Lecture 4: The Gradient Method

Shi Pu

Outline

1 The Gradient Method

2 Convergence of The Gradient Method

3 Scaled Gradient Method

Outline

1 The Gradient Method

Convergence of The Gradient Method

3 Scaled Gradient Method

The Gradient Method

Objective: find an optimal solution of the problem

$$\min \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n \right\}$$

The iterative algorithms we consider are of the form

$$\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k, \ k = 0, 1, \cdots$$

- \blacksquare **d**_k direction.
- \blacksquare t_k stepsize.

Limit ourselves to descent directions.

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^n . A vector $\mathbf{0} \neq \mathbf{d} \in \mathbb{R}^n$ is called a descent direction of f at \mathbf{x} if the directional derivative $f'(\mathbf{x}; \mathbf{d})$ is negative, meaning that

$$f'(\mathbf{x}; \mathbf{d}) = \nabla f(\mathbf{x})^{\top} \mathbf{d} < 0.$$

The Descent Property of Descent Directions

Lemma

Let f be a continuously differentiable function over \mathbb{R}^n , and let $\mathbf{x} \in \mathbb{R}^n$. Suppose that \mathbf{d} is a descent direction of f at \mathbf{x} . Then there exists $\epsilon > 0$ such that

$$f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})$$

for any $t \in (0, \epsilon]$.

The Descent Property of Descent Directions

Proof.

■ Since $f'(\mathbf{x}; \mathbf{d}) < 0$, it follows from the definition of the directional derivative that

$$\lim_{t\to 0^+}\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}=f'(\mathbf{x};\mathbf{d})<0$$

■ Therefore, $\exists \epsilon > 0$ such that

$$\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}<0$$

for any $t \in (0, \epsilon]$, which readily implies the desired result.

Schematic Descent Direction Method

Algorithm 1 Schematic Descent Direction Method

- 1: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 2: **for** $k = 0, 1, 2, \cdots$ **do**
- 3: pick a descent direction \mathbf{d}_k .
- 4: find a stepsize t_k satisfying $f(\mathbf{x}_k + t_k \mathbf{d}_k) < f(\mathbf{x}_k)$.
- 5: set $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$.
- 6: if a stopping criteria is satisfied, then STOP and \mathbf{x}_{k+1} is the output.
- 7: end for

Many details are missing in the schematic algorithm:

- What is the starting point?
- How to choose the descent direction?
- What stepsize should be taken?
- What is the stopping criteria?

Stepsize Selection Rules

- Constant stepsize $t_k = \bar{t}$ for any k.
- **Exact stepsize** t_k is a minimizer of f along the ray $\mathbf{x}_k + t\mathbf{d}_k$:

$$t_k \in \arg\min_{t\geq 0} f(\mathbf{x}_k + t\mathbf{d}_k)$$

■ Backtracking¹ - requires three parameters: $s > 0, \alpha \in (0,1), \beta \in (0,1)$. Here start with an initial stepsize $t_k = s$. While

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) < -\alpha t_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{d}_k,$$

set $t_k := \beta t_k$.

Sufficient Decrease Property:

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) \ge -\alpha t_k \nabla f(\mathbf{x}_k)^{\top} \mathbf{d}_k.$$

¹also referred to as Armijo rule

Exact Line Search for Quadratic Functions

Consider

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + 2 \mathbf{b}^{\top} \mathbf{x} + c,$$

where **A** is an $n \times n$ positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Let $\mathbf{x} \in \mathbb{R}^n$ and let $\mathbf{d} \in \mathbb{R}^n$ be a descent direction of f at \mathbf{x} . The objective is to find a solution to

$$\min_{t\geq 0} f(\mathbf{x}+t\mathbf{d})$$

In class

The Gradient Method - Taking the Direction of Minus the Gradient

- In the gradient method $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$.
- This is a descent direction as long as $\nabla f(\mathbf{x}_k) \neq 0$ since

$$f'(\mathbf{x}_k; -\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^\top \nabla f(\mathbf{x}_k) = -\|\nabla f(\mathbf{x}_k)\|^2 < 0$$

■ In addition for being a descent direction, minus the gradient is also the steepest direction method.

The Gradient Method - Taking the Direction of Minus the Gradient

Lemma

Let f be a continuously differentiable function and let $\mathbf{x} \in \mathbb{R}^n$ be a non-stationary point $(\nabla f(\mathbf{x}) \neq \mathbf{0})$. Then an optimal solution of

$$\min_{\mathbf{d}} \left\{ f'(\mathbf{x}; \mathbf{d}) : \|\mathbf{d}\| = 1 \right\} \tag{1}$$

is
$$\mathbf{d} = -\nabla f(\mathbf{x})/\|\nabla f(\mathbf{x})\|$$
.

The Gradient Method

Algorithm 2 The Gradient Method

- 1: **Input:** $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ **do**
- 4: pick a stepsize t_k by a line search procedure on the function

$$g(t) = f(\mathbf{x}_k - t\nabla f(\mathbf{x}_k)).$$

- 5: set $\mathbf{x}_{k+1} = \mathbf{x}_k t_k \nabla f(\mathbf{x}_k)$.
- 6: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 7: end for

Numerical Example

$$\min x^2 + 2y^2$$

 $\mathbf{x}_0 = (2; 1), \epsilon = 10^{-5}$, exact line search.

13 iterations until convergence.

The Zig-Zag Effect

Lemma

Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2,\cdots$

$$(\mathbf{x}_{k+2} - \mathbf{x}_{k+1})^{\top} (\mathbf{x}_{k+1} - \mathbf{x}_k) = 0$$

Proof.

- Therefore, need to prove $\nabla f(\mathbf{x}_k)^{\top} \nabla f(\mathbf{x}_{k+1}) = 0$.
- $t_k \in \operatorname{arg\,min}_{t \geq 0} \{ g(t) \equiv f(\mathbf{x}_k t \nabla f(\mathbf{x}_k)) \}$
- Hence, $g'(t_k) = 0$
- $\nabla f(\mathbf{x}_k)^{\top} \nabla f(\mathbf{x}_{k+1}) = 0$

Numerical Example - Constant Stepsize, $\bar{t}=0.1$

$$\begin{aligned} \min x^2 + 2y^2 \\ \mathbf{x}_0 &= (2;1), \ \epsilon = 10^{-5}, \quad \overline{t} = 0.1 \\ & \text{iter_number} = 1, \ \text{norm_grad} = 4.000000, \ \text{fun_val} = 3.280000 \\ & \text{iter_number} = 2, \ \text{norm_grad} = 2.937210, \ \text{fun_val} = 1.897600 \\ & \text{iter_number} = 3, \ \text{norm_grad} = 2.222791, \ \text{fun_val} = 1.141888 \\ & \vdots &= \vdots \\ & \text{iter_number} = 56, \ \text{norm_grad} = 0.000015, \ \text{fun_val} = 0.000000 \\ & \text{iter_number} = 57, \ \text{norm_grad} = 0.000012, \ \text{fun_val} = 0.0000000 \\ & \text{iter_number} = 58, \ \text{norm_grad} = 0.000010, \ \text{fun_val} = 0.0000000 \end{aligned}$$
 quite a lot of iterations...

Numerical Example - Constant Stepsize, $ar{t}=10$

$$\min x^2 + 2y^2$$

$$\mathbf{x}_0 = (2; 1), \ \epsilon = 10^{-5}, \ \ \overline{t} = 10.$$

- $\mathsf{iter_number} \ = \ 119, \ \mathsf{norm_grad} \ = \ \mathsf{NaN}, \ \mathsf{fun_val} \ = \ \mathsf{NaN}$
 - The sequence diverges :(
 - Important question: how to choose the constant stepsize so that convergence is guaranteed?

Lipschitz Continuity of the Gradient

Definition

Let f be a continuously differentiable function over \mathbb{R}^n . Say that f has a Lipschitz gradient if there exists $L \geq 0$ for which

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

L is called the Lipschitz constant.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant \tilde{L} for all $\tilde{L} \geq L$.
- The class of functions with Lipschitz gradient with constant L is denoted by $C_L^{1,1}(\mathbb{R}^n)$ or just $C_L^{1,1}$

Lipschitz Continuity of the Gradient

- Linear functions Given $\mathbf{a} \in \mathbb{R}^n$, the function $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x}$ is in $C_0^{1,1}$.
- **Quadratic functions** Let **A** be a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the function

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + 2 \mathbf{b}^{\top} \mathbf{x} + c$$

is a $C^{1,1}$ function. The smallest Lipschitz constant of ∇f is $2\|\mathbf{A}\|_2$ – why? In class

Equivalence to Boundedness of the Hessian

Theorem

Let f be a twice continuously differentiable function over \mathbb{R}^n . Then the following two claims are equivalent:

$$f \in C_L^{1,1}(\mathbb{R}^n)$$

$$\|\nabla^2 f(\mathbf{x})\| \leq L$$
 for any $\mathbf{x} \in \mathbb{R}^n$

Proof on pages 73,74 of the book.

Example:
$$f(x) = \sqrt{1 + x^2} \in C_1^{1,1}$$

In class

Outline

1 The Gradient Method

2 Convergence of The Gradient Method

3 Scaled Gradient Method

Convergence of the Gradient Method

Theorem

Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by GM for solving

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

with one of the following stepsize strategies:

- constant stepsize $\bar{t} \in (0, \frac{2}{I})$
- exact line search.
- **backtracking** procedure with parameters s > 0 and $\alpha, \beta \in (0,1)$.

Assume that

- $f \in C^{1,1}(\mathbb{R}^n)$
- f is bounded below over \mathbb{R}^n ($\exists m \in \mathbb{R}$ s.t. $f(\mathbf{x}) > m, \forall \mathbf{x} \in \mathbb{R}^n$)

Then,

- 1 for any k, $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ unless $\nabla f(\mathbf{x}_k) = \mathbf{0}$

Theorem 4.25 in the book.

Convergence Proof

Lemma (descent lemma)

Let $D \subseteq \mathbb{R}^n$ and $f \in C_L^{1,1}(D)$ for some L > 0. Then for any $\mathbf{x}, \mathbf{y} \in D$ satisfying $[\mathbf{x}, \mathbf{y}] \subseteq D$ it holds that

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^{2}.$$

Proof. In class

Lemma (sufficient decrease lemma)

Suppose that $f \in C_L^{1,1}(D)$ for some L > 0. Then for any $\mathbf{x} \in \mathbb{R}^n$ and t > 0

$$f(\mathbf{x}) - f(\mathbf{x} - t\nabla f(\mathbf{x})) \ge t\left(1 - \frac{Lt}{2}\right) \|\nabla f(\mathbf{x})\|^2.$$

Convergence Proof

Lemma (sufficient decrease of the gradient method)

Let $f \in C_L^{1,1}(D)$. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by GM for solving $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$ with one of the following stepsize strategies:

- constant stepsize $\bar{t} \in (0, \frac{2}{L})$
- exact line search
- **backtracking** procedure with parameters s > 0 and $\alpha, \beta \in (0,1)$.

Then

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \ge M \|\nabla f(\mathbf{x}_k)\|^2,$$

where

$$M = \begin{cases} \overline{t} \left(1 - \frac{\overline{t}L}{2}\right) & \textit{constant stepsize} \\ \frac{1}{2L} & \textit{exact line search} \\ \alpha \min\left\{s, \frac{2(1 - \alpha\beta)}{L}\right\} & \textit{backtracking} \end{cases}$$

Rate of Convergence of Gradient Norms

Theorem (rate of convergence of gradient norms)

Under the setting of Theorem 4.25, let f^* be the limit of the convergent sequence $\{f(\mathbf{x}_k)\}_{k\geq 0}$. Then for any $n=0,1,2,\ldots$,

$$\min_{k=0,1,...,n} \|\nabla f(\mathbf{x}_k)\| \leq \sqrt{\frac{f(\mathbf{x}_0) - f^*}{M(n+1)}}.$$

Two Numerical Examples - Backtracking

$$\begin{aligned} \min x^2 + 2y^2, \ \mathbf{x}_0 &= (2;1), s = 2, \alpha = 0.25, \beta = 0.5, \epsilon = 10^{-5} \\ \text{iter_number} &= 1, \ \text{norm_grad} = 2.000000, \ \text{fun_val} = 1.000000 \\ \text{iter_number} &= 2, \ \text{norm_grad} = 0.000000, \ \text{fun_val} = 0.000000 \end{aligned}$$

- fast convergence (also due to luck!)
- no real disadvantage to exact line search.

Two Numerical Examples - Backtracking

$$\begin{aligned} \min x^2 + 2y^2, \ \mathbf{x}_0 &= (2;1), s = 2, \alpha = 0.25, \beta = 0.5, \epsilon = 10^{-5} \\ &\text{iter_number} \ = \ 1, \ \text{norm_grad} \ = \ 2.000000, \ \text{fun_val} \ = \ 1.000000 \\ &\text{iter_number} \ = \ 2, \ \text{norm_grad} \ = \ 0.000000, \ \text{fun_val} \ = \ 0.000000 \end{aligned}$$

- fast convergence (also due to luck!)
- no real disadvantage to exact line search.

ANOTHER EXAMPLE:

$$\begin{array}{lll} \min & 0.01x^2+2y^2, \mathbf{x}_0=(2;1), s=2, \alpha=0.25, \beta=0.5, \epsilon=10^{-5} \\ & \text{iter_number} = 1, \ \text{norm_grad} = 0.028003, \ \text{fun_val} = 0.009704 \\ & \text{iter_number} = 2, \ \text{norm_grad} = 0.027730, \ \text{fun_val} = 0.009324 \\ & \text{iter_number} = 3, \ \text{norm_grad} = 0.027465, \ \text{fun_val} = 0.008958 \\ & \vdots & \vdots \end{array}$$

 $iter_number = 201, norm_grad = 0.000010, fun_val = 0.000000$

Important Question: can we detect key properties of the objective function that imply slow/fast convergence?

Gradient Method for Minimizing $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$

Theorem

Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving the problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x} \quad (\boldsymbol{A} \succ \boldsymbol{0})$$

Then for any $k = 0, 1, \dots$,

$$f(\mathbf{x}_{k+1}) \leq \left(\frac{M-m}{M+m}\right)^2 f(\mathbf{x}_k)$$

where $M = \lambda_{max}(\mathbf{A}), m = \lambda_{min}(\mathbf{A}).$

Gradient Method for Minimizing $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$

Proof.

We have
$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{d}_k$$
, where $t_k = \frac{\mathbf{d}_k^\top \mathbf{d}_k}{2\mathbf{d}_k^\top \mathbf{A} \mathbf{d}_k}$, $\mathbf{d}_k = 2\mathbf{A}\mathbf{x}_k$. Hence

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_{k+1}^{\top} \mathbf{A} \mathbf{x}_{k+1} = (\mathbf{x}_k - t_k \mathbf{d}_k)^{\top} \mathbf{A} (\mathbf{x}_k - t_k \mathbf{d}_k)$$

$$= \mathbf{x}_k^{\top} \mathbf{A} \mathbf{x}_k - 2t_k \mathbf{d}_k^{\top} \mathbf{A} \mathbf{x}_k + t_k^2 \mathbf{d}_k^{\top} \mathbf{A} \mathbf{d}_k$$

$$= \mathbf{x}_k^{\top} \mathbf{A} \mathbf{x}_k - t_k \mathbf{d}_k^{\top} \mathbf{d}_k + t_k^2 \mathbf{d}_k^{\top} \mathbf{A} \mathbf{d}_k$$

Plugging in the expression for t_k ,

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_{k}^{\top} \mathbf{A} \mathbf{x}_{k} - \frac{1}{4} \frac{(\mathbf{d}_{k}^{\top} \mathbf{d}_{k})^{2}}{\mathbf{d}_{k}^{\top} \mathbf{A} \mathbf{d}_{k}}$$

$$= \mathbf{x}_{k}^{\top} \mathbf{A} \mathbf{x}_{k} \left(1 - \frac{1}{4} \frac{(\mathbf{d}_{k}^{\top} \mathbf{d}_{k})^{2}}{(\mathbf{d}_{k}^{\top} \mathbf{A} \mathbf{d}_{k})(\mathbf{x}_{k}^{\top} \mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_{k})} \right)$$

$$= \left(1 - \frac{(\mathbf{d}_{k}^{\top} \mathbf{d}_{k})^{2}}{(\mathbf{d}_{k}^{\top} \mathbf{A} \mathbf{d}_{k})(\mathbf{d}_{k}^{\top} \mathbf{A}^{-1} \mathbf{d}_{k})} \right) f(\mathbf{x}_{k})$$

Gradient Method for Minimizing $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$

Proof continued.

By Kantorovich:

$$f(\mathbf{x}_{k+1}) \le \left(1 - \frac{4Mm}{(M+m)^2}\right) f(\mathbf{x}_k) = \left(\frac{M-m}{M+m}\right)^2 f(\mathbf{x}_k)$$
$$= \left(\frac{\kappa(\mathbf{A}) - 1}{\kappa(\mathbf{A}) + 1}\right)^2 f(\mathbf{x}_k),$$

where $\kappa(\mathbf{A}) = \frac{M}{m}$.

Lemma (Kantorovich Inequality)

Let **A** be a positive definite $n \times n$ matrix. Then for any $0 \neq \mathbf{x} \in \mathbb{R}^n$, the inequality

$$\frac{(\mathbf{x}^{\top}\mathbf{x})^2}{(\mathbf{x}^{\top}\mathbf{A}\mathbf{x})(\mathbf{x}^{\top}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\mathsf{max}}(\mathbf{A})\lambda_{\mathsf{min}}(\mathbf{A})}{(\lambda_{\mathsf{max}}(\mathbf{A}) + \lambda_{\mathsf{min}}(\mathbf{A}))^2}$$

holds.

Kantorovich Inequality

Proof.

- Denote $m = \lambda_{\min}(\mathbf{A})$ and $M = \lambda_{\max}(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- The maximum of the 1-D function $\phi(t)=t+\frac{Mm}{t}$ over [m,M] is attained at the endpoints m and M with a corresponding value of M+m.
- Thus, the eigenvalues of $\mathbf{A} + Mm\mathbf{A}^{-1}$ are smaller than (M + m).
- $\blacksquare \mathbf{A} + Mm\mathbf{A}^{-1} \leq (M+m)\mathbf{I}$
- $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} + Mm(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}) \leq (M+m)(\mathbf{x}^{\top} \mathbf{x}).$
- Therefore,

$$(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) \left[Mm(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}) \right] \leq \frac{1}{4} \left[(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) + Mm(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}) \right]^{2}$$

$$\leq \frac{(M+m)^{2}}{4} (\mathbf{x}^{\top} \mathbf{x})^{2}.$$

The Condition Number

Definition

Let **A** be a positive definite $n \times n$ matrix. Then the condition number of **A** is defined by

$$\kappa(\mathbf{A}) = rac{\lambda_{\mathsf{max}}(\mathbf{A})}{\lambda_{\mathsf{min}}(\mathbf{A})}$$

- Matrices (or quadratic functions) with large condition number are called ill-conditioned.
- Matrices with small condition number are called well-conditioned.
- Large condition number implies large number of iterations of the gradient method.
- Small condition number implies small number of iterations of the gradient method.
- For a non-quadratic function, the asymptotic rate of convergence of \mathbf{x}_k to a stationary point \mathbf{x}^* is usually determined by the condition number of $\nabla^2 f(\mathbf{x}^*)$.

A Severely III-Condition Function - Rosenbrock

Consider

$$\min\left\{f(x_1,x_2)=100(x_1-x_2^2)^2+(1-x_1)^2\right\}.$$

■ Optimal solution: $(x_1, x_2) = (1, 1)$, optimal value: 0.

$$\nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix},$$

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} -400x_2 + 1200x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix},$$

$$\nabla^2 f(1, 1) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}.$$

condition number: 2508

Solution of the Rosenbrock Problem with the Gradient Method

 $\mathbf{x}_0=(2;5), s=2, \alpha=0.25, \beta=0.5, \epsilon=10^{-5}$, backtracking stepsize selection.

6890(!!!) iterations.

Sensitivity of Solutions to Linear Systems

■ Suppose that we are given the linear system

$$Ax = b$$

where $\mathbf{A} \succ 0$ and assume that \mathbf{x} is indeed the solution of the system $(\mathbf{x} = \mathbf{A}^{-1}\mathbf{b})$.

- Suppose that the right-hand side is perturbed $\mathbf{b} + \Delta \mathbf{b}$. What can be said on the solution of the new system $\mathbf{x} + \Delta \mathbf{x}$?
- $\triangle \mathbf{x} = \mathbf{A}^{-1} \Delta \mathbf{b}.$
- Result (derivation in class):

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

Numerical Example

■ Consider the ill-conditioned matrix:

$$\mathbf{A} = \begin{pmatrix} 1 + 10^{-5} & 1\\ 1 & 1 + 10^{-5} \end{pmatrix}$$

```
\gg A=[1+1e-5,1;1,1+1e-5];
\gg cond(A)
ans = 2.000009999998795e+005
```

■ We have

$$A\setminus[1;1]$$
 ans = 0.499997500018278 0.499997500006722

■ However, \gg A\[1.1;1] ans = 1.0e+003 * 5.000524997400047 -4.999475002650021

Outline

1 The Gradient Method

2 Convergence of The Gradient Method

3 Scaled Gradient Method

Scaled Gradient Method

■ Consider the minimization problem

(P)
$$\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$$

■ For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x} = \mathbf{S}\mathbf{y}$, and obtain the equivalent problem

$$(P')$$
 $\min\{g(\mathbf{y}) \equiv f(\mathbf{S}\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$

■ Since $\nabla g(\mathbf{y}) = \mathbf{S}^{\top} \nabla f(\mathbf{S}\mathbf{y}) = \mathbf{S}^{\top} \nabla f(\mathbf{x})$, the gradient method for (P') is

$$\mathbf{y}_{k+1} = \mathbf{y}_k - t_k \mathbf{S}^{\top} \nabla f(\mathbf{S} \mathbf{y}_k)$$

■ Multiplying the latter equality by **S** from the left, and using the notation $\mathbf{x}_k = \mathbf{S}\mathbf{y}_k$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{S} \mathbf{S}^ op
abla f(\mathbf{x}_k)$$

■ Defining $D = SS^{\top}$, we obtain the scaled gradient method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{D} \nabla f(\mathbf{x}_k)$$

Scaled Gradient Method

■ **D** \succ **0**, so the direction $-\mathbf{D}\nabla f(\mathbf{x}_k)$ is a descent direction:

$$f'(\mathbf{x}_k; -\mathbf{D}\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^{\top}\mathbf{D}\nabla f(\mathbf{x}_k) < 0$$

We allow different scaling matrices at each iteration.

Algorithm 3 Scaled Gradient Method

- 1: **Input:** $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ execute the following steps: **do**
- 4: pick a scaling matrix $\mathbf{D}_k \succ 0$
- 5: pick a stepsize t_k by a line search procedure on the function

$$g(t) = f(\mathbf{x}_k - t\mathbf{D}_k \nabla f(\mathbf{x}_k))$$

- 6: set $\mathbf{x}_{k+1} = \mathbf{x}_k t_k \mathbf{D}_k \nabla f(\mathbf{x}_k)$.
- 7: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 8: end for

Choosing the Scaling Matrix \mathbf{D}_k

- The scaled gradient method with scaling matrix **D** is equivalent to the gradient method employed on the function $g(\mathbf{y}) = f(\mathbf{D}^{1/2}\mathbf{y})$.
- \blacksquare Note that the gradient and Hessian of g are given by

$$\nabla g(\mathbf{y}) = \mathbf{D}^{1/2} \nabla f(\mathbf{D}^{1/2} \mathbf{y}) = \mathbf{D}^{1/2} \nabla f(\mathbf{x})$$
$$\nabla^2 g(\mathbf{y}) = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{D}^{1/2} \mathbf{y}) \mathbf{D}^{1/2} = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{x}) \mathbf{D}^{1/2}$$

- The objective is usually to pick \mathbf{D}_k so as to make $\mathbf{D}_k^{1/2} \nabla^2 f(\mathbf{x}_k) \mathbf{D}_k^{1/2}$ as well-conditioned as possible.
- A well known choice (Newton's method): $\mathbf{D}_k = (\nabla^2 f(\mathbf{x}_k))^{-1}$.
- **Diagonal scaling:** \mathbf{D}_k is picked to be diagonal. For example,

$$(\mathbf{D}_k)_{ii} = \left(\frac{\partial^2 f(\mathbf{x}_k)}{\partial x_i^2}\right)^{-1}$$

Diagonal scaling can be very effective when the decision variables are of different magnitudes.

Nonlinear least squares problem:

(NLS):
$$\min_{\mathbf{x}\in\mathbb{R}^n}\{g(\mathbf{x})\equiv\sum_{i=1}^m(f_i(\mathbf{x})-c_i)^2\}.$$

 f_1, \dots, f_m are continuously differentiable over \mathbb{R}^n and $c_1, \dots, c_m \in \mathbb{R}$.

Denote:

$$F(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) - c_1 \\ f_2(\mathbf{x}) - c_2 \\ \vdots \\ f_m(\mathbf{x}) - c_m \end{pmatrix}$$

■ Then the problem becomes:

$$\min \|F(\mathbf{x})\|^2$$

Given the k-th iterate \mathbf{x}_k , the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \left[f_i(\mathbf{x}_k) + \nabla f_i(\mathbf{x}_k)^{\top} (\mathbf{x} - \mathbf{x}_k) - c_i \right]^2 \right\}$$

■ The general step actually consists of solving the linear LS problem

$$\min \|\mathbf{A}_k \mathbf{x} - \mathbf{b}_k\|^2$$

where

$$\mathbf{A}_k = egin{pmatrix}
abla f_1(\mathbf{x}_k)^{ op} \\

abla f_2(\mathbf{x}_k)^{ op} \\
\vdots \\

abla f_m(\mathbf{x}_k)^{ op}
\end{pmatrix} = J(\mathbf{x}_k)$$

is the so-called Jacobian matrix, assumed to have full column rank.

$$\mathbf{b}_{k} = \begin{pmatrix} \nabla f_{1}(\mathbf{x}_{k})^{\top} \mathbf{x}_{k} - f_{1}(\mathbf{x}_{k}) + c_{1} \\ \nabla f_{2}(\mathbf{x}_{k})^{\top} \mathbf{x}_{k} - f_{2}(\mathbf{x}_{k}) + c_{2} \\ \vdots \\ \nabla f_{m}(\mathbf{x}_{k})^{\top} \mathbf{x}_{k} - f_{m}(\mathbf{x}_{k}) + c_{m} \end{pmatrix} = J(\mathbf{x}_{k})\mathbf{x}_{k} - F(\mathbf{x}_{k})$$

■ The Gauss-Newton method can thus be written as:

$$\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^{\top} J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^{\top} \mathbf{b}_k$$

■ The gradient of the objective function $g(\mathbf{x}) = ||F(\mathbf{x})||^2$ is

$$\nabla g(\mathbf{x}) = 2J(\mathbf{x})^{\top} F(\mathbf{x})$$

■ The GN method can be rewritten as follows:

$$\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^{\top} J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^{\top} (J(\mathbf{x}_k) \mathbf{x}_k - F(\mathbf{x}_k))$$

$$= \mathbf{x}_k - (J(\mathbf{x}_k)^{\top} J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^{\top} F(\mathbf{x}_k)$$

$$= \mathbf{x}_k - \frac{1}{2} (J(\mathbf{x}_k)^{\top} J(\mathbf{x}_k))^{-1} \nabla g(\mathbf{x}_k)$$

■ That is, it is a scaled gradient method with a special choice of scaling matrix:

$$\mathbf{D}_k = \frac{1}{2} (J(\mathbf{x}_k)^\top J(\mathbf{x}_k))^{-1}$$

4 D > 4 D > 4 E > 4 E > E 990

The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it to diverge. A well known variation of the method incorporating stepsizes is the damped Gauss-newton Method.

Algorithm 4 Damped Gauss-Newton Method

- 1: **Input:** $\epsilon > 0$ tolerance parameter.
- 2: **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.
- 3: **for** $k = 0, 1, 2, \cdots$ execute the following steps: **do**
- 4: set $\mathbf{d}_k = -(J(\mathbf{x}_k)^{\top}J(\mathbf{x}_k))^{-1}J(\mathbf{x}_k)^{\top}F(\mathbf{x}_k)$
- 5: set t_k by a line search procedure on the function

$$h(t) = g(\mathbf{x}_k + t\mathbf{d}_k)$$

- 6: set $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$.
- 7: if $\|\nabla f(\mathbf{x}_{k+1})\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.
- 8: end for

Fermat-Weber Problem

Fermat-Weber Problem: Given m points in \mathbb{R}^n : $\mathbf{a}_1, \dots, \mathbf{a}_m$ – also called "anchor point" – and m weights $\omega_1, \omega_2, \dots, \omega_m > 0$, find a point $\mathbf{x} \in \mathbb{R}^n$ that minimizes the weighted distance of \mathbf{x} to each of the points $\mathbf{a}_1, \dots, \mathbf{a}_m$:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}) \equiv \sum_{i=1}^m \omega_i \|\mathbf{x} - \mathbf{a}_i\| \}$$

- The objective function is not differentiable at the anchor points $\mathbf{a}_1, \dots, \mathbf{a}_m$.
- One of the simplest instances of facility location problems.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}.^2$
- $\blacksquare \sum_{i=1}^m \omega_i \frac{\mathbf{x} \mathbf{a}_i}{\|\mathbf{x} \mathbf{a}_i\|} = \mathbf{0}$
- $\blacksquare \left(\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} \mathbf{a}_i\|} \right) \mathbf{x} = \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} \mathbf{a}_i\|}$
- The stationarity condition can be written as $\mathbf{x} \equiv T(\mathbf{x})$, where T is the operator

$$T(\mathbf{x}) \equiv \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|}$$

Weiszfeld's method is a fixed point method:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k)$$

²We implicitly assume here that x is not an anchor point $x \in \mathbb{R}$ $x \in \mathbb{R}$ $x \in \mathbb{R}$

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method

Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily.

General step: for any $k = 0, 1, 2, \cdots$ compute:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k) = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}$$

Weiszfeld's method is a gradient method since

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^m \omega_i \frac{\mathbf{x}_k - \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}$$
$$= \mathbf{x}_k - \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \nabla f(\mathbf{x}_k)$$

■ A gradient method with a special choice of stepsize: $t_k = \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}}$.