R2.01 - Développement orienté objets

TD n° 5 – Classe Polynôme (partie 1/3)

Un polynôme P(x), en mathématiques est une somme de monômes $a_i x^i$ où x représente une variable, a_i le coefficient du monôme et i son exposant.

On le note : $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

On en propose la spécification fonctionnelle suivante :

```
Type Polynôme
  Opérations
         polynômeNul :
                            → Polynôme
                            Polynôme x Monôme → Polynôme
         setMonôme :
                            Polynôme x Entier → Monôme
         getMonôme :
                            Polynôme x Polynôme → Polynôme
         somme :
                            Polynôme x Monôme → Polynôme
         produit :
         dérivée :
                            Polynôme → Polynôme
  Préconditions
         getMonôme(p, e) ssi e ≥ 0
  Propriétés (des trois premières opérations)
         (P1) getMonôme(polynômeNul, e) = unMonôme(0, e)
         (P2) getMonôme(setMonôme(p, unMonôme(c, e)), e') =
                            si e=e' alors unMonôme(c, e)
                            sinon getMonôme(p, e')
```

Propriétés des autres opérations de Polynôme :

```
Si P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n
et Q(x) = b_0 + b_1x + b_2x^2 + ... + b_nx^n
```

- $P(x) + Q(x) = (a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2 + ... + (a_n + b_n) x^n$
- $P'(x) = (a_0)' + (a_1x)' + (a_2x^2)' + ... + (a_nx^n)'$
- Pour un monôme m: $P(x) * m = (a_0 m) + (a_1 x m) + (a_2 x^2 m) + ... + (a_n x^n m)$

Remarque:

Par convention, le degré du polynôme nul est égal à -∞. En pratique, on conviendra qu'un polynôme nul est tel que tous ses coefficients sont nuls.

TD n° 5 R2.01

Nous souhaitons construire et utiliser la classe Java *Polynôme* mettant en œuvre ce TAD.

Remarque : En annexe figure un extrait de la documentation au format javadoc de la classe *Monôme* et de la classe *Polynôme* que nous souhaitons construire.

Questions:

1) Représentation d'un polynôme

Pour incarner un polynôme dans une classe Java, nous avons choisi de stocker les coefficients de ses monômes dans un tableau *coefficients* où *coefficients[i]* représente le coefficient du monôme d'exposant i du polynôme. Donner sa définition en Java.

- 2) Fournir le corps du constructeur puis des méthodes setMonôme() et getMonôme() de la classe Polynôme.
- 3) Algorithmes des autres méthodes de la classe Polynôme

Proposer un algorithme pour l'écriture des méthodes : dérivée(), produit() et somme() de la classe Polynôme en s'appuyant sur les propriétés des opérations.

4) Application: les polynômes d'Hermite¹

Les *polynômes d'Hermite sous forme probabiliste* peuvent s'obtenir par la formule de récurrence suivante :

```
H_0(x) = 1

H_1(x) = x

H_n(x) = x H_{n-1}(x) - (n-1)H_{n-2}(x) pour n > 1
```

Ecrire une application Java qui construit et affiche les éléments d'un tableau contenant les 10 premiers polynômes d'Hermite en utilisant la formule de récurrence ci-dessus.

Les 10 premiers polynômes à obtenir sont :

```
H_{1}(x) = x
H_{2}(x) = x^{2} - 1
H_{3}(x) = x^{3} - 3x
H_{4}(x) = x^{4} - 6x^{2} + 3
H_{5}(x) = x^{5} - 10x^{3} + 15x
H_{6}(x) = x^{6} - 15x^{4} + 45x^{2} - 15
H_{7}(x) = x^{7} - 21x^{5} + 105x^{3} - 105x
H_{8}(x) = x^{8} - 28x^{6} + 210x^{4} - 420x^{2} + 105
H_{9}(x) = x^{9} - 36x^{7} + 378x^{5} - 1260x^{3} + 945x
```

TD n° 5 R2.01

 $^{^1}$ Les $polyn\^omes$ d'Hermite sont des polyn\^omes orthogonaux servant dans le calcul vectoriel et à des problèmes d'interpolation

On peut remarquer que dans la formule de récurrence :

- le facteur x associé au polynôme $H_{n-1}(x)$ correspond au monôme x^1
- le facteur (n-1) associé au polynôme $H_{n-2}(x)$ correspond au monôme $(n-1)x^0$

ANNEXE

Class Monôme

java.lang.Object

Monôme

public class Monôme
extends java.lang.Object

Constructor Summary

Constructors

Constructor and Description

 $\frac{\underline{\texttt{Monôme}}}{\texttt{construit}} \texttt{(float coefficient, int exposant)}$

Method Summary

All Methods	
Modifier and Type	Method and Description
Monôme	dérivée () calcule la dérivée d'un monôme
boolean	estNul () teste si un monôme est nul
float	getCoefficient () retourne le coefficient d'un monôme
int	getExposant () retourne l'exposant d'un monôme
Monôme	<pre>produit (Monôme m) calcule le produit de deux monômes</pre>
Monôme	somme (Monôme m) calcule la somme de deux monômes
java.lang.String	toString () produit une version unicode d'un monôme

TD n° 5 R2.01

Class Polynôme

java.lang.Object

Polynôme

public class Polynôme
extends java.lang.Object

Constructor Summary

Constructors

Constructor and Description

Polynôme ()

crée un polynôme nul

Method Summary

All Methods	
Modifier and Type	Method and Description
Polynôme	<u>dérivée</u> () calcule la dérivée d'un polynôme
Monôme	<pre>getMonôme (int exposant) accède à un monôme du polynôme</pre>
Polynôme	<pre>produit (Monôme m) calcule le produit d'un polynôme et d'un monôme</pre>
void	setMonôme (Monôme m) positionne un monôme dans un polynôme
Polynôme	somme (Polynôme p) calcule la somme de deux polynômes
java.lang.String	toString () produit une version unicode d'un polynôme

TD n° 5 R2.01 - 4 -