FREE RESOLUTIONS OVER A COMPLETE HYPERSURFACE (AND FRIENDS)

Based on "Homological algebra on a complete intersection, with an application to group representations." by David Eisenbud

David DeMark

MATH 8212 University of Minnesota

2 May 2018

Throughout this talk, we let...

Throughout this talk, we let...

• (A, \mathfrak{m}) be a regular local ring

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular A-sequence of finite length

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular A-sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular A-sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a B is a complete intersection of codimension n.

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular A-sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a B is a complete intersection of codimension n. We shall study the structure of B-free resolutions of B-modules, relating these to their liftings to A.

CLARIFICATION: B-FREE

We do **NOT** mean...

CLARIFICATION: B-FREE

We do **NOT** mean...

FIGURE: Another "B-Free" Object.

Why do we care?

WHY DO WE CARE?

• Classifying maximal CM modules over complete hypersurfaces! (case n = 1)

WHY DO WE CARE?

- Classifying maximal CM modules over complete hypersurfaces! (case n = 1)
- Expanding upon a familiar characterization!

WHY DO WE CARE?

- Classifying maximal CM modules over complete hypersurfaces! (case n = 1)
- Expanding upon a familiar characterization!

Theorem (Auslander-Buchsbaum-Serre)

For (R, \mathfrak{m}) local, R is regular $\iff \operatorname{gldim}(R) < \infty$.

Why do we care?

- Classifying maximal CM modules over complete hypersurfaces! (case n = 1)
- Expanding upon a familiar characterization!

Theorem (Auslander-Buchsbaum-Serre)

For (R, \mathfrak{m}) local, R is regular \iff $\operatorname{gldim}(R) < \infty$.

We will give a similar (albeit more complicated) characterization of codim-1 quotients of regular local rings.

Recall that $B := A/\langle x_1, \dots, x_n \rangle$. Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\mathbf{F}: \dots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

Recall that $B := A/\langle x_1, \dots, x_n \rangle$. Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\ \partial_3\ } F_2 \xrightarrow{\ \partial_2\ } F_1 \xrightarrow{\ \partial_1\ } F_0 \xrightarrow{\ \partial_0\ } 0$$

Now let...

Recall that $B := A/\langle x_1, \dots, x_n \rangle$. Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\mathbf{F}: \dots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

Now let...

• \tilde{F}_i be a free A-module with rank_A $\tilde{F}_i = \operatorname{rank}_B F_i$

Recall that $B := A/\langle x_1, \dots, x_n \rangle$. Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\mathbf{F}: \dots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

Now let...

- \tilde{F}_i be a free A-module with rank_A $\tilde{F}_i = \operatorname{rank}_B F_i$
- $\tilde{\partial}_i$ denote an arbitrary lifting of (the entries of) ∂_i to A

Consider

$$\tilde{\textbf{F}}:\dots \stackrel{\tilde{\partial}_3}{-\!\!\!-\!\!\!-\!\!\!-} \tilde{F}_2 \stackrel{\tilde{\partial}_2}{-\!\!\!\!-\!\!\!\!-} \tilde{F}_1 \stackrel{\tilde{\partial}_1}{-\!\!\!\!-\!\!\!\!-} \tilde{F}_0 \stackrel{\tilde{\partial}_0}{-\!\!\!\!-\!\!\!\!-} 0$$

Consider

$$\tilde{\textbf{F}}:\dots \stackrel{\tilde{\partial}_3}{\longrightarrow} \tilde{F}_2 \stackrel{\tilde{\partial}_2}{\longrightarrow} \tilde{F}_1 \stackrel{\tilde{\partial}_1}{\longrightarrow} \tilde{F}_0 \stackrel{\tilde{\partial}_0}{\longrightarrow} 0$$

• $\tilde{\mathbf{F}}$ is not necessarily a complex, but $\operatorname{Im}(\tilde{\partial}_i \circ \tilde{\partial}_{i+1}) \subset \langle x_1, \dots, x_n \rangle F_{i-1}$

Consider

$$\tilde{\textbf{F}}:\dots\xrightarrow{\tilde{\partial}_3}\tilde{F}_2\xrightarrow{\tilde{\partial}_2}\tilde{F}_1\xrightarrow{\tilde{\partial}_1}\tilde{F}_0\xrightarrow{\tilde{\partial}_0}0$$

- $\tilde{\mathbf{F}}$ is not necessarily a complex, but $\operatorname{Im}(\tilde{\partial}_i \circ \tilde{\partial}_{i+1}) \subset \langle x_1, \dots, x_n \rangle F_{i-1}$
- Write $\tilde{\partial}_i \otimes \tilde{\partial}_{i+1} = \sum_{j=1}^n x_j \tilde{t}_j$ for some transformation $\tilde{t}_j := \tilde{t}_j(A, \{x_i\}, \mathbf{F}) : \tilde{\mathbf{F}} \to \tilde{\mathbf{F}}$.

Consider

$$\tilde{\textbf{F}}:\dots\xrightarrow{\tilde{\partial}_3}\tilde{F}_2\xrightarrow{\tilde{\partial}_2}\tilde{F}_1\xrightarrow{\tilde{\partial}_1}\tilde{F}_0\xrightarrow{\tilde{\partial}_0}0$$

- $\tilde{\mathbf{F}}$ is not necessarily a complex, but $\operatorname{Im}(\tilde{\partial}_i \circ \tilde{\partial}_{i+1}) \subset \langle x_1, \dots, x_n \rangle F_{i-1}$
- Write $\tilde{\partial}_i \otimes \tilde{\partial}_{i+1} = \sum_{j=1}^n x_j \tilde{t}_j$ for some transformation $\tilde{t}_j := \tilde{t}_j(A, \{x_i\}, \mathbf{F}) : \tilde{\mathbf{F}} \to \tilde{\mathbf{F}}$.
- Finally, let $t_j = t_j(A, \{x_i\}, \mathbf{F}) : \mathbf{F} \to \mathbf{F}$ be defined by $t_j = B \otimes \tilde{t}_j$.

THEOREM (SUMMARY OF §1)

THEOREM (SUMMARY OF §1)

The t_j have many nice properties! These include:

• The t_j are unique $(w/r/t \text{ fixed } A, \mathbf{F}, \{x_i\})$ up to homotopy.

THEOREM (SUMMARY OF §1)

- The t_j are unique $(w/r/t \text{ fixed } A, \mathbf{F}, \{x_i\})$ up to homotopy.
- The t_j are natural in the sense that they commute with morphisms of complexes up to homotopy.

Theorem (Summary of §1)

- The t_j are unique $(w/r/t \text{ fixed } A, \mathbf{F}, \{x_i\})$ up to homotopy.
- The t_j are natural in the sense that they commute with morphisms of complexes up to homotopy.
- The t_j commute with each other up to homotopy.

THEOREM (SUMMARY OF §1)

- The t_j are unique $(w/r/t \text{ fixed } A, \mathbf{F}, \{x_i\})$ up to homotopy.
- The t_j are natural in the sense that they commute with morphisms of complexes up to homotopy.
- The t_j commute with each other up to homotopy.
- If M, N are B-modules, with B-free resolutions $\mathbf{F} \to M$, $\mathbf{G} \to N$ $t_j(\mathbf{F})$ and $t_j(\mathbf{G})$ induce the same map on $\operatorname{Tor}_{\bullet}^B(M, N)$.

THEOREM (SUMMARY OF §1)

- The t_j are unique $(w/r/t \text{ fixed } A, \mathbf{F}, \{x_i\})$ up to homotopy.
- The t_j are natural in the sense that they commute with morphisms of complexes up to homotopy.
- The t_j commute with each other up to homotopy.
- If M, N are B-modules, with B-free resolutions $\mathbf{F} \to M$, $\mathbf{G} \to N$ $t_j(\mathbf{F})$ and $t_j(\mathbf{G})$ induce the same map on $\operatorname{Tor}_{\bullet}^B(M, N)$.
- The t_j play only a little less well with ring morphisms $\alpha: A \to A'$.

INTERLUDE: MATRIX FACTORIZATIONS

Let $x \in A$ and $\phi : F \to G$ a morphism of A-modules.

INTERLUDE: MATRIX FACTORIZATIONS

Let $x \in A$ and $\phi : F \to G$ a morphism of A-modules.

DEFINITION

The ordered pair (ψ, ϕ) is a matrix factorization of x if $\psi \circ \phi = 1_F$ and $\phi \circ \psi = x \cdot 1_G$.

Interlude: Matrix Factorizations

Let $x \in A$ and $\phi : F \to G$ a morphism of A-modules.

Definition

The ordered pair (ψ, ϕ) is a matrix factorization of x if $\psi \circ \phi = 1_F$ and $\phi \circ \psi = x \cdot 1_G$.

THEOREM (5.5)

Given ϕ , there exists a ψ such that (ψ, ϕ) is a matrix factorization if and only if **each** of the following hold:

- rank F = rank G
- $\det \phi$ is a non-zero divisor
- $x \cdot \mathrm{Fitt}_1(\phi) \subset \langle \det \phi \rangle$, i.e. x annihilates $\mathrm{coker} \phi$ i.e. ϕ is f

$$\phi = \begin{bmatrix} Y - Z & 0 & Y - Z \\ Y - Z & 0 & 0 \\ 0 & W & 0 \end{bmatrix}$$

$$\phi = egin{bmatrix} Y - Z & 0 & Y - Z \ Y - Z & 0 & 0 \ 0 & W & 0 \end{bmatrix} \qquad \det \phi = W(Y - Z)^2$$

$$\phi = \begin{bmatrix} Y - Z & 0 & Y - Z \\ Y - Z & 0 & 0 \\ 0 & W & 0 \end{bmatrix} \quad \det \phi = W(Y - Z)^{2}$$

$$\phi^{c} = \begin{bmatrix} 0 & W(Y - Z) & 0 \\ 0 & 0 & (Y - Z)^{2} \\ W(Y - Z) & W(Z - Y) & 0 \end{bmatrix}$$

• A := k[W, Y, Z] with k a field of characteristic 0. Set $x = W(Y^2 - Z^2)$.

$$\phi = \begin{bmatrix} Y - Z & 0 & Y - Z \\ Y - Z & 0 & 0 \\ 0 & W & 0 \end{bmatrix} \quad \det \phi = W(Y - Z)^{2}$$

$$\phi^{c} = \begin{bmatrix} 0 & W(Y - Z) & 0 \\ 0 & 0 & (Y - Z)^{2} \\ W(Y - Z) & W(Z - Y) & 0 \end{bmatrix}$$

• Thus, $\mathrm{Fitt}_1(\phi) = \langle W(Y-Z), (Y-Z)^2 \rangle$ and indeed $x \cdot \mathrm{Fitt}_1 \subset \langle \det \phi \rangle$

A QUICK COMPUTATION

• A := k[W, Y, Z] with k a field of characteristic 0. Set $x = W(Y^2 - Z^2)$.

$$\phi = \begin{bmatrix} Y - Z & 0 & Y - Z \\ Y - Z & 0 & 0 \\ 0 & W & 0 \end{bmatrix} \quad \det \phi = W(Y - Z)^{2}$$

$$\phi^{c} = \begin{bmatrix} 0 & W(Y - Z) & 0 \\ 0 & 0 & (Y - Z)^{2} \\ W(Y - Z) & W(Z - Y) & 0 \end{bmatrix}$$

- Thus, $\mathrm{Fitt}_1(\phi) = \langle W(Y-Z), (Y-Z)^2 \rangle$ and indeed $x \cdot \mathrm{Fitt}_1 \subset \langle \det \phi \rangle$
- ψ is uniquely determined by ϕ : $\psi = \frac{x}{\det \phi} \phi^c = \frac{(Y+Z)}{(Y-Z)} \phi^c$

Let $x \in A$ be a nonzero divisor with $\langle x \rangle / \langle x \rangle^2$ free over $B = A / \langle x \rangle$ and (ψ, ϕ) a matrix factorization of x.

Let $x \in A$ be a nonzero divisor with $\langle x \rangle / \langle x \rangle^2$ free over $B = A / \langle x \rangle$ and (ψ, ϕ) a matrix factorization of x.

• We can construct a minimal *B*-free resolution $\mathbf{F}(\psi, \phi)$ of $\operatorname{coker} \phi$ with differentials ϕ, ψ .

$$\mathbf{F}(\psi,\phi):\ldots\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\longrightarrow 0$$

Let $x \in A$ be a nonzero divisor with $\langle x \rangle / \langle x \rangle^2$ free over $B = A / \langle x \rangle$ and (ψ, ϕ) a matrix factorization of x.

• We can construct a minimal *B*-free resolution $\mathbf{F}(\psi, \phi)$ of $\operatorname{coker} \phi$ with differentials ϕ, ψ .

$$\mathbf{F}(\psi,\phi):\ldots\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\longrightarrow 0$$

• In such a resolution, necessarily, rank_B $G = \text{rank}_B F$ (5.3-5.4)

Let $x \in A$ be a nonzero divisor with $\langle x \rangle / \langle x \rangle^2$ free over $B = A / \langle x \rangle$ and (ψ, ϕ) a matrix factorization of x.

• We can construct a minimal *B*-free resolution $\mathbf{F}(\psi, \phi)$ of $\operatorname{coker} \phi$ with differentials ϕ, ψ .

$$\mathbf{F}(\psi,\phi):\ldots\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\stackrel{\psi}{\longrightarrow} F\stackrel{\phi}{\longrightarrow} G\longrightarrow 0$$

- In such a resolution, necessarily, rank_B $G = \text{rank}_B F$ (5.3-5.4)
- If $\det_A \phi = x^k u$ with $u \notin \langle x \rangle$, then $\operatorname{rank}_B \operatorname{coker} \phi = k$. (5.6)

So What?

 These classify maximal CM modules over complete hypersurfaces!

 These classify maximal CM modules over complete hypersurfaces!

Theorem (6.1)

Let $x \in A$, $d = \dim A$, and $B := A/\langle x \rangle$. Then,

 These classify maximal CM modules over complete hypersurfaces!

Theorem (6.1)

Let $x \in A$, $d = \dim A$, and $B := A/\langle x \rangle$. Then,

• For any B-module M with minimal free resolution \mathbf{F} , the truncation at F_{d+1} is periodic with period 2.

 These classify maximal CM modules over complete hypersurfaces!

Theorem (6.1)

Let $x \in A$, $d = \dim A$, and $B := A/\langle x \rangle$. Then,

- For any B-module M with minimal free resolution \mathbf{F} , the truncation at F_{d+1} is periodic with period 2.
- **2 F** periodic \iff M is a maximal CM module w/o a free summand.

 These classify maximal CM modules over complete hypersurfaces!

Theorem (6.1)

Let $x \in A$, $d = \dim A$, and $B := A/\langle x \rangle$. Then,

- For any B-module M with minimal free resolution \mathbf{F} , the truncation at F_{d+1} is periodic with period 2.
- **2 F** periodic \iff M is a maximal CM module w/o a free summand.
- If so, F is induced by a matrix factorization.

$$\bullet$$
 (2) \Longrightarrow (1)

$$\bullet$$
 (2) \Longrightarrow (1)

LEMMA (0.1-WELL-KNOWN)

For B a local ring and B-free resolution

$$\mathbf{F}: \dots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

- **1** If x_1, \ldots, x_r is a B-sequence, then it is a regular sequence on $\text{Im}\partial_k$ for all k > r.
- ② If **F** is minimal, $\operatorname{Im}\partial_k$ has no free summands for $k \geq 1 + \operatorname{depth} B$

$$\bullet$$
 (2) \Longrightarrow (1)

Lemma (0.1–Well-known)

For B a local ring and B-free resolution

$$\mathbf{F}: \dots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

- **1** If x_1, \ldots, x_r is a B-sequence, then it is a regular sequence on $\mathrm{Im}\partial_k$ for all k > r.
- ② If **F** is minimal, $\operatorname{Im}\partial_k$ has no free summands for $k \geq 1 + \operatorname{depth} B$
- $(2 \Longrightarrow)$ Note that $M = \operatorname{coker}(G \to F)$.

• (2 \Leftarrow) Consider M as an A-module. Use $\mathbf{F}^{\#}: 0 \to F \to G \to M$ be its minimal A-free resolution.

- (2 \iff) Consider M as an A-module. Use $\mathbf{F}^{\#}: 0 \to F \to G \to M$ be its minimal A-free resolution.
- Show $F \to G$ satisfies conditions for matrix factorization with corresponding ψ .

- (2 \Longleftarrow) Consider M as an A-module. Use $\mathbf{F}^{\#}: 0 \to F \to G \to M$ be its minimal A-free resolution.
- Show $F \to G$ satisfies conditions for matrix factorization with corresponding ψ .
- Show if $\mathbf{F}(\phi,\psi)$ is not minimal, M contains a free summand.

• (3)

- (3)
- Show that for any periodic resolution \mathbf{F} over B, $t(A, x, \mathbf{F})$ can be chosen to be the identity!

• Expanding upon a familiar characterization!

THEOREM (AUSLANDER-BUCHSBAUM-SERRE)

For (R, \mathfrak{m}) local, R is regular \iff gl dim $(R) < \infty$.

• Expanding upon a familiar characterization!

Theorem (6.1)

For (R, \mathfrak{m}) local with dim R = d, TFAE:

- For some $x_1, \ldots, x_{d+1} \in R$, $\mathfrak{m} = \langle x_1, \ldots, x_{d+1} \rangle$ and $\hat{0}$ is unmixed in $\hat{R}^{\mathfrak{m}}$ (i.e. all associated primes of $\hat{0}$ are minimal).
- For any f.g. R-module M with minimal free resolution \mathbf{F} , the truncation of \mathbf{F} at degree d+1 is periodic of period 2.
- There exists a free resolution $\mathbf{F}: \cdots \to F_1 \to F_0 \to 0$ of $R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}$ where for some n, $\operatorname{rank} F_n < n$.

We call such an R an abstract hypersurface.

• Expanding upon a familiar characterization!

Theorem (6.1)

For (R, \mathfrak{m}) local with dim R = d, TFAE:

- For some $x_1, \ldots, x_{d+1} \in R$, $\mathfrak{m} = \langle x_1, \ldots, x_{d+1} \rangle$ and $\hat{0}$ is unmixed in $\hat{R}^{\mathfrak{m}}$ (i.e. all associated primes of $\hat{0}$ are minimal).
- For any f.g. R-module M with minimal free resolution \mathbf{F} , the truncation of \mathbf{F} at degree d+1 is periodic of period 2.
- There exists a free resolution $\mathbf{F}: \cdots \to F_1 \to F_0 \to 0$ of $R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}$ where for some n, $\operatorname{rank} F_n < n$.

We call such an R an abstract hypersurface.

Thank you for listening!