DERİN ÖĞRENME TABANLI BEYİN TÜMÖRÜ TESPİTİ

Amaç ve Kapsam

- **Beyin tümörleri**, insan sağlığı için büyük bir tehdit oluşturur ve erken teşhis hayati önem taşır.
- Manyetik Rezonans Görüntüleme (MRG), beyin tümörlerinin tespitinde en yaygın kullanılan yöntemlerden biridir.
- Geleneksel yöntemler yerine **yapay zeka destekli otomatik teşhis sistemleri**, uzmanlara önemli katkılar sunabilir.
- Çalışmada, **MobileNetV2 derin öğrenme modeli** ve **k-en yakın komşu** (**k-EYK) sınıflandırma algoritması** kullanılarak beyin tümörlerinin tespiti amaçlanmıştır.

Yöntem

- Veri Seti: Kaggle platformundan alınmış, 253 adet MRG görüntüsü (155 tümörlü, 98 tümörsüz) kullanılmıştır.
- Veri Çoğaltma: Veri seti **5 kat artırılarak** toplam 1265 görüntü elde edilmiştir.
- Model:
- MobileNetV2 modeli kullanılarak derin öznitelikler çıkarılmıştır.
- Özniteliklerin sınıflandırılmasını geliştirmek için **k-EYK algoritması** uygulanmıştır.
- **Performans Kriterleri:** Doğruluk, duyarlılık, özgüllük, keskinlik, F1 skoru ve Matthews Korelasyon Katsayısı (MCC) ile değerlendirilmiştir.

Sonuçlar

- Önerilen modelin başarımı:
- MobileNetV2 tek başına: %92.89 doğruluk oranı.

- MobileNetV2 + k-EYK: %96.44 doğruluk oranı ile en yüksek başarı elde edilmiştir.
- **Literatürdeki diğer çalışmalarla karşılaştırıldığında**, önerilen yöntem daha yüksek doğruluk oranı sunmaktadır.
- Avantajlar:
- Daha **hafif ve hızlı çalışan** bir model olması sayesinde düşük donanımlı cihazlarda kullanılabilir.
- Veri çoğaltma ile **genelleme performansı artırılmıştır**.
- **Manuel teşhis sürecine kıyasla** daha hızlı ve daha az hatalı tahmin yapılabilmektedir.

Sonuç ve Gelecek Çalışmalar

- Önerilen model, **otomatik beyin tümörü tespiti** için etkili bir yöntem sunmaktadır.
- Gelecekte, **daha büyük veri setleri** kullanılarak modelin farklı tümör türleri üzerinde test edilmesi planlanmaktadır.

Kullanılan Yöntem ve Model

Makale, beyin tümörü tespiti için derin öğrenme tabanlı bir yöntem önermektedir. Kullanılan model, MobileNetV2 derin öğrenme modeli ile k-En Yakın Komşu (k-EYK, k-NN) sınıflandırıcı algoritmasını birleştiren hibrit bir yaklaşımdır.

Yöntemin Adımları

Önerilen yöntem **üç temel aşamadan** oluşmaktadır:

- 1. Veri Ön İşleme ve Çoğaltma (Data Augmentation)
- 2. Derin Özellik Çıkarımı (Feature Extraction)
- 3. Özelliklerin Sınıflandırılması (Classification)

1 Veri Ön İşleme ve Çoğaltma

- Kullanılan **veri seti** Kaggle'dan alınmış olup, **155 tümörlü** ve **98 tümörsüz** olmak üzere **253 MRG görüntüsü** içermektedir.
- **Derin öğrenme modellerinin daha iyi genelleme yapabilmesi** için veri artırımı (data augmentation) teknikleri uygulanmıştır:
- Yatay ve dikey çevirme
- 90° ve 270° döndürme
- Yatay ve dikey eksenlerde yansıtma
- Bu teknikler sayesinde **veri seti 5 kat artırılarak 1265 görüntüye çıkarılmıştır**. Böylece modelin **ezber yapması** engellenmiş ve genelleme performansı artırılmıştır.

2 Derin Özellik Çıkarımı – MobileNetV2 Kullanımı

- **Derin öğrenme tabanlı modeller**, büyük veri setleri ile eğitilmiş **önceden eğitilmiş ağlardan** faydalanarak yeni veri setlerinde başarı gösterebilir. Bu teknikte **transfer öğrenme** kullanılır.
- MobileNetV2 modeli, Google tarafından geliştirilmiş hafif ve hızlı bir evrişimli sinir ağı (CNN) tabanlı modeldir. Özellikle mobil cihazlarda ve düşük donanımlı sistemlerde verimli çalışması için tasarlanmıştır.
- MobileNetV2'nin Özellikleri:
- Ters çevrilmiş artık bağlantılar (Inverted Residuals) kullanır.
- Derinlemesine ayrık evrişim (Depthwise Separable Convolutions) ile hesaplama yükünü azaltır.
- Lineer darboğaz katmanları (Linear Bottleneck Layers) ile bilgiyi daha verimli şekilde işler.
- Bu modelin son tam bağlı katmanı (fully connected layer) çıkarılarak, burada üretilen 1000 öznitelik kullanılmıştır.
- 3 Özelliklerin Sınıflandırılması k-En Yakın Komşu (k-EYK)
- **MobileNetV2'nin çıkardığı 1000 özellik**, bir sınıflandırıcıya verilerek beyin tümörü olup olmadığı tespit edilmelidir.

- Bunun için k-En Yakın Komşu (k-NN) algoritması kullanılmıştır.
- k-EYK nasıl çalışır?
- 1. Test görüntüsü, eğitim veri kümesindeki örneklere göre **Öklid** (**Euclidean**) **mesafesi** kullanılarak en yakın komşularına bakılır.
- 2. En yakın **k adet komşu (örneğin, k=5)** belirlenir.
- 3. Çoğunluk oyu (majority voting) prensibi ile görüntü tümörlü veya tümörsüz olarak sınıflandırılır.

Deneysel Sonuçlar

- Önerilen modelin doğruluğu (%96.44), literatürdeki birçok diğer yöntemden daha yüksek çıkmıştır.
- MobileNetV2 tek başına kullanıldığında %92.89 doğruluk elde edilirken, üzerine k-EYK sınıflandırıcı eklenmesiyle doğruluk %96.44'e yükselmiştir.
- Model, düşük hesaplama kapasitesine sahip cihazlarda bile çalışabilir, bu da hastanelerde otomatik teşhis sistemleri için büyük avantaj sağlar.

★ Neden Bu Yöntem Kullanıldı?

- 1. **MobileNetV2**, hafif ve hızlı bir modeldir, mobil cihazlarda bile çalışabilir.
- 2. **Transfer öğrenme**, büyük veri setleriyle önceden eğitilmiş bir modelin kullanılmasını sağlar, böylece daha az veriyle bile yüksek performans elde edilir.
- 3. **k-EYK sınıflandırıcı**, basit ama etkili bir yöntemdir ve MobileNetV2'den alınan özellikleri başarıyla işleyebilir.
- 4. Veri artırma (data augmentation) ile modelin genelleme kapasitesi artırılmıştır, böylece overfitting (ezberleme) önlenmiştir.
- **★** Sonuç ve Gelecek Çalışmalar

- Önerilen model, otomatik beyin tümörü tespiti için başarılı bir yöntem sunmaktadır.
- Daha büyük veri setleri kullanılarak farklı beyin tümörü türleri için modelin performansı test edilebilir.
- Farklı derin öğrenme tabanlı sınıflandırıcılarla (örn. CNN, LSTM) modelin geliştirilmesi planlanmaktadır.