

Fast solution of stiff PDEs in 1D, 2D and 3D

Industrial and Applied Mathematics Seminar, University of Nottingham

Hadrien Montanelli and Niall Bootland

February 24, 2016

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Why is it challenging?

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Why is it challenging?

Stiffness, characterized by ${f L}$, the discretization of ${\cal L}$, having large eigenvalues

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Why is it challenging?

Stiffness, characterized by L, the discretization of \mathcal{L} , having large eigenvalues

■ Two special features:

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Why is it challenging?

Stiffness, characterized by L, the discretization of \mathcal{L} , having large eigenvalues

■ Two special features:

In many applications, boundary effects are not the scientific issue: trigonometric interpolation (Section 1) and Fourier spectral methods (Section 2)

■ Problem: Stiff PDEs of the form

$$u_t(t, X) = \mathcal{L}u + \mathcal{N}(u), \quad t \in [0, T], \quad X \in [0, 2\pi]^d \ (d = 1, 2, 3),$$

with initial condition u(0, X)

 $\mathcal L$ is a linear differential operator of high order $(-u_{xxx})$ and $\mathcal N$ is a nonlinear operator of lower order $(-uu_x)$

■ Why is it challenging?

Stiffness, characterized by L, the discretization of \mathcal{L} , having large eigenvalues

■ Two special features:

In many applications, boundary effects are not the scientific issue: trigonometric interpolation (Section 1) and Fourier spectral methods (Section 2)

Higher-order terms of the equation are linear: exponential integrators (Section 3)

■ A periodic (or rapidly decaying) function u(x) on $[0, 2\pi]$ is represented by its trigonometric interpolant on a grid of N points $x_j = 2\pi j/N$, $0 \le j \le N-1$,

$$u(x) \approx u_N(x) = \sum_{k=-N/2}^{N/2} u_k e^{ikx}, \quad u_k = \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) e^{-ikx_j} = \text{fft}(u(x_j))$$

■ A periodic (or rapidly decaying) function u(x) on $[0,2\pi]$ is represented by its trigonometric interpolant on a grid of N points $x_j = 2\pi j/N$, $0 \le j \le N-1$,

$$u(x) \approx u_N(x) = \sum_{k=-N/2}^{N/2} u_k e^{ikx}, \quad u_k = \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) e^{-ikx_j} = \text{fft}(u(x_j))$$

■ *N* is automatically chosen to achieve machine precision, i.e.,

$$\frac{\|u(x) - u_N(x)\|_{\infty}}{\|u(x)\|_{\infty}} \le 2^{-52}$$

■ A periodic (or rapidly decaying) function u(x) on $[0, 2\pi]$ is represented by its trigonometric interpolant on a grid of N points $x_i = 2\pi j/N$, $0 \le j \le N-1$,

$$u(x) pprox u_N(x) = \sum_{k=-N/2}^{N/2} u_k e^{ikx}, \quad u_k = \frac{1}{N} \sum_{j=0}^{N-1} u(x_j) e^{-ikx_j} = \mathrm{fft}(u(x_j))$$

lacktriangledown N is automatically chosen to achieve machine precision, i.e.,

$$\frac{\|u(x) - u_N(x)\|_{\infty}}{\|u(x)\|_{\infty}} \le 2^{-52}$$

■ Example: $u(x) = \tanh(5\sin(x))$, N = 235 $u = \text{chebfun}(@(x) \tanh(5*\sin(x)), [0 2*pi], 'trig');$

■ Constructor: evaluates the function on grids of sizes 17, 33, 65, 129, 257, ..., takes the fft and looks at the amplitude of the Fourier coefficients

■ Example in 2D: $u(x,y) = \exp(-5((x-\pi)^2 + (y-\pi)^2))$ $u = \text{chebfun2}(@(x,y)\exp(-5*((x-pi).^2+(y-pi).^2)),[0 2*pi 0 2*pi],'trig');$

■ Example in 2D: $u(x,y) = \exp(-5((x-\pi)^2 + (y-\pi)^2))$ $u = \text{chebfun2}(@(x,y)\exp(-5*((x-pi).^2+(y-pi).^2)),[0 2*pi 0 2*pi],'trig');$

■ In 3D, one can type, e.g.,

```
dom = [0 2*pi 0 2*pi 0 2*pi];
u = chebfun3(@(x,y,z)exp(-5*((x-pi).^2+(y-pi).^2+(z-pi).^2)),dom,'trig');
```

■ For discretizing

$$u_t(t,X) = \mathcal{L}u + \mathcal{N}(u), \quad u(0,X) = u_0(X),$$

we use a Fourier spectral method in coefficient space, i.e., we look for a solution of the form (with $N=N_xN_yN_z$ points)

$$u(t,X) \approx \sum_{k_x = -\frac{N_x}{2}}^{\frac{N_x}{2}} \sum_{k_y = -\frac{N_y}{2}}^{\frac{N_y}{2}} \sum_{k_z = -\frac{N_z}{2}}^{\frac{N_z}{2}} u_{k_x k_y k_z}(t) e^{i(k_x x + k_y y + k_z z)}$$

■ For discretizing

$$u_t(t,X) = \mathcal{L}u + \mathcal{N}(u), \quad u(0,X) = u_0(X),$$

we use a Fourier spectral method in coefficient space, i.e., we look for a solution of the form (with $N=N_xN_yN_z$ points)

$$u(t,X) \approx \sum_{k_x = -\frac{N_x}{2}}^{\frac{N_x}{2}} \sum_{k_y = -\frac{N_y}{2}}^{\frac{N_y}{2}} \sum_{k_z = -\frac{N_z}{2}}^{\frac{N_z}{2}} u_{k_x k_y k_z}(t) e^{i(k_x x + k_y y + k_z z)}$$

lacktriangle The linear part ${\cal L}$ is discretized with Fourier differentiation matrices \Rightarrow matrix lacktriangle

■ For discretizing

$$u_t(t,X) = \mathcal{L}u + \mathcal{N}(u), \quad u(0,X) = u_0(X),$$

we use a Fourier spectral method in coefficient space, i.e., we look for a solution of the form (with $N = N_x N_y N_z$ points)

$$u(t,X) \approx \sum_{k_x = -\frac{N_x}{2}}^{\frac{N_x}{2}} \sum_{k_y = -\frac{N_y}{2}}^{\frac{N_y}{2}} \sum_{k_z = -\frac{N_z}{2}}^{\frac{N_z}{2}} u_{k_x k_y k_z}(t) e^{i(k_x x + k_y y + k_z z)}$$

- lacktriangle The linear part ${\cal L}$ is discretized with Fourier differentiation matrices \Rightarrow matrix lacktriangle
- This leads to a system of N ODEs for the coefficients $u(t) = \{u_{k_x k_y k_z}(t)\}$,

$$u'(t) = \mathbf{L}u + \mathbf{N}(u), \quad u(0) = u_0$$

■ First three Fourier differentiation matrices (even *N*):

$$D = \begin{pmatrix} 0 \\ (-\frac{N}{2} + 1)i \\ \vdots \\ -2i \\ -i \\ 0 \\ i \\ 2i \\ \vdots \\ (\frac{N}{2} - 1)i \end{pmatrix}, \quad D^{(2)} = \begin{pmatrix} -\frac{N^{2}}{4} \\ \vdots \\ -4 \\ -1 \\ 0 \\ -1 \\ -4 \\ \vdots \\ -(\frac{N}{2} - 1)^{2} \end{pmatrix}, \quad D^{(3)} = \begin{pmatrix} 0 \\ -(-\frac{N}{2} + 1)^{3}i \\ \vdots \\ 8i \\ i \\ 0 \\ -i \\ -8i \\ \vdots \\ -(\frac{N}{2} - 1)^{3}i \end{pmatrix}$$

■ First three Fourier differentiation matrices (even *N*):

$$D = \begin{pmatrix} 0 \\ (-\frac{N}{2} + 1)i \\ \vdots \\ -2i \\ -i \\ 0 \\ i \\ 2i \\ \vdots \\ (\frac{N}{2} - 1)i \end{pmatrix}, \quad D^{(2)} = \begin{pmatrix} -\frac{N^2}{4} \\ \vdots \\ -4 \\ -1 \\ 0 \\ -1 \\ -4 \\ \vdots \\ -(\frac{N}{2} - 1)^2 \end{pmatrix}, \quad D^{(3)} = \begin{pmatrix} 0 \\ -(-\frac{N}{2} + 1)^3i \\ \vdots \\ 8i \\ i \\ 0 \\ -i \\ -8i \\ \vdots \\ -(\frac{N}{2} - 1)^3i \end{pmatrix}$$

■ 1D: $\mathcal{L}u = 2u_{xxx} - 3u_x + 6u \Rightarrow \mathbf{L} = 2D^{(3)} - 3D + 6I$

■ First three Fourier differentiation matrices (even *N*):

$$D = \begin{pmatrix} 0 \\ (-\frac{N}{2} + 1)i \\ \vdots \\ -2i \\ -i \\ 0 \\ i \\ 2i \\ \vdots \\ (\frac{N}{2} - 1)i \end{pmatrix}, \quad D^{(2)} = \begin{pmatrix} -\frac{N^2}{4} \\ \vdots \\ -4 \\ -1 \\ 0 \\ -1 \\ -4 \\ \vdots \\ -(\frac{N}{2} - 1)^2 \end{pmatrix}, \quad D^{(3)} = \begin{pmatrix} 0 \\ -(-\frac{N}{2} + 1)^3i \\ \vdots \\ 8i \\ i \\ 0 \\ -i \\ -8i \\ \vdots \\ -(\frac{N}{2} - 1)^3i \end{pmatrix}$$

- 1D: $\mathcal{L}u = 2u_{xxx} 3u_x + 6u \implies \mathbf{L} = 2D^{(3)} 3D + 6I$
- 2D: $\mathcal{L}u = u_{xx} + u_{yy} \Rightarrow \mathbf{L} = I \otimes D^{(2)} + D^{(2)} \otimes I$

■ First three Fourier differentiation matrices (even *N*):

$$D = \begin{pmatrix} 0 \\ (-\frac{N}{2} + 1)i \\ \vdots \\ -2i \\ -i \\ 0 \\ i \\ 2i \\ \vdots \\ (\frac{N}{2} - 1)i \end{pmatrix}, \quad D^{(2)} = \begin{pmatrix} -\frac{N^{2}}{4} \\ \vdots \\ -4 \\ -1 \\ 0 \\ -1 \\ -4 \\ \vdots \\ -(\frac{N}{2} - 1)^{2} \end{pmatrix}, \quad D^{(3)} = \begin{pmatrix} 0 \\ -(-\frac{N}{2} + 1)^{3}i \\ \vdots \\ 8i \\ i \\ 0 \\ -i \\ -8i \\ \vdots \\ -(\frac{N}{2} - 1)^{3}i \end{pmatrix}$$

- 1D: $\mathcal{L}u = 2u_{xxx} 3u_x + 6u \implies \mathbf{L} = 2D^{(3)} 3D + 6I$
- 2D: $\mathcal{L}u = u_{xx} + u_{yy} \Rightarrow \mathbf{L} = I \otimes D^{(2)} + D^{(2)} \otimes I$
- 3D: $\mathcal{L}u = u_{xx} + u_{yy} + u_{zz} \Rightarrow \mathbf{L} = I \otimes I \otimes D^{(2)} + I \otimes D^{(2)} \otimes I + D^{(2)} \otimes I \otimes I$

■ Problem: System of ODEs of the form

$$u'(t) = \mathbf{S}(u) = \mathbf{L}u + \mathbf{N}(u), \quad u(0) = u_0$$

■ Problem: System of ODEs of the form

$$u'(t) = S(u) = Lu + N(u), \quad u(0) = u_0$$

■ Method: Time-stepping with exponential integrators, e.g.,

$$u_{n+1} = e^{hL}u_n + h\varphi_1(hL)N(u_n), \quad h = t_{n+1} - t_n, \quad \varphi_1(z) = \frac{e^z - 1}{z}$$

■ Problem: System of ODEs of the form

$$u'(t) = S(u) = Lu + N(u), \quad u(0) = u_0$$

■ Method: Time-stepping with exponential integrators, e.g.,

$$u_{n+1} = e^{hL}u_n + h\varphi_1(hL)N(u_n), \quad h = t_{n+1} - t_n, \quad \varphi_1(z) = \frac{e^z - 1}{z}$$

■ How to derive this scheme? Consider the linearized version of the system of ODEs on $[t_n, t_{n+1}]$,

$$u'(t) = S(u_n) + (u - u_n)S_u(u_n), \quad u(t_n) = u_n$$

with exact solution at t_{n+1}

$$u_{n+1} = u_n + h\varphi_1(hS_u(u_n))S(u_n),$$

and approximate $S_u(u_n)$ by L

For given starting values u_0,u_1,\ldots,u_{q-1} at times $t=0,h,\ldots,(q-1)h$, the numerical approximation u_{n+1} at time $t_{n+1}=(n+1)h$, $n+1\geq q$, is given by

$$u_{n+1} = e^{hL}u_n + h\sum_{i=1}^s B_i(hL)N(v_i) + h\sum_{i=1}^{q-1} V_i(hL)N(u_{n-i}),$$

with steps u_{n-i} and stages $v_1 = u_n$ and, for $2 \le i \le s$,

$$v_i = e^{C_i h L} u_n + h \sum_{j=1}^{i-1} A_{i,j}(hL) \mathbf{N}(v_j) + h \sum_{j=1}^{q-1} U_{i,j}(hL) \mathbf{N}(u_{n-j})$$

Method	Туре	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

Method	Туре	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	Juages 5	steps q
-	ETD Adams-Bashforth	5	1	4
ABNørsett5			1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

■ ETD Adams-Bashforth and Lawson methods have bad stability properties

			_	
Method	Type	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

- ETD Adams-Bashforth and Lawson methods have bad stability properties
- ETD Runge-Kutta of order four have similar accuracy and stability properties, EXPRK5S8 the most accurate but sometimes unstable

Method	Туре	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

- ETD Adams-Bashforth and Lawson methods have bad stability properties
- ETD Runge-Kutta of order four have similar accuracy and stability properties, EXPRK5S8 the most accurate but sometimes unstable
- Predictor-Corrector methods of order ≥ 5 more accurate but often unstable

SPIN: Stiff PDEs INtegrator 10 / 18

Example 1: ETD RK schemes for KdV equation from t=0 to t=0.005

We plot relative error $=\frac{\|u_{\mathrm{approx}}-u_{\mathrm{exact}}\|_{\infty}}{\|u_{\mathrm{exact}}\|_{\infty}}$ vs relative time-step $=\frac{dt}{0.005}$ and time

Exponential integrators (4/10)

Example 1: ETD RK schemes for KdV equation from t = 0 to t = 0.005

We plot relative error $=\frac{\|u_{
m approx}-u_{
m exact}\|_{\infty}}{\|u_{
m exact}\|_{\infty}}$ vs relative time-step $=\frac{dt}{0.005}$ and time

Exponential integrators (5/10)

Example 2: ETD RK schemes for KdV equation from t=0 to t=0.015

Exponential integrators (5/10)

Example 2: ETD RK schemes for KdV equation from t=0 to t=0.015

Exponential integrators (6/10)

Example 3: ETD RK schemes for Cahn-Hilliard equation from t=0 to t=3

Exponential integrators (6/10)

Example 3: ETD RK schemes for Cahn-Hilliard equation from t=0 to t=3

Exponential integrators (7/10)

Example 4: ETD RK schemes for Gray-Scott equations in 2D from t=0 to t=30

Exponential integrators (7/10)

Example 4: ETD RK schemes for Gray-Scott equations in 2D from t=0 to t=30

Exponential integrators (8/10)

Example 5: PEC schemes for KdV equation from t=0 to t=0.015

Exponential integrators (8/10)

Example 5: PEC schemes for KdV equation from t = 0 to t = 0.015

Exponential integrators (9/10)

Example 6: PEC schemes for Cahn-Hilliard equation from t=0 to t=3

Exponential integrators (9/10)

Example 6: PEC schemes for Cahn-Hilliard equation from t = 0 to t = 3

Exponential integrators (10/10)

Example 7: PEC schemes for Gray-Scott equations in 2D from t=0 to t=30

Exponential integrators (10/10)

Example 7: PEC schemes for Gray-Scott equations in 2D from t = 0 to t = 30

■ Exponential integrators for the high-accuracy solution of stiff PDEs in 1D, 2D and 3D are competitive stiff solvers

SPIN: Stiff PDEs INtegrator

- Exponential integrators for the high-accuracy solution of stiff PDEs in 1D, 2D and 3D are competitive stiff solvers
- High-order methods can be more efficient for certain problems, but in general, hard to do much better than ETDRK4

- Exponential integrators for the high-accuracy solution of stiff PDEs in 1D, 2D and 3D are competitive stiff solvers
- High-order methods can be more efficient for certain problems, but in general, hard to do much better than ETDRK4
- Future work includes PDEs on the sphere (with spherefun)