WL-TR-94-4014

# AD-A280 038



THE MECHANICAL PROPERTY DATA BASE FROM AN AIR FORCE/INDUSTRY COOPERATIVE TEST PROGRAM ON ADVANCED **ALUMINUM ALLOYS** 

MARY ANN PHILLIPS and STEVEN R. THOMPSON Materials Engineering Branch Systems Support Division

December 1993

Final Report for Period July 1986 - May 1993

Approved for public release; distribution is unlimited.



DTIC QUALITY INSPECTED 2

Materials Directorate Wright Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, Ohio 45433-7734

94-16637

94 6 3 082

#### **NOTICE**

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This Technical report has been reviewed and is approved for publication.

MARY ANN PHILLIPS, Project Engineer

Engineering and Design Data Materials Engineering Branch SYEVEN R. THOMPSON, Project Engineer

Engineering and Design Data Materials Engineering Branch

THEODORE J. REINHART, Chief

Materials Engineering Branch

Systems Support Division Materials Directorate

THOMAS D. COOPER, Chief

Systems Support Division

Materials Directorate

Wright Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/MLSE, WPAFB, OH 45433-7718 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gethering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this gethering and information including supportion for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

| Davis Highway, Suite 1204, Arlington, VA 22202-4302 |                                         |                | ID DATES COVERED                                  |
|-----------------------------------------------------|-----------------------------------------|----------------|---------------------------------------------------|
| 1. AGENCY USE ONLY (Leave blank)                    | 2. REPORT DATE                          |                |                                                   |
|                                                     | December 1993                           | Final 7/86     | - 5/93                                            |
| 4. TITLE AND SUBTITLE                               |                                         |                | 5. FUNDING NUMBERS                                |
| The Mechanical Prop                                 | erty Data Base                          | from an        | PE: 62102F                                        |
| Air Force/Industry                                  | Cooperative Tes                         | t Program on   | PR: 2418                                          |
| Advanced Aluminum A                                 |                                         |                | TA: 07                                            |
| 6. AUTHOR(S)                                        | , , , , , , , , , , , , , , , , , , , , |                | WU: 03                                            |
| Mary Ann Phillips a                                 | nd Steven R. Th                         | ompson         |                                                   |
|                                                     |                                         |                |                                                   |
| 7. PERFORMING ORGANIZATION NAME                     | (S) AND ADDRESS(ES)                     |                | 8. PERFORMING ORGANIZATION REPORT NUMBER          |
| Materials Directora                                 | te                                      |                | REPORT NOMBER                                     |
| Wright Laboratory                                   |                                         |                |                                                   |
| Air Force Materiel                                  | Command                                 |                | WL-TR-94-4014                                     |
| Wright-Patterson Ai                                 | r Force Base OH                         | 45433-7734     |                                                   |
| _                                                   |                                         |                |                                                   |
| 9. SPONSORING/MONITORING AGENC                      | Y NAME(S) AND ADDRESS(I                 | (5)            | 10. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER |
| Materials Directora                                 | te                                      |                |                                                   |
| Wright Laboratory                                   |                                         |                | WL-TR-94-4014                                     |
| Air Force Materiel                                  | Command                                 |                |                                                   |
| Wright-Patterson Ai                                 | r Force Base OH                         | 45433-7734     |                                                   |
| 11. SUPPLEMENTARY NOTES                             |                                         |                |                                                   |
|                                                     |                                         |                |                                                   |
|                                                     |                                         |                |                                                   |
| 12a. DISTRIBUTION / AVAILABILITY STA                | TEMENT                                  |                | 12b. DISTRIBUTION CODE                            |
| 124. DISTRIBUTION NAMES OF THE                      |                                         |                | [                                                 |
| Approved for Public                                 | Dalassa, distr                          | ibution is     | ·                                                 |
| unlimited.                                          | Werease, disti                          | IDUCTOR 18     | <b>.</b>                                          |
| dilimited.                                          |                                         |                |                                                   |
|                                                     |                                         |                |                                                   |
| 13. ABSTRACT (Maximum 200 words)                    | <u> </u>                                |                |                                                   |
|                                                     | ntains a mechan                         | ical property  | data hase on                                      |
|                                                     |                                         |                | 905XL, and Weldalite                              |
| 2095 and a data bas                                 |                                         |                |                                                   |
|                                                     |                                         |                | on, compression, shear                            |
| bearing and fractur                                 |                                         |                |                                                   |
|                                                     |                                         |                | s. Constant amplitude                             |
| Penerared from norn                                 | SMOOLU BUU UUL                          | crea shectment | e conscent embitings                              |

fatigue crack growth rate data and spectrum fatigue test data were generated. Other tests performed on a select number of alloys were ballistic, hardness and conductivity.

| 14. SUBJECT TERMS Weldalite Aluminum-Lithium 2091 | AL905XL C                       | Cension<br>Compression<br>Shear | Spectrum<br>Crack Gro          | wth       | 15. NUMBER OF PAGES<br>577<br>16. PRICE CODE |
|---------------------------------------------------|---------------------------------|---------------------------------|--------------------------------|-----------|----------------------------------------------|
| 17. SECURITY CLASSIFICATION OF REPORT             | 18. SECURITY CL<br>OF THIS PAGE | SSIFICATION 19.                 | SECURITY CLASSI<br>OF ABSTRACT | FICATION" | 20. LIMITATION OF A SSTRACT                  |
| Unclassified                                      | Unclassif                       | ied t                           | Inclassifi                     | ed        | UL                                           |

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

## **TABLE OF CONTENTS**

| SEC | <u>HON</u>     |                                        | PAGE |
|-----|----------------|----------------------------------------|------|
| 1   | INTRODUCT      | ION                                    | 1    |
| 2   | MATERIALS      | AND TESTS                              | 3    |
| 3   | PRESENTATI     | ON                                     | 4    |
| 4   | RESULTS AN     | D DISCUSSION                           | 5    |
| 5   | CONCLUSIO      | NS                                     | 6    |
| APP | <u>ENDICES</u> |                                        |      |
|     | APPENDIX A     | PECHINEY'S 2091 PLATE                  | 7    |
|     | APPENDIX B     | PECHINEY'S 2091 SHEET                  | 61   |
|     | APPENDIX C     | PECHINEY'S 2091 FORGING                | 113  |
|     | APPENDIX D     | PECHINEY'S 8090 T-EXTRUSION            | 130  |
|     | APPENDIX E     | ALCAN'S 9090 EXTRUSION                 | 139  |
|     | APPENDIX F     | ALCAN'S 8090 PLATE                     | 181  |
|     | APPENDIX G     | INCO'S IN905XL FORGING                 | 203  |
|     | APPENDIX H     | INCO'S AL905XL FORGING                 | 248  |
|     | APPENDIX I     | REYNOLD'S 2095 PLATE                   | 271  |
|     | APPENDIX J     | ALCOA'S 2091 0.063 INCH SHEET          | 308  |
|     | APPENDIX K     | ALCOA'S 2091 0.144 INCH SHEET          | 338  |
|     | APPENDIX L     | ALCOA'S 2091 PLATE                     | 392  |
|     | APPENDIX M     | ALCOA'S 8090 T-EXTRUSION & L-EXTRUSION | 405  |
|     | APPENDIX N     | KAISER'S 7064 EXTRUSION                | 426  |

| icos  | sion For                              |                 |
|-------|---------------------------------------|-----------------|
| MTIS  | GRA&I                                 | Ø               |
| DTIC  | TAB                                   | ā               |
| Unann | ownced                                | Ō               |
| Just1 | fication                              |                 |
|       |                                       |                 |
| Ву    | · · · · · · · · · · · · · · · · · · · |                 |
|       | ibution/                              |                 |
| Aval  | lability                              | Çodes           |
| -     | Avail an                              | A/er            |
| Dist  | Specie                                | 1               |
| 1-4   |                                       |                 |
| 4,    |                                       | المالية المالية |

## TABLE OF CONTENTS Continued

| APPENDICES |                        | PAGE |
|------------|------------------------|------|
| APPENDIX O | KAISER'S 7064 FORGING  | 443  |
| APPENDIX P | ALCOA'S CW67 SHEET     | 467  |
| APPENDIX Q | ALCOA'S CW67 PLATE     | 484  |
| APPENDIX R | ALCOA'S CW67 EXTRUSION | 489  |
| APPENDIX S | ALCOA'S CW67 FORGING   | 519  |

## **LIST OF FIGURES**

| <b>FIGURE</b> |                                                                                                                     | PAGE |
|---------------|---------------------------------------------------------------------------------------------------------------------|------|
| <b>A</b> 1    | R-Curve Results for 2091-T351 0.42" Plate (longitudinal)                                                            | 19   |
| A2            | R-Curve Results for 2091 T351 0.42" Plate (transverse)                                                              | 19   |
| A3            | R-Curve Results for 2091 -T351 0.42" Plate (longitudinal)                                                           | 20   |
| <b>A4</b>     | R-Curve Results for 2091-T351 0.42" Plate (transverse)                                                              | 20   |
| <b>A</b> 5    | Fatigue Results for 2091-T351 0.42" Plate R=0.1, Kt=1.0                                                             | 25   |
| <b>A6</b>     | Crack Length Versus Flights for 2091-T351 Plate FALSTAFF Loading, Max Stress=20 KSI                                 | 26   |
| A7            | Crack Length Versus Flights for 2091-T351 Plate FALSTAFF Loading, Max Stress = 30 KSI                               | 26   |
| A8            | FALSTAFF Spectrum Results for 2091-T351 Plate Reduced in Terms of Growth Rate and Maximum Spectrum Stress Intensity | 27   |
| <b>A</b> 9    | Crack Length Versus Flights for 2091-T351 Plate Mini-TWIST Loading, Max Stress = 17 KSI                             | 28   |
| A10           | Crack Length Versus Flights for 2091-T351 Plate Mini-TWIST Loading, Max Stress = 26 KSI                             | 28   |
| A10A          | Fatigue Crack Growth Rate Data for 2091-T351 0.42" Plate L-T Orientation, General Dynamics, CA                      | 29   |
| A10B          | Fatigue Crack Growth Rate Data for 2091-T351 0.42" Plate T-L Orientation, General Dynamic, CA                       | 30   |
| A11           | Fatigue Results for 2091-T8X Plate R=0.1, Kt=1.0, Northrop                                                          | 49   |
| A12           | Fatigue Results for 2091-T8X Plate R=0.1, Kt=3.0, Northrop                                                          | 51   |
| A13           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate L-T Orientation, Northrop                                | 52   |
| A14           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate T-L Orientation, Northrop                                | 53   |
| A15           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate L-T Orientation, Grumman                                 | 54   |
| A16           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate T-L Orientation, Grumman                                 | 55   |

| FIGURE |                                                                                                 | PAGE |
|--------|-------------------------------------------------------------------------------------------------|------|
| A17    | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate T-L Orientation, Grumman             | 56   |
| A18    | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate 45° Orientation, Grumman             | 57   |
| A19    | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate L-T Orientation, General Dynamics TX | 58   |
| A20    | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate T-L Orientation, General Dynamics TX | 59   |
| A21    | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Plate T-L Orientation, General Dynamics TX | 60   |
| B1     | R-Curve Results for Pechiney 2091-T3 Sheet LT Orientation, General Dynamics CA                  | 71   |
| B2     | R-Curve Results for Pechiney 2091-T3 Sheet LT Orientation,                                      | 73   |
|        | General Dynamics CA                                                                             |      |
| В3     | R-Curve Results for Pechiney 2091-T3 Sheet LT Orientation,<br>General Dynamics CA               | 75   |
| B4     | R-Curve Results for Pechiney 2091-T3 Sheet TL Orientation,<br>General Dynamics CA               | 77   |
| B5     | R-Curve Results for Pechiney 2091-T3 Sheet TL Orientation,<br>General Dynamics CA               | 79   |
| В6     | R-Curve Results for Pechiney 2091-T3 Sheet TL Orientation, General Dynamics CA                  | 81   |
| B7     | R-Curve Results for Pechiney 2091-T3 Sheet LT Orientation, Martin Marietta LA                   | 83   |
| B8     | R-Curve Results for Pechiney 2091-T3 Sheet TL Orientation, Martin Marietta LA                   | 83   |
| В9     | R-Curve Results for Pechiney 2091-T3 Sheet LT Orientation, Martin Marietta LA                   | 84   |
| B10    | R-Curve Results for Pechiney 2091-T3 Sheet TL Orientation, Martin Marietta LA                   | 84   |
| B11    | Fatigue Results for Pechiney 2091-T3 Sheet Longitudinal Orientation, R=0.1, Kt=1.0              | 91   |

| <b>FIGURE</b> |                                                                                                     | PAGE |
|---------------|-----------------------------------------------------------------------------------------------------|------|
| B12           | Fatigue Results for Pechiney 2091-T3 Sheet Longitudinal Orientation, R=0.1, Kt=2.8                  | 92   |
| B13           | Fatigue Results for Pechiney 2091-T3 Sheet Transverse Orientation, R=0.1, Kt=2.8                    | 93   |
| B14           | Fatigue Crack Growth Rate Data for Pechiney 2091-T3 Sheet,<br>L-T Orientation, McDonnell Douglas LA | 94   |
| B15           | Fatigue Crack Growth Rate Data for Pechiney 2091-T3 Sheet, T-L Orientation, McDonnell Douglas LA    | 95   |
| B16           | R-Curve Results for Pechiney 2091-T8X Sheet<br>L-T Orientation, Grumman                             | 103  |
| B17           | R-Curve Results for Pechiney 2091-T8X Sheet T-L Orientation, Grumman                                | 104  |
| B18           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet L-T Orientation, Grumman                 | 106  |
| B19           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet T-L Orientation, Grumman                 | 107  |
| B20           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet 45° Orientation, Grumman                 | 108  |
| B21           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet L-T Orientation, Northrop                | 109  |
| B22           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet T-L Orientation, Northrop                | 110  |
| B23           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet L-T Orientation, General Dynamics TX     | 111  |
| B24           | Fatigue Crack Growth Rate Data for Pechiney 2091-T8X Sheet T-L Orientation, General Dynamics TX     | 112  |
| C1            | Pechiney 2091-T6 Precision Die Forging Dimensions                                                   | 114  |
| C2            | Fatigue Crack Growth Rate Data for Pechiney 2091-T6 Forgings, L-T Orientation, Northrop             | 128  |
| C3            | Fatigue Crack Growth Rate Data for Pechiney 2091-T6 Forgings, T-L Orientation, Northrop             | 129  |
| D1            | Fatigue Results for Pechiney 8090-T651 T-Extrusion Longitudinal Orientation, R=0.1, Kt=2.8, LTV     | 138  |

| <b>FIGURE</b> |                                                                                                        | PAGE |
|---------------|--------------------------------------------------------------------------------------------------------|------|
| El            | Fatigue Results for 8090-T651 1" x 4" Extrusion (R=0.1, Kt=1.0, Longitudinal)                          | 157  |
| E2            | Fatigue Results for 8090-T651 1" x 4" Extrusion (R=0.1, Kt=3.0, Longitudinal)                          | 159  |
| E3            | Fatigue Crack Growth Rate Data for Alcan 8090-T8 1" x 4" Extrusion (L-T Orientation). Grumman          | 160  |
| E4            | Fatigue Crack Growth Rate Data for Alcan 8090-T8 1" x 4" Extrusion (T-L Orientation). Grumman          | 161  |
| E5            | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1 " x 4" Extrusion (L-T Orientation). Northrop      | 162  |
| <b>E</b> 6    | Fatigue Crack Growth Rate for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). Northrop            | 163  |
| E7            | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). U.S. Air Force | 164  |
| E8            | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). U.S. Air Force | 165  |
| E9            | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). U.S. Air Force | 166  |
| E10           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force | 167  |
| E11           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force | 168  |
| E12           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force | 169  |
| E13           | Fatigue Crack Growth Rate Data for Alcan 8090-T651  1" x 4" Extrusion (L-T Orientation. NASA-Langley   | 170  |
| E14           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). NASA-Langley   | 171  |
| E15           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). NASA-Langley   | 172  |
| E16           | Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). NASA-Langley   | 173  |
| E17           | Fatigue Crack Growth Rate Data for Alcan 8090-T651  1" x 4" Extrusion (T-L Orientation). NASA-Langley  | 174  |

| <b>FIGURE</b> |                                                                                                                                                                 | PAGE |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| E18           | FALSTAFF Spectrum Results for 8090-T651 Extrusion                                                                                                               | 175  |
| E19           | Crack Length Versus Flights for 8090-T651 Extrusion Under FALSTAFF Loading, Max Stress = 30 KSI                                                                 | 176  |
| E20           | Crack Length Versus Flights for 8090-T651 Extrusion Under Mini-TWIST Loading, Max Stress = 17 KSI                                                               | 176  |
| E21           | Crack Length Versus Flights for 8090-T651 Extrusion Under Mini-TWIST Loading, Max Stress = 26 KSI                                                               | 177  |
| F1            | Fatigue Results for 8090-T8771 Plate (Longitudinal Orientation). Air Force.                                                                                     | 191  |
| F2            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation). Martin Marietta.                                                                         | 192  |
| F3            | Fatigue Crack growth Rate Data for 8090-T8771 Plate (T-L Orientation). Martin Marietta.                                                                         | 193  |
| F4            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate (S-T Orientation). Martin Marietta.                                                                         | 194  |
| F5            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.1). Air Force.                                                                     | 195  |
| F6            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.33). Air Force.                                                                    | 196  |
| F7            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation, R=0.1 and High Humidity). Air Force.                                                      | 197  |
| F8            | Fatigue Crack Growth Rate Data for 8090-T8771 Plate198 (L-T Orientation, R=0.33 and High Humidity). Air Force.                                                  | 198  |
| <b>F</b> 9    | Mini-TWIST Spectrum Crack Length vs Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress=16.9 ksi). Air Force.      | 199  |
| F10           | Mini-TWIST Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress=16.9 ksi). Air Force. | 200  |
| F11           | FALSTAFF Spectrum Crack Length vs Total Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress=20 ksi). Air Force.    | 201  |
| F12           | FALSTAFF Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress=20 ksi). Air Force.     | 202  |

| FIGURE |                                                                                                                                                                                | PAGE |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| G1     | IN905XL Jack Fitting Precision Forging                                                                                                                                         | 204  |
| G2     | Fatigue Results for IN905XL Forging (R=0.1, Kt=1.0), Sikorsky                                                                                                                  | 224  |
| G3     | Fatigue Results for IN905XL Forging (R=-1.0, Kt=1.0), Sikorsky                                                                                                                 | 228  |
| G4     | Fatigue Results for IN905XL Forging (R=0.1, Kt=3.0), Sikorsky                                                                                                                  | 231  |
| G5     | Fatigue Results for IN905XL Forging (R=-1.0, Kt=3.0), Sikorsky                                                                                                                 | 235  |
| G6     | Fatigue Crack Growth Rate Data for IN905XL Forging (L-T Orientation, KGRAD -2.00 and 2.00). Northrop.                                                                          | 238  |
| G7     | Fatigue Crack Growth Rate Data for IN905XL Forging (L-T Orientation, KGRAD -4.00 and 4.00). Northrop.                                                                          | 239  |
| G8     | Fatigue Crack Growth Rate Data for IN905XL Forging (T-L Orientation, KGRAD -2.00 and 2.00). Northrop.                                                                          | 240  |
| G9     | Fatigue Crack Growth Rate Data for IN905XL Forging (T-L Orientation, KGRAD -4.00 and 4.00). Northrop.                                                                          | 241  |
| G10    | Fatigue Crack Growth Rate Data for IN905XL Forging (S-L Orientation, KGRAD -2.00 and 2.00). Northrop.                                                                          | 242  |
| G11    | Fatigue Crack Growth Rate Data for IN905XL Forging (S-L Orientation, KGRAD -2.00, 2.00 and 2.00). Northrop.                                                                    | 243  |
| G12    | Fatigue Crack Growth Rate Data for Aged IN905XL Forging (L-T and T-L Orientation, R=0.1, 6Hz, Lab Air and a third order regression fit to each data set). General Dynamics TX. | 244  |
| G13    | Fatigue Crack Growth Rate Data for IN905XL Forging (WOL Specimen, L-T Orientation, R=0.02 and Lab Air). McDonnell Aircraft MO.                                                 | 245  |
| G14    | Fatigue Crack Growth Rate Data for IN905XL Forging (WOL Specimen, T-L Orientation, R=0.02 and Lab Air). McDonnell Aircraft MO.                                                 | 246  |
| G15    | Mini-TWIST Spectrum Fatigue Crack Growth Rate Data. Air Force.                                                                                                                 | 247  |
| H1     | AL905XL Back-Up Fitting Precision Forging                                                                                                                                      | 249  |

| <b>FIGURE</b> |                                                                                                                                                             | <b>PAGE</b> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| H2            | Fatigue Results for AL905XL Forging (Longitudinal Orientation, R=0.1, Kt=1.0). McDonnell Douglas Helicopter.                                                | 261         |
| Н3            | Fatigue Crack Growth Rate Data for AL905XL Forging (L-T Orientation), Northrop, MCAIR, Air Force.                                                           | 263         |
| H4            | Fatigue Crack Growth Rate Data for AL905XL Forging (K-decreasing Method, L-T Orientation). Northrop.                                                        | 264         |
| Н5            | Fatigue Crack Growth Rate Data for AL905XL Forging (T-L Orientation). Northrop, MCAIR, Air Force.                                                           | 265         |
| Н6            | Fatigue Crack Growth Rate Data for AL905XL Forging (K-decreasing method, T-L Orientation). Northrop.                                                        | 266         |
| Н7            | Fatigue Crack Growth Rate Data for AL905XL Forging (S-T Orientation), Northrop, MCAIR. Air Force                                                            | 267         |
| Н8            | FALSTAFF Spectrum Fatigue Crack Growth Rate Data for AL905XL Forging (L-S Orientation, Maximum Stress = 20 KSI, Lab Air and Room Temperature), Air Force    | 268         |
| Н9            | Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for AL905XL Forging (L-S Orientation, Maximum Stress=16.9 KSI, Lab Air and Room Temperature). Air Force. | 269         |
| <b>I</b> 1    | Hardness Profile through 2095-T8 Plate                                                                                                                      | 289         |
| <b>I</b> 2    | Ballistic Limit vs Armor Demand Data for 2095-T8 Plate                                                                                                      | 290         |
| <b>I</b> 3    | Fatigue Results for 2095-T8 0.5 Inch Plate (R=-1, Kt=1.0 and Kt=3.0)                                                                                        | 291         |
| <b>I</b> 4    | Fatigue Results for 2095-T8 0.5 Inch Plate (R=0.1 and Kt=1.0)                                                                                               | 294         |
| 15            | Fatigue Results for 2095-T8 0.5 Inch Plate (R=0.1 and Kt=3)                                                                                                 | 296         |
| <b>I6</b>     | Fatigue Crack Growth Data for 2095-T8 Plate (LT-LT Orientation, Specimen W45-1). Air Force.                                                                 | 298         |
| <b>I7</b>     | Fatigue Crack Growth Data for 2095-T8 Plate (LT-LT Orientation, Specimen W45-2). Air Force.                                                                 | 299         |
| 18            | Fatigue Crack Growth Data for 2095-T8 Plate (L-T and T-L Orientations). Northrop.                                                                           | 300         |
| 19            | Fatigue Crack Growth Data for 2095-T8 Plate (L-T Orientation, KGRAD -4.00 and 2.50). Northrop.                                                              | 301         |
| I10           | Fatigue Crack Growth Data for 2095-T8 Plate (L-T Orientation, KGRAD 2.50). Northrop.                                                                        | 302         |

| <b>FIGURE</b> |                                                                                                                                        | PAGE |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>I</b> 11   | Fatigue Crack Growth Data for 2095-T8 Plate (T-L Orientation, KGRAD -4.00 and 2.50). Northrop.                                         | 303  |
| I12           | Fatigue Crack Growth Data for 2095-T8 Plate (T-L Orientation, KGRAD 2.50). Northrop.                                                   | 304  |
| I13           | T-38 LIF Spectrum Fatigue Crack Growth Data for 2095-T8 Plate (Max Stress=38 ksi, Flaw = 0.01 inch). Northrop.                         | 305  |
| I14           | T-38 LIF Spectrum Fatigue Crack Growth Data for 2095-T8 Plate (Max Stress= 38 ksi, Flaw = 0.05 inch). Northrop.                        | 306  |
| 115           | T-38 LIF Spectrum Fatigue Crack Growth da/dFH vs a Data for 2095-T8 Plate. Northrop.                                                   | 307  |
| J1            | R-Curve Results for 2091-T3 0.063 Inch Sheet (L-T Orientation). Martin Marietta.                                                       | 311  |
| J2            | R-Curve Results for 2091-T3 0.063 Inch Sheet (T-L Orientation). Martin Marietta.                                                       | 311  |
| Ј3            | R-Curve Results for 2091-T3 0.063 Inch Sheet with Effective Crack Length Adjusted for Plastic Zone (L-T Orientation). Martin Marietta. | 312  |
| <b>J</b> 4    | R-Curve Results for 2091-T3 0.063 Inch Sheet with Effective Crack Length Adjusted for Plastic Zone (T-L Orientation). Martin Marietta. | 313  |
| J5            | FALSTAFF Spectrum Crack Length vs Flights Data for 2091-T3 0.063 Inch Sheet. Air Force.                                                | 318  |
| <b>J</b> 6    | FALSTAFF Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.063 Inch Sheet. Air Force.                                              | 319  |
| <b>J7</b>     | Mini-TWIST Spectrum Crack Length vs Flights Data for 2091-T3 0.063 Inch sheet. Air Force.                                              | 320  |
| J8            | Mini-TWIST Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.063 Inch Sheet. Air Force.                                            | 321  |
| <b>J9</b>     | Fatigue Crack Growth Rate Data for 2091-T8X 0.063 Inch Sheet Relative to 2024-T351 (L-T Orientation). Northrop.                        | 334  |
| J10           | Fatigue Crack Growth Rate Data for 2091-T8 0.063 Inch Sheet Relative to 2024-T351 (T-L Orientation). Northrop.                         | 335  |
| J11           | Fatigue Crack Growth Rate Data for 2091-T8 0.063 Inch Sheet (L-T Orientation). McDonnell Aircraft Company.                             | 336  |

| <b>FIGURE</b> |                                                                                                                                        | PAGE |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| J12           | Fatigue Crack Growth Rate Data for 2091-T8 0.063 Inch Sheet (T-L Orientation). McDonnell Aircraft Company.                             | 337  |
| <b>K</b> 1    | R-Curve Results for 2091-T3 0.144 Inch Sheet (L-T Orientation). Martin Marietta.                                                       | 347  |
| K2            | R-Curve Results for 2091-T3 0.144 Inch Sheet (T-L Orientation). Martin Marietta.                                                       | 348  |
| К3            | R-Curve Results for 2091-T3 0.144 Inch Sheet with Effective Crack Length Adjusted for Plastic Zone (L-T Orientation). Martin Marietta. | 349  |
| K4            | R-Curve Results for 2091-T3 0.144 Inch Sheet with Effective Crack Length Adjusted for Plastic Zone (T-L Orientation). Martin Marietta. | 350  |
| K5            | R-Curve Results for 2091-T3 0.144 Inch Sheet (L-T Orientation). Air Force.                                                             | 355  |
| <b>K</b> 6    | R-Curve Results for 2091-T3 0.144 Inch Sheet (T-L Orientation). Air Force.                                                             | 357  |
| <b>K</b> 7    | R-Curve Results for 2091-T3 0.144 Inch Sheet (60° Orientation, Specimen 1). Air Force.                                                 | 359  |
| K8            | R-Curve Results for 2091-T3 0.144 Inch Sheet (60° Orientation, Specimen 2). Air Force.                                                 | 361  |
| К9            | R-Curve Results for 2091-T3 0.144 Inch Sheet (L-T Orientation, -321°F). Air Force                                                      | 363  |
| K10           | Fatigue Results for 2091-T3 0.144 Inch Sheet (R=1.0, Kt=1.0). McDonnell Douglas Astronautics.                                          | 366  |
| <b>K</b> 11   | Fatigue Results for 2091-T3 0.144 Inch Sheet (r=1.0, Kt=3.0). McDonnell Douglas Astronautics.                                          | 368  |
|               | 2091-T3 0.144 Inch Sheet. Air Force.                                                                                                   | 369  |
| K13           | FALSTAFF Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.144 Inch Sheet. Air force.                                              | 370  |
| K14           | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 2091-T3 0.144 Inch Sheet (Specimen #2091A912). Air Force.                 | 371  |
| K15           | Mini-TWIST Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.144 Inch Sheet (Specimen #2091A912). Air Force.                       | 372  |
| K16           | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 2091-T3 0.144 Inch Sheet (Specimen #2091T34M). Air Force.                 | 373  |

| <b>FIGURE</b> |                                                                                                                       | PAGE |
|---------------|-----------------------------------------------------------------------------------------------------------------------|------|
| K17           | Mini-Twist Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.144 Inch Sheet (Specimen #2091T34M). Air Force.      | 374  |
| K18           | Tear Strength to Yield Strength Ratio vs Yield Strength Data for 2091-T3 Aged 16/32 Hours at 335°F. General Dynamics. | 382  |
| K19           | Fatigue Crack Growth Rates for 2091-T8X 0.144 Inch Sheet Relative to 2024-T351 (L-T Orientation). Northrop.           | 390  |
| K20           | Fatigue Crack Growth Rates for 2091-T8X 0.144 Inch Sheet Relative to 2024-T351 (T-L Orientation). Northrop.           | 391  |
| L1            | A Comparison of Delay Cycles Due to Fatigue Crack Growth Retardation for a 60 Percent Overload Cycle. Air Force.      | 398  |
| L2            | Delay Cycles Due to Fatigue Crack Growth Retardation for an 80 Percent Overload Cycle. Air Force.                     | 399  |
| L3            | A Comparison of the Crack Closure Level Prior to the Application of a 60 Percent Overload Cycle. Air Force.           | 400  |
| 1.4           | Crack Velocity Versus Post-Overload Crack Extension for Alloy 2091-T83 Sheet. Air Force.                              | 402  |
| L5            | Crack Velocity Versus Post-Overload Crack Extension for Alloy 2091-T81 Plate 0.144 Inch Thick Specimen. Air Force.    | 403  |
| L6            | Crack Velocity Versus Post-Overload Crack Extension for Alloy 2091-T81 Plate 0.250 Inch Thick Specimen. Air Force.    | 404  |
| M1            | 8090-T8 Hat Extrusion Geometry                                                                                        | 406  |
| M2            | 8090-T8 L-Extrusion Geometry                                                                                          | 406  |
| M3            | Fatigue Results for 8090-T8771 L-Extrusion (R=0.1 and Kt=1.0). Army.                                                  | 422  |
| M4            | Fatigue Crack Growth Rates for 8090-T8771 L-Extrusion (L-T Orientation). Martin Marietta.                             | 423  |
| M5            | Fatigue Crack Growth Rates for 8090-T8771 L-Extrusion (T-L Orientation). Martin Marietta.                             | 424  |
| M6            | Fatigue Crack Growth Rates for 8090-T8771 L-Extrusion (S-T Orientation). Martin Marietta.                             | 425  |
| NI            | Fatigue Results for 7064-T74511 Extrusion (Longitudinal Orientation). LTV.                                            | 436  |
| N2            | Fatigue Crack Growth Rate Data for Two 7064-T74511 Extrusion Specimens (L-T). Air Force.                              | 437  |

| <b>FIGURE</b> |                                                                                                                       | PAGE |
|---------------|-----------------------------------------------------------------------------------------------------------------------|------|
| N3            | Fatigue Crack Growth Rate Data for Two 7064-T74511 Extrusion Specimens (T-L). Air Force.                              | 438  |
| N4            | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force.                        | 439  |
| N5            | Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion. Air Force.                              | 440  |
| N6            | FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force.                          | 441  |
| N7            | FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion. Air Force.                                | 442  |
| 01            | Fatigue Data for 7064-T74 Forging (Longitudinal Orientation, R=0.1, Kt=1 and Kt=3). LTV.                              | 459  |
| O2            | Fatigue Data for 7064-T74 Forging (Longitudinal Orientation, R=-1.0, and Kt=1). McDonnell Aircraft Company.           | 461  |
| O3            | Fatigue Crack Growth Rate Data for 7064-T74 Forging (T-L Orientation, WOL Type Specimen). McDonnell Aircraft Company. | 462  |
| 04            | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force.                             | 463  |
| O5            | Mini-TWIST Spectrum Fatigue Fatigue Crack Growth Rate Data for 7064-T74 Forging. Air Force.                           | 464  |
| O6            | FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-t74 Forging. Air Force.                               | 465  |
| 07            | FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging. Air Force.                                     | 466  |
| P1            | R-Curve Data for CW67 Sheet (L-T Orientation). Martin Marietta.                                                       | 477  |
| P2            | R-Curve Effective Crack Length Adjusted for Plastic Zone (L-T Orientation). Martin Marietta                           | 477  |
| Р3            | Fatigue Crack Growth Rate Data for CW67 Sheet (L-T Orientation, R=0.1, Lab Air and RT). McDonnell Aircraft Company.   | 480  |
| P4            | Fatigue Crack Growth Rate Data for CW67 Sheet (L-T Orientation, R=0.33, Lab Air and RT. McDonnell Aircraft Company.   | 481  |
| P5            | Fatigue Crack Growth Rate Data for CW67 Sheet (T-L Orientation, R=0.1, Lab Air and RT). McDonnell Aircraft Company.   | 482  |

| <b>FIGURE</b> |                                                                                                                      | PAGE |
|---------------|----------------------------------------------------------------------------------------------------------------------|------|
| P6            | Fatigue Crack Growth Rate Data for CW67 Sheet (T-L Orientation, R=0.33, Lab Air and RT). McDonnell Aircraft Company. | 483  |
| Q1            | R-Curve Data for CW67 Plate (L-T Orientation). Martin Marietta.                                                      | 486  |
| Q2            | R-Curve Effective Crack Length Adjusted for Plastic Zone Data for CW67 Plate (L-T Orientation). Martin Marietta.     | 486  |
| R1            | Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and R=0.1). McDonnell Aircraft Company.           | 498  |
| R2            | Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and R=0.33). McDonnell Aircraft Company.          | 499  |
| R3            | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and R=0.1). McDonnell Aircraft Company.           | 500  |
| R4            | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and R=0.33). McDonnell Aircraft Company.          | 501  |
| R5            | Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation). Air Force.                                      | 502  |
| R6            | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation). Air Force.                                      | 503  |
| R7            | Fatigue Crack growth Rate Data for CW67 Extrusion (L-T Orientation and High Humidity). Air Force.                    | 504  |
| R8            | Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-1). LTV.                         | 505  |
| R9            | Fatigue Crack Growth rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-2). LTV.                         | 506  |
| R10           | Fatigue Crack Growth Rate Data for CW67 Extrusion (L-T Orientation and Specimen GLT-3). LTV.                         | 507  |
| R11           | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-1). LTV.                         | 508  |
| R12           | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-2). LTV.                         | 509  |
| R13           | Fatigue Crack Growth Rate Data for CW67 Extrusion (T-L Orientation and Specimen GTL-3). LTV.                         | 510  |
| R14           | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion (CSP-2). Air Force.                      | 511  |

| FIGURE     |                                                                                                          | PAGE |
|------------|----------------------------------------------------------------------------------------------------------|------|
| R15        | Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-2). Air Force.                | 512  |
| R16        | Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion (CSP-4). Air Force.          | 513  |
| R17        | Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-4). Air Force.                | 514  |
| R18        | FALSTAFF Spectrum Fatigue Crack Length vs Flights (CSP-1). Air Force.                                    | 515  |
| R19        | FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-1). Air Force.                  | 516  |
| R20        | FALSTAFF Spectrum Fatigue Crack Length vs Flights (CSP-3). Air Force.                                    | 517  |
| R21        | FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion (CSP-3). Air Force.                  | 518  |
| S1         | Fatigue Crack Growth Rate Data for CW67 Forging (L-T Orientation). Air Force.                            | 529  |
| S2         | Fatigue Crack Growth Rate Data for CW67 Forging (T-L Orientation). Air Force.                            | 530  |
| <b>S</b> 3 | Fatigue crack Growth Rate Data for CW67 Forging (S-T Orientation). Air Force.                            | 531  |
| S4         | Comparison of CW67 Forging and 7050 Plate Mini-TWIST Spectrum Fatigue Crack Growth Rate Data. Air Force. | 532  |
| <b>S</b> 5 | Comparison of CW67 Forging and 7050 Plate FALSTAFF Spectrum Fatigue Crack Growth Rate Data. Air Force.   | 533  |

## LIST OF TABLES

| TABLE      |                                                                                            | PAGE |
|------------|--------------------------------------------------------------------------------------------|------|
| <b>A</b> 1 | Tensile Results at t/2 Location for Pechiney 2091-T351 Plate, Longitudinal Orientation     | 9    |
| A2         | Tensile Results at t/2 Location of Pechiney 2091-T351 Plate, Transverse Orientation        | 10   |
| A3         | Compression Results at t/2 Location for Pechiney 2091-T351 Plate, Longitudinal Orientation | 11   |
| A4         | Compression Results at t/2 Location for Pechiney 2091-T351 Plate, Transverse Orientation   | 12   |
| A5         | Rivet Shear Results for Pechiney 2091-T351 Plate,<br>Longitudinal Orientation              | 13   |
| <b>A6</b>  | Rivet Shear Results for Pechiney 2091-T351 Plate,<br>Transverse Orientation                | 13   |
| A7         | Amsler Double Shear Results for Pechiney 2091-T351 Plate                                   | 14   |
| A8         | Bearing Results for Pechiney 2091-T351 Plate,<br>Longitudinal Orientation, e/D=1.5         | 15   |
| <b>A9</b>  | Bearing Results for Pechiney 2091-T351 Plate,<br>Transverse Orientation, e/D=1.5           | 15   |
| A10        | Bearing Results for Pechiney 2091-T351 Plate,<br>Longitudinal Orientation, e/D=2.0         | 16   |
| A11        | Bearing Results for Pechiney 2091-T351 Plate,<br>Transverse Orientation, e/D=2.0           | 16   |
| A12        | Fracture Toughness Results for Pechiney 2091-T351 Plate,<br>L-T Orientation                | 17   |
| A13        | Fracture Toughness Results for Pechiney 2091-T351 Plate, T-L Orientation                   | 18   |
| A14        | R-Curve Data for 2091 Specimen No. 1, Longitudinal Orientation                             | 21   |
| A15        | R-Curve Data for 2091 Specimen No. 2, Longitudinal Orientation                             | 22   |
| A16        | R-Curve Data for 2091 Specimen No. 3, Transverse Orientation                               | 23   |
| A17        | Fatigue Results for Pechiney 2091-T351 Plate R=0.1, Kt=1.0                                 | 24   |
| A18        | Tensile Results at t/2 Location for Pechiney 2091-T8X Plate,                               | 32   |

| TABLE |                                                                                                               | PAGE |
|-------|---------------------------------------------------------------------------------------------------------------|------|
| A19   | Tensile Results at t/2 Location for Pechiney 2091-T8X Plate, Transverse Orientation                           | 33   |
| A20   | Tensile Results at t/2 Location for Pechiney 2091-T8X Plate, 45° Orientation                                  | 34   |
| A21   | Tensile Results at t/10 Location for Pechiney 2091-T8X Plate, Longitudinal Orientation                        | 35   |
| A22   | Tensile Results at t/10 Location for Pechiney 2091-T8X Plate, Transverse Orientation                          | 35   |
| A23   | Tensile Results at t/2 Location with 100 Hours Exposure for Pechiney 2091-T8X Plate, Longitudinal Orientation | 36   |
| A24   | Compression Results at t/2 Location for Pechiney 2091-T8X Plate, Longitudinal Orientation                     | 37   |
| A25   | Compression Results at t/2 Location for Pechiney 2091-T8X Plate, Transverse Orientation                       | 38   |
| A26   | Compression Results at t/2 Location for Pechiney 2091-T8X Plate, 45° Orientation                              | 38   |
| A27   | Rivet Shear Results for Pechiney 2091-T8X Plate, L-S Orientation                                              | 39   |
| A28   | Rivet Shear Results for Pechiney 2091-T8X Plate, T-S Orientation                                              | 39   |
| A29   | Slotted Shear Results for Pechiney 2091-T8X Plate,<br>Longitudinal Orientation                                | 40   |
| A30   | Slotted Shear Results for Pechiney 2091-T8X Plate,<br>Transverse Orientation                                  | 40   |
| A31   | Bearing Results for Pechiney 2091-T8X Plate,<br>Longitudinal Orienation, e/D=1.5                              | 41   |
| A32   | Bearing Results for Pechiney 2091-T8X Plate,<br>Transverse Orientation, e/D=1.5                               | 42   |
| A33   | Bearing Results for Pechiney 2091-T8X Plate,<br>Longitudinal Orientation, e/D=2.0                             | 43   |
| A34   | Bearing Results for Pechiney 2091-T8X Plate,<br>Transverse Orientation, e/D=2.0                               | 44   |
| A35   | Fracture Toughness Results for Pechiney 2091-T8X Plate,<br>L-T Orientation                                    | 45   |

| TABLE |                                                                                             | PAGE |
|-------|---------------------------------------------------------------------------------------------|------|
| A36   | Fracture Toughness Results for Pechiney 2091-T8X Plate,                                     | 46   |
| A37   | T-L Orientation R-Curve Results for Pechiney 2091-T8X Plate General Dynamics, TX            | 47   |
| A38   | Smooth Fatigue Results for Pechiney 2091-T8X Plate R=0.1, Kt=1.0, Longitudinal Orientation  | 48   |
| A39   | Notched Fatigue Results for Pechiney 2091-T8X Plate R=0.1, Kt=3.0, Longitudinal Orientation | 50   |
| B1    | Tensile Results for Pechiney 2091-T3 Sheet, Longitudinal Orientation                        | 63   |
| B2    | Tensile Results for Pechiney 2091-T3 Sheet, Transverse Orientation                          | 64   |
| В3    | Compression Results for Pechiney 2091-T3 Sheet, Longitudinal Orientation                    | 65   |
| B4    | Compression Results for Pechiney 2091-T3 Sheet,<br>Transverse Orientation                   | 65   |
| B5    | Punch Shear Results for Pechiney 2091-T3 Sheet,<br>Short Transverse Orientation             | 66   |
| В6    | Slotted Shear Results for Pechiney 2091-T3, Longitudinal Orientation                        | 66   |
| B7    | Slotted Shear Results for Pechiney 2091-T3, T-L Orientation                                 | 67   |
| B8    | Bearing Results for Pechiney 2091-T3 Sheet,<br>Longitudinal Orientation, e/D=1.5            | 68   |
| В9    | Bearing Results for Pechiney 2091-T3 Sheet,<br>Transverse Orientation, e/D=1.5              | 68   |
| B10   | Bearing Results for Pechiney 2091-T3 Sheet,<br>Longitudinal Orientation, e/D=2.0            | 69   |
| B11   | Bearing Results for Pechiney 2091-T3 Sheet,<br>Transverse Orientation, e/D=2.0              | 69   |
| B12   | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT Orientation, General Dynamics CA          | 70   |
| B13   | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT Orientation, General Dynamics CA          | 72   |
| B14   | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT Orientation, General Dynamics CA          | 74   |
| B15   | R-Curve Results for Pechiney 2091-T3 Sheet,<br>TL Orientation, General Dynamics Ca          | 76   |

| TABLE       |                                                                                        | PAGE |
|-------------|----------------------------------------------------------------------------------------|------|
| <b>B</b> 16 | R-Curve Results for Pechiney 2091-T3 Sheet,<br>TL Orientation, General Dynamics CA     | 78   |
| B17         | R-Curve Results for Pechiney 2091-T3 Sheet,<br>TL Orientation, General Dynamics CA     | 80   |
| B18         | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT and TL Orientation, MCAIR            | 82   |
| B19         | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT Orientation, Martin Marietta LA      | 85   |
| B20         | R-Curve Results for Pechiney 2091-T3 Sheet,<br>LT Orientation, Martin Marietta LA      | 86   |
| B21         | R-Curve Results for Pechiney 2091-T3 Sheet, TL Orientation, Martin Marietta LA         | 87   |
| B22         | R-Curve Results for Pechiney 2091-T3 Sheet, TL Orientation, Martin Marietta LA         | 88   |
| B23         | Fatigue Results for Pechiney 2091-T3 Sheet,<br>Longitudinal Orientation, R=0.1, Kt=1.0 | 89   |
| B24         | Fatigue Results for Pechiney 2091-T3 Sheet,<br>Longitudinal Orientation, R=0.1, Kt=3.0 | 89   |
| B25         | Fatigue Results for Pechiney 2091-T3 Sheet,<br>Longitudinal Orientation, R=0.1, Kt=2.8 | 90   |
| B26         | Fatigue Results for Pechiney 2091-T3 Sheet,<br>Transverse Orientation, R=0.1, Kt=2.8   | 90   |
| B27         | Tensile Results for Pechiney 2091-T8X Sheet,<br>Longitudinal Orientation               | 97   |
| B28         | Tensile Results for Pechiney 2091-T8X Sheet,<br>Transverse Orientation                 | 97   |
| B29         | Compression Results for Pechiney 2091-T8X Sheet,<br>Longitudinal Orientation           | 98   |
| B30         | Compression Results for Pechiney 2091-T8X Sheet,<br>Transverse Orientation             | 98   |
| B31         | Compression Results for Pechiney 2091-T8X Sheet, 45° Orientation                       | 99   |
| B32         | Slotted Shear Results for Pechiney 2091-T8X Sheet,<br>Longitudinal Orientation         | 100  |

| TABLE     |                                                                                               | PAGE |
|-----------|-----------------------------------------------------------------------------------------------|------|
| В33       | Slotted Shear Results for Pechiney 2091-T8X Sheet,<br>Transverse Orientation                  | 100  |
| B34       | Bearing Results for Pechiney 2091-T8X Sheet,<br>Longitudinal Orientation, E/D=1.5             | 101  |
| B35       | Bearing Results for Pechiney 2091-T8X Sheet,<br>Transverse Orientation, e/D=1.5               | 101  |
| B36       | Bearing Results for Pechiney 2091-T8X Sheet,<br>Longitudinal Orientation, e/D=2.0             | 102  |
| В37       | Bearing Results for Pechiney 2091-T8X Sheet,<br>Transverse Orientation, e/D=2.0               | 102  |
| B38       | R-Curve Results for Pechiney 2091-T8X Sheet,<br>L-T and T-L Orientations, General Dynamics TX | 105  |
| C1        | Tensile Results at t/2 Locations for Pechiney 2091-T6 Forgings, Longitudinal Orientation      | 115  |
| C2        | Tensile Results at t/2 Locations for Pechiney 2091-T6 Forgings, Transverse Orientation        | 116  |
| C3        | Tensile Results at t/2 Locations for Pechiney 2091-T6 Forgings, Short Transverse Orientation  | 117  |
| C4        | Compression Results at t/2 Locations for Pechiney 2091-T6 Forgings, Longitudinal Orientation  | 118  |
| C5        | Compression at t/2 Locations for Pechiney 2091-T6 Forgings, Transverse Orientation            | 119  |
| C6        | Amsler Double Shear Results for Pechiney 2091-T6 Forgings,<br>L-S Orientation                 | 120  |
| <b>C7</b> | Amsler Double Shear Results for Pechiney 2091-T6 Forgings, T-S Orientation                    | 121  |
| C8        | Slotted Shear Results for Pechiney 2091-T6 Forgings,<br>Longitudinal Orientation              | 122  |
| C9        | Bearing Results for Pechiney 2091-T6 Forgings,<br>Longitudinal Orientation, e/D=1.5           | 123  |
| C10       | Bearing Results for Pechiney 2091-T6 Forgings,<br>Longitudinal Results, e/D=2.0               | 124  |
| C11       | Bearing Results for Pechiney 2091-T6 Forgings,<br>Transverse Orientation, e/D=2.0             | 125  |

| TABLE |                                                                                                                       | PAGE |
|-------|-----------------------------------------------------------------------------------------------------------------------|------|
| C12   | Fracture Toughness Results for Pechiney 2091-T6 Forgings,<br>L-T Orientation                                          | 126  |
| C13   | Fracture Toughness Results for Pechiney 2091-T6 Forgings, T-L Orientation                                             | 127  |
| D1    | Tensile Results for Pechiney 8090-T651 T-Extrusion,<br>Longitudinal Orientation                                       | 131  |
| D2    | Tensile Results for Pechiney 8090-T651 T-Extrusion, Transverse Orientation                                            | 131  |
| D3    | Compression Results for Pechiney 8090-T651 T-Extrusion, Longitudinal Orientation                                      | 132  |
| D4    | Slotted Shear Results for Pechiney 8090-T651 T-Extrusion, Longitudinal Orientation                                    | 133  |
| D5    | Slotted Shear Results for Pechiney 8090-T651 T-Extrusion, Transverse Orientation                                      | 133  |
| D6    | Iosipescu Shear Results for Pechiney 8090-T651 T-Extrusion, Longitudinal Orientation                                  | 134  |
| D7    | Iosipescu Shear Results for Pechiney 8090-T651 T-Extrusion, Transverse Orientation                                    | 134  |
| D8    | Bearing Results for Pechiney 8090-T651 T-Extrusion, Longitudinal Orientation, e/D=1.5                                 | 135  |
| D9    | Bearing Results for Pechiney 8090-T651 T-Extrusion, Longitudinal Orientation, e/D=2.0                                 | 136  |
| D10   | Fatigue Results for Pechiney 8090-T651 T-extrusion, Longitudinal Orientation, R=0.1, Kt=2.8                           | 137  |
| E1    | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Longitudinal Orientation, Varying Test Temperatures    | 140  |
| E2    | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Longitudinal Orientation, Varying Test Temperatures    | 141  |
| E3    | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Long Transverse Orientation                            | 142  |
| E4    | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Long Transverse Orientation, Varying Test Temperatures | 143  |
| E5    | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Short Transverse Orientation                           | 144  |

| <b>TABLE</b> |                                                                                             | PAGE |
|--------------|---------------------------------------------------------------------------------------------|------|
| <b>E</b> 6   | Tensile Results at t/10 Location for Alcan 8090-T651 Extrusion, Longitudinal Orientation    | 145  |
| E7           | Tensile Results at t/10 Location for Alcan 8090-T651 Extrusion, Long Transverse Orientation | 145  |
| E8           | Tensile Results at t/2 Location for Alcan 8090-T651 Extrusion, Aged 100 Hrs at 350°F        | 146  |
| E9           | Notch Tensile results at t/2 Location for Alcan 8090-T651 Extrusion                         | 147  |
| E10          | Compression Results for Alcan 8090-T651 Extrusion,<br>Longitudinal Orientation              | 148  |
| E11          | Compression Results for Alcan 8090-T651 Extrusion,<br>Long Transverse Orientation           | 148  |
| E12          | Rivet Shear Results for Alcan 8090-T651 Extrusion,<br>L-S Orientation                       | 149  |
| E13          | Rivet Shear Results for Alcan 8090-t651 Extrusion, T-S Orientation                          | 149  |
| E14          | Amsler Double Shear Results for Alcan 8090-T651 Extrusion, L-S Orientation                  | 150  |
| E15          | Amsler Double Shear Results for Alcan 8090-T651 Extrusion, T-S Orientation                  | 150  |
| E16          | Bearing Results for Alcan 8090-T651 Extrusion, c/D=1.5, Longitudinal Orientation            | 151  |
| E17          | Bearing Results for Alcan 8090-T651 Extrusion, c/D=1.5,<br>Long Transverse Orientation      | 151  |
| E18          | Bearing Results for Alcan 8090-T651 Extrusion, c/D=2.0, Longitudinal Orientation            | 152  |
| E19          | Bearing Results for Alcan 8090-t651 Extrusion, c/D=2.0, Long Transverse Orientation         | 152  |
| E20          | Fracture Toughness Results for Alcan 8090-T651 Extrusion L-T Orientation                    | 153  |
| E21          | Fracture Toughness Results for Alcan 8090-T651 Extrusion T-L Orientation                    | 154  |
| E22          | Stress Corrosion Cracking Results for Alcan 8090-T651 Extrusion T-L Orientation             | 155  |

| TABLE |                                                                                                        | PAGE |
|-------|--------------------------------------------------------------------------------------------------------|------|
| E23   | Fatigue Results for Alcan 8090-T651 Extrusion, R=0.1, Kt=1.0, Longitudinal Orientation                 | 156  |
| E24   | Fatigue Results for Alcan 8090-T651 Extrusion, R=0.1, Kt=3.0, Longitudinal Orientation                 | 158  |
| E25   | Tensile Results at t/2 Location for Alcan 8090-T8 Extrusion                                            | 178  |
| E26   | Compression Results at t/2 Location for Alcan 8090-T8 Extrusion                                        | 179  |
| E27   | Fracture Toughness Results for Alcan 8090-T8 Extrusion                                                 | 180  |
| F1    | Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, Longitudinal Orientation                   | 182  |
| F2    | Tensile Results at t/2 Location for Alcan 8090-T8771 Plate 45 Degree Orientation                       | 182  |
| F3    | Tensile Results at t/2 Location for Alcan 8090-T8771 Plate, Long Transverse Orientation                | 183  |
| F4    | Tensile results at t/2 Location for Alcan 80909-T8771 Plate, Short Transverse Orientation              | 183  |
| F5    | Compression results 3t t/2 Location for Alcan 8090-T8771 Plate, Longitudinal Orientation               | 184  |
| F6    | Compression Results at t/2 Location for Alcan 8090-T8771 Plate, Long Transverse Orientation            | 184  |
| F7    | Compression Results at t/2 Location for Alcan 8090-T8771 Plate, Short Transverse Orientation           | 185  |
| F8    | Amsler Double Shear Results at t/2 Location for Alcan 8090-T8771 Plate, T-L Orientation                | 186  |
| F9    | Bearing Results at t/2 Location for Alcan 8090-T8771 Plate, Longitudinal Orientation and e/D=1.5       | 187  |
| F10   | Bearing Results at t/2 Location for Alcan 8090-T8771 Plate,<br>Long Transverse Orientation and e/D=1.5 | 187  |
| F11   | Fracture Toughness Results for Alcan 8090-T8771 Plate, L-T Orientation                                 | 188  |
| F12   | Fracture Toughness Results for Alcan 8090-T8771 Plate, S-L Orientation                                 | 188  |
| F13   | Fracture Toughness Results for Alcan 8090-T8771 Plate,                                                 | 189  |

| TABLE |                                                                                            | PAGE |
|-------|--------------------------------------------------------------------------------------------|------|
| F14   | Fracture Toughness Results for Alcan 8090-T8771 Plate, S-T Orientation                     | 189  |
| F15   | Fatigue Results with R=0.1 and Kt=1.0 for Alcan 8090-T8771 Plate, Longitudinal Orientation | 190  |
| F16   | Fatigue Results with R=0.1 and Kt=3.0 for Alcan 8090-T8771 Plate, Longitudinal Orientation | 190  |
| G1    | Tensile Results for IN905XL Forging, Longitudinal Orientation                              | 205  |
| G2    | Tensile Results for IN905XL Forging, Long Transverse Orientation                           | 206  |
| G3    | Tensile Results for IN905XL Forging, Short Transverse Orientation                          | 207  |
| G4    | Tensile Results for Heat Treated IN905XL Forgings,<br>Longitudinal Orientation             | 208  |
| G5    | Tensile Results for Heat Treated IN905XL Forgings,<br>Long Transverse Orientation          | 208  |
| G6    | Compression Results for IN905XL Forging, Longitudinal Orientation                          | 209  |
| G7    | Compression Results for IN905XL Forging, Long Transverse Orientation                       | 210  |
| G8    | Compression Results for IN905XL Forging,<br>Short Transverse Orientation                   | 211  |
| G9    | Compression Results for Heat Treated IN905XL Forging,<br>Longitudinal Orientation          | 212  |
| G10   | Compression Results for Heat Treated IN905XL Forging,<br>Long Transverse Orientation       | 212  |
| G11   | Iosipescu Shear Results for IN905XL Forging,<br>Longitudinal Orientation                   | 213  |
| G12   | Iosipescu Shear Results for IN905XL Forging,<br>Long Transverse Orientation                | 213  |
| G13   | Amsler Double Shear Results for Heat Treated IN905XL Forging, L-S Orientation              | 214  |
| G14   | Amsler Double Shear Results for IN905XL Forging,<br>L-S Orientation                        | 214  |
| G15   | Amsler Double Shear Results for IN905XL Forging, T-S Orientation                           | 215  |

| TABLE       |                                                                                           | PAGE |
|-------------|-------------------------------------------------------------------------------------------|------|
| <b>G</b> 16 | Slotted Shear Results for IN905XL,<br>Longitudinal Orientation                            | 215  |
| G17         | Bearing Results for IN905XL Forging, Longitudinal Orientation (c/D=1.5)                   | 216  |
| G18         | Bearing Results for IN905XL Forging,<br>Long Transverse Orientation (c/D=1.5)             | 216  |
| G19         | Bearing Results for IN905XL Forging,<br>Longitudinal Orientation (e/D=2.0)                | 217  |
| G20         | Bearing Results for Heat Treated IN905XL Forging, Longitudinal Orientation (e/D=2.0)      | 217  |
| G21         | Bearing Results for Heat Treated IN905XL Forging,<br>Long Transverse Orientation(e/D=2.0) | 218  |
| G22         | Bearing Results for Heat Treated IN905XL Forging,<br>Long Transverse (e/D=2.0)            | 218  |
| G23         | Fracture Toughness Results for IN905XL Forging,<br>L-T Orientation                        | 219  |
| G24         | Fracture Toughness Results for IN905XL Forging, T-L Orientation                           | 220  |
| G25         | Fracture Toughness Results for IN905XL Forging, T-S Orientation                           | 221  |
| G26         | Fracture Toughness Results for IN905XL Forging, S-T Orientation                           | 222  |
| G27         | Fracture Toughness Results for IN905XL Forging, S-L Orientation                           | 222  |
| G28         | Fracture Toughness Results for Heat Treated IN905XL Forging, L-T Orientation              | 223  |
| G29         | Fracture Toughness Results for Heat Treated IN905XL Forging, T-L Orientation              | 223  |
| G30         | Fatigue Results with R=0.1 and Kt=1.0 for IN905XL Forging, Longitudinal Orientation       | 225  |
| G31         | Fatigue Results with R=0.1 and Kt=1.0 for IN905XL Forging, Long Transverse Orientation    | 226  |
| G32         | Fatigue Results with R=0.1 and Kt=1.0 for IN905XL Forging, Short Transverse Orientation   | 227  |

| TABLE |                                                                                          | PAGE |
|-------|------------------------------------------------------------------------------------------|------|
| G33   | Fatigue Results with R=-1.0 and Kt=1.0 for IN905XL Forging, Longitudinal Orientation     | 229  |
| G34   | Fatigue Results with R=-1.0 and Kt=1.0 for IN905XL Forging, Long Transverse Orientation  | 230  |
| G35   | Fatigue Results with R=0.1 and Kt=3.07 for IN905XL Forging, Longitudinal Orientation     | 232  |
| G36   | Fatigue Results with R=0.1 and Kt=3.07 for IN905XL Forging, Long Transverse Orientation  | 233  |
| G37   | Fatigue Results with R=0.1 and Kt=3.07 for IN905XL Forging, Short Transverse Orientation | 234  |
| G38   | Fatigue Results with R=-1.0 and Kt=3.07 for IN905XL Forging, Longitudinal Orientation    | 236  |
| G39   | Fatigue Results with R=-1.0 and Kt=3.07 for IN905XL Forging, Long Transverse Orientation | 237  |
| H1    | Tensile Results for AL905XL Forging, Longitudinal Orientation                            | 250  |
| H2    | Tensile Results for AL905XL Forging, Transcrise Orientation                              | 251  |
| Н3    | Tensile Results for AL905XL Forging, Short Fransverse Orientation                        | 252  |
| H4    | Compression Results for AL905XL Forging, Longitudinal Orientation                        | 253  |
| H5    | Compression Results for AL905XL Forging, Transverse Orientation                          | 254  |
| Н6    | Compression Results for AL905XL Forging,<br>Short Transverse Orientation                 | 254  |
| Н7    | Amsler Double Shear Results for AL905XL Forging L-S Orientation                          | 255  |
| Н8    | Pin Shear Results for AL905XL Forging, L-S Orientation                                   | 255  |
| Н9    | Bearing Results for AL905XL Forging,<br>Longitudinal Orientation, c/D=1.5                | 256  |
| H10   | Bearing Results for AL905XL Forging,<br>Longitudinal Orientation, e/D=2.0                | 256  |
| H11   | Fracture Toughness Results for AL905XL Forging,                                          | 257  |

| TABLE      |                                                                                         | PAGE |
|------------|-----------------------------------------------------------------------------------------|------|
| H12        | Fracture Toughness Results for AL905XL Forging,<br>T-L Orientation                      | 258  |
| H13        | Fracture Toughness Results for AL905XL Forging, S-L Orientation                         | 259  |
| H14        | Fracture Toughness Results for Al905XL Forging,<br>S-T Orientation                      | 260  |
| H15        | Fatigue Results for AL905XL Forging, (Longitudinal Orientation, R=0.1, Kt=1.0)          | 262  |
| H16        | Stress Corrosion Properties for AL905 XL Forging,<br>Wyman Gordon                       | 270  |
| <b>I</b> 1 | Tensile Results for 2095-T8 Plate, Longitudinal Orientation                             | 272  |
| 12         | Tensile Results for 2095-T8 Plate, Long Transverse Orientation                          | 273  |
| 13         | Tensile Results for 2095-T8 Plate, 45 Degree Orientation                                | 274  |
| <b>I4</b>  | Tensile Results for 2095-T8 Plate, Variable Temperatures                                | 274  |
| 15         | Tensile Results for 2095-T8 Plate, 1000 HR Exposure at 350°F                            | 275  |
| 16         | Compression Results for 2095-T8 Plate, Longitudinal Orientation                         | 276  |
| <b>I7</b>  | Compression Results for 2095-T8 Plate, Long Transverse Orientation                      | 277  |
| 18         | Compression Results for 2095-T8 Plate, 45 Degree Orientation                            | 278  |
| 19         | Compression Ultimate Strength Results for 2095-T8 Plate                                 | 278  |
| I10        | Pin Shear Results for 2095-T8 Plate, Longitudinal Orientation                           | 279  |
| I11        | Rivit Shear Results for 2095-T8 Plate, Long Transverse Orientation                      | 279  |
| I12        | Torsional Shear Results for 2095-T8 Plate, Longitudinal and Long Transverse Orientation | 280  |
| I13        | Amsler Double Shear Results for 2095-T8 Plate, L-S and T-S Orientation                  | 281  |
| I14        | Bearing Results for 2095-T8 Plate, Longitudinal Orientation, e/D=1.5                    | 282  |
| 115        | Bearing Results for 2095-T8 Plate, 45 Degree Orientation, e/D=1.5                       | 282  |
| I16        | Bearing Results for 2095-T8 Plate, Long Transverse Orientation, e/D=1.5                 | 283  |

| TABLE      |                                                                                       | <u>PAGE</u> |
|------------|---------------------------------------------------------------------------------------|-------------|
| I17        | Bearing Results for 2095-T8 Plate, Longitudinal Orientation, e/D=2.0                  | 284         |
| I18        | Bearing Results for 2095-T8, 45 Degree Orientation, e/D=2.0                           | 284         |
| I19        | Bearing Results for 2095-T8 Plate, Long Transverse Orientation, e/D=2.0               | 285         |
| 120        | Fracture Toughness Results for 2095-T8 Plate, L-T Orientation                         | 286         |
| <b>I21</b> | Fracture Toughness Results for 2095-T8 Plate, T-L Orientation                         | 287         |
| <b>I22</b> | Fracture Toughness Results for 2095-T8 Plate, 45 Degree Orientation                   | 288         |
| 123        | Hardness & Conductivity Results for 2095-T8 Plate                                     | 289         |
| I24        | Fatigue Results with R=-1.0 and Kt=1.0 for 2095-T8 Plate, Longitudinal Orientation    | 292         |
| I25        | Fatigue Results with R=-1.0 and Kt=3.0 for 2095-T8 Plate, Longitudinal Orientation    | 292         |
| <b>I26</b> | Fatigue Results with R=-1.0 and Kt=3.0 for 2095-T8 Plate, Long Transverse Orientation | 293         |
| 127        | Fatigue Results with R=0.1 and Kt=1.0 for 2095-T8 Plate, Longitudinal Orientation     | 295         |
| <b>I28</b> | Fatigue Results with R=0.1 and Kt=3.0 for 2095-T8 Plate, Longitudinal Orientation     | 297         |
| J1         | Tensile Results for 2091-T3 0.063 Inch Sheet,<br>Longitudinal Orientation             | 309         |
| J2         | Tensile Results for 2091-T3 0.063 Inch Sheet,<br>45 Degree Orientation                | 309         |
| J3         | Tensile Results for 2091-T3 0.063 Inch Sheet, 60 Degree Orientation                   | 310         |
| J4         | Tensile results for 2091-T3 0.063 Inch Sheet,<br>Long Transverse Orientation          | 310         |
| J5         | R-Curve Data Associated with Figures J1 and J3 (Specimen 1)                           | 314         |
| J6         | R-Curve Data Associated with Figures J1 and J3 (Specimen 2)                           | 315         |
| J7         | R-curve Data Associated with Figures J2 and J4 (Specimen 3)                           | 316         |
| J8         | R-Curve Data Associated with Figures J2 and J4 (Specimen 4) XXX                       | 317         |

| TABLE     |                                                                                                       | PAGE |
|-----------|-------------------------------------------------------------------------------------------------------|------|
| <b>J9</b> | Tensile Results for 2091-T8 0.063 Inch Sheet,<br>Longitudinal Orientation                             | 322  |
| J10       | Tensile results for 2091-T8 0.063 Inch Sheet,<br>45 Degree Orientation                                | 322  |
| J11       | Tensile Results for 2091-T8 0.063 Inch Sheet,<br>Long Transverse Orientation                          | 323  |
| J12       | Compression Results for 2091-T8 0.063 Inch Sheet,<br>Longitudinal Orientation                         | 324  |
| J13       | Compression Results for 2091-T8 0.063 Inch Sheet, 45 degree Orientation                               | 324  |
| J14       | Compression Results for 2091-t8 0.063 Inch Sheet,<br>Long Transverse Orientation                      | 325  |
| J15       | Slotted Shear Results for 2091-T8 0.063 Inch Sheet,<br>Longitudinal Orientation                       | 326  |
| J16       | Slotted Shear Results for 2091-T8 0.063 Inch Sheet,<br>Long Transverse Orientation                    | 326  |
| J17       | Bearing Results for 2091-T8 0.063 Inch Sheet,<br>Longitudinal Orientation and e/D=1.5                 | 327  |
| J18       | Bearing Results for 2091-T8 0.063 Inch Sheet, Long Transverse Orientation and e/D=1.5                 | 327  |
| J19       | Bearing Results for 2091-T8 0.063 Inch Sheet,<br>Longitudinal Orientation and e/D=2.0                 | 328  |
| J20       | Bearing Results for 2091-T8 0.063 Inch Sheet,<br>Long Transverse Orientation and e/D=2.0              | 328  |
| J21       | R-Curve Fracture Toughness Results for 2091-T8X 0.063 Sheet, Northrop                                 | 329  |
| J22       | R-Curve Fracture Toughness Results for 2091-T8 0.063 Sheet, L-T Specimen 1, McDonnell Aircraft Co.    | 330  |
| J23       | R-Curve Fracture Toughness Results for 2091-T8 0.063 Sheet,<br>L-T Specimen 2, McDonnell Aircraft Co. | 331  |
| J24       | R-Curve Fracture Toughness Results for 2091-T8 0.063 Sheet, T-L Specimen 1, McDonnell Aircraft Co.    | 332  |
| J25       | R-Curve Fracture Toughness Results for 2091-T8 0.063 Sheet,                                           | 333  |

| TABLE      |                                                                                          | PAGE |
|------------|------------------------------------------------------------------------------------------|------|
| <b>K</b> 1 | Tensile Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation                | 339  |
| K2         | Tensile Results for 2091-T3 0.144 Inch Sheet, 30 Degree Orientation                      | 339  |
| К3         | Tensile Results for 2091-T3 0.144 Inch Sheet,<br>45 Degree Orientation                   | 340  |
| K4         | Tensile Results for 2091-T3 0.144 Inch Sheet, 60 Degree Orientation                      | 340  |
| K5         | Tensile Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation             | 341  |
| <b>K</b> 6 | Tensile Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation, -320°F        | 341  |
| K7         | Tensile Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation, -320°F     | 342  |
| K8         | Compression Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation            | 343  |
| К9         | Compression Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation         | 343  |
| K10        | Compression Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation, -320°F    | 344  |
| K11        | Compression Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation, -320°F | 344  |
| K12        | Bearing Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation and e/D=1.5    | 345  |
| K13        | Bearing Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation and e/D=1.5 | 345  |
| K14        | Bearing Results for 2091-T3 0.144 Inch Sheet,<br>Longitudinal Orientation and e/D=2.0    | 346  |
| K15        | Bearing Results for 2091-T3 0.144 Inch Sheet,<br>Long Transverse Orientation and e/D=2.0 | 346  |
| K16        | R-Curve Data Associated with Figures K1 and K3 (Specimen 3)                              | 351  |
| K17        | R-Curve Data Associated with Figures K1 and K3 (Specimen 4)                              | 352  |
| K18        | R-Curve Data Associated with Figures K2 and K4 (Specimen 1)  XXXII                       | 353  |

| TABLE |                                                                                                    | PAGE |
|-------|----------------------------------------------------------------------------------------------------|------|
| K19   | R-Curve Data Associated with Figures K2 and K4 (Specimen 2)                                        | 354  |
| K20   | R-Curve Data Associated with Figure K5 (L-T Orientation)                                           | 356  |
| K21   | R-Curve Data Associated with Figure K6 (T-L Orientation)                                           | 358  |
| K22   | R-Curve Data Associated with Figure K7 (60° Orientation, Specimen 1)                               | 360  |
| K23   | R-Curve Data Associated with Figure K8 (60° Orientation, Specimen 2)                               | 362  |
| K24   | R-Curve Data Associated with Figure K9 (L-T Orientation, -321°F)                                   | 364  |
| K25   | Fatigue Results with R=0.1 and Kt=1.0 for 2091-T3 0.144 Inch Sheet (Longitudinal Orientation)      | 365  |
| K26   | Fatigue Results with R=0.1 and Kt=1.0 for 2091-T3 0.144 Inch Sheet (Long Transverse Orientation)   | 365  |
| K27   | Fatigue Results with R=0.1 and Kt=3.0 for 2091-T3 0.144 Inch Sheet (Longitudinal Orientation)      | 367  |
| K28   | Fatigue Results with R=0.1 and Kt=3.0 for 2091-T3 0.144 Inch Sheet (Long Transverse Orientation)   | 367  |
| K29   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (Longitudinal Orientation)     | 375  |
| K30   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (45° Orientation)              | 375  |
| K31   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (Long Transverse Orientation)  | 376  |
| K32   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (Longitudinal Orientation)     | 376  |
| K33   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (45° Orientation)              | 377  |
| K34   | Tensile Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (Long Transverse Orientation)  | 377  |
| K35   | Kahn Tear Test Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (L-T Orientation)       | 378  |
| K36   | Kahn Tear Test Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (45° - 45° Orientation) | 378  |

| TABLE       |                                                                                                  | PAGE |
|-------------|--------------------------------------------------------------------------------------------------|------|
| K37         | Kahn tear Test Results for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F (T-L Orientation)     | 379  |
| K38         | Kahn Tear Test Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (L-T Orientation)     | 379  |
| K39         | Kahn Tear Test Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (45°-45° Orientation) | 380  |
| K40         | Kahn Tear Test Results for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F (T-L Orientation)     | 380  |
| <b>K4</b> 1 | Tear-Yield Strength Ratios for 2091-T3 0.144 Inch Sheet Aged 16 Hours at 335°F                   | 381  |
| K42         | Tear-Yield Strength Ratios for 2091-T3 0.144 Inch Sheet Aged 32 Hours at 335°F                   | 381  |
| K43         | Tensile Results for 2091-T8 0.144 Inch Sheet,<br>Longitudinal Orientation                        | 383  |
| K44         | Tensile Results for 2091-T8 0.144 Inch Sheet, 45 Degree Orientation                              | 383  |
| K45         | Tensile Results for 2091-T8 0.144 Inch Sheet,<br>Long Transverse Orientation                     | 384  |
| K46         | Compression Results for 2091-T8 0.144 Inch Sheet,<br>Longitudinal Orientation                    | 385  |
| K47         | Compression Results for 2091-T8 0.144 Inch Sheet,<br>Long Transverse Orientation                 | 385  |
| K48         | Slotted Shear Results for 2091-T8 0.144 Inch Sheet,<br>Longitudinal Orientation                  | 386  |
| K49         | Slotted Shear Results for 2091-T8 0.144 Inch Sheet,<br>Long Transverse Orientation               | 386  |
| K50         | Bearing Results for 2091-T8 0.144 Inch Sheet,<br>Longitudinal Orientation and e/D=1.5            | 387  |
| K51         | Bearing Results for 2091-T8 0.144 Inch Sheet,<br>Long Transverse Orientation and e/D=1.5         | 387  |
| K52         | Bearing Results for 2091-T8 0.144 Inch Sheet,<br>Longitudinal Orientation and e/D=2.0            | 388  |
| K53         | Bearing Results for 2091-T8 0.144 Inch Sheet, Long Transverse Orientation and e/D=2.0            | 388  |

| TABLE |                                                                                                          | PAGE |
|-------|----------------------------------------------------------------------------------------------------------|------|
| K54   | R-Curve Fracture Toughness Results for 2091-T8X 0.144 Inch Sheet                                         | 389  |
| L1    | Tensile Results for 2091-T8 0.5 Inch Plate,<br>Longitudinal Orientation                                  | 393  |
| L2    | Tensile Results for 2091-T8 0.5 Inch Plate, 30 Degree Orientation                                        | 393  |
| L3    | Tensile Results for 2091-T8 0.5 Inch Plate,<br>45 Degree Orientation                                     | 394  |
| L4    | Tensile Results for 2091-T8 0.5 Inch Plate,<br>Long Transverse Orientation                               | 394  |
| L5    | Compression Results for 2091-T8 0.5 Inch Plate,<br>Longitudinal Orientation                              | 395  |
| L6    | Compression Results for 2091-T8 0.5 Inch Plate,<br>Long Transverse Orientation                           | 395  |
| L7    | Fracture Toughness Results for 2091-T8 0.5 Inch Plate,<br>L-T Orientation                                | 396  |
| L8    | Fracture Toughness Results for 2091-T8 0.5 Inch Plate, T-L Orientation                                   | 396  |
| L9    | Post-Overload Fatigue Test Results for 2091-T8 0.5 Inch Plate and 2091-T83 0.144 Inch Plate              | 397  |
| L10   | Post-Overload Recovery Crack Extension in 2091 Plate and Sheet                                           | 401  |
| MI    | Tensile Results at t/2 Location for 8090-T8 Hat Extrusion (Longitudinal Orientation and Top Location)    | 407  |
| M2    | Tensile Results at t/2 Location for 8090-T8 Hat Extrusion (Longitudinal Orientation and Bottom Location) | 407  |
| M3    | Tensile Results at t/2 Location for 8090-T8 Hat Extrusion (Longitudinal Orientation and Side Location)   | 408  |
| M4    | Bearing Results for 8090-T8 Hat Extrusion (Longitudinal Orientation, e/D=1.5 and Top Location)           | 409  |
| M5    | Bearing Results for 8090-T8 Hat Extrusion (Longitudinal Orientation, e/D=1.5 and Side Location)          | 409  |
| M6    | Bearing Results for 8090-T8 Hat Extrusion (Longitudinal Orientation, e/D=2.0 and Top Location)           | 410  |

| TABLE |                                                                                                 | PAGE |
|-------|-------------------------------------------------------------------------------------------------|------|
| M7    | Bearing Results for 8090-T8 Hat Extrusion (Longitudinal Orientation, e/D=2.0 and Side Location) | 410  |
| M8    | Tensile Results at t/2 Location for 8090-T8771 L-Extrusion, Longitudinal Orientation            | 411  |
| M9    | Tensile Results at t/2 Location for 8090-T8771 L-Extrusion, Long Transverse Orientation         | 412  |
| M10   | Tensile Results at t/2 Location for 8090-T8771 L-Extrusion, Short Transverse Orientation        | 413  |
| M11   | Compression Results at t/2 Location for 8090-T8771<br>L-Extrusion, Longitudinal Orientation     | 414  |
| M12   | Compression Results at t/2 Location for 8090-T8771<br>L-Extrusion, Long Transverse Orientation  | 415  |
| M13   | Compression Results at t/2 Location for 8090-T8771<br>L-Extrusion, Short Transverse Orientation | 416  |
| M14   | Rivet Shear Results for 8090-T8771 L-Extrusion,<br>Longitudinal Orientation                     | 417  |
| M15   | Rivet Shear Results for 8090-T8771 L-Extrusion,<br>Long Transverse Orientation                  | 417  |
| M16   | Fracture Toughness Results for 8090-T8771 L-Extrusion, L-T Orientation                          | 418  |
| M17   | Fracture Toughness Results for 8090-T8771 L-Extrusion, T-L Orientation                          | 419  |
| M18   | Fracture Toughness Results for 8090-T8771 L-Extrusion, S-L Orientation                          | 420  |
| M19   | Fracture Toughness Results for 8090-T8771 L-Extrusion, S-T Orientation                          | 420  |
| M20   | Fatigue Results with R=0.1 and Kt=1.0 for 8090-T8771 L-Extrusion, Longitudinal Orientation      | 421  |
| N1    | Tensile Results at t/2 Location for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation      | 427  |
| N2    | Tensile Results at t/2 Location for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation   | 427  |
| N3    | Compression Results at t/2 Location for Kaiser 7064-T74511 Extrusion Longitudinal Orientation   | 428  |

| TABLE      | P                                                                                                 | AGE |
|------------|---------------------------------------------------------------------------------------------------|-----|
| N4         | Compression Results at t/2 location for Kaiser 7064-T74511 Extrusion, Long Transverse Orientation | 428 |
| N5         | Iosipescu Shear results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation                | 429 |
| N6         | Iosipescu Shear Results for Kaiser 7064-T74511 Extrusion,<br>Long Transverse Orientation          | 429 |
| N7         | Bearing Results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation and e/D=1.5            | 430 |
| N8         | Bearing Results for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation and e/D=2.0            | 431 |
| N9         | Bearing Results for Kaiser 7064-T74511 Extrusion,<br>Long Transverse Orientation and e/D=2.0      | 431 |
| N10        | Fracture Toughness Results for Kaiser 7064-T74511 Extrusion, L-T Orientation                      | 432 |
| N11        | Fracture Toughness Results for Kaiser 7064-T74511 Extrusion, T-L Orientation                      | 433 |
| N12        | Fatigue Results with Kt=1.0 and R=0.1 for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation  | 434 |
| N13        | Fatigue Results with Kt=3.0 and R=0.1 for Kaiser 7064-T74511 Extrusion, Longitudinal Orientation  | 435 |
| <b>O</b> 1 | Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Longitudinal Orientation             | 444 |
| O2         | Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Long Transverse Orientation          | 445 |
| О3         | Tensile Results at t/2 Location for Kaiser 7064-T74 Forging, Short Transverse Orientation         | 446 |
| 04         | Compression Results at t/2 Location for Kaiser 7064-T74 Forging, Longitudinal Orientation         | 447 |
| O5         | Compression Results at t/2 Location for Kaiser 7064-T74 Forging, Long Transverse Orientation      | 448 |
| <b>O</b> 6 | Slotted Shear Results for Kaiser 7064-T74 Forging,<br>Longitudinal Orientation                    | 449 |
| <b>O</b> 7 | Amsler Double Shear Results for Kaiser 7064-T74                                                   | 449 |

| TABLE       | I I                                                                                       | PAGE |
|-------------|-------------------------------------------------------------------------------------------|------|
| O8          | Iosipescu Shear Results for Kaiser 7064-T74 Forging,<br>Longitudinal Orientation          | 450  |
| 09          | Iosipescu Shear Results for Kaiser 7064-T74 Forging,<br>Long Transverse Orientation       | 450  |
| O10         | Bearing Results for Kaiser 7064-T74 Forging, Longitudinal Orientation and c/D=1.5         | 451  |
| <b>O</b> 11 | Bearing Results for Kaiser 7064-T74 Forging, Long Transverse Orientation and e/D=1.5      | 451  |
| 012         | Bearing Results for Kaiser 7064-T74 Forging, Longitudinal Orientation and e/D=2.0         | 452  |
| O13         | Bearing Results for Kaiser 7064-T74 Forging, Long Transverse Orientation and e/D=2.0      | 452  |
| O14         | Fracture Toughness Results for Kaiser 7064-T74 Forging,<br>L-T Orientation                | 453  |
| O15         | Fracture Toughness Results for Kaiser 7064-T74 Forging, T-L Orientation                   | 454  |
| O16         | Fracture Toughness Results for Kaiser 7064-T74 Forging, S-T Orientation                   | 455  |
| 017         | Fracture Toughness Results for Kaiser 7064-T74 Forging, S-L Orientation                   | 456  |
| O18         | Fatigue Results for Kaiser 7064-T74 Forging (Longitudinal Orientation, Kt=1.0 and R=0.1)  | 457  |
| O19         | Fatigue Results for Kaiser 7064-T74 Forging (Longitudinal Orientation, Kt=3.0 and R=0.1)  | 458  |
| O20         | Fatigue Results for Kaiser 7064-T74 Forging (Longitudinal Orientation, Kt=1.0 and R=-1.0) | 460  |
| P1          | Tensile Results for Alcoa CW67 Sheet, Longitudinal Orientation                            | 468  |
| P2          | Tensile Results for Alcoa CW67 Sheet, Long Transverse Orientation                         | 468  |
| Р3          | Compression Results for Alcoa CW67 Sheet, Longitudinal Orientation                        | 469  |
| P4          | Compression Results for Alcoa CW67 Sheet, Long Transverse Orientation                     | 469  |
| P5          | Slotted Shear Results for Alcoa CW67 Sheet, Longitudinal Orientation                      | 470  |
| P6          | Bearing Results for Alcoa CW67 Sheet, Longitudinal Orientation and e/D=1.5                | 471  |

| TABLE |                                                                               | <u>PAGE</u> |
|-------|-------------------------------------------------------------------------------|-------------|
| P7    | Bearing Results for Alcoa CW67 Sheet, Long Transverse Orientation and e/D=1.5 | 471         |
| P8    | Bearing Results for Alcoa CW67 Sheet, Longitudinal Orientation and e/D=2.0    | 472         |
| P9    | Bearing Results for Alcoa CW67 Sheet Long Transverse Orientation and e/D=2.0  | 472         |
| P10   | R-Curve Data for Alcoa CW67 Sheet, Specimen 32 and L-T Orientation            | 473         |
| P11   | R-Curve Data for Alcoa CW67 sheet, Specimen 33 and L-T Orientation            | 474         |
| P12   | R-Curve Data for Alcoa CW67 Sheet Specimen 34 and T-L Orientation             | 475         |
| P13   | R-Curve Data for Alcoa CW67 Sheet, Specimen 35 and T-L Orientation            | 476         |
| P14   | R-Curve Data Associated with Figures P1 and P2 (Specimen 1)                   | 478         |
| P15   | R-Curve Data Associated with Figures P1 and P2 (Specimen 2)                   | 479         |
| Q1    | Tensile Results for Alcoa CW67 Plate, Longitudinal Orientation                | 485         |
| Q2    | Tensile Results for Alcoa CW67 Plate, Long Transverse Orientation             | 485         |
| Q3    | R-Curve Data Associated with Figures Q1 and Q2 (Specimen 1)                   | 487         |
| Q4    | R-curve Data Associated with Figures Q1 and Q2 (Specimen 2)                   | 488         |
| R1    | Tensile Results for Alcoa CW67 Extrusion, Longitudinal Orientation            | 490         |
| R2    | Tensile Results for Alcoa CW67 Extrusion, Long Transverse Orientation         | 490         |
| R3    | Compression Results for Alcoa CW67 Extrusion, Longitudinal Orientation        | 491         |
| R4    | Compression Results for Alcoa CW67 Extrusion, Long Transverse Orientation     | 491         |
| R5    | Iosipescu Shear Results for Alcoa CW67 Extrusion, Longitudinal Orientation    | 492         |

| TABLE      | P.                                                                                | AGE |
|------------|-----------------------------------------------------------------------------------|-----|
| R6         | Iosipescu Shear Results for Alcoa CW67 Extrusion, Long Transverse Orientation     | 492 |
| R7         | Amsler Double Shear Results for Alcoa CW67 Extrusion,<br>L-S Orientation          | 493 |
| R8         | Bearing Results for Alcoa CW67 Extrusion, Longitudinal Orientation and e/D=1.5    | 494 |
| R9         | Bearing Results for Alcoa CW67 Extrusion, Long Transverse Orientation and e/D=1.5 | 495 |
| R10        | Bearing Results for Alcoa CW67 Extrusion, Longitudinal Orientation and e/D=2.0    | 495 |
| R11        | Bearing Results for Alcoa CW67 Extrusion, Long Transverse Orientation and e/D=2.0 | 495 |
| R12        | Fracture Toughness Results for Alcoa CW67 Extrusion, L-T Orientation              | 496 |
| R13        | Fracture Toughness Results for Alcoa CW67 Extrusion, T.L. Crientation             | 496 |
| R14        | Fracture Toughness Results for Alcoa CW67 Extrusion, S-T Orientation              | 497 |
| R15        | Fracture Toughness Results for Alcoa CW67 Extrusion, S-L Orientation              | 497 |
| <b>S</b> 1 | Tensile Results for Alcoa CW67 Forging, Longitudinal                              | 520 |
| <b>S</b> 2 | Tensile Results for Alcoa CW67 Forging, Long Transverse Orientation               | 520 |
| <b>S</b> 3 | Tensile Results for Alcoa CW67 Forging, Short Transverse Orientation              | 521 |
| <b>S4</b>  | Compression Results for Alcoa CW67 Forging, Longitudinal Orientation              | 522 |
| <b>S</b> 5 | Compression results for Alcoa CW67 Forging, Long Transverse Orientation           | 522 |
| <b>S6</b>  | Compression Results for Alcoa CW67 Forging, Short Transverse Orientation          | 523 |
| <b>S7</b>  | Pin Shear Results for Alcoa CW67 Forging, Longitudinal Orientation                | 524 |
| <b>S8</b>  | Pin Shear Results for Alcoa CW67 Forging, Long Transverse Orientation             | 524 |
| <b>S</b> 9 | Bearing Results for Alcoa CW67 Forging XL                                         | 525 |

| <b>TABLE</b> |                                                                       | PAGE |
|--------------|-----------------------------------------------------------------------|------|
| <b>S10</b>   | Fracture Toughness Results for Alcoa CW67 Forging,<br>L-T Orientation | 526  |
| S11          | Fracture Toughness Results for Alcoa CW67 Forging,<br>L-S Orientation | 526  |
| \$12         | Fracture Toughness Results for Alcoa CW67 Forging, T-L Orientation    | 527  |
| \$13         | Fracture Toughness Results for Alcoa CW67 Forging, T-S Orientation    | 527  |
| S14          | Fracture Toughness Results for Alcoa CW67 Forging, S-T Orientation    | 528  |

### **PREFACE**

This report was prepared by the Materials Engineering Branch (WL/MLSE), Systems Support Division, Materials Directorate, Wright Laboratory, Wright Patterson Air force Base, Ohio, under Project 2418, "Metallic Structural Materials, "Task 241807, "Systems Support," Work Unit 24180703, Engineering and Design Data."

The authors would like to thank the participants who contributed to the program: U.S. Army, Boeing Commercial Airplane Co, General Dynamics Fort Worth Division, General Dynamics Space Systems Division, Grumman Aerospace, Lockheed, LTV Aerospace and Defense, Martin Marietta Manned Space Systems, McDonnell Douglas Space Systems, McDonnell Douglas Helicopters, McDonnell Douglas Missile Systems, McDonnell Aircraft, NASA Langley, Naval Air Development Center, Northrop, Sikorsky, Sundstrand Advanced Technical Group, Wyman-Gordon and the Air Force.

### INTRODUCTION

High performance aerospace systems are dependent on materials that are lighter, have improved mechanical properties, and/or offer a cost savings. Aluminum alloys that met these criteria were the newly developed aluminum-lithium alloys and the second generation powder metallurgy alloys.

In 1985, the Air Force along with the aerospace community found it important to investigate the potential of these promising aluminum alloys. A cooperative program was formed by the Wright Laboratory Materials Directorate, Systems Support Division, and a number of aerospace industries. The Air Force would obtain the test material from the producers, compile the test data, and submit reports to the participants. The participants agreed to support the program by performing mechanical property tests which include tension, compression, bearing, shear, fracture toughness, and fatigue related properties (S/N, da/dn). The Air Force elected to perform spectrum fatigue crack growth testing on most alloys. The following table contains the participants who volunteered to test a particular material. The X's that have a circle around them indicate the participants that submitted their data to the Air Force. Some participants were unable to test due to funding cuts or decrease in material interest.

This report contains aluminum-lithium alloys 2091, 8090, 2095, IN905XL and AL905XL, and powder metallurgy (P/M) aluminum alloys 7064 and CW67. Comparisons to other materials and ranking of materials are generally avoided, since each potential application may be based on different evaluation criteria.

TABLE
Participants and Advanced Aluminum Alloys in the Cooperative Test Program

|                                   |                          | ALLIMINUM LITHIUM ALLOYS              |             |                       | PAM ALUMINUM ALLOY  |                          |                     |                     |                         |    |   |                |                                    |                       |                  |                       |                     |    |              |
|-----------------------------------|--------------------------|---------------------------------------|-------------|-----------------------|---------------------|--------------------------|---------------------|---------------------|-------------------------|----|---|----------------|------------------------------------|-----------------------|------------------|-----------------------|---------------------|----|--------------|
|                                   | P                        | PECHINEY ALCAN INCOMAP ALCOA REYNOLDS |             |                       | KAISER   ALCOA      |                          |                     |                     |                         |    |   |                |                                    |                       |                  |                       |                     |    |              |
| PARTICIPANTS                      | 2091 - T3 Sheet (0.063T) | Page                                  | -T& Forging | 8090-1651 T Extrusion | 8080-T861 Extrusion | 8080-T8771 Plate (1.757) | PM INSOSXI, Forging | PM ALSOSIA, Forging | 2001-T3 Sheet (0.063-T) | 12 |   | 8080 Extrueion | Weldalle 048 FXX15<br>Plete (0.87) | 7064-174511 Extrusion | 7064-T74 Forging | CAVE7 Sheet (0.065°T) | CM67 Plate (0.40°T) | 12 | CW67 Forging |
| Air Force WPAFB, OH               | 1                        | þ                                     |             | l                     | •                   | ×                        | •                   | •                   | 0                       | Þ  | Ø |                | •                                  | 0                     | 0                |                       |                     | 8  | 8            |
| Army, MA                          |                          |                                       |             |                       |                     | ١.                       |                     |                     |                         |    |   | 0              | •                                  |                       |                  |                       |                     |    |              |
| AVCO, TN                          |                          |                                       |             |                       |                     |                          |                     |                     | ×                       |    |   |                |                                    |                       |                  |                       |                     | '  |              |
| Soeing, WA                        | 8                        | b                                     | þ           | 8                     |                     |                          |                     |                     |                         |    |   |                |                                    |                       |                  |                       |                     |    |              |
| Douglas Aircraft, CA              |                          |                                       |             |                       |                     |                          |                     | ×                   | ×                       | ×  | × | ×              | ×                                  |                       |                  |                       | 1                   |    |              |
| General Dynamics, CA              | 8                        | P                                     |             |                       |                     |                          |                     |                     | ×                       | ×  | × |                | •                                  |                       |                  |                       |                     |    |              |
| General Dynamics, TX              | 8                        | b                                     | O           | 0                     |                     |                          | 8                   |                     | ×                       | 8  | × | ×              |                                    |                       |                  |                       |                     |    |              |
| Grumman Aerospace, NY             | 8                        | þ                                     | {           |                       | 0                   |                          | ×                   |                     |                         |    |   |                |                                    | ×                     | ×                | 1                     |                     | ×  | ×            |
| Jet Propulsion, CA                |                          |                                       |             |                       |                     |                          |                     | ×                   |                         |    |   |                | ×                                  |                       |                  |                       |                     |    |              |
| Lockheed, CA                      | ×                        |                                       |             | ×                     |                     |                          |                     | ×                   | ×                       |    | × |                |                                    |                       |                  |                       |                     |    |              |
| Lockheed, GA                      |                          |                                       | þ           |                       | ×                   |                          |                     |                     | ×                       | ×  |   |                |                                    |                       | 0                |                       |                     |    | ×            |
| LTV, TX                           | 8                        |                                       |             | þ                     |                     |                          | 0                   | 0                   | ×                       |    |   | ×              |                                    | 0                     | 9                |                       |                     | 9  |              |
| Martin Marietta, LA               | 8                        | b                                     | O           | ×                     | 8                   | 0                        | •                   | 0                   | þ                       | 9  | þ | 9              |                                    | •                     | 0                | 6                     | 9                   | ×  | 2            |
| McDonnell Douglas Astro, CA       |                          |                                       |             |                       |                     |                          |                     |                     |                         | 9  |   |                | 0                                  |                       |                  |                       |                     |    |              |
| McDonnell Douglas Helicopter, AR  |                          |                                       |             |                       |                     | 1                        |                     | 0                   |                         |    |   |                |                                    |                       |                  |                       |                     |    |              |
| McDonnett Douglas Missile Sys, MO |                          |                                       |             |                       |                     |                          |                     |                     |                         |    |   |                | •                                  |                       | }                |                       |                     | }  |              |
| McDonnell Aircraft, MO            | 8                        |                                       |             |                       |                     |                          | •                   | •                   | b                       |    |   |                |                                    |                       | 3                | þ                     |                     |    | 9            |
| NASA, VA                          |                          |                                       |             |                       | Œ                   |                          | •                   | 0                   |                         |    |   |                | •                                  |                       |                  |                       |                     |    |              |
| Naval Air Development Center      |                          | þ                                     |             | 8                     |                     |                          |                     | ×                   |                         |    | × |                |                                    |                       |                  |                       |                     |    | ×            |
| Northrop, CA                      | 8                        | b                                     | b           |                       | •                   | ×                        | •                   | 0                   | 9                       | 9  | × | ×              | •                                  |                       |                  |                       |                     |    |              |
| Sikorsky, CT                      |                          |                                       |             |                       |                     |                          | 0                   |                     | ×                       |    |   |                |                                    |                       | ×                |                       | ×                   |    | ×            |
| Sundstrand, IL                    |                          |                                       |             |                       |                     |                          |                     |                     |                         |    |   |                | <b>3</b>                           |                       | {                |                       |                     |    | 11           |
| Wyman-Gordon                      |                          |                                       |             |                       |                     |                          |                     | ×                   |                         |    |   |                |                                    | ]                     |                  |                       |                     |    |              |

### **MATERIALS AND TESTS**

The advanced aluminum alloys were received on various dates. shown below are the aluminum alloys and approximate dates received.

| Producer | Aluminum Alloy                                                                      | Date Received                        |
|----------|-------------------------------------------------------------------------------------|--------------------------------------|
| Alcan    | 8090-T651 Extrusion<br>8090-T8771 Plate                                             | Feb 86<br>May 91                     |
| Pechiney | 2091-T3 Sheet<br>2091-T351 Plate<br>2091-T6 Forging<br>8090-T651 Extrusion          | Jul 86<br>Jul 86<br>Jul 86<br>Oct 86 |
| Alcoa    | 2091-T3 Sheet (0.063")<br>2091-T3 Sheet (0.144")<br>2091-T8 Plate<br>8090 Extrusion | Oct 88<br>Mar 88<br>Mar 89<br>Sep 91 |
| INCO     | IN905XL Forging<br>AL905XL Forging                                                  | Jan 87<br>May 89                     |
| Reynolds | 2095 Plate                                                                          | Feb 91                               |
| Kaiser   | 7064 Extrusion<br>7064 Forging                                                      | Dec 86<br>Dec 86                     |
| Alcoa    | CW67 Sheet<br>CW67 Plate<br>CW67 Extrusion<br>CW67 Forging                          | Apr 89<br>Apr 89<br>Aug 87<br>Oct 88 |

The aluminum-lithium alloys shown in the table above are shown in the as received condition. Some aerospace companies heat treated the alloys to T8 tempers.

Mechanical properties, (tension, compression, bearing, shear and fracture toughness) fatigue, and constant amplitude fatigue crack growth tests were tested according to ASTM standards, unless otherwise specified. Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

### **PRESENTATION**

Each participant compiled a data package which contained the data they generated. Some of these data packages contained discussions and in other cases, only the data were provided. The tensile, compression, bearing, and shear data were put in tabular form. Fracture toughness, fatigue, fatigue crack growth, and spectrum fatigue crack growth data were put in tabular and graphical form.

### **RESULTS AND DISCUSSION**

The data generated by the participants are contained in the appendices. The following table lists the producer, aluminum alloy, form and the appendix that the data can be found.

# Table Contents of Appendices

|          |              | Form           | Appendix |
|----------|--------------|----------------|----------|
| Pechiney | 2091         | Plate          | Α        |
| Pechiney | 2091         | Sheet          | В        |
| Pechiney | <b>209</b> 1 | Forging        | C        |
| Pechiney | 8090         | Extrusion      | D        |
| Alcan    | 8090         | Extrusion      | E        |
| Alcan    | 8090         | Plate          | F        |
| INCO     | IN905XL      | Forging        | G        |
| INCO     | AL905XL      | Forging        | Ĥ        |
| Reynolds | 2095         | Plate          | I        |
| Alcoa    | 2091         | Sheet (0.063") | J        |
| Alcoa    | 2091         | Sheet (0.144") | K        |
| Alcoa    | 2091         | Plate `        | L        |
| Alcoa    | 8090         | Extrusion      | M        |
| Kaiser   | 7064         | Extrusion      | N        |
| Kaiser   | 7064         | Forging        | O        |
| Alcoa    | CW67         | Sheet          | P        |
| Alcoa    | CW67         | Plate          | Q        |
| Alcoa    | CW67         | Extrusion      | Ř        |
| Alcoa    | CW67         | Forging        | S        |

### CONCLUSIONS

Nineteen aerospace laboratories participated in generating data on the advanced aluminum alloys for the Air Force/Industry Cooperative Test Program Advanced Aluminum Alloys. The data contained in this report provides an extensive data base on the aluminum-lithium and P/M aluminum alloys.

### APPENDIX A

## PECHINEY 2091-T351 AND 2091-T8X PLATE (0.42" X 39" X 39")

### INTRODUCTION

The Pechiney 2091-T351 0.42-inch plates were received the second quarter of 1986. Three participants heat treated the plate to a T8X temper; Northrop - T8 condition was achieved by aging the 2091 plate at 275° for 12 hours, Grumman (-T8X) at 275°F for 12 hours, and General Dynamics TX (-T851) at 335° F for 16 hours.

### TESTING

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. The growth rate a-N data that was generated by the participants (Northrop, Grumman, General Dynamics CA, and Air Force) were reduced using a seven-point incremental polynomial method. This involves fitting a second-order polynomial (parabola) to sets of seven successive data points. The data are also checked against requirements per ASTM E647, Section 7.2. General Dynamics TX performed constant amplitude fatigue crack growth tests using a K-increasing (load increasing) method.

Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

# PECHINEY 2091-T351 PLATE

TABLE A1

TENSILE RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T351 PLATE (0.42' X 39' X 39')

| COMPANY                 | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)                 | RA<br>(%)            | E<br>(MSI)                   |
|-------------------------|-----------------------------|----------------------|-------------------------------|----------------------------|------------------------------|----------------------|------------------------------|
| BOEING, WA              | RT                          | LONG                 | 64.5<br>64.5<br>64.6          | 51.3<br>51.2<br>51.4       |                              | 17.0<br>16.0<br>17.0 |                              |
| GENERAL<br>DYNAMICS, CA | RT                          | LONG                 | 64.3<br>63.8<br>63.9<br>64.3  | 53.7<br>51.0               | 10.2<br>12.4<br>12.5<br>10.2 | 23.1<br>25.8         | 10.9<br>10.9                 |
| NADC                    | RT                          | LONG                 | 68.2<br>67.9<br>68.2<br>67.9  | 57.0                       | 15.0                         |                      | 11.2<br>10.4<br>11.7<br>10.7 |
| NORTHROP                | RT                          | LONG                 | 66.7<br>67.3<br>66.9          | 54.7<br>55.2<br>54.8       | 11.0                         | 18.1                 |                              |
| MARTIN<br>MARIETTA, LA  | RT                          | LONG                 | 64.9<br>64.5<br>64.7          |                            | 15.0<br>14.0<br>15.0         | 14.0                 |                              |
|                         | STANDARD I                  | AVERAGE<br>DEVIATION | 65.9                          | 53.6<br>2.1                | 13.2                         | 18.6                 | 11.1                         |

TABLE A2

TENSILE RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39)

| COMPANY                 | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(XSI) | ELONG<br>(%)                 | RA<br>(%)            | E<br>(MSI)                   |
|-------------------------|----------------------------|------------------|-------------------------------|----------------------------|------------------------------|----------------------|------------------------------|
| BOEING, WA              | RT                         | L TRANS          | 64.5<br>65.3<br>64.8          | 44.8<br>45.6<br>45.5       |                              | 20.0<br>18.0<br>19.0 |                              |
| GENERAL<br>DYNAMICS, CA | RT                         | L TRANS          | 64.7<br>64.4<br>64.6<br>65.2  | 46.5                       | 13.8<br>13.4<br>15.9<br>14.2 | 24.4<br>22.1         | 11.0<br>11.1<br>10.9<br>11.2 |
| NADC                    | RT                         | L TRANS          | 67.9<br>66.2<br>67.3<br>66.2  | • • • •                    | 16.0<br>16.0                 |                      | 10.3<br>11.7<br>12.2<br>10.7 |
| NORTHROP                | RT                         | L TRANS          | 67.2<br>67.7<br>67.6          | 49.1<br>49.1<br>49.0       | 12.1<br>12.4<br>12.8         |                      | 11.7<br>11.7<br>12.3         |
| MARTIN<br>MARIETTA, LA  | RT                         | L TRANS          | 65.8<br>65.4<br>65.2          | 46.6<br>46.0<br>46.6       |                              | 17.0                 |                              |
|                         |                            | AVERAGE          | 65.9                          | 47.6                       | 15.0                         | 20.4                 | 11.3                         |
|                         | STANDARD                   | DEVIATION        | 1.2                           | 1.9                        | 2.2                          | 3.3                  | 0.6                          |

TABLE A3

COMPRESSION RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T351 PLATE (0.42° X 39° X 39°)

| COMPANY                 | TEST OF TEMPERATURE (DEGREES F) | RIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI)       | COMPRESSIVE<br>MODULUS<br>(KSI) |
|-------------------------|---------------------------------|-------------|----------------------------------------------|---------------------------------|
| BOEING, WA              | RT                              | LONG        | 42.7<br>42.8<br>42.6                         |                                 |
| GENERAL<br>DYNAMICS, CA | <b>RT</b>                       | LONG        | 42.0<br>41.7<br>41.6                         | 11.4<br>11.6<br>11.7            |
| NADC                    | RT                              | LONG        | 44.7<br>44.7<br>42.3<br>43.9<br>45.5<br>47.3 |                                 |
| MARTIN<br>MARIETTA, LA  | RT                              | LONG        | 44.5                                         | 12.4                            |
|                         |                                 | AVERAGE     | 43.8                                         | 11.8                            |
|                         | STANDAR                         | D DEVIATION | 1.9                                          | 0.4                             |

TABLE A4

COMPRESSION RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T351 PLATE (0.42° X 39° X 39°)

| COMPANY                 | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI)               | COMPRESSIVE<br>MODULUS<br>(KSI) |
|-------------------------|------------------------------------|---------------|------------------------------------------------------|---------------------------------|
| BOEING, WA              | RT                                 | L TRANS       | 48.7<br>48.6<br>48.8                                 |                                 |
| GENERAL<br>DYNAMICS. CA | RT                                 | L TRANS       | 41.1<br>48.4<br>48.0                                 | 11.4<br>11.6<br>11.7            |
| NADC                    | RT                                 | L TRANS       | 50.9<br>49.9<br>49.4<br>47.2<br>52.8<br>47.7<br>51.7 |                                 |
| MARTIN<br>MARIETTA, LA  | RT                                 | L TRANS       | 51.6                                                 | 12.5                            |
|                         |                                    | AVERAGE       | 48.9                                                 | 11.8                            |
|                         | STANDA                             | ARD DEVIATION | 2.8                                                  | 0.5                             |

### TABLE A5

### RIVET SHEAR RESULTS FOR PECHINEY

### 2091-T351 PLATE (0.42' X 39' X 39')

| COMPANY              | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------------------|--------------------|----------------------------|
| GENERAL DYNAMICS, CA | LONG               | 34.3<br>33.9<br>33.4       |
|                      | AVERAGE            | 33.9                       |
|                      | STANDARD DEVIATION | 0.5                        |

### TABLE A6

### RIVET SHEAR RESULTS FOR PECHINEY

### 2091-T351 PLATE (0.42° X 39° X 39°)

| COMPANY              | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------------------|--------------------|----------------------------|
| GENERAL DYNAMICS. CA | L TRANS            | 32.6<br>36.6<br>33.0       |
|                      | AVERAGE            | 34.1                       |
|                      | STANDARD DEVIATION | 2.2                        |

TABLE A7

AMSLER DOUBLE SHEAR RESULTS FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39)

| COMPANY | ORIENTA | MOITA                  | SHEAR<br>STRENGTH<br>(KSI) |
|---------|---------|------------------------|----------------------------|
| BOEING, | WA L-   | 8                      | 35.2<br>35.3<br>35.2       |
|         | STANDAR | AVERAGE<br>D DEVIATION | 35.2<br>0.1                |
| BOEING. | WA L-   | r                      | 38.2<br>38.0<br>37.9       |
|         | STANDAR | AVERAGE<br>D DEVIATION | 38.0<br>0.2                |
| BOEING. | WA T-   | 5                      | 34.4<br>34.0<br>34.5       |
|         | STANDAR | AVERAGE<br>D DEVIATION | 34.3<br>0.3                |
| BOEING, | WA T-   | L                      | 38.0<br>38.0<br>37.9       |
|         | STANDAR | AVERAGE<br>D DEVIATION | 38.0<br>0.1                |

TABLE AS

BEARING RESULTS FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39 )

| COMPANY                 | ORIENTATION | •/D         | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|-------------|-------------------------------|--------------------------------|
| BOEING, WA              | LONG        | 1.5         | 88.0<br>87.0<br>90.0          | 66.4 * 67.2 *                  |
| GENERAL<br>DYNAMICS. CA | LONG        | 1.5         | 90.8<br>89.4<br>89.4          | 81.6<br>72.0<br>70.5           |
|                         |             | AVERAGE     | 89.1                          | 70.8                           |
|                         | STANDAR     | D DEVIATION | 1.4                           | 5.7                            |

(\*): INDICATES SHEAR TEAR OUT FAILURE

TABLE A9

BEARING RESULTS FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39)

| COMPANY      | ORIENTATION | e/D         | BEARING   | BEARING   |  |
|--------------|-------------|-------------|-----------|-----------|--|
|              |             |             | ULT. STR. | YIELD STR |  |
|              |             |             | (KSI)     | (KSI)     |  |
| BOEING, WA   | L TRANS     | 1.5         | 90.9      | 66.1      |  |
| 2021110,     |             |             | 90.0      | 66.4      |  |
|              |             |             | 90.9      | 67 7      |  |
| GENERAL      | L TRANS     | 1.5         | 91.9      | 72 3      |  |
| DYNAMICS. CA |             |             | 92.5      | 71.7      |  |
|              |             |             | 89.7      | 71.8      |  |
|              |             | AVERAGE     | 91.0      | 69.3      |  |
|              | STANDAR     | D DEVIATION | 1.1       | 2.9       |  |

TABLE A10

BEARING RESULTS FOR PECHINEY

2091-T351 PLATE (0.42' X 39' X 39')

| COMPANY                 | ORIENTATION | e/D         | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|-------------|-------------------------------|--------------------------------|
| BOEING. WA              | LONG        | 2.0         | 111.0<br>111.8<br>110.3       | 79.8<br>81.0<br>81.5           |
| GENERAL<br>DYNAMICS. CA | LONG        | 2.0         | 113.9<br>115.8<br>113.5       | 90.6<br>85.8<br>86.4           |
|                         |             | AVERAGE     | 112.7                         | 84.2                           |
|                         | STANDAR     | D DEVIATION | 2.1                           | 4.1                            |

TABLE A11

BEARING RESULTS FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39)

| COMPANY                 | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|-----------|-------------------------------|--------------------------------|
| BOEING, WA              | L TRANS     | 2.0       | 114.8<br>112.6<br>115.2       | 82.3<br>82.3<br>83.2           |
| GENERAL<br>DYNAMICS, CA | L TRANS     | 2.0       | 113.0<br>114.2<br>114.6       | 87.6<br>95.1<br>87.4           |
|                         |             | AVERAGE   | 114.1                         | 86.3                           |
|                         | STANDARI    | DEVIATION | 1.0                           | 4.9                            |

TABLE A12

FRACTURE TOUGHNESS RESULTS FOR PECHINEY

2091-T351 PLATE (0.42 X 39 X 39 )

| COMPANY                 | ORIENTATION    | KIC<br>(KSI in <sup>0</sup> .5) | Kq<br>(KSI in^0.5)           | COMMENT                       |
|-------------------------|----------------|---------------------------------|------------------------------|-------------------------------|
| GENERAL<br>DYNAMICS, CA | L-T            |                                 | 37.0<br>34.5<br>35.4         | (1,2,3)<br>(1,2,3)<br>(1,2,3) |
| NADC                    | L-T            |                                 | 42.6<br>42.6<br>40.6<br>36.6 | (1)<br>(1)<br>(1)<br>(1)      |
|                         | AVERAGE        |                                 | 38.5                         |                               |
| STAN                    | DARD DEVIATION |                                 | 3.4                          |                               |

(1): INVALID DUE TO Pmax/Pq > 1.10

(2): INVALID DUE TO a < 2.5(KQ/Fty)^2

(3): INVALID DUE TO B ( 2.5(KQ/Fty)^2

TABLE A13

### FRACTURE TOUGHNESS RESULTS FOR PECHINEY

### 2091-T351 PLATE (0.42' X 39' X 39')

| COMPANY                 | ORIENTATION             | KIC (KSI in 0.5) | Kq<br>(KSI in <sup>*</sup> 0.5) | COMMENT |
|-------------------------|-------------------------|------------------|---------------------------------|---------|
| GENERAL<br>DYNAMICS, CA | T-L                     |                  | 38.7<br>36.5                    | (1,2,3) |
|                         |                         |                  | 33.0                            | (1,2,3) |
| STAND                   | AVERAGE  OARD DEVIATION |                  | 36.1<br>2.9                     |         |

(1): INVALID DUE TO Pmax/Pq > 1.10

(2): INVALID DUE TO a < 2.5(KQ/Fty)^2

(3): INVALID DUE TO B < 2.5(KQ/Fty)^2

### R-CURVE FOR 2091 PLATE (longitudinal)

(effective crack length adjusted for plastic zone)



Figure Al R-Curve Results for 2091-T351 0.42" Plate (longitudinal). Martin Marietta LA.



Figure A2 R-Curve Results for 2091-T351 o.42" Plate (transverse).
Martin Marietta LA.



Figure A3 R-Curve Results for 2091-T351 0.42" Plate (longitudinal). Martin Marietta LA.



Figure A4 R-Curve Results for 2091-T351 0.42" Plate (transverse). Martin Marietta LA.

DATA FOR SPECIMEN NO. 1, 2091
LONGITUDINAL PLATE

|            | Half Crack      | <br>  Half<br>  Crack Length, | Correspond<br>Toughness, | ing Fracture              |  |
|------------|-----------------|-------------------------------|--------------------------|---------------------------|--|
| Load, kips | Length (c) inch | (c + rho)                     | Not Adjusted             | Adjusted for   Plasticity |  |
| C.00       | 1.202           | 1 1.202                       | 0.0                      | 0.0                       |  |
| 20.14      | 1 1.217         | 1.229                         | 12.44                    | 14.57                     |  |
| 46.32      | 1.257           | 1.310                         | 1 25.41                  | 30.34                     |  |
| 50.22      | 1.282           | 1.369                         | 32.05                    | 1 38.8                    |  |
| 60.00      | 1.292           | 1.422                         | 38.48                    | 47.34                     |  |
| 69.98      | 1.297           | 1.491                         | 44.99                    | 57.88                     |  |
| 79.84      | 1.297           | 1.567                         | 51.33                    | 68.3                      |  |
| 89.98      | 1 -312          | 1 1.711                       | 58.28                    | 82.93                     |  |
| 94.90      | 1.342           | 1.857                         | 62.38                    | 94.28                     |  |

Thickness = .420 inch
Yield = 52.4 ksi
Specimen Width = 7.00 inch

TABLE A15

DATA FOR SPECIMEN NO. 2 2091

LONGITUDINAL PLATE

|             |                        |           |              | nding Fracture<br>, ksi / inch |  |
|-------------|------------------------|-----------|--------------|--------------------------------|--|
| Loaa, kips  | l Length<br>i (c) inch | (c + rho) | Not Adjusted | Adjusted for   Plasticity      |  |
| <b>U.</b> 0 | 1.100                  | 1.100     | 0.0          | 0.0                            |  |
| 12.54       | 1.100                  | 1.104     | 8.45         | 7.93                           |  |
| 20.3        | 1.100                  | 1.110     | 13.68        | 1 12.84                        |  |
| 30.09       | 1.145                  | 1.171     | 20.80        | 21.06                          |  |
| 40.17       | 1.165                  | 1 1.213   | 28.08        | 28.71                          |  |
| 54.79       | 1.165                  | 1 1.257   | 38.30        | 1 39.89                        |  |
| 60.16       | 1.165                  | 1.278     | 42.06        | 44.16                          |  |
| 69.79       | 1.165                  | 1.329     | 48.79        | 53.14                          |  |
| 75.44       | 1 1.175                | 1.375     | 53.03        | 58.74                          |  |
| 83.47       | 1 1.180                | 1.440     | 58.84        | 66.95                          |  |
| 90.09       | 1.190                  | 1.522     | 63.86        | 75.72                          |  |
| 95.15       | 1.200                  | 1.600     | 67.82        | 82.82                          |  |
| 98.00       | 1.215                  | 1.673     | 70.43        | 1 88.90                        |  |
| 99.15       | 1.245                  | 1.750     | 72.43        | 93.30                          |  |
| 93.49       | 1.400                  | 1 1.958   | 74.14        | 96.06                          |  |

Thickness = .420 inch Yield = 52.4 ksi Specimen Width = 7.00 inch

TABLE A16

DATA FOR SPECIMEN NO. 3, 2091

TRANSVERSE PLATE

| Load, kips | Half Crack Length (c) inch | Half<br>Crack Length,<br>(c + rho)<br>inch | Corresponding Fracture<br>  Toughness, ksi √inch |                           |
|------------|----------------------------|--------------------------------------------|--------------------------------------------------|---------------------------|
|            |                            |                                            | Not Adjusted                                     | Adjusted for   Plasticity |
| 0.0        | 1.100                      | 1.100                                      | 0.0                                              | 0.0                       |
| 9.93       | 1.110                      | 1.113                                      | 6.73                                             | 6.31                      |
| 19.81      | 1.115                      | 1.127                                      | 13.46                                            | 12.61                     |
| 20.65      | 1 1.135                    | 1.167                                      | 20.38                                            | 20.69                     |
| 39.73      | 1.160                      | 1.220                                      | 1 27.70                                          | 28.46                     |
| 49.74      | 1 .205                     | 1 1.307                                    | 35.50                                            | 37.13                     |
| 59.86      | 1 1.210                    | 1.364                                      | 42.90                                            | 45.68                     |
| 69.86      | 1 1.210                    | 1 1.444                                    | 50.08                                            | 56.28                     |
| 79.58      | 1.215                      | 1 1.561                                    | 57.39                                            | 68.41                     |
| 85.32      | 1 1.215                    | 1 1.639                                    | 61.32                                            | 75.71                     |
| 88.14      | 1 1.230                    | 1.728                                      | 63.87                                            | 82.05                     |
| 91.82      | 1.280                      | 1 1.872                                    | 66.82                                            | 90.59                     |
| 91.79      | 1 1.305                    | 1.973                                      | 68.35                                            | 96.81                     |
| 90.80      | 1.340                      | 2.090                                      | 69.83                                            | 103.00                    |

Thickness = .420 inch
Yield = 42.4 ksi
Specimen kidtn = 7.00 inch

TABLE A17

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

PECHINEY 2091-T351 PLATE (0.42° X 39° X 39°)

| COMPANY | ORIENTATION | STRESS<br>(KSI) | CYCLES                 |
|---------|-------------|-----------------|------------------------|
| NADC    | LONG        | 60.0<br>60.0    | 28.300<br>29.600       |
|         |             | 50.0<br>50.0    | 72,400<br>87,000       |
|         |             | 45.0<br>45.0    | 395.500<br>779.200     |
|         |             | 40.0<br>40.0    | 1.47E+06<br>2.00E+06   |
|         |             | 35.0<br>32.5    | 1.11E+07<br>1.00E+08 * |

(\*): RUN OUT



Figure A5 Fatigue Results for 2091-T351 0.42" Plate (R=0.1, Kt=1.0). NADC.



Figure A6 Crack Length Yersus Flights for 2091-T351 Plate Under FALSTAFF Loading, Max Stress = 20 KSI.



Figure A7 Crack Length Versus Flights for 2091-T351 Plate Under FALSTAFF Loading, Max Stress = 30 KSI.



Figure A8 FALSTAFF Spectrum Results for 2091-T351 Reduced in Terms of Growth Rate and Maximum Spectrum Stress Intensity.



Figure A9 Crack Length Versus Flights for 2091-T351 Plate Under Mini-TRIST Loading, Max Stress = 17 KSI.



Figure AlO Crack Length Versus Flights for 2091-T351 Plate Under Mini-TWIST, Max Stress = 26 KS1.

# ASTM E647 de/dn CHART.C-6-LT-1



Figure A10A Fatigue Grack Growth Rate Data for 2091-T351 0.42" Plate (L-T Orientation). General Dynamics CA.

# ASTM E647 d3/dN CHART.C-6-TL-1



Figure Alob Fatigue Crack Growth Rate Data for 2091-T351 0.42" Plate (T-L Orientation). General Dynamics CA.

### PECHINEY 2091-T8X PLATE

TABLE A18

TENSILE RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | TEST<br>TEMP<br>DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI)                | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(2)         | E<br>(MSI)                           |
|-------------------------|----------------------------|------------------|----------------------------------------------|----------------------------|----------------------|-------------------|--------------------------------------|
| NORTHROP                | RT                         | LONG             | 71.4<br>71.5<br>71.8<br>71.5<br>72.0<br>72.0 | 60.4                       | 12.0<br>11.0<br>10.0 | 16.0<br>16.0      | 11.5<br>11.4<br>11.4<br>11.4<br>11.4 |
| GRUMMAN                 | RT                         | LONG             | 68.7<br>70.0<br>67.6                         | 58.2<br>58.2<br>58.4       | 6.0<br>8.5<br>6.5    | 6.2<br>9.2<br>6.8 | 11.8<br>11.9<br>11.1                 |
| GENERAL<br>DYNAMICS, TX | RT                         | LONG             | 72.8<br>72.5                                 | 60.6<br>60.8               | 8.0<br>7.3           |                   |                                      |
|                         | STANDARD                   | AVERAGE          | 71.1<br>N 1.6                                | <b>59.9</b>                | 9.0<br>2.0           | 11.7              | 11.5                                 |

TABLE A19

TENSILE RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| RT | L TRANS | 72.4<br>72.5                 | 54.8                                            | 12.0                                                                    | 17.4                                                                                              | 11 6                                                                                                             |
|----|---------|------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|    |         | 72.4<br>69.2<br>69.5<br>69.1 | 55.0<br>55.0<br>51.1<br>51.2<br>50.9            | 12.0<br>12.0<br>15.0<br>17.0<br>16.0                                    | 17.8<br>18.5                                                                                      | 11.5<br>11.6<br>11.4<br>11.4<br>11.2                                                                             |
| RT | L TRANS | 69.5<br>69.0<br>69.1         | 53.0<br>51.1<br>53.0                            | 13.5<br>13.0<br>13.5                                                    | 22.3<br>16.8<br>17.6                                                                              | 11.5<br>13.0<br>13.4                                                                                             |
| RT | L TRANS | 71.8<br>72.0                 | 55.9<br>55.9                                    | 11.0<br>11.0                                                            |                                                                                                   |                                                                                                                  |
|    | AVERAGE | 70.6                         | 53.4                                            | 13.3                                                                    | 18.4                                                                                              | 11.9                                                                                                             |
|    | RT      | RT L TRANS                   | RT L TRANS 69.5 69.0 69.1  RT L TRANS 71.8 72.0 | RT L TRANS 69.5 53.0 69.0 51.1 69.1 53.0 RT L TRANS 71.8 55.9 72.0 55.9 | RT L TRANS 69.5 53.0 13.5 69.0 51.1 13.0 69.1 53.0 13.5  RT L TRANS 71.8 55.9 11.0 72.0 55.9 11.0 | RT L TRANS 69.5 53.0 13.5 22.3 69.0 51.1 13.0 16.8 69.1 53.0 13.5 17.6  RT L TRANS 71.8 55.9 11.0 72.0 55.9 11.0 |

TABLE A20

TENSILE RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI)           |
|---------|-----------------------------|------------------|-------------------------------|----------------------------|----------------------|----------------------|----------------------|
| GRUMMAN | RT                          | 45               | 63.9<br>62.5<br>62.9          | 45.8<br>45.7<br>45.3       | 21.0<br>21.5<br>20.5 | 29.7<br>27.2<br>28.7 | 11.2<br>11.1<br>11.1 |
|         |                             | AVERAGE          | 63.1                          | 45.6                       | 21.0                 | 28.5                 | 11.1                 |
|         | STANDARD                    | DEVIATIO         | N 0.7                         | 0.3                        | 0.5                  | 1.3                  | 0.1                  |

TABLE A21

TENSILE RESULTS AT t/10 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42" X 39" X 39")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>·(KSI) | ELONG<br>(%)         | RA<br>(%) | E<br>(MSI)           |
|----------|-----------------------------|-----------|-------------------------------|-----------------------------|----------------------|-----------|----------------------|
| NORTHROP | RT                          | LONG      | 71.6<br>71.2<br>71.4          | 60.0<br>59.9<br>60.4        | 10.0<br>10.0<br>10.0 |           | 11.3<br>11.5<br>11.1 |
|          |                             | AVERAGE   | 71.4                          | 60.1                        | 10.0                 |           | 11.3                 |
|          | STANDARD                    | DEVIATION | N 0.2                         | 0.3                         | 0.0                  |           | 0.2                  |

TABLE A22
TENSILE RESULTS AT t/10 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42" X 39" X 39")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%) | E<br>(MSI)           |
|----------|----------------------------|------------------|-------------------------------|----------------------------|----------------------|-----------|----------------------|
| NORTHROP | RT                         | L TRANS          | 69.6<br>69.3<br>69.7          | 51.2<br>51.1<br>51.4       | 18.0<br>16.0<br>15.0 |           | 11.1<br>11.6<br>11.4 |
|          |                            | AVERAGE          | 69.5                          | 51.2                       | 16.3                 |           | 11.4                 |
|          | STANDARD                   | DEVIATION        | N 0.2                         | 0.2                        | 1.5                  |           | 0.3                  |

TABLE A23

TENSILE RESULTS AT t/2 LOCATION WITH 100 HOURS EXPOSURE FOR

PECHINEY 2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | EXPOSURE<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) |              | ELONG<br>(%) | RA<br>(%)    |
|----------|-----------------------------|---------------------------------|------------------|-------------------------------|--------------|--------------|--------------|
| NORTHROP | RT                          | 300                             | LONG             | 77.7<br>77.7                  | 65.8<br>65.9 | 9.0<br>9.0   | 12.3<br>11.6 |
|          |                             | 350                             | LONG             | 75.8<br>76.1                  | 70.6<br>70.7 | 7.0<br>7.0   | 15.9<br>18.9 |
|          |                             | 375                             | LONG             | 71.3<br>71.6                  | 64.7<br>64.8 | 7.0<br>7.0   | 18.5<br>18.1 |
|          |                             | 400                             | LONG             | <b>6</b> 6.9<br>66.7          | 58.1<br>58.0 | 7.0<br>7.0   | 18.5<br>18.1 |

TABLE A24

COMPRESSION RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | TEST ( TEMPERATURE (DEGREES F) | PRIENTATION | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|-------------------------|--------------------------------|-------------|----------------------------------------|---------------------------------|
| NORTHROP                | RT                             | LONG        | 48.6<br>48.3<br>48.6                   |                                 |
| GRUMMAN                 | RT                             | LONG        | 48.1<br>50.5<br>48.4                   | 11.9<br>11.5<br>11.1            |
| GENERAL<br>DYNAMICS, TX | RT                             | LONG        | 48.6<br>49.2                           |                                 |
|                         |                                | AVERAGE     | 48.8                                   | 11.5                            |
|                         | STANDA                         | D DEVIATION | 0.8                                    | 0.4                             |

TABLE A25

COMPRESSION RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | TEST TEMPERATURE (DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|-------------------------|------------------------------|----------------|----------------------------------------|---------------------------------|
| NORTHROP                | RT                           | L TRANS        | 57.6<br>57.4<br>57.5                   |                                 |
| GRUMMAN                 | RT                           | L TRANS        | 58.3<br>58.2<br>58.9                   | 11.9<br>11.2<br>11.6            |
| GENERAL<br>DYNAMICS. TX | RT                           | L TRANS        | 57.5<br>60.9                           |                                 |
|                         |                              | AVERAGE        | 58.3                                   | 11.5                            |
|                         | STAN                         | DARD DEVIATION | 1.2                                    | 0.3                             |

TABLE A26

COMPRESSION RESULTS AT t/2 LOCATION FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY | TEST C<br>TEMPERATURE<br>(DEGREES F) | RIENTATION | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|---------|--------------------------------------|------------|----------------------------------------|---------------------------------|
| GRUMMAN | RT                                   | 45         | 49.5<br>48.6<br>49.6                   | 11.3<br>11.4<br>10.8            |
|         |                                      | AVERAGE    | 49.2                                   | 11.2                            |
|         | STANDAF                              | DEVIATION  | 0.6                                    | 0.3                             |

TABLE A27

RIVET SHEAR RESULTS FOR PECHINEY

2091-T8X PLATE (0.42" X 39" X 39")

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| NORTHROP | L-S                | 35.9<br>35.9<br>35.9       |
| GRUMMAN  | L-S                | 36.4<br>38.0<br>37.8       |
|          | AVERAGE            | 36.6                       |
|          | STANDARD DEVIATION | 1.0                        |

## TABLE A28 RIVET SHEAR RESULTS FOR PECHINEY 2091-T8X PLATE (0.42" X 39" X 39")

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| NORTHROP | T-S                | 33.5<br>33.5<br>33.9       |
| GRUMMAN  | T-S                | 34.6<br>35.9<br>37.2       |
|          | AVERAGE            | 34.8                       |
|          | STANDARD DEVIATION | 1.5                        |

#### TABLE A29

#### SLOTTED SHEAR RESULTS FOR PECHINEY

#### 2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |  |
|-------------------------|--------------------|----------------------------|--|
| GENERAL<br>DYNAMICS, TX | LONG               | 41.3<br>40.9               |  |
|                         | AVERAGE            | 41.1                       |  |
|                         | STANDARD DEVIATION | 0.3                        |  |

#### TABLE A30

#### SLOTTED SHEAR RESULTS FOR PECHINEY

#### 2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|-------------------------|--------------------|----------------------------|
| GENERAL<br>DYNAMICS, TX | L TRANS            | 42.6<br>43.4               |
|                         | <b>AVÉ</b> P^GE    | 43.0                       |
|                         | STANDARD DEVIATION | 0.6                        |

TABLE A31

BEARING RESULTS FOR PECHINEY

2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY                 | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|--------------|-------------------------------|--------------------------------|
| NORTHROP                | LONG        | 1.5          | 93.0<br>89.6<br>92.6          | 73.0<br>71.8<br>73.7           |
| GRUMMAN                 | LONG        | 1.5          | 92.9<br>93.8<br>93.4          | 71.9<br>73.0<br>72.1           |
| GENERAL<br>DYNAMICS, TX | LONG        | 1.5          | 117.0<br>112.0                | 93.0<br>91.4                   |
|                         |             | AVERAGE      | 98.0                          | 77.5                           |
|                         | STANDA      | RD DEVIATION | 10.3                          | 9.1                            |

TABLE A32

BEARING RESULTS FOR PECHINEY

2091-T8X PLATE (0.42' X 39' X 39')

| COMPANY                 | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|--------------|-------------------------------|--------------------------------|
| NORTHROP                | L TRANS     | 1.5          | 99.3<br>98.9<br>97.9          | 75.5<br>76.0<br>74.2           |
| GRUMMAN                 | L TRANS     | 1.5          | 94.9<br>91.9<br>92.8          | 73.0<br>70.1<br>71.0           |
| GENERAL<br>DYNAMICS. TX | L TRANS     | 1.5          | 97.0<br>97.8                  | 79.1<br>80.5                   |
|                         |             | AVERAGE      | 96.3                          | 74.9                           |
|                         | STANDA      | RD DEVIATION | 2.8                           | 3.6                            |

TABLE A33

BEARING RESULTS FOR PECHINEY

2091-T8X PLATE (0.42' X 39' X 39')

| COMPANY                 | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|--------------|-------------------------------|--------------------------------|
| NORTHROP                | LONG        | 2.0          | 119.4<br>118.9<br>118.6       | 86.8<br>87.8<br>86.4           |
| GRUMMAN                 | LONG        | 2.0          | 113.0<br>115.5<br>114.2       | 85.6<br>86.9<br>87.1           |
| GENERAL<br>DYNAMICS, TX | LONG        | 2.0          | 123.0<br>122.0                | 91.3<br>94.0                   |
|                         |             | AVERAGE      | 118.1                         | 88.2                           |
|                         | STANDA      | RD DEVIATION | 3.6                           | 2.9                            |

TABLE A34

BEARING RESULTS FOR PECHINEY

2091-T8X PLATE (0.42 X 39 X 39 )

| COMPANY                 | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------|-------------|--------------|-------------------------------|--------------------------------|
| NORTHROP                | L TRANS     | 2.0          | 123.9<br>124.2<br>124.1       | 90.7<br>94.2<br>92.1           |
| GRUMMAN                 | L TRANS     | 2.0          | 115.6<br>117.5<br>114.9       | 88.2<br>89.5<br>88.9           |
| GENERAL<br>DYNAMICS, TX | L TRANS     | 2.0          | 99.3<br>103.0                 | 82.7<br>85.3                   |
|                         |             | AVERAGE      | 115.3                         | 89.0                           |
|                         | STANDA      | RD DEVIATION | 9.6                           | 3.7                            |

#### TABLE A35

#### FRACTURE TOUGHNESS RESULTS FOR PECHINEY

#### 2091-T8X PLATE (0.42 X 39 X 39')

| COMPANY                 | ORIENTATION  | KIC (KSI in 0.5) | Kq<br>(KSI in <sup>*</sup> 0.5) | COMMENT                       |
|-------------------------|--------------|------------------|---------------------------------|-------------------------------|
| MORTHROP                | L-T          | 27.0<br>28.0     |                                 | VALID<br>VALID                |
| GRUMMAN                 | L-T          |                  | 40.1<br>43.2<br>39.5            |                               |
| GENERAL<br>DYNAMICS, TX | L-T          |                  |                                 | INVALID(2,3,4) INVALID(2,3,4) |
|                         | AVERAGE      | 27.5             | 36.3                            |                               |
| STANDA                  | RD DEVIATION | 0.7              | 6.5                             |                               |

(1): 2.5(Kq)^2/(YS)^2 > B (2): Pmax/Pq > 1.10 (3): INSUFFICIENT THICKNESS (4): CRACK CURVATURE > 5%

TABLE A36

#### FRACTURE TOUGHNESS RESULTS FOR PECHINEY

#### 2091-T8X PLATE (0.42' X 39' X 39')

| COMPANY              | ORIENTA      |        | KIC in 0.5)  | (KSI | Kq<br>in <sup>-</sup> 0.5) | COMMENT                              |
|----------------------|--------------|--------|--------------|------|----------------------------|--------------------------------------|
| NORTHROP             | T-1          |        | 29.8<br>28.5 |      |                            | VALID<br>VALID                       |
| GRUMMAN              | T-1          | L      |              |      | 40.5<br>43.2<br>38.2       | INVALID(1) INVALID(1,2) INVALID(1,2) |
| GENERAL<br>DYNAMICS, | T-1          | L.     |              |      | 27.1<br>27.0               | INVALID(2,3) INVALID(2,3,4)          |
|                      | <b>A</b> 1   | VERAGE | 29.2         |      | 35.2                       |                                      |
|                      | STANDARD DEV | IATION | 0.9          |      | 7.6                        |                                      |

(1): 2.5(Kq)^2/(YS)^2 > B (2): Pmax/Pq > 1.10 (3): INSUFFICIENT THICKNESS (4): CRACK CURVATURE > 5%

TABLE A37

General Dynamics, Texas

Pechiney 2091-T8X Plate
(0.42" X 39" X 39")

Results of R-Curve Tests

|     | K <sub>R25</sub> ,ksi-in <sup>1</sup> |
|-----|---------------------------------------|
| L-T | 48.3                                  |
| L-T | 50.2                                  |
| T-L | 43.2                                  |
| T-L | 43.2                                  |

TABLE A38

SMOOTH FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

PECHINEY 2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES           |
|----------|-------------|-----------------|------------------|
| NORTHROP | LONG        | 60.0            | 31 000           |
| MONIMOR  | Long        | 50.0            | 31,299<br>84.556 |
|          |             | 45.0            | 135,397          |
|          |             | 45.0            | 140,237          |
|          |             | 40.0            | 242,930          |
|          |             | 37.5            | 1,386,890        |
|          |             | 37.5            | 934.697          |
|          |             | 35.0            | 2,000,000 *      |

(\*): INDICATES RUN-OUT TEST



Figure All Fatique Results for 2091-T8X 0.42" Plate (R=0.1, Kt=1.0). Northrop.

TABLE A39

NOTCHED FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR

PECHINEY 2091-T8X PLATE (0.42° X 39° X 39°)

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES    |
|----------|-------------|-----------------|-----------|
| NORTHROP | LONG        | 45.0            | 12 625    |
| BOXIMAON | Dong        | 40.0            | 13,635    |
|          |             |                 | 26,179    |
|          |             | 35.0            | 48,930    |
|          |             | 30.0            | 216,536   |
|          |             | 27.5            | 257,234   |
|          |             | 27.5            | 193.418   |
|          |             | 25.0            | 474,737 * |
|          |             | 23.0            | 940,075   |

(\*): INDICATES SLANT FAILURE



Figure A12 Fatigue Results for 2091-T8X 0.42" Plate (R=0.1, Kt=3.0). Northrop.



Figure A13 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.42" Plate (L-T Orientation). Northrop.



Figure A14 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.42" Plate (T-L Orientation). Northrop.



Figure A15 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.42" Plate (L-T Orientation). Grumman.



Figure A16 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.42" Plate (T-L Orientation). Grumman.



Figure Al7 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.42" Plate (T-L Orientation). Grumman.



Figure A18 Fatigue Crack Growth Rate Nata for Pechiney 2091-T8X 0.42" Plate (45 degrees Orientation). Grumman.



STRESS INTENSITY RANGE, DEL-K KSI-SOR-IN

Material:

2091-T851 Plate

Age:

335°F - 16 hrs

**Environment:** 

Lab air, Room temperature

Orientation:

L-T

Stress Ratio:

0.1

Frequency:

5 Hz

Figure A19 Fatigue Crack Growth Rate Data for 2091-T8X 0.42" Plate (L-T orientation). General Dynamics TX.



K51-50R-IN

2091-T851 Plate Material: 335°F - 16 hrs Age:

Lab air, Room temperature **Environment:** 

T-L Orientation: 0.1 Stress Ratio: 5 Hz Frequency:

Figure A20 Fatigue Crack Growth Rate Data for 2091-T8X 0.42" Plate (T-L orientation). General Dynamics TX.



K51-50R-1N

Material: 2091-T851 Plate 335°F - 16 hrs Age:

Lab air, Room temperature **Environment:** 

Orientation: T-L 0.1 Stress Ratio: Frequency: 5 Hz

Figure A21 Fatigue Crack Growth Rate Data for 2091-T8X 0.42" Plate (T-L orientation). General Dynamics TX.

#### APPENDIX B

#### PECHINEY 2091-T3 AND 2091-T8X (0.063" X 79" X 39")

#### INTRODUCTION

The Pechiney 2091-T3 0.063-inch sheets were received the second quarter of 1986. Three participants heat treated the 2091-T3 to a T8X temper. Grumman Aircraft Systems and Northrop Corporation achieved the T8 condition by aging the 2091 sheet at 275°F for 12 hours (recommended by the producer of this alloy). General Dynamics Fort Worth Division aged the 2091 sheet at 335°F for 32 hours achieving the T81 condition.

#### **TESTING**

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. The growth rate a-N data that was generated by the participants (Grumman, McDonnell Aircraft Co., and Northrop) were reduced using a seven-point incremental polynomial method. This involves fitting a second-order polynomial (parabola) to sets of seven successive data points. The data are also checked against size requirements per ASTM E647, Section 7.2. General Dynamics, TX performed constant amplitude fatigue crack growth tests using a K-increasing (load increasing) method.

2091-T3 SHEET (0.063"x79"x79")

TABLE B1

TENSILE RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|--------------|-----------|------------|
| BOEING    | RT                          | LONG     | 57.0                          | 41.3                       | 13.0         |           |            |
|           |                             |          | 58.1                          | 41.2                       | 20.0         |           |            |
|           |                             |          | 58.0                          | 41.2                       | 22.0         |           |            |
| LTV       | RT                          | LONG     | 58.8                          |                            | 21.5         |           |            |
|           |                             |          | 58.6                          | 39.0                       | 21.0         |           | 10.7       |
|           |                             |          | 58.2                          | 39.4                       | 19.5         |           | 11.0       |
| GENERAL   | RT                          | LONG     | 56.7                          | 41.1                       | 20.0         |           | 10.7       |
| DYNAMICS, |                             |          | 55.9                          | 40.3                       | 20.0         |           | 10.7       |
| CALIF.    |                             |          | 56.5                          | 41.7                       | 18.5         |           | 10.7       |
| NORTHROP  |                             |          | 58.5                          | 42.3                       | 16.9         |           |            |
|           |                             |          | 58.9                          | 42.1                       | 16.9         |           |            |
|           |                             |          | 59.0                          | 42.5                       | 16.9         |           |            |
| MCAIR     | RT                          | LONG     | 57.5                          | 42.6                       | 19.0         |           | 12.0       |
|           |                             |          | 57.0                          | 42.4                       | 16.0         |           | 12.1       |
|           |                             |          | 57.5                          | 42.4                       | 23.0         |           | 12.2       |
| MARTIN    | RT                          | LONG     | 56.1                          | 39.4                       | 18.0         | 27.0      |            |
| MARIETTA, |                             |          | 57.6                          | 40.8                       | 20.0         | 21.0      |            |
| LOUISIANA |                             | •        | 59.2                          | 42.5                       | 22.0         | 25.0      |            |
|           |                             | AVERAGE  | 57.7                          | 41.3                       | 19.1         | 24.3      | 11.3       |
|           | STANDARD I                  | EVIATION | 1.0                           | 1.2                        | 2.5          | 3.1       | 0.7        |

TABLE B2

TENSILE RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F | ation<br>) | ULTIMATE<br>STRENGTH<br>(KSI) | • •  | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|----------------------------|------------|-------------------------------|------|--------------|-----------|------------|
| BORING    | RT                         | L TRANS    |                               |      | 16.0         |           |            |
|           |                            |            | 61.4                          | 41.5 | 17.0         |           |            |
|           |                            |            | 60.8                          | 41.6 | 16.0         |           |            |
| NORTHROP  | RT                         | L TRANS    | 62.0                          | 41.9 | 17.0         |           |            |
|           |                            |            | 62.7                          | 41.6 | 16.8         |           |            |
|           |                            |            | 62.0                          |      | 17.1         |           |            |
| LTV       | RT                         | L TRANS    | 61.7                          | 40.0 | 17.0         |           | 10.7       |
|           |                            |            | 61.6                          | 39.9 | 18.5         |           | 10.6       |
|           |                            |            | 61.9                          | 39.3 | 16.5         |           | 11.0       |
| GENERAL   | RT                         | L TRANS    | 60.0                          | 41.3 | 22.0         |           | 10.9       |
| DYNAMICS, |                            |            | 60.2                          | 41.2 | 21.0         |           | 10.9       |
| CALIF.    |                            |            | 59.7                          | 41.4 | 20.0         |           | 10.9       |
| MCAIR     | RT                         | L TRANS    | 62.0                          | 42.2 | 17.0         |           | 12.0       |
|           |                            |            | 60.5                          | 42.7 | 17.0         |           | 12.0       |
|           |                            |            | 60.5                          | 41.9 | 18.0         |           | 12.1       |
| MARTIN    | RT                         | L TRANS    | 60.8                          | 41.2 | 17.0         | 27.0      |            |
| MARIETTA, |                            |            | 60.5                          | 40.8 | 16.0         | 21.0      |            |
| LOUISIANA |                            |            | 60.3                          | 40.9 | 16.0         | 24.0      |            |
|           |                            | AVERAGE    | 61.1                          | 41.3 | 17.6         | 24.0      | 11.2       |
|           | STANDARD                   | DEVIATION  | 0.9                           | 0.9  | 1.8          | 3.0       | 0.6        |

TABLE B3

COMPRESSION RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|--------------------------------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| BOEING                         | RT                                 | LONG          | 39.4<br>39.6<br>39.9                   |                                 |
| LTV                            | RT                                 | LONG          | 41.4<br>41.4                           | 10.6<br>10.6                    |
| GENERAL<br>DYNAMICS,<br>CALIF. | RT                                 | LONG          | 38.7<br>38.9<br>39.1                   | 11.7<br>12.0<br>12.0            |
|                                |                                    | AVERAGE       | 39.8                                   | 11.4                            |
|                                | STAND                              | ARD DEVIATION | 1.0                                    | 0.7                             |

TABLE B4

COMPRESSION RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|--------------------------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| BOEING                         | RT                                 | L TRANS        | 44.6<br>44.7<br>44.5                   |                                 |
| LTV                            | RT                                 | L TRANS        | 45.9<br>45.2<br>45.3                   |                                 |
| GENERAL<br>DYNAMICS,<br>CALIF. | RT                                 | L TRANS        | 42.7<br>44.3                           | 11.8<br>11.5                    |
|                                |                                    | AVERAGE        | 44.7                                   | 11.7                            |
|                                | STAN                               | DARD DEVIATION | 1.0                                    | 0.2                             |

TABLE 85

#### PUNCH SHEAR RESULTS FOR PECHINEY

#### 2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY | Y ORIENTATION      |                      |
|---------|--------------------|----------------------|
| BOEING  | s trans            | 36.0<br>36.5<br>36.0 |
|         | AVERAGE            | 36.2                 |
|         | STANDARD DEVIATION | 0.3                  |

#### TABLE B6

#### SLOTTED SHEAR RESULTS FOR PECHINEY

#### 2091-T3 SHEET (0.063" X 39" X 39")

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| BOEING  | LONG               | 39.8<br>39.0<br>36.9       |
| LTV     | LONG               | 38.3<br>38.6<br>37.9       |
| MCAIR   | LONG               | 38.1<br>37.9<br>38.2       |
|         | AVERAGE            | 38.3                       |
|         | STANDARD DEVIATION | 0.8                        |
|         | <b>A S</b>         |                            |

TABLE B7

SLOTTED SHEAR RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 39" X 39")

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| BOEING  | T - L              | 36.8<br>40.1<br>36.4       |
| LTV     | T - L              | 40.0<br>40.5<br>40.5       |
| MCAIR   | T - L              | 39.2<br>37.9<br>39.0       |
|         | AVERAGE            | 38.9                       |
|         | STANDARD DEVIATION | 1.5                        |

TABLE B8

BEARING RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------------|-------------|--------------|-------------------------------|--------------------------------|
| BOEING                         | LONG        | 1.5          | 88.9<br>90.2<br>90.3          | 61.4<br>63.0<br>63.5           |
| LTV                            | LONG        | 1.5          | 90.4<br>88.5<br>89.3          | 58.9<br>61.2<br>61.4           |
| GENERAL<br>DYNAMICS,<br>CALIF. | LONG        | 1.5          | 88.6<br>88.1<br>90.0          | 66.6<br>64.0<br>64.0           |
|                                |             | AVERAGE      | 89.4                          | 62.7                           |
|                                | STANDAL     | RD DEVIATION | 0.9                           | 2.2                            |

TABLE B9

BEARING RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | ORIENTATION | •/D                    | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------------|-------------|------------------------|-------------------------------|--------------------------------|
| BOEING                         | L TRANS     | 1.5                    | 92.9<br>93.1<br>93.1          | 62.6<br>63.3<br>63.3           |
| LTV                            | L TRANS     | 1.5                    | 91.0<br>92.1<br>92.2          | 60.5<br>59.7<br>61.8           |
| GENERAL<br>DYNAMICS,<br>CALIF. | L TRANS     | 1.5                    | 90.3<br>88.5<br>87.9          | 65.7<br>62.3<br>64.0           |
|                                | STANDAI     | AVERAGE  DEVIATION  68 | 91.2<br>2.0                   | 1.8                            |

TABLE B10

BEARING RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | ORIENTATION | •/D         | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------------|-------------|-------------|-------------------------------|--------------------------------|
| BOEING                         | Long        | 2.0         | 115.2<br>115.8<br>115.3       | 75.6<br>76.1<br>76.2           |
| LTV                            | LONG        | 2.0         | 111.6<br>111.0<br>112.5       | 77.3<br>76.4<br>76.9           |
| GENERAL<br>DYNAMICS,<br>CALIF. | LONG        | 2.0         | 115.6<br>114.3                | 76.8<br>73.2                   |
| MCAIR                          | LONG        | 2.0         |                               | 73.5<br>73.9                   |
|                                |             | AVERAGE     | 113.9                         | 75.6                           |
|                                | STANDAL     | D DEVIATION | 1.9                           |                                |

TABLE B11

BEARING RESULTS FOR PECHINEY

2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY                        | ORIENTATION | ●/D             | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------------|-------------|-----------------|-------------------------------|--------------------------------|
| BOEING                         | L TRANS     | 2.0             | 118.8<br>115.2                | 76.5<br>75.4                   |
| LTV                            | L TRANS     | 2.0             | 111.1<br>114.1<br>116.0       | 75.9<br>78.8<br>75.1           |
| GENERAL<br>DYNAMICS,<br>CALIF. | L TRANS     | 2.0             | 120.6<br>115.9<br>111.7       | 76.8<br>81.8<br>80.3           |
| MCAIR                          | L TRANS     | 2.0             |                               | 76.5<br>72.7                   |
|                                |             | AVERAGE         | 115.4                         | 77.0                           |
|                                | STANDA      | RD DEVIATION 69 | 3.2                           | 2.7                            |

TABLE B12

ASTM E561 R Curve CCT Al-Li B-5-LT-1

Fty = 41.10 ksi Pmax = 7540 lbW = 3.994 inB = 0.0644 in

a = 1.255 ina/2 = 0.6275 in

|        | Loads |      |       |      |          |           |        |    |
|--------|-------|------|-------|------|----------|-----------|--------|----|
| a eff_ | 5000  | 7540 | 10000 | Load | a (half) | a plastic | a eff  | K  |
| 0.6    | 28    | 43   | 57    | 0    | 0.6275   | 0.0000    | 0.6275 | 0  |
| 0.6    | 29    | 44   | 58    | 200  | 0.7225   | 0.0002    | 0.7227 | 1  |
| 0.7    | 30    | 45   | 59    | 600  | 0.7225   | 0.0014    | 0.7239 | 4  |
| 0.7    | 30    | 46   | 61    | 1000 | 0.7225   | 0.0038    | 0.7263 | 6  |
| 0.7    | 31    | 47   | 62    | 1400 | 0.7225   | 0.0075    | 0.7300 | 9  |
| 0.7    | 32    | 48   | 64    | 1800 | 0.7225   | 0.0124    | 0.7349 | 12 |
| 0.8    | 33    | 49   | 65    | 2200 | 0.7225   | 0.0186    | 0.7411 | 14 |
| 0.8    | 33    | 51   | 67    | 2600 | 0.7225   | 0.0259    | 0.7484 | 17 |
| 0.8    | 34    | 52   | 69    | 2800 | 0.7250   | 0.0302    | 0.7552 | 18 |
| 0.8    | 35    | 53   | 70    | 3200 | 0.7250   | 0.0395    | 0.7645 | 21 |
| 0.9    | 36    | 54   | 72    | 3600 | 0.7250   | 0.0499    | 0.7749 | 24 |
| 0.9    | 37    | 55   | 73    | 4000 | 0.7275   | 0.0619    | 0.7894 | 27 |
| 0.9    | 38    | 57   | 75    | 4400 | 0.7275   | 0.0750    | 0.8025 | 30 |
| 0.9    | 38    | 58   | 77    | 4600 | 0.7275   | 0.0819    | 0.8094 | 32 |
| 1.0    | 39    | 59   | 78    | 4800 | 0.7300   | 0.0896    | 0.8196 | 33 |
| 1.0    | 40    | 60   | 80    | 5200 | 0.7300   | 0.1052    | 0.8352 | 37 |
| 1.0    | 41    | 62   | 82    | 5600 | 0.7300   | 0.1220    | 0.8520 | 40 |
| 1.0    | 42    | 63   | 84    | 5800 | 0.7300   | 0.1309    | 0.8609 | 42 |
| 1.1    | 43    | 65   | 86    | 6000 | 0.7450   | 0.1440    | 0.8890 | 45 |
| 1.1    | 44    | 66   | 88    | 6200 | 0.7450   | 0.1538    | 0.8988 | 46 |
| 1.1    | 45    | 68   | 90    | 6400 | 0.7600   | 0.1685    | 0.9285 | 49 |
| •      |       |      |       | 6800 | 0.7600   | 0.1902    | 0.9502 | 53 |
|        |       |      |       | 7000 | 0.7700   | 0.2053    | 0.9753 | 56 |
|        |       |      |       | 7200 | 0.7700   | 0.2172    | 0.9872 | 58 |
|        |       |      |       | 7400 | 0.7850   | 0.2359    | 1.0209 | 62 |

Kc = 61.8 Ksi √in



TABLE B13

ASTM E561 R Curve CCT Al-Li B-5-LT-2

W = 3.995 in Fty = 41.10 ksi B = 0.0647 in Pmax = 7250 lb

a = 1.255 in a/2 = 0.6275 in

|       | Loads |      |           |      |          |           |        |          |
|-------|-------|------|-----------|------|----------|-----------|--------|----------|
| a eff | 5000  | 7250 | 10000     | Load | a (half) | a plastic | a eff  | <u>K</u> |
| 0.6   | 28    | 41   | 56        |      | 0.6275   | 0.0000    | 0.6275 | 0        |
| 0.6   | 29    | 42   | 58        | 200  | 0.7250   | 0.0002    | 0.7252 | 1        |
| 0.7   | 30    | 43   | 59        | 600  | 0.7250   | 0.0014    | 0.7264 | 4        |
| 0.7   | 30    | 44   | 61        | 1000 | 0.7250   | 0.0038    | 0.7288 | 6        |
| 0.7   | 31    | 45   | 62        | 1400 | 0.7250   | 0.0075    | 0.7325 | 9        |
| 0.7   | 32    | 46   | 64        | 1800 | 0.7250   | 0.0124    | 0.7374 | 12       |
| 0.8   | 33    | 47   | 65        | 2200 | 0.7250   | 0.0185    | 0.7435 | 14       |
| 0.8   | 33    | 48   | 67        | 2600 | 0.7250   | 0.0258    | 0.7508 | 17       |
| 0.8   | 34    | 49   | 68        | 2800 | 0.7250   | 0.0299    | 0.7549 | 18       |
| 0.8   | 35    | 51   | 70        | 3200 | 0.7250   | 0.0391    | 0.7641 | 21       |
| 0.9   | 36    | 52   | 71        | 3600 | 0.7250   | 0.0494    | 0.7744 | 24       |
| 0.9   | 36    | 53   | <b>73</b> | 4000 | 0.7275   | 0.0613    | 0.7888 | 27       |
| 0.9   | 37    | 54   | 75        | 4200 | 0.7275   | 0.0676    | 0.7951 | 29       |
| 0.9   | 38    | 55   | 76        | 4400 | 0.7300   | 0.0746    | 0.8046 | 30       |
| 1.0   | 39    | 57   | 78        | 4600 | 0.7300   | 0.0815    | 0.8115 | 32       |
| 1.0   | 40    | 58   | 80        | 4800 | 0.7300   | 0.0887    | 0.8187 | 33       |
| 1.0   | 41    | 59   | 82        | 5200 | 0.7300   | 0.1041    | 0.8341 | 37       |
| 1.0   | 42    | 60   | 83        | 5600 | 0.7300   | 0.1208    | 0.8508 | 40       |
| 1.1   | 43    | 62   | 85        | 5800 | 0.7300   | 0.1296    | 0.8596 | 42       |
| 1.1   | 44    | 63   | 87        | 6000 | 0.7300   | 0.1387    | 0.8687 | 44       |
| 1.1   | 45    | 65   | 89        | 6200 | 0.7325   | 0.1488    | 0.8813 | 46       |
| •     |       |      |           | 6400 | 0.7325   | 0.1585    | 0.8910 | 47       |
|       |       |      |           | 6800 | 0.7375   | 0.1806    | 0.9181 | 52       |
|       |       |      |           | 7000 | 0.7450   | 0.1941    | 0.9391 | 54       |
|       |       |      |           | 7200 | 0.7550   | 0.2092    | 0.9642 | 57       |

Kc = 56.9 Ks1 Vin

10000 - 7250 ... 5000 Z 0.1 ..... ASTM E561 R-Curve Charl Alum-Li, Spec. B-5-LT-2 0.0 **O**.8 0.7 8 8 8 8 8 8 <u>.</u> 8 ¥

Figure 82 R-Curve Results for 2091-r3 0.063" Sheet (LT). General Dynamics, CA.

TABLE B14
General Dynamics, CA

ASTM E561 R Curve

CCT Al-Li B-5-LT-3

W = 3.992 in Fty = 41.10 ksi B = 0.0642 in Pmax = 5875 lb

a = 1.2600 ina/2 = 0.6300 in

|        | Loads |      |            |      |          |           |        |          |
|--------|-------|------|------------|------|----------|-----------|--------|----------|
| a eff_ | 4000  | 5875 | 8000       | Load | a (haif) | a plastic | a eff  | <u>K</u> |
| 0.6    | 23    | 33   | 45         |      | 0.6300   | 0.0000    | 0.6300 | <u> </u> |
| 0.6    | 23    | 34   | 47         | 200  | 0.7275   | 0.0002    | 0.7277 | 1        |
| 0.7    | 24    | 35   | 48         | 600  | 0.7275   | 0.0014    | 0.7289 | 4        |
| 0.7    | 24    | 36   | 49         | 1000 | 0.7275   | 0.0039    | 0.7314 | 6        |
| 0.7    | 25    | 37   | 50         | 1400 | 0.7275   | 0.0076    | 0.7351 | 9        |
| 0.7    | 26    | 38   | 51         | 1800 | 0.7275   | 0.0126    | 0.7401 | 12       |
| 0.8    | 26    | 39   | 53         | 2000 | 0.7275   | 0.0156    | 0.7431 | 13       |
| 0.8    | 27    | 40   | 54         | 2200 | 0.7275   | 0.0189    | 0.7464 | 14       |
| 0.8    | 28    | 40   | 55         | 2600 | 0.7275   | 0.0264    | 0.7539 | 17       |
| 0.8    | 28    | 41   | 56         | 3000 | 0.7275   | 0.0351    | 0.7626 | 20       |
| 0.9    | 29    | 42   | 58         | 3400 | 0.7275   | 0.0451    | 0.7726 | 23       |
| 0.9    | 29    | 43   | 59         | 3800 | 0.7275   | 0.0563    | 0.7838 | 26       |
| 0.9    | 30    | 44   | 60         | 4200 | 0.7275   | 0.0588    | 0.7963 | 29       |
| 0.9    | 31    | 45   | 62         | 4400 | 0.7275   | 0.0055    | 0.8030 | 30       |
|        | 31    | 46   | 63         | 4600 | 0.7275   | 0.0733    | 0.8100 | 32       |
| 1.0    |       |      |            |      |          |           |        |          |
| 1.0    | 32    | 47   | 64         | 4800 | 0.7275   | 0.0899    | 0.8174 | 34       |
| 1.0    | 33    | 48   | <b>6</b> 6 | 5000 | 0.7275   | 0.0975    | 0.8250 | 35       |
|        |       |      |            | 5200 | 0.7275   | 0.1055    | 0.8330 | 37       |
|        |       |      |            | 5400 | 0.7275   | 0.1137    | 0.8412 | 39       |
|        |       |      |            | 5600 | 0.7275   | 0.1223    | 0.8498 | 40       |
|        |       |      |            | 5800 | 0.7275   | 0.1312    | 0.8587 | 42       |

- Kc - 42.1 Kai √in Specimen failed in doubler region



Figure 83 R-Curve Results for 2091-T3 0.063" Sheet (I.T). General Dynamics, CA.

TABLE B15 General Dynamics, CA

### ASTM E561 R Curve CCT Al-Li B-5-TL-1

Fty = 41.10 ksi Pmax = 7290 lbW = 3.995 inB = 0.0649 ina = 1.25 ina/2 = 0.625 in

|       | Loads |            |       |      |          |           |        |    |
|-------|-------|------------|-------|------|----------|-----------|--------|----|
| a eff | 5000  | 7290       | 10000 | Load | a (half) | a plastic | a eff  | K  |
| 0.6   | 28    | 41         | 56    | 0    | 0.6250   | 0.0000    | 0.6250 | 0  |
| 0.6   | 29    | 42         | 58    | 200  | 0.7400   | 0.0002    | 0.7402 | 1  |
| 0.7   | 30    | 43         | 59    | 600  | 0.7400   | 0.0014    | 0.7414 | 4  |
| 0.7   | 30    | 44         | 60    | 1000 | 0.7400   | 0.0039    | 0.7439 | 6  |
| 0.7   | 31    | 45         | 62    | 1400 | 0.7400   | 0.0076    | 0.7476 | 9  |
| 0.7   | 32    | 46         | 63    | 1600 | 0.7425   | 0.0100    | 0.7525 | 10 |
| 0.8   | 32    | 47         | 65    | 2000 | 0.7425   | 0.0157    | 0.7582 | 13 |
| 0.8   | 33    | 48         | 66    | 2400 | 0.7425   | 0.0226    | 0.7651 | 16 |
| 0.8   | 34    | 50         | 68    | 2800 | 0.7425   | 0.0307    | 0.7732 | 19 |
| 0.8   | 35    | 51         | 70    | 3200 | 0.7425   | 0.0401    | 0.7826 | 21 |
| 0.9   | 36    | 52         | 71    | 3600 | 0.7425   | 0.0508    | 0.7933 | 24 |
| 0.9   | 36    | <b>5</b> 3 | 73    | 4000 | 0.7425   | 0.0627    | 0.8052 | 27 |
| 0.9   | 37    | 54         | 74    | 4400 | 0.7425   | 0.0759    | 0.8184 | 30 |
| 0.9   | 38    | 55         | 76    | 4600 | 0.7425   | 0.0829    | 0.8254 | 32 |
| 1.0   | 39    | 57         | 78    | 4800 | 0.7450   | 0.0907    | 0.8357 | 34 |
| 1.0   | 40    | 58         | 80    | 5000 | 0.7475   | 0.0989    | 0.8464 | 35 |
| 1.0   | 41    | 59         | 81    | 5200 | 0.7525   | 0.1079    | 0.8604 | 37 |
| 1.0   | 42    | 61         | 83    | 5600 | 0.7525   | 0.1252    | 0.8777 | 41 |
| 1.1   | 43    | 62         | 85    | 6000 | 0.7525   | 0.1437    | 0.8962 | 44 |
| 1.1   | 44    | 63         | 87    | 6200 | 0.7550   | 0.1542    | 0.9092 | 47 |
| 1.1   | 45    | 65         | 89    | 6400 | 0.7575   | 0.1650    | 0.9225 | 49 |
| •     |       |            |       | 6600 | 0.7575   | 0.1755    | 0.9330 | 51 |
|       |       |            |       | 6800 | 0.7625   | 0.1881    | 0.9506 | 53 |
|       |       |            |       | 7000 | 0.7625   | 0.1993    | 0.9618 | 55 |
|       |       |            |       | 7200 | 0.7950   | 0.2238    | 1.0188 | 60 |

Kc = 59.6 Ksi √in



Figure B4 R-Curve Results for 2091-T3 0.063" Sheet (TL). General Dynamics, CA.

TABLE B16

#### ASTM E561 R Curve CCT Al-Li B-5-TL-2

W = 3.992 inB = 0.0646 in Fty = 41.10 ksi Pmax = 7450 lb

a = 1.2550 in a/2 = 0.6275 in

|       | Loads |      |            |       |          |           |        |    |
|-------|-------|------|------------|-------|----------|-----------|--------|----|
| a eff | 5000  | 7450 | 10000      | Load  | a (half) | a plastic | a eff  | K  |
| 0.6   | 28    | 42   | <u> 56</u> | <br>0 | 0.6275   | 0.0000    | 0.6275 | 0  |
| 0.6   | 29    | 43   | 58         | 200   | 0.7275   | 0.0002    | 0.7277 | 1  |
| 0.7   | 30    | 44   | 59         | 400   | 0.7275   | 0.0006    | 0.7281 | 3  |
| 0.7   | 30    | 45   | 61         | 600   | 0.7325   | 0.0014    | 0.7339 | 4  |
| 0.7   | 31    | 46   | 62         | 1000  | 0.7325   | 0.0039    | 0.7364 | 6  |
| 0.7   | 32    | 48   | 64         | 1400  | 0.7325   | 0.0076    | 0.7401 | 9  |
| 0.8   | 33    | 49   | 65         | 1800  | 0.7325   | 0.0126    | 0.7451 | 12 |
| 0.8   | 33    | 50   | 67         | 2200  | 0.7325   | 0.0188    | 0.7513 | 14 |
| 0.8   | 34    | 51   | 68         | 2600  | 0.7325   | 0.0263    | 0.7588 | 17 |
| 0.8   | 35    | 52   | 70         | 3000  | 0.7325   | 0.0350    | 0.7675 | 20 |
| 0.9   | 36    | 53   | 72         | 3400  | 0.7325   | 0.0450    | 0.7775 | 23 |
| 0.9   | 37    | 55   | 73         | 3600  | 0.7425   | 0.0513    | 0.7938 | 24 |
| 0.9   | 37    | 56   | 75         | 3800  | 0.7425   | 0.0572    | 0.7997 | 26 |
| 0.9   | 38    | 57   | 77         | 4000  | 0.7450   | 0.0637    | 0.8087 | 28 |
| 1.0   | 39    | 58   | 78         | 4200  | 0.7450   | 0.0702    | 0.8152 | 29 |
| 1.0   | 40    | 60   | 80         | 4400  | 0.7525   | 0.0781    | 0.8306 | 31 |
| 1.0   | 41    | 61   | 82         | 4600  | 0.7525   | 0.0854    | 0.8379 | 33 |
| 1.0   | 42    | 62   | 84         | 4800  | 0.7550   | 0.0934    | 0.8484 | 34 |
| 1.1   | 43    | 64   | 86         | 5400  | 0.7550   | 0.1183    | 0.8733 | 39 |
| 1.1   | 44    | 65   | 88         | 5600  | 0.7575   | 0.1278    | 0.8853 | 41 |
| 1.1   | 45    | 67   | 90         | 6000  | 0.7575   | 0.1467    | 0.9042 | 45 |
| •     | •     |      |            | 6200  | 0.7600   | 0.1573    | 0.9173 | 47 |
|       |       |      |            | 6400  | 0.7600   | 0.1677    | 0.9277 | 49 |
|       |       |      |            | 6600  | 0.7675   | 0.1808    | 0.9483 | 52 |
|       |       |      |            | 6800  | 0.7725   | 0.1937    | 0.9662 | 54 |
|       |       |      |            | 7000  | 0.7800   | 0.2081    | 0.9881 | 57 |
|       |       |      |            | 7200  | 0.7875   | 0.2232    | 1.0107 | 59 |
|       |       |      |            | 7400  | 0.8025   | 0.2423    | 1.0448 | 63 |

Kc = 63.0 Ksi √in



Figure 85 R-Curve Results for 2091-T3 0.063" Sheet (TL). General Dynamics, CA

ASTM E561 R-Curve Chan Alum-Li, Spec. B-5-TL-2

TABLE B17

ASTM E561 R Curve

CCT Al-Li B-5-TL-3

W = 3.996 in Fty = 41.10 ksi B = 0.0642 in Pmax = 7290 lb a = 1.2500 in

a/2 = 0.6250 in

| Loads |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5000  | 7290                                                                                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a (half)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28    | 41                                                                                                                     | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 29    | 42                                                                                                                     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30    | 43                                                                                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31    | 45                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31    | 46                                                                                                                     | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32    | 47                                                                                                                     | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33    | 48                                                                                                                     | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 34    | 49                                                                                                                     | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 34    | 50                                                                                                                     | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35    | 51                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36    | 52                                                                                                                     | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37    | . 54                                                                                                                   | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38    | 55                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38    | 56                                                                                                                     | <i>77</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39    | 57                                                                                                                     | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40    | 59                                                                                                                     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41    | 60                                                                                                                     | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 42    | 61                                                                                                                     | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 43    | 63                                                                                                                     | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 44    | 64                                                                                                                     | <b>8</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 45    | 66                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>5</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 5000<br>28<br>29<br>30<br>31<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | 5000         7290           28         41           29         42           30         43           31         45           31         46           32         47           33         48           34         49           34         50           35         51           36         52           37         54           38         55           38         56           39         57           40         59           41         60           42         61           43         63           44         64 | 5000         7290         10000           28         41         57           29         42         58           30         43         60           31         45         61           31         46         63           32         47         64           33         48         66           34         49         67           34         50         69           35         51         70           36         52         72           37         54         74           38         55         75           38         56         77           39         57         79           40         59         80           41         60         82           42         61         84           43         63         86           44         64         88 | 5000         7290         10000         Load           28         41         57         0           29         42         58         200           30         43         60         600           31         45         61         1000           31         46         63         1400           32         47         64         1800           33         48         66         2000           34         49         67         2400           34         50         69         2800           35         51         70         3200           36         52         72         3600           37         54         74         3800           38         55         75         4200           38         56         77         4600           39         57         79         4800           40         59         80         5200           41         60         82         5600           42         61         84         5800           43         63         86         6000           4 | 5000         7290         10000         Load         a (half)           28         41         57         0         0.6250           29         42         58         200         0.7250           30         43         60         600         0.7250           31         45         61         1000         0.7250           31         46         63         1400         0.7250           32         47         64         1800         0.7250           33         48         66         2000         0.7250           34         49         67         2400         0.7250           34         50         69         2800         0.7250           35         51         70         3200         0.7250           36         52         72         3600         0.7250           37         54         74         3800         0.7250           38         55         75         4200         0.7250           39         57         79         4800         0.7250           40         59         80         5200         0.7250           41 <td< td=""><td>5000         7290         10000         Load         a (half)         a plastic           28         41         57         0         0.6250         0.0000           29         42         58         200         0.7250         0.0002           30         43         60         600         0.7250         0.0014           31         45         61         1000         0.7250         0.0039           31         46         63         1400         0.7250         0.0076           32         47         64         1800         0.7250         0.0125           33         48         66         2000         0.7250         0.0155           34         49         67         2400         0.7250         0.0223           34         50         69         2800         0.7250         0.0304           35         51         70         3200         0.7250         0.0397           36         52         72         3600         0.7250         0.0502           37         54         74         3800         0.7250         0.0559           38         55         75         4200         &lt;</td><td>5000         7290         10000         Load         a (half)         a plastic         a eff           28         41         57         0         0.6250         0.0000         0.6250           29         42         58         200         0.7250         0.0002         0.7252           30         43         60         600         0.7250         0.0014         0.7264           31         45         61         1000         0.7250         0.0039         0.7289           31         46         63         1400         0.7250         0.0076         0.7326           32         47         64         1800         0.7250         0.0125         0.7375           33         48         66         2000         0.7250         0.0125         0.7375           34         49         67         2400         0.7250         0.0223         0.7473           34         50         69         2800         0.7250         0.0304         0.7554           35         51         70         3200         0.7250         0.0397         0.7647           36         52         72         3600         0.7250         0.0502<!--</td--></td></td<> | 5000         7290         10000         Load         a (half)         a plastic           28         41         57         0         0.6250         0.0000           29         42         58         200         0.7250         0.0002           30         43         60         600         0.7250         0.0014           31         45         61         1000         0.7250         0.0039           31         46         63         1400         0.7250         0.0076           32         47         64         1800         0.7250         0.0125           33         48         66         2000         0.7250         0.0155           34         49         67         2400         0.7250         0.0223           34         50         69         2800         0.7250         0.0304           35         51         70         3200         0.7250         0.0397           36         52         72         3600         0.7250         0.0502           37         54         74         3800         0.7250         0.0559           38         55         75         4200         < | 5000         7290         10000         Load         a (half)         a plastic         a eff           28         41         57         0         0.6250         0.0000         0.6250           29         42         58         200         0.7250         0.0002         0.7252           30         43         60         600         0.7250         0.0014         0.7264           31         45         61         1000         0.7250         0.0039         0.7289           31         46         63         1400         0.7250         0.0076         0.7326           32         47         64         1800         0.7250         0.0125         0.7375           33         48         66         2000         0.7250         0.0125         0.7375           34         49         67         2400         0.7250         0.0223         0.7473           34         50         69         2800         0.7250         0.0304         0.7554           35         51         70         3200         0.7250         0.0397         0.7647           36         52         72         3600         0.7250         0.0502 </td |

Kc = 55.4 Ksi√ic





Figure 86 R-Curve Results for 2091-T3 0.063" Sheet (TL). General Dynamics, CA.

TABLE B18

#### MCAIR

# R-CURVE TOUGHNESS DATA FOR PECHINEY 2051 REUTINET LITHIUM RELOY

| SPECIMEN<br>IDENTIFICATION | ORIENTRISM | SLOT LENGTH<br>Za, (IN) | PRECRACK LENGTH<br>Za, (IN) | FINAL CRACK LENGTH<br>20, (IN) | LORD AT FRILURE<br>(LB) | PLANE STRESS FRRETURE<br>TOUGHNESS, Kc. (KSI(IN)*.5) |
|----------------------------|------------|-------------------------|-----------------------------|--------------------------------|-------------------------|------------------------------------------------------|
| 1 2                        | ri-r       | 1.9915<br>1.9945        | 2.1006<br>2.1000            | 2.2480<br>2.2566               | 10,900<br>10,930        | \$7.0<br>57.1                                        |
| RUERAGE                    |            |                         | ****                        | ******                         | ,940                    | 57.2                                                 |
| 3                          | ા-ા        | 1.9925<br>1.9965        | 2.0993<br>2.1015            | 2. 2120<br>2. 1815             | र : 740<br>19,900       | 57.1<br>55.9                                         |
| RUERAGE                    |            |                         | ******                      | *****                          | 10,920                  | 56.5                                                 |

DATA COLLECTED AND REDUCED PER ASTM STANDARD TEST METHOD ES61-81.

The four toughness specimens were tested in accordance with RSTM Standard Test Method £561-81. The specimens were precracked to a total crack length, 2a, equal to 35% of the width, as is required per the standard. A stress ratio of 0.1 was used for precracking. The specimens were statically failed using a loading rate of 3000 pound/minute. Cathetoneters were used to monitor crack length during static loading to determine the final crack length, at failure, which is required for toughness calculations. Table B18 presents toughness test data. All four specimens had a plane stress toughness value in the range of 56 to 57 ksi(in)^.5. It should be noted that no plastic zone corrections were incorporated into the toughness calculations.

# (effective crack length adjusted for plastic zone) 140 120 80 60 80 40

R-CURVE FOR 2091 SHEET (longitudinal)

Figure B7 R-Curve Results for 2091-T3 0.063" Sheet (longitudinal) Martin Marietta, LA.

2.0

HALF EFFECTIVE CRACK LENGTH, Ae (Ae=Ao+Ap+rho) in inches

2.5

3.0

3.5

20

0

1.0

1.5



Figure B8 R-Curve Results for 2091-T3 0.063" Sheet (transverse).

Martin Marietta



Figure B9 R-Curve Results for 2091-T3 0.063" Sheet (longitudinal).
Martin Marietta, LA.



Figure B10 R-Curve Results for 2091-T3 0.063" Sheet (transverse).
Martin Marietta, LA.

TABLE B19
Martin Marietta, LA

## DATA FOR SPECIMEN NO. 4, 2091 LONGITUDINAL SHEET

| Load, kips | <br>  Half Crack | Half Crack Length, | Corresponding Fracture Toughness, ksi vinch |                           |  |
|------------|------------------|--------------------|---------------------------------------------|---------------------------|--|
|            | Length (c) inch  | (c + rho)          | Not Adjusted<br> <br>                       | Adjusted for   Plasticity |  |
| 0.0        | 1.215            | 1.215              | 0.0                                         | 0.0                       |  |
| 1.17       | 1 1.215          | 1 1.217            | 4.81                                        | 4.55                      |  |
| 2.54       | 1.220            | 1.229              | 10.47                                       | 9.86                      |  |
| 3.71       | 1.270            | 1.294              | 15.69                                       | 15.85                     |  |
| 4.79       | 1.295            | 1.336              | 20.51                                       | 20.87                     |  |
| 5.76       | 1.300            | 1.361              | 24.73                                       | 25.35                     |  |
| 7.08       | 1.310            | 1.406              | 30.54                                       | 31.71                     |  |
| 8.21       | 1.310            | 1.442              | 35.42                                       | 37.24                     |  |
| 9.38       | 1.315            | 1.493              | 40.56                                       | 43.31                     |  |
| 10.41      | 1.320            | 1.560              | 45.13                                       | 50.26                     |  |
| 11.28      | 1.320            | 1 1.615            | 48.90                                       | 55.05                     |  |
| 12.07      | 1.325            | 1.680              | 52.45                                       | 61.05                     |  |
| 12.70      | 1.330            | 1.756              | 55.30                                       | 66.92                     |  |
| 13.29      | 1 1.336          | 1 1.821            | 57.90                                       | 71.84                     |  |
| 13.78      | 1.340            | 1.919              | 60.33                                       | 78.02                     |  |
| 14.12      | 1.345            | 1.986              | 61.97                                       | 82.10                     |  |
| 14.51      | 1.365            | 2.159              | 64.30                                       | 91.36                     |  |
| 14.80      | 1.370            | 2.361              | 65.74                                       | 103.09                    |  |

Thickness = .063 inch
Yield = 40.9 ksi
Specimen kidth = 8.00 inch

TABLE B20
Martin Marietta, LA

## DATA FOR SPECIMEN NO. 5 2091 LONGITUDINAL SHEET

| Load, kips | <br>  Half Crack | Half Crack Length, | Corresponding Fracture Toughness, ksi ( inch |                           |  |
|------------|------------------|--------------------|----------------------------------------------|---------------------------|--|
|            | Length (c) inch  | (c + rho)          | Not Adjusted                                 | Adjusted for   Plasticity |  |
| 0.0        | 1.220            | 1.220              | 0.0                                          | 0.0                       |  |
| 1.06       | 1.220            | 1.222              | 4.37                                         | 4.12                      |  |
| 2.09       | 1.220            | 1.226              | 8.62                                         | 8.12                      |  |
| 3.48       | 1.295            | 1 .317             | 14.90                                        | 15.04                     |  |
| 4.67       | 1.300            | 1.340              | 20.05                                        | 20.36                     |  |
| 5.55       | 1.305            | 1.362              | 23.88                                        | 24.48                     |  |
| 6.53       | 1.310            | 1 .396             | 28.17                                        | 29.09                     |  |
| 7.62       | 1 1.310          | 1.442              | 32.87                                        | 34.33                     |  |
| 8.52       | 1.310            | 1.453              | 36.76                                        | 38.80                     |  |
| 9.54       | 1.310            | 1.494              | 41.16                                        | 44.03                     |  |
| 10.32      | 1.315            | 1.549              | 44.63                                        | 49.59                     |  |
| 11.14      | 1 1.315          | 1.599              | 48.17                                        | 54.60                     |  |
| 11.74      | 1 1.315          | 1.64G              | 50.77                                        | 56.47                     |  |
| 12.39      | 1 .320           | 1.699              | 53.71                                        | 63.08                     |  |
| 13.19      | 1.336            | 1.809              | 57.46                                        | 70.97                     |  |
| 13.71      | 1 1.335          | 1 1.891            | 59.77                                        | 76.77                     |  |
| 14.71      | 1.335            | 1.974              | 61.88                                        | 81.95                     |  |
| 14.52      | 1.340            | 2.076              | 63.57                                        | 87.94                     |  |
| 14.79      | 1 .355           | 2.262              | 65.22                                        | 97.62                     |  |

Thickness = .063 inch Yield = 40.9 ksi Specimen Wiath = 8.00 inch

TABLE B21
Martin Marietta, IA

# DATA FOR SPECIMEN NO. 6 2091

#### TRANSVERSE SHEET

| Load, kips | Half Crack      | Half<br>Crack Length, | Corresponding Fracture Toughness, ksi√inch |                           |  |
|------------|-----------------|-----------------------|--------------------------------------------|---------------------------|--|
|            | Length (c) inch | (c + rho)<br>  inch   | Not Adjusted<br>                           | Adjusted for   Plasticity |  |
| 0.0        | 1.215           | 1.215                 | 0.0                                        | 0.0                       |  |
| 2.19       | 1.215           | 1.222                 | 9.01                                       | 8.49                      |  |
| 3.50       | 1.220           | 1 1.238               | 14.43                                      | 13.60                     |  |
| 5.47       | 1.220           | 1.271                 | 22.56                                      | 23.05                     |  |
| 7.00       | 1.282           | 1.373                 | 29.79                                      | 30.90                     |  |
| 8.75       | 1 .295          | 1 .445                | 37.47                                      | 39.65                     |  |
| 10.16      | 1.300           | 1.521                 | 43.61                                      | 48.23                     |  |
| 11.43      | 1.300           | 1.605                 | 49.19                                      | 56.11                     |  |
| 12.43      | 1.305           | 1.680                 | 53.49                                      | 62.77                     |  |
| 13.31      | 1.305           | 1.781                 | 57.28                                      | 70.74                     |  |
| 13.95      | 1.320           | 1.906                 | 60.48                                      | 78.51                     |  |
| 14.21      | 1.327           | 1.965                 | 61.83                                      | 61.87                     |  |
| 14.42      | 1.330           | 2.028                 | 62.82                                      | 85.66                     |  |
| 14.62      | 1.395           | 3.433                 | 65.73                                      | 146.00                    |  |

Thickness = .063 inch
Yield = 40.9 ksi
Specimen hidth = 8.00 inch

TABLE B22
Martin Marietta, IA

# DATA FOR SPECIMEN NO. 7, 2091 TRANSVERSE SHEET

| Load, kips | <br>  Half Crack | Half Crack Length, | Corresponding Fracture Toughness, ksi vinch |                         |  |
|------------|------------------|--------------------|---------------------------------------------|-------------------------|--|
|            | Length (c) inch  | (c + rho)          | Not Adjusted                                | Adjusted for Plasticity |  |
| 0.0        | 1.225            | 1.225              | 0.0                                         | 0.0                     |  |
| 1.52       | 1.225            | 1.228              | 6.28                                        | 5.92                    |  |
| 3.00       | 1.225            | 1 1.238            | 12.40                                       | 11.68                   |  |
| 4.51       | 1 1.225          | 1.259              | 18.65                                       | 18.92                   |  |
| 7.00       | 1.260            | 1.324              | 25.20                                       | 25.94                   |  |
| 7.50       | 1 .275           | 1.380              | 31.81                                       | 33.16                   |  |
| 9.11       | 1.305            | 1.470              | 39.20                                       | 41.69                   |  |
| 10.51      | 1 .305           | 1.547              | 45.23                                       | 50.43                   |  |
| 11.86      | 1.305            | 1.635              | 51.04                                       | 58.91                   |  |
| 12.74      | 1 1.310          | 1.729              | 54.96                                       | 66.33                   |  |
| 13.40      | 1.320            | 1.817              | 58.09                                       | 72.27                   |  |
| 13.65      | 1.360            | 1 1.977            | 61.40                                       | 80.55                   |  |
| 14.28      | 1.375            | 2.107              | 63.58                                       | 87.73                   |  |
| 14.56      | 1.390            | 2.299              | 65.30                                       | 97.73                   |  |
| 14.77      | 1 1.400          | 3.245              | 66.56                                       | 1 139.00                |  |

Thickness = .063 inch
Yield = 40.9 ksi
Specimen wictr = £.00 inch

TABLE B23

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

PECHINEY 2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY   | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-----------|-------------|-----------------|--------------|
| GENERAL   | LONG        | 21.8            | 10,000,000 * |
| DYNAMICS, |             | 25.0            | 1,888,000    |
| CALIF.    |             | 27.0            | 10,140,000 * |
|           |             | 30.0            | 303,000      |
|           |             | 32.0            | 363,000      |
|           |             | 35.0            | 143,000      |
|           |             | 38.0            | 122,000      |

(\*): INDICATES A RUN-OUT TEST

TABLE B24

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR

PECHINEY 2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY   | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-----------|-------------|-----------------|--------------|
| GENERAL   | LONG        | 10.0            | 10,000,000 * |
| DYNAMICS, |             | 12.0            | 319,000      |
| CALIF.    |             | 13.0            | 10,330,000 * |
|           |             | 13.5            | 193,000      |
|           |             | 14.5            | 158,000      |
|           |             | 16.0            | 163,000      |
|           |             | 20.0            | 47,000       |
|           |             | 25.0            | 15,000       |

(\*): INDICATES A RUN-OUT TEST

TABLE B25

PATIGUE RESULTS WITH R=0.1 AND Kt=2.8 FOR

PECHINEY 2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY | ORIENTATION | STRESS<br>(KSI) | CYCLES      |
|---------|-------------|-----------------|-------------|
| LTV     | LONG        | 15.4            | 1,000,000 * |
|         |             | 15.4            | 410,760     |
|         |             | 15.5            | 700,100     |
|         |             | 16.5            | 192,020     |
|         |             | 16.5            | 236,950     |
|         |             | 18.5            | 202,250     |
|         |             | 18.7            | 203,450 #   |
|         |             | 19.0            | 155,800     |
|         |             | 22.1            | 83,190      |
|         |             | 22.4            | 76,450      |
|         |             | 22.4            | 49,000      |

(\*): INDICATES A RUN-OUT TEST

(#): INDICATES SPECIMEN FAILED IN GRIP

TABLE B26

FATIGUE RESULTS WITH R=0.1 AND Kt=2.8 FOR

PECHINEY 2091-T3 SHEET (0.063" X 79" X 39")

| COMPANY | ORIENTATION | STRESS<br>(KSI) | CYCLES      |
|---------|-------------|-----------------|-------------|
| LTV     | L TRANS     | 15.5            | 1,500,000 * |
|         |             | 16.0            | 369,700     |
|         |             | 18.7            | 94,490      |
|         |             | 18.7            | 138,430     |
|         |             | 22.1            | 84,900      |
|         |             | 22.5            | 52,100      |

(\*): INDICATES A RUN-OUT TEST



Figure Bll Fatigue Results for 2091-T3 0.063" Sheet (R=0.1, K\_=1.0, and longitudinal). General Dynamics, CA





Figure 812 Fatigue Results for 2091—T3 0.063" Sheet (R=0.1, K<sub>t</sub>≥2.8, and Longitudinal). General Dynamics, CA and LIV.



Figure B13 Fatigue Results for 2091-T3 0.063" Sheet (R=0.1,  $K_{\rm c}$ =2.8, and Transverse). LTV.



Figure B14 Fatique Crack Growth Rate Data for Pechinev 2091-T3 0.063" Sheet (L-T Orientation). McDonnel Aircraft LA.



Figure B15 Fatigue Crack Growth Rate Data for Pechiney 2091-T3 0.063" Sheet (T-L Orientation). McDonnell Aircraft LA.

2091-T8X SHEET (0.063"x79"x79")

TABLE B27

TENSILE RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY            | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | MODULUS<br>(MSI) |
|--------------------|------------------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------------|
| NORTHROP           | RT                                 | LONG             | 62.9                          | 47.5                       | 15.6         |           | 11.1             |
|                    |                                    |                  | 63.0                          | 47.4                       | 16.5         |           | 11.1             |
|                    |                                    |                  | 63.1                          | 47.7                       | 18.3         |           | 10.5             |
| GRUMMAN            | RT                                 | LONG             | 61.8                          | 47.3                       | 15.5         |           | 10.9             |
|                    |                                    |                  | 61.8                          | 47.7                       | 16.5         |           | 11.2             |
|                    |                                    |                  | 62.8                          | 47.3                       | 15.5         |           | 11.6             |
| GENERAL            | RT                                 | LONG             | 65.6                          | 49.7                       | 14.1         |           |                  |
| DYNAMICS,<br>TEXAS |                                    |                  | 64.7                          | 49.1                       | 14.1         |           |                  |
|                    |                                    | AVERAGE          | 63.2                          | 48.0                       | 15.8         |           | 11.1             |
|                    | STANDARD I                         | EVIATION         | 1.3                           | 0.9                        | 1.4          |           | 0.4              |

TABLE B28

TENSILE RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY            | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | MODULUS<br>(MSI) |
|--------------------|------------------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------------|
| NORTHROP           | RT                                 | L TRANS          | 65.9                          | 47.5                       | 14.3         |           | 11.0             |
|                    |                                    |                  | 66.0                          | 47.6                       | 13.6         |           | 11.4             |
|                    |                                    |                  | 66.6                          | 48.0                       | 14.0         |           | 11.2             |
| GRUMMAN            | RT                                 | L TRANS          | 64.4                          | 46.3                       | 12.0         |           | 11.0             |
|                    |                                    |                  | 64.6                          | 46.6                       | 15.0         |           | 11.4             |
|                    |                                    |                  | 64.8                          | 46.7                       | 14.0         |           | 11.5             |
| GENERAL            | RT                                 | L TRANS          | 67.2                          | 50.2                       | 11.0         |           |                  |
| DYNAMICS,<br>TEXAS |                                    |                  | 67.5                          | 50.7                       | 10.4         |           |                  |
|                    |                                    | AVERAGE          | 65.9                          | 48.0                       | 13.0         |           | 11.3             |
|                    | STANDARD [                         | DEVIATION        | 1.2                           | 1.7                        | 1.7          |           | 0.2              |

TABLE B29

COMPRESSION RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-------------------------------|------------------------------------|-------------|----------------------------------------|---------------------------------|
| NORTHROP                      | RT                                 | LONG        | 46.8<br>46.7<br>46.9                   | 11.6<br>11.5<br>11.5            |
| GRUMMAN                       | RT                                 | LONG        | 45.3<br>47.9<br>46.3                   | 11.6<br>11.5<br>11.5            |
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                                 | LONG        | 48.8<br>49.7                           |                                 |
|                               |                                    | AVERAGE     | 47.3                                   | 11.5                            |
|                               | STANDAR                            | D DEVIATION | 1.4                                    | 0.1                             |

TABLE B30

COMPRESSION RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-------------------------------|------------------------------------|-------------|----------------------------------------|---------------------------------|
| NORTHROP                      | RT                                 | L TRANS     | 53.0<br>52.7<br>53.0                   | 11.5<br>11 5<br>11.3            |
| GRUMMAN                       | RT                                 | L TRANS     | 51.3<br>51.3<br>52.3                   | 11.2<br>11.4<br>11.7            |
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                                 | L TRANS     | 53.1<br>53.7                           |                                 |
|                               |                                    | AVERAGE     | 52.5                                   | 11.4                            |
|                               | STANDARI                           | DEVIATION   | 0.9                                    | 0.2                             |

TABLE B31

COMPRESSION RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|---------|------------------------------------|-------------|----------------------------------------|---------------------------------|
| GRUMMAN | RT                                 | 45          | 44.6<br>45.5<br>45.2                   | 11.4<br>11.3<br>11.4            |
|         |                                    | AVERAGE     | 45.1                                   | 11.4                            |
|         | STANDARI                           | DEVIATION   | 0.5                                    | 0.1                             |

# TABLE B32 SLOTTED SHEAR RESULTS FOR PECHINEY 2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|-------------------------------|--------------------|----------------------------|
| NORTHROP                      | LONG               | 39.4<br>35.5<br>39.6       |
| GRUMMAN                       | LONG               | 38.2<br>40.0<br>39.1       |
| GENERAL<br>DYNAMICS,<br>TEXAS | LONG               | 40.9<br>42.0               |
|                               | AVERAGE            | 39.3                       |
|                               | STANDARD DEVIATION | 1.9                        |

# TABLE B33 SLOTTED SHEAR RESULTS FOR PECHINEY 2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | ORIENTATION        | Shear<br>Strength<br>(KSI) |
|-------------------------------|--------------------|----------------------------|
| NORTHROP                      | L TRANS            | 41.8<br>41.9<br>41.9       |
| GRUMMAN                       | L TRANS            | 41.1<br>41.7<br>40.7       |
| General<br>Dynamics,<br>Texas | L TRANS            | 38.4                       |
|                               | AVERAGE            | 41.1                       |
|                               | STANDARD DEVIATION | 1.3                        |

TABLE 834
BEARING RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | ORIENTATION | e/D       | BRARING<br>ULT. STR.<br>(KSI) | Bearing<br>Yield Str.<br>(KSI) |
|-------------------------------|-------------|-----------|-------------------------------|--------------------------------|
| NORTHROP                      | LONG        | 1.5       | 94.9<br>94.9<br>94.9          | 67.6<br>68.3<br>67.2           |
| GRUMMAN                       | LONG        | 1.5       | 91.7<br>91.7<br>91.7          | 65.5<br>65.4<br>66.2           |
| GENERAL<br>DYNAMICS,<br>TEXAS | LONG        | 1.5       | 88.6<br>93.8                  | 75.6<br>78.2                   |
|                               |             | AVERAGE   | 92.8                          | 69.3                           |
|                               | STANDARD    | DEVIATION | 2.3                           | 4.9                            |

TABLE B35

BEARING RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY              | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|-----------|-------------------------------|--------------------------------|
| NORTHROP             | L TRANS     | 1.5       | 96.3<br>96.3<br>96.2          | 67.6<br>67.1<br>68.0           |
| GRUMMAN              | L TRANS     | 1.5       | 91.9<br>92.4                  | 65.0<br>66.7                   |
| GENERAL<br>DYNAMICS, | L TRANS     | 1.5       | 93.1<br>92.9<br>92.3          | 66.5<br>78.8<br>78.5           |
| TEXAS                |             | AVERAGE   | 93.9                          | 69.8                           |
|                      | STANDARD    | DEVIATION | 2.0                           | 5.5                            |

TABLE B36

BEARING RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                                 | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------------------------------------|-------------|-----------|-------------------------------|--------------------------------|
| MORTHROP                                | LONG        | 2.0       | 117.2                         | 80.0                           |
| • • • • • • • • • • • • • • • • • • • • |             |           | 118.6                         | 79.8                           |
|                                         |             |           | 117.1                         | 81.5                           |
| GRUMMAN                                 | LONG        | 2.0       | 116.4                         | 79.2                           |
|                                         |             |           | 116.4                         | 78.7                           |
|                                         |             |           | 116.4                         | 78.6                           |
| GENERAL                                 | LONG        | 2.0       | 106.0                         | 88.1                           |
| DYNAMICS,<br>TEXAS                      |             |           | 117.0                         | 92.2                           |
|                                         |             | AVERAGE   | 115.6                         | 82.3                           |
|                                         | STANDARD I  | DEVIATION | 4.0                           | 5.1                            |

TABLE B37

BEARING RESULTS FOR PECHINEY

2091-T8X SHEET (0.063" X 79" X 39")

| COMPANY                       | ORIENTATION | <b>e/D</b> | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------------|-------------|------------|-------------------------------|--------------------------------|
| NORTHROP                      | L TRANS     | 2.0        | 120.4<br>120.1<br>118.6       | 81.6<br>84.0<br>82.0           |
| GRUMMAN                       | L TRANS     | 2.0        | 121.8<br>120.0<br>117.6       | 83.2<br>81.8<br>80.8           |
| GENERAL<br>Dynamics,<br>Texas | L TRANS     | 2.0        | 114.0<br>105.0                | 95.8<br>93.6                   |
|                               |             | average    | 117.2                         | 85.4                           |
|                               | STANDARD    | DEVIATION  | 5.5                           | 5.9                            |





# TABLE B38

# General Dynamics, Texas

Pechiney 2091-T81 Sheet (0.063" X 79" X 39") Average Results of R-Curve Tests

 $K_{R25}$ ,ksi-in  $\frac{1}{2}$ 

L-T 91.2

T-L 81.4



Figure 818 Fatigue Crack Growth Rate Data for Pechiney 2091-T3X 0.063" Sheet (L-T Orientation). Grumman.



Figure B19 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.063" Sheet (T-L Orientation). Grumman.



AK (KSI-in 1/2)
Figure B20 Fatigue Crack Growth Rate Data for Pechiney 2091-T3X 0.063" Sheet (45° Orientation). Grumman.



Figure B21 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.063" Sheet (L-T Orientation). Northrop.



Figure B22 Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.063" Sheet (T-L Orientation). Northrop.



Material:

2091-T81-50R-IN

Age:

335°F - 32 hrs

Environment:

Lab air, Room temperature

Orientation:

L-T

Stress Ratio:

0.1

Frequency:

5 Hz

Figure B23 K-increasing Constant Amplitude Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.063" Sheet (L-T Orientation). General Dynamics, TX.



STRESS INTENSITY RANGE, DEL-K

Material:

2091-181-5heel N

Age:

335°F - 32 hrs

Environment:

Lab air, Room temperature

Orientation:

T-L

Stress Ratio:

0.1

Frequency:

5 Hz

Figure B24 K-increasing Constant Amplitude Fatigue Crack Growth Rate Data for Pechiney 2091-T8X 0.063" Sheet (T-L). General Dynamics, TX.

#### APPENDIX C

#### **PECHINEY**

#### 2091-T6 PRECISION FORGING

# INTRODUCTION

The Pechiney 2091-T6 precision forgings were received the third quarter of 1986. Five participants tested this material; Boeing Commercial Airplane Company, General Dynamics Fort Worth Division, Lockheed Aeronautical Systems Company, Martin Marietta Manned Space Systems and Northrop Corporation. Forging Dimensions are shown in Figure C1.

## **TESTING**

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 Standard. The growth rate a-N data that was generated by the participant, Northrop Corporation, was reduced using a seven-point incremental polynomial (parabola) to sets of seven successive data points. The data are also checked against size requirements per ASTM E647, Section 7.2.



Figure Cl 2091-T6 Precision Die Forging Dimensions.

TABLE C1
TENSILE RESULTS AT t/2 LOCATION FOR
PECHINEY 2091-T6 FORGINGS

| COMPANY                         | TEST<br>TEMP<br>(DEGREES | ATION F)  | (K\$1)                                                                       | YIELD<br>STRENGTH<br>(KSI)                                   | ELONG<br>(%)                           | (%)                                                  | (MSI)                                | COMMENT                                       |
|---------------------------------|--------------------------|-----------|------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------|-----------------------------------------------|
| BOEING                          | RT                       | LONG      | 73.6<br>77.9<br>82.2                                                         | 65.3<br>66.5                                                 | 4.0                                    |                                                      |                                      |                                               |
| NORTHROP                        | RT                       | Long      | 81.3<br>82.8<br>83.1<br>85.9<br>80.2<br>85.0<br>81.7<br>81.6<br>67.1<br>68.0 | 72.1<br>73.0<br>76.7<br>69.8<br>75.5<br>72.7<br>71.8<br>58.4 | 9.0<br>8.0<br>8.0<br>8.0<br>5.0<br>7.0 | 7.5<br>6.4<br>7.5<br>7.1<br>7.4<br>4.5<br>5.7<br>2.0 | 11.4<br>11.4<br>11.1<br>11.5<br>11.3 | (2)<br>(2)<br>(2)<br>(2)<br>(3)<br>(3)<br>(4) |
| GENERAL<br>DYNAMICS<br>TEXAS    | rt.                      | LONG      | 84.4<br>84.0                                                                 |                                                              |                                        |                                                      |                                      |                                               |
| LOCKHEEP<br>GEORGIA             | . RT                     | LONG      | 83.9<br>80.1<br>80.9<br>83.9<br>83.7                                         | 72.7<br>68.4<br>68.9<br>72.4<br>72.7                         | 8.0<br>9.0<br>8.0                      |                                                      | 12.6<br>12.5<br>11.5<br>11.1<br>11.8 |                                               |
| MARTIN<br>MARIETTA<br>LOUISIANA |                          | LONG      | 74.6<br>61.3<br>77.9                                                         | 68.7                                                         | 5.0                                    | 6.0<br>10.0<br>10.0                                  | 11.8                                 |                                               |
|                                 | C                        | AVERAGE   | 80.2                                                                         | 69.7                                                         | 6.8                                    |                                                      |                                      |                                               |
|                                 | STANDARD                 | DEVIATION | 5.0                                                                          | 5.0                                                          | 2.2                                    | 2.4                                                  | 0.5                                  |                                               |

<sup>(1):</sup> INDICATES THAT THE SPECIMEN FAILED OUTSIDE THE GAGE MARKS

<sup>(2):</sup> SPECIMEN REMOVED FROM THE FORGING BASE

<sup>(3):</sup> SPECIMEN REMOVED FROM THE FORGING SIDE WALL

<sup>(4):</sup> SPECIMEN REMOVED FROM THE FORGING END WALL

TABLE C2 TENSILE RESULTS AT 1/2 LOCATION FOR PECHINEY 2091-T6 FORGINGS

| COMPANY  | TEST<br>TEMP<br>(DEGREES | ORIENT-<br>ATION<br>F) | ULTIMATE<br>STRENGTH<br>(KSI)                        |                                      | (X)                             | RA<br>(%) | MODULUS<br>(MSI)             | COMMENT                                                                  |
|----------|--------------------------|------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|-----------|------------------------------|--------------------------------------------------------------------------|
| NORTHROP | RT                       | L TRANS                | 66.4<br>78.6<br>63.8<br>75.0<br>60.6<br>71.5<br>69.2 | 70.9<br>68.3<br>66.0<br>63.2<br>58.7 | 5.0<br>3.0<br>1.0<br>2.0<br>2.0 |           | 11.4<br>11.3<br>11.2<br>11.2 | (1),(2)<br>(2)<br>(1),(2)<br>(1),(2)<br>(1),(2)<br>(1),(2)<br>(4)<br>(4) |
|          | STANDARD                 | AVERAGE<br>DEVIATION   | 68.9<br>5.9                                          | 65.4                                 | 2.5                             |           | 11.2                         |                                                                          |

(1): INDICATES THAT THE SPECIMEN FAILED OUTSIDE THE GAGE MARKS
(2): SPECIMEN REMOVED FROM THE FORGING BASE
(3): SPECIMEN REMOVED FROM THE FORGING SIDE WALL
(4): SPECIMEN REMOVED FROM THE FORGING END WALL

TABLE C3

TENSILE RESULTS AT t/2 LOCATION FOR

PECHINEY 2001-T6 FORGINGS

| COMPANY              | TEST<br>TEMP<br>(DEGREES | ORIENT-<br>ATION<br>F) | ULTIMATE<br>STRENGTH<br>(KSI)        | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)             | RA<br>(%) | Modulus<br>(MSI) | COMMENT |
|----------------------|--------------------------|------------------------|--------------------------------------|----------------------------|--------------------------|-----------|------------------|---------|
| LOCKHEED,<br>GEORGIA | RT                       | S TRANS                | 68.7<br>72.2<br>66.6<br>70.9<br>72.1 |                            | 6.0<br>6.0<br>6.0<br>6.0 |           |                  |         |
|                      |                          | AVERAGE                | 70.1                                 |                            | 6.0                      |           |                  |         |
|                      | STANDARD                 | DEVIATION              | 2.4                                  |                            | 0.0                      |           |                  |         |

TABLE C4

COMPRESSION RESULTS AT t/2 LOCATION FOR

PECHINEY 2091-T6 FORGINGS

| COMPANY                          | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| BOEING                           | RT                                 | LONG           | 68.6<br>72.4<br>70.4                   |                                 |
| NORTHROP                         | RT                                 | LONG           | 67.3<br>73.8<br>75.4                   |                                 |
| LOCKHEED.<br>GEORGIA             | RT                                 | LONG           | 67.0<br>62.0<br>64.7<br>62.7<br>65.6   |                                 |
| GENERAL<br>DYNAMICS,<br>TEXAS    | RT                                 | LONG           | 57.7                                   |                                 |
| MARTIN<br>MARIETTA.<br>LOUISIANA | RT                                 | LONG           | 73.4<br>64.3                           |                                 |
|                                  |                                    | AVERAGE        | 67.5                                   | 11.9                            |
|                                  | STAN                               | DARD DEVIATION | 5.1                                    | 0.3                             |

NOTE: NORTHROP SPECIMENS TAKEN FROM FORGING SIDE WALL.

TABLE C5

COMFRESSION RESULTS AT t/2 LOCATION FOR

PECHINEY 2091-T6 FORGINGS

| COMPANY                          | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------------------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA.<br>LOUISIANA | RT                                 | L TRANS       | 61.7<br>60.2                           | 12.0<br>12.0                    |
|                                  |                                    | AVERAGE       | 61.0                                   | 12.0                            |
|                                  | STANI                              | ARD DEVIATION | 1.1                                    | 0.0                             |

TABLE C6

# AMSLER DOUBLE SHEAR RESULTS FOR

# PECHINEY 2091-T6 FORGINGS

| COMPANY              | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------------------|--------------------|----------------------------|
| NORTHROP             | L-S                | 38.6<br>39.5<br>38.9       |
| LOCKHEED,<br>GEORGIA | L-S                | 38.7<br>40.4<br>39.8       |
|                      | AVERAGE            | 39.3                       |
|                      | STANDARD DEVIATION | 0.7                        |

NOTE: NORTHROP SPECIMENS TAKEN FROM FORGING SIDE WALL.

TABLE C7

AMSLER DOUBLE SHEAR RESULTS FOR

PECHINEY 2091-T6 FORGINGS

| COMPANY              | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------------------|--------------------|----------------------------|
| NORTHROP             | T-S                | 38.0<br>37.1<br>35.8       |
| LOCKHEED,<br>GEORGIA | T-S                | 39.0<br>42.4<br>38.3       |
|                      | AVERAGE            | 38.4                       |
|                      | STANDARD DEVIATION | 2.2                        |

NOTE: NORTHROP SPECIMENS TAKEN FROM FORGING & JE WALL.

TABLE C8

# SLOTTED SHEAR RESULTS FOR PECHINEY

# 2091-T6 FORGINGS

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI)<br>43.3<br>44.9<br>43.1 |  |
|---------|--------------------|----------------------------------------------------|--|
| BOEING  | LONG               |                                                    |  |
|         | AVERAGE            | 43.8                                               |  |
|         | STANDARD DEVIATION | 1.0                                                |  |

TABLE C9
BEARING RESULTS FOR PECHINEY

# 2091-T6 FORGINGS

| COMPANY              | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|--------------|-------------------------------|--------------------------------|
| BOEING               | LONG        | 1.5          | 73.9<br>82.7<br>85.5          | 65.6<br>65.9<br>72.3           |
| NORTHROP             | LONG        | 1.5          | 103.8<br>95.0<br>99.8         | 87.7<br>81.8<br>82.2           |
| LOCKHEED.<br>GEORGIA | LONG        | 1.5          | 95.3<br>99.0<br>102.2         | 84.7<br>85.7<br>86.3           |
|                      |             | AVERAGE      | 93.0                          | 79.1                           |
|                      | STANDA      | RD DEVIATION | 10.1                          | 8.8                            |

NOTE: NORTHROP SPECIMENS REMOVED FROM FORGING SIDE WALL.

TABLE C10

BEARING RESULTS FOR PECHINEY

2091-T6 FORGINGS

| COMPANY                       | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-------------------------------|-------------|--------------|-------------------------------|--------------------------------|
| BOEING                        | LONG        | 2.0          | 142.3<br>144.9<br>142.0       | 105.3<br>112.9<br>105.7        |
| NORTHROP                      | LONG        | 2.0          | 134.8<br>139.6<br>136.4       | 104.3<br>105.1<br>105.0        |
| GENERAL<br>DYNAMICS,<br>TEXAS | LONG        | 2.0          | 129.0                         | 116.0                          |
| LOCKHEED,<br>GEORGIA          | LONG        | 2.0          | 129.2<br>128.1<br>132.8       | 108.8<br>105.1<br>109.2        |
|                               |             | AVERAGE      | 135.9                         | 107.7                          |
|                               | STANDA      | RD DEVIATION | 6.1                           | 4.0                            |

NOTE: NORTHROP SPECIMENS REMOVED FROM FORGING SIDE WALL.

TABLE CII

# BEARING RESULTS FOR PECHINEY

# 2091-T6 FORGINGS

| COMPANY                    | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------------|-------------|--------------|-------------------------------|--------------------------------|
| GENERAL DYNAMICS,<br>TEXAS | L TRANS     | 2.0          | 128.0                         | 67.2                           |
|                            |             | AVERAGE      | 128.0                         | 87.2                           |
|                            | STANDA      | RD DEVIATION |                               |                                |

TABLE C12

## FRACTURE TOUGHNESS RESULTS FOR

## PECHINEY 2091-T6 FORGINGS

| COMPANY                          | ORIENTATION        | KIC<br>(KSI IN <sup>o</sup> .5) | Kq<br>(KSI IN <sup>*</sup> 0.5) | COMMENT                    |
|----------------------------------|--------------------|---------------------------------|---------------------------------|----------------------------|
| NORTHROP                         | L-T                |                                 | 29.1<br>22.2                    | (1),(3),(4)<br>(2),(3),(4) |
| MARTIN<br>MARIETTA,<br>LOUISIANA | L-T                |                                 | 25.8<br>27.6                    | (4),(5)<br>(4),(5)         |
|                                  | AVERAG             | Ε                               | 26.2                            |                            |
|                                  | STANIARD DEVIATION | N                               | 3.0                             |                            |

(1): W=1.0 (2): W=0.8

(3): SPECIMEN REMOVED FROM FORGING BASE

(4): INVALID

(5): VIOLATES SPECIMEN THICKNESS REQUIREMENTS

TABLE C13

#### FRACTURE TOUGHNESS RESULTS FOR

#### PECHINEY 2091-T6 FORGINGS

| COMPANY                          | ORIENTATION        | KIC (KSI IN-0.5) | (KSI IN^0.5) | COMMENT                    |
|----------------------------------|--------------------|------------------|--------------|----------------------------|
| NORTHROP                         | T-L                |                  | 24.1<br>27.4 | (1),(3),(4)<br>(2),(3),(4) |
| GENERAL<br>DYNAMICS,<br>TEXAS    | T-L                |                  | 25.9<br>20.4 | (5)<br>(5)                 |
| MARTIN<br>MARIETTA,<br>LOUISIANA | T-L                |                  | 22.0<br>25.3 | (4),(7)<br>(4),(7)         |
|                                  | AVERAGE            |                  | 24.2         |                            |
|                                  | STANDARD DEVIATION |                  | 2.6          |                            |

(1): W=1.0(2): W=0.8

(3): SPECIMEN REMOVED FROM FORGING BASE

(4): INVALID

(5): INVALID DUE TO - INSUFFICIENT THICKNESS, Pmax/Pq > 1.10.

AND MINIMUM SURFACE CRACK LENGTH < 90%

(6): INVALID DUE TO - Pmax/Pq > 1.10, MINIMUM SURFACE CRACK LENGTH < 90%, AND CRACK CURVATURE > 5%

(7): VIOLATEL SPECIMEN THICKNESS REQUIREMENTS



Figure C2 Fatigue Crack Growth Rate Data for Pechiney 2091-T6 Forging (L-T Orientation). Northrop.



Figure C3 Fatigue Crack Growth Rate Data for Pechiney 2091-T6 Forging (T-L Orientation). Northrop.

## APPENDIX D

## PECHINEY

## 8090-T651 T-EXTRUSION

## INTRODUCTION

The Pechiney 8090-T651 T-Extrusions were received the fourth quarter of 1986. Dimensions of the T-Extrusion are 0.19" x 2.5" x 3.0" x 79". Four participants tested this material; Boeing Commercial Airplane Company WA, General Dynamics Fort Worth Division, LTV Aircraft Products Group TX, and the Navy (Naval Air Development Center).

## **TESTING**

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

TABLE D1

TENSILE RESULTS FOR PECHINEY

8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|------------------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| BOEING    | RT                                 | LONG             | 77.4                          | 66.9                       | 8.0          |           |            |
|           |                                    |                  | 77.5                          | 67.G                       | 8.0          |           |            |
|           |                                    |                  | 77.4                          | 67.0                       | 8.0          |           |            |
| GENERAL   | RT                                 | LONG             | 81.0                          | 71.5                       | 5.9          |           |            |
| DYNAMICS, |                                    |                  | 77.1                          | 68.3                       | 2.9          |           |            |
| TEXAS     |                                    |                  | 80.3                          | 70.5                       | 5.7          |           |            |
|           |                                    |                  | 80.7                          | 70.9                       | 4.9          |           |            |
| NADC      | RT                                 | LONG             | 76.0                          | 66.9                       | 3.0          |           | 10.4       |
|           |                                    |                  | 81.2                          | 72.4                       | 3.0          |           | 11.5       |
|           |                                    |                  | 80.7                          |                            | 3.0          |           | 10.0       |
|           |                                    |                  | 82.2                          | 72.4                       | 3.0          |           | 9.5        |
| LTV       | RT                                 | LONG             | 78.5                          | 68.9                       | 6.1          |           | 11.6       |
|           | _                                  |                  | 77.4                          | 68.5                       | 7.2          |           | 11.6       |
|           |                                    |                  | 78.5                          | 69.2                       | 6.9          |           | 11.6       |
|           |                                    | AUSDACE          | 70.0                          | 60 A                       | E A          |           | 10.9       |
|           |                                    | AVERAGE          | 79.0                          | 69.4                       | 5.4          |           | 10.9       |
|           | STANDARD DE                        | VIATION          | 2.0                           | 2.1                        | 2.1          |           | 0.9        |

TABLE D2

TENSILE RESULTS FOR PECHINEY

8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY                       | TEST<br>TEMPERATURI<br>(DEGREES F |           | ultimate<br>Strength<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                                | L TRANS   | 78.4<br>78.2                  | 69.5<br>69.6               | 4.4          |           |            |
|                               |                                   | AVERAGE   | 78.3                          | 69.6                       | 4.5          |           |            |
|                               | STANDARD                          | DEVIATION | 0.1                           | 0.1                        | 0.1          |           |            |

TABLE D3

COMPRESSION RESULTS FOR PECHINEY

# 8090-T651 T-EXTRUSION (0.19" x 2.5" x 3" x 79")

| COMPANY | TEST TEMPERATURE (DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|---------|------------------------------|--------------|----------------------------------------|---------------------------------|
| BOBING  | RT                           | LONG         | 68.0<br>67.1<br>67.7                   |                                 |
|         |                              | AVERAGE      | 67.6                                   |                                 |
|         | STANDA                       | RD DEVIATION | 0.5                                    |                                 |

#### TABLE D4

## SLOTTED SHEAR RESULTS FOR PECHINEY

# 8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY ORIENTATION |                    | SHEAR<br>STRENGTH<br>(KSI) |
|---------------------|--------------------|----------------------------|
| BOEING              | LONG               | 42.5<br>42.5<br>42.5       |
|                     | AVERAGE            | 42.5                       |
|                     | STANDARD DEVIATION | 0.0                        |

#### TABLE D5

# SLOTTED SHEAR RESULTS FOR PECHINEY

# 8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY ORIENTATION           |                    | SHEAR<br>STRENGTH<br>(KSI) |
|-------------------------------|--------------------|----------------------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | L TRANS            | 41.7<br>41.2               |
|                               | AVERAGE            | 41.5                       |
|                               | STANDARD DEVIATION | 0.4                        |

#### TABLE D6

## IOSIPESCU SHEAR RESULTS FOR PECHINEY

# 8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| LTV     | LONG               | 41.4<br>40.6<br>42.5       |
|         | AVERAGE            | 41.5                       |
|         | STANDARD DEVIATION | 1.0                        |

#### TABLE D7

## IOSIPESCU SHEAR RESULTS FOR PECHINEY

# 8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |  |
|---------|--------------------|----------------------------|--|
| LTV     | L TRANS            | 39.5<br>40.4<br>39.3       |  |
|         | AVERAGE            | 39.7                       |  |
|         | STANDARD DEVIATION | 0.6                        |  |

TABLE D8

BEARING RESULTS FOR PECHINEY

8090-T651 T-EXTRUSION (0.19" X 2.5 X 3" X 79")

| COMPANY            | ORIENTATION | e/D          | BEARING         | BEARING          |   |  |
|--------------------|-------------|--------------|-----------------|------------------|---|--|
|                    |             | ·            | ULT. STR. (KSI) | YIELD STR. (KSI) |   |  |
| BOEING             | LONG        | 1.5          | 103.4           | 90.2             |   |  |
|                    |             |              | 106.5           | 94.6             | * |  |
|                    |             |              | 107.6           | 95.5             | * |  |
| GENERAL            | LONG        | 1.5          | 106.0           | 94.3             |   |  |
| DYNAMICS,<br>TEXAS |             |              | 104.0           | 91.2             |   |  |
| LTV                | LONG        | 1.5          | 105.5           | 97.4             |   |  |
|                    |             |              | 107.0           | 96.2             |   |  |
|                    |             |              | 106.2           | 93.3             |   |  |
|                    |             | AVERAGE      | 105.8           | 94.1             |   |  |
|                    | STANDA      | RD DEVIATION | 1.4             | 2.4              |   |  |

(\*): INDICATES SHEAR TEAR OUT FAILURE

TABLE D9

BEARING RESULTS FOR PECHINEY

8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY            | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |   |
|--------------------|-------------|--------------|-------------------------------|--------------------------------|---|
| BOEING             | Long        | 2.0          | 131.8                         | 105.1                          |   |
|                    |             |              | 138.6                         | 113.1                          | Ħ |
|                    |             |              | 135.2                         | 111.4                          | * |
| GENERAL            | LONG        | 2.0          | 116.0                         | 106.0                          |   |
| DYNAMICS,<br>TEXAS |             |              | 135.0                         | 107.0                          |   |
| LTV                | LONG        | 2.0          | 135.6                         | 116.4                          |   |
|                    |             |              | 136.0                         |                                |   |
|                    |             |              | 133.6                         | 111.2                          |   |
|                    |             | AVERAGE      | 132.7                         | 110.0                          |   |
|                    | STANDA      | RD DEVIATION | 7.0                           | 4.1                            |   |

(\*): INDICATES SHEAR-TENSION FAILURE

TABLE D10

FATIGUE RESULTS WITH R=0.1 AND Kt=2.8 FOR

PECHINEY 8090-T651 T-EXTRUSION (0.19" X 2.5" X 3" X 79")

| COMPANY | ORIENTATION | STRESS<br>(KSI) | CYCLES      |
|---------|-------------|-----------------|-------------|
| LTV     | LONG        | 22.0            | 54,800      |
|         |             | 22.0            | 58,700      |
|         |             | 21.2            | 83,700      |
|         |             | 19.6            | 213,900     |
|         |             | 19.5            | 78,800      |
|         |             | 19.5            | 176,700     |
|         |             | 17.3            | 219,100     |
|         |             | 16.5            | 212,300     |
|         |             | 16.0            | 300,200     |
|         |             | 15.0            | 341,600     |
|         |             | 14.9            | 1,000,000 * |

(\*): INDICATES A RUN-OUT TEST



### APPENDIX E

# ALCAN 8090-T651 AND 8090-T8 EXTRUSION (1.0" X 4.0")

### INTRODUCTION

The Alcan 8090-T651 1-inch x 4-inch extrusions were received the first quarter of 1986. One participant heat treated the 8090-T651 to a T8 temper. Grumman-T8 condition was achieved by heating the material to 238°F for 24 hours. The other participants tested the material in the as-received condition (-T651).

### **TESTING**

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. The growth rate a-N data that were generated by the participants (Northrop, Grumman, and Air Force) were reduced using a seven-point incremental polynomial method. This involves fitting a second-order polynomial (parabola) to sets of seven successive data points. The data are also checked against size requirements per ASTM E647, Section 7.2. NASA-Langley performed constant amplitude fatigue crack growth tests using K-increasing (load increasing) and K-decreasing (load decreasing) methods.

Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE E1

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090-T651 EXTRUSION (1" x 4")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | RLONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| AIR FORCE | RT                          | LONG             | 72.7                          | 62.9                       | 5.3          | 13.0      |            |
|           |                             |                  | 76.1                          | 64.2                       |              | 6.0       |            |
|           |                             |                  | 77.0                          | 65.2                       | 6.1          | 9.9       |            |
|           |                             |                  | 76.6                          | 65.2                       | 5.3          | 9.9       |            |
|           |                             |                  | 74.2                          | 62.2                       | 5.7          | 8.5       |            |
|           |                             |                  | 76.8                          | 64.9                       | 5.6          | 7.0       |            |
| MARTIN    | RT                          | LONG             | 81.0                          | 76.8                       | 4.9          |           | 11.3       |
| MARIETTA  |                             |                  | 73.1                          | 63.5                       | 6.2          |           | 11.3       |
|           |                             |                  | 81.1                          | 77.2                       | 7.9          |           | 11.2       |
| NORTHROP  | RT                          | LONG             | 73.7                          | 65.6                       | 4.0          | 19.6      | 11.8       |
|           |                             |                  | 76.4                          | 68.5                       | 6.0          | 20.8      | 11.6       |
|           |                             |                  | 79.9                          | 76.5                       | 4.0          | 19.4      | 11.7       |
|           |                             |                  | 76.6                          | 71.1                       | 7.0          |           | 12.0       |
|           |                             |                  | 73.1                          | 64.8                       | 7.0          |           | 12.5       |
|           |                             |                  | 73.9                          | 65.5                       | 7.0          |           | 12.5       |
| NASA      | RT                          | LONG             | 77.1                          | 67.9                       | 5.0          |           | 11.4       |
| LANGLEY   |                             |                  | 75.8                          | 66.6                       | 10.0         |           | 11.3       |
|           |                             |                  | 76.4                          | 67.5                       | 9.0          |           | 11.4       |
|           |                             |                  | 77.0                          | 68.0                       | 7.5          |           | 11.4       |
|           |                             | AVERAGE          | 76.2                          | 67.6                       | 6.3          | 12.7      | 11.6       |
|           | STANDARD D                  | EVIATION         | 2.5                           | 4.6                        | 1.6          | 5.8       | 0.4        |

TABLE E2

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090-T651 EXTRUSION (1" x 4")

| COMPANY  | TEST<br>TEMP<br>(DEGREES P) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN   | -423                        | LONG             | 103.9                         |                            | 22.0         |           | 13.1       |
| MARIETTA |                             |                  | 102.9                         | 52.7                       | 8.0          |           | 12.9       |
|          |                             |                  | 99.8                          | 62.0                       | 16.0         |           | 12.3       |
|          |                             |                  | 123.6                         |                            | 14.0         |           | 14.4       |
|          |                             |                  | 107.0                         | 71.3                       | 20.0         |           | 13.4       |
|          | -320                        | LONG             | 89.4                          | 64.4                       | 12.0         |           | 14.9       |
|          |                             |                  | 89.4                          | 68.6                       | 11.0         |           | 13.5       |
|          |                             |                  | 89.1                          | 64.5                       |              |           | 13.5       |
|          | +200                        | LONG             | 68.3                          | 65.6                       | 16.0         |           | 11.0       |
|          |                             |                  | 69.6                          | 63.9                       | 14.0         |           | 11.2       |
|          |                             |                  | 69.3                          | 66.0                       | 18.0         |           | 12.4       |
|          | +350                        | LONG             | 55.3                          | 55.2                       | 36.0         |           | 10.5       |
|          |                             |                  | 55.6                          | 55.5                       | 26.0         |           | 10.5       |
|          |                             |                  | 55.7                          | 55.6                       | 30.0         |           | 10.7       |

TABLE E3

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090~T651 EXTRUSION (1" x 4")

| COMPANY   | TEST<br>TEMP<br>(DEGREES 1 | ORIENT-<br>ATION<br>F) | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|----------------------------|------------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| AIR FORCE | RT                         | L TRANS                | 67.4                          | 54.7                       | 7.8          | 16.0      |            |
|           |                            |                        | 68.2                          | 54.0                       | 0.0          |           |            |
|           |                            |                        | 69.6                          | 55.0                       | 8.6          | 21.8      |            |
| NORTHROP  | RT                         | L TRANS                | 68.6                          | 58.4                       | 7.0          | 19.6      | 11.8       |
|           |                            |                        | 68.3                          | 58.1                       | 7.0          | 20.8      | 11.6       |
|           |                            |                        | 68.2                          | 58.0                       | 7.0          | 19.4      | 11.7       |
|           |                            |                        | 68.0                          | 58.0                       | 8.0          |           | 12.3       |
|           |                            |                        | 67.8                          | 57.2                       | 8.0          |           | 12.5       |
|           |                            |                        | 68.2                          | 58.2                       | 9.0          |           | 12.2       |
| MARTIN    | RT                         | L TRANS                | 67.9                          | 56.1                       | 8.0          |           | 11.1       |
| MARIETTA  |                            |                        | 68.2                          | 56.8                       | 9.5          |           | 11.1       |
|           |                            |                        | 68.5                          | 56.5                       | 9.5          |           | 11.5       |
| NASA      | RT                         | L TRANS                | 70.5                          | 57.8                       | 10.0         |           | 11.4       |
| LANGLEY   |                            |                        | 70.1                          | 57.7                       | 11.0         |           | 11.4       |
|           |                            |                        | 70.8                          | 58.3                       | 10.0         |           | 11.4       |
|           |                            |                        | 70.7                          | 57.8                       | 10.0         |           | 11.4       |
|           |                            | AVERAGE                | 68.8                          | 57.0                       | 8.2          | 18.9      | 11.6       |
|           | STANDARD                   | DEVIATION              | 1.1                           | 1.4                        | 2.5          | 2.5       | 0.4        |

TABLE 84

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090-T651 EXTRUSION (1"  $\times$  4")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | · RA<br>(%) | E<br>(MSI) |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-------------|------------|
| MARTIN   | -423                        | L TRANS          | 86.9                          | 62.6                       | 8.0          |             | 12.5       |
| MARIETTA |                             |                  | 81.8                          | 72.0                       |              |             | 12.5       |
|          | -                           |                  | 87.9                          | 62.5                       | 9.0          |             | 13.1       |
|          | -320                        | L TRANS          | 78.9                          | 60.6                       | 5.0          |             | 13.6       |
|          |                             |                  | 79.3                          | 60.2                       | 8.0          |             | 13.5       |
|          |                             |                  | 77.3                          | 60.1                       |              |             | 13.2       |
|          | +200                        | L TRANS          | 63.5                          | 56.1                       | 12.3         |             | 9.0        |
|          |                             |                  | 63.6                          | 56.5                       | 13.3         |             | 10.6       |
|          |                             |                  | 63.6                          | 56.7                       | 12.5         |             | 10.8       |
|          | +350                        | L TRANS          | 50.7                          | 50.6                       | 22.0         |             | 10.4       |
|          |                             |                  | 51.4                          | 51.2                       | 18.0         |             | 10.0       |
|          |                             |                  | 58.5                          | 56.3                       | 18.0         |             | 10.0       |

TABLE E5 TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T651 EXTRUSION (1"  $\times$  4")

| COMPANY  | TEST TEMP (DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)      | RA<br>(%)         | E (MSI)              |
|----------|-----------------------|------------------|-------------------------------|----------------------------|-------------------|-------------------|----------------------|
| NORTHROP | RT                    | s trans          | 69.4<br>68.0<br>66.5          | 55.9<br>52.4<br>51.6       | 8.0<br>4.0<br>4.0 | 7.8<br>3.1<br>3.1 | 11.1<br>11.3<br>11.2 |
|          |                       | AVERAGE          | 68.0                          | 53.3                       | 5.3               | 4.7               | 11.2                 |
|          | STANDARD D            | EVIATION         | 1.5                           | 2.3                        | 2.3               | 2.7               | 0.1                  |

TABLE E6 TENSILE RESULTS AT t/10 LOCATION FOR ALCAN 8090-T651 EXTRUSION (1"  $\times$  4")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E (MSI) |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|---------|
| NORTHROP | RT                          | LONG             | 77.9                          | 69.0                       | 6.0          |           | 12.0    |
|          |                             |                  | 75.7                          | 66.8                       | 5.0          |           | 12.2    |
|          |                             |                  | 74.1                          | 65.1                       | 5.0          |           | 11.9    |
|          |                             | AVERAGE          | 75.9                          | 67.0                       | 5.3          |           | 12.0    |
|          | STANDARD D                  | EVIATION         | 1.9                           | 2.0                        | 0.6          |           | 0.2     |

TABLE E7

TENSILE RESULTS AT t/10 LOCATION FOR ALCAN

8090-T651 EXTRUSION (1" x 4")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| NORTHROP | RT                          | L TRANS          | 72.4                          | 63.4                       | 9.0          |           | 12.4       |
|          |                             |                  | 72.2                          | 63.1                       | 9.0          |           | 12.2       |
|          |                             |                  | 72.3                          | 63.0                       | 9.0          |           | 12.2       |
|          |                             | AVERAGE          | 72.3                          | 63.2                       | 9.0          |           | 12.3       |
|          | STANDARD I                  | EVIATION         | 0.1                           | 0.2                        | 0.0          |           | 0.1        |

TABLE E8

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090-T651 EXTRUSION (1" x 4") AFTER 100 HRS AT 350F

| COMPANY  | TEST<br>TEMP<br>(DEGREES 1 | ORIENT-<br>ATION<br>F) | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | (MSI) |
|----------|----------------------------|------------------------|-------------------------------|----------------------------|--------------|-----------|-------|
| NORTHROP | RT                         | LONG                   | 78.0                          | 72.1                       | 7.0          | 14.5      | 11.6  |
|          |                            |                        | 73.6                          | 66.8                       | 7.0          | 12.3      | 12.5  |
|          |                            |                        | 72.3                          | 65.0                       | 7.0          | 10.9      | 11.8  |
|          |                            | AVERAGE                | 74.6                          | 68.0                       | 7.0          | 12.6      | 12.0  |
|          | STANDARD                   | DEVIATION              | 3.0                           | 3.7                        | 0.0          | 1.8       | 0.5   |
|          |                            |                        | 60 1                          | 60.4                       | 6.0          | 13.8      | 11.5  |
|          | RT                         | L TRANS                | 68.1                          |                            | 6.0          |           |       |
|          |                            |                        | 68.2                          |                            |              |           |       |
|          |                            |                        | 68.1                          | 60.5                       | 6.0          | 13.6      | 14.7  |
|          |                            | AVERAGE                | 68.1                          | 60.4                       | 6.0          | 13.8      | 12.2  |
|          | STANDARD                   |                        | 0.1                           | 0.1                        | 0.0          | 0.0       | 0.7   |
|          |                            |                        | <b>63.0</b>                   | 56.0                       | 4.0          | 6.2       | 11 2  |
|          | RT                         | s trans                | 67.2                          |                            |              | 6.2       | 11.3  |
|          |                            |                        | 64.8                          |                            |              |           |       |
|          |                            |                        | 67.1                          | 55.2                       | 2.0          | 4.7       | 10.8  |
|          |                            | AVERAGE                | 66.4                          | 56.0                       | 2.7          |           |       |
|          | STANDARD                   | DEVIATION              | 1.4                           | 0.9                        | 1.2          | 1.9       | 0.3   |

NOTCH TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T651 EXTRUSION (1" x 4")

| COMPANY  | test<br>temp | ORIENT-<br>ATION | nts   | NTS/TYS    |  |  |
|----------|--------------|------------------|-------|------------|--|--|
|          | (DEGREES F)  |                  | (KSI) |            |  |  |
| NORTHROP | RT           | LONG             | 82.7  | 1.2        |  |  |
|          |              |                  | 78.1  | 1.1        |  |  |
|          |              |                  | 85.0  | 1.2        |  |  |
|          |              | AVERAGE          |       |            |  |  |
|          | STANDARD DE  | EVIATION         | 3.5   | 1.2<br>0.1 |  |  |
|          | RT           | L TRANS          | 60.5  | 1.0        |  |  |
|          | KI           | L TRANS          |       |            |  |  |
|          |              |                  | 54.1  | 0.9        |  |  |
|          |              |                  | 50.3  | 0.9        |  |  |
|          |              | AVERAGE          | 55.0  | 0.9        |  |  |
|          | STANDARD DE  | EVIATION         | 5.2   | 0.0        |  |  |

TABLE E10

COMPRESSION RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" x 4")

| COMPANY         | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| AIR FORCE       | RT                                 | LONG           | 69.1<br>69.4<br>69.0                   |                                 |
| NORTHROP        | RT                                 | LONG           | 74.6<br>71.9<br>71.8                   | 12.0<br>12.0<br>11.9            |
| nasa<br>Langley | RT                                 | LONG           | 67. <b>4</b><br>66.9<br>66.9           | 11.7<br>11.7<br>11.7            |
|                 |                                    | AVERAGE        | 69.7                                   | 11.8                            |
|                 | STAN                               | DARD DEVIATION | 2.6                                    | 0.2                             |

TABLE B11

COMPRESSION RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" x 4")

| COMPANY         | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|-----------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| AIR FORCE       | RT                                 | L TRANS        | 65.5<br>64.5<br>65.2                   |                                 |
| NORTHROP        | RT                                 | L TRANS        | 64.9<br>65.3<br>62.5                   | 12.1<br>11.9<br>12.3            |
| nasa<br>Langley | RT                                 | L TRANS        | 63.2<br>63.1<br>63.9<br>63.4           | 11.8<br>11.5<br>11.8<br>11.8    |
|                 |                                    | AVERAGE        | 64.2                                   | 11.9                            |
|                 | STANI                              | DARD DEVIATION | 1.1                                    | 0.3                             |

### TABLE E12

## RIVET SHEAR RESULTS FOR ALCAN

### 8090-T651 EXTRUSION (1" X 4")

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| NORTHROP | L - S              | 36.9                       |
|          |                    | 37.4                       |
|          |                    | 37.1                       |
|          | AVERAGE            | 37.1                       |
|          | STANDARD DEVIATION | 0.3                        |

### TABLE E13

### RIVET SHEAR RESULTS FOR ALCAN

### 8090-T651 EXTRUSION (1" X 4")

| COMPANY  | OMPANY ORIENTATION |                      |
|----------|--------------------|----------------------|
| NORTHROP | T - S              | 34.5<br>34.6<br>36.6 |
|          | AVERAGE            | 35.2                 |
|          | STANDARD DEVIATION | 1.2                  |

TABLE E14

AMSLER DOUBLE SHEAR RESULTS FOR

ALCAN 8090-T651 EXTRUSION (1" X 4")

| СОНРАНУ        | ORIBNTATION        | SHEAR<br>STRENGTH<br>(KSI)   |
|----------------|--------------------|------------------------------|
| AIR FORCE      | L - S              | 36.5<br>34.6<br>34.7         |
| NASA - LANGLEY | L - S              | 36.7<br>36.7<br>36.4<br>37.0 |
|                | AVERAGE            | 36.1                         |
|                | STANDARD DEVIATION | 1.0                          |

TABLE E15

AMSLER DOUBLE SHEAR RESULTS FOR

ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY        | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI)   |
|----------------|--------------------|------------------------------|
| AIR FORCE      | T - S              | 36.5<br>36.6<br>34.6         |
| NASA - LANGLEY | T - S              | 35.4<br>35.1<br>35.0<br>34.8 |
|                | AVERAGE            | 35.4                         |
|                | STANDARD DEVIATION | 0.8                          |

TABLE E16

BEARING RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATION | •/D         | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|-------------|-------------------------------|--------------------------------|
| AIR FORCE | LONG        | 1.5         | 94.2                          | 74.3                           |
|           |             |             | 100.6                         | 82.7                           |
|           |             |             | 100.4                         | 79.3                           |
| NORTHROP  | LONG        | 1.5         | 101.0                         | 84.4                           |
|           |             |             | 99.4                          | 77.7                           |
|           |             |             | 100.0                         | 81.5                           |
| NASA      | LONG        | 1.5         | 104.5                         | 86.1                           |
| LANGLEY   |             |             | 103.2                         | 85.5                           |
|           |             |             | 101.9                         | 82.4                           |
|           |             |             | 103.5                         | 84.3                           |
|           |             | AVERAGE     | 100.9                         | 81.8                           |
|           | STANDAF     | D DEVIATION | 2.9                           | 3.7                            |

TABLE E17

BEARING RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|--------------|-------------------------------|--------------------------------|
| AIR FORCE | L TRANS     | 1.5          | 88.3<br>80.0<br>87.4          | 79.4<br>71.8<br>78.2           |
| NORTHROP  | L TRANS     | 1.5          | 87.7<br>88.3<br>86.3          | 79.5<br>80.1<br>78.9           |
|           |             | AVERAGE      | 86.3                          | 78.0                           |
|           | STANDA      | RD DEVIATION | 3.2                           | 3.1                            |

TABLE E18

BEARING RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|--------------|-------------------------------|--------------------------------|
| AIR FORCE | LONG        | 2.0          | 123.0                         |                                |
|           |             |              | 126.0                         |                                |
|           |             |              | 116.7                         | 87.0                           |
| NORTHROP  | LONG        | 2.0          | 126.0                         | 98.3                           |
|           |             |              | 125.0                         | 94.8                           |
|           |             |              | 128.0                         | 97.1                           |
| NASA      | LONG        | 2.0          | 131.4                         | 100.0                          |
| LANGLEY   |             |              | 131.0                         | 97.4                           |
|           |             |              | 127.0                         | 98.1                           |
|           |             |              | 132.4                         | 97.4                           |
|           |             | AVERAGE      | 126.7                         | 96.3                           |
|           | STANDAI     | RD DEVIATION | 4.6                           | 4.0                            |

TABLE E19

BEARING RESULTS FOR ALCAN

8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|--------------|-------------------------------|--------------------------------|
| AIR FORCE | L TRANS     | 2.0          | 116.0<br>115.1<br>104.7       | 98.0<br>90.3<br>86.6           |
| NORTHROP  | L TRANS     | 2.0          | 116.0<br>115.0                | 98.3<br>98.3                   |
|           |             | AVERAGE      | 113.4                         | 94.3                           |
|           | STANDAI     | RD DEVIATION | 4.9                           | 5.5                            |

TABLE E20

FRACTURE TOUGHNESS RESULTS FOR

ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY         | ORIBNTATION        | KIC<br>(KSI in^0.5)  | Kq<br>(KSI in^0.5)           | COMMENT                       |
|-----------------|--------------------|----------------------|------------------------------|-------------------------------|
| AIR FORCE       | L - T              | 25.8                 | 25.2<br>27.8                 | INVALID(1) VALID INVALID(1,2) |
| NORTHROP        | L - T              | 26.2<br>28.3<br>28.4 |                              | (3)<br>(3)<br>(3)             |
| NASA<br>LANGLEY | L - T              |                      | 25.3<br>28.1<br>27.4<br>28.9 |                               |
|                 | AVERAG             | g 27.2               | 27.1                         |                               |
|                 | STANDARD DEVIATION | n 1.4                | 1.5                          |                               |

<sup>(1):</sup> Pmax/Pq was greater than 1.10

<sup>(2):</sup> The difference between the two surface crack length measurements exceed 10% of the average crack length.

<sup>(3):</sup> Fractured parallel to load line

TABLE E21 FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATIO         | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT      |
|-----------|--------------------|---------------------|--------------------|--------------|
| *****     |                    |                     |                    |              |
| AIR FORCE | T - L              | 16.1                |                    | VALID        |
|           |                    | 16.3                |                    | VALID        |
|           |                    | 15.9                |                    | VALID        |
| NORTHROP  | T - L              | 15.1                |                    | VALID        |
|           |                    | 14.9                |                    | VALID        |
|           |                    | 15.3                |                    | VALID        |
| NASA      | T - L              |                     | 5.4                | INVALID(1,2) |
| LANGLEY   |                    |                     | 6.8                | INVALID(1,3) |
|           |                    |                     | 17.1               | INVALID(1)   |
|           |                    |                     | 17.9               | INVALID(1)   |
|           | AVERA              | GE 15.6             | 11.8               |              |
|           | STANDARD DEVIATION | ON 0.6              |                    |              |

<sup>(1):</sup> Kmax > 0.6 Kq (2): Pmax / Pq = 3.6 (3): Pmax / Pq = 2.6

TABLE B22

### STRESS CORROSION CRACKING RESULTS FOR

### ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY   | ORIENTATION | STRESS APPLIED (KSI in^0.5) |      | COMMENT                      |
|-----------|-------------|-----------------------------|------|------------------------------|
| AIR FORCE | T-L         | 12.0<br>14.0                | 75.0 | DID NOT FAIL<br>DID NOT FAIL |

NOTE: TESTING DISCONTINUED AFTER SPECIMEN WAS LOADED TO 87% OF T-L KIC AND DID NOT FAIL AFTER 2000 HRS.

TABLE E23

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY        | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------------|-------------|-----------------|--------------|
|                |             |                 |              |
| NORTHROP       | LONG        | 80.0            | 98           |
|                |             | 70.0            | 18,793       |
|                |             | 60.0            | 28,082       |
|                |             | 50.0            | 57,511       |
|                |             | 45.0            | 362,662      |
|                |             | 42.5            | 642,818      |
|                |             | 40.0            | 4,000,000 *  |
|                |             | 37.5            | 5,000,000 *  |
| NASA - LANGLEY | LONG        | 60.0            | 29,100       |
|                | 20113       | 50.0            | 43,000       |
|                |             | 45.0            | 55,600       |
|                |             | 40.0            | 549,000      |
|                |             | 38.0            | 2,472,100    |
|                |             | 36.0            | 10,557,700 * |
|                |             | 36.0            | 139,300      |
|                |             | 36.0            | 317,600      |
|                |             | 30.0            | 12,900,000 * |

(\*): INDICATES RUN-OUT TEST

# Alcan 8090-T651 Extrusion (1" x 4")



Figure El. Fatigue Results for 8090-7651 1" x 4" Extrusion (R\*0.1, K =1.0, Longitudinal).

TABLE E24

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR

ALCAN 8090-T651 EXTRUSION (1" X 4")

| COMPANY        | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------------|-------------|-----------------|--------------|
|                |             |                 |              |
| NORTHROP       | LONG        | 55.0            | 4,413        |
|                |             | 50.0            | 6,373        |
|                |             | 40.0            | 13,431       |
|                |             | 35.0            | 35,620       |
|                |             | 30.0            | 115,117      |
|                |             | 27.5            | 210,968      |
|                |             | 27.5            | 150,596      |
|                |             | 25.0            | 5,000,000 *  |
| NASA - LANGLEY | LONG        | 35.0            | 20,400       |
|                |             | 30.0            | 47,600       |
|                |             | 25.0            | 462,400      |
|                |             | 23.0            | 1,785,300    |
|                |             | 22.0            | 1,169,200    |
|                |             | 22.0            | 725,500      |
|                |             | 22.0            | 12,300,000 * |
|                |             | 21.0            | 10,908,100 * |
|                |             | 20.0            | 10,045,000 * |

### (\*): INDICATES RUN-OUT TEST

NOTE: NASA-LANGLEY SPECIMENS HAD A Ktg=3.01 AND A Ktn=2.88

# Alcan 8090-T651 Extrusion (1" X 4")





Figure E3. Fatigue Crack Growth Rate Data for Alcan 8090-T8 1" x 4" Extrusion (L-T Orientation). Grumman,



Figure E4. Fatigue Crack Growth Rate Data for Alcan 8090-T8 1" x 4" Extrusion (T-L Orientation). Grumman.



Figure E5. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). Northrop.



Figure E6. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1"  $\times$  4" Extrusion (T-L orientation). Northrop.



Figure E7. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). U.S. Air Force.



Figure E8. Fatigue Crack Growth Rate Data for Alcan  $8090-T651\ 1" \times 4"$  Extrusion (L-T Extrusion). U.S. Air Force.



Figure .E9. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). U.S. Air Force.



Figure E10. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force.



Figure Ell. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force.



Figure El2. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). U.S. Air Force.



Figure E13. Fatigue Crack Growth Rate Data for Alcan 8090~T651 1" x 4" Extrusion (L-T Orientation). NASA-Langley.



Figure E14. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (L-T Orientation). NASA-Langley.



Figure E15. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). NASA-Langley.



Figure El6. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). NASA-Langley.



Figure E17. Fatigue Crack Growth Rate Data for Alcan 8090-T651 1" x 4" Extrusion (T-L Orientation). NASA-Langley.



Figure E18 FALSTAFF Spectrum Results for 8090-T651 Extrusion.
Reduced in Terms of Growth Rate and Maximum Spectrum
Stress Intensity.



Figure E19 Crack Length Versus Flights for 8090-T651 Extrusion Under FALSTAFF Loading, Max Stress=30 KSI.



Figure E20Crack Length Versus Flights for 8090-T651 Extrusion Under Mini-TWIST Loading, Max Stress=17 KSI.



Figure E21Crack Length Versus Flights for 8090-T651 Extrusion Under Mini-TWIST Loading, Max Stress=26 KSI.

TABLE E25

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN

8090-T8 [338F FOR 24 HRS] EXTRUSION (1" x 4")

| COMPANY | TEMP<br>(DEGREES 1 |           | STRENGTH<br>(KSI) | STRENGTH<br>(KSI) | (%)  | (%)  | (MSI) |
|---------|--------------------|-----------|-------------------|-------------------|------|------|-------|
| GRUMMAN |                    | LONG      | 80.9              | 78.0              | 3.5  | 4.8  | 12.3  |
|         |                    |           | 80.1              | 77.5<br>76.8      | 4.0  | 7.5  | 11.6  |
|         |                    | AVERAGE   | 80.6              | 77.4              | 3.8  | 6.1  | 11.7  |
|         | STANDARD           | DEVIATION | 0.5               | 0.6               | 0.3  | 1.4  | 0.6   |
|         |                    |           |                   |                   |      |      |       |
| GRUMMAN | RT                 | 45        |                   |                   |      |      |       |
|         |                    |           |                   | 57.6<br>56.2      |      |      |       |
|         |                    | AVERAGE   | 67.5              | 57.0              | 10.0 | 31.5 | 10.9  |
|         | STANDARD           | DEVIATION | 0.4               | 0.7               | 0.0  | 1.2  | 0.7   |
|         |                    |           |                   |                   |      |      |       |
| GRUMMAN | RT                 | L TRANS   | 71.9              | 64.0              | 7.5  | 13.4 | 11.8  |
|         |                    |           |                   | 62.7              |      |      |       |
|         |                    |           | 70.5              | 61.6              | 7.0  | 19.4 | 11.1  |
|         |                    | AVERAGE   | 71.1              | 62.8              | 7.2  | 17.2 | 11.4  |
|         | STANDARD           | DEVIATION | 0.7               | 1.2               | 0.3  | 3.3  | 0.4   |

TABLE E26

COMPRESSION RESULTS FOR ALCAN

8090-T8 [338F FOR 24 HRS] EXTRUSION (1" x 4")

| COMPANY | TEMPERATURE (DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | Modulus<br>(MSI) |
|---------|-------------------------|----------------|----------------------------------------|------------------|
| GRUHMAN | RT                      | LONG           | 78.4<br>77.7                           | 12.1             |
|         |                         |                | 68.6                                   |                  |
|         |                         | AVERAGE        | 74.9                                   | 12.1             |
|         | STANI                   | DARD DEVIATION | 5.5                                    | 0.1              |
|         |                         |                |                                        |                  |
| GRUMMAN | RT                      | 45             | 60.3<br>60.3                           |                  |
|         |                         |                | 60.1                                   |                  |
|         |                         | AVERAGE        | 60.2                                   | 11.8             |
|         | STANI                   | DARD DEVIATION | 0.1                                    | 0.1              |
|         |                         |                |                                        |                  |
| GRUMMAN | RT                      | L TRANS        | 67.9                                   | 11.9             |
|         |                         |                | 67.4                                   |                  |
|         |                         |                | 67.4                                   | 12.1             |
|         |                         | AVERAGE        | 67.6                                   | 12.0             |
|         | STAN                    | DARD DEVIATION | 0.3                                    | 0.1              |

#### TABLE B27

## FRACTURE TOUGHNESS RESULTS FOR ALCAN

## 8090-T8 [338F FOR 24 HRS] EXTRUSION (1\* x 4\*)

| COMPANY   | ORIENTATION           | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | CONMENT                       |
|-----------|-----------------------|---------------------|--------------------|-------------------------------|
| GRUMMAN   | L - T                 |                     |                    | INVALID(1),(2) INVALID(2),(3) |
|           | AVERAGE               |                     | 30.5               |                               |
|           | STANDARD DEVIATION    |                     | 4.0                |                               |
| GRUMMAN   | T - L                 | 14.6                |                    | VALID                         |
|           | AVERAGE               | 14.6                |                    |                               |
|           | STANDARD DEVIATION    | 0.0                 |                    |                               |
| (1) 1.08  | greater than B        | ·                   |                    |                               |
| (2) Angle | of fracture greater   | than 5 degrees      |                    |                               |
| (3) Pmax  | /Pg greater than 1.10 |                     |                    |                               |

#### APPENDIX F

#### 8090-T8771 1.75 INCH THICK PLATE

#### INTRODUCTION

The Alcan aluminum-lithium alloy 8090-T8771 1.75 inch plates were received May 1991. The 8090 was tested in the as received condition by Martin Marietta and the Air Force.

#### **TESTING**

Mechanical properties (tension, compression, bearing shear and fracture toughness), fatigue and constant amplitude fatigue crack growth tests were performed according to ASTM standards, unless otherwise specified. Spectrum fatigue crack growth tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE F1

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|--------------|-----------|------------|
| KARTIN    | RT                          | LONG     | 79.1                          | 71.0                       | 5.0          | 3.9       |            |
| MARIETTA  |                             |          | 79.1                          | 71.2                       | 5.0          | 9.6       |            |
|           |                             |          | 79.3                          |                            | 5.0          | 3.5       |            |
| AIR FORCE | RT                          | LONG     | 76.7                          | 65.7                       | 8.1          | 9.2       |            |
|           |                             |          | 80.2                          | 72.6                       | 5.5          | 5.2       |            |
|           |                             |          | 76.7                          | 66.0                       | 7.9          | 11.6      |            |
|           |                             | AVERAGE  | 78.5                          | 69.3                       | 6.1          | 7.2       |            |
|           | STANDARD D                  | EVIATION | 1.5                           | 3.2                        | 1.5          | 3.4       |            |

TABLE F2

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)       | RA<br>(%)            | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|--------------------|----------------------|------------|
| AIR FORCE | RT                          | 45       | 72.3<br>72.4<br>72.5          | 54.7<br>58.0<br>55.5       | 11.5<br>8.9<br>9.8 | 17.6<br>14.5<br>15.4 |            |
|           |                             | AVERAGE  | 72.4                          | 56.1                       | 10.0               | 15.8                 |            |
|           | STANDARD I                  | MOITAIVE | 0.1                           | 1.7                        | 1.3                | 1.6                  |            |

TABLE F3

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| СОИРАНУ   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(RSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| HARTIN    | RT                          | L TRANS          | 78.2                          | 66.9                       | 6.0          | 8.1       |            |
| Marietta  |                             |                  | 78.1                          | 66.8                       | 6.0          | 8.9       |            |
|           |                             |                  | 78.5                          | 67.1                       | 6.0          | 8.5       |            |
| AIR FORCE | RT                          | L TRANS          | 73.3                          | 56.9                       | 10.4         | 10.3      |            |
|           |                             |                  | 79.5                          | 68.4                       | 6.5          | 9.7       |            |
|           |                             |                  | 73.8                          | 57.3                       | 10.5         | 11.2      |            |
|           |                             | AVERAGE          | 76.9                          | 63.9                       | 7.6          | 9.4       |            |
|           | STANDARD D                  | EVIATION         | 2.7                           | 5.3                        | 2.2          | 1.2       |            |

TABLE F4

TENSILE RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)      | RA<br>(%)         | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|-------------------|-------------------|------------|
| AIR FORCE | RT                          | s trans  | 75.6<br>75.0<br>75.8          | 61.4<br>61.0<br>62.0       | 1.7<br>3.5<br>5.4 | 2.4<br>2.4<br>5.1 | *****      |
|           |                             | AVERAGE  | 75.4                          | 61.5                       | 3.5               | 3.3               |            |
|           | STANDARD D                  | EVIATION | 0.4                           | 0.5                        | 1.8               | 1.6               |            |

TABLE P5

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY            | TEST TEMPERATURE (DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|--------------------|------------------------------|---------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA | RT                           | LONG          | 70.3<br>67.0                           | 12.1<br>12.1                    |
| WW. 2 W 4 W        |                              |               | 68.1                                   | 12.1                            |
| AIR FORCE          | RT                           | LONG          | 62.5                                   | 11.8                            |
|                    |                              |               | 63.9<br>60.5                           | 12.0<br>10.1                    |
|                    |                              | Average       | 65.4                                   | 11.7                            |
|                    | STANDA                       | ARD DEVIATION | 3.7                                    | 0.8                             |

TABLE F6

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY            | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|--------------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA | RT                                 | L TRANS        | 72.6<br>73.6<br>73.1                   | 12.2<br>12.0<br>12.1            |
| AIR FORCE          | RT                                 | L TRANS        | 62.5<br>70.9<br>67.5                   | 11.8<br>12.0<br>11.9            |
|                    |                                    | Average        | 70.0                                   | 12.0                            |
|                    | STAN                               | DARD DEVIATION | 4.3                                    | 0.1                             |

TABLE F7

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY            | TEST TEMPERATURE (DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|--------------------|------------------------------|---------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA | RT                           | s trans       | 69.6<br>68.8<br>68.5                   | 12.1<br>12.0<br>12.0            |
|                    |                              | average       | 69.0                                   | 12.0                            |
|                    | STAND                        | ARD DEVIATION | 0.6                                    | 0.1                             |

#### TABLE P8

# AMSLER DOUBLE SHEAR RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | ORIENTATION                   | SHEAR<br>STRENGTH<br>(KSI)                   |
|-----------|-------------------------------|----------------------------------------------|
| AIR FORCE | T-L                           | 41.1<br>41.8<br>43.4<br>44.4<br>43.6<br>41.4 |
|           | average<br>Standard Deviation | 42.6<br>1.4                                  |

TABLE F9

BEARING RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|-----------|-------------------------------|--------------------------------|
| AIR FORCE | LONG        | 1.5       | 112.1<br>112.8<br>106.9       | 90.6<br>91.5<br>83.7           |
|           |             | AVERAGE   | 110.6                         | 88.6                           |
|           | STANDARD    | DEVIATION | 3.2                           | 4.3                            |

TABLE F10

BEARING RESULTS AT t/2 LOCATION FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | ORIENTATION | ●/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|-----------|-------------------------------|--------------------------------|
| AIR FORCE | L TRANS     | 1.5       | 109.9<br>112.7<br>105.7       | 89.6<br>90.6<br>87.3           |
|           |             | average   | 109.4                         | 89.2                           |
|           | STANDARI    | DEVIATION | 3.5                           | 1.7                            |

TABLE P11 FRACTURE TOUGHNESS RESULTS FOR ALCAM 8090-T8771 PLATE (1.75" THICK)

| COMPANY         | ORIENTATION   | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | CONSIGNT         |
|-----------------|---------------|---------------------|--------------------|------------------|
| MARTIN MARIETTA | L-T           |                     | 29.9               | (1)              |
|                 |               |                     | 27.9               | $(\overline{1})$ |
|                 |               |                     |                    |                  |
|                 |               |                     | 28.3               | (1)              |
| AIR FORCE       | L-T           |                     | 24.7               | (2)              |
|                 |               |                     | 23.7               | (2)              |
|                 |               | 27.0                |                    | (0)              |
|                 | average       | 27.0                | 26.9               |                  |
|                 |               |                     |                    |                  |
| Stand           | ARD DEVIATION | 0.0                 | 2.6                |                  |

TABLE F12

#### FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY         | ORIENTATION   | KIC<br>(KSI in^0.5)                     | Kq<br>(KSI in^0.5)  | COMMENT               |
|-----------------|---------------|-----------------------------------------|---------------------|-----------------------|
| MARTIN MARIETTA | S-L           | - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11.1<br>11.0        | (1)<br>(1)            |
| AIR FORCE       | S-L           |                                         | 12.1<br>12.8<br>9.9 | (1)<br>(1)<br>(1),(2) |
|                 | AVERAGE       |                                         | 11.8                |                       |
| STANDA          | ARD DEVIATION |                                         | 0.9                 |                       |

<sup>(1):</sup> INVALID DUE TO a/W < 0.45 (2): INVALID DUE TO Pmax/Pq > 1.1

<sup>(1):</sup> INVALID DUE TO Kfat/Kq > 0.6 (2): INVALID DUE TO a,B < 2.5(Kq/YS)^2

FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| CONPANY         | ORIENTATION   | KIC (KSI in^0.5)                      | Kq<br>(KSI in^0.5) | CONNENT    |
|-----------------|---------------|---------------------------------------|--------------------|------------|
| MARTIN MARIETTA | T-L           | · · · · · · · · · · · · · · · · · · · | 21.0<br>20.1       | (1)<br>(1) |
| AIR FORCE       | T-L           | 25.0<br>24.3<br>22.7                  |                    |            |
|                 | AVERAGE       | 24.0                                  | 20.6               |            |
| STAND           | ARD DEVIATION | 1.2                                   | 0.6                |            |

(1): INVALID DUE TO Kfat/Kq > 0.6

#### TABLE F14

## FRACTURE TOUGHNESS RESULTS FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY         | ORIENTATION   | KIC<br>(KSI in^0.5) (KSI i |          |      | Kq    | COMMENT |
|-----------------|---------------|----------------------------|----------|------|-------|---------|
|                 |               | (KSI                       | 111-0.5) | (KSI | 10.5) |         |
| MARTIN MARIETTA | S-T           |                            |          |      | 13.1  | (1)     |
|                 | AVERAGE       |                            |          |      | 13.1  |         |
| STAND           | ARD DEVIATION |                            |          |      | 0.0   |         |

(1): INVALID DUE TO Kfat/Kq > 0.6

TABLE F15

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-----------|-------------|-----------------|--------------|
| AIR FORCE | LONG        | 73.5            | 5,016        |
|           |             | 69.0            | 15,020       |
|           |             | 66.0            | 16,366       |
|           |             | 60.0            | 36,998       |
|           |             | 57.0            | 93,383       |
|           |             | 50.8            | 280,000      |
|           |             | 48.0            | 95,642       |
|           |             | 43.5            | 2,946,918    |
|           |             | 37.5            | 17,000,000 * |
|           |             | 29.0            | 10,000,000 * |

(\*): RUN OUT

TABLE F16

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR ALCAN 8090-T8771 PLATE (1.75" THICK)

| COMPANY   | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-----------|-------------|-----------------|--------------|
| AIR FORCE | LONG        | 50.0            | 3,822        |
|           |             | 40.0            | 7,994        |
|           |             | 30.0            | 32,103       |
|           |             | 28.0            | 39,796       |
|           |             | 26.0            | 74,224       |
|           |             | 24.0            | 64,517       |
|           |             | 22.0            | 135,951      |
|           |             | 21.0            | 648,867      |
|           |             | 20.5            | 103,502      |
|           |             | 20.0            | 10,000,000 * |

(\*): RUN OUT



FIGURE F1. Fatigue Results for 8090-T8771 Plate (Longitudinal Orientation). Air Force.



FIGURE F2. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation). Martin Marietta.



FIGURE F3. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (T-L Orientation). Martin Marietta.



FIGURE F4. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (S-T Orientation). Martin Marietta.



FIGURE F5. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.1).
Air Force.



FIGURE F6. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.33).

Air Force.



FIGURE F7. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.1 and High Humidity).

Air Force.



FIGURE F8. Fatigue Crack Growth Rate Data for 8090-T8771 Plate (L-T Orientation and R=0.33 and High Humidity).

Air Force.





Mini-TWIST Spectrum Crack Length vs Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 16.9 Ksl). Air Force.

FIGURE F9.

CRACK LENGTH (2d in.)

199



FIGURE F10. Mini-TWIST Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771
Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress
= 16.9 KSU).
Air Force.



FALSTAFF Spectrum Crack Length vs Total Flights Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 20 Ksi). Air Force. FIGURE F11.

CRACK LENGTH (2d in.)



FIGURE F12. FALSTAFF Spectrum Crack Growth Rate vs Delta K Data for 8090-T8771 Plate (L-T Orientation, Room Temperature, Lab Air and Maximum Stress = 20 Ksi).

Air Force.

#### APPENDIX G

#### **IN905XL PRECISION FORGING**

#### INTRODUCTION

The IN905XL Forgings were produced in a pilot plant under developmental conditions in 1986. Significant variability in properties can be expected under such conditions.

The IN905XL forgings were received the first quarter of 1987 and all the participants except General Dynamics TX tested the material in the as-received condition. General Dynamics TX exposed the forging to a two-step solution treatment and aging. Figure G1 shows the geometry of the IN905XL jack fitting precision forging.

#### **TESTING**

Basic mechanical properties (tension, compression, bearing, etc) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. Northrop Corporation and General Dynamics performed constant amplitude fatigue crack growth test using K controlled methods. McDonnell Aircraft Company (MCAIR) used a WOL specimen geometry.

A mini-TWIST (moderately intense fatigue environment) spectrum test was performed by the Air Force.

Figure Gl IN905XL Jack Fitting Precision Forging

TABLE G1 TENSILE RESULTS FOR IN905XL FORGING

| COMPANY  | TEMP<br>(DEGREES |           | STRENGTH (KSI) | STRENGTH<br>(KSI)    | (%)  | (%)  |      |     |
|----------|------------------|-----------|----------------|----------------------|------|------|------|-----|
| AIR FORC | e RT             | LONG      |                | 52.0                 | 11.5 | 23.0 |      | (1) |
|          |                  |           |                | 50.6                 |      |      |      |     |
|          |                  |           | 66.1           | 52.0                 | 11.8 | 25.0 |      | (1) |
|          |                  |           | 64.3           | 51.6                 | 13.6 | 27.6 |      | (2) |
|          |                  |           | 63.7           | 51.6<br>48.7<br>49.5 | 10.4 | 12.4 |      | (2) |
|          |                  |           | 62.7           | 49.5                 | 11.0 | 19.4 |      | (2) |
|          |                  |           | 67.7           | 56.0                 | 13.0 | 30.3 |      | (1) |
|          |                  |           | 68.0           | 56.1                 | 13.0 | 25.3 |      | (1) |
|          |                  |           | 68.3           | 57.7                 | 13.0 | 28.0 |      | (1) |
| MCAIR    | RT               | LONG      | 75.0           | 65.0<br>64.5         | 9.0  | 18.2 | 11.6 | (1) |
|          |                  |           | 75.5           | 64.5                 | 8.0  | 15.6 | 11.9 | (1) |
|          |                  |           | 74.5           | 62.0                 | 9.0  | 20.3 | 12.4 | (1) |
| LTV      | RT               | LONG      | 68.0           |                      |      |      |      |     |
|          |                  |           |                | 54.8                 |      |      |      | (1) |
|          |                  |           | 64.7           | 50.2                 | 11.0 | 9.2  | 10.8 | (1) |
| NORTHROP | RT               | LONG      | 67.4           | 55.4                 | 10.0 |      | 11.6 |     |
|          |                  |           |                | 55.7                 |      |      | 12.1 | (1) |
|          |                  |           | 67.0           | 55.3                 | 12.0 |      | 12.2 | (1) |
|          |                  |           | 64.3           | 53.9                 | 12.0 |      | 11.5 | (2) |
|          |                  |           | 65.0           | 53.3                 | 11.0 |      | 11.9 | (2) |
|          |                  |           | 64.7           | 51.7                 | 12.0 |      | 11.3 | (2) |
| MARTIN   | RT               | LONG      |                | 62.2                 |      |      |      |     |
| MARIETTA |                  |           |                | 63.8                 |      |      | 11.4 |     |
|          |                  |           | 78.1           | 64.9                 | 10.0 | 13.2 | 11.6 |     |
| SIKORSKY | RT               | LONG      | 67.5           | 57.7<br>55.9         | 7.5  |      | 12.4 | (1) |
|          |                  |           | 67.8           | 55.9                 | 14.0 |      | 12.2 | (1) |
|          |                  |           | 68.0           | 55.3                 | 13.0 |      | 12.6 | (1) |
|          |                  |           | 67.8           | 54.7                 | 13.0 |      | 12.1 | (1) |
|          |                  |           |                | 57.0                 |      |      | 12.7 | (1) |
|          |                  |           | 68.5           | 56.1                 | 14.0 |      | 12.0 | (1) |
| NASA     | RT               | LONG      | 67.0           | 57.3                 | 7.0  |      | 11.5 |     |
| LANGLEY  |                  |           |                | 57.8                 |      |      | 11.4 |     |
|          |                  |           | 67.6           | 58.1                 | 7.0  |      | 11.5 |     |
|          |                  | AVERAGE   | 68.4           | 56.0                 | 11.2 | 19.8 | 11.7 |     |
|          | STANDARD         | DEVIATION | 3.9            | 4.5                  | 2.0  | 6.0  | 0.5  |     |

<sup>(1):</sup> THIN SECTION (WEB/FLANGE SECTION)
(2): THICK SECTION (END SECTION)

TABLE G2 TENSILE RESULTS FOR IN905XL FORGING

| COMPANY   | TEST<br>TEMP<br>(DEGREES |           | (KSI) | STRENGTH<br>(KSI) |      | (%)  | •            | COMMENT    |
|-----------|--------------------------|-----------|-------|-------------------|------|------|--------------|------------|
| AIR FORCE | e RT                     | L TRANS   |       | 54.1              | 9.3  | 16.8 |              | (1)        |
|           |                          |           | 67.2  |                   | 7.0  | 11.7 |              | (1)        |
|           |                          |           | 67.8  |                   |      |      |              | (1)        |
|           |                          |           | 64.9  |                   | 13.3 | 19.9 |              | (2)        |
|           |                          |           | 64.4  | 50.4<br>49.7      | 11.1 | 19.0 |              | (2)        |
|           |                          |           | 64.4  | 49.7              | 9.3  | 13.5 |              | (2)        |
|           |                          |           |       | 50.9              |      |      |              | (1)        |
|           |                          |           | 64.1  | 50.1              | 11.0 | 12.3 |              | (1)        |
|           |                          |           | 63.5  | 49.5              | 8.0  | 17.6 |              | (1)        |
| MCAIR     | RT                       | L TRANS   |       |                   |      |      |              |            |
|           |                          |           | 74.5  | 61.5              | 9.0  |      | 12.6         |            |
|           |                          |           | 74.5  | 64.5              | 8.0  | 16.3 | 11.5         | (1)        |
| LTV       | RT                       | L TRANS   | 66.8  | 55.2<br>54.7      | 10.0 | 19.2 | 11.2         | (1)        |
|           |                          |           | 67.0  | 54.7              | 10.0 | 18.6 | 11.5         | (1)        |
|           |                          |           | 67.4  | 55.2              | 12.0 | 17.7 | 11.2         | (1)        |
| NORTHROP  | RT                       | L TRANS   |       |                   |      |      |              |            |
|           |                          |           | 65.8  | 54.3<br>54.9      | 11.0 |      | 11.5<br>11.6 | (1)        |
|           |                          |           | 66.6  | 54.9              | 12.5 |      | 11.6         | (1)        |
|           |                          |           |       | 51.4              |      |      | 11.9         | (2)        |
|           |                          |           | 65.0  | 52.5<br>52.9      | 8.0  |      | 11.7         | (2)        |
|           |                          |           | 65.3  | 52.9              | 8.0  |      | 11.9         | (2)<br>(2) |
| MARTIN    | RT                       | L TRANS   |       | 54.9              |      |      |              |            |
| MARIETTA  |                          |           |       | 54.8              |      |      |              |            |
|           |                          |           | 69.3  | 54.6              | 4.0  | 3.2  | 11.0         |            |
| SIKORSKY  | RT                       | L TRANS   | 68.1  | 56.7              | 14.0 |      | 12.7         |            |
|           |                          |           | 67.9  | 56.8<br>57.8      | 10.0 |      | 11.8         | (1)        |
|           |                          |           |       |                   |      |      | 13.5         | (1)        |
|           |                          |           | 68.7  | 58.1              | 9.0  |      | 11.1         | (1)        |
| NASA      | RT                       | L TRANS   |       | 58.1              | 8.0  |      | 11.5         |            |
| LANGLEY   |                          |           | 67.8  | 58.4              | 8.0  |      | 11.4         |            |
|           |                          |           | 68.0  | 58.4              | 8.0  |      | 11.5         |            |
|           |                          | AVERAGE   | 67.5  | 55.2              | 9.0  | 14.3 | 11.7         |            |
|           | STANDARD                 | DEVIATION | 2.9   | 4.0               | 2.6  | 6.1  | 0.6          |            |

<sup>(1):</sup> THIN SECTION (WEB/FLANGE SECTION)
(2): THICK SECTION (END SECTION)

TABLE G3 TENSILE RESULTS FOR IN905XL FORGING

| COMPANY  | TEST<br>TEMP<br>(DEGREES | ORIENT-<br>ATION<br>F) |      | YIELD<br>STRENGTH<br>(KSI) | elong<br>(%) | RA<br>(%) | E<br>(MSI) | COMMENT |
|----------|--------------------------|------------------------|------|----------------------------|--------------|-----------|------------|---------|
| LTV      | RT                       | S TRANS                | 64.7 | 50.8                       | 8.0          | 7.7       | 11.2       | (2)     |
|          |                          |                        | 67.3 | 54.8                       | 12.0         | 28.4      | 10.9       |         |
|          |                          |                        | 63.2 | 50.8                       | 8.0          | 10.3      | 11.2       |         |
| NORTHROP | RT                       | S TRANS                | 64.1 | 52.6                       | 6.5          |           | 11.4       | (1)     |
|          |                          |                        | 64.3 | 52.2                       | 8.0          |           | 12.1       |         |
|          |                          |                        | 64.7 | 51.5                       | 8.0          |           | 11.9       |         |
| MARTIN   | RT                       | S TRANS                | 74.1 | 61.2                       | 6.0          | 4.8       | 11.6       |         |
| MARIETTA |                          |                        | 75.5 | 62.0                       | 6.0          | 4.0       | 11.3       |         |
|          |                          |                        | 72.6 | 60.8                       | 4.0          | 4.8       | 11.2       |         |
| SIKORSKY | RT                       | S TRANS                | 67.7 | 54.8                       | 9.0          |           | 11.6       | (1)     |
|          |                          |                        | 65.3 | 50.8                       | 5.0          |           | 12.8       | (1)     |
| NASA     | RT                       | S TRANS                | 63.9 | 53.3                       | 5.0          |           | 11.2       |         |
| LANGLEY  |                          |                        | 63.1 | 53.7                       | 5.0          |           | 11.4       |         |
|          |                          |                        | 63.8 | 53.6                       | 5.0          |           | 11.3       |         |
|          |                          | AVERAGE                | 66.7 | 54.5                       | 6.8          | 10.0      | 11.5       |         |
|          |                          | NVERMUE                | 80.7 | 34.3                       | 0.0          | 10.0      | 11.5       |         |
|          | STANDARD                 | DEVIATION              | 4.2  | 4.0                        | 2.1          | 9.3       | 0.5        |         |

<sup>(1):</sup> THIN SECTION (WEB/FLANGE SECTION)
(2): THICK SECTION (END SECTION)

#### TABLE G4

#### TENSILE RESULTS FOR

#### IN905XL FORGING

| COMPANY             | Test<br>Temp<br>(Degrees | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIBLD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) | COMMENT |
|---------------------|--------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|---------|
| GENERAL<br>DYNAMICS | RT                       | LONG      | 69.7<br>67.1                  | 57.6<br>59.2               | 9.7          |           |            | *       |
|                     |                          | AVERAGE   | 68.4                          | 58.4                       | 9.7          |           |            |         |
|                     | STANDARD                 | DEVIATION | 1.8                           | 1.1                        |              |           |            |         |

#### (\*): THIN SECTION

NOTE: HEAT TREATED WITH THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS

#### TABLE G5

#### TENSILE RESULTS FOR

#### IN905XL FORGING

| COMPANY             | TEST<br>TEMP<br>(DEGREES | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) | COMMENT |
|---------------------|--------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|---------|
| GENERAL<br>DYNAMICS | RT                       | L TRANS   | 71.2<br>67.9                  | 58.7<br>56.6               | 8.6<br>9.7   |           |            | *       |
|                     | ,                        | average   | 69.6                          | 57.7                       | 9.2          |           |            |         |
|                     | STANDARD                 | DEVIATION | 2.3                           | 1.5                        | 0.8          |           |            |         |

#### (\*): THIN SECTION

NOTE: HEAT TREATED WITH THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS

TABLE G6

COMPRESSION RESULTS FOR

IN905XL FORGING

| COMPANY  | TEST TEMPERATURE (DEGREES F) | ORIENTATION  | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------|------------------------------|--------------|----------------------------------|---------------------------------|
| MCAIR    | RT                           | LONG         | 65.9                             | 11.9                            |
|          |                              |              | 65.9                             | 10.4                            |
|          |                              |              | 65.6                             | 11.8                            |
| LTV      | RT                           | LONG         | 59.1                             | 11.9                            |
|          |                              |              | 53.3                             | 12.1                            |
|          |                              |              | 60.5                             | 12.0                            |
| NORTHROP | RT                           | LONG         | 56.6                             | 11.7                            |
|          |                              |              | 57.1                             | 12.2                            |
|          |                              |              | 57.4                             | 12.0                            |
| MARTIN   | RT                           | LONG         | 70.3                             | 12.4                            |
| MARIETTA |                              |              | 70.9                             | 12.3                            |
|          |                              |              | 71.0                             | 12.3                            |
| SIKORSKY | RT                           | LONG         | 57.9                             | 13.2                            |
|          |                              |              | 56.6                             | 11.2                            |
| AZAN     | RT                           | LONG         | 60.7                             | 11.7                            |
| LANGLEY  |                              |              | 61.4                             | 11.7                            |
|          |                              |              | 61.6                             | 11.7                            |
|          |                              | AVERAGE      | 61.9                             | 11.9                            |
|          | STANDA                       | RD DEVIATION | 5.5                              | 0.6                             |

NOTE: NORTHROP SPECIMENS TAKEN FROM WEB/FLANGE SECTION.

TABLE G7

COMPRESSION RESULTS FOR

IN905XL FORGING

| COMPANY  | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------|------------------------------------|----------------|----------------------------------|---------------------------------|
| MCAIR    | RT                                 | L TRANS        | 64.2                             | 12.1                            |
|          |                                    |                | 62.5                             | 12.4                            |
|          |                                    |                | 62.0                             | 12.7                            |
| LTV      | RT                                 | L TRANS        | 57.3                             | 11.5                            |
|          |                                    |                | 58.9                             | 12.3                            |
|          |                                    |                | 56.5                             | 12.2                            |
| NORTHROP | RT                                 | L TRANS        | 56.2                             | 11.9                            |
|          |                                    |                | 56.0                             | 11.8                            |
|          |                                    |                | 56.0                             | 11.9                            |
| MARTIN   | RT                                 | L TRANS        | 67.2                             | 12.3                            |
| MARIETTA |                                    |                | 67.2                             | 12.2                            |
|          |                                    |                | 67.3                             | 12.3                            |
| SIKORSKY | RT                                 | L TRANS        | 56.2                             | 12.5                            |
|          |                                    |                | 55.5                             | 11.8                            |
|          |                                    |                | 55.4                             | 12.4                            |
| NASA     | RT                                 | L TRANS        | 59.3                             | 11.7                            |
| LANGLEY  |                                    |                | 59.2                             | 11.6                            |
|          |                                    |                | 59.2                             | 11.7                            |
|          |                                    | AVERAGE        | 59.8                             | 12.1                            |
|          | STAN                               | DARD DEVIATION | 4.3                              | 0.3                             |

NOTE: NORTHROP SPECIMENS TAKEN FROM WEB/FLANGE SECTION.

TABLE G8

COMPRESSION RESULTS FOR

IN905XL FORGING

| COMPANY         | TEST TEMPERATURE (DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------------|------------------------------|----------------|----------------------------------------|---------------------------------|
| LTV             | RT                           | s trans        | 54.1                                   | 11.5                            |
|                 |                              |                | 59.3                                   | 12.0                            |
|                 |                              |                | 53.7                                   | 11.8                            |
| NORTHROP        | RT                           | S TRANS        | 50.8                                   | 11.9                            |
|                 |                              |                | 51.1                                   | 11.9                            |
|                 |                              |                | 50.1                                   | 11.8                            |
| MARTIN          | RT                           | S TRANS        | 57.1                                   | 12.2                            |
| MARIETTA        |                              |                | 57.1                                   | 12.1                            |
|                 |                              |                | 56.5                                   | 12.0                            |
| nasa<br>Langley | RT                           | S TRANS        | 56.5                                   | 11.6                            |
|                 |                              | AVERAGE        | 54.6                                   | 11.9                            |
|                 | STAN                         | DARD DEVIATION | 3.2                                    | 0.2                             |

NOTE: NORTHROP SPECIMENS TAKEN FROM WEB/FLANGE SECTION.

#### COMPRESSION RESULTS FOR

#### IN905XL FORGING

| COMPANY                 | TEST TEMPERATURE (DEGREES F) | ORIENTATION | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-------------------------|------------------------------|-------------|----------------------------------|---------------------------------|
| GENERAL<br>DYNAMICS (*) | RT                           | LONG        | 58.0                             | 11.4                            |

# (\*): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

STEP 4 - 230F FOR 24 HRS

# TABLE G10

# COMPRESSION RESULTS FOR

# IN905XL FORGING

| COMPANY             | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|---------------------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| GENERAL<br>DYNAMICS | RT<br>(*)                          | L TRANS       | 59.3<br>55.9                           | 11.7                            |
|                     |                                    | AVERAGE       | 57.6                                   | 11.7                            |
|                     | STANDA                             | ARD DEVIATION | 2.4                                    | 0.0                             |

# (\*): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

STEP 4 - 230F FOR 24 HRS

# IOSIPESCU SHEAR RESULTS FOR

# IN905XL FORGING

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| LTV     | LONG               | 41.8<br>41.7               |
|         | AVERAGE            | 41.8                       |
|         | STANDARD DEVIATION | 0.1                        |

# TABLE G12

# IOSIPESCU SHEAR RESULTS FOR

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI)   |
|---------|--------------------|------------------------------|
| LTV     | L TRANS            | 40.4<br>41.4<br>41.7<br>41.1 |
|         | AVERAGE            | 41.2                         |
|         | STANDARD DEVIATION | ^                            |

# AMSLER DOUBLE SHEAR RESULTS FOR

# IN905XL FORGING

| СОМРАМУ              | ORIENTATION                                            | SHEAR<br>STRENGTH<br>(KSI) |
|----------------------|--------------------------------------------------------|----------------------------|
| GENERAL DYNAMICS (*) | L - S`                                                 | 37.7<br>37.9               |
|                      | AVERAGE                                                | 37.8                       |
|                      | STANDARD DEVIATION                                     | 0.1                        |
| (*): HEAT TREATED TO | THE FOLLOWING SCHEDULE:                                |                            |
|                      | STEP 1 - 850F FOR 2 HRS                                |                            |
|                      | STEP 2 - 665F FOR 2 HRS                                |                            |
|                      | STEP 3 - WARM WATER QUENCH<br>STEP 4 - 230F FOR 24 HRS |                            |
|                      | STEP 4 - 230F FOR 24 HRS                               |                            |

# TABLE G14

# AMSLER DOUBLE SHEAR RESULTS FOR

| COMPANY      | ORIENTATION        | Ĩ | SHEAR<br>STRENGTH<br>(KSI) |
|--------------|--------------------|---|----------------------------|
| NORTHROP     | L - S              |   | 39.6<br>39.3<br>39.3       |
| nasa-langley | L - s              |   | 41.0<br>40.9<br>40.7       |
|              | AVERAGE            |   | 40.1                       |
|              | STANDARD DEVIATION |   | 0.8                        |

# AMSLER DOUBLE SHEAR RESULTS FOR

# IN905XL FORGING

| COMPANY      | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|--------------|--------------------|----------------------------|
| NASA-LANGLEY | T - S              | 40.9<br>41.0<br>40.7       |
|              | AVERAGE            | 40.9                       |
|              | STANDARD DEVIATION | 0.2                        |

# TABLE G16

# SLOTTED SHEAR RESULTS FOR

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| MCAIR   | LONG               | 44.5<br>41.5<br>38.0       |
|         | AVERAGE            | 41.3                       |
|         | STANDARD DEVIATION | 3.3                        |

TABLE G17
BEARING RESULTS FOR

| COMPANY      | ORIENTATION | ●/D     | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------|-------------|---------|-------------------------------|--------------------------------|
| LTV          | LONG        | 1.5     | 97.0<br>95.9                  | 82.5<br>83.7                   |
| NORTHROP     | LONG        | 1.5     | 102.0<br>89.4<br>100.8        | 83.9<br>77.7<br>82.3           |
| NASA-LANGLEY | LONG        | 1.5     | 88.4<br>92.6                  | 79.3<br>78.7                   |
|              |             | AVERAGE | 97.0                          | 82.0                           |

NOTE: NORTHROP SPECIMENS TAKEN FROM WEB/FLANGE SECTION.

STANDARD DEVIATION

TABLE G18
BEARING RESULTS FOR

5.0

2.5

# IN905XL FORGING

| COMPANY  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| LTV      | L TRANS     | 1.5       | 118.0<br>115.0                | 91.5<br>97.9                   |
| NORTHROP | L TRANS     | 1.5       | 85.3<br>98.1<br>86.7          | 77.3<br>82.3<br>77.2           |
|          |             | AVERAGE   | 100.6                         | 85.2                           |
|          | STANDARD    | DEVIATION | 15.4                          | 9.2                            |

NOTE: NORTHROP SPECIMENS TAKEN FROM WEB/FLANGE SECTION.

# BEARING RESULTS FOR

#### IN905XL FORGING

| COMPANY  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| MCAIR    | LONG        | 2.0       | 125.0<br>125.0                | 104.0<br>107.0                 |
|          |             |           | 124.0                         | 102.0                          |
| LTV      | LONG        | 2.0       | 118.0<br>115.0                | 91.5<br>97.9                   |
| NORTHROP | LONG        | 2.0       | 125.1<br>125.9<br>125.9       | 96.5<br>95.7<br>93.7           |
|          |             | AVERAGE   | 123.0                         | 98.5                           |
|          | STANDARD 1  | DEVIATION | 4.1                           | 5.3                            |

# TABLE G20

# BEARING RESULTS FOR

# IN905XL FORGING

| COMPANY             |     | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------------------|-----|-------------|-----------|-------------------------------|--------------------------------|
| GENERAL<br>DYNAMICS | (*) | LONG        | 2.0       | 111.0<br>113.3                | 93.4<br>92.9                   |
|                     |     |             | AVERAGE   | 112.2                         | 93.2                           |
|                     |     | STANDARD    | DEVIATION | 1.6                           | 0.4                            |

# (\*): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

STEP 4 - 230F FOR 24 HRS

TABLE G21

# BEARING RESULTS FOR

# IN905XL FORGING

| COMPANY  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| MCAIR    | L TRANS     | 2.0       | 105.0<br>123.0                | 101.0                          |
|          |             |           | 122.0                         | 103.0                          |
| LTV      | L TRANS     | 2.0       | 117.2                         | 100.5<br>97.3                  |
|          |             |           | 124.7                         | 97.3                           |
| NORTHROP | L TRANS     | 2.0       | 117.5                         | 89.0                           |
|          |             |           | 124.2                         | 92.2                           |
|          |             |           | 115.7                         | 89.0                           |
|          |             | AVERAGE   | 118.7                         | 96.9                           |
|          | STANDARD 1  | DEVIATION | 6.5                           | 6.0                            |

# TABLE G22

# BEARING RESULTS FOR

# IN905XL FORGING

| COMPANY             |     | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------------------|-----|-------------|-----------|-------------------------------|--------------------------------|
| GENERAL<br>DYNAMICS | (*) | L TRANS     | 2.0       | 108.4<br>107.9                | 89.3<br>90.4                   |
|                     |     |             | AVERAGE   | 108.2                         | 89.9                           |
|                     |     | STANDARD    | DEVIATION | 0.4                           | 0.8                            |

# (\*): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

STEP 4 - 230F FOR 24 HRS

TABLE G23 FRACTURE TOUGHNESS RESULTS FOR

| COMPANY            | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT        |
|--------------------|--------------------|---------------------|--------------------|----------------|
| MCAIR              | L-T                | 18.8<br>24.9        |                    | VALID<br>VALID |
| NORTHROP           | L-T                |                     | 37.9<br>38.3       | (1)<br>(1)     |
| MARTIN<br>MARIETTA | L-T                |                     | 27.7               | (2)            |
|                    | AVERAGE            | 21.9                | 34.6               |                |
|                    | STANDARD DEVIATION | 4.3                 | 6.0                |                |

NOTE: NORTHROP SPECIMENS TAKEN FROM END SECTION.

<sup>(1):</sup> INVALID DUE TO Pmax/Pq > 1.10
(2): INVALID DUE TO PRE-CRACK GROWTH > 0.55W

TABLE G24 FRACTURE TOUGHNESS RESULTS FOR IN905XL FORGING

| COMPANY            | ORIENTATION        | KIC (KSI in^0.5) | Kq<br>(KSI in^0.5)           | COMMENT                  |
|--------------------|--------------------|------------------|------------------------------|--------------------------|
| MCAIR              | T-L                | 23.5<br>21.0     |                              | VALID<br>VALID           |
| LTV                | T-L                |                  | 33.9<br>35.4<br>31.5<br>33.4 | (1)<br>(1)<br>(1)<br>(1) |
| NORTHROP           | T-L                |                  | 34.4<br>33.4                 | (1)<br>(1)               |
| MARTIN<br>MARIETTA | T-L                |                  | 22.8<br>21.7                 | (2)<br>(2)               |
|                    | AVERAGE            | 22.3             | 30.8                         |                          |
|                    | STANDARD DEVIATION | 1.7              | 5.4                          |                          |

(1): INVALID DUE TO Fmax/Pq > 1.10 (2): INVALID DUE TO PRE-CRACK GROWTH > 0.55W

NOTE: NORTHROP SPECIMENS TAKEN FROM END SECTION.

TABLE G25

# FRACTURE TOUGHNESS RESULTS FOR

# IN905XL FORGING

| COMPANY | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT    |
|---------|--------------------|---------------------|--------------------|------------|
| LTV     | T-S                |                     | 34.1<br>33.3       | (1)<br>(1) |
|         | AVERAGE            | }                   | 33.7               |            |
|         | STANDARD DEVIATION | ī                   | 0.6                |            |

(1): INVALID DUE TO Pmax/Pq > 1.10

TABLE G26

# FRACTURE TOUGHNESS RESULTS FOR

# IN905XL FORGING

| COMPANY            | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT        |
|--------------------|--------------------|---------------------|--------------------|----------------|
| MCAIR              | S-T                | 17.8<br>19.3        |                    | VALID<br>VALID |
| MARTIN<br>MARIETTA | S-T                | 15.6<br>16.3        | 15.0               | (1)            |
|                    | AVERAGE            | 17.2                | 15.0               |                |
|                    | STANDARD DEVIATION | 1.6                 |                    |                |

(1): INVALID DUE TO PRE-CRACK GROWTH > 0.55W

TABLE G27

# FRACTURE TOUGHNESS RESULTS FOR

| COMPANY            | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT       |
|--------------------|--------------------|---------------------|--------------------|---------------|
| MARTIN<br>MARIETTA | s-L                | 19.5                | 19.1<br>23.8       | VALID (1) (2) |
|                    | AVERAGE            | 19.5                | 21.5               |               |
|                    | STANDARD DEVIATION | •                   | 3.3                |               |

- (1): INVALID DUE TO ASSYMETRIC CRACK GROWTH (2): INVALID DUE TO PRE-CRACK GROWTH > 0.55W

# FRACTURE TOUGHNESS RESULTS FOR

# IN905XL FORGING

| COMPANY             | ORIENTAT       |      | KIC     |      | Kq           | COMMENT            |
|---------------------|----------------|------|---------|------|--------------|--------------------|
|                     |                | (KSI | in^0.5) | (KSI | in^0.5)      |                    |
| GENERAL<br>DYNAMICS | L-T            |      |         |      | 32.4<br>35.1 | (1),(2)<br>(1),(2) |
|                     |                |      |         |      |              | (-,,,,-,           |
|                     | AVE            | RAGE |         |      | 33.8         |                    |
|                     | STANDARD DEVIA | TION |         |      | 1.9          |                    |

(1): SPECIMEN THICKNESS LESS THAN REQUIRED FOR VALIDITY

(2): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

STEP 4 - 230F FOR 24 HRS

#### TABLE G29

# FRACTURE TOUGHNESS RESULTS FOR

# IN905XL FORGING

| COMPANY             | ORIENTATION        | KIC (KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT            |
|---------------------|--------------------|------------------|--------------------|--------------------|
| GENERAL<br>DYNAMICS | T-L                |                  | 29.8<br>30.7       | (1),(2)<br>(1),(2) |
|                     | AVERAGE            |                  | 30.3               |                    |
|                     | STANDARD DEVIATION |                  | 0.6                |                    |

- (1): SPECIMEN THICKNESS LESS THAN REQUIRED FOR VALIDITY (2): HEAT TREATED TO THE FOLLOWING SCHEDULE:

STEP 1 - 850F FOR 2 HRS

STEP 2 - 665F FOR 2 HRS

STEP 3 - WARM WATER QUENCH

# Novamet IN905XL Forging



ratigue Results for IN005XL Forging (R=0.1, Kt=1.0). Sikorsky. Figure G2

TABLE G30

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

| COMPANY     | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-------------|-------------|-----------------|--------------|
| SIKORSKY    | LONG        | 70.0            | 3,000 #      |
| 011/01/01/1 |             | 70.0            | 7,000 1      |
|             |             | 60.0            | 16,000 €     |
|             |             | 60.0            | 11,000       |
|             |             | 50.0            | 42,000       |
|             |             | 50.0            | 10,000,000 * |
|             |             | 45.0            | 10,000,000 * |
|             |             | 40.0            | 10,000,000 * |

<sup>(\*):</sup> INDICATES A RUNOUT TEST

<sup>(#):</sup> INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 40 KSI

<sup>(1):</sup> INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 50 KSI

<sup>(&</sup>amp;): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 45 KSI

# FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES                   |
|----------|-------------|-----------------|--------------------------|
| SIKORSKY | L TRANS     | 60.0<br>50.0    | 19,000 #<br>10,000,000 * |

<sup>(\*):</sup> INDICATES A RUNOUT TEST (#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT € 50 KSI

TABLE G32

# FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
| SIKORSKY | S TRANS     | 70.0            | 1,000 #      |
|          |             | 60.0            | 23,000       |
|          |             | 50.0            | 10.000.000 * |

<sup>(\*):</sup> INDICATES A RUNOUT TEST

<sup>(#):</sup> INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 50 KSI

# Novamet IN905XL Forging



Figure G3 Fatigue Results for IN905XL Forging (R=-1.0, Kt=1.0). Sikorsky.

# FATIGUE RESULTS WITH R=-1.0 AND Kt=1.0 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES |
|----------|-------------|-----------------|--------|
| SIKORSKY | LONG        | 35.0            | 61,200 |

TABLE G34

FATIGUE RESULTS WITH R=-1.0 AND Kt=1.0 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
| SIKORSKY | L TRANS     | 60.0            | 1,000 #      |
|          |             | 50.0            | 2,000 !      |
|          |             | 45.0            | 12,500       |
|          |             | 45.0            | 12,000 &     |
|          |             | 40.0            | 32,500       |
|          |             | 35.0            | 10,000,000 * |
|          |             | 30.0            | 10,000,000 * |
|          |             | 20.0            | 10,000,000 * |

<sup>(\*):</sup> INDICATES A RUNOUT TEST

<sup>(#):</sup> INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 30 KSI

<sup>(!):</sup> INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 20 KSI

<sup>(&</sup>amp;): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 35 KSI

# Novamet IN905XL Forging



Fatigue Results for IN905XL Forging (R=0.1, Kt=3.0). Sikorsky. Figure C4

TABLE G35 FATIGUE RESULTS WITH R=0.1 AND Kt=3.07 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
|          |             |                 |              |
| SIKORSKY | LONG        | 40.0            | 2,400 #      |
|          |             | 30.0            | 17,000 #     |
|          |             | 20.0            | 57,000       |
|          |             | 15.0            | 96,000       |
|          |             | 10.0            | 10,000,000 * |
|          |             | 10.0            | 10,000,000 * |

(\*): INDICATES A RUNOUT TEST
(#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 10 KSI

TABLE G36

# FATIGUE RESULTS WITH R=0.1 AND Kt=3.07 FOR

# IN905XL FORGING

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
| SIKORSKY | L TRANS     | 30.0            | 10,000 #     |
|          |             | 15.0            | 187,400      |
|          |             | 10.0            | 10,000,000 * |

(\*): INDICATES A RUNOUT TEST

(#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 10 KSI

TABLE G37

# FATIGUE RESULTS WITH R=0.1 AND Kt=3.07 FOR

# IN905XL FORGING

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
|          |             | 20.0            | 16 000 4     |
| SIKORSKY | S TRANS     | 30.0            | 16,000 #     |
|          |             | 20.0            | 213,400      |
|          |             | 15.0            | 10,000,000 * |

(\*): INDICATES A RUNOUT TEST
(#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 15 KSI

# Novamet IN905XL Forging



Fatigue Results for IN905XL Forging (R=-1.0, Kt=3.0). Sikorsky. Figure G5

TABLE G38

# FATIGUE RESULTS WITH R=-1.0 AND Kt=3.07 FOR

# IN905XL FORGING

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES           |
|----------|-------------|-----------------|------------------|
| SIKORSKY | LONG        | 20.0            | 14,000<br>67,000 |

(\*): INDICATES A RUNOUT TEST
(#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 15 KSI

TABLE G39 FATIGUE RESULTS WITH R=-1.0 AND Kt=3.07 FOR

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
| SIKORSKY | L TRANS     | 30.0            | 4,000 #      |
|          |             | 15.0            | 50,000       |
|          |             | 12.5            | 112,400      |
|          |             | 10.0            | 10,000,000 * |

(\*): INDICATES A RUNOUT TEST
(#): INDICATES THAT SPECIMEN WAS PREVIOUSLY TESTED TO RUNOUT @ 10 KSI



Figure G6 Fatigue Crack Growth Rate Data for IN905XL Forging (L-T Orientation, KGRAD -2.00 and 2.00). Northrop.



Figure G7 Fatigue Crack Growth Rate Data for IN905XL Forging (L-T Orientation, KGARAD -4.00 and 4.00). Northrop.



Figure C8 Fatigue Crack Growth Rate Data for IN905YL Forging (T-I. Orientation, KGRAD -2.00 and 2.00). Northrop.



Figure G9 Fatigue Crack Growth Rate Data for IN905XL Forging (T-L Orientation, KGRAD -4.00 and 4.00). Northrop.



Figure G10 Fatigue Crack Crowth Rate Data for INOOSYL Forging (S-L Orientation, KGRAD -2.00 and 2.00). Northrop.



Figure C11 Fatigue Crack Growth Rate Data for IN905XL Forging (S-L Orientation, KGRAD -2.00, 2.00 and 2.00). Northrop.



Figure G12 Fatigue Crack Growth Rate Data for Solutiontreated and aged IN905XL Forging (L-T and T-L Orientation, R=0.1, Lab Air and a third order regression fit to each data set).

General Dynamics TX.

#### MCDONNELL AIRCRAFT COMPANY



Figure G13 Fatigue Crack Growth Rate Data for IN905XL Forging (WOL Specimen, L-T Orientation, R=0.02, Lab Air).

McDonnell Aircraft Mo.

#### MCDONNELL AIRCRAFT COMPANY

WOL 3 & 4 (LT-L)



Figure G14 Fatigue Crack Crowth Rate Data for IN905XL Forging (WOL Specimen, T-L Orientation, R=0.02 and Lab Air).

McDonnell Aircraft Mo.



Figure Gl5 Mini-TWIST Spectrum Fatigue Crack Growth Rata Data.
Air Force. 247

#### APPENDIX H

#### **AL905XL PRECISION FORGING**

#### INTRODUCTION

The IN905XL and AL905XL are the same alloy but they were produced in different years and production plants. In 1989, Inco Alloys International constructed a production facility to make the AL905XL and other mechanically alloyed aluminum alloys. Production practices through all stages of alloy manufacture were changed to yield greatly improved reproducibility.

The AL905XL forgings were received the second quarter of 1989. All the participants tested the material in the as received condition. Figure H1 shows the geometry of the AL905XL back-up fitting precision forging.

#### **TESTING**

Basic mechanical properties (tension, compression, bearing, etc.) were tested according to ASTM standards, unless otherwise specified.

Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. The growth rate a-N data that were generated by the participants (Northrop, McDonnell Aircraft Company and the Air Force) were reduced using a seven-point incremental polynomial method. This involves fitting a second-order polynomial (parabola) to sets of seven successive data points. The data are also checked against size requirements per ASTM E647, Section 7.2. Northrop also performed two constant amplitude fatigue crack growth tests using a K-decreasing method.

Spectrum fatigue crack growth tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

Stress Corrosion tests were performed by Wyman Gordon and the results are shown in tabular form.



249

TABLE H1

TENSILE RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      |            | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI)  |
|--------------|------------|----------|-------------------------------|-------------------|--------------|-----------|-------------|
| AIR FORCE    | RT         | LONG     | 79.0                          | 70.9              |              | 24.0      |             |
|              |            |          | 77.3                          | 67.8              |              | 16.7      |             |
|              |            |          | 76.9                          | 71.7              | 9.9          | 22.6      |             |
| LTV          | RT         | LONG     | 74.7                          | 66.7              | 12.0         |           | 13.4        |
|              |            |          | 74.5                          | 67.5              | 7.7          |           | 13.2        |
|              |            |          | 75.0                          | 67.7              | 11.6         |           | 13.1        |
| MCAIR        | RT         | LONG     | 75.0                          | 66.0              | 11.0         | 22.1      | 11.3        |
|              |            |          | 75.5                          | 66.5              | 11.0         | 20.0      | 11.9        |
|              |            |          |                               | 65.5              |              |           |             |
| WYMAN-GORDON | RT         | LONG     | 75.2                          | 67.8              | 9.0          |           |             |
|              |            |          | 73.6                          |                   | 12.0         |           |             |
|              |            |          | 73.2                          |                   | 11.0         |           |             |
| NASA-LANGLEY | RT         | LONG     | 76.7                          | 67.7              | 9.0          |           | 11.3        |
|              |            |          |                               | 67.9              | 9.0          |           | 11.3        |
|              |            |          | 77.1                          |                   | 8.8          |           | 11.3        |
| MCDONNELL    | RT         | LONG     | 73.5                          | 65.7              | 13.0         |           |             |
| DOUGLAS      |            |          | 72.5                          | 64.1              | 13.0         |           |             |
| HELICOPTER   |            |          | 73.3                          |                   | 12.0         |           |             |
| MARTIN       | RT         | LONG     | 75.3                          | 64.3              | 12.0         | 18.3      | 11.6        |
| MARIETTA     |            |          | 75.3                          | 65.0              | 12.0         | 23.2      | 12.0        |
|              |            |          | 72.9                          |                   | 12.0         |           |             |
| NORTHROP     | RT         | LONG     | 76.1                          |                   | 10.2         | 27.8      | 12.1        |
|              |            |          | 76.0                          |                   | 7.8          | 18.9      |             |
|              |            |          | 76.1                          |                   | 8.6          |           |             |
|              |            | AVERAGE  | 75.2                          | 66.4              | 10.6         | 21.1      | 11.9        |
|              | CMANDADD N |          |                               |                   |              |           |             |
|              | STANDARD D | PATWITON | 1.6                           | 2.5               | 1.0          | 3.3       | <b>U.</b> 8 |

TABLE H2

TENSILE RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | TEST<br>TEMP<br>(DEGREES | P)        | STRENGTH | STRENGTH<br>(KSI) | • •        | (*)  |      |
|--------------|--------------------------|-----------|----------|-------------------|------------|------|------|
| AIR FORCE    | RT                       | L TRANS   |          | 60.4              | 8.7        | 20.8 |      |
|              |                          |           | 72.5     | 62.4              | 8.7<br>8.3 | 16.6 |      |
|              |                          |           | 71.1     | 58.1              | 8.3        | 16.7 |      |
| LTV          | RT                       | L TRANS   | 71.8     | 61.2              | 8.0        |      | 13.1 |
|              |                          |           | 72.2     | 61.3              | 8.8        |      | 12.8 |
|              |                          |           | 71.4     |                   | 8.4        |      | 12.9 |
| MCAIR        | RT                       | L TRANS   | 72.5     | 60.0              | 9.0        | 13.6 | 11.2 |
|              |                          |           | 72.5     | 60.0              | 9.0        | 16.5 | 11.2 |
|              |                          |           | 73.0     | 60.0              | 7.0        | 13.8 | 10.5 |
| WYMAN-GORDON | i RT                     | L TRANS   | 72.0     | 60.8              | 8.0        |      |      |
|              |                          |           | 72.2     |                   |            |      |      |
|              |                          |           | 72.3     |                   | 8.0        |      |      |
| NASA-LANGLEY | . RT                     | L TRANS   | 73.5     | 60.5              | 7.5        |      | 11.2 |
|              |                          |           | 73.5     |                   | 7.1        |      | 11.2 |
|              |                          |           | 73.1     | 59.2              | 8.8        |      | 11.2 |
| MCDONNELL    | RT                       | L TRANS   | 68.0     | 57.0              | 7.0        |      |      |
| DOUGLAS      |                          |           | 67.3     | 53.7              | 7.0        |      |      |
| HELICOPTER   |                          |           | 71.3     | 62.6              | 12.0       |      |      |
| MARTIN       | RT                       | L TRANS   | 72.4     | 58.7              | 11.0       | 17.6 |      |
| MARIETTA     |                          |           |          | 60.2              |            |      |      |
|              |                          |           |          | 56.8              |            |      |      |
| NORTHROP     | RT                       | L TRANS   | 72.9     | 58.5              | 8.6        | 18.3 | 11.5 |
|              |                          |           | 73.9     | 60.4              | 6.2        | 14.4 | 11.2 |
|              |                          |           | 74.4     | 61.3              | 9.4        | 14.4 |      |
|              |                          | AVERAGE   | 72.1     | 59.6              | 8.6        | 16.1 | 11.6 |
|              | STANDARD                 | DEVIATION | 1.6      | 2.0               | 1.5        | 2.2  | 0.8  |

TABLE H3

TENSILE RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | STRENGTH<br>(KSI) | (*)  | (*)  | (MSI) |
|--------------|---------------------|----------|-------------------------------|-------------------|------|------|-------|
| AIR FORCE    |                     |          |                               |                   |      |      |       |
|              |                     |          | 72.5                          | 59.4              | 5.3  | 13.8 |       |
|              |                     |          | 72.4                          | 59.5              | 3.9  | 7.8  |       |
| LTV          | RT                  | S TRANS  | 69.1                          | 56.4              | 3.1  |      | 13.3  |
|              |                     |          | 71.2                          | 58.4              | 5.3  |      | 13.9  |
|              |                     |          | 69.4                          | 56.0              | 3.1  |      | 14.3  |
| MCAIR        | RT                  | S TRANS  | 70.5                          | 61.5              | 5.0  | 7.9  | 13.4  |
|              |                     |          | 71.5                          | 58.5              | 7.0  | 12.4 | 10.8  |
|              |                     |          | 71.5                          | 59.0              | 8.0  | 14.8 | 10.9  |
| WYMAN-GORDON | RT                  | S TRANS  | 69.6                          | 54.4              | 6.0  |      |       |
|              |                     |          | 70.0                          |                   | 8.0  |      |       |
|              |                     |          | 70.6                          | 56.1              | 7.0  |      |       |
| NASA-LANGLEY | RT                  | S TRANS  | 70.4                          | 56.3              | 4.9  |      | 11.2  |
|              |                     |          | 70.6                          | 55.7              | 4.8  |      | 11.2  |
|              |                     |          | 70.8                          | 55.3              | 4.8  |      | 11.1  |
| MCDONNELL    | RT                  | S TRANS  | 67.7                          | 54.5              | 11.0 |      |       |
| DOUGLAS      |                     |          | 68.0                          | 54.0              | 10.0 |      |       |
| HELICOPTER   |                     |          | 68.7                          | 55.6              | 10.0 |      |       |
| MARTIN       | RT                  | S TRANS  |                               | 57.1              | 4.0  | 7.0  | 11.7  |
| MARIETTA     |                     |          | 70.2                          | 54.7              | 5.0  | 5.5  | 11.5  |
|              |                     |          | 68.4                          | 54.9              | 5.0  | 4.0  | 11.5  |
| NORTHROP     | RT                  | S TRANS  | 72.4                          | 59.4              | 7.8  | 17.8 | 11.2  |
|              |                     |          | 71.1                          | 57.6              |      |      | 11.5  |
|              |                     |          | 71.5                          | 57.9              | 7.8  | 16.5 | 11.3  |
|              |                     | AVERAGE  | 70.4                          | 57.0              | 6.3  | 10.8 | 11.9  |
|              | STANDARD D          | EVIATION | 1.5                           | 2.0               | 2.2  | 4.5  | 1.2   |

TABLE H4

COMPRESSION RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION     | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|--------------|------------------------------------|-----------------|----------------------------------------|---------------------------------|
| LTV          | rt                                 | LONG            | 72.5                                   | 11.8                            |
|              |                                    |                 | 73.9                                   | 11.7                            |
|              |                                    |                 | 73.3                                   | 12.2                            |
| MCAIR        | RT                                 | LONG            | 64.0                                   | 9.9                             |
|              |                                    |                 | 66.0                                   | 10.3                            |
|              |                                    |                 | 56.5                                   | 9.4                             |
| WYMAN-GORDON | RT                                 | LONG            | 64.4                                   |                                 |
|              |                                    |                 | 70.0                                   |                                 |
|              |                                    |                 | 70.6                                   |                                 |
| NASA-LANGLEY | RT                                 | LONG            | 70.5                                   | 11.5                            |
|              |                                    |                 | 70.3                                   | 11.5                            |
| MARTIN       | RT                                 | LONG            | 70.4                                   |                                 |
| Marietta     |                                    |                 | 72.0                                   |                                 |
|              |                                    |                 | 70.4                                   |                                 |
| NORTHROP     | RT                                 | LONG            | 70.9                                   | 11.8                            |
|              |                                    |                 | 70.4                                   | 11.7                            |
|              |                                    |                 | 67.1                                   | 11.8                            |
|              |                                    | AVERAGE         | 69.0                                   | 11.2                            |
|              | STA                                | NDARD DEVIATION | N 4.3                                  | 0.9                             |

TABLE H5

COMPRESSION RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | TEST C<br>TEMPERATURE<br>(DEGREES F) | PRIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|--------------|--------------------------------------|---------------|----------------------------------------|---------------------------------|
| NASA-LANGLEY | RT                                   | L TRANS       | 56.4<br>55.3<br>55.9                   | 11.5<br>11.4<br>11.5            |
|              |                                      | AVERAGE       | 55.9                                   | 11.5                            |
|              | STANDA                               | ARD DEVIATION | 0.6                                    | 0.1                             |

TABLE H6

COMPRESSION RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|--------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| LTV          | RT                                 | S TRANS        | 58.5                                   | 11.8                            |
|              |                                    |                | 58.8                                   | 11.6                            |
|              |                                    |                | 60.5                                   | 12.2                            |
| MCAIR        | RT                                 | S TRANS        | 54.0                                   | 10.4                            |
|              |                                    |                | 53.5                                   | 9.6                             |
|              |                                    |                | 64.0                                   | 10.4                            |
| WYMAN-GORDON | RT                                 | S TRANS        | 60.6                                   |                                 |
|              |                                    |                | 63.1                                   |                                 |
|              |                                    |                | 61.5                                   |                                 |
| MARTIN       | RT                                 | S TRANS        | 57.1                                   |                                 |
| MARIETTA     |                                    |                | 58.2                                   |                                 |
|              |                                    |                | 57.1                                   |                                 |
| NORTHROP     | RT                                 | S TRANS        | 56.9                                   | 11.7                            |
|              |                                    |                | 57.8                                   | 11.8                            |
|              |                                    |                | 58.1                                   | 11.8                            |
|              |                                    |                |                                        |                                 |
|              |                                    | AVERAGE        | 58.6                                   | 11.3                            |
|              | STAN                               | DARD DEVIATION | 2.9                                    | 0.9                             |

#### TABLE H7

# AMSLER DOUBLE SHEAR RESULTS FOR

# INCOMAP AL905XL DIE FORGING

| COMPANY                         | ORIENTATION | SH <b>ear</b><br>Str <b>ength</b><br>(KSI) |
|---------------------------------|-------------|--------------------------------------------|
| LTV                             | L - S       | 32.8<br>33.1<br>36.5                       |
| nasa-langley                    | L - s       | 42.3<br>41.1<br>41.6                       |
| MCDONNELL DOUGLAS<br>HELICOPTER | L - s       | 41.4<br>41.5<br>41.7                       |
| NORTHROP                        | L - S       | 39.1<br>41.2<br>41.9                       |
|                                 | AVERAGE     | 39.5                                       |

#### TABLE H8

# PIN SHEAR RESULTS FOR

# INCOMAP AL905XL DIE FORGING

| COMPANY      | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|--------------|--------------------|----------------------------|
| MCAIR        | L - S              | 42.2<br>40.6<br>42.0       |
| WYMAN-GORDON | L - S              | 40.4<br>50.0<br>40.2       |
|              | AVERAGE            | 42.6                       |
|              | STANDARD DEVIATION | 3.7                        |

TABLE H9

BEARING RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------|-------------|-----------|-------------------------------|--------------------------------|
| LTV          | LONG        | 1.5       | 100.7<br>96.0                 | 88.7<br>91.4                   |
| MCAIR        | LONG        | 1.5       | 101.4<br>100.2                |                                |
| wyman-gordon | LONG        | 1.5       | 103.1<br>99.2                 |                                |
| NORTHROP     | LONG        | 1.5       | 101.6<br>98.5                 | 91.3<br>89.1                   |
|              |             | AVERAGE   | 100.1                         | 90.1                           |
|              | STANDARD    | DEVIATION | 2.2                           | 1.4                            |

TABLE H10

BEARING RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY      | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------|-------------|-----------|-------------------------------|--------------------------------|
| LTV          | LONG        | 2.0       | 125.2<br>122.3                | 101.2<br>100.5                 |
| MCAIR        | LONG        | 2.0       | 129.8<br>133.2                | 127.8<br>129.4                 |
| WYMAN-GORDON | LONG        | 2.0       | 127.6<br>122.5                |                                |
| NORTHROP     | LONG        | 2.0       | 134.9<br>133.1                | 107.1<br>106.6                 |
|              |             | AVERAGE   | 128.6                         | 112.1                          |
|              | STANDARD    | DEVIATION | 5.0                           | 13.1                           |

TABLE H11 FRACTURE TOUGHNESS RESULTS FOR INCOMAP AL905XL DIE FORGING

| COMPANY                            | ORIENTATION     | KIC (KSI in^0.5) | Kq (KSI in^0.5) | COMMENT               |
|------------------------------------|-----------------|------------------|-----------------|-----------------------|
| AIR FORCE                          | L-T             | 27.1<br>23.6     |                 | VALID<br>VALID        |
| LTV                                | L-T             | 28.9<br>27.7     |                 | VALID<br>VALID        |
| MCAIR                              | L-T             | 29.9             | 27.1            | INVALID(1)<br>VALID   |
| WYMAN-GORDON                       | L-T             | 29.5<br>28.9     |                 | VALID<br>VALID        |
| MCDONNELL<br>DOUGLAS<br>HELICOPTER | L-T             |                  | 31.1<br>29.9    | INVALID(2) INVALID(2) |
| MARTIN<br>MARIETTA                 | L-T             | 31.2<br>30.8     |                 | VALID<br>VALID        |
| NORTHROP                           | L-T             | 29.1             | 29.9            | VALID<br>INVALID(2)   |
|                                    | AVERAGE         | 28.7             | 29.5            |                       |
| STAN                               | NDARD DEVIATION | 2.2              | 1.7             |                       |

<sup>(1):</sup> DIFF. BETWEEN SURFACE CRACK LENGTHS > 10% OF AVERAGE CRACK LENGTH (2): Pmax/Pq EXCEEDED 1.10

TABLE H12

FRACTURE TOUGHNESS RESULTS FOR

INCOMAP AL905XL DIE FORGING

| COMPANY                            | ORIENTATION     | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT                          |
|------------------------------------|-----------------|---------------------|--------------------|----------------------------------|
| AIR FORCE                          | T-L             | 22.3<br>21.3        |                    | VALID<br>VALID                   |
| LTV                                | T-L             | 19.0<br>19.1        |                    | VALID<br>VALID                   |
| MCAIR                              | T-L             | 25.7<br>24.0        |                    | VALID<br>VALID                   |
| wyman-gordon                       | T-L             | 22.2<br>20.4        |                    | VALID<br>VALID                   |
| MCDONNELL<br>DOUGLAS<br>HELICOPTER | T-L             |                     | 28.2<br>29.0       | <pre>INVALID(1) INVALID(1)</pre> |
| MARTIN<br>MARIETTA                 | T-L             | 23.1                |                    | VALID                            |
| NORTHROP                           | T-L             | 24.1<br>25.4        |                    | VALID<br>VALID                   |
|                                    | AVERAGE         | 22.4                | 28.6               |                                  |
| STA                                | NDARD DEVIATION | 2.3                 | 0.6                |                                  |

(1): Pmax/Pq EXCEEDED 1.10

TABLE H13 FRACTURE TOUGHNESS RESULTS FOR INCOMAP AL905XL DIE FORGING

| COMPANY            | ORIENTATION     | KIC (KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT             |
|--------------------|-----------------|------------------|--------------------|---------------------|
| AIR FORCE          | S-L             | 21.2             | ~~~~~              | VALID               |
| LTV                | S-L             | 20.5<br>20.6     |                    | VALID<br>VALID      |
| MCAIR              | S-L             |                  | 24.9               | INVALID(1)          |
| wyman-gordon       | S-L             | 21.8<br>20.9     |                    | VALID<br>VALID      |
| MARTIN<br>MARIETTA | S-L             | 22.9             | 23.6               | VALID<br>INVALID(2) |
|                    | AVERAGE         | 21.3             | 24.3               |                     |
| STA                | NDARD DEVIATION | 0.9              | 0.9                |                     |

<sup>(1):</sup> DIFF. BETWEEN SURFACE CRACK LENGTHS > 10% OF AVERAGE CRACK LENGTH (2): PRECRACK LENGTH TOO LONG, a/W=0.6

TABLE H14 FRACTURE TOUGHNESS RESULTS FOR INCOMAP AL905XL DIE FORGING

| COMPANY                            | ORIENTATION     | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT               |
|------------------------------------|-----------------|---------------------|--------------------|-----------------------|
| AIR FORCE                          | S-T             | 26.1<br>22.3        |                    | VALID<br>VALID        |
| LTV                                | S-T             | 22.3                | 21.1               | INVALID(1)            |
|                                    |                 | 24.6                |                    | VALID                 |
| MCAIR                              | S-T             |                     | 27.2<br>25.2       | INVALID(2) INVALID(2) |
| WYMAN-GORDON                       | S-T             | 22.6                | 2312               | VALID                 |
| WIRAN-GORDON                       | <b>3</b> -1     | 22.9                |                    | VALID                 |
| MCDONNELL<br>DOUGLAS<br>HELICOPTER | S-T             | 26.2                | 29.5               | INVALID(3)<br>VALID   |
| MARTIN<br>MARIETTA                 | S-T             | 24.2<br>24.2        |                    | VALID<br>VALID        |
| NORTHROP                           | S-T             | 26.2<br>24.1        |                    | VALID<br>VALID        |
|                                    | AVERAGE         | 24.3                | 25.8               |                       |
| STA                                | NDARD DEVIATION | 1.5                 | 3.6                |                       |

<sup>(1):</sup> CRACK SYMMETRY OUTSIDE LIMITS
(2): DIFF. BETWEEN SURFACE CRACK LENGTHS > 10% OF AVERAGE CRACK LENGTH
(3): W,B > 2.5(Kq/YS)\*\*2

# INCOMAP AL905XL Forging



Fatigue Results for AL905XL Forging (Longitudinal Orientation, R=0.1, Kt=1.0). McDonnell Douglas Helicopter.

Figure H2

TABLE H15

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

# INCOMAP AL905XL DIE FORGING

| COMPANY    | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|------------|-------------|-----------------|--------------|
| MCDONNELL  | LONG        | 50.0            | 12 200       |
|            | LONG        | 45.0            | 12,300       |
| DOUGLAS    |             |                 | 29,200       |
| HELICOPTER |             | 42.5            | 133,200      |
|            |             | 41.0            | 467,400      |
|            |             | 40.0            | 146,500      |
|            |             | 39.0            | 1,346,200    |
|            |             | 38.0            | 10,685,100 * |
|            |             | 35.0            | 14.455.400 * |



Figure H3 Fatigue Crack Growth Rate Data for AL905XL Forging (L-T Orientation). Northrop, MCAIR, and Air Force.



264



Figure H5 Fatigue Crack Growth Rate Data for AL905XL Forging (T-L Orientation). Northrop 10Hz, MCAIR Var Hz and Air Force 30 Hz.

da/dn (in/cycle) **70 70** DELTA K (ksi\*in1/2) **ZOF4** 

Fatigue Crack Growth Rate Data for AJ.905XL Forging (K-decreasing method, T-L Orientation, R=0.1 Lab Air, Room Temperature). Northrop.



Figure H7 Fatigue Crack Growth Rate Data for AL905XL Forging (S-T Orientation). Nortrhop 10 Hz, MCAIR Var Hz and Air Force #ST16 25Hz, #ST17 30Hz.



Figure H8 FALSTAFF Spectrum Fatigue Crack Growth Rate Data for AL905XL Forging (L-S Orientation, Maximum Stress = 20 KSI, Lab Air and Room Temperature). Air Force.



Figure H9 Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for AL905XL Forging (L-S Orientation, Maximum Stress = 16.9 KSI, Lab Air and Room Temperature). Air Force.

TABLE H16

# STRESS CORROSION PROPERTIES FOR AL905XL FORGING WYMAN GORDON

**ASTM G47** 

Specimen Size: .125" dia. x 1.80" long

Tested at Dirats Laboratories

| S/N   | Orientation | Location | Applied Load (ksi) | No. of Days<br>to Failure |
|-------|-------------|----------|--------------------|---------------------------|
| 31    | S           | rail     | 30                 | Passed                    |
| 32    | S           | rail     | 30                 | Passed                    |
| 33    | S           | rib      | 30                 | Passed                    |
| 34    | S           | rail     | 40                 | Passed                    |
| 35    | S           | rail     | 40                 | Passed                    |
| 36    | S           | rib      | 40                 | Passed                    |
| 39*** | S           | rail     | 50                 | Passed                    |
| 40    | S           | rail     | 55                 | Passed                    |

<sup>\*\*</sup> Minimum 30 days by alternate immersion in 3.5% NaCl.

<sup>\*\*\*</sup> Specimens actually ran 50 days and then was terminated.

#### APPENDIX I

# WELDALITE 049<sup>th</sup> RX815 PLATE (2095-T8) (0.5" X 24" X 48")

#### INTRODUCTION

The Reynold's 2095-T8 0.5-inch plates were received the first quarter of 1991. The 2095 was received in the T8 condition.

#### **TESTING**

Basic mechanical properties (tension, compression, bearing, etc) were tested according to ASTM standards, unless otherwise specified. General Dynamics generated hardness and conductivity data. Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. Northrop Corporation performed constant amplitude fatigue crack growth test using K controlled methods. A T-38 LIF (lead-in-fighter) spectrum test was performed by Northrop Corporation. The spectrum specimen was not precracked but contained a countersunk hole to simulate a crack initiating from a fastener hole. The Army evaluated the ballistic performance of the material. The Army and Northrop Corporation have corrosion tests in progress.

TABLE I1

TENSILE RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY               | Test<br>Temp<br>Degrees F               | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------------------|-----------------------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| MCDONNELL             | RT                                      | LONG      | 89.7                          | 85.7                       | 12.0         |           |            |
| DOUGLAS, MO           |                                         |           | 88.4                          | 84.3                       | 12.0         |           | 10.8       |
| •                     |                                         |           | 86.8                          | 81.1                       | 12.0         | 26.4      | 11.4       |
| SUNDSTRAND            | RT                                      | LONG      | 89.4                          | 83.4                       | 13.1         | 19.2      |            |
|                       |                                         |           | 89.4                          | 81.2                       | 12.8         | 20.1      |            |
|                       |                                         |           | 89.9                          | 83.7                       | 13.0         | 19.3      |            |
| army -mtl             | RT                                      | LONG      | 88.6                          | 81.9                       | 12.9         |           | 10.8       |
| Mart Live             | •••                                     |           | 88.2                          | 81.3                       | 11.7         |           | 10.9       |
|                       |                                         |           | 87.7                          | 80.4                       | 12.9         |           | 10.4       |
| GENERAL               | RT                                      | LONG      | 88.1                          | 82.5                       | 10.7         | 17.1      | 11.0       |
| DYNAMICS              | •••                                     |           | 89.2                          | 84.9                       | 11.0         | 21.3      | 11.0       |
| <i>3</i> 3.112.300    |                                         |           | 89.1                          | 84.6                       | 10.0         | 17.6      | 11.2       |
| nasa-langl <b>e</b> y | RT                                      | LONG      | 88.0                          | 81.2                       | 12.3         |           | 11.2       |
| MUDY_THIRDDY          | • • • • • • • • • • • • • • • • • • • • |           | 84.9                          | 75.6                       | 9.6          |           | 11.3       |
|                       |                                         |           | 85.0                          | 77.2                       | 9.6          |           | 11.3       |
| NORTHROP              | RT                                      | LONG      | 89.7                          | 83.6                       | 13.9         |           | 11.5       |
| .,                    |                                         |           | 88.1                          | 80.6                       | 13.0         |           | 11.1       |
|                       |                                         |           | 89.0                          | 81.8                       | 13.6         |           | 11.0       |
| AIR FORCE(*)          | RT                                      | LONG      | 89.4                          | 83.1                       | 7.4          | 27.0      |            |
| MCDONNELL             | RT                                      | LONG      | 84.0                          | 77.9                       | 12.0         |           |            |
| DOUGLAS, CA           |                                         |           | 82.5                          | 76.0                       | 13.0         |           |            |
|                       |                                         |           | 82.7                          | 77.1                       | 10.0         |           |            |
|                       |                                         | AVERAGE   | 87.6                          | 81.3                       | 11.7         | 21.1      | 11.1       |
|                       | STANDARD                                | DEVIATION | 2.3                           | 2.9                        | 1.6          | 3.5       | 0.3        |

<sup>(\*):</sup> TEST SECTION DIAMETER = 0.16"

TABLE I2

TENSILE RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY                  | Test<br>Temp<br>(Degrees F | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%)    | E<br>(MSI) |
|--------------------------|----------------------------|-----------|-------------------------------|----------------------------|--------------|--------------|------------|
| MCDONNELL<br>DOUGLAS, NO | RT                         | L TRANS   | 87.0<br>87.0                  | 80.8<br>81.1               |              | 23.8<br>26.8 |            |
|                          |                            |           | 86.8                          | 80.8                       |              |              |            |
| SUNDSTRAND               | RT                         | L TRANS   | 86.3                          | 79.0                       |              |              |            |
|                          |                            |           | 85.8<br>86.2                  | 78.3<br>79.2               | 12.7<br>13.4 |              |            |
|                          |                            |           | 80.2                          | 79.2                       | 13.4         | 27.3         |            |
| ARMY-MTL                 | RT                         | L TRANS   | 84.7                          | 75.4                       |              |              | 10.8       |
|                          |                            |           | 85.6                          |                            | 13.6         |              | 10.2       |
|                          |                            |           | 84.9                          | 75.7                       | 15.0         |              | 10.7       |
| GENERAL                  | RT                         | L TRANS   | 84.0                          | 75.6                       | 11.4         | 21.9         | 11.0       |
| DYNAMICS                 |                            |           | 86.1                          | 79.1                       | 11.0         | 22.1         | 10.7       |
|                          |                            |           | 83.8                          | 75.4                       | 11.0         | 29.7         | 10.8       |
| NASA-LANGLEY             | RT                         | L TRANS   | 84.8                          | 76.4                       |              | 13.1         | 11.3       |
|                          |                            |           | 87.2                          | 80.1                       |              | 9.1          | 11.1       |
|                          |                            |           | 87.3                          | 80.3                       |              | 14.5         | 11.2       |
| NORTHROP                 | RT                         | L TRANS   | 85.7                          | 75.9                       | 14.7         |              | 11.6       |
|                          |                            |           | 87.0                          | 78.5                       | 14.6         |              | 11.6       |
|                          |                            |           | 85.2                          | 75.3                       | 15.5         |              | 11.1       |
| AIR FORCE(*)             | RT                         | L TRANS   | 88.9                          | 82.4                       | 8.8          | 31.0         |            |
| MCDONNELL                | RT                         | L TRANS   | 81.2                          | 71.7                       |              |              |            |
| DOUGLAS, CA              |                            |           | 80.5                          | 71.0                       | 14.5         |              |            |
|                          |                            |           | 81.8                          | 73.0                       | 14.0         |              |            |
|                          |                            | AVERAGE   | <b>`85.4</b>                  | 77.4                       | 12.8         | 23.0         | 11.0       |
|                          | STANDARD                   | DEVIATION | 2.1                           | 3.1                        | 1.9          | 6.8          | 0.4        |

(\*): TEST SECTION DIAMETER = 0.16"

TABLE I3

TENSILE RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | PLONG<br>(%) | RA<br>(%)    | E<br>(MSI)   |
|--------------|----------------------------|------------------|-------------------------------|----------------------------|--------------|--------------|--------------|
| MCDONNELL    | RT                         | 45               | 77.0                          | 70.6                       | 14.0         | 36.6         | 11.4         |
| DOUGLAS      |                            |                  | 77.2<br>76.3                  | 70.1<br>69.2               | 16.0<br>17.0 | 39.1<br>39.3 | 10.9<br>10.8 |
| AIR FORCE(*) | RT                         | 45               | 75.5                          | 69.0                       | 8.9          | 41.7         | 9.9          |
|              |                            | average          | 76.5                          | 69.7                       | 14.0         | 39.2         | 10.8         |
|              | STANDARD                   | DEVIATION        | 0.8                           | 0.8                        | 3.6          | 2.1          | 0.6          |

(\*): TEST SECTION DIAMETER = 0.16"

TABLE 14

TENSILE RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | orient-<br>ation | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| AIR FORCE | -321(*)                     | LONG             | 108.0                         | 97.5                       |              | 22.0      | 12.0       |
|           |                             | L TRANS          | 104.0                         | 93.8                       | 9.6          | 26.0      | 11.7       |
|           | -150                        | 45               | 95.4                          | 89.9                       | 12.6         | 25.0      | 11.0       |
|           | -100(*)                     | LONG             | 92.3                          | 86.2                       | 8.8          | 27.0      | 11.0       |
|           | 200( /                      | 45               | 78.7                          | 71.5                       | 11.4         | 21.6      | 11.5       |
|           |                             | L TRANS          | 91.9                          | 85.0                       | 8.0          | 26.0      |            |
|           | -40                         | 45               | 90.2                          | 83.1                       | 12.3         | 25.3      | 10.1       |
|           | 0                           | 45               | 89.2                          | 82.2                       | 11.1         | 22.6      | 10.0       |
|           | 150                         | 45               | 87.5                          | 82.9                       | 11.4         | 29.2      | 11.4       |
|           | 300                         |                  | 88.7                          | 84.8                       | 11.9         | 27.7      | 11.4       |
|           | 200                         | 45               | 78.9                          | 78.1                       | 16.4         | 47.3      | 10.7       |
|           |                             |                  | 79.7                          | 78.6                       | 17.2         | 47.8      | 11.5       |

(\*): TEST SECTION DIAMETER = 0.16"

TABLE IS

# TENSILE RESULTS AT t/2 LOCATION FOR REYMOLDS 2095-T8 PLATE (0.5" X 24" X 48") (1000 HR EXPOSURE @ 350F)

| COMPANY   | Test<br>Temp<br>(Degrees F | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%)    | E<br>(MSI) |
|-----------|----------------------------|-----------|-------------------------------|----------------------------|--------------|--------------|------------|
| AIR FORCE | RT                         | 45        | 70.4<br>70.1                  | 58.3<br>58.0               | 8.1<br>8.2   | 22.9<br>23.8 | 11.2       |
|           |                            | Average   | 70.3                          | 58.1                       | 8.2          | 23.3         | 11.2       |
|           | STANDARD                   | DEVIATION | 0.2                           | 0.2                        | 0.1          | 0.6          | 0.1        |

TABLE 16

COMPRESSION RESULTS AT t/2 LOCATION FOR REYHOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | TEST TEMPERATURE (DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|--------------|------------------------------|--------------|----------------------------------------|---------------------------------|
| MCDONNELL    | RT                           | LONG         | 73.8                                   | 11.1                            |
| DOUGLAS, NO  |                              |              | 75.3                                   | 10.9                            |
|              |                              |              | 76.1                                   | 11.1                            |
| SUNDSTRAND   | RT                           | LONG         | 73.1                                   | 12.0                            |
|              |                              |              | 73.3                                   | 11.8                            |
|              |                              |              | 73.8                                   | 11.7                            |
| GENERAL      | RT                           | LONG         | 77.0                                   | 11.3                            |
| DYNAMICS     |                              |              | 79.0                                   | 11.6                            |
|              |                              |              | . 80.0                                 | 11.4                            |
| Nasa-langley | RT                           | LONG         | 62.3                                   | 11.4                            |
| NORTHROP     | RT                           | LONG         | 70.9                                   | 12.2                            |
|              |                              |              | 72.2                                   | 12.1                            |
|              |                              |              | 76.7                                   | 11.9                            |
| MCDONNELL    | RT                           | LONG         | 68.1                                   | 11.0                            |
| DOUGLAS, CA  |                              |              | 69.1                                   | 11.5                            |
| ·            |                              |              | 69.6                                   | 11.7                            |
|              |                              | AVERAGE      | 73.1                                   | 11.6                            |
|              | STANDA                       | RD DEVIATION | 4.5                                    | 0.4                             |

TABLE 17

COMPRESSION RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | MODULUS |
|--------------|------------------------------------|----------------|----------------------------------------|---------|
| MCDONNELL    | RT                                 | L TRANS        | 79.5                                   | 11.8    |
| DOUGLAS, MO  |                                    |                | 78.5                                   | 11.8    |
| •            |                                    |                | 79.1                                   | 11.6    |
| SUNDSTRAND   | RT                                 | L TRANS        | 79.4                                   | 11.6    |
|              |                                    |                | 79.0                                   | 11.5    |
|              |                                    |                | 77.6                                   | 12.7    |
| GENERAL      | RT                                 | L TRANS        | 79.2                                   | 11.4    |
| DYNAMICS     |                                    |                | 80.6                                   | 11.6    |
|              |                                    |                | 80.4                                   | 12.0    |
| NASA-LANGLEY | RT                                 | L TRANS        | 75.1                                   | 11.4    |
|              |                                    |                | 77.0                                   | 11.5    |
|              |                                    |                | 76.0                                   | 11.4    |
| NORTHROP     | RT                                 | L TRANS        | 79.4                                   | 11.9    |
|              |                                    |                | 75.9                                   | 12.1    |
|              |                                    |                | 73.5                                   | 12.2    |
| MCDONNELL    | RT                                 | L TRANS        | 72.9                                   | 14.0    |
| DOUGLAS, CA  |                                    |                | 72.3                                   | 13.5    |
| •            |                                    |                | 73.2                                   | 13.8    |
|              |                                    | AVERAGE        | 77.1                                   | 12.1    |
|              | STAN                               | DARD DEVIATION | 2.8                                    | 0.8     |

TABLE 18

COMPRESSION RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY              | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------|------------------------------------|--------------|----------------------------------------|---------------------------------|
| ncdonnell<br>Douglas | RT                                 | 45           | 70.5<br>70.3<br>72.2                   | 11.1<br>11.0<br>10.9            |
|                      |                                    | AVERAGE      | 71.0                                   | 11.0                            |
|                      | STANDA                             | RD DEVIATION | 1.0                                    | 0.1                             |

TABLE 19

COMPRESSION RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY  | TEST TEMPERATURE (DEGREES F) | ORIENTATION    | COMPRESSIVE<br>ULT STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------|------------------------------|----------------|--------------------------------------|---------------------------------|
| ARMY-MTL | RT                           | LONG           | 111.2<br>107.2<br>110.7              |                                 |
|          |                              | AVERAGE        | 109.7                                |                                 |
|          | STAN                         | DARD DEVIATION | 2.2                                  |                                 |
| ARMY-MTL | RT                           | L TRANS        | 115.4<br>119.0<br>114.7              |                                 |
|          |                              | AVERAGE        | 116.4                                |                                 |
|          | STAN                         | DARD DEVIATION | 2.3                                  |                                 |

#### TABLE I10

# PIN SHEAR RESULTS FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| СОМРАИУ  | CRIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| ARHY-NTL | LQMG               | 49.5<br>48.8<br>49.7       |
| NORTHROP | LONG               | 45.7<br>46.6<br>46.0       |
|          | AVERAGE            | 47.7                       |
|          | STANDARD DEVIATION | 1.8                        |

#### TABLE I11

### RIVET SHEAR RESULTS FOR REYMOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| СОНРАМУ  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| ARMY-MTL | L TRANS            | 49.0<br>48.5<br>47.7       |
|          | AVERAGE            | 48.4                       |
|          | STANDARD DEVIATION | 0.7                        |

# TABLE 112

# TORSIONAL SHEAR RESULTS FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| CONPANY    | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|------------|--------------------|----------------------------|
| Sundstrand | LONG               | 47.1<br>46.4<br>45.1       |
|            | AVERAGE            | 46.2                       |
|            | STANDARD DEVIATION | 1.0                        |
| SUNDSTRAND | l trans            | 45.4<br>45.1<br>46.8       |
|            | AVERAGE            | 45.8                       |
|            | STANDARD DEVIATION | 0.9                        |

# TABLE I13

# AMSLER DOUBLE SHEAR RESULTS FOR REYMOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| СОМРАНУ      | ORIENTATION        | Shear<br>Strength<br>(KSI) |
|--------------|--------------------|----------------------------|
| Masa-langley | L-S                | 44.4                       |
|              |                    | 46.3                       |
|              |                    | 47.7                       |
|              | AVERAGE            | 46.1                       |
|              | STANDARD DEVIATION | 1.7                        |
| Nasa-langley | T-S                | 47.5                       |
| WYGY-PHIATET | 1-9                | 47.5<br>45.6               |
|              |                    | 45.0                       |
|              |                    | 45.0                       |
|              | AVERAGE            | 46.0                       |
|              | STANDARD DEVIATION | 1.3                        |

TABLE I14

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------|-------------|--------------|-------------------------------|--------------------------------|
| MCDONNELL    | LONG        | 1.5          | 128.0                         | 106.0                          |
| DOUGLAS, MO  |             |              | 119.0                         | 100.0                          |
|              |             |              | 122.0                         | 103.0                          |
| NASA-LANGLEY | LONG        | 1.5          | 123.1                         | 99.2                           |
|              |             |              | 119.4                         | 98.4                           |
|              |             |              | 120.6                         | 100.3                          |
| MCDONNELL    | LONG        | 1.5          | 120.2                         | 102.1                          |
| DOUGLAS, CA  |             |              | 121.1                         | 101.9                          |
| ·            |             |              | 121.1                         | 101.5                          |
|              |             | AVERAGE      | 121.6                         | 101.4                          |
|              | STANDAL     | ED DEVIATION | 2.7                           | 2.3                            |

TABLE 115

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY                  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------|-------------|-----------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS, MO | 45          | 1.5       | 128.0<br>131.0<br>135.0       | 106.0<br>110.0<br>111.0        |
|                          |             | AVERAGE   | 131.3                         | 109.0                          |
|                          | STANDARD    | DEVIATION | 3.5                           | 2.6                            |

TABLE 116

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY                  | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------|-------------|--------------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS, MO | L TRANS     | 1.5          | 125.0<br>129.0<br>131.0       | 106.0<br>105.0<br>107.0        |
| NASA-LANGLEY             | L TRANS     | 1.5          | 122.2<br>124.2<br>124.7       | 98.4<br>101.6<br>99.4          |
| MCDONNELL<br>DOUGLAS, CA | L TRANS     | 1.5          | 121.7<br>121.7<br>120.5       | 100.4<br>98.3<br>97.3          |
|                          |             | AVERAGE      | 124.4                         | 101.5                          |
|                          | STANDAI     | RD DEVIATION | 3.5                           | 3.6                            |

TABLE 117

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| СОНРАНУ                  | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------|-------------|--------------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS, NO | LONG        | 2.0          | 164.0<br>159.0<br>158.0       | 128.0<br>131.0<br>130.0        |
| NASA-LANGLEY             | LONG        | 2.0          | 148.0<br>146.7                | 114.5<br>111.0<br>112.3        |
| NORTHROP                 | LONG        | 2.0          | 156.4<br>154.3<br>153.6       | 116.5<br>114.3<br>113.7        |
| MCDONNELL<br>DOUGLAS, CA | LONG        | 2.0          | 157.5<br>156.5<br>157.4       | 119.6<br>124.1<br>120.2        |
|                          |             | AVERAGE      | 155.6                         | 119.6                          |
|                          | STANDA      | RD DEVIATION | 4.9                           | 7.1                            |

TABLE 118

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY                  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|--------------------------|-------------|-----------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS, MO | 45          | 2.0       | 172.0<br>166.0<br>169.0       | 141.0<br>136.0<br>138.0        |
|                          |             | AVERAGE   | 169.0                         | 138.3                          |
|                          | STANDARD    | DEVIATION | 3.0                           | 2.5                            |

TABLE 119

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | ORIENTATION | •/D          | BEARING         | BEARING             |
|--------------|-------------|--------------|-----------------|---------------------|
|              |             |              | ULT. STR. (KSI) | YIELD STR.<br>(KSI) |
| NCDONNELL    | L TRANS     | 2.0          | 163.0           | 132.0               |
| DOUGLAS, NO  |             |              | 160.0<br>166.0  | 137.0<br>137.0      |
| nasa-langley | L TRANS     | 2.0          |                 | 116.4               |
|              |             |              | 154.5<br>154.5  | 116.6<br>116.1      |
| NORTHROP     | L TRANS     | 2.0          | 158.7           | 121.1               |
|              |             |              | 160.4<br>160.2  | 120.6<br>128.5      |
| MCDONNELL    | L TRANS     | 2.0          | 155.4           | 122.1               |
| DOUGLAS, CA  |             |              | 158.9<br>156.8  | 124.6<br>122.9      |
|              |             | AVERAGE      | 158.9           | 124.6               |
|              | Standai     | RD DEVIATION | 3.6             | 7.5                 |

TABLE 120

FRACTURE TOUGHNESS RESULTS FOR REYMOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| СОИРАНУ              | ORIENTATION     | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5)           | COMMENT                          |
|----------------------|-----------------|---------------------|------------------------------|----------------------------------|
| MCDONNELL<br>DOUGLAS | L-T             | 6                   | 26.3<br>22.8                 | (1)<br>(2)                       |
| SUNDSTRAND           | L-T             | 30.2<br>30.0        |                              |                                  |
| ARMY-MTL             | L-T             | 26.8                | 37.3<br>33.3<br>36.4<br>33.7 | (2),(3)<br>(2)<br>(2),(3)<br>(2) |
| GENERAL<br>DYNAMICS  | L-T             |                     | 33.5<br>30.7<br>30.1         | (2)<br>(2)<br>(2)                |
| Nasa-Langley         | L-T             | 27.0                | 25.3                         | (2)                              |
| MORTHROP             | L-T             |                     | 37.7<br>40.4<br>43.3         | (3)<br>(3)<br>(3)                |
|                      | AVERAGE         | 28.5                | 33.1                         |                                  |
| STA                  | NDARD DEVIATION | 1.8                 | 6.0                          |                                  |

<sup>(1):</sup> INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS EXCEEDED 10% OF AVERAGE CRACK LENGTH

<sup>(2):</sup> INVALID DUE TO Pmax/Pq > 1.10

<sup>(3):</sup> INVALID DUE TO a & B > 2.5(Kq/YS)\*\*2

TABLE 121

PRACTURE TOUGHNESS RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY              | ORIENTATION    | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5)                           | COMMENT                                             |
|----------------------|----------------|---------------------|----------------------------------------------|-----------------------------------------------------|
| NCDONNELL<br>DOUGLAS | T-L            | 29.6                | 25.8                                         | (1)                                                 |
| SUNDSTRAND           | <b>T-L</b>     | 29.1<br>29.0        |                                              |                                                     |
| army-mtl             | T-L            |                     | 40.2<br>35.6<br>35.0<br>35.9<br>36.9<br>35.5 | (2), (3)<br>(2), (3)<br>(2), (3)<br>(2), (3)<br>(3) |
| General<br>Dynamics  | T-L            | 31.4                | 29.4<br>29.2                                 | (2)<br>(2)                                          |
| NASA-LANGLEY         | T-L            | 24.4                |                                              |                                                     |
| NORTHROP             | T-L            |                     | 38.7<br>38.3<br>37.9                         | (3)<br>(3)<br>(3)                                   |
|                      | AVERAGE        | 28.7                | 34.9                                         |                                                     |
| STAN                 | DARD DEVIATION | 2.6                 | 4.4                                          |                                                     |

<sup>(1):</sup> INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS EXCEEDED 10% OF AVERAGE CRACK LENGTH

<sup>(2):</sup> INVALID DUE TO Pmax/Pq > 1.10

<sup>(3):</sup> INVALID DUE TO a & B > 2.5(Kq/YS)\*\*2

#### TABLE 122

#### FRACTURE TOUGHNESS RESULTS FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY   | ORIENTATION | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | CONCENT      |
|-----------|-------------|---------------------|--------------------|--------------|
| MCDONNELL | 45          |                     | 25.4               | (1)          |
| DOUGLAS   |             | 23.6                |                    | <b>,</b> - • |

(1): INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS EXCEEDED 10% OF AVERAGE CRACK LENGTH

**TABLE 123** 

## Hardness & Conductivity Results for 2095-T8 0.5 Inch Plate. General Dynamics, CA

| Alloy/Product Form                                | Hardness<br>(R <sub>B</sub> Scale) | Conductivity (% IACS) |
|---------------------------------------------------|------------------------------------|-----------------------|
| Weldalite 2095-T8<br>0.50 Inch Plate              | See Figure                         | 22 (a)<br>17 (b)      |
| (a) as received mill surface (b) machined surface |                                    |                       |



Figure I1. Hardness profile through 2095-T8 0.5 Inch Plate. General Dynamics, CA.



Both 8090 extrusions (Ex) and Weldalite plates (P) provided enhanced ballistic performance over 2519 and 5083 Al alloys. The  $V_{50}$  ballistic limits against AP and FSP projectiles at 0° obliquity are plotted versus Armor demand. The Armor demand is defined as the (density x thickness) / projectile diameter. The ballistic data for different caliber projectiles superimpose on single curves for either AP or FSP projectiles when plotted against armor demand. This technique allows designers to evaluate ballistic performance as a function of projectile type rather than for individual munitions. The AP and FSP projectile diameters are included as inserts in the plot. Ballistic data for 2519 and 5083 are included as the high and low ends of aluminum alloys currently being considered for structural armor applications. The lower set of 8090 and Weldalite data points for both AP and FSP projectiles represent 0.5 inch ballistic targets. The second series of data points for each projectile type represent stacked plates to provide 1.0 inch thickness. The ballistic limits of both AL-Li alloys are attributed to the witness plate being perforated by spalling rather than by the projectile exiting the target.

Figure 12. Ballistic limit (V<sub>50</sub>) verses Armor Demand at 0° obliquity against Armor Piercing (AP) and Fragment Simulating Projectiles (FSP). Army.



Figure I3. Fatigue Results for 2095-T8 0.5 Inch Plate (R =-1, Kt =1.0 and Kt =3.0) and 2095-T6 (R =-1 and Kt =3)

TABLE 124

FATIGUE RESULTS WITH R=-1.0 AND Kt=1.0 FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY    | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|------------|-------------|-----------------|--------------|
|            |             |                 | ************ |
| SUNDSTRAND | LONG        | 65.0            | 7,500        |
|            |             | 50.0            | 34,950       |
|            |             | 40.0            | 73,820       |
|            |             | 35.0            | 338,910      |
|            |             | 30.0            | 1,240,950    |
|            |             | 29.0            | 8,461,080    |
|            |             | 28.0            | 3,489,830    |
|            |             | 26.0            | 10,000,000 * |

(\*): RUN OUT

TABLE 125

PATIGUE RESULTS WITH R=-1.0 AND Kt=3.0 FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY    | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|------------|-------------|-----------------|--------------|
| ********** |             |                 | ******       |
| SUNDSTRAND | LONG        | 25.0            | 16,300       |
|            |             | 20.0            | 29,460       |
|            |             | 17.5            | 102,580      |
|            |             | 15.0            | 133,920      |
|            |             | 12.0            | 253,810      |
|            |             | 11.0            | 11,796,000 * |
|            |             | 10.0            | 11,913,000 * |
|            |             | 9.0             | 10,000,000 * |

(\*): RUN OUT

TABLE 126

FATIGUE RESULTS WITH R=-1.0 AND Kt=3.0 FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY    | ORIENTATION | STRESS<br>(KSI) | CYCLES    |
|------------|-------------|-----------------|-----------|
|            |             |                 |           |
| Sundstrand | L TRANS     | 30.0            | 8,620     |
|            |             | 25.0            | 19,690    |
|            |             | 20.0            | 90,000    |
|            |             | 17.0            | 254,530   |
|            |             | 15.0            | 1,024,210 |
|            |             | 14.0            | 943,790   |
|            |             | 12.0            | 2,110,280 |
|            |             | 10.5            | 1,715,500 |



Figure 14. Fatigue Results for 2095-T8 0.5 Inch Plate (R =0.1 and Kt = 1.0)

TABLE 127

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY      | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|--------------|-------------|-----------------|--------------|
| ARMY-MTL     | LONG        | 60.0            | 54,220       |
|              |             | 60.0            | 67,580       |
|              |             | 55.0            | 191,520      |
|              |             | 50.0            | 1,205,760    |
|              |             | 46.0            | 290,042      |
|              |             | 46.0            | 10,026,880 * |
|              |             | 43.0            | 754,000      |
|              |             | 40.0            | 10,010,000 * |
| NORTHROP     | LONG        | 70.0            | 39,420       |
|              |             | 60.0            | 70,550       |
|              |             | 55.0            | 87,944       |
|              |             | 50.0            | 247,950      |
|              |             | 45.0            | 623,760      |
|              |             | 40.0            | 511,870      |
|              |             | 40.0            | 3,000,000 *  |
|              |             | 40.0            | 2,135,840    |
| MCDONNELL    | LONG        | 55.0            | 106,010      |
| DOUGLAS, CA  |             | 55.0            | 120,950      |
| •            |             | 50.0            | 149,620      |
|              |             | 50.0            | 122,970      |
|              |             | 45.0            | 398,910      |
|              |             | 45.0            | 398,300      |
|              |             | 40.0            | 1,000,000 *  |
|              |             | 40.0            | 1,000,000 *  |
| MCDONNELL    | L TRANS     | 60.0            | 34,170       |
| DOUGLAS, CA  |             | 55.0            | 53,870       |
| , ou         |             | 55.0            | 69,800       |
|              |             | 50.0            | 101,060      |
|              |             | 50.0            | 80,470       |
|              |             | 48.0            | 153,080      |
|              |             | 48.0            | 229,570      |
|              |             | 45.0            | 1,000,000 *  |
|              |             | 45.0            | 1,000,000 *  |
| (*): RUN-OUT |             |                 |              |



Figure 15. Fatigue Results for 2095-T8 0.5 Inch Plate (R = 0.1 and Kt = 3)

TABLE 128

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

| COMPANY          | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|------------------|-------------|-----------------|--------------|
| GENERAL DYNAMICS | LONG        | 25.0            | 38,200       |
|                  |             | 15.0            | 120,600      |
|                  |             | 12.5            | 155,500      |
|                  |             | 12.0            | 281,900      |
|                  |             | 11.5            | 417,100      |
|                  |             | 11.3            | 10,240,300 * |
|                  |             | 11.0            | 10,000,000 * |
|                  |             | 10.0            | 32,313,000 * |
| NORTHROP         | LONG        | 40.0            | 27,530       |
|                  |             | 35.0            | 84,820       |
|                  |             | 30.0            | 220,840      |
|                  |             | 25.0            | 20,830       |
|                  |             | 25.0            | 605,470      |
|                  |             | 25.0            | 1,535,480    |
|                  |             | 22.5            | 3,000,000 *  |
|                  |             | 20.0            | 3,000,000 *  |
| MCDONNELL        | LONG        | 25.0            | 28,540       |
| DOUGLAS, CA      |             | 25.0            | 25,320       |
|                  |             | 20.0            | 78,410       |
|                  |             | 20.0            | 69,950       |
|                  |             | 15.0            | 1,000,000 *  |
|                  |             | 15.0            | 1,000,000 *  |
|                  |             | 10.0            | 1,000,000 *  |
|                  |             | 10.0            | 1,000,000 *  |
| MCDONNELL        | L TRANS     | 40.0            | 6,331        |
| DOUGLAS, CA      |             | 25.0            | 28,860       |
|                  |             | , 25.0          | 32,940       |
|                  |             | 20.0            | 60,520       |
|                  |             | 20.0            | 91,030       |
|                  |             | 15.0            | 348,180      |
|                  |             | 15.0            | 271,490      |
|                  |             | 10.0            | 1,000,000 *  |
|                  |             | 10.0            | 1,000,000 *  |

(\*): RUN-OUT



Figure 16. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (LT-LT orientation, Specimen W45-1). Air Force.



Figure 17. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (LT-LT orientation, Specimen W45-2). Air Force.



Figure 18. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (L-T and T-L orientations). Northrop.



Figure 19. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (L-T orientation, KGRAD - 4.00 and 2.50). Northrop.



Figure I10. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (L-T orientation, KGRAD 2.50). Northrop.



Figure I11. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (T-L orientation, KGRAD - 4.90 and 2.50). Northrop.



Figure I12. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (T-L orientation, KGRAD 2.50). Northrop.



T-36 LIF & V. N 0.01" 4/24/92

Figure 113. 738 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (Max Stress = 38 Ksi, Flaw = 0.01 inch). Northop.



Figure 114. T38 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (Max Stress = 38 Ksi, Flaw = 0.05 inch). Northop.



Figure 115. T38 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (Max Stress = 38 Ksi). Northop.

#### APPENDIX J

#### 2091-T3 AND 2091-T8 0.063 INCH SHEET

#### INTRODUCTION

The Alcoa aluminum-lithium alloy 2091-T3 0.063 inch sheets were received October 1988. The 2091-T3 0.063 inch sheet was tested as received by the Air Force and Martin Marietta. However, Northrop and McDonnell Aircraft Company heat treated the alloy to a T8 condition.

#### **TESTING**

Mechanical properties, (tension, compression, bearing, shear, and fracture toughness) fatigue and constant amplitude fatigue crack growth tests were tested according to ASTM standards, unless otherwise specified.

Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderatley intense fatigue environment) spectrums.

TABLE J1

TEMSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.063" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN    | RT                          | LONG             | 62.5                          | 48.1                       | 19.0         | 23.0      | 10.8       |
| Marietta, |                             |                  | 61.1                          | 47.0                       | 19.5         | 23.0      | 10.6       |
| LOUISIANA |                             |                  | 61.7                          | 47.5                       | 21.0         | 23.0      | 10.1       |
| AIR FORCE | RT                          | LONG             | 60.8                          | 47.6                       | 22.4         | 24.8      |            |
|           |                             |                  | 60.7                          | 47.6                       | 25.1         | 23.1      |            |
|           |                             |                  | 60.4                          | 47.5                       | 22.9         | 23.1      |            |
|           |                             | AVERAGE          | 61.2                          | 47.6                       | 21.7         | 23.3      | 10.5       |
| !         | STANDARD I                  | DEVIATION        | 0.8                           | 0.4                        | 1.0          | 0.3       | 0.4        |

TABLE J2
TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.063" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| AIR FORCE | RT                          | 45       | 60.6<br>60.6<br>60.8          | 40.4<br>40.4<br>41.1       | 23.4<br>22.9<br>21.8 | 27.3<br>25.3<br>26.4 |            |
|           |                             | AVERAGE  | 60.7                          | 40.6                       | 22.7                 | 26.3                 |            |
|           | STANDARD D                  | EVIATION | 0.1                           | 0.4                        | 0.8                  | 1.0                  |            |

TABLE J3
TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.063" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| AIR FORCE | RT                          | 60       | 62.4<br>60.5<br>60.5          | 41.9<br>39.7               | 23.6<br>20.4<br>22.1 | 24.5<br>25.1<br>26.2 |            |
|           |                             | AVERAGE  | 61.1                          | 40.8                       | 22.0                 | 25.3                 |            |
|           | STANDARD D                  | EVIATION | 1.1                           | 1.6                        | 1.6                  | 0.9                  |            |

TABLE J4

TENSILE RESULTS FOR ALCOA

2091-T3 SHRET (0.063" X 48" X 48")

| COMPANY             | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%)    | E<br>(MSI) |
|---------------------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|--------------|------------|
| MARTIN<br>MARIETTA, | RT                          | L TRANS          | 65.0<br>65.8                  | 43.2<br>44.5               | 11.0         | 19.0<br>19.0 | 10.4       |
| LOUISIANA           |                             |                  | 65.5                          | 42.7                       | 17.0         | 19.0         | 8.9        |
| AIR FORCE           | RT                          | L TRANS          | 63.9                          | 42.7                       | 17.1         | 20.7         |            |
|                     |                             |                  | 63.5                          | 42.1                       | 17.9         | 21.4         |            |
|                     |                             |                  | 64.2                          | 43.7                       | 19.0         | 21.2         |            |
|                     |                             | AVERAGE          | 64.7                          | 43.2                       | 16.8         | 20.1         | 10.1       |
|                     | STANDARD D                  | EVIATION         | 0.9                           | 0.9                        | 3.0          | 1.2          | 1.0        |



Figure Jl. R-Curve Results for 2091-T3 0.063 inch Sheet (L-T Orientation).
Martin Marietta.



Figure J2. R-Curve Results for 2091-T3 0.063 inch Sheet (T-L Orientation).
Martin Marietta.

R-CURVE FOR 2091, .063 inch Sheet (longitudinal) (effective crack length adjusted for plastic zone)



Figure J3. R-Curve Results for 2091-T3 0.063 Inch Sheet, with Effective Crack Length Adjusted for Plastic Zone (L-T Orientation).
Martin Marietta.

R-CURVE FOR 2091-T3, .063 inch SHEET (transverse) ( effective crack length adjusted for plastic zone)



EFFECTIVE CRACK LENGTH, Ae (Ae=Ao+Ap+rho) in inches

Figure J4. R-Curve Results for 2091-T3 0.063 Inch Sheet, with Effective Crack Length Adjusted for Plastic Zone. (T-L Orientation).
Martin Marietta.

TABLE J5

R-Curve Data Associated with Figures J1 and J3

#### **DATA FOR SPECIMEN NO. 1**

#### 2091-T3 LONGITUDINAL SHEET

| Load, kips | Half Crack<br>Length | Half<br>Crack Length | Corresponding Fracture Toughness, ksi vinch |                         |  |
|------------|----------------------|----------------------|---------------------------------------------|-------------------------|--|
|            | (a), inch            | (a + into),<br>inch  | Not Adjusted                                | Adjusted for Plasticity |  |
| 0          | 3.835                | 3.835                | 0.0                                         | 0.0                     |  |
| 3.0        | 3.835                | 3.838                | 7.4                                         | 6.9                     |  |
| 6.1        | 3.835                | 3.851                | 15.0                                        | 15.1                    |  |
| 10.1       | 3.835                | 3.879                | 24,9                                        | 25.1                    |  |
| 13.8       | 3.870                | 3.955                | 34.2                                        | 34.6                    |  |
| 17.4       | 3.890                | 4.027                | 43.3                                        | 44.1                    |  |
| 20.8       | 3.895                | 4.095                | 51.8                                        | 53.2                    |  |
| 23.1       | 3.900                | 4.150                | 57.5                                        | 59.5                    |  |
| 26.7       | 3.900                | 4.241                | 66.5                                        | 69.6                    |  |
| 30.9       | 3.925                | 4.416                | 77.3                                        | 83.5                    |  |
| 34.9       | 3.950                | 4.613                | 87.7                                        | 97.0                    |  |
| 37.7       | 3.995                | 4.813                | 95.5                                        | 107.7                   |  |
| 38.3       | 4.015                | 4.873                | 97.3                                        | 110.3                   |  |
| 40.4       | 4.080                | 5.118                | 103.7                                       | 121.3                   |  |
| 42.5       | 4.180                | 5.437                | 110.9                                       | 133.5                   |  |
| 43.4       | 4.255                | 5.667                | 114.6                                       | 141.5                   |  |
| 44.3       | 4.330                | 5.902                | 118.4                                       | 149.3                   |  |
| 44.3       | 4.375                | 5.985                | 118.4                                       | 151.1                   |  |
| 44.7       | 4.490                | 6.293                | 122.4                                       | 159.9                   |  |
| 44.8       | 4.515                | 6.362                | 122.4                                       | 161.8                   |  |
| 44.8       | 4.525                | 6.384                | 122.4                                       | 162.3                   |  |
| 45.2       | 4.600                | 6.661                | 125,9                                       | 170.9                   |  |
| 44.9       | 4.710                | 6.908                | 127.2                                       | 176.5                   |  |
| 44.7       | 4.765                | 7.013                | 127.2                                       | 178.5                   |  |
| 44.3       | 4.810                | 7.034                | 127.2                                       | 177.5                   |  |
| 44.3       | 4.830                | 7.120                | 127.2                                       | 180.2                   |  |
| 43.8       | 4.900                | 7.186                | 127.2                                       | 180.0                   |  |
| 43.6       | 4.960                | 7.320                | 128.3                                       | 182.9                   |  |
| 42.1       | 5.140                | 7.376                | 127.3                                       | 178.0                   |  |
| 41.8       | 5.190                | 7.473                | 127.3                                       | 179.9                   |  |
| 41.7       | 5.240                | 7.646                | 127.3                                       | 184.7                   |  |
| 41.4       | 5.325                | 1                    | 128.7                                       | 1                       |  |
| 40.9       | 5.385                |                      | 128.7                                       | 1                       |  |
| 39.2       | 5.650                | )                    | 128.7                                       | 1                       |  |
| 35.6       | 6.040                |                      | 123.2                                       |                         |  |

Thickness = .063 inches Yield Strength = 47.5 ksi Specimen Width = 23.88 inches

TABLE J6
R-Curve Data Associated with Figures J1 and J3

## DATA FOR SPECIMEN NO. 2 2091-T3 LONGITUDINAL SHEET

| Load, kips | Half Crack | Half         |              | ing Fracture   |
|------------|------------|--------------|--------------|----------------|
|            | Length     | Crack Length |              | s, ksi vinch   |
|            | (a), inch  | (a + rho),   | Not Adjusted | Adjusted       |
|            |            | inch         |              | for Plasticity |
| 0          | 3.835      | 3.835        | 0.0          | 0.0            |
| 5.7        | 3.835      | 3.847        | 14.1         | 13.2           |
| 10.2       | 3.875      | 3.921        | 25.3         | 25.5           |
| 15.2       | 3.875      | 3.978        | 37.8         | 38.3           |
| 20.1       | 3.875      | 4.060        | 49.9         | 51.2           |
| 25.2       | 3.885      | 4.185        | 62.7         | 65.2           |
| 30.1       | 3.920      | 4.382        | 75.3         | 80.9           |
| 35.1       | 3.955      | 4.630        | 88.3         | 97.8           |
| 38.7       | 4.020      | 4.921        | 98.4         | 113.0          |
| 41.0       | 4.085      | 5.172        | 105.4        | 124.1          |
| 43.3       | 4.160      | 5.501        | 112.7        | 137.9          |
| 44.9       | 4.245      | 5.825        | 118.4        | 149.7          |
| 45.5       | 4.305      | 6.042        | 121.1        | 156.9          |
| 46.0       | 4.355      | 6.225        | 123.4        | 162.8          |
| 46.5       | 4.495      | 6.723        | 127.5        | 177.7          |
| 46.5       | 4.560      | 6.951        | 128.8        | 184.1          |
| 46.5       | 4.635      | 7.376        | 130.3        | 197.1          |
| 46.0       | 4.730      | Į į          | 130.3        | 1              |
| 45.3       | 4.885      |              | 131.9        |                |
| 44.9       | 4.940      |              | 131.9        |                |
| 44.2       | 5.045      | <u> </u>     | 131.9        |                |
| 43.4       | 5.175      |              | 131.9        |                |
| 42.3       | 5.325      |              | 131.9        | 1              |
| 42.5       | 5.350      | ì            | 131.9        |                |
| 41.6       | 5.470      |              | 131.9        |                |
| 40.4       | 5.610      | <u> </u>     | 131.9        |                |
| 39.3       | 5.800      |              | 131.9        |                |

Thickness = .063 inches Yield Strength = 47.5 ksi Specimen Width = 23.87 inches

TABLE J7

R-Curve Data Associated with Figures J2 and J4

DATA FOR SPECIMEN NO. 3

#### 2091-T3 TRANSVERSE SHEET

| Load, kips Half Crack Half Corresponding Fractu                                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                  | Length<br>(a), inch                                                                                                                                                           | Crack Length (a + rho), inch                                                                                                                          | Not Adjusted                                                                                                                                                                                                                                | Adjusted for Plasticity                                                                                                                                                                                             |
| 0<br>5.1<br>10.3<br>15.0<br>20.2<br>24.8<br>30.1<br>31.9<br>34.0<br>35.8<br>37.7<br>38.6<br>39.0<br>39.8<br>39.9<br>40.0<br>40.4<br>40.4<br>40.4<br>40.2<br>40.2<br>40.1<br>39.8<br>39.8<br>39.8<br>39.8<br>39.8<br>39.8<br>39.8 | 3.875 3.875 3.875 3.880 3.880 3.880 3.925 4.000 4.055 4.070 4.105 4.135 4.145 4.175 4.260 4.290 4.360 4.555 4.640 4.710 4.790 4.830 4.910 4.975 5.140 5.315 5.485 5.625 5.810 | 3.875 3.887 3.931 4.001 4.105 4.230 4.494 4.673 4.861 5.015 5.214 5.293 5.354 5.439 5.684 5.748 5.883 6.226 6.338 6.519 6.660 6.856 6.934 7.099 7.318 | 0.0<br>12.7<br>25.6<br>37.3<br>50.2<br>61.6<br>75.4<br>80.9<br>87.0<br>91.8<br>97.2<br>98.7<br>100.2<br>101.7<br>105.2<br>107.4<br>110.9<br>110.9<br>113.3<br>113.3<br>115.4<br>115.4<br>115.4<br>117.5<br>118.6<br>118.6<br>120.1<br>122.0 | 0.0<br>11.8<br>25.8<br>37.9<br>51.8<br>64.5<br>82.3<br>89.5<br>97.9<br>106.0<br>114.8<br>117.4<br>119.9<br>122.6<br>130.1<br>131.7<br>134.6<br>143.2<br>145.6<br>149.5<br>152.3<br>156.7<br>158.2<br>161.3<br>167.4 |

Thickness = .063 inches Yield Strength = 43.5 ksi Specimen Width = 23.87 inches

# TABLE J8 R-CURVE DATA ASSOCIATED WITH FIGURES J2 AND J4

### DATA FOR SPECIMEN NO. 4 2091-T3 TRANSVERSE SHEET

| Load, kips                                                                                                                                                                                 | Half Crack<br>Length                                                                                                                                                                                                                                              | Half<br>Crack Length                                                                                                                                                             | k Length <u>Toughness, ksi</u> :                                                                                                                                                                                                     |                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                            | (a), inch                                                                                                                                                                                                                                                         | (a + rho),<br>inch                                                                                                                                                               | Not Adjusted                                                                                                                                                                                                                         | Adjusted for Plasticity                                                                                                                                                 |
| 0.0<br>5.1<br>10.4<br>15.3<br>20.0<br>25.1<br>30.1<br>33.7<br>36.2<br>37.4<br>38.8<br>39.2<br>39.4<br>39.4<br>39.4<br>39.4<br>39.3<br>39.1<br>38.3<br>38.3<br>38.3<br>38.3<br>38.3<br>38.3 | 3.845<br>3.845<br>3.845<br>3.880<br>3.895<br>3.895<br>3.915<br>3.985<br>4.105<br>4.145<br>4.245<br>4.350<br>4.430<br>4.565<br>4.625<br>4.755<br>4.815<br>4.900<br>5.030<br>5.260<br>5.320<br>5.350<br>5.400<br>5.495<br>5.605<br>5.735<br>5.990<br>6.185<br>6.575 | 3.845<br>3.857<br>3.901<br>4.006<br>4.116<br>4.256<br>4.481<br>4.751<br>5.092<br>5.246<br>5.459<br>5.717<br>5.900<br>6.170<br>6.282<br>6.571<br>6.701<br>6.905<br>7.226<br>7.896 | 0.0<br>12.6<br>25.7<br>38.0<br>49.8<br>62.5<br>75.2<br>85.2<br>93.3<br>97.0<br>100.4<br>104.0<br>106.4<br>109.2<br>110.2<br>112.4<br>113.5<br>114.6<br>116.3<br>117.9<br>119.0<br>120.1<br>120.1<br>121.9<br>122.9<br>112.8<br>119.7 | 0.0<br>11.8<br>25.9<br>38.7<br>51.3<br>65.5<br>82.1<br>95.5<br>108.4<br>114.4<br>120.1<br>127.5<br>132.2<br>138.1<br>140.4<br>146.9<br>149.8<br>154.4<br>161.6<br>177.0 |

Thickness = .063 inches Yield Strength = 43.5 ksi Specimen Width = 23.88 inches



FIGURE J5. FALSTAFF SPECTRUM
CRACK LENGTH VS FLIGHTS DATA FOR 2091-T3
0.063 INCH SHEET,
AIR FORCE.



Figure J6. FALSTAFF Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.063 Inch Sheet.
Air Force



Mini-TWIST Spectrum Crack Length vs Flights Data for for 2091-T3 0.063 Inch Sheet. Air Force Figure J7.



Figure J8. Mini-TWIST Spectrum Crack Growth Rate vs Kmax Data for 2091-T3 0.063 Inch Sheet, Air Force

TABLE J9

TENSILE RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| HCAIR    | RT                          | LONG             | 62.5                          | 50.0                       | 22.0         |           | 5.5        |
|          |                             |                  | 62.5                          | 49.4                       | 21.0         |           | 5.4        |
|          |                             |                  | 61.5                          | 49.2                       | 20.0         |           | 5.9        |
| NORTHROP | RT                          | LONG             | 65.2                          | 53.2                       | 21.9         |           | 11.2       |
|          |                             |                  | 64.9                          | 52.9                       | 19.0         |           | 11.2       |
|          |                             |                  | 64.9                          | 53.1                       | 21.9         |           | 11.2       |
|          |                             |                  | 64.7                          | 52.9                       | 21.9         |           | 11.3       |
|          |                             | average          | 63.7                          | 51.5                       | 21.1         |           | 8.8        |
|          | STANDARD I                  | EVIATION         | 1.5                           | 1.9                        | 0.6          |           | 3.0        |

TABLE J10
TENSILE RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI)   | ELONG<br>(%)                 | RA<br>(%) | E<br>(MSI)                   |
|----------|-----------------------------|------------------|-------------------------------|------------------------------|------------------------------|-----------|------------------------------|
| MCAIR    | RT                          | 45 DEG           | 62.0<br>62.0<br>62.5          | 38.0<br>38.5<br>38.0         | 24.0<br>25.0<br>22.0         |           | 6.0<br>5.9<br>6.7            |
| MORTHROP | RT                          | 45 DEG           | 64.3<br>63.4<br>64.1<br>63.8  | 43.9<br>43.8<br>43.9<br>43.1 | 16.9<br>14.1<br>17.2<br>16.7 |           | 11.0<br>11.0<br>11.2<br>11.0 |
|          |                             | AVERAGE          | 63.2                          | 41.3                         | 19.4                         |           | 9.0                          |
|          | STANDARD D                  | EVIATION         | 1.0                           | 3.0                          | 4.2                          |           | 2.6                          |

TABLE J11

TENSILE RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION<br>') | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STREMSTH<br>(KSI) | RLONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|----------|----------------------------|------------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MCAIR    | RT                         | L TRANS                | 64.5                          | 40.9                       | 18.0         |           | 5.6        |
|          |                            |                        | 65.0                          | 43.6                       | 16.0         |           | 5.9        |
|          |                            |                        | 66.0                          | 42.3                       | 21.0         |           | 5.5        |
| NORTHROP | RT                         | L TRANS                | 67.9                          | 47.7                       | 20.8         |           | 11.3       |
|          |                            |                        | 68.2                          | 47.4                       | 18.2         |           | 11.3       |
|          |                            |                        | 67.5                          | 47.7                       | 16.9         |           | 11.2       |
|          |                            |                        | 68.3                          | 47.2                       | 18.7         |           | 11.1       |
|          |                            | AVERAGE                | 65.2                          | 42.3                       | 18.3         |           | 5.7        |
|          | STANDARD                   | DEVIATION              | 0.8                           | 1.4                        | 2.5          |           | 0.2        |

TABLE J12

COMPRESSION RESULTS FOR ALCOA

2091-T8 SHRET (0.063" X 48" X 48")

| CONPANY  | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| HCAIR    | RT                                 | LONG           |                                        | 12.5<br>11.5                    |
| NORTHROP | RT                                 | LONG           | 41.7<br>42.2<br>41.7                   | 11.5<br>11.2<br>12.1            |
|          |                                    | AVERAGE        | 41.9                                   | 11.8                            |
|          | STANI                              | DARD DEVIATION | 0.3                                    | 0.5                             |

### TABLE J13 COMPRESSION RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|---------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MCAIR   | RT                                 | 45 DEG         |                                        | 12.1<br>12.2<br>11.7            |
|         |                                    | AVERAGE        |                                        | 12.0                            |
|         | STANI                              | DARD DEVIATION |                                        | 0.3                             |

TABLE J14

COMPRESSION RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MCAIR    | RT                                 | L TRANS        |                                        | 12.6<br>12.6<br>12.5            |
| NORTHROP | RT                                 | L TRANS        | 48.4<br>48.8<br>48.9                   | 12.1<br>11.9<br>12.0            |
|          |                                    | AVERAGE        | 48.7                                   | 12.3                            |
|          | STAN                               | DARD DEVIATION | 0.3                                    | 0.3                             |

## TABLE J15 SLOTTED SHEAR RESULTS FOR ALCOA

#### 2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION        | Shrar<br>Strength<br>(KSI) |
|----------|--------------------|----------------------------|
| MCAIR    | LONG               | 44.8<br>46.8               |
| NORTHROP | LONG               | 43.9<br>43.8<br>43.7       |
|          | AVERAGE            | 44.6                       |
|          | STANDARD DEVIATION | 1.3                        |

#### TABLE J16

#### SLOTTED SHEAR RESULTS FOR ALCOA

#### 2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |  |
|----------|--------------------|----------------------------|--|
| NORTHROP | L TRANS            | 44.7<br>45.0<br>44.6       |  |
|          | AVERAGE            | 44.8                       |  |
|          | STANDARD DEVIATION | 0.2                        |  |

TABLE J17

BEARING RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| MCAIR    | LONG        | 1.5       | 96.1<br>98.9<br>99.2          | 83.5<br>83.9                   |
| NORTHROP | LONG        | 1.5       | 101.6<br>100.7<br>101.7       | 71.1<br>69.7<br>72.2           |
|          |             | AVERAGE   | 99.7                          | 76.1                           |
|          | STANDARD    | DEVIATION | 2.1                           | 7.0                            |

TABLE J18

BEARING RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|--------------|-------------------------------|--------------------------------|
| MCAIR    | L TRANS     | 1.5          | 98.2<br>97.4<br>97.5          | 85.7<br>84.0<br>85.1           |
| NORTHROP | L TRANS     | 1.5          | 104.4<br>103.7<br>104.0       | 76.9<br>73.9<br>75.4           |
|          |             | AVERAGE      | 100.9                         | 80.2                           |
|          | STANDAI     | RD DEVIATION | 3.5                           | 5.3                            |

TABLE J19

BEARING RESULTS FOR ALCOA

2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION | <b>⊕</b> /D | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-------------|-------------------------------|--------------------------------|
| HCAIR    | LONG        | 2.0         | 128.6<br>130.3<br>127.1       | 107.0<br>108.4<br>107.0        |
| NORTHROP | LONG        | 2.0         | 127.3<br>129.9<br>130.2       | 72.8<br>76.0<br>74.7           |
|          |             | AVERAGE     | 128.9                         | 91.0                           |
|          | STANDARD    | DEVIATION   | 1.5                           | 18.1                           |

# TABLE J20 BEARING RESULTS FOR ALCOA 2091-T8 SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|--------------|-------------------------------|--------------------------------|
| MCAIR    | L TRANS     | 2.0          | 131.2<br>130.6<br>128.3       | 110.7<br>109.5<br>107.0        |
| NORTHROP | L TRANS     | 2.0          | 130.4<br>129.7<br>129.0       | 85.2<br>85.0<br>88.2           |
|          |             | AVERAGE      | 129.9                         | 97.6                           |
|          | STANDAL     | RD DEVIATION | 1.1                           | 12.7                           |

#### R-CURVE FRACTURE TOUGHNESS RESULTS FOR 2091-T8X SHEET (0.063" X 48" X 48") Northrop

| Specimen<br>ID | Orientation | Kc    |
|----------------|-------------|-------|
| VIRLI          | L-T         | 130.0 |

### R-CURVE FRACTURE TOUGHNESS RESULTS

### For 2091-T8 Sheet (0.063" x 48" x 48")

#### MCDONNELL AIRCRAFT CO

SPECIMEN IDENTIFICATION: LTI

MATERIAL DESCRIPTION: 2091 AL-LI SHEET

SPECIMEN TYPE:

C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: L-T

YIELD STRENGTH:

49.5 KSI

SPECIMEN THICKNESS: SPECIMEN WIDTH:

0.063 IM 3.999 IN

SPECIMEN IS INVALID PER ASTM 2561-86, PARA. 7.5

| APPLIED<br>LOAD | PHYSICAL<br>CRACK<br>LENGTH | Kr<br>(UMCORRECTED) | BFFECTIVE<br>CRACK<br>LENGTH | Kr<br>(Corrected |
|-----------------|-----------------------------|---------------------|------------------------------|------------------|
| (lbs)           | (in)                        | (psi √in)           | (in)                         | (psi /in)        |
| 800             | 1.485                       | 42,884              | 1.629                        | 47,141           |
| 975             | 1.500                       | 52,765              | 1.753                        | 62,495           |
| 1,025           | 1.507                       | 55,716              | 1.810                        | 68,349           |
| 1,100           | 1.516                       | 60,171              | 1.935                        | 60.342           |
| 1,150           | 1.523                       | 63.194              | ***                          | ***              |
| 1,175           | 1.529                       | 64.829              | ***                          | ***              |
| 1,200           | 1.534                       | 66,420              | ***                          | ***              |
| 1.225           | 1.545                       | 68,270              | ***                          | ***              |
| 1.250           | 1.555                       | 70.121              | ***                          | ***              |
| 1.275           | FAILURE                     |                     |                              | •••              |

<sup>\*\*\*</sup> Indicates that the equation for Kr (Corrected) did not converge to a solution.

#### R-CURVE FRACTURE TOUGHNESS RESULTS

#### For 2091-T8 Sheet (0.063" x 48" x 48")

#### **MCDONNELL AIRCRAFT CO**

SPECIMEN IDENTIFICATION: LTZ

MATERIAL DESCRIPTION: 2091 AL-LI SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: L-T

YIELD STRENGTH: 49.5 KSI SPECIMEN THICKNESS: 0.064 IN SPECIMEN WIDTH: 4.002 IN

#### SPECIMEN IS INVALID PER ASTM E561-86, PARA. 7.5

| APPLIED<br>LOAD<br>(1bs)                                                                               | PHYSICAL<br>CRACK<br>LENGTH<br>(1n)                                                             | Kr<br>(UMCORRECTED)<br>(psi √in)                                                                                     | EFFECTIVE<br>CRACK<br>LENGTH<br>(in)                  | Kr<br>(CORRECTED)<br>(psi /in)                                |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|
| 975<br>1,000<br>1,050<br>1,110<br>1,160<br>1,190<br>1,220<br>1,235<br>1,270<br>1,285<br>1,305<br>1,315 | 1.501<br>1.515<br>1.523<br>1.526<br>1.530<br>1.534<br>1.540<br>1.543<br>1.549<br>1.570<br>1.576 | 51.927<br>53.727<br>56.711<br>60.073<br>62.951<br>64.769<br>66.640<br>67,574<br>69,785<br>71,568<br>72.983<br>73.989 | 1.743<br>1.783<br>1.847<br>1.943<br>***<br>***<br>*** | (ps1 /1n) 60,983 64,343 70,665 80,115 *** *** *** *** *** *** |
| 1,325<br>1,335<br>1,340<br>1,345                                                                       | 1.592<br>1.598<br>1.605<br>FAILURE                                                              | 74,876<br>75,731<br>76,397                                                                                           | ***                                                   | ***                                                           |

<sup>\*\*\*</sup> Indicates that the equation for Kr (Corrected) did not converge to a solution.

### R-CURVE FRACTURE TOUGHNESS RESULTS

#### For 2091-T8 Sheet (0.063" x 48" x 48")

#### MCDONNELL AIRCRAFT CO

SPECIMEN IDENTIFICATION: TL1

MATERIAL DESCRIPTION: 2091 AL-LI SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: T-L

YIELD STRENGTH: 42.3 KSI SPECIMEN THICKNESS: 0.064 IN SPECIMEN WIDTH: 3.998 IN

#### SPECIMEN IS INVALID PER ASTM E561-86, PARA. 7.5

| APPLIED<br>LOAD<br>(1Ds)                                                                                                                                                     | PHYSICAL<br>CRACK<br>LENGTH<br>(1n)                                                                                                                                                | Kr<br>(UNCORRECTED)<br>(psi √in)                                                                                                                                                 | EFFECTIVE<br>CRACK<br>LENGTH<br>(1n)              | Kr<br>(CORRECTED)<br>(psi /in)                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|
| 800<br>825<br>1,025<br>1,050<br>1,085<br>1,095<br>1,135<br>1,165<br>1,175<br>1,190<br>1,215<br>1,230<br>1,240<br>1,250<br>1,250<br>1,260<br>1,290<br>1,290<br>1,295<br>1,305 | 1.495<br>1.499<br>1.503<br>1.509<br>1.513<br>1.518<br>1.524<br>1.524<br>1.535<br>1.544<br>1.549<br>1.549<br>1.557<br>1.562<br>1.583<br>1.587<br>1.587<br>1.612<br>1.616<br>FAILURE | 42,504<br>43,946<br>54,749<br>56,296<br>58,335<br>59,045<br>61,462<br>63,532<br>64,468<br>65,291<br>66,881<br>68,045<br>68,819<br>70,357<br>71,638<br>72,565<br>73,989<br>74,493 | 1.708 1.734 *** *** *** *** *** *** *** *** *** * | 48,955<br>51,378<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>*** |

<sup>\*\*\*</sup> Indicates that the equation for Kr (Corrected) did not converge to a solution.

#### R-CURVE FRACTURE TOUGHNESS RESULTS

#### For 2091-T8 Sheet (0.063" x 48" x 48")

#### **MCDONNELL AIRCRAFT CO**

SPECIMEN IDENTIFICATION: TLZ

MATERIAL DESCRIPTION: 2091 AL-LI SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: T-L

YIELD STRENGTH: 42.3 KSI SPECIMEN THICKNESS: 0.061 IN SPECIMEN WIDTH: 3.999 IN

#### SPECIMEN IS INVALID PER ASTM E561-86, PARA. 7.5

| APPLIED<br>LOAD<br>(1bs) | PHYSICAL<br>CRACK<br>LEMGTH<br>(1n) | Kr<br>(UNCORRECTED)<br>(psi /in) | EFFECTIVE<br>CRACK<br>LENGTH<br>(in) | Kr<br>(CORRECTED)<br>(psi /in) |
|--------------------------|-------------------------------------|----------------------------------|--------------------------------------|--------------------------------|
| 950                      | 1.507                               | 53,350                           | 2.062                                | 79,002                         |
| 975<br>1.075             | 1.511<br>1.517                      | 54,882<br>60,775                 | ***                                  | ***                            |
| 1,120                    | 1.522                               | 63,517                           | ***                                  | ***                            |
| 1,130<br>1,180           | 1.526<br>1.531                      | 64,248<br>67,305                 | ***                                  | ***                            |
| 1,240                    | 1.541                               | 71,181                           | ***                                  | ***                            |
| 1,255                    | 1.544                               | 72,179                           | ***                                  | ***                            |
| 1,265<br>1,280           | 1.550<br>1.569                      | 73,059<br>74,867                 | ***                                  | ***                            |
| 1,285                    | 1.576                               | 75,466                           | ***                                  | ***                            |
| 1,295                    | FAILURE                             |                                  |                                      |                                |

<sup>\*\*\*</sup> Indicates that the equation for Kr (Corrected) did not converge to a solution.



FATIGUE CRACK GROWTH RATE DATA for 2091-T8X 0.063 Inch Sheet Relative to 2024-T351 (L-T Orientation). Northrop.



FIGURE J10. FATIGUE CRACK GROWTH RATE DATA for 2091-T8X 0.063 Inch Sheet Relative to 2024-T351 (T-L Orientation). Northrop.



Figure Jll Figure Crack Growth Rate Data for 2091-T8 0.063 Inch Sheet. (L-T Orientation, R=0.33, Lab Air and 75°F).

McDonnell Aircraft Company.



Figure J12 Fatigue Crack Growth Rate Data for 2091-T8 0.063 Inch Sheet (T-L Orientation, Lab Air, 75°F, and TLI R=0.02 and TL2 R=0.10). McDonnell Aircraft Company

#### APPENDIX K

#### 2091-T3 AND 2091-T8 0.144 INCH SHEET

#### INTRODUCTION

The Alcoa aluminum-lithium alloy 2091-T3 0.144 inch sheets were received March 1988. The 2091-T3 0.144 inch sheets were tested as received by the Air Force, Martin Marietta and McDonnell Douglas Astronautics. However, General Dynamics aged their material at 16 and 32 hours at 335°F and Northrop heat treated their material to a T8X temper.

#### **TESTING**

Mechanical properties, (tension, compression, bearing, shear, and fracture toughness) fatigue and constant amplitude fatigue crack growth tests were tested according to ASTM standards, unless otherwise specified.

Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE K1

TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                            | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI)        | YIELD<br>STRENGTH<br>(KSI)           | ELONG<br>(%)         | RA<br>(%)            | e<br>(MSI)                   |
|------------------------------------|-----------------------------|------------------|--------------------------------------|--------------------------------------|----------------------|----------------------|------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | RT                          | LONG             | 59.4<br>60.1<br>59.9<br>59.9<br>58.9 | 49.0<br>49.2<br>49.5<br>49.6<br>49.5 |                      |                      | 11.4<br>11.6<br>11.5<br>11.5 |
| MARTIN<br>MARIETTA, LA             | RT                          | LONG             | 60.6<br>59.9<br>59.9                 | 50.0<br>49.6<br>49.6                 | 17.0<br>17.0<br>17.0 | 12.7<br>15.5<br>19.7 | 11.4<br>11.1<br>11.4         |
| AIR FORCE                          | RT                          | LONG             | 61.4<br>61.4<br>61.4                 | 51.1<br>50.9<br>51.3                 | 14.3<br>17.9<br>17.2 | 14.7<br>20.5<br>19.7 |                              |
|                                    | STANDARD                    | AVERAGE          |                                      | 49.9                                 | 18.4                 | 17.1<br>3.2          | 11.4                         |

TABLE K2

TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI) |
|-----------|-----------------------------|-----------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| AIR FORCE | RT                          | 30        | 62.4<br>62.1<br>62.2          | 45.0<br>44.0<br>43.2       | 20.0<br>19.1<br>18.9 | 25.6<br>25.4<br>25.5 |            |
|           |                             | AVERAGE   | 62.2                          | 44.1                       | 19.3                 | 25.5                 |            |
|           | STANDARD                    | DEVIATION | 0.2                           | 0.9                        | 0.6                  | 0.1                  |            |

TABLE K3

TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | R<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| AIR FORCE | RT                          | 45               | 61.4<br>61.6<br>61.5          | 42.0<br>42.7<br>42.7       | 23.3<br>24.4<br>23.9 | 28.3<br>28.2<br>29.3 |            |
|           |                             | average          | 61.5                          | 42.5                       | 23.9                 | 28.6                 |            |
|           | STANDARD I                  | DEVIATIO         | N 0.1                         | 0.4                        | 0.6                  | 0.6                  |            |

# TABLE K4 TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | (MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|----------------------|----------------------|-------|
| AIR FORCE | RT                          | 60               | 61.2<br>61.0<br>60.3          | 40.9<br>43.3<br>41.5       | 24.0<br>21.5<br>22.8 | 29.0<br>27.8<br>31.1 |       |
|           |                             | AVERAGE          | 60.8                          | 41.9                       | 22.8                 | 29.3                 |       |
|           | STANDARD                    | DEVIATION        | 0.5                           | 1.2                        | 1.3                  | 1.7                  |       |

TABLE K5

TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY      | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|--------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| MCDONNELL    | RT                          | L TRANS   | 64.3                          |                            |              |           | 12.0       |
| DOUGLAS      |                             |           | 65.3                          | 46.6                       | 14.0         |           | 11.6       |
| ASTRO., CA   |                             |           | 65.2                          | 46.6                       | 14.0         |           | 11.6       |
| •            |                             |           | 64.3                          | 46.4                       | 12.5         |           | 11.5       |
|              |                             |           | 64.6                          | 46.7                       | 12.5         |           | 11.6       |
| MARTIN       | RT                          | L TRANS   | 64.7                          | 46.2                       | 12.0         | 12.7      | 11.1       |
| MARIETTA, LA |                             |           | 65.1                          | 45.8                       | 13.0         | 11.3      | 11.4       |
|              |                             |           | 64.7                          | 45.6                       | 13.0         | 11.3      | 11.3       |
| AIR FORCE    | RT                          | L TRANS   | 66.0                          | 47.3                       | 16.4         | 16.2      |            |
|              |                             |           | 66.4                          | 47.4                       | 17.5         | 17.3      |            |
|              |                             |           | 66.0                          | 47.5                       | 15.7         | 18.8      |            |
|              |                             |           |                               |                            |              |           |            |
|              | •                           | AVERAGE   | 65.1                          | 46.6                       | 14.1         | 14.6      | 11.5       |
|              | STANDARD                    | DEVIATION | N 0.7                         | 0.6                        | 1.9          | 3.3       | 0.3        |

TABLE K6
TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

COMPANY ORIENT- ULTIMATE YIZLD ELONG RA ATION STRENGTH (%) (% TEST E TEMP (MSI) (DEGREES F) (KSI) (KSI) MCDONNELL -320 F LONG 75.3 57.6 16.0 12.4 DOUGLAS 76.2 58.1 16.5 12.5 ASTRO., CA 75.1 57.4 17.0 12.5 75.0 58.0 17.0 12.5 AVERAGE 75.4 57.8 16.6 12.5 STANDARD DEVIATION 0.5 0.3 0.5 0.1

TABLE K7

TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY    | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|------------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MCDONNELL  | -320 F                      | L TRANS          | 81.6                          | 53.9                       | 16.5         |           | 12.7       |
| DOUGLAS    |                             |                  | 82.2                          | 54.2                       | 14.5         |           | 12.7       |
| ASTRO., CA |                             |                  | 81.5                          | 55.1                       | 14.5         |           | 12.7       |
|            |                             |                  | 80.6                          | 55.1                       | 13.0         |           | 12.5       |
|            |                             | AVERAGE          | 81.5                          | 54.6                       | 14.6         |           | 12.7       |
|            | STANDARD                    | DEVIATION        | N 0.7                         | 0.6                        | 1.4          |           | 0.1        |

TABLE K8

COMPRESSION RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY              | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------------------|------------------------------------|--------------|----------------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS | RT                                 | LONG         | 41.1                                   | 11.5                            |
| ASTRO., CA           |                                    |              | 40.7                                   | 11.4                            |
|                      |                                    | average      | 40.9                                   | 11.5                            |
|                      | STANDA                             | RD DEVIATION | 0.3                                    | 0.1                             |

## TABLE K9 COMPRESSION RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48 X 48")

| COMPANY                            | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|------------------------------------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | RT                                 | L TRANS       | 49.0<br>48.6<br>49.8                   | 11.3<br>11.5<br>11.5            |
|                                    |                                    | AVERAGE       | 49.1                                   | 11.4                            |
|                                    | STAND                              | ARD DEVIATION | 0.6                                    | 0.1                             |

TABLE K10

#### COMPRESSION RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                            | TEST TEMPERATURE (DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|------------------------------------|------------------------------|---------------|----------------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | -320 F                       | LONG          | 46.8<br>46.4                           | 12.7<br>12.5<br>12.4            |
|                                    |                              | AVERAGE       | 46.6                                   | 12.5                            |
|                                    | STANDA                       | ARD DEVIATION | 0.3                                    | 0.2                             |

#### TABLE K11

#### COMPRESSION RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                            | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|------------------------------------|------------------------------------|--------------|----------------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | -320 F                             | L TRANS      | 56.8<br>55.1<br>58.8                   | 12.8<br>12.8<br>12.5            |
|                                    |                                    | AVERAGE      | 56.9                                   | 12.7                            |
|                                    | STANDA                             | RD DEVIATION | 1.9                                    | 0.2                             |

TABLE K12

BEARING RESULTS FOR ALCOA

2091-T3 SHERT (0.144" X 48" X 48")

| COMPANY                            | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI)        | BEARING<br>YIELD STR.<br>(KSI) |
|------------------------------------|-------------|-----------|--------------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | LONG        | 1.5       | 95.6<br>95.9<br>95.3<br>95.2<br>95.1 | 75.3<br>75.8<br>74.3<br>72.9   |
|                                    |             | AVERAGE   | 95.4                                 | 74.6                           |
|                                    | STANDARD    | DEVIATION | 0.3                                  | 1.3                            |

TABLE K13

BEARING RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY    | ORIENTATION | e/D         | BEARING<br>ULT. STR. | BEARING<br>YIELD STR. |
|------------|-------------|-------------|----------------------|-----------------------|
|            |             |             | (KSI)                | (KSI)                 |
| MCDONNELL  | L TRANS     | 1.5         | 98.1                 | 75.3                  |
| DOUGLAS    |             |             | 98.2                 | 74.2                  |
| ASTRO., CA |             |             | 98.5                 | 78.6                  |
|            |             |             | 96.5                 | 74.6                  |
|            |             |             | 98.1                 |                       |
|            |             | AVERAGE     | 97.9                 | 75.7                  |
|            | STANDAF     | D DEVIATION | 0.8                  | 2.0                   |

TABLE K14

BEARING RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY              | ORIENTATION | •/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|--------------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS | LONG        | 2.0          | 119.0<br>119.0                | 86.2                           |
| ASTRO., CA           |             |              | 120.0<br>120.0                | 86.6                           |
|                      |             |              | 120.0                         | 85.3                           |
|                      |             | AVERAGE      | 119.6                         | 86.0                           |
|                      | STANDA      | RD DEVIATION | 0.5                           | 0.7                            |

# TABLE K15 BEARING RESULTS FOR ALCOA 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                            | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI)             | BEARING<br>YIELD STR.<br>(KSI) |
|------------------------------------|-------------|--------------|-------------------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS<br>ASTRO., CA | l trans     | 2.0          | 122.0<br>122.0<br>122.0<br>123.0<br>121.0 | 89.2<br>90.7<br>88.7<br>87.9   |
|                                    |             | AVERAGE      | 122.0                                     | 89.1                           |
|                                    | STANDA      | RD DEVIATION | 0.7                                       | 1.2                            |



Figure K1. R-Curve Results for 2091-T3 0.144 Inch Sheet (L-T Orientation). Martin Marietta



Figure K2. R-Curve Results for 2091-T3 0.144 Inch Sheet (T-L Orientation). Martin Marietta.



Figure K3. R-Curve Results for 2091-T3
0.144 Inch Sheet with Effective Crack Length
Adjusted for Plastic Zone (L-T Orientation)
Martin Marietta.



Figure K4. R-Curve Results for 2091-T3
0.144 Inch Sheet with Effective Crack Length
Adjusted for Plastic Zone (T-L Orientation)
Martin Marietta.

TABLE K16
R-CURVE DATA ASSOCIATED WITH
FIGURES K1 AND K3 (SPECIMEN 3)

|            | Half Crack         | Half<br>Crack Length, | Corresponding Fracture Toughness, ksi Vinch |                            |
|------------|--------------------|-----------------------|---------------------------------------------|----------------------------|
| Load, kips | Length<br>(c) inch | (c + rho)<br>inch     | Not adjusted                                | Adjusted for<br>Plasticity |
| 10         | 3.895              | 3.902                 | 11                                          | 11                         |
| 18         | 3.960              | 3.985                 | 20                                          | 20                         |
| 24         | 3.960              | 4.004                 | 26                                          | 26                         |
| 26         | 3.975              | 4.029                 | 29                                          | 29                         |
| 28         | 3.990              | 4.053                 | 31                                          | 31                         |
| 29         | 3.990              | 4.059                 | 32                                          | 33                         |
| 32         | 4.000              | 4.083                 | 36                                          | 36                         |
| 36         | 4.020              | 4.126                 | 40                                          | 41                         |
| 40         | 4.020              | 4.154                 | 45                                          | 46                         |
| 44         | 4.020              | 4.183                 | 49                                          | 50                         |
| 48         | 4.020              | 4.213                 | 53                                          | 55                         |
| 52         | 4.020              | 4.251                 | 58                                          | 60                         |
| 57         | 4.020              | 4.295                 | 63                                          | 65                         |
| 61         | 4.020              | 4.340                 | 68                                          | 70                         |
| 64         | 4.045              | 4.402                 | 71                                          | 74                         |
| 65         | 4.060              | 4.451                 | 73                                          | 78                         |
| 67         | 4.085              | 4.497                 | 75                                          | 80                         |
| 69         | 4.085              | 4.525                 | 77                                          | 83                         |
| 71         | 4.105              | 4.581                 | 80                                          | 86                         |
| 71         | 4.115              | 4.601                 | 80                                          | 87                         |
| 74         | 4.140              | 4.668                 | 84                                          | 91                         |
| 74         | 4.140              | 4.677                 | 84 .                                        | 91                         |
| 76         | 4.165              | 4.732                 | 86                                          | 94                         |
| 76         | 4.225              | 4.812                 | 88                                          | 95                         |
| 76         | 4.225              | 4.823                 | 88                                          | 96                         |
| 78         | 4.255              | 4.886                 | 90                                          | 99                         |
| 80         | 4.290              | 4.967                 | 93                                          | 103                        |
| 81         | 4.325              | 5.027                 | 94                                          | 104                        |
| 82         | 4.500              | 5.284                 | 99                                          | 110                        |
| 82         | 4.655              | 5.495                 | 102                                         | 114                        |
| 83         | 4.750              | 5.649                 | 104                                         | 118                        |
| 82         | 4.900              | 5.837                 | 105                                         | 121                        |
| 82         | 5.045              | 6.042                 | 108                                         | 124                        |
| 81         | 5.345              | 6.447                 | 112                                         | 131                        |

Thickness = .144 inch Yield = 49.7 ksi Specimen Width = 23.83 inch

TABLE K17

R-CURVE DATA ASSOCIATED WITH
FIGURES K1 AND K3 (SPECIMEN 4)

|           | Half Crack         | Half<br>Crack Length, |              | Corresponding Fracture Toughness, ksi vinch |  |
|-----------|--------------------|-----------------------|--------------|---------------------------------------------|--|
| oad, kips | Length<br>(c) inch | (c + rho)<br>inch     | Not adjusted | Adjusted for Plasticity                     |  |
| 0         | 3.895              | 3.902                 | 11           | 11                                          |  |
| 9         | 3.895              | 3.924                 | 21           | 21                                          |  |
| 8         | 3.895              | 3.956                 | 31           | 31                                          |  |
| 6         | 3.930              | 4.032                 | 39           | 40                                          |  |
| 4         | 4.000              | 4.163                 | 49           | 50                                          |  |
| 2         | 4.000              | 4.231                 | 58           | 60                                          |  |
| 0         | 4.010              | 4.319                 | 67           | 69                                          |  |
| 5         | 4.040              | 4.416                 | 73           | 76                                          |  |
| 9         | 4.080              | 4.523                 | 77           | 83                                          |  |
| 4         | 4.110              | 4.641                 | 84           | 91                                          |  |
| 8         | 4.200              | 4.823                 | 90           | 98                                          |  |
| 9         | 4.260              | 4.921                 | 92           | 101                                         |  |
| 0 [       | 4.350              | 5.058                 | <b>j</b> 95  | 105                                         |  |
| 2         | 4.480              | 5.262                 | 99           | 110                                         |  |
| 4         | 4.575              | 5.440                 | 102          | 116                                         |  |
| 4         | 4.615              | 5.492                 | 102          | 117                                         |  |
| 4         | 4.735              | 5.663                 | 105          | 120                                         |  |
| 4         | 4.800              | 5.754                 | 106          | 122                                         |  |
| 4         | 4.890              | 5.883                 | 107          | 124                                         |  |
| 4         | 4.945              | 5.956                 | 107          | 125                                         |  |
| 4         | 5.025              | 6.072                 | 109          | 128                                         |  |
| 4         | 5.135              | 6.223                 | 1111         | 130                                         |  |
| 2         | 5.320              | 6.435                 | 111          | 132                                         |  |
| ī         | 5.490              | 6.661                 | 114          | 135                                         |  |
| ġ l       | 5.730              | 6.962                 | 115          | 138                                         |  |
| 4.5       | 6.265              | 7.660                 | 1 117        | 144                                         |  |
| 4.5       | 6.440              | 7.932                 | 118          | 152                                         |  |

Thickness = .144 inch
Yield = 49.7 ksi
Specimen Width = 23.81 inch

TABLE K18

R-CURVE DATA ASSOCIATED WITH
FIGURES K2 AND K4 (SPECIMEN 1)

|            | Half Crack         | Half<br>Crack Length, | Corresponding Fracture Toughness, ksi vinch |                            |
|------------|--------------------|-----------------------|---------------------------------------------|----------------------------|
| Load, kips | Length<br>(c) inch | (c + rho)<br>inch     | Not adjusted                                | Adjusted for<br>Plasticity |
| 10         | 2.895              | 2.905                 | 12                                          | 12                         |
| 13         | 2.895              | 2.915                 | 16                                          | 16                         |
| 19         | 2.950              | 2.995                 | 24                                          | 25                         |
| 28         | 2.960              | 3.061                 | 36                                          | 36                         |
| 37         | 2.980              | 3.158                 | 47                                          | 49                         |
| 46         | 2.995              | 3.279                 | 58                                          | 61                         |
| 50         | 2.995              | 3.354                 | 64                                          | 69                         |
| 54         | 3.000              | 3.422                 | 69                                          | 75                         |
| 56         | 3.005              | 3.461                 | 71                                          | 78                         |
| 59         | 3.020              | 3.547                 | 75                                          | 83                         |
| 65         | 3.045              | 3.728                 | 83                                          | 95                         |
| 69         | 3.085              | 3.920                 | 89                                          | 105                        |
| 71         | 3.100              | 4.032                 | 92                                          | <b>  111</b>               |
| 72         | 3.100              | 4.077                 | 94                                          | 114                        |
| 75         | 3.150              | 4.282                 | 98                                          | 122                        |
| 76         | 3.250              | 4.598                 | 102                                         | 133                        |
| 77         | 3.250              | 4.608                 | 102                                         | 134                        |
| 78         | 3.345              | 4.943                 | 106                                         | 145                        |
| 79         | 3.355              | 5.104                 | 108                                         | 152                        |
| 79         | 3.420              | 5.500                 | 110                                         | 166                        |
| 79         | 3.525              |                       | 112                                         |                            |
| 77         | 3.655              |                       | 113                                         |                            |
| 75         | 3.865              |                       | 113                                         | [                          |
| 71         | 4.100              |                       | 113                                         | }                          |

Thickness = .144 inch
Yield = 45.9 ksi
Specimen Width = 18.03 inch

TABLE K19
R-CURVE DATA ASSOCIATED WITH
FIGURES K2 AND K4 (SPECIMEN 2)

|                      | Half Crack         | Half<br>Crack Length, |              | ding Fracture           |
|----------------------|--------------------|-----------------------|--------------|-------------------------|
| Load, kips           | Length<br>(c) inch | (c + rho)             | Not adjusted | Adjusted for Plasticity |
| 8                    | 2.880              | 2.886                 | 10           | 9                       |
| 18                   | 2.880              | 2.918                 | 22           | 22                      |
| 26                   | 2.950              | 3.036                 | 33           | 34                      |
| 36                   | 2.950              | 3.122                 | 45           | 46                      |
| 44                   | 2.975              | 3.231                 | 56           | 58                      |
| 49                   | 2.990              | 3.331                 | 63           | 67                      |
| 56                   | 3.020              | 3.477                 | 71           | 78                      |
| 58                   | 3.025              | 3.530                 | 74           | 82                      |
| 63                   | 3.050              | 3.687                 | 81           | 92                      |
| 67                   | 3.075              | 3.837                 | 86           | 100                     |
| 68                   | 3.080              | 3.901                 | 88           | 104                     |
| 70                   | 3.115              | 4.025                 | 92           | 110                     |
| 73                   | 3.150              | 4.214                 | 96           | 119                     |
| 75<br>76             | 3.240              | 4.499                 | 101          | 129                     |
| 76<br>78             | 3.260              | 4.627                 | 103          | 134                     |
| 78                   | 3.275              | 4.766                 | 105          | 140                     |
| 79                   | 3.365              | 5.054                 | 107          | 149                     |
| 79                   | 3.425              |                       | 110          |                         |
| 7 <del>9</del><br>78 | 3.425              |                       | 110          | Í                       |
|                      | 3.540              |                       | 112          | ļ.                      |
| 78                   | 3.605              | ]                     | 112          | 1                       |
| 76                   | 3.735              |                       | 112          |                         |
| 75                   | 3.865              |                       | 115          |                         |
| 73                   | 3.940              |                       | 113          | 1                       |
| 74                   | 3.955              | 1                     | 114          | 1                       |
| 73                   | 4.000              | 1                     | 114          | Į.                      |

Thickness = .144 inch Yield = 45.9 ksi Specimen Width = 18.01 inch



FIGURE K5. R-CURVE RESULTS FOR 2091-T3 0.144 INCH SHEET (L-T ORIENTATION). AIR FORCE.

## R-CURVE DATA ASSOCIATED WITH FIGURE K5 (L-T ORIENTATION)

A91-LT-1 Oct 7, 1988

W = 2.509 inches

U = 0.143 inches

E = 12.760 MSI

YS = 51.000 KSI

Initial a (bhysical) = 1.046 inches

Initial a (comoliance) = 1.044 inches

|          |                  |          |        |        |        |         |        |        |            |        |        |        |        | bi Level | bileval | valid  | invalid | nvel 1d | Velid  | invalid      | nvelid | Di Leva | nvello |               |          |
|----------|------------------|----------|--------|--------|--------|---------|--------|--------|------------|--------|--------|--------|--------|----------|---------|--------|---------|---------|--------|--------------|--------|---------|--------|---------------|----------|
|          |                  |          |        |        |        |         |        |        |            |        |        |        |        | Ţ        | -       | -      | -       | -       | _      | -            | ~      | -       | 2      |               |          |
| delta a  | !<br>!<br>!      | 0.0003   | 0.0030 | 0.0064 | 0900.0 | \$600.0 | 0.0258 | 0.0331 | 0.0438     | 0.0566 | 0.0638 | 0.0734 | 0.0935 | 0.1043   | 0.1153  | 0.1247 | 0.1411  | 0.1513  | 0.1736 | 0.1890       | 0.2281 | 0.2523  | 0.2994 |               | 0.0670   |
| a-eff    | 1.0436           | 1.0438   | 1.0465 | 1.0500 | 1.0495 | 1,0530  | 1.0694 | 1.0767 | 1.0874     | 1.1002 | 1.1074 | 1.1170 | 1.1371 | 1.1479   | 1.1589  | 1.1683 | 1.1847  | 1.1949  | 1.2172 | 1.2326       | 1.2717 | 1.2959  | 1.3430 |               | 1.1105   |
| 2        | ***              | 18.22    | 21.74  | 23.57  | 26.22  | 29.01   | 32.57  | 35.87  | 39.10      | 42.61  | 45.79  | 48.13  | 51.57  | 54.08    | 56.34   | 58.59  | 61.52   | 63.81   | 67.47  | 70.04        | 75.90  | 79.32   | 85.79  | •             | 46.10    |
| a-ef B/W | •                | •        | 0.4171 | 0.4185 | 0.4183 | 0.4197  | 0.4262 | 0.4291 | 0.4334     | 0.4385 | 0.4413 | 0.4452 | 0.4532 | 0.4575   | 0.4619  | 0.4656 | 0.4722  | 0.4762  | 0.4851 | 0.4913       | 0.5068 | 0.5165  | 0.5353 | T value       | 0.4426   |
| EB2V/P a | compliance crack | •        | 42.74  | 42.95  | 42.92  | 43.14   | 44.17  | 44.64  | 45.34      | 46.21  | 46.70  | 37     | 48.82  | 49.62    | 50.46   | 51.19  | 52.51   | 53.35   | 55.26  | <b>26.64</b> | 60.36  | 62.84   | 69.12  | the 10% SECAN | 46.92 0. |
| P (LBF)  | initial co       |          | 645    | 969    | 775    | 854     | 942    | 1029   | 1109       | 1192   | 1271   | 1321   | 1384   | 1434     | 1475    | 1518   | 1564    | 1603    | 1651   | 1692         | 1738   | 1762    | 1792   | value is      | 1275     |
| 2v       |                  | <b>.</b> | 0.0140 | 0.0153 | 0.0172 | 0.0191  | 0.0218 | 0.0241 | 0.0265     | 0.0292 | 0.0315 | 0.0333 | 0.0360 | 0.0380   | 0.0398  | 0.0416 | 0.0440  | 0.0459  | 0.0490 | 0.0512       | 0.0565 | 0.0597  | 0.0660 | fol lowing    | 0.0318   |
| POINT    | 1                | -        | ~      | m      | ◀      | S       | æ      | _      | <b>6</b> 0 | 9      | 10     | 11     | 12     | 13       | 14      | 15     | 16      | 17      | 18     | 5            | 20     | 21      | 22     | The           |          |



FIGURE K6. R-CURVE RESULTS FOR 2091-T3 0.144 INCH SHEET (T-L Orientation). AIR FORCE.

## R-CURVE DATA ASSOCIATED WITH

## FIGURE K6 (T-L ORIENTATION)

1.0456 1.0456 1.0459 1.0453 1.0453 1.06661 1.10026 1.10026 1.2498 1.3299 1.3299 1.3299 a-eff 112.82 20.48 220.48 220.48 330.48 334.99 441.21 441.21 60.86 60.86 72.76 75.02 79.53 83.23 88.15 compliance crack length 25% SECAN'S VALUE 0.551866 8-ef 8/W A91TL1 Oct 6, 1948

W = 2.504 inches

B = 0.143 inches

E = 12.520 MSI

YS = 55.000 KSI

Initial a (obysical) = 1.048 inches

Initial a (compliance) = 1.046 inches 46.94 48.94 551.84 551.83 57.11 557.11 558.71 73.25 73.25 42.68 42.68 43.15 44.11 44.25 46.67 46.96 EB2V/P value is the P (LBP) fol lewing 0.0543 2 POINT 

-0.0023 -0.00023 -0.00023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -0.0

delte a

invelld

0.1884

1.2340

0.4929

57.02

1.1161

47.82

following value is the 10% SECANT value 0.0339 1314 47.48 0.4458

2



FIGURE K7. R-CURVE RESULTS for 2091-T3 0.144 Inch Sheet (60° Orientation, Specimen 1).
Air Force.

TABLE K22

R-CURVE DATA ASSOCIATED WITH

# FIGURE K7 (60° ORIENTATION, SPECIMEN 1)

| 1602<br>2.2.2.<br>112.12.141.141.141.141.141.141.141.141.1 | Oct 7, 199,<br>506 inches<br>143 inches<br>450 MSI<br>000 KSI<br>e (chysics | 1               | 1.109       | inches:  |          |       |        |         |
|------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|-------------|----------|----------|-------|--------|---------|
| POINT                                                      | 2 v                                                                         |                 |             | 882V/P   | 8-ef B/W | Kr    | 330-8  | delts s |
| 1                                                          | **                                                                          | initial         |             |          | !        |       | ! 5    |         |
| -                                                          |                                                                             | •               |             | 46.08    | 4378     | 10    | 1      | 5       |
| 7                                                          | 0.0115                                                                      | 489             |             | 46.35    | •        | 17.49 | 1.1007 | ē       |
| <b>~</b>                                                   |                                                                             | 656             |             | •        | ₹.       | 23.66 | 7      |         |
| <b>→</b> 1                                                 |                                                                             | 764             |             | •        | ٦.       | 27.70 | 7      | 9       |
| <b>S</b>                                                   |                                                                             | 821             |             | 47.86    | ₹        | 30.10 | ∹      | 10      |
| <b>6</b>                                                   |                                                                             | 998             |             |          | ٦.       | 31,82 | 7      | 10.     |
| _                                                          |                                                                             | <del>6</del> 30 | -           |          | ₹        | 34.68 | 7      | .03     |
| <b>30</b> (                                                |                                                                             | 1011            |             | •        | ٦.       | 37.87 | 7      | .03     |
| <b>o</b> ;                                                 |                                                                             | 1060            |             | •        | ٦.       | 39.89 | 7      | .03     |
| 01                                                         |                                                                             | 1116            |             |          | ₹        | 42.82 | 7      | .05     |
|                                                            |                                                                             | 1168            |             |          | ٦.       | 45.34 | 7      | 3       |
| 12                                                         |                                                                             | 1238            |             |          |          | •     | 7      | 8       |
| 13                                                         |                                                                             | 1 28 4          |             | •        | 0.4788   | 51.45 | 7      | 6       |
| 14                                                         |                                                                             | 1266            |             | •        | .47      | 0     | 7      | 9       |
| 5                                                          | •                                                                           | 1293            |             | •        |          | 51.93 | 7      | 60.     |
| 91                                                         | .03                                                                         | 1321            |             | •        | ۲.       | ~     | 7      | 97.     |
| 17                                                         | 2                                                                           | 1343            |             | •        | 5        | 87    |        | .12     |
| 81                                                         | .043                                                                        | 1384            |             | •        | 4.       | 30    |        | .13     |
| 61                                                         | •                                                                           | 1422            |             | ?        | . 502    | ~     | 7      | .15     |
| 20                                                         | 5                                                                           | 1463            |             | _        | . 508    | ÷     | 7      | .16     |
| 12                                                         | .053                                                                        | 1508            | -           | 4.6      | 'n       | 69.27 | ۳.     | 2       |
| 22                                                         | 8                                                                           | 1530            |             | 71.17    | .547     | •     | T.     | •       |
| 23                                                         | . n6a                                                                       | 1515            | -           | 81.30    | 0.5741   | 82.92 | ₹.     |         |
| Th.                                                        |                                                                             | 5               | 4<br>4<br>5 |          | 3        |       |        |         |
| 24                                                         | 0.0330                                                                      | 1175            | •           | 51.76 0. |          | 45.67 | 1.1737 | 0.0672  |
|                                                            |                                                                             |                 |             |          |          |       |        |         |

invelid



FIGURE K8. R-CURVE RESULTS FOR 2091-T3 0.144 INCH SHEET (60° ORIENTATION, SPECIMEN 2). AIR FORCE

# R-CURVE DATA ASSOCIATED WITH FIGURE K8 (60° ORIENTATION, SPECIMEN 2)

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B = 0.143<br>B = 11.980<br>YS = 50.000<br>Initial a (r<br>Initial a (c | (physical) = (compliance) | ' <u>?</u> | 1.036 inches<br>1.034 inches |        |              |        |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|------------|------------------------------|--------|--------------|--------|---------------------------------------|
| *** initial compliance crack length *** initial compliance crack length *** 1.0343  0.106  493  42.05  0.4125  10.346  1.0346  0.1059  70.41.64  1.0342  1.0346  1.0346  1.0346  1.0346  1.0346  0.41.64  1.0346  1.0346  0.41.84  0.41.12  0.41.12  26.92  1.0342  -0.022  952  42.19  0.41.12  26.92  1.0349  -0.024  1.0349  1.0349  1.0349  1.0349  1.0349  1.0349  1.0349  1.0349  1.0349  1.0372  1.0349  1.0372  1.0349  1.0372  1.0349  1.0372  1.034  1.0372  1.0349  1.0372  1.0349  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373  1.0373 |                                                                        | 20                        | 13         |                              |        | ã            | p-eff  | delte a                               |
| .0106         493         42.05         0.4125         16.32         1.0346         -0.0136           .0136         622         41.66         0.4099         20.46         1.0260         -0.0126           .0159         709         42.03         0.4124         23.49         1.0342         -0.0126           .022         993         42.19         0.4135         29.67         1.0359         0.022           .022         952         42.19         0.4162         31.86         1.0438         0.0238           .024         1038         42.72         0.4162         34.80         1.0438         0.0438           .0259         11189         44.15         0.4261         40.85         1.0579         0.0438           .0259         11189         44.15         0.4261         40.85         1.0579         0.0539           .0313         1253         44.59         0.4261         43.73         1.0753         0.0439           .0325         1354         45.77         0.4359         47.80         1.0310         0.0441           .0326         1472         46.31         46.31         56.36         1.1250         0.04531         56.26         1.1250         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                      |                           | tial       | 92                           | leng   |              | 1.0343 | † † † † † † † † † † † † † † † † † † † |
| 0136         622         41.66         0.4099         20.46         1.0280         -0.           0159         709         42.03         0.4124         23.49         1.0342         -0.           0124         813         42.03         0.4134         26.92         1.0349         -0.           0222         893         42.19         0.4135         29.67         1.0369         0.           0224         1038         42.19         0.4162         31.86         1.0438         0.           0259         1119         43.48         0.4218         38.03         1.0438         0.           0259         11189         44.15         0.4261         40.657         0.           0325         11263         44.15         0.4261         40.65         1.0579         0.           0325         1294         45.00         0.4266         43.73         1.0579         0.           0325         1354         45.77         0.4359         47.80         1.0333         0.           0342         14.72         46.71         0.4470         53.60         1.1362         0.           0441         153         48.80         0.4585         59.09 </td <td></td> <td>0.0106</td> <td>493</td> <td>2.0</td> <td>4125</td> <td>16.32</td> <td>-</td> <td>0.0002</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | 0.0106                    | 493        | 2.0                          | 4125   | 16.32        | -      | 0.0002                                |
| 0159         709         42.03         0.4124         23.49         1.0342         -0.0184           0184         0112         26.92         1.0311         -0.022         0.4135         29.67         1.0369         0.022           0222         952         42.19         0.4135         29.67         1.0369         0.021           0224         1038         42.72         0.4170         34.86         1.0457         0.0269           0259         1119         44.59         0.4261         40.85         1.0559         0.001           0313         1263         44.59         0.4266         43.73         1.0559         0.001           0325         1354         45.77         0.4364         45.73         1.0933         0.001           0332         1472         46.71         0.4414         50.96         1.1070         0.001           0341         1533         48.80         0.4470         53.60         1.1362         0.001           0441         1533         48.80         0.4585         59.09         1.1499         0.001           0441         1636         51.05         0.4585         59.09         1.1696         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        | 0.0136                    | 622        | ā                            | 7      | 20.46        | 1.0280 | 900                                   |
| 0184         015         41.84         0.4112         26.92         1.0311         -0.0205           0222         952         42.19         0.4135         29.67         1.0369         0.022           0224         1038         42.72         0.4162         31.86         1.0459         0.021           0244         1038         42.72         0.4170         34.80         1.0457         0.021           0291         1189         44.15         0.4261         40.85         1.0559         0.00           0313         1294         45.70         0.4268         43.73         1.0753         0.00           0325         1354         45.77         0.4313         45.13         1.0753         0.00           0332         1472         46.71         0.4314         50.96         1.1070         0.00           0341         1570         46.80         0.4470         53.60         1.1362         0.00           0421         1533         48.80         0.4585         59.09         1.1499         0.00           0421         1566         51.05         0.4585         59.09         1.1499         0.00           041         1566         51.05 </td <td></td> <td>0.0159</td> <td>709</td> <td></td> <td>7</td> <td>23.49</td> <td>1.0342</td> <td>-0.0001</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        | 0.0159                    | 709        |                              | 7      | 23.49        | 1.0342 | -0.0001                               |
| 0205         893         42.19         0.4135         29.67         1.0369         0.           0222         952         42.60         0.4162         31.86         1.0436         0.           0244         1038         42.72         0.4170         34.80         1.0457         0.           0259         11189         44.15         0.4261         40.85         1.0579         0.           0313         1263         44.59         0.4268         43.73         1.0559         0.           0325         1294         45.77         0.4359         47.80         1.0933         0.           0336         1354         45.77         0.4359         47.80         1.0933         0.           0337         1472         46.71         0.4414         50.96         1.1076         0.           0421         1533         48.80         0.4470         53.60         1.1362         0.           0421         1533         49.82         0.4585         59.09         1.1499         0.           0471         1636         51.05         0.4649         62.66         1.1696         0.           0550         1725         56.24         0.4895 <td></td> <td>0.0184</td> <td>015</td> <td>-</td> <td>7</td> <td>26.92</td> <td>1.0311</td> <td>-0.0032</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        | 0.0184                    | 015        | -                            | 7      | 26.92        | 1.0311 | -0.0032                               |
| .0222         952         42.60         0.4162         31.86         1.0438         0.0244           .0244         1038         42.72         0.4170         34.80         1.0457         0.0257           .0291         11189         44.15         0.4281         43.73         1.0589         0.0013           .0313         1263         44.59         0.4284         43.73         1.0753         0.0013           .0325         1294         45.77         0.4359         47.80         1.0933         0.0013           .0346         1354         45.77         0.4414         50.96         1.1070         0.0013           .0372         1472         46.71         0.4414         50.96         1.1070         0.0013           .0421         1533         48.80         0.4470         53.60         1.11362         0.0013           .0431         1570         49.82         0.4585         59.09         1.11499         0.0013           .041         1636         51.05         0.4649         62.66         1.1658         0.0013           .052         1740         57.68         0.4957         71.07         1.1943         0.0010           .056 <td< td=""><td></td><td>0.0205</td><td>893</td><td>_</td><td>₹.</td><td>29.67</td><td>1.0369</td><td>0.0026</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 0.0205                    | 893        | _                            | ₹.     | 29.67        | 1.0369 | 0.0026                                |
| .0244         1038         42.72         0.4170         34.80         1.0457         0.0269           .0259         1119         43.48         0.4218         38.03         1.0579         0.0291           .0291         1189         44.15         0.4261         40.65         1.0685         0.0033           .0313         1263         44.59         0.4286         43.73         1.0753         0.003           .0325         1354         45.00         0.4313         45.13         1.0456         0.003           .0372         1472         45.71         0.4414         50.96         1.1070         0.003           .0374         1472         47.69         0.4470         53.60         1.1136         0.003           .0421         1533         48.80         0.4470         56.77         1.1362         0.003           .0441         1570         49.82         0.4585         59.09         1.1499         0.004           .0471         1636         51.05         0.4649         62.66         1.1698         0.004           .0550         1725         56.24         0.4895         71.07         1.1943         0.004           .0569         1740 </td <td></td> <td>. 022</td> <td>952</td> <td>•</td> <td>₹.</td> <td>31.86</td> <td>1.0438</td> <td>0.0095</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | . 022                     | 952        | •                            | ₹.     | 31.86        | 1.0438 | 0.0095                                |
| .0269         1119         43.48         0.4218         38.03         1.0579         0.0291         1189         44.15         0.4261         40.65         1.0685         0.0291         1189         44.15         0.4264         40.73         1.0585         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        | .024                      | 1038       |                              | ٠.     | 34.80        | 1.0457 | 110                                   |
| .0291 1189 44.15 0.4261 40.85 1.0685 0.0313 1263 44.59 0.4288 43.73 1.0753 0.0325 1.394 45.00 0.4313 45.13 1.0816 0.0334 13.24 45.77 0.4314 45.80 1.0933 0.0372 1421 46.71 0.4414 50.96 1.1070 0.0372 1421 46.71 0.4414 50.96 1.1070 0.0421 1533 48.80 0.4531 56.77 1.1362 0.0471 1570 49.82 0.4585 59.09 1.1499 0.0471 1636 51.05 0.4649 62.66 1.1658 0.0471 1.1943 0.0550 1725 56.24 0.4895 71.07 1.2276 0.0569 1740 57.68 0.4957 73.03 1.2432 0.0771 1765 76.54 0.5612 91.85 1.4074 0.05612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 0.0269                    | 1119       | •                            | 7      | 38.03        | 1.0579 | 023                                   |
| 0315 1285 45.00 0.4313 45.13 1.0515 0.0325 1394 45.00 0.4313 45.13 1.0816 0.0334 1354 45.77 0.4359 47.80 1.0833 0.0372 1472 46.71 0.4414 50.96 1.1070 0.0421 1533 48.80 0.4470 53.60 1.1210 0.0421 1530 49.82 0.4585 59.09 1.1499 0.0471 1636 51.05 0.4649 62.66 1.1658 0.0471 1636 53.35 0.4762 67.17 1.1943 0.0550 1740 57.68 0.4957 73.03 1.2432 0.0771 1765 76.54 0.5612 91.85 1.4074 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 0.0291                    | 1169       | -                            | •      | 40.85        | 90.    | 0.0342                                |
| .0346 1354 45.77 0.4359 47.80 1.0933 0.0372 1421 46.71 0.4414 50.96 1.1070 0.0394 1472 47.69 0.4470 53.60 1.1210 0.0421 1533 48.80 0.4531 56.77 1.1362 0.0441 1570 49.82 0.4585 59.09 1.1499 0.0471 1636 53.35 0.4649 62.66 1.1658 0.0472 1725 56.24 0.4895 71.07 1.1943 0.0569 1740 57.68 0.4957 73.03 1.2432 0.0771 1765 76.54 0.5612 91.85 1.4074 0.05612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        | 0.0313                    | 1263       | 44.09                        | •      | -            | ٠<br>و | 0.0410                                |
| .0372     1421     46.71     0.4414     50.96     1.1070     0.394       .0394     1472     47.69     0.4470     53.60     1.1210     0.394       .0421     1533     48.80     0.4531     56.77     1.1362     0.304       .0441     1570     49.82     0.4585     59.09     1.1499     0.304       .0471     1636     51.05     0.4649     62.66     1.1658     0.306       .0550     1725     56.24     0.4895     71.07     1.1943     0.306       .0569     1740     57.68     0.4957     73.03     1.2432     0.307       .0771     1765     76.54     0.5612     91.85     1.4074     0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        | 0.0346                    | 1354       | 45.77                        | 7      | 4 6          | 60     | 0.080                                 |
| .0394     1472     47.69     0.4470     53.60     1.1210     0       .0421     1533     48.80     0.4531     56.77     1.1362     0       .0441     1570     49.82     0.4585     59.09     1.1499     0       .0471     1636     51.05     0.4649     62.66     1.1558     0       .0512     1696     53.35     0.4762     67.17     1.1943     0       .0550     1725     56.24     0.4895     71.07     1.2276     0       .0569     1740     57.68     0.4957     73.03     1.2432     0       .0771     1765     76.54     0.5612     91.85     1.4074     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        | 0.0372                    | 1421       | 46.71                        | •      | 6            | 107    | 0.0727                                |
| .0421     1533     48.80     0.4531     56.77     1.1362     0.       .0441     1570     49.82     0.4585     59.09     1.1499     0.       .0471     1636     51.05     0.4649     62.66     1.1558     0.       .0512     1696     53.35     0.4762     67.17     1.1943     0.       .0550     1725     56.24     0.4895     71.07     1.2276     0.       .0569     1740     57.68     0.4957     73.03     1.2432     0.       .0771     1765     76.54     0.5612     91.85     1.4074     0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        | 0.0394                    | 1472       | 47.69                        | ્.     | 3.6          | 1.1210 | 0.0867                                |
| .0441 1570 49.82 0.4585 59.09 1.1499 00471 1636 51.05 0.4649 62.66 1.1658 00512 1696 53.35 0.4762 67.17 1.1943 00550 1725 56.24 0.4895 71.07 1.2276 00569 1740 57.68 0.4957 73.03 1.2432 00771 1765 76.54 0.5612 91.85 1.4074 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        | 0.0421                    | 1533       |                              | *      | 6.7          | 1.1362 | 0.1019                                |
| .0471 1636 51.05 0.4649 62.66 1.1658 00512 1696 53.35 0.4762 67.17 1.1943 00550 1725 56.24 0.4895 71.07 1.2276 00569 1740 57.68 0.4957 73.03 1.2432 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        | 0.0441                    | 1570       | 8                            | .45    | 59.09        | 1.1499 | 0.1156                                |
| .0512 1696 53.35 0.4762 67.17 1.1943 0.<br>.0550 1725 56.24 0.4895 71.07 1.2276 0.<br>.0569 1740 57.68 0.4957 73.03 1.2432 0.<br>.0771 1765 76.54 0.5612 91.85 1.4074 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | 0.0471                    | 1636       | 0                            | .16    | 62.66        | •      | 0.1315                                |
| .0550 1725 56.24 0.4895 71.07 1.2276 0.<br>.0569 1740 57.68 0.4957 73.03 1.2432 0.<br>.0771 1765 76.54 0.5612 91.85 1.4074 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 0.0512                    | 1696       | Ü                            | .47    | 67.17        | 1.1943 | 0.1600                                |
| .0569 1740 57.68 0.4957 73.03 1.2432 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | 0.0220                    | 1725       | ~                            | •      | 9.7          | . 227  |                                       |
| .0771 1765 76.54 0.5612 91.85 1.4074 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | 0.0569                    | 1740       |                              | ٠.     | 3.0          | . 243  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 1770.0                    | 1765       |                              | 'n     | 1.8          | .407   | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 0.0370                    | 1411       | 46.7                         | 0.4419 | <b>20.66</b> | 1.1061 | 0.033                                 |

invelid invelid invelid invelid invelid invelid



FIGURE K9. R-CURVE RESULTS FOR 2091-T3 0.144 INCH SHEET (L-T ORIENTATION, -321°F). AIR FORCE.

**TABLE K24** 

# R-CURVE DATA ASSOCIATED WITH FIGURE K9 (L-T ORIENTATION, -321°F)

A91-LT-2 7 Oct, 1988
W = 2.501 inches
B = 0.144:inches
E = 13.690 MSI
YS = 51.000 KSI
Initial a (compliance) = 1.031 inches
Initial a (compliance) = 2.029:inches
POINT 2V P (LBF) RB2V/P a

WGJO-B

|                  |         |         |         |         |         |        |        |        |        |        |        |        |            |        |        |        | invelid | invelid | invel 1d | pileaui | bi Leaui | Dileani | I nvel 1d | invelid | invalid    |                                  |
|------------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|---------|----------|---------|----------|---------|-----------|---------|------------|----------------------------------|
|                  | -0.0021 | -0.0089 | -0.0030 | -0.0067 | -0.0043 | 0.0012 | 0.0042 | 0.0102 | 0.0251 | 0.0318 | 0.0396 | 0.0474 | 0.0561     | 0.0639 | 0.0659 | 0.071  | 0.0831  | _       |          | _       |          | _       | _         | 0.2859  | 0.3121     | 0.0683                           |
| 1.0287           | 1.0266  | 1.0197  | 1.0257  | 1.0219  | 1.0244  | 1.0299 | 1.0328 | 1.0389 | 1.0537 | 1.0604 | 1.0682 | 1.0761 | 1.0848     | 1.0925 | 1.0945 | 1.1058 | 1.1117  | 1.1260  | 1.1342   | 1.1587  | 1.1826   | 1.2164  | 1.2504    | 1.3146  | 1.3408     | 1.0970                           |
|                  | 15.15   | 20.38   | 23.27   | 25.49   | 28.64   | 31.89  | 33.59  | 36.32  | 39.91  | 41.91  | 43.81  | 45.93  | 47.65      | 49.05  | 50.04  | 52.01  | 53.50   | 55.61   | 57.43    | 60.74   | 63.84    | 99.19   | 71.29     | 77.31   | 78.74      | 50.17                            |
| - 1              | 0.4105  | 0.4078  | 0.4102  | 0.4087  | 0.4097  |        | -      | -      | _      | -      | •      | 0.4303 | -          | -      |        | 0.4422 | 9.440   | 0.4503  | 0.4536   | 0.4634  | •        | 0.4865  | 0.5000    | 0.5257  | 0.5362     | 10% SECANT value<br>46.24 0.4387 |
| compliance crack | 41.75   | 41.34   | 41.69   | 41.47   | 41.62   | 41.94  | 42.12  | 42.49  | 43.40  | 43.83  | 44.33  | 44.84  | 45.41      | 45.94  | 46.07  | 46.85  | 47.27   | 48.29   | 48.89    | 50.76   | 52.67    | 55.56   | 58.69     | 65.36   | 68.39      | <b>2</b>                         |
| initial c        | 99      | 624     | 708     | 778     | 872     | 965    | 1014   | 1089   | 1178   | 1228   | 1272   | 1323   | 1359       | 1387   | 1412   | 1449   | 1481    | 1515    | 15 50    | 1594    | 1630     | 1660    | 1678      | 1678    | 1651       | value is                         |
|                  | 0.0088  | 0.0121  | 0.0140  | 0.0154  | 0.0175  | 0.0196 | 0.0207 | 0.0225 | 0.0250 | 0.0264 | 0.0277 | 0.0292 | 0.0304     | 0.0314 | 0.0321 | 0.0335 | 0.0346  | 0.0362  | 0.0375   | 0.0402  | 0.0427   | 0.0459  | 0.0491    | 0.0548  | 0.0564     | following<br>0.0322              |
|                  | -~      | •       | ◀       | ın      | 9       | 7      | •      | •      | 10     | 11     | 12     | 13     | <b>+</b> 1 | 15     | 16     | 17     | 18      | 19      | 20       | 21      | 22       | 23      | 24        | 25      | <b>3</b> 6 | The 1                            |

TABLE K25

PATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

ALCOA 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY           | ORIENTATION | STRESS<br>(KSI) | CYCLES      |
|-------------------|-------------|-----------------|-------------|
| MCDONNELL DOUGLAS | LONG        | 50.2            | 65,600 +    |
| ASTRO., CA        |             | 45.2            | 209,000 +   |
|                   |             | 42.0            | 67,000      |
|                   |             | 40.0            | 353,000 +   |
|                   |             | 38.1            | 670,000 +   |
|                   |             | 35.9            | 84,400 €    |
|                   |             | 35.7            | 45,700 #    |
|                   |             | 33.1            | 120,000     |
|                   |             | 30.9            | 340,000     |
|                   |             | 29.1            | 1,000,000 * |

- (\*): INDICATES A RUN-OUT TEST
- (#): INDICATES FAILURE AT PIN HOLE
- (@): INDICATES FAILURE AT RADIUS
- (+): INDICATES SPECIMENS WERE RECONFIGURED AND HAD SURFACE COATING REMOVED

TABLE K26

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR

ALCOA 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY           | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|-------------------|-------------|-----------------|--------------|
| MCDONNELL DOUGLAS | L TRANS     | 49.9            | 42,300 +     |
| ASTRO., CA        |             | 45.0            | 87,700 #+    |
| •                 |             | 45.0            | 39,900       |
|                   |             | 39.8            | 293,000 +    |
|                   |             | 35.0            | 1,000,000 *+ |
|                   |             | 34.9            | 385,000 !    |
|                   |             | 33.0            | 203,000 !    |
|                   |             | 33.0            | 621,000 !    |
|                   |             | 30.9            | 1,530,000 *! |

- (\*): INDICATES A RUN-OUT TEST
- (#): INDICATES FAILURE AT PIN HOLE
- (!): INDICATES THE SPECIMENS WERE ONLY RECONFIGURED
- (+): INDICATES SPECIMENS WERE RECONFIGURED AND HAD SURFACE COATING REMOVED



FIGURE K10. FATIGUE RESULTS FOR 2091-T3
0.144 INCH SHEET (R=1.0, Kt =1.0).
MCDONNELL DOUGLAS ASTRONAUTICS

TABLE K27

PATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR

ALCOA 2091-T3 SHEET (0.144" X 48" X 48")

| СОМРАНУ           | ORIENTATION | STRESS<br>(KSI) | CYCLES             |
|-------------------|-------------|-----------------|--------------------|
| MCDONNELL DOUGLAS | LONG        | 24.9            | 16,100             |
| ASTRO., CA        |             | 21.9<br>19.9    | 32,200             |
|                   |             | 18.0            | 109,000<br>112,000 |
|                   |             | 18.0            | 71,250             |
|                   |             | 15.0            | 294,000            |
|                   |             | 14.9            | 1,000,000 *        |
|                   |             | 14.0            | 1,000,000 *        |
|                   |             | 13.0            | 1,000,000 *        |

(\*): INDICATES A RUN-OUT TEST

TABLE K28

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR

ALCOA 2091-T3 SHEET (0.144" X 48" X 48")

| СОМРАНУ           | ORIENTATION | STRESS<br>(KSI) | CYCLES    |
|-------------------|-------------|-----------------|-----------|
| MCDONNELL DOUGLAS | L TRANS     | 29.9            | 10,800    |
| ASTRO., CA        |             | 28.1            | 11,200    |
| ·                 |             | 26.8            | 23,700    |
|                   |             | 25.1            | 34,900    |
|                   |             | 22.1            | 58,700    |
|                   |             | 19.9            | 87,400    |
|                   |             | 18.0            | 135,000   |
|                   |             | 16.0            | 247,000   |
|                   |             | 14.9            | 1,000,000 |



FIGURE K11. FATIGUE RESULTS FOR 2091-T3 0.144 INCH SHEET (R=1.0, Kt=3.0). MCDONNELL DOUGLAS ASTRONAUTICS



FIGURE K12. FALSTAFF SPECTRUM FATIGUE CRACK LENGTH VS FLIGHTS DATA FOR 2091-T3 0.144 INCH SHEET, AIP FORCE.



FIGURE K13. FALSTAFF SPECTRUM FATIGUE CRACK GROWTH RATE VS KMAX DATA FOR 2091-T3 0.144 INCH SHEET. AIR FORCE.



FIGURE K14. MINI-TWIST SPECTRUM FATIGUE CRACK LENGTH VS FLIGHTS DATA FOR 2091-T3 0.144 INCH SHEET(SPECIMEN #2091A912)



FIGURE K15. MINI-TWIST SPECTRUM CRACK GROWTH RATE VS KMAX DATA FOR 2091-T3 0.144 INCH SHEET (Specimen #2091A912).
AIR FORCE. 372



FIGURE K16. MINI-TWIST SPECTRUM FATIGUE CRACK LENGTH VS FLIGHTS DATA FOR 2091-T3 0.144 INCH SHEET(SPECIMEN #2091T34M).
AIR FORCE.



FIGURE K17. MINI-TWIST SPECTRUM CRACK GROWTH RATE VS KMAX DATA FOR 2091-T3 0.144 INCH SHEET (SPECIMEN #2091T34M). AIR FORCE.

#### TENSILE RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 16 HOURS AT 335 P

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | MOITA     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                          | LONG      | 67.3<br>67.1                  | 56.1<br>56.3               | 14.2<br>14.3 |           |            |
|                               |                             | AVERAGI   | <b>67.2</b>                   | 56.2                       | 14.3         |           |            |
|                               | STANDARD                    | DEVIATION | N 0.1                         | 0.1                        | 0.1          |           |            |

#### TABLE K30

#### TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                          | 45        | 65.3<br>65.6                  | 46.7<br>47.4               | 19.2<br>19.8 |           |            |
|                               |                             | average   | 65.5                          | 47.1                       | 19.5         |           |            |
|                               | STANDARD                    | DEVIATION | 0.2                           | 0.5                        | 0.4          |           |            |

#### TENSILE RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 16 HOURS AT 335 F

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | RLONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                          | L TRANS  | 70.7<br>70.9                  | 51.3<br>52.8               | 12.8         |           |            |
|                               |                             | AVERAGE  | 70.8                          | 52.1                       | 12.0         |           |            |
|                               | STANDARD                    | DEVIATIO | N 0.1                         | 1.1                        | 1.2          |           |            |

#### TABLE K32

#### TENSILE RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GEMERAL<br>DYNAMICS,<br>TEXAS | RT                          | LONG      | 69.6<br>69.9                  | 58.8<br>59.4               | 15.3         |           |            |
|                               |                             | AVERAGI   | 69.8                          | 59.1                       | 15.3         |           |            |
|                               | STANDARD                    | DEVIATION | N 0.2                         | 0.4                        |              |           |            |

#### TENSILE RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 32 HOURS AT 335 F

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                          | 45        | 68.8<br>68.1                  | 51.9<br>51.1               | 17.9<br>18.5 |           |            |
|                               |                             | AVERAGE   | 68.5                          | 51.5                       | 18.2         |           |            |
|                               | STANDARD                    | DEVIATION | i 0.5                         | 0.6                        | 0.4          |           |            |

#### TABLE K34

#### TENSILE RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                       | TEST<br>TEMP<br>(DEGREES F) | ATION     | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-------------------------------|-----------------------------|-----------|-------------------------------|----------------------------|--------------|-----------|------------|
| GENERAL<br>DYNAMICS,<br>TEXAS | RT                          | L TRANS   | 73.9<br>74.5                  | 57.0<br>54.5               | 15.6<br>14.3 |           |            |
|                               |                             | AVERAGE   | 74.2                          | 55.8                       | 15.0         |           |            |
|                               | STANDARD                    | DEVIATION | 0.4                           | 1.8                        | 0.9          |           |            |

#### KAHN TEAR TEST RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 16 HOURS AT 335 F

| СОМРАНУ                    | ORIENTATION        | TEAR<br>STRENGTH<br>(KSI) |  |
|----------------------------|--------------------|---------------------------|--|
| GENERAL DYNAMICS,<br>TEXAS | L-T                | 81.4<br>78.8              |  |
|                            | AVERAGE            | 80.1                      |  |
|                            | STANDARD DEVIATION | 1.9                       |  |

#### TABLE K36

#### KAHN TEAR TEST RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                    | ORIENTATION        | STRENGTH<br>(KSI) |  |  |
|----------------------------|--------------------|-------------------|--|--|
| GENERAL DYNAMICS,<br>TEXAS | 45-45              | 74.6              |  |  |
|                            | AVERAGE            | 74.6              |  |  |
|                            | STANDARD DEVIATION |                   |  |  |

#### KAHN TEAR TEST RESULTS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 16 HOURS AT 335 F

| COMPANY                    | ORIENTATION        | Tear<br>Strength<br>(KSI) |  |
|----------------------------|--------------------|---------------------------|--|
| GENERAL DYNAMICS,<br>TEXAS | T-L                | 78.2<br>77.3              |  |
|                            | AVERAGE            | 77.7                      |  |
|                            | STANDARD DEVIATION | 0.6                       |  |

#### TABLE K38

#### KAHN TEAR TEST RESULTS FOR ALCOA

2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY                    | ORIENTATION        | tear<br>Strength<br>(KSI)     |  |
|----------------------------|--------------------|-------------------------------|--|
| GENERAL DYNAMICS,<br>TEXAS | L-T                | 7 <b>6.4</b><br>7 <b>4.</b> 6 |  |
|                            | AVERAGE            | 75.5                          |  |
|                            | STANDARD DEVIATION | 1.3                           |  |

#### KAHN TEAR TEST RESULTS FOR ALCOA

#### 2091-T3 SHRET (0.144" X 48" X 48")

#### AGED 32 HOURS AT 335 P

| COMPANY                    | ORIENTATION        | TEAR<br>STRENGTH<br>(KSI) |  |
|----------------------------|--------------------|---------------------------|--|
| GENERAL DYNAMICS,<br>TEXAS | 45-45              | 73.7<br>74.1              |  |
|                            | AVERAGE            | 73.9                      |  |
|                            | STANDARD DEVIATION | 0.2                       |  |

#### TABLE K40

#### KAHN TEAR TEST RESULTS FOR ALCOA

2091-T3 SHRET (0.144" X 48" X 48")

| COMPANY                    | ORIENTATION | TEAR<br>STRENGTH<br>(KSI) |  |
|----------------------------|-------------|---------------------------|--|
| GENERAL DYNAMICS,<br>TEXAS | T-L         | 74.7                      |  |
|                            | AVERAGE     | 74.7                      |  |

#### TABLE 41

#### TEAR-YIELD STRENGTH RATIOS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

#### AGED 16 HOURS AT 335 F

| COMPANY                    | tensile—tear<br>Orientation | TEAR-YIELD<br>STRENGTH RATIO |
|----------------------------|-----------------------------|------------------------------|
|                            |                             |                              |
| GENERAL DYNAMICS,<br>TEXAS | L/L-T                       | 1.42                         |
|                            | LT/T-L                      | 1.48                         |
|                            | 45/45-45                    | 1.58                         |
|                            | L/T-L                       | 1.38                         |

#### TABLE 42

#### TEAR-YIELD STRENGTH RATIOS FOR ALCOA

#### 2091-T3 SHEET (0.144" X 48" X 48")

| COMPANY           | TENSILE-TEAR<br>ORIENTATION | TEAR-YIELD<br>STRENGTH RATIO |
|-------------------|-----------------------------|------------------------------|
| GENERAL DYNAMICS, | L/L-T                       | 1.27                         |
| TEXAS             | LT/T-L                      | 1.34                         |
|                   | 45/45-45                    | 1.44                         |
|                   | L/T-L                       | 1.26                         |

#### Alcoa 2091 .144" Sheet



FIGURE K18. TEAR STRENGTH to YIELD STRENGTH RATIO VS YIELD STRENGTH DATA for 2091-T3 Aged 16/32 Hours at 335°F. General Dynamics.

TABLE K43

TENSILE RESULTS FOR ALCOA

2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI)   | ELONG<br>(%)                 | RA<br>(%) | E<br>(MSI)                   |
|----------|-----------------------------|------------------|-------------------------------|------------------------------|------------------------------|-----------|------------------------------|
| NORTHROP | RT                          | LONG             | 63.4<br>63.2<br>63.7<br>63.2  | 53.5<br>53.3<br>53.7<br>53.6 | 15.6<br>16.7<br>14.7<br>12.6 |           | 10.8<br>10.2<br>10.5<br>10.8 |
|          |                             | AVERAGE          | 63.4                          | 53.5                         | 14.9                         |           | 10.6                         |
|          | STANDARD D                  | EVIATION         | 0.2                           | 0.2                          | 1.7                          |           | 0.3                          |

### TABLE K44 TENSILE RESULTS FOR ALCOA

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI)   | ELONG<br>(%)         | RA<br>(%) | E<br>(MSI)                   |
|----------|-----------------------------|----------|-------------------------------|------------------------------|----------------------|-----------|------------------------------|
| NORTHROP | RT                          | 45       | 63.3<br>62.4<br>62.8          | 44.3<br>44.1<br>43.5<br>44.9 | 19.8<br>17.8<br>19.2 |           | 10.4<br>10.5<br>11.8<br>11.9 |
|          |                             | AVERAGE  | 62.8                          | 44.2                         | 18.9                 |           | 11.2                         |
|          | STANDARD D                  | EVIATION | 0.5                           | 0.6                          | 1.0                  |           | 0.8                          |

TABLE K45

TENSILE RESULTS FOR ALCOA

2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | Test<br>Temp<br>(Degrees F | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%) | E<br>(MSI)           |
|----------|----------------------------|------------------|-------------------------------|----------------------------|----------------------|-----------|----------------------|
| NORTHROP | RT                         | L TRANS          | 67.5<br>68.2<br>67.8          | 48.7<br>49.2<br>48.8       | 12.1<br>12.7<br>13.1 |           | 10.6<br>11.2<br>11.3 |
|          |                            | AVERAGE          | 67.8                          | 48.9                       | 12.6                 |           | 11.0                 |
|          | STANDARD I                 | DEVIATION        | 0.4                           | 0.3                        | 0.5                  |           | 0.4                  |

TABLE K46

COMPRESSION RESULTS FOR ALCOA

2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION  | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------|------------------------------------|--------------|----------------------------------|---------------------------------|
| NORTHROP | RT                                 | LONG         | 42.7<br>42.5<br>42.9             | 12.0<br>11.5<br>11.7            |
|          |                                    | AVERAGE      | 42.7                             | 11.7                            |
|          | STANDA                             | RD DEVIATION | 0.3                              | 0.2                             |

### TABLE K47 COMPRESSION RESULTS FOR ALCOA

| COMPANY  | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| NORTHROP | RT                                 | L TRANS       | 51.5<br>51.4<br>51.3                   | 11.5<br>11.3<br>11.3            |
|          |                                    | AVERAGE       | 51.4                                   | 11.4                            |
|          | STAND                              | ARD DEVIATION | 0.1                                    | 0.1                             |

#### SLOTTED SHEAR RESULTS FOR ALCOA

#### 2091-T8X SHERT (0.144" X 48" X 48")

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| NORTHROP | LONG               | 40.6<br>40.5<br>40.5       |
|          | AVERAGE            | 40.5                       |
|          | STANDARD DEVIATION | 0.1                        |

#### TABLE K49

#### SLOTTED SHEAR RESULTS FOR ALCOA

| СОМРАНУ  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |  |
|----------|--------------------|----------------------------|--|
| NORTHROP | L TRANS            | 43.0<br>43.0<br>43.2       |  |
|          | AVERAGE            | 43.1                       |  |
|          | STANDARD DEVIATION | 0.1                        |  |

TABLE K50
BEARING RESULTS FOR ALCOA

| COMPANY  | ORIENTATION | ●/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| NORTHROP | LONG        | 1.5       | 96.8<br>92.9                  | 76.3<br>73.6                   |
|          |             | AVERAGE   | 94.9                          | 75.0                           |
|          | STANDARD    | DEVIATION | 2.8                           | 1.9                            |

TABLE K51

BEARING RESULTS FOR ALCOA

2091-T8X SHEET (0.063" X 48" X 48")

| COMPANY  | ORIENTATION | e/D                 | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|---------------------|-------------------------------|--------------------------------|
| NORTHROP | L TRANS     | 1.5                 | 100.8<br>99.3<br>97.0         | 76.1<br>75.1<br>74.0           |
|          | STANDARI    | AVERAGE D DEVIATION | 99.0<br>1.9                   | 75.1<br>1.1                    |

TABLE K52

BEARING RESULTS FOR ALCOA

2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|-----------|-------------------------------|--------------------------------|
| NORTHROP | LONG        | 2.0       | 120.7<br>122.4<br>123.9       | 89.8<br>89.1<br>91.8           |
|          |             | average   | 122.3                         | 90.2                           |
|          | STANDARD    | DEVIATION | 1.6                           | 1.4                            |

TABLE K53

BEARING RESULTS FOR ALCOA

2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------|-------------|--------------|-------------------------------|--------------------------------|
|          |             |              |                               |                                |
| NORTHROP | l trans     | 2.0          | 125.6                         | 91.9                           |
|          |             |              | 126.9                         | 91.0                           |
|          |             |              | 126.1                         | 94.6                           |
|          |             | average      | 126.2                         | 92.5                           |
|          | STANDA      | RD DEVIATION | 0.7                           | 1.9                            |

#### R-CURVE FRACTURE TOUGHNESS RESULTS FOR

#### ALCOA 2091-T8X SHEET (0.144" X 48" X 48")

| COMPANY  | SPECIMEN I.D.    | ORIENTATION | Kc            |
|----------|------------------|-------------|---------------|
|          |                  |             | (KSI SQRT-IN) |
|          | **************** |             |               |
| NORTHROP | T6RL1            | L-T         | 135.0         |



FIGURE K19. FATIGUE CRACK GROWTH RATES FOR 2091-T8X 0.144 INCH SHEET RELATIVE TO 2024-T351 (L-T ORIENTATION). NORTHROP.



FIGURE K20. FATIGUE CRACK GROWTH RATES FOR 2091-T8X 0.144 INCH SHEET RELATIVE TO 2024-T351 (T-L ORIENTATION). NORTHROP.

#### APPENDIX L

#### 2091-T8 0.5 INCH PLATE

#### INTRODUCTION

The Alcoa aluminum-lithium alloy 2091-T8 0.5 inch plates were received March 1988. The 2091-T8 0.5 inch plates were tested in the as received condition.

#### **TESTING**

Mechanical properties, (tension, compression, and fracture toughness) were tested according to ASTM standards, unless otherwise specified.

Over load fatigue crack growth tests were not performed according to ASTM standards,

TABLE L1

TENSILE RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | RLONG<br>(%) | RA<br>(%) | (MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|-------|
| HARTIN    | RT                          | LONG             | 74.8                          | 62.1                       | 11.0         | 11.4      |       |
| MARIETTA, |                             |                  | 74.2                          | 61.4                       | 11.0         | 10.8      |       |
| LOUISIANA |                             |                  | 75.2                          | 62.3                       | 10.0         | 11.4      |       |
| AIR FORCE | RT                          | LONG             | 76.2                          | 64.0                       | 8.9          | 16.2      |       |
|           |                             |                  | 75.6                          | 63.4                       | 9.4          | 17.0      |       |
|           |                             |                  | 75.3                          | 62.8                       | 8.6          | 15.1      |       |
|           |                             | AVERAGE          | 75.2                          | 62.7                       | 9.8          | 13.7      |       |
|           | STANDARD I                  | EVIATION         | 0.7                           | 0.9                        | 0.4          | 1.1       |       |

TABLE L2

TENSILE RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%)    | E (MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|--------------|--------------|---------|
| AIR FORCE | RT                          | 30       | 71.6<br>71.6                  | 52.9<br>53.2               | 11.6<br>11.7 | 16.2<br>18.4 |         |
|           |                             | AVERAGE  | 71.6                          | 53.1                       | 11.7         | 17.3         |         |
|           | STANDARD D                  | EVIATION | 0.0                           | 0.2                        | 0.1          | 1.5          |         |

TABLE L3

TENSILE RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ATION    | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI) |
|-----------|-----------------------------|----------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| AIR FORCE | RT                          | 45       | 64.0<br>63.6<br>63.6          | 46.6<br>45.9<br>45.9       | 19.4<br>19.1<br>19.6 | 32.9<br>35.5<br>33.6 |            |
|           |                             | AVERAGE  | 63.7                          | 46.1                       | 19.4                 | 34.0                 |            |
|           | STANDARD D                  | EVIATION | 0.2                           | 0.4                        | 0.3                  | 1.3                  |            |

TABLE L4

TENSILE RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN    | RT                          | L TRANS          | 72.9                          | 55.0                       | 14.0         | 18.8      |            |
| MARIETTA, |                             |                  | 72.2                          | 54.1                       | 14.0         | 18.8      |            |
| LOUISIANA |                             |                  | 73.5                          | 55.0                       | 14.0         | 14.2      |            |
| AIR FORCE | RT                          | L TRANS          | 73.6                          | 55.6                       | 12.1         | 24.9      |            |
|           |                             |                  | 73.8                          | 55.7                       | 11.5         | 24.5      |            |
|           |                             |                  | 73.8                          | 55.4                       | 13.0         | 22.7      |            |
|           |                             | AVERAGE          | 73.3                          | 55.1                       | 13.1         | 20.7      |            |
|           | STANDARD D                  | EVIATION         | 0.6                           | 0.6                        | 1.1          | 4.1       |            |

TABLE L5

COMPRESSION RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY                          | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------------------|------------------------------------|--------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                                 | LONG         | 52.2<br>51.4<br>52.4                   | 11.8<br>11.8<br>11.8            |
|                                  |                                    | average      | 52.0                                   | 11.8                            |
|                                  | STANDA                             | RD DEVIATION | 0.5                                    | 0.0                             |

TABLE L6

COMPRESSION RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY                          | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) |
|----------------------------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                                 | L TRANS        | 57.9<br>58.8                           | 11.9<br>11.9                    |
|                                  |                                    | AVERAGE        | 58.4                                   | 11.9                            |
|                                  | STAN                               | DARD DEVIATION | 0.6                                    | 0.0                             |

TABLE L7

#### FRACTURE TOUGHNESS RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | ORIENTAI       | 'ION | KIC     |      | Kg      | COMMENT    |
|-----------|----------------|------|---------|------|---------|------------|
|           |                | (KSI | in^0.5) | (KSI | in^0.5) |            |
| MARTIN    | L - 1          |      |         |      | 33.8    | INVALID(1) |
| MARIETTA, |                |      |         |      | 31.1    | INVALID(1) |
| LOUISIANA |                |      |         |      | 37.4    | INVALID(1) |
|           | AVE            | RAGE |         |      | 34.1    |            |
|           | STANDARD DEVIA | TION |         |      | 3.2     |            |

(1): SPECIMEN SIZE TOO SMALL

TABLE L8

#### FRACTURE TOUGHNESS RESULTS FOR ALCOA

2091-T8 PLATE (0.5" X 48" X 48")

| COMPANY   | OR       | ENTATION  |      | KIC     |      | Kq      | COMMENT    |  |
|-----------|----------|-----------|------|---------|------|---------|------------|--|
|           |          |           | (KSI | in^0.5) | (KSI | in^0.5) |            |  |
| MARTIN    |          | T - L     |      |         |      | 34.0    | INVALID(1) |  |
| MARIETTA, |          |           |      |         |      | 37.8    | INVALID(1) |  |
| LOUISIANA |          |           |      |         |      | 37.4    | INVALID(1) |  |
|           |          | AVERAGE   |      |         |      | 36.4    |            |  |
|           | STANDARD | DEVIATION |      |         |      | 2.1     |            |  |

(1): SPECIMEN SIZE TOO SMALL

TABLE L9

POST-OVERLOAD FATIGUE TEST RESULTS for 2091-T8

0.5 INCH PLATE and 2091-T83 0.144 INCH PLATE

### R=0.05 LAB AIR delte-K=6.0 lmi(in)^.5 ONE OVERLOAD CYCLE APPLIED

| % O.L. | <b>*W</b> | Pol/Prince | (u-in/cyc)  | DELAY CYCLES<br>(x10^-3) |
|--------|-----------|------------|-------------|--------------------------|
|        | PLATE     | SPECIMEN   | THICKNESS . | 0.250°                   |
| 80     | 0.300     | 0.402      | 0.184       | 171.7                    |
| 80     | 0.463     | 0.456      | 0.199       | 146.7                    |
| 80     | 0.550     | 0.440      | 0.414       | <b>93.4</b>              |
| 80     | 0.800     | 0.366      | 0.399       | 85.8                     |
|        | PLATE     | SPECIMEN   | THICKNESS . | 0.140*                   |
| 80     | 0.401     | 0.645      | 0.097       | arrest                   |
| 80     | 0.447     | 0.603      | 0.095       | arrest                   |
| 60     | 0.407     | 0.535      | 0.135       | 137.6                    |
| 60     | 0.415     | 0.840      | 0.076       | arrest                   |
| 60     | 0.484     | 0.584      | 0.057       | 891.0                    |
| 60     | 0.502     | 0.647      | 0.149       | 126.7                    |
| 60     | 0.541     | 0.000      | 0.140       | 72.8                     |
| 60     | 0.654     | 0.523      | 0.120       | <b>59.</b> 0             |
| 60     | 0.696     | 0.574      | 0.107       | 71.5                     |
|        | SHEET     | SPECIMEN   | THICKNESS . | 0.140*                   |
| 60     | 0.264     | 0.516      | 1.227       | 13.2                     |
| 60     | 0.276     | 0.511      | 0.696       | 31.6                     |
| 60     | 0.314     | 0.505      | 2.435       | 17.4                     |
| 60     | 0.315     | 0.501      | 1.361       | 19.7                     |
| 60     | 0.349     | 0.483      | 1.133       | 30.3                     |
| 60     | 0.368     | 0.45       | 2.495       | 13.8                     |
| 60     | 0.400     | 0.413      | 2.331       | 22.0                     |
| 60     | 0.447     | 0.446      | 1.624       | 14.3                     |
| 60     | 0.516     | 0.379      | 3.143       | 11.6                     |
| 60     | 0.574     | 0.344      | 3.527       | 10.3                     |



FIGURE L1. A Comparison of Delay Cycles Due to Fatigue Crack Growth Retardation for a 60 Percent Overload Cycle at a Stress Intensity of 6 KSIIIn in 2091-T81 Plate Versus 2091-T83 Sheet. Thickness of the Compact Tension Specimens Used for Plate and Sheet was 0.144 Inch. Air Force.



FIGURE L2. Delay Cycles Due to Fatigue Crack Growth
Retardation for an 80 Percent Overload Cycle at
a Stress Intensity Range of 6 KSMn, in 2091-T81
Plate, with a Specimen Thickness of 0.250 Inch.
Air Force.



FIGURE L3. A Comparison of the Crack Closure Level Prior to the Application of a 60 Percent Overload Cycle. Note the Larger Level of Crack Closure in the Plate as Compared to Sheet Which Correlates with the Overload Delay Cycles. Air Force.

TABLE L10

## POST-OVERLOAD RECOVERY EXTENSION

#### IN 2091 PLATE AND SHEET

| delta-K= 6.0<br>15 hz. | kei(in) ^ .5<br>Lab Air R=.05             | One Overload Cycle Applied<br>Crack Tip Plastic Zone=0.004 (in) |                                    |  |  |  |
|------------------------|-------------------------------------------|-----------------------------------------------------------------|------------------------------------|--|--|--|
| •₩                     | de/dN @ O.L.<br>(u-ln/cyc)                | Accelerate Into Pleatic Zone?                                   | Post O.L. Recovery<br>delta-A (in) |  |  |  |
|                        | PLATE (250 in. thick<br>80 PERCENT OVER   | O<br>LOAD                                                       |                                    |  |  |  |
| 0.369                  | 0.184                                     | Yes                                                             | 0.020                              |  |  |  |
| 0.463                  | 0.199                                     | Yes                                                             | 0.025                              |  |  |  |
| 0.559                  | 0.414                                     | Yes                                                             | 0.025                              |  |  |  |
| 0.600                  | 0.399                                     | Yes                                                             | 0.015                              |  |  |  |
|                        | PLATÉ (.144 in. thick<br>80 PERCENT OVERL |                                                                 |                                    |  |  |  |
| 0.401                  | 0.097                                     | Yee                                                             | arrest                             |  |  |  |
| 0.447                  | 0.095                                     | No                                                              | arrest                             |  |  |  |
|                        | PLATE (.144 in. thick<br>60 PERCENT OVERL |                                                                 |                                    |  |  |  |
| 0.407                  | 0.135                                     | No                                                              | 0.015                              |  |  |  |
| 0.415                  | 0.078                                     | No                                                              | arrest                             |  |  |  |
| 0.484                  | 0.057                                     | No                                                              | 0.024                              |  |  |  |
| 0.502                  | 0.149                                     | No                                                              | 0.016                              |  |  |  |
| 0.541                  | 0.140                                     | No                                                              | 0.015                              |  |  |  |
| 0.654                  | 0.120                                     | No                                                              | 0.009                              |  |  |  |
| 0.696                  | 0.107                                     | Yes                                                             | 0.016                              |  |  |  |
|                        | SHEET (.144 in. thick<br>60 PERCENT OVERL |                                                                 |                                    |  |  |  |
| 0.246                  | 1.227                                     | Yes                                                             | 0.016                              |  |  |  |
| 0 <i>.2</i> 76         | 0.696                                     | Yes                                                             | 0.015                              |  |  |  |
| 0.314                  | 2.435                                     | Yes                                                             | 0.042                              |  |  |  |
| 0.315                  | 1.381                                     | Yes                                                             | 0.020                              |  |  |  |
| 0.349                  | 1.133                                     | No                                                              | 0.020                              |  |  |  |
| 0.368                  | 2.495                                     | Yes                                                             | 0.026                              |  |  |  |
| 0.400                  | 3.331                                     | Yes                                                             | 0.025                              |  |  |  |
| 0.447                  | 1.624                                     | Yes                                                             | 0.016                              |  |  |  |
| 0.516                  | 3.143                                     | No                                                              | 0.020                              |  |  |  |
| 0.574                  | 3.527                                     | Yee                                                             | 0.026                              |  |  |  |



FIGURE L4. Crack Velocity Post-Overload Crack Extension for Alloy 2091-T83 Sheet.

Air Force.



FIGURE L5. Crack Velocity Versus Post-Overload Crack Extension for Alloy 2091-T81 Plate 0.144 Inch Thick Specimen.

Air Force.



FIGURE L6. Crack Velocity Versus Post-Overload Crack Extension for Alloy 2091-T81 Plate 0.250 Inch Thick Specimen. Air Force.

#### APPENDIX M

#### 8090-T8 Hat Extrusion and 8090-T8771 L-Extrusion

#### INTRODUCTION

The Alcoa 8090-T8 hat extrusions and 8090-T8 L-extrusions were received September 1991. The dimensions of the 8090-T8 hat and L-Extrusions are shown in Figure M1 and Figure M2 respectively. The L-extrusion had to be cut to achieve the T8 condition, therefore making a thin and a thick piece. The L-extrusion was received in two pieces (0.60" x 4.00" x length and 1.55" x 1.55" x length).

#### **TESTING**

Mechanical properties, (tension, compression, bearing, shear, and fracture toughness) fatigue and constant amplitude fatigue crack growth tests were tested according to ASTM standards, unless otherwise specified.

Spectrum tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.



ALL DIMENSIONS ARE IN INCHES

FIGURE M1. 8090-T8 HAT EXTRUSION GEOMETRY.



ALL DIMENSIONS ARE IN INCHES

FIGURE M2. 8090-T8 L-EXTRUSION GEOMETRY.

TABLE M1
TEMSILE RESULTS AT t/2 LOCATION FOR
ALCOA 8090-T8 HAT EXTRUSION

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | RLONG<br>(%)      | RA<br>(%)         | COMMENT    |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|-------------------|-------------------|------------|
| ARMY-MTL | RT                          | LONG             | 62.5<br>62.8<br>63.3          | 55.4<br>56.0<br>55.6       | 4.1<br>5.5<br>5.1 | 3.9<br>5.7<br>5.5 | TOP<br>TOP |
|          |                             |                  | 63.5<br>62.8<br>62.9          | 56.7<br>55.9<br>56.3       | 4.3<br>4.7<br>3.8 | 5.9<br>5.3<br>4.5 | TOP<br>TOP |
|          |                             | AVERAGE          | 62.9                          | 56.0                       | 4.6               | 5.1               |            |
|          | STANDARD DE                 | COLTAIV          | 0.4                           | 0.4                        | 0.6               | 0.8               |            |

TABLE M2

TENSILE RESULTS AT t/2 LOCATION FOR

ALCOA 8090-T8 HAT EXTRUSION

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI)                | YIELD<br>STRENGTH<br>(KSI)           | ELONG<br>(%)                           | RA<br>(%)                              | COMMENT                              |
|----------|-----------------------------|------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|
| ARMY-MTL | RT                          | LONG             | 64.1<br>63.4<br>64.3<br>63.5<br>63.1<br>61.9 | 56.6<br>57.1<br>54.7<br>56.3<br>55.9 | 4.5<br>3.3<br>5.0<br>5.7<br>3.5<br>4.2 | 4.1<br>3.6<br>5.3<br>5.9<br>4.2<br>6.5 | BOTTOM<br>BOTTOM<br>BOTTOM<br>BOTTOM |
|          |                             | AVERAGE          | 63.4                                         | 56.0                                 | 4.4                                    | 4.9                                    |                                      |
|          | STANDARD DE                 | VIATION          | 0.9                                          | 0.9                                  | 0.9                                    | 1.1                                    |                                      |

TABLE H3

TENSILE RESULTS AT t/2 LOCATION FOR

ALCOA 8090-T8 HAT EXTRUSION

| COMPANY  | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | COMMENT |
|----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|---------|
| ARMY-MTL | RT                          | LONG             | 64.0                          | 55.7                       | 5.6          | 5.8       | SIDE    |
|          |                             |                  | 64.3                          | 56.9                       | 4.1          | 4.2       | SIDE    |
|          |                             |                  | 64.1                          | 57.0                       | 4.8          | 5.7       | SIDE    |
|          |                             |                  | 64.7                          | 57.4                       | 4.5          | 4.1       | SIDE    |
|          |                             |                  | 65.2                          | 57.8                       | 5.5          | 3.7       | SIDE    |
|          |                             |                  | 64.5                          | 57.3                       | 5.5          | 4.6       | SIDE    |
|          |                             | AVERAGE          | 64.5                          | 57.0                       | 5.0          | 4.7       |         |
|          | STANDARD DI                 | EVIATION         | 0.4                           | 0.7                        | 0.6          | 0.9       |         |

TABLE M4
BEARING RESULTS FOR ALCOA

#### 8090-T8 HAT EXTRUSION

| COMPANY  | ORIENTATION | e/D      | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) | CORRENT    |
|----------|-------------|----------|-------------------------------|--------------------------------|------------|
| ARMY-MTL | LONG        | 1.5      | 85.9<br>87.5<br>85.6          | 74.2<br>73.4<br>75.2           | TOP<br>TOP |
|          |             | AVERAGE  | 86.3                          | 74.3                           |            |
|          | STANDARD D  | EVIATION | 1.0                           | 0.9                            |            |

# TABLE M5 BEARING RESULTS FOR ALCOA

#### 8090-T8 HAT EXTRUSION

| COMPANY  | ORIENTATION | e/D      | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) | COMMENT              |
|----------|-------------|----------|-------------------------------|--------------------------------|----------------------|
| ARMY-MTL | LONG        | 1.5      | 91.7<br>95.4<br>93.2          | 81.6<br>80.9<br>80.1           | SIDE<br>SIDE<br>SIDE |
|          |             | AVERAGE  | 93.4                          | 80.9                           |                      |
|          | STANDARD D  | EVIATION | 1.9                           | 0.7                            |                      |

TABLE M6
BEARING RESULTS FOR ALCOA

#### 8090-T8 HAT EXTRUSION

| COMPANY  | ORIENTATION | N ●/D     | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) | COMMENT    |
|----------|-------------|-----------|-------------------------------|--------------------------------|------------|
| ARMY-MTL | LONG        | 2.0       | 98.9<br>104.0<br>106.2        | 78.6<br>82.5<br>81.5           | TOP<br>TOP |
|          |             | AVERAGE   | 103.0                         | 80.9                           |            |
|          | STANDARI    | DEVIATION | 3.7                           | 2.0                            |            |

TABLE M7
BEARING RESULTS FOR ALCOA

#### 8090-T8 HAT EXTRUSION

| COMPANY  | ORIENTATION | e/D      | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) | COMMENT              |
|----------|-------------|----------|-------------------------------|--------------------------------|----------------------|
| ARMY-MTL | LONG        | 2.0      | 116.3<br>111.6<br>112.9       | 89.0<br>89.0<br>89.9           | SIDE<br>SIDE<br>SIDE |
|          |             | AVERAGE  | 113.6                         | 89.3                           |                      |
|          | STANDARD D  | EVIATION | 2.4                           | 0.5                            |                      |

TABLE M8

TENSILE RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION<br>) | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |   |
|-----------|----------------------------|-----------------------|-------------------------------|----------------------------|--------------|-----------|------------|---|
| ARMY-MTL  | RT                         | LONG                  | 76.0                          | 69.6                       | 2.8          |           | 10.9       |   |
|           |                            |                       | 68.8                          | 57.5                       | 3.2          |           | 11.0       |   |
|           |                            |                       | 70.8                          | 58.0                       | 4.7          |           | 11.3       |   |
|           |                            |                       | 69.8                          | 58.0                       | 5.2          |           | 11.1       |   |
|           |                            |                       | 69.4                          | 59.0                       | 3.4          |           | 10.8       |   |
|           |                            |                       | 69.4                          | 58.0                       | 4.1          |           | 11.3       |   |
| MARTIN    | RT                         | LONG                  | 72.1                          | 64.9                       | 5.0          | 4.9       | (1         | ) |
| MARIETTA, | LA                         |                       | 70.3                          | 60.1                       | 6.0          | 6.3       | (1         | ) |
|           |                            |                       | 70.4                          | 59.6                       | 5.0          | 3.3       | (1         | ) |
|           |                            |                       | 79.5                          | 76.8                       | 5.0          | 4.1       | (2         | ) |
|           |                            |                       | 79.5                          | 76.3                       | 3.0          | 3.9       | (2         | ) |
|           |                            |                       | 78.9                          | 76.8                       | 5.0          | 4.1       | (2         | ) |
|           |                            | AVERAGE               | 73.0                          | 64.8                       | 4.6          | 4.4       | 11.1       |   |
|           | STANDARD                   | DEVIATION             | 4.4                           | 8.4                        | 0.9          | 1.0       | 0.2        |   |

(1): THICK SECTION (2): THIN SECTION

TABLE M9

TENSILE RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI)   |            |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|--------------|------------|
| ARMY-MTL  | RT                          | L TRANS          | 68.2<br>68.4                  | 52.8<br>53.8               | 6.3<br>5.0   |           | 11.0         |            |
|           |                             |                  | 68.6<br>68.0                  | 53.0<br>52.5               | 6.5<br>6.5   |           | 10.6<br>10.3 |            |
|           |                             |                  | 67.5<br>68.5                  | 54.0<br>53.5               | 4.1<br>5.9   |           | 11.0         |            |
| MARTIN    | RT                          | L TRANS          | 69.9                          | 55.1                       | 8.0          | 11.0      |              | (1)        |
| MARIETTA, |                             |                  | 69.6<br>70.0                  | 55.4<br>55.2               | 7.0<br>8.5   | 8.0       |              | (1)<br>(1) |
|           |                             |                  | 70.0                          | 33.2                       | 0.5          | 3.0       |              | (-)        |
|           |                             | AVERAGE          | 68.7                          | 53.9                       | 6.4          | 9.3       | 10.8         |            |
|           | STANDARD D                  | EVIATION         | 0.9                           | 1.1                        | 1.4          | 1.5       | 0.3          |            |

(1): THIN SECTION

TABLE M10

TENSILE RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY  | Test<br>Temp<br>(Degrees | ORIENT-<br>ATION<br>F) |      | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|----------|--------------------------|------------------------|------|----------------------------|--------------|-----------|------------|
| ARMY-MTL | RT                       | s trans                | 66.5 | 51.0                       | 6.0          |           | 9.9        |
|          |                          |                        | 58.3 | 43.0                       | 8.0          |           | 9.6        |
|          |                          |                        | 67.0 | 52.0                       | 8.0          |           | 9.8        |
|          |                          | AVERAGE                | 63.9 | 48.7                       | 7.3          |           | 9.8        |
|          | STANDARD                 | DEVIATION              | 4.9  | 4.9                        | 1.2          |           | 0.2        |

TABLE M11 COMPRESSION RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY                | TEST TEMPERATURE (DEGREES F) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI)       | COMPRESSIVE<br>MODULUS<br>(KSI)                           |
|------------------------|------------------------------|--------------|----------------------------------------------|-----------------------------------------------------------|
| ARMY-MTL               | RT                           | LONG         | 65.3<br>54.6<br>53.8                         | 10.6<br>10.4<br>11.1                                      |
|                        |                              |              | 61.7<br>52.8<br>53.9                         | 9.9<br>11.9<br>10.8                                       |
| MARTIN<br>MARIETTA, LA | RT                           | LONG         | 49.8<br>43.4<br>50.0<br>54.1<br>47.9<br>47.7 | 11.5 (1<br>(1<br>11.9 (1<br>11.9 (2<br>11.8 (2<br>11.8 (2 |
|                        |                              | average      | 52.9                                         | 11.2                                                      |
|                        | STANDA                       | RD DEVIATION | 6.0                                          | 0.7                                                       |

TABLE M12

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY      | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI) | <b>;</b> |
|--------------|------------------------------------|----------------|----------------------------------------|---------------------------------|----------|
| ARMY-MTL     | R <b>T</b>                         | L TRANS        | 58.2                                   | 9.5                             |          |
|              |                                    |                | 59.9                                   | 11.9                            |          |
|              |                                    |                | 58.8                                   | 13.4                            |          |
|              |                                    |                | 55.7                                   | 11.8                            |          |
|              |                                    |                | 58.1                                   | 11.3                            |          |
|              |                                    |                | 64.7                                   | 8.9                             |          |
| MARTIN       | RT                                 | L TRANS        | 52.0                                   | 11.9                            | (1)      |
| MARIETTA, LA |                                    |                | 49.8                                   | 11.7                            |          |
|              |                                    |                | 49.8                                   | 11.8                            |          |
|              |                                    | AVERAGE        | 56.3                                   | 11.4                            |          |
|              | STAN                               | DARD DEVIATION | 5.0                                    | 1.4                             |          |

(1): THICK SECTION

TABLE M13

COMPRESSION RESULTS AT t/2 LOCATION FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY                | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(KSI)  |
|------------------------|------------------------------------|----------------|----------------------------------------|----------------------------------|
| ARNY-MTL               | RT                                 | s trans        | 51.5<br>52.0<br>52.0                   | 10.1<br>11.2<br>11.5             |
| MARTIN<br>MARIETTA, LA | RT                                 | s trans        | 50.1<br>50.2<br>50.1                   | 11.7 (1)<br>11.8 (1)<br>11.4 (1) |
|                        |                                    | AVERAGE        | 51.0                                   | 11.3                             |
|                        | STAN                               | DARD DEVIATION | 0.9                                    | 0.6                              |

(1): THICK SECTION

#### TABLE M14

#### RIVET SHEAR RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI)                   |
|----------|--------------------|----------------------------------------------|
| ARMY-MTL | LONG               | 40.7<br>41.4<br>45.0<br>39.6<br>41.4<br>39.9 |
|          | AVERAGE            | 41.3                                         |
|          | STANDARD DEVIATION | 2.3                                          |

#### TABLE M15

### RIVET SHEAR RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY  | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|----------|--------------------|----------------------------|
| ARMY-MTL | L TRANS            | 38.3                       |
|          |                    | 37.5<br>35.5               |
|          |                    | 38.7                       |
|          |                    | 38.0                       |
|          |                    | 36.8                       |
|          | AVERAGE            | 37.5                       |
|          | STANDARD DEVIATION | 1.4                        |

TABLE M16

FRACTURE TOUGHNESS RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY   | orientat:      |      | KIC<br>in^0.5) | (KSI in^O. | Kq <b>CONS</b> (1<br>5) | ent |
|-----------|----------------|------|----------------|------------|-------------------------|-----|
| ARMY-MTL  | L-T            |      |                | 31         |                         | (1) |
|           |                |      |                | 32         | .9                      | (1) |
|           |                |      |                | 30         |                         | (1) |
|           |                |      |                | 29         |                         | (1) |
| MARTIN    | L-T            |      |                | 33         | .1                      | (1) |
| MARIETTA, | LA             |      |                | 38         | .5                      | (1) |
|           |                |      | 36.3           |            |                         |     |
|           | AVE            | RAGE | 36.3           | 32         | .6                      |     |
|           | STANDARD DEVIA | rion |                | 3          | .3                      |     |

(1): INVALID DUE TO B < 2.5(KQ/Fty)^2

TABLE M17

FRACTURE TOUGHNESS RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY               | ORIENTATION        | KIC (KSI in 0.5)     | Kq<br>(KSI in^0.5)                   | CONNENT                                             |
|-----------------------|--------------------|----------------------|--------------------------------------|-----------------------------------------------------|
| ARMY-MTL              | T-L                |                      | 29.8<br>28.9<br>30.8<br>30.2<br>30.9 | (1),(2)<br>(1),(2)<br>(1),(2)<br>(1),(2)<br>(1),(2) |
| MARTIN<br>MARIETTA, I | T-L<br>LA          | 20.2<br>19.7<br>18.0 |                                      |                                                     |
|                       | AVERAGE            | 19.3                 | 30.1                                 |                                                     |
|                       | STANDARD DEVIATION | 1.2                  | 0.8                                  |                                                     |

<sup>(1):</sup> INVALID DUE TO Pmax/Pq > 1.10

<sup>(2):</sup> INVALID DUE TO B < 2.5(KQ/Fty)^2

TABLE M18

### FRACTURE TOUGHNESS RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY  | ORIENTATION                   | KIC<br>(KSI in^0.5)                          | Kq<br>(KSI in^0.5) | COMMENT |
|----------|-------------------------------|----------------------------------------------|--------------------|---------|
| ARMY-MTL | S-L                           | 22.6<br>22.6<br>22.7<br>22.4<br>22.3<br>21.5 |                    |         |
|          | AVERAGE<br>STANDARD DEVIATION | 22.4                                         |                    |         |

TABLE M19

### FRACTURE TOUGHNESS RESULTS FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY               | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT    |
|-----------------------|--------------------|---------------------|--------------------|------------|
| MARTIN<br>HARIETTA, L | S-T                | 20.9                | 19.2<br>21.7       | (1)<br>(1) |
|                       | AVERAGE            | 20.9                | 20.5               |            |
|                       | STANDARD DEVIATION | ī                   | 1.8                |            |

(1): INVALID DUE TO Pmax/Pq > 1.10

TABLE M20

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR ALCOA 8090-T8771 "L" EXTRUSION

| COMPANY  | ORIENTATION | STRESS<br>(KSI) | CYCLES       |
|----------|-------------|-----------------|--------------|
|          |             |                 |              |
| ARMY-MTL | LONG        | 47.5            | 30,000       |
|          |             | 39.3            | 164,000      |
|          |             | 30.1            | 1,411,000    |
|          |             | 28.0            | 3,639,000    |
|          |             | 27.8            | 171,000      |
|          |             | 27.5            | 11,787,000 * |
|          |             | 26.2            | 10,382,000 * |

(\*): RUN OUT



FATIGUE RESULTS FOR 8090-T8 771 L-EXTRUSION (R=0.1 AND Kt=1.0). Army.



FATIGUE CRACK GROWTH RATES for 8090-T8771 L-Extrusion (L-T Orientation). Martin Marietta.



FATIGUE CRACK GROOTH RATES for 8090-T8771 L-EXTRUSION (T-L Orientation).
MARTIN MARIETTA.



FATIGUE CRACK GROWTH RATES for 8090-T8771 L-EXTRUSION (S-T Orientation).
MARTIN MARIETTA.

#### APPENDIX N

## 7064-T74511 EXTRUSION 1"X4"X48"

## INTRODUCTION

The Kaiser P/M aluminum alloy 7064-T74511 1"x4"x48" extrusions were received in December 1986. The 7064 extrusions were tested by LTV, Martin Marietta and the Air Force.

## **TESTING**

Mechanical properties (tension, compression, shear, bearing and fracture toughness), fatigue, and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

Spectrum fatigue crack growth rate tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE N1

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | MODULUS<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------------|
| LTV       | RT                          | LONG             | 85.8                          | 79.4                       | 12.2         | 21.6      | 10.0             |
|           |                             |                  | 87.5                          | 81.7                       | 12.3         | 19.3      | 9.7              |
|           |                             |                  | 87.7                          | 82.2                       | 14.3         | 22.3      | 10.3             |
| AIR FORCE | RT                          | LONG             | 82.2                          | 75.8                       | 10.5         | 18.0      |                  |
|           |                             |                  | 80.7                          | 73.9                       | 11.3         | 24.3      |                  |
|           |                             |                  | 81.2                          | 74.7                       | 12.0         | 25.6      |                  |
| MARTIN    | RT                          | LONG             | 91.6                          | 86.5                       | 18.0         | 27.5      | 9.8              |
| MARIETTA, |                             |                  | 90.5                          | 85.3                       | 20.0         | 30.6      | 9.4              |
| LOUISIANA |                             |                  | 90.2                          | 85.0                       | 19.0         | 31.0      | 9.7              |
|           |                             | AVERAGE          | 86.4                          | 80.5                       | 14.4         | 24.5      | 9.8              |
|           | STANDARD DE                 | VIATION          | 4.2                           | 4.8                        | 3.6          | 4.6       | 0.3              |

TABLE N2

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%)    | MODULUS<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|--------------|------------------|
| LTV       | RT                          | L TRANS          | 83.0<br>85.3                  | 76.6<br>79.6               | 9.0<br>8.5   | 11.8<br>19.1 | 9.2<br>10.4      |
|           |                             |                  | 85.5                          | 80.2                       | 11.0         | 22.7         | 10.4             |
| AIR FORCE | RT                          | L TRANS          | 79.2                          | 72.8                       | 10.0         | 21.6         |                  |
|           |                             |                  | 78.3                          | 72.0                       | 10.7         | 25.6         |                  |
|           |                             |                  | 79.1                          | 72.6                       | 11.3         | 27.8         |                  |
| MARTIN    | RT                          | L TRANS          | 88.8                          | 82.7                       | 8.0          | 7.8          | 10.7             |
| MARIETTA, |                             |                  | 89.2                          | 83.2                       | 9.0          | 2.0          | 10.1             |
| LOUISIANA |                             |                  | 88.0                          | 82.7                       | 10.0         | 16.1         | 9.7              |
|           |                             | AVERAGE          | 84.0                          | 78.0                       | 9.7          | 17.2         | 10.1             |
|           | STANDARD DE                 | VIATION          | 4.3                           | 4.6                        | 1.2          | 8.6          | 0.5              |

TABLE N3

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE YIELD STRENGTH (KSI) | Compressive<br>Modulus<br>(MSI) |
|-----------|------------------------------------|---------------|----------------------------------|---------------------------------|
| LTV       | RT                                 | LONG          | 97.4                             | 14.8                            |
|           |                                    |               | 79.8                             | 10.3                            |
|           |                                    |               | 83.0                             | 11.8                            |
| AIR FORCE | RT                                 | LONG          | 83.3                             |                                 |
|           |                                    |               | 81.6                             |                                 |
|           |                                    |               | 82.5                             |                                 |
| MARTIN    | R <b>T</b>                         | LONG          | 87.1                             | 11.1                            |
| MARIETTA, |                                    |               | 86.0                             | 11.1                            |
| LOUISIANA |                                    |               | 86.9                             | 11.1                            |
|           |                                    | average       | 85.3                             | 11.7                            |
|           | STAND                              | ARD DEVIATION | 5.2                              | 1.6                             |

TABLE N4

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------|------------------------------------|----------------|----------------------|---------------------------------|
| LTV       | RT                                 | L TRANS        | 82.7                 | 10.8                            |
|           |                                    |                | 82.9                 | 11.8                            |
|           |                                    |                | 82.8                 | 11.2                            |
| AIR FORCE | RT                                 | L TRANS        | 83.3                 |                                 |
|           |                                    |                | 81.8                 |                                 |
|           |                                    |                | 84.1                 |                                 |
| MARTIN    | RT                                 | L TRANS        | 87.3                 | 11.4                            |
| MARIETTA, |                                    |                | 86.1                 | 11.3                            |
| LOUISIANA |                                    |                | 86.6                 | 11.9                            |
|           |                                    | Average        | 84.2                 | 11.4                            |
|           | STANI                              | DARD DEVIATION | 2.0                  | 0.4                             |

## TABLE N5

## IOSIPESCU SHEAR RESULTS FOR

## KAISER 7064-T74511 EXTRUSION

| COMPANY | ORIENTATION        | ULTIMATE<br>STRENGTH<br>(KSI) |
|---------|--------------------|-------------------------------|
| LTV     | LONG               | 49.7<br>51.0<br>50.9          |
|         | AVERAGE            | 50.5                          |
|         | STANDARD DEVIATION | 0.7                           |

## TABLE N6

## IOSIPESCU SHEAR RESULTS FOR

# KAISER 7064-T74511 EXTRUSION

| COMPANY | ORIENTATION        | ULTIMATE<br>STRENGTH<br>(KSI) |
|---------|--------------------|-------------------------------|
| LTV     | L TRANS            | 50.4<br>49.8<br>50.2          |
|         | AVERAGE            | 50.1                          |
|         | STANDARD DEVIATION | 0.3                           |

TABLE N7

## BEARING RESULTS FOR KAISER

## 7064-T74511 EXTRUSION

| COMPANY | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------|-------------|-----------|-------------------------------|--------------------------------|
| LTV     | LONG        | 1.5       | 124.5<br>134.4<br>129.8       | 93.9<br>111.9<br>108.2         |
|         |             | AVERAGE   | 129.6                         | 104.7                          |
|         | STANDARD    | DEVIATION | 5.0                           | 9.5                            |

TABLE N8
BEARING RESULTS FOR KAISER

# 7064-T74511 EXTRUSION

| COMPANY   | ORIBNTATION | ●/D         | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|-------------|-------------------------------|--------------------------------|
| LTV       | LONG        | 2.0         | 159.5                         | 122.7                          |
|           |             |             | 169.5<br>160.8                | 122.2<br>117.0                 |
| AIR FORCE | LONG        | 2.0         | 163.5                         | 139.5                          |
|           |             |             | 166.7<br>162.3                | 125.3<br>120.0                 |
|           |             | AVERAGE     | 163.7                         | 124.5                          |
|           | STANDAR     | D DEVIATION | 3.8                           | 7.9                            |

TABLE N9
BEARING RESULTS FOR KAISER

7064-T74511 EXTRUSION

| COMPANY   | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|--------------|-------------------------------|--------------------------------|
| AIR FORCE | L TRANS     | 2.0          | 164.2<br>159.3<br>163.5       | 123.8<br>114.7<br>115.6        |
|           |             | AVERAGE      | 162.3                         | 118.0                          |
|           | STANDAI     | RD DEVIATION | 2.7                           | 5.0                            |

TABLE N10
FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | ORIENTATION        | KIC<br>(KSI IN^0.5) | Kq<br>(KSI IN^0.5) | COMMENT |
|-----------|--------------------|---------------------|--------------------|---------|
|           |                    | (831 18 0.3)        | (101 11 0.5)       |         |
| LTV       | L-T                |                     | 32.6               | (1)     |
|           |                    |                     | 33.5               | (1)     |
|           |                    |                     | 29.6               | (1)     |
| AIR FORCE | L-T                |                     | 29.5               | (2)     |
|           |                    |                     | 27.9               | (2)     |
|           |                    |                     | 28.8               | (2)     |
| MARTIN    | L-T                | 24.2                |                    | VALID   |
| MARIETTA, |                    |                     | 26.3               | (3)     |
| LOUISIANA |                    |                     | 25.2               | (3)     |
|           | AVERAGE            | 24.2                | 29.2               |         |
|           | STANDARD DEVIATION |                     | 2.8                |         |

- (1): INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE VIOLATED KIC REQUIREMENTS
- (2): INVALID DUE TO SURFACE CRACK LENGTH/AVERAGE CRACK LENGTH > 1.1
- (3): INVALID DUE TO CRACK SIZE DID NOT EXCEED PLASTIC ZONE SIZE

TABLE N11

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY   | ORIENTATION        | KIC<br>(KSI IN^0.5) | Kq<br>(KSI IN^0.5) | CONSIGNT |
|-----------|--------------------|---------------------|--------------------|----------|
| LTV       | T-L                | 24.6                |                    | VALID    |
|           |                    | 25.0                |                    | VALID    |
|           |                    | 25.2                |                    | VALID    |
| AIR FORCE | T-L                | 23.5                |                    | VALID    |
|           |                    | 24.1                |                    | VALID    |
|           |                    | 23.8                |                    | VALID    |
| MARTIN    | T-L                |                     | 10.2               | (1)      |
| MARIETTA, |                    | 17.1                |                    |          |
| LOUISIANA |                    | 17.1                |                    |          |
|           | AVERAGE            | 22.6                | 10.2               |          |
|           | STANDARD DEVIATION | 3.4                 |                    |          |

<sup>(1):</sup> INVALID DUE TO PRECRACKING LOADS WERE TOO HIGH

TABLE N12 FATIGUE RESULTS WITH Kt=1.0 AND R=0.1 FOR KAISER 7064-T74511 EXTRUSION

| COMPANY | ORIENTATION | LINIT<br>STRESS<br>(KSI) | CYCLES TO FAILURE |
|---------|-------------|--------------------------|-------------------|
| LTV     | LONG        | 65.6                     | 13,900            |
|         |             | 65.0                     | 1,800             |
|         |             | 56.6                     | 23,400            |
|         |             | 47.9                     | 49,900            |
|         |             | 47.9                     | 75,700            |
|         |             | 47.8                     | 318,100 #         |
|         |             | 45.0                     | 6,500             |
|         |             | 43.5                     | 2,000,000 *       |
|         |             | 39.4                     | 38,500            |
|         |             | 39.1                     | 93,100 #          |
|         |             | 37.0                     | 193,900           |
|         |             | 35.0                     | 113,000           |
|         |             | 30.0                     | 800,000 *         |
|         |             | 25.2                     | 2,300,000 *       |

<sup>(\*):</sup> INDICATES A RUN OUT TEST (#): INDICATES SPECIMEN FAILED IN THE THREADS

TABLE N13

FATIGUE RESULTS WITH Kt=3.0 AND R=0.1 FOR

KAISER 7064-T74511 EXTRUSION

| COMPANY | ORIENTATION | Limit<br>Stress<br>(KSI) | CYCLES TO FAILURE |
|---------|-------------|--------------------------|-------------------|
| LTV     | LONG        | 43.5                     | 5,100             |
|         |             | 34.8                     | 10,800            |
|         |             | 32.6                     | 19,700            |
|         |             | 31.3                     | 23,500            |
|         |             | 30.5                     | 66,200            |
|         |             | 28.3                     | 39,300            |
|         |             | 26.1                     | 56,700            |
|         |             | 26.1                     | 40,400            |
|         |             | 24.4                     | 72,000            |
|         |             | 23.9                     | 3,000,000 *       |
|         |             | 23.5                     | 1,998,100         |
|         |             | 21.8                     | 2,000,000 *       |
|         |             | 21.7                     | 3,000,000 *       |
|         |             | 20.0                     | 2,000,000 *       |
|         |             | 17.4                     | 3,000,000 *       |

(\*): INDICATES A RUN-OUT TEST



FIGURE N1. FATIGUE RESULTS FOR 7064-T74511 EXTRUSION (LONGITUDINAL ORIENTATION). LTV.



FATIGUE CRACK GROWTH RATE DATA for Two 7064-T74511 Extrusion Specimens. (L-T ORIENTATION). AIR FORCE. 437



FIGURE N3. FATIGUE CRACK GROWTH RATE DATA for Two 7064-T74511 Extrusion Specimens. (T-L ORIENTATION).

AIR FORCE. 438



Mini-TWIST Spectrum Fatigue Crack Length vs Filghts Data for 7064-T74511 Extrusion. Air Force. FIGURE N4.



FIGURE N5. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion.

Air Force.



FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74511 Extrusion. Air Force. FIGURE N6.



FIGURE N7. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74511 Extrusion.
Air Force.

#### **APPENDIX O**

## 7064-T74 HAND FORGING 1.6"X4"X18"

#### INTRODUCTION

The Kaiser P/M aluminum alloy 7064-T74 1.6"x4"x18" forgings were received in December 1986. Forged 7064 was tested by Lockheed, LTV, Martin Marietta, McDonnell Aircraft Company, and the Air Force.

## **TESTING**

Mechanical properties (tension, compression, shear, bearing and fracture toughness), fatigue, and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

Spectrum fatigue crack growth rate tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE 01

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY   | TEST<br>TEMP<br>(DEGREES F | -         | (KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) |      | MODULUS<br>(MSI) |
|-----------|----------------------------|-----------|-------|----------------------------|--------------|------|------------------|
| MCAIR,    | RT                         | LONG      | 80.0  | 74.0                       |              |      |                  |
| ST. LOUIS |                            |           | 80.0  | 73.0                       | 14.0         |      |                  |
|           |                            |           | 81.5  | 75.0                       | 11.0         |      |                  |
|           |                            |           | 80.5  | 74.0                       | 13.0         |      |                  |
| LOCKHEED, | RT                         | LONG      | 77.2  | 69.7                       |              |      | 9.9              |
| GEORGIA   |                            |           | 81.9  | 75.0                       |              |      | 11.2             |
|           |                            |           | 81.0  | 75.2                       |              |      | 10.5             |
|           |                            |           | 84.9  | 79.0                       |              |      | 10.6             |
|           |                            |           | 81.5  | 74.7                       |              |      | 10.2             |
|           |                            |           | 81.1  | 74.1                       |              |      | 10.1             |
|           |                            |           | 80.0  | 74.0                       |              |      | 10.1             |
|           |                            |           | 84.1  | 78.4                       |              |      | 9.9              |
|           |                            |           | 80.6  | 73.6                       |              |      | 10.3             |
|           |                            |           | 80.5  | 74.3                       |              |      | 10.1             |
| MARTIN    | RT                         | LONG      | 79.5  | 71.4                       | 5.0          | 41.6 |                  |
| MARIETTA, |                            |           | 79.4  | 70.9                       | 12.0         | 44.0 | -                |
| LOUISIANA |                            |           | 78.6  | 70.6                       | 14.0         | 37.9 | 10.1             |
| LTV       | RT                         | LONG      | 80.6  | 74.3                       | 13.3         | 32.4 | 9.4              |
|           |                            |           | 79.1  | 72.6                       | 13.7         | 29.8 | 9.5              |
|           |                            |           | 78.7  | 71.7                       | 15.4         | 38.9 | 9.5              |
|           |                            |           | 82.0  | 75.9                       | 10.6         | 31.0 | 9.7              |
|           |                            | AVERAGE   | 80.6  | 73.9                       | 12.3         | 36.5 | 10.1             |
|           | STANDARD                   | DEVIATION | 1.8   | 2.3                        | 2.8          | 5.5  | 0.4              |

TABLE 02

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | MODULUS<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------|----------------------------|--------------|-----------|------------------|
| MCAIR,    | RT                          | L TRANS          | 80.0              |                            | 8.0          |           |                  |
| ST. LOUIS |                             |                  | 80.0              | 72.5                       | 9.0          |           |                  |
|           |                             |                  | 80.5              |                            |              |           |                  |
|           |                             |                  | 80.0              | 72.5                       | 8.0          |           |                  |
| LOCKHEED, | RT                          | L TRANS          | 83.0              | 77.1                       |              |           | 10.8             |
| GEORGIA   |                             |                  | 80.2              | 73.3                       |              |           | 9.6              |
|           |                             |                  | 80.5              | 73.7                       |              |           | 9.9              |
|           |                             |                  | 78.9              | 72.9                       |              |           | 10.0             |
|           |                             |                  | 79.9              | 73.0                       |              |           | 10.7             |
|           |                             |                  | 79.9              | 72.5                       |              |           | 9.7              |
|           |                             |                  | 78.6              | 71.8                       |              |           | 10.6             |
|           |                             |                  | 79.8              | 71.3                       |              |           | 10.6             |
|           |                             |                  | 78.0              | 71.4                       |              |           | 10.2             |
|           |                             |                  | 78.9              | 70.6                       |              |           | 10.4             |
| MARTIN    | RT                          | L TRANS          | 78.5              | 70.0                       | 6.0          | 6.1       | 10.0             |
| MARIETTA, |                             |                  | 79.2              | 71.3                       | 8.0          | 10.2      | 10.0             |
| LOUISIANA |                             |                  | 77.5              | 69.1                       | 13.0         | 32.7      | 10.0             |
| LTV       | RT                          | L TRANS          | 77.8              |                            | 8.0          |           | 9.5              |
|           |                             |                  | 78.1              | 70.6                       | 10.0         | 19.3      | 9.7              |
|           |                             |                  | 77.8              | 68.8                       | 8.0          | 11.7      | 10.0             |
|           |                             |                  | 77.2              | 68.7                       | 7.0          | 9.7       | 10.3             |
|           |                             | AVERAGE          | 79.3              | 71.8                       | 8.5          | 15.0      | 10.1             |
|           | STANDARD DE                 | EVIATION         | 1.3               | 1.9                        | 1.8          | 8.9       | 0.4              |

TABLE 03

TENSILE RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY             | TEST<br>TEMP<br>(DEGREES F | ORIENT-<br>ATION<br>) | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI)   | ELONG<br>(%)              | RA<br>(%) | MODULUS<br>(MSI) |
|---------------------|----------------------------|-----------------------|-------------------------------|------------------------------|---------------------------|-----------|------------------|
| MCAIR,<br>ST. LOUIS | RT                         | s trans               | 82.5<br>83.0<br>81.5<br>82.0  | 77.0<br>76.5<br>75.0<br>76.0 | 10.0<br>6.0<br>6.0<br>7.0 |           |                  |
|                     | STANDARD :                 | AVERAGE               | 82.3<br>0.6                   | 76.1<br>0.9                  | 7.3<br>1.9                |           |                  |

TABLE 04

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION   | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------|------------------------------------|---------------|----------------------------------------|---------------------------------|
| MCAIR,    | RT                                 | LONG          | 75.5                                   | 11.2                            |
| ST. LOUIS |                                    |               | 77.5                                   | 11.5                            |
|           |                                    |               | 75.0                                   | 10.8                            |
| LOCKHEED, | RT                                 | LONG          | 76.6                                   | 10.6                            |
| GEORGIA   |                                    |               | 78.0                                   |                                 |
|           |                                    |               | 83.4                                   | 10.4                            |
|           |                                    |               | 79.9                                   | 10.6                            |
|           |                                    |               | 83.5                                   |                                 |
|           |                                    |               | 78.5                                   |                                 |
|           |                                    |               | 78.1                                   | 10.5                            |
| MARTIN    | RT                                 | LONG          | 76.4                                   | 11.0                            |
| MARIETTA, |                                    |               | 77.2                                   | 11.0                            |
| LOUISIANA |                                    |               | 75.3                                   | 10.9                            |
| LTV       | RT                                 | LONG          | 80.4                                   | 11.5                            |
|           |                                    |               | 77.7                                   | 11.4                            |
|           |                                    |               | 76.4                                   | 12.5                            |
|           |                                    |               | 79.6                                   | 11.8                            |
|           |                                    | AVERAGE       | 78.2                                   | 11.1                            |
|           | STANDA                             | ARD DEVIATION | 2.5                                    | 0.6                             |

TABLE 05

COMPRESSION RESULTS AT t/2 LOCATION FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MCAIR.    | RT                                 | L TRANS        | 75.0                                   | 11.2                            |
| ST. LOUIS |                                    |                | 76.5                                   | 11.8                            |
|           |                                    |                | 76.0                                   | 11.9                            |
| LOCKHEED, | RT                                 | L TRANS        | 72.9                                   |                                 |
| GEORGIA   |                                    |                | 80.5                                   |                                 |
|           |                                    |                | 75.3                                   | 11.2                            |
|           |                                    |                | 78.3                                   | 11.3                            |
|           |                                    |                | 77.7                                   | 11.1                            |
|           |                                    |                | 73.8                                   | 9.8                             |
|           |                                    |                | 72.0                                   | 9.7                             |
| MARTIN    | RT                                 | L TRANS        | 76.4                                   | 11.2                            |
| MARIETTA, |                                    |                | 76.1                                   | 11.1                            |
| LOUISIANA |                                    |                | 76.1                                   | 11.1                            |
| LTV       | RT                                 | L TRANS        | 77.9                                   | 11.1                            |
|           |                                    |                | 76.8                                   | 12.0                            |
|           |                                    |                | 78.7                                   | 11.8                            |
|           |                                    |                | 74.9                                   | 11.7                            |
|           |                                    | AVERAGE        | 76.2                                   | 11.2                            |
|           | STAN                               | DARD DEVIATION | 2.1                                    | 0.7                             |

#### TABLE 06

## SLOTTED SHEAR RESULTS FOR

## KAISER 7064-T74 HAND FORGINGS

| COMPANY             | ORIENTATION        | ULTINATE<br>STRENGTH<br>(KSI) |
|---------------------|--------------------|-------------------------------|
| MCAIR,<br>ST. LOUIS | LONG               | 53.5<br>47.5<br>46.5          |
|                     | AVERAGE            | 49.2                          |
|                     | STANDARD DEVIATION | 3.8                           |

## TABLE 07

# AMSLER DOUBLE SHEAR RESULTS FOR

## KAISER 7064-T74 HAND FORGINGS

| COMPANY              | ORIENTATION        | ULTIMATE<br>STRENGTH<br>(KSI) |
|----------------------|--------------------|-------------------------------|
| LOCKHEED,<br>GEORGIA | L-T                | 50.0<br>51.8<br>50.4          |
|                      | AVERAGE            | 50.7                          |
|                      | STANDARD DEVIATION | 0.9                           |

## TABLE 08

# IOSIPESCU SHEAR RESULTS FOR

## KAISER 7064-T74 HAND FORGINGS

| COMPANY | ORIENTATION        | ULTIMATE<br>STRENGTH<br>(KSI) |
|---------|--------------------|-------------------------------|
| LTV     | LONG               | 50.5                          |
|         |                    | 52.5                          |
|         |                    | 48.0                          |
|         |                    | 48.9                          |
|         |                    | 51.5                          |
|         |                    | 51.3                          |
|         |                    | 51.7                          |
|         |                    | 50.4                          |
|         | AVERAGE            | 50.6                          |
|         | STANDARD DEVIATION | 1.5                           |

## TABLE 09

## IOSIPESCU SHEAR RESULTS FOR

## KAISER 7064-T74 HAND FORGINGS

| COMPANY | ORIENTATION        | ULTIMATE<br>STRENGTH<br>(KSI)                        |
|---------|--------------------|------------------------------------------------------|
| LTV     | L TRANS            | 50.2<br>51.3<br>51.2<br>52.7<br>49.5<br>53.7<br>51.8 |
|         | AVERAGE            | 51.5                                                 |
|         | STANDARD DEVIATION | 1.4                                                  |

TABLE 010
BEARING RESULTS FOR KAISER

7064-T74 HAND FORGINGS

| COMPANY              | ORIENTATION | •/D     | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|---------|-------------------------------|--------------------------------|
| LOCKHEED,<br>GEORGIA | LONG        | 1.5     | 137.0<br>115.0<br>139.0       | 116.0<br>105.0<br>114.0        |
| LTV                  | LONG        | 1.5     | 132.8<br>132.4<br>137.7       | 112.4<br>112.1<br>115.9        |
|                      |             | AVERAGE | 132.3                         | 112.6                          |

STANDARD DEVIATION 8.9 4.1

TABLE 011
BEARING RESULTS FOR KAISER
7064-T74 HAND FORGINGS

| COMPANY | ORIENTATION | e/D          | BEARING<br>ULT. STR.<br>(KSI)    | BEARING<br>YIELD STR.<br>(KSI)   |
|---------|-------------|--------------|----------------------------------|----------------------------------|
| LTV     | L TRANS     | 1.5          | 134.3<br>135.2<br>139.1<br>138.5 | 116.6<br>114.7<br>116.5<br>117.1 |
|         |             | AVERAGE      | 136.8                            | 116.2                            |
|         | STANDAI     | RD DEVIATION | 2.4                              | 1.1                              |

TABLE 012

BEARING RESULTS FOR KAISER

7064-T74 HAND FORGINGS

| COMPANY   | ORIENTATION | ●/D          | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|-----------|-------------|--------------|-------------------------------|--------------------------------|
| MCAIR,    | LONG        | 2.0          | 148.0                         |                                |
| ST. LOUIS |             |              | 149.0                         | 117.0                          |
|           |             |              | 143.0                         | 112.0                          |
| LOCKHEED, | LONG        | 2.0          | 168.0                         | 135.0                          |
| GEORGIA   |             |              | 169.0                         | 123.0                          |
|           |             |              | 170.0                         | 126.0                          |
| LTV       | LONG        | 2.0          | 165.1                         | 131.9                          |
|           |             |              | 170.6                         | 143.1                          |
|           |             |              | 176.1                         | 137.5                          |
|           |             | AVERAGE      | 162.1                         | 128.2                          |
|           | STANDA      | RD DEVIATION | 12.0                          | 10.6                           |

TABLE 013

BEARING RESULTS FOR KAISER

7064-T74 HAND FORGINGS

| COMPANY             | ORIENTATION | e/D                 | BEARING<br>ULT. STR.<br>(KSI)    | BEARING<br>YIELD STR.<br>(KSI)   |
|---------------------|-------------|---------------------|----------------------------------|----------------------------------|
| MCAIR,<br>ST. LOUIS | L TRANS     | 2.0                 | 149.0<br>149.0<br>151.0          | 119.0<br>116.0<br>119.0          |
| LTV                 | L TRANS     | 2.0                 | 173.0<br>172.1<br>171.8<br>168.1 | 135.9<br>134.6<br>135.0<br>142.8 |
|                     |             | average             | 162.0                            | 128.9                            |
|                     | STANDA      | RD DEVIATION<br>452 | 11.7                             | 10.6                             |

TABLE 014

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY                          | ORIENTATION        | KIC<br>(KSI IN^0.5) | Kq<br>(KSI IN^0.5)   | COMMENT                 |
|----------------------------------|--------------------|---------------------|----------------------|-------------------------|
| MCAIR,<br>ST. LOUIS              | L-T                | 24.1<br>27.5        |                      | VALID<br>VALID          |
| Lockheed,<br>Georgia             | L-T                | 26.0<br>29.0        |                      | VALID<br>VALID          |
| MARTIN<br>MARIETTA,<br>LOUISIANA | L-T                |                     | 27.2<br>23.6         | (1)<br>(1)              |
| LTV                              | L-T                |                     | 24.1<br>26.4<br>29.4 | (2)(3)<br>(2)(3)<br>(2) |
|                                  | AVERAGE            | 26.7                | 26.1                 |                         |
|                                  | STANDARD DEVIATION | 2.1                 | <b>ain 6</b> °       |                         |

<sup>(1):</sup> INVALID DUE TO a/W=0.552 > 0.55

<sup>(2):</sup> INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE VIOLATED KIC REQUIREMENTS

<sup>(3):</sup> INVALID DUE TO Kmax PRECRACK > 0.6 Kg

TABLE 015 FRACTURE TOUGHNESS RESULTS FOR KAISER 7064-T74 HAND FORGINGS

| COMPANY                          | ORIENTATION        | KIC<br>(KSI IN^0.5) | Kq<br>(KSI IN^0.5) | COMMENT               |
|----------------------------------|--------------------|---------------------|--------------------|-----------------------|
| MCAIR,<br>ST. LOUIS              | T-L                | 17.8<br>17.0        |                    | VALID<br>VALID        |
| MARTIN<br>MARIETTA,<br>LOUISIANA | T-L                |                     | 18.7               | (1)                   |
| LTV                              | T-L                | 27.9                | 30.2<br>21.1       | (3,<br>V <b>al</b> id |
|                                  | AVERAGE            | 20.9                | 23.3               |                       |
|                                  | STANDARD DEVIATION | 6.1                 | 6.1                |                       |

<sup>(1):</sup> INVALID DUE TO a/W=0.552 > 0.55 (2): INVALID DUE TO TEST SPECIMEN FRACTURE SURFACE VIOLATED KIC REQUIREMENTS

<sup>(3):</sup> INVALID DUE TO Kmax PRECRACK > 0.6 Kq

TABLE 016 FRACTURE TOUGHNESS RESULTS FOR KAISER 7064-T74 HAND FORGINGS

| COMPANY                          | ORIENTATION       | KIC<br>(KSI IM^0.5) | Kq<br>(KSI IN^0.5) | COMMENT          |
|----------------------------------|-------------------|---------------------|--------------------|------------------|
| MCAIR,<br>ST. LOUIS              | 8-T               | 19.9                | 20.3               | (1),(2)<br>VALID |
| MARTIN<br>MARIETTA,<br>LOUISIANA | S-T               |                     | 15.8<br>14.3       | (1)<br>(1)       |
|                                  | AVERAG            | B 19.9              | 16.8               |                  |
|                                  | STANDARD DEVIATIO | N 0.0               | 3.1                |                  |

<sup>(1):</sup> INVALID DUE TO SURFACE TRACE/AVERAGE CRACK ERROR VALUE > VALID REQ (2): AVERAGE CRACK/W VALUE LESS THAN VALID REQUIREMENT

TABLE 017

FRACTURE TOUGHNESS RESULTS FOR

KAISER 7064-T74 HAND PORGINGS

| COMPANY                          | ORIENTATION        | KIC<br>(KSI IN^0.5) | Kq<br>(KSI IN^0.5) | COMMENT |
|----------------------------------|--------------------|---------------------|--------------------|---------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | S-L                | 16.7<br>15.0        | 19.3               | (1)     |
|                                  | AVERAGI            | 15.9                | 19.3               |         |
|                                  | STANDARD DEVIATION | 1.2                 | 0.0                |         |

(1): INVALID DUE TO a/W=0.552 > 0.55

TABLE 018

FATIGUE RESULTS WITH Kt=1.0 AND R=-1.0 FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY   | ORIENTATION | Linit<br>Stress<br>(KSI) | CYCLES TO FAILURE |
|-----------|-------------|--------------------------|-------------------|
| HCAIR,    | LONG        | 60.0                     | 2,270             |
| ST. LOUIS |             | 55.0                     | 5,140             |
|           |             | 50.0                     | 10,750            |
|           |             | 45.0                     | 18,150            |
|           |             | 40.0                     | 86,100            |
|           |             | 35.0                     | 206,670           |
|           |             | 30.0                     | 2,560,000 *       |
|           |             | 25.0                     | 1,000,000 *       |

(\*): INDICATES A RUN OUT TEST

TABLE 019

FATIGUE RESULTS WITH Kt=1.0 AND R=0.1 FOR

KAISER 7064-T74 HAND PORGINGS

| COMPANY | ORIENTATION | LINIT<br>STRESS<br>(KSI) | CYCLES TO<br>FAILURE |
|---------|-------------|--------------------------|----------------------|
| LTV     | LONG        | 50.0                     | 11,600               |
|         |             | 46.1                     | 15,100               |
|         |             | 44.9                     | 17,400               |
|         |             | 44.0                     | 12,100               |
|         |             | 43.0                     | 28,200               |
|         |             | 42.9                     | 18,800               |
|         |             | 41.7                     | 28,000               |
|         |             | 40.9                     | 28,300               |
|         |             | 40.1                     | 10,700               |
|         |             | 39.7                     | 7,400                |
|         |             | 36.9                     | 24,700               |
|         |             | 36.0                     | 285,600              |
|         |             | 35.2                     | 18,000               |
|         |             | 34.4                     | 318,700              |
|         |             | 33.2                     | 3,000,000 *          |

(\*): INDICATES A RUN-OUT TEST



FATIGUE DATA for 7064-T74 Hand Forgings (Longitudinal Orientation R=0.1, Kt=1 and Kt=3). LTV.

TABLE 020

PATIGUE RESULTS WITH Kt=3.0 AMD R=0.1 FOR

KAISER 7064-T74 HAND FORGINGS

| COMPANY | ORIENTATION | LIMIT<br>STRESS<br>(KSI) | CYCLES TO FAILURE |
|---------|-------------|--------------------------|-------------------|
| LTV     | LONG        | 36.1                     | 9,800             |
|         |             | 33.7                     | 9,900             |
|         |             | 32.8                     | 24,500            |
|         |             | 30.5                     | 18,900            |
|         |             | 28.0                     | 19,600            |
|         |             | 27.5                     | 17,400            |
|         |             | 27.0                     | 67,100            |
|         |             | 26.5                     | 368,300           |
|         |             | 26.4                     | 38,100            |
|         |             | 26.3                     | 138,700           |
|         |             | 26.0                     | 983,800           |
|         |             | 26.0                     | 3,000,000 *       |
|         |             | 25.6                     | 1,000,000 *       |
|         |             | 24.1                     | 1,000,000 *       |
|         |             | 22.5                     | 55,500            |

(\*): INDICATES A RUN-OUT TEST



FIGURE 02. FATIGUE DATA FOR 7064-T74 HAND FORGINGS (Longitudinal Orientation, R=-1.0, and Kt=1). McDonnell Aircraft Company.



@ DENOTES THAT DATA POINT IS INVALID PER ASTH 647-63, PARAGRAPH 8.6.4.

FIGURE O3. FATIGUE CRACK GROWTH RATE DATA for 7064-T74 Forging (T-L Orientation, WOL Type Specimen).

McDonnell Aircraft Company.



Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force. FIGURE 04.



FIGURE O5. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging.

Air Force.



FALSTAFF Spectrum Fatigue Crack Length vs Flights Data for 7064-T74 Forging. Air Force. FIGURE 06.



FIGURE 07. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for 7064-T74 Forging.
Air Force.

### APPENDIX P

### CW67 SHEET 0.063"X16"X48"

### INTRODUCTION

The Alcoa P/M aluminum alloy CW67 0.063 inch sheets were received April 1989. CW67 sheets were tested by Martin Marietta and McDonnell Aircraft Company.

### **TESTING**

Mechanical properties (tension, compression, shear, bearing and fracture toughness), and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

TABLE P1

TENSILE RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN    | RT                          | LONG             | 81.5                          | 77.5                       | 8.0          | 10.0      | 9.8        |
| MARIETTA, |                             |                  | 81.9                          | 78.7                       | 7.0          | 10.0      | 9.7        |
| LOUISIANA |                             |                  | 82.9                          | 79.5                       |              | 6.7       | 9.8        |
| MCDONNELL | RT                          | LONG             | 80.0                          | 77.0                       | 6.0          |           | 10.0       |
| DOUGLAS   |                             |                  | 80.0                          | 77.5                       | 8.0          |           | 10.4       |
|           |                             |                  | 81.0                          | 78.5                       | 6.0          |           | 10.0       |
|           |                             | AVERAGE          | 81.2                          | 78.1                       | 7.0          | 8.9       | 10.0       |
|           | STANDARD                    | DEVIATION        | 1.1                           | 0.9                        | 1.0          | 1.9       | 0.3        |

TABLE P2

TENSILE RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY                          | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ultimate<br>Strength<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)      | RA<br>(%)         | E<br>(MSI)           |
|----------------------------------|-----------------------------|------------------|-------------------------------|----------------------------|-------------------|-------------------|----------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                          | L TRANS          | 83.5<br>83.9<br>83.7          | 80.8<br>82.0<br>80.5       | 3.0<br>2.0        | 6.7<br>3.3<br>6.7 | 9.9<br>10.0<br>10.1  |
| MCDONNELL<br>DOUGLAS             | RT                          | L TRANS          | 87.5<br>86.5<br>86.5          | 83.0<br>82.0<br>82.0       | 4.0<br>5.0<br>5.0 |                   | 10.3<br>10.3<br>10.4 |
|                                  |                             | AVERAGE          | 85.3                          | 81.7                       | 3.8               | 5.6               | 10.2                 |
|                                  | STANDARD                    | DEVIATION        | 1.8                           | 0.9                        | 1.3               | 2.0               | 0.2                  |

TABLE P3

### COMPRESSION RESULTS FOR ALCOA

### CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | TEST TEMPERATURE (DEGREES P) | ORIENTATION  | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------|------------------------------|--------------|----------------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS | RT                           | LONG         | 72.0                                   | 11.2<br>11.5<br>10.3            |
|                      |                              | AVERAGE      | 72.0                                   | 11.0                            |
|                      | STANDA                       | RD DEVIATION | 0.0                                    | 0.6                             |

### TABLE P4

### COMPRESSION RESULTS FOR ALCOA

### CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------|------------------------------------|----------------|----------------------------------|---------------------------------|
| MCDONNELL<br>DOUGLAS | RT                                 | L TRANS        |                                  | 10.3<br>10.8<br>11.2            |
|                      |                                    | AVERAGE        |                                  | 10.8                            |
|                      | STAN                               | DARD DEVIATION |                                  | 0.5                             |

TABLE P5

### SLOTTED SHEAR RESULTS FOR ALCOA

### CW67 SHEET (0.063" X 16" X 48")

| СОКРАНУ           | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|-------------------|--------------------|----------------------------|
| MCDONNELL DOUGLAS | LONG               | 31.0<br>30.0<br>29.3       |
|                   | average            | 30.1                       |
|                   | STANDARD DEVIATION | 0.9                        |

TABLE P6

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|-----------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS | LONG        | 1.5       | 117.1<br>124.3<br>125.5       | 101.3<br>107.7<br>111.1        |
|                      |             | AVERAGE   | 122.3                         | 106.7                          |
|                      | STANDARD    | DEVIATION | 4.5                           | 5.0                            |

TABLE P7

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|-----------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS | L TRAMS     | 1.5       | 127.1<br>126.1<br>126.6       | 112.0<br>108.9<br>112.9        |
|                      |             | AVERAGE   | 126.6                         | 111.3                          |
|                      | STANDARD I  | DEVIATION | 0.5                           | 2.1                            |

TABLE P8

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|-----------|-------------------------------|--------------------------------|
| NCDONNELL<br>DOUGLAS | LONG        | 2.0       | 169.4<br>162.0<br>163.5       | 148.8<br>116.3<br>139.5        |
|                      |             | AVERAGE   | 165.0                         | 134.9                          |
|                      | STANDARD    | DEVIATION | 3.9                           | 16.7                           |

TABLE P9

BEARING RESULTS FOR ALCOA

CW67 SHEET (0.063" X 16" X 48")

| COMPANY              | ORIENTATION | <b>e</b> /D | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|----------------------|-------------|-------------|-------------------------------|--------------------------------|
| MCDONNELL<br>DOUGLAS | L TRANS     | 2.0         | 166.1<br>168.5<br>166.2       | 146.4<br>146.6<br>146.4        |
|                      |             | AVERAGE     | 166.9                         | 146.5                          |
|                      | STANDARD    | DEVIATION   | 1.4                           | 0.1                            |

### R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 32) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 32

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

L-T

SPECIMEN ORIENTATION:

YIELD STRENGTH: 77.7 KSI SPECIMEN THICKNESS: 0.071 IN SPECIMEN WIDTH: 3.999 IN

SPECIMEN IS INVALID PER ASTN E561-86, PARA. 7.5

| APPLIED<br>LOAD | PHYSICAL<br>CRACK<br>LENGTH | Kr<br>(UNCORRECTED) | EFFECTIVE<br>CRACK<br>LENGTH | Kr<br>(CORRECTED) |
|-----------------|-----------------------------|---------------------|------------------------------|-------------------|
| (1bs)           | (in)                        | (psi /in)           | (in)                         | (psi /in)         |
| 1.025           | 1.519                       | 49,842              | 1.591                        | 52,248            |
| 1,050           | 1.523                       | 51,181              | 1.599                        | 53,808            |
| 1,250           | 1.533                       | 61,348              | 1.649                        | 66,212            |
| 1,325           | 1.592                       | 67,582              | 1.739                        | 74,594            |
| 1.375           | 1.610                       | 70,986              | 1.777                        | 79,483            |
| 1,400           | 1.613                       | 72.406              | 1.788                        | 81,590            |
| 1.425           | 1.638                       | 74.930              | 1.831                        | 85,575            |
| 1,450           | 1.638                       | 76,245              | 1.840                        | 87,675            |
| 1.475           | 1.642                       | 77,762              | 1.856                        | 90,199            |
| 1,500           | 1.660                       | 80,039              | 1.894                        | 94,283            |
| 1,525           | 1.662                       | 81,493              | 1.910                        | 96,969            |
| 1.550           | 1.663                       | 82.874              | 1.924                        | 99,627            |
| 1,600           | 1.667                       | 85,818              | 1.963                        | 105,834           |
| 1,650           | 1.678                       | 89,128              | 2.022                        | 114,190           |
| 1,700           | 1.684                       | 92,202              | 2.092                        | 124,368           |
| 1,725           | 1.706                       | 94,972              | 2.092                        | 124,300           |
| -               |                             | 78,772              |                              |                   |
| 1,750           | PAILURE                     |                     |                              |                   |

<sup>\*\*\*</sup> Indicates that the equation for Kr (Corrected) did not converge to a solution.

### R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 33) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 33

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: L-T

YIELD STRENGTH: 77.7 KSI SPECIMEN THICKNESS: 0.071 IN SPECIMEN WIDTH: 4.002 IN

| APPLIED<br>LOAD<br>(lbs) | PHYSICAL<br>CRACK<br>LENGTH<br>(in) | Kr<br>(UNCORRECTED)<br>(psi /in) | EFFECTIVE<br>CRACK<br>LENGTH<br>(in) | Rr<br>(CORRECTED)<br>(psi /in) |
|--------------------------|-------------------------------------|----------------------------------|--------------------------------------|--------------------------------|
| 920                      | 1.509                               | 44,397                           | 1.565                                | 46,045                         |
| 940                      | 1.533                               | 46,088                           | 1.594                                | 47,956                         |
| 1,000                    | 1.545                               | 49,395                           | 1.615                                | 51,743                         |
| 1,020                    | 1.548                               | 50,476                           | 1.622                                | 52,997                         |
| 1,060                    | 1.565                               | 53,059                           | 1.648                                | 56,048                         |
| 1,100                    | 1.569                               | 55,188                           | 1.659                                | 58,602                         |
| 1,140                    | 1.573                               | 57,349                           | 1.672                                | 61,243                         |
| 1,180                    | FAILURE                             | •••                              |                                      |                                |

### R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 34) McDonnell Aircraft Company

SPECIMEN IDENTIFICATION: 34

MATERIAL DESCRIPTION:

CW67 HIGH STRENGTH ALUMINUM SHEET

C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION:

YIELD STRENGTH:

SPECIMEN TYPE:

T-L 82.3 RSI

SPECIMEN THICKNESS:

0.071 IN

SPECIMEN WIDTH:

4.002 IN

| APPLIED<br>LOAD<br>(lbs)                                                                                                                     | PHYSICAL<br>CRACK<br>LENGTH<br>(1D)                                                                                                                                | Er<br>(UNCORRECTED)<br>(psi /in)                                                                                                                                                                 | EFFECTIVE<br>CRACK<br>LENGTH<br>(in)                                                                                                                         | Kr<br>(CORRECTED)<br>(psi /in)                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1bs)  820 840 860 880 900 920 940 960 1.000 1.020 1.040 1.060 1.080 1.120 1.140 1.160 1.180 1.200 1.220 1.260 1.280 1.300 1.320 1.340 1.380 | LENGTH (1n)  1.514 1.514 1.516 1.519 1.519 1.524 1.525 1.525 1.526 1.526 1.526 1.526 1.529 1.529 1.534 1.534 1.534 1.534 1.546 1.546 1.546 1.546 1.548 1.562 1.562 | (psi /in)  39,692 40,660 41,677 42,754 43,726 44,843 45,818 46,811 48,762 49,786 50,762 51,738 52,786 54,741 55,832 56,893 57,874 57,874 58,854 60,117 62,210 63,272 64,260 65,321 66,926 68,923 | LENGTH (in)  1.553 1.555 1.559 1.565 1.567 1.577 1.580 1.585 1.590 1.593 1.595 1.601 1.607 1.613 1.619 1.622 1.622 1.626 1.638 1.648 1.654 1.659 1.665 1.665 | (psi /in)  40,712 41,761 42,867 44,046 45,113 46,348 47,430 48,537 50,730 51,892 53,005 54,125 55,336 57,616 58,902 60,164 61,338 62,520 64,063 66,648 67,979 69,228 70,584 72,682 75,318 |
| 1,400<br>1,420<br>1,440<br>1,460<br>1,468                                                                                                    | 1.571<br>1.575<br>1.576<br>1.576<br>FAILURE                                                                                                                        | 70,341<br>71,552<br>72,679<br>73,689                                                                                                                                                             | 1.711<br>1.722<br>1.730<br>1.735                                                                                                                             | 77,245<br>78,913<br>80,485<br>81,907                                                                                                                                                      |

## R-CURVE DATA FOR CW67 0.063 SHEET (SPECIMEN 35) McDc::nell Aircraft Company

SPECIMEN IDENTIFICATION: 35

MATERIAL DESCRIPTION: CW67 HIGH STRENGTH ALUMINUM SHEET

SPECIMEN TYPE: C(T) (COMPACT SPECIMEN)

SPECIMEN ORIENTATION: T-L

YIELD STRENGTH: 82.3 KSI SPECIMEN THICKNESS: 0.071 IN SPECIMEN WIDTH: 4.001 IN

| APPLIED<br>LOAD | PHYSICAL<br>CRACK<br>LENGTH | Rr<br>(UNCORRECTED) | EFFECTIVE<br>CRACK<br>LENGTH | Er<br>(CORRECTED) |
|-----------------|-----------------------------|---------------------|------------------------------|-------------------|
| (1bs)           | (in)                        | (psi √in)           | (in)                         | (psi √in)         |
| 800             | 1.501                       | 38,420              | 1.537                        | 39,340            |
| 860             | 1.505                       | 41,420              | 1.548                        | 42,585            |
| 880             | 1.505                       | 42,383              | 1.550                        | 43,636            |
| 900             | 1.505                       | 43,346              | 1.552                        | 44,692            |
| 920             | 1.505                       | 44,310              | 1.555                        | 45,753            |
| 940             | 1.507                       | 45,320              | 1.559                        | 46,871            |
| 960             | 1.507                       | 46,284              | 1.561                        | 47,943            |
| 980             | 1.507                       | 47,248              | 1.563                        | 49,021            |
| 1,000           | 1.509                       | 48,260              | 1.568                        | 50,158            |
| 1,020           | 1.509                       | 49,225              | 1.570                        | 51,248            |
| 1,040           | 1.514                       | 50,363              | 1.579                        | 52,544            |
| 1,060           | 1.517                       | 51,449              | 1.585                        | 53,788            |
| 1,080           | 1.517                       | 52,419              | 1.588                        | 54,906            |
| 1,100           | 1.521                       | 53,526              | 1.595                        | 56,191            |
| 1,120           | 1.521                       | 54,499              | 1.598                        | 57,328            |
| 1,140           | 1.521                       | 55,472              | 1.602                        | 58,471            |
| 1.160           | 1.521                       | 56,445              | 1.605                        | 59,623            |
| 1,180           | 1.523                       | 57,482              | 1.610                        | 60,860            |
| 1.200           | 1.523                       | 58.456              | 1.613                        | 62,031            |
| 1,220           | 1.523                       | 59.430              | 1.617                        | 63,210            |
| 1,240           | 1.523                       | 60.405              | 1.620                        | 64,398            |
| 1,260           | 1.643                       | 66,427              | 1.765                        | 72,199            |
| 1,280           | 1.643                       | 67,482              | 1.770                        | 73,588            |
| 1,300           | 1.643                       | 68,536              | 1.775                        | 74,994            |
| 1,320           | 1.650                       | 69,917              | 1.789                        | 76,881            |
| 1,340           | 1.665                       | 71,679              | 1.613                        | 79,365            |
| 1,360           | 1.665                       | 72,749              | 1.818                        | 80.873            |
| 1.380           | 1.671                       | 74,137              | 1.832                        | 82.893            |
| 1,388           | FAILURE                     | 1                   |                              | 1                 |



FIGURE P1. R-CURVE DATA for CW67 0.063 Inch Sheet (L-T Orientation). Martin Marietta.



FIGURE P2. R-CURVE EFFECTIVE CRACK LENGTH ADJUSTED for PLASTIC ZONE (L-T Orientation).

Martin Marietta.

TABLE P14

R-CURVE DATA ASSOCIATED WITH FIGURES P1 AND P2
(SPECIMEN 1)

| Load, kips | Half Crack<br>Length<br>(a) inch | Half<br>Crack Length,<br>(a + rho)<br>inch |      | ing Fracture<br>s. ksi √inch<br>Adjusted<br>for Plasticity |
|------------|----------------------------------|--------------------------------------------|------|------------------------------------------------------------|
| 0          | 2.485                            | 2.485                                      | 0.0  | 0.0                                                        |
| 2.50       | 2.485                            | 2.487                                      | 8.3  | 7.8                                                        |
| 4.25       | 2.485                            | 2.490                                      | 14.1 | 13.2                                                       |
| 6.40       | 2.500                            | 2.512                                      | 21.3 | 21.4                                                       |
| 8.45       | 2.520                            | 2.541                                      | 28.3 | 28.4                                                       |
| 11.10      | 2.535                            | 2.571                                      | 37.3 | 37.6                                                       |
| 13.35      | 2.565                            | 2.619                                      | 45.2 | 45.8                                                       |
| 16.30      | 2.615                            | 2.698                                      | 55.9 | 56.9                                                       |
| 19.25      | 2.615                            | 2.733                                      | 66.1 | 67.7                                                       |
| 20.75      | 2.645                            | 2.785                                      | 71.8 | 73.8                                                       |
| 21.50      | 2.710                            | 2.866                                      | 75.6 | 77.9                                                       |
| 22.15      | 2.710                            | 2.893                                      | 78.1 | 80.7                                                       |
| 22.60      | 2.800                            | 2.982                                      | 81.2 | 84.0                                                       |
| 23.00      | 2.865                            | 3.060                                      | 83.9 | 87.0                                                       |
| 22.85      | 3.105                            | 3.327                                      | 88.3 | 92.9                                                       |
| 22.90      | 3.365                            | 3.620                                      | 94.0 | 99.5                                                       |

Thickness = .058 inches Yield Strength = 78.6 ksi Specimen Width = 15.50 inches

TABLE P15

R-CURVE DATA ASSOCIATED WITH FIGURES P1 and P2
(SPECIMEN 2)

| Load, kips                                                                                                                                     | Half Crack<br>Length<br>(a), inch                                                                                                                                       | Half<br>Crack Length<br>(a + rho),<br>inch                                                                                                                                       |                                                                                                                                                    | ng Fracture<br>s. ksi √inch<br>Adjusted<br>for Plasticity                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>2.8<br>5.4<br>8.2<br>10.8<br>13.5<br>16.0<br>19.3<br>20.2<br>21.8<br>23.7<br>24.4<br>24.7<br>25.1<br>26.1<br>26.5<br>27.2<br>27.4<br>27.6 | 2.490<br>2.490<br>2.490<br>2.525<br>2.535<br>2.555<br>2.555<br>2.590<br>2.590<br>2.625<br>2.685<br>2.685<br>2.780<br>2.780<br>2.780<br>2.905<br>2.975<br>3.075<br>3.100 | 2.490<br>2.492<br>2.496<br>2.540<br>2.562<br>2.597<br>2.615<br>2.680<br>2.688<br>2.742<br>2.829<br>2.829<br>2.839<br>2.945<br>2.945<br>3.065<br>3.109<br>3.205<br>3.321<br>3.353 | 0.0<br>8.2<br>15.8<br>24.2<br>31.9<br>40.1<br>47.5<br>57.4<br>60.5<br>65.9<br>72.7<br>74.9<br>77.6<br>78.9<br>83.8<br>85.8<br>85.8<br>89.6<br>92.4 | 0.0<br>7.7<br>15.8<br>24.3<br>32.1<br>40.5<br>48.1<br>58.9<br>61.8<br>67.5<br>74.9<br>77.2<br>80.1<br>81.5<br>86.9<br>89.1<br>94.4<br>97.7 |

Thickness = 0.066 inches Yield Strength = 78.6 ksi Specimen Width = 15.50 inches



FIGURE P3. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (L-T Orientation, R=0.1, Lab Air, Room Temperature and Specimen #6) McDonnell Aircraft Company.



FIGURE P4. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (L-T Orientation, R=0.33, Lab Air, Room Temperature and Specimen #7). McDonnell Aircraft Company.



FIGURE P5. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 Sheet (T-L Orientation, R=0.1, Lab Air, Room Temperature and Specimen #4). McDonnell Aircraft Company.



FIGURE P6. FATIGUE CRACK GROWTH RATE DATA for CW67 0.063 " Sheet (T-L Orientation, R=0.33, Lab Air, Room Temperature and Specimen #5). McDonnell Aircraft Company.

### **APPENDIX Q**

CW67 PLATE 0.4"X16"X48"

### INTRODUCTION

The Alcoa P/M aluminum alloy CW67 0.4 inch plates were received April 1989. Only Martin Marietta tested the CW67 plate.

### **TESTING**

Tensile and toughness tests were generated according to ASTM standards, unless otherwise specified.

TABLE Q1

TENSILE RESULTS FOR ALCOA

CW67 PLATE (0.4" X 16" X 48")

| COMPANY                          | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(%)            | E<br>(MSI)        |
|----------------------------------|-----------------------------|------------------|-------------------------------|----------------------------|----------------------|----------------------|-------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                          | LONG             | 81.8<br>81.1<br>82.0          | 79.1<br>77.2<br>78.4       | 11.0<br>13.0<br>12.5 | 18.1<br>23.1<br>24.7 | 9.8<br>9.8<br>9.9 |
|                                  |                             | AVERAGE          | 81.6                          | 78.2                       | 12.2                 | 22.0                 | 9.8               |
|                                  | STANDARD                    | DEVIATION        | 0.5                           | 1.0                        | 1.0                  | 3.4                  | 0.1               |

TABLE Q2

TENSILE RESULTS FOR ALCOA

CW67 PLATE (0.4" X 16" X 48")

| COMPANY                          | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)      | RA<br>(%)         | E<br>(MSI)          |
|----------------------------------|-----------------------------|------------------|-------------------------------|----------------------------|-------------------|-------------------|---------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                          | l trans          | 88.8<br>87.8<br>86.9          | 84.6<br>83.8<br>83.6       | 6.0<br>6.0<br>6.5 | 5.6<br>6.1<br>6.6 | 9.9<br>10.3<br>10.1 |
|                                  |                             | AVERAGE          | 87.8                          | 84.0                       | 6.2               | 6.1               | 10.1                |
|                                  | STANDARD                    | DEVIATION        | 1.0                           | 0.5                        | 0.3               | 0.5               | 0.2                 |



FIGURE Q1. R-CURVE DATA for CW67 0.4 INCH PLATE (L-T ORIENTATION).

Martin Marietta.



FIGURE Q2. R-CURVE EFFECTIVE CRACK LENGTH ADJUSTED for Plastic Zone Data for CW67 0.4 Inch Plate (L-T Orientation).

Martin Marietta.

486

TABLE Q3

R-CURVE DATA ASSOCIATED WITH FIGURES Q1 AND Q2
(SPECIMEN 1)

| Load, kips                                                                   | Half Crack<br>Length<br>(a), inch                                                      | Half<br>Crack Length<br>(a + rho),<br>inch                                             |                                                                    | ding Fracture ss. ksi vinch Adjusted for Plasticity                        |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| 0<br>16.1<br>34.3<br>50.2<br>50.2<br>68.5<br>86.6<br>103.4<br>108.0<br>114.8 | 2.475<br>2.475<br>2.500<br>2.503<br>2.506<br>2.507<br>2.600<br>2.650<br>2.680<br>2.735 | 2.475<br>2.476<br>2.507<br>2.546<br>2.576<br>2.596<br>2.650<br>2.724<br>2.762<br>2.831 | 0.0<br>7.8<br>16.8<br>24.7<br>24.7<br>34.0<br>43.4<br>52.5<br>55.2 | 0.0<br>7.3<br>16.8<br>24.8<br>25.0<br>34.3<br>43.9<br>53.3<br>56.2<br>60.7 |

Thickness = 0.396 inches Yield Strength = 78.2 ksi Specimen Width = 15.49 inches

TABLE Q4

R-CURVE DATA ASSOCIATED WITH FIGURES Q1 and Q2
(SPECIMEN 2)

| Load, kips | Half Crack<br>Length<br>(a), inch | Half<br>Crack Length<br>(a + rho),<br>inch | Correspond<br>Toughness<br>Not Adjusted |      |
|------------|-----------------------------------|--------------------------------------------|-----------------------------------------|------|
| 0          | 2.500                             | 2.501                                      | 0.0                                     | 0.0  |
| 15.0       | 2.500                             | 2.540                                      | 7.3                                     | 6.8  |
| 29.9       | 2.535                             | 2.548                                      | 14.6                                    | 13.6 |
| 45.5       | 2.535                             | 2.558                                      | 22.2                                    | 22.3 |
| 60.1       | 2.535                             | 2.596                                      | 29.3                                    | 29.5 |
| 75.2       | 2.560                             | 2.609                                      | 36.9                                    | 37.2 |
| 90.3       | 2.570                             | 2.634                                      | 44.4                                    | 44.8 |
| 91.5       | 2.580                             | 2.656                                      | 44.4                                    | 45.7 |
| 100.6      | 2.590                             | 2.682                                      | 49.8                                    | 50.5 |
| 104.3      | 2.610                             | 2.688                                      | 51.8                                    | 52.6 |
| 108.1      | 2.610                             | 2.691                                      | 53.7                                    | 54.6 |
| 110.5      | 2.610                             | 2.721                                      | 54.9                                    | 55.9 |
| 116.3      | 2.630                             | 2.777                                      | 58.1                                    | 59.2 |
| 121.1      | 2.675                             | 2.850                                      | 61.2                                    | 62.4 |
| 123.8      | 2.740                             | 3.196                                      | 63.6                                    | 65.0 |
| 127.1      | 3.060                             | 3.264                                      | 70.5                                    | 72.2 |
| 129.0      | 3.120                             | 3.425                                      | 72.5                                    | 74.4 |
| 129.0      | 3.270                             | 3.481                                      | 75.1                                    | 77.1 |
| 129.0      | 3.320                             | 3.481                                      | 76.5                                    | 78.6 |

Thickness = 0.396 inches Yield Strength = 78.2 ksi Specimen Width = 15.50 inches

### APPENDIX R

### CW67 EXTRUSION 1.5"X4.5"X36"

### INTRODUCTION

The Alcoa P/M aluminum alloy 1.5"x4.5"x36" extrusions were received August 1987. LTV, McDonnell Aircraft Company and the Air Force tested the CW67 extrusion material.

### **TESTING**

Mechanical properties (tension, compression, shear, bearing, and fracture toughness), and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

Spectrum fatigue crack growth rate tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE R1

TENSILE RESULTS FOR

ALCOA CN67 EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| LTV       | RT                          | LONG             | 86.4                          | 81.3                       | 10.5         |           | 10.2       |
|           |                             |                  | 85.9                          | 81.3                       | 11.4         |           | 10.0       |
|           |                             |                  | 85.9                          | 81.3                       | 12.3         |           | 9.9        |
|           |                             |                  | 85.5                          | 78.6                       | 12.3         |           | 9.4        |
|           |                             |                  | 86.1                          | 80.4                       | 11.7         |           | 9.5        |
| AIR FORCE | RT                          | LONG             | 89.1                          | 84.9                       | 10.0         | 28.0      |            |
|           |                             |                  | 86.2                          | 81.5                       | 9.5          | 27.0      |            |
|           |                             |                  | 85.5                          | 80.6                       | 15.2         | 28.7      |            |
| MCAIR     | RT                          | LONG             | 86.0                          | 81.5                       | 10.0         | 35.0      | 14.3       |
|           |                             |                  | 83.0                          | 79.0                       | 14.0         | 38.0      | 13.4       |
|           |                             |                  | 82.5                          | 77.5                       | 12.0         | 36.0      | 13.7       |
|           |                             | AVERAGE          | 85.6                          | 80.7                       | 11.7         | 32.1      | 11.3       |
|           | STANDARD                    | DEVIATION        | 1.7                           | 1.9                        | 1.7          | 4.7       | 2.1        |

# TABLE R2 TENSILE RESULTS FOR ALCOA CW67 EXTRUSION

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ultimate<br>Strength<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| LTV       | RT                          | L TRANS          | 80.9                          | 75.0                       | 10.0         |           | 10.0       |
|           |                             |                  | 81.0                          | 75.0                       | 12.0         |           | 11.1       |
|           |                             |                  | 81.6                          | 71.0                       | 11.2         |           | 12.9       |
|           |                             |                  | 80.9                          | 72.3                       | 9.1          |           | 11.0       |
|           |                             |                  | 80.9                          |                            | 10.9         |           | 12.9       |
| AIR FORCE | RT                          | L TRANS          | 82.5                          | 77.4                       | 10.0         | 26.0      |            |
|           |                             |                  | 83.1                          | 78.2                       | 10.7         | 35.0      |            |
|           |                             |                  | 82.3                          | 76.7                       | 8.4          | 20.4      |            |
| MCAIR     | RT                          | L TRANS          | 81.5                          | 76.5                       | 12.0         | 32.0      | 14.0       |
|           |                             |                  | 81.0                          | 72.0                       | 10.0         | 27.0      | 14.0       |
|           |                             |                  | 81.5                          | 76.0                       | 15.0         | 35.0      | 13.6       |
|           |                             | AVERAGE          | 81.6                          | 75.0                       | 10.8         | 29.2      | 12.4       |
|           | STANDARD                    | DEVIATION        | 0.8                           | 2.5                        | 1.8          | 5.8       | 1.5        |

TABLE R3

COMPRESSION RESULTS FOR

| COMPANY | TEST OF TEMPERATURE (DEGREES F) | RIBNTATION | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|---------|---------------------------------|------------|----------------------------------|---------------------------------|
| MCAIR   | RT                              | LONG       | 78.5<br>80.0<br>79.5             | 10.8<br>10.9<br>11.0            |
|         |                                 | AVERAGE    | 79.3                             | 10.9                            |
|         | STANDAR                         | DEVIATION  | 0.8                              | 0.1                             |

TABLE R4

COMPRESSION RESULTS FOR

ALCOA CW67 EXTRUSION

| COMPANY | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|---------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MCAIR   | RT                                 | L TRANS        | 80.0<br>74.0<br>79.0                   | 11.2<br>10.8<br>10.8            |
|         |                                    | AVERAGE        | 77.7                                   | 10.9                            |
|         | STAN                               | DARD DEVIATION | 3.2                                    | 0.2                             |

### TABLE R5

### IOSIPESCU SHEAR RESULTS FOR

### ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI) |
|---------|--------------------|----------------------------|
| LTV     | LONG               | 49.8                       |
|         |                    | 50.0                       |
|         |                    | 49.9                       |
|         |                    | 48.1                       |
|         |                    | 48.7                       |
|         |                    | 50.7                       |
|         | AVERAGE            | 49.5                       |
|         | STANDARD DEVIATION | 1.0                        |

### TABLE R6

### IOSIPESCU SHEAR RESULTS FOR

| COMPANY | ORIENTATION        | SHEAR<br>STRENGTH<br>(KSI)                   |
|---------|--------------------|----------------------------------------------|
| LTV     | L TRANS            | 51.5<br>51.2<br>51.5<br>48.9<br>48.6<br>51.0 |
|         | AVERAGE            | 50.5                                         |
|         | STANDARD DEVIATION | 1.3                                          |

### TABLE R7

### AMSLER DOUBLE SHEAR RESULTS FOR

| COMPANY | ORIENTATION        | SH <b>EA</b> R<br>STRENGTH<br>(KSI) |
|---------|--------------------|-------------------------------------|
| MCAIR   | L - S              | 52.1                                |
|         |                    | 48.3                                |
|         |                    | 48.5                                |
|         | AVERAGE            | 49.6                                |
|         | STANDARD DEVIATION | 2.1                                 |

TABLE R8
BEARING RESULTS FOR
ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------|-------------|-----------|-------------------------------|--------------------------------|
| LTV     | LONG        | 1.5       | 124.0<br>123.0<br>126.0       | 103.0<br>104.0<br>106.0        |
| MCAIR   | LONG        | 1.5       | 126.9<br>122.9                | 112.1<br>107.2                 |
|         |             | AVERAGE   | 124.6                         | 106.5                          |
|         | STANDARD    | DEVIATION | 1.8                           | 3.6                            |

TABLE R9
BEARING RESULTS FOR
ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------|-------------|-----------|-------------------------------|--------------------------------|
| LTV     | L TRANS     | 1.5       | 122.0<br>123.0<br>129.0       | 109.0<br>108.0<br>112.0        |
| MCAIR   | L TRANS     | 1.5       | 123.7<br>121.7                | 107.4<br>105.7                 |
|         |             | AVERAGE   | 123.9                         | 108.4                          |
|         | STANDARD    | DEVIATION | 3.0                           | 2.3                            |

TABLE R10

BEARING RESULTS FOR

ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION | •/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------|-------------|-----------|-------------------------------|--------------------------------|
| LTV     | LONG        | 2.0       | 158.0<br>155.0<br>156.0       | 118.0<br>126.0<br>121.0        |
| MCAIR   | LONG        | 2.0       | 174.2<br>171.0                | 144.4<br>139.0                 |
|         |             | AVERAGE   | 162.8                         | 129.7                          |
|         | STANDARD 1  | DEVIATION | 9.0                           | 11.5                           |

TABLE R11
BEARING RESULTS FOR
ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION | e/D       | BEARING<br>ULT. STR.<br>(KSI) | BEARING<br>YIELD STR.<br>(KSI) |
|---------|-------------|-----------|-------------------------------|--------------------------------|
| LTV     | L TRANS     | 2.0       | 153.0<br>162.0<br>156.0       | 122.0<br>129.0<br>124.0        |
| MCAIR   | L TRANS     | 2.0       | 170.7<br>171.1                | 141.3<br>140.5                 |
|         |             | AVERAGE   | 162.6                         | 131.4                          |
|         | STANDARD    | DEVIATION | 8.3                           | 9.1                            |

TABLE R12

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

| COMPANY   | ORIENTATION        | KIC (KSI in^0.5)     | Kq<br>(KSI in^0.5) | COMMENT                 |
|-----------|--------------------|----------------------|--------------------|-------------------------|
| LTV       | L-T                | 24.1<br>22.4<br>21.7 |                    | VALID<br>VALID<br>VALID |
| AIR FORCE | L-T                | 45.3<br>46.9<br>44.1 |                    | VALID<br>VALID<br>VALID |
| MCAIR     | L-T                | 29.4<br>29.0         |                    | VALID<br>VALID          |
|           | AVERAGE            | 32.9                 |                    |                         |
|           | STANDARD DEVIATION | 10.8                 |                    |                         |

TABLE R13

FRACTURE TOUGHNESS RESULTS FOR

ALCOA CW67 EXTRUSION

| COMPANY   | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5)   | COMMENT           |
|-----------|--------------------|---------------------|----------------------|-------------------|
| LTV       | T-L                |                     | 38.5<br>36.1<br>42.2 | (1)<br>(1)<br>(1) |
| AIR FORCE | T-L                | 26.7<br>27.2        |                      | VALID<br>VALID    |
| MCAIR     | T-L                | 18.5<br>18.8        |                      | VALID<br>VALID    |
|           | AVERAGE            | 22.8                | 38.9                 |                   |
|           | STANDARD DEVIATION | 4.8                 | 3.1                  |                   |

(1): INVALID DUE TO UNSYMMETRIC CRACK FRONT CURVATURE
496

### TABLE R14

### FRACTURE TOUGHNESS RESULTS FOR

### ALCOA CW67 EXTRUSION

| COMPANY | ORIENTATION       | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5) | COMMENT        |
|---------|-------------------|---------------------|--------------------|----------------|
| MCAIR   | S-T               | 20.5                |                    | VALID<br>VALID |
|         | AVERAG            | E 20.9              |                    |                |
|         | STANDARD DEVIATIO | N 0.5               |                    |                |

### TABLE R15

### FRACTURE TOUGHNESS RESULTS FOR

| COMPANY | ORIENTATION        | KIC (KSI in^0.5) | Kq (KSI in^0.5) | COMMENT |
|---------|--------------------|------------------|-----------------|---------|
| MCAIR   | s-L                | 33.0             |                 | VALID   |
|         | AVERAGE            | 33.0             |                 | ,~      |
|         | STANDARD DEVIATION | 0.0              |                 |         |



FIGURE R1. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation, R=0.1, Lab Air and Room Temperature).

McDonnell Aircraft Company.



FIGURE R2. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation, R=0.33, Lab Air and Room Temperature).

McDonnell Aircraft Company.



34
 34 - INVALID DATA PER ASTM E647-88

FIGURE R3. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation, R=0.1, Lab Air and Room Temperature). McDonnell Aircraft Company.



• 35 • 35 - INVALID DATA PER ASTM E647-88

FIGURE R4. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation, R=0.33, Lab Air and Room Temperature).

McDonnell Aircraft Company.



FIGURE R5. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation).

Air Force.



FIGURE R6. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (T-L Orientation).
Air Force.



FIGURE R7. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion (L-T Orientation and High Humidity).

Air Force.



FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (L-7 Orientation, Specimen GLT-1). LTV. FIGURE R8.





FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (L-T Orientation, Specimen GLT-2). LTV. FIGURE R9.

CRACK PROPAGATION RATE, DA/DN, (IN/CYCLE)

ユユニー

111-

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrution. (L-T Orientation, Specimen GLT-3). LTV. FIGURE R10.

8



FIGURE R11. FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (T-L Orientation, Specimen GLT-1). LTV.

FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (T-L Orientation, Specimen GLT-2). LTV. FIGURE R12.



FATIGUE CRACK GROWTH RATE DATA for CW67 Extrusion. (T-L Orientation, Specimen GLT-3). LTV. FIGURE R13.



FIGURE R14. Mini-TWIST Spectrum Fatigue Cracklength vs Flights Data for CW67 Extrusion. Air Force.



FIGURE R15. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force.



FIGURE R16. Mini-TWIST Spectrum Fatigue Crack Length vs Flights Data for CW67 Extrusion. Air Force.



FIGURE R17. Mini-TWIST Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force. 514



FIGURE R18. FALSTAFF Spectrum Fatigue Crack Length vs Flights.
Air Force.



FIGURE R19. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force.



FIGURE R20. FALSTAFF Spectrum Fatigue Crack Length vs Flights.
Air Force.



FIGURE R21. FALSTAFF Spectrum Fatigue Crack Growth Rate Data for CW67 Extrusion.

Air Force. 518

#### APPENDIX S

### CW67 HAND FORGING 2.5"X6"X18"

## INTRODUCTION

The Alcoa P/M aluminum alloy CW67 2.5"X6"X18" hand forgings were received October 1988. Martin Marietta and the Air Force tested the CW67 forging.

## **TESTING**

Mechanical properties (tension, compression, shear, bearing and fracture toughness), and constant amplitude fatigue crack growth tests were generated according to ASTM standards, unless otherwise specified.

Spectrum fatigue crack growth rate tests were performed by the Air Force using FALSTAFF (a severe fatigue environment) and Mini-TWIST (a moderately intense fatigue environment) spectrums.

TABLE S1

TENSILE RESULTS FOR

ALCOA CW67 FORGING

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN    | RT                          | LONG             | 87.2                          | 84.0                       | 13.0         | 29.6      |            |
| MARIETTA, |                             |                  | 83.1                          | 75.9                       | 15.0         | 39.7      |            |
| LOUISIANA |                             |                  | 85.0                          | 82.5                       | 14.0         | 27.6      |            |
| AIR FORCE | RT                          | LONG             | 88.0                          | 83.6                       | 13.0         | 39.7      |            |
|           |                             |                  | 82.2                          | 78.6                       | 13.8         | 47.9      |            |
|           |                             |                  | 85.4                          | 80.7                       | 12.7         | 34.5      |            |
|           |                             |                  | 84.6                          | 80.1                       | 12.1         | 46.9      |            |
|           |                             | AVERAGE          | 85.1                          | 80.8                       | 13.4         | 38.0      |            |
|           | STANDARD                    | DEVIATION        | 2.1                           | 2.9                        | 1.0          | 7.9       |            |

TABLE S2

TENSILE RESULTS FOR

ALCOA CW67 FORGING

| COMPANY   | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%) | RA<br>(%) | E<br>(MSI) |
|-----------|-----------------------------|------------------|-------------------------------|----------------------------|--------------|-----------|------------|
| MARTIN    | RT                          | L TRANS          | 79.1                          | 73.4                       | 12.0         | 17.6      | +          |
| MARIETTA, |                             |                  | 78.8                          | 73.0                       | 14.0         | 25.5      |            |
| LOUISIANA |                             |                  | 79.4                          | 74.0                       | 17.0         | 42.5      |            |
| AIR FORCE | RT                          | L TRANS          | 82.4                          | 77.2                       | 13.9         | 40.1      |            |
|           |                             |                  | 83.0                          | 77.0                       | 10.2         | 25.3      |            |
|           |                             |                  | 83.2                          | 77.2                       | 13.5         | 38.9      |            |
|           |                             |                  | 82.3                          | 75.4                       | 13.0         | 32.6      |            |
|           |                             | AVERAGE          | 81.2                          | 75.3                       | 13.4         | 31.8      |            |
|           | STANDARD                    | DEVIATION        | 2.0                           | 1.9                        | 2.1          | 9.3       |            |

TABLE S3

TENSILE RESULTS FOR

ALCOA CW67 FORGING

| COMPANY                          | TEST<br>TEMP<br>(DEGREES F) | ORIENT-<br>ATION | ULTIMATE<br>STRENGTH<br>(KSI) | YIELD<br>STRENGTH<br>(KSI) | ELONG<br>(%)         | RA<br>(*)            | E<br>(MSI) |
|----------------------------------|-----------------------------|------------------|-------------------------------|----------------------------|----------------------|----------------------|------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                          | S TRANS          | 78.7<br>77.9<br>77.5          | 72.4<br>71.5<br>70.8       | 12.0<br>11.0<br>14.0 | 32.7<br>32.7<br>36.0 |            |
| AIR FORCE                        | RT                          | s trans          | 85.7<br>43.8                  | 79.3<br>43.8               | 6.8<br>9.1           | 18.1<br>23.1         |            |
|                                  |                             | AVERAGE          | 72.7                          | 67.6                       | 10.6                 | 28.5                 |            |
|                                  | STANDARD                    | DEVIATION        | 16.5                          | 13.7                       | 2.7                  | 7.6                  |            |

TABLE S4

## COMPRESSION RESULTS FOR

### ALCOA CW67 FORGING

| COMPANY   | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE YIELD STRENGTH (KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|-----------|------------------------------------|----------------|----------------------------------|---------------------------------|
| MARTIN    | RT                                 | LONG           | 82.9                             | 10.6                            |
| MARIETTA, |                                    |                | 81.9                             | 10.6                            |
| LOUISIANA |                                    |                | 81.4                             | 10.6                            |
| AIR FORCE | RT                                 | LONG           | 81.0                             |                                 |
|           |                                    |                | 79.4                             |                                 |
|           |                                    |                | 77.3                             |                                 |
|           |                                    |                | 76.4                             |                                 |
|           |                                    | AVERAGE        | 80.0                             | 10.6                            |
|           | STAN                               | DARD DEVIATION | 2.4                              | 0.0                             |

### TABLE S5

## COMPRESSION RESULTS FOR

# ALCOA CW67 FORGING

| COMPANY                          | TEST<br>TEMPERATURE<br>(DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------------------|------------------------------------|----------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                                 | L TRANS        | 78.6<br>78.8<br>79.6                   | 10.8<br>11.0<br>11.0            |
| AIR FORCE                        | RT                                 | L TRANS        | 81.6<br>82.5<br>81.5<br>80.0           |                                 |
|                                  |                                    | AVERAGE        | 80.4                                   | 10.9                            |
|                                  | STANI                              | DARD DEVIATION | 1.5                                    | 0.1                             |

TABLE S6

## COMPRESSION RESULTS FOR

### ALCOA CW67 FORGING

| COMPANY                          | TEST TEMPERATURE (DEGREES F) | ORIENTATION    | COMPRESSIVE<br>YIELD STRENGTH<br>(KSI) | COMPRESSIVE<br>MODULUS<br>(MSI) |
|----------------------------------|------------------------------|----------------|----------------------------------------|---------------------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | RT                           | s trans        | 80.1<br>82.1<br>80.2                   | 10.7<br>10.8<br>10.8            |
|                                  |                              | AVERAGE        | 80.8                                   | 10.8                            |
|                                  | STAN                         | DARD DEVIATION | 1.1                                    | 0.1                             |

### TABLE S7

## PIN SHEAR RESULTS FOR

## ALCOA CW67 FORGING

| COMPANY   | ORIENTATION        | SHEAR STRENGTH<br>(KSI) |
|-----------|--------------------|-------------------------|
| AIR FORCE | LONG               | 50.0                    |
|           |                    | 50.1                    |
|           |                    | 50.2                    |
|           |                    | 49.8                    |
|           | AVERAGE            | 50.0                    |
|           | STANDARD DEVIATION | 0.2                     |

## TABLE S8

### PIN SHEAR RESULTS FOR

## ALCOA CW67 FORGING

| COMPANY   | ORIENTATION        | SHEAR STRENGTH<br>(KSI)      |
|-----------|--------------------|------------------------------|
| AIR FORCE | L TRANS            | 49.2<br>49.8<br>49.5<br>49.7 |
|           | AVERAGE            | 49.5                         |
|           | STANDARD DEVIATION | 0.3                          |

TABLE S9

BEARING RESULTS FOR

ALCOA CW67 FORGING

| СОМРАНУ   | ORIENTATION | <b>e</b> /D          | (KSI)          | BEARING<br>YIELD STRENGTH<br>(KSI) |
|-----------|-------------|----------------------|----------------|------------------------------------|
| AIR FORCE | LONG        | 1.5                  | 137.9          | 122.3                              |
|           |             |                      | 137.3<br>131.2 | 118.9                              |
|           | CTANDADO    | AVERAGE<br>DEVIATION |                |                                    |
|           | SIMUMU      | DEVIRTION            | 3.7            | 2.0                                |
|           | L TRANS     | 1.5                  | 136.0          |                                    |
|           |             |                      | 137.4<br>132.4 | 130.5<br>128.2                     |
|           |             | AVERAGE              |                |                                    |
|           | STANDARD    | DEVIATION            | 2.6            | 3.8                                |
|           | LONG        | 2.0                  | 165.5          |                                    |
|           |             |                      | 164.9<br>162.7 | 77.8<br>104.1                      |
|           |             | AVERAGE              |                | 100.0                              |
|           | STANDARD    | DEVIATION            | 1.5            | 20.5                               |
|           | L TRANS     | 2.0                  | 166.4          | 103.1                              |
|           |             |                      | 168.1<br>162.1 | 117.5<br>99.9                      |
|           |             | AVERAGE              | 165.5          | 106.8                              |
|           | STANDARD    | DEVIATION            | 3.1            | 9.4                                |

### TABLE S10

## FRACTURE TOUGHNESS RESULTS FOR

### ALCOA CW67 FORGING

| COMPANY                          | ORIENTATIO         | KIC (KSI in^0.5) | Kq<br>(KSI in^0.5) | CONHENT               |
|----------------------------------|--------------------|------------------|--------------------|-----------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | L - T              | 44.8             | 35.9               | VALID<br>INVALID(1)   |
| AIR FORCE                        | L - T              |                  | 28.8<br>34.4       | INVALID(2) INVALID(2) |
|                                  | AVERAG             | GE 44.8          | 33.0               |                       |
|                                  | STANDARD DEVIATION | O.0              | 3.8                |                       |

(1): a/W > 0.55
(2): EXCESSIVE CRACK FRONT CURVATURE

TABLE S11

### FRACTURE TOUGHNESS RESULTS FOR

#### ALCOA CW67 FORGING

| COMPANY                          | OR       | IENTATION            |  |      |  | Kq<br>in^0.5) | COMMENT                           |  |
|----------------------------------|----------|----------------------|--|------|--|---------------|-----------------------------------|--|
| MARTIN<br>MARIETTA,<br>LOUISIANA |          | L - S                |  | 38.6 |  | 46.7<br>52.5  | INVALID(1)<br>INVALID(1)<br>VALID |  |
|                                  | STANDARD | AVERAGE<br>DEVIATION |  | 38.6 |  | 49.6<br>4.1   |                                   |  |

(1): a/W > 0.55

TABLE S12

### FRACTURE TOUGHNESS RESULTS FOR

### ALCOA CW67 FORGING

| COMPANY                          | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq<br>(KSI in^0.5)   | COMMENT                                |
|----------------------------------|--------------------|---------------------|----------------------|----------------------------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | T - L              | 25.0<br>21.6        |                      | VALID<br>VALID                         |
| AIR FORCE                        | T - L              |                     | 21.0<br>18.6<br>22.5 | INVALID(1)<br>INVALID(1)<br>INVALID(1) |
|                                  | AVERAG             | 23.3                | 20.7                 |                                        |
|                                  | STANDARD DEVIATION | N 2.4               | 2.0                  |                                        |

## (1): EXCESSIVE CRACK FRONT CURVATURE

TABLE S13

## FRACTURE TOUGHNESS RESULTS FOR

#### ALCOA CW67 FORGING

| COMPANY                          | ORIENTATION        | KIC<br>(KSI in^0.5) | Kq (KSI in^0.5) | Comment             |
|----------------------------------|--------------------|---------------------|-----------------|---------------------|
| MARTIN<br>MARIETTA,<br>LOUISIANA | T - S              | 21.3                | 23.5            | VALID<br>INVALID(1) |
|                                  | AVERAGE            | 21.3                | 23.5            |                     |
|                                  | STANDARD DEVIATION | 0.0                 | 0.0             |                     |

(1): a/W > 0.55

TABLE S14

## FRACTURE TOUGHNESS RESULTS FOR

## ALCOA CW67 FORGING

| COMPANY   | ORIENTATION |           | KIC<br>(KSI in^0.5) (KSI |  | Kq<br>in^0.5) | COMMENT              |                                  |
|-----------|-------------|-----------|--------------------------|--|---------------|----------------------|----------------------------------|
| AIR FORCE |             | s - T     |                          |  |               | 20.9<br>25.3<br>23.6 | INVALID(1) INVALID(1) INVALID(1) |
|           |             | AVERAGE   |                          |  |               | 23.3                 |                                  |
|           | STANDARD    | DEVIATION |                          |  |               | 2.2                  |                                  |

(1): EXCESSIVE CRACK FRONT CURVATURE



FIGURE S1. Fatigue Crack Growth Rate Data for CW67 Forging (L-T Orientation). Air Force.



FIGURE S2. Fatigue Crack Growth Rate Data for CW67 Forging (T-L Orientation). Air Force.



FIGURE S3. Fatigue Crack Growth Rate Data for CW67 Forging (S-T Orientation). Air Force.



FIGURE S4. Comparison of CW67 Forging and 7050 Plate Mini-TWIST Spectrum Fatigue Crack Growth Rate Data (L-T Orientation).

Air Force.



FIGURE S5. Comparison of CW67 Forging and 7050 Plate FALSTAFF Spectrum Fatigue Crack Growth Rate Data (L-T Orientation).

Air Force.