Exploração de dados - Banco Czech

Contents

Objetivo 3

Objetivo

O objetivo do nosso trabalho é identificar quais fatores que podem impactar no atraso e não pagamento das dívidas.

#Funções utilitárias Criamos a função prepararNA para simplificar o tratamento dos dados indisponíveis.

```
prepararNA <- function (tabela, nomeColuna, valorSeNA) {
  indiceDados <- which(colnames(tabela)==nomeColuna)
  tabela[is.na(tabela[,indiceDados]),indiceDados] <- valorSeNA
  return(tabela)
}

prepararData <- function (vetorDataYYMMDD) {
  as.Date(pasteO("19", vetorDataYYMMDD), "%Y%m%d")
}</pre>
```

#Carga dos dados Utilizamos a função read.csv2 que nos permite carregar os dados disponíveis em texto, no formato CSV.

```
read.csv2("./dados/account.asc", stringsAsFactors = FALSE) -> account
read.csv2("./dados/client.asc", stringsAsFactors = FALSE) -> client
read.csv2("./dados/card.asc", stringsAsFactors = FALSE) -> card
read.csv2("./dados/disp.asc", stringsAsFactors = FALSE) -> disp
read.csv2("./dados/district.asc", stringsAsFactors = FALSE) -> district
read.csv2("./dados/trans.asc", stringsAsFactors = FALSE) -> trans
read.csv2("./dados/loan.asc", stringsAsFactors = FALSE) -> loan
read.csv2("./dados/order.asc", stringsAsFactors = FALSE) -> order
```

#Tratamento dos dados

##Cliente O tratamento inicial da relação cliente envolve a separação do campo data de nascimento e gênero, que será tratado por M e F. E a transformação do campo birth_number em uma data válida para o R. Para isso transformamos o birth_number em um campo númerico, obtemos 4 dígitos da 3ª à 4ª posição, sendo este valor superior a 50 consideramos como feminino, pois o mês de nascimento das mulheres está com uma soma de 50 unidades. Subtraímos 5000 do mês das mulheres, pois como um único campo numérico, implica em diminuir 50 do campo mensal. Após isso concatenamos o número 19 ao começo do birth_number, no intuíto de deixar melhor preparado para a formatação da data, que ocorre logo em seguida. Logo após, calculamos a idade e selecionamos apenas os campos que nos serão úteis para o nosso estudo. samos a data de referência como 01/01/1998, devido a referência dos dados, para calcular a idade dos clientes.

```
currentdate <- as.Date("1998/01/01", format="%Y/%m/%d")
client <- client %>%
  mutate(mesajustado = as.numeric(stringr::str_sub(birth_number,3,4))) %>%
  mutate(gender = ifelse(mesajustado > 50, "F", "M")) %>%
  mutate(birth_number = ifelse(gender=="F", birth_number - 5000, birth_number)) %>%
  mutate(birth_number = paste0("19", birth_number)) %>%
  mutate(birth_number = as.Date(birth_number, "%Y%m%d")) %>%
  mutate(age = year(currentdate) - year(birth_number)) %>%
  select(client_id, age, district_id, gender)
```

##Conta O tratamento da conta incluí renomear as frequências da conta e seleção dos campos importantes ao estudo.

```
#Tradução
account$frequency <- gsub("POPLATEK MESICNE", "mensal", account$frequency)
account$frequency <- gsub("POPLATEK TYDNE", "semanal", account$frequency)
account$frequency <- gsub("POPLATEK PO OBRATU", "acadatransacao", account$frequency)</pre>
```

##Distrito O tratamento inicial da relação distrito começa na renomeação dos campos para melhor entendimento. Conversão dos campos de unemp_95 e unemp_96 para numéricos. Limpeza dos valores NA. Cálculo da taxa de desemprego entre os anos 95 e 96. E seleção dos valores que serão usados neste estudo.

#Renomear campos para melhor entendimento

```
colnames(district)[1] <- 'district_id'</pre>
colnames(district)[2] <- 'district_name'</pre>
colnames(district)[11] <- 'avg_sal'</pre>
colnames(district)[12] <- 'unemp_95'</pre>
colnames(district)[13] <- 'unemp_96'</pre>
colnames(district)[14] <- 'numb_enter'</pre>
#Converter campos para numérico
district$unemp_95 = as.numeric(district$unemp_95)
## Warning: NAs introduzidos por coerção
district$unemp_96 = as.numeric(district$unemp_96)
district$numb_enter = as.numeric(district$numb_enter)
#Limpeza de NA
district = prepararNA(district, "unemp 95", 1)
#Cálculo da taxa de desemprego e seleção de valores
  district %>%
 mutate(unemp_r = ifelse(unemp_95 == 0 | unemp_96 == 0, 1, unemp_96/unemp_95)) %>%
```

##Cartão O tratamento inicial da relação cartão seleciona os campos que serão úteis para este estudo. Preparamos então o tipo do cartão como categórica.

select(district id, district name, avg sal, unemp r, numb enter) -> district

##Transação Na relação de transação, identificamos alguns valores como "VYBER" que não estão descritos na documentação e não pareceu ser pertinente aos nossos estudos, por isso foi filtrado. O tipo de transação foi traduzido para facilitar o entendimento. E foi feito um agrupamento pela conta para facilitar o relacionamento de 1 para 1 com os valores que nos interessam.

```
unique(trans$type)
```

```
## [1] "PRIJEM" "VYDAJ" "VYBER"

trans$type <- gsub("PRIJEM", "credito", trans$type)

trans$type <- gsub("VYDAJ", "debito", trans$type)

trans$date <- prepararData(trans$date)</pre>
```

```
trans <- trans %>%
        dplyr::filter(type != "VYBER") %>%
        dplyr::filter(year(date) > 97) %>%
       mutate(amount = as.numeric(amount)) %>%
       mutate(balance = as.numeric(balance)) %>%
        select(account_id, type, amount, balance) %>%
        group_by(account_id) %>%
        summarise(
          credito = sum(ifelse(type == "credito", amount, 0)),
          debito = sum(ifelse(type == "debito", amount, 0)),
          trans_amount = sum(amount),
          saldo_medio_em_conta = mean(balance),
          mediana_saldo = median(balance),
          min_saldo = summary(balance)[1],
          fq_saldo = summary(balance)[2],
          quant_trans = n()) %>%
        mutate(withdraw_rate = debito / credito) %>%
        select(account_id, withdraw_rate, quant_trans, saldo_medio_em_conta, mediana_saldo, min_saldo,
```

##Disposição A relação de disposição é útil para auxiliar nos relacionamentos. Como nosso estudo centraliza no pagamento ou não de dívidas, sendo que somente os donos da conta conseguem pegar empréstimos, filtramos as disposições para os donos das contas que serão o alvo do estudo.

```
unique(disp$type)
```

```
## [1] "OWNER" "DISPONENT"

disp <- disp %>%
    # dplyr::filter(type == "OWNER") %>%
    group_by(account_id) %>%
    summarise(
        client_id = first(client_id[type == "OWNER"]),
        disp_id = first(disp_id[type == "OWNER"]),
        no_account_users = n()
)
```

##Empréstimo No preparo da relação de empréstimo, traduzimos os status para os significados reais, também preparamos a taxa de pagamento e selecionamos os campos úteis ao estudo.

```
unique(loan$status)
```

```
mutate(payments_rate = payments / amount) %>%
    select(loan_id, account_id, amount, duration, status, payments_rate, loan_date, loan_age)

colnames(loan)[3] <- 'loan_amount'
colnames(loan)[4] <- 'loan_duration'
colnames(loan)[5] <- 'loan_status'
colnames(loan)[6] <- 'loan_payment_rate'</pre>
```

##Ordem de Pagamento No preparo da ordem de pagamento, o texto do tipo de ordem é traduzido, ignoramos os que não possuem nenhum tipo especificado e selecionamos os dados importantes a este estudo através do agrupamento pela conta.

```
unique(order$k_symbol)
```

```
## [1] "SIPO"
                  "UVER"
                                        "POJISTNE" "LEASING"
order$k_symbol = gsub("POJISTNE", "seguro", order$k_symbol)
order$k_symbol = gsub("SIPO", "domestico", order$k_symbol)
order$k_symbol = gsub("LEASING", "leasing", order$k_symbol)
order$k_symbol = gsub("UVER", "divida", order$k_symbol)
order$amount = as.numeric(order$amount)
order <- order %>%
         dplyr::filter(k_symbol != " ") %>%
         group_by(account_id) %>%
         summarise(
            total_ordem = sum(amount),
            quant_ordem = n(),
            paga_divida = any(k_symbol == "divida"),
            paga_leasing = any(k_symbol == "leasing"),
            ja_pagou_seguro = any(k_symbol == "seguro"),
            media transf = sum(amount) / n()
```

#União dos dados

##Preparar união

```
dados <- client %>%
        inner_join(disp, by = "client_id") %>%
        left_join(card, by = "disp_id") %>%
        left_join(district, by = "district_id") %>%
        inner_join(account, by = "account_id") %>%
        left_join(order, by= "account_id") %>%
        inner_join(trans, by="account_id") %>%
        left_join(loan, by="account_id")
```

##Preparar NAs

#Estudo dos dados ##Empréstimos Observamos que contratos mais novos apresentam menos problemas com pagamentos

dadosLoan\$problemas_loan = as.factor(dadosLoan\$problemas_loan)


```
lm(dadosLoan, formula = loan_amount ~ problemas_loan) -> modelo
summary(modelo)
```

```
##
## Call:
## lm(formula = loan_amount ~ problemas_loan, data = dadosLoan)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
                            59296 446131
## -175554 -84425
                   -31595
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                                    4544 31.844 < 2e-16 ***
## (Intercept)
                       144689
## problemas_loanTRUE
                        60313
                                   13611
                                           4.431 1.09e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 111900 on 680 degrees of freedom
## Multiple R-squared: 0.02806,
                                   Adjusted R-squared: 0.02664
## F-statistic: 19.64 on 1 and 680 DF, p-value: 1.092e-05
```

Identificamos também que pessoas que possuem cartões tem menores chances de ter problemas com os empréstimos

```
dadosLoan <- dadosLoan %>%
    mutate(has_card = ifelse(card_type=="nenhum", FALSE, TRUE))

chisq.test(table(dadosLoan$has_card, dadosLoan$problemas_loan))

##

## Pearson's Chi-squared test with Yates' continuity correction

##

## data: table(dadosLoan$has_card, dadosLoan$problemas_loan)

## X-squared = 14.303, df = 1, p-value = 0.0001556

ggplot(dadosLoan, aes(has_card)) +
    geom_bar(position=position_dodge(), aes(fill=problemas_loan))
```


#Estudo de cluster

##

```
## Call:
## lm(formula = problemas_loan ~ ., data = dadosLoanCluster)
## Residuals:
                 1Q
                     Median
                                   3Q
## -0.46200 -0.12456 -0.05250 0.02771 0.87919
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  1.615e+00 4.977e-02 32.448 < 2e-16 ***
## ja_pagou_seguro 1.779e-01 3.732e-02
                                          4.767 2.29e-06 ***
## no_account_users -8.648e-02 2.124e-02 -4.071 5.24e-05 ***
                  -7.496e-06 8.226e-07 -9.112 < 2e-16 ***
## fq_saldo
## media_transf
                                         2.976 0.00303 **
                   1.281e-05 4.305e-06
## quant_ordem
                   -1.323e-01 1.978e-02 -6.690 4.69e-11 ***
## min_saldo
                   -5.817e-05 3.629e-06 -16.031 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2234 on 675 degrees of freedom
## Multiple R-squared: 0.5012, Adjusted R-squared: 0.4967
## F-statistic: 113 on 6 and 675 DF, p-value: < 2.2e-16
#achar a quantidade ideal de clusters
dadosLoanCluster_std <- scale(dadosLoanCluster[-1])</pre>
scaled_loan_data = as.matrix(dadosLoanCluster_std)
set.seed(123)
k.max <- 15
data <- scaled_loan_data
wss <- sapply(1:k.max,
             function(k){kmeans(data, k, nstart=50,iter.max = 15)$tot.withinss})
plot(1:k.max, wss,
    type="b", pch = 19, frame = FALSE,
    xlab="Número de clusters K",
    ylab="Total clusters internos, soma de quadrados")
```



```
#achar padrões
kmeans <- kmeans(dadosLoanCluster,3)</pre>
#sumario
kmeans
\#\# K-means clustering with 3 clusters of sizes 166, 316, 200
##
## Cluster means:
     problemas_loan ja_pagou_seguro no_account_users fq_saldo media_transf
##
## 1
           1.319277
                           0.2650602
                                              1.186747 16857.08
                                                                    4061.614
## 2
           1.066456
                           0.1424051
                                              1.218354 30090.45
                                                                    4545.824
## 3
           1.010000
                           0.1250000
                                              1.225000 44946.04
                                                                    5062.291
##
     quant_ordem min_saldo
## 1
        1.915663 -1283.8988
## 2
        1.829114
                   715.9772
## 3
        1.705000
                   683.9030
##
## Clustering vector:
##
     [1] \ 2 \ 1 \ 2 \ 1 \ 2 \ 3 \ 2 \ 2 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3 \ 2 \ 3 \ 1 \ 2 \ 3 \ 2 \ 3 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \ 1 \ 3 \ 3 \ 2 \ 3 \ 3 \ 2
     [ 36 ] \ 2\ 2\ 1\ 2\ 1\ 2\ 3\ 1\ 2\ 3\ 1\ 1\ 2\ 2\ 3\ 3\ 2\ 3\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1\ 2\ 1\ 3\ 1 
    [71] \ 1 \ 3 \ 3 \ 2 \ 3 \ 2 \ 2 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 3 \ 3 \ 1 \ 1 \ 3 \ 2 \ 1 \ 1 \ 3 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 1 \ 1 \ 2 \ 2 \ 2
## [141] 2 2 3 1 2 3 2 2 2 1 2 1 3 3 2 2 3 3 2 2 2 3 2 1 2 3 3 3 2 3
```

```
## [246] 2 2 3 1 1 2 3 3 1 2 3 1 2 3 1 2 2 2 3 1 1 3 1 2 2 3 1 3 3 2 3 1 1 2 2
## [421] 1 2 1 2 2 1 1 2 2 2 2 2 3 1 2 2 2 3 2 2 3 2 2 3 2 2 1 3 3 2 1 1 2 3
## [666] 3 2 2 2 3 3 3 2 2 1 1 3 3 2 2 2 1
##
## Within cluster sum of squares by cluster:
## [1] 8275067127 7301365869 7741187312
## (between_SS / total_SS = 75.8 %)
##
## Available components:
##
## [1] "cluster"
          "centers"
                  "totss"
                         "withinss"
## [5] "tot.withinss" "betweenss"
                  "size"
                         "iter"
## [9] "ifault"
#VEctor da soma dos quadrados, um componete por cluster
kmeans withinss
## [1] 8275067127 7301365869 7741187312
#Distancia - Soma dos quadrados entres os clusters
kmeans$betweenss
## [1] 72916452403
#Numero de pontos para cada cluster
kmeans$size
## [1] 166 316 200
#Verificar Padrões
plot(dadosLoanCluster,col=kmeans$cluster,pch=15)
points(kmeans$centers,col=1:8,pch=3)
```


plotcluster(dadosLoanCluster,kmeans\$cluster)
points(kmeans\$centers,col=1:8,pch=16)

clusplot(dadosLoanCluster, kmeans\$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)

CLUSPLOT(dadosLoanCluster)

Component 1
These two components explain 56.8 % of the point variability.