ZAD 1.

Let \geq 1, and let $x_1,...,x_{3n} \in \mathbb{R}^2$ be points such that $\|x_i - x_j\| \leq 1$ for all i and j. Prove that $\|x_i - x_j\| > \frac{1}{\sqrt{2}}$ for at most $3n^2$ pairs (i,j) with i < j.

Hint: can four of these points have all pairwise distances greater than $\frac{1}{\text{sort}2}$?

Let us create a graph G with vertices 1,..., 3n such that i corresponds to x_i . Let us connect x_i and x_j iff $||x_i - x_j|| > \frac{1}{\text{sqrt}2}$. If a vertex is connected with 3 other vertices, then one pair of those cannot be connected with each other. Otherwise, we would have a square with side of length $> \frac{1}{\text{sqrt}2}$ and so the diagonal would be greater than $\frac{1}{\text{sqrt}2}\sqrt{2} = 1$ giving us a contradiction. I dunno, I dont wanna think right now.

ZAD 2.

Let G be a graph with $n \ge r + 2 \ge 4$ vertices and $t_r(n) + 1$ edges. (a) Show that for every p with $r + 1 \le p \le n$, G has a subgraph H with |H| = p and $e(H) = t_r(p) + 1$.