#### Convolutional Neural Networks

Yi-Ting Tsai

National Sun Yat-sen University

2018/10/24



#### Outline Review-example

Pooling Layer

#### **CNN** Architectures

LeNet-5 architecture

AlexNet architectures

 ${\sf GoogLeNet}\ architectures$ 

ResNet architectures

SENet architectures



# Why CNN for Image:

- · Some patterns are much smaller than the whole image
- The same patterns appear in different regions.
- Subsampling the pixels will not change the object



### CNN – Convolution

Those are the network parameters to be learned.



1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 Matrix

-1 1 -1 -1 1 -1 -1 1 -1 Matrix

Property 1 Each filter detects a small pattern (3 x 3).

CNN – Convolution

| 1  | -1 | -1 |        |
|----|----|----|--------|
| -1 | 1  | -1 | Filter |
| -1 | -1 | 1  |        |

stride=1

| 1 | 0                | 0                        | 0                                | 0                                      | 1                                                |
|---|------------------|--------------------------|----------------------------------|----------------------------------------|--------------------------------------------------|
| 0 | 1                | 0                        | 0                                | 1                                      | 0                                                |
| 0 | 0                | 1                        | 1                                | 0                                      | 0                                                |
| 1 | 0                | 0                        | 0                                | 1                                      | 0                                                |
| 0 | 1                | 0                        | 0                                | 1                                      | 0                                                |
| 0 | 0                | 1                        | 0                                | 1                                      | 0                                                |
|   | 0<br>0<br>1<br>0 | 0 1<br>0 0<br>1 0<br>0 1 | 0 1 0<br>0 0 1<br>1 0 0<br>0 1 0 | 0 1 0 0<br>0 0 1 1<br>1 0 0 0<br>0 1 0 | 0 1 0 0 1<br>0 0 1 1 0<br>1 0 0 1 1<br>0 1 0 0 1 |

6 x 6 image

# CNN – Convolution

-1 -1 -1 -1 Filter 1 -1 -1 1

stride=1



3 -1 -3 -1 -3 -1 0 -3

-3 -3 0 1

Duan aut. 2

-1







## CNN - Max Pooling



#### CNN – Max Pooling



## Pooling Layer:

Their goal is to *subsample* (i.e., shrink) the input image in order to reduce the computational load, the memory usage, and the number of parameters



Figure 13-8. Max pooling layer (2 × 2 pooling kernel, stride 2, no padding)

Figure: Max pooling layer  $(2 \times 2 \text{ pooling kernel, stride } 2, \text{ no padding})$ 



## Typical CNN architectures:



Figure 13-9. Typical CNN architecture

Figure: Typical CNN architecture

#### **CNN** Architectures:

A good measure of this progress is the error rate in competitions such as the ILSVRC ImageNet challenge. In this competition the top-5 error rate for image classification fell from over 0.26 to barely over 0.03 in just five years.

We will first look at the classical LeNet-5 architecture (1998), then three of the winners of the ILSVRC challenge: AlexNet (2012), GoogLeNet (2014), ResNet(2015), and SENet(2017).



### **CNN** Architectures:



Figure: ILSVRC ImageNet challenge



LeNet-5 architecture

## LeNet-5 architecture:

Table 13-1. LeNet-5 architecture

| Layer     | Туре            | Maps | Size           | Kernel size  | Stride | Activation |
|-----------|-----------------|------|----------------|--------------|--------|------------|
| Out       | Fully Connected | -    | 10             | -            | -      | RBF        |
| F6        | Fully Connected | -    | 84             | -            | -      | tanh       |
| C5        | Convolution     | 120  | 1×1            | $5 \times 5$ | 1      | tanh       |
| <b>S4</b> | Avg Pooling     | 16   | $5 \times 5$   | $2 \times 2$ | 2      | tanh       |
| C3        | Convolution     | 16   | $10 \times 10$ | $5 \times 5$ | 1      | tanh       |
| S2        | Avg Pooling     | 6    | $14 \times 14$ | $2 \times 2$ | 2      | tanh       |
| C1        | Convolution     | 6    | $28 \times 28$ | $5 \times 5$ | 1      | tanh       |
| In        | Input           | 1    | $32 \times 32$ | _            | -      | _          |

Figure: LeNet-5 architecture



#### AlexNet architectures:

Table 13-2. AlexNet architecture

| Layer     | Туре            | Maps    | Size           | Kernel size  | Stride | Padding | Activation |
|-----------|-----------------|---------|----------------|--------------|--------|---------|------------|
| 0ut       | Fully Connected | -       | 1,000          | -            | -      | -       | Softmax    |
| F9        | Fully Connected | -       | 4,096          | -            | -      | -       | ReLU       |
| F8        | Fully Connected | -       | 4,096          | -            | -      | -       | ReLU       |
| <b>C7</b> | Convolution     | 256     | $13 \times 13$ | $3 \times 3$ | 1      | SAME    | ReLU       |
| <b>C6</b> | Convolution     | 384     | $13 \times 13$ | $3 \times 3$ | 1      | SAME    | ReLU       |
| C5        | Convolution     | 384     | $13 \times 13$ | $3 \times 3$ | 1      | SAME    | ReLU       |
| S4        | Max Pooling     | 256     | $13 \times 13$ | $3 \times 3$ | 2      | VALID   | -          |
| C3        | Convolution     | 256     | $27 \times 27$ | $5 \times 5$ | 1      | SAME    | ReLU       |
| S2        | Max Pooling     | 96      | $27 \times 27$ | $3 \times 3$ | 2      | VALID   | -          |
| <b>C1</b> | Convolution     | 96      | 55 × 55        | 11 × 11      | 4      | SAME    | ReLU       |
| In        | Input           | 3 (RGB) | 224 × 224      | _            | _      | _       | _          |

Figure: AlexNet architectures



## AlexNet architectures:



Figure: AlexNet architectures

# GoogLeNet architectures:

| type           | patch size/<br>stride | output<br>size            | depth | #1×1 | #3×3<br>reduce | #3×3 | #5×5<br>reduce | #5×5 | pool<br>proj | params | ops  |
|----------------|-----------------------|---------------------------|-------|------|----------------|------|----------------|------|--------------|--------|------|
| convolution    | 7×7/2                 | 112×112×64                | 1     |      |                |      |                |      |              | 2.7K   | 34M  |
| max pool       | 3×3/2                 | 56×56×64                  | 0     |      |                |      |                |      |              |        |      |
| convolution    | 3×3/1                 | $56 \times 56 \times 192$ | 2     |      | 64             | 192  |                |      |              | 112K   | 360M |
| max pool       | 3×3/2                 | 28×28×192                 | 0     |      |                |      |                |      |              |        |      |
| inception (3a) |                       | $28 \times 28 \times 256$ | 2     | 64   | 96             | 128  | 16             | 32   | 32           | 159K   | 128M |
| inception (3b) |                       | 28×28×480                 | 2     | 128  | 128            | 192  | 32             | 96   | 64           | 380K   | 304M |
| max pool       | 3×3/2                 | 14×14×480                 | 0     |      |                |      |                |      |              |        |      |
| inception (4a) |                       | 14×14×512                 | 2     | 192  | 96             | 208  | 16             | 48   | 64           | 364K   | 73M  |
| inception (4b) |                       | 14×14×512                 | 2     | 160  | 112            | 224  | 24             | 64   | 64           | 437K   | 88M  |
| inception (4c) |                       | 14×14×512                 | 2     | 128  | 128            | 256  | 24             | 64   | 64           | 463K   | 100M |
| inception (4d) |                       | 14×14×528                 | 2     | 112  | 144            | 288  | 32             | 64   | 64           | 580K   | 119M |
| inception (4e) |                       | 14×14×832                 | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 840K   | 170M |
| max pool       | 3×3/2                 | 7×7×832                   | 0     |      |                |      |                |      |              |        |      |
| inception (5a) |                       | 7×7×832                   | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 1072K  | 54M  |
| inception (5b) |                       | 7×7×1024                  | 2     | 384  | 192            | 384  | 48             | 128  | 128          | 1388K  | 71M  |
| avg pool       | 7×7/1                 | 1×1×1024                  | 0     |      |                |      |                |      |              |        |      |
| dropout (40%)  |                       | 1×1×1024                  | 0     |      |                |      |                |      |              |        |      |
| linear         |                       | 1×1×1000                  | -1    |      |                |      |                |      |              | 1000K  | 1M   |
| softmax        |                       | 1×1×1000                  | 0     |      |                |      |                |      |              |        |      |

Table 1: GoogLeNet incarnation of the Inception architecture / blog.csdn.net/marsjhao

Figure: GoogLeNet architectures



# GoogLeNet architectures:



Figure: GoogLeNet architectures.



Figure 13-12. Residual learning

Figure: ResNet architectures



Figure 13-13. Regular deep neural network (left) and deep residual network (right)

Figure: ResNet architectures



Figure 13-14, ResNet architecture

Figure: ResNet architectures



 $Figure\ 13\text{-}15.\ Skip\ connection\ when\ changing\ feature\ map\ size\ and\ depth$ 

Figure: ResNet architectures

SENet architectures

## SENet architectures:

SENet architectures

# Thanks for listening