11장 순환 신경망

소차 데이터(시계열 데이터)

- 순차데이터(sequence data), 시계열 데이터(time sequence data)
 - 순서가 있는 데이터. 시간적인 순서. 공간적인 순서
 - 예. 주식 가격. 텍스트 데이터, 오디오 데이터
- 순차 데이터를 처리하여 정확한 예측을 하려면 과거의 데이터를 어느 정도 기억하고 있어야.

순학 신경망의 응용 분야

 텍스트, 오디오, 비디오 등의 시계열 데이터를 가지는 다양한 문제에 적용

분야	형태	최종 결과물			
음성 인식		What are recurrent neural network?			
감정 분석	"It is my favorite time travel sci-fi"	****			
자동 번역	"순환 신경망이란 무엇인가?"	"What is Recurrent Neural Network?"			

- 문장 중의 빈칸을 예측하는 문제
 - 이전의 두 단어만을 가지고 다음 단어를 예측하는 것은 불가능.
 - 문장의 시작 부분에 있는 '영화'라는 단어를 기억해야 빈칸에 '극 장'을 추측해 낼 수 있다.

- 순환 신경망의 기능
 - ▶ 가변 길이의 입력을 처리할 수 있어야 한다.
 - 장기 의존성을 추적할 수 있어야 한다.
 - 순서에 대한 정보를 유지해야 한다.
 - 시퀀스 전체의 파라미터를 공유할 수 있어야 한다.

수학 데이터의 이해

• 순환 데이터: 순환 신경망을 학습시키는 데 사용되는 데이터

• 3년 x 365 = 1095 개의 데이터

1	2	3	4	5	6	7	 1092	1093	1094	1095
16	8	32	9	23	11	19	 22	15	7	18

수학 데이터

샘플 #3

• 순환 신경망을 학습시키려면 데이터를 일정한 길이(윈도우 크기=3)로 잘라서 여러 개의 훈련 샘플을 만든다.

샘플 번호	x(입력)	y(정답)		
1	[16, 8, 32]	[9]		
2	[8, 32, 9]	[23]		
3	[32, 9, 23]	[11]		
1092	[22, 15, 7]	[18]		

- 피드-포워드 신경망(feed-forward neural network)
 - 항상 현재 입력만 고려
- 순환 신경망(RNN)
 - 이전에 수신한 정보를 계속 보유. 즉 과거 정보 지속
 - 동일한 입력이더라도 이전 입력에 따라 서로 다른 출력을 생성

• 입력 벡터 x가 처리되어서 출력 벡터 y가 생성. 내부적으로 이전 상태가 다시 피드백. 벡터 x는 시계열 데이터

RNN²¹ 5[~]t

• 새로운 은닉 상태 h_t 는 이전의 은닉 상태 h_{t-1} 과 현재의 입력 벡터 x_i 를 $f_w()$ 에 넣어서 얻는다.

- 입력 벡터: x_t
- 출력 벡터: $y_t = f(W_{hy}h_t)$
- 은닉 상태: h_t = $tanh(W_{xh}x_t + W_{hh}h_{t-1})$

- 일대일(One to One)
- 일대다(One to Many)
- 다대일(Many to One)
- 다대다(Many to Many)

일대일(One to One)

• 단일 입력과 단일 출력이 있는 가장 일반적인 신경망(Vanilla Neural Network)

्रीपाटा (One to Many)

- 하나의 입력을 받아서 많은 수의 출력
- 예. 이미지 캡션 생성 RNN : 하나의 이미지가 입력되면 이미지를 가 장 잘 설명하는 캡션들을 생성

다대일(Many to One)

- 일련의 입력을 받아 단일 출력을 생성
- 예. 감정(Sentiment) 분석 신경망: 주어진 문장들이 긍정적 또는 부 정적 감정인지를 분류

FIFH (Many to Many)

- 많은 수의 입력을 받아 많은 수의 출력을 생성
- 예. 기계 번역 : 단어들을 다른 단어들로 계속 출력

RNN의 순방향 패스

• 매시간 다른 가중치로 출력하는 다대일(many-to-one) 방식인 경우

케라스에서의 RNN

```
inputs = np.random.random([32, 10, 8]).astype(np.float32)

simple_rnn = tf.keras.layers.SimpleRNN(4)

output = simple_rnn(inputs)
```

- SimpleRNN(4)와 같이 호출하면 셀이 4개인 RNN 레이어가 만들어진다.
- SimpleRNN의 입력 :
 - [batch, timesteps, feature] 3차원 텐서.
 - [32, 10, 8]: 32개의 샘플. 샘플당 10개의 시계열 데이터, 하나의 데이터는 8개의 실수로 구성

피드-포워드 신경망

- 1보다 작은 값들이 여러 번 곱해지면 점점 작아지다 결국 없어지게 되는 현상
- 먼 거리의 의존 관계는 파악하지 못하고 근거리의 의존 관계만을 중 시하게 된다.
- 해결책: 보다 복잡한 순환 유닛인 LSTM, GRU 같은 Gated Cell 사용

• 그래디언트가 너무 커지는 것

- RNN의 한계 시간이 길어질수록 이전에 입력되었던 정보가 뒤로 충분히 전달되지 못한다.
- 예. 첫번째와 두번째 단어인 "What"과 "time"을 기억하고 있어야 "now"를 올바르게 예측할 수 있다. 하지만 RNN에서는 그래디언트 소실 현상 때문에 초반의 입력은 뒤로 갈수록 점점 손실된다.

LSTM(Long short-term memory)

- 기존 RNN을 훈련할 때 발생할 수 있는 그래디언트 소실 문제를 해결하기 위해 개발
- LSTM 유닛 : 셀, 입력 게이트, 출력 게이트, 삭제 게이트로 구성
- 셀은 임의의 시점에 대한 값을 기억하고 세 개의 게이트(입력 게이트, 망각 게이트, 출력 게이트)는 셀로 들어오고 나가는 정보의 흐름을 조 절한다.
- LSTM의 구조는 <u>표준 RNN</u>에 비하여 셀 상태를 나타내는 ci가 추가됨

게이트, 삭제, 저장, 업데이트, 출력 연산

Keras가 제공하는 순환신경망 클래스들

