Development of the Detector Control System and Instrumentation for the Silicon Tracking System in the Compressed Baryonic Matter Experiment

Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaftens

vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe-Universität in Frankfurt am Main

von Marcel Bajdel aus Katowice, Polen

Frankfurt am Main 2023 D30

Table of Contents

					Page			
Abstract Kurzfassung								
1.1	Standa	ard model		. 9				
	1.2	Quark	Gluon Plasma and QCD phase diagram		. 9			
	1.3	-	es cases and observables					
		1.3.1	Equation of state					
		1.3.2	Phase Transition					
		1.3.3	Chiral Symmetry Restoration		. 9			
		1.3.4	Hypernuclei					
	1.4	Thesis	s overview and its rationale					
2	The	СВМ	experiment and the role of the STS		10			
	2.1	The S	IS100 Accelerator		. 10			
	2.2	Overview of the FAIR facility						
	2.3	Overview of the CBM experiment						
	2.4							
		2.4.1	Role of the tracker		. 10			
		2.4.2	Silicon Sensors		. 10			
		2.4.3	Module		. 10			
		2.4.4	Readout chain		. 10			
		2.4.5	Cooling		. 10			
		2.4.6	Detector enclosure		. 10			
3	Overview of controls for the CBM experiment							
	3.1	Exper	iment Control System					
		3.1.1	Subsystem Control Agent		. 11			
	3.2	Data A	Acquisition Chain chain and its controls					
		3.2.1	Device Control Agent		. 11			
	3.3	tor Control System		. 11				
		3.3.1	Overview of the different control frameworks					
		3.3.2	Role of containers in the DCS					
		3.3.3	EPICS					
			3.3.3.1 Input Output Controller		. 11			

Table of Contents

		3.3.4	3.3.3.2 Channel Access protocol	11 11				
		3.3.5	Control System Studio and GUIs	11				
4	The 4.1 4.2	Genera	Detector Control System for the Silicon Tracking System General considerations					
	4.3		ing concept for the STS	12 12				
	4.4		g management	12				
	4.5	Instru	mentation for the STS and its design	12				
	4.6	-	tional scenarios	12				
	4.7		for safety	12				
	4.8	Outloo	ok and summary	12				
5	mSTS as a pathfinder for the STS 1							
	5.1		iment overview and its goals	13				
	5.2		yping of the DCS based on the mSTS	13				
		5.2.1	Design and functionalities of the DCS	13				
		5.2.2	Silicon sensors' leakage current monitoring	13				
		5.2.3	Monitoring of the Front End Electronics' parameters	13				
			5.2.3.1 Parameters of the STS-XYTERv2 ASIC	13				
			5.2.3.2 GBTX and GBT ASIC monitoring	13				
		5.2.4	Finite state machine and its role	13				
		5.2.5	Applications of the control software	13				
			5.2.5.1 Control and monitoring of a custom climatic chamber for					
			studies of thermal interfaces	13				
			5.2.5.2 Cold tests of STS electronics	13				
6	Relative Humidity and Temperature FBG-based Fiber Optic Sensors 14							
	6.1	Relati	ve humidity and temperature monitoring in the STS	14				
	6.2	Motiva	ation and market availability of different types of sensors	14				
		6.2.1	Capacitive sensors	14				
		6.2.2	Fiber Optic sensors	14				
		6.2.3	Dew point transmitters	14				
	6.3	Fiber optic sensing technology						
	6.4							
	6.5		ation and choice of the measurement setup	14				
	6.6		cterization of the RH FOS	14				
	6.7		response and uncertainty of the FOS	14				
	6.8	v	resis	14				
	6.9	Concil	isions	14				
7	Rad	iation l	nardness studies of Fiber Optic Sensors	15				
	7 1	Respo	nse to the irradiation with ionizing radiation	15				

Table of Contents

8 Final remarks and conclusions	16
Zusammenfassung	17
List of figures	18
References	19
Acknowledgments	20
Curriculum Vitae	21

List of Figures

List of Tables

Abstract

Kurzfassung

1 Introduction

- 1.1 Standard model
- 1.2 Quark Gluon Plasma and QCD phase diagram
- 1.3 Physics cases and observables
- 1.3.1 Equation of state
- 1.3.2 Phase Transition
- 1.3.3 Chiral Symmetry Restoration
- 1.3.4 Hypernuclei
- 1.4 Thesis overview and its rationale

2 The CBM experiment and the role of the STS

- 2.1 The SIS100 Accelerator
- 2.2 Overview of the FAIR facility
- 2.3 Overview of the CBM experiment
- 2.4 Overview of the Silicon Tracking System
- 2.4.1 Role of the tracker
- 2.4.2 Silicon Sensors
- **2.4.3** Module
- 2.4.4 Readout chain
- 2.4.5 Cooling
- 2.4.6 Detector enclosure

3 Overview of controls for the CBM experiment

- 3.1 Experiment Control System
- 3.1.1 Subsystem Control Agent
- 3.2 Data Acquisition Chain chain and its controls
- 3.2.1 Device Control Agent
- 3.3 Detector Control System
- 3.3.1 Overview of the different control frameworks
- 3.3.2 Role of containers in the DCS
- 3.3.3 **EPICS**
- 3.3.3.1 Input Output Controller
- 3.3.3.2 Channel Access protocol
- 3.3.4 Control System Studio and GUIs
- 3.3.5 Archiver and databases

4 The Detector Control System for the Silicon Tracking System

- 4.1 General considerations
- 4.2 Front End Electronics monitoring
- 4.3 Powering concept for the STS
- 4.4 Cooling management
- 4.5 Instrumentation for the STS and its design
- 4.6 Operational scenarios
- 4.7 Detector safety
- 4.8 Outlook and summary

5 mSTS as a pathfinder for the STS

- 5.1 Experiment overview and its goals
- 5.2 Prototyping of the DCS based on the mSTS
- 5.2.1 Design and functionalities of the DCS
- 5.2.2 Silicon sensors' leakage current monitoring
- 5.2.3 Monitoring of the Front End Electronics' parameters
- 5.2.3.1 Parameters of the STS-XYTERv2 ASIC
- 5.2.3.2 GBTX and GBT ASIC monitoring
- 5.2.4 Finite state machine and its role
- **5.2.5** Applications of the control software
- 5.2.5.1 Control and monitoring of a custom climatic chamber for studies of thermal interfaces
- 5.2.5.2 Cold tests of STS electronics
- 5.2.6 Irradiation studies of the ISEG Power Supply

6 Relative Humidity and Temperature FBG-based Fiber Optic Sensors

- 6.1 Relative humidity and temperature monitoring in the STS
- 6.2 Motivation and market availability of different types of sensors
- 6.2.1 Capacitive sensors
- 6.2.2 Fiber Optic sensors
- 6.2.3 Dew point transmitters
- 6.3 Fiber optic sensing technology
- 6.4 Fiber Bragg Grating technology for humidity and temperature monitoring
- 6.5 Evaluation and choice of the measurement setup
- 6.6 Characterization of the RH FOS
- 6.7 Time response and uncertainty of the FOS
- 6.8 Hysteresis
- 6.9 Conclusions

7 Radiation hardness studies of Fiber Optic Sensors

7.1 Response to the irradiation with ionizing radiation

8 Final remarks and conclusions

Zusammenfassung

List of figures

References

Acknowledgments

Curriculum Vitae