КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Вариант №6

Работу выполнил: Студент 3-го курса Группы 09-409 Набиев М.А.

Работу проверила: профессор КВМ Павлова М.Ф. 11 мая 2017 г.

1. Постановка задачи: на стеке узлов

$$\{x_i\}_{i=1}^n$$
 , где $x_i = a + ih$, $h = \frac{b-a}{n}$, где $a = 0$, $b = 1.5$, $n = 10$ построить таблицу

приближенных значений

$$C(x) = \int_{0}^{x} \cos\left(\frac{\pi t^{2}}{2}\right) dt \quad (1)$$

Цель задания: изучить и сравнить эффективность различных квадратурных формул для приближенного вычисления интеграла, используя составные квадратурные формулы:

- Левых прямоугольников,
- Трапеции,
- Симпсона

Вычисление квадратурных формул проводится для 11 точек x на отрезке от 0 до 1.5 с шагом $h = \frac{(b-a)}{10}$. Для каждой точки вычисления проводятся на отрезке от 0 до x, где t меняется с

шагом $H_N = \frac{x}{N}$. Интеграл вычисляется с точностью $\varepsilon = 10^{-4}$. Точность вычисления определяется сравнением результатов вычисления при различном числе разбиения отрезка интегрирования. Точность считается достигнутой, если выполняется следующее неравенство: $|C_N - C_{2N}| < \varepsilon$, где C_N и C_{2N} - приближенные значения интеграла, вычисленные с помощью составной квадратурной формулы при разбиении отрезка на N и 2N частей соответственно.

2.1 Квадратурная формула левых прямоугольников.

Квадратурная формула левых прямоугольников для определенного интеграла имеет следующий вид:

$$J = \int\limits_a^b f(x) dx = (b-a)f(a) + R(f) \ ,$$
 где погрешность R(f) вычисляется по формуле:
$$R(f) \leq -\frac{f'(\xi)(b-a)^2}{2}, \ \xi \subseteq [a,b]$$

Составная квадратурная формула левых прямоугольников имеет следующий вид:

$$J_N = \int_a^b f(x) dx = \sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} f(x) dx \approx \sum h * f(x_i) = S_N$$
 , где погрешность составной квадратурной

формулы вычисляется следующим образом:

$$R_N(f) \le \sum_{i=0}^{N-1} \frac{h^2}{2} f'(\xi_i), \quad \text{ede } h = \frac{b-a}{n}, \ \xi_i \subseteq (x_i, x_i+1), \ i=0,...,N-1$$

В результате были получены следующие данные, где N – количество разбиений, необходимых для достижения заданной точности:

Х	C(x)	N
0	0	1
0.15	0.1499970724	2
0.3	0.2999063256	2
0.45	0.4455559528	128
0.6	0.5811865455	512
0.75	0.693592915	2048
0.9	0.7649005694	4096
1.05	0.7759838779	8192
1.2	0.7154976859	16384
1.35	0.5923475549	16384
1.5	0.4453492455	16384

таблица 1. Значения интеграла, вычисленные методом левых прямоугольников

2.2 Квадратурная формула трапеций.

Квадратурная формула трапеций имеет следующий вид:

$$J = \int\limits_a^b f(x) = (b-a) \frac{f(a) + f(b)}{2} + R(f) \quad \text{, где погрешность квадратурной формулы R(f) составляет:}$$

$$R(f) \leq -\frac{f''(\xi)}{12} (b-a)^3, \quad \xi \subseteq [a,b]$$

Составная квадратурная формула трапеций вычисляется следующим образом

$$J_{N} = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{N-1} \frac{f(x_{i}) + f(x_{i+1})}{2} h$$

где погрешность квадратурной формулы составляет:

$$R_N(f) \le \sum_{i=0}^{N-1} \frac{h^3}{12} f''(\xi_i), \ \ \partial e \ \ h = \frac{b-a}{n}, \ \ \xi_i \subseteq (x_i, x_i+1), \ \ i=0,...,N-1$$

Результаты вычислений, где N – количество разбиений, необходимых для достижения заданной точности:

Х	C(x)	N
0	0	1
0.15	0.1499736538	2
0.3	0.2993854378	8
0.45	0.445439094	16
0.6	0.5810658588	32
0.75	0.693505147	64
0.9	0.7648118875	128
1.05	0.7758912629	128
1.2	0.7154164471	128
1.35	0.5922559281	128
1.5	0.4452818138	128

таблица 2. Значения интеграла, вычисленные методом трапеций

2.3 Квадратурная формула Симпсона

Квадратурная формула Симпсона для определенного интеграла имеет следующий вид:

$$J = \int_{a}^{b} f(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) + R(f) \quad , \text{ где погрешность квадратурной формулы }$$
 R(f) составляет

$$R(f) \le \frac{-(b-a)^5}{2880} f^{(4)}(\xi), \ \xi \subseteq [a,b]$$

Составная формула Симпсона вычисляется следующим образом:

$$J_{N} = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{N-1} \frac{h}{6} \left(f(x_{i}) + 4f\left(\frac{x_{i} + x_{i+1}}{2}\right) + f(x_{i+1}) \right)$$

Где погрешность квадратурной формулы вычисляется следующим образом:

$$R(f) \leq \sum_{i=0}^{N-1} \frac{h^4}{2880} f^{(4)}(\xi_i) \quad \text{ide} \quad h = \frac{b-a}{n}, \ \xi_i \subseteq (x_i, x_i+1), \ i=0,...,N-1$$

Результаты вычислений, где N – количество разбиений, необходимых для достижения заданной точности:

Х	C(x)	N
0	0	1
0.15	0.1499812155	2
0.3	0.2993994458	2
0.45	0.4454675709	4
0.6	0.5810934041	4
0.75	0.6935240681	4
0.9	0.7648237778	8
1.05	0.7759136894	8
1.2	0.7154384276	16
1.35	0.5922678042	16
1.5	0.445262747	16

таблица 3. Значения интеграла, вычисленные методом Симпсона

Вывод

По результатам таблиц 1, 2, 3 можно заметить, что для достижения заданной точности для разных методов необходимо разное количество разбиений, при чем точнее формула, тем меньше разбиений требуется.

Приложение

```
Листинг программы
import math
import numpy as np
from matplotlib import pyplot as plt
eps = 1e-06
int_eps = 1e-4
def f(x, eps):
 sum = x
 a = x
 n = 0
 while (math.fabs(a) > eps):
   q = -(((math.pi / 2) ** 2) * (x ** 4) * (4 * n + 1)) / ((2 * n + 1) * (2 *
n + 2) * (4 * n + 5))
   a *= q
   sum += a
   n += 1
 return sum
def c(x):
 return math.cos(math.pi*x*x/2)
def integral left rect(a, b, x):
 N = 1
 s = 0
 s prev = 0
 while True:
  s prev = s
   s=0
   h = float(b - a) / N
   for i in range(N):
     s += c(a + i * h)*h
   #s *= h
   if (math.fabs(s - s prev) < int eps):</pre>
    break
   else:
     N *=2
 return s, N
def integral_trapezoid(a, b, x):
 N = 1
 s = 0
 s prev = 0
 while True:
   s prev = s
   s=0
   h = float(b - a) / N
   for i in range(N):
     s += (c(a + i * h) + c(a + (i + 1) * h))
   s *= (h / 2.)
```

```
if (math.fabs(s - s_prev) < int_eps):</pre>
   else:
     N \star = 2
 return s, N
def integral simpson(a, b, x):
 N = 1
 s = 0
 s prev = 0
 while True:
  s prev = s
   s=0
  h = float(b - a) / N
   for i in range(N):
     s += (c(a + i * h) + 4*c(a + (i + 0.5) * h) + c(a + (i + 1) * h))
   s *= (h / 6.)
   if (math.fabs(s - s prev) < int eps):</pre>
     break
   else:
     N \star = 2
 return s, N
def main():
 a = 0
 b = 1.5
 n = 10
 h=float(b-a)/n
 for i in range(n+1):
   x=a+i*h
   left=integral simpson(0,x,x)
   trap=integral_trapezoid(0,x,x)
   simp=integral\_simpson(0,x,x)
   f r=f(x, eps)
   print 'Left rect: ', left
   print 'Trapezoid: ', trap
   print 'Simpson: ',simp
   print 'real val: ',f r
if name == " main ":
 main()
```