Teoremas de tipo Bernstein-Doetsch con errores de tipo Tabor para multifunciones aproximadamente y fuertemente midconvexas.

Attila Gilányi<sup>1</sup> <u>Carlos González</u><sup>2</sup> Kazimierz Nikodem<sup>3</sup> Zsolt Páles<sup>1</sup>

<sup>1</sup>Universidad de Debrecen, Hungria. <sup>2</sup>Universidad Central de Venezuela. <sup>3</sup>Universidad de Bielsko-Biala, Polonia.

XXVIII Jornadas Venezolanas de Matemática, 2015





## Contenido

- Introducción
  - Funciones convexas y cóncavas a valores reales.
  - El Teorema de Bernstein-Doetsch.
  - Convexidad aproximada
- 2 Multifunciones.
  - Terminología básica.
  - Transformación de Takagi-Tabor.
- Resultados principales
  - Teoremas.





# Funciones a valores reales.

Sean X un espacio normado real,  $D \subseteq X$  un subconjunto abierto y convexo y  $f: D \to \mathbb{R}$  una función.

#### Definición

Se dice que la función f es **convexa** en D, si para todo  $x, y \in D$ :

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \quad t \in [0,1].$$
 (1.1)

#### Definición

Se dice que la función f es **cóncava** en D, si para todo  $x, y \in D$ :

$$tf(x) + (1-t)f(y) \le f(tx + (1-t)y), \quad t \in [0,1].$$
 (1.2)

## Obervación.

Es evidente que f es cóncava si y sólo si -f es convexa.





# Funciones Jensen-convexas a valores reales.

#### Definición

Se dice que la función f es **Jensen-convexa** en D, si para todo  $x, y \in D$ :

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}.\tag{1.3}$$

## Teorema ([Kuc85], Teorema 5.3.5.)

Sea  $D \subseteq X$  un subconjunto abierto y convexo, y sea  $f: D \to \mathbb{R}$  una función Jensen-convexa. Entonces f satisface la siguiente desigualdad para todo  $x, y \in D$  y para todo  $t \in [0, 1] \cap \mathbb{Q}$ :

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$
 (1.4)



# El Teorema de Bernstein-Doetsch.

## Teorema ([Kuc85], Teorema 6.4.2)

Toda función Jensen-convexa  $f:D\to\mathbb{R}$  en D, localmente acotada superior en un punto  $x_0 \in D$  is continua y por lo tanto convexa en D.

Este teorema teorema fue formulado por F. Bernstein and G. Doetsch en 1915 [BD15], y desde entonces ha sido muy importante en la teoría de convexidad, razón por la cual ha sido generalizado de muchas maneras diferentes y por varios autores. Como consecuencia directa se tiene el siguiente

## Corolario ([Kuc85], Teorema 7.1.1)

*Una función f* :  $D \to \mathbb{R}$  *es convexa si y sólo si es continua y Jensen-convexa.* 





# Funciones aproximadamente convexas.

Sea  $\alpha : \mathbb{R}^+ \to \mathbb{R}^+$ , una función no-decreciente.

#### Definición

Se dice que la función,  $f: D \to \mathbb{R}$  es  $\alpha$ -Jensen-convexa en D, si para todo  $x, y \in D$ 

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2} + \alpha(|x-y|). \tag{1.5}$$

#### Observación

Cuando  $\alpha(x) = \epsilon > 0$ , entonces,  $\alpha$ -Jensen convexidad es simplemente,  $\epsilon$ -Jensen convexidad [HU52]. Resultados de tipo B-D para este tipo de convexidad fueron obtenidos por Ng y Nikodem en 1993 [NN93].





## Teorema ([HP04, MP10])

Sea  $D \subseteq \mathbb{R}$  un subconjunto abierto y convexo de la recta real. Si  $f: D \to \mathbb{R}$ es una función localmente acotada superior en un punto y  $\alpha$ -Jensen-convexa en D, entonces, para todo  $x, y \in D$  y para todo  $t \in [0, 1]$ 

$$f(tx+(1-t)y) \leqslant tf(x)+(1-t)f(y)+\mathfrak{T}_{\alpha}(t,|x-y|),$$

donde

$$\mathfrak{T}_{\alpha}(t,u) = \sum_{n=0}^{\infty} \frac{1}{2^n} \alpha(2 \operatorname{dist}_{\mathbb{Z}}(2^n t) u), \quad t \in [0,1], u \in D - D.$$

#### Observación

Si  $\alpha(u) = \epsilon |u|^p + \delta$ , con  $\epsilon, \delta, p > 0$  y  $u \in \mathbb{R}$ . Entonces

$$\mathfrak{T}_{\alpha}(t,u) = \epsilon \left(\sum_{n=0}^{\infty} 2^{p-n} \operatorname{dist}_{\mathbb{Z}}^{p}(2^{n}t)\right) |u|^{p} + 2\delta = \epsilon T_{p}(t)|u|^{p} + 2\delta.$$





# Sea $D\subseteq\mathbb{R}$ un subconjunto abierto y convexo de la recta real. Si $\sum_{n=0}^{\infty}\alpha(2^{-n})<\infty$ y $f:D\to\mathbb{R}$ es una función localmente acotada superior en un punto y $\alpha$ -Jensen-convexa en D, entonces, para todo $x,y\in D$ y para todo $t\in[0,1]$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + S_{\alpha}(t, ||x-y||),$$

donde

$$\mathcal{S}_{\alpha}(t,u) = \sum_{n=0}^{\infty} 2 \operatorname{dist}_{\mathbb{Z}}(2^{n}t) \alpha\left(\frac{u}{2^{n+1}}\right), \quad t \in [0,1], u \in D - D.$$

#### Observación

Si  $\alpha(u) = \epsilon |u|^p$ , con  $\epsilon, p > 0$  y  $u \in \mathbb{R}$ . Entonces

$$\mathcal{S}_{\alpha}(t,u) = \epsilon \left(\sum_{n=0}^{\infty} \frac{\operatorname{dist}_{\mathbb{Z}}(2^n t)}{2^{np+p+1}}\right) |u|^p = \epsilon S_p(t) |u|^p.$$





# Funciones fuertemente convexas.

Sea *c* un número real positivo. Siguiendo a Polyak, [Pol66]

#### Definición

Una función  $f: D \to \mathbb{R}$  es **fuertemente convexa** con módulo c si para todo  $x, y \in D$  y para todo  $t \in [0, 1]$ 

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - ct(1-t)|x-y|^2$$
 (1.6)

## Teorema ([AGNS11], Teorema 2.3)

 $Sif: D \to \mathbb{R}$  es fuertemente Jensen-convexa con módulo c, y localmente acotada superior en un punto de D entonces f es continua y fuertemente convexa con módulo c.





Sean X, Y espacios topológicos lineales,  $K \subseteq Y$  un cono convexo cerrado y  $D \subseteq X$  un conjunto convexo y abierto. Denote por  $\mathscr{P}(Y)$  a la clase de subconjuntos no-vacios de Y.

#### Definición

Una multifunción  $F: D \to \mathscr{P}(Y)$  es K-convexa en D, si para todo  $x, y \in D$  y todo  $t \in [0, 1]$ 

$$tF(x) + (1-t)F(y) \subseteq F(tx + (1-t)y) + K.$$
 (2.7)





# Cono Recesión.

#### Definición

Sea  $H \subseteq X$  un conjunto no vacío. El **cono recesión** de H denotado por rec(H) es el conjunto

$$rec(H) := \{x \in X \mid tx + H \subseteq H, \text{ for all } t \ge 0\}.$$
 (2.8)

## Propiedades.

- rec(H) es un cono convexo que contiene al origen;
- ② K = rec(H) es el cono más grande con la propiedad  $K + H \subseteq H$ ;

- rec $(H_1)$  + rec $(H_2)$   $\subseteq$  rec $(H_1 + H_2)$ , para todo  $H_1, H_2 \subseteq X$ .





#### Definición

Sea  $S: D \to \mathscr{P}(Y)$  una multifunción. Se dice que S es **localmente semi-**K**-acotada inferior** si para todo  $x \in D$  existe un entorno abierto  $U \subseteq X$  de x y un conjunto acotado  $H \subseteq X$ , tal que

$$S(u) \subseteq \operatorname{cl}(H+K), \quad (u \in U \cap D).$$

#### Definición

Sea  $S: D \to \mathscr{P}(Y)$  una multifunción. Se dice que S es **localmente débil-semi-**K**-acotada superior** si para todo  $x \in D$  existe un entorno abierto  $U \subseteq X$  de x y un conjunto acotado  $H \subseteq X$ , tal que

$$0 \in \operatorname{cl}(S(u) + H + K), \quad (u \in U \cap D).$$





# K-continuidad direccional.

#### Definición

Decimos que *F* es direccionalmente *K*-semicontinua superior en un punto  $p \in D$ , si para toda dirección  $h \in X$  y para todo entorno abierto *U* de  $0 \in Y$ , existe un nùmero positivo δ tal que

$$F(p+th) \subseteq F(p) + U + K$$
,

para todo  $t \in (0, \delta)$  tal que  $p + th \in D$ .

#### Definición

Decimos que F es direccionalmente K-semicontinua inferior en un punto  $p \in D$ , si para toda dirección  $h \in X$  y para todo entorno abierto U de  $0 \in Y$ , existe un nùmero positivo  $\delta$  tal que

$$F(p) \subseteq F(p+th) + U + K$$
,

para todo  $t \in (0, \delta)$  tal que  $p + th \in D$ .



Asumamos que  $D \subseteq X$  es un conjunto estrellado.

#### Definición

Para una multifunción  $S: D \to \mathscr{P}(Y)$ , tal que  $0 \in S(x)$  para todo  $x \in D$ , definimos la **transformación de Takagi-Tabor** de S, como la multifunción  $S^{\perp}: \mathbb{R} \times D \to \mathscr{P}(Y)$  tal que

$$S^{\perp}(t,x) := \operatorname{cl}\left(\bigcup_{n=0}^{\infty} \sum_{k=0}^{n} 2\operatorname{dist}(2^{k}t, \mathbb{Z})S\left(\frac{x}{2^{n+1}}\right)\right). \tag{2.9}$$

## Relación entre S y $S^{\perp}$ .

Sea  $S:D\to \mathscr{P}(Y)$  una multifunción tal que  $0\in S(x)$  para todo  $x\in D.$  Entonces

$$S^{\perp}\left(\frac{1}{2},x\right) = \operatorname{cl}(S(x)) \qquad (x \in D). \tag{2.10}$$



Teoremas.

Sean  $D \subseteq X$  un subconjunto convexo no-vacío, y  $A, B : (D - D) \to \mathscr{P}_0(Y)$ tales que los valores de la multifunción B son semi-K-convexos, donde  $K := \overline{\operatorname{rec}}(B)$ . Sea  $F : D \to \mathscr{P}_0(Y)$  una multifunción que satisface la siguiente inclusión de tipo Jensen para  $x, y \in D$ 

$$\frac{F(x) + F(y)}{2} + A(x - y) \subseteq \operatorname{cl}\left(F\left(\frac{x + y}{2}\right) + B(x - y)\right). \tag{3.11}$$

Entonces, F satisface

$$tF(x) + (1-t)F(y) + \sum_{k=0}^{\infty} 2d_{\mathbb{Z}}(2^k t)A\left(\frac{x-y}{2^k}\right)$$

$$\subseteq \operatorname{cl}\left(F(tx+(1-t)y) + \sum_{k=0}^{\infty} 2d_{\mathbb{Z}}(2^k t)B\left(\frac{x-y}{2^k}\right)\right),$$
(3.12)

para todo  $x, y \in D$   $y \in \mathbb{D} \cap [0, 1]$ .





#### Lema

Sean  $K \subseteq Y$  un cono convexo y  $S, T \subseteq Y$  subconjuntos no vacíos tales que

- (i) S y T son conjuntos semi-K-acotados inferiormente,
- (ii) S y T son semi-K-estrellados con respecto a algún elemento de Y, i.e, existen  $u,v\in Y$  tal que

$$tu + (1 - t)S \subseteq S$$
  $(t \in [0, 1]),$   
 $tv + (1 - t)T \subseteq T$   $(t \in [0, 1]).$ 

Entonces, la multifunción  $t \mapsto tS + (1-t)T$  es direccionalmente K-continua en [0,1].



#### Lema

Sea  $K \subseteq Y$  un cono convexo y sea  $(S_k)$  una sucesión de subconjuntos no vacíos de Y tales que

- (i) Para todo  $k \ge 0$ , el conjunto  $S_k$  es semi-K-estrellado y semi-K-acotado inferior.
- (ii) La sucesión  $(S_k)$  es K-Cauchy, i.e., para todo abierto  $V \subseteq Y$ , entorno de  $0 \in Y$ , existe  $m \in \mathbb{N}$  tal que, para todo  $n \geqslant m$ ,

$$\sum_{k=m}^{n} S_k \subseteq V + K. \tag{3.13}$$

Entonces, para todo  $U \in U(Y)$ , existe un número positivo  $\delta$  tal que, para todo  $t,s \in \mathbb{R}$  con  $|t-s| < \delta$ ,

$$\operatorname{cl}\left(\bigcup_{n=0}^{\infty}\sum_{k=0}^{n}d_{\mathbb{Z}}(2^{k}t)S_{k}\right)\subseteq\operatorname{cl}\left(\bigcup_{n=0}^{\infty}\sum_{k=0}^{n}d_{\mathbb{Z}}(2^{k}s)S_{k}\right)+U+K.$$
(3.14)





Introducción

Teoremas.

## Sean $D \subseteq X$ un subconjunto convexo no-vacío, y $A, B : (D - D) \to \mathscr{P}_0(Y)$ . Sea $K := \overline{\operatorname{rec}}(B)$ y sea $F : D \to \mathscr{P}_0(Y)$ una multifunción que satisface la inclusión de tipo Jensen (3.11). Supongamos que además

- (i) Para todo  $x \in D$ , F(x) es semi-K-estrellado con respecto a algún elemento de Y y también semi-K-acotado inferior.
- (ii) F es direccionalmente K-semicontinua en D.
- (iii) Para todo  $u \in D D$ , los conjuntos A(u) y B(u) son semi-K-acotados inferiores, además A(u) es semi-K-estrellado y B(u) es semi-K-convexo.
- (iv) Para todo  $u \in D D$ , las sucesiones  $\left(A\left(\frac{u}{2^k}\right)\right) y\left(B\left(\frac{u}{2^k}\right)\right)$  son K-Cauchy.

Entonces, para todo  $t \in [0,1]$  y para todo  $x,y \in D$ , la multifunción F satisface la siguiente inclusión

$$tF(x) + (1-t)F(y) + A^{\perp}(t, x - y)$$
  
 $\subseteq \operatorname{cl} (F(tx + (1-t)y) + B^{\perp}(t, x - y) + K).$ 





- [AGNP15] Gilányi Attila, Carlos González, Kazimierz Nikodem, and Zsolt Páles,
  Bernstein—doetsch type theorems with tabor type error terms for set-valued maps, On
  Preparation (2015).
- [AGNS11] A. Azócar, J. Giménez, K. Nikodem, and J. L. Sánchez, On strongly midconvex functions, Opuscula Math. 31 (2011), no. 1, 15–26.
- [BD15] F. Bernstein and G. Doetsch, Zur theorie der konvexen funktionen, Math. Ann. 76 (1915), no. 4, 514–526. MR 1511840
- [HP04] A. Házy and Zs. Páles, On approximately midconvex functions, Bull. London Math. Soc. 36 (2004), no. 3, 339–350. MR 2004j:26020
- [HU52] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821–828. MR 14,254b
- [Kuc85] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, vol. 489, Państwowe Wydawnictwo Naukowe — Uniwersytet Śląski, Warszawa–Kraków–Katowice, 1985. MR 86i:39008
- [MP10] J. Makó and Zs. Páles, Approximate convexity of Takagi type functions, J. Math. Anal. Appl. 369 (2010), 545–554.
- [NN93] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 103–108.
- [Pol66] B. T. Polyak, Existence theorems and convergence of minimizing sequences for extremal problems with constraints, Dokl. Akad. Nauk SSSR 166 (1966), 287–290. MR 33 #6466
- [TT09] Ja. Tabor and Jó. Tabor, Generalized approximate midconvexity, Control Cybernet. 38 (2009), no. 3, 655–669.



