Chapter 8: Some Special Functions

Author: Meng-Gen Tsai Email: plover@gmail.com

Supplement. Fourier coefficients in Definition 8.9.

(1) Write

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}$$

(as the textbook Rudin, Principles of Mathematical Analysis, Third Edition). Then

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, n \in \mathbb{Z}^+.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, n \in \mathbb{Z}^+.$$

(2) One might write in one different form,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}.$$

The only difference between the new one and the old one is a_0 , so a_0 should be

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx.$$

(3) Again, one might write in one different form,

$$f(x) = \frac{a_0}{\sqrt{2}} + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}.$$

Similarly, a_0 should be

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x)}{\sqrt{2}} dx.$$

(4) Recall $f(x) = \sum_{-N}^{N} c_n e^{inx} \ (x \in \mathbb{R})$ where

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

The relations among a_n , b_n of this textbook and c_n are

$$c_0 = a_0$$

 $c_n = \frac{1}{2} (a_n + ib_n), n \in \mathbb{Z}^+.$

(5) In some textbooks (Henryk Iwaniec, Topics in Classical Automorphic Forms), it is convenient to consider periodic functions f of period 1. Define

$$e(n) = e^{2\pi ix} = \cos(2\pi x) + i\sin(2\pi x).$$

Any periodic and piecewise continuous function f has the Fourier series representation

$$f(x) = \sum_{-\infty}^{\infty} a_n e(nx)$$

with coefficients given by

$$a_n = \int_0^1 f(x)e(-nx)dx.$$

Here is one exercise for this representation. Show that the fractional part of x, $\{x\} = x - [x]$, is given by

$$\{x\} = \frac{1}{2} - \sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{\pi n}.$$

Supplement. Parseval's theorem 8.16.

(1) Given

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}.$$

Then

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = 2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

(2) Given

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}.$$

Then

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

(3) Given

$$f(x) = \frac{a_0}{\sqrt{2}} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)), x \in \mathbb{R}.$$

Then

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

Exercise 8.1. Define

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Prove that f has derivatives of all orders at x = 0, and that $f^{(n)}(0) = 0$ for n = 1, 2, 3, ...

f(x) is an example of non-analytic smooth function, that is, infinitely differentiable functions are not necessarily analytic. In this exercise, we will show that Taylor series of f at the origin converges everywhere to the zero function. So the Taylor series does not equal f(x) for $x \neq 0$. Consequently, f is not analytic at x = 0.

Proof.

(1) Show that

$$\lim_{x \to 0} g(x)e^{-\frac{1}{x^2}} = 0$$

for any rational function $g(x) \in \mathbb{R}(x)$.

- (a) Write $g(x) = \frac{p(x)}{q(x)}$ for some $p(x), q(x) \in \mathbb{R}[x], g(x) \neq 0$.
- (b) Write $q(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$. q(x) is not identically zero, that is, there exists the unique coefficient of the least power of x in q(x) which is non-zero, say $b_M \neq 0$.
- (c) Thus,

$$g(x) = \frac{p(x)/x^M}{q(x)/x^M}.$$

The denominator of g(x) tends to $b_M \neq 0$ as $x \to 0$. By the similar argument in Theorem 8.6(f), we have

$$\frac{p(x)}{x^M}e^{-\frac{1}{x^2}} \to 0 \text{ as } x \to 0.$$

Hence, $\lim_{x\to 0} g(x)e^{-\frac{1}{x^2}} = 0$ for any $g(x) \in \mathbb{R}(x)$.

(2) Given any real $x \neq 0$, show that

$$f^{(n)}(x) = g_n(x)e^{-\frac{1}{x^2}}$$

for some rational function $g(x) \in \mathbb{R}(x)$.

- (a) Say $g_0(x) = 1 \in \mathbb{R}(x)$.
- (b) $\mathbb{R}(x)$ is a field. Show that $g'(x) \in \mathbb{R}(x)$ for any $g(x) \in \mathbb{R}(x)$. Write $g(x) = \frac{p(x)}{q(x)}$ for some $p(x), q(x) \in \mathbb{R}[x], q(x) \neq 0$. Thus

$$g'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{q(x)^2}.$$

The numerator of g'(x) is in $\mathbb{R}[x]$ since the differentiation operator on $\mathbb{R}[x]$ is closed in $\mathbb{R}[x]$. Also, the denominator of $g'(x) = q(x)^2 \neq 0$ since $\mathbb{R}[x]$ is an integral domain. Therefore, $g'(x) \in \mathbb{R}(x)$.

(c) Induction on n. For n = 1, we have

$$f'(x) = g'_0(x)e^{-\frac{1}{x^2}} + g_0(x) \cdot \left(-\frac{1}{x^2}\right)' e^{-\frac{1}{x^2}}$$
$$= \left(g'_0(x) + g_0(x) \cdot \left(-\frac{1}{x^2}\right)'\right) e^{-\frac{1}{x^2}}$$
$$= g_1(x)e^{-\frac{1}{x^2}}$$

where

$$g_1(x) = g'_0(x) + g_0(x) \cdot \left(-\frac{1}{x^2}\right)' \in \mathbb{R}(x).$$

Now assume that the conclusion holds for n = k. As n = k + 1, similar to the case n = 1,

$$f^{(k+1)}(x) = g_{k+1}(x)e^{-\frac{1}{x^2}}$$

where

$$g_{k+1}(x) = g'_k(x) + g_k(x) \cdot \left(-\frac{1}{x^2}\right)' \in \mathbb{R}(x).$$

By induction, the conclusion is true.

(3) Induction on n. For n = 1, by (1) we have

$$f'(0) = \lim_{t \to 0} \frac{e^{-\frac{1}{t^2}} - 0}{t} = 0.$$

Now assume that the statement holds for n = k. As n = k + 1, by (1)(2) we have

$$f^{(k+1)}(0) = \lim_{t \to 0} \frac{f^{(k)}(t) - f^{(k)}(0)}{t} = \lim_{t \to 0} \frac{g_k(t)e^{-\frac{1}{t^2}} - 0}{t} = 0.$$

Thus, $f^{(n)}(0) = 0$ for $n \in \mathbb{Z}^+$.

Exercise 8.2. Let a_{ij} be the number in the ith row and jth column of the array

so that

$$a_{ij} = \begin{cases} 0 & (i < j), \\ -1 & (i = j), \\ 2^{j-i} & (i > j). \end{cases}$$

Prove that

$$\sum_{i} \sum_{j} a_{ij} = -2, \qquad \sum_{j} \sum_{i} a_{ij} = 0.$$

Also see Theorem 8.3.

Proof (Brute-force).

$$\sum_{i} \sum_{j} a_{ij} = \sum_{i=1}^{\infty} \left(\sum_{j=i} a_{ij} + \sum_{j < i} a_{ij} \right)$$

$$= \sum_{i=1}^{\infty} \left(-1 + \sum_{j=1}^{i-1} 2^{j-i} \right)$$

$$= \sum_{i=1}^{\infty} (-1 + (1 - 2^{1-i}))$$

$$= \sum_{i=1}^{\infty} -2^{1-i}$$

$$= -2$$

$$\sum_{j} \sum_{i} a_{ij} = \sum_{j=1}^{\infty} \left(\sum_{i=j} a_{ij} + \sum_{i>j} a_{ij} \right)$$

$$= \sum_{j=1}^{\infty} \left(-1 + \sum_{i=j+1}^{\infty} 2^{j-i} \right)$$

$$= \sum_{j=1}^{\infty} (-1+1)$$

$$= \sum_{j=1}^{\infty} 0$$

$$= 0.$$

Exercise 8.3. Prove that

$$\sum_{i} \sum_{j} a_{ij} = \sum_{j} \sum_{i} a_{ij}$$

if $a_{ij} \geq 0$ for all i and j (the case $+\infty = +\infty$ may occur).

Note. It can be proved by Theorem 8.3 if both summations are finite.

Proof.

- (1) Let $\mathcal{F}(I)$ be the collection of all finite subsets of I.
- (2) Let

$$s = \sup \left\{ \sum_{(i,j) \in E} a_{ij} : E \in \mathscr{F}(\mathbb{N}^2) \right\}$$

(the case $s=+\infty$ may occur). It suffices to show that $\sum_i \sum_j a_{ij} = s$. The case $\sum_j \sum_i a_{ij} = s$ is similar, and thus $\sum_i \sum_j a_{ij} = \sum_j \sum_i a_{ij}$.

(3) Show that $\sum_{i} \sum_{j} a_{ij} \geq s$. Given any $E \in \mathscr{F}(\mathbb{N}^{2})$. It is clear that

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} \ge \sum_{(i,j) \in E} a_{ij}$$

(since $a_{ij} \geq 0$). Thus,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} \ge \sup \left\{ \sum_{(i,j) \in E} a_{ij} : E \in \mathscr{F}(\mathbb{N}^2) \right\} = s.$$

(4) Show that $\sum_{i} \sum_{j} a_{ij} \leq s$. (Reductio ad absurdum) If $\sum_{i} \sum_{j} a_{ij} > s$, especially $s < \infty$, then there exists $\varepsilon > 0$ such that

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} > s + \varepsilon,$$

or

$$\sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij} > s + \varepsilon$$

for some integer n. Consider two possible cases.

(a) If there is some $1 \le i_0 \le n$ such that

$$\sum_{j=1}^{\infty} a_{i_0 j} = \infty,$$

then there is some m such that

$$\sum_{i=1}^{m} a_{i_0 j} > s.$$

For $E = \{(i_0, 1), \dots, (i_0, m)\} \in \mathscr{F}(\mathbb{N}^2),$

$$\sum_{(i,j)\in E} a_{ij} = \sum_{j=1}^{m} a_{i_0j} > s,$$

contrary to the supremum of s.

(b) Otherwise, for each $1 \le i \le n$ we have

$$\sum_{i=1}^{\infty} a_{ij} < \infty,$$

or there exists some m_i such that

$$\sum_{j=1}^{m_i} a_{ij} > \sum_{j=1}^{\infty} a_{ij} - \frac{\varepsilon}{n}.$$

For
$$E = \bigcup_{1 < i < n} \{(i, 1), \dots, (i, m_i)\} \in \mathscr{F}(\mathbb{N}^2),$$

$$\begin{split} \sum_{(i,j)\in E} a_{ij} &= \sum_{i=1}^n \sum_{j=1}^{m_i} a_{ij} \\ &> \sum_{i=1}^n \left(\sum_{j=1}^\infty a_{ij} - \frac{\varepsilon}{n} \right) \\ &= \sum_{i=1}^n \sum_{j=1}^\infty a_{ij} - \sum_{i=1}^n \frac{\varepsilon}{n} \\ &> s + \varepsilon - \varepsilon \\ &= s, \end{split}$$

contrary to the supremum of s.

Therefore, $\sum_{i} \sum_{j} a_{ij} \leq s$.

(5) By (3)(4), $\sum_i \sum_j a_{ij} = s$. Similarly, $\sum_j \sum_i a_{ij} = s$. Hence, $\sum_i \sum_j a_{ij} = \sum_j \sum_i a_{ij}$ (including the case $+\infty = +\infty$).

Exercise 8.4. Prove the following limit relations:

- (a) $\lim_{x\to 0} \frac{b^x 1}{x} = \log b$ (b > 0).
- (b) $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$.
- (c) $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.
- (d) $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$.

Proof of (a).

$$\lim_{x \to 0} \frac{b^x - 1}{x} = \lim_{x \to 0} \frac{\exp(x \log b) - 1}{x}$$
$$= \frac{d}{dx} \exp(x \log b) \Big|_{x=0}$$
$$= \exp(x \log b) \cdot \log b|_{x=0}$$
$$= \log b.$$

Proof of (b).

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \frac{d}{dx} \log(1+x) \Big|_{x=0}$$
$$= \frac{1}{x+1} \Big|_{x=0}$$
$$= 1.$$

Proof of (c).

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} \exp\left(\frac{\log(1+x)}{x}\right)$$
$$= \exp\left(\lim_{x \to 0} \frac{\log(1+x)}{x}\right)$$
$$= \exp(1)$$
$$= e.$$

Proof of (d).

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{x}{n} \right)^{\frac{n}{x}} \right)^x$$

$$= \left(\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{\frac{n}{x}} \right)^x$$

$$= \left(\lim_{y \to 0} (1 + y)^{\frac{1}{y}} \right)^x$$

$$= \exp(x).$$

Exercise 8.5. Find the following limits

- (a) $\lim_{x\to 0} \frac{e-(1+x)^{\frac{1}{x}}}{x}$.
- (b) $\lim_{n\to\infty} \frac{n}{\log n} \left[n^{\frac{1}{n}} 1 \right]$.
- (c) $\lim_{x\to 0} \frac{\tan x x}{x(1-\cos x)}$.
- (d) $\lim_{x\to 0} \frac{x-\sin x}{\tan x-x}$.

Proof of (a). By L'Hospital's rule (Theorem 5.13),

$$\lim_{x \to 0} \frac{e - (1+x)^{\frac{1}{x}}}{x} = \lim_{x \to 0} \frac{-(1+x)^{\frac{1}{x}} \cdot \frac{\frac{x}{x+1} - \log(x+1)}{x^2}}{1}$$

$$= \lim_{x \to 0} \left(-(1+x)^{\frac{1}{x}} \cdot \frac{\frac{x}{x+1} - \log(x+1)}{x^2} \right)$$

$$= -\lim_{x \to 0} (1+x)^{\frac{1}{x}} \cdot \lim_{x \to 0} \frac{\frac{x}{x+1} - \log(x+1)}{x^2}$$

$$= -e \cdot \lim_{x \to 0} \frac{\frac{x}{x+1} - \log(x+1)}{x^2}$$

$$= -e \cdot \lim_{x \to 0} \frac{-\frac{x}{(x+1)^2}}{2x}$$

$$= e \cdot \lim_{x \to 0} \frac{1}{2(x+1)^2}$$

$$= e \cdot \frac{1}{2}$$

$$= \frac{e}{2}.$$
(Exercise 8.4(c))

Here

$$\begin{split} \frac{d}{dx}\left(e - (1+x)^{\frac{1}{x}}\right) &= \frac{d}{dx}\left(e - \exp\left(\frac{\log(x+1)}{x}\right)\right) \\ &= -\exp\left(\frac{1}{x}\log(x+1)\right) \cdot \frac{\frac{1}{x+1} \cdot x - \log(x+1) \cdot 1}{x^2} \\ &= -(1+x)^{\frac{1}{x}} \cdot \frac{\frac{x}{x+1} - \log(x+1)}{x^2}, \end{split}$$

and

$$\frac{d}{dx}\left(\frac{x}{x+1} - \log(x+1)\right) = \frac{(x+1) - x}{(x+1)^2} - \frac{1}{x+1}$$
$$= -\frac{x}{(x+1)^2}.$$

Proof of (b).

(1) Let $x = \frac{\log n}{n}$. Note that $\lim_{n \to \infty} \frac{\log n}{n} = 0$.

(2)

$$\lim_{n \to \infty} \frac{n}{\log n} \left[n^{\frac{1}{n}} - 1 \right] = \lim_{n \to \infty} \frac{n}{\log n} \left[\exp\left(\frac{\log n}{n}\right) - 1 \right]$$

$$= \lim_{x \to 0} \frac{\exp(x) - 1}{x}$$

$$= \frac{d}{dx} \exp(x) \Big|_{x=0}$$

$$= \exp(x)|_{x=0}$$

$$= 1.$$
((1))

 $Proof\ of\ (c)\ (L'Hospital's\ rule).$ By L'Hospital's rule (Theorem 5.13) three times,

$$\lim_{x \to 0} \frac{\tan x - x}{x(1 - \cos x)} = \lim_{x \to 0} \frac{\sec^2 x - 1}{1 - \cos x + x \sin x}$$

$$= \lim_{x \to 0} \frac{2 \sec x(\tan x \sec x)}{\sin x + \sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{2 \tan x \sec^2 x}{2 \sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{2[\sec^2 x \sec^2 x + \tan x \cdot 2 \sec x(\tan x \sec x)]}{2 \cos x + \cos x - x \sin x}$$

$$= \lim_{x \to 0} \frac{2 \sec^4 x + 2 \sec^2 x \tan^2 x}{3 \cos x - x \sin x}$$

$$= \frac{2}{3}.$$

Proof of (c) (Taylor series). Since

$$\cos x = 1 - \frac{x^2}{2} + O(x^4)$$
$$\tan x = x + \frac{x^3}{3} + O(x^5),$$

we have

$$\lim_{x \to 0} \frac{\tan x - x}{x(1 - \cos x)} = \lim_{x \to 0} \frac{\frac{x^3}{3} + O(x^5)}{\frac{x^3}{2} + O(x^5)} = \frac{2}{3}.$$

 $Proof\ of\ (d)\ (L'Hospital's\ rule).$ By L'Hospital's rule (Theorem 5.13) three times,

$$\lim_{x \to 0} \frac{x - \sin x}{\tan x - x} = \lim_{x \to 0} \frac{1 - \cos x}{\sec^2 x - 1}$$

$$= \lim_{x \to 0} \frac{\sin x}{2 \sec x (\tan x \sec x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{2 \tan x \sec^2 x}$$

$$= \lim_{x \to 0} \frac{\cos x}{2 \tan x \sec^2 x}$$

$$= \lim_{x \to 0} \frac{\cos x}{2 [\sec^2 x \sec^2 x + \tan x \cdot 2 \sec x (\tan x \sec x)]}$$

$$= \lim_{x \to 0} \frac{\cos x}{2 \sec^4 x + 2 \sec^2 x \tan^2 x}$$

$$= \frac{1}{2}.$$

Proof of (d) (Taylor series). Since

$$\sin x = x - \frac{x^3}{6} + O(x^5)$$
$$\tan x = x + \frac{x^3}{3} + O(x^5),$$

we have

$$\lim_{x \to 0} \frac{x - \sin x}{\tan x - x} = \lim_{x \to 0} \frac{\frac{x^3}{6} + O(x^5)}{\frac{x^3}{2} + O(x^5)} = \frac{1}{2}.$$

Exercise 8.6. Suppose f(x)f(y) = f(x+y) for all real x and y.

(a) Assuming that f is differentiable and not zero, prove that

$$f(x) = e^{cx}$$

where c is a constant.

(b) Prove the same thing, assuming only that f is continuous.

Part (b) implies part (a). We prove part (b) directly.

Proof of (b).

- (1) Since f(x) is not zero, there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. So $f(0)f(x_0) = f(x_0)$, or f(0) = 1 by cancelling $f(x_0) \neq 0$.
- (2) Next, $f(\frac{n}{m}) = f(\frac{1}{m})^n$ for $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. Since f is continuous at x = 0, f is positive in the neighborhood of x = 0. That is, there exists $N \in \mathbb{Z}^+$ such that $f(\frac{1}{m}) > 0$ whenever $|m| \geq N$. So, $f(\frac{n}{m}) = f(\frac{1}{m})^n > 0$. (Since $f(\frac{n}{m}) = f(\frac{kn}{km})$ for any $k \in \mathbb{Z}^+$, we can rescale m to km such that $|km| \geq N$.) That is, f is positive on \mathbb{Q} . Since \mathbb{Q} is dense in \mathbb{R} and f is continuous on \mathbb{R} , f is positive on \mathbb{R} .
- (3) Now let $c = \log f(1)$ (which is well-defined since f > 0). We write f(1) in the two ways. Firstly, $f(1) = f(\frac{n}{n}) = f(\frac{1}{n})^n$ where $n \in \mathbb{Z}^+$. Secondly, $f(1) = e^c = (e^{\frac{c}{n}})^n$. Since the positive n-th root is unique (Theorem 1.21), $f(\frac{1}{n}) = e^{\frac{c}{n}}$ for $n \in \mathbb{Z}^+$. By f(x)f(-x) = f(0) = 1 or $f(-x) = \frac{1}{f(x)}$, $f(-\frac{1}{n}) = \frac{1}{e^{\frac{c}{n}}} = e^{-\frac{c}{n}}$ for $n \in \mathbb{Z}^+$. Therefore,

$$f\left(\frac{1}{m}\right) = e^{\frac{c}{m}}$$
 where $m \in \mathbb{Z}$.

(4) By using $f(\frac{n}{m}) = f(\frac{1}{m})^n$ for $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$ again, $f(\frac{n}{m}) = e^{c\frac{n}{m}}$ where $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$, or

$$f(x) = e^{cx}$$
 where $x \in \mathbb{Q}$.

Since $g(x) = f(x) - e^{cx}$ vanishes on a dense set of \mathbb{Q} and g is continuous on \mathbb{R} , g vanishes on \mathbb{R} . Therefore, $f(x) = e^{cx}$ for $x \in \mathbb{R}$.

Supplement. Proof of (a).

- (1) Since f(x) is not zero, there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. So $f(0)f(x_0) = f(x_0)$, or f(0) = 1 by cancelling $f(x_0) \neq 0$.
- (2) Since f is differentiable, for any $x \in \mathbb{R}$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= f(x)f'(0).$$

Let c=f'(0) be a constant. Then f'(x)=cf(x). So $f(x)=e^{cx}$ for $x\in\mathbb{R}$. (To see this, let $g(x)=\frac{f(x)}{e^{cx}}$ be well-defined on \mathbb{R} . g(0)=1. g'(x)=0 since f'(x)=cf(x). So g(x) is a constant, or g(x)=1 since g(0)=1. Therefore, $f(x)=e^{cx}$ on \mathbb{R} .)

Supplement. Cauchy's functional equation.

(1) (Cauchy's functional equation.) Suppose f(x) + f(y) = f(x + y) for all real x and y. Assuming that f is continuous, prove that f(x) = cx where c is a constant.

Notice that we cannot let $g(x) = \log f(x)$ and apply Cauchy's functional equation on g(x) to prove Exercise 8.6 since f(x) is not necessary positive and thus $g(x) = \log f(x)$ might be meaningless. However, this wrong approach gives you some useful ideas such as you need to prove that f(x) is positive first, and f(x) should be equal to e^{cx} where $c = g(1) = \log f(1)$.

- (2) Suppose f(xy) = f(x) + f(y) for all positive real x and y. Assuming that f is continuous, prove that $f(x) = c \log x$ where c is a constant.
- (3) Suppose f(xy) = f(x)f(y) for all positive real x and y. Assuming that f is continuous and positive, prove that $f(x) = x^c$ where c is a constant.
- (4) Suppose f(x+y) = f(x) + f(y) + xy for all real x and y. Assuming that f is continuous, prove that $f(x) = \frac{1}{2}x^2 + cx$ where c is a constant.
- (5) (USA 2002.) Suppose $f(x^2 y^2) = xf(x) yf(y)$ for all real x and y. Assuming that f is continuous, prove that f(x) = cx where c is a constant.

Supplement. Show that the only automorphism of \mathbb{Q} is the identity.

Proof. Given any $\sigma \in Aut(\mathbb{Q})$.

- (1) Show that $\sigma(1) = 1$. Since $1^2 = 1$, $\sigma(1)\sigma(1) = \sigma(1)$. $\sigma(1) = 0$ or 1. There are only two possible cases.
 - (a) Assume that $\sigma(1) = 0$. So

$$\sigma(a) = \sigma(a \cdot 1) = \sigma(a) \cdot \sigma(1) = \sigma(a) \cdot 0 = 0$$

for any $a \in \mathbb{Q}$. That is, $\sigma = 0 \in \text{Aut}(\mathbb{Q})$, which is absurd.

- (b) Therefore, $\sigma(1) = 1$.
- (2) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}^+$. Write $n = 1 + 1 + \dots + 1$ (n times 1). Applying the additivity of σ , we have

$$\sigma(n) = \sigma(1) + \sigma(1) + \dots + \sigma(1) = 1 + 1 + \dots + 1 = n.$$

(Might use induction on n to eliminate \cdots symbols.)

(3) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}$. By the additivity of σ , $\sigma(-n) = -\sigma(n) = -n$ for $n \ge 0$. The result is established.

For any $a=\frac{n}{m}\in\mathbb{Q}$ $(m,n\in\mathbb{Z},\ n\neq 0)$, applying the multiplication of σ on am=n, that is, $\sigma(a)\sigma(m)=\sigma(n)$. By (3), we have $\sigma(a)m=n$, or

$$\sigma(a) = \frac{m}{n} = a$$

provided $n \neq 0$, or σ is the identity. \square

Exercise 8.7. PLACEHOLDER.

Exercise 8.8. For n = 0, 1, 2, ..., and x real, prove that

$$|\sin(nx)| \le n|\sin x|.$$

Note that this inequality may be false for other values of n. For instance,

$$\left| \sin\left(\frac{1}{2}\pi\right) \right| > \frac{1}{2} |\sin \pi|.$$

Proof. Induction on n.

(1) Note that

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

for any $a, b \in \mathbb{R}$.

- (2) n = 0, 1 are clearly true.
- (3) Assume the induction hypothesis that for the single case n = k holds, meaning

$$|\sin(kx)| \le k|\sin x|$$

is true. It follows that

$$\begin{aligned} |\sin((k+1)x)| &= |\sin(kx)\cos x + \cos(kx)\sin x| & ((1)) \\ &\leq |\sin(kx)| |\cos x| + |\cos(kx)| |\sin x| & (\text{Triangle inequality}) \\ &\leq |\sin(kx)| + |\sin x| & (|\cos(\cdot)| \leq 1) \\ &\leq k |\sin x| + |\sin x| & (\text{Induction hypothesis}) \\ &\leq (k+1) |\sin x|. & \end{aligned}$$

Exercise 8.9 (The Euler-Mascheroni constant).

(a) Put $s_N = 1 + \frac{1}{2} + \cdots + \frac{1}{N}$. Prove that

$$\lim_{N\to\infty} (s_N - \log N)$$

exists. (The limit, often denoted by γ , is called Euler's constant. Its numerical value is 0.5772... It is not known whether γ is rational or not.)

(b) Roughly how large must m be so that $N = 10^m$ satisfies $s_N > 100$?

Proof of (a) (Theorem 3.14).

(1) Note that

$$\frac{1}{1+\frac{1}{n}} \leq \frac{1}{x} \leq 1 \text{ for } x \in \left[1, 1+\frac{1}{n}\right]$$

$$\Longrightarrow \int_{1}^{1+\frac{1}{n}} \frac{dx}{1+\frac{1}{n}} \leq \int_{1}^{1+\frac{1}{n}} \frac{dx}{x} \leq \int_{1}^{1+\frac{1}{n}} dx \qquad \text{(Theorem 6.12(b))}$$

$$\Longrightarrow \frac{1}{n+1} \leq \int_{1}^{1+\frac{1}{n}} \frac{dx}{x} \leq \frac{1}{n}$$

$$\Longrightarrow \frac{1}{n+1} \leq \log\left(1+\frac{1}{n}\right) \leq \frac{1}{n}. \qquad \text{(Equation (39) on page 180)}$$

(2) Define

$$\gamma_n = s_n - \log n.$$

It suffices to show that $\{\gamma_n\}$ is monotonic and bounded (Theorem 3.14).

(3) Show that $\{\gamma_n\}$ is decreasing.

$$\gamma_{n+1} - \gamma_n &= (s_{n+1} - \log(n+1)) - (s_n - \log n) \\
&= (s_{n+1} - s_n) - (\log(n+1) - \log n) \\
&= \frac{1}{n+1} - \log\left(\frac{n+1}{n}\right) \\
&= \frac{1}{n+1} - \log\left(1 + \frac{1}{n}\right) \\
&\leq 0.$$
((1))

Note. $\gamma_n \leq \cdots \leq \gamma_1 = 1$ for all $n = 1, 2, 3, \ldots$

(4) Show that $\gamma_n \geq 0$ for all $n = 1, 2, 3, \ldots$ Since

$$\log n = \sum_{k=1}^{n-1} (\log(k+1) - \log k)$$

$$= \sum_{k=1}^{n-1} \log \frac{k+1}{k}$$

$$= \sum_{k=1}^{n-1} \log \left(1 + \frac{1}{k}\right)$$

$$\leq \sum_{k=1}^{n-1} \frac{1}{k}$$

$$= s_{n-1},$$
((1))

we have

$$\gamma_n = s_n - \log n \ge s_n - s_{n-1} = \frac{1}{n} > 0.$$

By (3)(4), $\{\gamma_n\}$ converges to $\lim_{N\to\infty}(s_N-\log N)=\gamma$. \square

Supplement. Show that if $f \ge 0$ on $[0, \infty)$ and f is monotonically decreasing, and if

$$c_n = \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x)dx,$$

then $\lim_{n\to\infty} c_n$ exists. (Exercise 10 of Section 5.2 in the textbook: R Creighton Buck, Advanced Calculus, 3rd edition. See page 235.) If this exercise is true, we can get the existence of γ by taking $f(x) = \frac{1}{x}$.

(1) Note that

$$f(n+1) \le \int_n^{n+1} f(x)dx \le f(n).$$

(2) Show that $\{c_n\}$ is decreasing.

$$c_{n+1} - c_n = f(n+1) - \int_n^{n+1} f(x)dx \le 0.$$

(3) Show that $c_n \ge 0$. Since $f(k) \ge \int_k^{k+1} f(x) dx$,

$$\sum_{k=1}^{n} f(k) \ge \sum_{k=1}^{n} \int_{k}^{k+1} f(x) dx$$

$$= \int_{1}^{n+1} f(x) dx$$

$$\ge \int_{1}^{n} f(x) dx. \qquad (f \ge 0)$$

So that
$$c_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx \ge 0$$
.

(4) By (2)(3), $\{c_n\}$ converges (Theorem 3.14).

Proof of (a) (Limit comparison test). Inspired by this paper: Philippe Flajolet and Ilan Vardi, Zeta Function Expansions of Classical Constants.

(1) Rewrite

$$\gamma_n + \log n - \log(n+1) = \sum_{k=1}^n \left(\frac{1}{k} - \log\left(1 + \frac{1}{k}\right)\right)$$

(similar to the argument in (a)(4)(Theorem 3.14)). Let

$$c_k = \frac{1}{k} - \log\left(1 + \frac{1}{k}\right).$$

(2) Show that

$$\lim_{k \to \infty} \frac{c_k}{\frac{1}{k^2}} = \frac{1}{2}.$$

In fact,

$$\lim_{k \to \infty} \frac{c_k}{\frac{1}{k^2}}$$

$$= \lim_{x \to 0} \frac{x - \log(1+x)}{x^2} \qquad (Put \ x = \frac{1}{k})$$

$$= \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{2x} \qquad (L'Hospital's rule)$$

$$= \lim_{x \to 0} \frac{1}{2(x+1)}$$

$$= \frac{1}{2}.$$

(3) By limit comparison test or comparison test, $\sum c_k$ converges since $\sum \frac{1}{k^2}$ converges. Also,

$$\lim_{n \to \infty} \log n - \log(n+1) = 0.$$

Therefore, $\lim_{n\to\infty} \gamma_n$ exists.

Note. This proof is based on **limit comparison test** (Theorem 8.21) in this textbook: Tom. M. Apostol, Mathematical Analysis, 2nd edition. It is easy to prove by the original comparison test.

Proof of (a) (Comparison test).

(1) Note that

$$0 \le x - \log(x+1) \le \frac{x^2}{2}$$

for all $x \geq 0$.

(2) Write

$$c_n = \frac{1}{n} - \log\left(1 + \frac{1}{n}\right).$$

as in the the proof of (a) (Limit comparison test). By (1),

$$|c_n| \le \frac{1}{2n^2}$$

for all $n=1,2,\ldots$ Hence, by the comparison test (Theorem 3.25(a), $\sum c_n$ converges since $\sum \frac{1}{n^2}$ converges (to $\frac{\pi^2}{6}$). Use the same argument in the proof of (a) (Limit comparison test), since

$$\gamma_n + \log n - \log(n+1) = \sum_{n \to \infty} c_n$$
 and $\lim_{n \to \infty} \log n - \log(n+1) = 0$,

we have the existence of $\lim \gamma_n = \gamma$.

Proof of (a) (Uniformly convergence of $\sum \frac{x}{n(x+n)}$). (One example to Exercise 7 of Section 6.2 in the textbook: R Creighton Buck, Advanced Calculus, 3rd edition. See pages 270 to 271.)

(1) Let

$$f_n(x) = \frac{x}{n(x+n)} = \frac{1}{n} - \frac{1}{x+n}$$

defined on E = [0, 1].

(2) Note that

$$|f_n(x)| \le \frac{1}{n^2}$$

for all $x \in [0,1]$. Since $\sum \frac{1}{n^2}$ converges, $\sum f_n$ converges uniformly on [0,1] (Theorem 7.10).

(3) Corollary to Theorem 7.16 implies that

$$\int_0^1 \sum_{n=1}^\infty \frac{x}{n(x+n)} dx = \sum_{n=1}^\infty \int_0^1 \frac{x}{n(x+n)} dx$$

$$= \sum_{n=1}^\infty \int_0^1 \left(\frac{1}{n} - \frac{1}{x+n}\right) dx$$

$$= \sum_{n=1}^\infty \left(\frac{1}{n} - \log \frac{n+1}{n}\right)$$

$$= \lim_{N \to \infty} \left(\sum_{n=1}^N \frac{1}{n} - \log(N+1)\right)$$

$$= \lim_{N \to \infty} (s_N - \log(N+1))$$

exists. Since $\lim_{N\to\infty} (\log(N+1) - \log N) = 0$,

$$\gamma = \lim_{N \to \infty} (s_N - \log N)$$

=
$$\lim_{N \to \infty} (s_N - \log(N+1)) + \lim_{N \to \infty} (\log(N+1) - \log N)$$

exists.

Proof of (a) (Existence of $\int_1^\infty \frac{\{x\}}{x^2} dx$).

(1) Define $\{x\} = x - [x]$ where [x] is the greatest integer $\leq x$ (Exercise 6.16). Show that

$$\int_{1}^{\infty} \frac{\{x\}}{x^2} dx < \infty.$$

Use the similar argument in Exercise 6.16(b). Since $\frac{\{x\}}{x^2} \leq \frac{1}{x^2}$ on $[1, \infty)$ and $\int_1^\infty \frac{1}{x^2} dx = 1$ exists, the result is established (Theorem 6.12(b)).

(2) Show that

$$\int_{1}^{N} \frac{[x]}{x^2} dx = s_N - 1.$$

Use the similar argument in Exercise 6.16(a),

$$\int_{1}^{N} \frac{[x]}{x^{2}} dx = \sum_{k=1}^{N-1} \int_{k}^{k+1} \frac{[x]}{x^{2}} dx$$

$$= \sum_{k=1}^{N-1} \int_{k}^{k+1} \frac{k}{x^{2}} dx$$

$$= \sum_{k=1}^{N-1} \int_{k}^{k+1} \frac{k}{x^{2}} dx$$

$$= \sum_{k=1}^{N-1} \frac{1}{k+1}$$

$$= \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

$$= s_{N} - 1.$$

Supplement (Euler's summation formula). (Theorem 7.13 in the textbook: Tom. M. Apostol, Mathematical Analysis, 2nd edition.) If f has a continuous derivative f' on [a, b], then we have

$$\sum_{a < n < b} f(n) = \int_{a}^{b} f(x)dx + \int_{a}^{b} f'(x)\{x\}dx + f(a)\{a\} - f(b)\{b\},$$

where $\sum_{a < n \le b}$ means the sum from n = [a] + 1 to n = [b]. When a and b are integers, this becomes

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(x)dx + \int_{a}^{b} f'(x) \left(\{x\} - \frac{1}{2} \right) dx + \frac{f(a) + f(b)}{2}.$$

By taking $f(x) = \frac{1}{x}$ we can get the same result.

(3) Show that

$$\int_{1}^{N} \frac{\{x\}}{x^{2}} dx = \log N - s_{N} + 1 = 1 - \gamma_{N}.$$

In fact,

$$\int_{1}^{N} \frac{\{x\}}{x^{2}} dx = \int_{1}^{N} \frac{x - [x]}{x^{2}} dx$$

$$= \int_{1}^{N} \frac{1}{x} dx - \int_{1}^{N} \frac{[x]}{x^{2}} dx$$

$$= \log N - (s_{N} - 1)$$

$$= \log N - s_{N} + 1$$

$$= 1 - \gamma_{N}.$$

(4) Since

$$\lim_{N\to\infty}\int_1^N\frac{\{x\}}{x^2}dx=\int_1^\infty\frac{\{x\}}{x^2}dx$$

exists (by (1)), $\gamma = \lim \gamma_N$ exists.

Proof of (b). By $s_n - \log n > 0$ in (a)(4)(Theorem 3.14), it suffices to choose $N = 10^m$ such that $s_N \ge \log(N+1) > 100$, or

$$m > \frac{\log(\exp(100) - 1)}{\log 10},$$

or choose m satisfying

$$m > \frac{100}{\log 10} > \frac{\log(\exp(100) - 1)}{\log 10},$$

or m=44. \square

Note. The exact value of N is

 $15092688622113788323693563264538101449859497 \approx 1.509 \times 10^{43}.$

Exercise 8.10. Prove that $\sum \frac{1}{p}$ diverges; the sum extends over all primes.

There are many proofs of this result. We provide some of them.

Proof (Due to hint). Given N.

(1) Show that

$$\sum_{n < N} \frac{1}{n} \le \prod_{p < N} \left(1 - \frac{1}{p}\right)^{-1}.$$

By the unique factorization theorem on $n \leq N$,

$$\sum_{n\leq N}\frac{1}{n}\leq \prod_{p\leq N}\left(1+\frac{1}{p}+\frac{1}{p^2}+\cdots\right)=\prod_{p\leq N}\left(1-\frac{1}{p}\right)^{-1}.$$

- (2) By (1) and the fact that $\sum \frac{1}{n}$ diverges, there are infinitely many primes.
- (3) Show that

$$\prod_{p \le N} \left(1 - \frac{1}{p} \right)^{-1} \le \exp\left(\sum_{p \le N} \frac{2}{p} \right).$$

By applying the inequality $(1-x)^{-1} < e^{2x}$ where $x \in (0, \frac{1}{2}]$ on any prime p,

$$\left(1 - \frac{1}{p}\right)^{-1} < \exp\left(\frac{2}{p}\right).$$

Now multiplying the inequality over all primes $p \leq N$ and noticing that $\exp(x) \cdot \exp(y) = \exp(x+y)$, we have

$$\prod_{p \le N} \left(1 - \frac{1}{p}\right)^{-1} \le \exp\left(\sum_{p \le N} \frac{2}{p}\right).$$

(4) By (1)(3),

$$\sum_{n \le N} \frac{1}{n} \le \exp\left(\sum_{p \le N} \frac{2}{p}\right).$$

Since $\sum_{n \leq N} \frac{1}{n}$ diverges, the result holds.

Proof (Due to Kenneth Ireland and Michael Rosen). The proof in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition (Theorem 3 in Chapter 2) does not use the inequality $(1-x)^{-1} < e^{2x}$ ($x \in (0, \frac{1}{2}]$) directly. Instead, the authors take the logarithm on $(1-p^{-1})^{-1}$ and estimate it. (So the length of proof is longer than the proof due to hint.) That is,

$$-\log(1-p^{-1}) = \sum_{n=1}^{\infty} \frac{p^{-n}}{n}$$

$$= \frac{1}{p} + \sum_{n=2}^{\infty} \frac{p^{-n}}{n}$$

$$< \frac{1}{p} + \sum_{n=2}^{\infty} p^{-n}$$

$$= \frac{1}{p} + \frac{p^{-2}}{1-p^{-1}}$$

$$< \frac{1}{p} + 2 \cdot \frac{1}{p^2}.$$

Now we sum over all primes $p \leq N$,

$$\log \left(\prod_{p \le N} \left(1 - \frac{1}{p} \right)^{-1} \right) < \sum_{p \le N} \frac{1}{p} + 2 \sum_{p \le N} \frac{1}{p^2}.$$

So

$$\log \sum_{n \le N} \frac{1}{n} < \sum_{p \le N} \frac{1}{p} + 2 \sum_{p \le N} \frac{1}{p^2}.$$

Notice that $\sum \frac{1}{n}$ diverges and $\sum \frac{1}{p^2}$ converges (since $\sum \frac{1}{n^2}$ converges). Therefore, $\sum \frac{1}{p}$ diverges. \square

Proof (Due to I. Niven). It is an exercise in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition. See Exercise 27 in Chapter 2.

(1) Show that $\sum_{n=1}^{\infty} \frac{1}{n}$, the sum being over square free integers, diverges. For any positive integers n, we can write $n=a^2b$ where $a \in \mathbb{Z}^+$ and b is a square free integer. Given N,

$$\sum_{n \leq N} \frac{1}{n} \leq \left(\sum_{a=1}^{\infty} \frac{1}{a^2}\right) \left(\sum_{b \leq N}{}' \frac{1}{b}\right).$$

Notice that $\sum_{a=1}^{\infty} \frac{1}{a^2}$ converges. Since $\sum_{n \leq N} \frac{1}{n} \to \infty$ as $N \to \infty$, $\sum_{b \leq N}' \frac{1}{b} \to \infty$ as $N \to \infty$.

(2) Show that

$$\prod_{p < N} (1 + \frac{1}{p}) \to \infty \text{ as } N \to \infty.$$

By the unique factorization theorem on $n \leq N$,

$$\prod_{p \le N} \left(1 + \frac{1}{p} \right) \ge \sum_{n \le N} {'\frac{1}{n}}.$$

Since $\sum_{n\leq N}'\frac{1}{n}\to\infty$ as $N\to\infty$ by (1), the conclusion is established.

(3) By applying the inequality $e^x > 1 + x$ on any prime p,

$$\exp\left(\frac{1}{p}\right) > 1 + \frac{1}{p}.$$

Now multiplying the inequality over all primes $p \leq N$ and noticing that $\exp(x) \cdot \exp(y) = \exp(x + y)$, we have

$$\exp\left(\sum_{p\leq N}\frac{1}{p}\right) > \prod_{p\leq N}\left(1 + \frac{1}{p}\right).$$

By (2), $\exp\left(\sum_{p\leq N}\frac{1}{p}\right)\to\infty$ as $N\to\infty$, or $\sum_{p\leq N}\frac{1}{p}\to\infty$ as $N\to\infty$.

Exercise 8.11. Suppose $f \in \mathcal{R}$ on [0,A] for all $A < \infty$, and $f(x) \to 1$ as $x \to +\infty$. Prove that

$$\lim_{t \to 0} t \int_0^\infty e^{-tx} f(x) dx = 1 \qquad (t > 0),$$

It is similar to Exercise 3.14(a).

Proof. Given any $\varepsilon > 0$.

- (1) The integral $\int_0^\infty e^{-tx} f(x) dx$ is well-defined. (It suffices to show that $\int_0^\infty e^{-tx} f(x) dx$ converges absolutely in the sense of Exercise 6.8. It is quite easy since $f(x) \to 1$ as $x \to +\infty$ and well-behavior of $\int_{A_0}^\infty e^{-tx} f(x) dx$ for any $A_0 > 0$.)
- (2) Note that

$$t \int_0^\infty e^{-tx} dx = 1$$

for any t > 0.

(3) Since $f(x) \to 1$ as $x \to +\infty$, there is $A_0 > 0$ such that

$$|f(x)-1|<rac{arepsilon}{64}$$
 whenever $x\geq A_0$.

(4) Since $f \in \mathcal{R}$ on $[0, A_0]$, f is bounded on $[0, A_0]$, or $|f| \leq M$ on $[0, A_0]$ for some M (Theorem 6.7(c)).

(5) As t > 0,

$$\left| \left(t \int_{0}^{\infty} e^{-tx} f(x) dx \right) - 1 \right|$$

$$= \left| t \int_{0}^{\infty} e^{-tx} (f(x) - 1) dx \right| \qquad ((2))$$

$$\leq t \int_{0}^{\infty} e^{-tx} |f(x) - 1| dx \qquad ((1) \text{ with Theorem 6.13})$$

$$= t \int_{0}^{A_{0}} e^{-tx} |f(x) - 1| dx + t \int_{A_{0}}^{\infty} e^{-tx} |f(x) - 1| dx$$

$$\leq t \int_{0}^{A_{0}} (M + 1) dx + t \int_{A_{0}}^{\infty} e^{-tx} |f(x) - 1| dx \qquad ((3) \text{ and } e^{-tx} \leq 1)$$

$$\leq t \int_{0}^{A_{0}} (M + 1) dx + t \int_{A_{0}}^{\infty} e^{-tx} \frac{\varepsilon}{64} dx \qquad ((4))$$

$$= t A_{0}(M + 1) + \exp(-A_{0}t) \frac{\varepsilon}{64}$$

$$\leq t A_{0}(M + 1) + \frac{\varepsilon}{64}. \qquad (e^{-tx} \leq 1)$$

Since t is arbitrary, take $t = \frac{\varepsilon}{89A_0(M+1)} > 0$ to get

$$\left|\left(t\int_0^\infty e^{-tx}f(x)dx\right)-1\right|<\frac{\varepsilon}{89}+\frac{\varepsilon}{64}<\varepsilon,$$

or

$$\lim_{t \to 0^+} t \int_0^\infty e^{-tx} f(x) dx = 1.$$

Exercise 8.12. Suppose $0 < \delta < \pi$,

$$f(x) = \begin{cases} 1 & \text{if } |x| \le \delta, \\ 0 & \text{if } \delta < |x| \le \pi, \end{cases}$$

and $f(x+2\pi) = f(x)$ for all x.

- (a) Compute the Fourier coefficients of f.
- (b) Compute that

$$\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n} = \frac{\pi - \delta}{2} \qquad (0 < \delta < \pi).$$

(c) Deduce from Parseval's theorem that

$$\sum_{n=1}^{\infty} \frac{(\sin(n\delta))^2}{n^2 \delta} = \frac{\pi - \delta}{2}.$$

(d) Let $\delta \to 0$ and prove that

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}.$$

(e) Put $\delta = \frac{\pi}{2}$ in (c). What do you get?

It is a centered square pulse around x=0 with shift δ . Besides, f(x) is an even function.

Proof of (a).

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} dx$$
$$= \frac{\delta}{\pi}.$$

For $0 \neq n \in \mathbb{Z}$,

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$$
$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} e^{-inx}dx$$
$$= \frac{1}{2\pi} \cdot \frac{2\sin(n\delta)}{n}$$
$$= \frac{\sin(n\delta)}{n\pi}.$$

Supplement. Find a_n and b_n of this textbook. By (a), $a_0 = \frac{\delta}{\pi}$, $a_n = \frac{2\sin(n\delta)}{n\pi}$, $b_n = 0$ for $n \in \mathbb{Z}^+$. Surely, we can compute a_n

and b_n (n > 0) directly. Since f(x) is an even function, $b_n = 0$. And

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$= \frac{2}{\pi} \int_{0}^{\delta} \cos(nx) dx$$
$$= \frac{2 \sin(n\delta)}{n\pi}.$$

Proof of (b). Given x=0, there are constants $\delta'=\delta>0$ and $M=1<\infty$ such that

$$|f(0+t) - f(0)| \le M|t|$$

for all $t \in (-\delta', \delta')$. By Theorem 8.14,

$$\sum_{-\infty}^{\infty} c_n = f(0).$$

Notice that $c_{-n} = c_n$ for $n \in \mathbb{Z}^+$, so

$$\frac{\delta}{\pi} + 2\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n\pi} = 1$$
$$\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n} = \frac{\pi - \delta}{2}.$$

We can also use the expression a_n and b_n to prove the same thing. Besides, taking $\delta = 1$ yields

$$\sum_{n=1}^{\infty} \frac{\sin n}{n} = \frac{\pi - 1}{2}.$$

Proof of (c). Since f(x) is a Riemann-integrable function with period 2π , by Parseval's theorem

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |c_n|^2.$$

So

$$\frac{\delta}{\pi} = \frac{\delta^2}{\pi^2} + 2\sum_{n=1}^{\infty} \frac{(\sin(n\delta))^2}{n^2\pi^2},$$

or

$$\sum_{n=1}^{\infty} \frac{(\sin(n\delta))^2}{n^2 \delta} = \frac{\pi - \delta}{2}.$$

Notices that

$$\sum_{n=1}^{\infty} \frac{(\sin n)^2}{n^2} = \frac{\pi - 1}{2}$$

as $\delta = 1$.

Proof of (d). Given $\varepsilon > 0$. By Exercise 6.8,

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx$$

exists. So there exists b > 0 such that

$$\left| \int_0^b \left(\frac{\sin x}{x} \right)^2 dx - \int_0^\infty \left(\frac{\sin x}{x} \right)^2 dx \right| < \frac{\varepsilon}{4}$$

By Supplement in Chapter 6, there exists $\delta > 0$ such that for any partition $P_m = \{0, \frac{b}{m}, \frac{2b}{m}, \dots, \frac{(m-1)b}{m}, b\}$ of [0, b] with $||P|| = \frac{b}{m} < \delta$, or $m > \frac{b}{\delta}$, we have

$$\left| \sum_{n=1}^{m} \frac{(\sin\left(n\frac{b}{m}\right))^{2}}{(n\frac{b}{m})^{2}} \cdot \frac{b}{m} - \int_{0}^{b} \left(\frac{\sin x}{x}\right)^{2} dx \right| < \frac{\varepsilon}{4},$$

$$\left| \sum_{n=1}^{m} \frac{(\sin\left(n\frac{b}{m}\right))^{2}}{n^{2}\frac{b}{m}} - \int_{0}^{b} \left(\frac{\sin x}{x}\right)^{2} dx \right| < \frac{\varepsilon}{4}.$$

For simplicity we resize δ to $\delta < \pi$ to make $0 < \frac{b}{m} < \delta < \pi$. Besides, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, there exists N>0 such that

$$\left| \sum_{n=1}^{\infty} \frac{(\sin(n\frac{b}{m}))^2}{n^2 \frac{b}{m}} - \sum_{n=1}^{m} \frac{(\sin(n\frac{b}{m}))^2}{n^2 \frac{b}{m}} \right| < \frac{\varepsilon}{4}$$

whenever $m \geq N$. By (c),

$$\left| \frac{\pi - \frac{b}{m}}{2} - \sum_{n=1}^{m} \frac{(\sin(n\frac{b}{m}))^2}{n^2 \frac{b}{m}} \right| < \frac{\varepsilon}{4}$$

whenever $m \geq N$. Last, it is easy to get

$$\left| \frac{\pi}{2} - \frac{\pi - \frac{b}{m}}{2} \right| < \frac{\varepsilon}{4}$$

whenever $m > \frac{2b}{\varepsilon}$. Now we have

$$\left| \frac{\pi}{2} - \int_0^\infty \left(\frac{\sin x}{x} \right)^2 dx \right| < \varepsilon$$

whenever $m > \max(\frac{b}{\delta}, N, \frac{2b}{\varepsilon})$. Since ε is arbitrary, $\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}$. \square

Proof of (e).

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

Write

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n^2} &= \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^2} \\ &= \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}, \end{split}$$

so

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{6}.$$

Exercise 8.13. Put f(x) = x if $0 \le x < 2\pi$, and apply Parseval's theorem to conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi}{6}.$$

Proof.

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} x dx$$
$$= \pi,$$

For $n \neq 0$,

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} x e^{-inx} dx$$

$$= \frac{1}{2\pi} \left(\left[-\frac{1}{in} x e^{-inx} \right]_{x=0}^{x=2\pi} - \int_0^{2\pi} -\frac{1}{in} e^{-inx} dx \right)$$

$$= \frac{i}{n}.$$

Since f(x) is a Riemann-integrable function with period 2π , by Parseval's theorem

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |c_n|^2.$$

$$\frac{1}{2\pi} \cdot \frac{(2\pi)^3}{3} = \pi^2 + 2\sum_{n=1}^{\infty} \frac{1}{n^2},$$

or

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Supplement. Put $f(x) = x^n$ if $n \in \mathbb{Z}^+$ and $0 \le x < 2\pi$. Might get

$$\zeta(2n) = \sum_{k=1}^{\infty} \frac{1}{k^{2n}} = \frac{(-1)^{n+1} B_{2n} (2\pi)^{2n}}{2(2n)!}.$$

Exercise 8.14-8.31. PLACEHOLDER.