PATENT ABSTRACTS OF JAPAN

(11) Publication number:

02-148688

(43) Date of publication of application: 07.06.1990

(51)Int.CI.

H05B 33/18 C09K 11/00

C09K 11/56

(21)Application number: 63-304809

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

30.11.1988

(72)Inventor: ASAI KOSUKE

ENDO TSUTOMU

(54) THIN FILM EL ELEMENT

(57)Abstract:

PURPOSE: To increase the luminance brightness of a red thin film EL element by adding a specific concentration of Ce as a sensitizing agent to the luminescent material layer CaS:Eu of the EL element. CONSTITUTION: On the top surface of a glass substrate 1 including the surface of a plurality of transparent electrodes 2 are successively formed a first insulation layer 3 of SiO2/Ta2O5 compound film, and a second insulation layer 5 of Ta2O5/SiO2 compound film. On the top surface of the second insulation layer 5 are formed a plurality of back plates 6 made of Al in the direction normal to the longitudinal direction of the transparent electrodes 2 at specified intervals to form a matrix. A thin film EL element of a high luminance brightness is obtained by adding 10-5-10-1mol% of Ce to CaS:Eu luminescent layer 4 of the thin film EL element because the Ce works as a sensitizing agent and increases the luminance efficiency.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

匈日本国特許庁(JP)

(1) 特許出願公開

® 公 開 特 許 公 報 (A) 平2-148688

SInt. Cl. 5

識別記号

CPC

庁内整理番号

@公開 平成2年(1990)6月7日

H 05 B 33/18 C 09 K 11/00

11/56

6649-3K 7043-4H

7043-4H

塞杏證求 未請求 請求項の数 1 (全5頁)

69発明の名称 薄膜EL素子

> 邻特 題 昭63-304809

> > 袮

E

❷出 甋 昭63(1988)11月30日

井 何発 明 溎 耊 者

大阪府大阪市東区北浜5丁目15番地 住友金属工業株式会

社内

四発 翢 者 涼 藤 勉 大阪府大阪市東区北浜5丁目15番地

住友金属工業株式会

社内

の出 題 住友金属工業株式会社 大阪府大阪市東区北浜5丁目15番地

四代 理 人 弁理士 河野 登 夫

- 1. 発明の名称 薄膜EL素子
- 2. 特許請求の範囲
 - 1. CaS:Ru の発光体層にCeを添加してなる薄膜 EL素子において、

前記Ceの確度が10-3~10-1wol %であるこ とを特徴とする薄膜肌素子。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は電極にAC電圧を印加させることにより 発光する薄膜肌素子に関する。

(従来の技術)

第2図は従来の強膜EL素子の一部破断斜視図で あり、図中1はガラス基板、2, 2, …はガラス 基板1上に所定間隔で複数形成された帯状の透明 電極を示す。複数の透明電極 2 、 2 、 … 表面を含 んでガラス基板1上面には、第1絶縁休暦3、発 光体層 4 及び第 2 逸経体層 5 が湖に積層形成され ている。そして第2地縁休暦5上面には複数の青 面電振6.6. . か透明電極2.2. . . の長手方 向と直交する方向に所定間隔で揺状に積層形成さ れており透明電極 2、 2、 … と背面健極 6、 6、 …とでマトリックスを形成している。

このような構成の薄膜比素子の製造工程は以下 の如くである。ガラス基板1上に電子ピーム落着 法により透明電極2を形成し、塩酸溶液でエッチ ングして複数の帯状の透明電極 2. 2. …を得る。

次いで、透明電概2,2,…を含むガラス慈板 1上にスパッタリング法を用いて第1路縁体層3 を形成させた後、電子ビーム蒸着法で発光体層 4 を積層する。さらに発光体層4上にスパッタリン グ法で第2 絶縁体層 5 を形成し、その上面に帯状 の透明電極2.2.…の長手方向と直交する方向 に帯状のパターンが形成されるよう帯状マスクを 用いて複数の背面電極 6. 6. …を慕着する。

このようにして得られる薄膜LL素子において、 現在実用化されているのは第2図の発光体層4に ZaS:Maを用いた黄橙色発光のみである。

より多くの情報を表示するためには、多色化表 示が必要とされており、薄膜BL素子の多色化の研

特開平2-148688(2)

究開発が強く望まれている。

発光体層 4 の多色化材料として、有望とされているのは、育色発光ではSFS:Ce、緑色発光では ZnS:Tb,F、赤色発光ではCaS:Eu又はZnS:Sm,Fであるが、2nS:Tb,Fを用いた緑色薄膜 NL素子以外は十分な輝度が得られておらず、多色化と共に高輝度化の開発研究も強く望まれている。

ところで上述した如く赤色薄膜LL素子は発光体層4の材料にCaS:Buを用いたものとZaS:Su,Fを用いたものがおり、輝度において同程度のものが得られているが、色度の点ではCaS:Buの方が良好である。そこで、CaS:Buによる薄膜の結晶性をつきる。とにより、CaS:Buを発光体に用いて表生の高輝度化の開発が行われて輝度を得けれており、現在5年度化の方法にはこのような発光体に関いる。高輝度化の方法にはこのような発光体層の結晶を向上させる方法の他に増感剤を添加する方法がある。カソードミネッを添加すると発光効率が10%から16%に向上することが知られている。

を添加してなる薄膜EL素子において、前記Ceの濃度が10-5~10-1mol %であることを特徴とする。 (作用)

本発明においてCaS:Euの発売体層にCeを10-1~ 10-1wol %添加することにより、Ceが増感剤として働く為発光効率が向上し、高輝度な薄膜旺素子が得られる。

(原理)

一般に発光体層における発光体を励起した場合、 発光中心原子間でエネルギ伝達が生じることが知 られている。その伝達の効率はエネルギ供給体の 発光スペクトルとエネルギ器要体の吸収スペクト ルとの重なりの大きさ及び前配供給体、前記器要 体間の距離により決定される。

つまり、発光スペクトルと吸収スペクトルとの 重なりが大きい程またエネルギ供給体とエネルギ 需要体との距離が近い程エネルギ伝達効率が高く なり、高輝度化される。

従って、CaS:Euの発光体層にCeを添加する場合は、エネルギ供給体としてのCeの発光スペクトル

⁽²⁾[発明が解決しようとする課題)

薄膜EL素子の実用化レベルの輝度として50~60 Hzの実用周波数で50~60cd/m²の輝度が必要であり、5kHz 駆動では10000cd/m²の輝度が必要とされる。しかしながら上述した如く発光体にCaS:Buを用いた薄膜EL素子において現時点で得られている輝度は5kHz 駆動で最高 900cd/m² であり、実用化するには一層の高輝度化が望まれる。

高輝度化には例えば発光体層の作製方法を改善する方法と発光体層に増感剤を添加した材料を用いる方法とがあるが、現時点では、作製方法の改善等のみでは高輝度の素子が得られていないため、 増感剤を添加する等発光体層材料の開発が必要となっている。

本発明は斯かる事情に鑑みてなされたものであり、赤色薄膜EL素子の発光体層CaS:Euに増感剤としてCeを適量添加することにより素子の高輝度化を行うことを目的とする。

(課題を解決するための手段)

本発明の薄膜BL素子は、CaS:Buの発光体層にCe

とエネルギ需要体としてのEuの吸収スペクトルとの重なりが大きく、しかもCeの発光効率がEuの発光効率はり大きい為、例えばカソードルミネッセンスにおいて前者は22%、後者は10%であり、エネルギ供給体であるCeはエネルギ需要体であるEuの増密剤となる。このことによりCaS:Euの発光体層にCeを添加することは薄膜LL素子の高輝度化を行う上で有効である。

(実施例)

以下、本発明をその実施例を示す図面に基づいて説明する。第1図は本発明に係る薄膜配素子の一部破断斜視図であり、図中1はガラス基板(コーニング7059)であり、2, 2, …はガラス基板1上に帯状に所定間隔あけて形成されたITOからなる複数の透明電極を示す。複数の透明電極2, 2, …表面を含んでガラス基板1上面にはSiOz/TazOs複合膜の第1 絶縁体層3、CaS:Bu,Ce の発光体層4及びTazOs/SiOz複合膜の第2 絶縁体層5 が順に積層形成されている。そして、第2 絶縁体層5 上面には、Alから成る複数の帯状骨面電極6,6、

特開平2-148688(3)

…が透明電極 2. 2. …の長手方向と直交する方向に所定間隔で積層形成されており、ITO の透明電極 2. 2. …とAlの背面電極 5. 6. …とでマトリックスを形成している。

次にこのような構造をなす薄膜LL素子の製造方法について述べる。ガラス基板1上に電子ビームによりITO を2000人蒸着させ透明電板2を形成する。得られた基板1を120℃で1分間加熱し、表面の水分を除去した後、透明電極2上に厚さ1μm 以下のレジストを整布し熱処理する。

次に帯状のマスクを用いて前記レジストを露光し現像してレジストの帯状パターンを形成し、40%の塩酸溶液により透明電極2をエッチングする。さらにアセトンを用いて残りのレジストを除去して帯状の透明電極2.2.…を得る。そして透明電極2.2.…を含むガラス基板1上に以下の条件でSiOz/TazOz複合膜の第1組録体層3を形成する。まず入射パワーが2kW、Arガス圧が1mTorrの条件でSiOzをターゲットとし即スパッタリング法により厚さO.1 μm の SiOz を積層する。次に

入射パワーが1kW、ArとO。のガス圧比がAr/O。 =1、ガス圧が1mTorrの条件でTa金属をターゲットとし、反応性BFスパッタリング法により厚さ 0.4 μm のTazOs を積層する。前記第1組経暦3 上には、EuがO.4mol%、Ce が10⁻²~ 4×10⁻¹mol %からなるCaS:Eu、Ce 統結体をターゲットとして 電子ビーム蒸着法により厚さ1.5 μm の発光体層 4であるCaS:Eu、Ce 薄膜を形成する。

前記嘉著における条件は加速電圧が 5 kW、電流が100~150mA. 基板温度が 680 t。 落著速度が25 A/secである。発光体層 4 上には、Ta₂0₅/Si0₂複合酸からなる第 2 絶縁体層 5 が第 1 絶縁体層 3 と同じ条件で形成される。即ち、入射パワー 1 kW、Ar及び O₂ のガス圧比がAr/O₂ = 1. ガス圧が1 eTorr の条件でTa金属をターゲットとし、反応性RPスパッタリング法で厚さ0.4 μm のTa₂0₅ を形成した後、入射パワーが 2 kW、Arガス圧が1 mTorr の条件でSi0₂をターゲットとしRPスパッタリングにより厚さ0.1 μm のSi0₂を形成する。 そして、第 2 絶縁体層 5 上には帯状マスクを用い抵抗線加

熱法によりAIから成る厚さ2000 A の雷状骨面電極 6. 6. …を悪着する。このとき、帯状の骨面電 種 6. 6. …は帯状透明電極 2. 2. …の長手方 向と庭交する方向に所定間隔あけてパターン形成 する。即ち、透明電極 2. 2. …と骨面電極 6. 6. …とがマトリックスをなすようにする。

なお、本実施例ではCaS:Euの発光体層4に抵加するCeの濃度を10-3~4×10-1mol %としたがこれに限るものでなく、10-3~10-1mol %の範囲であれば良い。10-3mol %以上としたのは10-3mol %以下であるとEuへのエネルギ伝達が十分行われず、Euの発光効率が向上しない為であり、また10-1mol %以下としたのは10-1mol %以上であるとCaS 母体結晶の構造を乱し、Eu及びCeの励起効率、発光効率を低下させ、しかもCeからの発光も現れて色度が悪くなる為である。

第3図は本発明の薄膜BL素子を周波数5 kHz の 正弦波で駆動したときの発光スペクトルの測定結 果を示すグラフであり、縦軸にエレクトロルミネ ッセンス強度、横軸に波長(nm)をとってある。第 3 図では発光体層 4 にEuが0.4mol %, Ceが0.4mol %であるCaS:Eu,Ce を用いた場合について示し、 又比較例としてCeが0.1mol %であるCaS:CeとEuが 0.4mol %であるCaS:Euとを用いた場合について夫々示した。

第3図の実線で表されているスペクトルは実測値であり、破線で表されているスペクトルは測定時に背面電極6に反射した光の干渉等から起因するスペクトルを除いた本来の発光スペクトルの値である。

第3國から明らかな如く、本発明の衆子はEu^{z・} イオンによる発光以外は観察されず、従ってCeを 添加した場合のCe自体の発光はなかった。

第4図は本発明の発光体層4にBuが0.4mol%,Ceが10⁻²~4×10⁻¹ mol%であるCaS:Bu,Ce を用いた薄膜比素子を周波数5kHz の正弦波で駆動させ、発光効率及びしきい電圧+30V である飽和輝度の測定結果と、本発明の発光体層4のみのフォトルミネッセンスピーク強度を測定した結果を示したグラフである。第4図において機軸にはCeの

BEST AVAILABLE COPY

特開平2-148688(4)

潘度(mo1%), 右綴軸には飽和輝度(cd/m²) 及びフォトルミネッセンスピーク強度(任意目盛り) をとり、左綴軸には発光効率(4m/H)をとってある。また、第4図において発光効率は一点銀線, 2m によっセンスピーク強度は破線, 2m 和輝度は実線で示されており、比較例としてCeを添加していないEuが0.4mol%であるCaS:Buを発光体層4に用いた場合の発光効率。フォトルミネッセンスピーク強度及び飽和輝度の測定値を縦軸上に夫々a.b. cの順に示した。第4図から明らかな如く、Caを添加した場合、Ceを添加しない場合に較べて飽和輝度は最大で1.7 倍、発光効率は1.9 倍向上しており、フォトルミネッセンスピーク強度もCeの広範囲な濃度(mo1%) にわたって向上した。

(発明の効果)

以上群述した如く、本発明に係る薄膜印象子においてはCaS:Emの発光体層にCeを10-a~10-smol %の濃度で添加するので発光効率が向上し、高輝度化が行える等本発明は優れた効果を奏する。

4. 図面の簡単な説明

第1図は本発明に係る確膜比案子の一部破断斜視図、第2図は従来の確膜比案子の一部破断斜視図、第3図は本発明及び比較例における頑膜比案子の発光スペクトルの測定結果を示すグラフ、第4図は本発明における確膜比案子の発光効率及び飽和輝度の測定結果と発光体層のみのフォトルミスッセンスピーク強度の測定結果とを示すグラフである。

1 ··· ガラス基板 2 ··· 透明電極 3 ··· 第 1 絶級体層 4 ··· 発光体層 5 ··· 第 2 絶縁体層 6 ··· 脅岡電極

第 2 図

特開平2-148688(5)

(5)

手統補正書(自発) 平成元 月18日

特許庁長官 殿

- 1. 事件の表示 昭和63年特許関第304809号
- 2 発明の名称

薄膜 B L 素子

3. 補正をする者

事件との関係 特許出願人

所在地 大阪市中央区北版 4 丁目 5 番33号 (平成元年 2 月13日行政区画変更)

名 称 (211) 住友金属工業株式会社 代表者 新 寫 康 男

4. 代理人

住 所 〒543 大阪市天王寺区四天王寺 1 丁目14番22号 日進ビル 207号 河野特許事務所 (電話 06-779-3088)

氏 名 (7886)弁理士 河 野 登 夫 5. 補正の対象

- 5. 情止の対象 明細書の「発明の詳細な説明」の間
- 6. 補正の内容
- (1) 明細書第3頁第13行に「発光体」とあるのを

「発光体階」と訂正する。

② 明福書第10頁第8行に「背面賞極6に反射した光」とあるのを「薄膜BL素子内の光」と訂正する。

以上