Subject: MCSC 201 - Discrete Mathematics Homework - 1 (Unit 1: Fundamentals)

Homework I (Clift 1: Fundamentals)

1. Use the Euclidean algorithm to compute $\mathrm{GCD}(4389,7293)$ and find integers s and t such that

$$GCD(4389, 7293) = s(7293) + t(4389)$$

- 2. Show that
 - (a) If GCD(a, c) = 1, $a \mid m$ and $c \mid m$, then $ac \mid m$.
 - (b) LCM(a, ab) = ab.
 - (c) Let c = LCM(a, b). Show that if $a \mid k$ and $b \mid k$, then $c \mid k$.
- 3. Let a be an integer and let p be a positive integer. Prove that if $p \mid a$, then p = GCD(a, p).
- 4. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Compute each of the following
 - (a) $A \odot B$

(b) $A \vee B$

- (c) $A \wedge B$
- 5. If A, B, and C are Boolean matrices of compatible sizes, then prove that
 - (a) $A \vee B = B \vee A$
 - (b) $A \wedge B = B \wedge A$
 - (c) $(A \lor B) \lor C = A \lor (B \lor C)$
- 6. Modular arithmetic Define $n \equiv_m n'$ (read n is congruent to $n' \mod m$) if $(n \mod m) = (n' \mod m)$, or equivalently there is some $q \in \mathbb{Z}$ such that n = n' + q m.
 - (a) Let $x, y \in \mathbb{Z}$ and let $m \in \mathbb{Z}^+$. Then prove that

$$x \equiv_m y$$
 if and only if $m \mid (x - y)$

(b) If $x \equiv_m x'$ and $y \equiv_m y'$, then $x + y \equiv_m x' + y'$.