Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Milan Suk Naměřeno: 2. března 2017

Obor: F **Skupina:** ČT 8:00 **Testováno:**

Úloha č. 1: Měření hustosty válečku

 $T=21,4~^{\circ}\mathrm{C}$ $p=97,9~\mathrm{hPa}$ $\varphi=40~\%$

1. Úvod

Cílem toho měření je zjistit hustotu válečku s válcovým výřezem. Hustota má být vypočtena pomocí měření jeho výšky, vnitřního a vnějšího průměru, a jeho hmotnosti.

Objem válečku určím pomocí změřené výšky h, vnitřního poloměru r a vnějšího poloměr R pomocí rovnice

$$V = h\pi(R^2 - r^2) \tag{1}$$

Pak se změřenou hmotností m lze určit hustotu válečku jako

$$\rho = \frac{m}{h\pi(R^2 - r^2)}\tag{2}$$

1.1. Zpracování chyb měření

Nejistotu měření určím ze Zákona šíření nejistoty jako

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m}\right)^2 \cdot u(m)^2 + \left(\frac{\partial \rho}{\partial r}\right)^2 \cdot u(r)^2 + \left(\frac{\partial \rho}{\partial R}\right)^2 \cdot u(R)^2 + \left(\frac{\partial \rho}{\partial h}\right)^2 \cdot u(h)^2}$$
(3)

konkrétně potom

$$u(\rho) = \sqrt{\left(\frac{u(m)}{h\pi (R^2 - r^2)}\right)^2 + \left(\frac{2mR \cdot u(R)}{h\pi (R^2 - r^2)^2}\right)^2 + \left(\frac{2mr \cdot u(r)}{h\pi (R^2 - r^2)^2}\right)^2 + \left(\frac{m \cdot u(h)}{h^2\pi (R^2 - r^2)}\right)^2}$$
(4)

2. Postup měření

Pomocí posuvného měřidla (s přesností 0.02mm) jsme nejdříve změřili vnitřní průměr 2r a vnější průměr válečku 2R. Poté jsme pomocí mikrometru (s přesností 0.01mm) změřili výšku válečku h a nakonec pomocí laboratorních vah jsme určili hmotnost válečku m.

3. Výsledky

3.1. Měření průměrů a výšky válce

2R [cm]	R [cm]	2r [cm]	r $[cm]$	h[cm]
3.992	1.996	1.008	0.504	1.534
3.992	1.996	1.008	0.504	1.530
3.990	1.995	0.996	0.498	1.528
3.992	1.996	1.006	0.502	1.524
3.990	1.995	1.008	0.504	1.552
3.992	1.996	1.002	0.501	1.546
3.992	1.996	1.006	0.503	1.548
3.992	1.996	1.000	0.500	1.548
3.992	1.996	1.008	0.504	1.554
3.994	1.997	1.010	0.505	1.550

Tabulka 1: Měření průměrů a výšky válce

$$\overline{m} = 159.096g$$

Průměrné hodnoty naměřených veličin a jejich nejistoty (vypočtené pomocí rovnice (3) a (4)) jsou následující:

$$m = (159.096 \pm 0.001)g$$

$$r = (0.503 \pm 0.001)cm$$

$$R = (1.996 \pm 0.001)cm$$

$$h = (1.541 \pm 0.004)cm$$

Po dosazení je výsledná hustota

$$\rho = (8810 \pm 20) \, kg \cdot m^{-3}$$

4. Zhodnocení měření, závěr

Podle zjištěné hustoty byl neznámý materiál pravděpodobně **mosaz**, jehož tabulková hodnota hustoty se pohybuje v rozmezí $8400-8700~kg\cdot m^{-3}$. Odchylka od této hodnoty bude pravděpodobně způsobena nedokonalým tvarem, o kterém se předpokládalo, že se jedná o válec. Měření by bylo možné zlepšit přímým měřením objemu, ponořením do kapaliny a měřením jejího objemu v odměrném válci.