

機械学習による冷媒の熱伝達率予測

Edgar Santiago Galicia¹, Akio Miyara¹

Andres Hernandez-Matamoros²

¹ Saga University
² Meiji University

1830-1930

1930-1990

1990-2012

2012-Actual

1st generation 2nd generation 3rd generation 4th generation

Actual

Not specific conditions	Safety and durability	Ozone protection	Global warming Ozone protection	All previous + SDG's
CO_2 NH_3 SO_2 HC_s CCI_4 H_2O etc.	CFCs (R12), HCFCs (R22,)	HFCs(R134a, R32), HFC mixtures, (R410A, R404A) etc.	HFOs (R1234yf,) HFO/HFC mixture HFO/HFO mixture etc.	Synthetic Refrigerants AIの技術 を使う必 要がある

データベースについて

Rec Refrigerant Evap	orator and Condenser DB	
An open database for heat transfer p This system collects and provides heat transfer pr Please register as user to get latest and reliable th	operties for various refrigerants for researchers and engineers to develop.	
	Sign In	Registration
	Please sign in if you have already registered to Heat Transfer DB system.	To register as heat transfer DB user:
	Email	1: Apply for User Registration: Open a Apply Form and submit your email.
	Password	2: Receive an Email: You will receive an email with a registration URL from above.
	Sign in forgot password?	3: User Registration: Click and open the registration URL in the email, then fill in your profile, and submit!
		That's it!

ユーザーは Website に作成した伝熱データベースシステムからアクセスして伝熱データを使用し、表示条件の設定や閲覧ができる.

データベースは、熱交換器のタイプによってカテゴリー分けされている.

データベースについて

- すべての熱交換器を選択
- 1000点データ以上の 冷媒を選択
- 混合冷媒も含まれる
- 沸騰伝熱と凝縮熱伝を選択

機械学習の方法

RecDB Refrigerant Evaporator and Condenser DB

- ➤ 純冷媒の熱伝達率
- データベースからダウンロード
- ➤ CSV ファイルのデータクリーニング (パラメータ選ぶ) データインポー ト、読む
- 学習トレーニング
- 熱伝達率予測

数値解析の条件

パラメータ:10個

1	2	3	4	5	6	7	8	9	10	11
HTC	Ts	Twi	TVb	P	x	G	qr	dPdz	ASHRAE	Heat_Transfer_Type

- データ数:冷媒7タイプ、伝熱2タイプ、27577点.
- 学習モデルタイプ: 26タイプ
 - *線形回帰モデル:4タイプ
 - *回帰木モデル:3タイプ
 - *サポートベクターマシン:6タイプ
 - *アサンブル木:2タイプ
 - *ガウス過程回帰:4タイプ
 - *ニューラルネットワーク:5タイプ
 - *カーネル回帰:7タイプ

データベースの条件

Parameter	HTC, Ts, Tw, P, x, G, q, dPdz
Training model	Linear regression: 4タイプ
	Regression tree: 3タイプ
	Support vector machine: 6タイプ
	Ensembles of trees: 2 タイプ
	Gaussian process regression : 4タイプ
	Neural Networks : 5タイプ
	Kernel approximation regression : 7タイプ
Refrigerants	R134a, R1234yf, R32, R245fa, R410A, R22,
	R123ze(E)
Heat transfer method	Boiling, Condensation
Total training data	80% training, 20% testing

トレニンーグデータについて

Refrigerant	T _{sat}	T _{wall}	Pressure kPa	[x]	Mass flux	Heat flux	Boiling data points	Condensation data points
R134a	-23.54-68	-47-70	220-2023	0-1	1.2-1600	0-111	4000	1984
R1234yf	10-55	0-59.82	437-1464	0-1	48-1000	0.2-129	2742	679
R32	8-50	0-41	364-3141	0-1	10-600	0-100	5848	364
R245fa	25-130	0-105	148-2349	0-1	45-1500	0-90	2164	89
R410A	-30-45	-28-135	269-2733	0-1	10-750	0-87	3006	893
R22	-15-54	-13-54	296-2155	0-1	50-800	0-81	2038	1247
R123ze(E)	2-72	0-77	236-1700	0-1	13-1000	0-100	2004	519
							21802	5775

Total 21802 5775 27577

学習トレーニングの方法

RMSE検証について

英語: Root Mean Square Error

0はデータに完全にフィットしていることを示す。

(☆) 2.15 アンサンブル	RMSE (検証): 1.5941
最終更新: バギング木	特徴 8/8
Z.ZZ IVEUIAI IVEUWOIK	NWOE (1実証). 1.0221
最終更新: ワイド ニューラル ネットワーク	特徴 8/8
	RMSE (検証): 1.8104
	特徴 8/8
☆ 2.5 ツリー	RMSE (検証): 1.8104
 最終更新: 複雑な木	特徴 8/8
2.24 Neural Network	RMSE (検証): 1.8219
── 最終更新: 3 層ニューラル ネットワーク	特徴 8/8
2.23 Neural Network	RMSE (検証): 1.8657
 最終更新: 2 届ニューラル ネットワーク	特徴 8/8
2.21 Neural Network	RMSE (検証): 2.1201
 最終更新: ミディアム ニューラル ネットワーク	特徴 8/8
☆ 2.6 ツリー	RMSE (検証): 2.1573
量終更新: 中程度の木	特徴 8/8
☆ 2.7 ツリー	RMSE (検証): 2.633
量終更新: 粗い木	特徴 8/8
☆ 2.18 ガウス過程回帰	RMSE (検証): 2.6395
最終更新: 指数 GPR	特徴 8/8
② 2.19 ガウス過程回帰	RMSE (検証): 2.8507
最終更新: 有理二次 GPR	特徴 8/8
② 2.17 ガウス過程回帰	RMSE (検証): 2.9058
最終更新: Matern 5/2 GPR	特徴 8/8
2.20 Neural Network	RMSE (検証): 2.9642
最終更新: ナロー ニューラル ネットワーク	特徴 8/8
2.16 ガウス過程回帰	RMSE (検証): 2.9751
最終更新: 二乗指数 GPR	特徴 8/8

☆ 2.17 ガウス過程回帰	RMSE (検証): 2.9058
最終更新: Matern 5/2 GPR	特徴 8/8
2.20 Neural Network	RMSE (検証): 2.9642
最終更新: ナロー ニューラル ネットワーク	特徴 8/8
☆ 2.16 ガウス過程回帰	RMSE (検証): 2.9751
最終更新: 二乗指数 GPR	特徴 8/8
2.11 SVM	RMSE (検証): 3.0802
最終更新: 細かいガウス SVM	特徴 8/8
☆ 2.14 アンサンブル	RMSE (検証): 3.7953
最終更新: ブースティング木	特徴 8/8
2.12 SVM	RMSE (検証): 4.0203
最終更新: 中程度のガウス SVM	特徴 8/8
2.10 SVM	RMSE (検証): 4.0206
最終更新: 3 次 SVM	特徴 8/8
	RMSE (検証): 4.8133
最終更新: 交互作用線形	特徴 8/8
2.4 ステップワイズ線形回帰	RMSE (検証): 4.8137
ー 最終更新: ステップワイズ線形	特徴 8/8
☆ 2.26 カーネル	RMSE (検証): 4.8768
最終更新: 最小二乗回帰カーネル	特徴 8/8
	RMSE (検証): 5.0194
→ 最終更新: 2 次 SVM	特徴 8/8
2.13 SVM	RMSE (検証): 5.4717
最終更新: 粗いガウス SVM	特徴 8/8
(☆) 2.25 カーネル	RMSE (検証): 5.48
最終更新: SVM カーネル	特徴 8/8
☆ 2.1 線形回帰	RMSE (検証): 5.7689
最終更新: 線形	特徴 8/8
	RMSE (検証): 6.0826
Tobac (All and	4 1 11/2
	RMSE (検証): 6.2035
最終更新: ロバスト線形	特徴 8/8

予測結果について

高い熱伝達率の場合は、機械学習の予測が低いである。 沸騰熱伝達率の予測が向上を確認しました。

予測結果について

高い熱伝達率点がR22のデータを確認した。 多くのデータと比較する必要がある。

予測テスト

テスト結果

RMSE: 2.3416

決定係数:-2.08

MSE: 5.4833

MAE: 1.9414

テスト結果

事前設定:バギング木

最小リーフサイズ:8

学習器の数:30

テストの残差

Residual= 実際の応答一予測された応答

熱伝達率のほとんどは、誤差5%以内で予測できる。

予測はすべての変数 と冷媒タイプを考慮 する。

ケンドールの順位相関係数

強い関係

壁面温度~飽和温度

熱流束~温度

熱流束~質量流速

熱伝達率に関する最も強力なパラメーターは 圧力、クオリティ、熱流束、質量流速

宮良研究の実験結果と比較

質量流速:50,150,200

冷媒:R1234yf クオリティ:0-1 <u>デー</u>タ数点:41

Microfine tube

- ・ 機械学習を用いて、熱伝達率を高い精度で予測で きる
- 熱伝方法と冷媒の影響があることが確認した
- トレニンーグデータを増加したら、RMSE低くなると考える
- 流路形、水力直径、熱交換器タイプのパラメータ を考慮することが重要である

ご静聴ありがとうございました