Übungsblatt 4

Felix Kleine Bösing

October 31, 2024

Aufgabe 1

Untersuchen Sie, welche der folgenden Teilmengen Untervektorräume von \mathbb{Q}^3 sind:

$$M_1 = \{(x, y, z) \in \mathbb{Q}^3 : x, y, z \ge 0\},$$

$$M_2 = \{(x, y, z) \in \mathbb{Q}^3 : 3x + y + z = 5\},$$

$$M_3 = \{(x, y, z) \in \mathbb{Q}^3 : x + 2y = 3z\},$$

$$M_4 = \{(x, y, z) \in \mathbb{Q}^3 : xy - z = 0\}.$$

Teil (a)

Beweis: Um zu überprüfen, ob M_1 ein Untervektorraum von \mathbb{Q}^3 ist, müssen wir die folgenden Eigenschaften zeigen:

- 1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Da $0 \geq 0$ für jede Komponente gilt, gehört der Nullvektor zu M_1 .
- 2. **Abgeschlossenheit unter Addition:** Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_1$. Dann sind $x_1, y_1, z_1 \geq 0$ und $x_2, y_2, z_2 \geq 0$. Für die Summe $(x_1 + x_2, y_1 + y_2, z_1 + z_2)$ gilt ebenfalls $x_1 + x_2 \geq 0$, $y_1 + y_2 \geq 0$ und $z_1 + z_2 \geq 0$, sodass die Summe auch in M_1 liegt.
- 3. Abgeschlossenheit unter Skalarmultiplikation: Sei $(x, y, z) \in M_1$ und $c \in \mathbb{Q}$. Wenn c < 0, dann wird eine oder mehrere der Komponenten cx, cy, cz negativ, was die Bedingung $x, y, z \geq 0$ verletzt. Daher ist M_1 nicht unter Skalarmultiplikation abgeschlossen.

Da M_1 nicht unter Skalarmultiplikation abgeschlossen ist, ist es **kein** Untervektorraum von \mathbb{Q}^3 .

Teil (b)

Beweis: Untersuchen wir, ob M_2 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung 3x+y+z=5 ein, so erhalten wir:

$$3 \cdot 0 + 0 + 0 = 0 \neq 5.$$

Daher gehört der Nullvektor **nicht** zu M_2 .

Da der Nullvektor nicht in M_2 liegt, ist M_2 kein Untervektorraum von \mathbb{Q}^3 .

Teil (c)

Beweis: Untersuchen wir, ob M_3 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung x+2y=3z ein, so erhalten wir:

$$0 + 2 \cdot 0 = 3 \cdot 0,$$

was offensichtlich wahr ist. Daher gehört der Nullvektor zu M_3 .

2. Abgeschlossenheit unter Addition: Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_3$. Dann gilt:

$$x_1 + 2y_1 = 3z_1$$
 und $x_2 + 2y_2 = 3z_2$.

Für die Summe $(x_1 + x_2, y_1 + y_2, z_1 + z_2)$ ergibt sich:

$$(x_1+x_2)+2(y_1+y_2)=(x_1+2y_1)+(x_2+2y_2)=3z_1+3z_2=3(z_1+z_2),$$

sodass die Summe ebenfalls die Bedingung erfüllt. M_3 ist also unter Addition abgeschlossen.

3. Abgeschlossenheit unter Skalarmultiplikation: Sei $(x, y, z) \in M_3$ und $c \in \mathbb{Q}$. Dann gilt:

$$x + 2y = 3z$$
.

Für das Produkt $c \cdot (x, y, z) = (cx, cy, cz)$ erhalten wir:

$$cx + 2(cy) = c(x + 2y) = c \cdot 3z = 3(cz),$$

was zeigt, dass auch (cx, cy, cz) die Bedingung erfüllt. Somit ist M_3 unter Skalarmultiplikation abgeschlossen.

Da M_3 sowohl den Nullvektor enthält als auch unter Addition und Skalarmultiplikation abgeschlossen ist, ist M_3 ein **Untervektorraum** von \mathbb{Q}^3 .

Teil (d)

Beweis: Untersuchen wir, ob M_4 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung xy-z=0 ein, so erhalten wir:

$$0 \cdot 0 - 0 = 0,$$

was offensichtlich wahr ist. Daher gehört der Nullvektor zu M_4 .

2. **Abgeschlossenheit unter Addition:** Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_4$, also $x_1y_1 = z_1$ und $x_2y_2 = z_2$. Für die Summe $(x_1+x_2, y_1+y_2, z_1+z_2)$ ergibt sich jedoch:

$$(x_1 + x_2)(y_1 + y_2) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2.$$

Da zusätzliche Kreuzterme wie x_1y_2 und x_2y_1 auftreten, ist im Allgemeinen $(x_1+x_2)(y_1+y_2) \neq z_1+z_2$. Somit ist M_4 nicht unter Addition abgeschlossen.

Da M_4 nicht unter Addition abgeschlossen ist, ist es **kein Untervektorraum** von \mathbb{Q}^3 .

Aufgabe 4.2

Teil (a)

Beweis: Wir sollen ein Beispiel eines Vektorraums V und einer Teilmenge $M \subseteq V$ finden, sodass für alle $v, w \in M$ mit $v \neq w$ die Vektoren v und w linear unabhängig sind, die Menge M jedoch linear abhängig ist.

Ein solches Beispiel ist der Vektorraum $V = \mathbb{R}^3$ und die Teilmenge

$$M = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Betrachten wir die Eigenschaften dieser Vektoren:

- 1. Für jedes Paar unterschiedlicher Vektoren $v, w \in M$ sind v und w linear unabhängig. Zum Beispiel sind $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ linear unabhängig, da keine Linearkombination $c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ für $c_1, c_2 \in \mathbb{R}$ außer $c_1 = c_2 = 0$ existiert.
- 2. Die Menge M ist jedoch linear abhängig, da

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Dies zeigt, dass die Vektoren in M eine lineare Abhängigkeit aufweisen.

Somit erfüllt die Teilmenge M die Bedingungen der Aufgabe.

Teil (b)

Beweis: Gegeben sei ein Körper K und ein K-Vektorraum V. Sei $M = \{v_1, \ldots, v_n\} \subseteq V$ eine Teilmenge, wobei $0 \notin M$. Wir sollen zeigen, dass M genau dann linear unabhängig ist, wenn für alle $i \in \{1, 2, \ldots, n-1\}$ gilt:

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

1. **Notwendigkeit:** Angenommen, M ist linear unabhängig. Dann bedeutet dies, dass keine nicht-triviale Linearkombination der Vektoren in M den Nullvektor ergibt. Insbesondere ist jeder Vektor v_i nicht in der Linearkombination der anderen Vektoren, was impliziert, dass für jedes i die Schnittmenge $\langle v_1, \ldots, v_i \rangle \cap \langle v_{i+1}, \ldots, v_n \rangle$ nur den Nullvektor enthält, also

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

2. **Hinreichend:** Angenommen, für alle $i \in \{1, 2, ..., n-1\}$ gilt $\langle v_1, ..., v_i \rangle \cap \langle v_{i+1}, ..., v_n \rangle = \{0\}$. Dies bedeutet, dass es keine nicht-triviale Linearkombination von $v_1, ..., v_i$ gibt, die auch als Linearkombination von $v_{i+1}, ..., v_n$ ausgedrückt werden kann. Folglich ist M linear unabhängig, da jede Linearkombination, die den Nullvektor ergibt, nur die triviale Lösung $c_1 = c_2 = \cdots = c_n = 0$ hat.

Damit ist gezeigt, dass Mgenau dann linear unabhängig ist, wenn für alle $i \in \{1, 2, \dots, n-1\}$ gilt:

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

References