

TCC Workshop

Alex A. Kurzhanskiy and Pravin Varaiya

(UC Berkeley)

March 27, 2006

Outline

- Problem setting and basic definitions
- Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Outline

- Problem setting and basic definitions
- Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

System Equations

The controlled system:

$$\dot{x} = f(t,x,u), \quad t \geq t_0$$

state variable: $x \in \mathbb{R}^{\mathrm{n}}$

Control:

- Open-loop: $u(t) \in \mathcal{P}(t), t \geq t_0$
- Closed-loop: $u(t,x) \in \mathcal{P}(t)$ ($u(t,x) \in \mathcal{P}(t,x)$), $t \geq t_0$
- lacksquare $\mathcal{P}(t)$ compact subset of \mathbb{R}^{m}

Reachability (definitions)

■ Reach set $X(t,t_0,X^0)$ at $t>t_0$ from $\{t_0,X^0\}$:

$$X(t,t_0,X^0) = \bigcup_{u(\cdot)\in \mathcal{P}(\cdot), x^0 \in X^0} \{x(t,t_0,x^0|u(\cdot))\}$$

- Reach tube: map $t \rightarrow X[t] = X(t,t_0,X^0)$
- Reach set at some time within $[t_1,t_2]$:

$$\mathcal{X}(t_2, t_1, X^0) = \bigcup_{t_1 \le \tau \le t_2} X(\tau, t_0, X^0)$$

Reachability (illustrations)

Reachability (illustrations)

Reachability (illustrations)

Reachability (properties)

- The reach sets are the same for open-loop and closed-loop controls
- Reach set $X(t,t_0,X^0)$ satisfies the semigroup property:

$$X(\boldsymbol{t},\boldsymbol{t_0},X^{\boldsymbol{0}}) = X(\boldsymbol{t},\boldsymbol{\tau},X(\boldsymbol{\tau},\boldsymbol{t_0},X^{\boldsymbol{0}}))$$

Also true for the reach tube X[t]

Backward Reach Set

Given:

- \square Target set Y^1
- \square Terminating time t_1

Backward reach set $Y(t,t_1,Y^1)$ at time t – set of all states y for each of which there exists control $u(\tau), t_0 \le \tau < t$, such that y(t) = y and $y(t_1) \in Y^1$

Backward Reachability (illustration)

 $Y(t,t_1,Y^1)$ – backward reach set at time t

Linear Systems

■ Continuous-time:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t)$$

■ Discrete-time:

$$\mathbf{x}(\mathbf{t}+1) = A(\mathbf{t})\mathbf{x}(\mathbf{t}) + B(\mathbf{t})\mathbf{u}(\mathbf{t})$$

$$\boldsymbol{x}(t_0) \in X^0, \ \boldsymbol{u}(t) \in \mathcal{P}(t)$$

Outline

- and basic definitions
- Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Algorithmic Methods

<u>Polytopes</u>	linear systems	ETHZ
(MPT)	exact reach set	
Zonotopes	linear systems	UPenn/
(MATISSE)	external apprx.	Verimag
<u>Hyperrectangles</u>	linear systems	Verimag
(d/dt)	external apprx.	
<u>Oriented</u>	autonomous systems	
Rectangles	external apprx.	CMU
(CheckMate)		

Analytic Methods

Quantifier	linear nilpotent systems	UPenn
Elimination	exact reach set	
(Requiem)		
<u>Parallelotopes</u>	linear systems	IMM
	external/internal apprx.	
Level Sets	any systems	UBC
(Level Set	exact reach set	
Toolbox)		
<u>Barrier</u>	polynomial systems	Caltech
<u>Certificates</u>	no reach set computation	

Outline

- and basic definitions
- a Overview of existing methods and tools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Ellipsoid

$$\mathcal{E}(\boldsymbol{q},Q) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \langle (\boldsymbol{x} - \boldsymbol{q}), Q^{-1}(\boldsymbol{x} - \boldsymbol{q}) \rangle \leq 1 \}$$

Support Function

Support function of ellipsoid:

$$\rho(\boldsymbol{l} \mid \mathcal{E}(\boldsymbol{q}, Q)) = \langle \boldsymbol{l}, \boldsymbol{q} \rangle + \langle \boldsymbol{l}, Q \boldsymbol{l} \rangle^{1/2}$$

Linear Systems

■ Continuous-time:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t)$$

■ Discrete-time:

$$\mathbf{x}(\mathbf{t}+1) = A(\mathbf{t})\mathbf{x}(\mathbf{t}) + B(\mathbf{t})\mathbf{u}(\mathbf{t})$$

$$\boldsymbol{x}(t_0) \in \mathcal{E}(\boldsymbol{x_0}, X_0), \ \boldsymbol{u}(t) \in \mathcal{E}(\boldsymbol{p}(t), P(t))$$

Linear Systems

Continuous-time:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t)$$

■ Discrete-time:

$$\mathbf{x}(\mathbf{t}+1) = A(\mathbf{t})\mathbf{x}(\mathbf{t}) + B(\mathbf{t})\mathbf{u}(\mathbf{t})$$

$$x(t_0) \in \mathcal{E}(x_0, X_0), u(t) \in \mathcal{E}(p(t), P(t))$$

Reach Set of Linear System

Symmetric convex compact set in \mathbb{R}^n evolving in time

Tight Approximations

- External ellipsoidal approximation \mathcal{E}_+ of symmetric convex set X is tight if
 - $\square X \subseteq \mathcal{E}_+$
 - \Box There exists \boldsymbol{l} such that $\boldsymbol{\rho}(\pm \boldsymbol{l} \mid \mathcal{E}_+) = \boldsymbol{\rho}(\pm \boldsymbol{l} \mid X)$
- Internal ellipsoidal approximation $\mathcal{E}_{\underline{}}$ of symmetric convex set X is tight if
 - $\square \mathcal{E}_{\underline{\ }} \subseteq X$
 - \Box There exists \boldsymbol{l} such that $\rho(\pm \boldsymbol{l} \mid \mathcal{E}_{\underline{}}) = \rho(\pm \boldsymbol{l} \mid X)$

For any l there exist \mathcal{E}_{+} and \mathcal{E}_{-} :

•
$$\mathcal{E}_{-} \subseteq X \subseteq \mathcal{E}_{+}$$

$$\bullet \ \rho(\pm \boldsymbol{l} \mid \mathcal{E}_{\boldsymbol{-}}) = \rho(\pm \boldsymbol{l} \mid \boldsymbol{X}) = \rho(\pm \boldsymbol{l} \mid \mathcal{E}_{\boldsymbol{+}})$$

For any l there exist \mathcal{E}_+ and \mathcal{E}_- :

•
$$\mathcal{E}_{-} \subseteq X \subseteq \mathcal{E}_{+}$$

$$\bullet \ \rho(\pm \boldsymbol{l} \mid \mathcal{E}_{\boldsymbol{-}}) = \rho(\pm \boldsymbol{l} \mid \boldsymbol{X}) = \rho(\pm \boldsymbol{l} \mid \mathcal{E}_{\boldsymbol{+}})$$

For any l there exist \mathcal{E}_+ and \mathcal{E}_- :

•
$$\mathcal{E}_{-} \subseteq X \subseteq \mathcal{E}_{+}$$

•
$$\rho(\pm l \mid \mathcal{E}_{-}) = \rho(\pm l \mid X) = \rho(\pm l \mid \mathcal{E}_{+})$$

For any l there exist \mathcal{E}_+ and \mathcal{E}_- :

•
$$\mathcal{E}_{-} \subseteq X \subseteq \mathcal{E}_{+}$$

•
$$\rho(\pm l \mid \mathcal{E}_{-}) = \rho(\pm l \mid X) = \rho(\pm l \mid \mathcal{E}_{+})$$

$$\bigcup_{l} \mathcal{E}_{_} = X = \bigcap_{l} \mathcal{E}_{+}$$

$$\dot{ extbf{\emph{l}}}(extbf{\emph{t}}) = -A^{ ext{T}}(extbf{\emph{t}}) extbf{\emph{l}}(extbf{\emph{t}}), extbf{\emph{l}}(extbf{\emph{t}}_0) = extbf{\emph{l}}_0$$
 good curve

$$X(t,t_0,X^0)$$

$$\mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle{\mathrm{c}}}(\boldsymbol{t}), X_{l}^{\scriptscriptstyle{-}}(\boldsymbol{t})) \subseteq X(\boldsymbol{t}, \boldsymbol{t}_{\!\scriptscriptstyle{\boldsymbol{0}}}, X^{\!\scriptscriptstyle{\boldsymbol{0}}})$$

$$\dot{\boldsymbol{l}}(t) = -A^{\mathrm{T}}(t)\boldsymbol{l}(t), \ \boldsymbol{l}(t_0) = \boldsymbol{l}_0$$

good curve

$$\mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{c}}(t),\!X_{\!\boldsymbol{i}}^{\scriptscriptstyle -}(t))\subseteq X\!(\boldsymbol{t},\!\boldsymbol{t}_{\!\boldsymbol{0}},\!X^{\!\boldsymbol{0}})\subseteq \mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{c}}(t),\!X_{\!\boldsymbol{l}}^{\scriptscriptstyle +}(t))$$

$$\dot{\textbf{\textit{l}}}(t) = -A^{\mathrm{T}}(t) \textbf{\textit{l}}(t), \ \textbf{\textit{l}}(t_0) = \textbf{\textit{l}}_0$$
 good curve

$$egin{aligned} oldsymbol{t} & oldsymbol{t} \
ho(oldsymbol{l}(oldsymbol{t}) \mid \mathcal{E}(oldsymbol{x}_c(oldsymbol{t}), X_{oldsymbol{l}}^-(oldsymbol{t})) = oldsymbol{
ho}(oldsymbol{l}(oldsymbol{t}) \mid oldsymbol{X}(oldsymbol{t}, oldsymbol{t}_0, oldsymbol{X}^0)) = oldsymbol{
ho}(oldsymbol{l}(oldsymbol{t}) \mid \mathcal{E}(oldsymbol{x}_c(oldsymbol{t}), X_{oldsymbol{l}}^+(oldsymbol{t})) \end{aligned}$$

Good Curves (summary)

If
$$\mathbf{\textit{l}}(t)$$
 satisfies $\dot{\mathbf{\textit{l}}}(t) = -A^{\mathrm{T}}(t)\mathbf{\textit{l}}(t),\ \mathbf{\textit{l}}(t_0) = \mathbf{\textit{l}}_0,$ then

$$\blacksquare \mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{c}}(\boldsymbol{t}), \! X_{\!\boldsymbol{l}}^{\scriptscriptstyle -}(\boldsymbol{t})) \subseteq \boldsymbol{X}\!(\boldsymbol{t}, \! \boldsymbol{t}_{\!\boldsymbol{0}}, \! \boldsymbol{X}^{\!\boldsymbol{0}}) \subseteq \mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{c}}(\boldsymbol{t}), \! X_{\!\boldsymbol{l}}^{\!\scriptscriptstyle +}(\boldsymbol{t}))$$

$$\rho(\boldsymbol{l}(t)|\mathcal{E}(\boldsymbol{x}_{\!c}(t),\!X_{\!\boldsymbol{l}}(t))) = \rho(\boldsymbol{l}(t)|\boldsymbol{X}(t,\!t_{\!\boldsymbol{0}},\!X^{\!\boldsymbol{0}})) = \rho(\boldsymbol{l}(t)|\mathcal{E}(\boldsymbol{x}_{\!c}(t),\!X_{\!\boldsymbol{l}}^{+}(t)))$$

where
$$\dot{\boldsymbol{x}}_{c}(\boldsymbol{t})=A(\boldsymbol{t})\boldsymbol{x}_{c}(\boldsymbol{t})+B(\boldsymbol{t})\boldsymbol{p}(\boldsymbol{t}),\ \boldsymbol{x}_{c}(\boldsymbol{t_0})=\boldsymbol{x_0},$$

and the shape matrices $X_l^+(t)$, $X_l^-(t)$ are governed by single ODEs

On ellipsoidal techniques for reachability analysis
 by A.B.Kurzhanski, P.Varaiya (2000)

Good Curves (movie)

Steering the system to a given target point at given time

Good Curves (control)

$$u_l(t) = p(t) + \frac{P(t)B^T(t)\Phi(t_0, t)l_0}{\langle l_0, \Phi(t_0, t)B(t)P(t)B^T(t)\Phi(t_0, t)l_0 \rangle^{1/2}}$$

Reaching Internal Point

Scale the set of controls: $\mathcal{E}(p(t),\mu^2P(t)), |\mu| \leq 1$

Reaching Internal Point

Colliding forward and backward reach tubes

switch good curves

$m{E}$ llipsoidal $m{T}$ oolbox $^{\mathbb{C}}$

www.eecs.berkeley.edu/~akurzhan/ellipsoids

Ellipsoidal Toolbox

- Ellipsoidal calculus
 - □ Geometric sums and differences
 - Intersections with ellipsoids, hyperplanes, polyhedra
- Reachability analysis
 - Continuous- and discrete-time linear systems
 - □ Forward and backward reach sets
- Visualization (2D and 3D)
 - □ Plotting of ellipsoids, hyperplanes, reach sets
 - □ Projections

MATLAB Types

ET implements classes:

- ellipsoid
- hyperplane
- linsys
- reach

Approximation Refinement

ET function: refine

Semigroup Property

 $\overline{t_0}$ $\overline{t_1}$

ET function: evolve

Semigroup Property

ET function: evolve

Semigroup Property

ET function: evolve

Switched System

ET function: evolve

Cutting the Reach Tube

ET function: cut

Verification

Check if reach set external (internal) approximation intersects with given object: ellipsoid, hyperplane, polytope

ET function: intersect

Discrete-Time Systems

$$\mathbf{x}[\mathbf{k}+1] = A[\mathbf{k}]\mathbf{x}[\mathbf{k}] + B[\mathbf{k}]\mathbf{u}[\mathbf{k}]$$

 $\mathbf{x}[\mathbf{k}_0] \in \mathcal{E}(\mathbf{x}_0, X_0), \ \mathbf{u}[\mathbf{k}] \in \mathcal{E}(\mathbf{p}[\mathbf{k}], P[\mathbf{k}])$

Same ellipsoidal theory applies with some adjustments

Ellipsoids vs Polytopes

$$x[k+1] = \begin{bmatrix} \cos(1) & -\sin(1) \\ \sin(1) & \cos(1) \end{bmatrix} x[k] + u[k], \ x[0] \in X^0, \ u[k] \in \mathcal{P}$$

Ellipsoids vs Polytopes

$$x[k+1] = \begin{bmatrix} \cos(1) & -\sin(1) \\ \sin(1) & \cos(1) \end{bmatrix} x[k] + u[k], \ x[0] \in X^0, \ u[k] \in \mathcal{P}$$

Complexity:

$$k(L(8n^3 + 4n^2 + 2n) + 2n^2)$$

Ellipsoids vs Polytopes

$$x[k+1] = \begin{bmatrix} \cos(1) & -\sin(1) \\ \sin(1) & \cos(1) \end{bmatrix} x[k] + u[k], \ x[0] \in X^0, \ u[k] \in \mathcal{P}$$

Outline

- La Problem setting and basic definitions
- aloois and cools and cools
- Ellipsoidal approach
- Systems with disturbances
- Hybrid systems
- Summary and outlook

Linear System with Disturbance

System equation:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t,\boldsymbol{x}(t)) + G(t)\boldsymbol{v}(t)$$

- Initial state: $x(t_0) \in X^0 = \mathcal{E}(x_0, X_0)$
- Control
 - \square Open-loop: $u(t) \in \mathcal{P}(t) = \mathcal{E}(p(t), P(t))$
 - \square Closed-loop: $u(t,x(t)) \in \mathcal{P}(t) = \mathcal{E}(p(t),P(t))$
- Disturbance: $v(t) \in Q(t) = \mathcal{E}(q(t), Q(t))$

Linear System with Disturbance

System equation:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t,\boldsymbol{x}(t)) + G(t)\boldsymbol{v}(t)$$

- Initial state: $x(t_0) \in X^0 = \mathcal{E}(x_0, X_0)$
- Control
 - \square Open-loop: $u(t) \in \mathcal{P}(t) = \mathcal{E}(p(t), P(t))$
 - \square Closed-loop: $u(t,x(t)) \in \mathcal{P}(t) = \mathcal{E}(p(t),P(t))$
- Disturbance: $v(t) \in Q(t) = \mathcal{E}(q(t), Q(t))$

Linear System with Disturbance

System equation:

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) + B(t)\boldsymbol{u}(t,\boldsymbol{x}(t)) + G(t)\boldsymbol{v}(t)$$

- Initial state: $x(t_0) \in X^0 = \mathcal{E}(x_0, X_0)$
- Control
 - $\Box \underline{\mathsf{Open-loop:}} \ \boldsymbol{u}(\boldsymbol{t}) \in \mathcal{P}(\boldsymbol{t}) = \mathcal{E}(\boldsymbol{p}(\boldsymbol{t}), P(\boldsymbol{t}))$
 - \square Closed-loop: $u(t,x(t)) \in \mathcal{P}(t) = \mathcal{E}(p(t),P(t))$
- Disturbance: $v(t) \in Q(t) = \mathcal{E}(q(t), Q(t))$

Reach Sets

Open-loop reach set (OLRS) and closed-loop reach set (CLRS) of a system with disturbance are different

OLRS of MAXMIN Type

Given initial set X^0 , time $t > t_0$, $X^{-}(t,t_0,X^0)$ is the set of all x, such that for any $v(\tau) \in \mathcal{Q}(\tau)$ there exists $x^0 \in X^0$ and $u(\tau) \in \mathcal{P}(\tau)$, $t_0 \leq \tau < t$, which steer the system from $x(t_0) = x^0$ to x(t) = x

 $\begin{array}{l} \blacksquare X^{\text{-}}(t,t_0,X^0) \text{ is subzero level set of} \\ V^{\text{-}}(t,x) = \max_v \min_u \{ \operatorname{dist}(x(t_0),X^0) \mid x(t) = x \} \end{array}$

OLRS of MINMAX Type

Given initial set X^0 , time $t > t_0$, $X^+(t,t_0,X^0)$ is the set of all x, for which there exists $u(\tau) \in \mathcal{P}(\tau)$, that for all $v(\tau) \in \mathcal{Q}(\tau)$ assigns $x^0 \in X^0$ such that trajectory $x(\tau)$, $t_0 \le \tau < t$, leads from $x(t_0) = x^0$ to x(t) = x

OLRS Properties

MAXMIN reach set:

$$X^{-}(t, t_0, X^{0}) = \left(\Phi(t, t_0) X^{0} \oplus \int_{t_0}^{t} \Phi(t, \tau) B(\tau) \mathcal{P}(\tau) d\tau\right) \dot{-} \int_{t_0}^{t} \Phi(t, \tau) (-G(\tau)) \mathcal{Q}(\tau) d\tau$$

MINMAX reach set:

$$X^{+}(t,t_{0},X^{0}) = \left(\Phi(t,t_{0})X^{0} - \int_{t_{0}}^{t} \Phi(t,\tau)(-G(\tau))\mathcal{Q}(\tau)d\tau\right) \oplus \int_{t_{0}}^{t} \Phi(t,\tau)B(\tau)\mathcal{P}(\tau)d\tau$$

$$X^+(t,t_0,X^0) \subseteq X^-(t,t_0,X^0)$$

OLRS Properties

MAXMIN reach set:

$$X^{-}(t, t_0, X^{0}) = \left(\Phi(t, t_0) X^{0} \oplus \int_{t_0}^{t} \Phi(t, \tau) B(\tau) \mathcal{P}(\tau) d\tau\right) \dot{-} \int_{t_0}^{t} \Phi(t, \tau) (-G(\tau)) \mathcal{Q}(\tau) d\tau$$

MINMAX reach set:

geometric difference

$$X^{+}(t,t_{0},X^{0}) = \left(\Phi(t,t_{0})X^{0} - \int_{t_{0}}^{t} \Phi(t,\tau)(-G(\tau))\mathcal{Q}(\tau)d\tau\right) \oplus \int_{t_{0}}^{t} \Phi(t,\tau)B(\tau)\mathcal{P}(\tau)d\tau$$

$$X^+(t,t_0,X^0) \subseteq X^-(t,t_0,X^0)$$

Sequential MAXMIN

$$\begin{array}{c} \blacksquare \text{ Correction at } \pmb{t}_1 \!\!: [\pmb{t_0}, \, \pmb{t}] = [\pmb{t_0}, \, \pmb{t_1}] \cup [\pmb{t_1}, \, \pmb{t}] \\ X_1^{\!\!-}(\pmb{t}, \pmb{t_0}, \! X^{\!0}) = X_1^{\!\!-}(\pmb{t}, \pmb{t_1}, \! X_1^{\!\!-}(\pmb{t_1}, \! t_0, \! X^{\!0})) \\ X_1^{\!\!-}(\pmb{t}, \! t_0, \! X^{\!0}) \subseteq X_1^{\!\!-}(\pmb{t}, \! t_0, \! X^{\!0}) \end{array}$$

■ k corrections: $t_0 \le t_1 \le ... \le t_k \le t$ $X_k^-(t, t_0, X^0) = X_k^-(t, t_k, X_{k-1}^-(t_1, t_0, X^0))$ $X_k^-(t, t_0, X^0) \subseteq ... \subseteq X_1^-(t, t_0, X^0) \subseteq X_k^-(t, t_0, X^0)$

Sequential MINMAX

$$\begin{array}{c} \blacksquare \text{ Correction at } \pmb{t}_1 \!\!: [\pmb{t_0}, \, \pmb{t}] = [\pmb{t_0}, \, \pmb{t_1}] \cup [\pmb{t_1}, \, \pmb{t}] \\ X^+_1(\pmb{t}, \pmb{t_0}, \! X^{\pmb{0}}) = X^+(\pmb{t}, \pmb{t_1}, \! X^+(\pmb{t_1}, \! \pmb{t_0}, \! X^{\pmb{0}})) \\ X^+(\pmb{t}, \pmb{t_0}, \! X^{\pmb{0}}) \subseteq X^+_1(\pmb{t}, \! \pmb{t_0}, \! X^{\pmb{0}}) \end{array}$$

■ k corrections: $t_0 \le t_1 \le ... \le t_k \le t$ $X^+_k(t, t_0, X^0) = X^+(t, t_k, X^+_{k-1}(t_1, t_0, X^0))$ $X^+(t, t_0, X^0) \subseteq X^+_1(t, t_0, X^0) \subseteq ... \subseteq X^+_k(t, t_0, X^0)$

$$X^{+}(t, t_{0}, X^{0}) \subseteq X^{+}_{k}(t, t_{0}, X^{0}) \subseteq X^{-}_{k}(t, t_{0}, X^{0}) \subseteq X^{-}(t, t_{0}, X^{0})$$

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^+_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\right|\subseteq \left|X^-_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.$$

MINMAX

$$\left| X^{+}(\boldsymbol{t}, \boldsymbol{t_{0}}, X^{0}) \subseteq X^{+}_{k}(\boldsymbol{t}, \boldsymbol{t_{0}}, X^{0}) \right| \subseteq \left| X^{-}_{k}(\boldsymbol{t}, \boldsymbol{t_{0}}, X^{0}) \subseteq X^{-}(\boldsymbol{t}, \boldsymbol{t_{0}}, X^{0}) \right|$$

MINMAX

$$\mathbf{k} = 0$$

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}}) \subseteq X^+_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right| \subseteq \left|X^{\!\scriptscriptstyle -}_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}}) \subseteq X^{\!\scriptscriptstyle -}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right|$$

MINMAX

$$X^{+}(\boldsymbol{t},\boldsymbol{t_{0}},X^{0})\subseteq X^{+}_{k}(\boldsymbol{t},\boldsymbol{t_{0}},X^{0})\subseteq X^{-}_{k}(\boldsymbol{t},\boldsymbol{t_{0}},X^{0})\subseteq X^{-}(\boldsymbol{t},\boldsymbol{t_{0}},X^{0})$$

MINMAX

$$k = 5$$

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq X^+_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq \left|X^-_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})$$

MINMAX

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq X^+_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq \left|X^-_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})\right|\subseteq X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\boldsymbol{0}})$$

MINMAX

MAXMIN

Computed in MPT

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^+_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\right|\subseteq \left|X^-_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.$$

MINMAX

MAXMIN

Computed in MPT

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^+_{\boldsymbol{k}}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\right|\subseteq \left|X^-_{\boldsymbol{k}}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq \left.X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.$$

MINMAX

MAXMIN

Computed in MPT

$$\left|X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq\left.X^+_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\right|\subseteq\left|X^-_{k}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.\subseteq\left.X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!\boldsymbol{0}})\right.$$

MINMAX

MAXMIN

$$\begin{bmatrix} X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \subseteq X^+{}_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \end{bmatrix} \subseteq \begin{bmatrix} X^-{}_{\boldsymbol{k}}(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \subseteq X^-(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \\ \text{MINMAX} \end{bmatrix}$$

On reachability under uncertainty
 by A.B.Kurzhanskiy, P.Varaiya

$$\begin{bmatrix} X^+(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \subseteq X^+_{\boldsymbol{k}}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \end{bmatrix} \subseteq \begin{bmatrix} X^-_{\boldsymbol{k}}\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \subseteq X^-\!(\boldsymbol{t},\boldsymbol{t_0},\!X^{\!0}) \\ \text{MINMAX} \end{bmatrix}$$

On reachability under uncertainty
 by A.B.Kurzhanskiy, P.Varaiya

Closed-Loop Reach Set (CLRS)

Given initial set X^0 , time $t > t_0$,

 $X(t,t_0,X^0)$ is the set of all x, for each of which there exist $x^0 \in X^0$ and $u(\tau,x(\tau)) \in \mathcal{P}(\tau)$ that for every $v(\tau) \in \mathcal{Q}(\tau)$ assigns trajectory $x(\tau)$:

$$\dot{\boldsymbol{x}}(\boldsymbol{\tau}) \in A(\boldsymbol{\tau})\boldsymbol{x}(\boldsymbol{\tau}) + B(\boldsymbol{\tau})\boldsymbol{u}(\boldsymbol{\tau},\boldsymbol{x}(\boldsymbol{\tau})) + G(\boldsymbol{\tau})\boldsymbol{v}(\boldsymbol{\tau})$$

where $t_0 \leq au < t$, such that $x(t_0) = x_0$ and x(t) = x

CLRS Computation

■ Tight ellipsoidal approximations for $X(t,t_0,X^0)$:

$$X(t,t_0,X^0) = \bigcap \mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{C}}(t),X_l^+(t)) = \bigcup \mathcal{E}(\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{C}}(t),X_l^-(t))$$
 where $\boldsymbol{x}_{\!\scriptscriptstyle \mathrm{C}}(t)$ satisfies

$$\dot{x}_{c}(t) = A(t)x(t) + B(t)p(t) + G(t)q(t)$$

and $X_{l}^{+}(t), X_{l}^{-}(t)$ are obtained from ODEs

lacksquare Implemented in ET

Example

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0.2 & 1 \\ -1 & -0.2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v(t)$$

Example

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0.2 & 1 \\ -1 & -0.2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v(t)$$

Example

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -0.2 & 1 \\ -1 & -0.2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v(t)$$

Steering the System to a Target

SPRING-MASS SYSTEM

 Reachability approaches and ellipsoidal techniques for closed-loop control of oscillating systems under uncertainty by A.N.Daryin, A.B.Kurzhanski, I.V.Vostrikov

Outline

- and basic definitions
- L Overview of existing methods and tools
- Ellipsoidal approach
- L Systems with disturbances
- Hybrid systems
- Summary and outlook

Hybrid Setting

- Discrete states (modes)
- Continuous dynamics affine
- Enabling zones (guards) hyperplanes, ellipsoids, polyhedra
- Resets affine

No Zeno

Hybrid System Example

■ *Mode 1*:

$$\dot{\boldsymbol{x}}(\boldsymbol{t}) = A_1 \boldsymbol{x}(\boldsymbol{t}) + B_1 \boldsymbol{u}(\boldsymbol{t}), \ \boldsymbol{u}(\boldsymbol{t}) \in \mathcal{P}_1(\boldsymbol{t})$$

■ *Mode 2*:

$$\dot{\boldsymbol{x}}(\boldsymbol{t}) = A_2 \boldsymbol{x}(\boldsymbol{t}) + B_2 \boldsymbol{u}(\boldsymbol{t}) + G_2 \boldsymbol{v}(\boldsymbol{t}), \ \boldsymbol{u}(\boldsymbol{t}) \in \mathcal{P}_2(\boldsymbol{t}), \ \boldsymbol{v}(\boldsymbol{t}) \in \mathcal{Q}_2(t)$$

- Guard: hyperplane *H*
- Reset: identity

Hybrid Reach Set Computation

- Initial conditions: <u>Mode 1</u>, t_0 , X^0
- Compute reach set for <u>Mode 1</u>: $X_1(t,t_0,X^0)$
- Detect when $X_1(\tau, t_0, X^0) \cap H \neq \emptyset$, $t_0 \leq \tau \leq t$

Guard Detection

W

Hybrid Reach Set Computation

- Initial conditions: <u>Mode 1</u>, t_0 , X^0
- Compute reach set for <u>Mode 1</u>: $X_1(t,t_0,X^0)$
- Detect when $X_1(\tau, t_0, X^0) \cap H \neq \emptyset$, $t_0 \leq \tau \leq t$
- For each such τ , compute reach set for Mode 2: $X_2(t, \tau, (X_1(\tau, t_0, X^0) \cap H))$
- Reach set of the whole system:

$$X_1(t,t_0,X^0) \bigcup_{\tau} X_2(t,\tau,(X_1(\tau,t_0,X^0)\cap H))$$

Hybrid Reach Set

Reach Set Trace Projection

Hybrid Reach Set (concept)

Outline

- and basic definitions
- a Overview of existing methods and tools
- Ellipsoidal approach
- L Systems with disturbances
- I Hybrid systems
- Summary and outlook

Road Ahead

State estimation

Discrete-time systems with disturbance

Obstacle problems

Stochastic systems

Discrete-Time Systems

$$\mathbf{x}[\mathbf{k}+1] = A[\mathbf{k}]\mathbf{x}[\mathbf{k}] + B[\mathbf{k}]\mathbf{u}[\mathbf{k}]$$

 $\mathbf{x}[\mathbf{k}_0] \in \mathcal{E}(\mathbf{x}_0, X_0), \ \mathbf{u}[\mathbf{k}] \in \mathcal{E}(\mathbf{p}[\mathbf{k}], P[\mathbf{k}])$

- Same ellipsoidal theory applies with some adjustments
 - □ Controllability

CT:
$$\int_{t_0}^t \Phi(t,\tau)(BPB^T)(\tau)\Phi^T(t,\tau)d\tau > 0 \quad \text{for all } t > t_0$$

DT:
$$\sum_{i=k_0}^{k-1} \Phi(k, i+1)(BPB^T)[i]\Phi^T(k, i+1) > 0$$
 for some $k > k_0$

 \square Singular A[k]

- Compute reach set $X_{\alpha,\delta}(k,k_0,X^0)$ for $A_{\delta}[k]$ and $(BPB^T)_{\alpha}[k]$

- Compute reach set $X_{\alpha,\delta}(k,k_0,X^0)$ for $A_{\delta}[k]$ and $(BPB^T)_{\alpha}[k]$
- For any $\varepsilon > 0$ and given k there exist α and δ :

$$0<\rho(\textbf{\textit{l}}\mid X_{\alpha,\delta}(\textbf{\textit{k}},\textbf{\textit{k}}_0,X^0))-\rho(\textbf{\textit{l}}\mid X(\textbf{\textit{k}},\textbf{\textit{k}}_0,X^0))<\boldsymbol{\varepsilon}$$
 for all $\textbf{\textit{l}},\ \langle \textbf{\textit{l}},\ \textbf{\textit{l}}\rangle=1$

Regularization (illustration)

 $X(\mathbfit{k},\mathbfit{k_0},X^0)$

 Ellipsoidal techniques for reachability analysis of discretetime linear systems by A.A.Kurzhanskiy, P.Varaiya (2005)

Regularization (illustration)

 Ellipsoidal techniques for reachability analysis of discretetime linear systems by A.A.Kurzhanskiy, P.Varaiya (2005)

Regularization (illustration)

■ Ellipsoidal techniques for reachability analysis of discretetime linear systems by A.A.Kurzhanskiy, P.Varaiya (2005)

Value Functions

 $\begin{array}{l} \blacksquare \text{ Correction at } t_1 \!\!:\! [t_0, \, t] = [t_0, \, t_1] \cup [t_1, \, t] \\ V_1(t, \! x) = \max_v \!\! \min_u \!\! \left\{ V_1(t_1, \! x(t_1)) \mid x(t) \! = \! x \right\} \\ V_1^+(t, \! x) = \min_u \!\! \max_v \!\! \left\{ V_1^+(t_1, \! x(t_1)) \mid x(t) \! = \! x \right\} \\ \end{array}$

 $\begin{array}{l} \blacksquare \ k \ \text{corrections:} \ t_0 \leq t_1 \leq \ldots \leq t_k \leq t \\ V_k(t, x) = \max_v \!\! \min_u \!\! \left\{ V_{k\!-\!1}(t_k, \! x(t_k)) \mid x(t) \!\! = \!\! x \right\} \\ V_k^+(t, x) = \min_u \!\! \max_v \!\! \left\{ V_{k\!-\!1}^+(t_k, \! x(t_k)) \mid x(t) \!\! = \!\! x \right\} \\ \end{array}$

CLRS as Level Set of HJBI Solution

Value function:

$$V(\boldsymbol{t}, \boldsymbol{x}) = V_{\infty}(\boldsymbol{t}, \boldsymbol{x}) = V_{\infty}(\boldsymbol{t}, \boldsymbol{x}) = \operatorname{dist}(\boldsymbol{x}, X(\boldsymbol{t}, \boldsymbol{t_0}, X^0))$$

Hamilton-Jacobi-Bellman-Isaacs equation:

$$V_t + \max_u \min_{\mathbf{v}} \langle D_{\mathbf{x}} V, A(\mathbf{t}) \mathbf{x} + B(\mathbf{t}) \mathbf{u} + G(\mathbf{t}) \mathbf{v} \rangle = 0$$

with initial condition

$$V(t_0, x) = \mathbf{dist}(x, X^0)$$

■ Reach set: $X(t,t_0,X^0) = \{x \mid V(t,x) \le 0\}$

Polytopes (MPT)

■ X^0 , $\mathcal{P}(t)$ – polytopes

Convex hull computation complexity:

- Multi-Parametric Toolbox (MPT)
 by M.Kvasnica, P.Grieder, M.Baotić, M.Morari (2004)
- control.ee.ethz.ch/~mpt

Hyperrectangles (d/dt)

- Approximate reachability analysis of piecewise linear
 dynamical systems by E.Asarin, O.Bournez, T.Dang, O.Maler
- www-verimag.imag.fr/~tdang/ddt.html

Hyperrectangles (d/dt)

- Approximate reachability analysis of piecewise linear
 dynamical systems by E.Asarin, O.Bournez, T.Dang, O.Maler
- www-verimag.imag.fr/~tdang/ddt.html

Hyperrectangles (d/dt)

- Approximate reachability analysis of piecewise linear
 dynamical systems by E.Asarin, O.Bournez, T.Dang, O.Maler
- www-verimag.imag.fr/~tdang/ddt.html

Hyperrectangles (d/dt)

- Approximate reachability analysis of piecewise linear
 dynamical systems by E.Asarin, O.Bournez, T.Dang, O.Maler
- www-verimag.imag.fr/~tdang/ddt.html

Zonotopes (MATISSE)

Zonotope is symmetric polytope:

$$\mathcal{Z}(\boldsymbol{z}, Z) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} = \boldsymbol{z} + \sum \boldsymbol{\alpha}_i Z^i, \mid \boldsymbol{\alpha}_i \mid \leq 1 \}$$

■ Compact representation:

$$\mathcal{Z}(\boldsymbol{z}_1,\!Z_1) \oplus \mathcal{Z}(\boldsymbol{z}_2,\!Z_2) = \mathcal{Z}(\boldsymbol{z}_1\!+\!\boldsymbol{z}_2,\,[Z_1\,Z_2])$$

- Reachability of uncertain linear systems using zonotopes by A.Girard (2005)
- www.seas.upenn.edu/~agirard/Software/MATISSE

Oriented Rectangles (CheckMate)

- Computes trajectories of the vertices of the initial polytope
- Constructs oriented rectangular hull of the reach set at every time step
- Orientation is determined by the SVD of sample covariance matrix of the reachable states
- Efficient representation and computation of reachable sets for hybrid systems by O.Stursberg, B.Krogh (2003)
- www.ece.cmu.edu/~webk/checkmate

Quantifier Elimination (Requiem)

Symbolic computation of the exact reach set by removing quantifiers ∀, ∃ from the initial expression of the reach set and substituting it with formula that contains only

$$+, \times, =, <, \wedge, \vee$$

- Symbolic reachability computation for families of linear vector fields by G.Lafferriere, G.Pappas, S.Yovine (2001)
- www.seas.upenn.edu/~hybrid/requiem

Quantifier Elimination (Requiem)

Example:

$$\boldsymbol{x}(t+1) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

with
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- Initial conditions: $x(0) = \{x \mid ||x||_{\infty} \le 1\}$
- Control bounds: $-1 \le u(t) \le 1, t \ge 0$

Quantifier Elimination (Requiem)

■ Reach set (quantified formula):

$$\{x \mid \exists x_0, \ \exists t \ge 0, \ \exists u(i), \ 0 \le i \le t : \ x = A^t x_0 + \sum_{i=0}^{t-1} A^{t-i-1} Bu(i)\}$$

Reach set (quantifier-free expression):

$$-1 \le [1 \ 0]x \le 1 \ \land \ -1 \le [0 \ 1]x \le 1$$

- Symbolic reachability computation for families of linear vector fields by G.Lafferriere, G.Pappas, S.Yovine (2001)
- www.seas.upenn.edu/~hybrid/requiem

Parallelotopes

Parallelotope:

$$\mathcal{P}(\boldsymbol{p},P) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} = \boldsymbol{p} + \sum \boldsymbol{\alpha}_i P^i, |\boldsymbol{\alpha}_i| \leq 1 \}$$

Reach set:

$$X(t, t_0, X^0) = \bigcup_{l} \mathcal{P}(p(t), P_l^-(t)) = \bigcap_{l} \mathcal{P}(p(t), P_l^+(t))$$

shape matrices $P_{\bar{l}}$ and P_{l}^{+} are solutions to ODEs that depend on parameter l

 Control synthesis via parallelotopes: optimization and parallel computations by E.Kostousova (2001)

Level Sets (Level Set Toolbox)

Value function:

$$V(t,x) = \min_{u} \{ \operatorname{dist}(x(t_0), X^0) \mid x(t) = x \}$$

- Reach set: $X(t,t_0,X^0) = \{x \mid V(t,x) \le 0\}$
- Hamilton-Jacobi-Bellman (HJB) equation:

$$V_{t}(t,x) + \max_{u} \langle D_{x}V(t,x), f(t,x,u) \rangle = 0$$

with initial condition

$$V(t_0, x) = \mathbf{dist}(x, X^0)$$

- Level set methods for computation in hybrid systems by I.Mitchell, C.Tomlin (2000)
- www.cs.ubc.ca/~mitchell/ToolboxLS

Barrier Certificates

- No reach set computation
- Find function C(x):
 - $\square C(x) > 0$ in the unsafe set
 - $\square C(x) \leq 0 \text{ in } X^0$
 - $\square \langle D_{\boldsymbol{x}} C(\boldsymbol{x}), f(\boldsymbol{x}, \boldsymbol{u}) \rangle \leq 0$, where $C(\boldsymbol{x}) = 0$
- If such C(x) exists, system $\dot{x} = f(x, u)$ is safe
- Safety verification of hybrid systems using barrier certificates by S.Prajna, S.Jadbabaie (2004)

ODEs for Shape Matrices

The equation for the shape matrix of external ellipsoid is

$$\dot{X}_{l}^{+}(t) = A(t)X_{l}^{+}(t) + X_{l}^{+}(t)A^{T}(t)$$
 (3.3)

+
$$\pi_l(t)X_l^+(t) + \frac{1}{\pi_l(t)}B(t)P(t)B^T(t)$$
 (3.4)

$$-X_{l}^{+1/2}(t)S_{l}(t)(G(t)Q(t)G^{T}(t))^{1/2}-(G(t)Q(t)G^{T}(t))^{1/2}S_{l}^{T}(t)X_{l}^{+1/2}(t), \quad (3.5)$$

$$X_l^+(t_0) = X_0$$
, (3.6)

where

$$\pi_l(t) = \frac{\langle l, \Phi(t_0, t)B(t)P(t)B^T(t)\Phi^T(t_0, t)l \rangle^{1/2}}{\langle l, \Phi(t_0, t)X_l^+(t)\Phi^T(t_0, t)l \rangle^{1/2}},$$

and matrix $S_l(t)$ is orthogonal $(S_l(t)S_l^T(t) = I)$ and determined from equation

$$S_l(t)(G(t)Q(t)G^T(t))^{1/2}\Phi^T(t_0,t)l = \frac{\langle l, \Phi(t_0,t)G(t)Q(t)G^T(t)\Phi^T(t_0,t)l\rangle^{1/2}}{\langle l, \Phi(t_0,t)X_l^+\Phi^T(t_0,t)l\rangle^{1/2}}X_l^{+1/2}\Phi^T(t_0,t)l.$$

In the presence of disturbance, the reach set may be empty, and then matrix $X_l^+(t)$ will be sign indefinite. For systems without disturbance, the part (3.5) naturally vanishes from the equation (3.3-3.6).

The equation for the shape matrix of internal ellipsoid is

$$\dot{X}_{l}^{-}(t) = A(t)X_{l}^{-}(t) + X_{l}^{-}(t)A^{T}(t)$$
 (3.7)

$$+ \quad X_{l}^{-1/2}(t)T_{l}(t)(B(t)P(t)B^{T}(t))^{1/2} + (B(t)P(t)B^{T}(t))^{1/2}T_{l}^{T}(t)X_{l}^{-1/2}(t) \tag{3.8}$$

$$-\eta_l(t)X_l^-(t) - \frac{1}{m(t)}G(t)Q(t)G^T(t),$$
 (3.9)

$$X_l^-(t_0) = X_0,$$
 (3.10)

where

$$\eta_l(t) = \frac{\langle l, \Phi(t_0, t) G(t) Q(t) G^T(t) \Phi^T(t_0, t) l \rangle^{1/2}}{\langle l, \Phi(t_0, t) X_l^+(t) \Phi^T(t_0, t) l \rangle^{1/2}},$$

and matrix $T_l(t)$ is orthogonal and determined from equation

$$T_l(t)(B(t)P(t)B^T(t))^{1/2}\Phi^T(t_0,t)l = \frac{\langle l, \Phi(t_0,t)B(t)P(t)B^T(t)\Phi^T(t_0,t)l\rangle^{1/2}}{\langle l, \Phi(t_0,t)X_l^-\Phi^T(t_0,t)l\rangle^{1/2}}X_l^{-1/2}\Phi^T(t_0,t)l.$$

Switched System in 3D

ET function: evolve

Geometric (Minkowski) Difference

$$\mathcal{P} \cdot \mathcal{Q} = \{ \boldsymbol{x} \mid \boldsymbol{x} + \mathcal{Q} \subseteq \mathcal{P} \}$$

Geometric Difference (example)

Inverting III-Conditioned Matrix

- Square matrix A is nonsingular but illconditioned
- Compute inverse of A by usual method (e.g. Gauss-Jordan) and denote it A⁺
- Matrix A⁺A is well-conditioned

$$- A^{-1} = (A^+A)^{-1}A^+$$

Viscosity Solution

Hamilton-Jacobi equation

$$V_t(t,x) + H(D_x V(t,x),x) = 0$$

with initial condition: $V(0, \mathbf{x}) = \mathbf{g}$

Viscosity Solution

Hamilton-Jacobi equation

$$V_{t}(t,x) + H(D_{x}V(t,x),x) = 0$$

with initial condition: $V(0, \mathbf{x}) = \mathbf{g}$

Substituted by

$$V^{\epsilon}_{t}(t,x) + H(D_{x}V^{\epsilon}(t,x),x) - \underline{\epsilon\Delta V^{\epsilon}(t,x)} = 0$$

$$V^{\epsilon}(0,x) = g$$

 $lacksquare V^{m{\varepsilon}}
ightarrow V \ {
m as} \ {m{\varepsilon}}
ightarrow 0$

Formal Definition

Bounded, uniformly continuous function V is viscosity solution of Hamilton-Jacobi equation if

- V(0,x) = g
- For each smooth u, if (V u) has local maximum at (t_0,x_0) , then

$$u_t(t_0, x_0) + H(D_x u(t_0, x_0), x_0) \le 0$$

■ For each smooth u, if (V - u) has local minimum at (t_0,x_0) , then

$$u_t(t_0, x_0) + H(D_x u(t_0, x_0), x_0) \ge 0$$

BACK BACK

Hybrid Reach Set

Guard Crossing

