

What is claimed is:

1. An epoxy acrylate of formula (III)

wherein

Q is hydrogen or a group of formula

R₁ is -H or -CH₃, R₂ -H, -CH₃ or phenyl

T is the radical of an aromatic bifunctional compound, and

M is each independently hydrogen or a group of formula

R_1 and R_2 are as defined above,

- A is the radical of an aromatic bifunctional compound,
- n is an integer from 0 to 300, and
- L is a group of formula

or $-\text{O} - \text{A} - \text{OM}$,

with the proviso that in formula III not all radicals M may be simultaneously hydrogen or a group of formula

but at least 10 mol %, preferably 20-100 mol %, of the radicals M that are not present in the end groups Q and L denote a group of the above formula

wherein R_1 and R_2 are as defined above.

2. An epoxy acrylate of formula III according to claim 1, wherein R_1 is hydrogen or methyl and R_2 is hydrogen, methyl or phenyl.

3. An epoxy acrylate of formula III according to claim 1, wherein n is an integer from 0 to 50 and A and T are each independently of the other a linking group of formula

wherein R_4 and R_5 are each independently of the other -H or $\text{C}_1\text{-C}_4$ alkyl and the phenyl radicals of said linking group are unsubstituted or bromine-substituted.

4. A process for the preparation of an epoxy acrylate of formula (III) according to claim 1, which comprises reacting a postglycidylated epoxy resin of formula II

wherein

E is hydrogen or a group of formula

F represents the groups of formula - O - A - OG or

G is -H or the radical

with the proviso that, in formula II, at least 10 mol % of the radicals G that are not present in the end groups E and F represent the group of formula

A, T, and n are as defined in claim 1,

with an ethylenically unsaturated monocarboxylic acid in the presence of a catalyst and a polymerisation inhibitor, at elevated temperature.

5. A carboxyl group-containing epoxy acrylate of formula IV

wherein

X is hydrogen or a group of formula

R_3 is the radical of a cyclic anhydride of a polycarboxylic acid after removal of the anhydride radical,

W_1 is hydrogen or a group of formula

W_2 is $-\text{H}$ or the group $\begin{array}{c} \text{O} \\ \parallel \\ -\text{C}-\text{R}_3-\text{COOH} \end{array}$, and

Y is the group of formula $-\text{O}-\text{A}-\text{O}-\text{W}_1$ or

wherein the symbols A , T , R_1 , R_2 , R_3 and n are as defined in claim 1, with the proviso that, in formula IV, at least 10 mol % of radicals W_1 that are not in the end groups X and Y are a group of formula

wherein R₁ and R₂ are as defined in claim 1 and R₃ is as defined in claim 5.

6. A process for the preparation of a carboxyl group containing epoxy acrylate of formula IV as claimed in claim 5, which comprises reacting an epoxy acrylate of formula III as claimed in claim 1 with a cyclic anhydride of a polycarboxylic acid, in the absence or presence of a catalyst and of a polymerisation inhibitor, at elevated temperature.
7. A method for preparing photoresist formulations comprising the use of an epoxy acrylate of formula III as claimed in claim 1 as acrylate component.
8. A method for preparing photoresist formulations comprising the use of a carboxyl group-containing epoxy acrylate of formula IV as claimed in claim 5 as acrylate component.