MATH 221 Practice Midterm — November, 2024, Duration: 80 minutes This test has 5 questions on 11 pages, for a total of 55 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5
Points:					
Total:					/55

1. Give an example or say does not exist for each of the following:

2 Marks

(a) A matrix A such that Nul(A) = Col(A)

2 Marks

(b) A subspace of \mathbb{R}^n such that it has only one basis

2 Marks

(c) A linear transformation $T: V \mapsto W$ such that $T(\mathbf{0}) \neq \mathbf{0}'$ where $\mathbf{0} \in V$, $\mathbf{0}' \in W$

2 Marks

(d) An onto function mapping the set of $n \times n$ -matrices with real entries to \mathbb{R}

2 Marks

(e) An invertible 2×2 —matrix with integer entries that has a non-integer determinant

2. Determine whether T is one-to-one and/or onto for each of the following: (No need to justify)

4 Marks

(a) $T: \mathbb{R} \mapsto \mathbb{R}^2$ where if $x \neq 0$, $T(x) = \langle \cos\left(\frac{2\pi}{x}\right), \sin\left(\frac{2\pi}{x}\right) \rangle$ and T(0) = 1

4 Marks

(b) $T: \mathbb{R} \to \mathbb{R}$ where T(x) is a polynomial of odd degree that has complex roots.

4 Marks

(c) $T: M \mapsto M, M$ is the set of invertible $n \times n$ —matrices, $A, B \in M, T(B) = ABA^{-1}$

3. Consider the following matrix A:

$$\begin{bmatrix} 1 & 1 & 0 & 4 \\ 1 & 2 & k^2 & 2 \\ 2 & 0 & k & 12 \end{bmatrix}$$

3 Marks

(a) Without row reducing the matrix, show that $Nul(A) \neq \{0\}$

4 Marks

(b) Find $k \in \mathbb{R}$ such that A is onto, or show that such k does not exist.

(c) Find $k \in \mathbb{R}$ such that rank A is as small as possible, and state explicitly what rank A is

4. Consider the following matrix A:

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & -2 \\ 1 & 0 & 1 \end{bmatrix}$$

3 Marks

(a) Compute A^{-1}

(b) Let $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ denote the column vectors of A^{-1} . Rewrite the basis for $\operatorname{Col}(A^{-1})$ as $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ where T is a linear transformation such that $T(\mathbf{e_2}) =$ $e_2, T(e_3) = e_3, \text{ and }$

$$T(\mathbf{v_1}) = \begin{bmatrix} * \\ * \\ 1 \end{bmatrix} \qquad T(\mathbf{v_2}) = \begin{bmatrix} * \\ 2 \\ * \end{bmatrix} \qquad T(\mathbf{v_3}) = \begin{bmatrix} 1 \\ * \\ * \end{bmatrix}$$

$$T(\mathbf{v_2}) = \begin{bmatrix} * \\ 2 \\ * \end{bmatrix}$$

$$T(\mathbf{v_3}) = \begin{bmatrix} 1 \\ * \\ * \end{bmatrix}$$

(c) Suppose the following are vectors written relative to the bases of \mathbb{R}^3 and $\mathrm{Col}(A)$ respectively.

$$\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, [\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

Does $\{e_1, v, w\}$ form a linearly independent set? What about $\{[e_1]_{\mathcal{B}}, [v]_{\mathcal{B}}, [w]_{\mathcal{B}}\}$? Justify your answer.

5. Let D_4 be the possible matrices obtained by multiplying different powers of R and Stogether in different orders,

$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

4 Marks

(a) Show that $SR^k = R^{-k}S$

(b) Suppose $B \in D_4$ is a matrix representing $T : \mathbb{R}^2 \mapsto V$ where the basis of V is as follows:

$$\left\{ \begin{bmatrix} * \\ -1 \end{bmatrix}, \begin{bmatrix} * \\ * \end{bmatrix} \right\}$$

Find all possible $B \in D_4$ (There are more than one different matrices depending on how you order the basis of V and depending on how you combine powers of S and R)

(c) Let $n \in \mathbb{N}$. Show that $S \neq R^n$ and hence show that there cannot exist 2×2 -matrices A, B that satisfy $SAB = R^k - S(A+I)$, I - B = S, $AS - I = R^\ell$ all at the same time by assuming that they can exist and deduce that $S = R^n$ for some n (which is a contradiction).