Gradient Descent

Week 05 - Day 03

function in ML

A general algorithm to optimize a loss

You'll never manually use it but...

It's a common interview question!

Optimizing the loss function

Linear regression: y = b1*x + e

We used calculus to find the best point

derivative(loss_function)=0

•

Gradient Descent

A general optimization algorithm to find the best parameters

(i.e. the smallest error)

Iterative approach

1) Start with random solution (b0,b1)

- 1) Start with random solution (b0,b1)
- 2) Find the right direction to get to a smaller error

- 1) Start with random solution (b0,b1)
- 2) Find the right direction to get to a smaller error
- 3) Get a new better solution (b1, b2)

- 1) Start with random solution (b0,b1)
- 2) Find the right direction to get to a smaller error
- 3) Get a new better solution (b1, b2)
- 4) Repeat steps 2 and 3

coefficient b1

coefficient b1

coefficient b1

How do we find the best right direction?

prediction =
$$b0 + b1*x1$$

error =
$$(y - prediction)^{**}2$$

error =
$$(y - (b0 + b1*x1))**2$$

partial_derivative(error,b0,b1) = (7,5)

b0 = b0 - 7

b1 = b1 - 5

b0 = b0 - 0.01 * 7 b1 = b1 - 0.01 * 5

Size of the step

Learning rate

Small learning rate

++ faster

-- may no convergence

Small learning rate

-- slower

++ convergence

Recap

gradient descent = optimization process

- gradient descent = optimization process
- 2. iterative approach

- gradient descent = optimization process
- 2. iterative approach
- 3. small updates of the coefficients

- gradient descent = optimization process
- 2. iterative approach
- 3. small updates of the coefficients
- 4. direction = derivative

- gradient descent = optimization process
- 2. iterative approach
- 3. small updates of the coefficients
- 4. direction = derivative
- 5. learning rate is important

- 1. Andrew Ng gradient descent
- 2. <u>Siraj</u> gradient descent
- 3. <u>Derivatives</u>
- 4. Partial Derivatives