

Mathematical Statistics

Homework 2

Nolan R. H. Gagnon

C & B 7.14

Let X and Y be independent exponential random variables, with

$$f(x|\lambda) = \frac{1}{\lambda} \exp\{-x/\lambda\}, \ x > 0, \quad f(y|\mu) = \frac{1}{\mu} \exp\{-y/\mu\}, \ y > 0.$$

We observe Z and W with

$$Z = \min(X, Y) \text{ and } W = \begin{cases} 1 & \text{if } Z = X \\ 0 & \text{if } Z = Y \end{cases}$$

In Exercise 4.26, the joint distribution of Z and W was obtained. Now assume that $(Z_i, W_i), i = 1, \ldots, n$, are n iid observations. Find the MLEs of λ and μ .

Solution

To find the joint density, $f(z, w | \lambda, \mu)$, of Z and W, we first find $P(Z \le z, W = w)$. For W = 1, we have

$$P(Z \le z, W = w) = P(X \le z, X < Y) \tag{1}$$

$$= \int_{0}^{z} \int_{x}^{\infty} \frac{1}{\lambda} \exp\left\{-x/\lambda\right\} \frac{1}{\mu} \exp\left\{-y/\mu\right\} dy dx \tag{2}$$

$$= \int_{0}^{z} \frac{1}{\lambda} \exp\left\{-x/\lambda\right\} \exp\left\{-x/\mu\right\} dx \tag{3}$$

$$= \int_{0}^{z} \frac{1}{\lambda} \exp\left\{-x \left[\frac{\mu + \lambda}{\mu \lambda}\right]\right\} dx \tag{4}$$

$$= -\frac{\mu}{\mu + \lambda} \left(\exp\left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\} - 1 \right). \tag{5}$$

By symmetry, we have

$$P(Z \le z, W = 0) = -\frac{\lambda}{\mu + \lambda} \left(\exp \left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\} \right).$$

Thus, for W = 1, the joint density of Z and W is

$$\frac{d}{dz} \left[-\frac{\mu}{\mu + \lambda} \left(\exp\left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\} - 1 \right) \right] = \frac{1}{\mu} \exp\left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\},$$

and, for W = 0, it is

$$\frac{d}{dz} \left[-\frac{\lambda}{\mu + \lambda} \left(\exp\left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\} - 1 \right) \right] = \frac{1}{\lambda} \exp\left\{ -z \left[\frac{\mu + \lambda}{\mu \lambda} \right] \right\}.$$

Now, the likelihood function for (Z_i, W_i) is

$$L = \prod_{i=1}^{n} f(z_i, w_i | \lambda, \mu).$$

Suppose that for m of the observations, the W_i take the value 1. Then the W_i take the value 0 for n-m observations. Thus, we can write

$$L = \prod_{i=1}^{n} f(z_i, w_i | \lambda, \mu)$$
(6)

$$= \frac{1}{\mu^m} \frac{1}{\lambda^{n-m}} \exp\left\{-\left[\frac{\mu+\lambda}{\mu\lambda}\right] \sum_{i=1}^n z_i\right\}. \tag{7}$$

Therefore, the log-likelihood function is

$$\mathscr{L} = -m\log(\mu) - (n-m)\log(\lambda) - \frac{\mu+\lambda}{\mu\lambda} \sum_{i=1}^{n} z_i.$$

To find the MLEs of λ and μ , we solve $\frac{\partial}{\partial \lambda} \mathscr{L} = 0$ and $\frac{\partial}{\partial \mu} \mathscr{L} = 0$. But the solution to

$$\frac{\partial}{\partial \lambda} \mathcal{L} = -(n-m)\frac{1}{\lambda} + \frac{1}{\lambda^2} \sum_{i=1}^{n} z_i$$
 (8)

$$=0 (9)$$

is

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} z_i}{n-m}.$$

Similarly, the solution to $\frac{\partial}{\partial \mu} \mathcal{L} = 0$ is

$$\hat{\mu} = \frac{\sum_{i=1}^{n} z_i}{m}.$$

Using the second-derivative test, we can see that	these points maximize \mathscr{L} .	Thus, $(\hat{\lambda}, \hat{\mu})$ is the MLE of
(λ,μ) .		
		•

Suppose that the random variables Y_1, Y_2, \dots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_1, x_2, \ldots, x_n are fixed constants, and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are iid $n(0, \sigma^2)$, with σ^2 unknown.

- (a) Find a two-dimensional sufficient statistic for (β, σ^2) .
- (b) Find the MLE of β , and show that it is an unbiased estimator of β .
- (c) Find the distribution of the MLE of β .

Solution

(a) We begin by finding the distribution of each Y_i . This is easily achieved using the method of moment-generating functions. We have

$$M_{Y_i}(t) = M_{\beta x_i + \epsilon_i}(t) \tag{10}$$

$$= \exp\left\{\beta x_i t\right\} M_{\epsilon_i}(t) \tag{11}$$

$$= \exp\left\{\beta x_i t\right\} \exp\left\{\sigma^2 t^2 / 2\right\} \tag{12}$$

$$= \exp\left\{\beta x_i t + \sigma^2 t^2 / 2\right\},\tag{13}$$

which indicates that each $Y_i \sim n(\beta x_i, \sigma^2)$. We also note that the Y_i are independent, since the ϵ_i are independent. Thus, the joint density of Y_1, Y_2, \dots, Y_n is

$$f(\mathbf{y}|\beta, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(y_i - \beta x_i)^2}{2\sigma^2}\right\}$$
(14)

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta x_i)^2\right\},\tag{15}$$

where $-\infty < y_i < \infty$. Next, observe that this density can be rewritten as

$$f(\mathbf{y}|\beta,\sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{\frac{-1}{2\sigma^2} \left(\sum_{i=1}^n y_i^2 - 2\beta \sum_{i=1}^n y_i x_i + \beta^2 \sum_{i=1}^n x_i^2\right)\right\}.$$
(16)

Now, define $T_1(\mathbf{y}) = \sum_{i=1}^n y_i^2$ and $T_2(\mathbf{y}) = \sum_{i=1}^n y_i x_i$. Also, let $h(\mathbf{y}) = 1$ and

$$g(T_1(\mathbf{y}), T_2(\mathbf{y})|\beta, \sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{\frac{-1}{2\sigma^2} \left(T_1(\mathbf{y}) - 2\beta T_2(\mathbf{y}) + \beta^2 \sum_{i=1}^n x_i^2\right)\right\}.$$

Since we can write

$$f(\mathbf{y}|\beta,\sigma^2) = g(T_1(\mathbf{y}), T_2(\mathbf{y})|\beta,\sigma^2)h(\mathbf{y})$$

the Factorization Theorem guarantees that $(T_1(\mathbf{y}), T_2(\mathbf{y}))$ is a sufficient statistic for (β, σ^2) .

(b) The log-likelihood function for the Y_i is

$$\mathcal{L}(\beta, \sigma^2 | \mathbf{y}) = \log \left(\left[\frac{1}{\sqrt{2\pi}\sigma} \right]^n \exp \left\{ \frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta x_i)^2 \right\} \right)$$
 (17)

$$= n \log \left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta x_i)^2.$$
 (18)

The equation $\frac{\partial}{\partial \beta} \mathcal{L}(\beta, \sigma^2 | \mathbf{y}) = 0$ reduces to

$$-\sum_{i=1}^{n} y_i x_i + \beta \sum_{i=1}^{n} x_i^2 = 0$$
 (19)

which has the one solution

$$\hat{\beta} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}.$$

To show that this is, in fact, the MLE of β , we note that

$$\frac{\partial^2}{\partial \beta^2} \mathcal{L}(\hat{\beta}, \sigma^2 | \mathbf{y}) = -\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2 < 0,$$

which indicates that, for a given value of σ^2 , the log-likelihood function has a global maximum at $\beta = \hat{\beta}$. Therefore, $\hat{\beta}$ is the MLE of β .

Next, observe that

$$E[\hat{\beta}] = E\left[\frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}\right]$$

$$(20)$$

$$= \frac{1}{\sum_{i=1}^{n} x_i^2} \sum_{i=1}^{n} x_i E[Y_i]$$
 (21)

$$= \frac{1}{\sum_{i=1}^{n} x_i^2} \sum_{i=1}^{n} x_i E[x_i \beta + \epsilon_i]$$
(22)

$$= \frac{\beta}{\sum_{i=1}^{n} x_i^2} \sum_{i=1}^{n} x_i^2 \tag{23}$$

$$=\beta. \tag{24}$$

Thus, $\hat{\beta}$ is an unbiased estimator of β .

(c) From part (a), we know that each $Y_i \sim n(\beta x_i, \sigma^2)$. Multiplying a normal random variable by a constant k scales the mean by k and the variance by k^2 . Thus, the distribution of $x_i Y_i$ is $n(\beta x_i^2, \sigma^2 x_i^2)$, and so

$$\sum_{i=1}^{n} x_i Y_i \sim n \left(\beta \sum_{i=1}^{n} x_i^2, \sigma^2 \sum_{i=1}^{n} x_i^2 \right).$$

Multiplying this by $\frac{1}{\sum\limits_{i=1}^{n}x_i^2}$ scales the mean by $\frac{1}{\sum\limits_{i=1}^{n}x_i^2}$ and the variance by $\left(\frac{1}{\sum\limits_{i=1}^{n}x_i^2}\right)^2$. Therefore

$$\frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2} = \hat{\beta} \sim n \left(\beta, \frac{\sigma^2}{\sum_{i=1}^{n} x_i^2} \right).$$

Consider Y_1, Y_2, \ldots, Y_n as defined in Exercise 7.19.

- (a) Show that $\sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} x_i$ is an unbiased estimator of β .
- (b) Calculate the exact variance of $\sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} x_i$ and compare it to the variance of the MLE.

Solution

(a) Let $\widetilde{\beta}_1 = \sum_{i=1}^n Y_i / \sum_{i=1}^n x_i$. We have

$$E[\widetilde{\beta}_1] = E\left[\sum_{i=1}^n Y_i / \sum_{i=1}^n x_i\right]$$
(25)

$$= \frac{1}{\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} E[Y_i]$$
 (26)

$$= \frac{1}{\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} E[\beta x_i + \epsilon_i]$$

$$(27)$$

$$= \frac{\beta}{\sum_{i=1}^{n} x_i} \sum_{i=1}^{n} x_i \tag{28}$$

$$=\beta. \tag{29}$$

Therefore, $\widetilde{\beta}_1$ is an unbiased estimator of β .

(b) Since the Y_i are independent, the variance of $\widetilde{\beta}_1$ is

$$\operatorname{Var}[\widetilde{\beta}_{1}] = \operatorname{Var}\left[\sum_{i=1}^{n} Y_{i} / \sum_{i=1}^{n} x_{i}\right]$$
(30)

$$= \left(\frac{1}{\sum_{i=1}^{n} x_i}\right)^2 \sum_{i=1}^{n} \operatorname{Var}[Y_i]$$
(31)

$$=\frac{n\sigma^2}{\left(\sum_{i=1}^n x_i\right)^2}. (32)$$

We will show that this is greater than the variance of the $\hat{\beta}$ (the MLE of β). By Hölder's Inequality,

$$\sum_{i=1}^{n} |x_i| \le \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2}.$$

So

$$\left(\sum_{i=1}^{n} |x_i|\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} 1\right) = n \sum_{i=1}^{n} x_i^2.$$

But clearly,

$$\left(\sum_{i=1}^n x_i\right)^2 \le \left(\sum_{i=1}^n |x_i|\right)^2.$$

Therefore,

$$\left(\sum_{i=1}^{n} x_i\right)^2 \le n \sum_{i=1}^{n} x_i^2.$$

Thus,

$$\operatorname{Var}[\widetilde{\beta}_{1}] = \frac{n\sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \ge \frac{n\sigma^{2}}{n\sum_{i=1}^{n} x_{i}^{2}} = \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}} = \operatorname{Var}[\widehat{\beta}].$$

Again, let Y_1, Y_2, \dots, Y_n be as defined in Exercise 7.19.

- (a) Show that $\left[\sum_{i=1}^{n} (Y_i/x_i)\right]/n$ is an unbiased estimator of β .
- (b) Calculate the exact variance of $\left[\sum_{i=1}^{n} (Y_i/x_i)\right]/n$ and compare it to the variances of the estimators in the previous two exercises.

Solution

(a) Let $\widetilde{\beta}_2 = \left[\sum_{i=1}^n (Y_i/x_i)\right]/n$. We have

$$E[\widetilde{\beta}_2] = E\left[\left(\sum_{i=1}^n (Y_i/x_i)\right)/n\right]$$
(33)

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} E[Y_i] \tag{34}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} \beta x_i \tag{35}$$

$$=\frac{1}{n}\sum_{i=1}^{n}\beta\tag{36}$$

$$=\frac{1}{n}n\beta\tag{37}$$

$$=\beta. \tag{38}$$

Therefore, $\widetilde{\beta}_2$ is an unbiased estimator of β .

(b) The variance of $\widetilde{\beta}_2$ is

$$\operatorname{Var}[\widetilde{\beta}_{2}] = \operatorname{Var}\left[\left(\sum_{i=1}^{n} (Y_{i}/x_{i})\right)/n\right]$$
(39)

$$= \frac{1}{n^2} \sum_{i=1}^n \frac{1}{x_i^2} \text{Var}[Y_i]$$
 (40)

$$= \frac{\sigma^2}{n^2} \sum_{i=1}^n \frac{1}{x_i^2}.$$
 (41)

It can be shown that $\operatorname{Var}[\widetilde{\beta}_2] \geq \operatorname{Var}[\widehat{\beta}]$. By Hölder's Inequality, we have

$$n = \sum_{i=1}^{n} \left| \frac{x_i}{x_i} \right| \le \left(\sum_{i=1}^{n} \frac{1}{x_i^2} \right)^{1/2} \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}$$

This can be rewritten as

$$\frac{1}{n^2} \sum_{i=1}^n \frac{1}{x_i^2} \ge \frac{1}{\sum_{i=1}^n x_i^2}.$$

Multiplication by σ^2 on both sides of the above inequality yields

$$\frac{\sigma^2}{n^2} \sum_{i=1}^n \frac{1}{x_i^2} = \operatorname{Var}[\widetilde{\beta}_2] \ge \frac{\sigma^2}{\sum_{i=1}^n x_i^2} = \operatorname{Var}[\widehat{\beta}].$$

We can also show that $Var[\widetilde{\beta}_2] \ge Var[\widetilde{\beta}_1]$ by the method of Lagrange Multipliers. Define a constraint function

$$g(\mathbf{x}) = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i^2}} - c = 0,$$

where $c \in \mathbb{R}$. Furthermore, define

$$f(\mathbf{x}) = \bar{x}^2$$
.

Solving the equation

$$\nabla f(\mathbf{x}) = \left\langle \frac{2\bar{x}}{n}, \frac{2\bar{x}}{n}, \dots, \frac{2\bar{x}}{n} \right\rangle = \lambda \nabla g(\mathbf{x}) = \left\langle \frac{2\lambda}{x_1 \left(\sum \frac{1}{x_i^2}\right)^2}, \frac{2\lambda}{x_2 \left(\sum \frac{1}{x_i^2}\right)^2}, \dots, \frac{2\lambda}{x_n \left(\sum \frac{1}{x_i^2}\right)^2} \right\rangle$$

for \mathbf{x} yields

$$x_1 = x_2 = \ldots = x_n.$$

Thus, subject to the constraint g, the function f is minimized when $x_1 = x_2 = \ldots = x_n$. We crucially note that when $x_1 = x_2 = \ldots = x_n$ (i.e., when f is minimized), we have

$$\bar{x}^2 = \frac{n}{\sum_{i=1}^n \frac{1}{x_i^2}}.$$

Put another way, it is always the case that

$$\bar{x}^2 \ge \frac{n}{\sum_{i=1}^n \frac{1}{x_i^2}}.$$

But this implies that

$$\frac{1}{\bar{x}^2} = \frac{n^2}{\left(\sum_{i=1}^n x_i\right)^2} \le \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i^2}.$$

Dividing by n and multiplying by σ^2 finally yields

$$\frac{n\sigma^2}{\left(\sum_{i=1}^n x_i\right)^2} = \operatorname{Var}\left[\sum_{i=1}^n Y_i / \sum_{i=1}^n x_i\right] \le \frac{\sigma^2}{n^2} \sum_{i=1}^n \frac{1}{x_i^2} = \operatorname{Var}\left[\left(\sum_{i=1}^n (Y_i / x_i)\right) / n\right].$$

We can now conclude that the estimator of β given in this problem is the least desirable of the three estimators studied in this homework (since it has the highest variance).

11

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, 1)$. Show that the best unbiased estimator of θ^2 is $\bar{X} - \frac{1}{n}$. Calculate its variance (use Stein's Identity from Section 3.6), and show that it is greater than the Crámer-Rao Lower Bound.

Solution

We begin by showing that $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ . Let t(x) = x. Then we can write $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i)$. Now, the probability density function of each X_i is

$$f(x|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left\{-(x-\theta)^2/2\right\}$$
 (42)

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2} + \theta x - \frac{\theta^2}{2}\right\} \tag{43}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2} + \theta t(x) - \frac{\theta^2}{2}\right\} \tag{44}$$

for $-\infty < x < \infty$. Since $f(x|\theta)$ belongs to an exponential family of probability density functions, Theorems 6.2.10 and 6.2.25 (Casella and Berger section 6.2) guarantee that $\sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} X_i = T(\mathbf{X})$ is a complete sufficient statistic for θ .

Now, let $\phi(T(\mathbf{X})) = \frac{T(\mathbf{X})^2}{n^2} - \frac{1}{n} = \bar{X}^2 - \frac{1}{n}$. If we can show that $E[\phi(T(\mathbf{X}))] = \theta^2$, we can use Theorem 7.3.23 (Casella and Berger section 7.3) to conclude that $\phi(T(\mathbf{X}))$ is the unique best unbiased estimator of θ^2 . We have

$$E[\phi(T(\mathbf{X}))] = E\left[\bar{X}^2 - \frac{1}{n}\right] \tag{45}$$

$$= E[\bar{X}^2] - \frac{1}{n}. (46)$$

By Theorem 5.3.1 (Casella and Berger section 5.3), the distribution of \bar{X} is $n\left(\theta,\frac{1}{n}\right)$. Thus,

$$E[\bar{X}^2] = \operatorname{Var}[\bar{X}] + E^2[\bar{X}] \tag{47}$$

$$=\frac{1}{n}+\theta^2. (48)$$

Therefore,

$$E[\phi(T(\mathbf{X}))] = \frac{1}{n} + \theta^2 - \frac{1}{n} = \theta^2.$$

Hence, $\phi(T(\mathbf{X})) = \bar{X}^2 - \frac{1}{n}$ is the best unbiased estimator of θ^2 .

The variance of $\phi(T(\mathbf{X}))$ is

$$\operatorname{Var}[\phi(T(\mathbf{X}))] = E\left[\left(\bar{X}^2 - \frac{1}{n}\right)^2\right] - E^2\left[\bar{X}^2 - \frac{1}{n}\right]$$
(49)

$$= E\left[\bar{X}^4 - \frac{2}{n}\bar{X}^2 + \frac{1}{n^2}\right] - \theta^4 \tag{50}$$

$$= E\left[\bar{X}^{4}\right] - \frac{2}{n}E\left[\bar{X}^{2}\right] + \frac{1}{n^{2}} - \theta^{4}. \tag{51}$$

By Stein's Lemma,

$$E[\bar{X}^4] = E[\bar{X}^3(\bar{X} - \theta + \theta)] \tag{52}$$

$$= E[\bar{X}^3(\bar{X} - \theta)] + \theta E[\bar{X}^3] \tag{53}$$

$$= \frac{3}{n}E[\bar{X}^2] + \theta E[\bar{X}^2(\bar{X} - \theta + \theta)] \tag{54}$$

$$= \frac{3}{n} \left(\frac{1}{n} + \theta^2 \right) + \theta E[\bar{X}^2(\bar{X} - \theta)] + \theta^2 E[\bar{X}^2]$$
 (55)

$$= \frac{3}{n^2} + \frac{3\theta^2}{n} + \frac{2\theta}{n} E[\bar{X}] + \theta^2 \left(\frac{1}{n} + \theta^2\right)$$
 (56)

$$= \frac{3}{n^2} + \frac{3\theta^2}{n} + \frac{2\theta^2}{n} + \frac{\theta^2}{n} + \theta^4 \tag{57}$$

Thus, the variance of $\phi(T(\mathbf{X}))$ is

$$Var[\phi(T(\mathbf{X}))] = \frac{3}{n^2} + \frac{3\theta^2}{n} + \frac{2\theta^2}{n} + \frac{\theta^2}{n} + \theta^4 - \frac{2}{n} \left(\frac{1}{n} + \theta^2\right) + \frac{1}{n^2} - \theta^4$$
 (58)

$$=\frac{2}{n^2} + \frac{4\theta^2}{n}. (59)$$

To compute the Crámer-Rao Lower Bound for variances of estimators of $\tau(\theta) = \theta^2$, we require the second partial derivative (with respect to θ) of the log-likelihood function of X_1, X_2, \dots, X_n . We have

$$\mathcal{L}(\theta|\mathbf{x}) = \log\left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left\{-(x_i - \theta)/2\right\}\right)$$
(60)

$$= n \log \left(\frac{1}{\sqrt{2\pi}}\right) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2.$$
 (61)

Thus,

$$\frac{\partial^2 \mathcal{L}(\theta|\mathbf{x})}{\partial \theta^2} = \frac{\partial}{\partial \theta} \sum_{i=1}^n (x_i - \theta)$$
 (62)

$$= -\sum_{i=1}^{n} 1 \tag{63}$$

$$=-n. (64)$$

With this, the Crámer-Rao Lower Bound is

CRLB =
$$\frac{\left(\frac{\partial}{\partial \theta}\tau(\theta)\right)^{2}}{-E\left[\frac{\partial^{2}}{\partial \theta^{2}}\mathcal{L}(\theta|\mathbf{x})\right]}$$

$$= \frac{4\theta^{2}}{-E[-n]}$$

$$= \frac{4\theta^{2}}{n}.$$
(65)

$$=\frac{4\theta^2}{-E[-n]}\tag{66}$$

$$=\frac{4\theta^2}{n}. (67)$$

Clearly $Var[\phi(T(\mathbf{X}))] > CRLB$.

14