IST-332 Final Project

NLP on Yelp's review data

Whoa!

Fayez Alharbi, Yuri Yu, Marium Mukhtar, Umesh Makhloga

Table of **contents**

O' Introduction

O2 Corpus creation

103 Text Preprocessing

04 Data understanding

05 Sentiment Analysis

06 Topic Modeling

O7 Supervised classification

08 Deployment Plan

Description of the problems Summary of the overall project

Description of the problems

The main goal of this project is to collect review data from outside the Regional Health Care Plan (RHCP) resources and identify high-quality businesses.

Using customers' reviews to identify and measure the quality of the business instead of Yelp review ratings.

Summary of the overall project

We collected customers reviews about healthcare providers that provide services to Riverside and San Bernardino counties on Yelp.

We extract the feature sets from the review texts, Then train them to build our models.

Use the best model to help identifying good business

02

Corpus creation

Describe the steps for corpus creation Summary statistics of the corpus

Describe the steps for corpus creation

- -Read csv to load all the reviews metadata
- Save the corpus
- Summary of statistics of the corpus

Business ID	rounded_rating	doctorID	Name	Business Category	review_content
chuang-t-hung-md-upland	2.7	101	Chuang T. Hung MD	Gastroenterologistgastroenterologist,	Best guy to check what's going on up there!!!
chuang-t-hung-md-upland	2.7	101	Chuang T. Hung MD	Gastroenterologistgastroenterologist,	This review does not reflect what I think of t
chuang-t-hung-md-upland	2.7	101	Chuang T. Hung MD	Gastroenterologistgastroenterologist,	I have been having issues with my liver/stomac

Summary statistics of the corpus

```
# A strongly skewed distribution. A small number of businesses have a relatively large number of reviews, while most businesses have relatively few.

# The max (633) is so much bigger than the mean (26) that it skews the statistics significantly. Maybe helpful is to note that the 50% percentile number of reviews is only 10 and the 25% percentile is 4, those counts are significantly less than the average.

# This might present some interesting challenges for machine learning as we will have significantly more data for some businesses then we do for others.
```

Business ID	
24-7-care-at-home-westminster-2	
4-ever-green-collective-riverside	9
a-doctors-weight-loss-clinic-moreno-valley-2	13
a-gobaud-orthopaedic-medical-clnc-and-bck-trtmnt-ctr-montclair	1
a-healing-within-palm-desert	14
yusufaly-imdad-md-wildomar	19
yvonne-d-sylva-md-corona	49
zacher-judith-md-palm-desert	5
zeid-k-kayali-md-rialto-2	11
zosima-b-cariño-gateb-md-indio-2	1
Name: Business ID , Length: 2468, dtype: int64	

count	2468.000000
mean	25.827796
std	49.925814
min	1.000000
25%	4.000000
50%	10.000000
75%	26.000000
max	633.000000
Name: Bus	riness ID , dtype: float64

Text Preprocessing

Steps for text preprocessing all business reviews

Tokenization and normalization Contraction Expansion Word_punct Tokenizer nltk.pos_tag Lemmatization Checking for digits Removing Punctuation Removing words w/ less than two tokens Checking for misspelling Applying lexical diversity Applying Frequency distribution Getting a count for raw tokens, cleaned tokens and number of misspellings

Steps for Preprocessing

Usernane	Business ID	Business Name	Raw Review	Normalized Review	Raw Review Length	Raw Review Unique Token	Raw Review Lexical Diversity	Normalized Review Length	Normalized Review Unique Token	Normalized Review Lexical Diversity
Gregory P.	chuang-t-hung-md- upland	Chuang T. Hung MD	[Best, guy, to, check, what, is, going, on, up	[best, guy, check, !!!, many, many, year, alwa			1.148148			1.181818
Corvetta M.	chuang-t-hung-md- upland	Chuang T. Hung MD	[This, review, does, not, reflect, what, l, th	[review, reflect, think, business, however, re			1.800000			1.571429
Micky B.	chuang-t-hung-md- upland	Chuang T. Hung MD	[l, have, been, having, issues, with, my, live	[issue, liver, stomach, couple, year, real, so	296		1.827160		94	1.265957

Business ID	Business Name	Business Category	Raw Review	Normalized Review	Raw Review Length	Raw Review Unique Token	Raw Review Lexical Diversity	Normalized Review Length	Normalized Review Unique Token	Normalized Review Lexical Diversity
24-7-care-at-home- westminster-2	24/7 Care At Home	Podiatristspodiatrists, Home Health Carehomehe	[A, great, Home, health, service, located, rig	[great, home, health, service, locate, right,	692	298	2.322148	289		1.587912
4-ever-green-collective- riverside	4 Ever Green Collective	Medical Centersmedcenters, Cannabis Clinicscan	[4, EVER, GREEN, COLLECTIVE, 2781, Rubidoux, B	[ever, green, collective, rubidoux, blvd, rive	1374		2.373057			1.652291
a-doctors-weight-loss-clinic- moreno-valley-2	Doctor's Weight Loss Clinic	Doctorsphysicians,	[Doctor, Brysk, and, her, staff, is, great, "	[doctor, brysk, staff, great, recommend, frien			2.410579			1.658228

Data Understanding

Steps taken for all business reviews

Identify any potential issues

Mixed Tokens

```
df['review_content_pre'][0]

['best',
    'guy',
    'check',
    '!!!',
    'many',
    'many',
    'year',
    'always',
    'recommend',
    'team',
    'thanks',
    'doc',
    '!!!']
```

Non-English Tokens

```
['evade',
'responsibility非常不好的体验',
我的医生在36周骯转了资料给医院"。
但是医院从来没跟我们核实过资料信息",
 没有告诉我们他们是否接受我的保险',
 也是他们工作的不重视'
 这种连基本工作都做不好的医院',
 出事了那有多少麻烦等着你"
 因为他们不告知我们的保险不接受"。
给我们造成了他们是接受我的保险的误会",
现在保险公司付款网外了的部分了'
医院还要找我们收取1万3美金"
医院的工作人员及其的不耐烦'。
对于他们的工作失误',
```

Misspells

```
np.mean(df_test['misspells'])
```

1.0516135105031141

- df.describe()
- df.drop() (null values, unneeded columns)
- Removing special characters, removing non english reviews [back to preprocessing]
- Frequency, Count of ['rounded_rating', 'rating',]
- ['business lexical diversity']
- df.groupby(['Business Category', 'date_of_review), mean, max

Business Category Addiction Medicineaddictionmedicine, Counseling & Mental Healthc_and_mh,	date_of_review 1/14/2013	5.000
	1/14/2018	5.000
	1/15/2014 1/15/2019	1.000 1.000
	1/17/2020	1.000
Walk-in Clinicswalkinclinics, Urgent Careurgent_care,	9/5/2017	3.000
	9/5/2018	2.000
	9/8/2017	1.000
	9/8/2020	5.000
	9/9/2013	1.000
Name: rating, Length: 44697, dtype: float64		

Visualization

Sentiment Analysis

Steps of Sentiment Analysis

Concise explanation

Sentiment Analysis steps

- Aggregation
- Finding the scores of
 - polarity
 - subjectivity
 - NLTK_Compound

polarity	subjectivity	NLTK_Compound
0.405979	0.642869	0.962729
0.391728	0.585269	0.799167
0.330723	0.580852	0.664585
-0.300000	0.600000	-0.440400
0.225908	0.596353	0.538986

Correlations in sentiment analysis

Topic Modeling

Steps text preprocessing for all business reviews

Topic Modeling steps

- Dictionary and corpus for Gensim
- Create LDA topic models
- Selecting topic numbers based on coherence scores
- Adding a label to each topic in the best topic mode
- Adding a visualization on the best topic model

Best topic model

Top words in each topic for exp-1

```
O: 0.028*"son" + 0.025*"child" + 0.022*"daughter" +
Topic 1: 0.007*"pay" + 0.006*"send" + 0.005*"receptionist"
Topic 2: 0.024*"urgent_care" + 0.008*"nurse" + 0.007*"test
Topic 3: 0.010*"family" + 0.009*"health" + 0.009*"listen"
Topic 4: 0.022*"surgery" + 0.017*"procedure" + 0.011*"eye"
Topic 5: 0.033*"hospital" + 0.031*"nurse" + 0.009*"pain" +
Topic 6: 0.029*"pain" + 0.012*"treatment" + 0.011*"surgery
Topic 7: 0.014*"pregnancy" + 0.012*"facility" + 0.012*"bab
```


Visualization of the best topic model

07

Supervised learning

Describe the plan for supervised learning Describe all supervised learning activities Compare the models

All supervised learning activities

- Create textual features from the cleaned review each business
- Transform the target variable
- Create training data and test data sets for full feature set
- Create training data and test data sets for SVD feature set
- Define three classifiers with hyperparameter tuning
- Feature set summary

Target variable and Train/Test Data Set

0 1365 1 1103

Name: Target, dtype: int64

Train/Test Ratio: 8:2

Stratified 10 Folding Method

Three classifiers with hyperparameter tuning

SVM

'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}

Random Forest

'min_samples_split': [90, 120, 150], 'n_estimators' : [100, 200, 300], 'max_depth': [3, 5, 8, 10], 'max_features':['sqrt','log2']

Gradient Boosting

'learning_rate': [0.01, 0.1, 1], 'n_estimators' : [100, 200, 500,1000], 'max_features' : ['sqrt',log2']

Feature sets for supervised learning

BOW

Frequency-based Bag-of-words

Language tags

NER tags and sentiment analysis features

TF-IDF

Term frequency-inverse document frequency

Topic Vectors

Based on the best topic model

Glove

Glove.twitter.27B.200d Pre-train model

Hybrid

Glove and NER+SA

BOW
Frequency-based
Bag-of-words

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	get	doctor	 fast	attitude	continue	late	especially	wish	face	company	terrible	hard
	1	0	1	0	0	0	0	0	0	0	0	0
10 2 1 1 0 0 2 0 0 0 0	5	0	0	0	0	0	0	0	0	0	0	1
	10	2	1	1	0	0	2	0	0	0	0	0

ooc ['get', 'doctor', 'time', 'care', 'would', 'staff', 'see', 'call', 'office', 'wait', 'take', 'say', 'tell', 'make', 'patient', 'appointment', 'come', 'back', 'one'

Term frequency-inverse document frequency

Glove Glove.twitter.27B.200d

Pre-train model

•	index	ID	AVE1	AWE2	AWE3	AVE4	AWE5	AWE6	AWE7	AVE8	AWE9	AWE191	AWE192	AWE193	AWE194
	0	0	0.026059	0.124322	-0.059792	-0.018517	0.020472	0.085809	0.678513	-0.011019	-0.026834	-0.108237	0.061750	0.132979	-0.137457
	1	1	-0.071928	0.044708	-0.019660	-0.026914	0.008438	0.089707	0.600606	-0.064142	-0.039016	-0.025482	0.034839	0.077921	-0.064481
	2	2	0.035490	0.052178	-0.027157	-0.042163	0.029677	0.118611	0.701179	-0.008998	-0.045940	-0.072663	0.017579	0.089819	-0.096522
	3	3	-0.037787	0.174142	-0.174670	0.106792	0.116708	0.038169	0.652175	-0.071135	0.142023	-0.110416	0.042387	0.046308	-0.206192
	4	4	-0.016078	0.031949	-0.031174	0.022802	0.016231	0.078538	0.623929	-0.048225	-0.020598	-0.003541	-0.004253	0.073177	-0.066532
5	rows × 2	201	columns												

Topic Vectors

Based on the best topic model

```
[U, '0.032*'son' + 0.029*'child' + 0.025*'daughter' + 0.022*'kid' + 0.014*'love' + 0.014*'pediatrician' + 0.013*'baby' + 0.007*'sick' + 0.007*'nurse' + 0.007*'little' + 0.007*'old' + 0.006*'parent' + 0.006*'bring' + 0.006*'amazing' + 0.005*'shot' + 0.005*'question' + 0.005*'concern' + 0.005*'happy' + 0.005*'year_old' + 0.004*'front'), (1.
```

'0.007*[pay" + 0.006*[send]" + 0.005*[speak" + 0.005*[receptionist" + 0.005*[receive" + 0.005*[referral]" + 0.005*[finally" + 0.004*[horrible" + 0.004*[anything" + 0.004*[someone" + 0.004*]]]]]]]

0.023*furgent_care" + 0.008*fclinio" + 0.008*fmarse" + 0.008*fest" + 0.007*facility" + 0.006*front_desk" + 0.005*fclean" + 0.005*flocation" + 0.005*ftoday" + 0.005*fpain" + 0.005*fpain" + 0.005*fpain" + 0.005*fpain" + 0.005*fpain" + 0.004*facility" + 0.005*facility" + 0.005*facility +

0.012* family + 0.011* health + 0.011* listen + 0.009* highly_recommend + 0.008* physician + 0.008* love + 0.008* concern + 0.007* practice + 0.007* husband + 0.007* thorough + 0.007* happy + 0.007* medication + 0.000* knowledgeable + 0.000* wonderful + 0.000* question + 0.000* helpful + 0.005* make_feel),

(%). 0.023*"surgery" + 0.018*"procedure" + 0.011*"eye" + 0.009*"result" + 0.008*"treatment" + 0.008*"anazing" + 0.008*"make_feel" + 0.008*"skin" + 0.008*"skin" + 0.008*"highly_recommend" + 0.007*"love" + 0.007*"confortable" + 0.007*"happy" + 0.006*"consultation" + 0.006*"everyone" + 0.005*"anaze" + 0.005*"everything" + 0.005*"skin" + 0.005*"anaze" + 0.005*"anaze"

0.035*[hospital] + 0.033*[nurse] + 0.009*[pain] + 0.008*[kaisex] + 0.006*[surgery] + 0.005*[baby] + 0.005*[husband] + 0.004*[home] + 0.004*[nom] + 0.004*[som] + 0.004*[so

0.032*[pain + 0.013*[treatment + 0.011*[foot + 0.011*[surgery] + 0.007*[highly_recommend] + 0.000*[physical_therapy] + 0.006*[massage] + 0.006*[life] + 0.006*[njury] + 0.006*[start] + 0.004*[start] + 0.006*[start] + 0.006*

'0.014*'pregnamcy' + 0.012*'facility' + 0.012*'baby' + 0.012*'murse' + 0.007*'mltrasoumd' + 0.007*'pregnamt' + 0.006*'moam' + 0.006*'nom' + 0.006*'hospital' + 0.006*'now' + 0.004*'now' + 0.004*'now' + 0.004*'now' + 0.004*'stay' + 0.004*'now' + 0.004*'now' + 0.004*'now' + 0.004*'stay' + 0.004*'now' + 0.004*'no

TV1	TV2	TV3	TV4	TV5	TV6	TV7	TV8
0.000382	0.001439	0.000627	0.292977	0.000448	0.000333	0.398625	0.305168
0.000228	0.000867	0.196523	0.000449	0.511811	0.196848	0.000239	0.093035
0.000332	0.001259	0.229730	0.100876	0.458956	0.000289	0.000349	0.208209

Language tags

NER tags and sentiment analysis features

)									
org	NER_DATE	NER_PERSON	NER_MONEY	polarity	subjectivity	NLTK_Compound	NER_ORG_Scaled	NER_DATE_Scaled	NER_PERSON_Scaled	NER_MONEY_Scaled
0		0	0	0.405979	0.642869	0.962729	-0.429661	-0.497454	-0.381592	-0.257784
2	5	0	0	0.391728	0.585269	0.799167	0.204741	-0.356814	-0.381592	-0.257784
0	6	0	0	0.330723	0.580852	0.664585	-0.429661	-0.286494	-0.381592	-0.257784
0	0	0	0	-0.300000	0.600000	-0.440400	-0.429661	-0.708414	-0.381592	-0.257784
		0	0	0.225908	0.596353	0.538986	-0.112460	-0.497454	-0.381592	-0.257784

	AWE198	AWE199	AWE 200	polarity	subjectivity	NLTK_Compound	NER_ORG_Scaled	MER_DATE_Scaled	NER_PERSON_Scaled	NER_MONEY_Scaled
	0.053482	-0.005715	-0.064971	0.405979	0.642869	0.962729	-0.429661	-0.497454	-0.381592	-0.257784
	0.074525	0.041948	-0.050511	0.391728	0.585269	0.799167	0.204741	-0.356814	-0.381592	-0.257784
	0.070167	0.056712	0.003231	0.330723	0.580852	0.664585	-0.429661	-0.286494	-0.381592	-0.257784

Feature set summary

		Accuracy	Recall	Precision	AUC	
Туре	Model					
Data-driven	SVM with full bow feature set	0.866397	0.855204	0.847534	0.851351	
	RF with full bow feature set	0.834008	0.733032	0.875676	0.798030	
	GB with full bow feature set	0.860324	0.809955	0.868932	0.838407	
	SVM with SVD bow feature set			0.819048		
	RF with SVD bow feature set			0.808511		
	GB with SVD bow feature set			0.823256		
	SVM with full tfidf feature set			0.879808		
	RF with full tfidf feature set			0.897297		
	GB with full tfidf feature set			0.886700		
	SVM with SVD tfidf feature set			0.876847		
	RF with SVD tfidf feature set			0.850515		
	GB with SVD tfidf feature set			0.861244		
				0.863415		
	RF with full glove feature set			0.850515		
				0.854545		
				0.863208		
				0.835681		
				0.873239		
	SVM with full NER and SA feature set					
	RF with full NER and SA feature set					
	GB with full NER and SA feature set					
	SVM with SVD NER and SA feature set					
	RF with SVD NER and SA feature set					
	GB with SVD NER and SA feature set					
				0.820000		
				0.804020		
Hybrid				0.809524		
				0.903226		
	RF with full hybrid feature set			0.902913		
				0.896861		
				0.868778		
	RF with SVD hybrid feature set			0.849765		
	GB with SVD hybrid feature set	0.882591	0.859729	0.875576	0.867580	

Based on its accuracy score and AUC score, among 33 models, Gradient Boosting with full hybrid feature set is the best model here

Deployment Plan

Steps of Deployment Plan

Deployment Plan

Considering a proper Infrastructure for storing and processing the data.

- 1. Developing the model.
- 2. Iteration of Optimizing and testing code
- 3. Constant monitoring and maintenance
- 4. Transforming the model into a well-engineered product such as API or a website.

Thank you!

Let me know if you have question!

