Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II Fecha: 13 de marzo de 2025

Sigla: MAT2244

Ayudante: José Cuevas Barrientos

Números algebraicos

A lo largo de las ayudantías trataré de incluír comentarios o problemas especiales. Los problemas difíciles tendrán ojos asustados ⊙⊙, los comentarios que son opcionales u omitibles tendrán ojos hastiados •• y los comentarios **importantes** tendrán ojos interesados ••.

1. Números algebraicos

1. (Examen de lucidez)

- a) Pruebe que, para toda extensión K/\mathbb{Q} cuadrática, existe un entero $d \in \mathbb{Z}$ libre de cuadrados (i.e., si un primo $p \mid d$, entonces $p^2 \nmid d$) tal que $K = \mathbb{Q}(\sqrt{d})$.
- b) Pruebe que si $d_1 \neq d_2$ son dos enteros libres de cuadrados distintos, entonces $\mathbb{Q}(\sqrt{d_1}) \neq$
- 2. Pruebe que si un número complejo $x + iy \in \mathbb{C}$ con $x, y \in \mathbb{R}$ es (\mathbb{Q} -)algebraico, entonces $x \in y$ son algebraicos.
- 3. Pruebe que para todo racional $r \in \mathbb{Q}$, los números $\sin(r\pi)$, $\cos(r\pi) \in \mathbb{C}$ son algebraicos sobre \mathbb{Q} .
- 4. Defina $\alpha := \sqrt{2} + \sqrt{3} \in \mathbb{C}$.
 - a) Encuentre un polinomio $f(x) \in \mathbb{Q}[x]$ de grado 4 tal que $f(\alpha) = 0$.
 - b) Verifique que f(x) no tiene raíces racionales, de modo que si p(x) es un polinomio irreducible tal que $p(\alpha) = 0$, entonces p debe ser cuadrático.
 - c) Verifique que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}(\sqrt{6})$ y, por tanto, f(x) = p(x) ya era irreducible.

Problema: ¿Toda extensión cúbica K/\mathbb{Q} es de la forma $K=\mathbb{Q}(\sqrt[3]{n})$ para algún $n\in\mathbb{Z}$? \odot

2. Cuerpos finitos

- 5. Sea k un cuerpo finito. Pruebe lo siguiente:
 - a) Su característica car k = p es un número primo.
 - b) Su cardinalidad $|k| = p^n$ es una potencia de $p = \operatorname{car} k$ con exponente $n \ge 1$.
 - c) Cada elemento siempre tiene raíz p-ésima.
- 6. Sea k un cuerpo de característica $p := \operatorname{car} k > 0$. Sea $q := p^n \operatorname{con} n \ge 1$ a elección. Pruebe que

$$k^q := \{\alpha^q : \alpha \in k\} \subseteq k$$

es un subcuerpo de k.

 \odot

7. Pruebe que para todo cuerpo k existen infinitos polinomios irreducibles con coeficientes en k.

Referencias

1. Lang, S. Algebra (Springer-Verlag New York, 2002).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-1-ayud/