Induction, Recursion, Algorithmic Analysis

Problem 1

Prove by induction that

Base
$$N = \{ (n+1)! - 1 \}$$
 for $n \ge 1$

Problem 2

Let $\Sigma = \{1, 2, 3\}$.

- (a) Give a recursive definition for the function sum : $\Sigma^* \to \mathbb{N}$ which, when given a word over Σ returns the sum of the digits. For example $\mathsf{sum}(1232) = 8$, $\mathsf{sum}(222) = 6$, and $\mathsf{sum}(1) = 1$. You should assume $\mathsf{sum}(\lambda) = 0$.
- (b) For $w \in \Sigma^*$, let P(w) be the proposition that for all words $v \in \Sigma^*$, $\operatorname{sum}(wv) = \operatorname{sum}(w) + \operatorname{sum}(v)$. Prove that P(w) holds for all $w \in \Sigma^*$.
- (c) Consder the function rev : $\Sigma^* \to \Sigma^*$ defined recursively as follows:
 - $rev(\lambda) = \lambda$
 - For $w \in \Sigma^*$ and $a \in \Sigma$, rev(aw) = rev(w)a

Prove that for all words $w \in \Sigma^*$, sum(rev(w)) = sum(w)

Problem 3

Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ recursively as follows: f(m,0) = 0 for all $m \in \mathbb{N}$ and f(m,n+1) = m + f(m,n).

- (a) Let P(n) be the proposition that f(0,n) = f(n,0). Prove that P(n) holds for all $n \in \mathbb{N}$.
- *(b) Let Q(m) be the proposition $\forall n, f(m,n) = f(n,m)$. Prove that Q(m) holds for all $m \in \mathbb{N}$.

Problem 4

Analyse the complexity of the following algorithms to compute the *n*-th Fibonacci number

(a) **FibOne**(*n*):

if
$$n \le 2$$
 then return 1 else return $\mathbf{FibOne}(n-1) + \mathbf{FibOne}(n-2)$

(b) **FibTwo**(*n*):

$$x = 1, y = 0, i = 1$$

While $i < n$:
 $t = x$

```
x = x + yy = ti = i + 1return x
```

Problem 5

Analyse the complexity of the following recursive algorithm to test whether a number x occurs in an *ordered* list $L = [x_1, x_2, ..., x_n]$ of size n. Take the cost to be the number of list element comparison operations.

```
BinarySearch(x, L = [x_1, x_2, ..., x_n]):

if n = 0 then return no
else

if x_{\left\lceil \frac{n}{2} \right\rceil} > x then return BinarySearch(x, [x_1, ..., x_{\left\lceil \frac{n}{2} \right\rceil - 1}])
else if x_{\left\lceil \frac{n}{2} \right\rceil} < x return BinarySearch(x, [x_{\left\lceil \frac{n}{2} \right\rceil + 1}, ..., x_n])
else return yes
```