In [31]:

```
# Calculate Skewness, Kurtosis & draw inferences on the following data
Cars speed and distance
# SP and Weight(WT)
```

In [8]:

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from scipy import stats
```

In [14]:

```
car_speed= pd.read_csv('Q9_a.csv')
car_speed
```

Out[14]:

	Index	speed	dist
0	1	4	2
1	2	4	10
2	3	7	4
3	4	7	22
4	5	8	16
5	6	9	10
6	7	10	18
7	8	10	26
8	9	10	34
9	10	11	17
10	11	11	28
11	12	12	14
12	13	12	20
13	14	12	24
14	15	12	28
15	16	13	26
16	17	13	34
17	18	13	34
18	19	13	46
19	20	14	26
20	21	14	36
21	22	14	60
22	23	14	80
23	24	15	20
24	25	15	26
25	26	15	54
26	27	16	32
27	28	16	40
28	29	17	32
29	30	17	40
30	31	17	50
31	32	18	42
32	33	18	56
33	34	18	76

	Index	speed	dist
34	35	18	84
35	36	19	36
36	37	19	46
37	38	19	68
38	39	20	32
39	40	20	48
40	41	20	52
41	42	20	56
42	43	20	64
43	44	22	66
44	45	23	54
45	46	24	70
46	47	24	92
47	48	24	93
48	49	24	120
49	50	25	85

In [15]:

```
1 cars_weight= pd.read_csv('Q9_b.csv')
2 cars_weight
```

	Unnamed: 0	SP	WT
0	1	104.185353	28.762059
1	2	105.461264	30.466833
2	3	105.461264	30.193597
3	4	113.461264	30.632114
4	5	104.461264	29.889149
76	77	169.598513	16.132947
77	78	150.576579	37.923113
78	79	151.598513	15.769625
79	80	167.944460	39.423099
80	81	139.840817	34.948615

cleaning the data

```
In [18]:
```

```
1 del car_speed['Index']
```

In [19]:

1 car_speed

Out[19]:

	speed	dist
0	4	2
1	4	10
2	7	4
3	7	22
4	8	16
5	9	10
6	10	18
7	10	26
8	10	34
9	11	17
10	11	28
11	12	14
12	12	20
13	12	24
14	12	28
15	13	26
16	13	34
17	13	34
18	13	46
19	14	26
20	14	36
21	14	60
22	14	80
23	15	20
24	15	26
25	15	54
26	16	32
27	16	40
28	17	32
29	17	40
30	17	50
31	18	42
32	18	56
33	18	76

	speed	dist
34	18	84
35	19	36
36	19	46
37	19	68
38	20	32
39	20	48
40	20	52
41	20	56
42	20	64
43	22	66
44	23	54
45	24	70
46	24	92
47	24	93
48	24	120
49	25	85

In [20]:

```
1 del cars_weight['Unnamed: 0']
```

In [21]:

```
1 cars_weight
```

Out[21]:

	SP	WT
0	104.185353	28.762059
1	105.461264	30.466833
2	105.461264	30.193597
3	113.461264	30.632114
4	104.461264	29.889149
76	169.598513	16.132947
77	150.576579	37.923113
78	151.598513	15.769625
79	167.944460	39.423099
80	139.840817	34.948615

81 rows × 2 columns

Cars speed and distance

```
In [23]:
   car_speed['speed'].skew() # skew is < 0.5 The data is moderatly symmetrical</pre>
Out[23]:
-0.11750986144663393
In [26]:
 1 car_speed['speed'].kurtosis() # kurtosis has no outliers so can be consider as normal
Out[26]:
-0.5089944204057617
In [27]:
 1 plt.hist(car_speed['speed'])
 2 plt.show
Out[27]:
<function matplotlib.pyplot.show(close=None, block=None)>
 8
 7
 6
 5
 4
```



```
In [28]:
```

```
car_speed['dist'].skew()
                                  # skew is >0.5 so data is not normally distributed
```

Out[28]:

0.8068949601674215

In [29]:

```
1 car_speed['dist'].kurtosis()
                                 # kurtosis has no outliers so can be consider as nor
```

Out[29]:

0.4050525816795765

In [30]:

```
plt.hist(car_speed['dist'])
plt.show
```

Out[30]:

<function matplotlib.pyplot.show(close=None, block=None)>

SP and Weight(WT)

In [32]:

1 cars_weight

Out[32]:

SP	WT
104.185353	28.762059
105.461264	30.466833
105.461264	30.193597
113.461264	30.632114
104.461264	29.889149
169.598513	16.132947
150.576579	37.923113
151.598513	15.769625
167.944460	39.423099
139.840817	34.948615
	104.185353 105.461264 105.461264 113.461264 104.461264 169.598513 150.576579 151.598513 167.944460

81 rows × 2 columns

```
In [33]:
```

1 cars_weight['SP'].skew() # skew is >0.5 so data is not normally distribute

Out[33]:

1.6114501961773586

In [34]:

cars_weight['SP'].kurtosis() # kurtosis has less outliers

Out[34]:

2.9773289437871835

In [35]:

```
plt.hist(cars_weight['SP'])
plt.show
```

Out[35]:

<function matplotlib.pyplot.show(close=None, block=None)>

In [36]:

1 cars_weight['WT'].skew() # skew is >0.5 so data is not normally

Out[36]:

-0.6147533255357768

In [38]:

1 cars_weight['WT'].kurtosis()

Out[38]:

0.9502914910300326

In [39]:

```
plt.hist(cars_weight['WT'])
plt.show
```

Out[39]:

<function matplotlib.pyplot.show(close=None, block=None)>

In []:

1