kn rooks are placed onto an $n \times n$ chess board in a way such that every file (column) of the chess board has k rooks, and every rank (row) has k rooks ($1 \le k \le n$). Prove that we can choose a set of n of these rooks such that no rooks in the set are attacking each other. Formally, this means no two rooks of the set are in the same rank or file.

*P***2:**

Prove that, for every k-coloring of a k-chromatic graph and every color c there is a vertex x of color c which is adjacent to vertices of every other color.

Prove that if $\chi(G) \ge k$, then $||G|| \ge {k \choose 2}$. ||G|| denotes the size of G, which is the number of edges. You must prove any theorems you use here.

Given that Brooks' theorem holds for graphs that are 2-connected, and k-regular with $k \geq 3$, prove that Brooks' theorem holds for all graphs.

P5:

Let G be a graph with n vertices and m edges such that n is odd and

$$m > \frac{(n-1)\Delta(G)}{2}.$$

Prove that $\chi_1(G) = 1 + \Delta(G)$.

For a positive integer k, let H be a 2k-regular graph of order 4k+1 (that is, with 4k+1 vertices). Let G be obtained from H by removing a set of k-1 independent edges from H. Prove that $\chi_1(G) = \Delta(G) + 1$.

Prove that if G is a subdivision of K_5 or $K_{3,3}$, then G is not planar. [You may not apply theorems after Corollary 9.3; many of them directly imply this result.]