Network Physical Layer

Fundamentos de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

TCP/IP Reference Model

Shared Medium Access

ALOHA

- •The first version of the protocol (called "Pure ALOHA"):
 - If a station has data to send, sends it.
 - If, while transmitting data, the station receives any data from another station, there has been a message collision.
 - After a collision, all transmitting stations will need to try resend data later.
- •A more efficient version (called "Slotted ALOHA"):
 - Introduced discrete timeslots.
 - A station can start a data transmission only at the beginning of a timeslot, and thus collisions are reduced.
 - Increased the maximum throughput.
 - Still used in very-low-data-rate satellite communications networks.
- Both are very inefficient.

Carrier Sense Multiple Access (CSMA)

- Stations transmit and receive on the same channel.
- The stations listen to the medium before transmitting (carrier sense - CS).
- Only transmit if the medium is detected free.
- •The number of collisions is minimized.

 Collisions may occur due to transmission times over some physical distance.

CSMA with Collision Detection (CSMA/CD)

- •When stations detect a collision:
 - Stop transmitting,
 - May send a jam signal to reinforce collision detection,
 - Wait a random time before trying to resend message.
- To ensure that all stations detect a collision, all messages have a minimum size.
 - The time that takes all bots from a message to be transmitted must be larger that the time it takes (the first bit) to reach the farthest station on the shared medium, and return (round-trip time).

Ethernet vs.WiFi Medium Access

Ethernet

- Uses CSMA/CD,
- In modern Ethernet networks (with no hubs) there is no collisions.
 - Switches avoid collisions.
 - Medium is not really shared.

•WiFi

- Used CSMA/CD, however:
 - Medium is shared,
 - Signal power reduces with the square distance,
 - Sender can apply CS and CD, but collisions occur in the receiver!
 - Sender may not listen the collision (CD does not work),
 - CS may not work either with hidden nodes.

Hidden Nodes

Hidden terminals

- A and C do not ear each other.
- Collision in B, if A and C send at the same time.
- Neither A or C understand that a collision occurred.

Solution

- Detect collisions in the receiver.
- "Virtual carrier sensing": sender asks the receiver if he is receiving traffic; in the case of absence of answer, he assumes that the channel is busy.

Exposed Nodes/Terminals

Exposed terminals

- B transmits to A;
- Node C wants to transmit to node D but mistakenly thinks that this will interfere
 with B's transmission to A, so C refrains from transmitting.
 - D is not in the range of B and A is not in the range of C, so traffic could have been transmitted.
- B and C are exposed terminals.
- The "exposed node" problem leads to loss of efficiency.

MACA: Multiple Access with Collision Avoidance

- •MACA: avoids collisions using signalling packets
 - RTS (request to send)
 - A small packet is sent before transmitting
 - CTS (clear to send)
 - Receiver provides the right to transmit, when it is able to receive
- Signalling packets (RTS/CTS) contain
 - Sender address
 - Receiver address
 - Packet length (to be transmitted)
- •Used in networks scenarios with a large amount of traffic/collisions.

MACA Advantages (1)

MACA and hidden nodes

- A, C \rightarrow B (Collision!)
- A RTS \rightarrow B
- B CTS \rightarrow A
- C ears CTS of B.
- C waits for the period announced in A transmission.

MACA Advantages (2)

MACA and exposed nodes

- B \rightarrow A, C \rightarrow D(?)
- \bullet BRTS \rightarrow A
- A CTS \rightarrow B
- C ears RTS of B.
- C does not ear CTS of A.
- \bullet CRTS \rightarrow D

MAC Reliability

- •Wireless connections are very prone to errors.
 - Transport is not reliable!
- Solution: use Acknowledgements
 - When A receives DATA from B, answers with ACK.
 - If B does not receive ACK, B retransmits.
 - C and D will not transmit until the ACK (to avoid collisions).
 - Total expected duration (including ACK) is included in the RTS/CTS packets.

RST/CTS Frames

```
- IEEE 802.11 Request-to-send, Flags: .......C

Type/Subtype: Request-to-send (0x001b)

- Frame Control Field: 0xb400

.000 0111 0000 0100 = Duration: 1796 microseconds

Receiver address: Cisco_2b:d3:70 (f4:cf:e2:2b:d3:70)

Transmitter address: Microsof_0a:43:e3 (c0:33:5e:0a:43:e3)

Frame check sequence: 0xe058c51c [unverified]

[FCS Status: Unverified]
```

From Data Receiver →

```
- IEEE 802.11 Clear-to-send, Flags: ......C
   Type/Subtype: Clear-to-send (0x001c)
   Frame Control Field: 0xc400
   .000 0110 0010 1010 = Duration: 1578 microseconds
   Receiver address: Microsof_0a:43:e3 (c0:33:5e:0a:43:e3)
   Frame check sequence: 0xaac303a8 [unverified]
   [FCS Status: Unverified]
```

AP Placement and Channel Allocation

•802.11n or 802.11ac 5GHz deployment does not have the overlap or collision domain issues of 2.4GHz.

Usage of Spectrum Analysis

Transmission Systems and Technologies

Guided/Unguided Transmission Systems

- A transmission system can be classified as Guided or Unguided.
- In Guided systems, a signal travels through a bounding physical medium.
 - Copper cable, Optical fibre, ...
- In Unguided media, a signal travels through a boundless medium
 - Air, Water, Vacuum, ...
 - Can be directional or omni-directional.
 - In directional configuration, the source emits a focused beam in a particular direction.
 - The receiver should be aligned for receiving the signals.
 - In omni-directional configuration, the source emits equally in all directions.

Microwave link

Free Space Optics (FSO)

Directional LTE

Omnidirectional LTE

802.11 Omnidirectional

Electromagnetic Spectrum

 For radio signals the antenna transmits a sinusoidal signal ("carrier") that radiates in air/space.

Radio/Microwave Spectrum (3KHz-300GHZ)

- Portugal (ANACOM)
 - https://www.anacom.pt/render.j sp?categoryId=150422
- UK (OFCOM)
 - https://www.ofcom.org.uk/spectr um/information/uk-fat
- USA (FCC)
 - https://www.fcc.gov/engineering -technology/policy-and-rules-div ision/general/radio-spectrum-all ocation

3

Analogue-Digital Conversion

- The digital transmission of analogue signals requires:
 - An ADC in the source, and
 - A DAC in the destination.
- ADC (Analogue to Digital Conversion)
 - Sampling
 - Quantization and Encoding
- DAC (Digital to Analogue Conversion)
 - Signal reconstruction

Sampling

- The sampling process, measures and quantifies the analogue signal at equally space time intervals.
- The sampling process must be able to capture the main characteristics of the original analogue signal.
- The sampling rate determines the amount of information that its transferred to the digital signal.

Sampling Theorem

- To reconstruct a signal from the samples, the sampling frequency must be high enough to capture the relevant signal information (frequency components).
 - Sampling frequency is the number of samples per second (f_s) .
- For a signal where the highest (relevant) frequency is f_m , the sampling frequency (f_s) must be higher than two times f_m
 - $f_s > 2 * f_m <=> f_m < f_s / 2$
 - f_s / 2 is called the **Nyquist frequency**.
 - $2 * f_m$ is called the **Nyquist rate**.

Signal Quantization and Encoding

- Each sampled value must be "rounded" to the nearest member of a set of discrete values.
- The resulting value is then encoded into a binary format.

Pulse Code Modulation (PCM)

 All mechanisms of an ADC can be implemented using a PCM encoder.

Digital Transmission

- Can be synchronous or asynchronous.
 - Synchronous Transmission data is transferred in the form of frames.
 - Asynchronous Transmission data is transmitted 1 bit or byte at a time.
- Synchronous Transmission requires a clock signal between the sender and receiver.
- Asynchronous Transmission sender and receiver does not require a clock signal, but data blocks must have a parity bit attached to it which indicates the start (start bit) of the new byte.
 - And, an optional stop bit.

Line Coding (1)

- Line Coding converts a binary sequence into a digital signal
- Sender then uses the digital signal to modulate transmitting signal in a way that the receiver can recognize.
- Line Coding can be done bit a bit, or in block of several bits (symbol).
- There are several (bit a bit) Line Codes:

Line Coding (2)

- mB/nB Encoding
 - Symbols of m bits are coded as line symbols of n bits.
 - Each valid line symbols has at least two 1s.

40		Cod	٦.
4 B	/ 75	T Or	16
TU	-	\sim	ィレ

4D/3D COde				
Bits	Symbol	Bits	Symbol	
0000	11110	IDLE	11111	
0001	01001	J	11000	
0010	10100	К	10001	
0011	10101	Т	01101	
0100	01010	R	00111	
0101	01011	s	11001	
0110	01110	QUIET	00000	
0111	01111	HALT	00100	
1000	10010			
1001	10011			
1010	10110			
1011	10111			
1100	11010			
1101	11011			
1110	11100			
1111	11101			

Amplitude

Modulation (1)

Modulation (2)

- Quadrature Amplitude Modulation (QAM)
 - Uses 2-Dimensional signalling
 - Quadrature

 Sine wave + Cosine wave
 - $s(t) = I(t)cos(2\pi f_0 t) Q(t)sin(2\pi f_0 t)$

• 8-QAM

• 16-QAM

