Master Thesis

Unsupervised Detection of Patterns from Time Series Data

Rakesh Lagare

Media Informatics

Advisors: Shreekantha Devasya, Alexander Graß

Supervisors: Prof. Dr. Jarke, Prof. Dr. Beecks

Overview

- Terminologies
- Motivation
- Goal
- Existing Methods
- Implementation
- Evaluation
- Conclusion

Terminologies

- A **time series** is a sequence of observations measured at certain time intervals.
- Motifs and Discords are one of the influential representative patterns in time series.
- Motifs are frequently occurring repeated patterns of a time series.
- Discords are outliers of a time series.
- Motif discovery has been used in different aspects, such as, telecommunications, medicine, web and sensor networks.
- In the last couple of decades lots of approaches have been proposed to address similarity search issue in time series data.

Motivation/Idea

- Huge Data was collected by MONSOON EU project, which was shared by sectors of aluminium and plastic.
- Since the data was huge and multi-dimensional, it was difficult to analyse the complete data.
- In that scenario Automatic discovery of Motifs and Discords would have been helpful.
- Hence a more general and semi-automatic approach is proposed.

Goal

- An efficient way of performing semi automatic similarity search that identifies motifs as well as discords and rank them based on frequency of occurrences.
- Proposed approach is compared against the existing state of the art approach which demonstrate its quality improvement, provide fast and precise similarity search.

Existing Methods: Matrix Profile

- Takes an arbitrarily long, unlabelled time series and produces intuitive and most matched patterns.
- It generally does not attempt to explain all the data in the time series, rather only considers salient sub-sequences.
- Minimum Description Length (MDL) is used to extract such kind of sub-sequences.
- **Drawback:** Since it uses Nearest Neighbours method, chances of missing all other important patterns are very high.

Existing Methods: Symbolic Aggregate Approximation (SAX)

- In SAX, time series data transformed into equal sized segments.
- Each segment is symbolized into a sequence of strings.
- It minimizes dimensionality by the mean values of equal sized frames.
- Advantage: Provides low computational complexity.
- Drawback: This mean value based representation causes a high possibility to miss important patterns.

Existing Methods: Exhaustive Search using Dynamic Time Warping (DTW)

- Algorithm to measure similarity between two time series which may vary in time or speed.
- Sequence of techniques are used to fasten up similarity search to find out motifs in a time series.

Euclidean distance aligns the i-th point on one time series with the i-th point on the other.

A non-linear(DTW) alignment produces a more intuitive similarity measure.

Drawback:

 \blacksquare Despite the effectiveness of the DTW, it has an $O(M.N^2)$ time and space complexity.

Source https://www.psb.ugent.be/cbd/papers/gentxwarper/DTWAlgorithm

Proposed multi-step approach is achieved by 6 sub steps.

Data Pre-processing

- Time series dataset is provided as a input file.
- Data is pre-processed to remove unwanted values and impute the missing values.

Z-Normalization

- Now Pre-processed data is z-normalized.
- Process of normalizing the data to the mean value is 0 and the standard deviation is approximately 1.
- The reason behind this Z-normalizing is to scale down all the patterns to the same level.

Segmentation

- Normalized data is segmented into smaller sequences
 each of length *n* using fixed window.
- Sliding window can be used optionally.
- All extracted segments data is stored for further

Feature Vector

- Segments are again normalized hence we lose some important features of these sequences.
- To store features of these sub-sequences in the feature Vector.

■ Features : Scale , Offset/Position

Offset

For each segment, mean value of data points is calculated.

Scale

For each segment ,subtracted value of highest and lowest data points.

Segment Z-Normalization

- Now segments are again Z-normalized.
- To pick an equivalent region under the Gaussian curve by utilizing look up table for cutting y -co-ordinates.

Sub-Segmentation

■ To avoid missing out any patterns, segmented data again segmented into smaller sub segments of x coordinate word length "s".

Piecewise Aggregate Approximation (PAA)

- Used for dimensionality reduction.
- Area under the Gaussian curve of sub-segment are break points.
- Mean value of each Sub-segment data is called PAA coefficients.
- PAA coefficients are changed into letters by using a look-up table.

	3	4	5	Letter
β1	-0.43	-0.67	-0.84	Α
β2	0.43	0	-0.25	В
β3		0.67	0.25	С
β4			0.84	D

Source: A symbolic representation of time series, with implications for streaming algorithms

- All PAA coefficients below the smallest break point are mapped to the symbol "A"
- All coefficients greater than or equal to the smallest break point and less than the second smallest break point are mapped to the symbol "B", so on.
- Example:
 - length of the time series (n) = 60,
 - no. of segments (k) = 2 (0-30, 30-60)
 - word size (a) = 3, so sub-segments =3
 - segment 1 mapped to ABC, segment 2 mapped to BBA.

Shape Comparison Algorithm

- Each string is compared against other remaining strings.
- Matched strings are grouped and stored in matrix along with their indices.
- Theoretically, all the members in each group will be having the same shape.
- Optionally, Hamming Distance is used to avoid the loss of true positive patterns.

Filter 1: Feature comparison by Euclidean Distance

- Optionally using scale or offset from feature vector to provide more accurate results such as sub class categorisation.
- Feature vector is proposed to achieve both accuracy and efficiency.
- First locates the patterns along the transformed data based on the strings.
- Later it is used to filter out the patterns based on features.

Filter 2: Fine tuning the similarity search using Dynamic Time Warping

- Applying DTW for results to further narrow down and provide precise patterns.
- Rank table is prepared according to DTW value and the frequency of occurrences.
- All the patterns obtained from the previous step are visualized with respect to the rank table.

Evaluation

Accuracy:

- Synthetic data Normalized and Non-Normalized datasets are prepared.
- Evaluator knows all the patterns and has the better understanding of the patterns.
- Using brute force algorithm, Sub-sequence are captured.
- Class and Sub-class categorization are used as metrics.

Performance: Execution time is evaluated.

No	Dataset	Length	Description
1	UCR	15-6000	UCR Time Series Data
2	ECG	120	Electrocardiogram data
3	Synthetic Data	1000 - 100,000	Randomly generated synthetic data

Evaluation

Synthetic Datasets:

Normalized Dataset:

- Includes only Noise but no Scale and Offset.
- Depending on the random number generated, pattern data is generated.
- If generated random noise is 1, noise is added to the above data.
- For class category evaluation.

Non-Normalized Dataset:

- Includes Noise, Scale and Offset.
- Depending on the random number generated, pattern data is generated.
- Depending on random numbers noise, Scale or offset added.
- For Sub-class category evaluation.

Evaluation:

■ The complete dataset of size 'x' is generated, each pattern and their respective class is stored.

Similarity Search on Synthetic Data:

- Find top-k patterns from the large set of patterns using ⁿC₂
 - n total number of patterns/segments belong to particular class.
 - C the class for which patterns belong.
- Similarity distance is calculated and ordered them in ascending.

For Exhaustive Pattern Search Using DTW:

- Top 'k' sub-sequences with lowest DTW values are compared against the synthetic data table.
- Matched pairs are true positives, else false positives.
- Remaining sub-sequences outside the top-k are unwanted comparisons.

For Proposed approach:

- Each sub-sequences classified to their classes or sub-classes.
- Sub-sequences compared against synthetic data pair, matched segments are true positives, else false positives.
- Sub-sequences outside top-k proposed approach matrix are unwanted comparisons.

- Evaluated on 6 synthetic datasets of different size .
- True positives (pattern classification) for proposed approach is same as for EPS-DTW.
- But it has high time complexity.

Dataset Size	Top K Value	True Positives DTW	True Positives Proposed
1,000	18	18	18
2,000	43	43	43
5,000	301	299	299
10,000	1226	1,217	1,218
25,000	7,773	7,757	7,758
100,000	62,693	62,663	62,669

- False positives are significantly lower for proposed approach.
- Also has the lower unwanted patterns as compared to EPS-DTW.
- EPS-DTW produces more patterns than proposed approach which may not be useful or overlapping patterns.
- Results in high time complexity

Dataset Size	False Positives DTW	False Positives Proposed
1,000	0	0
2,000	0	0
5,000	6	2
10,000	19	8
25,000	61	15
100,000	150	46

ECG Dataset:

Original Plot:

Classified Plot: CAB

Evaluation: Performance Evaluation

- Carried out on a 64 bit machine with Windows OS,
- 2.20GHz core i7 processor and an 8 GB RAM system.
- segment size (w) is kept same.

Comparisons:

- Proposed approach produces less comparisons compared to Exhaustive Search using Dynamic Time Warping.
- Comparisons are directly proportional to the execution time.
- Proposed approach achieves dimension reduction of about 40% on original data.

Evaluation: Performance Evaluation

Execution time:

- As the dataset size increases, the execution time takes longer.
- Proposed approach has the lower computation time because of dimensionality reduction.
- Exhaustive Pattern Search by DTW takes 4 times higher execution time than the proposed approach.

Evaluation: Performance Evaluation

Computational speed on 7-UCR benchmark data sets:

Shortcomings:

DTW is not a fastest, adding few more layers to improve it.

Pattern detection in one dimensional time series data.

Conclusion

- Developed an approach to discover patterns of variable lengths and to prune non-overlapping patterns.
- Low computational time was achieved by symbolic representation using PAA.
- Patterns are ranked using DTW distance.
- To meet the user expectations and evaluate relevant patterns Feature vector is used for classification of the patterns.
- Experimental findings on data sets demonstrate that in contrast to state-of-the-art approach, our proposed approach finds out more significant patterns and rank them efficiently.

References

- Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. *Proceedings of theVLDB Endowment*, 1(2):1542–1552, 2008.
- Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery.
- Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. **Dimensionality reduction for fast** similarity search in large time series databases. *Knowledge and information Systems*, 3(3):263–286, 2001.
- Yeh, Chin-Chia Michael, et al. Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. 2016 IEEE 16th international conference on data mining (ICDM). IEEE, 2016.
- Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. *The UCR time series archive*.

Thank you

