Softmax $p(1|x) = \frac{1}{1 + e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1 + e^{\hat{f}(x)}}$ **Sigmoid:** $\frac{1}{1+\exp(-z)}$ **Empirical Risk** $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$ Optimization goal: argmin $\sum_{i=1}^{n} ||x_i - z_i w||_2^2$ Universal Approximation Theorem: We can Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_j(x)}$ $||w||_2 = 1,z$ **Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ approximate any arbitrary smooth target func-**Linear Classifiers** tion, with 1+ layer with sufficient width. The optimal solution is given by $z_i = w^{\top} x_i$. It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \leq R(\hat{f})$. We call $R(\hat{f})$ $f(x) = w^{\top}x$, the decision boundary f(x) = 0. **Forward Propagation** Substituting gives us: the generalization error. If data is lin. sep., grad. desc. converges to Input: $v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$ $\hat{w} = \operatorname{argmax}_{||w||_2 = 1} w^{\top} \Sigma w$ Bias Variance Tradeoff: **Maximum-Margin Solution:** Pred. error = $\frac{\text{Bias}^2}{\text{Pred}}$ + $\frac{\text{Variance}}{\text{Variance}}$ + $\frac{\text{Noise}}{\text{Variance}}$ Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$ Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$ is the empirical covari $w_{\text{MM}} = \operatorname{argmax} \operatorname{margin}(w) \text{ with } ||w||_2 = 1$ $\mathbb{E}_D[R(\hat{f})] = \mathbb{E}_x[f^*(x) - \mathbb{E}_D[\hat{f}_D(x)]]^2$ Backpropagation ance. Closed form solution given by the princi-Where margin(w) = min_i $y_i w^{\top} x_i$. $+\mathbb{E}_{x}[\mathbb{E}_{D}[(\hat{f}_{D}(x)-\mathbb{E}_{D}[\hat{f}_{D}(x)])^{2}]]+\sigma$ Non-convex optimization problem: pal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \ge \cdots \ge$ **Support Vector Machines Bias**: how close \hat{f} can get to f^* $\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$ $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$ **Hard SVM Variance**: how much \hat{f} changes with DFor k > 1 we have to change the normalization $\hat{w} = \min_{w} ||w||_2 \text{ s.t. } \forall i \ y_i w^{\top} x_i \geq 1$ $\left(\nabla_{W^{(L-1)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$ Regression **Soft SVM** allow "slack" in the constraints to $W^{\top}W = I$ then we just take the first k princi-**Squared loss** (convex) pal eigenvectors so that $W = [v_1, \dots, v_k]$. $\hat{w} = \min_{i=1}^{1} \frac{1}{2} ||w||_{2}^{2} + \lambda \sum_{i=1}^{n} \max(0, 1 - y_{i} w^{\top} x_{i})$ $\left(\nabla_{W^{(L-2)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$ $\frac{1}{n}\sum_{i}(y_{i}-f(x_{i}))^{2}=\frac{1}{n}||y-Xw||_{2}^{2}$ PCA through SVD $\nabla_w L(w) = 2X^{\top}(Xw - y)$ Metrics hinge loss Choose +1 as the more important class. • The first k col of V where $X = USV^{\top}$. Only compute the gradient. Rand. init. Solution: $\hat{w} = (X^{\top}X)^{-1}X^{\top}y$ linear dimension reduction method weights by distr. assumption for φ . ($2/n_{in}$ for · first principal component eigenvector of Regularization True Class error₁/FPR : ReLu and $1/n_{in}$ or $1/(n_{in} + n_{out})$ for Tanh) data covariance matrix with largest eigen-**Lasso Regression** (sparse) error₂/FNR: Overfitting $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_1$ • covariance matrix is symmetric \rightarrow all Regularization; Early Stopping; Dropout: Precision ignore hidden units with prob. p, after trainprincipal components are mutually or-TPR / Recall : $\frac{1P}{TP + FN}$ Ridge Regression ing use all units and scale weights by p; Batch $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_2^2$ AUROC: Plot TPR vs. FPR and compare dif- Normalization: normalize the input data (mean Kernel PCA ferent ROC's with area under the curve. **F1-Score**: $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$ 0, variance 1) in each layer $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = X^{\top} X \Rightarrow \text{kernel trick:}$ $\nabla_{w} L(w) = 2X^{\top} (Xw - y) + 2\lambda w$ **CNN** $\varphi(W * v^{(l)})$ $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$ Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$ Goal: large recall and small FPR. For each channel there is a separate filter. Closed form solution: large $\lambda \Rightarrow$ larger bias but smaller variance Kernels Convolution $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^\top, \lambda_1 \ge \cdots \ge 0$ Parameterize: $w = \Phi^{\top} \alpha$, $K = \Phi \Phi^{\top}$ C = channel F = filterSize inputSize =**Cross-Validation** • For all folds i = 1, ..., k: A kernel is **valid** if K is sym.: k(x,z) = k(z,x) padding = P stride = S A point x is projected as: $z_i = \sum_{i=1}^n \alpha_i^{(i)} k(x_i, x)$ Output size $1 = \frac{I + 2P - K}{S} + 1$ - Train \hat{f}_i on $D' - D'_i$ and psd: $z^{\top}Kz > 0$ **Autoencoders** - Val. error $R_i = \frac{1}{|D'|} \sum \ell(\hat{f}_i(x), y)$ **lin.**: $k(x,z) = x^{T}z$, **poly.**: $k(x,z) = (x^{T}z+1)^{m}$ We want to minimize $\frac{1}{n}\sum_{i=1}^{n}||x_i-\hat{x}_i||_2^2$. Output dimension = $l \times l \times m$ **rbf**: $k(x,z) = \exp(-\frac{||x-z||_{\alpha}}{\tau})$ • Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$ $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$ Inputs = W * H * D * C * N $\alpha = 1 \Rightarrow \text{laplacian kernel}$ Lin.activation func. & square loss => PCA • Pick model with lowest CV error $\alpha = 2 \Rightarrow$ gaussian kernel Trainable parameters = F * F * C * # filters**Statistical Perspective Gradient Descent** Converges only for convex case. **Kernel composition rules Unsupervised Learning** Assume that data is generated iid. by some $k = k_1 + k_2$, $k = k_1 \cdot k_2$ $\forall c > 0$. $k = c \cdot k_1$, k-Means Clustering $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$ p(x,y). We want to find $f: X \mapsto Y$ that mini- $\forall f$ convex. $k = f(k_1)$, holds for polynoms with Optimization Goal (non-convex): For linear regression: mizes the **population risk**. pos. coefficients or exp function. $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots, k\}} ||x_i - \mu_j||_2^2$ Opt. Predictor for the Squared Loss $||w^t - w^*||_2 \le ||I - \eta X^\top X||_{op}^t ||w^0 - w^*||_2$ f minimizing the population risk: $\forall f. k(x, y) = f(x)k_1(x, y)f(y)$ Lloyd's heuristics: Init.cluster centers $\mu^{(0)}$: $\rho = ||I - \eta X^{\top} X||_{op}^{t}$ conv. speed for const. η . Mercers Theorem: Valid kernels can be de $f^*(x) = \mathbb{E}[y \mid X = x] = \int y \cdot p(y \mid x) dy$ Assign points to closest center Opt. fixed $\eta = \frac{\bar{2}}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \leq \frac{2}{\lambda_{\max}}$. composed into a lin. comb. of inner products. Estimate $\hat{p}(y \mid x)$ with MLE: • Update μ_i as mean of assigned points **Kern. Ridge Reg.** $\frac{1}{n}||y-K\alpha||_2^2 + \lambda \alpha^\top K\alpha$ $\theta^* = \operatorname{argmax} \hat{p}(y_1, ..., y_n \mid x_1, ..., x_n, \theta)$ **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \nabla \ell(w^t)$ Converges in exponential time. **KNN Classification** Learning rate η_t guarantees convergence if Initialize with **k-Means++**: = argmin $-\sum \log p(y_i \mid x, \theta)$ Pick k and distance metric d • Random data point $\mu_1 = x_i$ $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$ • For given x, find among $x_1, ..., x_n \in D$ the • Add seq μ_2, \dots, μ_k rand., with prob: The MLE for θ linear regression is unbiased and Classification k closest to $x \rightarrow x_{i_1}, ..., x_{i_k}$ given $\mu_{1:i}$ pick $\mu_{i+1} = x_i$ where p(i) =**Zero-One loss** not convex or continuous has minimum variance among all unbiased esti-• Output the majority vote of labels $\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \operatorname{sgn}\hat{f}(x)}$ $\frac{1}{7}\min_{l \in \{1,...,j\}} ||x_i - \mu_l||_2^2$ mators. However, it can overfit. **Neural Networks** Ex. Conditional Linear Gaussian w are the weights and $\varphi : \mathbb{R} \mapsto \mathbb{R}$ is a nonlinear Converges expectation $\mathscr{O}(\log k) * \text{opt.solution}$. **Logistic loss** $\log(1 + e^{-y\hat{f}(x)})$ Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ activation function: $\phi(x, w) = \phi(w^{T}x)$ Find k by negligible loss decrease or reg. $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^{\top}x$: **ReLU:** max(0,z), **Tanh:** $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ $\hat{p}(\mathbf{v} \mid \mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{v}; \mathbf{w}^{\top} \mathbf{x}, \boldsymbol{\sigma}^2)$ **Hinge loss** $\max(0.1 - v\hat{f}(x))$

Principal Component Analysis

Model Error

The optimal \hat{w} can be found using MLE: $\hat{w} = \operatorname{argmax} p(y|x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$

weight assumption is a Gaussian prior $w_i \sim$ $\mathcal{N}(0,\beta^2)$. The posterior distribution of w is given by:

$$p(w \mid x, y) = \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)} = p(w) \cdot (y \mid x, w)$$
Now we want to find the MAP for w:
$$\hat{w} = \underset{w}{\operatorname{argmax}}_{w} p(w \mid \bar{x}, \bar{y})$$

$$= \underset{w}{\operatorname{argmin}}_{w} - \log \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)}$$

$$= \underset{w}{\operatorname{argmin}}_{w} \frac{\sigma^{2}}{\beta^{2}} ||w||_{2}^{2} + \sum_{i=1}^{n} (y_{i} - w^{\top} x_{i})^{2}$$

Regularization can be understood as MAP inference, with different priors (= regularizers) and likelihoods (= loss functions).

Statistical Models for Classification f minimizing the population risk: $f^*(x) = \operatorname{argmax}_{\hat{v}} p(\hat{y} \mid x)$

 $p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$ Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function.

Using MLE we get:
$$\hat{\nabla}^n = \frac{1}{2} \frac$$

conditional probability is:

$$\hat{w} = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$

Which is the logistic loss. Instead of MLE we can estimate MĂP, e.g. with a Gaussian prior:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \lambda ||w||_{2}^{2} + \sum_{i=1}^{n} \log(1 + e^{-y_{i}w^{\top}x_{i}})$$

Bayesian Decision Theory Given $p(y \mid x)$, a set of actions A and a cost

 $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maximum expected utility.

$$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_y[C(y, a) \mid x]$$

Can be used for asymetric costs or abstention.

Generative Modeling

Aim to estimate p(x,y) for complex situations using Bayes' rule: $p(x,y) = p(x|y) \cdot p(y)$

Naive Bayes Model

GM for classification tasks. Assuming for a class label, each feature is independent. This helps estimating $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y_i)$.

Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussian's features. Estimate the parameters via MLE:

MLE for class prior:
$$p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n}$$

MLE for feature distribution:

$$P(x_i|y) = \frac{Count(X_i - x_i, Y - y)}{Count(Y - y)}$$

Predictions are made by: Introduce bias to reduce variance. The small $y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot \prod p(x_i \mid \hat{y})$

Equivalent to decision rule for bin. class.: $y = \text{sgn}\left(\frac{\log \frac{p(Y=+1|x)}{p(Y=-1|x)}}{p(Y=-1|x)}\right)$ Where f(x) is called the discriminant function.

If the conditional independence assumption is M-Step: compute MLE with closed form: violated, the classifier can be overconfident. Gaussian Bayes Classifier No independence assumption, model the

features with a multivariant Gaussian $\mathcal{N}(x; \mu_{v}, \Sigma_{v})$: $\mu_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_{j}=y} x_{j}$

$$\Sigma_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_{j}=y} (x_{j} - \hat{\mu}_{y}) (x_{j} - \hat{\mu}_{y})^{\top}$$
 or with k-Means++ and for variation ical init. or empirical covariant Select k using cross-validation.

analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA: $p(y) = \frac{1}{2}$, Outlier detection: $p(x) \le \tau$.

restricting model class (fewer parameters, e.g. GNB) or using priors (restrict param. values). **Generative vs. Discriminative**

Discriminative models: p(y|x), can't detect outliers, more robust

Generative models: p(x,y), can be more powerful (dectect outliers, Giving highly complex decision boundaries:

missing values) if assumptions are met, are typically less robust against outliers **Gaussian Mixture Model**

Assume that data is generated from a convex-

combination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{j=1}^{k} w_j \mathcal{N}(x; \mu_j, \Sigma_j)$

We don't have labels and want to cluster this data. The problem is to estimate the param. for the Gaussian distributions.

 $\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{j=1}^{k} w_{j} \cdot \mathcal{N}(x_{i} \mid \mu_{j}, \Sigma_{j})$ This is a non-convex objective. Similar to train-

our parameters, predict the unknown labels and then impute the missing data. Now we can get a closed form update.

Hard-EM Algorithm E-Step: predict the most likely class for each M-Step: Compute MLE / Maximize:

data point: $z_i^{(t)} = \operatorname{argmax} p(z \mid x_i, \theta^{(t-1)})$

$$z_i^{(r)} = \underset{z}{\operatorname{argmax}} p(z \mid x_i, \theta^{(r-1)})$$

=
$$\underset{z}{\operatorname{argmax}} p(z \mid \theta^{(t-1)}) \cdot p(x_i \mid z, \theta^{(t-1)})$$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC. Problems: labels if the model is uncertain, tries

to extract too much inf. Works poorly if clus- therefore we need a different loss. ters are overlapping. With uniform weights and spherical covariances is equivalent to k-Means with Lloyd's heuristics.

Soft-EM Algorithm E-Step: calculate the cluster membership

weights for each point $(w_j = \pi_j = p(Z = j))$: $\gamma_j^{(t)}(x_i) = p(Z = j \mid D) = \frac{w_j \cdot p(x_i; \theta_j^{(t-1)})}{\sum_k w_k \cdot p(x_i; \theta_k^{(t-1)})}$

$$w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i) \qquad \mu_j^{(t)} = \frac{\sum_{i=1}^n x_i \cdot \gamma_j^{(t)}(x_i)}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$$
$$\sum_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i - \mu_j^{(t)})(x_i - \mu_j^{(t)})^\top}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$$

Init. the weights as uniformly distributed, rand. or with k-Means++ and for variances use spherical init. or empirical covariance of the data.

Degeneracy of GMMs

GMMs can overfit with limited data. Avoid this by add v^2I to variance, so it does not collapse MLE is prone to overfitting. Avoid this by (equiv. to a Wishart prior on the covariance matrix). Choose v by cross-validation. **Gaussian-Mixture Bayes Classifiers**Assume that $p(x \mid y)$ for each class can be mod
Allold by a CNO. trix). Choose *v* by cross-validation.

elled by a GMM. $p(x \mid y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

ing highly complex decision boundaries:

$$p(y \mid x) = \frac{1}{z}p(y)\sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$$

GMMs for Density Estimation Can be used for anomaly detection or data im-

putation. Detect outliers, by comparing the estimated density against τ . Allows to control the $E[XX^{\top}] - E[X]E[X]^{\top}$ FP rate. Use ROC curve as evaluation criterion and optimize using CV to find τ .

General EM Algorithm

variables z to generate likelihood function Q: ing a GBC without labels. Start with guess for

$$Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{Z}[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$$

$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \gamma_{z_{i}}(x_{i}) \log p(x_{i}, z_{i} \mid \theta)$$

with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

$$heta^{(t)} = \operatorname*{argmax}_{ heta} Q(heta; heta^{(t-1)})$$
 We have monotonic convergence, each EM-

iteration increases the data likelihood. GANS Learn f: "simple" distr. \mapsto non linear distr.

Computing likelihood of the data becomes hard,

 $\min \max \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$ $+\mathbb{E}_{z\sim p_z}[\log(1-D(G(z,w_G),w_D))]$ Training requires finding a saddle point, always

converges to saddle point with if G, D have enough capacity. For a fixed G, the optimal discriminator is:

$$D_G(x) = \frac{p_{\rm data}(x)}{p_{\rm data}(x) + p_G(x)}$$
 The prob. of being fake is $1 - D_G$. Too

powerful discriminator could lead to memorization of finite data. Other issues are oscillations/divergence or mode collapse.

One possible performance metric:

$$DG = \max_{w_D'} M(w_G, w_D') - \min_{w_G'} M(w_G', w_D)$$

Where $M(w_G, w_D)$ is the training objective. **Various**

Derivatives:

$$\nabla_{x}x^{\top}A = A \quad \nabla_{x}a^{\top}x = \nabla_{x}x^{\top}a = a$$

$$\nabla_{x}b^{\top}Ax = A^{\top}b \quad \nabla_{x}x^{\top}x = 2x \quad \nabla_{x}x^{\top}Ax = 2Ax$$

$$\nabla_{w}||y - Xw||_{2}^{2} = 2X^{\top}(Xw - y)$$
Bayes Theorem:

$$1 \quad p(y \mid x) = \frac{1}{2} \quad p(y) \cdot p(x \mid y)$$

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)^{p(x,y)}$

Other Facts

 $\operatorname{Tr}(AB) = \operatorname{Tr}(BA), \operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2, X \in$ $\mathbb{R}^{n\times d}: X^{-1} \to \mathscr{O}(d^3) X^{\top} X \to \mathscr{O}(nd^2), \binom{n}{k} =$ $\frac{n!}{(n-k)!k!}, ||w^{\top}w||_2 = \sqrt{w^{\top}w}$

 $\operatorname{Cov}[X] = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}] =$

 $p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$

 $E[s \cdot s^{\top}] = \mu \cdot \mu^{\top} + \Sigma = \Sigma$ where s follows a mul-**E-Step**: Take the expected value over latent tivariate normal distribution with mean μ and covariance matrix Σ

Convexity 0: $L(\lambda w + (1 - \lambda)v) \le \lambda L(w) + (1 - \lambda)L(v)$

1: $L(w) + \nabla L(w)^{\top}(v - w) < L(v)$

2: Hessian $\nabla^2 L(w) \geq 0$ (psd)

- $\alpha f + \beta g$, $\alpha, \beta \ge 0$, convex if f, g convex • $f \circ g$, convex if f convex and g affine or f non-decresing and g convex
- $\max(f,g)$, convex if f,g convex