《机器人编程实践》学生实验报告

学院	数计学院	专业	计算机科学与技术	班级	计科3班
姓名	周吉瑞	学号	20190521340	日期	2021/05/26

课程名称: 机器人编程实践 **实验名称:** 实验八 范围扫射

指导老师: 孙建勇

目录

- 一、实验记录及总结
- 1. 理论学习与总结
- 2. 实践任务与设计
- 3. 方案实践与记录
- 二、拓展任务
- 1. 实践任务与设计
- 2. 方案实践与记录

一、实验记录及总结

1、理论学习与总结

(FPV)

FPV (First Person View) 指的是"第一人称主视角",基于在模型上加装无线摄像头回传设备,达到通过屏幕操作模型的目的。

◆EP Robot的FPV

在编程界面中 点击右上角的按钮, 打开FPV窗口。

点击FPV窗口右上角按钮

即可进入FPV模式用第一人 称视角操作EP

【获取云台姿态角】

获取云台当前在航向轴 或俯仰轴上的姿态角值

可以在FPV窗口实时观察到云 台姿态角的变化

【布尔值】

使用布尔值描述事情的 真假。

【逻辑运算】

逻辑运算是指通过 使用数学的方法描述逻辑关系的运算。

【"与"运算】

只有前后两个条件均为 "真"时,结果才为"真"。

1 && 0 = 0

【"或"运算】

前后两个条件只要有一个 为"真",结果就为"真"。

【"非"运算】

对条件进行取反,如一个 条件为"真"时,加上非运算 结果就为"假"。

! 1 = 0

【逻辑运算模块】

两个条件进行与运算

两个条件进行或运算

对条件进行非运算

【判断结构模块】

当条件为"真"时,执行 内部的程序。

2、实践任务与设计

(1) 任务

◆控制云台在航向角为-30°到30°范围内扫射

实现任务:

控制云台从-90°移动到90°, 当航向角位于-30°到30°范围 内时射击。

(2) 方案设计

- <1>、使用循环语句控制云台向右旋转直到90°。
- <2>、使用条件语句判断航向角是否位于-30°到30°范围内,是则发射水弹并放慢旋转速度。

3、方案实践与记录

二、拓展任务

- 1、实践任务与设计
- (1) 任务
 - ◆控制云台在三个角度范围内射击

实现任务:

- 1. 控制云台从航向角-90°向右移动直到航向角大于90°。
- 2. 当云台移动到航向角位于-60°到-40°、
- -10°到10°、40°到60°范围内时发射水弹。

(2) 方案设计

- <1>、使用循环语句控制云台向右旋转直到90°。
- <2>、使用条件语句判断航向角是否位于 a° 到 b° 范围内,是则发射水弹并放慢旋转速度。 (由于范围数量较多,所以可以把控制射击的模块单独设计出一个函数,重复调用)
- 2、方案实践与记录

【射击模块伪代码】

【射击模块函数】

【主函数】

