Logic Synthesis and CMOS Technology

Reminders:

- Quiz 1 on Thu March 5th 7:30-9:30pm, covers lectures L1-L7 and labs 1-2.
- See piazza / course website for exam rooms
- Quiz review: Tue March 3rd 7:30-9:30pm in 6-120.

Recap: Logic Optimization

 In practice, tools use Boolean simplification and other techniques to synthesize a circuit that meets certain area, delay, and power goals:

Logic Synthesis (Continued): Other Common Gates

XOR (Exclusive-OR)

Inverting logic

$$A \circ Z = \overline{A \cdot B}$$
 $A \circ Z = \overline{A \cdot B}$ $B \circ Z = \overline{A \cdot B}$

NOR

$$Z = \overline{A + B}$$

Universal Building Blocks

NANDs and NORs are <u>universal</u>:

Any logic function can be implemented using only NANDs (or, equivalently, NORs)

Standard Cell Library

- Library of gates and their physical characteristics
- Example:

Gate	Delay (ps)	Area (µ²)
Buffer	40	20
Inverter	20	10
AND2	50	25
NAND2	30	15
OR2	55	26
NOR2	35	16
AND4	90	40
NAND4	70	30
OR4	100	42
NOR4	80	32

Observations:

- In current technology (CMOS), inverting gates are faster and smaller
- 2. Delay and area grow with number of inputs

Design Tradeoffs: Delay vs Size

Example: Mapping a Circuit to a Standard Cell Library

Find an implementation of a circuit, e.g.,

Using gates from a standard cell library, e.g.,

That optimizes for some goal, e.g., minimum area

Example: Mapping a Circuit to a Standard Cell Library

Possible implementations:

$$7 \text{ NAND2 } (3) = 21$$

 $5 \text{ INV } (2) = 10$

Total area cost: 31

$$2 INV = 4$$

$$2 \text{ NAND2} = 6$$

$$1 \text{ NAND3} = 4$$

$$1 \text{ NAND4} = 5$$

Total area cost: 19

Logic Optimization Takeaways

- Synthesizing an optimized circuit is a very complex problem
 - Boolean simplification
 - Mapping to cell libraries with many gates
 - Multidimensional tradeoffs (e.g., minimize area-delaypower product)
- Infeasible to do by hand for all but the smallest circuits!
- Instead, hardware designers write circuits in a hardware description language, and use a synthesis tool to derive optimized implementations

CMOS Technology

A Deep Dive Into a Chip

February 27, 2020 MIT 6.004 Spring 2020 L07-11

Field-Effect Transistors (FETs)

- Nearly all digital systems are built using field-effect transistors, which are voltage-controlled switches
- FETs come in two varieties: nFET and pFET

A high voltage at gate (G=1) creates conducting path between source and drain

A low voltage at gate (G=0) creates conducting path between source and drain

Labeling Source and Drain

- There is no physical difference between source and drain, called the diffusion terminals
- By convention, we label diffusion terminals as source or drain depending on their voltages:
 - On nFETs, source = diffusion terminal at lower voltage
 - On pFETs, source = diffusion terminal at higher voltage

 This convention lets us define the behavior of FETs using the voltage between gate and source

FET Switching Model

- FETs have a threshold voltage V_{TH}
- nFET is ON if the voltage between gate and source V_{GS} exceeds V_{TH} , OFF otherwise
- pFET is ON if the voltage between source and gate V_{SG} exceeds V_{TH} , OFF otherwise

 This is a very simplified model, but it is sufficient to build logic gates

What Does This Circuit Compute?

CMOS inverter

IN	OUT
0	1
1	0

Note on Terminology

 MOSFETs (metal-oxide-semiconductor field-effect transistors) are the most common type of FET

 nFET and pFET are sometimes abbreviated as nMOS and pMOS

CMOS stands for complementary MOS

What Does This Circuit Compute?

_A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NAND gate

CMOS Logic

 CMOS gates have complementary pullup and pulldown networks, i.e., the pullup is on when the pulldown is off and vice versa

pullup on off on off	pulldown off on on off	F(inputs) driven "1" driven "0" driven "X" no connection	Pullup circuit inputs Output Pulldown circuit
OH		no comicedion	Ground

 CMOS uses pFETs to implement the pullup network and nFETs to implement the pulldown network

Some Questionable Gates

What can go wrong with the following gates?

A=0 B=1 or A=1 B=0 connect supply and ground

pFET doesn't pull down V_{OUT} below V_{TH} nFET doesn't pull up V_{OUT} above V_{DD} – V_{TH}

- CMOS Rule #1: Complementary pullup and pulldown networks
- CMOS Rule #2: pFETs in pullup, nFETs in pulldown

CMOS Complements

conducts when A is high

conducts when A is low: \overline{A}

conducts when A is high and B is high: $A \cdot B$

conducts when A is low or B is low: $\overline{A} + \overline{B} = \overline{A \cdot B}$

conducts when A is high or B is high: A + B

conducts when A is low and B is low: $\overline{A} \cdot \overline{B} = \overline{A + B}$

General CMOS Gate Recipe

Step 1. Derive the pullup network that does what you want, e.g.,

$$F = \overline{A} + \overline{B} \cdot \overline{C}$$

(Determine what combination of inputs generates a high output)

Step 2. Derive complementary pulldown network: replace pFETs with nFETs, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pFET pullup network from Step 1 with nFET pulldown network from Step 2 to form the CMOS gate.

Can CMOS gates implement arbitrary functions?

No

CMOS Gates are Inverting

- In a CMOS gate, rising inputs (0→1) lead to falling outputs (1→0) and vice versa
- On a rising input,
 - nFETs go OFF→ON, so pulldown may connect output to ground
 - pFETs go ON→OFF, so pullup may disconnect output from V_{DD}
 - Output either stays the same or falls
- Corollary: Cannot build non-inverting logic using a single CMOS gate
 - Example: AND

Α	В	A-B
0	0	0
0	1	0
1	0	0
1	$\lfloor 1 \rfloor$	1

rising input rising output

Analyzing the Delay, Area, and Power of CMOS Gates

NOTE: Demystification, will not be on the quiz

MOSFET Physical Structure

MOSFET Electrical View

With $V_{GS} < V_{TH}$, almost no current flows between source and drain

As V_{GS} reaches V_{TH}, a channel forms between source and drain

The shape of the channel (and its resistance) also depends on the voltage at the drain. But a low-resistance channel will exist while $V_{\rm GS} > V_{\rm TH}$

FET First-Order Electrical Model

 Simplest possible model that lets us reason about delay, area, and power. Not very accurate!

CMOS Gate Delay

Consider the following circuit.

Given $V_{IN}(t)$, can you derive $V_{OUT}(t)$? V_{OUT} $V_{IN}(t)$ V_{OUT}(t)

Propagation Delay

Propagation delay (t_{PD}): Upper bound on the delay from valid inputs to valid outputs.

February 27, 2020

Contamination Delay

Contamination delay (t_{CD}): Lower bound on the delay from any invalid input to an invalid output

MOSFET Sizing

- CMOS gates use MOSFETs with smallest possible L and choose W to set performance
 - Wider FETs drive more current (lower R), but their gates are harder to drive (higher C) and they take more area

Standard Cell Libraries

- A standard cell library provides implementations of common gates (NAND, NOR, XOR, etc.) for a specific implementation technology
- Each gate includes
 - Electrical parameters (e.g., Rs and Cs)
 - Physical layout
- Synthesis tools use gates from the standard library instead of sizing and placing individual transistors

Wide (High-Fanin) Gates

Most standard cell libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R_{pulldown} or R_{pullup} . Instead, use trees of smaller devices...

How does t_{PD} grow with the number of inputs N?

If we use a single CMOS gate, $t_{PD} \propto N$

If we use a tree of gates, $t_{PD} \propto \log(N)$

CMOS Power Dissipation

- Total power dissipation: $P = P_{dynamic} + P_{static}$
- Dynamic power: Caused by 0↔1 transitions of nodes in the circuit
 - Charging/discharging each capacitor consumes $\frac{1}{2}CV_{DD}^2$ energy
 - If on average C_S capacitance across the chip switches each cycle, and there are f_{CLK} cycles per second

$$P_{dynamic} = \frac{1}{2} C_S V_{DD}^2 f_{CLK}$$

- Static power: Caused by
 - Subthreshold leakage: Even when the FET is off, a very small current flows from source to drain $(R_{OFF} < \infty)$
 - Tunneling current: Gate and channel are separated by a very thin (<1nm) dielectric, so some electrons tunnel through

$$P_{static} = I_{static} V_{DD}$$

Static power is typically 10-30% of total power

Summary

- FETs behave as voltage-controlled switches
- CMOS gates:
 - Use complementary pullup and pulldown networks
 - Use pFETs in pullup, nFETs in pulldown network
- CMOS gates are inverting (rising inputs can only cause falling outputs, and vice versa)

Thank you!

Next lecture: Combinational devices, introduction to minispec