SSL: Secure Socket Layer TLS: Tansport Layer Security

SSL: Secure Sockets Layer

Suite of (stateful) protocols for:

Entity authentication Message integrity Message confidentiality

SSL: Secure Sockets Layer

It provides also

- secure key exchange between a browser (client) and server.
- security parameters negotiation.
- does not offer non-repudiation

Client to server authentication, not user authentication

Authentication at session level not at appliation level or network level

SSL

- Advandages
 - Easy to deploy because embedded in the web software (browser and servers) ..and it comes for free
 - User friendly
- Disadvantages
 - Application that do not use web interface need to be SSLzed
 - No assurance at user level

An SSL Session

- 1. Negotiation of cryptographic parameters
 Two computers probably don't know each
 other's capabilities.
- Key Agreement.Client and Server generate shared secret key.
- 3. Authentication
 Client authenticates server. Optionally mutual authentication.
- 4. Confidentiality and integrity.
 Private messages exchanged between C&S.

SSL: Handshake

- Negotiate Cipher-Suite Algorithms
 - Symmetric cipher to use
 - Key exchange method
 - Message digest function
- Establish and share pre-master secret
- Optionally authenticate server and/or client
- Generate shared secret from pre-master and random value exchanged

Handshake Phases

- Hello messages
- Certificate and Key Exchange messages
- Change CipherSpec

Hello and Negotiate Parameters

 Client sends server a plaintext message to suggest some parameters for conversation:

Version:

SSL 3.1 if you can, else SSL 3.0

Key Exchange:

RSA if you can, else Diffie-Hellman

Secret Key Cipher Method:

TripleDES if you can, else DES

Message Digest:

MD5 if you can, else SHA-1

Random #: 777,666,555

Hello and Negotiate Parameters

 Server responds by its choice of parameters in a plaintext message:

```
Version:
SSL 3.1
Key Exchange:
RSA
Secret Key Cipher Method:
TripleDES
Message Digest:
SHA-1
Random #: 444,333,222
```

SSL: Hello and Negotiation

- Client "Hello" initiates session
 - Propose protocol version
 - Propose cipher suite
 - Server chooses protocol and suite
- Client may request use of cached session
 - Server chooses whether to honor request

Key Agreement and Exchange

- Server sends certificate containing public key (RSA) or Diffie-Hellman parameters
- Client sends encrypted "pre-master" secret to server using Client Key Exchange message
- Master secret calculated
 - Use random values passed in Client and Server Hello messages

Key Agreement and Exchange

client

- If RSA is agreed. The client generates a 48byte random value (called pre-master secret), encrypts it with server's public RSA key, and sends it to server.
- The server decrypts this message and generates six keys.

CHCIT	
DES secret	DES secret
key	key
Secret key for	Secret key for
message	message
integrity	integrity
(MAC)	(MAC)
IV for block	IV for block
cipher	cipher

Server

Key Agreement and Exchange

- Generation of six shared secret keys:
 - Random values exchanged.
 - Pre-master secret.
 - Pseudo-random function generator.

Example with TLS 1.0:

master_secret=

PRF(pre-master secret, master_secret, Client.random+Server.random)

48 bits long

Computed repeatedly.

Handshake protocol

SSL: Using a Session

Client

◆ ClientHello (Session #)

◆ ServerHello (Session #)

◆ [ChangeCipherSpec]

Finished

- ♦ [ChangeCipherSpec] -----
- **♦** Finished
- ◆ Application Data
 ◆ Application Data

SSL: Change Cipher Spec/Finished

- Change Cipher Spec
 - Announce switch to negotiated algorithms and values (pending to current state)
- Finished
 - Send copy of handshake using new session
 - Permits validation of handshake

Record Phase: Confidentiality and Integrity

- Client and server use the generated secret keys for confidential data transfer.
 - The client uses its secret key to generate a HMAC for the message.
 - The client encrypts message data + HMAC with its secret key and sends it to server.
 - The server decrypts the received message with its secret key.
 - The server checks the integrity of the message using HMAC.

SSL: Implementation

- Cryptographic Libraries
 - RSARef
 - TLS/SSL packages
 - SSLeay
 - SSLRef

References:

RFC 2246 T. Dierks, C. Allen "The TLS Protocol Version 1.0", January 1999

SSL v3 Specification, Netscape http://www.netscape.com/eng/ssl3/