

晶体管逻辑电路 二极管或门(P82) (10)逻辑函数 $F = A\bar{C} + B\bar{D} + CD$ 通过修改逻辑设计来实现消除冒险,则F函数式可以 修改为___F= $A\bar{C} + B\bar{D} + CD + AD + BC + AB$

险象的消除方法 (P117) 增加所有的多余式 五、请用 74138 译码器和少量的门电路实现 2 位二进制乘法电路,其中 P_1P_0 和 Q_1Q_0 分别是乘数和被乘数, $Z_3Z_2Z_1Z_0$ 是得到的乘积结果, $Z_3Z_2Z_1Z_0=P_1P_0\times Q_1Q_0$ 。(10分)

- 译码器的功能
- 逻辑电路设计:真值表→最小项函数→电路图

时序逻辑设计2

例

设计一个按自然态序变化的7进制同步加法计数器,计数规则为逢7进1,产生一个进位输出。

建立原始状态图

排列顺序:

$$Q_{2}^{n}Q_{1}^{n}Q_{0}^{n} \xrightarrow{/Y} 000 \xrightarrow{/0} 001 \xrightarrow{/0} 010 \xrightarrow{/0} 011$$

$$\downarrow /0$$

$$110 \leftarrow 101 \leftarrow 100$$

$$/0 /0$$

状态化简

已经最简。

状态分配

已是二进制状态。

选触发器, 求时钟、输出、状态、驱动方程

因需用3位二进制代码,选用3个CP下降沿触发的JK触发器,分别用 FF_0 、 FF_1 、 FF_2 表示。

由于要求采用同步方案,故时钟方程为:

$$CP_0 = CP_1 = CP_2 = CP$$

输出方程:

$$Y = Q_1^n Q_2^n$$

$Q_2^n Q_1$	00	01	11	10				
0	0	0	0	1				
1	0	1	X	1				
(c) Q_2^{n+1} 的卡诺图								

$$\begin{cases} Q_0^{n+1} = \overline{Q_2^n Q_1^n} \overline{Q_0^n} + \overline{1} Q_0^n \\ \overline{Q_1^{n+1}} = Q_0^n \overline{Q_1^n} + \overline{Q_2^n} \overline{Q_0^n} Q_1^n \\ \overline{Q_2^{n+1}} = Q_1^n Q_0^n \overline{Q_2^n} + \overline{Q_1^n} Q_2^n \end{cases}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

比较,得驱动方程:

$$\begin{cases} J_0 = \overline{Q_2^n Q_1^n}, & K_0 = 1 \\ J_1 = \overline{Q_0^n}, & K_1 = \overline{\overline{Q}_2^n \overline{Q}_0^n} \\ J_2 = \overline{Q_1^n Q_0^n}, & K_2 = \overline{Q_1^n} \end{cases}$$

检查电路能否自启动

将无效状态111代入状态方程计算:

$$\begin{cases} Q_0^{n+1} = \overline{Q_2^n Q_1^n} \overline{Q_0^n} + \overline{1} Q_0^n = 0 \\ \overline{Q_1^{n+1}} = Q_0^n \overline{Q_1^n} + \overline{Q_2^n} \overline{Q_0^n} Q_1^n = 0 \\ \overline{Q_2^{n+1}} = Q_1^n Q_0^n \overline{Q_2^n} + \overline{Q_1^n} Q_2^n = 0 \end{cases}$$

可见111的次态为有效状态0000,电路能够自启动。

书上的例题(例10)

❖例10:设计一个二-十进制同步计数器。

				老	₹ 7.13 亿	列 10 激	劢表					
Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q _o n	Q ₃ ⁿ⁺¹	Q2 ⁿ⁺¹	Q ₁ ⁿ⁺¹	Q ₀ ⁿ⁺¹	Z	D ₃ ⁿ	D ₂ ⁿ	D ₁ ⁿ	D ₀ ⁿ
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	0	1	1
0	0	1	1	0	1	0	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	0	1	0	1

*按照步骤,得到结果:

另外自启动 检查要做!

自启动检查!

表 7.14 例 9 任意的状态转移表

and the same of th								
Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	Q ₃ ⁿ⁺¹	Q2 ⁿ⁺¹	Q ₁ ⁿ⁺¹	Q ₀ ⁿ⁺¹	Z
1	0	1	0	1	0	1	1	1
1	0	1	1	0	1	0	0*	1
1	1	0	0	1	1	0	1	0
1	1	0	1	0	1	0	0*	0
1	1	1	0	1	1	1	.1	1
1	1	1	1	0	0	0	0*	1

时序逻辑电路设计3

* 给出波形图要求进行设计

又回到设计(1)一样的方法上去!

时序逻辑电路设计总结

- *根据给出的功能描述要求设计
- *必须按照原始的步骤来进行!

例

设计一个串行数据检测电路,当连续输入3个或3个以上1时,电路的输出为1,其它情况下输出为0。例如:

输入X 101100111011110 输出Y 00000001000110

建立原始状态图

设电路开始处于初始状态为 S_0 。

第一次输入1时,由状态 S_0 转入状态 S_1 ,并输出O;

若继续输入1,由状态 S_1 转入状态 S_2 ,并输出O;

如果仍接着输入1,由状态 S_2 转入状态 S_3 ,并输出1;

此后若继续输入1, 电路仍停留在 状态S₃, 并输出1。

电路无论处在什么状态, 只要输入0,都应回到初 始状态,并输出0,以便 重新计数。

状态化简

状态分配

原始状态图中,凡是在输入相同时,输出相同、要转换到的次态也相同的状态,称为等价状态。状态化简、得到最简的状态图。

所得原始状态图中,状态 S_2 和 S_3 等价。因为它们在输入为1时输出都为1,且都转换到次态 S_3 ;在输入为0时输出都为0,且都转换到次态 S_0 。所以它们可以合并为一个状态。

选触发器, 求时钟、输出、状态、驱动方程

选用2个CP下降沿触发的JK触发器,分别用 FF_0 、 FF_1 表示。采用 同步方案,即取:

输 出 方 程

$X = Q_1^n Q_0^n$	00	01	11	10				
0	0	0	×	0				
1	0	0	×	1				
Y的卡诺图								

$$Y = XQ_1^n$$

状 态 方 程

(a)
$$Q_0^{n+1}$$
 的卡诺图

$$Q_0^{n+1} = X \overline{Q}_1^n \overline{Q}_0^n$$

(b)
$$Q_1^{n+1}$$
的卡诺图

$$Q_0^{n+1} = X \overline{Q_1}^n \overline{Q_0}^n \qquad Q_1^{n+1} = X Q_0^n \overline{Q_1}^n + X Q_1^n$$

$$\begin{cases} Q_0^{n+1} = X \overline{Q}_1^n \overline{Q}_0^n + 0 \cdot Q_0^n \\ Q_1^{n+1} = X Q_0^n \overline{Q}_1^n + X Q_1^n \end{cases}$$
$$Q^{n+1} = J \overline{Q}^n + \overline{K} Q^n$$

比较,得驱动方程:

$$\begin{cases} J_0 = X\overline{Q_1}^n & K_0 = 1 \\ J_1 = XQ_0^n & K_1 = \overline{X} \end{cases}$$

检查电路能否自启动

将无效状态11代入输出方程和状态方程计算:

$$00 \stackrel{0/0}{\leftarrow} 11 \stackrel{1/1}{\rightarrow} 01$$

电路能够自启动。

作业: 8.30、8.33

