Arbeitsblatt – Gleichungen höheren Grades

- Lösen Sie folgenden quadratischen Gleichungen mittels quadratischer Ergänzung! 1.
- $x^2 4x + 4 = 0$ (a)

 $x^2 + 2x - 8 = 0$ (b)

 $x^2 - 4 = 0$ (c)

- $x^2 2x + 4 = 0$ (d)
- 2. Lösen Sie folgenden quadratischen Gleichungen mittels p-q-Lösungsformel!
- $x^2 + 12x + 32 = 0$ (a)
- $x^2 9 = 0$ (b)
- (c) $x^2 + 6x + 9 = 0$

- $2x^2 12x + 18 = 0$ (d)
- (e)
- $x^2 + 3 = 0$ (f) $3x^2 + 6x 24 = 0$
- 3. Lösen Sie folgende Gleichungen durch Faktorisierung der Summen (Ausklammern)!
- $x^3 2x^2 + x = 0$ (a)
- (b) $2x^4 - 10x^3 + 12x^2 = 0$
- $3x^3 + 24x^2 = 0$ (c)
- $-5x^4 10x^3 = 0$ (d)
- Lösen Sie diese einfachen biquadratischen Gleichungen $x^4 + px^2 + q = 0$ durch die 4. Substitution: $z = x^2$, $z^2 = x^4$!
- $x^4 10x^2 + 9 = 0$ (a)

- (b) $x^4 + 6x^2 + 5 = 0$
- $x^4 13x^2 + 36 = 0$ (c)
- (d) $x^4 3x^2 4 = 0$
- Lösen Sie diese allgemeinen biquadratischen Gleichungen $Ax^4 + Bx^2 + C = 0$ durch 5. eine Umformung mit $p = \frac{B}{A}$ und $q = \frac{C}{A}$ und anschließende Substitution wie in Aufgabe 4!
- $2x^4 12x^2 + 18 = 0$ (a)
- $-0.5x^4 + 3x^2 2.5 = 0$ (c)
- (b) $3x^4 27 = 0$ (d) $12x^4 48x^2 = 0$
- Lösen Sie folgende Gleichungen durch Anwendung Ihres Wissens über biquadratische 6. Gleichungen!
- (a) $x^5 + 4x^3 + 4x = 0$
- (b) $7x^6 21x^4 + 14x^2 = 0$
- (c) $\sqrt{x^4 + 10x^2 + 26} 1 = 0$ (d) $\frac{-4x^5 + 100x}{x^2} = 0$
- Gegeben sei das folgende Polynom $y = f(x) = x^4 + x^3 2x^2$ vierten Grades. 7.
- (a) Berechnen Sie alle Nullstellen des Polynoms!
- (b) Geben Sie die Produktdarstellung des Polynoms an!
- Bestimmen Sie die vier verschiedenen natürlichen Nullstellen des Polynoms f(x) = $x^4 - 14x^3 + 71x^2 - 154x + 120$ und geben Sie eine Produktdarstellung für das Polynom an!
- Berechnen Sie alle Nullstellen der folgenden Polynome und geben Sie die Produktdar-9. stellung an!
- $f(x) = x^3 + 3x^2 4x 12$ (a)
- (b) $f(x) = x^3 3x^2 + 3x 1$
- 10. Lösen Sie die folgenden Wurzelgleichungen und machen Sie immer eine Probe!
- Gleichungen mit einer Wurzel Lösen durch einmaliges Quadrieren: I.
- $\sqrt{5-2x} = 1$ (a)

(b) $\sqrt{7x+2}-3=0$

 $0 = \sqrt{4 - 3x} - \sqrt{5}$ (c)

 $5 - \sqrt{5x - 4} = 1$ (d)

(e)
$$0 = 3 + \sqrt{4x + 6}$$

(f)
$$6 = \sqrt{2,5x - 3,25} + 10$$

II. Gleichungen mit zwei Wurzeln – Lösen durch einmaliges Quadrieren:

$$(a) \qquad \sqrt{x+3} = \sqrt{24 - 2x}$$

(b)
$$\sqrt{3x+4} - \sqrt{-5x-4} = 0$$

(c)
$$\sqrt{x^2 + 3x - 7} = \sqrt{x^2 - x + 1}$$

(d)
$$\sqrt{x^2 - 5x + 8} = \sqrt{4 - x}$$

(e)
$$\sqrt{2x^2 + 3x + 2} = \sqrt{x^2 - x - 2}$$

III. Gleichungen mit zwei Wurzeln – Lösen durch zweimaliges Quadrieren:

(a)
$$\sqrt{x+1} + 7 = \sqrt{27 + 18x}$$

(b)
$$\sqrt{3x-5}-1=2+\sqrt{x-6}$$

(c)
$$\sqrt{5x+11} + \sqrt{2x-1} = 9$$

(d)
$$\sqrt{2x+6} - \sqrt{3x+12} = -1$$

Lösungen – Gleichungen höheren Grades

1. Lösung mit quadratischer Ergänzung:

(b)
$$0 = x^2 + 2x - 8 = (x^2 + 2 \cdot 1x + 1^2) - 1^2 - 8 = (x + 1)^2 - 1 - 8 = (x + 1)^2 - 9$$
 $| \pm \sqrt{(x + 1)^2} = 9$ $| \pm \sqrt{(x + 1)^2} = 9$

(c)
$$x^2 - 4 = 0$$
 $|+4$
 $x^2 = 4$ $|\pm\sqrt{}$
 $x_1 = -2$ $x_2 = 2$ (2 verschiedene Lösungen)

$$x_1 = -2 x_2 = 2 (2 \text{ verschiedene Lösungen})$$
(d) $0 = x^2 - 2x + 4 = (x^2 - 2 \cdot 1x + 1^2) - 1^2 + 4 = (x - 1)^2 - 1 + 4 = (x - 1)^2 + 3 |-3|$
 $(x - 1)^2 = -3 \text{ist nicht lösbar.}$

2. Lösung mit p-q-Lösungsformel:
$$x_{1/2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

(a)
$$x^2 + 12x + 32 = 0 \rightarrow p = 12, q = 32$$

 $x_{1/2} = -\frac{12}{2} \pm \sqrt{\frac{12^2}{4} - 32} = -6 \pm \sqrt{4}$
 $x_1 = -6 - 2 = -8$ $x_2 = -6 + 2 = -4$ (2 verschiedene Lösungen)

$$x_{1} = -6 - 2 = -8 x_{2} = -6 + 2 = -4 (2 \text{ verschiedene Lösungen})$$
(b) $x^{2} - 9 = 0 \rightarrow p = 0 , q = -9$

$$x_{1/2} = -\frac{0}{2} \pm \sqrt{\frac{0^{2}}{4} + 9} = \pm \sqrt{9}$$

$$x_{1} = -3 x_{2} = 3 (2 \text{ verschiedene Lösungen})$$

$$x_1 = -3$$
 $x_2 = 3$ (2 verschiedene Lösungen)
(c) $x^2 + 6x + 9 = 0$ $\rightarrow p = 6$, $q = 9$
 $x_{1/2} = -\frac{6}{2} \pm \sqrt{\frac{6^2}{4} - 9} = -3 \pm \sqrt{0} = -3$ (doppelte Lösung)

(d)
$$2x^2 - 12x + 18 = 0$$
 $\xrightarrow{:2}$ $p = -6$, $q = 9$ $x_{1/2} = -\frac{(-6)}{2} \pm \sqrt{\frac{(-6)^2}{4} - 9} = 3 \pm \sqrt{0} = 3$ (doppelte Lösung)

(e)
$$x^2 + 3 = 0 \rightarrow p = 0, q = 3$$

 $x_{1/2} = -\frac{0}{2} \pm \sqrt{\frac{0^2}{4} - 3} = \pm \sqrt{-3}$ ist nicht lösbar.

(f)
$$3x^2 + 6x - 24 = 0$$
 $\xrightarrow{:3}$ $p = 2$, $q = -8$ $x_{1/2} = -\frac{2}{2} \pm \sqrt{\frac{2^2}{4} + 8} = -1 \pm \sqrt{9}$ $x_1 = -1 - 3 = -4$ $x_2 = -1 + 3 = 2$ (2 verschiedene Lösungen)

Lösung durch Faktorisierung/Ausklammern: 3.

(a)
$$0 = x^{\frac{3}{2}} - 2x^{2} + x = x \cdot (x^{\frac{3}{2}} - 2x + 1)$$

1.Fall: $x_{1} = 0$ 2. Fall: $0 = x^{2} - 2x + 1$

$$x_{2/3} = -\frac{(-2)}{2} \pm \sqrt{\frac{(-2)^{2}}{4} - 1} = 1 \pm \sqrt{0} = 1$$

(b)
$$0 = 2x^4 - 10x^3 + 12x^2 = 2x^2 \cdot (x^2 - 5x + 6)$$

1.Fall:
$$2x^2 = 0$$
 2. Fall: $0 = x^2 - 5x + 6$

$$x_{1/2} = 0$$
 $x_{3/4} = -\frac{(-5)}{2} \pm \sqrt{\frac{(-5)^2}{4} - 6} = 2,5 \pm \sqrt{0,25}$

$$x_3 = 2.5 - 0.5 = 2$$
 $x_4 = 2.5 + 0.5 = 3$

(c)
$$0 = 3x^3 + 24x^2 = 3x^2 \cdot (x+8)$$

1.Fall:
$$3x^2 = 0$$
 2. Fall: $0 = x + 8$

$$x_{1/2} = 0$$
 $x_3 = -8$

(d)
$$0 = -5x^4 - 10x^3 = -5x^3 \cdot (x+2)$$

1.Fall:
$$-5x^3 = 0$$
 2. Fall: $0 = x + 2$ $x_{1/2/3} = 0$ $x_4 = -2$

4. Lösen durch Substitution
$$z = x^2$$
, $z^2 = x^4$:

(a)
$$x^4 - 10x^2 + 9 = 0 \rightarrow z^2 - 10z + 9 = 0 \rightarrow z_{1/2} = 5 \pm \sqrt{16} = 5 \pm 4$$

•
$$z_1 = 1$$
: $x_{1/2} = \pm \sqrt{1} = \pm 1$

•
$$z_2 = 9$$
: $x_{3/4} = \pm \sqrt{9} = \pm 3$

(b)
$$x^4 + 6x^2 + 5 = 0 \rightarrow z^2 + 6z + 5 = 0 \rightarrow z_{1/2} = -3 \pm \sqrt{4} = -3 \pm 2$$

•
$$z_1 = -1$$
: keine Lösung in x

•
$$z_1 = -1$$
: keine Lösung in x
• $z_2 = -5$: keine Lösung in x

(c)
$$x^4 - 13x^2 + 36 = 0 \rightarrow z^2 - 13z + 36 = 0 \rightarrow z_{1/2} = 6.5 \pm \sqrt{6.25} = 6.5 \pm 2.5$$

•
$$z_1 = 4$$
: $x_{1/2} = \pm \sqrt{4} = \pm 2$

•
$$z_2 = 9$$
: $x_{3/4} = \pm \sqrt{9} = \pm 3$

(d)
$$x^4 - 3x^2 - 4 = 0 \rightarrow z^2 - 3z - 4 = 0 \rightarrow z_{1/2} = 1.5 \pm \sqrt{6.25} = 1.5 \pm 2.5$$

•
$$z_1 = -1$$
: keine Lösung in x

•
$$z_2 = 4$$
: $x_{1/2} = \pm \sqrt{4} = \pm 2$

5. Lösen durch Substitution
$$z = x^2$$
, $z^2 = x^4$:

(a)
$$2x^4 - 12x^2 + 18 = 0 \stackrel{:2}{\rightarrow} x^4 - 6x^2 + 9 = 0 \rightarrow z^2 - 6z + 9 = 0$$

•
$$z_{1/2} = 3 \pm \sqrt{0} = 3$$
: $x_{1/2} = \pm \sqrt{3}$

(b)
$$3x^4 - 27 = 0 \xrightarrow{:3} x^4 - 9 = 0 \rightarrow z^2 - 9 = 0$$

• $z_1 = 0 - \sqrt{9} = -3$: keine Lösung in x

•
$$z_1 = 0 - \sqrt{9} = -3$$
: keine Lösung in x

•
$$z_2 = 0 + \sqrt{9} = 3$$
: $x_{1/2} = \pm \sqrt{3}$

(c)
$$-0.5x^4 + 3x^2 - 2.5 = 0$$
 $\xrightarrow{:(-0.5)} x^4 - 6x^2 + 5 = 0 \rightarrow z^2 - 6z + 5 = 0$

•
$$z_1 = 3 - \sqrt{4} = 1$$
: $x_{1/2} = \pm \sqrt{1} = \pm 1$

•
$$z_2 = 3 + \sqrt{4} = 5$$
: $x_{3/4} = \pm \sqrt{5}$

•
$$z_2 = 3 + \sqrt{4} = 5$$
: $x_{3/4} = \pm \sqrt{5}$
(d) $12x^4 - 48x^2 = 0$ $\xrightarrow{:12}$ $x^4 - 4x^2 = 0$ \rightarrow $z^2 - 4z = 0$

•
$$z_1 = 2 - \sqrt{4} = 0$$
 : $x_{1/2} = 0$

•
$$z_1 = 2 - \sqrt{4} = 0$$
 : $x_{1/2} = 0$
• $z_1 = 2 + \sqrt{4} = 4$: $x_{3/4} = \pm 2$

Anwendung biquadratischer Gleichungen: 6.

(a)
$$x^5 + 4x^3 + 4x = x \cdot (x^4 + 4x^2 + 4) = 0$$

1.Fall:
$$x_1 = 0$$
 2. Fall: $0 = x^4 + 4x^2 + 4$ (biquadratisch)

$$0 = z^2 + 4z + 4$$

$$z_{1/2} = -2 \pm \sqrt{0} = -2 \qquad \text{keine weitere Lösung in x}$$
(b) $7x^6 - 21x^4 + 14x^2 = 7x^2 \cdot (x^4 - 3x^2 + 2) = 0$
1. Fall: $7x^2 = 0$

$$z_{1/2} = 0$$
2. Fall: $0 = x^4 - 3x^2 + 2 \quad \text{(biquadratisch)}$

$$0 = z^2 - 3z + 2$$

$$z_{1/2} = 1,5 \pm \sqrt{0,25} = 1,5 \pm 0,5$$

$$z_1 = 1 : x_{3/4} = \pm \sqrt{1} = \pm 1$$

$$z_2 = 2 : x_{5/6} = \pm \sqrt{2}$$

(c)
$$\sqrt{x^4 + 10x^2 + 26} - 1 = 0$$
 $|-1|$
 $\sqrt{x^4 + 10x^2 + 26} = 1$ | Quadrieren!
 $x^4 + 10x^2 + 26 = 1$ | $|-1|$
 $x^4 + 10x^2 + 25 = 0$ (biquadratisch)
 $z^2 + 10z + 25 = 0$
 $z_{1/2} = -5 \pm \sqrt{0} = -5$ keine Lösung in x

(d)
$$\frac{-4x^5 + 100x}{x} = -4x^4 + 100 = 0 \quad | : (-4) \quad \text{wobei } x \neq 0 \text{ sein muss.}$$

$$x^4 - 25 = 0 \quad | + 25$$

$$x^4 = 25 \quad | \pm \sqrt[4]{}$$

$$x_{1/2} = \pm \sqrt{5}$$

7.
$$y = f(x) = x^4 + x^3 - 2x^2$$

(a) $0 = x^4 + x^3 - 2x^2 = x^2 \cdot (x^2 + x - 2)$ liefert über die Zwischenstationen $0 = x^2$ und $0 = x^2 + x - 2$ die doppelte Lösung $x_{N1/2} = 0$ und die einfachen Lösungen $x_{N3} = 1$ und $x_{N4} = -2$.

(b)
$$x^4 + x^3 - 2x^2 = x^2(x-1)(x+2)$$

8.
$$f(x) = x^4 - 14x^3 + 71x^2 - 154x + 120 = 0$$

Erraten einer ersten Nullstelle z.B. durch Wurzelsatz von Vieta, da dort: $120 = (-1)^4 x_1 x_2 x_3 x_4$ (wobei die 4 verschiedenen Nullstellen lt. Aufgabenstellung natürliche Zahlen sind)

- z.B. $x_1 = 2 \rightarrow \text{Linearfaktor: } (x-2)$ • 1. NST:
- Polynomdivision: $(x^4 14x^3 + 71x^2 154x + 120)$: $(x 2) = x^3 12x^2 + 47x 60$

Erraten einer zweiten Nullstelle von f(x), die auch Nullstelle von $x^3 - 12x^2 + 47x - 60$ ist, z.B. durch Wurzelsatz von Vieta, da dort: $60 = (-1)^3 x_2 x_3 x_4$

- z.B. $x_2 = 3 \rightarrow \text{Linearfaktor: } (x-3)$ • 2. NST:
- Polynomdivision: $(x^3 12x^2 + 47x 60)$: $(x 3) = x^2 9x + 20$

Berechnen der letzten zwei Nullstellen durch Lösen der quadratischen Gleichung $x^2 - 9x + 20 = 0$

- 3. NST: z.B. $x_3 = 4 \rightarrow \text{Linearfaktor: } (x-4)$
- 4. NST: z.B. $x_4 = 5 \rightarrow \text{Linearfaktor: } (x-5)$

Produktdarstellung: $x^4 - 14x^3 + 71x^2 - 154x + 120 = (x-2)(x-3)(x-4)(x-5)$

9.(a)
$$f(x) = x^3 + 3x^2 - 4x - 12 = 0$$

Nach dem Wurzelsatz von Vieta gilt für das Absolutglied in f(x): $-12 = (-1)^3 \cdot x_1 \cdot x_2 \cdot x_3$, d.h. $12 = x_1 \cdot x_2 \cdot x_3$. Damit sind die ganzzahligen Teiler von 12, also -1, 1, -2, 2 -3, 3, -4, 4, -6, 6, -12 und 12, gute Kandidaten für eine erste Nullstelle. Das Einsetzen in f(x) liefert:

$$f(-1) = (-1)^3 + 3 \cdot (-1)^2 - 4 \cdot (-1) - 12 = -6 \neq 0,$$

$$f(+1) = (+1)^3 + 3 \cdot (+1)^2 - 4 \cdot (+1) - 12 = -12 \neq 0,$$

$$f(-2) = (-2)^3 + 3 \cdot (-2)^2 - 4 \cdot (-2) - 12 = 0.$$

Damit ist die erste Nullstelle $x_1 = -2$. Durch Polynomdivision erhält man dann ein Polynom 2. Grades, dessen Nullstellen die fehlenden 2 Nullstellen von f(x) sind:

$$(x^{3} + 3x^{2} - 4x - 12): (x + 2) = x^{2} + x - 6$$

$$-(x^{3} + 2x^{2})$$

$$x^{2} - 4x$$

$$-(x^{2} + 2x)$$

$$-6x - 12$$

$$-(-6x - 12)$$

$$0$$

 \rightarrow quadratische Gleichung: $0 = x^2 + x - 6$ mit den Lösungen $x_2 = 2$ und $x_2 = -3$. Damit erhält man die Produktdarstellung: f(x) = (x+2)(x-2)(x+3).

(b)
$$f(x) = x^3 - 3x^2 + 3x - 1 = 0$$

- <u>Variante 1:</u> Gemäß dem Binomischen Lehrsatz ist $x^3 3x^2 + 3x 1 = (x 1)^3$, was sofort der Produktdarstellung entspricht, d.h. es gibt hier mit 1 eine dreifache Nullstelle.
- <u>Variante 2</u>: Nach dem Wurzelsatz von Vieta gilt für das Absolutglied in f(x): $-1 = (-1)^3 \cdot x_1 \cdot x_2 \cdot x_3$, d.h. $1 = x_1 \cdot x_2 \cdot x_3$. Damit sind die ganzzahligen Teiler von 1, also -1 und +1, gute Kandidaten für eine erste Nullstelle. Das Einsetzen in f(x) liefert: $f(-1) = (-1)^3 3 \cdot (-1)^2 + 3 \cdot (-1) 1 = -8 \neq 0$, $f(+1) = (+1)^3 3 \cdot (+1)^2 + 3 \cdot (+1) 1 = 0$.

Damit ist die erste Nullstelle $x_1 = 1$. Durch Polynomdivision erhält man dann ein Polynom 2. Grades, dessen Nullstellen die fehlenden 2 Nullstellen von f(x) sind:

$$(x^{3} - 3x^{2} + 3x - 1): (x - 1) = x^{2} - 2x + 1$$

$$-(x^{3} - x^{2})$$

$$-2x^{2} + 3x$$

$$-(-2x^{2} + 2x)$$

$$x - 1$$

$$-(x - 1)$$

$$0$$

 \rightarrow quadratische Gleichung: $0 = x^2 - 2x + 1$ mit der doppelten Lösung $x_{2/3} = 1$. Damit hat man 1 als dreifache Nullstelle berechnet und obige Produktdarstellung erhalten.

- 10. Wurzelgleichungen (<u>immer</u> mit Probe!):
- I. Gleichungen mit einer Wurzel Lösen durch einmaliges Quadrieren:
- (a) $\sqrt{5-2x} = 1$ | Quadrieren! 5-2x = 1 | -5 | Probe: $\sqrt{5-2\cdot 2} = 1$ $-2\cdot x = -4$ | : (-2) | 1 = 1 (wahre Aussage) x = 2
- (b) $\sqrt{7x+2} 3 = 0$ | + 3 $\sqrt{7x+2} = 3$ | Quadrieren! 7x+2=9 | -2 $7 \cdot x = 7$ | : 7 Probe: $\sqrt{7 \cdot 1 + 2} - 3 = 0$ 0 = 0 (wahre Aussage) 0 = 0 (wahre Aussage)
- (c) $0 = \sqrt{4 3x} \sqrt{5}$ | $+ \sqrt{5}$ $\sqrt{4 - 3x} = \sqrt{5}$ | Quadrieren! 4 - 3x = 5 | -4 $-3 \cdot x = 1$ | : (-3) | Probe: $0 = \sqrt{4 - 3 \cdot \left(-\frac{1}{3}\right)} - \sqrt{5}$ $x = -\frac{1}{3}$ | 0 = 0 (wahre Aussage)
- (d) $5-\sqrt{5x-4}=1$ | -5 $-\sqrt{5x-4}=-4$ | Quadrieren! 5x-4=16 | +4 $5\cdot x=20$ | :5 x=4 | Probe: $5-\sqrt{5\cdot 4-4}=1$ 1=1 (wahre Aussage)
- (e) $0=3+\sqrt{4x+6}$ |-3| $-3=\sqrt{4x+6}$ | Quadrieren! Probe: $0=3+\sqrt{4\cdot0,75+6}$ 9=4x+6 | -6 0=6 (falsche Aussage) $3=4\cdot x$ | : 4 Aufgabe ist nicht lösbar. x=0,75
- (f) $6 = \sqrt{2,5x 3,25} + 10$ | -10 $-4 = \sqrt{2,5x - 3,25}$ | Quadrieren! 16 = 2,5x - 3,25 | +3,25
- II. Gleichungen mit zwei Wurzeln Lösen durch einmaliges Quadrieren:
- (a) $\sqrt{x+3} = \sqrt{24-2x}$ | Quadrieren! x+3=24-2x | -3+2x $3 \cdot x = 21$ | : 3 | Probe: $\sqrt{7+3} = \sqrt{24-2\cdot7}$ x=7 | $\sqrt{10} = \sqrt{10}$ (wahre Aussage)
- (b) $\sqrt{3x+4} \sqrt{-5x-4} = 0 \mid + \sqrt{-5x-4} \mid \sqrt{3x+4} = \sqrt{-5x-4} \mid \text{Quadrieren!}$ $3x+4=-5x-4 \mid +5x-4 \mid \cdot 8 \cdot x = -8 \mid \cdot 8 \mid \cdot$
- (c) $\sqrt{x^2 + 3x 7} = \sqrt{x^2 x + 1}$ | Quadrieren! $x^2 + 3x - 7 = x^2 - x + 1$ | $-x^2 + x + 7$ $4 \cdot x = 8$ | : 4 Probe: $\sqrt{2^2 + 3 \cdot 2 - 7} = \sqrt{2^2 - 2 + 1}$ x = 2 $\sqrt{3} = \sqrt{3}$ (wahre Aussage)

(d)
$$\sqrt{x^2 - 5x + 8} = \sqrt{4 - x}$$
 | Quadrieren!
 $x^2 - 5x + 8 = 4 - x$ | $+ x - 4$ | Probe: $\sqrt{2^2 - 5 \cdot 2 + 8} = \sqrt{4 - 2}$
 $x^2 - 4x + 4 = 0$ | $\sqrt{2} = \sqrt{2}$ (wahre Aussage)
 $x_{1/2} = 2 \pm \sqrt{0} = 2$

(e)
$$\sqrt{2x^2 + 3x + 2} = \sqrt{x^2 - x - 2}$$
 | Quadrieren!
$$2x^2 + 3x + 2 = x^2 - x - 2$$
 | $-x^2 + x + 2$ | Probe:
$$\sqrt{2 \cdot (-2)^2 + 3 \cdot (-2) + 2} = \sqrt{(-2)^2 - (-2) - 2}$$
 | $2 = 2$ (wahre Aussage)

III. Gleichungen mit zwei Wurzeln – Lösen durch zweimaliges Quadrieren:

(a)
$$\sqrt{x+1} + 7 = \sqrt{27 + 18x}$$
 | 1. Quadrieren!
 $x + 1 + 14\sqrt{x+1} + 49 = 27 + 18x$ | $-x - 1 - 49$
 $14\sqrt{x+1} = 17x - 23$ | 2. Quadrieren!
 $196 \cdot (x+1) = 289x^2 - 782x + 529$
 $196x + 196 = 289x^2 - 782x + 529$ | $-196x - 196$
 $0 = 289x^2 - 978x + 333$ | $: 289$
 $0 = x^2 - \frac{978}{289}x + \frac{3}{289}$
 $x_{1/2} = \frac{489}{289} \pm \sqrt{\frac{142884}{289^2}} = \frac{489}{289} \pm \frac{378}{289}$
 $x_1 = \frac{111}{289}$ $x_1 = \frac{867}{289} = 3$

Probe 1:
$$\sqrt{\frac{111}{289}} + 1 + 7 = \sqrt{27 + 18 \cdot \frac{111}{289}}$$
 Probe 2: $\sqrt{3+1} + 7 = \sqrt{27 + 18 \cdot 3}$ $9 = 9$ (wahre Aussage) d.h. 3 ist eine Lösung.

(b)
$$\sqrt{3x-5}-1=2+\sqrt{x-6} \quad |+1$$

 $\sqrt{3x-5}=3+\sqrt{x-6} \quad | 1.$ Quadrieren!
 $3x-5=9+6\sqrt{x-6}+x-6 \quad |-9-x+6$
 $2x-8=6\sqrt{x-6} \quad | 2.$ Quadrieren!
 $4x^2-32x+64=36(x-6)$
 $4x^2-32x+64=36x-216 \quad |-36x+216$
 $4x^2-68x+280=0 \quad | :4$
 $x^2-17x+70=0$
 $x_{1/2}=8,5\pm\sqrt{2,25}=8,5\pm1,5$

$$x_1 = 7$$
 $x_2 = 10$
Probe 1: $\sqrt{3 \cdot 7 - 5} - 1 = 2 + \sqrt{7 - 6}$ Probe 2: $\sqrt{3 \cdot 10 - 5} - 1 = 2 + \sqrt{10 - 6}$
 $3 = 3$ (wahre Aussage) $4 = 4$ (wahre Aussage) d.h. 7 ist eine Lösung.

(c)
$$\sqrt{5x+11} + \sqrt{2x-1} = 9$$
 | $-\sqrt{2x-1}$ | 1. Quadrieren! | $5x+11 = 81 - 18\sqrt{2x-1} + 2x-1$ | 1. Quadrieren! | $3x-69 = -18\sqrt{2x-1}$ | 1. Quadrieren! | $x^2-69 = -18\sqrt{2x-1}$ | 2. Quadrieren! | $x^2-46x+529 = 36(2x-1)$ | $x^2-46x+529 = 72x-36$ | $x^2-118x+565 = 0$ | $x_{1/2} = 59 \pm \sqrt{2916} = 59 \pm 54$ | $x_1 = 5$ | $x_2 = 113$ | Probe 1: $\sqrt{5 \cdot 5 + 11} + \sqrt{2 \cdot 5 - 1} = 9$ | $y = 9$ (wahre Aussage) | $y = 9$ (falsche Aussage) | $y = 9$ (falsche