Homework 5, due May 2nd 5pm CST

Handin at 1102 DCL. Slide under door if TA not present.

Important: Please type or neatly write your solutions. Anything we can't read will receive no credit. You must show work to receive full credit.

- 1. (20 points) There are 5 periodic tasks with the following computation times and periods.
 - τ_1 : $C_1 = 3$, $T_1 = 70$
 - τ_2 : $C_2 = 7$, $T_2 = 80$
 - τ_3 : $C_3 = 18, T_3 = 95$
 - τ_4 : $C_4 = 20$, $T_4 = 100$
 - τ_5 : $C_5 = 30, T_5 = 160$

In addition, assume the following are true.

- Each context switch requires exactly 1 unit of time.
- τ_3 can block all higher-priority tasks for a duration of 3.
- τ_4 can block all higher-priority tasks for a duration of 5.
- τ_4 has a pre-period deadline of 15.
- τ_5 has a pre-period deadline of 18.

Use the UB and Exact Schedulability tests to see if all tasks are schedulable.

Solution:

Here is a summary of the problem.

Task	C	T	S	B	D
$ au_1$	3	70	2	8	
$ au_2$	7	80	2	8	
$ au_3$	18	95	2	5	
$ au_4$	20	100	2		15
$ au_5$	30	160	2		18

Start with the UB test and apply iteratively.

Utilization of τ_1 equals $(3 + 2 \times 1 + 8) \div 70 = 0.186$ which is less than UB(1). Thus τ_1 is schedulable. Similarly, utilization of τ_1 and τ_2 equals $5 \div 70 + (7 + 2 + 8) \div 80 = 0.284$ which is less than UB(2). Thus τ_1 and τ_2 are schedulable.

Utilization of τ_1 , τ_2 , and τ_3 equals $5 \div 70 + 9 \div 80 + (18 + 2 + 5) \div 95 = 0.448$ which is less than UB(3). Thus τ_1 , τ_2 , and τ_3 are schedulable.

Utilization of τ_1 , τ_2 , τ_3 , and τ_4 equals $5 \div 70 + 9 \div 80 + 20 \div 95 + (20 + 2 + 15) \div 100 = 0.764$, which is more than UB(4). Need to apply the Exact Schedulability test. Use the iterative process described in class to apply the Exact Schedulability test. Take into account of the the context switching times.

$$a_0 = 5 + 9 + 20 + 22 = 56$$

$$a_1 = 22 + \left\lceil \frac{56}{70} \right\rceil 5 + \left\lceil \frac{56}{80} \right\rceil 9 + \left\lceil \frac{56}{95} \right\rceil 20 = 56 = a_0 < (T_4 - D_4)$$

We see that $a_0 = a_1$ and can stop. $a_1 < (T_4 - D_4)$; therefore, these 4 tasks is schedulable.

Finally, we check the utilization of all 5 tasks. By UB, it is equal to $5 \div 70 + 9 \div 80 + 20 \div 95 + 22 \div 100 + 50 \div 160 = 0.927$. Need to apply the Exact test.

$$a_0 = 5 + 9 + 20 + 22 + 32 = 88$$

$$a_1 = 32 + \left\lceil \frac{88}{70} \right\rceil 5 + \left\lceil \frac{88}{80} \right\rceil 9 + \left\lceil \frac{88}{95} \right\rceil 20 + \left\lceil \frac{88}{100} \right\rceil 22 = 102$$

$$a_2 = 32 + \left\lceil \frac{102}{70} \right\rceil 5 + \left\lceil \frac{102}{80} \right\rceil 9 + \left\lceil \frac{102}{95} \right\rceil 20 + \left\lceil \frac{102}{100} \right\rceil 22 = 144$$

$$a_3 = 32 + \left\lceil \frac{144}{70} \right\rceil 5 + \left\lceil \frac{144}{80} \right\rceil 9 + \left\lceil \frac{144}{95} \right\rceil 20 + \left\lceil \frac{144}{100} \right\rceil 22 = 149$$

$$a_4 = 32 + \left\lceil \frac{149}{70} \right\rceil 5 + \left\lceil \frac{149}{80} \right\rceil 9 + \left\lceil \frac{149}{95} \right\rceil 20 + \left\lceil \frac{149}{100} \right\rceil 22 = 149$$

We see that $a_4 = a_3$ and can stop; however, $a_4 > T_5 - D_5$. This means that the set of all 5 tasks is not schedulable. Alternatively, we could've just stopped at a_2 because that was already greater than $T_5 - D_5$.

- 2. (30 points) There are 3 periodic tasks, τ_1 , τ_2 , and τ_3 and 2 shared data structures among the tasks. First, τ_1 and τ_2 share DS_1 where both τ_1 's and τ_2 's critical sections are 5 (units of time). Second, τ_2 and τ_3 share DS_2 where τ_2 's critical section is 7 and τ_3 's critical section is 10.
 - (a) Assuming that semaphores cannot be nested, what are the worst case blocking times of each task if the Basic Priority Inheritance protocol is used for synchronization? (5 points)

Solution:

 au_3 cannot be blocked since it has the lowest priority. au_1 can be blocked by au_2 on DS_1 for 5. au_2 can be blocked by au_3 on DS_2 for 10.

Task	Blocked Time
$ au_1$	5
$ au_2$	10
$ au_3$	0

(b) Assuming that semaphores can be nested, what are the worst case blocking times of each task if the Basic Priority Inheritance protocol is used for synchronization? (10 points)

Solution:

 τ_3 cannot be blocked since it has the lowest priority. τ_2 can be blocked by τ_3 on DS_2 for 10. As for τ_1 , the worst case would be the following sequence of events:

- i. τ_3 locks on DS_2 .
- ii. τ_2 locks on DS_1 and tries to lock on DS_2 but is blocked. τ_3 inherits τ_2 's priority.
- iii. τ_1 tries to lock on DS_1 but is blocked. τ_2 inherits τ_1 's priority, because τ_1 is the highest priority task that τ_2 is currently blocking. In addition, τ_3 now inherits the new τ_2 priority, which is the same as τ_1 . In other words, all 3 tasks have the same priority.
- iv. τ_3 finishes its CS for DS_2 in 10 and returns to normal priority.
- v. τ_2 can now lock on DS_2 and finish its CS in 7. Afterwards, it unlocks DS_2 and finish its CS for DS_1 in 5.

This entire sequence of events will block τ_1 for 10 + 7 + 5 = 22.

L	Task	Blocked Time
	$ au_1$	22
	$ au_2$	10
	$ au_3$	0

(c) Assuming that semaphores cannot be nested, what are the worst case blocking times of each task if the Priority-Ceiling Protocol is used for synchronization? (5 points)

Solution:

Same as (a).

(d) Assuming that semaphores can be nested, what are the worst case blocking times of each task if the Priority-Ceiling Protocol is used for synchronization? (10 points)

Solution:

 au_3 cannot be blocked since it has the lowest priority. au_2 can be blocked by au_3 on DS_2 for 10. PCP has the property that, in the worst case, a high-priority task can be blocked atmost once by a low-priority task. Therefore, au_1 has a worst case blocking time of 5+7. The exact sequence of events that will allow this is as below.

- i. τ_2 locks on DS_1 .
- ii. τ_1 tries to lock on DS_1 but cannot because DS_1 has a priority ceiling of τ_1 which τ_2 currently owns.
- iii. τ_2 locks on DS_2 successfully, because no other tasks currently own any semaphores.
- iv. τ_2 finishes its CS for DS_2 and DS_1 .

Task	Blocked Time
$ au_1$	12
$ au_2$	10
$ au_3$	0

3. (30 points) There are three periodic tasks with the following computation times (C), periods (T), blocking times (B), and pre-period deadlines (D). The context switching time is $S = \frac{1}{2}$.

Task	C	T	B	D	S
$ au_1$	5	35	5	14	1
$ au_2$	20	90	10	28	1
$ au_3$	15	120	0	35	1

(a) (10 points) Use the Utilization Bound and Exact Schedulability tests as needed to show that the task set is schedulable. Show your work.

Solution:

• Use the UB test on the first task:

$$\frac{5+1+5+14}{35} \approx 0.7143 \le U(1) = 1$$

- \Rightarrow The first task is schedulable.
- Use the UB test on the first two tasks:

$$\frac{5+1}{35} + \frac{20+1+10+28}{90} \approx 0.8270 \le U(2) \approx 0.8284$$

- \Rightarrow The first two tasks are schedulable.
- Use the UB test on all three tasks:

$$\frac{5+1}{35} + \frac{20+1}{90} + \frac{15+1+35}{120} \approx 0.8298 > U(3) \approx 0.7797$$

⇒ The UB test is inconclusive. Use the exact test on all three tasks:

$$a_0 = 6 + 21 + 16 = 43$$

$$a_1 = 16 + \left\lceil \frac{43}{35} \right\rceil 6 + \left\lceil \frac{43}{90} \right\rceil 21 = 49$$

$$a_2 = 16 + \left\lceil \frac{49}{35} \right\rceil 6 + \left\lceil \frac{49}{90} \right\rceil 21 = 49$$

$$a_1 = a_2 = 49 \le (120 - 35) = 85$$

- \Rightarrow All three tasks are schedulable.
- (b) (20 points) A fourth aperiodic server will now be added to the task set to maximally utilize the leftover CPU cycles. The new server τ_a has computation time C_a , period $T_a = 34$, blocking time $B_a = 0$, and pre-period deadline $D_a = 0$. What is the largest integer value for C_a that will allow all four tasks to meet their deadlines? Hint: you might want to write a simple program to calculate this. Do not include your program in the solutions, but you must show that your solution is indeed the largest integer possible, i.e., (your answer + 1) does not work.

Task	C	T	B	D	S
$ au_a$	C_a	34	0	0	1
$ au_1$	5	35	5	14	1
$ au_2$	20	90	10	28	1
$ au_3$	15	120	0	35	1

Solution:

 $C_a = 8$. Use the exact test on all four tasks:

$$a_0 = 9 + 6 + 21 + 16 = 52$$

$$a_1 = 16 + \left\lceil \frac{52}{34} \right\rceil 9 + \left\lceil \frac{52}{35} \right\rceil 6 + \left\lceil \frac{52}{90} \right\rceil 21 = 67$$

$$a_2 = 16 + \left\lceil \frac{67}{34} \right\rceil 9 + \left\lceil \frac{67}{35} \right\rceil 6 + \left\lceil \frac{67}{90} \right\rceil 21 = 67$$

$$a_1 = a_2 = 67 < (120 - 35) = 85$$

⇒ All four tasks are schedulable. Use the exact test on the first three tasks:

$$a_0 = 9 + 6 + 21 = 36$$

$$a_1 = 21 + \left\lceil \frac{36}{34} \right\rceil 9 + \left\lceil \frac{36}{35} \right\rceil 6 = 51$$

$$a_2 = 21 + \left\lceil \frac{51}{34} \right\rceil 9 + \left\lceil \frac{51}{35} \right\rceil 6 = 51$$

$$a_1 = a_2 = 51 \le (90 - 10 - 28) = 52$$

 \Rightarrow The first three tasks are schedulable. Use the exact test on the first two tasks:

$$a_0 = 9 + 6 = 15$$
 $a_1 = 6 + \left\lceil \frac{15}{34} \right\rceil 9 = 15$

$$a_0 = a_1 = 15 \le (35 - 5 - 14) = 16$$

 \Rightarrow The first two tasks are schedulable. The first task cannot be blocked, has no pre-period deadline, and $9 \le 34$ so it is also schedulable.

We must now show that the task set is not schedulable when $C_a = 9$. Use the exact test on all four tasks:

$$a_{0} = 10 + 6 + 21 + 16 = 53$$

$$a_{1} = 16 + \left\lceil \frac{53}{34} \right\rceil 10 + \left\lceil \frac{53}{35} \right\rceil 6 + \left\lceil \frac{53}{90} \right\rceil 21 = 69$$

$$a_{2} = 16 + \left\lceil \frac{69}{34} \right\rceil 10 + \left\lceil \frac{69}{35} \right\rceil 6 + \left\lceil \frac{69}{90} \right\rceil 21 = 79$$

$$a_{3} = 16 + \left\lceil \frac{79}{34} \right\rceil 10 + \left\lceil \frac{79}{35} \right\rceil 6 + \left\lceil \frac{79}{90} \right\rceil 21 = 85$$

$$a_{4} = 16 + \left\lceil \frac{85}{34} \right\rceil 10 + \left\lceil \frac{85}{35} \right\rceil 6 + \left\lceil \frac{85}{90} \right\rceil 21 = 85$$

$$a_{3} = a_{4} = 85 < (120 - 35) = 85$$

 \Rightarrow All four tasks are schedulable. Use the exact test on test on the first three tasks:

$$a_0 = 10 + 6 + 21 = 37$$
 $a_1 = 21 + \left\lceil \frac{37}{34} \right\rceil 10 + \left\lceil \frac{37}{35} \right\rceil 6 = 53$
 $a_1 = 53 > (90 - 10 - 28) = 52$

 \Rightarrow The first three tasks are not schedulable.

4. (20 points) There are three stations S_1 through S_3 connected to a 1 Mbit/sec FDDI ring.

Station S_1 transmits periodic sensor data stream to S_3 : $\{(C_{13} = 10, T_{13} = 90)\}$.

Station S_2 is attached to a 10 frames-per-second video camera that captures 256 by 128 pixel frames at 2 bits per pixel. It transmits them in an uncompressed format to station S_3 .

Station S_3 transmits two periodic sensor data streams. One stream goes to S_1 : $\{(C_{31} = 5, T_{31} = 50)\}$. The other stream goes to S_2 : $\{(C_{32} = 40, T_{32} = 300)\}$.

 S_1 holds the token for a maximum of $H_1 = 10$ msec. S_2 holds the token for a maximum of $H_2 = 15$ msec. S_3 holds the token for a maximum of $H_3 = 20$ msec. The walk time is W = 25 msec.

For each of the three stations, show the equivalent periodic task set (include each task's computation time and period). You do **not** need to perform any schedulability analysis on the tasks.

Solution:

TTRT = 10 + 15 + 20 + 25 = 70 msec.

Each station has a task τ_{ttrt} who's period is TTRT and computation time is TTRT minus the holding time of the station.

The camera's period is $\frac{1}{10} = 100$ msec. Its computation time is $\frac{256 \times 128 \times 2}{2^{20}} = 62.5$ msec.

Station S_1			
Task	C	T	
$ au_{ttrt}$	60	70	
T ₁₃	10	90	

Station S_2			
Task	C	T	
$ au_{ttrt}$	55	70	
$ au_{camera}$	62.5	100	

Station S_3			
Task	C	T	
$ au_{ttrt}$	50	70	
$ au_{31}$	5	50	
$ au_{32}$	40	300	