import seaborn as sns
iris = sns.load_dataset("iris")
iris

□ →	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

▼ 1. Line Graph

from matplotlib import pyplot as plt
sns.lineplot(x='sepal_length',y="petal_length",data=iris)

▼ 2. Scatter Plot

sns.scatterplot(x='sepal_width',y="petal_width",data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc73546cd0>

plt.bar(iris['species'],iris['petal_length'])

<BarContainer object of 150 artists>

▼ 4. Histogram

bins = [0,1,2,3,4,5,6,7,8,9,10]
plt.hist(iris['sepal_length'],bins,histtype='bar',rwidth=0.5)

(array([0., 0., 0., 0., 22., 61., 54., 13., 0., 0.]), array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),<a list of 10 Patch objects>)

5. Count Plot

sns.countplot(x='species',data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc7324ad10>

6. Heatmap

iris.corr()

1	petal_width	petal_length	sepal_width	sepal_length	
	0.817941	0.871754	-0.117570	1.000000	sepal_length
	-0.366126	-0.428440	1.000000	-0.117570	sepal_width
	0.962865	1.000000	-0.428440	0.871754	petal_length
	1.000000	0.962865	-0.366126	0.817941	petal_width

sns.heatmap(iris.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc7320a290>

▼ 7. Box Plot

sns.boxplot(x='species',y='sepal_length',data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc730ef790>

▼ 8. Pair Plot

sns.pairplot(iris, hue ='species')

sns.jointplot(x='sepal_width',y='petal_width',data=iris,kind='hex')

<seaborn.axisgrid.JointGrid at 0x7fdc72c0c610>

▼ 10. Kernel Density Plot

import pandas as pd

sns.kdeplot(iris.loc[(iris['species']=='virginica'),'sepal_length'], color='b', shade=True,la
sns.kdeplot(iris.loc[(iris['species']=='setosa'),'sepal_length'], color='r', shade=True, labe
sns.kdeplot(iris.loc[(iris['species']=='versicolor'),'sepal_length'], color='y', shade=True,
plt.legend()

<matplotlib.legend.Legend at 0x7fdc72799c90>

✓ 0s completed at 19:21

×