

Predictive Parsing

Dr. Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

innovate achieve lead

Removal of Left Recursion

Example

Left Recursive Grammar

Modified Grammar

$$A \rightarrow AC|Aad|bd|c$$

$$A \rightarrow bdA'|cA'$$

$$A' \rightarrow CA'|adA'| \in$$

Indirect Left Recursion

Left Recursive Grammar

$$S \rightarrow Aa|b$$

$$A \rightarrow Ac|Sd| \in$$

$$S \rightarrow Aa|b$$

$$A \rightarrow Ac|Aad|bd| \in$$

Modified Grammar

$$S \rightarrow Aa|b$$

$$A \rightarrow bdA' | A'$$

$$A' \rightarrow cA' |adA'| \in$$

Left Factoring

It is the process of removing the common left factor that appears in two productions of the same non-terminal.

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2$$

Removal of Left Factoring:

$$A \to \alpha A'$$

$$A' \to \beta_1 | \beta_2$$

Example of Left Factoring

 $stmt \rightarrow if \exp thenstmt$ | $if \exp thenstmtelse stmt$

LEFT FACTORED GRAMMAR

 $stmt \rightarrow if \exp then stmt \ stmts$ $stmts \rightarrow \in |else \ stmt|$

Follow Set

Consider the following Grammar

$$A \rightarrow aBb$$

$$B \rightarrow c \in$$

and suppose the input string is "ab" to parse.

innovate achieve lead

Follow Set

In RHS of A -> aBb, b follows Non-Terminal B, i.e. FOLLOW(B) = {b}, and the current input character to be read is also b.

• Hence the parser applies this rule. And it is able to get the string "ab" from the given grammar.

Therefore, FOLLOW can make a Non-terminal to vanish out if needed to generate the string from the parse tree.

Follow Sets

Follow (X) for a non-terminal X is the set of symbols that might follow the derivation of X in an input stream.

Steps for Computation of Follow Sets

- Always include \$ in follow(S).
- if there is a production $A \to \alpha B\beta$ then everything in $first(\beta)$ (except ϵ) is in follow(B)
- if there is a production $A \to \alpha B\beta$ and $First(\beta)$ contains ϵ then everything in follow(A) is in follow(B)
- if there is a production $A \rightarrow \alpha B$ then everything in follow(A) is in follow(B)

Example

Calculate the Follow of all non-terminals in the following grammar.

$$S \rightarrow ABCDE$$

$$A \rightarrow a \in$$

$$B \rightarrow b \in$$

$$C \rightarrow c$$

$$D \rightarrow d \in$$

$$E \rightarrow e \mid \in$$

Variables/Non Terminals	Follow
S	{\$}
A	{b, c}
В	{c}
С	{d, e, \$}
D	{e, \$}
Е	{\$}

Follow A= First(BCDE) = First (B) -
$$\epsilon$$
 \cup First (C) = {b,c}
Follow C= First(DE) = First (D) - ϵ \cup First (E) - ϵ \cup Follow (S) = {d, e, \$}

Calculate the Follow of all non-terminals in the following grammar.

$$S \to Bb \mid Cd$$

$$B \to aB \mid \in \longrightarrow$$

$$C \to cC \mid \in$$

Variables/Non Terminals	Follow
S	{\$}
В	{b}
С	{d}

Calculate the Follow of all non-terminals in the following two grammars.

$$S \rightarrow i E t S S' | a$$
 $S \rightarrow ACB | CbB | Ba$
 $S \rightarrow e S | \in$ $A \rightarrow da | BC$
 $E \rightarrow b$ $B \rightarrow g | \in$
 $C \rightarrow h | \in$

Predictive Parsing

A non-recursive top down parsing method.

Recognizes LL(1) languages.

- First 'L' means scanning of i/p stream from left to right.
- Second 'L' stands for left most derivation

Predictive Parser/LL(1) Parser

Parse Table is two dimensional array M[X, a] where 'X' is a non-terminal and 'a' is a terminal symbol of Grammar

Predictive Parser

Construct a predictive parser for the following grammar.

$$S \rightarrow (S) \mid \in$$

In addition, parse the following input stream of tokens (())

Construction of First and Follow Sets

$$S \rightarrow (S) \mid \in$$

Non-Terminals	First	Follow
S	{ (, ε }	{ \$,) }

Construction of Parse Table

$$S \rightarrow (S) \mid \in$$

Non-Terminals	First	Follow
S	{ (, ε }	{ \$,) }

Terminals	()	\$
Non-Terminals			
S			
Terminals	()	\$
Non-Terminals			
S	$S \rightarrow (S)$		
Terminals	()	\$
Non-Terminals			
S	$S \rightarrow (S)$	$S \rightarrow \in$	$S \rightarrow \in$

LL(1) Parsing Table

$$S \rightarrow (S) \mid \in$$

Non-Terminals	First	Follow
S	{ (, ε }	{ \$,) }

Terminals	()	\$
Non-Terminals			
S	$S \rightarrow (S)$	$S \rightarrow \in$	$S \rightarrow \in$