

2. Asymptotic Notations

Dr. Swati Agarwal

Agenda

- 1 Classes of Functions
- 2 Asymptotic Notations
- 3 Examples: Asymptotic Notations

Classes of Functions

$$f(n) = 2$$
 constant

$$f(n) = 200$$
 constant

$$f(n) = 2000$$
 constant

$$f(n) = \log n$$
 logarithmic

$$f(n) = n$$
 linear

•
$$f(n) = n^2$$
 quadratic

$$f(n) = n^3$$
 cubic

$$f(n) = 2^n$$
 exponential

Compare classes of functions

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < ... 2^n < 3^n < n^n$$

Input Size(n)	log n	n	nlogn	n^2	n^3	2 ⁿ
5	3	5	15	25	125	32
10	4	10	40	100	10^{3}	10 ³
100	7	100	700	10 ⁴	10^{6}	10 ³⁰
1000	10	10 ³	10 ⁴	10 ⁶	10 ⁹	10 ³⁰⁰

Asymptotic Notations

- Mathematical notations (languages) to represent the time analysis function of an algorithm.
- Used to define the growth rate of an algorithm as the input size is increased.
- Performance of an algorithm in-terms of the input size.
- Three standard asymptotic notations:
 - Big-Oh $\mathcal{O} \to \mathsf{upper}$ bound
 - Big-Omega $\Omega \to$ lower bound
 - Big-Theta $\Theta \to \mathsf{Average}$ bound

Big-Oh \mathcal{O}

Definition

The function $f(n) = \mathcal{O}(g(n)) \iff \exists$ +ve constant c and n_0 such that $f(n) \le c \times g(n) \qquad \forall n \ge n_0$ where $n_0 \ge 1$ and c > 0

Example

f(n) = 3n + 2 select a value of c and n_0 such that f(n) is always lesser than or equal to the g(n).

Graphical Representation Big-Oh \mathcal{O}

Big-Omega Ω

Definition

The function $f(n) = \Omega(g(n)) \iff \exists$ +ve constant c and n_0 such that $f(n) \ge c \times g(n) \qquad \forall n \ge n_0$ where $n_0 \ge 1$ and c > 0

Example

f(n) = 3n + 2 select a value of c and n_0 such that f(n) is always greater than or equal to the g(n).

Graphical Representation Big-Omega Ω

Big-Theta ⊖

Definition

The function $f(n) = \Theta(g(n)) \iff \exists$ +ve constants c_1 , c_2 and n_0 such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n) \qquad \forall n \ge n_0$ where $n_0 \ge 1$ and $c_1 > 0$ and $c_2 > 0$

Primarily used when both upper bound and lower bound functions are asymptotically same.

Example

For f(n) = 2n + 3 $g(n) = 1 \times n$ for lower bound and $g(n) = 5 \times n$ for upper bound for $\forall n \ge 1$.

$$1 \times n \ge 2n + 3 \ge 10 \times n$$

$$f(n) = \Theta(g(n))$$

Graphical Representation Big-Theta ⊖

Recall the classes of functions

- While computing the time function of any algorithm, always select the highest degree of polynomial
 - constant1
 - linear n
 - quadratic n^2
 - cubic n^3
 - exponential 2^n or n^n
- While computing the bound, always select the closest value.
 - for big-oh notation, f(n) = 2n + 3, $g(n) = 2n^2 \ \forall \ n \ge 2$, $g(n) = 2n^2 + 3n^2$ and $g(n) = 10n \ \forall \ n \ge 1$
 - best suitable g(n) will be n instead of n^2 .

January 16, 2020

Dr. Swati Agarwal

2. Asymptotic Notations

Exercise

1.
$$f(n) = 2n^2 + 3n + 2$$
 $\Theta(n^2)$
2. $f(n) = n^2 \log n + n$ $\Theta(n^2 \log n)$

3.
$$f(n) = n!$$
 $\mathcal{O}(n^n), \Omega(1)$

4.
$$f(n) = \log n!$$
 $\mathcal{O}(n \log n), \Omega(1)$

No tight/average bound for factorial functions