MALNAD COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi)

Computer Science and Engineering "MACHINE LEARNING" "ACTIVITY REPORT"

Submitted By:

HUZAIF AHMED 4MC22CS067

IMPANA H 4MC22CS068

INCHARA M 4MC22CS069

JAHNAVI H K 4MC22CS071

JANAVI H GOWDA 4MC22CS072

Submitted To:

Dr. Keerthi Kumar H M

Associate Professor

Department of Computer Science and Engineering

1. Introduction

In the field of supervised machine learning, classification tasks play a crucial role in predicting categorical outcomes. This report focuses on comparing multiple machine learning models for predicting credit card defaults using the **UCI Credit Card Default Dataset**. The dataset contains financial and demographic information about credit card holders, with the target variable indicating whether a customer defaulted on their payment in the next month.

The goal of this reprt is to:

- •Implement and compare **custom-built** machine learning models (DecisionTreeCustom, GradientBoostingCustom, LogisticRegressionCustom, RandomForest Custom) with a **scikit-learn SVM model**.
- •Evaluate model performance using accuracy, confusion matrices, and classification reports.
- •Determine which algorithm performs best in predicting credit card defaults.

2. Dataset Overview

The dataset used in this study is the **UCI Credit Card Default Dataset**, which contains the following key features:

Key Characteristics:

- •Features (Input Variables):
 - •Demographic and financial attributes (e.g., credit limit, payment history, bill amounts, etc.).
 - •All numerical features were standardized using StandardScaler for fair comparison.

•Target Variable:

•default.payment.next.month (Binary: 1 for default, 0 for no default).

•Dataset Size:

•The dataset contains **20,000 samples** after preprocessing.

Preprocessing Steps:

1. Feature Selection:

•Dropped irrelevant columns (ID).

2. Normalization:

•Applied StandardScaler to ensure features contribute equally to distance-based models.

3. Train-Test Split:

•80% training, 20% testing (random_state=42 for reproducibility).

3. Methodology

3.1 Custom Model Implementations

Four custom models were implemented from scratch:

1. DecisionTreeCustom

- •Algorithm: Gini impurity-based decision tree.
- •Key Features:
 - •Recursive splitting based on best threshold.
 - •Supports max_depth for regularization.

2. GradientBoostingCustom

- •Algorithm: Gradient Boosting with Decision Trees as weak learners.
- •Key Features:
 - •Sequentially corrects residuals.
 - •Supports n_estimators and learning_rate.

3. LogisticRegressionCustom

- •Algorithm: Binary logistic regression using gradient descent.
- •Key Features:
 - •Sigmoid activation for probability estimation.
 - •Supports custom learning rate (lr) and epochs.

4. RandomForestCustom

- •Algorithm: Ensemble of decision trees with bootstrapping.
- •Key Features:
 - •Majority voting for predictions.
 - •Supports n_estimators and max_depth.

5. SVM (Scikit-learn)

- •Algorithm: Support Vector Machine (Linear Kernel).
- •Key Features:
 - Used as a benchmark for comparison.

3.2 Model Training & Evaluation

•Training:

•Each model was trained on X_train, y_train.

•Evaluation Metrics:

•Accuracy: Overall correctness of predictions.

•Confusion Matrix: Breakdown of true vs. predicted classes.

•Classification Report: Precision, recall, F1-score.

4. Python Code Overview

4.1 Libraries Used

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, ConfusionMatrixDisplay

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor

from sklearn.svm import SVC

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split.

4.2 Data Loading & Preprocessing

```
data = pd.read_csv('UCI_Credit_Card_20k.csv')
```

X = data.drop(columns=['ID', 'default.payment.next.month']).values

y = data['default.payment.next.month'].values

Normalize features

scaler = StandardScaler()

 $X = scaler.fit_transform(X)$

Train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4.3 Model Training & Prediction

```
models = {
   "Decision Tree": DecisionTreeCustom(max_depth=5),
   "Gradient Boosting": GradientBoostingCustom(n_estimators=100, learning_rate=0.1),
   "Logistic Regression": LogisticRegressionCustom(),
   "Random Forest": RandomForestCustom(n_estimators=10, max_depth=5),
   "SVM": SVC(kernel='linear', C=1.0)
}
results = {}
for name, model in models.items():
   model.fit(X_train, y_train)
   y_pred = model.predict(X_test)
   accuracy = accuracy_score(y_test, y_pred)
   results[name] = accuracy
```

4.4 Evaluation & Visualization

```
# Confusion Matrices

plt.figure(figsize=(20, 12))

for i, (name, model) in enumerate(models.items()):

    y_pred = model.predict(X_test)

    cm = confusion_matrix(y_test, y_pred)

    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['No Default', 'Default'])

    plt.subplot(2, 3, i+1)

    disp.plot(cmap='Blues')

    plt.title(f"{name}\nAccuracy: {accuracy:.4f}")
```

```
# Accuracy Comparison

plt.figure(figsize=(10, 6))

sns.barplot(x=list(results.keys()), y=list(results.values()), palette="viridis")

plt.title("Model Accuracy Comparison")

plt.ylim(0, 1)

plt.ylabel("Accuracy")

plt.xticks(rotation=45)

plt.show()
```

5. Results and Analysis

5.1 Model Accuracy Comparison

The following table summarizes the accuracy of each model:

Model	Accuracy
Random Forest	0.8227
Gradient Boosting	0.8207
Decision Tree	0.8203
SVM	0.8117
Logistic Regression	0.8107

Key Observations:

- 1.Random Forest (82.27%) performed the best, likely due to its ensemble approach reducing overfitting.
- 2.**Gradient Boosting (82.07%)** was a close second, demonstrating the effectiveness of sequential error correction.
- **3.Decision Tree (82.03%)** performed well but slightly worse than ensemble methods, indicating potential overfitting.
- 4.SVM (81.17%) and Logistic Regression (81.07%) had the lowest accuracy, suggesting that linear models may struggle with complex decision boundaries in this dataset.

5.2 Confusion Matrix Insights

Decision Tree:

- •Correct Predictions:
 - •No Default (True Negative): 2978
 - •Default (True Positive): 393
- •Misclassifications:
 - False Positives (Predicted Default but No Default): 141
 - False Negatives (Predicted No Default but Default): 578

Gradient Boosting:

- •Correct Predictions:
 - •No Default: 2988
 - •Default: 335
- •Misclassifications:
 - False Positives: 161False Negatives: 556

Logistic Regression:

•Correct Predictions:

•No **Default:** ~2500 (estimated from visualization)

•**Default:** ~220

•Misclassifications:

•High False Negatives (661), indicating poor detection of actual defaults.

Random Forest:

•Correct Predictions:

No Default: 2976Default: 313

•Misclassifications:

False Positives: 143False Negatives: 366

SVM:

•Correct Predictions:

•No Default: ~2500 (estimated)

•**Default:** ~227

•Misclassifications:

• False Negatives (620), similar to Logistic Regression.

Key Takeaways:

- •Ensemble methods (Random Forest, Gradient Boosting) minimized false negatives, making them better at detecting defaults.
- •Logistic Regression and SVM struggled with false negatives, which is critical in financial risk prediction.
- •Decision Tree had a balanced performance but was outperformed by ensembles.

6. Conclusion

Summary of Findings:

- 1.Best Model: Random Forest (82.27% accuracy) demonstrated the highest predictive power, followed closely by Gradient Boosting.
- 2. Worst Model: Logistic Regression (81.07%) had the lowest accuracy, highlighting limitations in handling non-linear patterns.
- 3. Trade-offs:
 - •Ensemble methods improved accuracy but required more computational resources.
 - •Linear models (SVM, Logistic Regression) were simpler but less effective for this task.

Recommendations:

- •For Deployment: Use Random Forest or Gradient Boosting due to their superior performance.
- •For Interpretability: Decision Tree provides transparency but may need pruning to avoid overfitting.
- •Future Work:
 - •Hyperparameter tuning (e.g., adjusting max_depth, n_estimators).
 - •Feature importance analysis to identify key predictors of default.

Final Verdict:

The results confirm that **ensemble methods are ideal for credit default prediction**, while linear models may require feature engineering or alternative approaches to improve performance.