### Low-Rank 3D Tensor Completion

#### Marine Froidevaux

École Polytechnique Fédérale de Lausanne marine.froidevaux@epfl.ch

May 27, 2015

#### Motivations

- Movies
- Signal processing
- Multiple parameters approximation

#### Matricization

• Generalization of Frobenius norm for  $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times l_3}$ :

$$\|\mathcal{X}\| = \sqrt{\sum_{i=1}^{l_1} \sum_{j=1}^{l_2} \sum_{k=3}^{l_3} x_{i,j,k}^2}$$

• Unfolding  $\mathcal{X}$  in the  $i^{th}$  dimension:

$$X_{(i)} \in \mathbb{R}^{I_i \times (I_j \cdot I_k)}, j \neq i, k \neq i, j$$



• *n*-mode product of  $\mathcal{X}$  with  $U \in \mathbb{R}^{J \times I_n}$ :  $\mathcal{Y} \in \mathbb{R}^{I_1 \times ... \times I_{n-1} \times J \times I_{n+1} ... \times I_N}$ 

$$\mathcal{Y} = \mathcal{X} \times_n U \iff Y_{(n)} = UX_{(n)}$$

### **Tucker Decomposition**

• *n*-rank of a tensor:

$$rank_n(\mathcal{X}) := rank of X_{(n)}$$

• Core tensor  $\mathcal{G} \in \mathbb{R}^{R_1 \times R_2 \times R_3}$ , principal components in each mode  $A_1 \in \mathbb{R}^{l_1 \times R_1}, A_2 \in \mathbb{R}^{l_2 \times R_2}, A_3 \in \mathbb{R}^{l_3 \times R_3}$ :

$$\mathcal{X} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3$$

• Higher-Order SVD: Find a rank- $[R_1, R_2, R_3]$  core tensor and corresponding components that best capture the variation in mode-n, independently of other modes

## Higher Order Singular Value Decomposition

```
 \begin{aligned} & \textbf{procedure } \ \texttt{HOSVD}(\boldsymbol{\mathcal{X}}, R_1, R_2, \dots, R_N) \\ & \textbf{for } n = 1, \dots, N \ \textbf{do} \\ & \mathbf{A}^{(n)} \leftarrow R_n \ \text{leading left singular vectors of } \mathbf{X}_{(n)} \\ & \textbf{end for} \\ & \textbf{G} \leftarrow \boldsymbol{\mathcal{X}} \times_1 \mathbf{A}^{(1)\mathsf{T}} \times_2 \mathbf{A}^{(2)\mathsf{T}} \dots \times_N \mathbf{A}^{(N)\mathsf{T}} \\ & \textbf{return } \boldsymbol{\mathcal{G}}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)} \\ & \textbf{end procedure} \end{aligned}
```



### Movie reconstruction and Image Inpainting

- Each frame is divided into Macro-Blocks (MBs) of size N
- For each incomplete Macro-Block  $P^0$ , look for K-1 complete MBs minimizing

$$S_i = \|P_{\Omega}^0 - P_{\Omega}^i\|$$

- Stack all selected  $P^i$  into a tensor  $\mathcal{X}$  with  $P^0$  at the top.
- Ideally  $\mathcal{X} = \mathcal{X}_I + \mathcal{E} = P \times_3 \mathbb{1} + \mathcal{E}$
- Tucker decomposition:  $\mathcal{X}_l = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3$  $\Rightarrow P = \mathcal{G} \times_1 A_1 \times_2 A_2$  and  $A_3 = \mathbb{1}$
- Find  $\mathcal{X}_I$  a  $[R_1, R_2, R_3]$ -rank approximation of  $\mathcal{X}$ , with  $R_3$  small.
- Two algorithms: HOSVD with Alternating Least Square and GeomCG

#### Alternating Least Square Algorithm

- 1. Form  $\mathcal{X}$  from  $P^{0,\dots,K-1}$  using Block Matching criteria
- 2.  $(\boldsymbol{\mathcal{X}}(:,:,1))_{\overline{\Omega}} = \left(\frac{1}{K-1} \sum_{i=1}^{K-1} \boldsymbol{P}^i\right)_{\overline{\Omega}}$
- 3. Choose mode ranks  $\{R_1, R_2, R_3\}$ , tolerance  $\sigma$ ; Initialize  $A^{(1)}, A^{(2)}, A^{(3)}$
- 4.  $\mathbf{A}^{(3)}(:,1) = [1,...,1]^T / K$
- 5. for n = 1,2,3

$$\mathbf{\mathcal{Y}} = \mathbf{\mathcal{X}} \times_1 ... \times_{n-1} \mathbf{\mathcal{A}}^{(n-1)T} \times_{n+1} \mathbf{\mathcal{A}}^{(n+1)T} ...$$

 $Y_n \leftarrow \text{unfold } \mathbf{\mathcal{Y}} \text{ in mode } n$ 

 $A^{(n)} \leftarrow \text{first } R_n \text{ principal component of } Y_n$ 

end

6. 
$$\mathcal{G} = \mathcal{X} \times_1 \mathbf{A}^{(1)T} \times_2 \mathbf{A}^{(2)T} \times_3 \mathbf{A}^{(3)T}$$

- 7.  $\mathcal{X}_l = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \mathbf{A}^{(3)}$
- 8. If  $\|\boldsymbol{\mathcal{X}}_l \boldsymbol{\mathcal{X}}\|_F \le \sigma$  STOP, otherwise return to Step 4.
- 9. Recover missing area in  $P^0$ :  $(P^0)_{\overline{\Omega}} = (\mathcal{X}_l(:,:,1))_{\overline{\Omega}}$

### GeomCG

• Look for  $\min_{\mathcal{T}} \frac{1}{2} \|P_{\Omega}\mathcal{T} - P_{\Omega}\mathcal{X}\|$  with

$$\mathcal{T} \in \mathcal{M}_r := \{\mathcal{T} \in \mathbb{R}^{\mathit{I}_1 \times \mathit{I}_2 \times \mathit{I}_3} | \mathit{rank}(\mathcal{T}) = [\mathit{r}_1, \mathit{r}_2, \mathit{r}_3] \}$$

- $\bullet$   $\mathcal{M}_r$  is a smooth manifold
- Riemannian optimization on the manifold

### Movie reconstruction

Macro-Block size: N=8





$$\text{Mean relative error} = \frac{1}{M} \sum_{i=1}^{M} \frac{\|P^{i}_{\textit{original}} - P^{i}_{\textit{restored}}\|}{\|P^{i}_{\textit{original}}\|}$$



# Importance of initial guess



### Inpainting













 $<sup>^{1} {\</sup>it http://www.briqueterie-chimot.fr/wpcproduct/la-brique-rouge-chimot/}$ 

 $<sup>{}^{2} \</sup>text{http://images.forwallpaper.com/files/images/0/0249/0249d4f1/113975/winter-park-snow-bench.jpg}$ 

### Comparison with GeomCG

Compare results for rank 1

#### References



D.T. Nguyen, M.D. Dao, T.D. Tran, *The John Hopkins University*, 2011 Error Concealment Via 3-Mode Tensor Approximation 18th IEEE Conference on Image Processing



D.Kressner, M. Steinlechner, B.Vandereycken, École Polytehcnique Fédérale de Lausanne. 2013

Low-Rank Tensor Completion by Riemannian Optimization



T.G. Kolda, B.W. Bader, *Sandia National Laboratories*, 2009 Tensor Decomposition and Applications

SIAM Review, Vol.51, No.3, pp. 455-500