William Randall
405 167 986 Hwl
Problem 1 (25 pts). What is the difference between an algorithm and a program?
An algorithm is a finite constructive structure that detines a process for
solvins a problem. In other hords, an algorithm is a set of instructions on
how a computer could solve a problem.
A program is a set of instructions, that comply with the rules of a
Specific programming language, which are written to complete a specific
task with a computer.
A program is especutially like an implementation of an algorithm.
,

triple that consi	sts of a ma	an, a woman	and a yupi. I	hree sets	are given:	M include	es n men, W	includes		
n women and Y	includes	n yupi. A m	atching is a se	t H of ore	dered triple	es of the fo	orm (m, w, y)) with the		
property that ea	ich membe	er of M, each	n member of V	W and eac	ch member	of Y appe	ears in at mos	st one		
triple from H. A	-			h membe	r of M, eac	h member	of W and ea	ich		
member of Y a	ppears exa	ctly in one t	riple from H.							
Assume tha	t each mar	n ranks all w	omen and all	yupi, eac	h woman	anks all m	nen and all yu	ipi, and		
each yupi ranks	all wome	n and all me	en.							
Two triples	(m, w, y)	and (m', w',	, y') form an <mark>i</mark>	nstability	in a matc	ning H if o	ne of the foll	lowing		
conditions is tru										
(1) m prefe	rs w' to w	and w' prefe	ers m to m'							
(2) m prefe	rs y' to y a	nd y' prefer	s m to m'							
(3) y prefer	s w' to w a	and w' prefe	ers y to y'							
A matching	H is calle	d stable if it	does not have	e instabili	ties.					
Decide whether	the follow	ving stateme	ent is true or fa	alse.						
There is an	algorithm	s that solve:	s the Stable M	fatching l	Problem fo	r every ins	stance of this			
problem.		Fals								
		[a 15	e							
If it is true,	design an	algorithm fo	or building a s	table perf	ect matchi	ng. Note t	hat when you	ı design		
an algorithr	n, you hav	e to prove th	nat it solves th	e necessa	ıry probler	n				
If it is false,	, give a cou	unterexampl	e.							
Let m	+ m'	EM W	1 + W' 6	W, Y	⊢ y'	EY	4 N=	2		
Preferences		·		•	An s					
table	M	W	Y	(All Poss, b	le Marii Inich are	stable)		not stable b/c	
n m	NA	W > W'	V' > V	(m	W V	(m' 1	<u>(' V')</u>	_	1 + 6	-
		しっい '	V > V l			(n)			3 4 5	
•	N/A		7 2 4 .		w, y') , (m ,	w, y)			
3 W	m>m'	N A	7 > 7'	(W)	w, y	, (m)	W, y)		1 + 3	
Ø W'	m>m'	N/A	y > y '	(m)	w) y)	(m')	w, y')		1 43	
§ y	$m > m^l$	W > W '	N A							
6 y'	m>m'	W7W1	NΔ							
/										
This	O.Kamp	le of er	eforence.	Show	that A	sch P	o scible 1	Matchins	is Unstable	
1	mij	1.	- (-,-),069	2 W 5	1 5-94 1 6		1	jewi. e	- UNSTABLE	
Wh:Ch	means .	that the	re is no	4/901	thm to	at Cou	12 build	this s	table matching	

Problem 2 (75 pts). Men, women and yupi live on the planet Alphaomega. Their family pattern is a