1.Marketing Analyst

SELECT C.cust_state, O.part_num, SUM(O.qty)

FROM CUSTOMER AS C

INNER JOIN ORDER AS O

ON C.cust_num = O.cust_num

GROUP BY C.cust_state, O.part_num

C <- ρ_C(cust_state,cust_num)(Customer)

O <- ρ_O(part_num,qty,cust_num)(Order)

C1 <- C ⋈ cust_num = cust_num O

 $R < \pi$ cust state, part num, [cust state,part num **F** sum(gty)] (C1)

2. Sales Manager

SELECT o.part_num, o.qty

FROM Customer C, Order O

WHERE c.cust_num = o.cust_num

AND c.cust state = 'MA'

C <- ρ_C(cust_state,cust_num)(Customer)

O <- ρ O(part num, qty, cust num) (Order)

C1 <- C ⋈ cust_num = cust_num O

 $C2 \leftarrow \sigma_{same} = 'MA' (C1)$

 $R < -\pi_part_num, qty (C2)$

3. Sales Manager

Select Sum(o.product_qty*retail_price) as Sales,

Month, Country, State

From Order o

Inner join Part p ON o.part_num = p.part_num

Inner join Store s ON p.StoreID = s.StoreID

Group by Month, Country, State

O <- p_O(part_num,product_qty,StoreID,Month)(Order)

P <- ρ_P(part_num,retail_price)(Part)

S <- ρ_S(StoreID,Country,State)(Store)

C1 <- O ⋈ part_num = part_num P

C2 <- S ⋈ StoreID = StoreID C1

R <- π _Month, Country, State, [Month, Country, State_**F**_sum(product_qty*product_price)] (C2)

4. Customer

Select Sum(product_qty*product_price),

Category

From Order o

Inner join Product p ON o. Product id = p. Product id

Inner join Customer c ON o.customer id = c.customer id

```
where c.customerID = 101 Group by Category  C <- \rho\_C(\text{customer\_id})(\text{Customer}) \\ O <- \rho\_O(\text{product\_id}, \text{product\_qty,customer\_id})(\text{Order}) \\ P <- \rho\_P(\text{product\_id}, \text{product\_price})(\text{Product}) \\ C1 <- C \bowtie \text{customer\_id} = \text{customer\_id} O \\ C2 <- P \bowtie \text{Product\_id} = \text{Product\_id} C1 \\ C3 <- \sigma\_\text{customerID} = 101 (C2) \\ R <- \pi\_\text{Category}, \text{ [Category\_\textbf{F\_sum(product\_qty*product\_price)]} (C3) }
```

5.Store Manager
SELECT p.product_id, product_description, product_price
FROM ORDER as o
Inner join Part p ON o.part_num = p.part_num
WHERE o.product_qty < 10
AND o.store_id = 101

O <- ρ _O(product_id ,product_qty,customer_id,store_id)(Order) P <- ρ _P(product_id ,product_price, product_description)(Product) C1 <- P \bowtie product_id = product_id O C2 <- σ _product_qty < 10 (C1) C3 <- σ _store_id = 101 (C2) R <- π _product_id, product_description, product_price (C3)