

# Jordan University of Science and Technology Faculty of Computer & Information Technology Computer Science Department

### **CS 763 Machine Learning**

#### Fall 2021

### **Course Catalog**

3 Credit hours (3 hrs lectures). This course introduces the students to Machine Learning that uses interdisciplinary techniques such as statistics, linear algebra, optimization, and computer science to create automated systems that can sift through large volumes of data at high speed to make predictions or decisions without human intervention. Machine learning has been essential to the success of many recent technologies, including autonomous vehicles, search engines, genomics, automated medical diagnosis, image recognition, and social network analysis, among many others. This class will familiarize students with a broad cross-section of models and algorithms for machine learning and prepare students for research or industry application of machine learning techniques.

| Instructor                |                                                                                                |  |
|---------------------------|------------------------------------------------------------------------------------------------|--|
| Instructors               | Dr. Malak A. Abdullah                                                                          |  |
| Office Hours and Location | Sun-Tue- 2:00-3:30 (Monday online upon request: 11:00-12:00)<br>A1-L3 or using Microsoft Teams |  |
| Office Phone              | -                                                                                              |  |
| E-mail                    | mabdullah@just.edu.jo<br>dr.malak.abdelghani@gmail.com                                         |  |
| Facebook Group            |                                                                                                |  |

| Textbooks and References  Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow 2 <sup>nd</sup> edition,  Aurélien Géron |                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Ref book1                                                                                                                          | Ethem Alpaydin, Introduction to Machine Learning, Second Edition,                         |  |
| D 01 10                                                                                                                            | http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12012                        |  |
| Ref book2                                                                                                                          | Hands-on Machine Learning with Scikit-Learn & TensorFlow: Concepts, Tools, and Techniques |  |
|                                                                                                                                    | to Build Intelligent Systems by Aurelien Geron                                            |  |
| Ref book3                                                                                                                          | Hastie, Tibshirani, Friedman, "Elements of Statistical Learning".                         |  |
|                                                                                                                                    | http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf               |  |
| Ref book4                                                                                                                          |                                                                                           |  |
|                                                                                                                                    | Machine Learning, Tom Mitchell, McGraw Hill, 1997.                                        |  |

## Software

Programming experience is strongly recommended for this course. Please work through the following tutorial if you do not have programming experience:

- 1. https://docs.python.org/3/tutorial/
- 2. Python Tutorial

| Prerequisites                 |                                                               |  |
|-------------------------------|---------------------------------------------------------------|--|
| Prerequisites (not mandatory, | Python, Algebra, Statistics, Data Structures, Algorithms, and |  |
| but it is good to have them)  |                                                               |  |

| Topics                                              | Week number |
|-----------------------------------------------------|-------------|
| Introduction to Machine Learning + Algebra + Python | 1           |
| Linear and Logistic Regression                      | 2           |
| Classification: SVMs and Decision Trees             | 4 & 5       |
| Ensemble Learning, Random Forest, Feature Selection | 6           |
| Mid Term                                            | 7           |
| Neural Network                                      | 8 & 9       |
| Convolutional Neural Network                        | 10          |
| Recurrent Neural Network                            | 11          |
| Reinforcement Learning                              | 12          |
| Any Other related topics                            | 13          |
| Project Presentations                               | 14          |
| Final Exam                                          | 15          |

| Evaluation      |                                                        |        |
|-----------------|--------------------------------------------------------|--------|
| Assessment Tool | Expected Due Date                                      | Weight |
| Presentation    | Once in the semester                                   | 5 %    |
| Mid Term        | To be announced later                                  | 25 %   |
| Project 1 paper | To be announced later                                  | 20 %   |
| Project 2 paper | To be announced later                                  | 20 %   |
| Final Exam      | According to the University final examination schedule | 30 %   |

| Policy     |                                                                                                                                                                                                                                                                                                      |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Attendance | Attendance is very important for the course. In accordance with university policy, students missing more than 10% of total classes are subject to failure. Penalties may be assessed without regard to the student's performance. Attendance will be recorded at the beginning or end of each class. |  |
| Exams      | All exams will be CLOSE-BOOK; necessary algorithms/equations/relations will be supplied as convenient.                                                                                                                                                                                               |  |
| Grading    | The grading policy as follows:  >= 95                                                                                                                                                                                                                                                                |  |