11장 키 관리(Key Management)

정보보호이론

Spring 2015

11.1 개요

■ 키 관리 방법

- 대칭키를 이용한 키 분배
 - x n명 : $\frac{n(n-1)}{2}$ 키 필요, 사용자는 (n-1) 관리
 - ➤ 제 3자인 키 분배 센터(KDC)를 이용

- 대칭키를 이용한 키 분배
 - × 키 분배 센터를 이용한 키(세션 키) 분배 방법

- 대칭키를 이용한 키 분배
 - 보산된 키 분배 센터를 이용한 키 분배 방법
 - ▶ 평등 다중(Flat Multiple) 구조의 키 분배 센터
 - 1. Alice → KDC₁: 세션키 생성 요청
 - 2. KDC_1 → KDC_4 : Alice의 요청 전달
 - 3. KDC₄ → Bob : Alice의 요청 알림
 - 4. Bob → KDC₄: 동의
 - 5. KDC₄ → KDC₁: Bob의 동의 알림
 - 6. $KDC_1 \rightarrow KDC_4$: 세션키 (k_{AB}) 전송
 - 7. $KDC_1 \rightarrow Alice : E_{sk_A}(k_{AB})$
 - 8. KDC₄ \rightarrow Bob : $E_{Sk_B}(k_{AB})$

- 대칭키를 이용한 키 분배
 - 보산된 키 분배 센터를 이용한 키 분배 방법
 - ▶ 계층 다중(Hierarchical Multiple) 구조의 키 분배

- Needham-Schroeder 프로토콜
 - 1. Alice \rightarrow KDC : ID_A , ID_B , R_A
 - 2. KDC \rightarrow Alice : $E_{Sk_A}(R_A, ID_B, k_{AB}, E_{Sk_B}(ID_A, k_{AB}))$
 - 3. Alice \rightarrow Bob : $E_{Sk_B}(ID_A, k_{AB})$
 - 4. Bob \rightarrow Alice : $E_{k_{AB}}(R_B)$
 - 5. Alice \rightarrow Bob : $E_{k_{AB}}(R_B 1)$

- Needham-Schroeder 프로토콜 재전송 공격(Replay Attack)
 - \times Trudy with old session key k_{AB}
 - 3. Trudy \rightarrow Bob : $E_{Sk_R}(ID_A, k_{AB})$
 - 4. Bob → Alice(Trudy) : $E_{k_{AB}}(R_B)$
 - 5. Trudy \rightarrow Bob : $E_{k_{AB}}(R_B 1)$

- 🗴 재전송 공격 방지
 - ▶ 세션키에 새로움 제공
 - $\rightarrow E_{Sk_B}(ID_A, k_{AB}, T)$ in Step 2

- Otway-Rees 프로토콜
 - 1. Alice \rightarrow Bob : ID_A , ID_B , R, $E_{Sk_A}(ID_A, ID_B, R, R_A)$
 - 2. Bob \rightarrow KDC : $E_{Sk_A}(ID_A, ID_B, R, R_A)$, $E_{Sk_B}(ID_A, ID_B, R, R_B)$
 - 3. KDC \rightarrow Bob :(R, $E_{Sk_A}(R_A, k_{AB})$, $E_{Sk_B}(R_B, k_{AB})$)
 - 4. Bob \rightarrow Alice : $E_{Sk_A}(R_A, k_{AB})$
 - ► R: Index number
 - ▶ R₄ : Alice 확인
 - ▶ R_B : Bob 확인
 - 🗴 재전송 공격?

- 커버로스(Kerberos)
 - ➤ MIT에서 네트워크 내부 사용자 인증

■ 키 전송(Key Transport) 프로토콜

■ 키 동의(Key Agreement) 프로토콜

- 키 교환 프로토콜의 안전성
 - ✗ 전방향 안전성(Forward Secrecy)
 - ▶ 사용자의 비밀키를 알고 있는 공격자라도 정직한 구성원 간에 성공적으로 확립된 이전의 세션키에 대한 어떠한 정보도 얻을 수 없어야 함
 - 1. Alice \rightarrow Bob : $E_{pk_B}(k_n)$
 - 2. Eve : $\{E_{pk_B}(k_1), E_{pk_B}(k_2), ..., E_{pk_B}(k_n)\}$ 저장 & pk_B 노출 \rightarrow 이전 세션의 정보가 노출
 - ➤ 기지-키 안전성(Known-Key Secrecy)
 - ▶ 여러 세션에서 얻은 세션키들을 이용해도 노출되지 않은 세션 키들의 기밀성에는 영향을 주지 않아야 함
 - 1. 새로운 세션키 $k = h(k', ID_A, ID_B)$
 - 2. Eve : 세션키 $k' \rightarrow k$ 계산

- 키 교환 프로토콜의 안전성
 - ✗ 세션 상태 노출에 대한 안전성(Security against Session State Reveal)
 - ▶ 공격자가 세션키를 만드는 데 사용되는 난수 값을 가지고서도 세션키를 알 수 없어야 함
 - ▶ 롱텀키(long-term key)인 비밀키 보다는 일회용 비밀 값인 난 수들이 더욱 쉽게 노출될 수 있다는 관점
 - ➤ 비밀키 사용 위장에 대한 안전성(Security against Key Compromise Impersonation)
 - ▶ Eve가 Alice의 비밀키로 Bob으로 위장함을 방지
 - 파트너 혼돈 공격에 대한 안전성(Security against Unknown Key Share)
 - ▶ Alice와 Bob이 동일한 세션키를 계산했다면 Alice는 현재 Bob 과 키 교환을 하고 있다고 인식해야 하며, Bob 또한 Alice와 키 교환을 하고 있다고 인식해야 함

■ Diffie-Hellman 동의 프로토콜

- Diffie-Hellman 동의 프로토콜
 - ➤ 중간자 공격(Man-in-the-Middle Attack)

 \times R_{1} 이 Alice의 인증서, R_{2} 가 Bob의 인증서인 경우?

■ STS(Station-To-Station) 프로토콜

- 공개키 암호시스템을 이용한 키 교환
 - ※ 공개키 공개 선언 → 신뢰성?

■ 공개키 암호시스템을 이용한 키 교환 ※ 신뢰할 수 있는 서버 이용 → 서버에 과부하

■ 공개키 암호시스템을 이용한 키 교환 ※ 인증서를 이용한 공개키 인증

■ 공개키 암호시스템을 이용한 키 교환 ※ 인증서 형태(X.509)

- Private Key 저장방식 (PKCS#5v2.0, PKCS#8)
 - Key = PBKDF(PW, ...)
 - ▶ PBKDF: PKCS#5 password based key derivation function
 - SEED_{Key}(Private_Key | R)

PKCS #8 EncryptedPrivateKeyInfo

11.4 공개키 기반 구조(Public-Key

Infrastructure_PKI)

CA	7
	1

Certificate Authority 사용자의 인증서를 발급하는 기관

Registration Authority 사용자와 직접 대면 후 인증 기관에 사용자 정보를 등록해주는 기관

Certificate CA의 서명이 들어 있는 X.509 표준 규격의 인증서

Private Key 인증서 내의 공개키와 쌍이되는 개인키(PKCS #1, #8)

Online Service PKI 를 통한 사용자 인증을 필요로 하는 서비스 프로바이더(예: 뱅킹)

Online Certificate Status Protocol 실시간 인증서 상태(예:폐기여부) 검증 서비스

Lightweight Dir. Access Protocol 인증서 저장소(LDAP DB)를 엑세스 하는 프로토콜(CRL 서비스 수행)

사용되는 국제 표준 규격	설 명
RFC 2459/3280	X.509 인증서와 CRL(인증서 폐기 목록)에 대한 정의
RFC 2510/2511	CMP 프로토콜에 대한 명세(인증서 발급 과정에 사용 됨)
RFC 2560	실시간 인증서 상태 검증 프로토콜인 OCSP에 대한 명세
RFC 1430/2253	LDAP 프로토콜 명세(LDAP DB 는인증서 저장소로 사용 됨)

■ 가입자 등록 및 인증서 발급

IETF RFC 2511 (1999), Internet X.509 Certificate Reguest Message Format

1. 가입자 등록

(대면 확인)

〉 참조번호(ID),인가코드(PW)

금융 서비스 제공자 (RA

참조번호: 인가코드를 식별하기 위해 사용 인가코드: 인증서 관리 프로토콜 메시지 인증코 _ 드생성에 사용

- 3. 초기화 요청 메시지 생성
- 6. 초기화 요청 응답 메시지 검증
- 7. (pk,sk), EVID 생성
- 8. 등록 및 인증서 요청 메시지 생성
- 12. 등록 및 인증서 요청 응답 메시지 검증
- 13. 확인 메시지 생성

초기화 요청 메시지 (GENM)

초기화 요청 응답 메시지 (GENP)

등록 및 인증서 요청 메시지 (IR)

등록 및 인증서 요청 응답 메시지 (IP) - 발급된 인증서 포함

확인 메시지 (CONF)

4. 초기화 요청 메시지 검증

5. 초기화 요청 응답 메시지 생성

- 9. 등록 및 인증서 요청 메시지 검증
- 10. 인증서 생성
- 11. 등록 및 인증서 요청 응답 메시지 생성

- 가입자 등록 및 인증서 발급 : VID (Virtual ID)
 - \times VID = h(h(IDN, R))
 - ▶ IDN : 주민번호 or 사업자등록번호 ("-"는 삭제), R: 160 bit 난수
 - ➤ 인증서 생성시 VID 정보 주입절차

인증서를 이용한 신원확인

■ 인증서 로그인(예)

- 공개키 암호시스템을 이용한 키 교환
 - 인증 기관들 간 신뢰 모델
 - ▶계층 모델(Hierarchical Model) 국내모델
 - 상위 계층이 바로 아래 계층의 인증서를 발급, 최상위 계층인 루트 인증 기관은 self-signing

■ 공개키 암호시스템을 이용한 키 교환 ※ 인증 기관(Certificate Authority, CA)

■ 공개키 암호시스템을 이용한 키 교환

🗴 KISA Root 인증서

- 공개키 암호시스템을 이용한 키 교환
 - × 인증 기관들 간 신뢰 모델
 - ►메쉬 모델(Mesh Model)
 - 국가간 상호인증

- 인증서 취소 상태 확인
 - ➤ 인증서 해지 목록 (Certificate Revoked List, CRL)

서명 알고리즘 ID					
발행자 이름					
금번 업데이트 시간					
다음 업데이트 일자					
첫 번째 폐지 인증서					
•••					
마지막 폐지 인증서					
서명					

■ 실시간 인증서 상태 확인 기술(Online Certificate Status Protocol, OCSP)

- 전자우편 보안 프로토콜
 - ➤ 필 짐머만(Phil Zimmermann)
 - 전자우편의 기밀성, 무결성, 인증 등 제공

- PGP 인증서
 - × 필 짐머만(Phil Zimmermann)
 - 전자우편의 기밀성, 무결성, 인증 등 제공

■ 개인키 링 테이블(Private key ring table)

사용자 ID	키 ID	공개키	암호화된 개인키	타임스탬프	
alice@korea.ac.kr	CD1125	CD112538	32A672	120528-15:32	

The first 64 bit of the PK

The time of creation

- 공개 키 링 테이블(Public key ring table) 생성
 - ➤ PGP의 인증서는 공개키 링에 속해있는 사용자들이 서로에 대한 인증서를 발급
 - ✗ Jane의 공개키 테이블

■ 공개 키 링 테이블(Public key ring table) 생성

사용자 ID	키 ID	공개키	생성자 신뢰등급	인증서	인증서 신뢰등급	키 적법성	타임 스탬프
Alice@	CD11	CD11	F			F	
Bob@	45A2	45A2	Р			Р	

사용자 ID	키 ID	공개키	생성자 신뢰등급	인증서	인증서 신뢰등급	키 적법성	타임 스탬프
Alice@	CD11	CD11	F			F	
Bob@	45A2	45A2	Р			Р	
Mary@	3B34	3B34	Р	Alice's	> F	→ F	

■ 공개 키 링 테이블(Public key ring table) 생성

사용자 ID	키 ID	공개키	생성자 신뢰등급	인증서	인증서 신뢰등급	키 적법성	타임 스탬프
Alice@	CD11	CD11	F			F	
Bob@	45A2	45A2	Р			Р	
Mary@	3B34	3B34	Р	Alices	F	F	
Kate@	E5A3	E5A3	N	Alice s Mary's	3 []—	F	

■ 송신자의 키 링 테이블 사용

■ 수신자의 키 링 테이블 사용

