Lecture 02: Relational Database Model

CS 1555: Database Management Systems

Constantinos Costa

www.cs.pitt.edu/~nlf4/cs1555/ (tentative)

Jan 10, 2019, 16:00-17:15 University of Pittsburgh, Pittsburgh, PA

Lectures based: P. Chrysanthis & N. Farnan Lectures

The relational data model

- O Proposed by E.F. "Ted" Codd in 1970
 - O "A Relational Model of Data for Large Shared Data Banks."
 - O Built on the concept of the mathematical relation
 - O Codd won a Turing award for this work in 1981
- First systems came about in 1977-1978
 - System-R and Ingres
- O First commercial systems in the 1980's
 - O IBM and Oracle

CS 1555: Database Management Systems - Constantinos Costa

3 of 29

Example of CODASYL Database

Student Records

FIND ANY <record-type> USING <fields list>
GET {FIRST, NEXT, LAST} MEMBER WITHIN <set-type>
WHERE <condition>

CS 1555: Database Management Systems - Constantinos Costa

Relational Model

SID	Name	Major	GPA
546007	Susan	cs	3.80
546100	Bob	CoE	3.65
546500	Bill	cs	3.70

CID	Name
CS 1555	DB
CS 1530	SW
CS 1550	os

SID	CID	Grade
546007	CS 1550	Α
546007	CS 1530	B+
546100	CS 1550	В

Students

Courses

Enrollment

- It is the most popular implementation model
 - Simplest, most uniform data structures, and is the most formal of all data model
- Both entity types and relationship types are represented by *relations*, i.e., tables

CS 1555: Database Management Systems - Constantinos Costa

5 of 29

The Mathematical Concept of Relation

• Let D₁, D₂,..., D_n be domains (not necessarily distinct), the Cartesian product of these *n* sets

$$D_1 \times D_2 \times ... \times D_n$$

is the set of all possible ordered n-tuples

$$(v_1, v_2, ..., v_n)$$
 such that $v_1 \in D_1, v_2 \in D_2, ..., v_n \in D_n$

- E.g., let D₁= {Nick, Susan} and D₂= {BS, MS, PhD}
 D₁ x D₂ = {(Nick, BS), (Nick, MS), (Nick, PhD), (Susan, BS), (Susan, MS), (Susan, PhD)}
- A relation is any subset of the Cartesian product
 - R₁= {(Nick, BS),(Nick, MS), (Susan, BS), (Susan, PhD)}
 - $R_2 = \{\}$

CS 1555: Database Management Systems - Constantinos Costa

Two Notations

• Relation schema R is denoted by

- defines the name, the names of the attributes of that relation, and domains of those attributes
- Set-of-attributes
 - A tuple t of r(R) is denoted by

$$t = \{A_1: v_1, A_2: v_2, ..., A_n: v_n\}, v_i \in D_i, 1 \le i \le n \quad \text{or}$$

$$t = \langle (A_1: v_1), (A_2: v_2), ..., (A_n: v_n) >, v_i \in D_i, 1 \le i \le n$$

- List of attributes
 - A tuple t of r(R) is denoted by

$$t = (v_1, v_2, ..., v_n)$$
 , $v_i \in D_i$, $1 \le i \le n$
CS 1555: Database Management Systems - Constantinos Costa

7 of 29

SQL Insert

Implicit (list): STUDENT(SID, Name, Major, GPA)
 INSERT INTO STUDENT

VALUES (165, 'Susan Jones', 'CS', 0.00);

• Explicit (set):

INSERT INTO STUDENT (SID, Name)

VALUES (165, 'Susan Jones');

INSERT INTO STUDENT (Name, SID)

VALUES ('Susan Jones', 165);

Values-clause may be a list of tuples in some
 systems

CS 1555: Database Management Systems - Constantinos Costa

Properties of Relations

- A relation is finite
- There are no duplicate tuples in a relation
 - Recall a relation is a set of tuples
- Order of tuples in a relation is not important
 - Many logical orders can be specified on a relation
- A value may appear multiple times in a column
- Order of attribute values in a tuple is
 - important in a *list-of-attributes* definition
 - not important in a *set-of-attributes* definition

 CS 1555: Database Management Systems Constantinos Costa

9 of 29

Relation Schema

STUDENT

SID	LName	Name	Class	Major
123	Smith	John	3	CS
395	Aiken	Mary	4	CS

- What is the meaning?
- A relation schema R specifies
 - The name of the relation
 - the attribute names A_i of R
 - the domain D_i (data type + format) for each attribute A_i
- data type is a set of atomic data values:
 - no attribute is a set-valued (1st Normal Form, 1-NF)
 - no attribute is composite
 - format specifies the representation of a data value

CS 1555: Database Management Systems - Constantinos Costa

Example Table Schema

Schema of STUDENT(SID, Name, Major, GPA)

```
CREATE TABLE STUDENT
( SID INTEGER,
 Name CHAR(20),
 Major CHAR(4),
 GPA DEC(3,2)
```


);

CS 1555: Database Management Systems - Constantinos Costa

11 of 29

Creating a Schema

- □ Corresponding database is at an empty state!
- Initial state when the database is populated (loaded)
- Domain (type) of each field is specified and enforced by the DBMS whenever tuples are <u>added</u> or modified

CS 1555: Database Management Systems - Constantinos Costa

Example: Domain Constraints

SID	Name	Login	Age	GPA
546007	Jones	jones@cs	18	3.4
546100	Smith	smith@ee	18	3.2
546500	Smith	smith@math	19	3.8

• Example of IC Violation:

UPDATE Students S

SET S.Age = `Eighteen`★ ★

WHERE S.Name = Jones;

CS 1555: Database Management Systems - Constantinos Costa

13 of 29

Useful Terms

- <u>Cardinality</u> of a relation r(R): # of tuples in r(R) (denoted by |r(R)|)
- Arity or degree of r(R): # of attributes in R (denoted by |R|)

SID	Degree	Major	Year
123	BS	Math	1992
064	BA	History	1991
445	PhD	CS	1999

- ♦ $|r(R)| \ge 0$ And |R| > 0
- Cardinality is property of a relation
- Arity is property of relation schema or a relation

CS 1555: Database Management Systems - Constantinos Costa

Relational Database Schema

A database schema is a set of relation schemas

and a set of *integrity constraints*

- Structural Integrity Constraints
 - key constraints: uniqueness of keys
 - entity integrity constraint:
 no primary key value can be NULL
 - referential integrity constraint
- Semantic Integrity Constraints
 - E.g., ??

CS 1555: Database Management Systems - Constantinos Costa

15 of 29

Integrity Constraints (ICs)

- **IC**: condition that must be true for *any* instance of the database (e.g., domain constraints)
 - A legal instance of a relation is one that satisfies all specified ICs
 - ICs are specified when schema is defined
 - ICs are enforced when tables are modified

CS 1555: Database Management Systems - Constantinos Costa

Example Table Schema in SQL (2)

Schema of STUDENT(SID, SSN, Name, Login, GPA)

```
CREATE TABLE STUDENT
 SID
      INTEGER NOT NULL,
 SSN CHAR(9),
 Name CHAR(20),
 Login CHAR(15),
 GPA
       DEC(3,2),
  CONSTRAINT STUDENT_PK PRIMARY KEY (SID),
  CONSTRAINT STUDENT_UN_SSN
    UNIQUE (SSN)
 CONSTRAINT STUDENT_UN_Login
    UNIQUE (Login)
);
                                                       17 of 29
     CS 1555: Database Management Systems - Constantinos Costa
```

Example Table Schema in SQL (3)

Schema of STUDENT(SID, SSN, Name, Login, GPA)

Identifying the Key

 What is the key in relation GRADUATE=(SID, Degree, Major, Year)?

SID	Degree	Major	Year
123	BS	CS	1992
123	MS	CS	1993
064	BA	History	1991
445	PhD	CS	1999
123	BS	Math	1992
123	MS	Math	1992

CS 1555: Database Management Systems - Constantinos Costa

Foreign Key & Primary Key

- Foreign key: Set of fields in one relation that is used to "refer" to a tuple in another relation
 - Must correspond to primary key of the referred relation
 - E.g. SID is a foreign key referring to Students

CS 1555: Database Management Systems - Constantinos Costa

21 of 29

Foreign Key Constraints

- If foreign key constraints are enforced, referential integrity is achieved
 - E.g.: Only students can enroll in a class
 - Only students listed in the "Students" relation should be allowed to enroll for courses
- Like a "logical pointer"
 - There shouldn't be dangling references
 - · Either valid PK or NULL

CS 1555: Database Management Systems - Constantinos Costa

Any Attribute can be a Foreign Key

Faculty

FID Name Area 007 Panos DB 100 Daniel OS 500 Adriana AI

† Primary Key

Courses

<u>CID</u>	Name	Instructor
CS 1555	DB	007
CS 1530	SW	NULL
CS 1550	os	100
Primary Key	Foreign Key	

- Foreign key: Set of fields in one relation that is used to "refer" to a tuple in another relation
 - Must correspond to primary key of the referred relation
 - If not part of a key, it could be NULL

CS 1555: Database Management Systems - Constantinos Costa

Referential Integrity Constraints

SID	Name	Age		SID	CID	Grade		<u>CID</u>	CName
546007	<u> </u>	18	_	546007	CS 1555	Α	\rightarrow	CS 1555	DB
				546007	CS1530	B+		CS1530	SW
546100	Bob	19		546500	CS 1555	В	$/ \searrow$	CS 1550	os
546500	₄Bill——	20	l '						

Students

Enrolled

Courses

· Any IC Violation?

DELETE

FROM Enrolled E

WHERE E.SID = 546500;

No Violations! >

CS 1555: Database Management Systems - Constantinos Costa

25 of 29

Referential Integrity Enforcement

- What are the alternatives when a "Students" tuple is deleted?
 - 1. Delete all Enrolled tuples that refer to it
 - 2. Disallow deletion of a Students tuple that is referred to
 - **3. Set** *SID* in Enrolled tuples that refer to it to some "default" *SID* (e.g., 000000)
 - **4.** If SID was not part of the primary key, **Set** SID to a special value "NULL", denoting "unknown" or "inapplicable"

CS 1555: Database Management Systems - Constantinos Costa

Referential Integrity in SQL

- SQL/92 and SQL/99 support all 4 options on <u>delete</u> and <u>update</u>:
 - NO ACTION (default)
 - delete/update is rejected
 - CASCADE
 - also delete all tuples that refer to deleted tuple
 - SET NULL / SET DEFAULT
 - sets foreign key value of referencing tuple

CS 1555: Database Management Systems - Constantinos Costa

Enforcing Integrity Constraints

- What would be the outcome?
 - Insert (585811, 'Jie', 19, 3.95) into Students
 - Insert (585811, NULL, NULL) into Enrollment
 - Insert (546100, 'CS 1555', NULL) into Enrollment
 - Insert (546100, 'Mary', 18, 3.65) into Students
 - Delete ('CS 1530') from Courses

SID	Name	Age	GPA
546007	Susan	18	3.8
546100	Bob	19	3.65
546500	Bill	20	3.7

CID	Name
CS 1555	DB
CS 1530	SW
CS 1550	os

SID	CID	Grade
546007	CS 1550	Α
546007	CS 1530	B+
546100	CS 1550	В

Students

nts Courses Enrol
CS 1555: Database Management Systems - Constantinos Costa

Enrollment