Procedimiento de producción de carboxilatos metálicos y de sus derivados aminoatos metálicos o metioninato hidroxianálogo metálicos, y su uso como promotores de crecimiento en alimentación animal

5 Campo técnico

10

15

20

25

30

La presente invención describe un proceso de producción de carboxilatos metálicos, concretamente butiratos y formiatos de metales divalentes, así como de sus derivados carboxilato-aminoato o carboxilato-metioninato hidroxianálogo de metales divalentes, para ser utilizados como suplemento de trazas de metal en alimentación animal.

Antecedentes de la invención

Actualmente, existen en el marco legal del sector de producción animal 2 temas de vital importancia, que son el uso de antibióticos promotores del crecimiento y la eliminación de residuos al medio ambiente, de los oligoelementos necesarios también para promover dicho crecimiento e incorporados a los piensos.

Respecto los antibióticos promotores del crecimiento, éstos presentan una gran eficacia para mejorar los rendimientos productivos y prevenir determinadas patologías por lo que, desde hace más de 50 años, han permitido reducir considerablemente los costes de producción. Sin embargo, debido a la controversia creada sobre la posible aparición de resistencias en determinadas cepas bacterianas y su repercusión sobre la salud pública, en marzo del 2002 el Comité de la Unión Europea planteó la prohibición de estos aditivos, que será aplicada a partir del año 2005. Es de esperar como consecuencia una importante repercusión en el sector zootécnico debido al importante aumento en los costes de producción.

En el caso de los oligoelementos, la importante mejora genética y desarrollo corporal de los animales de producción ha producido un incremento en los requerimientos de estos nutrientes para satisfacer las necesidades y garantizar un óptimo desarrollo. Sin embargo, en este sentido, la legislación regula cada

5

10

15

20

25

30

2

vez más la eliminación de residuos y progresivamente se van disminuyendo los niveles máximos de incorporación en el pienso permitidos. Es por ello, que cada vez más se recurre a nuevas fuentes de minerales (fuentes orgánicas de minerales) con mayor biodisponibilidad y, por tanto, menos susceptibles de ser eliminados por vía fecal. Cabe mencionar que algunas fuentes inorgánicas de minerales, como es el caso del sulfato de cobre y óxido de zinc, administrados a altas dosis (250 ppm y 1.500-3000 ppm, respectivamente) producen un importante efecto promotor del crecimiento, principalmente por su acción bactericida a nivel intestinal, sin embargo, dichas dosis superan considerablemente las establecidas por la legislación medioambiental (175 y 250 ppm para el cobre y el zinc, respectivamente), por lo que también se ha de prescindir de sus beneficios.

Es por esto, que en los últimos años se ha dedicado un gran esfuerzo, por parte de la industria de aditivos para la alimentación animal, al desarrollo de nuevas moléculas que sustituyan a los antibióticos promotores del crecimiento sin suponer un riesgo para la salud, y a la búsqueda de fuentes orgánicas de minerales que proporcionen los niveles adecuados para el óptimo crecimiento del animal y reduzcan considerablemente la eliminación de residuos al medio ambiente.

Los ácidos orgánicos han mostrado una gran eficacia como sanitizantes intestinales y mejoradores de los parámetros productivos en animales de cría por lo que se presentan como una de las alternativas más adecuadas a los antibióticos promotores del crecimiento. Entre ellos, el ácido fórmico y butírico pueden considerarse los de mayor eficacia en animales monogástricos por su reconocido efecto bactericida y estimulador del crecimiento de las vellosidades intestinales, lo cual mejoran la integridad intestinal y aumentan la absorción de nutrientes. Son conocidos, en este sentido, el suplemento de hierro (Fe) en la dieta de animales de cría, mediante formiato (WO 99/62355), o el de cromo (Cr⁺⁶) o manganeso (Mn⁺⁷), mediante propionatos (WO 98/33398).

Las fuentes orgánicas de minerales disponibles como suplementos para

25

30

alimentación animal abarcan:

- Quelatos de metal con aminoácidos: relación molar de 1:1 a 1:3.
- Complejos de aminoácidos con metal: formados por la unión covalente de un aminoácido (inespecífico) y un metal.
- Complejos de aminoácidos específicos con metal: constituidos por un aminoácido específico y un metal.
- Proteinatos: resultantes de la quelación de una proteína hidrolizada con un metal.
- 10 Complejos de polisacáridos con metal.
 - Carboxilatos de metales: sales de diferentes ácidos carboxílicos con metales divalentes. Utilizados la mayoría como suplemento orgánico de minerales, con mayor biodisponibilidad que las fuentes inorgánicas.
- 15 Vistos estos antecedentes, uno de los objetos de la presente invención se refiere a la producción de moléculas combinadas de ácidos orgánicos de reconocida eficacia en la producción animal, concretamente fórmico y butírico, y sales inorgánicas de zinc y cobre. Dicha combinación presenta un efecto sinérgico que potencia el efecto mejorador de los parámetros productivos de ambas sustancias y aumenta la biodisponibilidad de los metales, permitiendo el uso del cobre y zinc como sustancias promotoras, pero manteniendo su nivel de inclusión en el pienso dentro de los límites legales establecidos.
 - Otro objetivo de la presente invención es la producción de derivados de los carboxilatos metálicos anteriormente citados que són carboxilato-aminoatos de metales divalentes o carboxilato-metioninato hidroxianálogos de metales divalentes. Dicha combinación presenta un efecto sinérgico aún superior que potencia el efecto mejorador de los parámetros productivos de estas sustancias y aumenta la biodisponiblidad de los metales, facilitando aún más el uso de metales divalentes como sustancias promotoras, pero manteniendo su nivel de inclusión en el pienso dentro de los límites legales establecidos.

Otro objeto de la presente invención es desarrollar un procedimiento de

10

15

20

4

producción, tanto de carboxilatos metálicos como de sus derivados carboxilatoaminoatos metálicos o carboxilato-metioninato hidroxianálogos, alternativo a los métodos convencionales de síntesis en un medio acuoso que requieren la separación del producto precipitado de la solución y el secado de este producto.

Un último objeto de la presente invención es el uso de los productos obtenidos (carboxilatos metálicos y sus derivados carboxilato-aminoato metálicos o carboxilato-metioninato hidroxianálogos metálicos) como aditivos en el pienso de animales de producción monogástricos, con el objetivo de mejorar su rendimiento productivo.

Una ventaja del proceso descrito respeto el método convencional en solución acuosa, es que reduce de forma notable las etapas del proceso de producción ya que evita operaciones como la precipitación o la filtración del producto. Otra ventaja de este invento es que proporciona un proceso para la producción de sales carboxílicas de metal divalente fácil de llevar a cabo a gran escala y con un bajo costo ya que el proceso requiere un consumo de energía relativamente bajo. Además, este método de producción presenta la ventaja adicional sobre el método convencional de que en algunos casos aumenta la solubilidad con respecto a algunos compuestos básicos de metales. Otra ventaja más de la invención es la obtención de una fuente orgánica de metal con mayor contenido en metal.

En cuanto a su aplicación, los compuestos presentados en esta memoria presentan la ventaja de que su claro efecto promotor del crecimiento en animales monogástricos, mejora los parámetros productivos, aumentando la biodisponibilidad de los metales y reduciendo, por tanto, su eliminación al medio ambiente.

30

Descripción detallada de la invención

La presente invención describe un proceso productivo de carboxilatos (C₁, C₄) de metales divalentes que corresponden a la fórmula M(RCOO)₂, donde M es

10

15

20

25

30

5

el catión metálico divalente zinc (Zn²⁺) o cobre (Cu²⁺) y R corresponde a un protón para los formiatos y al grupo CH₃(CH₂)₂ para los butiratos, y de sus derivados carboxilato-aminoatos metálicos o carboxilato-metioninato hidroxianálogos metálicos. La fuente de catión metálico, M, en el caso de los carboxilatos y los metioninatos- hidroxianálogos es un compuesto básico del metal como óxido o hidróxido, concretamente óxido de zinc(II) e hidróxido de cobre(II), en el caso de los aminoatos se utiliza como fuente de catión las sales de metal, tales como, sulfato de zinc y de cobre y en los derivados, en los derivados carboxilato-aminoato se utiliza la combinación de las anteriores fuentes de metal.

Los carboxilatos de metal divalente se preparan a partir del ácido carboxílico por adición de la sal básica seca del metal divalente, óxido de Zn²⁺ o hidróxido de Cu²⁺, sin necesidad de añadir ningún tipo de disolvente. Este hecho supone una ventaja ya que las sales básicas de los metales utilizadas en la presente invención son escasamente solubles en agua. Los reactivos son agitados conjuntamente dando lugar a una reacción exotérmica que produce agua y el carboxilato de Zn(II) o Cu(II). La mezcla de reacción se mantiene en agitación con el fin de eliminar el agua formada, de forma que se obtiene el formiato o butirato seco y libre de agua.

La formación de los carboxilato-aminoato metálicos comienza con una fase de preparación del aminoato de metal. Dicho compuesto se prepara a partir del aminoácido y compuesto de metal, se adiciona agua en el aminoácido y si este lo requiere se añade entre 0.1% y 0.3% de sosa como neutralizante. El agua es prácticamente eliminada por un proceso secado/vacío. La mezcla de reacción se mantiene en agitación con el agua a 90°C-98°C durante 20 min o más, dependiendo del tipo de aminoato concreto que se desee obtener, con el fin de obtener el aminoato deseado. Posteriormente, el aminoato metálico obtenido se mezcla con el carboxilato de metal sometiendo el producto a proceso de temperatura 90-98°C o vacío a menor temperatura, dependiendo del producto, para obtener el producto final correspondiente, adicionando absorbente si fuese necesario.

5

10

15

25

30

6

Los carboxilato-metioninato hidroxianálogos de metal divalente se preparan a partir de la mezcla de ácido carboxílico e hidroxianálogo de metionina y adición de compuesto básico de metal divalente, sin necesidad de añadir ningún tipo de disolvente. La adición de la mezcla ácida es lenta con agitación constante dando lugar a una reacción exotérmica que produce agua y mezcla de carboxilato-metioninato hidroxianálogo de metal divalente. La mezcla de reacción se mantiene en agitación a una temperatura de 90°C-98°C o vacío a menor temperatura, con el fin de eliminar prácticamente toda el agua formada, obteniendo el carboxilato-metionina hidroxianálogo seco.

El ácido butírico o fórmico y el compuesto básico de metal divalente se utilizan en cantidades aproximadamente estequiométricas, con una relación molar de ácido carboxílico y base metálica aproximadamente 2:1, pudiendo trabajar con un exceso del 3-6 % en peso, tanto del compuesto metálico como de ácido carboxílico.

El aminoácido y el compuesto de metal se utilizan en relación molar 1:1 trabajando con exceso de metal (1%-3% en peso).

La metionina hidroxianálogo y el compuesto de metal se utilizan en relación molar 2:1, trabajando con exceso de metal (1%-3% en peso).

El ácido fórmico utilizado en la invención contiene un 15% de agua. El ácido butírico contiene un 0.016% de agua. El hidroxianálogo de metionina contiene un 11.20% de agua. La glicina y la metionina se pueden considerar reactivos anhidros.

Tal como están disponibles en el mercado, las bases metálicas que se utilizan no contienen agua de cristalización, en cambio los sulfatos si la contienen. Es preferible utilizar estas bases en forma de partículas relativamente pequeñas (tamaño de partícula menor 6.5 mm) para facilitar el contacto entre los reactivos y la subsecuente reacción.

El ácido butírico funde a -7.9°C y hierve a 163.5°C a 1 atmósfera. El ácido butírico forma un azeótropo con el agua que hierve a 99.4°C y contiene un 18.4% de ácido butírico. Como consecuencia de la formación del azeótropo y la temperatura de ebullición de la mezcia relativamente baja, se pierde parte del ácido butírico con el agua a la temperatura de reacción, que es recuperado en el proceso mediante una condensación y combinación de sales sódicas solubles o cálcicas precipitables. El ácido fórmico funde a 8.4°C y hierve a 100.5°C a 1 atmósfera. El ácido fórmico forma un azeótropo con el agua que hierve a 107.1°C y contiene un 77.5% de ácido fórmico. Como consecuencia de la formación del azeótropo y la temperatura de ebullición de la mezcla relativamente baja, se pierde parte del ácido fórmico con el agua a la temperatura de reacción, que es recuperado en el proceso mediante un a condensación y combinación de sales sódicas solubles o cálcicas precipitables.

Tanto el ácido butírico como el fórmico se utilizan en líquido.

15

20

5

10

Para llevar a cabo la reacción puede utilizarse cualquier reactor o equipo. En el caso de las reacciones a pequeña escala en el laboratorio, se utilizó un vaso de precipitados como reactor y una varilla como agitador. Para una preparación a gran escala, es preferible una mezcladora equipada con agitadores de masa y una turbina intensificadora desgrumadora. Después de la agitación la reacción está acabada en minutos pero es conveniente dejarlo enfriar y secar durante una hora aproximadamente.

La reacción se da lugar de forma exotérmica según la siguiente ecuación:

- 25 Reacción de las sales de metales:
 - 1) Butirato de $\mathbb{Z}n(II)$: $\mathbb{Z}nO + 2CH_3(CH_2)_2COOH \rightarrow \mathbb{Z}n(CH_3(CH_2)_2COO)_2 + H_2O$
 - 2) Butirato de Cu(II): Cu(OH)₂ + 2CH₃(CH₂)₂COOH \rightarrow Cu(CH₃(CH₂)₂COO)₂ + 2H₂O
 - 3) Formiato de Zn(II): ZnO + 2HCOOH \rightarrow Zn(HCOO)₂ + H₂O
- 30 4) Formiato de Cu(II): Cu(OH)₂ + 2HCOOH \rightarrow Cu(HCOO)₂ + 2H₂O
 - 5) Metioninato hidroxianálogo de Metal: $2HMA + ZnO = Zn(MA)_2 + H_2O$
 - 6) Metioninato hidroxianálogo de Metal: 2HMA + Cu(OH)₂ = Cu(MA)₂ +H₂O

25

30

Reacción de formación de quelatos:

- 1) Aminoácido Metal: Aminoácido (p. ej. glicina) + Fuente de Metal = MAm
- Cuando el ácido carboxílico y el compuesto metálico básico reaccionan se genera agua y calor. El agua y parte de ácido son eliminados continuamente del medio de reacción por el calor de reacción, la agitación continuada del producto y/o un sistema de vacío y limpieza.
- En la preparación de formiato de zinc, el calor de la reacción es suficiente para evaporar el agua formada. En la preparación de butirato de zinc, butirato de cobre y formiato de cobre es necesario ayudar con un aporte de calor adicional.
- El resultado es un producto seco y en forma de polvo en el caso de los butiratos. Tanto el formiato de zinc como el de cobre se obtienen en forma de partículas grandes que requieren moltura.
 - Los carboxilatos de metal divalente preparados por este proceso se obtienen con unos rendimientos que están por encima del 80%, aunque pueden conseguirse riquezas del 90%. Las perdidas son recuperadas a través de un sistema de recuperación de gases con condensadores y combinación con sales sódicas solubles o cálcicas precipitables Los productos se obtienen en forma de polvo seco pero pueden formar grumos debido a la presencia de pequeñas cantidades de ácido no reaccionadas. En estos casos, es preferible moler para obtener un producto que podría ser utilizado directamente como suplemento alimentario. Este proceso de producción evita tratamiento posteriores a la reacción como son entre otros la concentración, la cristalización, la separación por filtración, decantación o centrifugación y el secado por liofilización, que requiere el método acuoso convencional, salvando energía y costes.

En el caso de los carboxilato-aminoatos, en la fase previa de formación del

9

aminoato a partir del aminoácido y la sal en medio acuoso la solución se espesa. El compuesto obtenido se mezcla con el carboxilato de metal anteriormente descrito y se procede a eliminar el agua por medio del sistema de vacío y limpieza para adicionar sílice si conviene.

5

10

En el caso de la formación del carboxilato-metioninato hidroxianálogo, cuando a la mezcla de ácido carboxílico e hidroxianálogo de metionina se le adiciona el compuesto metálico básico se genera agua y calor. El agua es eliminada continuamente del medio de reacción por el calor de reacción y agitación continuada del producto y/o sistema de vacío y limpieza.

Ejemplos de fabricación de carboxilatos metálicos

Procesos a escala de laboratorio

15

20

Ejemplo 1: Butirato de Zinc

Se preparó butirato de zinc por adición de 20.25 g de ZnO a 44 g de ácido butírico, en un vaso de precipitados (proporciones estequiométricas ZnO:ácido butírico 1:2). Se mezclaron rápidamente los reactivos agitando con una varilla de vidrio y permitiendo que los vapores formados salieran del vaso. La reacción alcanzó una temperatura de 55°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido blanco húmedo que se pasa a una rosca enfriadora o a temperatura ambiente que lo remueve para secarlo más rápidamente y ponerlo en disposición de ser molido a la granulometría que exija el mercado. Se obtuvo un producto con más de un 90% de butirato de zinc.

Ejemplo 2: Butirato de Cobre

30

25

Se preparó butirato de cobre por adición de 26.5 g de Cu(OH)₂ a 44 g de ácido butírico, en un vaso de precipitados (proporciones Cu(OH)₂:ácido butírico 1.1:2). Se mezclaron rápidamente los reactivos agitando con una varilla de

vidrio y permitiendo que los vapores formados salieran del vaso. La reacción alcanzó una temperatura de 65°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido azul-verdoso húmedo que se pasa a una rosca enfriadora o a temperatura ambiente que lo remueve para secario más rápidamente y ponerlo en disposición de ser molido a la granulometría que exija el mercado. Se obtuvo un producto con más de un 90% de butirato de cobre.

Ejemplo 3: Formiato de Zinc

10

15

20

25

30

5

Se preparó formiato de zinc por adición de 21.75 g de ZnO a 27 g de ácido fórmico (85%), en un vaso de precipitados (proporciones ZnO:ácido fórmico 1.1:2). Se mezclaron rápidamente los reactivos agitando con una varilla de vidrio y permitiendo que los vapores formados salieran del vaso. La reacción muy exotérmica, alcanzó una temperatura de 120°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido blanco húmedo que se pasa a una rosca enfriadora o a temperatura ambiente que lo remueve para secarlo más rápidamente y ponerlo en disposición de ser molido a la granulometría que exija el mercado. Se obtuvo un producto con más de un 85% de formiato de zinc. Requiere moltura final del producto.

Ejemplo 4: Formiato de Cobre

Se preparó formiato de cobre por adición de 24.5 g de Cu(OH)₂ a 27 g de ácido fórmico (85%), en un vaso de precipitados (proporciones estequiométricas Cu(OH)₂:ácido fórmico 1:2). Se mezclaron rápidamente los reactivos agitando con una varilla de vidrio y permitiendo que los vapores formados salieran del vaso. La reacción alcanzó una temperatura de 65°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido azul bastante húmedo que se pasa a una rosca enfriadora o a temperatura ambiente que lo remueve para secarlo más rápidamente y ponerlo en disposición de ser molido a la granulometría que exija el mercado. Se obtuvo un producto con más de un 85% de formiato de cobre. Requiere moltura final del producto.

PCT/ES2004/070049

11

Cuando se trabaja en el laboratorio, es preferible separar el agua producida en la reacción en forma de vapor pero cuando se trabaja a escala puede ser aspirado de la mezcla de reacción exotérmica bajo presión reducida (vacío). Es preferible emplear un mezclador bien aislado para retener el calor que desprende la reacción y evaporar el agua del producto.

Procesos a nivel industrial

WO 2005/005365

5

10

15

20

25

30

Cuando se trabaja a escala se utiliza un primer reactor-mezclador (reactor tanque agitador = rta) con un agitador de disco plano con doble sierra de tipo Cowles de 1500 a 3000 rpm, conectado a través de una boca de descarga con válvula tajadera o de compuerta a una máquina-reactor (MHT 1200). Esta boca de descarga consta de un sistema de cierre hermético que se acciona neumáticamente para permitir una rápida descarga del reactor. El segundo reactor consta de palas tipo vertedera o de arado, agitadores de masa de 200 a 400 rpm y dos turbinas intensificadoras desgrumadoras de 1500 a 3000 rpm. El reactor consta también de una doble camisa con aceite térmico o preferiblemente vapor, a una temperatura de 80 a 130°C (preferentemente entre 90 y 110°C). A parte del movimiento de las palas agitadoras, la máquina consta de vacío por medio de ciclón-aspirador en cola, haciendo pasar dichas aspiraciones primero por un filtro de mangas que separa las partes sólidas de los vapores producidos por la reacción y, en segundo lugar, se somete al vapor ya limpio de productos sólidos a un intercambiador de calor por condensación, recuperando el agua de reacción con parte de ácído (1-2%) para tratamiento posterior. En último lugar, el vapor restante pasa a través de un limpiador de gases tipo scrubber, con disolución de NaOH al 25% para neutralizar los vapores ácidos generados. Se trabaja en un recinto cerrado a presión negativa, recogiendo todos los vapores para ser tratados evitando la emisión de vapores molestos al exterior (malos olores). Concluyendo, tanto el agua de reacción como el posible vapor quedan perfectamente controlados y limpios para ser utilizados en este mismo o en otros procesos. Se utilizan máquinas distintas, una para los productos que contienen zinc y otra para los productos de cobre.

WO 2005/005365 PCT/ES2004/070049

Desde los depósitos-almacén de acero inoxidable (INOX AISI-304L) donde se recibe el ácido carboxílico, se inyecta en el primer reactor la cantidad necesaria de ácido con un dosificador magnético. Al mismo tiempo que el ácido carboxílico se adiciona el compuesto básico de metal divalente por medio de un dosificador con células de carga manteniendo la mezcla en agitación durante un tiempo que puede ir de 2 a 30 segundos. Después de este tiempo se abre la boca de descarga con válvula tajadera que separa los dos reactores y se deja caer la mezcla de reacción al segundo reactor, donde se mantiene en agitación hasta entre 1 y 5 mínutos con las palas de tipo vertedera o de arado, en funcionamiento entre 200 y 600 rpm y las turbinas intensificadoras entre 1500 y 3000 rpm.

Una vez concluida la reacción, se cierra la máquina y se pone en marcha el vacío que arrastrará en forma de vapor las moléculas de agua producidas en la misma reacción con parte del ácido (entre un 1 y un 2 %). Para resolver esta extracción de forma más inmediata, se mantienen en funcionamiento las turbinas intensificadoras entre 1500 y 3000 rpm que romperán los posibles grumos y liberaran a mayor velocidad la humedad de las partículas, ayudados con el calor de la reacción y el calor de la doble camisa con aceite térmico o preferiblemente vapor entre 80 y 130°C. El tiempo total del proceso está entre 20 y 70 minutos.

Ejemplo 5: <u>Butirato de cobre</u>, a nivel industrial.

5

10

15

20

25

30

Se prepararon 200 Kg de butirato de cobre la máquina anteriormente descrita. En primer lugar se cargó el primer reactor con 140 Kg de ácido butírico y 85 Kg de Cu(OH)₂ agitando con el agitador de disco plano con doble sierra a 2000 rpm durante 30 segundos. Después de este tiempo se abrió la boca de descarga con válvula tajadera dejando caer el producto al segundo reactor, donde se agitó durante 2 minutos con las palas tipo vertedera o arado a 400 rpm y las turbinas intensificadoras a 2000 rpm. A continuación se cerró la boca de descarga, se puso en funcionamiento el vacío para arrastrar el vapor de agua producido y se puso en marcha la turbina intensificadora a 2000 rpm para

romper los grumos formados y ayudar a la eliminación del agua. La temperatura de la reacción es de 65°C con lo que fue necesario ayudar con la doble camisa de aceite térmico o de preferiblemente, vapor, a 120°C para obtener un producto azul-verdoso seco y en forma de polvo. Las pérdidas totales de la reacción son del 11 %, con una pérdida de ácido butírico del 1.3 % y con una pureza de producto de más del 90 %. El tiempo total del proceso fue aproximadamente de 50 minutos.

Ejemplos de fabricación de carboxilato-aminoatos metálicos

10

15

20

25

5

En el caso de la preparación de carboxilato-aminoatos metálicos a nivel industrial, el procedimiento varía como sigue: Al segundo reactor tipo lodige se le adiciona el compuesto básico de metal por medio de un dosificador con células de carga u otro sistema de dosificación. Desde los depósitos-almacén de acero inoxidable (INOX AISI-304L) donde se recibe el ácido carboxílico, se inyecta lentamente en ese segundo reactor tipo lodige la cantidad necesaria de ácido con un dosificador magnético manteniendo la agitación con las palas vertedera o de arado en funcionamiento entre 200 y 600 rpm. Después de este tiempo de adición de ácido se ponen en funcionamiento las turbinas intensificadoras entre 1500 y 3000 rpm.

Mientras el carboxilato de metal está en el segundo reactor se procede a la fabricación del aminoato de metal en el primer reactor. Se adiciona el agua a 90°C y el sulfato de zinc o derivado de metal según el compuesto y se agita hasta disolución. Posteriormente se adiciona en el caso del aminoato el aminoácido y si este lo requiere se añade entre 0.1% y 0.3% de sosa como neutralizante, se mantiene agitación hasta total quelación. Una vez concluída la quelación se abre la boca de descarga con válvula tajadera que separa los dos reactores y se deja caer la mezcla de reacción al segundo reactor.

Una vez vertido todo el aminoato sobre el carboxilato, se cierra la máquina y se pone en marcha el vacío, este durará hasta la descarga del producto final. El sistema de vacío arrastrará en forma de vapor las moléculas de agua producidas en la misma reacción con parte del ácido (entre un 1 y un 2 %), y el

5

PCT/ES2004/070049

14

agua procedente del proceso de quelación. Para resolver esta extracción de forma más inmediata, se mantienen en funcionamiento las turbinas intensificadoras entre 1500 y 3000 rpm que romperán los posibles grumos y liberaran a mayor velocidad la humedad de las partículas, ayudados con el calor de la reacción y el calor de la doble camisa con aceite térmico o preferiblemente vapor entre 80 y 130°C. Se procede a la adición de absorbente si fuera necesario El tiempo total del proceso está entre 20 y 70 minutos. En el producto seco obtenido se somete a un proceso adicional de molienda.

10 El orden puede cambiar sin verse afectada significativamente la calidad del producto.

Ejemplo 6: Formiato-aminoato (glicinato) (50%-50%)de Zinc, a nivel industrial.

- Se prepararon 800 kg de formiato de zinc con la máquina anteriormente descrita. En primer lugar se cargó el reactor tipo lodige con 446 Kg de ZnO y se adicionó lentamente 554 Kg de ácido fórmico (85%), manteniendo en agitación con las palas vertederas en funcionamiento a 400 rpm. A continuación se cerró la boca de la máquina, se puso en funcionamiento el vacío para arrastrar el vapor de agua producido y se puso en marcha la turbina intensificadora a 2000 rpm para romper los grumos formados y ayudar a la eliminación del agua. La temperatura de la reacción es de 110-120°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido blanco húmedo.
- Mientras se produce el carboxilato en el reactor tipo lodige y en paralelo se adiciona al primer reactor tanque agitador 131.3 Kg de agua y 686 Kg de sal del metal (sulfato de zinc heptahidratado) para posteriormente adicionar 180.1 Kg de aminoácido y 2.6 de sosa manteniendo la camisa de la marmita a 90°C y agitación constante.
- Pasados 20 minutos se adicionan 70 kg de absorbente y se vierte el aminoato sobre el carboxilato para continuar con el proceso de secado. Finalmente se procede a la molienda para la obtención de la granulometría que exiga el

mercado. El producto final obtenido contiene 30% Zn, del cual un 30% procede del aminoato y un 70% procede del carboxilato.

Ejemplo 7: Formiato-aminoato (metioninato) (50%-50%) de Zinc, a nivel industrial.

Se prepararon 800 kg de formiato de zinc con la máquina anteriormente descrita. En primer lugar se cargó el primer reactor con 446.0 Kg de ZnO y 554.0 Kg de ácido fórmico (85%), agitando con el agitador de disco plano con doble sierra a 2000 rpm durante 30 segundos. Después de este tiempo se abrió la boca de descarga con válvula tajadera dejando caer el producto al segundo reactor, donde se agitó durante 2 minutos con las palas tipo vertedera o arado a 400 rpm y las turbinas intensificadoras a 2000 rpm. A continuación se cerró la boca de descarga, se puso en funcionamiento el vacío para arrastrar el vapor de agua producido y se puso en marcha la turbina intensificadora a 2000 rpm para romper los grumos formados y ayudar a la eliminación del agua. La temperatura de la reacción es de 110-120°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido blanco húmedo.

- Tras verter el carboxilato del reactor tanque agitador al segundo reactor tipo lodige y en paralelo se adiciona al primer reactor 232.1 Kg de agua y 510.4 Kg de sal del metal (sulfato de zinc heptahidratado) para posteriormente adicionar 255.3 Kg de aminoácido y 2.3 de sosa manteniendo la camisa de la marmita a 90°C y agitación constante.
- Pasados 20 minutos se adicionan 70 kg de absorbente y se vierte el aminoato sobre el carboxilato para continuar con el proceso de secado. Finalmente se procede a la molienda para la obtención de la granulometría que exiga el mercado. El producto final obtenido contiene 28% Zn, del cual un 25% procede del aminoato y un 75% procede del carboxilato.

5

10

15

10

15

20

25

Ejemplo 8: Formiato-aminoato (metioninato) (50%-50%) de Cobre, a nivel industrial

Se prepararon 800 kg de formiato de cobre con la máquina anteriormente descrita. En primer lugar se cargó el primer reactor con 486.0 Kg de Cu(OH)₂ y 524.0 Kg de ácido fórmico (85%), agitando con el agitador de disco plano con doble sierra a 2000 rpm durante 30 segundos. Después de este tiempo se abrió la boca de descarga con válvula tajadera dejando caer el producto al segundo reactor, donde se agitó durante 2 minutos con las palas tipo vertedera o arado a 400 rpm y las turbinas intensificadoras a 2000 rpm. A continuación se cerró la boca de descarga, se puso en funcionamiento el vacío para arrastrar el vapor de agua producido y se puso en marcha la turbina intensificadora a 2000 rpm para romper los grumos formados y ayudar a la eliminación del agua. La temperatura de la reacción es de 110-120°C. Después de agitar durante 5 minutos, se obtiene el producto en forma de sólido azul húmedo.

Tras verter el carboxilato del reactor tanque agitador al segundo reactor tipo lodige y en paralelo se adiciona al primer reactor 131.3 Kg de agua y 542.0 Kg de sal del metal (sulfato de cobre pentahidratado) para posteriormente adicionar 324.1 Kg de aminoácido y 2.6 de sosa manteniendo la camisa de la marmita a 90°C y agitación constante.

Pasados 20 minutos se adicionan 70 kg de absorbente y se vierte el aminoato sobre el carboxilato para continuar con el proceso de secado. Finalmente se procede a la molienda para la obtención de la granulometría que exija el mercado. El producto final obtenido contiene 27% Cu, del cual un 25% procede del aminoato y un 75% procede del carboxilato.

Producción de carboxilato-metioninato hidroxianálogos

30 En el caso de carboxilato-metioninato hidroxianálogo la manera de proceder se describe a continuación:

10

20

25

30

Al segundo reactor tipo lodige se le adiciona el compuesto básico de metal por medio de un dosificador con células de carga y una cantidad de producto ya reaccionado. Desde los depósitos-almacén de acero inoxidable (INOX AISI-304L) donde se recibe la mezcla de ácido carboxílico y el metioninato hidroxianálogo, se inyecta lentamente en ese segundo reactor tipo lodige la cantidad necesaria de mezcla ácida con un dosificador magnético manteniendo la agitación con las palas vertedera o de arado en funcionamiento entre 200 y 600 rpm. Después de este tiempo de adición de ácido se ponen en funcionamiento las turbinas intensificadoras entre 1500 y 3000 rpm que romperán los posibles grumos y liberarán a mayor velocidad la humedad de las partículas, ayudados con el calor de la reacción y el calor de la doble camisa con aceite térmico o preferiblemente vapor entre 80 y 130°C. El tiempo total del proceso está entre 20 y 70 minutos.

Ejemplo 9: <u>Formiato-metioninato hidroxianálogo (HMA) (70%-30%) de Zinc, a</u> 15 <u>nivel industrial</u>

Seguidamente se describe el ejemplo a nivel industrial del formiato-metioninato hidroxianálogo de zinc. Al segundo reactor tipo lodige se le adiciona los 296.70 Kg de ZnO por medio de un dosificador con células de carga u otro sistema de dosificación. Desde los depósitos-almacén de acero inoxidable (INOX AISI-304L), se inyecta en el primer reactor tipo RTA, los 166.20 Kg de ácido fórmico (85%) y los 564.10 Kg de HMA (88.80%), se mezclan los ácidos, a temperatura ambiente y a presión atmosférica, hasta que quede una disolución homogénea. Una vez concluida la agitación se abre la boca de descarga con válvula tipo diafragma que separa los dos reactores y se deja dosificar lentamente sobre el óxido de zinc. Mientras se va adicionando la mezcla de los ácidos se mantiene una agitación con las palas vertederas en funcionamiento a 400 rpm y el vacío que arrastrará durante todo el periodo de fabricación el vapor de agua que se produzca en la misma reacción y parte de la mezcla de los ácidos (entre un 1 y un 2 %). Además, para resolver esta extracción de forma más inmediata, se mantienen en funcionamiento las turbinas intensificadoras entre 1500 y 3000 rpm que romperán los posibles grumos y liberaran a mayor velocidad la humedad de las partículas, ayudados con el calor de la reacción 60°C-70°C y el calor de la doble camisa se mantiene una temperatura de 90°C, favoreciendo también a la evaporación del agua. El tiempo total del proceso está entre 20 y 70 minutos.

Finalmente se procede a la molienda para la obtención de la granulometría que exija el mercado. El producto final obtenido contiene 27% de Zn, del cual un 50% procede del metioninato hidroxianálogo y un 50% procede del carboxilato.

Experiencias comparativas de eficacia

10 PRUEBAS DE EFICACIA DE CARBOXILATOS METÁLICOS

Ejemplo 10: <u>PRUEBA DE EFICACIA EN BROILERS</u>: (pollos de 7 semanas aptos ya para el consumo)

15 OBJETIVOS:

Determinar la efectividad del formiato de cobre y butirato de cobre sobre los parámetros productivos de pollos broilers.

20 MATERIAL Y MÉTODOS

Animales y alojamiento:

Se utilizaron 1600 pollos broilers de 1 día de edad, de la estirpe Ross (sin diferenciación de sexos), alojados en 40 parques de 4m².

Tratamientos experimentales

Se utilizaron 5 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de cobre:

T-0: Dieta base + 0.0056% sulfato de cobre (20 ppm de cobre)

HOJA DE SUSTITUCION (REGLA 26)

19

T-1: Dieta base + 0.0055% formiato de cobre (20 ppm de cobre)

T-2: Dieta base + 0.0073% butirato de cobre (20 ppm de cobre)

T-3: Dieta base + 0.0417% sulfato de cobre (150 ppm de cobre)

La dosis de cobre añadido se calculó teniendo en cuenta el contenido en cobre intrínseco de los ingredientes del pienso (unas 15 ppm) y la dosis máxima permitida en el pienso acabado (35 ppm de cobre) en el caso de los tratamientos T-0 a T-2, y la dosis con efecto promotor (170 ppm de cobre) en el caso del tratamiento T-3. Con la adición al pienso de 20 ppm de cobre en forma de formiato o butirato de cobre, se pretendió obtener el mismo efecto promotor que con la dosis de 170 ppm de cobre adicionado como sulfato de cobre, pero respetando los niveles legales establecidos.

La composición de las dietas y su análisis se presenta en la Tablas 1, 2 y 3.

15

El modelo experimental fue un diseño de bloques al azar, con 8 réplicas por tratamiento. Cada réplica estuvo constituida por un lote de 40 animales.

Controles

20

25

30

El control de parámetros productivos se realizó a los 21 y 42 días de edad, se tomó el peso vivo y el consumo de alimento por lote.

El día 42 del experimento se escogieron al azar 2 animales de cada lote y se alojaron en jaulas por pares respetando su origen en cuanto a lote y tratamiento de procedencia. Durante los siguientes 4 días se procedió a realizar un estudio de la biodisponibilidad del cobre. Tras 20 horas de ayuno se tomó el peso vivo por jaula y se administraron los piensos experimentales durante 2 días, registrando el consumo de alimento. Posteriormente se volvió a realizar un ayuno de 20 horas y se volvieron a pesar las aves por jaula. Se recogieron la totalidad de las heces por jaula durante los días que duró el balance. Tras pesar y homogeneizar la totalidad de las heces se tomó una muestra representativa de cada jaula para realizar el análisis de cobre. Se

calculó el porcentaje de cobre excretado según el cobre ingerido.

Análisis estadístico:

Se realizó un análisis de varianza mediante el procedimiento GLM (Modelo Lineal General) del programa estadístico SAS[®] (SAS Institute, 1996) aplicando el modelo de bloques al azar.

RESULTADOS

10

15

20

25

30

Los resultados de los parámetros productivos se muestran en la Tabla 4. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control. El consumo de alimento fue ligeramente menor en las aves alimentadas con butirato de cobre, lo cual produjo una mejora en el índice de conversión, aunque de forma no significativa. Por tanto, el sulfato de cobre administrado a dosis de 150ppm produjo efectos de promotor del crecimiento respecto al control, tal y como es conocido. La administración de dosis más bajas de cobre en forma de formiato y butirato de cobre (20ppm) produjeron el mismo efecto promotor que la dosis de 150 ppm en forma de sulfato de cobre.

Los resultados de la biodisponibilidad del cobre se presentan en la Tabla 5. La mayor biodisponibilidad se observó en los tratamientos con formiato y butirato de cobre, lo cual demuestra una mayor absorción de esta forma mineral a nivel intestinal.

La suplementación de dietas para broilers con cobre en forma de sales de butírico y fórmico a las dosis establecidas por la legislación producen una mejora en los parámetros productivos, que puede considerarse efecto promotor del crecimiento. Por otro lado, dichas fuentes de cobre presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

Tabla 1: Composición de las dietas experimentales:

Ingredientes	0-21d	21-42d
Trigo	38.000	48.000
Maíz	22.579	16.050
Soja, 47 %	28.703	26.560
Soja extrusionada	2.877	3.831
Manteca	2.780	2.540
DL-metionina	0.259	0.238
L-lisina HCl	0.177	0.104
Carbonato cálcico	1.269	0.697
Fosfato dicálcico	1.486	1.259
Sal	0.446	0.312
Minerales y vitaminas ¹	0.400	0.400
Cloruro de colina, 50 %	0.023	0.012
Proteína de patata	1.000	
Análisis		
Proteina bruta, %	21.02	20.7
Grasa bruta %	9.21	1.14
Fibra bruta %	4.85	1.02
Humedad %	8.61	0.90

Complemento vitamínico-mineral sin cobre.

Tabla 2: Adición de fuentes de cobre (%):

Ingredientes	T-0	T-1	T-2	T-3
Sulfato de cobre	0.0056			0.0417
Formiato de cobre		0.0055		
Butirato de cobre			0.0073	

Tabla 3: Análisis del contenido en cobre (ppm)

Tratamiento	0-21 d	21-42d
T-0	33.25	35.20
T-1	32.60	31.9
T-2	34.56	34.8
T-3	172.5	167.2

 $\boldsymbol{\omega}$

ent PV 21 d (g) 716 a 755 b 763 b	0-24 dias	ପ୍ରଥେକ				21-4	21-42 días			0-42 días	as
(g) 716 a 755 b 763 b	CMO	CMD	ಲ	PV 42	Q	GMD	CMD	2	O G	CMD	೦
716 a 755 b 763 b	(S)	(\$\text{\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		(B)		(B)	(b/g)		(a)	(b/g)	
755 b 763 b	34.2 a	48.9	43	a 2172	8 2	69.2	a 149.3	3 2.16 a	50.6	a 98.2	1.94
763 b	36.1 b	b 49.6	1.37	a b 2360	o o	76.3	b 152.5	5 2.00 b	55.1	b 99.3	1.80
756 h	36.2 b	48.9	1.35	b 2358	8 0	75.9	b 147.2	1.94 b	55.1	b 97.2	1.76
2	35.9 b	b 49.7	1.38	a b 2362	2 b	7.97	b 154.2	2 2.01 b	55.2	b 99.5	1.80
6 T	C.	0.76	0.014	35.02	2	1.32	2.52	0.036	1.23	1.27	0.031
))) (;	S S	4:	ŧ		रः	N.S	*	*	N.S	*

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario; IC: Índice de conversión A,b Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

ES: Error estándar; Sig.: Significación

Tabla 5: Balance de cobre de los 43 a los 46 días de edad:

Tratamiento	Consumo	Ingestión	Excreción	Biodisponibilidad
	(B)	cobre (mg)	cobre (mg)	%
T-0	206	7.3ª	4.08 ^a	43.73 ^a
7-	222	7.19	3.12ª	55.94 ^b
T-2	240	7.3ª	2.99a	.59.09 ^b
T-3	206	652.4b	397.3 ^b	39.11 ^a
E.S.	3.6	3.2	2.6	1.01
Sig.	si Z	*	*	*

a,b Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

Ejemplo 11: PRUEBA DE EFICACIA EN LECHONES:

OBJETIVOS:

5 Determinar la efectividad del formiato de zinc y butirato de zinc sobre los parámetros productivos de lechones recién destetados.

MATERIAL Y MÉTODOS

10 Animales y alojamiento:

Se utilizaron 300 lechones (cruce de Large White y Landrace), 50% machos y 50% hembras, destetados a los 21 días de edad y alojados en 30 corrales con 10 animales cada uno (5 machos y 5 hembras).

15

Tratamientos experimentales

Se utilizaron 5 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de zinc:

20

- T-0: Dieta base + 0.0275% óxido de zinc (220 ppm de zinc)
- T-1: Dieta base + 0.0560% formiato de zinc (220 ppm de zinc)
- T-2: Dieta base + 0.0797% butirato de zinc (220 ppm de zinc)
- T-3: Dieta base + 0.2463% óxido de zinc (1970 ppm de zinc)

25

30

La dosis de zinc se calculó teniendo en cuenta el contenido en zinc de los ingredientes del pienso y la dosis máxima permitida (250 ppm de zinc en el pienso acabado) en el caso de los tratamientos T-0 a T-2, y la dosis con efecto promotor (2000 ppm) en el caso del tratamiento T-3. Con la adición al pienso de 220 ppm de zinc en forma de formiato o butirato de zinc, se pretendió obtener el mismo efecto promotor que con la dosis de 1970 ppm de cobre adicionado como óxido de zinc, pero respetando los niveles legales

26

establecidos.

La composición de las dietas y su análisis se presenta en la Tablas 6, 7 y 8. El periodo experimental fue de 21 días.

5

El modelo experimental fue un diseño de bloques al azar, con 6 réplicas por tratamiento. Cada réplica estuvo constituida por un lote de 10 animales.

Controles

10

El control de parámetros productivos se realizó al final del experimento, tomando el peso vivo, el crecimiento diario y el consumo de pienso.

Al final del experimento se seleccionaron al azar un macho y una hembra de cada lote para tomar una muestra de tejido hepático y analizar el contenido en zinc.

Análisis estadístico:

Se realizó un análisis de varianza mediante el procedimiento GLM (Modelo Lineal General) del programa estadístico SAS[®] (SAS Institute, 1996) aplicando el modelo de bloques al azar.

RESULTADOS

25

30

Los resultados de los parámetros productivos se muestran en la Tabla 9. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control. El consumo de alimento fue ligeramente menor en las aves alimentadas con butirato y formiato de zinc, lo cual produjo una mejora en el índice de conversión, aunque de forma no significativa. Por tanto, el óxido de zinc administrado a dosis de 1970 ppm produjo efectos de promotor del crecimiento respecto al control, tal y como es conocido. La administración

WO 2005/005365 PCT/ES2004/070049

27

de dosis más bajas de zinc en forma de formiato y butirato de zinc (220ppm) produjeron el mismo efecto promotor que la dosis de 1970 ppm).

Los resultados de la concentración hepática de zinc se presentan en la Tabla 10. La mayor concentración se observó en el tratamiento con óxido de zinc a la dosis de 1970 ppm y la menor en el tratamiento con óxido de zinc a la dosis de 220 ppm. Al determinar la relación del zinc en el hígado con el zinc en la dieta, se observa que la mayor relación se presenta en los animales alimentados con formiato y butirato de zinc, lo cual muestra una mayor biodisponibilidad del zinc cuando se encuentra formando las sales de fórmico y butírico.

La suplementación de dietas de lechones con zinc en forma de sales de butírico y fórmico a las dosis establecidas por la legislación producen una mejora en los parámetros productivos, que puede considerarse efecto promotor del crecimiento. Por otro lado, dichas fuentes de zinc presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

5

10

15

Tabla 6: Composición de las dietas experimentales:

Ingredientes	21-42d
Maíz	30.0
Trigo	5.0
Cebada	15.0
Soja (full fat)	14.0
Harina de pescado	9.9
Harina de soja (47%)	2.0
Aceite de soja	1.9
Suero delactosado	3.1
Suero duice	17.0
L-lisina (78%)	0.2
L-Treonina (99%)	0.14
Metionina-OH	0.18
Carbonato cálcico	0.34
Fosfato dicálcico	0.85
Complejo vitamínico-mineral ¹	0.3
Análisis	
Proteina bruta, %	21.02
Grasa bruta %	7.20
Fibra bruta %	2.52
Humedad %	8.40

¹ Complemento vitamínico-mineral sin zinc.

Tabla 7: Adición de fuentes de zinc al pienso (%):

Ingredientes	T-0	T-1	T-2	T-3
Sulfato de cobre	0.0275			0.2463
Formiato de cobre		0.0560		
Butirato de cobre			0.0797	

Tabla 8: Análisis del contenido en zinc en las dietas (ppm):

Tratamiento	Zinc
T-0	241.2
T-1	232.2
T-2	252.3
T-3	1963.2

1.45 b 1.49 b 1.47 1.67 0.011 \mathbf{c} 11.62 783.2 795.3 752.3 741.3 CMD (b/b) SX 512.6 b 511.3 b 509.6 b 21-42 dias 475.3 8.26 GMD (6) 13.97 ab 14.15 b 14.30 b 13.11 PV 42 d 0.27 (Kg) 0.014 1.14 1.32 1.16 1.09 <u>U</u> Tabla 9: Parámetros productivos de los 24 a los 42 días: **€**3 286.3 312.2 312.3 321.7 CENO (g/g) Si 7.5 29-28 dias 9 244.5 A \mathfrak{Q} 262.9 268.6 273.5 6.3 GWD €1 욚. 8 CO 8,41 8.76 9.01 8,99 0.12 **PV 28** (kg) Tratamiento G W Sig. -0 -3 6.3 1-1

a,b Los valores en la misma columna con diferente superindice differen significativamente (P<0.05)

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario; IC: Índice de conversión

ES: Error estándar, Sig.:

Significación

Tabla 10: Concentración hepática de zinc (µg/g):

Tratamiento	Zina hanátina	Relación
	Zinc hepático	Zn hepático/dieta
T-0	47.63a	19.8ab
T-1	59.21a	25.5c
T-2	56.3a	22.3bc
T-3	298.5b	15.2a
E.S	2.6	0.47
Sig.	*	*

a,b Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

PRUEBAS COMPARATIVAS DE EFICACIA DE AMINOATO-CARBOXILATOS <u>Ejemplo 12: PRUEBA EN BROILERS:</u>

5

10

OBJETIVOS:

Comparar la efectividad de los productos aminoato (metioninato) de zinc con el formiato de zinc y con el producto obtenido de la combinación de ambos compuestos que denominaremos el lo sucesivo como complejo aminoatoformiato de zinc, sobre los parámetros productivos en pollos broiler.

MATERIAL Y MÉTODOS

15 Animales y alojamiento:

Se utilizaron 192 pollos broilers de 1 día de edad, de la estirpe Ross (sin diferenciación de sexos), alojados en 16 jaulas de 4m².

Tratamientos experimentales

Se utilizaron 4 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de zinc:

5

10

- T-0: Dieta base + 50 ppm de zinc en forma de sulfato de zinc
- T-1: Dieta base + 50 ppm de zinc en forma de formiato de zinc
- T-2: Dieta base + 50 ppm de zinc en forma de aminoato de zinc
- T-3: Dieta base + 50 ppm de zinc en forma de complejo aminoato-formiato de zinc

La dosis de zinc se calculó teniendo en cuenta el contenido en zinc de los ingredientes y las necesidades en zinc en el caso de los tratamientos T-0 a T-3. La composición de las dietas y su análisis se presenta en la Tablas 1 y 2

15

Controles

El control de parámetros productivos se realizó a los 21 y 42 días de edad, se tomó el peso vivo y el consumo de alimento por lote.

20

25

30

El día 42 del experimento se escogieron al azar 2 animales de cada lote y se alojaron en jaulas por pares respetando su origen en cuanto a lote y tratamiento de procedencia. Durante los siguientes 4 días se procedió a realizar un estudio de la biodisponibilidad del zinc. Tras 20 horas de ayuno se tomó el peso vivo por jaula y se administraron los piensos experimentales durante 2 días, registrando el consumo de alimento. Posteriormente se volvió a realizar un ayuno de 20 horas y se volvieron a pesar las aves por jaula. Se recogieron la totalidad de las heces por jaula durante los días que duró el balance. Tras pesar y homogeneizar la totalidad de las heces se tomó una muestra representativa de cada jaula para realizar el análisis de zinc. Se calculó el porcentaje de zinc excretado según el zinc ingerido.

PCT/ES2004/070049

Análisis estadístico:

Se realizó un análisis de varianza mediante el procedimiento GLM del programa estadístico SAS.

5

10

15

20

25

30

RESULTADOS

WO 2005/005365

Los resultados de los parámetros productivos se muestran en la Tabla 3. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control T-0. El consumo de alimento fue ligeramente menor en las aves alimentadas con formiato de zinc, lo cual produjo una mejora en el índice de conversión, aunque de forma no significativa. La administración de zinc en forma de formiato y aminoato de zinc (50ppm) produjeron el mismo efecto, el tratamieto T-3 mejoró significativamente los parámetros productivos respecto a los tratamientos T-0, T-1 y T-2.

Los resultados de la biodisponibilidad del zinc se presentan en la Tabla 5. La mayor biodisponibilidad se observó en los tratamientos con formiato, aminoato de zinc y el complejo aminoato-formiato, lo cual demuestra una mayor absorción de esta forma mineral a nivel intestinal.

CONCLUSIONES

La suplementación de dietas para broilers con zinc en forma de sales de aminoácido y ácido fórmico a las dosis establecidas por la legislación producen una mejora en los parámetros productivos. Esta mejora fue más significativa cuando el producto administrado se hizo en forma de complejo aminoácido-formiato de zinc, debido a un efecto sinérgico de ambos productos combinados. Por otro lado, dichas fuentes de zinc presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

Tabla 11: Composición de las dietas experimentales %:

Ingredientes	0-21d	21-42d
Trigo	38,00	48,00
Maíz	22,58	16,05
Soja, 47 %	28,70	26,56
Soja extrusionada	2,87	3,83
Manteca	2,78	2,54
DL-metionina	0,259	0,238
L-lisina HCI	0,177	0,104
Carbonato cálcico	1,269	0,697
Fosfato dicálcico	1,486	1,25
Sal	0,446	0,312
Minerales y vitaminas ¹	0,400	0,400
Cloruro de colina, 50 %	0,023	0,012
Proteína de patata	1,00	
Análisis		
Proteína bruta, %	21.02	20.7
Grasa bruta %	9.21	1.14
Fibra bruta %	4.85	1.02
Humedad %	8.61	0.90

Complemento vitamínico-mineral sin zinc.

Tabla 12: Análisis del contenido en zinc (ppm):

Tratamiento	0-21 d	21-42d
T-0	60,32	58,05
T-1	61,35	59,75
T-2	58,29	62,10
T-3	62,35	60,25

Table 13: Parámetros productivos:

		0-2	0-24 dias	<i>®</i>				21-42 dias	12 d	ias		Ò	0-42 días	
Tratamie nto	PV 21	CMD		CWD	<u>ပ</u>		PV 42	GMD		CMD	ಲ	GMD	CMD	<u></u>
	(g)	<u> </u>		(g/g)			(g)	(a)		(p/6)		(g)	(þ/b)	
T-0	705 a	33,6	Ø	47,3	1,40	W	2250 a	73,6	๙	156,3	2,12 a	53,5 a	101,7	1.90 a
<u></u>	740 b	35,2	۵	48,3	1,37	a D	2310 b	74,8	Q	152,5	2,03 b	55,0 b	100,4	1.82 b
7-2	750 b	35,7	ð	48,1	35	9	2340 b	75,7	٩	155,2	2,05 b	55.7 b	101,7	1.82 b
୮	790 c	37,6	Ç	50.5	1,34	ပ	2430 c	78,1	ပ	150,2	1,92 c	57,8 c	100,4	1.73 c
<u>න</u> න	*	4		S. S.	₹₹		*	₹٤		N.S.	*	*	N.S.	*

a,b,c Los valores en la misma columna con diferente superíndice differen significativamente (P<0.05) PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario; IC: Índice de conversión

Sig.: Significación

Tabla 14: Balance de zinc de los 43 a los 46 días de edad:

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Everención	Riodisponihilidad
Trafamiento	Consumo pienso		Excience	
	(a)	zine (mg)	zinc (mg)	%
	206	12,4a	8,34ª	33,0ª
£-2	222	13,38	7,20 ^b	45,8 ^b
2-2	210	12,69	7,35 ^b	42,6 ^b
<u>-</u>	206	12,4ª	6,01°	51,5°
Sig.	N.S.	N.S.	4:	*
7		1.K	different different	Sron

a,b,c Los valores en la misma columna con diferente superindice differen

significativamente (P<0.05)

Ejemplo 13: PRUEBA EN BROILERS:

OBJETIVOS:

WO 2005/005365

Comparar la efectividad de los productos aminoato de cobre con el formiato de cobre y con el producto obtenido de la combinación de ambos compuestos que denominaremos el lo sucesivo como complejo aminoato-formiato de cobre, sobre los parámetros productivos en pollos broiler.

10 MATERIAL Y MÉTODOS

Animales y alojamiento:

Se utilizaron 500 pollos broilers de 1 día de edad, de la estirpe Ross (sin diferenciación de sexos), alojados en 20 parques de 4m².

Tratamientos experimentales

- Se utilizaron 4 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de cobre:
 - T-0: Dieta base + 25 ppm de cobre en forma de sulfato de cobre
 - T-1: Dieta base + 25 ppm de cobre en forma de formiato de cobre
 - T-2: Dieta base + 25 ppm de cobre en forma de aminoato de cobre
- T-3: Dieta base + 25 ppm de cobre en forma de complejo aminoato-formiato de cobre

La dosis de cobre se calculó teniendo en cuenta el contenido en cobre de los ingredientes y las necesidades en cobre en el caso de los tratamientos T-0 a T-

30 3. La composición de las dietas y su análisis se presenta en la Tablas 1 y 2.

Controles

El control de parámetros productivos se realizó a los 21 y 42 días de edad, se tomó el peso vivo y el consumo de alimento por lote.

5

10

15

El día 42 del experimento se escogieron al azar 2 animales de cada lote y se alojaron en jaulas por pares respetando su origen en cuanto a lote y tratamiento de procedencia. Durante los siguientes 4 días se procedió a realizar un estudio de la biodisponibilidad del cobre. Tras 20 horas de ayuno se tomó el peso vivo por jaula y se administraron los piensos experimentales durante 2 días, registrando el consumo de alimento. Posteriormente se volvió a realizar un ayuno de 20 horas y se volvieron a pesar las aves por jaula. Se recogieron la totalidad de las heces por jaula durante los días que duró el balance. Tras pesar y homogeneizar la totalidad de las heces se tomó una muestra representativa de cada jaula para realizar el análisis de cobre. Se calculó el porcentaje de cobre excretado según el cobre ingerido.

Análisis estadístico:

20 Se realizó un análisis de varianza mediante el procedimiento GLM del programa estadístico SAS.

RESULTADOS

Los resultados de los parámetros productivos se muestran en la Tabla 3. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control T-0. El consumo de alimento fue ligeramente menor en las aves alimentadas con formiato de cobre, lo cual produjo una mejora en el índice de conversión, aunque de forma no significativa. La administración de cobre en forma de formiato y aminoato de cobre (25 ppm) produjeron el mismo efecto, el tratamieto T-3 mejoró significativamente los parámetros productivos respecto a los tratamientos T-0, T-1 y T-2.

WO 2005/005365

39

PCT/ES2004/070049

Los resultados de la biodisponibilidad del cobre se presentan en la Tabla 5. La mayor biodisponibilidad se observó en los tratamientos con formiato, aminoato de cobre y el complejo aminoato-formiato, lo cual demuestra una mayor absorción de esta forma mineral a nivel intestinal.

CONCLUSIONES

5

10

15

La suplementación de dietas para broilers con cobre en forma de sales de metionina y ácido fórmico a las dosis establecidas por la legislación producen una mejora en los parámetros productivos. Esta mejora fue más significativa cuando el producto administrado se hizo en forma de complejo aminoatoformiato de cobre, debido a un efecto sinérgico de ambos productos combinados. Por otro lado, dichas fuentes de cobre presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

Tabla 15: Composición de las dietas experimentales %:

Ingredientes	0-21d	21-42d
Trigo	38,00	48,00
Maíz	22,58	16,05
Soja, 47 %	28,70	26,56
Soja extrusionada	2,87	3,83
Manteca	2,78	2,54
DL-metionina	0,259	0,238
L-lisina HCI	0,177	0,104
Carbonato cálcico	1,269	0,697
Fosfato dicálcico	1,486	1,25
Sal	0,446	0,312
Minerales y vitaminas ¹	0,400	0,400
Cloruro de colina, 50 %	0,023	0,012
Proteína de patata	1,00	
Análisis		
Proteina bruta, %	21.02	20.7
Grasa bruta %	9.21	1.14
Fibra bruta %	4.85	1.02
Humedad %	8.61	0.90

¹ Complemento vitamínico-mineral sin cobre.

Tabla 16: Análisis del contenido en cobre (ppm):

Tratamiento	0-21 d	21-42d
T-0	31,5	32,8
T-1	33,5	32,5
T-2	32,7	33,0
T-3	33,8	35,5

Tabla 17: Parámetros productivos:

			0-21 dias	C. C.	<u> </u>		1			21-42 días	2 d	las			0-42 días		}
Tratamie nto	PV 21		GWD		CER	ಲ	1	PV 42 d		CMD		CMD	ల	GMD	CMD	2	
	(a)		(B)		(g/d)			(a)		(E)		(b/g)		(g)	(b/b)		1
T-0	695	Ø	31,6	Ø	45,3	1,43	ឈ	2200	ល	71,6	Ø	160,1	2,23 a	51,6 a	102,7	1.99	σ
	730 b	Ω	34,2	S	47,3	1,38	Ω	2350	Q	77,1	ပ	158,3	2,05 b	55,2 b	103,0	1.87	q
6.5	750 b	Ω	34,7	Q	47,4	1,36	Ω.	2300	۵	73,8	Ω	154,0	2,08 b	54,0 b	100.5	1.86	Ω
6.5	775	ပ	39,6	O	53.5	1,35	Ω	2450	ပ	79,7	ပ	152,5	1,92 c	57,6 c	103,0	1.78	ပ
<u>S</u>	*		ಚ		Si Si	ŧ		*	:	8		N.S.	*	*	N.S.	*	}

a,b,c Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05) PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario; IC: Índice de conversión

Sig.: Significación

Tabla 18: Balance de cobre de los 43 a los 46 días de edad:

Tratamiento	Consumo pienso	Ingestión	Excreción	Biodisponibilidad
	(B)	cobre (mg)	cobre (mg)	%
			•	
1. 0	206	67,98a	20,4ª	30,0ª
7-9	222	73,26ª	36,9 ^b	50,5 ^b
	210	69,3ª	29,5 ^b	42,6 ^b
6.3	206	68,0ª	37,7°	55,5°
S	NS	NS	*	*
			13:1	

a,b,c Los valores en la misma columna con diferente superíndice difieren

significativamente (P<0.05)

Ejemplo 14: PRUEBA DE EFICACIA EN LECHONES:

OBJETIVOS:

Comparar la efectividad de los productos aminoato de zinc, formiato de zinc y el producto obtenido de la combinación de ambos compuestos que denominaremos en lo sucesivo complejo de zinc, sobre los parámetros productivos en lechones recién destetados.

10 MATERIAL Y MÉTODOS

Animales y alojamiento:

Se utilizaron 48 lechones (Large White * Large White x Landrace), 50% machos y 50% hembras, destetados a los 21 días de edad y alojados en 8 corrales con 6 animales cada uno (3 machos y 3 hembras).

Tratamientos experimentales

- 20 Se utilizaron 5 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de zinc:
 - T-0: Dieta base + 130 ppm de zinc en forma de óxido de zinc
 - T-1: Dieta base + 130 ppm de zinc en forma de formiato de zinc
- 25 T-2: Dieta base + 130 ppm de zinc en forma de aminoato de zinc
 - T-3: Dieta base + 130 ppm de zinc en forma de complejo aminoato-formiato de zinc
- La dosis de zinc se calculó teniendo en cuenta el contenido en zinc de los ingredientes y la dosis máxima permitida (150 ppm) en todos los tratamientos.

La composición de las dietas y su análisis se presenta en la Tablas 1 y 2.

WO 2005/005365

44

El periodo experimental fue de 29 días.

Controles

5

El control de parámetros productivos se realizó al final del experimento, tomando el peso vivo, el crecimiento diario y el consumo de pienso.

Al final del experimento se seleccionaron al azar un macho y una hembra de cada lote para tomar una muestra de tejido hepático y analizar el contenido en zinc.

Análisis estadístico:

15 Se realizó un análisis de varianza mediante el procedimiento GLM del programa estadístico SAS.

RESULTADOS

Los resultados de los parámetros productivos se muestran en la Tabla 3. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control. El consumo de alimento fue ligeramente menor en los lechones alimentados con las fuentes orgánicas de zinc, lo cual produjo una mejora en el índice de conversión.

25

30

CONCLUSIONES

La suplementación de dietas de lechones con zinc en forma de sales de fórmico y aminoácido a las dosis establecidas por la legislación producen una mejora en los parámetros productivos, que puede considerarse efecto promotor del crecimiento. Estas mejoras son mayores cuando el zinc se administró en forma de complejo aminoato-formiato de zinc. Por otro lado,

dichas fuentes de zinc presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

Tabla 19: Composición de las dietas experimentales:

Ingredientes	
Maíz	30.0
Trigo	5.0
Cebada	15.0
Soja (full fat)	14.0
Harina de pescado	9.9
Harina de soja (47%)	2.0
Aceite de soja	1.9
Suero delactosado	3.1
Suero dulce	17.0
L-lisina (78%)	0.2
L-Treonina (99%)	0.14
Metionina-OH	0.18
Carbonato cálcico	0.34
Fosfato dicálcico	0.85
Complejo vitamínico-mineral ¹	0.3
Análisis	
Proteina bruta, %	21.02
Grasa bruta %	7.20
Fibra bruta %	2.52
Humedad %	8.40
	

Complemento vitamínico-mineral sin zinc.

Tabla 20: Análisis del contenido en zinc en las dietas (ppm):

Tratamiento	Zinc
T-0	153,4
T-1	133,5
T-2	155,4
T-3	145,3

5

Tabla 21: Parámetros productivos de los 21 a los 50 días:

			21-50) días	5		
Tratamiento	GPV 21- 50 d		GMD		CMD	IC	
	(kg)	······································	(g)		(g/d)	· · · · · · · · · · · · · · · · · · ·	
T-0	11,40	а	393,1	а	795.3	2,02	а
T-1	12,50	þ	431,0	b	752.3	1,75	b
T-2	12,75	b	439,6	b	741.3	1,68	b
T-3	13,70	С	472,4	С	763.2	1,62	С
Sig.	స		☆		N.S	÷	

a,b,c Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario;

IC: Índice de conversión; GPV Ganancia de peso vivo

ES: Error estándar; Sig.: Significación

Ejemplo 15: PRUEBA DE EFICACIA EN LECHONES:

OBJETIVOS:

Comparar la efectividad de los productos aminoato de cobre, formiato de cobre y el producto obtenido de la combinación de ambos compuestos que denominaremos en lo sucesivo complejo de cobre, sobre los parámetros productivos en lechones recién destetados.

10 MATERIAL Y MÉTODOS

Animales y alojamiento:

Se utilizaron 48 lechones (Large White * Large White x Landrace), 50% machos y 50% hembras, destetados a los 21 días de edad y alojados en 8 corrales con 6 animales cada uno (3 machos y 3 hembras).

Tratamientos experimentales

- 20 Se utilizaron 5 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de cobre:
 - T-0: Dieta base + 125 ppm de cobre en forma de sulfato de cobre
 - T-1: Dieta base + 125 ppm de cobre en forma de formiato de cobre
- 25 T-2: Dieta base + 125 ppm de cobre en forma de aminoato de cobre
 - T-3: Dieta base + 125 ppm de cobre en forma de complejo aminoato-formiato de cobre.
- La dosis de cobre se calculó teniendo en cuenta el contenido en cobre de los ingredientes y la dosis máxima permitida (175 ppm) en todos los tratamientos.

La composición de las dietas y su análisis se presenta en la Tablas 1 y 2.

48

El periodo experimental fue de 21 días.

Controles

5

El control de parámetros productivos se realizó al final del experimento, tomando el peso vivo, el crecimiento diario y el consumo de pienso.

Al final del experimento se seleccionaron al azar un macho y una hembra de cada lote para tomar una muestra de tejido hepático y analizar el contenido en cobre.

Análisis estadístico:

15 Se realizó un análisis de varianza mediante el procedimiento GLM del programa estadístico SAS.

RESULTADOS

Los resultados de los parámetros productivos se muestran en la Tabla 3. Los tratamientos T-1 a T-3, produjeron en todos los periodos mejores parámetros productivos respecto al control. El consumo de alimento fue ligeramente menor en los lechones alimentados con las fuentes orgánicas de cobre, lo cual produjo una mejora en el índice de conversión.

25

30

CONCLUSIONES

La suplementación de dietas de lechones con cobre en forma de sales de fórmico y aminoácido a las dosis establecidas por la legislación producen una mejora en los parámetros productivos, que puede considerarse efecto promotor del crecimiento. Estas mejoras son mayores cuando el cobre se administró en forma de complejo aminoato-formiato de cobre. Por otro lado,

1

dichas fuentes de cobre presentan mayor biodisponibilidad, por lo que se ve reducida la eliminación de residuos al medio ambiente.

Tabla 22: Composición de las dietas experimentales:

Ingredientes	
Nacin	
Maíz	30.0
Trigo	5.0
Cebada	15.0
Soja (full fat)	14.0
Harina de pescado	9.9
Harina de soja (47%)	2.0
Aceite de soja	1.9
Suero delactosado	3.1
Suero dulce	17.0
L-lisina (78%)	0.2
L-Treonina (99%)	0.14
Metionina-OH	0.18
Carbonato cálcico	0.34
Fosfato dicálcico	0.85
Complejo vitamínico-mineral ¹	0.3
Análisis	
Proteina bruta, %	21.02
Grasa bruta %	7.20
Fibra bruta %	2.52
Humedad %	8.40

¹ Complemento vitamínico-mineral sin cobre.

Tabla 23: Análisis del contenido en cobre en las dietas (ppm):

Tratamiento	Cobre
T-0	140,5
T-1	143,5
T-2	138,5
T-3	140,0

Tabla 24: Parámetros productivos de los 21 a los 42 días:

			21-42	2 días	3		
Tratamiento	GPV 21- 42 d		GMD	· · · · · · · · · · · · · · · · · · ·	CMD	IC	
	(kg)		(g)		(g/d)	·	
T-0	6,5	a	309,5	а	650,5	2,10	а
T -1	7,5	b	360,5	b	665,0	1,85	b
T-2	7,25	b	345,0	b	660,5	1,91	b
T-3	7,75	C	370,0	C	650,5	1,75	С
Sig.	\$\$		*		N.S	ጵ	

a,b,c Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario;

IC: Índice de conversión; GPV Ganancia de peso vivo

ES: Error estándar; Sig.: Significación

5 EJEMPLO 16 :PRUEBA EN BROILERS:

OBJETIVOS:

Comparar la efectividad de los productos carboxilato de zinc (formiato de zinc)

y el producto obtenido de la combinación de la sal de zinc del hidroxianálogo
de metionina y el carboxilato de zinc.

MATERIAL Y MÉTODOS

Animales y alojamiento:

5 Se utilizaron 160 pollos broilers de 1 día de edad, de la estirpe Ross (sin diferenciación de sexos), alojados en jaulas en grupos de 10 animales.

Tratamientos experimentales

- 10 Se utilizaron 2 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de zinc:
 - T-1: Dieta base + 150 ppm de zinc en forma de formiato de zinc
- T-2: Dieta base + 150 ppm de zinc en forma de complejo metionina hidroxianáloga-formiato de zinc

Controles

El control de parámetros productivos se realizó a los 21 días de edad, se tomó el peso vivo y el consumo de alimento por lote.

Análisis estadístico:

Se realizó un análisis de varianza mediante el procedimiento GLM del programa estadístico SAS.

RESULTADOS

Los resultados de los parámetros productivos se muestran en la Tabla 3. El tratamiento T2, produjeron en este periodo mejores parámetros productivos respecto al control T-1. El consumo de alimento fue ligeramente menor en las aves alimentadas con complejo formiato-metionato hidroxianálogo de zinc, lo

cual produjo una mejora en el índice de conversión.

CONCLUSIONES

La suplementación de dietas para broilers con zinc en forma de complejos formiato - metionina hidroxianáloga a las dosis establecidas por la legislación producen una mejora en los parámetros productivos.

Tabla 25: Composición de las dietas experimentales %:

Ingredientes	0-21d
Trigo	38,00
Maíz	22,58
Soja, 47 %	28,70
Soja extrusionada	2,87
Manteca	2,78
DL-metionina	0,259
L-lisina HCI	0,177
Carbonato cálcico	1,269
Fosfato dicálcico	1,486
Sal	0,446
Minerales y vitaminas¹	0,400
Cloruro de colina, 50 %	0,023
Proteina de patata	1,00
Análisis	
Proteina bruta, %	21.02
Grasa bruta %	9.21
Fibra bruta %	4.85
Humedad %	8.61

¹ Complemento vitamínico-mineral sin zinc.

Tabla 26: Análisis del contenido en zinc (ppm):

Tratamiento	0-21 d
T-1	160
T-2	165

Tabla 27: Parámetros productivos:

			0-2	1 día	IS		
Tratamiento	PV 21 d		GMD		CMD	IC	
	(g)	<u> </u>	(g)		(g/d)		
T-1	790	b	37,6	ь	47,5	1,26	b
T-2	820	a	39,0	a	47,0	1,20	2
Sig.	Ť		*		N.S	*	

a,b, Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario; IC: Índice de conversión

Sig.: Significación

5

EJEMPLO 17 : PRUEBA DE EFICACIA EN LECHONES:

OBJETIVOS:

Comparar la efectividad de los productos carboxilato de zinc (formiato de zinc) y el producto obtenido de la combinación de la sal de zinc del hidroxianálogo de metionina y el carboxilato de zinc en lechones recién destetados.

MATERIAL Y MÉTODOS

Animales y alojamiento:

Se utilizaron 24 lechones (Large White * Large White x Landrace), 50% machos y 50% hembras, destetados a los 21 días de edad y alojados en 4 corrales con 6 animales cada uno (3 machos y 3 hembras).

Tratamientos experimentales

10

Se utilizaron 2 tratamientos experimentales constituidos por una misma dieta basal a la cual se le añadieron diferentes fuentes de zinc:

T-1: Dieta base + 150 ppm de zinc en forma de formiato de zinc

15 T-2: Dieta base + 150 ppm de zinc en forma de complejo metionina hidroxianáloga-formiato de zinc

La dosis de zinc se calculó teniendo en cuenta el contenido en zinc de los ingredientes y la dosis máxima permitida (150 ppm) en todos los tratamientos.

20

La composición de las dietas y su análisis se presenta en la Tablas 1 y 2.

El periodo experimental fue de 20 días.

25 Controles

El control de parámetros productivos se realizó al final del experimento, tomando el peso vivo, el crecimiento diario y el consumo de pienso.

30 Análisis estadístico:

Se realizó un análisis de varianza mediante el procedimiento GLM del

WO 2005/005365

55

PCT/ES2004/070049

programa estadístico SAS.

RESULTADOS

Los resultados de los parámetros productivos se muestran en la Tabla 3. El tratamiento T-2 produjo mejores resultados en cuanto a índice de conversión y crecimiento que el tratamiento T-1, estos datos corroboran las experiencias anteriores realizadas en pollos de engorde.

10 CONCLUSIONES

15

La suplementación de dietas de lechones con zinc en forma de sales de complejos metionina – hidroxianáloga formiato de zinc a las dosis establecidas por la legislación producen una mejora en los parámetros productivos, que puede considerarse efecto promotor del crecimiento.

Tabla 28: Composición de las dietas experimentales:

Ingredientes	
Maíz	28.0
Cebada	17.0
Soja (full fat)	15.0
Harina de pescado	10.0
Harina de soja (47%)	2.0
Aceite de soja	2.0
Suero delactosado	2.0
Suero dulce	19.0
L-lisina (78%)	0.2
L-Treonina (99%)	0.14
Metionina-OH	0.15
Carbonato cálcico	0.35
Fosfato dicálcico	0.85
Complejo vitamínico-mineral ¹	0.3
Análisis	
Proteína bruta, %	21.0
Grasa bruta %	7.5
Fibra bruta %	3.0
Humedad %	7.5

¹ Complemento vitamínico-mineral sin zinc.

Tabla 29: Análisis del contenido en zinc en las dietas (ppm):

Tratamiento	Zinc
T-1	165,4
T-2	168,5

5

Tabla 30: Parámetros productivos de los 21 a los 41 días:

			21-41	días			
Tratamiento	GPV 21-41 d		GMD		CMD	IC	
	(kg)		(g)		(g/d)		
T-1	8,00	b	400,0	b	655,0	1,63	b
T-2	9,00	b	450,0	a	660,0	1,47	а
Sig.	N.S.		*		N.S	*	

a,b,c Los valores en la misma columna con diferente superíndice difieren significativamente (P<0.05)

PV: Peso vivo; GMD: Ganancia media diaria; CMD: Consumo medio diario;

IC: Índice de conversión; GPV Ganancia de peso vivo

ES: Error estándar; Sig.: Significación

REIVINDICACIONES

- 1.- Proceso para preparar carboxilatos metálicos secos y en forma de polvo particulado con la fórmula M(RCOO)₂, donde M es el catión metálico divalente zinc (Zn²⁺) o cobre (Cu²⁺⁺), R puede ser H o un grupo CH₃(CH₂)₂-, caracterizado porque comprende las siguientes fases:
 - i) Mezclar un ácido carboxílico (RCOOH) en proporción estequiométrica con un compuesto básico seco del metal divalente, en ausencia de disolventes, para dar lugar a una reacción exotérmica que genera agua como subproducto.
 - Mantener dicha reacción exotérmica en agitación durante el tiempo suficiente para la eliminación del agua, dando lugar a un carboxilato de Zn(II) o Cu(II).
- 2.- Proceso según la reivindicación 1 caracterizado porque se evita el paso extra de recuperar el carboxilato de Zn(II) o Cu(II) formado, mediante tratamientos posteriores a la reacción como son entre otros la concentración, la cristalización, la separación por filtración, decantación o centrifugación y el secado por liofilización.
- 3.- Proceso según la reivindicación 1 caracterizado porque utiliza como compuesto metálico básico el óxido de zinc.
- 4.- Proceso según la reivindicación 1 caracterizado porque utiliza como compuesto metálico básico el hidróxido de cobre.
- 5.- Proceso según la reivindicación 1 caracterizado porque utiliza como ácido carboxílico el ácido fórmico.
- 6.- Proceso según la reivindicación 1 caracterizado porque utiliza como ácido carboxílico el ácido butírico.
- 7.- Proceso según las reivindicaciones 1 a 6 caracterizado porque se lleva a cabo con agitación rápida del ácido carboxílico y el compuesto metálico básico.

59

WO 2005/005365 PCT/ES2004/070049

- 8.- Proceso según las reivindicaciones 1 a 7 caracterizado porque mantiene la agitación del producto reaccionado en el propio reactor-mezclador, en caliente, y los vapores, son absorbidos por el sistema de vacío y limpieza, con el objetivo de eliminar el agua formada.
- 9.- Proceso según las reivindicaciones 1 a 8 caracterizado porque la relación molar de ácido carboxílico y metálica es aproximadamente 2:1, pudiendo trabajar con un exceso del 3-6% en peso, tanto del compuesto metálico como del ácido carboxílico.
- 10.- Proceso según las reivindicaciones 1 a 9 caracterizado porque los compuestos básicos metálicos empleados se utilizan en forma de partículas con un tamaño inferior a 6,5 mm.
- 11.- Proceso según las reivindicaciones 1 a 10 caracterizado porque se obtienen carboxilatos metálicos con rendimientos superiores al 80%.
- 12.- Proceso según las reivindicaciones 1 a 11 caracterizado porque la reacción exotérmica se mantiene en agitación durante 1-5 minutos en la etapa ii).
- 13.- Proceso según las reivindicaciones 1 a 12 caracterizado porque la mezcla en la etapa i) se lleva a cabo en un rango de 1500-3000 rpm y en la etapa ii) a 200-400 rpm, y suplementando la agitación en esta etapa ii) con turbinas intensificadoras desgrumadoras que trabajan en rangos del orden de 1500-3000 rpm.
- 14.- Proceso según las reivindicaciones 1 a 13 caracterizado porque la etapa i) tiene una duración entre 2-30 segundos.
- 15.- Proceso según las reivindicaciones 1 a 14 caracterizado porque la etapa i) de mezcla transcurre en un reactor diferente al de la etapa ii).
- 16.- Proceso según las reivindicaciones 1 a 15 caracterizado porque en la etapa ii) además de agua se eliminan los ácidos orgánicos sin reaccionar.

- 17.- Butirato de Zinc obtenible según el proceso de las reivindicaciones 1 a 16 caracterizado por consistir en un polvo particulado con una pureza superior al 90%.
- 18.- Butirato de Cobre obtenible según el proceso de las reivindicaciones 1 a 16 caracterizado por consistir en un polvo particulado con una pureza superior al 90%.
- 19.- Formiato de Zinc obtenible según el proceso de las reivindicaciones 1 a 16 caracterizado por consistir en un polvo particulado con una pureza superior al 85%.
- 20.- Formiato de Cobre obtenible según el proceso de las reivindicaciones 1 a 16 caracterizado por consistir en un polvo particulado con una pureza superior al 85%.
- 21.- Uso del Butirato de Zinc de la reivindicación 17 como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 22.- Uso del Butirato de Cobre de la reivindicación 18 como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 23.- Uso del Formiato de Zinc de la reivindicación 19 como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 24.- Uso del Formiato de Cobre de la reivindicación 20 como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 25.- Proceso según la reivindicación 16, caracterizado porque los ácidos orgánicos sin reaccionar son recuperados por un sistema de condensación y combinación con sales sódicas solubles o cálcicas precipitables.
- 26.- Proceso según la reivindicación 1, en el que se vierte sobre el carboxilato formado un aminoato previamente preparado y se procede a la eliminación de agua, dando lugar a un carboxilato-aminoato de metal seco.

WO 2005/005365

- 27.- Proceso según la reivindicación 26, en el que el carboxilato es formiato de zinc (II) o formiato de cobre (II).
- 28.- Proceso según la reivindicación 26, en el que el aminoato es glicinato de zinc (II), glicinato de cobre (II), metioninato de zinc (II) o metioninato de cobre (II).
- 29.- Proceso según las reivindicaciones 26 a 28, en el que el carboxilato es formiato de zinc (II) y el aminoato es glicinato de zinc (II).
- 30.- Proceso según las reivindicaciones 26 a 28, en el que el carboxilato es formiato de zinc (II) y el aminoato es metionato de zinc (II).
- 31.- Proceso según las reivindicaciones 26 a 28, en el que el carboxilato es formiato de cobre (II) y el aminoato es glicinato de cobre (II).
- 32.- Proceso según las reivindicaciones 26 a 28, en el que el carboxilato es formiato de cobre (II) y el aminoato es metioninato de cobre (II).
- 33.- Proceso según una cualquiera de las reivindicaciones 26 a 32, en el que la relación de los porcentajes en peso de carboxilato y aminoato comprende un intervalo que va desde 30/70 hasta 70/30.
- 34.- Proceso según cualquiera de las reivindicaciones 26 a 33, en el que la eliminación del agua se consigue añadiendo un absorbente y calentando entre 90-98°C.
- 35.- Proceso según la reivindicación 34, en el que el producto seco obtenido se somete a un proceso adicional de molienda.
- 36.- Proceso según cualquiera de las reivindicaciones 26 a 33, en el que la eliminación del agua se consigue sometiendo la mezcla de carboxilato y aminoato a condiciones de vacío y agitando con turbinas intensificadoras desgrumadoras a una velocidad de 1500-3000 rpm.

- 37.- Proceso según la reivindicación 36, en el que la temperatura se mantiene entre 80°C y 130°C.
- 38.- Uso del formiato-glicinato de zinc (II) obtenido según la reivindicación 29 como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 39.- Uso del formiato-metioninato de zinc (II) obtenido según la reivindicación 30, como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 40.- Uso del formiato-glicinato de cobre (II) obtenido según la reivindicación 31, como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 41.- Uso del formiato-metioninato de cobre (II) obtenido según la reivindicación 32, como suplemento nutritivo en alimentación animal para promover el crecimiento.
- 42.- Proceso según la reivindicación 1, en el que previamente a la mezcla con la base de metal, se vierte sobre el ácido carboxílico un hidroxianálogo de metionina, dando lugar a un carboxilato-metioninato hidroxianálogo de metal divalente.
- 43.- Proceso según la reivindicación 42, en el que el ácido carboxílico, el hidroxianálogo de metionina y la base de metal se mezclan en una relación molar 2:2:2.
- 44.- Proceso según las reivindicaciones 42 y 43, en el que la mezcla del ácido carboxílico y el hidroxianálogo de metionina se produce en un primer reactor diferente al de la adición del compuesto básico de metal.
- 45.- Proceso según la reivindicación 44, en el que el segundo reactor contiene ya el compuesto básico de metal cuando se adiciona la mezcla de ácido carboxílico e hidroxianálogo de metionina.

WO 2005/005365 PCT/ES2004/070049

63

- 46.- Proceso según la reivindicación 45, en el que el compuesto básico de metal, el ácido carboxílico y el hidroxianálogo de metionina se mezclan a una velocidad de 200-600 rpm.
- 47.- Proceso según las reivindicaciones 42 a 46, en el que se favorece la eliminación del agua calentando la mezcla entre 80°C-130°C.
- 48.- Proceso según las reivindicaciones 42 a 46, en el que la eliminación de agua de la mezcla se consigue sometiendo la mezcla de compuesto básico de metal, ácido carboxílico e hidroxianálogo de metiniona a condiciones de vacío y agitando con turbinas intensificadoras desgrumadoras a una velocidad de 1500-3000 rpm.
- 49.- Proceso según las reivindicaciones 42 a 48, en el que el carboxilato metálico es formiato de zinc (II) o formiato de cobre (II).
- 50.- Proceso según las reivindicaciones 42 a 48, en el que la base de metal es óxido de zinc (II) o hidróxido de cobre (II).
- 51.- Proceso según las reivindicaciones 42 a 50, en el que el carboxilato de metal es formiato de zinc (II) y la base de metal es óxido de zinc (II).
- 52.- Uso del formiato-metioninato hidroxianálogo de zinc obtenido según la reivindicación 51 como suplemento nutritivo en alimentación animal para promover el crecimiento.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2004/070049

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7C07C 51/41, A23K 1/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC ⁷C07C, A23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

OEPMPAT, EPODOC, WPI, PAJ, CA

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	ES 2139945 T (KEMIN INDUSTRIES, INC.) 16.02.2000, pages 3-5.	1-24		
X	US 5591878 A (CHRISTOPHER E. NELSON; DOUGLAS H. CA-TRON) 07.01.1997, column 2, line 23-column 5, line 49.	1-12, 16-25		
Α	US 6197815 B (HSINHUNG JOHN HSU) 06.03.2001, column 3, line 59-column 4, line 55.	1-52		
Α	ES 2150670 T (ZINPRO CORPORATION) 01.12.2000, example	1-52		
A	CELINA TORRE; GERARDO CAJA: Utilización de aditivos en rumiantes: Vitaminas y aminoácidos protegidos. XIV Curso de Especialización Avances en Nutrición y Alimentación Animal [en línea], 27.04.2003 [recuperado el 20.09.2004]. Recuperado de Internet: <url:http: 98="" capitulos="" capiv.pdf="" fedna="" nirs="" servicios="" www.uco.es="">.</url:http:>	1-52		

X	Further documents are listed in the continuation of Box C.	X See patent family annex.		
*	Special categories of cited documents:	"T" later document published after the international filing date or priority		
"A"	document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"E"	earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	considered novel or cannot be considered to involve an inventive step when the document is taken alone		
 "O"	special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be		
	document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive step when the document is combined with one or more other such documents, such combination		
"p"	document published prior to the international filing date but later than	being obvious to a person skilled in the art		
	the priority date claimed	"&" document member of the same patent family		
Date	of the actual completion of the international search	Date of mailing of the international search report		
	27 September 2004 (27.09.04)	11 november 2004 (11.11.04)		
Name and mailing address of the ISA/		Authorized officer		
	O.E.P.M.			
Facsimile No.		Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2004/070049 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. FRIEDHELM BRINKLAUS; JIM MANN; CRIS ZORICH; JOHN A 1-52 A.GREAVES: Bioavailabity of zinc propionate in dogs. The Journal of Nutrition Vol. 128, Nº 12, diciembre 1998, páginas 2596S-2597S. P,A JOSÉ ARCE MENOCAL y col: Utilización de metionina-zinc y 1-52 metionina-manganeso en dietas de pollo de engorda: parámetros productivos e incidencia del síndrome ascítico. Téc Pecu Méx 2004; 42(1), 113-119, [en línea], 10.02.2004 [recuperado el 20.09. 2004]. Recuperado de Internet: <URL:http://www.tecnicapecuaria. org/trabajos/200402035279

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/ ES 2004/070049

Patent document ited in search report	Publication date	Patent familiy member(s)	Publication date
ES 2139945 T	16.02.2000	CA 2201300 AC	11.04.1996
		WO 9610553 A	11.04.1996
		AU 3760695 A	26.04.1996
		EP 0783477 AB	16.07.1997
		US 5707679 A	13.01.1998
		US 5795615 A	18.08.1998
		AU 708478 B	05.08.1999
		AT 186904 T	15.12.1999
		DE 69513533 D	30.12.1999
		DK 783477 T	10.04.2000
		DE 69513533 T	31.05.2000
		GR 3032654 T	30.06.2000
US 5591878 A	07.01.1997	CA 2232393 AC	27.03.1997
		WO 9711082 A	27.03.1997
		AU 7359896 A	09.04.1997
		EP 0902787 AB	24.03.1999
		AU 707201 B	08.07.1999
		BR 9610651 A	21.12.1999
		AT 217876 T	15.06.2002
		DE 69621354 D	27.06.2002
		DE 69621354 T	16.01.2003
US 6197815 B	06.03.2001	JP 11292761 A	26.10.1999
ES 2150670 T	01.12.2000	CA 2221153 AC	21.11.1996
		WO 9636598 A	21.11.1996
		AU 5796696 A	29.11.1996
		US 5583243 A	10.12.1996
		EP 0840723 AB	13.05.1998
		AU 694661 B	23.07.1998
		JP 11501658 T	09.02.1999
		JP 3087079 B	11.09.2000
		AT 195512 T	15.09.2000
		DE 69609838 D	21.09.2000
		DK 840723 T	20.11.2000
		GR 3034670 T	31.01.2001
		DE 69609838 T	08.02.2001
		PT 840723 T	28.02.2001

INFORME DE BUSQUEDA INTERNACIONAL

Solicitud internacional no PCT/ ES 2004/070049

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

CIP⁷ C07C 51/41, A23K 1/16

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) CIP⁷ C07C, A23K

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

OEPMPAT, EPODOC, WPI, PAJ, CA

C. DOCUMENTOS CONSIDERADOS RELEVANTES

Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones nº
ES 2139945 T (KEMIN INDUSTRIES, INC.) 16.02.2000, páginas 3-5.	1-24
US 5591878 A (CHRISTOPHER E. NELSON; DOUGLAS H. CATRON) 07.01.1997, columna 2, línea 23-columna 5, línea 49.	1-12, 16-25
US 6197815 B (HSINHUNG JOHN HSU) 06.03.2001, columna 3, línea 59-columna 4, línea 55.	1-52
ES 2150670 T (ZINPRO CORPORATION) 01.12.2000, ejemplos.	1-52
CELINA TORRE; GERARDO CAJA: Utilización de aditivos en rumiantes: Vitaminas y aminoácidos protegidos. XIV Curso de Especialización Avances en Nutrición y Alimentación Animal [en línea], 27.04.2003 [recuperado el 20.09.2004]. Recuperado de Internet: <url:http: 98="" capitulos="" capiv.pdf="" fedna="" nirs="" servicios="" www.uco.es="">.</url:http:>	1-52
	ES 2139945 T (KEMIN INDUSTRIES, INC.) 16.02.2000, páginas 3-5. US 5591878 A (CHRISTOPHER E. NELSON; DOUGLAS H. CATRON) 07.01.1997, columna 2, línea 23-columna 5, línea 49. US 6197815 B (HSINHUNG JOHN HSU) 06.03.2001, columna 3, línea 59-columna 4, línea 55. ES 2150670 T (ZINPRO CORPORATION) 01.12.2000, ejemplos. CELINA TORRE; GERARDO CAJA: Utilización de aditivos en rumiantes: Vitaminas y aminoácidos protegidos. XIV Curso de Especialización Avances en Nutrición y Alimentación Animal [en línea], 27.04.2003 [recuperado el 20.09.2004]. Recuperado de Internet: <url:http: <="" capitulos="" fedna="" nirs="" servicios="" td="" www.uco.es=""></url:http:>

En la continuación del recuadro C se relacionan otros documentos	Los documentos de familias de patentes se indican en el anexo
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante. "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior. "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada). "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio. "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada. 	documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención. "X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado. "Y" documento particularmente relevante; la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
Fecha en que se ha concluido efectivamente la búsqueda internacional.	"&" documento que forma parte de la misma familia de patentes.
27 Septiembre 2004 (27.09.2004)	Fecha de expedición del informe de búsqueda internacional
Nombre y dirección postal de la Administración encargada de la	Funcionario autorizado
búsqueda internacional O.E.P.M.	M ^a J. de Concepción Sánchez
C/Panamá 1, 28071 Madrid, España. Nº de fax 34 91 3495304	N° de teléfono + 34 91 349 55 42
Formulario PCT/ISA/210 (segunda hoja) (Enero 2004)	

INFORME DE BUSQUEDA INTERNACIONAL

Solicitud internacional no

PCT/ES 2004/070049

(Continuación).	DOCUMENTOS CONSIDERADOS RELEVANTES		
Categoría*	Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones nº	
A	FRIEDHELM BRINKLAUS; JIM MANN; CRIS ZORICH; JOHN A.GREAVES: Bioavailabity of zinc propionate in dogs. The Journal of Nutrition Vol. 128, N° 12, diciembre 1998, páginas 2596S-2597S.	1-52	
P,A	JOSÉ ARCE MENOCAL y col: Utilización de metionina-zinc y metionina-manganeso en dietas de pollo de engorda: parámetros productivos e incidencia del síndrome ascítico. Téc Pecu Méx 2004; 42(1), 113-119, [en línea], 10.02.2004 [recuperado el 20.09. 2004]. Recuperado de Internet: <url:http: 200402035279<="" td="" trabajos="" www.tecnicapecuaria.org=""><td>1-52</td></url:http:>	1-52	

INFORME DE BUSQUEDA INTERNACIONAL

Información relativa a miembros de familias de patentes

Solienud internacional nº

PCT/ ES 2004/070049

Documento de patente citado en el informe de búsqueda	Fecha de publicación	Miembro(s) de la familia de patentes	Fecha de publicación
ES 2139945 T	16.02.2000	CA 2201300 AC WO 9610553 A AU 3760695 A EP 0783477 AB US 5707679 A US 5795615 A AU 708478 B AT 186904 T DE 69513533 D DK 783477 T DE 69513533 T GR 3032654 T	11.04.1996 11.04.1996 26.04.1996 16.07.1997 13.01.1998 18.08.1998 05.08.1999 15.12.1999 30.12.1999 10.04.2000 31.05.2000 30.06.2000
US 5591878 A	07.01.1997	CA 2232393 AC WO 9711082 A AU 7359896 A EP 0902787 AB AU 707201 B BR 9610651 A AT 217876 T DE 69621354 D DE 69621354 T	27.03.1997 27.03.1997 09.04.1997 24.03.1999 08.07.1999 21.12.1999 15.06.2002 27.06.2002 16.01.2003
US 6197815 B	06.03.2001	JP 11292761 A	26.10.1999
ES 2150670 T	01.12.2000	CA 2221153 AC WO 9636598 A AU 5796696 A US 5583243 A EP 0840723 AB AU 694661 B JP 11501658 T JP 3087079 B AT 195512 T DE 69609838 D DK 840723 T GR 3034670 T DE 69609838 T PT 840723 T	21.11.1996 21.11.1996 29.11.1996 10.12.1996 13.05.1998 23.07.1998 09.02.1999 11.09.2000 15.09.2000 21.09.2000 20.11.2000 31.01.2001 08.02.2001 28.02.2001