LEC010 Maximum Flow

VG441 SS2021

Cong Shi Industrial & Operations Engineering University of Michigan

Applicants:
order fullfill ment
process flexibility
maximal matching

The number on each edge is capacity

Qn: Push as much flow as possible from *s* to *t*

The number on each edge is capacity

Qn: Push as much flow as possible from *s* to *t*

Input

- \bullet a directed graph G, with vertices V and directed edges E
- a source vertex $s \in V$ (no edges into s)
- a sink vertex $t \in V$ (no edges out of t)
- a nonnegative and integral capacity u_e for each edge $e \in E$

Feasible solutions – flows

- Nonnegativity constraints: $f_e \geq 0$ for every edge $e \in E$
- Capacity constraints: $f_e \leq u_e$ for every edge $e \in E$
- Conservation constraints: for every vertex v other than s and t amount of flow entering v = amount of flow exiting v
- Goal: maximize flow value = flow going out of S flow going into

• Attempt #1:

```
A Naive Greedy Algorithm
       initialize f_e = 0 for all e \in E
       repeat
           search for an s-t path P such that f_e < u_e for every e \in P
           // takes O(|E|) time using BFS or DFS
           if no such path then
                 halt with current flow \{f_e\}_{e \in E}
                                 room on e caponel - current flow value on e
               V
"bottle neck" room on P for all edges e of P do increase f_e by \Delta along s-b path iteration \# \setminus S \supset V \supset W \to t \Delta \cong S \to t
                                                                                                              2 (0)
                                                                                                  5 (3)
                                                                                S
                                                                                                                     t
                                   along S=V=W=t

but S=W,V=W,v=t has residuals of capacity of = = 产生浪费
                                                                                                                3(3)
                                                                                                    W
```

Attempt #2: Allow "undo" operations

Residual network (Gf)

most famous algorithm in network optimatiation

Ford-Fulkerson Algorithm

```
initialize f_e = 0 for all e \in E
repeat
   search for an s-t path P in the current residual graph G_f such that every
edge of P has positive residual capacity
   // takes O(|E|) time using BFS or DFS
   if no such path then
       halt with current flow \{f_e\}_{e \in E}
   else
      for all edges e of G whose corresponding forward edge is in P do
          increase f_e by \Delta
       for all edges e of G whose corresponding reverse edge is in P do
                                  fe=fe-Difeisonage
          decrease f_e by \Delta
```


Exercise

How do we know we are done?

- · Identify "optimality condition" find partition (A.B.)
- Design an algorithm that terminates w/ the optimality condition satisfied

(s,t) cuts

"Dual" flows

Definition An (s,t) -cut of a graph G=(V,E) is a partition of V into sets

A, B with $s \in A$ and $t \in B$

The capacity of an (s,t) -cut (A,B) is defined as

$$\sum_{e \in \delta^+(A)} u_e \text{ ?, focused on outoping ares}$$
 serves as UB of flav value

Equivalence of (1) (2) (3)

- Max-Flow-Min-Cut Theorem "F-F theorem"

 Lymost imporbant in combinatorics
- (1) f is a maximum flow of G

(2) there is an (s,t)-cut (A,B) s.t. the value of f equals the capacity of (A,B)

(3) there is no s-t path (with positive residual capacity) in the residual G_f

(2) => (1)

- (2) there is an (s,t)-cut (A,B) s.t. the value of f equals the capacity of (A,B) implies
- (1) f is a maximum flow of G

Claim:

for every flow f and every (s,t)-cut (A,B) value of $f \leq$ capacity of (A,B)

value of
$$f = \sum_{e \in \delta^+(s)} f_e = \sum_{e \in \delta^+(s)} f_e - \sum_{e \in \delta^-(s)} f_e$$
flow out of s
vacuous sum

value of
$$f = \sum_{v \in A} \left(\sum_{e \in \delta^+(v)} f_e - \sum_{e \in \delta^-(v)} f_e \right)$$

$$= \sum_{e \in \delta^+(A)} \underbrace{f_e}_{\leq u_e} - \sum_{e \in \delta^-(A)} \underbrace{f_e}_{\geq 0}$$

$$\leq \sum_{e \in \delta^+(A)} u_e$$

= capacity of (A, B)

and
$$\sum_{\substack{e \in \delta^+(v) \\ \text{flow out of } v}} f_e - \sum_{\substack{e \in \delta^-(v) \\ \text{flow into of } v}} f_e = 0$$

(1) f is a maximum flow of G

implies

(3) there is no s-t path (with positive residual capacity) in the residual G_f

there is no
$$s-t$$
 path (with positive residual car
contrapositive $\sim (3) \Rightarrow \sim (1)$
 $\equiv s-t$ path in G_f fis not optimal
push $a \ge 1$
flow from $s \to t$

(3) = > (2)

- (3) there is no s-t path (with positive residual capacity) in the residual G_f implies
- (2) there is an (s,t) -cut (A,B) s.t. the value of f equals the capacity of (A,B)

 $A = \{v \in V : \text{ there is an } s \leadsto v \text{ path in } G_f\}$

Run BFS from s until stuck

- (1) $\forall e \in \delta^+(A), U_e f_e = 0$ (no forward edges)
- (2) $\forall e \in \delta^{-}(A), f_e = 0$ (no "flow-inducded" backward edges)

value of
$$f = \sum_{e \in \delta^{+}(A)} f_{e} - \sum_{e \in \delta^{-}(A)} f_{e} = \sum_{e \in \delta^{+}(A)} u_{e} = \text{cap}(A, B)$$