

» Bài tập:

- \Box 1) Cho E₁₇(1,1); G = (0,1)
 - Khóa riêng của A, B lần lượt là: n_A = 3; n_B = 4. Tính KCK của A, B.
 - Giả sử người A cần gửi tin cho B, hãy mô phỏng quá trình mã hóa bản tin P_M = (10,12) và giải mã bản mã thu được. Cho trước giá trị ngẫu nhiên k = 2.
- \Box 2) Cho $E_{11}(1, 6)$; G = (2,7)
 - Khóa riêng của B $n_B = 7$. Tính KCK của B.
 - Giả sử người A cần gửi tin cho B, hãy mô phỏng quá trình mã hóa bản tin P_M = (10, 9) và giải mã bản mã thu được. Cho trước giá trị ngẫu nhiên k = 3.

« Giải:

- □ Tính khóa công khai của A & B: $P_A = n_A \cdot G = 3G$; $P_B = n_B \cdot G = 4G$
- $P_A = n_A \cdot G = 3G = 2G + G$
 - $2G = (0, 1) + (0, 1) = (x_3, y_3)$
 - $\lambda = \frac{3.x_1^2 + 1}{2y_1} = \frac{3.0^2 + 1}{2} = 1.2^{-1} \mod 17 = 9$
 - $x_3 = \lambda^2 x_1 x_2 = 9^2 0 0 = 13$; $y_3 = \lambda(x_1 x_3) y_1 = 9.(0 13) 1 = -118 \mod 17 = 1$
 - Vậy **2G** = **(13, 1)**
 - Tính 3G = 2G + G = $(13, 1) + (0, 1) = (x_3, y_3)$
 - $\lambda = \frac{y_2 y_1}{x_2 x_1} = \frac{1 1}{0 13} = 0$
 - $x_3 = \lambda^2 x_1 x_2 = 0^2 13 0 = 4$; $y_3 = \lambda(x_1 x_3) y_1 = 0.(13 4) 1 = -1 \mod 17 = 16$
 - Vậy **3G = (4, 16)**

- * Tính $P_B = 4G = 3G + G$ (hoặc 2G + 2G)
 - \Box 3G + G = (4, 16) + (0, 1) = (x₃, y₃)
 - $\lambda = \frac{y_2 y_1}{x_2 x_1} = \frac{1 16}{0 4} = 15.4^{-1} \mod 17 = 15.13 \mod 17 = 8$
 - $x_3 = \lambda^2 x_1 x_2 = 8^2 4 0 = 9$; $y_3 = \lambda(x_1 x_3) y_1 = 8.(4 9) 16 = -5 \mod 17 = 12$
 - Vậy 4G = (9, 12)
- * A gửi P_M cho $B \Rightarrow A$ lấy khóa công khai của B để mã hóa, với k = 2.

Ta có
$$P_C = [kG, P_M + 2P_B] = [(13, 1); ((10,12) + 2(9,12))]$$

- * Tính 2(9, 12) = (9, 12) + (9, 12) = (x_3, y_3)
 - $\lambda = \frac{3.x_1^2 + 1}{2y_1} = \frac{3.9^2 + 1}{2.12} = 122.12^{-1} \mod 17 = 122.10 \mod 17 = 13$
 - $x_3 = \lambda^2 x_1 x_2 = 13^2 9 9 = 15$; $y_3 = \lambda(x_1 x_3) y_1 = 13.(9 15) 12 = -5 \mod 17 = 1$
 - Vậy **2(9, 12) = (15, 12)**
- * Tính (10, 12) + (15, 12) = (x_3, y_3)
 - $\lambda = \frac{y_2 y_1}{x_2 x_1} = \frac{12 12}{15 10} = 0$
 - $x_3 = \lambda^2 x_1 x_2 = 0^2 10 15 = 9$; $y_3 = \lambda(x_1 x_3) y_1 = 0.(10 9) 12 = 5$
 - Vậy (10, 12) + (15, 12) = (9, 5)
- * Ta có: $P_C = [kG, P_M + 2P_B] = [(13, 1); (9, 5)]$

- * Giải mã: $P_C = [(13, 1); (9, 5)] = [P_1, P_2]$
 - \Box B dùng khóa riêng n_B của mình để tính P_M = P₂ n_B P₁ = (9, 5) 4(13, 1)
 - \Box Tính 4(13, 1) = 2(13, 1) + 2(13, 1) = (15, 12) vì
 - = 2(13, 1) = 2.2G = 4G = (9, 12)
 - = 2(13, 1) + 2(13, 1) = 2(9, 12) = (15, 12)
 - $Tinh P_M = (9, 5) (15, 12) = (9, 5) + (15, -12) = (9, 5) + (15, 5)$
 - $\lambda = \frac{y_2 y_1}{x_2 x_1} = \frac{5 5}{15 9} = 0$
 - $x_3 = \lambda^2 x_1 x_2 = 0^2 9 15 = 10$; $y_3 = \lambda(x_1 x_3) y_1 = 0.(9 10) 5 = 12$
 - Vậy P_M = (10, 12)