ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Рабочая тетрадь

Преподаватель: _	
- ' '	
-	
""	2024r

Лабораторная работа №2 РЕАКТИВНЫЕ ЭЛЕМЕНТЫ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Задачи

- 1. Рассчитать и построить зависимости реактивного сопротивления катушки и конденсатора от частоты источника питания.
- 2. Снять экспериментально и построить зависимости реактивного сопротивления катушки от частоты источника питания.
- 3. Сравнить рассчитанные и полученные результаты.
- 4. Записать вывод по результатам.

Ход работы

1. Рассчитать цепь (Рис. 1).

Рис. 1: Рассчётная цепь.

2. Заполнить таблицу.

Элементы и параметры			Частота f, Гц									
цепи		30	40	50	60	70	80	90	100	110	120	
Катушка	Рассч.	$X_L = 2\pi f L * 10^{-3} =$	11,22	14,97	18,71	22,45	26,19	29,93	33,67	37,42	41,16	44,90
	Эксп.	U_L, \mathbf{B}	59,7	63,6	65,7	66,9	67,7	68,2	68,6	68,8	69,1	69,2
		I_L, A	5,21	4,17	3,44	2,92	2,53	2,23	2,00	1,80	1,64	1,51
		$X_L = \frac{U_L}{I_L}$	11,46	15,25	19,10	22,91	26,76	30,58	34,30	38,22	42,13	45,83
Конденсатор	Рассч.	$X_C = \left(\frac{1}{2\pi f L * 10^{-6}}\right) =$	31,21	23,41	18,72	15,60	13,37	11,70	10,40	9,36	8,51	7,80
	Эксп.	U_C, \mathbf{B}	68,3	67,0	65,5	63,7	63,7	59,9	68,6	68,8	69,1	69,2
		I_C,A	5,21	4,17	3,44	2,92	2,53	2,23	2,00	1,80	1,64	1,51
		$X_L = \frac{U_L}{I_L}$	30,77	23,10	18,50	15,39	13,32	11,56	10,27	9,24	8,41	7,70

3. Построить зависимости рассчитанных и экспериментальных значений X_L и X_C от f (Рис. 2).

Рис. 2: Графики.

Выводы

В ходе лабораторной работы была проведена сравнительная оценка расчётных и экспериментальных значений реактивного сопротивления индуктивных и емкостных цепей. Сравнение показывает достаточно высокую точность эксперимента с минимальной погрешностью измерений.

Резонанс напряжений происходит в случае, когда реактивные сопротивления индуктивной и емкостной частей цепи выравниваются, т.е. достигнуты условия $X_L = X_C$. По экспериментальным данным можно отметить, что резонансная частота была приближённо равна 50 Γ ц.