04/27/2006 THU 16:42 FAX 949 282 1002 FARJAMI & FARJAMI LLP →→→ USPTO

Ø 005/013

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

List of Claims:

Claims 1-27 (cancelled)

Claim 28 (currently amended): A method of encoding a speech signal, said method

comprising:

processing said speech signal to generate a plurality of frames, wherein each of said

plurality frames includes a plurality of subframes;

coding a previous subframe of said plurality of subframes using Code-Excited Linear

Prediction to generate a previous excitation signal; and

applying short term enhancement using said previous excitation signal to enhance a

current excitation signal for a current subframe;

wherein said current excitation signal is constructed as a function of a gain, a distance to a

peak and a coefficient using $P(n) = C\sum_{i} Gi \cdot \delta(n-Ti) + \delta(n)$, where Gi is a gain, Ti is a distance

for an ith peak, and C is a coefficient, wherein Ti is smaller than pitch period.

Claim 29 (previously presented): The method of claim 28, wherein said short term

enhancement is achieved by using several pulses from said previous excitation signal to generate

one or more short term enhancement pulses based on short term correlation.

Claim 30 (cancelled)

2

Ø006/013

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

Claim 31 (previously presented): The method of claim 28, wherein said short term

enhancement is achieved by weighting said previous excitation signal by a current weighting

filter to estimate correlation peaks at a distance.

Claim 32 (previously presented): The method of claim 31, wherein said short term

enhancement determines less than five peaks and gains per each sub-frame from said previous

excitation signal.

Claim 33 (cancelled)

Claim 34 (currently amended): The method of claim 33 28, wherein gains and distances

are calculated by maximizing correlations of previous excitation signals in a weighted speech

domain.

Claim 35 (currently amended): The method of claim 33 28, wherein short term

enhanced excitation is generated by performing a convolution operation of P(n) with said

excitation signal.

Claims 36-37 (cancelled)

3

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

Claim 38 (currently amended): An encoder for encoding a speech signal, said encoder

comprising:

a speech processing circuitry configured to process said speech signal to generate a

plurality of frames, wherein each of said plurality frames includes a plurality of subframes;

a coding circuitry configured to code a previous subframe of said plurality of subframes

using Code-Excited Linear Prediction to generate a previous excitation signal; and

a short term enhancement circuitry configured to apply short term enhancement using

said previous excitation signal to enhance a current excitation signal for a current subframe;

wherein said current excitation signal is constructed as a function of a gain, a distance to a

peak and a coefficient using $P(n) = C\sum_{i} Gi \cdot \delta(n-Ti) + \delta(n)$, where Gi is a gain, Ti is a distance

for an ith peak, and C is a coefficient, wherein Ti is smaller than pitch period.

Claim 39 (previously presented): The encoder of claim 38, wherein said short term

enhancement is achieved by using several pulses from said previous excitation signal to generate

one or more short term enhancement pulses based on short term correlation.

Claim 40 (cancelled)

Claim 41 (previously presented): The encoder of claim 38, wherein said short term

enhancement is achieved by weighting said previous excitation signal by a current weighting

filter to estimate correlation peaks at a distance.

Ø008/013

04/27/2006 THU 16:43 FAX 949 282 1002 FARJAMI & FARJAMI LLP +++ USPTO

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

Claim 42 (previously presented): The encoder of claim 41, wherein said short term

enhancement determines less than five peaks and gains per each sub-frame from said previous

excitation signal.

Claim 43 (cancelled)

Claim 44 (currently amended): The encoder of claim 43 38, wherein gains and

distances are calculated by maximizing correlations of previous excitation signals in a weighted

speech domain.

Claim 45 (currently amended): The encoder of claim 43 38, wherein short term

enhanced excitation signal is generated by performing a convolution operation of P(n) with said

excitation signal.

Claims 46-47 (cancelled)

Claim 48 (previously presented): The method of claim 28, wherein said current

excitation signal is constructed using an excitation pattern that accounts for a long term

correlation in which a true pitch lag is shorter than a subframe size, while detected pitch lag is

substantially greater than the true pitch lag.

Claim 49 (previously presented): The encoder of claim 38, wherein said current

excitation signal is constructed using an excitation pattern that accounts for a long term

5

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

correlation in which a true pitch lag is shorter than a subframe size, while detected pitch lag is

substantially greater than the true pitch lag.

Claim 50 (new): A method of encoding a speech signal, said method comprising:

processing said speech signal to generate a plurality of frames, wherein each of said

plurality frames includes a plurality of subframes;

coding a previous subframe of said plurality of subframes using Code-Excited Linear

Prediction to generate a previous excitation signal;

determining information of lag and gain from said previous subframe;

scaling said information to generate a scaled information of said previous subframe; and

applying said scaled information of said previous subframe to a current excitation signal

for a current subframe to enhance data used to code said current excitation signal for said current

subframe.

Claim 51 (new): The method of claim 50, wherein said applying adds said scaled

information to said current excitation signal for said current subframe.

Claim 52 (new): The method of claim 50, wherein said scaling generates said scaled

information of said previous excitation signal for a previous peak in said previous subframe, and

said applying uses said scaled information to determine a first approximation of said current

excitation signal for a current peak in said current subframe.

6

Attorney Docket No.: 01CON346P

Serial No.: 09/761,033

Claim 53 (new): The method of claim 52, wherein said applying adds said scaled information to said current excitation signal for said current peak in said current subframe.

Claim 54 (new): The method of claim 50, wherein said current excitation signal is constructed using $P(n) = C\sum_{i} Gi \cdot \delta(n-Ti) + \delta(n)$, where Gi is a gain, Ti is a distance for an ith peak, and C is a coefficient, wherein Ti is smaller than pitch period