II. CLAIM AMENDMENTS

1 - 18. (Cancelled)

19. (Currently Amended) A method for determining a ciphering mode of communication between a mobile communication network and a mobile station—in—the mobile communication network, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the method comprising:

monitoring at the mobile station signals sentreceived from the mobile communication network to the mobile station for a cipher mode control signal, the cipher mode control signal for setting the mobile station into an enciphered mode of communication:

responsive to reception of a cipher mode control signal from the mobile communication network, setting the mobile station into thean enciphered mode of communication and indicating to a user of the mobile station that the mobile communication network is configured to use an enciphered mode of communication.

(Cancelled)

21. (Previously Presented) A method according to claim 19, further comprising indicating to a user of the mobile station that the mobile communication network is

configured to use an unciphered mode of communication if no cipher mode control signal is received at the mobile station from the mobile communication network.

22. (Cancelled)

23. (Previously presented) A method according to claim 19, comprising determining the ciphering mode to be used in communication between the mobile communication network and the mobile station during establishment of communication between the

mobile communication network and the mobile station.

24. (Previously presented) A method according to claim 19, comprising determining the ciphering mode to be used in communication between the mobile communication network and the mobile station prior to establishment of communication between the

mobile communication network and the mobile station.

25. (Previously presented) A method according to claim 24, comprising determining the ciphering mode to be used in communication between the mobile communication

network and the mobile station by performing a location update procedure.

26. (Previously presented) A method according to claim 19, comprising determining the ciphering mode to be used in communication between the mobile communication network and the mobile station during a communication handover procedure that occurs when the mobile station moves between a first part of the mobile

communication network and a second part of the mobile communication network.

27. (Previously presented) A method according to claim 19, further comprising:

maintaining a cipher mode indication data field in the mobile station;

initially setting said cipher mode indication data field into a first state indicative that the mobile communication network is configured to use an unciphered mode of communication;

responsive to reception of a cipher mode control signal from the mobile communication network, updating the state of the cipher mode indication data field into a second state indicative that the mobile communication network is configured to use an enciphered mode of communication.

28. (Previously Presented) A method according to claim 19, further comprising indicating a change in ciphering mode to a user of the mobile station.

29 - 30. (Cancelled)

- 31. (Previously Presented) A method according to claim 19, wherein the mobile station comprises a display unit, the method comprising indicating the ciphering mode used in communication between the mobile communication network and the mobile station to a user of the mobile station using the display unit.
- 32. (Previously Presented) A method according to claim 19, wherein the mobile station comprises a light source, the method comprising indicating the ciphering mode used in communication between the mobile communication network and the mobile station to a user of the mobile station using the light source.

33. (Previously Presented) A method according to claim 28, wherein the mobile station comprises a display unit and an acoustic signal forming element, the method comprising indicating the ciphering mode used in communication between the mobile communication network and the mobile station to a user of the mobile station using the display unit and indicating a change in ciphering mode to a user of the mobile station using the acoustic signal forming element.

- 34. (Previously presented) A method according to claim 32, comprising indicating a change in ciphering mode with a flashing light.
- 35. (Previously presented) A method according to claim 28, comprising indicating a change in ciphering mode by vibration.
- 36. (Previously presented) A method according to claim 19, wherein the mobile station comprises a radio resource management block, a cipher indication memory block, and a user interface block, the method comprising maintaining a cipher mode indication data field in the cipher indication memory block, monitoring signals sent from the mobile communication network to the mobile station at the radio resource management block to determine whether said monitored signals comprise a cipher mode control signal, wherein upon determining that said monitored signals comprise a cipher mode control signal, the radio resource management block sets the cipher mode indication data field in said cipher indication memory block to correspond with cipher indication data in said cipher mode control signal.

37. (Original) A method according to claim 36, wherein said cipher indication memory block makes an interrupt request in response to a change in the cipher mode

indication data field.

38. (Previously presented) A method according to claim 37, wherein the user

interface block detects said interrupt request and sends an inquiry to the cipher

indication memory block to inquire about the state of the cipher mode indication data

field and the cipher indication memory block returns an indication of the state of the cipher mode indication data field in response to said inquiry.

39. (Previously presented) A method according to claim 38, wherein the mobile

station comprises a cipher mode indicator and the user interface block controls the

cipher mode indicator according to said indication of the state of the cipher mode

indication data field.

40. (Previously presented) A method according to claim 36, wherein the cipher

indication memory block provides an indication of the state of the cipher mode

indication data field to the user interface block when the state of the cipher mode

indication data field is changed.

41. (Previously presented) A method according to claim 40, wherein the mobile

station comprises a cipher mode indicator and the user interface block controls the

cipher mode indicator according to said indication of the state of the cipher mode

indication data field.

42. (Original) A method according to claim 36, wherein the user interface block sends repeated inquiries to the cipher indication memory block about the state of the

cipher mode indication data field, each inquiry being separated in time from the next by a predetermined interval and the cipher indication memory block returns an indication

of the state of the cipher mode indication data field in response to each inquiry.

43. (Previously presented) A method according to claim 42, wherein the mobile station comprises a cipher mode indicator and the user interface block controls the

cipher mode indicator according to said indication of the state of the cipher mode

indication data field.

44. (Previously presented) A method according to claim 19, wherein the mobile

station is capable of a first and a second type of communication, the method comprising indicating a ciphering mode of each of said first and second types of

communication to a user of the mobile station.

45. (Previously presented) A method according to claim 44, wherein the first type of

communication is a telephone call and said second type of communication is a short

message (SMS).

46. (Previously presented) A method according to claim 44, comprising indicating the

ciphering mode of the first type of communication in a manner distinguishable from that

used to indicate the ciphering mode of the second type of communication.

47. (Previously presented) A method according to claim 44, further comprising indicating a change in ciphering mode of the first type of communication and indicating

a change in ciphering mode of the second type of communication.

48. (Previously presented) A method according to claim 19, wherein a first mobile

station and a second mobile station are in communication with each other through at

least one mobile communication network, the method comprising indicating the ciphering mode between the mobile communication network and the first mobile station

to a user of the second mobile station.

49. (Previously presented) A method according to claim 19, comprising using the

mobile station in connection with an external data processor for communication

between the mobile communication network and the external data processor, the

external data processor comprising a display unit, the method comprising indicating a

ciphering mode used in communication between the mobile station and the mobile

communication network on the display unit of the external data processor.

50. (Previously presented) A method according to claim 49, wherein the external

data processor further comprises an acoustic signal forming element, the method comprising indicating a change in ciphering mode used in communication between the

mobile station and the mobile communication network with the acoustic signal forming

element of the external data processor.

51. (Previously presented) A method according to claim 49, wherein the mobile

station comprises a cipher indication memory block which maintains a cipher mode

indication data field indicative of a ciphering mode used in communication between the

mobile communication network and the mobile station, the method comprising sending an indication of the state of the cipher mode indication data field from the mobile

station to the external data processor.

52. (Previously presented) A method according to claim 49, comprising connecting

the mobile station and the external data processor by means of a connection bus.

53. (Previously presented) A method according to claim 49, wherein the mobile

station comprises a cipher indication memory block which maintains a cipher mode indication data field indicative of a ciphering mode used in communication between the

mobile communication network and the mobile station, the method comprising

receiving at the mobile station a cipher mode inquiry message from the external data

processor and sending an indication of the state of the cipher mode indication data field

from the mobile station to the external data processor responsive to said cipher mode

inquiry message.

54. (Cancelled)

55. (Previously presented) A method according to claim 19, comprising using the

mobile station in communication with a terminal in a fixed line communication network,

the method further comprising indicating a ciphering mode used in communication

between the fixed line communication network and the terminal in the fixed line $\ensuremath{\mathsf{I}}$

communication network to a user of the mobile station.

56. (Previously presented) A method according to claim 55, wherein the mobile station sends an inquiry message to the terminal in the fixed line communication network to determine the ciphering mode used in communication between the fixed line

communication network and said terminal in the fixed line network.

57. (Previously presented) A method according to claim 56, wherein if the mobile station does not receive a response to said inquiry message, the mobile station

indicates that the ciphering mode is unknown.

58. (Previously presented) A method according to claim 56, wherein if the mobile station receives a response to said inquiry message, but cannot interpret said response

the mobile station indicates that the ciphering mode is unknown.

59. (Currently amended) An apparatus for <u>use within a mobile station for</u> determining a ciphering mode of communication between a mobile communication network and athe mobile station in the mobile communication network, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the apparatus

comprising:

means for monitoring signals sentreceived from the mobile communication network

toat the mobile station;

means for determining if said monitored signals comprise a cipher mode control signal, said cipher mode control signal for setting the mobile station into an

enciphered mode of communication;

means for setting the mobile station into an enciphered mode of communication responsive to reception of a cipher mode control signal from the mobile

communication network; and

means for indicating a ciphering mode to a user of the mobile station, said means being operableconfigured to indicate that the mobile communication network is configured to use an enciphered mode of communication —if said monitored

signals comprise a cipher mode control signal.

60. (Cancelled)

61. (Previously presented) An apparatus according to claim 59, wherein said means

for indicating a ciphering mode to a user of the mobile station are further configured to indicate that the mobile communication network is configured to use an unciphered mode of communication if said monitored signals do not comprise a cipher mode

control signal.

62. (Currently amended) An apparatus according to claim 59, wherein the apparatus

is operable<u>configured</u> to determine the ciphering mode to be used in communication between the mobile communication network and the mobile station during

establishment of communication between the mobile communication network and the $\,$

mobile station.

63. (Currently Amended) An apparatus according to claim 59, wherein the

apparatus is $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

communication between the mobile communication network and the mobile station

prior to establishment of communication between the mobile communication network and the mobile station.

64. (Currently Amended) An apparatus according to claim 63, wherein the apparatus is operableconfigured to determine the ciphering mode to be used in communication prior to establishment of communication between the mobile communication network and the mobile station by performing a location update procedure.

65. (Previously presented) An apparatus according to claim 59, further comprising:

means for maintaining a cipher mode indication data field;

means for setting said cipher mode indication data field initially into a first state indicative that the mobile communication network is configured to use an unciphered mode of communication;

means for changing the state of the cipher mode indication data field into a second state indicative that the mobile communication network is configured to use an enciphered mode of communication if said monitored signals comprise a cipher mode control signal.

- 66. (Previously presented) An apparatus according to claim 59, wherein said means for indicating a ciphering mode to a user of the mobile station comprise a display unit.
- 67. (Previously presented) An apparatus according to claim 59, wherein said means for indicating a ciphering mode to a user of the mobile station comprise a light source.

68. (Previously presented) An apparatus according to claim 59, wherein the apparatus further comprises means for indicating a change in ciphering mode to a user

of the mobile station.

69. (Previously presented) An apparatus according to claim 68, wherein said means

for indicating a change in ciphering mode to a user of the mobile station comprise an

acoustic signal forming element.

70. (Previously presented) An apparatus according to claim 68, wherein said means

for indicating a change in ciphering mode to a user of the mobile station comprise

means for generating vibration.

71 - 73. (Cancelled).

74. (Currently Amended) An apparatus according to claim 59, comprising a radio

resource management block and a cipher indication memory block comprising a cipher

mode indication data field, the radio resource management block being

operableconfigured to set the cipher mode indication data field in said cipher indication

memory block to correspond with cipher indication data in a cipher mode control signal

received from the mobile communication network.

75. (Currently Amended) An apparatus according to claim 74, wherein said cipher

indication memory block is $\frac{operable}{configured}$ to issue an interrupt request in response

to a change in the cipher mode indication data field.

- 76. (Currently Amended) An apparatus according to claim 75, further comprising a user interface block, wherein the user interface block is operableconfigured to detect said interrupt request and to send an inquiry to the cipher indication memory block to inquire about the state of the cipher mode indication data field and the cipher indication memory block is operableconfigured to return an indication of the state of said cipher mode indication data field in response to said inquiry.
- 77. (Currently Amended) An apparatus according to claim 76, further comprising a cipher mode indicator, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.
- 78. (Currently Amended) An apparatus according to claim 74, further comprising a user interface block, wherein the cipher indication memory block is <u>operableconfigured</u> to provide an indication of the state of said cipher mode indication data field to the user interface block when the state of said cipher mode indication data field is changed.
- 79. (Currently Amended) An apparatus according to claim 78, further comprising a cipher mode indicator, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.
- 80. (Currently Amended) An apparatus according to claim 74, further comprising a user interface block, wherein the user interface block is operableconfigured to send repeated inquiries to the cipher indication memory block about the state of the cipher mode indication data field, each inquiry being separated in time from the next by a predetermined interval and the cipher indication memory block is operableconfigured to

return an indication of the state of the cipher mode indication data field in response to each inquiry.

81. (Currently Amended) An apparatus according to claim 80, further comprising a cipher mode indicator, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.

82. (Currently Amended) A mobile station comprising apparatus for determining a ciphering mode of communication between a mobile communication network and the mobile station, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the apparatus comprising:

means for monitoring signals sentreceived from the mobile communication network teat the mobile station;

means for determining if said monitored signals comprise a cipher mode control signal, said cipher mode control signal for setting the mobile station into an enciphered mode of communication;

means for setting the mobile station into an enciphered mode of communication responsive to reception of a cipher mode control signal from the mobile communication network; and

means for indicating a ciphering mode to a user of the mobile station, said means being operableconfigured to indicate that the mobile communication network is configured to use an enciphered mode of communication if said monitored signals comprise a cipher mode control signal.

83. (Cancelled)

- 84. (Previously presented) A mobile station according to claim 82, wherein said means for indicating a ciphering mode to a user of the mobile station are further configured to indicate that the mobile communication network is configured to use an unciphered mode of communication if said monitored signals do not comprise a cipher mode control signal.
- 85. (Currently Amended) A mobile station comprising apparatus for determining a ciphering mode of communication between a mobile communication network and the mobile station, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication. the mobile station comprising:

means for monitoring signals sentreceived from the mobile communication network teat the mobile station:

means for determining if said monitored signals comprise a cipher mode control signal;

means for setting the mobile station into an enciphered mode of communication if said monitored signals comprise a cipher mode control signal;

means for indicating a ciphering mode to a user of the mobile station, comprising means for indicating that the mobile communication network is configured to use an enciphered mode of communication if said monitored signals comprise a cipher mode control signal and means for indicating that the mobile communication network is configured to use an unciphered mode of

communication if said monitored signals do not comprise a cipher mode control signal.

86. (Currently Amended) A mobile station according to claim 85, comprising a radio

resource management block and a cipher indication memory block comprising a cipher mode indication data field, the radio resource management block being

operable configured to set the cipher mode indication data field in said cipher indication

memory block into one of a first state and a second state, said first state being

indicative that the mobile communication network is configured to use an unciphered

mode of communication and said second state being indicative that the mobile

communication network is configured to use an enciphered mode of communication.

87. (Currently Amended) A mobile station according to claim 86, wherein said cipher indication memory block is operable configured to issue an interrupt request in response

to a share of the sinker made indication data field

to a change in the cipher mode indication data field.

88. (Currently Amended) A mobile station according to claim 87, further comprising

a user interface block, wherein the user interface block is operableconfigured to detect said interrupt request and to send an inquiry to the cipher indication memory block to

inquire about the state of the cipher mode indication data field and the cipher indication

memory block is operableconfigured to return an indication of the state of said cipher

Themory block is operable comingated to retain an indication of the state of said cipile

mode indication data field in response to said inquiry.

89. (Currently Amended) A mobile station according to claim 88, wherein said user

interface block is operable configured to control said means for indicating a ciphering

mode to a user of the mobile station in response to said indication of the state of the cipher mode indication data field.

- 90. (Currently Amended) A mobile station according to claim 86, further comprising a user interface block, wherein the cipher indication memory block is operable configured to provide an indication of the state of said cipher mode indication data field to the user interface block when the state of said cipher mode indication data field is changed.
- 91. (Currently Amended) A mobile station according to claim 90, wherein said user interface block is <u>operable_configured</u> to control said means for indicating a ciphering mode to a user of the mobile station in response to said indication of the state of the cipher mode indication data field.
- 92. (Currently Amended) A mobile station according to claim 86, further comprising a user interface block, wherein the user interface block is operableconfigured to send repeated inquiries to the cipher indication memory block about the state of the cipher mode indication data field and the cipher indication memory block is operableconfigured to return an indication of the state of the cipher mode indication data field in response to each inquiry.
- 93. (Currently Amended) A mobile station according to claim 92, wherein said user interface block is <u>operableconfigured</u> to control said means for indicating a ciphering mode to a user of the mobile station in response to said indication of the state of the cipher mode indication data field.

94. (Currently Amended) A system for determining a ciphering mode of communication between a mobile communication network and a mobile station in the mobile communication network, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the system comprising:

means in the mobile communication network for determining whether an enciphered mode of communication is to be used in communication between the mobile communication network and the mobile station according to a setting of the mobile communication network;

means in the mobile communication network for sending a cipher mode control signal from the mobile communication network to the mobile station in a situation where an enciphered mode of communication is to be used in communication between the mobile communication network and the mobile station, said cipher mode control signal for setting the mobile station into an enciphered mode of communication;

means in the mobile station for monitoring signals sent from the mobile communication network to the mobile station;

means in the mobile station for determining if said monitored signals comprise a cipher mode control signal;

means in the mobile station for setting the mobile station into an enciphered mode of communication if said monitored signals comprise a cipher mode control signal; and

means in the mobile station for indicating a ciphering mode to a user of the mobile station, said means being operable configured to indicate that the mobile

> communication network is configured to use an enciphered mode of communication if said monitored signals comprise a cipher mode control signal.

95. (Cancelled)

96. (Previously presented) A system according to claim 94, wherein said means for

indicating a ciphering mode to a user of the mobile station are further configured to indicate that the mobile communication network is configured to use an unciphered mode of communication if said monitored signals do not comprise a cipher mode

control signal.

97. (Previously presented) An external data processor capable of use with a mobile

station for communication between the external data processor and a mobile communication network via the mobile station, the mobile station being capable of

communication in at least one enciphered mode of communication and at least one

unciphered mode of communication, the external data processor comprising an input

for receiving from the mobile station information concerning a ciphering mode used in

communication between the mobile station and the mobile communication network and

a display unit for indicating a ciphering mode used in communication between the

mobile station and the mobile communication network.

98 - 121. (Cancelled)

122. (Currently Amended) An apparatus for determining a ciphering mode of

communication between a mobile communication network and a mobile station, the

mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the apparatus comprising:

- a radio resource management block for monitoring signals sent from the mobile communication network to the mobile station and for determining if said monitored signals comprise a cipher mode control signal;
- a cipher mode indicator for indicating a ciphering mode to a user of the mobile station, said cipher mode indicator being operableconfigured to indicate that the mobile communication network is configured to use an enciphered mode of communication responsive to an indication from the radio resource management block that said monitored signals comprise a cipher mode control signal.
- 123. (Previously presented) An apparatus for determining a ciphering mode of communication between a mobile communication network and a mobile station, the mobile station being capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the apparatus comprising:
 - a radio resource management block for monitoring signals sent from the mobile communication network to the mobile station and for determining if said monitored signals comprise a cipher mode control signal;
 - a cipher mode indicator for indicating that the mobile communication network is configured to use an enciphered mode of communication, responsive to an indication from the radio resource management block that said monitored signals comprise a cipher mode control signal.

124. (Currently Amended) An apparatus according to claim 122, comprising a cipher indication memory block having a cipher mode indication data field, the radio resource management block being operableconfigured to set the cipher mode indication data field of said cipher indication memory block to correspond with cipher indication data in a cipher mode control signal received from the mobile communication network.

125. (Currently Amended) An apparatus according to claim 124, wherein said cipher indication memory block is operableconfigured to issue an interrupt request in response to a change in the cipher mode indication data field.

126. (Currently Amended) An apparatus according to claim 125, further comprising a user interface block, wherein the user interface block is operableconfigured to detect said interrupt request and to send an inquiry to the cipher indication memory block to inquire about the state of the cipher mode indication data field and the cipher indication memory block is operableconfigured to return an indication of the state of said cipher mode indication data field in response to said inquiry.

127. (Currently Amended) An apparatus according to claim 126, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.

128. (Currently Amended) An apparatus according to claim 124, further comprising a user interface block, wherein the cipher indication memory block is <u>operableconfigured</u> to provide an indication of the state of said cipher mode indication data field to the user interface block when the state of said cipher mode indication data field is changed.

129. (Currently Amended) An apparatus according to claim 128, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.

130. (Currently Amended) An apparatus according to claim 124, further comprising a user interface block, wherein the user interface block is operableconfigured to send repeated inquiries to the cipher indication memory block about the state of the cipher mode indication data field, each inquiry being separated in time from the next by a predetermined interval and the cipher indication memory block is operableconfigured to return an indication of the state of the cipher mode indication data field in response to each inquiry.

131. (Currently Amended) An apparatus according to claim 130, wherein the user interface block is operableconfigured to control the cipher mode indicator according to said indication.

- 132. (Currently Amended) A mobile station capable of communication in at least one enciphered mode of communication and at least one unciphered mode of communication, the mobile station comprising:
 - a radio resource management block for monitoring signals sent from a mobile communication network to the mobile station and for determining if said monitored signals comprise a cipher mode control signal;
 - a cipher mode indicator for indicating a ciphering mode to a user of the mobile station, said cipher mode indicator being operableconfigured to indicate that the mobile communication network is configured to use an enciphered mode of

communication responsive to an indication from the radio resource management block that said monitored signals comprise a cipher mode control signal.

133. (Previously presented) A system according to claim 94, wherein the ciphering mode to be used in communication between the mobile communication network and the mobile station is specified by an operator of the mobile communication network.

134. (Previously presented) A system according to claim 94, wherein communication between the mobile communication network and the mobile station takes place at least in part over a radio link.

135. (Currently Amended) A methodsystem according to claim 94, wherein the mobile communication network is a GSM network.

136. (New) A mobile station comprising:

- a radio resource management block configured to monitor signals received from a mobile communication network and to determine whether said received signals comprise a cipher mode control signal for setting the mobile station into an enciphered mode of communication;
- a user interface block configured to control a cipher mode indicator to inform a
 user that the mobile communication network is configured to use an enciphered
 mode of communication, responsive to determination by the radio resource
 management block that said received signals comprise a cipher mode control
 signal.

137. (New) A mobile station according to claim 136, wherein the user interface block is configured to control the cipher mode indicator to inform a user that the mobile

communication network is configured to use an unciphered mode of communication, responsive to determination by the radio resource management block that said received

signals do not comprise a cipher mode control signal.

138. (New) A mobile station according to claim 136, wherein the mobile station is

configured to determine a ciphering mode to be used in communication between the mobile communication network and the mobile station during establishment of

communication between the mobile communication network and the mobile station.

139. (New) A mobile station according to claim 136, wherein the mobile station is

configured to determine a ciphering mode to be used in communication between the $\,$

mobile communication network and the mobile station prior to establishment of

communication between the mobile communication network and the mobile station.

140. (New) A mobile station according to claim 139, wherein the mobile station is

configured to determine the ciphering mode to be used in communication between the

 $\label{eq:mobile} \mbox{mobile communication network and the mobile station by performing a location update}$

procedure.

141. (New) A mobile station according to claim 136, wherein the mobile station is

configured to determine a ciphering mode to be used in communication between the

mobile communication network and the mobile station during a communication

handover procedure that occurs when the mobile station moves between a first part of

the mobile communication network and a second part of the mobile communication

network.

142. (New) A mobile station according to claim 136, wherein the mobile station is

configured to inform a user of a change in ciphering mode.

143. (New) A mobile station according to claim 136, wherein the cipher mode

indicator is provided on a display unit of the mobile station.

144. (New) A mobile station according to claim 136, wherein the cipher mode

indicator comprises a light source.

145. (New) A mobile station according to claim 136, wherein the mobile station is

configured to indicate the ciphering mode used in communication between the mobile

communication network and the mobile station using a display unit of the mobile station

and to indicate a change in ciphering mode using an acoustic signal forming element of

the mobile station.

146. (New) A mobile station according to claim 144, wherein the mobile station is

configured to indicate a change in ciphering mode with a flashing light.

147. (New) A mobile station according to claim 142, wherein the mobile station is

configured to indicate a change in ciphering mode by vibration.

148. (New) A mobile station according to claim 136, wherein the mobile station

comprises a cipher indication memory block and the radio resource management block is configured to set a cipher mode indication data field of the cipher indication memory

block to correspond with cipher indication data in a cipher mode control signal received

from the mobile communication network.

149. (New) A mobile station according to claim 148, wherein the cipher indication

memory block is configured to issue an interrupt request in response to a change in the

cipher mode indication data field.

150. (New) A mobile station according to claim 149, wherein the user interface block

is configured to detect said interrupt request and to send an inquiry to the cipher

indication memory block to inquire about the state of the cipher mode indication data $\frac{1}{2} \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \int_{\mathbb{$

field and wherein the cipher indication memory block is configured to return an $\,$

indication of the state of the cipher mode indication data field in response to said

inquiry.

151. (New) A mobile station according to claim 150, wherein the user interface block

is configured to control the cipher mode indicator according to said indication.

152. (New) A mobile station according to claim 148, wherein the cipher indication

memory block is configured to provide an indication of the state of said cipher mode

indication data field to the user interface block when the state of said cipher mode

indication data field is changed.

153. (New) A mobile station according to claim 152, wherein the user interface block

is configured to control the cipher mode indicator according to said indication.

154. (New) A mobile station according to claim 148, wherein the user interface block

is configured to send repeated inquiries to the cipher indication memory block about the

state of the cipher mode indication data field, each inquiry being separated in time from $\ensuremath{\mathsf{I}}$

the next by a predetermined interval and wherein the cipher indication memory block is

configured to return an indication of the state of the cipher mode indication data field in

response to each inquiry.

155. (New) A mobile station according to claim 154, wherein the user interface block

is configured to control the cipher mode indicator according to said indication.

156. (New) An apparatus for use within a mobile station, the apparatus comprising:

a cipher indication memory block comprising a cipher mode indication data field, the

cipher mode indication data field for holding cipher indication data indicative of a

ciphering mode used in communication between a mobile station and a mobile

communication network; and

an output for providing the cipher indication data to a user interface block of the

mobile station responsive to a cipher mode enquiry from the user interface block.