MATH299Q: Midterm Solutions Quiver Representations

March 10, 2023

Let k be an algebraically closed field.

- 1. (20 points) M is not indecomposable. For example, $M \cong \mathcal{S}_1 \oplus \mathcal{P}_1 \oplus \mathcal{S}_4 \oplus \mathcal{S}_5$. Where the $\mathcal{S}(i)$, $\mathcal{P}(i)$, $\mathcal{I}(i)$ are the (indecomposable) simple, projective, and injective representations.
- 2. (20 points) We have that f is a section if there exists a morphism $h: M \to L$ such that $h \circ f = 1_L$. Likewise, g is a retraction if there exists a morphism $h: N \to M$ such that $g \circ h = 1_N$.
- 3. (a) (5 points) Classify all representations of a given quiver and all morphisms between them up to isomorphism.
 - (b) (10 points) Let Q be a quiver and let $M \in \operatorname{rep} Q$. Then

$$M \cong M_1 \oplus M_2 \oplus \cdots \oplus M_t$$

where the $M_i \in \operatorname{rep} Q$ are indecomposable and unique up to order.

- 4. (a) (10 points) $0 \longrightarrow \mathcal{S}_2 \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} \mathcal{S}_1 \longrightarrow 0$.
 - (b) (5 points) $0 \longrightarrow \mathcal{S}_2 \xrightarrow{f'} \mathcal{S}_1 \oplus \mathcal{S}_2 \xrightarrow{g'} \mathcal{S}_1 \longrightarrow 0$.
 - (c) (10 points) Since $M \cong \mathcal{S}_1 \oplus \mathcal{S}_2$ we have that $f \cong f'$ and $g \cong g'$. Specifically, $f = (f_1, f_2) = (0, 1)$ and $g = (g_1, g_2) = (1, 0)$.
- 5. (a) (10 points) A category \mathcal{C} is a collection of objects, $\operatorname{ob}(\mathcal{C})$, and morphisms, $\operatorname{Hom}_{\mathcal{C}}$. Such that for each $f \in \operatorname{Hom}_{\mathcal{C}}$, $f: X \to Y$ where $X, Y \in \operatorname{ob}(\mathcal{C})$, the set of all morphisms from X to Y is $\operatorname{Hom}_{\mathcal{C}}(X,Y)$. Moreover we have the operation

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \to \operatorname{Hom}_{\mathcal{C}}(X,Z) \qquad (f,g) \mapsto g \circ f),$$

satisfying:

- i. (associativity) $h \circ (g \circ f) = (h \circ g) \circ f$.
- ii. (identity) for every $X \in ob(\mathcal{C})$ there is a morphism $1_X \in Hom_{\mathcal{C}}(X, X)$ such that for $f \in Hom_{\mathcal{C}}(X, Y)$ and $g \in Hom_{\mathcal{C}}(Z, X)$ we have

$$f \circ 1_X = f$$
 $1_X \circ g = g$.

- (b) (5 points) The category \mathcal{C} has direct sums, and there exists a zero object $0 \in \text{ob}(\mathcal{C})$ such that the identity morphism $1_0 \in \text{Hom}_{\mathcal{C}}(0,0)$ is the zero of the vector space Hom(0,0).
- (c) (5 points) The most relevant example would be rep Q.