IX Olimpíada Iberoamericana de Física

Salvador, Septiembre de 2004

Problema 1 - Sensores Hall (10 puntos)

Figura 1: Placa de material semicondutor atravesada por corriente I y colocada en un campo magnético \vec{B} .

Muchos automóviles estan equipados con sensores de velocidad basados en el Efecto Hall. El sensor Hall, fijo a la carrocería y próximo a la rueda, consiste en una plaquita de material semiconductor, a través de la cual pasa una corriente I, montada frente a un imán que produce un campo magnético aproximadamente uniforme de magnitud B. Como resultado, se genera un voltaje de magnitud V_H . Cuando un dispositivo (placa metálica de elevada permeabilidad magnética), fijo a la rueda, pasa entre el imán y la plaquita semiconductora, anula el campo y el voltaje Hall, V_H del sensor. Eso produce como señal de salida una serie de pulsos de forma aproximadamente cuadrada (vea figura 2), que puede ser utilizada por el computador de a bordo para medir la velocidad angular de la rueda.

- (a) Considere una plaquita semiconductora de altura d, espesor a y longitud L, donde hay una densidad de corriente \vec{j} (Fig. 1), situada en un campo magnético uniforme $\vec{B} = B\hat{z}$. Suponga que la corriente sea debida a portadores de carga q y que n sea la densidad de portadores en la plaquita, de forma que el módulo de la densidad de corriente sea j = I/ad = nqv, donde v es la velocidad de de los portadores. Obtenga una expresión para el voltaje Hall generado entre el plano superior e inferior de la plaquita que compensa el efecto del campo magnético sobre los portadores de carga.
- (b) Suponga que la plaquita semiconductora tiene altura d=1,0 cm, espesor $a=250~\mu\text{m}$, longitud L=1,0 cm. Por ella circula una corriente de 16 mA y está sometida a un campo magnético B=0,1 T. La densidad de portadores en el material, con carga $q=1,6\times 10^{-19}$ C, es $n=10^{19}/\text{cm}^3$. Calcule el valor de V_H .
- (c) ¿Cuál es la velocidad de los portadores de carga asociados a la corriente?
- (d) En la Fig. 2 tenemos un gráfico del voltaje Hall en función del tiempo. Siendo $t_1 = 0, 5$ s, $t_2 = 0, 9$ s y $t_3 = 1, 2$ s ¿el automóvil está acelerando o frenando? ¿Cual es el valor medio de la aceleración entre intervalos de tiempo consecutivos? Se sabe que el diámetro típico de una rueda es de 60 cm.
- (e) ¿Que distancia recorrió el automóvil desde t = 0 hasta t_3 ?

Figura 2: Gráfico del voltaje Hall en función del tiempo.

Problema 2 - Ondas sonoras y dilatación térmica

(10 puntos)

Figura 3: Montaje del experimento de resonancia.

El estudio de los modos normales de vibración en una columna de aire puede ser realizado a través de una experiencia de resonancia. Un altavoz, de frecuencia conocida f (variable), emite ondas sonoras en un tubo de vidrio con líquido en el fondo (ver fig. 3). Consideremos que el líquido sea mercurio (¡cuidado: el mercurio es tóxico. Si quisiera hacer la experiencia, use agua!).

- (a) Suponga que a la temperatura T_1 , la altura de la columna de mercurio (Hg) es l_1 . La velocidad del sonido, a esa temperatura, es v_1 . Si la altura total del tubo es L, escriba la expresion de la frecuencia fundamental de resonancia f_1 en función de L, l_1 y v_1 .
- (b) La misma experiencia se realiza a la temperatura T_2 , mayor que T_1 . Sabiendo que la sección recta del tubo tiene área A y el coeficiente de dilatación volumétrica del Hg es β , obtenga la expresión de la nueva altura de la columna de mercurio, l_2 . Desprecie la dilatación del vidrio, asi como efectos de capilaridad. Considere que el volumen V_R contenido en el recipiente inferior es mucho mayor que el volumen ocupado por la columna de mercurio.

Nota. Tenga en cuenta que el coeficiente de dilatación volumétrica es

$$\beta = \frac{1}{V_0} \frac{\Delta V}{\Delta T},$$

donde V_0 es el volumen inicial, ΔV es la variación del volumen y ΔT es la variación de temperatura.

- (c) Sabiendo que la velocidad del sonido puede ser escrita en la forma $v = C\sqrt{T}$, donde C es una constante y T es la temperatura dada en Kelvin, obtenga la expresión de la velocidad v_2 a la temperatura T_2 en función de v_1 .
- (d) Obtenga la expresión de la nueva frecuencia fundamental de resonancia f_2 .
- (e) Suponga que, a las temperaturas de $T_1=17^{\circ}\mathrm{C}$, $T_2=27^{\circ}\mathrm{C}$ y $T_3=37^{\circ}\mathrm{C}$, las frecuencias fundamentales de resonancia respectivamente son $f_1=200$ Hz, $f_2=210$ Hz y $f_3=225$ Hz. Sabiendo que la razón entre V_R y el área A es 9,0 m y que a la temperatura de 17 °C $(L-l_1)=42,8$ cm, calcule el coeficiente de dilatación volumétrica del mercurio.

Problema 3 - Absorción de radiación (5 puntos)

Podemos tener alguna idea sobre la absorción de radiación por la materia considerando un sistema de oscilador armónico forzado y amortiguado. Considere una partícula de masa m, en un medio viscoso, sujeta a una fuerza disipativa proporcional a su velocidad ($f_{\text{disip}} = -\alpha v$) y ligada a una pared por un resorte de constante elástica $k = m\omega_0^2$.

(a) Una fuerza armónica externa $f = f_0 \cos(\omega t)$ es aplicada a la partícula, en la misma dirección de su movimiento. La potencia media transferida a la partícula en un período es

$$\overline{P} = \frac{\alpha f_0^2 \omega^2}{2[m^2(\omega^2 - \omega_0^2)^2 + \alpha^2 \omega^2]} .$$

Describa el comportamiento de \overline{P} com ω .

(b) Considere que la partícula ya no está ligada a la pared. ¿Cuál sería, en esta situación, la expresión para la potencia media \overline{P} ?

Problema 4 - Expansión del universo (5 puntos)

De acuerdo con el modelo del "big bang", el universo evolucionó de una situación de alta densidad y temperatura a la situación actual por un proceso de expansión. En una de las etapas de la expansión la densidad del universo alcanzó un valor crítico del orden de 10^{-20} g/cm³, razón por la cual los fotones transitan grandes distancias sin interactuar con la materia. A este proceso se lo llama desacoplamiento de la radiación con la materia. Este desacoplamiento se alcanzó cuando la temperatura del universo era $T_D = 3000$ K . Si suponemos que los fotones producidos a partir del momento del desacoplamiento estaban en equilibrio térmico con la materia, la intensidad de la radiación por ellos producida debe obedecer a la fórmula de Planck:

$$R(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1} ,$$

donde h es la constante de Planck, c es la velocidad de la luz, k es la constante de Boltzmann, λ es la longitud de onda y T la temperatura.

De acuerdo con la expresión de Planck, el máximo de radiación corresponde a una longitud de onda λ_{\max} dada por la llamada ley de Wien:

$$\lambda_{\text{max}} = \frac{2,9 \times 10^{-3}}{T} ,$$

donde la cantidad $2,9\times 10^{-3}$ es una constante universal dada en metro-kelvin. La temperatura T se mide en kelvin.

- (a) La densidad actual de materia en el universo es del orden de 10^{-29} g/cm³ y la radiación emitida, producto del desacoplamiento de la radiación con la materia, es observada actualmente en forma de radiación cósmica de fondo, la cual obedece la ley de Planck, a una temperatura T_0 . Suponiendo que todas las distancias en el universo se expanden isotrópicamente, calcule la temperatura actual del universo T_0 .
- (b) Los datos del satélite COBE, representados en la fig. 4, indican que la radiación cósmica de fondo sigue la fórmula de Planck para una cierta temperatura $T_0^{(\exp)}$. Utilizando la gráfica número 4 determine la temperatura $T_0^{(\exp)}$.
- (c) Determine la diferencia porcentual entre las temperaturas determinadas en los items anteriores.

Figura 4: Espectro de la radiación cósmica de fondo medida por el satélite COBE.