

Assignment Brojecty Fram Help

https://eduassistpro.github.

What are the Math Concepts behind Databases?

Assignment Project Exam Help

- †https://eduassistpro.github.
- Cartesian Product of Sets
 Add WeChat edu_assist_pr
- Relation

Set Notation

Assignment Project Exam Help

https://eduassistpro.github.

Set Notation

Assignment Project Exam Help We need set notation to represent formal definitions in this course.

- nttps://eduassistpro.github.i
 - The elements in a set have no order.

Add We that edu_assist_present can not be in the set more than _assist_present.

e.g., {Monday, Monday, Tuesday, Wednesday, Thursday, Friday, Friday} is Not a set. Note that Multisets allow to have duplicate elements.

Set Notation

Assignments Project Exam Help $\{x_1, \ldots, x_n\}$ (i.e., list all the elements in a set)

https://eduassistpro.github.

• $\{\}$ or \emptyset , i.e., the *empty* set.

- {x | x is a student currently enrolled in COMP7240}
- {x | x is an integer and x > 0}

Assignment Project Exam Help

https://eduassistpro.github.

Assirbation of the property o

https://eduassistpro.github.

Assignment Project Exam Help

• Proper subset: A is called a proper subset of B if $A \subseteq B$ and A and B are

https://eduassistpro.github.

Assignment Project Exam Help

• Proper subset: A is called a proper subset of B if $A \subseteq B$ and A and B are

https://eduassistpro.github.

Assignment Purojecto Examing Help

https://eduassistpro.github.

Assignment the roject at Expand Help 3, 4, 5 3, 5, 7, 9 = 3, 5.

https://eduassistpro.github.

Assignmente Projecte Exam Help 3, 4, 5 3, 5, 7, 9 = 4.

https://eduassistpro.github.

Set Operations – Exercise

Assignment Project Exam Help

W

https://eduassistpro.github.

Yes! *A* ∪ *B*

Add WeChat edu_assist_pr

Yes! *A* – {

No! $A - B = \{1, 2, 3\}$

Yes! $\emptyset = \{\}$, the empty set

Tuple Notation

Assignment Project Exam Help

https://eduassistpro.github.

Tuple Notation

Assignment Project Exam Help

- ., https://eduassistpro.github.
 - $(1,2,3) \neq (2,3,1)$ (i.e., the order does
- The And downer Calmatice du_assist_pr
 - (Monday, Monday, Tuesday, Wednesday, Thursday, Friday, Friday) is a tuple.
- Ordered pairs are special cases of tuples.

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Paralecte Examed Help set of tuples.

- vahttps://eduassistpro.github. It c
- element from the second set. ...
- For Aarillo $A \times V$ (b) hat edu_assist_properties of the second of th Then $A \times B = \{(2, Clubs), (2, Diamonds), (2, Hearts), (2, Spades), (2, Plants), ($ (3, Clubs), (3, Diamonds), (3, Hearts), (3, Spades)}.
 - $(2, Clubs) \in A \times B$, $(Spades, 3) \notin A \times B$, $(4, Hearts) \notin A \times B$
 - $\{(3, Clubs), (3, Diamonds), (3, Hearts), (3, Spades)\} \subseteq A \times B$

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Project Fxam Help

https://eduassistpro.github.

• Let $R = \{(a, b) | a \in X, b \in Y \text{ and } a \text{ is a city in } b$.

Add WeChat edu_assist_pr

• (Canberra, Australia) $\in R$, (Paris, France) $\in R$ but (Tokyo, France) $\notin R$, (France, Japan) $\notin R$

Assignment Project Fxam Help

E

https://eduassistpro.github.

```
lacksquare = \{(\phantom{x},\phantom{x})|\phantom{x}\in\mathbb{Z},\phantom{x}\in\mathbb{Z}
```

 $A_{a}^{t \text{ is pasy to see that } P \text{ is relation.}} \text{edu_assist_property of the property of the property$

- $\mathbf{R}\subseteq\mathbb{Z}\times\mathbb{Z}$.
- $(0,1) \in R, (-4,-2) \in R$ but $(0,0) \notin R, (100,-2) \notin R$.