# Normal Approximation for the Box Model

#### **Box Model**

| is  | s like drawing | _ times from the |
|-----|----------------|------------------|
| box | with           | replacement and  |
|     | summing the    | e draws.         |

#### Example #1

| Rolling a die 40 times and summing the numbers shown |                    |      |  |
|------------------------------------------------------|--------------------|------|--|
| is like                                              |                    |      |  |
| drawing                                              | times from the box | with |  |
| replacement and summing the draws.                   |                    |      |  |

#### Example #1

Rolling a die 40 times and summing the numbers shown ...is like...

drawing 40 times from the box 1, 2, 3, 4, 5, 6 with replacement and summing the draws.

the expected value the standard error

The sum will be about \_\_\_\_ give or take \_\_\_ or so.

#### Equations

expected value for sum = (number of draws)  $\times$  (average of box)

**SE** for sum = 
$$\sqrt{\text{number of draws}} \times (\text{SD of box})$$

#### **Helpful Hints**

Suppose the box is a "big-small box" that only has big numbers B and small numbers S (e.g., the box 2, 2, 2, 14, 14), then

SD of big-small box =  $(B - S) \times \sqrt{(fraction that are B) \times (fraction that are S)}$ 

Suppose the box is a "0-I box" that only has 0s and Is (e.g., the box 0, 0, 0, 1), then

SD of 0-I box =  $\sqrt{\text{(fraction that are 0)} \times \text{(fraction that are I)}}$ 

#### Example #1

Rolling a die 40 times and summing the numbers shown ...is like...

drawing 40 times from the box 1, 2, 3, 4, 5, 6 with replacement and summing the draws.

the expected value the standard error

The sum will be about 140 give or take 11 or so.

## Question

Whats the chance that the sum is more than 155?

## Normal Approximation

- I. Draw a picture!
  - i. bell curve
  - ii. label values
  - iii. shade area of interest
- 2. Convert to standard units (use expected value instead of average and standard error instead of SD).
- 3. Use rules.
  - i. normal table (p. A-104)
  - ii. 100%
  - iii. symmetric



As long as the number of draws is sufficiently large, the sum follows the normal curve.



## proof by example

https://carlislerainey.shinyapps.io/box-model/



#### Practice Problem I

# If I toss a coin 50 times, what's the chance I get more than 30 heads?

**Initial guess?** 

What's the box model?

What's the expected value and standard error?

What's the normal approximation?

draw picture

convert to standard units

use rules

### Practice Problem II

Suppose I give an exam with 9 true-false questions. A student isn't well-prepared, so they decide to guess on each.

What's the chance they pass?

**Initial guess?** 

How many correct answer do you need to pass (more than 70%)?

What's the box model?

What's the expected value and standard error?

What's the normal approximation?

draw picture

convert to standard units

use rules