

Enhancing the Security of Autonomous Vehicles: Detection of Adversarial Attacks on Perception Systems

Farah Sherif, Zyad Mahrous, and Muhammad Hataba

Outline

- Introduction
- Related Work
- System Model
- Experimental Setup
- Results
- Conclusion

Introduction

- Global Impact: AVs are transforming transportation with enhanced safety and efficiency.
- Rapid Market Growth: Expected market value rise from \$22.22B (2021) to \$75.95B (2027) at 22.75% CAGR.
- Critical need for security: Adversarial Attacks targeting the perception system of AVs lead to detrimental effects
- Real-world Incidents: Tesla's 2016 and Uber's 2018 crashes, and the remote hacking of a
 Jeep's systems highlight the dangers of such attacks.

Contributions

- Development of an Adversarial Attack on AV Traffic Sign Recognition Systems
- Design of a Tailored Lightweight Binary Classifier for Adversarial Detection in Real-time.
- Safety-Driven Detection Approach to Reduce Critical Misclassifications

Selected Related Work

	Adaptive Square Attack [1]	Darts: Deceiving autonomous cars with toxic signs [2]	Building Robust Deep Neural Networks for Road Sign Detection [3]
What it does	Black-box attack targeting a DNN-based traffic sign recognition model	 Out-of-distribution & Lenticular Printing attacks The findings underscore the need for more robust security measures in ML-driven recognition systems for autonomous vehicles 	 Defends against adversarial attacks using an autoencoder with a memory module to retain clean image features. Evaluated against Hijacking, Vanishing, Fabrication, and Mislabelling attacks
Comparison	 Evaluated on traffic sign images not dynamic driving scenes Focuses solely on the attack 	 Single sign misclassification not modifying traffic signs in full driving scenes. Targets classification models with optical illusions and dataset shifts Lacks detection mechanisms 	 Focuses on feature reconstruction Our approach is more lightweight for real-time deployment whereas autoencoders are computationally expensive

Threat Model

Threats:

- Adversarial Manipulation of Camera Feed
- Traffic Sign Misclassification
- Impacting Decision Making

Vulnerabilities:

- Lack of Input Integrity Checks
- Weak Robustness against adversarial perturbations

Attack Scenario:

Attack targets camera input replacing traffic signs; affecting traffic sign recognition

System Design

Traffic Sign Manipulation Attack

- Faster-ResNet-101 Model for traffic sign detection
- Each detection is replaced with a randomly chosen traffic sign from the GTSRB - German Traffic Sign Recognition Benchmark
- Leads to the misclassification of traffic signs or not detecting them at all
- Serious side-effects: Violating traffic sign laws, and legal or fatal consequences

Traffic Sign Detection Process in Faster R-CNN

Classification & Regression

Proposals are classified and bounding boxes are refined.

The RPN generates proposals for potential object locations.

Feature Extraction

High-level features are extracted from the image using ResNet-101.

Input Image

The process begins with an image being fed into the system.

System Design

Traffic Sign Manipulation Attack

Fake Real

System Design

Traffic Sign Manipulation Attack - Detection Mechanisms

Binary Classifier

- CNN Model Using ResNet-18 model
- Images underwent transformations to ensure uniformity and compatibility
- Final layer replaced with a linear layer to adapt to the binary classification
- Sigmoid Activation Function for probability
- Adam Optimizer

Results Discussion

Traffic Sign Manipulation – Evaluating The Binary Classifier

Model excels at identifying 'Fake' traffic signs:

- High True Negatives
- Low False Positives (only 2)

- Prioritization of precision over recall, aligns with the **safety- first design** for autonomous vehicles.
- Low recall suggests room for improvement in identifying "Real" images to ensure robustness in real-world scenarios

Results Discussion

Traffic Sign Manipulation – Evaluating The Binary Classifier

Accuracy: 78%

Prioritizing high precision over recall

Conclusion

- Strengthens the safety and reliability of autonomous vehicles against adversarial attacks
- Introduces robust detection mechanism to safeguard autonomous perception systems
- Designed and implemented an attack scenario demonstrating traffic sign misclassification.
- Highlights the broader applicability of the findings to other domains:
 - Drones
 - Autonomous submarines
 - Medical imaging
- Supports the development of trustworthy, secure technologies for high-stakes environments.

Future Work

- Explore Advanced Decision Mechanism Implement a safety-driven approach for uncertain traffic sign classifications
- 2. Optimize real-time performance with compressed or greyscale image processing
- 3. Explore **sensor fusion techniques** for deeper spatial and semantic insights
- 4. Validate detection mechanisms in real-world and dynamic simulated environments (CARLA Simulator)
- 5. Investigate locally hosting the system on the **embedded system** of a vehicle
- 6. Enhance the performance of the system by utilizing **GPUs**.

References

- [1] Li, Y., Xu, X., Xiao, J., Li, S., & Shen, H. T. (2020). Adaptive square attack: Fooling autonomous cars with adversarial traffic signs. *IEEE Internet of Things Journal*, 8(8), 6337-6347.
- [2] Sitawarin, C., Bhagoji, A. N., Mosenia, A., Chiang, M., & Mittal, P. (2018). Darts: Deceiving autonomous cars with toxic signs. *arXiv* preprint *arXiv*:1802.06430.
- [3] A. M. Aung, Y. Fadila, R. Gondokaryono, and L. Gonzalez, "Building robust deep neural networks for road sign detection," arXiv preprint arXiv:1712.09327, 2017.
- [4] upGrad. Basic CNN Architecture: A Beginner's Guide to Convolutional Neural Networks. Accessed: 2025-01-07. 2025. url: https://www.upgrad.com/blog/basic-cnn-architecture/.
- [5] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, "nuscenes: A multimodal dataset for autonomous driving," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11 621–11 631, 2020. [Online]. Available:

https://www.nuscenes.org/

- [6] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "The German traffic sign recognition benchmark: a multi-class classification competition," in The 2011 international joint conference on neural networks. IEEE, 2011, pp. 1453–1460.
- [7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, 2009.

Thank You!

