Inclusive jets in *p-Pb* and measuring Bjorken x distributions

Jeff Ouellette, CU Boulder 12/18/2017

Last Time

- . First look at inclusive jet p_ spectra
- · (Aggressive) trigger strategy implemented, but not all triggers were being used yet
 - → all triggers now acquired/ being used in analysis
 - \rightarrow trigger inefficiencies avoided (for now) by assuming 100% above p_T+10GeV
- First estimation of Bjorken x & x scaling factors from dijet production
 - → problems from last time due to typo in code, now fixed
- Goals were to implement more triggers into strategy, examine FCAL energy deposition

"All triggers" Inclusive p_T Spectrum $d^2\sigma/dp_Tdy$ [pb GeV⁻¹] 10⁶ 10⁵ $\sim -4.9 < \eta_{_{\rm R}} < -3.2 \ (\times 10^{-1.5}) \ \triangle \ 3.2 < \eta_{_{\rm R}} < 4.9 \ (\times 10^{-1.5})$ 10⁴ 10³ 10^2 10^{-2} Period A & B 2016 *p-Pb*, 161.8 nb⁻¹ 10^{-4} $\sqrt{s} = 8.16 \text{ TeV}$ 10^{2} $p_{\scriptscriptstyle +}^{\rm Jet}$ [GeV] → lingering trigger efficiency issues?

Jeff Ouellette

"All triggers" scheme

Simplified scheme - drops rerun, eta specific, and non-analysis triggers

"Simplified scheme" Inclusive p_T Spectrum $d^2\sigma/dp_Tdy$ [pb GeV⁻¹] ightharpoonup -1 < $\eta_{_{\rm R}}$ < 0 (×10^{1.5}) 10⁷ Λ 1 < $\eta_{\rm B}$ < 2 (×10^{0.5}) ightharpoonup -2 < $\eta_{\rm p}$ < -1 (×10^{0.5}) 10⁶ 10⁵ $\sim -4.9 < \eta_{_{\rm B}} < -3.2 \ (\times 10^{-1.5}) \ \triangle \ 3.2 < \eta_{_{\rm B}} < 4.9 \ (\times 10^{-1.5})$ 10⁴ 10³ 10^2 10^{-2} Period A & B 10^{-3} 2016 *p-Pb*, 161.8 nb⁻ 10^{-4} $\sqrt{s} = 8.16 \text{ TeV}$ 10³ 10^2 $p_{_{\scriptscriptstyle T}}^{\rm jet}$ [GeV]

Bjorken x's with "simplified" scheme

Fill by x_i weighted by leading jet trigger prescale/luminosity

Dijet condition: $\frac{p_T^{subleading}}{p_T^{leading}} \geq 0.7$

→ Excess in $3.2 < \eta < 4.9$ bin? Only present in period B

Jeff Ouellette

Xa

Current strategy:

- estimate trigger efficiencies with min bias data sets
- scale by lumicalc as opposed to prescale/lumi

Jeff Ouellette

 10^{-3}

 10^{-4}

 10^{-4}

Period A & B

 $z = d^2 N / L_{int} dx_a dx_p$

2016 *p-Pb*, 161.8 nb⁻¹, $\sqrt{s_{NN}^{avg}}$ = 8.16 TeV

10⁻²

 10^{-1}

 10^{-3}