

ESTATÍSTICA

PROF^a. KARINA PEREZ MOKARZEL CARNEIRO

Capítulo 3 Gráficos

* Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.

ORGANIZAÇÃO GRÁFICA DOS DADOS

Existe uma grande variedade de gráficos, os mais comuns, que constam da maior parte dos programas computacionais gráficos de uso doméstico são:

- o gráfico circular, tipo torta, pizza ou pie;
- o gráfico de barras ou bar line;
- histograma
- o gráfico de linhas;
- o gráfico do tipo diagrama de caixas, ou box plot;
- o gráfico de ramos e folhas, ou stem-and-leaf.
- o gráfico de dispersão

DIAGRAMA DE BARRAS

- Usado para apresentar variáveis qualitativas e quantitativas discretas.
- ▶ As barras do diagrama podem ser verticais ou horizontais.
- Variáveis qualitativas ilustrar comparações entre categorias.
- Variáveis quantitativas barras do diagrama devem ser verticais.

GRÁFICO DE SETORES

- Usado para representar variáveis qualitativas.
- Cada categoria corresponderá a uma divisão ou a um setor de um círculo.
- Geralmente utilizado quando se pretende comparar o total de cada categoria com o conjunto total.
- Neste tipo de gráfico, um círculo de raio qualquer vai representar 100% dos dados (360º).
- Quando usar a frequência relativa no gráfico, colocar o N.

HISTOGRAMA

- Adequado para ilustrar o comportamento de valores agrupados em classes.
- ▶ É um gráfico de colunas composto por vários retângulos adjacentes, representando a tabela de frequência.
- ► As classes são colocadas no eixo horizontal e as frequências no eixo vertical.
- ▶ Na construção devem ser empregadas de 5 a 20 classes.

- ► É a melhor maneira de visualizar o relacionamento entre duas variáveis.
- A representação gráfica é feita no mesmo sistema de coordenadas, em que uma das variáveis é colocada no eixo x e outra no eixo y.
- O gráfico de dispersão é utilizado para interpretar o relacionamento entre duas variáveis (direção, forma e intensidade do relacionamento).

RECURSOS COMPUTACIONAIS

Alguns dos mais comuns disponíveis atualmente são:

- Microsoft Excel
- Microsoft Graph
- CorelDraw Graphic
- STATISTICA
- · SPSS
- MINITAB
- BioEstat

EXEMPLO 1: DADOS QUALITATIVOS

A tabela abaixo mostra a procedência dos técnicos de manutenção do hospital de Petrópolis. A coleta de dados foi realizada em 2014.

Tabela 1: Procedência dos técnicos do hospital de Petrópolis, 2014

Procedência	fa	fA	fr	fR
BA	2	2	0,04	0,04
GO	1	3	0,02	0,06
MG	21	24	0,42	0,48
MS	2	26	0,04	0,52
MT	1	27	0,02	0,54
PR	1	28	0,02	0,56
SP	22	50	0,44	1
Total	50	<u>-</u>	1	<u>-</u>

10

O gráfico de barras verticais é uma boa opção para dados qualitativos.

EXEMPLO 2: DADOS QUANTITATIVOS DISCRETOS

A tabela abaixo apresenta a altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre (2014).

172	168	180	195	169	164	160	162	180	171
165	168	166	175	178	168	170	159	160	170

- a) Organize os dados numa tabela de frequências.
- b) Faça o histograma

OBS: Dados fictícios

EXEMPLO 2:

a) Tabela de frequências.

Tabela 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

Altura	fa	fA	fr	fR
157-164	5	5	25%	25%
165-172	10	15	50%	75%
173-180	4	19	20%	95%
181-188	-	19	-	95%
189-196	1	20	5%	100%
Total	20	-	100%	-

EXEMPLO 2:

b) Histograma.

Figura 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

EXEMPLO 2:

b) Histograma.

Figura 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

Líquidos	fa	fA	fr	fR
Água	24	24	0,5000	0,5000
Nada	17	41	0,3542	0,8542
Refrigerante	7	48	0,1458	1,0000
Total	48	-	1,0000	-

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

1	$\rightarrow 360^{\circ}$
0,5	$\rightarrow \theta$

Líquido	fa	fA	fr	fR
Água	24	24	50%	50%
Nada	17	41	35%	85%
Refrigerante	7	48	15%	100%
Total	48	-	100%	-

$$\theta = \frac{0.5 \times 360^{\circ}}{1}$$

$$\theta = 180^{\circ}$$

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

Líquido	fa	fA	fr	fR
Água	24	24	50%	50%
Nada	17	41	35%	85%
Refrigerante	7	48	15%	100%
Total	48	-	100%	-

1	\rightarrow	360°
0,5	\rightarrow	180°
0,3542	\rightarrow	128°
0,1458	\rightarrow	52°

2/00

Figura 1 - consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

- $1 \rightarrow 360^{\circ}$
- $0.5 \rightarrow 180^{\circ}$
- $0,3542 \rightarrow 128^{\circ}$
- $0,1458 \to 52^{\circ}$

- É a melhor maneira de visualizar o relacionamento entre duas variáveis;
- A representação gráfica é feita no mesmo sistema de coordenadas, em que uma das variáveis é colocada no eixo x e outra no eixo y;
- O gráfico de dispersão é utilizado para interpretar o relacionamento entre duas variáveis (direção, forma e intensidade do relacionamento).

GRÁFICO 5 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 85 INDIVÍDUOS

Eu tenho uma correlação representada pela ligação entre duas variáveis: altura e peso. À medida que a altura aumenta, o peso também aumenta.

Obviamente, eu tenho casos extremos: pessoas baixas com mais peso e, pessoas altas com menos peso.

GRÁFICO 5 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 85 INDIVÍDUOS

Observe que existe uma concentração de pontos próxima à reta.

Através da regressão linear, foi descoberta essa reta. Essa reta representa todos os pontos do gráfico de dispersão ("bolinhas") com o menor erro possível. Existe uma correlação positiva (de 0 a 1), que é de 0.67, ou seja, altura aumentou, peso aumentou.

Observe que a distribuição dos pontos é bastante homogênea em toda a área do gráfico. Isso quer dizer que não existe uma correlação entre a variável x e a variável y, visto que não existe uma concentração de pontos em determinada região do gráfico. Portanto, x e y são variáveis independentes, sem dependência entre si.

