Improving Deep Neural Networks

§1 Practical aspects of Learning Applications

§2 Optimization Algorithms

1. Mini-Batch Gradient Descent

Below is the vectorized implementation of one iteration of Gradient Descent using Mini-Batch: Repeat for t = 1, ..., 5,000 (5,000 is the number of Mini-Batches) {

Do Forward Propagation on
$$X^{\{t\}}$$
: $Z^{[1]} = w^{[1]}X^{\{t\}} + b^{[1]}$; $A^{[1]} = g^{[1]}(Z^{[1]})$, ..., $A^{[L]} = g^{[L]}(Z^{[L]})$

Compute cost function:
$$J^{\{t\}} = \frac{1}{1000} \sum_{i=1}^{l} L(\hat{Y}^{(i)} - y^{(i)}) + \frac{\lambda}{2*1000} \sum_{l} ||w^{[l]}||_F^2$$

Backward Propagation to compute gradients cost by taking derivative of $J^{\{t\}}$ to each w and b. Update w and b: $w^{[l]} = w^{[l]} - \alpha dw^{[l]}$; $b^{[l]} = b^{[l]} - \alpha db^{[l]}$

2. Understanding Mini-Batch Gradient Descent

- For each iteration, Gradient Descent can be run for **# of Mini-Batches** times.
- Choose Mini-Batch size:
 - If Mini-Batch size = m (m is the sample size): there is only one batch, and we call this **Batch Gradient Descent**. It will be too long to run each iteration;
 - If Mini-Batch size = 1: every sample is its own batch, and we call this **Stochastic Gradient Descent**.
 - If Mini-Batch size is between 1 and m (usually 1,000) and appropriate, we can achieve fast speeding from both vectorization and making progress without processing the entire data set.

$$V_t = \beta V_{t-1} + (1 - \beta)\theta_{t-1}$$

 V_t is an approximately averaging value over $1/(1-\beta)$ days.

For each V_t

}

$$V_t = \frac{V_t}{1 - \beta^t}$$

As t grows, $(1 - \beta^t) \rightarrow 1$.

§3 Hyperparameter Tuning and Batch Normalization

1. Hyperparameter Tuning

- Tuning Process: (1) Try random values, don't use a grid; (2) From coarse to fine;
- Using an appropriate scale to pick hyperparameters: (1) Pick hyperparameters at random; (2) Appropriate scale for hyperparameters; (3) Hyperparameters for exponentially weighted averages.
- Hyperparameter tuning in practice
 - Panda: Babysitting one model;
 - Caviar: Train many models in paralle

2. Batch Normalization

• Normalizing activations in a network, given some intermediate values in neural network layer l, $z^{[l](1)}, ..., z^{[l](i)}, ..., z^{[l](m)}$.

$$\mu = \frac{1}{m} \sum_{i} z^{[l](i)}, \ \sigma^2 = \frac{1}{m} \sum_{i} (z^{[l](i)} - \mu) ** 2$$

$$z_{norm}^{[l](i)} = \frac{z^{[l](i)} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

$$\tilde{z}^{[l](i)} = \gamma z_{norm}^{[l](i)} + \beta$$

 γ and β are learnable parameters of model.

Apply Batch Normalization to a Neural Network: Implementation

For t = 1, ..., # of Mini-Batches

Compute Forward Propagation on $x^{\{t\}}$: In each hidden layer, use Batch Normalization to replace $z^{[l]}$ with $\tilde{z}^{[l]}$. Use Backward Propagation to compute $dw^{[l]}$, $d\beta^{[l]}$ and $d\gamma^{[l]}$.

Update parameter (we can also use momentum, RMSprop and Adam to update, too).

$$w^{[l]} = w^{[l]} - \alpha dw^{[l]}; \ \beta^{[l]} = \beta^{[l]} - \alpha d\beta^{[l]}; \ \gamma^{[l]} = \gamma^{[l]} - \alpha d\gamma^{[l]}.$$

3. Multi-class Classification - Softmax Regression

Given the output has 4 classes, for the output layer

$$z^{[l]} = w^{[l]}a^{[l-1]} + b^{[l]}; a^{[l]} = g^{[l]}(z^{[l]})$$

Both $a^{[l]}$ and $z^{[l]}$ are (4, 1) vectors.

Loss function can be derived as

$$L(y, \hat{y}) = -\sum_{j=1}^{4} y_j \log \hat{y}_j$$

If
$$y = [0, 1, 0, 0]^T$$
, $L(y, \hat{y}) = -log\hat{y}_2$.

And cost function is

$$J(w^{[1]}, b^{[1]}, \dots) = \frac{1}{m} \sum_{i=1}^{m} L(y, \hat{y})$$

So Gradient Descent with Sofmax is $dZ^{[L]} = \hat{y} - y$, which is a (4, 1) vector.