Primeira Prova - COMP0410 - 2022.2

- 1. Marque as afirmações como verdadeiras (V) ou falsas (F).
 - a. Uma fórmula de comprimento par tem uma quantidade ímpar de negações.

Verdadeiro. Todo conectivo binário (Λ , V, \rightarrow ou \leftrightarrow) é circundado por dois símbolos proposicionais ou de verdade. Então uma fórmula com S símbolos tem S-1 conectivos binários, um entre cada dois símbolos. A negação pode ocorrer precedendo qualquer símbolo ou conectivo, então uma fórmula com S símbolos e N negações tem comprimento N + 2S - 1. Como 2S - 1 é ímpar, o comprimento só é par se N é ímpar.

b.
$$((A \rightarrow \neg C) \land (A \rightarrow C)) \Rightarrow \neg A$$

Verdadeiro. Uma coisa só pode implicar em duas afirmações opostas se ela é falsa. A resolução de {¬A, ¬C} e {¬A, C} resulta em {¬A}.

Α	С	$S_1: A \rightarrow \neg C$	$S_2: A \rightarrow C$	$S_3: S_1 \wedge S_2$	$S_3 \rightarrow \neg A$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	1	0	0	1
1	1	0	1	0	1

 c. O número de subfórmulas é sempre menor que o comprimento de uma fórmula.

Falso. O número de subformulas distintas é menor ou igual ao comprimento da fórmula. Como exemplo trivial, considere uma fórmula atômica, o comprimento é igual ao número de subformulas.

d.
$$(A \land B) \Rightarrow (A \leftrightarrow B)$$

Verdadeiro. Se A e B são verdade, $(A \leftrightarrow B)$ é verdade.

Α	В	ΑΛВ	A ↔ B	$ \begin{array}{c} (A \ \Lambda \ B) \to (A \leftrightarrow \\ B) \end{array} $
0	0	0	1	1
0	1	0	0	1
1	0	0	0	1
1	1	1	1	1

e.
$$(A \leftrightarrow B) \Rightarrow (A \land B)$$

Falso. (A \leftrightarrow B) pode ser verdade com A e B falsos.

А	В	АЛВ	A ↔ B	$ \begin{array}{c} (A \leftrightarrow B) \to (A \ \land \\ B) \end{array} $
0	0	0	1	0
0	1	0	0	1
1	0	0	0	1
1	1	1	1	1

2. Considere as seguinte fórmulas:

$$H = S \leftrightarrow ((T \land P) \lor (\neg T \land \neg P))$$

$$\mathsf{G} = (\neg \mathsf{T} \ \land \ \mathsf{P}) \to \neg \mathsf{S}$$

Marque as afirmações como verdadeiras (V) ou falsas (F).

a. O comprimento de H é o dobro do comprimento de G.

Falso. O comprimento de F é 11 e o de G é 7.

b. $H \Rightarrow G$

Verdadeiro. Se H é verdade, S é verdadeiro se, e somente, se T e P são ambos verdadeiros ou ambos falsos. Se T e P têm interpretações distintas, S é falso, portanto G é verdadeiro.

S	Т	Р	X₁: T ∧ P	X₂: ¬T ∧ ¬P	X ₃ : X ₁ V X ₂	$H: S \leftrightarrow X_3$	X₄: ¬T ∧ P	G: $X_4 \rightarrow \neg S$	H→G
0	0	0	0	1	1	0	0	1	1
0	0	1	0	0	0	1	1	1	1
0	1	0	0	0	0	1	0	1	1
0	1	1	1	0	1	0	0	1	1
1	0	0	0	1	1	1	0	1	1
1	0	1	0	0	0	0	1	0	1
1	1	0	0	0	0	0	0	1	1
1	1	1	1	0	1	1	0	1	1

c. Se H é tautologia, S \Leftrightarrow (T \leftrightarrow P)

Verdadeiro. Se H é tautologia, temos que S \Leftrightarrow (T \land P) V (¬T \land ¬P). Mas também sabemos que (T \leftrightarrow P) \Leftrightarrow (T \land P) V (¬T \land ¬P). Por transitividade, se F é tautologia, S \Leftrightarrow (T \leftrightarrow P). Na verdade basta considerar H verdadeiro, eu escrevi tautologia só pra facilitar o raciocínio. Veja na tabela que, nas linhas em que H é verdade, S e (T \leftrightarrow P) são equivalentes.

S	Т	Р	Н	X_1 : $T \leftrightarrow P$	S↔X ₁
0	0	0	0	1	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

d. S é sub fórmula de H e G.

Verdadeiro. Apenas para constar:

Subfórmulas de F:

- 1. $S \leftrightarrow ((T \land P) \lor (\neg T \land \neg P))$
- 2. S
- 3. (T ∧ P) V (¬T ∧ ¬P)
- 4. (T ∧ P)
- 5. (¬T ∧ ¬P)
- 6. ¬T
- 7. ¬P
- 8. T
- 9. P.

Subfórmulas de G:

- 1. $(\neg T \land P) \rightarrow \neg S$
- 2. (¬T ∧ P)
- 3. ¬S
- 4. ¬T
- 5. P
- 6. S
- 7. T

e. (H ∧ G) ⇔ H

Verdadeiro. Para duas fórmulas quaisquer, se $H \Rightarrow G$, então $(H \land G) \Leftrightarrow H$. Como já vimos que a implicação é válida no item (b), a equivalência é válida.

S	Т	Р	Н	G	X₁: H ∧ G	$X_1 \leftrightarrow H$
0	0	0	0	1	0	1
0	0	1	1	1	1	1
0	1	0	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	1
1	1	0	0	1	0	1

1 1 1 1 1 1

3. Considere a fórmula

$$H = (T \land P) \lor (\neg T \land \neg P)$$

Marque como (V) todas as fórmulas que são equivalentes a H e como (F) as que não são equivalentes.

Tabela verdade de H

Т	Р	X₁: T∧P	X₂: ¬T∧¬P	H: X ₁ V X
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

a. (T ∨ P) ∧ (¬T ∨ ¬P)

Falso. Se T e P são ambos falsos ou ambos verdadeiros, esta fórmula é falsa. Na verdade ela é equivalente a ¬F.

Т	Р	X₁: TVP	X₂: ¬T∨¬P	X ₃ : X ₁ ∧X	F	X₃↔F
0	0	0	1	0	1	0
0	1	1	1	1	0	0
1	0	1	1	1	0	0
1	1	1	0	0	1	0

b.
$$(T \lor \neg P) \land (\neg T \lor P)$$

Verdadeiro. Aplicando a distributividade chegamos nesta expressão.

Т	Р	X₁: TV¬P	X₂: ¬T∨P	X ₃ : X ₁ ∧X	F	X ₃ ↔F
0	0	1	1	1	1	1

0	1	0	1	0	0	1
1	0	1	0	0	0	1
1	1	1	1	1	1	1

c.
$$(P \rightarrow T) \land (T \rightarrow P)$$

Verdadeiro. Do item (b) chegamos aqui substituindo as disjunções pelas implicações equivalentes.

Т	Р	X₁: P→T	X₂: T→P	X ₃ : X ₁ ∧X	F	X₃↔F
0	0	1	1	1	1	1
0	1	0	1	0	0	1
1	0	1	0	0	0	1
1	1	1	1	1	1	1

d. $(P \leftrightarrow T)$

Verdadeiro. Pela própria definição do conectivo. Esta é uma das regras dos tableaux, também.

Т	Р	X₁: P↔T	F	X ₁ ↔F
0	0	1	1	1
0	1	0	0	1
1	0	0	0	1
1	1	1	1	1

e.
$$(\neg T \rightarrow \neg P) \land (\neg P \rightarrow \neg T)$$

Verdadeiro. Do item (d), apenas substitua as implicações pelo contrapositivo (($P \rightarrow T$) \Leftrightarrow ($\neg T \rightarrow \neg P$)).

Т	Р	X₁: ¬P→¬T	X₂: ¬T→¬P	X ₃ : X ₁ ∧X	F	X₃↔F
0	0	1	1	1	1	1
0	1	1	0	0	0	1

1	0	0	1	0	0	1
1	1	1	1	1	1	1

4. Considere o seguinte conjunto de fórmulas:

$$P = (\neg A \lor B)$$

$$Q = (B \land \neg C)$$

$$R = (C \rightarrow D)$$

$$S = (\neg D \lor E)$$

$$T = (A \land \neg E)$$

Marque as afirmações como verdadeiras (V) ou falsas (F).

a. O conjunto é insastisfatível.

Falso. Lembre que um conjunto é satisfeito se a conjunção é satisfeita. Existe uma forma de satisfazer este conjunto, que veremos na letra (b).

b. Se o conjunto é satisfatível, D é falso.

Verdadeiro. Perceba que as fórmulas Q e T determinam as interpretações de A, B, C e E. Se desejamos satisfazer todas as fórmulas, precisamos ter I[A] = I[B] = 1 e I[C] = I[E] = 0 para satisfazer Q e T. Com B verdadeiro, a fórmula P é satisfeita e com C falso a fórmula R é satisfeita. Só falta agora satisfazer a fórmula S. Como sabemos que E é falso, a única possibilidade que nos resta é que $I[\neg D] = 1$, ou seja, I[D] = 0.

Poderíamos verificar rapidamente por resolução, das cláusulas {¬E}, que vem da fórmula T, e {¬D, E}, que é a fórmula S, o resultado é {¬D}. Ou seja, D precisa ser falso para satisfazer estas duas cláusulas.

c.
$$(R \land S) \Rightarrow (C \rightarrow E)$$

Verdadeiro. É a propriedade de transitividade da implicação. Podemos fazer rapidamente por resolução. R = $\{\neg C, D\}$ e S = $\{\neg D, E\}$, a resolução de R e S nos dá $\{\neg C, E\}$, que é equivalente a $(C \rightarrow E)$.

d. O conjunto é uma tautologia.

Falso. Só uma das 32 interpretações possíveis satisfaz o conjunto.

- 5. Considere que β é um conjunto qualquer de fórmulas. Marque as opções como verdadeiras (V) ou falsas (F).
 - a. Se β é tautologia, todo subconjunto de β é tautologia.

Verdadeiro. Falar de conjunto é o mesmo que falar de conjunções. Se uma conjunção é tautologia, todos os seus operandos são tautologia, porque basta um deles ser falso para que o resultado seja falso.

b. Se β é insatisfatível, todo subconjunto de β é insatisfatível.

Falso. Para um conjunto ser insatisfatível, basta que algum subconjunto seja insatisfatível. Como um contra-exemplo simples, considere A e ¬A, não conseguimos satisfazê-las simultaneamente, mas independentemente sim.

c. Se β é satisfatível, todo subconjunto de β é satisfatível.

Verdadeiro. Se algum subconjunto for insatisfatível, o conjunto como um todo é insatisfatível. Logo, se o conjunto é satisfatível, não há subconjunto insatisfatível, ou seja, todo subconjunto é satisfatível.

d. Se β é tautologia, todo subconjunto de β é satisfatível.

Verdadeiro. Consequência da letra (a), se todo subconjunto é tautologia, todo subconjunto é satisfatível.

6. Considere a seguinte fórmula:

$$H = (\neg A \lor \neg B \lor C) \land (\neg B \lor C) \land (A)$$

Tabela Verdade de H:

Α	В	С	P ₁ : ¬AV¬BV C	P₂: ¬B∨ C	P ₃ : A	$H:$ $P_1 \wedge P_2 \wedge P_3$
0	0	0	1	1	0	0
0	0	1	1	1	0	0
0	1	0	1	0	0	0
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	0	0	1	0
1	1	1	1	1	1	1

- a. Em quantas interpretações a subfórmula no primeiro parêntese é falsa?
 - 1 (linha 7 da tabela acima)
- b. Em quantas interpretações a subfórmula no segundo parêntese é falsa?
 - 2 (linhas 3 e 7 da tabela acima)
- c. Em quantas interpretações a subfórmula no terceiro parêntese é falsa?
 - 4 (linhas 1, 2, 3 e 4 da tabela acima)
- d. De modo geral, para uma fórmula na forma normal conjuntiva com N símbolos proposicionais distintos, a quantidade de interpretações em que uma cláusula envolvendo K literais distintos é falsa é 2 elevado a:

N-K. Uma cláusula é uma disjunção. Cada literal da disjunção nos diz qual o valor que um certo símbolo deve ter para que a disjunção seja falsa. Numa fórmula com N símbolos, temos 2^N interpretações possíveis. Se uma cláusula desta fórmula tem K=N literais distintos, ela é falsa em exatamente uma linha da tabela. Se ela tem K=N-1 literais, o valor de um dos símbolos proposicionais não importa (2 casos). Se ela tem K=N-2 literais, o valor de 2 símbolos não importam (4 casos). Seguindo este raciocínio, se ela tem K=1 literal, o valor de N-1 símbolos não importam (2^{N-1} casos). De modo geral, o número de símbolos que não importam é N-K e o número de casos é 2^{N-K}.

- 7. Avalie as afirmações como verdadeiras (V) ou falsas (F).
 - a. Existem infinitas cláusulas semanticamente distintas para uma dada quantidade de símbolos proposicionais.

Falso. Vamos pensar na notação de conjuntos para simplificar a argumentação. A notação de conjuntos já desconsidera a ordem e literais repetidos, já que essas alterações não alteram a semântica. Se o número de símbolos proposicionais é dado, P, temos 2P literais (os símbolos e suas negações. Qualquer subconjunto desses 2P literais é uma cláusula, então temos 2^{2P} cláusulas. Então o número de cláusulas é limitado por esta quantidade, logo é finito. Na prática o número é bem menor, já que várias dessas cláusulas são semanticamente equivalentes, mas isso não altera o fato de que a quantidade de cláusulas semanticamente distintas é finito.

b.
$$((P \rightarrow R) \land (Q \rightarrow R)) \Rightarrow ((P \land Q) \rightarrow R))$$

Verdadeiro. O consequente só é falso se P e Q são verdadeiros e R é falso. Nesta situação o antecedente é falso, e isso não afeta a implicação.

Р	Q	R	X₁: P→R	X₂: Q→R	X ₃ : X ₁ ∧X	X₄: P∧Q	X_5 : $X_4 \rightarrow R$	$X_3 \rightarrow X_5$
0	0	0	1	1	1	0	1	1
0	0	1	1	1	1	0	1	1
0	1	0	1	0	0	0	1	1
0	1	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1	1
1	0	1	1	1	1	0	1	1
1	1	0	0	0	0	1	0	1
1	1	1	1	1	1	1	1	1

c. Se F é uma contradição, então $F \Rightarrow G$, para qualquer fórmula G.

Verdadeiro. Uma implicação onde o antecedente é falso é sempre verdadeira. $I[0 \rightarrow G] = 1$.

F	G	F→G
0	0	1
0	1	1

d. Se F é uma tautologia, então $F \Rightarrow G$, para qualquer fórmula G.

Falso. Uma implicação onde o antecedente é verdadeiro é equivalente ao seu consequente, portanto nem sempre a implicação é uma tautologia.

F	G	F→G
1	0	0
1	1	1

e. A única cláusula insatisfatível é a cláusula vazia.

Verdadeiro. Toda cláusula é uma disjunção, e toda disjunção é satisfatível.