

Continuous Assessment Test I - September 2022

Programme	:	B.Tech. CSE	Semester	:	Fall 2022-2023
Course	:	Data Structures and Algo-	Code	:	BCSE202L
		rithms , a } 4			\
Faculty	••	Bhuvaneswari, Richa, Joshan, Tamilarasi, Hasmath Farhana, Kirthica, Mansoof Husain D, Valarmathi, Rajakumar, Sindhia Lingaswamy, Sahaya Beni Prathiba, Vinothini A, Balaji, Saleena		:	CH2022231001424, 1459, 1453, 1471, 51447, 1445, 1457, 1425, 1423, 1450, 1427, 1426, 1454, 1472
		1,2	Slot	:	A2+TA2
Time	:	90 minutes	Max.Marks	:	50

- Anwer ALL Questions.
- Answer the Questions with your Intelligence Only.
- If some information is required for answering any question, assume the same.

Q.No		Question Description	Marks
J	Q.No	Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers. (a) $T(n) = 3T(n/2) + n^2$ (5 marks) (b) $T(n) = 16T(n/4) + n$ (5 marks)	10
12		Given two arrays A and B of positive integers, write an algorithm to list out all pairs (x, y) such that $x^y > y^x$, where x is an element from A and y is an element from B. Compute the running time of your algorithm.	10

3	An equation is said to be line in two variables if it is written in the form	10
4	of $L(x,y) = ax + by + c = 0$, where a, b & c are real numbers and	
	the coefficients of x and y are $a(\neq 0)$ and $b(\neq 0)$ respectively. A point	
	$P=(x_1,y_1)$ is on the line equation if $ax_1+by_1+c=0$. For example,	
	10x-2y+4=0 is a line equation and $P(x=1,y=7)$ is a point on the	
	line equation.	-
	Farthest pair problem: Given a line $L(x,y)$ and let $P_0 = (x_0,y_0)$ be	
	a point on the line. Assume $P_1 = (x_1, y_1), P_2 = (x_2, y_2),, P_n = (x_n, y_n)$	
	are n points on the line L. Find the farthest (in the sense of Euclidean	
	distance) point among n points from the point P_0 .	
	Write a recursive algorithm to solve the Farthest pair problem (as de-	
	fined above). Illustrate your algorithm for any sample input.	
	[Hint: The Euclidean distance of P_1 and P_2 is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$]	
A	Let $L = \{a_i\}, 1 \le i \le n$ and let k be a positive integer. Write an	10
	algorithm to arrange elements of L in increasing order where the index of	
	elements in L are divisible by k and other elements need not be sorted.	V
	Illustrate your algorithm for any sample input. For example, If $L =$	
.	$\{1, 9, 4, 6, 3, 5, 8\}$ and $k = 2$ then result is $L = \{1, 9, 3, 6, 4, 5, 8\}$	
8	Assume you are given a number X and two sorted lists A and B of n	10
	numbers such as $A = \{a_1 \leq a_2 \dots \leq a_i \leq \dots \leq a_n\}$ and $B = \{b_1 \leq b_2 \dots \leq a_n\}$	
	$b_i \leq \leq b_n$. Write an algorithm to determine the total number of pairs	
	(i,j) such that $a_i + b_j \leq X$. Illustrate your algorithm for any sample	
	input.	
	1	· .
	× ·	

. . . .