Deep Learning

Go deep or go home

Supervised Learning

Single Neuron to Neural Networks

Single Neuron

More Neurons, More Layers: Deep Learning

How to find the best values for the weights?

Define error = |expected - computed| ²

Find parameters that **minimize** average error

Gradient of error wrt w is

$$\frac{\partial \, error}{\partial w} = \nabla_w \, error$$

Update: w = w - step . ∇_w

Egg carton in 1 million dimensions

Backpropagation: Assigning Blame

Stochastic Gradient Descent (SGD) and Minibatch

It's too expensive to compute the gradient on all inputs to take a step.

We prefer a quick approximation.

Use a small random sample of inputs (minibatch) to compute the gradient.

Apply the gradient to all the weights.

Welcome to SGD, much more efficient than regular GD!

Usually things would get intense at this point...

$$\begin{split} \frac{\partial s}{\partial W_{ij}^{(1)}} &= \frac{\partial W^{(2)}a^{(2)}}{\partial W_{ij}^{(1)}} = \frac{\partial W_{i}^{(2)}a_{i}^{(2)}}{\partial W_{ij}^{(1)}} = W_{i}^{(2)} \frac{\partial a_{i}^{(2)}}{\partial W_{ij}^{(1)}} & \text{Local gradient} \\ \Rightarrow W_{i}^{(2)} \frac{\partial a_{i}^{(2)}}{\partial W_{ij}^{(1)}} &= W_{i}^{(2)} \frac{\partial a_{i}^{(2)}}{\partial z_{i}^{(2)}} \frac{\partial z_{i}^{(2)}}{\partial W_{ij}^{(1)}} & \text{Chain rule} \\ &= W_{i}^{(2)} \frac{\sigma(z_{i}^{(2)})}{\partial z_{i}^{(2)}} \frac{\partial z_{i}^{(2)}}{\partial W_{ij}^{(1)}} & \text{Hessian} \\ &= W_{i}^{(2)} \sigma'(z_{i}^{(2)}) \frac{\partial z_{i}^{(2)}}{\partial W_{ij}^{(1)}} & \text{Hessian} \\ &= W_{i}^{(2)} \sigma'(z_{i}^{(2)}) \frac{\partial}{\partial W_{ij}^{(1)}} (b_{i}^{(1)} + a_{1}^{(1)} W_{i1}^{(1)} + a_{2}^{(1)} W_{i2}^{(1)} + a_{3}^{(1)} W_{i3}^{(1)} + a_{4}^{(1)} W_{i4}^{(1)}) \\ &= W_{i}^{(2)} \sigma'(z_{i}^{(2)}) \frac{\partial}{\partial W_{ij}^{(1)}} (b_{i}^{(1)} + \sum_{k} a_{k}^{(1)} W_{ik}^{(1)}) \\ &= W_{i}^{(2)} \sigma'(z_{i}^{(2)}) a_{j}^{(1)} & \text{partial derivatives} \\ &= \delta_{i}^{(2)} \cdot a_{j}^{(1)} \end{split}$$

Learning a new representation

Credit: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Training Data

Train. Validate. Test.

Testing set

Never ever, ever, ever, ever, ever use for training!

Tensors

Tensors are not scary

[r=0.45 g=0.84 b=0.76]

Number: 0D

Vector: 1D

Matrix: 2D

Tensor: 3D, 4D, ... array of numbers

This image is a 3264 x 2448 x 3 tensor

Different types of networks / layers

Fully-Connected Networks

Per layer, every input connects to every neuron.

Recurrent Neural Networks (RNN)

Appropriate when inputs are sequences.

We'll cover in detail when we work on text.

Convolutional Neural Networks (ConvNets)

Appropriate for image tasks, but not limited to image tasks.

We'll cover in detail in the next session.

Hyperparameters

Activations: a zoo of nonlinear functions

Initializations: <u>Distribution</u> of initial weights. Not all zeros.

Optimizers: driving the gradient descent

Objectives: comparing a prediction to the truth

Regularizers: forcing the function we learn to remain "simple"

...and many more

Activations Nonlinear functions

Sigmoid, tanh, hard tanh and softsign

ReLU (Rectified Linear Unit) and Leaky ReLU

Softplus and Exponential Linear Unit (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha & (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Softmax

Optimizers

Various algorithms for driving Gradient Descent

Tricks to speed up SGD.

Learn the learning rate.

Credit: Alex Radford

Cost/Loss/Objective Functions

Cross-entropy Loss

$$p_i = \frac{e^{x_i}}{e^{x_1} + e^{x_2} + e^{x_3} + e^{x_4}}$$

$$loss(label\ is\ i) = -log(p_i)$$

Regularization Preventing Overfitting

Overfitting

Very simple.
Might not predict well.

Just right?

Overfitting.
Rote memorization.
Will not generalize well.

Regularization: Avoiding Overfitting

Idea: keep the functions "simple" by constraining the weights.

Loss = Error(prediction, truth) + L(keep solution simple)

L2 makes all parameters medium-size

$$L_2 = \frac{\lambda}{2} \sum_i w_i^2$$
 $L_1 = \lambda \sum_i |w_i|$

L1 kills many parameters.

$$L_1 = \lambda \sum_i |w_i|$$

L1+L2 sometimes used.

Regularization: Dropout

At every step, during training, ignore the output of a fraction p of neurons.

p=0.5 is a good default.

One Last Bit of Wisdom

THE END