CMP 334 (1/28/19)

Course syllabus (part 1)

Course prerequisites

Course overview

Abstraction: models and interfaces

Basic computer model: the TOY computer

Computer design (the big picture)

Digital logic circuits

Logisim (http://www.cburch.com/logisim/)

Numbers

Course Information

Instructor: Bowen Alpern

Office: GI 137-A

Hours: M W 5:00 - 6:00 pm

Sections: afternoon evening

Times: M W 3:00 - 4:40 pm 7:50 - 9:30 pm

Room: GI 231 GI 231

Text (optional)

Computer Organization and Design – Patterson & Hennessy

Computer Organization and Architecture - Null & Lobur

Computer Organization and Architecture – Stalling

CMP 334 Computer Organization

Introduction to digital logic-expressions, gates, flip-flops, adders. busses, multiplexers Introduction to assembly language and assembly level organization - data representation, instruction formats, addressing modes, interrupts. Memory systems - caches (mapping and management policies) and memory hierarchies, latency and bandwidth, virtual memory (page tables, TLB). Input/Output- busses, channels and DMA. Performance considerations-pipelining, RISC architecture, branch prediction, introduction to instruction level parallelism.

Credits: 4

PREREQS: CMP167 CMP 232 or departmental permission.

CMP 334 Computer Organization

Introduction to digital logic-expressions, gates, flip-flops, adders. busses, multiplexers Introduction to assembly language and assembly level organization - data representation, instruction formats, addressing modes, interrupts. Memory systems - caches (mapping and management policies) and memory hierarchies, latency and bandwidth, virtual memory (page tables, TLB). Input/Output- busses, channels and DMA. Performance considerations-pipelining, RISC architecture, branch prediction, introduction to instruction level parallelism.

Credits: 4 Expect to work 12 hours per week outside class

PREREQS: CMP167 CMP 232 or departmental permission.

CMP 167 Programming Methods I

(AKA: Introduction to Computer Programming)

Structured **computer programming** using a modern high-level programming language. Includes console I/O, data types, variables, control structures, including iteration, arrays, function definitions and calls, parameter passing, functional decomposition, and an introduction to objects. Debugging techniques.

CMP 232 Elementary Discrete Structures & Applications to Computer Science

(AKA: Finite Mathematics)

Sets, relations, and functions; propositional calculus, Boolean algebras, and combinatorial circuits, counting methods; proof techniques; analysis of algorithms; graphs and trees, puzzles; finite machines, sequential circuits, and recognizers.

Truth table ≡ Boolean function ≡ combinational circuit

Binary numbers, change of basis

Basic High-School Algebra

Equation solving

$$\frac{6}{11} = \frac{9}{4 + 5 \cdot x} \quad \text{what is } x?$$

Word problems

Initially Alice has twice as many apples as Bob. After she eats two apples and gives three to Carol, she still has 3 more apples than Bob. How many apples does Bob have?

Advanced Middle-School Arithmetic

Fractions

$$\frac{5}{7} + \frac{2}{3}$$
 $\frac{3}{4} - \frac{6}{11}$ $\frac{5}{8} \cdot \frac{4}{5}$ $\frac{12}{5} \div \frac{3}{8}$

$$\frac{3}{4} - \frac{6}{11}$$

$$\frac{5}{8} \cdot \frac{4}{5}$$

$$\frac{12}{5} \div \frac{3}{8}$$

Long division

$$56298 / 24 = 2345.75$$

Binary numbers

$$110101011001_2 = D59_{16} = 1407_{10}$$

Long Division

$$56298 / 24 = 2345.75
24:56298.00
-48
82
-72
109
-96
138
-120
18.0
-16.8
1.20
-1.20$$

$$\frac{1}{0.5 \cdot \frac{2}{5} + \left(1 - \frac{2}{5}\right)}$$

$$\frac{1}{0.5 \cdot \frac{2}{5} + \left(1 - \frac{2}{5}\right)} = \frac{1}{\frac{1}{5} + \frac{3}{5}}$$

$$\frac{1}{0.5 \cdot \frac{2}{5} + (1 - \frac{2}{5})} = \frac{1}{\frac{1}{5} + \frac{3}{5}}$$

$$= \frac{1}{\frac{4}{5}}$$

$$\frac{1}{0.5 \cdot \frac{2}{5} + (1 - \frac{2}{5})} = \frac{1}{\frac{1}{5} + \frac{3}{5}}$$

$$= \frac{1}{\frac{4}{5}}$$

$$= \frac{5}{4}$$

$$\frac{1}{0.5 \cdot \frac{2}{5} + (1 - \frac{2}{5})} = \frac{1}{\frac{1}{5} + \frac{3}{5}}$$

$$= \frac{1}{\frac{4}{5}}$$

$$= \frac{5}{4}$$

$$= 1.2$$

Course Overview

ALU (Arithmetic / Logical Unit) → exam 1 (3/13/19) Binary arithmetic (unsigned and signed numbers) Combinational circuit ≡ Boolean function ≡ truth table Assembly language programming (part 1)

CPU (Central Processing Unit) → exam 2 (4/17/19) Sequential circuits: latches, flip-flops, processors Implicit parallelism: pipeline processors and ILP Assembly language programming (part 1)

Computer

→ final ????

The memory hierarchy Explicit parallelism

Course Overview (part 1: ALU)

Binary arithmetic (unsigned and signed numbers)

Binary, decimal, and hexadecimal numbers

Addition, subtraction, comparisons, ...

Combinational circuits (truth tables, Boolean functions)

Combinational circuit design process

Inverters, decoders, multiplexors

Adders, 1-bit (half and full), n-bit (ripple-carry); ALU

Assembly language programming, part 1

ALU instructions: addition, subtraction, ...

Data transfer instructions: load and store

Subprograms: function call and return

Recurring Themes

Moore's law

Abstraction to manage complexity

Models — simplification of design

Interfaces — separation of concerns

Focus on *common case* performance

Parallelism

Implicit: pipelined processor

Explicit: multiprocessors

The *memory hierarchy*

Abstraction 1: Models

Model – simplified understanding of a mechanism
 Presents key features
 Ignores less relevant details

Basic Computer Model (the TOY computer)

Main computer components and their relationships Processor, memory, system bus, I/O devices

Basic Processor Model (the TOY processor)

Main processor components and their relationships ALU, registers (GP, PC, IR), buses (A, B, C)

We will refine these models over the semester

The **TOY** Computer

HW 1: Computer Components

In two or three sentences of your own words define, describe, or discuss the following components of the TOY computer:

- 1. The System Bus
- 2. ROM Memory
- 3. RAM Memory
- 4. IODCU
- 5. IODCU buffer
- 6. The Processor
- 7. The DMA Controller

The TOY Processor

Abstraction 2: Interfaces

Interface - separation of concerns

Boundary – between objects or systems

Protocol – rules for interaction between parties

Contract – formalized expectations

Distribution of Labor

User (consumer) ignores implementation

Provider (producer) ignores application

Instruction Set Architecture (ISA)

Between hardware & software

Application Program Interface (API)

Between application program & operating system

Computer Interface Diagram

What Happens to Your Program

Computer Design – The Big Picture

A computer is one big **sequential** circuit **Abstract** into discrete **sequential** components: **Combinational** circuits + memory + clock

Combinational circuit design process:

- 1. Specify semantics Black box means that it cannot see what it is inside
 - a. Black Box diagram (identifies input and output)
 - b. Truth Table (input determines output)
- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (Karnaugh Maps)
- 4. Boolean formula → combinational circuit

Synchronous Sequential Circuit

Digital Logic Circuit

Directed graph with labeled nodes

Edges are called wires

Nodes are called *gates*

Some gate labels

- - -

input [constant (0 or 1) or identifier]
output [identifier]

restrictions

in-degree = 1

in-degree > 1

in-degree > 1

in-degree = 0

out-degree = 0

Combinational Circuit

Digital logic circuit that is *acyclic*No feedback loops in the circuit

Input determines output

Representing numeric values

Binary values (**0** or **1**) associated with gates & wires Input (and output) variables can only hold 1 bit

n (a k-bit input) is represented by k input variables:

$$n_{k-1}, n_{k-2} \dots n_1, \text{ and } n_0 \text{ where }$$
 $\mathbf{n} = \sum_{i=0}^{k-1} n_i 2^i$

A k-bit *bus* is a bundle of k wires

Can be used to transmit k-bit numbers

Logic Gates

A	В	٦A	¬В	AvB	A۸B
0	0	1			
0	1	1			
1	0	0			
1	1	0			

A	В	٦A	¬В	AvB	A۸B
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

A	В	٦A	¬В	AvB	A۸B
0	0	1	1	0	
0	1	1	0	1	
1	0	0	1	1	
1	1	0	0	1	

A	В	٦A	¬В	AvB	A۸B
0	0	1	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	1

An Example Circuit

Example Circuit Truth Table

a	b	C in	S	Cout
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Example Circuit Truth Table

a	b	C in	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Numbers

Natural

Integer

$$\dots$$
 -4, -3, -2, -1, 0, 1, 2, 3, 4 \dots

Rational (fraction)

$$-\frac{1}{8}$$
, $\frac{1}{3}$, $\frac{3}{2}$

Rational (decimal)
$$-0.25, 0.3\overline{3}, 1.5, 2.1 \cdot 10^7$$

Irrational

$$\pi$$
, $\sqrt{2}$, $-\sqrt[3]{17}$, $e^{3\frac{1}{2}}$

Complex

$$i$$
, $-3i$, $2 + 7i$, $2 - 7i$

Quaternion

$$1 + i - j + k$$
, $-2 + 4i + 3j - k$

Numbers for Computers

```
Integers (<u>fixed size</u>, binary)
   Unsigned (non-negative)
      11001001, (201)
   Signed (two's complement)
      11001001<sub>2</sub> (-73)
     00110111<sub>2</sub> (+73)
Floating-Point (fixed size, binary)
   +1.11001001•2+0111
   +1.000111111 \cdot 2^{-0101} + 1.10101010 \cdot 2^{+0111}
```

Natural Numbers N

N - a set containing 0, and $s : N \rightarrow N$ such that

1) $s(x) \neq 0$

for all x in N

2) s(x) = s(y) => x = y

- for all x and y in N
- 3) If **A** subset of **N** such that 0 is in **A**, and
 - x in A => s(x) in A

Then A = N

- N closed under addition and multiplication
- N not closed under subtraction and division
- $\mathbf{N} = \{0, 1, 2, 3, 4, 5, 6, 7, \dots\}$

The First 16 Natural Numbers

		0	Ob 0000	0x 0	zero
	i	1	Ob 0001	0x 1	one
	ii	2	Ob 0010	0x 2	two
	iii	3	Ob 0011	0x 3	three
	iv	4	Ob 0100	0x 4	four
++++	V	5	Ob 0101	0x 5	five
++++-	Vi	6	Ob 0110	0x 6	six
++++	vii	7	Ob 0111	0x 7	seven
++++	viii	8	Ob 1000	8 x0	eight
++++	ix	9	Ob 1001	0x 9	nine
++++++++	X	10	Ob 1010	0x A	ten
++++++	xi	11	Ob 1011	0x B	eleven
++++++11	xii	12	Ob 1100	Ox C	twelve
++++ ++++	xiii	13	Ob 1101	\mathbf{D}	thirteen
++++ ++++	xiv	14	Ob 1110	0x E	fourteen
++++ ++++	XV	15	Ob 1111	0x F	fifteen

Bases 2, 10, and 16

<u>Bin</u>	<u>ary</u>	<u>Dec</u>	<u>Decimal</u>		<u>Hexadecimal</u>	
0000	1000	0	8	0	8	
0001	1001	1	9	1	9	
0010	1010	2	10	2	A	
0011	1011	3	11	3	В	
0100	1100	4	12	4	C	
0101	1101	5	13	5	D	
0110	1110	6	14	6	E	
0111	1111	7	15	7	F	

Radix Numeral Systems

R is the *radix* (or *base*)

R in \mathbf{N} and R > 0

A is a set of R *numerals*

A represents {0, 1, . . . R–1}

Theorem: If **n** is in **N** then

There is a k in \mathbb{N} and a_k , a_{k-1} , ... a_0 in \mathbb{A} such that

$$\mathbf{n} = \mathbf{a}_k \mathbf{a}_{k-1} \dots \mathbf{a}_{0 \text{ base R}} = \sum_{i=0}^k \mathbf{a}_i \mathbf{R}^i \qquad \mathbf{a}_k = 0 \Rightarrow n=0$$

and the representation is unique

Four Hundred and Thirty Seven

110110101 ₂	437 ₁₀	1B5 ₁₆
1.28 = 256	$4 \cdot 10^2 = 400$	$1.16^2 = 256$
$+ 1 \cdot 2^7 = 128$	$+ 3.10^{1} = 30$	$+ 11.16^1 = 176$
$+ 0.2^6 = 0$	$+ 7.10^{\circ} = 7$	$+ 5.16^{\circ} = 5$
$+ 1.2^5 = 32$		
+ 1.24 = 16		
$+ 0.2^3 = 0$		
$+ 1 \cdot 2^2 = 4$		
$+ 0.2^1 = 0$		
$+ 1 \cdot 2^0 = 1$		

Conversion to Base R

Repeated division

$$n_0 = n$$

while $n_i \neq 0$
 $a_i = n_i$ rem R
 $n_{i+1} = n_i$ div R
 $n_i = 437$
 $a_0 = 7, \quad n_1 = 43$
 $a_1 = 3, \quad n_2 = 4$
 $a_2 = 4, \quad n_2 = 0$
 $437 = 4 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$

Base 2 ↔ Base 10

From base $2 \rightarrow$ base 10

Add the power of 2 corresponding to each 1

Example:
$$01100100_2 = 2^6 + 2^5 + 2^2 = 64 + 32 + 4 = 100_{10}$$

From base $10 \rightarrow base 2$

Express number as sum of distinct powers of 2

$$209_{10} = 128 + 64 + 16 + 1 = 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^4 + 1 \cdot 2^0$$

Add zero times the missing powers of 2

$$209_{10} = 1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

Write coefficients from highest to lowest power of 2

$$209_{10} = 11010001_{2}$$

Remainders of repeated division by 2

Powers of 2

2 °	1	2 ⁸	256
2 ¹	2	2 ⁹	512
2 ²	4	2 ¹⁰	1024
2 ³	8	2 ¹¹	2048
2 ⁴	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
2 ⁷	128	2 ¹⁵	32968

Base $16 \leftrightarrow \text{Base } 2$

From base 16 to base 2

Replace each hex digit with its 4-bit binary equivalent $6E30AC58_{16} = 01101110001100001011000111000_2$

From base 2 to base 16

Pad left with 0 until length is multiple of 4 11001001001111011₂ = 00011001001001111011₂

Replace consecutive sequences of 4 bits with hex digit $\frac{00011001001001111011}{1001001001111011} = 1927B_{16}$

Binary Natural Numbers

```
...00001111
...00001110
...00001101
               13
...00001100
...00001011
...00001010
...00001001
               09
...00001000
               08
...00000111
...00000110
               06
...00000101
...00000100
               04
...00000011
               03
...00000010
...0000001
               01
...00000000
```

0, 1, 2, ...

Closed under addition

Not under subtraction

A – B undefined iff B > A

HW 3: Conversion Between Bases

Convert the following values to the indicated base:

10110111011110 ₂	\longrightarrow	base 16
4C1F91 ₁₆	\rightarrow	base 2
100 ₁₀	\rightarrow	base 2
10001010 ₂	\rightarrow	base 10
1F3 ₁₆	\rightarrow	base 10
1055 ₁₀	\longrightarrow	base 16