BRCM01C

AC/DC Residual Current Monitor for Charging Equipment of Electric Vehicles

- DC 6mA (IEC 62955)
- Type A 30mA and DC 6mA (IEC 62752; IEC61008-1/IEC60947-2-(M) + IEC 62955)

- 12V DC interfaces facilitating compatible integration to EV charging controllers
- Two fault signal pins for solely DC 6mA and Type-A 30mA +DC 6mA alarming
- Cost-effective solution of built-in residual current device for AC EV charger
- Fast response time facilitating a broad selection of switching devices
- Compact design with 17mm through-hole for charging cable up to 3P+N 32A

Technical Specification

ш	Tank minal Consolition tion	DD0M010 10 H1
#	Technical Specification	BRCM01C-12-H1
101	Rated operating voltage in monitoring circuit	230/400VAC
102	Rated current in monitoring circuit	≤ 32A
103	Poles in monitoring circuit	1P+N / 3P+N
104	Frequency in monitoring circuit	50Hz
105	Rated impulse withstand voltage in monitoring circuit	6kV
106	Over-voltage category in monitoring circuit	III
201	Rated operating voltage in control circuit, Vcc	12VDC±20%
202	202 Power consumption	
203	203 Pin 1	
204	Pin 2	+12VDC
205	05 Pin 3	
206	Pin 4 DC f	
207	Pin 5	AC&DC fault signal
208	Pin 6	
301	Rated DC residual operating current I△dc	6mA
302	Rated DC residual non-operating current I△ndc	
303	Rated AC residual operating current I△n	
304	Rated AC residual non-operating current I△nc	
305	Electrical endurance 2	
306	Rated operating temperature	-40~85 ℃
307	Pollution degree	

Residual Current Detection Characteristics

Operating Current

#	Description	AC&DC	DC
		fault signal	fault signal
401	Operating current for smooth DC	4.0~6.0 mA	4.0~6.0 mA
402	Operating current for DC rectified from 2 phases	4.0~7.0 mA	4.0~7.0 mA
403	Operating current for DC rectified from 3 phases	4.0~6.2 mA	4.0~6.2 mA
404	Operating current for sinewave AC	22.0~28.0 mA	-
405	Operating current for A0 pulsating DC	10.5~42.0 mA	-
406	Operating current for A90 pulsating DC	7.5~42.0 mA	-
407	Operating current for A135 pulsating DC	3.3~42.0 mA	-

Operating Time

#	Description	AC&DC fault signal	DC fault signal
501	Response time for 6mA smooth DC residual current	≤ 500 ms	≤ 500 ms
502	Response time for 60mA smooth DC residual current	≤ 200 ms	≤ 200 ms
503	Response time for 200mA smooth DC residual current	≤ 70 ms	≤ 70 ms
504	Response time for 300mA smooth DC residual current	≤ 20 ms	-
505	Response time for 60mA DC rectified from 2 phases	≤ 200 ms	≤ 200 ms
506	Response time for 200mA DC rectified from 2 phases	≤ 70 ms	≤ 70 ms
507	Response time for 300mA DC rectified from 2 phases	≤ 20 ms	-
508	Response time for 60mA DC rectified from 3 phases	≤ 200 ms	≤ 200 ms
509	Response time for 200mA DC rectified from 3 phases	≤ 70 ms	≤ 70 ms
510	Response time for 300mA DC rectified from 3 phases	≤ 20 ms	-
511	Response time for 30mA AC residual current	≤ 80 ms	> 10000 ms
512	Response time for 60mA AC residual current	≤ 60 ms	> 300 ms
513	Response time for 150mA AC residual current	≤ 20 ms	> 80 ms
514	Response time for 5A AC residual current	≤ 20 ms	> 80 ms

Application Notes

Typical application diagram

BRCM01C 12V version

EV charging controller

Additional information

- Attention: A Mosfet is built in the 12V DC sensor to switch the connection to signal V- as normal using. The
 maximum switching current of the 12V DC sensor is 500mA.
- Attention: Pin 6 is only for internal use by the sensor. It shall be kept floating (not connected).

Self-test time chart

A self-test excluding offset calibration is activated if Pin 3 - Test is connected to a high level for a period of 40ms to 1000ms. t_1 is the response time for internally generated test current.

Offset calibration time chart

An offset calibration is activated if Pin 3 - Test is connected to a high level for a period of 4.5s± 5%. An offset calibration can be activated at regular intervals (such as startup) or after the occur of certain critical events (such as short circuit).

Attention: During the offset calibration, NO leakage current or any other current may flow through the sensor and the switching devices must be open. Also, the power supply voltage at Pin 2 Vcc must be stay at 12VDC ± 20%

Possible Output States

Status	PIN 4 Output (DC Trip)	PIN 5 Output (AC & DC Trip)	
Normal condition	GND	GND	
I _△ ≥ 6 mA DC	High impedance	High impedance	
I _△ ≥ 30 mA AC	GND ¹⁾	High impedance	
$I_{\triangle} \ge 30$ mA AC & $I_{\triangle} \ge 6$ mA DC	High impedance	High impedance	

A change from GND to High impedance is allowed, as long as such a change is compliant with IEC 62955.

Mechanical outline

BRCM01C-12-H1:

	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
BRCM01C-12-H1	GND	+12V DC	TEST	DC Trip	AC & DC Trip	NC

Ordering information

#	Order Number	Description
1	BRCM01C-12-H1	BRCM01C Residual Current Sensor 12V DC Interface, Hanging around main cable (Flexible) Type A 30 mA+DC6mA / DC6mA, 32A, 1P+N / 3P+N HY 2.0 -6 pin

Additional Notes

- Do NOT allow strong static electricity near the sensor, because static electricity can cause damage to the ICs inside the sensor. Take static electricity precautions when handling.
- Do NOT drop the sensor or apply any other mechanical stress to the sensor, as such stresses may change performance characteristics.
- Please place the sensor with an appropriate distance from components that can generate high magnetic fields, such as relays or contactors, to ensure accurate residual current detection.
- Please refer to the product standards of RCD/RDC-DD (Residual Current Device / Residual Direct Current Detection Device), when designing built-in RCD/RDC-DD for mode-2/3 Electric Vehicle Supply Equipment with the sensor.

The sensor is susceptible to be damaged from an ESD event and the personnel should be grounded when handling it.

Shanghai Bituo Electric Co.,Ltd.

8F, Building 6, Qianfan Rd. 288, Songjiang District, Shanghai 201600, China

www.bituo-technik.com

© Copyright 2023 Bituo Technik. All rights reserved.

Specifications and illustrations subject to change without notice.