Student name: _____ Student number: _____

There are 6 questions and 120 marks total. Please write an answer and the detailed calculation to each of the following questions.

- 1. (30 points) For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.
 - (a) $\{(1, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
 - (b) $\{(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
 - (c) $\{(2,4),(4,2)\}$
 - (d) $\{(1, 2), (2, 3), (3, 4)\}$
 - (e) $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
 - (f) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
- 2. (10 points) How many different relations are there from a set with n elements to a set with m elements?
- 3. (20 points) Let R be the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set of positive integers. Find
 - (a) \cdot R⁻¹.
 - (b) $\cdot \bar{R}$.
- 4. (20 points) Let R be the relation represented by the matrix $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

Find the matrix representing

- (a) \cdot \mathbb{R}^2 .
- (b) \cdot \mathbb{R}^3 .
- 5. (25 points) Let R₁ and R₂ be relations on a set A represented by the matrices

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } M_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Find the matrices that represent

- (a) \cdot R₁ \cup R₂.
- (b) \cdot R₁ \cap R₂.
- (c) \cdot R₂ $^{\circ}$ R₁.
- (d) \cdot R₁ $^{\circ}$ R₂.
- (e) \cdot $R_1 \oplus R_2$.
- 6. (15 points) List the ordered pairs in the relations represented by the directed graph above.

