UGBA 141 Discussion 4

Agenda: Review and Practice of Quality Module

- Control charts
- Capability analysis

Feb 11, 2022 Hansheng Jiang

Logistics

- New GSI Office Hours
 - -Tuesday 1-2 pm and Friday 2-3pm at Chou N455

Recap: Key Concepts in Statistical Process Control

- \overline{X} : average/mean of a sample
- R: range of a sample = maximum value minimum value
- p: fraction of defects
- c: number of defects
- Control limits: Upper and Lower

Summary

	Mean Charts	R-Charts	p-Charts	c-Charts
CL	$\overline{\overline{X}}$	\overline{R}	\overline{p}	\overline{c}
UCL	$\overline{\overline{X}} + A_2 \overline{R}$	$D_4\overline{R}$	$\overline{p} + 3 * \sqrt{\frac{\overline{p}(1-\overline{p})}{\text{sample size}}}$	$\overline{c} + 3\sqrt{\overline{c}}$
LCL	$\overline{\overline{X}} - A_2 \overline{R}$	$D_3\overline{R}$	$\overline{p} - 3 * \sqrt{\frac{\overline{p}(1 - \overline{p})}{\text{sample size}}}$	$\overline{c} - 3\sqrt{\overline{c}}$

• A_2, D_3, D_4 are control chart constants, see 'Table of Control Chart Constants.pdf' on bcourse

Table of Control Chart Constants

Sample	A_2	A_3	d_2	D_3	D_4	B_3	B_4
Size = m							
2	1.880	2.659	1.128	0	3.267	0	3.267
3	1.023	1.954	1.693	0	2.574	0	2.568
4	0.729	1.628	2.059	0	2.282	0	2.266
5	0.577	1.427	2.326	0	2.114	0	2.089
6	0.483	1.287	2.534	0	2.004	0.030	1.970
7	0.419	1.182	2.704	0.076	1.924	0.118	1.882
8	0.373	1.099	2.847	0.136	1.864	0.185	1.815
9	0.337	1.032	2.970	0.184	1.816	0.239	1.761
10	0.308	0.975	3.078	0.223	1.777	0.284	1.716
11	0.285	0.927	3.173	0.256	1.744	0.321	1.679
12	0.266	0.886	3.258	0.283	1.717	0.354	1.646
13	0.249	0.850	3.336	0.307	1.693	0.382	1.618
14	0.235	0.817	3.407	0.328	1.672	0.406	1.594
15	0.223	0.789	3.472	0.347	1.653	0.428	1.572
16	0.212	0.763	3.532	0.363	1.637	0.448	1.552
17	0.203	0.739	3.588	0.378	1.622	0.466	1.534
18	0.194	0.718	3.640	0.391	1.608	0.482	1.518
19	0.187	0.698	3.689	0.403	1.597	0.497	1.503
20	0.180	0.680	3.735	0.415	1.585	0.510	1.490
21	0.173	0.663	3.778	0.425	1.575	0.523	1.477
22	0.167	0.647	3.819	0.434	1.566	0.534	1.466
23	0.162	0.633	3.858	0.443	1.557	0.545	1.455
24	0.157	0.619	3.895	0.451	1.548	0.555	1.445
25	0.153	0.606	3.931	0.459	1.541	0.565	1.435

Practice Problem: \overline{X} -Charts and R-Charts

- A cereal manufacturer fills cereal boxes to an average weight of 20 ounces and has an average range of 2 ounces when the filling process is in control. A sample size of 10 boxes is used in evaluating the process.
 - a. What are the CL, UCL, and LCL for the x and R charts?

b. A sample with the following 10 measurements was just taken: 20, 21, 19, 18, 19, 21, 22, 20, 20, 19. Is the process still in control?

Practice Problem: p-Charts

- A company that makes golf tees controls its production process by periodically taking a sample of 100 tees from the production line. Each tee is inspected for defective characteristics. Control limits are developed using three standard deviations from the mean. During the last 16 samples taken, the proportion of defective items per sample was recorded as follows: .01 .02 .01 .03 .02 .01 .00 .02 .00 .01 .03 .02 .01 .00
 - a. Determine the mean proportion defective, the UCL, and the LCL.

b. Does it appear that the process for making tees is in statistical control?

Capability Analysis

- Process capability measures
 - Centered process

$$C_p = \frac{\text{USL} - \text{LSL}}{6\hat{\sigma}}$$

-Off-centered process

$$C_{pk} = \min \left\{ \frac{\text{USL} - \overline{X}}{3\hat{\sigma}}, \frac{\overline{X} - \text{LSL}}{3\hat{\sigma}} \right\}$$

- $\hat{\sigma}$ is sample standard deviation

Examples of Process Capability Measures

Centered

Off-centered

(b)

Probability of Defect

Convert Process capability measures to probability of defect

Χσ	C _p	P{defect}	ppm
1σ	0.33	0.317	317,000
2σ	0.67	0.0455	45,500
3σ	1.00	0.0027	2,700
4σ	1.33	0.0001	63
5σ	1.67	0.0000006	0.6
6σ	2.00	2x10 ⁻⁹	0.00

Six Sigma = Zero Defect

Practice Problem: C_{pk} and C_p

- The operations manager of an insurance claims- processing department wants to determine the claims-processing capability. Claims usually take a minimum of four days to handle. The company has a commitment to handle all claims within 10 days. On average, claims are processed in 8 days and processing has a standard deviation of 1 day
 - a. Compute C_p and C_{pk} for the claims-processing department. Based on these computations, should the claims department improve its process?

b. Using the same data, recompute C_{pk} , but use an average claims-processing time of seven days instead of eight days.

c. Using the original data, recompute C_{pk} , but use a standard deviation of 2/3 of a day. Which change made the most improvement—the change in mean in part b or the change in standard deviation? Can you explain the results?

How to Read Standard Normal Table

1111111	ANDARD NORMAL DISTRIBUTION. Table values Represent AREA to the LEFT of the 2 score.									
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
22	00610	00615	00670	00712	00715	0770	00000	00010	00070	00000

