Classifier automatiquement des biens de consommation

place de marché

DONNEES TEXTUELLES

DONNEES IMAGES

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusion**

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusion**

Contexte

Mission:

Effectuer une **faisabilité** d'un moteur de **recommendation (classification)** d'articles basées sur une image et une description du produit dans le but d'une **automatisation** d'une attribution d'un produit à une catégorie fixée pour

l'entreprise Place de marché.

Objectif:

Améliorer la recommendation des utilisateurs **Garantir** la catégorie des articles avec précision

Processus

Pré-process

Features extraction

Classification(ACP, TSNE)

Evaluation

Evaluation ARI,

Accuracy

Bag of Words Word Embeddings Text Embeddings

Bag of features

Apprentissage Non Supervisée KMeans

Interprétation Cluster

Données TEXTES

Données IMAGES

Données IMAGES

Word Embeddings

Bag of features

Apprentissage Supervisée

Données

Environ 2 % de données manquantes

product_name Giorgio Armani SMOOTH SILK LIP PENCIL 12 Description Giorgio Armani SMOOTH SILK LIP PENCIL 12 (Soyeux 12) Price: Rs .../... product_specifications {"product_specification"=>[{"key"=> .../... Brand Giorgio Armani

Données – niveaux de catégories

7 Catégories

Niveau 0

Sous-niveau (nombre de catégories)

cat_	_level_0	7
cat	_level_1	62
cat	_level_2	243
cat_	level_3	460
cat_	level_4	596
cat	_level_5	633
cate	7	

Représentation graphique des sous-niveaux

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusions**

NLP - Processus

Pré-process

Données TEXTES

Variables:

- Description
- product_name
- product_specifications
- Brand

Tokenisation

Normalisation

Racinisation

Lemmatisation

Features extraction

Bag of Words
(Word Embeddings)
CountVectorizer
TfidfVectorizer

Text Embeddings
Word2Vec

Sentence - Transformers

BERT
USE

Classification(ACP, TSNE)

Apprentissage Non Supervisée KMeans

Apprentissage Supervisée

Evaluation

Evaluation ARI, Accuracy

Interprétation Clusters

	procedure	result	ff sense	suppost
0	2967391	0.990335	0.735537	150,000,000
	0.926667	0.926667	0.926667	150,000000
	0,959341	0.080000	0.036306	150,000,000
*	0.766044	=///6848	=/1889)	T-031000000
4	ULPSOMO II	UNICOUDE	0.0024071	Escuposopo
5	0.712410	0.72666T	0.719472	190,000000
	0.967/42	1,000000	0990007	100,000000
accuracy	0.040571	0.040571	0.040571	0.040571
moves and	0.037547	- MARKET	0.844576	2090/000000
workplated away	03/4/147	EXIMA	0.044 F/K	SECUMENTAL

NLP - Fréquence de mots

Mots les plus fréquents: variables descriptions et produits

Furnishing

Watch

Decor

Kitchen

eedesign cover com

Beauty

Computers

NLP – Word Embeddings

NLP - Réduction de dimension

TSNE_CV

ACP + TSNE_CV

NLP - Réduction de dimension

TSNE_TFIDF

ACP + TSNE_TFIDF

NLP – Classification non supervisée KMeans

Accuracy: 0,58

Accuracy : **0,59**

TSNE CV PRODS LEM TSNE CV PRODS STEM ARI: 0.4032, Homogénéité: 0.4812 ARI: 0.3163, Homogénéité: 0.4642

Accuracy : **0,59**

ARI: 0,40 Accuracy: 0,66

NLP – Classification non supervisée KMeans

NLP – Classification Supervisée

TSNE+ ACP CV PRODS LEM

TSNE+ ACP CV PRODS STEM

TSNE CV PRODS LEM

TSNE CV PRODS STEM

Accuracy de l'algorithme etc : 0.871

Accuracy de l'algorithme etc : 0.862

Accuracy de l'algorithme etc : 0.867

Accuracy de l'algorithme etc : 0.857

Accuracy (Train): 1
Accuracy (Test): 0,87

Accuracy (Train): 1
Accuracy (Test): 0,86

Accuracy (Train): 1
Accuracy (Test): 0,87

Accuracy (Train): 1
Accuracy (Test): 0,86

NLP – Classification Supervisée

TSNE+ ACP TFIDF PRODS LEM

TSNE+ ACP TFIDF PRODS STEM

TSNE TFIDF PRODS LEM

TSNE TFIDF PRODS STEM

Accuracy de l'algorithme etc : 0.862

Accuracy de l'algorithme etc : 0.881

Accuracy de l'algorithme etc : 0.905

Accuracy de l'algorithme etc : 0.886

| Matrice confusion TSNE_TFIDF_PRODS_LEM | 33 | 34 | 5 | 6 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 3 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 3 | 5 | 6 | 1 | 5

Accuracy (Train): 1
Accuracy (Test): 0,86

Accuracy (Train): 1
Accuracy (Test): 0,88

Accuracy (Train): 1
Accuracy (Test): 0,91

7

Accuracy (Train): 1
Accuracy (Test): 0,89

NLP –Text Embeddings

NLP - Réduction de dimension

ACP + TSNE_BERT

ACP + TSNE_USE

Représentation des catégories par catégories réelles (TSNE ACP W2VEC PRODS STEM)

ARI : 0.6121, Homogéneité : 0.7163

Représentation des catégories par clusters

NLP – Classification non supervisée KMeans

ACP + TSNE_WORD2VEC_PROD_ORIG

ARI: 0,63

Accuracy: 0,81

ACP + TSNE_BERT_PROD_ORIG

ARI: 0,52

Accuracy: 0,72

ACP + TSNE_USE_PROD_ORIG

ARI: 0,71

Accuracy: 0,85

NLP – Classification Supervisée

ACP + TSNE_BERT_PRODS_ORIG

Accuracy de l'algorithme etc : 0.838

Accuracy (Train): 1
Accuracy (Test): 0,84

ACP + TSNE_USE_PRODS_ORIG

Accuracy de l'algorithme etc : 0.914

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusions**

Images - Processus

Pré-process

Features extraction

Classification(ACP, TSNE)

Evaluation

Données IMAGES

Bag of Words SIFT ORB

Keras CNN Transfert

VGG16, VGG19 InceptionV3 Apprentissage Non Supervisée KMeans

Total control control

Apprentissage Supervisée

Evaluation ARI, Accuracy

Interprétation Cluster

images

Originaux

Images – Analyse exploratoire

Exemples d'images

Home Decor & Festive Needs Baby Care Baby Care

Nombre d'images par catégorie

Taille des images

Distribution du nombre d'image par largeur des images en pixels

IMAGES – METHODES CLASSIQUES

Images – Pré - traitement

1 - Image originale

4 – Correction contraste (égalisation histogramme)

2 - Correction de l'exposition (étirement d'histogramme)

5 – Réduction de bruit (Algo Non-local Means Denoising)

3 – Conversion image en niveaux de gris

6 - Redimensionnement en 224*224

Images – SIFT & ORB Visual Words

ORB Points clés

Images – Classification

ARI: 0,003 Accuracy: 0,39

ORB

ARI: 0,03 Accuracy: 0,25

IMAGES – CNN Transfert Learning

Images – Classification Non Supervisée KMeans

ACP + TSNE_VGG16

ARI: 0,47

Accuracy : **0,70**

ACP + TSNE_VGG19

ARI: 0,46

Accuracy: 0,69

ACP + TSNE_INCEPTIONV3

ARI: 0,54

Accuracy : 0,75

Images – Classification Supervisée

Approche Image Datagenerator avec data augmentation:

- Le principe de data augmentation consiste à effectuer des opérations modifiant l'aspect de l'image, sans pour autant en modifier la sémantique : par exemple, en diminuant la luminosité, en effectuant une rotation, etc...
- Cette méthode s'applique lorsque le jeu d'apprentissage est petit, voire inexistant, celui-ci va générer un échantillon d'images labelisées de taille suffisante afin d'alimenter un algorithme de type CNN (VGG16,...).

VGG19

Loss Accuracy Train last value: 1.9456 Train last value: 0.1536 1.0 -100 Test last value: 1.9507 Test last value: 0.0943 80 40 0.2 1.0 1.5 2.0 2.5 3.0 0.5 1.0 2.0 2.5 **Epochs** Epochs

Accuracy (Train): 0,15 Accuracy (Test): 0,09

INCEPTIONV3

Accuracy (Test): 0,32

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusions**

Combinaison USE 5 textes & INCEPTION V3 images

Use (version 5, textes, ARI=0.70, Accuracy=0.85) + **INCEPTIONV3** (Images, ARI=0.53, Accuracy=0.75)

ARI: 0,65

Accuracy: 0,85

- Contexte/Données
- Traitement données textuelles
- Traitement données images
- Combinaison textes/images
- **Conclusion**

Conclusion – Etude de faisabilité validée

Meilleur	Données textuelles	Données images	Combinaison textuelles + images		
Apprentissage NON SUPERVISEE					
Modèle	USE 5	INCEPTIONV3	USE 5 + INCEPTIONV3		
ARI	0,70	0,53	0,65		
Accuracy	0,85	0,75	0,85		

Apprentissage SUPERVISEE			
Modèle	USE 5		
Accuracy(Train)	99,9 %		
Accuracy(Test)	91 %		

