1. 实验名称及目的

双旋翼垂尾模型代码生成及软硬件在环仿真: 通过该例程熟悉双旋翼垂尾模型的使用 以及软硬件在环仿真步骤。

2. 实验原理

电机模块设置

机架配置

机架文件是一种用于描述模型物理结构和控制分配的脚本文件,每个机架文件都有一个唯一的 ID,对应 QGC 中的参数 SYS_AUTOSTART,双旋翼垂尾模型的机架配置在\PX4PSP\Firmware\ROMFS\px4fmu_common\init.d\airframes\ 13001_caipirinha_vtol 中定义如下:

. \${R}etc/init.d/rc.vtol_defaults

执行 rc.vtol_defaults 脚本,它包含了垂起模型的默认参数设置,可以用来设置一些基本的系统参数

set PWM_OUT 123456

设置 PWM 输出为 123456 指定 1~6号 PWM 通道是活跃的。

set MIXER vtol_tailsitter_duo

设置了混控器配置为 vtol_tailsitter_duo(双旋翼垂尾飞机特定的)。具体混控文件可参考 \PX4PSP\Firmware\ROMFS\px4fmu_common\mixers\vtol_tailsitter_duo.main.mix, 其混控逻辑

$$\left[egin{array}{ccccccc} 0 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & -1 & 0 & 0 \ \end{array}
ight]$$

输出通道1(右电机)等于-1倍的油门输入

输出通道2(左电机)等于1倍的油门输入

输出通道3和4没有任何输入,始终为0

输出通道5(右升降舵)等于1倍的滚转输入加上1倍的俯仰输入

输出通道6(左升降舵)等于1倍的滚转输入减去1倍的俯仰输入

3. 实验效果

能生成双旋翼垂尾的 DLL 模型; 软硬件在环仿真时支持 QGC 航线任务,包括旋翼起飞、固定翼前飞、盘旋和旋翼降落。

4. 文件目录

文件夹/文件名称	说明	
tailsitter_duo.slx	双旋翼垂尾模型源程序。	
tailsitter_duo_HITL.bat	双旋翼垂尾模型硬件在环仿真启动脚本。	
tailsitter_duo_SITL.bat	双旋翼垂尾模型软件在环仿真启动脚本。	
GenerateModelDLLFile.p	DLL 格式转化文件。	
tailsitter_duo_init.m	双旋翼垂尾模型参数初始化文件。	
MavLinkStruct.mat	MavLink 数据结构体 mat 文件	
FSV900	双旋翼垂尾三维模型文件	

5. 运行环境

序号	软件要求	硬件要求		
177	软件安水	名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台最新版	Pixhawk 6c 飞控 ²	1	
3	MATLAB 2017B 及以上 [®]	数据线	1	

- ① 推荐配置请见: https://doc.rflysim.com
- ② 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配 套飞控请见: http://doc.rflysim.com/hardware.html

6. 实验步骤

6.1. 添加双旋翼垂尾三维模型

Step 1:

将 "FSV900"整个文件夹复制到 "C:\PX4PSP\RflySim3D\RflySim3D\Content"(此时平台安装在 C 盘, 若平台安装在其他盘, 如 D 盘, 则为 D:\PX4PSP**) 路径下。

E C m, A I D A K E A I L m,	л Б ш, 7177 Б	.uzunsi ()	1 11 10
名称	修改日期	类型	大小
₩ 硬件在环调试.docx	2023/11/2 14:13	Microsoft Word	35,861 KB
◎ 软件在环录屏.mkv	2023/11/1 16:41	MKV 文件	315,415 KB
tailsitter_duo_SITL.bat	2023/11/1 16:30	Windows 批处理	6 KB
ailsitter_duo_init.m	2023/11/2 14:12	Objective C 源文件	11 KB
tailsitter_duo_HITL.bat	2023/11/1 16:58	Windows 批处理	6 KB
ailsitter_duo.slx	2023/11/1 16:31	Simulink Model	261 KB
tailsitter_duo.dll	2023/11/1 16:32	应用程序扩展	286 KB
RflySimModelLab.slx	2023/5/22 16:53	Simulink Model	85 KB
readme.docx	2023/10/27 16:58	Microsoft Word	14,476 KB
Multicopter Model. zip	2023/11/1 16:31	压缩(zipped)文件	207 KB
MavLinkStruct.mat	2022/5/9 10:27	MATLAB Data	5 KB
Generate Model DLL File.p	2023/10/5 11:51	MATLAB.p.9.14.0	6 KB
FSV900	2023/11/2 14:14	文件夹	

Step 2:

打开桌面 RflyTools 中的 RflySim3D 软件。

双击 RflySim3D 地图中的地面。

Step 3:

按下"O+201",如果能看到图中模型,则双旋翼垂尾三维模型导入成功。(201 为 uavtype)。

6.2. DLL 模型生成

Step 1:

在 Matlab 中打开"tailsitter_duo.slx"Simulink 文件,点击 Build Model 按钮生成代码。

Step 2:

代码生成完毕后,在 matlab 中右键"GenerateModelDLLFile.p"文件,点击运行,生成 DLL 文件。

6.3. 软件在环仿真

Step 1:

以管理员身份运行"tailsitter_duo_SITL.bat"批处理文件,在弹出的终端窗口中输入 1, 启动 1 架双旋翼垂尾的软件在环仿真。

Step 2:

等待平台完成初始化。

Step 3:

在 QGC 中上传航线:

1) 点击 QGC 左上角的 "Plan"。

2) 点击"空",选择一个空的计划。

3) 点击"起飞"。

4) 点击"航点",在地图上随意添加几处航点;再点击"着陆",在右侧选择"设置为飞机位置";最后点击"上传任务"。

此时表明航线上传成功。

Step 4:

滑动滑块来解锁飞机并开始当前航线任务。

Step 5:

可看到飞机先以旋翼模式起飞。

飞到指定高度后, 切换为固定翼模式, 并按航点飞行。

到达目标点后,以旋翼模式降落。

航线任务执行完成。

6.4. 硬件在环仿真

Step 1:

按下图所示将飞控与计算机连接。

Step 2:

烧录 1.13.3 固件后,点击"机架",设置机架类型为 Caipiroshka Duo Tailsitter,点击右上角的"应用并重启"。

点击"安全",设置为"HITL enabled"

点击"参数", 搜索 UAVCAN_ENABLE, 设置为"Disabled", 重新插拔飞控。

Step 3:

右键以管理员身份运行"tailsitter duo HITL.bat",在提示框中输入飞控端口号后回车。

Step 4:

QGC 左上角显示"Ready To Fly", 并且 CopterSim 左下角显示"GPS 3D fixed &EKF initialization finished"时,表明初始化完成,可以开始硬件在环仿真。

Step 5:

参照软件在环 Step 3, 上传航线后解锁执行任务, 仿真效果和软件在环一致。

7. 参考资料

- [1]. DLL/SO 模型与通信接口..\..\.API.pdf
- [2]. 外部控制接口......API.pdf

8. 常见问题

Q1.