamos ou subtraímos os coeficientes e teremos o resultado final:

$$A \times B = -\frac{15}{2}x^4 + 16x^3 - 35x^2 + 20x + 12$$

ACTIVIDADE N° 8

Caro estudante, depois de termos abordado a Multiplicação de polinómios, Você pode efectuar os exercícios propostos abaixa:

1. Considere os polinómios seguintes:

$$A = x^2 + 3x - 2$$
; $B = -\frac{5}{2}x^2 - 5x + 1$ e $C = 2x^2 + x$. Determine:

a)
$$A \times C$$
 b) $B \times C$ c) $A \times B$ d) $-2B + A$

CHAVE DE CORRECCAO N° 8

1. a)
$$2x^4 + 7x^3 - x^2 - 2x$$

b)
$$-5x^4 - \frac{25}{2}x^3 - 3x^2 + x$$

c)
$$-\frac{5}{2}x^4 - \frac{25}{2}x^3 - 10x^2 + 7x - 2$$

$$d)6x^2 + 13x - 4$$

Lição nº9:

DECOMPOSIÇÃO DE UM POLINÓMIO EM FACTORES RECORRENDO A PROPRIEDADE DISTRIBUTIVA (FACTOR COMUM), PRODUTOS NOTÁVEIS $(a \pm b)^2$ E (a + b)(a - b)

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição, vamos abordar a decomposição de polinómios em factores e o desenvolvimento dos casos notáveis.

OBJECTIVOS DE APRENDIZAGEM

- Decompor um polinómio em factores;
- Desenvolver os casos notáveis aplicando a propriedade distributiva;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.9.1 Decomposição de um polinómio em factores

Para decompor um polinómio é necessário verificar os factores comuns no polinómio.

Ex: Consideremos o polinómio seguinte: $(9x^2 + 4x)$; vamos decompô-lo. Para tal verificamos o factor comum. Este polinómio pode ficar também de seguinte modo:

 $(9x^2 + 4x) = (9xx + 4x)$; portanto o factor comum é x, porque é o termo que existe nos monómio 9xx e 4x ao mesmo tempo. Este factor podemos coloca-lo em evidencia isto é fora de parênteses. Assim: x(9x + 4), portanto o x está a multiplicar com (9x + 4), deste modo já factorizamos o polinómio em dois factores $x \in (9x + 4)$.

Ex2: vamos decompor o polinómio: $(\frac{9}{5}x^4y^3t^2 - 3x^4y^3k^2 + 18atx^4y^3)$; para tal devemos colocar em evidência o factor comum ou o máximo divisor comum de todos os termos de polinómio. Por tanto o polinómio pode ficar também de seguinte modo: Assim:

$$\left(\frac{9}{5}x^4y^3t^2-3x^4y^3k^2+18atx^4y^3\right)=\left(\frac{3\times 3}{5}x^4y^3t^2-3x^4y^3k^2+3\times 6atx^4y^3\right)$$
, Portanto factor comum que existe em todos os termos é $3x^4y^3$. Então podemos coloca-lo em evidencia ou fora de parênteses. Assim temos:

$$3x^4y^3\left(\frac{3}{5}t^2-k^2+\times 6at\right)$$
. Assim já foctorizamos o polinómio.

3.9.2 Desenvolvimento dos casos notáveis

Caro estudante, neste módulo vamos abordar três tipos de produtos notáveis, que são os seguintes: $(a + b)^2$; $(a - b)^2 e a^2 - b^2$.

1°- Vamos desenvolver o Quadrado da soma: $(a + b)^2$. Como o expoente é 2, então podemos multiplicar a base por si duas vezes. Assim: $(a + b)^2 = (a + b) \times (a + b) =$; aplicando a propriedade distributiva teremos: $(a + b)^2 = a \times (a + b) + b \times (a + b)$; vamos distribuir o $a \ e \ b$ no factor (a + b). Teremos: $(a + b)^2 = (a \times a) + (a \times b) + (b \times a) + (b \times b)$

 $=a^2+ab+ba+b^2=$; o termo ba pela propriedade comutativa fica: ba=ab, substituindo na expressão anterior fica: $a^2+ab+ab+b^2$; então, podemos adicionar os termos semelhantes. Assim: $(a+b)^2=a^2+2ab+b^2$.

Assim, o desenvolvimento de Quadrado da soma é:

$$(a+b)^2 = a^2 + 2ab + b^2$$

Ex: vamos desenvolver o seguinte quadrado da soma $(x + 3)^2$, aplicando o caso notável.

 $(x+3)^2$ =; para tal temos de identificar o valor de **a** e de **b**. Então, o valor de a = x e b = 3, substituindo na fórmula acima, teremos: $(x+3)^2 = (x)^2 + 2(x)(3) + (3)^2 =$, multiplicamos os coeficientes do termo 2(x)(3) = 6x, substituímos na expressão acima, fica:

 $(x+3)^2=(x)^2+6x+(3)^2=$; determinamos as potencias $(x)^2=x^2\ e\ (3)^2=3\times 3=9$, substituímos na expressão anterior e teremos: $(x+3)^2=x^2+6x+9$. Assim o caso notável está desenvolvido.

2°- Vamos desenvolver o Quadrado da diferença: $(a-b)^2$. Como o expoente é 2, então podemos multiplicar a base por si duas vezes. Assim: $(a-b)^2 = (a-b) \times (a-b) =$; aplicando a propriedade distributiva teremos: $(a-b)^2 = a \times (a-b) - b \times (a-b)$; vamos distribuir o $a \ e - b$ no factor (a-b). Teremos:

$$(a-b)^2 = (a \times a) + [a \times (-b)] - b \times a - b \times (-b)$$

 $=a^2-ab-ba+b^2=$; o termo -ba pela propriedade comutativa fica: -ba=ab, substituindo na expressão anterior fica: $a^2-ab-ab+b^2$; então, podemos adicionar os termos semelhantes. Assim: $(a-b)^2=a^2-2ab+b^2$.

Assim, o desenvolvimento de Quadrado da diferença é:

$$(a-b)^2=a^2-2ab+b^2$$

Ex: vamos desenvolver o seguinte Quadrado da diferença $(x-5)^2$, aplicando o caso notável.

Para tal temos de identificar o valor de **a** e de **b**. Então, o valor de a = x e b = 5, substituindo na formulo acima, teremos: $(x - 5)^2 = (x)^2 - 2(x)(5) + (5)^2 =$, multiplicamos os coeficientes do termo 2(x)(5) = 10x, substituímos na expressão acima, fica:

 $(x-5)^2=(x)^2-10x+(5)^2=$; determinamos as potencias $(x)^2=x^2$ e $(5)^2=5\times 5=25$, substituímos na expressão anterior e teremos: $(x-5)^2=x^2-10x+25$. Assim o caso notável está desenvolvido.

 3° - Vamos desenvolver a **Diferença de quadrados:** $a^2 - b^2$. Este caso notável, o seu desenvolvimento será:

$$a^2 - b^2 = (a+b) \times (a-b)$$

Porque se distribuirmos os termos de factor (a + b) aos termos de factor (a - b), teremos como resultado a diferença de quadrados $a^2 - b^2$. Isto é: $(a + b) \times (a - b) =$; vamos distribuir o termo a no factor (a - b) e o termo b no factor (a - b). Assim:

$$(a + b) \times (a - b) = a(a - b) + b(a - b) =$$
, Aplicando a propriedade distributiva, resulta:

 $= a(a-b) + b(a-b) = a \times a + a \times (-b) + b \times a + b \times (-b) =;$ multiplicando factores, teremos: $= a^2 - ab + ba - b^2$, os termos ba = ab, pela propriedade comutativa, substituímos na expressão anterior teremos: $= a^2 - ab + ab - b^2 =$, os termos -ab; ab, São simétricos então podemos simplifica-los. Assim: $= a^2 - ab + ab - b^2 = a^2 - b^2$.

Ex1: vamos desenvolver a seguinte diferença de quadrados, $(3x)^2 - (7)^2$ aplicando a formula:

Na expressão:
$$(3x)^2 - (7)^2$$
; devemos identificar os valores de a e b , que são: $a = 3x$ e $b = 7$, depois substituímos na fórmula acima: assim: $(3x)^2 - (7)^2 = (3x + 7) \times (3x - 7)$. Assim o caso notável está factorizado.

Ex2: vamos desenvolver a seguinte diferença de quadrados, $x^2 - 2$ aplicando a fórmula seguinte:

 $a^2 - b^2 = (a+b) \times (a-b)$ expressão: $x^2 - 2$ devemos valores de \boldsymbol{a} e \boldsymbol{b} , que são: $\boldsymbol{a} = \boldsymbol{x}$ e $\boldsymbol{b} = \sqrt{2}$, porque devemos pensar num valor que ao elevá-lo à 2, obteremos o valor de b. Neste caso o valor de b é $\sqrt{2}$, porque ao elevar $\sqrt{2}$ por 2, teremos: $\sqrt{2}^2$ $\sqrt{4}=2$. Então, a diferença de quadrados pode ficar assim: $x^2-2=x^2-\sqrt{2}^2=$; aplicando a fórmula acima, teremos: $x^2 - \sqrt{2}^2 = (x + \sqrt{2}) \times (x - \sqrt{2})$. Assim o caso notável está factorizado.

Caro estudante, depois de termos abordado a Decomposição de um polinómio em factores e desenvolvidos casos notáveis, Você pode efectuar os exercícios propostos abaixo:

- 1. Decomponha em factores os seguintes polinómios:
- a) $5x^2 25x$
- b) $-3 + 6x^2$
- c) $y^2 30y$
- d) $13x^2y^5 26x^2y^4 13x^2y^5z$
- $\frac{50x^2}{16} \frac{x^2z^2}{16}$ $7y^4k + 49y^3k 14y^3k$
- 2. Desenvolve os seguintes casos notáveis:
- a) $(x+4)^2$ b) $(x-7)^2$ c) $(-2-3y)^2$ d) x^2-6^2 e) $(5x)^2-3^2$ f) x^2-9

CHAVE-DE-CORRECÇÃO N° 9

- 1.a) 5x(x-5)
- b) $3(-1+2x^2)$
- c)y(y 30)
- d) $13x^2y^4(y-2-yz)$
- $e^{\frac{x^2}{16}}(50-z^2)$
- f) $7y^{3k}(y+5)$
- 2. a) $x^2 + 8x + 16$
- b) $x^2 14x + 49$
- c) $4 + 12y + 9y^2$
- d) (x + 6)(x 6)
- e) (5x + 3)(5x 3)
- f) (x + 3)(x 3)

Lição n°10: DIVISÃO ATRAVÉS DA SIMPLIFICAÇÃO DE UM POLINÓMIO POR UM MONÓMIO

Divisão através da simplificação de um polinómio por um monómio

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição, vamos abordar a Divisão através da simplificação de um polinómio por um monómio, que será sustentado com a decomposição de polinómio abordado na lição nº9.

OBJECTIVOS DE APRENDIZAGEM

- Dividir polinómios através de monómio;

- Aplicar a decomposição de polinómios na divisão dos mesmos por um monómio;

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

3.10.1 Divisão através da simplificação de um polinómio por um monómio

Para dividir um polinómio por um monómio, é necessário identificar o factor comum entre o dividendo(que é o polinómio) e o divisor(que é o monómio).

Ex: Determinemos a seguinte divisão: $(14x^3t^2y^6 - 28x^5t^2y^5 + 21kx^3t^2y^5) \div (7x^2t^2y^3)$ $\frac{14x^3t^2y^6-28x^5t^2y^5+21kx^3t^2y^5}{7x^2t^2y^3}; \quad \text{primeiro} \quad \text{vamos} \quad \text{identificar} \quad \text{o} \quad \text{factor} \quad \text{comum}$ polinómio $14x^3t^2y^6-28x^5t^2y^5+21kx^3t^2y^5$ e do monómio $7x^2t^2y^3$. Portanto o factor comum é o monómio $7x^2t^2y^3$. Que podemos identificar factorizando os coeficientes dos monómios de polinómio, na divisão. Isto é:

 $\frac{7 \times 2x^2x^1t^2y^3y^3 - 7 \times 4x^3x^2t^2y^3y^2 + 7 \times 3kx^1x^2t^2y^3y^2}{7x^2t^2y^3} = ; \text{ colocando em evidência o factor comum, teremos:}$

 $=\frac{(7x^2t^2y^3)\times(2x^1y^3-4x^3y^2+3kx^1y^2)}{7x^2t^2y^3}=$; Agora podemos simplificar os monómios comuns. Assim:

$$= \frac{(7x^2y^3)\times(2x^1y^3-4x^3y^2+3kx^1y^2)}{7y^2y^3} = (2x^1y^3-4x^3y^2+3kx^1y^2) = 2xy^3-4x^3y^2+3kx^2y^2 + 3kxy^2.$$
 Esta última expressão é o resultado da divisão.

ACTIVIDADE N° 10

Caro estudante, depois de termos abordado a Divisão através da simplificação de um polinómio por um monómio, Você pode efectuar os exercícios propostos abaixo:

1. Efectue as seguintes operações, simplificando os resultados:

a)
$$(18x^5 - 24x^3 + 6x^2) \div 3x^2$$

b)
$$\frac{(17y^3x^5+34y^2x^3)}{17y^2x^3}$$

c)
$$(y^2 - 30y) \div (y)$$

c)
$$(y^2 - 30y) \div (y)$$

d) $\frac{13x^2y^5 - 26x^2ky^5 - 13x^2y^5z}{26x^2v^5}$

d)
$$\frac{13x^2y^5 - 26x^2ky^5 - 13x^2y}{26x^2y^5}$$
e)
$$\left(\frac{50x^2}{16} - \frac{x^2z^2}{16}\right) \div \left(\frac{x^2}{16}\right)$$
f)
$$\frac{7y^4k + 49y^3k - 14y^3kx}{14y^3k}$$

f)
$$\frac{7y^4k+49y^3k-14y^3kx}{14y^3k}$$

CHAVE-DE-CORRECÇÃO N° 10

1. a)
$$6x^4 - 8x + 2$$

$$b)x^2y + 2$$

c)
$$y - 30$$

$$\mathrm{d})\frac{1-2k-z}{2}$$

e)
$$50 - z^2$$

$$f)\frac{3-x}{2}$$

ACTIVIDADES UNIDADE N°-3./ PREPARAÇÃO PARA TESTE

Caro estudante, depois da revisão de toda unidade número 3, você pode prestar a seguinte actividade:

1. Complete a tabela seguinte:

Monómio	Coeficiente	Parte literal	Grau
$\frac{\sqrt{5}}{2}t^3x^2y^6$			
	$-(17)^{17}$	x^4y^2	
$\frac{2^{16}k^{14}y^2}{3}$			
	2017		

- 2. Identifique os monómios semelhantes:
- a) $-k^2y^3$; $x^3k^2y^3$; $\frac{18}{5}y^3k^2$; $20y^3k^2x^3$; ky
- b) 4tc; $4t^2c$; -14ctt; $-4tc^0$; +2017t
- 3. Indique o valor lógico V ou F, nas seguintes igualdades:
- a) $5x 3x \frac{10}{2}x = -3x$
- b) $\frac{1}{3}y^3 + y^3 3y = y^3$
- c) $\frac{k^7}{5} \frac{6}{5}k^2k^7 + k^7 = 0$
- d) 6z 3t + 2t 5z = 3zt 3tz
- 4. Considere os polinómios seguintes:

$$A = 4x^2 - 3x - 7$$
; $B = -x^2 + 4e$ $C = -x^2 + 3x^3 - 5x + 2$. Calcule:

- a) A + B
- b) B-C
- c) A + C B
- d) -A + 3C B
- 5. Efectue as seguintes operações e simplifique os resultados:
- a) $2a\left(-3y^2 a^2 + \frac{12}{4}y^2\right)$
- b) $\left(\frac{3}{4}x^3y\right)\left(-2xy + \frac{1}{2}xt + x\right)$
- c) $\left(3z^3k zk + \frac{2}{3}zk^2\right)(3z^2)$
- d) $\left(\frac{1}{4}x^2 + x 3\right)(4x^3)$
- 6. Efectue as seguintes operações:
- a) $(x^2 + x 8)(2x 1)$
- b) $(1-x)(x+x^3)$
- c) $(4-x^3-x^2)(-3x-\frac{1}{2})$
- d) $(x + 4x^2 x^3)(x^2 5)^2$
- 7. Considere os polinómios seguintes:

$$A = 4x^2 - 3x - 7$$
; $B = -x^2 + 4$ e $C = -x^2 + 3x^3 - 5x + 2$. Calcule:
a) $A \times C$ b) $B \times C$ c) $A \times B$

8. Desenvolve os seguintes produtos notáveis:

a)
$$(x+9)^2$$
 b) $(2a+3b)^2$ c) $(2x-10)^2$ d) $(3x)^2-5^2$ e) x^2-7 f) $(-5x)^2-81$

- 9. Decompõe os seguintes polinómios:
- a) $\frac{1}{5}t + \frac{4}{5}$
- b) $5x^2z^3 9xz^3 + x^2z^2$
- c) $3x^3 9x^4y$
- d) $4x^2 12yx + (3x)^2$
- 10. Efectue a seguinte divisão:

a)
$$(6t^4x^2 + 3t^3x^2) \div (3tx^2)$$

b) $\frac{\frac{3}{2}y^9 + 6y^6 - y^3}{\frac{3}{4}y^3}$
c) $(x + x^3 + 8x^2) \div (17x)$
d) $(14x^8 + 8x^5 + 2x^3) \div (14x^3)$

3.11.1 CHAVE-DE-CORRECÇÃO DA UNIDADE n° 3.

1.

	Coeficiente	Parte literal	Grau
Monómio			
	$\sqrt{5}$	$t^3x^2y^6$	11
$\frac{\sqrt{5}}{2}t^3x^2y^6$	2		
	$-(17)^{17}$	$x^{4}y^{2}$	6
$-(17)^{17}x^4y^2$		-	
	2^{16}	$k^{14}y^2$	16
$2^{16}k^{14}y^2$	3		
3			
	2017	Não existe	0
2017			

2.a)
$$\left(-k^2y^3; \frac{18}{5}y^3k^2\right)$$
; $\left(x^3k^2y^3; 20y^3k^2x^3\right)$ b) $\left(4t^2c; -14ctt\right)$; $\left(-4tc^0 = -4t; 2017t\right)$

3. a)
$$V$$
 b) F c) V d) F

4. a)
$$3x^3 - 3x - 3$$
; b) $-3x^3 + 5x + 2$; c) $3x^3 + 4x^2 - 8x - 9$; d) $9x^3 - 6x^2 - 12x + 2$

5.a)
$$\frac{9}{4}x^3kz^2 - 3z^3k + 2z^3k^2$$
; b) $\frac{3}{2}x^4y^2 + \frac{3}{8}x^4yt + \frac{3}{4}x^4y$ c) $9z^5k - 3z^3k + 2z^3k^2$

d)
$$x^5 + 4x^4 - 12x^3$$

6. a)
$$2x^3 + x^2 - 17x + 8$$
; b) $-x^4 + x^3 - x^2 + x$; c) $3x^4 + \frac{7}{2}x^3 + \frac{1}{2}x^2 - 12x - 2$

d)
$$-x^5 + 4x^4 + 6x^3 - 20x^2 - 5x$$

7. a)
$$12x^5 - 13x^4 - 38x^3 + 30x^2 + 29x - 14$$

b)
$$-3x^5 + x^4 + 17x^3 - 6x^2 - 20x + 8$$

c)
$$-4x^4 + 3x^3 + 23x^2 - 12x - 28$$

8. a)
$$x^2 + 18x + 81$$
; b) $4a^2 + 12ab + 9b^2$; c) $4x^2 - 40x + 100$; d) $(3x + 5)(3x - 5)$;

e)
$$(x + \sqrt{7})(x - \sqrt{7})$$
; f) $-(9 - 5x)(5x + 9)$

9. a)
$$\frac{1}{5}(t+4)$$
; b) $xz^2(5xz-9z+x)$; c) $3x^3(1-3xy)$; d) $x(13x-12y)$

UNIDADE4: EQUAÇÕES QUADRÁTICAS

INTRODUÇÃO DA UNIDADE TEMÁTICA N°4.

Estimado(a) aluno(a), nesta unidade temática, vamos abordar Equações quadráticas, que será a continuidade de polinómios já abordados na unidade 3.

OBJECTIVOS DE APRENDIZAGEM

- Identificar uma equação quadrática e os seus tipos;
- Determinar os coeficientes dos seus monómios;
- Determinar as soluções de uma equação quadrática aplicando anulamento de produto;
- Determinar as soluções de uma equação quadrática aplicando a fórmula resolvente;
- Factorizar uma equação quadrática.

Resultados de aprendizagem

Estimado aluno no final de estudo da unidade sobre Equações quadráticas,

Você:

- -Identifica uma equação quadrática e os seus tipos;
- Determina os coeficientes dos seus monómios;
- Determina as soluções de uma equação quadrática aplicando anulamento de produto;
- Determina as soluções de uma equação quadrática aplicando a fórmula resolvente;
- Factoriza uma equação quadrática.

Caro estudante, para o estudo desta unidade temática você vai precisar de 24horas.

Materiais complementares

Para melhor desenvolver o seu estudo você necessita de: Uma sebenta, esferográfica, lápis, borracha e régua.

Lição nº1: NOÇÃO DE EQUAÇÕES QUADRÁTICAS

INTRODUÇÃO A LIÇÃO:

Caro estudante, a abordagem de polinómios na unidade 3, é ferramenta necessária, para o estudo das equações quadráticas. Nesta lição vamos abordar equações quadráticas operadas no conjunto de números reais.

OBJECTIVOS DE APRENDIZAGEM

- Identificar uma equação quadrática;
- Identificar os tipos de equações quadráticas;
- Determinar os coeficientes dos monómios de uma equação quadrática.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.1.1 Noção de equações quadráticas

Equação quadrática – é toda igualdade de um polinómio de grau 2 (dois), com uma variável em estudo. Isto é toda expressão que se representa na **forma canónica**, $ax^2 + bx + c = 0$.

Onde: O \boldsymbol{a} sempre deve ser diferente de zero, ($\boldsymbol{a} \neq \boldsymbol{0}$);

Os valores (a, b e c) são coeficientes e pertencem ao conjunto de números reais;

O \boldsymbol{x} é a variável em estudo.

A Equação quadrática, também é designada Equação de segundo grau, por causa do grau de polinómio $ax^2 + bx + c = 0$, que é 2 (dois).

4.1.1.1Tipos de equações quadráticas – existem dois tipos que são: equações quadráticas **completas e Incompletas.**

Exemplos de equações quadráticas:

4.1.1.2 Equação quadrática completas – são aquelas em que todos os coeficientes (a, b e c) são diferentes de zero. Isto é: ($a \neq 0$; $b \neq 0 e c \neq 0$)

a) $2x^2 - 3x + 5 = 0$; podemos determinar os seus coeficientes que são: a = 2; este valor é extraído no coeficiente do termo ax^2 que na equação é igual ao termo $2x^2$. Portanto, $ax^2 = 2x^2$, logo o valor de a é a. Então: a = a.

b=3; este valor é extraído no coeficiente do termo bx que na equação é igual ao termo 3x. Portanto, bx=-3x, logo o valor de b é -3. Então: b=-3.

c = 5; este valor é extraído no termo independente, c que na equação é igual ao termo 5.

b) $-\frac{\sqrt{2}}{2}x^2 = 7x + 100$; para este caso devemos, colocar a equação na forma canónica $ax^2 + bx + c = 0$, significa que devemos passar todos os termos que estão no segundo membro para o primeiro membro e igualar a zero. Portanto teremos: $-\frac{\sqrt{2}}{2}x^2 = 7x + 100$; o primeiro membro é o lado esquerdo da equação antes de sinal de igualdade (=), o segundo membro é o lado directo depois de sinal de igualdade.

Ex:

$-\frac{\sqrt{2}}{2}x^2$ Este termo está no 1° membro	=	7x + 100 Estes termos estão no 2° membro
---	---	--

Então, na equação $-\frac{\sqrt{2}}{2}x^2 = 7x + 100$, vamos passar 7x + 100, para o segundo membro, assim os seus sinais vão mudar. Assim:

$$-\frac{\sqrt{2}}{2}x^2 = 7x + 100 \leftrightarrow -\frac{\sqrt{2}}{2}x^2 - 7x - 100 = 0$$
; agora já podemos ler os valores de a , b e c . Que são: $a = -\frac{\sqrt{2}}{2}$; $b = -7$ e $c = -100$.

4.1.1.3 Equações quadrática incompletas – são todas aquelas em que um dos coeficientes entre **b** e c é igual a zero. Claro que o valor de a nunca deve ser igual a zero, portanto $a \neq 0$.

Ex: a) $\sqrt{2}x^2 + 7 = 0$; esta equação é equivalente à $\sqrt{2}x^2 + 0x + 7 = 0$, portanto, o produto 0x é igual a zero, isto é: 0x = 0. Ao substituir na expressão anterior teremos: $\sqrt{2}x^2 + 0 + 7 = 0$, que é equivalente à equação inicial, assim: $\sqrt{2}x^2 + 0 + 7 = 0 \leftrightarrow \sqrt{2}x^2 + 7 = 0$. Por tanto na equação: $\sqrt{2}x^2 + 7 = 0 \leftrightarrow \sqrt{2}x^2 + 0x + 7 = 0$, Os valores dos coeficientes a, b e c, são: $a = \sqrt{2}$; b = 0 e c = 7.

b) $x^2 = 0$; portanto esta equação é equivalente à $x^2 = 0 \leftrightarrow 1x^2 + 0x + 0$; então, os valores dos coeficientes serão: a = 1; b = 0 e c = 0.

ACTIVIDADE N° 1

Caro estudante, depois de termos abordado a Noção de equações quadráticas, Você pode efectuar os exercícios propostos:

1. Considere as equações quadráticas abaixo, e identifique as completas e as incompletas:

a)
$$9x^2 + 25x - 10 = 0$$
 b) $-2x^2 + 4x - 8 = 0$ c) $x^2 = 3x + x$ d) $36x^2 - 12x = 0$ e) $-\frac{1}{2}x^2 = -2 + \frac{3}{4}x$ f) $x^2 - 2 = 0$ g) $x^2 - 0x + 0 = 0$

2. Considere as equações quadráticas abaixo, e indica os valores dos coeficientes **a**, **b** e c:

a)
$$9x^2 + 25x - 10 = 0$$
 b) $-2x^2 + 4x - 8 = 0$ c) $x^2 = 3x + x$ d) $36x^2 - 12x = 0$ e) $-\frac{1}{2}x^2 = -2 + \frac{3}{4}x$ f) $x^2 - 2 = 0$ g) $-x^2 - 0x + 0 = 0$

CHAVE-DE-CORRECÇÃO N° 1

- 1. a) Completa b) Completa c) Incompleta d) Incompleta e)Completa f)Incompleta g) Incompleta
- 2. a) a = 9; b = 25; c = -10 b) a = -2; b = 4; c = -8 c) a = 1; b = -3; c = -1

d)
$$a = 36$$
; $b = -12$; $c = 0$ e) $a = -\frac{1}{2}$; $b = -\frac{3}{4}$; $c = 2$ f) $a = 1$; $b = 0$; $c = -2$

g)
$$a = -1$$
; $b = 0$; $c = 0$

Lição nº2:

LEI DE ANULAMENTO DE PRODUTO

Lei de anulamento de produto

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Lei de anulamento de produto, que é uma das regras para resolução de equações quadráticas.

OBJECTIVOS DE APRENDIZAGEM

- Enunciar a lei de anulamento de produto;
- Aplicar a lei de anulamento de produto nas expressões factorizadas;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.2.1 Lei de anulamento de produto

Lei de anulamento de produto – diz o seguinte: se o produto de dois ou mais factores é nulo, então, pelo menos um deles é nulo.

Consideremos a seguinte igualdade factorizada: $(x) \times (y) = 0$. Para esta igualdade ser verdadeira, o factor (x) deve ser igual a zero, ou (y) deve ser igual a zero. Isto é:

$$(x) = \mathbf{0}_{\mathsf{v}}(y) = \mathbf{0}$$
; o símbolo (v) significa ou.

Ex: Vamos aplicar a lei de anulamento de produto na seguinte igualdade: $(x-2) \times (x+3) = 0$

Portanto, o primeiro factor é (x-2), o segundo factor é: (x+3). Então, o primeiro factor deve ser igual a zero, assim: (x-2) = 0 ou o segundo factor deve ser igual a zero. Assim:

$$(x + 3) = 0.$$

Portanto, ao resolver fica assim:

 $(x-2) \times (x+3) = 0 \leftrightarrow (x-2) = 0$, (x+3) = 0; agora vamos resolver a primeira equação, (x-2) = 0 depois a segunda (x+3) = 0. Assim: $(x-2) = 0 \leftrightarrow x - 2 = 0$, passamos o termo independente -2, para o segundo membro e muda de sinal fica positivo +2. Assim: $x-2 = 0 \leftrightarrow x = +2 + 0 \leftrightarrow x = +2$, como é o primeiro resultado podemos representar por $x_1 = +2$.

Em seguida, resolvemos a segunda equação: $(x + 3) = 0 \leftrightarrow x + 3 = 0$; passamos o termo independente +3, para o segundo membro e muda de sinal para negativo -3, assim:

 $x+3=0 \leftrightarrow x=-3+0 \leftrightarrow x=-3$, Portanto, este é o segundo resultado então, podemos representar por: $x_2=-3$. Então:

$$(x-2) = 0_{v}(x+3) = 0; x_1 = +2_{v} x_2 = -3;$$
Solução: $x = \{-3; +2\}.$

Ex2: Vamos aplicar a lei de anulamento de produto na seguinte igualdade: $-x^2 + x = 0$.

Portanto, primeiro devemos factorizar a igualdade: $-x^2 + x = 0 \leftrightarrow -xx + 1x = 0$, veja que o factor comum é x, então, podemos coloca-lo em evidencia, teremos:

 $\leftrightarrow -xx + 1x = 0 \leftrightarrow x(-x + 1) = 0$; agora a igualdade está factorizada podemos aplicar a lei de anulamento de produto, assim: $x(-x + 1) = 0 \leftrightarrow x = 0$, -x + 1 = 0; passamos os termos independentes para os segundo membro e mudam dos seus sinais. Assim:

 $\leftrightarrow x = 0_{\text{v}} - x + 1 = 0 \leftrightarrow x_1 = 0_{\text{v}} - x = -1$; para a equação -x = -1, devemos aplicar o principio de equivalência, para eliminar o sinal negativo no termo, -x; teremos:

(-1)-x=-1(-1); conjugando os sinais teremos: 1x=1; passamos o coeficiente de x, o 1, para o segundo membro, passa a dividir. Assim: $1x=1 \leftrightarrow x=\frac{1}{1} \leftrightarrow x=1$; este é o segundo resultado então, representamos por $x_2=1$.

ACTIVIDADE DA LIÇÃO N° 2

Caro estudante, depois de termos abordado a Lei de anulamento de produto, Você pode efectuar os exercícios propostos abaixo:

1. Aplique a lei de anulamento de produto nas seguintes igualdades:

a)
$$(x-1)(x+2) = 0$$
 b) $(25-x)(x+5) = 0$ c) $x(3+x) = 0$ d) $3x^2 + 2x = 0$

CHAVE-DE-CORRECÇÃO N° 2

1. a)
$$Sol: x = \{-2; +1\}$$
 b) $Sol: x = \{-5; +25\}$ c) $Sol: x = \{-3; 0\}$ d) $Sol: x = \{-\frac{2}{3}; 0\}$

Lição nº3:

RESOLUÇÃO DE EQUAÇÕES QUADRÁTICAS INCOMPLETAS DO TIPO: $ax^2 = 0$; $ax^2 + c = 0$; $ax^2 + bx = 0$ USANDO A LEI DE ANULAMENTO DE PRODUTO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Resolução de equações quadráticas incompletas usando a lei de anulamento de produto.

OBJECTIVOS DE APRENDIZAGEM

- Resolver equações quadráticas incompletas;
- Aplicar a lei de anulamento de produto na resolução de equações quadráticas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.3.1 Resolução de equações quadráticas incompletas do tipo: $ax^2 = 0$; $ax^2 + c = 0$; $ax^2 + bx = 0$ usando a lei de anulamento de produto

Caro estudante, a lei de anulamento de produto é aplicado muitas vezes na resolução de equações quadráticas incompletas.

4.3.2 Equação quadrática do tipo $ax^2 = 0$

Equações quadráticas do tipo $ax^2 = 0$, são aquelas em que os coeficientes b e c são iguais a zero. Isto é: b = 0 e c = 0; o valor de a é diferente de zero. Isto: $a \neq 0$.

Ex: a) $x^2 = 0$; Os coeficientes são: a = 1; b = 0 e c = 0

b)
$$-x^2 = 0$$
; Os coeficientes são: $a = -1$; $b = 0$ e $c = 0$

c)
$$3x^2 = 0$$
; Os coeficientes são: $a = -1$; $b = 0$ e $c = 0$

d)
$$-\frac{\sqrt{2}}{2}x^2=0$$
 ;Os coeficientes são: $a=-\frac{\sqrt{2}}{2}$; $b=0$ e $c=0$

Para resolver este tipo de equações aplicando a lei de anulamento de produto, deve-se decompor ou factorizar a equação quadrática, e igualar os factores a zero, para determinar as soluções que são $x_1 e x_2$. Para este tipo, x_1 é sempre igual à x_2 . Isto é: $x_1 = x_2 = 0$.

Ex: Determinemos as soluções de $-\frac{\sqrt{2}}{2}x^2=0$, aplicando a lei de anulamento de produto.

 $-\frac{\sqrt{2}}{2}x^2 = 0$; Primeiro passamos o coeficiente $-\frac{\sqrt{2}}{2}$, para o segundo membro e passa a dividir porque no primeiro membro está a multiplicar. Assim: $-\frac{\sqrt{2}}{2}x^2 = 0 \leftrightarrow x^2 = \frac{0}{-\frac{\sqrt{2}}{2}}$; portanto, $\frac{0}{-\frac{\sqrt{2}}{2}} = 0$, então,

$$x^2 = \frac{0}{-\frac{\sqrt{2}}{2}} \leftrightarrow x^2 = 0;$$

Passo seguinte, vamos factorizar a equação, fica: xx = 0, igualamos os factores a zero, assim:

 $x_1 = \mathbf{0}_{\vee} x_2 = \mathbf{0}$; Solução final: $Sol: x = \{\mathbf{0}\}$, portanto esta solução chama-se solução dupla, porque $x_1 = x_2$.

4.3.3 Equação quadrática do tipo $ax^2 + c = 0$

Equações quadráticas do tipo $ax^2 + c = 0$ são todas aquelas em que o valor de coeficiente b é igual a zero. Isto é $a \neq 0$; b = 0 e $c \neq 0$.

Ex: a) $x^2 - 1 = 0$; Os coeficientes são: a = 1; b = 0 e c = -1

b)
$$-x^2 + 3 = 0$$
; Os coeficientes são: $a = -1$; $b = 0$ e $c = 3$

c)
$$3x^2 + 10 = 0$$
; Os coeficientes são: $a = 3$; $b = 0$ e $c = 10$

d)
$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}x^2 = 0$$
; Os coeficientes são: $a = -\frac{\sqrt{2}}{2}$; $b = 0$ e $c = \frac{\sqrt{2}}{2}$

Ex: Determinemos as soluções da equação $-x^2 + 3 = 0$, aplicando a lei de anulamento de produto.

Veja que a expressão $-x^2+3$, é um caso notável do tipo $a^2-b^2=(a+b)(a-b)$. Então podemos factorizar aplicando o caso notável. Assim: $-x^2+3=0$, aplicando a propriedade comutativa, teremos: $3-x^2=0$; passo seguinte, vamos colocar o a na forma de potência então ficará assim: a0, aplicando a1, porque a2, porque a3, porque a4, porque a5, porque a6, porque a6, porque a7, porque a8, porque a8, porque a9, porque a9,

Então a equação fica: $3-x^2=0 \leftrightarrow \left(\sqrt{3}\right)^2-x^2=0$;

Agora vamos factorizar aplicando o caso notável $a^2 - b^2 = (a + b)(a - b)$, então fica:

$$(\sqrt{3})^2 - x^2 = 0 \leftrightarrow (\sqrt{3} + x)(\sqrt{3} - x) = 0$$
; vamos igualar os factores a zero, assim:

$$\leftrightarrow (\sqrt{3} + x)(\sqrt{3} - x) = 0 \quad \leftrightarrow (\sqrt{3} + x) = 0, (\sqrt{3} - x) = 0;$$
 vamos passar os termos independentes para o segundo membro e vão mudar os seus sinais. Assim:

$$\leftrightarrow x = \mathbf{0} - \sqrt{3}_{\text{v}} - x = \mathbf{0} - \sqrt{3} \iff x = -\sqrt{3}_{\text{v}} - x = -\sqrt{3}; \text{ na equação } -x = -\sqrt{3} \text{ , vamos multiplicar ambos os membros por } (-\mathbf{1}); \text{ teremos:} (-\mathbf{1}) - x = -\sqrt{3}(-\mathbf{1}) \iff x = +\sqrt{3}, \text{ logo temos duas soluções que são:} x_1 = -\sqrt{3}_{\text{v}} x_2 = +\sqrt{3}; \text{ isto \'e: } \mathbf{Sol:} x = \left\{-\sqrt{3}; +\sqrt{3}\right\}$$

4.3.4 Equação quadrática do tipo $ax^2 + bx = 0$

Equações quadráticas do tipo $ax^2 + bx = 0$, são todas aquelas em que o valor de c é igual a zero. Isto é: $a \neq 0$; $b \neq 0$ e c = 0.

Ex: a) $x^2 - x = 0$; Os coeficientes são: a = 1; b = -1 e c = 0

b)
$$-x^2 + 3x = 0$$
; Os coeficientes são: $a = -1$; $b = 3 e c = 0$

c)
$$3x^2 + \frac{5}{2}x = 0$$
; Os coeficientes são: $a = 3$; $b = \frac{5}{2} e c = 0$

d)
$$\sqrt{8}x - \frac{14}{5}x^2 = 0$$
; Os coeficientes são: $a = -\frac{14}{5}$; $b = \sqrt{8} e c = 0$

Para determinar as soluções das equações do tipo $ax^2 + bx = 0$, deve-se decompor a equação colocando em evidência o factor comum e aplicar a lei de anulamento de produto. Assim:

 $ax^2 + bx = 0 \leftrightarrow x(ax + b) = 0$. Igualamos os factores a zero e teremos:

$$\leftrightarrow x = \mathbf{0}_{\vee}(ax + b) = \mathbf{0} \leftrightarrow x_1 = \mathbf{0}_{\vee}x_2 = -\frac{b}{a}.$$

Ex: Determinemos as soluções da equação $-x^2 - 5x = 0$, aplicando a lei de anulamento de produto.

Portanto a equacao pode ficar assim: $-x^2 - 5x = 0 \leftrightarrow -xx - 5x = 0$; então podemos colocar em evidência o factor comum. Assim: $\leftrightarrow -xx - 5x = 0 \leftrightarrow x(-x - 5) = 0$; agora podemos aplicar a lei de anulamento de produto, igualar os factores a zero e determinar as soluções. Assim: $\leftrightarrow x(-x - 5) = 0 \leftrightarrow x = 0$, (-x - 5) = 0; passamos o termo independente para o segundo

membro e muda de sinal. Assim: $-x = 0 + 5 \leftrightarrow -x = +5$; multiplicamos ambos os membros por (-1), para eliminar o sinal negativo no termo -x; teremos:

$$\leftrightarrow$$
 $(-1)-x=+5(-1) \leftrightarrow x=-5$. Então, para as duas soluções teremos: $x_1=\mathbf{0}_{\lor}x_2=-5$; Solução $Sol: x=\{-5; \mathbf{0}\}$.

ACTIVIDADE N° 3

Caro estudante, depois de termos abordado a Resolução de equações quadráticas incompletas do tipo: $ax^2 = 0$; $ax^2 + c = 0$; $ax^2 + bx = 0$, Usando a Lei de anulamento de produto, Você pode efectuar os exercícios propostos :

1Resolva as seguintes equações quadráticas aplicando a lei de anulamento de produto:

a)
$$-20x^2 = 0$$
 b) $-7x^2 + 14 = 0$ c) $\frac{\sqrt{5}}{2}x^2 = 0$ d) $x^2 = 3x$ e) $(x - 6)^2 - 9 = 0$ f) $10x^2 + 10 = 0$

CHAVE-DE-CORRECÇÃO N° 3

1. a)
$$Sol: x = \{0\}$$
 b) $Sol: x = \{-\sqrt{2}; \sqrt{2}\}$ c) $Sol: x = \{0\}$ d) $Sol: x = \{0; 3\}$ e) $Sol: x = \{3; 9\}$ f) $Sol: x = \{\emptyset\}$

Lição nº4:

RESOLUÇÃO DE EQUAÇÕES QUADRÁTICAS COMPLETAS DO TIPO: $ax^2 + bx + c = 0$ USANDO A LEI DE ANULAMENTO DE PRODUTO

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Resolução de equações quadráticas completas do tipo: $ax^2 + bx + c = 0$ usando a lei de anulamento de produto

OBJECTIVOS DE APRENDIZAGEM

- Resolver equações quadráticas completas;

- Aplicar a lei de anulamento de produto na resolução de equações quadráticas completas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.4.1 Resolução de equações quadráticas completas do tipo: $ax^2 + bx + c = 0$ Usando a lei de anulamento de produto

Caro estudante, a lei de anulamento de produto é aplicável também nas equações quadráticas completas.

Para resolver uma equação quadrática do tipo $ax^2 + bx + c = 0$, aplicando a lei de anulamento de produto, devemos factorizar a equação. O processo de factorização tem alguns procedimentos por seguir.

 1° - Devemos aplicar o principio de equivalência, dividir ambos os membros por, ${m a}$. Assim:

$$ax^2 + bx + c = 0 \leftrightarrow \frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$$
; simplificando teremos: $\frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$; $\frac{0}{a} = 0$, então a equação fica: $x^2 + \frac{bx}{a} + \frac{c}{a} = 0$;

 2° - Devemos passar o termo independente $\frac{c}{a}$, para o segundo membro e muda de sinal. Fica:

$$x^2 + \frac{bx}{a} + \frac{c}{a} = 0 - \frac{c}{a} \leftrightarrow x^2 + \frac{bx}{a} = -\frac{c}{a};$$

3° - Devemos adicionar ambos os membros pelo quadrado da metade de $\frac{b}{a}$; que $\acute{e} \left(\frac{b}{2a}\right)^2$. Assim:

$$x^2 + \frac{bx}{a} = -\frac{c}{a} \leftrightarrow x^2 + \frac{bx}{a} + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$$
; Agora podemos colocar o primeiro membro na forma de caso notável. Assim: $x^2 + \frac{bx}{a} + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^{2-4ac}}{4a^2}$, portanto esta última fórmula vai facilitar a aplicação da lei de anulamento de produto.

Ex: determine as soluções da equação $3x^2 - 10x + 3 = 0$, aplicando a lei de anulamento de produto.

1°- Dividimos ambos os membros por 3, porque o coeficiente \boldsymbol{a} é igual à 3, isto é, $\boldsymbol{a}=$ 3. Assim:

$$3x^2 - 10x + 3 = 0 \leftrightarrow \frac{3x^2}{3} - \frac{10x}{3} + \frac{3}{3} = \frac{0}{3}$$
; simplificando, teremos: $\leftrightarrow \frac{3x^2}{3} / \frac{10x}{3} + \frac{3}{3} \neq \frac{0}{3} \leftrightarrow x^2 - \frac{10x}{3} + 1 = 0$;

2°- Passamos o termo independente +1, para o segundo membro e muda de sinal fica -1. Assim: $\leftrightarrow x^2 - \frac{10x}{3} + 1 = 0 \leftrightarrow x^2 - \frac{10x}{3} = -1$;

3°- Adicionamos ambos os membros pelo quadrado da metade de $\left(-\frac{10}{3}\right)$; a metade de $\left(-\frac{10}{3}\right)$ significa dividi-lo por, **2.**

Assim: $\frac{\frac{10}{3}}{\frac{2}{2}} = \frac{\frac{10}{3}}{\frac{2}{1}} =$; multiplicamos o divisor, $-\frac{10}{3}$, pelo inverso de dividendo $\frac{1}{2}$; assim: $\frac{-\frac{10}{3}}{\frac{2}{1}} = \frac{10}{3} \times \frac{1}{2} = -\frac{5 \times 2 \times 1}{3 \times 2} = \frac{5}{3}$.

Então o seu quadrado será: $\left(-\frac{5}{3}\right)^2$. Portanto, vamos adicionar ambos os membros da equação $\boldsymbol{x}^2 - \frac{10\boldsymbol{x}}{3} = -1$, por $\left(-\frac{5}{3}\right)^2$. Assim: $\boldsymbol{x}^2 - \frac{10\boldsymbol{x}}{3} + \left(-\frac{5}{3}\right)^2 = -1 + \left(-\frac{5}{3}\right)^2$; agora podemos construir o caso notável no primeiro membro e calcular o segundo membro. Assim:

Veja que expressão, $x^2 - \frac{10x}{3} + \left(-\frac{5}{3}\right)^2$ é igual ao seguinte caso notável: $\left(x - \frac{5}{3}\right)^2$. Isto é:

$$x^2 - \frac{10x}{3} + \left(-\frac{5}{3}\right)^2 = \left(x - \frac{5}{3}\right)^2$$
. Como construir o caso notável $\left(x - \frac{5}{3}\right)^2$?

Partindo de, $x^2 - \frac{10x}{3} + \left(-\frac{5}{3}\right)^2$; adicionamos a base do primeiro quadrado, x^2 , a base é x com a base do segundo quadrado, $\left(-\frac{5}{3}\right)^2$, a base é $\left(-\frac{5}{3}\right)$; e elevamos esta soma pelo expoente 2. Assim: $\left[x + \left(-\frac{5}{3}\right)\right]^2 = \left(x - \frac{5}{3}\right)^2$. Então a nossa equação fica de seguinte modo:

$$x^2 - \frac{10x}{3} + \left(-\frac{5}{3}\right)^2 = -1 + \left(-\frac{5}{3}\right)^2 \Leftrightarrow \left(x - \frac{5}{3}\right)^2 = -1 + \left(-\frac{5}{3}\right)^2;$$
 Calculamos o segundo membro: $= -1 + \left(-\frac{5}{3}\right)^2 = -1 + \frac{25}{9} = -\frac{1}{1} + \frac{25}{9} = \frac{-9 + 25}{9} = \frac{16}{9};$ Substituímos na equação, fica:

 $\left(x-\frac{5}{3}\right)^2=-1+\left(-\frac{5}{3}\right)^2\leftrightarrow\left(x-\frac{5}{3}\right)^2=\frac{16}{9};$ agora, podemos envolver ambos os membros à raiz quadrada para eliminar o expoente 2. Assim: $\sqrt{\left(x-\frac{5}{3}\right)^2}=\sqrt{\frac{16}{9}};$ como estamos a espera de duas soluções, devemos colocar os sinais \pm no segundo membro. Assim: $\sqrt{\left(x-\frac{5}{3}\right)^2}=\pm\sqrt{\frac{16}{9}};$ agora

podemos eliminar a raiz quadrada de primeiro membro. Assim:

$$x - \frac{5}{3} = \pm \sqrt{\frac{16}{9}}$$
; passo seguinte, calculamos a raiz quadrada de segundo membro: assim:

$$x - \frac{5}{3} = \pm \sqrt{\frac{16}{9}} \leftrightarrow x - \frac{5}{3} = \pm \frac{4}{3}$$
; passamos o termo $-\frac{5}{3}$, para o segundo membro. Assim:

 $\leftrightarrow x - \frac{5}{3} = \pm \frac{4}{3} \leftrightarrow x = \frac{5}{3} \pm \frac{4}{3}$; agora, podemos determinar o x_1e x_2 . Assim:

$$x_1 = \frac{5}{3} + \frac{4}{3} = \frac{9}{3} = 3$$
 $\sqrt{x_2} = \frac{5}{3} - \frac{4}{3} = \frac{1}{3}$; solução: $Sol: x = \left\{\frac{1}{3}; 3\right\}$.

4.4.2 AUTO-AVALIAÇÃO

Caro estudante, depois de termos abordado a Resolução de equações quadráticas completas do tipo: $ax^2 + bx + c = 0$ usando a lei de anulamento de produto, Você pode efectuar os exercícios propostos:

1. Resolva as seguintes equações quadráticas aplicando a lei de anulamento de produto:

a)
$$2x^2 - 2x - 12 = 0$$
 b) $x^2 + 6x + 9 = 0$ c) $3x^2 - x - 2 = 0$ d) $5x^2 + 36x - 32 = 0$

4.4.3 CHAVE-DE-CORRECÇÃO

1. a)
$$Sol: x = \{-2, 3\}$$
 b) $Sol: x = \{-3\}$ c) $Sol: x = \{-\frac{2}{3}, 1\}$ d) $Sol: x = \{-\frac{4}{5}, 8\}$

Lição nº5:

FÓRMULA RESOLVENTE

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Fórmula resolvente para ser aplicada na Resolução de equações quadráticas de todo tipo.

OBJECTIVOS DE APRENDIZAGEM

- Deduzir a fórmula resolvente;
- Aplicar a formula resolvente na resolução de equações quadrática.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.5.1 Fórmula resolvente

Caro estudante, partindo da dedução da fórmula aplicada na lei de anulamento de produto, para equações do tipo $ax^2 + bx + c = 0$, abordada na lição anterior, Lição n°4, podemos deduzir a **fórmula resolvente**, que facilitará a resolução de qualquer equação quadrática.

Já abordamos na lição anterior que uma equação do tipo $ax^2 + bx + c = 0$, pode ser representada também na forma; $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$. Isto é:

 $ax^2 + bx + c = 0 \leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$. Portanto, envolvendo ambos os membros a raiz quadrado teremos: $\sqrt{\left(x + \frac{b}{2a}\right)^2} = \sqrt{\frac{b^2 - 4ac}{4a^2}}$;

Simplificando o primeiro membro teremos: $\sqrt{\left(x+\frac{b}{2a}\right)^2} = \sqrt{\frac{b^2-4ac}{4a^2}} \leftrightarrow x+\frac{b}{2a} = \pm \sqrt{\frac{b^2-4ac}{4a^2}};$ passamos o termo $+\frac{b}{2a}$ para o segundo membro e muda de sinal fica: $-\frac{b}{2a}$, isto é:

 $x+\frac{b}{2a}=\pm\sqrt{\frac{b^2-4ac}{4a^2}} \leftrightarrow x=-\frac{b}{2a}\pm\sqrt{\frac{b^2-4ac}{4a^2}};$ separamos os radicandos aplicando a propriedade da divisão dos radicandos, fica: $x=-\frac{b}{2a}\pm\sqrt{\frac{b^2-4ac}{4a^2}} \leftrightarrow = x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{\sqrt{4a^2}};$ o valor, $\sqrt{4a^2}=2a$, então fica: $x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a} \leftrightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a};$ portanto uma equação quadrática tem no máximo duas soluções, então teremos a fórmula resolvente de seguinte modo:

$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Onde: a, b e c são coeficientes reais. Isto é: $(a \neq 0; b e c) \in R$;

O radicando b^2-4ac chama-se **Binómio Discriminante.** E representa-se por: Δ lê-se **delta.** Então, podemos igualar o radicando b^2-4ac por Δ . Isto é:

$$\Delta = b^2 - 4ac$$

Então, a formula resolvente também pode ficar da seguinte forma:

$$x_{1;2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Na base do valor de discriminante (Δ), teremos três condições, para determinarmos as soluções de uma equação quadrática. Que são:

- Se o Δ > 0; a equação tem duas soluções ou raízes reais diferentes;
- Se o $\Delta = 0$; a equação tem duas soluções ou raízes reais iguais ou raiz dupla;
- Se o Δ < 0; a equação não tem soluções ou não tem raízes reais;

Ex1: Determine as soluções da seguinte equação, $2x^2 - 7x + 3 = 0$ aplicando a fórmula resolvente:

Primeiro devemos determinar os valores dos coeficientes a, b e c. Que são:

a=2; b=-7 e c=3; em seguida podemos substituir na fórmula resolvente. Assim:

$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftrightarrow x_{1;2} = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times (2) \times (3)}}{2 \times (2)};$$

Em seguida, calculamos o que está fora e dentro do radicando. Assim:

$$x_{1;2} = \frac{-(-7)\pm\sqrt{(-7)^2-4\times(2)\times(3)}}{2\times(2)} \leftrightarrow x_{1;2} = \frac{+7\pm\sqrt{49-24}}{4} \leftrightarrow x_{1;2} = \frac{+7\pm\sqrt{25}}{4} \leftrightarrow x_{1;2} = \frac{+7\pm5}{4}; \text{ veja que } x_{1;2} = \frac{+7\pm\sqrt{25}}{4} \leftrightarrow x_{1;2} = \frac{1$$

o discriminante é igual à 25, isto é: $\Delta = 25$, portanto é maior que zero, $\Delta = 25 > 0$. Então, teremos duas soluções diferentes. Agora podemos calcular os valores de $x_1 e x_2$; assim:

$$x_1 = \frac{+7+5}{4} = \frac{12}{4} = 3 \leftrightarrow x_1 = 3$$
 v $x_2 = \frac{+7-5}{4} = \frac{2}{4} / \frac{2 \times 1}{2 \times 2} = \frac{1}{2}$; $Sol: x = \{\frac{1}{2}; 3\}$. São duas soluções.

Ex2: Determine as soluções da seguinte equação, $x^2 - 2\sqrt{2}x + 2 = 0$ aplicando a fórmula resolvente:

Determinamos os coeficientes a,b e c que são: $a=1;b=-2\sqrt{2}e c=2$, substituímos na fórmula

resolvente:
$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftrightarrow x_{1;2} = \frac{-(-2\sqrt{2}) \pm \sqrt{(-2\sqrt{2})^2 - 4 \times (1) \times (2)}}{2 \times (1)}$$
; portanto, o delta é igual à:

$$\Delta = \left(-2\sqrt{2}\right)^2 - 4\times(1)\times(2) \leftrightarrow \Delta = 4\sqrt{4} - 8 \leftrightarrow \Delta = 4\times2 - 8 \leftrightarrow \Delta = 8 - 8 = 0.$$

Portanto, o $\Delta = 0$. Teremos duas soluções reais iguais. Isto é:

$$x_{1;2} = \frac{-(-2\sqrt{2})\pm\sqrt{0}}{2\times(1)} \leftrightarrow x_{1;2} = \frac{2\sqrt{2}\pm0}{2\times(1)} \leftrightarrow x_{1;2} = \frac{2\sqrt{2}\pm0}{2}$$
; determinemos $x_1 e x_2$. Assim:

$$x_1 = \frac{2\sqrt{2}+0}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$
 $x_2 = \frac{2\sqrt{2}-0}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$; $x_1 = x_2$ **Sol**: $x = \{\sqrt{2}\}$. É raiz dupla.

Ex3: Determine as soluções da seguinte equação, $4x^2 - 2x + 3 = 0$ aplicando a fórmula resolvente:

Determinamos os coeficientes: a = 4; b = -2 e c = 3; substituímos na fórmula resolvente:

$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftrightarrow x_{1;2} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 4 \times 3}}{2 \times 4}$$
; vamos calcular o $\Delta = (-2)^2 - 4 \times 4 \times 3$

 $\Delta = (-2)^2 - 4 \times 4 \times 3 \leftrightarrow \Delta = 4 - 48 \leftrightarrow \Delta = -44$. Veja que o discriminante é menor que zero. Isto é: $\leftrightarrow \Delta = -44 < 0$. Logo, a equação não tem soluções reais. Isto é: $x = \{ \} ou \ x = \emptyset$.

ACTIVIDADE N° 5

Caro estudante, depois de termos abordado a **Fórmula resolvente**, Você pode efectuar os exercícios propostos abaixo:

1. Resolva as seguintes equações quadráticas aplicando a formula resolvente:

a)
$$-2x^2 + 2x + 12 = 0$$
 b) $-x^2 - 6x - 9 = 0$ c) $3x^2 - x - 2 = 0$ d) $5x^2 + 36x - 32 = 0$

CHAVE-DE-CORRECÇÃO N° 5

1. a)
$$Sol: x = \{-2; 3\}$$
 b) $Sol: x = \{-3\}$ c) $Sol: x = \{-\frac{2}{3}; 1\}$ d) $Sol: x = \{-\frac{4}{5}; 8\}$

LIÇÃO N°6: SOMA E PRODUTO DE RAÍZES DE EQUAÇÃO QUADRÁTICA

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Soma e produto de raízes de equação quadrática, o que facilitará ainda mais a determinação das soluções de uma equação quadrática.

OBJECTIVOS DE APRENDIZAGEM

- Determinar a soma e produto das raízes da equação quadrática;
- Aplicar as fórmulas da soma e produto na resolução de equações quadráticas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.6.1 Soma das raízes

Caro estudante, considerando a equação quadrática na forma canónica $ax^2 + bx + c = 0$, se dividirmos todos os termos da equação acima. Assim:

$$ax^2 + bx + c = 0 \leftrightarrow \frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$$
; simplificando a expressão, teremos: $\frac{ax^2}{a} + \frac{bx}{a} + \frac{c}{a} = \frac{0}{a}$

$$\leftrightarrow x^2 + \frac{bx}{a} + \frac{c}{a} = 0$$
; portando, o coeficiente $\frac{b}{a}$ representa a soma das raízes $x_1 + x_2$, e como

na equação quadrática tem sinal positivo, então na soma vai assumir valor negativo. Isto é: a soma será dada por: $S = -\frac{b}{a}$. Significa que, $S = x_1 + x_2$ ou $S = -\frac{b}{a}$. Portanto,

$$S = x_1 + x_2 \leftrightarrow S = -\frac{b}{a}$$

Ex: Determinemos a soma das raízes da equação $3x^2 + 5x - 2 = 0$.

Aplicamos a formula, $S = -\frac{b}{a}$; extraímos os coeficientes a e b, que são: a = 3 e b = 5. Então, substituindo na formula teremos: $S = -\frac{b}{a} \leftrightarrow S = -\frac{5}{3}$. Assim, determinamos o valor da soma das raízes.

4.6.2 Produto das raízes

 ${f O}$ produto das raízes ${m x_1} \times {m x_2}$, será dado pelo coeficiente $\frac{c}{a}$, extraído na equação:

$$x^2 + \frac{bx}{a} + \frac{c}{a} = 0$$
; e será representado por, $P = \frac{c}{a}$.

Significa que, $P = x_1 \times x_2$ ou $P = \frac{c}{a}$. Portanto,

$$P = x_1 \times x_2 \leftrightarrow P = \frac{c}{a}$$

Ex: Determinemos o produto das raízes da equação $3x^2 + 5x - 2 = 0$.

Aplicamos a formula, $P = \frac{c}{a}$; extraímos os coeficientes a e c, que são: a = 3 e c = -2. Então, substituindo na formula teremos: $P = \frac{c}{a} \leftrightarrow P = \frac{(-2)}{3} = -\frac{2}{3}$. Assim, determinamos o valor de produto das raízes.

Portanto, partindo das fórmulas da soma e produto, isto é: $\mathbf{S} = -\frac{b}{a}$ e $\mathbf{P} = \frac{c}{a}$; podemos substituir na equação, $\mathbf{x}^2 + \frac{b\mathbf{x}}{a} + \frac{c}{a} = \mathbf{0}$; para tal, na fórmula $\mathbf{S} = -\frac{b}{a}$, multiplicamos ambos os membros por (-1), e fica: $(-1)\mathbf{S} = -\frac{b}{a}(-1) \leftrightarrow -\mathbf{S} = \frac{b}{a}$. Agora podemos substituir na fórmula. Assim:

 $x^2 + \frac{bx}{a} + \frac{c}{a} = 0 \leftrightarrow x^2 - Sx + P = 0$. Esta fórmula $x^2 - Sx + P = 0$ é da soma e produto das raízes. A mesma fórmula é conhecida como fórmula de VIETT.

As fórmulas da soma e produto, são muitas vezes aplicadas para determinar uma outra variável envolvida numa equação quadrática. Esta equação quadrática que envolve uma outra variável para além da variável em estudo, é chamada equação **paramétrica**, e <u>vai ser melhor abordada no módulo 5</u> (cinco).

Ex: Dada a equação $x^2 - (m+1)x + (2m-5) = 0$, determine o valor de m de modo que:

a) A soma das raízes seja 4;

Primeiro extraímos os coeficientes a e b; assim: a = 1 e b = -(m + 1); Passo seguinte aplicamos a formula da soma, $S = -\frac{b}{a}$. Portanto está dito na alínea a) que a soma deve ser igual a, isto é: a = 4. Então substituindo na formula $a = -\frac{b}{a}$; e teremos:

$$S = -\frac{b}{a} \leftrightarrow 4 = -\frac{[-(m+1)]}{1}$$
; calculamos a equação, teremos:

 $4 = -\frac{[-(m+1)]}{1} \leftrightarrow 4 = -[-(m+1)]$; conjugamos os sinais eliminamos parentes rectos, teremos o segundo membro positivo. Assim: $4 = (m+1) \leftrightarrow 4 = m+1$; passamos o termo 1 para o primeiro membro fica negativo. Assim: $4 = m+1 \leftrightarrow 4-1 = m \leftrightarrow 3 = m$; aplicando a propriedade comutativa teremos: $3 = m \leftrightarrow m = 3$.

Resposta: Para que a soma das raízes seja 4 o valor de m deve ser igual à 3.

b) O produto das raízes seja – **10**;

Primeiro extraímos os coeficientes a e c; na equação, $x^2 - (m+1)x + (2m-5) = 0$ assim: a = 1 e c = (2m-5); Passo seguinte aplicamos a formula de produto, $P = \frac{c}{a}$. Portanto está dito na alínea b) que o produto deve ser igual -10, isto é: P = 4. Então substituindo na formula $P = \frac{c}{a}$; e teremos:

 $P = \frac{c}{a} \leftrightarrow -10 = \frac{(2m-5)}{1} \leftrightarrow -10 = 2m-5$; passamos o termo -5 para o primeiro membro e fica positivo, assim: $\leftrightarrow -10 + 5 = 2m \leftrightarrow -5 = 2m$; aplicamos a propriedade comutativa trocamos os membros, assim: $\leftrightarrow -5 = 2m \leftrightarrow 2m = -5$; passamos o coeficiente 2, para o segundo membro e passa a dividir, assim:

 $2m = -5 \leftrightarrow m = -\frac{5}{2}$. Resposta: para que o produto das raízes seja -10, o valor de deve ser igual à $-\frac{5}{2}$.

ACTIVIDADE DA LIÇÃO Nº 6

Caro estudante, depois de termos abordado a Soma e produto de raízes de equação quadrática, Você pode efectuar os exercícios propostos:

1. Considere as equações abaixo, e determine os valores de k, y e w de modo que a soma seja -2 e o produto seja 5, em cada alínea:

a)
$$x^2 + (k+1)x + 2k = 0$$
 b) $x^2 + 2(y+1)x - 2y = 0$ c) $x^2 - (w-7)x - \frac{1}{2}w = 0$

CHAVE-DE-CORRECÇÃO N° 6

1. a)
$$s = -2$$
; $k = 1$ e $P = 5$; $k = \frac{5}{2}$

b)
$$s = -2$$
; $y = 0$ e $P = 5$; $y = -\frac{5}{2}$

c)
$$s = -2$$
; $w = 5$ e $P = 5$; $w = -10$

Lição nº7:

FACTORIZAÇÃO DE UM TRINÓMIO $ax^2 + bx + c = a(x - x_1)(x - x_2)$

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar a Factorização de um trinómio $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

OBJECTIVOS DE APRENDIZAGEM

- Factorizar a equação quadrática;

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.7.1 Factorização de um trinómio $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Caro estudante, a partir das soluções x_1 e x_2 da equação quadrática $ax^2 + bx + c = 0$, Podemos factoriza-la, ficando da seguinte maneira: $ax^2 + bx + c = 0 \leftrightarrow a(x - x_1)(x - x_2)$.

Ex: Factorizemos a seguinte equação quadrática: $3x^2 + 5x - 2 = 0$:

Primeiro devemos determinar os valores de x_1 e x_2 , aplicando a fórmula resolvente. Assim:

Extraímos os coeficientes $a, b \ e \ c$. Assim: $a = 3, b = 5 \ e \ c = -2$, substituímos na formula abaixo: $x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftrightarrow x_{1;2} = \frac{-5 \pm \sqrt{5^2 - 4 \times 3 \times (-2)}}{2 \times 3} \leftrightarrow x_{1;2} = \frac{-5 \pm \sqrt{25 + 24}}{6} \leftrightarrow x_{1;2} = \frac{-5 \pm \sqrt{49}}{6}$

 $x_{1;2} = \frac{-5 \pm \sqrt{49}}{6} \leftrightarrow x_{1;2} = \frac{-5 \pm 7}{6}; \ x_1 = \frac{-5 + 7}{6} = \frac{2}{6} = \frac{1}{3} \ _{\text{V}} x_2 = \frac{-5 - 7}{6} = \frac{-12}{6} = -2; \ \text{já determinamos}$ os valores de $x_1 \ e \ x_2$ que são: $x_1 = \frac{1}{3} \ e \ x_2 = -2$. Agora podemos factorizar.

Assim: aplicamos a fórmula: $a(x-x_1)(x-x_2)=0$; e substituímos na mesma pelas raízes

 $x_1 = \frac{1}{3} e x_2 = -2$; e o coeficiente a = 3, fica:

 $a(x-x_1)(x-x_2)=0 \leftrightarrow 3\left(x-\frac{1}{3}\right)[x-(-2)]=0$; conjugando os sinais dentro de parentes rectos teremos: $3\left(x-\frac{1}{3}\right)[x-(-2)]=0 \leftrightarrow 3\left(x-\frac{1}{3}\right)(x+2)=0$. Assim, factorizamos a equação: $3x^2+5x-2=0$. Significa que a equação, $3x^2+5x-2=0$ é equivalente à $3\left(x-\frac{1}{3}\right)(x+2)=0$. Isto é:

$$3x^2 + 5x - 2 = 0 \leftrightarrow 3\left(x - \frac{1}{3}\right)(x + 2) = 0$$
.

ACTIVIDADE DA LIÇÃO Nº 7

Caro estudante, depois de termos abordado a Factorização de um trinómio $ax^2 + bx + c = a(x - x_1)(x - x_2)$, Você pode efectuar os exercícios abaixo:

1. Factorize as seguintes equações quadráticas:

a)
$$-2x^2 + 2x + 12 = 0$$
 b) $-x^2 - 6x - 9 = 0$ c) $3x^2 - x - 2 = 0$ d) $5x^2 + 36x - 32 = 0$

CHAVE-DE-CORRECÇÃO N° 7

1. a)
$$-2(x+2)(x-3)$$

b)
$$-(x-3)^2$$

c)
$$3(x+\frac{2}{3})(x-1)$$

d)
$$5(x+\frac{4}{5})(x-8)$$

Lição nº8: PROBLEMAS CONDUCENTES ÀS EQUAÇÕES QUADRÁTICAS

INTRODUÇÃO A LIÇÃO:

Caro estudante, nesta lição vamos abordar Problemas conducentes às equações quadráticas

OBJECTIVOS DE APRENDIZAGEM

- Equacionar Problemas conducentes às equações quadráticas;
- Aplicar as fórmulas na resolução de Problemas conducentes às equações quadráticas.

TEMPO DE ESTUDO:

Caro estudante você vai precisar de 3 horas para o estudo desta lição.

4.8.1 Problemas conducentes às equações quadráticas

Caro estudante, os problemas conducentes às equações quadráticas podem serem resolvidas, equacionando o problema na forma de equação quadrática, em primeiro lugar, em seguida aplicar as fórmulas da resolução de equações quadráticas, abordadas nas lições anteriores.

Ex: Consideremos o seguinte problema:

Numa sala rectangular, pretende-se colocar uma alcatifa quadrangular de lado x, a área da parte sem alcatifa mede $456m^2$, veja a figura abaixo. Qual deve ser a área de alcatifa?

Resolução: veja que a área total da sala, será a soma de $456m^2$ mais a área de alcatifa, isto é:

 $A_{Total} = 456m^2 + A_{Alcatifa}$; e a área de alcatifa por ser quadrada será igual ao lado de alcatifa ao quadrado, isto é: $A_{Alcatifa} = l^2$; o lado é igual a x, isto é: $l = \sqrt{6}x$; então, a área de alcatifa será:

 $A_{Alcatifa} = l^2 \leftrightarrow A_{Alcatifa} = (\sqrt{6}x)^2 m^2 = 6x^2 m^2$; então substituindo na área total teremos:

 $A_{Total} = 456m^2 + A_{Alcatifa} \leftrightarrow A_{Total} = 456m^2 + 6x^2m^2$; A sala é um rectângulo, a área de rectângulo é dada pelo produto de comprimento pela largura, isto é: $A_{sala} = c \times l$. O comprimento

da sala mede (12x + 36)m, isto é: C = (12x + 36)m; a largura da sala mede (3x + 2)m, isto é: l = (3x + 2)m. Substituindo na fórmula $A_{sala} = c \times l$, teremos:

 $A_{sala}=c \times l \leftrightarrow A_{sala}=(12x+36)m \times (3x+2)m$; multiplicamos a unidade metro por si, temos: $m \times m=m^2$; fica: $A_{sala}=(12x+36)\times (3x+2)m^2$. Veja que a área total é igual a área da sala. Assim: $A_{Total}=A_{sala}$; substituindo por:

$$A_{Total} = 456m^2 + 6x^2m^2$$
 e $A_{sala} = (12x + 36) \times (3x + 2)m^2$ na igualdade,

 $A_{Total} = A_{sala}$.

Assim: $\mathbf{456}m^2 + 6x^2m^2 = (12x + 36) \times (3x + 2)m^2$; agora podemos reduzir a expressão numa equação quadrática.

Assim: $456m^2 + 6x^2 = (12x + 36) \times (3x + 2)m^2$; Vamos omitir a unidade m^2 e vamos colocar no fim. E fica: $456 + 6x^2 = (12x + 36) \times (3x + 2)$, aplicamos a propriedade distributiva no segundo membro e teremos:

$$\leftrightarrow$$
 456 + 6 x^2 = 12 x (3 x + 2) + 36(3 x + 2) \leftrightarrow 456 + 6 x^2 = 36 x^2 + 24 x + 108 x + 72; passamos os termos de primeiro membro para segundo membro e vão mudar de sinal. Assim: \leftrightarrow 0 = 36 x^2 + 24 x + 108 x + 72 - 456 - 6 x^2 ; agora podemos adicionar os termos semelhantes. Assim: \leftrightarrow 0 = (36 - 6) x^2 + (24 + 108) x + 72 - 456

 \leftrightarrow **0** = **30** x^2 + **132**x - **384**; mudamos os membros, fica: \leftrightarrow **30** x^2 + **132**x - **384** = **0**. Podemos dividir todos os termos por 2, para simplificar a equação, assim:

$$\leftrightarrow \frac{30x^2}{2} + \frac{132x}{2} - \frac{384}{2} = \frac{0}{2} \leftrightarrow$$
; simplificando teremos:

 $\leftrightarrow 15x^2 + 66x - 192 = 0$. Veja que agora temos uma equação quadrática reduzida e podemos aplicar a fórmula resolvente para a resolução da mesma. Assim:

 $15x^2 + 66x - 192 = 0$; Extraímos os coeficientes **a**, **b** e **c**. Assim:

a = 15; b = 66 e c = -192; substituímos na fórmula resolvente assim:

$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftrightarrow x_{1;2} = \frac{-66 \pm \sqrt{(66)^2 - 4 \times 15 \times (-192)}}{2 \times (15)} \leftrightarrow x_{1;2} = \frac{-66 \pm \sqrt{4356 + 11520}}{30}$$

$$x_{1;2} = \frac{-66 \pm \sqrt{15876}}{30} \leftrightarrow x_{1;2} = \frac{-66 \pm 126}{30}; x_1 = \frac{-66 + 126}{30} = 2_{\text{V}} x_2 = \frac{-66 - 126}{30} = -\frac{96}{15}; \text{ portanto, a } x_1 = \frac{-66 + 126}{30} = \frac{2}{30} \times \frac{1}{30} = \frac{-66 + 126}{30} = \frac{1}{30} \times \frac{1}{30} = \frac{1}{30} = \frac{1}{30} \times \frac{$$

solução que nos interessa é a positiva porque a distância é sempre positiva. Então, o valor de x é: $x_1 = 2m$. Podemos substituir na formula, $A_{Alcatifa} = 6x^2m^2$, para determinar a área de alcatifa.

Assim:
$$A_{Alcatifa} = 6x^2m^2 \leftrightarrow A_{Alcatifa} = 6(2)^2m^2 \leftrightarrow A_{Alcatifa} = 24m^2$$
.

Resposta: A área de alcatifa deve ser de ${\bf 24m^2}$.

ACTIVIDADE DA LIÇÃO Nº 8

Caro estudante, depois de termos abordado Problemas conducentes às equações quadráticas, Você pode efectuar os exercícios propostos abaixo:

- 1. Determine o perímetro de uma sala rectangular sabendo que as medidas, em centímetros, dos comprimentos dos seus lados são: x; x + 2 e x + 4. (Recomendação aplicar o teorema de Pitágoras)
- 2. Uma sala rectangular de 6m por, xm tem uma alcatifa quadrada de lado xm, colocada como mostra a figura abaixo:

- a) Escreva uma expressão que representa a área da sala.
- b) Escreva uma expressão que representa a área de alcatifa.
- c) Se a área não coberta pela alcatifa é menor do que a coberta e igual a $8m^2$, determine x (a largura da sala)

1.
$$P = l_1 + l_2 + l_3$$
; $P = 24cm^2$

2. a)
$$A_{sala} = 6x$$

b)
$$A_{alcatifa} = x^2$$

c)
$$x = 2$$
.

ACTIVIDADES UNIDADE N°-4./ PREPARAÇÃO PARA TESTE

Caro estudante, depois da revisão de toda unidade número 4, você pode prestar a seguinte actividade:

1. Indique os valores dos coeficientes \boldsymbol{a} , \boldsymbol{b} \boldsymbol{e} \boldsymbol{c} nas equações seguintes:

a)
$$-9x^2 + 24 - 16 = 0$$

b)
$$-15x + 3x^2 + 12 = 0$$

c)
$$-\frac{1}{2}x^2 = 15x$$

d)
$$4\sqrt{3}x = -x^2 - 9$$

e)
$$x^2 = 36$$

f)
$$-10x^2 - 72x + 64 = 0$$

2. Determine as soluções das seguintes equações aplicando anulamento de produto:

a)
$$\left(-x+3\right)\left(x-\frac{1}{2}\right)=0$$

b)
$$x^2 + 5x + 6 = 0$$

c)
$$2x^2 + 3x - 5 = 0$$

d)
$$3x^2 + \sqrt{3}x = 0$$

3. Resolva aplicando a fórmula resolvente:

a)
$$-x^2 + 3x + 4 = 0$$

b)
$$x^2 - 7x + 11 = 0$$

c)
$$\frac{1}{2}x^2 + 3x + 4 = 0$$

d)
$$-\sqrt{3}x = \frac{3}{2} - x^2$$

e)
$$2x^2 - 3\sqrt{2}x + 2 = 0$$

4. Determine a soma e o produto das raízes em cada equação:

a)
$$2x^2 - 3x - 5 = 0$$

b)
$$x^2 - 8x + 14 = 0$$

c)
$$x^2 + \sqrt{3}x - \sqrt{2} = 0$$

d)
$$3(x+2) = x^2$$

5. Considere a equação $x^2 + (2m - 1)x + m = 0$.

- a) Resolva a equação para, m=2.
- b) Para que valores de **m** a equação é incompleta?
- c) Para que valores de ${m m}$ a equação admite raiz dupla?
- d) Determine o valor de ${\boldsymbol m}$ de modo que a soma das raízes seja 5.
- e) Determine o valor de m de modo que o produto das raízes seja $\sqrt{2}$.
- 6. Factorize as seguintes equações quadráticas:

a)
$$-x^2 + 3x + 4 = 0$$

b)
$$x^2 - 7x + 11 = 0$$

c)
$$\frac{1}{2}x^2 + 3x + 4 = 0$$

d)
$$-\sqrt{3}x = \frac{3}{2} - x^2$$

e)
$$2x^2 - 3\sqrt{2}x + 2 = 0$$

- 7. A soma dos quadrados de três números inteiros consecutivos é 50. Determine-os.
- 8. O perímetro de um triângulo isósceles é **36cm**. A altura relativa à base é de, **6cm**. Determine a área do triângulo.

CHAVE-DE-CORRECÇÃO DA UNIDADE N° 4.

1. a)
$$a = -9$$
; $b = 24$; $c = -16$

b)
$$a = -15$$
; $b = 3$; $c = 12$

c)
$$a = -\frac{1}{2}$$
; $b = -15$; $c = 0$

d)
$$a = 1$$
; $b = 4\sqrt{3}$; $c = 9$

e)
$$a = 1$$
; $b = 0$; $c = 0$

f)
$$a = -10$$
; $b = -72$; $c = 64$

2. a)
$$Sol: x = \left\{\frac{1}{2}; 3\right\}$$
 b) $Sol: x = \left\{-3; -2\right\}$ c) $Sol: x = \left\{-\frac{5}{2}; 1\right\}$

e)
$$Sol: x = \left\{ -\frac{\sqrt{3}}{3}; 0 \right\}$$

3. a)
$$Sol: x = \{-1, 4\}$$
 b) $Sol: x = \{\frac{-7 - \sqrt{5}}{2}, \frac{7 + \sqrt{5}}{2}\}$ c) $Sol: x = \{-4, -2\}$

e)
$$Sol: x = \left\{-\frac{\sqrt{3}}{3}; 0\right\} e \left\{\frac{\sqrt{2}}{2}; \sqrt{2}\right\}$$

4. a)
$$S = \frac{3}{2}$$
; $P = -\frac{5}{2}$ b) $S = 8$; $P = 14$ c) $S = -\sqrt{3}$; $P = -\sqrt{2}$ d) $S = 3$; $P = -6$

5. a)
$$Sol: x = \{1; 2\}$$
 b) $Sol: m = \{0\}$ c) $Sol: m = \{\frac{4+\sqrt{3}}{2}; \frac{4-\sqrt{3}}{2}\}$

d)
$$Sol: m = \{3\} e) Sol: m = \{\sqrt{2}\}$$

6. a)
$$-(x+1)(x-4) = 0$$
 b) $2\left(x + \frac{7+\sqrt{5}}{2}\right)\left(x - \frac{7+\sqrt{5}}{2}\right) = 0$ c) $\frac{1}{2}(x+4)(x+2) = 0$

d)
$$\left(x + \frac{\sqrt{3}}{3}\right)x = 0$$
 e) $\left(x - \frac{\sqrt{2}}{2}\right)\left(x - \sqrt{2}\right) = 0$

7.
$$Sol: = \{-5, -4, -3\} ou\{3, 4, 5\}$$

8. $A = 60cm^2$

BIBLIOGRAFIA

SAPATINHA, João Carlos Sapatinha (2013) Matemática 9ª Classe, 1ª Edição, Maputo

LANGA, Heitor/ CHUQUELA, Neto João (2014) Matemática 9ª Classe, 1ª Edição, Maputo