INSTRUCTIONS (Read and follow carefully)

Using only a #2 pencil (do not use ink) on the gray side of the "Grade Master Answer Sheet," complete the following:

- 1. Your First and Last Name in the "Name" section of the sheet.
- 2. Depending on your instructor, print "Lipatov" OR "Zhu" in the "Teacher" section.
- 3. In the "Student ID Number" write down your student ID from your Grubby card. Darken the corresponding rectangle with the number. See example → Student ID Number

123456789

22

3333

8 8 8 8 8 8

999999

4 4 4 4 5 5 5 5

6666

100

3 3 3 3

(A) (A) (A)

6666

777

22

(5) (5)

3 3

SOUTH

MINES

DAKOTA

22

(5) (5)

2 **2** 2 2 3 3 **3** 3

4. There are multiple versions of the test.

DO NOT LOOK AT OTHER TESTS OR SCANTRONS.

5. Darken the corresponding rectangle on the answer scantron sheet for all your answers. Your instructor will keep original answer sheets. Also, mark the answer on your test sheet, as this will be your only record of your answers.

6. There are 34 questions on the exam, and printing

has been done on both sides of the page. Answer all questions (each answer has the same point value) but budget your time so that you do not spend too much time on any one question. You are provided with scratch paper. There is only one correct answer to each question. A question for which more than one answer is marked will be counted wrong.

It is to your advantage to answer every question, so make sure every question has been answered before you hand in your answer sheet. Remember, some answers are rounded. Pick the closest one.

- 7. When you are finished with the exam, turn in only your "Grade Master Answer Sheet" and make sure that all of the information requested above has been provided and correctly filled in on the form.
- **8.** Answers will be posted on D2L following the exam, and test grades will be on D2L by the end of the week.
- **9.** It is in your best interest to save this copy of your test for question or answer issues later.

GOLD

123456789

Temperature Conversion Constants Energy and Electromagnetic Wave °F = 9/5(°C) + 32 N = 6.0223 × 10²³ v = c / λ °C = 5/9(°F - 32) c = 3.00 x 10⁸ m/s E = h(c/λ) K = 273.15 + °C h = 6.63 x 10⁻³⁴ J·s E = hv Hz = s⁻¹

Gas Law Colligative Properties Thermodynamics

$$PV = nRT \qquad P_1V_1/T_1 = P_2V_2/T_2 \qquad \Delta T_f = iK_fm \qquad \qquad \Delta H^o_{rxn} = \Sigma n\Delta H^o_f \text{ (products)} - \Sigma m\Delta H^o_f \text{ (reactants)}$$

$$R = 0.0821 \text{ L*atm/ mol*K} \qquad \Delta T_b = iK_bm \qquad \Delta E = \Delta H - P \Delta V$$

$$STP \text{ gas law} = 0 \text{ °C, 1atm} \qquad q_1 = -q_2 \qquad w = -P\Delta V \qquad 1L*atm = 101.3J$$

$$1atm = 760torr = 760 \text{ mmHg} \qquad C = m \cdot s \qquad q = m \cdot s \cdot \Delta t \qquad E = q + w$$

Soluble Compounds

- 1. All salts of the alkali metals (Group 1A) are soluble.
- 2. All salts containing NH_4^+ , NO_3^- , CIO_4^- , CIO_3^- , and $C_2H_3O_2^-$ are soluble.
- All chlorides, bromides, and iodides (salts containing Cl⁻, Br⁻, or I⁻) are soluble except when combined with Ag⁺, Pb²⁺, and Hg₂²⁺ (note the subscript 2).
- 4. All salts containing SO₄²⁻ are soluble except those of Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, and Hg₂²⁺.

Insoluble Compounds

- 5. All metal hydroxides (ionic compounds containing OH⁻) and all metal oxides (ionic compounds containing O²⁻ are insoluble except those of Group 1A and those of Ca²⁺, Sr²⁺, and Ba²⁺.
 - When metal oxides do dissolve, they react with water to form hydroxides. The oxide ion, O²⁻, does not exist in water. For example:

$$Na_2O(s) + H_2O \longrightarrow 2NaOH(aq)$$

6. All salts containing PO₄³⁻, CO₃²⁻, SO₃²⁻ and S²⁻ are insoluble except those of Group 1A and NH₄⁺

	Element	Oxidation Reaction			
React vigorously with cold	Lithium Potassium Barium	Li K Ba	\rightarrow	Li ⁺ + e ⁻ K ⁺ + e ⁻ Ba ²⁺ + 2e ⁻	^
H ₂ O to form H ₂	Calcium Sodium	Ca Na	\rightarrow	$Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$	
React with	Magnesium Aluminum Manganese	Mg Al Mn	\rightarrow \rightarrow		tion
steam to form H ₂	Zinc Chromium	Zn Cr	\rightarrow		Increasing ease of oxidation
React with	Iron Cadmium	Fe Cd		$Fe^{2+} + 2e^{-}$ $Cd^{2+} + 2e^{-}$	g ease g
simple acids to form H ₂	Cobalt Nickel Tin	Co Ni Sn	\rightarrow	Co ²⁺ + 2e ⁻ Ni ²⁺ + 2e ⁻ Sn ²⁺ + 2e ⁻	ncreasin
\	Lead Hydrogen	Pb H ₂	\rightarrow	$Pb^{2+} + 2e^{-}$ $2H^{+} + 2e^{-}$	-
Will not dissolve	Copper Silver	Cu Ag	\rightarrow	$Cu^{2+} + 2e^{-}$ $Ag^{+} + e^{-}$	
in simple acids	Mercury Platinum Gold	Hg Pt Au	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Hg ²⁺ + 2e ⁻ Pt ²⁺ + 2e ⁻ Au ⁺ + e ⁻	

Name: _		Class:	Date:	_ ID: A
-	e Choice	Exam II	Fall 2	022
	 Identify the t configuration a. cobalt and b. cobalt (I) c. cobalt (II) 	d 27 electrons i ion and 26 electrons II) ion and 24 electrons	number of electrons with the soft $e = 18 + 7 = 25e$. d. manganese and 25 electrons with the soft e . cobalt (II) ion and 25	ectrons transition metal electrons ion, the answer is (e)
	a. 180° b. 120° c. 90° 3. What is the n a. square pl b. trigonal l	nolecular shape and polarit	d. tetrahedral and polar	d. e- regions shape: octe hedred molecular shape: square
	4. The Lewis st a. a. Se. CI b. Se. CI CI CI CI CI CI CI CI CI C	ructure of SeCl ₃ +: is: c. d.	e. (ci.: (ci	molecular shape square planar Dipoles cancel out Non polar
	 a. CuZn b. Na₂O c. CO₂ 6. How many σ a. 2 σ-bond 	following is an ionic composition of the following is an ionic composition of	d. HCl e. CO etively, are in a COCl ₂ molecut d. 3 σ-bonds and 1 π-bon e. 2 σ-bond and 1 π-bon	de? $C = 0$
	7. Draw a Lewi sulfur atom f a. sp ³ b. sp ³ d c. sp ²	or bonding?	elecule. What is the set of hybrid of e^{-1} sp ³ d ² $\Rightarrow b$ hybrid of p^3 d ² etal has the lowest ionization en	id orbitals used by the
	a. Cs b. K c. Na		a Ii	cveuses

9.	. Using VSEPR theory, predict the mol	ecular sha	ape and bond angles in BCl_3 . $Cl_2 = B$
	a. bent, 120°	А	trigonal pyramidal 109 5° (X=
	b. trigonal pyramidal, 120°	e.	trigonal planar, 120° - capions all bonding
	c. trigonal planar, 90°		3 e regions, mi pair
 10.		e in its st	trigonal planar, 120° trigonal planar, 120° trigonal planar, all bording tructure? trigonal planar trigonal planar trigonal planar and c-cu bonds ave polar at various elements in the third period of the
	a. 5	d.	0 ·· C= CI; all C CI bounds
	b. 2	e.	1: Cl - C - C - C - Months
	c.) 4		ave polar
11.	In the Lewis structure below, M and D	X represer	nt various elements in the third period of the
 	periodic table. The formula of the cor	F	· · · · · · · · · · · · · · · · · ·
	a. CaO growp 2 b. MgP	. /	
	CoO V	2- (1)	MgS $Cu = [Ar] 4s^{1}3d^{10}$ $Cu' = [Ar] 3d^{10}$ $Cu^{2+}?$ $Cu^{2+}?$ $Cu^{2+} = [Ar] 3d^{9}$
	a. CaO group 2	3 (a.)	Mgs Cu= LATJ 43 300
	S KING	e.	MgO C_{+} $Carl 3d^{\circ}$
	c. CaS		02+ 017-19
 12.	. What is the electron configuration of	Cu ⁺ and C	Cu^{2+} ? Ca^{2+} : LArJ30
	a. $[Ar]3d^94s^1$ and $[Ar]3d^9$	(d.)	[Ar] $3d^{10}$ and [Ar] $3d^{9}$
	b. $[Ar]3d^84s^2$ and $[Ar]3d^84s^1$	e.	$[Ar]3d^94s^1$ and $[Ar]3d^74s^2$
	c. $[Ar]3d^94s^1$ and $[Ar]3d^84s^1$		
13.		ad as a n le	nusible orbital designation according to quantum
 13.	theory.	eu as a pia	dustote orbital designation according to qualitum
	<u> </u>	.1	5f
	a. 2d	d.	1s
	b. 6p c. 4f	e.	18
 14.		<u>e ele</u> ctron	
	a. sulfur aroup 14	d.	indium
	a. sulfur b. iron group 14 elements	e.	zinc
	c. germanium		
15.	. An FM radio station found at 103.1 or	n the FM	dial broadcasts at a frequency of
	$1.031 \times 10^8 \text{ s}^{-1}$ (103.1 MHz). What is	the wavel	ength of these radio waves in meters?
	a. $2.908 \times 10^6 \mathrm{m}$	d.	34.27 m $\lambda = \frac{c}{3.00 \times 10^3 \text{ m/s}}$
/	(b.) 2.908 m	e.	ength of these radio waves in meters? 34.27 m $\lambda = \frac{c}{v} = \frac{3.00 \times 10^8 \text{ m/s}}{1.03 \times 10^8 \text{ s}^{-1}}$
	c. $2.908 \times 10^4 \mathrm{m}$		$=2.908 \mathrm{m}$
1.6			
 10.	•		(H_3O^+) and determine the molecular geometry.
	Predict the bonding angle of H-O-H a	ccording	to the VSEPR model.
	a. 120°	a.	Slightly smaller than 109.5°
	b. 109.5°	e.	Slightly smaller than 109.5° Slightly greater than 109.5°
	c. 180°		
 17.	. Based on the valence bond theory, HO	I is form	ed by trigonal pyramidal
((a.) overlapping the 1s orbital of H ar	id 3p _z orb	ital of Cl to form a single bond. \ IONP Pair
Ì	b. overlapping the 1s orbital of H ar	id 2p _z orb	ital of Cl to form a single π bond.
	c. overlapping the 1s orbital of H ar	_	ital of Cl to form a single π bond.
	d. overlapping the 2s orbital of H ar	_	ital of Cl to form a single shond. Pair closer
	e. overlapping the 1s orbital of H and	_	- · · · · · · · · · · · · · · · · · · ·
	o. overapping me to oronar or it ar	.⊶ -PZ OIU.	in or or to rotting single & cond. I how will be to

18. What is the hybridization type of nitrogen?

- sp^3d a.
- sp^2 sp^3

19. The compound HCl is:

- Ionic
- Metallic
- c.) Polar covalent

- d. Not enough info
- Nonpolar covalent

20. According to the octet rule, which of the elements will have a tendency to lose 2 electrons?

- potassium, K
- sulfur, S
- cesium, Cs

oxygen, O strontium, Sr group 2 elements

21. Identify which of the following molecules has a double bond.

- b.) O₂

d. H_2 Br_2

 $c. N_2$

22. According to VSEPR theory, the shape of an ammonium ion, NH₄⁺, is most similar to:

- a) CH4 tetrahedral
 b. BH3 trigonal planar
 c. NH3 trigonal pyramidal
- d. N₂ linear e. CO₂ linear

23. What is the ground-state electron configuration of calcium?

a.) $1s^22s^22p^63s^23p^64s^2$

 $1s^22s^22p^6$

b. $1s^22s^22p^63s^23p^54s^1$

 $1s^22s^22p^63s^24s^8$ e.

 $1s^22s^22p^63s^2$

24. Which of the following elements have a tendency to gain electrons?

N, O, A1

d. Na, K, Ca

b.) Cl, O, F

C1, B, A1

c. Cl, F, Ga

25. According to periodic trends, which element is the most electronegative?

Cl a.

S

O b.

Ne

F

26. Draw the Lewis structure of BrF₃, and then determine the bond angle(s) of F–Br–F.

- 60°
- 90° and 120° b.
- 45° c.

- 120° d.
- 90° and 180°

27.		the emission spectrum of mercury vapor. What is d. $4.56 \times 10^{-19} \text{ J} = h \text{ M} = h \text{ M} = 6.88 \times 10^{14} \text{ J} = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s} \times 3.00 \times 10^{-9} \text{ M}}{435.8 \text{ nm} \times \frac{10^{-9} \text{ M}}{1.00 \text{ m}}}$
28.	A single electron occupies a subshell and he Which of the following is an acceptable set this subshell? (Hint: draw an orbital diagra n, <i>l</i> , m _l , m _s a. 3, 1, -1, -1/2 b. 3, 0, 0, +1/2	the quantum numbers $n = 3$, $l = 0$, $m_l = 0$, $m_s = +1$, tof quantum numbers for the next electron added to m) $ \gamma = 3 \qquad \qquad$
	c. 3, 0, 0, -1/2 d. 3, 2, 0, +1/2 e. 3, 1, 0, +1/2	[Ar]3d 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
29.	Which of the following is true about Fe ²⁺ ? a. Fe ²⁺ is paramagnetic with 0 unpaired e ⁻ b. Fe ²⁺ is paramagnetic with 4 unpaired e ⁻ c. Fe ²⁺ is diamagnetic.	d. Fe ²⁺ is paramagnetic with 2 unpaired e ⁻ e. Fe ²⁺ is paramagnetic with 5 unpaired e ⁻
30.	In what block, group, and period on the per 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵ ground-state eleman. p-block, group 17, and period 4 b. d-block, group 7, and period 5 c. p-block, group 17, and period 3	ectron configuration be found? d. p-block, group 17, and period 5
31. [He]	According to periodic trends, arrange the for aluminum Al^{3+} in order of increasing ionic a. $K^+ < Al^{3+} < Mg^{2+}$ b. cannot predict the size trend c. $Al^{3+} < Mg^{2+} < K^+$	following ions, potassium K^+ , magnesium Mg^{2+} , and size. d. $K^+ < Mg^{2+} < Al^{3+}$ e. $Al^{3+} < K^+ < Mg^{2+}$
32.	Which element has the electron configuration a. To b. Mo c. Mn	on $1s^22s^22p^63s^23p^64s^23d^5$? $\neq 35$ d. Fe e. Cr
33.	Which of the following would be polar? a. CH ₄ b. BF ₃ c. C ₂ H ₂	d. CO ₂ e. methanol, CH ₃ OH
34.	Due to periodicity, which element would y a. aluminum b. barium c. calcium	ou expect to behave most like sodium? d. oxygen e. potassium