Elli Kiiski

2021 Kandikaatopaikka

1 Hardy-Wrightin todistuksen perkaamista

G.~H.~Hardyn ja E.~M.~Wrightin kirjan An~Introduction to the theory of numbers sivulla 469 olevan ϕ -funktion alarajan todistuksen läpikäyntiä.

1.1 Määrittely: mitä todistetaan

Aloitetaan määrittelemällä kuvaus

$$f(n) = \frac{\phi(n)e^{\gamma}\log\log n}{n},$$

missä γ on Eulerin vakio.

Halutaan todistaa, että lim inff(n)=1, mikä on yhtäpitävää sen kanssa, että ϕ -funktion alaraja on $\frac{n}{e^{\gamma}\log\log n}$.

1.2 Määrittely: miten todistetaan

Riittää löytää funktiot $F_1(t)$ ja $F_2(t)$, joille pätee

- 1. $\lim_{t\to\infty} F_1(t) = 1$ ja $\lim_{t\to\infty} F_2(t) = 1$
- 2. $f(n) \geq F_1(\log n)$ kaikilla $n \geq 3$
- 3. $f(n_j) \leq \frac{1}{F_2(j)}$ äärettömällä kasvavalla jonolla n_2, n_3, \dots

"Tämä tarkoittaa, että on löydetty funktio $F_1(\log n)$, jonka on sama limes infimum on yksi, mutta funktio on kaikkialla suurempi kuin f(n). Tällöin funktion f(n) limes infimum on enintään yksi. Vastaavasti alapuolen kanssa."

1.3 Todistus osa 1: $f(n) \ge F_1(\log n)$

Olkoot $p_1, p_2, ..., p_{r-\rho} \leq \log n$ ja $p_{r-\rho+1}, ..., p_r > \log n$ luvun n alkutekijöitä. Siis luvulla n on yhteensä r alkutekijää, joista $\log n$:ää suurempia on ρ kappaletta.

Nyt

$$(\log n)^{\rho} < p_{r-\rho+1} \cdot p_{r-\rho+2} \cdots p_r \le n, \tag{1}$$

mistä seuraa

$$\rho < \frac{\log n}{\log \log n}.$$
(2)

Eli logn:
ää suurempia alkulukutekijöitä on alle $\frac{\log n}{\log\log n}$ kappaletta. Nyt tu
lokaavaa käyttäen ϕ -funktion suhden:
ään voidaan ilmaista seuraavasti

$$\frac{\phi(n)}{n} = \prod_{i=1}^{r} (1 - \frac{1}{p_i}) \tag{3}$$

$$= \prod_{i=1}^{r-\rho} (1 - \frac{1}{p_i}) \prod_{i=r-\rho+1}^{r} (1 - \frac{1}{p_i})$$
(4)

$$\geq \left(\prod_{i=1}^{r-\rho} (1 - \frac{1}{p_i})\right) (1 - \frac{1}{\log n})^{\rho} \tag{5}$$

$$> \left(\prod_{i=1}^{r-\rho} \left(1 - \frac{1}{p_i}\right)\right) \left(1 - \frac{1}{\log n}\right)^{\frac{\log n}{\log \log n}}.$$
 (6)

Näin ollen voidaan valita

$$F_1(t) = e^{\gamma} \log t \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \prod_{p \le t} \left(1 - \frac{1}{p} \right),$$

jolloin

$$F_1(\log n) = e^{\gamma} \log \log n \left(1 - \frac{1}{\log n}\right)^{\frac{\log n}{\log \log n}} \prod_{p \le \log n} \left(1 - \frac{1}{p}\right)$$
$$= e^{\gamma} \log \log n \left(1 - \frac{1}{\log n}\right)^{\frac{\log n}{\log \log n}} \prod_{i=1}^{r-\rho} \left(1 - \frac{1}{p}\right)$$
$$\le \frac{\phi(n)}{n} e^{\gamma} \log \log n = f(n).$$

Kuitenkin funktiolle F_1 pätee Mertenin kolmannen lauseen nojalla

$$\lim_{t \to \infty} F_1(t) = \lim_{t \to \infty} e^{\gamma} \log t \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \prod_{p \le t} \left(1 - \frac{1}{p} \right)$$

$$= \lim_{t \to \infty} e^{\gamma} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \left(\log t \prod_{p \le t} \left(1 - \frac{1}{p} \right) \right)$$

$$= \lim_{t \to \infty} e^{\gamma} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} e^{-\gamma}$$

$$= \lim_{t \to \infty} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}}$$

$$= 1$$

Täten funktion f limes infium on korkeintaan 1.

1.4 Todistus osa 2: $f(n_j) \leq \frac{1}{F_2(j)}$

Olkoon $n_j=\prod_{p\leq e^j}p^j$, missä $j\geq 2\in\mathbb{N}$ (?), jolloin maailman hämmentävimmän lauseen (Hardy-Wright thm 414) mukaan (*)

$$\log n_j = \log \prod_{p \le e^j} p^j = j \log \prod_{p \le e^j} p = j \vartheta(e^j) \stackrel{*}{\le} Aj e^j$$
 (7)

ja edelleen

$$\log \log n_j = \log A j e^j = \log A + \log j + \log e^j = \log A + \log j + j \tag{8}$$

Jatketaan tästä pian

2 Tulokaavan todistus

Eulerin tulokaava arvon $\phi(n)$ laskemiseksi on hyvinkin tärkeä palanen eli todistetaan se nyt suoraan englanniksi niin ei tarvitse erikseen kääntää.

2.1 Eulers's product formula

Theorem 2.2. Euler's product formula

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

where $\prod_{p|n} (1-\frac{1}{p})$ means the product over distinct primes that divide n.

Proof. Assume first that $n=p^k$, where $p\in\mathbb{P}$. Now for every x, for which $gdc(p^k,x)>1$, holds $x=mp^{k-1}$ for some $m\in\{1,2,...,p^{k-1}\}$.

Hence

$$\phi(n) = \phi(p^k) = p^k - p^{k-1} = p^k - \frac{p^k}{p} = \left(1 - \frac{1}{p}\right)p^k = \left(1 - \frac{1}{p}\right)n.$$

Then, in the general case, assume $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}=\prod_{i=1}^r p_i^{k_i}$, where $p_1,p_2,...,p_r$ are distinct primes that divide n and $k_1,k_2,...,k_r$ their powers respectively.

Now, since ϕ is a multiplicative function

$$\begin{split} \phi(n) &= \phi(p_1^{k_1} p_1^{k_1} \cdots p_r^{k_r}) \\ &= \phi(p_1^{k_1}) \, \phi(p_2^{k_2}) \cdots \phi(p_r^{k_r}) \\ &= \left(1 - \frac{1}{p_1}\right) p_1^{k_1} \left(1 - \frac{1}{p_2}\right) p_2^{k_2} \cdots \left(1 - \frac{1}{p_r}\right) p_r^{k_r} \\ &= \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) p_i^{k_i} \\ &= n \prod_{p|n} \left(1 - \frac{1}{p}\right). \end{split}$$

3 The zeta-function

Definition 3.1. The zeta-function

$$\zeta(s) = \sum_{n=1]^{\infty} \frac{1}{n^s}}$$

The zeta-funtion converges, when s > 1.

Theorem 3.2. For all s > 1

$$\zeta(s) = \prod_p \frac{1}{1 - \frac{1}{p^s}}$$

4 Merten's (third) theorem

Theorem 4.1. Merten's (third) theorem

$$\lim_{n \to \infty} \log n \prod_{p \le n} \left(1 - \frac{1}{p} \right) = e^{-\gamma}$$

where γ is the Euler's constant.

Proof. Oh, this seems like a työmaa

5 Edellisestä versiosta poistettua paskaa

5.0.1 Are there such integers n that $\phi(n) < \sqrt{n}$?

Let's begin with \sqrt{n} . Is there such large number n that $\phi(n) < \sqrt{n}$? When checking the values of $\phi(n)$ for smaller n, we see that at least with n=6 the statement is true, as $\phi(6)=2<\sqrt{6}$. After that, however, the values seem to be consistently above the corresponding squareroot value.

Reasonable guess would be to assume that \sqrt{n} is a lower limit for $\phi(n)$ when $n \to \infty$. With more precise examination, we see that is indeed the case.