Inference for Regression with Variables Generated from Unstructured Data

Laura Battaglia (Oxford) Tim Christensen (Yale) Stephen Hansen (UCL) Szymon Sacher (Meta) October 23, 2024

Outline

1. Introduction

- 2. Warmup Example
- 3. Full Mode
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulation
- 6. Empirical Evidence: CEO Time Use
- 7. Conclusio

Motivation

Use of unstructured data (text, images, audio files, etc.) in applied work is growing rapidly

Almost all papers use a two-step strategy:

- 1. Estimate latent observations (θ_i) from unstructured data using an information retrieval model
- 2. Plug estimates $(\hat{\theta}_i)$ into an econometric model, treating $\hat{\theta}_i$ as regular numeric data

Motivation

Use of unstructured data (text, images, audio files, etc.) in applied work is growing rapidly

Almost all papers use a two-step strategy:

- 1. Estimate latent observations (θ_i) from unstructured data using an information retrieval model
- 2. Plug estimates $(\hat{\theta}_i)$ into an econometric model, treating $\hat{\theta}_i$ as regular numeric data

Pragmatic approach. But little is known about its statistical properties

- · measurement error?
- generated regressors?
- analogy with FAR/FAVARs?

Examples

Supervised Learning (Impute a Missing Label)

- Baker Bloom Davis (2016): economic policy uncertainty measured from newspaper text
- Gorodnichenko Pham Talavera (2023): tone-of-voice measured from FOMC press conferences
- Adukia et. al. (2023): race and gender of children book characters

Unsupervised Learning (Learn Latent Representation)

- Hoberg Phillips (2016): latent industry type measured from corporate filings
- Hansen McMahon Prat (2018): policy deliberation measured from FOMC transcripts
- Magnolfi McClure Sorensen (2022): product differentiation measured from survey data
- Compiani Morozov Seiler (2023): substitutability measured from Amazon text + image data
- Gabaix Koijen Yogo (2023): firm characteristics measured from investor holdings

This Paper

1. Two-step strategy leads to invalid inference: Cls have right width but wrong centering (bias)

Bias depends on relative importance of

- (a) Measurement error in upstream model
- (b) Sampling error in downstream model

Valid inference requires (a) to vanish much faster than (b)

Empirical interpretation: amount of unstructured data per observation swamps the sample size

 \longrightarrow not the typical case in leading empirical applications

This Paper

1. Two-step strategy leads to invalid inference: CIs have right width but wrong centering (bias)

Bias depends on relative importance of

- (a) Measurement error in upstream model
- (b) Sampling error in downstream model

Valid inference requires (a) to vanish much faster than (b)

Empirical interpretation: amount of unstructured data per observation swamps the sample size

 \longrightarrow not the typical case in leading empirical applications

2. Solutions:

- (a) Bias correction
- (b) One-step estimation using likelihood of upstream and downstream components.
- (c) IV estimation?

This Paper

1. Two-step strategy leads to invalid inference: CIs have right width but wrong centering (bias)

Bias depends on relative importance of

- (a) Measurement error in upstream model
- (b) Sampling error in downstream model

Valid inference requires (a) to vanish much faster than (b)

Empirical interpretation: amount of unstructured data per observation swamps the sample size

 \longrightarrow not the typical case in leading empirical applications

2. Solutions:

- (a) Bias correction
- (b) One-step estimation using likelihood of upstream and downstream components.
- (c) IV estimation?
- 3. Shows empirical relevance in several applications (today: CEO time use).

Outline

1. Introduction

2. Warmup Example

3. Full Mode

4. How to Correct Bia

5. Empirical Evidence: Simulation

6. Empirical Evidence: CEO Time Use

7. Conclusio

Sentiment Regression

Suppose we wish to perform inference on γ_1 in the regression model

$$Y_i = \gamma_0 + \gamma_1 \theta_i + \varepsilon_i, \qquad \mathbb{E}[\varepsilon_i | \theta_i] = 0,$$

 θ_i : latent 'sentiment' in month i.

We observe (X_i, C_i) where

$$X_i \sim \text{Binomial}(C_i, \theta_i)$$

Two-step strategy:

- 1. estimate θ_i with $\hat{\theta}_i = X_i/C_i \Longrightarrow$ measurement error depends on C_i .
- 2. regress Y_i on $\hat{\theta}_i$. Perform standard OLS inference (treating $\hat{\theta}_i$ as data)

Case I: Large Sample Size

- Suppose we observe IID sample $(X_i, Y_i, C_i)_{i=1}^n$
- Take $n \to \infty$ so that sampling error in downstream model vanishes.
- Non-vanishing measurement error in $\hat{ heta}_i$ leads to inconsistent OLS estimates.

Effect of Increasing *n* with Fixed $C_i = C = 1$

Case II: Large Amount of Unstructured Data

- Suppose we again observe IID sample $(X_i, Y_i, C_i)_{i=1}^n$
- Now take $C_i \to \infty$ for each observation i.
- Implies that $\hat{ heta}_i o heta_i$ so that measurement error vanishes.
- OLS is unbiased in finite samples.

Effect of Increasing $C_i = C$ with Fixed n = 100

Case III: Both Forces Present

- In modern datasets, we have both large *n* and low measurement error.
- Challenge: how to develop asymptotic framework that reflects this?
- We consider sequential DGP where:
 - 1. Distribution of (Y_i, θ_i) is fixed with n.
 - 2. Conditional distribution of $\hat{\theta}_i$ given (Y_i, θ_i) varies with n.
 - 3. Along this sequence,

$$\sqrt{n} \times \mathbb{E}\left[\frac{1}{C_i}\right] \to \kappa \in [0, \infty)$$

- κ measures importance of measurement error relative to sampling error.
- In spirit of small noise asymptotics of Chesher (1991), Evdokimov and Zeleneev (2024).

Implications for Inference

Proposition

Along this sequence of DGPs, we have

$$\sqrt{n}(\hat{\gamma}_1 - \gamma_1) \to_d N\left(-\kappa \gamma_1 \frac{\mathbb{E}[\theta_i(1-\theta_i)]}{\operatorname{Var}(\theta_i)}, \frac{\mathbb{E}[\varepsilon_i^2(\theta_i - \mathbb{E}[\theta_i])^2]}{\operatorname{Var}(\theta_i)^2}\right)$$

- $\kappa = 0$: two-step inference is valid because sampling error dominates measurement error
- $\kappa \in (0, \infty)$: two-step inference is biased (CIs under-cover), bias proportional to κ

 $C_i = C \in \{10, 20, 100\}$ and n = 10, 000

Standard Deviations

0.032

0.033

0.034

Outline

- 1. Introduction
- 2. Warmup Example
- 3. Full Model
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulation
- 6. Empirical Evidence: CEO Time Use
- 7. Conclusion

General Model

We consider the linear regression model

$$Y_i = \gamma^T \theta_i + \alpha^T \mathbf{q}_i + \varepsilon_i, \qquad \mathbb{E}\left[\varepsilon_i | \boldsymbol{\theta}_i, \mathbf{q}_i\right] = 0$$
 (1)

- θ_i is a vector of latent variables of economic interest
- **q**_i are standard numeric covariates
- We focus on inference for γ
- α of interest in other applications (Avivi 2024)

Unstructured dataset available for estimating θ_i .

Two-Step Strategy

- (i) Estimate $\hat{\theta}_i$ of θ_i obtained from unstructured data using an upstream information retrieval model.
- (ii) Regress Y_i on $\hat{\theta}_i$ and \mathbf{q}_i . Inference is performed treating $\hat{\theta}_i$ as regular numeric data.

Two-Step Strategy

- (i) Estimate $\hat{\theta}_i$ of θ_i obtained from unstructured data using an upstream information retrieval model.
- (ii) Regress Y_i on $\hat{\theta}_i$ and \mathbf{q}_i . Inference is performed treating $\hat{\theta}_i$ as regular numeric data.

$$\boldsymbol{\xi}_i = \left[\begin{array}{c} \boldsymbol{\theta}_i \\ \mathbf{q}_i \end{array} \right], \qquad \hat{\boldsymbol{\xi}}_i = \left[\begin{array}{c} \hat{\boldsymbol{\theta}}_i \\ \mathbf{q}_i \end{array} \right].$$

The OLS estimator of $\psi = \left[\gamma, lpha
ight]^{ au}$ in the two-step strategy is given by

$$\hat{\psi} = \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\xi}_i \hat{\xi}_i^{\mathsf{T}}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\xi}_i Y_i\right). \tag{2}$$

- ML algorithms often deployed to impute missing observations from unstructured data, for example when labelling the full data set is prohibitively costly or otherwise infeasible
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ using unstructured data \mathbf{x}_i (e.g., photograph)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i

- ML algorithms often deployed to impute missing observations from unstructured data, for example when labelling the full data set is prohibitively costly or otherwise infeasible
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ using unstructured data \mathbf{x}_i (e.g., photograph)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i

- ML algorithms often deployed to impute missing observations from unstructured data, for example when labelling the full data set is prohibitively costly or otherwise infeasible
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ using unstructured data \mathbf{x}_i (e.g., photograph)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i
- Measurement error arises due to classification error.
- Let $p_i = \Pr\left[\theta_i = 1 \mid \mathbf{x}_i, \mathbf{q}_i\right]$ and $\pi_i = \Pr\left[\hat{\theta}_i = 1 \mid \mathbf{x}_i, \mathbf{q}_i\right]$.
- False positive rate is $(1 p_i)\pi_i$; false negative rate is $p_i(1 \pi_i)$.

- ML algorithms often deployed to impute missing observations from unstructured data, for example
 when labelling the full data set is prohibitively costly or otherwise infeasible
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ using unstructured data \mathbf{x}_i (e.g., photograph)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i
- Measurement error arises due to classification error.
- Let $p_i = \Pr\left[\theta_i = 1 \mid \mathbf{x}_i, \mathbf{q}_i\right]$ and $\pi_i = \Pr\left[\hat{\theta}_i = 1 \mid \mathbf{x}_i, \mathbf{q}_i\right]$.
- False positive rate is $(1 p_i)\pi_i$; false negative rate is $p_i(1 \pi_i)$.
- Used as part of the two-step strategy by: Baker Bloom Davis (2016); Imai Khanna (2016); ...; Bybee (2024); Boxell Conway (2024).

Example 2: Topic Models

- Unstructured obs i is a V-dim vector of feature counts \mathbf{x}_i
- Factor structure on multinomial probabilities (as in probabilistic latent semantic analysis/LDA):

$$\mathbf{x}_i | (C_i, \boldsymbol{\theta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\theta}_i)$$

- $\mathbf{B}^T = [\beta_1, \dots, \beta_K]$, each $\beta_k \in \Delta^{V-1}$ is a topic
- observation-specific topic weights $\theta_i \in \Delta^{K-1}$

Example 2: Topic Models

- Unstructured obs i is a V-dim vector of feature counts \mathbf{x}_i
- Factor structure on multinomial probabilities (as in probabilistic latent semantic analysis/LDA):

$$\mathbf{x}_i | (C_i, \boldsymbol{\theta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\theta}_i)$$

- $\mathbf{B}^T = [\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_K]$, each $\boldsymbol{\beta}_k \in \Delta^{V-1}$ is a topic
- observation-specific topic weights $\theta_i \in \Delta^{K-1}$
- Estimate latent $oldsymbol{ heta}_i$ from $oldsymbol{\mathsf{x}}_i$ e.g. via LDA $ightarrow \hat{oldsymbol{ heta}}_i$.
- Measurement error from sampling error.

Example 2: Topic Models

- Unstructured obs i is a V-dim vector of feature counts \mathbf{x}_i
- Factor structure on multinomial probabilities (as in probabilistic latent semantic analysis/LDA):

$$\mathbf{x}_i | (C_i, \boldsymbol{\theta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\theta}_i)$$

- $\mathbf{B}^T = [\beta_1, \dots, \beta_K]$, each $\beta_k \in \Delta^{V-1}$ is a topic
- observation-specific topic weights $\theta_i \in \Delta^{K-1}$
- Estimate latent $oldsymbol{ heta}_i$ from \mathbf{x}_i e.g. via LDA $ightarrow \hat{oldsymbol{ heta}}_i$.
- Measurement error from sampling error.
- Used as part of two-step strategy by:
 - <u>Text data:</u> Hansen McMahon Prat (2018); Mueller Rauh (2018); Larsen and Thorsrud (2019); Thorsrud (2020); Bybee Kelly Manela Xiu (2020); Ash Morelli Vannoni (2022)
 - Survey data: Bandiera Prat Hansen Sadun (2020); Draca Schwarz (2020)
 - Network data: Nimczik (2017)

Example 3: Index Built from Classified Labels

- Suppose that each observation i has C_i observed labels, e.g. the number of classified newspaper articles observed in month i.
- Let $p_i = \Pr[\theta_{i,j} = 1 \mid \mathbf{q}_i]$, e.g. all articles have independent probability of discussing policy uncertainty given economic conditions.
- Suppose the realization of the observed label $\hat{ heta}_{i,j}$ depends only on true label $heta_{i,j}$:

$$\longrightarrow \pi_1 = \Pr\left[\left.\hat{\theta}_{i,j} = 1 \;\middle|\; \theta_{i,j} = 1\right.\right] \text{ and } \pi_0 = \Pr\left[\left.\hat{\theta}_{i,j} = 0\;\middle|\; \theta_{i,j} = 0\right.\right].$$

• Then the distribution of $x_{i,1} \equiv \sum_{j=1}^{C_i} 1\left(\hat{ heta}_{i,j} = 1
ight)$ is

$$x_{i,1} \sim \mathsf{Binomial}(C_i, p_i \pi_1 + (1 - p_i)\pi_0)$$

Topic model with K=2 and topic-feature distributions $(\pi_1,1-\pi_1)$ and $(\pi_0,1-\pi_0)$.

Asymptotics: General Case

Consider a sequence of DGPs for $(Y_i, \theta_i, \hat{\theta}_i, \mathbf{q}_i, \mathbf{x}_i)_{i=1}^n$ indexed by sample size n, in which

$$\sqrt{n}\left[\frac{1}{N}\sum_{i=1}^{n}\hat{\boldsymbol{\theta}}_{i}(\hat{\boldsymbol{\theta}}_{i}-\boldsymbol{\theta}_{i})^{T}\right]\rightarrow_{p}\kappa\,\boldsymbol{\Omega},$$

where $\kappa \geq 0$ measures the importance of measurement error relative to (downstream) sampling error

Asymptotics: General Case

Consider a sequence of DGPs for $(Y_i, \theta_i, \hat{\theta}_i, \mathbf{q}_i, \mathbf{x}_i)_{i=1}^n$ indexed by sample size n, in which

$$\sqrt{n}\left[\frac{1}{N}\sum_{i=1}^n\hat{\theta}_i(\hat{\theta}_i-\theta_i)^T\right]\to_{\rho}\kappa\Omega,$$

where $\kappa \geq 0$ measures the importance of measurement error relative to (downstream) sampling error

Theorem: Two-Step Inference is Invalid Unless $\kappa = 0$

1. OLS estimator $\hat{\psi}=(\hat{\gamma},\hat{\alpha})$ of $\psi=(\gamma,\alpha)$ from regressing Y_i on $\hat{\xi}_i=(\hat{\theta}_i,\mathbf{q}_i)$ has asy dist

$$\sqrt{n}\left(\hat{\psi} - \psi\right) \to_d N\left(\kappa \times \mathsf{bias}(\mathbf{\Omega}, \boldsymbol{\gamma}, \mathbb{E}[\boldsymbol{\xi}_i \boldsymbol{\xi}_i^T]), \underbrace{\mathbb{E}[\boldsymbol{\xi}_i \boldsymbol{\xi}_i^T]^{-1}\mathbb{E}[\varepsilon_i^2 \boldsymbol{\xi}_i \boldsymbol{\xi}_i^T]^{\mathbb{E}[\boldsymbol{\xi}_i \boldsymbol{\xi}_i^T]^{-1}}_{=:V}\right)$$

2. Eicker–Huber–White standard errors are consistent for all $\kappa \geq 0$:

$$\left(\frac{1}{n}\sum_{i=1}^{n}\hat{\xi}_{i}\hat{\xi}_{i}^{T}\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\hat{\varepsilon}_{i}^{2}\hat{\xi}_{i}\hat{\xi}_{i}^{T}\right)\left(\frac{1}{n}\sum_{i=1}^{n}\hat{\xi}_{i}\hat{\xi}_{i}^{T}\right)^{-1}\rightarrow_{\rho}V$$

Asymptotics: Examples

• ML-generated binary labels:

$$\sqrt{n} imes \mathbb{E}[FP_i] o \kappa, \qquad extbf{bias} = -\mathbb{E}\Big[oldsymbol{\xi}_i \, oldsymbol{\xi}_i^T\Big]^{-1} igg| egin{array}{c} \gamma \ \mathbf{0} \end{array} igg|$$

• Topic models:

$$\sqrt{n} imes \mathbb{E}\left[rac{1}{C_i}
ight] o \kappa, \qquad \mathsf{bias} = (\mathsf{complicated})$$

• Further applications: ML-generated indices; similarity measures; VARs; ...

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa = 0$: two-step inference is **valid**
 - can treat $\hat{\boldsymbol{\theta}}_i$ as if they are the true latent $\boldsymbol{\theta}_i$
 - analogy with Factor-Augmented Regressions (Bai Ng 2006):
 - impute latent factor \mathbf{F}_t from N-dim cross-section of predictors $\mathbf{x}_t o \hat{\mathbf{F}}_t$
 - Bai-Ng condition for valid two-step inference: $\sqrt{T}/N \to 0$
 - analogous to $\kappa=0$: n analogous to T, $\mathbb{E}[C_i^{-1}]$ analogous 1/N,

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa = 0$: two-step inference is **valid**
 - can treat $\hat{\boldsymbol{\theta}}_i$ as if they are the true latent $\boldsymbol{\theta}_i$
 - analogy with Factor-Augmented Regressions (Bai Ng 2006):
 - impute latent factor \mathbf{F}_t from N-dim cross-section of predictors $\mathbf{x}_t o \hat{\mathbf{F}}_t$
 - Bai-Ng condition for valid two-step inference: $\sqrt{T}/N \to 0$
 - analogous to $\kappa=0$: n analogous to T, $\mathbb{E}[C_i^{-1}]$ analogous 1/N,
- Practical take-away: if κ is large, use resources for improving precision of $\hat{\theta}_i$ (not increasing n)

Relevance of Measurement Error

Confusion Matrix from Baker, Bloom, and Davis (2016).

	Classification Labels	
Human Labels	0	1
0	1486	474
1	825	802

Errors Remain with Modern Algorithms

Relevance of Sampling Error

For several popular datasets, we can compute an empirical analogue of $\sqrt{n} \times \mathbb{E}\left[\frac{1}{C_i}\right]$.

- Minimum Data Set (MDS) for Nursing Homes
 - 24,000,000 patients
 - $\hat{\kappa} \approx 46$
- Lightcast (formerly Burning Glass) job postings data
 - 45,000,000 observations
 - $\hat{\kappa} \approx 20$
- Nielsen Homescan
 - 40,000 households

$$\hat{\kappa} \approx 3.8$$

- US Patents in 2023
 - 315,000 filings
 - $\hat{\kappa} \approx 1$

Outline

- 1. Introduction
- 2. Warmup Example
- 3. Full Mode
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulation
- 6. Empirical Evidence: CEO Time Use
- 7. Conclusion

How to Correct Bias

1. Explicit Bias Correction: use analytical expressions in Theorem to adjust two-step estimates

Advantage: Simple and scalable

Disadvantage: Not feasible in complex models; poor approximation with large κ

2. One-Step Strategy: MLE using joint likelihood for upstream IR model + regression model

Advantage: General purpose and flexible

Disadvantage: More computationally demanding and parametric assumptions

Explicit Bias Correction: ML-Generated Labels

• Idea: estimate bias term in asy. dist.; adjust two-step CI accordingly

$$\widehat{\kappa} \times \widehat{\mathbf{bias}} = -\sqrt{n} \, \widehat{\mathbf{fpr}} \times \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{\xi}}_{i} \hat{\boldsymbol{\xi}}_{i}^{T}\right)^{-1} \left[\begin{array}{c} \hat{\boldsymbol{\gamma}} \\ \mathbf{0} \end{array}\right]}_{\text{consistent under cond'ns of theorem}}$$

• Estimate false-positive rate from subsample of correctly labeled data of size $m \ll n$:

$$\widehat{fpr} = rac{1}{m} \sum_{j=1}^m \widehat{ heta}_j (1 - heta_j),$$

• Valid coverage of bias-corrected CIs provided $n/m^2 \to 0$ and $\sqrt{n} \mathbb{E}[\pi_i(1-p_i)] \to \kappa \ge 0$

Explicit Bias Correction: Topic Models

· Bias estimator:

$$\hat{\kappa} \, \widehat{\mathbf{bias}} = \underbrace{\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{1}{C_{i}}\right)}_{\hat{\kappa}} \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{\xi}}_{i} \hat{\boldsymbol{\xi}}_{i}^{T}\right)^{-1} \left[\begin{array}{c} \boldsymbol{S} \left(\mathbf{Q}_{\hat{\mathbf{B}}} \, \mathrm{diag}(\hat{\mathbf{B}}^{T} \bar{\boldsymbol{\vartheta}}_{n}) \mathbf{Q}_{\hat{\mathbf{B}}}^{T} - \frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{\vartheta}}_{i} \, \hat{\boldsymbol{\vartheta}}_{i}^{T}\right) \boldsymbol{S}^{T} \hat{\boldsymbol{\gamma}}}_{\hat{\mathbf{bias}}} \right]}_{\hat{\mathbf{bias}}}$$

where
$$\mathbf{Q}_{\widehat{\mathbf{B}}} = (\widehat{\mathbf{B}}\widehat{\mathbf{B}}^T)^{-1}\widehat{\mathbf{B}}$$

• Valid provided $\sqrt{n} \times \mathbb{E}[C_i^{-1}] \to \kappa \ge 0$

One-Step Strategy: Computation

- Joint likelihood: $f(Y_i, \mathbf{x}_i, \boldsymbol{\theta}_i | \mathbf{q}_i; \gamma, \alpha, ...)$
- Integrated likelihood in terms of observables only:

$$f(Y_i, \mathbf{x}_i | \mathbf{q}_i; \gamma, \alpha, ...) = \underbrace{\int_{\Delta^{K-1}} f(Y_i, \mathbf{x}_i, \mathbf{\theta}_i | \mathbf{q}_i; \gamma, \alpha, ...) d\mathbf{\theta}_i}_{\text{intractable}}$$

- Use Bayesian computation:
 - Integrates out θ_i as part of the sampling algorithm
 - Resulting credible sets are valid frequentist confidence intervals for large n by BvM theorem
- Sampling: Hamiltonian MC implemented in probabilistic programming language NumPyro
 ⇒ allows for estimation of models on large scale

Outline

- 1. Introduction
- 2. Warmup Example
- 3. Full Mode
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulations
- 6. Empirical Evidence: CEO Time Use
- 7. Conclusion

ML-Generated Labels: Coverage in a Small Simulation

• $n=25{,}000, \ m=1{,}000, \ t_{12} \ {
m errors}, \ \gamma_1=2, \ \kappa=2 \ ({
m fpr} \approx 1.2\%)$

ML-Generated Labels: Coverage in a Small Simulation

• n=25,000, m=1,000, t_{12} errors, $\gamma_1=2$, $\kappa=2$ (fpr $\approx 1.2\%$)

- Several recent works (Fong Tyler 2021; Allon et al. 2023; Egami et al. 2023, Zhang et al. 2023)
 propose IV or GMM strategies based on using small subset w/ correct labels to estimate first stage
- Valid when $n/m \rightarrow c$, as in the literature on auxiliary data (Chen et al. 2005, 2008)

ML-Generated Labels: Coverage in a Small Simulation

• n=25,000, m=1,000, t_{12} errors, $\gamma_1=2$, $\kappa=2$ (fpr $\approx 1.2\%$)

- Several recent works (Fong Tyler 2021; Allon et al. 2023; Egami et al. 2023, Zhang et al. 2023)
 propose IV or GMM strategies based on using small subset w/ correct labels to estimate first stage
- Valid when $n/m \rightarrow c$, as in the literature on auxiliary data (Chen et al. 2005, 2008)
- Not well suited to modern use cases where $n \gg m \Rightarrow$ coverage suffers

Supervised Topic Model with Covariates (STMC)

$$\left. \begin{array}{l} \boldsymbol{\theta}_i \sim \mathsf{LogisticNormal}(\boldsymbol{\Phi} \mathbf{g}_i, \mathrm{I}_K \sigma_{\theta}^2) \\ \mathbf{x}_i \sim \mathsf{Multinomial}(\mathit{C}_i, \mathbf{B}^T \boldsymbol{\theta}_i) \\ Y_i \sim \mathsf{Normal}(\boldsymbol{\gamma}^T \boldsymbol{\theta}_i + \boldsymbol{\alpha}^T \mathbf{q}_i, \sigma_Y^2) \end{array} \right\} \quad \rightarrow \quad f(Y_i, \mathbf{x}_i, \boldsymbol{\theta}_i | \mathit{C}_i, \mathbf{q}_i, \mathbf{g}_i; \boldsymbol{\delta})$$

Parameters are $oldsymbol{\delta} = (\mathbf{B}, \mathbf{\Phi}, oldsymbol{\gamma}, lpha, \sigma_{Y}, \sigma_{ heta})$

Generalization of Structural Topic Model (Roberts et. al. 2014) and Bayesian Topic Regression for Causal Inference (Ahrens et. al. 2021).

Monte Carlo Design

• Simulate from STMC

• Configurations: n = 10000, $C_i = C \in \{10, 25, 200\} \rightarrow \kappa \in \{10, 4, 0.5\}$

- Compare: two-step, one-step, and two-step infeasible (regression on true latent $heta_i$)

Parameter	Value	Description			
	(a) Da	ta Simulation			
V 300 Number of distinct features					
K	2	Number of latent types			
True ϕ	1	Effect of a covariates on un-normalized type shares			
True γ	5	Effect of topic shares on numerical outcomes			
True α	(0, 1, 1, 1)	Effect of additional covariates on numerical outcome			
gį	$\sim N(0, \frac{\log(3)}{1.96})$	Covariate affecting type shares			
$\begin{array}{l} q_{i,m} \ \forall m \in (1,2,3) \\ \sigma_{\theta}^2 \\ \sigma_{\theta}^2 \end{array}$	$\sim N(0, 3)$	Additional covariates affecting outcome			
σ_Y^2	16	SD of the numeric outcome's residual			
σ_{θ}^2	1	SD of residual of the un-normalized type shares			
η	0.2	Dirichlet concentration parameter			
	(b) Hy	perparameters			
$p(\phi_1)$	N(0, 4)	Prior for ϕ_1 , i.e. $\sigma_\phi^2=4$			
$p(\gamma_1)$	N(0, 100)	Prior for ϕ_1 , i.e. $\sigma_{\phi}^2=4$ Prior for γ_1 , i.e. $\sigma_{\gamma}^2=100$			
$p(\alpha) \ \forall m \in (0, 1, 2, 3)$	N(0, 100)	Prior for α , i.e. $\sigma_{\alpha}^{2} = 100$			
$p(\sigma_Y)$	Gamma(1, 10)	Prior for σ_Y , i.e. $s_0=1$ and $s_1=10$			

Performance of One-Step Strategy

Table 1: Coverage Rates of 95% CIs

	2-Step	1-Step	Infeas
κ	Co	verage for	γ
10	0.575	0.955	0.955
4	0.635	0.965	0.955
0.5	0.910	0.960	0.955

Performance of Bias Correction

Table 2: Coverage Rates of 95% Cls

	2-Step	2-Step BC	1-Step	Infeas		
κ	Coverage for γ					
10	0.575	0.095	0.955	0.955		
4	0.635	0.915	0.965	0.955		
0.5	0.910	0.935	0.960	0.955		

Outline

- 1. Introduction
- 2. Warmup Example
- 3. Full Mode
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulation
- 6. Empirical Evidence: CEO Time Use
- 7. Conclusion

Bandiera Hansen Prat Sadun (JPE, 2020)

- Time-use survey data for 916 CEOs
- 654 combinations of activities (e.g., meeting with suppliers) in 15min intervals
- LDA with K=2: 2 types of CEO behaviors β_1 (leaders) and β_2 (managers).
- Two-step strategy: regress log sales Y_i on leader weight $\hat{\theta}_{i,1}$ and firm characteristics \mathbf{q}_i .

Bandiera Hansen Prat Sadun (JPE, 2020)

- Time-use survey data for 916 CEOs
- 654 combinations of activities (e.g., meeting with suppliers) in 15min intervals
- LDA with K=2: 2 types of CEO behaviors β_1 (leaders) and β_2 (managers).
- Two-step strategy: regress log sales Y_i on leader weight $\hat{\theta}_{i,1}$ and firm characteristics \mathbf{q}_i .

Original Paper: $\hat{\kappa} = 0.44$ (average $C_i = 88.4$).

Modified Sample: draw 10% of activities for each CEO (without replacement) $\longrightarrow \hat{\kappa} = 4.26$.

Observed Activities High: Similar Coefficient Estimates

	Dependent variable: Log(sales)			
	Full Sample		10% Subsample	
	(1) 2-Step	(2) 1-Step	(3) 2-Step	(4) 1-Step
CEO Index	0.400	0.402	0.211	0.439
	(0.219, 0.572)	(0.240, 0.603)	(-0.028, 0.449)	(0.153, 0.711)
Log Employment	1.212	1.198	1.239	1.199
	(1.159, 1.268)	(1.154, 1.248)	(1.186, 1.29)	(1.148, 1.26)

Observed Activities High: Similar Confidence Interval Widths

	Dependent variable: Log(sales)			
	Full Sample		10% Subsample	
	(1) 2-Step	(2) 1-Step	(3) 2-Step	(4) 1-Step
CEO Index	0.400	0.402	0.211	0.439
	(0.219, 0.572)	(0.240, 0.603)	(-0.028, 0.449)	(0.153, 0.711)
Log Employment	1.212	1.198	1.239	1.199
	(1.159, 1.268)	(1.154, 1.248)	(1.186, 1.29)	(1.148, 1.26)

Observed Activities Low: Two-Step Coefficient Estimate Falls

		Dependent variable: Log(sales)			
	Full Sample		10% Subsample		
	(1) 2-Step	(2) 1-Step	(3) 2-Step	(4) 1-Step	
CEO Index	0.400	0.402	0.211	0.439	
	(0.219, 0.572)	(0.240, 0.603)	(-0.028, 0.449)	(0.153, 0.711)	
Log Employment	1.212	1.198	1.239	1.199	
	(1.159, 1.268)	(1.154, 1.248)	(1.186, 1.29)	(1.148, 1.26)	

Observed Activities Low: Similar Confidence Interval Widths

		Dependent variable: Log(sales)			
	Full Sample		10% Subsample		
	(1) 2-Step	(2) 1-Step	(3) 2-Step	(4) 1-Step	
CEO Index	0.400	0.402	0.211	0.439	
	(0.219, 0.572)	(0.240, 0.603)	(-0.028, 0.449)	(0.153, 0.711)	
Log Employment	1.212	1.198	1.239	1.199	
	(1.159, 1.268)	(1.154, 1.248)	(1.186, 1.29)	(1.148, 1.26)	

Comparison of $\hat{\theta}_{i,1}$ from One-Step v Two-Step Strategies

Outline

- 1. Introduction
- 2. Warmup Example
- 3. Full Mode
- 4. How to Correct Bias
- 5. Empirical Evidence: Simulation
- 6. Empirical Evidence: CEO Time Use

7. Conclusion

Conclusion

- · Empirical work increasingly uses unstructured data to recover latent variables of economic interest
- We show: dominant two-step strategy leads to invalid inference in most empirical settings
- We propose two solutions: bias correction + one-step strategy
- ullet Illustrate important differences in simulations + applications