Topologia I* Seria I.

Przestrzenie homeomorficzne ze sferą

Jacek Karwowski, Szymon Pajzert

Udowodnij, że dla n > 0 następujące przestrzenie są homeomorficzne:

- 1) Sfera S^n
- 2) $\mathbb{R}^{n+1} \setminus \{0\} / \sim \text{gdzie } \mathbf{v} \sim \mathbf{w} \iff \exists_{\lambda > 0} \mathbf{v} = \lambda \mathbf{w}$
- 3) $(\mathbb{R}^n)^+$ sfera Riemanna
- 4) $D^n/\sim \text{gdzie } x\sim y \iff x=y \text{ lub } x,y\in S^{n-1}$
- 5) $S^p \times S^q$ z utożsamionym do punktu zbiorem $\alpha \times S^q \cup S^p \times \beta$, dla p+q=n gdzie α oraz β są odpowiednio pewnymi wektorami z S^p oraz S^q .
- 6) $(D^p \times S^q) \cup (S^{p-1} \times D^{q+1})$ gdzie p+q=n

Udowodnij że sfera jest łukowo spójna oraz jest 2-rozmaitością.

Sfera jest rozmaitością

Na mocy homeomorfizmu pomiędzy 1) oraz 3) wiemy że po wyjęciu jednego punktu ze sfery S^n jest ona homeomorficzna z \mathbb{R}^n . Wyjmując dwa różne od siebie punkty otrzymamy dwa otwarte zbiory homeomorficzne z \mathbb{R}^n , których suma daje S^n .

Sfera jest łukowo spójnoa

Dla dowolnych dwóch różnych nieantypodycznych punktów na sferze możemy obrać odcinek między nimi, homeomorficzny z [0,1]. Możemy później dokonać projekcji tego odcinka na współliniowe z nim i początkiem układu współrzędnych punkty sfery, co jak pokazaliśmy przy homeomorfizmie 1) z 6) jest przekształceniem homeomorficznym.

Dla punktów antypodycznych możemy obrać łuk do pewnego pośredniego punktu, co pokazaliśmy na wykładzie.

Homeomorfizm pomiędzy

- 1) Sfera S^n
- 2) $\mathbb{R}^{n+1} \setminus \{0\} / \sim \text{gdzie } \mathbf{v} \sim \mathbf{w} \iff \exists_{\lambda > 0} \mathbf{v} = \lambda \mathbf{w}$
- (zwartość dziedziny) Sfera S^n jest zbiorem zwartym: jest domkniętą i ograniczoną podprzestrzenią przestrzeni euklidesowej.
- (ciągłość g) Weźmy przekształcenia

$$f: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$$
$$p: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1} \setminus \{0\} / \sim$$

Przekształcenie f jest włożeniem homeomorficznym, przekształcenie jest przekształceniem ilorazowym.

Weźmy

$$g: S^n \to \mathbb{R}^{n+1} \setminus \{0\} / \sim$$

Jest ono ciągłe, ponieważ jest złożeniem f i p - przekształcenia ilorazowego z przekształceniem ciągłym

Weźmy dwa różne elementy $a,b \in X$ i wprowadźmy nowy układ współrzędnych - niech pierwsza będzie promieniem sfery o środku w 0, na której leży punkt, a pozostałe n będzie współrzędnymi biegunowymi punktu na tej sferze. Wtedy ich współrzędne to:

$$a = (a_1, ... a_n, r_a)$$

$$b = (b_1, ...b_n, r_b)$$

gdzie r_x wyznacza promień sfery, na której leży punkt x, $(ax_1,...x_n)$ to współrzędne biegunowe punktu na tej sferze.

Przekształcenie p jest utożsamieniem punktów o tej samej ostatniej współrzednej.

- (bijektywność g) Reprezentantami warstw w X mogą być więc wektory należące do sfery jednostkowej S^n to pokazuje, że g jest bijekcją (każdej warstwie odpowiada jeden wektor na sferze jednostkowej).
- (hausdorffowość przeciwdziedziny) Sfera S^n jest Hausdorfa, można dla dwóch wektorów do niej należących można wybrać rozłączne otoczenia otwarte U_a i U_b . Zbiory

$$V_a = p[U_a]$$

$$V_b = p[V_b]$$

są rozłączne w X. Załóżmy że nie. Wtedy istnieją $\alpha \in U_a, \beta \in U_b$ takie, że $p(\alpha) = p(\beta)$, czyli $\alpha * t = \beta$ dla jakiegoś t > 0, ale oba należą do sfery jednostkowej, więc sprzeczność.

Pozostaje jedynie sprawdzić, że V_a i V_b są otwarte w X.

Weźmy $W=p^{-1}[V_a]$ oraz $x=(x_1,...x_n,1)\in W$. Zrzutujmy W na sferę o promieniu 1 i weźmy otwartą kulę wokół punktu x na tej sferze zawierającą się w rzucie W o promieniu r_x - można to zrobić, bo ten rzut jest otwarty.

Weźmy teraz kulę o promieniu $min(1, r_x)$ - jest ona zawarta w zbiorze W, bo punkty do niej należące po zrzutowaniu na sferę S^n zawierają się w rzucie W. Wobec tego W jest otwarty i przestrzeń $\mathbb{R}^{n+1}\setminus\{0\}/\sim$ jest przestrzenią Hausdorffa.

Wiemy zatem, że g jest ciągłą bijekcją z przestrzeni zwartej w przestrzeń Hausdorffa, więc jest homeomorfizmem.

Homeomorfizm pomiędzy

- 1) Sfera S^n
- 3) $(\mathbb{R}^n)^+$ sfera Riemanna
- Sfera S^n bez punktu jest homeomorficzna z \mathbb{R}^n Zanurzamy wszystko w \mathbb{R}^{n+1} , bierzemy sferę o środku w (0,..0,1) promieniu 1 oraz hiperpłaszczyznę n-wymiarową taką, że ostatnia współrzędna jest równa 0, tzn zbiór $\{(a_1,...a_n,0):a_i\in\mathbb{R}\}$. Weźmy teraz rzut stereograficzny $h:S^n\setminus\{(0,...0,1)\}\to\mathbb{R}^n$ takie, że $h(x)=y\iff x,y,(0,...0,2)$ są współliniowe, czyli zapisując wzorem

$$h((x_1,...x_n)) = (\frac{x_1}{2-x_n}, \frac{x_2}{2-x_n}, ... \frac{x_{n-1}}{2-x_n}, 0)$$

Funkcja ta jest ciągła, bo jest ciągła na każdej współrzędnej, z arytmetycznych własności funkcji ciągłych. Jest różnowartościowa, bo prosta albo jest cała zawarta w hiperpłaszczyźnie (niemożliwe, bo przecina punkt nienależący do niej), albo przecina ją w jednym punkcie, albo jest z nią rozłączna (nie jest, bo przecina punkty o różnych współrzędnych x_{n+1} . Można więc mówić o funkcji odwrotnej na obrazie $h[S^n]$ - jest ona dana wzorem

$$h^{-1}((p_1, ..., p_n, 0)) = (p_1 * (2 - S), p_2 * (2 - S), ..., p_{n-1} * (2 - S), S)$$
$$S = \frac{2 * (p_1^2 + ... + p_n^2)}{1 + p_1^2 + ... + p_n^2}$$

 h^{-1} jest różnowartościowa - widaćto ze wzoru, więc h jest bijekcją. Z drugiej strony, h^{-1} jest ciągła (każda z funkcji współrzędnych jest ciągła), więc h jest homeomorfizmem.

- Sfera Sⁿ jest zwarta Jest domkniętą i ograniczoną podprzestrzenią przestrzeni euklidesowej, więc jest zwarta.
- Dołożenie punktu jest uzwarceniem sfery bez punktu Sfera $S^n \setminus (0,0,...1)$ jest pozbiorem gęstym w S^n oraz jest zanurzone w niej homeomorficznie. W takim razie S^n jest uzwarceniem $S^n \setminus (0,0,...1)$.
- Przestrzeń $(\mathbb{R}^n)^+$ jest uzwarceniem przestrzeni \mathbb{R}^n Przestrzeń $(\mathbb{R}^n)^+$ jest zwarta: załóżmy, że mamy pokrycie zbiorami $U_{ii\in I}$. Wybierzmy spośród nich taki, który zawiera punkt w nieskończoności. Wtedy pozostałe z nich są pokryciem zwartej podprzestrzeni

 \mathbb{R}^n (z definicji $(\mathbb{R}^n)^+$), więc można z nich wybrać podpokrycie skończone. Dodatkowo \mathbb{R}^n jest gęsta w $(\mathbb{R}^n)^+$, bo jeśli dopełnienie każdego zbióru otwartego zawierającego punkt w nieskończoności jest zwarte, to w szczególności nie jest całą przestrzenią \mathbb{R}^n , więc każdy taki zbiór ma z nią niepuste przecięcie. \mathbb{R}^n jest zanurzony homeomorficznie w $(\mathbb{R}^n)^+$, bo topologia w $(\mathbb{R}^n)^+$ zawiera topologię \mathbb{R}^n . W takim razie $(\mathbb{R}^n)^+$ jest jednopunktowym uzwarceniem \mathbb{R}^n .

 $S^n \setminus \{(0,...0,1)\}$ jest więc homeo z \mathbb{R}^n , więc z twierdzenia ich jednopunktowe uzwarcenia są homeomorficzne.

Homeomorfizm pomiędzy

- 3) $(\mathbb{R}^n)^+$ sfera Riemanna
- 4) $D^n/\sim \text{gdzie } x\sim y \iff x=y \text{ lub } x,y\in S^{n-1}$

Łatwo możemy obrać dwa ciągłe, ściśle monotoniczne i wzajemnie odwrotne przekształcenia pomiędzy [0,1) a $[0,+\infty)$ które zadają homeomorfizm między tymi przedziałami, zadane wzorami:

$$\begin{aligned} d_f(x) &= \frac{x}{1-x} & d_f: [0,1) \to [0,+\infty) \\ d_g(x) &= \frac{x}{1+x} & d_g: [0,+\infty) \to [0,1) \end{aligned}$$

I na ich podstawie tworzymy przekształcenia między A i B.

$$\begin{array}{ll} f(\delta) = \infty & \text{else} & f(x) = x \cdot \frac{d_f(||x||)}{||x||} & f: Y \to X \\ g(\infty) = \delta & \text{else} & g(x) = x \cdot \frac{d_g(||x||)}{||x||} & g: X \to Y \end{array}$$

Które są ciągłe obcięte odpowiednio do $Y \setminus \delta = \text{int}D^n$ oraz $X \setminus \infty = \mathbb{R}^n$, ponieważ są ich homeomorfizmami - rozciąganie wnętrza kuli do przestrzeni działa tak samo jak udowodnione na wykładzie rozciąganie odcinka otwartego do prostej.

$$q \circ f = id_Y$$
 oraz $f \circ q = id_X$

Ponieważ superpozyca d_f oraz d_g są identycznościami, a f i g zmieniają jedynie za ich pomocą długości wektorów, to ich superpozycje też są identycznościami.

f jest ciagle

Niech $U \subset X$ będzie otwarty. Pokażmy że $f^{-1}(U)$ też jest otwarty. Mamy dwie możliwości:

- $\infty \in U$ Wtedy $\mathbb{R}^n \setminus U$ jest zwarty. Ponieważ jest on podzbiorem \mathbb{R}^n to wiemy że jest on domknięty i ograniczony. Stąd na mocy ciągłości i monotoniczności $d_f(x)$ wiemy że $f^{-1}(\mathbb{R}^n \setminus U)$ też jest ograniczonym zbiorem przez promień z przedziału [0,1) więc nie należy do niego δ . Otwartość $f^{-1}(\mathbb{R}^n \setminus U)$ otrzymujemy z ciągłości d_f .
- $\infty \not\in U$ Już udowodnione.

g jest ciągłe

Niech $U\subset Y$ będzie otwarty. Pokażmy że $g^{-1}(U)$ też jest otwarty. Mamy dwie możliwości:

- $\delta \in U$ Wtedy $\mathbb{R}^n \setminus U$ jest domknięty, jest też więc ograniczony, ponieważ supremum metryk wektorów z $\mathbb{R}^n \setminus U$ jest ostro mniejsze od 1, w przeciwnym wypadku do tego zbioru należałaby δ . Stąd $g^{-1}(\mathbb{R}^n \setminus U)$ jest domnkięte (ponieważ d_g jest ciągłe) oraz ograniczone czyli zwarte, więc U jest otwarte.
- $\infty \not\in U$ Już udowodnione.

Homeomorfizm pomiędzy

1) Sfera S^n

6)
$$A = (D^p \times S^q) \cup (S^{p-1} \times D^{q+1})$$
 gdzie $p + q = n$

Ustalmy dla $z \in \mathbb{R}^{n+1}$ notację: $z = (x(z), y(z)) = (x_1, ..., x_p, y_1, ..., y_{q+1})$ gdzie jak łatwo zauważyć $x \in \mathbb{R}^p$ oraz $y \in \mathbb{R}^{q+1}$.

Zauważmy, że dla $z \in A$ zachodzi:

$$z \in A \implies z \in (D^p \times S^q) \lor z \in (S^{p-1} \times D^{q+1})$$

$$z \in (D^p \times S^q) \implies \sum x_i^2 \leqslant 1 \land \sum y_i^2 = 1$$

$$z \in (S^{p-1} \times D^{q+1}) \implies \sum x_i^2 = 1 \land \sum y_i^2 \leqslant 1$$

$$z \in A \implies 1 \leqslant ||z|| \leqslant \sqrt{2}$$

Obierzmy teraz przekształcenie $f:A\to S^n$ dane wzorem:

$$f((x_1,...,x_p,y_1,...,y_{q+1})=z)=z\cdot\frac{1}{\sqrt{||x(z)||^2+||y(z)||^2}}$$

Ponieważ $||z|| = \sqrt{||x(z)||^2 + ||y(z)||^2}$

Łatwo znależć dla niego przekształcenie odwrotne $g:S^n \to A$ dane wzorem:

$$g((x(z), y(z)) = z) = z \cdot \frac{1}{\max(||\mathbf{x}(z)||, ||\mathbf{y}(z)||)}$$

Przekształcenia f oraz g są wzajemnie odwrotne i przekształcają punkty z jednego zbioru na wspóliniowe z nimi i początkiem układu współrzędnych punkty drugiego zbioru. Ciągłość tych przekształceń wynika z ciągłości przekształceń modyfikujących długość wektora.

Homeomorfizm pomiędzy

- 1) Sfera S^n
- 5) $S^p \times S^q$ z utożsamionym do punktu zbiorem $\alpha \times S^q \cup S^p \times \beta$, dla p+q=n gdzie α oraz β są odpowiednio pewnymi wektorami z S^p oraz S^q .

Z samego rachunku na zbiorach i z zadania 1-3 (sfera S^n bez punktu homeomorficzna z \mathbb{R}^n) otrzymujemy

$$S^p \times S^q / \sim = (S^p \times (R^q \cup \{1\})) / \sim = (S^p \times R^q \cup S^p \times \{1\}) / \sim = ((R^p \cup \{1\}) \times R^q \cup S^p \times \{1\}) / \sim = (R^p \cup \{$$

ale

$$\{1\} \times R^q \subset \{1\} \times S^q$$

więc

$$(R^p \cup \times R^q \cup \{1\} \times R^q \cup S^p \times \{1\}) / \sim = R^p \times R^q \cup \{c\} = R^n \cup \{c\}$$

Po usunięciu $\{c\}$ (punktu, do którego utożsamiliśmy $S^p \times \{1\} \cup \{1\} \times S^q)$ dostajemy homeomorfizm między $S^p \times S^q / \sim \backslash \{c\}$ a R^n . Ale po dodaniu tego punktu $S^p \times S^q / \sim$ jest zwarte, więc homeomorficzne z jednopunktowym uzwarceniem R^n - a to, z punktu 1.3 jest homeomorficzne z S^n .