

학습 목표

해시 테이블을 구현할 때 피할 수 없는 충돌을 해결하는 방법들을 이해하고 적용할 수 있다

Data Structures in Python Chapter 6

- Hash Table
- Collision Resolutions
- Double Hashing & Rehashing
- Hash Implementation

Collision Resolution Exercise - Linear Probing

$$h(k) = k \% 10$$

probe sequence

For example, linear probing for 58

$$h_0(58) = (h(58)+f(0)) \% 10$$

 $= (8+0) \% 10 = 8 \text{ (collision)}$
 $h_1(58) = (h(58)+1) \% 10 = 9 \text{ (collision)}$
 $h_2(58) = (h(58)+2) \% 10 = 0 \text{ (collision)}$
 $h_3(58) = (h(58)+3) \% 10 = 1$

Collision Resolution Exercise - Quadratic Probing Olhander

Collision Resolution Exercise - Double Hashing ^{이중해싱법}

Insert sequence: 89, 18, 49, 58, 69, 23 Empty After After After After 58 O									
Table 89 18 49 58 69 23 R is prime number less than TableSiz $h_0(49) = (h(49) + f(0)) \% 10 = 9$ (collision) $h_1(49) = (h(49) + 1*(7 - 49 \% 7)) \% 10 = 6$ $h_0(58) = h_1(58) = h_1(69) = h_2(69) =$	x % 10	h(x) =	3	8, 69, 2	, 49, 5	39, 18,	ence: 8	ert seque	Ins
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									• •
$h_1(58) = h_1(69) = h_1($									0
$h_0(69) = h_1(69) = h_2(69) = h_2($									
									4
5 6 49 49 49 49		49	49	49	9	49			6
7 8 18 18 18 18 18 18 $h_0(23) = h_1(23) = h_1(23) = h_1(23) = h_2(23) = h_$		18	18	18	8	18	18		
9 89 89 89 89 89 89 89	:	89	89	89	9	89	89	89	9
Unsucessful 0 0 1 1 1 1 1 no. of probes			1	1		1	0	0	

Rehashing - Exercise

Rehash the following table into a new hash table below using the hash function:

- Use hash(key) = key % 13 and quadratic probing to resolve the collisions.
- Show your computation, collision and resolution.
- Compute the load factors before and after rehashing.

2	3	4	5	6						
30	None	None	26	13						
2	3	4	5	6	7	8	9	10	11	12
	30	30 None	30 None None	30 None None 26		30 None None 26 13				

학습 정리

1) 충돌 해결 방법은 크게 Separate chaining과 Open addressing 두 가지가 있다

2) 적재율(λ)이 0.5 보다 작아야 O(1)을 유지할 수 있다

3) Linear probing > Quadratic probing > Double hashing 순서로 충돌 횟수가 줄어든다

