PID Control of a Robot Via Position Feedback

Nick Pham

System Modeling

The equations of motion for this cart pendulum system are

$$(m_c + m_p)\ddot{x} + c\dot{x} = F + m_p r \left(\sin(\theta)\dot{\theta}^2 - \cos(\theta)\ddot{\theta}\right)$$
$$(J + m_p r^2)\ddot{\theta} + \gamma\dot{\theta} = -m_p r g \sin(\theta) - m_p r \ddot{x} \cos(\theta)$$

which can be linearized to

$$(m_c + m_p)\ddot{x} + m_p r\ddot{\theta} + c\dot{x} = f(t)$$

$$m_p r\ddot{x} + (J + m_p r^2)\ddot{\theta} + \gamma\dot{\theta} - m_p g r\theta = 0$$

In order to write the state space model, solve for $\ddot{\theta}$ and \ddot{x} . Let $M=m_c+m_p$ and $I=J+m_pr^2$.

$$\begin{split} \ddot{\theta} &= \frac{f(t) - c\dot{x} - M\ddot{x}}{m_p r} \\ 0 &= m_p r \ddot{x} + I \frac{f(t) - c\dot{x} - M\ddot{x}}{m_p r} + \gamma \dot{\theta} - m_p g r \theta \\ \ddot{x} \left(m_p r - I \frac{M}{m_p r} \right) &= m_p g r \theta - \gamma \dot{\theta} + \frac{I c \dot{x}}{m_p r} - \frac{I f(t)}{m_p r} \\ \ddot{x} \left(\frac{m_p^2 r^2 - I M}{m_p r} \right) &= m_p g r \theta - \gamma \dot{\theta} + \frac{I c \dot{x}}{m_p r} - \frac{I f(t)}{m_p r} \end{split}$$

Let
$$\mu = m_p^2 r^2 - IM$$

$$\ddot{x}\left(\frac{\mu}{m_p r}\right) = m_p g r \theta - \gamma \dot{\theta} + \frac{I c \dot{x}}{m_p r} - \frac{I f(t)}{m_p r}$$
$$\ddot{x} = \frac{g}{\mu} \theta - \frac{\gamma m_p r}{\mu} \dot{\theta} + \frac{I}{\mu} (c \dot{x} - f(t))$$

Similarly,

$$\ddot{x} = \frac{f(t) - c\dot{x} - m_p r\ddot{\theta}}{M}$$

$$0 = m_p r \frac{f(t) - c\dot{x} - m_p r\ddot{\theta}}{M} + I\ddot{\theta} + \gamma\dot{\theta} - m_p g r\theta$$

$$\ddot{\theta} \left(I - \frac{m_p^2 r^2}{M} \right) = m_p g r\theta - \gamma\dot{\theta} + \frac{m_p r}{M} (c\dot{x} - f(t))$$

$$\ddot{\theta} \left(-\frac{\mu}{M} \right) = m_p g r\theta - \gamma\dot{\theta} + \frac{m_p r}{M} (c\dot{x} - f(t))$$

$$\ddot{\theta} = -\frac{M}{\mu} m_p g r\theta + \frac{M}{\mu} \gamma\dot{\theta} - \frac{m_p r}{\mu} (c\dot{x} - f(t))$$

This means that the state space equations can be written in matrix form

$$\begin{bmatrix} \dot{x} \\ \dot{\theta} \\ \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{g}{\mu} & \frac{Ic}{\mu} & -\frac{\gamma m_p r}{\mu} \\ 0 & -\frac{M m_p g r}{\mu} & -\frac{m_p r c}{\mu} & \frac{M \gamma}{\mu} \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -\frac{I}{\mu} \\ -\frac{m_p r}{\mu} \end{bmatrix} f(t)$$

Because the system can only observe x and θ , the output is

$$\begin{bmatrix} x \\ \theta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix}$$

Stability Analysis

Using the A, B, C, D matrices computed in the previous section, simulate the state space model in MATLAB. Because some of the eigenvalues of A have positive real parts, the system is currently unstable.

The a reasonable step input might be an angle of 0.1. The resulting step response is shown in Figure 1. As can be seen, the unstable response was indicated by the eigenvalues of A.

Full State Feedback

To implement a feedback control system of the form u=-Kx, the new state space model would be

$$\dot{x} = Ax + Bu = Ax - BKx = (A - BK)x$$
$$y = Cx + Du$$

Fig. 1: Unstable step response of open loop system.

Thus, for a stable system, the eigenvalues of (A-BK) must have negative real parts. MATLAB's place() function is used to set K for a given vector of eigenvalues, which can be seen in the attached code. Figure 2 shows the step responses for increasing eigenvalues. As can be seen, with larger magnitude eigenvalues the system allows less deviation and has quicker stabilization than with smaller eigenvalues.

Hardware Implementation

The system was tested with the following K values, and the system response was observed.

,

Fig. 2: Step response of closed loop system with different controllers.

,

k_p^x	k_d^x	k_p^{θ}	k_d^{θ}	Observation	Explanation
$\frac{\kappa_p}{20}$	$\frac{n_d}{40}$	-100	$\frac{r_d}{-20}$	Balanced and	Factory Setting
				Smooth	
30	40	-100	-20	More Reactive to	Increasing the importance of the
				presses. Wants to	x control in relation to the θ
				keep x centered	control means that the angle
				but not as resistant	control will be less effective.
				to pushes for	
				balancing.	
40	40	-100	-20	Very jittery,	The large x proportional control
				overshoots even	means that the system attempts
				without a tap.	to correct any errors with a large
					force, which results in overshoot.
					This oscillation prevents the
10	40	-100	-20	Drifts somewhat in	system from converging. Now the tradeoff works the other
10	40	-100	-20	x, but quite robust	way, where the effectiveness of
				in θ .	the angle control is prioritized.
5	40	-100	-20	The pendulum can	Because there is so little
	10	100	20	be pushed in the	emphasis on the x control, the
				x axis, while it	system only attempts to correct
				remains upright	for it when there is no external
				despite large forces.	input. Otherwise, it works hard
					to keep the pendulum upright.
20	40	-50	-20	Easy to knock over.	This strong deemphasis on the
					angular control means that the
					system is easy to tip over. The
					gears were also slipping quite
					a bit, which meant that the
					angular controller did not have
					a good mechanism to control
					the system, contributing to the tipping.
20	40	-150	-20	Decent at balancing	The large proportional angular
20	40	-100	-20	despite the slipping	control allows the system
				gears. Drifts in x .	to balance despite physical
				0-0	imperfections.
20	40	-150	-30	Jittery behavior	At this point, the physical
				reduces	system barely worked because
				convergence.	of the gears, but increasing the
					derivative control resulted in a
					decrease in convergence.

The major takeaways from this lab were the importance in balancing controller parameters in multiple input single output systems, where prioritizing one input

,

results in reduced performance for the other. Another takeaway was the difficulty of implementing ideal controllers in hardware, where many imperfections are difficult to model.