

A/B Testing Mekargo.id Website of Mekar PT Sampoerna Wirausaha with Bayesian Inference and Pymc3

ALVIAN DWI KURNIANTO
92216007
BUSINESS INFORMATION SYSTEM
SUPERVISOR: DR. Setia Wirawan

OUTLINE

INTRODUCTION

- Background
- Problem Identification
- Scope of Problem
- Research Purposes
- · Research Benefits

RESULT AND DISCUSSION

- Identifying Problems
- Defining Website Measurement
- Developing Hypothesis
- Developing & Testing Page Variation
- Analyzing Test Results

CONCLUTION AND SUGGESTION

- Conclusion
- Suggestion

BACKGROUND

- Small Medium Enterprise (SMEs) has an important role in encouraging the growth of the Indonesian economy.
- Currently, SMEs have been the mainagenda of Indonesia's economic development
- The most prominent issue of SMEs involves providing business financing or business capital
- However, to partner with banks, small businesses are required to present business proposals that are feasible or feasible and profitable
- Mekar provides solutions to SMEs and other Consumers to get Financial Services Access or Capital in Indonesia.

PROBLEM IDENTIFICATION

The problem discussed in this research is to determine which version of mekargo.id website at PT Mekar Sampoerna Wirausaha with A / B testing which become the best version with bayesian inference method with pymc3 tools.

SCOPE OF PROBLEM

- 1. The object of research is the website mekargo.id.
- 2. The research was conducted at PT Mekar Sampoerna Wirausaha.
- 3. Study time between August 2017 to January 2018.
- 4. Data collection method for A / B testing techniques on mekargo.id website with the help of Google Analytics tools.
- 5. The generated data from A / B testing is analyzed by Bayesian inference analysis using pymc3, numpy, matplotlib, scipy, jupyter and Ipython tools with python programming language.
- 6. Mekargo.id website features that studied is a feature of input data by borrower.
- 7. Mekargo.id website feature that is not discussed is a static page feature that contains the home page, about us, terms and conditions, privacy policy and contact us.

More Information

RESEARCH PURPOSES

The purpose of this research is to know the version of A / B testing which is the best version of mekargo.id website at PT Mekar Sampoerna Entrepreneurship with bayesian inference method with pymc3.

RESEARCH BENEFITS

The benefits of this research are:

- 1. For the researcher, be a guide or research reference in the field of information system in A / B testing with bayessian inference method.
- 2. For other researchers, as a literature source for A / B testing withbayessian inference method.
- 3. For the company under study, provide an alternative to solving the problem of choosing the best version with A / B testing.

More Information

RESULT & DISCUSSION

IDENTIFYING PROBLEMS

PT Mekar or Sampoerna Wirausaha is a fintech company running a busi ness with a peer-to-peer loan platform. Mekar Go is a website used to collect borrower data. The data collected on the current version of Mekar Go website shows the conversion of a borrower who completes data filling from start to finish less than 10%. This conversion percentage by the marketing team is too small and needs to be improved.

RESULT & DISCUSSION

DEFINING WEB MEASUREMENT

1. Business Objective

The desired business objective is to increase the number of borrowers that will be given a peer-to-peer lending loan.

2. Website Goal

Increase the number of borrowers who register, increase the percentage completion of filling the registration form by the borrower.

3. Key Performance Metric

The number of registrants per month and the percentage completion of form filling by the borrower upon filling in the registration form

4. Target Metric

The expected target is 500 unique visitors who register for each version and percentage of data completion above 10% for each version

DEVELOPING & TEST PAGE VARIANTS

Developing Page Variants

Table 4.1: Data fields changes

Part	Fields Name	Remove	Optional	New
	Alamat Usaha /	v		
	Tempat Bekerja			
	(Provinsi, Kota,			
Daman al Data I	Kecamatan,			
Personal Detail	Kelurahan)			
Information	Bidang Jenis Usaha /	v		
	Jenis Pekerjaan			
	Lama Usaha / Lama	v		
	Bekerja			
	Jumlah Karyawan	v		
	Foto Tempat Usaha	v		
	Status Karyawan	v		
	Email		v	
	Foto KTP		v	
	Tanggal Lahir			v
Jaminan	Foto Tanah +		v	
Janiman	Bangunan			
	Foto Kendaraan		v	
	Bermotor			

DEVELOPING & TEST PAGE VARIANTS

Developing Page Variants

Table 4.2: Url definition

Step	Site A	Site B	Site C	
	(/ukm/a/)	(/ukm/b/)	(/ukm/c/)	
Survey Needs	/ukm/a/survei	/ukm/b/survei	/ukm/c/survei	
Page				
Detail Needs	/ukm/a/detil-	/ukm/b/detil-	/ukm/c/detil-	
Page	Page survei		survei	
Personal	Personal /ukm/a/data-		/ukm/c/data-	
Information	nformation diri		diri	
Page				
Thanks Page	/ukm/a/terima-	/ukm/b/terima-	/ukm/c/terima-	
	kasih	kasih	kasih	
Detail Loan	/ukm/a/	/ukm/b/	/ukm/c/	
Access Page	Access Page pinjaman		pinjaman	
Ekstra Pesonal	Ekstra Pesonal /ukm/a/		-	
Detail	tambahan-data-			
Information	diri			
Page				
Congrats Page	/ukm/a/selamat	/ukm/b/selamat	/ukm/c/selamat	

DEVELOPING & TEST PAGE VARIANTS

Developing Page Variants

Listing 4.1: Traffic splitting

```
class RoundRobin(models.Model):
       flow_type = models.CharField(max_length=1, null=True)
       partner_slug = models.SlugField(null=True)
3
       def next(self):
           latest = self.flow_type
5
           if latest == 'a':
6
               return 'b'
7
           elif latest == 'b':
8
               return 'c'
9
           elif latest == 'c':
10
               return 'a'
11
12
   if RoundRobin.objects.count() == 0:
       next_flow = 'a'
14
  else:
       latest = RoundRobin.objects.last()
       next_flow = latest.next()
```


DEVELOPING & TEST PAGE VARIANTS

Testing Page Variants

Listing 4.2: Google Analytics implementation

DEVELOPING & TEST PAGE VARIANTS

Testing Page Variants

DEVELOPING & TEST PAGE VARIANTS

Testing Page Variants

Primary Dimension: Page Page Title Other ▼									
	Plot Rows Secondary dimension ▼ Sort Type: Default ▼					E 12 IIII			
	Page ②	Pag	eviews ?	Unique Pageviews	Avg. Time on Page ?	Entrances ?	Bounce Rate	% Exit ②	Page Value ?
			27,335 % of Total: 94% (27,911)	19,711 % of Total: 97.72% (20,170)	00:01:23 Avg for View: 00:01:23 (0.13%)	10,343 % of Total: 98.15% (10,538)	54.08% Avg for View: 53.77% (0.59%)	37.85% Avg for View: 37.76% (0.25%)	\$0.00 % of Total: 0.00% (\$0.00)
	1. /ukm/c/	₽ 5,1	64 (18.89%)	3,801 (19.28%)	00:00:55	3,709 (35.86%)	56.70%	56.66%	\$0.00 (0.00%)
	2. /ukm/b/	4,7	37 (17.33%)	3,385 (17.17%)	00:01:02	3,281 (31.72%)	52.45%	51.61%	\$0.00 (0.00%)
	3. /ukm/a/	4,2	22 (15.45%)	3,123 (15.84%)	00:00:52	3,039 (29.38%)	52.45%	50.76%	\$0.00 (0.00%)
	4. /ukm/b/data-diri/	₽ 2,2	00 (8.05%)	1,497 (7.59%)	00:03:30	76 (0.73%)	51.32%	30.32%	\$0.00 (0.00%)
	5. /ukm/c/pinjaman/	₽ 1,8	94 (6.93%)	1,494 (7.58%)	00:01:35	35 (0.34%)	71.43%	38.01%	\$0.00 (0.00%)
	6. /ukm/a/survei/	₽ 2,2	70 (8.30%)	1,392 (7.06%)	00:00:37	44 (0.43%)	54.55%	10.66%	\$0.00 (0.00%)
	7. /ukm/a/detil-survei/	₽ 1,9	13 (7.00%)	1,156 (5.86%)	00:00:31	24 (0.23%)	50.00%	6.33%	\$0.00 (0.00%)
	8. /ukm/a/data-diri/	4 1,7	25 (6.31%)	1,127 (5.72%)	00:02:30	22 (0.21%)	59.09%	14.38%	\$0.00 (0.00%)
	9. /ukm/a/pinjaman/	₽ 8	38 (3.07%)	751 (3.81%)	00:02:14	22 (0.21%)	68.18%	30.91%	\$0.00 (0.00%)
	10. /ukm/b/pinjaman/	₽ 5	69 (2.08%)	501 (2.54%)	00:02:21	26 (0.25%)	42.31%	36.20%	\$0.00 (0.00%)


```
In [1]: import pymc3 as pm
import numpy as np
%matplotlib inline
from IPython.core.pylabtools import figsize
import matplotlib.pyplot as plt
import scipy.stats as stats
figsize(12.5, 4)
```



```
In [2]: true_A = 120
    true_B = 129
    true_C = 84

N_sample = 1156
```


Analyzing Test Results

```
In [3]: true_p_A = true_A/float(N_sample)
    true_p_B = true_B/float(N_sample)
    true_p_C = true_C/float(N_sample)

print("true p_A:", true_p_A)
    print("true p_B:", true_p_B)
    print("true p_C:", true_p_C)
```

true p_A: 0.10380622837370242 true p_B: 0.1115916955017301 true p C: 0.0726643598615917


```
In [5]: print(np.mean(observations A))
        print(np.mean(observations B))
        print(np.mean(observations C))
        print(np.sum(observations A))
        print(np.sum(observations B))
        print(np.sum(observations C))
        0.0951557093426
        0.117647058824
        0.0726643598616
        110
        136
        84
```



```
In [6]: with pm.Model() as model:
            p A = pm.Uniform("p A", 0, 1)
            p B = pm.Uniform("p B", 0, 1)
            p C = pm.Uniform("p C", 0, 1)
            # Define the deterministic delta function. This is our unknown of interest.
            delta A B = pm.Deterministic("delta A B", p A - p B)
            delta A C = pm.Deterministic("delta A C", p A - p C)
            delta B C = pm.Deterministic("delta B C", p B - p C)
            # Set of observations, in this case we have three observation datasets.
            obs A = pm.Bernoulli("obs A", p A, observed=observations A)
            obs B = pm.Bernoulli("obs B", p B, observed=observations B)
            obs_C = pm.Bernoulli("obs_C", p_C, observed=observations_C)
            step = pm.Metropolis()
            trace = pm.sample(20000, step=step)
            burned trace=trace[1000:]
```



```
In [7]: p_A_samples = burned_trace["p_A"]
    p_B_samples = burned_trace["p_B"]
    p_C_samples = burned_trace["p_C"]
    delta_A_B_samples = burned_trace["delta_A_B"]
    delta_A_C_samples = burned_trace["delta_A_C"]
    delta_B_C_samples = burned_trace["delta_B_C"]
```


Analyzing Test Results

Out[8]: Text(0.5,1,'Posterior distributions of \$p A\$, \$p B\$, and delta unknowns')

Analyzing Test Results

Out[9]: <matplotlib.legend.Legend at 0x7f03334969e8>

Analyzing Test Results

Out[10]: <matplotlib.legend.Legend at 0x7f0332445a90>

Table 4.3: List of variables of A,B, and C version

Variable name	Version A	Version B	Version C
users	true_A	true_B	true_C
completing the	120	129	84
data completion			
completion	true_p_A	true_p_B	true_p_C
percentage	0.103806228	0.1115916955	0.0726643
	37370242	017301	598615917
sum of the True	sum_true_p_A	sum_true_p_B	sum_true_p_C
value from	114	138	86
bernoulli			
observations			
mean of the	mean_p_A	mean_p_B	mean_p_C
bernoulli	0.098615916955	0.11937716263	0.07439446366
observations			78


```
In [12]:
```



```
In [13]:
         ax = plt.subplot(313)
         plt.hist(delta B C samples, histtype='stepfilled', bins=30, alpha=0.85,
                  label="posterior of delta B-C", color="#24B8A6", normed=True)
         plt.vlines(true_p_B - true_p_C, 0, 60, linestyle="--",
                    label="true delta (unknown)")
         plt.vlines(0, 0, 60, color="black")
         plt.legend(loc="upper right");
```


Analyzing Test Results

```
In [14]: # Count the number of samples less than 0, i.e. the area under the curve
         # before 0, represent the probability that site A is worse than site B.
         print("Probability site A is WORSE than site B: %.3f" % \
             np.mean(delta A B samples < 0))
         print("Probability site A is BETTER than site B: %.3f" % \
             np.mean(delta A B samples > 0))
         print("\nProbability site A is WORSE than site C: %.3f" % \
             np.mean(delta A C samples < 0))
         print("Probability site A is BETTER than site C: %.3f \n" % \
             np.mean(delta A C samples > 0))
         print("Probability site B is WORSE than site C: %.3f" % \
             np.mean(delta B C samples < 0))
         print("Probability site B is BETTER than site C: %.3f" % \
             np.mean(delta B C samples > 0))
         Probability site A is WORSE than site B: 0.961
         Probability site A is BETTER than site B: 0.039
         Probability site A is WORSE than site C: 0.025
         Probability site A is BETTER than site C: 0.975
```

Probability site B is WORSE than site C: 0.000 Probability site B is BETTER than site C: 1.000

CONCLUSION & SUGGESTIONS

CONCLUSION

After performing A / B testing on the website mekargo.id it can be concluded that the final result of all combinations of probabilities generated by **version B is the best** result because it is always better when compared with versions A and C.

CONCLUSION REMARKS

SUGGESTION

Future research can be attempted to perform A / B testing with more versions and use another method of bayesian inference method with multi-arm bandit algorithm for more complex problem.

CONCLUSION REMARKS

Thank You

