EE 330

Homework Assignment 6 Fall 2018 (Due Friday Sept 28)

Unless specified to the contrary assume a CMOS process is available with the following key process parameters; $\mu_n C_{OX} = 300 \mu A/V^2$, $\mu_p C_{OX} = \mu_n C_{OX}/4$, $V_{TNO} = 0.5 V$, $V_{TPO} = -0.5 V$, $C_{OX} = 8 f F/\mu^2$, $\lambda = 0$. Correspondingly, assume all npn BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. If parameters are needed for process characterization beyond what is given, use the measured parameters from the TSMC 0.18μ process given below as model parameters.

Problem 1

Size an n-channel transistor in the TSMC 0.18μ CMOS process so that the impedance in the switch-level model is 4000Ω when operating with a 1.8V power supply. Repeat for an n-channel transistor in the ON 0.5μ process when operating with a supply voltage of 3.5V and the IBM 0.13μ CMOS process when operating with a 1.5V supply. Characteristics of the ON and IBM processes are also attached.

Problem 2

If a minimum-sized inverter designed in the TSMC 0.18μ CMOS process could directly drive a minimum-sized inverter designed in the IBM 0.13μ CMOS process, what would be t_{HL} and t_{LH} ? Assume a supply voltage of 1.5V. Neglect any interconnect parasitics.

Problem 3

Assume the junction area of D_1 is $200\mu^2$ and that of D_2 is 4 times as large. Determine the current I_{D1} if $V_X=1.5V$. Assume J_S for the process where the diodes are fabricated is $5fA/\mu^2$.

Problem 4

Analytically determine the variable indicated by a ? in the following circuits. Assume the devices are in a process with $\mu_n C_{OX} = 300 \mu A/V^2$, $\mu_p C_{OX} = \mu_n C_{OX}/4$, $V_{TNO} = 0.5 V$, $V_{TPO} = -0.5 V$, and $C_{OX} = 8 f F/\mu^2$.

Problem 5

Analytically determine the variable indicated by a ? in the following circuits. Assume a process with $\mu_n C_{OX} = 300 \mu A/V^2$, $\mu_p C_{OX} = \mu_n C_{OX}/4$, $V_{TNO} = 0.5 V$, $V_{TPO} = -0.5 V$, and $C_{OX} = 8 f F/\mu^2$

Problem 6

Consider the following circuit.

- a) If $V_{IN}=1V$, determine the dimensions of M_1 that will result in an output voltage of 0.8V. Assume that the dimensions of M_2 are $W_2=6\mu$ and $L_2=2\mu$. The relevant model parameters of the devices are $V_{TN}=0.5V$, $V_{TP}=-0.5V$, $\mu_n C_{OX}=300\mu AV^{-2}$ and $\mu_p C_{OX}=75\mu AV^{-2}$.
- b) Repeat part a) if the goal is to have an output voltage of 0.2V.

Problem 7

Assume the op amp is ideal and biased with V_{DD} =20Vand V_{SS} =-20V and the diode is characterized by model parameters: J_{SX} =0.5A/ μ^2 , V_{G0} =1.17V, m=2.3. Assume the area of the junction is 200 u^2 .

- a) Determine V_{OUT} if $T = -20^{\circ}$ C
- b) Repeat part a) if $T = 40^{\circ}$ C.
- c) Repeat part a) if T=120°C

Problem 8

c) Determine V_{OUT} for the following circuit. Assume the devices M_1 and M_2 are identically sizes with W=L=5u. The relevant model parameters of the devices are V_{TN} =0.5V, V_{TP} =-0.5V, $\mu_n C_{OX}$ =300 μ AV⁻² and $\mu_p C_{OX}$ =75 μ AV⁻².

Problem 9

Design a circuit using only MOS transistors that has an output voltage of 0.8V. In addition to the transistors, you have a single dc power supply of 2V available. You may use as many MOS transistors as you want and can specify any size for the devices.

Problem 10

Assume a junction capacitor has a capacitance of 500fF with zero volts bias. What will be the value of this capacitor with a reverse bias of 3V? With a forward bias of 250mV?

Problem 11

Design a voltage programmable capacitor that varies between 2pF at 0V bias and 2.5pf at a bias of 4V.

Problem 12

Sketch a cross-sectional view along the BB' cross-section for the CMOS layout shown below. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 13
Repeat Problem 12 along the CC' cross-section

Problem 14 (weighted as two problems)

Using ModelSim create a one-bit Half Adder using only 2-input NOR gates. Use the NOR gate module created from the previous homework assignment. For the inputs use two one-bit inputs. For the outputs use a one-bit output and a carry out bit. Create a test bench for the code and show the following results/waveforms.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T4BK (MM NON-EPI THK-MTL) VENDOR: TSMC

TECHNOLOGY: SCN018 FEATURE SIZE: 0.18 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL P-CH	HANNEL	UNITS	
MINIMUM Vth	0.27/0.18	0.50	-0.53	volts	
SHORT Idss Vth Vpt	20.0/0.18	571 0.51 4.7	-266 -0.53 -5.5	uA/um volts volts	
WIDE Ids0	20.0/0.18	22.0	-5.6	pA/um	
LARGE Vth Vjbkd Ijlk	50/50	0.42 3.1 <50.0	-0.41 -4.1 <50.0	volts volts pA	
<pre>K' (Uo*Cox/2) Low-field Mobility</pre>		171.8 398.02	-36.3 84.10	uA/V^2 cm^2/V*s	

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

_	Desig	gn Tech	nology	XL	(um)	XW (um)		
		M_DEEP M_SUBM	thi		0.00 0.00 -0.02 -0.02			
FOX TRANSISTORS Vth	_	ATE oly	_		+ACTIVE <-6.6	UNITS volts		
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 6.6 10.1 40	P+ 7.5 10.6	7.7 9.3	N+BLK 61.0	PLY+BLK 317.1	M1 0.08	M2 0.08 4.18	-
PROCESS PARAMETERS Sheet Resistance Contact Resistance COMMENTS: BLK is silic	M3 0.08 8.97 cide bi	POLY_H 991.5 lock.		M4 0.08 14.09	M5 0.08 18.84	м6 0.01 21.44	N_W 941	UNITS ohms/sq ohms

CAPACITANCE PARAMETERS

	N+	P+	POLY	M1	M2	МЗ	M4	M5	M6	R_W	D_N_W	M5P	N_W	UNITS
Area (substrate)	998	1152	103	39	19	13	9	8	3		129		127	aF/um^2
Area (N+active)			8566	54	21	14	11	10	9					aF/um^2
Area (P+active)			8324											aF/um^2
Area (poly)				64	18	10	7	6	5					aF/um^2
Area (metal1)					44	16	10	7	5					aF/um^2
Area (metal2)						38	15	9	7					aF/um^2
Area (metal3)							40	15	9					aF/um^2
Area (metal4)								37	14					aF/um^2
Area (metal5)									36			1003		aF/um^2
Area (r well)	987													aF/um^2
Area (d well)										574				aF/um^2
Area (no well)	139													aF/um^2
Fringe (substrate) 244	201		18	61	55	43	25						aF/um
Fringe (poly)				69	39	29	24	21	19					aF/um
Fringe (metal1)					61	35		23						aF/um
Fringe (metal2)						54	37		24					aF/um
Fringe (metal3)							56	-						aF/um
Fringe (metal4)								58	40					aF/um
Fringe (metal5)									61					aF/um
Overlap (P+active	e)		652											aF/um

CIRCUIT PARAME	TERS		UNITS				
Inverters	K						
Vinv	1.0	0.74	volts				
Vinv	1.5	0.78	volts				
Vol (100 uA)	2.0	0.08	volts				
Voh (100 uA)	2.0	1.63	volts				
Vinv	2.0	0.82	volts				
Gain	2.0	-23.33					
Ring Oscillator Fre	q.						
D1024_THK (31-s	tg,3.3V)	338.22	MHz				
DIV1024 (31-stg,1	.8V)	402.84	MHz				
Ring Oscillator Power							
D1024_THK (31-s	tg,3.3V)	0.07	uW/MHz/gate				
DIV1024 (31-stg,1	.8V)	0.02	uW/MHz/gate				

COMMENTS: DEEP_SUBMICRON

MOSIS WAFER ACCEPTANCE TESTS

RUN: T86S VENDOR: AMIS
TECHNOLOGY: SCNO5 FEATURE SIZE: 0.5 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR	PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth		3.0/0.6	0.79	-0.92	volts
SHORT		20.0/0.6			
Idss			463	-248	uA/um
Vth			0.67	-0.91	volts
Vpt			10.0	-10.0	volts
WIDE		20.0/0.6			
Ids0			< 2.5	< 2.5	pA/um
LARGE		50/50			
Vth			0.68	-0.95	volts
Vjbkd			10.8	-11.7	volts
Ijlk			<50.0	<50.0	pA
Gamma			0.49	0.57	V^0.5
K' (Uo*Cox	k/2)		57.8	-19.1	uA/V^2
Low-field	Mobility		475.38	157.09	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology	XL (um)	XW (um)
SCMOS_SUBM (lambda=0.30)	0.10	0.00
SCMOS (lambda=0.35)	0.00	0.20

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>15.0	<-15.0	volts

AMI 0.5u Process Description Continued

PROCESS PARAMETERS	N+	P+	POLY	PLY2_HR	POLY2	M1	M 2	UNITS
Sheet Resistance	84.4	109.2	22.9	1102	41.9	0.09	0.09	ohms/sq
Contact Resistance	60.9	150.6	15.8		26.8		0.81	ohms
Gate Oxide Thickness	142							angstrom

PROCESS PARAMETERS M3 N\PLY N_W UNITS
Sheet Resistance 0.05 818 808 ohms/sq
Contact Resistance 0.81 ohms

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active)	N+ 426	P+ 724	POLY 85 2434 2351	POLY2	M1 30 34	M2 15 17	M3 9 12	N_₩ 37	UNITS aF/um^2 aF/um^2 aF/um^2
Area (poly)				899	56	16	9		aF/um^2
Area (poly2)					46				aF/um^2
Area (metal1)						33	13		aF/um^2
Area (metal2)							32		aF/um^2
Fringe (substrate)	361	241			71	49	33		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						46	34		aF/um
Fringe (metal2)							54		aF/um
Overlap (N+active)			292						aF/um
Overlap (P+active)			387						aF/um

CIRCUIT PARAMETERS Inverters	K		UNITS
Vinv	1.0	2.04	volts
Vinv	1.5	2.29	volts
Vol (100 uA)	2.0	0.12	volts
Voh (100 uA)	2.0	4.86	volts
Vinv	2.0	2.47	volts
Gain	2.0	-18.26	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		98.75	MHz
D256_WIDE (31-stg,5.OV)		153.47	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)		0.49	uW/MHz/gate
D256_WIDE (31-stg,5.OV)		1.00	uW/MHz/gate
-			

COMMENTS: SUBMICRON

MOSIS WAFER ACCEPTANCE TESTS

RUN: T85% (8WL_8LM_OL) VENDOR: IBM-BURLINGTON
TECHNOLOGY: SIGEO13 FEATURE SIZE: 0.13 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: SIGESWL_IBM-BU

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.16/0.12	0.41	-0.42	volts
V C11		0.11	-0.12	VOICD
SHORT	20.0/0.12			
Idss		406	-178	uA/um
Vth		0.43	-0.42	volts
Vpt		3.6	-3.6	volts
WIDE	20.0/0.12			
Ids0		155.2	-127.9	pA/um
LARGE	20.0/20.0			
Vth		0.12	-0.23	volts
Vjbkd		2.7	-3.2	volts
Ijlk		<50.0	<50.0	pA
Gamma		0.28	0.23	V^0.5
K' (Uo*Cox/2)		308.0	-48.8	uA/V^2
Low-field Mobility		553.02	87.62	cm^2/V*s

IIBM 0.13u Process Description Continued

N+	P+	POLY	M1	M 2	M 3	M4	UNITS
6.7	6.3	6.6					ohms/sq
			78	51	50	50	mohms/sq
9.4	9.2	8.3		0.68	1.37	2.00	ohms
31							angstrom
	6.7	6.7 6.3 9.4 9.2	6.7 6.3 6.6 9.4 9.2 8.3	6.7 6.3 6.6 78 9.4 9.2 8.3	6.7 6.3 6.6 78 51 9.4 9.2 8.3 0.68	6.7 6.3 6.6 78 51 50 9.4 9.2 8.3 0.68 1.37	6.7 6.3 6.6 78 51 50 50 9.4 9.2 8.3 0.68 1.37 2.00

 PROCESS PARAMETERS
 M5
 M6
 M7
 M8
 N_W PPLY+BLK N+BLK POLY_NON POLY_NON TAN UNITS

 Sheet Resistance
 41
 44
 7
 7.4
 mohms/sq

 Sheet Resistance
 327
 321.2
 73.4
 231.6
 1547.4
 58.9
 ohms/sq

 Contact Resistance
 2.19
 2.51
 2.51
 2.53
 ohms

COMMENTS: BLK is silicide block.

CAPACITANCE PARAMETERS	N+	P+	POLY	M1	M 2	мз	M4	М5	M 6	М7	M8	TaN	${\tt MiM}$	UNITS
Area (substrate)	973	1203	109	57	41	32	27	23	20	17	14	24		aF/um^2
Area (N+active)		1:	1176											aF/um^2
Area (P+active)		10	0496											aF/um^2
Area (r well)	605													aF/um^2
Area (N+ HA varactor)		2390												aF/um^2
Area (M1)			128											aF/um^2
Area (M2)				171										aF/um^2
Area (M3)					182									aF/um^2
Area (M4)						176								aF/um^2
Area (M5)							82							aF/um^2
Area (M6)								81						aF/um^2
Area (M7)									45					aF/um^2
Area (M8)										85				aF/um^2
Area (MiM)												4	100	aF/um^2
Fringe (substrate)	60	68												aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.50	volts
Vinv	1.5	0.52	volts
Vol (100 uA)	2.0	0.01	volts
Voh (100 uA)	2.0	1.18	volts
Vinv	2.0	0.53	volts
Gain	2.0	-18.48	
Ring Oscillator Freq.			
DIV1024 (31-stg,1.2V)		376.81	MHz
D1024_THK (31-stg,2.5V)		279.93	MHz
Ring Oscillator Power			
DIV1024 (31-stg,1.2V)		5.13	nW/MHz/gate
D1024_THK (31-stg,2.5V)		26.50	nW/MHz/gate
Operational Amplifier			
Gain		10	

COMMENTS: DEEP_SUBMICRON