Probability theory

201.	In a hen-house there are 10 hens. Assign outcomes and sample space to the						
	trial "enter the poultry-yard and count the hens that sit on their roosts". (§2.2)						

- 202. Give suitable sample spaces for the following random trials:
 - (a) Throw a die and count the tosses until one of the six outcomes has appeared twice.
 - (b) Throw a die and count the tosses until one of the six outcomes has appeared twice in succession. (§2.2)

203. At a sawmill boards are cut into 3-feet lengths, and the remaining pieces smaller than 3 feet are thrown on a heap. Give a suitable sample space for the trial: Choose one of the small parts and note its length (unit:feet). (§2.2)

205. Let A, B, C and D be four events. Let E be the event that at least three, and F the event that exactly three, of the four events occur. Express E and F in terms of A, B, C and D (use suitable symbols). (§2.2)

206. The events A and B are mutually exclusive events such that P(A) = 0.25, $P(A \cup B) = 0.75$. Determine P(B). (§2.3)

207. Let A and B be two events such that P(A) = 0.6, P(B) = 0.7 and $P(A \cup B) = 0.8$. Find P(AB). (§2.3)

208. From a box containing the letters in the word PROBABILITY two letters are taken at random. Using the classical definition of probability, compute the probability of obtaining the letters P and R. (§2.4)

- 209. Three cards are taken at random without replacement from a deck of cards. Using the classical definition of probability, find the probability that:
 - (a) all three are hearts;
 - (b) none is a heart;
 - (c) all three are aces. (§2.4)

210. From an urn containing three white balls and four black balls, two b drawn at random without replacement. Determine the probability that t have different colours. (§2.4)							

- 212. The triplets A, B and C play together with seven other children.
 - (a) They arrange themselves randomly in a row one behind the other. Find the probability that the triplets are in the front.
 - (b) They again line up randomly in a row. Find the probability that the triplets are together.
 - (c) They arrange themselves randomly in a circle. Find the probability that the triplets are together. (§2.4)

213. In a lottery there are five tickets left, exactly one of which is a winning ticket. A and B decide to buy one ticket each. A draws first, then B. Compute the conditional probability that B obtains the winning ticket, given that A has not obtained it. (§2.5)

- 214. From a deck of cards four cards are drawn one at a time without replacement.
 - (a) If the three first cards are hearts, what is the conditional probability that the fourth is not a heart?
 - (b) What is the probability that the three first cards are hearts and the fourth is a spade? (Use the answer to Exercise 209(a).) (§2.5)

- 215. Three measuring instruments, numbered 1, 2 and 3, function with probabilities 0.9, 0.8 and 0.4, respectively. One instrument is selected at random.
 - (a) What is the probability that the chosen instrument functions?

220. The events A and B are independent. Prove that A and B^* are independent and that A^* and B^* are also independent. (§2.6)

Note: There will not be proofs on the midterm.

221. The events A and B are independent, and P(A) = 0.1, P(B) = 0.05. Compute P(A*B*). (§2.6)

- 222. The families A, B and C are invited to dinner. The probabilities that they will come are 0.8, 0.6 and 0.9, respectively, and these events are independent. Find the probability that:
 - (a) all the families come;
 - (b) no family comes;
 - (c) at least one family comes. (§2.6)

Onedimensional RVs

301. A rv X assumes the values a and b (a < b) with the same probability. Find the distribution function of X and draw its graph. (§3.3)

303. A rv can assume only the values 3, 4, 7, 8 and 9. It is known that

$$p_X(3)=1/3,$$

$$p_X(4)=1/4,$$

$$p_X(7)=1/6,$$

$$p_X(8) = 1/6.$$

Compute:

- (a) $p_X(9)$;
- ***** (b) $F_X(5)$;
 - (c) $P(4 \le X \le 8)$ and $P(X \ge 8)$. (§3.4)

* This is the CDF.
Phi in our notation

- 304. In a box there are two 10-cent coins and one 50-cent coin. Two of the three coins are chosen at random. Let X be the total value of the two coins.
 - (a) Which values can X assume?
 - (b) Find the probability function of X. (§3.4)

310. Determine the constant c such that the function

$$f(x)=cx^2 \qquad (0\leq x\leq 6)$$

becomes a density function. (§3.6)

311. Determine the constant c such that

$$f(x) = c/\sqrt{x+1} \qquad (-1 < x \le 1)$$

becomes a density function. Find the probability that a rv with this density function assumes a positive value. (§3.6)

- 316. A train is scheduled to arrive at a station at 13:03, but is generally somewhat late. The delay may be considered as a rv with density function $f_X(x) = 1/5$ $(0 \le x \le 5)$.
 - (a) Determine the probability that the train arrives later than 13:06.
 - (b) Determine the probability that the train arrives between 13:04 and 13:05.

317. Let X be the waiting time in minutes from the opening time of a shop until the first customer arrives. The distribution function of X is given by

$$\Phi_X(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 - e^{-0.4x} & \text{if } x \ge 0. \end{cases}$$

Determine the probability that the waiting time is:

- (a) at most 3 minutes;
- (b) at least 4 minutes;
- (c) between 3 and 4 minutes;
- (d) at most 3 minutes or at least 4 minutes;
- (e) exactly 2.5 minutes. (§3.7)

*321. The rv X has an exponential distribution. Prove that the conditional probability P(X > t + a | X > a) does not depend on a. This result implies that if a new unit, say an electric bulb, has a lifetime with an exponential distribution, then the *remaining* lifetime of a unit functioning after time a has the same distribution as the total lifetime of a new unit. Informally, we may say that the exponential distribution has no memory.

Note: There will not be proofs on the midterm.

Mutlivariate RVs

401. In a certain part of a city, a number of families were surveyed at random regarding the number X of children and the number Y of rooms in their apartment. (Y does not include the kitchen.) Suppose that (X, Y) is a rv with the probability function $p_{X,Y}(j,k)$ given in the following table:

	\sqrt{k}	1	2	3	4
	j	Y rooms			
	0	0.11	0.09	0.07	0.01
X	1	0.07	0.12	0.12	0.02
	2	0.02	0.05	0.17	0.05
children	3	0.00	0.02	0.04	0.02
	4	0.00	0.00	0.01	0.01

- (a) Find the probability that a randomly chosen family has at most one child and lives in an apartment with at most three rooms (and kitchen).
- (b) If each family consists of two grown-up persons and children, what is the probability that a randomly chosen family lives in an overcrowded apartment? By "overcrowded" we mean that the number of persons/room (apart from the kitchen) exceeds two.
- (c) Find the marginal probability functions $p_X(j)$ and $p_Y(k)$ of the number of children and the number of rooms, respectively. (§4.3)

404. The rv's X and Y are independent and have the following probability functions:

j	1	3	5	7	9
$p_X(j)$	0.10	0.20	0.40	0.20	0.10
k	2	4	6	8	
$p_{Y}(k)$	0.10	0.20	0.30	0.40	

- (a) Find P(X = 3, Y = 6).
- (b) Find $P(X \le 3, Y \le 6)$. (§4.5)

406. A person travels first by bus 1 and then by bus 2. The waiting times, X and Y, are independent and uniformly distributed over the intervals (0, 10) and (0, 8), respectively (unit: minutes). Compute the probability that the total waiting time is at least 16 minutes.

Hint: The rv (X, Y) is uniformly distributed over a rectangle. (§4.5)

Expectations

602. The rv X has density function

$$f_X(x) = 2x/a^2 \qquad (0 \le x \le a).$$

Find E(X). (§6.2)

607. The rv X has density function $f_X(x) = 1/10$ ($-5 \le x \le 5$). Find E[g(X)], where

$$g(x) = \begin{cases} -1 & \text{if } x < 0, \\ 2 & \text{if } x \ge 0. \end{cases}$$
 (§6.2)

- 611. The rv X has density function $f_X(x) = 2x$ ($0 \le x \le 1$).
 - (a) Find the mean m and the standard deviation σ of X.
 - (b) Find $P(m 2\sigma < X < m + \sigma)$.
 - (c) Find $P(m \sigma < X < m + 2\sigma)$. (§6.3)

702. The rv's X_1, X_2, X_3, X_4 are independent with means 2m, 2m, 3m, 2m, respectively, and common standard deviation σ . Form the linear combination

$$Y = \frac{4}{3}X_1 - \frac{1}{2}X_2 - \frac{1}{3}X_3 - \frac{1}{3}X_4.$$

Find E(Y) and D(Y). (§7.2)

707. When determining the melting-point of cooking fat, the resulting measurement may be regarded as a rv X with standard deviation 2. How many measurements are needed to make the standard deviation of the arithmetic mean of the measurements at most 0.4? (§7.3)

Normal distribution

802. The rv X is N(0, 1). Determine x such that:

- (a) P(X > x) = 0.001;
- (b) P(X > x) = 0.999;
- (c) P(|X| < x) = 0.95;
- (d) P(X < -x) = 0.10. (§8.3)

806. Consider a rv X which is $N(180, 5^2)$. Compute the probability that $X \ge 170$ and the probability that $170 \le X \le 200$. (§8.4)

- 815. $X_1, X_2, ..., X_n$ are independent and $N(m, 0.2^2)$.

 (a) Find the distribution of $\overline{X} m$.

 (b) Find $P(|\overline{X} m| > 0.2/\sqrt{n})$.

 (c) Find $P(|\overline{X} m| > 0.1)$ if n = 16.

 - (d) We want that $P(|\bar{X} m| > 0.01)$ is less than 0.001. How large must n be? (§8.5)

- 818. The weight (unit: gram) of a randomly chosen pill of a certain type is a rv with mean 0.65 and standard deviation 0.02.
 - (a) Find the mean and standard deviation of the total weight of 100 pills (whose weights are supposed to be independent).
 - (b) Use the central limit theorem to determine approximately the probability that 100 pills weigh at most 65.3 grams. (§8.6)

Point estimation

- 1206. The rv X has density function $f_X(x) = \theta(1+x)^{-\theta-1}$ for $x \ge 0$. It is known beforehand that θ is either 2, 3 or 4. Let 0.2, 0.8 be a random sample of two values from this distribution.
 - (a) Find the L function for the three possible values of θ .
 - (b) Determine the ML estimate of θ . (§12.4)

1207. Let x_1, \ldots, x_n be a random sample from a distribution with density function $f_X(x) = \theta x^{\theta-1}$ for 0 < x < 1. Find the ML estimate of θ . (§12.4)

Hint: Use log-likelihood