

And now, for something...

Luísa Coheur





#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

## LEARNING OBJECTIVES

#### LEARNING OBJECTIVES

- After this class, students should be able to:
  - Explain what a N-gram is
  - Understand how to model language, with N-grams
  - Apply N-grams to
    - Predict the next word of a given sentence, and
    - Calculate the probability of a sentence
  - Explain the concept of smoothing
  - Apply Laplace-smoothing

# TOPICS

#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

#### LANGUAGE MODELS

- Models at the basis of Natural Language Generation
- Language models (notice that I am not using the word large) learn the probability distribution of words, that is, how words can be organized to create meaningful and grammatically correct sentences
- With Language Models we can:
  - Predict the next word within a text; and
  - Find how likely (probable) is a sequence of words

- Example 1: complete the following sentences:
  - And now for something...
  - Once upon a...
  - Spoiler...
  - Stranger...

- Example 1: complete the following sentences:
  - And now for something completely different
  - Once upon a time
  - Spoiler alert
  - Stranger things

With N-grams we can make word prediction!!!!

• Example 2: consider the possible outputs of an Automatic Speech Recognizer (ASR):



- olá edgar
- ou lá apagar
- ó lá edgar
- ...

https://commons.wikimedia.org/wiki/File:Signal-speech-martin-de.png

Which sentence is the most likely?

- Example 3: consider the possible outputs of a Machine Translation System:
  - Input: It is raining cats and dogs
  - Possible translations:
    - Chovem c\u00e4es e gatos
    - Chove a potes
    - Chovem potes
    - •

Which sentence is the most likely?

Ok, but what is a N-gram?



- N-gram = sequence of N tokens
  - N = 1 => unigrams
  - $N = 2 \Rightarrow bigrams$
  - $N = 3 \Rightarrow trigrams$
  - ...
- A token can be
  - a word (ola, Maria, hello, ...)
  - a character (o, I, M, a, r, ...)
  - a set of sequences of characters (ol, la, Mar, ari, ...)

- Let us see now how to apply them to
  - Make word prediction
  - Calculate a sentence probability

#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

- Input: H (or history  $H = W_1 ... W_{N-1}$ )
- Task: find what is the probability of W (=  $W_N$ ) being the next word, that is, we want to find:
  - P(W | H)

- Notation:
  - $W_1^{N-1} = W_1 ... W_{N-1}$

```
Example:
H = Once upon a
W = time
?? P(time | Once upon a)??
```

Hypothesis 1:

```
P(W \mid H) = count(HW)/\sum_{k} count(HK)
= count(HW)/count(H)
```

- Example:
  - H = Once upon a
  - W = time
  - P(time | Once upon a) =
    - = count(once upon a time)/count(once upon a)
- Problem:
  - Some sequences were never seen, thus, you might not have all these values

- Markov Assumption:
  - It is possible to calculate the probability of a future event without having to look to the entire history
- Let's do some approximations!!

- Hypothesis 2 (based on Markov assumption)
  - To calculate  $P(W \mid H) = P(W_N \mid W_1...W_{N-1})$ :
    - $P(W_N \mid W_1... W_{N-1}) \cong P(W_N \mid W_{N-1})$  (use bigrams)
    - $P(W_N \mid W_{1...} W_{N-1}) \cong P(W_N \mid W_{N-2} W_{N-1})$  (use trigrams)

### ACTIVE LEARNING MOMENT



#### **EXERCISE**

- Corpus (<s> for beginning of the sentence and </s> for the end):
  - <s>Eu adoro a Maria</s> (I adore Maria)
  - <s>A Maria eu adoro</s> (Maria I adore)
  - <s>Adoro bolachas Maria</s> ((I) adore cookies (named) Maria)

If I say "eu adoro" (I adore), what is the most probable next word: eu, a, Maria, adoro, bolachas or </s>?

- Use:
  - $P(W_N \mid W_1...W_{N-1}) \cong P(W_N \mid W_{N-1})$  (use bigrams)
  - $P(W_N \mid W_{1}... W_{N-1}) \cong P(W_N \mid W_{N-2} W_{N-1})$  (use trigrams)

#### EXERCISE: BIGRAMS

- First, some pre-processing:
  - <s>eu adoro a maria</s>
  - <s>a maria eu adoro</s>
  - <s>adoro bolachas maria</s>

$$P(W_N \mid W_1... W_{N-1}) \cong P(W_N \mid W_{N-1})$$

$$P(W | H) = count(HW)/count(H)$$

#### **EXERCISE: BIGRAMS**

- First, some pre-processing:
  - <s>eu adoro a maria</s>
  - <s>a maria eu adoro</s>
  - <s>adoro bolachas maria</s>

- $P(W_N \mid W_1... W_{N-1}) \cong P(W_N \mid W_{N-1})$
- P(W | H) = count(HW)/count(H)
- Using bigrams:  $P(W_N \mid W_1...W_{N-1}) \cong P(W_N \mid W_{N-1})$ 
  - P(eu | adoro) = count(adoro eu)/count(adoro) = 0
  - P(a | adoro) = count(adoro a)/count(adoro) = 1/3
  - P(Maria | adoro) = count(adoro Maria)/count(adoro) = 0
  - P(adoro | adoro) = count(adoro adoro)/count(adoro) = 0
  - P(bolachas | adoro) = count(adoro bolachas)/count(adoro) = 1/3
  - $P(</s> \mid adoro) = count(adoro </s>)/count(adoro) = 1/3$

#### EXERCISE: TRIGRAMS

- First, some pre-processing:
  - <s>eu adoro a maria</s>
  - <s>a maria eu adoro</s>
  - <s>adoro bolachas maria</s>

$$P(W_N \mid W_1... W_{N-1}) \cong P(W_N \mid W_{N-2} W_{N-1})$$

$$P(W | H) = count(HW)/count(H)$$

### EXERCISE: TRIGRAMS

- First, some pre-processing:
  - <s>eu adoro a maria</s>
  - <s>a maria eu adoro</s>
  - <s>adoro bolachas maria</s>

- $P(W_N \mid W_1... W_{N-1}) \cong P(W_N \mid W_{N-2} W_{N-1})$
- $P(W \mid H) = count(HW)/count(H)$
- Using trigrams:  $P(W_N \mid W_1...W_{N-1}) \cong P(W_N \mid W_{N-2}W_{N-1})$ 
  - P(eu | eu adoro) = count(eu adoro eu)/count(eu adoro) = 0
  - P(a | eu adoro) = count(eu adoro a)/count(eu adoro) = 1/2
  - P(Maria | eu adoro) = count(eu adoro Maria)/count(eu adoro) = 0
  - P(adoro | eu adoro) = count(eu adoro adoro)/count(eu adoro) = 0
  - P(bolachas | eu adoro) = count(eu adoro bolachas )/count(eu adoro) = 0
  - P(</s> | eu adoro) = count(eu adoro </s>)/count(eu adoro) = 1/2



#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

#### SENTENCE PROBABILITY

• Consider now that you want to know how probable is a sentence  $W_1 \dots W_{N-1} \, W_N$ 

#### SENTENCE PROBABILITY

We can use the chain rule (of probability):

$$P(w_1^N) = P(w_1|\le >)*P(w_2 \mid \le > w_1)*...*P(w_N \mid w_1^{N-1})$$
  
=  $\prod_{k=1}^{N} P(w_k | w_1^{k-1})$ 

 We will have the same problem as before => some sequences were never seen. So, once again let us use the Markov assumption:

$$P(w_1^N) \cong \prod_{k=1}^N P(w_k|w_{k-1})$$
 (use bigrams)  
 $P(w_1^N) \cong \prod_{k=1}^N P(w_k|w_{k-2}w_{k-1})$  (use trigrams)

### ACTIVE LEARNING MOMENT



Taken from http://spring2015.cs-114.org/wp-content/uploads/2016/01/NgramModels.pdf

|         | I  | Want | То  | Eat | Chinese | Food | lunch |
|---------|----|------|-----|-----|---------|------|-------|
| I       | 8  | 1087 | 0   | 13  | 0       | 0    | 0     |
| Want    | 3  | 0    | 786 | 0   | 6       | 8    | 6     |
| То      | 3  | 0    | 10  | 860 | 3       | 0    | 12    |
| Eat     | 0  | 0    | 2   | 0   | 19      | 2    | 52    |
| Chinese | 2  | 0    | 0   | 0   | 0       | 120  | I     |
| Food    | 19 | 0    | 17  | 0   | 0       | 0    | 0     |
| Lunch   | 4  | 0    | 0   | 0   | 0       | I    | 0     |

Exercise:
What is the probability of the sentence "I eat Chinese food"

$$P(w_1^N) \cong \prod_{k=1}^N P(w_k|w_{k-1})$$

$$P(W \mid H) = count(HW)/count(H)$$

| Ι    | Want | То   | Eat | Chinese | Food | Lunch |
|------|------|------|-----|---------|------|-------|
| 3437 | 1215 | 3256 | 938 | 213     | 1506 | 459   |

|         | I  | Want | То  | Eat | Chinese | Food | lunch |
|---------|----|------|-----|-----|---------|------|-------|
| I       | 8  | 1087 | 0   | 13  | 0       | 0    | 0     |
| Want    | 3  | 0    | 786 | 0   | 6       | 8    | 6     |
| То      | 3  | 0    | 10  | 860 | 3       | 0    | 12    |
| Eat     | 0  | 0    | 2   | 0   | 19      | 2    | 52    |
| Chinese | 2  | 0    | 0   | 0   | 0       | 120  | I     |
| Food    | 19 | 0    | 17  | 0   | 0       | 0    | 0     |
| Lunch   | 4  | 0    | 0   | 0   | 0       | I    | 0     |

Exercise:
What is the probability of the sentence "I eat Chinese food"

What you need to know:

$$P(w_1^N) \cong \prod_{k=1}^N P(w_k|w_{k-1})$$

|P(W | H) = |count(HW)/count(H)

| Ι    | Want | То   | Eat | Chinese | Food | Lunch |
|------|------|------|-----|---------|------|-------|
| 3437 | 1215 | 3256 | 938 | 213     | 1506 | 459   |

P(I eat Chinese food) = P(I | <s>) \* P(eat | I) \* P(Chinese | eat) \* P(food | Chinese) \* P(</s> | food) Assumindo que não se sabe P(I | <s>) e \* P(</s> | food), então = C(I eat)/C(I) \* C(eat Chinese)/C(eat) \* C(Chinese food)/count(Chinese) = 13/3437\* 19/938\* 120/213 = ...

#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

### **EVALUATION OF N-GRAMS**

- Perplexity:
  - Still used
  - "Train" set T:
    - Calculate:
      - Model<sub>1</sub> = unigrams in T
      - Model<sub>2</sub> = bigrams in T
      - •

#### **EVALUATION OF N-GRAMS**

- Perplexity:
  - Test set:  $W=w_1 w_2 \dots w_N$ 
    - Calculate perplexity PP(W) (for instance different formulas):

$$PP(W) = P(w_1 w_2 ... w_n)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

There will be a different PP(W) for each model:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

• Lower value of PP(W) => better model (less "perplex")

#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

#### **CHALLENGES**

- N-gram models are biased to the training corpus
- N-grams are not appropriate to deal with long distance dependencies
  - Gollum loves in a very sick way his precious
- Data sparseness
  - Bigger N (N-grams) => sparse data
- How to deal with 0 counts?
  - Smoothing is the answer

#### Overview

- Learning objectives
- Topics
  - Concepts
    - Language Models
    - N-grams
  - Word prediction
  - Sentence probability
  - Evaluation of N-grams
  - Challenges
  - Smoothing
- Key takeaways
- Suggested readings

- Techniques that allow to deal with the fact that some sequences were never seen or have not been seen many times
- These techniques will change estimations/probability mass (and we need to guarantee that the counts still make sense => Robin Hood)



- Laplace or Add-one smoothing:
  - Add 1 to all the counts (and recalculate counts)

- Laplace or Add-one smoothing:
  - Example with bigrams:
    - Previously (Maximum Likelihood Estimation MLE):
      - $PMLE(W_N \mid W_{N-1}) = count(W_{N-1} \mid W_N)/count(W_{N-1})$
    - Now:
      - PLaplace(W<sub>N</sub> | W<sub>N-1</sub>) = (count(W<sub>N-1</sub> W<sub>N</sub>)+1)/(count(W<sub>N-1</sub>) + | V |)
         ( | V | is the number of words in the vocabulary V)

- Laplace or Add-one smoothing:
  - Example:
    - |V| = 100.000 words
    - count( $w_2$ ) = 10, count( $w_2 w_3$ ) = 9,
    - Previously:
      - $PMLE(W_3 | W_2) = count(W_2 W_3)/count(W_2) = 9/10 = 0.9$
    - Now:
      - Laplace( $W_3 \mid W_2$ ) = (count( $W_2W_3$ )+1)/(count( $W_2$ ) +  $\mid V \mid$ ) = 10/100.010

#### Problem:

```
If count(w_1) = 10, and count(w_1w_3) = 0,
Then:
P_{MLE}(W_3 \mid W_1) = 0, P_{Laplace}(W_3 \mid W_1) = 1/100.010
Too close
```

- There are many more smoothing techniques
  - Good-Turing Discounting
    - In order to estimate the probabilities of things that occur c times, it uses the counts of things that occurred (c+1) times (and then you will have to adjust everything again).

•

## KEY TAKEWAYS

#### KEY TAKEWAYS

- Understand concepts such as of N-grams, Markov assumptions and smoothing and Language Model
- Be able to apply N-grams to estimate the probability of a sentence or of a word, given a previous sequence of words

## SUGGESTED READINGS

### READINGS

- Sebenta: chapter about N-grams
- Jurafsky: 3.1, 3.3 and 3.6.1