

APLM

(Automated Piano Learning Module)

Project semester 8 2024-2025

Contents

- 1. Reminder and brief presentation of the project
- II. Demonstration
- III. Additional schematic and PCB Design
- IV. Digital audio signal processing

I. Reminder and brief presentation of the project

I. Reminder and brief presentation of the project

Figure 1: Representation of the project generated by IA

Figure 2: Project function diagram

I. Reminder and brief presentation of the project

II. Demonstration

II. Demonstration

1) Initialization

Beyond Engineering

2) Menu

Beyond Engineering

3) Possible Ameliorations

- Do the test for an entire piano and not just an octave
- Store more MIDI file in a SD card to play different music
- Increase the number of floors
- Complete the User Interface and functionality (Colors, BPM,...)
- Correct the initialization list with the real list played when there are several floors

Figure 7: Buttons schematic

Figure 8: Button simulation

Figure 9: APLM PCB

Figure 10: APLM 3D view

What's left to do as of today:

- Fix the issue with certain components on the PCB
- Print the PCB
- Solder the components onto the board

Figure 12: Useful libraries for the project

T_N: Le N-ième temps joué

 N_0 : le nombre de temps du morceau

Figure 11: Method for evaluating the user score

Solutions

Solution	Conditions d'estimation des temps	Temps d'acquisition (ms)	Temps de calcul FFT (ms)	Total (ms)	Impact sur CPU STM32	Complexité d'implémentation	Prix supplémentaire	Conclusion
STM32L476RG (CMSIS-DSP)	Cortex-M4 à 80 MHz avec FPU Deux FFT exécutées séquentiellement avec CMSIS-DSP	3	4	7	Fort	Nécessite l'implémentation d'un code à partir de la bibliothèque CMSIS qui est difficile d'utilisation avec un temps de développement supplémentaire plus long.	0,00€	Sélectionné
X-NUCLEO- IKS02A1	Temps d'acquisition via I°C/SPI estimé à ~1-2 ms Calcul FFT effectué sur STM32 avec CMSIS- DSP	1-2	4-6	5-8	Moyen	Ne nécessite pas de code complexe et trop de temps de développement supplémentaire.	29,39€	Recalé
ADS1299	Temps d'acquisition via SPI à 16 S/S Calcul FFT effectué sur STM32 avec CMSIS-DSP	0,2	3,2-4,2	3,4-4,4	Moyen	Ne nécessite pas de code complexe et trop de temps de développement supplémentaire.	29,87€	Recalé
AD7768	Temps d'acquisition via SPI ou LVDS (256 kS/S) Calcul FFT réalisé à un FPGA ou un DSP dédié	0,05	~0,5 (via FPGA/DSP)	0,55	Faible	Ne nécessite pas de code complexe et trop de temps de développement supplémentaire.	20,96€	Recalé

Figure 13: Options in numbers

Paradigm shift

When initialising, record every FFT of every note on the piano!

Advantages:

Frees up the processor for a real-time FFT
Simplifies programming (no need to search for a maximum, cross-correlation of theoretical and measured signals)
Gives the processor extra room to manoeuvre

Physical simulation of the new process

Figure 14: Function diagram of the DSP section

Figure 15: Representative electronic circuit for the new process

Physical simulation of the new process

Figure 16: Sum of signals

Figure 17: FFT of the sum

Introduction of white noise

Figure 18: Noisy and filtered signal

Figure 19: Electrical installation

Averaging filter

Figure 20: Filtered FFT

Figure 21: Temporal and spatial complexity for the greedy algorithm

Figure 22: Time and space complexity for the finer algorithm

Figure 23: Temporal and spatial complexity for the greedy algorithm

Figure 24: Time and space complexity for the finer algorithm

Thank you for your time and attention!