31	25	24	20 19	15	14 12	11 7	6 0	
		imm[3	1:12]			rd	0110111	U lui
		imm[3				rd	0010111	U auipc
	imn	n[20 10:1	[11]19:12]			rd	1101111	J jal
	imm[11:0]			rs1	000	rd	1100111	I jalr
in	imm[12 10:5]		2	rs1	000	imm[4:1 11]	1100011	B beq
in	imm[12 10:5]		2	rs1	001	imm[4:1 11]	1100011	B bne
in	nm[12 10:5]	rs	2	rs1	100	imm[4:1 11]	1100011	B blt
in	imm[12 10:5]		2	rs1	101	imm[4:1 11]	1100011	B bge
	imm[12 10:5]		2	rs1	110	imm[4:1 11]	1100011	B bltu
in	nm[12 10:5]	rs.	2	rs1	111	imm[4:1 11]	1100011	B bgeu
	imm[11:0]			rs1	000	rd	0000011	I lb
	imm[11:0]			rs1	001	rd	0000011	I lh
	imm[11:0]			rs1	010	rd	0000011	I lw
	imm[11:0]			rs1	100	rd	0000011	I lbu
	imm[11:0]		_	rs1	101	rd	0000011	I lhu
	imm[11:5]	rs2		rs1	000	imm[4:0]	0100011	S sb
i	imm[11:5]	rs.	2	rs1	001	imm[4:0]	0100011	S sh
j	imm[11:5]	rs.	2	rs1	010	imm[4:0]	0100011	S sw
	imm[11:0]			rs1	000	rd	0010011	I addi
	imm[11:0]			rs1	010	rd	0010011	I slti
	imm[11:0]			rs1	011	rd	0010011	I sltiu
	imm[11:0]			rs1	100	rd	0010011	I xori
	imm[11:0]			rs1	110	rd	0010011	I ori
	imm[11:0]			rs1	111	rd	0010011	I andi
	0000000	sha		rs1	001	rd	0010011	I slli
	0000000	sha		rs1	101	rd	0010011	I srli
	0100000	sha		rs1	101	rd	0010011	I srai
	0000000	rs2		rs1	000	rd	0110011	R add
	0100000		2	rs1	000	rd	0110011	R sub
⊢—	0000000		2	rs1	001	rd	0110011	R sll
	0000000		2	rs1	010	rd	0110011	R slt
⊢—	0000000		2	rs1	011	rd	0110011	Rsltu
	0000000		2	rs1	100	rd	0110011	R xor
	0000000		2	rs1	101	rd	0110011	R srl
	0100000		2	rs1	101	rd	0110011	R sra
	0000000		2	rs1	110	rd	0110011	R or
0000000		rs2		rs1	111	rd	0110011	R and
0000		suc		00000	000	00000	0001111	I fence
0000		000)()	00000	001	00000	0001111	I fence.
	00000000000			00000	000	00000	1110011	I ecall
	00000000000	1		00000	000	00000	1110011	I ebreak
	csr			rs1	001	rd	1110011	I csrrw
	csr		_	rs1	010	rd d	1110011	I csrrs
	csr			rs1	011	rd 1	1110011	I csrrc
	csr			zimm	101	rd 1	1110011	I csrrwi
	csr			zimm	110	rd d	1110011	I cssrrsi
	csr		場 (大刀	zimm	111	rd	1110011	I csrrci

图 2.3: RV32I 带有指令布局,操作码,格式类型和名称的操作码映射。(此图基于[Waterman and Asanovi'c 2017]的表 19.2。)

第四章 乘法和除法指令

奥卡姆的威廉 (1452-1519) 是一位英国神学家,他推广了现在所谓的"奥卡姆剃刀"原理,它意味着地林 學

4.1 导言

RV32M 向 RV32I 中添加了整数乘法和除法指令。图 4.1 是 RV32M 扩展指令集的图形表示,图 4.2 列出了它们的操作码。

若非必要, 勿增实体。——奥卡姆的威廉(William of Occam), 1320

除法是直截了当的。可以回想起如下的式子:

商 = (被除数 - 余数) ÷ 除数

或者

被除数 = 除数 \times 商 + 余数 余数 = 被除数 - (商 \times 除数)

RV32M 具有有符号和无符号整数的除法指令: divide(div)和 divide unsigned(divu),它们将商放入目标寄存器。在少数情况下,程序员需要余数而不是商,因此 RV32M 提供 remainder(rem)和 remainder unsigned(remu),它们在目标寄存器写入余数,而不是商。

srl 可以做除数为 2^{i} 的 无符号除法。例如,如果 $a2=16(2^{i})$,那么 srli t2,a1,4 这条指令和 divu t2,a1,a2 得到的结果相同。

RV32M

图 4.1: RV32M 指令的图示

31	25	24	20	19	15	14	12	11	7	6		0
0000001		rs2		rs	1	00	0		rd		0110011	R mul
0000001		rs2		rs	1	00	1		rd		0110011	R mulh
0000001		rs2		rs	1	01	0		rd		0110011	R mulhsu
0000001		rs2		rs	1	01	1		rd		0110011	R mulhu
0000001		rs2		rs	1	10	0		rd		0110011	R div
0000001	ļ	rs2		rs	1	10	1	I	rd		0110011	R divu
0000001		rs2		rs	1	11	0		rd		0110011	R rem
0000001		rs2		rs	s 1	11	1		rd		0110011	R remu

图 4.2: RV32M 操作码映射包含指令布局,操作码,指令格式类型和它们的名称([Waterman and Asanovic 2017]的表 19.2 是此图的基础。)

乘法的式子很简单: