Activity: MLP Structure

ML for Health, Week 3

ANSWER KEY

Logistic Regression

0 hidden layers

• 3 + 1 = 4 parameters

•
$$p = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

 Note that w^T x is another way to write the inner product between the vectors w and x. The idea here is that we're viewing x as a 3-by-1 matrix and w^T, the transpose of w, as a 1-by-3 matrix.

Shallow MLP

(with σ activations)

• 1 hidden layer of size 6

•
$$(3 \times 6) + 6 + (6 \times 1) + 1 = 31$$
 parameters

•
$$p = \sigma(\mathbf{w}_2^T * \sigma(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$$

Slightly Deeper MLP

(with σ activations)

• 2 hidden layers, each of size 6

•
$$(3 \times 6) + 6 + (6 \times 6) + 6 + (6 \times 1) + 1 = 73$$
 parameters

•
$$p = \sigma(\mathbf{w}_3^T * \sigma(W_2 * \sigma(W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + b_3)$$

Which model contains more parameters?

- Effect of x_1 on p (LogReg): you need to know the value of b_1 , the parameter associated with x_1 ; and since σ is non-linear, you also need to know the value of z
- Effect of $h_{2,1}$ on p (MLP): similar to the previous answer, you need to know the parameter connecting $h_{2,1}$ to z and $p = \sigma(z)$; as well as the value of z
- Effect of x_1 on p (MLP): here you need to know (a) the values of all parameters connecting x_1 to h_1 ; (b) the current value of h_1 ; (c) the values of all parameters connecting h_1 to h_2 ; (d) the current value of h_2 ; (e) the values of all parameters connecting h_2 to h_2 ; and the current value of h_2 . In short, you need to know all current parameters and all current values in all hidden layers, because h_1 exerts an effect on h_2 through all possible paths connecting h_1 to h_2 in the graph at right. In contrast, in the graph at left, there is only one path connecting h_1 to h_2 .

