

Filesystems and Storage on RMACC Summit

Be Boulder.

Filesystems and Storage on RMACC Summit

- Mea Trahan
- Email: <u>Daniel.Trahan@Colorado.edu</u>
- RC Homepage: https://www.colorado.edu/rc
- RC Email: <u>rc-help@colorado.edu</u>

- Slides available for download at:
- https://github.com/ResearchComputing/Filesystems_And_Storage_Fall_2020

11/4/202 1	Filesystems and Storage	2	Be Bo

Outline

- Overview of Summit's storage
- Summit architecture and filesystems
- Petalibrary
- Data transfers and tools

Filesystems and Storage	3
	Filesystems and Storage

Quick note

 Clusters come in all shapes and sizes, so much of the information here may not apply to other systems. HPC is a very diverse landscape so make sure you check with the system administrators of whichever cluster you are using.

11/4/202 1	Filesystems and Storage	4	Be Bould

Overview of CURC's directories

3 major user directories

- Home Used for reusable job scripts, setting files, and other important small files.
- Projects Used for application and small datasets.
- Scratch Work directory. Used with jobs for highspeed access to data or output.

Table:

	Directory	Capacity	Backup	Purge
Home	/home/\$USER	2 GB	2 hours for 7 days	Never
Projects	/projects/\$USER	250 GB	6 hours for 7 days	Never
Scratch	/scratch/summit/\$USER	10 TB	(none)	90 days

11/4/202 1	Filesystems and Storage	5

What's makes Summit different?

- As you may know Research Computing resources diverge a bit from the average computer.
 - Complex severs architecture connected to two separate clusters
 - Various endpoints and services
 - Several Filesystems for various purposes.
- When you log into Summit all of this seems "seamless..."
- So what gives?

11/4/202 1	Filesystems and Storage	6

RC's network

- The user facing side of RC's network is composed of 3 major structures:
- Login Nodes
 - VMs with very little compute capability
 - Can access RMACC Summit compile nodes by running ssh scompile with the slurm/summit module loaded.
 - Can access Blanca by loading slurm/blanca and submitting an interactive job.
- Summit
 - CU Boulder high performance computing resource.
 - Composed of forward-facing 483 compute nodes and 2 compile nodes.
- Blanca
 - Buy in condo nodes that compose a heterogeneous compute cluster.
 - Check with your group if you'd like access to this resource.

11/4/202 1	Filesystems and Storage	7
---------------	-------------------------	---

RC's network

RC's filesystems

- To reduce the amount of complexity for an end user to manage, RC uses a shared file server to manage user related storage.
- "Core Storage"
 - Contains /home, /projects, and /rc_scratch
 - Contains all shared software and the module stack.
- Every node or login VM is connected to this resource allow user to easily manage their files.
- Non-Parallel IO
- Slow reads and writes

11/4/202	Filesystems and Storage	9	Be Boulder.

RC's Storage

11/4/202	Filesystems and Storage	10
----------	-------------------------	----

Problems with I/O and threads

- Suppose someone is computing with 120 threads and needs to write their data to a file system...
- Single File:
 - Many threads means that applications may idle waiting for free resources.
 - Nonlocking I/O may cause corruption of data.
- Many Files:
 - Separate file writes may lead to issues with the filesystem's metadata service.
- So what do we do?

RC's Parallel filesystems

- RC provides an additional system local parallel file system available on Summit.
- Scratch Space:
 - Spinning disk platters rated at 12 Gb/s
 - GPFS File System for parallel I/O w/ 32 Clints and 4 Servers
 - Distributed metadata to avoid bottlenecking
 - Consistent chunking allows for parallel I/O
 - Locally mounted on Summit nodes.
- Scratch is usually limited to 10 TB of storage but can be expanded upon with request.
 - Purges every 90 days from file creation
 - Technically shared among all users
 - Scratch totals in 1 PB of storage for everyone

Parallel Filesystem

- Normal application I/O is usually lacking the ability to leverage a parallel file system for performance
 - On Summit you will naturally get an I/O performance boost when using scratch.
- Need to utilize specialized software libraries
- MPIIO
 - Middle wear, requires modification of code for efficient usage.
- HDF5
 - High level, use a HDF5 dataset
- NETCDF
 - High level use a Netcdf dataset

11/4/202	Filesystems and Storage	13
1	,	

Local Node SSDs

- Summit Nodes also hold onto 100 GB of local node SSD storage.
- These SSDs are not shared among nodes so must move files over within job.
- No Cooperative Parallel I/O
- Located at /scratch/local

Some more filesystems...

- High Performance I/O is less available with Blanca
- Petalibrary Active
 - High Speed performance
 - Allows for parallel reads and writes
 - Currently utilizes BeeGFS as its parallel filesystem, will be switching to GPFS
 - More on this in a minute...
- RC_Scratch
 - Not the best storage on RC...
 - Older scratch space past its service dates
 - Large but slow
 - "I'm sometimes wonder if /projects or /home would be faster than rc_scratch..."

11/4/202	Filesystems and Storage	15
	-	

Parallel Filesystems

What is Petalibrary?

- Research Computing offers a subsidized but paid, long-term storage solution closely coupled with RC resources.
- Petalibrary
 - Large scale subsidized storage solution
 - Enterprise Grade
 - RC Staff supported with assistance on transfer strategies
 - Available in several flavors:
 - Active Disk
 - Archival Tape
 - Active Storage with Archive copy

11/4/202 1	Filesystems and Storage	17
---------------	-------------------------	----

Hardware Specifications

Active Storage

- Spinning disk platters for frequent reads and writes
- GPFS filesystem
- Parallel file I/O capable
- RAID-6 file protection
- Allocations located at: /pl/active/

Archive Storage

- Tape storage for infrequent reads and writes
- iRods backed with StrongBox
- Redundant copies of Data on separate tapes
- Allocations located at: /pl/archive/

Petalibrary

11/4/202	Filesystems and Storage	19
----------	-------------------------	----

Checking your storage limits:

- curc-quota Research computing tool to monitor disk usage.
 - Provides detailed summary of your core storage
 - Provides detailed summary of scratch space on compile and compute nodes
 - Also lists current capacity of all Petalibrary allocations you have access to

[userXXXX@login12 ~]\$ curc-quota

Data Transfers

- Data transfers are usually handled by one of 2 methods:
- Globus
 - By far the most stable and recommended way for data transfers
 - Fast transfers
 - Transfers continue if a user disconnects
 - Web GUI option or Globus Connect Personal

SCP/SFTP

- Secure Copy and Secure File Transfer Protocol
- Straightforward method of transferring data
- Generally recommend only to move small files less than a Gigabyte.

More on Data transfers

- Less common methods of transferring data...
- sshfs
 - Mounting the RC filesystem to your drive remotely!
 - Single sign in for multiple data transfers
 - Great when needing to repeatedly access files on RC Resources
- rsync/rclone
 - Another utility to transfer files
 - Particularly useful in repeated file transfers and synchronization of file sets
 - Snapshot like backups
 - https://github.com/ResearchComputing/Documentation/blob/dev/docs/compute/rclone.md

11/4/202		
11/4/202	Filosystoms and Storago	22
4	Filesystems and Storage	22

Some additional notes...

- Do not run your job against /home or /projects
 - Slows down your jobs.
 - Slows down everyone else's jobs.
 - We monitor for this and will kindly ask you to stop.
 - Use Scratch instead for your data!
- Always recover your data from scratch after your job completes!
 - No backup and we can't get your data back!
- Always have a safe backed up location for your data!

Questions?

11/4/202 1 Filesystems and Storage	24
---------------------------------------	----

Thank you!

Please fill out the survey: http://tinyurl.com/curc-survey18

Contact information: rc-help@Colorado.edu

Slides:

https://github.com/ResearchComputing/Filesystems_And_Storage_Fall 2020

11/4/202 1 Filesystems and Storage
