Effective Dirac neutrino masses and baryogenesis

with gauged Baryon number

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group & UNICAMP http://gfif.udea.edu.co

Focus on arXiv:¿¿¿¿¿.????? In collaboration with

Andréa Disser (IIII.A) Meless Tenserife (

Andrés Rivera (UdeA), Walter Tangarife (Loyola University Chicago)

Electroweak baryogenesis

Problems

- Standard model (SM) $m_h \sim$ 40 GeV. \odot
- Beyond the SM: Source of CP contains fields charged under SM
 - ightarrow too large electric dipole moments extstyle extsty

Dark sectors

- Inert SM-singlet complex scalar field which acquires vev with temperature to have strong electroweak phase transition
- CP violation (CPV) triggered in dark sectors through SM gauge singlets
 - → CPV Yukawa between SM-singlet complex scalar and SM-singlet quiral fermions \(\to\)

Anomalons:

DM

Method to find $\Sigma n=0$, $\Sigma n^3=0$ solutions 1905.13729 [PRL] Costa...

Anomalons:

Multicomponent DM

Scotogenic neutrino masses

hep-ph/0601225 [PRL→PRD] Ma

Dark sectors

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

LHC productio

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry: $\mathcal{X} \to L$:

$$\overline{\Psi}\Psi = \chi_1\chi_2 + \chi_1^{\dagger}\chi_2^{\dagger} \rightarrow \chi_{\alpha}\chi_{\beta}\Phi^{(*)}, \qquad \alpha = 1, \dots N' \rightarrow N' > 4$$

 $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

LHC production

Gauged Symmetry: $\mathcal{X} \to \mathcal{B}$: $q\overline{q} \to \mathcal{Z}' \to \mathsf{jets}$

Gauged Symmetry: $\mathcal{X} \rightarrow \mathcal{L}$:

multi-component dark matter

 $\alpha=1,\ldots N' o N'>4$

 $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

LHC production

Gauged Symmetry: $\mathcal{X} \to \mathcal{B}$: $q\overline{q} \to \mathcal{Z}' \to \mathsf{jets}$

Gauged Symmetry: $\mathcal{X} \rightarrow \mathcal{L}$:

multi-component dark matter

 $\alpha=1,\ldots N' o N'>4$

Local $U(1)\chi$ $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-y(\chi_1\chi_2S+h.c)$$

Anomalons: SM-singlet Dirac fermion

CP violation Yukawa y

LHC productio

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots, N' \rightarrow N' > 4$

Standard model extended with $U(1)_{\mathcal{X}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=B \text{ or } L}$
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	u
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h = 0
χ_{α}	1	0	z_{α}
$(L'_L)^{\dagger}$	2	1/2	-x'
$L_R^{\prime\prime}$	2	-1/2	x''
e_R'	1	-1	×′
$(e_L^{\prime\prime})^\dagger$	1	1	-x''
Ф	1	0	ϕ
S	1	0	s

Table 1: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$. $i = 1, 2, 3, \ \alpha = 1, 2, ..., N'$

Effective Dirac neutrino mass operator

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$$
(1)

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \, \epsilon_{ab} \, \mathcal{L}_{i}^{a} \, \mathcal{H}^{b} \left(rac{\Phi^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \, \, i=1,2,3 \, ,$$

S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$\phi = -(\nu + \mathbf{L})/\delta \,, \tag{2}$$

Anomaly cancellation I

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}\left(x' - x''\right) , \quad (3)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (4)

- Previously: x' = x''
- We choose instead (h = 0):

$$e = -L, (5)$$

so that (L is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x'').$$
 (6)

If
$$L=0 \rightarrow U(1)_B$$

7

Anomaly cancellation II

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (7)$$

where N = N' + 5 and

$$z_{N'+1} = -x',$$
 $z_{N'+2+i} = L, \quad i = 1, 2, 3$ (8)

$$9Q = -\sum_{\alpha=N'+1}^{N'+5} z_{\alpha} = -x' + x'' + L + L + L,$$
 (9)

If
$$Q = 0 \rightarrow U(1)_L$$

390074 solutions with $5 \le N \le 12$ integers until '1321' [JSON]

Anomaly free | Diophantine equations | Abelian symmetry

Creative Commons Attribution 4.0 International

Keyword(s):

License (for files):

$U(1)_{\mathbf{B}}$ selection

•
$$L=0$$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbb{B}}$ selection

- L = 0
- Effective neutrino mass $\phi = \nu = -5$

$$(5, 5, -3, -2, 1, -6)$$

$U(1)_{\mathbb{B}}$ selection

- L = 0
- Effective neutrino mass $\phi = \nu = -5$

•
$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\bf B}$ selection

- L=0
- Effective neutrino mass $\phi=\nu=-5$

•
$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

•
$$(\chi_L)^{\dagger} \chi_R'' \Phi^* \to z_3 = -3, \ z_4 = -2$$

959 solutions from \sim 400,000

$$(5, 5, -3, -2, 1, -6)$$