Section 3 Vision

Sujin Park COGS 17 A04 01/31/25

Before We Begin 1

Summer Internships in Affective Science available at the

Emotion, Health, and Psychophysiology Lab at Yale University

- Summer 2025
 - an eight-week internship program (June 9 August 3, 2025) for undergraduates who are interested in conducting research at the intersection of social psychology, health, emotion, and psychophysiology
 - Interns are involved in conducting lab studies, field studies, acquiring autonomic data, editing and scoring physiological responses, attending weekly tutorials, lab meetings, and professional development seminars.
 - Course credit from home universities can be arranged, and stipends are available.

Before We Begin 2

Q. Causes of Demyelination

Multiple sclerosis (MS) is an immune-mediated disease affecting the brain and spinal cord.

- **Immune System**: The primary theory is multiple sclerosis is an autoimmune disease. The body's immune system mistakenly attacks its myelin sheath or cells that produce and maintain it.
- Environmental factors: Several environmental factors such as latitude gradient (changes that occur along different latitudes including climate etc), and vitamin D deficiency might contribute to the development of the disease.
- Genetic factors: Genetics also plays a role in the development of multiple sclerosis (MS).

The Eye

- Fovea: small central area of high concentration of Cones only, for HIGH DETAILS
- Retina: senses light, sends information to the brain through optic nerve
- Blind spot: No receptors here

 Light needs to pass through outer layers of the eye before it reaches the receptors (Cornea > Pupil > Iris > Lens > Receptors)

The Retina

Multi-layered, covers the rear inner wall of the eyeball

- Pigment Epithelium: Non-neuronal cells, feed & recycle nutritions from receptors, help reflect/maximize light
- Receptors: Rods & Cones, rearmost layer of retina
- Bipolar cells: postsynaptic to receptors
- Ganglions: axons of the Ganglion cells form the Optic Nerve
- Interneurons: perpendicular to pathway, influence above neurons

Visual Receptors

- Photoreceptors = Rods & Cones
 - Rod's outer segment is much larger with higher amounts of photopigments (Opsin and Retinal)
 - Both are embedded in the pigment epithelium
 - Graded Potentials that release inhibitory NTs
- Outer segments of photoreceptors isomerize and convert light into neural signals

Visual Receptors

CONE CELLS

for daytime vision

Visual Receptors

Retina

- Interneurons: Horizontals and Amacrines
 - Both send out Graded Potentials, mostly inhibitory NTs (Lateral Inhibitors)
 - Horizontals mainly modify interface of Receptors and Bipolars
 - Amacrines mainly modify interface of Bipolars and Ganglions
- **Bipolars**: Postsynaptic to Receptors
 - Spontaneous firing of Graded Potentials, releases Excitatory NTs
- **Ganglions**: Postsynaptic to Bipolars
 - Fires off Action Potentials, releases Excitatory NTs

In the Dark

- Flow of lons causes a constant release of NTs
- cGMP holds Na+ gates open > influx of Na+ > Change in polarity leads to Ca²+ gates opening and influx of Ca²+ > NT released
- When Positive charge accumulates in the cell, Na+ exits via electrostatic pressure
 - Builds up outside > Influx into cell again
 - Ca²+ enters again
 - Continuous cycle of Ion influx/efflux
- Ca²+ pump pushes Ca²+ out of the cell
- Visual Receptors fire in the dark. NT is continuously released as long as there is no light

In The Light

Isomerization

- converting light into a neural signal
- photopigment: made of Opsin & Retinal, undergo a chemical change when they absorb light
- photopigment regeneration: using Enzymes from
 Pigment Epithelium, prepare to respond the next
 photon

In The Light

- Isomerization occurs as follows:
 - Before absorbing light, a molecule of photopigment, 11-cis Retinal, is attached to Opsin (aka visual purple)
 - In the light, the photopigment absorbs the light and gets 'bleached', causing Retinal to detach from the Opsin where it undergoes a form change to All trans Retinal and turns pink
 - cGMP converts 5'GMP when isomerized so that Na+ gates are closed > no Ca²+ enters as the Ca²+ gates are closed > no NT release
 - Ultimately when in the light, the "Dark Current" is shutdown (turned off by the light)

Connectivity Patterns

• play a critical role in information-transmission

Convergence

Receptors Converge onto Ganglion Cells (varied ways)

Cones

- **Low** Convergence (6:1 or few:1)
- High Acuity, detailed information is preserved
- Fovea Cones have very low conv. (1:1)

Rods

- **High** Convergence (120:1 or Many:1)
- Low Acuity, details can be lost

Receptive Field

- A set of receptors whose activity influences the activity of a "target" downstream cell
- Better Acuity when a cell has a smaller RF
 - Ganglion along path from converging Cones has small RF

How the Brain Constructs the Visual World

Celebrate the end of Midterm 1!

