

Game Theory

Luis Chávez

Juegos estático

Juegos de tipos

Juegos

Secuencialidad raciona

References

Teoría de Juegos

Tópico 3: Juegos con Información Incompleta

Luis Chávez

C

Departamento Académico de Economía y Planificación UNALM

Lima, 2025

Contenido

Game Theory

Luis Chávez

Introducción

Juegos estático

Juegos de tipos

Juegos

Secuencialidad racion

Anexos

Reference

- Introducción
- 2 Juegos estáticos Juegos de tipos Aplicaciones
- 3 Juegos dinámicos Secuencialidad racional Juegos infinitos
- 4 Anexos

Notación

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos Aplicaciones

Juegos

Secuencialidad racion

Juegos infinitos

Anexos

Reference

- ① Un conjunto N de jugadores, $i = \{1, 2, ..., n\}$.
- 2 Un espacio de acciones $\forall i, A_i$.
- 3 Una colección de conjuntos de espacios de acciones, $A = \prod A_i$.
- 4 Un conjunto de tipos $\forall i, t_i \in T_i$.
- 5 Una colección de conjuntos de tipos, T.
- **6** Un conjunto de probabilidades $\forall i, p_i : T_i \rightarrow \Delta T_{-i}$.
- 7 Función de utilidad, $u_i = A \times T \to \mathbb{R}$.

Generalidades

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos

.

dinámico

Secuencialidad

Juegos infinitos

Anexos

Reference

Supuesto 1 (información incompleta)

Al menos algún i tiene información privada que no es conocida por su(s) oponente(s).

A veces se alude como asimetría de información.

Generalidades

Game Theory

Luis Chávez

Juegos estátic

Juegos de tipos Aplicaciones

Juegos dinámico

Secuencialidad racion

Anexo

Reference

Definición 1 (juego bayesiano)

Un juego bayesiano, $\Psi(N, A, T, p, u)$, es aquella estructura donde se evidencia información asimétrica en alguna parte del juego.

Contenido

Game Theory

Luis Chávez

miroducción

Juegos estátic

Juegos de tipos

Aplicaciones

Juegos

Secuencialidad racio

Anexos

References

- Introducción
 - 2 Juegos estáticos Juegos de tipos Anlicaciones
 - 3 Juegos dinámicos Secuencialidad racional Juegos infinitos
 - 4 Anexos

Game Theory

Luis Chávez

Introduccion

Juegos estátic

Juegos de tipos

Aplicacione

dinámio

Secuencialid

luegos infinito

Juegos infinitos

Anexo

Reference

John Harsanyi consideraba que los jugadores son de diferentes tipos.

Definición 1 (tipos)

Es aquel atributo de un jugador *i* que sólo es observable por sí mismo.

Equilibrio

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos

Aplicaciones

dinámic

Secuencialidad racion

Anexos

Reference

Definición 2 (equilibrio de Nash bayesiano)

Un perfil de estrategias $s^* = (s_1^*, ..., s_n^*)$ es un ENB en Ψ si y sólo si $\forall i$ y $t_i \in T_i$,

$$s_i^*(t_i) \in \arg\max_{a_i} \sum u_i(s_i^*(t_i), ..., a_i, ..., s_N(t_N)^*) \times p_i(t'_{-i}|t_i)$$
 (1)

donde a_i es una acción y $p_i(t'_{-i}|t_i)$ es la denota la creencia de i de que los tipos de todos los demás jugadores son $t'_{-i}=(t'_1,t'_2,...,t'_{i-1},t'_{i+1},...,t'_n)$, dado su propio tipo.

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos

Aplicaciones

Juegos

dinámic

Secuencialidad rac

Juegos infinit

Anexo

Reference

Ejemplo 1

Una firma no sabe si un trabajador es de alta (H) o baja (L) habilidad, aunque, el trabajador si conoce su tipo. El trabajador preferiría laborar si es de alta habilidad y, en caso contrario, preferiría no laborar. La firma preferirá contratar al trabajador que trabajará. La creencia de la firma es que (H, L) = (p, 1 - p).

¿La firma sabe que el trabajador conoce su tipo?

Game Theory

Luis Chávez

Introducción

luoros estátio

Juegos de tipos

Aplicaciones

Juegos

dinámicos

Secuencialidad racional Juegos infinitos

Anevo

Reference

Game Theory

Luis Chávez

Introducción

luegos estátic

Juegos de tipos

Aplicaciones

Juegos

Secuencialidad r

Juegos infinitos

Anexos

References

Ejemplo 1 (continuación...)

Forma estratégica:

$$t_W = L egin{array}{|c|c|c|c|} \hline F|W & \mathrm{nl} & \mathrm{l} \\ \hline \mathrm{nc} & \mathrm{0,0} & \mathrm{0,0} \\ \mathrm{c} & -\mathrm{2,4} & \mathrm{2,2} \\ \hline \end{array}$$

$$t_W = H egin{array}{c|c} F|W & \text{nl} & I \\ \hline \text{nc} & 0.0 & 0.0 \\ \text{c} & 0.2 & 2.4 \\ \hline \end{array}$$

$$T_F = \{t_F\}, \quad T_W = \{t_H, T_L\}$$
 $A_F = \{c, nc\}, \quad A_W = \{l, nl\}$ $p_F = (t_H, t_L) = (p, 1 - p), \quad p_W(t_F) = 1$

Game Theory

Luis Chávez

Introducción

.

Juegos de tipos

Aplicacione

Aplicacione

dinámico

Secuencialidad racion

Juegos IIIII

Anexos

References

Ejemplo 1 (continuación...)

Si p=3/4, demostrar que $s^*=(s_F^*(t_F),[s_W^*(t_L),s_W^*(t_H)])=(c,(I,nI))$ es un ENB.

Solución.

La creencia de la firma es $p_F(H|t_F)=3/4$ y $p_F(L|t_F)=1/4$. Luego,

$$u_F^e(c, s_W^*|t_F) = u_F(c, l, H)p_F(H|t_F) + u_F(c, nl, L)p_F(L|t_F) = 2\frac{3}{4} + (-2)\frac{1}{4} = 1$$

$$u_F^e(nc, s_W^*|t_F) = u_F(nc, l, H)p_F(H|t_F) + u_F(nc, nl, L)p_F(L|t_F) = 0\frac{3}{4} + 0\frac{1}{4} = 0$$

Entonces, $MR(F|t_F) = c$.

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos

Aplicaciones

Juegos

Secuencialidad racio

Juegos infinitos

Anexos

Reference

Ejemplo 1 (continuación...)

Ahora, se analiza los tipos de trabajador:

$$u_W^e(s_F^*, I|H) = u_W(c, I, H) = 4$$

$$u_W^e(s_F^*, nI|H) = u_W(c, nI, H) = 2$$

Entonces, $MR(W|t_H) = I$.

$$u_W^e(s_F^*, I|L) = u_W(c, I, L) = 2$$

$$u_W^e(s_F^*, nI|L) = u_W(c, nI, L) = 4$$

Entonces, $MR(W|t_H) = nI$.

Game Theory

Luis Chávez

Introducción

Juegos estático

Juegos de tipos

Aplicacione:

Juego

dinán

Secuencialida

Juegos infinito

Anexo

Reference

Actividad 1. Demostrar que $s^* = (s_F^*, s_W^*) = (nc, (nl, nl))$ es ENB.

Contenido

Game Theory

Luis Chávez

Introducción

Juegos estátic Juegos de tipos

Aplicaciones

Juegos

Secuencialidad racion

Anexos

Reference

- Introducción
- 2 Juegos estáticos Juegos de tipos Aplicaciones
- 3 Juegos dinámicos Secuencialidad racional Juegos infinitos
- 4 Anexos

Game Theory

Luis Chávez

Introducció

Juegos estát Juegos de tipos

Aplicaciones

luegos

dinámicos
Secuencialidad racio

Juegos infinitos

Anexos

Reference

Sea dos firmas que compiten en cantidades y enfrentan la demanda del mercado p(Q)=a-bQ, con $Q=q_1+q_2$. Los costes de la firma 1 es $c_1(q_1)=cq_1$, mientras que de la firma 2 es:

$$c_2(q_2) = egin{cases} c_x q_2 & ext{con probabilidad } heta \ c_y q_2 & ext{con probabilidad } 1 - heta \end{cases}$$

La firma 2 conoce sus CMg y el de la firma 1, pero la firma 1 sólo conoce sus CMg y la distribución de probabilidades de los tipos de CMg de la firma 2.

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos Aplicaciones

Apricacio

Juegos

Secuencialidad racion

Anexos

References

Caracterización:

$$N = \{1, 2\}$$

$$T_1 = \{c\}$$

$$T_2 = \{c_x, c_y\}$$

$$A_c = A_{cx} = A_{yc} = [0, \infty)$$

$$p_2(c|c_x) = p_2(c|c_y) = 1$$

$$(p_1(c_x|c), p_1(c_y|c)) = (\theta, 1 - \theta)$$

Game Theory

Luis Chávez

Introducció

Juegos estátic

Juegos de tipe Aplicaciones

dinámico

Secuencialidad racio

Juegos IIII

Anexos

References

Los profits:

$$\max \pi_1(q_1, q_2, c) = (a - bq_1 - bq_2)q_1 - cq_1 = (a - bq_1 - bq_2 - c)q_1$$

$$\max \pi_2(q_1,q_2,c_{_{\! X}}) = (a-bq_1-bq_2)q_2-c_{_{\! X}}q_2 = (a-bq_1-bq_2-c_{_{\! X}})q_2$$

$$\max \pi_2(q_1, q_2, c_y) = (a - bq_1 - bq_2)q_2 - c_yq_2 = (a - bq_1 - bq_2 - c_y)q_2$$

Game Theory

Luis Chávez

Introducción

Juegos estáti

Juegos de tipos

Aplicaciones

dinámicos

Composibilidad

Juegos infinitos

Anexo

Reference

 $MR(2|c_x)$:

$$a - bq_1 - 2bq_2 - c_x = 0$$

$$q_2(c_x) = \frac{a - bq_1 - c_x}{2b}$$

 $MR(2|c_y)$:

$$a - bq_1 - 2bq_2 - c_y = 0$$

$$q_2(c_y) = \frac{a - bq_1 - c_y}{2b}$$

(3)

Game Theory

Luis Chávez

Introducción

Juegos estáti

Juegos de tipos Aplicaciones

Juegos

Secuencialid

Juegos infinito

Anexo

Reference

MR(1|c):

$$\max_{q_1} \ \theta(\textit{a} - \textit{b}\textit{q}_1 - \textit{b}\textit{q}_2(\textit{c}_{\textit{x}}) - \textit{c})\textit{q}_1 + (1 - \theta)(\textit{a} - \textit{b}\textit{q}_1 - \textit{b}\textit{q}_2(\textit{c}_{\textit{y}}) - \textit{c})\textit{q}_1$$

FOC:

$$\theta(a-2bq_1-bq_2(c_x)-c)+(1-\theta)(a-2bq_1-bq_2(c_y)-c)=0$$

$$q_1(c_x, c_y) = \frac{\theta(a - bq_2(c_x) - c) + (1 - \theta)(a - bq_2(c_y) - c)}{2b}$$
(4)

Game Theory

Luis Chávez

Introducción

Juegos estátio

Juegos de tipos Aplicaciones

Juegos

Secuencialidad racion

Juegos infinitos

Anexo

Reference

De (2) y (3) en (4), se tiene:

$$2bq_{1} = \theta \left(a - b \frac{a - bq_{1} - c_{x}}{2b} - c \right) + (1 - \theta) \left(a - b \frac{a - bq_{1} - c_{y}}{2b} - c \right)$$

$$q_1^* = \frac{a + (1 - \theta)c_y + \theta c_x - 2c}{3b} \tag{5}$$

Resolviendo, se puede hallar el ENB:

$$(q_1^*, q_2(c_x)^*, q_2(c_y)^*)$$

Contenido

Game Theory

Luis Chávez

Introducción

Juegos estátic

Juegos de tipos Aplicaciones

Juegos dinámico:

Secuencialidad racional

Juegos infinitos

Anexos

Reference

- Introducción
- 2 Juegos estáticos Juegos de tipos Aplicaciones
- 3 Juegos dinámicos Secuencialidad racional
 - 3448
- 4 Anexos

Game Theory

Luis Chávez

Introducció

Juegos estátic Juegos de tipos

Juegos

Secuencialidad racional

Secuencialidad racion

Anevos

Reference

Definición 3 (sistema de creencias)

Dado un juego Ψ , un sistema de creencias μ es una distribución de probabilidad sobre los nodos de decisión dentro de cada conjunto de información H_i .

$$\forall i \in N, \forall h \in H_i \land x \in h, \exists \mu(x) \in [0, 1]$$
(6)

Requerimientos

Game Theory

Luis Chávez

Introducció

Juegos estát Juegos de tipos

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Anexos

Referen

Véase Tadelis (2013):

- 1 Cada *i* tendrá una creencia bien definida sobre su posición en conjunto de información. Es decir, el juego cuenta con un sistema de creencias.
- ② Sea el perfil $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ un ENB. Se requiere que en todos los conjuntos de información las creencias que están en el camino del equilibrio sean consistentes con la regla de Bayes.
- 3 En conjuntos de información que están fuera de la trayectoria de equilibrio se puede asignar cualquier creencia a la que no se aplique la regla de Bayes.
- 4 Dadas sus creencias, las estrategias de los jugadores deben ser secuencialmente racionales. Es decir, en cada conjunto de información, los jugadores buscarán la mejor respuesta a sus creencias.

Game Theory

Luis Chávez

....

Juegos estátic

Juegos de tipos Aplicaciones

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Juegos IIIIIII.O.

Anexo

Reference

Definición 4 (ENBP)

Un **Equilibrio de Nash Bayesiano Perfecto** es un Equilibrio de Nash Bayesiano, $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$, junto con un sistema de creencias μ que satisfacen los 4 requerimientos de Tadelis (2013).

Game Theory

Luis Chávez

Introducció

Juegos estátic

Juegos de tipo Aplicaciones

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Anexos

References

Definición 5 (consistencia)

Un perfil de estrategias $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ junto con un sistema de creencias μ^* es **consistente** si existe una secuencia de estrategias mixtas no degeneradas $\{\sigma^k\}_1^\infty$ y una secuencia de creencias que son derivadas de cada σ^k de acuerdo a la regla de Bayes, $\{\mu^k\}_1^\infty$, tal que $\lim_{k\to\infty}(\sigma^k,\mu^k)=(\sigma^*,\mu^*)$.

Game Theory

Luis Chávez

Introducción

Juegos estátio

Juegos de tipos Anlicaciones

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Anexo

Reference

Definición 6 (equilibrio secuencial)

Un perfil de estrategias $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ junto con un sistema de creencias μ^* es un **equilibrio secuencial** si (σ^*, μ^*) es un ENBP consistente.

Game Theory

Luis Chávez

Introducció

Juegos estático Juegos de tipos

Juegos dinámico

Secuencialidad racional

Anexos

- En ENB las creencias eran exógenas:
 - Las estrategias dependían de las creencias.
 - Las creencias eran independientes de las estrategias.
- En ENBP tanto las creencias como las estrategias son parte del resultado del equilibrio:
 - Las estrategias dependen de las creencias.
 - Las creencias dependen de la naturaleza (dada) o de las estrategias (que otros jugadores pueden hacer).

Game Theory

Luis Chávez

Introducció

Juegos estátic

Juegos de tipos

Juegos

Secuencialidad racional

Juegos infinitos

, tirexo.

Restricciones consistentes de las creencias:

- 1 Exógenas: las creencias deben ser consistentes con la regla de Bayes
- 2 Endógenas: las creencias deben ser consistentes con cómo anticipamos las estrategias de otros jugadores.

Game Theory

Luis Chávez

Introducció

Juegos estátic

Juegos de tipos Aplicaciones

Juegos

Secuencialidad racional

Juegos infinitos

Anexo

References

Sea el juego dinámico:

Game Theory

Luis Chávez

Introducción

luegos está

Juegos de tipos

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Anexo

Reference

Ejemplo 3 (continuación...)

Caracterización del sistema de creencias:

$$\mu(h_1^1) = \mu(h_1^2) = 1$$
 $\mu(h_2^1) \in [0, 1]$
 $\mu(h_2^2) \in [0, 1]$
 $\mu(h_2^1) + \mu(h_2^2) = 1$

Nota: las creencias son parcialmente determinadas por la naturaleza (exógenas) o parcialmente determinadas por las estrategias de *i* (endógenas).

Game Theory

Luis Chávez

Introducción

Juegos estátic

Aplicaciones

Juegos dinámico

Secuencialidad racional

Juegos infinitos

Anexo

References

Ejemplo 3 (continuación...)

Asumiendo que J1 juega ca. ¿Es una creencia endógena consistente?

$$\mu(h_2^1) = P[J1 \text{ es } L)|c]$$

$$1-\mu(\mathit{h}_2^1) = P[\mathit{J}1 \; \mathrm{es} \; \mathit{H})|\mathit{c}]$$

$$J1(\mathit{ca}) \Rightarrow \mu(\mathit{h}_2^1) = 1$$

Si J2 observa que el juego llegó a esta etapa, debe ser porque J1 no es H. Así, las creencias de J2 deben ser consistentes con lo que J2 piensa que J1 jugará.

Game Theory

Luis Chávez

Introducció

Juegos estáti

Juegos

Secuencialidad racional

Juegos infinitos

Juegos infinito

Anexos

Reference:

Ejemplo 3 (continuación...)

Esto también significa que si J1 considera jugar ca:

- Anticipa que $\mu(h_2^1) = 1$.
- Por lo tanto, puede anticipar que J2 jugará r después de c.

Entonces, cuando J1 considera una desviación de ca,

- J1 podría intentar jugar c cuando se elige H.
- J2 creería erróneamente que J1 es L y jugaría r.
- Por lo tanto, J1 sabe que esta desviación no sería rentable.

Contenido

Game Theory

Luis Chávez

Introducción

Juegos estátio

Juegos de tipos Aplicaciones

Juegos dinámic

Secuencialidad racio

A navas

Reference

- Introducción
- 2 Juegos estáticos Juegos de tipos Aplicaciones
- 3 Juegos dinámicos Secuencialidad racional Juegos infinitos
- 4 Anexos

Game Theory

Luis Chávez

Introducción

Juegos estático

Juegos de tipos

luegos

dinámicos

Secuencialidad racion

Juegos infinitos

References

Pizarra...

Referencias

Game Theory

Luis Chávez

Introducció

Juegos estátic

Juegos de tipos

Juegos

Juegos

Secuencialida

Juegos infinito

Anevo

References

Tadelis, S. (2013). Game theory: an introduction. Princeton university press.