2019 Mid Sem Solution Differentiate between HFA and DFA, employer with an example.

DFA MFA - Transition functions -> Transition function. 6; ax 5 -> a S: Q×(ZUE)→2 on There can be therenge -> There can be zero, one transfor from a one or more transition state on an input from a state without symbol. without giving any input SED'. S= {9,6} (ending with ab) > Exi- 5= {a, b} (ending with ab)

1) b) Design an NFA with 4 states for the set abo, abod; abo, abod; and (92)

Design a minimal DFA for $\delta = (b^*a^* + ab + \lambda)^*$ $\delta = (b^*a^* + ab + \lambda)^* = (a + b)^*$

1) d) Which language (px) and a.p? $(\phi)^* = (\varepsilon)^* = \varepsilon \quad (\text{Empty string})$ (Empty Language)

(Suppose L1 UL2 is régular & l, estinte. Can we conclude that La is regular? Touk stalle. Justify your arruer. - La is also regular. broz. La, (L, UL2) - (L, -l2) As the LULZ ir regular, Liù Becalieregular book Et is finite (being a finite set minus something) and regular longuages are closed under setdlittering Design a DFA for the larguage over $\Sigma = \{a,b\}$ $L = \{\omega, abb \ \omega_{2}, |\omega_{1}| \ge 3, |\omega_{2}| \le 2\}$ $\frac{RE}{(a+b)^{3}} b^{*} abb (\lambda + a + b)^{2}$ $= (a+b) (a+b) (a+b) b^{*} abb (\lambda + a + b) (\lambda + a + b)$

3) a) Write Regular expressions for the following languages over $\Sigma = \{a,b\}$ R= E E E + a Zat b Zb+ aa ¿ aa + ab s ab + ba s ba + bb s bb ii) La= { u | u has adleast 1 triplet belles } R= \$ (a+b)* (aaa+bbb) *(a'+b)* iii) 13= { a| a has ever no. of a's and odd :0. of b's } R= { (aa) (66) by ing. Ly = { u| | u| look attend 15 & admost 203 R= (a+b) (2+a+b) 5 non and lawor and have made a medical in

3) 6>

Design a DFA for the set of all non-negative integers divisible by 4.

(String symbols are 0,1,2,3,4,5,6,7,8,9).

of Same as question:

Design aDFA to accept decimal strings divisible by 4.

Solution

Divisible by 4 means, ktdivisor(k)=4

Vadix (x) = 10 (4)

digits(d) = 40,1,2,3,4,5,6,7,8,9}

vencinder (1) = 0 to k-1 = 50,1,2,3}

which implies 90,9,92 & 93 are

the states of DFA.

Transitions can be computed using the following

relation.

Let us group of digits from 0 to 9 baredon recordinders, we get abter dividing by 4 as shown below;

· \$0,4,84 with a cu remainder,

\$0 8 from \$0,4, 8.] => 8 from for

- . \$1,5,93 with 1 as remainte => & from 1)
- = {2,6} with 2 agrenainder=> 6 four {2}
- · 9 3,73 with 3 as remainder => 8 from 931

	remainder ('i)	1	(7 2+d) mod K=j (10 2+d) mod Y=j	8 (9:,d)=9;				
-	90-	6 1 2 3	10×0+0 mod 4= 0 10×0+1 mod 4= 1 1 = 2	5(90,0)=90 8(90,1)=91 92				
	G/ (321) //	b 1 2 3	10x1+1 mod 4= 2 10x1+1 mod 4= 3	93				
_	92 (2 · 2)	0 1 2 3	(0 × 2 + 0 md 4 = 0 1 2 3	90 91 92 93				
	23 (i=3)	0 1 2 3	10 × 3+0 mody, 2	93				
0,4,8 2,6 1,5,9 1,5,								

4) a) Lef Li & Lz Se two contanguages over same
alphabet \geq .
in I I le Lr. Lz aboth are regular.
From or disprove that Lz must be regular,
Sol FALSE. Let Le be a not regular language
L2= fanb n≥03
L1= \$ (regular)
Then, we know, $ \begin{array}{c} $
= \$, {a? b? 1 > > 3
\sim \sim \sim
So, we dispoore that L2 moust be regularion (proved)
Le Les is not regular (proved)

4) b) Construct a DFA that accepts the larguage &;

L: Jw/ w does not contain a substring abc/

over E: Ja,b,c.J. Convert this DFA to regular

expression using stack elimination method.

Solution First draw the DFA for wicontaining substring abc.

Then comprenent the language where "w' does not contain ele"

by conventing Montinal to final &

final to nonlinal state.

As, there are multiple final states, it introduce a new final states, it introduce a new final states, it is production to that new final state.

There, 93 is deadstate booz, then is no path to final state from 93. Severnove 93.

Remove 9,

Now remove 92

b+(+aa*(

At aa* + aa* b (aa* b) (A+aa*)

a a* b (aa* b) (b +aa* c)

b+(+aa*)

b+(+aa*)

b+(+aa*)

b+(+aa*)

b+(+aa* b) (aa* b) (b+aa*c)

A + aa* + aa* b (aa* b) (A+aa*)

- drz

5>	Convert gi	ven NFA+	o equivalent	DFF		riniid.	
β ₁₀ .		0	CV 3) (55 () [1] () () ()			
lip -	\rightarrow \land	(B,D)	B				
-	* B	C	(B,C)				
	C	D	A	1.4			Ŀ
	× D	-	A				
		1	(7)				
	DFATT	*					
	8	0	1	1	8		1
) A	(B,D)	B	5 1	-> q.	9,	92
-	* (B, D)		(A,B,C)		* 91	93	95
1	* B	5	(B,C)		* 92	93	96
	CC	D) /	/A	\$	93	94	90
	* Du	\$ (Degal)	A		* 94	94	90
	* (A1B,C)	(Brc,D)	(A,B,C)		* 95	97	95
	(B(C)	(C,D)	(A,B,C)		* 96	98	95
	* (B,C,D) K	(C,D)	(A, B(C)		×97	98	95
44) 40)	* (c'u) /	D	A		*98	14	90
	<i>φ</i>	· • •	9	-	199	94	99
		1					

Minimization	of DFA by Stale equivalna methos.
U-leguraunu;	5-90, 93, 9d3 591,92, 94, 95, 96, 92, 983
*	Monfinal
1- equivalence:	{a0} {9,,921
•	{ 93} { 94} { 983
	f9a) f95,96,97]
2 - equivalence	{903 {91,92] {96,923
	Eggs fgs Final Minimization
3-equivalore	{90} {91} {95} [10] {A3, {B,D3, {A,B,C}} {93} {94} {94} {96,97} [10] {96}, 503 {6,00} {60} {60} {60} {60} {60} {60} {60} {
4-equivalnus	same at 3-equivalent