Probability Theory

Applications for Data Science Module 4 Continuous Random Variables

Anne Dougherty

March 14, 2021

TABLE OF CONTENTS

Continuous Random Variables

Random Variables

At the end of this module, students should be able to

- ▶ Define a continuous random variable and give examples of a probability density function and a cumulative distribution function.
- ► Identify and discuss the properties of a uniform, exponential, and **normal random variable**
- In this vides will review the normal of Standard normal distributions, See how they're related to each other, or work through some problems

If
$$X \sim N(\mu, \sigma^2)$$
 then
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \text{ for } -\infty < x < \infty$$

If $Z \sim N(0,1)$ then

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \text{ for } -\infty < x < \infty$$
 This means, $P(a < Z < b) = \int_a^b f_Z(x) d\mu$ Proposition: If $X \sim N(\mu, \sigma^2)$, then $\frac{X - \mu}{\sigma} \sim N(0, 1)$ Think of $X - \mu$ as a new ry It's been shifted by μ a scaled by σ

Proposition: If
$$X \sim N(\mu, \sigma^2)$$
, then $\frac{X - \mu}{\sigma} \sim N(0, 1)$
 $E(X-\mu) = \frac{1}{\sigma}(E(X) - \mu) = 0$

This means divisity for for $X - \mu$ is fix = $\frac{1}{2\sigma}e^{-x^2/2}$
 $V(X-\mu) = \frac{1}{\sigma} \cdot V(X) = 1$

Note: For any contrv, say Y , with divisity $f_Y \cdot y_Y \cdot y_Y$

Example: If $X \sim N(1,4)$, (a) find $P(0 \le X \le 3.2)$ and find a so that $P(X \le a) = 0.7$.

(a)
$$P(0 \le X \le 3.2) = P(0-1 \le X-1 \le 3.2-1)$$

Recall:

$$P(-\frac{1}{2} \leq \frac{\chi - 1}{\sqrt{2\pi}} \leq 1.1) = \int_{-2\pi}^{1.1} \frac{1}{\sqrt{2\pi}} e^{-\chi^2/2} d\chi$$

 $P(a) = \Phi(a)$
 $= P(\frac{1}{2} \leq a)$
 $= \Phi(1.1) - \Phi(-0.5) \approx .5558$

(b)
$$P(X \le a) = P(\frac{X-1}{2} \le \frac{a-1}{2}) = P(Z \le \frac{a-1}{2}) = \int_{-\infty}^{\frac{a-1}{2}} \frac{1}{2\pi} e^{-x^{2}/2} dx = .7$$

$$= \Phi(\frac{\alpha-1}{2}) \qquad \text{From Table, } \Phi(.525) = .7$$

$$= 0.525$$

$$= \oint \left(\frac{\alpha - 1}{2}\right)$$
 From same, $\Re \left(\frac{1}{2}\right) = 0.525$
So $\frac{\alpha - 1}{2} = 0.525$
$$\Rightarrow a = 2.05$$

Example: The time that it takes a driver to react to the brake lights on a decelerating vehicle is critical in helping to avoid rear-end collisions. Research suggests that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled with a normal distribution having mean 1.25 seconds and standard deviation 0.46 seconds. What is the probability that the reaction time is between 1 and 1.75 seconds? What assumptions are you making?

$$\begin{array}{lll}
X = reaction time, & X \sim N(\mu = 1.25, 6^{2} = (.96)^{2}) \\
\text{Pause} & P(1 = X \leq 1.75) = P(1-1.25 \leq X-1.25 \leq \frac{1.75-1.25}{.96} \leq \frac{1.75-1.25}{.96}) \\
\text{Power of this of this of the property of the p$$

Assumption: normal ry takes on Values from (-00,00)
but most of the prob. is concentrated
within 3 std dev. of the mean.

Normal approximation to the binomial distribution

Recall: $X \sim Bin(n, p)$ means that X counts the number of successes in n Bernoulli trials, each with probability of success

p.
$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, ..., n$, $E(X) = np$ and $V(X) = np(1-p)$.

For large n, X can be approximated by a normal rv with

$$\mu = np \text{ and } \sigma^2 = np(1-p).$$

$$\text{Instant}$$

$$\text{If } X \approx B(n,p) \text{ cand } np(1-p) \ge 10$$

$$\text{Then } \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

Example: In a given day, there are approximately 1,000 visitors to a website. Of these, 25% register for a service. Estimate the probability that between 200 and 225 people will register for a service tomorrow.

for a service tomorrow.

$$X = \# \text{ of } peaple \text{ who } register \text{ for servoice}$$

 $X \sim 13 (n = 1000), p = 25)$
 $P(200 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(200 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(200 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000 \choose k} p^{k} (1-p)^{1000-k}$
 $P(300 \le X = 228) = \sum_{k=200}^{225} {1000$