Section 3: Linear Models

- in this section, we will look at
 - Linear regression model
 - Evaluating the linear regression model
 - Logistic regression model
 - Evaluating the logistic regression model

```
as pd
odel_selection import train_test_split
inear_model import LinearRegression
as sns
line
lib.pyplot as plt
```

csv('Datasets/Weather.csv')

n\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3049: DtypeWarning: Columns (7,8,18,25) ha ecify dtype option on import or set low_memory=False. y=interactivity, compiler=compiler, result=result)

SGF SD3	TSHDSBRSGF	PGT	ITH	FTI	FB	••••	YR	PoorWeather	Snowfall	MeanTemp	MinTemp	MaxTemp	WindGustSpd	Precip	te
NaN NaN	NaN	NaN	NaN	NaN	NaN		42	NaN	0	23.888889	22.22222	25.555556	NaN	1.016	-1
NaN NaN	NaN	NaN	NaN	NaN	NaN		42	NaN	0	25.555556	21.666667	28.888889	NaN	0	-2
NaN NaN	NaN	NaN	NaN	NaN	NaN		42	NaN	0	24.44444	22.22222	26.111111	NaN	2.54	-3
NaN NaN	NaN	NaN	NaN	NaN	NaN		42	NaN	0	24.444444	22.22222	26.666667	NaN	2.54	4
NaN NaN	NaN	NaN	NaN	NaN	NaN		42	NaN	0	24.44444	21.666667	26.666667	NaN	0	-5
ı		NaN	NaN	NaN	NaN		42	NaN	0	24.44444	22.222222	26.666667	NaN	2.54	

ns

In [5]: final_data.head()

Out[5]:

	STA	Date	Precip	WindGustSpd	MaxTemp	MinTemp	MeanTemp	Snowfall	PoorWeather	Y	₹	FB	FTI	ITH	PGT	TSHDSBRSGF	SD3	RHX	RHN
(10001	1942-7-1	1.016	0.0	25.555556	22.22222	23.888889	0	0	42	2	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	1 10001	1942-7-2	0	0.0	28.888889	21.666667	25.555556	0	0	42	2	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	2 10001	1942-7-3	2.54	0.0	26.111111	22.22222	24.44444	0	0	42	2	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	3 10001	1942-7-4	2.54	0.0	26.666667	22.22222	24.44444	0	0	42	2	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	1 10001	1942-7-5	0	0.0	26.666667	21.666667	24.44444	0	0	42	2	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0

5 rows × 31 columns

```
inal data['MaxTemp'].values.reshape(-1,1)
final data['MinTemp'].values.reshape(-1,1)
ia tập train, test
ain, X test, y train, y test = train test split(X, y, test size=0.2, random state=0)
i mô hình linear regression, học tập tập train
g = LinearRegression()
eq.fit(X train, y train)
rRegression(copy X=True, fit intercept=True, n jobs=None,
   normalize=False)
ed = linReq.predict(X test)
hình hóa với matplotlib
scatter([X test], [y test], color='gray')
olot(X test, y pred, color='red', linewidth=2)
show()
```

a sử chúng ta xây dụng mô hình cho cột MinTemp và cột MaxTemp

i toán predicting maximum temperature

Evaluating the linear regression model

- Gọi y là giá trị đúng, \hat{y} là giá trị dự đoán của mô hình.
- Ta có n điểm dữ liệu.
- Mean Absolute Error (MAE): MAE = $\frac{\sum_{i=1}^{n} |y_i \hat{y}_i|}{n}$
- Mean Square Error (MSE): MSE = $\frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n}$

- Root Mean Square Error (RMSE): RMSE = $\sqrt{\frac{\sum_{i=1}^{n}(y_i \hat{y}_i)^2}{n}}$
 - The most popular of the three

evaluate model performance

```
In [14]: # calculate MAE, MSE, RMSE
from sklearn import metrics
import numpy as np

print("MAE:", metrics.mean_absolute_error(y_test, y_pred))
print("MSE:", metrics.mean_squared_error(y_test, y_pred))
print("RMSE:", np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

MAE: 3.19932917837853
MSE: 17.631568097568447
RMSE: 4.198996082109204
```

In []:

Logistic Regression

```
In [32]: import pandas as pd
   import numpy as np
   from sklearn import preprocessing
   from sklearn.preprocessing import MinMaxScaler
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   %matplotlib inline
   import matplotlib.pyplot as plt

In [33]: data = pd.read_csv('Datasets/Sales-Win-Loss.csv')

Out[34]:
```

	Opportunity Number	Supplies Subgroup		Region	Route To Market	Elapsed Days In Sales Stage	Opportunity Result	Sales Stage Change Count	Days Identified Through Closing	Days Identified Through Qualified	Opportunity Amount USD	Client Size By Revenue	Client Size By Employee Count	From Client Past Two Years	Compi
0	1641984	Accessories	Car	Northwest	Fields Sales	76	Won	13	104	101	0	5	5	0	Unkı
1	1658010	Accessories	Car	Pacific	Reseller	63	Loss	2	163	163	0	3	5	0	Unkı
2	1674737	Motorcycle Parts	Non- auto	Pacific	Reseller	24	Won	7	82	82	7750	1	1	0	Unkı
3	1675224	Shelters	Non- auto	Midwest	Reseller	16	Loss	5	124	124	0	1	1	0	Kı
4	1689785	Accessories	Car	Pacific	Reseller	69	Loss	11	91	13	69756	1	1	0	Unkı

Total

Total

Revenue

In [39]: final_data.head()

Out[39]:

	Opportunity Number	Elapsed Days In Sales Stage	Sales Stage Change Count	Total Days Identified Through Closing	Total Days Identified Through Qualified	Opportunity Amount USD	Client Size By Revenue	Client Size By Employee Count	Revenue From Client Past Two Years	Ratio Days Identified To Total Days	Ratio Days Validated To Total Days	Ratio Days Qualified To Total Days		result	Supplies_Sub(
0	1641984	76	13	104	101	0	5	5	0	0.69636	0.113985	0.154215	1	1	
1	1658010	63	2	163	163	0	3	5	0	0.00000	1.000000	0.000000	1	0	
2	1674737	24	7	82	82	7750	1	1	0	1.00000	0.000000	0.000000	1	1	
3	1675224	16	5	124	124	0	1	1	0	1.00000	0.000000	0.000000	1	0	
4	1689785	69	11	91	13	69756	1	1	0	0.00000	0.141125	0.000000	4	0	
<															>

In [41]: final_data.head()

Out[41]:

	Opportunity Number	Elapsed Days In Sales Stage	Sales Stage Change Count	Total Days Identified Through Closing	Total Days Identified Through Qualified	Opportunity Amount USD	Client Size By Revenue	Client Size By Employee Count	Revenue From Client Past Two Years	Ratio Days Identified To Total Days	Ratio Days Validated To Total Days	Ratio Days Qualified To Total Days	Deal Size Category	result	Supplies_S
0	0.000000	0.361905	0.545455	0.500000	0.485577	0.000000	5	5	0.0	0.69636	0.113985	0.154215	1	1	
1	0.001896	0.300000	0.045455	0.783654	0.783654	0.000000	3	5	0.0	0.00000	1.000000	0.000000	1	0	
2	0.003875	0.114286	0.272727	0.394231	0.394231	0.007750	1	1	0.0	1.00000	0.000000	0.000000	1	1	
3	0.003933	0.076190	0.181818	0.596154	0.596154	0.000000	1	1	0.0	1.00000	0.000000	0.000000	1	0	
4	0.005655	0.328571	0.454545	0.437500	0.062500	0.069756	1	1	0.0	0.00000	0.141125	0.000000	4	0	
<															>

```
In [42]: # prepare data
         y = final data["result"]
         X = final data.loc[:, final data.columns != "result"]
         X train, X test, y train, y test = train test split(X, y, test size=0.2)
In [43]: # build the model without removing any outliers
         logreg = LogisticRegression()
         logreg.fit(X train, y train)
         C:\Users\platon\Anaconda3\lib\site-packages\sklearn\linear model\logistic.py:433: FutureWarning: Default solver will be cha
         nged to 'lbfgs' in 0.22. Specify a solver to silence this warning.
           FutureWarning)
Out[43]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept scaling=1, max iter=100, multi class='warn',
                   n jobs=None, penalty='12', random state=None, solver='warn',
                   tol=0.0001, verbose=0, warm start=False)
In [46]: y pred = logreg.predict(X test)
         print('Accuracy of logistic regression classifier on test set: {:.4f}'.format(logreg.score(X test, y test)))
         Accuracy of logistic regression classifier on test set: 0.8357
In [45]: pd.crosstab(y test, y pred, rownames=['Actual Result'], colnames=['Predicted Result'])
Out[45]:
          Predicted Result
                          0 1
            Actual Result
                     0 11447 772
                     1 1792 1594
```

Evaluating the Logistic Regression Model

- Confusion matrix: Accuracy, Recall, Precision, F1 Score
- ROC (receiver operating characteristic) curve
 - The area under the ROC curve, or AUC (Area Under Curve)

		True co	ndition						
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population				
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	sion = Σ False disco Σ False Disco				
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative				
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $Power = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR	Diagnostic odds ratio	F ₁ score =			
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall			

ROC

A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.

more information here: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

```
In [54]: # calculate the fpr and tpr for all thresholds of the classification
    probs = logreg.predict_proba(X_test)
    preds = probs[:,1]
    fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
    roc_auc = metrics.auc(fpr, tpr)

    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.4f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.slabel('False Positive Rate')
    plt.show()
```


Confusion matrix, F1 score

```
In [68]: from sklearn.metrics import confusion_matrix
    print(confusion_matrix(y_test, y_pred))

[[11447 772]
    [ 1792 1594]]

In [70]: from sklearn.metrics import f1_score
    print(f1_score(y_test, y_pred, average='binary'))

0.5542420027816413
```

New in scikit-learn 0.22

- Conda
 - conda update -n base -c defaults conda
 - conda update --force conda
 - conda upgrade conda

Confusion matrix, without normalization
[[11289 722]
[1941 1653]]
Normalized confusion matrix
[[0.93988844 0.06011156]
[0.54006678 0.45993322]]

Confusion matrix, without normalization

