LinkedList - 2

TABLE OF CONTENTS

- 1. Revision
- 2. Middle point in Linked-list
- 3. Merge two sorted Linked-list
- 4. Merge sort in Linked-list
- 5. Check if there is a loop in Linked-list
- 6. Find the start point of the Loop

Middle of a Linked-list

Sol 1 → i) Fird length of linked list (N). →
$$O(N)$$

3) Travel half length (N/2). → $O(N/2)$
 $TC = O(N)$ $SC = O(1)$

Sachier (200 Km/h)

f = f. next. next

I return s

$$TC = O(N/2) = O(N) \qquad SC = O(1)$$

Merge Two Sorted Linked-list

$$n1 \longrightarrow 2 \longrightarrow 6 \longrightarrow 10 \longrightarrow 14 \longrightarrow 19 [N]$$

$$n2 \longrightarrow \boxed{3} \longrightarrow \boxed{5} \longrightarrow \boxed{9} \longrightarrow \boxed{11} [M]$$

Head
$$2 \longrightarrow 3 \longrightarrow 5 \longrightarrow 6 \longrightarrow 9 \longrightarrow 10 \longrightarrow 11 \longrightarrow 14 \longrightarrow 19 \longrightarrow null$$

$$H2 \rightarrow 5 \rightarrow 12 \rightarrow 15 \rightarrow rul$$

Merge Sort a Linked-list

- 1. Find the middle node
- 2. Make recursive calls to sort 1st half and 2nd half
- 3. Finally, merge two sorted linked-list

	Node sort (Head) { if (Head == null Head. next == null)
	return Head
	mid = fird Middle (Head) → TC = O(N)
	H2 = mid. next
	mid o next = null
	HI = sort (Head)
	H2 = Sout (H2)
	return merge Sorted Lists (HI, H2) → TC = O/N)
•	7

Scenerio

You are using **Google Maps** to help you find your way around a new place. But, you get lost and end up walking in a circle. **Google Maps** has a way to keep track of where you've been with the help of special **sensors**.

These sensors notice that you're **walking in a loop**, and now, **Google** wants to create a new feature to help you figure out exactly where you started going in circles.

Problem

You have a **linked list** that shows each **step** of your **journey**, like a chain of events. Some of these steps have accidentally led you back to a place you've already been, making you **walk in a loop**. The goal is to find out the exact point where you first started walking in this loop.

Check if there is a loop

Ans = false

sol 1 → Use hashset to check already visited node. ~

If two people are running with different speeds on a circular track, they will 100% meet at some point.

if (Head == null) return false

$$S = f = Head$$

while (f!= null && f. next!= null) {

 $S = S. next$
 $f = f. next. next$

if (S == f) return tree

TC = O(N) SC = O(1)

Head

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$

Find the start point of the loop

Slow = x + y

$$fast = x + y + 3 + y = x + y + 3 + y = x + y + x + y$$

$$\Rightarrow 3 = x$$

Χ

3

$$p2 = S$$

3

$$TC = O(N) \qquad SC = O(1)$$

