

BASI DI DATI Progettazione Logica delle Basi di Dati

Outline

Obiettivo della Progettazione Logica

"tradurre" lo <u>schema</u>
<u>concettuale</u> in uno <u>schema</u>
<u>logico</u> che rappresenti gli
stessi dati nel formato di
un modello intermedio
(**modello logico**), ad es. il
modello relazionale

Traduzione ER-Relazionale

- Non si tratta di una semplice trascrizione tra i due modelli
- Alcuni aspetti dello schema concettuale non sono direttamente rappresentabili nello schema logico
- In questa fase è opportuno anche valutare le prestazioni

Schema E-R

Ristutturazione dello schema E-R

Modello Logico

Schema E-R ristrutturato

Traduzione nel modello logico

Schema logico

Ristrutturazione schema E-R

- Motivazioni:
 - semplificare la traduzione
 - "ottimizzare" le prestazioni
- Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello
- Le prestazioni <u>non sono valutabili con precisione su di</u> uno schema concettuale!

Parametri per valutare le prestazioni

- numero di occorrenze previste
- numero di accessi ad occorrenze (di entità ed associazioni) durante un'operazione

Principio di Pareto (80:20)

- Regola empirica secondo la quale un sistema dedica <u>l'80% delle sue risorse per elaborare il</u> 20% delle operazioni più frequenti.
- Sfruttando questo principio calcoliamo gli accessi totali per il 20% di operazioni più frequenti.

Tavole di Carico

- Pertanto, per stimare le prestazioni sviluppiamo 3 tipi di tavole:
 - Tavola Volumi: contenente una stima delle occorrenze per entità ed associazioni
 - Tavola operazioni: riporta tipo e frequenza per il 20% di operazioni più frequenti
 - Tavole accessi: numero accessi in lettura e scrittura su entità ed associazioni per il 20% di operazioni più frequenti

Concetto	Tipo	Volume
Sede	Е	10
Dipartimento	Е	
Impiegato	Е	2000
Progetto	Е	500
Composizione	R	
Afferenza	R	
Direzione	R	
Partecipazione	R	

Concetto	Tipo	Volume	
Sede	Е	10	
Dipartimento	Е	80	= Composizione
Impiegato	Е	2000	
Progetto	Ε	500	
Composizione	R	80	= 10 X 8
Afferenza	R		
Direzione	R	80	Dipartimento
Partecipazione	R		

In media una sede si compone di 8 dipartimenti

Concetto	Tipo	Volume	
Sede	Ε	10	
Dipartimento	Е	80	= Composizione
Impiegato	Е	2000	
Progetto	Е	500	
Composizione	R	80	= 10 X 8
Afferenza	R	1900	= 2000 - 100
Direzione	R	80	Dipartimento
Partecipazione	R		

In media il 5% dei dipendenti non afferisce ad alcun dipartimento

Concetto	Tipo	Volume
Sede	Е	10
Dipartimento	Е	80
Impiegato	Е	2000
Progetto	Е	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

= Composizione

= 10 X 8

= 2000 - 100

= Dipartimento

= 2000 X 3

In media ogni Impiegato partecipa a 3 progetti

Concetto	Tipo	Volume
Sede	Ε	10
Dipartimento	Е	80
Impiegato	Е	2000
Progetto	Ε	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Tavola delle operazioni

Operazione	Tipo	Frequenza
Operazione 1		1 volta/giorno
Operazione 2	В	1 volta/mese

- I: Operazione Interattiva
- B: Operazione Batch

In questo caso sono state previste 10 operazioni, quindi la stima si concentra sul 20% (2) con maggiore frequenza

Tavola delle operazioni

Operazione	Tipo	Frequenza
Operazione 1		30 volte/mese
Operazione 2	В	1 volta/mese

- I: Operazione Interattiva
- B: Operazione Batch

In questo caso sono state previste 10 operazioni, quindi la stima si concentra sul 20% (2) con maggiore frequenza

Nota: Conviene mantenere sempre un'unica unità temporale

Esempio di valutazione di costo

- Operazione frequente:
 - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su di uno schema di navigazione

Tavola degli accessi

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	L
Afferenza	Relazione	1	L
Dipartimento	Entità	1	L
Partecipazione	Relazione	3	L
Progetto	Entità	3	L

Attività della Ristrutturazione*

Analisi delle ridondanze

Eliminazione delle generalizzazioni

Partizionamento/accorpamento di entità e associazioni

Scelta degli identificatori primari

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- In questa fase si decide se eliminare le ridondanze eventualmente presenti o di mantenerle, in base al loro impatto sul numero di accessi per il 20% di operazioni più frequenti

Ridondanze

Vantaggi

Semplificazione delle interrogazioni

Svantaggi

Appesantimento degli aggiornamenti

Maggiore occupazione di spazio

Forme di ridondanza in uno schema E-R

- Attributi derivabili:
 - da altri attributi della stessa entità (o associazione)
 - da attributi di altre entità (o associazioni)
- Associazioni derivabili dalla composizione di altre associazioni in presenza di cicli

Attributo derivabile

Attributo derivabile da altra entità

Ridondanza dovuta a ciclo

Analisi di una ridondanza

Ipotesi di Tavola dei volumi

Concetto	Tipo	Volume
Città	Ε	200
Persona	Ε	1000000
Residenza	R	1000000

 Inoltre, se una città può avere fino a milioni di abitanti, occorrono circa 3 byte per città per memorizzare il dato ridondante, totale 600 byte.

Ipotesi di Tavola Operazioni

Operazione	Tipo	Frequenza
Operazione 1	l	500 volte/giorno
Operazione 2	В	2 volte/giorno

- Operazione 1: memorizza una nuova persona e relativa città di residenza
- Operazione 2: stampa i dati di una città (incluso il numero di abitanti)

Tavole accessi: in presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

Tavole accessi: in assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Relazione	5000	L

Numero Totale Accessi: in presenza di ridondanza

- Costi:
 - Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
 - Operazione 2: 2 accessi in lettura.
- Contiamo doppi gli accessi in scrittura
- Totale di 3502 accessi al giorno e 600 byte per il dato ridondante

Numero Totale Accessi: in assenza di ridondanza

- Costi:
 - Operazione 1: 1000 accessi in scrittura
 - Operazione 2: 10002 accessi in lettura al giorno
- Contando doppi gli accessi in scrittura si hanno
 12002 accessi al giorno

Eliminazione delle gerarchie

- il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e associazioni sono invece direttamente rappresentabili
- si eliminano perciò le gerarchie, sostituendole con entità e associazioni

Tre Possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- 2. accorpamento del genitore della generalizzazione nelle figlie
- 3. sostituzione della generalizzazione con associazioni

Accorpamento delle figlie nel genitore

Accorpamento del genitore nelle figlie

Sostituzione con Associazioni

Scelte Progettuali

- la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze ù
 - però non basato solo sul numero degli accessi
- è possibile però seguire alcune semplici regole generali

Criteri di Scelta

- L'accorpamento delle figlie nel genitore conviene se gli accessi al padre e alle figlie sono contestuali
- L'accorpamento del genitore nelle figlie conviene se gli accessi alle figlie sono distinti
- La sostituzione con associazioni conviene se gli accessi alle entità figlie sono separati dagli accessi al padre
- Sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

Soluzione ibrida

Partizionamento/accorpamento di entità e associazioni

Partizionamenti e Accorpamenti

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base ad un semplice principio
- Gli accessi si riducono:
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme

Ristrutturazioni: Casi Principali

- partizionamento verticale di entità
- partizionamento orizzontale di associazioni
- eliminazione di attributi multivalore
- accorpamento di entità/associazioni

Accorpamento: Esempio 1

Accorpamento: Esempio 1

Partizionamento Orizzontale

Partizionamento Orizzontale

Attività della ristrutturazione

- 1. Analisi delle ridondanze
- 2. Eliminazione delle generalizzazioni
- 3. Partizionamento/accorpamento di entità e associazioni
- 4. Scelta degli identificatori primari

Scelta degli identificatori principali

- Operazione indispensabile per la traduzione nel modello relazionale
- Criteri
 - assenza di opzionalità
 - semplicità
 - utilizzo nelle operazioni più frequenti o importanti

Se nessuno degli identificatori soddisfa i requisiti visti?

Si introducono nuovi attributi (codici) contenenti valori speciali generati per questo scopo

Esercizio: analisi di una ridondanza

Tavola dei volumi

Concetto	Tipo	Volume
Città	Ε	10
Persona	Ε	500000
Lavoratore	SE	
Studente	Ε	
Nascita	R	

Tavola dei volumi

Concetto	Tipo	Volume
Città	Ε	10
Persona	Ε	500000
Lavoratore	SE	
Studente	Е	
Nascita	R	500000

= Persona

Tavola dei volumi

Concetto	Tipo	Volume
Città	Ε	10
Persona	Ε	500000
Lavoratore	SE	400000
Studente	Ε	100000
Nascita	R	500000

 $= 500000 \times 0.8$

 $= 500000 \times 0.2$

In media l'80% delle persone sono lavoratori

Tavola delle operazioni

Operazione	erazione Tipo Frequer	
Operazione 1		1 volta/giorno
Operazione 2	В	1 volta/anno

- I: Operazione 1 Nascita di una persona
- B: Operazione 2 Per ogni città, stampa di un report dei dati delle città compreso il suo numero di abitanti

ESERCIZIO: Completare l'analisi delle ridondanze!

Tavola delle operazioni

Operazione	Tipo	Frequenza
Operazione 1	l	365 volte/anno
Operazione 2	В	1 volta/anno

- I: Operazione 1 Nascita di una persona
- B: Operazione 2 Per ogni città, stampa di un report dei dati delle città compreso il suo numero di abitanti

Tavole accessi: in presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Lavoratore	Entità	0,8	S
Studente	Entità	0,2	S
Nascita	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	10	L

Tavole accessi: in assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Lavoratore	Entità	0,8	S
Studente	Entità	0,2	S
Nascita	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	10	L
Nascita	Relazione	500000	L

Numero Totale Accessi: in presenza di ridondanza

- Costi:
 - Operazione 1: (4S+1L) x 365 = 9 x 365 = 3285 accessi all'anno
 - Operazione 2: 10 accessi all'anno
- Totale di 3295 accessi all'anno e 4 x 10 = 40 byte per il dato ridondante

Numero Totale Accessi: in assenza di ridondanza

- Costi:
 - Operazione 1: 3S x 365 = 6 x 365 = 2190 accessi all'anno
 - Operazione 2: 500010 accessi all'anno
- Si hanno 502200 accessi all'anno

Conviene mantenere la ridondanza!

Grazie per l'attenzione