Lecture 24

Last time we studied iterative metholo to solve system of linear equations Ax = 6

The method used is based on the idea of an approximate inverse to A, i.e., a matric C such that 11 I - CA 11 < 1 for some matrix norm

The iteration function g is given by

$$g(\bar{x}) = C\bar{b} + (\underline{T} - cA)\bar{x}$$
$$= \bar{x} + c(\bar{b} - A\bar{x})$$

Thus the iteration is

 $\chi^{(m+1)} = \chi^{(m)} + (b-A\chi^{(m)})$ $f_{M} m = 0, 1, 2, ...$ Then $\chi^{(m+1)} \longrightarrow \xi$ fixed pt g also $A\xi = b$.

Two of the most common method are
•
tle . Jacobi- Method Gaus-Siedel method.
· Gaus-Siedel method.
Gaus- Fiedel method is usually faster than
Gaus-Siedel method is usually faster than Jacobi-method.
Gauss-Siedel method converges for
strictly row-dominant matrices and positive
gauss-Siedel method converges for Strictly row-dominant matrices and positive definite matrices.
Last time we proved that the Jacobi method
Last time we proved that the Jacobi method converge for strictly row-dominant matrices.
Iterative methodo are usually used when
Iterative methodo are usually used when we have large system of breus equation with a sparse welf-vient matrix.
a sparse well-vent matrix.
0°

tor the next few lectures we will be leaving numerical methods to solve in tral value problems.

No 5 2 5 2 7 1

We assume that all partial derivation to f excist.

By theory there exists a unique solution to the above initial value problem. (in or neithernhood of (20,40)).

However one cannot hope for exact

$$\frac{dy}{dy} = \sin(x^2 + y^2)$$

We cannot find exact answer to above equative

Numerical integration by Taylor Sovies $\frac{dy}{dz} = f(x,y)$ y(x,) = % If y(x) is exact solution of (x) then we can expand y(x) into a Taylor Serie about the pt 20 (xx) $y(x) = y_0 + (x-x_0)y'(x_0) + (x-x_0)^2y''(x_0) + \cdots$ The derivatives in this expansion are not known emplicity since the solution is conknown. However if f is sufficiently differentiable they can be obtained dry taking the total descripative of (*) with respect to ze, keeping in mind that y itself is a function of 2. $\chi' = f(x, y)$ y"= f'= fx + fy f y"= f"= fxx + fxyf + fyxf + fyf+fxxf Continuing in this manner, we can express any derivative of y in terms of f and its partial derivatives. It is already clear, however, that unless f is a very simple function, the higher total derivative become increasingly complex.

For practical reasons then, one must limit
the number of terms in the expansion (**)

to a reasonable number.

If we assume that the truncated series (**) is a good approximation for a step of length h, i.e., for $x-x_0=h$, we can then evaluate y at x_0+h , reevaluate the derivator y', y' ere and then use (**) to

proceed to the next step.

Thus we obtain a discrete set of value y_n which one approximation to the true solution at the point $y_n = y_0 + nh$ (n=0,1,2,...).

Rent we will always denote the value of the exact solution at a pt an by y(an) and of an approximate solution by yn.

define

 $\frac{1}{k}(x,y) = f(x,y) + \frac{2}{h}f'(x,y) + \frac{1}{h^2}f''(x,y) + --$

--- + h f (x,7)

k = 1,2, - - .

Algorithin 1 (Taylor algorithin of order k) To find an approximate solution of the diff equation y'=f(x,7) y(a) = > oner an interval [a, 5] 1. Choose a step $h = \frac{b-a}{\Lambda r}$. Sel- 2n = a + nh n=0,1,-,N 2. Generate approximation yn to y(xn) from the recursion m+1 = m + h Tx (xn, m) n=0,1,---,N-1 Toylor's theorem with remainder shows that the local error of Taylor's algorithm of order k $E = \frac{h^{(k+1)} f^{(k)}}{f^{(k)} f^{(k)}}$ m < { < 3+4 (k+1) l

$$E = \frac{h^{k+1}}{(k+1)!} y^{(k+1)}(\xi)$$

$$\frac{dx}{dx} = y - x^2 + 1$$

$$0 \le x \le 2$$

$$f' = d(y - x^2 + 1)$$

$$= y - x^2 + 1 - 2n$$

$$T_{2}(x_{i}, y_{i}) = f(x_{i}, y_{i}) + \frac{h}{2} f(x_{i}, y_{i})$$

$$= y_{i} - x_{i}^{2} + 1 + \frac{h}{2} (y_{i} - x_{i}^{2} - 2x_{i} + 1)$$

Taylor method of order 2

y = 0.5 y = 1 + h [(1+ 2) (4: - x 2 +1) - h 2;

Exact solution to above d.e is $y(x) = (x+1)^2 - 0.5e^{x}$

×ċ	Exact	Taylor order 2	Errer
	A(X!)	りい	Cirri
Q · D	0.5	0.2	٥
0.7	0.8292986	0-830000	0-0007014
0-4	1-214 0877	1.2158000	0-0017123
0-6	1.6489406	1-6520760	0-0031354
0-8	2.1272295	2-1323327	0.0051032
1.0	2-6408591	2-6486459	0-0077812
1-2			þ
1-4			
1.6			
1.8			
2-0	5-3054720	5.3476843	0-0422123
	•	•	

On setting k=1 in our Algorithin we Ewen method yn+1 = yn + h f(xn, ym) local error $E = \frac{h^3}{2} \gamma''(\xi)$ 74 = 5 < 7 man y(0) = 0.5 m+1 = yn + 0-2 (yn - 0-04 n2 +1) Exact sol 7 (2) = (2+1)2-05e2

1	Eulers method	Exact	Error
Χι	M;	ៗ(น)	しか-り(な)」
0	8-5	0.5	O
0-2	0-8	0.8292986	0.0292981
0-4	1-152	1-2140873	0-0620877
۵-6	1.5504	1-6489406	0.0985401
0-8	1.9884800	2-1272295	0-1387495
(-0	2-4581760	2-6408591	0-1826837
1-2			
1-4		\	1
(· /	` ·		1
(-8			
2-0	4.8657845	5-3054720	0-4396854

Notice error grows slightly as the value of x increases.

This antrolled error growsh is in consequent of the stability of Euler's method, which implies that the error is expected to grow in no worse than a linear manner.

	Error estimates and convergence
	of Eulen method
	To solve the de
	3(= f(x,y)
	y (x _b) = %
	on Euleri method, we chorre a constant
	step size hand we apply the formula
(*)	$y_{n+1} = y_n + h f(x_n, y_n)$ $n \geq 0, 1, 2,$
	where $2n = 20 + nh$.
	we denote the true solution of the d-e. at $x = x_n$ by $y(x_n)$ and the approximate sol"
	Obtained by applying (x) as yn.
	We wish to estimate the magnitude of the discretization ever en defined by
	$e_n = y(x_n) - y_n$

Assuming that appropriate derivative exist, we can expan y (2n+1) about K= In using Taylors theorem with remainde y(xn+1) = y(xn) + hy(xn) + h2 y((En) (XX) 2n 5 & 5 2m+1 $E_n = \frac{h^2}{2}y''(\xi_n) \rightarrow local discretization$ This is the error committed in the single step from x_n to x_{n+1} are uning that y and y' are known exactly at $x = x_n$ (we ignore Round-off exam in this section) on subtracting (x) from (xx) we obtain ent1 = en + h [f(xn, y(xn)) - f(xn, m)] + K/3 5" (Em)

By M.V.T $f(xm,y(xm)) - f(xm,xm) = \frac{\partial f}{\partial y}(xm,\frac{\partial m}{\partial x}) (y(xm)-\chi)$ = fy (2n, 5m). en where In is between In and y (xn) So we have Cht = Cn + hfy(xn, m) Cn + h² y"(En)

Theorem Let M be the approximate sol to

dis = f(n; y) y (xo) = to

Ju

If the exact sol y(x) of above dec has

a continuous second derivative on he

internal [Xo, b] and if on this interval

the inequality [fy(2,47] & L 15"(n) \ < > are satisfied for fixed fre constants Landy, the own en = y(nn) - em of Ewen method at a pl- ren = 20+nh is bounded as follows len1 < hY (e (2n-20) L - 1) enti = en + h fy (2m, 5m) en + h2 y" (\xin) Ignail & Ign + H L Ign + 42 Y = (1+hl) len) + h2 Y We show by induction that the solution of the difference equation

dominates lent, i.e we will show En ≥ len | for n=0,1,--(K) Since lo= Eo= 0, (x) is true for N=0. assume truth 9 (x) for n En 7 (en) Enti = (1+hy) En + 424 > (1+h7) len 1 + h2 > > lentil Thus En > (Cn) + n=0,1,2,-- $\begin{cases} \xi_{n+1} = (i+h\gamma) \xi_n + \frac{h^2\gamma}{2} \\ \xi_0 = 0 \end{cases}$ $Sol^7 \quad \xi_n = c \left(1 + h \right)^{\gamma} - B$

where
$$B = hY$$
 and C is a constant-

 $E_0 = 0$

So $C = B$
 $E_n = B(1+hL)^n - B$
 $e^n = 1+x + e^n = 2$

Thus $e^n \ge 1+x + e^n = 2$
 $e^n \ge 1+x + e^n = 2$
 $e^n \ge 1+x + e^n = 2$

Thus $e^n \ge 1+x + e^n = 2$
 $e^n \ge 1+x + e^n = 2$

Therefore $e^n \ge 1+x + e^n = 2$

Therefore $e^n \ge 1+x + e^n = 2$
 $e^n \ge 1+x + e^n = 2$

Since Ital & En					
we have	re princed	De 1	Levem.		