

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiesa: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
10/812,354	03/30/2004	Noriaki Fukiage	071469-0308969 (FKL-020)	4104
7590 07/14/20/08 Scott Lane Suite 10 4350 W. Chandler Blvd. Chandler, AZ 85226			EXAMINER	
			TUROCY, DAVID P	
			ART UNIT	PAPER NUMBER
,			1792	
			MAIL DATE	DELIVERY MODE
			07/14/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/812,354 FUKIAGE, NORIAKI Office Action Summary Examiner Art Unit DAVID TUROCY 1792 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 05 June 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-28 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-28 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Attachment(s)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 1792

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 6/5/08 has been entered.

Response to Amendment

2. The Amendments of 6/5/08, were received and have been entered. The examiner notes the amendment to claims 1, 5 and 6. In view of the amendment to the claims, the examiner has withdrawn the 35 USC 112 1st and 2nd paragraph rejection. Additionally, claims 29-34 are noted as cancelled. Claims 1-28 are currently pending in the instant application.

Response to Arguments

3. Applicant's arguments filed 6/5/2008, have been fully considered but they are not persuasive. Applicant's arguments regarding the new limitations are unconvincing in view of the newly cited references for the reasons cited below. These limitations have now been properly addressed in the current Action (see for example emphasized paragraph 13 of present office action).

Art Unit: 1792

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

- 5. Claims 1 4, 11, 13, 14, 16 18, 24, and 25 are rejected under 35 U.S.C.

 103(a) as being unpatentable over Tsukune, et al. (European Patent Application 0

 387 656 A1, hereafter Tsukune) in view of Ravi (United States Patent 5,952,060),

 Taylor, et al. (United States Patent 5,882,424, hereafter Taylor), Maydan, et al.

 (United States Patent 6,109,206, hereafter Maydan), Reiss, et al. (United States

 Patent Application Publication US 2003/0014145 A1, hereafter Reiss), and Satoh

 et al. (United States Patent Application Publication US 20020011210 A1,

 hereinafter Satoh).
- 6. Regarding Claim 1, Tsukune teaches a method for operating a plasma enhanced chemical vapor deposition (PECVD) system, the method comprising: a) performing a chamber seasoning process, comprising a chamber cleaning process and a chamber and a chamber pre-coating process (see Column 2, lines 1 9), wherein the chamber cleaning process uses a first RF source to form a plasma in a processing chamber with NF₃ (see Column 3, lines 6 10) and wherein the chamber pre-coating process uses SiH₄ and N₂ (see Column 3, lines 11 18); b) positioning a substrate on a substrate holder in the processing chamber (see Column 3, lines 19 22); and c) depositing a film

Application/Control Number: 10/812,354

Art Unit: 1792

on the substrate, wherein a processing gas comprising a precursor is provided to the processing chamber during the deposition process (see Column 3, lines 22 – 28). While Tsukune does not explicitly teach removing the substrate from the processing chamber, it is an inherent feature of coating processes that the article being coated is removed from the system after the processing is complete – the article being coated is not intended to be left in or used only in the reactor system.

- 7. Tsukune does not teach the limitations of Claim 1 that the method be a method for operating a PECVD system to improve wafer to wafer film thickness uniformity; that the chamber cleaning process uses a remote plasma device and a second RF source to form a plasma in a processing chamber; and that the method further comprises measuring the film on the substrate using an integrated metrology module configured to measure wafer film thickness.
- 8. Regarding the first limitation that the method be a method for operating a PECVD system to improve wafer to wafer film thickness uniformity, Tsukune does not explicitly teach the method wherein multiple substrates are processed within the chamber such that there is a wafer to wafer film thickness uniformity parameter. However, Ravi teaches just such a limitation, wherein multiple substrates are processed within the chamber (see Claim 13, and Column 1, lines 24 35) in a process that involves both chamber cleaning and chamber pre-coating (see Figures 3 and 4). Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune by processing multiple substrates as taught by Ravi, because Ravi teaches that it is known to process multiple

Art Unit: 1792

substrates in a process employing both chamber cleaning and chamber seasoning and because it is obviously advantageous to process more than one substrate in a method for processing substrates.

- 9. Still regarding the limitation of Claim 1 that the method be a method for operating a PECVD system to improve wafer to wafer film thickness uniformity, which is not taught by Tsukune in view of Ravi, it is well known in the art to process separate wafers by depositing films with the same thicknesses thereon based upon the desired properties and end uses of the substrates/wafers being coated. By depositing films on different substrates with the same thicknesses, the wafer to wafer film thickness uniformity is inherently improved. Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi by depositing films with the same thicknesses upon different substrates, thereby improving the wafer to wafer film thickness uniformity, because it is known in the art and is advantageous to use the same chamber to process substrates which are to be coated with films of uniform thicknesses depending upon the desired substrate function.
- 10. Regarding the second limitation of Claim 1 that the chamber cleaning process uses a remote plasma device and a second RF source to form a plasma in a processing chamber, which is not taught by Tsukune in view of Ravi, Taylor and Maydan teach the use of these parts in a chamber cleaning process. Specifically, Taylor teaches, in Column 3, lines 41 43, "an apparatus and method for cleaning the aforementioned vacuum chamber where at least two different RF power signals are employed [to realize

Application/Control Number: 10/812,354
Art Unit: 1792

the objectives]," wherein the objectives, taught in Column 3, lines 19 - 26, are "devices and methods for cleaning the interior surfaces of a plasma CVD or etch reactor ... which will reduce or eliminate the need to employ "greenhouse gases," ... and reduc[ing] the cleaning times, without sacrificing the thoroughness of the cleaning, so as to improve the throughput of the plasma reactor." Taylor further teaches, in Column 6, lines 66 and 67 and Column 7, lines 1 - 4, that "Although the low frequency excitation has advantages in a plasma cleaning operation, its use in combination with a high frequency excitation may provide additional advantages not available when low frequency is used alone. For example, a high frequency excitation field can provide more efficient method of igniting the plasma." Taylor also teaches, in Column 7, lines 48 - 51, that "the key point is that a mixed frequency excitation is produced by simultaneously coupling high and low frequency RF signals to the plasma, no matter what driving configuration is employed," and, in Column 7, lines 64 - 67, that "As with an exclusively low frequency cleaning operation, the power levels associated with a mixed frequency chamber cleaning process are preferably optimized so as to maximize the dissociation of the etchant gas." Moreover, both Tsukune (see Column 3, lines 6 - 10) and Taylor (see Column 6, lines 56 - 65) teach the use of NF₃ as the cleaning gas. Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi by utilizing a mixed frequency excitation in the cleaning process which uses a first RF source and a second RF source as taught by Taylor to have achieved the advantages taught by Taylor.

Art Unit: 1792

11. Still Regarding the second limitation of Claim 1 that the chamber cleaning process uses a remote plasma device, which is not taught by Tsukune in view of Ravi and Taylor, Maydan teaches, in Column 2, lines 43 – 54, "an HD—CVD tool using deposition ... of doped and undoped silicon dioxide capable of excellent gap fill and blanket film deposition ... The tool of the present invention includes: a dual RF zone inductively coupled plasma source; ... and a remote plasma chamber cleaning system." Specifically, Maydan teaches, in Column 19, lines 32 - 43, "For the remote microwave cleaning system in the present invention, it is preferred to use NF3 ... The desired cleaning reactions produced by the use of the remote plasma source proceed without any ion bombardment of the chamber or substrate support structures, therefore the need for cover wafers ... or periodic replacement of the critical chamber assemblies is avoided. Thus, a much more efficient use and throughput of the system is provided." Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi and Taylor by utilizing a remote plasma device in the cleaning process as taught by Maydan to have achieved the advantages taught by Maydan.

12. Regarding the final limitation of Claim 1 that the method further comprises measuring the film on the substrate using an integrated metrology module configured to measure wafer film thickness, which is not taught by Tsukune in view of Ravi, Taylor, and Maydan, Reiss teaches just such a limitation. Specifically, Reiss teaches, in Paragraph [0028], that "[the] wafer measurement subsystem is used to measure wafer properties before, during, and/or after wafer processing. These properties depend on

Application/Control Number: 10/812,354

Art Unit: 1792

the type of tool(s) at issue, and may include film thickness, uniformity, and the like. Wafer measurement subsystem may include in situ sensors capable of measuring wafer parameters in real-time during processing. Similarly, wafer measurement subsystem may include an integrated or inline sensor located within or proximate to process chambers for near real-time measurements... Examples of integrated or inline sensors include tools integrated with metrology techniques." Finally, Reiss teaches, in Paragraph [0024], that "in accordance with one or more embodiments of the present invention, a technique is provided for processing semiconductor wafers in conjunction with a manufacturing execution system using a run-to-run controller and a fault detection system... The run-to-run controller modifies the setpoints of the recipe according to the processing attributes (received from the fault detection system as well as e.g., other information gathering sources) to maintain the target wafer properties." Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi. Taylor, and Maydan by utilizing a method comprising measuring the film on the substrate using an integrated metrology module configured to measure wafer film thickness as taught by Reiss to have achieved the advantages of such a method taught by Reiss, e.g. more precisely controlling target wafer properties.

13. Regarding the added limitation to claim 1, which requires the remote plasma device is coupled to the processing chamber using a valve. Such is not explicitly taught by Tsukune in view of Ravi, Taylor, Maydan, and Reiss. However, Satoh, teaching of a remote plasma generation means for plasma production discloses using valve with a

Application/Control Number: 10/812,354

Art Unit: 1792

stoppage function between the remote plasma discharge chamber and the downstream reaction chamber to reap the benefits of stopping reaction gas used when forming a film onto substrate within the reaction chamber from flowing backward or diffuse from the deposition chamber to the remote plasma discharge chamber (paragraph 0044).

Therefore, taking the references collectively for all their teachings, it would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh to couple the remote plasma device to the process chamber using a valve to reap the benefits of stopping backward flow of gases as taught by Satoh.

- 14. Regarding Claim 2, Ravi teaches the method further comprising: positioning a new substrate on the substrate holder in the processing chamber; depositing a film on the new substrate, wherein a processing gas comprising a precursor is provided to the processing chamber during the deposition process; and removing the new substrate from the processing chamber (see Claim 13, 15, and 16, Figure 4, and Column 9, lines 21 46).
- 15. Regarding Claims 3 and 4, Ravi teaches the method further comprising performing a post-process chamber cleaning process (see Claims 13 and 15, Figure 4, and Column 1, lines 35 52), and Tsukune teaches a cleaning process using NF₃ (see citations above). Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by utilizing the cleaning gas taught by Tsukune in the post-process chamber cleaning process taught by Ravi,

Application/Control Number: 10/812,354

Art Unit: 1792

because Ravi teaches that the same cleaning process used in the overall process may be used as a post-process chamber cleaning process, and because Tsukune teaches that NF₃ may be used as a cleaning gas.

- 16. Regarding Claims 11, 13, and 16, Tsukune teaches the method wherein the chamber cleaning process employs NF_3 , wherein the chamber pre-coating process employs SiH_4 , and wherein the chamber pre-coating process employs N_2 (see citations for Claim 1, above).
- 17. Regarding Claim 14, Tsukune does not teach the method wherein the chamber pre-coating process employs CH₄ (methane). However, Ravi teaches just such a limitation (see Column 8, lines 51 67), in which methane is used as a precursor for the formation of diamond-like coatings in a pre-coating process. It would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune by using methane as the precursor in a chamber pre-coating process as taught by Ravi with a reasonable expectation of success, because Ravi teaches that methane can successfully be used for the deposition of diamond-like coatings in plasma deposition chambers (see Column 8, lines 11 67).
- 18. Regarding Claim 17, Taylor teaches the method as claimed in claim 1, wherein the chamber cleaning process further comprises: operating the first RF source at a frequency of 13.56 MHz; and operating the first RF source at a power of 110 – 500 W (see Column 8, lines 37 – 44).

Art Unit: 1792

19. Regarding Claim 18, Tsukune teaches the method as claimed in claim 1, wherein the chamber pre-coating process further comprises: operating the first RF source at a frequency of 13.56 MHz; and operating the first RF source at a power of 300 W (see Column 3, lines 11 – 18).

- 20. Regarding Claims 24 and 25, Tsukune teaches the method wherein the chamber cleaning process comprises controlling the chamber pressure to 0.5 Torr (see Column 3, lines 6 10) and the chamber pre-coating process comprises controlling the chamber pressure to 1 Torr (see Column 3, lines 11 18). Tsukune does not explicitly teach that the PECVD system comprises a pressure control system coupled to the chamber to achieve these pressures. However, Ravi teaches just such a limitation (see Column 4, lines 1 21 and 66 67, and Column 5, lines 1 8). Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by including a pressure control system as taught by Ravi to have controlled the pressure to the levels taught by Tsukune with a reasonable expectation of success, because Ravi teaches that such a system is known in the art.
- 21. Claims 8, 9, and 28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh, and further in view of Mahorowala, et al (Mahorowala, A.P., Babich, K., Petrillo, K., Simons, J., Angelopoulos, M., Patel, V., and Grill, A. "Tunable Anti-Reflective

Art Unit: 1792

Coatings with Built-in Hard Mask Properties Facilitating Thin Resist Processing," Proceedings of SPIE (4343): 306 – 316, 2001).

- 22. Regarding Claims 9 and 28, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the film on the substrate comprises a Tunable Etch Resistant ARC (TERA) material, and wherein the film comprises a material having a refractive index (n) ranging from approximately 1.5 to approximately 2.5 when measured at a wavelength of at least one of: 248 nm, 193, nm, and 157 nm, and an extinction coefficient (k) ranging from approximately 0.1 to approximately 0.9 when measured at a wavelength of at least one of: 248 nm, 193, nm, and 157 nm. However, Mahorowala teaches just such limitations, wherein PE-CVD is used to deposit TERA films with these properties (see pp. 308 311). It would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by depositing a TERA film as taught by Mahorowala with a reasonable expectation of success, because Mahorowala teaches that PECVD is a suitable method for deposition of TERA films.
- 23. Regarding Claim 8, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the film on the substrate comprises a TERA material, and the film on the new substrate comprises substantially the same TERA material. However, as discussed, Mahorowala teaches the deposition of TERA films from TERA materials via PE-CVD. It would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by

Application/Control Number: 10/812,354

Art Unit: 1792

Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by depositing a TERA film as taught by Mahorowala on multiple substrates, because Mahorowala teaches that PECVD is a suitable method for deposition of TERA films and because Ravi teaches that it is well-known in the art to process multiple substrates in a deposition chamber.

- 24. Claims 5 7, 10, 12, and 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh, and further in view of Hashizume, et al (United States Patent 6,410,102, hereafter Hashizume).
- 25. Regarding Claim 10, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method comprising positioning a dummy substrate on the substrate holder before performing the chamber seasoning process, and removing the dummy substrate after performing the chamber seasoning process. However, Hashizume teaches just such a limitation, wherein a dry etch cleaning process is performed with a dummy substrate (see Column 10, lines 27 40, "In order to prevent damage on the ... heaters, dummy cylindrical substrates ... are set ... in the deposition chamber and the inside of the chamber is vacuumized ..."). While Hashizume does not explicitly teach removing the dummy substrate before a substrate processing step is performed, it is an inherent feature of a dummy substrate employed in a chamber pre-cleaning process before a substrate processing step that the dummy substrate must be removed before the regular substrate processing begins. Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the

Art Unit: 1792

method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by using a dummy substrate during the cleaning process as taught by Hashizume with a reasonable expectation of success, because Hashizume teaches that the use of a dummy substrate during dry cleaning processes is well-known in the art, and to have gained the advantages taught by Hashizume, i.e. to prevent damage to the substrate heater during dry etch cleaning.

- 26. Regarding Claims 12 and 15, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the chamber cleaning process employs O₂ and wherein the chamber cleaning process employs Ar. However, Hashizume teaches just such limitations, wherein oxygen and argon are used in addition to a fluorine-containing gas in a chamber cleaning process (see Column 10, lines 27 40). It would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by employing O₂ and Ar as components in a chamber cleaning process as taught by Hashizume with a reasonable expectation of success, because Hashizume teaches that it is known in the art to do so.
- 27. Regarding Claims 5-7, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the post-process chamber cleaning process uses O_2 and Ar, and wherein the method further comprises positioning a dummy substrate on the substrate holder before performing the post-process chamber cleaning process and removing the dummy substrate after performing the post-process chamber cleaning process. However, as discussed, Hashizume teaches all of these limitations for

Art Unit: 1792

a cleaning process. It would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by using O_2 and Ar in a chamber post-cleaning process that employs a dummy substrate as taught by Hashizume with a reasonable expectation of success, because Hashizume teaches that such a method is well-known in the art.

- 28. Claims 19 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh, and further in view of Law, et al (United States Patent 4,960,488, hereafter Law).
- 29. Regarding these Claims, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the PECVD system comprises an upper electrode and a translatable substrate holder and the chamber seasoning process includes the chamber cleaning process which further comprises: establishing a first gap between the upper electrode and the translatable substrate holder during a first time; and establishing a second gap between the upper electrode and the translatable substrate holder during a second time, and wherein the first gap is less than or equal to the second gap or wherein the second gap is less than or equal to the first gap.

 However, Law teaches just such limitations, wherein a multiple dry etch process is used to clean *in situ* a PECVD chamber (see Column 11, Lines 61 68, and Column 12, lines 1 2) and wherein the first gap is less than the second gap (see Column 12, lines 20 38). Moreover, Claim 19 as written does not specify that the second gap established

Art Unit: 1792

during a second time necessarily occurs *after* the first gap established during the first time – thus, the method taught by Law reads on both Claims 20 and 21. Furthermore, Law states the advantages of using this process, in Column 12, lines 12 – 19, as "thus, while the operation of the present reactor is cleaner than conventional reactors and while cleaning can be done less frequently, the ability to clean both the vacuum system and the reactor chamber rapidly and frequently, if necessary, is very desirable in preventing particulate contamination and in ensuring long-term proper operation of components such as the throttle valve." Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by using the dual-step chamber cleaning process taught by Law to have obtained the advantages taught by Law with a reasonable expectation of success, as Law teaches that such a process is known in the art.

- 30. Claims 22, 23, and 27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh, and further in view of Kuwada, et al (United States Patent Application Publication US 2002/0029748 A1, hereafter Kuwada).
- 31. Regarding Claim 22, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the PECVD comprises a temperature control system coupled to a substrate holder and the chamber cleaning process comprises controlling the substrate holder temperature between approximately 0 C and 500 C. However, Kuwada teaches just such limitations, wherein a heat lamp or a resistance

Art Unit: 1792

heater is used to heat the substrate holder (see paragraph [0046]) and wherein the temperature of the substrate holder is held to about 250 C during chamber cleaning (see paragraphs [0080] and [0081]). Moreover, Kuwada teaches, in paragraph [0065], that "after the emitted heat ... is transmitted through the transmission window, a back surface of the susceptor is irradiated, and the wafer is heated from the back surface thereof. Since the susceptor ... is very thin ..., the susceptor is quickly heated, and the wafer load on the susceptor can also quickly be heated to a predetermined temperature." Therefore, Kuwada is implicitly teaching that it is advantageous to have temperature controlled substrate holders in order to precisely control the temperature of the substrate during deposition or processing. Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by using a temperature control system coupled to a substrate holder and by performing a cleaning process which comprises controlling the substrate holder temperature to 250 C as taught by Kuwada with a reasonable expectation of success, because Kuwada teaches that is known in the art to do so.

32. Regarding Claim 23, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Kuwada teaches the method wherein a PECVD system comprises a temperature control system coupled to a substrate holder, but does not explicitly teach the method wherein the substrate holder temperature is controlled between about 0 and about 500 C during a pre-coating process. However, Tsukune does teach, in Column 3, lines 50 – 58, that "the temperature within the chamber [during pre-coating] is set to 350 C." It

Application/Control Number: 10/812,354

Art Unit: 1792

would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Kuwada by using the temperature control system of the substrate heater as taught by Kuwada to control the temperature during the pre-coating process to about 350 C as taught by Tsukune with a reasonable expectation of success, because a substrate heater element is inherently capable of heating a chamber.

Regarding Claim 27, Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh 33. does not teach the method wherein the PECVD system comprises a temperature control system coupled to a shower plate assembly and the chamber cleaning process further comprises controlling the shower plate assembly temperature between approximately 0 and 500 C. However, Kuwada teaches just such limitations, wherein a shower plate assembly is heated by various elements during a cleaning process (see paragraphs [0049], [0051], [0054], [0055], and especially [0078]). Moreover, Kuwada teaches, in paragraph [0096], that "the head heating/cooling portion cools the head main body during the film forming process to further enhance reproducibility of the film thickness, and heats the main body during the cleaning process in order to further efficiently remove the reactive byproduct." Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh by including a temperature-controlled showerhead assembly as taught by Kuwada and by controlling the temperature of the showerhead during cleaning to approximately 150 C as taught by Kuwada to have achieved the advantages taught by Kuwada (i.e.,

Application/Control Number: 10/812,354

Art Unit: 1792

complete cleaning of the showerhead apparatus during the system etch with fluorinatedgas) with a reasonable expectation of success, because Kuwada teaches that such a method of showerhead cleaning is known in the art.

- 34. Claim 26 is rejected under 35 U.S.C. 103(a) as being unpatentable over Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh, and further in view of Steger, et al (United States Patent 5,788,799, hereafter Steger)
- 35. Tsukune in view of Ravi, Taylor, Maydan, Reiss, and Satoh does not teach the method wherein the PECVD system comprises a temperature control system coupled to a chamber wall and the chamber cleaning process comprises controlling the chamber wall temperature between approximately 0 C and 500 C. However, Steger teaches just such limitations, wherein a chamber wall surface is temperature controlled to ensure fast and efficient cleaning (see Column 4, lines 11 - 33, and Column 5, lines 11 - 32). Steger teaches, in Column 5, lines 23 - 32, that "when the ceramic liner assists in the cleaning of a reactor chamber after the semiconductor substrate has been removed, since the clean rate is typically exponential with temperature, the ceramic liner temperature setting will be as high as is practical, depending on the equipment involved." Steger further teaches, in Column 9, lines 53 - 55, a number of potential cleaning wall temperatures ranging from 65 C to 250 C utilizing NF₃. Therefore, it would have been obvious to one having ordinary skill in the art at the time of the present invention to have modified the method taught by Tsukune in view of Ravi, Taylor, Mavdan, Reiss, and Satoh by including a temperature-controlled chamber wall as

Art Unit: 1792

taught by Steger and by controlling the temperature of the chamber wall during cleaning to 65 to 250 C with a reasonable expectation of success, because Steger teaches that such a method of chamber wall cleaning is known in the art.

Conclusion

36. Any inquiry concerning this communication or earlier communications from the examiner should be directed to DAVID TUROCY whose telephone number is (571)272-2940. The examiner can normally be reached on Monday-Friday 8:30-6:00, No 2nd Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Timothy Meeks can be reached on (571) 272-1423. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Art Unit: 1792

/David Turocy/ Examiner, Art Unit 1792

/Timothy H Meeks/ Supervisory Patent Examiner, Art Unit 1792