PARCEL: Proxy Assisted BRowsing in Cellular networks for Energy and Latency reduction

Ashiwan Sivakumar¹, Shankaranarayanan PN¹, Vijay Gopalakrishnan², Seungjoon Lee^{3*}, Sanjay Rao¹ and Subhabrata Sen²

Purdue University
AT&T Labs – Research
Two Sigma

* Work done when author was affiliated with AT&T Labs

Mobile Web Browsing in Cellular Networks

Mobile web browsing technology:

slow and power-hungry

 E.g. Our measurements on a subset of Alexa top 500 pages – 6X longer

What are the drivers of poor performance?

Characteristics of Modern Webpages

100's of objects from many domains

40% of Alexa top 500 pages : >= 100 objects

95% of obj. in Alexa top 500 pages : < 386 KB

 Dynamic objects (e.g. JavaScript-generated) supporting rich interactivity

Why Web Downloads Are Slow in Cell Networks?

Why Web Downloads Have High Radio Energy Usage?

LTE Radio Resource Control State Machine

- Cellular radio interface -> a growing component of the total device power
- Complex state machine for energy efficiency
- Different states with different power consuming modes
- Transition to IDLE -> typically >10sec inactivity (hard in web downloads)

- High radio energy usage caused by
 - ✓ Long page load times
 - √ Frequent transitions inside high power RRC_CONNECTED.

Contributions

- PARCEL a proxy-assisted mobile web browsing architecture
- Key distinction from existing approaches Judicious refactoring of web browsing functionality
- Benefits over traditional browsers
 - √ Significantly lower 'Onload' latencies
 - Onload: Browser triggers this event after receiving all objects to render an initial version of the page
 - √ Significantly lower radio energy usage

Outline

- Existing Solutions
- PARCEL Design
- Evaluation Methodology
- Results and Conclusion

Existing Cloud-heavy Thin-client Approaches

- All browsing functionality in the proxy [SkyFire, Opera Mini, Zhao et al ICDCS'11]
- All user interactions (e.g. mouse clicks) communicated to the proxy
 - JavaScript to handle the click executed only in the proxy
- User-interactions incur higher latency and radio energy consumption [Sivakumar et al HotMobile'14]

Other Related Approaches

- New application protocols (e.g. SPDY)
 - All browsing functionality in the client
 - Multiplexes multiple requests and responses unlike HTTP
 - Dependencies in web pages => SPDY poor performance in real world [Erman et al CoNEXT'13, Wang et al NSDI'14]
- Page transformation and compression (e.g. Pagespeed)
 - Compression by itself does not always result in latency and radio energy savings [Sivakumar et al HotMobile'14]
- Split-browsing architecture (e.g. Amazon Silk)
 - Black-box, proprietary

Outline

- Existing Solutions
- PARCEL Design
- Evaluation Methodology
- Results and Conclusion

Key Design Considerations of PARCEL

- PARCEL Design Considerations:
 - ✓ Minimize per-object HTTP request-response
 - ✓ Responsive and energy-efficient client interaction
 - ✓ Cellular-friendly and latency-sensitive data transfer

PARCEL Design and Benefits

Latency-efficient Data Transfer Strategy (IND)

Transfer individual objects as they arrive from the server

Energy-efficient Bundled Data Transfer Strategy (X)

What is the Right Bundle Size?

- Smaller bundle sizes -> latency-efficient
- Larger bundle sizes -> radio energy savings
- More generally depends on
 - Web page size (s)
 - Network bandwidth (B)
 - LTE radio power model parameter (α)
- Our analysis shows, optimal bundle size, $b^* = \alpha \sqrt{sB}$ (Measured $\alpha = 0.74$)
 - E.g. For a 2MB webpage, with LTE speed of 6Mbps optimal bundle size is 0.9 MB

Practical Issues and Solutions

- How to make the proxy aware of client cache content and cookies?
 - Proxy maintains per-client state
 - Tracks object versions to avoid redundant object transfer
- How to make the proxy respect client-specific customization to pages?
 - Browser sends attributes like UA, screen resolution and the proxy mimics the client
- How to handle HTTPS traffic at the proxy?
 - Personalized trusted proxy setting up independent secure connections

Prototype Implementation Details

- Developed the proxy as a Firefox add-on (uses the parser and JavaScript engine of Firefox)
 - 1.5K lines of JavaScript code

- Developed a custom parcel client application using android webview to render
 - 2K lines of Java code

Outline

- Existing Solutions
- PARCEL Design
- Evaluation Methodology
- Results and Conclusion

Evaluation Setup and Methodology

- Workload : Subset of Alexa top 500 pages
- To minimize page variability
 - Replay recorded pages with WPR
- To minimize radio network variability
 - Multiple back-to-back runs (DIR and PARCEL) in the night
 - Discard runs with poor signal strength
 - Only consider runs with all LTE (discard 3G/LTE hand-off)
- Also evaluated with real web servers for realism

Metrics Compared

- Onload Time (OLT)
 - Time to download all objects until Onload event measured from packet trace collected at the mobile client
- Total Download Time (TLT)
 - Time to download all objects beyond onload measured for the experiment duration
- Total Radio Energy Usage
 - Compute LTE radio power consumption using open source ARO tool [Qian et al MobiSys'11]

Outline

- Existing Solutions
- PARCEL Design
- Evaluation Methodology
- Results and Conclusion

Latency Benefits With PARCEL

Understanding Latency Benefits

✓ Minimizing round trips -> reduced client latency

✓ Faster object identification and fetch

Radio Energy Usage With PARCEL

Comparing With Cloud-heavy Approaches

PARCEL Performs Well Under User Interaction

Local JS execution avoids unnecessary network communication

Summary of Other Evaluation Results

Bundling benefits

- All bundling strategies and baseline (IND) benefit over DIR
- For large pages (>1MB) bundling provides additional benefits and smaller bundle size (512 KB) better
 - E.g. With < 3% increase in OLT and > 20% radio energy savings
- For small pages all bundling strategies perform similar to baseline PARCEL (IND)

Real web servers

Median onload time reduction of 3X

Conclusions

- PARCEL optimizes mobile web download process using proxy
- Judicious browsing functionality refactoring
 - Object identification and fetch at the proxy
 - Client executes JS locally to support interaction
- <u>Latency-efficient cellular-friendly data transfer</u> schemes for radio energy savings
- Significant latency and energy reduction in live LTE settings

Backup

Table Comparing PARCEL to Existing Proxy-Based Approaches

	HTTP proxies	SPDY proxies	Cloud browsers	PARCEL
# of HTTP requests	Per object	Per object	Single	Single
Object identification and Fetch	Client	Client	Proxy	Proxy
Interactive JS	Client	Client	Proxy	Client
Cellular- friendly transfer	No	No	No	Yes

Bundling Benefits Beyond Baseline PARCEL

Smaller bundle sizes better (lower OLT increase and provide radio energy savings)