

Table of Contents

Meet Yeanie Lamin

Does Alpha-ketoglutarate
Affect Nessonia vitripennis?

Skills-based Curriculum Vitae

The Customer Satisfaction Project

The value of data for organisations

The Brewery Operations
Project

Hi, I'm Yeanie.

Welcome to my data analytics portfolio.

I am a passionate perspective data analyst with a strong foundation in data wrangling, data visualization, and statistical analysis. Over the last several years I have developed the ability to transform raw data into insights that have enhanced my understanding primarily of science.

I am a recent graduate and hold a Bachelor of Science with Honours in Medical Physiology from the University of Leicester. My degree has enhanced my understanding of biology & medicine, scientific research methodologies, and statistical analysis. Through my degree, I was able to begin my programming journey with R and GraphPad Prism, two highly powerful tools for academic research, and performing statistical tests.

In the last couple of months, I have embarked on upskilling my data knowledge with Cambridge Sparks, where I received a Level 3 Data Citizen Skills Bootcamp. This program has enhanced my skills in Microsoft Excel, Power Query (also known as Get & Transform), Microsoft Power BI, and a brief introduction to Tableau. The bootcamp also introduced me to SQL and Python, providing me with the foundation to build on these skills further.

To date, I have worked on a diverse array of projects that have exercised my ability to clean and wrangle data, visualise data, build data models, perform regression curves, and perform statistical tests. I am eager to expand my toolkit and knowledge of data analytics, and understanding of business practices and principles.

This portfolio showcases a few of the projects I have worked on, highlighting my ability to solve complex problems, communicate my findings effectively, and deliver results that make a tangible impact.

I invite you to explore my work and learn about my approach to analysing data.

CV

Personal Details

London, UK

linkedin.com/in/yeanie-lamin-404206162

yeaniel30@gmail.com

https://github.com/yeaniel/yeaniel.git

Technical Skills

Microsoft Excel

Microsoft Power BI

R SQL

Python

GraphPad Prism

Education & Certificates

Cambridge Sparks

Level 3 Data Skills Bootcamp

February 2024 - April 2024

Remote, UK

University of Leicester

Bachelor of Science (Honours) in Medical Physiology, 2:1

September 2019 – June 2023

Leicester, UK

R

- I used R to analyse data for my research project where I investigated the effects of a compound Alpha-ketoglutarate on the movement of parasitic wasps.
- I used the tidyverse and lubridate packages to wrangle and clean my data. I used the ggplot2 package to create boxplots with my data. I used the base package to perform, a Wilcoxon test and create a Poisson regression model.

Microsoft Excel

- I used Microsoft Excel as an administrator to input property data into an integrated database.
- I use functions such as Vlookup, Xlookup, and index matching to cross reference data from different workbooks.
- I"ve used functions such as sumifs, and averageifs to make calculations based on select criteria.
- I've used pivot tables to efficiently make calculations and pivot charts with slicers.

Microsoft Power BI

- I used Microsoft Power BI to create interactive dashboards to easily and efficiently communicate data.
- I used get & transform (also known as power query) to efficiently clean data and create calculated columns.

The value of data for organisations

Data can be defined as information that is stored or used by a computer. Data can be numerical, text-based, date and time-based, or Boolean.

Data follows 7 principles, known as the "7 Vs". Today, there is a large *volume* of data that can be gathered quicker than ever at high *velocity*. Data can be present in a *variety* of formats, from a wide range of sources including websites, financial reports, social media, government polls, healthcare, and bank statements. Data is also *variable* and can have different distribution patterns or frequencies. Data has flexible *veracity*, which means that it can differ in accuracy, precision, and trustworthiness. Data can also be *visualised* to communicate information about what data means. Finally, data has *value*, as different types of data are important to different types of organisations.

Organisations gather data to better understand trends. In doing so, organisations can market products or services more effectively and increase their revenue or impact in an industry. A pharmaceutical company like GSK would find scientific research highly valuable to create products to treat specific disorders. Whereas a social media company such as Meta would find the type of content people post and the way people interact with content valuable to increase the number of users of its platforms. A financial services provider such as JP Morgan would find financial transactions valuable to determine the best stocks and bonds to buy and sell.

The value of data has increased with the wide availability of data, allowing organisations to respond to trends more accurately. Therefore, organisations can increase their revenue, and significance in a specific industry.

Can α-ketoglutarate improve the activity levels of *Nasonia vitripennis*?

Background

This project is based on my university research experiment, which investigated the effects of alpha-ketoglutarate (AKG) on the movement of *Nasonia vitripennis*. The aim of the study was to determine if AKG could increase the healthspan of *N. vitripennis*. AKG is a naturally occurring compound in our bodies, that forms part of the Krebs cycle. Various studies have shown that dietary AKG can be associated with an increase in healthspan.

My study became of interest due to the human ageing process, where ageing can be defined as a gradual decline in physiological function, eventually leading to death. In our modern world, the life expectancy of individuals in many countries is increasing although many of individuals are not leading healthier lives. This is associated with a variety of factors such as being female, being from a lower socioeconomic background or obesity.

The Background

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

Problems with an ageing population

Many countries around the world have an ageing population, due to an increase in life expectancy and low birth rates. Although in many industrialised nations, people are not living healthier lives despite living longer. Studies have shown that approximately 16 – 20% of later life is spent in ill health. Additionally, these studies have found that those who are female, from a lower socioeconomic background or obese are at risk of ill health in the latter stages of life.

Nasonia vitripennis

Nasonia vitripennis is a parasitic wasp that uses the larvae of Blowflies and similar species as a host. *N. vitripennis* was used as an animal model due to the species experiencing DNA methylation at specific motifs in their cytosine residues. DNA methylation is the transfer of a methyl group from S-adenyl methionine to a DNA sequence. This process typically occurs at specific points in DNA including cytosine and adenosine residues. DNA methylation is thought to be an epigenetic cause of ageing in humans and some other multicellular organisms. Unlike *N. vitripennis*, other distantly related species such as bees and ants do not experience this type of DNA methylation.

Sample

My study had two groups of male and female *N. vitripennis*. The experimental group were fed AKG and sucrose solution. Whilst the control group was just fed sucrose solution.

Experimental Design

My study measured five aspects of activity in the wasps. This included the percentage of time spent moving and the number of:

- Jumps
- Hops defined by a distance of less than 2cm.
- Short flights defined by a distance of 2 4cm.
- Long flights defined by a distance oy more than 4cm.

Analysing My Data

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

Sourcing my data

```
library(readx1)
jumps <- read_excel("~/Data Analyst Portfolio/AKG on Activity
Levels/jumps.xlsx")
## New names:
## • `` -> `...2`
```

Wrangling Data

Rename columns in the table

```
names(jumps)[2] <- "sex"
names(jumps)[3] <- "treatment"
names(jumps)[4] <- "jumps.no"
names(jumps)[5] <- "short.flight"
names(jumps)[6] <- "long.flight"</pre>
```

Changing the format of the vector - POSIXct to character in minutes and seconds

```
jumps$`Moving Time` <-as.character(jumps$`Moving Time`, format="%M:%S")
jumps$`Stopped Time` <-as.character(jumps$`Stopped Time`,
format="%M:%S")</pre>
```

Creating a new column in the table - time in seconds

```
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
jumps$Moving.Time <-as.numeric(ms(jumps$`Moving Time`))
jumps$Stopped.Time <-as.numeric(ms(jumps$`Stopped Time`))</pre>
```

Creating a new column in the table - percentage of time spent moving

Visualising my data

```
library(ggplot2)
```

The Results

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

Boxplot for the number of jumps

```
ggplot(jumps, aes(x=treatment, y=jumps.no, fill=treatment)) +
  geom_point() + geom_boxplot() +
  xlab("Treatment") +
  ylab("Number of Jumps") +
  ggtitle("Number of Jumps by Treatment Type")
```

Number of Jumps by Treatment Type

Boxplot for the number of short flights

```
ggplot(jumps, aes(x=treatment, y=short.flight, fill=treatment)) +
  geom_point() + geom_boxplot() +
  xlab("Treatment") +
  ylab("Number of Short Flights") +
  ggtitle("Number of Short Flights by Treatment Type")
```

Number of Short Flights by Treatment Type

The Results

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

Boxplot for the number of long flights

```
ggplot(jumps, aes(x=treatment, y=long.flight, fill=treatment)) +
  geom_point() + geom_boxplot() +
  xlab("Treatment") +
  ylab("Number of Long Flights") +
  ggtitle("Number of Long Flights by Treatment Type")
```

Number of Long Flights by Treatment Type

Boxplot for the percentage of time spent moving

```
ggplot(jumps, aes(x=treatment, y=percent, fill=treatment)) +
  geom_point() + geom_boxplot() +
  xlab("Treatment") +
  ylab("Percentage of time spent moving") +
  ggtitle("Percentage of Time Spent Moving by Treatment")
```

Percentage of Time Spent Moving by Treatmemt

Statistics

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

Statistical tests

Wilcoxon tests for the number of jumps, short flights, and long flights

```
wilcox.test(formula = jumps.no ~ treatment, data = jumps, exact=FALSE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: jumps.no by treatment
## W = 239.5, p-value = 0.09922
## alternative hypothesis: true location shift is not equal to 0
```

```
wilcox.test(formula = long.flight ~ treatment, data = jumps,
exact=FALSE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: long.flight by treatment
## W = 246.5, p-value = 0.07075
## alternative hypothesis: true location shift is not equal to 0
```

```
wilcox.test(formula = short.flight ~ treatment, data = jumps,
exact=FALSE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: short.flight by treatment
## W = 223.5, p-value = 0.2467
## alternative hypothesis: true location shift is not equal to 0
```

Statistics

The Effect of Alpha-ketoglutarate on Nasonia vitripennis

#Poisson regression

```
Poisson_model <- glm(jumps.no + short.flight + long.flight +
                     data = jumps, family = poisson(link= "log"))
## Warning in dpois(y, mu, log = TRUE): non-integer x = 37.500000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 74.333333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 72.166667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 44.762063
## Warning in dpois(y, mu, log = TRUE): non-integer x = 71.833333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 45.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 72.166667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 23.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 48.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 41.166667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 67.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 21.333333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 44.500000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 8.500000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 24.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 58.333333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 31.833333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 66.166667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 23.333333
```

```
## Warning in dpois(y, mu, log = TRUE): non-integer x = 41.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 41.500000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 56.217391
## Warning in dpois(y, mu, log = TRUE): non-integer x = 88.794702
## Warning in dpois(y, mu, log = TRUE): non-integer x = 51.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 44.529750
## Warning in dpois(y, mu, log = TRUE): non-integer x = 37.628866
## Warning in dpois(y, mu, log = TRUE): non-integer x = 79.333333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 84.392027
## Warning in dpois(y, mu, log = TRUE): non-integer x = 87.695507
## Warning in dpois(y, mu, log = TRUE): non-integer x = 83.333333
## Warning in dpois(y, mu, log = TRUE): non-integer x = 99.014975
## Warning in dpois(y, mu, log = TRUE): non-integer x = 74.787980
## Warning in dpois(y, mu, log = TRUE): non-integer x = 80.033278
## Warning in dpois(y, mu, log = TRUE): non-integer x = 16.666667
## Warning in dpois(y, mu, log = TRUE): non-integer x = 52.059308
```

Printing my Poisson regression model

```
##
## Call: glm(formula = jumps.no + short.flight + long.flight +
percent ~
       treatment, family = poisson(link = "log"), data = jumps)
##
## Coefficients:
        (Intercept)
##
                     treatmentControl
##
             4.1065
                              -0.3407
## Degrees of Freedom: 38 Total (i.e. Null); 37 Residual
## Null Deviance:
                        419.8
## Residual Deviance: 363.2
                                AIC: Inf
```

The Customer Satisfaction Project

Tools

Microsoft Power Bl

About The Data

A dataset based on customer reviews on Google Maps of a group of restaurants in Turkey.

The dataset contains:

- Restaurant names
- Author names
 - Text
 - Photos
 - Rating
 - Rating category considers taste, menu, and indoor and outdoor atmosphere.

Source: Deniz Bilgin. Google Maps Restaurant Reviews (kaggle.com)

Cleaning Process

The Customer Satisfaction Project

Imported data into Power Query

Renamed columns

Cleaning Process

The Customer Satisfaction Project

Added a conditional column

Review outcomes to suggest if

comments were overall:

Abidin Tantuni

Ahsap Iskender

Business name	Comments
Zula	Burgers are great hot dogs do. It is very interesting that french fries are 114 TL.
Zula	Burgers are super. I've eaten hamburgers in many places; but I've never come across anything like t meal with friendly service in a small but cozy place. I strongly recommend.
Zula	Hamburger is really delicious. The fries are normal.
Zula	In general; I was satisfied; since the hamburger is a little small; it will be more satisfying if the one w grammage is chosen.
Zula	It is delicious in everything with its sauce and bread.
Zula	It was one of the best burgers I've ever eaten. The only downside is that the portion is a little small. it is definitely a place to experience.
Zula	Surprised location; but nice clean venue. The employees are friendly; I don't want to comment on the were too high
Zula	The best hamburger restaurant in Istanbul. Cooking and sauce is very good.

The Brewery Operations Project

Tools

About the data

A dataset on craft beer production of a company in Bangalore, India which consists of sales, beer quality, and brewing operations parameters.

Source

Ankur Napa. <u>Brewery Operations and Market</u> <u>Analysis Dataset (kaggle.com)</u>

The Sales Problem

The Brewery Operations Project

A craft brewery company in India saw sales decrease in January by **\$30 million** a day.

The craft brewery company wanted to increase its sales in February back up to \$70 million a day minimum.

The craft brewery company wanted to increase sales by improving the efficiency of its brewery operations.

Sales Breakdown

The Brewery Operations Project

Highest salesJayanagar, Bangalore \$107 million

Lowest sales

Electronic City, Bangalore \$102 million

Most sold beverage

Stout \$132.2 million

Least sold beverage

Wheat Beer \$129.8 million

Most sold stock keeping unit

Cans \$264.0 million

Least sold stock keeping unit

Kegs \$259.8 million

Sales Breakdown

The Brewery Operations Project

Operations Breakdown

The Brewery Operations Project

SKU With The Highest Quality Score

Bottles 8.0099/10.0000

Beverage With The Lowest Quality Score

IPA 7.9905/10.0000 *Stout – close second

Ingredients ratio

All beverages Similar ratio of water: grain: hops

SKU With The Lowest Quality Score

Pints 7.9910/10.0000 *Cans – close second

Most produced SKU

Cans 69.4 million litres *Kegs – close second

Beverage With The Most Wastage

Stout & Larger Highest volume loss during fermentation, brewing and bottling & kegging

Beverage With The Highest Quality Score

8.0150/10.0000

Least produced SKU

Pints 68.3 million litres

Beverage With The Least Wastage

Sour

Lowest volume loss during fermentation, brewing and bottling & kegging

Operations Breakdown

The Brewery Operations Project

Conclusion

Beer quality is not the main factor that drives sales.

Produce less kegs.

Produce less wheat beer, to save costs.

The Cleaning Process

The Brewery Operations Project

- Imported the data into Power Query
- Renamed columns
- Split 'Brew Date' column by a space delimiter into two columns – 'Brew date' ana 'Time of brew'

The Cleaning Process

The Brewery Operations Project

Custom Column

New column name

Add a column that is computed from the other columns.

The Data Model

The Brewery Operations Project

- Due to the large number of columns in the dataset, I broke the dataset down into 4 smaller datasets.
- I then created a data model.

Analysing the Data

The Brewery Operations Project

Each graph was created using a

You

