Riconoscimento di Attività Umane con Perceptron Intelligenza Artificiale

Lapo Bartolacci January 24, 2020

1 Introduzione

I moderni smartphone hanno la possibilità di sfruttare i molti sensori che hanno integrati. Dato il ruolo sempre più centrale di questi dispositivi nella vita di tutti i giorni, si prevede che questi dispositivi terranno continuamente traccia delle nostre attività, imparando da esse per aiutarci a prendere decisioni migliori. Il Riconoscimento di Attività ha lo scopo di identificare le azioni eseguite da un essere umano date delle informazioni percepite da esso o dall'ambiente. In questo elaborato vengono utilizzate le informazioni ricavate dai sensori presenti negli smartphone per classificare un insieme di attività (standing, walking, laying, walking, walking upstairs e walking downstairs) utilizzando l'algoritmo di apprendimento supervisionato Perceptron.

2 Metodo

2.1 Data Set

Il data set utilizzato è disponibile qui: http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

I dati sono stati raccolti con un gruppo di 30 volontari di età compresa tra i 19 e i 48 anni. Ogni persona ha eseguito le 6 attività con uno smatphone alla vita, registrando i dati del giroscopio e dell'accelerometro ad una frequenza di 50 Hz. I dati sono stati partizionati in modo casuale in due insiemi, il 70% è stato utilizzato per il training e il 30% per il test.

Ulteriori informazioni su come sono stati processati i dati sono disponibili nella pagina del data set.

2.2 Implementazione

Il linguaggio di programmazione utilizzato è il Python, in particolare è stata utilizzata l'implementazione dell'algoritmo Perceptron fornita dalla libreria Scikit-learn. Per rendere Perceptron più performante, inizialmente viene fatto il feature scaling con il metodo di standardizzazione tramite il trasformatore StandardScaler.

```
sc = StandardScaler()
sc.fit(features_train)
features_train_std = sc.transform(features_train)
features_test_std = sc.transform(features_test)
```

Dopo aver creato un oggetto Perceptron, GridSearchCV si occupa di cercare la combinazione di parametri migliori per il classificatore. La valutazione viene fatta con K-fold cross-validation e come funzione di utilità viene utilizzato F1 score che combina precision e recall in un unico parametro.

La funzione fit esegue il training con 7352 istanze ognuna con 561 features.

```
grid_search.fit(features_train, target_train)
```

La funzione predict viene utilizzata per testare il perceptron appena allenato con 2947 istanze di test.

```
bestPred = grid_search.predict(features_test)
```

3 Risultati

I risultati della classificazione di Perceptron per i dati di test sono riportati tramite matrice di confusione nella Table 1, dove sono anche mostrati l'accuratezza, la precisione e il recall. Sono state valutate 2947 istanze di test con circa lo stesso numero di istanze per classe. La maggior parte delle predizioni false si hanno per la classe sitting a differenza dei risultati riportati da Anguita et al. [1] nella Figure 1, dove le attività statiche hanno performato meglio rispetto a quelle dinamiche.

		Predette									
		Walking	Upstairs	Downstairs	Standing	Sitting	Laying	Recall %			
Effettive	Walking	473	17	6	0	0	0	95.36			
	Upstairs	1	467	3	0	0	0	99.15			
	Downstairs	2	12	399	7	0	0	95.0			
	Standing	1	0	0	$\bf 525$	6	0	98.68			
	Sitting	0	3	0	85	$\boldsymbol{402}$	1	81.87			
	Laying	0	0	0	0	0	537	100			
	Precision %	99.16	93.59	97.79	85.09	98.53	99.81	95.11			

Table 1: Matrice di Confusione. Le righe rappresentano le classi effettive e le colonne le classi predette. La diagonale mostra le istanze classificate correttamente.

Method	MC-SVM							MC-HF-SVM $k = 8$ bits						
Activity	Walking	Upstairs	Downstairs	Standing	Sitting	Laying	Recall %	Walking	Upstairs	Downstairs	Standing	Sitting	Laying	Recall %
Walking	109	0	5	0	0	0	95.6	109	2	3	0	0	0	95.6
Upstairs	1	95	40	0	0	0	69.8	1	98	37	0	0	0	72.1
Downstairs	15	9	119	0	0	0	83.2	15	14	114	0	0	0	79.7
Standing	0	5	0	132	5	0	93.0	0	5	0	131	6	0	92.2
Sitting	0	0	0	4	108	0	96.4	0	1	0	3	108	0	96.4
Laying	0	0	0	0	0	142	100	0	0	0	0	0	$\bf 142$	100
Precision %	87.2	87.2	72.6	97.1	95.6	100	89.3	87.2	81.7	74.0	97.8	94.7	100	89.0

Figure 1: Matrice di confusione dei risultati riportati da Anguita et al. [1] utilizzando due versioni di un classificatore diverso.

References

[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In *International workshop on ambient assisted living*, pages 216–223. Springer, 2012.