Network Models -Seminar-

Yasemin Aslan (Y.Aslan@sussex.ac.uk)

SPRU (Science Policy Research Unit) Business School University of Sussex

Week 8: 18 March 2022

Learning Outcomes

Learning outcome		Assessment mode
1	Explain the concept of network and list the main network indicators	ESS
2	Describe and apply the major techniques for the collection of network data and their sta- tistical analysis	ESS, GPN + GWS
3	Identify the main characteristics of networks by means of network measures	ESS,GPN+GWS
4	Employ network analysis techniques to produce network data-based infographics	GPN + GWS

Note: ESS: Essay; GPN: Group Presentation; GWS: Group Written Submission

Overview

- Modelling and inference of networks [recap]
- 2 Modelling and inference of networks in igraph

Modelling and inference of networks [recap]

Modelling and inference of networks [recap]

Mathematical models

Based on 'simple' probabilist rules to capture specific mechanisms

- ightharpoonup Random graph models assume $\mathbb{P}_{\theta}(G)$ to be a uniform distribution
 - * Erdós-Rényi random graph model * Bernoulli random graph model

 - * Generalised random graph models
- Models based on mechanisms mimic certain properties observed in the real world
 - * Small-worlds models
 - * Preferential attachment models

Statistical models

The observed network is considered as one of the possible realisation of a process

- ► Exponential Random Graph Models (ERGM): the presence/absence of a tie is the response variable that is dependent on endogenous and exogenous factors
- ► Stochastic Actor-Oriented Models (SAOM): The co-evolution of a network structure and attributes is modelled as a stochastic process
- ▶ Network Block Models model the propensity to establish a tie between two nodes as dependent on the 'class' membership of the two nodes

Modelling and inference of networks in igraph

Modelling and inference of networks in igraph

Model	igraph function
Mathematical models Erdós-Rényi Bernoulli Generalised Small-worlds Preferential attachment	erdos.renyi.game() erdos.renyi.game() degree.sequence.game() sample_smallworld() sample_pa()
Statistical models (not in this module) Exponential Random Graph Models (ERGM) Stochastic Actor-Oriented Models (SAOM) Network Block Models	'ermg' package 'RSiena' package 'blockmodels' package

Next time ...

Next time ...

- Lecture: Innovation networks
 - ▶ Use of network analysis to map science and technology
- Seminar: Innovation networks
 - ► Practice with VOSViewer