Exponential Distribution & Application of Central Limit Theorem

Nikhil Gupta

June 25, 2017

Overview

This report will investigate the exponential distribution in R and compare it with the Central Limit Theorem. Exponential distribution with lambda=0.2 will be used for the purpose with simulation count of 1000.To validate the central limit theorem, average of 40 exponentials will be taken.

Exponential random variable simulation

Firstly, random variable with exponential distribution has been simulated (based on theoretical & sample central measures). This has been used to calculate the required confidence intervals.

```
lambda =0.2
par(mfrow=c(1,2))
exp1= rexp(1000,lambda)
hist(exp1, col = "blue", ylab = "Frequency")
theoretical mean = 1/lambda
sample mean = mean(exp1)
sample sd=sd(exp1)
theoretical sd=1/lambda
abline(v=sample mean, col="green", lwd=6, lty=2);
abline(v=theoretical mean, col="red", lwd=3);
legend("topright", c("Sample_mean", "Theoretical_mean"), fill=c("green", "red
"),cex=0.7)
cat("Sample variance of exponential distribution:", sample sd^2,"\n")
## Sample variance of exponential distribution: 24.19949
cat("Sample two-sided 95% confidence interval:",c((sample mean-1.96*sample sd
),(sample_mean+1.96*sample_sd)),"\n")
## Sample two-sided 95% confidence interval: -4.690749 14.5929
cat("Population variance of exponential distribution:", theoretical_sd^2,"\n"
## Population variance of exponential distribution: 25
```

```
cat ("Population two-sided 95% confidence interval",c((theoretical_mean-1.96*
theoretical_sd),(theoretical_mean+1.96*theoretical_sd)),"\n")

## Population two-sided 95% confidence interval -4.8 14.8

cat("\n")

summary(exp1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00604 1.42745 3.41498 4.95107 6.98622 39.34666

cat("\n")
```

Histogram of exp1

Exponential random variables mean simulation

Secondly, mean of 40 random variables with exponential distribution has been simulated (based on theoretical & sample central measures). This should tend towards normal random variable as per central limit theorem. This has been validated & required confidence intervals have been calculated.

```
exp_avg =vector(mode="numeric", length=1000)
for (i in 1:1000)
{ exp_avg[i]= mean(rexp(40,lambda))
```

```
hist(exp_avg, col = "blue", ylab = "Frequency")
theoretical_mean1 = 1/lambda
sample_mean1 = mean(exp_avg)
sample_sd1=sd(exp_avg)
theoretical_sd1=1/(lambda* (40^0.5))
abline(v=sample_mean1, col="green", lwd=6, lty=2);
abline(v=theoretical_mean1, col="red", lwd=3);
legend("topright", c("Sample_mean", "Theoretical_mean"), fill=c("green", "red"),cex=0.6)
```

Histogram of exp_avg


```
cat("Sample variance of averaged exponential distribution:", sample_sd1^2,"\n
")

## Sample variance of averaged exponential distribution: 0.6359177

cat("Sample two-sided 95% confidence interval:",c((sample_mean1-1.96*sample_s
d1),(sample_mean1+1.96*sample_sd1)),"\n")

## Sample two-sided 95% confidence interval: 3.422852 6.548834

cat("Population variance of averaged exponential distribution:", theoretical_sd1^2,"\n")
```

```
## Population variance of averaged exponential distribution: 0.625

cat ("Population two-sided 95% confidence interval",c((theoretical_mean1-1.96
*theoretical_sd1),(theoretical_mean1+1.96*theoretical_sd1)),"\n")

## Population two-sided 95% confidence interval 3.450484 6.549516

cat("\n")

summary(exp_avg)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.659 4.424 4.978 4.986 5.486 7.836
```