Physics - 8.02

Assignment #7

April 5, 2002.

We strongly recommend that you read about a topic before it is covered in lectures.

Lecture Date	Topics Covered	Reading from Giancoli
#23 Mon 4/8	Review Exam 2.	
Wed 4/10	Exam 2 covering assignments 4, 5 & 6, and all material covered in the reading assignments and in lectures through Mon 4/1 (last names A-K in 26-100, L-Z in Walker)	
#24 Fri 4/12	Transformers - Car Coils RC Circuits	Sect. 26-4, 26-5 & 29-6
#25 Wed 4/17	Driven LRC circuits - Resonance Metal Detectors (beach/airport)	Chapter 31 through Sect. 31- 6 Lecture Supplement

Due before 4 PM, Wednesday, April 17 in 4-339B.

Problem 7.1

Ideal transformer. Giancoli 29-42.

Problem 7.2

A transformer for impedance matching.

The generator in the diagram has an internal resistance r of $0.4\,\Omega$ and produces an EMF between the points A and B of $\mathcal{E}(t)=150\cos(\omega t)$ (in volts), with $\frac{\omega}{2\pi}=50\,\mathrm{Hz}$.

(a) If the load resistor $R=15\,\Omega$ (with A connected to A', and B to B'), what average power will be delivered to the load?

The maximum power is delivered to a load when the load "impedance" (in this case the resistance R) is equal to the generator impedance (resistance r). In our case, R >> r. However, the load and generator impedances can be matched by connecting a transformer between the terminals AB (primary side of the transformer with N_1 windings) and A'B' (secondary side of the transformer with N_2 windings).

- (b) What should the ratio $\frac{N_1}{N_2}$ be for an ideal transformer so that there will be a maximum transfer of power to the load R?
- (c) How much power is then delivered to the load?

Problem 7.3

RC circuit.

Giancoli 26-45.

Problem 7.4

RC circuit.

Giancoli 26-46.

Problem 7.5

Electromagnet with small air gap.

An electromagnet has a steel core ($\kappa_M \approx 2500$) with an approximately circular cross sectional area of 4 cm². The radius of the magnet is 7 cm; there is a small air gap of only 2.5 mm (see sketch). The current through the magnet's 120-turn coil is 15 A. What will the magnetic field strength be (approximately) inside the air gap?

Problem 7.6

RC Circuit.

A series RC circuit (see left diagram below) is driven by a periodic square wave voltage V(t) with a period $T=0.3\,\mathrm{sec}$ (see right diagram). V(t)=0 V for t<0; after t=0, the voltage alternates between 15 V and 0 V; $R=40\,\Omega$, $C=150\,\mu\mathrm{F}$. We will call the voltages across the capacitor and the resistor $V_C(t)$ and $V_R(t)$, respectively.

- (a) Calculate the current I(t) in the circuit, the voltage $V_C(t)$, and the power delivered by the driving source as a function of time for the first full period (0 < t < T).
- (b) Sketch in one graph V(t), $V_C(t)$, and $V_R(t)$ in the time interval 0 < t < 2T.

(c) How much energy is dissipated in the resistor during one period?

Hint: $RC \ll T$, thus $e^{(-T/2RC)} \ll 1$.

Recitations.

There are 28 recitation sections (see the 8.02 Website). If for any reason you want to change section, please see Maria Springer in 4-352.