NAME:	Markus Afonso	Set:	C	
			_	

MATH 1350 Statistics for Information Technology

Lab # 4 – More Probability Answer/Grading Sheet

Step :	Answer (if requested)	Mar k	
7	Modifications of the Lab 3 script to perform the Monty Hall experiment		5
8	Edit for loop and if statements to match the code snippet		/ 2
10	Frequency histogram of 50 runs of the Monty Hall code (with requested features) – paste it here Chances of Picking Door		5
	Which class from your frequency histogram is the mode of the frequency distribution? breaks=seq(620,720,10)		/ 1
11	• Mean number of wins per 1000 games: (paste it here) [1] 667.36		1
12	Estimate of the probability of winning the Monty Hall game if we switch doors: (answer here)		2

Step	Answer (if requested)	Mar	
:		k	
	0.6667 change of winning the game.		

R script

Paste your R script here. Make sure that it contains ALL of the elements worth points listed above.

```
library(mosaic)
doordata <- read.delim("C:/Users/Markus/OneDrive - BCIT/Desktop/Term2/MATH</pre>
1350 Statistics for IT/Week4/doordata.txt", comment.char="#")
h <- 1:50
nums <- list()
for (x in h){
n <- 1:1000
winning_door <- sample(c(1,2,3), length(n),replace=TRUE)</pre>
first_pick <- sample(c(1,2,3), length(n),replace=TRUE)</pre>
win_counter <- 0</pre>
loss_counter <- 0</pre>
for (i in n) {
 if (winning_door[i]== first_pick[i]) {
    loss_counter <- loss_counter+1</pre>
  else {
    win_counter <- win_counter +1</pre>
  }
nums <- append(nums, list(win_counter))</pre>
nums <- unlist(nums, use.names = FALSE)</pre>
histogram(nums, main = "Chances of Picking Door",
           xlab = "Scores", ylab = "Percentage of Scores", type = "p",
           col="grey", breaks=seq(620,720,10))
mean(nums)
```

Step :	Answer (if requested)	Mar k	
	Paper and Pencil problem #1 (this is just a space for your marks)		3
	6 sided dice 1		3
	a) $\frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12} = 0.08333$ chan of winning \$6.		
	b) $\frac{\text{total amount}}{\text{possible outcomes}}$ $\frac{(1+2+3+4+5+6)+(0)}{12}$		
	$=\frac{21}{12}$ $=$ \$1.75		
	Paper and Pencil problem #2		/ 4

Step :	Answer (if requested)	Mar k
	2) a) $n_1 \cdot n_2 \cdot \dots \cdot n_k = n^k$	
	0.25 5	
	= 0.0009765	
	probability that	
	tmy will all pass.	
	P)	
	(- 0.25	
	= 0.75 of failing	
	0.75 5	
	= 0.2373 probability	
	at none passing	
	c) Plat but once = 1 - P(S, NS2 TS3 TS4TS)	
	$= (-(0.75)^{5})$	
	= 0.7267 probabality at at test one peusing.	
	d) $\rho(3P \cap 2F) = (1-0.75)(1-0.75)(1-0.75)(1-0.25)$	
	0.15625.0.5625	
	= 0.08789	
	Paper and Pencil problem #3	/

Step :	Answer (if requested)	Mar k
	BV IS DOS MIM Totals D 25 5 51 34 116 A 115 30 104 12 281 N 32 43 19 21 115 Totals 173 78 174 67 402	
	a) $p(N) = \frac{115}{2192}$ = 0.2337	
	b) $P(ISNMIM) = P(IS) \cdot P(MIM)$ $= \frac{78}{492} \cdot \frac{62}{492}$	
	= 0.02158 c) $P(MIMUDOS) = P(MIM) + P(DOS)$	
	$= \frac{67}{492} + \frac{172}{492} - 0$ $= 0.4857$	
	d) $P(\bar{A}) = 1 - \frac{261}{462}$ = 0.4695	

Step :	Answer (if requested)	Mar k	
•	e) P(MMUD) =	N.	
	P(n:n)+P(D)-P(M)M(D)		
	67 492 + 492 - (16)		
	183 492 - 0.2931		
	= 0.7825		
	+) A(D UEV) = P(D) + P(EV) - P(D) EV)		
	$\left(1-\frac{116}{492}\right)+\left(1-\frac{173}{492}\right)-\left(1-\frac{26}{492}\right)$		
	= 0.4654		
	Paper and Pencil problem #4		/ 3

Step :	Answer (if requested)	Mar k
	4) 1/5 1/5 1/5 1/5	
	15 15 15 15 15	
	$4/5 - \frac{3}{5}$ = $\frac{3}{5}$ chance	
	of winning	
	1/5 chance of winning without switching	
	5) yel, ahrungs	