Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №7 **АНАЛИЗ ТОЧНОСТИ СИСТЕМ УПРАВ**ЛЕНИЯ

Вариант - 11

Выполнил		<u>Та М.Ш</u> (фамилия, и.о.)	(подпись)		
		(quining, i.e.)			
Проверил		(фамилия, и.о.)		_ (подпись)	
		(фамилия, и.о.)			
	20r.	Санкт-Петербург,	20 г.		
D 6	,				
Раоота выпол	нена с оценкой				
Дата защиты	٠٠ ،	20г.			
. , ,		 -			

Цель работы: исследование точностных свойств систем управления.

1. Исследование системы с астатизмом нулевого порядка.

Рисунок 1 – Схема моделирования

Задана замкнутая система с регулятором H(s)=k и передаточной функцией разомкнутого контура $W(s)=\frac{1}{0.5s^2+s+1}$

Рисунок 2 – Схема моделирования

1.1 Исследование стационарного режима работы при g(t) = 2

Рассчитаем предельное значение установившейся ошибки

$$\varepsilon = \frac{1}{1 + H(s)W(s)}G(s) = \lim_{s \to 0} s \frac{1}{1 + \frac{k}{0.5s^2 + s + 1}} \frac{2}{s} = \lim_{s \to 0} \frac{s^2 + 2s + 2}{0.5s^2 + s + 1 + k} = \frac{2}{1 + k}$$

$$k = 1$$
 $\varepsilon = 1$

$$k = 5$$
 $\varepsilon = 0.33$

$$k = 10$$
 $\varepsilon = 0.18$

Рисунок 3 – График зависимость y(t) и e(t) при $\kappa = 1$

Рисунок 4 — График зависимость y(t) и e(t) при $\kappa = 5$

Рисунок 5 — График зависимость y(t) и e(t) при $\kappa=10$

1.2 Исследование режима движения с постоянной скоростью при g(t) = 2t Рассчитаем предельное значение установившейся ошибки

$$\varepsilon = \frac{1}{1 + H(s)W(s)}G(s) = \lim_{s \to 0} s \frac{1}{1 + \frac{k}{0.5s^2 + s + 1}} \frac{2}{s^2} = \lim_{s \to 0} \frac{0.5s^2 + s + 1}{0.5s^2 + s + 1 + k} \frac{2}{s} = \infty$$

Рисунок 6 – График зависимость y(t) и e(t) при $\kappa=1$

Рисунок 7 – График зависимость y(t) и e(t) при $\kappa = 5$

Рисунок 8 – График зависимость у(t) и e(t) при к=10

2. Исследование системы с астатизмом первого порядка.

$$W(s) = \frac{s+1}{0.5s^2 + s + 1}$$

Рисунок 9 – Схема моделирования

2.1 g(t)=A=2 - стационарный режим работы.

• При к=1

Рисунок $10 - \Gamma$ рафик зависимость y(t) и e(t) при $\kappa = 1$

Из графика видно, что предельное значение установившейся ошибки $e_y(t) = 0$ Это значение подтверждается аналитическим расчетом:

$$e_{y}(t) = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{A}{s} = \lim_{s \to 0} \frac{1}{1 + \frac{W^{*}(s)}{s}} A = \lim_{s \to 0} \frac{s}{s + k} A = 0$$

Рисунок 11 – График зависимость у(t) и e(t) при к=5

Рисунок 12 – График зависимость y(t) и e(t) при κ =10

Во всех трех случаях e = 0

Вывод.СУ с астатизмом первого порядка (и выше) отрабатывает постоянное задающее воздействие с нулевой установившейся ошибкой.

2.2 g(t)=Vt=2t- движение с постоянной скоростью.

Рисунок $13 - \Gamma$ рафик зависимость y(t) и e(t) при $\kappa=1$

Из графика видно, что предельное значение установившейся ошибки $\varepsilon = 2$

Аналитическим расчет:
$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \lim_{s \to 0} \frac{s}{s + k} \frac{V}{s} = \frac{V}{k} = \frac{2}{1} = 2$$

Рисунок 14 – График зависимость y(t) и e(t) при $\kappa = 5$

Из графика видно, что предельное значение установившейся ошибки $\, \varepsilon = 0.4 \,$

Аналитическим расчет :
$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \lim_{s \to 0} \frac{s}{s + k} \frac{V}{s} = \frac{V}{k} = \frac{2}{5} = 0.4$$

Рисунок $15 - \Gamma$ рафик зависимость y(t) и e(t) при к=10

Из графика видно, что предельное значение установившейся ошибки $\, \varepsilon = 0.2 \,$

Аналитическим расчет :
$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \lim_{s \to 0} \frac{s}{s + k} \frac{V}{s} = \frac{V}{k} = \frac{2}{10} = 0.2$$

Вывод. У системы управления (СУ) с первым порядком астатизма при линейно изменяющимся задающем воздействии (Vt) установившаяся ошибка равна $\varepsilon = \frac{V}{k}$

 $2.3 g(t)=at^2/2=0.45t^2$ – движение с постоянным ускорением.

Рисунок $16 - \Gamma$ рафик зависимость y(t) и e(t) при $\kappa=1$

Аналитическим расчет
$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{a}{s^3} = \lim_{s \to 0} \frac{s}{s + k} \frac{a}{s^2} = \infty$$

Рисунок 17 – График зависимость у(t) и e(t) при к=5

Рисунок 18 – График зависимость у(t) и e(t) при к=10

3. Исследование влияния внешних возмущений.

Задана замкнутая система с двумя внешними возмущениями $f_1(t)$ и $f_2(t)$, передаточной функцией разомкнутого контура $f_1(t)$ и $f_2(t)$ и передаточной функцией обратной связи $W(s) = \frac{1}{0.5s^2 + s + 1}$

Рисунок 19 – Схема моделирования

Рисунок 20 – Схема моделирования

Рассчитаем предельное значение установившейся ошибки:

$$\varepsilon = \lim_{s \to 0} \left[-s \frac{sW(s)}{s + W(s)} \frac{F_1}{s} + s \frac{W(s)}{s + W(s)} \frac{F_2}{s} \right] = F_2$$

3.1 Задано

$$f_1(t) = -0.5$$

$$f_2(t) = 0$$

$$g(t) = 2$$

Рассчитаем $\varepsilon = 0$

Рисунок 21 – График зависимость y(t) и e(t)

3.2 Задано

$$f_1(t) = 0$$

$$f_2(t) = 0,25$$

$$g(t) = 2$$

Рассчитаем $\varepsilon = 0,25$

Рисунок 22 – График зависимость y(t) и e(t)

4. Исследование установившейся ошибки при произвольном входном воздействии.

Задана замкнутая система с регулятором H(s)=1 и передаточной функцией разомкнутого контура $W(s)=\frac{1}{0.5s^2+s+1}$. Задающее воздействие $g(t)=0.3t+2\sin 0.8t$

Рисунок 23 – Схема моделирования

Рисунок 24 – График зависимость y(t) и e(t)

Оценим приближенно установившуюся ошибку слежения:

$$\Phi_e(s) = \frac{1}{1 + H(s)W(s)} = \frac{0.5s^2 + s + 1}{0.5s^2 + s + 2}$$

Разложим $\Phi_e(s)$ в ряд Тейлора в окрестности точки s=0:

$$c_0 = \frac{1}{2} = 0.5$$

$$c_1 = \frac{d}{ds}\Phi_e(s) = \frac{(s+1)(0.5s^2 + s + 2) - (0.5s^2 + s + 1)(s+1)}{(0.5s^2 + s + 2)^2} = \frac{s+1}{(0.5s^2 + s + 2)^2}|_{s=0} = \frac{1}{4} = 0.25$$

$$c_2 = \frac{d^2}{ds^2} \Phi_e(s) = \frac{(0.5s^2 + s + 2)^2 - (s + 1)2(0.5s^2 + s + 2)(s + 1)}{(0.5s^2 + s + 2)^4} \Big|_{s=0} = \frac{2^2 - 2 \cdot 2 \cdot 1}{2^4} = 0$$

$$e_y(t) = 0.5(0.3t + 2\sin 0.8t) + 0.25(0.3 + 1.6\cos 0.8t) - 0 = 0.15t + \sin 0.8t + 0.4\cos 0.8t + 0.075t + 0.075t + 0.075t + 0.000t + 0.0$$

Рисунок 25 – Схема моделирования

Рисунок 26 – График зависимость e(t)

Вывод: управлять точностными свойствами системы можно при помощи регуляторов. Для обеспечения требуемой установившейся ошибки можно повышать коэффициент усиления, а также изменять астатизм системы. В частности, системы с астатизмом первого порядка нечувствительны к постоянным возмущениям.