Minimum Cost Spanning Trees: Prim's Algorithm

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 12

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

Example

■ Start with smallest edge, (1,3)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Start with smallest edge, (1,3)
- Extend the tree with (1,0)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Start with smallest edge, (1,3)
- Extend the tree with (1,0)
- Can't add (0,3), forms a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Start with smallest edge, (1,3)
- Extend the tree with (1,0)
- Can't add (0,3), forms a cycle
- Instead, extend the tree with (1, 2)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

- Start with smallest edge, (1,3)
- Extend the tree with (1,0)
- Can't add (0,3), forms a cycle
- Instead, extend the tree with (1,2)
- Extend the tree with (2,4)

 $G = (V, E), W : E \rightarrow \mathbb{R}$

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i,j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST

- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - Add v to TV, f to TE

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - \blacksquare $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - \blacksquare Add v to TV, f to TE

$$TV = \emptyset$$

$$TE = \emptyset$$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - \blacksquare Add v to TV, f to TE

$$TV = \{1, 3\}$$

 $TE = \{(1, 3)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - \blacksquare $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - Add v to TV. f to TE

$$TV = \{1, 3, 0\}$$

 $TE = \{(1, 3), (1, 0)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - Add v to TV, f to TE

$$TV = \{1, 3, 0, 2\}$$

 $TE = \{(1, 3), (1, 0), (1, 2)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Incrementally build an MCST
 - \blacksquare $TV \subseteq V$: tree vertices, already added to MCST
 - $TE \subseteq E$: tree edges, already added to MCST
- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e = (i, j)
 - Set $TV = \{i, j\}$, $TE = \{e\}$ MCST
- Repeat n-2 times
 - Choose minimum weight edge f = (u, v) such that $u \in TV$, $v \notin TV$
 - \blacksquare Add v to TV, f to TE

$$TV = \{1, 3, 0, 2, 4\}$$

 $TE = \{(1, 3), (1, 0), (1, 2), (2, 4)\}$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include *e*

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- Let T be an MCST, $e \notin T$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- Let T be an MCST, $e \notin T$
- \blacksquare T contains a path p from u to

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- Let T be an MCST, $e \notin T$
- \blacksquare T contains a path p from u to
 - \blacksquare p starts in U, ends in W

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- Let T be an MCST, $e \notin T$
- \blacksquare T contains a path p from u to
 - \blacksquare p starts in U, ends in W
 - Let f = (u', w') be the first edge on p crossing from U to W

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- Let T be an MCST, $e \notin T$
- \blacksquare T contains a path p from u to
 - \blacksquare p starts in U, ends in W
 - Let f = (u', w') be the first edge on p crossing from U to W
 - Drop f, add e to get a cheaper spanning tree

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- What if two edges have the same weight?

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- What if two edges have the same weight?
- Assign each edge a unique index from 0 to m-1

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Assume for now, all edge weights distinct
- What if two edges have the same weight?
- Assign each edge a unique index from 0 to m − 1
- Define (e, i) < (f, j) if W(e) < W(j) or W(e) = W(j) and i < j

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

Minimum Separator Lemma

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

■ In Prim's algorithm, TV and $W = V \setminus TV$ partition V

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

Minimum Separator Lemma

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

■ In fact, for any $v \in V$, $\{v\}$ and $V \setminus \{v\}$ form a partition

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include *e*

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

- In fact, for any $v \in V$, $\{v\}$ and $V \setminus \{v\}$ form a partition
- The smallest weight edge leaving any vertex must belong to every MCST

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

- In fact, for any $v \in V$, $\{v\}$ and $V \setminus \{v\}$ form a partition
- The smallest weight edge leaving any vertex must belong to every MCST
- We started with overall minimum cost edge

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

- In fact, for any $v \in V$, $\{v\}$ and $V \setminus \{v\}$ form a partition
- The smallest weight edge leaving any vertex must belong to every MCST
- We started with overall minimum cost edge
- Instead, can start at any vertex v, with $TV = \{v\}$ and $TE = \emptyset$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e

- In Prim's algorithm, TV and $W = V \setminus TV$ partition V
- Algorithm picks smallest edge connecting TV and W, which must belong to every MCST

- In fact, for any $v \in V$, $\{v\}$ and $V \setminus \{v\}$ form a partition
- The smallest weight edge leaving any vertex must belong to every MCST
- We started with overall minimum cost edge
- Instead, can start at any vertex v, with $TV = \{v\}$ and $TE = \emptyset$
- First iteration will pick minimum cost edge from v

Summary

- Prim's algorithm grows an MCST starting with any vertex
- At each step, connect one more vertex to the tree using minimum cost edge from inside the tree to outside the tree
- Correctness follows from Minimum Separator Lemma