A Book of Abstract Algebra (2nd Edition)

≡	Chapter 27, Problem 3EI	Bookmark	Show all steps: ON	57
Problem				
<	Let $a(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$. The <i>derivative</i> of $a(x)$ is the following polynomial $a'(x) \in F[x]$:			
	$a'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}$			
	(This is the same as the derivative of a polynomial in calculus.) We now prove the analogs of the formal rules of differentiation, familiar from calculus.			
	Let $a(x)$, $b(x) \in F[x]$, and let $k \in F$.			
	Prove part:			
	[ka(x)]' = ka'(x)			
Step-by-step solution				
Step 1 of 3 🔥				
	Consider the arbitrary field F and let $a(x) = a_0 + a_1 x + \cdots + a_n x^n \in F(x)$. The derivative of $a(x)$ will be given by			
	$a'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} \in F(x).$			
	Objective is to prove that			
	[ka(x)]' = ka'(x),			
	where $a(x), b(x) \in F[x]$ and $k \in F$. Use the formula:			
	[a(x)b(x)]' = a'(x)b(x) + a(x)b'(x)			
	[a(x)b(x)] = a(x)b(x) + a(x)b(x)			
	Comment			
	Step 2 of 3 ^			
	Consider the left hand side of $[ka(x)]' = ka'(x)$ and solve in the following manner:			
	[ka(x)]' = k'a(x) + ka'(x) $= 0 + ka'(x)$			
	=ka'(x).			
	Note that, differentiation of any constant or scalar is always zero.			
	Comment			
Step 3 of 3 ^				
	Hence, $[ka(x)]' = ka'(x)$.			
	Comment			

2 4 B