Билет 5

Электроёмкость, электроёмкость уединённого проводника, конденсатор. Вывод формулы ёмкости плоского конденсатора. Последовательное и параллельное соединения конденсаторов. Энергия системы зарядов, Энергия заряженного конденсатора. Плотность энергии электрического поля.

Электрическая емкость уединенного проводника

Рассмотрим сферический проводник радиусом r .

Уединенный проводник — проводник, находящиеся очень далеко от других тел, так что его размеры во много разменьше расстояний до других тел.

При сообщении шару заряда q в окружающем пространстве возникнет электростатическое поле, потенциал шара измениться и станет равным φ . Приняв потенциал бесконечно удаленных тел за 0, можем вычислить

потенциал шара $\varphi=rac{k\ q}{\varepsilon\ r}$, тогда $rac{q}{\varphi}=rac{\varepsilon\ r}{k}$. Эта величина на зависит от заряда и определяется лишь радиусом

шара и диэлектрической проницаемостью окружающей среды.

Отношение заряда проводника произвольной формы к его потенциалу не зависит от значения заряда и определяется его геометрическими размерами проводника, его формой и электрических свойств среды.

Электрическая емкость проводника — отношение заряда проводника к изменению его потенциала.

$$C = \frac{q}{\Delta \varphi}$$
; $[C] = \Phi = \frac{K\pi}{B}$ $1\Phi = 9 \cdot 10^{11} cM = 9 \cdot 10^{9} M$

Емкостью в 1 Ф обладает проводник, потенциал которого возрастает на 1 В при сообщении ему заряда 1 Кл.

Конденсаторы

Конденсатор — система проводников, емкость которой не зависит от окружающих тел, накопитель энергии. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники называют обкладками конденсатора.

Заряд конденсатора — абсолютное значение заряда на одной из обкладок.

Электроемкость конденсатора — отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. $C = \frac{q}{U}$

Классификации конденсаторов								
1	По материалу диэлектрика							
	Бумажные	Электролитические	Слюдяные	Воздушные	Керамические			
2	По форме обкладок							
	Плоские	Сферические	Цилиндрические					
3	По величине емкости							
	Постоянные Переменные							

Соединение	Формула
Последователь	$U = U_1 + U_2$; $q_1 = q_2 = q$
Hoe C_1 C_2	
	$U = \frac{q}{C} = \frac{q_1}{C_1} + \frac{q_2}{C_2} \qquad C = \frac{1}{C_1} + \frac{1}{C_2}$
Параллельное	$U = U_1 = U_2; q_1 + q_2 = q$
	$q = C U = C_1 U_1 + C_2 U_2$ $C = C_1 + C_2$

Формулы емкостей

Вид	Емкость	Вид	Емкость
Плоский + о о В В Д д д д д д д д д д д д д д д д д д	Поверхностная плотность заряда $\sigma = \frac{q}{S}$ Энергия одной пластины $E_0 = \frac{\sigma}{2 \varepsilon \varepsilon_0}$ Рассмотрим точки В и D: $U = \Delta \varphi = \varphi_D - \varphi_B$ $C = \frac{q}{U} = \frac{q}{\varphi_D - \varphi_B} = \frac{\sigma S}{d E} = \frac{\sigma S}{d \cdot 2 \cdot \frac{\sigma}{2 \varepsilon \varepsilon_0}} = \frac{\varepsilon \varepsilon_0 S}{d}$	Сферический +	$\varphi_1 = \frac{k q}{R_1}; \varphi_2 = \frac{k q}{R_2}$ $\frac{q}{\varphi_1 - \varphi_2} = \frac{q}{k q \cdot (\frac{1}{R_1} - \frac{1}{R_2})}$ $C = 4\pi \varepsilon \varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$

Энергия плоского конденсатора

ергия плоского конденсатора Рассмотрим плоский конденсатор. Напряженность поля, созданного зарядом одной из пластин равна $\frac{E}{2}$, где E - напряженность E поля в конденсаторе. В однородном поле находится заряд E . Torда по формуле потенциальной энергии в однородном поле энергия конденсатора E . Torда по формуле потенциальной энергии в однородном поле энергия конденсатора E .

 $E d = U \Rightarrow W_p = \frac{q U}{2} = \frac{CU^2}{2} = \frac{q^2}{2 C}$

Будем постепенно заряжать конденсатор переносами малого заряда $-\Delta q$ с одной пластины на другую.

Конденсатор будет заряжаться, электрическое поле внутри него будет совершать работу.

Так как порция заряда мала, можно считать, что напряжение во время переноса не изменяется.

Тогда работа $\Delta A = -\Delta q U = -\frac{1}{C} q \Delta q$. Изменение энергии конденсатора $\Delta W_p = -\Delta A = \frac{1}{C} q \Delta q$.

Суммарная энергия конденсатора равна $W_p = \int \frac{1}{C} q \, dq = \frac{1}{C} \cdot \frac{q^2}{2} = \frac{q^2}{2C}$

Энергия заряженного проводника

Будем аналогично заряжать проводник, перемещая к нему из бесконечности электрический заряд малыми порциями Δq .

 $_\Delta A = _\Delta q \left(arphi_{_\infty} - arphi
ight)$, где $\,arphi\,$ - потенциал проводника с зарядом $\,q\,$. Пусть $\,q_{_\infty} = 0\,$.

Тогда $\Delta A = -\Delta q \varphi = -\frac{q \Delta q}{C}$.

Суммарная энергия проводника равна $W_p = \int \frac{1}{C} q \, dq = \frac{1}{C} \cdot \frac{q^2}{2} = \frac{q^2}{2C} = \frac{q \, \varphi}{2} = \frac{C \, \varphi^2}{2}$

Энергия электрического поля

Вся энергия заряженных тел сконцентрирована в электрическом поле этих тел.

Подставим в формулу энергии конденсатора значение емкости конденсатора:
$$W_{p} = \frac{C \ U^{2}}{2} = \frac{\varepsilon_{0} \varepsilon \ S}{d} \cdot \frac{E^{2} \ d^{2}}{2} = \frac{\varepsilon_{0} \varepsilon \ E^{2}}{2} \cdot S \ d = \frac{\varepsilon_{0} \varepsilon \ E^{2}}{2} \cdot V$$

Разделим формулу энергии на объем, занятый полем, и получим энергию, приходящуюся на единичный объем, то есть плотность энергии.

 $\omega_e = \frac{\varepsilon_0 \varepsilon \, E^2}{2}$ - данное выражение не зависит от формы конденсатора, справедливо для любого поля любого конденсатора.