

République l'unisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gubès Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Année Universitaire : 2022/2023	Date de l'Examen 27/10/2022
Nature DC	Durée : ☑ 1h30min
Diplôme . 🖾 Ingénieur	Nombre de pages : 02
Section : Ø GEA	Enseignant : Karlm CHABIR
Niveau d'étude : ☑ 2 année	Documents Autorisés 🖾 Non
Matière : Robotique	

Exercice 1 : (13pts)

On considère le robot manipulateur décrit par la figure suivante

Ce robot est représenté dans la configuration où les coordonnées articulaires q1, q2 et q1 sont nulles

- 1) Préciser la nature des liaisons mécaniques.
- 2) Compléter les différents repères nécessaires en respectant la convention de DH.
- 3) Calculer M_{12} , M_{23} et M_{34} , les matrices de transformation entre les repères R_1 , R_2 , R_3 et R_4 .
- 4) Déterminer les coordonnées 'P du point P dans le repère Ri en fonction de q:, q2 et q1.
- 5) Déterminer le Jacobien J de ce robot.

Exercice 2 (07pts)

On considère le robot manipulateur décrit par la figure suivante :

Ce robot est représenté dans la configuration où les coordonnées articulaires quet que sont nulles

- 1) Préciser la nature des liaisons mécaniques.
- 2) Placer les repères en respectant le sens + des axes et en maximisant la simplification du tableau de DH.
- 3) Calculer M_{12} et M_{23} les matrices de transformation entre les repères R_1 , R_2 et R_3 .
- 4) Calculer les coordonnées ^{1}P du point P dans le repère R_{1} pour les configurations articulières suivantes :
 - +) q1=0 et q1=0.
 - +) $q_1=0$ et $q_2=\frac{\pi}{2}$.
- 5) Déterminer le Jacobien J de ce robot.

Bon courage

Formulaire d'Examen Robotique

1) Le passage du repère R_i au repère R_{i+1} s'exprime par la matrice

$$\text{homogène suivante } M_{i,i+1} = \begin{pmatrix} c\theta_i & -s\theta_i c\alpha_i & s\theta_i s\alpha_i & a_i c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2) $As(\Omega) = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$ est la matrice anti-symétrique associé au vecteur

$$\Omega = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

3) $J = (J_1 \ J_2 \ \cdots \ J_n)$ est la matrice jacobienne directe du robot, avec

$$J_i = \begin{pmatrix} \mathbf{1}_{z_i} \\ \mathbf{0} \end{pmatrix} \text{ ou bien } J_i = \begin{pmatrix} \mathbf{1}_{z_i} \times O_i O_n \\ \mathbf{1}_{z_i} \end{pmatrix}.$$

E N I G

République Tunisienne istère de l'Enseignement Supérieur et de la Re

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Année Universitaire : 2022/2023	Date de l'Examen: 05/01/2023
Nature : □DC⊠Examen□DR	Durée : □1h□1h30min ☑ 2h□3h
Diplôme : □Mastère ☑Ingénieur	Nombre de pages :2
Section : GCPGCVGGEAGCRGM	Enseignant (e) : Karim CHABIR
Niveau d'étude : □1êre 22ême □3êmeannée	Documents Autorisés : □Oui⊠Non
Matière : Modélisation de Robots	Remarque:

Exercice 1 : (12pts)

On considère le robot manipulateur décrit par la figure suivante

- Ce robot est représenté dans la configuration où les coordonnées articulaires q₁, q₂ et q₂ sont nulles
- I-1) Préciser la nature des liaisons mécaniques.
- I-2) Compléter les différents repêres nécessaires en respectant la convention de DH.
- I-3) Calculer M_{12} , M_{23} et M_{34} , les matrices de transformation entre les repères R_1 , R_2 , R_3 et R_4 .
- I-4) Déterminer les coordonnées ¹P du point P dans le repère R₁ en fonction de q₁, q₂ et q₂.
- I-5) Déterminer le Jacobien J de ce robot.
- II) On considère que le robot évolue dans le plan de la figure et que q_i = 0, dans ce cas particulier

Déterminer le modèle dynamique du robot

Exercice 2 : (8pts)

On considère le robot manipulateur décrit par la figure suivante :

Ce robot est représenté dans la configuration où les coordonnées articulaires q₁ et q₂ sont nulles

- 1) Préciser la nature des liaisons mécaniques.
- 2) Placer les repères en respectant le sens + des axes et en maximisant la simplification du tableau de DH.
- 3) Calculer M_{12} et M_{23} les matrices de transformation entre les repères R_1 , R_2 et R_3 .
- 4) Calculer les coordonnées 1P du point P dans le repère R_1 pour les configurations articulières suivantes :
 - +) $q_1=0$ et $q_2=0$.
 - +) $q_1=0$ et $q_2=\frac{\pi}{2}$.
- 5) Déterminer le Jacobien J de ce robot.
- 6) Déterminer le modèle dynamique du robot

Formulaire d'Examen Robotique

1) Le passage du repère R_i au repère R_{i+1} s'exprime par la matrice

homogène suivante
$$M_{i,i+1} = \begin{pmatrix} c\theta_i & -s\theta_i c\alpha_i & s\theta_i s\alpha_i & a_i c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2) $As(\Omega) = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$ est la matrice anti-symétrique associé au vecteur

$$\Omega = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

3) $J = (J_1 \ J_2 \ \cdots \ J_n)$ est la matrice jacobienne directe du robot, avec

$$J_i = \begin{pmatrix} \mathbf{1}_{z_i} \\ \mathbf{0} \end{pmatrix}$$
 ou bien $J_i = \begin{pmatrix} \mathbf{1}_{z_i} \times O_i O_n \\ \mathbf{1}_{z_i} \end{pmatrix}$.

4) L'équation de mouvement de Lagrange d'un système conservatif est donnée par : $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial a} = \tau$