Neural Networks

Dr. Jameel Malik

muhammad.jameel@seecs.edu.pk

Images to Digits - A Mapping from 784 to 10 Dimensions

output vector (10 dim)

[Partial image courtesy: Nielsen]

Loss Function $L_{i}\left(\boldsymbol{\theta}\right)\mapsto\mathbb{R}$

Compare output layer to the true label

$$L_i(\boldsymbol{\theta}) = ||\text{output}_i - \text{label}_i||^2$$

The Parameters We Want

• Parameter θ^* that minimize the sum of avg. squared losses over all examples

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} L\left(oldsymbol{ heta}
ight) = rg \min_{oldsymbol{ heta}} \sum_i ||f(oldsymbol{ heta}, oldsymbol{x}_i) - oldsymbol{y}_i||^2$$

- The squared loss is only one possible loss, several other options available
- Goal: Find the parameter vector θ^* for the labeled training set $\{(x_i,y_i)\}_{i=1}^I$ given the loss L

Gradient Descent Algorithm -- Recap

- Steps in the *gradient descent algorithm*:
 - 1. Randomly initialize the model parameters, θ^0
 - 2. Compute the gradient of the loss function at the initial parameters θ^0 : $\nabla \mathcal{L}(\theta^0)$
 - 3. Update the parameters as: $\theta^{new} = \theta^0 \alpha \nabla \mathcal{L}(\theta^0)$
 - \circ Where α is the learning rate
 - 4. Go to step 2 and repeat (until a terminating criterion is reached)

- Convolutional neural networks (CNNs) were primarily designed for image data
 - Capture the spatial/contextual information in images.
- CNNs have less parameters than MLPs (fully-connected layers)
- Example:
 - MLP sees or processes a flattened 1D vector (784 dimensions) of an MNIST image.
 - CNN sees or processes the original image of MNIST in 2D

• A convolutional filter slides (i.e., convolves) across the image

2D convolution

Picture from: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

• A convolutional filter slides (i.e., convolves) across the image

• A convolutional filter slides (i.e., convolves) across the image

2D Convolution

$$y[m,n] = x[m,n] \circledast h[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i,j] \cdot h[m-i,n-j]$$

Laplacian Filter (3x3)

$$\left[\begin{array}{cccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right]$$

Original Image

Laplacian filtered output

Convolution result (activation/feature map)

Convolution Operation:

- When the convolutional filters are scanned over the image, they capture useful features
 - E.g., edge detection by convolutions

Filter

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right)$$

Input Image

Convoluted Image

How CNNs Work

- The CNN builds up an image in a hierarchical fashion.
- Edges and shapes (local features) are recognized and pieced together to form more complex shapes (compound features) such as eye and ear, eventually assembling the target image.
- This hierarchical construction is achieved using convolution layers.

32x32x3 image -> preserve spatial structure

• 32x32x3 image

• 5x5x3 filter

- Convolve the filter with the image
- i.e. "slide over the image spatially, computing dot products"

• 32x32x3 image

• 5x5x3 filter

• Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

 x_0

The brain/neuron view of CONV Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

animatedai.github.io

two more layers to go: POOL/FC

Pooling layer:

- *Max pooling*: reports the maximum output within a rectangular neighborhood
- Average pooling: reports the average output of a rectangular neighborhood
- Pooling layers reduce the spatial size of the feature maps
 - Reduce the number of parameters, prevent overfitting

1	3	5	3
4	2	3	1
3	1	1	3
0	1	0	4

Input Matrix MaxPool with a 2×2 filter with stride of 2

4	5
3	4

Output Matrix

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

General CNN Architecture for MNIST Digit Classification

Inference

Training

General CNN Architecture for MNIST Digit Classification

General CNN Architecture for MNIST Digit Classification

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 32)	320
conv2d_2 (Conv2D)	(None, 24, 24, 16)	4,624
conv2d_3 (Conv2D)	(None, 22, 22, 8)	1,160
max_pooling2d (MaxPooling2D)	(None, 11, 11, 8)	0
flatten (Flatten)	(None, 968)	0
dense (Dense)	(None, 10)	9,690

```
model = Sequential()
model.add(Input(shape=(28, 28, 1), name='input_layer'))
model.add(Conv2D(32, (3, 3), activation='relu', name='conv2d_1'))
model.add(Conv2D(16, (3, 3), activation='relu', name='conv2d_2'))
model.add(Conv2D(8, (3, 3), activation='relu', name='conv2d_3'))
model.add(MaxPooling2D(pool_size=(2, 2), name='max_pooling2d'))
model.add(Flatten(name='flatten'))
model.add(Dense(10, activation='softmax', name='dense'))
```