

FIG. 1A

1 agggagagggc agtgaccatg aaggctgtgc tgcttgcctt gttgatggca
 51 ggcttggccc tgcagccagg cactgcctg ctgtgctact cctgcaaagc
 101 ccagggtgagc aacgaggact gcctgcaggt ggagaactgc acccagctgg
 151 gggagcagtg ctggaccgcg cgcatccgcg cagttggcct cctgaccgtc
 201 atcagcaaag gctgcagctt gaactgcgtg gatgactcac aggactacta
 251 cgtggcaag aagaacatca cgtgctgtga caccgacttg tgcaacgcca
 301 gcggggccca tgccctgcag ccggctgccc ccatccttgc gctgctccct
 351 gcactcggcc tgctgctctg gggacccggc cagctatagg ctctgggggg
 401 ccccgctgca gcccacactg ggtgtggtgc cccaggcctt tgtgccactc
 451 ctcacagaac ctggcccagt gggagcctgt cctggcctt gaggcacatc
 501 ctaacgcaag ttggaccatg tatgtttgca cccctttcc cnnaaccctg
 551 accttccat gggcctttc caggattccn accnggcaga tcagtttag
 601 tganacanat ccgcntgcag atggcccctc caaccnttn tggntggtt
 651 tccatggccc agatttcc acccttaacc ctgtgttcag gcactnttc
 701 ccccaggaag cttccctgc ccacccatt tatgaattga gccaggttg
 751 gtccgtggtg tccccgcac ccagcagggg acaggcaatc aggagggccc
 801 agtaaaggct gagatgaagt ggactgagta gaactggagg acaagagttg
 851 acgtgagttc ctggagttt ccagagatgg ggcctggagg cctggaggaa
 901 ggggcccaggc ctcacatttg tgggntccc gaatggcagc ctgagcacag
 951 cgtaggccct taataaacac ctgttggata agccaaaaaa aaaaaaaa

FIG. 1B

MKAVLLALLMAGLALQPGTALLCYSCKAQVSNECLQV
 ENCTQLGEQCWTARIRAVGLTVISKGCSLNCVDDS
 QDYYVGKKNITCCDTDLNASGAHALQPAAAILALLPAL
 GLLLWGPQQL

FIG. 2

ATGAAGACAGTTTTTATCCTGCTGGCCACCTACTTAGCCCTGCATCCAGGTGCTGCT
 1 -----+-----+-----+-----+-----+-----+-----+ 60
 TACTTCTGTCAAAAAAAATAGGACGACCGGTGGATGAATGGGACGTAGGTCCACGACGA
 M K T V F F I L L A T Y L A L H P G A A
 CTGCAGTGCTATTATGCACAGCACAGATGAACAAACAGAGACTGTCTGAATGTACAGAAC
 61 -----+-----+-----+-----+-----+-----+-----+ 120
 GACGTCACGATAAGTACGTGTCGTCTACTTGTGTCTGACAGACTTACATGTCTTG
 L Q C Y S C T A Q M N N R D C L N V Q N
 TGCAGCCTGGACCAGCACAGTTGCTTACATCGGCATCCGGGCCATTGGACTCGTGACA
 121 -----+-----+-----+-----+-----+-----+-----+ 180
 ACGTCGGACCTGGTCGTCAACGAAATGTAGCGCGTAGGCCCGTAACCTGAGCACTGT
 C S L D Q H S C F T S R I R A I G L V T
 GTTATCAGTAAGGGCTGCAGCTCACAGTGTGAGGATGACTCGGAGAACTACTATTTGGC
 181 -----+-----+-----+-----+-----+-----+-----+ 240
 CAATAGTCATTCCGACGTCGAGTGTACACTCCTACTGAGCCTCTTGATGATAAACCG
 V I S K G C S S Q C E D D S E N Y Y L G
 AAGAAGAACATCACGTGCTGCTACTCTGACCTGTGCAATGTCAACGGGGCCACACCTG
 241 -----+-----+-----+-----+-----+-----+-----+ 300
 TTCTTCTTGTAGTGCACGACGATGAGACTGGACACGTTACAGTTGCCCCGGGTGGGAC
 K K N I T C C Y S D L C N V N G A H T L
 AAGCCACCCACCACCCCTGGGGCTGCTGACCGTGCTCTGCAGCCTGTTGCTGTGGGCTCC
 301 -----+-----+-----+-----+-----+-----+-----+ 360
 TTGGTGGTGGTGGGACCCCGACGACTGGCACGAGACGTCGGACAACGACACCCCGAGG
 K P P T T L G L L T V L C S L L L W G S
 AGCCGTCTGTAGGCTCTGGGAGAGCCCTACCATAGCCGATTGTGAAGGGATGAGCTGCAC
 361 -----+-----+-----+-----+-----+-----+-----+ 420
 TCAGACATCCGAGACCCCTCTGGATGGTATGGCTAACACTTCCCTACTGACGTG
 S R L *

TCCACCCACCCCCACACAGG
 421 -----+-----+-----+ 441
 AGGTGGGGTGGGGGTGTGTC

FIG. 3

1	M K I F L P V L L A A L L G V E R A S S	hSCA-2
1	M K A V V L L A L L M A G L A L Q P G T A	hPSCA
1	M K T V L F L L L A T Y L A L H P G A A	mPSCA
21	L M C F S C L N Q K S N * L Y C L K P T I	
21	E L C Y S C K A Q V S N E D C L Q V E N *	
21	L Q C Y S C T A Q M N N * R D C L N V Q N *	
41	C S D Q D N Y C V T V S A S A G I G N L	
41	C T Q L G E Q C W T A R I R A V G L L T	
41	C S L D Q H S C F T S R I R A I G L V T	
61	V T F G H S L S K T C S P A C P I P E G	
61	V - - - - I S K G C S L N C V D D S Q	
61	V - - - - I S K G C S S Q C E D D S E	
81	V' N V G V A S M G I S C C Q S F L C N * F	
76	D Y Y V G K K - N * I T C C D T D L C N * A	
76	N Y Y L G K K - N * I T C C Y S D L C N * V	
101	S A A D G G L R A S V T L L G A G L L L	
95	S G A H A L Q P A A A I L L A L L P A L G	
95	N G A H T L K P P T T L G L E T V L C S	
121	S L L P A L L R F G P	
115	L L L W G P G Q L - -	
115	L L L W G S S R L - -	

FIG. 4

FIG. 5

CPI
SIGNALSIGNAL
SEQUENCE= glycosylation
SITE

S. INTESTINE

TESTIS

KIDNEY

KIDNEY

BLADDER CARCINOMA

BLADDER

BLADDER

PROSTATE

PROSTATE

PROSTATE

FIG. 6

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 9A

1kb
~

PANCREAS
KIDNEY
SKELETAL MUSCLE
LIVER
LUNG
PLACENTA
BRAIN
HEART

PERIPHERAL LEUKOCYTES
COLON
SMALL INTESTINE
OVARY
TESTIS
PROSTATE
THYMUS
SPLEEN

PSCA

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 13

FIG. 14A

FIG. 14B

FIG. 14C

EPITOPE MAP

mAb	ISO TYPE	FL (18-98)	N (2-50)	M (46-109)	C (85-123)
1G8	IgG1 k	2.039	0.007	0.628	0.000
2H9	IgG1 k	1.318	0.863	0.032	0.021
3C5	IgG2a k	2.893	1.965	0.016	0.005
3E6	IgG3 k	0.328	0.024	0.069	0.370
4A10	IgG2a k	2.039	1.315	0.000	0.014
2A2	IgG2a k	1.366	0.733	0.010	0.003
3G3	IgG2a k	2.805	1.731	0.004	0.000

15A

FIG.

15B

FIG.

PROSTATE STEM CELL ANTIGEN (PSCA) IS A GPI-ANCHORED PROTEIN

1	W K I F T L P V L L A A L E G V E R A S S	hSCA-2
1	W K A Y E L A T M A G C A L Q P C T A	hPSCA
1	W K T Y E F L L A T Y E A T H P G A A	mPSCA
21	E M G F S C L N Q K S N * L Y C E K P T I	
21	E L C Y S C K A Q V S N * E D C F Q Y E N	
21	E S C L Q S C T A Q M N N R D C F N Y Q	
41	G S D Q D N Y C V E V S A S A G I G N L	
41	G T Q L G E Q C W T A R A V C L L T	
41	G S L D Q H S C F I S R A I G L V	
61	V T F G H S L S K T C S P A C P I P E G	
61	V Y - - - - S X C S L N C V D D S Q	
61	V Y - - - - S X C S S Q G E D D S E	
81	V N V G V A S M G D S C C Q S F E C N F	
76	D Y Y V K K - N T C C D T D E C N A	
76	N Y Y L G K K - N T C C Y S D E C N V	
101	S A A D G G L R A S V T T L G A C L	
95	S G A H A Q D A A I A L P A L G	
95	N G A H T K P T T L G L T V L C S	
121	S E I P A L L R F G P	
115	N E I W G P G Q - - -	
115	N E I W G S S R C S	

FIG. 16A

PROSTATE STEM CELL ANTIGEN (PSCA) IS A GPI-ANCHORED PROTEIN

FIG. 16B

FIG. 17

FISH ANALYSIS OF PSCA AND c-myc IN PROSTATE CANCER

GAIN CHROMOSOME 8

#34 c-myc

AMPLIFICATION

#75 c-myc

#34 PSCA

#75 PSCA

FIG. 18

FIG. 19

FIG. 20

FIG. 21

PSCA IMMUNOSTAINING OF PRIMARY TUMORS

patient 1:mAb 1G8

patient 2:mAb 1G8

patient 3:mAb 1G8

patient 4:mAb 3E6

FIG. 22

FIG. 23

FIG. 24

FIG. 25

PSCA NORTHERN

FIG. 26

FIG. 27

PSCA IMMUNOSTAINING OF BONY METASTASES

Patient 5: H and E
and mAb 1G8

Patient 4: H and E
and mAb 3E6

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

PSCA EXPRESSION IN LAPC-9 XENOGRAFT BY FACS

FIG. 34

FIG. 35

IMMUNOFLUORESCENT STAINING OF LNCaP-PSCA CELLS

1G8

3E6

4A10

3C5

FIG. 36

FIG. 37

IMMUNOHISTOCHEMICAL STAINING OF NORMAL PROSTATE

NORMAL: ISOTYPE CONTROL

NORMAL: PSCA mAb 3E6

NORMAL: PSCA mAb 1G8

ATROPHY: PSCA mAb 2H9

FIG. 38

FIG. 39A

BLADDER: 1G8

COLON: 1G8

KIDNEY: 3E6

PLACENTA: 3E6

PROSTATE

PROSTATE

PROSTATE

KIDNEY

KIDNEY

KIDNEY

BLADDER

BLADDER

BLADDER

LAPC 9

PSCA

ACTIN

FIG. 39B

FIG. 40A

FIG. 40B

TRANSGENIC MOUSE MODELS OF PROSTATE CANCER

FIG. 41

TRANSGENE	TARGET TISSUES	CHARACTERISTICS
C3(1) (-3 kb)/ SV40 LARGE+SMALL, T MAROULAKOU et al. 1994 PNAS	PROSTATE (SECRETORY CELLS) URETHRAL, MAMMARY AND SWEAT GLAND	LOW-GRADE PIN 8-12 WKS HIGH-GRADE PIN 8-12 WKS INVASIVE CARCINOMA 28 WKS NO METASTASES
PROBASIN (-426 bp)/ SV40 LARGE+SMALL, T GREENBERG et al. 1995 PNAS	PROSTATE (SECRETORY CELLS)	LOW-GRADE PIN 5-8 WKS HIGH-GRADE PIN 8-12 WKS INVASIVE CARCINOMA 12 WKS METASTASES IN LYMPH NODE, LUNG, LIVER AND BONE
CRYPTDIN2 (-6.5 kb)/ SV40 LARGE+SMALL, T GARABEDIAN et al. 1998 PNAS	PROSTATE (NEUROENDOCRINE CELLS) SMALL INTESTINE	LOW-GRADE PIN 8-12 WKS HIGH-GRADE PIN 8-12 WKS INVASIVE CARCINOMA 16 WKS METASTASES IN LYMPH NODE, LUNG, LIVER, AND BONE

REPORTER GENE CONSTRUCTS FOR TRANSFECTION ASSAY

FIG. 42

FIG. 43

IDENTIFICATION OF PROSTATE-SPECIFIC ELEMENTS
WITHIN PSCA PROMOTER SEQUENCES

FIG. 44

FIG. 45

UPDATE OF TRANSGENIC MOUSE PROJECTS

FIG. 46

FIG. 47

FIG. 48

AEpitope recognized (OD 450 nm)

<u>mAb</u>	<u>Isotype</u>	<u>F(18.98)</u>	<u>N(2-50)</u>	<u>M(46.109)</u>	<u>C(85.123)</u>
1G8	lgG1 K	1.485	0.004	1.273	0.003
2A2	lgG2a K	0.973	0.631	0.023	0.010
2H9	lgG1 K	1.069	1.026	0.002	0.001
3C5	lgG2a K	1.916	1.709	0.006	0.002
3E6	lgG3 K	1.609	0.036	1.133	2.118
3G3	lgG2a K	2.805	1.731	0.004	0.000
4A10	lgG2a K	1.053	0.493	0.000	0.001

B

FIG. 50

A

Engineered mammalian secreted form

B

Anti-IgG2a HRP

Anti-PSCA mAbs 3C5+4A10+2A2 (IgG2a)

PSCA

Affinity purified anti-peptide polyclonal
+ mAb 1G8 (IgG1)

FIG. 51

A

B

Sample	OD+range (n=2)	ng/ml
vector	0.005+0.001	ND
vector+hu serum	0.004+0.001	ND
secPSCA	2.695+0.031	32.92
secPSCA+hu serum	2.187+0.029	26.55

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

TGCTTCTTCTGTGAGCTGGTATAGGAGTCATTAGGAGTCAGAGGTCAGCTGCAGCAGTCT
C F L M A V V I G V N S E V L Q Q S 20 60

GGGGCAGAAGCTTGTGAGGTCAAGGGGCCTCAGTCAGTTGTCCTGCACAGCTTCTGGCTTC
G A E L V R S G A S V K L S C T A S G F 40 120

AACATTAAAGACTATATACTGGGTGAATCAGAGGCCCTGACCAGGGCTGGAGTGG CDR1

N I K D Y Y I H W V N Q R P D Q G L E W 60 180

ATTGGATGGATTGATCCTGAGAATGGTGGACACTGAATTGTCGGAAAGTTCAGGGCAAG CDR2

I G W I D P E N G D T E F V P K F Q G K 80 240

GCCACTATGAGACATTCTCCAAACACAGCCTACCTGACCTCAGGCCTGACA
A T M T A D I F S N T A Y L H L S S L T 100 300

TCTGAAGACACTGCCGTCTATTACTGTAAACGGGAACTGCTGGGGTCTGGGGCAAGGGACTCTG CDR3

S E D T A V Y Y C K T G G F W G Q G T L 120 360

GTCACTGTCTCTGCAGCCAAACGACACCCCCATCTGTCTATCCACTG
V T V S A A K T T P P S V Y P L

090554 42 100901

FIG. 59

TTGGTAGCAAACAGCCTCAGATGTCCACTCCAGGTCCAACCTGGGTCTGAA
L V A T A S D V H S Q V Q 'L Q Q P G S E 60
20

CTGGTGAGGCTGGAACTTCAGTGAAGCTGTCTGCAAGGCTTCTGGCTATACATTCTCC 120
L V R P G T S V K L S C K A S G Y T F S 40
[CDR1]

AGGCTACTGGATGCACTGGGTGAAGCAGGGCCTGGACAAGGCCTTGAGTGGATTGAAAT 180
S Y W M H W V K Q R P G Q G L E W I G N 60

ATTGACCCCTGGTAGTGGTTACACTAACTACGCTGAGAACCTCAAGGCCACACTG 240
 I D P G S G Y T N Y A E N L K T K A T L 80
 CDR2

ACTGTAGACACATCCTCCAGCACAGCCTACATGGCTCAGCAGCCTGACATCTGAGGAC 300
 T V D T S S S T A Y M Q L S S L T S E D 100

TCAGTCTATTACTGTACAAGCCGATCTACTATGATTACGACGGGATTGCTTACTGG
 S A V Y Y C T S R S T M I T T G F A Y W 120
 CDR3

GGCCAAGGGACTCTGGTCACTGTCCTGAGCTACAAACAGCCCCATCTGGTCTATCCA 420
G Q G T L V T V S A A T T A P S V Y P 160

TGGCC

FIG. 60

092666 6 1000901

AAAGACTTCGGGTTGAGCTGGGTTTATTATTGTTCTTTAAAGGGGTCCGGAGTGAA 60
N D F G L S W V F I I V L L K G V R S E 20

GTGAGGCTTGAGGAGTCTGGAGGGCTGGTGCACGTGGAGGATCCATGAAACTCTCC 120
V R L E E S G G W V Q P G G S M K L S 40

TGTGTAGCCTCTGGATTACTTTCAAGTAATTACTGGATGACTTGGTCCGCCAGTCTCC 180
C V A S G F T F S N Y W M T W V R Q S P 60
CDR1

GAGAAGGGGCTTGAGTGGTTGCTGAAATTGAGATTGAAATTATGAAACACAT 240
E K G L E W V A E I R L R S E N Y A T H 80
CDR2

TATGGGAGGTCTGTGAAAGGGAAATTCAACCATTCAAGAGATGATTCCAGAAGTCGTCTC 300
Y A E S V K F T I S R D D S R S R L 100

TACCTGCAAAATGAACAACTTAAGACACTGAAGACAGTGGAAATTACTGTACAGATGGT 360
Y L Q M N N L R P E D S G I Y Y C T D G 120
L G R P N W G Q G T L V T V S A A K T T 140

CTGGGACGACCTAACCTGGGGCCAAGGGACTCTGGTCACTGTCTCTGGCAGCCAAACGACA 420
L G R P N W G Q G T L V T V S A A K T T 140
CDR3

CCCCCATCTGTCTATCCACTGGGCCCTGTGTA
P P S V Y P L A P C V

FIG. 61

CDR1 Comparisons

1G8	lgG _{1k}	Middle	G	F	N	I	K	D	Y	Y	I	H
2H9	lgG _{1k}	N-Term.	G	F	T	F	S	N	Y	W	M	T
4A10	lgG _{2ak}	N-Term.	G	Y	T	F	S	S	Y	W	M	H

CDR2 Comparisons

1G8	lgG _{1k}	W	I	D	P	E	N	G	D	T	E	F	V	P	K	F	Q	G		
2H9	lgG _{1k}	E	I	R	L	R	S	E	N	Y	A	T	H	Y	A	E	S	V	K	G
4A10	lgG _{2ak}	N	I	D	P	G	S	G	Y	T	N			Y	A	E	N	L	K	T

CDR3 Comparisons

1G8	lgG _{1k}	G	G	F															
2H9	lgG _{1k}	L	G	R	P	N													
4A10	lgG _{2ak}	R	S	T	M	I	T	T	G	F	A	Y							

FIG. 62

A

B

C

D

FIG. 63

1. Prostate	6. PANC-1
2. LAPC-4 AD	7. BxPC-3
3. LAPC-4 AI	8. HPAC
4. LAPC-9 AD	9. Capan-1
5. LAPC-9 AI	

FIG. 64

1. LAPC-4 AD

2. LAPC-9 AI

3. LNCaP

4. LNCaP-PSCA

5. HPAC

6. Capan-1

7. ASPC-1

FIG. 65

FIG. 66

A)

B)

FIG. 67

A)

B)

FIG. 68

A)

B)

FIG. 69

A)

B)

FIG. 70

FIG. 71

**PSCA 3C5 MAb Localizes within
LAPC9AD Xenograft Tissue**

3C5 Treated

mIgG Treated

3C5 Anti-PSCA Mab is Localized to Established LAPC-9 Tumors

Treated Tumors

Western blot developed with α -mIgG/k

FIG. 72

**SPECIFIC TARGETING OF THE 1G8 ANTI-PSCA MAb
TO ESTABLISHED LAPC-9 TUMORS**

Method: Mice bearing established LAPC-9 tumors ($>100 \text{ mm}^3$) were injected with either mIgG or the anti-PSCA MAb 1G8. Tumors were harvested a week later and made into protein lysates for Western analysis.

FIG. 73