

Predictive Policing in Los Angeles

Tristan Trébaol Léopold Bouraux Alfonso Villegas Gaspard Debains Jean-Baptiste de la Fage Gabriel Méhaignerie

EPFL

Total Cost of Crime, Per Offense, 2014 U.S. Dollars

Source: McCollister, French, Fang (2010)

© Political Calculations 2014

- Burglary 1.9 hours
- Auto theft 1.8 hours
- Assault 2.6 hours
- Robbery 2.3 hours

Average time to clear call for on duty officers for different crimes

The Cost of Crime

It costs money : 5% of the US GDP

 It costs time: average time to clear a call for a reported time for a patrol officer: ~2h

EPFL

Plumer St North Hills West North Hills West North Hills East Pancrama Cty Roscoe Blug Rosc

Crime Heat Map with predictive policing

Division of 250 Officers

"Officers Allocated to Patrol vs Other Duties" (BJA, 2003)

Our Predictive Policing for a patrolling

Reliable and Reactive

- Long term Goal
- Weekly schedule
- Shift-to-Shift reactivity

No ethical biases

Total Crimes Occurred by Districts

Total Crimes Occurred by Cell Grid

Data analysis

- From 2010 to September 2017
- 26 features to 9 features
- Date and Time Stats
- Different Types Of Crimes
- Most Affected Districts
- Advantage of Grid Mapping

- Base model for each shift of each day
- Static maps which could be retrained each month with newest data

- Could give more importance to recent data
- Each crime is important: here one addresses only the majority of them

Wednesday 2h-6h

Sunday 2h-6h

Prediction of a typical weekly schedule

- One map per shift of the week
- Frequency density distribution of the crime within each cell
- Regression performed using eight years of crime records

Sunday 18h-22h

Crime type 2 Crime type 3 Cell #1 Cell #2 Cell #3 Cell #2 3 Cell #2

t-month method

7

Hotspot map for burglaries -Mar 2016

Moore Neighborhood

Hotspot map for burglaries -Sep 2016

Monthly target Model

Predict hotspots for a specifc crime for the next month

Advantages:

- Time dependant
- Very adjustable:
 - type of crime
 - number of hotspots
 - interest period
- Overall good metrics performances

	Decision Tree	KNN	Log Regression
Accuracy	83 %	82 %	78 %
Recall	84 %	88 %	72 %
Precision	87 %	83 %	89 %

Shift-to-Shift Model

Arson	Assault	Burglary	Homicide	Motor Vehicle	Others	Robbery	Theft	Vice	Violence	у
0	0	0	0	0	0	0	0	0	1	1

- Time step t = patrol shift of 4h
- Complementary model
- Reactive and easy to use

- Don't take into account the variation through the day/week/month of the number of crime
- It is a naive model in term of forecasting

metrics performance for "perilous" patrol model

	Decision Tree	KNN	Log Regression
Accuracy	77 %	76 %	70 %
Recall	100 %	80 %	69 %
Precision	72~%	76 %	78 %

metrics performance for "deadly" patrol model

	Decision Tree	KNN	Log Regression
Accuracy	72 %	71 %	67 %
Recall	61 %	58 %	65 %
Precision	66 %	65 %	59 %

Deployment and improvements

The implementation to the LAPD

- Explain how it works
- Set the goals
- Fit and assess the first results
- Assist and help the Police Department in every steps

The tool

- three complementary models
- work as a unit

Steps further

- Location management and mission planning
- day-to-day crime reports in a analytic module

Financial perspective

Basic estimation for Burglary

- Estimated cost for each is \$13,000
- 2,1 Burglaries could be prevented per week
- Savings per year of \$1,400,00

The dollar value of crime saving

- difficult to assess
- Cost per type of crime is estimated

What could be also stated

- Time saving in organisation and repartition for the police units
- higher reactivity and efficiency when intervening
- But, does not replace experience and intuition of police officers

EPFL .

Efficient tool to predict crime in LA

- both in terms of occurrence and localisation
- Easy to implement and to test

Room for improvement

- Could be apply with more datas to different cities
- Could be developed with more advanced techniques

Conclusion

