

Evaluating Geospatial Datasets

Problem:

Geospatial *Variable* of Interest inundation extents, depth, velocity, precipitation, water quality, soil moisture, overland roughness, temperature, etc

Data sources

Models: physics-based, empirical, stochastic, coastal, fluvial, etc
Other geospatial data sources

Existing GIS Software and Programming Frameworks

Proprietary		Open Source	
	HEXAGON GEOSPATIAL		QGIS
ArcGIS	€ MapInfo Pro	GRASS GIS	C(010

- Comparing data with different discretizations and/or resolutions?
- Large data and scalability?
- Batch processing?
- Capabilities for robust evaluations?

A Modern Approach

To address these problems, we developed a python software package that we call **GVAL**.

General Workflow

Software Design

Core Libraries

GVAL uses accessors to run operations on commonly used libraries in the pangeo community.

Raster operations extend Xarray

Vector operations extend
 Pandas/GeoPandas

*Currently all processing is done in raster space

Data Sources

- Locally
- Direct AWS S3 Storage
- POSTGIS Service
- STAC Service

Supported Statistical Data Types

Categorical Comparisons

Two-class Categorical Comparisons

Continuous Comparisons

30

Metric Table

NOAA VIC 2011 Annual Precip (EPSG: 4326)

GVAL Continuous Comparisons

PRISM 2011 Annual Precip (EPSG: 4326)

10

Similarly to categorical evaluations, the following runs continuous evaluations:

band coefficient_of_determination mean_absolute_error mean_absolute_percentage_error mean_normalized_mean_absolute_error

0 1 0.685261 216.089706 0.319234 0.267845

(C) OpenStreetMap contributors

Longitude

-1000

-1500

Probabilistic Comparisons

Probabilistic Comparisons

Like the previous two examples, probabilistic comparisons can also be run with minimal code:

```
candidate = rxr.open_rasterio(
    "./candidate probabilistic.tif", mask and scale=True
benchmark = rxr.open_rasterio(
   "./benchmark_probabilistic.tif", mask_and_scale=True
candidate, benchmark = (
    candidate.rename({"band": "member"}),
    benchmark.rename({"band", "member"})
compute kwarqs = {
   "metric kwargs": {
        "brier score": {"member dim": "member", "keep attrs": True}
   "return on error": "error",
  metrics_df = candidate.gval.probabilistic_compare(
        benchmark, **compute_kwargs
```

* Input Candidate and Benchmark Maps

Catalog Comparisons

Catalog Comparisons

Candidate and Benchmark Catalogs

GVAL can run evaluations on catalogs of maps:

 A catalog represents multiple maps and in GVAL is represented by a dataframe

 A candidate and benchmark can be compared using identifiers

 This will create metrics for each set of maps as well as agreement maps

Additional Functionality

Additional Functionality Continued

Use and Contribution

Documentation:
 https://github.com/NOAA-OWP/gval

• GitHub Issues:

https://github.com/NOAA-OWP/gval/issues

Main GitHub Page https://noaa-owp.github.io/gval/

Acknowledgements

Gregory Petrochenkov ² Fernando Aristizabal ³ Fernando Salas ¹

[1] NOAA/NWS Office of Water Prediction

[2] Lynker

[3] Earth Resources Technology

