

Provide a new general purpose transport layer with:

Secure[QUIC-TLS],

Reliable[QUIC-Transport],

Programmable[SR]

# Simple Problem



Latency: 261ms

Packet drop rate: 25.24%

# Resolve on Transportation Layer



QUIC is a multiplexed and secure general-purpose transport protocol that provides:

- Stream multiplexing
- Stream and connection-level flow control
- Low-latency connection establishment



#### **Zero RTT Connection Establishment**







- 1. Repeat connection
- 2. Never talked to server before

We built 15 virtual router(VR) in different regions.

5-VR in Ali-cloud

8-VR in Tencent-Cloud

1-VR in Private DC



Latency Measurement

|                | AliCloud-BJ | AliCloud-HHHT | AliCloud-HK | AliCloud-HZ | AliCloud-SZ | CT-SH   | HongkongDC | Tencent-BJ | Tencent-CD | Tencent-CQ | Tencent-GZ | Tencent-Moscow | Tencent-NJ | Tencent-SH | Tencent-Tokoyo |
|----------------|-------------|---------------|-------------|-------------|-------------|---------|------------|------------|------------|------------|------------|----------------|------------|------------|----------------|
|                |             |               |             |             |             |         |            |            |            |            |            |                |            |            |                |
| AliCloud-BJ    | 0.0ms       | 13.5ms        | 43.0ms      | 28.7ms      | 33.1ms      | 31.0ms  | 78.1ms     | 5.6ms      | 63.2ms     | 58.2ms     | 39.3ms     | 203.8ms        | 35.0ms     | 29.5ms     | 63.2ms         |
| AliCloud-HHHT  | 13.6ms      | 0.0ms         | 55.8ms      | 35.3ms      | 63.0ms      | 38.0ms  | 83.0ms     | 13.4ms     | 69.0ms     | 76.2ms     | 50.8ms     | 223.5ms        | 46.4ms     | 37.1ms     | 71.1ms         |
| AliCloud-HK    | 43.9ms      | 56.3ms        | 0.0ms       | 30.0ms      | 15.9ms      | 31.0ms  | 38.1ms     | 103.4ms    | 98.5ms     | 111.0ms    | 54.6ms     | 349.6ms        | 91.4ms     | 58.8ms     | 45.0ms         |
| AliCloud-HZ    | 29.5ms      | 35.4ms        | 30.0ms      | 0.0ms       | 23.7ms      | 9.8ms   | 66.5ms     | 31.0ms     | 50.4ms     | 48.9ms     | 29.9ms     | 263.8ms        | 18.1ms     | 9.9ms      | 69.0ms         |
| AliCloud-SZ    | 33.2ms      | 63.0ms        | 15.2ms      | 23.1ms      | 0.0ms       | 31.0ms  | 49.6ms     | 35.0ms     | 34.1ms     | 40.2ms     | 4.6ms      | 270.3ms        | 34.0ms     | 34.0ms     | 73.3ms         |
| CT-SH          | 31.0ms      | 38.0ms        | 31.5ms      | 9.8ms       | 31.8ms      | 0.0ms   | 67.6ms     | 35.0ms     | 50.0ms     | 52.1ms     | 28.2ms     | 262.1ms        | 11.0ms     | 5.0ms      | 63.7ms         |
| HongkongDC     | 78.3ms      | 83.2ms        | 37.3ms      | 66.4ms      | 49.8ms      | 67.0ms  | 0.0ms      | 79.8ms     | 83.2ms     | 79.1ms     | 40.8ms     | 299.6ms        | 69.3ms     | 64.2ms     | 91.7ms         |
| Tencent-BJ     | 6.0ms       | 14.0ms        | 103.4ms     | 31.5ms      | 36.0ms      | 34.0ms  | 80.0ms     | 0.0ms      | 69.7ms     | 71.8ms     | 35.3ms     | 241.3ms        | 36.5ms     | 26.8ms     | 109.9ms        |
| Tencent-CD     | 64.2ms      | 70.0ms        | 99.0ms      | 50.6ms      | 35.0ms      | 50.0ms  | 83.3ms     | 69.7ms     | 0.0ms      | 6.8ms      | 33.0ms     | 291.5ms        | 41.0ms     | 36.0ms     | 86.2ms         |
| Tencent-CQ     | 59.2ms      | 77.1ms        | 111.5ms     | 49.8ms      | 41.1ms      | 51.1ms  | 79.1ms     | 71.8ms     | 6.8ms      | 0.0ms      | 30.0ms     | 263.1ms        | 34.3ms     | 30.0ms     | 103.8ms        |
| Tencent-GZ     | 40.0ms      | 51.7ms        | 55.0ms      | 30.5ms      | 4.7ms       | 27.6ms  | 40.8ms     | 35.3ms     | 33.0ms     | 30.0ms     | 0.0ms      | 245.0ms        | 38.9ms     | 29.2ms     | 78.8ms         |
| Tencent-Moscow | 204.5ms     | 224.2ms       | 349.9ms     | 264.0ms     | 270.9ms     | 261.5ms | 299.5ms    | 241.3ms    | 291.6ms    | 263.1ms    | 245.0ms    | 0.0ms          | 249.1ms    | 280.2ms    | 154.0ms        |
| Tencent-NJ     | 36.0ms      | 47.3ms        | 91.7ms      | 18.8ms      | 35.0ms      | 10.0ms  | 69.3ms     | 36.4ms     | 41.0ms     | 34.3ms     | 38.9ms     | 249.1ms        | 0.0ms      | 8.0ms      | 111.7ms        |
| Tencent-SH     | 30.2ms      | 38.0ms        | 58.9ms      | 10.3ms      | 35.0ms      | 4.0ms   | 64.3ms     | 26.8ms     | 36.0ms     | 30.0ms     | 29.1ms     | 280.2ms        | 8.0ms      | 0.0ms      | 90.3ms         |
| Tencent-Tokoyo | 63.2ms      | 71.1ms        | 44.0ms      | 69.0ms      | 73.3ms      | 63.1ms  | 91.3ms     | 109.4ms    | 85.8ms     | 103.3ms    | 78.3ms     | 153.0ms        | 111.6ms    | 90.1ms     | 0.0ms          |

#### Drop Rate Measurement

|                | AliCloud-BJ | AliCloud-HHHT | AliCloud-HK | AliCloud-HZ | AliCloud-SZ | CT-SH  | HongkongDC | Tencent-BJ | Tencent-CD | Tencent-CQ | Tencent-GZ | Tencent-Moscow | Tencent-NJ | Tencent-SH | Tencent-Tokoyo |
|----------------|-------------|---------------|-------------|-------------|-------------|--------|------------|------------|------------|------------|------------|----------------|------------|------------|----------------|
|                |             |               |             |             |             |        |            |            |            |            |            |                |            |            |                |
| AliCloud-BJ    | 0.00%       | 0.00%         | 0.02%       | 0.00%       | 0.01%       | 0.01%  | 0.11%      | 0.03%      | 0.05%      | 0.06%      | 0.04%      | 8.33%          | 0.06%      | 0.05%      | 0.25%          |
| AliCloud-HHHT  | 0.01%       | 0.00%         | 0.03%       | 0.01%       | 0.01%       | 0.01%  | 0.15%      | 0.05%      | 0.04%      | 0.05%      | 0.06%      | 8.76%          | 0.06%      | 0.05%      | 0.02%          |
| AliCloud-HK    | 0.02%       | 0.01%         | 0.00%       | 23.45%      | 0.12%       | 0.43%  | 0.11%      | 5.66%      | 7.40%      | 0.44%      | 1.62%      | 2.42%          | 8.08%      | 12.02%     | 0.02%          |
| AliCloud-HZ    | 0.01%       | 0.01%         | 23.55%      | 0.00%       | 0.01%       | 0.01%  | 0.85%      | 0.04%      | 0.04%      | 0.06%      | 0.04%      | 27.20%         | 0.05%      | 0.04%      | 0.22%          |
| AliCloud-SZ    | 0.01%       | 0.01%         | 0.12%       | 0.01%       | 0.00%       | 0.13%  | 2.84%      | 0.02%      | 0.02%      | 0.05%      | 7.04%      | 14.29%         | 0.06%      | 0.04%      | 0.07%          |
| CT-SH          | 0.01%       | 0.02%         | 0.43%       | 0.00%       | 0.15%       | 0.00%  | 12.85%     | 0.04%      | 0.04%      | 0.06%      | 0.04%      | 25.24%         | 0.04%      | 0.04%      | 4.14%          |
| HongkongDC     | 0.11%       | 0.13%         | 0.15%       | 0.84%       | 2.85%       | 12.91% | 0.00%      | 25.46%     | 8.45%      | 8.49%      | 1.81%      | 0.15%          | 3.71%      | 2.34%      | 0.12%          |
| Tencent-BJ     | 0.04%       | 0.03%         | 5.66%       | 0.04%       | 0.04%       | 0.05%  | 25.35%     | 0.00%      | 0.06%      | 0.10%      | 0.08%      | 11.03%         | 0.09%      | 0.07%      | 12.38%         |
| Tencent-CD     | 0.04%       | 0.04%         | 7.35%       | 0.04%       | 0.03%       | 0.03%  | 8.52%      | 0.06%      | 0.00%      | 0.06%      | 0.06%      | 30.72%         | 0.06%      | 0.07%      | 11.75%         |
| Tencent-CQ     | 0.06%       | 0.08%         | 0.44%       | 0.05%       | 0.06%       | 0.06%  | 8.55%      | 0.08%      | 0.07%      | 0.00%      | 0.07%      | 10.06%         | 0.09%      | 0.08%      | 10.74%         |
| Tencent-GZ     | 0.05%       | 0.05%         | 1.57%       | 0.05%       | 5.89%       | 0.04%  | 1.78%      | 0.08%      | 0.06%      | 0.08%      | 0.00%      | 0.68%          | 0.09%      | 0.07%      | 6.23%          |
| Tencent-Moscow | 8.41%       | 8.54%         | 2.49%       | 27.34%      | 14.45%      | 25.28% | 0.15%      | 10.96%     | 30.91%     | 10.10%     | 0.75%      | 0.00%          | 25.57%     | 6.38%      | 0.03%          |
| Tencent-NJ     | 0.05%       | 0.06%         | 8.31%       | 0.04%       | 0.06%       | 0.06%  | 3.54%      | 0.08%      | 0.06%      | 0.08%      | 0.09%      | 25.48%         | 0.00%      | 0.08%      | 7.47%          |
| Tencent-SH     | 0.05%       | 0.04%         | 12.07%      | 0.04%       | 0.04%       | 0.04%  | 2.45%      | 0.06%      | 0.07%      | 0.07%      | 0.06%      | 6.53%          | 0.09%      | 0.00%      | 10.96%         |
| Tencent-Tokoyo | 0.29%       | 0.03%         | 0.02%       | 0.20%       | 0.07%       | 4.20%  | 0.11%      | 12.13%     | 11.73%     | 10.81%     | 6.13%      | 0.02%          | 7.59%      | 10.89%     | 0.00%          |



Segment routing to avoid congestion point

Shanghai -> Guangzhou/Hongkong -> Moscow



#### Problems

How to build overlay across multi-cloud?



#### Solution? No!

How to build overlay across multi-cloud?

#### IPSec:

High latency on tunnel setup, scale problem on tunnel keepalive Each interim site need to decrypt and encrypt which increase latency

#### VXLAN:

Lack of standard encryption mechanism and NAT-Traversal

#### Segment Routing:

Lack of IPv4 support, need use transport layer protocol for encryption

#### Solution ? Yes!

How to build overlay across multi-cloud?



- Stream multiplexing
- Connection migration & Resilience
- Low-latency connection establishment
- Standard encryption mechanism



- Traffic engineering
- Network level programmability

# draft-zartbot-quic-sr

Reliable Transmit: [I.D. draft-quic-transport]
Unreliable Transmit: [I.D. draft-quic-datagram]



- 1. Clear-Text Header for interim device parse and processing.
- 2. Provide optional SR integrity header for Security check.

Notice: QUIC "packet" is different with IP packet. It is defined in QUIC RFC as a payload encapsulated in IP UDP Payload In the following slides "QUIC-SR-Packet" means a QUIC "packet", not an individual "ip packet"

## Why not QUIC over SRv6?

- RFC4023(MPLS over GRE) and RFC7510(MPLS over UDP) does not support NAT-Traversals
- Multi-Cloud VPC inter-connection require secure/reliable/programmable transport layer over IPv4 internet.
- A standard SDWAN transport layer is required to interop with multiple vendors(include cloud and network equipment vendors)

# QUIC-SR Header

```
QUIC-SR Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 0,
 QUIC-SR Flag(1) = 1, \leftarrow
 Unused (3),
 Version (32),
 DCID Length (8),
 Destination Connection ID (0..160),
 SCID Length (8),
 Source Connection ID (0..160),
 SR-QUIC Header (..),
```

Minor Change on QUIC Add one bit on Long Packet

# SR-QUIC Header(almost same as SRv6)

```
Segment List[0] (32-bit/ 64-bit / 128-bit )
 Segment List[n] (32-bit/ 64-bit / 128-bit )
Optional Type Length Value objects (variable)
```

# Optional TLV for SecOps

```
SR Hdr Len
Seament Type
                            | Last Entry
          Segment List[0] (32-bit/ 64-bit / 128-bit )
          Segment List[n] (32-bit/ 64-bit / 128-bit )
        Optional Type Length Value objects (variable)
```

```
    Micro Segmentation(uSeg) Sub-TLV
    0x0, Source Group ID
        0x1, Destination Group ID
        0x2, Application Group ID
        0x3, Source Device ID
        0x4, Destination Device ID
        0x5, Application ID
```

Micro-segmentation is a <u>network security</u> technique that enables security architects to logically divide the <u>data center</u> into distinct security segments down to the individual workload level,



Step.1. Setup interim SR-QUIC enabled Router R2(2.2.2.2)







Step.2. H1 → R2













R2 based on Segment list modify destination address then reduce seg-left field to indicate the offset in Segment List for nexthop device







S3 ->R2

| IP Header      | SRC: 3.3.3.3              |       | DST       | 2.2.2.2 |            |  |  |
|----------------|---------------------------|-------|-----------|---------|------------|--|--|
| UDP Header     | SRC: 4567                 |       | DST: 4567 |         |            |  |  |
|                | SCID                      |       | DCI       | D       |            |  |  |
| QUIC-SR Packet | Type: 0x0                 | Len:2 |           | Last:1  | Seg Left:1 |  |  |
| (Clear Text)   | Segment List[0] = 1.1.1.1 |       |           |         |            |  |  |
|                | Segment L                 | _     |           |         |            |  |  |
|                |                           |       |           |         |            |  |  |
| OLUC Poolsot   | SCID                      |       | DCI       | D       |            |  |  |
| QUIC Packet    | Retry                     |       |           |         |            |  |  |

S3 Receive the initial packet from R2, It MUST store the CONNECT-ID with Received IP/Port and Segment List in the session table.







R2 ->H1

| IP Header      | SRC: 3.3.3.3               |      | DST     | 1.1.1.1  |            |  |  |
|----------------|----------------------------|------|---------|----------|------------|--|--|
| UDP Header     | SRC: 4567                  |      | DST     | : 4567   |            |  |  |
|                | SCID                       |      | DCI     | D        |            |  |  |
| QUIC-SR Packet | Type: 0x0 Len:2            |      | n:2     | Last:1   | Seg Left:0 |  |  |
| (Clear Text)   | Segment List[0]= 1.1.1.1 ← |      |         |          |            |  |  |
|                | Segment L                  | ist[ | 2.2.2.2 |          |            |  |  |
|                | 0010                       |      | 501     |          |            |  |  |
| QUIC Packet    | SCID                       |      | DCI     | <u> </u> |            |  |  |
| QOIC FACKET    | Retry                      |      |         |          |            |  |  |

S3 Receive the initial packet from R2, It MUST store the CONNECT-ID with Received IP/Port and Segment List in the session table.

NAT Traversals: External STUN server may used to be sync the

H1 Private Address(192.168.1.2:4567) and Public Address mapping(1.1.1.1:45678) A uSID key-value mapping table cloud be used for NAT-T



1.1.1.1 **NAT** 





Step.2. H1 → R2

| IP Header                  | SRC: 1.1.1.1              | DST   | : 2.2.2.2 |            |  |  |  |
|----------------------------|---------------------------|-------|-----------|------------|--|--|--|
| UDP Header                 | SRC: 45678                | DST   | : 4567    |            |  |  |  |
|                            | SCID                      | DCII  | D         |            |  |  |  |
| QUIC-SR Packet             | Type: 0x0                 | Len:2 | Last:1    | Seg Left:1 |  |  |  |
| (Clear Text)               | Segment List[0] = 3.3.3.3 |       |           |            |  |  |  |
|                            | Segment Lis               |       |           |            |  |  |  |
|                            |                           |       |           |            |  |  |  |
| OLUC Booket                | SCID                      | DCII  | D         |            |  |  |  |
| QUIC Packet<br>(Encrypted) | Initial                   |       |           |            |  |  |  |

# uSID mapping table

transport over any protocol(v4/v6/MPLS)



| SID | Private IP Port           | Public IP Port or Label   |  |  |  |  |  |  |
|-----|---------------------------|---------------------------|--|--|--|--|--|--|
| 111 | 192.168.1.2:4567          | 1.1.1.1:24567             |  |  |  |  |  |  |
| 222 | 2.2.2.2/2001::1 port 4567 | 2.2.2.2/2001::1 port 4567 |  |  |  |  |  |  |
| 333 | 3.3.3.3                   | MPLS-SR Label: 16333      |  |  |  |  |  |  |
| 444 | 192.168.4.5:4567          | 4.4.4.4                   |  |  |  |  |  |  |
|     | Distributed K-V store     |                           |  |  |  |  |  |  |

| IP Header                   | SRC: 1.1.1.1           | DST: 2.2.2.2     |  |  |  |  |
|-----------------------------|------------------------|------------------|--|--|--|--|
| UDP Header                  | SRC: 24567             | DST: <b>4567</b> |  |  |  |  |
|                             | SCID                   | DCID             |  |  |  |  |
|                             |                        |                  |  |  |  |  |
| QUIC-SR Packet (Clear Text) | uSID: FC00:222:333:444 |                  |  |  |  |  |
| (Green rene)                |                        |                  |  |  |  |  |
|                             | SCID                   | DCID             |  |  |  |  |
| QUIC Packet<br>(Encrypted)  | Initial                |                  |  |  |  |  |

# uSID mapping table: IPv4-IPv6 interworking with pre-allocated SID and translation K-V store



#### Use case-2: Client-less VPN to VPC Hosts



With SR programmability, Endpoint could encode VPC information in QUIC-SR Packet. R3 based on SRH to setup pinhole or proxy to directly access server inside VPC

#### Use case-3: SDWAN Tunnel via QUIC-SR



R1 encap packet from client, then send over QUIC-SR socket R3 decap packet and send the original IP packet to server

### Overlay or Tunnel-Less?

- We've been heavily use overlay technology in the SDN era for a decade.
- Now, overlay is EVERYEWHERE in:
  - Access Network: wire and wireless converged
  - WAN: IPsec Tunnel with many private encapsulation
  - Datacenter: BGP-EVPN
  - SmartNIC: Host Overlay
  - Container Network: VXLAN/GRE

#### Proposal?

QUIC-SR could be used reduce overlay encapsulation by QUIC CONNECTION-ID and SR programmability.

#### Use case-4: Tunnel-Less SDWAN

Reduce overlay overhead



The Interim Router could aware QUIC packet and add QUIC-SR Packet for SR

#### Use case-5: Proxy Mode

Service-mesh Sidecar and Container Network Interface



#### Use case-6: SmartNIC & RDMA over QUIC-SR



SmartNIC could offload crypto function and quic packet encapsulation and flow-control SR provide path selection to avoid buffer overflow and congestion point.

#### Use case-7: Converged Access

Reduce overlay overhead & Multipath with same CONNECTION-ID



IP UDP Header QUIC-SR Packet Packet

#### Use case-8: App Performance Monitor

Same CONNECTION-ID could be used for telemetry data correlation In-band telemetry could be added in SRH optional header

