

NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics

Anwar Said¹, Roza G. Bayrak¹, Tyler Derr¹, Mudassir Shabbir^{1,2}, Daniel Moyer¹, Catie Chang¹, Xenofon Koutsoukos¹

¹Vanderbilt University, ²Information Technology University

NeurIPS2023 Datasets and Benchmarks Track

NeuroGraph

- Provides a collection of 10 novel graph-based neuroimaging benchmarks
- Python package offering a suite of tools

Dataset	Туре	Task
HCP-Task	Static	Graph Classification
HCP-Gender	Static	Graph Classification
HCP-Age	Static	Graph Classification
HCP-Fluid Intelligence	Static	Graph Regression
HCP-Working Memory	Static	Graph Regression
DynHCP-Task	Dynamic	Graph Classification
DynHCP-Gender	Dynamic	Graph Classification
DynHCP-Age	Dynamic	Graph Classification
DynHCP-Fluid Intelligence	Dynamic	Graph Regression
DynHCP-Working Memory	Dynamic	Graph Regression

NeuroGraph Benchmarks

• fMRI data sourced from the Human Connectome Project database

HCP-Task Dataset

Task classification

Predicting Demographics

Gender Classification

Estimating Cognitive Traits

Fluid Intelligence

Working Memory

Benchmarks Statistics

NeuroGraph benchmarks statistics

	Dataset			Statist	tics			Node Feat.	#Classes	Prediction Task	
	Dataset	G	$ N _{avg}$	$ E _{avg}$	d_{max}	d_{avg}	K_{avg}	(dim)	πClasses	Trediction Task	
	HCP-Task	7443	400	7029.18	153	17.572	0.410	400	7	Graph Classification	
್ತ	HCP-Gender	1078	1000	45578.61	413	45.579	0.466	1000	2	Graph Classification	
Stati	HCP-Age	1065	1000	45588.40	413	45.588	0.466	1000	3	Graph Classification	
<u>v</u>	HCP-FI	1071	1000	45573.67	413	45.574	0.466	1000	-	Graph Regression	
	HCP-WM	1078	1000	45578.61	413	45.579	0.466	1000	-	Graph Regression	
	DynHCP-Task	7443	100	843.04	57	8.430	0.427	100	7	Graph Classification	
mic	DynHCP-Gender	1080	100	874.88	53	8.749	0.439	100	2	Graph Classification	
	DynHCP-Age	1067	100	875.42	53	8.754	0.439	100	3	Graph Classification	
Dy.	DynHCP-FI	1073	100	874.82	53	8.748	0.438	100	-	Graph Regression	
_	DynHCP-WM	1080	100	874.88	53	8.749	0.439	100	-	Graph Regression	

Preprocessing Pipeline

Large and Sparse Graphs yield the best performance

Analysis: Graph sizes, density, node features, and static/dynamic

Findings: Large ROIs, sparse graphs, and correlations as node features show the best performance.

D	ataset	k-GNN	GCN	SAGE	UniMP	ResGCN	GIN	Cheb	GAT	SGC	General	Avg.
	CORR	65.65	68.98	68.70	68.33	66.06	68.24	63.94	69.49	68.43	64.95	67.30
100ROIs	BOLD	49.58	50.97	51.67	51.30	51.34	55.09	53.19	49.95	51.90	51.11	51.11
	CORR+BOLD	52.78	51.02	50.28	50.79	50.60	54.91	49.44	50.37	51.57	51.30	51.36
	CORR	72.21	74.10	61.66	68.57	70.09	71.89	58.94	69.35	75.99	73.09	69.56
400ROIs	BOLD	51.16	51.62	53.94	51.39	52.31	55.09	49.07	50.46	53.24	53.94	52.22
	CORR+BOLD	51.53	51.90	52.96	51.57	52.36	55.56	50.63	52.13	52.08	52.61	53.33
	CORR	78.80	75.19	71.71	75.14	78.75	77.22	64.77	71.34	73.75	63.13	72.98
1000ROIs	BOLD	48.15	46.99	49.31	50.93	47.92	56.48	47.22	50.93	49.31	51.62	49.89
	CORR+BOLD	51.30	51.81	51.25	51.11	49.86	54.35	49.66	51.22	51.34	51.37	51.33

	Dataset		k-GNN	GCN	SAGE	UniMP	ResGCN	GIN	Cheb	GAT	SGC	General
E .		Sparse	63.33	72.96	69.35	69.72	68.06	69.72	63.70	70.28	70.37	67.22
cation	100ROIs	Medium	65.65	68.98	68.70	68.33	66.06	68.24	63.94	69.49	68.43	64.95
]ca		Dense	64.44	68.52	65.00	68.06	63.70	66.39	64.26	69.72	68.43	61.76
ssif		Sparse	69.95	77.14	69.86	67.56	71.43	69.4	66.45	72.72	78.25	76.13
Classifi	400ROIs	Medium	65.65	68.98	68.70	68.33	66.06	68.24	63.94	69.49	68.43	64.95
er (Dense	71.61	76.13	62.58	61.20	69.77	73.27	61.84	67.83	74.19	72.44
75	1000ROIs	Sparse	82.13	75.46	77.69	76.67	78.33	75.56	59.07	76.2	76.48	78.89
Gen		Medium	78.80	75.19	71.71	75.14	78.75	77.22	71.43	71.34	73.75	63.13
		Dense	61.57	73.80	78.86	72.50	78.89	78.70	76.67	71.67	75.25	72.69
		Sparse	91.50	91.56	91.43	92.73	92.14	88.31	92.55	92.91	91.40	91.52
ion	100ROIs	Medium	90.91	90.80	91.81	92.75	92.25	88.01	93.06	93.15	91.40	91.22
cati		Dense	90.30	91.15	93.15	93.28	93.02	87.12	93.18	93.08	90.49	89.47
liff		Sparse	93.23	94.21	94.78	94.72	94.61	89.79	94.45	95.2	94.17	93.62
Classifi	400ROIs	Medium	92.26	93.93	93.89	95.02	94.33	89.44	79.03	94.67	93.39	93.58
		Dense	90.64	93.36	95.76	94.48	94.64	88.22	87.24	94.78	93.18	90.84
Task		Sparse	93.50	93.80	94.09	93.59	94.23	85.14	93.82	94.66	93.2	94.17
Ta	1000ROIs	Medium	92.65	90.87	94.39	95.79	92.04	85.40	94.88	94.00	91.37	91.87
		Dense	93.77	93.12	94.12	94.54	93.59	81.59	92.92	95.35	93.76	93.76

Benchmarking

 Consider 10 GNNs, three conventional ML methods and two simple newly implemented models as baselines for benchmarking

Benchmarking results

Classification results in terms of accuracy on static benchmarks

Dataset	NN	CNN	RF	k-GNN	GCN	SAGE	UniMP	ResGCN	GIN	Cheb	GAT	SGC	General	GNN*
HCP-Task	97.78	95.88	88.98	93.23	94.21	94.78	94.72	94.61	89.79	94.45	95.2	94.17	93.62	98.20
HCP-Gender	86.67	76.39	69.9	82.13	75.46	77.69	76.67	78.33	75.56	59.07	76.20	76.48	78.89	89.07
HCP-Age	44.23	43.38	40.84	42.72	43.66	40.94	43.85	40.00	44.98	41.97	42.25	43.47	41.03	50.23

Regression results in terms of MAE on static benchmarks

Dataset	k-GNN	GCN	SAGE	UniMP	ResGCN	GIN	Cheb	GAT	SGC	General	GNN*
HCP-FI	0.284	0.288	0.283	0.287	0.281	6.548	0.278	0.290	0.282	0.283	0.264
HCP-WM	0.818	0.825	0.810	0.812	0.830	1.032	0.789	0.804	0.828	0.819	0.751

Models' performance in terms of Accuracy and MAE

Dataset		Ac	ccuracy ↑	•		Dataset	MAE ↓					
Dataset	UniMP	k-GNN	GAT	SAGE	General	Dataset	UniMP	k – GNN	GAT	SAGE	General	
DynHCP-Task	89.66	73.03	89.67	90.93	68.84	DynHCP-FI	3.839	3.841	3.861	3.842	3.862	
DynHCP-Gender	72.3	68.45	67.13	66.20	62.04	DynHCP-WM	10.589	10.596	10.592	10.597	10.571	
DynHCP-Age	44.41	44.25	44.39	40.65	42.99	Dymicr-www	10.569	10.590	10.392	10.557	10.571	

Easy to Download and Use Benchmarks

NeuroGraphDataset

Bases: InMemoryDataset

The NeuroGraph benchmark datasets from the "NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics" paper. NeuroGraphDataset holds a collection of five neuroimaging graph learning datasets that span multiple categories of demographics, mental states, and cognitive traits. See the documentation and the Github for more details.

Dataset	#Graphs	Task
HCPActivity	7,443	Graph Classification
HCPGender	1,078	Graph Classification
HCPAge	1,065	Graph Classification
HCPFI	1,071	Graph Regression
НСРИМ	1,078	Graph Regression

NeuroGraph

A Python package for fMRI
preprocessing and a collection of
graph-based Neuroimaging
datasets for graph machine
learning applications
Install: pip install NeuroGraph

Dataset Downloads

Static Datasets

HCP-Task dataset

HCP-Gender dataset

HCP-Age dataset

HCP-FI dataset

HCP-WM dataset

Dynamic Datasets

DynHCP-Task dataset

DynHCP-Gender dataset

DynHCP-Age dataset

DynHCP-FI dataset

DynHCP-WM dataset

Link to the documentation • Github Link • Link to the paper

NeuroGraph pipeline combined with CWL design studio

Easy to Preprocess Neuroimaging Datasets

/ Indices and tables

NeuroGraph:

- Demographics
- Mental States
- Cognitive Traits

Installations:

Installation

GET STARTED:

- Introduction by Example
 - Loading Benchmark datasets
- Preprocessing Examples
- Preprocessing Human Connectome Project (HCP1200) Dataset
 - Download and preprocess static datasets
 - Download and preprocess dynamic datasets

Loading Benchmarks:

Search projects

NeuroGraph 2.4.0

pip install NeuroGraph

Documentation

Thank You!

NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics

Paper: https://arxiv.org/abs/2306.06202

GitHub: https://github.com/Anwar-Said/NeuroGraph

GitHub

Acknowledgment

This research incorporates contributions from the "Modeling and Model Integration" project of the Vanderbilt Institute for Software Integrated Systems, and by the National Science Foundation under Grant No. 2325417, 2321684, 2239881 and NIH Grant No. RF1MH125931. Work on "Modeling and Model Integration" is supported by Wellcome Leap as part of the Multi-Channel Psych Program. Moreover, the data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.