PHYS 122L Experiment 8 Circuits

Brandon Tsang

February 12, 2020

Part A: Investigation of a multiloop DC circuit

The following measurements will be made on this circuit:

Resistances	Voltage drops	Current
$R_1 = 991(0) \Omega$	$V_{R_1} = 5.57(2) \text{ V}$	$I_{R_1} = 0.5623 \mathrm{mA}$
$R_2 = 2162(5) \Omega$	$V_{R_2} = 3.55(8) \text{ V}$	$I_{R_2} = 0.1645 \mathrm{mA}$
$R_3=482(2)\ \Omega$	$V_{R_3} = -3.50(4) \mathrm{V}$	$I_{R_3} = -0.7267 \mathrm{mA}$

Summing the currents calculated above, we get that $\sum I = 0.0001$ mA, which is very close to zero. This confirms Kirchoff's current law.

For the left loop:	For the right loop:	For the outer loop:
$V_{AQ} = 5.57(3) \text{ V}$	$V_{QB} = -3.55(8) \text{ V}$	$V_{AQ} = 5.57(3) \text{ V}$
$V_{QC} = 3.50(4) \text{ V}$	$V_{BF} = 3.06(7) \text{ V}$	$V_{QB} = -3.55(8) \text{ V}$
$V_{CE} = -3.99(8) \text{ V}$	$V_{EC} = 3.99(8) \mathrm{V}$	$V_{BF} = 3.06(7) \text{ V}$
$V_{DA} = -5.08(2) \text{ V}$	$V_{CQ} = -3.50(4) \mathrm{V}$	$V_{DA} = -5.08(3) \text{ V}$
$\sum V = -0.003 \text{V}$	$\sum V = 0.003 \mathrm{V}$	$\sum V = -0.001 { m V}$

For all three loops, $\sum V \approx$ 0. This confirms Kirchoff's voltage law.

Part B: Charge and discharge of a capacitor

Charge of a capacitor

The following measurements will be made on this circuit:

All time values have an uncertainty of ± 0.01 s.

			2 3		
Voltage (V)	Time (s)		Average time (s)	$\frac{E'}{E'-V}$	
	1	2	3		
0.5	2.85	2.82	2.61	2.76	1.14
1.0	5.59	5.92	5.79	5.77	1.33
1.5	9.09	8.97	9.21	9.09	1.60
2.0	13.06	12.95	12.68	12.90	2.00
2.5	18.14	18.15	18.09	18.12	2.67
3.0	25.10	25.36	25.33	25.26	4.00
3.5	37.98	37.49	37.70	37.72	8.00

Plotting $\frac{E'}{E'-V}$ vs. t on a semi-log graph, we get:

Notes about the above graph:

- The error bars are too small to be shown.
- The dashed line is a regression of the data.

The slope of the line is m = 0.0243. Using this, we can calculate C_1 :

$$m = \frac{\log e}{R'C_1} \tag{1}$$

$$m = \frac{\log e}{R'C_1}$$

$$\frac{1}{C_1} = \frac{mR'}{\log e}$$

$$C_1 = \frac{\log e}{mR'}$$
(2)

$$C_1 = \frac{\log e}{mR'} \tag{3}$$

To calculate R':

$$R' \equiv \frac{R_M}{R_M + R} \cdot R \tag{4}$$

$$= \frac{10.5 \,\mathrm{M}\Omega}{10.5 \,\mathrm{M}\Omega + 2.2 \,\mathrm{M}\Omega} \cdot 2.2 \,\mathrm{M}\Omega \tag{5}$$

$$= 1.82 \,\mathrm{M}\Omega \tag{6}$$

$$=1.82\times10^6\,\Omega\tag{7}$$

Plugging this back into Equation 3:

$$C_1 = \frac{\log e}{(0.0243 \,\mathrm{s}^{-1})(1.82 \times 10^6 \,\Omega)}$$

$$= 9.82 \,\mathrm{s} \,\Omega^{-1} \tag{9}$$

$$= 9.82 \,\mathrm{s} \,\Omega^{-1} \tag{9}$$

$$= 9.82 \,\mathrm{F}$$
 (10)

Discharge of a capacitor

The following measurements will be made on this circuit:

Voltage (V)	$\frac{V}{V_0}$	Time (s)
4.00	0.89	1.56
3.50	0.78	2.52
3.00	0.67	3.65
2.50	0.56	5.10
2.00	0.44	6.32
1.50	0.33	8.56
1.00	0.22	12.31

Plotting $\frac{V}{V_0}$ vs. time on a semi-log graph:

The slope of the dashed regression line is m = -0.0577. Using this, we can calculate C_2 :

$$m = \frac{\log e}{R'C_2} \tag{11}$$

$$m = \frac{\log e}{R'C_2}$$

$$\frac{1}{C_2} = \frac{mR'}{\log e}$$

$$C_2 = \frac{\log e}{mR'}$$
(11)
(12)

$$C_2 = \frac{\log e}{mR'} \tag{13}$$

$$= \frac{\log e}{(-0.0577 \,\mathrm{s}^{-1})(1.82 \times 10^6 \,\Omega)} \tag{14}$$

$$= -4.14 \,\Omega \,\mathrm{s}^{-1} \tag{15}$$

$$= -4.14 \,\mathrm{F}$$
 (16)

Part C: Capacitors in series and parallel

[incomplete]