Отчет по лабораторной работе N2.1.6 Эффект Джоуля-Томсона

Бичина Марина группа Б04-005 1 курса ФЭФМ $16~{\rm мартa}~2021~{\rm r}.$

1 Аннотация

Цель работы: 1) определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начльных значениях давления и температуры

2) вычислить по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b»

Оборудование:

- 1) трубка с пористой перегородкой
- 2) труба Дьюара
- 3) термостат
- 4) термометры
- 5) дифференциальная термопара
- 6) микровольтрмер
- 7) балластный баллон
- 8) манометр

2 Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рисунок 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

2.1 Описание установки

На схеме изображены:

- 1) трубка
- 2) пористая перегородка
- 3) трубка Дьюара
- 4) уплотнение трубки Дьюара кольцом
- 5) змеевик
- 6) балластный баллон

- 7) цифровой вольтметр
- 8-9) спаи
- 10) пробка из пенопласта
- 11) выключатель «Сеть»
- 12 кнопка «АВП»
- 13 кнопка « $U_{=}$ »

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

3 Экспериментальная часть

3.1 Ход работы

- 1. Перед началом работы убедимся в том, что термостат залит водой, а все электрические приборы заземлены.
- 2. Установим на контактном термометре T_k температуру регулирования, близкую к комнатной, и включим термостат.
- 3. Включим вольтметр. Запишим знак и величину показаний для вольтметра при $\Delta P=0$. Используем эту величину для корректировки показаний вольтметра в дальнейших измерениях: E=U(P)-U(0).
 - Откроем регулирующий вентиль настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.
- 4. Через 10-15 минут после подачи давления запишем показания вольтметра
- 5. При помощи вентиля В установим давление на 0,3–0,5 атм меньше первоначального. Через 5 минут, когда установятся давление и разность температур, вновь запишите показания манометра и вольтметра. Повторим операцию 5-7 раз для разных значениях давления при комнатной температуре.
- 6. Построим график зависимости $\Delta T(\Delta P)$ и по наклону определим коэффициент Джоуля-Томсона для выбраной температуры
- 7. Окончив измерения при комнатной температуре, установим температуру, равную $50^{\circ}C$. Проделаем действия, аналогичные 3-6.
- 8. Проделаем измерения 3-6 для температуры $80^{o}C$
- 9. Произведем вычисления: найдем «а», «b» и T_{inv} для CO_2 . Сравним их с табличными значениями
- 10. Обработаем результаты
- 11. Оценим ошибки измерений

3.2 Полученные результаты

Характеристики установки:

Инструментальные погрешности:

Начальные условия:

1. Температура термостата: $T_0 = 18^0 C$

2. Напряжение до подачи давления: $U_0 = 0,007 \text{ мB}$

3. Давление измеряется в ${\rm krc/cm^2},$ цена деления – $0.06~{\rm krc/cm^2}$

N	ΔP ,atm	$T,^{0}C$	ΔT , ^{0}C
0	0.0	18.0	0.0
1	4.065	18.15	4.322
2	3.717	18.23	3.894
3	3.339	18.29	3.467
4	2.962	18.37	3.015
5	2.671	18.45	2.663
6	1.974	18.51	1.859
7	1.713	18.62	1.583

Таблица 1 – данные для комнатной температуры

N	ΔP ,atm	$T,^{0}C$	ΔT , ^{0}C
0	0.0	30.06	0.0
1	4.181	30.1	3.846
2	3.862	30.08	3.462
3	3.078	30.01	2.62
4	2.671	30.02	2.188
5	2.584	30.0	2.115
6	2.236	30.0	1.755
7	1.568	30.0	1.082

Таблица 2 – данные для температуры