

Building Blocks

1. AND gate (c = a . b)

а	b	c=a.b
0	0	0
0	1	0
1	0	0
1	1	1

2. OR gate (c = a + b)

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

3. Inverter ($c = \bar{a}$)

а	c = ā
0	1
1	0

4. Multiplexor ☐
(if d = = 0, c = a; ☐
else c = b)

d	С
0	а
1	b

Full Adder

- Sum = parity(a, b, CarryIn)
 - $a \times c + a \cdot b \cdot c = a \times c + b \times c = a \times c$
- CarryOut = majority(a, b, CarryIn)
 - b•CarryIn + a•CarryIn + a•b + a•b•CarryIn ≡
 - b•Carryln + a•Carryln + a•b

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

One-Bit ALU

Building a 32-Bit ALU

Chain 32 1-Bit ALUs

Supporting Subtraction

- Subtraction is equivalent to adding the inverse
 - In two's complement $a + \bar{b} + 1$

Overflow and SLT

- Modify last 1-Bit ALU
 - SLT set if (a < b) ⇔ a b < 0
 - Check sign bit after subtraction
 - Check overflow in last 1-Bit ALU
 - Need to take overflow into account for SLT

32-Bit ALU with Sub and SIt

Support Beq

•
$$a = b \Leftrightarrow a - b = 0$$

Zero = (Result31 + · · · + Result0)

Control	Function
000	and
001	or
010	add
110	sub
111	slt

Exercise 5: 32-bit ALU

Using the diagram on the next page, add necessary connections and show the values of all signals given that the two numbers at the inputs of the ALU are A = 1 and B = 3, and Binvert = 1, and Operation = 3.

