Chapter 21 Even Answers

- 2. $3.65 \times 10^4 \text{ N}$ 4. $Nm \frac{2v \sin \theta}{t}$; $Nm \frac{2v \sin \theta}{At}$ 6. $5.05 \times 10^{-21} \text{ J/molecule}$ 8. 477 m/s10. (a) 2.28 kJ (b) $6.22 \times 10^{-21} \text{ J}$ 14. 7.52 L
- **16.** (a) 209 J (b) zero (c) 317 K **18.** (a) 0.719 kJ/kg · K (b) 0.811 kg (c) 233 kJ (d) 327 kJ
- **20**. 13.5*PV*

22. (a)
$$C = \frac{n_1 C_1 + n_2 C_2}{n_1 + n_2}$$
 (b) $C = \sum_{i=1}^{m} n_i C_i / \sum_{i=1}^{m} n_i$

- **24.** (a) 0.118 (b) 2.35 (c) Q = 0, $\Delta E_{\text{int}} = 135 \text{ J}$, W = -135 J
- **26.** (a) 5.15×10^{-5} m³ (b) 560 K (c) 2.24 K
- 28. (a) 28.0 kJ (b) 46.1 kJ
 - (c) Isothermal process, $P_f = 10.0$ atm; Adiabatic process, $P_f = 25.1$ atm
- **30.** (b) $2.19V_i$ (c) $3T_i$ (d) T_i (e) $0.830P_iV_i$
- 34. more rotational and vibrational states
- **36.** zero, 2.70×10^{20}
- **38.** (a) 1.03 (b) ³⁵Cl
- **40.** 132 m/s
- **42.** (a) 2.01×10^4 K (b) 9.01×10^2 K
- **44.** (a) 7.27×10^{-20} J/molecule (b) 2.21 km/s (c) 3510 K
- **46.** (a) 5.63×10^{18} m, 1.00×10^{9} yr (b) 5.63×10^{12} m, 1.00×10^{3} yr
- 48. 193 molecular diameters
- **50.** (a) 7.88×10^{26} molecules (b) 37.9 kg (c) 6.07×10^{-21} J/molecule (d) 503 m/s (e) and (f) 7.98 MJ
- **52.** (a) 3.65v (b) 3.99v (c) 3.00v (d) $106(mv^2/V)$ (e) $7.98mv^2$
- **54.** (a) See Instructor's manual (b) $\approx 510 \text{ m/s}$
 - (c) 575 m/s, 624 m/s, (d) 44%
- **56.** (a) 0.514 m^3 (b) 2.06 m^3 (c) $2.38 \times 10^3 \text{ K}$ (d) $4.80 \times 10^5 \text{ J}$ (e) 2.28 MJ
- **58.** (b) 344 m/s (c) $v_{\rm mp}$, $v_{\rm av}$, and $v_{\rm rms}$ are all somewhat larger
- **60.** 0.296 C°
- **64.** (b) 5.47 km
- **66.** $1.60 \times 10^4 \text{ K}$

2 Chapter 21 Even Answers