§4-6 多項不等式

(甲)多項不等式的基礎概念

(1).n 次不等式:

設 $y=f(x)=a_nx^n+a_{n-1}x^{n-1}+.....+a_1x+a_0$ 是實係數 n 次多項式,那麼不等式 f(x)>0,或 f(x)<0,或 $f(x)\geq0$,或 $f(x)\leq0$ 就叫做多項不等式或 n 次多項不等式 (簡稱 n 次不等式)

例:2x-3>0 , $x^2-3x+2>0$

(2)不等式的解:滿足n次不等式的值,叫做n次不等式的解

(3)不等式的基本性質:

三一律:a>b,a=b,a<b 三式中恰有一式會成立

遞移律:若 a>b 且 b>c,則 a>c

加法律:若 a>b,則 a+c>b+c(c∈R)

乘法律:若 a>b,且 c>0,則 ac>bc (不變號) 若 a>b,且 c<0,則 ac<bc (要變號)

(乙)一次與二次不等式

- (1)一次不等式是形如 ax+b>0(≥0)或 ax+b<0(≤0)的不等式。 二次不等式是形如 $ax^2+bx+c>(≥)0$ 或 $ax^2+bx+c<(≤)0$,其中 a,b,c 為實數。
- (2)解二次不等式:

設不等式 $ax^2+bx+c(>,<,\geq,\leq)0$, 先將 a 調整爲正 先解一元二次方程式 $ax^2+bx+c=0$ 的二根 α 、β

- (a)設 a>0, $D=b^2-4ac>0$, α , β ($\alpha<\beta$) 為兩實數 因為 $ax^2+bx+c=a(x-\alpha)(x-\beta)$
- 分段討論 ax^2+bx+c 的正負:

x	<i>x</i> <α	$\alpha < x < \beta$	<i>x</i> >β
x-a	_	+	+
<i>x</i> −β	_	_	+
$(x-\alpha)(x-\beta)$	+	_	+

解 $ax^2+bx+c>0 \Leftrightarrow x>\alpha$ 或 $x<\beta$ (大於大的根或小於小的根)

解 $ax^2+bx+c<0$ ⇔α<x<β (介於兩實根之間)

例如:解不等式 $x^2-x-4>0$

(b)設 a>0, $D=b^2-4ac=0$, $\alpha=\beta$ 馬兩相等實數 因爲 $ax^2+bx+c=a(x-\alpha)^2$ 分段討論 ax^2+bx+c 的正負:

x	α< <i>x</i>	$x>\alpha$
$x-\alpha$	_	+
$(x-\alpha)^2$	+	+

解 $ax^2+bx+c>0 \Leftrightarrow x\neq\alpha($ 或β) [$x>\alpha$ 或 $x<\alpha$]

解 $ax^2+bx+c<0$ ⇔無解

例如: $4x^2+4x+1<0$

(c)設 a>0, $D=b^2-4ac<0$, α 、 β 均爲虚數 $ax^2+bx+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$,因爲 a>0且 $b^2-4ac<0$,所以 $\frac{4ac-b^2}{4a}>0$ 故不管 x 代入那一個實數, ax^2+bx+c 恆正。

解 $ax^2+bx+c>0$ ⇔ 所有實數均爲解。 解 $ax^2+bx+c<0$ ⇔ 無解。

例如: $x^2+4x+7<0$

結論:如何解二次不等式:

- (a) 先將不等式化成 ax^2+bx+c $\triangleright,<,\geq,\leq$ 0,其中 a>0
- (b) 再檢查判別式: D=b²-4ac
- (c) 若 $D=b^2-4ac>0$, $ax^2+bx+c>0$ 的解 \Leftrightarrow 解爲大於大的根,小於小的根的實數 $ax^2+bx+c<0$ 的解 \Leftrightarrow 解爲介於兩根之間的實數
- (d) 若 $D=b^2-4ac=0$, $ax^2+bx+c>0$ 的解⇔解爲除了 $\frac{-b}{2a}$ 外的所有實數 $ax^2+bx+c<0$ 的解⇔沒有任何實數是解
- (e) 若 $D=b^2-4ac<0$, $ax^2+bx+c>0$ 的解⇔解爲所有實數 $ax^2+bx+c<0$ 的解⇔沒有任何實數是解

[例題1] 解下列各不等式:

(1) $x^2+4x-1>0$ (2) $x^2-2x+3<0$ (3) $x^2-2\sqrt{3}$ x+5>0 (4) $-3x^2+6x-1\ge0$ Ans: (1) $x>-2+\sqrt{5}$ 或 $x<-2-\sqrt{5}$ (2)無解 (3)所有實數 (4) $1-\frac{\sqrt{6}}{3}\le x\le 1+\frac{\sqrt{6}}{3}$

[**例題2**] 已知不等式 $ax^2+bx+1>0$ 之解爲 $-\frac{5}{2} < x < \frac{2}{5}$,求數對(a,b)= ? Ans: $(-1,-\frac{21}{10})$

(練習1) 有一項運動協會,要從 250 位會員代表中選出 7 位理事,250 位代表每人投一票互選。如果想選上理事,至少要得多少票,才能保證當選? Ans:32 票

[提示: 設至少要得 x 票,才能保證當選,如果剩下的票都投給一個人,那個人至多得(250-7x)票,因此若要保證得 x 票能當選,則(250-7x)< $x \rightarrow x>31... \rightarrow 至少要得 32 票,才能保證當選。]$

(練習2) 解不等式
$$\frac{3}{4}x - \frac{2x-1}{6} > \frac{3x+1}{2} - \frac{5}{2}$$
 Ans: $x < 2$

(練習3) 解下列各不等式:

(1)
$$16x^2 - 22x - 3 \le 0$$
 (2) $3x^2 - 2x + 5 < 0$ (3) $-4 \le x^2 - 5x < 6$ (4) $x^2 - 2x + 1 > 0$ (5) $9x^2 + 1 \le 6x$ (6) $3x^2 - 2x - 7 \ge 0$

Ans:
$$(1) - \frac{1}{8} \le x \le \frac{3}{2}$$
 (2)無解 (3) -1

(4)
$$x \neq 1$$
 (5) $x = \frac{1}{3}$ (6) $x \ge \frac{1 + \sqrt{22}}{3}$ \overrightarrow{x} $x \le \frac{1 - \sqrt{22}}{3}$

(練習4) 若 $x^2+ax+b<0$ 之解爲 $-\frac{3}{2}-\frac{\sqrt{5}}{2}< x<-\frac{3}{2}+\frac{\sqrt{5}}{2}$,則 $x^2+ax-4b>0$ 之解爲何? Ans:x>1 或 x<-4

(丙)高於不等式的解法

1.基本實例:解不等式(*x*-1)(*x*-2)(*x*+3)<0

2.領導係數爲負

3.有恆正的因式

解不等式 $(x^2+x+1)(x-1)(x+1) \le 0$ Ans: $-1 \le x \le 1$

4.有重因式時

解不等式 $(x+3)^3(x-1)^2(x-2)<0$ Ans: -3< x< 2, 且 $x\ne 1$

解不等式 $(x+3)^3(x-1)^2(x-2) \le 0$ Ans: $-3 \le x \le 2$

[**例題**3] 已知多項式 $f(x)=x^4-5x^3+3x^2+19x-30=0$ 有一個複數根 2+i,若實數 a 滿足 f(a)<0,試求 a 的範圍爲?Ans:-2<a<3

[**例題4**] 設 f(x) 爲一個 3 次多項式,且 f(x-1)>0 之解集合爲 $\{x|x>2$ 或 $-3<x<-1\}$,試求 (1)f(x)>0 的解集合。 (2)f(2x+1)<0 的解集合。

Ans: (1) $\{x|x>1 \overrightarrow{y}-4<x<-2\}$ (2) $\{x|x<\frac{-5}{2}\overrightarrow{y}\cdot\frac{-3}{2}<x<0\}$

[例題5] 解分式不等式:

(1)
$$x > \frac{1}{x}$$
 (2) $\frac{x+2}{(x^2+x+1)(x-1)} \le 0$ Ans : (1) $x > 1$ 或 −1< $x < 0$ (2)-2≤ $x < 1$

(練習5)解下列不等式:

(a)
$$(x^2-4)(2x+1)(-x+3) \ge 0$$
 (b) $x^3-5x^2+2x+8<0$ (c) $(x+1)^2(x-2)(x-3) \le 0$ (d) $x^3+3x^2+3x+9 \le 0$ (e) $(x-1)^2(x^2-3x-18) < 0$ (f) $(x^2+3x+6)(x^2-x-3) < 0$

Ans: (a)-2≤x≤
$$\frac{-1}{2}$$
或 2≤x≤3 (b) x<-1 或 2

(d)
$$x \le -3$$
 (e) $-3 < x < 6$ $\coprod x \ne 1$ (f) $\frac{1 - \sqrt{13}}{2} < x < \frac{1 + \sqrt{13}}{2}$

(練習6) 解分式不等式:

(a)
$$\frac{2x+5}{3x-4} \ge 0$$
 (b) $\frac{x^2+2x-4}{2x^2-x-2} \ge 1$ (c) $\frac{1}{x+1} < \frac{x+3}{x^2+x-2}$
Ans: (a) $x \le \frac{-5}{2}$ \vec{x} $x > \frac{4}{3}$ (b) $\frac{1-\sqrt{17}}{4} < x \le 1$ \vec{x} $\frac{1+\sqrt{17}}{4} < x \le 2$
(c) $x > 1$ \vec{x} $\frac{-5}{3} < x < -1$ \vec{x} $x < -2$

(練習7) 設 f(x) 為一個 3 次多項式,且 f(3x-1)>0 之解爲 x>3 或-4< x<-2, 試求 f(2x+1)<0 的解集合。

Ans: $\{x | x > \frac{7}{2} \vec{y} - 7 < x < -4\}$

(丁)二次函數恆正或恆負的條件

設二次函數 $f(x)=ax^2+bx+c$, $a\neq 0$, $D=b^2-4ac$

(1)二次不等式解的幾何解釋:

考慮二次函數 $f(x)=ax^2+bx+c$ 的圖形:

$$f(x)=ax^2+bx+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$$
,頂點爲($\frac{-b}{2a},\frac{4ac-b^2}{4a}$)

(a)解 $ax^2 + bx + c > 0$

⇔在圖形上找那些實數 x 使得其所對應的點 (x,ax^2+bx+c) 在 x 軸的上方。解 $ax^2+bx+c<0$

⇔在圖形上找那些實數 x 使得其所對應的點 (x,ax^2+bx+c) 在 x 軸的下方。

(b)二次函數恆正與恆負的條件:

- ① 對於所有的實數 x, f(x)>0 (恆正)
 - ⇔圖形上的每一點的 y 坐標均大於 0(圖形在 x 軸上方)
 - $\Leftrightarrow a>0$ 月 D<0 (開口向上,與x軸無交點)

- ② 對於所有的實數 x, f(x) < 0 (恆負)
 - ⇔圖形上的每一點的 y 坐標均小於 0(圖形在 x 軸下方)
 - \Leftrightarrow a<0 且 D<0 (開口向下,與 x 軸無交點)
- ③ 對於所有的實數 x, $f(x) \ge 0$ (不爲負)
 - ⇔圖形上的每一點的 y 坐標均大於等於 0(圖形不在 x 軸下方)
 - $\Leftrightarrow a>0$ 目 D ≤ 0 (開口向上,與x 軸無交點或相切)

- ④ 對於所有的實數 $x \cdot f(x) \le 0$ (不爲正)
 - ⇔圖形上的每一點的 y 坐標均小於等於 0(圖形不在 x 軸上方)
 - ⇔ a<0 且 D≤0 (開口向下,與 x 軸無交點或相切)

[例題6] 設 $f(x)=x^2+2(a-5)x+2(3a-19)$, $\forall x \in \mathbb{R}$, f(x)>0, 求 a 範圍。 Ans: 7 < a < 9

[**例題7**] 不等式 $x^2+2(m+2)x+2m^2<0$ 無解,求 m 的範圍。 Ans: $m>2+2\sqrt{2}$ 或 $m<2-2\sqrt{2}$

[**例題**8] 設不等式 $\frac{2x^2+2kx+k}{4x^2+6x+3}$ <1 對於一切實數 x 均成立。則其中常數 k 的範圍為? Ans:1 < k < 3

(練習8) (1) $\forall x \in \mathbb{R}$, $-6x-9 < x^2 + ax + a - 1$ 恆成立,求 a 之範圍。 (2) $\forall x \in \mathbb{R}$, $x^2 + ax + a - 1 < 2(x^2 + 2x + 2)$ 恆成立,求 a 之範圍。 Ans: $(1)-4-2\sqrt{3} < a < -4 + 2\sqrt{3}(2)2 - 2\sqrt{2} < a < 2 + 2\sqrt{2}$

(練習9) $y=f(x)=kx^2+2x+k$ 之圖形如右,求實數 k 的範圍 ? Ans : k<-1

- (練習10) a 爲實數,且對於所有實數 x,不等式 $\frac{x^2+2ax+1}{3x^2-2x+3} \le 5$ 恆成立,則求 a 值之範圍。 Ans: $-19 \le a \le 9$
- (練習11) $\forall x \in \mathbb{R}, f(x) = x^2 (k-3)x + 4, g(x) = -x^2 + (k-1)x + (k-2), f(x)$ 恆在 g(x)上方時,求 k 範圍。Ans:-2 < k < 4
- (練習12) 令 $g(x) = -x^2 + 2(3m-1)x (8m^2 + 17)$, m 為實數,求使得 $g(x) \ge 0$ 無解之 m ~4-6-7~

的範圍。 Ans: -2<m<8

[**例題9**] 求實數 k 之節圍使得 $x^2-kx+k^2-3=0$

(1)有實數解 (2)兩根都是正數 (3)一正根、一負根。

Ans: (1)-2≤k≤2 (2) $\sqrt{3}$ <k≤2 (3)-2<k<- $\sqrt{3}$ 或 $\sqrt{3}$ <k<2

[**例題**10] 若 $ax^2+(1-5a)x+6a=0$ 之二根皆大於 1,試求 a 的範圍。 Ans: $a<\frac{-1}{2}$ 或 $a\ge 5+2\sqrt{6}$

(練習13) 二次方程式 ax^2 -(a-1)x-6=0 有一根介於 1 與 2 之間,另一根介於-1 與-2 之間,試求實數 a 的範圍。 Ans: $2 < a < \frac{7}{2}$ [提示:考慮勘根定理]

綜合練習

(1) 試解下列各二次不等式:

(a) $-x^2+x-1>0$ (b) $-x^2+x-1<0$ (c) $x^2< x+1$ (d) $x^2> x+1$ (e) $-x^2+6x-9<0$ (f) $x^2+8x+4<0$ (g) $x^2-4x-4<0$

(2) 已知 $ax^2+bx+c>0$ 的解爲-2< x<5,試求下列不等式的解:

(a) $ax^2-bx+c<0$ (b) $\frac{cx+2a}{ax+b}\ge 0$

- (3) 設 f(x) 為二次函數,且不等式 f(x)>0 之解集合為 $\{x \in \mathbb{R} | -2 < x < 4\}$,則求 f(2x)<0 之解集合。
- (4)解下列不等式:

 $(a)(x-1)^{80}(x^2+x+1)(x-2)(x-3)(x-4)^4 < 0$

(b)
$$(x^2+x+1)(x-1)(x-2)^2(x-3)^{33} < 0$$

(c) $(x^2+3x+6)(x^2-x-3) < 0$

- (5) 若已知一實係數方程式 $f(x)=x^3+ax+b=0$ 之一複數根爲 1-2i,求 (a)數對(a,b)=?。(b)f(x)=0 之所有解。(c)不等式 f(x)<0 的解。
- (6) 解不等式 $\frac{2}{x+1} < x$ 的解。
- (7) 解不等式 $\frac{x^2(x-1)}{(2-x)(x+1)} \ge 0$
- (8) 對於任意一個實數 x , $y=2x^2-2ax+(5+2a)$ 的圖形恆在 $y=ax^2$ 的上方,則實數 a 的 節圍爲
- (9) 設對所有實數 x, $(m-2)x^2+2(2m-3)x+5m-6$ 之値恆爲正, 求實數 m 的範圍?
- (10) x 爲任意實數時, $mx^2+2mx-(2m+3)$ 之値恆爲負,則 m 之範圍爲_____。
- (11) 二次函數 $y=x^2-ax+a-1$ 之圖形如右,求 a 的範圍。
- (12) 若 $\begin{cases} x^2 ax + b > 0 \\ x^2 + bx 4 \le 0 \end{cases}$ 之解爲 $3 < x \le 4$,試求 a,b 之値。

進階問題

- (13) 如右圖,將一個無蓋容器展開, 欲使容器的容積至少為 80cm^3 ,求x 值的範圍。
- (14) 利用 $y=|x^2-2x-3|$ 與直線 y=x+1 之圖形, $求|x^2-2x-3|\ge x+1$ 的解。
- (15) 若 $\begin{cases} x^2 ax + b > 0 \\ x^2 + bx 4 \le 0 \end{cases}$ 之解爲 $3 < x \le 4$,試求 a, b 之値。 \mathbf{x}

綜合練習解答

- (1)(a)無解 (b) $x \in R$ (c) $\frac{1-\sqrt{5}}{2} < x < \frac{1+\sqrt{5}}{2}$ (d) $x > \frac{1+\sqrt{5}}{2}$ 或 $x < \frac{1-\sqrt{5}}{2}$ (e) $x \ne 3$ (f) $-4-2\sqrt{3} < x < -4+2\sqrt{3}$ (g) $2-2\sqrt{2} < x < 2+2\sqrt{2}$
- (2)(a)x < -5 或 x > 2 (b) $\frac{1}{5} \le x < 3$
- (3) $\{x \in R | -1 < x < 3\}$
- (4)(a) 2 < x < 3 (b) 1 < x < 3 $\perp x \ne 2$ (c) $\frac{1 \sqrt{13}}{2} < x < \frac{1 + \sqrt{13}}{2}$
- (5)(a)(a,b)=(1,10) (b)-2,1-2i,1+2i (c)x<-2

- (6)-2<x<-1 或 x>1
- (7)*x*<−1 或 *x*=0 或 1≤*x*<2
- (8)-2< $a < \frac{5}{3}$
- (9)m>3
- $(10)-1 < m \le 0$
- (11)-1<*a*<3
- (12)a=2,b=-3
- $(13)1 \le x \le 5 \sqrt{5}$
- (14)*x*≥4 或 *x*≤2
- (15)*a*=2,*b*=-3

[解法]:

設 $x^2-ax+b>0$ 之解爲 $x>\alpha$ 或 $x<\beta$, $x^2+bx-4\le 0$ 之解爲 $n\le x\le m$ 當聯立不等式的解爲 $3< x\le 4$ 時,則上述的範圍可取其共同解爲 $\alpha< x\le m$ $\Rightarrow \alpha=3$,m=4

所以 x=3 為 $x^2-ax+b=0$ 之解且 x=4 為 $x^2+bx-4=0$ 之解 $\Rightarrow a=2$, b=-3