OpenMP: An Advanced Example

Computational Science II (CAAM 520)

Christopher Thiele Rice University, Spring 2021

Motivation

Our examples so far were simple in the sense that adding an OpenMP directive to a loop was usually sufficient.

In general, parallelization can be more complicated due to dependencies between loop iterations.

 \rightarrow Let us consider such an example.

The heat equation

We want to solve the heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u = u_0$ on $\Omega \times \{0\}$,

where $\Omega = [0, 1]^3$, u is the temperature, and f describes heat sources and heat sinks inside Ω .

DIL: boundasy

$$\Delta n = \partial_1^2 n + \partial_2^2 n + \partial_3^2 n$$

Poisson's equation

Instead of solving the full time-dependent problem, we are interested in the **steady state** solution which satisfies $\partial_t u = 0$.

This leads to the **Poisson problem**

$$-\Delta u = f$$
 in Ω ,
 $u = 0$ on $\partial \Omega$.

Finite difference discretization

To discretize the equation, we introduce n^3 grid points

$$\mathbf{x}_{ijk} = (ih, jh, kh)^{\mathsf{T}},$$

where i, j, k = 0, ..., n - 1 and $h = \frac{1}{n-1}$.

For convenience, we define

$$u_{ijk} = u(x_{ijk})$$

etc.

$$u(x) = \frac{u(x_0 + \frac{u}{2}) - u(x_0 - \frac{u}{2})}{h}$$

$$u'(x_0) \approx \frac{u(x_0 + \frac{u}{2}) - u(x_0 - \frac{u}{2})}{h}$$

$$u'(x_0) \approx \frac{u(x_0 + \frac{u}{2}) - u(x_0)}{h} - \frac{u(x_0) - u(x_0 - h)}{h}$$

$$= \frac{u(x_0 + \frac{u}{2}) - 2u(x_0) + u(x_0 - h)}{h^2}$$

Finite difference discretization

Discretizing the equation using finite differences (at an interior point x_{ijk}) yields $+2u_{ijk}$ $-\Delta u(x_{ijk}) = ((x_{ijk}) - u_{ij-1jk}) + (u_{ijk-1} + 6u_{ijk} - u_{i+1jk} - u_{ij+1k} - u_{ijk+1}) = f_{ijk}$, h^2

or equivalently

$$u_{ijk} = \frac{h^2 f_{ijk} + u_{i-1jk} + u_{ij-1k} + u_{ijk-1} + u_{i+1jk} + u_{ij+1k} + u_{ijk+1}}{6}$$

i.e., a linear system.

The Jacobi iteration

The linear system can be written in matrix form and solved, e.g., with Gaussian elimination.

Since it is **sparse**, it can also be solved iteratively. The simplest iterative method is the **Jacobi** iteration

$$u_{ijk}^{\text{new}} \leftarrow \frac{h^2 f_{ijk} + u_{i-1jk}^{\text{old}} + u_{ij-1k}^{\text{old}} + u_{ijk-1}^{\text{old}} + u_{i+1jk}^{\text{old}} + u_{ij+1k}^{\text{old}} + u_{ijk+1}^{\text{old}}}{6}$$

→ This method is straightforward to parallelize, but requires many iterations.

new

The Gauss-Seidel iteration

Another method, which converges faster in the sense that it requires fewer iterations, is the *Gauss–Seidel* iteration

$$u_{ijk}^{\text{new}} \leftarrow \frac{h^2 f_{ijk} + u_{i-1jk}^{\text{new}} + u_{ij-1k}^{\text{new}} + u_{ijk-1}^{\text{new}} + u_{i+1jk}^{\text{old}} + u_{ij+1k}^{\text{old}} + u_{ijk+1}^{\text{old}}}{6}.$$

 \rightarrow Since u_{ijk}^{new} depends on updated values at other grid points, how can we parallelize the iteration?

Remark

In practice, the tradeoff between the number of iterations and the per-iteration cost is nontrivial.

It depends on the problem at hand whether the Jacobi method or the Gauss-Seidel method yields in lower time-to-solution.