Regime Permanente Senoidal

Conceito

Em regime permanente senoidal

$$U(t) = U_{m\acute{a}x}.sen(\omega t)$$

$$I(t) = I_{m\acute{a}x}.sen(\omega t)$$

Regime Permanente Senoidal

Capacitor

Em Regime Permanente Senoidal

Para um circuito em regime permanente senoidal, de corrente contínua, o capacitor apresenta-se como um circuito aberto.

$$U_c(t) = U_{m\acute{a}x}.sen(\omega t)$$

 $U_c = U_c \angle 0^{\circ}$

$$I_{c}(t) = C \frac{dU_{c}}{dt} = C.U_{m\acute{a}x}.\omega.\cos(\omega t)$$

$$I_{c}(t) = I_{m\acute{a}x}.\cos(\omega t)$$

$$I_{c}(t) = I_{m\acute{a}x}.sen(\omega t + 90^{\circ})$$

$$I_{c} = I_{c} \angle 90^{\circ}$$

Corrente adiantada de 90º em relação à tensão.

Regime Permanente Senoidal

Indutor

Em Regime Permanente Senoidal

Para um circuito em regime permanente senoidal, de corrente contínua, o indutor apresenta-se como um curto.

Assumindo, por semelhança ao capacitor:

$$U_{l}(t) = L.\frac{dI_{l}}{dt}$$

$$I_{l}(t) = I_{m\acute{a}x}.sen(\omega t)$$

$$U_{l}(t) = U_{m\acute{a}x}.sen(\omega t + 90^{\circ})$$

Corrente atrasada de 90º em relação à tensão.

Conceito

Considere-se a função exponencial complexa:

$$Ae^{j(\omega t_i+\theta)} = A\cos(\omega t_i+\theta) + jAsen(\omega t_i+\theta)$$

Pode se perceber que a função se repete com uma periodicidade $T = \frac{2\pi}{\omega}$. A periodicidade da função indica que o segmento que une o centro complexo aos pontos sobre a circunferência de raio A, num instante $t=t_i$, roda com uma velocidade angular de ω rad/s.

Conceito

No entanto, se se considerar um novo referencial que roda no sentido anti- horário com uma velocidade angular ω , então nesse plano obtém-se:

Conceito

A importância da notação fasorial na análise do regime permanente senoidal deve-se ao fato de nos circuitos lineares excitados por fontes senoidais, as tensões e as correntes em todos os nós e componentes do circuito serem também senoidais e com a mesma frequência angular. As metodologias de análise e de representação das grandezas podem, portanto, serem abreviadas, de modo a conterem apenas a informação relativa à amplitude e à fase na origem, relegando para segundo plano aquela relativa à frequência angular (e ao tempo) que, como se disse, é comum a todo o circuito.

Notações

Forma Polar: $A = A \angle \theta$

Forma Trigonométrica: $A = A.\cos(\theta) + jA.sen(\theta)$

Definição matemática

Sejam
$$v(t) = V_m.sen(\omega t)$$
 e $I(t) = I_{m\acute{a}x}.sen(\omega t - \theta)$

A tensão e a corrente em um circuito indutivo

Definição matemática

A tensão e a corrente pode ser escrita de outra forma:

$$\overset{\bullet}{V} = \frac{V_m}{\sqrt{2}} e^{j0} = V_{ef} \angle 0 \qquad \qquad \overset{\bullet}{I} = \frac{I_m}{\sqrt{2}} e^{-j\varphi} = I \angle -\varphi$$

$$\overset{\bullet}{I} = \frac{I_m}{\sqrt{2}} e^{-j\varphi} = I \angle -\varphi$$

As relações entre as diversas grandezas presentes em um circuito podem ser representado conveniente num diagrama vetorial

Nota importante

O método fasorial só é aplicável a funções senoidais

Os módulos dos fasores, são valores eficazes

Todas as propriedades dos vetores são aplicáveis nos fasores

Gráficos

As relações entre as diversas grandezas presentes num circuito podem ser representadas convenientemente num diagrama vetorial

Impedância

Conceito

A resistência e a reatância dos circuitos elétricos podem ser combinadas, de forma a definirem uma impedância Z (medida em ohms)

$$\overset{\bullet}{V} = \overset{\bullet}{I}\overset{\bullet}{Z}$$
 , onde Z é $Z = \sqrt{R^2 + (X_L - X_C)^2}$

Ainda podemos definir φ como sendo:

$$\tan \varphi = \frac{X_L - X_C}{R}$$

Impedância

 Impedância num circuito capacitivo puro

$$\dot{Z} = \frac{\dot{U}}{\dot{I}} = \frac{U_C}{I_C} \angle -\frac{\pi}{2} = X_C \angle -90^{\circ}$$

Impedância

 Impedância num circuito indutivo puro

$$\dot{E} = \frac{\dot{U}}{\dot{I}} = \frac{U_L}{I_L} \angle \frac{\pi}{2} = X_L \angle 90^{\circ}$$

Conceito

Num circuito em corrente alternada os valores da tensão e corrente variam periodicamente com o tempo.

As energias armazenadas nos campos elétricos e magnéticos associados aos condutores estão periodicamente a variar.

As trocas de energia correspondentes não correspondem ao "consumo" nos receptores.

Potência Ativa e Potência Reativa

Nos circuitos em corrente alternada é possível em cada instante:

1. A potência ativa, que corresponde à conversão que se efetua no receptor, da energia elétrica em outra forma de energia.

$$P_r = RI^2$$

A potência, Pc, que corresponde à variação da energia armazenada nos campos elétricos existente no receptor e nos dispositivos que o alimentam.

$$P_{c} = \frac{dW_{e}}{dt} = Cu \frac{du}{dt}$$

A potência, Pm, que corresponde à variação da energia armazenada nos campos magnéticos existente no receptor e nos dispositivos que o alimentam.

$$P_{m} = \frac{dW_{m}}{dt} = Li\frac{di}{dt}$$

Potência Ativa e Potência Reativa

Podem definir-se as grandezas:

Potência Ativa: $P = U.I.\cos \varphi(watts)$

Potência Reativa: $Q = U.I.sen \varphi(VAr)$

Fator de Potência

A grandeza designa-se por fator de potência

A potência ativa, P, é o valor médio da potência instantânea e, por conseguinte, corresponde à potência que é efetivamente transferida.

A potência reativa, Q, é o valor máximo da componente da potência que oscila entre o gerador e a carga, cujo valor médio é nulo, resultante da variação da energia magnética ou elétrica armazenada nos elementos indutivos ou capacitivos, da impedância de carga.

Variação da Potência com o tipo de carga

O ângulo φ pode variar entre – π /2 (carga capacitiva pura) e π /2 (carga indutiva pura)

A potência ativa é sempre positiva, ou nula para circuitos capacitivos ou indutivos puros.

A potência reativa pode ser positiva ou negativa. Será positiva quando a carga for indutiva, $\varphi > 0$; negativa se a carga for capacitiva $\varphi < 0$; nula se a carga for resistiva $\varphi = 0$.

Potência Complexa Aparente

A potência complexa S é definida pelo produto do fasor tensão pelo conjugado do fasor corrente:

$$S = P + jQ$$

Potência Complexa Aparente

O módulo da potência complexa é a potência aparente:

$$S = \sqrt{P^2 + Q^2}$$

A potência aparente é medida em VA (Volt-ampére)

Elementos em Série

Elementos em série:

Dois elementos em série tem apenas um ponto em comum.

Característica principal: mesma corrente atravessando os elementos.

Circuitos em Série

Equacionamento:

Observando a figura anterior nota-se a toda tensão E recai sobre os elementos 1 e 2, portanto:

$$\dot{E} = \dot{U}_1 + \dot{U}_2$$

$$E = R_1 I + R_2 I$$

$$E = (R_1 + R_2)I$$

$$E = \sum R.I$$

Elementos em Paralelo

Elementos em Paralelo:

Há mais de um ponto comum entre dois elementos:

Característica principal: a tensão sobre os elementos é a mesma.

Elementos em Paralelo

Equacionamento

O equacionamento é feito de forma análoga ao dos elementos em série:

$$\dot{E} = \dot{U}_1 = \dot{U}_2$$

$$I = I_1 + I_2$$

E ainda temos que: $U_1 = R_1 I_1$

Elementos em Paralelo

Equacionamento

$$\frac{E}{R_1} + \frac{E}{R_2} = I$$

$$\frac{U_1}{R_1} + \frac{U_2}{R_2} = I$$

$$U_1 + U_2 = E$$

$$E = \frac{I}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

$$E = \frac{I}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

Elementos em Delta/Estrela

Formulação Geral

$$Y = Z_{AB} = Z_1 + Z_3$$

$$\dot{Z}_1 + \dot{Z}_3 = \dot{Z}_C / / (\dot{Z}_A + \dot{Z}_B)$$

$$\dot{Z}_1 + \dot{Z}_3 = \dot{Z}_C / / (\dot{Z}_A + \dot{Z}_B)$$

Fórmulas Mnemônicas

$$\Delta \to Y$$

$$\overset{\bullet}{Z}_{1} = \frac{Z_{B} . Z_{C}}{\overset{\bullet}{Z}_{A} + Z_{B} + Z_{C}}$$

$$\dot{Z}_2 = \frac{\dot{Z}_B . \dot{Z}_A}{\dot{Z}_A + \dot{Z}_B + \dot{Z}_C}$$

$$\dot{Z}_{3} = \frac{\dot{Z}_{C} \cdot \dot{Z}_{A}}{\dot{Z}_{A} + \dot{Z}_{B} + \dot{Z}_{C}}$$

Fórmulas Mnemônicas $Y o \Delta$

$$Y \to \Delta$$

$$\dot{Z}_{A} = \frac{\dot{Z}_{1}.\dot{Z}_{2} + \dot{Z}_{2}.\dot{Z}_{3} + \dot{Z}_{1}.\dot{Z}_{3}}{\dot{Z}_{1}}$$

$$\dot{Z}_{B} = \frac{\dot{Z}_{1}.\dot{Z}_{2} + \dot{Z}_{2}.\dot{Z}_{3} + \dot{Z}_{1}.\dot{Z}_{3}}{\dot{Z}_{3}}$$

$$\dot{Z}_{C} = \frac{\dot{Z}_{1}.\dot{Z}_{2} + \dot{Z}_{2}.\dot{Z}_{3} + \dot{Z}_{1}.\dot{Z}_{3}}{\dot{Z}_{2}}$$

Tipos de Fontes

Fontes Independentes

Tensão:

Mantêm as tensões nos terminais independentemente da corrente através das fontes

Tipos de Fontes

Corrente:

Mantêm a corrente independentemente da tensão adquirida nos terminais.

Tipo de Fontes

Fontes Dependentes

Tensão:

Depende da tensão em um elemento ou parte de um circuito

Tipo de Fontes

Corrente:

Depende da corrente em um elemento ou parte de um circuito.

Teorema da Superposição

Enunciado:

A corrente em um ramo ou as tensões em elementos ou partes do circuito são resultado das ações das fontes de tensão e corrente (independentes) agindo independentemente no circuito, ou seja, a corrente ou as tensões são o somatório das correntes ou tensões individuais que aparecem em partes do circuito quando cada fonte (corrente ou tensão) atua isoladamente.

Teorema da Superposição

Considerações:

- Fonte de Tensão: Curto-Circuito entre os terminais.
- Fonte de Corrente: Circuito Aberto entre os terminais.

-
$$I_{Total} = \sum_{i=1}^{n} I_i$$
 { Contribuição de cada fonte.

$$V_{Total} = \sum_{i=1}^{n} V_i$$
 { Contribuição de cada fonte

sobre o elemento.

TRANSFORMACAO DE FONTE

Conclusão:

 Assim podemos concluir que R_L = R para máxima transferência de potencia para a carga, a resistência da carga deve ser igual a resistência do circuito.

Teorema de Thévenin e Norton

Aplicação do Teorema de Thévenin

Permite transformar uma rede linear complexa (com fontes dependentes e independentes) em uma fonte de tensão $V_{\it TH}$ (tensão Thévenin) em série, com uma impedância $Z_{\it TH}$ (impedância de Thévenin).

Teorema de Thévenin e Norton

Ilustrações:

Teorema de Thévenin e Norton

Observações:

- A tensão V_{TH} é obtida a partir dos terminais AB em aberto, excluindo o restante do circuito, ou seja, é a própria tensão AB
- A impedância Z_{TH} é a impedância equivalente vista a partir dos terminais AB em aberto, com as fontes de tensão e corrente em repouso

Máxima Transferência de Potencia em Circuitos C.C.

- 1- Circuito Aberto
- 2- Curto Circuito
- 3- Corrente que da a potência máxima.

Desenvolvendo a Equação temos:

$$P_{L} = EI - RI^{2}$$

$$R_{L}I^{2} = EI - RI^{2}$$

$$R_{L}I = E - RI$$

$$R_{L} = \frac{E - RI}{I} = \frac{E - \frac{R.E}{2R}}{\frac{E}{2R}}$$

Máxima Transferência de Potencia em Circuitos C.C.

Conclusão:

 Assim podemos concluir que RL = R para máxima transferência de potencia para a carga, a resistência da carga deve ser igual a resistência do circuito.

Máxima Transferência de Potencia em Circuitos C.C.

Rendimento na condição de máxima transferência de potência:

$$\eta = \frac{P_{util}}{P_{total}} = \frac{R_{L} \cdot I^{2}}{E \cdot I} = \frac{R_{L} \cdot \frac{E}{2 R}}{E}$$

$$\eta = \frac{1}{2} = 50 \%$$

Máxima Transferência de Potencia em Circuitos C.C

Considerações:

Metade da potência entregue a carga é perdida no circuito. Em sistemas de potência a condição de máxima transferência de potência é inconveniente, metade é perdida e metade é aproveitada. Já em sistema de telecomunicação exige-se sempre a máxima transferência de potência.

 Máxima Transferência de Potencia com circuito C.A

Impedância do circuito: $Z_1 = R_1 + jX_1$

Impedância do circuito: $Z_2 = R2 + jX_2$

$$P_{2} = R_{2} |I_{2}|^{2}$$

$$I_{2} = \frac{\dot{V}}{Z_{1} + Z_{2}} = \frac{\dot{V}}{R_{1} + jX_{1} + R_{2} + jX_{2}}$$

$$= \frac{\dot{V}}{R_{1} + R_{2} + j(X_{1} + X_{2})}$$

$$|I_{2}| = \frac{|V|}{|R_{1} + R_{2} + j(X_{1} + X_{2})|}$$

 Máxima Transferência de Potencia com circuito C.A

$$|I_{2}| = \frac{V}{\sqrt{(R_{1} + R_{2})^{2} + (X_{1} + X_{2})^{2}}}$$

$$P_{2} = \frac{R_{2} \cdot V^{2}}{(R_{1} + R_{2})^{2} + (X_{1} + X_{2})^{2}}$$

$$\Rightarrow \frac{\partial P_{2}}{\partial R_{2}} = 0 \Rightarrow \frac{\partial P_{2}}{\partial X_{2}} = 0 \Rightarrow X_{1} + X_{2} = 0$$

$$X_{1} = -X_{2}$$

 Máxima Transferência de Potencia com circuito C.A

$$\frac{\partial P_2}{\partial R_2} = \frac{2.(R_1 + R_2).R_2.V^2 - V^2.[(R_1 + R_2)^2 + (X_1 + X_2)^2]}{[(R_1 + R_2)^2 + (X_1 + X_2)^2]}$$

$$2.(R_1 + R_2).R_2 - (R_1 + R_2)^2 = 0$$

$$R_1 = R_2$$

Conclusão:

- A condição para máxima transferência de potencia é: Z₂ = Z₁*
- Ou seja, Z₂ dever ser igual ao conjugado de Z₁ (impedâncias casadas)

Ilustrações:

Abaixo estão as ilustrações de circuito ressonante série (a) e circuito ressonante paralelo (b).

(8)

Admitância

A impedância de um componente ou circuito é a sua relação entre os vetores de tensão e de corrente. A admitância de um elemento ou circuito é simplesmente o inverso de sua impedância. Quando se trabalha com ressonância paralela ela (a admitância) facilita em muitos os cálculos. A admitância tem unidade S (Siemen).

impedância
$$\xrightarrow{Z} = R + jX$$
 reatância resistência
$$\xrightarrow{Y} = \frac{1}{\cdot} = G + jB \leftarrow \text{susceptância}$$
 condutância

Ressonância Paralelo

Para se obter um circuito ressonante paralelo é necessário que B seja igual a 0 (zero), e portanto é preciso que B_C seja igual a B_L . Fazendo isso chegase à conclusão de que a freqüência de ressonância é a mesma para circuitos ressonantes em série ou em paralelo. Um circuito em paralelo ressonante também é chamado de anti-ressonante.

Ressonância em Circuitos Reais

Num circuito real existem as resistências do indutor e/ou do capacitor que devem ser levadas em consideração. Aplicando a Lei de Ohm para circuitos reais:

$$\dot{V} = \dot{Z} \dot{I} \Rightarrow \dot{I} = \dot{Y} \dot{I}$$

$$\dot{Y} = \dot{Y}_{L} + \dot{Y}_{C} = \frac{1}{R_{L} + jX_{L}} + \frac{1}{R_{C} + jX_{C}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{L}^{2} + X_{L}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} = \frac{R_{L} - jX_{L}}{R_{C}^{2} + X_{C}^{2}} + \frac{R_{C} + jX_{C}}{R_{C}^{2} + X_{C}^{2}$$

Ressonância em Circuitos Reais

Para que haja ressonância é preciso que a parte imaginária da equação do slide acima seja nula

$$\frac{X_{C}}{R_{C}^{2} + X_{C}^{2}} - \frac{X_{L}}{R_{L}^{2} + X_{L}^{2}}$$

Sabe-se que:
$$X_C = \frac{1}{\omega C}$$
 e $X_L = \omega L$

Substituindo isso na expressão conclui-se:

$$R_L^2 + X_L^2 = (R_C^2 + X_C^2)\omega^2 LC$$

Ressonância em Circuitos Reais

Fazendo as devidas manipulações matemáticas no resultado é possível encontrar a freqüência de ressonância, que é descrita pela equação abaixo:

$$f_r = \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{R_L^2 - L/C}{R_C^2 - L/C}}$$

Considerações Finais

- Sendo $R_L^2 = R_C^2 = L/C$: surgirá uma indeterminação do tipo 0/0 que torna todas as freqüências ressonantes.
- Sendo $R_L = R_C = 0$: condição ideal, indutores e capacitores sem resistência própria

Parâmetros do circuito ressonante (L, C, R_L, R_C)

São parâmetros que influem diretamente no valor da freqüência de ressonância. R_L e R_C são associados aos indutores e capacitores. Os valores L e C podem ser calculados a partir das seguintes fórmulas:

$$L = \frac{C}{2} \left[Z_C^2 \pm \sqrt{Z_C^4 - 4X_C^2 R_L^2} \right]_{\rm e}$$

$$C = 2L \frac{1}{Z_C^2 \pm \sqrt{Z_C^4 - 4X_C^2 R_L^2}}$$

$${\rm Onde} Z_C^2 = R_C^2 + X_C^2$$

Fator de Qualidade

Conceito

O fator de qualidade de um circuito ou componente (indutor ou capacitor) representa a relação entre a máxima energia armazenada e a energia dissipada em um ciclo. O fator de qualidade é representado pela letra "Q".

Num circuito RLC toda a energia armazenada é dissipada em cima dos resistores (capacitores e indutores não dissipam potência).

Escrito matematicamente a formulação do fator de qualidade fica:

$$Q = 2\pi \frac{\left[W_L + W_C\right]_{m\acute{a}x}}{W_R}$$