Introduction to Machine Learning

Homework 5: Gradient Calculations and Nonlinear Optimization

Prof. Sundeep Rangan

Submit answers only to problems 1, 3 and 4(b) and (c). You do not need to answer 2 or 4(a). But, make sure you know how to do all the problems.

1. Suppose we want to fit a model,

$$\hat{y} = \frac{1}{w_0 + \sum_{j=1}^{d} w_j x_j},$$

for parameters **w**. Given training data (\mathbf{x}_i, y_i) , i = 1, ..., n, a nonlinear least squares fit could use the loss function,

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[y_i - \frac{1}{w_0 + \sum_{j=1}^{d} w_j x_{ij}} \right]^2$$

(a) Find a function $g(\mathbf{z})$ and matrix **A** such that the loss function is given by,

$$J(\mathbf{w}) = q(\mathbf{z}), \quad \mathbf{z} = \mathbf{A}\mathbf{w},$$

and $g(\mathbf{z})$ is factorizable, meaning $g(\mathbf{z}) = \sum_i g_i(z_i)$ for some functions $g_i(z_i)$.

- (b) What is the gradient $\nabla J(\mathbf{w})$?
- (c) What is the gradient descent update for **w**?
- (d) Write a few lines of python code to compute the loss function $J(\mathbf{w})$ and $\nabla J(\mathbf{w})$.
- 2. In this problem, we will see why gradient descent can often exhibit very slow convergence, even on apparently simple functions. Consider the objective function,

$$J(\mathbf{w}) = \frac{1}{2}b_1w_1^2 + \frac{1}{2}b_2w_2^2,$$

defined on a vector $\mathbf{w} = (w_1, w_2)$ with constants $b_2 > b_1 > 0$.

- (a) What is the gradient $\nabla J(\mathbf{w})$?
- (b) What is the minimum $\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$?
- (c) Part (b) shows that we can minimize $J(\mathbf{w})$ easily by hand. But, suppose we tried to minimize it via gradient descent. Show that the gradient descent update of \mathbf{w} with a step-size α has the form,

$$w_1^{k+1} = \rho_1 w_1^k, \quad w_2^{k+1} = \rho_2 w_2^k,$$

for some constants ρ_i , i = 1, 2. Write ρ_i in terms of b_i and the step-size α .

- (d) For what values α will gradient descent converge to the minimum? That is, what step sizes guarantee that $\mathbf{w}^k \to \mathbf{w}^*$.
- (e) Take $\alpha = 2/(b_1 + b_2)$. It can be shown that this choice of α results in the fastest convergence. You do not need to show this. But, show that with this selection of α ,

$$\|\mathbf{w}^k\| = C^k \|\mathbf{w}^0\|, \quad C = \frac{\kappa - 1}{\kappa + 1}, \quad \kappa = \frac{b_2}{b_1}.$$

The term κ is called the *condition number*. The above calculation shows that when κ is very large, $C \approx 1$ and the convergence of gradient descent is slow. In general, gradient descent performs poorly when the problems are ill-conditioned like this.

3. *Matrix minimization*. Consider the problem of finding a matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$ to minimize the loss function,

$$J(\mathbf{P}) = \sum_{i=1}^{n} \left[\frac{z_i}{y_i} - \ln(z_i) \right], \quad z_i = \mathbf{x}_i^\mathsf{T} \mathbf{P} \mathbf{x}_i.$$

The problem arises in wireless communications where an m-antenna receiver wishes to estimate a spatial covariance matrix \mathbf{P} from n power measurements. In this setting, $y_i > 0$ is the i-th receive power measurement and \mathbf{x}_i is the beamforming direction for that measurement. In reality, the quantities would be complex, but for simplicity we will just look at the real-valued case. See the following article for more details:

Eliasi, Parisa A., Sundeep Rangan, and Theodore S. Rappaport. "Low-rank spatial channel estimation for millimeter wave cellular systems," *IEEE Transactions on Wireless Communications* 16.5 (2017): 2748-2759.

- (a) What is the gradient $\nabla_{\mathbf{P}} z_i$?
- (b) What is the gradient $\nabla_{\mathbf{P}}J(\mathbf{P})$?
- (c) Write a few lines of python code to evaluate $J(\mathbf{P})$ and $\nabla_{\mathbf{P}}J(\mathbf{P})$ given data \mathbf{x}_i and y_i . You can use a for loop.
- (d) See if you can rewrite (c) without a for loop. You will need Python broadcasting.
- 4. Nested optimization. Suppose we are given a loss function $J(\mathbf{w}_1, \mathbf{w}_2)$ with two parameter vectors \mathbf{w}_1 and \mathbf{w}_2 . In some cases, it is easy to minimize over one of the sets of parameters, say \mathbf{w}_2 , while holding the other parameter vector (say, \mathbf{w}_1) constant. In this case, one could perform the following nested minimization: Define

$$J_1(\mathbf{w}_1) := \min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2), \quad \widehat{\mathbf{w}}_2(\mathbf{w}_1) := \arg\min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2),$$

which represent the minimum and argument of the loss function over \mathbf{w}_2 holding \mathbf{w}_1 constant. Then,

$$\widehat{\mathbf{w}}_1 = \operatorname*{arg\,min}_{\mathbf{w}_1} J_1(\mathbf{w}_1) = \operatorname*{arg\,min}_{\mathbf{w}_1} \operatorname*{min}_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2).$$

Hence, we can find the optimal \mathbf{w}_1 by minimizing $J_1(\mathbf{w}_1)$ instead of minimizing $J(\mathbf{w}_1, \mathbf{w}_2)$ over \mathbf{w}_1 and \mathbf{w}_2 .

(a) Show that the gradient of $J_1(\mathbf{w}_1)$ is given by

$$\nabla_{\mathbf{w}_1} J_1(\mathbf{w}_1) = \left. \nabla_{\mathbf{w}_1} J(\mathbf{w}_1, \mathbf{w}_2) \right|_{\mathbf{w}_2 = \widehat{\mathbf{w}}_2}.$$

Thus, given \mathbf{w}_1 , we can evaluate the gradient from (i) solve the minimization $\widehat{\mathbf{w}}_2 := \arg\min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2)$; and (ii) take the gradient $\nabla_{\mathbf{w}_1} J(\mathbf{w}_1, \mathbf{w}_2)$ and evaluate at $\mathbf{w}_2 = \widehat{\mathbf{w}}_2$.

(b) Suppose we want to minimize a nonlinear least squares,

$$J(\mathbf{a}, \mathbf{b}) := \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} b_j e^{-a_j x_i} \right)^2,$$

over two parameters **a** and **b**. Given parameters **a**, describe how we can minimize over **b**. That is, how can we compute,

$$\hat{\mathbf{b}} := \arg\min_{\mathbf{b}} J(\mathbf{a}, \mathbf{b}).$$

(c) In the above example, how would we compute the gradients,

$$\nabla_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}).$$