BAB I

PENDAHULUAN

1.1 Latar Belakang

Pati dan juga produk turunannya merupakan bahan yang multiguna dan banyak digunakan pada berbagai industri antara lain pada minuman, makanan yang diproses, kertas, makanan ternak, farmasi, dan bahan kimia serta industri nonpangan seperti tekstil, deterjen, kemasan, dan sebagainya. Dalam industri makanan sebagai pembentuk gel dan *encapsulating agent*. Dalam industri kertas digunakan sebagai zat aditif seperti *wet-end* untuk *surfactant size* dan *coating binder*, bahan perekat, dan *glass fiber sizing* (Chiu & Solarek, 2009).

Berbagai varian pati didasarkan pada perbedaan struktural, kandungan amilosa, amilopektin, protein dan lipid. Secara umum kandungan pati yang utama yaitu polimer anhidroglukosa meliputi amilosa dan amilopektin, keduanya diikat dengan ikatan α (1,4) dalam segmen linear, serta ikatan α (1,6) di titik percabangan. Amilopektin merupakan kandungan utama pati, berkisar 70-80% dan berpengaruh pada *physiochemical* serta cita rasa pati (Dona *et al.*, 2010).

Pada reaksi hidrolisa biasanya dilakukan dengan menggunakan katalisator asam seperti HCl (asam klorida). Bahan yang digunakan untuk proses hidrolisis adalah pati. Di indonesia banyak dijumpai tanaman yang menghasilkan pati. Tanaman-tanaman itu seperti padi, jagung, ketela pohon, umbi-umbian, aren, dan sebagainya (Baskar & Muthukumaran, 2008).

Pati dan produk turunannya banyak digunakan di berbagai jenis industri baik di industri pangan maupun industri non pangan. Di dalam industri non pangan, pati banyak digunakan dalam industri logam, tekstil, kosmetik dan farmasi, kertas, konstruksi dan pertambangan. Pada industri tekstil, pati digunakan sebagai bahan perekat. Selain itu, pati juga dapat digunakan sebagai bahan yang mengurangi kerutan pada pakaian. Pada sektor kimia, pati dan turunannya banyak diaplikasikan pada pembuatan plastik biodegradable, surfaktan, poliurethan, resin, senyawa kimia dan obat obatan (Yetti *et al.*, 2007).

Pada sektor lainnya, pati dan turunannya dimanfaatkan sebagai bahan deterjen yang bersifat non toksik dan aman bagi kulit, pengikat, pelarut, biopestisida, pelumas, pewarna, dan *flavor*. Dalam industri pangan, pati banyak digunakan sebagai pengental, penstabil koloid, pembentuk gel, perekat dan agen penahan air. Khusus untuk industri makanan, pati sangat penting untuk

pembuatan makanan bayi, kue, pudding, bahan pengental susu, permen jelly, dan pembuatan dekstrin (Hill, 1997)

1.2 Rumusan Masalah

Pati memiliki manfaat yang besar dalam kehidupan manusia. Akan tetapi, pati harus diberi perlakuan tepat sebelum diolah atau digunakan karena kandungannya yang cukup kompleks. Untuk itu, penting bagi seorang mahasiswa Teknik Kimia memahami cara memodifikasi kandungan pati sehingga dapat digunakan secara maksimal untuk kehidupan manusia. Dalam percobaan ini, akan dipelajari tentang berbagai pengaruh suhu hidrolisis terhadap reaksi hidrolisa pati dan konstanta kecepatan reaksi.

1.3 Tujuan Praktikum

- 1. Mempelajari pengaruh variabel terhadap reaksi hidrolisa pati.
- 2. Menghitung konstanta kecepatan reaksi dan menganalisa pengaruh variabel terhadap konstanta kecepatan reaksi.

1.4 Manfaat Praktikum

- Mahasiswa dapat mengetahui pengaruh variabel terhadap reaksi hidrolisa pati.
- 2. Mahasiswa dapat menghitung konstanta kecepatan reaksi dan menganalisa pengaruh variabel terhadap konstanta kecepatan reaksi.

BAB II

TINJAUAN PUSTAKA

2.1 Pati

Pati merupakan homopolimer glukosa dengan ikatan α-glukosidik. Berbagai macam pati tidak sama sifatnya, tergantung dari panjang rantai C-nya serta lurus atau bercabang rantai molekulnya. Pati mempunyai dua ujung berbeda, yakni ujung non reduksi dengan gugus OH bebas yang terikat pada atom nomor 4 dan ujung pereduksi dengan gugus OH anomerik. Gugus hidroksil dari polimer berantai lurus / bagian lurus dari struktur berbentuk cabang yang terletak sejajar akan berasosiasi melalui ikatan hidrogen yang mendorong pembentukan kristal pati. Pati terdiri dari 2 fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan fraksi tidak larut disebut amilopektin. Amilosa mempunyai struktur lurus dan amilopektin mempunyai rantai cabang (Winarno, 2002)

2.2 Amilosa dan Amilopektin

Pati termasuk dalam polisakarida yang merupakan polimer glukosa, yang terdiri atas amilosa dan amilopektin. Amilosa merupakan bagian polimer linier dengan ikatan α -(1,4) unit glukosa yang merupakan rantai linear. Derajat polimerisasi (DP) amilosa berkisar antara 500-6.000 unit glukosa bergantung pada sumbernya. Adapun amilopektin merupakan polimer α -(1,4) unit glukosa dengan rantai samping α -(1,6) unit glukosa. Ikatan α -(1,6) unit glukosa ini jumlahnya sangat sedikit dalam suatu molekul pati, berkisar antara 4-5%. Namun, jumlah molekul dengan rantai cabang, yaitu amilopektin, sangat banyak dengan DP berkisar antara 10^5 -3x 10^6 unit glukosa dan merupakan komponen utama yang dapat mempengaruhi *physiochemical* dan cita rasa dari pati (Dona *et al.*, 2010)

Gambar 2.1 Struktur amilosa

Gambar 2.2 Struktur amilopektin

2.3 Hidrolisa Pati

Hidrolisa merupakan reaksi pengikatan gugus hidroksil (-OH) oleh suatu senyawa. Gugus OH dapat diperoleh dari senyawa air. Hidrolisis dapat digolongkan menjadi hidrolisis murni, hidrolisis katalis asam, hidrolisis katalis basa, hidrolisis gabungan alkali dengan air dan hidrolisis dengan katalis enzim. Sedangkan berdasarkan fase reaksi yang terjadi diklasifikasikan menjadi hidrolisis fase cair dan hidrolisis fase uap.

Hidrolisis pati merupakan proses pemecahan molekul amilum menjadi bagian-bagian penyusun amilum yang lebih sederhana seperti dekstrin, isomaltosa, maltosa, dan glukosa. Hidrolisis pati terjadi antara suatu reaktan pati dengan reaktan air. Reaksi ini adalah orde satu, karena reaktan air yang dibuat berlebih, sehingga perubahan reaktan dapat diabaikan. Reaksi yang terjadi pada hidrolisis pati adalah sebagai berikut:

$$(C_6H_{10}O_5)_X + H_2O \rightarrow X C_6H_{12}O_6$$

Berdasarkan teori kecepatan reaksi:

$$-r_{A} = k. C_{Pati}. C_{air}$$
 (2.1)

Karena volume air cukup besar, maka dapat dianggap konsentrasi air selama perubahan reaksi sama dengan k', dengan besarnya k':

$$k' = k. C_{air}$$
 (2.2)

Sehingga persamaan 2.1 dapat ditulis sebagai berikut $-r_A = k. C_{Pati}$ dari persamaan kecepatan reaksi ini, reaksi hidrolisis merupakan reaksi orde satu. Jika harga $-r_A = -\frac{dC_A}{dt}$ maka persamaan 2.2 menjadi:

$$\frac{-dC_A}{dt} = k'C_A \tag{2.3}$$

$$\frac{-dC_A}{C_A} = k'dt \tag{2.4}$$

Apabila $C_A = C_{A0}(1 - X_A)$ dan diselesaikan dengan integral dan batas kondisi $t_1 : C_{A0}$ dan $t_2 : C_A$ akan diperoleh persamaan:

$$-\int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{C_{A}} = k' \int_{t_{2}}^{t_{1}} dt$$
 (2.5)

$$\ln \frac{c_{A0}}{c_A} = k'(t_2 - t_1) \tag{2.6}$$

$$\ln \frac{1}{(1-X_A)} = k'(t_2 - t_1) \tag{2.7}$$

Dimana X_A = konversi reaksi setelah satu detik.

Persamaan 2.7 dapat diselesaikan dengan menggunakan pendekatan regresi y = mx + c, dengan $Y = ln \frac{1}{(1-X_A)} dan x = t_2$.

2.4 Metode Hidrolisa Pati

Proses penguraian pati disebut dengan hidrolisa pati. Proses hidrolisa pati dibagi menjadi 2 metode, yaitu hidrolisis asam dan hidrolisis enzimatis.

1. Hidrolisis Asam

Hidrolisis asam adalah hidrolisis dengan menggunakan asam yang dapat mengubah polisakarida (pati dan selulosa) menjadi gula. Hidrolisis ini dilakukan dengan menggunakan katalisator H⁺ yang dapat diambil dari asam seperti HCl, H₂SO₄, dan HNO₃ (Wang & Copeland, 2015). Metode hidrolisis secara asam lebih sederhana, tanpaharus melalui beberapa tahapan seperti pada hidrolisis secara enzimatis. Selain itu juga hidrolisis secara asam memerlukan waktu proses yang relatif lebih singkat, teknologi yang lebih sederhana, pengaturan kondisi proses yang lebih mudah, serta biaya yang lebih murah (Devitria & Sepriyani, 2018).

2. Hidrolisis Enzimatis

Hidrolisis enzimatis merupakan proses konversi selulosa dan hemiselulosa menjadi gula reduksi menggunakan enzim. Enzim yang digunakan untuk mengonversi hemiselulosa menjadi glukosa adalah enzim xylanase sedangkan enzim yang digunakan untuk mengonversi selulase menjadi glukosa menggunakan enzim selulase. Hidrolisis secara enzimatis dapat memutus ikatan glikosida secara spesifik dan tidak menyisakan residu (Salsabilla & Fahruroji, 2021).

2.5 Modifikasi Pati

Pati asli pada umumnya memiliki struktur granular, tidak larut air, dan dalam bentuk ini digunakan hanya dalam beberapa aplikasi spesifik yang terbatas. Modifikasi adalah pati yang gugus hidroksinya telah mengalami perubahan. Pati memiliki sifat tidak dapat digunakan secara langsung dan oleh karena itu harus dimodifikasi secara kimia atau fisik untuk meningkatkan sifat positif dan mengurangi sifat yang tidak diinginkan. Pati biasanya digunakan untuk produk makanan, bahan perekat dan *glass fiber sizing*. Selain itu juga ditambahkan dalam plastik untuk mempercepat proses degradasi. Modifikasi secara kimia umumnya meliputi esterifikasi, etherifikasi, hidrolisis, oksidasi, dan *cross-linking* (Chiu & Solarek, 2009). Pati yang telah termodifikasi akan mengalami perubahan sifat yang dapat disesuaikan untuk keperluan-keperluan tertentu. Akan tetapi sama seperti pati alami, pati termodifikasi bersifat tidak larut dalam air dingin (Koswara, 2009).

2.6 Variabel yang Berpengaruh

Variabel-variabel yang berpengaruh dalam reaksi hidrolisa pati meliputi:

1. Katalisator

Reaksi hidrolisis merupakan reaksi yang berlangsung sangat lama karena itu dibutuhkan katalisator untuk mempercepat reaksi. Katalisator yang dipakai dapat berupa asam atau enzim karena kinerjanya lebih cepat. Asam yang dipakai beraneka jenisnya mulai dari HCl, H₂SO₄ sampai HNO₃ (Nasution *et al.*, 2023). Yang mempengaruhi kecepatan reaksi adalah konsentrasi ion H⁺ bukan jenis asamnya. Meskipun demikian, didalam industri umumnya dipakai asam klorida (Zuhair Ds. 2022). Pemilihan ini didasarkan atas sifat garam yang terbentuk pada penetralan tidak menimbulkan gangguan apa-apa selain rasa asin jika konsentrasinya tinggi. Oleh karena itu, konsentrasi asam dalam air penghidrolisa ditekan sekecil mungkin. Umumnya dipergunakan larutan asam yang mempunyai konsentrasi asam yang lebih tinggi daripada pembuatan sirup. Hidrolisa pada tekanan 1 atm memerlukan asam yang jauh lebih pekat.

2. Suhu

Pengaruh suhu terhadap kecepatan reaksi mengikuti persamaan Arrhenius, dimana semakin tinggi suhu maka semakin cepat laju reaksinya. Suhu yang optimum pada reaksi hidrolisis akan menghasilkan energi aktivasi yang semakin kecil, hal tersebut memungkinkan hasil konversi hidrolisis yang lebih besar (Milek dan Lamkiewicz, 2022). Untuk

mencapai konversi tertentu, diperlukan waktu sekitar 48 menit untuk menghidrolisa pati ubi kayu pada suhu 100°C (Ardiansyah *et al.*, 2018). Sedangkan, hidrolisis pati gandum dan jagung dengan katalisator H₂SO₄ memerlukan suhu 160°C.

3. Pencampuran (pengadukan)

Supaya zat pereaksi dapat saling bertumbukan dengan sebaik-baiknya perlu adanya pencampuran. Untuk proses *batch*, hal ini dapat dicapai dengan bantuan pengaduk atau alat pengocok (Agra *et al.*, 1973). Apabila prosesnya berupa proses alir (kontinyu), maka pencampuran dilakukan dengan cara mengatur aliran didalam reaktor supaya terbentuk olakan.

4. Perbandingan zat pereaksi

Jika salah satu zat pereaksi dibuat berlebihan jumlahnya maka keseimbangan dapat bergeser ke arah kanan dengan baik. Oleh karena itu, suspensi pati yang kadarnya rendah memberikan hasil yang lebih baik dibandingkan dengan yang kadarnya tinggi. Bila kadar suspensi pati diturunkan dari 40% menjadi 20% atau 1% maka konversi akan bertambah dari 80% menjadi 87% atau 99% (Groggins, 1958). Pada permukaan, kadar suspensi pati yang tinggi sehingga molekul-molekul zat pereaksi akan sulit bergerak. Untuk menghasilkan glukosa biasanya dipergunakan suspensi pati sekitar 20%.

BAB III METODE PRAKTIKUM

3.1 Rancangan Praktikum

3.1.1 Rancangan Praktikum

Gambar 3.1 Skema rancangan praktikum

3.1.2 Penetapan Variabel

- a. Variabel tetap :
- b. Variabel berubah

3.2 Bahan dan Alat yang Digunakan

3.2.1 Bahan

- 1. Glukosa anhidrit
- 2. Tepung meizena
- 3. NaOH
- 4. HCl
- 5. Indikator MB
- 6. Fehling A
- 7. Fehling B
- 8. Aquadest secukupnya

3.2.2 Alat

- 1. Gelas ukur
- 2. Termometer
- 3. Erlenmeyer
- 4. Statif dan klem

- 5. Buret
- 6. Labu leher tiga
- 7. Labu takar

3.3 Gambar Alat

Gambar 3.2 Rangkaian alat hidrolisis

Keterangan:

- 1. *Magnetic stirrer* + heater
- 2. Waterbath
- 3. Labu leher tiga
- 4. Termometer
- 5. Pendingin balik
- 6. Klem
- 7. Statif

3.4 Prosedur Praktikum

- 1. Persiapan awal
 - Menghitung densitas pati
 Ke dalam gelas ukur, 5 ml aquadest dimasukkan 1 gram pati, catat
 perubahan volume.

$$\rho \text{ pati} = \frac{\text{m pati}}{\text{DV}} \tag{3.1}$$

b. Menghitung densitas HCl

Timbang berat *picnometer* kosong (m₁), masukkan HCl ke dalam *picnometer* yang telah diketahui volumenya (v), timbang beratnya (m₂), hitung densitas HCl.

$$\rho \text{ pati} = \frac{\mathbf{m}_2 - m_1}{DV} \tag{3.2}$$

c. Membuat glukosa standar

Glukosa anhidrit sebanyak 2 gram dilarutakan dalam 1000 ml aquadest.

2. Penentuan kadar pati

a. Standarisasi larutan fehling

10 ml fehling A + 10 ml fehling B + 15 ml glukosa standar, dipanaskan sampai mendidih. Setelah mendidih ditambahkan 3 tetes MB, kemudian larutan dititrasi dengan glukosa standar hingga warna berubah menjadi merah bata. Catat volume titran (F) yang diperlukan, proses titrasi dilakukan dalam keadaan mendidih (di atas kompor).

b. Penentuan kadar pati awal

Sebanyak ... gram pati, ... ml katalis HCl/H₂SO₄ dan ... ml aquadest dimasukkan ke dalam labu leher tiga dan dipanaskan hingga suhu ... °C, selama 1 jam. Setelah itu larutan didinginkan, diencerkan dengan aquadest sampai 500 ml lalu diambil 20 ml dan dinetralkan dengan NaOH (pH = 7). Larutan diambil 5 ml diencerkan sampai 100 ml, diambil 10 ml. Ke dalam Erlenmeyer dimasukkan 10 ml larutan + 10 ml Fehling A + 10 ml fehling B + 15 ml glukosa standar, kemudian dipanaskan sampai suhu 60°C. Lalu ditambahkan 3 tetes indikator MB. Kemudian larutan dititrasi dengan glukosa standar sehingga berubah warna menjadi warna merah bata. Catat volume titran yang dibutuhkan (M). Yang perlu diperhatikan, proses titrasi dilakukan dalam keadaan mendidih diatas kompor. Lakukan hal yang sama untuk variabel lain.

c. Hidrolisa pati

Sebanyak ... gram pati, ... ml katalis HCl/H₂SO₄ dan ... ml aquadest dimasukkan ke dalam labu leher tiga dan dipanaskan hingga suhu ... °C. Lalu setelah 5 menit diambil sampel sebanyak 20 ml. Kemudian sampel dinetralkan dengan NaOH (pH = 7). Larutan diambil 5 ml diencerkan sampai 100 ml, diambil 10 ml. Ke dalam erlenmeyer dimasukkan 10 ml larutan + 10 ml Fehling A + 10 ml fehling B + 15 ml glukosa standar, kemudian dipanaskan sampai 60°C. Lalu ditambahkan 3 tetes indikator MB. Kemudian larutan dititrasi dengan glukosa standar sehingga berubah warna menjadi warna merah bata. Catat V titran yang dibutuhkan (M). Yang perlu

diperhatikan, proses titrasi dilakukan dalam keadaan mendidih diatas kompor. Pengambilan sampel dilakukan setiap selang waktu 5 menit sebanyak 5 kali 25 menit. (t₁=menit ke-5, t₂=menit ke-10, t₃=menit ke-15, t₄=menit ke-20, t₅=menit ke-25). Lakukan hal yang sama untuk variabel 2.

Rumus penentuan kadar pati awal:

$$X_{P0} = \frac{(F-M) \times N \text{ glucose } x_{\underline{\text{basis}}}^{\underline{500}} x_{\underline{5}}^{\underline{100}} \times 0.9}{W}$$
 (3.3)

Dimana,

N = 0.002 gr/ml

W = berat pati

Perhitungan kebutuhan reagen:

a) Menghitung kebutuhan HCl

$$V_{HCl} = \frac{N \text{ HCl x MW HCl x V Solution}}{\rho \text{ HCl x HCl content x 1000 x greq}}$$
(3.4)

b) Menghitung kebutuhan pati

%suspensi =
$$\frac{X_p \times W \text{ pati}}{W \text{ pati} + W \text{ HCl} + W \text{ air}}$$
 (3.5)

Dimana,

$$W_{pati} = \rho_{pati} \times V_{pati}$$
 (3.6)

$$W_{HCl} = \rho_{HCl} \times V_{HCl} \tag{3.7}$$

$$W_{air} = \rho_{air} x (V_{larutan} - V_{pati} - V_{HCl})$$
 (3.8)

$$Xp = \frac{(F-M) \times N \text{ glucose } x \frac{100}{5} \times 0.9}{W}$$
 (3.9)

DAFTAR PUSTAKA

- Agra, I. B., Warnijati, S., dan Pujianto, B. (1973). Hidrolisa Pati Ketela Rambat Pada Suhu Lebih Dari 100 C. *Forum Teknik, 3*, 115-129.
- Ardiansyah, A., Nurlansi, N., & Musta, R. (2018). Waktu Optimum Hidrolisis pati limbah Hasil Olahan Ubi Kayu (Manihot esculenta Crantz var. Lahumbu) Menjadi Gula Cair Menggunakan enzim α-Amilase Dan glukoamilase. Indo. *J. Chem. Res.*, *5*(2), 86–95. https://doi.org/10.30598//ijcr.2018.5-ard.
- Baskar, G., Muthukumaran, C., Renganathan, S., (2008). Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilize α-Amylase Using Response Surface Methodology. *International Jurnal of Natural Sciences and Engineering*, 1(3), 156-160.
- Chiu, C. W., & Solarek, D. (2009). *Modification of starch*. Starch: Chemistry and Technology, Third Edition ISBN: 978-0-12-746275-2.
- Devitria, R. & Sepriyani, H. (2018). Optimalisasi Asam Klorida Pada Proses Hidrolisis Limbah Ampas Sagu (*Metroxylon, sp*) terhadap Kadar Glukosa. *Klinikal Sains: Jurnal Analis Kesehatan, 6*(2), 37-42.
- Dona, A. C., Pages, G., & Kuchel, P. W. (2010). Digestion of starch: In vivo andin vitro kinetic -models used to characterise. *Carbohydrate Polymers*, 80, 599–617.
- Groggins, P. H. (1958). *Unit Processes in Organic Synthesis*, 5th ed. pp. 775 777, McGraw–Hill Book Company. New York.
- Hill, G. C. (1977). An Introduction to Chemical Engineering Kinetika and Reactor Design, 1nd ed. John Willey, New York.
- Koswara, S. (2009). *Teknologi Modifikasi Pati*. ebookpangan.com.
- Miłek, J., & Lamkiewicz, J. (2022). The starch hydrolysis by α-amylase bacillus spp.: An estimation of the optimum temperatures, the activation and deactivation energies. *Journal of Thermal Analysis and Calorimetry, 147*(24), 14459–14466. https://doi.org/10.1007/s10973-022-11738-1.
- Monika, A. (2021). Uji Hidrolisis Pati dengan Asam Hydrolysis Test of Starch with Acid. *Research Gate, no. November*, 0-6.
- Nasution, S. F., Lubis, L. H., Haharap, S., & Siregar, A. U. (2023). Hidrolisis Pati Kacang Kedelai (Glycine max (L.) Merril) dengan Pengaruh Jenis Katalis Asam. *Journal of Pharmaceutical and Health Research*, 4(1), 141–146. https://doi.org/DOI 10.47065/jharma.v4i1.3187.
- Salsabila, A. L., & Fahruroji, I. (2021). Hidrolisis Pada Sintesis Gula Berbasis Pati Jagung. *Edufortech*, 6(1), 32-38.

- Wang, S., & Copeland, L. (2015). Effect of acid hydrolysis on starch structure and functionality: *A review. Critical Reviews in Food Science and Nutrition*, 55(8), 1081–1097. https://doi.org/10.1080/10408398.2012.684551.
- Winarno, F. G., 2002. Kimia Pangan dan Gizi. PT. Gramedia Pustaka Utama, Jakarta.
- Yetti, M., Nazamid, B.S., Roselina, K. Dan Abdulkarin, S. M., (2007). Improvement of Glucose Production by Raw Starch Degrading Enzyme Utilizing Acid-Treated Sago Starch as Substrate. *ASEAN Food Journal*, *14*(2), 83-90.
- Zuhair Ds, N. (2022). Pengaruh Waktu Hidrolisis dan Konsentrasi Katalis Asam Klorida Terhadap Hidrolisis Kulit Gandum Pollard. *Journal of Industrial Process and Chemical Engineering (JOICHE)*, 2(1), 76-80.

IDENTIFIKASI BAHAYA DAN ANALISA RESIKO

MATERI : HIDROLISA PATI

IDENTIFIKASI BAHAYA (IB) Mekanik Lingkungan Bahan kimia Bahaya lainnya D Ε Gas terkompresi Kebisingan Penanganan manual E1 Α1 D1 Racun Bagian yang bergerak E2 Iritan Radiasi pengion D2 Getaran Korosif Bagian yang berputar Radiasi UV D3 Penerangan Kelembaban Karsinogenik G4 Kelelahan Α4 Pemotongan D4 Mudah terbakar Biologi D5 Temperatur E5 Ruang sempit Bakteri D6 Bahaya perjalanan Mudah meledak Penuh sesak Permukaan yang licin В2 Virus D7 E7 Cryogenics Termometer Limbah padat Peralatan В3 Jamur D8 Listrik D9 Kualitas udara F1 Bejana tekan Pekerjaan soliter Voltase tinggi D10 Peralatan panas Listrik statis Percikan/tetesan/banjir D11 F3 Laser Kabel Tumpahan serbuk F4 Pembuluh kaca C3 D12 √

					DET	TAIL RESIKO	
IB	Resiko					Tindakan pengendalian untuk	
	Tinggi	Sedang	Rendah	Minimal	Identifikasi resiko	meminimalisir resiko	Tindakan pertolongan pertama
1. PRI	EPARASI/	TAHAP AV	VAL				
D7, D11				√	Saat melakukan kalibrasi piknometer,	Berhati-hati dalam menggunakan aquadest, jika aquadest dialirkan	Jika tergelincir, periksa bagian yang cidera dan obati bagian yang cidera.
					dan pembuatan	menuju tempat yang rawan terjadi	Apabila cideranya besar atau bertambah
					reagen-reagen,	tumpah, gunakan corong agar dapat	parah, bawa korban ke rumah sakit/
					terdapat resiko aquadest tumpah yang menyebabkan	meminimalisir terjadinya resiko permukaan licin.	klinik terdekat.
D12				√	Saat melakukan perhitungan densitas	Hati-hati dalam memindahkan bubuk pati	Bersihkan serbuk pati yang jatuh. Apabila terhirup, sebisa mungkin
					pati, terdapat resiko		keluarkan bubuk pati yang terhirup.
					dimana bubuk pati jatuh akan mengotori ruangan dan		Apabila cidera bertambah parah, bawa korban ke rumah sakit/ klinik terdekat
					menyumbat saluran		
2. PEF	RCOBAAN	UTAMA	1	L	L nornatacan anabila	1	
C1,		√			Adanya kabel yang	Lakukan pemeriksaan dan memastikan	Cabut sumber listrik untuk
C3					terlupas dan dapat	alat secara baik.	menghentikan aliran listrik.
					mengakibatkan arus		
					pendek maupun		
					tersengat listrik.		

D5,	√	Adanya kontak dengan	Hati-hati dengan permukaan panas	Hentikan proses pemanasan, dinginkan
F2		kompor listrik atau alat	pada saat melakukan proses	luka bakar, dan diberikan obat anti nyeri.
		yang dipanaskan diatas	pemanasan dan meletakkan rangkaian	Jika masih berlanjut, dibawa ke klinik
		kompor listrik.	alat ke tempat yang lebih aman agar	atau rumah sakit terdekat.
			tidak teriadi kontak	

DETAIL RESIKO									
	Resiko								
IB	Tinggi	Sedang	Rendah	Minimal	Identifikasi resiko	Tindakan pengendalian untuk meminimalisir resiko	Tindakan pertolongan pertama		
E1, E2		√			Penggunaan reagen asam dan basa pada praktikum ini terdapat resiko kontak dengan kulit yang menyebabkan iritasi dan apabila tidak sengaja terkonsumsi dapat mengakibatkan keracunan.	Menggunakan sarung tangan lateks selama praktikum dan mengganti sarung tangan apabila sobek dan bolong serta berhati-hati dalam memindahkan reagen-reagen asam dan basa	Jika reagen terkena kulit, segera cuci tangan dengan air mengalir hingga bersih. Jika terkonsumsi, segera minum air mineral dan cuci mulut agar bahaya reagen dapat diminimalisir. Apabila bertambah parah, bawa korban ke rumah sakit/ klinik terdekat		
	3. ANALISA/TAHAP AKHIR								
D7, D11				√	Saat melakukan titrasi terdapat resiko larutan tumpah yang	Berhati-hati dalam menggunakan aquadest, jika aquadest dialirkan menuju tempat yang rawan terjadi	Jika tergelincir, periksa bagian yang cidera dan obati bagian yang cidera. Apabila cideranya besar atau bertambah		
					menyebabkan permukaan meniadi	tumpah, gunakan corong agar dapat meminimalisir teriadinya resiko	parah, bawa korban ke rumah sakit/		