Моделирование инфляции в российской экономике

Кучин Владимир, ПМ21-3

Аннотация. В работе представлена эконометрическая модель, объясняющая темп инфляции в России с помощью величин ключевой ставки ЦБ РФ, денежной массы и номинального курса доллара США. В ходе построения и анализа модели были подтверждены ее адекватность и правильная спецификация, что говорит о том, что модель может быть использована для прогнозирования величины темпа инфляции. Результатами исследования стали зависимости: увеличение ключевой ставки на 1% влечет за собой увеличение темпа инфляции на 0,66%, увеличение денежной базы на 1% увеличивает инфляцию на 0,0013%, а номинальный курс доллара США к Российскому рублю имеет обратное влияние на инфляцию: каждое увеличение курса на 1% уменьшает инфляцию на 0,1%.

Ключевые слова: инфляция, предсказание, ключевая ставка, номинальный курс, эконометрическое моделирование.

Введение

На сегодняшний день, в эпоху процветания рыночных отношений, инфляция стала одной из основных макроэкономических проблем любой страны. Это результат целого комплекса причин и условий, который имеет свои характерные черты для каждой отдельно взятой страны. Уровень развития отношений между денежным и товарным рынками является критерием определения благосостояния населения, поэтому вопрос изучения инфляции и влияющих на нее факторов как никогда актуален.

Инфляция оказывает отрицательное влияние на все сферы экономики, так как происходит обесценение сбережений населения и результатов труда, наблюдается ситуация невозможности вложений долгосрочных инвестиций, что препятствует экономическому росту. Повышение темпов инфляции является одной из причин дестабилизации денежной системы. Это приводит к оттоку финансовых ресурсов в торгово-посреднические операции.

Описательный анализ данных

Обратимся к статистическим данным, отражающим динамику темпа инфляции в России в период с января 2020 по декабрь 2021 г. Данные взяты с сайта Центрального Банка России. Основной целью денежно-кредитной политики этого периода являлось поддержание ценовой стабильности, то есть стабильно низкой инфляции. Рассмотрим график, отражающий значения инфляции в этот период. Данные представлены с шагом в 1 месяц.

Видим, что несмотря на денежно-кредитную политику, направленную на уменьшение инфляции, на рассматриваемом периоде она возрастает.

С целью обоснования наличия зависимости уровня инфляции в РФ от влияющих на нее определенных макроэкономических показателей построим эконометрическую модель. В качестве исходной спецификации модели рассмотрим линейное регрессионное уравнение:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + \varepsilon_t$$

где:

- 1. y_t объясняемая переменная, обозначающая темп инфляции в %.
- 2. x_{1t} ключевая ставка, % годовых.
- 3. x_{2t} денежная база, млрд руб.
- 4. x_{3t} средний номинальный курс доллара США к рублю.
- 5. β_0 , β_1 , β_2 , β_3 параметры модели.

6. ε_t – ошибки модели.

Рассмотрим подробнее объясняющие признаки:

- Размер денежной базы непосредственно отражает степень возможного влияния ЦБ РФ на денежный рынок, в частности на денежное предложение.
 Связь между уровнем цен, и соответственно инфляцией и количеством денег в обороте доказана в рамках количественной теории денег.
- Одним из основных назначений регулирования ключевой ставки Центральным банком РФ является регулирование инфляции, так как ключевая ставка определяет цену денег для коммерческих банков, а они, в свою очередь, предоставляют кредиты юридическим и физическим лицам.
- Средний номинальный курс доллара США к рублю определяется механизмом формирования цен на импортные товары и в целом зависимостью от импорта, соотношением внутренних и импортных цен. Важным фактором является то, что Россия крупнейший экспортер нефти, мировые цены на которую формируются в долларах США.

Источниками данных выступили официальный сайты Банка России $^{[0]}$ и Единой межведомственной информационно-статистическая системы (ЕМИСС) $^{[1]}$.

	Дата	Ключевая ставка, % годовых	Инфляция, % г/г	Денежная база	Доллар США по отношению к рублю
0	1.2020	6.25	2.40	10979.7	61.7808
1	2.2020	6.00	2.30	10609.1	63.8776
2	3.2020	6.00	2.50	10814.2	73.1480
3	4.2020	5.50	3.10	11536.7	75.2169
4	5.2020	5.50	3.00	12111.8	72.6110
5	6.2020	4.50	3.20	12378.9	69.2217
6	7.2020	4.25	3.40	12792.0	71.2825
7	8.2020	4.25	3.60	12996.3	73.7970
8	9.2020	4.25	3.70	13128.7	75.6513
9	10.2020	4.25	4.00	13235.0	77.5887
10	11.2020	4.25	4.40	13334.5	77.0330
11	12.2020	4.25	4.90	13316.3	74.0504
12	1.2021	4.25	5.20	13826.3	74.2247
13	2.2021	4.25	5.70	13590.2	74.3794
14	3.2021	4.50	5.80	13727.0	74.4093
15	4.2021	5.00	5.50	13732.3	76.0924
16	5.2021	5.00	6.00	14136.1	74.0420
17	6.2021	5.50	6.50	13959.3	72.5083
18	7.2021	6.50	6.50	13989.0	73.9174
19	8.2021	6.50	6.68	14186.7	73.5929
20	9.2021	6.75	7.40	14218.0	72.8910
21	10.2021	7.50	8.13	14320.7	71.4920
22	11.2021	7.50	8.40	14287.1	72.5864
23	12.2021	8.50	8.39	14190.8	73.7164

Статистические характеристики данных:

	Дата	Ключевая ставка, % годовых	Инфляция, % г/г	Денежная база	Доллар США по отношению к рублю
count	24.000000	24.000000	24.000000	24.000000	24.000000
mean	6.702050	5.458333	5.029167	13141.529167	72.879629
std	3.526299	1.261182	1.945575	1155.959591	3.597015
min	1.202000	4.250000	2.300000	10609.100000	61.780800
25%	3.952025	4.250000	3.350000	12688.725000	72.566875
50%	6.702050	5.250000	5.050000	13462.350000	73.756700
75%	9.452075	6.312500	6.500000	14025.775000	74.386875
max	12.202100	8.500000	8.400000	14320.700000	77.588700

Пропущенных значений в данных нет. Рассмотрим график зависимостей значений переменных модели от времени:

Каких-либо аномальных значений не обнаружено.

Оценка параметров регрессии. Проверка качества

Пусть Y — вектор-столбец зависимой переменной, X — матрица объясняющих переменных. Для оценки параметров регрессии воспользуемся формулой:

$$B = (X^T X)^{-1} (X^T Y)$$

Полученные оценки коэффициентов регрессии:

$$\beta_0 = -16.117260406018282$$

$$\beta_1 = 0.6626650447765302$$

$$\beta_2 = 0.0013898856077517946$$

$$\beta_3 = -0.010096674352895296$$

Для проверки качества подгонки модели под данные рассчитаем коэффициент детерминации R^2 . Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных. В нашем случае $R^2=0.960$, что говорит о том, что модель хорошо «объясняет» данные.

На дальнейшем этапе анализа проверим соблюдение условий Гаусса-Маркова:

1. Математическое ожидание ошибок регрессии равно 0.

$$\bar{\varepsilon} = 1.556199613617082 \cdot 10^{-12}$$

2. Дисперсия случайных отклонений постоянна (наличие гомоскедастичности).

Для проверки данные на гомоскедастичность воспользуемся тестом Голдфелда — Куандта. Полученное Р-значение статистики равно 0.6911200142072762. Так как значение не меньше 0.05, мы не можем отвергнуть нулевую гипотезу о присутствии гомоскедастичности.

3. Случайные отклонения остатков независимы (отсутствие автокорреляции). Для проверки данных на автокорреляцию вычислим статистику Дарбина-Уотсона:

$$DW = 1.780715738149678$$

Граничные значения: $d_1 = 1.10$, $d_2 = 1.66$

Так как выполняется неравенство $d_1 < DW < 4 - d_2$, то наличие автокорреляции в остатках опровергается.

4. Отсутствие мультиколлинеарности.

Проверим данные на мультиколлинеарность. Для проверки проанализируем матрицу коэффициентов корреляции:

	Υ	X1	X2	Х3
Υ	1.000000	0.558409	0.879614	0.314084
X1	0.558409	1.000000	0.149411	-0.292784
X2	0.879614	0.149411	1.000000	0.555244
ХЗ	0.314084	-0.292784	0.555244	1.000000

Видим, что величины ни одного из коэффициентов не превышает по модулю 0.75, что может говорить об отсутствии мультиколлинеарности. Для более точной провери воспользуемся VIF-тестом:

	VIF	Переменная
0	569.906034	Intercept
1	1.292713	X1
2	1.708676	X2
3	1.827160	ХЗ

Т.к. все значения VIF меньше 10, мультиколлинеарность не наблюдается.

Проверим статистическую значимость уравнения рергесии в целом. Для этого воспользуемся F-критерием Фишера. Найдем расчетное значение критерия:

$$Q_r = B^T(X^TY) - n\overline{y^2}$$

$$Q_e = Y^TY - B^TX^TY$$

$$S_r^2 = \frac{Q_r}{p}$$

$$S_e^2 = \frac{Q_e}{n - p - 1}$$

$$F_p = \frac{S_r^2}{S_r^2}$$

И сравним его с табличным $F_{\alpha;p;n-p-1}$. Если $F_p \geq F_{\alpha;p;n-p-1}$, то уравнение значимо. В нашем случае $F_p = 161.64577458 > F = 3.09839121214078$, следовательно, уравнение статистически значимо.

Для проверки статистической значимости коэффициентов регресии воспользуемся t-критерием Стьюдента. Для этого сначала найдем стандартные ошибки коэффициентов регрессии:

$$m_{b_i} = S_e \sqrt{[(X^T X)^{-1}]_{ii}}$$

Затем найдем наблюдаемые значения *t*-критерия:

$$t_{b_i} = \frac{b_i}{m_{b_i}}$$

И сравним их с табличным $t_{\alpha;n-p-1}$. Если $t_{b_i} \geq t_{\alpha;n-p-1}$, то уравнение значимо. В нашем случае все коэффициенты уравнения регрессии оказались статистически значимыми.

Экономический смысл коэффициентов регрессии

Рассмотрим оценки параметров регрессионного уравнения:

 $\beta_0 = -16.117260406018282$ $\beta_1 = 0.6626650447765302$ $\beta_2 = 0.0013898856077517946$ $\beta_3 = -0.010096674352895296$

Их можно интерпретировать как:

- Увеличение ключевой ставки на 1% влечет за собой увеличение темпа инфляции на 0.66% при прочих неизменных параметрах. Существенное влияние обусловлено тем, что Центральный банк РФ проводит политику таргетирования инфляция, основным инструментом которой является ключевая ставка. В периоды кризиса при высоком уровне инфляции увеличение ключевой ставки ограничивает спрос на кредитные ресурсы, снижается покупательная способность населения. Таким образом, замедляются темпы экономического роста и, как следствие, сдерживается инфляция.
- Увеличение размера денежной базы на 1% увеличивает инфляцию на 0.0014% при прочих неизменных параметрах. Относительно невысокое абсолютное значение влияния связано с тем, что инфляция в России носит немонетарный характер, т.е. рост цен не обусловлен изменением объемов денежной базы, которая является одним из характеризующих денежное предложение показателем.
- Увеличение среднего номинального курса доллара на 1% влечет за собой уменьшение темпа инфляции на 0.01%.

Прогнозирование на основе полученной модели. Доверительный интервал прогноза

Для проверки модели спрогнозируем темп инфляции в январе 2022 года. Для этого соберем информацию о значениях ключевой ставки, денежной базы и номинального курса доллара за этот период:

	Инфляция	Ключевая ставка, % годовых	Денежная база	Доллар США по отношению к рублю
0	8.73	8.5	14553.8	75.8682

Подставим эти данные в нашу модель. Полученная оценка инфляции:

$$\hat{y} = 8.977493123539963$$

Рассчитаем доверительный интервал для прогноза:

$$\widehat{y_p} - S_{y_p} \cdot t_{\alpha;df} < \widehat{y_p} < \widehat{y_p} + S_{y_p} \cdot t_{\alpha;df},$$

где $S_{y_p} = S_e \sqrt{1 + X_p^T (X^T X)^{-1} X_p}$ - стандартная ошибка прогноза.

Полученный интервал:

$$8.1275585 < \hat{y} < 9.82742775$$

Фактическое значение инфляции принадлежит рассчитанному интервалу.

Выводы

В данной работе была построена эконометрическая модель для расчета темпа инфляции по известным значениям номинального курса доллара США, денежной базы и ключевой ставке.

Модель показала хорошую точность предсказания на тестовых данных, оценка лежит недалеко от истинного значения, истинное значение принадлежит доверительному интервалу оценки.

В заключение необходимо отметить, что исследование такого сложного явления, как инфляция требует рассмотрения множества других факторов для выявления экономических, в том числе латентных, закономерностей, что позволит повысить эффективность и результативность денежно-кредитной политики в России.

Источники

- 1. Ключевая ставка Банка России и инфляция [Электронный ресурс] // CBR URL: https://www.cbr.ru/hd_base/infl (дата обращения: 13.05.2023).
- 2. Средние номинальные курсы [Электронный ресурс] // FEDSTAT URL: https://www.fedstat.ru/indicator/42108 (дата обращения: 14.05.2023).