Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 01 – Ein Trennungssatz von Hahn-Banach" "Lecture 02 – Konsequenzen des HB Trennungssatzes"

02/1: Sei X ein normierter Raum, M ein linearer Teilraum von X, und $f: M \to \mathbb{C}$ ein beschränktes lineares Funktional. Nach dem Satz von Hahn-Banach existiert eine Fortsetzung $F: X \to \mathbb{C}$ mit ||F|| = ||f||. Im allgemeinen muss diese nicht eindeutig sein.

Finde ein Beispiel von X, M, f wie oben, wo es tatsächlich mehrere normerhaltende Fortsetzungen gibt. Hinweis. Man erinnere sich was $(\ell^1)'$ ist.

02 / 2:*Ein normierter Raum Y heißt strikt konvex, wenn gilt

$$x, y \in Y, ||x|| = ||y|| = 1, \ \left\| \frac{x+y}{2} \right\| = 1 \implies x = y$$

Sei nun X ein normierter Raum, M ein linearer Teilraum von X, und $f:M\to\mathbb{C}$ ein beschränktes lineares Funktional. Zeige: Ist X' strikt konvex, so hat f genau eine normerhaltende Fortsetzung.

02 / 3: Betrachte den Raum $L^2(-1,1)$ (der L^2 -Raum bezüglich dem Lebesgue Maß auf (-1,1)), und die beiden konvexen Teilmengen

$$A:=\{f\in L^2(-1,1)\colon f \text{ stetig}, f(0)=0\}, \quad B:=\{f\in L^2(-1,1)\colon f \text{ stetig}, f(0)=1\}.$$

Existiert $\phi \in L^2(-1,1)'$ mit $\forall a \in A, b \in B$. $\phi(a) < \phi(b)$? Falls ja, finde ein solches Funktional. Falls nein, zeige dass es keines gibt.