

SpaceX Capstone
Data Science Track
in IBM SE4R program

Sigi Karg August 15, 2014

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- List Methodology
- Results
 - Data Collection from SpaceX website and Wikipedia
 - Data Wrangling using Exploratory Data Analysis and feature engineering
 - Data Visualization
- Interactive Maps and Dashboards
- Predictive Analysis using Machine Learning Algorithms
- Conclude increase of success rate from 2015 on and
- Decision tree algorithm achieves highest scores (87%)

INTRODUCTION

Motivation and background

- SpaceX Falcon 9 first stage landing prediction
- Cost savings because SpaceX can reuse the first stage.

Goal of the project

- Predict whether first stage of **SpaceX Falcon 9** will land successfully
- Use machine-learning (ML) algorithms to make predictions

METHODOLOGY

- Collecting data from SpaceX
- Web scraping records from Wikipedia
- Data wrangling performing Exploratory Data Analysis (EDA)
 - Exploring and Preparing Data
 - Data Visualization
 - SQL Database queries
- Interactive Visual Analytics
- Predictive analysis using Machine Learning algorithms

RESULTS - Data Collection

- Collecting data from SpaceX
 - Request data from RESTful API in JSON format
 - Normalize JSON data
 - Convert to Pandas dataframe
 - Replace missing data with mean value
- Web scraping records from Wikipedia
 - Request Wikipedia Falcon 9 launch records
 - Use Python BeautifulSoup package to parse HTML titles and table headers
 - Convert to Pandas dataframe

RESULTS - Data Wrangling

- Exploratory Data Analysis (EDA)
 - Find patterns in the data that could be used as label for training supervised ML models
 - Binary training labels indicating whether booster landed successfully or not
 - Setup Database and perform SQL queries
- Data preparation
 - Explore relationships between data features
 - Feature engineering
 - Investigate influence of PayloadMass, Orbit, or LaunchSite on mission success

RESULTS - Data Visualization

RESULTS - Map and Dashboard

- Interactive Visual Analytics with Folium
 - Mark all launch sites on a map
 - Mark the success/failed launches for each site on the map
 - Calculate the distances between a launch site to its proximities

RESULTS - Predictive Analysis

- Machine Learning Predictions
 - SVM, Classification Trees and Logistic Regression
 - GridSearch for hyperparameter optimization
 - Find the method performs best using test data
 - Accuracy metric
 - Confusion matrix
 - Classification trees achieve highest scores (87%)

CONCLUSION

- The success rate of booster landings increased substantially from 2015 to 2020
- The probability to recover the booster is larger for orbits further away from earth
- Launch site KSC LC-39A is most successful one
- Decision tree classifier is the best machine learning algorithm for this task.

Detailed Insights drawn from EDA

Flight Number vs. Launch Site

```
In [5]:
         # Plot a scatter point chart with x axis to be Flight Number and y axis to be the launch site, and hue to be the class value
         sns.catplot(y="LaunchSite", x="FlightNumber", hue="Class", data=df, aspect = 5)
         plt.xlabel("Flight Number", fontsize=20)
         plt.ylabel("Launch Site", fontsize=20)
         plt.show()
                   And the second of the contract
       Launch Site
         KSC LC 39A
                                                                      Flight Number
```

Payload Mass vs. Launch Site

```
In [6]:
         # Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to be the launch site, and hue to be the class
         sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df, aspect = 5)
         plt.xlabel("Payload Mass",fontsize=20)
         plt.ylabel("Launch Site",fontsize=20)
         plt.show()
                       したい あずばく みいした (1) ほうしゅ たま しゃく
      Launch Site
         KSC LC 39A
                                                                    Payload Mass
```

Success Rate vs. Orbit Type

```
df_groupby_orbits = df.groupby('Orbit').Class.mean()
grouped_orbits = df.groupby(by=['Orbit'])['Class'].mean().sort_values(ascending=False).reset_index()
fig, ax=plt.subplots(figsize=(12,6))
ax = sns.barplot(x = 'Orbit', y = 'Class', data=grouped_orbits)
ax.set title('Plot of success rate by class of each Orbits', fontdict={'size':12})
ax.set_ylabel('Class', fontsize = 10)
ax.set_xlabel('Orbits', fontsize = 10)
Text(0.5, 0, 'Orbits')
                                         Plot of success rate by class of each Orbits
 1.0
 0.8
 0.6
 0.4
 0.2
 0.0
        ES-L1
                   GEO
                              HEO
                                         SSO
                                                   VLEO
                                                              LEO
                                                                         MEO
                                                                                    PO
                                                                                              ISS
                                                                                                         GTO
                                                                                                                    SO
```

Orbit Type vs. Flight Number

```
# Plot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class value
sns.catplot(y="Orbit", x="FlightNumber", hue="Class", data=df, aspect = 5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Orbit", fontsize=20)
plt.show()
                                                        Flight Number
```

Orbit Type vs. Payload mass

```
# Plot a scatter point chart with x axis to be Payload Mass and y axis to be the Orbit, and hue to be the class value
sns.catplot(y="Orbit", x="PayloadMass", hue="Class", data=df, aspect = 5)
plt.xlabel("PayloadMass", fontsize=20)
plt.ylabel("Orbit", fontsize=20)
plt.show()
                  2000
                                                 6000
                                                                                             12000
                                                                                                            14000
                                                           PayloadMass
```

Launch Success Yearly Trend

Launch Sites

```
task_1 = '''
          SELECT DISTINCT Launch_Site FROM SPACEXTABLE
  cur.execute(task_1)
  for row in cur:
      print(f'row = {row}')
row = ('CCAFS LC-40',)
row = ('VAFB SLC-4E',)
row = ('KSC LC-39A',)
row = ('CCAFS SLC-40',)
```

Launch Sites

```
task_1 = '''
          SELECT DISTINCT Launch_Site FROM SPACEXTABLE
  cur.execute(task_1)
  for row in cur:
      print(f'row = {row}')
row = ('CCAFS LC-40',)
row = ('VAFB SLC-4E',)
row = ('KSC LC-39A',)
row = ('CCAFS SLC-40',)
```

Launch Sites beginning with CCA

```
task 2 = '''
         SELECT *
         FROM SPACEXTABLE
         WHERE Launch Site LIKE 'CCA%'
         LIMIT 5
         111
 cur.execute(task 2)
 for row in cur:
     print(f'row = {row}')
row = ('2010-06-04', '18:45:00', 'F9 v1.0 B0003', 'CCAFS LC-40', 'Dragon Spacecraft Qualification Unit', 0, 'LEO', 'SpaceX',
'Success', 'Failure (parachute)')
row = ('2010-12-08', '15:43:00', 'F9 v1.0 B0004', 'CCAFS LC-40', 'Dragon demo flight C1, two CubeSats, barrel of Brouere che
ese', 0, 'LEO (ISS)', 'NASA (COTS) NRO', 'Success', 'Failure (parachute)')
row = ('2012-05-22', '7:44:00', 'F9 v1.0 B0005', 'CCAFS LC-40', 'Dragon demo flight C2', 525, 'LEO (ISS)', 'NASA (COTS)', 'S
iccess', 'No attempt')
row = ('2012-10-08', '0:35:00', 'F9 v1.0 B0006', 'CCAFS LC-40', 'SpaceX CRS-1', 500, 'LEO (ISS)', 'NASA (CRS)', 'Success', '
No attempt')
row = ('2013-03-01', '15:10:00', 'F9 v1.0 B0007', 'CCAFS LC-40', 'SpaceX CRS-2', 677, 'LEO (ISS)', 'NASA (CRS)', 'Success',
'No attempt')
```

Total Payload Mass by NASA

```
task_3 = '''
          SELECT SUM(PAYLOAD_MASS__KG_)
          FROM SPACEXTABLE
          WHERE Customer LIKE 'NASA (CRS)'
  cur.execute(task_3)
  for row in cur:
      print(f'row = {row}')
row = (45596,)
```

Average Payload Mass with F9 v1.1

```
task_4 =
          SELECT AVG(PAYLOAD_MASS__KG_)
          FROM SPACEXTABLE
          WHERE Booster_Version = 'F9 v1.1'
  cur.execute(task 4)
  for row in cur:
      print(f'row = {row}')
row = (2928.4,)
```

First successful landing in ground pad

```
task_5 = '''
          SELECT MIN(Date)
          FROM SPACEXTABLE
          WHERE Landing Outcome LIKE 'Success (ground pad)'
  cur.execute(task_5)
  for row in cur:
      print(f'row = {row}')
row = ('2015-12-22',)
```

Successful Drone Ship Landing with Payload between 4000 and 6000

```
task 6 = '''
          SELECT Booster_Version
          FROM SPACEXTABLE
          WHERE Landing Outcome = 'Success (drone ship)'
              AND PAYLOAD MASS KG > 4000
             AND PAYLOAD MASS KG < 6000
  cur.execute(task 6)
  for row in cur:
      print(f'row = {row}')
row = ('F9 FT B1022',)
row = ('F9 FT B1026',)
row = ('F9 FT B1021.2',)
row = ('F9 FT B1031.2',)
```

Total Number of Successful and Failure Mission Outcomes

```
task 7a = '''
          SELECT COUNT(Mission Outcome)
          FROM SPACEXTABLE
          WHERE Mission Outcome LIKE 'Success%'
  cur.execute(task 7a)
  for row in cur:
      print(f'success = {row}')
  task 7b = '''
          SELECT COUNT(Mission Outcome)
          FROM SPACEXTABLE
          WHERE Mission Outcome LIKE 'Failure%'
  cur.execute(task 7b)
  for row in cur:
      print(f'failure = {row}')
success = (100,)
failure = (1,)
```

Boosters Carried Maximum Payload

```
task 8 = '''
          SELECT Booster Version, PAYLOAD MASS KG
          FROM SPACEXTABLE
          WHERE PAYLOAD MASS KG = (
                                  SELECT MAX(PAYLOAD MASS KG )
                                  FROM SPACEXTABLE
          ORDER BY Booster Version
  cur.execute(task 8)
  for row in cur:
      print(f'row = {row}')
row = ('F9 B5 B1048.4', 15600)
row = ('F9 B5 B1048.5', 15600)
row = ('F9 B5 B1049.4', 15600)
row = ('F9 B5 B1049.5', 15600)
row = ('F9 B5 B1049.7', 15600)
row = ('F9 B5 B1051.3', 15600)
row = ('F9 B5 B1051.4', 15600)
row = ('F9 B5 B1051.6', 15600)
row = ('F9 B5 B1056.4', 15600)
row = ('F9 B5 B1058.3 ', 15600)
row = ('F9 B5 B1060.2 ', 15600)
row = ('F9 B5 B1060.3', 15600)
```

2015 Failure Launch Records

```
task 9 = '''
          SELECT Booster_Version, Launch_Site, Landing_Outcome, Date
          FROM SPACEXTABLE
          WHERE Landing_Outcome LIKE 'Failure (drone ship)'
              AND Date BETWEEN '2015-01-01' AND '2015-12-31'
          111
  cur.execute(task 9)
  for row in cur:
      print(f'row = {row}')
row = ('F9 v1.1 B1012', 'CCAFS LC-40', 'Failure (drone ship)', '2015-01-10')
row = ('F9 v1.1 B1015', 'CCAFS LC-40', 'Failure (drone ship)', '2015-04-14')
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

9]:		landingoutcome	count
	0	No attempt	10
	1	Success (drone ship)	6
	2	Failure (drone ship)	5
	3	Success (ground pad)	5
	4	Controlled (ocean)	3
	5	Uncontrolled (ocean)	2
	6	Precluded (drone ship)	1
	7	Failure (parachute)	1

Launch Site Analysis

Success counts for all launch sites

SpaceX Launch Records Dashboard

All Sites

Total Success Launches By all sites

Launch site with highest launch success ratio

SpaceX Launch Records Dashboard

KSC LC-39A

Total Success Launches for site KSC LC-39A

Payload range (Kg):

Launch Outcome for all sites and all Payloads

Launch Outcome for all sites and Payloads between 2000 and 7000

Map with Launch Sites

Distance to coast

Success/Failed launches for selected site

Predictive Analysis

Classification Accuracy

Best model is DecisionTree with a score of 0.8732142857142856

