A Closed-form Solution to Photorealistic Image Stylization

Search

컴퓨터과학과 202132033 염지현

Output

Gatys et al. [8]

Luan et al. [9]

공간과 상관없는 artifacts가 포함된 결과물 생성

Stylization 단계

: style 변환 단계

Smoothing 단계

: 공간적으로 일관된 stylization 보장

- 고정된 유한 수의 연산으로 해를 얻을 수 있음문제에 대한 해답을 식으로 명확하게 제시할 수 있음

논문 제목	A Closed-form Solution to Photorealistic Image Stylization				
목표	Content image를 photorealistic image style로 변환하기				
기존 연구 한계	 Explicit method: 색상/톤 일치를 기반으로 하기 때문에 적용하는 데에 한계 존재 Implicit method: 예술적 효과에 인상적인 성능을 보여주는 반면 photorealistic 변환 작업에서는 artifact 및 왜곡 발생 				
해결 방법	 Stylization 단계: WCT를 기반으로 하는 PhotoWCT 제안 Smoothing 단계: 구조를 고려하여 유사한 artifact 감소 				
구조	Auto-Encoder				

02. Related Work

method	설명	Reference
Global method	Pixel 색상 또는 히스토그램의 평균 및 분산 매칭	[1,2,11]
Local method	Low/high level feature 기반 content, style image 간의 조밀한 대응을 찾아 stylization 진행 (-) 속도 저하 및 특정 스타일을 목표로 진행	[12,6,13,5,14]
Neural style transfer algorithm	Content, style image에서 추출한 deep feature의 gram matrix 일치 (-) photorealism 보존 실패	[7,8] [15,16,17,18,19,20,21,22,10,23]
Image to image transfer	이미지를 한 도메인에서 다른 도메인으로 스타일 변환 (-) content, style train dataset 필요	[26,27,28,29,30,31,32,33]
Luan et al	새로운 loss term 도입 → 로컬 구조 보존 효과 상승 (-) 눈에 띄는 artifact가 있는 결과 생성	[9]

WCT

- P_C(whitening): 전체 구조를 유지하면서 style과 관련된 정보 제거(correlation 감소) → Style 변환 준비
- P_s(coloring): P_c output(feature map)과 I_s correlation 일치시키도록 유도 → Style 변환

$$P_C = E_C \Lambda_C^{-\frac{1}{2}} E_C^{\top}$$

$$P_S = E_S \Lambda_S^{\frac{1}{2}} E_S^{\top}$$

$$H_{CS} = P_S P_C H_C$$

$$H_{CS} H_{CS}^{\top} = H_S H_S^{\top}$$

03. Photorealistic Image Stylization - PhotoWCT

PhotoWCT

- WCT 에서 Upsampling layer를 Unpooling layer로 교체
- Max pooling mask 기반 Unpooling layer를 도입하여 위치 정보 파악 가능 → 세부 구조 복구 가능

* Unpooling layer란 Max pooling을 진행할 때 일정 영역에서 가장 큰 값을 가지고 있는 index를 저장한 mask를 기반으로 pooling 역연산을 진행하는 layer를 의미한다.

$$Y = \mathcal{F}_1(I_C, I_S) = \overline{\mathcal{D}}(P_S P_C H_C)$$

03. Photorealistic Image Stylization - Unpooling

Search

03. Photorealistic Image Stylization – Smoothing function

$$R^* = \mathcal{F}_2(Y, I_C) = (1 - \alpha)(I - \alpha S)^{-\frac{1}{2}} Y.$$

유사도 행렬을 사용하여 정규화된 라플라시안 행렬 출력 * 라플라시안 행렬: 그래프 내에 노드들을 비슷한 것끼리 클러스터링 할 때 활용

Smoothing function

- Content image의 pixel 유사도를 사용
- Local neighborhood에서 유사한 content를 가진 픽셀은 유사하게 stylization
- Global stylization 효과를 유지하기 위해 출력 PhotoWCT 결과에서 크게 벗어나지 않도록 유지
- * PhotoWCT를 통해 Y에 대한 구조적인 정보를 WCT보다 정확하게 추출 → 유사도 행렬 기반 Smoothing function과 조화

r_i: smoothing function output pixel value y_i: PhotoWCT output pixel value

$$\underset{r}{\operatorname{argmin}} \frac{1}{2} \left(\sum_{i,j=1}^{N} w_{ij} \| \frac{r_i}{\sqrt{d_{ii}}} - \frac{r_j}{\sqrt{d_{jj}}} \|^2 + \lambda \sum_{i=1}^{N} \| r_i - y_i \|^2 \right)$$

인접 픽셀 간 유사도

동일한 스타일 유지

03. Photorealistic Image Stylization – Symmetric normalized Iaplacian matrix

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$(2 \ 0 \ 0 \ 0 \ 0 \ 0)$	(0 1 0 0 1 0)	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$
		1 0 1 0 1 0	$oxed{ egin{bmatrix} -1 & 3 & -1 & 0 & -1 & 0 \end{bmatrix}}$
(4)		0 1 0 1 0 0	$oxed{ egin{bmatrix} 0 & -1 & 2 & -1 & 0 & 0 \end{bmatrix}}$
I	0 0 0 3 0 0	0 0 1 0 1 1	$egin{bmatrix} 0 & 0 & -1 & 3 & -1 & -1 \end{bmatrix}$
(3)-(2)		1 1 0 1 0 0	$oxed{ \left[egin{array}{cccccccccccccccccccccccccccccccccccc$
	$(0 \ 0 \ 0 \ 0 \ 0 \ 1)$	$(0 \ 0 \ 0 \ 1 \ 0 \ 0)$	$igg iggl iggl 0 0 0 -1 0 1 \ iggr $

The elements of L are given by

$$L_{i,j} := egin{cases} \deg(v_i) & ext{if } i = j \ -1 & ext{if } i
eq j ext{ and } v_i ext{ is adjacent to } v_j \ 0 & ext{otherwise} \end{cases}$$

where $\deg(v_i)$ is the degree of the vertex i.

The symmetric normalized Laplacian matrix is defined as:[1]

$$L^{ ext{sym}} := D^{-rac{1}{2}} L D^{-rac{1}{2}} = I - D^{-rac{1}{2}} A D^{-rac{1}{2}}$$
 ,

The elements of L^{sym} are given by

$$L_{i,j}^{ ext{sym}} := egin{cases} 1 & ext{if } i=j ext{ and } \deg(v_i)
eq 0 \ -rac{1}{\sqrt{\deg(v_i)\deg(v_j)}} & ext{if } i
eq j ext{ and } v_i ext{ is adjacent to } v_j \ 0 & ext{otherwise.} \end{cases}$$

03. Photorealistic Image Stylization – Output

04. Experiments – Visual comparison(1)

Classical	[1]	• Content image 색상을 변 경하면 style transfer 작
Method	[2]	업이 제대로 수행되지 않 음
Neural	[9]	• 불규칙적인 밝기를 포함 등의 artifact 발생
Style Transfer	Ours	• 색상 변환 뿐만 아니라 패 턴을 합성

04. Experiments – Visual comparison(1)

Classical	[1]	• Content image 색상을 변 경하면 style transfer 작
Method	[2]	업이 제대로 수행되지 않 음
Neural	[9]	• 불규칙적인 밝기를 포함 등의 artifact 발생
Style Transfer	Ours	• 색상 변환 뿐만 아니라 패 턴을 합성

04. Experiments – Visual comparison(2)

04. Experiments – Visual comparison(2)

04. Experiments – User studies

Table 1: User preference: proposed vs. Luan et al. and proposed vs. Pitié et al.

	Luan et al. [9] / proposed	Pitié et al. [2] / proposed
Better stylization	36.9% / 63.1%	$44.8\% / \mathbf{55.2\%} $
Fewer artifacts	26.5% / 73.5%	$48.8\% / \mathbf{51.2\%}$

Table 2: User preference: proposed versus *artistic* stylization algorithms.

	Gatys et al. [8]	Huang et al. [22]	Li et al. [10]	proposed
Better stylization Fewer artifacts		$8.4\% \\ 6.0\%$	$16.0\% \ 6.8\%$	$\begin{array}{c} \mathbf{56.4\%} \\ \mathbf{65.6\%} \end{array}$

추가적으로 WCT, PhotoWCT output 을 기반으로 동일한 설문(Better stylization, Fewer artifacts) 진행 결과, PhotoWCT가 각각에 문항에 대해 83.6%, 83.2% 결과

04. Experiments – Alternative smoothing techniques

• input

• 도로 색상에서 왜곡 발생

• 고로 색상에서 왜곡 발생

• 구조적 왜곡 제거 성공
• 시각적 artifact 제거 실패

04. Experiments – Runtime

• NVIDIA Titan X Pascal GPU 환경에서 수행

Table 3: Run-time comparison. We compute the average run time (in seconds) of the evaluated algorithms across various image resolutions.

Image resolution	Luan et al.[9]	proposed	PhotoWCT	smoothing	approx
256×128	79.61	0.96	0.40	0.56	0.41
$512{\times}256$	186.52	2.95	0.42	2.53	0.47
768×384	380.82	7.05	0.53	6.52	0.55
1024×512	650.45	13.16	0.56	12.60	0.64

• NVIDIA Titan X Pascal GPU 환경에서 수행

Table 3: Run-time comparison. We compute the average run time (in seconds) of the evaluated algorithms across various image resolutions.

Image resolutio	n Luan et al.[9]	proposed	PhotoWCT	smoothing	approx
256×128	79.61	0.96	0.40	0.56	0.41
512×256	186.52	2.95	0.42	2.53	0.47
768×384	380.82	7.05	0.53	6.52	0.55
1024×512	650.45 49배 감	→ 13.16	0.56	12.60	0.64

04. Experiments – Runtime

• NVIDIA Titan X Pascal GPU 환경에서 수행

Table 3: Run-time comparison. We compute the average run time (in seconds) of the evaluated algorithms across various image resolutions.

Image resolution	Luan et al.[9]	proposed	PhotoWCT	smoothing	approx
256×128	79.61	0.96	0.40	0.56	0.41
$512{\times}256$	186.52	2.95	0.42	2.53	0.47
768×384	380.82	7.05	0.53	6.52	0.55
$1024{\times}512$	650.45	13.16	0.56	12.60	0.64

희소행렬 W를 transpose 하는 데에 대부분의 시간 소요

• NVIDIA Titan X Pascal GPU 환경에서 수행

Table 3: Run-time comparison. We compute the average run time (in seconds) of the evaluated algorithms across various image resolutions.

Image resolution	Luan et al.[9]	proposed	PhotoWCT	smoothing	approx
256×128	79.61	0.96	0.40	0.56	0.41
$512{\times}256$	186.52	2.95	0.42	2.53	0.47
768×384	380.82	7.05	0.53	6.52	0.55
1024×512	650.45^{-5}	19.16	1016배 감소	10.00	0.64

• NVIDIA Titan X Pascal GPU 환경에서 수행

Table 3: Run-time comparison. We compute the average run time (in seconds) of the evaluated algorithms across various image resolutions.

Image resolution	Luan et al.[9]	proposed	PhotoWCT	smoothing	approx
256×128	79.61	0.96	0.40	0.56	0.41
$512{\times}256$	186.52	2.95	0.42	2.53	0.47
768×384	380.82	7.05	0.53	6.52	0.55
1024×512	650.45^{-5}	19 16	1016배 감소	10.60	0.64

ı	proposed/approx Luan et al. [9]/approx Pitié et al. [2]/approx			
	Better stylization	59.6% / 40.4	36.4 / $63.6%$	$46.0 \ / \ \mathbf{54.0\%}$
	Fewer artifacts	52.8 % / 47.2	20.8 / 79.2%	$46.8 / \mathbf{53.2\%}$

04. Experiments – Failure case

픽셀 유사도 사용 → 냄비 표면에서 부드러운 색상 전환을 목표로 stylization 진행

1

빠르고 사실적인 stylization method 제안 2

Stylization + Smoothing 단계로 구성 3

효율적인 closed-form Solution 제공 4

SOTA 기술에 비해 선호도 높은 이미지 생성

감사합니다

Search