Lecture 1 Introduction & Review of the cellular networks

Trends of Mobile Traffic (1)

- Y LTE-A: peak downlink 1 Gbps, peak uplink 500Mbps
- § 5G is designed to deliver peak data rates up to 20 Gbps based on IMT-2020 requirements
 - What's IMT-2020? International Mobile Telecommunications-2020 (IMT-2020 Standard) proposed by ITU (International Telecommunication Union) in 2015

Global Mobile Data Traffic Growth / Top-Line
Global Mobile Data Traffic will Increase 7-Fold from 2016—2021

Observation: We need new technologies to support the upcoming mobile traffics

Note: 1 exabyte (EB)=1000⁶ bytes=10¹⁸ bytes

Trends of Mobile Traffic (2)

- Why WiFi is getting important?
 - Cost issue
 - Coverage issue

Heterogeneous network

—

Source: https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1819296

Device Analysis

- Cisco, Ericsson, TI, and others predict there will be more than 20 billions connected devices by 2020
- Bringing connectivity to those objects is challenge

Global Device/Connection Growth by Type By 2021, M2M connections will be more than half of total connections

^{*} Figures (n) refer to 2015, 2021 device share

Source: Cisco VNI Global IP Traffic Forecast, 2016-2021

Application Traffic Growth

New Technology Development Trends (1)

- Small cell
- Multi-RAN (heterogeneous network)
- Unlicensed band utilization [LTE-U: LTE-LAA (License Assisted Access)]

New Technology Development Trends (2)

- Cloud/edge computing
- SDN & NFV
- Wetwork slicing
- Service-oriented cloud
- Internet QoS
- Resource management
- Massive MIMO
- CoMP (Coordinated Multi-Point Transmission)
- Beamforming technology

Syllabus

Item	Торіс	Note (week)
1	Introduction of this course Review of the cellular networks	1
2	Introduction to Quality of Service (QoS) Traffic Management-Inserve Traffic Management-DiffServ	2
3	Traffic Management-MPLS Traffic Management-Traffic Engineering	2
4	IGMP & Multicasting	1
5	WiFi 5 (ac) and WiFi 6 (ax) WiFi 7 (be)	1
6	LTE/5G/WiFi offloading (LAA, LWA)	1
7	5G/B5G/6G system architecture and services (SDN/NFV/NS/MEC/IoT etc)	1.5~2
8	Cloud Radio Access Network (C-RAN) Architecture Open Radio Access Network (O-RAN) Architecture	1
9	Deterministic networks (DetNet) & Traffic Steering Concept (Case Study) & Time sensitive networks (TSN)	1

Textbooks

- ② Z. Wang, Internet QoS-Architecture and Mechanisms for Quality of Service, 1st Ed., Morgan Kaufmann Series in Networking
- Dave Kosiur, IP Multicasting: The Development Guide to Interactive Corporate Networks, John Wiley & Sons Inc.
- Very Cloud Radio Access Networks: Principles, Technologies, and Applications, Tony Q. S. Quek, Mugen Peng, Osvaldo Simeone, and Wei Yu, Cambridge University Press

 Output

 Description:

 Descript
- Research papers/technical reports

Grading Policy

Midterm: 30%

♥ Final: 35%

Project: 35% (1~2人)

GSM Architecture (1)-2G

Figure 10.8 GSM infrastructure.

GSM Architecture (2)-2G

GSM Architecture (3)-2G

- Mobile switching center (MSC)
 - Switching functions
 - Network interfacing
 - Common channel signaling
 - Gateway functionality
 - HLR and VLR maintenance
- Base station controller (BSC)
 - Handoff between managed BTSs
 - Signal power level management
 - Frequency management among BTSs
- Authentication center (AUC)
 - Deal with authentication and encryption
 - Deal with frauds and spoofing
- ¥ Equipment identity register (EIR)
 - Database containing information about the identity of mobile equipment

UMTS Architecture (1)-3G

- W Universal Mobile Telecommunications System
- Wetwork reference architecture

Figure 10.37 UMTS network architecture.

UMTS Architecture (2)-3G

From UMTS to LTE

From circuit core to packet core (IP convergence)

LTE Network Architecture (1)-4G

Figure 1: High level architecture for 3GPP LTE (Details of all LTE interfaces are given in Appendix A)

LTE Network Architecture (2)-4G

- ¥ LTE radio access network (RAN): user equipment (UE) +
 E-UTRAN Node B (eNB)
- Y LTE EPC: mobility management entity (MME) + serving gateway (SGW) + PDN gateway (PGW) + home subscriber service (HSS)

5G System Architecture

- System architecture?
- Technologies?
- Common services?
 - eMBB (enhanced mobile broadband)
 - Massive machine-type communications (mMTCs)
 - Ultra-reliable low-latency communications (URLLCs)

