

智能控制技术 实验报告

实验名称	模糊控制
姓 名	
学 号	
提交日期	December 12, 2024
指导老师	刘山

1 问题分析

1.1 问题重述

如图所示的磁悬浮系统,钢球在电磁力和重力的共同作用下悬浮在空中。系统满足如下方程:

$$F - G = m \frac{d^2X}{dt^2}$$

其中,F 为电磁吸力,G=mg 为重力,m 为钢球的质量,g 为重力加速度,X 为钢球与磁体的距离。

电磁力 F 依赖于电磁电流 I 和钢球与磁体的距离 X, 满足如下方程:

$$F = K \left(\frac{I}{X}\right)^2$$

其中, K 为电磁力系数。

电磁线圈的方程如下:

$$U - K\frac{I}{X}\frac{dX}{dt} = L\frac{dI}{dt} + IR$$

其中, U 为控制电压, L 为电感, R 为线圈电阻。

假定系统参数如下表所示

参数	值
m	$0.05\mathrm{kg}$
g	$9.81\mathrm{m/s^2}$
K	$0.005\mathrm{Nm^2/A^2}$
R	5Ω
L	0.01 H

1.2 系统分析

该磁悬浮系统是一个动态系统,从题目给出的方程可以看出,其电磁电流 I 与钢球与磁体之间的距离 X 的关系是非线性的,因此性无法直接写出传递函数。若想要对上述系统进行数学建模,需要使用 S-Fuction 函数建立模型,并在 simulink 中使用各种控制器进行控制。

磁悬浮系统的动力学可以通过以下方程描述:

$$F - G = m\frac{d^2X}{dt^2}$$

其中:

- F 为电磁吸力,依赖于电流 I 和钢球与磁体的距离 X,满足 $F=K\left(\frac{I}{X}\right)^2$ 。
- G = mq 为重力。

将 F 代入动力学方程,得到:

$$K\left(\frac{I}{X}\right)^2 - mg = m\frac{d^2X}{dt^2}$$

电磁线圈的电路方程为:

$$U - K \frac{I}{X} \frac{dX}{dt} = L \frac{dI}{dt} + IR$$

从上面的式子中我们可以看出,系统中存在显著的非线性:

- 电磁力 $F = K \left(\frac{I}{X}\right)^2$ 是电流 I 和位置 X 的非线性函数。
- 电路方程中存在乘积项 $\frac{I}{X}\frac{dX}{dt}$, 进一步增加了系统的非线性复杂性。

1.3 控制目标

主要目标是通过控制电压 U 使钢球位置 X 稳定在期望位置 $X_d = 0.05 \,\mathrm{m}$ 。这涉及到系统的稳态误差、动态响应速度以及超调量等性能指标。

为设计模糊控制器, 需确定输入和输出的论域范围, 题目中给出以下尝试选项:

- 输入:
 - 位置误差 $e = X_d X$ 的范围:

$$-0.04 \,\mathrm{m} < e < 0.04 \,\mathrm{m}$$

- 位置误差变化率 $\dot{e} = \frac{de}{dt} = -\dot{X}$ 的范围:

$$-0.5 \,\mathrm{m/s} \le \dot{e} \le 0.5 \,\mathrm{m/s}$$

• 输出:

- 控制电压 *U* 的范围:

$$-10 \,\mathrm{V} \le U \le 10 \,\mathrm{V}$$

在实际仿真过程中,可以对其进行论域范围的修改来实现控制器的稳定。

1.4 控制策略

针对建立模型后的被控对象设计模糊控制器,包括控制器输入输出量的选择,输入输出论域的模糊划分,模糊规则库的建立等。利用设计完成的模糊控制在 Simulink 中搭建模糊控制系统,并进行仿真测试。在设计模糊控制器需要定义隶属函数并建立模糊规则库。然后利用模糊推理机制结合去模糊化方法(质心法)计算出控制电压 U。

为了比较各种控制方案的特点与不同,打算建立普通模糊控制,PID 模糊控制去设计和比较,两者的原理图如下图所示。

Figure 1: 模糊控制算法原理图

Figure 2: 模糊 PID 控制算法原理图

2 问题一求解

Question.1. 推导磁悬浮系统的状态空间模型;(提示:以钢球位置 X、速度 \dot{X} 和电流 I 为状态变量)

由题意可知,状态变量如下:

- $x_1 = X$ (钢球的位置)
- $x_2 = \dot{X}$ (钢球的速度)
- $x_3 = I$ (电流)

钢球的运动方程如下所示:

$$F - G = m \frac{d^2 X}{dt^2}$$

其中: $F = K \left(\frac{I}{X}\right)^2$ 、G = mg将其带入运动方程中可以得到:

$$K\left(\frac{I}{X}\right)^2 - mg = m\frac{d^2X}{dt^2}$$

将 $X = x_1$ 和 $\dot{X} = x_2$ 代入,即:

$$K\left(\frac{x_3}{x_1}\right)^2 - mg = m\dot{x}_2$$

整理得到:

$$m\dot{x}_2 = K \left(\frac{x_3}{x_1}\right)^2 - mg$$

因此, 我们可以得到 X₂ 的状态方程如下:

$$\dot{x}_2 = \frac{K}{m} \left(\frac{x_3}{x_1}\right)^2 - g$$

电磁线圈的方程为:

$$U - K\frac{I}{X}\frac{dX}{dt} = L\frac{dI}{dt} + IR$$

将 $X=x_1$ 和 $\dot{X}=x_2$ 代入,得到:

$$U - K \frac{x_3}{x_1} x_2 = L \dot{x}_3 + R x_3$$

整理得到:

$$L\dot{x}_3 = U - K \frac{x_3}{x_1} x_2 - R x_3$$

因此,我们可以得到 \dot{X}_3 的状态方程如下:

$$\dot{x}_3 = \frac{U}{L} - \frac{K}{L} \frac{x_3}{x_1} x_2 - \frac{R}{L} x_3$$

综上所述,系统的状态空间模型为:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{K}{m} \left(\frac{x_3}{x_1} \right)^2 - g \\ \frac{U}{L} - \frac{K}{L} \frac{x_3}{x_1} x_2 - \frac{R}{L} x_3 \end{bmatrix}$$

输出方程为:

$$y = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

其中 x_1 是钢球位置, x_2 是钢球速度, x_3 是电流, U 是控制电压。

3 问题二求解

Question.2. 针对上述磁悬浮系统,设计模糊控制器使钢球位置稳定在期望位置 $X_d = 0.05m$ 假设初始钢球位置为 X(0) = 0.03m,初始速度和初始电流均为 0,仿真实现系统的模糊控制,绘制钢球位置随时间变化曲线、控制电压随时间变化曲线,并分析仿真结果。(输入输出的论域范围自行选择,可尝试位置误差范围 [-0.04,0.04]m,位置误差变化率范围 [-0.5,0.5]m/s,控制电压的范围 [-10,10]V)

在第一问已经求解出其状态方程之后,可以根据其编写 S-Function 模块,具体代码如下(**详细注释见文件代码 demo.m**)

类型	变量名	说明
输入	U	控制电压
输出	x(1)	钢球的位置
状态变量	x(1)	钢球位置
状态变量	x(2)	钢球速度
状态变量	x(3)	电流

Table 1: demo 的输入与输出说明

Listing 1: SFunction 代码

```
function [sys,x0,str,ts,simStateCompliance] = demo(t,x,u,flag)
1
2
        switch flag
3
           case 0
              %初始化
4
              [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes;
5
           case 1
6
              % 计算连续状态导数
7
              sys = mdlDerivatives(t,x,u);
8
           case 2
9
              % 更新离散状态 (如果有)
10
              sys = mdlUpdate(t,x,u);
11
           case 3
12
              % 计算输出
13
14
              sys = mdlOutputs(t,x,u);
           case 4
15
              %下一个采样时间(用于可变步长仿真)
16
```

```
sys = mdlGetTimeOfNextVarHit(t,x,u);
17
          case 9
18
             % 仿真结束前的清理工作
19
             sys = mdlTerminate(t,x,u);
20
          otherwise
21
             % 未处理的flag错误
22
             DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag))
23
24
       end
    % 主函数结束
25
26
    %%%下面是各个子函数,即各个回调过程
27
    function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
28
29
                             %生成sizes数据结构,信息被包含在其中
30
       sizes = simsizes;
       sizes.NumContStates = 3; %连续状态数,缺省为0
31
       sizes.NumDiscStates = 0; %离散状态数,缺省为0
32
                            %输出个数,缺省为0
33
       sizes.NumOutputs = 1;
                      = 1; %输入个数,缺省为0
       sizes.NumInputs
34
       sizes.DirFeedthrough = 0; %是否存在直馈通道, 1表示存在, 0表示不存在
35
       sizes.NumSampleTimes = 1; %采样时间个数,至少是一个
36
       sys = simsizes(sizes); %返回size数据结构所包含的信息
37
       x0 = [0.03 \ 0 \ 0];
                             %设置初始状态
38
       str = [];
                             %保留变量置空
39
                             %设置采样时间
       ts = [0 \ 0];
40
       simStateCompliance = 'UnknownSimState';
41
42
43
    function sys=mdlDerivatives(t,x,u)
       %系统参数
44
       m = 0.05; %质量,单位: kg
45
       g = 9.81; % 重力加速度, 单位: m/s~2
46
       K = 0.005; % 常数
47
       R = 5; % 电阻,单位:欧姆
       L = 0.01; % 电感, 单位: 亨利
49
50
       % 状态变量
51
       x1 = x(1); % 位移, 单位: m
52
       x2 = x(2); % 速度, 单位: m/s
53
```

```
x3 = x(3); % 电流, 单位: A
54
55
       %力的计算
56
       F = K * (x3 / x1)^2; % 磁力, 与电流和位移有关
57
       G = m * g; % 重力
58
59
       % 状态导数的计算
60
                                              % 位移的一阶导数是速度
       dx1 = x2;
61
       dx2 = (F - G) / m;
                                              %根据牛顿第二定律计算加速
62
          度
       dx3 = (u - K * (x3 / x1) * x2 - R * x3) / L; % 电流的一阶导数, 根据电
63
          路方程
64
       sys = [dx1; dx2; dx3]; % 返回状态导数向量
65
66
    function sys=mdlUpdate(t,x,u)
67
       sys = [];
                              %sys表示下一个离散状态,即x(k+1)
68
69
    function sys=mdlOutputs(t,x,u)
70
       sys = [x(1)];
                                 %sys表示输出,即y
71
72
    %%
    function sys=mdlGetTimeOfNextVarHit(t,x,u)
73
                              %设置下一次采样时间是在1s以后
       sampleTime = 1;
74
       sys = t + sampleTime; %sys表示下一个采样时间点
75
76
77
    function sys=mdlTerminate(t,x,u)
       sys = [];
78
```

在编写完 S-Function 模块之后,就可以进行 Simulink 仿真,下面分为模糊控制以及模糊 PID 控制。

3.1 普通模糊控制

3.1.1 隶属函数设计

将钢球位置偏差 e、钢球位置偏差变化率 e_c 、模糊控制器的输出 u 模糊化, 他们的模糊论域分别为 [-6, 6]、[-7, 7]、[-20, 20],隶属函数均取为三角形函数,语言变量值分别定为 NB(负大)、NM(负中)、NS(负小)、NO(负零)、Z0(正零)PS(正小)、PM(正中)、PB(正大)。因为磁悬浮系统是个控制精度要求比较高的系统,主要集中在 N0、Z0 两档附近对钢球进行精确定位控制,所以选择把输入 E、 E_c ,的这两档设置的精度比较高,同理控制量输出 U 的模糊论域中心区域也设置成比较密。

在 Matlab 的模糊工具箱中建立的模糊推理系统 (FIS) 中 E、 E_c 、U 隶属函数如下 图所示

Figure 3: 隶属函数

根据建立模糊控制规则的基本思想,并结合专家知识和 PID 控制经验进行分析、归纳,总结出磁悬浮模糊控制系统中输入 e、e_c 与输出 u 的控制规则表 根据上面的规则,

Ec E	NB	NM	NS	NO	ZO	PS	PM	РВ
NB	NB	NB	NB	NB	PS	ZO	ZO	ZO
NM	NB	NM	NM	NB	PM	ZO	ZO	ZO
NS	NM	NM	NM	NB	PM	PS	PS	PS
NO	NM	NS	NS	NM	PM	PS	PS	PS
ZO	NS	NS	NS	NM	ΡВ	PM	PS	PM
PS	NS	NS	NO	NM	РВ	PM	PM	PM
PM	NS	NO	NO	NM	РВ	РВ	PM	РВ
PB	NO	NO	NO	NO	РВ	РВ	РВ	РВ

Table 2: 控制规则

可以得到控制曲面如下图所示

Figure 4: 控制曲面

对于解模糊来说,通过模糊推理得模糊控制输出 U,还必须通过解模糊才能得到确切的控制量,此处采用加权平均值(重心)法。

3.1.2 Simulink 仿真与结果

仿真图如下图所示

Figure 5: 仿真图

仿真得到的结果如下图,可以看到其很快稳定在了预期位置

Figure 6: 钢球位置曲线

3.2 模糊 PID 控制

3.2.1 隶属函数设计

模糊 PID 在常规 PID 的基础上加设模糊参数自整定控制器使其根据系统的偏差的大小、方向、以及变化趋势等特征,通过模糊推理作出相应决策,自动的在线调整 PID 的 三个参数 K_p 、 T_i 和 T_d ,以便达到更加满意的控制效果的目的。模糊控制器的输入为钢球位置偏差 e、钢球位置偏差变化率 e_c 输出量为 PID 参数的修正量 ΔK_p 、 ΔK_i 、 ΔK_d ,他们的隶属函数均取为三角形函数,模糊论域如下表所示。

变量	e	e_c	ΔK_p	ΔK_i	ΔK_d	
模糊论域	[-0.06, 0.06]	[-1, 1]	[-300, 300]	[-3000, 3000]	[-2,2]	
隶属函数	三角形					
模糊子集	[NB NM NS ZO PS PM PB]					

Table 3: 变量及模糊规则表

在 Matlab 的模糊工具箱中建立的模糊推理系统 (FIS) 中 E、 E_c 、 ΔK_p 、 ΔK_i 、 ΔK_d 隶属函数如下图所示

Figure 7: 输入

Figure 8: 输出

他们的控制规则分别如下表所示

Ec	NB	NM	NS	ZO	PS	PM	РВ
NB	NB	NB	NM	ZO	ZO	ZO	PS
NM	NB	NM	NM	ZO	ZO	PS	PS
NS	NM	NM	NS	PS	PS	PS	PM
ZO	NM	NM	NS	ZO	PS	PM	PM
PS	NM	NS	NS	PS	PM	PM	PB
PM	NS	NS	ZO	PM	PM	PB	PB
PB	ZO	ZO	ZO	PM	PB	PB	PB

Table 4: ΔK_p 模糊控制规则表

Ec	NB	NM	NS	ZO	PS	PM	РВ
NB	NB	NB	NB	NM	NM	ZO	ZO
NM	NB	NB	NM	NM	NS	ZO	ZO
NS	NM	NM	NS	NS	ZO	PS	PS
ZO	NM	NS	NS	ZO	PS	PS	PM
PS	NS	NS	ZO	PS	PS	PM	PM
PM	ZO	ZO	PS	PM	PM	PB	PB
PB	ZO	ZO	ZO	PM	PB	PB	PB

Table 5: ΔK_i 的模糊规则表

Ec	NB	NM	NS	ZO	PS	PM	РВ
NB	PS	ZO	ZO	ZO	ZO	PB	PB
NM	NS	NS	NS	NS	ZO	PS	PS
NS	NB	NM	NS	NS	ZO	PS	PS
ZO	NB	NM	NM	ZO	PS	PS	PM
PS	NB	NB	NM	NS	ZO	PS	PM
PM	NM	NS	NS	NS	ZO	PS	PM
PB	PS	PS	ZO	ZO	ZO	PB	PB

Table 6: ΔK_d 模糊规则表

可以得到控制曲面如下图所示

Figure 9: 控制面

3.2.2 Simulink 仿真与结果

Simulink 仿真接线如下图所示

Figure 10: 仿真图

仿真得到的结果如下图, 可以看到其很快稳定在了预期位置

Figure 11: 钢球位置曲线

4 问题三求解

Question.3. 若改变钢球质量为 0.1kg, 其他参数不变, 重新进行仿真并分析对系统控制性能的影响, 讨论如何调整模糊控制器参数以适应钢球质量的变化。

将钢球质量改为 0.1Kg 之后, 其他所有参数不进行修改, 模糊控制与模糊 PID 控制得到的结果如下图所示

Figure 12: 模糊控制

Figure 13: 模糊 PID 控制

我们发现对于模糊 PID 来说,出现了静差,而对于模糊 PID 控制,其依然能够稳定在预期的位置,于是对模糊控制的参数进行调整,发现当增大 u 的模糊论域的时候,即将 u 从 [-20,20] 增加到 [-30,30],可以消除静差,结果如下图所示

Figure 14: 增大 u 的论域

从上面的实验可以看出,可以通过增大 u 的论域来适应钢球质量的变化;而模糊 PID 则不需要修改参数即可稳定。

5 对比分析

常规模糊控制器虽然控制动态性能比较好,但是控制作用较粗糙,存在静差,使得稳态控制精度不理想。采用模糊控制方法对 PID 参数进行在线调整,结合了传统 PID 控制与模糊控制的优点,具有较好的控制特性。在偏差较大时使 K,增大,提高了系统的响应时间,在中间过程适当调整 K_p,K_i 、 K_d ,防止系统控制作用过度,在接近稳态时 K_p 、 K_i 增大, K_d 减小,使系统缩短了稳态时间,抑制了振荡,控制精度高,动态性能好,鲁棒性强。

6 文件列表

文件名	功能描述
report.pdf README.md code demo.m fuzzy1.fis fuzzy2.fis PIDfuzzy1.fis	实验报告 文件结构说明 代码文件夹 S-Function 代码 问题二模糊控制器 问题二模糊 PID 控制器 问题三修改 u 范围后模糊控制器
sfunction.slx	Simulink 仿真