## CSA T1 - Numbering Systems

## October 17, 2019

- 1. Convert the following to decimal numbers.
  - (a) 11100111<sub>2</sub>
    - i. 231
  - (b) 5577<sub>8</sub>
    - i. 2943
  - (c) ABCD (Hexadecimal)
    - i. 43981
- 2. Convert the followings to Base-2, Base-8 and Base-16 respectively.
  - (a) 3064 D
    - i. Base 2:  $10111111111000_2$
    - ii. Base 8: 5770<sub>8</sub>
    - iii. Base 16:  $BF8_{16}$
  - (b)  $2016_{10}$ 
    - i. Base 2:  $111111100000_2$
    - ii. Base 8: 3740<sub>8</sub>
    - iii. Base 16:  $7E0_{16}$
  - (c) 2899 base-10
    - i. Base 2:  $1011\,0101\,0011_2$
    - ii. Base 8: 5523<sub>8</sub>
    - iii. Base 16:  $B53_{16}$
- 3. Convert the following numbers to the respective base.
  - (a)  $11111010001111100_2$  to base-8 and base-16 respectively
    - i. Base 8:  $175074_8$
    - ii. Base 16:  $FA3C_{16}$
  - (b)  $1100001110100101_2$  to base-8 and base-16 respectively
    - i. Base 8:  $141645_8$

- ii. Base 16:  $C3A5_{16}$
- (c)  $1EF_H$  to base-2 and base-8 respectively
  - i. Base 2:  $0001111011111_2$
  - ii. Base 8: 0757<sub>8</sub>
- (d)  $257AC_H$  to base-2 and base-8 respectively
  - i. Base 2:  $10\,0101\,0111\,1010\,1100_2$
  - ii. Base 8: 453654<sub>8</sub>
- (e) 754<sub>8</sub> to base-16
  - i. Base 16:  $1EC_{16}$
- (f) 447<sub>16</sub>to base-8
  - i. Base 8: 2107<sub>16</sub>
- 4. Perform the following conversions. You are required to **show the working steps clearly**. If the operation(s) is illogical, explain the reason.
  - (a)  $1658_{10}$  to hexadecimal number
    - i.  $67A_{16}$
  - (b)  $765_8$  to hexadecimal number
    - i. 1F5
  - (c) 673247 to decimal number
    - i. Illogical, only 1-6
  - (d)  $87390_{10}$  to base-5 number
    - i. 10244030
  - (e) 39208<sub>8</sub> to decimal number
    - i. Illogical, base 8 does not include 8.
- 5. Perform the following conversions. You are required to show the working steps clearly. If the operation(s) is illogical, explain the reason.
  - (a)  $1230_{10}$  to base-6 number
    - i. Convert using the "continuous division method"



ii.

iii.  $5410_6$ 

(b)  $1528_{10}$  to hexadecimal number



i.

ii. Hexadecimal form:  $5F8_{16}$ 

(c)  $6217_8$  to decimal number

$$6 * 8^3 + 2 * 8^2 + 1 * 8^1 + 7 * 8^0 = 3215_{10}$$

(d)  $372_8$ to hex

- i.  $0FA_{16}$
- (e)  $230_{10}$  to base-7 number (use the method in 2a, but substitute the 16 for 7. Drawing is tiring lol.)

$$230_{10} = 446_7$$

- 6. Perform the following operations and show the answers in the respective number base. You are required to show your working steps clearly
  - (a)  $ABC_{16} + FFF_{16}$



i.

- (b)  $125_8 77_8$ 
  - i. 26<sub>8</sub>
- (c)  $1011_2 * 101_2$ 
  - i. 110111<sub>2</sub>
- (d)  $11011_2 * 101_2$ 
  - i. 10000111<sub>2</sub>
- (e)  $11011_2 * 1011_2$ 
  - i.  $100101001_2$
- 7. Perform the following operations and show the answers in the respective number base. You are required to show your working steps clearly
  - (a)  $461_8 + 515_8$

$$461_8 + 515_8 = 1176_8$$

- (b)  $224_7 136_7 = 55_7$
- (c)  $173_H * AA_H = 371 * 170 = 63070 = F65E$
- (d)  $11111010_2 + 1110_8 = 372_8 + 1110_8$ 
  - i. Note: Direct conversion, split into parts of 3 from the right, if insufficient, pad in front. For fractions, from left.
- (e)  $3064_{16} * 213_8$

i. Use binary as a pit stop for easy conversion. Octal is sets of 3, Hex is sets of 4.

$$213_8 = 10001011_2$$

ii.  $1A464C_{16}$