# Are Economists Getting Climate Dynamics Right?

K. Duffy and N.C. Mark

University of Notre Dame

Spring 2021

## The models are getting it wrong

In this paper Dietz et. al. claim climate dynamics aren't accurately modelled in economics papers. Economists are getting predictions wrong in two major ways:

- 1. They underestimate how quickly temperatures will rise as a result of an emissions impulse;
- 2. They don't correctly model the saturation of carbon sinks

## Temperature Response Experiment

- Performed an experiment exposing climate models from DICE16, DICE13, FUND, PAGE, GL18, GHKT14, and LR17 to a 100 GtC (367 GtCO<sub>2</sub>) emissions impulse against a background CO<sub>2</sub> concentration of 389ppm
- ► Roughly equivalent to introducing 10 years of carbon emissions to the atmosphere from 2010
- Compared to an average model from an ensemble of 256 models from climate science (CMIP5)

Figure: Dynamic temperature responses of economics models and CMIP5



### What's going on?

- CMIP5 resembles a step function quickly increasing and then flattening out
- All the economics models (besides GHKT14) increase temperatures much more slowly and don't stabilize as much
- ▶ Predictions diverge severely 2 centuries out

# Why this is happening

► The change in temperature from an emission impulse is modelled by

$$\frac{\Delta T_t}{\Delta E_0} = \int_0^t \frac{\Delta T_t}{\Delta M_s} \frac{\Delta M_s}{\Delta E_0} ds$$

- ▶ In CMIP5,  $\frac{\Delta T_t}{\Delta M_s}$  is slowly increasing and  $\frac{\Delta M_s}{\Delta E_0}$  is slowly decreasing, which results in an initial gain in temperature followed by almost perfect offsetting
- Furthermore economics models end up reaching peak temperatures much later due to their incorrect models
  - 55, 68, 75, 92, 128, and 180 years out vs 10 years out in CMIP5

### **Implications**

- Delayed temperature responses means costs of carbon that are incurred further into the future
- ► This results in undervaluation of costs an increased sensitivity to discount rates

We'll elaborate soon, now we'll talk about the other shortcoming

#### Undervaluation of Carbon Sink Saturation

- ► Carbon sinks get saturated as CO<sub>2</sub> concentrations increase
- Economics models don't capture this positive feedback in the carbon cycle which causes overly optimistic estimates of emissions removal
- ► To show this, Dietz et. al. performed the same experiment as before but looked at absorption of carbon into sinks
- ► They compared economics models to FAIR which is a model from climate science with decreasing marginal carbon absorption as concentrations of CO<sub>2</sub> increase

Figure: Emissions absorbed by sinks plotted against atmospheric CO<sub>2</sub>



### What's going on?

- ► FAIR has a negative slope indicating a decreasing marginal emissions uptake
- ► Economics models have largely linear emissions absorption which is far too optimistic when compared with FAIR
- ► None of the models except FUND have negative slope (FUND has a positive feedback mechanism)

### **Implications**

- Overly optimistic emissions uptake results in underestimates of long-term CO<sub>2</sub> concentrations and inaccurate temperature responses
- ► This impacts welfare evaluations

### Model considerations

There are 2 components in climate models to consider in comparisons:

- 1. Carbon cycle models
- 2. Temperature dynamics models

### Linear Reservoir Carbon Cycles

- Most papers model carbon cycle as a diffusion model between reservoirs
- ▶ The reservoir concentrations are given by a linear equation:

$$\mathbf{m}_t = \mathbf{A}\mathbf{m}_{t-1} + \mathbf{b}E_t$$

- ▶  $\mathbf{m}_t$  is the vector of reservoir carbon stocks,  $E_t$  is the emissions during the period t and  $\mathbf{A}$  is a matrix of diffusion coefficients
- ▶ Using spectral decomposition you can compute an impulse response that determines the aggregate carbon stock

$$\frac{\Delta M_t}{\Delta E_1} = \psi_1 + \sum_{i=2}^n \psi_i \lambda_i^{t-1}$$

Table 1: Comparing key linear carbon cycle models

| Table 1: Comparing key linear carbon cycle models |                      |     |                           |                  |               |                |  |  |  |  |
|---------------------------------------------------|----------------------|-----|---------------------------|------------------|---------------|----------------|--|--|--|--|
|                                                   | Time step            | Box |                           |                  |               |                |  |  |  |  |
| Model                                             | (years) 1. Permanent |     | 2. Temporary 3. Temporary |                  | 4. Temporary  | 5. Temporary   |  |  |  |  |
| DICE 2016                                         | 5                    | 22% | 41%; 851 years            | 37%; 9 years     |               |                |  |  |  |  |
| FUND                                              | 1                    | 13% | 20%; 252 years            | 32%; 51 years    | 25%; 12 years | 10%; 1.4 years |  |  |  |  |
| PAGE                                              | varies               | 19% | 43%; 73 years             | 38%; < 1 years   |               |                |  |  |  |  |
| GHKT14                                            | 10                   | 20% | 31%; 300 years            | 49%; < 10  years |               |                |  |  |  |  |
| GL18                                              | 10                   | 16% | 18%; 91 years             | 44%; 11 years    |               |                |  |  |  |  |
| LR17                                              | 1                    |     | 100%; 50 years            |                  |               |                |  |  |  |  |
| Joos et al. (2013) / best fit                     | 1                    | 22% | 22%; 277 years            | 28%; 25 years    | 28%; 3 years  |                |  |  |  |  |
| CMIP5 ensemble                                    |                      |     |                           |                  |               |                |  |  |  |  |

Key: the first figure in each cell is the fraction of emissions flowing into box i ( $\psi_i$ ) and the second figure the time it takes for half of the carbon to have left box i ( $\ln(0.5)/\lambda_i$  for Joos et al. (2013) and timestep  $\times \ln(0.5)/\ln(\lambda_i)$  for the other models). Both FUND and PAGE include additional positive carbon cycle feedbacks that are not included in this table.

Figure: Emissions uptake as a result of removing a 100 GtC emissions impulse



## What's going on?

- ► Economic models differ severely from the best fit model CMIP5, but FAIR is a good approximation
- ► To account for saturation, FAIR scales down carbon removal by a factor based on

$$iIRF_{100} = r_{pi} + r_T T + r_C \left[ \sum_{s=pi}^{t} E_s - (M_s - M_{pi}) \right]$$

 $(r_{pi}, r_T, r_C \text{ are constants})$ 

▶ Dietz does not elaborate on this, but the effect is replacing  $\lambda_i \to \lambda_i/\alpha$  for some  $\alpha$  based on  $iIRF_{100}$ 

## Temperature Models

Most economic and climate models agree on a radiative forcing model that's linear in log emissions:

$$F_t = F_{j \times CO_2} \left( \log_j \frac{M_t}{M_{1750}} \right) + F_{\text{non}CO_2, t}$$

- ▶ Intercept  $(F_{\text{non}CO_2,t})$  captures forcing by GHGs and other mechanisms that aren't CO<sub>2</sub>
  - May be endogenous or exogenous (DICE is exogenous, FUND and PAGE are endogenous and model dynamics of other GHGs)
- Can be simplified into an expression that's similar to the one from carbon cycles:

$$\Delta T_t = \sum_{s=1}^t \sum_{i=1}^2 \psi_i^T (\lambda_i^T)^{t-s} \Delta F_s$$

Table 2: Comparing linear temperature-forcing responses

|                                                  | Time step | Box 1          | Box 2           |
|--------------------------------------------------|-----------|----------------|-----------------|
|                                                  | (years)   |                |                 |
| DICE 2016                                        | 5         | 9.9%; 25 years | 0.2%; 150 years |
| FUND                                             | 1         | 100%; 31 years |                 |
| PAGE                                             | varies    | 100%; 24 years |                 |
| GHKT14                                           | 10        | n.a.           | n.a.            |
| GL18                                             | 10        | 100%; 34 years |                 |
| LR17                                             | 1         | 100%; 50 years |                 |
| Geoffroy et al. (2013) / best fit CMIP5 ensemble | 1         | 13.5%; 3 years | 0.2%; 167 years |

Key: The first figure in each cell is the weight of each mode and the second figure the half-life for each mode. PAGE models regional temperature and calculates global temperature as the area-weighted average.

Figure: Dynamic temperature responses for different models



▶ Every model has a temperature response that's too delayed





#### Effect on Economic models

This analysis looks at the following.

- Optimal emissions (maximizing social welfare)
- 2 Limit warming to 2 degrees Celcius at minimum cost.

Table 3: List and description of models used for economic evaluation

| Description                                                       |
|-------------------------------------------------------------------|
| Standard DICE 2016 economy and climate                            |
| DICE 2016 economy with the Golosov et al. (2014) climate model    |
| DICE 2016 economy with the Gerlagh and Liski (2018) climate model |
| DICE 2016 economy with the Lemoine and Rudik (2017) climate model |
| DICE 2016 economy with the FAIR carbon cycle and                  |
| the Geoffroy et al. (2013) warming model                          |
| DICE 2016 economy with the Joos et al. (2013) carbon cycle        |
| and the Geoffroy et al. (2013) warming model                      |
|                                                                   |

- Economics parts of all the models are DICE.
- Climate modules in DICE-FAIR-Geoffroy and DICE-Joos-Geoffroy represent recent climate science models.
- Policies examined
  - Optimal policies (maximizing social welfare)
  - Efficiently limit warming to 2°C.

Figure: Welfare Maximizing Carbon Price (SCC)





Initial welfare maximizing carbon price varies. \$57 in DICE-GHKT14, \$30 in DICE-FAIR-Geoffroy, \$11 in DICE-LR17. Unsurprisingly, the differences grow over time



Efficient carbon emissions.

Figure: Optimal Warming



- Lowest optimal warming in 2100 is DICE-LR17, which has lowest carbon price and highest emissions. Why? Because it
  has slow temperature response when CO2 concentrations are high.
- Warming is high in GHKT14 because it has no delay and exogenouus radiative forcing.

Figure: Carbon prices to limit warming to 2 degrees C.



Figure: Achieving the 2°C Constraint



Figure: Emission Limites



Eventually, emissions have to become negative to achieve the 2°C constraint.

# Effects of Delayed Warming.

The longer the delay, the farther out in the future are the damages, which are **discounted**. Hence, delay will bias the SCC and optimal carbon taxes down.

There also seems to be a second-order effect from feedback or lack thereof.

|   |            |                                    |               | 2020                                    | 2050  | 2100   | 2020                         | 2050               | 2100  | 2020            | 2050 | 2100 |  |
|---|------------|------------------------------------|---------------|-----------------------------------------|-------|--------|------------------------------|--------------------|-------|-----------------|------|------|--|
|   | Model      | Model Carbon- Temp.<br>cycle model |               | Carbon price<br>(USD/tCO <sub>2</sub> ) |       |        | CO <sub>2</sub><br>emissions |                    |       | Warming<br>(°C) |      |      |  |
|   |            |                                    |               |                                         |       |        |                              |                    |       |                 |      |      |  |
|   |            | feedback                           |               |                                         |       |        |                              | (GtCO <sub>2</sub> | )     |                 |      |      |  |
| 1 | DICE-FAIR- | Yes                                | Short         | 29.68                                   | 78.17 | 242.18 | 36.37                        | 42.28              | 17.75 | 1.22            | 1.99 | 2.95 |  |
|   | Geoffroy   |                                    | delay         |                                         |       |        |                              |                    |       |                 |      |      |  |
| 2 | DICE-Joos- | No                                 | Short         | 26.97                                   | 66.53 | 197.61 | 36.76                        | 44.23              | 25.28 | 1.25            | 2.08 | 3.01 |  |
|   | Geoffroy   |                                    | delay         |                                         |       |        |                              |                    |       |                 |      |      |  |
| 3 | Delay 56   | No                                 | Long          | 23.02                                   | 55.45 | 159.01 | 37.35                        | 46.28              | 32.38 | 0.98            | 1.81 | 2.93 |  |
|   |            |                                    | delay         |                                         |       |        |                              |                    |       |                 |      |      |  |
| 4 | Delay 112  | No                                 | Long          | 17.88                                   | 42.17 | 122.98 | 38.19                        | 48.91              | 39.68 | 0.92            | 1.52 | 2.67 |  |
|   |            |                                    | delay         |                                         |       |        |                              |                    |       |                 |      |      |  |
| 5 | DICE 2016  | No                                 | Long delay +  | 36.72                                   | 91.04 | 271.34 | 35.40                        | 40.25              | 13.07 | 1.02            | 2.03 | 3.48 |  |
|   |            |                                    | too hot later |                                         |       |        |                              |                    |       |                 |      |      |  |

Models for this analysis are DICE-Joos-Geoffroy. Models converge at different speeds to the same long-run temperature from an emissions impulse.

- Delay 56: Peak warming is 56 years after the emission impulse.
- 2 Delay 112: Peak warming is 112 years after the emission impulse. Achieved by increasing the effective heat capacity of the ocean and decreasing the rate of CO2 removal.
- 3 DICE-FAIR-Geoffroy includes feedbacks (closest to science). DICE-Joos-Geoffry does not.
- Long delay lowers carbon price.
- Including the feedbacks raises carbon price.

| Model              | Discount | 2020  | 2030  | 2040  | 2050  | 2060   | 2070   | 2080   | 2090   | 2100   |
|--------------------|----------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| DICE-Joos-Geoffroy | Standard | 26.97 | 37.55 | 50.64 | 66.53 | 85.52  | 107.86 | 133.86 | 163.72 | 197.61 |
|                    | Public   | 40.45 | 53.20 | 71.53 | 94.24 | 121.13 | 152.31 | 187.95 | 228.20 | 273.12 |
|                    | % diff.  | 50.0  | 41.7  | 41.3  | 41.6  | 41.6   | 41.2   | 40.4   | 39.4   | 38.2   |
| Delay 56           | Standard | 23.02 | 31.79 | 42.54 | 55.45 | 70.73  | 88.55  | 109.12 | 132.57 | 159.01 |
|                    | Public   | 36.59 | 47.44 | 63.25 | 82.70 | 105.50 | 131.68 | 161.29 | 194.30 | 230.49 |
|                    | % diff.  | 59.0  | 49.2  | 48.7  | 49.1  | 49.2   | 48.7   | 47.8   | 46.6   | 44.9   |
| Delay 112          | Standard | 17.88 | 24.38 | 32.41 | 42.17 | 53.82  | 67.56  | 83.57  | 102.00 | 122.98 |
|                    | Public   | 30.07 | 38.09 | 50.46 | 65.93 | 84.25  | 105.41 | 129.46 | 156.41 | 186.10 |
|                    | % diff.  | 68.2  | 56.3  | 55.7  | 56.4  | 56.5   | 56.0   | 54.9   | 53.3   | 51.3   |

- Examine optimal carbon tax sensitivity to the discount rate.
- 2 Rate of time preference: 1.5% (standard), 0.1% (public). Then combine with 2.5% per capita growth, discount rate becomes 5.1% (standard) and 3.5% (public).
- Accounting faster reaction and feedbacks lowers the sensitivity. Why? Because costs are more heavily borne in the near term?