

#### Premessa

Sono una raccolta di operazioni definite principalmente dalle seguenti caratteristiche:

- Permettono di analizzare ed elaborare immagini con uno specifico focus sulle forme e strutture geometriche contenute.
- Si applicano principalmente ad immagini binarie o in scala di grigi.
- Possono essere applicate singolarmente.
- Possono essere combinate fra loro.

Gli ambiti di applicazione sono molteplici.



### Le principali

### Le operazioni principali sono le seguenti:

| Erosion   | Rimuove pixel dai contorni delle forme degli oggetti riducendone le dimensioni ed eventualmente eliminando gli oggetti più piccoli.                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dilation  | Accresce le dimensioni degli oggetti aumentando il numero di pixel nei contorni delle loro forme. Potenzialmente connette oggetti separati fra loro o chiude buchi contenuti nelle forme stesse. |
| Opening   | Applica in successione erosione e dilatazione al fine principale di eliminare piccoli oggetti contenuti nell'immagine e ridurne il rumore.                                                       |
| Closing   | Applica in sequenza una dilatazione ed una erosione al fine principale di riempire buchi nelle forme e ridurre gli spazi che separano gli oggetti fra loro.                                      |
| Gradient  | Rappresenta la differenza fra dilatazione ed erosione al fine di mettere in evidenza i contorni degli oggetti.                                                                                   |
| Top-hat   | Rappresenta la differenza fra l'opening di un'immagine e l'immagine stessa.                                                                                                                      |
| Black-hat | Rappresenta la differenza fra l'immagine e il closing della stessa.                                                                                                                              |

### **Funzionamento**

Sono versioni specializzate della convoluzione. Applicano un kernel, chiamato *elemento strutturale*, all'immagine in input ottenendo un'immagine in output delle stesse dimensioni.



Il valore associato ad ogni singolo pixel dipenderà dall'operazione scelta e dal comportamento del 'vicinato' di pixel specificati dal kernel.



### **Funzionamento**

Per ogni passo di convoluzione, l'elemento strutturale ancora il suo centro con il pixel designato.

La forma rappresentata nell'elemento strutturale viene proiettata sull'immagine sorgente e va a definire i pixel del 'vicinato' da considerare.

In genere si identificano tre situazioni fra la forma nel kernel e la proiezione nel vicinato:

→ Fit : il vicinato contiene la forma.

Hit : il vicinato contiene parte della forma.

□ *Miss*: il vicinato non contiene la forma.



### Dilate ed Erode

Le operazioni, come visto, sono diverse ma le principali, base anche di molte delle altre, sono **erosione** e **dilatazione**.

Considerando immagini binarie, 0-1:

- L'erosione si basa sul principio di portare ad 1 (bianco) il pixel ancorato se la forma proiettata è un fit nel vicinato.
- La dilatazione si basa sul principio di portare ad 1 il pixel ancorato se la forma proiettata è un hit nel vicinato.

*Nota:* tutto ciò che non è parte della forma viene ignorato.







# Operazioni morfologiche Dilate





## Operazioni morfologiche Erode





**Opening** 







Top-Hat



Una iterazione



Cinque iterazioni



# Operazioni morfologiche Closing







Black-Hat



Una iterazione



**Gradient** 



Una iterazione



Cinque iterazioni



Dilate ed Erode su grayscale

Le operazioni di dilatazione ed erosione, come anche le altre operazioni, sono applicabili sia ad immagini *binarie* che in *scala di grigi*.

Per meglio comprenderlo, si possono tradurre in operazioni di ricerca di *massimo* e *minimo*.

- L'erosione setta al pixel ancorato il valore minimo trovato nel vicinato.
- La dilatazione setta al pixel ancorato il valore massimo trovato nel vicinato.

Con questa nuova definizione, non c'è differenza a cercare fra valori fra 0 e 1, 0 e 255 o altro...





### Kernel binari

Con un focus sulle immagini binarie, possiamo considerare i pixel neri come 'sfondo', il background, e i bianchi, il foreground.



Con gli esempi precedenti, abbiamo visto un kernel 3x3 di pixel foreground a proiettare una forma a croce; i pixel grigi sono completamente ignorati. Ma è altresì possibile definire un vicinato anche costituito da background.



Con dei kernel così definiti è possibile specificare la ricerca di pattern 'esatti' di background / foreground e individuare quindi tutti i pixel della sorgente in cui avvengono hit o miss.



#### Hit-and-Miss

**Hit-and-Miss** è infatti un'altra delle operazioni fondamentali che fungono da base per altre operazioni morfologiche.

In questo caso, se la forma descritta dal kernel (fatta di foreground e background) ha un match esatto dopo essersi ancorata alla sorgente, allora il pixel ancorato diventa di *foreground*, altrimenti *background*.



Con gli esempi qui indicati possiamo infatti trovare pixel di foreground isolati, pixel terminali che hanno un background sul lato destro, pixel angolari direzionati in basso a sinistra...



### Proviamo?

