Hash Collisions

- Hashing: Reminder
- Collision Resolution
- Separate Chaining
- Linear Probing
- Double Hashing
- Hashing Summary

COMP2521 20T2 \diamondsuit Hash Collisions [0/23]

Goal is to use keys as indexes, e.g.

```
courses["COMP3311"] = "Database Systems";
printf("%s\n", courses["COMP3311"]);
```

Since strings can't be indexes in C, use via a hash function, e.g.

```
courses[h("COMP3311")] = "Database Systems";
printf("%s\n", courses[h("COMP3311")]);
```

Hash function **h** converts key → integer and uses that as the index.

Problem: collisions, where $k \neq j$ but hash(k,N) = hash(j,N)

COMP2521 20T2 \Diamond Hash Collisions [1/23]

Collision Resolution

Three approaches to dealing with hash collisions:

- allow multiple Items at a single array location
 - e.g. array of linked lists (but worst case is O(N))
- systematically compute new indexes until find a free slot
 - need strategies for computing new indexes (aka probing)
- increase the size of the array
 - needs a method to "adjust" hash() (e.g. linear hashing)

COMP2521 20T2 \diamondsuit Hash Collisions [2/23]

Separate Chaining

Solve collisions by having multiple items per array entry.

Make each element the start of linked-list of Items.

All items in a given list have the same hash () value

COMP2521 20T2 \diamondsuit Hash Collisions [3/23]

Example of separate chaining ...

$$h("abc") = 2$$
, $h("def") = 1$, $h("ghi") = 0$, $h("jkl") = 2$, $h("mno") = 1$

Initially

After inserting "abc" (h=2)

After inserting "def" (h=1)

After inserting "ghi" (h=0)

COMP2521 20T2 \diamondsuit Hash Collisions [4/23]

Concrete data structure for hashing via chaining

```
typedef struct HashTabRep {
   List *lists; // array of Lists of Items
   int N; // # elements in array
   int nitems; // # items stored in HashTable
} HashTabRep;

HashTable newHashTable(int N)
{
   HashTabRep *new = malloc(sizeof(HashTabRep));
   assert(new != NULL);
   new->lists = malloc(N*sizeof(List));
   assert(new->lists != NULL);
   for (int i = 0; i < N; i++)
        new->lists[i] = newList();
   new->N = N; new->nitems = 0;
   return new;
}
```

COMP2521 20T2 \Diamond Hash Collisions [5/23]

Using the **List** ADT, search becomes:

```
#include "List.h"
Item *HashGet(HashTable ht, Key k)
{
   int i = hash(k, ht->N);
   return ListSearch(ht->lists[i], k);
}
```

Even without **List** abstraction, easy to implement.

Using sorted lists gives only small performance gain.

Other list operations are also simple:

```
#include "List.h"

void HashInsert(HashTable ht, Item it) {
   Key k = key(it);
   int i = hash(k, ht->N);
   ListInsert(ht->lists[i], it);
}

void HashDelete(HashTable ht, Key k) {
   int i = hash(k, ht->N);
   ListDelete(ht->lists[i], k);
}
```

Essentially: select a list; operate on that list.

COMP2521 20T2 \diamondsuit Hash Collisions [7/23]

Cost analysis:

- Narray entries (slots), Mstored items
- average list length L = M/N
- best case: all lists are same length L
- worst case: one list of length M (h(k)=0) mmy10] 全有
- searching within a list of length n:
 - best: 1, worst: n, average: $n/2 \Rightarrow O(n)$
- if good hash and M≤N, cost is 1
- if good hash and M>N, cost is (M/N)/2

Ratio of items/slots is called **load** $\alpha = M/N$

COMP2521 20T2 \diamondsuit Hash Collisions [8/23]

>>

Linear Probing

Collision resolution by finding a new location for Item

- hash indicates slot i which is already used
- try next slot, then next, until we find a free slot
- insert item into available slot

Examples:

COMP2521 20T2 \diamondsuit Hash Collisions [9/23]

... Linear Probing

Concrete data structures for hashing via linear probing:

COMP2521 20T2 \Diamond Hash Collisions [10/23]

```
... Linear Probing
```

```
ef. (N. "asas")
Insert function for linear probing:
 void HashInsert (HashTable ht, Item it)
    assert(ht->nitems < ht->N);
    int N = ht->N;
    Key k = key(it);
    Item **a = ht->items;
                                       2级相约
    int i = hash(k,N);
    for (int j = 0; j < N; j++) {
       if (a[i] == NULL) break;
   if (equal(k,key(*(a[i])))) break;
       i = (i+1) % N;
    if (a[i] == NULL) ht->nitems++;
   if (a[i] != NULL) free(a[i]);) -> E/13/4 to , dup li cate
    a[i] = copy(it);
           port it noto win
```

COMP2521 20T2 \(\triangle\) Hash Collisions [11/23]

... Linear Probing

Search function for linear probing:

COMP2521 20T2 \Diamond Hash Collisions [12/23]

<<

... Linear Probing

Search cost analysis:

- cost to reach first **Item** is O(1)
- subsequent cost depends how much we need to scan
- affected by **load** $\alpha = M/N$ (i.e. how "full" is the table)
- average cost for successful search = $0.5*(1 + 1/(1-\alpha))$
- average cost for unsuccessful search = 0.5*(1 + 1/(1 1))

 $a)^2$

holf full

newly full

Example costs (assuming large table, e.g. N>100):

load (α) 0.50 0.67 0.75 0.90

search hit 1.5 2.0 3.0 5.5

search miss 2.5 5.0 8.5 55.5 expensive

Assumes reasonably uniform data and good hash function.

... Linear Probing

Deletion slightly tricky for linear probing.

Need to ensure no **NULL** in middle of "probe path" (i.e. previously relocated items moved to appropriate location)

COMP2521 20T2 \diamondsuit Hash Collisions [14/23]

... Linear Probing

Delete function for linear probing:

```
void HashDelete(HashTable ht, Key k)
   int N = ht->N;
   Item *a = ht->items;
   int i = hash(k,N);
  for (int j = 0; j < N; j++) {
      if (a[i] == NULL) return; // k not in table
      if (equal(k,key(*(a[i])))) break;
      i = (i+1) % N;
   free(a[i]); a[i] = NULL; ht->nitems--;
   // clean up probe path
   i = (i+1) % N; iff
   while (a[i] != NULL) {
      Item (it) = *(a[i]);
      a[i] = NULL; // remove 'it'
      ht->nitems--;
      HashInsert(ht, (it); // insert 'it' again
      i = (i+1) % N; i+1
```


COMP2521 20T2 ♦ Hash Collisions [17/23]

... Linear Probing

A problem with linear probing: clusters

E.g. insert 5, 6, 15, 16, 14, 25, with hash(k) = k%10

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]		
-	1	-	-	4	-	-	-	-	-		
										1	
-	1	-	-	4	5	-	-	-	-		
										1	
-	1	-	-	4	5	6	-	-	-		
15/010=5											
-	1	-	-	4	5	6	15	-	-		
16%10=6											
-	1	-	-	4	5	6	15	16	-	, ,	- (I)
100/010=											- Ψ
-	1	-	-	4	5	6	15	16	14		
25	1	-	-	4	5	6	15	16	14		
25%,1025											

<< ^ >>

Double Hashing

Double hashing improves on linear probing:

- by using an increment which ...
 - is based on a secondary hash of the key
 - ensures that all elements are visited (can be ensured by using an increment which is relatively prime to N)
- tends to eliminate clusters ⇒ shorter probe paths

To generate relatively prime

- set table size to prime e.g. N=127
- hash2() in range [1..N1] where N1 < 127 and prime

COMP2521 20T2 \diamondsuit Hash Collisions [18/23]

... Double Hashing

Concrete data structures for hashing via double hashing:

```
typedef struct HashTabRep {
  Item **items; // array of pointers to Items
  int nhash2; // second hash mod
} HashTabRep;
#define hash2(k,N2) (((k)%N2)+1)
HashTable newHashTable(int N)
{
  HashTabRep *new = malloc(sizeof(HashTabRep));
  assert(new != NULL);
  new->items = malloc(N*sizeof(Item *));
  assert(new->items != NULL);
  for (int i = 0; i < N; i++)
     new->items[i] = NULL;
  new->N = N; new->nitems = 0;
  new->nhash2 = findSuitablePrime(N);
  return new;
```

<< ^ >>

... Double Hashing

Search function for double hashing:

COMP2521 20T2 \Diamond Hash Collisions [20/23]

... Double Hashing

Insert function for double hashing:

```
void HashInsert(HashTable ht, Item it)
{
    assert(ht->nitems < ht->N); // table full
    Item **a = ht->items;
    Key k = key(it);
    int N = ht->N;
    int i = hash(k,N);
    int incr = hash2(k,ht->nhash2);
    for (int j = 0, j < N; j++) {
        if (a[i] == NULL) break;
        if (equal(k,key(*(a[i])))) break;
        i = (i+incr) % N;
    }
    if (a[i] == NULL) ht->nitems++;
    if (a[i] != NULL) free(a[i]);
    a[i] = copy(it);
}
```

COMP2521 20T2 \diamondsuit Hash Collisions [21/23]

... Double Hashing

Search cost analysis:

- cost to reach first **Item** is O(1)
- subsequent cost depends how much we need to scan
- affected by load $\alpha = M/N$ (i.e. how "full" is the table)
- average cost for successful search = $\frac{1}{\alpha}ln(\frac{1}{1-\alpha})$
- average cost for unsuccessful search = $\frac{1}{1-\alpha}$

Costs for double hashing (assuming large table, e.g. N>100):

search hit 1.4 1.6 1.8 2.6

search miss 1.5 2.0 3.0 5.5

Can be significantly better than linear probing

especially if table is heavily loaded

Hashing Summary

Collision resolution approaches:

MCM

- chaining: easy to implement, allows α > 1
- linear probing: fast if α « 1, complex deletion
- double hashing: faster than linear probing, esp for α ≅

Only chaining allows $\alpha > 1$, but performance poor when $\alpha > 1$

For arrays, once M exceeds initial choice of N,

- need to expand size of array (N)
- problem: hash function relies on N,
 so changing array size potentially requires rebuiling whole
 table
- dynamic hashing methods exist to avoid this

Tries

- Tries
- Searching in Tries
- Insertion into Tries
- Cost Analysis
- Example Trie
- Compressed Tries

COMP2521 20T2 \diamondsuit Tries [0/15]

Tries

A trie ...

- is a data structure for representing a set of strings
 - e.g. all the distinct words in a document, a dictionary etc.
- supports string matching queries in O(L) time
 - L is the length of the string being searched for

Note: generally assume "string" = character string; could be bit-string

Note: Trie comes from retrieval; but pronounced as "try" not "tree"

COMP2521 20T2 \Diamond Tries [1/15]

❖ ... Tries

Each node in a trie ...

- contains one part of a key (typically one character)
- may have up to 26 children 76 1
- may be tagged as a "finishing" node
- but even "finishing" nodes may have children
- may contain other data for application (e.g. word frequency)

A "finishing" node marks the end of one key

• this key may be a prefix of another key stored in trie

Depth *d* of trie = length of longest key value

COMP2521 20T2 \Diamond Tries [2/15]

COMP2521 20T2 ♦ Tries [3/15]

<< ^ >>

❖ ... Tries

Possible trie representation:

COMP2521 20T2 \Diamond Tries [4/15]

Tries

Note: Can also use BST-like nodes (cf. red-black trees) ...

COMP2521 20T2 \Diamond Tries [6/15]

Searching in Tries

Search requires traversing a path, char-by-char from Key:

```
find(trie,key):
   Input trie, key
  Output pointer to element in trie if key found
          NULL otherwise
   node=trie
   for each char c in key do
      if node.child[c] exists then
         node=node.child[c] // move down one level
      else
         return NULL
      end if
   end for
   if node.finish then // "finishing" node reached?
      return node
   else
      return NULL
   end if
```


COMP2521 20T2 ♦ Tries [9/15]

<< ^ >>

Insertion into Tries

Insertion into a Trie ...

Cost Analysis

Analysis of standard trie:

- O(n) space
- O(m) insertion and search

where

- n... total size of text (e.g. sum of lengths of all strings)
- m... length of the key string
- d... size of the underlying alphabet (e.g. 26)

Example Trie

Example text and corresponding trie of searchable words:

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

Note: trie has no prefixes \Rightarrow all finishing nodes are leaves

<< ^ >>

Compressed Tries

Compressed tries ...

- have internal nodes of degree ≥ 2; each node contains ≥ 1 char
- obtained by compressing non-branching chains of nodes

Example:

... Compressed Tries

Compact representation of compressed trie to encode array *S* of strings:

- nodes store ranges of indices instead of substrings
 - use triple (i,j,k) to represent substring S[i][j..k]
- requires *O(s)* space (*s* = #strings in array *S*)

Example:

