Helicopter Site Suitability

Step 1: Outline

Figure 1a. roads&water

Description: road (brown), water (purple), non-road or non-water land (gray)
Obtained

1. from raw folder

Figure 1b.outline

Description: gray (all land mass), used purely for aesthetic purpose to overlay ontop of other layers and show outline of North Morocco

Obtained:

- 1. Reclassify(roads&water)
 - Road \rightarrow 1
 - Non-Road/Non-Water $\rightarrow 1$
 - Water $\rightarrow 1$

Step 2: Water Distance

Figure 2/3a. roads&water

Description: road (brown), water (purple), non-road or non-water land (gray)
Obtained

1. from raw folder

Figure 2b. w_only

Description: water (purple) Obtained:

- Reclassify(roads&water)
 - Road → NoData
 - Non-Road/Non-Water → NoData
 - Water \rightarrow 1

Figure 2c. w_dist

Description: distance from water source with red (closest) and blue (furthest)
Obtained:

- Euclidian Distance(w_only)
 - Set to 10 equal quintiles

Step 3: Road Distance

Figure 2/3a. roads&water

Description: road (brown), water (purple), non-road or non-water land (gray)
Obtained

1. from raw folder

Figure 3b. r_only

Description: road (brown)
Obtained:

- Reclassify(roads&water)
 - Water → NoData
 - Non-Road/Non-Water → NoData
 - Road \rightarrow 1

Figure 3c. r_dist

Description: distance from road source with red (closest) and blue (furthest)
Obtained:

- Euclidian Distance(r_only)
 - Set to 10 equal quintiles

Step 4: Road & Water Distance

Figure 2c. w_distDescription: distance from water source

Figure 3c. r_distDescription: distance from road source

Figure 4a. w_r_dist

Description: indicates if area is both close to water and road source with red (close to both), blue (not close to road, water, or both)

Obtained:

- Raster Calculator(w_dist, r_dist)
 - 1. ("w_dist" > 4000) & ("w_dist" < 11000) & ("r_dist" > 4000) & ("r_dist" < 11000) \rightarrow 1

Step 5: Hospital Distance

Figure 5a. Hospitals

Description: location of hospitals

Obtained

1. from raw folder

Figure 5b. hosp_dist

Description: distance from hospital with red (closest) and blue (furthest)
Obtained:

- 1. Euclidian Distance(Hospitals)
 - Set to 10 equal quintiles

Figure 5c. hosp_class

Description: distance reclassified into 10 classes with red (closest, highest class - 10) and blue (furthest, lowest class - 1) Obtained:

- 1. Reclassify(hosp dist)
 - Set to 10 intervals (0 100, 100 1000, 1000 2500, 2500 5000, 5000 10000, 10000 25000, 25000 50000, 50000 80000, 80000 120000, 120000 160000)

Step 6: Helicopter Distance

Figure 6a. Helicopters

Description: location of helicopters

Obtained

1. from raw folder

Figure 6b. heli_dist

Description: distance from helicopters with red (furthest) and blue (closest)
Obtained:

- 1. Euclidian Distance(Helicopters)
 - Set to 10 equal quintiles

Figure 6c. heli_class

Description: distance reclassified into 10 classes with red (furthest, highest value) and blue (closest, lowest values) Obtained:

- 1. Reclassify(heli dist)
 - Set to 10 intervals (0 100, 100 1000, 1000 2500, 2500 5000, 5000 10000, 10000 25000, 25000 50000, 50000 80000, 80000 120000, 120000 160000)

Step 7: Weighting

Kev: higher value indicates further from base

The following figures give a score based on different weight. All use the raster calculator tool to assign such values

Figure 7a. Heli_pri (top): additional weight given to distance from helicopter over distance from hospital; Formula: ("heli_class"*3 + "hosp_class")/4) **Figure 7b. Equal_pri** (mid): equal weight given to both distance from hospital and distance from helicopter; Formula: ("heli_class" + "hosp_class")/2) **Figure 7c. Hosp_pri** (bot): additional weight given to distance from hospital over

Figure 7c. Hosp_pri (bot): additional weight given to distance from hospital over distance from helicopter; Formula: ("heli_class" + "hosp_class"*3)/4)

Step 8: Requirements

Use the class figures, but apply the water/road and helicopter requirements calculated before. For each map, use Raster Calculator Cond(("w_r_dist") == 1) Figure 8a. Heli_pri_req (top): additional weight given to distance from helicopter over distance from hospital; Formula: ("heli_class"*3 + "hosp_class")/4) Figure 8b. Equal_pri_req (mid): equal weight given to both distance from hospital and distance from helicopter; Formula: ("heli_class" + "hosp_class")/2) Figure 8c. Hosp_pri_req (bot): additional weight given to distance from hospital over distance from helicopter; Formula: ("heli_class" + "hosp_class"*3)/4)

Apply requirements to also have to be close to road/water

