

Supplementary Figure 1. Behavioral data for the learning task (N = 70) and the control task (N= 67). (a) Response time (RT) decreases from early to late practice. While subjects in the control task also accelerated responses during 1-back trials, the effect was larger for practice trials in the learning task. The y-axis represents the percentage of decrease of response times from early practice to late practice, computed as $100^*(1 - RT_{late}/RT_{early})$. Using a two-sample t-test, the difference was found significant with p = $4 \cdot 10^{-5}$. Black lines represent 95% confidence intervals. (b) Error rates difference between early and late (i.e. percentage errors_{late} – percentage errors_{early}). Errors rates in the learning task were decreasing (median -0.9%, p = $3 \cdot 10^{-5}$, Wilcoxon signed rank test), whereas in the control task errors rates increased across 1-back trials (median 2.9%, p = $4 \cdot 10^{-10}$, Wilcoxon signed rank test; difference between the samples $p = 8 \cdot 10^{-15}$, Wilcoxon rank sum test). Vertical black lines indicate minimum and maximum values. Bars cover +-25% quantiles, and the horizontal black lines inside the bars indicate median values of the samples.

Supplementary Figure 2. Mean activations for 4 of the 10 networks for early and late practice and for the learning and control sample, respectively. (**a-d**) No significant differences of activation changes from early to late practice between the learning sample (N = 70) and the control sample (N = 67) were found in these 4 networks. Black lines represent 95% confidence intervals. P-values of two-sample and one-sample t-test can be found in Supplementary Table 1. Network abbr.: SMN: sensorimotor network, VAN: ventral attention network.

Supplementary Figure 3. Comparison of connectivity between edges that connect nodes within the same network and edges that connect nodes in different networks. The graph replicates the finding of Power et al.¹ that nodes within a network are more strongly connected than nodes of different networks. Black lines represent 95% confidence intervals. (a) Data of the learning sample (N = 70), (b) Data of the control sample (N = 67).

Histogram across submodules of CON & DAN

Supplementary Figure 4. Distribution of connectivity changes between subclusters of the CON and the DAN for the learning task (N = 70) minus the control task (N = 67). The increase from early practice to late practice followed a normal distribution across several spatially defined subclusters. Gray bars: histogram of the change of connectivity between early and late practice, learning minus control sample. Red line: fitted normal distribution.

Supplementary Figure 5. Activation and connectivity for the two nodes where connectivity increase correlated with RT decrease in the learning task. (a) Activation profiles for the CON-based SMA node. This node showed increasing activation in the learning sample ($p = 3 \cdot 10^{-6}$, t = 5.1, df = 69) and in the control sample (p = 0.0003, t = 3.8, df = 66), with no difference between the samples (p = 0.36, t = 0.9, df = 135). (b) Activation for the precuneus node (part of the DAN). In this node, activation dropped for the learning task (p = 0.001, t = -3.4, df = 69) and increased for the control task ($p = 2 \cdot 10^{-5}$, t = 4.6, df = 66; difference between samples $p = 2 \cdot 10^{-7}$, t = -5.5, df = 135). (c) Connectivity between the two nodes. Connectivity change from early to late practice did not differ significantly between the learning and control sample (p = 0.26, t = 1.1, df = 135). Testing early against late practice revealed a significant connectivity increase in both samples (learning sample: p = 0.003, t = 3.0, df = 69; control sample: p = 0.042, t = 2.1, df = 66). Black lines represent 95% confidence intervals.

Supplementary Table 1. Activation differences from early to late practice for the learning sample and the control sample. All p-values are uncorrected; corrected p-values can be found in the results section of the main text. Cells marked in yellow indicate significant group differences after Bonferroni-correction.

Abbreviations: DMN: Default Mode Network, FPN: Fronto-Parietal Network, SMN: Sensori-Motor Network, Subc.: Subcortical, CON: Cingulo-Opercular Network, SAN: Salience Network, VAN: Ventral Attention Network, DAN: Dorsal Attention Network.

	Learning vs. control, late - early		_	sample, early		sample, early
	P-values	T-values	P-values	T-values	P-values	T-values
DMN	0.0013	3.3	9.0E-21	13.3	5.1E-10	7.3
FPN	5.3E-10	-6.7	1.2E-15	-10.3	0.2653	-1.1
SMN	0.8260	-0.2	5.5E-10	7.2	1.2E-08	6.5
Visual	0.6182	0.5	2.6E-15	10.1	8.8E-13	8.8
Subc.	0.1157	-1.6	0.0184	2.4	1.4E-05	4.7
CON	0.3015	-1.0	1.8E-07	5.8	1.1E-09	7.1
SAN	0.0001	-4.1	0.2975	-1.0	2.9E-05	4.5
VAN	0.1084	-1.6	3.4E-06	5.1	2.9E-10	7.4
DAN	6.4E-06	-4.7	3.5E-05	-4.4	0.0293	2.2
Auditory	0.5175	0.6	1.2E-14	9.8	8.3E-12	8.3

Supplementary Table 2. Connectivity differences from early to late practice for the learning sample and the control sample. All p-values are uncorrected; corrected p-values can be found in the results section of the main text. Cells marked in yellow indicate significant group differences after Bonferroni-correction.

Cells marked in orange indicate significant group differences after FDR-correction. Abbreviations: DMN: Default Mode Network, FPN: Fronto-Parietal Network, SMN: Sensori-Motor Network, Subc.: Subcortical, CON: Cingulo-Opercular Network, SAN: Salience Network, VAN: Ventral Attention Network, DAN: Dorsal Attention Network.

Learning sample vs. control sample, late – early, P-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
0.1157	0.0268	0.2666	0.0089	0.3536	3.6E-8	0.0002	0.0090	0.5007	0.0003	DMN
	0.1388	0.8011	0.0516	0.5845	0.0414	0.6524	0.9575	0.0005	0.0143	FPN
		0.9574	0.0295	0.7336	0.8792	0.9930	0.3143	0.0149	0.6279	SMN
			0.2527	0.4861	0.0034	0.0396	0.6671	0.9541	0.0532	Visual
				0.3805	0.8875	0.5560	0.5177	0.8543	0.4761	Subc.
					0.0041	0.0034	0.1771	4.2E-8	0.3747	CON
						0.0052	0.4984	0.3157	0.5227	SAN
							0.2280	0.2728	0.2372	VAN
								0.2834	0.0003	DAN
									0.4024	Auditory

72 Learning sample vs. control sample, late – early, T-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
1.6	2.2	-1.1	-2.7	0.9	-5.8	-3.9	-2.6	-0.7	-3.7	DMN
	-1.5	0.3	-2.0	-0.5	2.1	0.5	-0.1	-3.6	2.5	FPN
		-0.1	2.2	0.3	-0.2	0.0	1.0	2.5	-0.5	SMN
			1.1	0.7	3.0	2.1	0.4	0.1	2.0	Visual
				0.9	0.1	-0.6	0.6	0.2	-0.7	Subc.
					2.9	3.0	1.4	5.8	0.9	CON
						2.8	0.7	1.0	0.6	SAN
							1.2	1.1	1.2	VAN
								1.1	3.7	DAN
									0.8	Auditory

Learning sample, late - early, P-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
4.0E-5	0.0001	6.2E-6	3.9E-5	0.1860	4E-19	2E-11	8.8E-9	0.1972	4.4E-18	DMN
	0.0005	0.0210	9.3E-6	0.0750	3.7E-5	0.9438	0.0764	1.8E-8	1.7E-9	FPN
		0.0500	0.0001	0.2205	0.0900	0.3345	0.2869	6.0E-7	0.5263	SMN
			2.2E-6	0.2044	0.0012	0.0297	0.3538	0.0447	0.0005	Visual
				0.0024	0.4707	0.5956	0.4285	0.0276	0.7879	Subc.
					8E-10	4E-10	0.8316	1E-14	0.0019	CON
						3E-11	0.8396	0.0349	0.0078	SAN
							0.2340	0.0001	0.8053	VAN
								0.0653	2.7E-11	DAN
									0.0384	Auditory

77 Learning sample, late – early, T-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
4.4	4.1	-4.9	-4.4	1.3	-12.3	-8.0	-6.5	-1.3	-11.7	DMN
	-3.7	2.4	-4.8	-1.8	4.4	0.1	1.8	-6.4	6.9	FPN
		2.0	4.2	-1.2	1.7	1.0	1.1	5.5	0.6	SMN
			5.2	-1.3	3.4	2.2	0.9	2.0	3.7	Visual
				3.1	0.7	-0.5	8.0	-2.3	-0.3	Subc.
					7.1	7.3	0.2	9.8	3.2	CON
						7.9	-0.2	2.2	2.7	SAN
							1.2	4.1	-0.2	VAN
								1.9	7.9	DAN
									2.1	Auditory

80 Control sample, late – early, P-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
0.0041	0.1966	0.0020	0.1590	0.9553	0.0001	0.0024	0.0092	0.5940	1.2E-06	DMN
	0.0688	0.0725	0.0412	0.2532	0.1217	0.5487	0.0046	0.0022	0.0004	FPN
		0.0692	0.3011	0.1305	0.0643	0.3073	0.6942	0.1071	0.2008	SMN
			0.0023	0.0138	0.3790	0.4544	0.7887	0.0536	0.3222	Visual
				0.1146	0.6321	0.7630	0.8699	0.0245	0.4750	Subc.
					0.0512	0.0133	0.0938	0.3085	0.2320	CON
						0.0034	0.2377	0.3981	0.1034	SAN
							0.6252	0.0063	0.0689	VAN
								0.6042	0.0004	DAN
									0.5168	Auditory

82 Control sample, late – early, T-values

DMN	FPN	SMN	Visual	Subc.	CON	SAN	VAN	DAN	Auditory	
3.0	1.3	-3.2	-1.4	0.1	-4.0	-3.2	-2.7	-0.5	-5.3	DMN
	-1.8	1.8	-2.1	-1.2	1.6	-0.6	2.9	-3.2	3.7	FPN
		1.8	1.0	-1.5	1.9	1.0	-0.4	1.6	1.3	SMN
			3.2	-2.5	-0.9	-0.8	0.3	2.0	1.0	Visual
				1.6	0.5	0.3	-0.2	-2.3	0.7	Subc.
					2.0	2.5	-1.7	1.0	1.2	CON
						3.0	-1.2	0.9	1.7	SAN
							-0.5	2.8	-1.8	VAN
								0.5	3.7	DAN
									0.7	Auditory

Network name	Network-No.
Default Mode Network	1
Fronto-Parietal Network	2
Sensori-Motor Network	3
Visual Cortex	4
Subcortical Areas	5
Cingulo-Opercular Network	6
Salience Network	7
Ventral Attention Network	8
Dorsal Attention Network	9
Auditory Network	10
Not assigned	NaN

Node-No.	MNI x	MNI y	MNI z	Network- No.	% Data Learning Sample	% Data 1-back Sample	Node-No. in Figure 3
1	-24	-99	-12	NaN			
2	27	-96	-12	NaN			
3	24	33	-18	NaN			
4	-57	-45	-24	NaN			
5 6	9	42	-24	NaN			
6	-21	-21	-21	NaN			
7	18	-27	-18	NaN			
8	-36	-30	-27	NaN			
9	66	-24	-18	NaN			
10	51	-33	-27	NaN			
11	54	-30	-18	NaN			
12	33	39	-12	NaN			
13	-6	-51	60	3	100.0	100.0	80
14	-15	-18	39	3	100.0	100.0	81
15	0	-15	48	3 3	100.0	100.0	82
16	9	-3	45	3	100.0	100.0	83
17	-6	-21	66	3	100.0	100.0	84
18	-6	-33	72	3	100.0	100.0	85
19	12	-33	75	3	100.0	100.0	86
20	-54	-24	42	3 3 3 3 3	100.0	100.0	87
21	30	-18	72	3	100.0	100.0	88
22	9	-45	72	3	100.0	100.0	89
23	-24	-30	72	3 3 3	100.0	100.0	90
24	-39	-18	54	3	100.0	100.0	91

60

-39

92

100.0

100.0

3

25

30

86

87

88

Node-No.	MNI x	MNI y	MNI z	Network- No.	% Data Learning Sample	% Data 1-back Sample	Node-No. in Figure 3
26	51	-21	42	3	100.0	100.0	93
27	-39	-27	69	3	97.1	100.0	94
28	21	-30	60	3	100.0	100.0	95
29	45	-9	57	3	100.0	100.0	96
30	-30	-42	60	3	100.0	100.0	97
31	9	-18	75	3	100.0	100.0	98
32	21	-42	69	3 3	100.0	100.0	99
33	-45	-33	48	3	100.0	100.0	100
34	-21	-30	60	3 3 3	100.0	100.0	101
35	-12	-18	75	3	100.0	100.0	102
36	42	-21	54	3	100.0	100.0	103
37	-39	-15	69	3	5.7	6.0	100
38	-15	-45	72	3	100.0	100.0	104
39	3	-27	60	3	100.0	100.0	105
40	3	-18	57	3	100.0	100.0	106
41	39	-18	45	3	100.0	100.0	107
42	-48	-12	36	3	100.0	100.0	108
43	36	-9	15	3	100.0	100.0	109
44	51	-9 -6	33	3	100.0	100.0	110
45	-54	-9	24	3	100.0	100.0	111
46	66	-9	24	3 3	100.0	100.0	112
47	-3	3	54	6	100.0	100.0	158
48	-3 54	-27	33		100.0	100.0	159
49	18	-2 <i>1</i> -9	63	6 6 6	100.0	100.0	160
50	-15	- 9 -6	72	6	100.0	100.0	161
51	-13 -9	-3	42	6	100.0	100.0	162
52	-9 36	0	-3	6	100.0	100.0	163
53	12	0	-3 69	6	100.0	100.0	164
54	6	9	51	6	100.0	100.0	165
55	-45	0	9	6	100.0	100.0	166
56	48	9	0	6	100.0	100.0	167
57	-33	3	3	6	100.0	100.0	168
58	-53 -51	9	-3	6	100.0	100.0	169
59	-51 -6	18	33	6	100.0	100.0	170
60	-6 36	9	0	6	100.0	100.0	170
61	33	-27	12	10	100.0	100.0	210
62	66	-33	21	10	100.0	100.0	211
63	57	-33 -15	6	10	100.0	100.0	212
64	-39	-33	18	10	100.0	100.0	213
65	-60	-33 -24	15	10	100.0	100.0	214
66	-48	-24 -27	6	10	100.0	100.0	214
67	42	-21 -24	21	10	100.0	100.0	216
68	-51	-33	27	10	100.0	100.0	217
69	-54	-33 -21	24	10	100.0	100.0	218
70	-54 -54	-21 -9	12	10	100.0	100.0	219
70	-5 4 57	- 9 -6	12	10	100.0	100.0	220
72	60	-0 -18	30	10	100.0	100.0	221
73	-30	-16 -27	12	10	100.0	100.0	222
73 74	-30 -42	-27 -75	27	10	100.0	100.0	1
75	6	66	-3	1	10.0	9.0	'

Node-No.	MNI x	MNI y	MNI z	Network- No.	% Data Learning Sample	% Data 1-back Sample	Node-No. in Figure 3
76	9	48	-15	1	95.7	94.0	2
77	-12	-39	0	1	100.0	100.0	3
78	-18	63	-9	1	1.4	4.5	
79	-45	-60	21	1	100.0	100.0	4
80	42	-72	27	1	100.0	100.0	5
81	-45	12	-33	1	98.6	97.0	6
82	45	15	-30	1	100.0	100.0	7
83	-69	-24	-15	1	2.9	4.5	
84	-57	-27	-15	NaN			
85	27	15	-18	NaN			
86	-45	-66	36	1	100.0	100.0	8
87	-39	-75	45	1	100.0	100.0	9
88	-6	-54	27	1	100.0	100.0	10
89	6	-60	36	1	100.0	100.0	11
90	-12	-57	15	1	100.0	100.0	12
91	-3	-48	12	1	100.0	100.0	13
92	9	-48	30	1	100.0	100.0	14
93	15	-63	27	1	100.0	100.0	15
94	-3	-36	45	1	100.0	100.0	16
95	12	-54	18	1	100.0	100.0	17
96	51	-60	36	1	100.0	100.0	18
97	24	33	48	1	100.0	100.0	19
98	-9	39	51	1	100.0	100.0	20
99	-15	30	54	1	100.0	100.0	21
100	-36	21	51	1	100.0	100.0	22
101	21	39	39	1	100.0	100.0	23
102	12	54	39	1	100.0	100.0	24
103	-9 04	54	39	1	100.0	100.0	25
104	-21	45 5.4	39	1	100.0	100.0	26
105	6	54	15	1	100.0	100.0	27
106	6	63	21	1	100.0	100.0	28
107 108	-6 0	51 54	0 3	1 1	100.0 100.0	100.0 100.0	29 30
108	9 -3	45	-9	1	100.0	100.0	31
110	-3 9	43 42	-9 -6	1	100.0	100.0	32
111	-12	42 45	9	1	100.0	100.0	33
112	-12 -3	45 39	36	1	100.0	100.0	33 34
113	-3 -3	42	15	1	100.0	100.0	35
114	-3 -21	63	18	1	100.0	100.0	36
115	-21 -9	48	24	1	100.0	100.0	37
116	66	-12	-18	1	92.9	85.1	38
117	-57	-12	-16 -9	1	100.0	100.0	39
118	-57	-30	-3	1	100.0	100.0	40
119	66	-30	-9	1	100.0	100.0	41
120	-69	-42	-6	1	21.4	26.9	,,
121	12	30	60	1	100.0	100.0	42
122	12	36	21	1	100.0	100.0	43
123	51	-3	-15	1	98.6	100.0	44
124	-27	-39	-9	1	100.0	100.0	45
125	27	-36	-12	1	100.0	100.0	46

139 48 36 -12 1 98.6 95.5 140 9 -90 -6 NaN 141 18 -90 -15 NaN 142 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 <th>de-No. igure 3</th>	de-No. igure 3
127	47
128	48
129	49
130	50
131	51
132	52
133	3 <u>2</u>
134	
135 12 -66 42 NaN 136 3 -48 51 NaN 137 -45 30 -12 1 100.0 100.0 138 -9 12 66 8 100.0 100.0 139 48 36 -12 1 98.6 95.5 140 9 -90 -6 NaN 141 18 -90 -15 NaN 1442 -12 -96 -12 NaN 1443 18 -48 -9 4 100.0 100.0 1444 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 </td <td></td>	
136	
137 -45 30 -12 1 100.0 100.0 138 -9 12 66 8 100.0 100.0 139 48 36 -12 1 98.6 95.5 140 9 -90 -6 NaN 141 18 -90 -15 NaN 142 -12 -96 -12 NaN 144 39 -72 15 4 100.0 100.0 1445 9 -72 15 4 100.0 100.0 145 9 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0	
138 -9 12 66 8 100.0 100.0 139 48 36 -12 1 98.6 95.5 140 9 -90 -6 NaN 141 18 -90 -15 NaN 1441 18 -90 -15 NaN 1442 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 <td< td=""><td>53</td></td<>	53
139 48 36 -12 1 98.6 95.5 140 9 -90 -6 NaN 141 18 -90 -15 NaN 142 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 <td>190</td>	190
140 9 -90 -6 NaN 141 18 -90 -15 NaN 142 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0	
141 18 -90 -15 NaN 142 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 153 42 -78 -12 4 100.0	54
142 -12 -96 -12 NaN 143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9	
143 18 -48 -9 4 100.0 100.0 144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 155 -15 <td< td=""><td></td></td<>	
144 39 -72 15 4 100.0 100.0 145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21	444
145 9 -72 12 4 100.0 100.0 146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 <td< td=""><td>114</td></td<>	114
146 -9 -81 6 4 100.0 100.0 147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 159 15 <t< td=""><td>115</td></t<>	115
147 -27 -78 18 4 100.0 100.0 148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 <	116
148 21 -66 3 4 100.0 100.0 149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 <	117
149 -24 -90 18 4 100.0 100.0 150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 <t< td=""><td>118</td></t<>	118
150 27 -60 -9 4 100.0 100.0 151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6	119
151 -15 -72 -9 4 100.0 100.0 152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 <td< td=""><td>120</td></td<>	120
152 -18 -69 6 4 100.0 100.0 153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	121
153 42 -78 -12 4 100.0 100.0 154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	122
154 -48 -75 -9 4 98.6 100.0 155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	123
155 -15 -90 30 4 100.0 100.0 156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	124
156 15 -87 36 4 100.0 100.0 157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	125
157 30 -78 24 4 100.0 100.0 158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	126
158 21 -87 -3 4 100.0 100.0 159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	127
159 15 -78 30 4 100.0 100.0 160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	128
160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	129
160 -15 -51 0 4 100.0 100.0 161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	130
161 42 -66 -9 4 100.0 100.0 162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	131
162 24 -87 24 4 100.0 100.0 163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	132
163 6 -72 24 4 100.0 100.0 164 -42 -75 0 4 100.0 100.0	133
164 -42 -75 0 4 100.0 100.0	134
	135
1 100 21 -10 -10 4 100.0 100.0	136
	137
	138
	139
	140
	141
	142
	143
	144
174 -45 3 45 2 100.0 100.0	55
174 -45 3 45 2 100.0 100.0 175 48 24 27 2 100.0 100.0	56

Node-No.	MNI x	MNI y	MNI z	Network- No.	% Data Learning Sample	% Data 1-back Sample	Node-No. in Figure 3
176	-48	12	24	2	100.0	100.0	57
177	-54	-48	42	2	100.0	100.0	58
178	-24	12	63	2	100.0	100.0	59
179	57	-54	-15	2	100.0	98.5	60
180	24	45	-15	2	98.6	97.0	61
181	33	54	-12	2	97.1	94.0	62
182	-21	42	-21	NaN	37.1	34.0	02
183	-18	-75	-24	NaN			
184	18	-81	-33	NaN			
185	36	-66	-33	NaN			_
186	48	9	33	2	100.0	100.0	63
187	-42	6	33		100.0	100.0	64
188	-42	39	21	2	100.0	100.0	65
189	39	42	15	2	100.0	100.0	66
190	48	-42	45	2 2 2 2 2	100.0	100.0	67
190	-27	-42 -57	45 48	2	100.0	100.0	68
192	45	-5 <i>1</i>	48	2	100.0	100.0	69
193	33	-5 4 15	57	2	100.0	100.0	70
193	36	-66	37 39	2 2	100.0	100.0	70 71
	-42	-66 -54	39 45	2	100.0	100.0	71 72
195				2 2			
196	39	18	39	2	100.0	100.0	73
197	-33	54	3	2	100.0	100.0	74
198	-42	45	-3	2 2 2 2 2 2	100.0	100.0	75 70
199	33	-54	45	2	100.0	100.0	76
200	42	48	-3	2	100.0	100.0	77
201	-42	24	30	2	100.0	100.0	78
202	-3	27	45		100.0	100.0	79
203	12	-39	51	7	100.0	100.0	172
204	54	-45	36	7	100.0	100.0	173
205	42	0	48	7	100.0	100.0	174
206	30	33	27	7	100.0	100.0	175
207	48	21	9	7	100.0	100.0	176
208	-36	21	0	7	100.0	100.0	177
209	36	21	3	7	100.0	100.0	178
210	36	33	-3	7	100.0	100.0	179
211	33	15	-9	7	100.0	100.0	180
212	-12	27	24	7	100.0	100.0	181
213	0	15	45	7	100.0	100.0	182
214	-27	51	21	7	100.0	100.0	183
215	0	30	27	7	100.0	100.0	184
216	6	24	36	7	100.0	100.0	185
217	9	21	27	7	100.0	100.0	186
218	30	57	15	7	100.0	100.0	187
219	27	51	27	7	100.0	100.0	188
220	-39	51	18	7	100.0	100.0	189
221	3	-24	30	NaN			
222	6	-24	0	5	100.0	100.0	145
223	-3	-12	12	5 5	100.0	100.0	146
224	-9	-18	6	5	100.0	100.0	147
225	12	-18	9	5	100.0	100.0	148

Node-No.	MNI x	MNI y	MNI z	Network- No.	% Data Learning Sample	% Data 1-back Sample	Node-No. in Figure 3
226	-6	-27	-3	5 5	100.0	100.0	149
227	-21	6	-6	5	100.0	100.0	150
228	-15	3	9	5	100.0	100.0	151
229	30	-15	3	5	100.0	100.0	152
230	24	9	0	5	100.0	100.0	153
231	30	0	3	5	100.0	100.0	154
232	-30	-12	0	5	100.0	100.0	155
233	15	6	6	5 5 5 5 5 5 5	100.0	100.0	156
234	9	-3	6	5	100.0	100.0	157
235	54	-42	21	8	100.0	100.0	191
236	-57	-51	9	8	100.0	100.0	192
237	-54	-39	15	8 8 8	100.0	100.0	193
238	51	-33	9	8	100.0	100.0	194
239	51	-30	-3	8	100.0	100.0	195
240	57	-45	12	8	100.0	100.0	196
241	54	33	0	8	100.0	98.5	197
242	-48	24	0	8	100.0	100.0	198
243	-15	-66	-21	NaN			
244	-33	-54	-24	NaN			
245	21	-57	-24	NaN			
246	0	-63	-18	NaN			
247	33	-12	-33	NaN			
248	-30	-9	-36	NaN			
249	48	-3	-39	NaN			
250	-51	-6	-39	NaN			
251	9	-63	60	9	100.0	100.0	199
252	-51	-63	6	9	100.0	100.0	200
253	-48	-51	-21	NaN			
254	45	-48	-18	NaN			
255	48	-30	48	3	100.0	100.0	113
256	21	-66	48	9	100.0	100.0	201
257	45	-60	3	9	100.0	100.0	202
258	24	-57	60	9	100.0	100.0	203
259	-33	-45	48	9	100.0	100.0	204
260	-27	-72	36	9 9 9 9 9	100.0	100.0	205
261	-33	0	54	9	100.0	100.0	206
262	-42	-60	-9	9	100.0	100.0	207
263	-18	-60	63	9	100.0	100.0	208
264	30	-6	54	9	100.0	100.0	209

Supplementary Table 4. Subclusters of the CON and the DAN. Abbreviations: SMA/dACC:

Supplementary Motor Area / dorsal Anterior Cingulate Cortex, SMG: Supramarginal Gyrus, MCC:

Midcingulate Cortex, IC/fO: Insular Cortex / frontal Operculum, Prec./PC: Precuneus / Parietal Cortex, TL:

Temporal Lobe, OCC: Occipital Cortex, FEF: Frontal Eye Fields

105

101

102

103

104

106 Cingulo-opercular network (CON):

MNI x	MNI y	MNI z	Region
-3	2	53	SMA/dACC
54	-28	34	SMG
19	-8	64	SMA/dACC
-16	-5	71	SMA/dACC
-10	-2	42	MCC
37	1	-4	IC/fO
13	-1	70	SMA/dACC
7	8	51	SMA/dACC
-45	0	9	IC/fO
49	8	-1	IC/fO
-34	3	4	IC/fO
-51	8	-2	IC/fO
-5	18	34	MCC
36	10	1	IC/fO

107

108

109 Dorsal attention network (DAN):

MNI x	MNI y	MNI z	Region
10	-62	61	Prec./PC
-52	-63	5	TL
22	-65	48	Prec./PC
46	-59	4	TL
25	-58	60	Prec./PC
-33	-46	47	Prec./PC
-27	-71	37	OCC
-32	-1	54	FEF
-42	-60	-9	TL
-17	-59	64	Prec./PC
29	-5	54	FEF