句法结构歧义的程度

詹卫东

http://ccl.pku.edu.cn/doubtfire

句法结构歧义的程度: 两个考察角度

给定文法规则集

考察角度1

输入: n^m 种非终结符序列(如: np ap vp)

n是文法中的非终结符个数;

m是格式中的符号个数;

输出: 所有格式的歧义状况报告

考察角度2

输入: 句子(终结符序列)

输出: 句子结构分析结果的个数

考察角度1:对非终结符序列进行结构分析

```
np np np
np np vp
          这27个非终结符序列中:
np np ap
            哪些格式有潜在歧义?
np vp np
            是外显型歧义还是内含型歧义?
np vp vp
np vp ap
            每个有潜在歧义的格式歧义程度如何?
np ap np
np ap vp
np ap ap
               以np,vp,ap三个非终结符的排列为例
vp np np
```

詹卫东、常宝宝、俞士汶,汉语短语结构定界歧义类型分析及分布统计,《中文信息学报》1999年第3期

考察流程

np, tp, sp, mp, ap, dp, pp, vp, dj

	1						
可能形成合法结构的排列:369个			不可能形				
			构的排				
np np np			np np dp				
որ որ որ			np np pp				
np np tp			np mp sp				
np np sp							
•••••							
有歧义的排列式:285个	无歧义的排列式:84 个	dj mp mp					
外显型歧义格式:194 个	内含型歧义格式:91 个	որ ար որ	dj mp tp				
		np mp tp	dj mp sp				
np np np	np np mp	np mp dj	dj mp dp				
np np ap	np np tp						
np np vp	np np sp		pp tp sp				
np vp vp	np np dj						
			pp tp pp				

外显型歧义格式(共 194 个)	歧义指数	内含型歧义格式(共 91 个)	歧义指数
[1] vp vp vp	43	[1] vp ap np	5
[2] vp vp ap	34	[2] dj vp vp	5
[3] vp ap ap	25	[3] np sp dj	4
•••••			
[194] pp sp vp	2	[91] pp pp pp	2
平均歧义数	6.55	平均歧义数	2.37

歧义格式示例

[1]	(dj:主谓(np, dj:主谓(np, vp)))	
[2]	(dj:主谓(np, vp:状中(np, vp)))	校长 现场 办公
[3]	(vp:状中(np, vp:状中(np, vp)))	?
[4]	(dj:主谓(dj:主谓(np, np), vp))	?
[5]	(dj:主谓(np:定中(np, np), vp))	奶油 面包 买不到
[6]	(vp:状中(np:定中(np,np),vp))	?
[7]	(dj:主谓(np:联合(np, np), vp))	眉毛 胡子 一把抓
[8]	(vp:状中(np:联合(np, np), vp))	?

.

考察角度2: 对终结符序列进行结构分析

基于简单CFG文法分析句子结构,可能产生的歧义结构的数量: Catalan number

Catalan number的计算公式

$$C_n = \frac{1}{n+1} \begin{bmatrix} 2n \\ n \end{bmatrix} = \frac{1}{n+1} \times \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n+1)(n!)^2} = \frac{(2n)!}{(n+1)!n!}$$

Church, K.W. & Patil, R. 1982, Coping with syntactic ambiguity (or How to put the block in the box on the table), American Journal of Computational Linguistics,8(3-4),pps.139-149.

Catalan number

```
n=2 (2*2)!/(2+1)!*2! = 4! / 3!*2! = 2
n=3 (2*3)!/(3+1)!*3! = 6! / 4!*3! = 5
n=4 (2*4)!/(4+1)!*4! = 8! / 5!*4! = 14
n=5 (2*5)!/(5+1)!*5! = 1(! / 6!*5! = 42
n=6 (2*6)!/(6+1)!*6! = 12! / 7!*6! = 132
n=7 (2*7)!/(7+1)!*7! = 14! / 8!*7! = 429
n=8 (2*8)!/(8+1)!*8! = 16! / 9!*8! = 1430
n=9 (2*9)!/(9+1)!*9! = 18! / 10!*9! = 4862
...
```

pp-attachment歧义实例

pp个数为2

把积木放进桌上的盒子里

把盒子里的积木放到桌上

Put	the block	in	in the box		on the table		in the kitchen			
V	np		pp		pp		рр			
V	n		p r	1	p	n		p	n	

NP -> NP PP
NP -> n
PP -> p NP
VP -> v NP PP

- A 把积木放进盒子里(盒子在桌上,在厨房)
- B把积木放进厨房桌上的盒子里
- C 把积木放到厨房(积木在盒子里,在桌上)
- D把桌上盒子里的积木放到厨房
- E把盒子里的积木放到厨房桌上

(n ((pp pp) pp)) (n (pp (pp pp))) (((n pp) pp) pp) ((n (pp pp)) pp) ((n pp pp))

关于Catalan数计算公式的说明

n 个左括号跟n个右括号排列成2n项,在任意位置,左括号数不少于右括号数。这样的排列式的个数为Catalan数。

$${2n \choose n} - {2n \choose n-1} = \frac{(2n)!}{n! \times n!} - \frac{(2n)!}{(n-1)!(n+1)!}$$

$$= \frac{1}{n+1} \binom{2n}{n}$$

Donald E.Knuth著 苏运霖译,《计算机程序设计艺术》(第三版)第一卷。508页。国防工业出版社。

√	1	((()))	11) ((())
√	2	(()())	12) (() ()
√	3	(())()	13) (()) (
	4	(()))(14) () (()
√	5	()(())	15) () () (
√	6	()()()	16) ()) ((
	7	()())(17))((()
	8	())(()	18))(()(
	9	())()(19))()((
	10	()))((20)))(((

关于Catalan数计算公式的说明(续)

条件1: 左右括号数相等

条件2: 在任意位置, 左括号数不少于右括号数

- 满足第1个条件的序列个数为: $\binom{2n}{n}$
- 违背第2个条件的序列记作S
 - (1)设在序列S的i位置,右括号数多于左括号数;
 - (2)将i位置的右括号换成左括号;
 - (3) 从i位置依次往左,将括号方向"反转",得到S'序列;
 - (4) 结果: S'序列中左括号数为n+1, 右括号数为n-1
- 对S'序列,i位置左边(含i位置)的左括号数比右括号数多1;
 - (1)将i位置左边的所有括号方向都"反转",即恢复为S序列;
 - (2) S'与S有一一对应关系。S'的个数就是S的个数。
- S'的个数是: 在2n个位置上,放置n+1(或n-1)个左括号(或右括号)的可能的个数,即 $\binom{2n}{n+1}$ 或 $\binom{2n}{n-1}$ 。

n = 3

0表示左括号,1表示右括号

√	1	000111	11	000011
√	2	001011	12	000101
√	3	001101	13	000110
	4	00000	14	001001
√	5	010011	15	001010
√	6	010101	16	001100
	7	000000	17	010001
	8	000001	18	010010
	9	000010	19	010100
	10	000100	20	011000

 $C_3 = 20 - 15 = 5$