nuestion Paper contains 20 printed pages.

0100754

050 (E)

(MARCH, 2020) SCIENCE STREAM (CLASS - XII) (New Course)

A: Time: 1 Hour/Marks: 50

B: Time: 2 Hours / Marks: 50

પ્રશ્ન પેપરનો સેટ નંબર જેની સામેનું વર્તુળ OMR શીટમાં ઘટ્ટ કરવાનું રહે છે. Set No. of Question Paper, circle against which is to be darken in OMR sheet.

01

(Part - A)

: 1 Hour]

ictions:

[Maximum Marks: 50

- There are 50 objective type (M.C.Q.) questions in Part A and all questions are compulsory.
- 2) The questions are serially numbered from 1 to 50 and each carries 1 mark.
- Read each question carefully, select proper alternative and answer in the O.M.R. sheet.
- The OMR Sheet is given for answering the questions. The answer of each question is represented by (A) O, (B) O, (C) O and (D) O. Darken the circle of the correct answer with ball-pen.
- Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- Set No. of Question Paper printed on the upper- most right side of the Question Paper is to be written in the column provided in the OMR sheet.
-) Use of simple calculator and log table is allowed, if required.

1

-) Notations used in this question paper have proper meaning.
- Let R be the relation on the set N given by $R = \{(a,b) : a = b-2, b > 6\}$. Choose the correct answer.

For More Papers Visit VisionPapers.in !!!

(A)
$$(2,4) \in \mathbb{R}$$

(D)
$$(8,7) \in \mathbb{R}$$

Rough Work

Rough W

0.001

(3) For sets
$$S = {\pi, \pi^2, \pi^3}$$
 and $T = {e, e^2, e^3}$, if $F^{-1} : T \to S$ is defined as $F^{-1} = {(e, \pi^3), (e^2, \pi^2), (e^3, \pi)}$, then function $F = {e, e^2, e^3}$

(A)
$$\{(\pi^3, e), (\pi^2, e^2), (\pi, e^3)\}$$

(B)
$$\{(\pi, e^2), (\pi^3, e), (\pi^2, e^3)\}$$

(C)
$$\{(e^2, \pi), (e^3, \pi^2), (e, \pi^3)\}$$

(D)
$$\{(\pi, e), (\pi^2, e^2), (\pi^3, e^3)\}$$

4)
$$\sum_{i=0}^{2} \cot^{-1} \{-(i+1)\} = \underline{\hspace{1cm}}$$

(B)
$$-3\pi/2$$

(C)
$$-5\pi/2$$

(D)
$$5\pi/2$$

Which of the following is a graph of $f(x) = \tan^{-1}x$, $(x \in \mathbb{R})$?

Rough Work
y = der-1 hi)

- 6) $\sec^{-1}x + \csc^{-1}x + \cos^{-1}(x^{-1}) + \sin^{-1}(x^{-1}) =$ (where $|x| \ge 1, x \in \mathbb{R}$).
 - (A) $\frac{\pi}{2}$
 - (C) π

- (B) $3\pi/2$
- (D) 0

$$\cot \left\{ \frac{2019\pi}{2} - \left(\cos e^{-1} \frac{5}{3} + \tan^{-1} \frac{2}{3} \right) \right\} = \underline{\hspace{1cm}}$$

(B)
$$\frac{19}{6}$$

(C)
$$\frac{17}{6}$$

(D)
$$-\frac{19}{6}$$

For a 3×4 matrix, elements are given by $a_{ij} = |-3i + 4j|$, then

$$\sum_{i=1}^{3} (a_{ii})^{i} = \frac{(a_{11})^{1} + (a_{22})^{2} + (a_{32})^{2}}{(a_{32})^{2}}$$

(A)
$$3^3$$

A is 3×3 matrix and det(A) = 7. If B = adj A then

det(AB) =

9)

10) If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $A^2 - 5A = kI$ then $k = 3 - 2 - 1 + 11 = 1 + 12 = 1 +$

(B)
$$7 - \begin{bmatrix} 15 & 3 \end{bmatrix}$$

11) Matrices X and Y are inverse of each other then

(A)
$$XY = YX = 0$$

(A)
$$XY = YX = 0$$
 $XY = YX = -1$

(C)
$$XY=I, YX=-$$

$$(D)$$
 $X_{-1}X_{-1} = X_{-1}X_{-1} = I$

JEE (01) (New)

Rough Work

Rough Work

12) If
$$\Delta = \begin{vmatrix} x+y+z^2 & x^2+y+z & x+y^2+z \\ x+y & y+z & x+z \end{vmatrix}$$
, (where $(x \neq y \neq z)$)

 $x, y, z \in \mathbb{R} - \{0\}$) then $\Delta = \underbrace{(A) \ x+y+z}$

13) For $\Delta = \begin{vmatrix} 2019 - 2020 - 2021 \\ 2022 - 2023 \end{vmatrix}$ sum of minor and cofactor of 2020 is

(A) 2020 (B) 0

(C) 4040 (D) -2020 for 2020 for

35

If $y = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$, then first order derivative of y with respect to x is

(A)
$$\frac{y}{x} \sum_{i=2}^{4} \frac{i}{(x+1-i)}$$

(B)
$$\frac{x}{y} \sum_{i=1}^{3} \frac{i+1}{(x+1+i)}$$

$$\sqrt{y} \sum_{i=1}^{3} \frac{i-1}{(x+1-i)}$$

(D)
$$y \sum_{i=2}^{4} \left(\frac{i}{(x+1)+i} \right)$$

(17) If $y = \log_e(\log_{\pi} x)$, then $\frac{d^2y}{dx^2} =$ (where x > 1).

(A)
$$-\frac{\log_{e}(ex)}{(x \cdot \log_{e} x)^{2}}$$

$$\bigoplus \frac{\log_{\epsilon}(ex)}{(x \cdot \log_{\epsilon} x)^2}$$

(C)
$$-\frac{(x \cdot \log_e x)^2}{\log_e (ex)}$$

(D)
$$\frac{\log_{\epsilon}\left(\frac{e}{x}\right)}{\left(x \cdot \log_{\pi} x\right)^{2}}$$

18) At which point the slope of the normal to the curve

$$y = \sqrt{4x-3} - 1$$
 is $\frac{2}{3}$?

(B)
$$\left(\frac{43}{36}, \frac{1}{3}\right)^{\frac{1}{2}} = \frac{9}{3}$$

(C)
$$\left(\frac{43}{16}, -\frac{7}{8}\right)$$

Approximate value of $\sqrt{0.081}$ =

apers.in !!! (4) L = 1

Rough Work

(B) $\frac{x}{y} \sum_{i=1}^{3} \frac{i+1}{(x+1+i)}$

Rough Work

Strictly increasing

Neither increasing nor decreasing

(d) Only an increasing

(D) Strictly decreasing

-3 11-103x (01-20)

(A) 2

22) $\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx = \underline{\qquad} + C.$

(where $x \in \mathbb{R} - \left\{ \frac{k\pi}{2} / k \in \mathbb{Z} \right\}$) $(A) = \frac{2}{3} \sin^{-1} \left(\cos^{\frac{3}{2}} x \right)$ $(A) = \frac{2}{3} \tan^{-1} \left(\cos^{\frac{3}{2}} x \right)$

(C) $\frac{2}{3}\cos^{-1}\left(\sin^{\frac{1}{2}}x\right)$ (D) $\frac{2}{3}\sin^{\frac{1}{2}}\left(\sin^{\frac{1}{2}}x\right)$

For More Papers Visit VisionPapers.in !!! $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 + e^{x} + 1
\end{cases}$ For More Papers Visit VisionPapers.in !!! $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right) \\
1 - q \ln \left(|x| \right) & p - q \ln \left(|x| \right)
\end{cases}$ $\begin{cases}
1$

24)
$$\int e^{x^3 \cdot 5^{x^2} \cdot x} \cdot [\log 25 + 3x] dx = \underline{\qquad} + C.$$

$$(A) \quad \frac{1}{6} \cdot e^{x^1} \cdot 5^{x^2} \cdot x$$

$$(B) \frac{1}{6} \cdot e^{x^3} \cdot 5^{x^2}$$

(C)
$$e^{x^2} \cdot 5^{x^2} \cdot x$$

(D)
$$e^{x^3} \cdot 5^{x^2}$$

$$\int \frac{dx}{\sqrt{2x-x^2}} = - + C.$$

$$(A)' \sin^{-1}(x-1)$$

(B)
$$\frac{1}{2}\sin^{-1}(x-1)$$

(C)
$$2 \sin^{-1}(x-1)$$

(D)
$$\log \left| (x-1) + \sqrt{2x-x^2} \right|$$

26)
$$\int_{-1}^{\sqrt{3}} \frac{dx}{1+x^2} = \frac{\tan^{-1} \sqrt{1}}{\tan^{-1} \sqrt{1}} - \tan^{-1} \sqrt{1}$$

$$757 \qquad (D) \frac{5\pi}{12}$$

$$=\frac{1}{2\sqrt{2}}\log\left(\frac{x_{1}-2h}{x_{1}-2h}\right)\int_{-1}^{2}\frac{1}{1-x_{2}}$$

$$27) \int_{0}^{\pi} \cos^{3} x \cdot \sin^{4} x \, dx = \underline{\hspace{1cm}}$$

$$\frac{1}{4a^{11}\sqrt{3}} - \frac{1}{4a^{11}\sqrt{3}} - \frac{1}$$

28)
$$\int_{-\pi/6}^{\pi/6} \frac{\sin^5 x \cos^2 x \, dx}{1 + \sin^5 x \cos^2 x} \, dx = \frac{1}{1 + \cos^2 x}$$

(A)
$$\left(\frac{\pi}{6}\right)^5 - \left(\frac{\pi}{6}\right)^2$$

(C)
$$\frac{1}{\sqrt{2}} - 1$$

(D)
$$\left(\frac{\pi}{6}\right)^2 - \left(\frac{\pi}{6}\right)^5 = 40 \text{ Herty}_4$$

$$(29) \int_{0}^{2} f(x)dx = ___; \text{ where } f(x) = \max\{x, x^{2}\}.$$

$$(A) \frac{17}{6}$$

$$(B) \frac{13}{6}$$

$$(A) \frac{17}{6}$$

$$(C) \frac{8}{3}$$

30) Free bounded by curve
$$y = \tan \pi x$$
; $x \in \left[-\frac{1}{4}, \frac{1}{4} \right]$ and X - axis is 2.

(B)
$$\frac{\log 2}{2}$$

(C)
$$\frac{\log 2}{2\pi}$$

$$\sqrt{10} \frac{\log 2}{\pi}$$

is
$$\frac{k}{6}$$
 then $k =$

is
$$\frac{k}{6}$$
 then $k =$ $\frac{2 \ln 1}{11} = \frac{1}{11} = \frac{$

$$\frac{1}{2}$$

(B)
$$\frac{1}{12}$$

$$x_{4} - \frac{1}{3} x_{7} (C) \frac{1}{3}$$

D)
$$\frac{1}{4}$$
 = $ln|fcox|$

32)	Area bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 4$ is
0-7	$\frac{4}{4} + \frac{16}{16} = 4$ is

(A) 8π

(B) 32π

(C) 64π

33) The order and degree of the differential equation
$$(y''')^3 + (y'')^4 + (y')^4 + y = 7$$
 are _____ respectively.

(A) 3 and 3

(B) 1 and 4

(C) 4 and 1

(D) 2 and 4

(A) 4

(B) 2

(6), 0

(D) 1

$$y dx - (x + 2y^2) dy = 0$$
 is

36) Measure of the angle between the vectors
$$\vec{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ is _____. $= \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$.

(A) $\cos^{-1} \frac{1}{\sqrt{3}} = \frac{1}{$

$$\vec{b} = \hat{i} + \hat{j} + \hat{k}$$
 is ______

(A) $\cos^{-1} \frac{1}{\sqrt{3}}$

(B) $\pi - \cos^{-1} \frac{1}{3}$

sit VisionPapers.in !!!

$$\frac{2\sqrt{2}}{3}$$

(D)
$$\sin^{-1}\frac{1}{3}$$
 3^{1}

Aom = Jerson ng

37) If
$$\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$

(A) 8

(B) -8 (27-212). (04)+46c)
(D) 2 (-8)

Rough Work

38) Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + 5\hat{j} - 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$.

(A)
$$\sqrt{507}$$

$$(C)$$
 $\frac{1}{2}\sqrt{507}$

(D) 25

田 1-1+1+2014 -11 11-15

39) Let $|\vec{x}| = |\vec{y}| = |\vec{x} + \vec{y}| = 1$ and if measure of the angle between \vec{x} and \vec{y} is α then $\sin \alpha = \frac{1}{|\vec{x}|} |\alpha|$

$$(A)$$
 $-\frac{\sqrt{3}}{2}$

(B)
$$\frac{\sqrt{3}}{2}$$

(B) $\frac{\sqrt{3}}{2}$ (D) 1 (33)

(C)
$$-\frac{1}{2}$$

(A) 3

(C) -1

 $\frac{(D)^{n}-3}{\int_{0}^{\infty} (-1)^{n}} + \int_{0}^{\infty} (-1)^{n} + \int_{0}^{\infty} (-1)$

41) For three vectors \vec{a} , \vec{b} and \vec{c} , $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$, then evaluate $2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$.

(A) -25

(C) 100

42) If the lines $\frac{2x-5}{k} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other, then value of k is _____.

(A) 7

(B) 14

(C) -7

(D) 26

43) If the plane 2x + 3y + 4z = 1 intersects X-axis, Y-axis and Z-axis at the points A, B and C respectively, then the centroid of a \triangle ABC is

(A) $\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$

(B) (6, 9, 12)

(e) $\left(\frac{2}{3}, 1, \frac{4}{3}\right)$

(D) $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$

Distance between the two planes 2x - 2y + z = 5 and 6x - 6y + 3z = 25 is _____ units.

(A) $\frac{20}{3}$

- (B) $\frac{10}{9}$
- ·5 (4+4/1)

(C) $\frac{20}{9}$

(D) 10

45) The objective function, of a linear programming problem is

- (A) a constant
- (B) a quadratic equation X
- (C) a function to be optimized
- '(D) an inequality

Rough Work

1C-10+3=>

Mry Juns =1

(0,0,0) (0,3,7) (0,0,4)

(2,35.6)

y IE

25 25/10

				a lingar	Rough Work
46)	The vertices of the feasible region constraints are $(0,2)$, $(1,1)$, $(3,3)$, $p, q \ge 0$. The condition on p and occurs at both the points $(3,3)$ are	q so the d	is	1.	uit (
	(A) q = 2p $(C) p = q$		p = 2q $p = 3q$	5: 5:	P+ 55
47)	If the vertices of a feasible region a $C(15,15)$, then minimum value $Z = 10x - 20y + 30$ is	e of a	,0), A(10,0 objective	- C	p==24 p==24
	(A) 30	(B)	130	2	p==24
48)	(C) -120 If $P(E) = 0.8$, $P(F) = 0.5$	` '	-370 (F/E) =	0.4, then	PROD = 6.1
	$P(E/F) = \underline{\hspace{1cm}}.$			\bigcirc	P(E)
	(A) 0.64	(B)	0.32	(30)	=0.4 x0.1
	(C) 0.80		0.98	100	30. 0.3L
49)	A random variable X has the follow	ving pro	obability d	istribution:	2:0.5
	X 0 1 2 3 4 P(X) 0.1 k 2k 2k 0.			_ 4	379
ı	then $P(X \le 1) =$			Ro.	-300 -110
Mar	(A) 0.15 e Papers Visit VisionPapers.in	(B)	0.25	_	102 /11
WIOI	(C) 0.55	(D)	0.75		
,	5 K	+ 0:1	-1	511=0.7	\$
50)	The probability of obtaining an eve when a pair of dice is rolled is	n prime	number o	n each dice	10
	(A) 1	(B)	0	x 5)	
V	$(C)^{2} \frac{1}{36}$	(D)	35 36	0×01	11x0.15
	(2,2)	l	,	6	り
	100	17/	1	13	

For

050 (E)

(MARCH, 2020) SCIENCE STREAM (CLASS - XII) (New Course)

(Part - B)

Time: 2 Hours]

[Maximum Marks: 50

Instructions:

- 1) Write in a clear legible handwriting.
- There are three sections in Part B of the question paper and total 1 to 18 questions are there.
- 3) All the questions are compulsory. Internal options are given.
- 4) The numbers at right side represent the marks of the question.
- 5) Start new section on new page.
- 6) Maintain sequence.
- 7) Use of simple calculator and log table is allowed, if required.
- 8) Use the graph paper to solve the problem of L.P.

SECTION-A

Answer the following 1 to 8 questions as directed in the question. (Each question carries 2 marks) [16]

1) Find the value:

$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], |x| < 1, y > 0 \text{ and } xy < 1, x \neq y.$$

If
$$y = 50 e^{10x} + 60 e^{-10x}$$
, prove that $\frac{d^2y}{dx^2} = 100y$.

3) Evaluate
$$\int_0^1 e^x dx$$
 as the limit of sum. As $\int_0^1 e^{x} dx = \int_0^1 e^{x} dx = \int_0^$

- If the area bounded by the parabola $y^2 = 4ax$ and its latus rectum in the first quadrant is 48 units then, using integration find the value of a.
- (5) Find the area between the curves y = 2x and $y = x^2$.

OR

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line 2x + 3y = 6.

- If the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar then, prove that $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ are coplanar.
- Find the equation of the plane passing through the intersection of the planes x+y+z-6=0 and 2x+3y+4z+5=0 and the point (2, 3, 4).
- Bag-I contains 3 gold and 4 silver coins while another Bag-II contains 5 gold and 6 silver coins. One coin is drawn at random from one of the bags. Find the probability that a randomly selected coin is of gold.

OR

Find the mean of the number obtained on a throw of an unbiased dice.

SECTION-B

- Answer the following 9 to 14 questions as directed in the question. (Each question carries 3 marks)
 - 9) Consider $f: \mathbb{R}^+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$; where \mathbb{R}^+ is the set of all nonnegative real numbers.

10) Solve the following system of equations by matrix method.

$$x+y+z=6$$
, $2y+z=7$, $x-y+z=2$

OR

Express the matrix $A = \begin{bmatrix} 3 & -2 & 1 \\ 4 & 0 & 6 \\ -1 & 2 & 1 \end{bmatrix}$ as the sum of a symmetric and a skew

symmetric matrices.

If
$$x = a(\cos\theta + \theta\sin\theta)$$
 and $y = a(\sin\theta - \theta\cos\theta)$ then, find $\frac{d^2y}{dx^2}$.

12) A line makes angles α , β , γ and δ with the diagonals of a cube, prove that

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}$$

Find the equation of the line passing through (1,2,3) and parallel to the plane x-y+2z-5=0 and 3x+y+z-6=0.

- 13) Solve the following linear programming problem graphically. Subject to the constraints: $x + y \le 50$, $3x + y \le 90$, $x \ge 0$, obtain the maximum and minimum values of Z = 5x + 10y.
- If a fair coin is tossed 10 times, find the probability of

ii) at least 9 heads

- Answer the following 15 to 18 questions as directed in the question. (Each question carries 4 question carries 4 marks)
 - Using properties of determinants prove:

$$\begin{vmatrix} a & a^2 & 1+pa^3 \\ b & b^2 & 1+pb^3 \\ c & c^2 & 1+pc^3 \end{vmatrix} = (1+pabc)(a-b)(b-c)(c-a)$$

16) Find the global maximum and minimum values of the function f given by $f(x) = 2x^3 - 15x^2 + 36x + 1, x \in [1,5].$

OR

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

Find:
$$\int \sqrt[3]{\tan x} \, dx$$
; where $x \neq \frac{k\pi}{2}, k \in \mathbb{Z}$

18) Obtain the particular solution of the differential equation :

$$\left\{x\cos\left(\frac{y}{x}\right) + y\sin\left(\frac{y}{x}\right)\right\}y\,dx = \left\{y\sin\left(\frac{y}{x}\right) - x\cos\left(\frac{y}{x}\right)\right\}x\,dy$$

where:
$$y = \frac{\pi}{2}$$
 when $x = 2$. 3

Then the second is the second in the second is the second in the second in