Capitolo 1

Metodologia

Questa sezione descrive in dettaglio l'approccio seguito per affrontare il problema della classificazione degli smart contracts. Questo capitolo è fondamentale per comprendere come sono stati raccolti, pre-processati e utilizzati i dati, come è sono stati configurati e addestrati i modelli e quali strumenti e tecniche sono stati impiegati per ottenere i risultati presentati.

La metodologia adottata in questa tesi è suddivisa nelle seguenti fasi principali:

- 1. Raccolta e preparazione dei dati: esplorazione del dataset utilizzato, delle tecniche di pre-processing applicate e delle modalità di suddivisione dei dati per l'addestramento e la valutazione.
- 2. Modellazione: descrizione dell'architettura dei modelli utilizzati, delle scelte di configurazione e delle strategie di addestramento. .

Ogni fase sarà trattata in modo dettagliato, evidenziando le scelte metodologiche compiute e le motivazioni alla base di tali scelte. Questo approccio sistematico garantisce trasparenza e replicabilità del lavoro svolto, consentendo ad altri di comprendere e, eventualmente, replicare i risultati ottenuti.

1.1 Esplorazione dei dati

Il dataset [?] utilizzato in questo progetto è un dataset disponibile pubblicamente sulla piattaforma HuggingFace una delle più importanti piattaforme per il Natural Language Processing. HF è un'infrastruttura open-source che fornisce accesso a una vasta gamma di modelli di deep learning pre-addestrati, tra cui alcuni dei più avanzati nel campo del NLP. Questo dataset contiene informazioni su 106.474 SmartContracts pubblicati sulla rete Ethereum. Ogni elemento nel dataset è composto da quattro elementi:

• Address: l'indirizzo del contratto

- SourceCode: il codice sorgente del contratto, scritto in linguaggio Solidity
- ByteCode: il codice bytecode del contratto, ottenuto a partire dalla compilazione del codice sorgente utilizzando il compilatore di Solidity. Questo bytecode è quello che viene eseguito sulla macchina virtuale di Ethereum (EVM).
- Slither: il risultato dell'analisi statica del contratto con Slither, un tool opensource per l'analisi statica di contratti scritti in Solidity. Questo risultato è un array di valori che vanno da 1 a 5, dove ogni numero rappresenta la presenza di una vulnerabilità e 4 rappresenta un contratto safe, cioè privo di vulnerabilità.

Le vulnerabilità che sono state prese in questo lavoro sono le seguenti:

- Access-Control
- Arithmetic
- Other
- Reentrancy
- Safe
- Unchecked-Calls

Prima della costruzione dei modelli è stata affrontata una fase di analisi esplorativa dei dati. Questa fase è stata svolta per comprendere meglio la struttura del dataset e dei contratti da classificare, per individuare eventuali problemi. A livello pratico, questa fase di analisi esplorativa dei dati è stata eseguita utilizzando il linguaggio Python, con l'ausilio di librerie come Pandas, NumPy, Matplotlib e Seaborn per l'analisi e la visualizzazione dei dati. Il dataset è diviso in tre sottoinsiemi: training, validation e test set. Il dataset di training è composto da 79.641 contratti, il dataset di validazione da 10.861 contratti e il dataset di test da 15.972 contratti. Tutte le informazioni sono presenti per tutti i contratti tranne l'informazione relativa al bytecode, che risulta essere assente per pochissimi contratti come visibile nella Tabella 1.1. Per ottenere una visione d'insieme

Dataset	Count	%
Train	227	0.285%
Test	51	0.319%
Validation	30	0.276%

Tabella 1.1: Conteggio e Percentuale di Contratti Senza Bytecode per Dataset

delle lunghezze dei contratti, abbiamo calcolato la lunghezza media del source code e del

bytecode. Prima del preprocessing le lunghezze medie di SourceCode e ByteCode sono rispettivamente di 3155 token e 8114 token. Abbiamo visualizzato la distribuzione delle lunghezze del source code utilizzando un istogramma. Per migliorare la leggibilità del grafico, abbiamo raggruppato i dati per quanto riguarda il source code in intervalli di 500 token. L'istogramma è accompagnato da una linea che indica la lunghezza media dei token rappresentata con una linea tratteggiata rossa.

L'inclusione delle lunghezze medie fornisce un punto di riferimento utile per interpretare le distribuzioni e confrontare i singoli esempi di codice rispetto alla media del dataset. Queste analisi sono fondamentali per le successive fasi di preprocessing e modellazione, garantendo che i modelli possano gestire efficacemente la variabilità presente nei dati. Sul bytecode non è stato applicato nessun tipo di preprocessing per ridurre la dimensione dei dati. Per quanto riguarda il codice sorgente sono stati eliminati tutti i commenti e le funzioni getter monoistruzione, cioè tutte quelle funzioni getX() le quali abbiano come unica istruzione una istruzione di return, poichè sono state assunte come funzioni corrette, l'eliminazione di queste stringhe è avvenuta tramite una ricerca delle stringhe effettuata con una regex. Abbiamo unito i set di dati di addestramento, test e validazione in un unico DataFrame per analizzare le lunghezze del source code e del bytecode. In particolare, sono state calcolate rispettivamente le lunghezze del codice sorgente e del bytecode. Effettuando le rimozioni dei commenti la media del numero di token del sourcecode scende a 1511 token, mostrando come la rimozione dei commenti abbia un grande impatto sulla lunghezza media del codice. Rimuovendo anche le funzioni getter monoistruzione la lunghezza media del source code scende a 1481 token. Poichè

- (a) Distribuzione delle Lunghezze del Source Code dopo il preprocessing
- (b) Distribuzione delle Lunghezze del Bytecode dopo il preprocessing

Figura 1.1: Distribuzioni delle lunghezze del source code e del bytecode.

successivamente andremo a classificare i contratti con dei modelli nella famiglia BERT che prendono in input sequenze di token lunghe al massimo 512 token abbiamo calcolato la percentuale di contratti che non superano questa soglia e in alcuni suoi multipli, per capire quanti contratti riusciamo a classificare per intero e quanti verranno troncati. I risultati sono mostrati nella Tabella 1.2.

Metrica	Sotto 512	Sotto 1024	Sotto 1536	Media
Source Code (%)	21.90	46.04	64.77	62.21
Bytecode (%)	1.56	6.31	8.75	58.69

Tabella 1.2: Percentuale di contratti sotto varie lunghezze in token.

Diventa però importante notare, che per molti casi di contratti che superano i 5000 token questi sono così lunghi poichè riportano in calce al contratto anche il codice sorgente di librerie esterne, che non è di interesse per la classificazione delle vulnerabilità.

1.1.1 Distribuzione delle Classi e Matrici di Co-occorrenza

Successivamente, la fase di esplorazione dei dati ha previsto l'analisi delle classi di vulnerabilità dei dati. In questa sezione, presentiamo la distribuzione delle classi e le matrici di co-occorrenza per i dataset di addestramento, test e validazione. Si precisa che i risultati di seguito proposti si riferiscono già al dataset da cui sono stati sottratti i contratti privi di bytecode.

Distribuzione delle Classi

La Tabella 1.3 mostra la distribuzione delle classi per i tre dataset. È evidente che la classe 'unchecked-calls' è la più frequente in tutti e tre i dataset, mentre la classe 'access-control' è la meno rappresentata.

Class	Tra	ain	Te	est	Valid	ation	Fu	ıll
	Count	%	Count	%	Count	%	Count	%
access-control	11619	8.71%	2331	8.71%	1588	8.73%	15538	8.72%
arithmetic	13472	10.10%	2708	10.12%	1835	10.09%	18015	10.10%
other	20893	15.67%	4193	15.67%	2854	15.69%	27940	15.67%
reentrancy	24099	18.07%	4838	18.09%	3289	18.08%	32226	18.08%
safe	26979	20.23%	5405	20.20%	3676	20.21%	36060	20.23%
unchecked-calls	36278	27.21%	7276	27.20%	4951	27.21%	48505	27.21%

Tabella 1.3: Distribuzione delle Classi nei Dataset di Addestramento, Test, Validazione e Completo

Le Figure 1.2a e 1.2b mostrano rispettivamente la distribuzione percentuale e assoluta delle classi nell'intero dataset. Queste visualizzazioni forniscono una panoramica chiara della frequenza delle diverse classi all'interno del dataset, evidenziando le differenze di distribuzione tra le classi. Dalla distribuzione delle classi nei diversi dataset, possiamo osservare che:

Distribuzione Percentuale delle Classi nel Dataset Completo

- (a) Distribuzione Percentuale delle Classi
- (b) Distribuzione Assoluta delle Classi

Figura 1.2: Distribuzioni delle Classi nell'intero dataset, in termini relativi e assoluti.

- Le classi sono distribuite in modo abbastanza uniforme nei dataset di addestramento, test e validazione, con percentuali simili tra i tre split per classe
- La classe 'unchecked-calls' è la più frequente in tutti e tre i dataset, con una presenza significativa soprattutto nel dataset di addestramento (36278 occorrenze).
- La classe 'access-control' è la meno frequente, con il numero più basso di occorrenze nel dataset di validazione (1588 occorrenze).
- Le classi 'safe' e 'reentrancy' sono anche abbastanza rappresentate

Matrici di Co-occorrenza

Le Tabelle 1.3, 1.4 e 1.5 mostrano le matrici di co-occorrenza per i dataset di addestramento, test e validazione rispettivamente. Le matrici di co-occorrenza indicano la frequenza con cui ogni coppia di classi appare insieme nello stesso elemento.

In questa sezione, vengono presentate le matrici di co-occorrenza per ogni split del dataset, mostrando sia in termini assoluti che relativi il numero di cooccorrenze tra le varie classi.

Figura 1.3: Matrice di Co-occorrenza nel Dataset di Addestramento

Figura 1.4: Matrice di Co-occorrenza nel Dataset di Test

Figura 1.5: Matrice di Co-occorrenza nel Dataset di Validazione

Analizzando le matrici di co-occorrenza, notiamo che:

- La classe safe, che rappresenta i contratti privi di vulnerabilità, correttamente non apparte contemporaneamente a nessuna delle altre classi.
- Le classi 'unchecked-calls' co-occorrono frequentemente con 'reentrancy', 'other', e 'access-control'. Questo suggerisce che i contratti con chiamate non verificate spesso presentano anche altri tipi di vulnerabilità.
- Le classi 'arithmetic' e 'reentrancy' mostrano una co-occorrenza significativa, suggerendo che le vulnerabilità aritmetiche possono spesso essere associate a problemi di rientro.

Questi risultati evidenziano l'importanza di considerare la co-occorrenza delle classi quando si analizzano le vulnerabilità nei contratti intelligenti, poiché molte vulnerabilità non si verificano in isolamento ma tendono a manifestarsi insieme ad altre.

1.2 Modellazione

In questa sezione, descriviamo l'architettura dei modelli utilizzati per la classificazione dei contratti intelligenti. In particolare, presentiamo i dettagli relativi ai modelli BERT utilizzati, alle scelte di configurazione e alle strategie di addestramento. Come si evince dalla sezione precente le feature su cui i modelli dovranno basare le loro predizioni sono il codice sorgente e il bytecode dei contratti, cioè dati di natura testuale. La natura dei dati fa sì che problema possa essere affrontato efficacemente utilizzando tecniche di elaborazione del linguaggio naturale (NLP, Natural Language Processing).

1.2.1 Natural Language Processing, NLP

L'Elaborazione del Linguaggio Naturale (NLP, da Natural Language Processing) è un campo di studi interdisciplinare che combina linguistica, informatica e intelligenza artificiale. Si occupa dell'interazione tra computer e linguaggio umano (naturale), in particolare del processamento, analisi e costruzione di modelli riguardanti grandi quantità di dati linguistici naturali [?]. Le due grandi sfide dell'NLP si possono riassumere in due grandi aree di ricerca: la comprensione del linguaggio e la generazione del linguaggio. La comprensione del linguaggio comprende compiti come l'analisi sintattica, l'analisi semantica, il riconoscimento delle entità nominate e la risoluzione delle coreferenze. Questi compiti sono cruciali per la conversione del linguaggio naturale in una rappresentazione formale che le macchine possano elaborare. L'analisi sintattica, ad esempio, mira a determinare la struttura grammaticale di una frase, mentre l'analisi semantica si concentra sulla comprensione del significato del testo. In secondo luogo la generazione del linguaggio riguarda la produzione automatica di testo, che può includere la sintesi vocale, la traduzione automatica e la generazione di risposte automatiche in chatbot. Questo aspetto dell'NLP è fondamentale per creare sistemi che non solo comprendano il linguaggio umano, ma che possano anche comunicare in modo naturale e coerente con gli utenti.

Negli ultimi anni, il campo dell'NLP ha fatto enormi progressi passando dall'epoca delle schede perforate e dell'elaborazione batch (in cui l'analisi di una frase poteva richiedere fino a 7 minuti) all'era di Google e simili (in cui milioni di pagine web possono essere elaborate in meno di un secondo) [?], sino ad arrivare ai giorni d'oggi con l'avvento di modelli di deep learning. Per decenni, l'approccio alla ricerca nel campo dell'NLP prevedeva l'utilizzo di modelli shallow come SVM [?] e regressione logistica allenati su feature sparse e fortemente multidimensionali. Negli ultimi anni, d'altro canto, le reti neurali basati su rappresentazioni di vettori densi hanno prodotto risultati superiori su una grande vastità di task diversi nel mondo dell'NLP [?]. Lo stato dell'arte attuale nell'NLP è in molti task rappresentato dall'introduzione di una nuova architettura, che è andata a sostituire i modelli RNN e LSTM [?] tradizionali, ovvero i modelli basati su Trasformer, introdotti per la prima volta nel paper "Attention is All You Need" da Vaswani et al. nel 2017 [?]. I Transformer hanno rivoluzionato il campo grazie al meccanismo di self-attention, che consente al modello di valutare e ponderare l'importanza di ogni parola in una frase rispetto alle altre parole della stessa frase, indipendentemente dalla loro distanza posizionale. Questo approccio permette un'elaborazione parallela dei dati, in netto contrasto con la natura sequenziale delle RNN e degli LSTM, migliorando notevolmente l'efficienza computazionale. La struttura dei Transformer è organizzata in blocchi ripetuti di encoder e decoder, dove l'encoder elabora l'input costruendo una rappresentazione interna, e il decoder utilizza questa rappresentazione per generare l'output. Questa architettura ha dimostrato prestazioni eccezionali in molte applicazioni di NLP, tra cui la traduzione automatica, la comprensione e la generazione del linguaggio, la sintesi del testo e il riassunto automatico. Dall'architettura dei Transformer sono derivati molti modelli di successo, tra cui i modelli BERT, la famiglia di modelli GPT e altri.

1.2.2 BERT, Bidirectional Encoder Representations from Transformers

Il modello BERT (Bidirectional Encoder Representations from Transformers) è stato presentato da Devlin et al. nel 2018 [?]. BERT è un modello di deep learning preaddestrato per l'elaborazione del linguaggio naturale. BERT è stato allenato su un corpus di testo molto ampio, comprendente 3.3 miliardi di parole, utilizzando due task di apprendimento supervisionato: il Masked Language Model (MLM) e il Next Sentence Prediction (NSP). Il Masked Language Model maschera randomicamente alcuni dei token in pinput e l'obiettivo del modello è quello di predire l'id nel vocabolario della parola mascherata basandosi solo sul contesto che la circonda, considerando sia il contesto a sinistra che a destra della parola mascherata, in modo da catturare il contesto bidirezionale. Il Next Sentence Prediction, invece, prevede se una frase è la successiva rispetto a un'altra frase. Questo task è stato introdotto per insegnare al modello a comprendere il contesto e la coerenza tra le frasi. Al momento della sua pubblicazione BERT rappresentava lo stato dell'arte in ben undici diversi task nel campo dell'NLP ed è stato il primo modello a raggiungere state-of-the-art performance in molti task sentence-level e token-level, superando anche molte architetture specifiche per task.

Architettura

L'architettura del modello BERT è un encoder bidirezionale multi-strato basato sui Transformer, come descritto nell'implementazione originale di Vaswani et al. (2017) [?]. I parametri principali di un'architettura di BERT sono il numero di strati L, la dimensione nascosta H e il numero di self-attention heads A. All'interno dell'architettura di BERT, due concetti fondamentali sono la hidden size e le attention heads.

La hidden size (H) si riferisce alla dimensione dei vettori di rappresentazione nelle varie fasi di elaborazione del modello. In termini pratici, rappresenta la dimensionalità dello spazio in cui le rappresentazioni intermedie dei token vengono proiettate durante l'elaborazione nel modello Transformer. Questa dimensione influisce direttamente sulla capacità del modello di catturare le informazioni a partire dai dati in input; una hid-

den size maggiore consente al modello di rappresentare e processare informazioni più dettagliate, a costo però di un incremento dei requisiti computazionali.

Le attention heads (A) sono un componente cruciale del meccanismo di self-attention nei Transformer. Ogni attention head esegue una funzione di attenzione, ovvero calcolare un insieme di pesi che determinano l'importanza relativa di ogni token nella sequenza di input rispetto agli altri token, permettendo così al modello di concentrarsi su diverse parti della sequenza di input simultaneamente.

Modello	Layers L	Hidden Size H	Self-Attention Heads A
$BERT_{BASE}$	12	768	12
$BERT_{LARGE}$	24	1024	16

Tabella 1.4: Parametri principali dei modelli $BERT_{BASE}$ e $BERT_{LARGE}$

BERT è stato preaddestrato con un embedding WordPiece [?] con un vocabolario di 30.000 token. Il primo token di ogni sequenza è sempre un token di classificazione speciale ([CLS]). L'hidden state finale corrispondente a questo token è utilizzato come rappresentazione aggregata della sequenza per i task di classificazione, che è proprio il modo in cui BERT verrà utilizzato in questo lavoro. BERT può gestire più sequenze di token in input, ciascuna delle quali è seguita da un token speciale ([SEP]), che permette di disambiguare l'appartenenza di un token ad una sequenza piuttosto che ad un'altra.

Figura 1.6: Architettura di Transformers, BERT_{BASE} e BERT_{LARGE}

Per ogni token in input, BERT calcola un embedding che è dato dalla somma di tre componenti come è possibile vedere in Figura 1.7:

- Token Embeddings: sono i vettori di embedding per ciascun token nel vocabolario. Questi embedding sono allenati durante il pre-addestramento e sono aggiornati
 durante il fine-tuning. BERT utilizza una tecnica chiamata Wordpiece tokenization, in cui le parole vengono suddivise in sottostringhe più piccole chiamate wordpieces. Questa tecnica permette di creare un vocabolario flessibile contenente sia
 parole che sotto-parole, per esempio prefissi, suffissi o singoli caratteri. Il vocabolario così creato è in grado di gestire tutte le possibili sequenze di caratteri e di
 evitare l'utilizzo di token OOV (Out Of Vocabulary) [?].
- Segment Embeddings: sono i vettori di embedding che indicano a quale sequenza appartiene ciascun token. Questi embedding sono utilizzati per distinguere tra le due sequenze di input in un task di classificazione di sequenza.
- Position Embeddings: sono una componente critica per aiutare il modello a comprendere la posizione di ciascun token all'interno di una sequenza di testo. Questi embedding consentono a BERT di distinguere tra parole con lo stesso contenuto ma posizionate in posizioni diverse all'interno della frase. Ciò contribuisce

a catturare le relazioni tra le parole in modo più completo e consente a BERT di eccellere in una vasta gamma di compiti di elaborazione del linguaggio naturale.

Figura 1.7: Rappresentazione degli input di BERT

Pre-Training

Il pre-training di BERT è stato effettuato usando due task di apprendimento non supervisionato:

- Masked Language Model (MLM): in questo task venivano mascherate il 15% dei token in input e si voleva far si che il modello predicesse i token mascherati. Questo processo in letteratura viene anche spesso chiamato Cloze [?]. In questo caso i vettori dell'hidden layer finale che si riferisce al token mascherato venivano dati in input ad una funzione softmax sul vocabolario per predire il token mascherato. Per non creare troppo divario tra il pre-addestramento e il fine-tuning, durante questa fase di pre-training con MLM il token speciale [MASK] veniva utilizzato solo l'80% delle volte, il 10% delle volte veniva sostituito con un token casuale e il 10% delle volte veniva lasciato il token originario.
- Next Sentence Prediction (NSP): in molti task di NLP, come Question-Answering è necessario che i modelli siano in grado di comprendere relazioni tra due frasi. Per far si che il modello imparasse a riconoscere le relazioni tra frasi BERT è stato pre-addestrato su un task di predizione della frase successiva. Nello specifico, prese due frasi A e B il modello doveva predire se la frase B fosse la successiva rispetto alla frase A, questo nel dataset di training era vero nel 50% dei casi.

Fine-tuning di BERT

Il fine-tuning di BERT consiste nell'adattare il modello pre-allenato a compiti specifici, come la classificazione del testo, l'analisi del sentimento, il question answering e altri.

BERT utilizza l'architettura *Transformer*, che permette di modellare relazioni complesse tra le parole di un testo grazie al meccanismo di *self-attention*. Questo consente a BERT di processare sia singoli testi che coppie di testi.

Durante il fine-tuning, il modello pre-allenato viene ulteriormente addestrato su un dataset specifico del compito da risolvere, modificando tutti i parametri del modello. Questo include i pesi dei livelli di self-attention, le rappresentazioni degli hidden layers e i parametri degli strati di output. Ad esempio, per un compito di classificazione del testo, il token [CLS], che rappresenta l'intera sequenza, viene utilizzato per determinare la classe del testo. Per compiti a livello di token, come il named entity recognition (NER), ogni token del testo viene etichettato individualmente.

Il processo di fine-tuning richiede meno risorse computazionali rispetto al pre-allenamento. Con l'uso di GPU o TPU, il fine-tuning può essere completato in poche ore, rendendo BERT un'opzione potente e versatile per una varietà di applicazioni di elaborazione del linguaggio naturale.

1.2.3 DistilBERT

Nel 2020 è stato presentato DistilBERT, un modello più piccolo e più veloce rispetto a BERT, sviluppato da Sanh et al. [?]. Il modello presentato dichiara che DistilBERT è in grado di ridurre la complessità di BERT del 40% pur mantenendo il 97% delle prestazioni di BERT ed essere 60% più veloce.

I risultati di DistilBERT sono stati ottenuti grazie ad una tecnica chiamata knowledge distillation, che è una tecnica di compressione in cui modello più piccolo, detto modello studente, è allenato per riprodurre i comportamenti di un modello più grande (o un insieme di modelli) detto modello insegnante. Questo processo di distillazione permette di ridurre la complessità del modello studente, riducendo il numero di parametri e la complessità computazionale, mantenendo allo stesso tempo le prestazioni del modello più grande. Nell'apprendimento supervisionato, un modello di classificazione è generalmente allenato per predire l'istanza di una classi massimizzando la stima di probabilità di quella label. Un modello che funziona in maniera ottima predirrà una probabilità alta sulla classe corretta e probabilità vicine allo zero per le classi errate.

Il training del modello student si basa su una combinazione di tecniche di distillazione del modello e di apprendimento supervisionato. Viene calcolata una distillation loss utilizzando le soft target probabilities del modello insegnante. Questa perdita è definita come:

$$L_{ce} = \sum_{i} t_i \log(s_i)$$

dove t_i (rispettivamente s_i) è una probabilità stimata dall'insegnante (rispettivamente dallo studente). Questa funzione obiettivo fornisce un segnale di training ric-

co sfruttando l'intera distribuzione dell'insegnante. Seguendo [?], viene utilizzata una softmax-temperature, definita come:

$$p_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

dove T controlla la morbidezza della distribuzione di output e z_i è il punteggio del modello per la classe i. La stessa temperatura T viene applicata sia allo studente che all'insegnante durante il training, mentre in fase di inferenza, T è impostata a 1 per tornare ad una funzione softmax standard.

L'obiettivo finale del training è una combinazione lineare della distillation loss L_{ce} con la loss di training supervisionato, cioè la loss del masked language modeling L_{mlm} . Per allineare le direzioni dei vettori hidden state del modello student e teacher è stata aggiunta una cosine embedding loss, L_{cos} . La Loss finale è quindi definita come:

$$L = \alpha L_{ce} + \beta L_{mlm} + \gamma L_{cos}$$

Dove α , β , e γ sono pesi che bilanciano i diversi termini di loss. Questa combinazione permette di mantenere la qualità del modello distillato avvicinandolo il più possibile alla performance del modello insegnante.

Architettura

L'architettura del DistilBERT è simile a quella di BERT, ma con alcune differenze chiave. Vengono eliminati i token-type embedding e la dimensione in termini di layer viene dimezzata. Sono state ottimizzate la maggior parte delle operazioni usate nell'architettura dei Transformer, come i linear layer e layer normalisation ed è stato dimostrato che ridurre la dimensione dell'hidden state non ha un impatto significativo sulle prestazioni del modello, quindi è rimasta invariata. Per l'inizializzazione del modello student è stato utilizzato un layer del modello BERT poichè hanno la stessa dimensione.

1.2.4 Roberta e Codebert

A partire da BERT, nel 2019 è stato presentato RoBERTa (Robustly optimized BERT approach) da Liu et al. [?]. RoBERTa è un modello di deep learning pre-addestrato per l'elaborazione del linguaggio naturale, che migliora le prestazioni di BERT attraverso una serie di modifiche e ottimizzazioni.

Il modello CodeBERT è un modello presentato per la prima volta da Microsoft nel 2020 [?]. Il modello è stato costruito con la stessa architettura del modello RoBERTabase, avendo quindi un numero totale di parametri pari a 125M.

Nella fase di pretraining per questo modello l'input è stata una concatenazione di due segmenti:

Figura 1.8: Architettura di DistilBERT

1.3 Fase di Pre-Training di CodeBERT

Nella fase di pre-training, l'input è costituito dalla concatenazione di due segmenti con un token separatore speciale, ovvero:

$$[CLS], w_1, w_2, \dots, w_n, [SEP], c_1, c_2, \dots, c_m, [EOS]$$

. Un segmento è testo in linguaggio naturale e l'altro è codice di un determinato linguaggio di programmazione. [CLS] è un token speciale posizionato all'inizio dei due segmenti, la cui rappresentazione nascosta finale viene considerata come la rappresentazione aggregata della sequenza per task di classificazione o ranking. Seguendo il metodo standard di elaborazione del testo nei *Transformer*, è stato considerato un testo in linguaggio naturale come una sequenza di parole, splittandolo utilizzando in *WordPiece*. Allo stesso modo, il codice sorgente è stato considerato come una sequenza di token. L'output di CodeBERT offre:

- la rappresentazione vettoriale contestuale di ciascun token, sia per il linguaggio naturale che per il codice
- la rappresentazione di [CLS], che funziona come rappresentazione aggregata della sequenza, allo stesso modo che in BERT.

I dati di training che sono stati utilizzati nel pretraining sono sia dati bimodali, ovvero dati che contengono sia testo scritto in linguaggio naturale che codice di un linguaggio

di programmazione, che dati *unimodali*, ovvero dati che contengono solo codice senza linguaggio naturale.

I dati sono stati raccolti da repository Github, dove un datapoint:

- bimodale: è rappresentato da una singola funzione a cui è associata della documentazione in linguaggio naturale.
- *unimodale*: è rappresentato da una singola funzione senza documentazione in linguaggio naturale.

Nello specifico, è stato utilizzato un dataset offerto da [?] che contiene 2.1M di dati bimodali e 6.4M di dati unimodali suddivisi in 6 linguaggi di programmazione: Python, Java, JavaScript, Ruby, Go e PHP. Tutti i dati erano provenienti da repository pubblici e open-source su Github e sono stati filtrati sulla base cinque criteri:

- 1. ogni progetto deve essere usato da almeno un altro progetto
- 2. ogni documentazione viene troncata al primo paragrafo
- 3. le documentazioni inferiori a tre token sono state rimosse
- 4. funzioni piu corte di tre linee di codice sono state rimosse
- 5. le funzioni che abbiamo nel nome la sottostringa "test" sono state rimosse

Il pretraining di è stato effettuato utilizzando due diverse funzioni obiettivo. Il primo metodo è stato il MLM, che è stato utilizzato per preaddestrare il modello a predire i token mascherati, questo è stato applicato sui dati bimodali. Anche in questo caso, seguendo l'approccio usato dal modello BERT originario [?], sono stati mascherati il 15% dei token tra token appartenenti al linguaggio naturale e token facenti parte del codice sorgente. Il secondo metodo applicato è stato il replaced token detection che utilizza i dati unimodali.