

# CHAPTER 3 MATHEMATICAL LOGIC

### **SOLUTIONS**

### **EXERCISE 3.1**

| <b>Q1.</b> Which of the following are statemen |
|------------------------------------------------|
|------------------------------------------------|

(a) The square of an integer is an even integer.

**Ans:** It is a statement.

(b) Do you read at night?

**Ans:** It is not a statement because it is an interrogative sentence.

(c) Come here, Tomba.

**Ans:** It is not a statement because it is an imperative sentence.

(d) If it rains, then grass grows.

**Ans:** It is a statement.

(e) 13 is a composite number.

**Ans:** It is a statement.

(f) A triangle has four sides.

**Ans:** It is a statement.

### Q2. Using the statements

p: Chaoba is a good teacher.

q: Chaoba is a scholar.

Write the following in symbolic form:

(i) Chaoba is not a good teacher but a scholar.

**Ans:** Chaoba is not a good teacher:  $\Box p$ 

 $\therefore \Box p \land q$ 

(ii) Chaoba is a good teacher but not a scholar.

**Ans:** Chaoba is not a scholar :  $\sqcup q$ 

 $\therefore p \land \Box q$ 

(iii) Chaoba is neither a good teacher nor a scholar.

**Ans:**  $\Box p \land \Box q$ 

(iv) Chaoba is a good teacher or he is a scholar and a bad teacher.

Ans:  $p \vee (q \wedge \square p)$ 

- Q3. Given the truth values of p, q and r to be T, F and T respectively. Find the value of:
  - (i)  $(p \lor q) \land (q \lor r)$

**Soln:** Here, the truth table is

| p | q | r | $p \lor q$ | $q \lor r$ | $(q \lor q) \land (q \lor r)$ |
|---|---|---|------------|------------|-------------------------------|
| T | F | T | T          | T          | T                             |

Hence, the truth value of  $(p \lor q) \land (q \lor r)$  is T.

ii)  $(p \Rightarrow q) \Rightarrow (p \land \Box q)$ 

**Soln:** Here, the truth table is

|   |   |   |                   | 91       | Ha.               |                                                  |    |
|---|---|---|-------------------|----------|-------------------|--------------------------------------------------|----|
| p | q | r | $p \Rightarrow q$ | $\Box q$ | $p \wedge \Box q$ | $(p \Rightarrow q) \Rightarrow (p \land \Box q)$ | (6 |
| Т | F | T | F                 | Т        | T                 | EDUCA EDUCA                                      |    |

Hence, the truth value of  $(p \Rightarrow q) \Rightarrow (p \land \Box q)$  is T.

(iii)  $(p \Rightarrow q) \land (q \Rightarrow r)$ 

**Soln:** Here, the truth table is

| p | q | r | $p \Rightarrow q$ | $q \Rightarrow r$ | $(p \Rightarrow q) \land (q \Rightarrow r)$ |
|---|---|---|-------------------|-------------------|---------------------------------------------|
| T | F | T | F                 | T                 | F                                           |

Hence, the truth value of  $(p \Rightarrow q) \land (q \Rightarrow r)$  is F.



(iv) 
$$(q \wedge r) \Rightarrow p$$

**Soln:** Here, the truth table is

| p | q | r | $q \wedge r$ | $(q \wedge r) \Rightarrow p$ |
|---|---|---|--------------|------------------------------|
| T | F | T | F            | T                            |

 $<sup>\</sup>therefore$  The truth value of  $(q \land r) \Rightarrow p$  is T.

(v) 
$$q \lor (r \Rightarrow p)$$

**Soln:** Here, the truth table is

| p | q | r | $r \Rightarrow p$ | $q \lor (r \Rightarrow p)$ |
|---|---|---|-------------------|----------------------------|
| T | F | T | T                 | Т                          |

<sup>...</sup> The truth value of  $q \lor (r \Rightarrow p)$  is T.

# Q4. Construct truth table for the following statements:-

(i) 
$$(p \wedge q) \vee \Box r$$

**Soln:** Truth table for  $(p \land q) \lor \Box r$ 

| p | q | r | $p \wedge q$ | $\Box r$   | $(p \wedge q) \vee \Box r$ |
|---|---|---|--------------|------------|----------------------------|
| T | T | T | Т            | F          | T                          |
| T | T | F | T            | TITI       | Т                          |
| T | F | T | F            | F          | F                          |
| T | F | F | F            | T          | T <sub>m</sub> om)         |
| F | T | T | F            | F          | FIDUC                      |
| F | T | F | F            | T. TOE WE  | OT                         |
| F | F | T | F            | WINDER WAR | E Maniph                   |
| F | F | F | F            | DET ament  | T                          |



(ii) 
$$(p \Leftrightarrow q) \land (\Box r \Rightarrow p)$$

**Soln:** Truth table for  $(p \Leftrightarrow q) \land (\Box r \Rightarrow p)$  is

| p | q | r | $\Box r$ | $p \Leftrightarrow q$ | $\Box r \Rightarrow p$ | $(p \Leftrightarrow q) \land (\Box r \Rightarrow p)$ |
|---|---|---|----------|-----------------------|------------------------|------------------------------------------------------|
| T | T | T | F        | T                     | T                      | T                                                    |
| T | T | F | T        | T                     | Т                      | T                                                    |
| T | F | T | F        | F                     | Т                      | F                                                    |
| T | F | F | T        | F                     | Т                      | F                                                    |
| F | T | T | F        | F                     | Т                      | F                                                    |
| F | T | F | T        | F                     | F                      | F                                                    |
| F | F | T | F        | T                     | T                      | T                                                    |
| F | F | F | T        | T                     | F                      | F                                                    |

(iii) 
$$(p \lor \Box q) \land r$$

**Soln:** The truth table for  $(p \lor \Box q) \land r$  is

| p | q | r | $\Box q$ | $p \lor \Box q$ | $(p \lor \Box q) \land r$ |
|---|---|---|----------|-----------------|---------------------------|
| T | T | T | F        | T               | T                         |
| T | T | F | F        | T               | F                         |
| T | F | T | Т        | T               | T                         |
| T | F | F | Т        | T               | F                         |
| F | T | T | F        | F               | F                         |
| F | T | F | F        | F               | F                         |
| F | F | T | T        | T               | T                         |
| F | F | F | T        | T               | F                         |

(iv) 
$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

|   | (ir                                                                                                                                                                                      | (iv) $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$                                                |   |   |        |                |   |  |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---|---|--------|----------------|---|--|--|--|--|--|--|
|   | (iv) $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$<br>Soln: The truth table for $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ is |                                                                                                                               |   |   |        |                |   |  |  |  |  |  |  |
| p | q                                                                                                                                                                                        | $   (P \rightarrow q) \land (q \rightarrow i)     (P \rightarrow q) \land (q \rightarrow i) \rightarrow (P \rightarrow i)   $ |   |   |        |                |   |  |  |  |  |  |  |
| T | T                                                                                                                                                                                        | T                                                                                                                             | T | T | (T)    | rernnTene<br>F | T |  |  |  |  |  |  |
| T | T                                                                                                                                                                                        | F                                                                                                                             | T | F | FIN GO | F              | T |  |  |  |  |  |  |
| T | F                                                                                                                                                                                        | T                                                                                                                             | F | T | F      | T              | T |  |  |  |  |  |  |
| T | F                                                                                                                                                                                        | F                                                                                                                             | F | T | F      | F              | T |  |  |  |  |  |  |
| F | T                                                                                                                                                                                        | T                                                                                                                             | T | T | T      | T              | T |  |  |  |  |  |  |
| F | T                                                                                                                                                                                        | F                                                                                                                             | T | F | F      | T              | T |  |  |  |  |  |  |
| F | F                                                                                                                                                                                        | T                                                                                                                             | T | T | T      | T              | T |  |  |  |  |  |  |
| F | F                                                                                                                                                                                        | F                                                                                                                             | T | T | T      | T              | T |  |  |  |  |  |  |



### Q5. Write the negations of the following?

(a) 5 is a rational number.

**Ans:** 5 is not a rational number.

(b) 3 is not a prime.

**Ans:** 3 is a prime.

(c) All integers are rational numbers.

**Ans:** Some integers are not rational numbers.

(d) There are natural numbers which are not integers.

**Ans:** All natural numbers are integers.

(e) A triangle has four sides.

**Ans:** It is not true that a triangle has four sides.

(f) Man is mortal.

**Ans:** Man is immortal.

(g) If water is cold, then fire is hot.

**Ans:** Water is cold but fire is not hot.

(h) Kumar and Kanta are intelligent.

**Ans:** Kumar or Kanta is not intelligent.

(i) Some students never read.

**Ans:** There is no student who never reads.

(j) Every student is honest.

**Ans:** some students are dishonest.

(k) An integer is either positive or negative.

**Ans:** It is not the case that every integer is either positive or negative.

(l) If there is a will, then there is a way.

**Ans:** There is a will and there is not a way.



# Q6. Find the negation of

(i) 
$$(p \lor q) \land r$$

**Ans:** The negation of  $(p \lor q) \land r$  is  $(\Box p \land \Box q) \lor \Box r$ .

The truth table is given below:

| p | q | r | $p \lor q$ | $(p \lor q) \land r$ | $\Box p \land \Box q$ | $(\Box p \land \Box q) \lor \Box r$ |
|---|---|---|------------|----------------------|-----------------------|-------------------------------------|
| T | T | T | T          | T                    | F                     | F                                   |
| T | F | T | T          | T                    | F                     | F                                   |
| T | T | F | T          | F                    | F                     | T                                   |
| T | F | F | T          | F                    | F                     | T                                   |
| F | T | T | T          | T                    | F                     | F                                   |
| F | F | T | F          | F                    | T                     | T                                   |
| F | T | F | T          | F                    | F                     | , //T                               |
| F | F | F | F          | F                    | Т                     | T                                   |

# (ii) $p \wedge q \Rightarrow r$

**Soln:** The negation of  $p \wedge q \Rightarrow r$  is  $(p \wedge q) \wedge \Box r$ 

| p | q | r | $p \wedge q$ | $(p \land q) \Rightarrow r$ |         | $(p \wedge q) \wedge \Box r$ |               |
|---|---|---|--------------|-----------------------------|---------|------------------------------|---------------|
| T | T | T | T            | T                           | F       | F                            | (6)           |
| T | T | F | T            | F                           | T       | T                            | (MOD) TON (C) |
| T | F | T | F            | T                           | F       | F                            | EDUCATION     |
| T | F | F | F            | T                           | T       | TO F OF                      |               |
| F | T | T | F            | T                           | Frances | ARTMENT Hanip                | 17.7          |
| F | T | F | F            | T                           | TIE     | Ament F                      |               |
| F | F | T | F            | T                           | FGove   | F                            |               |
| F | F | F | F            | T                           | T       | F                            |               |



#### $p \land (q \Rightarrow r)$ (iii)

**Soln:** The negation of  $p \land (q \Rightarrow r)$  is  $\Box p \lor (q \land \Box r)$ 

| p | q | r | $q \Rightarrow r$ | $p \land (q \Rightarrow r)$ | $\Box p$ | $q \wedge \Box r$ | $\Box p \lor (q \land \Box r)$ |
|---|---|---|-------------------|-----------------------------|----------|-------------------|--------------------------------|
| T | T | T | T                 | T                           | F        | F                 | F                              |
| T | T | F | F                 | F                           | F        | T                 | Т                              |
| T | F | T | T                 | T                           | F        | F                 | F                              |
| T | F | F | T                 | T                           | F        | F                 | F                              |
| F | T | T | T                 | F                           | T        | F                 | T                              |
| F | T | F | F                 | F                           | T        | T                 | T                              |
| F | F | T | T                 | F                           | T        | F                 | T                              |
| F | F | F | T                 | F                           | T        | F                 | Т                              |

#### Examine whether the following statements are tautologies or contradictions. **Q7.**

a) 
$$p \Rightarrow p \lor q$$

**Soln:** The truth table for  $p \Rightarrow p \lor q$  is

| p | q | $p \vee q$ | $p \Rightarrow p \lor q$ |
|---|---|------------|--------------------------|
| T | T | T          | T                        |
| T | F | T          | T                        |
| F | T | T          | T                        |
| F | F | F          | T                        |

The truth values of the statement  $p \Rightarrow p \lor q$  are all true. Hence the statement is a EDUCATION (S) tautology.

**(b)** 
$$p \land q \Rightarrow q$$

**Soln:** The truth table for  $p \land q \Rightarrow q$  is

| p | q | $p \wedge q$ | $p \land q \Rightarrow q$ |
|---|---|--------------|---------------------------|
| T | T | T            | GOT T                     |
| T | F | Figor        | Т                         |
| F | T | F            | T                         |
| F | F | F            | T                         |

Since the truth value of the statement  $p \land q \Rightarrow q$  are all true. Hence the given statement is a tautology.



(c) 
$$\Box (p \lor q) \Leftrightarrow \Box p \land \Box q$$

**Soln:** The truth table of the statement  $\Box (p \lor q) \Leftrightarrow \Box p \land \Box q$  is

| p | q | $p \vee q$ | $\Box \ \big(  p \vee q \big)$ | $\Box p \land \Box q$ | $\Box (p \lor q) \Leftrightarrow \Box p \land \Box q$ |
|---|---|------------|--------------------------------|-----------------------|-------------------------------------------------------|
| T | T | T          | F                              | F                     | T                                                     |
| T | F | T          | F                              | F                     | T                                                     |
| F | T | T          | F                              | F                     | Т                                                     |
| F | F | F          | T                              | T                     | T                                                     |

Since the truth values of the statement are all true.

... The given statement is a tautology.

(d) 
$$(p \wedge q) \wedge \Box (p \vee q)$$

**Soln:** The truth table of the statement  $(p \land q) \land \Box (p \lor q)$  is

| p | q | $p \wedge q$ | $p \vee q$ | $\Box \left( p \vee q \right)$ | $(p \wedge q) \wedge \Box (p \vee q)$ |
|---|---|--------------|------------|--------------------------------|---------------------------------------|
| T | T | T            | T          | F                              | F                                     |
| T | F | F            | T          | F                              | F                                     |
| F | T | F            | T          | F                              | F                                     |
| F | F | F            | F          | T                              | F                                     |

Since the truth values of the statement are all false.

... The given statement is a contradiction.

(e) 
$$(p \lor q) \land r \Rightarrow (q \lor r)$$

**Soln:** The truth table of the given statement is

|   |   |   |              | 9 9 1 1              | $\mathcal{A}(a)$ |                                              | 1 |
|---|---|---|--------------|----------------------|------------------|----------------------------------------------|---|
| p | q | r | $(p \lor q)$ | $(p \lor q) \land r$ | $q \vee r$       | $(p \vee q) \wedge r \Rightarrow (q \vee r)$ | ) |
| T | T | T | T            | T                    | T                | STUP OF EDUCA                                |   |
| T | T | F | T            | F                    | Torc             | TOE NOW OF                                   |   |
| T | F | T | T            | T                    | Mer'T            | MENT T                                       |   |
| T | F | F | T            | SF                   | F                | T                                            |   |
| F | T | T | T            | The                  | T                | T                                            |   |
| F | T | F | T            | F                    | T                | T                                            |   |
| F | F | T | F            | F                    | T                | T                                            |   |
| F | F | F | F            | F                    | F                | Т                                            |   |

Here, the truth values of the given statement are all true.

Hence, the given statement is a tautology.



(f) 
$$(p \land \Box q) \land q \Leftrightarrow p \land q$$

**Soln:** The truth table the statement  $(p \land \Box q) \land q \Leftrightarrow p \land q$  is

| p | q | $\Box q$ | $p \wedge \Box q$ | $(p \land \Box q) \land q$ | $p \wedge q$ | $(p \land \Box q) \land q \Leftrightarrow p \land q$ |
|---|---|----------|-------------------|----------------------------|--------------|------------------------------------------------------|
| T | T | F        | F                 | F                          | T            | F                                                    |
| T | F | T        | T                 | F                          | F            | T                                                    |
| F | T | F        | F                 | F                          | F            | T                                                    |
| F | F | T        | F                 | F                          | F            | T                                                    |

The truth values are not all true nor false.

 $\therefore$  The given statement  $(p \land \Box q) \land q \Leftrightarrow p \land q$  is neither a tautology nor a contradiction.

(g) 
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

**Soln:** The truth table of the given statement is

| p | q | r | $q \vee r$ | $p \wedge (q \vee r)$ | $(p \wedge q)$ | $(p \wedge r)$ | $(p \wedge q) \vee (p \wedge r)$ | $p \land (q \lor r) \Leftrightarrow (p \land q) \lor$ |
|---|---|---|------------|-----------------------|----------------|----------------|----------------------------------|-------------------------------------------------------|
|   |   |   |            |                       |                |                |                                  | $(p \wedge r)$                                        |
| T | T | T | T          | T                     | T              | T              | Т/                               | T                                                     |
| T | T | F | T          | T                     | T              | F              |                                  | T                                                     |
| T | F | T | T          | T                     | F              | T              | T\T                              | T                                                     |
| T | F | F | F          | F                     | F              | F              | F                                | T                                                     |
| F | T | T | T          | F                     | F              | F              | F                                | T T                                                   |
| F | T | F | T          | F                     | F              | F              | F                                | T                                                     |
| F | F | T | T          | F                     | F              | F              | F                                | T                                                     |
| F | F | F | F          | F                     | F              | F              | F                                | T                                                     |

The truth values of the given statement are all true.

:. The given statement is a tautology.

**(h)** 
$$(p \Rightarrow q) \Leftrightarrow (\Box q \Rightarrow \Box p)$$

**Soln:** The truth table of the statement  $(p \Rightarrow q) \Leftrightarrow (\Box q \Rightarrow \Box p)$  is

|   |   |          |          |                   | 1700                              | - T 312                                                         |
|---|---|----------|----------|-------------------|-----------------------------------|-----------------------------------------------------------------|
| p | q | $\Box p$ | $\Box q$ | $p \Rightarrow q$ | $\square q \Rightarrow \square p$ | $(p \Rightarrow q) \Leftrightarrow (\Box q \Rightarrow \Box p)$ |
| T | T | F        | F        | T                 | T                                 | T                                                               |
| T | F | F        | T        | F                 | F                                 | Т                                                               |
| F | T | T        | F        | T                 | T                                 | Т                                                               |
| F | F | T        | T        | T                 | T                                 | T                                                               |

The truth values of the given statement are all true.

:. The given statement is a tautology.



(i) 
$$(p \Leftrightarrow q) \Leftrightarrow (p \land q) \lor (\Box p \land \Box q)$$

**Soln:** The truth table of the given statement is

| p | q | $p \Leftrightarrow q$ | $p \wedge q$ | $\Box p$ | $\square q$ | $\Box p \land \Box q$ | $(p \land q) \lor (\Box p \land \Box q)$ | $(p \Leftrightarrow q) \Leftrightarrow (p \land q) \lor (\Box p \land \Box q)$ |
|---|---|-----------------------|--------------|----------|-------------|-----------------------|------------------------------------------|--------------------------------------------------------------------------------|
|   |   |                       |              |          |             |                       |                                          |                                                                                |
| T | T | T                     | T            | F        | F           | F                     | T                                        | T                                                                              |
| T | F | F                     | F            | F        | T           | F                     | F                                        | T                                                                              |
| F | T | F                     | F            | T        | F           | F                     | F                                        | T                                                                              |
| F | F | T                     | F            | T        | T           | T                     | T                                        | Т                                                                              |

The truth values of the given statement are all true.

... The given statement is a tautology.

# Q8. The negation of the statement "3>5 and 5-3=2" is

- **A.**  $3 > 5 \text{ and } 5 3 \neq 2$
- **B.** 3 > 5 and  $5 3 \neq 2$
- C.  $3 > 5 \text{ or } 5 3 \neq 2$
- **D.**  $3 > 5 \text{ and } 5 3 \neq 2$

Ans: C.  $3 > 5 \text{ or } 5 - 3 \neq 2$ 

# Q9. The negation of 'If it rains, then grass is green' is

- **A.** If it rains, then grass is not green.
- **B.** If it does not rain, then grass is green.
- **C.** It does not rain but grass is green.
- **D.** It rains but grass is not green.

Ans: D. It rains but grass is not green.

## Q10. The converse of the statement "If a whole number is even, then it is divisible by 2' is

- **A.** An even whole number is not divisible by 2.
- **B.** If a whole number is divisible by 2, then it is even.
- **C.** If a whole number is even, then it is not divisible by 2.
- **D.** For a whole number to be even it is sufficient that it is divisible by 2.

Ans: B. If a whole number is divisible by 2, then it is even.

### Q11. State whether the following statements are atomic or compound:

1. All natural numbers are integers.

> Ans: It is an atomic statement because it cannot be broken up into two or more statements.

2. If the mountain is high, then the sea is deep.

It is a compound statement because it is a combination of two simple statements.

**3.** Integers are not rational numbers.

**Ans:** It is an atomic statement.

An integer is called a prime if it has no proper factor. 4.

**Ans:** It is a compound statement.

An integer having proper factors is said to be composite. 5.

It is an atomic statement.

### Q12. Write each sentence in the conditional form: (using 'if - then')

All rational numbers are real numbers. (a)

If a number is rational then it is a real number.

**(b)** Freezing water expands.

**Ans:** If water freezes, then it expands.

(c) A positive integer having no proper divisor is a prime.

> EDUCATION (S) If a positive integer has no proper divisor, then it is a prime.

**(d)** Two sides of isosceles triangle are equal.

**Ans:** If a triangle is isosceles, then two of its sides are equal.

### When it does not rain but grass grows, what is the truth value of the statement "If it rains, Q13. then grass grows"?

Ans: Here, both the statements 'it rains' and 'grass grows', have the truth value T. So, the truth value of the given statement is T.

\*\*\*\*\*