Regression

Dr Muhammad Atif Tahir Professor NUCES Fast

Regression versus Classification

 Classification: the output variable takes class labels

Regression: the output variable takes continuous values

Examples

- Predicting House Value
 - Actual Price: £100,000
 - Predicted 1: £99,950 (Very Good Prediction)
 - Predicted 2: £50,000 (Very Bad Prediction)
- Predicting Car Premium
 - Using Location, Age, History etc

Regression Techniques

- Linear Regression
- Ridge Regression
- Lasso Regression
- And many more

Linear Regression

- Theoretically well motivated algorithm: developed from Statistical Learning Theory
- Empirically good performance: successful applications in many fields (stock prices, insurance etc)

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

Formula

$$Y = a + bX$$

where

$$b = r \frac{SDy}{SDx}$$

$$a = \overline{Y} - b\overline{X}$$

@easycalculation.com

Another formula for Slope:

Slope =
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$$

Where,

b = The slope of the regression line

a = The intercept point of the regression line and the y axis.

 \overline{X} = Mean of x values

 \overline{Y} = Mean of y values

 SD_x = Standard Deviation of x

 SD_y = Standard Deviation of y

Example

X Values	Y Values
60	3.1
61	3.6
62	3.8
63	4
65	4.1

Find Y if X = 64

To Find,

Least Square Regression Line Equation

Solution:

Step 1:

Count the number of given x values.

N = 5

Step 2:

Find XY, X² for the given values. See the below table

X Value	Y Value	X*Y	X*X
60	3.1	60 * 3.1 =186	60 * 60 = 3600
61	3.6	61 * 3.6 = 219.6	61 * 61 = 3721
62	3.8	62 * 3.8 = 235.6	62 * 62 = 3844
63	4	63 * 4 = 252	63 * 63 = 3969
65	4.1	65 * 4.1 = 266.5	65 * 65 = 4225

Step 3:

Now, Find ΣX , ΣY , ΣXY , ΣX^2 for the values $\Sigma X = 311$ $\Sigma Y = 18.6$ $\Sigma XY = 1159.7$ $\Sigma X^2 = 19359$

Step 4

Substitute the values in the above slope formula given.

Slope(b) =
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$$

- $= ((5)*(1159.7)-(311)*(18.6))/((5)*(19359)-(311)^2)$
- = (5798.5 5784.6)/(96795 96721)
- = 0.18783783783783292

Step 5:

```
Now, again substitute in the above intercept formula given.
```

```
Intercept(a) = (\Sigma Y - b(\Sigma X)) / N
= (18.6 - 0.18783783783783292(311))/5
= -7.964
```

Step 6:

Then substitute these values in regression equation formula

Regression Equation(y) = a + bx

$$= -7.964 + 0.188x$$

Suppose if we want to calculate the approximate y value for the variable x = 64 then, we can substitute the value in the above equation

Regression Equation(y) = a + bx

$$= -7.964 + 0.188(64)$$

= 4.068

Linear regression

We wish to estimate \hat{y} by a linear function of our data x:

$$\hat{y}_{n+1} = w_0 + w_1 x_{n+1,1} + w_2 x_{n+1,2}$$

= $w^\top x_{n+1}$

where w is a parameter to be estimated and we have used the standard convention of letting the first component of x be 1.

Choosing the regressor

Of the many regression fits that approximate the data, which should we choose?

Evaluation Measure

Mean Squared Error

Actual (Y)	Predicted (Y')	Υ'-Υ	Square (Y'-Y)
41	43.6	2.6	6.76
45	44.4	-0.6	0.36
49	45.2	-3.8	14.44
47	46	-1	1
44	46.8	2.8	7.84

Sum of Error = 30.4 / 5 = 6.08

Ordinary Least Square

Ordinary least squares, or linear least squares, estimates the parameters in a regression model by minimizing the sum of the squared residuals

This method draws a line through the data points that minimizes the sum of the squared differences between the observed values and the corresponding fitted values

$$\hat{eta} = \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{X}^{ op}\mathbf{y}$$

 $\hat{oldsymbol{eta}}$ = ordinary least squares estimator

 \boldsymbol{X} = matrix regressor variable X

T = matrix transpose

y = vector of the value of the response variable

Improving the Linear Model

- We may want to improve the simple linear model by replacing OLS estimation with some alternative fitting procedure.
- Why use an alternative fitting procedure?
 - Prediction Accuracy
 - Model Interpretability

Prediction Accuracy

- The OLS estimates have relatively <u>low bias</u> and <u>low variability</u> especially when the relationship between the response and predictors is linear and n >> p.
- If *n* is not much larger than *p*, then the OLS fit can have high variance and may result in over fitting and poor estimates on unseen observations.
- If p > n, then the variability of the OLS fit increases dramatically, and the variance of these estimates in infinite.

Model Interpretability

- When we have a large number of predictors in the model, there will generally be many that have little or no effect on the response.
- Including such irrelevant variable leads to unnecessary complexity.
- Leaving these variables in the model makes it harder to see the effect of the important variables.
- The model would be easier to interpret by removing (i.e. setting the coefficients to zero) the unimportant variables.

Feature/Variable Selection

- Carefully selected features can improve model accuracy, but adding too many can lead to overfitting.
 - Overfitted models describe random error or noise instead of any underlying relationship.
 - They generally have poor predictive performance on test data.

- For instance, we can use a 15-degree polynomial function to fit the following data so that the fitted curve goes nicely through the data points.
- However, a brand new dataset collected from the same population may not fit this particular curve well at all.

Feature/Variable Selection (cont.)

Subset Selection

- Identify a subset of the p predictors that we believe to be related to the response; then, fit a model using OLS on the reduced set.
- Methods: best subset selection, stepwise selection

Shrinkage (Regularization)

- Involves shrinking the estimated coefficients toward zero relative to the OLS estimates; has the effect of reducing variance and performs variable selection.
- Methods: ridge regression, lasso

Dimension Reduction

- Involves projecting the p predictors into a M-dimensional subspace, where M
 p, and fit the linear regression model using the M projections as predictors.
- Methods: principal components regression, partial least squares

Ridge Regression

 Recall that the OLS fitting procedure estimates the beta coefficients using the values that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

 Ridge regression is similar to OLS, except that the coefficients are estimated by minimizing a slightly different quantity:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately.

- Note that $\lambda \ge 0$ is a complexity parameter that controls the amount of shrinkage.
- The idea of penalizing by the sum-of-squares of the parameters is also used in neural networks, where it is known as weight decay.
- An equivalent way to write the ridge problem is:

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{i=1}^{p} \beta_i^2 \le t,$$

 The effect of this equation is to add a shrinkage penalty of the form

$$\lambda \sum_{j=1}^{p} \beta_j^2,$$

where the tuning parameter λ is a positive value.

- This has the effect of shrinking the estimated beta coefficients towards zero. It turns out that such a constraint should improve the fit, because shrinking the coefficients can significantly reduce their variance.
- Note that when λ = 0, the penalty term as no effect, and ridge regression will procedure the OLS estimates. Thus, selecting a good value for λ is critical (can use cross-validation for this).

Computational Advantages of Ridge Regression

- If *p* is large, then using the best subset selection approach requires searching through enormous numbers of possible models.
- With ridge regression, for any given λ we only need to fit one model and the computations turn out to be very simple.
- Ridge regression can even be used when p > n, a situation where OLS fails completely (i.e. OLS estimates do not even have a unique solution).

In matrix form:

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta,$$

the ridge regression solutions are easily seen to be

$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y},$$

- The solution adds a positive constant to the diagonal of $\mathbf{X}^T\mathbf{X}$ before inversion (making the problem non-singular).
- The singular value decomposition (SVD) of the centered matrix X gives us some additional insight into the nature of ridge regression.

The Lasso

- One significant problem of ridge regression is that the penalty term will never force any of the coefficients to be exactly zero.
- Thus, the final model will include all p predictors, which creates a challenge in model interpretation
- A more modern machine learning alternative is the lasso.
- The lasso works in a similar way to ridge regression, except it uses a different penalty term that shrinks some of the coefficients exactly to zero.

The Lasso (cont.)

The lasso coefficients minimize the quantity:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- The key difference from ridge regression is that the lasso uses an ℓ_1 penalty instead of an ℓ_2 , which has the effect of forcing some of the coefficients to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- Thus, the lasso performs variable/feature selection.

The Lasso (cont.)

 One can show that the lasso and ridge regression coefficient estimates solves the problems:

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} |\beta_j| \le s$

and

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le s$,

Lasso vs. Ridge Regression

- The lasso has a major advantage over ridge regression, in that it produces simpler and more interpretable models that involved only a subset of predictors.
- The lasso leads to qualitatively similar behavior to ridge regression, in that as λ increases, the variance decreases and the bias increases.
- The lasso can generate more accurate predictions compared to ridge regression.
- Cross-validation can be used in order to determine which approach is better on a particular data set.

Selecting the Tuning Parameter λ

- As for subset selection, for ridge regression and lasso we require a method to determine which of the models under consideration in best; thus, we required a method selecting a value for the tuning parameter λ or equivalently, the value of the constraint s.
- Select a grid of potential values; use cross-validation to estimate the error rate on test data (for each value of λ) and select the value that gives the smallest error rate.
- Finally, the model is re-fit using all of the variable observations and the selected value of the tuning parameter λ .

References

- https://people.eecs.berkeley.edu/~jordan/courses/2
 94-fall09/lectures/regression/slides.pdf
- https://www.easycalculation.com/analytical/learn-leastsquare-regression.php

Questions!