Subsystem Level Data Acquisition for the Optical Synchronization System at European XFEL

Motivation, Challenges & Solutions, Status & Experience

Maximilian Schütte*, Annika Eichler*, Thorsten Lamb*, Vladimir Rybnikov**†, Holger Schlarb*, Tim Wilksen** - Hamburg, 14.05.2021

* Machine Beam Controls (MSK), ** Machine Control Systems (MCS), † Linear Accelerator Technologies (FLA), Deutsches Elektronen-Synchrotron DESY

Contents

Subsystem Level Data Acquisition for the Optical Synchronization System at EuXFEL

01 Motivation

- Data Acquisition at EuXFEL
- The Optical Synchronization System DAQ

02 Architecture

- DAQ Data Flow
- Configuration Management

03 Timeline & Specs

- Timeline
- Specs

04 Ongoing Projects

- Arrival Time Studies
- Machine Learning Model

05 Conclusion

Summary

Motivation

- Data has become a new fundamental resource in science and the economy.
- New requirements on DAQ solutions.
- Optical Synchronization so far completely untapped.
- Data required for system analysis, performance evaluation and anomaly investigation.

Next Level DAQ System

- More data channels
- Longer time periods
- More processing

Evolution of Data Acquisition and DAQ Systems

Architecture

DAQ Data Flow

Architecture

Configuration Management

- As system is under development, data channels are added, removed or change meaning.
- Configuration database tracks changes of recorded data channels over time.
- Tools help to automate the process.
- Manual labelling still necessary.
- Configuration files for the DAQ processes generated automatically.

Facts & Figures

Optical Synchronization System (Core)

- Approx. **40'000** ! (30'000 for e o re + 10'000 for ien / a a e e)
- ~ 67% @ 0 Hz (virtually constant)
 - Settings, Configuration, Calibration
- ~ 17% @ 0-10 Hz (rarely changing)
 - Slow Diagnostics
- ~ 14% @ 10 Hz (machine rate)
 - Fast Monitoring
- ~ 2% @ up to 100 MHz (full-rate measurements)
 - Raw Signals and Algorithm I/O

~75 TB / year long-term archive

Ongoing Projects

With data from the new DAQ system

- Multiple projects started based on acquired data.
- Experience to be used for new DAQ instances for other subsystems.
- More data for many more projects to come.

"a i ne Learning La er ea o e for e Op i a n roni za ion e a e E ropean XF EL"

Helmholtz Al Consultant Team for Matter Research (https://www.hzdr.de/db/Cms?pOid=60710&pNid=0)

Thank you for your interest!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Maximilian Schütte (MSK)

Annika Eichler (MSK)

Thorsten Lamb (MSK)

Vladimir Rybnikov (FLA/MCS)

Holger Schlarb (MSK)

Tim Wilksen (MCS)

<maximilian.schuette@desy.de>

<annika.eichler@desy.de>

<thorsten.lamb@desy.de>

<vladimir.rybnikov@desy.de>

<holger.schlarb@desy.de>

<tim.wilksen@desy.de>