

Amendments to the Claims:

This listing of the claims will replace all prior versions, and listings, of the claims in the application:

1. Cancelled.

1 2. (Currently Amended) The method of claim 111, wherein the step of forming a plurality of clusters further comprises the steps of:

3 advertising an availability of each of said plurality of cluster-heads; and

4 establishing a communication path between each of said plurality of cluster-heads and at least one of the plurality of nodes, not operating as a cluster-head, to form a cluster.

1 3. (Previously Presented) The method of claim 2 wherein the step of establishing a communication path between the cluster-head and each of the at least one of the plurality of nodes comprises the steps of:

4 transmitting a status signal from each one of said plurality of cluster-heads;

5 receiving at each of the plurality of nodes one or more of the status signals;

6 comparing, at each of the plurality of nodes, not operating as a cluster-head, signal strengths of the received one or more status signals; and

7 joining a particular one of the cluster-head's cluster as a result of the comparison.

1 4. (Previously Presented) The method of claim 3, wherein the step of joining a particular cluster is based on a determination, by at least one of the plurality of nodes, of the cluster-head transmitting the status signal having a highest received signal strength.

1 5. (Original) The method of claim 2 further comprising the steps of:

2 generating at the cluster-head, a schedule having allotted slots for transmission;

3 transmitting data from at least one node to the cluster-head during the allotted slots;

4 receiving data in the cluster-head that are transmitted from at least one node; and
5 transmitting data from the cluster-head to the base station.

1 6. (Original) The method of claim 5, wherein the step of receiving data in the cluster-head
2 further comprises the step of reducing data transmission latency by using application-specific
3 data aggregation to reduce the amount of redundant data sent to the base station.

1 7. (Original) The method of claim 5, wherein the step of receiving data in the cluster-head
2 further comprises the step of increasing the signal to noise ratio of the data sent to the base
3 station by using application-specific data aggregation.

1 8. (Original) The method of claim 5, wherein the step of generating a schedule uses a time
2 division multiplexing protocol.

1 9. (Original) The method of claim 5, further comprising the step of beamforming the data
2 received from the plurality of nodes in the cluster.

10. Cancelled

1 11. (Currently Amended) AThe method of claim 10, forming a network from a plurality of
2 nodes and a base station, the method comprising the steps of:
3 (a) identifying at least one node of the plurality of nodes to operate as a cluster-head including
4 randomly selecting one of the plurality of nodes to be a cluster-head;
5 (b) forming a plurality of clusters from the plurality of nodes, each of the clusters having at least
6 one cluster-head;
7 (c) transmitting data from at least one node in at least one of the plurality of clusters to the
8 cluster-head in that cluster;
9 (d) transmitting data from at least one cluster-head to the base station; and

10 (e) identifying a different one of the plurality of nodes to operate as a cluster-head, wherein the
11 step of randomly selecting one of the plurality of nodes to be a cluster-head is based on a
12 probabilistic function of an amount of energy remaining in each of the plurality of nodes.

1 12. (Currently Amended) The method of claim 11+, wherein the step of forming a plurality of
2 clusters further comprises the steps of:

3 collecting data on a status of each of the plurality of nodes;
4 assigning each of the plurality of nodes to a particular one of a plurality of clusters.

13. Cancelled.

14. Cancelled.

1 15. (Currently Amended) The method of claim 18+4 wherein the step of electing a plurality of
2 cluster-heads is performed by the base station.

1 16. (Previously Presented) The method of claim 15 wherein the base station elects cluster-heads
2 by minimizing an energy required during the first round of data transmission.

1 17. (Currently Amended) The method of claim 18+4 wherein:
2 during the first round of data transmission, each of the at least one node in each cluster
3 transmits data to the cluster-head of that cluster; and
4 each cluster-head transmits data to the base station during the first transmission round.

1 18. (Currently Amended) A method of claim 14 for forming a network from a base station and a
2 plurality of nodes, the method further comprising the steps of:
3 electing a cluster-head from the plurality of nodes;
4 establishing a communication path between first ones of the plurality of nodes and the
5 cluster-head to form a cluster;
6 establishing a first round of data transmission;

7 transmitting from the first ones of the plurality of nodes to the cluster-head during the
8 first data transmission round; and
9 transmitting data from the cluster-head to the base station during the first data transmission
10 round.

11 establishing a second round of data transmission;
12 determining whether each node of the plurality of nodes has operated as a cluster-head;
13 electing a second set of cluster-heads wherein each node in the second set of cluster-
14 heads has never before been a cluster-head; and
15 forming a second set of clusters about the second set of cluster-heads;
16 electing a plurality of cluster-heads corresponding to a first set of cluster-heads for use
17 during the first round of data transmission; and
18 establishing a communication path between each of the plurality of cluster-heads and at
19 least one node of the plurality of nodes to form a first plurality of clusters..

1 19. (Currently Amended) The method of claim 18 further comprising the steps of:
2 in each of a second set of clusters;
3 transmitting data from each node in the second set of clusters to the respective cluster
4 heads; and
5 transmitting data from each of the second set of cluster-heads to the base station.

1 20. (Currently Amended) AThe method of claim 14 further for forming a network from a base
2 station and a plurality of nodes, the method comprising the steps of :
3 electing a cluster-head from the plurality of nodes;
4 establishing a communication path between first ones of the plurality of nodes and the
5 cluster-head to form a cluster;
6 establishing a first round of data transmission;
7 transmitting from the first ones of the plurality of nodes to the cluster-head during the
8 first data transmission round;
9 transmitting data from the cluster-head to the base station during the first data
10 transmission round;

1 establishing a second round of data transmission;
2 determining an amount of energy remaining in each node of the plurality of nodes;
3 electing a second set of cluster-heads, wherein the election is based on the amount of
4 energy remaining in each node of the plurality of nodes; and
5 forming a second set of clusters about the second set of cluster-heads;
6 electing a plurality of cluster-heads corresponding to a first set of cluster-heads for use
7 during the first round of data transmission; and
8 establishing a communication path between each of the plurality of cluster-heads and at
9 least one node of the plurality of nodes to form a first plurality of clusters.

21. Cancelled.

1 22. (Currently Amended) The network according to claim 2624, wherein each of the plurality of
2 nodes is in electrical communication with a sensor.

1 23. (Currently Amended) The network according to claim 2624, wherein each of said plurality
2 of nodes further comprises a sleep mode.

1 24. (Currently Amended) The network according to claim 2624, wherein each of said plurality
2 of nodes further comprises an adjustable transmission energy level.

1 25. (Currently Amended) The network according to claim 2624, wherein each of said plurality
2 of nodes further comprises a low energy mode, and a high energy mode.

1 26. (Currently Amended) AThe network according to claim 21 comprising:
2 a base station; and
3 a plurality of nodes comprising:
4 a cluster-head selector processor; and
5 a cluster selector processor, each cluster comprised of a subset of said plurality of
6 nodes, and one of each of said subset of said plurality of nodes temporarily acting as a cluster-

7 head, wherein each of said plurality of nodes has a limited amount of remaining energy; and
8 wherein the cluster-head selector processor selects each of said plurality of nodes as a
9 cluster-head based on the limited amount of remaining energy in each of said plurality of nodes
10 and a number of times each of said plurality of nodes has operated as a cluster head.

1 27. (Currently Amended) The network according to claim 2621, wherein each of said plurality
2 of nodes further comprises a signal strength processor.

1 28. (Original) The network according to claim 27, wherein the cluster selector processor
2 determines the cluster selection in response to a signal from the signal strength processor.

1 29. (Currently Amended) The network according to claim 2621, wherein the base station selects
2 each of said plurality of nodes to temporarily act as a cluster-head.

1 30. (Currently Amended) The network according to claim 2621, wherein the base station
2 determines which of each of said plurality of nodes is included in each temporary cluster.