

PROTOCOLOS DE COMUNICAÇÃO

TCP, UDP, SCTP e DCCP

Um olhar sobre a importância dos protocolos de rede

Protocolos de transporte

COMO A TECNOLOGIA ESTÁ PRESENTE NO SEU DIA-A-DIA

O Protocolo de Transporte é uma camada de protocolos de rede responsável por garantir a entrega confiável de dados entre dispositivos de rede, como computadores, servidores, roteadores e outros dispositivos.

Há dois tipos de transporte: orientada e não-orientada a conexão.

Quando dois dispositivos querem se comunicar, eles estabelecem uma conexão antes de iniciar a transferência de dados.

CONEXÃO NÃO-ORIENTADA

Cada pacote de dados é tratado independentemente e não há garantia de que todos os pacotes serão entregues ou entregues na ordem

What is?

TCP, UDP, SCTP e DCCP são protocolos de rede usados para a transmissão de dados pela Internet. Eles operam na camada de transporte do modelo OSI (Open Systems Interconnection) e são responsáveis por estabelecer uma conexão confiável e estável entre dispositivos conectados em uma rede.

TCP (Transmission Control Protocol)

É um protocolo orientado à conexão que fornece uma conexão confiável e sequencial entre dispositivos. Ele garante que os dados sejam transmitidos sem erros ou perda de pacotes, e os retransmite se necessário.

O TCP também realiza controle de fluxo e controle de congestionamento para garantir que a rede não fique sobrecarregada com muito tráfego.

UDP (User Datagram Protocol)

É um protocolo não orientado à conexão que NÃO garante a entrega confiável de pacotes. É frequentemente usado para transmissões em tempo real, como jogos online ou vídeo streaming.

O UDP é mais rápido que o TCP, mas não tem mecanismos para garantir a entrega ou a ordem dos pacotes.

SCTP (Stream Control Transmission Protocol)

É um protocolo orientado à conexão que suporta fluxos de dados múltiplos e independentes. Ele foi projetado para fornecer uma alternativa mais robusta e confiável ao TCP, especialmente em ambientes com múltiplos caminhos de rede ou com alta demanda de tráfego.

DCCP (Datagram Congestion Control Protocol)

É um protocolo orientado à conexão que fornece controle de congestionamento para tráfego de dados em tempo real, como streaming de mídia ou voz sobre IP.

Ele foi projetado para ser uma alternativa mais eficiente e escalável ao TCP ou UDP para esses tipos de aplicativos. O DCCP permite a transmissão de pacotes independentes de forma mais confiável do que o UDP, mas com menor sobrecarga do que o TCP.

Comparação entre protocolos

COMPARAÇÃO ENTRE OS PROTOCOLOS				
Critérios	Protoclos			
	ТСР	UDP	SCTP	DCCP
Confiabilidade	Alto	Baixo	Alto	Alto
Rapidez	Baixo	Alto	Alto	Alto
Método de transferência	Pacotes entregues em	Pacotes entregues em	Pacotes entregues em	Pacotes entregues em
	sequência	fluxo	fluxo	fluxo
Detecção e correção de erros	Sim	Não	Sim	Sim
Controle de congestão	Sim	Não	Sim	Sim
Reconhecimento	Sim	Apenas a verificação	Sim	Sim

Você tem alguma pergunta?

Envie para a gente! Esperamos que você tenha aprendido algo novo.

