

CS-C3240 – Machine Learning D

Round 3: From features to classification

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 2.3, January 23, 2022

Overview

Shortage of labelled data

Given a set \mathcal{Z} of data points $\overrightarrow{Z}_1, \ldots, \overrightarrow{Z}_n$, features $\mathcal{X}_1, \ldots, \mathcal{X}_m$ and labels y_1, \ldots, y_n , assume partially labelled sets $\vec{z}_i = \langle \vec{x}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$ and $\vec{z}_i = \langle \vec{x}^{(j)} \rangle, i \in \{1, \dots, I\}$ $\{I+1,\ldots,n\}$ as well as $\overrightarrow{X}^{(k)} = X_1^{(k)},\ldots,X_m^{(k)}, k \in \{1,\ldots,n\}$

Given a set \mathcal{Z} of data points $\overrightarrow{Z}_1, \ldots, \overrightarrow{Z}_n$, features $\mathcal{X}_1, \ldots, \mathcal{X}_m$ and labels y_1, \ldots, y_o , assume partially labelled sets $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \ldots, l\}$ and $\overrightarrow{Z}_j = \langle \overrightarrow{X}^{(j)} \rangle, j \in \{l+1, \ldots, n\}$ as well as $\overrightarrow{X}^{(k)} = x_1^{(k)}, \ldots, x_m^{(k)}, k \in \{1, \ldots, n\}$

Problem:

- Unlabelled training data is often easy to obtain
- However: labelling the data requires significant manual work

Automated labeling through semi-supervised learning

Increase amount of labelled data via semi-supervised learning

$$\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$$

Automated labeling through semi-supervised learning

Increase amount of labelled data via semi-supervised learning

$$\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$$

$$\overrightarrow{Z}_{i} = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$$

$$\hat{h} \left(\overrightarrow{\hat{w}}, \cdot\right) = \min_{i=1, \dots I} \mathcal{L} \left(h(\overrightarrow{w}, \overrightarrow{X}^{(i)}), y^{(i)}\right)$$

Automated labeling through semi-supervised learning

Increase amount of labelled data via semi-supervised learning

Start with labelled data

Train the classifier on the labelled data

$$\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$$

$$\hat{h}\left(\overrightarrow{\hat{w}}, \cdot\right) = \min_{i=1,\dots I} \mathcal{L}\left(h(\overrightarrow{w}, \overrightarrow{X}^{(i)}), y^{(i)}\right)$$

Automated labeling through semi-supervised learning

Increase amount of labelled data via semi-supervised learning

Start with labelled data

$$\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$$

Train the classifier on the labelled data

$$\hat{h}\left(\overrightarrow{\hat{w}},\cdot\right) = \min_{i=1,...l} \mathcal{L}\left(h(\overrightarrow{w},\overrightarrow{X}^{(i)}),y^{(i)}\right)$$

$$\hat{y}^{(j)} = \hat{h}\left(\overrightarrow{\hat{w}}, \overrightarrow{x}^{(j)}\right)$$

Automated labeling through semi-supervised learning

Increase amount of labelled data via semi-supervised learning

$$\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$$

Train the classifier on the labelled data

$$\hat{h}\left(\overrightarrow{\hat{w}},\cdot\right) = \min_{i=1,...l} \mathcal{L}\left(h(\overrightarrow{w},\overrightarrow{X}^{(i)}),y^{(i)}\right)$$

$$\hat{y}^{(j)} = \hat{h}\left(\overrightarrow{\hat{w}}, \overrightarrow{x}^{(j)}\right)$$

Train new classifier \hat{h}' on $\langle \overrightarrow{X}^{(1)}, y^{(1)} \rangle, \dots, \langle \overrightarrow{X}^{(l+1)}, \hat{y}^{(l+1)} \rangle$

Automated labeling through semi-supervised learning

Remark:

- No guaranteed success → Empirical validation required
- Introducing weights to samples can reduce dependency on learned labels

3o-training

Shortage of labelled data – Automatic labelling

Provided independent feature sub-sets (perspectives) $\{\mathcal{X}\}_s$ with $\bigcup_s \{\mathcal{X}\}_s = \mathcal{X}_1, \dots, \mathcal{X}_m$ and $\bigcap_s \{\mathcal{X}\}_s = \emptyset$, multiple classification models $h_s(\overrightarrow{w}_s, \overrightarrow{x})$ are trained to these sub-sets using the labelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$ to iteratively label unlabelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)} \rangle, j \in \{l+1, \dots, n\}$

So-training

Provided independent feature sub-sets (perspectives) $\{\mathcal{X}\}_s$ with $\bigcup_s \{\mathcal{X}\}_s = \mathcal{X}_1, \dots, \mathcal{X}_m$ and $\bigcap_s \{\mathcal{X}\}_s = \emptyset$, multiple classification models $h_s(\overrightarrow{w}_s, \overrightarrow{X})$ are trained to these sub-sets using the labelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$ to iteratively label unlabelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(j)} \rangle, j \in \{I+1,\ldots,n\}$

3o-training

Provided independent feature sub-sets (perspectives) $\{\mathcal{X}\}_s$ with $\bigcup_s \{\mathcal{X}\}_s = \mathcal{X}_1, \dots, \mathcal{X}_m$ and $\bigcap_s \{\mathcal{X}\}_s = \emptyset$, multiple classification models $h_s(\overrightarrow{w}_s, \overrightarrow{X})$ are trained to these sub-sets using the labelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$ to iteratively label unlabelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(j)} \rangle, j \in \{I+1,\ldots,n\}$

- Train classifier h_s for each $\{\mathcal{X}\}_s$ $\hat{h}_s(\overrightarrow{\hat{w}_s}, \cdot) = \min_{i \in \{\mathcal{X}_s\}} \mathcal{L}\left(h(\overrightarrow{w}, \overrightarrow{X}^{(i)}), y^{(i)}\right)$

So-training

Provided independent feature sub-sets (perspectives) $\{\mathcal{X}\}_s$ with $\bigcup_s \{\mathcal{X}\}_s = \mathcal{X}_1, \dots, \mathcal{X}_m$ and $\bigcap_s \{\mathcal{X}\}_s = \emptyset$, multiple classification models $h_s(\overrightarrow{w}_s, \overrightarrow{X})$ are trained to these sub-sets using the labelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$ to iteratively label unlabelled data $|\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(j)} \rangle, j \in \{l+1,\ldots,n\}$

- Train classifier h_s for each $\{\mathcal{X}\}_s$ $\hat{h}_s(\overrightarrow{\hat{w}}_s,\cdot) = \min_{i \in \{\mathcal{X}_s\}} \mathcal{L}\left(h(\overrightarrow{w},\overrightarrow{X}^{(i)}),y^{(i)}\right)$
- $\textbf{Apply } \hat{h}_s(\overrightarrow{\hat{w}_s}, \cdot) \text{ to } \overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$ $\hat{y}^{(j)} = \hat{h}_s(\overrightarrow{\hat{w}_s}, \overrightarrow{X}^{(j)})$
- 3 Add $(\overrightarrow{X}, \widehat{v}^{(j)})$ with highest confidence to $\overrightarrow{Z}_i = (\overrightarrow{X}^{(i)}, v^{(i)}), i \in \{1, \dots, l\}$

So-training

Provided independent feature sub-sets (perspectives) $\{\mathcal{X}\}_s$ with $\bigcup_s \{\mathcal{X}\}_s = \mathcal{X}_1, \dots, \mathcal{X}_m$ and $\bigcap_s \{\mathcal{X}\}_s = \emptyset$, multiple classification models $h_s(\overrightarrow{w}_s, \overrightarrow{X})$ are trained to these sub-sets using the labelled data $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, I\}$ to iteratively label unlabelled data $|\overrightarrow{z}_i = \langle \overrightarrow{x}^{(j)} \rangle, j \in \{l+1,\ldots,n\}$

- Train classifier h_s for each $\{\mathcal{X}\}_s$ $\hat{h}_s(\overrightarrow{\hat{w}_s},\cdot) = \min_{i \in \{\mathcal{X}_s\}} \mathcal{L}\left(h(\overrightarrow{w},\overrightarrow{X}^{(i)}),y^{(i)}\right)$
- 2 Apply $\hat{h}_s(\overrightarrow{\hat{w}}_s, \cdot)$ to $\overrightarrow{Z}_i = \langle \overrightarrow{X}^{(i)}, y^{(i)} \rangle, i \in \{1, \dots, l\}$ $\hat{v}^{(j)} = \hat{h}_s(\overrightarrow{\hat{w}}_s, \overrightarrow{X}^{(j)})$
- 3 Add $(\overrightarrow{X}, \hat{v}^{(j)})$ with highest confidence to $\overrightarrow{Z}_i = (\overrightarrow{X}^{(i)}, v^{(i)}), i \in \{1, \dots, l\}$
- Iterate over over all classifiers h_s until convergence reached

Questions?

Stephan Sigg stephan.sigg@aalto.fi

> Si Zuo si.zuo@aalto.fi

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

