Optimizing barrier removal for human and environmental water use in the Bear River watershed

Greg Goodrum
CEE 6410
10/26/2020

Human objectives

Patty Pickett

Environmental objectives

Research question

How can we optimize barrier removal to increase connected aquatic habitat for fish and minimize water scarcity for people?

Build on work from *Kraft, Rosenberg, and Null* (2019)

Dual-objective model formulation

Obj 1: Maximize connected quality-weighted aquatic habitat

$$Max: Zhabitat = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{H_i * H_j}{1 + L_{ij}} * CR_{ij} * P_i * P_j + \sum_{i} H_i^2}{H_L^2}$$

Obj 2: Minimize water scarcity

$$Min: Zscarcity = \sum_{k} \frac{C_k}{max(C_k)} * B_k$$

Combine using weighted sum method:

$$Maximize Z = (1 - w) * Zhabitat - (w * Zscarcity)$$

Model application

- 1. Apply formulation to Bear River watershed, compare results to *Kraft, Rosenberg, and Null* (2019)
- 2. Adapt formulation to use the Dendritic Connectivity Index

Maximize: Zhabitat

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} * \frac{l_i}{L} \frac{l_j}{L} * 100 * CR_{ij}$$

Patty Pickett

