

paro ()
$$T(n-i) + i.N - \sum_{j=0}^{i-1} j = T(n-i) + i.N - \sum_{j=0}^{i-1} j = T(n-i) + i.N - (i-i) \cdot ((i-i)+i)$$

coso base

 $N-1 = 1$
 $N = 1+i$
 $N-1 = i$
 $T(N-(N-i)) + (N-1) \cdot N - ((N-i)-1) \cdot ((N-i)-1) + i) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2)^2 = T(1) + (N-i) \cdot N - (N^2 - 2N + 2)^2 = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) + (N-i) \cdot N - (N^2 - 2N + 2) = T(1) \cdot N - (N^2 - 2N$

- 7	$(n-i)$ + in - $\frac{1}{2}$ · $((i-1),((i-1)+1))$ = $\frac{1}{2}$ · $\frac{1}{2}$ · $\frac{1}{2}$
	$t(n-i) + in - (i^2-i) =$
	$\pm (n-i)^{\dagger} \stackrel{in}{=} + \stackrel{i}{=} - i^2$
2200 6026	$\gamma_{-i} = 1$
	M = 1 - 1
i ogalgensar	$+(N-(N-1)) + (N-1)N + (N-1) - (N-1)^{2} =$
=	$\frac{7(1) + N^{2} - N}{2} + (N-1) - (N^{2} - 2N + 1) - \frac{1}{2}$ $\frac{1}{2} + N^{2} - N + (N-1) - (N^{2} - 2N + 1) - \frac{1}{2}$
	$8 + 2/n^2 - 3/n + n - 1 - 1/n^2 + 3/n - 1$
	$\frac{3}{2} + n^2 + n + n + n = T(n)$

$$\begin{array}{l} \sigma\left(n^{2}\right) \\ \tau\left(n\right) <= 0 \left(n^{2}\right) \quad con \quad c=2 \quad para \ rooto \quad n>, 3. \end{array}$$

$$\begin{array}{l} 3. \quad \tau(n) = \begin{cases} 1 & n=1 \\ 2\tau\left(\frac{n}{N}\right) + \sqrt{n} & n>2 \end{cases}$$

$$\begin{array}{l} sopolule rooto \quad que \quad n>2 \\ 2\tau\left(\frac{M}{N}\right) + \sqrt{n} & n>2 \end{cases}$$

$$\begin{array}{l} paro \quad 0 \\ 2\tau\left(\frac{M}{N}\right) + \sqrt{n} & n>1 \end{cases}$$

$$\begin{array}{l} -4\tau\left(\frac{M}{N^{2}}\right) + 2\sqrt{n} & n>1 \end{cases}$$

$$\begin{array}{l} -4\tau\left(\frac{M}{N^{2}}\right) + 2\sqrt$$

paso (2)	$2\left[2\left[2\left(\frac{N}{z^{2}}\right)+c\right]+c$
	$= 4T \left(\frac{U}{z^2} \right) + 2C + C =$ $= 4T \left(\frac{U}{z^2} \right) + 3C$
paco	$2^{i} T\left(\frac{n}{2^{i}}\right) + \left(2^{i}-1\right) \cdot C$
caco bace	$\frac{\mathbf{y}}{\mathbf{z}^{i}} = 1$
	$N = 2^{i}$ $ag_{2}(in) = i$
reemplago i	
	$N \cdot T \left(\frac{N}{2} \cos \rho_2(n) \right) + \left(N - 1 \right) \cdot C =$
	$N \cdot T(i) + Nc - Ci =$ $N \cdot T(i) + Nc - Ci = T(i)$
0 (n) =	V + NC - CI = L(N)
T(n) L= 0 (n)) con c = 20,+1 para rodus n>,1,

