Assignment01

Mohamed Elmoudni February 12, 2017

Project 1:

Requirements:

The goal of this assignment is to help you build your intuition about recommender systems, with a basic soup to nuts implementation coded "from scratch."

Your task is to build a very basic recommender system, first by writing your own functions, then by replacing those functions with those provided in an R Package or a Python library (such as scikitlearn).

- You should very briefly first describe the recommender system that you're going to build out from a business perspective, e.g. "This system recommends movies to users."
- You can find a dataset, or build out your own toy dataset and load into (for example) an R or pandas dataframe, a Python dictionary or list of lists, (or other data structure of your choosing).
- You can use either collaborative filtering, or a hybrid of content management and collaborative filtering.
- You are encouraged to hand code at least your similarity function.
- After you have built out your own code base, create an alternate version using packages or libraries. Compare the results and performance.
- You are also encouraged to think about how to best handle missing data.
- Your code should be turned in an RMarkdown file or a Jupyter notebook, and posted to Github. You may work in a small group (2 or 3 people) on this assignment. While you're never discouraged from adding features or advanced capabilities such as regularization and matrix factorization methods, it is not expected at this point in the course.

library(recommenderlab)

```
## Loading required package: Matrix
## Loading required package: arules
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
##
       abbreviate, write
## Loading required package: proxy
## Attaching package: 'proxy'
## The following object is masked from 'package:Matrix':
##
##
       as.matrix
## The following objects are masked from 'package:stats':
##
##
       as.dist, dist
```

User	Items	Ratings		
1	$item_1$	1		
1	$item_10$	3		
1	$item_11$	1		
1	$item_12$	4		
1	$item_2$	2		
1	$item_3$	3		

Data Exploration

```
# Summary
kable(summary(dt), caption ="Data Summary")
```

Table 2: Data Summary

User	Items	Ratings		
Min.: 1.00	item_11:10	Min. :1.000		
1st Qu.: 3.00	$item_12:10$	1st Qu.:1.000		
Median: 5.00	$item_3 : 10$	Median $:2.000$		
Mean: 5.39	item $_1:9$	Mean $:2.295$		
3rd Qu.: 8.00	item $_5:9$	3rd Qu.:3.000		
Max. $:10.00$	$item_9:9$	Max. $:5.000$		
NA	(Other):48	NA		

```
#frequency table
table(dt$Ratings)
##
## 1 2 3 4 5
## 41 23 19 13 9
```

qplot(dt\$Ratings, dt\$User)

qplot(dt\$Ratings)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
#[head(sort(dt$Ratings, decreasing=TRUE), n = 5)]
#head(dt[sort(dt$Ratings, decreasing=TRUE), ], 100)
```

Implementing Item based recommender systems, like user based collaborative filtering, requires two steps:

- 1. Calculating Item similarities
- 2. Predicting the targeted item rating for the targeted User.

Step1: Calculating Item Similarity: we calculate the similarity between co-rated items. We use cosine similarity or pearson-similarity to compute the similarity between items. The output for step is similarity matrix between Items.

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:arules':
##
## intersect, recode, setdiff, setequal, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: SnowballC
```

```
##
## Attaching package: 'lsa'
## The following object is masked from 'package:dplyr':
##
##
query
```

	$item_1$	$item_2$	$item_3$	$item_4$	$item_5$	$item_6$	$item_7$	$item_8$	$item_9$
item_1	1.0000000	0.7779466	0.8606630	0.6000469	0.6707816	0.6222222	0.8012336	0.5499719	0.6880625
$item_2$	0.7779466	1.0000000	0.7909058	0.8861991	0.7204843	0.7584980	0.8091134	0.8045086	0.8172515
$item_3$	0.8606630	0.7909058	1.0000000	0.8133901	0.8785713	0.6196773	0.8235321	0.7485542	0.7804217
$item_4$	0.6000469	0.8861991	0.8133901	1.0000000	0.8521116	0.7425580	0.8425167	0.9546687	0.8294258
$item_5$	0.6707816	0.7204843	0.8785713	0.8521116	1.0000000	0.5927270	0.7610782	0.7761505	0.8415606
$item_6$	0.6222222	0.7584980	0.6196773	0.7425580	0.5927270	1.0000000	0.7765803	0.7919596	0.8256750
$item_7$	0.8012336	0.8091134	0.8235321	0.8425167	0.7610782	0.7765803	1.0000000	0.9021342	0.8178608
$item_8$	0.5499719	0.8045086	0.7485542	0.9546687	0.7761505	0.7919596	0.9021342	1.0000000	0.8340577
item $_9$	0.6880625	0.8172515	0.7804217	0.8294258	0.8415606	0.8256750	0.8178608	0.8340577	1.0000000
$item_10$	0.6432675	0.8444719	0.7750911	0.9046656	0.8590614	0.7504788	0.8771840	0.9097177	0.9168313
$item_11$	0.6552976	0.7097184	0.7042830	0.7796603	0.6797220	0.9141401	0.8996469	0.8757605	0.8043478
item_12	0.6913580	0.7779466	0.8606630	0.8375654	0.7927419	0.8000000	0.8012336	0.8328147	0.8027395

Step2: Predicting the targeted item rating for the targeted User

Recommending Top N items: Once all the non rated movies are predicted we recommend top N movies to a user Code for Item based collaborative filtering in R:

```
ratings<- as.matrix(x)
userRecmd <- function(userno)
{

    userRatings <- ratings[userno,]
    userRatings[userRatings==0] <- NA

#

    non_rated_items <- names(userRatings[is.na(userRatings)])
    rated_items <- names(userRatings[!is.na(userRatings)])
    m1 <- itemSimil[non_rated_items,]
    v1 <- apply(m1,1,function(x) sum((x*ratings[userno,]),na.rm = T)/(sum(x[rated_items])))
    #ratings[userno,names(v1)] <- v1

#

return(v1)
}</pre>
```

Recommend for User 10

Now we will use the above to find a rating for user 10. Following line predicts the ratings for

```
userRecmd(10)
```

```
## item_7 item_10
## 1.49148 1.51390
```

Following lines predict the ratings for the user 10 but using built-in package: RecommenderLab package.

```
m <- ratings
m[m==0] \leftarrow NA
affinity.matrix<- as(m, "realRatingMatrix")</pre>
Rec.model<-Recommender(affinity.matrix,method="IBCF",</pre>
                       param=list(normalize = "Z-score",method="Cosine", n=5))
## Warning: Unknown parameters: n
## Available parameter (with default values):
       = 30
## k
## method
            = Cosine
## normalize
                = center
## normalize_sim_matrix = FALSE
## alpha
          = 0.5
## na_as_zero = FALSE
## verbose
            = FALSE
u <- predict(Rec.model, affinity.matrix[10,], type="ratings")
as(u, "list")
## $`10`
## item_7 item_10
## 1.214661 1.483787
The numbers are slightly off compared to our user defined function but not by much.
######################### Mohamed Changes
x = df[,2:ncol(df)]
\#x[is.na(x)] = 0
x<- as.matrix(x)</pre>
x <- as(x, "realRatingMatrix")</pre>
kable(as(x, "matrix"))
```

item_1	item_2	item_3	item_4	item_5	item_6	item_7	item_8	item_9	item_10	item_11	item_12
1	2	3	4	5	NA	1	2	1	3	1	4
5	4	3	2	1	1	2	1	2	3	1	3
1	NA	1	NA	1	2	NA	NA	1	1	2	3
1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	2	2	2	3	3	3	4	4	4
1	2	3	4	5	1	2	3	4	5	1	2
NA	1	2	3	NA	1	2	3	NA	1	2	3
5	NA	4	NA	3	NA	2	NA	1	NA	1	2
5	4	3	5	4	3	5	4	3	5	4	3
1	2	1	2	1	2	NA	1	2	NA	1	2

```
rec=Recommender(x[1:nrow(x)],method="UBCF", param=list(normalize = "Z-score",method="Cosine", nn=12))
rec2 <- predict(rec, x[1:nrow(x)])</pre>
(as(rec2, "matrix")['10',])
##
     item_1
            item_2
                     item_3
                                item_4
                                         item_5 item_6 item_7
                                                                    item_8
##
        NA
                  NA
                           NA
                                    NA
                                             NA
                                                      NA 1.504270
                                                                        NA
##
     item_9 item_10 item_11 item_12
##
         NA 1.507037
                           NA
```

```
###################################
rec=Recommender(x[1:nrow(x)],method="UBCF", param=list(normalize = "Z-score",method="Jaccard", nn=5))
rec2 <- predict(rec, x[1:nrow(x)])</pre>
as(rec2, "matrix")['10',]
##
     item 1
             item 2
                      item 3
                                 item 4
                                          item_5
                                                   item 6 item 7
                                                                      item 8
##
                                              NA
                                                       NA 1.371636
                                                                          NA
         NA
                  NA
                           NA
                                     NA
##
     item_9 item_10 item_11 item_12
##
         NA 1.877474
                           NA
                                     NA
###################################
rec=Recommender(x[1:nrow(x)],method="UBCF", param=list(normalize = "Z-score",method="Jaccard"))
rec2 <- predict(rec, x[1:nrow(x)])</pre>
as(rec2, "matrix")['10',]
##
                                                   item_6 item_7
     item 1
             item 2
                       item 3
                                 item 4
                                          item_5
                                                                      item 8
                                                       NA 1.445948
##
         NA
                  NA
                           NA
                                     NA
                                              NA
                                                                          NA
##
     item_9 item_10 item_11 item_12
##
         NA 1.721535
                           NA
                                     NA
###################
rec=Recommender(x[1:nrow(x)],method="IBCF", param=list(normalize = "Z-score",method="Cosine"))
rec2 <- predict(rec, x[1:nrow(x)])</pre>
as(rec2, "matrix")['10',]
                                          item_5
##
             item_2
                       item_3
                                 item_4
     item_1
                                                  item_6 item_7
                                                                      item_8
##
                                              NA
                                                       NA 1.214661
                                                                          NA
         NA
                  NA
                           NA
                                     NA
##
     item_9 item_10 item_11 item_12
##
         NA 1.483787
                           NA
                                     NA
###################
```