

planetmath.org

Math for the people, by the people.

C-embedding

Canonical name Cembedding

Date of creation 2013-03-22 16:57:37 Last modified on 2013-03-22 16:57:37

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 54C45Synonym C-embedded C embedded Synonym Synonym C*-embedded Synonym C* embedded C-embedded Defines C^* -embedded Defines

Let X be a topological space, and C(X) the ring of continuous functions on X. A subspace $A \subseteq X$ is said to be C-embedded (in X) if every function in C(A) can be extended to a function in C(X). More precisely, for every real-valued continuous function $f: A \to \mathbb{R}$, there is a real-valued continuous function $g: X \to \mathbb{R}$ such that g(x) = f(x) for all $x \in A$.

If $A \subseteq X$ is C-embedded, $f \mapsto g$ (defined above) is an embedding of C(A) into C(X) by axiom of choice, and hence the nomenclature.

Similarly, one may define C^* -embedding on subspaces of a topological space. Recall that for a topological space X, $C^*(X)$ is the ring of bounded continuous functions on X. A subspace $A \subseteq X$ is said to be C^* -embedded (in X) if every $f \in C^*(A)$ can be extended to some $g \in C^*(X)$.

Remarks. Let A be a subspace of X.

- 1. If A is C-embedded in X, and $A \subseteq Y \subseteq X$, then A is C-embedded in Y. This is also true for C^* -embeddedness.
- 2. If A is C-embedded, then A is C^* -embedded: for if f is a bounded continuous function on A, say $-n \leq f \leq n$, and g is its continuous extension on X, then $-n \vee (g \wedge n)$ is a bounded continuous extension of f on X.
- 3. The converse, however, is not true in general. A necessary and sufficient condition that a C^* -embedded set A is C-embedded is:

if a zero set is disjoint from A, the it is completely separated from A.

Since any pair of disjoint zero sets are completely separated, we have that if A is a C^* -embedded zero set, then A is C-embedded.

References

[1] L. Gillman, M. Jerison: Rings of Continuous Functions, Van Nostrand, (1960).