

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo recupero - Ordinamento DM 509/99 22 settembre 2010

Nome:	Matricola:
Cognome:	

Esercizio 1

La produzione del pane su scala industriale segue un processo in cinque fasi: (1) preparazione ingredienti, impasto (2) gradienti, (3) prima cottura, (4) trattamento superficiale pane, (5) seconda Un'azienda dispone di 14 unità di personale e delle seguenti macchine:

- 3 impastatrici A,B,C per la fase (2) con capacità produttiva (in kg di farina per ora) 10, 8, 7 rispettivamente;
- 2 forni D,E per prima cottura di capacità (in kg di farina per ora) 10, 13 rispettivamente;
- 1 forno F per seconda cottura di capacità (in kg di farina per ora) 21;

Le fasi (1) e (4) richiedono 0,1 ore di personale ciascuna per kg di farina lavorata per ora. Le

impastatrici A,B,C richiedono rispettivamente 0,3 0,2 e 0,1 ore di personale per kg di farina lavorata per ora. I forni D,E,F richiedono rispettivamente 0,2 0,3 e 0,1 ore di personale per kg di farina lavorata per ora.

Si vuole determinare la produzione massima dell'azienda (in kg di farina per ora).

- Formulare il problema come un opportuno problema di PL, esplicitando le unità di misura delle variabili ed il loro significato
- 2. Formulare il problema duale
- 3. Utilizzando le condizioni di ortogonalità dimostrare o confutare che all'ottimo si utilizzano solo 12 unità di personale, mentre A, E ed F lavorano rispettivamente 5, 10 e 20 Kg di farina per ora.

Esercizio 2

In tabella sono riportati gli archi di una rete di flusso con 5 nodi 1...5 ed i valori di domanda di ogni nodo (assumendo un valore negativo per un nodo sorgente e un valore positivo per un nodo pozzo). Si determini una soluzione ottima al problema di flusso di costo minimo utilizzando l'algoritmo del simplesso su reti (fase 1 e fase 2), o dimostrare che il problema è impossibile o illimitato.

Archi	(1,2)	(1,3)	(1,4)	(2,5)	(3,1)	(3,2)	(3,4)	(3,5)	(4,5)	(5,1)	(5,2)
Costi	8	3	1	6	-2	4	3	4	4	2	-1
			Nod	Nodi		2 3	4	5			
			Don	Domanda		3 -5	0	2			

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo recupero - Ordinamento DM 270/04 22 settembre 2010

Nome:	Matricola:
Cognome:	

Esercizio 1

Achille impiega 5 minuti per raggiungere la tartaruga a partire da una distanza iniziale di 2 stadi. Un leone impiega non più del doppio per raggiungere Achille da una distanza iniziale di uno stadio. Tutti corrono a velocità costante lungo una retta e nello stesso verso, la velocità del leone è doppia di quella di Achille e quest'ultima è dieci volte quella della tartaruga. La tartaruga percorre non più di 80 metri prima di essere raggiunta da Achille. Si vuole sapere

quanto è lungo al più il piede di Achille. Si assuma che uno stadio misuri 600 piedi di Achille.

- 4. Formulare il problema di PL <u>precisando le</u> unità di misura
- 5. Risolvere il problema con il metodo di Fourier Motzkin.
- 6. Impostare il problema duale
- 7. Trovare la soluzione ottima del duale con le condizioni di ortogonalità.

Esercizio 2

In tabella sono riportati gli archi di un grafo con 7 nodi, e sono dati i valori di capacità degli archi ed un flusso iniziale. Si verifichi che il flusso dato sia ammissibile. Se il flusso dato risulta ammissibile, trovare il massimo flusso inviabile dal nodo 1 al nodo 7 con l'algoritmo di Ford e Fulkerson partendo dal flusso dato, se il flusso non è ammissibile partire dal grafo completamente scarico. Individuare il taglio di capacità minima nel grafo.

Archi	(1,2)	(1,3)	(2,3)	(2,4)	(3,4)	(3,6)	(4,5)	(4,6)	(5,6)	(5,7)	(6,7)	(7,5)
Capacità	6	42	4	8	32	9	27	16	34	8	40	10
Flussi	6	14	0	6	14	0	20	0	20	2	22	2