Brooklyn Bridge Pedestrian Counts

Dong Ding Junfeng Luo

Group 14

Topic

- We are investigating the volume of pedestrians walking through Brooklyn Bridge.
- From this research, we will predict the number of people going through the Bridge when we know the weather and the time.
- This research will be potentially helpful for:
 - The department of transportation to regulate traffic.
 - The peddlers who would like to know how much snacks and drinks to prepare.

Source of Data

NYC OpenData

- https://data.cityofnewyork.us/Transportation/Brookl yn-Bridge-Automated-Pedestrian-Counts-Demons/6fi9-q3ta/data
- "The NYC Open Data portal is a powerful tool that ensures transparency and fosters civic innovation within our City to help improve the quality of life for all New Yorkers."

Data

- The data is collected by automatic counter. The counter is located on the Manhattan approach of the Brooklyn Bridge.
- The data is recorded from 10/1/2017 to 7/31/2018.
- The interval of the time is 1 hour.

Factors

- Which factors influence the volume of pedestrians?
 - Weather (rain, cloud, snow)
 - Time (morning, noon, evening)
 - Temperature
 - Special events
 - Direction (Manhattan, Brooklyn)
 - Unknown factors

Methods

Rules: Bayesian Rule

Packages: Stan, ggplot, dpylr

Daily Curve

The volume of pedestrians fluctuates in a single day.

We can see that most people cross the bridge between 10am and 8pm.

Which model we use?

- Histogram are drawn with different number of bars (same data).
- Gaussian distribution or Poisson distribution are both applicable.

Gaussian Model for Weather

Good Weather \sim N(μ =1741, σ =736)

Bad Weather \sim N(μ =1368, σ =738)

Poisson Model for Weather

Good weather \sim Pois(λ =1741)

Bad weather \sim Pois(λ =1368)

Simulation for Weather

actual data of good weather

simulation of bad weather parameter

actual data of bad weather

- Does Temperature Influence the Traffic?
- Yes

Higher temperature, more pedestrians

Gaussian Model for Weather

High Temperature \sim N(μ =2001, σ =507)

Medium Temperature \sim N(μ =1812, σ =749)

Low Temperature \sim N(μ =1128, σ =623)

Poisson Model for Weather

High Temperature \sim Pois(λ =2001)

Medium Temperature \sim Pois(λ =1812)

Low Temperature \sim Pois(λ =1128)

Simulation for Temeprature

