

Subtitle

- 1. Introduction
- 2. Preliminaries
- 3. Operator Precedence Languages
- 4. (Closure-)Properties

Introduction

1.

▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - ▶ N ist die Menge der Nichtterminale

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - ▶ N ist die Menge der Nichtterminale
 - Σ ist die Menge der Terminalsymbole

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - ▶ N ist die Menge der Nichtterminale
 - Σ ist die Menge der Terminalsymbole
 - P sind die Produktionsregeln

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - ▶ N ist die Menge der Nichtterminale
 - Σ ist die Menge der Terminalsymbole
 - ▶ P sind die Produktionsregeln
 - ightharpoonup S \in N ist das Startsymbol

Namenskonventionen 1

- 1. $a, b, \dots \in \Sigma$ sind einzelne Terminalsymbole
- 2. $v, w, \dots \in \Sigma^*$ sind beliebige Terminalstrings
- 3. $A, B, \dots \in N$ sind einzelne Nichtterminale
- **4.** $\alpha, \beta, \dots \in (\Sigma \cup N)^*$ sind beliebe Reststrings
- 5. $A \rightarrow \epsilon$ ist die leere Regel
- 6. Eine umbenennende Regel hat nur ein Nichtterminal als rechte Seite $(A \rightarrow B)$

Namenskonventionen 2

- 1. Eine Regel ist in *Operatorform*, wenn die rechte Seite keine benachbarten Nichtterminale hat
- 2. Jede kontextfreie Grammatik kann in eine äquivalente Operatorgrammatik (OG) umgewandelt werden

▶ Wird häufig auch Floyd Grammar genannt nach ihrem Erfinder

- ▶ Wird häufig auch Floyd Grammar genannt nach ihrem Erfinder
- ▶ Definition: Linke und Rechte Terminalmenge

$$\mathcal{L}_{G}(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha\}$$
$$\mathcal{R}_{G}(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} \alpha aB\}$$

- Wird häufig auch Floyd Grammar genannt nach ihrem Erfinder
- ▶ Definition: Linke und Rechte Terminalmenge

$$\mathcal{L}_{G}(A) = \{ a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha \}$$
$$\mathcal{R}_{G}(A) = \{ a \in \Sigma | A \stackrel{*}{\Rightarrow} \alpha aB \}$$

▶ Es werden drei binäre Operator Precedence Relationen definiert:

- ▶ Wird häufig auch Floyd Grammar genannt nach ihrem Erfinder
- ▶ Definition: Linke und Rechte Terminalmenge

$$\mathcal{L}_{G}(A) = \{ a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha \}$$
$$\mathcal{R}_{G}(A) = \{ a \in \Sigma | A \stackrel{*}{\Rightarrow} \alpha aB \}$$

- ► Es werden drei binäre Operator Precedence Relationen definiert:
- ▶ equal in precedence: $a \doteq b \Leftrightarrow \exists A \to \alpha aBb\beta, B \in N \cup \{\epsilon\}$ takes precedence: $a > b \Leftrightarrow \exists A \to \alpha Db\beta, D \in N$ and $a \in \mathcal{R}_G(D)$ yields precedence: $a < b \Leftrightarrow \exists A \to \alpha aD\beta, D \in N$ and $b \in \mathcal{L}_G(D)$

► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$

- ► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP alphabet

- ► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP alphabet
 - 2. Q ist die Menge der Zustände

- ► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände

- ► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - 4. $F \subseteq Q$ ist die Menge der finalen Zustände

- ► Ein nichtdetermistischer Operator Precedence Automat ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - 4. $F \subseteq Q$ ist die Menge der finalen Zustände
 - 5. δ ist die Übergangsfunktion, die aus drei Teilen besteht:

$$\delta_{\mathsf{shift}}: Q \times \Sigma \to \mathcal{P}(Q) \; \delta_{\mathsf{push}}: Q \times \Sigma \to \mathcal{P}(Q) \; \delta_{\mathsf{pop}}: Q \times Q \to \mathcal{P}(Q)$$

► OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*

(Closure-)Properties

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*
- Das Leereproblem ist in PTIME lösbar, da OPLs Subklasse von kfG

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*
- Das Leereproblem ist in PTIME lösbar, da OPLs Subklasse von kfG
- Visibly Pushdown Sprachen sind in der Klasse der OPLs enthalten

Quellen

wissen-leben