Introduction
 Related Works
 Methodology
 Experiments
 Conclusion

 0000
 000
 00000000
 0000000

Data-Free Knowledge Distillation of Deep Generative Models

Indian Institute of Technology Mandi

Group - 2

B23158, B23153, B23162, B23173, B23229

Mentor Ms. Kajal

Presented to:

Dr. Arnav Bhavsar Dr. Prabhat Bharti

May 15, 2025

Related Works Methodology Experiments Conclusion
000 0000 000000 000000

Outline

Introduction

- 1 Introduction
 - Problem Definition
 - Objectives
- 2 Related Works
- 3 Methodology
 - Paper's pipeline
 - Our Pipeline
- 4 Experiments
 - Experiment setup
 - Paper replication
 - Results from our pipeline
 - Comparison
- 5 Conclusion

Introduction

Introduction

•ooo

Related Works Methodology

Problem Definition

Introduction

0000

Problem Definition

- Data-Free Knowledge Distillation (DFKD) enables transferring knowledge from a teacher network to a student network without access to original training data.
- Existing DFKD methods, including DiffDFKD¹, focus primarily on classification models
- Our project aims to generalize DFKD to any model with a continuous latent space, such as VAEs, GANs, and diffusion models.
- We develop a more general DFKD pipeline that first synthesizes artificial dataset and then distills generative models.

4/25

IIT-Mandi

¹Qi. et al., Data-free Knowledge Distillation with Diffusion Models.arXiv:2504.00870v1 (April 2025)

Related Works Methodology Experiments Conclusion

Problem Definition

Introduction

0000

Motivation

Why Data-Free Distillation?

- Data privacy, proprietary restrictions, and large-scale datasets make retaining or sharing data impractical.
- DFKD allows efficient model compression and knowledge transfer without compromising data security.

Why extend to continuous latent space models?

- Current solutions (e.g., DiffDFKD) are task-specific, lacking generalizability to diverse generative models.
- A unified DFKD framework would enable lightweight deployment of generative models on edge devices, privacy-critical environments, and low-resource platforms.

Related Works Methodology Experiments Conclusion
000 0000 0000000 00000

Introduction ○○○● Objectives

Our Objectives

- Analyze existing distillation strategies for generative models.
- Design a modular data free distillation pipeline applicable to any generative model with an encoder to a continuous latent space (VAE, Diffusion, GANs, etc.).
- Compare with-data and data-free distillation performance on standard datasets.

roduction Related Works Methodology Experiments Conc ○○○ •○○ ○○○ ○○○○ ○○○○○

Related Works

Papers Referred for Methodology

Papers for Distillation for DGMs

- Distilling the Knowledge of a Neural Network²
- A Unified Knowledge Distillation Framework for Deep Directed Graphical Models (2023)³

Papers for Data Free Generation of Images

- Data-Free Knowledge Distillation for Deep Neural Networks⁴
- Data-free Knowledge Distillation with Diffusion Models (2025)⁵

²Hinton, Geoffrey Vinyals, Oriol Dean, Jeff. (2015). Distilling the Knowledge in a Neural Network.

³Y. Chen, K. Liang, Z. Zeng, S. Yao and H. Shao, "A Unified Knowledge Distillation Framework for Deep Directed Graphical Models," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 7795-7804, doi: 10.1109/CVPR52729.2023.00753.

⁴Lopes, Raphael Fenu, Stefano Starner, Thad. (2017). Data-Free Knowledge Distillation for Deep Neural (Networks. 10.48550/arXiv.1710.07535.

⁵Qi, et al., Data-free Knowledge Distillation with Diffusion Models.arXiv:2504.00870v1 (April 2025)

oduction Related Works Methodology Experiments Conclusion
OO 000 0000 000000 0000000

Related Works

Method	Datafree Generation	Distillation	DGM Generalization	
Hinton, Geoffrey	No	Yes	No	
Lopes, Raphael	Yes	Yes	No	
Y. Chen, K. Liang	hen, K. Liang No		Yes	
Qi, et al.	Yes	Yes	No	

Methodology ●○○○

Methodology

Introduction

Data Free Generation

Data Free Generation of Images through inferencing the Teacher Model and further Distillation(done on a Classifier) The Losses:-

- Batch Normalization-Matching image logits with teacher distribution.
- Classification Loss-The teacher should classify images from its dataset correctly.
- Adveresarial Loss- Pushes student and teacher model away for generalization.

IIT-Mandi

Related Works Methodology Conclusion Experiments

Our Method

We mainly focus on VAEs for our experimentation and the method is as follows:-

Data Free Generation through Model Inference

Creation of dataset by extracting feature from our pretrained VAE

- Through conditional prompts we guide our model to generate images of a certain image space.
- Through our losses we update the input vectors and force the images generated to match our teacher model's distribution.
- Losses being the KL Divergence loss and the MSE loss between the generated image by the diffusion model and the reconstruction.

Distillation of DGM's

⁷ For our demonstration we focus on the Distillation of VAEs using the Unified Distillation Model Framework for VAEs.

⁷Taken From Y. Chen, K. Liang, Z. Zeng, S. Yao and H. Shao, "A Unified Knowledge Distillation Framework 🕏 Deep Directed Graphical Models." 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 7795-7804, doi: 10.1109/CVPR52729.2023.00753.

Related Works Methodology Experiments Conclusion 000 000 00000 000000 00000

Introduction 0000 Our Pipeline

The Pipeline Created

Figure: Pipeline for data synthesis. After data synthesis, we follow the DGM distillation process as described in Chen et al., 2023.

Experiments

• 0 0 0 0 0 0 0

Experiments

Experiment setup

Setup

Introduction

- Datasets Used
 - CIFAR-10: 60,000 images (32x32x3) belonging to 10 classes
 - CelebA-HQ: 30,000 images of human faces (1024x1024x3)
- Models Used
 - Stable-Diffusion (v1.5) for guided synthesis
 - LVAE: Heirachial VAE (~5.6M Params) as pre-trained teacher
 - Student LVAE, similar architecture but lesser parameters (~0.03M)
- 1000 unique images synthesized
- Distilled for 50 epochs with batch size 128

Related Works Methodology Experiments Conclusion

Paper replication

DGM distillation with CIFAR-10

Table: Results of Student VAE distilled using CIFAR-10

Model	#param	FID	EMD	MD MMD 1NN Inference Time		Model Size (MB)	
Teacher	5.39M	4.63	7.57	0.25	0.89	23.3±1.12ms	20.5
Student	0.03M	5.24	7.96	0.30	0.91	5.63±0.54ms	1.44

Related Works Methodology **Experiments** Conclusion 000 000 000 000 0000 0000

Paper replication

Data-synthesis (paper's)

Figure: Some generations^a

 a Taken from DiffDFKD(Qi et. al, Apr 2025)

Figure: Batch Norm loss v/s timesteps

Introduction Experiments 0000000 Results from our pipeline

Data-synthesis from CelebA-HQ (ours)

Figure: Example of CelebA synthesis using our pipeline

Experiments

Data-synthesis from CIFAR-10 (ours)

Figure: Example of CIFAR-10 synthesis using our pipeline

Experiments 00000000 Results from our pipeline

Qualitative Results from our pipeline

Figure: Synthesized images from our pipeline (1st row) v/s their closest match in CIFAR-10 dataset (2nd row)

Introduction

Experiments 0000000

Data-free DGM distillation (our pipeline)

Table: Results of DGM distillation via our data-free pipeline

Model	#param	FID	EMD	MMD	1NN	Inference Time	Model Size (MB)
Teacher	5.39M	4.63	7.57	0.25	0.89	23.3±1.12ms	20.5
Student (with CIFAR-10)	0.03M	5.24	7.96	0.30	0.91	5.63±0.54ms	1.44
Student (data-free)	0.03M	5.27	8.07	0.29	0.92	5.6±1.2ms	1.52

21 / 25

Introduction

Comparison

IIT-Mandi

Conclusion •000

Conclusion

Conclusion

- Implemented Knowledge Distillation pipeline for DGMs and tested on LVAE.
- Implemented Data-free KD pipeline using Stable Diffusion for Classification tasks.
- Developed a pipeline for Data-free KD for DGMs using Stable Diffusion for Quality data-synthesis.

Future work and Limitations

- The pipeline can be tested on other generative DGMs like Diffusion models.
- We can't exactly get our losses to be very small due to approximate inference used in many Generative Models.

roduction Related Works

Methodology 2000

Thank You!

