

**AMENDMENTS TO THE CLAIMS:**

Please substitute the following claims for the same-numbered claims in the application.

1. (Currently Amended) A scanning probe microscope tip coated with a layer of chemically-synthesized nanoparticles ~~stuck permanently adhered~~ to said tip, each of said nanoparticles comprising a length and width, wherein said length differs from said width by less than approximately 15%,

wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

2. (Original) The tip of claim 1, wherein said scanning probe microscope tip is one of an atomic force microscope tip, a near-field scanning optical microscope tip, and a scanning tunneling microscope tip.

3. (Original) The tip of claim 1, wherein said nanoparticles comprise at least one of an amorphous, crystalline, ferromagnetic, paramagnetic, superparamagnetic, antiferromagnetic, ferrimagnetic, magneto optic, ferroelectric, piezoelectric, superconducting, semiconducting, magnetically-doped semiconducting, insulating, fluorescent, and chemically catalytic nanoparticles.

4. (Currently Amended) The tip of claim 1, wherein said nanoparticles are coated with outer coating layer comprises an organic layer; wherein said nanoparticles having a diameter

ranging from 2 nm to 20 nm, and said organic layer having a thickness ranging from 0.5 nm to 5 nm.

5. (Currently Amended) The tip of claim 1, wherein said nanoparticles are coated with outer coating layer comprises an organic coat comprising a head-group and a tail-group; wherein said head group comprises one of an amine, carboxylic acid, isocyanide, nitrile, phosphene, phosphonic acid, sulfonic acid, thiol, and trichlorosilane; and wherein said tail-group comprises one of an alkyl chain, aryl chain, fluorocarbon, siloxane, fluorophore, DNA, carbohydrate, and protein.

6. (Original) The tip of claim 1, wherein said tip is coated with an adhesion layer comprising of one of N-(2-aminoethyl) 3-aminopropyl-trimethoxysilane, polyethyleneimine, polymethylmethacrylate, epoxy, cyanoacrylate adhesive, and an  $\alpha,\omega$  alkyl chain.

7. (Original) The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles is at least one nanoparticle thick.

8. (Original) The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles is a single layer of nanoparticles thick and covers only the apex of said tip.

9. (Original) The tip of claim 1, wherein said layer of chemically-synthesized nanoparticles comprises a single nanoparticle affixed to an apex of said tip.

10. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:

dipping said scanning probe microscope tip into a liquid solution of nanoparticles, each of said nanoparticles comprising a length and a width; and

withdrawing said scanning probe microscope tip from said solution;

said length differs from said width by less than approximately 15%,

wherein said step of dipping causes said nanoparticles to ~~attach stick~~ permanently adhere to said scanning probe microscope tip, and

wherein said scanning probe microscope tip comprises a tip apex, and

wherein said each of said nanoparticles comprises an outer coating layer.

11. (Original) The method of claim 10, wherein said step of dipping said scanning probe microscope tip into a solution of nanoparticles comprises dipping said scanning probe microscope tip into a monolayer of nanoparticles floating on a liquid subphase.

12. (Original) The method of claim 10, wherein said step of dipping said scanning probe microscope tip into a solution of nanoparticles comprises inking an elastomer with a plurality of nanoparticles; and dipping said scanning probe microscope tip into said elastomer.

13. (Original) The method of claim 10, further comprising washing off said solution after said step of withdrawing said scanning probe microscope tip from said solution, wherein said solution is a nonvolatile solution.

14. (Original) The method of claim 10, further comprising applying an electric potential to said scanning probe microscope tip prior to said step of dipping said scanning probe microscope tip into a solution of nanoparticles.

15. (Original) The method of claim 14, wherein said solution further comprises an electrochemical solution, a supporting electrolyte, and an electrode held at a neutral potential.

16. (Original) The method of claim 10, wherein said nanoparticles form a layer around said scanning probe microscope tip, wherein said layer is one nanoparticle thick.

17. (Currently Amended) The method of claim 10, wherein said nanoparticles ~~form~~ form a layer around said scanning probe microscope tip, wherein said layer comprises a single layer of nanoparticles and covers only said tip apex.

18. (Original) The method of claim 10, wherein only a single nanoparticle is affixed to said tip apex.

19. (Original) The method of claim 10, further comprising coating said scanning probe microscope tip with an adhesion promoter prior to said step of dipping said scanning probe microscope tip into a solution of nanoparticles.

20. (Original) The method of claim 10, wherein said step of dipping said scanning probe microscope tip into a solution of nanoparticles comprises submerging said tip into said liquid solution.

21. (Original) The method of claim 10, wherein said nanoparticles form a layer around said tip, said method further comprising exposing said layer of nanoparticles to one of a laser light, a beam of electrons, ultraviolet light, and heat.

22. (Original) The method of claim 10, wherein said nanoparticles form a layer around said tip, said method further comprising transforming said layer of nanoparticles into an electrically continuous film by annealing.

23. (Original) The method of claim 10, wherein said nanoparticles form a layer around said tip, said method further comprising orienting uniformly the magnetic axis of said nanoparticles by annealing in the presence of a magnetic field.

24. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:

coating said scanning probe microscope tip, with the exception of an apex of said tip, with a sacrificial layer;

depositing nanoparticles over said tip, wherein said nanoparticles are stuck permanently adhered to said tip, each of said nanoparticles comprising a length and width, said length differs from said width by less than approximately 15%; and  
removing said sacrificial layer,

wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

25. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:

dipping said scanning probe microscope tip into a monolayer of nanoparticles floating on a liquid subphase, each of said nanoparticles comprising a length and width, said length differs from said width by less than approximately 15%; and

withdrawing said scanning probe microscope tip from said liquid subphase;  
wherein said step of dipping causes said nanoparticles to attach stick permanently adhere to said scanning probe microscope tip, and

wherein said scanning probe microscope tip comprises a tip apex, and  
wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

26. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:

inking an elastomer with a plurality of nanoparticles, each of said nanoparticles comprising a length and width, said length differs from said width by less than approximately 15%;  
dipping said scanning probe microscope tip into said elastomer; and  
withdrawing said scanning probe microscope tip from said elastomer;  
wherein said step of dipping causes said nanoparticles to attach stick permanently adhere to said scanning probe microscope tip, and  
wherein said scanning probe microscope tip comprises a tip apex, and  
wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

27. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:  
dipping said scanning probe microscope tip into a liquid solution, wherein said liquid solution is nonvolatile and further comprises a plurality of nanoparticles dispersed therein, each of said nanoparticles comprising a length and width, said length differs from said width by less than approximately 15%;  
withdrawing said scanning probe microscope tip from said liquid solution; and  
washing off said liquid solution, whereby said nanoparticles remain on said scanning probe microscope tip,  
wherein said step of dipping causes said nanoparticles to attach stick permanently adhere to said scanning probe microscope tip, and  
wherein said scanning probe microscope tip comprises a tip apex, and

YOR920010319US1

8

wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

28. (Currently Amended) A method of forming a scanning probe microscope tip, said method comprising:

dipping said scanning probe microscope tip into an electrochemical solution, wherein said electrochemical solution comprises nanoparticles, a solvent, and an electrode held at a neutral potential, each of said nanoparticles comprising a length and width, said length differs from said width by less than approximately 15%;

applying an electric potential to said scanning probe microscope tip; and

removing said scanning probe microscope tip from said electrochemical solution;

wherein said step of dipping causes said nanoparticles to attach stick to said scanning probe microscope tip, and

wherein said scanning probe microscope tip comprises a tip apex, and

wherein said each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.

29. (Original) The method of claim 28, wherein said electrochemical solution further comprises a supporting electrolyte and a reference electrode.

30. (Previously Presented) The tip of claim 1, wherein said nanoparticles are generally spherical.

31. (Currently Amended) The method of claim 10 tip of claim 1, wherein said nanoparticles are generally spherical comprise generally spherical cobalt nanoparticles.
32. (Currently Amended) The method of claim 24 tip of claim 1, wherein said nanoparticles are generally spherical outer coating layer comprises a layer of oleic acid.
33. (Previously Presented) The method of claim 25, wherein said nanoparticles are generally spherical.
34. (Previously Presented) The method of claim 26, wherein said nanoparticles are generally spherical.
35. (Previously Presented) The method of claim 27, wherein said nanoparticles are generally spherical.
36. (Previously Presented) The method of claim 28, wherein said nanoparticles are generally spherical.
37. (Currently Amended) A scanning probe microscope tip coated with a layer of chemically-synthesized nanoparticles stuck to said tip, wherein said nanoparticles are shaped in a configuration other than an elongated tube configuration, and wherein each of said nanoparticles comprises an outer coating layer encapsulating each nanoparticle.