

EEG Datafile Restructure Toolbox (DRT) User Manual

Yufan Zhang: zyf15816794709@163.com

Li Dong: lidong@uestc.edu.cn

Version: 1.0

Date: 10/23/2020

The Key Laboratory for NeuroInformation of Ministry of Education,
School of Life Science and Technology, University of Electronic Science and Technology of
China, Chengdu, 610054, China

Catalog

3
3
4
5
6
6
8
.1
.1
.2
.2
.2
.4
.6
-

1.Introduction

DRT (EEG Datafile Structure Toolbox) is an EEG file format standardization tool based on MATLAB programming language. Currently, DRT provides MATLAB and Docker versions, supports Windows, Ubuntu and other operating systems. The latest version can be available from the WeBrain website.

2.Preparation

2.1 Installation

Before importing the DRT toolkit into MATLAB, it is necessary to ensure that the MATLAB software is installed correctly. For details of the installation of MATLAB software, please refer to: https://mathworks.com/help/install/ug/install-mathworks-software.html.

Each of steps of importing DRT into MATLAB is described in detail below:

- 1) Unzip the DRT package and place it in the toolbox directory of MATLAB.
- 2) In the "HOME" option of MATLAB, click the "Set Path" button (Fig.1) to enter the "Set Path" interface (Fig.2).

Fig.1 click the "Set Path" button

3) In the "Set Path" interface (Figure 2), click the "Add Folder" button to find the path where the DRT toolkit is located, and then click the "Save" button.

Fig.2 "Set Path" interface

4) In the command line interface of MATLAB, enter the "DRT" command to pop up the DRT interface (Fig.3), indicating that the DRT is successfully installed.

Fig.3 DRT main interface

2.2 Basic operation

In order to facilitate users to use the tool better, a GUI-based usage process is provided, so that users do not need to manually type parameters under the command line interface. The following will demonstrate how to operate:

1) In the main interface of DRT (Fig. 3), click the "Browse" button in the InputPath line to open the input path selection interface (Fig. 4) and select the folder path for storing EEG data files.

Fig.4 Input path selection interface

2) Similarly, in the main interface of DRT (Fig.3), click the "Browse" button on the OutputPath line, and the output path selection interface will pop up to select the folder path where the result

file is stored.

- 3) Select the function mode. There are three functional modes: "SEDS", "QA" and "SEDS->QA" in DRT, different implementation modes have different options, see "3.Instruction".
- 4) After the function mode is selected, the corresponding parameters need to be selected.
- 5) After the parameter selection is completed, click the "OK" button, and the program execution log can be seen in the MATLAB command line window. When the words "Success" or "Failed" appear, the program execution is completed.

2.3 Help

The user can place the mouse over any option, and the detailed description of the option will automatically emerge, which is a simple way to help users use this tool better. Figure 5 show we place the mouse over "Convert into EEGLAB files (*. set && *. fdt) options and the description of this option is shown.

Fig.5 Description of "Convert into EEGLAB files (*.set && *.fdt)" option Moreover, click "Help" Button in DRT main interface (Figure 3) to get the usage of DRT (Fig.6).

Fig.6 Help of DRT

3. Instructions

There are currently three functional modes: "SEDS", "QA" and "SEDS->QA". Only one mode can be executed at a time.

3.1 SEDS

In "SEDS" mode, the input of EEG data files will be reorganized into standard EEG data structure (SESD). For details of SEDS, please refer to "5.1.1 SEDS".

The usage of SEDS function are described in the following paragraphs:

- 1) Select the "SEDS" option in the Mode box of the DRT main interface (Fig.3), and select the corresponding input and output file path. It should be noted that the input path can contain multiple folders, and the currently supported EEG data formats include: Neuroscan (*.cnt), Biosmi (*.bdf), European data format (*.edf), and general data format (*.gdf), BrainVision (*.vhdr), EEGLAB (*.set), ASCLL file (*.txt) and MATLAB data file (*.mat).
- 2) To configure the parameters in the SEDS options (Figure 7), the specific input parameters were as follows:

Figure 7 SEDS options box

• "Add the sub-XXXXX" options

If this option is checked, the output folders name will be generated according to the pattern "sub-XXXXX_{FilePath}.{FileName}" and the "sub-XXXXX" will be numbered sequentially from "sub-00001~sub-99999". If this option is not checked, the output folder name will be generated according to the pattern "{FilePath}.{FileName}".

• "Same as the name of original files" options

If this option is checked, output folders name is same as the input EEG data file name. The output folder name will be generated according to the pattern "{FilePath}.{FileName}".

• "Compress into zip package" options

If this option is checked, every output folder will be compressed into a zip package. If it is not checked, no operation is performed.

• "Convert into EEGLAB files(*.set && *.fdt)" options

If this option is checked, different EEG file formats will be converted into EEGLAB file format(*.set && *.fdt) that can be used as the input file of the EEGLAB.

The format of the raw EEG data files currently supported for conversion are Neroscan (*.cnt), Biosmi (*.bdf), European data format (*.edf), general data format (*.gdf), BrainVision (*.vhdr) and EEGLAB(*.set).

• "Metadata visualization" options

If this option is checked, the metadata field of the raw data will be extracted without changing the underlying data, and visualize the metadata information in the form of text and list files. Specifically, a "*info.json" file describing basic data information, a "*channels.csv" file describing electrode information, and a "*event.csv" file describing event information will be generated. If it is not checked, no operation is performed.

In this case, check the "Metadata visualization" option, "Convert into EEGLAB files(*.set && *.fdt)" option, "Compress into zip package" option, and other options are not checked.

- 3) After setting the parameters, click "OK" Button, waiting for the program to finish.
- 4) The word "Success" appears in the MATLAB command line interface, indicating successful execution. Fig.8 shows that the raw EEG data file structure changes. Among them, the left of Fig.8 is the structure of the raw data file, and the right of Fig.8 is the data file structure after execution.

Fig.8 files structure changes

Next, select "EEGdata_Input.P69_test1.zip" to decompress it. Fig.9 show that the raw EEG file in the "*.cnt" data format has been converted into EEGLAB file ("*.set" && "*.fdt"), and three descriptive files are generated.

P69_test1.fdt	FDT 文件	6,149 KB
P69_test1.set	SET 文件	430 KB
P69_test1_channels.csv	Microsoft Excel	1 KB
P69_test1_events.csv	Microsoft Excel	2 KB
P69_test1_info.json	JSON 文件	1 KB

Fig.9 "EEGdata Input.P69 test1.zip" document content

3.2 QA

QA is used to evaluate the quality of continuous EEG raw data. The QA integrated in the DRT comes from the WeBrain tool. For specific function details and implementation process refer to 5.1.2. The following will introduce the steps of using QA function in DRT tool:

- 1) Select the "QA" option in the "Mode" box of the DRT main interface (Fig.3),and then select the corresponding input and output file path. It should be noted that the input EEG data file format must be EEGLAB file format ("*.set" && "*.fdt") and must be packaged as a zip.
- 2) In the "Extend" box of the DRT main interface (Fig.3), click the "QA" button to enter the parameter setting interface of QA (Fig.10).
- 3) Set the parameters in the parameter setting interface of QA(Fig.10). The parameters are as follows:

Fig.10 parameter setting interface of QA

WindowSeconds: the window size (in seconds, default = 1 sec.) over which the above methods are conducted.

HighPassband: lower edge of the frequency for high pass filtering. Default is 1 Hz. seleChanns: number with indices of the selected channels (e.g. '[1:4,7:30]' or 'all'). Default is 'all'. badWindowThreshold: cutoff fraction of bad windows (default = 0.4) for detecting bad channels. robustDeviationThreshold: Z-score cutoff for robust time deviation in each window (default = 5). PowerFrequency: power frequency. Default is 50 Hz (in Chinese). Noting that in USA, power frequency is 60Hz

flagNotchFilter: flagNotchFilter = 1: remove 0.5×power frequency noise using notch filtering. Default is off (flagNotchFilter = 0).

FrequencyNoiseThreshold: Z-score cutoff for NSR (signal above power frequency -10Hz). Default is 3. If the z score of estimate of signal above 40 Hz (power frequency -10Hz) to that below 40 Hz above 'highFrequencyNoiseThreshold' or absolute NSR exceeds 0.5, the small window is considered to be bad.

correlationThreshold: maximal correlation below which window is bad (range is (0,1), default = 0.6). If the maximum correlation of the window of a channel to the other channels falls below 'correlationThreshold', the window is considered bad.

ransacSampleSize: samples for computing RANSAC (default = 50).

ransacChannelFraction: fraction of channels for robust reconstruction (default = 0.3).

ransacCorrelationThreshold: cutoff correlation for abnormal wrt neighbors(default = [] | --> not performed). Default is 0.6.

srate: sampling rate of EEG data. It can be automatically detected in EEG data. But for ASCII/Float .txt File or MATLAB .mat File, user should fill the sampling rate by hand. Default is '[]'.

In this case, the default parameters are used.

- 4) After completing the parameters, click the "OK" button to return to the DRT main interface (Fig.3).
- 5) In the DRT main interface (Fig.3), click the "OK" button and wait for the execution to complete.
- 6) After successful execution, in the output path folder, each subject will generate a mat file, which contains all quality assessment results and parameters (saved as results_QA_*.mat file) and will also generate a file named QA_table. The mat file contains the quality assessment indicators of all the subjects (including the successful and skipped subjects) as shown in Fig.11.

results_QA_erp-epoched.mat	Microsoft Acces	5 KB
mresults_QA_JME_patient_01_EEGdata	Microsoft Acces	14 KB
TaskID-1 QA table.mat	Microsoft Acces	2 KB

Fig.11 Result files

In the MATLAB development environment, load the "TaskID-1_QA_table.mat" file, the quality assessment results of all files are shown as Fig.12.

•	•								_							
C	QA_table ×															
2x16 table																
П	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	SubNumber	filename	ONS	OHA	OFN	OLC	OLRC	badChannels	NBC	OBC	OBClus	allMAV	badMAV	goodMAV	ODQ	DataQualityRating
		1 'JME_pa	0.0056	0.0418	0.0158	0.0917	0	[28,57,63,64	6	0.0909	0.0943	7.9356	31.4679	5.2336	89.6813	'B'
		2 'erp-ep	0	0	0	0.0317	0	[47,48]	2	0.0317	Inf	4.3465	4.5441	4.3401	96.8254	'A'

Fig.12 "TaskID-1 QA table.mat" document content

The following is the parameter description of the "results_QA_*.mat" and "QA_table.mat" files:

results QA.ONS: Overall ratio of No Signal windows;

results QA.OHA: Overall ratio of windows of High Amplitudes;

results QA.OFN: Overall ratio of windows of high Frequency and power frequency Noise;

results QA.OLC: Overall ratio of windows of Low Correlation;

results QA.OLRC: Overall ratio of windows of Low RANSAC Correlation (optional);

results_QA.badChannels: Bad channels detected by the QA tool;

results_QA.NBC: No. of Bad Channels;

results QA.OBC: Overall ratio of Bad Channels;

results QA.OBClus: Overall ratio of Bad Clusters;

results QA.ODQ: Overall Data Quality: overall ratio of windows of good data;

results QA.DataQualityRating: Overall Data Quality Rating

Level A: $ODQ \ge 90$;

Level B: ODQ >= 80 && ODQ < 90;

Level C: ODQ $\ge 60 \&\& ODQ < 80$;

Level D: ODQ < 60;

results QA.allMAV: mean absolute value of all windows;

results QA.badMAV: mean absolute value of bad windows;

results QA.goodMAV: mean absolute value of good windows;

results_QA.NoSignalMask: a mask of windows with no signals (with dimension channels × windows);

results_QA.AmpliChannelMask: a mask of windows with high amplitudes (with dimension channels×windows);

results_QA.FrequencyNoiseMask: a mask of windows with high frequency (and power frequency, if applicable) noise (with dimension channels × windows);

results_QA.LowCorrelationMask: a mask of windows with low correlations (with dimension channels × windows);

results_QA.RansacBadWindowMask: a mask of windows with RANSAC low correlations (with dimension channels×windows);

results_QA.OverallBadMask: a mask of windows with overall bad signals (with dimension channels × windows);

results_QA.fractionBadWindows: fractions of bad windows for each channel (with dimension channels × 1);

results_QA.badChannelsFromAll: logical value of bad channels from all methods (with dimension channels × 1).

results QA.parameters.srate: sampling rate;

results QA.parameters. Window Seconds: window size in seconds (default = 1 sec);

results QA.parameters.HighPassband: lower edge of the frequency for high pass filtering, Hz;

results_QA.parameters.selechanns: number with indices of the selected channels (e.g. [1:4,7:30] or 'all').Default is 'all';

results QA.parameters.badWindowThreshold: cutoff fraction of bad windows;

results_QA.parameters.PowerFrequency: power frequency. Default is 50 Hz (in Chinese). Noting that in USA, power frequency is 60Hz;

results QA.parameters.robustDeviationThreshold: Z-score cutoff for robust channel deviation;

results_QA.parameters.FrequencyNoiseThreshold: Z-score cutoff for nosie-to-signal ratio (signal above 40 Hz);

results_QA.parameters.correlationThreshold: maximal correlation below which window is bad (range is (0,1));

results_QA.parameters.chanlocsflag: flag of channel locations. if chanlocsflag = 1: have channel locations;

results_QA.parameters.chanlocsXYZ: xyz coordinates of selected channels;

results QA.parameters.chanlocs: channel locations of selected channels;

results QA.parameters.ransacSampleSize: samples for computing RANSAC (default = 50);

results_QA.parameters.ransacChannelFraction: fraction of channels for robust reconstruction (default = 0.3);

results_QA.parameters.ransacCorrelationThreshold: cutoff correlation for abnormal wrt neighbors(default = [] | --> not performed).

Note:

- Assumptions of QA tool:
 - -The signal is a structure of continuous data with data and sampling rate at least.
 -No segments of the EEG data have been removed.
- Noting that quality assessing EEG raw data would NOT change the raw data.
- If channel locations are not contained in EEG data or selected channels do not contain locations, the RANSAC correlation is invalid.
- Noting that if the sampling rate is below 2×power frequency, the step of detecting high or power frequency noises will be skipped.

3.3 SEDS->QA

In "SEDS->QA" mode, the raw EEG data files will first be reorganized into a standard EEG data structure, and then data quality of these files will be assessed.

The following will introduce the use steps of "SEDS->QA" function in detail:

- 1) Select the "SEDS->QA" option in the Mode box of the DRT main interface (Fig.3), and select the input and output file path. It should be noted that if the format of input data files are Neroscan (*.cnt), Biosmi (*.bdf), European data format (*.edf), BrainVision (*.vhdr), ASCLL file (*. txt) and MATLAB data files (*.mat), the "Convert into EEGLAB files(*.set && *.fdt) option need to be checked in the SEDS box (Fig.7). If unchecked, the format of the input data file must be the EEGLAB file format (*.set && *.fdt).
- 2) Set the parameters in the SEDS box (Fig. 7).
- 3) In the Extend box, click the "QA" button to pop up the "QA" parameter setting interface (Fig. 10).
- 4) In the "QA" parameter setting interface (Fig. 10), complete the parameter modification, and then click the "OK" button.
- 5) In the DRT main interface (Fig.3), click the "OK" button and wait for the execution to complete.
- 6) After successful execution, folders named "SEDS" and "QA" will be generated in the output path folder, and the execution results of SEDS and QA will be stored in the corresponding folders.

3.4 Capture Filter

Capture Filter was integrated in DRT, which can filter out specified EEG files based on keywords. It is mainly used to filter the specific files needed from a large number of EEG files to facilitate subsequent processing and analysis, saving time for manual screening.

Two operations for file filtering are provided in Capture Filter. When the "Include" option is selected, the data files in line with keyword will be filtered out, and when the "Exclude" option is selected, the files that do not meet keyword will be filtered out.

Capture Filter filters EEG data files based on one of the following three types of keyword:

(1) Folder Name

If "Folder Name" is checked, it is necessary to fill in the keywords contained in the folder name data name of the first-level subdirectory under the input file directory. At present, Capture Filter can only filter out the folders of the first-level sub-directory under the input file directory.

(2) File Name

If "File Name" is checked, the keyword contained in the raw data file name need to be filled.

(3) QA

Only in "SEDS->QA" mode can "QA" be checked. If "QA" is checked, QA results (A, B, C, D) need to be filled in the keyword edit box. EEG data files in line with keyword will be filtered out by Capture Filter according to the QA evaluation results of the raw data. These files will be stored in the folder named "CaptureSEDS" under the output path.

It is worth noting that the keywords are not case sensitive.

4.Attention

In "SEDS" and "SEDS->QA" modes, if the raw EEG data in "*.txt" and "*.mat" formats need to converted into EEGLAB format (*set && *fdt), you need In the interface shown in Figure 13, the sampling rate need to fill and the channel file requires to be import into the interface shown in Fig.13.

Fig.13:

In "QA" mode, if input EEG data files are "*.txt" and "*.mat" formats, only the sampling rate need to be fill in the interface shown in Fig.13.

5.Appendix

5.1 Principle of main methods

WB_EEG_QA is a stable tool to realize quality assessment (QA) of a continuous EEG raw data (e.g, resting-state EEG data). The bad data in small windows of each channel could be detected by kinds of 4 methods, and a number of indices related to the data quality will be calculated. Meanwhile, the overall data quality rating will be also provided, including levels of A, B, C, D (corresponding to perfect, good, poor, bad). The QA consists of (Fig. 14):

- (1) A continuous EEG data of each channel will be high pass filtered and then segmented as small windows;
- (2) Detecting constant or NaN/Inf signals in each window (Method 1);
- (3) Detecting unusually high or low amplitude using robust standard deviation across time points in each window (Method 2);
- (4) Detecting high or power frequency noises in each window by calculating the noise-to-signal ratio (NSR) based on Christian Kothe's method (Method 3);
- (5) Detecting low correlations with other channels in each window using Pearson correlation (default) or RANSAC correlation (Method 4);
 - (6) Calculating a number of indices relative to the data quality and rating the EEG raw data.

Fig. 14: Pipeline of quality assessment of continuous EEG raw data. (1) Raw EEG data with artifacts such as eye blink, eye movement etc. (2) The continuous EEG data of each channel will be high pass filtered and then segmented as small windows. Here 'WindowSeconds' is the window size (e.g. 1 sec.) over which the following methods are conducted. (3) Detecting constant or NaN/Inf signals in each window (Method 1). (4) Detecting unusually high or low amplitude using robust standard deviation across time points in each window (Method 2). If the z score of robust time deviation falls below 'robustDeviationThreshold' or the absolute amplitude exceeds 200 microvolts (µV), the small window is considered to be bad. (5) Detecting high or power frequency noises in each window by calculating the noise-to-signal ratio based on Christian Kothe's method (Method 3) (clean rawdata0.32 https://sccn.ucsd.edu/wiki/Artifact Subspace Reconstruction (ASR)). If the z score of estimate of signal above 40 Hz (power frequency -10Hz) to that below 40 Hz above 'highFrequencyNoiseThreshold' or absolute NSR exceeds 0.5, the small window is considered to be bad. Noting that if the sampling rate is below 2×power frequency, this step will be skipped. (6) Detecting low correlations with other channels in each window using Pearson correlation (default) or RANSAC correlation (Method 4). For Pearson correlation, if the maximum correlation of the window of a channel to the other channels falls below 'correlationThreshold', the window is considered bad. For RANSAC correlation (Bigdely-Shamlo et al., 2015), each window of a channel is predicted using RANSAC interpolation based on a RANSAC fraction of the channels. If the correlation of the prediction to the actual behavior falls below 'ransacCorrelationThreshold' or

calculation is too long, the window is marked as bad. The time cost of this method is high, and the channel locations are required. The RANSAC correlation is optional and default is not performed. (7) Calculating a number of indices relative to the data quality and rating the EEG raw data.

5.2 Docker version instructions

Before using the Docker version of the tool, you need to ensure that Docker-engine is installed correctly. The installation of the Docker version requires the following instructions in the command line interface:

docker pull webrain2018/drt cl:latest

The specific usage is as follows:

docker run --net=host --privileged=true --rm=true

-v C:\Users\XXXX\Desktop\testdata:/export

-i webrain2018/drt cl:latest InputPath OutputPath Mode

[-s AddSubFlag CompressFlag ConvertFlag MetaDataVisualizationFlag SameFileNameFlag]

[-q WindowSeconds HighPassband seleChanns badWindowThreshold

robustDeviationThreshold PowerFrequency FrequencyNoiseThreshold flagNotchFilter

correlationThreshold ransacCorrelationThreshold ransacChannelFraction

ransacSampleSize]

[-c OperationFlag CaptureTypeFlag KeyWord]

[-o srate ChanlocsFile]

Basic item

InputPath

the path of the file to be processed.

OutputPath

the path of the result files.

Mode

Mode=1: "SEDS" function
Mode=2: "QA" function
Mode=3: "SEDS->QA" function

Function item of SEDS (-s)

AddSubFlag

AddSubFlag=1: the result folder name generated according to the naming method of "sub-XXXXX_{FilePath}_{FileName}". And "sub-XXXXX" will be numbered sequentially from "sub-00001~sub-99999".

AddSubFlag=0 (default): the result folder name generated according to the naming method of "{FilePath} {FileName}".

CompressFlag

CompressFlag=1 (default): the results folder of each subjects packaged into a zip package. CompressFlag=0: not packaged.

ConvertFlag

ConvertFlag=1 (default): convert different EEG file formats to EEGLAB files (*.set&& *.fdt).

ConvertFlag=0: not converted.

MetaDataVisualizationFlag

MetaDataVisualizationFlag=1 (default): generate the "*info.json" file describing the basic information of the data, the "*channels.csv" file describing the lead electrode information and the "*event.csv" file describing the event information.

MetaDataVisualizationFlag=0: do nothing.

SameFileNameFlag

SameFileNameFlag=1: the generated folder name consistent with the raw EEG data file name.

SameFileNameFlag=0 (default): naming the folder in the form of "{FilePath} {FileName}".

Function item of QA (-q)

WindowSeconds

the window size (in seconds, default = 1 sec.) over which the above methods are conducted.

HighPassband

lower edge of the frequency for high pass filtering. Default is 1 Hz.

seleChanns

number with indices of the selected channels (e.g. '[1:4,7:30]' or 'all'). Default is 'all'.

badWindowThreshold

cutoff fraction of bad windows (default = 0.4) for detecting bad channels.

robustDeviationThreshold

Z-score cutoff for robust time deviation in each window (default = 5).

PowerFrequency

power frequency. Default is 50 Hz (in Chinese). Noting that in USA, power frequency is 60Hz.

• flagNotchFilter

flagNotchFilter = 1: remove $0.5 \times$ power frequency noise using notch filtering. flagNotchFilter = 0 (default): no noise removal.

FrequencyNoiseThreshold

Z-score cutoff for NSR (signal above power frequency -10Hz). Default is 3. If the z score of estimate of signal above 40 Hz (power frequency -10Hz) to that below 40 Hz above 'highFrequencyNoiseThreshold' or absolute NSR exceeds 0.5, the small window is considered to be bad.

correlationThreshold

maximal correlation below which window is bad (range is (0,1), default = 0.6). If the maximum correlation of the window of a channel to the other channels falls below 'correlationThreshold', the window is considered bad.

ransacSampleSize

samples for computing RANSAC (default = 50).

ransacChannelFraction

fraction of channels for robust reconstruction (default = 0.3).

ransacCorrelationThreshold

cutoff correlation for abnormal wrt neighbors(default = [] | --> not performed). Default is

Function item of Capture Filter (-c)

OperationFlag

OperationFlag=1: extract files containing keywords.

OperationFlag=2: extract files without containing keywords.

CaptureTypeFlag

CaptureTypeFlag=1: the keyword from the folders name.

CaptureTypeFlag=2: the keyword from the raw data files name.

CaptureTypeFlag=3: the keyword from the data quality assessment results.

KeyWord

fill in the corresponding keywords according to the value of CaptureTypeFlag.

Other function item (-o)

srate

sampling rate of EEG data. It can be automatically detected in EEG data. But for ASCII/Float ".txt" file or MATLAB ".mat" file, user should fill the sampling rate by hand. Default is '[]'.

• ChanlocsFile

the path of the channel information file. If the raw data file lacks electrode coordinate information, user should import the channels location.

5.3 Copyright

The copyright of this software belongs to the Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China.