Церемония награждения победителей и призёров Олимпиады «Математика НОН-СТОП — 2018»

Лаборатория непрерывного математического образования

21 апреля 2018

«Летающий цирк», пункт А

Условие

Если сказать мистеру Лэмберту слово «МАТРАС», он кричит "Караул!", снимает перчатки, надевает на голову ведро, встаёт одной ногой в коробку из-под телевизора и поёт два куплета из песни про коня.

Если сказать мистеру Лэмберту слово «СТАРТ», он кричит "Караул!", снимает перчатки, встаёт двумя ногами в коробку из-под телевизора и поёт один куплет из песни про коня.

А что будет, если сказать мистеру Лэмберту слово «МАРС»?

«Летающий цирк», пункт А

	Α	М	Р	С	Т
MATPAC	2	1	1	1	1
CTAPT	1	_	1	1	2
Действие	куплеты	ведро	перчатки + "Караул"!		ноги в коробке
MAPC	1	1	1	1	0

Ответ: прокричит "Караул!", снимет перчатки, наденет ведро на голову, споёт куплет из песни про коня.

«Летающий цирк», пункт С

Условие

Тревор: «Этот сконфуженный кот стоит <u>9600</u> рублей.»

Джереми: «Кот дешевле, поскольку Тревор в 4 раза преувеличивает каждое число, которое называет. Хоть он только что и сказал про стоимость кота в 2400 рублей, кот на самом деле стоит 150 рублей.»

Подсчитайте, во сколько раз Джереми преуменьшает каждое произносимое число, и сколько на самом деле стоит сконфуженный кот.

«Летающий цирк», пункт С

Условие

Тревор: «Этот сконфуженный кот стоит <u>9600</u> рублей.»

Джереми: «Кот дешевле, поскольку Тревор в 4 раза преувеличивает каждое число, которое называет. Хоть он только что и сказал про стоимость кота в 2400 рублей, кот на самом деле стоит 150 рублей.»

Подсчитайте, во сколько раз Джереми преуменьшает каждое произносимое число, и сколько на самом деле стоит сконфуженный кот.

- Джереми повторял только что сказанное и преуменьшил в 4 раза.
- Кот стоит 600 рублей.

Условие

В понедельник Сергей растворил пачку красителя в 10 л воды. Фёдор вылил из ведра 4 литра раствора, долил 4 литра воды и тщательно размешал.

Во вторник Сергей растворил пачку красителя в 10 литрах воды. Фёдор вылил из ведра 2 литра раствора, долил 2 литра воды, тщательно размешал — и повторил ту же последовательность действий ещё раз.

В какой из дней в ведре осталось больше красителя?

Условие

В понедельник Сергей растворил пачку красителя в 10 л воды. Фёдор вылил из ведра 4 литра раствора, долил 4 литра воды и тщательно размешал.

Во вторник Сергей растворил пачку красителя в 10 литрах воды. Фёдор вылил из ведра 2 литра раствора, долил 2 литра воды, тщательно размешал — и повторил ту же последовательность действий ещё раз.

В какой из дней в ведре осталось больше красителя?

- **1** Концентрация в понедельник: $0.6 \, \kappa$;
- **2** Концентрация во вторник: $0.8 \cdot (0.8 \, \kappa) = 0.64 \, \kappa$.

Условие

Условие

$$(720 - x)$$

Условие

$$(720 - x) \cdot 3 =$$

Условие

$$(720 - x) \cdot 3 = 720 -$$

Условие

$$(720-x)\cdot 3 = 720 - \frac{1}{3}\cdot$$

Условие

$$(720 - x) \cdot 3 = 720 - \frac{1}{3} \cdot x$$

Условие

$$(720 - x) \cdot 3 = 720 - \frac{1}{3} \cdot x$$
$$x = 540$$

«Одновременное вычитание», пункт А

Условие

На доске написаны пять чисел, сумма которых делится на три. Разрешается одновременно уменьшать на единицу три из написанных на доске чисел. Всегда ли можно добиться того, чтобы на доске в итоге оказалось пять нулей?

«Одновременное вычитание», пункт А

Условие

На доске написаны пять чисел, сумма которых делится на три. Разрешается одновременно уменьшать на единицу три из написанных на доске чисел. Всегда ли можно добиться того, чтобы на доске в итоге оказалось пять нулей?

«Гадкий аккуратный подсчёт», пункт А

Условие

Из клетчатой бумаги вырезали прямоугольник размером 4 × 5 клеток. Сколько на нём можно найти квадратов? А прямоугольников?

«Гадкий аккуратный подсчёт», пункт А

Условие

Из клетчатой бумаги вырезали прямоугольник размером 4 imes 5 клеток. Сколько на нём можно найти квадратов? А прямоугольников?

Заметим, что левый верхний угол прямоугольника размером $a \times b$ может находиться в $(5-a) \cdot (6-b)$ положениях.

«Гадкий аккуратный подсчёт», пункт А

	1	2)	4				
1	(6-1)(5-1)=20	(6-1)(5-2)=15	(6-1)(5-3)=10	(6-1)(5-4)=5				
2	(6-2)(5-1)=16	(6-2)(5-2)=12	(6-2)(5-3)=8	(6-2)(5-4)=4				
3	(6-3)(5-1)=12	(6-3)(5-2)=9	(6-3)(5-3)=6	(6-3)(5-4)=3				
4	(6-4)(5-1)=8	(6-4)(5-2)=6	(6-4)(5-3)=4	(6-4)(5-4)=2				
5	(6-5)(5-1)=4	(6-5)(5-2)=3	(6-5)(5-3)=2	(6-5)(5-4)=1				
	$\sum = (1+2+\ldots+5)(1+\ldots+4) = 15 \cdot 10 = 150.$							
	2+6+12+20=40.							

«Разрезания»

Рис.: Решение пунктов А, В, С

«Средние арифметические», пункт С

Условие

Разбить набор 51...130 на четыре поднабора так, чтобы минимум средних был наибольшим.

«Средние арифметические», пункт С

Условие

Разбить набор 51...130 на четыре поднабора так, чтобы минимум средних был наибольшим.

Среднее всех средних неизменно:

$$\frac{a_1 + \ldots + a_{20}}{20} + \frac{a_{21} + \ldots + a_{40}}{20} + \ldots = \frac{a_1 + \ldots + a_{80}}{80}$$

«Средние арифметические», пункт С

Условие

Разбить набор 51...130 на четыре поднабора так, чтобы минимум средних был наибольшим.

Среднее всех средних неизменно:

$$\frac{a_1 + \ldots + a_{20}}{20} + \frac{a_{21} + \ldots + a_{40}}{20} + \ldots = \frac{a_1 + \ldots + a_{80}}{80}$$

Хотим сделать так, чтобы минимум был равен ему. Поднаборы для этого можно взять симметричными.

«Фургончик», пункт А

Условие

Длины стен кузова фургона, который строит себе мороженщик Саша, в метрах выражаются двумя различными простыми числами. Если удлинить каждую из стен на 1 метр, площадь фургона увеличится на 15 м². Найдите размеры фургона.

«Фургончик», пункт А

Условие

Длины стен кузова фургона, который строит себе мороженщик Саша, в метрах выражаются двумя различными простыми числами. Если удлинить каждую из стен на 1 метр, площадь фургона увеличится на $15\,\mathrm{m}^2$. Найдите размеры фургона.

$$ab + 15 = (a + 1)(b + 1) = ab + a + b + 1;$$

 $a + b = 14;$
 $a = 11; b = 3.$

«Клиренсы», пункт С

Условие

Автобус с диаметром колёс 1 метр и колёсной базой 10.5 метров стоит на планете Маленького принца, диаметр которой 20 метров. Каким должен быть дорожный просвет у автобуса, чтобы он не царапал днищем грунт?

«Клиренсы», пункт С

Условие

Автобус с диаметром колёс 1 метр и колёсной базой 10.5 метров стоит на планете Маленького принца, диаметр которой 20 метров. Каким должен быть дорожный просвет у автобуса, чтобы он не царапал днищем грунт?

Идея: имеется равносторонний треугольник со стороной 10.5 метров.

«Клиренсы», пункт С

Рис.: Отмеченный треугольник — равносторонний.

$$\left(10 - 10.5 \cdot \frac{\sqrt{3}}{2}\right) + 0.5 = 10.5 \cdot \left(1 - \frac{\sqrt{3}}{2}\right).$$

«Игры», пункты А, С

Рис.: Задача «Игры»

- А. Первый ставит свою фигуру в центр прямоугольника (ширина же чётная), дальше ходит симметрично;
- С. Первый ставит фигуру как на рисунке. После любого хода второго (из четырёх возможных) ходит так, что второй больше не может походить (перебор).

«Рукопожатия», пункт С

Условие

Известно, что в Авиаландии пять городов. Из каждого города летает шесть авиарейсов, внутренних или международных. Докажите, что за границы Авиаландии летает чётное количество авиарейсов.

«Рукопожатия», пункт С

Условие

Известно, что в Авиаландии пять городов. Из каждого города летает шесть авиарейсов, внутренних или международных. Докажите, что за границы Авиаландии летает чётное количество авиарейсов.

Всего 30 рейсов; давайте выкидывать внутренние. Каждый внутренний летает между двумя городами, поэтому считается дважды. 30 — чётное чётное число. Верен и чуть более общий результат.

«Как провожают транспортёры», пункт В

Условие

Два кубика размером $5 \times 5 \times 5$ см едут по транспортёру, причём расстояние между ними равняется 10 см. С данного транспортёра они попадают на следующий, в два раза более быстрый, и дальше едут по нему. Каково расстояние между ними теперь?

«Как провожают транспортёры», пункт В

Условие

Два кубика размером $5 \times 5 \times 5$ см едут по транспортёру, причём расстояние между ними равняется 10 см. С данного транспортёра они попадают на следующий, в два раза более быстрый, и дальше едут по нему. Каково расстояние между ними теперь?

$$(5+10) \cdot 2 - 5 = 25$$
 сантиметров.

«Сетки на плоскости», пункт С

Условие

Доказать, что любым четырёхугольником можно замостить плоскость.

«Сетки на плоскости», пункт С

Условие

Доказать, что любым четырёхугольником можно замостить плоскость.

Рис.: Если совместить все вершины четырёхугольника в одной точке — они как раз прекрасно сложатся.

Спасибо за внимание! /*/

^{/*/} Вы можете задать ещё вопросов