

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт СКМИТ

Ковч Н. С. 609 гр.

Contents

Математическая постановка задачи	3	
Метод фиктивных областей	3	
Разностная схема решения задачи	4	
Метод решения СЛАУ	5	
Последовательный код и результаты	6	
OpenMP версия	8	

Математическая постановка задачи

В области D, ограниченной треугольником γ с вершинами в точках (-3,0),(3,0),(0,2), рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = 1, \quad (x, y) \in \text{int } D. \tag{1}$$

Решение уравнения дополняется граничным условием Дирихле:

$$u(x,y) = 0, \quad (x,y) \in \gamma. \tag{2}$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению (1) в области D и краевому условию (2) на её границе.

Метод фиктивных областей

Для приближенного решения задачи (1), (2) был использован метод фиктивных областей. Область D принадлежит прямоугольнику

$$\Pi = \{(x, y) : -3 < x < 3, 0 < y < 2\}$$

Область $\hat{D} = \Pi \setminus \overline{D}$ называется фиктивной областью. Выберем и зафиксируем малое $\epsilon > 0$. В прямоугольнике Π рассматривается задача Дирихле:

$$-\frac{\partial}{\partial x}(k(x,y)\frac{\partial v}{\partial x}) - \frac{\partial}{\partial y}(k(x,y)\frac{\partial v}{\partial y}) = F(x,y), \quad (x,y) \in \Pi \setminus \gamma$$
 (3)

$$v(x,y) = 0, \quad (x,y) \in \Gamma. \tag{4}$$

с кусочно-постоянным коэффициентом

$$k(x,y) = \begin{bmatrix} 1, & (x,y) \in D, \\ \frac{1}{\epsilon}, & (x,y) \in \hat{D} \end{bmatrix}$$
 (5)

и правой частью

$$F(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 0, & (x,y) \in \hat{D} \end{cases}$$

$$(6)$$

Здесь Γ – граница прямоугольника Π . Требуется найти непрерывную в $\overline{\Pi}$ функцию v(x,y), удовлетворяющую дифференциальному уравнению задачи (3) всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямоугольника, и такую, чтобы вектор потока

$$W(x,y) = -k(x,y)(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника $\Pi.$

Разностная схема решения задачи

Краевая задача решается численно методом конечных разностей. В $\overline{\Pi}$ определяется равномерная прямоугольная сетка $\overline{\omega_h} = \overline{\omega_1} \times \overline{\omega_2}$:

$$\overline{\omega_1} = \{ x_i = -3 + ih_x, i = \overline{0, M} \}, \quad \overline{\omega_2} = \{ y_j = jh_y, j = \overline{0, N} \}, \tag{7}$$

где $h_x = \frac{6}{M}, h_y = \frac{2}{N}$. Через ω_h обозначим множество внутренних узлов сетки $\overline{\omega_h}$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ . Рассматривается линейное пространство H функций, заданных на сетке ω_h . Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \omega_h$. В пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_x h_y u_{ij} v_{ij}, \quad ||u||_E = \sqrt{(u,u)}.$$
 (8)

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки $\overline{\omega_h}$ аппроксимируется разностным уравнением

$$-\frac{1}{h_x}\left(a_{i+1j}\frac{w_{i+1j}-w_{ij}}{h_x}-a_{ij}\frac{w_{ij}-w_{i-1j}}{h_x}\right)-\frac{1}{h_y}\left(b_{ij+1}\frac{w_{ij+1}-w_{ij}}{h_y}-b_{ij}\frac{w_{ij}-w_{ij-1}}{h_y}\right)=F_{ij},$$

$$i=\overline{1,M-1},j=\overline{1,N-1}, \quad (9)$$

в котором коэффициенты

$$a_{ij} = \frac{1}{h_y} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt, \quad b_{ij} = \frac{1}{h_x} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$
 (10)

при всех $i=\overline{1,M},\,j=\overline{1,N}.$ Здесь полуцелые узлы

$$x_{i\pm 1/2} = x_i \pm h_x/2, \quad y_{j\pm 1/2} = y_j \pm h_y/2.$$
 (11)

Правая часть разностного уравнения

$$F_{ij} = \frac{1}{h_x h_y} \int_{\Pi_{ij}} F(x, y) dx dy, \quad \Pi_{ij} = \{(x, y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{j-1/2} \le y \le y_{j+1/2}\}$$
(12)

при всех $i = \overline{1, M-1}, j = \overline{1, N-1}.$

Краевые условия Дирихле аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, \quad (x_i, y_j) \in \Gamma.$$

$$(13)$$

Введя стандартные обозначения для разностной производной вперед и назад, разностная схема (9) записывается в следующем виде

$$-(aw_{\overline{x}})_{x,ij} - (bw_{\overline{y}})_{y,ij} = F_{ij}, \quad i = \overline{1, M-1}, j = \overline{1, N-1}. \tag{14}$$

Получаем систему линейный уравнений

$$Aw = -(aw_{\overline{x}})_x - (bw_{\overline{y}})_y = F. \tag{15}$$

3десь A — самосопряженный и положительно определенный оператор.

Метод решения СЛАУ

Приближенное решение разностной схемы (9) получено итерационным методом сопряженных градиентов. Для ускорения сходимости метода применяется диагональное предобуславливание. Оператор $D: H \to H$ действует на сеточные функции $w \in H$ по правилу

$$(Dw)_{ij} = \left[(a_{i+1j} + a_{ij})/h_x^2 + (b_{ij+1} + b_{ij})/h_y^2 \right] w_{ij}, \quad i = \overline{1, M-1}, j = \overline{1, N-1}.$$
 (16)

Начальное приближение $w^{(0)}$ выбирается нулевым. Первая итерация совершается по формулам скорейшего спуска. Пусть $r^{(0)}=B-Aw^{(0)}=B$ – невязка начального приближения, а функция $z^{(0)}\in H$ удовлетворяет уравнению $Dz^{(0)}=r^{(0)}$.

Направление спуска $p^{(1)}=z^{(0)},$ а шаг вдоль направления спуска определяется параметром

$$\alpha_1 = \frac{(z^{(0)}, r^{(0)})}{(Ap^{(1)}, p^{(1)})}. (17)$$

Следующее приближение $w^{(1)}$ вычисляется согласно равенству

$$w^{(1)} = w^{(0)} + \alpha_1 p^{(1)}. (18)$$

Дальнейшие вычисления производятся по следующим формулам. Пусть выполнено k итераций метода и функции $r^{(k-1)}, z^{(k-1)}, p^{(k)}, w^{(k)} \in H$, а также коэффициент α_k являются известными.

$$r^{(k)} = r^{(k-1)} - \alpha_k A p^{(k)}, \quad D z^{(k)} = r^{(k)}. \tag{19}$$

$$p^{(k+1)} = z^{(k)} + \beta_{k+1} p^{(k)}, \quad \beta_{k+1} = \frac{(z^{(k)}, r^{(k)})}{(z^{(k-1)}, r^{(k-1)})}.$$
 (20)

$$w^{(k+1)} = w^{(k)} + \alpha_{k+1} p^{(k+1)}, \quad \alpha_{k+1} = \frac{(z^{(k)}, r^{(k)})}{(Ap^{(k+1)}, p^{(k+1)})}.$$
 (21)

В качестве условия остановки итерационного процесса использовано неравенство

$$||w^{(k+1)} - w^{(k)}||_E < \delta \tag{22}$$

Метод сопряженных градиентов является методом вариационного типа, в основе которого находится задача минимизации квадратичного функционала

$$J(w) = 0.5(Aw, w) - (B, w), (23)$$

который должен монотонно убывать на итерационной последовательности $w^{(k)}, k = 0, 1, \dots$

Последовательный код и результаты

Для получения коэффициентов F_{ij} было использовано упрощенное правило: если клетка Π_{ij} целиком содержится в области \overline{D} , то $F_{ij}=1$, иначе $F_{ij}=0$. До этого использовалась формула шнурования и Sutherland-Hodgman algorithm для расчета площади пересечения. В качестве констант δ и ϵ взяты 1e-10 и $1/\max(h_x^2,h_y^2)$ соответственно.

Ниже представленны графики приближенных решений, а также соответствующие им графики энергетических функционалов $J(w^{(k)})$ и норм $||w^{(k+1)} - w^{(k)}||_E$ на сгущающихся сетках. Для построения графиков были использованы библиотеки matplotlib и plotly языка Python.

Figure 1: M = 20, N = 20

Figure 2: M = 40, N = 40

Figure 3: M = 100, N = 100

Figure 4: M = 400, N = 600

Figure 5: M = 800, N = 1200

Figure 6: M = 1000, N = 1000

OpenMP версия

Для распараллеливания кода использовались OpenMP директивы

- 1. omp parallel for simd для простых циклов: вычисление сеточной функции z, вычисление суммы двух векторов)
- 2. omp parallel for simd reduction(+:x) для вычисления скалярного произведения (x = dot_product) и для вычисления функционала энергии (x = energy)
- 3. omp parallel for collapse(2) для вложенных циклов: вычисление параметров a_{ij}, b_{ij}, F_{ij} , для вычисления элементов матрицы D, а также для вычисления величины $Ap^{(k)}$

Для вычисления времени работы в последовательной программы использовался тип $clock_t$ и функция clock(), а для параллельной функция $omp_get_wtime()$. Ниже приведена таблица, содержащая информацию о времени вычисления решения на cetkax M = 400, N = 600 и M = 800, N = 1200.

OpenMP-нити	$\mathbf{M} \times \mathbf{N}$	Число итераций	Время решения	Ускорение
2	400 ×600	1651	4.01883	2.13
4	400 ×600	1651	1.96632	4.36
8	400 ×600	1651	1.11156	7.72
16	400 ×600	1651	0.83429	10.29
32	400 ×600	1651	0.89607	9.58
64	400 ×600	1651	0.87758	9.78
128	400 ×600	1651	1.86056	4.61
2	800 ×1200	2833	27.70785	2.14
4	800 ×1200	2833	13.41475	4.43
8	800 ×1200	2833	7.00864	8.48
16	800 ×1200	2833	4.61571	12.88
32	800 ×1200	2833	4.33175	13.72
64	800 ×1200	2833	4.64785	12.79
128	800 ×1200	2833	7.08512	8.39

График ускорения:

Table 1: Результаты экспериментов 9