Алгебра

ДЗ 2

Гольдберг Дмитрий Максимович

Группа БПМИ248

Пусть G — группа всех невырожденных верхнетреугольных матриц (2×2) -матриц с коэффициентами из \mathbb{R} . Докажите, что все содержащиеся в G матрицы вида $\begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix}$ образуют нормальную подгруппу в G.

Решение:

Пусть H — искомая подгруппа(то что она действительно подгруппа проверяется тривиально). Тогда нужно доказать, что $gHg^{-1}\subseteq H\ \forall g\in G.$ Пусть $g=\begin{pmatrix}x&y\\0&z\end{pmatrix}.$ Тогда

$$gHg^{-1} = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{x} & -\frac{y}{xz} \\ 0 & \frac{1}{z} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{y+ax+by}{z} \\ 0 & b \end{pmatrix} \in H \Rightarrow gHg^{-1} \subseteq H.$$

Ответ:

ч.т.д

Найдите все гомоморфизмы из группы \mathbb{Z}_{20} в группу \mathbb{Z}_{12} .

Решение:

Рассмотрим гомоморфизмы $\varphi: \mathbb{Z}_{20} \to \mathbb{Z}_{12}$. Данные группы циклические с образующим элементом 1, то образ гомоморфизма определяется образом 1, так как $\varphi(n) = \varphi(1+\ldots+1) = \varphi(1)+\ldots+\varphi(1)$. Пусть $\varphi(1)=k$, тогда $\varphi(n)=n\cdot k$. Так как нейтральный элемент должен переходить в нейтральный элемент, то $\varphi(20)=20k\equiv 0\pmod{12} \Rightarrow 8k\equiv 0\pmod{12} \Rightarrow 2k\equiv 0\pmod{3} \Rightarrow k\equiv 0\pmod{3}$. Тогда все гомоморфизмы имеют вид $\varphi(n)=n\cdot k, k\in\{0,3,6,9\}$.

Ответ:

$$\varphi(n) = n \cdot k, k \in \{0, 3, 6, 9\}$$

Пусть H — подгруппа всех элементов конечного порядка в группе ($\mathbb{C} \setminus \{0\}, \times$). Докажите, что $H \simeq \mathbb{Q} \setminus \mathbb{Z}$, где группы \mathbb{Q} и \mathbb{Z} рассматриваются с операцией сложения.

Решение:

Рассмотрим отображение $\varphi: \mathbb{Q} \to \mathbb{C} \setminus \{0\}, a \mapsto e^{2\pi i a} = \cos(2\pi a) + i\sin(2\pi a)$. Оно является гомоморфизмом(взятие экспоненты гомоморфизм). Тогда $\mathrm{Im} \varphi = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. С другой стороны, $\mathrm{Ker} \varphi = \mathbb{Z}$. Тогда по теореме о гомоморфизме $S^1 \simeq \mathbb{Q} \setminus \mathbb{Z}$. Все элементы конечного порядка это в точности комплексные числа с модулем 1, значит $S^1 = H \Rightarrow H \simeq \mathbb{Q} \setminus \mathbb{Z}$.

Ответ:

ч.т.д

Пусть $m,n\in\mathbb{N}.$ Докажите, что следующие условия эквивалентны:

- 1. (m, n) = 1;
- 2. Для всякой группы G, всякой подгруппы $A\subseteq G$ порядка m и всякой подгруппы $B\subseteq G$ порядка n выполняется условие $A\cap B=\{e\}.$

Решение:

- Докажем из 1 в 2. Пусть $k \in A \cap B \Rightarrow k \in A, k \in B \Rightarrow \operatorname{ord}(k) \mid m, \operatorname{ord}(k) \mid n \Rightarrow (m,n) = \operatorname{ord}(k) = 1 \Rightarrow k = e.$
- Докажем из 2 в 1. Хз