19 октомври 2020 г. / групи 4,5

Задача 1. Вероятността стрелец да улучи мишена е 2/3. Ако улучи, той получава право да стреля по друга мишена. Вероятността да уцели и двете мишени е 1/2. Каква е вероятността за улучване на втората мишена, ако стрелецът е получил право да стреля втори път?

Решение:

Нека А={стрелец улучва първата мишена}, В={стрелец улучва втората мишена}.

Имаме
$$\mathbb{P}(A) = \frac{2}{3}$$
 и $\mathbb{P}(B) = \frac{1}{2}$, както и $\mathbb{P}(B \mid \overline{A}) = 0$. Търси се $\mathbb{P}(B \mid A)$.

I н/н. От формулата за пълна вероятност имаме, че

$$\mathbb{P}(B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A) + \underbrace{\mathbb{P}(B|\overline{A})}_{=0} \cdot \mathbb{P}(\overline{A}) \Rightarrow \mathbb{P}(B|A) = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} = \frac{\frac{1}{2}}{\frac{2}{3}} = \frac{3}{4}.$$

II н/н. От формулата за основна вероятност имаме, че

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{\frac{1}{2}}{\frac{2}{3}} = \frac{3}{4}.$$

Задача 2. Застрахователна компания води статистика за своите клиенти

- всички клиенти посещават поне веднъж годишно лекар;
- 60% посещават повече от веднъж годишно лекар;
- 17 % посещават хирург;
- $15\,\%$ от тези, които посещават повече от веднъж годишно лекар, посещават хирург.

Каква е вероятността случайно избран клиент, който посещава само веднъж годипно лекар, да не е бил при хирург?

Решение:

Нека А={посещава лекар повече от веднъж годишно}, В={посещава хирург}.

Дадено е, че $\mathbb{P}(A) = 60 \% \Rightarrow \mathbb{P}(\overline{A}) = 1 - \mathbb{P}(B) = 40 \%$, $\mathbb{P}(B) = 17 \%$ и $\mathbb{P}(B|A) = 15 \%$. Търси се $\mathbb{P}(\overline{B}|\overline{A})$.

$$\mathbb{P}(\overline{B} \mid \overline{A}) = \frac{\mathbb{P}(\overline{B} \cap \overline{A})}{\mathbb{P}(\overline{A})} = \frac{1 - \mathbb{P}(\overline{A} \cap \overline{B})}{\mathbb{P}(\overline{A})} \stackrel{de\ Morgan}{=} \frac{1 - \mathbb{P}(B \cup A)}{\mathbb{P}(\overline{A})} = \frac{1 - (\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B))}{\mathbb{P}(\overline{A})} = \frac{1 - \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(B) + \mathbb{P}(B) + \mathbb{P}(A)}{\mathbb{P}(A)} = \frac{100\% - 60\% - 17\% + 15\% .60\%}{40\%} = \frac{23\% + 9\%}{40\%} = 80\%$$

Задача 3. Хвърлят се два зара. Каква е вероятността сумата от падналите се числа да е помалка от 8, ако се знае, че тя е нечетна? Независими ли са двете събития?

Решение:

Всевъзможните суми, които двта зара могат да образуват при хвърляне са $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Ще разгледаме всеки от тях по отделно:

2:
$$(1, 1) \rightarrow 1$$
 бр.

3:
$$(1, 2), (2, 1) \rightarrow 2$$
 бр.

4:
$$(1, 3), (2, 2), (3, 1) \rightarrow 3$$
 бр.

5:
$$(1, 4), (2, 3), (3, 2), (4, 1) \rightarrow \mathbf{4}$$
 бр.

6:
$$(1, 5), (2, 4), (3, 3), (4, 2), (5, 1) \rightarrow 5$$
 бр.

7:
$$(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) \rightarrow \mathbf{6}$$
 fp.

8:
$$(2, 6), (3, 5), (4, 4), (5, 3), (6, 2) \rightarrow 5$$
 6p.

9: $(3, 6), (4, 5), (5, 4), (6, 3) \rightarrow \mathbf{4}$ бр.

10: $(4, 6), (5, 5), (6, 3) \rightarrow 3$ бр.

11: $(5, 6), (6, 5) \rightarrow 2$ бр.

12: $(6, 6) \rightarrow 1$ 6p.

Знае се, че сумата е нечетна. Следотавелтно вселената от елементарни събития се смалява и броя от елементите и става равен на 2+4+6+4+2=18. От тях 2+4+6 са със сума по малка от 8.

Следователно търсената вероятност е
$$\mathbb{P}(\ < 8 \ | \ odd) = \frac{\mathbb{P}(\ < 8 \cap odd)}{\mathbb{P}(odd)} = \frac{\frac{12}{36}}{\frac{18}{36}} = \frac{2}{3}$$
.

$$\mathbb{P}(<8) = \frac{\sum_{i=1}^{6} i}{36} = \frac{21}{36} = \frac{7}{12} \neq \frac{2}{3} \Rightarrow \text{ събитията не са независими (т.е. са зависими).}$$

Задача 4. Разполагаме с тесте от 36 карти (т.е. от шестица нагоре). Каква е вероятността да изтеглим дама, а пика? независими ли са двете събития? А ако колодата е от 52 карти?

Решение:

6, 7, 8, 9, 10, J, Q, K, A общо 9.4=36 карти. Вероятността да изтеглим дама е $\mathbb{P}(Q) = \frac{4}{36} = \frac{1}{0}$.

Вероятността да изтеглим пика е $\mathbb{P}(\clubsuit) = \frac{9}{36} = \frac{1}{4}$. Вероятността да изтеглим дама пика е

$$\mathbb{P}(Q \cap \spadesuit) = \frac{1}{36}$$
. Но $\mathbb{P}(Q \mid \spadesuit) = \frac{\mathbb{P}(Q \cap \spadesuit)}{\mathbb{P}(\spadesuit)} = \frac{\frac{1}{36}}{\frac{1}{4}} = \frac{1}{9}$, което е равно на $\mathbb{P}(Q)$, следователно

събитието не зависи от това дали сме изтеглили пика или не, т.е. събитията са независими. Аналогично и ако тестето е от 52 карти:

$$\mathbb{P}(Q \mid \spadesuit) = \frac{\mathbb{P}(Q \cap \spadesuit)}{\mathbb{P}(\spadesuit)} = \frac{\frac{1}{52}}{\frac{1}{4}} = \frac{1}{13}$$
, каквато е и вероятността да сме изтеглили дама, тъй като ще

имаме картите 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A.

Задача 5. Около маса сядат 10 мъже и 10 жени. Каква е вероятността лица от еднакъв пол да не седят едно до друго?

Решение:

I н/н: Фиксираме б.о.о. някоя жена на масата. Останалите жени разполагат с 9 места и може да ги пермутираме по 9! начина. За мъжете има 10 места и може да ги пермутираме по 10! начина. Общо всички пермутации са 19!. Следователно отговорът е $\frac{9!10!}{19!}$

II н/н: Отново фиксираме б.о.о някоя жена на масата. Вероятността да настаним мъж до нея е 10/19. След това вероятността да настаним жена до вече настатения мъж е 9/18. Седващото настаняване е с вероятност 9/17 да бъде правилно и т.н.

Следователно вероятността всички да бъдат настанени правилно според условието на задачата ще $e \frac{10}{19} \cdot \frac{9}{18} \cdot \frac{8}{17} \cdot \frac{8}{16} \cdot \frac{8}{15} \dots = \frac{10.(9!)^2}{19!}$.

$$e^{\frac{10}{19} \cdot \frac{9}{18} \cdot \frac{9}{17} \cdot \frac{8}{16} \cdot \frac{8}{15} \dots = \frac{10.(9!)^2}{19!}$$

Задача 6 (Birthday paradox). Какъв е най-малкият брой хора, които трябва да се изберат по случаен начин, така че вероятността поне двама от тях да имат един и същ рожден ден да е по-голяма от 1/2?

Решение:

Нека броя на хората, за които вероятността поне двама от тях да имат един и същ рожден ден да е по-голяма от $\frac{1}{2}$ е k. Търсим $\min k$. Нека $\overline{A}=\{$ вероятността никои двама да не са родени на една дата }.

$$\mathbb{P}(\overline{A}) = 1.\frac{364}{365}.\frac{363}{365}...\frac{365 - (k-1)}{365} = \prod_{i=0}^{k-1} \left(1 - \frac{i}{365}\right)$$
. Очевидно полученото произведение за

начални стойности е по-голямо от $\frac{1}{2}$ и колкото повече стойности взимаме (колкото повече расте k),

толкова повече произведението намалява. Въпроса е кое е най-малкото k, за което полученото произведение е $<\frac{1}{2}$, тъй като $\mathbb{P}(\overline{A}^-)=1-\mathbb{P}(A)$. За да оценим това произведение може да си напишем програма и да видим че търсеното условие за първи път се изпълнява при **23** или да използваме приближението $1-x\sim e^{-x}$ за $x\in[0,1)$ и да правим оценки.

Задача 7. Двама играчи последователно хвърлят монета. Играта печели този, който първи хвърли ези. Каква е вероятността за спечелване на играта за всеки от играите? А ако печели този, който хвърли същото като падналото се непосредствено преди това?

Решение:

Нека A е събитието, в което първият който хвърля монетата печели, а B е събитието в което вторият, който хвърля монетат апечели. Очевидно ще спечели един от двамата когато рано или късно се падне ези. Следователно $\mathbb{P}(B)=1-\mathbb{P}(A)$. Ще пресметнем $\mathbb{P}(A)$. Тъй като хвърлянията на монетата са независими едно от друго $(E\cap T=\emptyset)$, то от формулата за пълна вероятност ще имаме, че

$$\mathbb{P}(A) = \mathbb{P}(E) + \mathbb{P}(TTE) + \mathbb{P}(TTTTE) + \ldots + \mathbb{P}(\underline{TT\ldots TT}E) = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \ldots + \frac{1}{2^{2n+1}} = \sum_{i=0}^n \frac{1}{2^{2i+1}} = \frac{1}{2} \sum_{i=0}^n \frac{1}{2^i} \stackrel{n \to \infty}{=} \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}$$
, тый като $1 + x + x^2 + \ldots = \frac{1}{1 - x}$, за $|x| < 1$. Следователно $\mathbb{P}(A) = \frac{2}{3}$, $\mathbb{P}(B) = \frac{1}{3}$.

Във второто условие на играта, вероятността да спечели първия е:

$$\mathbb{P}(A) = \mathbb{P}(TEE) + \mathbb{P}(ETT) + \mathbb{P}(TETEE) + \mathbb{P}(ETETT) + \dots + \mathbb{P}(\underbrace{ET \dots ET}_{2n}) + \mathbb{P}(\underbrace{TE \dots TE}_{2n}) = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{pmatrix}}_{2n} \underbrace{\begin{pmatrix}$$

$$=2\left(\frac{1}{2^3}+\frac{1}{2^5}+\ldots+\frac{1}{2^{2n+1}}\right)=2.\frac{1}{2}\sum_{i=1}^{2n}\frac{1}{4^i}\stackrel{n\to\infty}{=}\frac{1}{1-\frac{1}{4}}-1=\frac{1}{3}.$$
 Следователно при втория

регламент на играта, вероятностите се разменят. По-голямия шанс да спечели има втория играч.

II н/н: Разбиваме по първото хвърляне.

$$\mathbb{P}(A) = \mathbb{P}(A \mid E) \cdot \mathbb{P}(E) + \mathbb{P}(A \mid T) \cdot \mathbb{P}(T) = 1 \cdot \frac{1}{2} + \mathbb{P}(A \mid T) \cdot \frac{1}{2} \stackrel{\star}{=} \frac{1}{2} + \frac{1}{2} \cdot \mathbb{P}(B) = \frac{1}{2} + \frac{1}{2} \cdot (1 - \mathbb{P}(A)) \Rightarrow 2\mathbb{P}(A) = 1 + 1 - \mathbb{P}(A) \Rightarrow \mathbb{P}(A) = \frac{2}{3}.$$

 (\star) Тук използвахме наблюдението, че ако първият е хвърлил тура, то единственото което се променя е, че втория става първи.

Задача 8. Секретарка написала n писма, сложила ги в пликове и ги запечатала. Забравила кое писмо в кой плик е, но въпреки това написала отгоре n-те различни адреса и изпратила писмата. Каква е вероятността никой да не получи своето писмо?

Решение:

Нека N е множеството от събития, в които никои не получава писмото си. Търси се $\mathbb{P}(N)$.

 $\left(Y$ е множеството от събития, в които всеки полуава правилното писмо. Очевидно $\mid Y\mid =1$ и $\mathbb{P}(Y)=rac{1}{n!}
ight)$

Отрицанието на N, т.е. \overline{N} е множеството от събития, в които поне един адресат получава предназначеното за него писмо. Нека $A_i = \{i$ -тия адресат получава педназначеното за него писмо $\}$.

$$\mathbb{P}(A_i) = \frac{1}{n}$$

$$\mathbb{P}(A_i \cap A_j) = \frac{1}{n(n-1)}$$

$$\mathbb{P}_{i < j < k}(A_i \cap A_j \cap A_k) = \frac{1}{n(n-1)(n-2)}$$

 $\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \frac{1}{n(n-1)\dots(n-k+1)}$

...

$$\mathbb{P}(Y) = \frac{1}{n!}$$

$$\mathbb{P}(N) = 1 - \mathbb{P}(\overline{N}) = 1 - \mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - \left(n \cdot \frac{1}{n} - \binom{n}{2} \frac{1}{n(n-1)} + \binom{n}{3} \frac{1}{n(n-1)(n-2)} + \ldots\right) = 1 - \left(1! - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots\right) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots$$

Окончателно отговора е
$$\mathbb{P}(N) = 1 - \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^{n-1} (-1)^{i+1} \frac{1}{i+1!}.$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
, избираме $x = -1 \Rightarrow \mathbb{P}(N) = e^{-1} \sim \frac{1}{2.7182...}$

Задача 9. В урна има 5 бели, 8 зелени и 7 червени топки. От урната последователно се вадят топки. К аква е вероятността бяла топка да бъде извадена преди зелена, ако

- 1. след всяко изваждане топката се връща обратно в урната;
- 2. извадените топки не се връщат обратно

Решение:

I н/н: Когато вадим червена топка - не се променя нищо, за това чисто интуитивно може да предположим, че отговора е $\frac{5}{5+8}=\frac{5}{13}$. Това обаче не е формално решение.

Нека А={вадим бяла топка преди зелена}.

$$\mathbb{P}(A) = \mathbb{P}(w) + \mathbb{P}(rw) + \mathbb{P}(rrw) + \dots = \frac{5}{20} + \frac{7}{20} \cdot \frac{5}{20} + \frac{7}{20} \cdot \frac{5}{20} \cdot \frac{5}{20} + \dots = \frac{5}{20} \left(1 + \frac{7}{20} + \left(\frac{7}{20} \right)^2 + \dots \right) = \frac{5}{20} \sum_{i=0}^{n} \left(\frac{7}{20} \right)^i \stackrel{n \to \infty}{=} \frac{5}{20} \left(\frac{1}{1 - \frac{7}{20}} \right) = \frac{5}{13}.$$

Тук използвахме факта, че $\sum_{i=0}^{\infty} x^i = 1 + x + x^2 + \ldots = \frac{1}{1-x}$, за |x| < 1. Ако обаче

диференцираме тази сума ще получим също вярно равенство, което е:

$$\sum_{i=1}^{\infty} i x^{i-1} = 1 + 2x^2 + 3x^3 + \dots = \left((1-x)^{-1} \right)^{1} = \frac{1}{(1-x)^2}.$$

II H/H:

$$\mathbb{P}(A) = \mathbb{P}(A \mid G) \cdot \mathbb{P}(G) + \mathbb{P}(A \mid W) \cdot \mathbb{P}(W) + \mathbb{P}(A \mid R) \cdot \mathbb{P}(R) = 0 + 1 \cdot \frac{5}{20} + \mathbb{P}(A \mid R) \cdot \frac{7}{20} = \frac{5}{20} + \frac{7}{20} \mathbb{P}(A).$$

Тук използвахме наблюдението, че ако сме извадили първо червена топка, това по никакъв начин не променя условието на играта (тъй като ги връщаме обратно в урната).

Така получихме, че $20\mathbb{P}(A)=5+7\mathbb{P}(A)$ или $\mathbb{P}(A)=\frac{5}{13}$.

Нека сега не връщаме извадените топки.

I H/H

$$\mathbb{P}(A) = \mathbb{P}(w) + \mathbb{P}(rw) + \dots + \mathbb{P}(\underbrace{r \dots r}_{7} w) = \frac{5}{20} + \frac{7}{20} \cdot \frac{5}{19} + \frac{7}{20} \cdot \frac{6}{19} \cdot \frac{5}{18} + \dots + \frac{7}{20} \cdot \frac{6}{19} \cdot \frac{5}{18} \dots \frac{1}{14} \cdot \frac{5}{13} = \frac{5}{20} \left(\underbrace{1 + \frac{7}{19} + \frac{7.6}{19.18} + \dots}_{7} \right) = \frac{5}{20} x.$$

За да пресметнем тази сума ще се доверим на симетрията и ще пресметнем

$$\mathbb{P}(\overline{A}) = \mathbb{P}(g) + \mathbb{P}(rg) + \dots + \mathbb{P}(\underbrace{r \dots r}_{7} g) = \frac{8}{20} + \frac{7}{20} \cdot \frac{8}{19} + \frac{7}{20} \cdot \frac{6}{19} \cdot \frac{8}{18} + \dots + \frac{7}{20} \cdot \frac{6}{19} \cdot \frac{5}{18} \cdot \dots \frac{1}{14} \cdot \frac{8}{13} = \frac{8}{20} \left(\underbrace{1 + \frac{7}{19} + \frac{7.6}{19.18} + \dots}_{r} \right) = \frac{8}{20} x.$$

Ho
$$\mathbb{P}(A)+\mathbb{P}(\overline{A})=1\Rightarrow \frac{5}{20}x+\frac{8}{20}x=1\Rightarrow x=\frac{20}{13}$$
. Следователно $\mathbb{P}(A)=\frac{5}{13}$.

II H/H:

Червените топки нямат значение, тъй като по никакъв начин не оказват влияние на правилата на играта (ако разглеждаме условието като игра)

Тогава, ако разглеждаме изтеглените топки като редици:

w					
---	--	--	--	--	--

Игнорираме червените топки. Всички възможни наредби на 5 бели и 8 зелени топки на 13 поиции са: $\frac{13!}{5!8!}$. От тях $\frac{12!}{4!8!}$ наредби ни удовлетворяват (бяла топка е изтеглена преди челена) \Rightarrow

$$\mathbb{P}(A) = \frac{\frac{13!}{5!8!}}{\frac{12!}{4!8!}} = \frac{5}{13}.$$

Задача 11 (Monty Hall Problem). Зад една от 3 затворени врати има чисто нова кола, а зад другите две няма нищо. Избирате врата, след това водещията отваря една от останалите две врати, зад които няма нищо. Сега трябва да решите - сменяте ли избраната врата или запазвате първоначалния си ичбор?

Решение:

Винаги сменяме, за да повишим вероятността да спечелим колата, тъй като при първоначалния избор вероятността е била 1/3 за печалба, а след отваряне на една от вратите вече е 1/2.

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the door offered
Goat	Goat	Car	Wins goat	Wins car
Goat	Car	Goat	Wins goat	Wins car
Car	Goat	Goat	Wins car	Wins goat

Задача 12 (Boy or Girl paradox). X има две деца. Ако по-старото е момиче, каква е вероятността и двете да са момичета? А ако знаете, че поне едно от тях е момче, каква е вероятността и двете да са момчета?

Решение:

$$\Omega = \big\{ \{B,G\},\, \{G,B\},\, \{B,B\},\, \{G,G\} \big\}.$$

Ако по старото е момиче, вселената намалява на половина $\Omega_{new} \big\{ \{B,G\}, \, \{G,G\} \big\}$ $\Rightarrow \mathbb{P}$ (и двете са момичета | по-старото е момиче) $= \frac{1}{2}$.

$$\Rightarrow \mathbb{P}$$
(и двете са момичета | по-старото е момиче) $=\frac{1}{2}$

Ако поне едното е момче, вселената намалява малко по-малко от предходния случай, тъй като отчитаме естествената наредба, за да бъде по-реалистичен модела. Следователно

$$\Omega_{new}ig\{\{B,G\},\,\{G,B\},\,\{B,B\}ig\}\Rightarrow \mathbb{P}$$
(и двете са момчета | поне едно от тях е момче) $=\frac{1}{3}$.