- Capital Budgeting
- Cost of Capital

Capital Budgeting

Capital Budgeting

- Identify and evaluate projects
- Most important responsibility
 - Purchase of costly long-term assets
 - Principle apply to other corporate decisions
 - o Consistent with primary goal of maximizing shareholder value

Capital Budgeting Steps

- Idea generation
 - Most important step
- Analyse project proposals
 - o Based on expected future cash flow
- Create the firm-wide capital budget
 - Prioritize profitable projects according to timing of cash flows, available resources, overall strategic plan
- Monitoring decisions and conducting a post-audit
 - o Follow up, compare results
 - Identify systematic errors in forecasting process

Project Categories

- Replacement projects to maintain
- Replacement projects for cost reduction
- Expansion
 - Very detailed analysis
- New project or market development
- Mandatory projects
 - Required by government or insurance
 - o Little or no revenue
- Other projects

Capital Budgeting Principles

- Decisions based on cash flow, not accounting income 现金流
 - o Incremental cash flows
 - Cash flow will occur if the project is undertaken
 - Sunk costs
 - Cannot be avoid, even if the project is not undertaken
 - Consulting fee
 - Externalities
 - Effects may have on other frim cash flows
 - Cannibalization/negative externalities
 - A new project takes sales from an existing project
 - Positive externalities

- o Conventional cash flow pattern
 - Sign on cash flow changes only once, with one or more cash outflows
- Unconventional cash flows
 - More than one sign change
- Cash flows are based on opportunity costs 机会成本
 - o opportunity costs
 - cash flows that a firm will lose by undertaking the project
- timing of cash flows is important 时间点
 - o earlier is better
- cash flows are analysed on an after-tax basis 税后收益
- **financing costs** are reflected in the project's **required rate of return**

Independent or mutually exclusive projects 独立和互斥项目

- independent
 - o unrelated
- mutually exclusive
 - o only one can be accepted

Project sequencing 项目顺序

• projects must be undertaken in a certain order, investing a project today creates opportunity to invest in other projects in the future

Unlimited Funds vs. Capital Rationing

- Unlimited fund
 - o invest all projects with expected return that exceed the cost of capital
- capital rationing
 - must rationally prioritize the capital

Net present value (NPV)

- NPV = $CF_0 + \frac{CF_1}{1+k} + \dots + \frac{CF_n}{(1+k)^n} = \sum_{t=0}^n \frac{CF_t}{(1+k)^t}$
 - o CF₀: initial investment
 - o CF_t: after-tax cash flow
 - o k: required rate of return
- NPV: expected present value of future cash inflows initial cash outflows
- Value
 - NPV > 0: create value
 - NPV = 0: no value
 - NPV < 0: decrease value
- Independent projects
 - o accept all projects with positive NPV
 - o reject all projects with **negative** NPV

Internal Rate of Return (IRR)

- discount rate that make NPV = 0
 - PV(inflows) = PV(outflows)
 - \circ NPV = 0 \rightarrow IRR

- Decision Rule
 - IRR > required rate of return \rightarrow accept
 - IRR < required rate of return \rightarrow reject

Payback Period 多少年收回成本、流动性

- Number of years it takes to recover the initial cost of an investment
 - o net cash flows (NCF)
 - Cumulative net cash flows (CNCF)
 - o $minimze_t$ for which $CNCF_t = 0$
 - o $CNCF_{t-1} < 0$, and $CNCF_t > 0$
 - Linear interpolation: $PP = t 1 + \frac{-CNCF_{t-1}}{NCF_t}$
- A good measure of Liquidity
- Drawback
 - No time value of money
 - No cash flows beyond the payback period
 - Useless as a measure of profitability

Discounted Payback Period 多少年收回成本、流动性

- Uses present values of estimated cash flows
- DPP is larger than PP (DPP > PP) 折现值变小,因此需要跟多的时间
- Similar to PP, but use discounted cash flow
 - net cash flows (NCF) -> discounted net cash flow (DNCF) -> cumulative discounted net cash flows (CDNCF)

Profitability index (PI)

- present value of a project future cash flows divided by initial cash inflow
- PI = $\frac{PV(\text{future cash flows})}{|CF_0|} = 1 + \frac{NPV}{|CF_0|}$
 - \circ NPV = $-|CF_0| + PV(future\ outflows)$
 - $\circ \to PV(future\ outflows) = |CF_0| + NPV$
- Decision
 - \circ PI > 1 \rightarrow accept
 - \circ PI < 1 \rightarrow reject

NPV Profile

- Crossover rate
 - o Difference in timing
 - O Difference in Cash flow -> NPV=0 -> IRR -> crossover rate

NPV

- advantages
 - Direct measure of expected increase in firm value
 - o Theoretically the best measure
- Weakness
 - Fail to consider project size (budget dollar)

IRR

- Advantages
 - Measure profitability as a percentage
 - o Provides information on the margin of safety
- Weakness
 - Possibility of ranking for mutually exclusive projects different from NPV
 - o Can have no or multiple IRR
 - Unconventional cash flow

NPV and IRR Conflicts

- Use NPV for decision for mutually exclusive projects
- Difference: Cash flow timing and Project size
- NPV
 - o Cash flow is reinvested at costs of capital (discount rate used for NPV)
 - o Realistic assumption
- IRR
 - o Assume reinvested at project's IRR
 - Unrealistic

NPV and company value

- A positive NPV project should cause a proportionate increase in stock price
- Raise expectation

Cost of Capital

Weighted average cost of capital (WACC)

- Is also referred to as Marginal cost of capital (MCC)
- Financing department
 - Reduce cost of capital
 - o Sources: common equity, preferred equity, and debt
 - Long-run target weight for each funding sources
- Investment departments
 - WACC reflects the average costs
 - Not appropriate for evaluating new projects
 - Adjust upward for projects with greater-than-average risk
 - o Adjust **downward** for projects with less-than-average risk

WACC

- Reflect the average cost
- WACC = $w_d \times k_d \times (1 t) + w_p \times k_p + w_c \times k_c$
 - o k_d : cost of before tax debt
 - o $k_d \times (1-t)$: cost of after tax debt
 - \circ k_p : cost of preferred stock
 - \circ k_n : cost common equity
- Should use target capital structure

Tax issues

• Interest paid to corporate debt is tax deductible -> focus on after-tax cost of capital

Weight - Target Capital Structure

- Use current (market values) capital structure
 - o Incorporate a noticeable trend
- Use **industry** average capital structure
 - Arithmetic average of current market weights from a sample of industry firms

WACC and NPV

- Projects do not have the same risk, should adjust WACC when computing NPV
- WACC existing
 - o Based on existing level of firm risk
 - Appropriate discount rate for existing projects
 - Should adjust it based on specific project risk
 - Higher risk -> higher WACC
- WACC assumption
 - Capital structure of a firm will **remain** at the target capital structure over the life of the project

Optimal capital budget

Marginal cost of capital curve

- o WACC increase as more capital are raised
- Investment opportunity schedule
 - o Order projects from highest to lowest IRR
- Intersection
 - o Fund projects with IRR > WACC

Cost of debt capital

- k_d the market interest rate (YTM)
- Publicly traded company -> market YTM
- Not publicly traded company
 - Matrix pricing: use existing debt with the same rating and maturity
- covenants or seniority
 - Make adjustment
- Floating-rate debt
 - Use longer-term cost of debt

Cost of Preferred Stock (non-callable, nonconvertible)

- $k_p = \frac{D_p}{P}$
- dividend divided by market price

Cost of Equity

- CAPM
 - $\circ \quad k_c = R_f + \beta \times (R_m R_f)$
 - \circ β project beta
- Dividend discount model

$$\circ k_c = \frac{D_1}{P_0} + g$$

- o g is the growth rate
 - use the growth rate projected by security analysts
 - Use the sustainable growth rate

• $g = retention rate \times ROE = (1 - payout) \times ROE$

- o D_1 is the expected (next year's) dividend
- Bond yield plus risk premium
 - o $k_c = long term bond yield + risk premium$
 - o Risk premium is usually 3% to 5% to the yield of long-term debt

CAPM project beta (un-lever and re-lever)

- Project equity beta
 - Measure of its systematic or market risk
- Firm beta
 - o business risks of its projects (lines of business)
 - o its financial structure
- Pure-play method -> Comparable company
 - Find publicly traded firms who purely engage in a business similar to that of the project

$$\circ \quad \beta_{\text{asset}} \times \left((1 - t_c) \times D_c + E_c \right) = \beta_{\text{equity}} \times E_c$$

$$\Rightarrow \beta_{\text{asset}} + (1 - t_c) \times \frac{B_{equity}}{1 + (1 - t_c) \times \frac{D_c}{E_c}}$$

• Project Equity beta

$$\circ \quad \beta_{\text{asset}} = \beta_{asset} \times \left(1 + (1 - t) \times \frac{D}{E}\right) = \beta_{equity} \times \frac{1 + (1 - t) \times \frac{D}{E}}{1 + (1 - t_c) \times \frac{D_c}{E_c}}$$

- For a given set of projects, the greater it relies on debt financing, the greater its equity beta
- Challenges
 - o Beta is estimated using historical data
 - o Estimate is affected by which index is chosen to represent the market return
 - Betas are believed to revert toward 1 over time, need to adjust for this tendency
 - Adjust beta of small-capitalization firms upward

Country Risk Premium

- Country risk in developing countries
- $k_c = R_f + \beta \times (R_m R_f + CRP)$
- Sovereign yield spread
 - Difference in yields between developing country's government bonds (denominated in developed market's currency) and Treasury bonds of a similar maturity
- Volatility of country's equity market
- Volatility of country's government bond market (denominated in developed market's currency)
- $CRP = sovereign \ yield \ spread \times \frac{equity \ market \ volatility}{bond \ market \ volatility}$

Marginal Cost of Capital Schedule (MCCS)

- Marginal cost of capital (MCC) is the cost of last new dollar of capital a firm raises
- Raise more capital, the cost of different sources of finance will increase

- Issue new equity is more expensive than using retained earnings due to floatation costs
- Margin cost of capital schedule
 - o WACC for different amount of financing
- Break points
 - o The cost of one finance component (source) change
 - o break point = $\frac{\text{capital amount whose cost change}}{\text{component with the second of the second of$

Flotation cost

- fees charged by investment bankers to raise equity capital for a firm
- wrong way: consider it in the cost of equity
- flotation costs are a cash outflow at the beginning
 - \circ flotation cost = capital \times equity weight \times flotation percentage
- if it is tax redactable
 - o new flotation cost = flotation cost \times (1 t)
- it won't affect WACC
- it only affects NPV (extra cash outflow, adjust initial project cost)