ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ТЕСТ ПО МАТЕМАТИКА – 12 юли 2010 г. ВАРИАНТ ВТОРИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

1. Ако
$$a = \left(\frac{1}{\sqrt{2}}\right)^{-3}$$
, $b = 3^{\log_3 \sqrt{2}}$, $c = \sin \frac{7\pi}{4}$, то е вярно че:

- а) a < b < c; б) c < b < a; в) b < a < c; г) c < a < b; д) a = b = c.
- 2. Ако x_1 и x_2 са корените на уравнението $3x^2 5x + 1 = 0$, то стойността на израза $\left(\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}}\right)^2$ е равна на:
- 3. Ако (x, y) е решение на системата $\begin{vmatrix} x y + xy = 6 \\ x^2 xy + y^2 = 6 \end{vmatrix}$ и $x \neq y$, то разликата (x y) е равна на:

- в) -1; Γ) 3; π) π 3. б) 2: a) 1:
- 4. Квадратният тричлен $y = x^2 x 2$ приема само отрицателни стойности за всяко x, принадлежащо на интервала:
- а) $(-\infty; -2];$ б) $(-\infty; -1];$ в) $(2; +\infty);$ г) (-1; 2); д) $(0; +\infty).$
- 5. Ако $a=2\sqrt{2}$, то числото $\log_a 4$ е равно на:
- a) $\frac{3}{4}$; б) $-\frac{2}{3}$; в) 3; г) $\frac{4}{3}$; д) $-\frac{4}{3}$.
- 6. Решение на уравнението $8^{x} = \frac{1}{2^{x-1}}$ е числото:
- a) $\frac{1}{2}$; 6) $-\frac{1}{2}$; b) $\frac{1}{4}$; Γ) $-\frac{1}{4}$; д) 0.

			прогресия е 5,	то сумата от				
a) 35;	б) 20;	в) 15;	г) 40;	д) 30.				
тях са прия	гели, вероятнос	тта те да са еди	н до друг в реди	щата е:				
a) $\frac{2}{5}$;	$6) \frac{1}{5};$	B) $\frac{1}{60}$;	Γ) $\frac{1}{12}$;	$ \exists 1 $				
9. В спортен магазин се предлагат 4 различни марки ски и 5 различни марки скиорски обувки. Различните комплекти скиорски обувки-ски, които могат да се образуват, са на брой:								
a) 4;	б) 5;	в) 20;	г) 9;	д) 16.				
			ело, което е	решение на				
a) 5;	б) 4;	в) 3;	г) 2;	д) 1.				
8. Учител подрежда по случаен начин 5 ученика в редица. Ако двама от тях са приятели, вероятността те да са един до друг в редицата е: a) $\frac{2}{5}$; b) $\frac{1}{60}$; r) $\frac{1}{12}$; д) $\frac{1}{15}$. 9. В спортен магазин се предлагат 4 различни марки ски и 5 различни марки скиорски обувки. Различните комплекти скиорски обувки-ски, които могат да се образуват, са на брой: a) 4; б) 5; в) 20; г) 9; д) 16. 10. Най-малкото цяло положително число, което е решение на неравенството $ 2x-3 \le 7$, е: a) 5; б) 4; в) 3; г) 2; д) 1. 11. Стойността на производната $f'(x)$ на функцията $f(x) = \frac{1}{2}\cos 2x + 2\pi$ при $x = \frac{\pi}{6}$ е равна на: a) $-\frac{\sqrt{3}}{2}$; б) $\frac{\sqrt{3}}{4}$; в) $-\frac{1}{4}$; г) $\frac{\sqrt{3}}{2}$; д) $-\frac{\sqrt{3}}{4}$. 12. Квадратното уравнение $ax^2 - x + a = 0$ има реални корени за всяко a , принадлежащо на интервала: a) $\left(-\infty; -\frac{1}{2}\right)$; б) $\left(\frac{1}{2}; +\infty\right)$; в) $\left[-\frac{1}{2}; \frac{1}{2}\right]$; г) $\left[-\frac{1}{2}; 0\right] \cup \left(0; \frac{1}{2}; \pi\right)$ д) $\left(-\frac{1}{2}; \frac{1}{2}\right)$. 13. Стойността на израза $\frac{\cos 33^{\circ} \cos 57^{\circ} - \sin 33^{\circ} \sin 57^{\circ}}{\sin 33^{\circ} \cos 57^{\circ}}$ е: $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ 1								
при $x = \frac{\pi}{6}$ е	равна на:							
a) $-\frac{\sqrt{3}}{2}$;	$\mathfrak{G})\;\frac{\sqrt{3}}{4};$	B) $-\frac{1}{4}$;	Γ) $\frac{\sqrt{3}}{2}$;	μ д) $-\frac{\sqrt{3}}{4}$.				
11. Стойността на производната $f'(x)$ на функцията $f(x) = \frac{1}{2}\cos 2x + 2\pi$ при $x = \frac{\pi}{6}$ е равна на: а) $-\frac{\sqrt{3}}{2}$; б) $\frac{\sqrt{3}}{4}$; в) $-\frac{1}{4}$; г) $\frac{\sqrt{3}}{2}$; д) $-\frac{\sqrt{3}}{4}$. 12. Квадратното уравнение $ax^2 - x + a = 0$ има реални корени за всяко a , принадлежащо на интервала: а) $\left(-\infty; -\frac{1}{2}\right)$; б) $\left(\frac{1}{2}; +\infty\right)$; в) $\left[-\frac{1}{2}; \frac{1}{2}\right]$;								
a) $\left(-\infty; -\frac{1}{2}\right);$		$\mathfrak{G})\left(\frac{1}{2};+\infty\right);$	В)	$\left[-\frac{1}{2};\frac{1}{2}\right];$				
$\Gamma)\left[-\frac{1}{2};0\right)\cup\left(-\frac{1}{2};0\right)$		(– –)						
13. Стойността	а на израза соя	31133 6033	,					
a) 1;	б) 0;	B) $\frac{\sqrt{2}}{2}$;	Γ) $\frac{\sqrt{3}}{2}$;	д) $\frac{1}{2}$.				
височината прогресия.	към основата,	взети в този	ред, образуват	г геометрична				

а) $\sqrt{6} \ cm$; б) 12 cm; в) 6 cm; г) 3 cm; д) $3\sqrt{2} \ cm$.

15. През медицентъра на ΔABC е построена права, успоредна на страната BC , която пресича страната AC в т. E . Ако AC = 18 cm , то дължината на AE е равна на:									
а) 16 cm ; б) 14 cm ; в) 17 cm ; г) 18 cm ; д) 12 cm .									
16. Ако две от страните на триъгълник са с дължини 2 cm и 4 cm , а ъгълът между тях е 60° , то триъгълникът е:									
а) остроъгълен; б) правоъгълен; в) тъпоъгълен;									
г) равнобедрен; д) равностранен.									
17. В равнобедрен трапец с основи $AB = 6$ cm и $CD = 2$ cm е вписана окръжност. Радиусът на тази окръжност е:									
а) $2\sqrt{3} \ cm$; б) $\sqrt{5} \ cm$; в) $\sqrt{3} \ cm$; г) $3 \ cm$; д) $2 \ cm$.									
18. Страните на успоредник са 8 cm и 16 cm . Ако единият от диагоналите му е 10 cm , то дължината на другия диагонал е:									
а) $2\sqrt{55}$ cm; б) $3\sqrt{15}$ cm; в) 10 cm; г) $6\sqrt{15}$ cm; д) 8 cm.									
19. Височината DH на ромба $ABCD$ разделя страната му AB на части $AH = 3$ cm , $HB = 2$ cm . Ако диагоналът AC и отсечката DH се									
пресичат в т. M , то лицето на ΔAHM в cm^2 е:									
a) $\frac{15}{4}$; б) 6; в) 20; Γ) $\frac{3}{5}$; д) $\frac{9}{4}$.									
20. Основата на тетраедър е равностранен триъгълник с периметър 18 <i>cm</i> и височина, равна на височината на тетраедъра. Обемът на тетраедъра е: a) 54 <i>cm</i> ³ ; б) 27 <i>cm</i> ³ ; в) 81 <i>cm</i> ³ ; г) 28 <i>cm</i> ³ ; д) 30 <i>cm</i> ³ .									
BTOPA ЧАСТ Следващите 10 задачи са без избираем отговор. За тях се изисква решението с неговата обосновка, а в талона за отговорите от теста									

Следващите 10 задачи са без избираем отговор. За тях се изисква решението с неговата обосновка, а в талона за отговорите от теста (последната страница) в полето за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован верен отговор получавате по 2 точки. За грешен отговор, за непопълнен отговор, за нечетлив текст, точки не се дават и не се отнемат.

21. Да се реши уравнението

$$25^x + 3.5^{x+1} - 100 = 0$$
.

22. Да се реши неравенството

$$\lg x + \lg(3 - x) \le \lg 8 + \lg(2x + 5)$$
.

23. Да се намери най-малкото цяло число, което удовлетворява неравенството:

$$\frac{x^2 - 2x + 1}{(2 - x)(x + 3)} > 0.$$

24. Да се реши уравнението

$$3\sqrt{6+x-x^2}+2=4x$$
.

- 25. Да се намерят локалните екстремуми на функцията $y(x) = \frac{1}{3}x^3 \frac{1}{2}x^2 2x$ и да се установи вида им.
- 26. Да се реши уравнението

$$4\sin^2\frac{x}{2}\sin^2\left(\frac{\pi}{2}-\frac{x}{2}\right)=3\sin x-2$$
.

- 27. В правоъгълния $\triangle ABC$ ($\angle ACB = 90^\circ$), CL е ъглополовяща $\stackrel{\rightarrow}{\to}$ (т. $L \in AB$) и лъчът $\stackrel{\rightarrow}{CL}$ пресича описаната около триъгълника окръжност в т. M . Ако BC = a и AC = b , да се намери лицето на $\triangle ACM$.
- 28. Телефонен номер на офис се състои от седем различни помежду си цифри. Колко различни набирания най-много може да направи човек, който иска да се свърже с този офис, ако е забравил последните три цифри, но си спомня, че номерът започва с цифрите 9653.
- 29. Да се намери най-малкото число m, за което медианата на данните 3, m, 5, 9, 1, 10 е равна на 7. Напишете статистическия ред на данните с намереното m.
- 30. В кълбо с радиус R са вписани прави кръгови конуси. Намерете височината на този конус, който има най-голяма околна повърхнина.

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

ДРАГИ КАНДИДАТ-СТУДЕНТИ, ПОПЪЛВАЙТЕ ВНИМАТЕЛНО ОТГОВОРИТЕ НА ЗАДАЧИТЕ ОТ ТЕСТА САМО ВЪРХУ ТАЛОНА ЗА ОТГОВОР (ПОСЛЕДНАТА СТРАНИЦА)!

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ВТОРИ на ТЕСТ ПО МАТЕМАТИКА – 12 юли 2010г. за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

1б	2в	3a	4г	5г	6в	7a	8a	9в	10д
11a	12г	13б	14в	15д	16б	17в	18г	19д	20б

21. x = 1

22. $x \in (0;3)$

23. x = -2

24. x = 2

25. $y_{\text{max}} = y(-1) = \frac{7}{6}$; $y_{\text{min}} = y(2) = -\frac{10}{3}$

26. $x = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$

27. $S = \frac{(a+b)b}{4}$

28. 120

29. m = 9; **1, 3, 5, 9, 9, 10**

30. $\frac{4}{3}R$