Athletic Runner Injury Prediction System

T Akhila, A Divya Sri, K Sunidhi, B Amulya

Under the esteemed guidance of

Dr. P. Kayal

Associate Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD College of Engineering for Women

December 5, 2023

Contents

- Overview
- Problem Statement
- Objectives
- 4 Literature Survey
- Methodology
- 6 Tools and Technologies
- Progress
- References

Overview

 By leveraging advanced machine learning techniques, we empower athletes to proactively manage their well-being, optimize performance, and contribute to the broader goals of health, innovation, and sustainability in sports and society.

Problem Statement

- Running is one of the most popular sports in the world.
- 60 million people participated in jogging, running, or trail running in America alone in 2017. But it is reported that 50 percent of runners get injured every year.

Objectives

Model Development

- Performing feature extraction and identifying the feature importance for Injury Prediction For Athletic Runners.
- Building model for injury prediction for athletic runners using machine learning techniques.

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jo
1.	Just How Confident Can We Be in Predicting Sports Injuries?	To evaluate the methodological conduct and completeness of reporting of musculoskeletal injury prediction models in sport.	Regression, Machine Learn ing, and regression	Thirty studies were conducted where 204 models were included which used regression, machine learning Techniques.	Poorly developed and has high risk of bias	urnal Garrett S. Bullock, 2022, Sports medicine 52.10.

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jo urnal
2.	Investigating Individual- and Group-Level Model Adaptation for Self-Reported Runner Exertion Prediction	To recognize the runner's exertion as soon as possible and take possible precautions.	Feature Selection, FFNN, Baseline model, individual- level adaption, group-level adaption	System consists of a feature selection and three model training components.	Mean Absolute Error (MAE) is less for the group-level adaption.	Alexander Kathan, 2022, Shahin Amiriparian E- Health and Bioengineerin g Conference.

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/J ournal
3.	Ultra marathon Result and Injury Prediction using PyTorch.	To develop and assess multilayer neural network models using PyTorch to predict ultramarathon runner performance and injury occurrence based on training, competition, and weather data.	Implementing multilayer neural network models with PyTorch for regression and classification tasks	Two Predictions based on MLNN are implemented using PyTorch framework for Python.	Up to a 2% relative error for the regression model and a 70% correct classification for injury prediction.	Valentina Nejkovic, 2021, 15th International Conference on Advanced Technologies

S.no	Title	Objective	Methods	Description	Performance	Author, Year and Conference/Jour nal
4.	Data monitoring and sports injury prediction model based on embedded systems	To develop an Artificial Neural Network-based system for early prediction of injuries in sports by analysing player health, exercise load, and emotional status. Through a hierarchical machine learning approach.	PCA, Decision tree, ANN	A layered machine that makes accurate predictions of player damage.	PCA- 86% Decision tree- 89% ANN - 95%	Chen Huang, 2021, Microprocessors and Microsystems 81.

۲,						1	
	S.no	Title	Objective	Methods	Description	Performance	Author, Year
							and
							Conference/Jo
							urnal
	5.	Prediction	To prevent over-	Convolutional	Depth image	Accuracy-	Bin Wang,
		method of	fatigue exercises that	Neural	human	87.692%	2021, 2020
		Running	may occur during	Network,	running		International
		fatigue based	running and accurately	SVM.	fatigue		Symposium on
		on depth	capture every small		prediction		Wearable
		image.	posture change of		method.		Computers.
		_	runners				·

S.no	Title	Objective	Methods	Description	Performance	Author, Year and
						Conference/Jo
						urnal
6.	Machine	To improve injury	Tree based	Eleven out of	performance	Hans Van E,
	learning	prediction and allow	Ensembled	249 studies	ranged from	2021,
	methods in	proper approaches to	Methods,	met	poor	Journal of
	sport injury	injury	SVM, ANN.	inclusion/ex-	(Accuracy =	experimental
	prediction	prevention.		clusion	52%,) to	orthopaedics
	and			criteria	strong	
	prevention				(Accuracy=8	
					5%).	

Methodology

- DataSet: https://www.kaggle.com/datasets/shashwatwork/injury-prediction-for-competitive-runners
- Algorithms:
 Support Vector Machine
 XGBooster
 Bagging

Tools and Technologies

- Tools : Google Colab
- Technologies : Python
 Python Libraries

Progress

SNo	Title
1	Identified the data
	set
2	Literature Survey
	completed
3	Understanding the
	features of data
4	Started implemen-
	tation

References

- Bullock, Garrett S., et al. "Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport." Sports medicine 52.10 (2022): 2469-2482.
- Kathan, Alexander, et al. "Investigating Individual-and Group-Level Model Adaptation for Self-Reported Runner Exertion Prediction from Biomechanics." 2022 E-Health and Bioengineering Conference (EHB). IEEE, 2022.
- Huang, Chen, and Lei Jiang. "Data monitoring and sports injury prediction model based on embedded system and machine learning algorithm." Microprocessors and Microsystems 81 (2021): 103654.

References

- Van Eetvelde, Hans, et al. "Machine learning methods in sport injury prediction and prevention: a systematic review." Journal of experimental orthopaedics 8 (2021): 1-15.
- Nejković, Valentina, Maša Radenković, and Nenad Petrović.
 "Ultramarathon result and injury prediction using PyTorch." 2021
 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). IEEE, 2021.
- Bai Y, Guan Y, Ng W F. Fatigue assessment using ECG and actigraphy sensors[C]//Proceedings of the 2020 International Symposium on Wearable Computers. 2020: 12-16.

Thank you