Notes du cours d'Algebre Linéaire $2\,$

Yehor Korotenko

March 6, 2025

Abstract				
Le cours parte sur deux sujets liées:				
1. la théorie des espaces euclidiens (i.e un espace vectoriel réel muni d'un produit scalaire) et leur endomorphismes				
2. la réduction des endomorphismes d'un espace vectoriel de dimension finie				

CONTENTS

1	\mathbf{Esp}	eaces euclidiens		
	1.1	Introduction		
	1.2	Orthogonalité		
	1.3	Bases orthonormales		
	1.4	Matrices et produits vectoriels		
	1.5	Projections orthogonales		
	1.6	Isométries et Adjoints		
		1.6.1 Isométries		
		1.6.2 Endomorphisme adjoint		
	1.7	Groupes orthogonaux		
2	Déterminants			
	2.1	Propriétés les plus improtants		
	2.2	Développement par rapport à une ligne/colonne		
	2.3	Déterminant d'une matrice triangulaire		
	2.4	Matrice adjointe		
	2.5	Matrice inverse		
\mathbf{A}	ppen	dices		
\mathbf{A}	Rar	opels des concepts d'Algèbre Linéaire		
	-	Matrices		
		A 1.1 La trace		

CHAPTER J

ESPACES EUCLIDIENS

1.1 Introduction

Les espaces vectoriels considérés dans ce chapitre sont réels. On suppose que E est un \mathbb{R} -espace vectoriel. Produit scalaire:

Definition 1.1. Une forme bilinéaire sur E est une application

$$B: E \times E \longrightarrow \mathbb{R}$$

 $(u, v) \longmapsto B((u, v))$

qui vérifie les conditions suivantes $\forall u, v, w \in E \ \forall \lambda \in \mathbb{R}$:

1.
$$B(u + \lambda v, w) = B(u, w) + \lambda B(v, w)$$

2.
$$B(u, v + \lambda w) = B(u, v) + \lambda B(v, w)$$

B est dite

1. symétrique si $B(u,v) = B(v,u) \ \forall u,v \in E$

2. positive si $B(., u) \ge 0 \,\forall u \in E$

3. définie si $B(u, u) = 0 \Leftrightarrow u = 0$

Proof.

$$\begin{split} B(0,0) &= B(0+1\cdot 0,0) \\ &\stackrel{\text{lin\'earit\'e}}{=} B(0,0) + 1\cdot B(0,0) \\ &= B(0,0) + B(0,0) \\ \Rightarrow B(0,0) = 0 \end{split}$$

Notation. Produit scalaire est noté: < u, v >

Example 1.2. .

1.
$$E = \mathbb{R}^n, X = (x_1, \dots, x_n), Y = (y_1, \dots, y_n) \in E$$

$$\langle X, Y \rangle := \sum_{n=1}^{n} x_i y_i$$

On l'appelle "produit scalaire canonique" (ou usuel)

2.
$$E = \mathbb{R}^2$$
 et $\langle X, Y \rangle = 2x_1y_1 + x_2y_2$

3. $E = \mathcal{C}^0([-1,1],\mathbb{R}) \ni f,g$ (un espace des fonctions continues)

$$< f, g > := \int_{-1}^{1} f(t) \cdot g(t) dt$$

4.
$$E = \mathcal{M}_n(\mathbb{R}) \ni A, B$$

$$\langle A, B \rangle := Tr(A^t B)$$

Proposition 1.3. Un espace vectoriel non-nul possede une infinité de produits scalaires differents.

Definition 1.4. Un espace euclidien est un couple (E, <.>) où E est un \mathbb{R} -espace vectoriel <u>de dimension finie</u> et <.> est un produit scalaire sur E.

Property. Soit (E, <...>) un espace euclidien. On pose:

$$||X|| := \sqrt{\langle X, X \rangle} \qquad X \in E$$

la norme (ou longeur) de X. (Il est bien définie car $\langle .,. \rangle$ est toujours positif)

Lemma 1.5. inégalité de Cauchy-Schwarz On a

$$|\langle u, v \rangle| \le ||u|| \cdot ||v|| \quad \forall u, v \in E$$

avec égalité si et seulement si u et v sont colinéaires, i.e $\exists\,t\in R$ tel que u=tv ou v=tu

Proof. Si v = 0, clair Si $v \neq 0$ on considère $\forall t \in \mathbb{R}$

$$\begin{aligned} \|u + tv\|^2 &= < u + tv, u + tv > \\ &= < u, u + tv > + t < v, u + tv > \\ &= < u, u > + t < u, v > + t < v, u > + t^2 < v, v > \\ &= \|u\|^2 + 2t < u, v > + t^2 \|v\|^2 = f(t) \end{aligned}$$

Cas 1: f(t) n'a pas de racinces différentes

$$\Delta = 4 < u, v >^2 = 4||u||^2||v||^2 \le 0$$

$$\Rightarrow < u, v >^2 \le ||u||^2 \cdot ||v||^2$$

$$\Rightarrow |< u, v > | \le ||u|| ||v||$$

Cas 2: f(t) a seulement une racine:

$$\Delta = 0$$

$$\Rightarrow \exists t \in \mathbb{R} \text{ tq } ||u + tv||^2 = 0$$

$$\Rightarrow u + tv = 0 \Rightarrow u = -tv$$

La définition suivante sera étudiée dans le cours d'analyse:

Definition 1.6. On dit que $N: E \to \mathbb{R}_+$ est une norme si:

- 1. $N(\lambda u) = |\lambda| \cdot N(u) \quad \forall \lambda \in \mathbb{R}, \forall u \in E$
- $2. N(u) = 0 \Rightarrow u = 0$
- 3. $N(u+v) \le N(u) + N(v) \quad \forall u, v \in E$

Lemma 1.7. L'application

$$\sqrt{\langle .,.\rangle} = \|.\|: E \to \mathbb{R}_+$$

est dite norme euclidienne.

Proof. 1), 2) sont faites

3)
$$||u+v||^2 = ||u||^2 + 2 < u, v > +||v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

$$\Rightarrow ||u+v||^2 \le ||u||^2 + ||v||^2$$

Proposition 1.8. On a les identités suivantes $\forall u, v \in E$

1. Identité du parallèlograme:

$$||u+v||^2 + ||u-v||^2 = 2(||u^2|| + ||v||^2)$$

2. Identité de polarisation:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2)$$

Proof.

1.

$$||u + v||^2 = \langle u + v, u + v \rangle$$
$$= ||u||^2 + 2 \langle u, v \rangle + ||v||^2$$

2.
$$||u - v||^2 = ||u||^2 - 2 < u, v > +||v||^2$$

On a:

- (1) + (2): $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$
- (1) (2): $||u + v||^2 ||u v||^2 = 4 < u, v >$

1.2 Orthogonalité

Soit E un $\mathbb{R}\text{-espace}$ vectoriel et <,> un produit scalaire sur E.

Definition 1.9. $u, v \in E$ sont dits orthogonaux si $\langle u, v \rangle = 0$. On note $u \perp v$

 \bullet Deux sous-ensembles A, B de E sont orthogonaux si:

$$\forall u \in A, \forall v \in B, \quad \langle u, v \rangle = 0$$

• Si $A \subseteq E$ on appelle **orthogonal de** A, noté A^{\perp} l'ensemble

$$A^{\perp} = \{ u \in E \mid \langle u, v \rangle = 0 \quad \forall v \in A \}$$

Aussi connu comme orthogonal complement of A

• Une famille (v_1, \ldots, v_n) de vecteurs de E est dite orthogonale si $\forall i \neq j, v_i \perp v_j$. Elle est dite orthonomée si elle est orthogonale et de plus $||v_i|| = 1 \quad \forall i \in \{1, \ldots, n\}$

Example 1.10. $E = \mathbb{R}^n, <, >$ produit scalaire canonique

$$v_i = (0, \dots, 0, \underbrace{1}_i, 0, \dots, 0)$$

$$\langle v_i, v_j \rangle = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

 (v_1, \ldots, v_n) est une base canonique

Proposition 1.11. 1. Si $A \subseteq E$ alors A^{\perp} est un sous-espace vectoriel de E

- 2. Si $A \subseteq B$ alors $B^{\perp} \subseteq A^{\perp}$
- 3. $A^{\perp} = Vect(A)^{\perp}$
- 4. $A \subset (A^{\perp})^{\perp}$

Proof. Exercice

Example 1.12. 1. $E = C^0([-1, 1], \mathbb{R})$

$$< f, g > := \int_{-1}^{1} f(t) \cdot g(t) dt$$

Alors, $f(t) = \cos(t)$, $g(t) = \sin(t)$ sont orthogonaux: $2\cos(t)\sin(t) = \sin(2t)$

$$\int_{-1}^{1} \cos(t) \sin(t) dt = \frac{1}{2} \int_{-1}^{1} \sin(2t) dt = 0$$

Definition 1.13. Si E est un espace euclidien, on appelle "dual de E" l'ensemble

$$L(E, \mathbb{R}) = \{ f : E \to \mathbb{R} \mid f \text{ est linéaire} \}$$

On le note E^* . Un élément $f \in E^*$ s'appelle une forme linéaire.

Rappele:

Proposition 1.14. Si F, F' sont deux e.v de dimension finie, on $dim(L(F, F')) = dim(F) \cdot dim(F')$ En particulier, $dim(F^*) = dim(F)$. En effet si $n = (e_1, \ldots, e_p)$ est une base de F est $n' = (e'_1, \ldots, e'_q)$ est une base de F', alors l'application

$$: L(F, F') \longrightarrow Mat_{f \times p}(\mathbb{R})$$
$$f \longmapsto (f) = Mat_{n,n'}(f).$$

est un isomorphisme. Donc dim(F, F) = qp

Theorem 1.15. Théorème du rang: Si F est un e.v de dimension finie et $f: F \to F'$ linéaire, alors dim(F) = dim(Ker(f)) + dim(Im(f))

Proposition 1.16. Si F, F' sont deux e.v <u>de dimension finie</u> tq dim(F) = dim(F') et $f: F \to F'$ linéaire, alors f est un isomorphisme $\Leftrightarrow Ker(f) = 0$

Proof. On rappelle que si G, G' sont des sous-e.v de dimension finie dans le même e.v, alors:

$$G = G' \Leftrightarrow G \subseteq G' \text{ et } dim(G) = dim(G')$$

- \Rightarrow) f injective $\Rightarrow Ker(f) = 0$
- \Leftarrow) Soit Ker(f) = 0.

Alors, forcément dim(Ker(f)) = 0 et par le théorème du rang on a dim(F) = dim(Im(f)), donc Im(f) = F'

Lemma 1.17. du Riesz:

Soit (E, < ., .>) un espace euclidien de dimension finie et $f \in E^*$. Alors, $\exists ! u \in E$ tel que $f(x) = < u, x > \forall x \in E$. La forme linéaire f est donné par un produit scalaire avec un vecteur.

Notation. Pour tout $v \in E$ on note par f_v l'application:

$$f_v : E \longrightarrow \mathbb{R}$$

 $x \longmapsto f_v(x) = \langle v, x \rangle$.

 f_v est linéaire $\forall v \in E$ i.e E^*

Proof. lemma de Reisz On considère l'application

$$\phi: E \longrightarrow E^*$$
$$v \longmapsto \phi(v) = f_v.$$

 ϕ est linéaire (exercice). ϕ est injective:

$$v \in Ker(\phi) \Leftrightarrow f_v(x) = 0 \quad \forall x \in E$$

en particulier pour x = v, on a:

$$0 = f_v(v) = \langle v, v \rangle \Rightarrow v = 0$$

 $dim(E) = dim(E^*) \Rightarrow \phi$ est un isomorphisme $\Rightarrow \phi$ bijective

$$\forall f \in E^*, \exists ! n \in E \text{ tq } \phi(n) = f, \text{ i.e } f(x) = \langle n, x \rangle \ \forall x \in E$$

Dans ce cas $E = \mathbb{R}^n$, le lemme de Riesz est tres simple à comprendre:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une forme linéaire. Si on note (e_1, \dots, e_n) la base canonique de \mathbb{R}^n , tout $x \in \mathbb{R}^n$ s'écrit

$$x = \sum_{n=1}^{n} \alpha_i e_i$$
 $\alpha_i \in \mathbb{R}, \forall i \in \{1, \dots, n\}$

$$x = \sum_{n=1}^{n} \alpha_i e_i \qquad \alpha_i \in \mathbb{R}, \forall i \in \{1, \dots, n\}$$

$$\Rightarrow f(x) = \sum_{n=1}^{n} \alpha_i f(e_i) = \langle (\alpha_1, \dots, \alpha_n), (a_1, \dots, a_n) \rangle = \langle (a_1, \dots, a_n), (\alpha_1, \dots, \alpha_n) \rangle$$

1.3 Bases orthonormales

Soit (E, \langle, \rangle) un espace euclidien et $F \subset E$ un sous-espace vectoriel $(dim(F) < \infty)$ car $dim(E) < \infty$.

Note.

$$F^{\perp} := \{ x \in E \mid \langle X, Z \rangle = 0 \, \forall z \in F \}$$

l'orthogonale de F.

Theorem 1.18. On a $E = F \oplus F^{\perp}$.

En particulier, $dim(F^{\perp}) = dim(E) - dim(F)$ et $F = (F^{\perp})^{\perp}$

Proof. On doit montrer que:

- 1. $F \cap F^{\perp} = \emptyset$
- 2. $E = F + F^{\perp}$ i.e $\forall x \in E, \exists x' \in F, x'' \in F^{\perp}$ to x = x' + x''
- 1. Soit $x \in F \cap F^{\perp}$ $\Rightarrow \langle X, Z \rangle = 0 \, \forall Z \in F \text{ car } x \in F \Rightarrow \langle X, X \rangle = 0 \Rightarrow x = 0 (\langle , \rangle \text{ est définie})$
- 2. Soit $x \in E$. Considérons $f_x \in E^*$, i.e $f_x : E \to \mathbb{R}, y \mapsto \langle x, y \rangle$ et $f := f_{x|F} : F \to \mathbb{R} \Rightarrow f \in E^*$ Lemme de Riesz $\Rightarrow \exists ! x' \in F \text{ tq } f = f_{x'} : F \to \mathbb{R}, z \mapsto \langle x', z \rangle$ $\Rightarrow f_x(z) = f_{x'}(z) = f(z) \, \forall z \in F$ (Attention: pas l'égalité pour tout z dans E)

Posons x'' := x - x', i.e $x = x' + x'' \in F$. Montrons $x'' \in F^{\perp}$.

Si $z \in F$, $\langle x'', z \rangle = \langle x - x', z \rangle = \langle x, z \rangle - \langle x', z \rangle = 0$. Donc $x'' \in F^{\perp}$ et $E = F \oplus F^{\perp}$ $(dim(E) = F \oplus F^{\perp})$ $dim(F) + dim(F^{\perp}))$ $F \subseteq (F^{\perp})^{\perp} \operatorname{car} \langle x, z \rangle = 0 \, \forall x \in F \, \forall z \in F^{\perp}$

$$dim(F) = dim(E) - dim(F^{\perp})$$

 $\operatorname{car} E = G \oplus G^{\perp}, \operatorname{donc} \dim(G) = \dim(E) - \dim(G^{\perp}) \operatorname{pour} G = F^{\perp}, \dim(F^{\perp}) = \dim(G)$

Definition 1.19. Soit E un espace vectoriel muni d'un produit scalaire \langle , \rangle

• Une famille $(v_i)_{i>0}$ de vecteurs de E est dite orthogonale si pour $i \neq j$ on a $\langle v_i, v_i \rangle = 0$ i.e $v_i \perp v_j$

• Une famille orthogonale de E est une famille orthogonale $(v_i)_{i>0}$ tq de plus $||v_i||=1$ pour $i\geq 0$

Example 1.20. 1. $E = \mathbb{R}^n$ muni du produit scalaire canonique. La base canonique (e_1, \ldots, e_n) est orthogonale car

$$\langle e_i, e_j \rangle = \begin{cases} 1 \ i = j \\ 0 \ i \neq j \end{cases}$$

2. Dans $E = \mathcal{C}^0([-1,1],\mathbb{R})$ muni de $\langle f,g \rangle = \int_{-1}^1 f(t)g(t) dt$. La famille $(\cos(t),\sin(t))$ est orthogonale. La famille $(1, t^2)$ n'est pas orthogonale:

$$\langle 1, t^2 \rangle = \int_{-1}^{1} 1t^2 dt = \frac{2}{3} \neq 0$$

Proposition 1.21. Une famille orthogonale constituée de vecteurs <u>non-nuls</u> est libre. En particulier, une famille orthonormale est libre.

Proof. Suppososns (v_1, \ldots, v_n) orthogonale avec $v_i \neq 0 \, \forall i = 1, \ldots, n$ si $\sum_{j=1}^{n} \alpha_i v_i = 0$, alors

$$\forall i \in \{1, \dots, n\} 0 = \left\langle v_i, \sum_{j=1}^n \alpha_j v_j \right\rangle = \sum_{j=1}^n \alpha_j \left\langle v_i, v_j \right\rangle = \alpha_i \|v_i\|^2_{\neq 0}$$

Donc $\alpha_i = 0 \,\forall i = 1, \ldots, n$. Si (v_1, \ldots, v_n) est orthonormale, alors $||v_i|| = 1$. Donc $v_i \neq 0, \forall i = 1, \ldots, n$.

Intuition. Les vecteurs orthogonales (perpendiculaires) ne sont jamais dans l'un l'autre (i.e $e_i = \lambda e_j$ n'est pas possible) si les vecteurs sont liés, soit l'angle est < 90 (donc les vecteurs ne sont pas orthogonales, absurd), (ils sont dans l'un l'autre, ils ne sont pas orthogonales, absurd). Donc ils sont bien libres.

Definition 1.22. (E,\langle,\rangle) espace euclidien. Une famille $B=(e_1,\ldots,e_n)$ est une base orthonormale (où BON) si elle est une base et famille orthonormale.

Theorem 1.23. (E, \langle, \rangle) espace euclidien. Alors, il admet une BON.

Proof. Soit n := dim(E). Soit (e_1, \ldots, e_p) une famille orthogonale (du point de vue du cardinal p) tq $e_i \neq 0 \, \forall i = 1, \dots, p.$ Supposons par l'absurde que p < n. Posons $F = Vect(e_1, \ldots, e_p)$. Alors, $E = F \oplus F^{\perp}$ et $dim(F) \leq p < n$. Donc $F^{\perp} \neq \{0\}$. Soit $x \in F^{\perp}$, $x \neq 0$. Alors, (e_1, \dots, e_p, x) est orthogonale de cardinale > p. Donc, p = n

et (e_1, \ldots, e_n) est une base de E. Pour avoir une famille orthonormale (e'_1, \ldots, e'_n) il suffit de prendre $e'_i = \frac{1}{\|e_i\|} e_i \, \forall i = \{1, \dots, n\}.$

Proposition 1.24. Soit (E, \langle , \rangle) un espace euclidien et soit (e_1, \ldots, e_n) une BON de E. Si $x \in E$, on a:

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Autrement dit, le réél $\langle x, e_i \rangle$ est la $i^{\text{ème}}$ coordonnée de x dans la base (e_1, \dots, e_n) .

Intuition. L'orthonormalité de la base nous simplifie la vie. Mais avant, petite introduction. Soit un e.v $E = \mathbb{R}^2$ et la base $(e_1, e_2) = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix})$. Soit un vecteur $\vec{v} = (2, 3)$:

Donc, on peut écrire $\vec{v} = (\vec{2}, \vec{3}) = 2 \cdot \vec{e_1} + 3 \cdot \vec{e_2}$. Les x et y (les coordonnées de v) nous donnes combien de parties de chaque vecteur de bases (le nombre peut être $\in \mathbb{R}$) et prendre leurs sommes, pour obtenir \vec{v} . (Le plus simple: combien on doit aller à gauche et en haut).

Dans la base orthonormale $\langle v, e_i \rangle$ nous donne combien on prend d'un vecteur e_i pour faire le vecteur \vec{v} et $\vec{e_i}$ donne la direction. D'où $\langle v, e_1 \rangle$ équivaut à 2, et $\langle v, e_2 \rangle$ à 3, puis:

$$\vec{v} = \underbrace{\langle v, e_1 \rangle}_{=2} \cdot \vec{e_1} + \underbrace{\langle v, e_2 \rangle}_{=3} \cdot \vec{e_2}$$

Habituelement, pour trouver les coordonnées dans une base, on devrait résoudre un système linéaire.

Proof. Posons
$$y := \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$
. Alors,
$$\forall j = 1, \dots, n, \\ \langle x - y, e_j \rangle \\ = \langle x, e_j \rangle - \langle y, e_j \rangle \\ = \langle x, e_j \rangle - \langle \sum_{i=1}^{n} \langle x, e_i \rangle e_i, e_j \rangle \\ = \langle x, e_j \rangle - \sum_{i=1}^{n} \langle x, e_i \rangle \langle e_i, e_j \rangle \\ = \langle x, e_j \rangle - \sum_{i=1}^{n} \langle x, e_i \rangle \langle e_i, e_j \rangle \\ - \left(\langle x, e_1 \rangle \langle e_1, e_j \rangle + \dots + \langle x, e_{j-1} \rangle \langle e_{j-1}, e_j \rangle + \langle x, e_j \rangle \langle e_j, e_j \rangle + \langle x, e_{j+1} \rangle \langle e_{j+1}, e_j \rangle + \dots + \langle x, e_n \rangle \langle e_n, e_j \rangle \right) \\ (\forall i \neq j, \langle e_i, e_j \rangle = 0 \text{ car un produit scalaire des vecteur orthogonaux}) \\ (\forall j \langle e_j, e_j \rangle = 1 \text{ car un produit scalaire de même vecteur}) \\ = \langle x, e_j \rangle - \langle x, e_j \rangle \langle e_j, e_j \rangle = 0 \\ = 1 \\ \text{Donc, } x - y \in Vect(e_1, \dots, e_n)^\perp = E^\perp = \{0\}. \text{ Donc } x = y$$

Corollary 1.25. $\forall x \in E, ||x||^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$

Proof. Si $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i = \sum_{i=1}^{n} x_i e_i$ donc

$$||x||^2 = \langle \sum_{i=1}^n x_i e_i, \sum_{j=1}^n x_j e_j \rangle = \sum_{i,j=1}^n x_i x_j \langle e_i, e_j \rangle = \sum_{i=1}^n x_i^2$$

1.4 Matrices et produits vectoriels

Proposition 1.26. Soient (E, \langle, \rangle) un espace euclidien et $\varepsilon = (e_1, \dots, e_n)$ une BON. Soient $f \in \mathcal{L}(E, E)$ et $A = (a_{i,j})_{1 \leq i,j \leq n}$ la matrice représentative de f dans ε , i.e, $A = Mat_{\varepsilon}(f)$

$$a_{i,j} = \langle f(e_i), e_j \rangle \ \forall i, j = 1, \dots, n$$

Proof. A est la matrice dont les colonnes sont les vecteurs $f(e_i)$ écrits dans la base ε :

$$A = (f(e_1)|\dots|f(e_n)) \quad f(e_j) = \begin{pmatrix} a_{1,j} \\ \dots \\ a_{n,j} \end{pmatrix}$$

Car $\forall v \in E, v = c_1 e_1 + \dots c_n e_n$ donc $f(v) = c_1 f(e_1) + \dots c_n f(e_n)$ par la linéarité, donc il nous reste à étudier chaque $f(e_j)$

$$f(e_j) = a_{1,j}e_1 + \dots + a_{n,j}e_n \Rightarrow$$

$$\langle f(e_j), e_i \rangle = \left\langle \sum_{k=1}^n a_{k,j}e_k, e_i \right\rangle = \sum_{k=1}^n a_{k,j} \langle e_k, e_i \rangle = a_{k,j}$$

 $\operatorname{car}\, \langle e_k, e_j \rangle = \begin{cases} 0 \text{ si } k \neq j \\ 1 \text{ si } k = j \end{cases} \quad \text{Donc:}$

$$a_{i,j} = \langle f(e_j), e_i \rangle$$

La matrice d'un produit vectoriel est très utile dans l'algèbre linéaire. Avant donner une definition: Soit E un espace vectoriel de dimension finie n, un espace K et une forme bilinéaire $b: E \times E \longrightarrow K$. Si $\{e_1, \ldots, e_n\}$ est une base de E, alors: $x = \sum_{i=1}^n x_i e_i$ et $y = \sum_{j=1}^n y_j e_j$, alors on a:

$$b(x,y) = \sum_{i,j=1}^{n} x_i y_j b(e_i, e_j)$$

b est donc détérminé par la conaissance des valeurs $b(e_i,e_j)$ sur une base.

Definition 1.27. On appelle matrice de b dans la base $\{e_i\}$ la matrice:

$$M(b)_{e_i} = \begin{pmatrix} b(e_1, e_1) & b(e_1, e_2) & \dots & b(e_1, e_n) \\ b(e_2, e_1) & b(e_2, e_2) & \dots & b(e_2, e_n) \\ \dots & \dots & \dots & \dots \\ b(e_n, e_1) & \dots & \dots & b(e_n, e_n) \end{pmatrix}$$

9

Ainsi l'élément de la ième ligne et jème colonne est le coefficient de $x_i y_j$.

CHAPTER 1. ESPACES EUCLIDIENS

Example 1.28. La matrice du produit scalair canonique dans \mathbb{R}^3 est:

$$\langle X, Y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

$$Mat(\langle,\rangle)_{e_i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Proposition 1.29. produit scalair représenté par une matrice. Notons:

$$\underbrace{A = M(b)_{e_i}}_{\text{matrice de produit scalair}} \underbrace{X = M(x)_{e_i}}_{\text{coordonnées de } x} \underbrace{Y = M(y)_{e_i}}_{\text{coordonnées de } y}$$

$$X = M(x)_{e_i}$$
coordonnées de x
dans la base e_i

$$Y = M(y)_{e_i}$$
coordonnées de y
dans la base e_i

Alors, on a:

$$b(x,y) = X^t A Y$$

Example 1.30. Repronnons l'exemple avec $b = \langle , \rangle$ le produit scalair canonique dans \mathbb{R}^3 . Soit $X = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

et $Y = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ dans la base canonique de \mathbb{R}^3 . Donc:

$$\langle x, y \rangle = X^t A Y = \overbrace{(1, 2, -1)}^{X^t} \times \overbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}^{X} \times \overbrace{\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}}^{Y}$$

$$= \underbrace{(1, 2, -1)}_{X} \times \underbrace{\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}}_{A \times Y}$$

$$= 1 \cdot 2 + 2 \cdot 3 + (-1) \cdot 1 = 2 + 6 - 1 = 7$$

TODO. changement de base de la matrice d'une forme bilinéaire

Projections orthogonales

Soit (E, \langle, \rangle) un espace euclidien, $F \subseteq E$ un sous-espace vectoriel. Alors, $E = F \oplus F^{\perp}$. Donc $\forall x \in E$ s'ecrit

$$x = \underset{\in F}{x_F} + \underset{\in F^{\perp}}{x_{F^{\perp}}}$$

Definition 1.31. La projection orthogonale de E dans F est la projection p_F de E sur F parallèlement à F^{\perp} , i.e

$$p_F: E = F \oplus F^{\perp} \longrightarrow F$$
$$x = x_F + x_{F^{\perp}} \longmapsto p_F(x = x_F + x_{F^{\perp}}) = x_F.$$

Remark 1.32. 1. p_F est linéaire

2. $\forall x \in E \, p_F(x)$ est complétement caractérisé par la propriété suivante: Soit $y \in E,$ alors

$$y = p_F(x) \Leftrightarrow \left(y \in \underset{\Rightarrow y = x_F}{F} \text{ et } x - y \in F^{\perp} \right)$$

En particulier $\langle p_F(x), x-p_F(x)\rangle=0$. Alors, si (v_1,\ldots,v_R) est une BON de F, on a:

$$\forall x \in E, p_F(x) = \sum_{i=1}^k \langle x, v_i \rangle v_i$$

En effet, il suffit de vérfier que le vecteur $y = \sum_{i=1}^k \langle x, v_i \rangle v_i$ vérfie:

$$y \in F$$
 et $x - y \in F^{\perp}$

Figure 1.1: Projection

Figure 1.2: Projection avec BON

Proposition 1.33. Soit $x \in E$. Alors,

$$||x - p_F(x)|| = \inf\{||x - y|| \mid y \in F\}$$

i.e $||x - p_F(x)||$ est la distance de x à F. Voir Figure 1.1

Proof. Comme $p_F(x) \in F$ il suffit de prouver que, si $y \in F$, alors

$$||x - p_F(x)|| \le ||x - y||$$

Mais,
$$\|x - y\|^2$$
 = $\|x - p_F(x)\|^2 + 2 \left\langle x - p_F(x), p_F(x) - y \right\rangle = 0 + \underbrace{\|p_F(x) - y\|^2}_{\geq 0} \geq \|x - p_F(x)\|^2$

Theorem 1.34. Gram-Shmidt

Soit E un espace vectoriel muni d'un produit scalaire \langle , \rangle . Soit (v_1, \ldots, v_n) une famille libre d'élement $\in E$. Alors, il existe une famille (w_1, \ldots, w_n) orthogonale tq

$$\forall i = 1, \ldots, n \quad Vect(v_1, \ldots, v_i) = Vect(w_1, \ldots, w_i)$$

De plus, ce théorème nous donne un procédé de construction d'une base orthonormée à partir d'une base quelconque.

Proof. du Théorème 1.34 Construisons la base orthogonale: $\{w_1, \ldots, w_p\}$. Posons d'abord:

$$\begin{cases} w_1 = v_1 \\ w_2 = v_2 + \lambda w_1, & \text{avec } \lambda \text{ tel que } w_1 \perp w_2 \end{cases}$$

En imposant cette condition on trouve:

$$0 = \langle v_2 + \lambda w_1, w_1 \rangle = \langle v_2, w_1 \rangle + \lambda ||w_1||^2$$

Comme $w_1 \neq 0$, on obtient $\lambda = -\frac{\langle v_2, w_1 \rangle}{\|w_1\|^2}$. On remarque que:

$$\begin{cases} v_1 = w_1 \\ v_2 = w_2 - \lambda w_1 \end{cases}$$

donc $Vect\{v_1, v_2\} = Vect\{w_1, w_2\}.$

Une fois construit w_2 , on construit w_3 en posant:

$$w_3 = v_3 + \mu w_1 + \nu w_2$$

avec μ et ν tels que: $w_3 \perp w_1$ et $w_3 \perp w_2$

On peut voir $w_3 = v_3 - \lambda' w_1 - \lambda'' w_2$ comme $w_3 = v_3 - proj_{F_2}v_3$ où $F_i = Vect\{w_1, \dots, w_i\}$

Figure 1.3: Vecteur par projection

Ceci donne

$$0 = \langle v_3 + \mu w_1 + \nu w_2, w_1 \rangle = \langle v_3, w_1 \rangle + \mu \langle w_1, w_1 \rangle + \nu \langle w_2, w_1 \rangle$$
$$= \langle v_3, w_1 \rangle + \mu \|w_1\|^2$$

d'où $\mu = -\frac{\langle v_3, w_1 \rangle}{\|w_1\|^2}$. De même, en imposant que $w_3 \perp w_2$, on trouve $\nu = -\frac{\langle v_3, w_2 \rangle}{\|w_2\|^2}$. Comme

$$\begin{cases} v_1 = w_1 \\ v_2 = w_2 - \lambda w_1 \\ v_3 = w_3 - \mu w_1 - \nu w_2 \end{cases}$$

on voit bien que $Vect\{w_1, w_2, w_3\} = Vect\{v_1, v_2, v_3\}$. C'est-à-dire, $\{w_1, w_2, w_3\}$ est une base orthogonale de l'éspace engendre par v_1, v_2, v_3 . On voit bien maintenant le procédé de récurrence.

Supposons avoir construit w_1, \ldots, w_{k-1} pour $k \leq p$. On pose:

$$w_k = v_k +$$
 combinaison linéaire des vecteurs déjà trouvés
$$= v_k + \lambda_1 w_1 + \ldots + \lambda_{k-1} w_{k-1}$$

Les conditions $w_k \perp w_i$ (pour $i \in \{1, ..., k-1\}$) sont équivalentes à:

$$\lambda_i = -\frac{\langle v_k, w_i \rangle}{\|w_i\|^2}$$

comme on le vérifie immédiatement. Puisque $v_k = w_k - \lambda_1 - \ldots - \lambda_{k-1} w_{k-1}$, on voit par récurrence que $Vect\{w_1,\ldots,w_k\} = Vect\{v_1,\ldots,v_k\} \Leftrightarrow \{w_1,\ldots,w_k\}$ est une base orthogonale de $Vect\{v_1,\ldots,v_k\}$.

Ce qu'il nous rester c'est à la normaliser, i.e $\forall i \in \{1, \dots, k\}$ $e_i = \frac{w_i}{\|w_i\|}$, d'où $\{e_1, \dots, e_k\}$ est une base orthonormale de $F = Vect\{v_1, \dots, v_k\}$.

Proposition 1.35. Pour comprendre cette proposition, je vous conseil de lire la section 1.6 Toute projection orthogonale est autoadjoint, i.e si p est une projection orthogonale, donc:

$$p^* = p$$

En notation matricielle: soit A une matrice de la projection p, donc:

$$A^T = A$$

1.6 Isométries et Adjoints

1.6.1 Isométries

Definition 1.36. Une **isométrie** de E (ou **transformation orthogonale**) est un endomorphisme $f \in \mathcal{L}(E) := \mathcal{L}(E, E)$ préservant le produit vectoriel, i.e:

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in E$$

Definition 1.37. Soient $x, y \in E$ deux vecteurs non nuls. On a, d'après l'inégalité de Cauchy-Schwarz (voir lemma 1.5):

$$\frac{|\left\langle x,y\right\rangle |}{\|x\|\cdot\|y\|}\leq 1$$

Alors, il existe un et un seul $\theta \in [0, \pi]$ tel que:

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} \tag{1.1}$$

Proposition 1.38. Si f est une isométrie de E, donc, on a:

$$||f(x)|| = ||x|| \quad \forall x \in E$$

Proof. Supposons que f est une isométrie de E. Soit $x, y \in E$. Par définition: $\langle f(x), f(y) \rangle = \langle x, y \rangle$, donc, posons y := x, alors, on a:

$$\underbrace{\langle f(x), f(x) \rangle}_{\|f(x)\|^2} = \underbrace{\langle x, x \rangle}_{\|x\|^2}$$

$$\Leftrightarrow \|f(x)\|^2 = \|x\|^2$$

$$\Leftrightarrow \|f(x)\| = \|x\|$$

Proposition 1.39. Soit f une isométrie dans E, alors:

- 1. f est bijective
- $2.\ f$ présérve la distance euclidienne et les angles

Proof. Soit f une isométrie dans E et deux vecteurs $u, v \in E$

1.

$$||f(u) - f(v)|| = \sqrt{\langle f(u), f(v) \rangle} = \sqrt{\langle u, v \rangle} = ||u - v||$$

2. Soit θ_1 angle entre f(u) et f(v) et θ_2 angle entre u et v, donc:

$$\cos \theta_1 := \frac{\langle f(u), f(v) \rangle}{\|f(u)\| \cdot \|f(v)\|}$$

$$\cos \theta_2 := \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|}$$

Par définition, $\langle f(u), f(v) \rangle = \langle u, v \rangle$, d'après proposition 1.38, $\forall x, ||f(x)|| = ||x||$, donc:

$$\cos \theta_1 := \frac{\langle f(u), f(v) \rangle}{\|f(u)\| \cdot \|f(v)\|} = \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|} = \cos \theta_2$$

Definition 1.40. Soit F un sous-espace vectoriel de E, donc $E = F \oplus F^{\perp}$ d'où $\forall v \in E, \exists v_1 \in F, v_2 \in F^{\perp}$ tel que $v = v_1 + v_2$. On pose:

$$s_F(v) = v_1 - v_2$$

et on appelle s_F une symétrie orthogonale d'axe F.

Figure 1.4: Symétrie orthogonale d'axe F

Proposition 1.41. La symétrie orthogonale est une isométrie.

Proof. TODO ou pas besoin

Proposition 1.42. f est une isométrie si et seulement si elle transforme toute base orthonormée en une base orthonormée.

Proof. Soit f une isométrie, alors elle transforme toute base en une base car f est bijective par la prop. 1.39.

• (\Rightarrow) Supposons que f est une isométrie. Soit $\{e_i\}$ une base orthonormée, alors, on a:

$$\langle f(e_i), f(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{i,j}$$

Donc, $\{f(e_i)\}$ est une base orthonormée.

• (\Leftarrow) Supposons, qu'il existe une base orthonormée $\{e_i\}$ telle que $\{f(e_i)\}$ est aussi une base orthonormée. De plus, soit $x = x_1e_1 + \dots + x_ne_n$ et $y = y_1e_1 + \dots + y_ne_n$ avec $x_i, y_i \in \mathbb{R}$ Comme $\{e_i\}$ est orthonormée, alors on a:

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^{n} x_i y_i$$
 (1.2)

D'autre part:

$$\langle f(x), f(y) \rangle = \left\langle \sum_{i=1}^{n} x_i f(e_i), \sum_{i=1}^{n} y_i f(e_i) \right\rangle = \sum_{i,j=1}^{n} x_i y_j \left\langle f(e_i), f(e_j) \right\rangle$$

$$= \sum_{i,j=1}^{n} x_i y_j \left\langle e_i, e_j \right\rangle_{\text{car } \{e_i\} \text{ orthonormée}} = \sum_{i=1}^{n} x_i y_i \underset{\text{D'apres } 1.2}{=} \left\langle x, y \right\rangle$$

Donc f est une isométrie.

Proposition 1.43. Si $\{e_i\}$ est une base orthonormée, f une isométrie et $A = M(f)_{e_i}$, alors $A^T A = I = AA^T$.

CHAPTER 1. ESPACES EUCLIDIENS

Proof. Pour prouver cela, on va utiliser la proposition 1.29.

Par définition de l'isométrie, on a:

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in E$$

$$\Leftrightarrow \underbrace{(AX)^T (AY)}_{\langle f(x), f(y) \rangle} = X^T A^T AY = \underbrace{X^T Y}_{\langle x, y \rangle}$$

$$\Leftrightarrow A^T A = I$$

Proposition 1.44. Si A est une matrice de l'isométrie dans une base orthonormée, alors $det(A) = \pm 1$

Proof. Par la proposition 1.43, on a: $A^TA = I$, d'où:

$$\begin{split} \det(A^TA) = \det(I) = 1 \Rightarrow & \det(A)^2 = 1 \quad (\operatorname{car} \, \det(A^T) = \det(A)) \\ \Rightarrow & \det(A) = \pm 1 \end{split}$$

Intuition. Une isométrie fait une rotation ou une réflexion, elle conserve les distance, donc l'air (ou volume) d'une figure qui est construit par la base de cette transfomation est égale à 1.

1.6.2 Endomorphisme adjoint

Proposition 1.45. Soit E un espace euclidien et $f \in End(E)$. Il existe un et un seul endomorphisme $f^* \in E$ tel que

$$\langle f(x), y \rangle = \langle x, f^*(y) \rangle, \quad \forall x, y \in E$$

 f^* est dit **adjoint** de f.

Si $\{e_i\}$ est une base orthonormée et $A=M(f)_{e_i}$, alors la matrice $A^*=M(f^*)_{e_i}$ est la transposée de A, i.e $A^*=A^T$

Proof. Encore, pour la preuve, on va utiliser la proposition 1.29 qui est très utile, donc je vous conseil maîtriser ce concept.

Soit $\{e_i\}$ une base orthonormée de E et notons

$$A = M(f)_{e_i}$$
 $A^* = M(f^*)_{e_i}$ $X = M(x)_{e_i}$ $Y = M(y)_{e_i}$

Comme on est dans une base orthonormée, alors l'énoncé s'ecrit:

$$\underbrace{(AX)^TY}_{\langle f(x),y\rangle} = X^T A^T Y = \underbrace{X^T (A^*Y)}_{\langle x,f^*(y)\rangle} \quad \forall X,Y \in \mathcal{M}_{n,1}(\mathbb{R})$$

ce qui implique que $A^* = A$ et, de plus, démontre l'unicité de tel adjoint.

1.7 Groupes orthogonaux

Rappel:

Definition 1.46. Un groupe linéaire général:

$$GL(n, \mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid det(A) \neq 0 \}$$

est un groupe de toutes transformations linéaires (matrices carrées) qui sont invérsibles (car $det(A) \neq 0$).

Definition 1.47. Groupe orthogonal: L'ensemble:

$$O(n,\mathbb{R}) := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T A = I \} = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid AA^T = I \}$$

vérifie les propriétés suivantes:

- 1. si $A, B \in O(n, \mathbb{R})$, donc $AB \in O(n, \mathbb{R})$
- 2. $I \in O(n, \mathbb{R})$
- 3. si $A \in O(n, \mathbb{R})$ alors $A^{-1} \in O(n, \mathbb{R})$

En particulier, $O(n, \mathbb{R})$ est un sous-groupe de $GL(n, \mathbb{R})$ (groupe des matrices inversibles) (voir la definition 1.46).

Intuition. La signification des matrices orthogonales est claire: elles représentent les matrices des transformations orthogonales (isométrie) dans une base orthonormée (voir defn 1.9).

On peut remarquer que si det(A) = 1, cette isométrie représente une rotation, de plus, on a la définition suivante:

Definition 1.48. L'ensemble des matrices orthogonales directes (i.e. telles que det(A) = 1)

$$SO(n,\mathbb{R}) = \{A \in O(n,\mathbb{R}) \mid det(A) = 1\}$$

est un groupe, dit groupe spécial orthogonal.

Example 1.49. La matrice

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix}$$

est orthogonale. On peut vérifier que $A^TA = I$, ou, il suffit de montrer que c_1, c_2, c_3 est une famille orthonormée, i.e.:

$$||c_i||^2 = 1$$
 et $\langle c_i, c_j \rangle = 0$ si $i \neq j$

On peut interpreter A comme une matrice d'une transformation f dans la base canonique $\{e_i\}$, donc on a bien: $c_i = f(e_i)$, d'après la proposition 1.42 f est orthogonale. De plus, on voit que det(A) = +1. En conséquent, f est une transformation orthogonale directe.

Proposition 1.50. La matrice de passage d'une base orthonormée à une base orthonormée est une matrice orthogonale.

Proof. Je donne de l'intuition. Matrice de passage transforme une base en autre base, elle passe les vecteurs de la base, alors elle transforme la base de la BON en vecteurs de la base de la BON, donc, d'après la proposition 1.42, cette matrice est orthogonale.

$^{ extsf{L}}_{ extsf{CHAPTER}}2$

DÉTERMINANTS

Ce chapitre est plutôt un cheatsheet des déterminants car je ne vais pas donner des preuves mais les propriétés utiles, les exemples et de l'intuition.

Definition 2.1. Soit $A = [a_{i,j}] \in \mathcal{M}_n(\mathbb{R})$ une matrice carée $n \times n$, alors:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{signe}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)}$$

οù

- S_n est un groupe de toute permutation de $\{1,\ldots,n\}$
- $signe(\sigma)$ est une signe de pérmutation

Cette définition est très formelle, alors au bout de ce chapitre on va reformuler cette définition. D'abord, on va étudier les propriétés de déterminants:

2.1 Propriétés les plus improtants

Proposition 2.2. les propriétés de déterminant. Pour cette proposition, on note $det(c_1, \ldots, c_n)$ un déterminant où $\forall i, r_i$ et $\forall i, y_i$ représentent une colonne (ou un vecteur colonne). Et $\forall i, \lambda_i \in \mathbb{R}$.

1. Déterminant de la matrice identité est 1:

$$\det(I_n) = 1$$

2. Déterminant de la matrice du rang 1 est son seul élément:

$$\det(\left[a_{1,1}\right]) = a_{1,1} \qquad \text{où } a_{1,1} \in \mathbb{R}$$

3. Linéarité 1:

$$\det(r_1,\ldots,r_i+y_i,\ldots,r_n) = \det(r_1,\ldots,r_i,\ldots,r_n) + \det(r_1,\ldots,y_i,\ldots,r_n)$$

4. Linéarité 2:

$$\det(r_1,\ldots,\lambda_i r_i,\ldots,r_n) = \lambda_i \det(r_1,\ldots,r_i,\ldots,r_n)$$

Note. C'est pourquoi:

$$\det(\lambda A) = \lambda^n \det(A)$$

5. Mêmes colonnes: Supposons que $i \neq j$ et $c_i = c_j$ alors:

$$\det(c_1,\ldots,c_i,\ldots,c_i,\ldots,c_n)=0$$

S'il y a deux colonnes identiques, alors det est égale à 0.

6. Déplacements des colonnes:

$$\det(c_1,\ldots,c_i,\ldots,c_j,\ldots,c_n) = -\det(c_1,\ldots,\underbrace{c_j,\ldots,c_i}_{\text{permutation}},\ldots,c_n)$$

Autrement dire, une permutation des colonnes change la signe.

7. Détérminant des matrices multipliées: Soient $A, B \in \mathcal{M}_n(\mathbb{R})$

$$\det(AB) = \det(A)\det(B)$$

8. Détérminant d'une matrice transposé: Soit $A \in \mathcal{M}_n(\mathbb{R})$

$$\det(A^T) = \det(A)$$

2.2 Développement par rapport à une ligne/colonne

Definition 2.3. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée, i.e:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,i-1} & a_{1,i} & a_{1,i+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,i-1} & a_{2,i} & a_{2,i+1} & \dots & a_{2,n} \\ \vdots & \vdots \\ a_{j-1,1} & a_{j-1,2} & \dots & a_{j-1,i-1} & a_{j-1,i} & a_{j-1,i+1} & \dots & a_{j-1,n} \\ a_{j,1} & a_{j,2} & \dots & a_{j,i-1} & a_{j,i} & a_{j,i+1} & \dots & a_{j,n} \\ a_{j+1,1} & a_{j+1,2} & \dots & a_{j+1,i-1} & a_{j+1,i} & a_{j+1,i+1} & \dots & a_{j+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,i-1} & a_{n,i} & a_{n,i+1} & \dots & a_{n,n} \end{bmatrix}$$

Alors, $A_{j,i}$ est une matrice où la ligne j et la colonne i sont supprimé, i.e.

$$A_{j,i} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,i-1} & a_{1,i+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,i-1} & a_{2,i+1} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j-1,1} & a_{j-1,2} & \dots & a_{j-1,i-1} & a_{j-1,i+1} & \dots & a_{j-1,n} \\ a_{j+1,1} & a_{j+1,2} & \dots & a_{j+1,i-1} & a_{j+1,i+1} & \dots & a_{j+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,i-1} & a_{n,i+1} & \dots & a_{n,n} \end{bmatrix} \in \mathcal{M}_{n-1}(\mathbb{R})$$

Cela nous permet de développer le détérminant par rapport à une ligne ou une colonne:

Proposition 2.4. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée et soit $1 \le k \le n$

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{k,i} \det(A_{k,i})$$

est le calcul de détérminant par rapport à $k^{\text{ième}}$ ligne.

Example 2.5. Soit

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Figure 2.1: Développement par rapport à la deuxiemme ligne

Donc:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{2,i} \det(A_{2,i})$$

$$= (-1)^{1+2} \cdot a_{2,1} \cdot \det(A_{2,1}) + (-1)^{2+2} \cdot a_{2,2} \cdot \det(A_{2,2}) + (-1)^{3+2} \cdot a_{2,3} \cdot \det(A_{2,3})$$

$$= (-1)^{1+2} \cdot 2 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 6 \end{vmatrix} + (-1)^{2+2} \cdot 9 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 6 \end{vmatrix} + (-1)^{3+2} \cdot 8 \cdot \begin{vmatrix} 1 & 4 \\ 3 & 7 \end{vmatrix}$$

$$= (-1) \cdot 2 \cdot (-11) + 1 \cdot 9 \cdot (-9) + (-1) \cdot 8 \cdot (-5)$$

$$= 22 - 81 + 40$$

$$= -19$$

Proposition 2.6. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée et soit $1 \le k \le n$

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{i,k} \det(A_{i,k})$$

est le calcul de détérminant par rapport à $k^{\text{ième}}$ colonne.

Example 2.7. Soit

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

$$A_{1,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 8 \\ 3 & 6 \end{pmatrix}$$

$$A_{2,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 5 \\ 3 & 6 \end{pmatrix}$$

$$A_{3,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 5 \\ 2 & 8 \end{pmatrix}$$

Figure 2.2: Développement par rapport à la deuxiemme colonne

Donc:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{i,2} \det(A_{i,2})$$

$$= (-1)^{1+2} \cdot a_{1,2} \cdot \det(A_{1,2}) + (-1)^{2+2} \cdot a_{2,2} \cdot \det(A_{2,2}) + (-1)^{3+2} \cdot a_{3,2} \cdot \det(A_{3,2})$$

$$= (-1)^{1+2} \cdot 4 \cdot \begin{vmatrix} 2 & 8 \\ 3 & 6 \end{vmatrix} + (-1)^{2+2} \cdot 9 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 6 \end{vmatrix} + (-1)^{3+2} \cdot 7 \cdot \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix}$$

$$= (-1) \cdot 4 \cdot (-12) + 1 \cdot 9 \cdot (-9) + (-1) \cdot 7 \cdot (-2)$$

$$= 48 - 81 + 14$$

$$= -19$$

2.3 Déterminant d'une matrice triangulaire

Corollary 2.8. Le déterminant d'une matrice triangulaire est un produit de ces éléments diagonaux. I.e, soit une matrice triangulaire

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n-1} & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n-1} & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n,n}0 & 0 & \dots & 0 & a_{n,n} \end{bmatrix}$$

alors

$$\det(A) = a_{1,1} \cdot a_{2,2} \cdot \ldots \cdot a_{n,n}$$

Example 2.9. Soit

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 9 & 8 \\ 0 & 0 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Développons ce déterminant par rapport à la première colonne:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{i,2} \det(A_{i,2})$$

$$= (-1)^{1+1} \cdot a_{1,1} \cdot \det(A_{1,1}) + (-1)^{2+1} \cdot a_{2,1} \cdot \det(A_{2,1}) + (-1)^{3+1} \cdot a_{3,1} \cdot \det(A_{3,1})$$

$$= (-1)^{2} \cdot 1 \cdot \begin{vmatrix} 9 & 8 \\ 0 & 6 \end{vmatrix} + \underbrace{(-1)^{3} \cdot 0 \cdot \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix}}_{=0} + \underbrace{(-1)^{4} \cdot 0 \cdot \begin{vmatrix} 4 & 5 \\ 9 & 8 \end{vmatrix}}_{=0}$$

$$= \underbrace{1}_{=a_{1,1}} \cdot \begin{vmatrix} 9 & 8 \\ 0 & 6 \end{vmatrix}$$

$$= \det(\begin{bmatrix} 9 & 8 \\ 0 & 6 \end{bmatrix} =: B)$$

$$= (-1)^{1+1} \cdot b_{1,1} \cdot \det(B_{1,1}) + (-1)^{2+1} \cdot b_{2,1} \cdot \det(B_{2,1}) \quad \text{développement par rapport à la premiere colonne}$$

$$= 1 \cdot \underbrace{9}_{a_{2,2}} \cdot |6| + \underbrace{(-1) \cdot 0 \cdot |8|}_{=0}$$

$$= \underbrace{1}_{=a_{1,1}} \cdot \underbrace{9}_{=a_{2,2}} \cdot \underbrace{6}_{=a_{3,3}}$$

2.4 Matrice adjointe

D'abord, rappelons la définition de $A_{i,j}$. C'est une matrice carrée où $i^{\text{ième}}$ ligne et $j^{\text{ième}}$ colonne sont supprimé. (Voir la définition 2.3).

Definition 2.10. Soit une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$. On note

$$b_{i,j} = (-1)^{i+j} \det(A_{i,j})$$

Ensuite, on note la matrice

$$N = \begin{bmatrix} b_{1,1} & \dots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \dots & b_{n,n} \end{bmatrix}$$

Alors, la matrice adjointe de A est définie comme:

$$A^* = N^T = \begin{bmatrix} b_{1,1} & \dots & b_{n,1} \\ \vdots & \ddots & \vdots \\ b_{1,n} & \dots & b_{n,n} \end{bmatrix}$$

Theorem 2.11. Soit $A \in \mathcal{M}_n\mathbb{R}$ une matrice carrée et A^* sa matrice adjointe, alors on a:

$$A^*A = AA^* = \det(A)I_n = \begin{bmatrix} \det(A) & 0 & 0 & \dots & 0 & 0 \\ 0 & \det(A) & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \det(A) \end{bmatrix}$$

Utilité de telle matrice?

2.5 Matrice inverse

Theorem 2.12. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée telle que $\det(A) \neq 0$, alors:

$$A^{-1} = \frac{1}{\det(A)} \cdot A^*$$

est la matrice inverse de A.

Corollary 2.13. Si $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée inversible, alors:

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Appendices

APPENDIX A

Rappels des concepts d'Algèbre Linéaire

A.1 Matrices

A.1.1 La trace

Definition A.1. La trace de la $n \times n$ matrice carée A, notée tr(A), est la somme des éléments diagonales

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

où a_{ii} sont des éléments diagonales de la matrice A.

Property. de la trace.

• Linéarité:

$$tr(A+B) = tr(A) + tr(B)$$

$$\operatorname{tr}(cA) = c\operatorname{tr}(A), \quad c \in \mathbb{R} \text{ (ou } \mathbb{C})$$

• Transposé:

$$\operatorname{tr}(A) = \operatorname{tr}(A^T)$$

• Multiplication des matrices:

$$tr(AB) = tr(BA)$$
, (si A et B sont de taille $n \times n$)

Cependant, la trace n'est pas distributive sur la multiplication :

$$tr(ABC) \neq tr(A)tr(BC)$$

• Valeurs propres:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

où λ_i sont les valeurs propres de A. Cela fait de la trace un outil important en analyse spectrale.

• Trace de la Matrice Identité

$$\operatorname{tr}(I_n) = n$$

puisque tous les éléments diagonaux valent 1.

Example A.2. Pour

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

la trace est :

$$tr(A) = 3 + 5 + 9 = 17$$

Example A.3. Si

$$B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$$

alors

$$tr(B+C) = tr\begin{bmatrix} 6 & 3\\ 1 & 8 \end{bmatrix} = 6 + 8 = 14$$

ce qui correspond bien à

$$\mathrm{tr}(B) + \mathrm{tr}(C) = (2+3) + (4+5) = 14$$

confirmant ainsi la linéarité.

BIBLIOGRAPHY

- [1] Johannes Anschütz. Algèbre linéaire 2 (OLMA252). 2024-2025.
- [2] Grifone Joseph. Algèbre linéaire. fre. 4e édition. Toulouse: Cépaduès Éditions , DL 2011, 2011. ISBN: 978-2-85428-962-6.