CURSO BÁSICO DE FÍSICA TEÓRICA

Volumen 2: Física Teórica 1 [Electromagnetismo]

E.F. Lavia

versión 0.1

5 de mayo de 2020

Contenidos

1
2
3
5
6
7
7
9
11
12
16
20
20
25
25
25
27
28
30
31
32
34
36
37
40
41
43
45
46

		2.8.1	interpretacion del momento magnético	47
		2.8.2	Interacción del campo magnético con una distribución	
			de corriente	48
	2.9	Pertul	oación por un conductor sobre un campo eléctrico uniforme	49
3	Mét	todo de	separación de variables	5 3
	3.1	Separa	ación de variables	53
	3.2	Detall	es sobre solución de problemas de potencial	55
	3.3	Expan	siones ortonormales	57
		3.3.1	Prolongación analítica	58
		3.3.2	Comentario multipolos	59
	3.4	Armó	nicos esféricos	60
	3.5	Separa	ación de variables en cilíndricas	63
4	Exp	ansión	en un campo multipolar	66
	4.1		rollo dipolar del campo magnético	66
	4.2		os materiales	66
	4.3		zación y magnetización	69
	4.4	Consi	deraciones energéticas	72
	4.5	Interp	retación termodinámica de U	73
	4.6	Teore	ma de Thomson	75
	4.7	Esfera	con magnetización uniforme	76
	4.8	Histér	esis	76
	4.9	Esfera	ferromagnética en campo externo	77
5	Fen	ómeno	s dependientes del tiempo	79
	5.1	Ley de	e Faraday e inducción	79
		5.1.1	Corrección a las ecuaciones	80
		5.1.2	Potenciales	80
		5.1.3	Cambio de Gauge	81
	5.2	Conse	rvación de la energía (teorema de Poynting)	83
		5.2.1	Conservación del momento	85
	5.3	Tenso	r de Maxwell	86
		5.3.1	Ejemplos del tensor de Maxwell	87
	5.4	Métod	lo cuasiestacionario	89
6	Ond	das plai	nas	92
		6.0.1	Sobre complejos	93
		6.0.2	Poynting promedio y energías promedio	94
	6.1	Polari	zación de ondas	95
	6.2		ión y refracción de ondas en medios	96
	63		•	100

	6.4	Camp	o electromagnético en un medio conductor	. 102
		6.4.1	Algunos ejemplos y casos	. 106
7	Rela	ativida	d especial	108
	7.1	Trans	formación de vectores	. 108
		7.1.1	Transcurso del tiempo en un sistema con V grande	. 112
	7.2	Forma	a covariante del electromagnetismo	
		7.2.1	Transformación de los campos	. 115
		7.2.2		
	7.3	Princi	pio de Hamilton y relatividad	
		7.3.1	Partícula en un campo electromagnético	
		7.3.2		
		7.3.3		
		7.3.4	cuadrivelocidad	. 125
8	Can	npos de	e cargas en movimiento	126
	8.1	Poten	ciales retardados	. 126
		8.1.1	Fuente armónica	
		8.1.2	Radiación a orden $\ell=1$. 133
		8.1.3	Ejemplo de antena	
	8.2	Camp	os de una partícula cargada en movimiento	
	8.3	Camp	o de una carga en movimiento	. 138
	8.4	Cálcu.	io de potencia irradiada	. 139
	8.4 8.5		lo de potencia irradiada	
			do magnético	. 141
A	8.5	Frena	do magnético	. 141

146

C Rejunte

Conceptos fundamentales de electromagnetismo

La idea del curso es resolver las ecuaciones que describen matemáticamente el comportamiento clásico de los campos electromagnéticos, es decir las ecuaciones de Maxwell, en diversas situaciones. Luego, la conexión con la fuerza que experimentarán las partículas cargadas por la acción de dichos campos vendrá descripta por la fuerza de Lorentz.

Panorámicamente, lo dicho corresponde a trabajar con el set de ecuaciones

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{D} &= 4\pi \rho_{\ell} \qquad \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \\ \boldsymbol{\nabla} \times \boldsymbol{E} &= -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \qquad \boldsymbol{\nabla} \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J}_{\ell} + \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}, \end{split}$$

las cuales permiten determinar a los campos E, D, B, H a partir de la densidad de carga ρ y de corriente J (notemos que también los campos D y B influyen en el comportamiento de H y E). Finalmente, la fuerza de Lorentz que actúa sobre una partícula de carga q que se mueve con velocidad v es

$$m{F} = q \left(m{E} + rac{1}{c} m{v} imes m{B}
ight).$$

Crudamente podemos decir que de esto trata el electromagnetismo clásico. Las ecuaciones de Maxwell son lineales, de modo que vale la superposición aunque los campos tienen en sí matemáticamente naturaleza diferente. Los campos E, D don ejemplos de vectores polares (aquellos que tienen bien definido el sentido, como la fuerza, la posición y la velocidad) mientras que B, H son

ejemplos de vectores axiales, que por el contrario tienen su sentido definido por una convención, como por ejemplo las velocidades angulares.

De acuerdo con ello, el carácter de vector axial o polar tiene consecuencias en la transformación de los mismos. Las transformaciones que se considerarán serán rotaciones, reflexiones espaciales y reflexiones temporales. Las ecuaciones de Maxwell permanecen invariantes ante estas transformaciones.

El resto del capítulo recorrerá lo que es la construcción usual del electromagnetismo; primeramente considerar situaciones estáticas, independientes del tiempo, lo cual hace que aparezcan como fenómenos independientes la electricidad y el magnetismo y luego repasar someramente algunas propiedades matemáticas útiles para el formalismo.

Si multiplico vectorialmente dos vectores polares obtengo un vector axial.

1.1 Electrostática

La ley de Coulomb establece que

$$\pmb{F}_{12} = k \ q_1 q_2 \frac{(\pmb{x}_1 - \pmb{x}_2)}{|\pmb{x}_1 - \pmb{x}_2|^3}$$

es la fuerza sobre la partícula en \boldsymbol{x}_1 debido a la partícula en \boldsymbol{x}_1 . La constante k está para ajustar las unidades. En sistema gaussiano es k=1 y adimensional. La Figura 1.1 ilustra la situación para el caso en que ambas cargas tienen igual signo; en ese caso la fuerza \boldsymbol{F}_{12} tiene la dirección del vector $\boldsymbol{x}_1-\boldsymbol{x}_2$: apunta desde la fuente hacia el punto donde se evalúa.

Figura 1.1 Fuerza sobre la carga q_1 debida a la carga q_2 .

Cuando la carga q_1 es suficientemente pequeña como para no perturbar a la carga q_2 que origina la fuerza, se puede utilizar la ley de Coulomb para definir

el campo eléctrico según

$$oldsymbol{E}_{12}(oldsymbol{x}_1) \equiv \lim_{q_1 o 0} rac{oldsymbol{F}_{12}}{q_1}.$$

Para una distribución discreta de N cargas q_i y tomando $\boldsymbol{x}_1 \equiv \boldsymbol{x}$ se tiene

$$\boldsymbol{E}(\boldsymbol{x}) = \sum_{i=1}^{N} \ q_i \frac{(\boldsymbol{x} - \boldsymbol{x}_i)}{|\boldsymbol{x} - \boldsymbol{x}_i|^3}.$$

En el límite en que las cargas están lo suficientemente próximas como para considerar que forman se tiene una distribución de carga de volumen $\rho(x)$, la expresión del campo adopta la forma de una integral

$$\boldsymbol{E}(\boldsymbol{x}) = \int_{V'} \rho(\boldsymbol{x}') \frac{(\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \, dV'$$

donde V' es el volumen de integración. En general x es el llamdo punto campo y x' punto fuente.

1.1.1 Conservación de la carga

Aceptaremos el principio de conservación de la carga; la carga eléctrica no se genera ni se destruye. Considerando una región Ω en el espacio (cuya frontera está fija) la carga total encerrada en la misma es

$$Q(t) = \int_{\Omega} \rho(\mathbf{x}', t) \, d\Omega,$$

siendo su variación temporal

$$\frac{dQ(t)}{dt} = \int_{\Omega} \frac{\partial \rho(\mathbf{x}', t)}{\partial t} \, d\Omega,$$

donde la derivada total se transforma en una derivada parcial debido a que el volumen es fijo.

La conservación de la carga nos dice que como la carga no aparece ni desaparece mágicamente, entonces la variación de la carga contenida en Ω en cualquier instante de tiempo se debe al flujo neto de carga de la misma; es decir a la diferencia entre la que abandona la región y aquella que entra. Como ilustra esquemáticamente la Figura 1.2, la variación de carga ΔQ en un dado Δt corresponde a la diferencia entre las entrantes y las salientes.

La forma que tiene ese flujo se construye a partir del análisis ilustrado en el inserto de la figura. Allí se ve un elemento pequeño $\delta\Omega$ que linda con la frontera

Acá creo que la derivada debería ser la parcial desde el vamos. Check! de la región. Este elemento δV es lo suficientemente pequeño como para que en su interior el campo de velocidad de las cargas sea constante. La caja δV tiene un volumen que se puede expresar $\ell \delta S$ (longitud de la caja por área de la base). La longitud ℓ se elige como $\ell = v_n \delta t$, donde v_n es la componente de la velocidad normal a la superficie. Así elegido, el volumen $\delta V = v_n \delta t \delta S$ representa el volumen que pasaría a través de δS en el tiempo δt . En efecto, la partícula más lejana del borde δS que está a distancia ℓ recorrerá en δt justamente esa distancia (la velocidad v es constante para todo el elemento). Si la velocidad estuviese orientada hacia adentro, entonces tendríamos un bloque similar de carga entrante, v el razonamiento es el mismo.

La cantidad de carga δQ que atraviesa el área δS será entonces

$$\delta Q = \rho \delta V = \rho v_n \delta S \delta t = \rho \boldsymbol{v} \cdot (\hat{n} \delta S) \delta t$$

donde se ha expandido la velocidad normal. Entonces la variación de la carga en el elemento es

$$\frac{\delta Q}{\delta t} = \rho \boldsymbol{v} \cdot (\hat{n}\delta S).$$

Si el producto escalar entre la velocidad y la normal es positivo entonces esto significa que la carga abandona la superficie mientras que el caso contrario implica carga entrando en la misma. Entonces debemos ajustar la expresión anterior con un signo menos. Entonces, pasando al continuo

$$\frac{\partial Q}{\partial t} = -\int_{\partial \Omega} \boldsymbol{J} \cdot d\boldsymbol{S}$$

donde $J=\rho v$ es el vector densidad de corriente y $dS=\hat{n}dS$ es el diferencial de superficie vectorial.

Entonces, juntando las dos expresiones para la carga tenemos

$$\int_{\Omega} \frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} \; d\Omega = - \int_{\partial \Omega} \; \boldsymbol{J} \cdot d\boldsymbol{S},$$

y aplicando el teorema de la divergencia en el miembro derecho

$$\int_{\Omega} \frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} \, d\Omega = -\int_{\Omega} \, \boldsymbol{\nabla} \cdot \boldsymbol{J} \, d\Omega,$$

o bien

$$\int_{\Omega} \left[\frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} \right] \, d\Omega = 0,$$

y como esto vale para cualquier volumen Ω se sigue que el corchete debe ser nulo, de modo que se tiene

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0,$$

Figura 1.2

que es la ecuación de continuidad de la carga.

Si es $\nabla \cdot J = 0$ no se acumula carga; las líneas de J no tienen principio ni fin. Los problemas de corrientes estacionarias cumplen esta condición. Esta condición en la ecuación de continuidad nos dice que la distribución de carga no varía con el tiempo.

Si fuera $\nabla \cdot J = 0$ esto significa que las líneas de J no tienen principio ni fin.Check!

1.2 Interacción magnética

Cuando se da $\nabla \cdot \boldsymbol{J} = 0$ hablamos de una corriente estacionaria (no hay acumulación de carga en ninguna parte). Las corrientes estacionarias producen efectos magnéticos dados por la ley de Biot-Savart

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{\Gamma} \frac{Id\ell' \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3}$$

que es válida para un circuito Γ , que es una curva –lineal– que se recorre en sentido positivo (CCW). Si no puede despreciarse el espesor de un circuito, hay que considerar una integral de volumen y la expresión es

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \, dV'.$$

Luego, la fuerza sobre un circuito lineal Γ es

$$\boldsymbol{F} = \frac{1}{c} \int_{\Gamma} I d\ell \times \boldsymbol{B},$$

mientras que para un volumen se tiene

$$\boldsymbol{F} = \frac{1}{c} \int_{V} \boldsymbol{J} \times \boldsymbol{B} \, dV.$$

La expresión del torque es

$$T = \frac{1}{c} \int_{V} \boldsymbol{x} \times (\boldsymbol{J} \times \boldsymbol{B}) \, dV.$$

La transformación entre estas integrales puede hacerse merced al siguiente razonamiento,

$$Id\ell \times \mathbf{B} = \mathbf{J} \cdot d\mathbf{S}d\ell \times \mathbf{B} = \cos(\theta)dS\mathbf{J}d\ell \times \mathbf{B} =$$
$$\mathbf{J} \times \mathbf{B}\cos(\theta)dSd\ell = \mathbf{J} \times \mathbf{B}d\mathbf{S} \cdot d\ell = \mathbf{J} \times \mathbf{B}dV$$

1.2.1 Fuerza de un circuito sobre otro

La fuerza ejercida por el campo magnético de un circuito 2 sobre otro circuito 1 puede calcularse con un poco de paciencia como sigue

$$\begin{split} F_{12} &= \frac{1}{c} \int_{\Gamma_1} I_1 d\ell_1 \times \left\{ \frac{1}{c} \int_{\Gamma_2} \frac{I_2 d\ell_2 \times (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_1 \times \left\{ \frac{d\ell_2 \times (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\}, \end{split}$$

y utilizando una identidad vectorial,

$$F_{12} = \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_2 \left\{ \frac{d\ell_1 \cdot (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\} - \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \left\{ d\ell_1 \cdot d\ell_2 \right\}$$

Luego, se puede reescribir el primer término notando que

$$\frac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} = \nabla_{\boldsymbol{x}_2} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} = -\nabla_{\boldsymbol{x}_1} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|},\tag{2.1}$$

de manera que la primer integral resulta

$$-\int_{\Gamma_2} d\ell_2 \int_{\Gamma_1} d\ell_1 \cdot \nabla_{\boldsymbol{x}_1} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|},$$

la cual es nula porque se está integrando un gradiente en una curva cerrada.

Entonces, se tiene

$$F_{12} = -\frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{({\pmb x}_1 - {\pmb x}_2)}{|{\pmb x}_1 - {\pmb x}_2|^3} \left(d\ell_1 \cdot d\ell_2 \right)$$

que vale lo mismo si intercambiamos Γ_1 con Γ_2 en la integración, lo cual implica que la fuerza sobre un circuito debida a otro es igual a la fuerza sobre este último debida al primero. Esto quiere decir que vale el principio de acción y reacción en el caso de corrientes estacionarias. Si las corrientes no son estacionarias no se tendrá, en general, este resultado. Con corrientes no estacionarias se generará campo electromagnético y habrá emisión de radiación.

1.3 Teorema de Helmholtz

Nos dice que un campo vectorial está completamente determinado por su divergencia y su rotor. Por ejemplo, para un campo eléctrico se tiene

$$\boldsymbol{E} = \int_{V'} \rho \frac{\boldsymbol{x} - \boldsymbol{x}'}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV' = -\int_{V'} \rho \nabla_{\boldsymbol{x}} \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' = -\nabla_{\boldsymbol{x}} \int_{V'} \frac{\rho}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' = -\nabla_{\boldsymbol{$$

donde la integral que ha resultado dentro del gradiente es la integral de Poisson. Entonces,

$$\pmb{E} = -\nabla_{\pmb{x}} \phi(\pmb{x}),$$

de modo que E es un gradiente y por ello

$$\nabla \times \mathbf{E} = 0.$$

Esta última condición implica que el campo electrostático \boldsymbol{E} es conservativo, cumple $\oint_{\Gamma} \boldsymbol{E} \cdot d\ell = 0$, o lo que es lo mismo, \boldsymbol{E} es irrotacional. Hemos hecho la construcción de un potencial electrostático.

Para el curso de indicial:

$$[m{A} imes m{B}]_i = \epsilon_{ijk} A_j B_k$$

 $[m{\nabla} imes m{A}]_i = \epsilon_{ijk} \partial_j A_k$
 $\epsilon_{ijk} \epsilon_{\ell mn} = \delta_{i\ell} \delta_{im} - \delta_{im} \delta_{i\ell}$

1.4 Ley de Gauss

La idea es considerar el campo ejercido por una carga puntual q en un punto de una superficie $S \equiv \partial \Omega$, como se ilustra en la Figura 4.3.

Figura 4.3

El campo en el punto verifica

$$\boldsymbol{E}\cdot\hat{\boldsymbol{n}} = q\frac{\cos(\theta)}{r^2}$$

y teniendo en cuenta el diferencial de superifice dS

$$\mathbf{E} \cdot \hat{n}dS = q \frac{\cos(\theta)}{r^2} dS$$

donde el factor $\cos\theta dS/r^2$ es el ángulo sólido subtendido por dS desde el punto donde se halla q

Podemos escribir

$$\mathbf{E} \cdot \hat{n}dS = qd\Omega$$

donde $d\Omega$ es el diferencial de ángulo sólido. Integrando para todo el volumen

$$\int_{S\equiv\partial V} \boldsymbol{E}\cdot\hat{\boldsymbol{n}}\;dS = q\int_{S}d\Omega = \begin{cases} 0 & \text{carga exterior}\\ 4\pi & \text{carga interior} \end{cases}$$

y la integral es nula si la carga es exterior a S o 4π si es interior. En el caso de una cantidad de cargas internas se tendrá, evidentemente,

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \sum_{i} q_{i}.$$

Este hecho se conoce como La ley de Gauss y se expresa

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi Q_{n},$$

donde Q_n es la carga neta dentro de la superficie S. Al continuo pasa como

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \int_{V} \rho \ dV,$$

de manera que usando el teorema de la divergencia se obtiene

$$\int_{V} \mathbf{\nabla} \cdot \mathbf{E} \ dV = \int_{V} 4\pi \rho \ dV,$$

o bien

$$\nabla \cdot \boldsymbol{E} = 4\pi \rho.$$

Lo que es vital en todo este razonamiento es el hecho de que el campo decaiga como $1/r^2$. Luego, alguna 'ley de Gauss' podrá aplicarse a cualquier campo con ese tipo de decaimiento.

Por otro lado si E es el gradiente de un potencial ϕ la divergencia del campo

$$\nabla \cdot \boldsymbol{E} = \nabla \cdot (-\nabla \phi) = -\nabla^2 \phi = 4\pi \rho$$

conduce a la ecuación de Poisson para el potencial electrostático,

$$\nabla^2 \phi = -4\pi \rho,$$

cuyo caso particular en el caso $\rho = 0$

$$\nabla^2 \phi = 0,$$

constituye la ecuación de Laplace.

Matemáticamente esto significa que la solución de la ecuación no homogénea (Poisson) es suma de una solución del homogéneo (Laplace) más una solución particular. La carga en el volumen está relacionada con la solución particular.

Por supuesto para resolver cualquiera de estas ecuaciones hace falta dar las correspondientes condiciones de contorno. Usualmente serán de dos tipos: Dirichlet (valor del potencial en la superifice) o Newmann (valor de la derivada normal del potencial sobre la superficie).

1.4.1 Gauges

Dado que $\nabla \cdot \boldsymbol{B} = 0$ entonces existe un \boldsymbol{A} tal que

$$\mathbf{\nabla} \times \mathbf{A} = \mathbf{B}$$

pero para caracterizar totalmente el ${m A}$ tengo la libertad de definir a conveniencia

$$abla \cdot A \equiv$$
 "el gauge".

Casos particulares importantes son el gauge de Coulomb,

$$\nabla \cdot \mathbf{A} = 0$$

de manera que como

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

se llega para el potencial electromagnético, bajo el gauge de Coulomb, a que

$$\nabla^2 \boldsymbol{A} = -\frac{4\pi}{c} \boldsymbol{J}$$

Electrostática	Magnetostática
$\pmb{F}_{12} = \frac{q_1 q_2 (\pmb{x}_1 - \pmb{x}_2)}{ \pmb{x}_1 - \pmb{x}_2 ^3}$	$d\textbf{\textit{F}}_{12} = \frac{1}{c^2} \frac{I_1 d\ell_1 \times J_2 d\ell_2 \times (\textbf{\textit{x}}_2 - \textbf{\textit{x}}_1)}{ \textbf{\textit{x}}_2 - \textbf{\textit{x}}_1 ^3}$
$\boldsymbol{E} = \int_{V'} \frac{\rho(\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}')}{ \boldsymbol{x} - \boldsymbol{x}' ^3} dV'$	$oldsymbol{B} = rac{1}{c} \int_{V'} rac{oldsymbol{J}(oldsymbol{x}') imes (oldsymbol{x} - oldsymbol{x}')}{ oldsymbol{x} - oldsymbol{x}' ^3} dV'$
Ley de Gauss	Ley de Ampere
$\int_{S} \boldsymbol{E} \cdot d\boldsymbol{S} = 4\pi Q_{n}$	$\int_{\Gamma} \boldsymbol{B} \cdot d\ell = \frac{4\pi}{c} I_c$
Ecuaciones electrostáticas	Ecuaciones magnetostáticas
$\mathbf{\nabla \cdot E} = 4\pi ho$	$\nabla \cdot \boldsymbol{B} = 0$
$\nabla \times \boldsymbol{E} = 0$	$oldsymbol{ abla} imes oldsymbol{B} = rac{4\pi}{c}oldsymbol{J}$
$oldsymbol{E} = -oldsymbol{ abla}\phi$	$oldsymbol{B} = oldsymbol{ abla} imes oldsymbol{A}$

 Tabla 1.1
 Recetario de ecuaciones básicas para la electrostática y la magnetostática.

La operación de tomar rotor y el producto vectorial cambian el carácter de los vectores: de polares pasan a axiales y viceversa.

El laplaciano es la divergencia del gradiente, dos operaciones que no cambian el carácter de un vector. Luego, el laplaciano preserva la simetría.

La fuerza general sobre una distribución de carga es

$$\boldsymbol{F} = \int_{V'} \rho \boldsymbol{E} \, dV' + \frac{1}{c} \int_{V'} \boldsymbol{J} \times \boldsymbol{B} \, dV'.$$

Estos comentarios sobre vectores irán en el apéndice matemático vectorial.

A partir de la tabla hay mucho para mencionar. Por ejemplo, el hecho de la separación total de fenómenos, que la fuerza magnética es una diferencial (no hay cargas puntuales magnéticas), que el potencial en un caso es escalar mientras que en el otro es vectorial, etc.

1.4.2 Delta de Dirac

Una densidad de carga puntual se puede escribir mediante una delta de Dirac de acuerdo a

$$\rho(\boldsymbol{x}') = q \ \delta(\boldsymbol{x} - \boldsymbol{x}') = \begin{cases} 0 & \boldsymbol{x} \neq \boldsymbol{x}' \\ \infty & \boldsymbol{x} = \boldsymbol{x}' \end{cases}$$

siendo las dimensiones de la delta las de $1/L^3$ y cumpliéndose

$$\int_{V'} \delta(\boldsymbol{x} - \boldsymbol{x}') dV' = 1.$$

La delta de Dirac se puede aproximar con ciertas funciones matemáticas con gráficas como el siguiente

La delta de Dirac cumple las siguientes propiedades

$$\begin{split} \int f(\boldsymbol{x})\delta(\boldsymbol{x}-\boldsymbol{x}_0)dx &= f(\boldsymbol{x}_0) \\ \int f(\boldsymbol{x})\delta'(\boldsymbol{x}-\boldsymbol{x}_0)dx &= -f'(\boldsymbol{x}_0) \\ \int f(\boldsymbol{x})\delta^n(\boldsymbol{x}-\boldsymbol{x}_0)dx &= (-1)^n f^n(\boldsymbol{x}_0) \\ \delta[f(\boldsymbol{x})] &= \frac{\delta(\boldsymbol{x}-\boldsymbol{x}_0)}{|f'(\boldsymbol{x}_0)|} \qquad f(\boldsymbol{x}_0) &= 0 \end{split}$$

En coordenadas cartesianas es

$$\delta(\boldsymbol{x}-\boldsymbol{x}_0)=\delta(x-x_0)(y-u_0)(z-z_0)$$

y para curvilíneas, como el elemento diferencial y el de volumen son

$$d\mathbf{x} = h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3 \qquad dV = h_1 h_2 h_3 dq_1 dq_2 dq_3$$

se tiene

$$\delta({\pmb x}-{\pmb x}') = \frac{1}{h_1h_2h_2}\delta(q_1-q_1')\delta(q_2-q_2')\delta(q_3-q_3')$$

donde q_1,q_2 y q_3 son coordenadas curvilíneas generales y $h_1h_2h_3$ es el jacobiano de la transformación. Puntualmente para coordenadas esféricas se tiene

$$\delta(\boldsymbol{x}-\boldsymbol{x}') = \frac{1}{r^2 \sin \theta} \delta(r-r') \delta(\theta-\theta') \delta(\varphi-\varphi')$$

donde no está definido para $\theta=0$. Si $r_0=0$ entonces se tiene

$$\delta(\boldsymbol{x}) = \frac{\delta(r)}{4\pi r^2}$$

que involucra un factor de normalización.

Para un casquete esférico se tendrá $\rho(x)=\sigma\delta(r-R)$ y para una corriente circulando por un plano como ilustra la figura

se tiene ${m J}=g\delta(y)\hat{z}$. Estas deltas, al ser unidimensiona-

les tienen unidades de $1/L^{-1}$ de manera que las otras unidades serán llevadas por σ y g.

1.4.3 Vectores polares y axiales ante transformaciones

Las transformaciones propias son aquellas con determinante 1 y las impropias las que tienen determinante distinto de 1. Entonces, para un vector polar p y siendo R la matriz de la transformación y |R| su determinante, se tiene

$$p' = R p$$

mientras que para un vector axial a

$$\mathbf{a}' = |R|R \mathbf{a}.$$

Aquí se ve que ante una transformación propia ambos vectores transforman igual pero ante una impropia hay un cambio asociado al determinante.

Un vector polar sufre reflexión especular mientras que un vector axial (*pseudovector*) sufre una antireflexión especular. Ver la figura.

Para un campo escalar, como podría ser la temperatura $T(\boldsymbol{x})$ una rotación deja invariante el valor del campo

Figura 4.4 A la izquierda está el comportamiento polar mientras que a la derecha se halla el comportamiento axial.

En el caso de un campo vectorial

se ve que

$$\boldsymbol{E}'(\boldsymbol{x}') = R\boldsymbol{E}(R\boldsymbol{x}).$$

En el caso de una simetría por reflexión como la de la figura

el campo en una situación simétrica cumplirá

$$\boldsymbol{V}(\boldsymbol{x}') = R\boldsymbol{V}(\boldsymbol{x})$$

mientras que un campo escalar sería $T(\boldsymbol{x}') = T(\boldsymbol{x}).$

EJEMPLO 4.1 Ejemplo de problema simétrico (eléctrico)

Consideremos un plano infinito cargado con una densidad de carga σ , según se ve en la figura bajo estas líneas. La idea es que el campo en un punto P será

$$\pmb{E}(P) = (E_x, E_y, E_z),$$

es decir que en principio tendrá los tres componentes.

Del otro lado del plano la situación es la misma de manera que se tiene una simetría de reflexión en xz. La matriz de una reflexión es

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

y entonces se tienen las relaciones (compruébese en la figura)

$$E'_x = E_x, \qquad E'_y = -E_y, \qquad E'_z = E_z.$$
 (4.1)

Luego, otra simetría es sencillamente rotar el plano un ángulo π en torno a $\hat{z},$ y esta rotación será

poner matriz de rotación en apéndice

$$R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

que implica

$$E'_{x} = -E_{x}, E'_{y} = -E_{y}, E'_{z} = E_{z}.$$
 (4.2)

Como ambas simetrías conllevan a la misma situación física, deben ser ciertas las relaciones (4.1) y (4.2) de modo que como $E_x=-E_x$ se debe cumplir que $E_x=0$.

Se puede hacer el mismo razonamiento para la simetría de reflexión en torno a xy puesto que dicho plano separa dos semiespacios especularmente idénticos. En este caso como P se halla sobre dicho plano basta una rotación en un ángulo de 2π , que deja el campo en el mismo sitio para obtener la relación $E_z=-E_z$ lo cual implica que ${\bf E}=E_y\hat{y}$.

EJEMPLO 4.2 Ejemplo de problema simétrico (magnético)

Consideremos un plano infinito por el cual circula una corriente cuya densidad de corriente J está mostrada en la figura bajo estas líneas. La idea es que el campo magnético B en un punto P será

$$\boldsymbol{B}(P) = (B_x, B_y, B_z),$$

es decir que en principio tendrá los tres componentes.

Dado que este campo es un pseudovector, debe reflejarse mal en el plano, como se ilustra en la figura. La reflexión en el plano xz lleva a

$$B'_{x} = -B_{x}, B'_{y} = B_{y}, B'_{z} = -B_{z}, (4.3)$$

que proviene de la matriz de reflexión R del caso anterior (es la misma porque giramos en el mismo sentido el mismo plano) a la cual se le ha multiplicado el determinante |R|=-1 de la misma puesto que el campo ${\bf B}$ es un pseudovector.

La rotación en torno a un ángulo π del plano es también una simetría, representada por la misma matriz de rotación R del ejemplo anterior por lo cual se tendrán

$$B'_x = -B_x, B'_y = -B_y, B'_z = B_z,$$
 (4.4)

de lo cual se deduce que $B_y=B_z=0$. El campo magnético sólo puede tener componente en \hat{x} , es decir que se escribirá como ${\bf B}=B_x\hat{x}$. Este hecho también puede deducirse cualitativamente utilizando la regla de la mano derecha.

EJEMPLO 4.3 Hilo cargado e hilo con corriente

Consideraremos ahora dos situaciones geométricas idénticas (un hilo infinito) pero en primer lugar el caso en que está cargado uniformemente y en segundo lugar el caso en que por el mismo circula una corriente estacionaria i.

En el caso del hilo cargado se quiere determinar las simetrías del campo E en un punto P,

El punto P es representativo de todo el cilindro. La simetría de reflexión en xy no hace que el punto cambie (P' = P) pero el campo debe reflejarse, de lo cual se tiene

$$E_x'=E_x, \qquad E_y'=E_y, \qquad E_z'=-E_z.$$

Luego, la rotación en ángulo 2π implica que $E_z=-E_z$ y por ende el componente z debe ser nulo. Por otra parte, la simetría de reflexión en yz de igual manera lleva a $E_x=-E_x$ de forma que el campo ${\pmb E}$ de un hilo cargado solo tendrá componentes en $\hat y$.

En el caso del hilo con una corriente que circula por el mismo se debe notar que ahora la corriente tiene dirección con lo cual la simetría de reflexión en xy se verifica si incorporamos un signo menos que dé cuenta del cambio en la dirección de la corriente

Entonces por una parte tenemos la reflexión que, luego del añadido del signo extra, da las igualdades

$$B_x'=B_x, \qquad B_y'=B_y, \qquad B_z'=-B_z,$$

que al combinarse con las que resultan de que los puntos son el mismo ${m P}={m P}'$ (o digamos que giramos en ángulo 2π) resultan en que $B_z=-B_z$ y por ende B_z es nulo.

La reflexión en yz no requiere el signo menos extra por el cambio de la corriente, así que da sencillamente

$$B_x' = B_x, \qquad B_y' = -B_y, \qquad B_z' = -B_z,$$

y luego la igualdad de puntos establece

$$B'_x = B_x, \qquad B'_y = B_y, \qquad B'_z = B_z,$$

de modo que, igualando ambas expresiones, tiene que ser $B_y=B_z=0$. Entonces el campo ${\pmb B}$ sólo tiene componentes en $\hat x$, es un campo anular.

Como se vió en el ejemplo anterior, una reflexión más una rotación permite eliminar componentes de campo.

Una simetría más una rotación-traslación permite eliminar dependencias.

Lo primero que debe hacerse es escribir bien la J a partir del dato de la corriente (que es el que se suele tener) mediante

$$i = \int_S m{J} \cdot dm{S}$$

En cambio, para $m{A}$ es más fácil usar

$$B = \nabla \times A$$

y despejar de aquí la ecuación diferencial que emplear

$$\boldsymbol{A} = \frac{1}{c} \int_{V} \frac{\boldsymbol{J}}{|\boldsymbol{x} - \boldsymbol{x}'|} dV$$

1.5 El potencial vector

Por la ley de Biot y Savart, el campo \boldsymbol{B} debido a una densidad de corriente en un volumen puede obtenerse a partir de

$$\boldsymbol{B} = \frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV'.$$
 (5.1)

Utilizando la identidad de (2.1), con el gradiente respecto del punto campo, y la identidad vectorial

$$\boldsymbol{\nabla}\times(\phi\boldsymbol{F})=\phi\boldsymbol{\nabla}\times\boldsymbol{F}-\boldsymbol{F}\times\boldsymbol{\nabla}\phi$$

la expresión (5.1) para el campo magnético resulta en

$$oldsymbol{B} = oldsymbol{
abla}_x imes rac{1}{c} \int_{V'} rac{oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|} dV'$$

En estos ejemplos creo que es más beneficiosa la notación de la carpeta, ecuaciones 'triples'. de modo que

$$\mathbf{A} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'$$
 (5.2)

pero como el potencial vector se define a menos del gradiente de un escalar, resulta

$$A' \equiv A + \nabla \psi$$

es tan buen potencial vector como A puesto que los rotores verifican $\nabla \times A = \nabla \times A' = B$, de lo cual extraemos en conclusión que el potencial vector está definido a menos del gradiente de una función escalar.

Reacomodar estas cosas.

Cada componente de ${\pmb A}$ en el caso de que ${\pmb \nabla} \psi = 0$ puede verse como una integral de Poisson.

Ahora bien, si se toma el rotor del campo B, lo cual es tomar el rotor de A, se tiene

$$\mathbf{\nabla} \times \mathbf{B} = \mathbf{\nabla} \times \left(\frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' \right)$$

y usando la identidad del rotor de un rotor (ver apéndices XXX) resulta descompuesto en dos términos de acuerdo a

$$\boldsymbol{\nabla}\times\boldsymbol{B} = \boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\left[\frac{1}{c}\int_{V'}\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|}dV'\right]\right) - \nabla^2\left(\frac{1}{c}\int_{V'}\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|}dV'\right),$$

el gradiente de una divergencia y el laplaciano de un vector. Trabajaremos cada uno de ellos por separado.

Dado que la divergencia es con respecto a las coordenadas de x y la integración es con respecto a las coordenadas x' puede introducirse la misma bajo el signo integral y entonces

$$I_1 = \frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \boldsymbol{\nabla} \cdot \left[\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV' = -\frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \boldsymbol{\nabla}' \cdot \left[\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV'$$

donde la última igualdad se debe al cambio de las coordenadas contra las cuales se deriva. Ahora notando la siguiente expresión para la divergencia del integrando en el potencial vector,

$$oldsymbol{
abla}' \cdot \left[rac{oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|}
ight] = rac{oldsymbol{
abla}' \cdot oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|} + oldsymbol{J}(oldsymbol{x}') \cdot oldsymbol{
abla}' \left[rac{1}{|oldsymbol{x} - oldsymbol{x}'|}
ight]$$

Considerando que $oldsymbol{
abla}'\cdot oldsymbol{J}(oldsymbol{x}')=0$, lo cual se verifica si la corriente es estacionaria se tiene

$$I_1 = -\frac{1}{c} \int_{V'} \mathbf{\nabla}' \cdot \left[\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV'$$

expresión a la cual se puede aplicar el teorema de la divergencia en una superficie $S' = \partial V'$ que englobe completamente a la distribución de corrientes dada por \boldsymbol{J} (y esto siempre se puede hacer si \boldsymbol{J} está acotada) resultando en

$$I_1 = \frac{1}{c} \int_{S'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \cdot \hat{n} dS' = 0.$$

El segundo término es

$$I_2 = \nabla^2 \left(\frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \right)$$

donde el laplaciano, por la misma razón, también puede ser llevado dentro de la integral lo cual resulta en

$$I_2 = \frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \, \nabla^2 \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right) dV' = \frac{4\pi}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \, \delta(\boldsymbol{x} - \boldsymbol{x}') dV',$$

luego de utilizar el valor del laplaciano de la diferencia entre puntos campo y fuente. La integral es nula salvo en el caso en el cual el punto \boldsymbol{x} se halle dentro de V', lo cual suponemos que es cierto obteniéndose entonces

$$I_2 = -\frac{4\pi}{c} \boldsymbol{J}(\boldsymbol{x}).$$

Juntando todos los resultados de estas excursiones, arribamos a

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{J}(\boldsymbol{x}).$$

Integrando esta ecuación de Maxwell sobre una superficie S cuya frontera es una curva cerrada Γ se tiene

$$\int_{S} \nabla \times \boldsymbol{B} \cdot d\boldsymbol{S} = \frac{4\pi}{c} \int_{S} \boldsymbol{J}(\boldsymbol{x}) \cdot d\boldsymbol{S}$$

y por el teorema de Stokes arribamos a

$$\int_{\Gamma - \partial S} \boldsymbol{B} \cdot d\ell = \frac{4\pi}{c} I_{\Gamma}$$

que es la ley de Ampere. Notemos que I_Γ es la corriente concatenada por el lazo $\Gamma.$

Además, volviendo a la identidad vectorial del doble rotor,

$$\mathbf{\nabla} \times \mathbf{B} = \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}) = \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

que se simplifica utilizando el gauge de Coulomb, $\nabla \cdot {\bf A} = 0$, para llegar a

$$\nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{J},$$

que es una ecuación de Poisson vectorial para la magnetostática.

Magnetostática y electrostáctica son gobernadas por ecuaciones de Poisson para potenciales ${\bf A},\phi$ y el problema entonces se reduce a resolverlas para luego hallar los campos por derivación.

EJEMPLO 5.1 Ejemplo de Gauss law y Ampere law

Se tiene un hilo cargado con una densidad lineal de carga λ , tomando una superficie gaussiana cilindrica coaxial y concéntrica con el mismo

se tiene

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q,$$

y dada la forma del campo en cada superficie se tiene

$$E2\pi r\ell = 4\pi\lambda\ell$$

de modo que

$$E = \frac{2\lambda}{r}.$$

En el caso de un toro por el cual circula una corriente i en cada vuelta de la espira se definen dos circuitos Γ_1 y Γ_2 según al figura debajo

El campo ${\pmb B}$ estará en $\hat \varphi$ y además no depende de φ por la simetría (en coordenadas cilíndricas), entonces para un dado r_0 y z_0 será una constante en $\hat \varphi$. Entonces

$$\int_{\Gamma} \boldsymbol{B} \cdot d\ell = \frac{4\pi}{c} I_c$$

y para los circuitos de la figura

$$\int_{\Gamma_1} \boldsymbol{B} \cdot d\ell = 0 \qquad \boldsymbol{B} = 0$$

de modo que el campo magnético será nulo fuera. En cambio, dentro

$$\int_{\Gamma_1} \boldsymbol{B} \cdot d\ell = \frac{4\pi}{c} Ni \qquad B = \frac{2Ni}{Rc}$$

1.6 Resolviendo problemas de potencial

Estaremos interesados en resolver las ecuaciones de Poisson y de Laplace en un cierto recinto. Para tener soluciones únicas necesitaremos condiciones de contorno de tipo Dirichlet o de tipo Newmann (derivada normal en el contorno).

1.6.1 Unicidad de problemas de potencial

La unicidad de la solución permite la fabricación de problemas equivalentes para otras soluciones. Si dos problemas satisfacen iguales condiciones de contorno entonces en el recinto encerrado por ese contorno tienen igual solución.

Si en un recinto R

$$\phi_1|_{cont} = \phi_2|_{cont} \tag{6.1}$$

pero se da para el interior de R que $\phi_1 \neq \phi_2$ entonces se tiene sucesivamente

$$\begin{split} U &\equiv \phi_1 - \phi_2 & \pmb{\nabla} U = \pmb{\nabla} \phi_1 - \pmb{\nabla} \phi_2 \\ & \nabla^2 U = \nabla^2 \phi_1 - \nabla^2 \phi_2 = -4\pi\rho + 4\pi\rho = 0 \\ & \pmb{\nabla} \cdot (U \pmb{\nabla} U) = U \left(\pmb{\nabla} \cdot \pmb{\nabla} U \right) + \pmb{\nabla} U \cdot \pmb{\nabla} U \\ & \int_V \pmb{\nabla} \cdot (U \pmb{\nabla} U) \, dV = \int_V U \nabla^2 U + (\nabla^2 U)^2 dV = \int_V (\nabla^2 U)^2 dV \end{split}$$

llegando al último miembro porque el potencial U cumple la ecuación de Laplace. Luego,

$$\int_{V} (\nabla^{2} U)^{2} dV = \int_{S} U \nabla U \cdot dS = 0$$

habiéndose pasado a la integral de superficie por el teorema de la divergencia y anulando el valor global porque U en el contorno es nula (recuérdese (6.1)). Además,

$$\left. \nabla U \cdot dS \longrightarrow \frac{\partial U}{\partial \hat{n}} \right|_{cont}$$

luego,

$$\nabla U = 0$$
 $\nabla \phi_1 = \nabla \phi_2$

y entonces

$$\phi_1 = \phi_2$$
.

Estaría bueno hacer un análisis fino de las aproximaciones, hacer el cálculo posta de los campos magnéticos y ver que las consideraciones de simetría funcionan. Este ejemplo, pese a lo boludo, es muy ilustrativo.

a menos, por supuesto, de una constante.

Los problemas que siguen parecen ser correspondientes a cálculo de campos a lo F3, de manera que tendrán que reubicarse luego. Suponemos que son guía 1

EJEMPLO 6.1 Problema 6

La integral del campo magnético es

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{\Omega} \frac{\boldsymbol{J}(\boldsymbol{x}) \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} d\Omega$$

pero primeramente se busca obtener la corriente, cuya distribución es proporcional a la delta de Dirac con alguna constante de proporcionalidad que hay que hallar. Entonces

$$I_T = \int_S \boldsymbol{J} \cdot d\boldsymbol{S} = \int_0^\infty \int_{-L/2}^{L/2} \alpha \delta(y-a) dy dz = \alpha \int_{-L/2}^{L/2} dz = \alpha L = InL$$

de lo cual se obtiene $\alpha=nL$ y donde se ha usado n=N/L. Luego,

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{-L/2}^{L/2} \int_{0}^{2\pi} \int_{0}^{a} \frac{nI\delta(r'-a)r'\ \hat{\varphi} \times (-r'\cos\varphi'\ \hat{x} - r'\sin\varphi'\ \hat{y} + (z-z')\ \hat{z})}{(r'^2 + [z-z']^2)^{3/2}} dr' d\varphi' dz'$$

y colapsando la delta en r,

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{nI}{c} \int_{-L/2}^{L/2} \int_{0}^{2\pi} \frac{a' \; \hat{\varphi} \times \left(-a' \cos \varphi' \; \hat{x} - a' \sin \varphi' \; \hat{y} + (z - z') \; \hat{z}\right)}{(a'^2 + \lceil z - z' \rceil^2)^{3/2}} \; d\varphi' dz'$$

donde el producto vectorial requiere previamente convertir $\hat{\varphi}$ a cartesianas. Entonces, usando la regla mnemotécnica sabida,

$$\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -\sin\varphi' & -\cos\varphi' & 0 \\ -a\cos\varphi' & -a\sin\varphi' & (z-z') \end{vmatrix} = \cos\varphi'(z-z')\,\hat{x} + \sin\varphi'(z-z')\,\hat{y} + a\,\hat{z}$$

Las integrales en $\cos \varphi'$ y $\sin \varphi'$ dan cero porque son trigonométricas entre 0 y 2π . Luego

$$\mathbf{B}(0,0,z) = \frac{nI2\pi a^2}{c} \int_{-L2}^{L/2} \frac{dz'}{(a^2 + [z-z']^2)^{3/2}} \hat{z} = \frac{2\pi nI}{c} \left(\frac{L/2 + z}{a^2 + (z+L/2)^2} + \frac{L/2 - z}{a^2 + (L/2 - \text{$\it Kca}^2$)} \right)_{\text{parece que se simplificaba}}$$
 y se obtiene
$$\mathbf{el} \ a^2.$$

$$\boldsymbol{B}(0,0,z) = \frac{2\pi nI}{c}\left(\cos\theta_2 + \cos\theta_1\right)$$

Veo la idea acá pero esto hay que hacerlo con mucho cuidado. Tal vez garabatear en papel y pasar los pasos importantes aquí. Utilizar claramente las condiciones de contorno; Dirichlet o Newmann.

Piden hallar la componente radial. Como B no depende de $\varphi, B(r_0)$ es constante y entonces situándose en \hat{x} sabré que es válido en un círculo r

$$oldsymbol{B}(oldsymbol{x}) = rac{nIa}{c} \int_{-L^2}^{L/2} \int_{0}^{2\pi} rac{\hat{arphi} imes (oldsymbol{x} - oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|^3} darphi' dz$$

Ahora es

$$x - x' =$$

pero como requiero únicamente el campo en \hat{r} me interesará la parte en \hat{z} pués $\hat{\varphi} \times \hat{z} = \hat{r}$.

$$\hat{r} = \cos \varphi' \ \hat{x} + \sin \varphi' \ \hat{y},$$

pero como estoy situado en \hat{x} me quedo únicamente con el primer sumando.

$$B_x(r,z) = \frac{anI}{c} \int_{-L^2}^{L/2} \int_0^{2\pi} \frac{(z-z')\cos\varphi'}{(a^2+r^2-2ar\cos\varphi+[z-z']^2)^{3/2}} \; d\varphi' dz'$$

y definiendo $b^2 \equiv a^2 + r^2 - 2ar\cos\varphi$, se puede hacer la integral en z' y

$$B_x(r,z) = \frac{anI}{c} \int_0^{2\pi} \left[\frac{1}{b^2 + [z - L/2]^2)^{1/2}} - \frac{1}{b^2 + [z + L/2]^2)^{1/2}} \right] \cos\varphi' \; d\varphi' dz'$$

Pero b
 es función de φ de modo que conviene aproximar con
 $L\gg a$ ($r,a\ll L$, entonces $b\ll L$ y puedo expandir con Taylor
y $z\ll L$.

$$\frac{1}{\sqrt{b^2 + (z \pm L/2)^2}} = \frac{2}{L} \frac{1}{\sqrt{1 + 4b^2/L^2 + 4z^2/L^2 \pm 4z/L}}$$

y definiendo $\alpha \equiv 4b^2/L^2 + 4z^2/L^2$ y $\beta \equiv 4z/L$ se tiene

$$\frac{2}{L}(\frac{1}{\sqrt{1+(\alpha-\beta)}}-\frac{1}{\sqrt{\alpha+\beta}})\approx 1-\frac{1}{2}(\alpha+\beta)+\frac{3}{8}(\alpha-\beta)^2-1+\frac{1}{2}(\alpha+\beta)-\frac{3}{8}(\alpha+\beta)^2=\beta\left(1-\frac{3}{2}\alpha\right)$$

y regresando al cálculo de B

$$B_x(r,z) = \frac{anI}{c} \int_0^{2\pi} \frac{2}{L} \left(\frac{4z}{L} \left(1 - \frac{3}{2} \left[\frac{4}{L^2} (r^2 - 2ar\cos\varphi' + a^2 + z^2) \right] \right) \right) \cos\varphi' \; d\varphi'$$

$$B_x(r,z) = \frac{8aznI}{L^2c} \frac{12ar\pi}{L^2} = \frac{96\pi nI}{c} \left(\frac{a^2zr}{L^4}\right)$$

y junto con

$$B_z = \frac{2\pi nI}{c}(\cos\theta_1 + \cos\theta_2).$$

Anoté que el término que multiplica al 3/2 sería un α (supongo "el" α). Chequearlo.

Si $L o \infty$ (caso de solenoide infinito) se tiene

$$B_z = \frac{4\pi nI}{c},$$

que es lo mismo que se obtiene haciendo una ley de Ampere.

EJEMPLO 6.2 Problema 8

Acá esto es apenas un comentario.

Para un hilo cargado es
$$E = 2\lambda/r$$

$$\begin{split} \pmb{F}_{12} &= \int \rho_1 \pmb{E}_1 d\Omega_1 = \frac{2\lambda_2}{a} \int_{\Omega} \lambda_1 \delta(x) \delta(y + a/2) d\Omega_1 \\ \pmb{F}_{12} &= -\frac{2\lambda_1 \lambda_2}{a} L \, \hat{y} \end{split}$$

EIEMPLO 6.3 Problema 5

El potencial

$$\phi(r) = \frac{e}{r} \left(1 + \frac{r}{a} \right) \, \mathrm{e}^{-2r/a}$$

revienta en cero. No obstante se puede separar en dos potenciales uno de los cuales revienta y el otro no.

$$\phi(r) = \frac{e}{r} \operatorname{e}^{-2r/a} + \frac{e}{a} \operatorname{e}^{-2r/a}$$

donde el primer término es Yukawa, sumando y restando e/r y agrupando

$$\phi(r) = \frac{e}{r} \left(e^{-2r/a} - 1 \right) + \frac{e}{a} e^{-2r/a} + \frac{e}{r}$$

donde el último término es el potencial de una carga en el origen que proviene de una densidad de carga $\rho=e\delta(\pmb{x})$. Definiendo al primer término como ϕ_1 se puede despejar ρ desde la ecuación de Poisson $\nabla^2\phi=-4\pi\rho$,

$$\rho = -\frac{1}{4\pi r} \frac{1}{r} \frac{\partial^2}{\partial r^2} (r\phi_1)$$

o bien

$$\rho = -\frac{1}{a^2\pi r}\frac{e}{r}r\,\mathrm{e}^{-2r/a},$$

y hemos averiguado la densidad de carga de cada parte.

Entonces, por ser átomo neutro

$$Q=\int_{V}\rho dV+e=0,$$

y la integral puede hacerse en esféricas porque la dependencia es solamente en r.

Teorema de Green

2.1 Imágenes y método de Green

El método de las imágenes es un procedimiento gráfico de encontrar problemas equivalentes simulando con cargas extras (cargas imagen) las condiciones de contorno.

Figura 1.1

Los problemas que ilustra la figura satisfacen iguales condiciones de contorno en el recinto punteado, entonces sus soluciones internas son la misma: $\phi_1=\phi_2$ por unicidad.

2.1.1 El Método de Green

El concepto tras el método de Green es evaluar el ϕ de una carga puntual ante cierta configuración de contornos conductores. Es una excitación elemen-

tal.

Restando entre sí

$$\nabla \cdot (\phi \nabla \psi) = \phi \nabla^2 \psi + \nabla \phi \cdot \nabla \psi$$

y

$$\nabla \cdot (\psi \nabla \phi) = \psi \nabla^2 \phi + \nabla \psi \cdot \nabla \phi$$

e integrando ambos miembros y utilizando el teorema de la divergencia, se llega

$$\int_{V} \left[\phi \nabla^{2} \psi - \psi \nabla^{2} \phi \right] dV = \int_{S} \left[\phi \nabla \psi - \psi \nabla \phi \right] dS,$$

que es la segunda identidad de Green.

Consideremos lo que llamaremos caso A, según vemos en figura, caracterizado según

$$\rho_{int} \quad \mathbf{x}' \in R, \mathbf{x} \in R$$

Figura 1.2

$$\psi = \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \qquad \nabla^2 \psi = -4\pi \delta(\boldsymbol{x} - \boldsymbol{x}')$$
$$-\phi(\boldsymbol{x})4\pi + \int_V 4\pi \frac{\rho(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' = \int_S \left(\phi \frac{\partial \psi}{\partial n} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \frac{\partial \phi}{\partial n}\right) dS$$

donde estamos usando la abreviatura $\nabla \phi \cdot n = \partial \phi/\partial n$ que es la derivada normal en la superficie. Despejando

$$\phi(\boldsymbol{x}) = \int_{V} \frac{\rho(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \ dV' + \frac{1}{4\pi} \int_{S} \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \left[\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] \right) \ dS,$$

donde la primer integral es debido a las cargas internas y la segunda al efecto de las cargas fuera del reciento R.

Recordemos que las condiciones tipo Dirichlet corresponden a $\phi|_S$ y las tipo Neumann a $\partial\phi/\partial\hat{n}|_S$.

El caso B, según figura, corresponde a

$$\rho_{int} \qquad \boldsymbol{x}' \notin R, \boldsymbol{x} \in R$$

y

$$\int_{V} \frac{\rho(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|} \; dV' = \frac{1}{4\pi} \int_{S} \left(\phi \frac{\partial}{\partial n} \left[\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|} \right] - \frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|} \frac{\partial \phi}{\partial n} \right) \; dS,$$

la integral de superficie proviene de las cargas fuera de R que producen campo en el interior R.

Figura 1.3

Hemos tomado $\psi=1/|x-x'|$ que verifica [1]; interpretándose ψ como el potencial de una carga puntual unitaria.

$$\nabla^2 \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} = -4\pi \delta(|\boldsymbol{x} - \boldsymbol{x}'|)$$

podemos tomar

$$G \equiv \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} + f(\boldsymbol{x}, \boldsymbol{x}')$$

donde G es la función de Green.

$$\nabla^2 G = -4\pi \delta(\boldsymbol{x}, \boldsymbol{x}') + \nabla^2 f$$

donde F satisface Laplace (si el reciento no incluye a x'). Con $\nabla^2 f(x, x')$.

Entonces f(x,x') representan la o las imágenes necesarias para que G cumpla el contorno necesario $G_D|_S=0$.

2.2 Funciones de Green

$$\phi(\boldsymbol{x}) = \int_{V'} G(\boldsymbol{x}, \boldsymbol{x}') \rho(\boldsymbol{x}') \; dV' + \frac{1}{4\pi} \int_{S'} \left(G(\boldsymbol{x}, \boldsymbol{x}') \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} G(\boldsymbol{x}, \boldsymbol{x}') \right) \; dS', \tag{2.1}$$

Pero para poder utilizar (2.1) necesito tener un solo tipo de condiciones de contorno, de manera que según sean

$$\begin{aligned} \text{Dirichlet} \quad & \begin{cases} G_D : \nabla^2 G_D = -4\pi \delta(\boldsymbol{x}, \boldsymbol{x}') \\ G_D|_{contornodeR} = 0 \\ \phi|_S \\ \phi(\boldsymbol{x}) = \int_{V'} G_D \rho \; dV' - \frac{1}{4\pi} \int_S \phi|_S \frac{\partial}{\partial n} G_D \; dS' \end{cases} \end{aligned}$$

donde la condición de contorno de G equivale, en el contexto físico del electromagnetismo, a reemplazar el contorno por un conductor metálico puesto a tierra. Entonces G es el potencial de la configuración de conductores con el contorno puesto a tierra frente a una carga puntual con magnitud unitaria.

La función de Green da la geometría del problema.

$$\frac{\partial \phi_1}{\partial n}|_S - \frac{\partial \phi_2}{\partial n}|_S = -4\pi\sigma \qquad \qquad \phi_2|_S = \phi_1|_S$$

$$\begin{aligned} \text{Neumann} \quad & \begin{cases} G_N : \nabla^2 G_N = -4\pi \delta(\boldsymbol{x}, \boldsymbol{x}') \\ \boldsymbol{\nabla} G_N \cdot \hat{\boldsymbol{n}}|_S = -\frac{4\pi}{S} \\ \frac{\partial \phi}{\partial \boldsymbol{n}}|_S \\ \phi(\boldsymbol{x}) = & <\phi > |_S + \int_{V'} G_N \rho \; dV' + \frac{1}{4\pi} \int_S G_N |_S \frac{\partial G_N}{\partial \boldsymbol{n}} \; dS \end{cases} \end{aligned}$$

2.2.1 Green para el problema externo de una esfera

La configuración es una carga puntual q frente a una esfera metálica de radio a conectada a tierra. La idea aquí es conocer dónde ubicar la imagen q' para que se verifique el contorno, es decir que el potencial será ahora el correspondiente a las dos cargas

$$\varphi(\boldsymbol{x}) = \frac{q}{|\boldsymbol{x} - \boldsymbol{y}|} + \frac{q'}{|\boldsymbol{x} - \boldsymbol{y}'|}$$

y debe cumplir que

$$\left. \varphi(\boldsymbol{x}) \right|_{r=a} = 0,$$

por la conexión a tierra. Para ajustar esta condición se tienen dos variables, la magnitud de la carga q' y su posición y'. No obstante, la simetría de la configuración establece ciertas restricciones para la posición y'; en efecto para el problema de una carga frente a una esfera el eje que une el centro de la esfera con la carga es un eje de simetría de revolución; si la esfera gira en torno a ese eje la configuración es la misma. Luego, la carga imagen debe ser tal que

Este título sería "Ejemplo método de imágenes". En realidad este es un ejemplo de cálculo de función de Green; así fue dado en la teoría.

no rompa esa simetría: debe estar localizada en dicho eje. Entonces y' y y son colineales y la posición incógnita requerida es solamente el módulo y' = |y'|.

Los módulos en los denominadores pueden expresarse en términos de la ley de los cosenos, como

$$\varphi(\boldsymbol{x}) = \frac{q}{\sqrt{x^2 + y^2 - 2\,x\,y\,\cos\gamma}} + \frac{q'}{\sqrt{x^2 + y'^2 - 2\,x\,y'\cos\gamma}},$$

donde x, y son los módulos respectivos.

Figura 2.4 Geometría para el problema de la carga puntual q frente a una esfera metálica de radio a conectada a tierra.

Luego, la condición de contorno evaluada sobre la superficie de la esfera $|{m x}|=a$ implica que

$$\left. \varphi(\boldsymbol{x}) \right|_{|\boldsymbol{x}| = a} = \frac{q}{\sqrt{a^2 + y^2 - 2 \, a \, y \, \cos \gamma}} + \frac{q'}{\sqrt{a^2 + y'^2 - 2 \, a \, y' \, \cos \gamma}} = 0,$$

y entonces se tienen que obtener ahora q,y' a partir de esta ecuación que en realidad representan infinitas direcciones dado que γ puede ser cualquier ángulo entre 0 y 2π . Se necesitarán dos ecuaciones para resolver unívocamente el problema. Si se eligen $\gamma=\pi$ y $\gamma=0$ la ecuación anterior define el sistema

$$\begin{cases} \frac{q}{y-a} + \frac{q'}{a-y'} = 0 \\ \\ \frac{q}{a+y} + \frac{q'}{a+y'} = 0 \end{cases}$$

cuya solución es el par

$$q' = -\frac{a}{y} q, \qquad y' = \frac{a^2}{y},$$

Parece ser una constante que si elegimos las cosas del modo más simétrico posible, las expresiones resultan más sencillas. y entonces

$$\varphi(\boldsymbol{x}) = \frac{q}{\sqrt{x^2 + y^2 - 2\,x\,y\,\cos\gamma}} - \frac{\left(a/y\right)\,q}{\sqrt{x^2 + a^4/y^2 - 2\,x\left(a^2/y\right)\cos\gamma}}.$$

El potencial en un punto x del espacio, debido a una carga en y depende de los módulos x, y y del ángulo γ entre dichos vectores.

Esta solución puede obtenerse un poco más heurísticamente, ver nota 2.9.

Lo que sucede físicamente es que se induce carga sobre la superficie de la esfera. Se querrá ver (luego?) cuál es la distribución de carga que se inducirá sobre la superficie.

Esta expresión, así como está,

Figura 2.5

Este ejemplo ha servido también para mostrar la determinación de la funcion de Green para la configuración dada por una esfera aterrizada (condiciones de Dirichlet), que sería

$$G(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{\mid \boldsymbol{x} - \boldsymbol{y} \mid} - \frac{a/|\boldsymbol{y}|}{\mid \boldsymbol{x} - (a^2/|\boldsymbol{y}|)\hat{\boldsymbol{y}} \mid}$$

El caso (c) de la Figura se resuelve con

$$\begin{split} -\frac{V}{4\pi} \int_S \frac{\partial G}{\partial n} dS &= -\frac{V}{4\pi} \int_S \boldsymbol{\nabla} G \cdot d\boldsymbol{S} = -\frac{V}{4\pi} \int_V \nabla^2 G \, dV \\ &= -\frac{V}{4\pi} (-4\pi) \int_V \delta(\boldsymbol{x} - \boldsymbol{x}') \, dV = V \end{split}$$

2.3 Algunos campos

En distribuciones infinitas de carga la integral de Poisson diverge pero ello se debe a que en realidad no existen distribuciones infinitas de carga.

Figura 2.6 G_D es el potencial de la configuración (a) y se evalúa teniendo en cuenta la otra (b) que se resuelve casualmente por imágenes. La (c) se resuelve alterando las condiciones.

Figura 3.7

2.4 Notas método de Green

Función de Green libre (sin contornos) lleva directo a la integral de Poisson

$$G(\boldsymbol{x},\boldsymbol{x}') = \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|}$$

entonces

ntonces
$$\phi(\boldsymbol{x}) = \int_V \rho \, G \, dV = \int_{V'} \frac{\rho(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{x}'|} dV'$$

$$\nabla^2 \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|}\right) = 4\pi \delta(\boldsymbol{x} - \boldsymbol{x}')$$

$$G(\boldsymbol{x}, \boldsymbol{x}') = \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} + f(\boldsymbol{x}, \boldsymbol{x}') \quad \text{con} \quad \nabla^2 f(\boldsymbol{x}, \boldsymbol{x}') = 0 \quad \text{si} \quad \boldsymbol{x} \neq \boldsymbol{x}'$$

Para condiciones de Neumann se toma:

$$\nabla G_N|_S = -\frac{4\pi}{S} = \frac{\partial G}{\partial n}\Big|_S$$

la integral

$$-\frac{1}{4\pi} \int_{S} \phi|_{S} \left. \frac{\partial G}{\partial n} \right|_{S} dS$$

no se puede anular con

$$\left. \frac{\partial G}{\partial n} \right|_S = 0$$

salvo que el volumen de integración no contenga a x=x' en cuyo caso: se excluye x=x' de la integración.

$$-\frac{1}{4\pi} \int_{S} \phi|_{S} \left. \frac{\partial G}{\partial n} \right|_{S} dS = \frac{1}{S} \int_{S} \phi|_{S} dS = \langle \phi \rangle|_{S}$$

que es el valor promedio de ϕ en la superficie S.

Se suele tomar la superficie $S \to \infty$ de modo que resulte nulo $<\phi>|_S$. Se toma el volumen V rodeado por dos superficies una cerrada y finita y la otra en infinito entonces

$$<\phi>|_{S}=0$$

$$\frac{\partial G}{\partial n}|_{S}=0$$

esto es el llamado problema exterior.

2.5 Condiciones de contorno para los campos

Consideraremos la superficie de separación entre dos medios 1 y 2, la cual puede estar cargada, y sobre la misma imaginaremos un cilindro pequeño Σ de tapas paralelas a la superficie y altura despreciable y asimismo, un circuito cerrado Γ también de altura despreciable perpendicular a la superficie, ver figura.

La normal a la superficie es \hat{n} mientras que \hat{t} es un versor tangente a la misma.

La ley de Gauss establece para el cilindro Σ que

$$\int_{S_{\Sigma}} \mathbf{E} \cdot d\mathbf{S} = 4\pi \, Q_n,$$

Figura 5.8

donde S_Σ es la superficie total del cilindro y Q_n la carga neta encerrada. Como la superficie lateral es despreciable, por serlo la altura, la integral de superficie se reduce a la de las tapas. Si la densidad de carga sobre la superficie es σ entonces

$$(\boldsymbol{E}_2 - \boldsymbol{E}_1) \cdot \hat{n} \, \Delta S = 4\pi \, \sigma \, \Delta S$$

o bien

$$(\boldsymbol{E}_2 - \boldsymbol{E}_1) \cdot \hat{n} = 4\pi\sigma$$

lo cual implica que la componente normal del campo ${\pmb E}$ es discontinua si hay carga superficial presente.

Por otra parte, como el rotor de ${m E}$ es nulo (en electrostática), el teorema de Stokes implica

$$\int_{S} \mathbf{\nabla} \times \mathbf{E} = 0 = \int_{\Gamma} \mathbf{E} \cdot d\mathbf{\ell}$$

y despreciando el aporte de las partes del circuito que son perpendiculares a la superficie, resulta

$$(\boldsymbol{E}_2 - \boldsymbol{E}_1) \cdot d\boldsymbol{\ell} = (\boldsymbol{E}_2 - \boldsymbol{E}_1) \cdot (\hat{n}_{\Gamma} \times \hat{n}) \ d\boldsymbol{\ell} = 0$$

donde en el miembro derecho se ha expresado la dirección del $d\vec{\ell}$ en función de los versores normal y tangencial, y entonces

$$\hat{n}_{\Gamma}\cdot(\hat{n}\times(\pmb{E}_2-\pmb{E}_1))=0,$$

que indica que el segundo factor tiene que ser nulo, es decir

$$\hat{n}\times(\pmb{E}_2-\pmb{E}_1)=0$$

No sé si no decir directamente que en electrostática es nula la integral de línea de E y ya. y esto implica que la componente tangencial del campo es continua, sin importar que exista carga o no.

Acordate que harcodeaste con un pdf el ℓ bold.

Resumiendo

$$E_{2\hat{n}} - E_{1\hat{n}} = 4\pi\sigma$$
 $E_{2\hat{t}} - E_{1\hat{t}} = 0$

Expresando el campo en términos del potencial, se tiene

$$-\nabla \phi_2 \cdot \hat{n} + \nabla \phi_1 \cdot \hat{n} = 4\pi\sigma$$

$$\frac{\nabla (\phi_2 - \phi_1) \cdot \hat{n}}{4\pi} = \sigma$$

$$\sigma = \frac{1}{4\pi} \frac{\partial (\phi_1 - \phi_2)}{\partial n}$$
(5.1)

esta es la densidad de carga inducida sobre la frontera entre medios.

2.5.1 Carga puntual frente a esfera puesta a tierra

Volvemos a este problema, recordando que el potencial fuera de la misma se hubo determinado por el método de imágenes. Recordemos también que dentro de la esfera el potencial debe ser constante (no hay carga allí, puesto que la imagen es un dispositivo virtual sin existencia física). Consideramos dos secciones, interna y externa.

Por la simetría del problema la densidad de carga inducida tiene la simetría de revolución en torno al eje que pasa por q, q' y el origen de coordenadas y será máxima en el punto de la esfera más cercano a q. Dado que el potencial es constante dentro de la esfera, e igual al valor que toma sobre la superficie, la ecuación (5.1) es

$$\sigma = -\frac{1}{4\pi} \left. \frac{\partial \varphi}{\partial n} \right|_{S}.$$

Ubicando nuestra esfera en el origen de un sistema de coordenadas esféricas, la normal externa \hat{n} es claramente \hat{r} de modo que derivar normalmente es derivar con respecto a la dirección radial, es decir $\partial/\partial n \equiv \partial/\partial r$ y entonces

$$\sigma = -\frac{1}{4\pi} \left. \frac{\partial \varphi}{\partial r} \right|_{r=a} = -\frac{q}{4\pi a^2} \left(\frac{a}{y} \right) \frac{[1 - (a/y)^2]}{[1 + (a/y)^2 - 2 \, (a/y) \, \cos \gamma \,]^{3/2}}.$$

La definición de derivada normal puede ir para apéndice.

Si consideramos ahora el problema interno; esto es, una carga q rodeada por una esfera conductora conectada a tierra, se pueden hacer los mismos razonamientos que en el caso de la carga exterior y la solución es la misma intercambiando q' por q y y' por y. Entonces, en ese caso el cálculo de la densidad

utiliza $\hat{n} = -\hat{r}$ y se tiene

$$\sigma = \frac{1}{4\pi} \left. \frac{\partial \varphi}{\partial r} \right|_{r=a} = -\frac{q}{4\pi a^2} \left(\frac{a}{y} \right) \frac{[(a/y)^2 - 1]}{[1 + (a/y)^2 - 2 \, (a/y) \, \cos \gamma \,]^{3/2}}$$

La carga total inducida sobre una superficie se evaluará en general a través de

$$Q = \int_{S} \sigma \, dS.$$

En el caso anterior del problema de la carga frente a una esfera a tierra se puede utilizar la ley de Gauss para hallar en cada caso la carga total de una manera inmediata.

Situando una superficie gaussiana Σ por fuera de la esfera, como se ve en la figura, resulta que la carga encerrada neta es la misma con imagen o sin imagen. En efecto, en el problema real la carga encerrada se distribuye sobre la superficie mientras que en el problema equivalente está concentrada en la posición y' y sabemos que es q'; luego como los dos problemas son equivalentes el lado derecho de la ley de Gauss debe ser idéntico y la carga inducida será la neta encerrada, que es q', la carga imagen.

Procediendo de modo similar para el problema interno (ahora q' está por fuera de la superficie Σ), ahora la situación es diferente porque el campo sobre \boxtimes es nulo (solo es no nulo fuera de la esfera por la conexión a tierra). Entonces la ley de Gauss ya nos dice ahí que la carga neta es nula y ello lleva a que la carga inducida sea -q que no es igual a la carga imagen.

Figura 5.9

Acá debiera estar claro que se invierte el significado de y', ahora es mayor que a.

2.5.2 Principio de superposición

Consideremos la situación depicted en la figura

Figura 5.10

Una cierta distribución de carga está rodeada por una superficie a potencial V. El potencial en un punto \boldsymbol{x} es

$$\varphi \boldsymbol{x} = \int_{\Omega} \rho(\boldsymbol{x}') \: G_D(\boldsymbol{x}, \boldsymbol{x}') \: d\Omega - \frac{1}{4\pi} \int \varphi \frac{\partial G}{\partial n} \: dS$$

pero como el potencial sobre la superficie está fijo en V la última integral es

$$-\frac{1}{4\pi} \int \varphi \frac{\partial G}{\partial n} \, dS = -\frac{V}{4\pi} \int \nabla G \cdot \hat{n} \, dS,$$

la cual por el teorema de la divergencia resulta

$$-\frac{V}{4\pi} \int \boldsymbol{\nabla} \boldsymbol{G}_D \cdot \hat{\boldsymbol{n}} \, dS = -\frac{V}{4\pi} \int_{V} \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \boldsymbol{G}_D) \, dV = -\frac{V}{4\pi} \int_{V} \nabla^2 \boldsymbol{G}_D \, dV$$

y recordando que la función de Green es solución de la ecuación de Poisson para una densidad dada por la delta de Dirac, se tiene

$$-\frac{V}{4\pi} \int \boldsymbol{\nabla} G_D \cdot \hat{\boldsymbol{n}} \; dS = V \int \delta(\boldsymbol{x} - \boldsymbol{x}') \; dV = V, \label{eq:delta_GD}$$

de manera que

$$\varphi \boldsymbol{x} = \int_{\Omega} \rho(\boldsymbol{x}') \ G_D(\boldsymbol{x}, \boldsymbol{x}') \ d\Omega + V,$$

lo cual puede una manera de ver el principio de superposición.

Para los medios magnéticos

$$\begin{aligned} \boldsymbol{\nabla}\times\boldsymbol{H} &= \frac{4\pi}{c}\boldsymbol{J}_{l} \\ \int_{S}(\boldsymbol{\nabla}\times\boldsymbol{H})\cdot d\boldsymbol{S} &= \int_{S}\frac{4\pi}{c}\boldsymbol{J}_{l}\cdot d\boldsymbol{S} = \frac{4\pi}{C}\boldsymbol{g}_{l}\cdot \hat{s}d\ell \end{aligned}$$

donde hicimos la transformación

$$\int \boldsymbol{H} \cdot d\ell = (\boldsymbol{H}_2 - \boldsymbol{H}_1) \cdot d\ell$$

y donde recordemos que la altura de Γ tiene a cero.

$$\begin{split} \frac{4\pi}{c} \boldsymbol{g}_l \cdot \boldsymbol{s} &= (-\boldsymbol{H}_2 + \boldsymbol{H}_1) \cdot (\hat{n} \times \hat{s}) d\ell \\ \frac{4\pi}{c} \boldsymbol{g}_l \cdot \boldsymbol{s} \ d\ell &= (\boldsymbol{H}_1 - \boldsymbol{H}_2 \times \hat{n}) \cdot \hat{s} d\ell \end{split}$$

Figura 5.11

de manera que

$$\begin{split} \frac{4\pi}{c} \boldsymbol{g}_l &= \hat{n} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) \\ \hat{n} \times \hat{s} &= \frac{d\ell}{d\ell} \\ B_{2\hat{n}} - B_{1\hat{n}} &= 0 \qquad \qquad H_{2\hat{t}} - H_{1\hat{t}} = \frac{4\pi}{c} g_l \\ \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S} &= 0 \Rightarrow (\boldsymbol{B}_2 - \boldsymbol{B}_1) \cdot \hat{n} = 0 \end{split}$$

2.6 Desarrollo multipolar

Si se conoce la distrubución de carga el potencial se obtiene integrando

$$\phi(\mathbf{x}) = \int_{V'} \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'. \tag{6.1}$$

No obstante, esta expresión puede ser muy complicada porque en el denominador depende de la variable x' sobre la cual se está integrando. Resulta conveniente entonces hacer un desarrollo del denominador, que es una función de x', en torno a un punto que se toma como origen de una esfera que engloba a la distribución de carga. Luego, ese dearrollo será válido en puntos externos a dicha esfera.

Entonces, desarrollando en torno a ${m x}'=0$ (el origen de coordenadas) se tienen

$$\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|} = \frac{1}{|\boldsymbol{x}|} + \partial_i \left(\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|}\right) \bigg|_{\boldsymbol{x}'=0} x_i' + \frac{1}{2} \left. \partial_j \partial_i \left(\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|}\right) \right|_{\boldsymbol{x}'=0} x_i' x_j' + \dots,$$

o bien

$$\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} = \frac{1}{|\boldsymbol{x}|} + \frac{x_i \, x_i'}{|\boldsymbol{x}|^3} + \frac{1}{2} \frac{x_i \, x_i' \, x_j \, x_j'}{|\boldsymbol{x}|^5} + ...,$$

Luego, introduciendo la misma en (6.1) resulta

$$\begin{split} \phi(\boldsymbol{x}) &= \frac{1}{|\boldsymbol{x}|} \int_{V'} \rho(\boldsymbol{x}') \; dV' + \frac{x_i}{|\boldsymbol{x}|^3} \int_{V'} \; x_i' \; \rho(\boldsymbol{x}') \; dV' + \\ & \frac{1}{2} \frac{x_i \; x_j}{|\boldsymbol{x}|^5} \int_{V'} \left(\; 3x_i' \; x_j' - \delta_{ij} |\boldsymbol{x}|^2 \; \right) \rho(\boldsymbol{x}') \; dV' + ..., \end{split}$$

Se tiene un desarrollo de diferentes órdenes

$$\phi(\mathbf{x}) = \phi^{(0)}(\mathbf{x}) + \phi^{(1)}(\mathbf{x}) + \phi^{(2)}(\mathbf{x}) + \phi^{(3)}(\mathbf{x}) + \dots$$

que se conocen según

$$\frac{1}{|\boldsymbol{x}|} \int_{V'} \rho(\boldsymbol{x}') \ dV' = \frac{Q}{|\boldsymbol{x}|} \qquad \text{Orden monopolar}$$

$$\frac{x_i}{|\boldsymbol{x}|^3} \, \int_{V'} \, x_i' \, \rho(\boldsymbol{x}') \, dV' = \frac{x_i \, p_i}{|\boldsymbol{x}|^3} \qquad \text{Orden dipolar}$$

$$\frac{1}{2}\frac{x_i}{|\boldsymbol{x}|^5}\int_{V'}(3x_i'x_j'-\delta_{ij}|\boldsymbol{x}|^2)\rho(\boldsymbol{x}')dV' = \frac{1}{2}\frac{x_i}{|\boldsymbol{x}|^5} \qquad \text{Orden cuadrupolar}$$

El último término, matricialmente sería

$$\frac{1}{2} \frac{\boldsymbol{x}^t Q \boldsymbol{x}}{|\boldsymbol{x}|^5}.$$

Los momentos son el momento monopolar,

$$Q = \int_{V} \rho(\boldsymbol{x}) dV,$$

Se necesita una serie que converja, y que lo haga rápido.

Chequear la expansión, tal vez ponerla en vectorial o hacerla bien en el Apéndice. Juntar huevos y hacer el término siguiente. que es la carga total, el momento dipolar,

$$\boldsymbol{p} = \int_{V} \boldsymbol{x} \, \rho(\boldsymbol{x}) \, dV$$

y el momento cuadrupolar

$$\begin{split} Q_{ij} &= \int_V \rho(\boldsymbol{x}) \left[3x_i x_j - \delta_{ij} |\boldsymbol{x}|^2 \right] dV = 3 \int_V \rho(\boldsymbol{x}) x_i x_j dV - \delta_{ij} \int_V \rho(\boldsymbol{x}) |\boldsymbol{x}|^2 dV \\ Q_{ij} &= 3C_{ij} - \delta_{ij} C_{ll}, \end{split}$$

donde esta última expresión permite ver que el momento cuadrupolar es de traza nula (C_{ll} es la traza).

El momento cuadrupolar refleja apartamiento de la esfera perfecta, los momentos dipolar y cuadrupolar indican desbalance de carga. Asimismo $Q_{ij}=Q_{ji}$ es simétrico por ser producto de vectores polares. Es siempre diagonalizable y tiene autovalores reales. Tiene traza nula,

$$Q_{xx} + Q_{yy} + Q_{zz} = 0$$

El tensor diagonalizado tendrá tres componentes independientes.

Se da también que $Q_{ij} (i \neq j)$ mide desbalance lejos de los ejes. Una esfera con ρ uniforme tiene todos los momentos multipolares nulos salvo el monopolo.

Figura 6.12

Una simetría de reflexión implica que el ${m p}_\perp=0$ donde la notación significa perpendicular al plano. Esto es así porque no hay desbalance. Para una simetría de revolución $Q_{xx}=Q_{yy}$ entonces el Q_{ij} puede darse con un sólo número.

Si en una distribución dada, los momentos multipolares hasta el orden $\ell-1$ son nulos entonces el momento multipolar de orden ℓ no depende del origen de coordenadas.

En la figura vemos que no ambos no tienen desbalance de carga respecto del origen; el disco uniformemente cargado tendrá monopolo no nulo y dipolo nulo (siempre respecto del origen), los anillos cargados con carga opuesta tendrán

El comentario en pag. 12 de la carpeta -recuadrado en rojoinduce algo diferente; pide simetría en el plano perpendicular al vector. Me parece a mí que lo que debiera verse es una simetría en la distribución de carga.

Figura 6.13

Figura 6.14

monopolo y dipolo nulos (respecto del origen y de cualquier otro punto). Pero si muevo las distribuciones se tendrá desbalance el disco pero no los anillos.

Para átomos en general son monopolo, dipolo neutros; el cuadrupolo se da con un solo número. En la Figura tenemos un elipsoide con densidad de carga ρ uniforme. Tiene simetría de revolución de modo que el momento cuadripolar es un número. $Q_{zz}=0$ puesto que una esfera no tiene desbalance, entonces $\overrightarrow{Q}=0$

2.7 Dipolo eléctrico

$$\phi(\boldsymbol{x}) = \frac{\boldsymbol{p} \cdot \boldsymbol{x}}{|\boldsymbol{x}|^3}$$

si está en el origen, y

$$\phi(\boldsymbol{x}) = \frac{\boldsymbol{p} \cdot (\boldsymbol{x} - \boldsymbol{x}_0)}{|\boldsymbol{x} - \boldsymbol{x}_0|^3}$$

si está en un punto \boldsymbol{x}_0

$$E(x) = \frac{3p \cdot \hat{n}}{|x - x_0|^3} \hat{n} - \frac{p}{|x - x_0|^3}$$

donde debemos notar que p no depende de x.

Figura 7.15 Dipolo centrado en el origen.

$$\begin{split} \phi(\boldsymbol{x}) &= \frac{p\hat{z} \cdot r\hat{r}}{r^3} = \frac{p}{r^2} \cos(\theta) \\ &\hat{n} = \frac{\boldsymbol{x} - \boldsymbol{x}_0}{|\boldsymbol{x} - \boldsymbol{x}_0|} \\ \boldsymbol{E}(r, \theta) &= \frac{2p \cos(\theta)}{r^3} \hat{r} + \frac{p \sin(\theta)}{r^3} \hat{\theta} \end{split}$$

siendo

tiene simetría de revolución, puesto que no depende de $\hat{\phi}$.

Las líneas de campo cuplen que $d\ell$ a través de una línea de campo es tal que

$$d\ell \parallel \mathbf{E} \quad \Rightarrow \quad \mathbf{E} \times d\ell = 0$$

la línea de campo sigue la dirección del campo. En el caso del dipolo no tendrán componente en $\hat{\phi}$ (como es de esperar).

2.7.1 Inteacción de un campo externo con una distribución de carga

Si tenemos un campo ${\pmb E}$ con sus fuentes lejos,

y que cumple $\nabla \cdot \vec{E} = 0$ y $\nabla \times E = 0$ (irrotacionalidad), se da la siguiente fuerza sobre la distribución

$$\boldsymbol{F} = \int_{V} \rho(\boldsymbol{x}) \, \boldsymbol{E}(\boldsymbol{x}) \, dV,$$

Figura 7.16

y si \boldsymbol{E} no varía demasiado en V, entonces podemos representar bien por una serie

$$E^{\ell}(\boldsymbol{x}) = E^{\ell} + x_{j}\partial_{j}E^{\ell} + \frac{1}{2}x_{j}x_{k}\partial_{j}\partial_{k}E^{\ell}$$

entonces

$$F_i = \int_V \rho E_i dV \approx E_i \int_V \rho dV + \int_V \rho x_j \partial_j E_i dV + \frac{1}{2} \int_V \rho x_j x_k \partial_j \partial_k E_i dV$$

o bien

$$F_i = \int_V \rho E_i dV \approx E_i q + (\boldsymbol{p} \cdot \boldsymbol{\nabla}) E_i + \boldsymbol{x} \cdot [(\boldsymbol{x} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} E_i]$$

de lo cual extraemos que el campo interactúa con la carga, el gradiente del campo interactúa con el dipolo y la divergencia del campo interactúa con el cuadrupolo. Un campo uniforme entonces no hace fuerza sobre un dipolo. Para un campo inhomogéneo, el torque ${m T}={m x}\times{m F}$ se puede escribir como

$$T = qx \times E = p \times E$$

donde $p \equiv qx$ es el momento dipolar y vemos que el torque tiende a centrar el dipolo según la dirección del campo E aunque no lo logra por la agitación térmica.

La energía de un dipolo será

$$U = -\boldsymbol{p} \cdot \boldsymbol{E}$$

entonces

$$\boldsymbol{F} = -\boldsymbol{\nabla} U = \boldsymbol{\nabla} (\boldsymbol{p} \cdot \boldsymbol{E}) = (\boldsymbol{p} \cdot \boldsymbol{\nabla}) \boldsymbol{E} + (\boldsymbol{E} \cdot \boldsymbol{\nabla}) \boldsymbol{p} + \boldsymbol{p} \times (\boldsymbol{\nabla} \times \boldsymbol{E}) + \boldsymbol{E} \times (\boldsymbol{\nabla} \times \boldsymbol{p})$$

siendo los últimos tres términos nulos según lo que consideramos previamente de manera que

$$F = (p \cdot \nabla)E$$
.

2.7.2 Capa dipolar

El potencial de un dipolo es

$$\phi(\boldsymbol{x}) = \frac{\boldsymbol{p} \cdot (\boldsymbol{x} - \boldsymbol{x}_0)}{|\boldsymbol{x} - \boldsymbol{x}_0|^3}$$

y el potencial de una capa dipolar

$$\phi(\boldsymbol{x}) = \int_{S} \frac{\boldsymbol{D}(\boldsymbol{x}') \cdot (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \ dS'$$

siendo \boldsymbol{D} el momento dipolar por área que viene de acuerdo a la definición

$$D = \lim_{\substack{\sigma \to \infty \\ \epsilon \to 0}} \ \sigma \epsilon$$

refiérase a la ilustración bajo esta línea

Figura 7.17

Veamos algún detalle más sobre la capa dipolar, que está ilustrado en la

Figura siguiente.

$$\frac{\boldsymbol{D}\cdot(\boldsymbol{x}-\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|^3}dS = \frac{D\cdot(\boldsymbol{x}-\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|^3}d\boldsymbol{S} = -\frac{D\cos(\theta)}{|\boldsymbol{x}-\boldsymbol{x}'|^2}dS = -\frac{D\cos(\theta)}{r^2}dS$$

Figura 7.18

$$\frac{\boldsymbol{D} \cdot (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dS = -Dd\Omega$$

puesto que

$$\phi(\mathbf{x}) = -D \int_{S} d\Omega$$
 $\frac{\cos(\theta)}{r^2} dS \equiv d\Omega$

Para las condiciones de contorno se da lo siguiente

$$\begin{split} E_2^{\hat{n}} - E_1^{\hat{n}} &= 4\pi\sigma \\ - \boldsymbol{\nabla}(\phi_2 - \phi_1) \cdot \hat{n} &= 4\pi\sigma \\ \frac{\partial \phi_1 - \phi_2}{\partial \hat{n}} &= 4\pi\sigma \\ \phi_1 - \phi_2 &= 4\pi\sigma\epsilon \end{split}$$

desde donde deducimos que el potencial tiene un salto al surcar la capa dado por

$$\phi_2 - \phi_1 = 4\pi D$$

Figura 7.19

2.7.3 Momento dipolar por unidad de volumen

El potencial de un dipolo es

$$\phi(\boldsymbol{x}) = \frac{\boldsymbol{p} \cdot (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3}$$

y el potencial de muchos de ellos sale de la integración

$$\phi(\boldsymbol{x}) = \int_{V} \frac{\boldsymbol{P}(\boldsymbol{x}') \cdot (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^{3}} \ dV$$

donde ${m P}$ es la llamada polarización, el momento dipolar por unidad de volu-

Figura 7.20

men, siendo V un volumen que incluye a la zona de polarización (ver Figura).

$$\phi(\boldsymbol{x}) = \int_{V} \boldsymbol{P}(\boldsymbol{x}') \cdot \boldsymbol{\nabla}' \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right) \, dV$$

y si usamos el teorema de la divergencia para convertir una de las integrales resulta

$$\phi(\boldsymbol{x}) = \int_{S} \frac{\boldsymbol{P}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \; dS - \int_{V} \frac{\boldsymbol{\nabla}' \cdot \boldsymbol{P}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \; dV$$

lo que habilita a pensar en como que

$$P \cdot \hat{n} \equiv \sigma_P$$

está presente en el borde del cuerpo polarizado, y en su interior existe

$$-\boldsymbol{\nabla}\cdot\boldsymbol{P}\equiv\rho_{P}$$

siempre que $\nabla \cdot {\bf P} \neq 0$ es decir que la polarización no sea homogénea.

2.8 El potencial vector

Haremos una especie de desarrollo multipolar del potencial vector A,

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{1}{c} \int_{V} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \, dV'$$

pero como se puede escribir

$$rac{1}{|oldsymbol{x}-oldsymbol{x}'|}pproxrac{1}{|oldsymbol{x}|}+rac{oldsymbol{x}\cdotoldsymbol{x}'}{|oldsymbol{x}|^3}$$

en torno a x'=0 será

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{1}{c} \int_{V} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}|} \, dV' + \frac{1}{c} \frac{\boldsymbol{x}}{|\boldsymbol{x}|^3} \cdot \int_{V} \boldsymbol{x}' \boldsymbol{J}(\boldsymbol{x}') \, dV'$$

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{1}{c|\boldsymbol{x}|} \int_{V} \boldsymbol{J}(\boldsymbol{x}') \; dV' + \frac{1}{c} \frac{\boldsymbol{x}}{|\boldsymbol{x}|^3} \cdot \int_{V} \boldsymbol{x}' \boldsymbol{J}(\boldsymbol{x}') \; dV'$$

y el primer término es nulo lo cual puede verse porque sale integrando con alguna identidad (?) y usando que $\nabla \cdot J = 0$. Correspondería al orden monopolar y el hecho de que sea nulo refleja la no existencia de monopolos.

$$\boldsymbol{A}(\boldsymbol{x}) = \left[\left(\frac{1}{2c} \int_{V} \boldsymbol{x}' \times \boldsymbol{J} \, dV \right) \times \boldsymbol{x} \right] \frac{1}{|\boldsymbol{x}|^{3}}$$

y si definimos el paréntesis como m (momento magnético) entonces

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{\boldsymbol{m} \times \boldsymbol{x}}{|\boldsymbol{x}|^3}$$

Recordar que Biot & Savart es para densidad de corriente estacionaria, i.e. $\nabla \cdot \mathbf{J} = 0$

en el origen, y

$$oldsymbol{A}(oldsymbol{x}) = rac{oldsymbol{m} imes (oldsymbol{x} - oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|^3}$$

en x', las cuales son expresiones a primer orden y que utilizan el gauge de Coulomb, $\nabla \cdot A = 0$.

De esta manera tendremos

$$\mathcal{M}(\boldsymbol{x}') = \frac{1}{2c} \left[\boldsymbol{x}' \times \boldsymbol{J}(\boldsymbol{x}') \right]$$

que es la magnetización o densidad de momento magnético, y entonces el momento magnético pasa a ser

$$m = \int_{v} \mathcal{M}(x') dV'.$$

Se puede trabajar con el potencial vector así

$$oldsymbol{
abla} \mathbf{
abla} imes oldsymbol{A} = oldsymbol{
abla} imes \left(rac{oldsymbol{m} imes oldsymbol{x}}{|oldsymbol{x}|^3}
ight) = \left(rac{oldsymbol{x}}{|oldsymbol{x}|^3} \cdot oldsymbol{
abla}
ight) oldsymbol{m} - (oldsymbol{m} \cdot oldsymbol{
abla}) rac{oldsymbol{x}}{|oldsymbol{x}|^3},$$

la cual luego de mucho álgebra vectorial se puede llevar a la forma

$$\boldsymbol{B} = \frac{3(\boldsymbol{m} \cdot \hat{n})\hat{n} - \boldsymbol{m}}{|\boldsymbol{x}|^3},$$

que nos dice que bien lejos cualquier distribución de corriente localizada presenta como B el campo magnético de un dipolo magnético dado por m(x). Esta aproximación corresponde, por supuesto, al primer orden del desarrollo.

2.8.1 interpretacion del momento magnético

Se puede pensar m como una espira.

$$dA = \frac{xd\ell\sin(\alpha)}{2}$$

siendo el área orientada

$$\boldsymbol{A} = \frac{1}{2} \int_{\Gamma} \boldsymbol{x} \times d\ell$$

y entonces

$$m = \frac{I}{c}A$$

Figura 8.21

Desde volumen a espira hacemos la transformación del modo usual,

$$\boldsymbol{m} = \frac{1}{2c} \int_{V} \boldsymbol{x} \times \boldsymbol{J}(\boldsymbol{x}) \: dV = \frac{1}{2c} \int_{\Gamma} \boldsymbol{x} \times \: d\ell$$

usando que

$$\mathbf{J} dV = Jd\ell dS = \frac{I}{dS} d\ell dS = I d\ell$$

A modo de ejemplo, para una espira circular de radio r es

$$m = \frac{i}{c}\pi r^2.$$

2.8.2 Interacción del campo magnético con una distribución de corriente

Hacemos una expansión de Taylor del campo B con $|x| \ggg |x'|$,

$$\boldsymbol{B} = \boldsymbol{B}_0 + (\boldsymbol{x} \cdot \boldsymbol{\nabla}) \boldsymbol{B}$$

y entonces como la fuerza es

$$m{F} = rac{1}{c} \int_{V} m{J}(m{x}') imes m{B}(m{x}') dV'$$

resulta que

$$\boldsymbol{F} = \frac{1}{c} \int_{V} \boldsymbol{J} \times \boldsymbol{B}_{0} \, dV' + \frac{1}{c} \int_{V} \boldsymbol{J} \times (\boldsymbol{x}' \cdot \boldsymbol{\nabla}) \boldsymbol{B} \, dV'$$

siendo el primer término nulo.

$$\boldsymbol{F} = \boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{m}) = (\boldsymbol{m} \cdot \boldsymbol{\nabla}) \boldsymbol{B} = (\boldsymbol{m} \cdot \boldsymbol{\nabla}) \boldsymbol{B} = \boldsymbol{\nabla} (\boldsymbol{m} \cdot \boldsymbol{B})$$

Figura 8.22

Si el campo es homogéneo la fuerza es nula, pero como ${m F} = -{m \nabla} U$

$$\begin{split} F_m &= \boldsymbol{\nabla} (\boldsymbol{m} \cdot \boldsymbol{B}) \quad \Rightarrow \quad U_M = -\boldsymbol{m} \cdot \boldsymbol{B} \\ F_e &= \boldsymbol{\nabla} (\boldsymbol{p} \cdot \boldsymbol{E}) \quad \Rightarrow \quad U_e = -\boldsymbol{p} \cdot \boldsymbol{E} \end{split}$$

siendo $U_{m,e}$ la energía de los dipolos en campos externos.

Mediante identidades vectoriales podemos llegar a una expresión

$$\begin{split} \boldsymbol{F} &= -\boldsymbol{\nabla} \times \frac{1}{c} \int_{V} \boldsymbol{J}(\boldsymbol{x}' \cdot \boldsymbol{B}) dV' = -\boldsymbol{\nabla} \times \frac{1}{2c} (-\boldsymbol{B}) \times \int_{V} \boldsymbol{x} \times \boldsymbol{J} dV' = \\ \boldsymbol{F} &= \boldsymbol{\nabla} \times \boldsymbol{B} \times \frac{1}{2c} \int_{V} \boldsymbol{x} \times \boldsymbol{J} dV' \\ \boldsymbol{F} &= \boldsymbol{\nabla} \times (\boldsymbol{B} \times \boldsymbol{m}) = \boldsymbol{\nabla} (\boldsymbol{m} \cdot \boldsymbol{B}) \end{split}$$

La fuerza de un campo B externo sobre una distribución de corrientes es el gradiente de cierta energía

$$\boldsymbol{F} = \boldsymbol{\nabla} (\boldsymbol{m} \cdot \boldsymbol{B}) = (\boldsymbol{m} \cdot \boldsymbol{\nabla}) \boldsymbol{B}$$

de donde se ve claramente que si B es uniforme entonces la fuerza es nula. m es una constante que depende de la distribución de corrientes.

2.9 Pertubación por un conductor sobre un campo eléctrico uniforme

Se tiene un campo uniforme con $Q,R\to\infty$ pero con $2Q/R^2=cte,$ según se ve en la Figura.

El potencial ϕ de la esfera es constante por ser conductor. Puedo definir

$$\phi|_{esf} \equiv 0$$

pues $\phi(\infty) \neq 0$ porque hay densidad de carga ρ en el infinito.

Figura 9.23

Para la carga superior,

$$\phi_1 = \frac{-Q}{|\boldsymbol{x} - R\hat{z}|} + \frac{a/RQ}{|\boldsymbol{x} - a^2/R\hat{z}|}$$

mientras que para la inferior

$$\phi_2 = \frac{Q}{|\boldsymbol{x} + R\hat{\boldsymbol{z}}|} + \frac{a/RQ}{|\boldsymbol{x} + a^2/R\hat{\boldsymbol{z}}|}$$

Recordemos que

$$(1+\alpha)^{(-1/2)}\approx 1-\frac{1}{2}\alpha \qquad \alpha\ll 1$$

y podemos trabajar el denominador

$$|\boldsymbol{x} - R\hat{z}| = \sqrt{x^2 + R^2 - 2Rx\cos(\theta)}$$

$$\begin{split} \frac{1}{|\boldsymbol{x} - R\hat{z}|} &= \frac{1}{\sqrt{x^2 + R^2 - 2Rx\cos(\theta)}} = \frac{1}{R(1 + x^2/R^2 - 2x/R\cos(\theta))^{(1/2)}} \\ &\qquad \frac{1}{|\boldsymbol{x} - R\hat{z}|} \approx \frac{1}{R} \left(1 + \frac{x}{R}\cos(\theta)\right) \end{split}$$

de manera que luego

$$\begin{split} \phi(r) &\approx Q \left[\frac{1}{R} \left(1 + \frac{x}{R} \cos(\theta) \right) + \frac{a}{Rx} \left(1 + \frac{a^2}{Rx} \cos(\theta) \right) + \\ & \frac{1}{R} \left(1 - \frac{x}{R} \cos(\theta) \right) - \frac{a}{Rx} \left(1 - \frac{a^2}{Rx} \cos(\theta) \right) \right] \\ \phi(x) &\approx -\frac{2Qx}{R^2} \cos(\theta) + \frac{2a^3Q}{R^2x^2} \cos(\theta) \end{split}$$

y haciendo $x \equiv r$ y tomando el límite,

$$\phi(r) = -E_0 r \cos(\theta) + E_0 \frac{a^3}{r^2} \cos(\theta)$$

y la carga total sobre la esfera es nula puesto que estuvo aislada todo el tiempo. Respecto de la Figura, si hacemos un Gauss en la zona indicada se obtiene $Q_n=0$, entonces $\phi(r=a)=0$.

Figura 9.24

El segundo término es como un dipolo puntual,

$$E_0 \frac{a^3}{r^2} \cos(\theta) = E_0 \frac{a^3 \hat{z} \cdot \mathbf{r}}{r^3}$$

donde

$$\mathbf{p} \equiv E_0 a^3 \hat{z}$$

NOTAS

9.1 Sobre el problema de la carga frente a la esfera conductora a tierra

Decíamos que esta solución se puede obtener de manera más heurística, como lo hace Jackson? [CITA], a partir de la expresión en

$$\frac{q}{\sqrt{a^2 + y^2 - 2 \, a \, y \, \cos \gamma}} + \frac{q'}{\sqrt{a^2 + y'^2 - 2 \, a \, y' \, \cos \gamma}} = 0,$$

se podría intentar forzar que el segundo denominador sea idéntico al primero para lo cual se puede multiplicar arriba y abajo por el factor (y/a)

$$\frac{q}{\sqrt{a^2 + y^2 - 2 \, a \, y \, \cos \gamma}} + \frac{q'(y/a)}{y/a\sqrt{a^2 + y'^2 - 2 \, a \, y' \, \cos \gamma}} = 0$$

lo que conduce a

$$\frac{q}{\sqrt{a^2 + y^2 - 2 \, a \, y \, \cos \gamma}} + \frac{q'(y/a)}{\sqrt{y^2 + y^2 y'^2 / a^2 - 2 \, y^2 / a \, y' \, \cos \gamma}} = 0$$

y esta ecuación se satisface si $yy'=a^2$ y si q=-q'(y/a), que es justamente la solución encontrada previamente de un modo más tradicional.

También es interesante considerar algunos casos límite y ver que se recuperan resultados y comportamientos familiares. Si q está localizada muy cerca de la superficie de la esfera, i.e. $|\pmb{y}| \approx a + \varepsilon$ resultan $y' \approx a - \varepsilon$ y $q' \approx -q + (\varepsilon/a)q$ que son exactamente los resultados para una carga frente a un plano conductor (si despreciamos la cantidad infinitesimal (ε/a)). Muy cerca de la superficie de la esfera la carga ve un plano infinito.

Método de separación de variables

3.1 Separación de variables

Separamos los problemas en regiones donde vale $\nabla^2 \phi = 0$ entonces las fronteras tendrán la $\rho(\boldsymbol{x}')$ en general en forma de σ, λ .

Para coordenadas cartesianas intentaremos resolver $\nabla^2\phi=0$, es decir

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

pidiendo

$$\phi(x,y,z) = X(x)Y(y)Z(z)$$

de manera que

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0 \qquad -\alpha^2 - \beta^2 + \gamma^2 = 0 \quad \Rightarrow \gamma^2 = \alpha^2 + \beta^2$$

cada término es una constante. La solución general es

$$\phi(x,y,z) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m,n} \; \mathrm{e}^{\pm i \alpha_m x} \; \mathrm{e}^{\pm i \beta_n y} \; \mathrm{e}^{\pm i \sqrt{\alpha_m^2 + \beta_n^2} z}$$

donde habrá que adaptar según las condiciones de contorno. Se da que $A_{m,n}$ es una constante general y hay condiciones periódicas en x,y

$$A e^{\pm i\alpha x} = A_{\alpha} \cos(\alpha x) + B_{\alpha} \sin(\alpha x)$$

corresponde a condiciones de potencial periódicas, cuando necesito dos ceros por ejemplo (ver ilustración lateral –que falta–)

$$A~{\rm e}^{\pm\gamma z}=A_{\gamma}\cosh(\gamma z)+B_{\gamma}\sinh(\gamma z)$$

corresponde a atravesar densidades de carga.

Para coordenadas esféricas es

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r^2\frac{\partial\phi}{\partial r}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial}{\partial\theta}\left(\sin(\theta)\frac{\partial\phi}{\partial\theta}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial^2\phi}{\partial\varphi^2} = 0$$

proponiéndose la separación

$$\phi(r,\theta,\varphi) = R(r)\Theta(\theta)Q(\varphi)$$

siendo

$$Y(\theta, \varphi) = \Theta(\theta)Q(\varphi)$$

un armónico esférico. Tenemos un oscilador armónico en φ ,

$$Q = e^{\pm i\alpha\varphi}$$

si usamos $0 \le \varphi \le 2\pi$ de modo que $\alpha \in \mathbb{Z}$ y entonces $\alpha = m$, con simetría azimutal es m = 0 (rotación en φ),

$$Q = G\varphi + H$$
 G, H ctes.

Para las otras funciones será

$$R(r) = A_{\ell}r^{\ell} + B_{\ell}R^{-\ell-1}$$

$$\Theta(\theta) = C_\ell P_\ell^m(\cos(\theta)) + D_\ell Q_\ell^m(\cos(\theta))$$

siendo P_ℓ^m polinomio de Legendre, que verifica la fórmula de Rodrigues

$$P_\ell(x) = \frac{1}{2^\ell \ell!} \frac{d^\ell}{dx^\ell} [x^2 - 1]^\ell$$

con $P_{\ell}(\cos(\theta))$ polinomio de Legendre de primera especie, y $Q_{\ell}(\cos(\theta))$ de segunda especie. Los $\{P_{\ell}\}$ son un conjunto completo y ortogonal en $-1 \le x \le 1$ o bien en $0 \le \theta \le \pi$.

Los $\{Q_\ell^m(\cos(\theta))\}$ tienen problemas en $\theta=0, \theta=\pi$ (eje z) de manera que si está el eje z no podemos usar Q_ℓ^m ; en estos problemas sólo podemos usar $P_\ell^m(\cos(\theta))$.

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_\ell r^\ell + B_\ell r^{-\ell-1} \right] \left[C_\ell P_\ell^m + D_\ell Q_\ell^m \right] \left[E_m \cos(m\phi) + F_m \sin(m\phi) \right]$$

y en el caso particular m=0

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_{\ell} r^{\ell} + B_{\ell} r^{-\ell-1} \right] \left[C_{\ell} P_{\ell}^{m} + D_{\ell} Q_{\ell}^{m} \right] \left[G_{0} \phi + H_{0} \right]$$

Las constantes $A_\ell, B_\ell, C_\ell, D_\ell, E_m, F_m$ se ajustan con el $\phi(r \to \infty), \phi(r \to 0), \phi(z=1)$ y $\phi(z=-1)$.

Lo que permite esquivar el problema del punto singular en $x\equiv\cos(\theta)=1$ es

$$\beta^2 = \ell(\ell+1) \qquad -\ell < m < \ell \qquad \alpha^2 = m^2$$

Recordemos las sumas de series

$$\frac{1}{1-z} = \sum_{\ell=0}^{\infty} z^{\ell} \qquad \frac{1}{1+z} = \sum_{\ell=0}^{\infty} (-1)^{\ell} z^{\ell} \qquad |z| < 1,$$

el polinomio asociado de Legendre

$$P_{\ell}^m(x) =) \frac{(-1)^m}{2^{\ell} \ell!} [1 - x^2]^{m/2} \frac{d^{\ell+m}}{dx^{\ell+m}} [x^2 - 1]^{\ell}$$

que cumple

$$P_{\ell}(1) = 1 \quad P_{\ell}(-1) = (-1)^{\ell} \qquad \forall \ell$$

con

$$\int_{-1}^{1} [P_{\ell}(x)]^2 dx = \frac{2}{2\ell + 1}$$

siendo la ortogonalidad

$$\int_0^\pi P_{\ell'}^m(\cos(\theta)) P_\ell^m(\cos(\theta)) \sin(\theta) \ d\theta = \delta_{\ell\ell'}$$

$$\int_{1}^{+1} P_{\ell'}^{m}(x) P_{\ell}^{m}(x) dx = \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \delta_{\ell\ell'}$$

En esféricas las constantes de separación están asociadas

$$R(r) \cos \ell$$
 $\Theta(\theta) \cos \ell, m$ $Q(\phi) \cos m$

3.2 Detalles sobre solución de problemas de potencial

Si el potencial es par en una coordenada, entonces uso funciones pares (cosenos). La continuidad del potencial

$$\phi_I(x=0) = \phi_{II}(x=0) =$$

y salto en el campo

$$\left.\frac{\partial \phi_I}{\partial x} - \frac{\partial \phi_{II}}{\partial x}\right|_{x=0} = -4\pi\sigma|_{x=0}$$

Figura 2.1

Si tengo condiciones periódicas en la coordenada irán senos y cosenos trigonométricos, entonces se discretizan m,n y tengo $\sum_n \sum_m$ una serie de Fourier.

Si tengo condiciones no periódicas en la coordenada irán seno, coseno hiperbólicos entonces tengo $\int dk$ integral de Fourier.

En general tomo

$$\alpha^2 + \beta^2 = \gamma^2$$

pudiéndose discretizar los k'sluego. Se considera $\alpha^2 \equiv k_{\hat{e}_1}^2$ y así siguiendo con las otras dos.

Sobre la ecuación de salto en el campo aplicamos ortogonalidad y despejamos coeficientes en función de σ .

Detalle: el salto en el campo se hace siguiendo la normal, como se ilustra abajo

Figura 2.2

$$E_{I}^{\hat{n}}-E_{II}^{\hat{n}}=4\pi\sigma \qquad \qquad -\frac{\partial\phi_{I}}{\partial x}+\frac{\partial\phi_{II}}{\partial x}=4\pi\sigma$$

Para $k_{\hat{e}_1}^2$ en el caso discreto

$$\sum_{m=0}^{\infty}\cos(k_me_1)+\sin(k_me_1)$$

pero en el continuo

$$\int^{\infty} e^{ike_1} dk$$

usamos $exp(ike_1)$ para que la integral converja en lugar de $(\cos(ke_1) + \sin(ke_1))$.

3.3 Expansiones ortonormales

$$\int_{a}^{b} U_{n}^{*} U_{m} d\xi = \delta_{mn} \qquad U_{i} \ mathrmortonormales$$

entonces en (a, b) se da que la serie

$$f(\xi) = \sum_{n=0}^{\infty} a_n U_n(\xi)$$

converge, donde

$$a_n = \int_a^b U_n^* f(\xi) d\xi.$$

La clausura es

$$\sum_{n=1}^{\infty}U_n^*(\boldsymbol{x}')U_n(\boldsymbol{x})=\delta(\boldsymbol{x}-\boldsymbol{x}')$$

Es útil el desarrollo

$$\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos(\gamma)}} = \sum_{\ell=0}^{\infty} \frac{r_<^{\ell}}{r_>^{\ell}} P_{\ell}(\cos(\gamma))$$

en polinomios de Legendre para el ángulo entre vectores en coordenadas esféricas. En coordenadas esféricas, donde $\gamma=\gamma(\theta,\phi)$ es el ángulo entre vectores, que surge del teorema del coseno.

Figura 3.3

3.3.1 Prolongación analítica

Consiste en *prolongar* una solución restringida por ejemplo en el eje polar a todo el resto del espacio pegándole los polinomios de Legendre. Lo ponemos en serie (pasamos un cálculo de F3 a una serie)

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2 + a^2}} = \sum_{\ell=0}^{\infty} Q \frac{a^{\ell}}{r^{\ell+1}} P_{\ell}(0) \qquad r > a$$

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2 + a^2}} = \sum_{\ell=0}^\infty Q \frac{r^\ell}{a^{\ell+1}} P_\ell(0) \qquad r < a$$

y $P_\ell(0)$ tiene términos pares solamente (los impares son nulos).

Entonces

$$\phi(r,\phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \frac{r^{2n}}{a^{2n}} P_{2n}(0)$$

con

$$P_{2n}(0) = (-1)^n \frac{(2n-1)!}{2^n n!}$$

por lo tanto para todo el espacio será

$$\phi(r,\phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^{2n} P_{2n}(0) P_{2n}(\sin(\theta)) \qquad r < a$$

El hecho de que sólo vivan ℓ pares viene porque ϕ es par pues hay simetría de reflexión en el plano xy, lo que sucede de $(0, \pi/2)$ es igual a lo que sucede de $(\pi/2, \pi)$.

Los problemas con simetría de revolución en torno a \hat{z} pueden ser resueltos con el método de prolongación analítica. La idea central es que si dos soluciones

Figura 3.4

Figura 3.5

del potencial coinciden en un conjunto de puntos (como ser el eje azimutal) entonces deben ser la misma solución.

3.3.2 Comentario multipolos

Estos dos problemas son equivalentes, pero multipolarmente tienen desarrollos diferentes. El problema es que el metal a tierra tendrá carga hasta el infinito y entonces no podemos tener un radio de convergencia.

3.4 Armónicos esféricos

$$Y_{\ell,m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}}P_\ell^m(\cos(\theta))~\mathrm{e}^{im\varphi}$$

Los armónicos esféricos son un conjunto ortonormalizado en

$$-1 \le \cos(\theta) \le 1, \qquad 0 \le \varphi \le 2\pi$$

$$Y_{\ell,-m}(\theta,\varphi)=(-1)Y_{\ell,m}^*(\theta,\varphi)$$

La ortonormalidad

$$\int_0^{2\pi} d\varphi \int_0^\pi \sin(\theta) Y_{\ell,m}(\theta,\varphi) Y_{\ell,m}^*(\theta,\varphi) d\theta = \delta_{\ell'\ell} \delta_{m'm}$$

La completitud

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell,m}(\theta,\varphi) Y_{\ell,m}^*(\theta,\varphi) = \delta(\varphi-\varphi') \delta(\cos(\theta) - \cos(\theta'))$$

Entonces una función f cualquiera $\in L^2$ se puede expresar en armónicos esféricos,

$$f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} A_{\ell,m} Y_{\ell,m}(\theta,\varphi)$$

de manera que el potencial en coordenadas esféricas es

$$\phi(r,\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} [A_{\ell,m} r^{\ell} + B_{\ell,m} r^{-(\ell+1)}] Y_{\ell,m}(\theta,\varphi)$$

Con respecto a la Figura,

si q está en \hat{z} entonces simetría de revolución ($\gamma \to \theta$). Si por el contrario , γ es nulo entonces simetría de revolución.

Un poco de álgebra de coordenadas,

$$\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} = \frac{1}{\sqrt{r^2 + {r'}^2 - 2rr'\cos(\gamma)}} \Rightarrow \frac{1}{\sqrt{r^2 + {r'}^2 - 2rr'\cos(\theta)}}$$

donde $|\boldsymbol{x}| = r$ y $|\boldsymbol{x}'| = r'$. Así

$$\left. \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right|_{\gamma = 0} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'}} = \frac{1}{|r - r'|}$$

Figura 4.6

Figura 4.7

luego si $r^\prime < r$ será

$$\frac{1}{|r-r'|} = \frac{1}{r(1-r'/r)} = \frac{1}{r} \sum_{\ell=0}^{\infty} \left(\frac{r'}{r}\right)^{\ell} = \sum_{\ell=0}^{\infty} \frac{r'^{\ell}}{r^{\ell+1}}$$

en cambio si es r' > r

$$\frac{1}{|r-r'|} = \frac{1}{r'(1-r/r')} = \frac{1}{r'} \sum_{\ell=0}^{\infty} \left(\frac{r}{r'}\right)^{\ell} = \sum_{\ell=0}^{\infty} \frac{r^{\ell}}{r'^{\ell+1}}$$

de manera que

$$\left. \frac{1}{|x-x'|} \right|_{\gamma=0} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}}$$

y podemos pensar en $1 = P_{\ell}(1) \forall \ell$ y $1 = P_{\ell}(\cos 0)$

$$\left.\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|}\right|_{\gamma=0} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos 0)$$

que será el ϕ de una carga unitaria en \hat{z} y evaluado en \hat{z} . Hacemos de esta manera prolongación analítica,

$$\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|} = \sum_{\ell=0}^{\infty} \frac{r_<^{\ell}}{r_>^{\ell+1}} P_{\ell}(\cos\gamma)$$

y decimos que será el ϕ de una carga unitaria en cualquier parte (descompuesto en polinomios de Legendre). Aquí $\gamma=\gamma(\theta,\varphi)$ y se puede llegar a una descomposición similar utilizando armónicos esféricos.

El potencial ϕ descompuesto en armónicos esféricos es

$$\frac{1}{|{\pmb x} - {\pmb x}'|} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{r_<^{\ell}}{r_>^{\ell+1}} \frac{4\pi}{2\ell+1} Y_{\ell,m}(\theta,\varphi) Y_{\ell,m}^*(\theta',\varphi')$$

y el teorema de adición de los armónicos esféricos ha sido usado

$$P_{\ell}(\cos\gamma) = \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell+1} Y_{\ell,m}(\theta,\varphi) Y_{\ell,m}^*(\theta',\varphi')$$

$$\phi(\boldsymbol{x}) = \int_{V'} \rho(\boldsymbol{x}') \left[\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{r_<^{\ell}}{r_>^{\ell+1}} \frac{4\pi}{2\ell+1} Y_{\ell,m}(\boldsymbol{\theta}, \boldsymbol{\varphi}) Y_{\ell,m}^*(\boldsymbol{\theta}', \boldsymbol{\varphi}') \right] dV',$$

que se puede cosmetizar como

$$\phi(\boldsymbol{x}) = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} \left[\int_{V'} \rho(\boldsymbol{x}') Y_{\ell,m}^*(\boldsymbol{\theta}', \boldsymbol{\varphi}') {r'}_<^{\ell} dV' \right] \frac{Y_{\ell,m}(\boldsymbol{\theta}, \boldsymbol{\varphi})}{r_>^{\ell+1}},$$

definiéndose el corchete como $q_{\ell m}$ coeficiente multipolar de orden ℓm , así

$$\phi(\boldsymbol{x}) = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{q_{\ell m}}{2\ell+1} \frac{Y_{\ell,m}(\boldsymbol{\theta}, \boldsymbol{\varphi})}{r_{>}^{\ell+1}}.$$

Entonces

$$\phi_{\ell m}(\boldsymbol{x}) = 4\pi \frac{q_{\ell m}}{2\ell + 1} \frac{Y_{\ell,m}(\boldsymbol{\theta}, \boldsymbol{\varphi})}{r_{\cdot}^{\ell + 1}}$$

y consecuentemente

$$\pmb{E}_{\ell m}(\pmb{x}) = -\pmb{\nabla}\phi_{\ell m}(\pmb{x})$$

3.5 Separación de variables en cilíndricas

Se propone

$$\phi(\rho, \phi, z) = R(\rho)Q(\phi)Z(z)$$

de modo que

$$\frac{1}{R}\frac{d^{2}R}{d\rho^{2}} + \frac{1}{R\rho}\frac{dR}{d\rho} + \frac{1}{Q\rho^{2}}\frac{d^{2}Q}{d\phi^{2}} + \frac{1}{Z}\frac{d^{2}Z}{dz^{2}} = 0$$

donde los primeros dos términos conducen a la ecuación de Bessel, el tercero es igual a $-\nu^2$ y el cuarto a k^2 . Sacamos

$$Z=\mathrm{\,e}^{\pm kz}$$

$$Q = e^{\pm i\nu\phi}$$

donde si $0 \le \phi \le 2\pi$ entonces $\nu \in \mathbb{Z}$. Si en cambio la variable ϕ no corre entre 0 a 2π se dará que $\nu \notin \mathbb{Z}$.

$$\begin{array}{|c|c|c|} \hline \nu \in \mathbb{Z} & \nu \notin \mathbb{Z} \\ \hline J_{\nu}(k\rho) & J_{\nu}(k\rho) \\ J_{-\nu}(k\rho) & N_{\nu}(k\rho) \\ \hline \end{array}$$

donde

$$N_{\nu}(k\rho) \equiv \frac{J_{\nu}(k\rho)\cos(\nu\pi) - J_{-\nu}(k\rho)}{\sin(\nu\pi)}$$

siendo $J_{\nu}(k\rho)$ la función de Bessel de primera especie, $N_{\nu}(k\rho)$ la función de Bessel de segunda especie (Neumann). $N_{\nu}(k\rho)$ tiene problemas en el origen de modo que no sirve si el dominio incluye al eje \hat{z} , en cambio $J_{\nu}(k\rho)$ tiene problemas en $\rho \to \infty$.

También se suelen definir

$$H_{\nu}^{(1)}(k\rho) = J_{\nu}(k\rho) + iN_{\nu}(k\rho)$$

$$H_{\nu}^{(2)}(k\rho)=J_{\nu}(k\rho)-iN_{\nu}(k\rho)$$

que son las funciones de Bessel de tercera especie o bien Hankel de primera y segunda especie respectivamente.

Cambio de signo de la constante de separación

$$\dots + \underbrace{\frac{1}{Z} \frac{d^2 Z}{dz^2}}_{-k^2} = 0$$

entonces nos lleva a

$$Z = e^{\pm ikz}$$
 $Q = e^{\pm i\nu\phi}$

y entonces a las funciones de Bessel modificadas

$$I_{\nu}(k\rho) = i^{-\nu}J_{\nu}(k\rho)$$

$$K_{\nu}(k\rho) = \frac{\pi}{2} i^{\nu+1} H_{\nu}^{(1)}(k\rho),$$

donde son respectivamente las de primera y segunda especie y vemos que tienen argumento imaginario. Las $I_{\nu}(k\rho)$ tendrán problemas en $\rho \to \infty$ y $K_{\nu}(k\rho)$ problemas en $\rho=0$ (en el eje \hat{z}). Si atravesamos densidades de carga en \hat{z} entonces usamos Bessel

$$Z = e^{\pm kz} \quad \Rightarrow \quad J_{\nu}^{(1)}(k\rho); N_{\nu}^{(2)}(k\rho)$$

pero bajo condiciones periódicas en \hat{z} se usan Bessel modificadas

$$Z = e^{\pm ikz} \quad \Rightarrow \quad I_{\nu}^{(1)}(k\rho); K_{\nu}^{(2)}(k\rho)$$

y esto último se da por ejemplo en tapas del cilindro. La función de Bessel de primera especie se puede expresar como serie según

$$J_{\nu}^{(1)}(k\rho) = \left(\frac{x}{2}\right)^{\nu} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j! \Gamma(j+\nu+1)} \left(\frac{x}{2}\right)^{2j}$$

Las funciones de Bessel tienen infinitos ceros,

$$J_{\nu}(x_{\nu n}) = 0$$
 con $n \in \mathbb{N}, \nu$ fijo

siendo $x_{\nu n}$ un cero de J_{ν} . Así

$$\sqrt{\rho}J_{\nu}(x_{\nu n}\rho/a)$$

con $\nu \geq 0$ fijo es un conjunto ortonormal completo en $0 \leq \rho \leq a$ siendo a el radio del cilindro.

$$f(\rho) = \sum_{n=1}^{\infty} A_{x_{\nu n}} J_{\nu}(x_{\nu n} \rho/a)$$

 $con 0 \le \rho \le a$. Así $f(\rho = a) = 0$,

$$A_{\nu n} = \frac{2}{a^2 J_{\nu+1}^2(x_{\nu n})} \int_0^a \rho f(\rho) J_{\nu}(x_{\nu n} \rho/a) d\rho$$

la ortogonalidad

$$\int_0^a \rho J_{\nu}(x_{\nu n'}\rho/a) J_{\nu}(x_{\nu n}\rho/a) d\rho = \frac{a^2}{2} [J_{\nu+1}(x_{\nu n})]^2 \delta_{nn'}.$$

Para k sea $\phi(\rho=a)=0$ entonces

$$J_{\nu}(ka)=0 \Rightarrow ka=x_{\nu n} \Rightarrow J_{\nu}(x_{\nu n}\rho/a)$$

y $k=\frac{x_{\nu n}}{a}$ si $0\leq\rho\leq a$ y si está acotado en ρ entonces es discreto y se suma $\sum_{n=1}^{\infty}$ y $\nu\to m\in\mathbb{Z}$ si $0\leq\phi\leq 2\pi$ y si no está acotado en ρ entonces usamos

$$\int_0^\infty dk$$

y la completitud

$$\int_0^\infty x J_\nu(kx) J_\nu(k'x) dx = \frac{1}{k} \delta(k-k')$$

y k en general será función de $n \in \mathbb{N}$ por condición periódica en tapas (en \hat{z}) o en cilindros (en $\hat{\rho}$).

$$\phi(\rho,\phi,z) = \sum_{\nu=0}^{\infty} \sum_{n=1}^{\infty} [A_{\nu k} \begin{cases} J_{\nu}(k\rho) \\ I_{\nu}(k\rho) \end{cases} \\ + B_{\nu k} \begin{cases} N_{\nu}(k\rho) \\ K_{\nu}(k\rho) \end{cases}] [C_k \begin{cases} \mathrm{e}^{\pm kz} \\ \mathrm{e}^{\pm ikz} \end{cases}] [D_{k\nu} \mathrm{e}^{\pm i\nu\phi}]$$

donde k = k(n) y usamos $\sin(kz) + \cos(kz)$ si hay discretización.

Expansión en un campo multipolar

4.1 Desarrollo dipolar del campo magnético

El potencial vector de un dipolo es

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{\boldsymbol{v} \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} = \boldsymbol{m} \times \boldsymbol{\nabla} \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|}$$

$$\boldsymbol{A}(\boldsymbol{x}) = \int_{V'} \mathcal{M}(\boldsymbol{x}') \times \boldsymbol{\nabla} \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right) dV'$$

Es el potencial vector de una distribución de momento dipolar magnético con densidad ${m M}({m x}')$

$$\boldsymbol{A}(\boldsymbol{x}) = \int_{V'} \frac{\boldsymbol{\nabla} \times \boldsymbol{M}}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' + \int_{S'} \frac{\boldsymbol{M} \times \hat{\boldsymbol{n}}}{|\boldsymbol{x} - \boldsymbol{x}'|} dS'$$

y se pueden pensar como corrientes ${m J}_M$ y ${m g}_M$,

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{1}{c} \int_{V'} \frac{\boldsymbol{J}_M}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' + \frac{1}{c} \int_{S'} \frac{\boldsymbol{g}_M}{|\boldsymbol{x} - \boldsymbol{x}'|} dS'$$

4.2 Medios materiales

• Dieléctricos

$$\bullet \ \, \text{Conductor} \left\{ \begin{aligned} & \text{perfecto} \\ & \text{buen conductor} \\ & \text{mal conductor} \end{aligned} \right.$$

Podemos hacer una suerte de tabla comparativa entre eléctrico y magnético (pero lo armaremos después con minipage)

Polarización

$$m{P} = rac{\delta m{p}}{\delta V}$$

que es el Momento dipolar eléctrico por unidad de volumen. Luego el potencial es

$$\phi(\boldsymbol{x}) = \int_{S} \frac{\boldsymbol{P}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} d\boldsymbol{S}' - \int_{V} \frac{\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} dV'$$

$$\boldsymbol{P} \cdot \hat{\boldsymbol{n}} = \sigma_{P} \quad \Rightarrow \quad \boldsymbol{\nabla} \cdot \boldsymbol{P} = -\rho_{0}$$

$$\begin{cases} \boldsymbol{\nabla} \times \boldsymbol{E} = 0 \\ \boldsymbol{\nabla} \cdot \boldsymbol{E} = 4\pi\rho = 4\phi(\rho_{L} + \rho_{P}) \end{cases}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} - 4\phi\rho_{P} = 4\phi\rho_{L}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{E} + 4\pi\boldsymbol{\nabla} \cdot \boldsymbol{P} = \boldsymbol{\nabla} \cdot (\boldsymbol{E} + 4\pi\boldsymbol{P})$$

de modo que

$$\boldsymbol{D} = \boldsymbol{E} + 4\pi \boldsymbol{P}$$
 $\boldsymbol{\nabla} \cdot \boldsymbol{D} = 4\pi \rho_L$

y por la linealidad

$$m{P}=\xi_em{E}$$
 MLIH $m{D}=(1+4\pi\xi_e)m{E}$ $m{D}=\epsilonm{E}$

donde ξ_e es la susceptibilidad eléctrica y ϵ es la permitividad eléctrica. Los contornos entre medios se resuelven según

$$\hat{\boldsymbol{n}}\times(\boldsymbol{E}_2-\boldsymbol{E}_1)=0 \qquad (\boldsymbol{D}_2-\boldsymbol{D}_1)\cdot\hat{\boldsymbol{n}}=4\pi\sigma_L \qquad (\boldsymbol{P}_2-\boldsymbol{P}_1)\cdot\hat{\boldsymbol{n}}=-\sigma_L$$

Para la Magnetización,

$$M = \frac{\delta m}{\delta V}$$

que es el Momento dipolar magnético por unidad de volumen. Luego el potencial es

$$\begin{split} \boldsymbol{A}(\boldsymbol{x}) &= \frac{1}{c} \int_{S} \frac{\boldsymbol{M} \times \hat{n}}{|\boldsymbol{x} - \boldsymbol{x}'|} d\boldsymbol{S}' - \frac{1}{c} \int_{V} \frac{c(\boldsymbol{\nabla} \times \boldsymbol{M})}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \\ \boldsymbol{\nabla} \times \boldsymbol{M} &= \frac{1}{c} \boldsymbol{J}_{M} & \boldsymbol{M} \times \hat{n} = \frac{1}{c} \boldsymbol{g}_{m} \end{split}$$

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{J} = \frac{4\pi}{c} (\boldsymbol{J}_L + \boldsymbol{J}_M)$$
$$\nabla \times \boldsymbol{B} - 4\pi \nabla \times \boldsymbol{M} = \frac{4\pi}{c} \boldsymbol{J}_L$$
$$\nabla \times (\boldsymbol{B} - 4\pi \boldsymbol{M}) = \frac{4\pi}{c} \boldsymbol{J}_L$$

de modo que

$$oldsymbol{H} = oldsymbol{B} - 4\pi oldsymbol{M}$$
 $oldsymbol{
abla} \cdot oldsymbol{M} = rac{1}{c} oldsymbol{J}_M$

y por la linealidad

$$m{M} = \xi_M m{H}$$
 MLIH
$$m{B} = (1 + 4\pi \xi_M) m{H}$$

$$m{B} = \epsilon m{H}$$

donde ξ_M es la susceptibilidad magnética y μ es la permeabilidad magnética. Los contornos entre medios se resuelven según

$$\hat{n} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \frac{4\pi}{c} \boldsymbol{g}_L \qquad (\boldsymbol{B}_2 - \boldsymbol{B}_1) \cdot \hat{n} = 0$$

Imán permanente

Hay magnetización ${\cal M}$ aún en ausencia de campo. No es un medio lineal de modo que

$$M \neq \xi_M H \Rightarrow B \neq \mu H$$

La relación entre B,H depende de la historia del medio.

$$\frac{1}{c}\boldsymbol{J}_{M}=\boldsymbol{\nabla}\times\boldsymbol{M}$$

si $\boldsymbol{J}_L=0$ entonces

$$\nabla \times \boldsymbol{H} = 0 \qquad \Rightarrow \boldsymbol{H} = -\nabla \phi_m$$

que es un potencial escalar magnético.

$$\nabla \cdot (\boldsymbol{H} + 4\pi \boldsymbol{M}) = \nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \cdot \boldsymbol{H} = -4\pi \nabla \cdot \boldsymbol{M}$$

$$-\nabla^2 \phi_m = -4\pi \nabla \cdot \boldsymbol{M}$$

$$\nabla^2 \phi_m = -4\pi \rho_m$$

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{M} &\equiv -\rho_m & \boldsymbol{M} \cdot \hat{\boldsymbol{n}} \equiv \sigma_m \\ \phi_m &= \frac{1}{c} \int_{S'} \frac{\boldsymbol{M}}{|\boldsymbol{x} - \boldsymbol{x}'|} \cdot d\boldsymbol{S}' - \frac{1}{c} \int_{V'} \frac{\boldsymbol{\nabla} \cdot \boldsymbol{M}}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \\ \boldsymbol{A}(\boldsymbol{x}) &= \frac{1}{c} \int_{S} \frac{\boldsymbol{M} \times \hat{\boldsymbol{n}}}{|\boldsymbol{x} - \boldsymbol{x}'|} d\boldsymbol{S}' - \frac{1}{c} \int_{V} \frac{c(\boldsymbol{\nabla} \times \boldsymbol{M})}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \end{split}$$

Estas dos soluciones son equivalentes.

$$\phi_m = \frac{1}{c} \int_{V'} \frac{\rho_L}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' + \frac{1}{c} \int_{V'} \frac{\boldsymbol{P} \cdot (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV'$$

pero el integrando del segundo término se puede reescribir como

$$-\boldsymbol{P}\cdot\boldsymbol{
abla}\left(\frac{1}{|\boldsymbol{x}-\boldsymbol{x}'|}\right)$$

de manera que

$$\begin{split} \phi_m &= \frac{1}{c} \int_{V'} \frac{\rho_L}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' - \frac{1}{c} \int_{V'} \frac{\boldsymbol{\nabla} \cdot \boldsymbol{P}}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \\ \phi_m &= \frac{1}{c} \int_{V'} \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} (\rho - \boldsymbol{\nabla} \cdot \boldsymbol{P}) dV' \end{split}$$

se puede asociar

$$\nabla \cdot \mathbf{P} = \rho_P$$
.

$$\begin{split} \boldsymbol{A}(\boldsymbol{x}) &= \frac{1}{c} \int_{V} \left[\frac{\boldsymbol{J}_{L}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} + \frac{c\boldsymbol{M} \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^{3}} \right] dV' \\ \boldsymbol{A}(\boldsymbol{x}) &= \frac{1}{c} \int_{V} \left[\frac{\boldsymbol{J}_{L}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} + \frac{c\boldsymbol{\nabla} \cdot \boldsymbol{M}}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV' \\ \boldsymbol{A}(\boldsymbol{x}) &= \frac{1}{c} \int_{V} \frac{\boldsymbol{J}_{L}(\boldsymbol{x}') + \boldsymbol{J}_{M}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \end{split}$$

4.3 Polarización y magnetización

Suelen P,M depender de los campos externos, es decir P=P(E) y M=M(H).

$$\boldsymbol{M} \approx M_{0i} + \left. \frac{\partial M_i}{\partial H_j} \right|_{H=0} H_j$$

Figura 2.1

$$\mathbf{P} \approx P_{0i} + \left. \frac{\partial P_i}{\partial E_j} \right|_{E=0} E_j$$

y como en general vale que $\boldsymbol{M}_0=0,\boldsymbol{P}_0=0$ se da que

$$\boldsymbol{M} = \sum_{i} \sum_{j} \left(\frac{\partial M_{i}}{\partial H_{j}} \Big|_{H=0} H_{j} \right)$$

$$\boldsymbol{M} = \begin{pmatrix} \frac{\partial M_{x}}{\partial H_{x}} & \frac{\partial M_{x}}{\partial H_{y}} & \frac{\partial M_{x}}{\partial H_{z}} \\ \frac{\partial M_{y}}{\partial H_{x}} & \frac{\partial M_{y}}{\partial H_{y}} & \frac{\partial M_{y}}{\partial H_{z}} \\ \frac{\partial M_{z}}{\partial H} & \frac{\partial M_{z}}{\partial H} & \frac{\partial M_{z}}{\partial H} \end{pmatrix} \begin{pmatrix} H_{x} \\ H_{y} \\ H_{z} \end{pmatrix}$$

y ahí vemos que es un tensor,

$$M = \vec{\xi}_M H$$
 $P = \vec{\xi}_e E$.

Algún detalle de contornos magnéticos

Figura 3.2

Sea

$$g_L = 0$$

entonces

$$\begin{split} \hat{n} \times \boldsymbol{H}_1 &= \hat{n} \times \boldsymbol{H}_2 \\ \boldsymbol{B}_1 \cdot \hat{n} &= \boldsymbol{B}_2 \cdot \hat{n} \qquad \mu_1 \boldsymbol{H}_1 \cdot \hat{n} = \mu_2 \boldsymbol{H}_2 \cdot \hat{n} \\ H_2 &= \frac{\mu_1}{\mu_2} H_1 \quad \text{si } \mu_1 \gg \mu_2 \Rightarrow H_2 \gg H_1 \end{split}$$

En el límite $H_2 \perp$ superficie del medio y es similar al E a la salida de un conductor; las superficies de materiales de permeabilidad muy alta son aproximadamente equipotenciales.

Para medio anisótropo

$$D_i = \epsilon_{ij} E_j$$
 es decir $\mathbf{D} = \vec{\epsilon} \mathbf{E}$

Consideraciones en medios magnéticos

Fuera de un imán permanente

$$\nabla \times \boldsymbol{B} = 0 = \frac{4\pi}{c} \boldsymbol{J}_T$$

y entonces parecería que podemos definir un

$$\boldsymbol{B} = -\boldsymbol{\nabla}\phi_m^B,$$

pero fallará en la superficie de separación donde hay ${\pmb J}_m$ y por ende ${\pmb J}_T$. Lo que sí funciona es

$$\nabla \times \boldsymbol{H} = 0 = \frac{4\pi}{c} \boldsymbol{J}_L$$

que vale dentro y fuera del imán.

Figura 3.3

Entonces

$$\boldsymbol{H} = -\boldsymbol{\nabla}\phi_m^H$$

y

$$\boldsymbol{\nabla}\cdot\boldsymbol{H} = -\boldsymbol{\nabla}(\boldsymbol{\nabla}\phi_m^H) = -4\pi\boldsymbol{\nabla}\cdot\boldsymbol{M} = 4\pi\rho_M$$

$$-\nabla^2 \phi_m^H = 4\pi \rho_M$$

una ecuación de Poisson para el potencial ϕ_m^H .

$$\begin{split} (\boldsymbol{B}_2 - \boldsymbol{B}_1) \cdot \hat{\boldsymbol{n}} &= 0 \\ (-\boldsymbol{\nabla} \phi_H^2 + \boldsymbol{\nabla} \phi_H^1 - 4\pi \boldsymbol{M}) \cdot \hat{\boldsymbol{n}} &= 0 \\ (-\boldsymbol{\nabla} \phi_H^2 + \boldsymbol{\nabla} \phi_H^1) \cdot \hat{\boldsymbol{n}} &= 4\pi \boldsymbol{M} \cdot \hat{\boldsymbol{n}} = 4\pi \boldsymbol{\sigma}_M \end{split}$$

4.4 Consideraciones energéticas

$$\begin{split} \boldsymbol{F} &= q\boldsymbol{E} = q(-\boldsymbol{\nabla}\phi) = -\boldsymbol{\nabla}U \\ \Delta U &= W = \int_{\Gamma} \boldsymbol{F} \cdot d\ell \rightarrow \Delta U = -\int_{\Gamma} \boldsymbol{\nabla}(q\phi) \cdot d\ell = -q\Delta\phi \\ \delta U &= \boldsymbol{F} \cdot \delta \boldsymbol{x} & \frac{\delta U}{\delta x} = F_t \end{split}$$

donde el subíndice es por tangencial.

$$\begin{split} W_2 &= q_2 \frac{q_1}{r_{12}} = \frac{1}{2} \left(q_1 \frac{q_2}{r_{12}} + q_2 \frac{q_1}{r_{21}} \right) \\ W_3 &= q_2 \frac{q_1}{r_{12}} + q_3 \frac{q_1}{r_{13}} + q_2 \frac{q_3}{r_{23}} \\ W_3 &= \frac{1}{2} \left(q_1 \frac{q_2}{r_{12}} + q_1 \frac{q_3}{r_{13}} + q_2 \frac{q_1}{r_{21}} + q_2 \frac{q_3}{r_{23}} + q_3 \frac{q_1}{r_{31}} + q_3 \frac{q_2}{r_{32}} \right) \\ W_N &= \sum_{i \neq j}^N \frac{1}{2} \frac{q_i q_j}{r_{ij}} = \sum_{i,j}^N \frac{1}{2} q_i \phi_{ij} [1 - \delta_{ij}] \end{split}$$

siendo ϕ_{ij} el potencial sobre q_i debido a $q_j.$

$$W_N = \sum_{i=1}^{N} \frac{1}{2} q_i \phi_i$$

es el potencial de todas las cargas producido en la posición de q_i .

$$W = \frac{1}{2} \int_{V} \rho(\boldsymbol{x}) \phi(\boldsymbol{x}) dV$$

Supongamos ahora la presencia de un medio material

$$\delta W = \frac{1}{2} \rho \delta V \phi$$

$$\delta W = \frac{1}{2} \frac{\boldsymbol{\nabla} \cdot (\delta \boldsymbol{D})}{4\pi} \delta V \phi$$

$$\boldsymbol{\nabla} \cdot (\delta \boldsymbol{D} \phi) = \delta \boldsymbol{D} \cdot \boldsymbol{\nabla} \phi + \phi \boldsymbol{\nabla} \cdot \delta \boldsymbol{D}$$

$$\delta W = \frac{1}{8\pi} \delta V [\boldsymbol{\nabla} \cdot (\delta \boldsymbol{D} \phi) - \delta \boldsymbol{D} \cdot \boldsymbol{\nabla} \phi]$$

$$W = \frac{1}{8\pi} \left(\int_{V} \boldsymbol{\nabla} \cdot (\boldsymbol{D} \phi) dV + \int_{V} \boldsymbol{D} \cdot \boldsymbol{E} dV \right)$$

pero la primera integral se pasa a una de superficie según

$$\int_{S} \boldsymbol{D} \phi dS$$

y si la misma es muy grande tiende a cero. Entonces quedamos en que

$$W = \frac{1}{8\pi} \int_{V} \mathbf{D} \cdot \mathbf{E} dV$$

que es el trabajo necesario para formar una configuración en presencia de medios materiales. Vale para medios lineales, sin imponer isotroía u homogeneidad.

Este cálculo es a temperatura constante, el medio material no altera su ϵ . Es un proceso isotérmico. Uno asume que $\epsilon = \epsilon(\boldsymbol{x})$ y no varía con el tiempo. En la práctica ϵ varía con la temperatura.

4.5 Interpretación termodinámica de U

El incremento de energía a T constante

$$\delta W = U = \frac{1}{8\pi} \mathbf{E} \cdot \mathbf{D} = \frac{1}{8\pi} \epsilon_{ij} E_i E_j \qquad \text{con } \epsilon_{ij} = \epsilon_{ji} \text{ tensor simétrico}$$
 (5.1)

Pero ϵ es función de T la temperatura y entonces no podemos decir que

$$dU = dW$$

valga en general, pues también hay variación del calor (a no ser que sea un proceso isotérmico) de modo que la energía que representa (5.1) es la energía libre de Helmholtz a T constante.

$$dU = dQ - dW F = U - TS$$

$$dF = dU - TdS - SdT$$

pero al ser la última cero, resulta

$$dF|_T = dU - T.dS = \frac{1}{8\pi} \int_V \mathbf{E} \cdot \delta \mathbf{D} dV$$

$$dF = \frac{1}{8\pi} \int_{V} \mathbf{E} \cdot \delta \mathbf{D} dV - S dT$$

de modo que como el primer término es $\partial F/\partial D|_T$ resulta que

$$S = -\left. \frac{\partial F}{\partial T} \right|_{D}$$

Si es un medio isótropom entonces $oldsymbol{D} = \epsilon oldsymbol{E}$ y entonces

$$F = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{D} dV$$

entonces

$$\begin{split} \frac{\partial F}{\partial T} \Big|_D &= \frac{1}{8\pi} \int_V \boldsymbol{D} \cdot \boldsymbol{D} \frac{\partial}{\partial T} \left(\frac{1}{\epsilon}\right) dV \\ &= -\frac{1}{8\pi} \int_V \boldsymbol{D} \cdot \boldsymbol{D} \frac{1}{\epsilon^2} \frac{\partial \epsilon}{\partial T} dV = -\frac{1}{8\pi} \int_V \boldsymbol{E} \cdot \boldsymbol{D} \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} dV = S \end{split}$$

luego

$$U = F + TS = \frac{1}{8\pi} \int_{V} \mathbf{D} \cdot \mathbf{D} \frac{1}{\epsilon} dV + \frac{1}{8\pi} \int_{V} \mathbf{E} \cdot \mathbf{D} \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} dV$$

$$U = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \left[\mathbf{D} \cdot \left(\mathbf{D} + \mathbf{E} \frac{\partial \epsilon}{\partial T} T \right) \right] dV = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{E} \left[\epsilon + T \frac{\partial \epsilon}{\partial T} \right] dV$$

y finalmente para medios lineales e isótropos

$$U = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{E} \frac{\partial T \epsilon}{\partial T} dV$$

y la segunda ley de la termodinámica es

$$\delta Q = T.dS = \frac{1}{4\pi} \int_{V} \boldsymbol{E} \cdot \delta \boldsymbol{D} \frac{T}{\epsilon} \frac{\partial \epsilon}{\partial T} dV$$

con $\epsilon>0, T>0, \partial\epsilon/\partial T<0$ si el ϵ decrece con T el cuerpo se enfría $\delta Q<0.$

Figura 6.4

4.6 Teorema de Thomson

$$\delta W = \int_{V} \phi \delta \rho dV$$

las cargas en un conductor se redistribuiran hasta que ${\cal F}$ alcance su valor mínimo.

$$\begin{split} \delta W &= \frac{1}{8\pi} \int_{V} \boldsymbol{E} \cdot \delta \boldsymbol{D} dV = \frac{1}{8\pi} \int_{V} \left(-\boldsymbol{\nabla} \phi \cdot \delta \boldsymbol{D} dV \right) = \\ \delta W &= \frac{1}{8\pi} \int_{V} \left[\phi \boldsymbol{\nabla} \cdot \delta \boldsymbol{D} - \boldsymbol{\nabla} \cdot \delta (\boldsymbol{D} \phi) \right] dV \end{split}$$

$$\delta W = \frac{1}{8\pi} \sum_{i}^{N} \int_{V} \phi_{i} 4\pi \delta p_{i} dV - \frac{1}{8\pi} \int_{\partial V} \boldsymbol{D} \phi \cdot d\boldsymbol{S} = \frac{1}{2} \sum_{i}^{N} \phi_{i} \int_{V} \delta \rho_{i} dV = 0$$

y la integral de superficie la podemos dejar desvanecerse. Se suma sobre cada conductor que se halla a ϕ constante ϕ_i . La carga total en cada conductor no varía porque están aislados y por estar en equilibro $\delta \rho_i = 0 \, \forall i$.

Un sistema de interacciones electrostáticas nunca pueden llegar a un equilibrio estable. El ϕ no tiene mínimo ni máximo en el interior de una región.

Sea una región donde

$$\nabla \phi|_s < 0 \Rightarrow \int_S \nabla \phi \cdot d\mathbf{S} < 0 \Rightarrow$$

$$\int_{V}\boldsymbol{\nabla}\cdot(\boldsymbol{\nabla}\phi)dV=\int_{V}\nabla^{2}\phi dV=0$$

entonces no vale lo que supusiéramos.

4.7 Esfera con magnetización uniforme

$$\mathbf{M} = M_0 \hat{z}$$
 $\mathbf{\nabla} \cdot \mathbf{M} = 0 = \mathbf{\nabla} \times \mathbf{M}$

usando el ϕ_m se llega a

$$H_I = -\frac{4\pi}{3}M$$
 $B_I = \frac{8\pi}{3}M$

donde I es por interior de esfera y afuera el ϕ_m es el de un dipolo con

$$m = \frac{4\pi}{3}a^3M$$

y esto vale no solo para grandes distancias sino incluso hasta la superficie (no hay multipolos subsiguientes).

Figura 7.5

En las figuras vemos las líneas de ${\pmb B}$ que son continuas, no nacen ni mueren, pero las de ${\pmb H}$ nacen y mueren en la superficie, por la $\sigma_M = {\pmb M} \cdot \hat{n}$. ${\pmb H}$ es menos intenso que ${\pmb B}$ pues

$$H = B - 4\pi M$$

de manera que en el interior \boldsymbol{H} y \boldsymbol{B} tienen sentidos opuestos.

4.8 Histéresis

Los campos fundamentales son E, B, en realidad D, H se introducen para tener en cuenta en promedio los efectos de ρ , J de las cargas y corrientes atómicas.

Para medios magnéticos (diamagnéticos o paramagnéticos) hay relación lineal

$$\boldsymbol{B} = \mu \boldsymbol{H}$$

pero para ferromagnéticos es $\boldsymbol{B}=f(\boldsymbol{H})$ con f no lineal. Se verifica un fenómeno de histéresis; \boldsymbol{B} es una función multivaluada de \boldsymbol{H} y f depende de la historia del material.

Figura 8.6

 $oldsymbol{H}$ se conoce como campo desmagnetizante.

4.9 Esfera ferromagnética en campo externo

Si sumergimos la esfera en un ${m B}_0$ uniforme tendremos

$$H_I = B_0 - \frac{4\pi}{3}M$$
 $B_I = B_0 + \frac{8\pi}{3}M$

y podemos eliminar M de manera que

$$2\boldsymbol{H}_I + \boldsymbol{B}_I = 3\boldsymbol{B}_0$$

Vemos en la figura en P el punto de trabajo del imán esférico. Subimos ${\bf B}_0$ hasta saturar la esfera y luego cuando ${\bf B}_0=0$ nos hallamos en P. Hemos recorrido el camino ABP.

Usando la curva de histéresis relacionamos B_I, H_I y entonces

$$\boldsymbol{B}_I = 3\boldsymbol{B}_0 - 2\boldsymbol{H}_I.$$

Un imán es tanto más estable cuando $m{H}_I$ es pequeño; en el caso de $m{M}\parallel$ superficie, por ejemplo.

Figura 9.7

Fenómenos dependientes del tiempo

5.1 Ley de Faraday e inducción

$$\mathcal{E} = -\frac{1}{c} \frac{d}{dt} \left(\int_{S} \boldsymbol{B} \cdot d\boldsymbol{S} \right)$$

siendo $S=\partial\Gamma$ y donde

$$\mathcal{E} \equiv \int_{\Gamma} \boldsymbol{E} \cdot d\ell$$

siendo E un campo irrotacional medido en el frame donde Γ está en reposo. El signo menos es la ley de lenz, la FEM se opone el cambio de flujo.

Pero la variación de flujo puede deberse a variación de ${m B}$ o a deformación del circuito.

$$\frac{d}{dt} \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = \int_{S} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S} + \int_{\Gamma} \boldsymbol{B} \times \boldsymbol{V} \cdot d\ell$$

y entonces

$$\begin{split} \int_{\Gamma} \boldsymbol{E}' \cdot d\ell &= -\frac{1}{c} \int_{S} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S} + \frac{1}{c} \int_{\Gamma} \boldsymbol{B} \times \boldsymbol{V} \cdot d\ell \\ \int_{\Gamma} [\boldsymbol{E}' - \boldsymbol{B} \times \boldsymbol{V}] \cdot d\ell &= -\frac{1}{c} \int_{S} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S} \end{split}$$

y si $m{E} = m{E}' - m{B} imes m{V}$ es el campo medido en el laboratorio se llega a la ley de Faraday,

$$\int_{\Gamma} \mathbf{E} \cdot d\ell = -\frac{1}{c} \int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

y usando el teorema de Stokes a su forma diferencial

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$$

siendo este campo E claramente no conservativo.

5.1.1 Corrección a las ecuaciones

Entonces resultan las siguientes cuatro ecuaciones

$$\nabla \cdot \mathbf{D} = 4\pi \rho$$
 $\nabla \times \mathbf{E} = \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$

que son las leyes de Coulomb y Faraday en forma diferencial. Asimismo

$$\nabla \cdot \boldsymbol{B} = 0$$
 $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J}$

que es la no existencia de monopolos magnéticos y la ley de Ampere. En el último caso con $\nabla \cdot \mathbf{J} = 0$ que es para corrientes estacionarias.

Justamente por ello la ecuación relacionada con la ley de Ampere está incompleta así puesto que se dedujo para corrientes estacionarias. Maxwell introduce la continuidad aproximadamente en 1865. Entonces, como

$$\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$$

se sigue que

$$\nabla \cdot \boldsymbol{J} + \frac{\partial}{\partial t} \frac{\nabla \cdot \boldsymbol{D}}{4\pi} = \nabla \cdot \left[\boldsymbol{J} + \frac{1}{4\pi} \frac{\partial D}{\partial t} \right]$$

que es posible pensar como una nueva densidad de corriente ${m J}$. Entonces la ley de Ampere completa es:

$$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J} + \frac{1}{c} \frac{\partial D}{\partial t}$$

siendo $\frac{\partial D}{\partial t}$ la llamada corriente de desplazamiento. Las cuatro ecuaciones están ahora completas y constituyen las *ecuaciones de Maxwell*.

5.1.2 Potenciales

$$\nabla \cdot \boldsymbol{D} = 4\pi\rho$$
 $\nabla \times \boldsymbol{E} = \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$ (1.1)

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J} + \frac{1}{c} \frac{\partial D}{\partial t}$$
 (1.2)

Dado que $\nabla \cdot \boldsymbol{B} = 0$ al igual que en magnetostática, podemos derivar \boldsymbol{B} del potencial vector \boldsymbol{A} , pero \boldsymbol{E} no tiene rotor nulo, entonces no existe ϕ potencial escalar.

Tomando

$$\boldsymbol{\nabla} \times \boldsymbol{E} + \frac{1}{c} \frac{\partial D}{\partial t} = \boldsymbol{\nabla} \times \boldsymbol{E} + \frac{\partial}{\partial t} \left(\frac{1}{c} \boldsymbol{\nabla} \times \boldsymbol{A} \right) = \boldsymbol{\nabla} \times \left[\boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \right] = 0$$

podemos pensar en un potencial general Φ tal que

$$-\boldsymbol{\nabla}\Phi = \boldsymbol{E} + \frac{1}{c}\frac{\partial \boldsymbol{A}}{\partial t}$$

o bien

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi - \frac{1}{c}\frac{\partial \boldsymbol{A}}{\partial t},$$

donde por supuesto Φ no tiene significado de trabajo como sí lo tenía el potencial electrostático.

Podemos expresar las ecuaciones (1.1) y (1.2) con A, Φ ,

$$\boldsymbol{\nabla}\cdot\boldsymbol{E}=4\pi\rho\rightarrow Nabla\cdot\left(-\boldsymbol{\nabla}\Phi-\frac{1}{c}\frac{\partial\boldsymbol{A}}{\partial t}\right)=4\pi\rho$$

$$\boldsymbol{\nabla}\times\boldsymbol{B} - \frac{1}{c}\frac{\partial E}{\partial t} = \frac{4\pi}{c}\boldsymbol{J} \rightarrow \boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\boldsymbol{A}) - \frac{1}{c}\frac{\partial}{\partial t}\left(-\boldsymbol{\nabla}\Phi - \frac{1}{c}\frac{\partial\boldsymbol{A}}{\partial t}\right) = \frac{4\pi}{c}\boldsymbol{J}$$

de manera que resultan dos ecuaciones para los potenciales, pero acopladas

$$\nabla^2 \Phi + \frac{1}{c} \frac{\partial}{\partial t} \nabla \cdot \boldsymbol{A} = -4\pi \rho$$

$$\nabla^2 \boldsymbol{A} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{A}}{\partial t^2} - \boldsymbol{\nabla} \left(\boldsymbol{\nabla} \cdot \boldsymbol{A} + \frac{1}{c} \frac{\partial \boldsymbol{\Phi}}{\partial t} \right) = -\frac{4\pi}{c} \boldsymbol{J}$$

5.1.3 Cambio de Gauge

Podemos desacoplarlas utilizando la arbitrariedad de los potenciales

$$\nabla \times \mathbf{A} = \mathbf{B} \qquad -\nabla \Phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = \mathbf{E}$$
 (1.3)

si le sumamos una función al potencial vector,

$$A \rightarrow A' = A + \nabla \Lambda,$$

se da que

$$\mathbf{\nabla} \times \mathbf{A} = \mathbf{\nabla} \times \mathbf{A}'$$

pero

$$-\nabla\Phi - \frac{1}{c}\frac{\partial \mathbf{A}}{\partial t} - \frac{1}{c}\frac{\partial\nabla\Lambda}{\partial t} = \mathbf{E}$$

lo cual vale si y sólo si

$$-\boldsymbol{\nabla}\left(\boldsymbol{\Phi}+\frac{1}{c}\frac{\partial\boldsymbol{\Lambda}}{\partial t}\right)-\frac{1}{c}\frac{\partial\boldsymbol{A}}{\partial t}=\boldsymbol{E}$$

de manera que requiero

$$\Phi \to \Phi' = \Phi - \frac{1}{c} \frac{\partial \Lambda}{\partial t}$$

y estas dos ecuaciones fijan la transformación de gauge. Como con A',Φ' siguen valiendo las (1.3), requiero que

$$\boldsymbol{\nabla} \cdot \boldsymbol{A}' + \frac{1}{c} \frac{\partial \Phi'}{\partial t} = 0 = \boldsymbol{\nabla} \cdot \boldsymbol{A} + \frac{1}{c} \frac{\partial \Phi}{\partial t} + \nabla^2 \Lambda - \frac{1}{c^2} \frac{\partial^2 \Lambda}{\partial t^2}$$

entonces

$$\boldsymbol{\nabla}\cdot\boldsymbol{A} + \frac{1}{c}\frac{\partial\Phi}{\partial t} = -\left(\nabla^2\Lambda - \frac{1}{c^2}\frac{\partial^2\Lambda}{\partial t^2}\right)$$

y si usamos los nuevos potenciales, ahora sin apóstrofes para no confundir con notación redundante,

$$abla^2 oldsymbol{A} - rac{1}{c^2} rac{\partial^2 oldsymbol{A}}{\partial t^2} = -rac{4\pi}{c} oldsymbol{J}$$

$$\nabla^2\Phi - \frac{1}{c^2}\frac{\partial^2\Phi}{\partial t^2} = -\frac{4\pi}{c}\rho$$

ambos potenciales satisfacen sendas ecuaciones de onda. El *gauge de Lorentz* o "condición de Lorentz" es

$$\nabla \cdot \mathbf{A} + \frac{1}{c} \frac{\partial \Phi}{\partial t} = 0.$$

Podemos imponer también

$$\nabla \cdot \mathbf{A} = 0$$

el gauge de Coulomb y entonces

$$\nabla^2\Phi=-4\pi\rho$$

vemos que el potencial ϕ cumple la ecuación de Poisson. El campo se describirá como el estacionario (electrostático) entonces

$$\frac{\partial \Phi}{\partial t} = 0$$

y entonces

$$\nabla \cdot \mathbf{A} + \frac{1}{c} \frac{\partial \Phi}{\partial t} = 0$$

siendo cada uno de los términos nulos por sí mismo. Los resultados físicos deben ser independientes del gauge.

5.2 Conservación de la energía (teorema de Poynting)

Sea una región con volumen fijo. Existen E,B solamente que varían con el tiempo. Pareciera que la energía debiera conservarse.

$$F = q\left(E + \frac{1}{c}v \times B\right)$$

entonces

$$\delta W = \mathbf{F} \cdot d\ell = a\mathbf{E} \cdot d\ell$$

dado que B no hace trabajo por ser perpendicular la fuerza la velocidad.

$$\delta U = q\mathbf{E} \cdot d\ell$$

para una carga q es

$$\frac{dU}{dt} = q\mathbf{E} \cdot \mathbf{v}$$

y para una distribución de cargas,

$$\frac{dU}{dt} = \int_{V} \rho \boldsymbol{E} \cdot \boldsymbol{v} dV = \int_{V} \boldsymbol{J} \cdot \boldsymbol{E} dV$$

que no es otra cosa que la potencia entregada por los campos E, B dentro del volumen V. Es una conversión de energía electromagnética en energía mecánica o térmica.

$$\int_{V} \boldsymbol{J} \cdot \boldsymbol{E} dV = \int_{V} \left[\frac{c}{4\pi} (\boldsymbol{\nabla} \times \boldsymbol{H}) \cdot \boldsymbol{E} - \frac{1}{4\pi} \frac{\partial \boldsymbol{D}}{\partial t} \cdot \boldsymbol{E} \right] dV$$

Si usamos la identidad

$$\boldsymbol{\nabla}\cdot(\boldsymbol{E}\times\boldsymbol{H})=\boldsymbol{H}\cdot(\boldsymbol{\nabla}\times\boldsymbol{E})-\boldsymbol{E}\cdot(\boldsymbol{\nabla}\times\boldsymbol{H}),$$

podemos escribir

$$\begin{split} &= \int_{V} \frac{c}{4\pi} \left(\left[\boldsymbol{H} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) - \boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H}) \right] - \frac{1}{4\pi} \frac{\partial \boldsymbol{D}}{\partial t} \cdot \boldsymbol{E} \right) dV \\ &= -\frac{1}{4\pi} \int_{V} \left[\boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \frac{\partial \boldsymbol{D}}{\partial t} \cdot \boldsymbol{E} \right] dV - \int_{V} \frac{c}{4\pi} \boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H}) dV \\ &= -\frac{1}{8\pi} \frac{d}{dt} \int_{V} \left[\boldsymbol{H} \cdot \boldsymbol{B} + \boldsymbol{D} \cdot \boldsymbol{E} \right] dV - \frac{c}{4\pi} \int_{S} (\boldsymbol{E} \times \boldsymbol{H}) dS \end{split}$$

siendo $S \equiv \partial V$. Si denominamos ahora

$$oldsymbol{S} \equiv rac{c}{4\pi}(oldsymbol{E} imes oldsymbol{H})$$
 vector de Poynting

$$U = \frac{1}{8\pi} \left(m{H} \cdot m{B} + m{D} \cdot m{E}
ight)$$
 Densidad de energía EM

resulta que

$$\boldsymbol{J} \cdot \boldsymbol{E} = -\frac{\partial U}{\partial t} - \boldsymbol{\nabla} \cdot \boldsymbol{S}$$

entonces la conservación de la energía por unidad de volumen es

$$-\boldsymbol{J}\cdot\boldsymbol{E} = \frac{\partial U}{\partial t} + \boldsymbol{\nabla}\cdot\boldsymbol{S}$$

e integrada

$$\int_{V} \frac{\partial U}{\partial t} dV + \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{S} dV = -\int_{V} \boldsymbol{J} \cdot \boldsymbol{E} dV = -\int_{S} \boldsymbol{S} \cdot d\boldsymbol{S}$$

donde se ha aplicado el teorema de Gauss en el miembro derecho. Así

$$\int_{V} \frac{\partial U}{\partial t} dV + \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{S} dV = -\int_{S} \boldsymbol{S} \cdot d\boldsymbol{S}$$

siendo el primer término del LHS la variación de la energía total, el segundo la potencia entregada por los campos sobre las fuentes y el RHS el flujo de energía a través de la región transportado por el vector de Poynting. Notemos que $\boldsymbol{J}\cdot\boldsymbol{E}$ es el trabajo hecho por unidad de tiempo y por volumen por los campos. Localmente la conservación de la energía es

$$\frac{dU_{c}am}{dt} + \frac{dUmec}{dt} = -\int_{S} \mathbf{S} \cdot d\mathbf{S}.$$

 \boldsymbol{S} y U no están relacionados linealmente con \boldsymbol{E} y \boldsymbol{H} .

5.2.1 Conservación del momento

En el discreto se tiene

$$F = \frac{dP}{dt} = qE + q\frac{1}{c}v \times B$$

y pasando al continuo

$$\begin{split} \frac{d\boldsymbol{P}_{\!M}}{dt} &= \int_{V} \left[\rho \boldsymbol{E} + \frac{1}{c} \boldsymbol{J} \times \boldsymbol{B} \right] dv \\ \frac{d\boldsymbol{P}_{\!M}}{dt} &= \int_{V} \left[\frac{1}{4\pi} (\boldsymbol{\nabla} \cdot \boldsymbol{D}) \boldsymbol{E} + \frac{1}{c} \left(\frac{c}{4\pi} \boldsymbol{\nabla} \times \boldsymbol{H} - \frac{1}{4\pi} \frac{d\boldsymbol{D}}{dt} \right) \times \boldsymbol{B} \right] dv \\ \frac{d\boldsymbol{P}_{\!M}}{dt} &= \int_{V} \left[\frac{1}{4\pi} (\boldsymbol{\nabla} \cdot \boldsymbol{D}) \boldsymbol{E} + \frac{1}{4\pi} (\boldsymbol{\nabla} \times \boldsymbol{H} \times \boldsymbol{B}) - \frac{1}{4\pi c} \frac{d\boldsymbol{D}}{dt} \times \boldsymbol{B} \right] dv \end{split}$$

Ahora, usando las siguientes cuentas auxiliares

$$\frac{\partial}{\partial t}(\boldsymbol{D} \times \boldsymbol{B}) = \frac{\partial \boldsymbol{D}}{\partial t} \times \boldsymbol{B} + \boldsymbol{D} \times \frac{\partial \boldsymbol{B}}{\partial t}$$
$$\epsilon \mu \frac{\partial}{\partial t}(\boldsymbol{E} \times \boldsymbol{H}) = \epsilon \mu \frac{\partial \boldsymbol{D}}{\partial t} \times \boldsymbol{B} + \epsilon \mu \boldsymbol{D} \times \frac{\partial \boldsymbol{B}}{\partial t}$$

y ahora volviendo

$$\frac{d\boldsymbol{P}_{\!M}}{dt} = \frac{1}{4\pi} \int_{V} \left[(\boldsymbol{\nabla} \cdot \boldsymbol{D}) \boldsymbol{E} + (\boldsymbol{\nabla} \times \boldsymbol{H} \times \boldsymbol{B}) - \frac{1}{c} \epsilon \mu \left(\frac{\partial}{\partial t} (\boldsymbol{E} \times \boldsymbol{H}) - \boldsymbol{E} \times \frac{\partial \boldsymbol{H}}{\partial t} \right) \right] dv$$

haciendo un pase de miembros y expresando $m{H}$ en términos de $m{E}$ es

$$\begin{split} \frac{d\boldsymbol{P}_{\!M}}{dt} + \frac{\epsilon\mu}{4\pi c} \int_{V} \frac{\partial}{\partial t} (\boldsymbol{E}\times\boldsymbol{H}) dV = \\ \frac{1}{4\pi} \int_{V} \left[(\boldsymbol{\nabla}\cdot\boldsymbol{D})\boldsymbol{E} - \epsilon\boldsymbol{E}\times(\boldsymbol{\nabla}\times\boldsymbol{E}) + \boldsymbol{\nabla}\times\boldsymbol{H}\times\boldsymbol{B} + \boldsymbol{H}(\boldsymbol{\nabla}\cdot\boldsymbol{B}) \right] dV \end{split}$$

donde el último término en el integrando del RHS es cero y se lo puedo sumar por ello. Prosiguiendo

$$\begin{split} \frac{d\boldsymbol{P}_{\!M}}{dt} + \frac{\epsilon\mu}{4\pi c}\frac{d}{dt}\int_{V}(\boldsymbol{E}\times\boldsymbol{H})dV = \\ \frac{1}{4\pi}\int_{V}\left[(\boldsymbol{\nabla}\cdot\boldsymbol{D})\boldsymbol{E} - \boldsymbol{D}\times(\boldsymbol{\nabla}\times\boldsymbol{E}) + \boldsymbol{H}(\boldsymbol{\nabla}\cdot\boldsymbol{B}) - \boldsymbol{B}(\boldsymbol{\nabla}\times\boldsymbol{H})\right]dV \end{split}$$

y con algunads identidades más

$$=\frac{1}{4\pi}\int_{V}\boldsymbol{\nabla}\left(\left[\boldsymbol{D}\boldsymbol{E}-\frac{1}{2}\mathbb{1}(\boldsymbol{D}\cdot\boldsymbol{E})\right]+\left[\boldsymbol{H}\boldsymbol{B}-\frac{1}{2}\mathbb{1}(\boldsymbol{H}\cdot\boldsymbol{B})\right]\right)dV$$

donde los primeros términos dentro de cada corchete son productos tensoriales (su resultado no es un número sino un tensor).

Hemos encontrado que se puede definir la conservación como flujo de un tensor de segundo rango,

$$T_{ik} = \frac{1}{4\pi} \left[\epsilon E_i E_k + \mu H_i H_k - \frac{1}{2} \delta_{ik} (\epsilon E^2 + \mu H^2) \right] \label{eq:Tik}$$

que es el tensor de esfuerzos de Maxwell.

Entonces

$$\int_{V}(\rho \boldsymbol{E} + \frac{1}{c}(\boldsymbol{J} \times \boldsymbol{B}))dV + \frac{d}{dt}\left(\frac{1}{4\pi c}\int_{V}(\boldsymbol{D} \times \boldsymbol{B})dV\right) = \int_{S}T \cdot d\boldsymbol{S}$$

con la normal saliente. Luego, localmente la conservación del momento lineal es

$$\frac{d\mathbf{P}_{m}ec}{dt} + \frac{d\mathbf{P}_{c}am}{dt} = \int_{S} T \cdot d\mathbf{S}$$

donde el RHS es la fuerza por unidad de área a través de S que actúa sobre las partículas y los campos dentro de V. Definiendo

$$\frac{1}{c^2}\mathbf{S} = \mathbf{g} = \frac{1}{4\pi c}(\mathbf{D} \times \mathbf{B})$$

se tiene que $oldsymbol{g}$ es una densidad de flujo de momento y también puede expresarse

$$\boldsymbol{g} = \frac{\epsilon \mu}{4\pi c} (\boldsymbol{E} \times \boldsymbol{H}).$$

Observemos que el tensor de Maxwell es un tensor cartesiano.

5.3 Tensor de Maxwell

El tensor T será diagonal si una de las direcciones es paralela al campo. Con el T puede calcularse la fuerza que hacen los campos E, B sobre una cierta distribución de cargas y corrientes, con tal de evaluar su flujo en alguna superficie que las contenga (como se ve en la figura) y con tal dde que

$$\frac{d}{dt}\left(\int_{V} \boldsymbol{g} dV\right) = 0 \qquad \qquad \boldsymbol{g} = \frac{1}{4\pi c} (\boldsymbol{E} \times \boldsymbol{B})$$

Figura 3.1

puesto que en ese caso será

$$m{F} = \int_S T \cdot dm{S}.$$

En este caso se suele definir el concepto de presión de radiación

$$\mathbf{R}_r a d \equiv \frac{d\mathbf{F}}{dS} T \cdot \hat{n}.$$

T es un tensor con autovalores reales; coincidiendo sus autovectores con la dirección del campo. Es independiente del sentido del campo, depende del valor absoluto de los mismos.

$$T_{ik} = \frac{1}{4\pi} \left[\epsilon E_i E_k - \frac{1}{2} \delta_{ik} \epsilon E^2 \right]$$

es el tensor eléctrico y

$$T_{ik} = \frac{1}{4\pi} \left[\mu H_i H_k - \frac{1}{2} \delta_{ik} \mu H^2 \right]$$

el tensor magnético.

5.3.1 Ejemplos del tensor de Maxwell

Respecto de la figura, donde vemos que el campo penetra en el recinto y la tensión es hacia adentro, escribimos

$$\begin{split} d\pmb{S} &= -dS\hat{y} \qquad \pmb{F}_{\text{sobre}\,-q} = -F\hat{y} \\ T|_S &= \begin{pmatrix} -E_y^2 & 0 & 0 \\ 0 & E_y^2 & 0 \\ 0 & 0 & -E_z^2 \end{pmatrix} \end{split}$$

la fuerza atractiva hacia afuera del recinto.

Figura 3.3

En este otro caso, el campo sale del recinto y la tensión es hacia afuera pués la \hat{n} ha cambiado de sentido.

$$T \cdot d\mathbf{S} \propto \hat{y}$$
 $\mathbf{F}_{\text{sobre } + q} = F\hat{y}$

es una fuerza atractiva hacia afuera del recinto.

Aquí abajo el campo es tangencial al recinto, la tensión penetra en él.

Se llega al concepto de T cuando pensamos en campos para justificar las interacciones. Para medios materiales se tendrán consecuentemente los siguientes tensores eléctrico y magnético, respectivamente,

$$T_{ik} = \frac{1}{4\pi} \left[E_i D_k - \frac{1}{2} \delta_{ik} \boldsymbol{D} \cdot \boldsymbol{E} (1 - b_e) \right]$$

$$T_{ik} = \frac{1}{4\pi} \left[H_i B_k - \frac{1}{2} \delta_{ik} \boldsymbol{H} \cdot \boldsymbol{B} (1 - b_m) \right]$$

Cuando T está diagonalizado la traza no es nula. Cuando se diagonaliza, ahciendo

$$|T - \lambda \mathbb{1}| = 0$$

Figura 3.4

Figura 3.5

se tienen $\lambda_1=E^2/8\pi$ y $\lambda_{2,3}=-E^2/8\pi$, donde el autovector de λ_1 corresponde a la dirección de E y $\lambda_{2,3}$ a las direcciones perpendiculares.

$$|d\mathbf{F}|_{\parallel} = T \cdot d\mathbf{S}|_{\parallel} \rightarrow \frac{E^2}{8\pi} dS|_{\parallel}$$

el campo eléctrico transmite una tensión $E^2/8\pi$ paralela a la dirección del campo. El tensor diagonalizado es

$$T = \frac{1}{4\pi} \begin{pmatrix} E^2/2 & 0 & 0\\ 0 & -E^2/2 & 0\\ 0 & 0 & -E^2/2 \end{pmatrix}$$

5.4 Método cuasiestacionario

Se aproximan campos y fuentes con frecuencias bajas, es decir cuando $\omega\approx0$. Observemos que se desarrollará la parte espacial pero la temporal quedará como está. Se considera

$$E(x,t) = \vec{\mathbb{E}} e^{i\omega/c\hat{n}\cdot x} e^{-i\omega t}$$

y se desarrollará la parte espacial en torno a $\omega=0.$ Comencemos el show,

$$\boldsymbol{E}(\boldsymbol{x},t) = \vec{\mathbb{E}} + \omega \frac{i \hat{\boldsymbol{n}} \cdot \boldsymbol{x}}{c} \vec{\mathbb{E}} + \omega^2 \frac{i^2 (\hat{\boldsymbol{n}} \cdot \boldsymbol{x})^2}{c^2} \vec{\mathbb{E}}$$

y si le pegamos la parte temporal será

$$\boldsymbol{E}(\boldsymbol{x},t) = \underbrace{\vec{\mathbb{E}} \underbrace{\mathrm{e}^{-i\omega t}}_{\boldsymbol{E}^{(0)}} + \underbrace{\omega \frac{i\hat{\boldsymbol{n}} \cdot \boldsymbol{x}}{c} \vec{\mathbb{E}} \underbrace{\mathrm{e}^{-i\omega t}}_{\boldsymbol{E}^{(1)}} + \underbrace{\omega^2 \frac{i^2 (\hat{\boldsymbol{n}} \cdot \boldsymbol{x})^2}{c^2} \vec{\mathbb{E}} \underbrace{\mathrm{e}^{-i\omega t}}_{\boldsymbol{E}^{(2)}}$$

Para el campo B puede hacerse una descomposición análoga,

$$\nabla \times (\boldsymbol{E}^{0} + \boldsymbol{E}^{1} + \boldsymbol{E}^{2}) = -\frac{1}{c} \frac{\partial}{\partial t} (\boldsymbol{B}^{0} + \boldsymbol{B}^{1} + \boldsymbol{B}^{2})$$

$$0 + \underbrace{\nabla \times \boldsymbol{E}^{1}}_{\propto \omega} + \underbrace{\nabla \times \boldsymbol{E}^{2}}_{\propto \omega^{2}} = \underbrace{\frac{i\omega}{c} \boldsymbol{B}^{0}}_{\propto \omega} + \underbrace{\frac{i\omega}{c} \boldsymbol{B}^{1}}_{\propto \omega^{2}} + \underbrace{\frac{i\omega}{c} \boldsymbol{B}^{2}}_{\propto \omega^{3}}$$

$$-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = -\frac{1}{c} (-i\omega) \vec{\mathbb{B}} e^{-i\omega t} - \frac{1}{c} \omega (-i\omega) \frac{i\hat{n} \cdot \boldsymbol{x}}{c} \vec{\mathbb{B}} e^{-i\omega t} - \frac{1}{c} \frac{\omega^{2}}{2} (-i\omega) \frac{i^{2} (\hat{n} \cdot \boldsymbol{x})^{2}}{c^{2}} \vec{\mathbb{B}} e^{-i\omega t}$$

$$-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = \frac{i\omega}{c} \boldsymbol{B}^{(0)} + \underbrace{\frac{i\omega}{c} \underbrace{i\omega}_{c} \vec{\mathbb{B}} e^{-i\omega t}}_{\boldsymbol{B}^{(1)}} + \underbrace{\frac{i\omega}{c} \underbrace{\omega^{2}}_{\boldsymbol{E}^{(2)}} \underbrace{\frac{i^{2} (\hat{n} \cdot \boldsymbol{x})^{2}}{c^{2}} \vec{\mathbb{B}} e^{-i\omega t}}_{\boldsymbol{B}^{(2)}}$$

Esto establece una equivalencia entre órdenes,

$$\nabla \times \mathbf{E}^{(0)} = 0$$
 $\nabla \times \mathbf{E}^{(1)} = -\frac{1}{c} \frac{\partial \mathbf{B}^{(0)}}{\partial t}$

donde el orden cero es el de los campos estáticos.

Consideramos $\omega/c\ell\ll 1$ con ℓ alguna longitud característica del sistema. Esta es la aproximación del sistema para poder usar cuasiestacionario.

En general, en el método cuasiestacionario se alternarán para un mismo campo el valor constante (no necesariamente cero) y alguna función de (x,t). Es decir, que si $E_par=cte$. entonces $E_impar\neq cte$. y si $B_impar\neq cte$. entonces $B_par=cte$.

Recordemos que la nomenclatura de corrientes en

$$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J} + \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}$$

es corriente de conducción y de desplazamiento respectivamente.

Cuando un conductor no es perfecto vale la ley de Ohm,

$$J = \sigma E$$
 $\delta = \frac{c^2}{2\pi\omega\sigma}$

donde δ es la profundidad pelicular, una longitud de penetración.

Orden dos	$oldsymbol{ abla}\cdot\epsilonoldsymbol{E}^{(2)}=4\pi ho^{(2)}$	$oldsymbol{ abla} imes oldsymbol{E} oldsymbol{E} = -rac{1}{c}rac{\partial oldsymbol{B}^{(2)}}{\partial t}$	$oldsymbol{ abla}\cdotoldsymbol{B}^{(2)}=0$	$oldsymbol{ abla} imes rac{1}{\mu} oldsymbol{B}^{(2)} = rac{4\pi}{c} oldsymbol{J}^{(2)} + rac{1}{c} rac{\partial \epsilon oldsymbol{E}^{(1)}}{\partial t}$	$oldsymbol{ abla} \cdot oldsymbol{J}^{(2)} = -rac{\partial ho^{(1)}}{\partial t}$
Orden uno	$oldsymbol{ abla}\cdot\epsilonoldsymbol{E}^{(1)}=4\pi ho^{(1)}$	$oldsymbol{ abla} imesoldsymbol{E}^{(1)}=-rac{1}{c}rac{\partialoldsymbol{B}^{(1)}}{\partial t}$	$oldsymbol{ abla}\cdotoldsymbol{B}^{(1)}=0$	$oldsymbol{ abla} imes rac{1}{\mu} oldsymbol{B}^{(1)} = rac{4\pi}{c} oldsymbol{J}^{(1)} + rac{1}{c} rac{\partial \epsilon oldsymbol{E}^{(0)}}{\partial t}$	$oldsymbol{ abla} \cdot oldsymbol{J}^{(1)} = -rac{\partial ho^{(0)}}{\partial t}$
Orden cero	$\boldsymbol{\nabla}\cdot\epsilon\boldsymbol{E}^0=4\pi\rho^0$	$oldsymbol{ abla} imesoldsymbol{E}^{(0)}=0$	$oldsymbol{ abla}\cdotoldsymbol{B}^{(0)}=0$	$oldsymbol{ abla} imes rac{1}{\mu} oldsymbol{B}^{(0)} = rac{4\pi}{c} oldsymbol{J}^{(0)}$	$oldsymbol{ abla} \cdot oldsymbol{J}^{(0)} = 0$

Capítulo 6

Ondas planas

Lejos de las fuentes de campo las ecuaciones de Maxwell son

$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

Podemos derivar con respecto al tiempo en cada ecuación de rotor y reemplazar con la otra de manera que

$$\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\boldsymbol{B})=\frac{1}{c}\frac{\partial}{\partial t}\left(-\frac{1}{c}\frac{\partial\boldsymbol{B}}{\partial t}\right)=\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\boldsymbol{B})-\nabla^2\boldsymbol{B}$$

$$\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\boldsymbol{E})=-\frac{1}{c}\frac{\partial}{\partial t}\left(\frac{1}{c}\frac{\partial\boldsymbol{E}}{\partial t}\right)=\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\boldsymbol{E})-\nabla^{2}\boldsymbol{E}$$

y esto nos lleva a

$$\nabla^2 \boldsymbol{B} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0 \qquad \nabla^2 \boldsymbol{E} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$

dos sendas ecuaciones de onda para \boldsymbol{E} y \boldsymbol{B} . Pero es sabido que la solución de

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0$$

es

$$\psi = A \, \mathrm{e}^{i(\boldsymbol{k}\cdot\boldsymbol{x} - \omega t)} + B \, \mathrm{e}^{i(\boldsymbol{k}\cdot\boldsymbol{x} - \omega t)}$$

de modo que podemos postular como soluciones para nuestras ecuaciones de onda a

$$m{E} = \vec{\mathbb{E}}_0 e^{i(m{k}\cdotm{x} - \omega t)}$$
 $m{B} = \vec{\mathbb{B}}_0 e^{i(m{k}\cdotm{x} - \omega t)}$

Se tiene además que ${\pmb k}=k\hat n$ da a través de $\hat n$ la dirección de propagación de la onda. El número de onda k podrá ser complejo lo cual refleja atenuación. Las características del medio entran a través de

$$k = \sqrt{\mu \epsilon} \frac{\omega}{c}$$

Por su parte $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ son complejos uniformes y podrán dar desfasajes.

Al utilizar las ecuaciones de divergencia sobre las soluciones se obtiene que

$$\hat{n} \cdot \vec{\mathbb{E}}_0 = 0$$
 $\hat{n} \cdot \vec{\mathbb{B}}_0 = 0$

de manera que las ondas se propagan perpendicularmente a los campos, por ello las ondas electromagnéticas son transversales.

Utilizando las ecuaciones de rotor se llega a la importante relación

$$\vec{\mathbb{B}}_0 = \sqrt{\mu \epsilon} \hat{n} \times \vec{\mathbb{E}}_0$$

de modo que los vectores $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ también son perpendiculares. Si el vector $\mathbf{k} \in \mathbb{R}$ entonces $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ tienen la misma fase.

En el vacío o en un medio LIH los campos E y B estarán en fase. Asimismo

$$S \parallel \hat{n}$$

pues $m{S} \propto m{E} imes m{H}$.

En un medio anisótropo $\nabla \cdot \boldsymbol{D} = \nabla \cdot (\epsilon \boldsymbol{E}) = 0$ siendo ϵ un tensor. Allí $\vec{\mathbb{E}}_0 \cdot \hat{n} \neq 0$ salvo que ϵ estee diagonalizado y $\boldsymbol{E} \parallel$ al eje principal.

Notemos que E, B y \hat{n} forman una terna derecha.

6.0.1 Sobre complejos

$$\mathcal{R}(A) = \frac{1}{2}(A + A^*) \qquad \text{con } A \in \mathbb{C}$$

Sean

$$oldsymbol{A}(oldsymbol{x},t) = oldsymbol{A}(oldsymbol{x}) \, \mathrm{e}^{-i\omega t}$$
 $oldsymbol{B}(oldsymbol{x},t) = oldsymbol{B}(oldsymbol{x}) \, \mathrm{e}^{-i\omega t}$

siempre trabajaremos en general con dependencias temporales armónicas y metemos $e^{i \mathbf{k} \cdot \mathbf{x}}$ en el módulo $v b A_0$ que pasa a depender de \mathbf{x} .

Los campos físicos son siempre la parte real de las expresiones complejas.

$$\mathcal{R}(\boldsymbol{A} + \boldsymbol{B}) = \mathcal{R}(\boldsymbol{A}) + \mathcal{R}(\boldsymbol{B})$$

Acá hay que hacer las cuentas para demostrar todo esto que acá se dice sin más. con operaciones lineales es lo mismo tomar parte real antes o después.

$$\mathcal{R}(\boldsymbol{A}.\boldsymbol{B}) \neq \mathfrak{R}(\boldsymbol{A}) + \mathcal{R}(\boldsymbol{B})$$

con operaciones no lineales no es lo mismo. Para hacer producto necesito tomar la parte real de cada factor y entonces

$$\Re(\boldsymbol{A}).\Re(\boldsymbol{B}) = \frac{1}{2}\Re(\boldsymbol{A}.\boldsymbol{B}^* + \boldsymbol{A}.\boldsymbol{B}\,\mathrm{e}^{-i2\omega t})$$

Pero como en las aplicaciones estaré interesado en el promedio sobre un número entero de períodos,

$$\langle \boldsymbol{A}\boldsymbol{B}\rangle = \langle \Re(\boldsymbol{A}).\Re(\boldsymbol{B})\rangle = \frac{1}{2}\Re(\boldsymbol{A}.\boldsymbol{B}^*)$$

6.0.2 Poynting promedio y energías promedio

Los campos E y H en ondas electromagnéticas toman la forma

$$m{E} = ec{\mathbb{E}}(m{x}) \, \mathrm{e}^{-i\omega t} \qquad m{H} = ec{\mathbb{H}}(m{x}) \, \mathrm{e}^{-i\omega t}$$

de manera que

$$\begin{split} \boldsymbol{S}(\boldsymbol{x},t) &= \frac{c}{4\pi} \frac{1}{2} \Re(\vec{\mathbb{E}} \times \vec{\mathbb{H}}^* + \vec{\mathbb{E}} \times \vec{\mathbb{H}} \, \mathrm{e}^{-i2\omega t}) \\ &\langle \boldsymbol{S}(\boldsymbol{x},t) \rangle = \frac{c}{8\pi} \Re(\vec{\mathbb{E}} \times \vec{\mathbb{H}}^*) \end{split}$$

En un MLIH es

$$\vec{\mathbb{B}} = \sqrt{\mu \epsilon} \hat{n} \times \vec{\mathbb{E}} \qquad \qquad \vec{\mathbb{H}} = \sqrt{\frac{\epsilon}{\mu}} \hat{n} \times \vec{\mathbb{E}}$$

donde usamos que ${m H}={m B}/\mu$

$$\langle \boldsymbol{S}(\boldsymbol{x},t) \rangle = \frac{c}{8\pi} \Re(\vec{\mathbb{E}} \times \sqrt{\frac{\epsilon}{\mu}} (\hat{\boldsymbol{n}} \times \vec{\mathbb{E}})^*)$$

$$\langle \boldsymbol{S}(\boldsymbol{x},t) \rangle = \frac{c}{8\pi} \sqrt{\frac{\epsilon}{\mu}} (\hat{\boldsymbol{n}}(\vec{\mathbb{E}} \cdot \vec{\mathbb{E}}^*) - \vec{\mathbb{E}}^* (\vec{\mathbb{E}} \cdot \hat{\boldsymbol{n}}))$$

y finalmente

$$\langle \boldsymbol{S}(\boldsymbol{x},t)\rangle = \frac{c}{8\pi}\sqrt{\frac{\epsilon}{\mu}}|\vec{\mathbb{E}}|^2\hat{n}$$

que es el vector de Poynting para ondas en MLIH.

$$\begin{split} U(\boldsymbol{x},t) &= \frac{1}{8\pi}(\boldsymbol{H}\cdot\boldsymbol{B} + \boldsymbol{E}\cdot\boldsymbol{D}) \\ \langle U(\boldsymbol{x},t) \rangle &= \frac{1}{8\pi}\frac{1}{2}\Re(\vec{\mathbb{H}}\cdot\vec{\mathbb{B}}^* + \vec{\mathbb{E}}\cdot\vec{\mathbb{D}}^*) \\ \langle U(\boldsymbol{x},t) \rangle &= \frac{1}{16\pi}\Re(\frac{1}{\mu}|\vec{\mathbb{B}}|^2 + \epsilon|\vec{\mathbb{E}}|^2) = \frac{1}{8\pi}|\vec{\mathbb{E}}|^2 \end{split}$$

puesto que

$$|\vec{\mathbb{B}}|^2 = \mu \epsilon |\vec{\mathbb{E}}|^2,$$

y entonces la densidad de energía promedio es

$$\langle U(\boldsymbol{x},t)\rangle = \frac{1}{8\pi} |\vec{\mathbb{E}}|^2.$$

6.1 Polarización de ondas

Una onda plana bien general en \hat{n} es

$$\boldsymbol{E}(\boldsymbol{x},t) = (\hat{\epsilon}_1 \vec{\mathbb{E}}_1 + \hat{\epsilon}_2 \vec{\mathbb{E}}_2) e^{i(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t)}$$

Figura 1.1

Si $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ están en fase entonces $\boldsymbol{E}(\boldsymbol{x},t)$ está linealmente polaridaza con θ fijo. Es como que \boldsymbol{E} viaja siempre por el mismo andarivel, oscilando. Las amplitudes $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ son complejos para permitir la diferencia de fase entre componentes.

Si $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ tienen fase arbitraria entonces ${\pmb E}({\pmb x},t)$ está elípticamente polarizada

Si $|\vec{\mathbb{E}}_1|=|\vec{\mathbb{E}}_2|$ y la fase es $\pi/2$ entonces ${\pmb E}({\pmb x},t)$ está circularmente polarizada.

$$\vec{\mathbb{E}}_2 = \vec{\mathbb{E}}_1 e^{i\pi/2} = \vec{\mathbb{E}}_1 i$$

entonces

$$\boldsymbol{E}(\boldsymbol{x},t) = \vec{\mathbb{E}}_1(\hat{\epsilon}_1 \pm \hat{\epsilon}_2) e^{i(\boldsymbol{k}\cdot\boldsymbol{x} - \omega t)}$$

donde el + corresponde a \mathcal{C}^+ antihoraria y el - a horaria. Nos definimos por comodidad,

$$\hat{\epsilon}_+ \equiv \frac{\hat{\epsilon}_1 + i\hat{\epsilon}_2}{\sqrt{2}} \qquad \qquad \hat{\epsilon}_- = \frac{\hat{\epsilon}_1 - i\hat{\epsilon}_2}{\sqrt{2}}$$

una base de polarizaciones. Se cumplen

$$\begin{split} \hat{\epsilon}_{\pm}\cdot\hat{\epsilon}_{\mp}^* &= 0 & \hat{\epsilon}_{\pm}\cdot\hat{\epsilon}_{\pm}^* &= 1 \\ \\ \hat{\epsilon}_{1} &= \sqrt{2}(\hat{\epsilon}_{+} + i\hat{\epsilon}_{-}) & \hat{\epsilon}_{2} &= \sqrt{2}(\hat{\epsilon}_{+} - i\hat{\epsilon}_{-}) \end{split}$$

luego cualquier polarización se puede escribir como combinación lineal de \mathcal{C}^+ y \mathcal{C}^- . Entonces una onda plana general es

$$\boldsymbol{E}(\boldsymbol{x},t) = (\hat{\epsilon}_{+}\vec{\mathbb{L}}_{+} + \hat{\epsilon}_{-}\vec{\mathbb{L}}_{-}) e^{i(\boldsymbol{k}\cdot\boldsymbol{x} - \omega t)}$$

Una onda que rebota en un espejo transfiere impulso lineal. Una onda \mathcal{C} lleva L pero no lo transfiere en un rebote perfecto. Por ser L un vectorial axial (pseudovector) el reflejo es equivalente a una simetría del sistema.

Tenemos dos base entonces $\{\hat{\epsilon}_1, \hat{\epsilon}_2\}$ y $\{\hat{\epsilon}_+, \hat{\epsilon}_-\}$. Además,

$$\frac{\vec{\mathbb{E}}_{-}}{\vec{\mathbb{E}}_{\perp}} = r \, \mathrm{e}^{i\alpha}$$

si $r=\pm 1, \alpha=0$ entonces estamos frente a linealmente polarizada.

6.2 Reflexión y refracción de ondas en medios

Partimos de una onda

$$\pmb{E}(\pmb{x},t) = \vec{\mathbb{E}}_0 \; \mathrm{e}^{i(\pmb{k}\cdot\pmb{x}-\omega t)}$$

donde

$$k = \sqrt{\mu \epsilon} \frac{\omega}{c} = \frac{\omega}{v}$$

siendo v la velocidad en el medio. Los índices de refracción serán

$$n = \sqrt{\mu \epsilon}$$
 $n' = \sqrt{\mu' \epsilon'}$

Figura 2.2

de tal suerte que los campos son

$$m{B} = rac{\sqrt{\mu\epsilon}}{k} \; m{k} imes m{E} \qquad \quad m{H} = \sqrt{rac{\epsilon}{\mu}} rac{1}{k} \; m{k} imes m{E}$$

y tenemos

$$|{m k}| = |{m k}''|$$
 pues $\mu'' = \mu, \; \epsilon'' = \epsilon$

Utilizando las condiciones de contorno llegamos a

$$\omega t = \omega' t = \omega'' t$$

$$oldsymbol{k} \cdot oldsymbol{x}\mid_{z=0} = oldsymbol{k}' \cdot oldsymbol{x}\mid_{z=0} = oldsymbol{k}'' \cdot oldsymbol{x}\mid_{z=0}$$

La existencia de condiciones de contorno en z=0 que deben ser satisfechas en todo t en todo punto (x,y) lleva a todos los factores de fase iguales en z=0. Se debe tener ${\bf B}$ normal continuo y ${\bf D}$ normal continuo también, lo cual viene de ${\bf \nabla}\cdot{\bf B}=0$ y ${\bf \nabla}\cdot{\bf D}=0$.

La frecuencia ω es la misma para el medio 1 y el medio 2 pues $\lambda_1 \neq \lambda_2$. Los tres vectores k, k', k'' están en un mismo plano, entonces

$$k\sin(i) = k'\sin(r) = k''\sin(i'),$$

y se deducen las consecuencias

$$n\sin(i) = n'\sin(i') \qquad \text{Ley de Snell},$$

$$i = i'$$
 Ley de reflexión

Luego se plantean los contornos

$$\begin{array}{lll} D_{\hat{n}}: & & [\boldsymbol{D}_2-\boldsymbol{D}_1]\cdot\hat{\boldsymbol{n}}=0 & \rightarrow & [\epsilon'\boldsymbol{E}_0^{'}-\epsilon(\boldsymbol{E}_0+\boldsymbol{E}_0^{''})]\cdot\hat{\boldsymbol{n}}=0 \\ \\ E_{\hat{t}}: & & \hat{n}\times[\boldsymbol{E}_2-\boldsymbol{E}_1]=0 & \rightarrow & \hat{n}\times[\boldsymbol{E}_0^{'}-(\boldsymbol{E}_0+\boldsymbol{E}_0^{''})]=0 \\ \\ B_{\hat{n}}: & & [\boldsymbol{k}'\times\boldsymbol{E}_0^{'}-(\boldsymbol{k}\times\boldsymbol{E}_0+\boldsymbol{k}''\times\boldsymbol{E}_0^{''})]\cdot\hat{\boldsymbol{n}} \end{array} \qquad \text{Igual a cero esto?}$$

$$H_{\hat{t}}: \qquad \hat{n} \times \left[\frac{1}{u'} \mathbf{k}' \times \mathbf{E}'_0 - \frac{1}{u} (\mathbf{k} \times \mathbf{E}_0 + \mathbf{k}'' \times \mathbf{E}''_0)\right] = 0$$

de manera que

$$\mathbf{B} = \frac{\sqrt{\mu\epsilon}}{k} \mathbf{k} \times \mathbf{E} = \frac{c}{\omega} \mathbf{k} \times \mathbf{E}$$
 $\mathbf{H} = \frac{c}{\mu\omega} \mathbf{k} \times \mathbf{E}$

donde c/ω es el mismo para ambos medios.

Aplicando diligentemente los contornos se llega a las *relaciones de Fresnel* que son los cocientes de las amplitudes relativas.

Usando $\mu \sim 1$ (válido para medios transparentes) tenemos

$$\begin{split} TE & TM \\ \frac{E_0^{''}}{E_0} = -\frac{\sin(i-r)}{\sin(i+r)} & \frac{E_0^{''}}{E_0} = \frac{\tan(i-r)}{\tan(i+r)} \\ \frac{E_0^{''}}{E_0} = 1 + \frac{\sin(r-i)}{\sin(i+r)} & \frac{E_0^{''}}{E_0} = \frac{2\sin(r)\cos(i)}{\sin(i+r)\cos(i-r)} \end{split}$$

Figura 2.3

frecuencias ópticas $\mu'/\mu=1$

Si $i \sim 0$ entonces TE y TM son similares a menos de un signo.

Polarization (Brewster angle)

Es un i_B tal que no hay onda \boldsymbol{E} reflejada (en TM),

$$E_0'' = 0,$$

puest $tan(i+r) \to \infty$

$$i_b = atan\left(\frac{n'}{n}\right),$$

pues $i_B + r = \pi/2$ entonces

$$\frac{n}{n'}\sin(i_B) = \cos(i_B) \rightarrow i_b = atan\left(\frac{n'}{n}\right),$$

Sirve para producir luz polarizada linealmente.

Figura 2.4

Atención, pero

$$S_i \neq S_r + S_t$$

pues S no está relacionado linealmente con E, B, y lo que sí vale es

$$S_i \cdot \hat{n} = S_r \cdot \hat{n} + S_t \cdot \hat{n}$$

Reflexión interna total

Sea $n_{inc}>n_{trans}.$ Entonces se da que

$$n\sin(i) = n'\sin(r),$$

$$\frac{n}{n'}\sin(i)=\sin(r),$$

y el LHS es mayor igual a 1 para algunos i. Existe un ángulo límite

$$\sin(r) = 1 = \frac{n}{n'}\sin(i)$$

$$i_0 = asin\left(\frac{n'}{n}\right)$$

de manera que si $i \geq i_0$ entonces $\sin(r) > 1$ y se debe tener un $r \in \mathbb{C}$.

Figura 2.5

Si $\sin(r)>1$ se tiene $\sin(r)^2>1$ y como por teorema de Pitágoras es

$$\cos(r)^2 = 1 - \sin(r)^2 \rightarrow \cos(r) = i\sqrt{\sin(r)^2 - 1}$$

donde notemos espcialmente que hemos sacado fuera un $\sqrt{-1}=i$ para que el argumento de la raíz sea positivo en este caso especial. Luego

$$\cos(r) = i\sqrt{\frac{n}{n'}\sin(i)^2 - 1} = ia$$

y si $\sin(r) = 1$ entonces $r = \pi/2$. Entonces

$$\mathrm{e}^{i(\pmb{k}\cdot\pmb{x})} = \mathrm{e}^{i(k\cos(r)z+k\sin(r)x)} = \underbrace{\mathrm{e}^{-kaz}}_{\text{atenuación propagación}} \underbrace{\mathrm{e}^{ik\sin(r)x}}_{\text{propagación}}$$

6.3 Corrientes en conductores

La continuidad de la carga y la divergencia de \boldsymbol{D} ,

$$\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$$
 $\nabla \cdot \boldsymbol{D} = 4\pi \rho$,

nos llevan a

$$\nabla \cdot \boldsymbol{J} + \frac{1}{4\pi} \nabla \cdot \frac{\partial \boldsymbol{D}}{\partial t} = 0$$

$$\nabla \cdot \left(\boldsymbol{J} + \frac{1}{4\pi} \frac{\partial \boldsymbol{D}}{\partial t} \right) = 0$$

y esto lo puedo pensar como una densidad de corriente estacionaria,

$$\nabla \cdot \boldsymbol{J}_{e} = 0 \tag{3.1}$$

siendo J_e proveniente de un E' tal que $\nabla \times E' \neq 0$. Recordando la ley de Ohm microscópica, $J = \sigma E$,

$$oldsymbol{D} = \epsilon oldsymbol{E} = rac{\epsilon}{\sigma} oldsymbol{J}$$

y esto nos conduce a una ecuación diferencial para J,

$$\boldsymbol{J}_{e} = \boldsymbol{J} + \frac{\epsilon}{4\pi\sigma} \frac{\partial \boldsymbol{J}}{\partial t} = \left(1 + \frac{\epsilon}{4\pi\sigma} \frac{\partial}{\partial t}\right)$$

y entonces

$$oldsymbol{J} = oldsymbol{J}_e + oldsymbol{J}_0 \, \mathrm{e}^{-4\pi\sigma/\epsilon t}$$

siendo el segundo término del RHS la parte no estacionaria de la corriente. Evidentemente, si $t \to \infty$ esta tiende a cero.

Dado que se verifica (3.1) se tiene

$$-rac{\partial
ho}{\partial t} = oldsymbol{
abla} \cdot oldsymbol{J}_0 \, \mathrm{e}^{-4\pi\sigma/\epsilon t}$$

y definimos un tiempo de relajación

$$\tau = \frac{\epsilon}{4\pi\sigma}$$

que es un tiempo característico en el cual se alcanzarían condiciones estacionarias.

Podemos distinguir dos comportamientos entonces en términos de este tiempo de relajación τ , si $t<\tau$

$$oldsymbol{J} = oldsymbol{J}_e + oldsymbol{J}_0 \, \mathrm{e}^{-t/ au}$$

y en cambio cuando $t\gg au$ se tendrá $m{J}pprox m{J}_e$ de manera que

$$\nabla \cdot \boldsymbol{J} = \nabla \cdot \boldsymbol{J}_{o}$$
.

Por otra parte con respecto a los conductores, si se da que ($\sigma \ll 1$) estamos en presencia de un conductor malo y no se alcanza *nunca* la condición de E=0 en el interior. Tienen un τ grande. Si estamos ante un conductor perfecto ($\sigma \rightarrow$

Un campo irrotacional no puede mantener una corriente estacionaria, necesito una FEM para ella. La FEM es una fuente de *E* no conservativo.

 ∞) la corriente es estacionaria y se tiene un E=0 en el interior, el tiempo τ es pequeño, tendiendo a cero.

Podemos desarrollar un enfoque similar en términos de la densidad de carga ρ .

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{J} &= -\frac{\partial \rho}{\partial t} & \boldsymbol{J} = \sigma \boldsymbol{E} = \frac{\sigma}{\epsilon} \boldsymbol{D} \\ \frac{\partial \rho}{\partial t} &+ \frac{4\pi\sigma}{\epsilon} \rho = 0 & \boldsymbol{\nabla} \cdot \boldsymbol{J} = \frac{\sigma}{\epsilon} \boldsymbol{\nabla} \cdot \boldsymbol{D} = \frac{4\pi\sigma}{\epsilon} \rho \end{split}$$

Entonces

$$\rho = \rho_0 \, \mathrm{e}^{-t/\tau} \qquad \qquad \tau \equiv \frac{\epsilon}{4\pi\sigma}, \label{eq:tau_tau}$$

y una vez que $t\gg \tau$ y se estabiliza el sistema es $\rho=\rho_0$ entonces

$$\nabla \cdot \boldsymbol{J} = 0 \qquad \qquad \frac{\partial \rho}{\partial t} = 0$$

6.4 Campo electromagnético en un medio conductor

Tenemos un campo EM de fuentes lejanas y queremos ver qué sucede en un medio conductor. Se verifican

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J} + \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}$$
$$\nabla \cdot \boldsymbol{D} = 0 \qquad \nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$$

siendo $\rho_L=0$ y μ,ϵ homogéneos. Modelando de acuerdo

$$\boldsymbol{B} = \mu \boldsymbol{E}$$
 $\boldsymbol{D} = \epsilon \boldsymbol{E}$

y siendo la ley de Ohm microscópica

$$J = \sigma E$$
,

y reemplazando en la ecuación del rotor para ${m H}$ se tiene

$$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \sigma \boldsymbol{E} + \frac{\epsilon}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \nabla \times \frac{\boldsymbol{B}}{\boldsymbol{\mu}}$$

$$\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\boldsymbol{E})=-\frac{1}{c}\boldsymbol{\nabla}\times\left(\frac{\partial\boldsymbol{B}}{\partial\boldsymbol{t}}\right),$$

$$\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\boldsymbol{E}) - \nabla^2\boldsymbol{E} = -\frac{1}{c}\frac{\partial}{\partial t}(\boldsymbol{\nabla}\times\boldsymbol{B})$$

y ahora podemos introducir la expresión que tenemos para el rotor de ${\pmb H}$ y usar que la divergencia de ${\pmb E}$ es nula de manera que

$$-\nabla^2 \mathbf{E} = -\frac{\mu}{c} \frac{\partial}{\partial t} \left[4\pi \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right]$$

y entonces

$$-\nabla^2 \mathbf{E} + \frac{4\pi\mu\sigma}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \frac{\mu\varepsilon}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$

que no es otra cosa que una ecuación de ondas general. Un par de casos particulares interesantes son el caso $\sigma=0$ que corresponde a un dieléctrico, para el que se tiene

$$\nabla^2 \mathbf{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0,$$

una ecuación de ondas usual. Para el caso general $\sigma > 0$ (conductor) podemos pensar en una solución general del tipo onda plana armónica,

$$E(x) = E_0 e^{i(k \cdot x - \omega t)}$$

cuyas derivadas temporales son fáciles de hallar y resultan proporcionales a E de manera que reemplazando este *ansatz* en la ecuación arribamos a

$$\nabla^2 \mathbf{E} + \frac{4\pi}{c^2} i\mu \sigma \omega \mathbf{E} + \frac{1}{c^2} \mu \varepsilon \omega^2 \mathbf{E} = 0,$$

que se puede agrupar de manera más inteligente como

$$\nabla^2 \mathbf{E} + \frac{\mu \varepsilon \omega^2}{c^2} \left(1 + i4\pi \frac{\sigma}{\varepsilon \omega} \right) \mathbf{E} = 0$$

Podemos definir una especie de número de onda efectivo

$$K^2 \equiv k^2 \left(1 + i4\pi \frac{\sigma}{\varepsilon \omega} \right)$$

y considerar la ecuación de onda homogénea

$$\nabla^2 \mathbf{E} + K^2 \mathbf{E} = 0.$$

con los diferentes casos particulares ocurriendo dentro de \mathbb{K}^2 . Así para el caso de un excelente conductor,

$$4\pi \frac{\sigma}{\varepsilon \omega} \gg 1$$

se tiene

$$\nabla^2 \mathbf{E} + i \frac{4\pi\sigma\mu\omega}{c^2} \mathbf{E} = 0$$

que es una ecuación de difusión para la corriente de conducción (?). Por el contrario en el caso de un conductor pobre

$$4\pi \frac{\sigma}{\varepsilon \omega} \ll 1$$

resulta en

$$\nabla^2 \mathbf{E} + \frac{\mu \varepsilon \omega^2}{c^2} \mathbf{E} = 0$$

que es una ecuación de ondas usual dando como resultado una propagación. Tiende a la ecuación de ondas con $\sigma = 0$.

En general podemos escribir

$$K^2 = k^2 \left(1 + \frac{i}{\tau \omega} \right)$$

donde τ es la relajación del medio y ω es la vibración del campo. Se puede poner en términos del período,

$$K^2 = k^2 \left(1 + \frac{iT}{2\pi\tau} \right)$$

y si $\tau \gg T$ se tiene propagación.

Para metales $\tau \approx 10^{-14}$ segundos y entonces es válida la ecuación de difusión hasta la región de radiofrecuencias. Por ejemplo, si

$$\frac{4\pi\sigma}{\varepsilon\omega}\gg 1 \quad \rightarrow \quad \frac{1}{\tau\omega}\gg 1 \quad \rightarrow \quad \frac{1}{\tau}\gg\omega$$

y para metales se cumple que $1.10^{14} \gg 6.10^6$ siendo este último un valor Estos ejemplitos hay que razonable para ondas de radio.

revisarlos y reescribirlos.

Si consideramos los campos funciones de la distancia ξ de una plano al origen O, tendremos

Figura 4.6

los campos son constantes en los planos de normal \hat{n} (ver ilustración).

$$\boldsymbol{\nabla} = \hat{\boldsymbol{n}} \frac{\partial}{\partial \boldsymbol{\xi}}$$

y de acuerdo a Maxwell,

$$\hat{n} \cdot \frac{\partial \mathbf{D}}{\partial \xi} = 0 \qquad \qquad \hat{n} \cdot \frac{\partial \mathbf{B}}{\partial \xi} = 0$$

$$\hat{n} \times \frac{\partial \mathbf{E}}{\partial \xi} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \hat{n} \times \frac{\partial \mathbf{H}}{\partial \xi} = \frac{4\pi}{c} \sigma \mathbf{E} + \frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t}$$

y si tomamos producto escalar de la última ecuación con la normal resulta

$$\hat{n} \cdot \left(\hat{n} \times \frac{\partial \mathbf{H}}{\partial \xi} \right) = \frac{4\pi}{c} \sigma E_n + \frac{\varepsilon}{c} \frac{\partial E_n}{\partial t} = 0$$

de manera que

$$E_n = E_n^0 \, \mathrm{e}^{-\frac{4\pi\sigma}{\varepsilon}t}.$$

El $E_{\hat{n}}$ (electrostático) se apaga exponencialmente con el tiempo de relajación del conductor.

$$\hat{n} \cdot \left(\hat{n} \times \frac{\partial \mathbf{E}}{\partial \xi} \right) = \frac{\mu}{c} \frac{\partial H}{\partial t} = 0$$

 H_n solo es constante en el tiempo y uniforme en el espacio.

No se ve influenciado por el conductor. Asimismo la energía está metida casi por completo en el campo magnético cuando es un muy buen conductor.

$$K^2 = \mu \varepsilon \frac{\omega^2}{c^2} \left[1 + i \frac{4\pi\sigma}{\varepsilon\omega} \right]$$

de manera que podemos escribir

$$K = \beta + i\frac{\alpha}{2}$$

siendo β el término responsable de la propagación, α el término que se atenua. Esta escritura es sólo conveniente puesto que resulta que

$$\beta = \sqrt{\mu\varepsilon} \frac{\omega}{c} \left[\frac{1 + \sqrt{1 + (\omega\tau)^{-2}}}{2} \right]^{1/2} = k$$

$$\frac{\alpha}{2} = \sqrt{\mu \varepsilon} \frac{\omega}{c} \left[\frac{1 + \sqrt{-1 + (\omega \tau)^{-2}}}{2} \right]^{1/2} = k$$

y ahí vemos la simetría.

Entonces resulta que para el caso de un mal conductor $\frac{4\pi\sigma}{\omega\varepsilon}\ll 1$ o bien $\frac{4\pi\sigma}{\varepsilon}\ll \omega$ o bien $1/\tau\ll\omega$ se tiene

$$K = \sqrt{\mu \varepsilon} \frac{\omega}{c} + i \frac{2\pi \sqrt{\mu} \sigma}{c \sqrt{\varepsilon}}$$

y en cambio por el mismo razonamiento pero para un excelente conductor, $1/\tau\gg\omega$

$$K = \frac{\sqrt{2\pi\omega\mu\sigma}}{c}(1+i)$$

y aquí la parte de atenuación $\alpha/2=\alpha(\omega)/2$ de modo que hay distorsión. En general tendremos

$$\boldsymbol{E} = \vec{\mathbb{E}}_0 e^{-\alpha/2\hat{n}\cdot\boldsymbol{x}} e^{i[\beta\hat{n}\cdot\boldsymbol{x} - \omega t]}$$

que nos muestra una primera exponencial real que es el factor de atenuación. Entre más conductor un medio más rápida es la atenuación.

$$m{H} = rac{c}{\mu\omega} \left[eta + irac{lpha}{2}
ight] \hat{k} imes m{E}$$

de modo que si $k \in \mathbb{R}^3$ entonces E_0, B_0 tienen la misma fase. Si en cambio k pertenece a \mathbb{C}^3 hay crecimiento o decaimiento exponencial en algunas direcciones. Vemos en una onda plana el caso de la atenuación se vería así

$$\mathbf{e}^{i(\boldsymbol{k}\cdot\boldsymbol{x}-\omega t)} = \mathbf{e}^{i(k\hat{n}_R\cdot\boldsymbol{x}+k\hat{n}_I\cdot\boldsymbol{x}-\omega t)} = \mathbf{e}^{i(k\hat{n}_R\cdot\boldsymbol{x}-\omega t)} + \mathbf{e}^{k\hat{n}_I\cdot\boldsymbol{x}}$$

6.4.1 Algunos ejemplos y casos

Recordemos

$$\omega = 2\pi\nu$$
 $k = \frac{2\pi}{\lambda} = \frac{\omega}{c}\sqrt{\mu\epsilon} = \frac{\omega}{v}$

Figura 4.7

Noción de algunos numeritos a partir de la tabla

$$\begin{array}{cccc} & \nu & \lambda \\ \text{celular} & 1.10^9 \text{ Hz} & 0.3 \text{ m} \\ \text{radio AM} & 1.10^6 \text{ Hz} & 300 \text{ m} \\ \text{radio FM} & 1.10^8 \text{ Hz} & 3 \text{ m} \end{array}$$

Figura 4.8

Para una malla metálica de interespaciado ℓ tenemos los casos $\lambda\gg\ell$ significa que es macizo para la onda. La penetración no dependerá de la $\sigma(\omega)$, es un conductor macizo.

 $\lambda \ll \ell$ es transparente para la onda. No ve el conductor.

Figura 4.9

En un buen conductor $\mu_M>\mu_E$ el material se comporta inductivamente. En un mal conductor $\mu_E>\mu_M$ el material se comporta capacitivamente.

Relatividad especial

7.1 Transformación de vectores

Digamos que un vector transforma

$$X_i^\prime = a_{ij} X_j$$

de manera que se verifique que las leyes físicas sean invariantes frente a rotaciones propias.

Einstein postula que:

- Todos los sistemas inerciales son equivalentes.
- La velocidad de la luz en un sistema inercial es constante. No depende del estado de movimiento del observador.

Sea un sistema S' que se mueve con velocidad \boldsymbol{v} de otro S en forma paralela a un eje (ver figura).

Figura 1.1

Se verifica entonces la transformación de Lorentz

$$x^{1'} = x^1$$

 $x^{2'} = x^2$
 $x^{3'} = \gamma [x^3 - \beta x^0]$
 $x^{0'} = \gamma [x^0 - \beta x^3]$

donde son

$$\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}} \qquad x^0 = ct$$

A la transformación [1] se le puede dar forma de rotación en funciones hiperbólicas como sigue

$$x^{0'} = x^0 \cosh(\eta) - x^3 \sinh(\eta)$$

$$x^{3'} = -x^0 \sinh(\eta) + x^3 \cosh(\eta)$$

donde seguimos viendo que las leyes son lineales en las coordenadas (el espacio es isótropo)

$$\begin{pmatrix} x^{0'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \cosh(\eta) & \sinh(\eta) \\ -\sinh(\eta) & \cosh(\eta) \end{pmatrix} \begin{pmatrix} x^0 \\ x^3 \end{pmatrix}$$

y no es otra cosa que una rotación en eje $\hat{0},\hat{3}$ con el ángulo $\eta=atanh(\beta)$. Notemos que se verifica la invariancia del módulo de la transformación

$$(x^{0'})^2 - ((x^{1'})^2 + (x^{2'})^2 + (x^{3'})^2) = (x^0)^2 - ((x^1)^2 + (x^2)^2 + (x^3)^2)$$

o en una notación más feliz

$$(ct')^2 - (x'^2 + y'^2 + z'^2) = (ct)^2 - (x^2 + y^2 + z^2)$$

Este espacio 4D es el de Minkowski y no es euclídeo.

$$\begin{pmatrix} x^{0'} \\ x^{1'} \\ x^{2'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta \gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$

La transformación inversa se obtiene tomando los reemplazos

$$x^{i'} \to x^i$$
 , $x^i \to x^{i'}$, $\beta \to -\beta$

El elemento invariante de línea es

$$ds^2 = (dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2 = ds'^2$$

o bien

$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

que es el tensor de la métrica. Se verifica

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Cuadrivectores en el espacio 4D

Un cuadrivector contravariante es

$$A^{\mu} = (A^0, A)$$

mientras que el covariante es

$$A_{\mu}=(A^0,-\pmb{A})$$

y vemos que las partes temporales son las mismas cambiando el signo de la espacial. Las reglas de transformación son

$$A'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} A^{\beta} \qquad A'_{\alpha} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} A_{\beta}$$

luego el producto interno es

$$\widetilde{A} \cdot \widetilde{B} \equiv A_{\alpha} B^{\alpha}$$

donde estamos usando convención de suma de Einstein, que significa que

$$\widetilde{A} \cdot \widetilde{B} = A^0 B^0 - \boldsymbol{A} \cdot \boldsymbol{B}$$

que es invariante por ser un escalar de Lorentz,

$$A_\alpha B^\alpha = A'_\alpha B'^\alpha$$

Intervalos entre eventos

Los intervalos deben ser invariantes relativistas y de Lorentz, si el intervalo es temporal se tiene

$$x^0 > x^i x_i \Rightarrow \delta s^2 > 0$$

y los eventos pueden estar conectados causalmente

$$x^0 < x^i x_i \Rightarrow \delta s^2 < 0$$

y los eventos no pueden estar conectados causalmente. Se cumple

$$\delta s^2 = (x^0)^2 - [(x^1)^2 + (x^2)^2 + (x^3)^2]$$

Operadores diferenciales

Tenemos la derivada respecto a una coordenada contravariante

$$\partial_{lpha} \equiv rac{\partial}{\partial x^{lpha}} = \left(rac{\partial}{\partial x^0}, oldsymbol{
abla}
ight)$$

que es la derivada covariante, y también la derivada respecto de una coordenada covariante

$$\partial^{\alpha} \equiv \frac{\partial}{\partial x_{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, -\nabla\right)$$

que es la derivada contravariante. Note la asimetría entre derivo respecto de arriba y es derivada abajo y viceversa. La notación abreviada puede inducir a confusiones.

La cuadridivergencia de un cuadrivector es un invariante,

$$\partial_{\alpha}A^{\alpha} = \frac{\partial A^0}{\partial x^0} + \boldsymbol{\nabla} \cdot \boldsymbol{A}$$

$$\partial^{\alpha}A_{\alpha} = \frac{\partial A^0}{\partial x^0} - \boldsymbol{\nabla}\cdot(-\boldsymbol{A})$$

y aquí vemos $\partial_{\alpha}A^{\alpha}=\partial^{\alpha}A_{\alpha}.$ Esto nos lleva al D'Alembertiano

$$\Box \equiv \partial_{\alpha} \partial^{\alpha} = \frac{\partial^2}{\partial x^{0^2}} - \nabla^2$$

S es el intervalo entre los eventos 1 y 2, y es un invariante lorentziano

$$s^2 = c^2(t_1 - t_2)^2 - |\boldsymbol{x}_1 - \boldsymbol{x}_2|^2$$

El intervalo es temporal si $s^2 > 0$ en cuyo caso se tiene

$$c\delta t > |\boldsymbol{x}_1 - \boldsymbol{x}_2|$$

lo cual significa que existe frame inercial donde $x_1=x_2$ los eventos ocurren en el mismo sitio de manera que pueden estar conectados causalmente; puesto que $c\delta t>0$ y $t_2>t_1$. Por el contrario si $c^2<0$ se tiene

$$c\delta t<|\boldsymbol{x}_1-\boldsymbol{x}_2|$$

y existe entonces frame inercial donde los dos eventos son en el mismo sitio $x_1=x_2$ y entonces $c\delta t<0$ y $t_2< t_1$ de manera que no pueden estar conectados causalmente.

Según se interpreta claramente del gráfico de la figura [ampliar].

$$x'^0=\gamma(x^0-\beta x^3) \qquad x'^3=\gamma(x^3-\beta x^0)$$

Figura 1.2

y si ahora es $x'^0 = 0$ entonces para un observador en S' se tiene

$$0 = \gamma(x^0 - \beta x^3)$$

o bien $x^0=\beta x^3$ y aquí es $x'^3=0$ de modo que

$$\frac{x^3}{\beta} = x^0$$

y entonces a de la figura puede ser causado por un suceso en el origen pero b no tiene conexión causal con el origen.

7.1.1 Transcurso del tiempo en un sistema con V grande

Sea v/c no despreciable

$$c\Delta t' = \gamma (c\Delta t - \beta \Delta z) \qquad \gamma > 1$$

$$\Delta t' = \gamma \Delta t \left(1 - \beta \frac{\Delta z}{c \Delta t} \right)$$

pero si en S' la partícula está en reposo es v=dz/dt de manera que

$$\Delta t' = \gamma \Delta t (1 - \beta^2)$$

$$\Delta t' = \Delta t (1 - \beta^2)^{1/2}$$

de modo que $\Delta t' < \Delta t$, en S' el tiempo transcurre más lentamente.

Figura 1.3

Número de onda y conteo

Un proceso de conteo (discreto) es invariante lorentziano

$$x'^3 = \gamma(x^3 - \beta x^0)$$

siendo ${m v}$ entre sistemas SS'. El número de crestas es

$$\begin{split} \#_s &= \frac{z_1-z}{\lambda} = \frac{k}{2\pi}(z_1-z) = \frac{k}{2\pi}(ct-z) = \frac{1}{2\pi}(\omega t - kz) \\ \#'_s &= \frac{1}{2\pi}(\omega' t' - k'z') \end{split}$$

y se puede generalizar

$$\begin{split} & \boldsymbol{k}' \cdot \boldsymbol{x}' - \omega' t' = \boldsymbol{k} \cdot \boldsymbol{x} - \omega t \\ & - \left(\boldsymbol{k}' \cdot \boldsymbol{x}' - \frac{\omega' x'^0}{c} \right) = - \left(\boldsymbol{k} \cdot \boldsymbol{x} - \frac{\omega x^0}{c} \right) \end{split}$$

es un invariante lorentziano como

$$k_\alpha x^\alpha = k^\alpha x_\alpha$$

donde el cuadrivector de onda se define

$$k^{\alpha} = \left(\frac{\omega}{c}, \mathbf{k}\right).$$

7.2 Forma covariante del electromagnetismo

Partimos de la ecuación de continuidad para la carga,

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0$$

la cual con la definición del cuadrivector corriente

$$J^{\mu} = (c\rho, \boldsymbol{J})$$

se puede escribir como

$$\partial_{\mu}J^{\mu} = \frac{\partial c\rho}{\partial ct} + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0.$$

La formulación covariante empleaba el gauge de Lorentz (así las ecuaciones son validas en cualquier sistema inercial), el gauge de Lorentz era

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \boldsymbol{\nabla}\cdot\boldsymbol{A} = 0$$

siendo el cuadripotencial

$$A^{\mu} = (\phi, \mathbf{A})$$

y entonces

$$\partial_{\mu}A^{\mu} = \frac{\partial \phi}{\partial ct} + \boldsymbol{\nabla} \cdot \boldsymbol{A} = \frac{1}{c} \frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{A} = 0.$$

Se podía ver que resultan ecuaciones de onda inhomogéneas para los potenciales

$$\nabla^2 A - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\frac{4\pi}{c} J$$

que viene a ser

$$\partial_{\mu}\partial^{\mu} = \Box \boldsymbol{A} = rac{4\pi}{c} \boldsymbol{J}$$

y para el potencial ϕ

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

que desemboca en

$$\partial_{\mu}\partial^{\mu} = \Box \phi = \frac{4\pi}{c}(c\rho)$$

Al aplicar el D'Alembertiano a un cuadrivector obtenemos otro cuadrivector

$$\Box A^{\mu} = \frac{4\pi}{c} J^{\mu}.$$

Los campos E,B forman parte de un tensor de segundo rango antisimétrico llamado tensor de intesidad de campo

$$F^{\alpha\beta} = \partial^{\alpha}A^{\beta} - \partial^{\beta}A^{\alpha}$$

que matricialmente se puede ver como

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

También se suele definir un tensor de intensidad de campo dual

$$\mathcal{F}^{\alpha\beta} = \frac{1}{2} \varepsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta}$$

que no es otra cosa que

$$\mathcal{F}^{\alpha\beta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

y donde $\varepsilon^{\alpha\beta\gamma\delta}$ es el tensor de Levi-Civita de cuatro dimensiones, que es nulo cuando se repite un índice. Entonces las ecuaciones de Maxwell en forma covariante explícita resultan

$$\partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0$$
 $\qquad \qquad \partial_{\alpha} F^{\alpha\beta} = \frac{4\pi}{c} J^{\alpha}.$

7.2.1 Transformación de los campos

L transformación de Lorentz era

$$\begin{split} ct' &= \gamma \left[ct - \boldsymbol{\beta} \cdot \boldsymbol{x} \right] \\ \boldsymbol{x'}_{\parallel} &= \gamma \left[\boldsymbol{x}_{\parallel} - \beta ct \right] \\ \boldsymbol{x'}_{\perp} &= \boldsymbol{x}_{\perp} \end{split}$$

con $\beta = v/c$ y donde la transformación de los campos E, B

$$egin{aligned} m{E}' &= m{E}_{\parallel} + \gamma \left(m{E}_{\perp} + m{eta} imes m{B}
ight) \\ m{B}' &= m{B}_{\parallel} + \gamma \left(m{B}_{\perp} - m{eta} imes m{E}
ight) \end{aligned}$$

Figura 2.4

que se pueden poner como

$$\mathbf{E}' = -\frac{\gamma^2}{\gamma + 1} \beta(\beta \cdot \mathbf{E}) + \gamma \left(\mathbf{E} + \beta \times \mathbf{B} \right)$$

$$\boldsymbol{B}' = -\frac{\gamma^2}{\gamma+1}\boldsymbol{\beta}(\boldsymbol{\beta}\cdot\boldsymbol{B}) + \gamma\left(\boldsymbol{B} - \boldsymbol{\beta}\times\boldsymbol{E}\right)$$

y recordemos que la transformación de Galileo era

$$E' = E + \frac{1}{c}V \times B$$
 $B' = B - \frac{1}{c}V \times E$

siendo el segundo término el que da origen a las corrientes de Foucault al mover un conductor en el seno de un campo ${\cal B}$.

Figura 2.5

Según la figura superior la transformación de los campos satisface

$$\begin{split} E_x' &= \gamma (E_x - \beta B_y) \qquad B_x' = \gamma (B_x + \beta E_y) \\ E_y' &= \gamma (E_y + \beta B_x) \qquad B_y' = \gamma (B_y - \beta E_x) \\ E_z' &= E_z \qquad B_z' = B_z \end{split}$$

Las contracciones del producto escalar entre el tensor de intensidad son

invariantes. Así, por ejemplo,

$$F^{\alpha\beta}F_{\alpha\beta} = 2(B^2 - E^2)$$

$$\mathcal{F}^{\alpha\beta}\mathcal{F}_{\alpha\beta} = 2(E^2 - B^2)$$

$$\mathcal{F}^{\alpha\beta}F_{\alpha\beta} = -4 \mathbf{B} \cdot \mathbf{E}$$

Sea

$$\mathcal{F}^{\alpha\beta}F_{\alpha\beta} = -4\,\boldsymbol{B}\cdot\boldsymbol{E} = 0,$$

entonces $E \perp B$ o alguno de los campos es nulo en todo sistema inercial. Para una carga que se mueve con velocidad v se tiene B=0 en un sistema en el que q está en reposo de manera que

$$\mathbf{B} \cdot \mathbf{E} = \mathbf{B}' \cdot \mathbf{E}' = 0$$

siempre y entonces $E' \perp B'$ para cualquier sistema inercial S'.

Un sistema electromagnético dependiente del tiempo intercambiará ${m p}$ con el campo entonces no vale el principio de acción y reacción ,

$$\frac{d\mathbf{P}_{M}}{dt} + \frac{d\mathbf{P}_{c}}{dt} = \int_{S(v)} \overline{T} \cdot d\mathbf{S}$$

mientras que

$$\frac{d\boldsymbol{P}_{c}}{dt} = \frac{d}{dt} \left(\frac{1}{4\pi c} \int \boldsymbol{E} \times \boldsymbol{B} dV \right)$$

7.2.2 Covarianza con medios materiales

En presencia de medios materiales puede definirse

$$G^{\alpha\beta} = \begin{pmatrix} 0 & -D_x & -D_y & -D_z \\ D_x & 0 & -H_z & H_y \\ D_y & H_z & 0 & -H_x \\ D_z & -H_y & H_x & 0 \end{pmatrix}$$

y

$$F^{\alpha\beta} \to G^{\alpha\beta}, \quad E_i \to D_i, \quad B_i \to H_i$$

si las relaciones constitutivas son

$$D = E + 4\pi P \qquad H = B - 4\pi M$$

desde

$$G^{\alpha\beta} = F^{\alpha\beta} + R^{\alpha\beta}$$

y con

$$\partial_{\alpha}G^{\alpha\beta} = \frac{4\pi}{c}J^{\beta}$$

donde la información de P_i y M_i está en el tensor $R^{\alpha\beta}$. Recordemos que los campos transforman según

$$P' = P_{\parallel} + \gamma \left(P_{\perp} - \beta \times M \right)$$

$$M' = M_{\parallel} + \gamma \left(M_{\perp} + \boldsymbol{\beta} \times \boldsymbol{P} \right)$$

Entonces de un sistema inercial a otro una P da origen a una M y viceversa.

7.3 Principio de Hamilton y relatividad

Habiéndonos situado en un espacio de Minkowski, tenemos la acción

$$S = -\alpha \int_{a}^{b} ds,$$

siendo α una constante a fijar luego, y ds un arco en el espacio minkowskiano. La acción debe ser un invariante pues es un extremo.

$$ds = \sqrt{c^2 dt^2 - dx^2 - dy^2 - dz^2} = c dt \sqrt{1 - v^2/c^2}$$

de manera que

$$S = -\alpha \int_{t_1}^{t_2} c dt \sqrt{1 - v^2/c^2} = \int_{t_1}^{t_2} \mathcal{L} dt$$

y donde \mathcal{L} es el lagrangiano,

$$\mathcal{L} = -\alpha c \left(1 - v^2/c^2\right)^{1/2} \approx -\alpha c + \frac{\alpha v^2}{2c}$$

y luego

$$\mathcal{L}
ightarrow T = rac{mv^2}{2}$$
 (baja velocidad)

de manera que fijamos el valor de la constante a partir de este límite de baja velocidades,

$$\mathcal{L} = -mc^2 \left(1 - v^2/c^2\right)^{1/2}$$

es el lagrangiano relativista.

A partir de las ecuaciones de Euler-Lagrange es

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial v_i}$$

y haciendo el álgebra,

$$p_i = \frac{mv}{\sqrt{1 - v^2/c^2}}$$

que es el momento relativista. Entonces

$$\frac{d\mathbf{P}}{dt} = m\frac{d}{dt} \left(\frac{\mathbf{v}}{\sqrt{1 - v^2/c^2}} \right).$$

Para un movimiento circular, el módulo de la velocidad permanece constante.

$$\frac{d|\mathbf{v}|}{dt} = 0 \quad \Rightarrow \quad \frac{d\mathbf{P}}{dt} = \left(\frac{m}{\sqrt{1 - v^2/c^2}}\right) \frac{d\mathbf{v}}{dt} = m \, \gamma \, \frac{d\mathbf{v}}{dt}$$

si en cambio es $\frac{d|\boldsymbol{v}|}{dt} \neq 0$ se tiene

$$\frac{d\mathbf{P}}{dt} = m\left(\left(\frac{1}{\sqrt{1 - v^2/c^2}}\right)\frac{d\mathbf{v}}{dt} + \mathbf{V}(1 - v^2/c^2)^{-3/2}\frac{v}{c^2}\frac{dv}{dt}\right)$$
$$\frac{d\mathbf{P}}{dt} = m\gamma\frac{d\mathbf{v}}{dt} + m\mathbf{v}\gamma^3\frac{v}{c^2}\frac{dv}{dt}$$

donde el primer término en el RHS está asociado a la variación en la dirección y el segundo a la variación en la magnitud (hemos usado con $\gamma^3 v^2/c^2 > \gamma$?). De esto se desprende que la inercia es mayor para variar la longitud de v que su dirección. Es más fácil cambiar dirección que rapidez.

Entonces

$$E = \mathbf{p} \cdot \mathbf{v} - \mathcal{L} = m\gamma v^2 + mc^2 \gamma^{-1} = m\gamma c^2$$

y esta es la energía relativista de una partícula libre. Veamos el límite de bajas velocidades, es decir que si $v/c \ll 1$ entonces

$$\gamma = \sqrt{1 - v^2/c^2} \approx 1 + \frac{v^2}{2c^2},$$

y resulta

$$E \approx mc^2 + \frac{mv^2}{2} = E_0 + \frac{mv^2}{2}$$

donde E_0 es una energía en reposo, que no depende de \boldsymbol{v} y podemos expresar la energía cinética como

$$E - mc^2 = \frac{mv^2}{2} = T.$$

Si es

$$p = mw$$

con $\boldsymbol{w} = \gamma \boldsymbol{v}$ entonces

$$E^2 = m^2 \gamma^2 c^4 \qquad p^2 = m^2 \gamma^2 v^2$$

y

$$\frac{E^2}{c^2} = m^2 c^2 \gamma^2$$

$$\frac{E^2}{c^2} - p^2 = m^2 \gamma^2 (c^2 - v^2) = m^2 c^2$$

y esta es la relación fundamental entre energía y momento

$$\frac{E^2}{c^2} = p^2 + m^2 c^2.$$

Para partículas con $m_0 = 0$ y v = c será

$$\frac{E^2}{c^2} = p^2 \qquad \qquad p = \frac{h\nu}{c} = k\hbar.$$

La formulación hamiltoniana comenzará a partir de

$$\mathcal{H} = \sqrt{p^2 + m^2 c^2} \, c,$$

sobre el que se puede operar para obtener el límite clásico (de bajas velocidades) como

$$\mathcal{H} = \left(1 + \frac{p^2}{m^2 c^2}\right)^{1/2} mc^2$$

y si se cumple $p/(mc) \ll 1$ entonces

$$\mathcal{H} \approx mc^2 + \frac{p^2}{2m^2}$$

donde el último término es el hamiltoniano de la mecánica clásica para nuestra partícula libre.

El cuadrimomento se define como

$$p^{\mu} = (m\Gamma c, m\Gamma u), \qquad \Gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}$$

o bien

$$p^{\mu} = (E/c, \boldsymbol{p})$$

siendo

$$p^{\mu}p_{\mu} = \frac{E^2}{c^2} - p^2 = m^2c^2$$

el invariante asociado a la conservación (del cuadrimomento).

7.3.1 Partícula en un campo electromagnético

Dado que es de la mecánica clásica $\mathcal{L}=T-V$ la acción correspondiente la podemos expresar como

$$S = S_0 + S_i nter = \int_{t_1}^{t_2} T dt - \int_{t_1}^{t_2} V dt$$

es decir la suma de una parte libre y una de interacción. Luego

$$S_{inter}^{NR} = \int_{t_1}^{t_2} -e\phi dt = -\int_{t_1}^{t_2} \frac{e\phi}{c} d(ct) = -\int_{x_1}^{x_2} \frac{eA^0}{c} dx^0$$

si usamos los cuadrivectores

$$A^{\mu} = (\phi, \mathbf{A})$$
 $x^{\mu} = (ct, \mathbf{x})$

y generalizamos

$$S_{inter} = -\frac{e}{c} \int_{x_1}^{x_2} A_{\mu} dx^{\mu}$$

tendremos

$$S_inter = \frac{e}{c} \int_{x_1}^{x_2} \left(\boldsymbol{A} \cdot d\boldsymbol{x} - c\phi dt \right) = \frac{e}{c} \int_{x_1}^{x_2} \left(\boldsymbol{A} \cdot \boldsymbol{v} - c\phi \right) dt$$

y finalmente el lagrangiano de una partícula en un campo electromagnético es

$$\mathcal{L} = -mc^2\sqrt{1 - v^2/c^2} + \frac{e}{c}\boldsymbol{A}\cdot\boldsymbol{v} - e\phi$$

donde el primer término es el lagrangiano de partícula libre y la interacción viene luego. Esta lagrangiano no es invariante de medida; sin embargo no perjudica porque en las ecuaciones de movimiento sólo entran las derivadas del mismo. Recordemos además que $\mathcal L$ no es invariante relativista pero la acción S sí lo es.

Para construir el hamiltoniano necesitamos el momento conjugado,

$$P = \frac{\partial \mathcal{L}}{\partial v} = p + \frac{e}{c}A = m\gamma v + \frac{e}{c}A$$

y siguiendo la prescripción usual $\mathcal{H} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} \boldsymbol{v} - \mathcal{L}$

$$\begin{split} H = (m\gamma \pmb{v} + \frac{e}{c} \pmb{A}) \pmb{v} + mc^2 (1 - v^2/c^2)^{1/2} - \frac{e}{c} \pmb{A} \cdot \pmb{v} + e\phi = \\ m\gamma v^2 + e\phi + mc^2 (1 - v^2/c^2)^{1/2} \end{split}$$

y

$$H = m\gamma v^2 + e\phi + \frac{mc^2}{\gamma}$$

de manera que el hamiltoniano en un campo es

$$H=m\gamma c^2+e\phi$$

$${m P}=m\gamma v+rac{e}{c}{m A} \qquad \qquad H=m\gamma c^2+e\phi$$

y

$$\begin{split} \left(\boldsymbol{p} - \frac{e}{c} \boldsymbol{A} \right)^2 &= m^2 \gamma^2 v^2 \qquad \left(\frac{H}{c} - \frac{e}{c} \phi \right)^2 = m^2 \gamma^2 c^2 \\ \left(\frac{H}{c} - \frac{e}{c} \phi \right)^2 - \left(\boldsymbol{p} - \frac{e}{c} \boldsymbol{A} \right)^2 &= m^2 \gamma^2 (c^2 - v^2) = mc^2, \end{split}$$

con ustedes el invariante. Entonces el cuadrimomento de una partícula en un campo electromagnético, sometida a un potencial electromagnético es

$$p^{\mu} = \left(\frac{H - e\phi}{c}, \mathbf{p} - \frac{e}{c}\mathbf{A}\right)$$

que es un caso particular del xxxx.

Para el caso de H es

$$H=c\sqrt{m^2c^2+(\boldsymbol{p}-\frac{e}{c}\boldsymbol{A})}+e\phi$$

y el no relativista

$$H^{nr} = mc^{2}(1 + \frac{1}{m^{2}c^{2}}(\mathbf{p} - \frac{e}{c}\mathbf{A})^{2})^{1/2} + e\phi$$

usando la aproximación de baja velocidad,

$$H^{nr} \approx mc^2 + \frac{1}{2m}(\boldsymbol{p} - \frac{e}{c}\boldsymbol{A})^2 + e\phi$$

donde tiro el término de reposo mc^2 y

$$H^{nr} pprox rac{1}{2m} (oldsymbol{p} - rac{e}{c} oldsymbol{A})^2 + e\phi$$

Aplicando las ecuaciones de Euler-Lagrange al lagrangiano electromagnético hallado se llega a

$$\frac{d\mathbf{P}}{dt} = \frac{d}{dt}(m\gamma\mathbf{v}) = e\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$$

qu es la fuerza de Lorentz con la corrección relativista. Es la misma expresión hallada otrora pero sin tener en cuanta la relatividad.

Si $\boldsymbol{E}=0$ entonces

$$\frac{d\mathbf{P}}{dt} = m\gamma \frac{d\mathbf{v}}{dt}$$
 pues $\frac{dv}{dt} = 0$

y el campo B sólo variará la dirección de v, no su módulo. El radio de giro de una partícula ciclotrón es mayor con la aproximación relativista que con la newtoniana porque su inercia es mayor $\gamma > 1$. Planteamos

$$|\mathbf{F}| = evB$$

que desde el punto de vista relativista significa

$$evB = m\gamma \frac{d\mathbf{v}}{dt}$$

mientras que clásicamente

$$m\frac{v^2}{r} = evB$$

y sale el radio de giro desde acá

$$r_B = \frac{m\gamma v}{eB} \qquad \qquad r_B^{nr} = \frac{mv}{eB}$$

y luego $r_B > r_B^{nr}$.

7.3.2 Cambio de gauge

El cambio de gauge es una transformación

$$A'^{\mu} = A^{\mu} - \partial^{\mu} f$$

entonces

$$A'0 = \phi - \partial^0 f$$
 $A' = A + \nabla f$

El cambio de gauge no es invariante pero $\delta S=0$ sí es invariante. La cuadridensidad de fuerza de Lorentz

$$f^{\beta} = -\partial_{\alpha} T^{\alpha\beta}.$$

7.3.3 Especie de tiro oblicuo

La situación física es la depicted en la figura bajo estas líneas

$$\frac{d\mathbf{P}}{dt} = e\mathbf{E} = \frac{1}{t}(m\gamma\mathbf{v})$$

que lleva a un sistema hartocomplicado de resolver que es

$$\begin{split} \frac{dP_x}{dt} &= m\frac{d}{dt}\left(\frac{v_x}{\sqrt{1 - (v_x^2 + v_y^2)/c^2}}\right) = eE\\ \frac{dP_y}{dt} &= m\frac{d}{dt}\left(\frac{v_y}{\sqrt{1 - (v_x^2 + v_y^2)/c^2}}\right) = 0 \end{split}$$

Figura 3.6

Cualitativamente vemos que v_x crece a medida que ingresa en la zona de campo \boldsymbol{E} entonces como v_y es constante se tiene que γ aumenta y aumenta la inercia de modo que disminuye $|\boldsymbol{v}|$ y describe aproximadamente una parábola.

7.3.4 cuadrivelocidad

 \boldsymbol{u} no transforma como cuadrivector (¿que u?), pero lo que sí transforma así es

$$W^{\mu} = (\Gamma c, \Gamma \boldsymbol{u})$$

donde $\Gamma\equiv 1/(1-u^2/c^2)^{1/2}$. Luego tenemos la fórmula de Einstein de suma de velocidades, que tiene como límite a c,

Figura 3.7

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \frac{\boldsymbol{v} \cdot \boldsymbol{u}'}{c^2}} \qquad \qquad u_{\perp} = \frac{u_{\perp}'}{\gamma \left(1 + \frac{\boldsymbol{v} \cdot \boldsymbol{u}'}{c^2}\right)}$$

De esta manera el cuadrimomento es

$$p^{\mu} = (m\Gamma c, m\Gamma u)$$
 \Rightarrow $mW^{\mu} = p^{\mu}.$

Campos de cargas en movimiento

8.1 Potenciales retardados

Usando el gauge de Lorentz y las ecuaciones de Maxwell se llega a

$$abla^2 oldsymbol{A} - rac{1}{c^2} rac{\partial^2 oldsymbol{A}}{\partial t^2} = -rac{4\pi}{c} oldsymbol{J}$$

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

con forma general

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -4\pi f(\boldsymbol{x}, t) \tag{1.1}$$

siendo f la que da la distribución de fuentes.

Resolveremos (1.1) con una función de Green. Hacemos Fourier respecto a la frecuencia, de manera que podamos remover el tiempo (además luego nos interesarán fuentes armónicas y por sobre todo cualquier perturbación puede descomponerse en Fourier).

Suponemos que podemos escribir

$$\psi(\boldsymbol{x},t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi(\boldsymbol{x},\omega) \; \mathrm{e}^{-i\omega t} d\omega$$

$$f({m x},t) = rac{1}{2\pi} \int_{-\infty}^{+\infty} f({m x},\omega) \ {
m e}^{-i\omega t} d\omega$$

siendo sus inversas

$$\psi(\boldsymbol{x},\omega) = \int_{-\infty}^{+\infty} \psi(\boldsymbol{x},t) e^{i\omega t} dt$$

$$f(\boldsymbol{x},\omega) = \int_{-\infty}^{+\infty} f(\boldsymbol{x},t) \ \mathrm{e}^{i\omega t} dt$$

luego la ecuación resulta

$$\int_{-\infty}^{+\infty} \nabla^2 \psi(\boldsymbol{x},\omega) \mathrm{e}^{-i\omega t} d\omega + \int_{-\infty}^{+\infty} \frac{\omega^2}{c^2} \psi(\boldsymbol{x},\omega) \mathrm{e}^{-i\omega t} d\omega = -4\pi \int_{-\infty}^{+\infty} f(\boldsymbol{x},\omega) \mathrm{e}^{-i\omega t} d\omega$$

de manera que se satisface la ecuación de Helmholtz inhomogénea,

$$(\nabla^2 + k^2)\psi(\boldsymbol{x}, \omega) = -4\pi f(\boldsymbol{x}, \omega),$$

para cada valor de frecuencia ω .

Una función de Green satisfacerá

$$(\nabla^2 + k^2)G(\boldsymbol{x}, \boldsymbol{x}') = -4\pi\delta(\boldsymbol{x} - \boldsymbol{x}'),$$

donde x-x'=R y la función de Green será simétricamente esférica pues pedimos la no existencia de contornos, entonces llamando a aquella $G_k(R)$ se tiene

$$\frac{1}{R}\frac{d^2}{dR^2}(RG_k) + k^2G_k = -4\pi\delta(\boldsymbol{R})$$

donde hemos usado el laplaciano en esféricas. Debemos distinguir dos casos, si ${\cal R}=0$ entonces la anterior resulta

$$\lim_{kR\to 0}G_k(R)=\frac{1}{R}$$

mientras que de ser cierto $R \neq 0$ en cambio

$$\frac{d^2}{dR^2}(RG_k) + k^2(RG_k) = 0$$

y entonces se propone como solución general

$$G_k(R) = \frac{A}{R} e^{ikR} + \frac{B}{R} e^{-ikR}$$

donde A,B dependerán de las condiciones de contorno y siendo que el primer término del RHS representa una onda divergente esférica y el segundo una onda convergente esférica.

Se puede interpretar G_k como el potencial de una carga unitaria que aparece en $\boldsymbol{x} = \boldsymbol{x}'$ en el instante t = t' y luego desaparece (mmm, qué misterio!).

Ahora necesitamos meter la dependencia temporal,

$$\left(\nabla_x^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)G^\pm(\boldsymbol{x},\boldsymbol{x}',t,t') = -4\pi\delta(\boldsymbol{x}-\boldsymbol{x}')\delta(t-t')$$

$$\begin{split} -4\pi f(\boldsymbol{x},\omega) &= -4\pi \int_{-\infty}^{+\infty} f(\boldsymbol{x},t) \, \mathrm{e}^{i\omega t} dt = -4\pi \int_{-\infty}^{+\infty} \delta(\boldsymbol{x}-\boldsymbol{x}') \delta(t-t') \, \mathrm{e}^{i\omega t} dt \\ -4\pi f(\boldsymbol{x},\omega) &= -4\pi \delta(\boldsymbol{x}-\boldsymbol{x}') \, \mathrm{e}^{i\omega t'} \end{split}$$

de modo que tenemos

$$f(\boldsymbol{x},\omega) = \delta(\boldsymbol{x} - \boldsymbol{x}') e^{i\omega t'},$$

usando lo cual se llega a

$$G^{\pm}(R,\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} G_k(R) \ \mathrm{e}^{-\omega t} d\omega$$

donde τ es el tiempo relativo entre los tiempos de observación y fuente (t') y R es la distancia relativa entre observación y fuente.

En un medio no dispersivo es

$$G^{\pm}(R,\tau) = \frac{1}{R}\delta(\tau\mp\frac{R}{c})$$

y así llegamos a

$$G^+({\boldsymbol x},{\boldsymbol x}',t,t') = \frac{1}{|{\boldsymbol x}-{\boldsymbol x}'|} \delta(t-t'-\frac{1}{c}({\boldsymbol x}-{\boldsymbol x}')) = \frac{\delta(t'-[t-(1/c)|{\boldsymbol x}-{\boldsymbol x}'|])}{|{\boldsymbol x}-{\boldsymbol x}'|},$$

la función de Green retardada

$$G^{-}(\boldsymbol{x}, \boldsymbol{x}', t, t') = \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \delta(t - t' + \frac{1}{c}(\boldsymbol{x} - \boldsymbol{x}')) = \frac{\delta(t' - [t + (1/c)|\boldsymbol{x} - \boldsymbol{x}'|])}{|\boldsymbol{x} - \boldsymbol{x}'|},$$

la función de Green avanzada.

 G^+ exhibe el comportamiento causal del efecto observado en ${\boldsymbol x}$ a t causado por la acción de la fuente en el tiempo (t-R/c) donde R/c es la diferencia de tiempo de la señal en propagarse. Al valor

$$t' = t - \frac{R}{a}$$

se lo llama el tiempo retardado. Es un poco más práctica la nomenclatura

$$G^+(R,t,t') = \frac{\delta(t' - [t - (R/c)])}{R} \qquad G^-(R,t,t') = \frac{\delta(t' - [t + (R/c)])}{R},$$

Entonces una solución particular de (1) (¿uno qué?) es

$$\psi^{\pm}(\boldsymbol{x},t) = \int \int G^{\pm}(\boldsymbol{x},\boldsymbol{x}',t,t') f(\boldsymbol{x}',t') d^3x' dt'$$

y dos soluciones son

$$\psi_{in}(\boldsymbol{x},t) + \int \int G^+ f dv' dt \qquad \qquad \psi_s(\boldsymbol{x},t) + \int \int G^- f dv' dt$$

con f(x',t') una fuente que es diferente de cero solo en un intervalo $\sim t'$. Entonces ψ_{in} satisface (1) homogénea en $t\to -\infty$. ψ_s es la onda en $t\to +\infty$ solución homogénea. La situación más común es el caso de ψ_{in} con $\psi_{in}=0$ entonces

$$\psi(\boldsymbol{x},t) = \int_{-\infty}^{+\infty} \int_{v}^{t} \frac{\delta(t' - [t - (R/c)])}{R} f(\boldsymbol{x}',t') dv' dt',$$

e integrando con la delta

$$\psi(\boldsymbol{x},t) = \int_{0}^{t} \frac{f(\boldsymbol{x}',t - (R/c))}{R} dv',$$

que es una fuente en una cierta región que se enciende un instante e irradia.

8.1.1 Fuente armónica

Sea una fuente armónica en el tiempo

$$J(x',t') = J(x') e^{-i\omega t'}$$

entonces el potencial vector es

$$\begin{split} \boldsymbol{A}(\boldsymbol{x},t) &= \frac{4\pi}{c} \int_{v}^{'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|} \operatorname{e}^{-i\omega t'} \bigg|_{t_{ret}} dv' = \frac{4\pi}{c} \int_{v}^{'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|} \operatorname{e}^{-i\omega t} \operatorname{e}^{i\omega R/c} \bigg|_{t_{ret}} dv' \\ \boldsymbol{A}(\boldsymbol{x},t) &= \frac{4\pi}{c} \operatorname{e}^{-i\omega t} \int \frac{\boldsymbol{J}(\boldsymbol{x})}{R} \operatorname{e}^{i\omega R/c} dv \end{split}$$

se puede ver como

$$m{A}(m{x}) \, \mathrm{e}^{-i\omega t} = rac{4\pi}{c} \int_{v}^{'} rac{m{J}(m{x}')}{|m{x}-m{x}'|} \, \mathrm{e}^{ik|m{x}-m{x}'|} dv' \, \mathrm{e}^{-i\omega t}$$

Si la fuente oscila armónicamente con frecuencia ω entonces los campos tendrán la misma frecuencia ω .

$$oldsymbol{A}(oldsymbol{x}) = rac{1}{c} \int_v' rac{oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|} \, \mathrm{e}^{i\omega/c|oldsymbol{x} - oldsymbol{x}'|} dv'$$

y

$$\boldsymbol{A}(\boldsymbol{x},t) = \boldsymbol{A}(\boldsymbol{x}) e^{-i\omega t}$$
 si $\boldsymbol{J}(\boldsymbol{x}',t') = \boldsymbol{J}(\boldsymbol{x}') e^{-i\omega t'}$

La aproximación consiste en desarrollar

$$\frac{\mathrm{e}^{ik|\boldsymbol{x}-\boldsymbol{x}'|}}{|\boldsymbol{x}-\boldsymbol{x}'|}$$

y ver condiciones asintóticas. Cuando $\ell=0$ (el primer término de la sumatoria en ℓ) y $kx'\ll 1$ tenemos una antena ineficiente. La longitud de onda λ de la radiación es mucho mayor al tamaño del emisor, $2\pi x'\ll \lambda$ (longitud de onda larga). En cambio tenemos $2\pi x\gg \lambda$ que es la condición de campo lejano (siempre la usaremos).

Por lo tanto,

$$\mathbf{A}(\mathbf{x})^{(0)} = -ik\mathbf{p} \frac{\mathrm{e}^{ikx}}{r}$$

es una onda esférica saliente. Es el potencial vector \boldsymbol{A} de un dipolo magnético oscilante armónicamente. Recordemos que falta siempre *pegarle* un factor $\exp(i\omega t)$. Usando $\boldsymbol{E}0i/k\boldsymbol{\nabla}\times\boldsymbol{B},\boldsymbol{B}=\boldsymbol{\nabla}\times\boldsymbol{A}$ tenemos

$$\boldsymbol{B}(\boldsymbol{x})^{(0)} = k^2 (\hat{r} \times \boldsymbol{p}) \frac{e^{ikx}}{x} \left(1 - \frac{1}{ikx} \right)$$
 (1.2)

siendo \hat{r} la dirección de propagación y $x \equiv |x|$ que puede ser $|r\hat{r}|$ en esféricas. El que contribuye a la radiación es el primer término de (1.2) (campo lejano) mientras que el segundo se va a cero rápidamente.

Cerca de la antena es

$$\boldsymbol{B}(\boldsymbol{x})^{(0)} = ik(\hat{r}\times\boldsymbol{p})\frac{1}{r^2},$$

pues $kx\ll 1$ y entonces $\exp(ikx)\sim 1$ (campo cercano) de manera que si $\lambda\to\infty$ entonces ${\pmb B}^{(0)}\sim 0$. El campo ${\pmb E}$ cerca de la antena es

$$m{E} = rac{i}{k} m{
abla} imes m{B} \qquad
ightarrow \quad m{E}^{(0)} = rac{3 \hat{r} (\hat{r} \cdot m{p}) - m{p}}{r^3}$$

que es el campo de un dipolo eléctrico. E,B son transversales a \hat{r} y tienen la misma longitud (en unidades CGS). La potencia media (en un número entero de períodos) será

$$\langle dP \rangle = \langle \mathbf{S} \rangle \cdot d\mathbf{S} = \langle \mathbf{S} \rangle \cdot \hat{n}r^2 d\Omega$$

y entonces

$$\langle \frac{dP}{d\Omega} \rangle = \langle \mathbf{S} \rangle \cdot \hat{n}r^2$$
$$\langle \frac{dP}{d\Omega} \rangle = \frac{c}{8\pi} k^4 p^2 \sin(\theta)^2$$

y este cálculo podemos ver de dónde sale

$$\begin{split} \langle \boldsymbol{S} \rangle &= \frac{c}{24\pi} \Re \{ \boldsymbol{E} \times \boldsymbol{B}^* \} = \frac{c}{8\pi} \Re \{ (\boldsymbol{B}^0 \times \hat{r}) \times k^2 (\hat{r} \times \boldsymbol{p}) / r \} \\ \langle \boldsymbol{S} \rangle &= \frac{c}{8\pi} \Re \{ (-pk^2/r\sin(\theta)\hat{\theta}) \times (-pk^2/r\sin(\theta)\hat{\phi} \} = \frac{c}{8\pi} p^2 k^4 \sin(\theta)^2 \hat{r} \cdot \hat{r} \end{split}$$

Luego, la potencia irradiada es máxima en $\theta = \pi/2$ (ver figura)

Tenemos un cálculo auxiliar de esta cuenta pero no sé si suma meterlo acá.

Figura 1.1

Entonces,

- Si ${m B}=0$ se da que ${m S}=0$, es decir que no hay radiación.
- Un monopolo no produce campo de radiación por su simetría esférica. Una corriente $J\hat{r}$ no produce B y se tienen

$$\boldsymbol{B}^{0}_{rad} = \frac{k^2}{r} (\hat{r} \times \boldsymbol{p}) \ \mathrm{e}^{ikr} \qquad \qquad \boldsymbol{E}^{0}_{rad} = \frac{k^2}{r} (\hat{r} \times \boldsymbol{p}) \ \mathrm{e}^{ikr} \times \hat{r}$$

• Para que un campo sea de radiación debe tener flujo S no nulo en el infinito. Si los campos van como 1/r entonces el Poynting va como $1/r^2$ y dS va como r^2 de modo que $\langle S \rangle \cdot dS$ tiene valor constante (un flujo que se va y no retorna a la fuente). Si el campo va como $1/r^2$ y entonces no produce flujo lejos.

Figura 1.2

- Si hacemos la aproximación $\ell=1$ en \sum_ℓ resulta que se obtiene un momento magnético oscilante más un cuadrupolo eléctrico.
- La radiación a orden $\ell=0$ es un dipolo eléctrico oscilante (ver figura)

Figura 1.3

- La distribución angular de potencia para la parte cuadrupolar que surge con $\ell=1$ es

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{ck^6}{128\pi}Q_0^2\sin(\theta)^2\cos(\theta)^2$$

que es para una fuente con simetría de revolución.

$$\langle \frac{dP}{d\Omega} \rangle = \frac{ck^6}{128\pi} |\hat{r} \times \boldsymbol{Q}|^2,$$

donde \pmb{Q} es un vector que vale $\hat{n}\cdot\overline{Q},$ o bien indicialmente $n_iQ_{ij}.$

8.1.2 Radiación a orden $\ell = 1$

$$\boldsymbol{A} = \frac{1}{cR} \dot{\boldsymbol{p}}(t') + \frac{\dot{\boldsymbol{m}}(t')}{cR} \times \hat{\boldsymbol{n}} + \frac{1}{6c^2R} \overline{Q}(t') \cdot \hat{\boldsymbol{n}}$$

que es la radiación dipolar eléctrica, magnética y cuadrupolar eléctrica.

8.1.3 Ejemplo de antena

Sea una pequeña antena de longitud d (ver figura) tal que

$$\boldsymbol{J}(\boldsymbol{x}') = I\sin(k[d/2 - |z|])\delta(x')\delta(y')\hat{z}$$

que tiene nodos de la corriente en los extremos. Luego considerando fuente armónica ($A=A(x)\exp(i\omega t)$) será

$$oldsymbol{A}(oldsymbol{x}) = rac{1}{c} \int_{V}^{\prime} rac{oldsymbol{J}(oldsymbol{x}^{\prime}) \, \mathrm{e}^{ik|oldsymbol{x} - oldsymbol{x}^{\prime}|}}{|oldsymbol{x} - oldsymbol{x}^{\prime}|} dv^{\prime}$$

Figura 1.4

Hacemos algunas aproximaciones geométricas de distancia amparadas en la figura de más abajo.

Estas aproximaciones son clásicas de los problemas de difracción.

$$|{\pmb x} - {\pmb x}'| = \sqrt{x^2 + x'^2 - 2xx'\cos(\theta)} = x(1 - 2x'/x\cos(\theta) + (x'/x)^2)^{1/2}$$

y quedándonos a primer orden,

$$|\boldsymbol{x}-\boldsymbol{x}'|\approx x(1-x'/x\cos(\theta))$$

de manera que aceptamos una buena aproximación y una bruta,

$$|\boldsymbol{x} - \boldsymbol{x}'| \approx x - x' \cos(\theta)$$
 $|\boldsymbol{x} - \boldsymbol{x}'| \approx x$

Figura 1.5

para así escribir

$$pprox rac{1}{|oldsymbol{x}|} \, \mathrm{e}^{ikx} \, \mathrm{e}^{-ikx'\cos(heta)}$$

donde notamos que hemos aproximado de una forma dentro del argumento de la exponencial compleja y de otra en el denominador de la fracción.

Así, resulta

$$oldsymbol{A}(oldsymbol{x}) = rac{1}{c} rac{\mathrm{e}^{ikx}}{x} \int_{V}^{\prime} oldsymbol{J}(oldsymbol{x}^{\prime}) \, \mathrm{e}^{ikx^{\prime} \cos(heta)} dv^{\prime}$$

Existe condición de contorno que en los extremos la corriente debe ser nula, entonces debe haber nodos del seno (en $\pm d/2$) y los d posibles son $n\lambda/2$.

$$\boldsymbol{A}(\boldsymbol{x}) = \hat{z} \frac{2I \ \mathrm{e}^{ikx}}{ckx} \left[\cos(kd/2\cos(theta)) - \cos(kd/2) \right] \frac{1}{\sin(\theta)^2}$$

entonces

$$\label{eq:alpha} \boldsymbol{A}(\boldsymbol{x}) = A_z \hat{z} \hspace{1cm} \boldsymbol{A}(\boldsymbol{x}) = A_z \cos(\theta) \hat{\theta} - A_z \sin(\theta)?$$

Falta un vegsor

Entonces con $kx'\ll 1$ (longitud de onda larga, $\lambda\gg d$) tenemos

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{I^2}{2c\pi} \left(\frac{kd}{2}\right)^4 \sin(theta)^2$$

identificando con $|p|=Id^2/(2c)$ y este es el primer término multipolar. El paréntesis es muy chico. Con media longitud de onda $(kd=\pi)$ $(\lambda/2=d)$ es

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{I^2}{2c\pi} \frac{\cos(\pi/2\cos(\theta))^2}{\sin(\theta)^2}$$

y finalmente para una longitud de onda ($\lambda=2$ y $kd=2\pi$) se tiene

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{I^2}{2c\pi} \left[\frac{2\cos(\pi/2\cos(\theta))^2}{\sin(\theta)^2} \right]^2$$

Las ilustraciones sucesivas de la figura bajo estas líneas dan cuenta de estas diferentes longitudes.

Figura 1.6

Como referencia tengamos en cuenta que las expresiones salen de

$$m{B}_{rad} = -rac{1}{c}\hat{n} \times \dot{m{A}} = ik\hat{n} \times m{A}$$

y

$$oldsymbol{E}_{rad} = oldsymbol{B}_{rad} imes \hat{n}$$

Estas equivalencias son para campos de radiación nomás,

$$\label{eq:Brad} \boldsymbol{B}_{rad} = ik\hat{\boldsymbol{n}} \times \boldsymbol{A} \qquad \qquad \boldsymbol{E}_{rad} = \boldsymbol{B}_{rad} \times \hat{\boldsymbol{n}}$$

8.2 Campos de una partícula cargada en movimiento

Escribimos la densidad de corriente y la densidad de carga según

$$J(\mathbf{x}', t') = q\mathbf{v}\delta[\mathbf{x}' - \mathbf{r}(t')]$$
$$\rho(\mathbf{x}', t') = q\delta[\mathbf{x}' - \mathbf{r}(t')]$$

de manera que

$$\boldsymbol{A}(\boldsymbol{x},t) = \frac{1}{c} \int_{t'} \int_{V'} \frac{q \boldsymbol{v} \delta[\boldsymbol{x}' - \boldsymbol{r}(t')] \delta[t' - t + R/c]}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' dt'$$

$$\phi(\boldsymbol{x},t) = \frac{1}{c} \int_{t'} \int_{V'} \frac{q \delta[\boldsymbol{x}' - \boldsymbol{r}(t')] \delta[t' - t + R/c]}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' dt'$$

donde hemos usado $R \equiv |{\pmb x} - {\pmb x}'|$ de modo que es R = R(t').

$$\boldsymbol{A}(\boldsymbol{x},t) = \frac{1}{c} \int_{v}^{\prime} \frac{q\boldsymbol{v}\delta[t'-t+R/c]}{|\boldsymbol{x}-\boldsymbol{r}(t')|} dt' \Rightarrow \boldsymbol{A}(\boldsymbol{x},t) = \left. \frac{q}{c} \frac{\boldsymbol{v}(t')}{(1-\hat{n}\cdot\boldsymbol{\beta})R(t')} \right|_{t'=t-R/c}$$

$$\phi(\boldsymbol{x},t) = \frac{1}{c} \int_{v}^{'} \frac{q \delta[t'-t+R/c]}{|\boldsymbol{x}-\boldsymbol{r}(t')|} dt' \Rightarrow \phi(\boldsymbol{x},t) = \left. \frac{q}{c} \frac{1}{(1-\hat{n}\cdot\boldsymbol{\beta})R(t')} \right|_{t'=t-R/c}$$

cuyas expresiones son los potenciales de Liènard-Wiechert. Hemos usado en las cuentas que

$$\delta[t'-(t-R(t')/c)] = \frac{1}{\frac{d}{dt'}(t'+R(t')/c)}\delta(t-t')$$

(idea que viene de $\delta f = (1/(df/dx_0))\delta(x-x_0))$ y que

$$R = |\mathbf{x} - \mathbf{x}'| = \sqrt{x^2 + x'^2 - 2\mathbf{x} \cdot \mathbf{x}'} \qquad \frac{dR}{dt'} = \frac{\dot{\mathbf{x}'} \cdot (\mathbf{x} - \mathbf{x}')}{R} = -\frac{\mathbf{R} \cdot \mathbf{v}}{R} = -\hat{n} \cdot \mathbf{v}$$
$$1 + \frac{1}{c} \frac{dR}{dt'} = 1 - \hat{n} \cdot \frac{\mathbf{v}}{c} = 1 - \hat{n} \cdot \boldsymbol{\beta}$$

según la figura que ilustra bajo estas líneas

y como los campos serán

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} \qquad \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} - \boldsymbol{\nabla} \phi$$

Figura 2.7

se tiene que

$$\boldsymbol{E} = \left. q \frac{(\hat{n} - \boldsymbol{\beta})(1 - \beta^2)}{K^3 R^2} \right|_{ret} + \left. \frac{q}{c} \frac{\hat{n} \times [(\hat{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{K^3 R} \right|_{ret}$$

donde se ve que vale $\pmb{B}=\hat{n}\times \pmb{E}$ que ya sabíamos para \pmb{E}_{rad} y \pmb{B}_{rad} y donde $K\equiv 1-\hat{n}\cdot \pmb{\beta}$

De acuerdo a la figura xxxx en t' se produce el campo. Cuando la radiación llega a \boldsymbol{x} en tiempo t la partícula se halla en \boldsymbol{x}' (tiempo t), de manera que la moraleja es que t y t' son instantes de tiempo diferentes en un mismo sistema inercial.

Figura 2.8

Podemos sacar un par de frases importantes ya que

- Si una partícula se mueve con v constante puedo pasar a un frame inercial S' donde es v = 0 y entonces B' = 0 de manera que como $B \cdot E = B' \cdot E' = 0$ se tiene $B \perp E$ en todo frame inercial.
- El $m{E}_{rad}$ estará dado por el $m{E}_a$.
- Toda partícula que está acelerada en un frame inercial debe irradiar ondas EM, entonces una partícula recorre una circunferencia (en un campo B) si aceptamos que lo que irradia es despreciable.

Sea ahora una partícula e con $|\boldsymbol{v}|$ constante, entonces

$${m B}_{bs}=erac{m eta imes\hat n}{\gamma^2k^3R^2}$$
 (Lienard-Wiechert) ${m B}_{bs}=erac{m v imes\hat n}{cR^2}$ (Biot-Savart)

y

$$\boldsymbol{E}_v = e \frac{\hat{n} - \hat{\beta}}{\gamma^2 k^3 R^2}$$

donde vemos que difieren en

$$\frac{1-\beta^2}{(1-\hat{n}\cdot\boldsymbol{\beta})}$$

8.3 Campo de una carga en movimiento

El campo de velocidad es

$$\boldsymbol{E}_v = e \frac{(\hat{n} - \hat{\beta})}{\gamma^2 (1 - \hat{n} \cdot \boldsymbol{\beta})^3 R^2} = e \left[\frac{\boldsymbol{R} - R \boldsymbol{\beta}}{\gamma^2 (1 - \hat{n} \cdot \boldsymbol{\beta})^3 R^2} \right]$$

referidas las magnitudes a la figura XXXX.

Figura 3.9

$$|\textbf{\textit{E}}_v| = e \frac{\sqrt{R^2 + \beta^2 R^2 - 2R^2 \beta \cos(\theta)}}{\gamma^2 (1 - \textbf{\textit{R}} \cdot \boldsymbol{\beta}/R)^3 R^3} = e \frac{\sqrt{1 + \beta^2 - 2\beta \cos(\theta)}}{\gamma^2 (1 - \beta \cos(\theta))^3 R^2}$$

entonces como $\cos(\theta) = \beta$

$$\frac{d|\boldsymbol{E}_v|}{d\theta} = 0$$

siendo los extremos $\theta=0,\pi$ que representan un movimiento hacia adelante o hacia atrás.

$$|\pmb{E}_v(\cos(\theta)=\beta)| = \frac{e\gamma}{r^2}$$

$$\begin{split} |\pmb{E}_v(\cos(\theta)=1)| &= \frac{e(1+\beta^2-2\beta)^2}{R^2(1-\beta^2)^{-1}(1-\beta)^3} \\ |\pmb{E}_v^{(\theta=1)}| &= \frac{e}{R^2(1-\beta^2)^2\gamma^2} = \frac{e}{r^2\gamma^2} \end{split}$$

puesto que es $r=R(1-\beta)$. Vemos que es similar al campo estático pero con un factor corrector.

Campo de aceleración, es

$$\boldsymbol{E}_a = \frac{e}{c} \frac{\hat{\boldsymbol{n}} \times [(\hat{\boldsymbol{n}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{K^3 R} \approx \frac{e}{c} \frac{\hat{\boldsymbol{n}} \times (\hat{\boldsymbol{n}} \times \dot{\boldsymbol{\beta}})}{K^3 R} = \frac{e}{c} \frac{K^3 R}{K^3 R}$$

donde usamos que $v/c \ll 1$ y por ende $1 - \hat{n} \cdot \boldsymbol{\beta} \approx 1$ entonces es

$$\hat{n} \cdot \hat{\beta} \approx \hat{n}$$

Figura 3.10

8.4 Cálculo de potencia irradiada

Se realiza calculando el vector de Poynting,

$$\boldsymbol{S} = \frac{c}{4\pi} \boldsymbol{E} \times \boldsymbol{B} = \frac{c}{4\pi} |\boldsymbol{E}_a|^2 \hat{\boldsymbol{n}} = \frac{e^2}{4\pi c} \hat{\boldsymbol{n}} \left| \frac{\hat{\boldsymbol{n}} \times \dot{\boldsymbol{\beta}}}{R} \right|^2$$

si es

$$dP = \mathbf{S} \cdot \hat{n}R^2 d\Omega = \frac{e^2}{4\pi c} \left| \hat{n} \times \dot{\boldsymbol{\beta}} \right|^2 d\Omega$$

y entonces

$$\frac{dP}{d\Omega} = \frac{e^2}{4\pi c} \frac{\dot{v}^2}{c^2} \sin(\theta)^2 = \frac{e^2 \dot{v}^2}{4\pi c^3} \sin(\theta)^2.$$

Luego, si integramos,

$$P = \frac{e^2 \dot{v}^2}{4\pi c^3} \int \int \sin(\theta)^3 d\theta d\phi$$

y se llega a que

$$P = \frac{2e^2\dot{v}^2}{3c^3}$$

que es la fórmula de Larmor con $v/c \ll 1$. Ahora podemos prescindir de la restricción no relativista usando que la P es invariante lorentziano.

$$P = \frac{2e^2}{3c^3m^2} \left(\frac{d\boldsymbol{p}}{dt} \frac{d\boldsymbol{p}}{dt} \right)$$

y como $p_{\mu}(E/c,-\boldsymbol{p})$ y $p^{\mu}(E/c,\boldsymbol{p})$.

$$\begin{split} -\frac{dp_{\mu}}{d\tau}\frac{dp^{\mu}}{d\tau} &= \frac{d\boldsymbol{p}}{d\tau}\frac{d\boldsymbol{p}}{d\tau} - \frac{d}{d\tau}(E^2/c^2) \\ \tau &= \gamma(t-\beta x_{\parallel}) \qquad \qquad \frac{d\tau}{dt} = \gamma \qquad \Rightarrow \qquad \frac{d\boldsymbol{p}}{d\tau}\frac{d\tau}{dt} = \gamma\frac{d\boldsymbol{p}}{d\tau} = \frac{d\boldsymbol{p}}{dt} \end{split}$$

y luego para una trayectoria rectilínea

$$\begin{split} \frac{dP}{d\Omega} &= \frac{e^2}{4\pi c^3} \frac{a^2 \sin(\theta)^2}{(1-\beta \cos(\theta))^5} \\ P &= \frac{2e^2 a^2 \gamma^6}{3c^3} \qquad \qquad a = Z_0 \omega^2 \ \mathrm{e}^{-i\omega t} \end{split}$$

Según vemos en la figura la distribución angular de potencia es una especie de *as de pique* en el cual a mayor velocidad los lóbulos se pegan al eje de simetría. Compárese con el caso no relativista.

Figura 4.11

Se tiene además

$$\theta_{max} pprox rac{1}{2\gamma}$$

Figura 4.12

8.5 Frenado magnético

Sea la Figura. Hacemos

$$\mathbf{E}' = \frac{1}{c}\mathbf{v} \times \mathbf{B} = \omega \frac{r}{c}\hat{\phi} \times (-B\hat{z}) = -\frac{\omega rB}{c}\hat{r}$$

y la densidad de potencia disipada por corrientes de Foucault será

$$\mathfrak{P} = \mathbf{P} \cdot \mathbf{E}' = \sigma E'^2 = \frac{\sigma \omega^2 r^2 B^2}{c^2}$$

donde

$$P = \int \int \frac{\sigma \omega^2 r^2 B^2}{c^2} r d\theta dr = \frac{\sigma \omega^2 a^4 B^2 2\pi}{4c^2}.$$

Son corrientes de Foucault las que frenan el disco.

Figura 5.13

En un disco fijo con ${\bf B}=B_0$ e $^{i\omega t}$ habrá ${\bf E}=E(r)\hat{\phi}$ de manera que ${\bf J}\cdot{\bf E}=\sigma E(r)^2$ entonces se disipará energía por efecto Joule. Se calientan los transformadores en un ejemplo usual de la vida real.

8.5.1 Esponja electromagnética

En t=0 se distribuye una σ en la cara interna. Se genera una ${\pmb J}$ y un campo ${\pmb E}$ radial que no produce ${\pmb B}$ entonces ${\pmb S}=0$ no hay radiación. La carga se mueve

Figura 5.14

por el interior hasta llegar a la superficie y alcanzar situación estática ${m E}_{II}=0$. La energía disipada lo hace en forma de calor pero no se radía.

Apéndice A

Delta de Dirac

La delta de Dirac tiene representaciones numéricas en términos de límites. En sí, debe entenderse como un proceso límite. Las dos más utilizadas son las representaciones lorentziana,

$$\delta(x) = \lim_{\epsilon \to 0} \; \frac{\epsilon}{\pi(x^2 + \epsilon^2)}$$

gaussiana

$$\delta(x) = \lim_{\epsilon \to 0} \; \frac{\mathrm{e}^{-x^2/(4\epsilon)}}{2\sqrt{\pi}\sqrt{\epsilon}}$$

y la que utiliza la función sinc, [CHECK]

$$\delta(x) = \lim_{\epsilon \to 0} \; \frac{\sin(x/\epsilon)}{\pi x}$$

La variable que tiene a cero ϵ cuantifica el ancho mientras que $1/\epsilon$ cuantifica la altura.

Hacer grafiquitos de estas funciones.

Coordenadas esféricas y cilíndricas

Acá se condensan algunas expresiones asociadas al aspecto de los operadores diferenciales en los diferentes sistemas de coordenadas curvilíneos.

El prototipo de sistema curvilíneo es el esférico. Teníamos

$$d\mathbf{x} = dr\,\hat{r} + rd\theta\,\hat{\theta} + r\sin\theta\,\hat{\varphi} \qquad dV = r^2\sin\theta dr d\theta d\phi$$

donde $r^2 \sin \theta$ es el jacobiano de la transformación.

La idea es que en cualquier sistema curvilíneo de coordenadas $\{q_i\}$ se tiene para el diferencial total de una función f

$$df = \nabla f \cdot d\boldsymbol{x}$$

y como en coordenadas cartesianas es

$$df = \nabla f \cdot d\boldsymbol{x} = \sum_{i} \frac{\partial f}{\partial q_{i}} dq_{i},$$

la idea es que tiene que valer lo mismo en todo sistema de coordenadas. Luego, en un sistema donde las coordenadas no son las cartesianas se tiene

$$d\mathbf{x} = h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3$$

donde los \boldsymbol{h}_i dan la métrica del espacio coordenado. El gradiente será

$$\boldsymbol{\nabla} f = g_1 \hat{e}_1 + g_2 \hat{e}_2 + g_3 \hat{e}_3$$

donde g_i se ajusta pidiendo que el escalar df sea un invariante

$$\nabla f \cdot d\boldsymbol{x} = \sum_{i} h_i g_i dq_i,$$

de lo cual surge que

$$\label{eq:delta_eq} \boldsymbol{\nabla} \equiv \sum_i \frac{1}{h_i} \frac{\partial}{\partial q_i} \hat{\boldsymbol{e}}_i.$$

Este es el operador gradiente en un sistema curvilíneo.

La divergencia en cartesianas es

$$\nabla \cdot \boldsymbol{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

y utilizando el teorema de la divergencia de Green,

$$\int_{\Omega} \mathbf{\nabla} \cdot \mathbf{F} d\Omega = \int_{\partial \Omega} \mathbf{F} \cdot d\mathbf{S}$$

se arriba a

$$\boldsymbol{\nabla}\cdot\boldsymbol{F} = \frac{1}{h_1h_2h_3}\left(\frac{\partial}{\partial q_1}\left[h_2h_3F_1\right] + \frac{\partial}{\partial q_2}\left[h_1h_3F_2\right] + \frac{\partial}{\partial q_3}\left[h_1h_2F_3\right]\right)$$

Luego, el laplaciano (que será el operador más usado en este curso) resulta de

$$\nabla^2 \varphi = \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \boldsymbol{\varphi},$$

es decir la divergencia del gradiente de la función.

En un sistema curvilíneo la delta será algo como

$$\delta({\pmb x}-{\pmb x}') = \frac{1}{h_1h_2h_3}\delta(q_1-q_1')\delta(q_2-q_2')\delta(q_3-q_3').$$

Apéndice C

Rejunte

Simplificaciones

Recordemos que

$$\sqrt{x^2} = |x|,$$

la simplificación de las raíces cuadradas implican el módulo para tener en cuenta las dos posibilidades del signo.

Ángulo entre dos vectores

En esféricas el ángulo entre dos vectores \boldsymbol{v}_1 y \boldsymbol{v}_2 , escribiendo los versores en cartesianas resulta

$$\cos\gamma \equiv \frac{\boldsymbol{v}_1\cdot\boldsymbol{v}_2}{|\boldsymbol{v}_1\cdot\boldsymbol{v}_2|} = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)\cos(\varphi_1-\varphi_2)$$

Cálculo diferencial e integral vectorial sobre superficies

Hablar sobre la normal \hat{n} de una superficie y versores tangenciales \hat{t} . **Identidades vectoriales** Esta,

$$A \cdot B \times C = C \cdot A \times B$$
,

y otras.