1N4148WTGH

Silicon Epitaxial Planar Switching Diode

Lead free product

Halogen-free type

Features

- · Fast switching speed
- · Ultra-small surface mount package
- For general purpose switching applications
- · High conductance

PINNING

PIN	DESCRIPTION	
1	Cathode	
2	Anode	

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit	
Non-Repetitive Peak Reverse Voltage	V_{RM}	100	V	
Reverse Voltage	V_R	75	V	
Average Rectified Forward Current	I _{F(AV)}	125	mA	
Forward Continuous Current	I _{FM}	250	mA	
Non-repetitive Peak Forward Surge Current at t = 1 µs at t = 100 ms	I _{FSM}	2	Α	
Power Dissipation	P_{tot}	150	mW	
Thermal Resistance Junction to Ambient Air	$R_{\theta JA}$	833	°C/W	
Operating Temperature Range	Tj	- 65 to + 150	°C	
Storage Temperature Range	T _{stg}	- 65 to + 150	°C	

Characteristics at Ta = 25 °C

Parameter	Symbol	Min.	Max.	Unit V
Reverse Breakdown Voltage at I _R = 1 µA	V _{(BR)R}	75		
Forward Voltage at I_F = 1 mA at I_F = 10 mA at I_F = 50 mA at I_F = 150 mA	V _F	- - - -	0.715 0.855 1 1.25	V
Peak Reverse Current at V_R = 75 V at V_R = 20 V at V_R = 75 V, T_J = 150 °C at V_R = 25 V, T_J = 150 °C	I _R	-	1 25 50 30	μΑ nA μΑ μΑ
Total Capacitance at V _R = 0 V, f = 1 MHz	C _T	<u> </u>	2	pF
Reverse Recovery Time at I_{rr} = 0.1 X I_R , I_F = I_R = 10 mA, R_L = 100 Ω	t _{rr}	=	4	ns

 $\label{eq:VR} V_{R}\text{, REVERSE VOLTAGE (V)}$ Fig. 4 Typical Capacitance vs. Reverse Voltage