IITB RISC

Multi-cycle Implementation

Project-1
Ananthapadmanabhan A (20D070010)
Neeraj Nixon (20D070056)
Aditya Byju (20D070004)
Arpit Hanotiya (20D070016)

Course Professor: Prof. Virendra Singh

Microprocessors

 ${\rm April}\ 2022$

Contents

Microprocessor Design State Elaboration	
Datapath	6
Control Word	7
VHDL Implementation	7

MICROPROCESSOR DESIGN

STATE ELABORATION

S1	$R_7 \longrightarrow MEM_A, ALU_B$ $MEM_D \longrightarrow IR$ $+1 \longrightarrow ALU_A$ $ALU_out \longrightarrow R_7$
S2	$IR_{6-8} \longrightarrow RF_A_1$ $IR_{9-11} \longrightarrow RF_A_2$ $RF_D_1 \longrightarrow T_1$ $RF_D_2 \longrightarrow T_2$
S3	$T_1/(T_1 \to LS_1) \to ALU_A, ALU_B$ $MEM_D \longrightarrow IR$ $ALU_out \longrightarrow R_7$
S4	$T_3 \longrightarrow RF_D_3$ $IR_{3-5}/IR_{6-8} \longrightarrow RF_A_3$
S5	$IR_{0-5} SE_{6-16} ALU_A$ $ALU_out T_3$
S6	$IR_{0-8} \to SE_{9-16} \to LS_7 \to RF_D_3$ $IR_{9-11} \longrightarrow RF_A_3$
S7	$T_3 \longrightarrow MEM_A$ $MEM_D \longrightarrow T_3$
S8	$T_3 \longrightarrow RF_D_3$ $IR_{9-11} \longrightarrow RF_A_3$
S9	$T_3 \longrightarrow MEM_A$ $T_1 \longrightarrow MEM_D(I)$
S10	$T_2 \longrightarrow MEM_A \\ MEM_D \longrightarrow T_2$
S11	$"000" \longrightarrow RF_A_3$ $T_2 \longrightarrow RF_D_3$
S12	$"001" \longrightarrow RF_A_3$ $T_2 \longrightarrow RF_D_3$
S13	$"010" \longrightarrow RF_A_3$ $T_2 \longrightarrow RF_D_3$
S14	$"011" \longrightarrow RF_A_3$ $T_2 \longrightarrow RF_D_3$
S15	$ \begin{array}{c} \text{"100"} \longrightarrow RF_A_3 \\ T_2 \longrightarrow RF_D_3 \end{array} $
S16	$ \begin{array}{c} \text{"101"} \longrightarrow RF_A_3 \\ T_2 \longrightarrow RF_D_3 \end{array} $
S17	$ \begin{array}{c} \text{"110"} \longrightarrow RF_A_3 \\ T_2 \longrightarrow RF_D_3 \end{array} $

S18	$ \begin{array}{c} \text{"111"} \longrightarrow RF_A_3 \\ T_2 \longrightarrow RF_D_3 \end{array} $
S19	$"000" \longrightarrow RF_A_1$ $RF_D_1 \longrightarrow T_1$
S20	$"001" \longrightarrow RF_A_1 RF_D_1 \longrightarrow T_1$
S21	$"010" \longrightarrow RF_A_1 RF_D_1 \longrightarrow T_1$
S22	$"011" \longrightarrow RF_A_1$ $RF_D_1 \longrightarrow T_1$
S23	$ \begin{array}{c} \text{"100"} \longrightarrow RF_A_1 \\ RF_D_1 \longrightarrow T_1 \end{array} $
S24	$ \begin{array}{c} "101" \longrightarrow RF_A_1 \\ RF_D_1 \longrightarrow T_1 \end{array} $
S25	$ \begin{array}{c} \text{"110"} \longrightarrow RF_A_1 \\ RF_D_1 \longrightarrow T_1 \end{array} $
S26	$ \begin{array}{c} \text{"111"} \longrightarrow RF_A_1 \\ RF_D_1 \longrightarrow T_1 \end{array} $
S27	$T_2 \longrightarrow MEM_D(I)$ $T_1 \longrightarrow MEM_D$
S28	$T_2 \longrightarrow ALU_B \\ +1 \longrightarrow ALU_A \\ ALU_out \longrightarrow T_2$
S29	$R_7 \longrightarrow ALU_B$ $IR_{0-5}/IR_{0-8} \rightarrow SE_{6-16}/SE_{9-16} \rightarrow ALU_A$ $ALU_out \longrightarrow R_7$
S30	$R_7 \longrightarrow ALU_B \\ +1 \longrightarrow ALU_A \\ ALU_out \longrightarrow T_3$
S31	$T_3 \longrightarrow RF_D_3$ $IR_{9-11} \longrightarrow RF_A_3$
S32	$\begin{array}{c} IR_{6-8} \longrightarrow RF_A_2 \\ RF_D_2 \longrightarrow T_2 \end{array}$
S33	$T_2 \longrightarrow ALU_B \\ +0 \longrightarrow ALU_A \\ ALU_out \longrightarrow R_7$
S34	$\begin{array}{c} R_7 \longrightarrow MEM_A \\ MEM_D \longrightarrow IR \end{array}$
S35	$IR_{0-8} \xrightarrow{T_2} ALU_B$ $IR_{0-8} \xrightarrow{\longrightarrow} SE_{9-16} \xrightarrow{\longrightarrow} ALU_A$ $ALU_out \xrightarrow{\longrightarrow} R_7$

STATE FLOW DIAGRAM

ADD/ADL/NDU	ADC/NDC	ADZ/NDZ
SO	SO	SO
	<u> </u>	<u> </u>
S1	S1	S1
	C=1	Z=1
S2	S2	S2
53	S3	S3
S4	54	S4
34	34	34
SO	SO	SO
ADI	LHI	LW
		SO
SO		
		S1
S1	SO	
		S2
52	<u>S1</u>	
		S5
S5	<u>S6</u>	
		S7
54	SO	S8
SO		38
30		SO
		30

DATAPATH

CONTROL WORD

There are 28 control inputs needeed for the microprocessor.

Bit No.	Name	Use	
27	PC EN	Enables R7 direct transfer	
26	IR EN	Enables IR storage and read	
25	MW	Enables data input to memory	
24	MR	Enables data output from memory	
23	ALU EN	Enables ALU	
22	RW EN	Enables Register write	
21	T3 EN	Enables T3 read/write	
20	T2 EN	Enables T2 read/write	
19	T1 EN	Enables T1 read/write	
18,17	ALU OP	Tells ALU, operation to do	
16	LS1	Decides on whether to shift T1 o/p	
15,14	A	Decides input to ALU_A	
13	В	Decides input to ALU_B	
12	T2	Decides input to T2	
11	D3	Decides input to RF_D3	
10,9	A3	Decides input to RF_A3	
8	A2	Decides input to RFA2	
7	A1	Decides input to RF_A1	
6,5	IR	Decides input to IR	
4,3,2	NUM	Chooses a 3-bit number for LM/SM operation to A3/A2	
1,0	MEM	Decides input to memory address	

VHDL IMPLEMENTATION

The VHDL Code and Implementation can be found in this Github Repo