CZĄSTKI ELEMENTARNE I ODDZIAŁYWANIA

IX ODDZIAŁYWANIA SILNE

Agnieszka Obłąkowska-Mucha

http://home.agh.edu.pl/~amucha/ Katedra Oddziaływań i Detekcji Cząstek D11 p. 106

Gdzie są oddziaływania silne?

- Oddziaływania silne odpowiadają za budowę jądra atomowego, reakcje jądrowe i wiązania kwarków w hadronach (ale wiązanie neutralnych kolorowo nukleonów w jądrach to silne oddziaływanie resztkowe).
- Regularności w widmie mas hadronów i pomiary przekrojów czynnych
 N-N i pion-N były opisane przez statyczny model kwarków.
- Model partonowy połowę pędu hadronu stanowią gluony oraz kwarki morza powstałe z kolorowego pola.

- Gluony odpowiednik fotonów w elektromagnetyźmie.
- Kolor odpowiednik ładunku elektrycznego, ale istniejący w trzech wartościach $\{r, g, b\}$, takich, że: $r + \bar{r} = 0$

 $r + \bar{r} = 0$ $g + \bar{g} = 0$ $b + \bar{b} = 0$

Ładunek kolorowy

- Ladunek kolorowy nie może być zmierzony kwarki są zawsze obserwowane jako uwięzione w "białym" (neutralnym kolorowo) hadronie: r + g + b = 0.
- Funkcja falowa kwarka z uwzględnieniem koloru, to (znany nam) spinor Diraca z domniemanym (tzn. wiemy, że tam jest, ale nie piszemy go wprost) kolorem.
- Prawdopodobieństwo wystąpienia kwarka w każdym kolorze wynosi 1/3.
- Oddziaływanie pomiędzy kwarkami zachodzi poprzez wymianę gluonu. Jakie te gluony mogą być?
- Każdy kolor występuje również jako anty-kolor, czyli mamy 9 kombinacji typu kolorantykolor. $r\bar{r}, g\bar{g}, b\bar{b}, g\bar{r}, r\bar{g}, r\bar{b}, b\bar{r}, g\bar{b}, b\bar{g}$

Kwarki mają kolor r, g, bAntykwarki mają antykolor: \overline{r} , \overline{g} , \overline{b}

$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Kolorowa funkcja falowa

- Skoro są 3 kolory i 3 antykolory, to powinno być 9 gluonów: $r\bar{r}$, $g\bar{g}$, $b\bar{b}$, $g\bar{r}$, $r\bar{g}$, $r\bar{b}$, $b\bar{r}$, $g\bar{b}$, $b\bar{g}$
- Kombinacje: $r\bar{r}$, $g\bar{g}$, $b\bar{b}$ są neutralne kolorowo. Neutralny gluon zachowywałby się jak foton, a oddziaływanie silne miałoby nieskończony zasięg.
- Zostaje 8 kolorowych gluonów, jakich?
- Konstrukcja "kolorowej" funkcji falowej oparta jest na wzorcu z symetrii zapachowej $\{u,d,s\}^*$, tzn zamieniamy: $u \to r$

$$d \rightarrow g$$

$$s \rightarrow b$$

i mamy kolorowe: oktet i siglet

Oddziaływania elektromagnetyczne a silne

QED:

- 1. ładunek elektryczny dodatni i ujemny
- 2. ładunek jest zachowany
- 3. foton jest bezmasowym bozonem
- 4. foton nie ma ładunku

5. potencjał $V(r) \sim \frac{1}{r}$

QCD:

- 1. ładunek silny KOLOR w trzech rodzajach (r g b)
- 2. ładunek kolorowy jest zachowany
- 3. gluony są bezmasowymi bozonami
- 4. gluony mają kolor, czyli kolor jest wymieniany np. rozpraszanie kwarka \mathbf{r} na kwarku g α_S
- 5. Część potencjału jest postaci $V(r) \sim \frac{1}{r}$
- eeg g
- Oddz. silne zależy tylko od koloru (nie zależy ani od zapachu kwarku ani od ład. elektrycznego).
- Kolor nie może być zmierzony prawdopod., że kwark będzie w stanie o danym kolorze = 1/3.
- Gluony niosą kombinację kolorów (porównać z mezonami zbudowanymi z kwarków *u*, *d*, *s*):

$$g_{1} \sim \overline{R}G \quad g_{2} \sim \overline{R}B \quad g_{3} \sim \overline{G}R \quad g_{4} \sim \overline{G}B \quad g_{5} \sim \overline{B}R$$

$$g_{6} \sim \overline{B}G \quad g_{7} \sim R\overline{R} - G\overline{G} \quad g_{8} \sim R\overline{R} + G\overline{G} - 2B\overline{B}$$

Kolor

$$q\overline{q} \underset{np}{\longrightarrow} \pi^0 \equiv \frac{1}{\sqrt{18}} (u\overline{u} + u\overline{u} + u\overline{u} + d\overline{d} + d\overline{d} + d\overline{d} + d\overline{d})$$

$$qqq \underset{np}{\rightleftharpoons} p \equiv \frac{1}{\sqrt{81}} (uud + uud + inne)$$

■ Na diagramach nie pokazuje się kolorów – kolor jest w oddz. zachowany.

wymieniany gluon ma ładunek **b** \bar{r}

kwark r emituje gluon i zmienia ładunek na b, kwark b absorbuje gluon i zmienia ładunek na r

Samooddziaływanie gluonów

Podstawowa różnica pomiędzy QED a QCD – gluon przenosi ładunek "kolorowy" -

GLUON MOŻE ODDZIAŁYWAĆ Z INNYM GLUONEM

Kreacja pary gluonów przez gluon (wierzchołek trójgluonowy):

Rozpraszanie gluonów

Uwięzienie

Swobodne kwarki nie są NIGDY obserwowane! Nikt jeszcze nie zobaczył kwarka próbując rozbić proton.

- 1. kwarki są ZAWSZE uwięzione w hadronach,
- 2. jest to konsekwencją silnego samooddziaływania gluonów
- Rozpatrzmy mezon dwa kwarki i silne (kolorowe) pole pomiędzy nimi na odległości ok. 1 fm.
- Gdy kwarki się trochę rozsuną rośnie siła pomiędzy nimi gluony przenoszące siłę są dodatkowym źródłem pola – przyciągają się.
- Linie łączącą kwarki stanowią napięte struny. Struna gromadzi energię, a oddzielenie od siebie kwarków wymaga siły. V(r) ~ r
- Gdy rośnie odległość zgromadzona energia jest na tyle duża, że powstaje para kwark-antykwark i mamy nowy mezon.

UWIĘZIENIE KWARKÓW (confinement)

- mechanizm utrzymujący kwarki w hadronie
- konsekwencja oddziaływania gluonów ze sobą
- Do rozdzielenia kwarków potrzebna nieskończona energia.

Pęki hadronowe

- Przy próbie rozdzielenia kwarków, energia zgromadzona w strunie rośnie liniowo z odległością.
- Gdy przekroczony zostanie próg na produkcję dwóch kwarków kreacja pary:

następnie "sparowane" kwarki się rozsuwają – powstają hadrony

Pęki hadronowe

- Przy próbie rozdzielenia kwarków, energia zgromadzona w strunie rośnie liniowo z odległością.
 - Gdy przekroczony zostanie próg na produkcję dwóch kwarków kreacja pary:

następnie "sparowane" kwarki się rozsuwają – powstają ha

/o Silna stała

- Potencjał QCD ma dwie składowe:
 - samooddziaływanie gluonów daje składową długozasięgową: V(r) = kr,
 - na małych odległościach kwarki w mezonie silnie się przyciągają na podobieństwo QED:

$$V_{QCD}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

ten potencjał bardzo dobrze opisuje czarmonia i i bottomia

$$V_{QCD} = -rac{lpha_S}{r} + kr$$
 with $k pprox 1~{
m GeV/fm}$ $F = -rac{dV}{dr} = rac{lpha_S}{r^2} + k$ at large r F $=$ $k = rac{1.6 imes 10^{-10}}{10^{-15}}~N$ $=$ $160000~N$

 α_s określa siłę silnych oddziaływań.

Ale (tak jak w QED) nie jest to wartość stała...

Silna stała

W QCD kwantowa fluktuacja próżni daje chmurę wirtualnych par kwarków:

ale (w przeciwieństwie do QED) – również chmurę samooddziałujących gluonów:

Silna stała

 Dodając kolejne amplitudy musimy brać pod uwagę efekty interferencyjne – w tym przypadku pętle bozonowe interferują destrukcyjnie i suma diagramów jest mniejsza niż diagram wejściowy, a silna stała sprzężenia:

$$\alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + B \alpha_s(Q_0^2) ln(Q^2/Q_0^2)}$$
za ten "+" Nagroda Nobla 2004 (Gross, Politzer, Wilczek)

$$B = (11N_c - 2N_f)12\pi$$

$$N_c = 3 \text{ (kolory)}$$

$$N_f = 6 \text{ (flavoury)}$$

$$B > 0$$

 α_s maleje ze wzrostem Q^2 !

ANTYEKRANOWANIE! kamuflaż...

Biegnąca silna stała

Przy niskich energiach $Q^2 = 1 \ GeV^2$ (dużych odległościach) $\alpha_s = 1$ – problem z rachunkiem zaburzeń (obszar nieperturbacyjny)

Przy wysokich energiach - α_s małe – kwarki są swobodnymi cząstkami – asymptotyczna swoboda, obszar perturbacyjny:

przy
$$Q_0^2 = M_Z^2$$
: $\alpha_s = 0.12$

- Z powodu oddziaływania między gluonami goły kolorowy ładunek jest ekranowany,
- ale ta kwantowa chmura niesie ze sobą KOLOR i efektywny ładunek kolorowy ZWIĘKSZA się z odległością!

Definiujemy skalę: $\Lambda_{QCD} = 200-300 \text{ MeV}$,

dla $E < \Lambda_{QCD}$ - stała α_s jest duża – obszar nieperturbacyjny (lekkie kwarki!),

dla $E > \Lambda_{QCD}$ - α_s mała – rach. zaburzeń.

Biegnąca silna stała (2015)

Hadronizacja

Ze wzrostem energii powstaje coraz więcej kwarków (z kolorowego pola) – HADRONIZACJA.
Obserwuje się skolimowane PĘKI HADRONOWE:

kierunek pęków – kierunek kwarków

Kolor - dowody

- Istnienie koloru potwierdzone jest doświadczalnie.
- 1. Porównanie przekrojów czynnych na powstanie hadronów i pary mionów anihilacji elektron pozyton

$$R_{\mu} = \frac{\sigma(e^+ \, e^- \to q \, \overline{q}\,)}{\sigma(e^+ \, e^- \to \mu^+ \mu^-)}$$

Jeżeli pominiemy masy kwarków, stany końcowe różnią się tylko wartością ładunku elektrycznego:

$$R(e^+ e^- \to q \overline{q}) = 3 \sum_{i=u,d,s...} Q_i^2$$

$$R(e^+e^- \rightarrow q \bar{q})$$

- Dla kwarka jednego rodzaju (np u) i w jednym kolorze: $R = Q_u^2$.
- Ale pęki hadronów mają również inne kwarki (i=u,d,s,c,b,t) i raczej powinno być: $\mathbf{R} = \sum \mathbf{Q}_i^2$
 - a gdyby jeszcze uwzględnić kolor: $R = 3 \sum Q_i^2$
 - suma uwzględnia kwarki, które są kinematycznie dostępne dla osiąganych energii

Energy	Ratio R	
$\sqrt{s}>2m_s\sim$ 1 GeV	$3(\frac{4}{9} + \frac{1}{9} + \frac{1}{9})$	= 2
	u,d,s	
$\sqrt{s}>2m_{c}\sim$ 4 GeV	$3(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9})$	$=3\frac{1}{3}$
	u,d,s,c	
$\sqrt{s}>2m_{b}\sim$ 10 GeV	$3(+rac{1}{9})$	$=3\frac{2}{3}$
	u,d,s,c,b	
$\sqrt{s} > 2m_t \sim$ 350 GeV	$3(+\frac{4}{9})$	= 5
	u,d,s,c,b,t	

R doświadczalne

Wyniki doświadczalne pochodzące e eksperymentów z anihilacją elektron-pozyton dla energii E_{CM} do 40 GeV:

dla \sqrt{s} < 1 GeV – formacja ρ , ω , ϕ ;

dla $\sqrt{s} > 1 \text{ GeV} - \text{stany } J/\psi;$

dla $\sqrt{s} \approx 10 \text{ GeV} - \text{spektrum } \Upsilon$.

R rośnie skokowo z \sqrt{s} ;

pomiary zgodne z przewidywaniami, przy założeniu, że kwarki mają ułamkowy ładunek i są obdarzone kolorem.

Kolor, kolor, kolor

- 2. Pomiar szerokości rozpadu $\pi^0 \rightarrow \gamma \gamma$
 - obliczenia teoretyczne zgodne z doświadczeniem , tylko gdy w rachunkach QCD **uwzględni się 3 kolory**.

- 3. Istnienie barionu $\Omega^{-}(sss)$
 - jest to barion o spinie J=3/2 (L=0) o spinach ustawionych równolegle: $s \uparrow s \uparrow s \uparrow$
 - jego funkcja falowa: $\psi(\Omega^-)$ = (zapach) jest symetryczna wzgl. zamiany dwóch dowolnych kwarków (a fermiony wymagają antysymetrycznej f.falowej)
 - dodatkowy czynnik: $\psi_{colour} = \frac{1}{\sqrt{6}}(rgb + gbr + brg grb rgb bgr)$

kolorowa część f-cji falowej barionu musi być antysymetryczna

Gluony - dowody

- 1. Gluony potwierdzone są doświadczalnie.
 - W QED elektron może emitować foton.
 - W QCD kwark może emitować gluon:

$$e^{+} e^{-} \rightarrow q \overline{q} g$$

$$e^{+} \qquad \qquad \overline{q}$$

$$\gamma \qquad \qquad \gamma \qquad \qquad Q_{q} \vee \alpha$$

$$e^{-} \qquad \qquad \frac{1}{q^{2}} \qquad q$$

w elemencie macierzowym mamy dodatkowy czynnik $\sqrt{\alpha_s}$, a w przekroju czynnym α_s

Fotony można rejestrować, natomiast gluony hadronizują w pęki.

W powyższym procesie oprócz dwóch pęków od kwarków – mamy trzeci – od gluonu:

Gluony mają spin – rozkład kątowy "jetów"

Wyniki doświadczalne

Rozkład kątowy pęków zależy od spinu porównanie danych i hipotezy s(g) = 1

Cztery pęki hadronowe

Przypadek z 4 pękami hadronów.

Możliwe procesy:

Rozkłady kątowe rozstrzygają, czy jest to przypadek z 3-gluonowym wierzchołkiem (3 cząstki o spinie s=1).

Taki przypadek jest dowodem na samooddziaływanie gluonów.

Pomiar α_s (1)

- Rozróżnienie przypadków z 2 i 3 pękami hadronów pozwala na wyznaczenie α_s
 - popatrzmy znowu na stosunek R:

$$R = 3\sum Q_q^2$$

- ale po emisji dodatkowego gluonu, przekrój czynny dostaje poprawkę:

$$R = 3\sum Q_q^2 \frac{\alpha_s}{\pi}$$

 $E_{CM}(GeV)$

$$\sum_q Q_q^2 = 3rac{2}{3}$$

$$\pi(1+rac{lpha_S}{\pi})pprox rac{3.9}{3.66}$$

$$lpha_S(q^2=25^2)pprox 0.20$$

3·50<u>L</u> 10

Pomiar α_s (1)

$$\frac{\sigma(3 \ jets)}{\sigma(2 \ jets)} = \frac{\sigma(e^+ \ e^- \to q \overline{q} \ g)}{\sigma(e^+ \ e^- \to q \overline{q})} \propto \alpha_s$$

- Zależność silnej stałej α_s od przekazu pędu przy różnych skalach energii jest najważniejszym testem QCD.
- Przy oddz. protonów wartość α_s zależy od funkcji rozkładu partonów w protonie (PDF)
- Umownie przyjmuje się masę Z^0 za skalę, w której obliczana jest α_s

- Obszar kinematyczny dostępny w zderzeniach proton-proton przy energiach 3-7-14 TeV obejmuje najszersze przedziały przekazów pędu Q² i x.
- Wszystkie procesy na LHC pochodzą z oddziaływania gluonów i kwarków morza, zarówno "miękkich" (małe p_T), jak i "twardych" (duże pędy poprzeczne, QCD)

QCD @ LHC

Jakiekolwiek odkrycie stanu X jest rezultatem wyznaczenia i zrozumienia postaci PDFu

Parton Distribution Functions - I

Parton Distribution Functions - II

LHC cross-sections can be written as a convolution of Parton Distributions and partonic cross-sections:

$$\sigma_X(s, M_X^2) = \sum_{a,b} \int_{x_{\min}}^1 dx_1 dx_2 f_{a/h_1}(x_1, M_X^2) f_{b/h_2}(x_2, M_X^2) \hat{\sigma}_{ab \to X} (x_1 x_2 s, M_X^2)$$

Hadronic cross-section to be compared with exp data eg Higgs coupling extraction

Juan Rojo

Parton Distributions are intrinsically non-perturbative quantities to be extracted from experimental data

Partonic cross-sections: perturbatively calculable as an expansion in the QCD and electroweak couplings

rch Forum Away Day, Oxford, 22/04/2012

Czy było oddziaływanie?

- Teoria oddziaływań silnych: chromodynamika kwantowa (QCD) podobna do QED ale:
 - kwarki są uwięzione,
 - gluony mają ładunek silny (kolor) i oddziałują ze sobą.
- Kwarki, gluony i ładunek kolorowy potwierdzone doświadczalnie.
- Przy niskich energiach stała silna jest duża i nie można stosować teorii perturbacyjnej (modele),
- Przy wysokich energiach stała jest mała i kwarki są swobodne (asymptotycznie), a teoria perturbacyjna bardzo dobrze opisuje wyniki.
- Przewidywania QCD (biegnąca silna stała sprzężenia) potwierdzone w oddziaływaniach protonów przy energiach do 4 TeV (LHC).

Wyznaczenie partonowej funkcji gęstości jest kluczowe w opisie produkcji nowych stanów na

LHC.

Podsumowanie

- 1. Oddziaływania silne widoczne przede wszystkim w siłach wiążących nukleony.
- 2. Oddziaływania silne zachodzą pomiędzy kwarkami.
- 3. Oddziaływania silne zachodzą pomiędzy kwarkami, cząstkami obdarzonymi ładunkiem kolorowym.
- 4. Odziaływania silne przenoszone są przez bezmasowe gluony. Gluony również mają kolor.
- 5. Z powodu samooddziaływania gluonów kwarki są uwięzione w hadronach, a silna stała sprzężenia ROŚNIE ze wzrostem odległości między kwarkami.
- 6. Jakie mamy na to dowody eksperymentalne?

