Содержание

1	Мн	Множества				
	1.1	Основные понятия и обозначения	2			
2	Определение графа					
	2.1	Простой граф	3			
	2.2	Ориентированный граф	4			
	2.3	Мультиграф				
	2.4	Псевдограф				
3	Способы задания графов					
	3.1	Смежность, инцидентность и степени вершин	7			
	3.2	Список смежности				
	3.3	Матрица смежности $S(G)$				
	3.4	Матрица инцидентности $B(G)$				
4	Изоморфизм графов 12					
	4.1	Определение изоморфизма	2			
	4.2	Инварианты графов				
5	Связность 12					
	5.1	Отношение эквивалентности				
	5.2	Отношение достижимости				
		Свазность				

1 Множества

1.1 Основные понятия и обозначения

Основные предпосылки канторовской (наивной) теории множеств:

- множество может состоять из любых различимых объектов;
- множество однозначно определяется набором составляющих его объектов;
- любое свойство определяет множество объектов, которые этим свойством обладает.

Основные понятия и обозначения, связанные с множествами и операциями над ними:

- 1. Множества состоят из элементов. Запись $x \in M$ означает, что x является элементом множества M.
- 2. Множество A является подмножеством множества B, если все элементы A являются элементами B.

$$A \subset B$$
.

3. Множества A и B равны, если они содержат одни и те же элементы.

$$A = B \Leftrightarrow A \subset B, B \subset A.$$

- 4. Пустое множество Ø не содержит ни одного элемента и является подмножеством любого множества.
- 5. Пересечение $A \cap B$ двух множеств A и B состоит из элементов, которые принадлежат обоим множествам A и B.

$$A \cap B = \{x | x \in A \text{ if } x \in B\}.$$

6. Объединение $A \cup B$ двух множеств A и B состоит из элементов, которые принадлежат хотя бы одному из множеств A и B.

$$A \cap B = \{x | x \in A$$
 или $x \in B\}$.

7. Разность $A \setminus B$ двух множеств A и B состоит из элементов, которые принадлежат A и не пренадлежат B.

$$A \setminus B = \{x | x \in A$$
 и $x \notin B\}.$

8. Симметрическая разность $A \triangle B$ состоит из элементов, которые принадлежат ровно одному из множеств A и B.

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

2 Определение графа

2.1 Простой граф

$$G = (V, E), V \neq \emptyset, E \subseteq \{\{v_i, v_j\} | v_i, v_j \in V, v_i \neq v_j\}.$$
 Пусть V – непустое множество,

$$V = \{v_1, v_2, \dots, v_n\}, V \neq \varnothing,$$

E — множество всех неупорядоченых пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{\{v_i, v_j\} | v_i, v_j \in V, v_i \neq v_j\}.$$

Тогда пара множеств (V, E), называется **простым графом** и обозначается G = (V, E). Элементы множества V называют **вершинами**, а элементы множества E – **рёбрами**. Пример.

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Рис. 1: Простой граф

Примечание.

Часто слово «простой» опускают, называя их графами.

2.2 Ориентированный граф

$$G = (V, E), V \neq \emptyset, E \subseteq \{(v_i, v_j) | v_i, v_j \in V, v_i \neq v_j\}.$$
Пусть V – непустое множество,

$$V = \{v_1, v_2, \dots, v_n\}, V \neq \varnothing,$$

E – множество всех упорядоченых пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{(v_i, v_j) | v_i, v_j \in V, v_i \neq v_j\}.$$

Тогда пара множеств (V, E), называется **ориентированным графом** и обозначается G = (V, E). Элементы множества V называют **вершинами**, а элементы множества E - дугами. Пример.

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_2, v_4), (v_6, v_4)\}.$$

Рис. 2: Ориентированный граф

Примечание.

Ориентированные графы также называют орграфами. В простых графах рёбра – множества, в орграфах дуги – кортежи.

2.3 Мультиграф

$$G = (V, \mathbf{E}), V \neq \emptyset, \mathbf{E} = (E, m), E \subseteq \{\{v_i, v_j\} | v_i, v_j \in V, v_i \neq v_j\}, m : E \to \mathbf{Z}^+.$$
 Пусть V – непустое множество,

$$V = \{v_1, v_2, \dots, v_n\}, V \neq \varnothing,$$

E — множество всех неупорядоченых пар элементов множества V, за исключением пар, состоящих из одинаковых элементов

$$E \subseteq \{\{v_i, v_i\} | v_i, v_i \in V, v_i \neq v_i\}.$$

 ${\bf E}$ – мультимножество, построенное на множестве E, допускающее кратность элементов

$$\mathbf{E} = (E, m), m : E \to \mathbf{Z}^+.$$

Тогда пара множеств (V, \mathbf{E}) , называется **мультиграфом** и обозначается $G = (V, \mathbf{E})$. Элементы множества V называют **вершинами**, а элементы мультимножества $\mathbf{E} - \mathbf{p\"e}\mathbf{брами}$ (дугами).

Пример.

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

$$E = \{\{v_1, v_2\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Рис. 3: Мультиграф

Примечание.

Могут быть ориентированными и неориентированными. Получаются из простых графов (орграфов) добавлением кратных рёбер (дуг).

2.4 Псевдограф

$$G = (V, \mathbf{E}), V \neq \emptyset, \mathbf{E} = (E, m), E \subseteq \{\{v_i, v_j\} | v_i, v_j \in V\}, m : E \to \mathbf{Z}^+.$$
 Пусть V – непустое множество,

$$V = \{v_1, v_2, \dots, v_n\}, V \neq \varnothing,$$

E – множество всех неупорядоченых пар элементов множества V

$$E \subseteq \{\{v_i, v_j\} | v_i, v_j \in V, v_i \neq v_j\}.$$

 ${\bf E}$ – мультимножество, построенное на множестве E, допускающее кратность элементов

$$\mathbf{E} = (E, m), m : E \to \mathbf{Z}^+.$$

Тогда пара множеств (V, \mathbf{E}) , называется **псевдографом** и обозначается $G = (V, \mathbf{E})$. Элементы множества V называют **вершинами**, а элементы мультимножества $\mathbf{E} - \mathbf{p}\ddot{\mathbf{e}}\mathbf{f}\mathbf{p}\mathbf{a}\mathbf{m}\mathbf{u}$ (дугами). Рёбра (дуги), соединяющие одну и ту же вершину, называются **петлями**. **Пример.**

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

$$E = \{\{v_1, v_2\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_4, v_6\}\}.$$

Рис. 4: Псевдограф

Примечание.

Получаются из мультиграфов добавлением петель.

3 Способы задания графов

3.1 Смежность, инцидентность и степени вершин

- Вершины v_1 и v_2 называют **смежными**, если существует ребро $e = \{v_1, v_2\} \in E$, соединяющее их.
- Ребро e называют **инцидентным** вершине v, если она является одним из его концов.
- Степенью вершины $\deg(v)$ неориентированного графа называют число рёбер, инцидентных этой вершине

$$\deg(v) = |\{u : \{v, u\} \in E\}|.$$

Пример.

Дан граф G=(V,E), такой что $V=\{v_1,v_2,v_3,v_4,v_5,v_6\},$ $E=\{\{v_1,v_2\},\{v_2,v_3\},\{v_3,v_5\},\{v_2,v_4\},\{v_6,v_4\}\}.$

Рис. 5: G = (V, E)

Вершины v_1 и v_2 смежные, так как $\{v_1, v_2\} \in E$.

Вершины v_1 и v_6 не смежные, так как $\{v_1, v_6\} \notin E$.

$$\deg(v_1) = 1, \deg(v_2) = 3, \deg(v_3) = 2, \deg(v_4) = 2, \deg(v_5) = 1, \deg(v_6) = 1.$$

$$G_1 = (\{v_2, v_3, v_4\}, \{\{v_2, v_3\}, \{v_2, v_4\}\}) \subseteq G.$$

Для ориентированных графов введены понятия полустепени захода и полустепени исхода вершины.

• Полустепенью захода $\deg^+(v)$ вершины v называют число заходящих в неё дуг.

- Полустепенью исхода $\deg^-(v)$ вершины v называют число исходящих из неё дуг.
- Степенью вершины $\deg(v)$ ориентированного графа называют сумму полустепеней захода и исхода этой вершины.

$$\deg(v) = \deg^+(v) + \deg^-(v).$$

Пример.

Дан граф
$$G=(V,E)$$
, такой что
$$V=\{v_1,v_2,v_3,v_4,v_5,v_6\},$$

$$E=\{(v_1,v_2),(v_2,v_3),(v_3,v_5),(v_2,v_4),(v_6,v_4)\}.$$

Рис. 6: G = (V, E)

Запишем степени вершин в таблицу.

Лемма 3.1 (О рукопожатиях). Для любого графа G = (V, E) справедливо

$$\sum_{v \in V} \deg v = 2|E|.$$

Доказательство. Так как степень вершины – есть количество инцидентных вершине рёбер, при суммировании степеней всех вершин каждое ребро учитывается два раза. □

3.2 Список смежности

Для того, чтобы составить список смежности необходимо для каждой вершины указать список смежных с ней вершин.

Пример.

Дан граф G = (V, E), такой что

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$$

$$E = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_2, v_4\}, \{v_6, v_4\}\}.$$

Рис. 7: Граф G = (V, E)

Запишем список смежности таблицей.

Вершина v	$\deg(v)$	Список смежных с v вершин
v_1	1	v_2
v_2	3	v_1, v_3, v_4
v_3	2	v_2, v_5
v_4	2	v_2, v_6
v_5	1	v_3
v_6	1	$\mid v_4 \mid$

3.3 Матрица смежности S(G)

S(G) – квадратная матрица размерности $n \times n$, где n – число вершин графа.

$$s_{i,j} = 1 \Leftrightarrow \{v_i, v_j\} \in E$$
.

Пример.

Построим матрицу смежности для графа из предыдущего примера.

В этом графе n=|V|=6, значит матрица смежности S(G) будет иметь размерность 6×6 . Так как в графе есть ребро $\{v_1,v_2\}$, элемент $s_{1,2}=1$, так как в графе нет ребра $\{v_1,v_6\}$, элемент $s_{1,6}=0$.

Повторив процедуру для всех рёбер получим

$$S(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Можно заметить, что для неориентированных графов матрица смежности является симметричной так как $\{v_1, v_2\} = \{v_2, v_1\}$.

Примечание.

• Для ориентированных графов условие имеет вид

$$s_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E.$$

- Для мультиграфов вместо единиц указывают кратность рёбер.
- Для псевдографов на главной диагонали указывают число петель.

3.4 Матрица инцидентности B(G)

B(G) — матрица размерности $n \times m$, где n — число вершин графа, а m — число рёбер (дуг) графа.

$$b_{i,j} = 1 \Leftrightarrow v_i \in e_j.$$

Пример.

Построим матрицу инцидентности для графа из предыдущего примера.

В этом графе n=|V|=6 и m=|E|=5, а значит матрица будет иметь размерность 6×5 . Пусть

$$e_1 = \{v_1, v_2\},\$$

$$e_2 = \{v_2, v_3\},\$$

$$e_3 = \{v_3, v_5\},\$$

$$e_4 = \{v_2, v_4\},\$$

$$e_5 = \{v_6, v_4\}.$$

Ребро e_1 инцидентно вершинам v_1 и v_2 , поэтому $b_{1,1}=1$ и $b_{2,1}=1$. Повторив процедуру для всех рёбер получим

$$B(G) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Для ориентированных графов матрица инцидентности составляется по следующему правилу

$$b_{i,j} = \left\{ egin{array}{ll} +1, & e_j = (v_i,*), \ -1, & e_j = (*,v_i), \ 0, & ext{иначе}. \end{array}
ight.$$

Пример.

Дан граф G=(V,E), такой что $V=\{v_1,v_2,v_3,v_4,v_5,v_6\},$ $E=\{(v_1,v_2),(v_2,v_3),(v_3,v_5),(v_2,v_4),(v_6,v_4)\}.$

Рис. 8: Граф G=(V,E)

Дуга $e_1 = (v_1, v_2)$ выходит из вершины v_1 и входит v_2 , поэтому $b_{1,1} = +1$ и $b_{2,1} = -1$. Повторив процедуру для всех дуг получим

$$B(G) = \begin{pmatrix} +1 & 0 & 0 & 0 & 0 \\ -1 & +1 & 0 & +1 & 0 \\ 0 & -1 & +1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & +1 \end{pmatrix}.$$

4 Изоморфизм графов

4.1 Определение изоморфизма

Изоморфизмом простых графов $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$, называется биекция

$$f: V_1 \to V_2$$

такая, что любые две вершины v и u графа G_1 смежны тогда и только тогда, когда вершины f(v) и f(u) смежны в графе G_2 .

Если изоморфизм графов G_1 и G_2 установлен, они называются изоморфными и вводится обозначение

$$G_1 \simeq G_2$$
.

В случае применения понятия изоморфизма к ориентированным или взвешенным графам, накладываются дополнительные ограничения на сохранение ориентации дуг и значений весов.

Графы G_1 и G_2 являются изоморфными, если путём перестановки строк и столбцов в матрице смежности $S(G_1)$ одного графа удаётся получить матрицу смежности $S(G_2)$ другого графа. Однако, перебор всех возможных перестановок характеризуется вычислительной сложностью O(N!).

4.2 Инварианты графов

Пусть F – функция на графах, то есть отображение, сопостовляющее каждому графу какоелибо значение. Тогда функция F называется **инвариантом** графов, если на любых двух изоморфных графах, она принимает одинаковое значение. Некоторые простейшие инварианты:

- количество вершины в графе;
- количество рёбер в графе;
- количество компонент связности в графе;
- диаметр графа;
- длина минимального простого цикла,
- спектр графа (упорядоченный набор собственных чисел матрицы смежности).

На рисунке 9 показаны два изоморфных графа.

5 Связность

5.1 Отношение эквивалентности

Пусть A и B – произвольные множества, тогда множество

$$A \times B = \{(a,b) | a \in A$$
 и $b \in B\},$

Рис. 9: Изоморфные графы

образованное всеми упорядоченными парами (a,b) называется **прямым** или **декартовым произведением** множеств A и B.

Пример.

Пусть $A = \{1, 3, 5\}$ и $B = \{a, b\}$.

$$\begin{array}{c|ccccc} & 1 & 3 & 5 \\ \hline a & (1,a) & (3,a) & (5,a) \\ b & (1,b) & (3,b) & (5,b) \\ \end{array}$$

$$A \times B = \{(1, a), (1, b), (3, a), (3, b), (5, a), (5, b)\}.$$

Бинарным отношением на двух множествах A и B называют всякое подмножество декартового произведения этих множеств

$$R \subseteq A \times B$$
.

Вместо $(a,b) \in R$ часто пишут aRb.

Бинарным отношением на множестве A называют всякое подмножество декартового произведения на себя

$$R \subseteq A^2 = A \times A.$$

Бинарное отношение называется **отношением эквивалентности**, если выполняются следующие свойства:

- рефлексивность: $xRx, \forall x \in X;$
- симметричность: $xRy \Rightarrow yRx, \forall x,y \in X;$
- транзитивность: xRy и $yRz \Rightarrow xRz, \forall x, y, z \in X$.

Пусть R – отношение эквивалентности на множестве M и $a \in M$.

Классом эквивалентности M_a называется множество всех элементов из M, находящихся в отношении R к элементу a.

$$M_a = \{ x \in M | xRa \}.$$

Свойства классов эквивалентности:

1. $a \in M_a$.

Доказательство. По определению $M_a = \{x \in M | xRa\}$, а значит для a должно выполняться $a \in M_a \Leftrightarrow aRa$, что в свою очередь справедливо в силу рефлексивности отношения эквивалентности.

Следствие: $M_a \neq \emptyset$.

2. $M_a = M_b \Leftrightarrow aRb$.

Heoбxoдимость. Так как $M_a \neq \emptyset$ и $M_b \neq \emptyset$ существует общий элемент $c \in M_a \cap M_b$. При этом для $a \in M_a$ и $b \in M_b$ справедливо cRa и cRb. Но тогда по симметричности получим aRc, а по транзитивности aRb.

Достаточность. Пусть заданы классы эквивалентности M_a и M_b , а также известно, что aRb. Тогда возьмём $c \in M_a$, для него cRa, а значит по транзитивности cRb и $c \in M_b$. Если же $c \in M_b$, для него cRb, а значит по симметричности bRc и по транзитивности aRc, откуда $c \in M_a$. А значит $M_a = M_b$.

3. $M_a \neq M_b \Rightarrow M_a \cap M_b = \varnothing$.

Доказательство. Допустим, что существует $c = M_a \cap M_b \neq \emptyset$, тогда $c \in M_a$ и $c \in M_b$, а значит cRa и cRb. По симметричности и транзитивности получим aRb, а по свойству 2 следует, что $M_a = M_b$ – противоречие, значит $c = \emptyset$.

4. $\bigcup_{a \in M} M_a = M.$

Справедливо так как любой элемент $x \in M$ можно отнести к какому-либо классу эквивалентности $x \in M_x$.

Совокупность подмножеств M_i , где $i \in I$, множества M называется **разбиением множества** M, если выполняются следующие условия:

- 1. Каждое из подмножеств M_i непусто.
- 2. Объединение всех подмножеств M_i равно множеству M.
- 3. Два различных подмножества M_i и M_j , где $i \neq j$, не имеют общих элементов.

Теорема 5.1. Пусть R – отношение эквивалентности на множестве M. Тогда совокупность классов эквивалентности множества M образует его разбиение.

Доказательство. По свойствам.

5.2 Отношение достижимости

Дадим ещё ряд определений.

• Путём в неориентированном графе из вершины v_1 в v_k называется чередующаяся последовательность вершин и рёбер вида

$$v_1, \{v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \dots, v_{k-2}, \{v_{k-2}, v_{k-1}\}, v_{k-1}, \{v_{k-1}, v_k\}, v_k.$$

• Путём в ориентированном графе из вершины v_1 в v_k называется чередующаяся последовательность вершин и дуг вида

$$v_1, (v_1, v_2), v_2, (v_2, v_3), v_3, \dots, v_{k-2}, (v_{k-2}, v_{k-1}), v_{k-1}, (v_{k-1}, v_k), v_k.$$

- Путь называют **замкнутым**, если вершины v_1 и v_k совпадают.
- Путь называют **простым**, если все вершины $v_1, v_2, v_3, \dots, v_{k-1}, v_k$, кроме, может быть, v_1 и v_k , различны.
- Простой незамкнутый путь называют цепью.
- Вершину v называют **достижимой** из вершины u, если существует путь из u в v.

5.3 Связность

Теорема 5.2. Отношение достижимости для неориентированных графов является отношением эквивалентности.

В самом деле, проверим три условия:

- 1. рефлексивность: каждая вершина связана сама с собой;
- 2. симметричность: если вершина v связана с вершиной u, то u связана с v;
- 3. транзитивность: если вершина v связана с вершиной u, а u связана с w, то v связана с w.

Следовательно, отношение связности разбивает множество вершин V графа на классы эквивалентности, которые называются компонентами связности.

Граф $G_1 = (V_1, E_1)$ называют **подграфом** графа G = (V, E), если $V_1 \subseteq V$ и $E_1 \subseteq E$.

Неориентированный граф называют **связным**, если любые две его вершины u и v связаны отношением взаимной достижимости.

Компонента связности графа — это его максимальный связный подграф.

Ориентированный граф называют **сильно связным**, если любые две его вершины u и v связаны отношением взаимной достижимости.

Неориентированный граф $G_1=(V_1,E_1)$ называют **ассоциированным** с ориентированным графом G=(V,E), если $V_1=V$, и

$$E_1 = \{\{u, v\} | (u, v) \in E \text{ или } (v, u) \in E, u \neq v\}.$$

Ориентированный граф называют слабо связным, если ассоциированный с ним неориентированный граф связный.