Economic Growth

Lecture 8: Technological Progress and Efficiency

İlhan Güner

University of Kent | EC569

Overview

- Models of endogenous growth
 - How is the level of innovation in a market economy determined?
 - Is the level of innovation in a market economy socially optimal?
 - Designed to analyze the economic growth in the advanced economies
- Role of efficiency in productivity

How is the level of innovation determined in a market economy?

The Romer Model

- Developed by Paul Romer
- Expanding-variety type of innovation
 - An innovation is an introduction of a new intermediate input in the market
 - E.g. introduction of phone, mobile phones, smart phones, foldable smart phones,...

The Schumpeterian model

- Insights of Joseph Schumpeter
 - Creative destruction: existing firms/technologies are replaced by new and better firms/technologies
- Developed by Aghion and Howitt (1992) and Grossman and Helpman (1991)
- Quality-ladder type of innovation:
 - Horse cart is replaced by Ford Model T, which is replaced by modern cars
- In both models to produce a new intermediate input, one needs to own the blueprints of production
 - Ownership of blue prints of productions brings in monopoly profits
- Blueprints are produced by researchers and sold to monopolists
 - Reason to do R&D

Return to innovation: expected discounted sum of future profits

Return to innovation: expected discounted sum of future profits

- positively on the growth rate of the economy
 - fast growing profits incentivizes inventions

Return to innovation: expected discounted sum of future profits

- positively on the growth rate of the economy
 - fast growing profits incentivizes inventions
- negatively on the discount rate
 - high discount rate means future consumption is valued less
 - \circ the lower the value of future consumption, the lower the incentive to give up current consumption to have higher future consumption \Rightarrow lower incentives to innovate

Return to innovation: expected discounted sum of future profits

- positively on the growth rate of the economy
 - fast growing profits incentivizes inventions
- negatively on the discount rate
 - high discount rate means future consumption is valued less
 - \circ the lower the value of future consumption, the lower the incentive to give up current consumption to have higher future consumption \Rightarrow lower incentives to innovate
- positively on the probability of innovation
 - The higher the chance of a successful innovation, the higher the incentives to innovate

Return to innovation: expected discounted sum of future profits

- positively on the growth rate of the economy
 - fast growing profits incentivizes inventions
- negatively on the discount rate
 - high discount rate means future consumption is valued less
 - \circ the lower the value of future consumption, the lower the incentive to give up current consumption to have higher future consumption \Rightarrow lower incentives to innovate
- positively on the probability of innovation

- The higher the chance of a successful innovation, the higher the incentives to innovate
- negatively on the probability of innovation
 - The higher the chance of being replaced by subsequent inventors, the lower the incentives to innovate
 - Notice that this motive is missing in the Romer model.

The fraction of labor force working in R&D and economic growth?

- Assuming the idea production is of the form $\dot{A}=rac{(\gamma_A L)^\lambda}{\mu}A^\phi$, where $0<\phi<1$. $\Rightarrow g_A\equivrac{\dot{A}}{A}=rac{(\gamma_A L)^\lambda}{\mu}rac{A^\phi}{A}$.
- An increase in γ_A leads higher rate of technological progress in the short-run, which leads to economic growth.
- Long-run growth rate is independent of the fraction of labor force engaging in innovation.

$$\circ$$
 $\dot{A}=rac{(\gamma_A L)^\lambda}{\mu}A^\phi \Rightarrow rac{\dot{A}}{A}=rac{(\gamma_A L)^\lambda}{\mu} \stackrel{A^\phi}{A}$

- \circ (+) Larger γ_A makes idea creation easier, and boosts economic growth
- 100+2 => 2° h 1000+4 => 2% 1000+20 => 2% 1000+20 => 2%
- \circ (-) Higher level A makes it harder to achieve same growth rate
- Net effect: long-run growth rate of technology (and output per worker) is independent of the fraction of labor force engaging in innovation if $\phi < 1$
- In this regard, the analysis is similar to an increase in the investment rate in the Solow model.
- More on appendix

- In both models, long-run **growth rate** is independent of the fraction of labor force engaging in research
 - Consistent with the empirical evidence.

• In both models, long-run **growth rate** is independent of the fraction of labor force engaging in research

• Consistent with the empirical evidence.

• The level of income per capita in the long run is impacted by the fraction of labor force engaging in

research

- In both models, long-run **growth rate** is independent of the fraction of labor force engaging in research
 - Consistent with the empirical evidence.
- The **level** of income per capita in the long run is impacted by the fraction of labor force engaging in research
- A larger population size leads to higher levels of income per capita in the long-run. Due to non-rivalrous nature of ideas
 - Larger population, more inventors, higher levels of technology
 - Larger population, larger market for inventions, more inventors, higher levels of technology

- In both models, long-run **growth rate** is independent of the fraction of labor force engaging in research
 - Consistent with the empirical evidence.
- The **level** of income per capita in the long run is impacted by the fraction of labor force engaging in research
- A larger population size leads to higher levels of income per capita in the long-run. Due to non-rivalrous nature of ideas
 - Larger population, more inventors, higher levels of technology
 - Larger population, larger market for inventions, more inventors, higher levels of technology
- Long-run economic growth rate is positively related to population growth rate
 - Higher population growth rate generates steady increase in the number of researchers
 - Higher rates of economic growth

Insights, cont'd

- ullet Long-run economic growth rate is positively related to knowledge spillovers, ϕ
 - If current research benefits future researchers more, the economy can achieve higher economic growth rates
- If the discount rate applied to monopoly profits is large, the Schumpeterian model imply a larger fraction of labor force engaging in innovation
 - because relative importance of being replaced by others is small
- If the discount rate is relatively small, the Schumpeterian model imply a smaller fraction of labor force engaging in research
 - because people are sensitive to the future destruction of profits

Socially optimal R&D

Because of the externalities in the innovation process, competitive equilibrium R&D level is not socially optimal. Remember that $\dot{A}=\frac{L_A^\lambda}{\mu}A^\phi$

- if $\phi>0$: "standing on shoulders"
 - Current researchers do not financially benefit from the positive impact of their inventions on the subsequent inventors
 - leads to under-invesment in R&D in the market economy

Socially optimal R&D

Because of the externalities in the innovation process, competitive equilibrium R&D level is not socially optimal. Remember that $\dot{A}=\frac{L_A^\lambda}{\mu}A^\phi$

- if $\phi > 0$: "standing on shoulders"
 - Current researchers do not financially benefit from the positive impact of their inventions on the subsequent inventors
 - leads to under-invesment in R&D in the market economy
- if $\lambda < 1$: "stepping on toes"
 - Researchers do not take into account potential duplication of research efforts
 - leads to over-invesment in R&D in the market economy

Socially optimal R&D

Because of the externalities in the innovation process, competitive equilibrium R&D level is not socially optimal. Remember that $\dot{A}=\frac{L_A^\lambda}{\mu}A^\phi$

- if $\phi > 0$: "standing on shoulders"
 - Current researchers do not financially benefit from the positive impact of their inventions on the subsequent inventors
 - leads to under-invesment in R&D in the market economy
- if $\lambda < 1$: "stepping on toes"
 - Researchers do not take into account potential duplication of research efforts
 - leads to over-invesment in R&D in the market economy
- Consumer surplus effect
 - Private gain of an innovation = profit < Consumer surplus = Social gain
 - leads to under-invesment in R&D in the market economy

Socially optimal R&D, cont'd

- Also, specific to the Schumpeterian model:
 - Inventors steal markets from existing producers
 - Business stealing effect: Innovators do not internalize the cost they impose on incumbent producers
 - Leads to over-investment in innovation
- Overall,
 - markets under-invests in innovation
 - Lucking, Bloom, and Van Reenen (2018) estimate that, in the US
 - -social returns to R&D in the United States are about 60 percent
 - -private returns are about 15 percent
- Ground for government interference to correct for the externalities
- Anti-trust policy should take into account the contrasting effects of market power on the economu:
 - in standard markets, monopolies involve deadweight losses, hence inefficient
 - to provide incentive to innovate, markets need to be imperfect

Do interactions with other inventors boost innovation?

Watch this short video by Stefanie Stantcheva: Where does innovation come from?

Efficiency

Efficiency

Productivity = Technology × Efficiency

- Technology: Knowledge about how factors of production can be combined to produce output
- Efficiency: How effectively given technology and factors of production actually used
- Productivity is much lower in poor countries than in rich countries
 - Not obvious the only reason is a gap of technology
 - Many of the most advanced technologies are being used in poor countries

Types of Inefficiency

- Poor management practices
- Unproductive activities
- Idle resources
- Misallocation among sectors
- Misallocation among firms
- Technology blocking

Management practices

- World Management Survery (Bloom, Sadun, and Van Reenen (2017))
- Survey of thousands of managers across 40 countries
- Core management practices:
 - setting sensible targets
 - providing proper incentives
 - credibly monitoring performance
- Read the op-ed on the article
- Bloom, Lemos, Sadun, Scur, Van Reenen (2014):

'about a quarter of cross-country and within-country TFP gaps can be accounted for by management practices.'

Management quality and productivity

 Average management quality differs enormously across countries

Figure 1: Average Management Scores by Country

Note: Unweighted average management scores; # interviews in right column (total = 15,489); all waves pooled (2004-2014)

Source: Bloom, Sadun, and Van Reenen (2017)

 Firm level productivity and management quality are positively correlated

Notes: This plots the lowess predicted valued of TFP against management (bandwidth=0.5). TFP calculated as residual of regression of ln(sales) on ln(capital) and ln(labor) plus a full set of 3 digit industry, country and year dummies controls. N = 10.900.

Unproductive Activities

- Illegal activities: theft, smuggling, kidnapping for ransom, ..
- Rent seeking: involve the use of laws or government institutions to bring private benefits
 - Economic rent: payment to a factor of production in excess of what is required to elicit the supply of that factor
 - E.g.: quotas to limit the imports of some goods, lobbying, ...
 - Costs: a good deal of effort, bright people work in unproductive activities

Unproductive Activities

- Illegal activities: theft, smuggling, kidnapping for ransom, ..
- Rent seeking: involve the use of laws or government institutions to bring private benefits
 - Economic rent: payment to a factor of production in excess of what is required to elicit the supply of that factor
 - E.g.: quotas to limit the imports of some goods, lobbying, ...
 - Costs: a good deal of effort, bright people work in unproductive activities

Idle Resources

- Factors of production not used at all
- Unemployment, underemployment
- Factory that sits unused
- Factory running at less than full capacity
- Example: In 2001,
 - Air Afrique: 500 employees per airplane,
 - EasyJet: 66 employees per airplane
- Example: Firemen employed in diesel engines of the United States and Canada railroads during the middle of the 20th century

Misallocation Among Sectors

Misallocation among sectors: marginal product of inputs are not equal across sectors

- barriers to mobility
 - geographical isolation
 - wage policy: e.g. sectoral minimum wage
 - market segmentation: potentially productive people are unable to work in certain sectors (due to licensing requirements for example)
 - tax rate differences across industries
- wages ≠ marginal product of labor

Graphic from: Weil (2013)

Efficiency Gains from Sectoral Reallocation

Reallocation from agriculture to manufacturing

- Taiwan: 0.7% of 5.4% annual growth over 1966-1991
- Korea: 0.7% of 5.7% annual growth over 1960-1990
- US: fraction of agricultural labor decreased from 50% to 3% over 1880-1980
- China: fraction of agricultural labor decreased from 69% to 40% over 1980-2009

Misallocation Among Firms

Misallocation among firms: marginal product of inputs are not equal across firms

- government-owned firms over-employ: political power
- monopolies under-employ: monopolistic profit
- financial frictions prevent efficient allocation of capital
- discrimination
 - preventing many talented women, ethnic minorities, and others from working on jobs that better suits their talents.

Technology Blocking

Agents deliberately prevent the use of technology

- Gutenberg's printing press (1453): scribes
- automated weaving loom (19th century): Luddites
- margarine (late 19th century): dairy farmers
- Netscape browser: Microsoft

Isn't technological progress beneficial to the economy?

- creative destruction and technology blocking
 - the success of technology blocking depends on the relative power of the opposer/supporter

"Not everyone benefits from technological advances."

Source: Kaamran Hafeez, the New Yorker

Summary

- Analyzed the motives of innovation
- Analyzed externalities in the innovation process, and justified the role of government intervention
- Looked at the role of efficiency in productivity

To review our lectures (lectures 7 and 8) on technology and efficiency

Read

- Chapters 4 and 5 of Introduction to Economic Growth by Jones and Vollrath
- Mathematical appendix to Chapter 9 of Economic Growth by David Weil
- Chapter 10 of Economic Growth by David Weil

Appendix

Long-run growth rate

- How do we calculate long-run economic growth if $\dot{A}=rac{L_A^{\lambda}}{\mu}A^{\phi}$?
- ullet Growth rate of A, $g_A\equiv rac{\dot{A}}{A}=rac{(\gamma_A L)^\lambda}{\mu}A^{\phi-1}=rac{(\gamma_A L)^\lambda}{\mu A^{1-\phi}}$
- ullet For g_A to be constant in the long run, $(\gamma_A L)^\lambda$ and $\mu A^{1-\phi}$ should grow at the same rate.
- Growth rate of $(\gamma_A L)^{\lambda}$ is λn , where n is the population growth rate.
- ullet Growth rate of $\mu A^{1-\phi}$ is equal to $(1-\phi)g_A$
- $(1-\phi)g_A = \lambda n$
- ullet Growth rate of technology: $g_A=rac{\lambda n}{(1-\phi)}$ if $\phi<1$.
- ullet g_A is positively correlated with λ , n, and ϕ

Determinants of productivity growth in the long run

In the long-run:
$$g_A=rac{\lambda n}{(1-\phi)}$$

To understand the intuition, suppose $\lambda=1$ and $\phi=0$

Then $g_A=rac{(\gamma_A L)}{\mu}rac{1}{A}$ all the time, $g_A=n$ in the long run

- ullet If population does not grow, g_A will converge to 0
 - \circ Recall $\dot{A}=rac{\gamma_A L}{\mu}$ if $\lambda=1$ and $\phi=0$

- Hence the only source of growth is from population growth
- $g_A=n$ if $\lambda=1$ and $\phi=0$
- Larger population generates more ideas
- Since ideas are non-rivalrous, everyone benefits

Determinants of productivity growth in the long run, cont'd

• Then,
$$g_A=rac{(\gamma_A L)}{\mu}rac{A}{A}=rac{(\gamma_A L)}{\mu}$$
 all the time

- Notice that this formulation is equivalent to our assumption in the last lecture
- We see sustained growth even if research effor is contant, i.e. even if $\gamma_A L$ is constant.
- Rejected by the data

Determinants of productivity growth in the long run, cont'd (2)

f
$$\phi > 0$$
 but $\phi < 1$:

• still positive spillovers from research

 g_A at the steady state (or balanced growth path): $g_A = rac{\lambda n}{(1-\phi)}$

- Unaffected by the fraction of population engaging in R&D
 - \circ Intuitively, higher γ_A leads to higher \hat{A} in the short run
 - \circ In the long-run, because of diminishing marginal product of idea stock in idea creation, γ_A does not affect the long-run economic growth.

However, short-run growth rate of productivity is a still function of fraction of labor force engaging in R&D.

Income per capita in the long run

- Fraction of labor force engaging in R&D impacts income per capita
 - Positively: high level of productivity in the long run
 - Negatively: smaller fraction of workers in the production
- Size of labor force, L(t), impacts income per capita positively (scale effect):
 - \circ demand effect: $L\uparrow\Rightarrow$ larger market for an idea $\Rightarrow\uparrow$ return to research
 - \circ supply effect: $L\uparrow\Rightarrow$ more potential creators of ideas