Inteligência Artificial Tópico 03 - Parte 03 Resolução de Problemas por Buscas Busca com Informação

Profa. Dra. Priscila Tiemi Maeda Saito

⋬ priscilasaito@ufscar.br

Roteiro

Resolução de Problemas Buscas

- 2 Estratégias de Busca
 - Busca sem Informação
 - Busca com Informação

Estratégias de Busca

- Buscas sem Informação, Não Informada, Exaustiva ou Cega
 - ineficientes na maioria dos casos
 - encontram soluções gerando sistematicamente novos estados e
 - comparando-os com o objetivo

Estratégias de Busca

- Buscas sem Informação, Não Informada, Exaustiva ou Cega
 - Busca em Largura
 - ▶ Busca de Custo Uniforme
 - ▶ Busca em Profundidade
 - Busca em Profundidade Limitada
 - Busca em Profundidade com Aprofundamento Iterativo

Estratégias de Busca

• Buscas com Informação ou Heurística

- Utilizam conhecimento específico sobre o problema
- ▶ Podem encontrar soluções de forma mais eficiente do que a busca cega
 - * conhecimento específico além da definição do problema
- Heurística para encontrar os caminhos mais promissores primeiro
 - ★ estima distância ao objetivo

Buscas com Informação

Busca Pela Melhor Escolha ou Best-First

- Abordagem geral de busca com informação
- lacktriangle Usa uma função de avaliação f(n) para selecionar o nó a ser expandido
 - \star função de custo, cujo nó que apresentar menor f(n) é expandido primeiro
- Implementação é idêntica ao da busca de custo uniforme
 - ▶ substituindo-se g(n) por f(n) busca em largura
 - ightharpoonup introduz na fila de nós a serem expandidos de acordo com f(n) fila de prioridades

Busca Best-First

- Ideia: usar uma função de avaliação f(n) para cada nó
 - estimar o grau em que um nó é "desejável" como caminho
 - expandir os nós mais desejáveis

$$f(n) = g(n) + h(n)$$

g(n) = Custo do caminho do estado inicial até o nó <math>n

h(n) = Custo estimado de n ao estado objetivo pelo caminho mais barato

- Greedy Best-First Search
- A cada passo tenta chegar mais perto do estado objetivo sem se preocupar com os passos futuros
- Supondo que provavelmente levará a uma solução rápida
- Utiliza somente a componente heurística da função f(n)

$$f(n) = h(n)$$

- Exemplo: encontrar a melhor rota (rota mais curta) de uma cidade a outra em um mapa
 - ▶ h(n) = distância em linha reta entre as cidades e a cidade meta

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Estado Inicial

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Arad

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Exercício

Continuar a aplicar a busca gulosa

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Arad

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Sibiu

- Exemplo: ir de Arad a Bucareste
- Heurística: distância em linha reta h_{DLR}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Fagaras

- Encontrou a solução sem expandir nenhum nó que não estivesse no caminho da solução
- No entanto, solução não é ótima
 - ▶ 32 km mais longo do que por Rimnicu e Pitesti
- Nomenclatura guloso
 - em cada passo, tenta chegar o mais perto possível do objetivo
 - não é ótima, pois segue o melhor passo considerando somente o momento atual
 - pode haver um caminho melhor seguindo algumas opções piores em alguns pontos da árvore de busca

• Ir de lasi a Fagaras?

- Minimizar h(n) é suscetível a produzir laços infinitos
 - Ex.: ir de lasi a Fagaras fica-se preso indefinidamente entre lasi e Neamt
 - **★** busca gulosa com h_{DLR} : Iasi → Neamt → Iasi → Neamt → ...
 - lacktriangle solução: Iasi o Vaslui o Urziceni o Bucareste o Fagaras
- Vaslui é mais distante que Neamt do objetivo de acordo com a heurística
- No entanto, é o caminho que liga a Fagaras (por Neamt não tem caminho)

- Semelhante à busca em profundidade
 - prefere seguir em um único caminho
- É incompleta
 - pode entrar em caminho infinito
- Não é ótima
- Complexidade tempo no pior caso: $O(b^m)$
 - m é a profundidade máxima do espaço de busca
 - com boa heurística pode ter redução substancial

- Técnica de busca mais utilizada
- Minimiza custo total estimado da solução
- Avalia nós combinando:
 - ▶ g(n): custo real do caminho para alcançar cada nó
 - ★ custo de nó inicial até o nó n (valor exato)
 - h(n): custo estimado para ir do nó até o objetivo
 - ★ custo estimado do caminho de n ao objetivo

Custo estimado da solução "mais barata" passando por n

$$f(n) = g(n) + h(n)$$

Ideia: evitar expandir caminhos que já ficaram caros

 A^* expande o nó de menor valor de f na fronteira do espaço de estados

- Exemplo: ir de Arad a Bucareste
- Função de avaliação f(n) = g(n) + h(n)
 - g(n) = custos das estradas (na figura)
 - ▶ $h(n) = h_{DLR}$, distância em linha reta

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Estado inicial

• f(Arad) = 0 + h(Arad) = 0 + 366 = 366

Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Expansão de Arad

- f(Sibiu) = c(Arad,Sibiu) + h(Sibiu) = 140 + 253 = 393
- f(Timisoara) = c(Arad, Timisoara) + h(Timisoara) = 118 + 329 = 447
- f(Zerind) = c(Arad,Zerind) + h(Zerind) = 75 + 374 = 449
- Melhor escolha = Sibiu

- Exemplo: ir de Arad a Bucareste
- Função de avaliação f(n) = g(n) + h(n)
 - ▶ g(n) = custos das estradas (na figura)
 - ▶ $h(n) = h_{DLR}$, distância em linha reta

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Exercício

Continuar a aplicar a busca A^*

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Expansão de Arad

- f(Sibiu) = c(Arad,Sibiu) + h(Sibiu) = 140 + 253 = 393
- f(Timisoara) = c(Arad, Timisoara) + h(Timisoara) = 118 + 329 = 447
- f(Zerind) = c(Arad,Zerind) + h(Zerind) = 75 + 374 = 449
- Melhor escolha = Sibiu

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia 24	
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Sibiu

- \bullet f(Arad) = g(Arad) + h(Arad) = 280 + 366 = 646
- f(Fagaras) = g(Fagaras) + h(Fagaras) = 239 + 176 = 415
- f(Oradea) = g(Oradea) + h(Oradea) = 291 + 380 = 671
- f(Rimnicu Vilcea) = g(Rimnicu Vilcea) + h(Rimnicu Vilcea) = 220 + 193 = 413
- Melhor escolha = Rimnicu Vilcea

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia 24	
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

• Expansão de Rimnicu

- f(Craiova) = g(Craiova) + h(Craiova) = 366 + 160 = 526
- f(Pitesti) = g(Pitesti) + h(Pitesti) = 317 + 100 = 417
- f(Sibiu) = g(Sibiu) + h(Sibiu) = 300 + 253 = 553
- Melhor escolha = Fagaras

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Expansão de Fagaras

- f(Sibiu) = g(Sibiu) + h(Sibiu) = 338 + 253 = 591
- f(Bucareste) = g(Bucareste) + h(Bucareste) = 450 + 0 = 450
- Melhor escolha = Pitesti

• Exemplo: ir de Arad a Bucareste

Arad	366	Mehadia 24	
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

• Expansão de Pitesti

- f(Bucareste) = g(Bucareste) + h(Bucareste) = 418 + 0 = 418
- Melhor escolha = Bucareste (Solução Ótima)

- A estratégia é completa e ótima
- Custo de tempo
 - $O(b^d) o$ exponencial com o comprimento da solução
 - boas funções heurísticas diminuem significativamente esse custo
- Custo de memória
 - guarda todos os nós expandidos na memória

Problema - Jogo 8-Puzzle

• Exemplo de movimentos possíveis a partir de um estado

1		3
4	2	5
7	8	6
la a a sud		

 4
 2
 5

 7
 8
 6

board

neighbor 1

neighbor 2

neighbor 3

- Exemplo de um estado (board) e sua respectiva representação de string (composta por n+1 linhas)
 - primeira linha indica o tamanho do grid
 - n linhas seguintes indicam as peças (zero indica o quadrado vazio)

board

1 0

7 8 6

string representation

Problema - Jogo 8-Puzzle

 Exemplo de sequência de movimentos a partir um estado inicial (esquerda) até atingir o estado objetivo (direita)

```
1 3 1 3 1 3 1 2 3 1 2 3 1 2 3 1 2 3 4 2 5 => 4 2 5 => 4 5 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8
```

Problema - Jogo 8-Puzzle

- Busca Exaustiva:
 - solução média em 22 passos
 - ▶ fator de ramificação médio: 3
 - $ho \approx 3^{22}$ estados possíveis
 - $ightharpoonup pprox rac{9!}{2}$ (controlando os estados repetidos)

Start State

Goal State

Cada problema exige uma função heurística diferente

Como escolher uma boa função heurística para o jogo 8-Puzzle?

- Para o quebra-cabeça de 8 peças
 - $h_1 = \text{número de peças fora do lugar (função de prioridade Hamming)}$
 - $h_2 = distância total à la Manhattan (função de prioridade Manhattan)$
 - ★ número de quadrados da localização desejada de cada peça

Distância Manhattan

$$d_1(p,q) = \parallel p - q \parallel_1 = \sum_{i=1}^n |p_i - q_i|$$

- $h_1(S) = ?$
- $h_2(S) = ?$

- Para o quebra-cabeça de 8 peças
 - $h_1 = \text{número de peças fora do lugar (função de prioridade Hamming)}$
 - $h_2 = distância total à la Manhattan (função de prioridade Manhattan)$
 - número de guadrados da localização desejada de cada peça

Distância Manhattan

$$d_1(p,q) = \parallel p - q \parallel_1 = \sum_{i=1}^n |p_i - q_i|$$

- $h_1(S) = 8$
- $h_2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$

- Heurísticas h_1 e h_2
 - $h_1 = 5$ (função de prioridade Hamming)
 - ▶ h₂ = 10 (função de prioridade Manhattan)

	Υ.	. Y	_				1	2	3	4	5	6	/	8		Ha							. Y	_	$\overline{}$	1
8	Ŀ	1	3				×	×	V	V	×	×	V	×		Па	ımımıı	ng = 5	•				1	2	_3	
7		6	2 5				1	2	3	4	5	6	7	8		Mar	nhatta	an = 1	LO				4 7	5 8	6	
				•			1	2	0	0	2	2	0	3	(1 +	2 + 2	+ 2 +	⊦ 3)							J
	bo	ard																						goal		
8	1	3			1	2	3			1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	
7	6	5			7	8	O			1	1	0	0	1	1	0	1	1	2	0	0	2	2	0	3	
initial goa				al		Hamming = 5						+	0			Man	hat	tan	-	10	+	0				

• Exemplo de espaço de estados (parcial) considerando as heurísticas (prioridades de Hamming e de Manhattan) para o algoritmo A^*

• Exemplo de espaço de estados (parcial) considerando as heurísticas (prioridades de Hamming e de Manhattan) para o algoritmo A^*

• Como escolher uma boa função heurística para o quebra-cabeça de 8 peças?

 $h_1 =$ número de elementos fora do lugar

 $h_2 =$ soma das distâncias de cada número à sua posição final

Qual das heurísticas é melhor?

- Função h₂(n)
 - espaço de estados gerado é menor
 - ▶ algoritmo acha mais rapidamente a solução

2	8	3	n movimentos	1	2	3
1	6	4	* movimentos	8		4
7		5		7	6	5
	nício)		ОЪ	jetiv	0

- Espaço de estados gerado com h₁
 - para cada estado está indicado entre parênteses o valor da função heurística
 - não são considerados os nós que aparecem por mais de uma vez

• Espaço de estados gerado com h₂

Medindo a Qualidade de uma Heurística

- Medida por meio do fator de expansão efetivo ou fator de ramificação efetiva ou b*
 - fator de expansão de uma árvore uniforme com n+1 nós e nível de profundidade d

$$n+1=1+b^*+(b^*)^2+...+(b^*)^d$$

- $ightharpoonup n = ext{total}$ de nós gerados pelo A^* para um problema
- d = profundidade da solução
- Mede-se empiricamente a qualidade de h a partir do conjunto de valores experimentais de n e d
 - ▶ uma boa função heurística terá o b* muito próximo de 1

Medindo a Qualidade de uma Heurística

- É sempre melhor utilizar uma função heurística com valores mais altos, desde que o tempo para computá-la não seja muito grande!
- Exemplo: h_2 melhor que h_1
- h_i domina $h_k \to h_i(n) \ge h_k(n)$, $\forall n$ no espaço de estados
- No exemplo anterior: h₂ domina h₁
- Isso pode ser traduzido na forma
 - ▶ a heurística 2 é melhor que a heurística 1, pois terá um menor fator de ramificação

Referências e Leituras Complementares

- ullet Cap. 03 ightarrow livro Russel e Norvig
- ullet Cap. 04 o livro Ben Coppin