# **Convolutional Neural Networks**

## **Sudong Lee**

sudonglee@ulsan.ac.kr

https://dais.ulsan.ac.kr/



## **Contents**

- Introduction to CNN
- Understanding CNN
- The Important CNN Models



# **Introduction to CNN**



## ML Applications for Image/Video Data - Computer Vision (CV)

"CV is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos."

#### **Image Classification**





#### **Object Detection and Image Segmentation**





#### **Image Processing and Generation**







## **State-of-the-Art: Image Classification**

"In 2016, CNNs outperformed humans on the generic object image (ImageNet) classification problem."

## Image Classification on ImageNet



이미지 출처 | paperswithcode



## **State-of-the-Art: Image Segmentation**

"The image segmentation model that enables zero-shot generalization has emerged."





## **State-of-the-Art: Image Generation**

"The multi-model generative AI models can create not only text but also images and videos."





Stable Diffusion DALL·E



## Revisit: "What makes deep learning different from traditional machine learning?"

"Deep learning minimizes human intervention by end-to-end learning."



Traditional Machine Learning before Deep Learning



Deep Learning



## Convolutional Neural Network (CNN) at a Glance

"A CNN extracts the meaningful feature maps through convolutions in the end-to-end manner."





## **Human's Visual Understanding**

"Humans perceive visual input through overlapped receptive fields and process it with various representations."



Overlap in receptive fields





## Convolution

"Convolutional operation generates a feature map from an image patch through a filter."



## Convolution

"Convolution generates a feature map from an image that describes meaningful patterns."







## **Convolutional Neural Network**

"What if we can learn useful filters for the downstream task from data?"







## Low- and High-Level Feature Extraction

"CNNs can abstract the input image through the different levels of feature maps."





## Representation Learning Using CNN

"We can learn the feature maps for the downstream task on hand from training data."



Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).

# **Understanding CNN**



# Convolution



## Revisit: Convolutional Neural Network (CNN) at a Glance

"A CNN extracts the meaningful feature maps through convolutions in the end-to-end manner."





## **Two Main Aspects of Visual Understanding**







- Recognition of local patterns: "Here I find the human."  $\rightarrow$  translation equivariance
- Understanding of global semantics: "What's this? This is human."  $\rightarrow$  translation invariance



## **Translation Equivariance**

"Translation equivariance is a property that detects features regardless of their position in the input image."

#### • Definition. *Translation equivariance*

- A function f is translation equivariant if translating the input and then applying the function produces the same result as applying the function and then translating the output.
- $f(\pi(x)) = \psi(f(x))$





## Limitation of Vanilla Neural Network in Computer Vision

"A vanilla neural network cannot deal with object translation in an image effectively."





## **Convolution Filter**





- W: weight
- *b*: bias
- O: element-wise multiplication
- $f(\cdot)$ : activation function



## Translation Equivariance of CNNs: Parameter Sharing

"Convolutional operations share parameters and are translation equivariant."



## Stride

"Stride is the number of pixels by which the filter moves at each step."



#### Characteristics

- Default stride is usually 1.
- Larger strides result in smaller output dimensions.
- Stride can be different for vertical and horizontal directions.

- Controls the overlap between receptive fields.
- Affects the spatial dimensions of the output feature map.
- Can be used for downsampling (when stride > 1).



## **Dilation**

## "Dilation rate is the spacing between filter elements."



### Characteristics

- A dilation rate of 1 is standard convolution.
- Larger dilation rates increase the receptive field without increasing parameters.

- Expands the receptive field exponentially.
- Captures wider context without losing resolution.
- Useful for tasks requiring larger context, like semantic segmentation.



## **Padding**

## "Padding adds extra border pixels around the input."



#### Characteristics

- Usually filled with zeros (zero-padding).
- Can be asymmetric (different padding on different sides).

- · Controls output size.
  - Valid: smaller output
  - Same: same output
  - Full: larger output
- Preserves information at the borders.
- Affects how much each input pixel contributes to the output.
   (e.g., full padding allows each pixel for an equal contribution.)



## **Number of Filters**



- Each filter has the same number of sub-filters as the input channels.
- The depth of the output feature map is the same as the number of filters."



# **Pooling**



## Revisit: Convolutional Neural Network (CNN) at a Glance

"A CNN extracts the meaningful feature maps through convolutions in the end-to-end manner."





## Pooling (Subsampling)

"Pooling is a downsampling operation that reduces the spatial dimensions of an input feature map for the next layer."

# Max Pooling Take the highest value from the area covered by the kernel Example: Kernel of size 2 x 2; stride=(2,2)



#### Characteristics

- No learnable parameters (in general).s
- Reduces spatial dimensions but keeps the depth unchanged.

- Dimensionality reduction
  - Computational efficiency
  - Overfitting prevention
- Translation invariance
- Feature abstraction
- Multi-scale analysis



## **Local Translation Invariance by Pooling**

"Pooling makes the network more robust to small shifts and distortions."





# Classifier



## Revisit: Convolutional Neural Network (CNN) at a Glance

"A CNN extracts the meaningful feature maps through convolutions in the end-to-end manner."





## **Revisit: Two Main Aspects of Visual Understanding**

"Ironically, we need to address translation equivariance and invariance at the same time."







- Recognition of local patterns: "Here I find the human." → translation equivariance
- Understanding of global semantics: "What's this? This is human."  $\rightarrow$  translation invariance



## **Translation Invariance**

"Translation invariance is a property where the network's output remains unchanged when the input is translated."

#### Translation invariance

• Definition. *Translation invariance* 

A function f is translation invariant if the output remains the same regardless of the input's position.

•  $f(\pi(x)) = f(x)$ 





## **Translation Invariance in CNN**

"CNNs achieve translation invariance using the extracted features by convolutions and the fully-connected layers."



# **The Important CNN Models**



## LeNet-5

## "It has built the basic convolutional and pooling layers."



## **AlexNet**

"AlexNet introduced the ReLU activation function, data augmentation, and dropout technique to improve performance."



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

## **VGGNet**

"VGG showcased the power of depth in neural network, employing 16 to 19 layers and using small (3x3) filters."



## **GoogleNet (Inception)**

"GoogleNet increased the depth and width of the network while keeping the computational budget constant."



## **ResNet**

"ResNet introduced skip connections that allowed gradients to be directly back-propagated to earlier layers."





Figure 2. Residual learning: a building block.

# **Takeaways**



## Convolutional Neural Network (CNN) at a Glance

"A CNN extracts the meaningful feature maps through convolutions in the end-to-end manner."



## Two Main Aspects of Visual Understanding







- Recognition of local patterns: "Here I find the human."  $\rightarrow$  translation equivariance
- Understanding of global semantics: "What's this? This is human."  $\rightarrow$  translation invariance



Thank you! 🙂

