ZAGADNIENIE WŁASNE

Z poprzednich zajęć wiemy, że równanie ruchu wygląda następująco:

$$M\ddot{x} = F - Sx$$

Policzmy "rozwiązanie ogólne równania jednorodnego". Tzn: jakie funkcje $x=f(t)\phi$ spełniają równanie bez sił:

$$M\ddot{x} = -Sx$$

$$\ddot{f}(t)M\phi = -f(t)S\phi$$

Jeśli znajdziemy takie ϕ , że:

$$M\phi = \lambda S\phi$$

to otrzymamy:

$$\lambda \ddot{f}(t) = -f(t) \quad \Rightarrow \quad f(t) = \sin\left(t\frac{1}{\sqrt{\lambda}}\right)$$

To oznacza, że $sin(t\sqrt{\lambda})\phi$ jest oscylującym w czasie rozwiązaniem naszego równania dynamiki. Takie rozwiązanie nazywamy drganiem własnym układu. Równanie () nazywamy równaniem własnym.

Dziś skupimy się na znalezieniu zestawu wektorów ϕ i wartości λ dla naszej belki

Zacznijmy od największej λ

Zaczniemy od największej λ . Dobrze zauważyć, że największa wartość własna odpowiada najniższej częstotliwości. Są to drgania własne najmniej tłumione w fizycznym układzie i niosące zazwyczaj najwięcej energii w inżynierskich zastosowaniach.

Będziemy znajdywać nasz wektor ϕ iteracyjnie. Zauważmy, że wektor ϕ może być dowolnej długości. To znaczy: jeśli wektor ϕ spełnia równanie (), to także 2ϕ go spełnia. Możemy więc arbitralnie wybrać "skale" wektora ϕ . Przyjmijmy, że $\phi^T M \phi = 1$, tzn: niesie on energię kinetyczną $\frac{1}{2}$.

Pomnóżmy równanie () przez S^{-1} . Otrzymamy:

$$\phi = \frac{1}{\lambda} S^{-1} M \phi$$

Na podstawie tego wzoru możemy skonstruować prostą iterację:

$$p = S^{-1}M\phi$$
$$\phi = p \frac{1}{\sqrt{p^T M p}}$$

W pierwszym etapie liczymy wynik $S^{-1}M\phi$, a następnie go normalizujemy tak by $\phi^T M\phi = 1$. Jeśli odpowiednio długo będziemy wykonywać taką iterację, wektor własny odpowiadający największej wartości własnej zacznie dominować. Ostatecznie ϕ będzie składać się tylko z tego wektora, a $p^T Mp$ zbiegnie do największej λ .

Zadanie

Znajdź wektor ϕ odpowiadający największej wartości własnej wg. następującego schematu iteracji: - Oblicz $b=M\cdot phi$ - Rozwiąż układ $S\cdot p=b$ - Oblicz $Mp=M\cdot p$ - Oblicz $phi=\frac{1}{\sqrt{\langle p,Mp\rangle}}p$

Zadanie

Pokaż przemieszczenie ϕ przy pomocy funkcji draw. Zrób animację tego przemieszczenia przemnożonego przez $\sin t$.

Zadanie

[Dla ciekawych] By otrzymać bardziej płynną animację dodaj:\ static int pg=0;\ setvisualpage(pg % 2);\ na początku funkcji animate w winbgi2.cpp. Zaś na końcu tej funkcji (przed return):\ pg++;\ setactivepage(pg % 2);\

A teraz następne λ

Chcemy by wektory własne (drgania własne) były niezależne w energii kinetycznej. To znaczy, żeby energia kinetyczna ich sumy była równa sumie ich energii kinetycznych (" $E_k(\phi_0 + \phi_1) = E_k(\phi_0) + E_k(\phi_1)$ "). To w połączeniu z naszą "skalą" daje nam bardzo ważny warunek:

$$\begin{cases} \phi_i^T M \phi_j = 0 & \text{dla } i \neq j \\ \phi_i^T M \phi_j = 1 & \text{dla } i = j \end{cases}$$

Mówiąc językiem numeryki: wektory te są do siebie ortonormalne względem macierzy M. Takiej ortonormalizacji możemy dokonać znaną z Analizy Matematycznej metodą Grama-Schmidta:

Ortonormalizacja Grama-Schmidta Dla każdego
$$i$$
 od 1 do n wykonaj: - dla każdego i od 1 do $i-1$ wykonaj (dla $i=1$ nic nie rób): - Oblicz $\phi_i=\phi_i-\phi_j\langle\phi_j,M\phi_i\rangle$ - Oblicz $\phi_i=\frac{1}{\sqrt{\langle\phi_i,M\phi_i\rangle}}\phi_i$

tkie wektory ϕ są ortogonalne i długości 1 względem macierzy M.

Zadanie

Znajdź wektory ϕ_i odpowiadające 10
ciu największym wartościom własnym wg. następującego schematu iteracji: - Oblic
z $b=M\cdot phi_j$ - Rozwiąż układ $S\cdot p_j=b$ - Przepis
z $phi_i=p_i$ - Wykonaj ortonormalizację G-S wektorów
 phi

Zadanie

Zrób animację dla kolejnych przemieszczeń ϕ_i przemnożonych przez $\sin t$.

Zadanie

Wyznacz odpowiednie λ_i