Voorbeeld: 263.3 in IEEE 754 32 bit notatie

Stap 1: 263 in binaire: 100000111

Stap 2: 0.3 in binaire

	0.3 X 2	<u>0</u> .6	0
*	0.6 X 2	<u>1</u> .2	1
	0.2 X 2	<u>0</u> .4	0
	0.4 X 2	<u>0</u> .8	0
	0.8 X 2	<u>1</u> .6	1
	0.6 X 2	<u>1</u> .2	1
			0
			0
			1
			1
			0
			0
			1
			1

Stap 3: 263.3 in binaire

100000111.01001100110011...

Stap 4 schrijf stap 3 in wetenschappelijke notatie

Stap 5 schrijf in IEEE 754 formaat

1. De eerste bit vertelt ons het teken(positief of negatief) van het getal. 263.3 is positief dus 0 anders 1.

2. Het tweede gedeelte is het exponentieel gedeelte dat bestaat uit 8 bits. Het exponentieel gedeelte vertelt ons de waarde van het exponent (in dit geval 8). Om dit weer te geven doen we 8 + 127 = 135 en zetten we 135 in binaire form. Het is altijd plus 127 bij IEEE 754 32 bit notatie.

3. Als laatste hebben we 23 fraction bits en dit is gelijk aan de mantissa.

 $0.10000111.\ 00000111010011001100110$