COMPSCI 753

Algorithms for Massive Data

Semester 2, 2020

Tutorial 1: Locality-sensitive Hashing

Ninh Pham

1 Computing MinHash signatures and estimating Jaccard similarities

Given the 4 sets $S_1 = \{c, f | \text{https://eduassistpro.github.io/} \}$

1. Present these sets as a binary matrix.

2. Compute the minhast values of each set using the permutation $\pi = \{b, e, a, f, c, a\}$

Solution: Assignment Project Exam Help

Table 1: Binary matrix presents the sets.

Integer	π	Elements	S_1	S_2	S_3	S_4
1	b	a	0	1	0	1
4	e	b	0	1	0	0
0	a	c	1	0	0	1
5	f	d	0	0	1	0
2	c	e	0	0	1	1
3	d	f	1	0	0	0

Following the procedure from the lecture note, we have the answer:

2 Fast computing MinHash signatures

Since it is not feasible to permute a very large matrix explicitly, we will simulate random permutations by using random universal hash functions below:

 $h_1(x) = 2x + 1 \mod 6$, $h_2(x) = 3x + 2 \mod 6$, and $h_3(x) = 5x + 2 \mod 6$.

- 1. Compute the minhash values using these universal hash functions. Note that you have to map a string to an integer, e.g. $a \mapsto 0, b \mapsto 1, \ldots$
- 2. Which of these hash functions are true permutations?
- 3. How close are the estimated Jaccard similarities of the six pairs of columns to the true Jaccard similarities?

Solution:

https://eduassistpro.github.io/

								9.3		
Integers	S_1	S_2	S_3	S_4	$h_1(x) = 2x + 1 \mod$	d 6	$h_2(x) = 3x + 2$	$\mod 6$	$h_3(x) = 5x + 2 \mod$	16
0	0	1	PC	ib	nment Pr	201	act F ² v	am l	Haln ²	
1	_	_	-			•	•			
2	Δ^1 ς	0	$\mathbf{o}^0\mathbf{r}$	าทำ	ent Proje	ct	Exam	He1	\mathbf{n}	
3	0	91	S 1.	0	ent i roje		LAugi	1101	\mathbf{P} 5	
4	0	0	1	1					4	
5	1	0	0 +	120	·//oduse	ci	etoro a	ithu	h io/3	
⁵ https://eduassistpro.github.io/ 3										
				_	Hash functions S_1					
Add WeChat edu assist_pro										
				uu		7	u_2u_2 ass	ກວເ_	_PIO	
					$h_3(x)$ 0	1	4 0			

Table 4: The minhash values with universal hash functions.

	S_1	S_2	S_3	S_4
$\overline{S_1}$	1	0	0	1/4
S_2	0	1	0	1/3
S_3	0	0	1	1/4
S_4	1/4	1/3	1/4	1

Table 5: The actual Jaccard similarity values

	S_1	S_2	S_3	S_4
$\overline{S_1}$	1	1/3	1/3	2/3
S_2	1/3	1	2/3	2/3
S_3	1/3	2/3	1	2/3
S_4	2/3	2/3	2/3	1

Table 6: The estimated Jaccard similarity using these 3 hash functions.

der

3 Tuning the parameters for LSH

Evaluate the S-curve $1 - (1 - s^r)^b$, i.e. the probability of being a candidate pair, for $s = \{0.1, 0.2, \dots, 0.9\}$ using the following values of r and b.

- 1. r = 3 and b = 10.
- 2. r = 6 and b = 20.
- 3. r = 5 and b = 50.

For each value (r, b) above, compute the threshold, that is the value of s which the value of $1 - (1 - s^r)^b$ is exactly 1/2. How is it different from our approximation $(1/b)^{1/r}$? Which setting we should use in order to achieve the false negatives of 70%-similar pairs at most 5% and false positives of 30%-similar pairs at

Solution:

https://eduassistpro.github.io/

Assignment Reo least Exam Help Assignment
$$0.2 \ 0.0772 \ 0.0013 \ 0.0159$$
 Assignment $0.1391 \ 0.0159 \ 0.4023$ https://eduassistpro.github.io/

Add We on hat edu_assist_pro

$$\frac{(3,10) \ (6,20) \ (5,50)}{\text{Exact } s} = \frac{(3,10) \ (6,20) \ (5,50)}{\text{Exact } s} = \frac{(3,40) \ (6,20) \ (6,20) \ (6,20)}{\text{Exact } s} = \frac{(3,40) \ (6,20) \ (6,20)}{\text{Exact } s} = \frac{(3,40)$$

It is clearly that we need to use r=5 and b=50 since the probability of collision of 70%-similar pairs is 0.9999 and 30%-similar pairs is 0.1145.

der