

Fiche 1 : Générateurs pseudo-aléatoires

L'objectif de cette fiche est d'introduire les méthodes principales de génération de nombres pseudo-aléatoires.

Exercice 1. Générateurs à base de congruences On considère le générateur suivant :

$$x_{n+1} = ax_n \mod 7.$$

Les nombres x_n forment donc une suite de nombre pseudo-aléatoires. On cherche à évaluer le degré d'aléa de cette suite, c'est-à-dire l'imprévisibilité (à l'observation) du prochain nombre. Lorsque cette suite est cyclique, un critère important d'évaluation du générateur est la longueur du cycle observable.

- 1. Quelle est la longueur maximale du cycle de ce générateur?
- 2. Étudier les suites produites par cet algorithme avec a = 3 et a = 4.

Exercice 2. Période d'un générateur à base de congruences Nous avons le résultat suivant :

Théorème 1 (Hull-Dobell, (1962)) Soit la suite (x_n) produite par l'algorithme $x_{n+1} = ax_n + b \mod m$. Alors le cycle maximal est de longueur m si et seulement si les trois hypothèses suivantes sont vérifiés :

- 1. PGCD(a, m) = 1, PGCD(b, m) = 1;
- 2. si un nombre premier p divise m, alors p divise a-1;
- 3. $si\ 4$ divise m, alors 4 divise a-1.

Question 2.1 : Vérifier les conditions du théorème pour les valeurs :

$$-a = 4, b = 2, m = 9,$$
 $-a = 3, b = 3, m = 9,$ $-a = 1, b = 1, m = 9.$

Question 2.2 : Des tirages aléatoires successifs doivent être indépendants. Ce n'est évidemment pas le cas pour les générateurs pseudo-aléatoires. Dans certain cas on peut voir apparaître le "déterminisme" de l'algorithme de façon assez flagrante. Un générateur pseudo-aléatoire doit toujours être utilisé avec "méfiance".

Exemple : soit le générateur

$$x_{n+1} = 11x_n + 1 \mod 71.$$

- (a) Montrer que la période de ce générateur est 70.
- (b) Tracez l'histogramme de $\{x_1, ..., x_{100}\}$.
- (c) Tracez l'ensemble des points de coordonnées (x_{n+1}, x_n) .

Vous pourrez comparer avec les graphiques obtenus pour le générateur

$$x_{n+1} = 24298x_n + 99991 \mod 199017$$

Conclusion: les propriétés du hasard sont complexes et difficiles à reproduire. "Faire au hasard" ce n'est pas "faire n'importe quoi". C'est bien dommage... pour une fois qu'on aurait pu se le permettre!

Exemples Voici quelques générateurs "connus"

$$x_{n+1} = 7^5 x_n \mod 2^{31} - 1$$
, (générateur IBM, utilisé dans macos [rand de la libc]) $x_{n+1} = 427419669081 x_n \mod 999999999999$, (générateur Maple, 999999999999 est premier)

dont les périodes respectives sont :

$$2^{30} = 1\,073\,741\,824,$$

 $2^{29} = 536\,870\,912.$

2013-2014 1/2

Exercice 3. Décalage de registre Soit $S = \{1, 0, 1, 1\}$ la séquence binaire (le germe). Pour produire le bit suivant (S_5) de la séquence on applique

$$S_1 \times S_3 = 0$$
 ce qui donne $1 \times S_1 \times S_3 = 0$.

Ensuite, on décale et on recommence. On peut décrire cette récurrence par

$$S_{n+1} = S_{n-1} \operatorname{XOR} S_{n-3}.$$

Question 3.1 : Trouver les 5 prochains bit de la séquence. Quelle est la suite obtenue? Est-elle bien "aléatoire"?

Question 3.2 : Étudier les séquences de ce même générateur avec les germes $S = \{1, 0, 1, 0\}$ et $S = \{1, 0, 0, 1\}$.

Question 3.3: On considère maintenant l'algorithme

$$S_{n+1} = S_{n-2} \operatorname{XOR} S_{n-3}.$$

Étudier la séquence produite par cet algorithme. Trouver la longueur du cycle de ce générateur. Quel est le comportement de ce générateur sur les autres germes?

Question 3.4 : Quelle est la longueur maximale du cycle avec un registre à 4 bits? Quelle est la longueur minimale? Quelle est la longueur maximale ¹du cycle avec pour un registre de 64 bits?

Exercice 4. Génération des mots de k bits Proposer des algorithmes de génération des mots de 3 bits. Appliquer aux séquences de l'exercice précèdent.

Exercice 5. Problème : Comment faire une bonne pièce avec une fausse On dispose de pièces de monnaie biaisées, c'est à dire que la fréquence d'apparition de piles ou de faces ne sont pas égales à $\frac{1}{2}$.

On modélise les tirages de ces pièces par des variables aléatoires indépendantes X_i à valeur dans $\{0,1\}$ et on note $p_i = \mathbb{P}(X_i = 1) = \mathbb{P}(\text{ la pièce } i \text{ tombe sur pile }).$

Question 5.1 : Calculer en fonction de p_1 et p_2 les probabilités :

$$\mathbb{P}((X_1, X_2) = (0, 0)), \qquad \mathbb{P}((X_1, X_2) = (0, 1)), \qquad \mathbb{P}((X_1, X_2) = (1, 0)), \qquad \mathbb{P}((X_1, X_2) = (1, 1)).$$

On note Y_2 la variable aléatoire à valeur dans $\{0,1\}$ définie par $Y_2 = (X_1 + X_2) \mod 2$

Question 5.2 : Calculer $\pi_2 = \mathbb{P}(Y_2 = 1)$

On suppose maintenant que $p_1 = p_2 = p$.

Question 5.3: Montrer que $\pi_2 - \frac{1}{2} = (p - \frac{1}{2})(1 - 2p)$.

Question 5.4: Ranger par ordre croissant les 5 nombres $p, 1-p, \pi_2, 1-\pi_2, \frac{1}{2}$. On pourra supposer que $p < \frac{1}{2}$.

Question 5.5 : En déduire de X_1 ou de Y_2 quelle serait la meilleure simulation d'une pièce non biaisée? Justifier votre réponse.

On pose alors $Y_3 = (X_1 + X_2 + X_3) \mod 2$.

Question 5.6: Montrer que $Y_3 = (Y_2 + X_3) \mod 2$.

Question 5.7: Calculer, pour $p_1 = p_2 = p_3 = p$, $\pi_3 = \mathbb{P}(Y_3 = 1)$

Question 5.8 : Exprimer $\left|\pi_3 - \frac{1}{2}\right|$ en fonction de $\left|\pi_2 - \frac{1}{2}\right|$ puis de $\left|p - \frac{1}{2}\right|$. On généralise maintenant le procédé en définissant $Y_n = (X_1 + X_2 + \dots + X_n) \mod 2$.

Question 5.9: Montrer que $Y_{n+1} = (Y_n + X_{n+1}) \mod 2$.

Question 5.10 : On suppose que $p_1 = p_2 = \cdots = p_n = p$. Exprimer $\pi_n = \mathbb{P}(Y_n = 1)$ en fonction de π_{n-1} et p.

Question 5.11: Calculer dans ce cas, $\pi_n - \frac{1}{2}$ en fonction de $p - \frac{1}{2}$.

Question 5.12 : Application : on suppose p = 0.4. Pour quelle valeur de n aura-t-on $\left|\pi_n - \frac{1}{2}\right| < 10^{-6}$? Commenter votre résultat.

1. Note historique:

Tausworthe (1965) à étudié les propriétés de l'algorithme suivant :

à partir d'un mot binaire initial (le germe) $x^0=(x_{-m+1},...x_{-1},x_0)$, on produit les éléments de la suite pseudo-aléatoire par récurrence :

$$x_{n+1} = a_1 x_{n-m+1} + a_2 x_{n-m+1} + \dots + a_m x_n \mod 2$$

Dans l'exemple 1) de l'exercice précédent m=4, $x_{n+1}=x_{n-3}+x_{n-1}\mod 2$ et dans l'exemple 3) $x_{n+1}=x_{n-3}+x_{n-2}\mod 2$.

Il a établi la condition sur les coefficients a_i sous laquelle ce générateur atteint la période maximale $2^m - 1$.

2013-2014 2/2