

U.S. Department of Transportation

Federal Aviation Administration Correlations of Helicopter Noise Levels with Physical and Performance Characteristics

Office of Environment And Energy Washington, D.C. 20591 A Preliminary Report

FAA-EE-80-42

September 1980

By J. Steven Newman

Document is available to the U.S. public through the National Technical Information Service Springfield, Virginia 22161

DIE FILL

81 1 02

02 018

ACKNOWLEDGMENT

The author wishes to thank

Mr. Paul Hamilton

of Information Planning Associates

for his invaluable assistance in researching

input parameters and providing analytical

and software support.

1. Report Mo.	2. Government Accession No.	3. Recipient's Catalog No.
DOT FAA EE-80-42		
	AD-A093 428	
4. Title and Subtitle	Anna Nadaa Lanala Haki	Sontanton Maga
Correlation of Helicop Physical and Performan		September 1880
rilysical and remornan	ce character iscies	DOT/FAA
		8. Performing Organization Report N
7. Author's)		DOT-FAA-EE-80-42
J. Steven Newman		10. Work Unit No. (TRAIS)
Y. Performing Ofganization Name and Department of Transpor	Address tation, Federal Aviation	1
		Tech. Bratic Fontract or Grant No
800 Independence Avenu		
Washington, D.C. 2059	1	13 Type of Boyer and Pariod Cover
12. Sponsoring Agency Name and Addr	• 5 5	9
		Preliminary 10
		14 Sponsoring Agency Code
		FAA
15. Supplementary Notes		
110324		
(2)=91		
_ · · · ·		
characteristics of hel various operational mo several theoretical fu The EPNL is the acoust three-step multiple re	icopters and the noise l des. The analysis is ge nctions described in the ical metric employed in gression analyses are co	en physical and performance evels which they generate in merally empirical although literature have been examined this study. One, two, and inducted for takeoff, approach, ded for the three best single
This report investigat characteristics of hel various operational moseveral theoretical furthe EPNL is the acoust three-step multiple reand level flyover oper	icopters and the noise l des. The analysis is ge nctions described in the ical metric employed in gression analyses are co	evels which they generate in merally empirical although a literature have been examined this study. One, two, and inducted for takeoff, approach, ded for the three best single
This report investigat characteristics of hel various operational moseveral theoretical furthe EPNL is the acoust three-step multiple reand level flyover oper	icopters and the noise lides. The analysis is genctions described in the ical metric employed in gression analyses are coations. Plots are providels for each mode of floreston, Telation, Perceived The control of t	evels which they generate in merally empirical although a literature have been examined this study. One, two, and inducted for takeoff, approach, ded for the three best single

Reproduction of completed page authorized

Form DOT F 1700.7 (8-72)

TABLE OF CONTENTS

	<u> </u>	age
	ACKNOWLEDGMENT	i
1.0	INTRODUCTION	1
	1.1 Input Data Files	1
2.0	CROSS CORRELATION OF ANALYSIS PARAMETERS	3
	2.1 Cross Correlation Matrix	3
	2.2 Summary of Best Correlates	11
	2.3 Plots of Best Single Variable Regression	12
3.0	STEPWISE REGRESSION ANALYSES	12
4.0	DISCUSSION	15

Accession For	}
NTIS GRA&I PTIC TAB Unaprounced Jistification	
By	1
Dict Special	}

LIST OF FIGURES

'age	<u>Pa</u>	
16	TAKEOFF: REGRESSION OF EPNL VERSUS LOGTB	2.3.1
17	TAKEOFF: REGRESSION OF EPNL VERSUS LOGW	2.3.2
18	TAKEOFF: REGRESSION OF EPNL VERSUS F3	2.3.3
19	LEVEL FLYOVER: REGRESSION OF EPNL VERSUS F2	2.3.4
20	LEVEL FLYOVER: REGRESSION OF EPNL VERSUS LOGW	2.3.5
21	LEVEL FLYOVER: REGRESSION OF EPNL VERSUS LOGMD	2.3.6
22	APPROACH: REGRESSION OF EPNL VERSUS LOGTB	2.3.7
23	APPROACH: REGRESSION OF EPNL VERSUS LOGW	2.3.8
24	APPROACH: REGRESSION OF EPNL VERSUS LOGMD	2.3.9

LIST OF TABLES

		Þ	age
1.1	INPUT DATA FILES	```	4
2.1	CROSS CORRELATION MATRIX		;

1.0 INTRODUCTION

This report investigates the correlation between physical and performance characteristics of helicopters and the noise levels which the helicopters generate in various operational modes. The analysis is generally empirical although several theoretical functions described in the technical literature have been examined. The Effective Perceived Noise Level (EPNL) is the acoustical metric employed in this study. It is anticipated that subsequent analyses will examine trends for other metrics, in particular the Noise Exposure Level (single event, integrated A-Weighted Sound Level). This report has been limited to presenting statistical analyses. Parameters are tested for correlation with EPNL, a single event cumulative energy noise metric. The units of most analysis parameters are not energy. However, a limited number of variables dimensionally consistent with power, intensity or energy are tested.

1.1 Input Data Files

This study utilizes a data file assembled for analyses conducted in FAA-AEE-79-3, "Noise Levels and Flight Profiles of Eight Helicopters Using Proposed International Certification Procedures (Newman, J. S., Rickley, E. J.). This data file (Table 1.1) has been expanded to include a variety of physical parameters which may be expected to influence resulting noise levels. The legend for Table 1 is presented below:

NOTE: V_H is the speed at maximum continuous power. V_{NE} is the never exceed speed.

LEGEND FOR CRUSS CORRELATION MATRIX

TYPE - Helicopter designation

EPNL - Effective Perceived Noise Level, (level flyover) expressed

in decibels

WEIGHT - Test weight, lbs.

AREA - Total main rotor blade area (square feet)

MACH - Mach number of advancing blade; sum .9 (lesser of VH or

VNE) level flyover forward speed and rotational tip speed

SHP - Maximum engine shaft horsepower

M-DISC - Main disc area, square feet

BRC - Best rate of climb, feet/minute

M-FREQ - Main rotor blade frequency. Using main rotor rpm (Jane's)

and number of blades (Jane's) units in Blade Passages/Sec.

T-BLADE - Total tail rotor blade area (square feet)

EPNLA - Effective Perceived Noise Level (approach), decibels

LOGW - Common logarithm of weight

LOGA - Common logarithm of area

LOGS - Common logarithm of shaft horsepower

LOGMD - Common logarithm of main disc area

DISPLO - Main disc loading, lbs/square feet

LOGTB - Common logarithm of total tail blade area

MACH6 - Mach number to sixth power

TSPEED - Rotational tip speed of tail rotor (feet/second)

MSPEED - Main rotor rotational tip speed (feet/second)

T-MACH - Tail rotor, rotational tip mach number

F1 - Log_{10} ((T-MACH x Weight)²/T-Blade)

F2 - \log_{10} ((MACH x Weight)²/AREA)

F3 - Log₁₀ (SHP x M-DISC/MACH)

F4 - Log10 (MACH6 x T-BLADE)

F5 - Log_{10} (T-MACH⁶ x AREA)

2.0 CROSS CORRELATION OF ANALYSIS PARAMETERS

This section examines and discusses the interdependence between the parameters used in the regression analyses.

2.1 Cross Correlation Matrix

The matrix displayed as Table 2.1 (four pages) provides insight into the interrelationships between test variables and the relationship of each variable to EPNL for takeoff, approach and level flyover. Each entry in the matrix includes the correlation coefficient "R," the probability that the observed correlation is due merely to chance, and the number of observations. Many of the variables correlate equally well with the acoustical measures for all operational modes. Therefore, it is possible to develop a large number of single variable regression models which predict noise with similar accuracy.

The "good predictor" family of parameters includes:

- Weight: Helicopter Weight

- Area: Main Rotor Area

- SHP: Shaft Horsepower

- MDISC: Main Rotor Disc Area

LOGW: Log Weight

- LOGA: Log Area

1.1 INPUT DATA FILES
HELICOPTER NOISE REGRESSION ANALYSIS

TSPEED	669 730 691 630 663 740 695 696 697 717 717 717 722 722 725
EPNLT	95.4 89.1 95.7 91.7 89.2 89.5
EPNLA	95.6 90.3 90.3 90.3 90.9 90.5 90.6 90.6 90.6
T BLADE	20.2 1.2.2 1.2.2 1.9.2 2.0.2 2.0.2 2.0.2 2.0.2 2.0.2
M FREQ	25.5 13.1 16.9 18.9 18.9 18.9 18.9 10.0 12.4 12.4 13.6
BRC	1,400 1,772 2,200 2,180 1,770 1,312 1,320 1,320 1,200 1,330 1,968
M DISC	1,925 804 1,075 3,019 1,809 1,809 1,023 1,386 1,386 1,075 1,075 1,075
SHP	3,150 840 2,800 7,925 1,860 4,650 11,000 11,000 3,000 1,500 1,900
MSPEED	682 724 763 763 659 700 681 681 623 727 720 720 689 689
AREA	138 137 232 232 475 298 298 298 298 298 298 233 333 333 518
WEIGHT	15, 532 5, 070 4, 000 22, 050 37, 000 10, 500 2, 550 3, 970 4, 180 5, 390 88, 440 7, 755 25, 212 25, 212 27, 28 1, 304 42, 812
EPNL	91.4 88.3 92.6 92.6 92.0 92.0 92.0 92.0 93.4 96.7 96.7
TYPE	SA330J B0105 B206L S61 S61 S65 B212 H500C SA3416 SA350
088	- 2 E 4 4 9 0 C E 4 5 9 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1.1 INPUT DATA FILES (Continued)

HELICOPTER NOISE REGRESSION ANALYSIS

МАСН6	0.26 0.32 0.32 0.33 0.27 0.32 0.33 0.25 0.25 0.25
MACH	0.80 0.83 0.78 0.78 0.77 0.77 0.85 0.85 0.77 0.72 0.72
01810	8.07 3.72 7.30 9.09 5.80 6.27 8.52 6.56 6.56 6.75
LOGMD	3.28 3.293 3.26 3.25 3.25 3.25 3.25 3.61
1065	3.50 3.50 3.92 3.92 3.92 3.93 3.93 3.93 3.93 3.93
LOGTB	1.18 0.57 0.34 1.08 1.28 0.23 0.23 0.57 0.93 0.38 0.38
LOGA	2.27 2.06 1.57 2.37 2.37 1.91 1.90 1.90 2.97 2.97 2.97 2.97
LOGW	3.71 4.34 4.34 3.41 3.97
TYPE	SA330J 80105 80105 82105 S61 S61 S65 8212 H500C SA34 16 SA34 16 SA32 1F A109 MI 8 MI 8 MI 8 H300C S64 SA365C
. 580	_ 28420

1.1 INPUT DATA FILES (Concluded)

HELICOPTER NOISE REGRESSION ANALYSIS

088	TYPE	Œ	F2	F3	F4	F5
-	SA333.	6.76189	5.91467	6.87955	1.69328	0,94073
7	30105	6.47313	5,18251	5,91106	1.57532	0.95841
m	82.Se.	6.44533	5.50604	6.02053	1,17856	0.31908
4	26.	7,10738	6.11200	7.03169	1.73750	0.87555
ഗ	S 65	7.40080	6.29196	7.59247	2.17344	1.31979
ص 6	8212	6.77703	6.01214	6.57093	1.56453	0.84322
7	H500C	6.16752	5,13039	5,45019	0.80152	0.21705
ထ	SA34 16	6.50872	5,30027	5.83467	1,13834	0.47724
σ	SA 350	6.20865	5.34392	5.90320	0.99310	0.2755
2	SA32 IF	6.33170	6,13156	7.25312	1.87283	-0.53993
=	A109	6.44866	5.41562	6.00639	1.46970	0, 78989
15	MI6A	7,71593	6.75620	8, 13936	2,48492	1,87869
13	MI2	6.47098	5.45619	6.37763	0.92358	0.48732
14	F.18	7.23279	6.12854	7,16259	1.87283	1.37530
15	×6−13	. 6.62283	5.73361	6.40284	1,52566	0.88456
16	8476	6.03392	5.12583	5,48750	0.83649	0,14584
17	H300C	5.86313	4.86593	5.17393	0.50728	0,10506
8	S64	7.55513	6,32951	7.67348	2.05646	
19	SA365C	6.38192	5,63898	6.25648	1 34085	0 79512

			Ç	CORRELATION	IN COEFFIC	IENTS / F	PROB / IRI	UNDER HO: RHU=0	:RHO=0 /	NUMBER OF	20	LUNS		
		EPNL	WEIGHT	AREA	MSPEED	O.F.O.	M_DISC	BRC	M_FREQ	1_BLALIE	EPNLA	EPNLT	TSPEED	M907
	EPNE	1.00000	0,79053	0.79117	0.25695	0.77085	0.79268	0,08050	-0.43628	0.74421	0.91138	0.67551	0.09015	0.87703
		0,0000	0.0001	0.0001	0.2883	0.0001	0.0001	0.7432	0.0618	0.0003	0.0001	0.0225	0.7136	0.0001
	LE TOHT	19	61	19	0 07500	19	0 98727	19	19 80008 0-	91750 0	0.87970	0.84780	VI -0.01080	0.87139
		0.0001	0.000	0.0001		0.0001	0.0001	0.6815	0.0967	0.0001	0.0001	0,0010	0.9650	0.0001
		19	67	61	19	19	19	19	19	2	18	1.1	19	13
	AREA	0.79117	0.99371	1.00000	0.05399	0.90552	0.97105	0,12136	-0.34309	0.93830	0.88024	0.80291	-0.02204	0.88408
		0.0001	0.0001	0.000	0.8262	0.0001	0.0001	0.6206	0.1504	0.0001	0.0001	0.0029	0.9286	0.0001
		<u>r</u>	19	19	<u>۸</u>	61	61	0.7	19	ф. П	18	11	61	0
	MSPEED	0.25695	0.02690	0.05399	1.00000	0.07931	0.08655	-0.05065	-0.28462	0.06807	0.05264	-0.19970	0.31234	0.06854
		0.2883	C. 7544	0.8262	0.000	0.7469	0.7246	0.8369	0.2376	0.7819	0.8357	0.5560	0.1930	0.7304
	!	19	61	61		19	19	19	6	13	87	11	61	1.5
-	₩	0.77085	0.94703	0.96552	0.07931	1.00000	0.89368	0,15580	-0.31874	0.86709	0.84641	0.76887	15080-0-	0.89840
. '		0.0001	0.0001	0.0001	0.7469	0.0000	0.0001	0.5242	0.1835	0.0001	0.0001	0.005	0.4 0.4	0.0001
7	7070	67000	V CCC 0	17		61 61	61	VI 0	61	01010	00000	02730	(TOOO O-	0.040.01
-	7670-11	0.17268	79/9/0	0.07103	0.08655	0.89368	00000	0.00322	56/64-0-	2000	0.08203	6/000	34000.01	0.0001
		1000	10000		0.1.40	1000.0	0000	0.470	19	1300.	180	11	19	100.0
	BRC	0.08050	9.10075		-0.05065	0.15580	0.06522	1,00000	0.21970	0.03589	-0.09928	0.08042	0.06069	0.23246
		0.7432	0.6815	0.6206	0.8369	0.5242	0.7908	0.0000	0.3661	0.8840	0.6951	0.8142	0.8051	0.3382
		19	19	19	19	19	19	61	19	18	18	11	19	61
	M_FREQ		-0.39223		-0.28452	-0.31874	-0.46733	0.21970	1.00000	-0.38992	-0.41936	-0.28833	-0.00522	-0.39572
		0.0618	0.0967	0.1504	0.2376	0.1835	0.0436	0.3661	0.0000	0.1190	0.0832	0.3899	0.9831	0.0935
		19	61	19	<u>\$1</u>	19	19	61	19	61	8	=	61	61
	T_BLADE	0.74421	0.95648	0.93830	0.06807	0.86709	0.95913	0.03589	-0.36992	1.00000	0.88060	0.90556	-0.16209	0.82817
		0.0003	0.0001	0.0001	0.7819	0.0001	0.0001	0.8840	0.1190	0.0000	0.0001	0.0001	0.5074	0.0001
	:	61	61	19		13	19	19	19	61	81	11	61	61
	EPNLA	0.91138	0.87924	0.88024	0.05264	0.84641	0.88209	-0.09928	-0.41936	0.88060	1.00000	0.85292	-0.07047	0.93104
		0.0001	0.000.1	0.0001	0.8357	0.0001	0.0001	0.6951	0.0832	0.0001	0.0000	0.0008	0.7811	0.0001
		18	18	18	18	18	18	18	18	<u>&</u>	<u> </u>	==	18	81
	EPNL T	0.67551	0.84790		-0.19970	0.76887	0.85679	0.08042	-0.28833	0.90556	0.85292	1.00000	-0.60426	0.94381
		0.0225	0.0010	0.0029	0.5560	0.0057	0.0008	0.8142	0.3899	0.0001	0.0008	0.000	0.0490	0.0001
	10001			11	11	11	11	11	11	11	11	11	11	11
	STEED			-0,0220	0.31234	-0.08031	-0.00.0- 0.000.0-	0.00069	77000.0-	-0.16209	/#0/0.0-	00000		100 C
		0.7130	0.4630	19	0.1930	19	61	1600.0	0.7831	61	180	11	19	13
	LOGW	0.87708	0.87139	0.88408	0.06854	0.89840	0.34931	0.23246	-0.39572	0.82317	0.93104	0.94381	-0.14994	000001
		0.0001	0.0001	0.0001	0.7804	0.0001	0.0001	0.3382	0.0935	0.0001	0.0001	0.0001	0.5401	0.0000
		19	19	19	19	19	19	19	19	9	18	11	13	10
				į										

		J	CORRELATION	_	`	PROB > IR	LUNDER HO:RHO=0	2:RHO=0 /	NUMBER OF	OBSERVATION	SN-I		
	₩ 000	LOGIB	SUUT	LOGMD DI	DISTO	MACH	TMACH	MACHS	Ē	F2	L	Ĭ	E
EPN	0.85276	0,85340	0.82731	0.87489	0.72512	0.33729	0.09015	0.30776	0.84583	0.88044	0.95046	0.86563	0.77495
	<u>। ०</u> ०० ०	0.0001	0.0001	0.0001	0.0004	0.1579	0.7136	0.1399	0.0001	0.0001	0,0001	0.0001	0.0001
	2		13	10	13	19	19	19	19	13	2	61	13
WE16HT	0.85554	0.82667	0.81266	0.89622	0.70275	0.16211	-0.01080	0.12237	0.83365	0.84928	0.86558	0.01501	0.67820
	1000 °C	0.0001	0.0001	0.0001	0.0008	0.5073	0.9650	0.6177	0.0001	0.0001	0.0001	0.0001	0.0014
	2	61	61	10	19	19	13	19	6.7	ō.	6.1	6	19
AREA	0.89427	0.83270	0.83315	0.89637	0.74307	0.15438	-0.02204	0.10794	0.84829	0.84584	0.87861	0.83962	0.67483
	0.0301	0.0001	0.0001	0.0001	0.0003	0.5280	0.9236	0.6600	0.0001	0.0001	0.0001	0.0001	0.0015
	<u>C</u>	19	19	19	19	19	19	13	<u>61</u>	19		61	10
MSPEED	0.01717	0.03924	0.11961	0.08541	0.01727	0.82387	0.31234	0.87711	0.15912	0.19667	0	0.26621	0.23625
	0.0444	0.8733	0.6257	0.7231	0.9440	0.0001	0.1930	0.0001	0.5153	0.4197		0.2706	0.3302
	19		61	61	61	61	19	19	19	10	2	0	61
⊕	066.28.0	0.83566	0.88327	0.88437	0.82587	0.17251	-0.08031	0.12451	0.85673	0.86918	0, 90433	0,24945	0.63452
	0.0001	õ	0.0001	0.0001	0.0001	0.4800	0.7438	0.6115	0.0001	0.0001	0.0001	0.0001	0.0035
	61	19	19	13	19		61	13	19	61	? •••	61	<u>0</u>
M_DISC	0.82507	0.81062	0.77031	0.90113	0.61882	0.14875	-0.00042	0.12152	0.81099	0.83452	0.84173	0.78297	0.67330
	0.0001	0.0001	0.0001	0.0001	0.0047	0.5433	0.9986	0.6202	0.0001	0.0001	0.0001	1000	0.0016
	19	19	19	19	61	61	19	19	19	19	13	13	61
BRC	0.24999	0	0.32369	0.11520	0.34516	0.34802	0.06069	0.31324	0.31043	0.23907	0.23710	5.33174	0.18344
	0,3020	0.0	0.1764	0.6386	0.1478	0.1443	0.8051	0.1916	0.19	0,3243	0.3284	0.1653	0.4522
	19			19	19	19.	19	19		61	61	13	61
MFREG	-0.28834	ĭ		-0.56503	-0.02767	-0.03070	-0.00522	-0.11339	-0.40076	-0.47037	-0.42490	-0.26119	-0.32912
	0.2312	0.1269	0.1912	0.0117	0.9105	0.9007	0.9831	0.6439	0.0891	0.0421	0.0698	0.2301	0.1689
	19	19	19	19	19	19	19	19	13	61	6	61	<u>•</u>
T_BLADE	0.80352	0.84837	0.76764	0.85189	0.65043	0.16482	-0.16209	0.12653	0.69194	0.81245	0.81943	9,77375	0.56792
	0.0001	0.0001	0.0001	0.0001	0.0026	0.5001	0.5074	0.6057	0.0010	0.0001	0.0001	0.0001	0.0112
	19	19	61	19	61	19	19	61	19	19	<u>•</u>	13	19
EPNLA	0.91026	0.94305	0.88246	0.92922	0.73837	0.06959	-0.07047	0.07347	0.80155	0.90649	0.92477	0.95368	0.69888
	0.0001	0.0001	0.0001	0.0001	0.0005	0.7838	0.7811	0.7720	0.0001	0.0001	0.0001	2.X \$ 2.	0.0013
	81	18	18	18	18	18	13			18	8	6	Œ
EPNL 1	0.92220	0.95400	0.90912	0.90917	0.88556	-0.13522	-0.60426		0	0.86743	0.92252	0.8666	0.19134
	0.0001	0.0001	0.0001	0.0001	0.0003	0.6918	0.0490	0.6238		0.0005	0.0001	7000.0	0.5730
	11	11	11	11	11	11	11			11		11	11
TSPEED	-0.14272	-0.23415	-0.15392	-0.15240	-0.14511	0.26467	1.00000	0.29416	0.20866	-0.12001		-0.04 Mg	0.58925
	0.5600	0.3346	0.5293	0.5334	0.5534	0.2735	0.000	0.2215	0.3913	0.6246	0.4963	0.8466	0.0079
	19	19	19	13	19	19	19	61	10	6	2	6	6
m90 7	0.98145	0,05313	0.97745	0.06036	0.88872	0.21242	-0.14994	0.17339	0.90740	0.97752	0.99640	4.04. c	0.69491
	0.0001	0.0001	0.0001	0.0001	0.0001	0.3826	0.5401	0.4778	0.0001	0.0001	0.0001	ا ا ا	0.0012
	19	61	61	13	61	19	19	10	<u>0</u>	. T	<u> </u>	<u>-</u>	<u>•</u>

TARLE 2.1 (Continued)

	:		CORRELATION	Ú	JENTS / P	PROE : IRI	UNDER HO	~	NUMBER OF	OBSERVAT	SOUS	1	
	EPN.	THOI H	AREA		<u>F</u>	M_DISC	BRC	MFREG	T_RLADE	FFNLA	EPNET	TSPEED	200
L06 A	0.85274	0.85554	0.88427	0.01717	0.88990	0.82507	0.24399	-0.28034	0.80852	0.91026	0.3220	-0.14272	0.99145
	1000.0	0.0001	0.0001	0.9444	0.0001	0.0001	0.3020	0.2312	0.0001	0.0001	0,0001	0.5600	0.0001
	13	2		13	13	0.1	19	19	10	18		13	61
LOGTB	0.85340	0.82667	0.83270	0.03924	0.83566	0.81062	0.14655	-0.36277	0.84837	0.94305	0.95400	-0.23415	0.96313
	0.0001	0.0001	0.0001		0.0001	0.0001	0.5494	0.1269	0.0001	0.0001	0.0001	0.3346	0.0001
	19	61	18	61	61	13	19	13	19	18	11	19	61
5907	0.82731	0.81266	0.83315	0.11961	0.88327	0.77031	0.32369	-0.31353	0.76764	0.98246	0.90912	-0.15392	0.97745
	0.0001	0.0001		_	0.0001	0.0001	0.1764	0.1912	0.0001	0.0001	0.0001	0.5293	0.0001
	19	01		13	19	19	19	10	19	18	11	19	<u>•</u>
LOGHD	0.87489	0.89622	0.89637	0.08541	0.88437	0,90113	0.11520	-0.56503	0.85189	0.92922	0.90917	-0.15240	0.96936
	0.0001	0.0001	0.0001	0.7281	0,0001	0.0001	0.6386	0.0117	0.0001	0.0001	0.0001	0.5334	0.0001
	19	<u>c</u> 1	19	13	19	61	19	19	19	18		19	13
DISTO	0.72512	0.70275	0.74307	0.01727	0.82687	0.61882	0.34516	-0.02767	0.65043	0.73837	0.88556	-0.14511	0.88872
	0.0004	0.0008	0.0003	0.9440	0.0001	0.0047	0.1478	0.9105	0.0026	0.0005	0.0003	0.5534	0.0001
	19	19		19	19	19	61	19	19	18	11	61	61
HACH	0.33729	0.16211	O	0.82387	0.17251	0.14875	0.34802	-0.03070	0.16482	0.06959	-0.13522	0.26467	0.21242
	0.1579	0.5073	0.5280		0.4800	0.5433	0.1443	0.9007	0.5001	0.7838	0.6918	0.2735	0.3826
	19	61	19	19	61	<u>6</u>	19	19	61	18	11	19	2
TMACH	0.09015	-0.01090	-0.02204	0.31234		-0.00042	0.06069	-0.00522	-0.16209	-0.07047	-0.60426	1.00000	-0.14994
	0,7136	0.9650	0.9286	0.1930	0.7438	0.9986	0.8051	0.9831	0.5074	0.7811	0.0490	0.0000	0.5401
	19	19	19	13	_	6	19	19	61	18	=	19	<u>0</u>
MACH 16	0.30776	0.12237	0.10794	0.87711	0.12451	0.12152	0.31324	-0.11339	0.12653	0.07347	-0.16689	0.29416	0.17339
	0.1999	0.6177	0.6600	0.0001	0.6115	0.6202	0.1916	0.6439	0.6057	0.7720	0.6238	0.2215	0.4778
	19	61	19	61	61	61	61	19	19	18	11	19	<u>6</u>
F1	0.84583	0.83365	0.84829	0.15912	0.85673	0.81099	0.31043	-0.40076	0.69194	0.80155	0.57894	0.20866	0.90740
	0.0001	0.0001	0.0001	٠.	0.0001	0.0001	0.1958	0.0891	0.0010	0.0001	0.0620	0.3913	0.0001
	61	61	19	13	19	19	61	19	13	18		0. T	<u>-</u>
F2	0.88044	0.84928	0.84584	0.19667	0.86918	0.83452	0.23907	-0.47037	0.81245	0.90649	0.86743	-0.12001	0.97752
	0.0001	0.0001	0.0001	0.4197	0.0001	0.0001	0.3243	0.0421	0.0001	0.0001	0.0005	0.6246	0.0001
	19	19	19	19	19	61	10	19	19	<u>8</u>	11	19	61
F3	0.86046	0.86558	0.87861	0.08299	0.90433	0.84173	0.23710	-0.42430	0.81943	0.92477	0.92252	-0.16626	0.99640
	0.0001	0.0001	0.0001		0.0001	0.0001	0.3284	0.0698	0.0001	0.0001	0.0001	0.4963	0.0001
	61	19	19	19	19	61	19	19	19	18	11	19	61
F 4	0.86563	0.81501	0.83862	0.26621	0.84945	0.78287	0.33174	-0.26119	0.77375	0.86568	0.96066	-0.04759	0.94254
	0.0001	0.0001	0.0001		0.0001	0.0001	0.1653	0.2301	0.0001	0.0001	0.0007	0.8466	0.0001
	19	19	19	19	61	19	19	19	19	18	11	19	61
5	0.77495	0.67820	0.67488	0.23625	0.63452	0.67330	0.18344	-0.32912	0.56792	0.69888	0.19134	0.58925	0.68491
	0.0001	0.0014			0.0035	0.0016	0.4522	0.1689	0.0112	0,0013	0.5730	0.0079	0.0012
	19	19	19	13	61	19	13	61	19	18	=	<u>0.</u>	61

		ن	CORRELATION	N COEFFIC		PROB R	CANDER HO:RHO=0 /	_	NAMER OF	DESERVATIONS			
	4000	LUGTB	5907	ISIO DUSOT	01810	HOVE	THACE	MACH6	FI	F2		F 4	
LOGA	1.00000	0.94396	0.95947	0.93423	0.90700	0.18976	-0.14272	0.13980	0.89238	0.92411		0.95266	0.67297
	0.0000	0.0001	0.0001	0.0001	0.0001	0.4365	0.5600	0.5081	0.0001	0.0001	0.0001	0.0001	0.0016
	4	61	19	19	19		61	19	61	61		61	2
LOGIE	94396	1.00000	0.93472	0.92546	0.86439		-0.23415	0.12995	0.78322	0,93881	0.95335	0.897.29	0.64393
	0.0001	0.0000	0.0001	0.0001	0.0001	0.4922	0.3346	0.5960	0.0001	0.0001	0.0001	0.0001	0.0029
	<u>•</u>	19	61	19	19	19	19	61	61	13	61	18	13
1.065	0.95947	0.03472	1.00000	0.41059	0.93432	0.30681	-0.15392	0.26795	0.88978	0.96577	0.98347	0.95200	0.65489
	0.0001	0.0001	0000	0.0001	0.0001		0.5293	0.2674	0.0001	0.0001	0.0001	0.0001	0,0023
	61	61	61	61	19		19	61	19	61	61	61	13
LOGHU	0.93423	0.92546	0.91059	1.00000	0.75781		-0.15240	0.12578	0.88673	0,95682	0.96942	0.87958	0.65673
	0.0001	0.0001	0.0001	0000.0	0.0002	0.5453	0.5334	0.6079	0.0001	0.0001	0.0001	0.0001	0.0023
	6	19	_	19	19		61	19	13	19	2	0.0	19
DISLO	0.90700	0.86439	0.93432	0.75781	1.00000	0.25297	-0.14511	0.17839	0.79363	0.84466	0.88193	0.89103	0.60045
	0.0001	0.0001	0.0001	0.0002	0000		0.5534	0.4650	0.0001	0.0001	0.0001	0.0001	0.000
	61	19	61	51	61		19	19	61	19		13	<u>6.</u>
MACH	0.18976	0.16785	0.30681	0.14802	0.25297	1.00000	0.26467	0.97559	0.29190	0.32545	0.21891	0.47894	0.30725
	0.4365	0.4922	0.2014	0.5453	0.2961	0000	0.2735	0.0001	0.2253	0.1739		0.0380	0.2007
	61	61	81	61	61	19	61	19		19		13	61
THACH	-0.14272	-0.23415	-0.15392	-0.15240	-0.14511	0.26467	1.00000	0.29416	0.20866	-0.12001	-0.16626	-0.04759	0.58925
	0.3600	0.3346	0.5293	0.5334	0.5534	0.2735	0000	0.2215		0.6246	0.4963	0.8466	0.0079
	61	19		19	61	61 -	61	61		19	51	2	61
MACH5	0.13980	0.12995		0.12578	0.17839	0.97559	0.29416	1.00000	0.26339	0.29517	0.18678	0.42367	0.29942
	0.5681	0.5960	0.2674	0.6079	0.4650	0.0001	0.2215	0.000		0.2199	0.4439	0.0707	0.2130
	2	19		19	61	19	61	18		<u>•</u>		61	61
FI	0.89238	0.78322	0.88973	0.88673	0.79363	0.29190	0.20866	0.26339	00000	0.89562	0.90565	0.88699	0.82338
	0.0001	0.0001	0.0001	0.000	0.0001	0.2253	0.3913	0.2759	0000	0.0001	0.00	000.0	0.0001
	<u>~</u>	67	6	19	61		61	61	61	%	A	A1	£1
F2	0.92411	0.93881	0.96577	0.95682	0.84466	0.32545	-0.12001	0.29517	0.89562	1.00000	0.98040	0.0700	0.08030
	0.0001	0.0001	0.0001	0000	0.0001		0.6246	0.2199	0.0001	0.000	300	100	200.0
	61	61	61		61		~ :	61	K1 130	61		1	\$0.00 V
.	0.97157	c. 95335	0.98347	0.96942	0.88183		-0.16626	0.18678	0.90953	0.98040	0000	0.13328	6.000
	0.0001	0.0001	0.0001	0.0001	0000	0.3679	0.4963	0.4439	0.0001	0.0001	33.	1000	•
	19	61	61	<u>0</u>	19		6	19	61	61		61	A1
F.4	0.95266	0.89529	0.95200	0.87953	0.89103	0.47894	-0.04759	0.42367	0.88699	0.92584	0.93523	1.00000	0.69477
	0.0001	0.0001	0,0001	0.0001	0.0001		0.8466	0.0707	0.0001	0.0001	1000.0	0000	0.0010
	6.	61	<u>\$</u>	19	<u> </u>	<u>^</u>	61	^1	61	A 143	1 1 1	*****	
73	16265 5	66679 0	0.4.489	0.65673	0.60045	0.30775	C. 58925	0.29942	0.82338	0.6853A		0.69477	00000
	0.0016	6700.0	67.0073		ು ೧	/002.0	* (a)	0.12.0	1 (100) • O			> 	61
	۲.7	h	1 1	-	N . •••	N -	•	•	•	•	•	•	i

- LOGTB: Log Tail Blade Area

- LOGS: Log Shaft Horsepower

LOGMD: Log Main Rotor Disc Area

- DISLO: Main Rotor Disc Loading

Other quantities which are linearly independent of these parameters can be expected to play the roles of second and third variable in the multiple regression analyses. However, it is possible to see more than one of these variables appear in a multiple regression if the two variables are largely independent of each other.

2.2 Summary of Best Correlates

The table provided below identifies those single parameters which best correlate with EPNL for the various operational modes.

Level Flyover		Takeoff		Approa	Approach	
Parameter	<u>R</u> 2	Parameter	<u>R</u> 2	Parameter	<u>R</u> 2	
				LOG TB	. 889	
F2	. 774	LOG TB	.910	LOG W	.867	
LOG W	. 769	LOG W	.891	LOG MD	.863	
LOG MD	. 764	F3	. 852	F3	.856	
F4	. 765	LOG A	.850	LOG A	.828	
F3	. 739	LOG S	.826	F2	.821	
LOG TB	.727	LOG MD	.826	M DISC	.778	
LOG A	. 727	T BLADE	.819	LOG S	. 778	
				AREA	. 774	
				T BLADE	.774	

The most apparent trend one observes is the much higher correlation for takeoff and approach EPNL values as compared with level flyover EPNL. One plausible reason for this is that the level flyovers are conducted at a higher speed than the approaches or takeoffs. It is reasonable to assume that forces generating noise in higher speed operation are subject to more variant and anomolous aerodynamic influences.

Another observation is the decline of LOG TB to "fifth place" for the higher speed level flyover. This can be attributed to the diminished tail rotor counter-torque load as the speed increased. This occurs as unbalanced airframe slip stream forces tend to counter the main rotor torque.

2.3 Plots of Best Single Variable Regression

The three best single variable regression models are plotted in Figures 2.3.1 through 2.3.3 for takeoffs, in Figures 2.3.4 through 2.3.6 for approach, and in Figures 2.3.7 through 2.3.9 for level flyover. Each plot includes identification of helicopter type and the line of regression.

3.0 STEPWISE REGRESSION ANALYSES

This analysis investigates the improvement in prediction accuracy associated with adding a second and third variable to the single parameter regression equation. For the correlation coefficient to

improve the added variables (or steps) must be largely independent of previous step(s) but still related to the level of noise. Three-step models are presented below for takeoff, approach, and level flyover.

Approach

EPNL =
$$9.6 \log (TB) + 83.87$$

 $R^2 = .91$

2 Step

EPNL =
$$9.55 \log (TB) - 7.3 (MACH)^6 + 86.1$$

 $R^2 = .93$

3 Step

EPNL = 6.3 log (TB) + 5.5 log (MD) -9.6 (MACH)⁶ + 71.97
$$R^2 = .95$$

The following table provides a summary of parameters and correlation coefficients associated with each step of the multiple regression analyses for the various operational modes:

Step	<u>R</u> 2	Parameter(s)
1	.91	Log TB
2	.93	Log TB, (MACH)6
3	. 95	Log TB, (MACH)6, Log (MD)

Approach

Step	<u>R</u> 2	Parameter(s)
1	.89	Log TB
2	.93	Log TB, M DISC
3	. 94	Log TB, M DISC, T SPEED

Level Flyover

Step	R ²	Parameter(s)
1	. /6	F?
. 2	.84	F5, Log MD
3	.85	Log MD, MACH, F5

4.0 DISCUSSION

The empirical noise prediction techniques presented above provide a means to estimate single event cumulative noise exposure for helicopters whose technology and operational characteristics are similar to the helicopters used in this analysis. The obvious advantage of the strictly empirical approach (using the single event cumulative energy metric EPNL) is the averaging out of source directionality, ground interference effects, anomolous air in-flow characteristics, and speed effects. All of these considerations pose significant difficulties in the theoretical approach. On the other hand, the theoretical approach can be more successful in predicting the change in noise level associated with a design change for a specific helicopter.

The parameters appearing (or not appearing) as significant correlates to noise in this study raise some interesting questions. For example, the strength of LOG TB was not anticipated nor is "Tail Blade Area" a particularly good acoustical design parameter. On the other hand, the main rotor advancing tip mach number to the sixth power (considered an important correlate to noise) appears as a weak correlate by itself, although it does strengthen the takeoff correlation in the multiple regression analysis. Interpretation of these results and discussion of application in predicting noise of new design helicopters or reducing levels of existent machines is left for subsequent study.

TAKEOFF, REGRESSION OF EPNL VERSUS LOGTB FIFTIGH ANALYSIS

FIGURE 2.3.1

TAKEOFF, REGRESSION OF EPNL VERSUS LOGW FIPPIRICAL NOISE PREDICTION ANALYSIS

FIGURE 2.3.2

TAKEOFF, REGRESSION OF EPNE VERSUS F3 empirical noise prediction analysis

F3-LDG10 (SHP-MAIN BISC AREA/MACH)
FIGURE 2.3.3

LEVEL FLYOVER, REGRESSION OF EPNL VERSUS F2 EMPIRICAL NOISE PREDICTION ANALYSIS

FIGURE 2.3.4

F2=L0010 ((MACH-WEI GHT) ** 2/AREA)

LEVEL FLYOVER, REGRESSION OF EPNL VERSUS LOGW EMPIRICAL NOISE PREDICTION ANALYSIS

FIGURE 2.3.5

LEVEL FLYOVER, REGRESSION OF EPNL VERSUS LOGMD FRUEL FUNDING ANALYSIS

FIGURE 2.3.6

APPROACH, REGRESSION OF EPNL VERSUS LOGTB EMPIRICAL NOISE PREDICTION ANALYSIS

FIGURE 2.3.7

đ

APPROACH, REGRESSION OF EPNL VERSUS LOGW EMPIRICAL NOISE PREDICTION ANALYSIS

FIGURE 2.3.8

APPROACH, REGRESSION OF EPNL VERSUS LOGMD FIPPRICAL MOISE PREDICTION ANALYSIS

REFERENCES

- 1. Newman, J. S., and Rickley, E. J., "Noise Levels and Flight Profiles of Eight Helicopters Using Proposed International Certification Procedures," FAA-EE-79-03, March 1979.
- 2. True, H. C., and Rickley, E. J., "Noise Characteristics of Eight Helicopters," FAA-RD-94, July 1977.
- 3. Jane's All the World's Aircraft, 1964-1965.
- 4. Jane's All the World's Aircraft, 1975-1976.
- 5. Jane's All the World's Aircraft, 1977-1978.
- 6. Defense Intelligence Agency DIA DT-2 (personal communication) Russian Helicopter Data.
- 7. Pat Lang, FAA Eastern Region (personal communication) Sikorsky Helicopter Data.
- 8. Mr. Arland Doe, Westland Helicopters, Yeovil, U.K., (personal communication) Westland Helicopter Data.