AISD

Wiktor Kuchta

7 lipca 2021

2/2

Sortujemy przedziały rosnąco według prawego końca. Wybieramy zachłannie pierwszy w tym porządku przedział, który jeszcze nie przecina poprzednio wybranych.

Niech $((p_{i_1}, k_{i_1}), \ldots, (p_{i_l}, k_{i_l}))$ to wyjście algorytmu, a $((p_{j_1}, k_{j_1}), \ldots, (p_{j_k}, k_{j_k}))$ to jakieś inne nieprzecinające się odcinki.

Pokażemy, że dla każdego $m \leq k$ przedział (p_{i_m}, k_{i_m}) jest w rozwiązaniu i $k_{i_m} \leq b_{j_m}$.

Dla m=1 oczywiste, bo na początku zawsze wybieramy przedział z najwcześniejszym końcem.

Jeśli m>1 to najmniejszy kontrprzykład, to przedział i_m musi istnieć (z własności dla poprzednich możemy wybrać kolejny). Wtedy $k_{i_{m-1}} \leq k_{j_{m-1}} \leq p_{j_m}$ i $k_{i_m} > k_{j_m}$. Ale wtedy przedział j_m zostałby wybrany przez algorytm, sprzeczność.

2/3

Pokażemy, że iterowanie funkcji

$$f\left(\frac{a}{b}\right) = \frac{a}{b} - \frac{1}{n} = \frac{na - b}{nb}, \text{ gdzie } n = \left\lceil \frac{b}{a} \right\rceil$$

da nam kiedyś wartość 0.

Dla $\frac{b}{a}$ naturalnego $f\left(\frac{a}{b}\right)=0.$ W przeciwnym wypadku mamy

$$\left\lfloor \frac{b}{a} \right\rfloor a - b < 0,$$

$$(n-1)a - b < 0,$$

$$na - b < a,$$

więc licznik $f\left(\frac{a}{b}\right)$ jest mniejszy od a. Zatem tezę można udowodnić prostą indukcją względem licznika.

Teraz wystarczy pokazać, że odejmowane w kolejnych iteracjach ułamki są różne.

Zauważmy, że

$$\left\lceil \frac{nb}{na-b} \right\rceil \geqslant \left\lceil \frac{nb}{a} \right\rceil = n \left\lceil \frac{b}{a} \right\rceil = n^2.$$

Mamy założenie $a \leq b$. Jeśli a = b, to $f(\frac{a}{b}) = 0$. W przeciwnym wypadku mamy $n = \left\lceil \frac{b}{a} \right\rceil > 1$, więc z powyższej nierówności mianowniki ułamków odejmowanych w kolejnych iteracjach będą coraz większe.

Zachłanny algorytm odejmowania największej możliwej odwrotności nie jest optymalny, bo wyliczy $\frac{9}{20} = \frac{1}{3} + \frac{1}{9} + \frac{1}{180}$, ale można krócej $\frac{9}{20} = \frac{1}{4} + \frac{1}{5}$.

2/4

Niech warstwa i to liście w drzewie pozostałym po usunięciu warstw $1, \ldots, i-1$.

Rozwiązaniem maksymalnym jest pokolorowanie pierwszych k/2 warstw i co najwyżej jednego innego wierzchołka, jeśli k jest nieparzyste. Pokażemy, że możemy do niego sprowadzić każde rozwiązanie optymalne.

Weźmy optymalne pokolorowanie drzewa. Pokażemy, że musi ono mieć pokolorowane wierzchołki. Wtedy problem się redukuje do grafu z usuniętymi liściami i parametru $k \mapsto k-2$.

2/6

Jeśli e nie jest maksymalnej wagi na pewnym cyklu, to należy do pewnego MST.

Usuńmy e = (v, w) i wszystkie krawędzie o wadze większej niż e z grafu. Jeśli w jest nieosiągalny z v, to albo graf się rozspójnił, albo e nie jest maksymalny na żadnym cyklu, więc w obu przypadkach e należy do pewnego MST.

Jeśli w jest osiągalny z v, to e jest maksymalny na pewnym cyklu, więc nie należy do MST.