Teoría de las Comunicaciones

Claudio Enrique Righetti

Segundo Cuatrimestre del 2014

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina

Teoría de la Información y Codificación

Codificación

Consideremos un código instantáneo con un alfabeto fuente

$$S = \{s_1, s_2, ..., s_q\}$$

y un alfabeto código $X = \{x_1, x_2, ..., x_r\}$. Sean $X_1, X_2, ..., X_q$ las palabras del código y, por definición, l_i la longitud (es decir, el número de símbolos del código) de la palabra X_i . Normalmente es interesante que las longitudes de las palabras del código sean lo más cortas posible. La condición necesaria y suficiente para que exista un código instantáneo con palabras de longitud $l_1, l_2, ..., l_q$, viene definida por la inecuación de Kraft (Kraft, 1949).

La condición necesaria y suficiente para la existencia de un código instantáneo de longitudes $l_1, l_2, ..., l_q$ es que

$$\sum_{i=1}^q r^{-i_i} \leq 1$$

donde r es el número de símbolos diferentes que constituyen el alfabeto código.

En el caso de alfabeto binario, la inecuación de Kraft se transforma en

$$\sum_{i=1}^{b} 2^{-i} \le 1 \tag{3-3}$$

donde la suma se extiende a todas las palabras del código bloque. Antes de probar esta inecuación, es interesante ver en qué forma puede

Codificación

- Establecer una correspondencia entre los símbolos de una fuente y los símbolos del alfabeto de un código.
- Proceso mediante el cual también podemos lograr una representación más eficiente de la información (eliminar redundancia).

Codificación: condiciones

- Bloque
- Singular
- Separable (unívocamente decodificable)

Condición de los prefijos

- La condición necesaria y suficiente para que un código sea instantáneo es que sus palabras cumplan la condición de los prefijos:
- No exista palabra que sea prefijo de otra palabra de longitud mayor.

Códigos eficientes

- Asignar palabras más cortas a símbolos más probables
 - I i longitud de la palabra codificada del mensaje m i
 - r:# de símbolos del alfabeto del código
 - L = ∑ p_i I_i : Longitud media de un código
 L log r ≥ H(s)
- log r : Cantidad promedio máxima de información de un símbolo del código.
- h = H(S) / (L log r) Eficiencia

Si exigimos que el código sea instantáneo, la inecuación de Kraft impone que el argumento del segundo logaritmo del segundo miembro de (4-6) sea igual o menor que la unidad. Por lo tanto, su logaritmo deberá ser igual o menor que cero, y

$$H(S) \le L \log r \tag{4-7a}$$

o bien

$$\frac{H(S)}{\log r} \le L \tag{4-7b}$$

H(S) viene medida en bits en la ecuación (4-7b). Recordemos que L es el número medio de símbolos utilizados para codificar S. Expresando la entropía asimismo en unidades r-arias, como en (2-5c), la relación (4-7b) podría escribirse en la forma

$$H_{r}(S) \le L \tag{4-7c}$$

Ejemplo 2-1. Consideremos la fuente $S = \{s_1, s_2, s_3\}$ con $P(s_1) = 1/2$ y $P(s_2) = P(s_3) = 1/4$. Entonces

$$H(S) = 1/2 \log 2 + 1/4 \log 4 + 1/4 \log 4$$

= 3/2 bits

Si medimos $I(s_i)$ en unidades de orden r, H(S) vendrá dada en la misma unidad, y tendremos

$$H_r(S) = \sum_{s} P(s_i) \log_r \frac{1}{P(s_i)}$$
 unidades de orden r (2-5b)

De la ecuación (2-2) se deduce

$$H_r(S) = \frac{H(S)_r}{\log r}$$
 (2-5c)

$$\log_a x = \frac{1}{\log_b a} \log_b x \tag{2-2}$$

Codificador óptimo

Nos falta encontrar el segundo término pendiente en la definición de cantidad de información: codificador óptimo.

Introduciendo el signo negativo dentro del logaritmo en la expresión de la entropía, ésta nos quedará como:

$$H(X) = \sum_{i} p(x) \log_{2} [I/p(x)]$$

La expresión log_2 [I/p(x)] representa el número necesario de bits para codificar el mensaje X en un codificador óptimo.

Codificador óptimo es aquel que para codificar un mensaje X usa el menor número posible de bits.

Codificación de Huffman

Mensaje: MI MAMA ME MIMA

Mensaje: 1 0010 01 1 000 1 000 01 1 0011 01 1 0010 1 000 (33 bits)

Pregunta: ¿Con cuántos bits se codificaría si se usara ASCII? Saque conclusiones.

Nivel Físico

Fundamentos

Agenda

- Medios de Transmisión : guiados y no guiados
- ▶ En el dominio de la frecuencia -Fourier
- La red telefónica
- Conversión analógica digital
- Modulación (Modulación Digital / Portadora Analógica)
- Codificación ("Modulación Digital/ Portadora Digital")

Para "conectarnos": Medios de transmisión

Los medios de transmisión

Guiados y no guiados

Medios de transmisión por guía de onda

- Par trenzado.
- Coaxial.
- Red Eléctrica (Power Line)
- Fibra óptica.
- Fibra óptica plástica multimodo

Par de cobre

Cable coaxial

Fig. 2-3. A coaxial cable.

Coaxil: Redes CATV tradicionales

- Las redes CATV (Community Antenna TeleVision) nacieron (1949) para resolver problemas de recepción en zonas de mala cobertura.
- La antena (centro emisor) se ubicaba en sitio elevado con buena recepción. La señal se enviaba a los usuarios hacia abajo (downstream).
- \triangleright Cable coaxial de 75 Ω
- ▶ Amplificadores cada 0,5-1,0 Km. Hasta 50 en cascada.
- Red unidireccional. Amplificadores impedían transmisión ascendente.

Fibra Óptica

La función principal de las fibras ópticas (FO) es la de guiar las ondas de luz con un mínimo de atenuación y distorsión. Las FO están compuestas de vidrio solidificado con un alto grado de pureza en capas llamadas núcleo (core), revestimiento (cladding) y Buffer o cubierta. La luz se propaga únicamente por el núcleo con una velocidad de propagación de aproximadamente hasta dos tercios de la velocidad de la luz en el vacío.

245µm | 125µm | 8~9µm

Fibra óptica: Reflexión

Fig. 2-5. (a) Three examples of a light ray from inside a silicatiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.

Multiplexación por Longitud de Onda (WDM)

La capacidad de una fibra óptica (FO) se puede incrementar transmitiendo diversas longitudes de onda en una única fibra. Esta técnica bien conocida de *Multiplexación por división de frecuencia*, FDM (*Frequency Division Multiplexing*), se denomina en los sistemas ópticos Multiplexación por División de Longitud de Onda o simplemente Multiplexación por Longitud de Onda (Wavelenght Division Multiplexing).

Medios de transmisión sin guía de onda (wireless)

El espectro electromagnético

- Transmisión por radio.
- Transmisión por microondas.
- Transmisión por ondas infrarrojas.
- Transmisión por láser.

El espectro electromagnético

Radio

Fig. 2-12. (a) In the VLF, VF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF they bounce off the ionosphere.

Láser

munication systems. A bidirectional system, with two lasers, is pictured here.

Red Telefónica

Fundamentos de las red de telefonía fija por conmutación de circuitos

Estructura del sistema telefónico

- PSTN (Public Switched Telephone Network)
- Objetivo: Transmitir la voz humana en una forma más o menos reconocible.
- El sistema telefónico tradicional se encuentra organizado en una jerarquía multinivel altamente redundante
- Componentes:
 - Local loops (pares trenzados, señalización analógica)
 - Troncales (fibra óptica o microondas, digital)
 - Oficinas de conmutación

Red telefónica

Troncales y multiplexión

- Debido a consideraciones económicas, las compañías telefónicas han desarrollado políticas elaboradas para multiplexar varias conversaciones sobre un único troncal físico.
- FDM (Frequency Division Multiplexing)
 - El espectro de frecuencias es dividido entre canales lógicos: cada usuario tiene posesión exclusiva de alguna banda de frecuencia
- TDM (Time Division Multiplexing)
 - Los usuarios toman turnos (en round robin), obteniendo periódicamente cada uno el ancho de banda completo por un pequeño período de tiempo

FDM vs. TDM

- Ejemplo: difusión de radio AM
- Espectro reservado ~ I Mhz (500-1500 kHz)
- Diferentes frecuencias reservadas a diferentes canales lógicos (emisoras). Cada una opera en una porción del espectro => FDM
- Cada estación tiene dos subcanales lógicos: música y avisos comerciales. Los dos alternan en la misma frecuencia, primero una ráfaga de música y luego una ráfaga de avisos y así siguiendo => TDM

FDM

TDM

- Aunque FDM se utiliza todavía sobre cables de cobre o canales de microondas, requiere circuitería analógica.
- En contraste TDM puede ser manejado enteramente por electrónica digital, y se ha vuelto de más amplio uso en años recientes.
- ▶ TDM solo puede ser utilizado para datos digitales
- Como el local loop produce señales analógicas, es necesario realizar una conversión analógico/digital en la end office, donde todos los local loops individuales se combinan sobre los troncales
- Cómo múltiples señales de voz analógicas se digitalizan y combinan sobre un único troncal digital?

Conversión Analógica - Digital

Teorema del Muestreo – Codificación Modulación PCM

Conversión analógico/digital

Fig. 2-17. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.

Teorema del Muestreo

A.K.A Nyquist-Shannon, de Whittaker-Nyquist-Kotelnikov Shannon, criterio de Nyquist o teorema de Nyquist

Muestreo

- Vimos que las señales periodicas se pueden descomponer como un sumatorio de senos y cosenos cada uno de una amplitud, frecuencia y fase diferente (Desarrollo en Serie de Fourier) Si dichas sinusoides las muestreamos, el caso más crítico de muestreo será aquella de mayor frecuencia (frecuencia máxima f_m que corresponde con el periodo mínimo $T_{min}=1/f_m$) la cual vamos a llamar:
- $f(t)=A\sin(2\pi f_m t+\phi)$ donde A: amplitud, t: tiempo y ϕ : fase de la señal.
- El Teorema de Muestreo formulado por *Nyquist* 1924 dice: que si queremos reconstruir una señal de frecuencia máxima f_m , debemos de muestrear a $2f_m$ y la frecuencia de muestreo (*sampling*) se llama f_s o también frecuencia de modulación.

Muestreo

- ▶ **Ejemplo I**: los CD de audio muestrean la señal 44.100 veces por segundo, por tanto pueden captar frecuencias de hasta 22,05 KHz
- **Ejemplo 2:** si la voz (en telefonía !!) tiene un espectro de 4KHz, para poder muestrear y recuperar la señal requeriríamos 8.000 muestras por segundo.

Cuantos dígitos binarios uso para codificar cada muestra ?? 4 , 7 ,8, 16 ..?? Veamos en PCM

La conversión Analógica Digital

- Consta de dos etapas
 - Se muestrea la señal al doble del ancho de banda de la misma obteniendo un tren de pulsos de amplitud variable (PAM)

CAD

 Se cuantifican las muestras aproximándolas mediante un entero de n bits

PCM (Pulse Code Modulation)

- Las señales analógicas son digitalizadas por un dispositivo llamado *codec* (coder-decoder), produciendo un número de 8 bits por muestra (en realidad uno es para señalización).
- El codec toma 8000 muestras por segundo (125 μseg/muestra) debido a que el teorema de Nyquist establece que esto es suficiente para capturar toda la información de un canal telefónico de 4 KHz de ancho de banda
- ""Ancho de banda"" de cada canal de voz = 64 Kbps.
- Como consecuencia, virtualmente todos los intervalos de tiempo en el sistema telefónico son múltiplos de $125 \mu seg$.

Transporte T1 (1.544 Mbps)

Enlaces: "Transporte"

- ► T1: Utilizado en Norteamérica y Japón. Consiste de 24 canales de voz multiplexados juntos.
- Un frame T1 consiste de 24 x 8 = 192 bits, más un bit extra para framing, conduciendo a 193 bits cada 125 μseg.
- I / 0.000125 seg. x 193 bits = 1544000 bps
 TI=I,544 Mbps
- ► ITU tiene también una recomendación para un carrier PCM a 2048 Mbps llamado E I

Retardo (delay) total

$$T_{\text{total}} = T_{\text{proc}} + T_{\text{cola}} + T_{\text{trans}} + T_{\text{prop}}$$

- T_{proc} = retardo de proceso
 - Normalmente unos pocos microsegundos o menos.
- $T_{cola} = retardo de cola$
 - Depende de la congestión.
- ► T_{trans} = retardo de transmisión
 - = Tamaño Trama/Velocidad de trasnsmisión, significativo para enlaces de baja velocidad.
- ▶ T_{prop} = retardo de propagación
 - Desde unos pocos microsegundos hasta a cientos de milisegundos.

Retardo de Procesamiento

- Tiempo requerido en analizar el encabezado y decidir a dónde enviar el paquete (ej. decisión de enrutamiento)
 - En un enrutador, dependerá del número de entradas en la tabla de rutas, la implementación (estructuras de datos), el hardware, etc.
- Puede incluir la verificación de errores

Retardo de Colas

- Tiempo en que el paquete espera en un *búfer* hasta ser transmitido
- El número de paquetes esperando en cola dependerá de la intensidad y la naturaleza del tráfico
- Los algoritmos de colas en los enrutadores intentan adaptar estos retardos a ciertas preferencias, o imponer un uso equitativo

Retardo de Transmisión

- El tiempo requerido para empujar todos los bits de un paquete a través del medio de transmisión
- Para R=Tasa de bits, L=Longitud del paquete, d = delay o retardo:

$$d = L/R$$

 Por ejemplo, para transmitir 1024 bits utilizando Fast Ethernet (100 Mbps):

 $d = 1024/1 \times 10e8 = 10.24$ micro segundos

Retardo de Propagación

- Una vez que el bit es 'empujado' en el medio, el tiempo transcurrido en su propagación hasta el final del trayecto físico
- La velocidad de propagación del enlace depende más que nada de la distancia medio físico
 - Cercano a la velocidad de la luz en la mayoría de los casos
- Para d = distancia, s = velocidad de propagación
 Dp = d/s

Transmisión vs. Propagación

- Puede ser confuso al principio
- Considerar un ejemplo:
 - Dos enlaces de 100 Mbps.
 - Fibra óptica de I Km
 - Via Satélite, con una distancia de 30Km entre base y satélite
 - Para dos paquetes del mismo tamaño, cuál tiene mayor retardo de transmisión? Y propagación?

PCM (Pulse Code Modulation)

- Las señales analógicas son digitalizadas por un dispositivo llamado *codec* (coder-decoder), produciendo un número de 8 bits por muestra (en realidad uno es para señalización).
- El codec toma 8000 muestras por segundo (125 μseg/muestra) debido a que el teorema de Nyquist establece que esto es suficiente para capturar toda la información de un canal telefónico de 4 KHz de ancho de banda
- ""Ancho de banda"" de cada canal de voz = 64 Kbps.
- Como consecuencia, virtualmente todos los intervalos de tiempo en el sistema telefónico son múltiplos de $125 \mu seg$.

Transporte T1 (1.544 Mbps)

Enlaces: "Transporte"

- T1: Utilizado en Norteamérica y Japón. Consiste de 24 canales de voz multiplexados juntos.
- Un frame T1 consiste de 24 x 8 = 192 bits, más un bit extra para framing, conduciendo a 193 bits cada 125 μseg.
- I / 0.000125 seg. x 193 bits = 1544000 bps
 TI=I,544 Mbps
- ► ITU tiene también una recomendación para un carrier PCM a 2048 Mbps llamado E I

Modulación

Modems

Recordando los Principios básicos:

Señal analógica vs señal digital

- La señal analógica utiliza una magnitud con una variación continua.
- La señal digital emplea valores discretos, predefinidos

Módem vs Códec

- Módem (MODulador-DEModulador): convierte de digital a analógico y viceversa
- Códec (Codificador-DECodificador): convierte de analógico a digital y viceversa
- Son lo mismo ?????

Modulación

 Proceso de variación de cierta característica de una señal, llamada portadora, de acuerdo con una señal mensaje, llamada moduladora

Tipos

- Moduladora Analógica/Portadora Analógica
- Moduladora Analógica/Portadora Digital
- Moduladora Digital/Portadora Analógica
- Moduladora Digital/Portadora Digital

M. Analógica/P. Analógica

Portadora

Señal sinusoidal modulante

Onda de amplitud modulada (DSBTC)

Onda modulada en fase

Onda de frecuencia modulada

La situación más conocida es la transmisión de datos digitales a través de la red telefonía, diseñada para transmitir señales analógicas en el rango de frecuencias de voz (300-3400Hz)

Técnicas

- Desplazamiento de Amplitud (ASK)
- Desplazamiento de Frecuencia (FSK)
- Desplazamiento de Fase (PSK)
- Mixtas

ASK, los valores binarios se representan mediante dos amplitudes diferentes de la portadora

$$S(t) = \begin{cases} A\cos(2\pi f_c t) \\ 0 \end{cases}$$

FSK, los valores binarios se representan mediante dos frecuencias diferentes de la portadora

PSK, los valores binarios se representan mediante dos fases diferentes de la portadora

$$S(t) = \begin{cases} A\cos(2\pi f_c t + \pi) \\ A\cos(2\pi f_c t) \end{cases}$$

Velocidad de Modulación

- La Velocidad de Modulación se define como el número de cambios de señal por unidad de tiempo, y se expresa en baudios (o símbolos/segundo)
- La Velocidad de Transmisión, expresada en bits/sg, equivale a la velocidad de modulación multiplicado por el número de bits representados por cada muestra

$$V_t = V_m * N$$

M. Digital/P. Analógica (cont.)

Multinivel Se consigue una utilización más eficaz del ancho de banda si cada elemento de la señal transmitida representa más de un bit.

$$S(t) = \begin{cases} A\cos(2\pi f_c t + 45) & 11\\ A\cos(2\pi f_c t + 135) & 10\\ A\cos(2\pi f_c t + 225) & 00\\ A\cos(2\pi f_c t + 315) & 01 \end{cases}$$

Este esquema se puede ampliar, ya que se pueden transmitir tres, cuatro, etc. bits por señal transmitida, aumentando el número de fases distintas o incluso para cada ángulo el número de amplitudes (ASK-PSK)

Modulación Trellis (QAM)

M. Analógica/P. Digital

 Vimos que el proceso de conversión de señales analógicas en digitales se le denomina digitalización y a los dispositivos que lo levan a cabo codec

Métodos

- Modulación por impulsos codificados (MIC/PCM) : que ya vimos
- Modulación Delta

M. Digital/P. Digital

Los datos binarios se transmiten codificando cada bit de datos en cada elemento de señal

- Motivo
 - Filtrado de las bajas frecuencias
 - Perdida de sincronismo

NRZ

No retorno a cero (NRZ) Consiste en utilizar una tensión negativa para representar un I y una positiva para representar un 0

Inconvenientes: alto alto – bajo bajo ("baseline wander" *) y sincronismo

NRZI

No retorno a cero con inversión de unos (NRZI) Los datos se codifican mediante la presencia o ausencia de una transición al principio del intervalo de un I

Manchester (Bifase)

Manchester: Se codifica mediante una transición en la mitad del intervalo de duración del bit: de bajo a alto representa un 1 y de alto a bajo un 0

Baud Rate = 2 * Bit Rate !!!!!

Manchester Diferencial

Bifase Diferencial (Manchester Diferencial) La codificación de un 0 se representa por la presencia de una transición al principio del intervalo del bit y un 1 mediante la ausencia de transición

Códigos de alta densidad

- Reemplaza secuencia de bits que dan lugar a niveles de tensión constante por otra que proporcione transiciones para que el receptor este sincronizado
- El receptor debe identificar la secuencia reemplazada y sustituirla por la original.
- ▶ 4B/5B

Velocidad de Modulación

Vt=Vm log n n : estados posibles , 2, 4 , 16 , 64 , etc

```
 \begin{cases} BPSK & 1bit/symbol \\ QPSK & 2bits/symbol \\ 16-QAM & 4bits/symbol \\ constellation \in \\ 64-QAM & 6bits/symbol \\ 256-QAM & 8bits/symbol \end{cases} 
                                                1024 – QAM 10bits/symbol
```

BER – Modulación

Modulación QPSK

La portadora I Tx a 0°, la **Q** a 90°.

El vector resultante es a 45° representa el símbolo 11.

Si necesito Tx 01, => I a 0° y la portadora a 270°.

Vectores y Modulación 16 QAM I 180°

Constelación de una modulación 64 QAM

Modulación 256 QAM

