CE 3111.103

Lab 6: MOSFET Amplifiers

TA: Jingcheng Liang

Yu Feng

Student ID: 2021322786

Objective

Study CS amplifiers, learn about MOSFET small-signal parameters, and study the CS amplifier with source degeneration.

Experimental Results

- MOSFET common source configuration
 - 1. PSpice circuit

- 2. g_m,r_o comparision:
 - In preparation

•
$$g_m \text{ in} : \frac{4.336mA - 2.2958mA}{0.1V} = 0.0204$$

•
$$g_m$$
 in : $\frac{4.336mA - 2.2958mA}{0.1V} = 0.0204$
• r_o in saturation: $\frac{50.512mV}{1.0413nA} = 4.85 \times 10^7 \Omega$

During experiment

•
$$g_m \text{ in } : \frac{0.003A - 0.0021A}{0.05V} = 0.018$$

$$g_{\text{m}} \text{ in : } \frac{0.003A - 0.0021A}{0.05V} = 0.018$$

$$r_{\text{o}} \text{ in saturation: } \frac{2V - 1.5V}{0.00430A - 0.00425A} = 10000\Omega$$

3. Transfer function

Left: Experimental result Right: Simulation result

	Simulation	Experiment
(V _{in,min} , V _{out,max})	(1.7911,9.999)	(1.95,9.99)
(V _{in,max} , V _{out,min})	(2.2311,0.071)	(2.65,0.15)
(V _{in,middle} , V _{out,middle})	(2.1207,5.0350)	(2.3,5.07)
Gain	6.6224 - 6.4641	3.51 – 4
	${2.0501 - 2.0578} = -20.558$	${2.42-2.4} = -24.5$

The transfer function tells it can convert small input signal to a greater signal as long as the device is in saturation region. The greater the input, the smaller the output as an amplifier.

As a switch, since the slope is quite steep in the saturation region, it can turn on and turn off the instantaneously and keep the device in the desired on or off state as long as the voltage input is not in the saturation region.

4. Small signal Voltage gain

AC Gain =
$$\frac{v_{out}}{v_{in}} = \frac{6.55}{2.36} = 2.77542$$

$$I_D = \frac{10V - 2.3V}{1000} = 0.0077A$$

$$I_D = \frac{10V - 2.3V}{1000} = 0.0077A$$

In simulation,
$$A_V = \frac{5.0350V}{2.1207V} = 2.3742$$

5. Clip

Clipping occurs because of the negative gain characteristic of the amplifier, and the transfer function rules the Vout decreases as Vin increases.

- MOSFET common source with Source degeneration
 - 1. PSpice circuit

- 2. Capacitors are considered as open circuit in when measuring the voltage
- 3. Transfer function

4. Small signal voltage gain

DSO-X 1102A, CN57214169: Fri Apr 12 06:53:40 2019

• Gain=
$$\frac{V_{out}}{V_{in}} = \frac{86.6mV}{34.8mV} = 2.48851$$

Gain=
$$\frac{V_{out}}{V_{in}} = \frac{86.6mV}{34.8mV} = 2.48851$$
Gain in simulation = $\frac{5.0148V}{2.0670V} = 2.42612$

5. Bode plots

■ Amid, experiment =
$$-\left(\frac{1k}{1k+1k}\right)\left(\frac{-16.9106}{1+(-16.9106)\times1000}\right)\left(\frac{20+20}{20\times20}\right) = -5.00029569$$

• Amid, simulation =
$$-\left(\frac{1k}{1k+1k}\right)\left(\frac{1}{1k}\right)\left(\frac{20+20}{20\times20}\right) = -5$$

6. Compare

	Simulation	Experiment
Gain, I/O waveforms	-20.558	-24.5
AC Gain (Transfer function)	2.42612	2.48851
Gain, bode plot	-5	-5.00029569