УДК 004.421.6 + 517.55

АЛГОРИТМ НАХОЖДЕНИЯ ОСОБЫХ ТОЧЕК ОБЩЕЙ АЛГЕБРАИЧЕСКОЙ ГИПЕРПОВЕРХНОСТИ

(c) 2025 г. А. П. Ляпин, Е. Н. Михалкин

Сибирский федеральный университет 660041 Красноярск, пр. Свободный, д. 79 E-mail: aplyapin@sfu-kras.ru, mikhalkin@bk.ru Поступила в редакцию 28.06.2023

В данной работе предложен алгоритм вычисления параметризации Горна-Капранова A-дискриминантного множества и особых точек алгебраической гиперповерхности с использованием системы компьютерной алгебры Maple.

1. ВВЕДЕНИЕ, ИЗВЕСТНЫЕ РЕЗУЛЬТАТЫ И ПОСТАНОВКА ЗАДАЧИ

Методы компьютерной алгебры показали свою эффективность в исследовании алгебраических, дифференциальных и разностных уравнений и их систем (см., например, [1]-[7]). В данной работе предложен алгоритм вычисления параметризации Горна-Капранова A-дискриминантного множества [8, 9] и особых точек алгебраической гиперповерхности [10] с использованием системы компьютерной алгебры Марle.

Отметим, что в статье [11] были получены формулы для кратных корней уравнения от одной неизвестной в виде элементарных функций. Система из n алгебраических уравнений от nнеизвестных, у которой в каждом уравнении фиксированы показатели мономов, а все коэффициенты являются переменными, рассмотрена в [12], где исследуется дискриминантное множество системы – замыкание совокупности всех коэффициентов, при которых система имеет кратные корни с ненулевыми координатами. В [13] рассмотрено понятие аналитической сложности, данное в [14], и предлагается алгоритм проверки принадлежности аналитической функции двух комплексных переменных второму классу аналитической сложности. В [15] исследовано пространство решений системы Меллина, построен базис в этом пространстве и доказана приводимость монодромии системы Меллина. При этом решения данной системы находится конструктивно, в замкнутой форме. Довольно подробное объяснение результатов, полученных в работах Меллина, приводится в [16].

Рассмотрим уравнение от k неизвестных $y = (y_1, \ldots, y_k)$:

$$F(y) = \sum_{\alpha = (\alpha_1, \dots, \alpha_k) \in A} a_{\alpha} y_1^{\alpha_1} \dots y_k^{\alpha_k} = 0 \qquad (1.1)$$

с переменными коэффициентами $a_{\alpha} \in \mathbb{C}$. Здесь $A \subset \mathbb{Z}^k$ – конечное подмножество, порождающее \mathbb{Z}^k как группу. Критические точки рассматриваемого уравнения определяются формулами

$$F(y) = \frac{\partial F}{\partial y_1} = \dots = \frac{\partial F}{\partial y_k} = 0.$$

Отметим, что вместо уравнения (1.1) достаточно рассматривать приведенное уравнение

$$f(y) = 1 + \sum_{i=1}^{k} y_1^{\alpha_{i1}} \dots y_k^{\alpha_{ik}} +$$

$$+ \sum_{i=1}^{m} w_i y_1^{\alpha_{k+i,1}} \dots y_k^{\alpha_{k+i,k}} = 0.$$
(1.2)

В статье [10] была получена формула для особых точек гиперповерхности (1.2), т.е. таких точек $y=y(a_{\alpha})$, в которых выполняются равенства

$$f(y) = \frac{\partial f(y)}{\partial y_1} = \dots = \frac{\partial f(y)}{\partial y_k} = 0.$$
 (1.3)

В данной статье приводится алгоритм нахождения особых точек уравнения (1.2).

2. ПАРАМЕТРИЗАЦИЯ ГОРНА-КАПРАНОВА ПРИВЕДЕННОГО А-ДИСКРИМИНАНТНОГО МНОЖЕСТВА И ЕГО ОСОБЫХ ТОЧЕК

В этом параграфе приводится основной результат, на основе которого разработан алгоритм нахождения A-дискриминантного множества многочлена (1.2) и его особых точек.

Приведем некоторые определения из теории A-дискриминантных множеств.

Определение 1 ([8]). Пусть ∇° – множество всех $a_{\alpha} \in \mathbb{C}^{A}$, для которых уравнение (1.1) имеет критические корни $y \in (\mathbb{C} \setminus 0)^{k}$, т.е. корни, в которых градиент f равен нулю. Замыкание $\overline{\nabla^{\circ}}$ называется A-дискриминантным множеством и обозначается ∇_{A} . Если множество ∇_{A} есть гиперповерхность (т.е. $\operatorname{codim} \nabla_{A} = 1$), то определяющий многочлен называется A-дискриминантом.

В статье [10] было доказано, что с помощью векторов b_0, b_1, \ldots, b_k определяется A-дискриминантное множество приведенного уравнения (1.2). Для того, чтобы ввести эти векторы, рассмотрим матрицы

$$\Delta = \begin{pmatrix}
\alpha_{11} & \alpha_{21} & \dots & \alpha_{k1} \\
\alpha_{12} & \alpha_{22} & \dots & \alpha_{k2} \\
\dots & \dots & \dots & \dots \\
\alpha_{1k} & \alpha_{2k} & \dots & \alpha_{kk}
\end{pmatrix},$$

$$\overline{\Delta} = \begin{pmatrix}
\alpha_{11} & \alpha_{21} & \dots & \alpha_{k+m,1} \\
\alpha_{12} & \alpha_{22} & \dots & \alpha_{k+m,2} \\
\dots & \dots & \dots & \dots \\
\alpha_{1k} & \alpha_{2k} & \dots & \alpha_{k+m,k}
\end{pmatrix},$$

причем матрица Δ является невырожденной. Через $\delta_{\nu}^{j}, \nu = 1, \ldots, k, j = k+1, \ldots, k+m$, обозначим минор, полученный из Δ , заменой ν -ого столбца на столбец $(\alpha_{j1}, \ldots, \alpha_{jk})^T$ матрицы $\overline{\Delta}$. Тогда векторы b_0, \ldots, b_k примут следующий вид:

$$b_0 = \left(-1 + \frac{1}{|\Delta|} \sum_{j=1}^k \left| \delta_j^{k+1} \right|, -1 + \frac{1}{|\Delta|} \sum_{j=1}^k \left| \delta_j^{k+2} \right|,$$
(2.1)

$$\dots, -1 + \frac{1}{|\Delta|} \sum_{j=1}^{k} \left| \delta_j^{k+m} \right|$$
 (2.2)

$$b_1 = \left(-\frac{\left| \delta_1^{k+1} \right|}{|\Delta|}, -\frac{\left| \delta_1^{k+2} \right|}{|\Delta|}, \dots, -\frac{\left| \delta_1^{k+m} \right|}{|\Delta|} \right), \quad (2.3)$$

$$\dots,$$
 (2.4)

$$b_k = \left(-\frac{\left| \delta_k^{k+1} \right|}{|\Delta|}, -\frac{\left| \delta_k^{k+2} \right|}{|\Delta|}, \dots, -\frac{\left| \delta_k^{k+m} \right|}{|\Delta|} \right), \quad (2.5)$$

где $|\Delta|$ – определитель матрицы Δ .

Пусть $s=(s_1,\ldots,s_m)\in\mathbb{C}^m$ и $\langle\cdot,\cdot\rangle$ – скалярное произведение, тогда параметризация Адискриминантного множества следующая:

$$w_{i} = s_{i} \langle b_{0}, s \rangle^{-1 + \frac{1}{|\Delta|} \sum_{j=1}^{k} |\delta_{j}^{k+i}|} \times \langle b_{1}, s \rangle^{-\frac{|\delta_{1}^{k+i}|}{|\Delta|}} \times \dots \times \langle b_{k}, s \rangle^{-\frac{|\delta_{k}^{k+i}|}{|\Delta|}},$$

для $i = 1, 2, \dots, m$.

В этих обозначениях справедливо следующее утверждение.

Теорема 1 ([10]). Вектор-функция

$$y(s) = (y_1(s), \dots y_k(s))$$

с координатами

$$y_j(s) = \prod_{\nu=1}^k \left(\frac{\langle b_{\nu}, s \rangle}{\langle b_0, s \rangle}\right)^{\chi_{j\nu}}, \quad j = 1, 2, \dots, k,$$

где $\chi_{j\nu}$ – (j,ν) -ый элемент обратной матрицы Δ^{-1} , удовлетворяет системе уравнений

$$f(y) = \frac{\partial f}{\partial y_1} = \dots = \frac{\partial f}{\partial y_k} = 0,$$

m.e. параметризует набор особых точек гиперповерхности f(y) = 0.

3. ОПИСАНИЕ АЛГОРИТМА

Входными данными для алгоритма являются матрицы

$$\Delta = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \dots & \alpha_{k1} \\ \alpha_{12} & \alpha_{22} & \dots & \alpha_{k2} \\ \dots & \dots & \dots & \dots \\ \alpha_{1k} & \alpha_{2k} & \dots & \alpha_{kk} \end{pmatrix},$$

$$L = \begin{pmatrix} \alpha_{k+1,1} & \alpha_{k+2,1} & \dots & \alpha_{k+m,1} \\ \alpha_{k+1,2} & \alpha_{k+2,2} & \dots & \alpha_{k+m,2} \\ \dots & \dots & \dots & \dots \\ \alpha_{k+1,k} & \alpha_{k+2,k} & \dots & \alpha_{k+m,k} \end{pmatrix},$$

задающие многочлен (1.2).

Результатом работы алгоритма является параметризация A-дискриминантного множества

$$w_1 = w_1(s_1, \ldots, s_m), \ldots, w_m = w_1(s_1, \ldots, s_m),$$

и формулы для особых точек гиперповерхности

$$y_1 = y_1(s_1, \dots, s_m), \dots, y_k = y_k(s_1, \dots, s_m).$$

Алгоритм состоит из трех процедур: DeltaIJ, ANH и MAIN.

Алгоритм был реализован в среде Maple 2024. Полный код программы и псевдокод доступны по ссылке https://github.com/lyapinap/LM2024. Вычисления производились на машине 12th Gen Intel(R) Core(TM) i5-1240P, 1.70 GHz, 64bit, ОЗУ 16.00 Гб под управлением Windows 11 (version 23H2).

Процедура DeltaIJ

Процедура DeltaIJ принимает на вход две матрицы A и B, а также два индекса i и j. Она выполняет следующие шаги:

- 1. Создает копию матрицы A, обозначенную как A1.
- 2. Для каждой строки t в матрице A1 заменяет элемент в столбце i на элемент в столбце j матрицы B.
- 3. Вычисляет определитель матрицы A1 и возвращает его.

Процедура АНН

Процедура ANH принимает на вход две матрицы: Δ и L. Она выполняет следующие шаги:

- 1. Определяет размеры матриц Δ и L: число столбцов в Δ (k), число столбцов в L (m), число строк в Δ (m1) и число строк в L (m2).
- 2. Проверяет соответствие размеров: если $k \neq m1$ или $m1 \neq m2$, выводит сообщение об ощибке.
- 3. Проверяет, равен ли определитель матрицы Δ нулю. Если да, выводит сообщение об ошибке.
- 4. Создает новую матрицу A путем объединения матриц Δ и L, в которым слева добавляется столбец из нулей, а к полученной матрице сверху добавляется строка из единиц.
- 5. Создает аннулятор B размером $(k+1) \times m$ по формулам (2.1).
- 6. Создает копию матрицы B под названием B1 и объединяет B с единичной матрицей размера m.
- 7. Выводит окончательную матрицу B и возвращает B1.

Процедура MAIN

Процедура MAIN принимает на вход две матрицы: Δ и L. Она выполняет следующие шаги:

- 1. Инициализирует функцию f значением 1.
- 2. Обновляет f с учетом степенных произведений элементов матрицы Δ и векторов y:
 - Для каждого столбца i в Δ вычисляет term как произведение степеней элементов матрицы Δ , затем добавляет его к f.
- 3. Обновляет f с учетом степенных произведений элементов матрицы L и векторов y:
 - Для каждого столбца i в L вычисляет term как произведение степеней элементов матрицы L, затем добавляет его к f.
- 4. Выводит значение функции f.
- 5. Вызывает процедуру ANH для матриц Δ и L и сохраняет результат в матрице B.

- 6. Выводит матрицу B.
- 7. Проводит параметризацию множества А-дискриминантов:
 - Для каждого столбца i в B вычисляет элементы вектора w как произведение степеней и элементов матрицы B.
- 8. Выводит результаты параметризации.
- 9. Вычисляет и выводит особые точки гиперповерхности f = 0:
 - Для каждой строки i в L вычисляет BS[i] как сумму произведений элементов матрицы B и векторов s.
 - Для каждого столбца j в Δ вычисляет y[j] как степень отношения BS[i]/BS[0], умноженную на соответствующий множитель.

4. ПРИМЕРЫ

Для многочлена

$$f = 1 + y_1 + w_1 y_1^2$$

входные данные имеют вид матриц из одной строки и одного столбца $\Delta = \begin{pmatrix} 1 \end{pmatrix}, L = \begin{pmatrix} 2 \end{pmatrix}$. В результате работы алгоритма формируется матрица $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ и ее правый аннулятор $B = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}^{\top}$. А-дискриминантное множество имеет вид $w_1 = \frac{1}{4}$, а особая точка гиперповерхности $y_1 = -2$ является корнем второй степени соответствующего квадратного уравнения $y_1^2 + 4y_1 + 4 = 0$.

Для многочлена

$$f = 1 + y_1 y_2^3 + y_1^2 y_2 + w_2 y_1^6 y_2^3 + w_1 y_1^3 y_2 + w_3 y_1 y_2^2$$

входные данные имеют вид

$$\Delta = \left(\begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array}\right), L = \left(\begin{array}{cc} 3 & 6 & 1 \\ 1 & 3 & 2 \end{array}\right).$$

В результате работы алгоритма формируется матрица

$$A = \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 6 & 1 \\ 0 & 3 & 1 & 1 & 3 & 2 \end{array}\right)$$

и ее правый аннулятор

$$B = \begin{pmatrix} \frac{2}{5} & 2 & -\frac{1}{5} \\ \frac{1}{5} & 0 & -\frac{3}{5} \\ -\frac{8}{5} & -3 & -\frac{1}{5} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Параметризация *А*-дискриминантного множества определяется формулами

$$w_{1} = \frac{s_{1} \left(\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}\right)^{\frac{2}{5}} \left(\frac{s_{1}}{5} - \frac{3s_{3}}{5}\right)^{\frac{1}{5}}}{\left(-\frac{8s_{1}}{5} - 3s_{2} - \frac{s_{3}}{5}\right)^{\frac{8}{5}}},$$

$$w_{2} = \frac{s_{2} \left(\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}\right)^{2}}{\left(-\frac{8s_{1}}{5} - 3s_{2} - \frac{s_{3}}{5}\right)^{3}},$$

$$w_{3} = \frac{s_{3}}{\left(\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}\right)^{\frac{1}{5}} \left(\frac{s_{1}}{5} - \frac{3s_{3}}{5}\right)^{\frac{3}{5}}} \times \frac{1}{\left(-\frac{8s_{1}}{5} - 3s_{2} - \frac{s_{3}}{5}\right)^{\frac{1}{5}}},$$

где $s_1, s_2, s_3 \in \mathbb{C}$.

Особые точки гиперповерхности f=0 имеют вид

$$y_{1} = \frac{\left(\frac{-\frac{8s_{1}}{5} - 3s_{2} - \frac{s_{3}}{5}}{\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}}\right)^{\frac{3}{5}}}{\left(\frac{\frac{s_{1}}{5} - \frac{3s_{3}}{5}}{\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}}\right)^{\frac{1}{5}}},$$

$$y_{2} = \frac{\left(\frac{\frac{s_{1}}{5} - \frac{3s_{3}}{5}}{\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}}\right)^{\frac{2}{5}}}{\left(\frac{-\frac{8s_{1}}{5} - 3s_{2} - \frac{s_{3}}{5}}{\frac{2s_{1}}{5} + 2s_{2} - \frac{s_{3}}{5}}\right)^{\frac{1}{5}}},$$

где $s_1, s_2, s_3 \in \mathbb{C}$.

5. БЛАГОДАРНОСТИ

Работа поддержана Красноярским математическим центром, финансируемым Минобрнауки РФ в рамках мероприятий по созданию и развитию региональных НОМЦ (соглашение 075-02-2024-1429).

СПИСОК ЛИТЕРАТУРЫ

1. Abramov S.A., Petkovšek M., Ryabenko A.A. Hypergeometric Solutions of First-order Linear Difference Dystems with Rational-function Coefficients // Lecture Notes in Computer Science. 2015. № 9301. P. 1–14.

- Abramov, S.A., Ryabenko, A.A., Khmelnov, D.E. Regular Solutions of Linear Ordinary Differential Equations and Truncated Series // Comput. Math. Math. Phys. 2020. № 60(1). P. 1–14.
- 3. Apanovich M.S., Lyapin A.P., Shadrin K.V. Solving the Cauchy Problem for a Two-Dimensional Difference Equation at a Point Using Computer Algebra Methods // Programming and Computer Software. 2021. № 47(1). P. 1–5.
- 4. Kytmanov A.A., Lyapin A.P., Sadykov T.M. Evaluating the Rational Generating Function for the Solution of the Cauchy Problem for a Twodimensional Difference Equation with Constant Coefficients // Programming and Computer Software. 2017. № 43(2). P. 105–111.
- 5. Lyapin A.P., Mikhalkin E.N. Algorithm of calculation of the truncation of the discriminant of a polynomial // Programming and Computer Software. 2023. № 49(1). P. 49–53.
- 6. Barsan V. An Improved Algorithm for Solving the Quintic Equation // Romanian Reports in Physics. 2022. № 74(4). P. 117.
- Лебедев А.В., Трубников Ю.В., Чернявский М.М. Об определителях Адамара и Вандермонда и методе Бернулли-Эйлера-Лагранжа-Эйткена вычисления корней полиномов // Матем. заметки. 2024. № 116(1). Р. 91–108.
- 8. Gelfand I., Kapranov M., Zelevinsky A. Discriminants, Resultants and Multidimensional determinants, Birkhäuser: Boston, 1994.
- Passare M., Tsikh A.K. Algebraic equations and hypergeometric series // The legacy of Niels Henrik Abel, Springer: Berlin-Heidelberg-New York, 2004, pp. 653–672.
- 10. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Singular points of complex algebraic hypersurfaces // Journal of Siberian Federal University. Mathematics & Physics. 2018. № 11(6). P. 670–679.
- 11. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Rational expressions for multiple roots of algebraic equations // Matem. sb. 2018. No 209(10). P. 1419–1444.
- 12. Antipova I.A., Tsikh A.K. The discriminant locus of a sistem of n Laurent polynomials in n variables // Izv. Math. 2012. No 76(5). P. 881–906.

- 13. Krasikov V. A., Sadykov T. M. On the analytic complexity of discriminants // Proceedings of the Steklov Institute of Mathematics. 2012. № 279. P. 78–92.
- 14. Beloshapka V.K. Analytic complexity of functions of two variables // Russ. J. Math. Phys. 2007. № 14(3). P. 243–249.
- 15. Dickenstein A., Sadykov T.M. Algebraicity of solutions to the Mellin system and its monodromy // Doklady Mathematics. 2007. № 75(1). P. 80–82.
- 16. Lawton W. M. An Explanation of Mellin's 1921 Paper // The Bulletin of Irkutsk State University. Series Mathematics. 2023. № 46. P. 98–109.