

Unsupervised Learning From Incomplete Measurements for Inverse Problems

NeurIPS 2022

Julián Tachella

CNRS & FNSI

Dongdong Chen
University of Edinburgh

Mike Davies
University of Edinburgh

Linear Inverse Problems

Magnetic Resonance Imaging

Image Inpainting

Recommender Systems

measurements

reconstruction

Linear Inverse Problems

$$y = Ax + \epsilon$$

Learning Approach

Train with pairs (x_i, y_i) to directly learn the inversion function

$$\underset{f}{\operatorname{argmin}} \sum_{i} ||x_i - f(y_i)||^2$$

where $f: \mathbb{R}^m \to \mathbb{R}^n$ is parameterized as a deep neural network.

Pitfalls

Main disadvantage: Obtaining training signals x_i can be expensive or impossible.

- Medical and scientific imaging
- Solves problems which we already solved
- Risk of training with signals from a different distribution

Learning Approach

Learning from only measurements y?

$$\underset{f}{\operatorname{argmin}} \sum_{i} ||y_i - Af(y_i)||^2$$

Proposition: Any reconstruction function $f(y) = A^{\dagger}y + g(y)$ where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A.

Learning from Measurements

How to learn from only y?

- Access multiple operators $y_i = A_{g_i} x_i$ with $g \in \{1, ..., G\}$
- Each A_g with different nullspace

Learning from Measurements

How to learn from only y?

- Access multiple operators $y_i = A_{g_i} x_i$ with $g \in \{1, ..., G\}$
- Each A_g with different nullspace

Learning from Measurements

How to learn from only y?

- Access multiple operators $y_i = A_{g_i} x_i$ with $g \in \{1, ..., G\}$
- Each A_g with different nullspace

Model Identification

Can we *uniquely* identify the set of signals $\mathcal{X} \subset \mathbb{R}^n$ from the observed measurement sets $\{\mathcal{Y}_g = A_g \mathcal{X}\}_{g=1}^G$?

Necessary Conditions

Proposition: Recovering \mathcal{X} from observed measurement sets $\{\mathcal{Y}_g = A_g \mathcal{X}\}_{g=1}^G$ possible only if

$$\operatorname{rank}\left(\begin{bmatrix} A_1 \\ \vdots \\ A_G \end{bmatrix}\right) = n$$

and thus, if $m \ge n/G$.

Sufficient Conditions

Additional assumption: The model is low-dimensional

• Box-counting dimension of X is $k \ll n$

Examples: Sparse dictionaries, manifold models, generative models, etc.

Theorem: Identifying a k-dimensional \mathcal{X} from observed sets $\left\{\mathcal{Y}_g = A_g \mathcal{X}\right\}_{g=1}^G$ is possible by almost every $A_1, \dots A_G \in \mathbb{R}^{n \times m}$ if

$$m > k + \frac{n}{G}$$

Proposed Objective

Neural Network: $\hat{x} = f(y, A_g)$

- Pseudo-inverse $f(y, A_g) = f(A_g^{\dagger}y)$
- Unrolled optimization [Gregor and LeCun, 2010]

Proposed unsupervised loss: $\underset{f}{\operatorname{argmin}} \mathcal{L}_{MOI}(f)$

$$\mathcal{L}_{MOI}(f) = \sum_{i} ||y_i - A_{g_i} f(y_i, A_{g_i})||^2 + \sum_{s} ||f(A_s \hat{x}_i, A_s) - \hat{x}_i||^2$$

where
$$\hat{x}_i = f(y_i, A_{g_i})$$

Inpainting

- U-Net network
- CelebA dataset
- A_g are inpainting masks

Magnetic Resonance Imaging

- Unrolled network
- FastMRI dataset
- A_g are subsets of Fourier measurements (x4 downsampling)

Verifying Bounds

- MNIST dataset: $n=28^2$, $k\approx 12$ [Hein and Audibert, 2005]
- Red line: sufficient condition m > k + n/G

Thanks for your attention!

[1] "Equivariant Imaging: Learning Beyond the Range Space", Chen, Tachella and Davies, ICCV 2021 (Oral)

[2] "Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements", Chen, 2022 (Oral)

[3] "Sensing Theorems for Unsupervised Learning in Inverse Problems", Tachella, Chen and Davies, Arxiv 2022.

Tachella.github.io ✓ Presentations

- ✓ Codes
- ✓ ... and more