

MIE1622 Assignment 3 Tutorial

Credit Risk Modeling and Simulation

Xiaotian (Gilbert) Zhu

March 16, 2018 University of Toronto xiaotian.zhu@mail.utoronto.ca

In-sample vs Out-of-sample

• 2 Monte Carlo in-sample scenarios

• 1 out-of-sample scenario (Monte Carlo) as the true distribution

Credit worthiness Index

sqrt_rho = (chol(rho))';
% Cholesky decomp of rho (for generating correlated Normal random numbers)

Loss for each bond

- [Ltemp, CS] = max(prob, [], 2);
- exposure(:, 1) = (1-recov_rate) .* exposure(:, 1);
- CS_Bdry = norminv(cumsum(prob(:,1:C-1), 2));

Use exposure and CS_Bdry to determine losses

Var and CVar Estimation

From MC simulation:

- Given a random sample of size N, let $\lambda_{(k)}$ be the k^{th} order statistic, i.e., $\lambda_{(1)} \leq \lambda_{(2)} \leq \ldots \leq \lambda_{(N)}$
 - An estimate of VaR_{α} is $VaR_{\alpha,N} = \ell_{(\lceil N\alpha \rceil)}$
 - An estimate of CVaR_{α} is

$$CVaR_{\alpha,N} = \frac{1}{N(1-\alpha)} \left[(\lceil N\alpha \rceil - N\alpha) \,\ell_{(\lceil N\alpha \rceil)} + \sum_{k=\lceil N\alpha \rceil+1}^{N} \ell_{(k)} \right]$$

Var and CVar Estimation

From Normal Distribution:

VaR for Normally distributed losses:

$$\operatorname{VaR}_{\alpha}^{\mathcal{N}} = \mu_{\mathcal{L}} + \Phi^{-1}(\alpha) \cdot \sigma_{\mathcal{L}}$$

CVaR for Normally distributed losses:

$$CVaR_{\alpha}^{\mathcal{N}} = \mu_{\mathcal{L}} + \frac{\phi(\Phi^{-1}(\alpha))}{1 - \alpha} \cdot \sigma_{\mathcal{L}}$$

 Φ is the cdf of $\mathcal{N}(0,1)$ ϕ is the pdf of $\mathcal{N}(0,1)$

Mu and sigma from MC simulation

Portfolio Loss plot

