Chapter 11

Induction Motors: Balanced, Sinusoidal Steady State Operation

TOC

Squirrel-cage Induction Motors

- ☐ Widely used in industry
 - □Power to Kinsale approx. 5 MW
 - □Local drug plant approx. 4.5 MW
 - ☐ Heating, lighting, computers, etc 0.8 MW
 - ☐ Induction motors

- 4 MW
- □1500 line fed, 150 ASDs
- C11 Induction motors under balanced sinusoidal steady state (line fed, constant speed)
- C12 Adjustable speed drives (volts/hertz control for energy efficiency and speed control)
- C13 Servo drives field oriented control for fast dynamics EE4001, UCC

Line-fed Induction Motors (Squirrel-cage)

- Structure
- Principle of operation
 - -Torque derivation and transformer model
- Equivalent circuits
 - -Determining parameters from tests and spec. sheet.
- Performance characteristics
 - -Determining full-load and partial load values.

Simple representation of three phase stator windings

Squirrel-cage rotor

-Stacked laminations

-Conducting bars shorted at each end

Copper is the common rotor conductor material.

Aluminium is also used due to being lighter and cheaper than Cu. Al has a higher resistance, especially with higher temperatures.

Stator Representation

 \square Assumptions: R_s , $L_{s,leakage} = 0$

$$v_a(t) = \sqrt{2} E \cos(2\pi f t)$$

$$v_b(t) = \sqrt{2} E \cos(2\pi f t - \frac{2\pi}{3})$$

$$v_c(t) = \sqrt{2} E \cos(2\pi f t - \frac{4\pi}{3})$$

$$\omega_{syn} = \omega = 2\pi f$$
 (for a 2-pole machine)

$$\omega_{syn} = \frac{2}{p}\omega = \frac{2}{p}(2\pi f)$$
 (for a p-pole machine)

Electrically Open-circuited Rotor

- ☐ Only magnetizing currents are present because rotor is inert i.e. rotor bars are not shorted no rotor current.
- ☐ Magnetizing currents set up rotating flux

$$\hat{I}_{m} = \frac{\hat{V}}{\omega L_{m}}$$

$$i_{ma}(t) = \hat{I}_{m} \cos(\omega t - \pi/2), \text{ etc.}$$

$$\vec{i}_{ms}(t) = \frac{3}{2}\hat{I}_{m}\angle(\omega t - \frac{\pi}{2})$$

Audio T

Electrically Open-circuited Rotor Fields

 \square $\overline{B_{ms}}$ is a constant magnitude, rotating flux

$$\therefore \vec{B}_{ms}(t) = \frac{\mu_0 N_{sp}}{\ell_g} \hat{I}_{ms} \angle (\omega t - \pi/2)$$

Short-circuiting the Rotor

$$(R_s, L_{s,leakage} = 0)$$

Transformer Analogy

- Assuming no resistances or leakage inductance in the stator windings, the stator voltages completely determine the motor flux regardless of any rotor currents
- \Box Current $i_{\rm m}$ and flux $\Phi_{\rm m}$ is unaffected by the load EE4001, UCC

Induced Voltages on Rotor

Flux rotating at speed ω_{syn} Rotor rotating at speed ω_{m} Rotor conductors cutting flux at speed: $\omega_{syn} - \omega_{m} = \omega_{slip}$ (slip speed)

$$e_{bar}(\theta) = N \frac{d\phi}{dt} = \frac{d\phi}{dt} \text{ for } N = 1$$

$$\therefore e_{bar}(\theta) = B_{ms}(\theta) lr\omega_{slip}$$
 EE4001, UCC

Induced Currents in Rotor

- ☐ Rotor conductors (bars) shorted together by end rings
- Because of symmetry of induced bar voltages, end rings are at same potential, therefore bar voltage is dropped across bar resistance (assuming $L_{r,l} = 0$) generating currents by Ohms Law

EE4001, UCC

Rotor MMF – Reflected Rotor MMF Reflected Rotor Current

- \vec{F}_{r} produced by rotor currents
- \overline{F}'_r produced by additional stator currents to keep total flux unchanged (transformer analogy)
- These currents are viewed as a current space vector i,
- Total stator current is magnetizing current plus this reflected rotor current

Slip frequency (f_{slip}) in the rotor circuit

$$f_{syn} = \frac{f}{p/2}$$
 where p is the number of poles.

$$f_{slip} + f_m = f_{syn}$$

$$slip = s = \frac{f_{slip}}{f_{syn}} = \frac{f_{syn} - f_m}{f_{syn}}$$

motoring: $f_{syn} > f_m \Rightarrow f_{slip}$, s are positive

generating: $f_{syn} < f_m \Rightarrow f_{slip}$, s are negative

- ☐ Slip is rotor speed normalized to synchronous speed
- ☐ Slip generally small (< 3%), therefore rotor current frequency is very low

Electromagnetic Torque Production

- Current/mmf induced in stator as shown to oppose at t = 0 rotor current/mmf by transformer action.
 - Let's derive the C.W. torque on the stator reflected currents due to the rotating field. This is equal and opposite to the C.C.W. torque between the rotor and the flux

Electromagnetic Torque Production

Differential torque at angle ξ is given by

$$dT_{em}(\xi) = r.l.B_{ms}(\xi)\hat{I}'_r n_{sp}(\xi)$$
$$= r.l.\hat{B}_{ms} \sin \xi \hat{I}'_r N_{sp} \sin \xi d\xi$$

The total torque developed by the interaction of the magnetic flux and the reflected rotor current is

EE4001, UCC

We know that
$$\int_0^{2\pi} \sin^2 \xi d\xi = \pi$$

Torque – Speed Characteristics (slip small; ω_m near ω_{syn}) – neglecting leakage

- ☐ Linear relationship between torque and slip for given flux
- ☐ Machine constant analogous to dc motor.
- ☐ Control of flux and current vectors results in fast dynamic control EE4001, UCC

Audio

Generator (Regenerative Braking) Mode

- □ For generation or for braking in either case rotor speed exceeds synchronous speed, $\omega_{\rm m} > \omega_{\rm syn}$
- \Box $\omega_{\rm slip} < 0$
- Bar voltage polarities reversed
- Rotor currents and mmf (\vec{F}_r) reversed
- Reflected rotor currents and mmf (\vec{F}') reversed
- Torque reversed

EE4001, UCC

Rotor Leakage Inductance

Rotor Leakage Inductance (cont...)

- ☐ Rotor leakage inductance is often neglected when motor is operating near synchronous speed (below the rated torque)
- \square Effect of rotor leakage inductance is to reduce T_{em} at high slip
- ☐ Revised torque equation -

$$T_{em} = \pi N_{sp} r \ell \hat{B}_r \hat{I}'_r = \pi N_{sp} r \ell \hat{B}_{ms} \hat{I}' \sin(\pi/2 - \theta_r)$$

Per-Phase Equivalent Circuit including rotor leakage

Space Vectors

Equivalent Circuit

Phasor Diagram

- ☐ Includes rotor leakage inductance
- ☐ Does not include stator leakage inductance or resistance

EE4001, UCC

 \square R_{eq} depends on slip

TOC

Stator Winding Resistance and 11-20 Leakage Inductance

Equivalent Circuit

Phasor Diagram

Per-phase IM Eq. Cct Model

Motor Tests to Characterize Machines

- □ No Load Test: $L_m + L_{ls}, P_{cfw}$
- \square Blocked Rotor Test: R'_r , L_{ls} , L'_{lr} , L_m

No Load Test

open-circuit: s negligible

- Rotor spins as $f_{\rm m} = f_{\rm syn}$, s = 0 ideally.
- Under no load conditions the equivalent circuit is dominated by the magnetizing inductance.

No-load Test

- Measurements: three-phase $P_{\rm nl}$ (or power factor), $V_{\rm ph(nl)}$, $I_{\rm ph(nl)}$
- Core, friction and windage losses are required to spin the rotor at noload and are given by

• The lumped inductance is determined from the per-phase reactive power

$$Q_{ph(nl)} = \sqrt{\left(V_{ph(nl)}I_{ph(nl)}\right)^2 - \left(\frac{P_{nl}}{3}\right)^2} = 2\pi f \left(L_m + L_{ls}\right)I_{ph(nl)}^2$$

$$\Rightarrow L_m + L_{ls} = \frac{Q_{ph(nl)}}{2\pi f \, I_{ph(nl)}^2}$$

Blocked Rotor Test

Blocked Rotor Test

- Measurements: three-phase $P_{\rm br}$ (or power factor), $V_{\rm ph(br)}$, $I_{\rm ph(br)}$.
- Rotor resistance is derived as follows:

• Knowing the resistances the lumped inductances can be determined as follows:

$$Z_{ph(br)} = \sqrt{(R_s + R'_r)^2 + [2\pi f (L_{ls} + L'_{lr})]^2}$$

$$\Rightarrow L_{ls} + L'_{lr} = \frac{\sqrt{Z_{ph(br)}^2 - (R_s + R'_r)^2}}{2\pi f}$$

- Split stator/rotor leakage 40/60 or 50/50 depending on the motor class.
- Thus, all parameters now known.

Characteristics at Rated Voltage and Rated Frequency

- Nearly linear near ω_{syn}
- At higher slip (ω_m smaller) leakage inductances and stator resistance reduce torque $T_{em} = k_t \hat{B}_{ms} \hat{I}' \sin(\pi/2 - \theta_r)$
- High currents at low speeds (start-up condition) EE4001. UCC

Motor Currents, Efficiency, Power Factor As a Function of Load

Typical for design B 10 kW, 4 pole, three-phase induction motor

Useful Equations (lumping core and friction and windage*)

$$P_{EM}$$
 = electromechanical power

= useful output power + core friction and windage= $T_{\rm EM}\omega_m$

$$=P_m + P_{\text{fw}} = T_m \omega_m + T_{\text{cfw}} \omega_m$$

$$=3R_r'\left(\frac{1-s}{s}\right)I_r'^2$$

$$P_{AG}$$
 = airgap power

= electromechanical power + rotor loss

$$=P_{EM}+P_{Rr}=T_{EM}\omega_{syn}$$

$$=3R_r'\left(\frac{1-s}{s}\right)I_r'^2+3R_r'I_r'^2=\frac{3R_r'I_r'^2}{s}$$

*Core loss is a stator loss and should be moved there if sufficient information exists.

EE4001, UCC

Useful Equations-II

$$P_{in}$$
 = input power
= airgap power + stator cu and core loss= $T_{EM}\omega_{syn}$
= $P_{AG} + P_{Rs}$
= $\frac{3R_r' I_r'^2}{s} + 3R_s I_s^2$

Reduced Eq. Cct for Operation Close to Rated

Line Start

- When started directly off the line, induction motor draws a very large current (approx. 8 x rated)
- At the same time the torque available to accelerate the motor/load is limited
- Motor can quickly overheat Solution: Reduced voltage soft start

Current vs. Speed

EE4001, UCC

Accelerating Torque

TOC

Reduced Voltage Starting (Soft Start) Energy Savings in Lightly – Loaded Machines

- ☐ Circuit applies reduced voltage to motor during start-up to avoid large currents and over heating
- ☐ Circuit also used to reduce voltage to motor under light load steady state conditions. This improves efficiency

