

6. Modeliranje jezikom VHDL

- > osnovni elementi jezika
- osnove sintakse jezika
- elementi opisa jezikom VHDL
- ponašajni opis
- > strukturni opis
- istodobno pridruživanje
- > slijedno pridruživanje
- proces simuliranja VHDL koda

- opis sklopova ~ specifikacija:
 - koncizni i nedvosmisleni zapis za razmjenu podataka između projektanata
 - modeliranje sklopova
 isticanje bitnih karakteristika uz uklanjanje detalja
 - "ulazni jezik" za:
 - simuliranje sklopova
 - CAD (engl. Computer-Aided Design) alate;
 npr. za sintezu

- jezici za opis sklopovlja,
 HDL (engl. Hardware Description Languages):
 - posebno razvijeni u tu svrhu
 - ugrađeni primjereni mehanizmi
 - prvi HDL:
 CDL (engl. Computer Design Language), Y. Chu, 1963.
 - normirani (i trenutno najšire korišteni) HDL:
 - VHDL
 - Verilog

- VHDL (engl. Very high speed integrated circuits HDL):
 - popratni rezultat projekta DoD VHSIC
 - utvrđen dvama normama IEEE:

IEEE Std 1076-1993: *IEEE Standard VHDL Language Reference Manual*, Revision of IEEE Std 1076-1987, June 6, 1994, IEEE, New York, NY, 1994.

IEEE Std 1164-1993: *IEEE Standard Multivalue Logic* System for VHDL Model Interoperability (Std_logic_1164), May 26, 1993, IEEE, New York, NY, 1993.

- osnovne značajke VHDL:
 - sintaksa slična onoj jezika Pascal
 laka čitljivost
 - primjereni mehanizmi za opis strukture i ponašanja sklopovlja
 - mogućnost poslovanja komponentama
 - ~ "gotovim" podsklopovima koji se tretiraju kao crne kutije

- osnovna jedinica modeliranja
 - ~ digitalni (pod)sklop:
 - crna kutija sa sučeljem (ulazi i izlazi)
 - ~ formalno *entitet*
 - sučelje
 - ~ formalno deklaracija entiteta
 - popis ulaza + tip
 [+ parametri za utvrđivanje unutarnjih svojstava]
 - popis izlaza + tip
 [+ parametri za utvrđivanje unutarnjih svojstava]
 - unutarnje ostvarenje sklopa
 - ~ formalno arhitektura

- općenita struktura modela digitalnog sklopa
 ~ entitet:
 - deklaracija entiteta~ sučelje
 - arhitektura
 - ~ unutarnje ostvarenje sklopa
 - deklarativni dio
 - ~ unutarnji signali, korisnički tipovi, konstante
 - tijelo
 - funkcionalnost sklopa
 - struktura sklopa

- entitet:
 - deklaracija entiteta ~ sučelje
 - arhitektura ~ unutarnje ostvarenje sklopa
 - funkcionalnost sklopa

- podatkovni objekti:
 - signali
 - ~ logički signali (npr. vodovi digitalnog sklopa)
 - konstante
 - nepromjenjive vrijednosti kao pokrate, nisu vodovi digitalnog sklopa
 - varijable
 - ~ "programska" pomagala:
 - pridržavanje parcijalnih rezultata izračunavanja
 - indeksi u programskim petljama opisa
 - mogu biti vodovi digitalnog sklopa

- leksika imena podatkovnih objekata:
 - slova, znamenke i podcrta _
 - ne razlikuju se velika i mala slova!
 - moraju započeti slovom
 - ne smiju:
 - biti ključne riječi VHDLa
 - završiti podcrtom _
 - sadržavati dvije podcrte _ _

Primjer:

- signali
 - ~ *osnovni* podatkovni objekti:
 - jednobitni logički signali npr. '1', '0'
 - višebitni logički signali npr. "1001", "01101001"
 - binarni (cijeli) brojevi

- tipovi VHDL signala prethodno definiranih u normama IEEE:
 - bit
 - vektor bitova
 - isto kao gore, ali iz standardne biblioteke std_logic
 - cijeli brojevi
 - Booleove konstante
 - nabrajanje

prethodno definirani tipovi VHDL signala:

tip signala	sintaksa	semantika tipa
bit	signal a : bit;	0 ili 1
bit_vector	signal A : bit_vector (0 to 7); signal B : bit_vector (7 downto 0);	linearno polje ("vektor") bitova u rastućem ili opadajućem poretku
std_logic; std_logic_vector	library ieee; use ieee.std_logic_1164.all; signal I0, I1, S: std_logic;	standardni prethodno definirani tipovi koji su uključeni u biblioteku ieee kao paket std_logic_1164; prethodno je potrebno deklarirati korištenje biblioteke i paketa klauzulama library i use
	signal A : std_logic_vector (0 to 7); signal B : std_logic_vector (7 downto 0);	
integer	signal A : integer range –128 to 127;	8-bitni cijeli broj u zapisu 2-komplementa
boolean	signal Status : boolean;	true (1) ili false (0)
nabrajanje	type stanje is (stanjeA, stanjeB, StanjeC, stanjeD); signal s : stanje;	korisnički specificirane vrijednosti tipa, primjerice stanja stroja s konačnim brojem stanja

- osnovne vrijednosti u std_logic:
 0, 1, U (nije zadano), (nespecificirano)
- ostale vrijednosti u std_logic:
 Z (visoka impedancija), L i H ("slabi" 0 i 1),
 X i W (nepoznate vrijednosti)

- dodjela vrijednosti
 - ~ naredba pridruživanja:
 - pridruživanje vrijednosti signalu:
 - pridruživanje vrijednosti konstanti::=
 - pridruživanje vrijednosti varijabli::=

- operatori kombiniranja unutar naredbe pridruživanja:
 - između pojedinih grupa postoje prioriteti!
 - nema prednosti operatora unutar pojedine grupe
 - ~ koristiti zagrade!

prioritet	klasa operatora	operator
najviši	miješani operatori	**, abs, not
	operatori množenja	*, /, mod, rem
	operatori predznaka	+, -
	operatori zbrajanja	+, -, &
	relacijski operatori	=, /=, <, <=, >, >=
najniži	logički operatori	and, or, nand, nor, xor, xnor

- struktura VHDL opisa:
 - navođenje korištenih biblioteka
 - definiranje sučelja sklopa
 - definiranje arhitekture sklopa

Primjer

```
library ieee;
use ieee.std_logic_1164.all;

entity sklopAND2 is
   port (a, b: in std_logic;
        y: out std_logic);
end sklopAND2;

architecture ponasajna of sklopAND2 is
begin
   y <= a and b after 10 ns;
end ponasajna;</pre>
```


• specifikacija *sučelja* sklopa:

- ključne riječi:
 - entity
 - port
 - is, end, in, out

- specifikacija sučelja sklopa:
 - tipovi (~"načini", modes) *pristupa* (engl. port):

način	semantika	
in	signal je ulazni za entitet	
out	signal je izlazni za entitet; ovaj se signal ne može ponovno upotrijebiti unutar entiteta (ne smije se pojaviti s lijeve strane operatora pridruživanja <=)	
inout	signal je dvosmjeran u odnosu na entitet	
buffer	signal je izlazni za entitet, ali se može ponovno upotrijebiti unutar entiteta (smije se pojaviti s obje strane operatora pridruživanja <=)	

- u primjeru:
 - a, b: ulazni signali
 - y: izlazni signal

• specifikacija *arhitekture*:

```
architecture NazivArhitekture
   of sklopAND2 is
-- deklariranje internih signala
-- deklariranje vrsta korištenih komponenti
begin
-- opis ponašanja ili strukture sklopa
end NazivArhitekture ;
...
```


Ponašajni opis

- opis rada sklopa
 - ~ definicija *ponašanja* sklopa:
 - izražavanje logičke funkcije koja povezuje izlaz s ulazima
 - definicija vrijednosti izlaza za svaku ulaznu kombinaciju
 - algoritam dodjele vrijednosti izlazu

Ponašajni opis

opis rada sklopa
~ definicija *ponašanja* sklopa:

```
architecture ponasajna of sklopAND2 is
begin
   y <= a and b after 10 ns;
end ponasajna;</pre>
```

- funkcija: y = a·b
- kašnjenje primitivnih sklopova 10 ns

Ponašajni opis

Primjer: opis sklopa na slici

. . .

architecture sS of slozeniSklop is
begin

```
y <= (a and b) or (not c and d)
    after 25 ns;
end sS;</pre>
```


- opis rada sklopa
 - ~ definicija *strukture* sklopa ostvarenog *jednostavnijim* komponentama
 - hijerarhijski dizajn, npr.:
 - računalo: procesor, memorija, ulazno/izlazne jedinice,...
 - procesor:
 ALU, upravljačka jedinica,...
 - najniža razina hijerarhije:
 - jednostavne komponente
 - ponašajni opis

Primjer:

- 3 vrste sklopova: NE, I, ILI
- 3 interna signala: c_not, izlaz1, izlaz2

komponente sklopa
 ponašajni opis, svaka u svojoj datoteci

```
architecture ponasajna of sklopNOT is
begin
  y <= not a after 5 ns;
end ponasajna;
architecture ponasajna of sklopAND2 is
begin
  y <= a and b after 10 ns;
end ponasajna;
architecture ponasajna of sklopOR2 is
begin
  y <= a or b after 10 ns;
end ponasajna;
```



```
architecture strukturna of slozeniSklop is
    signal c_not, izlaz1, izlaz2: std_logic;
begin
    sklop1: entity work.sklopNOT    port map (c,c_not);
    sklop2: entity work.sklopAND2    port map (a,b,izlaz1);
    sklop3: entity work.sklopAND2    port map (c_not,d,izlaz2);
    sklop4: entity work.sklopOR2    port map (izlaz1,izlaz2,y);
end strukturna;
```


• stvaranje primjerka komponente (engl. instantiation):

- udruživanje:
 - udruživanje mjestom (*engl. positional association*)
 redoslijed deklariranja pristupa
 u deklaraciji komponenti

```
... port map (c_not,d,izlaz2);
```

udruživanje imenima (*engl. named association*)
 ~ redoslijed navođenja signala *nije bitan*

Mješo

Mješoviti opis

```
architecture strukturna of slozeniSklop is
  signal c not, izlaz1, izlaz2: std logic;
begin
   -- sklop1: entity work.sklopNOT port map (c,c not);
  c not <= not c after 5 ns; -- ponašajno</pre>
   sklop2: entity work.sklopAND2 port map (a,b,izlaz1);
   sklop3: entity work.sklopAND2 port map (c not,d,izlaz2);
   sklop4: entity work.sklopOR2 port map (izlaz1,izlaz2,y);
end strukturna;
                                            sklop2
                                                   izlaz1
                                                      sklop4
                                          c not
                                     sklop1
                                                   izlaz2
                                             sklop3
```


Paketi i biblioteke

- *paketi* (engl. packages)
 - ~ skladišta VHDL deklaracija opće namjene:
 - tipova i podtipova
 - konstanti
 - komponenti
 - signala
 - funkcija i procedura

Primjer:

```
ieee.std_logic_1164
```


Paketi i biblioteke

- *biblioteke* (engl. libraries):
 - dodatno grupiranje jedinica VHDL koda
 - organizirane u podkazala datotečnog sustava
 - 2 vrste biblioteka
 - sustavske (npr. ieee)
 - korisničke (npr. work)
- deklaracija korištenja biblioteke:
 library ieee;
- uključivanje paketa:use ieee.std logic_1164.all;

- koncept istodobnog pridruživanja:
 - stvarni sklop
 istodobna (engl. concurrent) aktivnost komponenti
 - VHDL podržava modeliranje istodobnih aktivnosti

```
library ieee;
use ieee.std_logic_1164.all;

entity sklop3 is
   port (a, b, c: in std_logic;
       y1, y2: out std_logic);
end sklop3;
...
```


• naredba *jednostavnog* pridruživanja: <=

```
architecture ponasajna of sklop3 is
begin
   y1 <= a and not b after 15 ns;
   y2 <= b and c after 10 ns;
end ponasajna;</pre>
```


 naredba *izbornog* pridruživanja (engl. selected assignment):

```
architecture ponasajna of sklop4 is
begin
  with k select
    y <= a and b when '1',
    '0' when others;
end ponasajna;</pre>
```


 naredba uvjetnog pridruživanja (engl. conditional assignment):

- koncept slijednog (engl. sequential) pridruživanja:
 - algoritamski pristup
 bitan redoslijed izvršavanja
 - obuhvaćanje blokom process

```
architecture Naziv of sklop is
begin
   -- naredba istodobnog izvršavanja
   ...
process
begin
   -- slijedno izvršavanje
   ...
end process;
   ...
-- naredba istodobnog izvršavanja
   ...
end Naziv;
```


• naredbe *grananja*:

```
architecture ponasajna of sklop4 is
begin
  process(a,b,k) -- lista osjetljivosti
  begin
  if k = '1'
    then y <= a and b;
    else y <= '0';
  end if;
  end process;
end ponasajna;</pre>
```

lista osjetljivosti
 popis varijabli koje "okidaju" izvršavanje procesa

naredbe grananja:

naredbe *petlje*:

```
entity brojilo jedinica is
 port(x: in std logic vector(1 to 3);
       Count: buffer integer range 0 to 3);
end brojilo jedinica;
architecture ponasajna of brojilo jedinica is
begin
 process(x)
 begin
    Count \leq 0:
    for i in 1 to 3 loop
      if x(i) = '1'
         then Count <= Count+1;</pre>
      end if;
    end loop;
  end process;
end ponasajna;
```


- *lista osjetljivosti* (engl. sensitivity list):
 - popis signala kod čije će se promjene odnosni izraz (ponovno) izračunati
 - ~ "okinuti izvršavanje"
 - uz svaki izraz jedna od alternativa:
 - eksplicitna lista osjetljivosti
 nazivi signala odvojeni zarezima (blok process)
 - implicitna lista osjetljivosti
 - ~ naredbe istodobnog pridruživanja

Primjer: implicitna lista osjetljivosti

```
architecture ponasajna of sklop3 is
begin
  izraz1: y1 <= a and not b after 15 ns;
  izraz2: y2 <= b and c after 10 ns;
end ponasajna;</pre>
```

- lista osjetljivosti za izraz1: (a,b)
- lista osjetljivosti za izraz2: (b,c)
- promjena signala a ne "okida"
 ponovno izračunavanje izraz2

Primjer: eksplicitna lista osjetljivosti

```
architecture ponasajna of sklop4 is
begin
  process(a,b,k) -- (a,b,k) = lista osjetljivosti
  begin
    if k = '1' then
       y <= a and b;
    else
       y <= '0';
    end if;
  end process;
    k
end ponasajna;</pre>
```


djelovanje liste osjetljivosti:

Primjer: eksplicitna lista osjetljivosti 2

```
architecture ponasajna of sklop4 is
begin
  process(a,b) -- u listi osjetljivosti nema k!!!
begin
  if k = '1' then
    y <= a and b;
  else
    y <= '0';
  end if;
  end process;
  k
end ponasajna;</pre>
```


- djelovanje liste osjetljivosti 2:
 - u listi nema k

- osnovni pojmovi:
 - model~ simulirani sklop
 - realno vrijeme, vrijeme simulacije
 vrijeme "izvan simulacije":
 - od trenutka pokretanja
 - do trenutka završetka simulacije
 - simulirano vrijeme
 vrijeme koje protječe simuliranom sklopu
 - realno vrijeme i simulirano vrijeme nisu u međusobnom odnosu

Primjer:

kašnjenja sklopova: $t_{dI} = t_{dILI} = 2 \cdot t_{dNE} = 10 \text{ ns}$

- koncept izvršavanja simulacije:
 - provjera da se opis sklopa (model) ponaša kako se očekivalo
 - cikličko izračunavanje izraza
 s "napretkom" simuliranog vremena:
 - u nekom trenutku simuliranog vremena simulacija se obavlja kroz niz "delta ciklusa"
 - delta ciklus
 - ~ jedan ciklus izračunavanja paralelnih izraza, beskonačno kratkog (simuliranog) trajanja

- ponavljanje ciklusa simulacije
 - ~ postoji signal (ili više njih) promijenjen u tom delta ciklusu:
 - promjena signala u listi osjetljivosti nekog od izraza:
 - da: novi delta ciklus (simulirano vrijeme stoji!)
 - ne: simulirano vrijeme napreduje
 - provjera lista osjetljivosti na kraju izvršavanja svakog delta ciklusa

Primjer: rezultat simulacije u t = 100 ns ?

architecture ponasajna of sklop5 is

begin

```
izraz1: y1 <= not y2;
izraz2: y2 <= a;
end ponasajna;</pre>
```


Primjer: rezultat simulacije u t = 100 ns?

- t = 100 ns : promjena a
- simulator zamrzava vrijeme
- postoje li izrazi koji u listi osjetljivosti imaju a?
 → izraz2
- izračunavanje izraz2, y2 <= '1'
- promjena y2

- $\Delta 1$
- postoje li izrazi koji u listi osjetljivosti imaju y2?
 → izraz1
- izračunavanje izraz1, y1 <= '0'
- promjena y1

 $\Delta 2$

postoje li izrazi koji u listi osjetljivosti imaju y1?
 → NE! (napredak simuliranog vremena)

Primjer: rezultat simulacije u t = 100 ns ?


```
Primjer za vježbu:
  (svi su signali tipa std logic)
   architecture ponasajna of
        sklop6 is
   begin
        izraz1: A <= not(W and D);</pre>
        izraz2: B <= not(W and C);</pre>
        izraz3: C <= not(A and D);</pre>
        izraz4: D <= not(B and C);</pre>
   end ponasajna;
```


Primjer za vježbu:
Koji je rezultat simulacije
uz pobudu sa slike?

