常数项级数

1. 设常数
$$\lambda \neq 0$$
, $a_n > 0$, 级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} (-1)^n (n \tan \frac{\lambda}{n}) a_{2n}$ [].

- (A) 绝对收敛。(B) 条件收敛。(C) 发散。(D) 收敛性与λ有关。 [A
- 2. (正常数项级数收敛的判定与其项趋于零阶的估计问题)

设
$$a_n > 0$$
, $p > 0$, $\lim_{n \to \infty} \left[n^p \left(e^{\frac{1}{n}} - 1 \right) a_n \right] = 1$, 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 p 的取值范围

解:
$$\lim_{n \to \infty} \frac{a_n}{\frac{1}{n^{p-1}}} = 1, \quad p > 2$$

3. 判断
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n}\right)$$
 的收敛性.

(收敛)
$$\frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right) \sim \frac{1}{n^{\frac{3}{2}}}$$

4. 判断
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 的收敛性.

解:
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|a|}{e}$$
, $|a| < e$, 绝对收敛; $|a| > e$, 发散;

$$|a|=e$$
, $|u_{n+1}|>|u_n|$ (因为 $\left(1+\frac{1}{n}\right)^n$ 单调上升趋于 e) 发散.

5. 设
$$a_n > 0$$
,单调减且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 是否收敛?证明结论。 [收敛]

6. 讨论级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+(-1)^n}}$$
 的收敛性.

解:这是交错项级数,通项趋于零,但不单调.不能用Lebnize定理.两项合并,

$$\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$$
收敛. 又 $\lim_{n \to \infty} a_n = 0$,原级数收敛. 但不绝对收敛. 故条件收敛.

7. 讨论级数
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right)$$
 的收敛性 $(p > 0)$.

解: 记
$$a_n = \frac{(-1)^n}{n^p}$$
, $b_n = \ln(1+a_n)$, $c_n = a_n - b_n$

则
$$c_n \sim \frac{1}{2n^{2p}}$$
 当 $n \to \infty$ 时.

(1)
$$p>1$$
, $\sum_{n=1}^{\infty}c_n$ 绝对收敛, 故 $\sum_{n=1}^{\infty}b_n$ 绝对收敛.

(2)
$$0 时, $\sum_{n=1}^{\infty} c_n$ 发散, $\sum_{n=1}^{\infty} a_n$ 收敛, 故 $\sum_{n=1}^{\infty} b_n$ 发散.$$

(3)
$$\frac{1}{2} 时, $\sum_{n=1}^{\infty} c_n$ 绝对收敛, $\sum_{n=1}^{\infty} a_n$ 收敛, 故 $\sum_{n=1}^{\infty} b_n$ 条件收敛.$$

(不能用 Leibnize 方法)

8. 常数项级数和积分的估值

设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
,讨论级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^p}$ 的收敛性.

解:
$$\Rightarrow \tan x = t$$
, $0 < a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx = \int_0^1 \frac{t^n}{1+t^2} < \int_0^1 t^n dt = \frac{1}{n+1}$,

$$0<\frac{a_n}{n^p}<\frac{1}{n^{p+1}}.$$

p > 0时, 原级数收敛.

9.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x} (x \neq -n)$$

解:级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 当 n 充分大 $($ 即 $n+x>0)$ 时是交错级数,且 $\left\{\frac{1}{n+x}\right\}$ 单

调减少趋于零,所以
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 $(x \neq -n)$ 收敛;又由于 $\left| \frac{(-1)^{n+1}}{n+x} \right| \sim \frac{1}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发

散, 所以级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x}$$
 ($x \neq -n$) 条件收敛。

10.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$$
;

解: 当x = 0时 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 的一般项都为零,所以级数绝对收敛。

设 $x \neq 0$, $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 当 n 充分大(即 $n > \frac{2|x|}{\pi}$)时是交错级数,且 $\left|\sin \frac{x}{n}\right|$ 单调减少趋

于零,所以 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 收敛;又由于 $\left| (-1)^{n+1} \sin \frac{x}{n} \right| \sim \frac{|x|}{n} (n \to \infty)$, $\sum_{n=1}^{\infty} \frac{|x|}{n}$ 发散,所以

级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$ 条件收敛。

11.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$$

解: $\lim_{n\to\infty} \sqrt[n]{n} = 1$, 因此 $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 不存在,所以 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n]{n}}$ 发散。

12.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cos \frac{n\pi}{3}$$

解: 设 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cos \frac{n\pi}{3}$ 的部分和数列为 $\{S_n\}$,则

$$S_{6n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{2\sqrt{3k-2}} + \sum_{k=1}^{2n} \frac{(-1)^k}{2\sqrt{3k-1}} + \sum_{k=1}^{2n} \frac{(-1)^k}{\sqrt{3k}},$$

由于 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2\sqrt{3n-2}}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{2\sqrt{3n-1}}$ 和 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{3n}}$ 都是 Leibniz 级数,即都是收敛的,所以

 $\lim S_{6n}$ 存在且有限。容易证明

$$\lim_{n \to \infty} S_{6n+1} = \lim_{n \to \infty} S_{6n+2} = \lim_{n \to \infty} S_{6n+3} = \lim_{n \to \infty} S_{6n+4} = \lim_{n \to \infty} S_{6n+5} = \lim_{n \to \infty} S_{6n},$$

由此可知级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cos \frac{n\pi}{3}$ 收敛。

由于
$$\left|\frac{1}{\sqrt{n}}\cos\frac{n\pi}{3}\right| \ge \frac{1}{2\sqrt{n}}$$
, $\sum_{n=1}^{\infty}\frac{1}{2\sqrt{n}}$ 发散,所以级数 $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\cos\frac{n\pi}{3}$ 条件收敛。

13.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$$

解: 当
$$x \in (k\pi - \frac{\pi}{6}, k\pi + \frac{\pi}{6})$$
时,由于 $\left| (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} \right| = \frac{1}{n} (4 \sin^2 x)^n$,

$$0 \le 4\sin^2 x < 1$$
, $\sum_{n=1}^{\infty} \frac{1}{n} (4\sin^2 x)^n$ 收敛,所以级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$ 绝对收敛。

当
$$x = k\pi \pm \frac{\pi}{6}$$
 时, $\sin^2 x = \frac{1}{4}$,所以 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 是条件收敛级

数。

在其他情况下,由于 $\left| (-1)^{n+1} \frac{4^n \sin^{2n} x}{n} \right| = \frac{1}{n} (4\sin^2 x)^n$, $4\sin^2 x > 1$,级数的一般项

趋于无穷大, 所以级数发散。

$$14. \quad \sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$$

解: 当
$$x = \frac{k\pi}{2}$$
时,级数的一般项都为零,所以级数 $\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$ 绝对收敛。

设
$$x \neq \frac{k\pi}{2}$$
。当 $p > 1$ 时,由于 $\left| \frac{\sin(n+1)x\cos(n-1)x}{n^p} \right| \leq \frac{1}{n^p}$,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$$
绝对收敛。

当0<p≤1时,由于

$$\frac{\sin(n+1)x\cos(n-1)x}{n^p} = \frac{\sin 2nx}{2n^p} + \frac{\sin 2x}{2n^p},$$

由 Dirichlet 判别法, $\sum_{n=1}^{\infty} \frac{\sin 2nx}{2n^p}$ 收敛,而 $\sum_{n=1}^{\infty} \frac{\sin 2x}{2n^p}$ 发散,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \text{ \sharp th}.$$

当 $p \leq 0$ 时,由于级数的一般项不趋于零,所以级数

$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p} \, \text{ \sharp th }.$$

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} (a > 0).$$

解: 设
$$x_n = \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$$
。

当
$$a > 1$$
 时, $\lim_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{a} < 1$, 所以级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n}$ 绝对收敛;

当
$$a=1$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n}$, 级数条件收敛;

当
$$0 < a < 1$$
 时,由于 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 收敛, $\left\{\frac{a}{1+a^n}\right\}$ 单调有界,由 Abel 判别法,级数

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} \, \text{收敛, 但由于} \left| x_n \right| \sim \frac{a}{n} \, (n \to \infty), \quad \sum_{n=1}^{\infty} \frac{a}{n} \, \text{发散, 所以级数条件收敛.}$$

16. 利用 Cauchy 收敛原理证明下述级数发散:

(1)
$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \cdots$$
;

(2)
$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} + \cdots$$

证 (1) 设级数的一般项为 x_n ,则

$$x_{3n+1} + x_{3n+2} + \dots + x_{6n} > \frac{1}{3n+1} + \frac{1}{3n+4} + \dots + \frac{1}{6n-2} > \frac{n}{6n-2} > \frac{1}{6},$$

由于n可以取任意大,由 Cauchy 收敛原理可知级数发散。

(2) 设级数的一般项为 x_n ,则

$$x_{3n+1} + x_{3n+2} + \dots + x_{6n} > \frac{1}{3n+3} + \frac{1}{3n+6} + \dots + \frac{1}{6n} > \frac{n}{6n} = \frac{1}{6}$$

由于n可以取任意大,由 Cauchy 收敛原理可知级数发散。

17. 若级数
$$\sum_{n=1}^{\infty} x_n$$
 收敛, $\lim_{n\to\infty} \frac{x_n}{y_n} = 1$, 问级数 $\sum_{n=1}^{\infty} y_n$ 是否收敛?

(注意:对正项级数成立的结论一般而言对任意项级数就不成立了)

$$\mathbf{R}$$
 $\sum_{n=1}^{\infty} y_n$ 不一定收敛。

反例:
$$x_n = \frac{(-1)^{n+1}}{\sqrt{n}}$$
, $y_n = \frac{(-1)^{n+1}}{\sqrt{n}} + \frac{1}{n}$, 则 $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$, 但级数 $\sum_{n=1}^{\infty} x_n$ 收敛,而级数 $\sum_{n=1}^{\infty} y_n$ 发散。

18. 设正项数列
$$\{x_n\}$$
 单调减少,且级数 $\sum_{n=1}^{\infty} (-1)^n x_n$ 发散。问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n$ 是否收敛?并说明理由。

解 级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n$$
 收敛。

因为正项数列 $\{x_n\}$ 单调减少,所以必定收敛。如果 $\lim_{n\to\infty}x_n=0$,则 $\sum_{n=1}^{\infty}(-1)^nx_n$ 是Leibniz

级数,因此收敛,与条件矛盾,所以必定有 $\lim_{n\to\infty} x_n = \alpha > 0$,于是当 n 充分大时,

$$\left(\frac{1}{1+x_n}\right)^n < \left(\frac{1}{1+\frac{\alpha}{2}}\right)^n, \ \mathbb{B}此\sum_{n=1}^{\infty} \left(\frac{1}{1+x_n}\right)^n 收敛.$$

19. 若 {
$$nx_n$$
 } 收敛, $\sum_{n=2}^{\infty} n(x_n - x_{n-1})$ 收敛,则级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

证 令
$$a_n = x_n$$
, $b_n = 1$, 则 $B_k = \sum_{i=1}^k b_i = k$ 。利用 Abel 变换,得到

$$\sum_{k=1}^{n} x_k = nx_n - \sum_{k=1}^{n-1} k(x_{k+1} - x_k) \circ$$

由于

$$\sum_{n=1}^{\infty} n(x_{n+1} - x_n) = \sum_{n=1}^{\infty} [(n+1)(x_{n+1} - x_n) \cdot \frac{n}{n+1}],$$

因为数列
$$\left\{\frac{n}{n+1}\right\}$$
单调有界,级数 $\sum_{n=1}^{\infty}(n+1)(x_{n+1}-x_n)=\sum_{n=2}^{\infty}n(x_n-x_{n-1})$ 收敛,由 Abel 判

别法,
$$\sum_{n=1}^{\infty} n(x_{n+1}-x_n)$$
 收敛。再由数列 $\{nx_n\}$ 的收敛性,即可知级数 $\sum_{n=1}^{\infty} x_n$ 收敛。

20. 设
$$f(x)$$
 在 $[-1,1]$ 上具有二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$ 证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

证 由
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
 可知 $f(0) = 0$, $f'(0) = 0$, 于是
$$f\left(\frac{1}{n}\right) \sim \frac{f''(0)}{2} \cdot \frac{1}{n^2} \quad (n \to \infty), \text{ 所以级数 } \sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$$
绝对收敛。

- **21.** 已知任意项级数 $\sum_{n=1}^{\infty} x_n$ 发散,证明级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n$ 也发散。
- 证 采用反证法。令 $y_n=(1+\frac{1}{n})x_n$,若 $\sum_{n=1}^{\infty}y_n$ 收敛,因为 $\left\{\frac{n}{n+1}\right\}$ 单调有界,则由 Abel 判

别法,
$$\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} \frac{n}{n+1} y_n$$
 收敛, 与条件矛盾, 所以级数

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n \not \Xi \mathring{\mathbb{D}}.$$