

planetmath.org

Math for the people, by the people.

double series

Canonical name DoubleSeries

Date of creation 2013-03-22 16:32:54
Last modified on 2013-03-22 16:32:54
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)

Numerical id 6

Author PrimeFan (13766)

Entry type Theorem Classification msc 40A05 Classification msc 26A06

Synonym double series theorem

Related topic FourierSineAndCosineSeries

Related topic AbsoluteConvergenceOfDoubleSeries

Related topic PerfectPower

Defines diagonal summing

Theorem. If the double series

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} = \sum_{n=1}^{\infty} a_{1n} + \sum_{n=1}^{\infty} a_{2n} + \sum_{n=1}^{\infty} a_{3n} + \dots$$
 (1)

converges and if it remains convergent when the of the partial series are replaced with their absolute values, i.e. if the series

$$\sum_{n=1}^{\infty} |a_{1n}| + \sum_{n=1}^{\infty} |a_{2n}| + \sum_{n=1}^{\infty} |a_{3n}| + \dots$$
 (2)

has a finite sum M, then the addition in (1) can be performed in reverse , i.e.

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{mn} = \sum_{m=1}^{\infty} a_{m1} + \sum_{m=1}^{\infty} a_{m2} + \sum_{m=1}^{\infty} a_{m3} + \dots$$

Proof. The assumption on (2) implies that the sum of an arbitrary finite amount of the numbers $|a_{mn}|$ is always $\leq M$. This means that (1) is absolutely convergent, and thus the order of summing is insignificant.

Note. The series satisfying the assumptions of the theorem is often denoted by

$$\sum_{m,n=1}^{\infty} a_{mn}$$

and this may by interpreted to an arbitrary summing . One can use e.g. the *diagonal summing*:

$$a_{11} + a_{12} + a_{21} + a_{13} + a_{22} + a_{31} + \dots$$