Лабораторная работа №1. Сжатие без потерь

Метод оптимального побуквенного кодирования был разработан в 1952 г. Д. Хаффманом. Оптимальный код Хаффмана обладает минимальной средней длиной кодового слова среди всех побуквенных кодов для данного источника с алфавитом $A = \{a_1, ..., a_n\}$ и вероятностями $p_i = P(a_i)$.

Рассмотрим алгоритм построения оптимального кода Хаффмана, который основывается на утверждениях лемм предыдущего параграфа.

- 1. Упорядочим символы исходного алфавита $A = \{a_1, ..., a_n\}$ по убыванию их вероятностей $p_1 \ge p_2 \ge \cdots \ge p_n$.
- 2. Если $A = \{a_1, a_2\}$, то $a_1 \to 0$, $a_2 \to 1$.
- 3. Если $A=\{a_1,...,a_j,...,a_n\}$ и известны коды $\langle a_j \to b_j \rangle$, j=1,...,n, то для алфавита $\{a_1,...a_j', a_j''...,a_n\}$ с новыми символами a_j' и a_j'' вместо a_j , и вероятностями $p(a_j)=p(a_j')+p(a_j'')$, код символа a_j заменяется на коды $a_j' \to b_j 0$, $a_j'' \to b_j 1$.

Пример. Пусть дан алфавит $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ с вероятностями

$$p_1$$
=0.36, p_2 =0.18, p_3 =0.18, p_4 =0.12, p_5 =0.09, p_6 =0.07.

Здесь символы источника уже упорядочены в соответствии с их вероятностями. Будем складывать две наименьшие вероятности и включать суммарную вероятность на соответствующее место в упорядоченном списке вероятностей до тех пор, пока в списке не останется два символа. Тогда закодируем эти два символа 0 и 1. Далее кодовые слова достраиваются, как показано на рисунке 4.

Рисунок 4 Процесс построения кода Хаффмана

Таблица 5 Код Хаффмана

	$\overline{a_i}$	p_i	L_i	кодовое слово
I	a_1	0.36	1	1
l	a_2	0.18	3	000
l	a_3	0.18	3	001
l	a_4	0.12	3	011
l	a_5	0.09	4	0100
	a_6	0.07	4	0101

Посчитаем среднюю длину, построенного кода Хаффмана

$$L_{cp}(P)=1.0.36+3.0.18+3.0.18+3.0.12+4.0.09+4.0.07=2.44,$$

при этом энтропия данного источника

$$H(p_1,...,p_6) = -0.36 \cdot \log 0.36 - 2 \cdot 0.18 \cdot \log 0.18 - 0.12 \cdot \log 0.12 - 0.09 \cdot \log 0.09 - 0.07 \log 0.07 = 2.37$$

Рисунок 5 Кодовое дерево для кода Хаффмана

Код Хаффмана обычно строится и хранится в виде двоичного дерева, в листьях которого находятся символы алфавита, а на «ветвях» – 0 или 1. Тогда уникальным кодом символа является путь от корня дерева к этому символу, по которому все 0 и 1 собираются в одну уникальную последовательность (рис. 5).

Алгоритм на псевдокоде

Построение оптимального кода Хаффмана (п,Р)

Обозначим

n – количество символов исходного алфавита

Р – массив вероятностей, упорядоченных по убыванию

С – матрица элементарных кодов

L – массив длин кодовых слов

Функция Up (n,q) находит в массиве P место, куда вставить число q, и вставляет его, сдвигая вниз остальные элементы.

Процедура Down (n,j)_формирует кодовые слова.

```
S:=C\ [j,*]\ (запоминание j-той строки матрицы элем. кодов в массив S) L:=L[j] DO\ (i=j,...,n-2) C\ [i,*]:=C[i+1,*]\ (сдвиг вверх строк матрицы C) L\ [i]:=L\ [i+1] OD C\ [n-1,*]:=S, C\ [n,*]:=S\ (восстановление префикса кодовых слов из м-ва S) C\ [n-1,L+1]:=0 C\ [n,L+1]:=1 L\ [n-1]:=L+1 L\ [n]:=L+1
```

Для зачета по лабораторной работе студенту необходимо представить

- Исходные тексты программ с подробными комментариями;
- Исполняемые файлы;
- Отчет по лабораторной работе.

Отчет должен включать в себя следующие разделы

- Формулировку задания
- Описание основных методов, используемых в лабораторной работе;
- Результаты работы программы (в виде файла или в виде скриншота);
- Анализ результатов.

Порядок выполнения работы

- 1. Изучить теоретический материал
- 2. Реализовать процедуру построения оптимального кода Хаффмана.
- 3. Построить код Хаффмана для текста на языке, обозначенном преподавателем, использовать файл не менее 1 Кб. Распечатать полученную кодовую таблицу в виде:

Символ	Вероятность	Кодовое слово	Длина кодового
			слова

- 4. Вычислить энтропию исходного файла и сравнить со средней длиной кодового слова.
- 5. Восстановить исходный текст

Контрольные вопросы

- 1. Какой код называется разделимым? Префиксным?
- 2. Что такое энтропия дискретного вероятностного источника?
- 3. Какова основная характеристика неравномерного кода?
- 4. Что такое избыточность кода?
- 5. Почему код Хаффмана называется оптимальным?