STAT_626 Assignment 04

Philip Anderson; panders2@tamu.edu 6/14/2018

```
library("astsa")
library("tidyverse")
```

Question 3.4

```
x_t = -0.9x_t - 2 + w_t
# give the roots of the characteristic equation
z \leftarrow c(1, 0, .9)
# solve for the roots of autoregressive polynomial
pasteO("Roots of Autoregressive Polynomial given by: " ,(a <- polyroot(z)[1]))</pre>
## [1] "Roots of Autoregressive Polynomial given by: 0+1.05409255338946i"
arg \leftarrow Arg(a)/(2*pi)
pasteO("Pseudo-period given by: ", 1 / arg) # pseudo-period
## [1] "Pseudo-period given by: 4"
set.seed(1914)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(0,-.9)), n = 48)
plot(ar2, axes=FALSE, xlab="Time", main="Simulated Values from Specified AR(2) model")
axis(2)
axis(1, at=seq(0,48,by=4))
box()
abline(v=seq(0,48,by=4), lty=2)
```

Simulated Values from Specified AR(2) model


```
# plot the ACF
ACF = ARMAacf(ar=c(0,-.9), ma=0, 50)
plot(ACF, type="h", xlab="lag", main="Theoretical ACF for AR(2) model")
abline(h=0)
```

Theoretical ACF for AR(2) model

Because the coefficient on the AR model is negative, the lags will flip between being positive and negative at

every lag iteration.

Question 3.17

Question 3.17.A

```
astsa::tsplot(cpg ,main="Plot of c_t")
```

Plot of c_t 000057 000051 1980 1985 1990 1995 2000 2005 Time

The plot seems to be showing an exponential decrease in the price per gigabyte of storage.

Question 3.17.B

```
# regress log(c_t) on a time index
lin_mod <- lm(log(cpg) ~ time(cpg))

# plot the fitted line to compare it to the logged data
ts.plot(log(cpg))
abline(lin_mod)</pre>
```


The fitted regression line is very close to the log transformation of the data.

$$c_t \approx \alpha exp(\beta t)$$

Question 3.17.C

Plot the residuals of the model and comment.

plot(density(resid(lin_mod)), main="Density Plot of Residuals")

Density Plot of Residuals

The density plot looks good, but keep in mind that we may have serial correlation that this isn't capturing. ts.plot(resid(lin_mod), main="Residual Time Series Plot")

Residual Time Series Plot


```
## ACF PACF

## [1,] 0.61 0.61

## [2,] 0.47 0.16

## [3,] 0.32 -0.03

## [4,] 0.15 -0.11

## [5,] -0.01 -0.15

## [6,] -0.10 -0.05

## [7,] -0.23 -0.16
```

It appears from the time series plot and the ACF of the residuals that the errors display some level of serial or autocorrelation. A regression that does not assume the errors to be i.i.d. may be necessary.

Question 3.17.D

initial value -0.669056

```
2 value -0.999488
## iter
## iter 3 value -1.088763
## iter 4 value -1.102248
## iter
       5 value -1.128914
        6 value -1.131945
## iter
## iter
       7 value -1.132479
## iter
       8 value -1.132525
       9 value -1.132540
## iter
## iter 10 value -1.132543
## iter 11 value -1.132545
## iter 12 value -1.132545
## iter 12 value -1.132545
## iter 12 value -1.132545
## final value -1.132545
## converged
## initial value -0.701381
## iter
        2 value -0.882862
## iter
       3 value -0.886699
       4 value -0.888651
## iter
       5 value -0.888966
## iter
## iter
       6 value -0.889035
## iter 7 value -0.889043
## iter 8 value -0.889045
## iter
        9 value -0.889045
## iter 10 value -0.889045
## iter 10 value -0.889045
## iter 10 value -0.889045
## final value -0.889045
## converged
```


p values for Ljung-Box statistic

astsa::tsplot(serial_mod\$fit\$residuals, main="Time series Plot of AutoCorrelated Regression")

Time series Plot of AutoCorrelated Regression

acf2(serial_mod\$fit\$residuals)


```
## ACF PACF
## [1,] -0.22 -0.22
## [2,] 0.16 0.11
## [3,] 0.08 0.14
## [4,] 0.15 0.19
## [5,] -0.15 -0.12
## [6,] 0.21 0.10
## [7,] 0.03 0.10
```

This appears to be a better fit to the data - we have eliminated the evidence of serial correlation from the model errors.

```
pasteO("Coefficients for new Model: ")

## [1] "Coefficients for new Model: "

print(serial_mod$fit$coef)

## ar1 intercept xreg

## 0.8297314 1113.0105454 -0.5553780

cat("\nCoefficients for Linear Model: ")

##

## Coefficients for Linear Model:

print(lin_mod$coefficients)
```

(Intercept) time(cpg) ## 1172.4943103 -0.5850776