

전자 부품의 이해

개요

• 하드웨어 장비를 분해했을 때,

• 온갖 알 수 없는 전자 부품들을 볼 수 있다.

• 그 것들에 대한 이해도를 향상시켜 보자.

수동소자와 능동소자

- 수동소자
 - 전력을 단순히 소비, 흡수, 전달하는 소자
 - 저항(R), 인덕터(L), 캐패시터(C)

- 능동소자
 - 입력된 신호를 변화(증폭, 정류)하여 출력 시켜주는 소자
 - 트랜지스터, 다이오드 등

수동소자

1. 저항(R)

2. 캐패시터(C)

3. 인덕터(L)

저항(Resistor)

- 전류의 흐름을 방해하는 물질
- 전기 에너지가 열로 바뀌게 됨 => 전압 감소
- 단위 : ohm(음)
- 종류: 칩저항, 피막저항, 가변저항
- Watt : 저항이 견딜 수 있는 에너지
- 저항 관련 공식 : R = r * (L/A)
 - r:물체의 재질, 전기를 잘 통과시키지 못할 수록 높음
 - L:물체의 길이, 길이가 길어질 수록 저항 커짐
 - A : 물체의 단면적, 단면적이 커질수록 저항 작아짐

일반적으로 많이 쓰이는 저항

• 탄소피막 저항

• 칩 저항

피막저항의 색과 저항크기

캐패시터(Capacitor)

- 캐패시터 == 콘덴서 == 축전기
- 전류를 축적하여 저장할 수 있는 소자
- 용도
 - 안정적인 전류 공급
 - 노이즈 필터링
- 단위: 1Farad(패럿) == 1,000,000uF
- 배터리도 캐피시터의 일종

캐패시터의 종류

왜 이리도 많은 캐패시터가..?

역할1. 노이즈 제거

- 노이즈가 발생하는 경우
 - 전원 인가(spike), 고전압, 모터의 회전
 - IC에 물리적인 damage를 주거나 정상적인 작동 방해
- 직류 : 통과 X
- 교류 : 통과 O
- 캐패시터를 GND에 연결시켜주면?
 - 노이즈 성분인 AC : GND를 통해 빠져나감
- Bypass capacitor (decoupling capacitor)

역할2. 일정한 전류 공급

- 순간적인 전압 DROP 발생 가능성
 - 특정 IC가 순간적으로 전류를 많이 사용할 때

• 비상 식량

인덕터(Inductor)

- 돌돌 말은 코일 형태의 소자
- 기호: L(Linkage) / 단위: H(헨리)
- 캐패시터와 같이 에너지를 저장
 - 전기 에너지 -> 자기 형태로 저장
 - 즉, 자기(Magnetism)을 저장
- 직류 : 통과 O
- 교류 : 통과 X
- 전류의 급격한 변화를 억제하고, 전기 잡음을 걸러 내는 필터 역할

능동 소자

1. 트랜지스터

2. 다이오드

트랜지스터(Transistor)

- 스위칭, 증폭 작용을 하는 전자 부품
- 반도체인 규소나 저마늄(게르마늄)으로 만들어짐
 - 반도체: 평상시엔 부도체이지만 열, 빛, 자장, 전압, 전류 등의 **영향에 의해 도체로 변하는 물질**
- 동작원리에 따라 접합형 트랜지스터와 전기장 효과 트랜지스터로 구분
- 접합형 트랜지스터
 - P형 반도체와 N형 반도체를 세 개의 층으로 접합하여 만듦
 - 접합 순서에 따라 PNP형과 NPN형으로 구분

접합형 트랜지스터

NPN형 트랜지스터 예제

- * 화살표는 전류가 흐르는 방향을 의미
- E:이미터 전기가 나가는 부분 (-)
- B:베이스 스위치 역할 (+)
- C: 콜렉터 베이스가 연결됐을 때 C와 E가 연결 됨 (+)

TR로 만드는 논리 게이트

NOT GATE

AND GATE

OR GATE

다이오드(Diode)

- 교류를 직류로 변<u>환해주는 부품</u>
- (+) 극성을 가진 p형 반도체와 (-) 극성을 가진 n형 반도체를 접합하여 만듦
- 전류를 한 방향으로만 흐르게 하는 것이 특징
- 교류가 +와 -로 방향이 바뀔 때,
 - +일 때는 흘려주고
 - -일 때는 차단 가능

발광 다이오드(LED)

- Light Emitting Diode
- 전기가 흐를 때 빛을 발산하는 다이오드

그 외 전자 부품들

IC(Integrated Circuit)

- 두 개 이상의 소자를 한 개의 부품 안에 집적해 넣은 것
- 반도체에서 배선에 이르는 다양한 부품을 집약적으로 제조

논리 게이트 IC

- 논리 게이트를 하나의 부품에 구성한 것
- 보통 여러 개의 논리 게이트 제공
- AND, OR, NOT, NAND GATE 등 다양한 부품 판매

레귤레이터(Regulator)

- 불규칙한 입력전압을 안정된 출력전압으로 변환
- 높은 입력 전압을 낮은 입력 전압으로 변환
- LM7805 : 5~24V 범위의 입력을 받아 5V로 출력
- LM1117S : 3.3~20V 범위의 입력을 받아 3.3V로 출력

쉬프트 레지스터(Shift Register)

• 내부 데이터를 1비트씩 옮기는 구조의 IC

- 새로운 입력이 들어오면, 기존 입력은 한 칸씩 이동시킨다.
 - 입력 -> Qa / Qa -> Qb / Qb -> Qc / ...

쉬프트 레지스터(Shift Register)

SER: 데이터 입력 핀

Qa~Qh: 데이터 저장 (출력도 가능)

Q'h : 데이터 출력 핀 SCK : 데이터 입력 수행 SCLR#: 초기화

G#: Qa~Qh 3-state

RSK: 현재 데이터 출력 수행

MUX: Multiplexer

- 일종의 스위치 역할
- 여러 개의 입력들 중 하나를 선택

DEMUX : Demultiplexer

- 반대로 여러 개의 출력들 중 하나를 선택
- CPU의 핀 수를 절약할 수 있다.

PCB

- Printed Circuit Board, 인쇄회로기판
- 전자 부품을 접속하기 위한 회로 기판

PCB 관련 용어 정리

- 스루홀(Through Hole)
 - 기판에 뚫은 구멍, 부품이 실장 됨
- 비아홀(Via Hole)
 - 스루홀과 같지만 부품이 실장되지 않음
 - 앞면/뒷면 연결 역할을 함
- 애눌러링(Annular ring), 패드
 - 홀을 둘러싸고 있는 도체
- 식자(Legend)
 - 표면에 인쇄한 문자, 숫자, 기호

식자(Legend)

C: Capacitor

R: Register

D: Diode

J: Jack

JP: Jumper

L: Inductor

M: Motor

Q: Transistor

S: Switch

P: Plug

TP: Test Point

U: Inseparable assembly (ex. IC)

http://en.wikipedia.org/wiki/Reference_designator

감사합니다.