Combinatorial Pyramids – Development and Lessons Learned

David Pfahler

Structural Pattern Recognition

Recap Combinatorial Maps

Recap Combinatorial Maps

	1	2	3	4
α	2	1	4	3
σ	4	2	3	1

Recap Combinatorial Maps

	1	2	3	4
α	2	1	4	3
σ	4	2	3	1

Development Phases

Development Phases

 [Tor] is a Technical Report about operations on a Combinatorial Pyramid (CP).

Recap: Operations on a Combinatorial Map

(CM):

Remove

Contract

[Bru01] is an introduction to the CP. With background information an the contraction kernel.

Recap: Contraction Kernel

- [Bru03] describes contraction in parallel with contraction kernels
- Recap: Problem why parallel contraction/removal is not trivial

Development Phases

I Implemented a simple python class for CM Not for computations but for representations

```
import CombinatorialMap
map=CombinatorialMap()
map.setSize(5, 5)
map.printNodes()
```


nodes:				
0 - 5, 2 -	0 - 8,4 - 	0 - 11, 7 - 	0 - 13,10 - 	0
1,14	3 ,1 7	6,21 	9 , 25	12 , 29
0 - 20,16 - 	0 - 24,19 - 	0 - 28,23 - 	0 - 31,27 - 	0
15,32 	18,35 	22,39	26,43 	30,47
0 - 38,34 -	0 - 42,37 -	0 - 46,41 - 	0 - 49,45 - 	o
33,50	36,53 	40,57	44,61	48,65
0 - 56,52 - 	0 - 60,55 - 	0 - 64,59 - 	0 - 67,63 - 	0
51,68 	54,70 	58,73 	62,76 	66 , 79
0 - 72,69 -	0 - 75,71 -	0 - 78,74 -	0 - 80,77 -	0

- Also created functions to receive:
 - All darts with specific direction
 - All involutions of specific darts
 - The orbit of a vertex
 - All next darts
 - ...

These are used to understand and create a CM from an image

	`	, , , ,
1	2	1
2	1	-1
3	5	2
4	3	-1
5	4	-1

```
20 21 1
21 22 1
22 20 -2
23 24 1
24 23 -1
```

Development Phases

Phase 3: Implementation

Phase 3: Implementation

Compute Dart Values

- A dart in an image is a transition from one pixel to another.
- Compute from every pixel the change of the pixel value to every neighbor (N,E,S,W)

Phase 3: Implementation

- Computation of the dart indices
 - Example South Indices:

- Added by 4 inside the image. On the border it is only added by 3 (because the west dart is missing)
- Also exceptions in the first row and the last row (missing north dart)
- Additional exceptions for the corners

- Computation of the next index:
 - one row:

```
repmat([2; 2; -1; -3], width-2, 1)
```

middle of the image:

```
repmat(
   [next_darts_one_row; 1; 1; -2; 2; -1; -1],
   height-2, 1)
```

Special cases for first and last row

```
d | σ(d) | σ(d)-d

1 2 1

2 1 -1

3 5 2

4 3 -1

5 4 -1
```

```
20 21 1
21 22 1
22 20 -2
23 24 1
24 23 -1
```


Involution α

- \blacksquare cm.involution(N) = S
- \blacksquare cm.involution(E) = W
- ...

Previous Dart ρ

cm.prev(cm.next) = 1:num darts

Some Examples (3x3):

Some Examples (4x6):

Some Examples (20x20):

Some Examples (100x100):

Phase 3: Implementation

CP Creation

- Sort the darts by its values
- Add dart to contraction kernel if:
 - Not self loop
 - Not pending edge

Greedy: Assign next best Dart For Contraction Kernel

- Exceptions:
 - Self loops
 - Pending edges

Examples: Checkerboard

Examples: Lecture

Examples: Enclosure

Recap: Contract Darts

σ

darts	а	b	С	d	е	X	-x
σ	Х	а	d	е	-x	b	С
σ΄	С	а	d	е	b	b	С

Recap: Contract Darts

σ

darts	а	b	С	d	е	X	-x
σ	Х	а	d	е	-X	b	С
σ′	С	а	d	е	b	b	С

Recap: Contract Darts

σ

darts	a	b	С	d	е	X	-x
σ	Х	а	d	е	-X	b	С
σ'	С	а	d	е	b	b	С

$$\sigma'(\sigma^{-1}(x)) \coloneqq \sigma(-x)$$

$$\sigma'(\sigma^{-1}(-x)) \coloneqq \sigma(x)$$

When contracting darts double edges and selfdirect-loops are created. By removing these darts the pyramid is easier to read and faster to compute.

Check if the face of a dart has less than 2 darts:

Check if the face of a dart has less than 2 darts:

Check if the face of a dart has less than 2 darts:

Check if the face of a dart has less than 2 darts:

Number of darts in face is 2

→ can be removed!

- Special cases for removal:
 - Self-Direct-Loops (2 cases)

Example: contraction kernel (before contraction)

Example: after contraction

Example: after simplification

Development Phases

DEMO

Some costly examples:

Some costly examples:

```
Computed dart values in t = 0.0081839
1.
    Build the first level in t = 0.034072
2.
    Pyramid level 1:
                                                         Pyramid level 5:
                                                     19.
    Computing contraction darts in t = 3.1576
                                                         Computing contraction darts in t = 0.020479
    Contracting darts in t = 1.5676
                                                         Contracting darts in t = 0.0055467
5.
                                                     21.
                                                         Simplify darts in t = 0.029576
    Simplify darts in t = 99.6362
6.
    Pyramid level 2:
                                                         Pyramid level 6:
7.
                                                     23.
    Computing contraction darts in t = 0.52598
                                                         Computing contraction darts in t = 0.0089889
                                                     24.
    Contracting darts in t = 0.22664
                                                         Contracting darts in t = 0.0038467
9.
                                                     25.
    Simplify darts in t = 7.4213
                                                         Simplify darts in t = 0.010096
10.
                                                     26.
    Pyramid level 3:
                                                         Pyramid level 7:
                                                     27.
    Computing contraction darts in t = 0.14502
                                                         Computing contraction darts in t = 0.03025
                                                     28.
    Contracting darts in t = 0.052272
                                                         Contracting darts in t = 0.0028141
                                                     29.
    Simplify darts in t = 0.90517
                                                         Simplify darts in t = 0.0046334
14.
    Pyramid level 4:
                                                         Pyramid level 8:
    Computing contraction darts in t = 0.04065
                                                         Computing contraction darts in t = 0.021293
16.
    Contracting darts in t = 0.013697
                                                         Contracting darts in t = 0.00013621
    Simplify darts in t = 0.13381
                                                         Simplify darts in t = 0.0022108
18.
                                                     34.
```


Some costly examples:

Some costly examples:

```
Computed dart values in t = 0.0040965
    Build the first level in t = 0.028408
    Pyramid level 1:
                                                               Pyramid level 5:
                                                          19.
    Computing contraction darts in t = 2.3352
                                                               Computing contraction darts in t = 0.016426
    Contracting darts in t = 1.0566
                                                               Contracting darts in t = 0.0073146
5.
    Simplify darts in t = 73.4445
                                                               Simplify darts in t = 0.04384
     Pyramid level 2:
                                                               Pyramid level 6:
    Computing contraction darts in t = 0.66482
                                                               Computing contraction darts in t = 0.010979
                                                          24.
    Contracting darts in t = 0.29912
                                                               Contracting darts in t = 0.0039908
9.
    Simplify darts in t = 12.5519
                                                               Simplify darts in t = 0.013091
                                                          26.
     Pyramid level 3:
                                                               Pyramid level 7:
                                                          27.
    Computing contraction darts in t = 0.17884
                                                               Computing contraction darts in t = 0.008718
                                                          28.
    Contracting darts in t = 0.077297
                                                               Contracting darts in t = 0.003313
                                                          29.
    Simplify darts in t = 1.668
                                                               Simplify darts in t = 0.004469
14.
     Pyramid level 4:
                                                               Pyramid level 8:
    Computing contraction darts in t = 0.054448
                                                               Computing contraction darts in t = 0.015805
16.
    Contracting darts in t = 0.021359
                                                               Contracting darts in t = 0.0001234
    Simplify darts in t = 0.24825
                                                               Simplify darts in t = 0.0020848
18.
                                                          34.
```

Literatur

- [Tor] Torres, Fuensanta, and Walter G. Kropatsch. "Canonical Encoding of the Combinatorial Pyramid."
- [Bru01] Brun, Luc, and Walter Kropatsch. "Introduction to combinatorial pyramids." *Digital and image geometry*. Springer Berlin Heidelberg, 2001.
- [Bru03] Brun, Luc, and Walter Kropatsch. "Contraction kernels and combinatorial maps." Pattern Recognition Letters 24.8 (2003): 1051-1057.