SVEUČILIŠTE U RIJECI

Fakultet informatike i digitalnih tehnologija

Diplomski sveučilišni studij informatike

KRATKI IZVJEŠTAJ O PRVOM EKPERIMENTALNOM RADU

EKSPERIMENTALNI RAD IZ KOLEGIJA RAČUNALNI VID

Mentori: Prof. dr. sc. Marina Ivašić-Kos

mag. Inf. Kristina Host

Autori: Duje Vidas, Tim Jerić

Uvod

Cilj ovog zadatka bio je osmisliti inovativan način za izbjegavanje sudara brodova sa santama leda, pri čemu se naglasak stavio na razvoj sustava koji može ranije detektirati sante leda i upozoriti posadu. U okviru ovog projekta implementirane su, trenirane i evaluirane tri jednostavne konvolucijske neuronske mreže (CNN) za klasifikaciju slika santi leda i brodova. Krajnji cilj bio je identificirati model s najboljim performansama na validacijskom skupu podataka, čime bi se doprinijelo razvoju učinkovitih alata za prevenciju nesreća.

1. Učitavanje i analiza podataka

Podaci za treniranje i validaciju učitani su iz .npz datoteke (<u>input_data.npz</u>). Datoteka sadrži sljedeće elemente:

- X_train i Y_train: podaci za treniranje
- X_validation i Y_validation: podaci za validaciju

Kako bi se osigurala odgovarajuća evaluacija, skup podataka za treniranje podijeljen je na novi **train** i **test** skup pomoću funkcionalnosti iz skripte.

Karakteristike podataka nakon analize i podjele:

- Dimenzije slika: 75×75×3 (RGB format)
- Broj uzoraka:
 - o Trening skup (X_train, Y_train): Ažurirani skup podataka nakon podjele
 - Test skup (X_test, Y_test): 1000 uzoraka (500 brodova i 500 santi leda)
 - o Validacijski skup (X_validation, Y_validation): 100 uzoraka

Distribucija klasa:

- Trening podaci (X_train): Ravnomjerno raspoređeni preostali uzorci nakon izdvajanja testnog skupa.
- Test podaci (X_test): 500 brodova i 500 santi leda (uravnotežen skup).
- Validacijski podaci (X_validation): 51 brod i 49 santi leda (gotovo uravnoteženo).

Dodatna analiza:

• Nedostajuće vrijednosti: Nije pronađeno NaN vrijednosti.

Prikazano je nekoliko uzoraka slika s pripadajućim oznakama za vizualnu provjeru kvalitete podataka.

2. Implementacija CNN modela

Razvijene su četiri verzije CNN modela, svaka s različitim razinama složenosti:

SimpleCNN_v1:

- **Slojevi:** Jedan konvolucijski sloj s 8 filtera, kernel veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2)
- **Potpuno povezani slojevi:** Jedan sloj s 32 neurona i izlazni sloj s 2 neurona (za binarnu klasifikaciju).

SimpleCNN_v2:

- **Slojevi:** Dva konvolucijska sloja s 32 i 64 filtera, oba kernela veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

SimpleCNN_v3:

- **Slojevi:** Tri konvolucijska sloja s 32, 64 i 128 filtera.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

SimpleCNN_v4:

- **Slojevi:** Tri konvolucijska sloja s 32, 64 i 128 filtera.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Regularizacija: Dropout sloj s vjerojatnošću 0.3 za sprječavanje pretreniranosti.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

Dodatno su se koristili dva pred trenirana modela

ResNet:

- **Slojevi:** Korišten je pred trenirani ResNet-18 model, modificiran za binarnu klasifikaciju s 2 izlazna neurona.
- **Potpuno povezani sloj:** Izlazni sloj modificiran za 2 neurona koji omogućuju binarnu klasifikaciju.
- Ulazni oblik: (batch, 3, 75, 75)
- Izlazni oblik: (batch, 2)

EfficientNet:

- **Slojevi:** Korišten je pred trenirani EfficientNet-B0 model, modificiran za binarnu klasifikaciju s 2 izlazna neurona.
- Regularizacija: Uključuje dropout sloj s vjerojatnošću 0.2.
- **Potpuno povezani sloj:** Izlazni sloj modificiran za 2 neurona koji omogućuju binarnu klasifikaciju.
- Ulazni oblik: (batch, 3, 224, 224)
- Izlazni oblik: (batch, 2)

3. Treniranje i validacija modela

Svi modeli trenirani su korištenjem skripte **train.py**, koja podržava:

- Treniranje pojedinačnih modela (v1, v2, v3, v4, ResNet, EfficientNet).
- Treniranje svih modela odjednom.

Postavke treniranja:

- Optimizator: Adam
- Funkcija gubitka: CrossEntropyLoss
- Broj epoha: Maksimalno 1000 (s ranim zaustavljanjem)
- Rano zaustavljanje: Aktivira se ako gubitak na validacijskom skupu ne pokazuje poboljšanje kroz 3 uzastopne epohe.
- Metode evaluacije: Točnost (Accuracy), Preciznost (Precision), Odziv (Recall), F1 score

Rezultati treniranja pohranjeni su u JSON datoteke (training_history_model_v1.json, itd.), dok su težine modela spremljene u .pth formate.

4. Vizualizacija i analiza metrike

Uz detaljne grafove za metrike treninga i validacije, implementirala se i funkcionalnost za prikaz pojedinačnih slika iz validacijskog skupa s predikcijama modela.

Trening metrike:

- 1. **Gubitak:** Svi modeli pokazuju kontinuirani pad gubitka kroz epohe, međutim Model 5 i Model 6 postižu najbolji pad gubitka, što ukazuje na njihovu visoku sposobnost učenja.
- 2. **Točnost:** Svi modeli pokazuju postupan rast točnosti, pri čemu Model 5 dominira u posljednjim epoha s najvišom točnošću.
- 3. **Preciznost i F1 score:** Oba pokazatelja rastu značajno tijekom treninga. Model 5 pokazuje najbolje performanse na trening podacima, posebno u preciznosti i F1 score-u, dok su ostali modeli, poput Modela 3, imali solidne rezultate, ali nešto slabiji napredak.

Validacijske metrike:

- 1. **Gubitak:** Validacijski gubitak kod Modela 6 pokazuje najmanju vrijednost, dok Model 3 ima oscilacije, što ukazuje na moguće probleme s pretreniranjem ili nestabilnošću.
- 2. **Točnost:** Točnost na validacijskom skupu raste za sve modele tijekom epoha. Model 3 postiže najvišu točnost, dok Model 6 nižu točnost. Model 1 ima sporiji rast točnosti, dok Model 2 pokazuje solidan napredak do 6. epohe, nakon čega stagnira.
- 3. **Preciznost i F1 score:** Model v3 nadmašuje druge modele u ovim pokazateljima, što potvrđuje njegovu preciznost u klasifikaciji brodova i santi leda, no Model v6 je dosta blizu.

Test metrike

Rezultati na testnom skupu za sve modele prikazani su u obliku bar grafova:

1. Točnost:

Model 6 ima najbolju točnost s vrijednošću 0.93, dok je Model 1 najslabiji s 0.81. Ostali modeli (Model 2 do Model 5) imaju točnost između 0.87 i 0.91, pri čemu Model 3 postiže 0.91, što ga stavlja u sredinu.

2. Preciznost:

Model 6 ponovno pokazuje najbolje rezultate s 0.93, dok Model 1 ima najnižu preciznost s 0.82. Modeli 3, 4 i 5 su vrlo blizu, s preciznostima od 0.91 do 0.86.

3. Recall

Model 6, kao i kod drugih metrika, ima najbolji recall s 0.93. Modeli 1, 2 i 3 su vrlo slični, s recall vrijednostima oko 0.87 i 0.88, dok su Modeli 4 i 5 nešto niži s 0.85.

4. F1 Score

F1 score je također najbolji kod Modela 6 s 0.93, dok Model 1 ima najniži F1 score s 0.81. Ostali modeli, poput Modela 2, 3 i 4, imaju slične F1 score-ove oko 0.87 do 0.91, s Modelom 3 koji ima 0.91.

Prikaz slika i predikcija:

Kako bi se dodatno evaluirale performanse modela, implementirana je funkcija *display_predictions*, koja nasumično odabire slike iz validacijskog skupa i prikazuje njihove stvarne i predviđene oznake.

Točno predviđanje: Modeli 6 ima dobar učinak, s velikim brojem točnih klasifikacija za testne slike.

Pogrešna predviđanja: Modeli 1, 2 i 3 imaju poteškoće u ispravnoj klasifikaciji slika, jer imaju više pogrešnih predviđanja, osobito za slike sa stvarnom oznakom "Iceberg."

Zaključak

Model 6 pokazuje najbolje performanse u svim ključnim metrikama: **točnosti**, **preciznosti**, **recallu** i **F1 scoreu**, sa svim vrijednostima u rasponu od **0.93**. Ovaj model se jasno ističe u svim aspektima, što ukazuje na njegovu izuzetnu sposobnost da pravilno klasificira testne podatke, balansirajući točnost i preciznost. Zbog ove visoke sveukupne izvedbe, Model 6 je najpreferiraniji u ovom testiranju.

S druge strane, **Model 1** ima najslabije rezultate u svim metrikama, s **točnošću** od **0.81**, **preciznošću** od **0.82**, **recallom** od **0.81** i **F1 score-om** od **0.81**. Ovi rezultati sugeriraju da Model 1 ima problem s **pravilnim prepoznavanjem i klasificiranjem objekata**, što rezultira nižom preciznošću i recallom, čime gubi u odnosu na ostale modele. Ovaj model se može smatrati manje učinkovitim za ovu specifičnu klasifikaciju.

Modeli 2, 3, 4 i 5 pokazuju slične performanse, pri čemu Model 3 ima najbalansiranije rezultate sa solidnim vrijednostima u svim metrikama. Model 3 postiže točnost i preciznost od 0.91, recall od 0.91 i F1 score od 0.91, što ga čini vrlo konkurentnim, ali ne doseže razinu performansi koju ima Model 6. lako Model 3 pokazuje odlične rezultate, ostali modeli (2, 4 i 5) imaju slične vrijednosti koje su nešto niže, s točnošću i preciznošću u rasponu od 0.87 do 0.88. Ovi modeli još uvijek imaju solidne performanse, ali niže nego Model 6, iako nisu znatno lošiji u odnosu na Model 3.