注意:

-)キャロ テーア	1.1 44 1.1
1	请独立完成,	<u> </u>
⊥.	VE 715 1/2 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	- 生したロコクオマ:

2. 提交时间: 10-15。

第3章 栈和队列						
1. 选择题 (1) 若让元素 1, 2, 3, 4, 5 依次进栈,则出栈次序不可能出现在()种情况。 A. 5, 4, 3, 2, 1 B. 2, 1, 5, 4, 3 C. 4, 3, 1, 2, 5 D. 2, 3, 5, 4, 1						
(2) 若已知一个栈的入栈序列是 1, 2, 3, ···, n, 其输出序列为 p1, p2, p3, ···, pn, 若 p1=n, 则 pi 为 ()。						
A. i B. n-i C. n-i+1 D. 不确定						
(3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为()。						
A. $r-f$ B. $(n+f-r)%n$ C. $n+r-f$ D. $(n+r-f)%n$						
(4) 链式栈结点为: (data,link), top 指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到 x 中,则应执行操作()。						
A. x=top->data;top=top->link; B. top=top->link;x=top->link;						
C. x=top;top=top->link; D. x=top->link;						
(5) 设有一个递归算法如下 int fact(int n) { //n 大于等于 0 if(n<=0) return 1;						
else return n*fact(n-1); } 则计算 fact(n)需要调用该函数的次数为()。						
则 ()						
(6) 栈在 () 中有所应用。 A. 递归调用 B. 函数调用 C. 表达式求值 D. 前三个选项都有						

要输出的 应该是(数据依次写入该领	机与打印机间速度是	依次从语	该缓冲区中取出	出数据。该缘	爰冲区的逻辑结构		
Α.	队列	B. 栈	C. 线	性表	D. 有序	孝表		
	栈后即进入 Q ,若 ()。	的初始状态为空, 后 6 个元素出队的序 B. 3						
(9) 是()。	9) 若一个栈以向量 V[1n]存储,初始栈顶指针 top 设为 n+1,则元素 x 进栈的正确操作)。							
	top++; V[top]=			[top]=x; top-				
С.	top; V[top]=:	х;	D. VI	[top]=x; top-	;			
Α.	(10)设计一个判别表达式中左,右括号是否配对出现的算法,采用()数据结构最A.线性表的顺序存储结构 B.队列C.线性表的链式存储结构 D.栈							
(11)用链接方式存储的队列,在进行删除运算时()。 A. 仅修改头指针 B. 仅修改尾指针								
				头、尾指针可能都要修改				
(12	(12)循环队列存储在数组 A[0m]中,则入队时的操作为()。							
A. rear=rear+1 B. rear=(rear+1)					% (m-1)			
С.	C. rear=(rear+1)%m			D. rear=(rear+1)%(m+1)				
(13)最大容量为 n 的循环队列,队尾指针是 rear,队头是 front,则队空的条件是 ()。								
Α.	(rear+1)%n==fr	ont	В.	rear==front				
С.	rear+1==front		D.	(rear-1)%n=	=front			
(14) 栈和队列的共同点是()。								
Α.	都是先进先出		В.	都是先进后出	1			
С.	只允许在端点处	插入和删除元素	D.	没有共同点				
(15)一个递归算法必	必须包括 ()。						
Α.	递归部分		В.	终止条件和递	自归部分			
С.	迭代部分		D.	终止条件和选	5代部分			

2. 算法设计题 (请进行算法分析,并写出相应的函数代码. 最后两题为选做题)

(1) 将编号为 0 和 1 的两个栈存放于一个数组空间 V[m]中,栈底分别处于数组的两端。当 第 0 号栈的栈顶指针 top[0]等于-1 时该栈为空,当第 1 号栈的栈顶指针 top[1]等于 m 时该栈为空。

两个栈均从两端向中间增长。试编写双栈初始化,判断栈空、栈满、进栈和出栈等算法的函数。 双栈数据结构的定义如下:

Typedef struct

{int top[2],bot[2]; //栈顶和栈底指针

SElemType *V; //栈数组

int m; //栈最大可容纳元素个数

}DblStack

- (2) 回文是指正读反读均相同的字符序列,如 "abba"和 "abdba"均是回文,但 "good"不是回文。试写一个算法判定给定的字符向量是否为回文。(提示:将一半字符入栈)
- (3) 从键盘上输入一个后缀表达式,试编写算法计算表达式的值。规定:逆波兰表达式的长度不超过一行,以\$符作为输入结束,操作数之间用空格分隔,操作符只可能有+、-、*、/四种运算。例如:234 34+2*\$。
- (4)假设以带头结点的循环链表表示队列,并且只设一个指针指向队尾元素站点(注意不设头指针),试编写相应的置空队、判队空、入队和出队等算法。
- (5)假设以数组 Q[m]存放循环队列中的元素,同时设置一个标志 tag,以 tag == 0 和 tag == 1 来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为"空"还是"满"。试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
 - (6) 已知 Ackermann 函数定义如下:

$$Ack(m,n) = \begin{cases} n+1 & \text{当 } m=0 \text{ 时} \\ Ack(m-1,1) & \text{当 } m\neq 0, n=0 \text{ 时} \\ Ack(m-1,Ack(m,n-1)) & \text{当 } m\neq 0, n\neq 0 \text{ 时} \end{cases}$$

- ① 写出计算 Ack (m, n) 的递归算法, 并根据此算法给出出 Ack (2, 1) 的计算过程。
- ② 写出计算 Ack (m, n) 的非递归算法。