Principe de la recherche par dichotomie

La **recherche par dichotomie** (ou **recherche binaire**) est une méthode efficace pour trouver un élément dans un tableau **trié**.

- 1. On commence par comparer l'élément cherché à l'élément situé au milieu du tableau.
- 2. Si cet élément est celui recherché, on s'arrête.
- 3. Sinon, on divise le tableau en deux sous-parties :
 - Si l'élément recherché est plus petit, on cherche dans la partie gauche.
 - S'il est plus grand, on cherche dans la partie droite.
- 4. On répète ce processus jusqu'à trouver l'élément ou jusqu'à ce que la partie restante soit vide.

Complexité:

- À chaque étape, la taille du tableau à examiner est divisée par 2.
- Si la taille initiale du tableau est n, le nombre maximum d'étapes est donné par $\log_2(n)$ (car $2^k=n$, où k est le nombre de divisions).
- Complexité en temps : $O(\log n)$.

Définition de $\log_2(n)$:

• Le logarithme base 2, $\log_2(n)$, est l'exposant x tel que :

$$2^x = n$$

• En d'autres termes, $\log_2(n)$ nous indique combien de fois on doit multiplier 2 par lui-même pour obtenir n.

Lien avec les puissances de 2 :

Prenons un exemple pour comprendre :

- 1. Si n = 8:
 - $8 = 2^3$
 - Donc, $\log_2(8) = 3$.
- 2. Si n = 16:
 - $16 = 2^4$
 - Donc, $\log_2(16) = 4$.

Cela signifie que $\log_2(n)$ "inverse" le processus de l'exponentiation 2^x . Si n est une puissance de 2, le résultat de $\log_2(n)$ est simplement l'exposant.

Application dans la recherche par dichotomie :

Dans la recherche par dichotomie :

- 1. À chaque étape, on divise la taille n par 2.
- 2. Combien de divisions faut-il pour réduire n à 1 ?
 - Si n=16, il faut 4 étapes : 16 o 8 o 4 o 2 o 1.
 - Si n=32, il faut 5 étapes : 32 o 16 o 8 o 4 o 2 o 1.

Ce nombre d'étapes correspond exactement à $\log_2(n)$. En effet, diviser n par 2 revient à résoudre $2^k=n$, où $k=\log_2(n)$ est le nombre d'étapes nécessaires.

Représentation graphique :

En rouge courbe linéaire, en bleu courbe log2(n)