CHAPTER 9

Linear operators

39 Definition of a linear operator. The image, the kernel, the matrix of a linear operator

3901. Which mappings are linear operators on appropriate vector spaces:

- a) $x \mapsto a$ (a is a fixed vector);
- b) $x \mapsto x + a$ (a is a fixed vector);
- c) $x \mapsto \alpha x$ (α is a fixed scalar);
- d) $x \mapsto (x, a)b$ (V is an Euclidean space, a, b are fixed vectors);
- e) $x \mapsto (a, x)x$ (V is an Euclidean space, a is a fixed vector);
- $f(x) \mapsto f(ax+b) \ (f \in \mathbb{R}[x]_n; a, b \text{ are fixed numbers});$
- g) $f(x) \mapsto f(x+1) f(x) \ (f \in \mathbb{R}[x]_n);$
- h) $f(x) \mapsto f^{(k)}(x) \ (f \in \mathbb{R}[x]_n);$
- i) $(x_1, x_2, x_3) \mapsto (x_1 + 2, x_2 + 5, x_3);$
- $(x_1, x_2, x_3) \mapsto (x_1 + 3x_3, x_2^3, x_1 + x_3);$
- k) $(x_1, x_2, x_3) \mapsto (x_1, x_2, x_1 + x_2 + x_3)$?

3902. Prove that a linear operator maps a linearly dependent system of vectors to a linearly dependent system.

3903. Prove that on *n*-dimensional space for any linearly independent system of vectors a_1, \ldots, a_n and an arbitrary system of vectors b_1, \ldots, b_n , there exists a unique linear operator, which maps a_i to b_i $(i = 1, \ldots, n)$.

3904. Prove that any linear operator on one-dimensional vector space is of the form $x \mapsto \alpha x$, where α is a scalar.