STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY

Approximate Bayesian computation: an application to weak-lensing peak counts

Chieh-An Lin & Martin Kilbinger SAp, CEA Saclay

Chania, Greece — May 26th, 2016

Outline

Weak-lensing peak counts

2 Approximate Bayesian computation

3 Application to survey data

linc.tw

Flashback on weak lensing

Weak-lensing peak counts

- · Local maxima of the projected mass
- · Probe the mass function
- Non-Gaussian information

Dealing with selection function

Early studies

Count only the true clusters with high S/N

Recent studies

Include the selection effect into the model

- Analytical formalism
- N-body simulations
- Fast stochastic model (this work)

Challenges

How to model weak-lensing peak counts properly and efficiently in realistic conditions?

What cosmological information can we extract from peaks?

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub

See also Lin & Kilbinger (2015a)

Validation

Likelihood

$$\mathcal{L}(\boldsymbol{\pi}|\boldsymbol{x}^{\mathrm{obs}}) \equiv P(\boldsymbol{x}^{\mathrm{obs}}|\boldsymbol{\pi})$$

Requirements:

- Stochastic model $P(\cdot | \pi)$
- Distance |x x'|
- Tolerance level ϵ

Accept-reject process:

- Draw a π from the prior $\mathcal{P}(\cdot)$
- Draw a x from the model $P(\cdot | \pi)$
- Accept π if $|x x^{\text{obs}}| \le \epsilon$
- Reject otherwise

Accept-reject process:

- Draw a π from the prior $\mathcal{P}(\cdot)$
- Draw a x from the model $P(\cdot | \pi)$
- Accept π if $|x x^{\mathrm{obs}}| \leq \epsilon$
- · Reject otherwise
- ⇒ One-sample test

Distribution of accepted $\pi = \operatorname{prior} \times \operatorname{green}$ areas $\approx \operatorname{prior} \times 2\epsilon \times \operatorname{likelihood}$ $\propto \operatorname{posterior}$

Combined with population Monte Carlo

Population Monte Carlo (PMC)

- Iterative solution for ϵ
- Set $\epsilon = +\infty$ for the first iteration
- Do ABC
- Update the prior based on results from the previous iteration
- Update ϵ based on results from the previous iteration
- Repeat until satisfying a stop criterion

See also Lin & Kilbinger (2015b)

Comparison with the likelihood

Comparison by a toy model

Contours and dots: ABC Colored regions: likelihood

Lin & Kilbinger (2015b)

Data from three surveys

Survey	Field size	Number of	Effective density
	$[deg^2]$	galaxies	$[deg^{-2}]$
CFHTLenS	126	6.1 M	10.74
KiDS DR1/2	75	2.4 M	5.33
DES SV	138	3.3 M	6.65

Various settings

Model settings

- Compensated filter (suggested by Lin et al. 2016)
- Adaptive choice for pixel sizes and filtering scales
- No intrinsic alignment and baryons (not yet!)

ABC settings

- Data vector (summary statistic): peak counts with S/N > 2.5 of all scales
- Distance: a χ^2 -like normalized sum

Preliminary result

Lin & Kilbinger in prep.

Preliminary result

Width: $\Delta\Sigma_8$ = 0.13

Area: FoM = 5.2

Preliminary result

Lin & Kilbinger in prep.

Ongoing improvements and perspectives

- S/N bin choice: less bias, more accuracy and precision
- Halo correlation
- Tomography
- Intrinsic alignment
- Baryonic effects

Summary

- A new model to predict WLPC
- Likelihood-free parameter inference: ABC
- Constraints with CFHTLenS, KiDS, DES

Collaborators:

Martin Kilbinger Austin Peel (talk on Friday) Sandrine Pires

References:

[1410.6955] [1506.01076] [1603.06773] http://linc.tw

Backup slides

Advantages of our model

Fast

Only few seconds for creating a 25-deg² field, without MPI or GPU programming

Flexible

Straightforward to include real-world effects (photo-z errors, masks, intrinsic alignment, baryonic effects, etc.)

Full PDF information

Allow more flexible constraint methods (varying covariances, copula, *p*-value, approximate Bayesian computation, etc.)

Map examples

Cosmology-dependent covariance

cg svg vg FoM 46 57 56

Lin & Kilbinger (2015b)

True likelihood

Lin & Kilbinger (2015b)

Degeneracy with w_0^{de}

Technical detail

- Mass function from Jenkins et al. (2001)
- M-c relation from Takada & Jain (2002)
- Source redshift fitted from surveys
- Random source position, not catalogue
- · Used raw galaxy densities, not effective
- Derive σ_{ϵ} from the emperical total variance
- Pixel size: $n_{\rm gal}\theta_{\rm pix}^2 \geq 7$
- Kaiser-Squires inversion
- · Filtering with the "starlet" function
- Scale = 2, 4, 8 pixels
- Locally determined noise
- Dimension of x = 75 (= 36 + 15 + 24)

Covariance

Lin & Kilbinger in prep.

Constrain concentration paramters

Lin & Kilbinger in prep.

linc.tw

Definition of Σ_8

Definition 1
$$\Sigma_8 = \sigma_8 (\Omega_m/0.27)^{\alpha}$$

$$\Sigma_8 = 0.825$$

$$\Sigma_8 = 0.825$$
 $\Delta \Sigma_8 = 0.16$

$$\alpha$$
 = 0.48

Definition 2
$$\Sigma_8 = \left(\frac{\Omega_{\rm m} + \beta}{1 - \alpha}\right)^{1 - \alpha} \left(\frac{\sigma_8}{\alpha}\right)^{\alpha}$$

$$\Sigma_8 = 1.935$$
 $\Delta \Sigma_8 = 0.13$

$$\Delta\Sigma_{\circ} = 0.13$$

$$\alpha$$
 = 0.38

$$\beta = 0.82$$

PMC ABC algorithm

```
set t = 0
for i=1 to Q do
    generate \theta_i^{(0)} from \mathcal{P}(\cdot) and x from P(\cdot|\theta_i^{(0)})
    set \delta_{i}^{(0)} = D(x, x^{\text{obs}}) and w_{i}^{(0)} = 1/Q
end for
set \epsilon^{(1)} = \operatorname{median}(\delta_i^{(0)}) and C^{(0)} = \operatorname{cov}(\pi_i^{(0)}, w_i^{(0)})
while success rate \geq r_{\rm stop} do
     t \leftarrow t + 1
    for i=1 to Q do
        repeat
            generate j from \{1,\ldots,Q\} with weights \{w_1^{(t-1)},\ldots,w_Q^{(t-1)}\}
            generate \pi_i^{(t)} from \mathcal{N}\left(\pi_i^{(t-1)}, C^{(t-1)}\right) and x from P\left(\cdot | \pi_i^{(t)} \right)
            set \delta_i^{(t)} = D(x, x^{\text{obs}})
        until \delta_i^{(t)} < \epsilon^{(t)}
        set w_i^{(t)} \propto \mathcal{P}\left(\pi_i^{(t)}\right) / \sum_{j=1}^{Q} w_j^{(t-1)} K\left(\pi_i^{(t)} - \pi_j^{(t-1)}, C^{(t-1)}\right)
     end for
     set \epsilon^{(t+1)} = \text{median}(\delta_i^{(t)}) and C^{(t)} = \text{cov}(\pi_i^{(t)}, w_i^{(t)})
end while
```

Peaks v.s. power spectrum

Taken from Liu J. et al. (2015)

Public code

Fast weak-lensing peak counts modelling in C with PMC ABC

Camelus@GitHub