Modelling of missing loops in protein structures

Jan-Oliver Kapp-Joswig May 2025

Problem statement

- Input: partial structure + sequence
- Output: structure(s) with filled gaps
- Requirements:
 - o physical plausibility
 - o conformational variability
 - confidence score

Problem statement

- Input: partial structure + sequence
- Output: structure(s) with filled gaps
- Requirements:
 - o physical plausibility
 - o conformational variability
 - confidence score

Relevant example:

Binding site close to missing loop

- Template-based/homology modelling:
 - o <u>ProMod3</u> (OpenStructure), <u>Modeller</u>
- Fragment-based (using a database):
 - O FREAD
- Ab initio modelling:
 - PDBFixer, ICM (Molsoft), Rosetta, Modeller
- ML models:
 - AF2 (<u>"inpainting"</u> mode)
- Hybrid approaches

- Template-based/homology modelling:
 - o ProMod3 (OpenStructure), Modeller
 - Relies on (multiple) sequence and structural alignment
 - Good if high quality references exist
 - In principle, very long segments can be built (but in practice finding good templates becomes difficult)

- Fragment-based (using a database):
 - o <u>FREAD</u>
 - Assumes that similar sequences adopt similar conformations
 - Good if suitable fragments exist (database completeness)
 - Can struggle with longer segments

- Ab initio modelling:
 - PDBFixer, ICM (Molsoft), Rosetta, Modeller
 - Modelling without prior knowledge from physical principles
 - Several algorithms available: CCD, KIC, MC chain growth
 - Can struggle with longer segments

- ML models:
 - AF2 (<u>"inpainting"</u> mode)
 - Guided predictions on partially solved input can have improved outcomes
 - Quality of results are system dependent

In practice

- Leverage multiple available tools
 - o Compare, filter, and prioritise models
- Generate model ensembles
 - Averaging
 - Clustering
- Refine models (Energy minimisation, MD)
- Benchmark approaches on problems with known solution

Evaluation of results

- Some tools provide a built-in score:
 - AF2
- Geometric scores (discard unphysical results):
 - clashes
 - o bond length/angle deviations from expected values
 - Ramachandran outliers
- Energy functions (rank quality among plausible results):
 - Statistical potentials
 - Force fields
 - Solvation energy

Challenges

- Accessibility of tools can be a hindrance
 - o included in large suites
 - o GUI based
 - web servers
 - missing documentation
 - licences
 - dependencies
- PDBx/mmCIF is a complex format
 - o parsing, modification, splitting/joining
 - o tools like gemmi help

Minimal approach

- LoopBuilder Python package
- Lightweight skeleton to generalise the use of external tools
 - o to generate structures for missing segments
 - to score individual segments
- Pick simple methods as baseline
 - PDBFixer
 - MolProbity
- Opportunity to
 - establish general protocol
 - sort technical details
 - identify bottlenecks

Minimal approach

Example: 3IDP

```
builder = PDBFixerBuilder(
    structure_file=PROJECT_ROOT / "data/3idp.cif",
    output_directory=PROJECT_ROOT / "sandbox/PDBFixer",
    scorers=[MolProbityScorer(docker_image="francecosta/molprobity:v0.0.1")],
    filters=[lambda x: x.scores.get("ramachandran_outliers", 0.3) \leq 0.3],
    working_directory=PROJECT_ROOT / "sandbox/PDBFixer/tmp",
)
builder.build(n=3)
```

segments.csv

```
identifier,chain_index,chain_name,residue_start_index,residue_start_seqid,residue_index_offset,residue_names,...
loop_1,0,A,149,598,449,"['ALA', 'THR', 'GLU', 'LYS', 'SER', 'ARG', 'TRP', 'SER', 'GLY', 'SER', 'HIS', 'GLN', ...,...
...,
```

models.csv

```
identifier,structure_file,scores,index
loop_1, ..., "{'ramachandran_outliers': 0.2857, 'rotamer_outliers': 0.3571, ..., 'molprobity_score': 2.72}",1
...,
```

Example: 3IDP

- Proof of concept
- Results not usable as is

Next steps

- Energy minimisation or short MD to sanitise generated structures
 - vacuum or solvated
 - possibly already before scoring
 (Minimiser could formally be a Scorer)
- Performance: sequential modelling of isolated segments can be slow
 - Naive parallelisation (multiple builders) possible
- Consider simultaneous modelling of (coupled) segments
- Look into alternative modelling method (AF2 inpainting most promising)