Lecture3: Diode

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Two-terminal element

- Terminal quantities
 - Two terminal voltages
 - Two terminal currents

- Number of independent quantities
 - Note that $I_1 + I_2 = 0$.
 - Note that a common change in V_1 and V_2 does not make a difference.
 - Therefore, I_1 and $V_1 V_2$ can be regarded as independent variables.
- Each two-terminal elements has its own relation between I_1 and $V_1 V_2$.

I-V curve

R, L, C

- Resistor: $I_1 = \frac{V_1 V_2}{R}$
- Capacitor: $I_1 = C \frac{d(V_1 V_2)}{dt}$
- Inductor: $V_1 V_2 = L \frac{dI_1}{dt}$
- They are linear. (When you scale the voltage, the current is scaled with the same factor.)

Nonlinear element

Assume a circuit element.

- For a negative voltage, it's electrically open.
- For a positive voltage, it conducts.
- It is a nonlinear element.

Diode

- In 1919, the term diode was coined from the Greek roots di (from δi), meaning 'two', and ode (from ὁδός), meaning 'path'. (Taken from Wikipedia)
 - Its symbol

– Current → : Allowed

Current ← : Not allowed

Vacuum tube

- Original implementation of a diode
 - The heated filament emits electrons.
 - When the anode voltage is larger than the cathode voltage, those electrons move toward the anode.
 - Asymmetry between two terminals is the key factor!

GIST On-Line Lecture on March 23, 2020 (Internal use only)

Concept

- (Spatial) asymmetry is the key to realize the nonlinearity.
 - Homogeneously distributed electrons?
 - Electrons near the cathode, holes near the anode?

Anode				Anode				Anode			
				e-	e-	e-	e ⁻	h+	h+	h+	h ⁺
				e-	e ⁻	e-	e ⁻				
e-	e-	e-	e-	e ⁻	e ⁻	e-	e ⁻	e ⁻	e-	e-	e-
Cathode (Filament)				Cathode				Cathode			
Vacuum tube				Resistor				PN junction			

PN junction

- Dope the substrate twice with different polarities.
 - Junction between a P-type region and an N-type region
 - A fabrication method which is friendly to the integrated circuit?

Layout

- At a single side, both terminals are made.
 - The N⁺ and P⁺ regions are connected to metal lines.

PN junction inside transistors

- A building block of transistors
 - Results of the process simulation are shown.
 - Red: Silicon region with Arsenic ions
 - Blue: Silicon region with Boron ions

Vertical doping profile

Active dopant

Forward/reverse

Forward bias

The voltage at the anode is higher than the cathode voltage.

- Reverse bias
 - The voltage at the anode is lower than the cathode voltage.

Equilibrium? (Anode voltage) = (Cathode voltage)

Equilibrium

- Bottom line: No current is allowed.
 - Many electrons in the N-type region
 - Many holes in the P-type region
 - Question) Assume $N_D = 10^{20} \ {\rm cm^{-3}}$ and $N_A = 10^{17} \ {\rm cm^{-3}}$. Calculate the electron densities in both regions.
 - Strong gradient in the electron (or hole) density, ∇n (or ∇p)

Diffusion current

Diffusion current density

$$\mathbf{J}_{n}^{diff} = q D_{n} \nabla n$$
$$\mathbf{J}_{p}^{diff} = -q D_{p} \nabla p$$

In the 1D structure (along the x direction),

$$J_{n,x}^{diff} = qD_n \frac{dn}{dx}$$
$$J_{p,x}^{diff} = -qD_p \frac{dp}{dx}$$

- Large diffusion current
- However, we must have $J_{n,x} = J_{p,x} = 0$ everywhere...

Drift current

Drift current density

$$\mathbf{J}_{n}^{drift} = q\mu_{n} n \mathbf{E}$$
$$\mathbf{J}_{p}^{drift} = q\mu_{p} p \mathbf{E}$$

In the 1D structure (along the x direction),

$$J_{n,x}^{drift} = q\mu_n n E_x$$

$$J_{p,x}^{drift} = q\mu_p n E_x$$

 Possible mechanism to counterbalance the diffusion current

Qualitative analysis

- An electric field from the N-type region to the P-type region
 - It pushes the electrons back to the N-type region.
 - It pushes the holes back to the P-type region.
- Electric field needs the net charge.
 - Where can we find the net charge to support the electric field?
 - "Depletion"

