Taiwan Display Inc.

FOG MODULE SPECIFICATION

Model:	TPF0702002N
TDI P/N.:	A3070AB.K01
Date:	Mar. 27 th 2014
Version:	V1.5

For Customer's Acceptance

Approved by	comment					
Taiwan Display Inc						

Taiwan Display Inc.
JDI Japan Display Inc. Group

Record of Revision

Version	Revise Date	Page	Content			
V1.0	3/21/2014		To release 1 st version			
V1.1	3/24/2014	21	To correct the HHO condition			
V1.2	3/24/2014	4., 7	1. To update power consumption 2. To modify the pin 34, 35&37			
V1.3	3/25/2014	5	To update the latest drawing			
V1.4	3/25/2014	23	To update the package drawing			
V1.5	3/27/2014	24	To update the package drawing			

Contents

1. GENERAL SPECIFICATIONS	4
1.1. DESCRIPTION	
2. MECHANICAL DRAWING	5
3. PIN ASSIGNMENT	6
3.1. PIN ASSIGNMENT FOR LCM	6
4. ELECTRICAL SPECIFICATIONS	8
 4.1. ABSOLUTE MAXIMUM RATINGS	
5. OPTICAL CHARACTERISTICS	18
6. RELIABILITY TEST ITEMS	21
7. HANDLING PRECAUTIONS	22
8. PACKAGE SPECIFICATION	23
PACKAGE FORMPACKAGE DRAWING	

1. General Specifications

1.1. Description

This model is a color active matrix TFT LCD that uses Low-temperature polysilicon TFT as a switching device. It is composed of a TFT LCD cell, IC and FPC. And it has a 7.02 (10:16) inch diagonally measured active display area with WUXGA (1200 horizontal by 1920 vertical pixel) resolution.

1.2. GENERAL SPECIFICATIONS

No.	Item	Specification	Unit	Remark
1	Size	7.02 (Diagonal)	inch	-
2	Driver element	LTPS TFT active matrix		-
3	Resolution	1200 × 3(RGB) × 1920		-
4	Display mode	Normally Black		-
5	View direction(Gray Inversion)	Free		-
6	Pixel pitch	0.07875(W) × 0.07875(H)	mm	
7	Active area	94.5(W) × 151.2(H)	mm	
8	Panel size	97.3 (W) x159.4 (H)x0.767(D) (Typ.)	mm	Note 1
9	Surface treatment	Hard coating		
10	Color arrangement	RGB-stripe		
11	Interface	MIPI		
12	Panel power consumption	Typ. 0.14 (max. 0.17)	W	
13	Weight	27.17	g	

Note 1: Refer to mechanical drawing.

2. Mechanical Drawing

3. Pin Assignment

3.1. Pin assignment for LCM

A 40pin connector is used for the module electronics interface. This model used "F62240-H1210B" manufactured by Vigorconn Technology.

Pin No.	Symbol	Description				
1	NC	No connection				
2	IOVCC	Down a warby for a vatery IOV/CC-4.9V/				
3	IOVCC	Power supply for system ,IOVCC=1.8V				
4	GND	Ground				
5	RST	Device reset signal				
6	NC	No connection				
7	GND	Ground				
8	MIPI_0N	MIPI Negative data signal (-)				
9	MIPI_0P	MIPI Positive data signal (+)				
10	GND	Ground				
11	MIPI_1N	MIPI Negative data signal (-)				
12	MIPI_1P	MIPI Positive data signal (+)				
13	GND	Ground				
14	MIPI_CKN	MIPI Negative clock signal (-)				
15	MIPI_CKP	MIPI Positive clock signal (+)				
16	GND	Ground				
17	MIPI_2N	MIPI Negative data signal (-)				
18	MIPI_2P	MIPI Positive data signal (+)				
19	GND	Ground				
20	MIPI_3N	MIPI Negative data signal (-)				
21	MIPI_3P	MIPI Positive data signal (+)				
22	GND	Ground				
23	HS	Horizontal scan Signal for touch				
24	VS	Vertical scan Signal for touch				
25	GND	Ground				
26	NC/TE	Tearing effect output signal for NVM(OTP),Let it open when not in use				
27	PWMO	PWM control signal for LED driver (CABC)				
28	NC/BIST	Enables the Test Image Generation function, if not used, connect to ground				
29	NC	No connection				
30	GND	Ground				
31	LED-	LED cathode				
32	LED-	LLD Gallious				

33	NC	No connection			
34	VSN	Analog supply pogative voltage			
35	VSN	Analog supply negative voltage			
36	NC	No connection			
37	VSP	Analog gunnly positive voltage			
38	VSP	Analog supply positive voltage			
39	LED+	I CD anada			
40	LED+	LED anode			

Note: Definition of scanning direction. Refer to the figure as below:

4. Electrical Specifications

4.1. ABSOLUTE MAXIMUM RATINGS

(GND=AV_{SS}=0V, Note 1)

	0 1 1	Val	ues	l loit	D1
Item	Symbol	Min.	Max.	Unit	Remark
	IOVCC	0	4.6	V	
Power voltage	VSP	0	6.5	V	
	VSN	-6.5	0	V	
Operation Temperature Storage Temperature	T _{OP}	-10	60	°C	
	T _{ST}	-30	70	°C	

Note: The absolute maximum ratings are the values that must not be exceeded at any time for this product. It is not allowed for any of these ratings to be exceeded. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed. Therefore, when designing a system incorporating the module, make sure that adequate attentions be paid to the variations in the supply voltages, the characteristics of parts that are connected, surges in the input and output lines, and the ambient temperatures.

4.2. Typical Operation Conditions

4.2.1. DC Characteristics

(Ta=25°C)

							(,
Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Daniel Company		VSP	5.3	5.5	5.7	V	
Powersi	upply voltage for Analog	VSN	-5.7	-5.5	-5.3	V	
Power si	upply voltage for Logic	IOVCC	1.70	1.80	1.90	V	
lancia sia	nal valtara (DEC)	V _{IL}	0	-	0.3*IOVCC	V	XRES
Input signal voltage (RES)		V _{IH}	0.7*IOVCC	=	IOVCC	V	
Output a	ignal valtage (TE)	V _{OL}	0	-	0.2*IOVCC	V	TE
Output S	ignal voltage (TE)	V _{OH}	0.8*IOVCC	-	IOVCC	V	
	Low level	V _{IL(DSI)}	-50	-	550	m∨	Low Power
Input	. Ingilievel		880	-	1350	mV	Receiver
signal voltage		V _{IH(DSI)}	70	-	330	mV	High Speed
	Differential input low threshold	V _{IDTL}	- 70	-	-	mV	Receiver
. ,	Differential input high threshold	V _{IDTH}	-	-	70	mV	

Note 1) The recommended operating conditions refers to a range in which operation of this product is guaranteed. Should this range is exceeded, the operation cannot be guaranteed even if the values may be withing the absolute maximum ratings. Accordingly, please make sure that the module is used within this range.

4.2.2. Current Consumption

ltom	Cumbal		Values		Lloit	Domark
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
	IOVCC	-	12	24	mA	
Current for Driver	VSP	-	10	13	mA	White Pattern
	VSN	-	10	13	mA	

4.2.3. Power Sequence

Item	Symbol	Unit	Min	Max
IOVCC on to VSP on time	tsVSP	ms	1	-
VSP on to VSN on time	tPON1	ms	0	-
VSN on to REST on time	tRW1	ms	1	-
VSN off to VSP off time	tPOFF1	ms	0	-
VSP off to IOVCC off time	thVSP	ms	0	-

4.3. Command sequence

4.3.1 Status Flow (1200RGBx1920, R69429, MIPI 4lane)

4.3.2 Sequence

(A) Power on

sequence	DataType	index	ı	parameters	description	comment			
	(hex)	(hex)	#	(hex)					
	POWER OFF STATE								
PWR supply on					IOVCC on	DSI input should be at GND level while IOVCC off			
wait 5ms									
PWR supply on					VSP,VSN on				
wait 20ms									
RESET L->H					RESET L->H				
wait 10ms									
PWR supply off					VSP,VSN off	(*1)Can skip "VSP/VSN off" in case of going to normal mode without staying sleep status.			
(wait 20ms)									
SLEEP MODE									

(B) On sequence

command

command

wait 10ms command

Wait 120ms

15

05

05

53

29

11

sequence	DataType	inde x	parameters		description	comment				
	(hex)	(hex)	#	(hex)						
	SLEEP MODE									
PWR supply on				_	VSP,VSN on					
wait 20ms										
command	05	01	-	-	soft reset					
wait 10ms										
command	23	В0	1	00	MCAP					
			1	14						
			2	08						
command	29	В3	3	00	Interface setting					
			4	22						
			5	00						
command	29	B4	1	0C	Interface ID setting					
command	29	В6	1	3A	DSI control					
			2	D3						
command	15	51	1	E6-	write display brightness					

2C

write control display

set display on

exit sleep mode

NORMAL MODE

(C) Off sequence sequence DataType index description parameters comment (hex) (hex) (hex) **NORMAL MODE** 05 28 set display off command wait 20ms command 05 10 enter sleep mode wait 80ms stop HS transmission PWR supply off VSP, VSN off wait 20ms

SLEEP MODE

(D) Power off description sequence DataType parameters comment index (hex) (hex) (hex) **SLEEP MODE RESET H->L** DSI data/clk should be at PWR supply off IOVCC off GND level after IOVCC off. **POWER OFF STATE**

(E) Enter DSTB DataType sequence description index parameters comment (hex) (hex) (hex) **SLEEP MODE** 23 B0 1 00 **MCAP** command command 23 B1 1 01 DSTB=1

DSTB MODE (F) Exit DSTB sequence DataType parameters description comment index (hex) (hex) (hex) **DSTB MODE** RESET H -> L wait 10ms PWR supply on VSP,VSN on wait 20ms RESET L->H RESET L->H wait 10ms (*1)Can skip "VSP/VSN off" in case VSP,VSN off of going to normal PWR supply off mode without staying sleep status. (wait 20ms) **SLEEP MODE**

4.4. Display Timing (Video Mode)

Transmission packet sequence in video mode	RSP LCD driver implementation
Non-burst mode with sync pulses	Not supported
Non-burst mode with sync events	Supported
Burst mode	Supported

Vertical Display Timing

Horizontal Display Timing

Vertical Display Timing (Video Mode, RM = 1h, DM = 3h, Method-1)

Item	Symbol	Condition	Unit	Min.	Тур.	Max.	Notes
Vertical cycle	VP		Line	1448	1928	1928	
Vertical low pulse width	VS		Line	1	1	-	See
Vertical front porch	VFP		Line	4	-	-	
Vertical back porch	VBP		Line	4	-	BP-3	See
Vertical data start point	-	VS+VBP	Line	5	-	BP-4	See
Vertical blanking period	VBL	VBP+VFP	Line	8	-	-	
Vertical active area	Vadr		Line	1440	1920	1920	

Note: "V\$ + VBP" is set as back porch by BP register.

1 line : prescribed by HSYNC (when RM = 2'h0, DM = 4'h1)

prescribed by RTN setting (whenRM = 2'h1, DM = 4'h3)

BP: register setting

Vertical Display Timing (Video Mode, RM = 1h, DM = 3h, Method-2)

Item	Symbol	Condition	Unit	Min.	Тур.	Max.	Notes
Vertical cycle	VP		Line	1448	1928	1928	
Vertical low pulse width	VS		Line	1	1	-	See
Vertical front porch	VFP		Line	4	-	-	
Vertical back porch	VBP		Line	BP+3	-	-	See
Vertical data start point	-	VS+VBP	Line	BP+4	-	-	See
Vertical blanking period	VBL	VBP+VFP	Line	BP+7	-	-	See
Vertical active area	Vadr		Line	1440	1920	1920	

Note: "V\$ + VBP" is set as back porch by BP register.

1 line : prescribed by HSYNC (when RM = 2'h0, DM = 4'h1)

prescribed by RTN setting (whenRM = 2'h1, DM = 4'h3)

BP: register setting

Taiwan Display Inc.
JDI Japan Display Inc. Group

Horizontal Display Timing (Video Mode, RM = 1h, DM = 3h)

Item	Symbol	Condition	Unit	Min.	Тур.	Max.	Notes
Horizontal front porch	HFP		ByteClock	4lane:100+β	-	-	
Horizontal data start point	-	HS+HBP	ByteClock	45+α	-	-	
Harizantal active area	Horizontal active area Hadr Pixel		Pixel	1080	-	1200	1Chip
Horizontal active area	Haur		rixei	-	1280	-	2Chip

Note: fByteClock = (1/4) * fDSiCLK. fByteClock = frequency of ByteClock.

α, β ≤ 45 ByteClock

Please refer to the following restrictions about α , β .

Vertical Display Timing (Video Mode, DM = 1h)

Item	Symbol	Condition	Unit	Min.	Тур.	Max.	Notes
Vertical cycle	VP		Line	1448	1928	-	
Vertical low pulse width	VS		Line	1	1	-	See
Vertical front porch	VFP		Line	4	-	-	
Vertical back porch	VBP		Line	4	-	-	See
Vertical data start point	-	VS+VBP	Line	5	-	-	
Vertical blanking period	VBL	VBP+VFP	Line	8	-	-	
Vertical active area	Vadr		Line	1440	1920	-	

Note: "V\$ + VBP" is set as back porch by BP register.

1 line : prescribed by HSYNC (when RM = 2'h0, DM = 4'h1)

prescribed by RTN setting (when RM = 2'h1, DM = 4'h3)

Horizontal Display Timing (Video Mode, RM = 0h, DM = 1h)

Item	Symbol	Condition	Unit	Min.	Тур.	Max.	Notes
Horizontal front porch	HFP		ByteClock	4lane:100+β	-	-	
Horizontal data start point	-	HS+HBP	ByteClock	45+α	•	-	
Horizontal active area	Hadr		Pixel	1080	-	1200	1Chip
FIGURE ACTIVE ATEA	Hadr		rixer	-	1280	-	2Chip

Note: fByteClock = (1/4) * fDSICLK. fByteClock = frequency of ByteClock.

α, β ≤ 45 ByteClock

Please refer to the following restrictions about α , β .

5. OPTICAL CHARACTERISTICS

 $(T_a = +25^{\circ}C)$

Itom	Symbol	Symbol Condition		Values	Unit	Remar		
Item Symbol		Condition	Min.	Тур.	Max.	Offic	k	
	θ_{L}	Ф=180°(9 o'clock)	-	80	-			
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	-	80	-	degree	Note 1	
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	-	80	-		Note 5	
	θ_{B}	Ф=270°(6 o'clock)	-	80	-			
Response time	T _{ON+} T _{OFF}			25		msec	Note 2 Note 3	
Contrast ratio	CR	Normal		1200	-	-	Note 4 Note 5	
Color	W _X	θ=Ф=0°	-	0.31	-	-		
chromaticity	W _Y		-	0.33	-	-	Note 5	
Transmittance	Tr	-	-	3.8	-	%	Note 5	
NTSC Ratio				71.5		%	Note 5	

Test Conditions:

VCC=1.8V, the ambient temperature is 25°C.

The test systems refer to Note 2.

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured w henLCD on the "White" state}}{\text{Luminance measured w henLCD on the "Black" state}}$

Note 5: Definition of backlight

The data is measured by using TDI's backlight system.

6. Reliability Test Items

High Temperature Storage	Ta = 70°C	240hrs	Note 1, Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1, Note 4
High Temperature Operation	Ts = 60°C	240hrs	Note 2, Note 4
Low Temperature Operation	Ta = -10°C	240hrs	Note 1, Note 4
Operate at High Temperature and Humidity	Ta=40°C H=95	%RH 240hrs	Note 4
Thermal Shock	-30°C/30 min ~ - cycles, Start wit end with high te	Note 4	
Package Vibration Test	Random vibration 5~200Hz -6dB/o 2hours every X,		
Package Drop Test	Drop a full trans a height: 72 cm(Weight<= 60 cm(Weight>1 1 corner, 3 edge		

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

7. Handling Precautions

a. Safety

i. The liquid crystal in the LCD is poisonous. DO NOT put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.

b. Handling

- i. The LCD and touch panel is made of plate glass. DO NOT subject the panel to mechanical shock or to excessive force on its surface.
- ii. Do not handle the product by holding the flexible pattern portion in order to assure the reliability
- iii. Transparency is an important factor for the touch panel. Please wear clear finger sacks, gloves and mask to protect the touch panel from finger print or stain and also hold the portion outside the view area when handling the touch panel.
- iv. Provide a space so that the panel does not come into contact with other components.
- v. To protect the product from external force, put a covering lens (acrylic board or similar board) and keep an appropriate gap between them.
- vi. Transparent electrodes may be disconnected if the panel is used under environmental conditions where dew condensation occurs.
- vii. Property of semiconductor devices may be affected when they are exposed to light, possibly resulting in IC malfunctions.
- viii. To prevent such IC malfunctions, your design and mounting layout shall be done in the way that the IC is not exposed to light in actual use.

ix.

c. Static Electricity

- i. Ground soldering iron tips, tools and testers when they are in operation.
- ii. Ground your body when handling the products.
- iii. Power on the LCD module BEFORE applying the voltage to the input terminals.
- iv. DO NOT apply voltage which exceeds the absolute maximum rating.
- v. Store the products in an anti-electrostatic bag or container.

vi.

d. Storage

- i. Store the products in a dark place at +25°C±10°C with low humidity (65%RH or less).
- ii. DO NOT store the products in an atmosphere containing organic solvents or corrosive gas.

iii.

e. Cleaning

- i. DO NOT wipe the touch panel with dry cloth, as it may cause scratch.
- ii. Wipe off the stain on the product by using soft cloth moistened with ethanol. DO Not allow ethanol to get in between the upper film and the bottom glass. It may cause peeling issue or defective operation. Do not use any organic solvent or detergent other than ethanol.

8. Package Specification

Package Form

				1		
No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	TPF0702010N	97.3 (W) x159.4 (H)x0.767(D)	27.17	44pcs	
2	Spacer	EPE	157*95*2	0.52	88pcs	
3	PET Tray	PET	396*290*14	153.00	11+1 pcs	
4	Spacer	Foam	440*334*20	43.40	2pcs	
5	Spacer	Foam	400*112*20	12.10	2pcs	
6	Spacer	Foam	334*112*20	11.20	2pcs	
7	Dust-Proof Bag	PE	530*400*0.08	42.00	1 pcs	
8	Carton	Corrugated paper	456*350*187	647.40	1set	
	Total weight	3.89 Kg±5%				

Package Drawing

