Chapitre 3

Equations différentielles d'ordre 1

Avant de donner la définition d'une équation différentielle ordinaire on commence par donner des exemples.

Exemples

- 1) $y' = 0, x \in \mathbb{R}$ alors les solutions sont : $y = k, k \in \mathbb{R}$ définies dans \mathbb{R}
- 2) y' = 1 alors $y = x + k, k \in \mathbb{R}, x \in \mathbb{R}$ sont solutions.
- 3) $y'' + x = e^{2x}$ alors $y = \frac{1}{4}e^{2x} \frac{1}{6}x^3 + k, k \in \mathbb{R}, x \in \mathbb{R}$
- 4) xy' = 1 alors

 $y = ln(x) + k, k \in \mathbb{R}, x \in]0, +\infty[$ et $y = ln(-x) + k, k \in \mathbb{R}, x \in]-\infty, 0[$ sont solutions.

Avant de définir une équation différentielle, on a besoin de définir une fonction réelle de plusieurs variables réelles (un nombre fini de variables).

Définition (fonction réelle de *m* variables)

Une fonction réelle de m variables est une application $F: D \to \mathbb{R}$, où D est une sousensemble de \mathbb{R}^m appelé domaine de définition de la fonction F.

Exemples

- 1) La fonction $F:(x_1,x_2)\to x_1+2x_2+3$ est une fonction de 2 variables définie sur \mathbb{R}^2
- 2) La fonction $F:(x_1,x_2,x_3)\to 2x_2+x_1x_2x_3$ est une fonction de 3 variables définie sur \mathbb{R}^3

Définition (équation différentielle ordinaire)

Soit D une partie de \mathbb{R} .

Une équation différentielle réelle ordinaire d'ordre n, est une équation de la forme

$$F\left(x,y,y',\dots,y^{(n)}\right)=0,x\in D$$

οù

- F: est une fonction de (n + 2) variables
- L'inconnue y est une fonction réelle d'une variable réelle x appelée la variable libre.
- y', ..., $y^{(n)}$ ses dérivées successives.
- F est non constante par rapport à $y^{(n)}$. (c'est-à-dire $y^{(n)}$ parait dans l'équation)

Exemples

- 1) y' + y = 0, est une edo d'ordre 1.
- 2) y'' = 1, est une edo d'ordre 2.
- 3) $v'' + v' + x = e^{2x}$ est une edo d'ordre 2.

Dans ce cours, on écrit edo pour désigner une équation différentielle ordinaire réelle.

Dans ce chapitre on s'intéressera aux edo d'ordre 1.

Considérons une edo d'ordre 1:

$$F(x, y, y') = 0, x \in D$$
 (1)

Définition (solution d'une edo d'ordre 1)

On appelle solution d'une edo (1) d'ordre 1, une fonction y définie sur un intervalle $I \subseteq D$ dérivable et qui vérifie l'edo (1).

Exemples

1)
$$xy' = 1, x \in \mathbb{R}$$

y = lnx, est dérivable dans $]0, +\infty[$ et vérifie x(lnx)' = 1 donc y = lnx, $x \in]0, +\infty[$ est solution de cette edo.

2)
$$y'' + x = e^{2x}, x \in \mathbb{R}$$

$$y = \frac{1}{4}e^{2x} + \frac{1}{6}x^3$$
, $x \in \mathbb{R}$ est solution de l'edo

Définition (solution globale)

Considérons une edo d'ordre (1).

Une solution d'une edo (1) est dite globale si I = D.

Exemples

1)
$$xy' = 1, x \in \mathbb{R}$$

 $y = lnx, x \in]0, +\infty[$ n'est pas une solution globale.

2)
$$y'' + x = e^{2x}, x \in \mathbb{R}$$

 $y = \frac{1}{4}e^{2x} + \frac{1}{6}x^3$, $x \in \mathbb{R}$ est une solution globale.

Définition (intégrer une équation différentielle)

Intégrer (ou résoudre) une équation différentielle c'est trouver toutes les solutions de cette équation différentielle.

I- Edo d'ordre 1 à variables séparables g(y)y' = f(x)

Définition

Une edo d'ordre 1 à variables séparables est une edo (1) qu'on peut mettre sous la forme

$$g(y)y' = f(x) (2)$$

où f et g sont deux fonctions numériques.

Théorème

Considérons une edo (2)

Si f et g sont continues dans D alors g est solution de l'edo (2) si, et seulement si, g est solution de l'équation

$$G(y(x) = F((x)) + k, k \in \mathbb{R}$$
.

Où F et G deux primitives respectives de f et g.

Preuve

Par hypothèse f et g sont continues dans D donc admettent des primitives.

Soit F et G deux primitives respectives de f et . .

Supposons que (2) admette une solution y. Alors

$$(G(y(x))' = G'(y(x))y'(x) = g(y(x))y'(x) = g(y)y'$$
 et $F'(x) = f(x)$, d'où le théorème.

Exemples

$$1-y' = x$$

y' = x peut s'écrire y'dx = xdx.

En intégrant membre à membre on obtient

$$\int dy = \int x dx$$
 d'où $y = \frac{1}{2}x^2 + k, k \in \mathbb{R}, x \in \mathbb{R}$ sont solutions.

$$2-y^2y' = \frac{1}{3}$$

 $3y^2y' = 1$ peut s'écrire $3y^2y'dx = dx$.

En intégrant membre à membre on obtient

$$3 \int y^2 dy = \int dx$$
 ou $y^3 = x + k, k \in \mathbb{R}$ d'où $y = \sqrt[3]{x + k}, k \in \mathbb{R}$, $x \in \mathbb{R}$ sont solutions.

3-
$$x^2y' = e^{-y}$$
 , $x \in \mathbb{R}$

Supposons $x \neq 0$. L'équation $x^2y' = e^{-y}$ peut s'écrire $e^{-y}y'dx = \frac{1}{x^2}dx$.

En intégrant membre à membre on obtient

$$\int e^y dy = \int \frac{1}{x^2} dx \text{ ou } e^y = -\frac{1}{x} + k, k \in \mathbb{R} \text{ ou } y = \ln\left(-\frac{1}{x} + k\right), k \in \mathbb{R}, -\frac{1}{x} + k > 0, \text{ d'où}$$

$$y = \ln\left(-\frac{1}{x} + k\right), k \in \mathbb{R}, x \in \left]\frac{1}{k}, 0\right[\text{ si } k < 0$$

$$y = \ln\left(-\frac{1}{x}\right), x \in \left]-\infty, 0\right[\text{ si } k = 0$$

$$y = \ln\left(-\frac{1}{x} + k\right), k \in \mathbb{R}, x \in \left[\frac{1}{k}\right], +\infty\right[\text{ si } k > 0$$

sont solutions.

II-Edo d'ordre 1 linéaires homogène y' + a(x)y = 0

Définition

Une edo d'ordre 1 linéaire homogène est une edo (1) qu'on peut mettre sous la forme

$$y' + a(x)y = 0, x \in D$$
 (3)

Où a est fonctions de x.

L'edo (3) est appelée également edo linéaire d'ordre 1 sans terme libre.

Théorème

Si α est continue dans D alors les solutions de l'edo (3) sont les fonctions

$$y = Ce^{-\int a(x)dx}, C \in \mathbb{R}$$
 (4)

Preuve

La fonction nulle est solution de l'edo homogène.

Si y n'est pas nulle, l'edo (3) est une edo à variables séparables : $\frac{1}{y}y' = -a(x)$ d'où

$$ln|y| = -\int a(x)dx + k, k \in \mathbb{R}$$
 ou

$$|y| = e^k e^{-\int a(x)dx}$$

$$y = \pm e^k e^{-\int a(x)dx}$$

 $y=Ce^{-\int a(x)dx}$, $C=\pm e^k$ comme la fonction nulle est solution et que y=0 pour C=0 alors $y=Ce^{-\int a(x)dx}$, $C\in\mathbb{R}$ sont solutions de l'edo (3).

Montrons que toute solution de l'edo (3) est de la forme (4).

Soit y une solution de l'edo linéaire homogène (3) alors

$$y' + a(x)y = 0$$

ou

$$e^{\int a(x)dx}(y'+a(x)y)=0$$

ou

$$\left(y(x)e^{\int a(x)dx}\right)'=0$$

ou

$$y(x)e^{\int a(x)dx}=C,C\in\mathbb{R}$$

ou

 $y(x) = Ce^{-\int a(x)dx}$. Le théorème est prouvé.

Une solution de l'edo linéaire homogène est appelée solution homogène.

Exemples

$$1-y' + 2xy = 0$$

$$y = ke^{-2\int x dx}, k \in \mathbb{R}$$

 $y = ke^{-x^2}$, $x \in \mathbb{R}$ sont les solutions.

$$2-x^2y'=y$$

Pour $x \neq 0$, l'edo peut s'écrire $y' - \frac{1}{x^2}y = 0$ d'où $y = ke^{\int \frac{1}{x^2}dx}$, $k \in \mathbb{R}$.

$$y = ke^{-\frac{1}{x}}$$
, $]-\infty$, $0[$ et $y = ke^{-\frac{1}{x}}$, $]0$, $+\infty[$ sont solutions.

II-Edo d'ordre 1 linéaires complètes y' + a(x)y = b(x)

Définition

Une edo d'ordre 1 linéaire complète est une edo (1) qu'on peut mettre sous la forme

$$y' + a(x)y = b(x), x \in D$$
 (5)

où a et b sont deux fonctions de x.

L'edo (5) est appelée également edo linéaire d'ordre 1 avec terme libre.

Théorème (principe de superposition)

L'ensemble des solutions de l'edo linéaire complète (5) est formé des fonctions de la forme

$$y_a = y_0 + y_h$$

où y_0 est une solution particulière de l'edo complète (5) et y_h une solution de l'edo homogène (3).

 $y_g = y_0 + y_h$ est appelée solution générale de l'edo complète (5).

Recherche de y_q

Méthode de la variation de la constante

Considérons l'edo complète $y' + a(x)y = b(x), x \in D$ où a et b sont continues.

Posons $y = C\varphi(x)$ où $\varphi(x) = e^{-\int a(x)dx}$ et C est une fonction de x.

y est solution de l'edo complète (5) donc $y' = C'\varphi(x) + C\varphi'(x)$ ou

$$C'\varphi(x) + C\varphi'(x) + Ca(x)\varphi(x) = b(x)$$

ou

$$C(\varphi(x) + a(x)C\varphi'(x)) + C'\varphi(x) = b(x)$$

ou

$$C'\varphi(x) = b(x)$$

puisque $\varphi(x)$ est solution de l'edo homogène (3) et comme $\varphi(x)$ ne s'annule jamais, on a

$$C' = \frac{b(x)}{\varphi(x)}$$

ou

$$C = \int \frac{b(x)}{\varphi(x)} dx + k, k \in \mathbb{R}$$

Finalement,

$$y_g = \left(\int \frac{b(x)}{\varphi(x)} dx + k\right) \varphi(x)$$

ou

$$y_g = \varphi(x) \int \frac{b(x)}{\varphi(x)} dx + k\varphi(x)$$

$$\varphi(x) = e^{-\int a(x)dx}.$$

 $y_0 = \varphi(x) \int \frac{b(x)}{\varphi(x)} dx$ est une solution particulière de l'edo linéaire complète.

Exemple

$$1-y' + 2xy = x$$

$$y_g = \varphi(x) \int \frac{b(x)}{\varphi(x)} dx + k\varphi(x), k \in \mathbb{R}$$
 où

$$\varphi(x) = e^{-\int 2x dx} = e^{-x^2} e^{-\frac{b(x)}{\varphi(x)}} dx = \int \frac{x}{e^{-x^2}} dx = \frac{1}{2} e^{x^2}$$

 $y_g=rac{1}{2}+ke^{-x^2}$, $k\in\mathbb{R}$, $x\in\mathbb{R}$ est la solution générale.

$$2-v'-2v=e^{-x}$$

$$y_g = \varphi(x) \int \frac{b(x)}{\varphi(x)} dx + k\varphi(x), k \in \mathbb{R}$$
 où

$$\varphi(x) = e^{\int 2dx} = e^{2x} \text{ et } \int \frac{b(x)}{\varphi(x)} dx = \int \frac{e^{-x}}{e^{2x}} dx = \int e^{-3x} dx = -\frac{1}{3} e^{-3x}$$

 $y_g = -\frac{1}{3}e^{-x} + ke^{2x}$, $k \in \mathbb{R}$, $x \in \mathbb{R}$ est la solution générale.

$$3-xy' - \frac{1}{x}y = lnx, x \in]0, +\infty[.$$

$$y_g = \varphi(x) \int \frac{b(x)}{\varphi(x)} dx + k\varphi(x), k \in \mathbb{R}$$
 où

$$\varphi(x) = e^{\int \frac{1}{x} dx} = x \text{ et } \int \frac{b(x)}{\varphi(x)} dx = \int \frac{\ln x}{x} dx = \frac{1}{2} \ln^2(x)$$

 $y_g = \frac{1}{2}xln^2(x) + kx, k \in \mathbb{R}$, $x \in]0, +\infty[$ est la solution générale de $y' - \frac{1}{x}y = lnx$.

III- Problème de Cauchy associé à une edo linéaire d'ordre 1

Théorème

Considérons une edo linéaire complète

$$y' + a(x)y = b(x), x \in I$$

où I est un intervalle ouvert et a, b sont continues.

Alors, pour tout et pour $x_0 \in J$ et pour tout $y_0 \in \mathbb{R}$, il existe une et une seule solution y de telle que $(x_0) = y_0$.

 (x_0, y_0) est appelée condition initiale.

$$\begin{cases} y' + a(x)y = b(x), x \in J \\ y(x_0) = y_0 \end{cases} \qquad x_0 \in J, y_0 \in \mathbb{R} \quad (P)$$

est appelé problème de Cauchy.

Preuve

a, b sont continues alors y' + a(x)y = b(x) admet des solutions.

Montrons l'unicité de la solution du problème de Cauchy.

Supposons que (P) admette deux solutions y et z. Alors

$$y' - z' = a(x)(y - z)$$
 et $y(x_0) = z(x_0) = y_0$

ou
$$(y-z)' = a(x) (y-z)$$
 et $y(x_0) - z(x_0) = 0$

D'où $-y = Ke^{-A(x)}$, $K \in \mathbb{R}$ où A(x) est une primitive de a(x).

et $y(x_0) - z(x_0) = Ke^{-A(x_0)} = 0$ d'où K = 0. Le théorème est prouvé.

Exemple

1- Résoudre le problème de Cauchy suivant

$$\begin{cases} y' + 2xy = x, x \in \mathbb{R} \\ y(0) = 0 \end{cases}$$

 $y_g = \frac{1}{2} + ke^{-x^2}$, $k \in \mathbb{R}$, $x \in \mathbb{R}$ est la solution générale de y' + 2xy = x.

 $y(0) = \frac{1}{2} + k = 0$ alors $y = \frac{1}{2} - \frac{1}{2}e^{-x^2}$, $x \in \mathbb{R}$ est la solution du problème de Cauchy.

2- Résoudre le problème de Cauchy suivant

$$\begin{cases} y' - \frac{1}{x}y = \ln x, x \in]0, +\infty[\\ y(1) = 1 \end{cases}$$

 $y_g = \frac{1}{2}xln^2(x) + kx, k \in \mathbb{R}$, $x \in]0, +\infty[$ est la solution générale de $y' - \frac{1}{x}y = lnx$.

y(1) = k = 1 alors $y = \frac{1}{2}xln^2(x) + x, x \in]0, +\infty[$ est la solution du problème de Cauchy.

7