Q-learning

Elaine C. R. Cândido

Pontifícia Universidade Católica de Minas Gerais

Março 2021

Conteúdo

Revisão

- 2 Metodologias para encontrar MDP ótimo
- Q-learning

Revisão

- Estado de Markov
- Cadeia de Markov ou processo de Markov
- Processo de Recompensa de Markov (MRP)
- Processo de Decisão de Markov (MDP)
- Equação de Bellman
 - Maximizar as recompensas
 - Encontrar $q_{\star} \to \mathsf{MDP}$ ótimo
- Equação ótima de Bellman é não linear
 - Programação Dinamica
 - Métodos Monte Carlo
 - Métodos de Diferença Temporal (TD)

Abordagens

- Programação Dinamica
 - Aproximam v_{\star} assumindo que há conhecimento perfeito do modelo do ambiente
 - Aprendizado offline
- Métodos Monte Carlo
 - Não exigem modelo, mas não obtém melhorias a todo passo
 - Deve ser aplicado em tarefas episódicas
- Métodos de Diferença Temporal (TD)
 - Não exigem modelo e são totalmente incrementais
 - Q-learning: uma das mais importantes descobertas

Q-learning

- Usa solução iterativa
 - Inicializa estimativas
 - Escolhe ação
 - Obtém retorno do ambiente
 - Melhora estimativas baseado na equação de Bellman

Inicializa estimativas

- Cria tabela q (q-table)
- Inicializa-a com zeros

Escolhe ação

• Dado o estado, qual ação devo tomar?

Escolhe ação - Off-policy

- ullet Política de comportamento μ **Explora**
 - A próxima ação é escolhida baseando-se por ela

Escolhe ação - Off-policy

- Política alvo π **Aproveita**
 - Referente a ação de maior valor

Exploração vs Aproveitamento

- ϵ guloso
 - taxa de exploração que ajusta o progresso de trinamento para garantir mais exploração no início de treinamento e muda para maior aproveitamento nos episódios finais

Obtém retorno do ambiente

• Agente recebe feedback do ambiente

Otimizar estimativas

- Baseia-se na equação de Bellman
 - Se sabemos o valor q do próximo par estado-ação, então podemos computar o valor de q atual

Otimizar estimativas

- Temos duas formas de computar o valor q:
 - Pelo valor q do estado atual
 - Pelo valor da recompensa + o valor q do próximo estado

Otimizar estimativas

 Usando valores estimados, podemos checar ao longo do treinamento quão corretas estão as estimativas

$$Q(S_1,a_1)=Q(S_1,a_1)+lpha * Error$$

$$Q(S_1, a_1) = Q(S_1, a_1) + \alpha(R_1 + \gamma Q(S_3, a_3) - Q(S_1, a_1))$$

Q-learning - Algoritmo

Algoritmo 6 Controle por Q-Learning

Seja Q(s, a) inicializado arbitrariamente, para todo $s \in a$

- 1: Repita
- Defina um estado inicial s
- 3: Repita
- 4: Escolha a de acordo com uma política derivada de Q (ex: ϵ -gulosa)
- 5: Execute a e observe a recompensa r e o estado sucessor, s'
- 6: $Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') Q(s,a))$
- 7: $s \leftarrow s'$
- 8: **até que** s seja um estado terminal
- 9: fim repita

Referências

Livros

- Ravichandiran, S., 2018. Hands-on Reinforcement Learning with Python: Master Reinforcement and Deep Reinforcement Learning Using OpenAl Gym and TensorFlow. Packt Publishing Ltd.
- Lonza, A., 2019. Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing Al challenges. Packt Publishing Ltd.

Referências

Artigos

- Ketan Doshi. Reinforcement Learning Explained Visually https://towardsdatascience.com/ reinforcement-learning-explained-visually-part-3-model-free
- An introduction to Q-Learning: reinforcement learning https://www.freecodecamp.org/news/ an-introduction-to-q-learning-reinforcement-learning-14ac0