

Pruebas de Acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- a) Dadas las funciones $f(x) = \ln(x)$ y g(x) = 1 - 2x, hallar el área del recinto plano limitado por las rectas x = 1, x = 2 y las gráficas de f(x) y g(x). (2 puntos)

b) Dar un ejemplo de función continua en un punto y que no sea derivable en él. (0,5 puntos)

E2.- a) Si el término independiente de un polinomio p(x) es -5 y el valor que toma p(x) para x = 3 es 7, ¿se puede asegurar que p(x) toma el valor 2 en algún punto del intervalo [0,3]? Razonar la respuesta y enunciar los resultados teóricos que se utilicen. (1,5 puntos)

b) Calcular
$$\int \frac{\cos(x)}{1+\sin^2(x)} dx$$
. (1 punto)

E3.- a) Sea B una matriz cuadrada de tamaño 3×3 que verifica que $B^2 = 16 I$, siendo I la matriz unidad. Calcular el determinante de B. (1,5 puntos)

b) Hallar todas las matrices X que satisfacen la ecuación $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ $\cdot X = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. (1 punto)

E4.- Se consideran la recta $r = \begin{cases} x - y + az = 0, \\ ay - z = 4, \end{cases}$ con $a \in R$, y el plano $\pi = x + y + z - 2 = 0$.

a) Hallar los valores de a para los que r es paralela a π .

(1 punto)

b) Para a = 2, hallar la distancia de r a π .

(1 punto)

c) Para a = 1, hallar la distancia de r a π .

(0,5 puntos)

OPCIÓN B

E1.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 270 cm³. Para la tapa y la superficie lateral se usa un material que cuesta 5€cm² y para la base un material un 50% más caro. Hallar las dimensiones de la caja para que el coste sea mínimo.

(2,5 puntos)

E2.- Hallar el valor de *a* para que se verifique que

$$\lim_{x \to +\infty} \left(\frac{2x+a}{2x-1} \right)^{x+5} = \lim_{x \to 0} \frac{x^2 - x^3}{\sin^2(x)}.$$
 (2,5 puntos)

E3.- Consideramos el sistema de ecuaciones lineales:

$$\begin{cases} 2x & - & y & + & az & = & 1+a, \\ x & - & ay & + & z & = & 1, \\ x & + & y & + & 3z & = & a. \end{cases}$$

a) Discutir el sistema para los distintos valores del parámetro a.

(2 puntos)

b) Resolver el sistema para a = 1.

(**0,5** puntos)

E4.- Dados el punto P(1,1,-1), la recta $r = x = \frac{y+6}{4} = z-3$ y el plano $\pi = 6x+6z-12=0$, se pide:

a) Hallar el punto simétrico de P respecto del plano π .

(1,5 puntos)

b) Hallar los puntos Q de r que distan $\frac{1}{\sqrt{2}}$ unidades de longitud de π .

(1 punto)