Regression Analysis

On the King's County Housing Dataset

Data Source

Kings County Data Set

Assumptions of homoscedasticity are violated

Assumptions of normality are also violated

Thus, we do a Box-Cox Transformation of the target data (price) to see whether we can fix model assumption violations

Homoscedasticity: Before Box-Cox Transformation

Homoscedasticity: After Box-Cox Transformation

Normality: Before Box-Cox

Normality: After Box-Cox

Eliminating Multicollinearity

As we can see above. 'bathroom', 'grade', 'sqft_above', and 'sqft_living15' are highly correlated, so for the stability of the model, we will exclude them from our predictor variables in our regression analysis.

Turning Zipcode into Dummy Variables

Since there is a big difference of housing prices between poor and rich neighborhoods, it should be included in our multiple regression analysis, at the cost of greatly increasing the complexity of the model.

Multiple Regression

OLS Regression Results			
Dep. Variable:	price_boxcox	R-squared:	0.833
Model:	OLS	Adj. R-squared:	0.832
Method:	Least Squares	F-statistic:	765.1
Date:	Sun, 20 Oct 2019	Prob (F-statistic):	0.00
Time:	14:59:41	Log-Likelihood:	41288.
No. Observations:	12343	AIC:	-8.241e+04
Df Residuals:	12262	BIC:	-8.181e+04
Df Model:	80		
Covariance Type:	nonrobust		

price_boxcox~bedrooms+sqft_living+sqft_lot+floors+waterfront+view+conditio n+sqft_basement+yr_built+yr_renovated+sqft_lot15+zipcode_cat_98002+zipco de_cat_98003+zipcode_cat_98004+zipcode_cat_98005+zipcode_cat_98006+zi pcode_cat_98007+zipcode_cat_98008+zipcode_cat_98010+zipcode_cat_9801 1+zipcode_cat_98014+zipcode_cat_98019+zipcode_cat_98022+zipcode_cat_9 8023+zipcode_cat_98024+zipcode_cat_98027+zipcode_cat_98028+zipcode_c at_98029+zipcode_cat_98030+zipcode_cat_98031+zipcode_cat_98032+zipco de_cat_98033+zipcode_cat_98034+zipcode_cat_98038+zipcode_cat_98039+zi pcode_cat_98040+zipcode_cat_98042+zipcode_cat_98045+zipcode_cat_9805 2+zipcode_cat_98053+zipcode_cat_98055+zipcode_cat_98056+zipcode_cat_9 8058+zipcode_cat_98059+zipcode_cat_98065+zipcode_cat_98070+zipcode_c at_98072+zipcode_cat_98074+zipcode_cat_98075+zipcode_cat_98077+zipco de_cat_98092+zipcode_cat_98102+zipcode_cat_98103+zipcode_cat_98105+zi pcode_cat_98106+zipcode_cat_98107+zipcode_cat_98108+zipcode_cat_9810 9+zipcode_cat_98112+zipcode_cat_98115+zipcode_cat_98116+zipcode_cat_9 8117+zipcode_cat_98118+zipcode_cat_98119+zipcode_cat_98122+zipcode_c at_98125+zipcode_cat_98126+zipcode_cat_98133+zipcode_cat_98136+zipco de_cat_98144+zipcode_cat_98146+zipcode_cat_98148+zipcode_cat_98155+zi pcode_cat_98166+zipcode_cat_98168+zipcode_cat_98177+zipcode_cat_9817 8+zipcode_cat_98188+zipcode_cat_98198+zipcode_cat_98199

Checking for Overfitting

We split the data set by to 80/20 rule. We did multiple regression on the training data set, then we use this predictor to compute the mean square error in the testing data set, and compare it with the MSE from the training dataset.

The MSE of the testing data set is 14.071, and the MSE of the training data set is 14.072, thus there is no overfitting, and regularization is not needed.