BECA / Huson / 12.1 IB Math SL

10 December 2018

Name:

Pretest: Vector and calculus, plus review

1a. Line L_1 passes through points $\mathrm{A}(1,-1,4)$ and $\mathrm{B}(2,-2,5)$.

 \overrightarrow{AB}

[2 marks]

1b. Find an equation for L_1 in the form $oldsymbol{r} = oldsymbol{a} + toldsymbol{b}$.

[2 marks]

$$m{r}=egin{pmatrix}2\\4\\7\end{pmatrix}+segin{pmatrix}2\\1\\3\end{pmatrix}$$
 .

 ${f 1c.}$ Line L_2 has equation

Find the angle between L_1 and L_2 .

[7 marks]

1d. The lines L_1 and L_2 intersect at point C. Find the coordinates of C.

[6 marks]

2a. The diagram shows quadrilateral ABCD with vertices A(1, 0), B(1, 5), C(5, 2) and D(4, -1).

- (i) Show that $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
- (ii) Find \overrightarrow{BD} .

2b. The line (AC) has equation $oldsymbol{r} = oldsymbol{u} + soldsymbol{v}$.

(ii) Find a vector equation for the line (BD).

2c. The lines (AC) and (BD) intersect at the point $\mathrm{P}(3,k)$.

Show that k = 1.

[3 marks]

[4 marks]

2d. The lines (AC) and (BD) intersect at the point $\mathrm{P}(3,k)$.

Hence find the area of triangle ACD.

[5 marks]

 $m{v}=egin{pmatrix}2\\-3\\6\end{pmatrix}$ and $m{w}=egin{pmatrix}k\\-2\\4\end{pmatrix}$, for k>0 . The angle between $m{v}$ and $m{w}$ is $rac{\pi}{3}$.

Find the value of k. [7 marks]

4a.

 $m{r}=egin{pmatrix} -3 \ -1 \ -25 \end{pmatrix} + p egin{pmatrix} 2 \ 1 \ -8 \end{pmatrix}$. The line L_1 is represented by the vector equation

A second line L_2 is parallel to L_1 and passes through the point B(-8, -5, 25) .

Write down a vector equation for L_2 in the form $oldsymbol{r}=oldsymbol{a}+toldsymbol{b}$.

[2 marks]

 $m{r}=egin{pmatrix} 5 \ 0 \ 3 \end{pmatrix} + qegin{pmatrix} -7 \ -2 \ k \end{pmatrix}$. **4b.** A third line L_3 is perpendicular to L_1 and is represented by

Show that k=-2 . [5 marks]

4c. The lines L_1 and L_3 intersect at the point A.

Find the coordinates of A. [6 marks]

 $\overrightarrow{\mathrm{BC}}=egin{pmatrix} 6\ 3\ -24 \end{pmatrix}$.

(i) Find \overrightarrow{AB} .

(ii) Hence, find $|\overrightarrow{AC}|$. [5 marks]

$$\overrightarrow{AB} = egin{pmatrix} 6 \ -2 \ 3 \end{pmatrix}_{ ext{ and }} \overrightarrow{AC} = egin{pmatrix} -2 \ -3 \ 2 \end{pmatrix}_{ ext{.}}$$

 \overrightarrow{BC} . [2 marks]

5b. [3 marks]

Find a unit vector in the direction of \overrightarrow{AB} .

5c. [3 marks]

Show that \overrightarrow{AB} is perpendicular to \overrightarrow{AC} .

6a. [4 marks]

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + p \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}_.$ Its position, p seconds after it has passed through A, is given by

- (i) Write down the coordinates of A.
- (ii) Find the speed of the airplane in ms^{-1} .

6b. [5 marks]

After seven seconds the airplane passes through a point B.

- (i) Find the coordinates of B.
- (ii) Find the distance the airplane has travelled during the seven seconds.

6c. Airplane 2 passes through a point C. Its position *q* seconds after it passes through C is given by

$$egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} 2 \ -5 \ 8 \end{pmatrix} + q egin{pmatrix} -1 \ 2 \ a \end{pmatrix}, a \in \mathbb{R}$$

The angle between the flight paths of Airplane 1 and Airplane 2 is 40° . Find the two values of a.

7a. Let
$$f(x)=rac{6x}{x+1}$$
 , for $x>0$.

Find
$$f'(x)$$
. [5 marks]

7b. Let $g(x) = \ln\Bigl(rac{6x}{x+1}\Bigr)$, for x>0 .

Show that $g'(x)=rac{1}{x(x+1)}$. [4 marks]

 $h(x)=rac{1}{x(x+1)}$. The area enclosed by the graph of h , the x-axis and the lines $x=rac{1}{5}$ and x=k is $\ln 4$. Given that $k>rac{1}{5}$, find the value of k .

8a. Part of the graph of $f(x) = ax^3 - 6x^2$ is shown below.

The point P lies on the graph of f . At P, x = 1.

Find f'(x). [2 marks]

8b. The graph of f has a gradient of f at the point f. Find the value of f and f are the point f are the point f and f are the point f are the point f and f are the point f are the point f and f are the point f are the point f and f are the point f are the

9a. In this question, you are given that $\cos \frac{\pi}{3} = \frac{1}{2}$, and $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

The displacement of an object from a fixed point, 0 is given by $s(t) = t - \sin 2t \;_{ ext{for}} \, 0 \leq t \leq \pi$.

Find s'(t) . [3 marks]

9b. In this interval, there are only two values of t for which the object is not moving. One value is $t=\frac{\pi}{6}$. Find the other value.

9c. Show that s'(t) > 0 between these two values of t.

9d. Find the distance travelled between these two values of *t* . [5 marks]

 $_{\mathbf{10a.}\,\mathrm{Let}}f(x)=\mathrm{e}^{6x}$.

Write down f'(x).

10b. The tangent to the graph of f at the point $\mathbf{P}(0,b)$ has gradient m .

(i) Show that m=6.

(ii) Find
$$b$$
. [4 marks]

10c. Hence, write down the equation of this tangent.

[1 mark]

11a. Let $f(x)=rac{x}{-2x^2+5x-2}$ for $-2\leq x\leq 4$, $x
eq rac{1}{2}$, x
eq 2 . The graph of f is given below.

The graph of f has a local minimum at $\mathrm{A}(1,1)$ and a local maximum at $\mathrm{B}.$

Use the quotient rule to show that $f'(x)=rac{2x^2-2}{\left(-2x^2+5x-2
ight)^2}$. [6 marks]

11b. Hence find the coordinates of B. [7 marks]

11c. Given that the line y = k does not meet the graph of f, find the possible values of k. [3 marks]

12a. The following diagram shows part of the graph of a quadratic function f.

The vertex is at (3, -1) and the x-intercepts at 2 and 4.

The function f can be written in the form $f(x)=(x-h)^2+k$.

Write down the value of h and of k.

[2 marks]

12b. The function can also be written in the form f(x) = (x-a)(x-b).

Write down the value of a and of b.

[2 marks]

12c. Find the y-intercept.

[2 marks]

13. Three consecutive terms of a geometric sequence are x-3, 6 and x+2.

Find the possible values of x.

[6 marks]

14a. Let $f(x) = x^2$ and $g(x) = 3\ln(x+1)$, for x > -1.

Solve
$$f(x) = g(x)$$
.

14b. Find the area of the region enclosed by the graphs of f and g.

[3 marks]

15a. A population of rare birds, P_t , can be modelled by the equation $P_t = P_0 \mathrm{e}^{kt}$, where P_0 is the initial population, and t is measured in decades. After one decade, it is estimated that $\frac{P_1}{P_0} = 0.9$.

- (i) Find the value of k.
- (ii) Interpret the meaning of the value of k.

[3 marks]

15b.Find the least number of **whole** years for which $rac{P_t}{P_0} < 0.75$.

[5 marks]

16a. The price of a used car depends partly on the distance it has travelled. The following table shows the distance and the price for seven cars on 1 January 2010.

Distance, x km	11 500	7500	13 600	10800	9500	12 200	10400
Price, y dollars	15 000	21 500	12 000	16000	19 000	14500	17000

The relationship between x and y can be modelled by the regression equation y=ax+b.

- (i) Find the correlation coefficient.
- (ii) Write down the value of a and of b.

[4 marks]

16b. On 1 January 2010, Lina buys a car which has travelled $11\,000~\mathrm{km}$

Use the regression equation to estimate the price of Lina's car, giving your answer to the nearest 100 dollars. [3 marks]

16c. The price of a car decreases by 5% each year.

Calculate the price of Lina's car after 6 years.

[4 marks]

16d. Lina will sell her car when its price reaches $10\,000_{dollars}$.

Find the year when Lina sells her car.

[4 marks]

17a. Let
$$f(x) = \frac{1}{x-1} + 2$$
, for $x > 1$.

Write down the equation of the horizontal asymptote of the graph of f.

[2 marks]

17b. Find
$$f'(x)$$
.

[2 marks]

 $_{ extbf{17c. Let}}g(x)=ae^{-x}+b$, for $x\geqslant 1$. The graphs of f and g have the same horizontal asymptote.

Write down the value of b.

[2 marks]

17d. Given that
$$g'(1) = -e$$
, find the value of a .

[4 marks]

17e. There is a value of x, for 1 < x < 4, for which the graphs of f and g have the same gradient. Find this gradient.

18a. Let
$$f(x)=(x-5)^3$$
 , for $x\in\mathbb{R}$.

Find
$$f^{-1}(x)$$
. [3 marks]

18b. Let g be a function so that $(f\circ g)(x)=8x^6$. Find g(x)

[3 marks]

19a. The following diagram shows part of the graph of a quadratic function f.

The vertex is at (1, -9), and the graph crosses the *y*-axis at the point (0, c).

The function can be written in the form

$$f(x) = (x - h)^2 + k$$

Write down the value of h and of k.

 ${f 19b.}$ Let $g(x)=-(x-3)^2+1$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation

 $\binom{p}{q}$

Find the value of p and of q.

[5 marks]

 ${f 20a.}$ Let $f(x)=2\ln(x-3)_{,\,{
m for}}\,x>3_{.\,{
m The}}$ diagram shows part of the graph of f. Find the equation of the vertical asymptote to the graph of f.

20b. Find the x-intercept of the graph of f.

 ${f 21a}.$ The first three terms of a geometric sequence are $u_1=0.64,\ u_2=1.6$, and $u_3=4$.

Find the value of r.

21b. Find the value of S_6 .

[2 marks]

21c. Find the least value of n such that $S_n > 75\,000$.

[3 marks]