

Exploration in Policy Search by Multiple Importance Sampling

Lorenzo Lupo lorenzo.lupo@mail.polimi.it

April 16th, 2019

How can robots learn to backflip?

Algorithmic Trading

Self-driving Cars

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization

4. OPTIMIST

Environment

 \mathcal{P} , \mathcal{R}

Environment

 \mathcal{P} , \mathcal{R}

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Performance:

$$\mu(\theta) = \underset{\tau \sim p_{\theta}}{\mathbb{E}}[\mathcal{R}(\tau)],$$
 where p_{θ} is the **distribution over trajectories** $\tau \in \mathcal{T}$ induced by π_{θ}

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Performance:

$$\mu(\theta) = \underset{\tau \sim p_{\theta}}{\mathbb{E}}[\mathcal{R}(\tau)],$$
 where p_{θ} is the **distribution over trajectories** $\tau \in \mathcal{T}$ induced by π_{θ}

Objective:

$$\theta^* = \arg \max_{\theta \in \Theta} \mu(\theta).$$

Exploration VS Exploitation

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization

4. OPTIMIST

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

► Ex1: by adopting stochastic policies.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- ► Ex1: by adopting stochastic policies.
- ► Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- ▶ Ex1: by adopting stochastic policies.
- Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Directed exploration

Leverage on the knowledge acquired during learning.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- ▶ Ex1: by adopting stochastic policies.
- Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Directed exploration

Leverage on the knowledge acquired during learning.

Count-based techniques.

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization

4. OPTIMIST

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

1. **Select** an arm $\theta_t \in \Theta$;

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;
- 3. **Observe** the cumulative return $\mathcal{R}(\tau_t)$.

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;
- 3. **Observe** the cumulative return $\mathcal{R}(\tau_t)$.

Goal

Multi Armed Bandits

Multi Armed Bandits

Simpler framework;

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;
- Ample literature available;

Problem Formulation

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;
- Ample literature available;

Desideratum

sub-linear
$$Regret(T) \Leftrightarrow \lim_{T \to \infty} Regret(T)/T = 0$$

E.g.
$$Regret(T) = \mathcal{O}(\log T)$$

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST

Algorithm 1 OPTIMIST

1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$

Algorithm 2 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$

Algorithm 3 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**

Algorithm 4 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\boldsymbol{\theta}_t = \arg\max_{\boldsymbol{\theta} \in \Theta} B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t)$

Algorithm 5 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg\max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{m{ heta}_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

Algorithm 6 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{m{ heta}_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \| \Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 7 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Upper Confidence Bound

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \|\Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 8 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Truncated Multiple Importance Sampling Estimator

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \|\Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 9 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Exploration Bonus

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \| \Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 10 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Exploration Bonus

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{\left|d_{1+\epsilon}(p_{\theta_t} \| \Phi_t)\right| \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Thank you for your attention!

References

- Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems*, pages 2312–2320.
- Agrawal, R. (1995a).
 The continuum-armed bandit problem.

 SIAM Journal on Control and Optimization, 33(6):1926–1951.
- Agrawal, R. (1995b).

 Sample mean based index policies by o (log n) regret for the multi-armed bandit problem.

 Advances in Applied Probability, 27(4):1054–1078.
- Agrawal, S. and Goyal, N. (2013).
 Further optimal regret bounds for thompson sampling.
 In *Artificial intelligence and statistics*, pages 99–107.
- 🗎 Amari, S.-I. (1998).