FR801xH 快速入门

Bluetooth Low Energy SOC

作者: 董有才 www.freqchip.com

目录

1	综述
2	准备工作
3	开发板介绍
	设置开发环境
	4.1 安装 Keil IDE 开发工具
	4.2 获取 Fr801xH SDK
	4.3 设置工具
5	创建您的第一个工程
	连接设备4
	6.1 连接 Fr801xH 到 PC
	6.2 在 Windows 上查看端口
	6.3 确认串口连接
7	编译工程
8	烧录到设备
	8.1 PC 串口下载工具烧录
	8.2 J-Link 工具在线烧录
	8.2.1 连接 J-Link 工具到 PC
	8.2.2 设置 J-Link 参数
	8.2.3 通过 J-link 下载程序
9	监视器

1 综述

本文档旨在指导用户搭建 801xH 硬件开发的软件环境,通过一个简单的示例展示如何使用 FR801xH SDK (Software Development Kit) 开始工程项目,并编译、下载固件至 801XH 开发板等步骤。

801xH 系列芯片支持以下功能:

- 2.4GHz BLE(低功耗蓝牙) 5.1
- Cortex M3 处理器
- 超低功耗睡眠模式
- 多种外设

801xH 芯片采用 40nm 工艺制程,具有最佳的功耗性能、射频性能、稳定性、通用性和可靠性,适用于各种应用场景和不同功耗需求。

富芮坤为用户提供完整的软、硬件资源,进行 801xH 硬件设备的开发。其中,富芮坤的软件开发环境 801xH SDK 旨在协助用户快速开发物联网(IOT)应用,可满足用户对于低功耗蓝牙的多种要求。

2准备工作

硬件:

- 一款 801xH 开发板
- USB 电源转接线(A 转 Micro-B)
- PC (Windows)
- USB 转串口线
- J-Link 调试工具(可选)

软件:

- **编译工具** -- Keil V5.2 以上版本,用于编译 Fr801xh 应用程序。
- 获取 **Fr801xH SDK** 开放包,该开发包包含 **Fr801xH** 使用的 API(软件库和源代码)和基于 keil 的示例工程和基于 GCC 编译的工具链脚本。
- 安装 C语言编程的文本编辑器,例如 Source Insight

3 开发板介绍

请点击下方链接,了解有关具体开发板的详细信息。

Fr801xH DevKit1.0

4 设置开发环境

4.1 安装 Keil IDE 开发工具

前往 Arm Keil 官方网站下载最新的开发工具: https://www.keil.com/download/product/。

4.2 获取 Fr801xH SDK

在围绕 Fr801xH 构建应用程序之前,请先获取富芮坤提供的软件文件 Fr801xH SDK 仓库。获取 Fr801xH SDK 的本地副本。

4.3 设置工具

安装完 Keil 工具后,需要安装 keil 工具针对 Cotex-M3 核支持的软件包: https://www.keil.com/dd2/arm/armcm3/ 需要完成对 Fr801xH J-link 在线下载程序的支持,将 Fr801xH SDK/Tools/FR8010H.FLM 文件拷贝到如下目录: C:\Keil_v5\ARM\Flash。

5 创建您的第一个工程

现在您可以开始准备开发 Fr801xH 的应用程序了。您可以从 Fr801xH SDK 中的 example 目录下的 get-started/hello_world 工程开始。

将 get-started/hello_world 复制到 example 下并更新项目名称。

Fr801xH SDK 的 example 目录下有一系列示例工程,都可以直接编译,无需复制。

6 连接设备

现在,请将您的 Fr801xH 开发板通过 USB 电源转接线连接到 PC 上电,同时将 USB 转串口线连接开发板的串口(默 认是 PA2-RX, PA3-TX) 和 PC。并在 PC 查看开发板使用的串口。通常,串口在不同操作系统下显示的名称有所不同:

● Windows 操作系统: COM1等

Linux 操作系统: 以 /dev/tty 开始MacOS 操作系统: 以 /dev/cu, 开始

6.1 连接 Fr801xH 到 PC

用 USB 转串口线连接开发板和 PC。如果设备驱动程序没有自动安装,请先确认 USB 转串口线的芯片型号,然后再网上搜索驱动程序,并手动安装。常用的 USB 串口转接线驱动程序链接如下:

● CP210x: CP210x USB 至 UART 桥 VCP 驱动程序

● FTDI: FTDI 虚拟 COM 端口驱动程序

6.2 在 Windows 上查看端口

检查 Windows 设备管理器中的 COM 端口列表。断开 USB 串口转接线与 PC 的连接,然后重连接,查看哪个端口从列表中消失,然后再次出现。

Windows 设备管理器中 Fr801xH Dev1.0 的两个 USB 串行端口

6.3 确认串口连接

现在使用串口终端程序,验证串口连接是否可用。本示例中,我们使用 PuTTY SSH Client,PuTTY SSH Client 既可用于 Windows 也可用于 Linux。你也可以使用其他串口程序并设置如下的通信参数。

运行终端,配置串口:波特率 = 115200,数据位 = 8,停止位 = 1,奇偶校验 = N。以下截屏展示了在 Windows 中配置串口和上述通信参数(如 115200-8-1-N)。注意,这里一定要选择在上述步骤中确认的串口进行配置。

在 Windows 操作系统中使用 PuTTY 设置串口通信参数

然后,请检查 Fr801X 是否有打印日志。如果有,请在终端打开串口进行查看。这里,日志内容取决于加载上 Fr801xH 的应用程序,下图即为一个示例。

```
Firmware version is 1.0
Build date: Mar 6 2020 11:13:24
gapm_cmp_evt_handler: operation = 1, status = 0x00.
gapm cmp evt handler: operation = 3, status = 0x00.
gapm_cmp_evt_handler: operation = 40, status = 0x00.
gapm_cmp_evt_handler: operation = 160, status = 0x00.
gapm_cmp_evt_handler: operation = 161, status = 0x00.
gapm_cmp_evt_handler: operation = 162, status = 0x00.
All service added
Start advertising...
gapm_cmp_evt_handler: operation = 27, status = 0x00.
gapm_cmp_evt_handler: operation = 167, status = 0x00.
gapm_cmp_evt_handler: operation = 160, status = 0x00.
adv act[0] start
gapm_cmp_evt_handler: operation = 169, status = 0x00.
gapm_cmp_evt_handler: operation = 170, status = 0x00.
gapm_cmp_evt_handler: operation = 164, status = 0x00.
```

如果打印的日志是可读的(不是乱码),则表示串口连接正常。此时,你可以继续开发,并可以将应用程序下载 到 Fr801xH 芯片上。

7编译工程

打开 hello_world 工程,按 F7 键或 keil 界面左上 [1]编译键()进行编译。如果一切正常,编译完之后将在工程当前目录下生成.bin 文件。

8 烧录到设备

烧录 bin 文件到设备有两种方式,一是通过 PC 上的串口烧录工具下载,二是通过 J-Link 在线调试工具直接在线烧录。烧录之前,通过 USB 电源转接线连接 Fr801xH 开发板到电源。

8.1 PC 串口下载工具烧录

8.2 J-Link 工具在线烧录

8.2.1 连接 J-Link 工具到 PC

按下图将 J-link 工具链接到开发板上。

通过J-link 调试工具连接Fr801xH 芯片到PC

8.2.2 设置 J-Link 参数

接如下顺序点击 Keil 开发工具的各级子菜单。"Project"->"Options for Target"->"Debug"->"Settings"->"Flash Download"

其中后 debug 项目界面的配置应如下图所示。

J-link 调试工具配置界面 Debug

点击 Settings 按钮进入 J-Link 的在线调试参数配置界面,正确的参数配置如下图。

J-link 调试工具参数配置界面

点击 Flash Download 进入 J-link 在线下载的参数配置界面。

J-link 调试工具在线烧录配置界面

在该界面,如果没有默认的 Flash 选项出现,需要点击 Add 按钮,手动添加 Fr801xH 芯片的 flash 下载算法选项。 点击 Add 后,选中 FR8010H 设备即可。

8.2.3 通过 J-link 下载程序

现在,您可以回到 Keil 界面, ()将编译完成的 bin 文件,下载到设备上。如果一切顺利,烧录完成后,开发板会复位,应用程序"hello world"开始运行。

9 监视器

您可以通过 PC 上已经打开的串口工具,监视"hello_world"的运行情况。

Firmware version is 1.0

Build date: Mar 6 2020 11:13:24

Hello world!
...

恭喜, 您已完成 Fr801xH 的入门学习!

现在,您可以尝试一些其他 examples, 或者直接开发自己的应用程序。