```
In [1]: 1 import pandas as pd
2 import numpy as np
3 import random
4 import matplotlib.pyplot as plt
```

Steps

- 1. Reading and Characterizing the Data (ACQUIRE)
- 2. Exploration (PREPARE)
- 3. Cleaning and Filtering the Data for our requirements (PREPARE)
- 4. Analysis (ANALYZE)
- 5. Results (REPORT)

I. Characterizing the data (ACQUIRE)

Code below is to read the data file.

```
In [2]: 1 data = pd.read_csv('./world-development-indicators/Indicators.csv')
```

Code below is to see the number of rows and columns in the data.

```
In [3]: 1 data.shape
```

Out[3]: (5656458, 6)

Code below is to see a sample of the data.

```
In [4]: 1 data.head()
2 #data.tail()
```

Out[4]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
0	Arab World	ARB	Adolescent fertility rate (births per 1,000 wo	SP.ADO.TFRT	1960	1.335609e+02
1	Arab World	ARB	Age dependency ratio (% of working-age populat	SP.POP.DPND	1960	8.779760e+01
2	Arab World	ARB	Age dependency ratio, old (% of working-age po	SP.POP.DPND.OL	1960	6.634579e+00
3	Arab World	ARB	Age dependency ratio, young (% of working-age	SP.POP.DPND.YG	1960	8.102333e+01
4	Arab World	ARB	Arms exports (SIPRI trend indicator values)	MS.MIL.XPRT.KD	1960	3.000000e+06

Before we start exploring the data, we want a clearer picture of the data. Hence we ask a few questions.

Q1. How many unique indicators do we have?

Code below is to find out the length of the indicators.

```
In [5]: 1 indicators = data['IndicatorName'].unique().tolist()
2 len(indicators)
```

Out[5]: 1344

Q2. How many years of data do we have?

Code below is to find out number of years.

Out[6]: 56

Q3. What is the range of years?

Code below is to find out the range of years.

```
In [7]: 1 print(min(years)," to ",max(years))
1960 to 2015
```

Now we have understood the basic characteristics of the data.

II. Exploration (PREPARE)

Code below is to display all the indicators in order to explore the indicators, and to figure out what are the best metrics to measure the effects of quality of air on the quality of life.

```
In [8]:
          1 indicators
Out[8]: ['Adolescent fertility rate (births per 1,000 women ages 15-19)',
          'Age dependency ratio (% of working-age population)',
          'Age dependency ratio, old (% of working-age population)',
          'Age dependency ratio, young (% of working-age population)',
          'Arms exports (SIPRI trend indicator values)',
          'Arms imports (SIPRI trend indicator values)',
          'Birth rate, crude (per 1,000 people)',
          'CO2 emissions (kt)',
          'CO2 emissions (metric tons per capita)',
          'CO2 emissions from gaseous fuel consumption (% of total)',
          'CO2 emissions from liquid fuel consumption (% of total)',
          'CO2 emissions from liquid fuel consumption (kt)',
          'CO2 emissions from solid fuel consumption (% of total)',
          'Death rate, crude (per 1,000 people)',
          'Fertility rate, total (births per woman)',
          'Fixed telephone subscriptions',
          'Fixed telephone subscriptions (per 100 people)',
          'Hospital beds (per 1,000 people)',
          'International migrant stock (% of population)',
```

Air Quality Indicators chosen are:

- 1. PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)
- 2. PM2.5 air pollution, population exposed to levels exceeding WHO guideline value (% of total)
- 3. CO2 emissions (kt)
- 4. CO2 emissions (metric tons per capita)
- 5. Nitrous oxide emissions (thousand metric tons of CO2 equivalent)
- 6. Methane emissions (kt of CO2 equivalent)
- 7. SF6 gas emissions (thousand metric tons of CO2 equivalent)
- 8. HFC gas emissions (thousand metric tons of CO2 equivalent)
- 9. PFC gas emissions (thousand metric tons of CO2 equivalent)
- 10. Other greenhouse gas emissions, HFC, PFC and SF6 (thousand metric tons of CO2 equivalent)

Health Indicators chosen are:

- 1. Birth rate, crude (per 1,000 people)
- 2. Mortality rate, infant (per 1,000 live births)
- 3. Fertility rate, total (births per woman)
- 4. Life expectancy at birth, total (years)
- 5. Population growth (annual %)
- 6. Prevalence of stunting, height for age (% of children under 5)
- 7. Low-birthweight babies (% of births)

III. Cleaning and Filtering the Data for our requirements (PREPARE)

Code below is to create a mask for air quality indicators.

```
In [9]:
          1 indicator1 = 'PM2.5 air pollution, mean annual exposure \((micrograms')\)
          2 indicator2 = 'PM2.5 air pollution, population exposed to '
          3 indicator3 = 'CO2 emissions \(kt'
          4 indicator4 = 'CO2 emissions \((metric')\)
          5 indicator5 = 'Nitrous oxide emissions \((thousand')
          6 indicator6 = 'Methane emissions \(kt of CO2'
          7 indicator7 = 'SF6 gas emissions \((thousand')\)
          8 indicator8 = 'HFC gas emissions \((thousand')\)
          9 indicator9 = 'PFC gas emissions \((thousand')\)
         10 indicator10 = 'Other greenhouse gas emissions, HFC'
         11
         12 mask1 = data['IndicatorName'].str.contains(indicator1)
         13 mask2 = data['IndicatorName'].str.contains(indicator2)
         14 mask3 = data['IndicatorName'].str.contains(indicator3)
         15 mask4 = data['IndicatorName'].str.contains(indicator4)
         16 mask5 = data['IndicatorName'].str.contains(indicator5)
         17 mask6 = data['IndicatorName'].str.contains(indicator6)
         18 mask7 = data['IndicatorName'].str.contains(indicator7)
         19 mask8 = data['IndicatorName'].str.contains(indicator8)
         20 mask9 = data['IndicatorName'].str.contains(indicator9)
         21 mask10 = data['IndicatorName'].str.contains(indicator10)
```

Code below is to create a mask for health indicators.

Code below is to create a mask to filter out data for a specific country. For the analysis, I have chosen The USA.

Code below is to create individual dataframes for the chosen indicators for both air quality and health for a specific country.

```
In [12]:
          1 df1 = data[mask1 & country mask].copy()
           2 df2 = data[mask2 & country mask].copy()
           3 df3 = data[mask3 & country mask].copy()
           4 df4 = data[mask4 & country mask].copy()
           5 df5 = data[mask5 & country mask].copy()
           6 df6 = data[mask6 & country mask].copy()
          7 df7 = data[mask7 & country mask].copy()
          8 df8 = data[mask8 & country mask].copy()
          9 df9 = data[mask9 & country mask].copy()
          10 df10 = data[mask10 & country mask].copy()
          11
          12 hdf1 = data[h mask1 & country mask].copy()
          13 hdf2 = data[h mask2 & country mask].copy()
          14 hdf3 = data[h mask3 & country mask].copy()
          15 hdf4 = data[h mask4 & country mask].copy()
          16 hdf5 = data[h_mask5 & country_mask].copy()
          17 hdf6 = data[h mask6 & country mask].copy()
          18 hdf7 = data[h mask7 & country mask].copy()
```

Now we want to delete: 1. Columns not required for analysis, 2. Rows containing Nil value, and then reindex the rows for lighter operation and quicker runtimes

Code below is to execute the 3 operations mentioned above.

```
In [13]:
           1 df1.drop(df1.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
           2 df1.dropna(subset=['Value'])
           3 df1.reset index(drop = True, inplace=True)
           5 df2.drop(df2.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
           6 df2.dropna(subset=['Value'])
           7 df2.reset index(drop = True, inplace=True)
           9 df3.drop(df3.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          10 df3.dropna(subset=['Value'])
          11 df3.reset index(drop = True, inplace=True)
          12
          df4.drop(df4.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          14 df4.dropna(subset=['Value'])
          15 df4.reset index(drop = True, inplace=True)
          16
          17 df5.drop(df5.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          18 df5.dropna(subset=['Value'])
          19 df5.reset index(drop = True, inplace=True)
          20
          21 df6.drop(df6.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          22 df6.dropna(subset=['Value'])
          23 df6.reset index(drop = True, inplace=True)
          24
          25 df7.drop(df7.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          26 df7.dropna(subset=['Value'])
          27 df7.reset index(drop = True, inplace=True)
          28
          29 df8.drop(df8.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          30 df8.dropna(subset=['Value'])
          31 df8.reset index(drop = True, inplace=True)
          32
          33 df9.drop(df9.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          34 df9.dropna(subset=['Value'])
          35 df9.reset index(drop = True, inplace=True)
          36
          37 df10.drop(df10.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
          38 df10.dropna(subset=['Value'])
          39 df10.reset index(drop = True, inplace=True)
          40
          41
```

```
42 hdf1.drop(hdf1.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
43 hdf1.dropna(subset=['Value'])
44 hdf1.reset index(drop = True, inplace=True)
45
46 hdf2.drop(hdf2.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
47 hdf2.dropna(subset=['Value'])
48 hdf2.reset index(drop = True, inplace=True)
49
50 hdf3.drop(hdf3.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
51 hdf3.dropna(subset=['Value'])
52 hdf3.reset index(drop = True, inplace=True)
53
54 hdf4.drop(hdf4.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
55 hdf4.dropna(subset=['Value'])
56 hdf4.reset index(drop = True, inplace=True)
57
58 hdf5.drop(hdf5.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
59 hdf5.dropna(subset=['Value'])
60 hdf5.reset index(drop = True, inplace=True)
61
62 hdf6.drop(hdf6.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
63 hdf6.dropna(subset=['Value'])
64 hdf6.reset index(drop = True, inplace=True)
66 hdf7.drop(hdf7.columns[[0, 1, 2, 3]], axis = 1, inplace = True)
67 hdf7.dropna(subset=['Value'])
68 hdf7.reset index(drop = True, inplace=True)
```

Code below is to individually check if the above operation worked.

Out[14]:

	Year	Value
0	2002	8.0
1	2010	8.1

IV. Analysis (ANALYZE)

Code below is to individually examine examine the final dataframes we will use to perform the analysis. We want to check if we have the required data for 54 years.

```
df Range: df1 to df10 hdf Range: hdf1 to hdf7
```

Out[15]: (2, 2)

Post examination of the dataframes individually, We have found that:

No of years of data available for:

df1:7df2:7df3:52

- df4:52
- df5:5
- df6:5
- df7:5
- df8:5
- df9:5
- df10:5
- hdf1:54
- hdf2:56
- hdf3:54
- hdf4:54
- hdf5 : 55
- hdf6 : 7
- hdf7:2

Conclusion

- 1. We do not have sufficient data for any air quality indicators except for CO2 emissions.
- 2. We do not have sufficient data for health indicators for prevalance of stunting and low-birth weight babies.

Due to data constraints, We have chosen CO2 Emissions(kt) as the only indicator for air quality,

And we have chosen the following 5 indicators for health quality.

- 1. Birth rate, crude (per 1,000 people)
- 2. Mortality rate, infant (per 1,000 live births)
- 3. Fertility rate, total (births per woman)
- 4. Life expectancy at birth, total (years)
- 5. Population growth (annual %)

The analysis that will be performed is the Effect of CO2 emissions(kt) on

- 1. Birth rate, crude (per 1,000 people)
- 2. Mortality rate, infant (per 1,000 live births)
- 3. Fertility rate, total (births per woman)
- 4. Life expectancy at birth, total (years)

5. Population growth (annual %)

Code below is to check if the data present have the same timeline.

```
CO2 Emissions Min Year = 1960 Max: 2011

Birth Rate Min Year = 1960 Max: 2013

Mortality Rate Min Year = 1960 Max: 2015

Fertility Min Year = 1960 Max: 2013

Life Expectancy at birth, total Min Year = 1960 Max: 2013

Population Growth Min Year = 1960 Max: 2014
```

Since the min year in common is the same for all indicators and the max year in common for all indicators is 2011, we will filter the data and and get data from 1960 till 2011.

Code below is to filter the data from 1960 till 2011.

Code below is to check if our filter for the Years column worked.

```
In [18]:
1    print("CO2 Emissions Min Year = ", df3['Year'].min(), " Max: ", df3['Year'].max())
2    print("Birth Rate Min Year = ", hdf1['Year'].min(), " Max: ", hdf1['Year'].max())
3    print("Mortality Rate Min Year = ", hdf2['Year'].min(), " Max: ", hdf2['Year'].max())
4    print("Fertility Min Year = ", hdf3['Year'].min(), " Max: ", hdf3['Year'].max())
5    print("Life Expectancy at birth, total Min Year = ", hdf4['Year'].min(), " Max: ", hdf5['Year'].max())
6    print("Population Growth Min Year = ", hdf5['Year'].min(), " Max: ", hdf5['Year'].max())
```

```
CO2 Emissions Min Year = 1960 Max: 2011

Birth Rate Min Year = 1960 Max: 2011

Mortality Rate Min Year = 1960 Max: 2011

Fertility Min Year = 1960 Max: 2011

Life Expectancy at birth, total Min Year = 1960 Max: 2011

Population Growth Min Year = 1960 Max: 2011
```

We can observe that the filter has worked and now, all the indicators have the same timeline.

We want to explore the values for air quality first.

Code below is to see the trend for CO2 Emissions(kt) over the years through a line plot.

<Figure size 432x288 with 0 Axes>

We can observe that the general trend for CO2 emissions is increasing, but has shown degrowth towards the end.

We want to explore the values for all the indicators that represent quality of life first.

Code below is to create a single dataframe with the values of the health indicators for lighter operation and quicker runtimes.

```
In [20]: 1 correl_hdfs = pd.concat([hdf1, hdf2, hdf3, hdf4, hdf5], axis=1, join='inner')
2 correl_hdfs.drop(correl_hdfs.columns[[2, 4, 6, 8]], axis = 1, inplace = True)
3 correl_hdfs.columns = ['hdf1', 'hdf2', 'hdf3', 'hdf4', 'hdf5']
```

Code below is to check if the above operation worked.

In [21]: 1 correl_hdfs

Out[21]:

	hdf1	hdf2	hdf3	hdf4	hdf5
0	23.7	25.9	3.6540	69.770732	1.701993
1	23.3	25.4	3.6200	70.270732	1.657730
2	22.4	24.9	3.4610	70.119512	1.537997
3	21.7	24.4	3.3190	69.917073	1.439165
4	21.1	23.8	3.1900	70.165854	1.389046
5	19.4	23.3	2.9130	70.214634	1.250172
6	18.4	22.7	2.7210	70.212195	1.154893
7	17.8	22.0	2.5580	70.560976	1.088881
8	17.6	21.3	2.4640	69.951220	0.998461
9	17.9	20.6	2.4560	70.507317	0.977243
10	18.4	19.9	2.4800	70.807317	1.165003
11	17.2	19.1	2.2660	71.107317	1.264334
12	15.6	18.3	2.0100	71.156098	1.070523
13	14.8	17.5	1.8790	71.356098	0.954477
14	14.8	16.7	1.8350	71.956098	0.913660
15	14.6	16.0	1.7740	72.604878	0.985986
16	14.6	15.2	1.7380	72.856098	0.950220
17	15.1	14.5	1.7900	73.256098	1.005772
18	15.0	13.8	1.7600	73.356098	1.059573
19	15.6	13.2	1.8080	73.804878	1.103577
20	15.9	12.6	1.8395	73.658537	0.959590
21	15.8	12.1	1.8120	74.007317	0.981415
22	15.9	11.7	1.8275	74.360976	0.953318
23	15.6	11.2	1.7990	74.463415	0.914379

	hdf1	hdf2	hdf3	hdf4	hdf5
24	15.6	10.9	1.8065	74.563415	0.865817
25	15.8	10.6	1.8440	74.563415	0.886129
26	15.6	10.4	1.8375	74.614634	0.924164
27	15.7	10.2	1.8720	74.765854	0.893829
28	16.0	10.0	1.9340	74.765854	0.907999
29	16.4	9.7	2.0140	75.017073	0.944406
30	16.7	9.4	2.0810	75.214634	1.129651
31	16.2	9.1	2.0625	75.365854	1.336261
32	15.8	8.8	2.0460	75.642195	1.386886
33	15.4	8.5	2.0195	75.419512	1.318680
34	15.0	8.2	2.0015	75.574390	1.226296
35	14.6	8.0	1.9780	75.621951	1.190787
36	14.4	7.7	1.9760	75.996585	1.163412
37	14.2	7.5	1.9710	76.429268	1.203960
38	14.3	7.3	1.9990	76.580488	1.165715
39	14.2	7.2	2.0075	76.582927	1.148340
40	14.4	7.1	2.0560	76.636585	1.112769
41	14.1	7.0	2.0305	76.736585	0.989741
42	14.0	6.9	2.0205	76.836585	0.927797
43	14.1	6.8	2.0475	76.987805	0.859482
44	14.0	6.9	2.0515	77.339024	0.925484
45	14.0	6.8	2.0570	77.339024	0.921713
46	14.3	6.7	2.1080	77.587805	0.964254
47	14.3	6.6	2.1200	77.839024	0.951055
48	14.0	6.5	2.0720	77.939024	0.945865
49	13.5	6.4	2.0020	78.090244	0.876651

	hdf1	hdf2	hdf3	hdf4	hdf5
50	13.0	6.3	1.9310	78.541463	0.836054
51	12.7	6.1	1.8945	78.641463	0.764678

We will now check the correlation between the values for the 5 health indicators to see if we can omit indicators having a high positive correlation value with all the other indicators.

Code below is to calculate correlation for columns within a dataframe.

In [22]: 1 correl_hdfs.corr(method ='pearson')

Out[22]:

	hdf1	hdf2	hdf3	hdf4	hdf5
hdf1	1.000000	0.861943	0.909993	-0.798085	0.767149
hdf2	0.861943	1.000000	0.749158	-0.969850	0.555799
hdf3	0.909993	0.749158	1.000000	-0.612636	0.770800
hdf4	-0.798085	-0.969850	-0.612636	1.000000	-0.500489
hdf5	0.767149	0.555799	0.770800	-0.500489	1.000000

We can observe that none of the columns have a significant positive correlation with all indicators. Hence we will take into consideration all of the chosen indicators.

V. Results (REPORT)

1. Scatter Plot of CO2 Emissions(kt) vs Birth rate, crude (per 1,000 people)

```
In [23]:
           1 %matplotlib inline
           3 fig, axis = plt.subplots()
           4 # Grid lines, Xticks, Xlabel, Ylabel
           6 \times = 'CO2 Emissions(kt)'
           7 y = 'Birth rate, crude (per 1,000 people)'
           9 a = 'CO2 Emissions'
          10 b = 'Birth Rate'
          11 axis.yaxis.grid(True)
          12 axis.set title(a+' vs '+b,fontsize=15)
          13 axis.set xlabel(x ,fontsize=12)
          14 axis.set_ylabel(y ,fontsize=12)
          15
          16 X = df3['Value'].values
          17 Y = hdf1['Value'].values
          18
          19 axis.scatter(X, Y)
          20 plt.show()
          21 plt.savefig('CO2 vs Birth Rate.png', bbox inches='tight')
          22
          23 column 1 = df3["Value"]
          24 column 2 = hdf1["Value"]
          25 | correlation = column 1.corr(column 2)
          26
          27 print('The correlation between '+a+' and '+b+' is: '+str(round(correlation, 3)))
```


The correlation between CO2 Emissions and Birth Rate is: -0.91 <Figure size 432x288 with 0 Axes>

2. Scatter Plot of CO2 Emissions(kt) vs Mortality rate, infant (per 1,000 live births)

Code below is to create a scatter plot and to save it as an image file to use in the presentation.

~

```
1 fig, axis = plt.subplots()
In [24]:
           2 # Grid lines, Xticks, Xlabel, Ylabel
           3
           4 \times = 'CO2 \text{ Emissions(kt)'}
           5 v = 'Mortality rate, infant (per 1,000 live births)'
           7 a = 'CO2 Emissions'
           8 b = 'Mortality Rate'
           9 axis.yaxis.grid(True)
          10 axis.set title(a+' vs '+b,fontsize=15)
          11 axis.set xlabel(x ,fontsize=12)
          12 axis.set ylabel(y ,fontsize=12)
          13
          14 X = df3['Value'].values
          15 Y = hdf2['Value'].values
          16
          17 axis.scatter(X, Y)
          18 plt.show()
          19 plt.savefig('CO2 vs Mortality Rate.png', bbox inches='tight')
          20
          21 column 1 = df3["Value"]
          22 column 2 = hdf2["Value"]
          23 correlation = column 1.corr(column 2)
          24
          25 print('The correlation between '+a+' and '+b+' is: '+str(round(correlation, 3)))
```


The correlation between CO2 Emissions and Mortality Rate is: -0.93 <Figure size 432x288 with 0 Axes>

3. Scatter Plot of CO2 Emissions(kt) vs Fertility rate, total (births per woman)

```
In [25]:
           1 fig, axis = plt.subplots()
           2 # Grid lines, Xticks, Xlabel, Ylabel
           3
           4 \times = 'CO2 \text{ Emissions(kt)'}
           5 y = 'Fertility rate, total (births per woman)'
           7 a = 'CO2 Emissions'
           8 b = 'Fertility Rate'
           9 axis.yaxis.grid(True)
          10 axis.set title(a+' vs '+b,fontsize=15)
          11 axis.set xlabel(x ,fontsize=12)
          12 axis.set ylabel(y ,fontsize=12)
          13
          14 X = df3['Value'].values
          15 Y = hdf3['Value'].values
          16
          17 axis.scatter(X, Y)
          18 plt.show()
          19 plt.savefig('CO2 vs Fertility Rate.png', bbox_inches='tight')
          20
          21 column 1 = df3["Value"]
          22 column 2 = hdf3["Value"]
          23 correlation = column 1.corr(column 2)
          24
          25 print('The correlation between '+a+' and '+b+' is: '+str(round(correlation, 3)))
```


The correlation between CO2 Emissions and Fertility Rate is: -0.752 <Figure size 432x288 with 0 Axes>

4. Scatter Plot of CO2 Emissions(kt) vs Life expectancy at birth, total (years)

```
1 fig, axis = plt.subplots()
In [26]:
           2 # Grid lines, Xticks, Xlabel, Ylabel
           3
           4 \times = 'CO2 \text{ Emissions(kt)'}
           5 y = 'Life expectancy at birth, total (years)'
           7 a = 'CO2 Emissions'
           8 b = 'Life expectancy at birth'
           9 axis.yaxis.grid(True)
          10 axis.set title(a+' vs '+b,fontsize=15)
          11 axis.set xlabel(x ,fontsize=12)
          12 axis.set ylabel(y ,fontsize=12)
          13
          14 X = df3['Value'].values
          15 Y = hdf4['Value'].values
          16
          17 axis.scatter(X, Y)
          18 plt.show()
          19 plt.savefig('CO2 vs Life Expectancy at birth.png', bbox inches='tight')
          20
          21 column 1 = df3["Value"]
          22 column 2 = hdf4["Value"]
          23 correlation = column 1.corr(column 2)
          24
          25 print('The correlation between '+a+' and '+b+' is: '+str(round(correlation, 3)))
```


The correlation between CO2 Emissions and Life expectancy at birth is: 0.899 <Figure size 432x288 with 0 Axes>

5. Scatter Plot of CO2 Emissions(kt) vs Population growth (annual %)

```
1 fig, axis = plt.subplots()
In [27]:
           2 # Grid lines, Xticks, Xlabel, Ylabel
           4 \times = 'CO2 Emissions(kt)'
            v = 'Population growth (annual %)'
           7 a = 'CO2 Emissions'
           8 b = 'Population Growth'
           9 axis.yaxis.grid(True)
          10 axis.set title(a+' vs '+b,fontsize=15)
          11 axis.set xlabel(x ,fontsize=12)
          12 axis.set ylabel(y ,fontsize=12)
          13
          14 X = df3['Value'].values
          15 Y = hdf5['Value'].values
          16
          17 axis.scatter(X, Y)
          18 plt.show()
          19 plt.savefig('CO2 vs Population Growth.png', bbox inches='tight')
          20
          21 column 1 = df3["Value"]
          22 column 2 = hdf5["Value"]
          23 correlation = column 1.corr(column 2)
          24
          25 print('The correlation between '+a+' and '+b+' is: '+str(round(correlation, 3)))
```


The correlation between CO2 Emissions and Population Growth is: -0.591 <Figure size 432x288 with 0 Axes>

Conclusion

We can finally conclude by saying that growing CO2 Emissions has a

- 1. very strong negative impact on Birth rate, crude (per 1,000 people)
- 2. negligible impact on Mortality rate, infant (per 1,000 live births)
- 3. strong negative impact on Fertility rate, total (births per woman)
- 4. negligible impact on Life expectancy at birth, total (years)
- 5. mild negative impact on Population growth (annual %)