# 鐵達尼號生存預測 (Kaggle 競賽)



10636009 陳仙姁

10636007 謝旻儒

10636015 徐亦萱

# 目錄

| _        | ` | 摘安                   | 1 |
|----------|---|----------------------|---|
| _        | ` | 介紹                   | 1 |
| $\equiv$ | ` | 資料集介紹(含資料特徵)及資料集來源   | 1 |
| 匹        | ` | 資料預處理                | 2 |
| 五        | ` | 機器學習或深度學習方法 (使用何種方法) | 4 |
| 六        | ` | 研究結果及討論 (含模型評估與改善)   | 5 |
| 七        | ` | 結論                   | 8 |
| 八        | ` | 參考文獻                 | 8 |

## 一、摘要

鐵達尼號生存預測是個很有趣的二元分類問題,必須依據乘客僅限的資訊(包括乘客的性別、姓名、出發港口、住艙等級、房間號碼、年齡、船上兄弟姊妹及配偶的數量、船上父母及小孩的數量、票價、票號這些特徵,使用訓練資料集去訓練出預測模型,分析什麼類型的人更可能在鐵達尼號沈船的意外中生存下來。

我們使用了三個機器學習的演算法來預測乘客的死活,分別是 SVM、KNN 及 Decision-Tree,再結合整體學習的投票法,來讓預測結果更加準確。

## 二、介紹

為了避免再度發生鐵達尼號沈船這樣的悲劇,我們想要提升乘客自身的存活率,所以使用機器學習的演算法來進行分析,找出具有哪些特徵的乘客較容易生存,建議沒有具備此特徵的人,務必要再三考慮是否要搭乘郵輪,免得丟了寶貴性命。

## 三、資料集介紹(含資料特徵)及資料集來源

#### ● 資料集介紹

| 欄位名稱中英對照    |        |              |                           |
|-------------|--------|--------------|---------------------------|
| Variable    | 中文     | Definition   | Key                       |
| PassengerId | 乘客編號   |              |                           |
| survival    | 存活     | Survival     | 0 = No, 1 = Yes           |
| pclass      | 社會經濟地位 | Ticket class | 1 = 1st, 2 = 2nd, 3 = 3rd |
| sex         | 性別     | Sex          |                           |
| Age         | 年齡     | Age in years |                           |

|          |              | 欄位名稱中英對照                                      | 名稱中英對照                                               |  |  |
|----------|--------------|-----------------------------------------------|------------------------------------------------------|--|--|
| sibsp    | 兄弟姊妹+老 婆丈夫數量 | # of siblings / spouses<br>aboard the Titanic |                                                      |  |  |
| parch    | 父母小孩的數<br>量  | # of parents / children<br>aboard the Titanic |                                                      |  |  |
| ticket   | 票的號碼         | Ticket number                                 |                                                      |  |  |
| fare     | 票價           | Passenger fare                                |                                                      |  |  |
| cabin    | 住的艙等         | Cabin number                                  |                                                      |  |  |
| embarked | 出發港口         | Port of Embarkation                           | C = Cherbourg,<br>Q = Queenstown,<br>S = Southampton |  |  |

## ● 資料集來源

Titanic: Machine Learning from Disaster | Kaggle

https://www.kaggle.com/c/titanic/data

## 四、資料預處理

性別 Sex

● 將性別欄位的資料 male 改為 1, female 改為 0。

年齡 Age

● 將遺失值補上年齡的平均值。

票價 Fare

● 將遺失值補上票價的平均值。

出發的港口 Embarked

● 將遺失值補上出現最頻繁的值(S港口),使用 One-Hot-Encoding。

#### 特徵工程

兄弟姊妹與配偶的數量 SibSp & 父母與小孩的數量 Parch

● 將兄弟姊妹與配偶的數量 SibSp & 父母與小孩的數量 Parch,合併成家庭大小 Family\_size,作為新的特徵。

#### 姓名 Name

● 將姓名中的稱謂分割出來,並將少數稱謂合併至人數較多的稱謂,其中 Other 為 Doctor 稱謂的人(可能是醫生或者博士,且有男有女,故另分一類),最後留下 'Mr', 'Mrs', 'Miss', 'Master', 'Other' 這幾個稱謂,使用 One-Hot-Encoding 後,作 為新的特徵。

#### 票號 Ticket

● 將票號中的英文取出,遺失值統一以"X"替代,使用 One-Hot-Encoding 後,作為新的特徵。

#### 住艙 Cabin

● 取出住艙中的甲板代號,遺失值統一以"noCabin"取代,使用 One-Hot-Encoding, 作為新的特徵。

#### 年齡 Age \* 社會經濟地位 PClass

● 將年齡與社會經濟地位的數值相乘,作為新的特徵。

## 五、機器學習或深度學習方法 (使用何種方法)

## 特徵選擇

| • | Pclass  | ; 社會經濟地位                          |
|---|---------|-----------------------------------|
| • | Sex 性   | 別                                 |
| • | Age 年   | 三齒令                               |
| • | Family  | y_size 家庭大小                       |
| • | Fare    | 票價                                |
| • | 出發的     | ]港口 Embarked ( One-Hot-Encoding ) |
|   | 0       | ebk_S 登船港口(S)                     |
|   | 0       | ebk_C 登船港口 ( C )                  |
|   | 0       | ebk_Q 登船港口(Q)                     |
| • | Title ₹ | 爯謂(One-Hot-Encoding)              |
|   | 0       | Mr                                |
|   | 0       | Mrs                               |
|   | 0       | Miss                              |
|   | 0       | Master                            |
|   | 0       | Other                             |
| • | Cabin   | 住艙 ( One-Hot-Encoding )           |
|   | 0       | cb_noCabin                        |
|   | 0       | cb_C                              |
|   | 0       | cb_E                              |
|   | 0       | cb_G                              |
|   | 0       | cb_D                              |
|   | 0       | cb_A                              |
|   | 0       | cb_B                              |
|   | 0       | cb_F                              |
|   | 0       | cb_T                              |
| • | Age*F   | PClass 年齡 Age * 社會經濟地位 PClass     |
|   |         |                                   |

#### 演算法

- SVM
- KNN
- Decision Tree
- Ensemble Learning (Voting)

## 六、研究結果及討論 (含模型評估與改善)

## Kaggle 成績截圖 ( Decision Tree )

Titanic: Machine Learning ... 3,613<sup>th</sup>
Ongoing · Top 35% of 10445

Submission and Description

submit.zip
16 hours ago by Joy Xie

Public Score

0.78468

Ensemble Learning (Voting)

Desktop.zip
16 hours ago by Yi-Xuan

decision\_tree

submit.zip 0.61244

2 days ago by Shiny Chen KNN

submit.zip 0.77990

a month ago by Joy Xie

SVM

#### 評估模型

| 模型  | 參數                                                                                                                                                                              | 訓練準確度                  | 測試準確度                  | Kaggle  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------|
| SVM | SVC(C=1.0, cache_size=200,<br>class_weight=None, coef0=0.0,<br>decision_function_shape='ovr',<br>degree=3, gamma='auto',<br>kernel='linear',<br>max_iter=-1, probability=False, | 0.84751203852<br>32745 | 0.7873134328<br>358209 | 0.77990 |

| 模型                   | 參數                                                                                                                                                                                                                                                                                                                  | 訓練準確度                  | 測試準確度                  | Kaggle  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------|
|                      | random_state=0, shrinking=True,                                                                                                                                                                                                                                                                                     |                        |                        |         |
|                      | tol=0.001, verbose=False)                                                                                                                                                                                                                                                                                           |                        |                        |         |
| KNN                  | KNeighborsClassifier(algorithm='aut<br>o', leaf_size=30, metric='minkowski',<br>metric_params=None,<br>n_jobs=1, n_neighbors=3, p=2,<br>weights='uniform')                                                                                                                                                          | 0.82182985553<br>77207 | 0.7350746268<br>656716 | 0.61244 |
| Decision-<br>Tree    | DecisionTreeClassifier(class_weight= None, criterion='entropy', max_depth=3,     max_features=None, max_leaf_nodes=None,     min_impurity_decrease=0.0, min_impurity_split=None,     min_samples_leaf=1, min_samples_split=2,     min_weight_fraction_leaf=0.0, presort=False, random_state=0,     splitter='best') | 0.82825040128<br>41091 | 0.8470149253<br>731343 | 0.78947 |
| Ensemble<br>Learning |                                                                                                                                                                                                                                                                                                                     |                        |                        | 0.78468 |
| ( Voting )           |                                                                                                                                                                                                                                                                                                                     |                        |                        |         |

## 混淆矩陣

## SVM



## KNN



#### Decision Tree



## 七、結論

我們有在網路上搜尋到使用隨機森林的預測方法,但是我們想要研究其他演算法預測此問題的準確度,因此選用 SVM、KNN、Decision Tree,最後加上 Ensemble Learning 的投票法(票票等值),得到的預測結果為 0.78468,比最好的分類器 Decision Tree 預測的準確率少了 0.00479,因此,我們從使用的演算法中判斷 Decision Tree 是最適合這個主題的分類器,若結合隨機森林會更好。

#### 最好的演算法分類器準確率排序:

1. Decision Tree: 0.78947

2. Ensemble Learning (Voting): 0.78468

3. SVM: 0.77990

4. KNN: 0.61244

## 八、參考文獻

- Basic Feature Engineering with the Titanic Data « triangleinequality
- [資料分析&機器學習] 第 4.1 講 : Kaggle 競賽-鐵達尼號生存預測(前 16%排名)
- 對 pandas 進行資料預處理的例項講解
- [資料分析&機器學習] 第 2.4 講:資料前處理(Missing data, One-hot encoding, Feature Scaling)
- [資料分析&機器學習] 第 3.5 講: 決策樹(Decision Tree)以及隨機森林(Random Forest)介紹
- 机器学习(二) 如何做到 Kaggle 排名前 2%
- kaggle 泰坦尼克号生存预测——六种算法模型实现与比较