Correlations

Chocolate consumption is related to winning Nobel prizes

$$r = 0.1$$
small

http://rpsychologist.com/d3/correlation/

$$r = 0.3$$
medium

http://rpsychologist.com/d3/correlation/

http://rpsychologist.com/d3/correlation/

Correlations range from 0 (no effect) to -1 or +1

HIGH SCORE MAIN MENU

DEXT

TRUE R 0.84
GUESSED R 0.80

DIFFERENCE 0.04

STREAKS

MEAN ERROR 0.03

+1 () +5

http://guessthecorrelation.com/

Convert d to r

$$r = \frac{d_S}{\sqrt{d_S^2 + \frac{N^2 - 2N}{n_1 n_2}}}$$

R^2 , η^2 , ω^2 , ε^2 proportion of total variance explained by an effect

ε² is least biased

(Okada, 2013)

(ω² recommended, maybe due to a faulty random number generator!)

How much does the relationship between x and y reduce the error?

$$R^{2} = \frac{SS_{res}}{SS_{tot}}$$

From va	ariances	
Variance explained by effect		1.0
Error variance		2.0
Number of groups		2
Total sample size		100
Number of measurements		4
Direct		
Direct	Partial ŋ²	0.2
• Direct	Partial η² Effect size f(U)	0.2
Calculate		0.5

$\eta_p^2, \omega_p^2, \epsilon_p^2$

Partial variance explained by only 1 factor (good for experimental designs)

η²is identical to η_b in One-Way ANOVA.

Cohen (1988) has provided benchmarks to define small (f = 0.10), medium (f = 0.25), and large (f = 0.50) effects.

Cohen (1988) has provided benchmarks to define small ($\eta^2 = 0.0099$), medium (η^2 = 0.0588), and large ($\eta^2 = 0.1379$) effects.

Cohen actually meant η_p^2 , not η^2 - so use these benchmarks for partial eta-squared.

Olejnik & Algina (2003) propose generalized etasquared η_G^2 . Generalizes to between and within designs

r-family effect sizes allow you to quantify the degree of association between two variables.