Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	V		
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory			
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:25-07-25	

Experiment 2

Aim: To Apply Linear Regression to predict the loan amount sanctioned to users using the dataset provided. Visualize and interpret the results to gain insights into the model performance.

Libraries used:

- pandas
- numpy
- matplotlib.pyplot
- seaborn
- sklearn.linear_model.LinearRegression
- sklearn.model_selection.StratifiedKFold
- \bullet sklearn.metrics.mean_absolute_error
- sklearn.metrics.mean_squared_error
- sklearn.metrics.r2_score
- sklearn.preprocessing.LabelEncoder
- sklearn.preprocessing.StandardScaler
- pandas.get_dummies

theoritical description of the algorithm:

Cross-Validation Strategy

A 5-fold stratified cross-validation approach was used. This ensures that each fold maintains a balanced distribution of the target variable, leading to a more reliable and unbiased performance estimation.

Data Preparation

The training dataset was preprocessed by cleaning missing values, removing irrelevant columns, and performing feature engineering to ensure consistent and useful inputs for the model.

Feature Engineering

Custom features such as the Loan-to-Income ratio, Total Expenses-to-Income ratio, and Loan-to-Value (LTV) ratio were created. These derived metrics provided insights into the customer's financial standing and credit risk.

Data Cleaning

Columns like Customer ID, Property ID and Name, which had no predictive value, were removed. Missing values in numerical columns were imputed with the mean, while categorical variables were filled with the mode.

Encoding and Scaling

Categorical features were encoded using Label Encoding. Numerical features were standardized using StandardScaler to bring them to a common scale.

Model Training and Evaluation

A Linear Regression model was trained. Evaluation included MAE, MSE, RMSE, R^2 , and Adjusted R^2 , along with Actual vs Predicted and Residual plots for visual interpretation.

Code Implementation:

Screenshots of Output:

Result and Discussions:

Fold	MAE	MSE	RMSE	\mathbb{R}^2 Score	Adjusted R ² Score
Fold 1	21855.65	9.77×10^{8}	31254.23	0.5738	0.5722
Fold 2	21883.08	9.78×10^{8}	31275.97	0.5830	0.5814
Fold 3	21608.39	9.60×10^{8}	30987.54	0.5681	0.5664
Fold 4	21668.17	9.67×10^{8}	31094.08	0.5834	0.5818
Fold 5	21957.28	1.19×10^{9}	34491.73	0.4855	0.4835
Average	21794.51	1.01×10^{9}	31820.71	0.5588	0.5571

Table 1: Cross-validation metrics across 5 folds including Adjusted \mathbb{R}^2 Score

Table 2: Summary of Results for Loan Amount Prediction

Description	Student's Result		
Dataset Size (after preprocessing)	$50000 \text{ rows} \times 25 \text{ columns}$		
Train/Test Split Ratio	5-Fold Stratified Cross-Validation		
Feature(s) Used for Prediction	All encoded and scaled features (ex-		
	cluding target)		
Model Used	Linear Regression		
Cross-Validation Used? (Yes/No)	Yes		
If Yes, Number of Folds	5		
Reference to CV Results Table	Table 1		
Mean Absolute Error (MAE) on Test Set	21,794.51 USD		
Mean Squared Error (MSE) on Test Set	$1.01 \times 10^9 \text{ USD}^2$		
Root Mean Squared Error (RMSE) on Test Set	31,820.71 USD		
R ² Score on Test Set	0.5588		
Adjusted R ² Score on Test Set	0.5571		
Most Influential Feature(s)	Loan Amount Request (USD),		
	Income (USD), Loan_to_Income		
Observations from Residual Plot	Random scatter around zero with		
	some spread at higher predictions		
Interpretation of Predicted vs Actual Plot	Positive correlation, with underesti-		
	mation at very high loan amounts		
Any Overfitting or Underfitting Observed?	Mild underfitting		
If Yes, Brief Justification	$R^2 \sim 0.56$, residual variance at		
	higher values, indicating underesti-		
	mation of extreme loan values		

Performance Analysis

The model's performance was assessed using MAE, MSE, RMSE, and both R^2 and Adjusted R^2 scores across five folds of cross-validation. Key findings:

- \bullet The average MAE of ${\sim}21{,}795$ USD indicates the typical prediction error magnitude.
- MSE averages to 1.01×10^9 , penalizing larger errors more strongly.
- RMSE is around 31,821 USD, consistent with MAE but more sensitive to high outliers.
- The R² score improved to 0.56 (compared to earlier runs), meaning the model explains about 56% of variance in sanctioned loan amounts.
- \bullet Adjusted R^2 is nearly the same (0.557), confirming stable generalization without excessive predictors.

Learning Practices:

- Learned to apply Linear Regression for predicting continuous loan amounts.
- Gained practical experience with stratified cross-validation to ensure balanced evaluation.

- Practiced preprocessing: handling missing data, encoding categorical features, and scaling numerical ones.
- \bullet Learned to evaluate regression models using MAE, RMSE, and $R^2.$
- Interpreted residual and prediction plots to assess underfitting patterns.