A Digital Twin of Electrical Distribution Grid: the Netlab n-Bus Dataset

Yiheng Xie, Lucien Werner, Kaibo Chen, Thuy-Linh Le, Christine Ortega, Steven Low

Dataset

03PM

Synchro-phasors 10.0 9.9 9.9 Voltage Phase A Phase B Phase B Phase C Phase C Phase C Phase C Phase B Phase C Phase C

A Side 1033 B Side 1035 — Tie breaker — Bus (unmeasured) — Bus (measured) 1081 1081 1081 1081 1081 1093 1096 1111 1074 1096 1111 1074 1088 1109 1097 1082 1118 1124 1088 1100 1112 1075 Finel Type Fy

Topology and parameters

Measurement Error

Synchronization

Sensor Error

Meters: Certified to <0.5% error (ANSI C12.20)

Current & Potential Transformers: Generally certified to <1% error. Rare cases of large current errors due to oversized current transformers.

Topology and Parameter

Lines: Conductor thickness and material are from engineering drawings. Insulation material and thickness are estimated. Lengths are estimated. Lines are generally underground with unknown cross-sectional arrangement.

Transformers: Series impedance (z%) and ratio are obtained from nameplates. Tap positions are unknown but usually nominal. Earth grounding typically occurs on the secondary side of Delta-Wye transformers.

Switch status: Time-varying switching events are verified via state estimation.

Example Applications

State Estimation (Phasor)

Topology & Parameter Estimation

Step 1: Estimate Kron-reduced admittance matrix \overline{Y}

Step 2: Reverse Kron reduction

Acknowledgements

We thank our partner distribution system operators for their collaboration and in-kind contribution during installation.

