FHM+: Faster High-Utility Itemset Mining using Length Upper-Bound Reduction

Philippe Fournier-Viger¹, Jerry Chun-Wei Lin², Quang-Huy Duong³, Thu-Lan Dam^{3,4},

- School of Natural Sciences and Humanities, <u>Harbin Institute of Technology</u> Shenzhen Graduate School, China
- ² School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
- College of Computer Science and Electronic Engineering, Hunan University, China Faculty of Information Technology, Hanoi University of Industry, Vietnam

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)
	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
T_5	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets (itemsets having a utility \geq minutil) For example, if minutil = 33\$, the high-utility itemsets are:

{b,d,e}2 transactions	{b,c,d} 34\$ 2 transactions
{b,c,d,e} 40\$ 2 transactions	{b,c,e} 37 \$ 3 transactions

Utility calculation

a transaction database

TID Transaction T_1 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5) T_2 (b, 4), (c, 3), (d, 3), (e, 1) T_3 (a, 1), (c, 1), (d, 1) T_4 (a, 2), (c, 6), (e, 2), (g, 5) T_5 (b, 2), (c, 2), (e, 1), (g, 2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The utility of the itemset {b,d,e} is calculated as follows:

$$u(\{b,d,e\}) = (5x2)+(3x2)+(3x1) + (4x2)+(2x3)+(1x3) = 36$$

utility in utility in transaction T_1 transaction T_2

A difficult task!

Why? the **utility** measure is neither monotonic nor anti-monotonic.

a transaction database

TID	Transaction
T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

$$u(\{b,d,e\}) = 36\$$$

 $u(\{b,c,d,e\}) = 40\$$
 $u(\{a,b,c,d,e,f\}) = 30 \$$

a unit profit table

${\rm Item}$	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Previous work

Several algorithms:

EFIM, FHM, BAHUI, IHUP, Two-phase, Umining...)

Key idea:

 calculate an upper-bound on the utility of itemsets (e.g. the TWU) that is monotonic to be able to prune the search space.

The TWU upper-bound

TWU of an itemset: the sum of the utility of transactions containing the itemset.

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	$(b,4), (c,3), (\overline{d,3}), (\overline{e,1})$
T_3	$(a,1), \overline{(c,1)}, \overline{(d,1)}$
T_4	$(a,2), (\overline{c,6}), (\overline{e,2}), (g,5)$
	(b,2),(c,2),(e,1),(g,2)

$$TWU({c,d}) = TU(T1)+TU(T2)+TU(T3)$$

= 30 + 20 + 8 = 58

Problem

- Current algorithms are useful for discovering profitable itemsets.
- But can find a large amount of itemsets
- Long itemsets are often infrequent or too specific

```
{mapleSyrup, pancake,orange,cheese,cereal}
{mapleSyrup, pancake}
```

— A solution: use a length constraint

Naïve approach

- Introduce a parameter maxlength
- Modify an algorithm to not extend an itemset with an item if its number of items is equal to maxlength

Drawback:

- does not reduce upper-bounds on the utilities of itemsets to prune the search space.
- having tight upper-bounds is crucial for pruning the search space efficiently.

Contribution

- We introduce the idea of reducing upper-bounds on the utilities of itemsets using length constraints.
- Two novel upper-bounds
 - RTWU
 - Revised Remaining Utility
- A modified algorithm called FHM+

Largest utilities of a transaction

The *maxLength* largest utility values in each transaction:

maxLength = 3

TID	Transaction		
T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)	$L(T_1) = 10, 6, 5$	$RTU(T_1) = 21$
$\mid T_2 \mid$	(b,4),(c,3),(d,3),(e,1)		·
T_3	(a,1),(c,1),(d,1)		
	(a, 2), (c, 6), (e, 2), (g, 5)		
T_5	(b,2),(c,2),(e,1),(g,2)		

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

Largest utilities of a transaction

Find the *maxLength* largest utility values in each transaction:

maxLength = 3

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5) (b, 4), (c, 3), (d, 3), (e, 1)
T_3	(a,1),(c,1),(d,1)
T_4	(a,2),(c,6),(e,2),(g,5)
	(b,2),(c,2),(e,1),(g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

$$L(T_1) = 10, 6, 5$$
 RTU(T₁) = 21
 $L(T_2) = 8, 6, 3$ RTU(T₂) = 17
 $L(T_3) = 5, 2, 1$ RTU(T₃) = 8
 $L(T_4) = 10,6,6$ RTU(T₄) = 22
 $L(T_5) = 4, 3, 2$ RTU(T₅) = 9

The RTWU upper-bound

- RTWU of an itemset X: The sum of the RTU values of transactions containing X
- It is an upper-bound on its utility and the utility of its supersets

$$X = \{c,d\}$$
 $maxLength = 3$

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5) (b, 4), (c, 3), (d, 3), (e, 1)
T_3	(a,1),(c,1),(d,1)
T_4	(a,2),(c,6),(e,2),(g,5)
T_5	(b,2),(c,2),(e,1),(g,2)

$$RTU(T_1) = 21$$

 $RTU(T_2) = 17$
 $RTU(T_3) = 8$
 $RTU(T_4) = 22$
 $RTU(T_5) = 9$

RTWU(
$$\{c,d\}$$
) = RTU(T1) + RTU(T2) + RTU(T3)
= 21 + 17 + 8 = 48

Largest utilities w.r.t an itemset in a transaction

Given an itemset X, find the maxLength - |X| largest utility values in the transaction that can extend X:

$$X = \{a\}$$
 $maxLength = 3$

	TID	Transaction	_
	T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)	RRU
_	T_2	(b,4),(c,3),(d,3),(e,1)	
ſ	T_3	(a, 1), (c, 1), (d, 1) (a, 2), (c, 6), (e, 2), (g, 5)	RRU
	T_4	(a, 2), (c, 6), (e, 2), (g, 5)	
		(b,2),(c,2),(e,1),(g,2)	RRU

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

$$RRU(T_1) = 10, 6$$

$$RRU(T_3) = 2, 1$$

 $RRU(T_4) = 6,6$

The Revised Remaining Utility

- RREU of an itemset X: The sum of the utilities of the itemset + the largest remaining utilities w.r.t that itemset
- An upper-bound on the utility of X and the utility of its supersets

$$X = \{a\}$$
 $maxLength = 3$

	TID	Transaction		
	T_1	(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)	$RRU(T_1) = 10, 6$	$U(T_1)=5$
_		(b,4),(c,3),(d,3),(e,1)		
١		(a,1),(c,1),(d,1)	$RRU(T_3) = 2, 1$	$U(T_3)=5$
	_	(a, 2), (c, 6), (e, 2), (g, 5)	$RRU(T_4) = 6.6$	$U(T_4) = 10$
	T_5	(b,2),(c,2),(e,1),(g,2)		•

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The Revised Remaining Utility

- RREU of an itemset X: The sum of the utilities of the itemset + the largest remaining utilities w.r.t that itemset
- An upper-bound on the utility of X and the utility of its supersets

$$X = \{a\}$$
 $maxLength = 3$

TID Transaction		
T_1 $(a,1),(b,5),(c,1),(d,3),(e,1),(f,5)$	$RRU(T_1) = 10, 6$	$U(T_1)=5$
T_2 $(b,4),(c,3),(d,3),(e,1)$		
$\mid T_3 \mid (a,1), (c,1), (d,1)$	$RRU(T_3) = 2, 1$	$U(T_3) = 5$
$T_4 (a, 2), (c, 6), (e, 2), (g, 5)$	$RRU(T_4) = 6,6$	$U(T_{\Delta}) = 10$
$T_5 (b,2), (c,2), (e,1), (g,2)$		· •

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

RREU({a}) = RRU(T1) + U(T1) + RTU(T2) + U(T2) + RRU(T3) + U(T3)
=
$$(16 + 5) + (3 + 5) + (12 + 10) = 52$$

The FHM+ algorithm

An algorithm for mining high utility-itemsets with length constraint

It performs a depth-first search. {a} {b} {c} {d} $\{a,d\}$ $\{b,d\}$ $\{c,d\}$ {a,b} {a,c} {b,c} $\{b,c,d\}$ $\{a,b,c\}$ $\{a,b,d\}$ $\{a,c,d\}$ $\{a,b,c,d\}$

 It applies pruning strategies to prune the search space based on upper-bounds on the utility.

Creating utility-lists

Scan the database to create a utility-list for each itemset

Itemset {a}

TID	Utility	Largest utilities
T1	5	{10,6]
T3	5	{2, 1}
T4	10	{6, 6}

Itemset {b}

TID	Utility	Largest utilities
T1	10	{6, 3]
T2	8	{6, 3}
T5	4	{3, 2}

Creating utility-lists

Scan the database to create a utility-list for each itemset

Itemset {a}

TID	Utility	Largest utilities
T1	5	{10,6]
T3	5	{2, 1}
T4	10	{6, 6}

20\$ 32\$

Upper-bound: 52\$

Itemset {b}

TID	Utility	Largest utilities
T1	10	{6, 3]
T2	8	{6, 3}
T5	4	{3, 2}

Generating larger itemsets

Itemset {a}

TID	Utility	Largest utilities
T1	5	{10,6]
T3	5	{2, 1}
T4	10	{6, 6}

Itemset {b}

TID	Utility	Largest utilities
T1	10	{6, 3]
T2	8	{6, 3}
T5	4	{3, 2}

Itemset {a,b}

TID	Utility	Largest utilities
T1	15	{10}

Generating larger itemsets

Itemset {a}

T4

10

Largest utilities Utility TID T1 {10,6] 5 T3 {2, 1}

{6, 6}

Itemset {b}

TID	Utility	Largest utilities
T1	10	{6, 3]
T2	8	{6, 3}
T5	4	{3, 2}

Itemset {a,b}

	TID	Utility	Largest utilities
	T1	15	{10}
		15\$	10\$
Upper-bound: 25\$			

Pseudocode

Algorithm 1. The FHM+ algorithm

```
input : D: a transaction database, minutil, minlength, maxlength:
user-specified parameters
output: the set of high-utility itemsets
1 Scan D once to calculate the RTWU of single items;
2 I* ← each item i such that RTWU(i) ≥ minutil;
3 Let > be the total order of RTWU ascending values on I*;
4 Scan D to build the revised utility-list of each item i ∈ I* and build the EUCS structure;
5 if minlength ≤ 1 then output each item i ∈ I* such that SUM({i}.utilitylist.iutils) ≥ minutil if maxlength > 1 then Search (∅, I*,
```

Algorithm 2. The Search procedure

14 end

minutil, minlength, maxlength, EUCS)

```
input: P: an itemset, Extensions OfP: a set of extensions of P, minutil,
            minlength, maxlength: user-specified parameters, EUCS: the EUCS
   output: the set of high-utility itemsets
 1 foreach itemset Px \in ExtensionsOfP do
       if SUM(Px.utilitylist.iutils) + SUM(Px.utilitylist.llist) > minutil then
           ExtensionsOfPx \leftarrow \emptyset;
           foreach itemset Py \in ExtensionsOfP such that y \succ x do
               if \exists (x, y, c) \in EUCS \ such \ that \ c \geq minutil \ then
                   Pxy \leftarrow Px \cup Py;
                   Pxy.utilitylist \leftarrow Construct (P, Px, Py);
                   ExtensionsOfPx \leftarrow ExtensionsOfPx \cup Pxy;
                   if SUM(Pxy.utilitylist.iutils) > minutil and
                   minlength < |Pxy| < maxlength then output Px
               \mathbf{end}
10
           end
11
           if |Pxy| < maxlength then Search (Px, ExtensionsOfPx, minutil)
12
       end
13
```

Experimental Evaluation

Datasets' characterictics

Dataset	transaction count	distinct item count	average transaction length
Chainstore	1,112,949	46,086	7.2
Retail	88,162	16,470	10.3
Mushroom	8,124	119	23

Retail and **Chainstore** are real-life transaction datasets from retail stores.

Mushroom is a dense dataset with long transactions

Experimental Evaluation

- We compared the performance:
 - FHM
 - FHM+ with maxLength varied from 1 to 5
- We varied the minutil threshold and measured
 - execution time
 - number of patterns
 - memory usage
- Java, 12 GB of RAM, Windows 7, 64 bit Core i5 CPU

Mushroom

Maximum Memory usage (MB)

Dataset	Reduction	
Chainstore	5% to 50%	
Retail	5% to 50%	
Mushroom	25 % to 50 %	

Efficiency vs Naïve approach

Dataset	FHM+
Chainstore	up to 4 times faster
Retail	up to 2 times faster
Mushroom	up to 2 times faster

Conclusion

- Contribution:
 - Novel algorithm for mining high utility itemsets while considering the length constraint named FHM+
 - ➤ Novel concept of Length upper-bound reduction
 - > Two new upper-bounds: revised TWU and revised remaining utility
- Experimental results:
 - FHM+ can greatly reduce execution time, memory usage, and the number of patterns founds
- Source code and datasets available as part of the SPMF data mining library (GPL 3).

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/

Thank you. Questions?

Open source Java data mining software, 120 algorithms http://www.phillippe-fournier-viger.com/spmf/

References

- Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Databases, pp. 487–499 (1994)
- Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Ra´s, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 83–92. Springer, Heidelberg (2014)
- Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–3393 (2014)
- Pei, J., Han, J.: Constrained frequent pattern mining: a pattern-growth view. ACM SIGKDD Explor. Newsl. 4(1), 31–39 (2012)
- Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets. Knowl. Inf. Syst. 38(1), 85–107 (2014)
- Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 42(5), 2371–2381 (2015)

References (cont'd)

- Lin, J.C.-W., Gan, W., Hong, T.-P., Pan, J.-S.: Incrementally updating high-utility itemsets with transaction insertion. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 44–56. Springer, Heidelberg (2014)
- Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility itemsets based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)
- Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 55–64 (2012)
- Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)
- Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)
- Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.W., Tseng, V.S.: Efficient mining of high utility sequential rules. In: Proceedings of the 11th International Conference on Machine Learning and Data Mining, pp. 1–15 (2015)
- Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly efficient algorithm for high-utility itemset mining. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 530–546. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27060-9 44

31