Presentación del Curso

Fabio Martínez Carrillo

Autómatas Finitos Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

31 de enero de 2018

Maquinas, lenguajes y Algoritmos

- Aplicación en campos muy diversos
- Maneja conceptos de control, acción, memoria
- Máquinas de Moore y máquinas de Mealy
- Circuitos combinatorios
- Automatas probabilisticos (incertidumbre en las transiciones)
- Redes Neuronales arificiales.
- Automatas celulares

Agenda

Algunas Aplicaciones

- Otros Datos Motivacionales
- 3 Redes Neuronales Artificiles

Primera aproximación en la "Teoria de la computación"

- Anterior al invento del computador.
- Propiedades matemáticas fundamentales. Responde a:
 - Como puede construirse un programa para resolver un problema
 - Resuelve el programa realmente el problema?
 - Cuanto se tarda en realizar un computo?
 - Cuanta memoria se necesita para realizar un computo.
 - Que se puede computar y que No se puede computar

Aplicación directa de conceptos de la ciencias de la computación

- Videojuegos
- Compiladores y procesamiento de lenguaje natural
- Implementación de protocolos Robustos
- Criptografía moderna
- Construcción de sistemas mas elegantes y sencillos
- Diseño de estructuras y "parsing"

Agenda

Algunas Aplicaciones

Otros Datos Motivacionales

Redes Neuronales Artificiles

Otros Datos Motivacionales

Ken Thompson

Pionero en ciencias de la computación. Antes de crear el sistema **UNIX** se encontraba trabajando en compilar expresiones regulares.

 Por esta razón es expresiones regulares forman parte de los compandos UNIX

Otros Datos Motivacionales

Jym Gray

Desarrollo su tesis en teoría de autómatas antes de hacer importantes contribuciones en bases de datos y procesamiento de transacciones

Agenda

Algunas Aplicaciones

Otros Datos Motivacionales

Redes Neuronales Artificiles

Redes Neuronales Artificiles

Cerebro Humano

Es una red de neuronas, compleja, **desconocida**, conentadas de forma que a cada neurona llegan muchas señales (sinapsis) y produce una sola salida.

- Billones de neuronas en una persona
- Cada neurona se conecta a otras ∼ 10000 neuronas

Redes Neuronales Artificiles

Red Neuronal Artificial (RNA)

Emulan la red neuronal usando "máquinas abstractas".

- Colección de procesadores (neuronas) elementales que producen una salida
- Aprendizaje consiste en ponderar las entradas para producir la salida.
- Con solo cuatro entradas se pueden generar 65536 funciones

Deep neural network

Layer 3

Layer 2

Aprendiendo características con 16000 cores de todos las imagenes de google, 10 millones de ejemlos y 1000 computadoras.

Con que sueñan las maquinas?

Sin embargo ...

Pequeños cambios locales en la entrada son capaces de estropear complejas redes y producir aprendizajes equivocados.

Automata celular: el Juego de la vida de Conway

- Es equivalente a una máquina universal de Turing
- Todo lo que se puede computar algorítmicamente se puede computar en el juego de la vida.
- Es un buen ejemplo de emergencia y auto-organización.
- Patrones complejos pueden provenir de la implementación de reglas muy sencillas.

Automata celular: el Juego de la vida de Conway

Reglas

- Una célula muerta con exactamente 3 células vecinas vivas "nace"
- Una célula viva con 2 ó 3 células vecinas vivas sigue viva, en otro caso muere o permanece muerta (por "soledad.º "superpoblación").
- * Todas las células se actualizan simultáneamente. (http://web.stanford.edu/ cdebs/GameOfLife/)

Muchas gracias por su atención

