NAME: ID#: Score: /100

Guidelines for the exam:

- (1) Make answers short and points clear. Otherwise, it will be considered incorrect.
- (2) There are 10 problems for 10 points each. Each sub-problem has the same weight.
- (3) You are allowed to use books and notes. Any direct help from people is not allowed.
- (4) Zoom should be on all the time.
- (5) Exam ends at 15:20. Scan your exam and upload it by 15:40 (if you have trouble with KLMS, submit your exam in e-mail, hykim0615@kaist.ac.kr).

Part A: Prove the problem using definitions but not theorems. You may use the completeness axiom for \mathbb{R} in the book.

- (1) The summation and subtraction of two nonempty sets $A, B \subset \mathbb{R}$ are defined as $A \pm B = \{a \pm b : a \in A, b \in B\}$. Let A and B be bounded.
 - (a) Show that $\sup(A+B) = \sup A + \sup B$.
 - (b) Show that $\inf B \leq \inf A$ and $\sup A \leq \sup B$ if $A \subset B$.
 - (c) Let $C = \emptyset$, the empty set. What should be $\sup C$ and $\inf C$ to keep the above relation (b)? Explain your answer with one or two sentences. (This problem is related to the definition of the limsup and liminf).
 - (a) **(+4 pts)** Since $x = a + b \le \sup A + \sup B$, $\sup A + \sup B$ is an upper bound. So from the definition, we have $\sup(A+B) \le \sup A + \sup B$. And for all x = a+b, $x \le \sup(A+B)$ and we get $a \le \sup(A+B) b$ for some fixed $b \in B$. Then, $\sup(A+B) b$ is an upper bound for $a \in A$. From definition, we have $\sup(A) \le \sup(A+B) b$ and equivalently, $b \le \sup(A+B) \sup(A)$. Again, $\sup(A+B) \sup(A)$ is an upper bound for $b \in B$, from the definition again, we get $\sup(A) + \sup(B) \le \sup(A+B)$.
 - (b) **(+4 pts)** Let $a \in A$. Then, $a \in B$ and hence $a \le \sup B$, i.e., $\sup B$ is an upper bound of A. Since $\sup A$ is the smallest upper bound, $\sup A \le \sup B$.
 - (c) (+2 pts) Since $C \subset B$ for any set, $\sup C \leq \sup B$ for any $B \subset \mathbb{R}$ if the relation holds. The only way to keep it is to define $\sup C = -\infty$. Similarly, $\inf C$ should be $+\infty$.
- (2) Prove or disprove. (Depending on the type of the statement, proving may mean finding an example and disproving may not.)
 - (a) If $A \subset \mathbb{R}$ consists of infinitely many real numbers, there exists at least one limit point of A.
 - (b) If $\{x_k\}$ is a bounded and monotone increasing sequence, the sequence converges.
 - (c) Let $S = \{x \in \mathbb{R} : x = x_k \text{ for some } k \in \mathbb{N}\}$ for a given sequence $x_i \in \mathbb{R}$. Then, $y \in \mathbb{R}$ is a limit point of S if and only if y is a cluster point of the sequence x_i .
 - (a) **(+3 pts)** Counter example: A = N. For all point $x \in \mathbb{R}$, there is a deleted neighborhood $N'(x,\epsilon)$ which is an emptyset. $\epsilon = \frac{1}{2}$ for all $x \in N$ and $\epsilon = \frac{1}{2}\min(x-n,n+1-x)$ for all n < x < n+1.
 - (b) **(+4 pts)** Prove: From the completeness axiom, we always have $\mu = \sup\{x_k\}$. If there is $k \in N$ such that $x_k = \mu$, then all $x_{k+a} = \mu$ also since x_k is monotone increasing and μ is a supremum. So from the definition, x_k converges to μ . Now, consider the case $x_k < \mu$. Assume that it doesn't converge to μ . Then, for some $\epsilon > 0$, we may find an infinite subsequence x_{k_i} with $k_i < k_{i+1}$ such that $x_{k_i} \le \mu \epsilon$. For every natural number $n \in N$, we have $n < k_i$ and from monotonicity, $x_n \le \mu \epsilon$ also. So, $\mu \epsilon$ is an upper bound of sequence $\{x_k\}$ and it violates the definition of supremum μ .
 - (c) (+3 pts) Counter example: $x_k = C$, a constant. Then, $S = \{C\}$ is one point set and it is not a limit point. But it is a cluster point of the sequence x_i .

Part B: You may use any theorem or lemma in the book for the following problems if needed.

- (3) The open set of the Euclidean space \mathbb{R}^n is always with the L^2 -norm. However, we may provide other norms. In the case we do not call it the Euclidean space anymore. Let $\mathbf{x} = (x, y) \in \mathbb{R}^2$ and define $\|\mathbf{x}\|_1 = |x| + |y|$, $\|\mathbf{x}\|_2 = \sqrt{x^2 + y^2}$, and $\|\mathbf{x}\|_{\infty} = \max(|x|, |y|)$. (a) Show that $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_{\infty}$ are norms.

 - (b) Sketch the unit balls with respect to these three norms, i.e., sketch $B_i = \{ \mathbf{x} \in \mathbb{R}^2 :$ $\|\mathbf{x}\|_{i} < 1\}$ for i = 1, 2 and ∞ . (a)
 - (Positive Definiteness) $\begin{aligned} &\|\mathbf{x}\|_1 = |x| + |y| \ge 0 \text{ and } \|\mathbf{x}\|_1 = 0 \iff |x| + |y| = 0 \iff x = y = 0 \iff \mathbf{x} = 0, \\ &\|\mathbf{x}\|_{\infty} = \max(|x|, |y|) \ge 0 \text{ and } \|\mathbf{x}\|_{\infty} = 0 \iff \max(|x|, |y|) = 0 \iff x = y = 0. \end{aligned}$
 - $0 \iff \mathbf{x} = 0 \quad (+2 \text{ pts})$ • (Absolute Homogeneity) $\|c\mathbf{x}\|_1 = |cx| + |cy| = c(|x| + |y|) = c\|\mathbf{x}\|_1, \|c\mathbf{x}\|_{\infty} = \max(|cx|, |cy|) = c\max(|x|, |y|) = c(|x| + |y|)$ $c\|\mathbf{x}\|_{\infty}$ (+1 pts)
 - \bullet (Subadditivity) $\|\mathbf{x}_1 + \mathbf{x}_2\|_1 = |x_1 + x_2| + |y_1 + y_2| \le |x_1| + |y_1| + |x_2| + |y_2| = \|\mathbf{x}_1\|_1 + \|\mathbf{x}_2\|_1, \|\mathbf{x}_1 + \mathbf{x}_2\|_{\infty} = \|\mathbf{x}_1\|_1 + \|\mathbf{x}_2\|_1 + \|\mathbf$ $\max(|x_1+x_2|, |y_1+y_2|) \le \max(|x_1|, |y_1|) + \max(|x_2|+|y_2|) = \|\mathbf{x}_1\|_{\infty} + \|\mathbf{x}_2\|_{\infty}$ (+2) pts)

Therefore both are norms.

(b) (+2 pts) (+1 pts) (+2 pts)

- (4) Let $C_1, C_2 \subset \mathbb{R}$ be compact and $S \subset \mathbb{R}$ be open.
 - (a) Suppose that $S \neq \emptyset$ and $S \neq \mathbb{R}$. Show that S is not closed. (This means there is no other clopen set in \mathbb{R} except \mathbb{R} and \emptyset .)
 - (b) Prove that $C_1 \cup C_2$ is compact. (Refer theorems you use clearly.)
 - (c) If $C_1 \cap C_2 = \emptyset$, there exists two open sets U_1, U_2 such that $C_1 \subset U_1, C_2 \subset U_2$, and $U_1 \cap U_2 = \emptyset$.
 - (a) Since $S \neq \emptyset$, there exists $a \in S$. Since $S \neq \mathbb{R}$, there exists $b \in \mathbb{R} \setminus S$. For convenience, let a < b and consider an interval [a,b]. Since S is open and $a \in S$, it is an interior point. Hence, exists $\epsilon > 0$ such that $(a,a+\epsilon) \subset S$. Let I be the maximal such interval and $c = \sup I$. Then, c is a boundary point of S. If $c \in S$, c is an interior point of S and hence (a,c) is not maximal. Hence, $c \notin S$. Hence, S is not closed. (+4 pts)

*You must show $bd(S) \neq \emptyset$. If you don't prove it, (-2 pts).

- (b) Compact set C_1 and C_2 are bounded and closed. $C_1 \cup C_2$ is clearly bounded and closed. Hence, it is compact. (+3 pts)
- (c) Since C_1 and C_2 are bounded and closed, the distance between the two sets is positive. Let $\epsilon = \frac{1}{2} dist(C_1, C_2)$. Consider an open covering $\{N(x, \epsilon) : x \in C_1\}$ of C_1 . Since C_1 is compact, there exists a finite subcover $\{N(x_i, \epsilon) : i = 1, cdots, N_1\}$. Let $U_1 = \bigcup_{i=1}^{N_1} N(x_i, \epsilon) \supset C_1$. Similarly, construct $U_2 \supset C_2$. Then, U_1 and U_2 are open. You can check $U_1 \cap U_2 \neq \emptyset$ easily. (+3 pts)
- (5) Every bounded subset $S \subset \mathbb{R}$ has a supremum in \mathbb{R} if and only if \mathbb{R} is Cauchy complete. (In other words, the Cauchy completeness is equivalent to Axiom 1.1.1.)
 - (a) Prove the only if part for (\Rightarrow) .
 - (b) Prove the if part for (\Leftarrow) .
 - (a) Let x_i be a Cauchy sequence and $A_k = \{x \in \mathbb{R} : x = x_i \text{ for some } i > k\}$. Since a Cauchy sequence is bounded, A_k are bounded. Let $\mu_k = \sup A_k$. Then, μ_k is a decreasing sequence and bounded below. Therefore, there exists $\mu_\infty \in \mathbb{R}$ the limit of μ_k . (+3 pts) Now we show μ_∞ is the limit of x_i . Let $\epsilon > 0$. Then, there exists k_0 such that $|x_i x_j| < \epsilon$ whenever $i, j > k_0$ and $|\mu_\infty \mu_{k_0}| < \epsilon$. Therefore, there exists $j > k_0$ such that $|\mu_\infty x_j| < 2\epsilon$. Hence, for any $j > k_0$, we have

$$|x_i - \mu_{\infty}| < |x_i - x_i| + |x_i - \mu_{\infty}| < 3\epsilon$$
.

(+2 pts)

(b) Since S is bounded, there is a upper bound M. Choose $a_1 \in S$ and let $b_1 = M$. Let's define a_i, b_i inductively as

$$\begin{cases} a_{i+1} = a_i, & b_{i+1} = \frac{a_i + b_i}{2} & \text{if } \left[\frac{a_i + b_i}{2}, b_i \right] \cap S = \emptyset \\ a_{i+1} = \frac{a_i + b_i}{2}, & b_{i+1} = b_i & \text{if } \left[\frac{a_i + b_i}{2}, b_i \right] \cap S \neq \emptyset \end{cases}$$

Then, $\{a_k\}$ is an increasing Cauchy sequence and $\{b_k\}$ is a decreasing Cauchy sequence. $|a_k - a_l|, |b_k - b_l| \le (b_1 - a_1)/2^{\min(k,l)-1}$ (+2 pts)

So $\{a_k\}, \{b_k\}$ converges in \mathbb{R} . Let a_{∞}, b_{∞} be the limits of $\{a_k\}, \{b_k\}$, respectively. Indeed, $a_{\infty} = b_{\infty}$. $\therefore |a_{\infty} - b_{\infty}| \leq |a_k - b_k| \to 0$

By definition of b_i , $(b_{\infty}, \infty) \cap S = \emptyset$. $(\iff b_{\infty} \text{ is a upper bound of } S$.)

If $b_{\infty} \in S$, then $b_{\infty} = \sup(S)$. Suppose $b_{\infty} \notin S$. Then, any $\epsilon > 0$, $\exists a_k \in S$ such that $b_{\infty} - a_k < \epsilon$. This implies $b_{\infty} = \sup(S)$. (+3 pts)

Therefore any bounded subset S has a supremum.

^{*}If you wrote only as a list of theorems, you have got at most 5 points. .

- (6) Prove or disprove.
 - (a) The product $(0,1) \times (0,1) \subset \mathbb{R}^2$ is an open set.
 - (b) If $\{C_k\}$ is nested closed nonempty subsets of \mathbb{R} , then $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$.
 - (c) For any set $S \subset \mathbb{R}^n$, its closure is same as the closure of its interior S^0 , i.e., $\overline{S^0} = \overline{S}$.
 - (a) Let $\mathbf{x} = (x, y) \in (0, 1) \times (0, 1)$. Let $r = \min(|x|, |y|, |1 x|, |1 y|)$. Then, $N(\mathbf{x}, r) \subset (0, 1) \times (0, 1)$ and hence \mathbf{x} is an interior point. Hence, $(0, 1) \times (0, 1)$ is open. **(+4 pts)**
 - (b) Counter example: Let $C_k = [k, \infty)$. Then, $\{C_k\}$ are nested closed nonempty subsets of \mathbb{R} (unbounded). However, $\bigcap_{k=1}^{\infty} C_k = \emptyset$. (+3 pts)
 - (c) Counter example: For any set $S \subset \mathbb{R}^n$ with isolated points, $\overline{S^0} \neq \overline{S}$. (+3 pts)
- (7) Prove or disprove.
 - (a) Let $S \subset \mathbb{R}^n$ be a nonempty domain, $C_{\infty}(S)$ be the continuous function space with the uniform norm, $F \subset C_{\infty}(S)$ is a dense subset, and $f_0 \in C_{\infty}(S)$. Show that there exists a Cauchy sequence $\{f_k\} \subset F$ that converges to f_0 uniformly.
 - (b) For a continuous function $f:[a,b]\to\mathbb{R}$, there exists a sequence of step functions $s_k:[a,b]\to\mathbb{R}$ that converges to f uniformly.
 - (c) For a step function $s:[a,b]\to\mathbb{R}$, there exists a sequence of continuous functions $f_k:[a,b]\to\mathbb{R}$ that converges to s uniformly.
 - (a) **(+4 pts)** Let $\{\epsilon_k\} \downarrow 0$. For given $\epsilon > 0$, $\exists k_0$ such that $\epsilon_k \leq \epsilon$ for all $k \geq k_0$. Since F is dense, $\exists f_m \in F$ such that $||f_m f_0||_{\infty} < \epsilon_m/2$ for all m. Then, for all $n, m \geq k_0$, $||f_m f_n||_{\infty} = ||f_m f_0 + f_0 f_n||_{\infty} \leq ||f_m f_0||_{\infty} + ||f_0 f_n||_{\infty} \leq \epsilon_m/2 + \epsilon_n/2 \leq \epsilon$.
 - $||f_m f_n||_{\infty} = ||f_m f_0 + f_0 f_n||_{\infty} \le ||f_m f_0||_{\infty} + ||f_0 f_n||_{\infty} \le \epsilon_m/2 + \epsilon_n/2 \le \epsilon.$ (b) **(+3 pts)** For any $\epsilon > 0$, choose $m \in \mathbb{N}$ such that $\frac{1}{2^m} < \epsilon$. Define a set $E_{n,m} := f^{-1}((\frac{n-1}{2^m}, \frac{n}{2^m}])$. Define functions s_m as $s_m(x) = \frac{n-1}{2^m}$ if $x \in E_{n,m}$. Then $||f s_m||_{\infty} \le 2^{-m}$ (c) **(+3 pts)** False. WLOG, set a = 0, b = 2. Define a function $s : [0, 2] \to \mathbb{R}$ as

$$s(x) = \begin{cases} 2, & \text{if } x > 1, \\ 0, & \text{if } x \le 1. \end{cases}$$

For $\epsilon < 1$, suppose there exists a function f_k such that $||s - f_k||_{\infty} < \epsilon$. Then, for any $x \in [0,2]$, $f_k(x) \ge 1 - \epsilon > 1$ or $f_k(x) \le \epsilon < 1$. Since f_k is continuous, $f_k(c) = 1$ for some $c \in (0,2)$ by the intermediate value theorem. (contradiction)

- (8) Prove the followings.
 - (a) Let $f:[a,b]\to\mathbb{R}$ be differentiable function and |f'(x)|<1. Then, f is uniformly continuous.
 - (b) Use the mean value theorem to prove Bernoulli's inequality:

For every
$$x > -1$$
 and every $k \in \mathbb{N}$, $(1+x)^k \ge 1 + kx$.

- (a) **(+5 pts)** For $x, y \in [a, b]$, $\exists c \in (x, y)$ such that $\frac{|f(x) f(y)|}{|x y|} = |f'(c)| < 1$ by the mean value theorem. For any $\epsilon > 0$, let $\delta = \epsilon$. Then, if $|x y| < \delta$, $|f(x) f(y)| < |x y| < \epsilon$.
- (b) **(+5 pts)** By the mean value theorem, $\frac{(1+x)^k-1}{(1+x)-1} = kc^{k-1}$ for some c between 1+x and 1. So, $(1+x)^k 1 = kxc^{k-1}$. If $-1 < x < 0, 0 < c < 1 \implies c^{k-1} \le 1 \implies kxc^{k-1} \ge kx$. If $0 < x, c > 1 \implies c^{k-1} \ge 1 \implies kxc^{k-1} \ge kx$. If x = 0, 1 = 1 is clear. Therefore, $(1+x)^k \ge 1 + kx$.

(9) Define a function $f:[0,1]\to\mathbb{R}$ as

$$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in the lowest terms,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

- (a) Determine where f is continuous. Explain why.
- (b) Determine where f is differentiable. Explain why.
- (a) **(+5 pts)** f is continuous only at irrational numbers. If x is a rational number, $f(x) = \frac{1}{q}$ for some q > 0. Let $\epsilon = \frac{1}{2q}$. Then, for any $\delta > 0$, there exists an irrational number $y \in N(x,\delta)$ and $|f(y) f(x)| > \epsilon$. Hence, f is discontinuous at x. If x is an irrational number, for any $\epsilon > 0$, choose $k \in \mathbb{N}$ such that $\frac{1}{k} < \epsilon$. Let $a_{n,m} = |x \frac{n}{m}|$ and $\delta < a_{n,m}$ for all m < k and $n = 1, 2, \ldots, m$. Then, for all $y \in N(x,\delta)$, $f(y) < \frac{1}{k} < \epsilon$
- (b) **(+5 pts)** f is nowhere differentiable. First, f is not differentiable at rational numbers since f is not continuous at those points. Let x be an irrational number. Then, for any $q \in \mathbb{N}$, there exists at least one rational number $r \in N(x, \frac{1}{q})$ such that $f(r) \geq \frac{1}{q}$. Therefore, $|\frac{f(r)-f(x)}{r-x}| \geq 1$ at those points and $|\frac{f(y)-f(x)}{y-x}| = 0$ for irrational numbers $y \in (0,1)$. Therefore, the limit does not exsits and hence not differentiable at the irrational number x.

Part C: Justification is not needed for true-false problems.

- (10) (a) State if the followings are true or false.
 - (i) A boundary point of a set S is a limit point of S or an isolated point. There is no else.
 - (ii) If an isolated boundary point is deleted from S, it is not a boundary point anymore.
 - (iii) If a limit point is deleted from S, it is not a boundary point anymore.
 - (iv) A set S is closed if it contains all of its limit points, but miss some isolated points.
 - (v) A set S contains all of its boundary points if and only if it contains all of its limit points.
 - (b) The above questions tell us that the definition of the closed set in the textbook is bad. Give a better definition and explain why.
 - (a) (+5 pts) True statements: (i), (ii), (iv), (v). False statements: (iii)
 - (b) (+5 pts) A subset $A \subset \mathbb{R}^n$ is called closed if it contains all of its limit points. The reason why this is a better definition is that only the limit point matters to be a closed sets, but not isolated points.