Reinforcement Learning for Spacecraft Mode Control

Harris . Teil . Hammad . Mills

Project Description

Motivation

- High operations cost makes autonomy a priority
- On-board autonomy eliminates need for ground contact
- ML techniques could provide planning robust to dynamic environment

Project Description

- Apply reinforcement learning to determine the best series of actions for a spacecraft to enter and maintain an orbit about a planet in deep space.
- The goal is to minimize error relative to a nominal orbit and perform the prescribed science mission.

Proposed Work

Training Data

- Training data will be simulated with linear relative error and state dynamics models.
- High performance nonlinear orbital mechanics models will be used for later phases.

Why use Machine Learning?

 Reinforcement learning has had success in vehicle autonomy and control.

Approach

Linear

- Develop models for learning environment. (Consider error states that grow and shrink linearly)
- Temporal difference Q-learning
- Model-Based Maximum Likelihood methods

Nonlinear

 Apply learned algorithms to "true" nonlinear system.

Problem Statement

State Description

- $X = [r, v]^T \in \mathbb{R}^6$: true state
- $X_0 = [r_0, v_0]^T$: reference trajectory
- $\widehat{X} \in \mathbb{R}^6$: state estimate
- $x = X \hat{X}$: estimation error
- $E \in \{0, 1\}$: error indicator

Action Model

- Orbit Determination $x \rightarrow 0$
- Orbit Control $\hat{X} \rightarrow X_0$
- Mission Maneuver $\Delta V >> 0$
- Science Operations obtain reward
- lacksquare Safe Mode E
 ightarrow 0

