Maskinlæring

Våren 2018

Statistikk over utvalgte variabler

Lag en enkel statistikk for noen utvalgte variabler, både visuelt og numerisk. (Snitt, Max, Min).

Statistikk over utvalgte variabler

	SalesID	SalePrice	MachineHoursCurrentMeter	UsageBand	saledate	Hydraulics
count	412698	412698	147504	73670	412698	330133
unique				3	4013	12
top				Medium	2/16/2009 0:00	2 Valve
freq				35832	1932	145317
mean	2011161	31215	3523			
min	1139246	4750	0			
max	6333349	142000	2483300			

Kikke på dataen: YearMade - Problematiske verdier

Kikke på dataen: MachineHoursCurrentMeter - Extreme Outliers

MachineHoursCurrentMeter

Kikke på dataen: Tettheten av 'null'-verdier

Kikke på dataen: 'Missing data' i individuelle samples

Preprosessering: Missing data

Gjør en vurdering av mengden manglende verdier, konsekvens av dette, og nevn noen metoder for å håndtere det.

Preprosessering: Missing data

- Behandle missing data
 - Fjerne samples med missing values
 - Fjerne verdier med mye missing values
 - Estimere missing values
 - "Mean", "median", "most frequent" (mode)...
 - Regression Substitution
 - Multiple Imputation

Preprosessering: Tekst til tall

Tire_Size
Undercarriage_Pad_Width
Stick_Length

Preprosessering MachineHoursCurrentMeter - Extreme Outliers

Preprosessering: Tekst til tall

Preprosessering: Kategorivariabler - NaN til Most Frequent

Preprosessering: Kategorivariabler - "None or unspecified"

Preprosessering: YearMade

Preprosessering: Saledate - Håndtere tid

Preprosessering: Problematiske variabler

Klassifisering av data variabler

Gjør en vurdering om datatyper, kontinuerlige/kategoriske variable, og hvordan

dette håndteres.

ID

- Int
- Float
- Binary
- Category

Country	France	Germany	Spain
France -	1	0	0
Spain	0	0	1
Germany	0	1	0
Spain	 0	0	1
Germany	0	1	0
France -	1	0	0
Spain	0	0	1
France -	1	0	0
Germany	0	1	0
France 🔷	1	0	0

Modellvalg

Gjør et modellvalg, og utform en kort begrunnelse som belyser fordeler og ulemper.

Modellvalg

	Ridge Regression	Artificial Neural Net (182 - [50 - 50] - 1)
Fordeler	 God innsikt i modellen Bedre enn ODR på multikollinearitet Minimerer innvirkningen til irrelevante "features" 	- Kan modellere ulineær oppførsel
Ulemper	- Fjerner ikke irrelevante "features", slik som f.eks Lasso	- Black box - Beregningsmessig tungt å lage modellen

Metric

R² score:

- Enkelt med tall som prosent, hvor 100% er best
- "Overfitting" vil gi gode en god score, selv om det ikke er ønskelig

RMSE score:

- Enkel og beskrivende
- Verdien er relativ, brukes til sammenligning

Resultat

Beskriv resultatene, samt hvilke features er viktigst.

Resultat

Modell	Metric	Treningssett score	Valideringsett score
Ridge Regression	R^2	58.0 %	57.9 %
	RMSE	14970	15071
ANN	R^2	58.4 %	58.2 %
	RMSE	14907	15012

Overfitting

Redegjør for hvordan du har tatt høyde for overfitting og hvor god overførbarhet modellen har til nye data

Testsett vs treningssett

- Ridge Regression utilizes regularization
- 70%/30% tilfeldig trenings-/test-data

