Capítulo 1

Caracteres.

1.1. El lema de Schur.

Teorema 1.1.1 (Lema de Schur.) Sea $f: V \to V'$ una aplicación lineal entre G-módulos irreducibles. Entonces, o bien f=0, o bien f es un isomorfismo; ademas, en este caso, f es una homotecia.

Demostracion: Como Ker(f) es un G-submódulo estable de V, o bien Ker(f)=V, lo que significa que f=0, o bien Ker(f)=0. En este caso la condición f(gv)=gf(v), para $v\in V$, implica que Im(f) es también un G-submódulo invariante de V', con lo que Im(f)=V'. Sobre los numeros complejos f ha de tener algún valor propio λ , ello supone que $f-\lambda Id$ tiene núcleo no nulo, con lo que por lo anterior $f-\lambda Id$ es el morfismo nulo y por lo tanto $f=\lambda Id$.

Corolario 1.1.1 Toda representación irreducible V de un grupo abeliano es de grado 1.

Demostracion: Sea g un elemento de G y consideremos la aplicación lineal que induce $g:V\to V$. Puesto que para todo $h\in G$ se cumple que gh=hg, se tiene que g es un morfismo de G-módulos, con ello g es una homotecia. Asi la representación de G en V convierte a G en un grupo de homotecias. Puesto que una homotecia deja invariante cualquier espacio, si V es irreducible ha de ser de dimensión 1.

1.2. Carácter de una representación.

Para comprender lo que es el carácter de una representación necesitamos conocer primero el concepto de traza. Este concepto se estudió en los primeros cursos de Algebra Lineal, pero debido a su importancia en esta sección procedemos, de nuevo, a dar su definición:

Definicion 1.2.1 Sea V un espacio vectorial de dimension n y a un endomorfismo, cuya matriz, en una base (e_i) de V, es (a_{ij}) . La traza de a es el escalar

$$Tr(a) = \sum_{i} a_{ii}$$

la traza de a no depende de la base (e_i) elegida.

Sea $\rho: G \to GL(V)$ una representación lineal de un grupo finito G en el espacio vectorial V. Dado $s \in G$, pongamos

$$\chi_{\rho}(s) = Tr(\rho(s))$$

Se obtiene así una aplicación χ_{ρ} definida en G, a valores complejos

$$\chi_{\rho}:G\to\mathbb{C}$$

llamada carácter de la representación ρ , la importancia de esta aplicación proviene de que caracteriza la representación considerada.

Proposicion 1.2.1 Si χ es el carácter de una representación ρ de grado n, entonces,

- 1. $\chi(1) = n$
- 2. $\chi(s^{-1}) = \chi(s)^*$ para todo $s \in G$
- 3. $\chi(tst^{-1}) = \chi(s)$ cualquiera que sean $s, t \in G$

(Si x es un número complejo, denotamos a su conjugado por x^* .)

Demostracion: Como $\rho(1) = 1$ y Tr(1) = n por ser V de dimensión n, tendremos $\chi(1) = n$.

 $\rho(s)$ es de orden finito; sus valores propios $\lambda_1, \ldots, \lambda_n$ tambien serán de orden finito y por lo tanto de módulo 1. Entonces:

$$\chi(s^*) = Tr(\rho(s^*)) = \sum \lambda_i^* = \sum \lambda_i^{-1} = Tr(\rho(s^{-1})) = \chi(s^{-1})$$

Una aplicación f definida en G que verifica la identidad 3), o, equivalentemente, la identidad f(uv) = f(vu), se llama una función central.

Proposicion 1.2.2 Sean $\rho_1: G \to GL(V_1)$ y $\rho_2: G \to GL(V_2)$, dos representaciones lineales de G, y sean χ_1 y χ_2 sus caracteres. Entonces

- 1. El carácter χ de la representación suma directa $V_1 \oplus V_2$ es igual a $\chi_1 + \chi_2$.
- 2. El carácter ψ de la representación producto tensorial $V_1 \otimes V_2$ es igual a $\chi_1 \cdot \chi_2$.

Demostracion: Expresamos ρ_1 y ρ_2 en forma matricial: R_s^1 y R_s^2 . La forma matricial de la representación $V_1 \oplus V_2$ es

$$R_s = \left(\begin{array}{cc} R_s^1 & 0\\ 0 & R_s^2 \end{array}\right)$$

de donde $Tr(R_s) = Tr(R_s^1) + Tr(R_s^2)$, es decir, $\chi(s) = \chi_1(s) + \chi_2(s)$. Sabemos que:

$$\chi_1(s) = \sum_{i_1} r_{i1i1}(s)$$

$$\chi_2(s) = \sum_{i_2} r_{i2i2}(s)$$

$$\psi(s) = \sum_{i1,i2} r_{i1i1}(s) \cdot r_{i2i2}(s) = \chi_1(s) \cdot \chi_2(s)$$

Veamos esto con un ejemplo.

Ejemplo 1.2.1 Sea $G = D_8 = \langle a, b; a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, y sea $\rho : G \to GL(2, \mathbb{C})$ la representación definida como

$$\rho(a) = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

$$\rho(b) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Sea χ el carácter de esta representación. En la siguiente tabla podemos ver los valores que toma $\rho(g)$ y $\chi(g)$ en función de g. |c|c c Valores de los caracteres. $g \rho(g) \chi(g)$

Mi primera tabla larga

columna 1 columna 2 columna 3

$$\begin{array}{c} \textit{columna 1 columna 2 columna} \\ 1 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 2 \\ a & \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} & 0 \\ a^2 & \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} & -2 \\ a^3 & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 \\ b & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & 0 \\ ab & \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} & 0 \\ a^2b & \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} & 0 \\ a^3b & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & 0 \end{array}$$

1.3. Relaciones de ortogonalidad de los caracteres y descomposición de la representación regular.

Introduzcamos la siguiente notación: si φ y ψ son funciones del tipo $\varphi, \psi : G \to \mathbb{C}$, pondremos

$$\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{t \in G} \varphi(t)^* \psi(t)$$

siendo |G| el orden de G. Esta expresión es un producto escalar.

Teorema 1.3.1 Si χ es el carácter de una representación irreducible, $\langle \chi, \chi \rangle = 1$. Si χ y χ' son los caracreteres de dos representaciones irreducibles no isomorfas, entonces $\langle \chi, \chi' \rangle = 0$, es decir, son ortogonales.

Demostracion: Sea $\rho: G \to GL(V)$ la representación irreducible cuyo carácter es χ , y sea n su grado. Entonces:

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{t \in G} \chi(t)^* \chi(t) = \frac{1}{|G|} \sum_{t \in G} \chi(t^{-1}) \chi(t)$$

Ahora bien, si ponemos ρ en forma matricial $\rho(t) = [r_{ij}(t), \chi(t)] = \sum_i r_{ii}(t)$, y por lo tanto

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{t,i,j} r_{ii}(t^{-1}) r_{jj}(t)$$

lo que implica que

$$\frac{1}{|G|} \sum_{t \in G} r_{ii}(t^{-1}) r_{jj}(t)$$

es igual a 0 si $i \neq j$ y a $\frac{1}{n}$ si i = j.

Teorema 1.3.2 Sea V una representación lineal de G, de carácter φ , descomponemos V en suma directa de representaciones irreducibles

$$V = W_1 \oplus \ldots \oplus W_k$$

Entonces, si W es una representación irreducible de carácter χ , el numero de las W_i isomorfas a W es igual al producto escalar $\langle \varphi, \chi \rangle$.

Sea χ_i el caracter de W_i , sabemos que

$$\varphi = \chi_1 + \ldots + \chi_k$$

y por lo tanto $\langle \varphi, \chi \rangle = \langle \chi_1, \chi \rangle + \ldots + \langle \chi_k, \chi \rangle$. Por el teorema anterior $\langle \chi_i, \chi \rangle$ es igual a 1 (o a 0) segun que W_i sea (o no) isomorfa a W.

Del anterior teorema podemos afirmar que el número de las W_i isomorfas a W no depende de la descomposición elegida; ademas, dos representaciones del mismo carácter son isomorfas, ya que ambas contienen el mismo número de veces toda representación irreducible dada. Estos resultados permiten reducir el estudio de las representaciones al de los caracteres. Si χ_1, \ldots, χ_h son los caracteres de las representaciones irreducibles de G y $W_1, \ldots W_h$ son sus correspondientes representaciones, toda representación V es isomorfa a una suma directa

$$V = m_1 W_1 \oplus \ldots \oplus m_h W_h$$

para m_i entero mayor o igual a 0.

El carácter φ de V es igual a $m_1\chi_1 + \ldots + m_h\chi_h$, y $m_i = \langle \varphi, \chi_i \rangle$. Las relaciones de ortogonalidad entre los χ_i implican que

$$\langle \varphi, \varphi \rangle = \sum_{i=1}^h m_i^2$$

de donde obtenemos el siguiente teorema.

Teorema 1.3.3 Si φ es el carácter de una representación V, $\langle \varphi, \varphi \rangle$ es un entero y $\langle \varphi, \varphi \rangle = 1$ si y sólo si V es irreducible.

Demostracion: En efecto, $\sum m_i^2$ vale 1 si y solo si uno de los m_i es igual a 1 y los demas iguales a 0, es decir, si y solo si V es isomorfo a una de las W_i .

Se ha obtenido así un criterio de irreducibilidad muy cómodo.

Con los siguientes resultados describiremos la descomposición de una representación regular:

Proposicion 1.3.1 El carácter φ de la representación regular viene dado por las siguientes fórmulas:

$$\varphi(1) = |G|$$

donde |G| es el ordén de G. Y

$$\varphi(s) = 0$$

 $si \ s \neq 1$.

Corolario 1.3.1 Cada representación irreducible W_i está contenida en la representación regular un número de veces igual a su grado n_i .

Demostracion: Por el teorema 3.3.2, este número es igual a $\langle \varphi, \chi_i \rangle$. Ahora bien

$$\langle \varphi, \chi_i \rangle = \frac{1}{|G|} \sum_{s \in G} \varphi(s)^* \chi_i(s) = \frac{1}{|G|} |G| \chi_i(1) = \chi_i(1) = n_i$$

Corolario 1.3.2 Los grados n_i verifican la relación $\sum_{i=1}^h n_i^2 = |G|$.

Demostracion: En efecto, el corolario 3.3.1 asegura que $\varphi = \sum n_i \chi_i$ y aplicando ambos miembros a dicho corolario resulta $|G| = \sum_{i=1}^h n_i^2$.

Este resultado se puede usar cuando se buscan las representaciones irreducibles de G; supongamos construidas representaciones irreducibles no isomorfas dos a dos, de grados n_1, \ldots, n_k ; a fin de que sean todas las representaciones irreducibles de G (salvo isomorfismos) es necesario y suficiente que $n_1^2 + \ldots + n_k^2 = |G|$.

1.4. Número de representaciones irreducibles.

Una aplicación f definida en G se llama central si $f(tst^{-1}) = f(s)$ cualesquiera que sean $s, t \in G$.

Proposicion 1.4.1 Sea f una función central definida en G, $y \rho : G \to GL(V)$ una representación lineal de G. Sea ρ_f el endomorfismo de V definido por:

$$\rho_f = \sum_{t \in G} f(t)\rho(t)$$

Si V es irreducible, de grado n y de carácter χ , ρ_f es una homotecia de razón λ , donde

$$\lambda = \frac{1}{n} \sum_{t \in G} f(t) \chi_t = \frac{|G|}{n} (f^*|_{\chi})$$

Demostracion: Calculamos $\rho(s)^{-1}\rho_f\rho(s)$:

$$\rho(s)^{-1}\rho_f\rho(s) = \sum_{t \in G} f(t)\rho(s)^{-1}\rho(t)\rho(s) = \sum_{t \in G} f(t)\rho(s^{-1}ts)$$

y poniendo $u = s^{-1}ts$, resulta

$$\rho(s)^{-1}\rho_f \rho(s) = \sum_{u \in G} f(sus^{-1})\rho(u) = \sum_{u \in G} f(u)\rho(u) = \rho_f$$

De modo que $\rho_f \rho(s) = \rho(s) \rho_f$. Esta igualdad implica que ρ_f es una homotecia de razón λ . La traza de λ es $n\lambda$; y la de ρ_f es

$$\sum_{t \in G} f(t) Tr(\rho(t)) = \sum_{t \in G} f(t) \chi(t)$$

de donde

$$\lambda = \frac{1}{n} \sum_{t \in G} f(t) \chi_t = \frac{|G|}{n} (f^*|_{\chi})$$

Introduzcamos ahora el espacio vectorial H de las funciones centrales de G. Los caracteres χ_1, \ldots, χ_k de las representaciones irreducibles de G son elementos de H.

Teorema 1.4.1 Los caracteres χ_1, \ldots, χ_h forman una base ortonormal de H.

Demostracion: El teorema 3.3.1 demuestra que χ_1, \ldots, χ_h es un sistema ortonormal de H. Falta demostrar que este sistema es completo, es decir, que todo elemento de H ortogonal a los χ_i es nulo. Para ello, sea f un elemento de H ortogonal a los χ_i . Si $\rho: G \to GL(V)$ es una representación de G, ponemos

$$\rho_f^* = \sum_{t \in G} f(t)^* \rho(t)$$

La proposición 3.4.1 muestra que ρ_f^* es nula si V es irreducible; descomponiendo en suma directa concluimos que ρ_f^* es siempre nula. Aplicando este resultado a la representación regular R y calculando la imagen del vector e_1 de la base por ρ_f^* :

$$\rho_f^* e_1 = \sum_{t \in G} f(t)^* \rho(t) e_1 = \sum_{t \in G} f(t)^* e_t$$

 $\text{Como}\rho_f^*$ es nula, esta igualdad implica que $f(t)^*=0$ para todo t, de donde f=0, lo cual termina la demostración.

Recordemos que dos elementos t y t' de G se dicen conjugados si existe $s \in G$ tal que $t' = sts^{-1}$; esta relación es de equivalencia y divide a G en clases.

Teorema 1.4.2 El número de representaciones irreducibles de G (salvo isomorfismos) es igual al número de clases de G.

Demostracion: Sean C_1, \ldots, C_k las clases de G. Una función f definida en G es central si y solo si es constante en cada una de las clases C_1, \ldots, C_k y por tanto una tal función está determinada por k valores $\lambda_1, \ldots, \lambda_k$, que se pueden poner al azar. Resulta de ello que la dimensión del espacio H de funciones centrales es igual a k. Por otra parte, esta dimensión es igual, según el teorema 3.4.1, al número de representaciones irreducibles de G (salvo isomorfismos).

Otra consecuencia del teorema 3.4.1 es que siendo $s \in G$, el número de elementos de la clase de s y f_s la función igual a 1 sobre esta clase e igual a0 en el complementario. Como esta función es central, por el teorema 3.4.1 tendremos:

$$f_s = \sum_{i=1}^{i=h} x_i \chi_i$$

donde

$$x_i = \langle \chi_i, f_s \rangle = \frac{c_s}{|G|} \chi_i(s)^*$$

Así pues, para todo $t \in G$

$$f_s(t) = \frac{c_s}{|G|} \sum_{i=1}^{i=h} \chi_i(s)^* \chi_i(t)$$

Si explicitamos resultan las formulas siguientes:(para t = s):

$$\sum_{i=1}^{i=h} \chi_i(s)^* \chi_i(s) = \frac{|G|}{c_s}$$

(para t no conjugado de s):

$$\sum_{i=1}^{i=h} \chi_i(s)^* \chi_i(t) = 0$$

Ejemplo 1.4.1 Sea G el grupo de permutaciones de 3 letras. Entonces |G|=6, y tiene tres clases: el elemento identidad, tres transposiciones y dos permutaciones cíclicas. Sea t una transposición, y c una permutación cíclica. Tenemos $t^2=1$, $c^3=1$, $tc=c^2t$; de donde hay solo dos caracteres de grado 1: el carácter identidad χ_1 y e carácter χ_2 que nos varia el signo de la permutación.

El último teorema nos muestra que existe otro carácter irreducible θ ; si n es su grado debemos tener $1+1+n^2=6$, por lo que n=2. Los valores de θ pueden ser deducidos del hecho de que $\chi_1+\chi_2+2\theta$ es el carácter de la representación regular de G. Obtenemos la siguiente tabla de caracteres de G:

	1	t	С
χ_1	1	1	1
χ_2	1	-1	1
θ	2	0	-1

Cuadro 1.1: Tabla de caracteres de G.