Aula 16/08/22

Email institucional:

pregis@ifce.edu.br

Revisão de filtros digitais

- Conceito de filtros
- Conceito de sinais analógicos e digitais
- H(s) função de transferência
- Transformada de Laplace

H(s)pode ser a relação entre a entrada e a saída

Numerador: Polos de entrada Denominador: Polos de saída

Exemplo:

Representação polinomial dos polos

representação Rolinamial das pohos H(S) = 5+3 +65+8 + 19-5+3 (S+2).(S+4) Zeron: 9+3=0 5 = -3 Pola : S S1+2=0# @ S1=-2 S2+4=0 $S_1 = -4$

Método por equações diferenciais

Escrito por Cristiano Coutinho

ett = R.
$$\frac{d(c.Nt)}{dt} + L \cdot \frac{d^2 \cdot (c.Nt)}{dt} + v_c(t)$$

Applicands transf. de despelod

L I] = ?

E(g) = RxC

L $\left[\frac{d^2 \cdot v_c(t)}{dt}\right] = S \cdot V_c(g)$

E(g) = Richs. $V_c(g) + L \cdot CS^2 \cdot V_c(g) + V_c(g)$

E(g) = $V_c(g) \cdot (R_c \cdot S + L \cdot CS^2 + 1)$
 $V_c(g) = \frac{1}{L_c \cdot S^2 + R_c \cdot S + 1}$
 $V_c(g) = \frac{1}{L_c \cdot S^2 + R_c \cdot S + 1}$
 $V_c(g) = \frac{1}{L_c \cdot S^2 + R_c \cdot S + 1}$

Escrito pelo professor

e(+)= V2+ VL+ Vc(+)

$$e(t) = R(t) + L(\frac{di(t)}{dt}) + Oc(t)$$

$$e(t) = \frac{dq(t)}{dt} ; q = C(0)$$

$$e(t) = R(\frac{dq(t)}{dt}) + L(\frac{d^2q(t)}{dt^2}) + Oc(t)$$

$$e(t) = R(\frac{d(c(t))}{dt}) + L(\frac{d^2q(t)}{dt^2}) + Oc(t)$$

$$e(t) = R(\frac{d(c(t))}{dt}) + L(\frac{d^2q(t)}{dt^2}) + Oc(t)$$

$$e(t) = R(t) = R(t) + L(\frac{di(t)}{dt}) + Oc(t)$$

$$e(t) = R(t) + L(\frac{di(t)}{dt}) + Oc(t)$$

Pregis Osfice odu br

E(5) = R.CS. Vc(5) + L.CS. Vc(5) + Vc(5).

$$\frac{V_{c(s)}}{E(s)} = \frac{1}{LC.S^{2} + RC.S + L} = \frac{1}{E(s)} = \frac{1}{5^{2} + R} = \frac{1}{LC}$$

-> INDUTOR:

$$L\left[V_{L}(t)=L.\frac{d_{J}(t)}{dt}\right] \Rightarrow W_{L}(s)=L.s. I(s)$$

$$X_{L}(s)=\frac{V_{L}(s)}{I(s)}=L.s.$$

-> CAPACITOR:

$$X_{c(s)} = \frac{V_{c(s)}}{I_{c(s)}} = \frac{1}{C.5}$$

Exemplo anterior

Revisão de Divisor de tensão

Aplicando esse método em Filtros

Filtro passa-baixa

APLICATION O DEVIDOR DE TEMBRO:

Vout (3) =
$$\frac{|V_{c}(s)|}{|V_{c}(s)|}$$
. Ven (5)

Vout (5) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (5)

Vat (5) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (6)

Vout (5) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (6)

Vout (5) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (6)

Vout (5) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (7) = $\frac{|V_{c}(s)|}{|V_{c}(s)|}$. Ven (8)

Filtro RC Passa-alta

-> FILTRO PASSINO PASSA - ALTA:

=> APLICANDO O DE VISOR DE TENSÃO:

$$Vout(s) = \frac{R}{R + |Y_{E}(s)|} \cdot VIN(s)$$

$$Vout(s) = \frac{R}{R + \frac{1}{C.S}} \cdot VIN(s) \Rightarrow Vout(s) = \frac{R}{R.C.S + 1}$$

$$C.S$$

FC 6.54B DI9

VOUT (5)= R.C.S . VIII (5)

VOUT (5)= 8

VEN (8) 8 + 1

P.C.

Vout $(S) = \frac{(x_{c}(S))}{R + x_{c}(S)}$. Van(S) $Vout(S) = \frac{1}{CS}$ $Vout(S) = \frac{1}{CS}$ Vin(S)· Apleando em Filtro Re passa - alta Passiva

· Determine Vouto -? (Vout (g) - R.C.S. Vin(s)

Vin(s) Vout(5) = R + (X c(6)) Vin(5) Vout(5) = R + 1 (5) Vout(5) = R = +1 . Vin (5)

Funções de transferência de filtros ativos.

Função de transferência de um amplificador inversor

Obs: Filtro Passa-alta

Revisão Amplificador inversor

16/08/22 & proline Xc = 7 271 pe. · Amplificador Internol Vout - R1 · Como chegar a relação

Vin = R1 . I1 - D I1 = Vin

Vaut = -R2 . I1 Vout = - Ra. Vin Ry Vout = -R2 Vin R1