Моделирование количества подвижных единиц грузового поезда в сходе с рельсов на основе метода максимального правдоподобия

Работу выполнил: Королёв Егор Владимирович, студент группы М8О-401Б-18 Научный руководитель: Игнатов Алексей Николаевич, к.ф.-м.н., доцент кафедры 804 МАИ

Московский авиационный институт (НИУ)

Ввеление

Ввеление

•0000

Проблема

Периодически на ЖД путях происходят сходы или крушения. Последствия схода могут привести к экологическим, экономическим и логистическим проблемам. В $P\Phi$ в среднем происходит сход или крушение раз в 5.5 дней.

Задача

По имеющемуся набору данных необходимо построить предсказательную модель количества сошедших подвижных единиц в составе.

Причина схода

Самая частая причина схода – излом боковой рамы

Ввеление

00000

Некоторые обозначения

■ n − мощность выборки;

- r − количество параметров в обучаемой модели;
- ξ CB, характеризующая количество подвижных единиц в сходе;
- $\eta = \xi 1;$
- θ вектор обучаемых параметров;
- $AIC_c = 2r 2\ln(L) + \frac{2r^2 + 2r}{n r 1}$ скорректированный критерий Акаике;
- L значение функции правдоподобия для обученной модели.

Ввеление

00000

Некоторые обозначения

- x_i вектор признаков i-го происшествия;
- у; количество подвижных единиц в сходе i-го происшествия;
- \blacksquare L_{best} значение функции правдоподобия у наилучшей модели по AIC_c :
- lacktrivial значение функции правдоподобия для тривиальной модели.

1. Описание признаков

2. Описание признаков

Ввеление

Разреженность данных

- мощность выборки n = 56;
- признак 'Режим движения' имеет 23 пропусков (41%);

Построение молелей

- признак 'Профиль пути' имеет 12 пропусков (21%);
- признак 'Кривизна' имеет 10 пропусков (17%);

3. Корреляция признаков

00000

4. Конструирование признаков

Введение новых признаков

- $f_1 =$ профиль пути \cdot макс. число вагонов в сходе;
- $lacktriangledown f_2 = 1 rac{ ext{макс. число вагонов в сходе}}{ ext{общее кол-во вагонов}};$
- $f_3 =$ скорость · загрузка;

	target	f_1	f_2	f_3
target	1.0	0.101	-0.286	0.198
f_1	0.101	1.0	-0.086	-0.228
f_2	-0.286	-0.086	1.0	-0.124
f_3	0.198	-0.228	-0.124	1.0

Введение

5. Оценка функции вероятности $P(\xi = I)$

00000

1. Пуассоновская регрессия

Функция вероятности

Ввеление

$$P(\eta = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Функция логарифмического правдоподобия

$$\ln(L(\theta,x,y)) = \sum_{i=1}^{n} \left(-\lambda(\theta,x_i) + (y_i-1)\ln(\lambda(\theta,x_i)) - \ln((y_i-1)!)\right),$$

где $x = col(x_1, x_2, \dots, x_n), y = col(y_1, y_2, \dots, y_n).$

2. Определение функций $\lambda(\theta,x)$

1
$$\lambda_1(\theta,x) = e^{\langle \theta,x \rangle}$$
;

$$\lambda_2(\theta,x) = e^{-(\langle \theta,x\rangle)^2}$$

3
$$\lambda_3(\theta,x) = \sqrt{|5^2 - (\langle \theta, x \rangle - 5)^2|} + 1;$$

$$4 \lambda_4(\theta, x) = (\langle \theta, x \rangle - 1)^2;$$

$$5 \lambda_5(\theta,x) = \frac{1}{1 + (\langle \theta,x \rangle)^2};$$

$$\lambda_7(\theta,x) = \ln(1+(\langle \theta,x\rangle)^2) + 1.$$

Ввеление

3. Геометрическая регрессия

Функция вероятности

Ввеление

$$P(\eta = k) = (1 - p)^k p$$

Функция логарифмического правдоподобия

$$\ln(L(\theta, x, y)) = \sum_{i=1}^{n} ((y_i - 1) \ln(1 - p(\theta, x_i)) + \ln(p(\theta, x_i))),$$

где
$$x = col(x_1, x_2, ..., x_n), y = col(y_1, y_2, ..., y_n).$$

4. Определение функций $p(\theta,x)$

$$p_2(\theta,x) = e^{-(\langle \theta,x\rangle)^2};$$

$$p_3(\theta,x)=\frac{1}{1+e^{-\langle\theta,x\rangle}}$$

$$1+e^{-\langle \theta,x\rangle}$$

$$p_4(\theta,x) = \frac{1}{1+(\langle \theta,x\rangle)^2};$$

Ввеление

5. Признаковые пространства

```
I features<sub>1</sub> : (кривизна);
2 features<sub>2</sub>: (кривизна, профиль пути);
3 features<sub>3</sub>: (кривизна, профиль пути · макс. число вагонов в сходе);
4 features<sub>4</sub>: (кривизна, 1 - \frac{\text{макс. число вагонов в сходе}}{\text{общее кол-во вагонов}};
5 features_5: (кривизна, профиль пути, скорость · загрузка);
6 features<sub>6</sub>: (кривизна, профиль пути, скорость · загрузка.
    1 - \frac{\text{макс. число вагонов в сходе}}{\text{общее кол-во вагонов}};
7 features_7: (кривизна, скорость · загрузка, 1 - \frac{\text{макс. число вагонов в сходе}}{\text{общее кол-во вагонов}});
8 features_8: (скорость · загрузка, 1 - \frac{\text{макс. число вагонов в сходе}}{\text{общее кол-во вагонов}}).
```

00000

Ввеление

1. Программная реализация ММП

Конструктор класса

Введение

```
def MLM(log likelihood fun,
         optim method, borders,
         predict fun, link fun,
         features, target, df)
```


2. Численный эксперимент

Предварительный анализ данных

Пуассоновская регрессия

Ввеление

- наилучшая модель (по признаковым пространствам и функциям связи): $(\lambda_1, features_6)$. $AIC_c = 356.87$, $\hat{\theta} = (0.92, -105.33, 34.34, 0.02, -2.24)$, $\frac{\ln(L_{best})}{\ln(L_{best})} = 0.62$;
- $AIC_c \in [356.87, 567.74];$
- в условиях (a) arg max, $\hat{P}(\xi = k) = 2$.

Геометрическая регрессия

- \blacksquare наилучшая модель: $(p_4, features_6)$. $AIC_c = 153.65, \quad \hat{\theta} = (-2.01, 29.36, 226.20, -0.03, 3.85).$ $\frac{\ln(L_{best})}{\ln(L_{triviri})} = 0.57$;
- $AIC_c \in [153.65, 918.43];$
- \blacksquare в условиях (a) arg max, $\widetilde{P}(\xi = k) = 1$.
- (a), профиль пути = 0.001555, кривизна= 0.001875, скорость= 67, загрузка= 0.87, макс число вагонов в 4 D > 4 D > 4 D > 4 D > 3 сходе= 21, общее кол-во вагонов= 67

Введение

Метод максимальн	ого правдоподобия		Войти или зарегистрировать
Дагасет Целевой признак (текущая страница) Признаковые пространства Функции связи Оптимизация Вънчисление оценок	Целевой признак: Дата Распределение: Пуассоновское Далее	•	

Введение

Метод максимальн	ого правдоподобия		Войти или зарег
Датасет Целевой признак Признаковые пространства	Метод оптимизации: SHGO	Φ	
Функции связи Оптимизация (текущая страница) Вычисление оценок	Даяее		

Метод максимального	Войти или зарегистрироваться	
	1	
Дагасет Целевой признак Признаковые пространства Функции связи Оптимизация Вычисление оценок (текущая страница)	Идут вычисления. Пожапуйста, подождите.	

Введение

8. Схема приложения

Заключение

Ввеление

Были построены предсказательные модели числа сошедших подвижных единиц. Их можно разделить на 2 класса: модели пуассоновской регрессии и модели геом. регрессии. Для каждого класса были рассмотрены различные функции связи и признаковые пространства. Были проведены численные эксперименты.

Был написан веб-сервис, реализующий метод максимального правдоподобия. Сервис позволяет задать собственный набор данных, целевой признак и его распределение, указать признаковые пространства, функции связи, а также выбрать один из методов оптимизации. Скачать результаты вычислений можно в нескольких форматах.

Спасибо за внимание!

Список литературы

Ввеление

Замышляев А.М., Игнатов А.Н., Кибзун А.И., Новожилов Е.О. Функциональная зависимость между количеством вагонов в сходе из-за неисправностей вагонов или пути и факторами движения // Надежность. — 2018. — С.1-15.

