Making predictions

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The fish dataset: bream

```
bream = fish[fish["species"] == "Bream"]
print(bream.head())
```

0 Bream 242.0 23.2 1 Bream 290.0 24.0 2 Bream 340.0 23.9 3 Bream 363.0 26.3 4 Bream 430.0 26.5		species	mass_g	length_cm
2 Bream 340.0 23.9 3 Bream 363.0 26.3	0	Bream	242.0	23.2
3 Bream 363.0 26.3	1	Bream	290.0	24.0
	2	Bream	340.0	23.9
4 Bream 430.0 26.5	3	Bream	363.0	26.3
	4	Bream	430.0	26.5

Plotting mass vs. length

Running the model

```
mdl_mass_vs_length = ols("mass_g ~ length_cm", data=bream).fit()
print(mdl_mass_vs_length.params)
```

```
Intercept -1035.347565
length_cm 54.549981
dtype: float64
```

Data on explanatory values to predict

If I set the explanatory variables to these values, what value would the response variable have?

create a new dataframe

```
explanatory_data = pd.DataFrame({"length_cm": np.arange(20, 41)})
```

Call predict()

```
print(mdl_mass_vs_length.predict(explanatory_data))
```

```
55.652054
0
       110.202035
       164.752015
3
       219.301996
       273.851977
       928.451749
16
17
       983.001730
18
      1037.551710
19
      1092.101691
      1146.651672
20
Length: 21, dtype: float64
```


Predicting inside a DataFrame

```
explanatory_data = pd.DataFrame(
    {"length_cm": np.arange(20, 41)}
)
prediction_data = explanatory_data.assign(
    mass_g=mdl_mass_vs_length.predict(explanatory_data)
)
print(prediction_data)
```

```
length_cm
                       mass_g
           20
                    55.652054
0
                  110.202035
           21
           22
                  164.752015
3
           23
                  219.301996
4
           24
                  273.851977
16
                  928.451749
           36
17
           37
                  983.001730
18
                 1037.551710
           38
19
           39
                 1092.101691
20
           40
                 1146.651672
```

Showing predictions

```
import matplotlib.pyplot as plt
import seaborn as sns
fig = plt.figure()
sns.regplot(x="length_cm",
            y="mass_g",
            ci=None,
            data=bream,)
sns.scatterplot(x="length_cm",
                y="mass_g",
                data=prediction_data,
                color="red",
                marker="s")
plt.show()
```


Extrapolating

Extrapolating means making predictions outside the range of observed data.

```
little_bream = pd.DataFrame({"length_cm": [10]})

pred_little_bream = little_bream.assign(
    mass_g=mdl_mass_vs_length.predict(little_bream))

print(pred_little_bream)
```

```
length_cm mass_g
0 10 -489.847756
```


nonsensible to extrapolate

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Working with model objects

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

.params attribute

```
from statsmodels.formula.api import ols
mdl_mass_vs_length = ols("mass_g ~ length_cm", data = bream).fit()
print(mdl_mass_vs_length.params)
```

```
Intercept -1035.347565
length_cm 54.549981
dtype: float64
```

.fittedvalues attribute

Fitted values: predictions on the original dataset

```
print(mdl_mass_vs_length.fittedvalues)
```

or equivalently

```
explanatory_data = bream["length_cm"]
print(mdl_mass_vs_length.predict(explanatory_data))
```

```
230.211993
       273.851977
       268.396979
       399.316934
       410.226930
       873.901768
30
31
       873.901768
32
       939.361745
33
      1004.821722
      1037.551710
34
Length: 35, dtype: float64
```

.resid attribute

Residuals: actual response values minus predicted response values

```
print(mdl_mass_vs_length.resid)
```

or equivalently

```
print(bream["mass_g"] - mdl_mass_vs_length.fittedvalues)
```

```
0    11.788007
1    16.148023
2    71.603021
3    -36.316934
4    19.773070
...
```


.summary()

mdl_mass_vs_length.summary()

```
OLS Regression Results
Dep. Variable:
                                                             0.878
                                 R-squared:
                         mass_g
Model:
                                 Adj. R-squared:
                                                             0.874
                                 F-statistic:
                                                             237.6
Method:
        Least Squares
      Thu, 29 Oct 2020
                                 Prob (F-statistic): 1.22e-16
Date:
                       13:23:21
                                 Log-Likelihood:
Time:
                                                         -199.35
No. Observations:
                                 AIC:
                                                             402.7
Df Residuals:
                                                             405.8
                             33
                                 BIC:
Df Model:
Covariance Type:
                       nonrobust
                                         P>|t|
                                                  [0.025
                                                            0.975]
              coef
                    std err
                                                          -815.676
Intercept -1035.3476
                  107.973 -9.589 0.000
                                              -1255.020
length_cm
           54.5500
                      3.539 15.415
                                         0.000
                                                  47.350
                                                            61.750
Omnibus:
                          7.314 Durbin-Watson:
                                                          1.478
Prob(Omnibus):
                                 Jarque-Bera (JB): 10.857
                          0.026
Skew:
                         -0.252
                                 Prob(JB):
                                                           0.00439
Kurtosis:
                                 Cond. No.
                          5.682
                                                              263.
```


OLS Regression Results

Dep. Variable: mass_g R-squared: 0.878

Model: OLS Adj. R-squared: 0.874

Method: Least Squares F-statistic: 237.6

Date: Thu, 29 Oct 2020 Prob (F-statistic): 1.22e-16

Time: 13:23:21 Log-Likelihood: -199.35

No. Observations: 35 AIC: 402.7

Df Residuals: 33 BIC: 405.8

Df Model: 1

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1035.3476	107.973	-9.589	0.000	-1255.020	-815.676
length_cm	54.5500	3.539	15.415	0.000	47.350	61.750
omnibus:	========	========= 7.	======= 314 Durbi	======= n-Watson:	:=======	1.478
Prob(Omnib	us):	0.0	926 Jarqu	e-Bera (JB)	:	10.857
Skew:		-0.2	252 Prob(JB):		0.00439
Kurtosis:		5.0	682 Cond.	No.		263.

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Regression to the mean

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The concept

- Response value = fitted value + residual
- "The stuff you explained" + "the stuff you couldn't explain"
- Residuals exist due to problems in the model and fundamental randomness
- Extreme cases are often due to randomness
- Regression to the mean means extreme cases don't persist over time

Pearson's father son dataset

- 1078 father/son pairs
- Do tall fathers have tall sons?

father_height_cm	son_height_cm
165.2	151.8
160.7	160.6
165.0	160.9
167.0	159.5
155.3	163.3
•••	•••

¹ Adapted from https://www.rdocumentation.org/packages/UsingR/topics/father.son

Scatter plot

```
plt.axis("equal")
plt.show()
```

devdocs.io

should refer to point where the line passes through

Adding a regression line

```
fig = plt.figure()
sns.regplot(x="father_height_cm",
            y="son_height_cm",
            data=father_son,
            ci = None,
            line_kws={"color": "black"})
plt.axline(xy1 = (150, 150),
           slope=1,
           linewidth=2,
           color="green")
plt.axis("equal")
plt.show()
```


Running a regression

```
Intercept 86.071975
father_height_cm 0.514093
dtype: float64
```

Making predictions

```
really_tall_father = pd.DataFrame(
    {"father_height_cm": [190]})

mdl_son_vs_father.predict(
    really_tall_father)
```

```
really_short_father = pd.DataFrame(
    {"father_height_cm": [150]})

mdl_son_vs_father.predict(
    really_short_father)
```

183.7

163.2

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Transforming variables

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Perch dataset

```
perch = fish[fish["species"] == "Perch"]
print(perch.head())
```

	species	mass_g	length_cm	
55	Perch	5.9	7.5	
56	Perch	32.0	12.5	
57	Perch	40.0	13.8	
58	Perch	51.5	15.0	
59	Perch	70.0	15.7	

It's not a linear relationship

Bream vs. perch

Plotting mass vs. length cubed

Modeling mass vs. length cubed

```
perch["length_cm_cubed"] = perch["length_cm"] ** 3

mdl_perch = ols("mass_g ~ length_cm_cubed", data=perch).fit()
mdl_perch.params
```

```
Intercept -0.117478
length_cm_cubed 0.016796
dtype: float64
```


Predicting mass vs. length cubed

```
length_cm_cubed length_cm
                                    mass_q
                                 16.678135
0
              1000
                           10
              3375
                           15
                               56.567717
              8000
                           20
                                134.247429
3
             15625
                           25
                                262.313982
             27000
                           30
                                453.364084
5
                           35
                                719.994447
             42875
                              1074.801781
             64000
6
```


Plotting mass vs. length cubed

Facebook advertising dataset

How advertising works

- 1. Pay Facebook to shows ads.
- 2. People see the ads ("impressions").
- 3. Some people who see it, click it.

- 936 rows
- Each row represents 1 advert

spent_usd	n_impressions	n_clicks
1.43	7350	1
1.82	17861	2
1.25	4259	1
1.29	4133	1
4.77	15615	3
•••	•••	•••

Plot is cramped

Square root vs square root

Modeling and predicting

```
mdl_ad = ols("sqrt_n_impressions ~ sqrt_spent_usd", data=ad_conversion).fit()
explanatory_data = pd.DataFrame({"sqrt_spent_usd": np.sqrt(np.arange(0, 601, 100)),
                                "spent_usd": np.arange(0, 601, 100)})
prediction_data = explanatory_data.assign(sqrt_n_impressions=mdl_ad.predict(explanatory_data),
                         n_impressions=mdl_ad.predict(explanatory_data) ** 2)
print(prediction_data)
                                                       back transformation
```

```
spent_usd sqrt_n_impressions n_impressions
   sqrt_spent_usd
         0.000000
                                       15.319713
                                                   2.346936e+02
0
                           0
        10.000000
                         100
                                      597.736582
                                                   3.572890e+05
        14.142136
                                      838.981547
                                                   7.038900e+05
                         200
3
       17.320508
                                                   1.048771e+06
                                     1024.095320
                         300
4
        20.000000
                         400
                                     1180.153450
                                                   1.392762e+06
                                     1317.643422
5
        22.360680
                                                   1.736184e+06
                         500
                                                   2.079202e+06
        24.494897
                         600
                                     1441.943858
```


· Astenimpressions. - Agrt-Spent-up m. del: " syt - a - impress hus - " - syt-spent-wa" - fralicts . get don - this need to sque that prediction.

Square root vs square root

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

