Machine Learning Algorithms - Supervised Algorithms

Hao Le Vu

IUH

2025

Outline

Classification

Logistic Regression: Introduction

Why Logistic Regression?

- Linear Regression works well for predicting continuous values.
- But for **classification tasks** (e.g., spam vs. not spam), outputs must be between 0 and 1.
- Logistic Regression predicts probabilities and maps them to discrete classes.

Key Idea

 Use the sigmoid function to map linear combinations of inputs to a probability:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Linear vs Logistic Regression

Logistic regression outputs probabilities between 0 and 1.

Logistic Regression: Model

Hypothesis

$$h_{\theta}(x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

where:

- \bullet x = feature vector
- ullet $\theta = \mathsf{model}$ parameters
- $\sigma(z) = \text{sigmoid function}$

Decision Rule

$$\hat{y} = egin{cases} 1, & ext{if } h_{ heta}(x) \geq 0.5 \\ 0, & ext{otherwise} \end{cases}$$

Sigmoid Function Visualization

Machine Learning Algorithms

Cost Function and Gradient Descent

Binary Cross-Entropy Loss

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))
ight]$$

Gradient Descent Update

$$\theta_j := \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

where:

- $\quad \bullet \quad \alpha = \text{learning rate}$
- m = number of training examples

Cost Function Behavior

The cost grows rapidly when predictions are very wrong.

Binary vs Multi-Class Classification

Binary Classification

$$y \in \{0,1\}, \quad P(y=1|x) = \sigma(\theta^T x)$$

- Decision boundary splits two classes.
- Example: Tumor detection (malignant vs benign).

Multi-Class Classification

- One-vs-Rest (OvR): Train one classifier per class.
- Softmax Regression: Generalizes logistic regression:

$$P(y = k|x) = \frac{e^{\theta_k^T x}}{\sum_{j=1}^K e^{\theta_j^T x}}$$

One-vs-Rest Multi-Class Visualization

Each classifier predicts its own class probability. The class with the highest probability is chosen.

Evaluation Metric: Accuracy

Definition

$$Accuracy = \frac{\text{Correct Predictions}}{\text{Total Predictions}}$$

Pros and Cons

- Pros: Simple and intuitive metric.
- Cons: Misleading with imbalanced datasets.

Confusion Matrix Visualization

Actual +	Predicted + TP	Predicted - FN
Actual -	FP	TN

Foundation for calculating Precision, Recall, F1-score.

Precision, Recall, and F1-score

Definitions

$$Precision = \frac{TP}{TP + FP}$$
 ; $Recall = \frac{TP}{TP + FN}$ $F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$

Interpretation

- Precision: How many predicted positives are truly positive.
- Recall: How many actual positives are captured.
- **F1-score:** Harmonic mean of Precision and Recall.

Precision vs Recall in Confusion Matrix

Precision focuses on top row (Predicted +). Recall focuses on left column (Actual +).

ROC Curve and AUC

ROC (Receiver Operating Characteristic) Curve

Plots True Positive Rate (TPR) vs. False Positive Rate (FPR).

•

$$TPR = \frac{TP}{TP + FN}, \quad FPR = \frac{FP}{FP + TN}$$

AUC (Area Under Curve)

- Measures classifier's ability to distinguish between classes.
- ullet AUC =1 o perfect classifier, AUC =0.5 o random guessing.

ROC Curve Visualization

ROC shows the trade-off between TPR and FPR across thresholds.

Addressing Class Imbalance

Problem

- Many datasets have unequal class distributions.
- Example: Fraud detection (99% normal, 1% fraud).
- Accuracy can be misleading: predicting "all normal" gives 99% accuracy!

Solutions

- Resampling: Oversample minority class (SMOTE), or undersample majority class.
- Adjust decision threshold: Lower threshold for minority class.
- Class weighting: Penalize misclassification of minority class more heavily.
- Alternative metrics: Focus on Precision, Recall, F1-score, AUC.

Python Example: Logistic Regression

```
from sklearn.linear_model import LogisticRegression
import numpy as np

# Training data: Hours studied vs. Pass/Fail outcome
X = np.array([[1], [2], [3], [4], [5], [6]])
y = np.array([0, 0, 0, 1, 1, 1]) # Binary labels

# Train model
model = LogisticRegression()
model.fit(X, y)

# Predict probability for a student who studied 3.5 hours
prob = model.predict_proba([[3.5]])
print(f"Probability of passing: {prob[0][1]:.2f}")
```

Python Example: One-vs-Rest Multi-Class Logistic Regression

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
# Load dataset
iris = load iris()
X, y = iris.data, iris.target # 3 classes: Setosa, Versicolor, Virginica
# Train logistic regression model with One-vs-Rest (OvR)
model = LogisticRegression(multi_class='ovr', solver='lbfgs', max_iter=200)
model.fit(X, y)
# Predictions
v_pred = model.predict(X)
# Fualuate model
print("Accuracy:", accuracy_score(y, y_pred))
print("\nClassification Report:")
print(classification_report(y, y_pred, target_names=iris.target_names))
```

Python Example: One-vs-Rest Multi-Class Logistic Regression

where

- multi_class='ovr' trains one binary classifier per class.
- Each classifier distinguishes "class vs. rest," and the highest probability wins.
- The Iris dataset is a classic example with 3 classes.

Categorical Data Encoding for Classification

Why Encoding is Needed

Machine learning algorithms work with **numerical data**. Categorical variables must be converted into numeric form for the model to process.

Example:

Sample	Color	
1	Red	
2	Green	
3	Blue	
4	Red	

Problem: Algorithms can't interpret text values like "Red" or "Blue". We need to encode these categories into numbers.

Label Encoding

Definition

Assign each unique category a unique integer value.

Example: Color Variable

$$\mathsf{Red} = \mathsf{0}, \quad \mathsf{Green} = \mathsf{1}, \quad \mathsf{Blue} = \mathsf{2}$$

Sample	Color	Encoded
1	Red	0
2	Green	1
3	Blue	2
4	Red	0

Pros:

Simple and space-efficient.

Cons:

• Implies an ordinal relationship that may not exist (e.g., Red ¿ Green ¿ Blue).

One-Hot Encoding

Definition

Creates a new binary feature for each category:

- 1 = presence of category
- 0 = absence of category

Example: Color Variable

Sample	Color	Red	Green	Blue
1	Red	1	0	0
2	Green	0	1	0
3	Blue	0	0	1
4	Red	1	0	0

Pros:

- No implied ordinal relationships.
- Works well for most algorithms (Logistic Regression, Decision Trees, etc.).

Cons:

Increases dimensionality when there are many unique categories.

Target Encoding

Definition

Replace each category with the **mean of the target variable** for that category.

Example: Predicting Purchase (0 or 1)

Color	Target Mean (Purchase Rate)
Red	0.75
Green	0.40
Blue	0.20

Pros:

- Reduces dimensionality (1 column instead of many).
- Encodes useful information about relationship with target.

Cons:

Can lead to data leakage if not used carefully (must compute on training set only).

Comparison of Encoding Methods

Method	Pros	Cons	Use Cases
Label Encoding	Simple,	Implies ordinal rela-	Tree-based models
	space-	tionship	like Decision Trees,
	efficient		Random Forests
One-Hot Encod-	No ordinal	High dimensionality	Logistic Regression,
ing	assumptions,	for many categories	SVM, Neural Net-
	widely used		works
Target Encoding	Compact, in-	Risk of data leakage	High-cardinality cat-
	cludes target		egorical features
	info		

Key Tip: Choose the encoding method based on the model type and the number of unique categories.

Python Example: Encoding with Scikit-Learn

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
# Sample data
df = pd.DataFrame({'Color': ['Red', 'Green', 'Blue', 'Red']})
# Label Encoding
label encoder = LabelEncoder()
df['Color_Label'] = label_encoder.fit_transform(df['Color'])
# One-Hot Encoding
one_hot = pd.get_dummies(df['Color'], prefix='Color')
# Combine results
result = pd.concat([df, one_hot], axis=1)
print(result)
```

k-Nearest Neighbors (k-NN): Introduction

Definition

- A non-parametric supervised learning algorithm used for both classification and regression.
- Predicts the label or value of a new data point by finding the k
 closest points (neighbors) in the training data.
- It is a lazy learner, meaning no explicit model is built during training.

Core Intuition

- Classification: Majority vote among the k neighbors determines the predicted class.
- **Regression**: Average of the neighbors' target values becomes the prediction.

k-NN Intuition: Visual Example

The algorithm predicts based on the majority label within the dashed circle.

Choosing the Hyperparameter k

Role of k

k =Number of nearest neighbors considered

- Controls the complexity and smoothness of the decision boundary.
- **Small** k: Highly sensitive to noise \rightarrow risk of overfitting.
- Large k: Smooth boundary → risk of underfitting.

Modes of k-NN

- Classification: Predict the most common class among neighbors.
- **Regression**: Predict the average target value of neighbors.

How k-NN Works: Step-by-Step

Algorithm Steps

- **①** Choose the number of neighbors k.
- 2 Compute the distance between the test point and all training points.
- \odot Sort and select the k nearest neighbors.
- Make prediction:
 - Classification: Assign the majority class.
 - Regression: Predict the mean of target values.

k-NN has no explicit training phase; all computation happens at prediction time.

How k-NN Works: Step-by-Step

Algorithm Steps

- **1** Choose the number of neighbors k.
- 2 Compute the distance between the test point and all training points.
- \odot Sort and select the k nearest neighbors.
- Make prediction:
 - Classification: Assign the majority class.
 - Regression: Predict the mean of target values.

k-NN has no explicit training phase; all computation happens at prediction time.

Common Distance Metrics in k-NN

Euclidean Distance (most common)

$$d(p,q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

Manhattan Distance

$$d(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Minkowski Distance (general form)

$$d(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}}$$

k-NN: Decision Boundaries

Intuition

- The algorithm divides the feature space into regions.
- Each region is dominated by the majority class of its neighbors.
- k = 1: Highly complex, jagged boundaries.
- Larger k: Smoother, more generalized boundaries.

Boundaries become smoother as k increases.

Effect of Small vs Large k

Figure: Small $k \to \text{very localized}$ and complex boundary. Large $k \to \text{smoother}$ boundary but less sensitive to details.

k-NN: Strengths and Weaknesses

Advantages

- Simple and intuitive, easy to implement.
- No explicit training step required.
- Naturally supports multi-class problems.
- Can be applied to both classification and regression tasks.

Limitations

- Computationally expensive for large datasets.
- Performance degrades with high-dimensional data (curse of dimensionality).
- Sensitive to noisy or irrelevant features.
- Requires careful tuning of *k* and distance metric.

Python Example: k-NN Classification

```
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
# Training data: [Feature1, Feature2]
X = np.array([
    [1.2, 1.0], [1.5, 1.3], [1.1, 0.9],
    [3.5, 3.0], [3.8, 3.2], [4.0, 2.9]
1)
y = np.array([0, 0, 0, 1, 1, 1]) # Class labels
# Train k-NN model
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X, y)
# Predict for a new point
test_point = np.array([[2.0, 2.0]])
prediction = model.predict(test_point)
print(f"Predicted Class: {prediction[0]}")
```