Galois Theory

Lectured by Alessio Corti Scribed by Yu Coughlin

Autumn 2025

Contents

1 Galois correspondence

1

1 Galois correspondence

Fix a field $\mathbb{Q} \subset K \subset \mathbb{C}$. For some $\alpha \in \mathbb{C}$ we will use the notation:

$$K(\alpha) := \left\{ \frac{P(\alpha)}{Q(\alpha)} \in \mathbb{C} \;\middle|\; P, Q \in K[X], \; Q(\alpha) \neq 0 \right\}.$$

 $K(\alpha_1,\ldots,\alpha_n)$ is defined recursively.

Definition 1.0.1. Such an $\alpha \in \mathbb{C}$ is algebraic over K is there is some nonzero polynomial $P \in K[x]$ such that $P(\alpha) = 0$.

Consider $\mathbb{Q}(\sqrt{2})$, this has a simpler description than as the full quotient:

$$\mathbb{Q}(\sqrt{2}) + \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$$

If we choose something transcendental (non-algebraic) like $\mathbb{Q}(\pi)$, then we must use the full quotient definition, and in this case we have $\mathbb{Q}(\pi) \cong Q(X)$ the field of fractions of $\mathbb{Q}[X]$.

Definition 1.0.2. For some $f \in K[x]$ with distinct complex roots $a_1, \ldots, a_n \in \mathbb{C}$, the **splitting field** of f is $L = K(\alpha_1, \ldots, \alpha_n)$.

Let $K = \mathbb{Q}$ and $f = x^3 - 2$. The roots of f in \mathbb{C} are $\sqrt[3]{2}$, $\omega \sqrt[3]{2}$, and $\omega^2 \sqrt[3]{2}$, where ω is $(1 - i\sqrt{3})/2$. So the splitting field is $L = \mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2})$ which can be simplified to just $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$. What are the intermediate fields between \mathbb{Q} and L?

Lots of fields you might guess, like $\mathbb{Q}(i\sqrt{3}\sqrt[3]{3})$ and $\mathbb{Q}(\sqrt[3]{3}+i\sqrt{3})$ happen to already be in this diagram. But we cannot yet prove this is everything. The length of the arrows is a clue, they relate to the dimension as \mathbb{Q} -vector spaces and subgroups in the Galois correspondence.

Theorem 1.0.3 (Fundamental theorem of Galois theory). The **Galois group** of a field extension $K \subset L$ is

$$G = \operatorname{Gal}(L/K) = \left\{ \varphi : L \xrightarrow{\sim} L \ \middle| \ \varphi|_K = \operatorname{id}_K \right\}$$

and the eponymous Galois correspondence:

$$\{K\subset F\subset L\} \stackrel{\sim}{\longleftrightarrow} \{H\leq G\}$$

$$F \longmapsto F^{\dagger}:=\{g\in G\mid g|_F=\mathrm{id}_F\}=G_F \ \cdot$$

$$H^*:=\{\alpha\in L\mid H\alpha=\alpha\} \longleftarrow H$$

If one knows the Galois group is a supgroup of the permutation of all the roots, then for the case $L = \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$, there is seemingly no way to distinguish the roots, so we expect $G = S_3$, which is luckily true.

Fields are complicated and hard, there are two operations that "cavort" via a weird distributivity law, and proving the classification of subfields of $\mathbb{Q}(\sqrt[3]{2},i\sqrt{3})$ already feels pretty impossible. Galois theory allows us to move information from the easy theory of finite groups into the world of field extensions.