

Open Internet Consortium (OIC) – Ecosystem, Specifications and Framework

March, 2016

OIC Presenters: Ravi Subramaniam

Standard Working Group
Open Interconnect Consortium

Table of Contents

- Internet of Things Standard Consideration
- Introduction of Open Interconnect Consortium
 - Overview
 - Core Framework
 - Security
 - Remote Access
 - Smart Home Profile

Technical Principles for an Internet of Things Ecosystem

Approaches for defining and interacting with Things

OIC Scope

• **Declarative**: By defining things as resources and its properties

BinarySwitch
- true(on), false(off)

Dimming
- dimmingSetting (int)
- step (int)
- range [0-100]

Brightness
- brightness (int)

- (no Verbs) + Objects

*Fixed set of verbs (CRUDN) from transport layer will be used

- Resource model in RESTful Architecture (e.g., W3C, CSEP, etc.) • **Imperative**: By defining functions of and operations on things

- (Verbs + Objects)
- RPC model

Additional Considerations*

- Late Binding (Reliability, Resilience, Conformance)
- Multi-Protocol
- Peer Peer (Gateway and Cloud are not first class citizens but peers)
- Framework as middleware
 - what defines the ecosystem (is it only spec?)
 - Need consistent behavior
 - Adaptability
 - Optimization (e.g. sensors, connectivity)

Support of Multiple Verticals

Legacy vertical services usually designed as silos

→ No common way to communicate among them

A common platform provides a foundation for vertical services to collaborate and interwork by providing common services and data models

Interoperability

- Full interoperability from the connectivity layer up to the service layer is the only way to truly guarantee a satisfactory UX
- Interoperability at the Connectivity and/or Platform layer only provides partial interoperability which can ultimately lead to fragmentation

(1) Connectivity Level

Interoperability & Certification

- Conformance test Each device proves conformance to specifications
- Interoperability test Each device proves interoperability with other devices

Certification Scope **Tested** Optional **Tested** Mandatory **Optional Optional** Optional Open Open Spec (in spec, cert & committed Source Spec Source **Features** in Open Source Project) Features eatures Features **Open Source Specification**

OIC Scope

For IPR Policy:

e.g. RAND-Z, RAND, etc...

For Open Source: e.g. Apache2, Internet Software Consortium (ISC), etc...

- Due to the common nature of IoT connecting everything over the Internet, it's most critical for manufacturers to avoid a licensing risk
 - Everything connected could be at potential risk
- Offering manufacturer-friendly Licensing and IPR Policy enables growth of market by attracting both start-ups and large enterprises; such an IPR policy must be clear and readily understandable ensuring that the terms are offered by all IP holders.

Introduction of Open Interconnect Consortium

Growing Membership

Diamond

OIC Organizational Structure

OIC Key Concepts

- Dedicated and optimized protocols for IoT
- Standards and Open Source to allow flexibility creating solutions
- Full stack definition for maximum interoperability
 - Connectivity, Platform and Vertical Services defined
 - License applies to members and affiliates of members
- Certification and Logo program
- Free IPR License
 - Code: Apache 2.0
 - Specification: RAND-Z

OIC Specification overview

Specification Structure

Infrastructure

- Core Framework
- Security
- Remote Access
- Certification Test Plans and Test Cases

Resource Model

Resource Specification (Domain agnostic)

Per Application Vertical

- Device Specification
- Vertical Specific Resource Specification

Core Framework Specification

Overview

- Core Framework Specification Scope
 - Specifies the technical specification(s) comprising of the core architectural framework, messaging, interfaces and protocols based on approved use-case scenarios
 - Enables the development of vertical profiles (e.g. Smart Home) on top of the core
- Architect a core framework that is scalable from resource constrained devices to resource rich devices
- Evaluate technical specification(s) for maximum testability and interoperability
- Ensure alignment with OIC open source releases

Separation of Concern

OIC Conceptual Architecture

Information Model

- Resource oriented
- RESTful architecture
- Semantics
- Physical abstraction

Data Model

- For vertical and device
- Data connectivity abstraction
 - Protocol and layer agnostic
 - Dynamic and late binding

Organization of an OIC Device

OIC Device – abstraction on a platform to host resources

and execute roles

Device example: light device (oic.d.light)

- Example overview
 - Smart light device with i) binary switch & ii) brightness resource
- Device type: Light device (oic.d.light) [Defined by the domain]
- Associated resources
 - Core resources: (1) oic/res, (2) oic/d
 - Device specific resources: 3 Binary switch (oic.r.switch.binary),
 - Other optional resources can be exposed, in this example 4 Brightness resource (oic.r.light.brightness)

Example: Smart light device with 4 resources

Device Title	Device Type	Associated Resource Type	M/O
Light	oic.d.light	oic/res (oic.wk.core)	М
		oic/d (oic.d.light)	М
		Binary switch (oic.r.switch.binary)	М
		Brightness (oic.r.light.brightness)	0

Core Framework Specification

Key Features

OIC Spec Features – Core Framework Spec

- 1 **Discovery:** Common method for device discovery (IETF CoRE)
- Messaging: Constrained device support as default (IETF CoAP) as well as protocol translation via intermediaries
- 3 Common Resource Model: Real world entities defined as data models (resources)\
- **CRUDN:** Simple Request/Response mechanism with Create, Retrieve, Update, Delete and Notify commands
- 5 **Device Management:** Network connection settings and remote monitoring/reset/reboot functions
- 6 ID & Addressing: OIC IDs and addressing for OIC entities (Devices, Clients, Servers, Resources)
- Security: Basic security for network, access control based on resources, key management etc

OIC Core Framework Basic Operation

Discovery

Operation

Discovery

- Discover access policies, device info and resources on the devices

Operation

- Get device information by retrieving resources
- Control devices by changing resources
- Observe change on the properties of resources

Basic common capabilities

- Device Monitoring
- Maintenance (e.g., reboot, factory reset, statistics collection, etc.)

Connectivity

Networking

Transport

Security

Protocol Stack

Application			
Resource Model			
Serialization Method (CBOR)			
СоАР			
DTLS	TLS		
UDP	TCP		
IPv6			
L2 Connectivity (Wi-Fi)			

OIC Stack Layering

(may change over time)

Alternative Options for Interoperability

Serialization Method	JSON or XML/EXI can be negotiated
IP Version	v4 supported for legacy devices

Resource Model Building Blocks

- Resource
- Link
 - Establishes relationship between a context resource and a target resource
- Collection
 - Contains one or more references (i.e. Links) to other resources
- Scene
 - A set of pre-defined resource property values that may be used to initialize a collection
- Rules
 - A logical "if then" statement (i.e. Links)
- Scripts
 - A programmatic element that can be used to incorporate conditionals, delays, loops and other programmatic elements, including reading and writing scenes

5/22/2016

Resource Discovery

- Peer-peer
 - multicast
- Resource Directory
 - Offloads handling of discovery (response to multicast messages) to devices that are capable of doing so
 - Key enabler for sleepy end nodes, enhances battery life.

Security Specification

Key Features

Security Goals

- Protect OIC networks
 - Manage devices entering user's IoT network(s)
- Protect OIC devices
 - Manage device identities for security and privacy
 - Prevent device impersonation
- Protect OIC resources
 - Manage authorized access
 - Prevent data theft
 - Consider safety and resiliency impact to DoS attacks

OIC Security Meta Objective

- Apply the OIC Declarative Model to security design
 - Security objects are Resources
 - Secure interactions are Restful
 - Built on OIC core communication stack
 - Data representations and serializations are the same as OIC core

• (e.g. CBOR)

5/22/2016

OIC Device Lifecycle

- OIC platform ships from manufacturer in "un-owned", operationally limited state
- A user connects the platform allowing discovery by an Onboarding Tool (OBT)
 - An "ownership transfer" allows secure provisioning by the OBT
- OBT provisions:
 - Device identity / credentials
 - Services Credential Management, Access Management, Bootstrap.
- The platform reconnects as an OIC device
- The OIC device is discoverable by other OIC devices

42

Ownership Transfer Methods

- Several Ownership Transfer Methods are defined to support a variety of manufacturing processes
 - Just-Works, Random-PIN, Manufacturer Certificates, Decentralized Public Key
- All are optional, but it is mandatory to implement at least one.
 - An OBT should implement all methods
 - Vendor specific methods are also supported
- OTMs may differ in terms of:
 - How a device establishes trust
 - How the physical owner's "intent" is proved
 - What cipher suites are used
- OTMs bring the device to a well-defined state
 - Device ID is known within the user's network
 - Device can be managed by user's network

Secure Communication

- CoAP over DTLS
- OIC device authentication
 - Pre-shared key
 - Certificates
- Secure session using TLS ciphersuites
 - TLS_PSK_ECDHE, TLS_ECDSA
- Credential Management
 - OBT may provision at device introduction.
 - CMS may provision proactively.
 - Device may request CMS provisioning dynamically.

Credential Management

- OIC devices may support symmetric or asymmetric keys
- Missing credentials could be provisioned dynamically

Credential Resource

/oic/sec/cred

Properties:

CredID: Local credential reference

SubjectID: OIC device

RoleID(s): roles the subject may assert

CredType: sym/asym/cert/...

PublicData, PrivateData, OptionalData

Period: Expiration period

Credential Refresh Method: Used if nearing expiration

Rowner: service that can modify this resource

Sample JSON

```
{
   "CredID": "1",
   "SubjectID": "device1",
   "RoleID": " ",
   "CredType": "1", <symmetric pair-wise>
   "PublicData": "",
   "PrivateData": "ABCDEFGHIJKLMNP",
   "Period": "20150101T180000Z/20150102T070000Z",
   "Refresh: "oic.sec.crm.pro",
   "Rowner": "oic.sec.ams"
}
```


Access Control

- Resources on the secured interface (that should be almost everything) are only accessible if there is an entry in the Access Control List resource
 - No ACL entry means no access
- An ACL says "X can do Y on resource Z"
 - X can be a device ID, a role, or a group (in the future)
 - Y can be any combination of CRUDN
 - Z can be any host resources or '*' wildcard
- If no ACL is present, and the device has an AMS configured, it can ask the AMS what authorization X has on Z.

49

Access Control with Collections

AMS 'observes' Collection to proactively respond to change

Access Control Resource

Resource

/oic/sec/acl

Properties:

Subject: device, role or group

Resource(s): one or more URN

Permission: bitmask of CRUDN

Period(s): validity periods

Recurrence(s): recurrence rule(s)

Rowner: the service that owns this acl

Sample JSON

```
"Subject": "de305d54-75b4-431b-adb2-eb6b9e546014",
"Resource": "/light",
"Permission": "00000100", <i.e. CR<u>U</u>DN>
"Period": "20150101T180000Z/20150102T070000Z",
"Recurrence": "RRULE:FREQ=WEEKLY;UNTIL=20150131T070000Z",
"Rowner": "oic.sec.ams"
}
```


Remote Access Specification

Key Features

- Server Components:
 - Device Management Server: Device/Capability Registration and Authorization
 - STUN/TURN Server: Finding candidate address (reflexive and relay transport address)
 - Signaling Server: Delivering candidate address to recipient, discovery, presence, low BW data, SDP control
- Client Components: RA Endpoint (RAE) & RA-Proxy
 - XMPP Client
 - ICE Agent (optional
 - STUN/TURN Client
 - DM Client

Remote Access ("RA") in OIC - Terminology

- Remote Access endpoint Devices:
 - Remote Access Endpoints ("RAE"):
 - OIC Servers also capable of XMPP, optionally capable of ICE-client
 - Remote Access Proxies ("RA-Proxy"):
 - Superset of RAE Capable of 'representing' "RA-constrained devices"
 - "RA-Constrained": Devices incapable of natively supporting RA tech
- Cloud Components:
 - XMPP Server(s)
 - STUN/TURN Server(s)
- Security objective:
 - Protect RAE / RA-proxy connection to XMPP server

Remote Access using XMPP

- Format for bare-JIDs (owner) and full-JIDs (for RAEs)
 - Includes JID-Resource overloading for:
 - OIC Spec version
 - Device-type
 - UUID
- Mapping from Core/Smart-Home Resources to full-JID format
 - Allows for Presence, Remote Discovery, XMPP-Roster-based access, more

OIC Specification overview

Smart Home Device and Resource Specification

Smart-home Specifications

- Specifications are split in 2 documents:
 - Device specification
 - Resource specification

The Device specification uses the resources defined in the resource specification

Smart-home Specific Device Specification

- Contains profiles of
 - OIC Core Framework specification
 - OIC Security specification
- Contains list of smart home devices
 - RAML & JSON Schema
- Each Smart home device definition contains:
 - type identifier (rt)
 - a list of mandatory resources

OIC SmartHome Device Vendor Smart Home Extensions Vendor Core Resources Extensions **Smart Home Device specification Smart Home Resources** Core Resources **Smart Home Core Profiles**

Smart Home Use Cases

Selected key enabling use cases to scope activity

Use Case	Priority			
Indoor Environment Control				
Lighting control				
Energy Saving Washer/Dryer	1			
Energy Management				
Remote Access for Device Control				
Smart watch notify and control	6			
Smart Video Environment				
Smart Home Office				
Smart Garage				
Device Grouping and Control				
Multi player gaming	7			
Smart watch gaming on TV	/			
Fire safety monitor and Notify	4			
Keyless Entry	2			
Home Security	Z			
Health Monitor and Notify	5			

- ① Control proximal OIC Devices
- (2) On board new Devices
- 3 Control remotely with an OIC Client

Example Smart Home Device: IPCamera Resource – pan, tilt, zoom

- Resource Types rt:
 - Physical device: 'rt'=oic.r.movement.ptz
 - Digital image: 'rt'=oic.r.image.ptz
- Supported Interfaces/CRUDN:
 - oic.if.a (actuator)

Property	Value/Type	Read/ Write	Mandatory	Comments
pan	Number	rw	M	[-180,180], where 0 is default position. Integer by default, float if range indicates as such.
tilt	Number	rw	M	[-180,180], where 0 is default position, , float if range indicates as such.
panRange	CSV	r	0	Min, max range (If includes decimal point accuracy then float)
tiltRange	CSV	r	0	Min, max range (If includes decimal point accuracy then float)
zoomFactor	string	rw	M	Value determined by allowed range
zoomFactorRange	Enum	r	0	Enum Values: {linear, 1x, 2x, 4x, 8x, 16x, 32x} 'linear' applies to optical zoom and equates to a range of 1-100.
				Note that this resource can be reused as offset

Other Resources – Camera Settings Controls

Resource	Properties	Value/Type	Comments
Auto White Balance (oic.r.colour.autoWhiteBalance)	autoWhiteBalan ce	boolean	True= auto white balance is on, False = auto white balance is off
Colour Saturation (oic.r.colour.saturation)	colourSaturation	integer	Range 0-100; 0 = black and white images; 50 = device specific normal colour; 100 = very full colour images
Night Mode (oic.r.nightMode)	nightMode	boolean	True – night mode on, False – night mode off.
Auto Focus (oic.r.autoFocus)	autoFocus	boolean	True – auto focus on, False – auto focus off.

Thank you!