COT 4420: Homework 1 Math Rep and elementary Formal Languages

1. Let S and T be subsets of a set U. Defining $S' = U \setminus S$ and $T' = U \setminus T$, show that

$$(S \cup T)' = S' \cap T'$$

2. T/F (circle)

If $A = \emptyset$ or $B = \emptyset$ then $AxB = \emptyset$	T	F
If $A = \emptyset$ then $\mathbf{P}(A) = \emptyset$ (power set)	T	F
There is a bijection from \emptyset into itself	T	F
If $ A = n$, then A has <i>n</i> subsets of size <i>n-1</i>	T	F
If $ A = 2$, then $ P(A^2) = 32$	T	F
If $A = \{a\}$ then A^2 has one element	T	F

- 3. For each of the three cases, give infinite sets A and B such that
 - a) A ∩ B is finite
 - b) $A \cap B$ is infinite
 - c) $A \cap B$ is empty
- 4. a) Show by induction that $(n+1)^2 = n^2 + (2n + 1)$.
 - b) Show the same without induction (I really hope you were tempted to do that!)
- 5. Let $\Sigma = \{0,1\}$ be an alphabet. Enumerate five elements of the following languages:
 - a) Binary numbers that are even
 - b) Binary numbers that contain as many 0 as 1 (not leading 0s, of course)