CS 466: Design and Analysis of Algorithms

Michael Noukhovitch

Spring 2016, University of Waterloo

Notes written from Mark Petrick's lectures.

Contents

1	Tra	velling Salesman Problem
	1.1	Definition
		Metrick TSP
	1.3	Further Approximation
2	Bin	nomial Heap
	2.1	Data Structures
	2.2	Binomial Tree
		2.2.1 Definition
		2.2.2 Claims
	2.3	Binomial Heap
		2.3.1 Definition

1 Travelling Salesman Problem

1.1 Definition

Given a graph G = (V, E) with weights on edges $w : E \to \mathbb{R}^{+ve \cup \{0\}}$, find a **TSP Tour**:

- a cycle C that visits evert vertex exactly once
- has min $\sum_{e \in C} w(e)$

This is NP-Complete

1.2 Metrick TSP

Create an approximation problem with TSP by defining distances in a space:

- symmetry: d(u, v) = d(v, u)
- triangle inequality: $d(u, v) \leq d(u, w) + d(w, v)$

Approximation Algorithm (1977)

- find a minimum spanning tree and walk the tour
- take shortcuts to avoid re-visiting the same vertices
- by triangle inequality, the length is $\leq 2*l_{MST}$ and therefore total $l \leq 2*l_{TSP}$ (2-approx)
- ends up with runtime of MST, O(m log n)

1.3 Further Approximation

- TSP General: no constant factor approx
- Metric space: 1.5-approx, proven limit is 1.0045
- Euclidean space: $(1 + \epsilon)$ -approx in polytime

2 Binomial Heap

2.1 Data Structures

Priority Queue

- store n elements each w/ integer key
- insert, deleteMin, decreaseKey, build (heapify)

Heap

- binary tree of elements
- structure (min key at root for min-heap)

- shape (almost complete binary tree, store in array)
- insert (+ bubbleUp) $O(\log n)$
- deleteMin $O(\log n)$
- decreaseKey $O(\log n)$
- heapify O(n)
- merge O(n)

2.2 Binomial Tree

2.2.1 Definition

- binomial tree of order 0 is a single node
- binomial tree of order k has a root node and its children are the binomial trees of order $k-1\dots 0$

2.2.2 Claims

- B_k has 2^k nodes $2^{k-1} + 2^{k-1} = 2^k$
- the height of B_k is kk-1+1=k
- there are $\binom{k}{i}$ nodes at depth i in B_k $\binom{k-1}{i} + \binom{k-1}{k-i} = \binom{k}{i}$

2.3 Binomial Heap

2.3.1 Definition

collection of binomial trees at most one of each rank (each one uses one heap order)

Example 2.1. Make a binomial tree of size n = 13

Expressing n in binary tells us what trees to build. 13 = 1101 so build k = 3, k = 2, k = 0