Przeszukiwanie lokalne i przeszukiwanie w grach

Paweł Rychlikowski

Instytut Informatyki UWr

9 kwietnia 2019

Krajobraz przeszukiwania lokalnego

1. Liczbą niespełnionych więzów.

- 1. Liczbą niespełnionych więzów.
- 2. Wagą niespełnionych więzów.

- 1. Liczbą niespełnionych więzów.
- 2. Wagą niespełnionych więzów. Porównaj więzy:
 - 1. Nauczyciel ma tylko z jedną klasą lekcje na raz
 - 2. nikt nie ma dwóch biologii jednego dnia.

- 1. Liczbą **niespełnionych** więzów.
- 2. Wagą niespełnionych więzów. Porównaj więzy:
 - 1. Nauczyciel ma tylko z jedną klasą lekcje na raz
 - 2. nikt nie ma dwóch biologii jednego dnia.
- 3. Czymś niezwiązanym bezpośrednio z więzami

- 1. Liczbą niespełnionych więzów.
- 2. Wagą niespełnionych więzów. Porównaj więzy:
 - 1. Nauczyciel ma tylko z jedną klasą lekcje na raz
 - 2. nikt nie ma dwóch biologii jednego dnia.
- 3. Czymś niezwiązanym bezpośrednio z więzami
 - produktywnością zespołu robotników
 - zadowoleniem gości weselnych z towarzystwa przy stolikach,
 - potencjalnym zyskiem sklepu,
 - dopasowaniem do danych uczących

Hill climbing. Powtórzenie

Hill climbing jest chyba najbardziej naturalnym algorytmem inspirowanym poprzednim rysunkiem.

- Dla stanu znajdujemy wszystkie następniki i wybieramy ten, który ma największą wartość.
- Powtarzamy aż do momentu, w którym nie możemy nic poprawić

Hill climbing. Powtórzenie

Hill climbing jest chyba najbardziej naturalnym algorytmem inspirowanym poprzednim rysunkiem.

- Dla stanu znajdujemy wszystkie następniki i wybieramy ten, który ma największą wartość.
- Powtarzamy aż do momentu, w którym nie możemy nic poprawić

Problem

Utknięcie w lokalnym maksimum.

Hill climbing z losowymi restartami

Uwaga

Możemy podjąć dwa działania, oba testowaliśmy w obrazkach logicznych:

- Dorzucać ruchy niekoniecznie poprawiające (losowe, ruchy w bok)
- 2. Gdy nie osiągamy rozwiązania przez dłuższy czas rozpoczynamy od początku.

Hill climbing + random restarts (w trywialny sposób) jest algorytmem zupełnym z p-stwem 1 (bo kiedyś wylosujemy układ startowy)

Inne warianty Hill climbing

- a) Stochastic hill climbing wybieramy losowo ruchy w górę (p-stwo stałe, albo zależne od wielkości skoku).
- b) First choice hill climbing losujemy następnika tak długo, aż będzie on ruchem w górę
 - dobre, jeżeli następników jest bardzo dużo

Uwaga

ldee z tego i kolejnych algorytmów można dowolnie mieszać – na pewno coś wyjdzie!

Symulowane wyżarzanie

- Motywacja fizyczna: ustalanie struktury krystalicznej metalu.
- Jeżeli będziemy ochładzać powoli, to metal będzie silniejszy (bliżej globalnego minimum energetycznego).
- Symulowane wyżarzanie próba oddania tej idei w algorytmie.

Algorytm

Symulujemy opadającą temperaturę, prawdopodobieństwo ruchu chaotycznego zależy malejąco od temperatury.

Symulowane wyżarzanie (2)

- Przykładowa implementacja bazuje na first choice hill climbing.
- Jak wylosowany ruch (r) jest lepszy (czyli $\Delta F > 0$), to go wykonujemy (maksymalizacja F).
- W przeciwnym przypadku wykonujemy ruch ${\bf r}$ z p-stwem ${\bf p}={\bf e}^{{\Delta F}\over T}$
- Pilnujemy, żeby T zmniejszało się w trakcie działania (i było cały czas dodatnie)

Komentarze do wzoru

- $\Delta F \le 0, T > 0$, czyli $0 \le p \le 1$.
- Im większe pogorszenie, tym mniejsze p-stwo
- Im większa temperatura, tym większe p-stwo.

Taboo search

Problem

Być może płaskie maksimum lokalne.

Rozwiązanie

Dodajemy pamięć algorytmowi, zabraniamy powtarzania ostatnio odwiedzanych stanów.

Local beam search

- Zamiast pamiętać pojedynczy stan, pamiętamy ich k (wiązkę).
- Generujemy następniki dla każdego z k stanów.
- Pozostawiamy k liderów.

Uwaga 1

To nie to samo co k równoległych wątków hill-climbing (bo uwaga algorytmu może przerzucać się do bardziej obiecujących kawałków przestrzeni)

Uwaga 2

Beam search jest bardzo popularnym algorytmem w różnych zadaniach wykorzystujących sieci neuronowe do modelowania sekwencji (np. tłumaczenie maszynowe).

Algorytmy ewolucyjne

- Zarządzamy populacją osobników (czyli np. pseudorozwiązań jakiegoś problemu więzowego).
- Mamy dwa rodzaje operatorów:
 - a) Mutacja, która z jednego osobnika robi innego, podobnego.
 - b) Krzyżowanie, która z dwóch osobników robi jednego, w jakiś sposób podobnego do "rodziców".
- Nowe osobniki oceniane są ze względu na wartość funkcji przystosowania
- Przeżywa k najlepszych.

Uwaga

Zauważmy, że choć zmienił się język, jeżeli pominiemy krzyżowanie, to otrzymamy wariant Local beam search (mutacja jako krok w przestrzeni stanów).

Krzyżowanie. Przykład

Pytanie

Czym mogłoby być krzyżowanie dla zadania z N hetmanami?

Algorytmy ewolucyjne. Kilka uwag

- Krzyżowanie i mutacje można zorganizować tak, że najpierw powstają dzieci, a następnie się mutują z pewnym prawdopodobieństwem.
- Wybór osobników do rozmnażania może zależeć od funkcji dopasowania (większe szanse na reprodukcję mają lepsze osobniki)
- 3. Można mieć wiele operatorów krzyżowania i mutacji.

Rozpoczynamy nowy wątek wykładu

Przeszukiwanie w grach

Przykładowa gra

- Gracz A wybiera jeden z trzech zbiorów:
 - 1. $\{-50, 50\}$
 - 2. $\{1,3\}$
 - 3. $\{-5, 15\}$
- Następnie gracz B wybiera liczbę z tego zbioru.

Pytanie

Co powinien zrobić A, żeby uzyskać jak największą liczbę?

Przykładowa gra

Nasza gra

- 1. $\{-50, 50\}$
- 2. {1,3}
- 3. $\{-5, 15\}$

Racjonalny wybór dla A zależy od (modelu) gracza B

- Współpracujący: Oczywiście 1.
- Losowy (z $p = \frac{1}{2}$)) Wybór 3 (średnio 5)
- "Złośliwy":wybór 2 (gwarantujemy wartość 1)

Wyszukiwanie w grach

- Nieco inna rodzina zadań wyszukiwania, w których mamy dwóch (lub więcej) agentów.
- Interesy agentów są (przynajmniej częściowo) rozbieżne.
- Rozgrywka przebiega w turach, w których gracze na zmienę wybierają swoje ruchy.

Definicja gry

Definicja

Gra jest problemem przeszukiwania, zadanym przez następujące składowe:

- 1. Zbiór stanów, a w nim S_0 , czyli stan początkowy
- 2. player(s), funkcja określająca gracza, który gra w danym stanie.
- 3. actions(s) zbiór ruchów możliwych w stanie s
- 4. result(s,a) funkcja zwracająca stan powstały w wyniku zastosowania akcji a w stanie s.
- 5. terminal(s) funkcja sprawdzająca, czy dany stan kończy grę.
- 6. utility(s, player) funkcja o wartościach rzeczywistych, opisująca wynik gry z punktu widzenia danego gracza.

Gra o sumie zerowej

Definicja

W grze o sumie zerowej suma wartości stanów terminalnych dla wszystkich graczy jest stała (niekonieczne zera, ale...)

Konsekwencje:

- Zysk jednego gracza, jest stratą drugiego.
- Kooperacja nic nie daje.

Uwaga

Zaczniemy od gier o sumie zerowej i gracza, wcześniej nazwanego złośliwym (lepiej go nazwać racjonalnym)

Różnice między grami a zwykłym przeszukiwaniem

- Mamy graczy: stan gry wskazuje na gracza, który ma się ruszać.
- 2 Stany końcowe mają wartości, różne dla różnych graczy.
- Koszt jest zwykle jednostkowy (inny można uwzględnić w końcowej wypłacie, dodając do stanu "finanse" gracza)

Drzewo gry

Kółko i krzyżyk. Drzewo gry

Fragment drzewa dla prawdziwej gry

Drzewo gry (2)

- Mamy dwóch graczy Max i Min (jeden chce maksymalizacji, drugi minimalizacji).
- Wartość dla Max-a to liczba przeciwna wartości dla Min-a.
- Mamy dwa ruchy, zaczyna gracz maksymalizujący.

Algorytm MinMax

```
MAX = 1
MTN = 0
def decision(state):
    """decision for MAX
    return max(a for actions(state),
       key = lambda a : minmax(result(a, state), MIN))
def minmax(state, player):
    if terminal(state): return utility(state)
    values = [minmax(result(a,state), 1-player) for a in actions(state)]
    if player == MIN:
        return min(values)
    else:
        return max(values)
```

Algorytm MinMax

- O(d) pamięć
- $O(b^{2d})$ czas, gdzie d jest liczbą ply's (półruchów)
- Dla szachów $b \approx 35$, $d \approx 50$
- Dla go: 250, 150

Algorytm MinMax (wersja realistyczna)

- Algorytm MinMax działa jedynie dla bardzo małych, sztucznych gier (ewentualnie dla końcówek prawdziwych gier).
- Żeby go uczynić realistycznym, musimy:
 - a) Przerwać poszukiwania na jakiejś głębokości.
 - b) Umieć szacować wartość nieterminalnych sytuacji na planszy.

Algorytm MinMax z głębokością

```
def decision(state):
    return max[a for actions(state),
        key = lambda a : minmax(result(a,state), MIN), 0]

def minmax(state, player, depth):
    if terminal(state): return utility(state)
    if cut_off_test(state, depth):
        return heuristic_value(state)

    values = [minmax(result(a,state), 1-player, depth+1) for a in actions(state)]
    if player == 0:
        return min(values)
    else:
        return max(values)
```

Dwa parametry algorytmu wyszukiwania

- 1. cut_off_test: kiedy kończymy przeszukiwanie
 - najłatwiej: jak osiągniemy maksymalny poziom, biorąc pod uwagę możliwości
 - Nie jest to jedyne wyjście (ani najlepsze)
- 2. Co to znaczy funkcja heuristic_value

Jak szacować wartość sytuacji?

Wariant 1

Korzystamy z wiedzy eksperta, próbując ją sformalizować.

Wariant 2

Próbujemy zaprząc jakiś mechanizm uczenia (lub przeszukiwania), żeby tę funkcję wybrać.

Jak szacować wartość sytuacji? (2)

Generalne wskazówki:

- 1. Przewaga materialna (więcej, lepszych figur)
- 2. Ustawienie figur (ruchliwość liczba możliwych ruchów)
- 3. Szacowana liczba ruchów do zwycięstwa (zagrożony król, itp).
- 4. Ochrona naszych figur (jak mnie zbijesz, to ja cię zaraz zbiję)

Aktywny goniec

Biały goniec wprowadzony do gry, czarny nie może nic zrobić.

Przewaga materialna

- Wartość materialną liczą powszechnie szachiści:
 - a) pion: 1
 - b) skoczek, goniec: 3
 - c) wieża: 5 d) hetman: 9
- Sprawdzono doświadczalnie, że te wartości są dobrze dobrane (jak sobie wyobrazić taki eksperyment?)

Uwaga

Nawet nie wiedząc nic o uczeniu, możemy sobie wyobrazić łatwo jakąś procedurę wyznaczania tych wartości. Na przykład:

- 1. Losujemy 100 zestawów:
 - (1, wartość-gońca, wartość-skoczka, wartość-wieży, wartość-hetmana).
- 2. Przeprowadzamy pojedynki każdy z każdym.
- 3. Wybieramy zwycięzcę.

Drobna uwaga o ewolucji

- Istnieje pokusa, żeby zastosować algorytmy ewolucyjne (bo zadanie przypomina ewolucje, w której osobniki toczą ze sobą walkę).
- Problem: Jak wyznaczyć funkcję celu?
 - a) Rozgrywać turnieje, przystosowaniem jest średni wynik.
 - b) Wybrać grupę przeciwników (stałą), przystosowaniem X-a będzie średni wynik z tymi przeciwnikami.

Drobna uwaga o ewolucji

Uwaga

Opcja pełnej ewolucji trochę niebezpieczna, często łączy się obawarianty.

Króliczki w Australii (obok australijskiej ewolucji):

AlphaGo zachowywało swoje poprzednie wersje i pilnowało, by kolejna wersja ciągle umiała pokonać starsze modele