Section 3.4 HW#19 MATH 354 # 2,4 0 0 X_3 0 0 0 0 40 0 0 0 0 0 \Diamond 0 XB, ×5 ×6 Tableau 3 | feasible X XZ 0 7 X_3 -24 0 X5 0 3 39 \bigcirc 0

we have a feasible optimal solution $X_1=3$, $X_2=4$, $X_3=10$, $X_4=0$, $X_5=1$, $X_6=0$ $X_0=[3610010]$, Z=39

	<u> </u>	567						
<u>(4)</u>	5	6	0	U	0	0		
$\overline{\zeta}_{B}$	\times_{l}	XZ	Xз	Xq	×5	X6	XB	··•\/-//
5 X,		D	D	0	1	0	4	×620
6 X2	0	l	0	1/3	-2/3	0	10/3	hot encible
0 X3	0	0	l	- Ī	-8	0	2	feasible
~ 0 X6	0	0.	0	1/3	2/3	1	-1/3	
	10	0	. 0	2		0	40	

Choose X6 as the departing variable

However, there are no negative entries

in the pivotal row. Therefore, there

are no feasible solutions to the problem.