

Deep Learning: Weather **Image** Classification

Mike, Curtis

Problem
Statement/Abstract

Problem Statement

We have 11 classes of weather items in image format, we then pick 4 items to perform image classification with Convolutional Neural Networks as Modeling Project

Fog vs Glaze vs Lightning vs Rainbow

Approach Framework & EDA

Project Framework

- Image Data EDA
- Image Train/Test Split: 80/20 Percentage
- Image Train/Test Images Input Generators Engineering (from tensorflow.keras.preprocessing.image import ImageDataGenerator)
- ResNet Model Direct Prediction
- CNN Baseline Model to Train/Predict
- CNN Baseline Model Validation and Over/underfitting testing
- Implement a Transfer Learning Model to Train/Predict
- Transfer Model Validation and Over/underfitting testing
- Compare CNN baseline model vs Transfer Learning Model

EDA - classified Images density Plotting

EDA - RGB distribution

Unsupervised Classification With ResNet

Apply ResNet Model Directly on Test Set of Data without training

Predicted Items from Fog testset

'toilet_tissue': 1, 'stupa': 6, 'digital_clock': 1,

'tub': 2, 'unicycle': 9, 'tricycle': 1,

'crash_helmet': 2, 'theater_curtain': 1,

'suspension_bridge': 27

Predicted Items from Glaze testset

'coral_fungus': 37, 'hip': 37, 'cliff': 26,

'spider_web': 24, 'alp': 19, 'chainlink_fence':

18, 'fountain': 18, 'picket_fence': 17, 'pot': 12,

'hen-of-the-woods': 12, 'coral reef': 12

Predicted Items from Lightning testset

'fountain': 53, 'geyser': 43, 'volcano': 43,

'stage': 35, 'spotlight': 33, 'spider_web': 31,

'monitor': 26, 'alp': 22, 'space_shuttle': 14,

'fireboat': 14, 'loudspeaker': 12, 'oscilloscope':

12, 'jellyfish': 11, 'garden_spider': 10

Predicted Items from Rainbow testset

'fountain': 42, 'fireboat': 34, 'geyser': 27,

'lakeside': 18, 'bubble': 14, 'volcano': 13,

'spotlight': 10, 'alp': 9, 'seashore': 7,

'space_shuttle': 6, 'wing': 5, 'sandbar': 4,

'cannon': 4

Model Development

Baseline CNN Model

```
model = Sequential()
model.add(Conv2D(input shape=(128, 128, 3), filters=64, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=64,kernel size=(3,3),padding="same", activation="relu"))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=128, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=128, kernel size=(3,3), padding="same", activation="relu"))
model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=256, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel_size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel size=(3,3), padding="same", activation="relu"))
model.add(MaxPool2D(pool size=(2,2), strides=(2,2)))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))
model.add(Flatten())
model.add(Dense(units=4096,activation="relu"))
model.add(Dense(units=4096,activation="relu"))
model.add(Dense(units=4, activation="softmax"))
from tensorflow.keras.optimizers import Adam
opt = Adam(1r=0.00001)
model.compile(optimizer=opt, loss='sparse categorical crossentropy', metrics=['accuracy'])
model.summary()
model.save weights("saved models/new initial weights.h5")
```

VGG16 Model

```
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.models import Model

# load the model
vgg16 = VGG16(input_shape=(128, 128,3), include_top=False, weights='imagenet')
```

```
model vgg16 = Sequential()
model vgg16.add(Input(shape=(128, 128, 3)))
model vgg16.add(vgg16)
model vgg16.add(Flatten())
model vgg16.add(Dropout(0.3))
model vgg16.add(Dense(768, activation='relu'))
model vgg16.add(Dropout(0.25))
model vgg16.add(Dense(256, activation='relu'))
model vgg16.add(Dropout(0.25))
model vgg16.add(Dense(4, activation='softmax'))
model vgg16.summary()
model vgg16.compile( loss = 'sparse categorical crossentropy',
      loss = 'categorical crossentropy',
              optimizer =keras.optimizers.Adam(learning rate=0.0001),
              metrics = ["accuracy"])
```

Layer (type)	Output	Shape	Param #		
vgg16 (Model)	(None,	4, 4, 512)	14714688		
flatten_3 (Flatten)	(None,	8192)	0		
dropout (Dropout)	(None,	8192)	0		
dense_9 (Dense)	(None,	768)	6292224		
dropout_1 (Dropout)	(None,	768)	0		
dense_10 (Dense)	(None,	(None, 256)			
dropout_2 (Dropout)	(None,	256)	0		
dense_11 (Dense)	(None,	4)	1028		

Total params: 21,204,804 Trainable params: 21,204,804 Non-trainable params: 0

EfficientNetV2-S

```
[61] # evaluation
    test_loss, test_acc = model_fi.evaluate(x, y, verbose=2)

8/8 - 27s - loss: 0.5082 - accuracy: 0.8359 - 27s/epoch - 3s/step
```

```
# add classification head after Efficient net
inputs = tf.keras.Input(shape=(180, 180, 3))
x = preprocess_input(inputs)
x = model(x, training = False)
x = global_average_layer(x)
x = Flatten()(x)
x = Dense(1024, activation = 'relu')(x)
x = Dropout(0.2)(x)
x = Dense(1024, activation = 'relu')(x)
outputs = Dense(11, activation = 'softmax')(x)

model fi = Model(inputs, outputs)
```



```
[ ] #model.compile(loss = "sparse_categorical_crossentropy", optimizer = 'Adam', metrics=["accuracy"])
    model_fi.compile(loss = "sparse_categorical_crossentropy", optimizer = 'Adam', metrics=["accuracy"])
    callbacks = [EarlyStopping(monitor = 'val_loss', min_delta = 0, patience = 2, mode = 'auto')]
```

Model Validation

Model Performance Validation

{'fog': 0, 'glaze': 1, 'lightning': 2, 'rainbow': 3}

Model	Fog	Glaze	Lightning	Rainbow	Overall	Over/Under-Fit ting
Baseline CNN	Test F1: 0.81 Train F1:0.81	Test F1: 0.93 Train F1:0.93	Test F1: 0.55 Train F1:0.55	Test F1: 0.89 Train F1:0.91	Test Accuracy: 0.86 Train Accuracy: 0.87	N/A
Vgg16	Test F1: 0.97 Train F1:0.98	Test F1: 0.97 Train F1:0.98	Test F1: 0.92 Train F1:0.98	Test F1: 0.96 Train F1:0.98	Test Accuracy: 0.96 Train Accuracy: 0.98	Slight overfitted

Model Performance Validation with Testset

Model	Dew	Fog	Frost	Glaze	Hail	Lightning	Rain	Rainbow	Rime	Sandstorm	Snow	Overall
Accuracy		FP		FP FN			FP FN		FP		FN	0.84
F1	0.97	0.84	0.83	0.69	0.90	0.95	0.71	0.88	0.78	0.87	0.68	
Precision (TP/TP+FP)	0.95	0.78	0.86	0.71	0.88	1.00	0.67	0.92	0.71	0.91	1.00	
Recall (TP/TP+FN)	1.00	0.91	0.80	0.67	0.92	0.90	0.75	0.85	0.88	0.84	0.52	

'dew'

Model Investigation

Differences between models and effect

- Our ResNet predicting four weather types show great result and EfficientNet predicting 11 weather types is also descent
- If we want to further fine-tune our model, EfficientNet will be our choice as compared with other convolution models, EfficientNet is more accurate and smaller when trained on same dataset (Tan & Le, 2020)
- Still a lot more samples will be needed for training

Model Further Deployment

API and Application

- Our project provides a base for many higher-level applications related to weather
- Video traps for footage shooting of wildlife
 - Capture weather condition for different timestamp
 - Helpful for behavioural study
- Weather identification for self-driving
 - Short-time decision making
 - Long-term trip planning

Short (< second)

 Safety Implications - For example, heavy rain or snow can make LiDAR sensors report inaccurate data

Medium (Minutes)

 Mobility Implications - For example, under foggy conditions AVs could choose the wrong travel speed

Long (Hours)

<u>Trip Planning Implications</u>

 For example, without proper forecasts, AVs could take a slippery route to the destination

Source: https://rosap.ntl.bts.gov/view/dot/32494/dot_32494_DS1.pdf?

Testing our Swin-Transfomer

- Train the same data with Swin and compare with EfficientNet
- Swin has been seen efficient when train with enough data and it will be interesting to compare Swin with state-of-the-art CNN models
- Visual Transformers can be the future?

Swin Transformer

```
class SwinTransformer(layers.Layer):
    def init (
        self,
        dim.
        num patch,
        num heads,
        window size=7,
        shift size=0,
        num mlp=1024,
        qkv bias=True,
        dropout rate=0.0,
        **kwargs,
        super(SwinTransformer, self). init (**kwargs)
        self.dim = dim # number of input dimensions
        self.num patch = num patch # number of embedded patches
        self.num heads = num heads # number of attention heads
        self.window size = window size # size of window
        self.shift size = shift size # size of window shift
        self.num_mlp = num_mlp # number of MLP nodes
        self.norm1 = layers.LayerNormalization(epsilon=1e-5)
        self.attn = WindowAttention(
            dim,
            window size=(self.window size, self.window size),
            num heads=num heads,
            qkv bias=qkv bias,
            dropout_rate=dropout_rate,
        self.drop_path = DropPath(dropout_rate)
        self.norm2 = layers.LayerNormalization(epsilon=1e-5)
```

References

- 1. https://medium.com/@mygreatlearning/what-is-vgg16-introduction-to-vgg16-f2d63849f615#:~:text=V
 <a href="https://medium.com/@mygreatlearning/what-is-vgg16-introduction-to-vgg16-f2d63849f615#:~:text=V
 <a href="https://medium.com/@mygreatlearning/what-is-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-introduction-to-vgg16-intr
- 2. https://www.kaggle.com/jehanbhathena/weather-dataset
- 3. https://www.kaggle.com/jiongjiet/efficientnetb4-model
- 4. <a href="https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neura
- 5. https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
- 6. https://arxiv.org/abs/1905.11946
- 7. https://www.tensorflow.org/tutorials/images/classification
- 8. https://rosap.ntl.bts.gov/view/dot/32494/dot_32494_DS1.pdf?