ECE 65: Components & Circuits Lab

Lecture 4

Diode introduction and review of circuit theory

Reference notes: sections 2.1-2.8

Sedra & Smith (7th Ed): sections 4.3-4.4

Saharnaz Baghdadchi

Course map Review of Circuit theory

We will analyze many <u>functional circuits</u>

Two-terminal Networks

Function is defined by the iv equation

Two-port Networks

Function is defined by the transfer function (e.g., v_o in terms of v_i)

A typical analog circuit contains a load and a source (two-terminal networks) and several two-port networks

We divide the circuit into building blocks to simplify analysis and design

In linear circuits:

Any two-terminal network can be replaced by its Thevenin equivalent circuit.

If a two-terminal network does not include an "independent source" it will be reduced to a single "impedance" (even if it includes dependent sources).

Source only sees a load resistor

Two-port network

Transfer function of a two-port network can be found by solving the above circuit once.

Course map

2. Diodes

The iv characteristics of a silicon junction diode

When the diode conducts, $i_D \gg I_S$ and:

$$i_D = I_S e^{v_D/V_T}$$

 I_S : Saturation Current (10⁻⁹ to 10⁻¹⁸ A)

 V_T : Thermal voltage = 26mV at room temp.

Diode piecewise-linear model:

Assume Si Diode with VD=0.7V

Mhen
$$V_1 - V_2 < 0$$
 \longrightarrow diode is reverse-biased $\Longrightarrow i_D = 0$

By When $0 < V_1 - V_2 < 0.7$ \longrightarrow diode is forward-biased, but

it is not on, yet $\Longrightarrow i_D = 0$

When
$$V_1 - V_2 = 0.7$$
 \longrightarrow diode is forward biased and it's $0N \longrightarrow i_D > 0$ & $V_D = V_D = 0.7$

Diode piecewise-linear model:

Constant Voltage drop Model:

Circuit Models:

ON: $\stackrel{\bullet}{\stackrel{}{\stackrel{}}_{D}} \stackrel{+}{\stackrel{}}_{V_{D0}}$

OFF: + 'D' -

Diode ON: $v_D = V_{D0}$ and $i_D \ge 0$

Diode OFF: $i_D = 0$ and $v_D < V_{D0}$

(cut-in voltage) $V_{D0} = 0.6 - 0.7 V$ for Si

Diode circuit models:

When Diode is OFF:

$$i_D = 0$$
 and $v_D < V_{D0}$

When Diode is ON:

$$i_D \ge 0$$
 and $v_D = V_{D0}$

Example 1:

Find i_D and v_D for R = 1k, V_i = 5 V, and Si Diode ($V_{D\theta}$ = 0.7 V).

Solution with diode circuit models:

$$V_{i} = 1k \times i + v_{D}$$

$$V_i = V_D = 5V > 0.7$$

Vi=VD=5V>0.7 _____ Assumption was arong.

Assume Diode is ON
$$i_{D} \gg 0, \quad V_{D} = V_{D}, \quad V_{D}$$

$$V_i = 1k \times i_D + 0.7V$$

$$-i_D = \frac{5 - 0.7}{1k} = 4.3 \text{ m A} > 0$$
The dide is ON.

Example 2:

For what range of V_i the diode will be ON and for what range it will be OFF?

Find i_D and v_D for each range.

$$V_i = R_{iD} + V_D = R_{iD} + 0.7$$

$$i_D = \frac{V_i - 0.7}{R} > 0 \longrightarrow V_i > 0.7 V$$

$$V_{i} = R_{i} \stackrel{i}{D} + V_{D} \longrightarrow V_{i} = V_{D}$$
, $V_{D} \swarrow V_{D} \stackrel{i}{\longrightarrow} V_{i} \swarrow V_{D}$

Lecture 4 reading quiz

In this diode circuit, what is the value of V_R for $V_i = 5 V$ and $V_i = -5 V$? Assume $V_{D0} = 0.7 V$

when
$$V_i = 5V$$
:

Assume the diode is off

 $V_D < V_D$, and $i_D = 0$

$$kVL: -V_{i} + V_{D} + Ri_{D} = 0 \qquad \rightarrow -V_{i} + V_{D} = 0 \qquad \rightarrow V_{i} = V_{D} = 5 > V_{D},$$

$$\Rightarrow \qquad \text{The assumption was even } .$$

Lecture 4 reading quiz

In this diode circuit, what is the value of V_R for $V_i = 5 V$ and $V_i = -5 V$? Assume $V_{D0} = 0.7 V$

When
$$V_i = 5V$$
:

Assume the diode is ON

 $V_D = V_{D_0}$ and $i_D \ge 0$

$$kVL: -V_{i} + V_{D} + R i_{D} = 0 \longrightarrow -V_{i} + V_{D_{0}} + 2k_{L} \times i_{D} = 0$$

$$\longrightarrow -5V + 0.7V + 2k_{L} \times i_{D} = 0 \Longrightarrow i_{D} = 2.15 \text{ mA} > 0$$

=> The assumption was correct. The diode is ON, $V_0 = V_0$, and $i_0 = 2.15 \text{ mA}$. $V_{R} = 2k_{A} \times 2.(5 \text{ mA} = 4.3 \text{ V})$

Lecture 4 reading quiz

In this diode circuit, what is the value of V_R for $V_i = 5 V$ and $V_i = -5 V$? Assume $V_{D0} = 0.7 V$

when
$$V_i = -5V$$
:

Assume the diode is off

 $V_D < V_D$ and $i_D = 0$

$$kVL: -V_{i} + V_{D} + Ri_{D} = 0 \longrightarrow -V_{i} + V_{D} = 0 \longrightarrow V_{i} = V_{D} = -5V \langle V_{D}, V_{D} \rangle$$

 \Rightarrow The assumption was correct. The diode is off, ip = 0 and $V_0 = -5V$.

Clicker question 1.

For what range of v_s , will the diode in the following circuit be ON?? (Si diodes with $V_{D0}=0.7~V$)

A.
$$v_s \geqslant 5 \text{ V}$$

$$\bigcirc B. \ v_s \geqslant 5.7 \ V$$

C.
$$v_s \ge 4.3 \text{ V}$$

replacing the diode with the constant voltage drop model:

$$\frac{\text{KVL}: -V_{s} + 5k_{x} \times i + 5V + V_{D_{0}} = 0}{\Rightarrow i = i_{D} = \frac{V_{s} - 5.7}{5k_{x}} \geqslant 0}$$

$$\longrightarrow V_{s} \geqslant 5.7V$$

Clicker question 3.

Find v_R and i in the below circuit for $v_S = 3V$.

(Assume Si diodes with $V_{D0} = 0.7 V$)

kcl:
$$i_R = -i_{D_2}$$

$$\rightarrow V_R = -l k x i_{D_2}$$

A.
$$v_R = 2.3 V$$
, $i = 1.15 mA$

B.
$$v_R = 0 V$$
, $i = 1.15 mA$

C.
$$v_R = 0.6 V$$
, $i = 0.3 mA$

A.
$$v_R = -2.3 V$$
, $i = 1.15 mA$

Casel: Assume Diss ON and Dz is OFF

$$V_{D_1} = V_{D_0} \quad \& \quad i_{D_1} > 0 \qquad \& \quad V_{D_2} < V_{D_0} \quad \& \quad \hat{D}_2 = 0$$

$$kVL1: -V_{S} + V_{D_{1}} + 2k \times i_{D_{1}} = 0 \rightarrow -3V + 0.7V + 2k \times i_{D_{1}} = 0$$

$$\rightarrow i_{D_{1}} = 1.15 \text{ mA} > 0$$

 $|V| = -V_S + 1 \ln x \left(-\frac{i}{D_2}\right) - V_{D_2} = 0 \longrightarrow -3V + 0 - V_{D_2} = 0 \longrightarrow V_{D_2} = -3V < 0.7V$

ip, >0 and Voz < Vo. -> the assumption was correct.

$$V_R = -1k x i_{D_2} = 0 V \longrightarrow V_R = 0 V$$

Let's show that other cases are not valid.

Case 2: Assume D, is OFF and Dz is OFF

KVL1.
$$V_S = V_{D_1} + 2k_X i_{D_1} \longrightarrow V_{D_1} = V_S = 3V > V_{D_0} \longrightarrow Assumption was wrong$$

Case 3: Assume D, and Dz are ON

$$V_{D_1} = V_{D_0} \qquad \& \quad \dot{V_{D_1}} \geqslant 0 \qquad \& \qquad V_{D_2} = V_{D_0} \qquad \& \qquad \dot{V_{D_2}} \geqslant 0$$

$$KVL2: V_S = -1k_{\Lambda} \times i_{D_2} - V_{D_2} \rightarrow i_{D_2} = \frac{-3 - 0.7}{1k} = -3.7 \text{ m A} < 0 \rightarrow \text{Assumption}$$

was wrong

Case 4: Assume D, is OFF and D2 is ON

$$V_{D_1} < V_{D_0}$$
 & $i_{D_1} = 0$ & $V_{D_2} = V_{D_0}$ & $i_{D_2} > 0$

$$VL1: V_S = V_{D_1} + 2k \times i_{D_1} \longrightarrow V_{D_1} = V_S = 3V > V_{D_0} \longrightarrow Assumption was wrong$$