Digital Electronic Circuits Section 1 (EE, IE)

Lecture 16

Adder – SubtractOr Circuit

If SUB = 0, then $C_{-1} = 0$ Ex-OR gate output = $B_i \oplus 0 = B_i$ F.A. output = A + B If SUB = 1, then $C_{-1} = 1$ Ex-OR gate output = $B_i \oplus 1 = B_i'$ F.A. output = A + (-B) = A - B

Delay in Ripple Carry Adder

Propagation delay is cumulative. For n-bit addition, $2n\tau$ delay.

$$C_i = A_i \cdot B_i + A_i \cdot C_{i-1} + B_i \cdot C_{i-1}$$
$$S_i = A_i + B_i + C_{i-1}$$

Each basic gate delay = τ (AND, OR)

Each Ex-OR gate delay = 2τ

 C_3 available after 8τ delay.

For S_3 , $A_3 \oplus B_3$ result after 2τ . This is Ex-ORed with C_2 . C_2 available after 6τ . S_3 available after 8τ .

Carry: Serial to Parallel

$$C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$$

 $C_i = A_i B_i + C_{i-1} (A_i + B_i)$
 $C_i = G_i + P_i C_{i-1}$

Where, $G_i = A_i B_i$: Generation term

and $P_i = A_i + B_i$: Propagation term

 $G_i = 1$: Carry is generated

 $P_i = 1$: Input carry is propagated

$$C_0 = G_0 + P_0 C_{-1} \dots (1)$$

 $C_1 = G_1 + P_1 C_0 \dots (2)$

Substituting C_0 from Eq.(1) in Eq.(2),

$$C_1 = G_1 + P_1(G_0 + P_0C_{-1})$$

$$C_1 = G_1 + P_1G_0 + P_1P_0C_{-1} \dots (3)$$

2 parallel AND delay: τ

1 OR delay : τ

For G_i and P_i , delay : τ

Total delay : 3τ

Carry Look Ahead Adder

$$C_2 = G_2 + P_2 C_1 \dots (4)$$

Substituting C_1 from Eq.(3) in Eq.(4),

$$C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_{-1})$$

$$C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{-1} \dots (5)$$

 C_2 is generated after 3τ delay, too.

$$C_3 = G_3 + P_3 C_2 \dots (6)$$

From Eq.(5) and Eq.(6)

$$C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_{-1} \dots (7)$$

 C_3 is generated after 3 τ delay, too.

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$S_i = G_i \oplus P_i \oplus C_{i-1}$$

(avoids loading of inputs)

All
$$G_i \oplus P_i$$
 in 3τ

All
$$C_{i-1}$$
 in 3τ

All
$$S_i$$
 in $3\tau + 2\tau = 5\tau$

Delay is not cumulative.

IC 7483A

Different manufacturers use different notations.

Addition / Subtraction in Cascade

- Carry ripples from one IC to other.
- Carry look ahead within IC.

Group Carry Generation and Propagation

$$C_3 = G_3 + P_2G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_{-1}$$

$$G_{3-0} = G_3 + P_2G_2 + P_3P_2G_1 + P_3P_2P_1G_0$$
: Group Carry Generation term

 $P_{3-0} = P_3 P_2 P_1 P_0$: Group Carry Propagation term

$$C_3 = G_{3-0} + P_{3-0}C_{-1}$$

$$C_7 = G_{7-4} + P_{7-4}C_3$$

$$C_7 = G_{7-4} + P_{7-4}(G_{3-0} + P_{3-0}C_{-1}) = G_{7-4} + P_{7-4}G_{3-0} + P_{7-4}P_{3-0}C_{-1}$$

Similarly,

$$C_{11} = G_{11-8} + P_{11-8}G_{7-4} + P_{11-8}P_{7-4}G_{3-0} + P_{11-8}P_{7-4}P_{3-0}C_{-1}$$

$$C_{15} = G_{15-12} + P_{15-12}G_{11-8} + P_{15-12}P_{11-8}G_{7-4} + P_{15-12}P_{11-8}P_{7-4}G_{3-0} + P_{15-12}P_{11-8}P_{7-4}P_{3-0}C_{-1}$$

 $G_{(i+3)-i}$: in 3 τ and $P_{(i+3)-i}$: in 2 τ

Carry look ahead: in 5t

Look Ahead Carry Generator

Output

$$C_{n+x} = (G_0'.P_0' + G_0'.C_n')'$$

$$= (G_0'.P_0')'.(G_0'.C_n')'$$

$$= (G_0+P_0).(G_0+C_n)$$

$$= G_0+G_0C_n+G_0P_0+P_0C_n$$

$$= G_0(1+C_n+P_0)+P_0C_n$$

$$= G_0+P_0C_n$$

Overflow Detection for Adder

Range: -8 to +7

$ \begin{array}{cccc} A_{3}A_{2}A_{1}A_{0} \\ B_{3}B_{2}B_{1}B_{0} \\ & & \\ \hline & & & & \\ \hline$		+ve with +ve :			
		0010 (2) 0011 (3)	0010 (2) 0111 (7)	0111 (7) 1110 (-2)	
0000: 0 0001: 1	1000 : -8 1001 : -7	0101 (5)	1001 (-7) Overflow	± 0101 (5)	:h -ve :
0010 : 2 0011 : 3	1010 : -6 1011 : -5	-ve with -ve		0010 (2)	+ve with
0100 : 4 0101 : 5	1100 : -4 1101 : -3	1110 (-2) 1101 (-3)	1110 (-2) 1001 (-7)	0010 (2) 1001 (-7)	+
0110 : 6 0111 : 7	1110 : -2 1111 : -1	± 1011 (-5)	± 0111 (7)	1011 (-5)	

Overflow

Overflow Flag: O

$$O = A_3' B_3' S_3 + A_3 B_3 S_3'$$
$$= C_3 + C_2$$

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill