CHEM 361B - Lecture 17 Activity Hybridised Orbitals

1. Bent's Rules

Here is a qualitative set of rules, developed by Henry Bent, that you can use to qualitatively estimate bond angles:

- Central Atoms that obey the octet rule can be classified into three structure types:
 - Central Atoms with four single bonds or electron pairs are to a first approximation described with a tetrahedral (sp³) geometry
 - Central Atoms with a double bond a any combination of two single bonds or electron pairs are to a first approximation described with a trigonal planar (sp²) geometry
 - Central Atoms with two double bonds or a triple bond and a single bond or electron pair are to a first approximation described with a linear (sp) geometry
- The s and p character of each non-equivalent ligand is determined by the electronegativity of the ligand. Electron pairs are considered to have very low electronegativity. Atomic s character concentrates in hybrid orbitals directed towards low electronegative ligands while atomic p character concentrates in hybrid orbitals directed towards high electronegative ligands. The higher the p character in a hybridized orbital, the lower the bond angle.

Using this information predict

- (a) If the H-O-H bond angle in H₂O is greater than, equal to or less than 109.5°.
- (b) If the X-C-X bond angle in F₂CO is larger or smaller than in H₂CO
- (c) If the H-C-H bond angle in FCH₃ is greater than, equal to or less than 109.5°.
- 2. We will predict that the angle between sp² hybridised orbitals is 120°.
 - (a) We can generalise the three sp² hybridised orbitals as

$$\xi_1 = a_1 2s + b_1 2p_x + c_1 2p_y + d_1 2p_z$$

$$\xi_2 = a_2 2s + b_2 2p_x + c_2 2p_y + d_2 2p_z$$

$$\xi_3 = a_3 2s + b_3 2p_x + c_3 2p_y + d_3 2p_z$$

If we were to align all three of these orbitals in the x-z plane, and ξ_1 along the z-axis, argue that $b_1 = c_1 = c_2 = c_3 = 0$.

(b) Argue that following relationships true

i.

$$a_1 = a_2 = a_3$$

ii.

$$a_1^2 + a_2^2 + a_3^2 = 1$$

- (c) Using the above relationships, show that $a_1 = a_2 = a_3 = \frac{1}{\sqrt{3}}$
- (d) Normalise ξ_1 to show that $d_1 = \sqrt{\frac{2}{3}}$. We have now completely defined ξ_1
- (e) Using the fact that ξ_1 and ξ_2 are separate, independent states, show that $d_2 = -\sqrt{\frac{1}{6}}$.
- (f) Normalise ξ_2 to show that $b_2 = \sqrt{\frac{1}{2}}$. We have now completely defined ξ_2 .
- (g) Now that we have two completely defined hybridised orbitals, we can calculate the angle between them
 - i. For this part of the process calculation, why can we set $\phi = 0$?
 - ii. To determine the angle between ξ_1 and ξ_2 , why is doing the following appropriate

$$\frac{d}{d\theta}\left[\xi_2\right] = 0$$

iii. Show that the angle between between ξ_1 and ξ_2 is 120°.