Chapter 1 Building Proofs

April 2, 2017

0.1 Exercise 1.4.3 (Logics):

- de Morgan's laws
 - (a) $not(A or B) \Leftrightarrow ((not A) and (not B))$
 - (b) not(A and B) \Leftrightarrow ((not A) or (not B))
- Contrapositive
 - (c) $(A \Rightarrow B) \Leftrightarrow (\text{not } B \Rightarrow \text{not } A)$
 - (d) ((A or B) \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) and (B \Rightarrow C))
 - (e) $(A \Leftrightarrow (B \text{ and } C)) \Leftrightarrow ((A \Rightarrow B) \text{ and } (A \Rightarrow C))$
 - (f) not (not A) \Leftrightarrow A

0.2 Exercise 1.4.6

- (a) " $A \Rightarrow (B \Rightarrow C)$ " \Leftrightarrow "(A and B) \Rightarrow C."
- (b) $(A \Leftrightarrow B) \Leftrightarrow (\text{not } A \Leftrightarrow \text{not } B)$.
- (d) "A \Rightarrow (B \Rightarrow C)" \Leftrightarrow "(A and B) \Rightarrow C."

0.3 Exercise 1.7.1

$$(A \Rightarrow (B \text{ or } C)) \Leftrightarrow ((A \text{ and not } C) \Rightarrow B)$$

0.4 Exercise 1.8.1

$$((A \Rightarrow C) \text{ and } (B \Rightarrow D)) \Rightarrow ((A \text{ or } B) \Rightarrow (C \text{ or } D)).$$

0.5 Exercise 1.15.1 (Set operations)

- (a) $A \subseteq B \Leftrightarrow C(B) \subseteq C(A)$
- **(b)** $C(A \cup B) = C(A) \cap C(B)$
- (c) $C(A \cap B) = C(A) \cup C(B)$
- (d) $A \subseteq (B \cap C) \Leftrightarrow (A \subseteq B)$ and $(A \subseteq C)$
- (e) $(A \cup B) \subseteq C \Leftrightarrow (A \subseteq C)$ and $(B \subseteq C)$

- (f) $A \subseteq (B \cup C) \Leftrightarrow (A \setminus C) \subseteq B$
- (g) if $A \subseteq B$, then $B \setminus (B \setminus A) = A$

0.6 Exercise 1.15.5 (Set difference)

If S and T are sets, $S \setminus T = \emptyset \iff S \subseteq T$

0.7 Exercise 1.15.6 (Symmetric Difference)

Define Symmetric Difference as

$$S\triangle T = (S \setminus T) \cup (T \setminus S)$$

, then

$$S\triangle T=(S\cup T)\setminus (T\cap S)$$

.

0.8 Exercise 1.15.7 (Countable union and intersection)

Definition (Countable union and intersection):

$$\bigcup_{\alpha \in \mathcal{A}} S_{\alpha} = \{x : \exists \alpha \in \mathcal{A} \ni (x \in S_{\alpha})\}\$$

$$\bigcap_{\alpha \in A} S_{\alpha} = \{x : \forall \alpha \in \mathcal{A} \ni (x \in S_{\alpha})\}\$$

- (b) Distributive law also holds for countable union and intersection
- (c) The union of a collection of sets is the smallest set that contains all the sets in the collection.
- (d) The intersection of a collection of sets is the largest set that is contained in all the sets in the collection.

0.9 Exercise 1.15.9 (Limit Superior and Limit Inferior of Sets)

Definition (Limit Superior and Limit Inferior of Sequence of Sets)

$$\limsup \{S_n\} = \bigcap_{k=1}^{\infty} (\bigcup_{n=k}^{\infty} S_n)$$

$$\lim\inf\{S_n\} = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} S_n\right)$$

This interesting definition should be looked across with the definition in **Exercise 10.4.10** (**Limit Superior and Limit Inferior of Sequence of Real Numbers**). The union here acts as the sup in subsequences and the intersection is the inf of subsequences. The connection can be drawn by defining the set in **Exercise 1.15.9** as the **range** of the subsequences in **Exercise 10.4.10**. See the separate note I wrote for **Exercise 10.4.10** titled *Limit Superiors and Limit Inferiors*.

A limit superior is the smallest (intersect) of the largest (union) of the collection of infinite number of sets. A limit inferior is the largest (union) of the smallest (intersection) of the collection of infinite number of sets.

- (a) $\limsup \{S_n\} = \{x : x \in S_n \text{ for infinitely many n}\}$
- (b) $\lim \inf \{S_n\} = \{x : x \in S_n \text{ for all but finitely many n} \}$
- (c) $\lim \inf \{S_n\} \subseteq \lim \sup \{S_n\}$, and they might not be equal
- (d) if $S_1 \subseteq S_2 \subseteq S_3 \subseteq ...$, then $\limsup \{S_n\} = \bigcup_{n=1}^{\infty} S_n$
- (e) if $S_1 \supseteq S_2 \supseteq S_3 \supseteq ...$, then $\limsup \{S_n\} = \bigcap_{n=1}^{\infty} S_n$