《微机原理与单片机技术》实验指导书

黄之峰

广东工业大学 自动化学院 二 0 一六年九月印刷

实验1指导书

实验项目名称: PIC 单片机汇编语言编程及硬件电路调试

实验项目性质: 上机实操

所属课程名称: 微机原理与单片机技术

实验计划学时: 2 学时

一、 实验目的

熟练掌握在 MPLAB 环境中建立工程,编写汇编语言程序以及如何将编译的程序下载到 PIC 单片机中进行运行和调试。

二、 实验内容和要求

在 MPLAB 环境中建立工程,实现对 PIC 单片机 IO 口 RC1 的访问,编写汇编程序控制蜂鸣器实现鸣叫,延时鸣叫,能够正确设置参数,实现蜂鸣器以 1 秒为周期进行鸣叫。(每次实验按规定格式填写实验报告电子版<原程序粘贴>,最后一周 A4 双面打印(程序截图,封面统一))

三、 实验主要仪器设备和材料

计算机, MPLAB 软件, PIC 单片机实验板 K18, 编程调试器 PICKit2

四、 实验方法、步骤及结果测试

- 1,熟悉电路板,检查蜂鸣器电路是否正常。
- 2,在 MPLAB 环境中建立工程,按要求编写如下程序,并加载到工程中,并进行软件仿真,观察各个相关寄存器的变化。(参考课本 P42 3.6 节,《PIC 单片机与原理及程序设计》 谢锋然,谢龙汉著 清华大学出版社)

例程1

INCLUDE "P16F877.INC" ;PIC16F877A 包含的头文件

ORG 0000H ;伪指令,即下面的程序从程序存储器的地

址 0000H 开始存放

NOP

BANKSEL TRISC

CLRF TRISC

BANKSEL PORTC

CLRF PORTC

BANKSEL PORTC

BSF PORTC,1

LP GOTO LP

END

选择编译器 PICKit2,下载程序并且进入 Debug 模式,单步运行程序,观察寄存器变化及实验板蜂鸣器是否鸣叫(参见附录)。

3,在 MPLAB 环境中建立工程,导入如下蜂鸣器延时鸣叫程序,并且计算延时

参数,修改下面程序,方框处的参数并重复第三步步骤,下载程序到 PIC 实验板中,实现蜂鸣器以 1 秒为周期鸣叫。

例程 2

INCLUDE "P16F877.INC" ;PIC16F877A 包含的头文件

ORG 0000H ;伪指令,即下面的程序从程序存储器

的地址 0000H 开始存放

NOP

BANKSEL TRISC

CLRF TRISC

BANKSEL PORTC

CLRF PORTC

BANKSEL PORTC

LP BSF PORTC,1

BANKSEL 22H

MOVLW D'1'

MOVWF 22H

CALL DELAY1

BCF PORTC,1

BANKSEL 22H

MOVLW D'??' ;正确设置参数,实现蜂鸣器以1秒为周期鸣叫

MOVWF 22H

CALL DELAY1

GOTO LP

DELAY1 NOP

LOOP1 CALL DELAY2

DECFSZ 22H

GOTO LOOP1

RETURN

DELAY2 MOVLW D'100' :指令周期 1

MOVLW 20H ;指令周期1 改正这句指令

LOOP2 MOVLW D'200' ;指令周期1

MOVWF 21H ;指令周期1

LOOP3 DECFSZ 21H ;指令周期1(2)

GOTO LOOP3 ;指令周期 2

DECFSZ 20H ;指令周期1(2)

GOTO LOOP2 ;指令周期 2

RETURN

END

五、 实验报告要求

- 1,对例程 1 的每一句指令进行注释,描述该句指令的作用以及如何影响寄存器结果。
- 2,标出例程2每一句指令的指令周期,伪指令除外。
- 3,写出例程2的程序流程图。
- 4,写出方框内参数的计算过程。

六、 思考题

尝试编写出二位数的减法汇编程序,并采用蜂鸣器的鸣叫作为输出结果。

七、 评分标准

考勤 30 分

实验报告 要求 1 10分

要求 2 10 分

要求 3 20 分

要求 4 20 分

思考题 课堂完成5分

实验报告完成 5分

附录补充资料,:

1,实验板电源的链接方法,见下图:

2, 通过 PICKit2 下载程序到开发板,并进行 Debug 的步骤。

步骤 1 在 Debug 菜单中选择 Select Tool,选择 Pickit2

步骤 2 在 Configure 菜单中选择 Configuration Bit 选项

步骤 3, 在弹出的窗口的对应位置把打钩去掉,并进行如下设置后,再把钩打回去

步骤4

按如下顺序点击按钮

1编译→2下载程序到单片机→3选择全速运行或者单步运行

3选择全速运行,或者单步执行

3,本次做实验的相关电路原理图

A PIC 单片机最小系统

B 蜂鸣器原理图

