Wykład 3: Elementy orbity. Wyznaczanie pozycji obiektu na podstawie znanych elementów orbity.

Elementy orbity

Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie płaszczyzny orbity do płaszczyzny ekliptyki, długość węzła wstępującego, odległość perycentrum od węzła wstępującego, moment przejścia przez perycentrum

- a wielka półoś orbity
- e mimośród orbity
- i nachylenie orbity do wyróżnionej płaszczyzny (dla orbit wokółsłonecznych jest to płaszczyzna ekliptyki)
- wokółsłonecznych jest to płaszczyzna ekliptyki)

 Ω długość węzła wstępujęcego (dla orbit wokółsłonecznych
- odległość węzła wstępującego od punktu Barana)

 ω odległość perycentrum od węzła wstępującego

W przypadku orbity parabolicznej mamy q - odległość w perycentrum, i, Ω , ω , t_0 (e=1).

t₀ - moment przejścia przez perycentrum

W przypadku orbity hiperbolicznej mamy: a, e, i, Ω , ω , t_0 (a < 0, e > 1)

Inne elementy orbity:

- ► *M* anomalia średnia na daną epokę
- lacksquare $\pi = ilde{\omega} = \omega + \Omega$ długość peryhelium
- $ightharpoonup L = M + \pi$ średnia długość orbitalna

Przypadek orbity o małym mimośrodzie.

W przypadku orbity o małym mimośrodzie moment przejścia przez perycentrum jest niezbyt dobrze określony. Często w takiej sytuacji wprowadza się dodatkowe kąty:

- $lackbox{mlack}{} heta = \omega + \vartheta$ argument szerokości
- $ightharpoonup I_0 = \vartheta + \pi$ prawdziwa długość orbitalna

Wyznaczanie współrzędnych równikowych równonocnych ciała o danych elementach orbity

Musimy znać współrzędne heliocentryczne równikowe Ziemi i współrzędne heliocentryczne równikowe obiektu, aby policzyć geocentryczne równikowe współrzędne obiektu.

- Współrzędne równikowe heliocentryczne Ziemi (ξ_Z, η_Z, ζ_Z). W przybliżonych rachunkach można je obliczyć znając elementy orbitalne Ziemi. W praktyce obliczone w ten sposób współrzędne będą obarczone zbyt dużym błędem ze względu na obecność Księżyca. Po orbicie eliptycznej (zaburzanej przez perturbacje planetarne) porusza się barycentrum układu Ziemia Księżyc. Powinniśmy skorzystać z roczników astronomicznych, lub odpowiednich stron internetowych (np. http://ssd.jpl.nasa.gov)
- ▶ Obliczenie współrzędnych równikowych heliocentrycznych obiektu. (ξ_p, η_p, ζ_p) .
- Obliczenie równikowych geocentrycznych współrzędnych obiektu $x_D = \xi_D \xi_Z$, $y_D = \eta_D \eta_Z$, $z_D = \zeta_D \zeta_Z$

Obliczamy współrzędne równikowe geocentryczne obiektu

$$\Delta_p = \sqrt{x_p^2 + y_p^2 + z_p^2}$$

deklinacja

$$\delta_{p}=$$
 asin $\left(rac{\mathrm{z_{p}}}{\Delta_{p}}
ight)$

rektascensja

$$lpha_{p}=acos\left(rac{\mathrm{x_{p}}}{\sqrt{\mathrm{x_{p}}^{2}+\mathrm{y_{p}}^{2}}}
ight)$$

$$lpha_{p} = acos\left(rac{1}{\sqrt{{{{
m x}_{
m p}}^2} + {{{
m y}_{
m p}}^2}}}
ight)$$
 $lpha_{p} = asin\left(rac{{{{
m y}_{
m p}}}}{\sqrt{{{{{
m x}_{
m p}}^2} + {{{
m y}_{
m p}}^2}}}}
ight)$

Wyznaczenie heliocentrycznych równonocnych współrzędnych obiektu odbywa się w dwóch niezależnych krokach.

- określenia jego położenia na orbicie
- policzenia potrzebnych elementów macierzy przejścia od układu związanego z orbitą ciała (oś x skierowana od Słońca

do peryhelium, oś y skierowana od Słońca w kierunku $\vartheta = 90^{\circ}$), do układu równikowego heliocentrycznego (oś ξ skierowana od Słońca do punktu Barana, oś η skierowana od Słońca do punktu od rektascensji 6 h i deklinacji 0°).

Macierze obrotu

Gdy mamy współrzędne heliocentryczne w płaszczyźnie orbity ciała (z osią x skierowaną od Słońca do peryhelium) x, y (dla interesującego nas obiektu z=0), to za pomocą kolejnych obrotów układu współrzędnych możemy przejść do układu heliocentrycznego równikowego.

• obrót o kąt $-\omega$ w płaszczyźnie orbity ciała ($z={\rm const}$), oś x' skierowana od Słońca do węzła wstępującego

$$\left(\begin{array}{ccc} \cos(\omega) & -\sin(\omega) & 0 \\ \sin(\omega) & \cos(\omega) & 0 \\ 0 & 0 & 1 \end{array} \right)$$

▶ obrót o kąt −i wokół osi x', osie x' y" znajdują się w płaszczyźnie ekliptyki.

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos(i) & -\sin(i) \\
0 & \sin(i) & \cos(i)
\end{array}\right)$$

Macierze obrotu c. d.

ightharpoonup obrót o kąt $-\Omega$ wokół osi Z, nowa oś X skierowana jest od Słońca do punktu Barana.

$$\left(\begin{array}{ccc} \cos(\Omega) & -\sin(\Omega) & 0 \\ \sin(\Omega) & \cos(\Omega) & 0 \\ 0 & 0 & 1 \end{array} \right)$$

lacktriangle obrót o kąt $-\epsilon$ wokół osi X, osie η i ζ znajdują się w płaszczyźnie równikowej

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & cos(\epsilon) & -sin(\epsilon) \\ 0 & sin(\epsilon) & cos(\epsilon) \end{pmatrix}$$

Przejście od układu heliocentrycznego w płaszczyźnie orbity obiektu $\odot xyz$ do heliocentrycznego w płaszczyźnie równikowej

objektu
$$\odot xyz$$
 do neliocentrycznego w płaszczyznie rowniko $\odot \xi \eta \zeta$

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} P_x & Q_x & R_x \\ P_y & Q_y & R_y \\ P_y & Q_y & R_y \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$P_{\mathsf{x}} = \cos \omega \cos \Omega - \sin \omega \sin \Omega \cos i$$

$$Q_{\rm v} = -\sin\omega\cos\Omega - \cos\omega\sin\Omega\cos i$$

$$R_{\mathsf{x}} = \sin \Omega \sin i$$

$$P_{\nu} = (\cos \omega \sin \Omega + \sin \omega \cos \Omega \cos i) \cos \epsilon - \sin \omega \sin i \sin \epsilon$$

$$Q_{V} = (-\sin\omega\sin\Omega + \cos\omega\cos\Omega\cos i)\cos\epsilon - \cos\omega\sin i\sin\epsilon$$

$$R_{\rm v}=\cos\Omega\sin i\cos\epsilon-\cos i\sin\epsilon$$

$$N_y = \cos \Omega \sin \theta \cos \theta = \cos \theta \sin \theta$$

$$P_z = (\cos \omega \sin \Omega + \sin \omega \cos \Omega \cos i) \sin \epsilon + \sin \omega \sin i \cos \epsilon$$

$$Q_z = (-\sin\omega\sin\Omega + \cos\omega\cos\Omega\cos i)\sin\epsilon + \cos\omega\sin i\cos\epsilon$$

$$R_z = -\cos\Omega\sin i\sin\epsilon + \cos i\cos\epsilon$$

```
Orbital elements:
2013 E04
                                                     Earth MOID = 0.0579 AU
Epoch 2013 Apr. 18.0 TT = JDT 2456400.5
                                                    MPC
   2.47154
                       (2000.0)
                                          Р
                                                         0
   0.28604850
                 Peri.
                         41.72451
                                     -0.93921289
                                                    +0.34057603
a 2.2812678
                 Node
                        158.07219
                                     -0.33768708
                                                    -0.89348191
e 0.5563733
                 Incl.
                          6.68016
                                     -0.06202078
                                                    -0.29274228
                 H 22.9
  3.45
                                       0.15
                                                     U
                                                        8
Residuals in seconds of arc
130303 G96 0.1-
                0.0
                        130303 I93
                                   0.4+ 0.2-
                                                130304 H21
                                                           0.0
                                                                 0.1 +
130303 G96 0.0
                0.0
                       130303 240
                                   0.2- 0.1-
                                                130304 H21
                                                           0.2+
                                                                 0.2+
130303 G96 0.1+ 0.0
                       130303 240
                                   0.2+ 0.1+
                                                130304 H21
                                                          0.4+
                                                                 0.0
130303 G96 0.1+ 0.0
                       130303 240
                                   0.1- 0.9-
                                                130304 195
                                                           0.0
                                                                 0.1 +
130303 193 0.4- 0.4+
                       130304 H21
                                   0.2+ 0.1+ 130304 J95 0.0
                                                                 0.1-
                       130304 H21
                                   0.2- 0.2+
130303 193 0.1- 0.2-
130303 240 0.5- 0.2+
                       130304 H21
                                   0.1+ 0.0
```

Rysunek: Przykład elementów orbitalnych podawanych dla planetoid w telegramach MPC

Ephemeris: 2013 EQ4 a,e							,i = 2.28, 0.56, 7					g = 1 0120	
										77.33.5			
Date		TT	R.	Α.	(2000	9) De	ecl		Delta	r	Elong.	Phase	V
2013	02	03	98	41	57.2	+06	02	52	0.3084	1.2888	167.9	9.2	21.5
2013	62	10	00	21	40.2	. 10	20	47	0.2153	1 1004	156.9	19.0	20.9
	02	10	00	31	40.2	+10	29	47	0.2155	1.1094	150.9	19.0	20.9
	02	26	08	27	52.0	+14	52	55	0.1749	1.1422	148.0	27.3	20.6
2013	03	04	08	27	07.4	+19	33	50	0.1479	1.1104	141.0	34.2	20.4
2013	03	05	08	27	16.7	+20	29	43	0.1437	1.1054	139.8	35.4	20.4
2013	03	06	80	27	32.2	+21	28	37	0.1395	1.1005	138.5	36.6	20.3
2013	03	12	98	31	52.7	+28	37	12	0.1161	1.0736	131.1	44.2	20.1
2013	03	20	80	51	34.9	+42	44	09	0.09004	1.0445	120.6	55.2	19.8
				20	40.0	- 7.2	00				00.5	76.5	10.0
2013	04	04	14	38	48.8	+/3	69	19	0.07155	1.0143	99.5	76.5	19.9
	Τ.	omatic					10			913 MPC		M.P.E.C.	2012 5

2014-Mar-02	00:00	22	50	20.52	-07	23	33.0	-26.76	-10.59	0.99102541190763	0.4208307
2014-Mar-07	00:00	23	80	58.43	-05	28	05.4	-26.76	-10.59	0.99225672045807	0.4331207
2014-Mar-12	00:00	23	27	25.87	-03	30	49.8	-26.76	-10.59	0.99353435933434	0.4528267
2014-Mar-17	00:00	23	45	45.39	-01	32	33.3	-26.75	-10.59	0.99487612250585	0.4766859
2014-Mar-22	00:00	00	03	59.87	+00	25	59.5	-26.75	-10.59	0.99628416173533	0.4969390
2014-Mar-27	00:00	00	22	12.23	+02	24	04.5	-26.75	-10.59	0.99773184328321	0.5026649
2014-Apr-01	00:00	00	40	24.95	+04	20	56.5	-26.74	-10.59	0.99917274703806	0.4940339
2014-Apr-06	00:00	00	58	40.04	+06	15	49.2	-26.74	-10.59	1.00058603337500	0.4857826
2014-Apr-11	00:00	01	16	59.54	+08	07	58.3	-26.74	-10.59	1.00198478959991	0.4840065
2014-Apr-16		01								1.00338596554154	0.4867234
2014-Apr-21		01	54	00.94	+11	41	18.8	-26.73	-10.59	1.00479162080182	0.4848468
2014-Apr-26		02	12	47.35	+13	21	09.2	-26.73	-10.59	1.00617016907948	0.4670009
2014-May-01	00:00	02	31	46.25	+14	55	31.1	-26.73	-10.59	1.00747722050987	0.4375268
2014-May-06	00:00	02	50	58.31	+16	23	42.8	-26.72	-10.59	1.00869906244095	0.4096615
2014-May-11										1.00984988282123	0.3886152
2014-May-16										1.01094954677436	0.3734024
2014-May-21										1.01200093727058	0.3524511
2014-May-26										1.01296928064611	0.3158157
2014-May-31	00:00									1.01381706287144	0.2710811
2014-Jun-05	00:00	04	50							1.01453802398719	0.2293229
2014-Jun-10		05								1.01514957463814	0.1958505
2014-Jun-15	00:00	05	32	18.20	+23	17	05.6	-26.71	-10.59	1.01567700343291	0.1698274

Rysunek: Geocentryczne równikowe współrzędne Słońca według http://ssd.jpl.nasa.gov/?horizons

Współrzędne x, y ciała w określonym momencie znajdujemy z równań opisujących związki pomiędzy anomalią średnią a anomalią mimośrodową (dla elipsy i hiperboli) bądź czasem i anomalią prawdziwą (dla paraboli).

jeżeli jako moment t_0 określimy przejście przez perycentrum to otrzymamy równanie Bakera

$$tg(rac{artheta}{2})+rac{1}{3}tg^3(rac{artheta}{2})=rac{\mu\gamma}{\sqrt{2}q^{3/2}}(t-t_0)$$

Zależność anomalii średniej od anomalii mimośrodowej dla elipsy (równanie Keplera)

$$\left(\frac{\gamma}{\mu}\right)^{1/2} a^{-3/2} (t - t_0) = M = E - e \sin E$$

Zależność anomalii średniej od mimośrodowej dla hiperboli

$$\left(\frac{\gamma}{\mu}\right)^{1/2} |a|^{-3/2} (t - t_0) = M = e \sinh(F) - F$$

Równania te można rozwiązywać metodą kolejnych iteracji np. metodą Newton'a- Raphson'a

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Ponieważ szukamy miejsca zerowego, to w pierwszym przybliżeniu

$$f(E_n) = (E_n - E_{n+1})f'(E_n),$$

czyli

$$E_{n+1} = E_n - \frac{E_n}{f'(E_n)}$$

Jako E_0 możemy podstawić $E_0 = M + e \sin M$, a

$$f'(E_n) = 1 - e \cos E_n$$

Dla niewielkich wartości e ta metoda powinna być bardzo szybko zbieżna dla równania Keplera.

Związki pomiędzy anomalią prawdziwą a anomalią mimośrodową dla elipsy:

dla elipsy:
$$\cos \vartheta = \frac{\cos E - e}{1 - e \cos E}$$

 $\sin \vartheta = \frac{\sqrt{1 - e^2} \sin E}{1 - e \cos F}$

 $tg(\vartheta) = \frac{\sqrt{1 - e^2 \sin E}}{\cos F - e}$

 $tg(\frac{\vartheta}{2}) = \sqrt{\frac{1+e}{1-e}}tg(\frac{E}{2})$

Związek pomiędzy anomalią prawdziwą a anomalią mimośrodowa dla hiperboli. Wprowadzamy następujące oznaczenia:

Związek pomiędzy anomalią prawdziwą a anomalią mimośrodową dla hiperboli. Wprowadzamy następujące oznaczenia:
$$a + r = a \cdot e \cdot \cosh(f)$$
 czyli $r = a(e \cosh(f) - 1)$ $x = |a| \cdot \cosh(f)$

 $a + r = a \cdot e \cdot cosh(f)$ czyli $r = a(e cosh(f) - 1), x = |a| \cdot cosh(f)$ i

a +
$$r = a \cdot e \cdot cosh(f)$$
 czyli $r = a(e cosh(f) - 1)$, $x = |a| \cdot cosh(f)$ $cosh(f) = 1/cos(F)$. Wtedy:

 $tg(\frac{\vartheta}{2}) = \sqrt{\frac{e+1}{e-1}}tg(\frac{F}{2}) = \sqrt{\frac{e+1}{e-1}}tgh(\frac{f}{2})$