ΑΛΓΕΒΡΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΕΡΓΑΣΙΑ 2

Άσχηση 1. (α) Έστω η μετάθεση της S_7 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & a & 3 & 7 & 4 & b \end{pmatrix}.$$

Να βρεθούν τα a,b ώστε η σ να είναι άρτια.

(β) Έστω η μετάθεση της S_7 :

$$\tau = (1, 2)(4, 5, 6, 3)(3, 7)(5, 6, 3, 4).$$

- (i) Να αναλυθεί η τ σε γινόμενο ξένων κύκλων και σε γινόμενο αντιμεταθέσεων.
- (ii) Να βρεθεί η τάξη των τ και τ^2 .
- (iii) Να βρεθεί η τ^{-1} .

Άσκηση 2. Εφαρμόσατε το Θεώρημα Cayley γιά τις ομάδες \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, D_4 και Q_8 (τα quaternions).

Άσκηση 3. (α) Να δοθεί ένα στοιχείο της S_9 τάξης 20.

(β) Να δειχθεί ότι δεν υπάρχει στοιχείο της S_9 τάξης 18.

Άσκηση 4. Έστω $n\geq 3$. Να δειχθεί ότι η εναλλάσσουσα υποομάδα A_n των άρτιων μεταθέσεων της S_n παράγεται από τα ζεύγη αντιμεταθέσεων, δηλαδή από μεταθέσεις της μορφής (i,j)(k,l) όπου $1\leq i< j\leq n$ και $1\leq k< l\leq n$. Στην συνέχεια να δειχθεί ότι η A_n παράγεται από τους 3-κύκλους.

Άσκηση 5. (α) Έστω G, G' ομάδες με |G|=40 και |G'|=28 και έστω $f:G\to G'$ ομομορφισμός. Να βρεθούν οι δυνατές τάξεις για τον πυρήνα και για την εικόνα του f.

(β) Να κατασκευασθεί ένας μη τετριμμένος ομομορφισμός από την ομάδα \mathbb{Z}_{40} στην ομάδα \mathbb{Z}_{28} .

Άσκηση 6. Βρείτε όλες τις μη ισόμορφες αβελιανές ομάδες G τέτοιες ώστε $|G| \leq 30$ και $g^{12}=1$ για κάθε $g \in G$.

Άσκηση 7. α) Δ είξτε ότι ο 12 δεν διαιρεί τον αριθμό 7^{402} .

β) Βρείτε το υπόλοιπο της διαίρεσης του αριθμού 3111 δια 7.

Παράδοση: Τετάρτη 22 Ιανουαρίου 2020 (δεν θα δοθεί παράταση)

Σ. Λαμπροπούλου