MATH 2023 ◆ Multivariable Calculus Problem Set #0 ◆ Dot and Cross Products (Review)

1. (\bigstar) Given three points in \mathbb{R}^3 :

$$A(1,2,3)$$
, $B(4,0,5)$ and $C(x,6,4)$

Determine the number of possible value(s) of x such that the triangle ABC has a right angle.

- 2. $(\bigstar \bigstar)$ Let $\mathbf{u} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.
 - (a) Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually orthogonal (i.e. $\mathbf{u} \perp \mathbf{v}$, $\mathbf{v} \perp \mathbf{w}$ and $\mathbf{w} \perp \mathbf{u}$).
 - (b) Given any vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ in \mathbb{R}^3 , show that:

$$r = \frac{r \cdot u}{|u|^2} u + \frac{r \cdot v}{|v|^2} v + \frac{r \cdot w}{|w|^2} w.$$

[Hint: You may use the fact that since \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually orthogonal and non-zero, the vector \mathbf{r} can be expressed as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} , i.e.

$$\mathbf{r} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$$
.

Solve for the scalars *a*, *b* and *c*.]

- (c) Express the vector \mathbf{i} as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} .
- 3. (★) The figure below shows two vectors **a** and **b** which span a parallelogram. The vectors in blue and red represent the two diagonals of the parallelogram.

- (a) Express the red and the blue vectors in terms of **a** and **b**.
- (b) By considering the dot product, show that: $|\mathbf{a}| = |\mathbf{b}|$ if and only if the diagonals of the parallelogram are orthogonal to each other.
- 4. (\bigstar) Let $\mathbf{u} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be a variable unit vector in \mathbb{R}^3 and $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
 - (a) Find x, y and z such that $\mathbf{u} \cdot \mathbf{v}$ is the maximum possible. Explain your answer.
 - (b) Find x, y and z such that $|\mathbf{u} \times \mathbf{v}|$ is the maximum possible. Explain your answer.
- 5. $(\bigstar \bigstar)$ Given two vectors **a** and **b** in \mathbb{R}^3 , prove the following:
 - (a) Cauchy-Schwarz's Inequality: $|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| |\mathbf{b}|$
 - (b) Triangle Inequality: $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$
 - (c) If \mathbf{a} and \mathbf{b} are orthogonal, show that $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2$.
- 6. (\bigstar) Let A, B and C be the points (a,0,0), (0,b,0) and (0,0,c) respectively in the three dimensional space, and O be the origin (0,0,0). Denote [ABC] the area of the triangle with vertices A, B and C (analogously for [OAB], [OBC], etc.). Show that:

$$[ABC]^2 = [OAB]^2 + [OBC]^2 + [OCA]^2.$$

With the help of a diagram, explain why this result can be regarded as the *three-dimensional* analogue of the Pythagoreas' Theorem.

A(1,2,3), B(4,0,5) and C(x,6,4)

Determine the number of possible value(s) of x such that the triangle ABC has a right

- (a) Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually orthogonal (i.e. $\mathbf{u} \perp \mathbf{v}$, $\mathbf{v} \perp \mathbf{w}$ and $\mathbf{w} \perp \mathbf{u}$).
- (b) Given any vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ in \mathbb{R}^3 , show that:

$$r = \frac{r \cdot u}{\left|u\right|^2} u + \frac{r \cdot v}{\left|v\right|^2} v + \frac{r \cdot w}{\left|w\right|^2} w$$

[Hint: You may use the fact that since u, v and w are mutually orthogonal and non-zero, the vector \mathbf{r} can be expressed as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} , i.e.

$$\mathbf{r} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$$
.

Solve for the scalars a, b and c.]

Sub x=1, y=0, z=0

(c) Express the vector \mathbf{i} as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} .

$$N \cdot \Lambda = 5 + 9 - 9 \times 5 = 0$$

$$W = \begin{bmatrix} 7 & j & k \\ 2 & 1 & -2 \\ 1 & 2 & k \end{bmatrix} = \langle 6 & 1 & -2 & 2 \rangle$$

Od.b). I'v is the projection of routo u.

3. (★) The figure below shows two vectors **a** and **b** which span a parallelogram. The vectors in blue and red represent the two diagonals of the parallelogram.

- (a) Express the red and the blue vectors in terms of **a** and **b**.
- (b) By considering the dot product, show that: $|\mathbf{a}| = |\mathbf{b}|$ if and only if the diagonals of the parallelogram are orthogonal to each other.

by red =
$$a$$

red = $a - b$
 $a + b = b | red$.
 $a + a + b - b + a - b + b = 0$
 $a - a + a + b - b + a - b + b = 0$
 $a - a = b + b + b + b = 0$
 $a - a = a + b + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$
 $a - a = a + b + b = 0$

4. (\bigstar) Let $\mathbf{u} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be a variable **unit** vector in \mathbb{R}^3 and $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

a) Find x, y and z such that $\mathbf{u} \cdot \mathbf{v}$ is the maximum possible. Explain your answer.

(b) Find x, y and z such that $|\mathbf{u} \times \mathbf{v}|$ is the maximum possible. Explain your answer.

$$\sqrt{\chi^2 + y^2 + z^2} = 1$$

$$\int_{0}^{2} \chi^{2} + y^{2} + y^{2} = 1$$

$$\chi^{2} + y^{2} + y^{2} = 1$$

$$\chi^{2} + y^{2} + y^{2} = 1$$

$$\chi^{2} + y^{2} + y^{2} = 1$$

$$\sqrt{14}\cos\theta$$
 to be maximum, $\theta=0$, $\cos\theta=1$

$$|u \times v| = |x y|^{2}$$

$$|u \times v| = |u| |v| \sin \theta$$

$$= |v| \sin \theta$$

$$\int_{0}^{\infty} |v| \sin \theta = |v| \sin \theta = |v| \cos \theta$$

$$\int_{0}^{\infty} |v| \sin \theta = |v| \sin \theta = |v| \cos \theta$$

$$\int_{0}^{\infty} |v| \sin \theta = |v| \cos \theta = |v| \cos \theta$$

$$\int_{0}^{\infty} |v| \sin \theta = |v| \cos \theta = |v| \cos \theta = |v| \cos \theta$$

$$\int_{0}^{\infty} |v| \cos \theta = |v| \cos \theta = |v| \cos \theta = |v| \cos$$

5. $(\bigstar \bigstar)$ Given two vectors **a** and **b** in \mathbb{R}^3 , prove the following:

(a) Cauchy-Schwarz's Inequality: $|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| |\mathbf{b}|$

(b) Triangle Inequality: $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$

(c) If **a** and **b** are orthogonal, show that $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2$.

$$\mathbb{A}$$

$$|A \cdot b| = |xx + y\beta + 3x|$$

$$|a \cdot b|$$

1 a+b) < [al +161

((X+d)+(y+p)+(3+4)2 ()x3y3x2 + 12xp3172

1 atb = 1 2 H 6 12-श्लीकी ८०० व

2 2.6 (Sell ょ(か)

- 7. $(\bigstar \bigstar)$ Given three non-zero vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^3 , provide a *geometric explanation* to each of the following facts:
 - (a) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
 - (b) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$
 - (c) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ is a vector on the plane spanned by \mathbf{u} and \mathbf{v} .
- 8. $(\bigstar \bigstar \bigstar)$ The diagram below shows a circle with radius r centered at O. Let $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$ and $\mathbf{c} = \overrightarrow{OC}$. The purpose of the problem is to use dot products to show that the angle at the center of a circle is twice the corresponding angle at the circumference. Precisely, with the notations in the diagram below, we want to show $\angle BOA = 2\angle BCA$. We will prove this by showing $\varphi_1 = 2\theta_1$, and $\varphi_2 = 2\theta_2$ can be proved in a similar way. Follow the steps structured below:

- (a) Show that $\cos \varphi_1 = -\frac{\mathbf{b} \cdot \mathbf{c}}{r^2}$. Recall that r is the radius of the circle.
- (b) Show that $\cos \theta_1 = \frac{r^2 \mathbf{b} \cdot \mathbf{c}}{|\mathbf{b} \mathbf{c}| |\mathbf{c}|}$
- (c) Showing that $|\mathbf{b} \mathbf{c}|^2 = 2(r^2 \mathbf{b} \cdot \mathbf{c})$.
- (d) Using the result proved in the previous parts, show that $\cos^2 \theta_1 = \frac{r^2 \mathbf{b} \cdot \mathbf{c}}{2r^2}$.
- (e) Finally, find a relation between $\cos^2\theta_1$ and $\cos\varphi_1$, and conclude that $\varphi_1=2\theta_1$. [Hint: Double angle formula for cos.]

- 7. $(\bigstar \bigstar)$ Given three non-zero vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^3 , provide a *geometric explanation* to each of the following facts:
 - (a) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
 - (b) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$
 - (c) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ is a vector on the plane spanned by \mathbf{u} and \mathbf{v} .

A).
$$U_{X}U_{2} = [U_{1}]_{X} | S_{1}U_{1} | S_{1}U_{2} | S_{2}U_{1} | S_{1}U_{2} | S_{2}U_{1} | S_{2}U_{2} | S_{2}U_{1} | S_{2}U_{2} | S_{2}U_{2}$$

alea of tex viso parallegogram.

Uxv orthogonal to u and v.

in uxv dot u 75 0.

c). (uxv)xW = (uxv/|w|sinf)

6. (\bigstar) Let A, B and C be the points (a,0,0), (0,b,0) and (0,0,c) respectively in the three dimensional space, and O be the origin (0,0,0). Denote [ABC] the area of the triangle with vertices A, B and C (analogously for [OAB], [OBC], etc.). Show that:

$$[ABC]^2 = [OAB]^2 + [OBC]^2 + [OCA]^2.$$

With the help of a diagram, explain why this result can be regarded as the *three-dimensional* analogue of the Pythagoreas' Theorem.

8. $(\bigstar \bigstar \bigstar)$ The diagram below shows a circle with radius r centered at O. Let $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$ and $\mathbf{c} = \overrightarrow{OC}$. The purpose of the problem is to use dot products to show that the angle at the center of a circle is twice the corresponding angle at the circumference. Precisely, with the notations in the diagram below, we want to show $\angle BOA = 2\angle BCA$. We will prove this by showing $\varphi_1 = 2\theta_1$, and $\varphi_2 = 2\theta_2$ can be proved in a similar way. Follow the steps structured below:

- (a) Show that $\cos \varphi_1 = -\frac{\mathbf{b} \cdot \mathbf{c}}{r^2}$. Recall that r is the radius of the circle.
- (b) Show that $\cos \theta_1 = \frac{r^2 \mathbf{b} \cdot \mathbf{c}}{|\mathbf{b} \mathbf{c}| |\mathbf{c}|}$.
- ((b))2 = 1
- b·c-c·c

b-c-r2=620,

(b-c/10)

(c) Showing that $|\mathbf{b} - \mathbf{c}|^2 = 2(r^2 - \mathbf{b} \cdot \mathbf{c})$.

- b -
- (d) Using the result proved in the previous parts, show that $\cos^2 \theta_1 = \frac{r^2 \mathbf{b} \cdot \mathbf{c}}{2r^2}$.
- CB = b-c

(e) Finally, find a relation between
$$\cos^2\theta_1$$
 and $\cos\varphi_1$, and conclude that $\varphi_1=2\theta_1$. [Hint: Double angle formula for cos.]

a).
$$b.E9 = |b| |-c| \cos \varphi |$$

$$-(b \cdot c) = v^{2} \cos \varphi |$$

$$-\frac{(b \cdot c)}{v^{2}} = \cos \varphi |$$

$$\cos \varphi |$$

$$b \cdot c - c \cdot c = |c| |b - c| \cos \theta |$$

$$b \cdot c - c \cdot c$$

Made with Goodnotes

$$(b-c)^{a} = \lambda(r^{2}-b\cdot c) , color = \frac{r^{2}-b\cdot c}{|b-c|(c)|}$$

$$(ca, \theta)^{a} = \frac{(r^{2}-b\cdot c)^{\lambda}}{|b-c|^{2}|c|^{\lambda}} = \frac{(r^{2}-b\cdot c)^{2}}{|a|(r^{2}-b\cdot c)||c|^{2}}$$

$$cos^{2}\theta = \frac{r^{2}-b\cdot c}{2r^{2}} \qquad cos^{2}\theta = \frac{r^{2}-b\cdot c}{2r^{2}}$$

$$cos^{2}\theta = \frac{1+cos(2\theta)}{2}$$

$$cos^{2}\theta = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$\frac{r^{2}-b\cdot c}{2r^{2}} = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$\frac{1}{2} - \frac{b\cdot c}{2r^{2}} = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$cos\theta = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$\frac{1}{2} - \frac{b\cdot c}{2r^{2}} = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$cos\theta = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$cos\theta = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

$$cos\theta = \frac{1}{2} + \frac{cos(2\theta)}{2}$$

4, = 20,

$$(b-c)^{2} = \lambda(r^{2}-b\cdot c)$$

$$(b-c)\cdot(b-c) = b\cdot b - cb - c\cdot b + c\cdot c$$

$$= b\cdot b - \lambda(c\cdot b) + cc$$

$$= v^{2}+v^{2}-\lambda(b\cdot c)$$

$$= \lambda(r^{2}-b\cdot c)$$