HW1 TJ Jiang

Load necessary libraries

```
library(fields)
## Warning: package 'fields' was built under R version 3.2.5
## Loading required package: spam
## Warning: package 'spam' was built under R version 3.2.5
## Loading required package: grid
## Spam version 1.4-0 (2016-08-29) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
## Attaching package: 'spam'
## The following objects are masked from 'package:base':
       backsolve, forwardsolve
##
## Loading required package: maps
## Warning: package 'maps' was built under R version 3.2.5
library(SpatialTools)
## # This research was partially supported under NSF Grant ATM-0534173
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
```

Problem 1

Chapter 2 problem 2

a)

Regression, inference, n = 500, p = 3

b)

Classification, prediction, n = 20, p = 13

c)

Regression, prediction, p = 3, n = 52

Problem 2

Exercise 3 from section 2.4 (p. 52)

a)

Figure 1: Problem 2a Sketch

b)

Irreducible error cannot be predicted using the input predictor variables. No matter how well the model fits it will not be attenuated. This term could be due to unmeasured quantities or unmeasurable variation. Training error will always decrease as the model becomes more flexible, but will eventually lead to detriment

in generalizability Test error curve goes from an underfit model to a minima where the model fit well with low variance and low bias, but as flexibility increases more the model becomes overfit Variance will increase as model becomes more flexible as overfitting becomes an issue and small changes in predictor variables leads to potentially large changes in prediced response Bias will decrease as model becomes more flexible but will reach an asymptote (diminishing returns) at some point depending on the true model coefficients

Problem 3

Complete Exercise 7 from section 2.4 of the textbook (p. 53).

```
Obs \leftarrow seq(1,6,length=6)
X1 \leftarrow c(0,2,0,0,-1,1)
X2 \leftarrow c(3,0,1,1,0,1)
X3 \leftarrow c(0,0,3,2,1,1)
Y <- c('Red', 'Red', 'Red', 'Green', 'Green', 'Red')
df <- data.frame(Obs, X1, X2, X3, Y)</pre>
(df)
##
     Obs X1 X2 X3
                        Y
## 1
       1
          0
              3
                      Red
          2
## 2
       2
              0
                 0
                      Red
## 3
       3
           0
              1
                 3
                      Red
## 4
       4
          0
              1
                 2 Green
       5 -1
              0
                1 Green
## 6
       6
          1 1 1
                      Red
coords_mat <- data.matrix(df[2:4])</pre>
coords_mat
##
        X1 X2 X3
            3
## [1,]
         0
                0
## [2,]
         2
             0
                0
## [3,]
         0
             1
## [4,]
         0
             1
                2
## [5,] -1
            0 1
## [6,]
         1
            1 1
a)
dist <- NULL
for(i in 1:nrow(coords_mat)) {
    dist[i] <- dist(rbind(coords_mat[i,], c(0,0,0)))</pre>
}
df$dist <- dist
df
##
     Obs X1 X2 X3
                        Y
                               dist
## 1
                      Red 3.000000
          0
              3
                 0
       1
## 2
       2
           2
              0
                 0
                      Red 2.000000
## 3
       3
           0
              1
                 3
                      Red 3.162278
## 4
       4
           0
              1
                 2 Green 2.236068
## 5
       5 -1
              0
                 1 Green 1.414214
## 6
          1
              1
                      Red 1.732051
                1
```

b)

If the only datapoint we care about is the one nearest neighbor, then the prediction will be Green (Obs 5)

c)

Obs 2, 5, 6 are the closest 3 neighbors for [0,0,0], which corresponds with a Y of Red, Green and Red respectively; thus the prediction would be red.

d)

If the actual Bayes decision boundary is highly non-linear, we would want a small k allowing a more flexible decision boundary. This corresponds to a classifier with low bias but high variance.

Problem 4: Exercise 1 (p. 413)

a)

Figure 2: Proof of 10.12

b)

On the basis of this identity, argue that the K-means clustering algorithm (Algorithm 10.1) decreases the objective (10.11) at each iteration.

The left hand term (10.10) defines the within-cluster variation using squared Euclidian distance. In k-means clustering, we want to partition the observations into k clusters such that the total within-cluster variation summed over all clusters is minimized. 10.12 shows that as we minimize 10.10 we also minimize the within-cluster variation for each cluster.

Problem 5

Exercise 2 (p. 413)

a)

On the basis of this dissimilarity matrix, sketch the dendrogram that results from hierarchically clustering these four observa- tions using complete linkage. Be sure to indicate on the plot the height at which each fusion occurs, as well as the observations corresponding to each leaf in the dendrogram.

```
data <-c (0, 0.3, 0.4, 0.7, 0.3, 0, 0.5, 0.8, 0.4, 0.5, 0.0, 0.45, 0.7, 0.8, 0.45, 0.0)
data_mat <- matrix(data, nrow=4)
dist_matrix <- as.dist(data_mat)
plot(hclust(dist_matrix, method="complete"))</pre>
```

Cluster Dendrogram

dist_matrix hclust (*, "complete")

b)

```
plot(hclust(dist_matrix, method="single"))
```

Cluster Dendrogram

dist_matrix
hclust (*, "single")

 $\mathbf{c})$

Cluster1: Observations 1 and 2; Cluster2: Observations 3 and 4 $\,$

d)

Cluster1: Observations 1,2, and 3; Cluster2: Observation 4

e)

The following dendrogram swaps positions of the two clusters without changing the meaning plot(hclust(dist_matrix, method="complete"), labels=c(4,3,1,2))

Cluster Dendrogram

dist_matrix hclust (*, "complete")

Problem 6

Exercise 4 (p. 414)

Suppose that for a particular data set, we perform hierarchical clustering using single linkage and using complete linkage. We obtain two dendrograms.

a)

At a certain point on the single linkage dendrogram, the clusters $\{1,2,3\}$ and $\{4,5\}$ fuse. On the complete linkage dendrogram, the clusters $\{1,2,3\}$ and $\{4,5\}$ also fuse at a certain point. Which fusion will occur higher on the tree, or will they fuse at the same height, or is there not enough information to tell?

This question requires more information to answer and is dependent on both the organization of information as well as the dissimilarity measure (euclidian distance, correlation etc). Complete linkage joins on maximal intercluster dissimilarity, while single linkage joins on minimal intercluster dissimilarity; were these to be equal, then the two clusters in question would fuse at the same height. Otherwise, a dendrogram formed with complete linkage would fuse them at a greater height than a dendrogram formed with single linkage.

b)

At a certain point on the single linkage dendrogram, the clusters $\{5\}$ and $\{6\}$ fuse. On the complete linkage dendrogram, the clusters $\{5\}$ and $\{6\}$ also fuse at a certain point. Which fusion will occur higher on the tree, or will they fuse at the same height, or is there not enough information to tell?

They would fuse at the same height because the choice of complete vs single linkage operates on observations between two clusters instead of the clustering of two individual observations that are not yet clustered.

Problem 7

```
Exercise 9 (p. 416)
data("USArrests")
names(USArrests)

## [1] "Murder" "Assault" "UrbanPop" "Rape"
dim(USArrests)

## [1] 50 4
class(USArrests)

## [1] "data.frame"

a)
cluster_USArrests <- hclust(dist(USArrests), method="complete")
plot(cluster_USArrests)</pre>
```

Cluster Dendrogram

dist(USArrests)
hclust (*, "complete")

b)

```
cutree(cluster_USArrests, 3)

## Alabama Alaska Arizona Arkansas California
## 1 1 1 1 2 1
## Colorado Connecticut Delaware Florida Georgia
```

##	2	3	1	1	2
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	3	1	3	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	3	1	3	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	1	3	1	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	1	3	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	1	1	3	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	2	3	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	2	2	3	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	3	3	2

 $\mathbf{c})$

cluster_USArrests_scaled = hclust(dist(scale(USArrests)), method="complete")
plot(cluster_USArrests_scaled)

Cluster Dendrogram

dist(scale(USArrests))
hclust (*, "complete")

d)

Number of states in each cluster without scaling USArrests:

table(cutree(cluster_USArrests, 3))

```
##
## 1 2 3
## 16 14 20
```

Number of states in each cluster after scaling USArrests:

```
table(cutree(cluster_USArrests_scaled, 3))
```

```
##
## 1 2 3
## 8 11 31
```

The overall height and spread of the dendrogram was not dramatically altered after scaling the input dataset. The states that ended up in each 3 cluster did change. In general, scaling each variable vector to standardize variance makes sense. The variables in USArrests dataset have different units with different inherent variance. Units with a larger variance has a greater effect on euclidian distance, and thus have a greater influence on how clusters are formed.

Problem 8

Exercise 4 (p. 120)

I collect a set of data (n = 100 observations) containing a single predictor and a quantitative response. I then fit a linear regression model to the data, as well as a separate cubic regression, i.e. Y = 0 + 1X + 2X2 + 3X3 + .

a)

Suppose that the true relationship between X and Y is linear, i.e. Y = 0 + 1X + . Consider the training residual sum of squares (RSS) for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer.

Adding more variables to the least squares equations always improves the fit to the training data; thus, the RSS to training data should decrease

b)

Answer (a) using test rather than training RSS.

test RSS should decrease due to the overfitting and failing to generalize overfit model to test dataset

c)

Suppose that the truerelationship between X and Y is not linear, but we don't know how far it is from linear. Consider the training RSS for the linear regression, and also the training RSS for the cubic regression. Would we expect one to be lower than the other, would we expect them to be the same, or is there not enough information to tell? Justify your answer.

The increased flexibility from polynomial regression will lead to a better fit to training data over a linear regression.

d)

Answer (c) using test rather than training RSS.

Since the true relationship is not known, there is not enough information to exactly tell whether test dataset RSS will be better with a polynomial fit

Problem 9

Exercise 9 (p. 122). In parts (e) and (f), you need only try a few interactions and transformations.

Auto = na.omit(read.csv("Auto.csv", na.strings="?")) #massage out question marks and lists with missing
Auto

##		mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
##	1	18.0	8	307.0	130	3504	12.0	70	1
##	2	15.0	8	350.0	165	3693	11.5	70	1
##	3	18.0	8	318.0	150	3436	11.0	70	1
##	4	16.0	8	304.0	150	3433	12.0	70	1
##	5	17.0	8	302.0	140	3449	10.5	70	1
##	6	15.0	8	429.0	198	4341	10.0	70	1
##	7	14.0	8	454.0	220	4354	9.0	70	1
##	8	14.0	8	440.0	215	4312	8.5	70	1
##	9	14.0	8	455.0	225	4425	10.0	70	1
##	10	15.0	8	390.0	190	3850	8.5	70	1
##	11	15.0	8	383.0	170	3563	10.0	70	1
##	12	14.0	8	340.0	160	3609	8.0	70	1
##	13	15.0	8	400.0	150	3761	9.5	70	1
##	14	14.0	8	455.0	225	3086	10.0	70	1
##	15	24.0	4	113.0	95	2372	15.0	70	3
##	16	22.0	6	198.0	95	2833	15.5	70	1
##	17	18.0	6	199.0	97	2774	15.5	70	1
##	18	21.0	6	200.0	85	2587	16.0	70	1
##	19	27.0	4	97.0	88	2130	14.5	70	3
##	20	26.0	4	97.0	46	1835	20.5	70	2
##	21	25.0	4	110.0	87	2672	17.5	70	2
##	22	24.0	4	107.0	90	2430	14.5	70	2
##	23	25.0	4	104.0	95	2375	17.5	70	2
##	24	26.0	4	121.0	113	2234	12.5	70	2
##	25	21.0	6	199.0	90	2648	15.0	70	1
##	26	10.0	8	360.0	215	4615	14.0	70	1
##	27	10.0	8	307.0	200	4376	15.0	70	1
##	28	11.0	8	318.0	210	4382	13.5	70	1
##	29	9.0	8	304.0	193	4732	18.5	70	1
##	30	27.0	4	97.0	88	2130	14.5	71	3
##	31	28.0	4	140.0	90	2264	15.5	71	1
##	32	25.0	4	113.0	95	2228	14.0	71	3
##	34	19.0	6	232.0	100	2634	13.0	71	1
##	35	16.0	6	225.0	105	3439	15.5	71	1
##	36	17.0	6	250.0	100	3329	15.5	71	1
##	37	19.0	6	250.0	88	3302	15.5	71	1
##	38	18.0	6	232.0	100	3288	15.5	71	1
##	39	14.0	8	350.0	165	4209	12.0	71	1
##	40	14.0	8	400.0	175	4464	11.5	71	1
##	41	14.0	8	351.0	153	4154	13.5	71	1

## 42	14.0	8	318.0	150	4096	13.0	71	1
## 43	12.0	8	383.0	180	4955	11.5	71	1
## 44	13.0	8	400.0	170	4746	12.0	71	1
## 45	13.0	8	400.0	175	5140	12.0	71	1
## 46	18.0	6	258.0	110	2962	13.5	71	1
## 47	22.0	4	140.0	72	2408	19.0	71	1
## 48	19.0	6	250.0	100	3282	15.0	71	1
## 49	18.0	6	250.0	88	3139	14.5	71	1
## 50	23.0	4	122.0	86	2220	14.0	71	1
## 51	28.0	4	116.0	90	2123	14.0	71	2
## 52	30.0	4	79.0	70	2074	19.5	71	2
## 53	30.0	4	88.0	76	2065	14.5	71	2
## 54	31.0	4	71.0	65	1773	19.0	71	3
## 55	35.0	4	72.0	69	1613	18.0	71	3
## 56	27.0	4	97.0	60	1834	19.0	71	2
## 57	26.0	4	91.0	70	1955	20.5	71	1
## 58	24.0	4	113.0	95	2278	15.5	72	3
## 59	25.0	4	97.5	80	2126	17.0	72	1
## 60	23.0	4	97.0	54	2254	23.5	72	2
## 61	20.0	4	140.0	90	2408	19.5	72	1
## 62	21.0	4	122.0	86	2226	16.5	72	1
## 63	13.0	8	350.0	165	4274	12.0	72	1
## 64								
	14.0	8	400.0	175	4385	12.0	72	1
## 65	15.0	8	318.0	150	4135	13.5	72	1
## 66	14.0	8	351.0	153	4129	13.0	72	1
## 67	17.0	8	304.0	150	3672	11.5	72	1
## 68	11.0	8	429.0	208	4633	11.0	72	1
## 69	13.0	8	350.0	155	4502	13.5	72	1
## 70	12.0	8	350.0	160	4456	13.5	72	1
## 71	13.0	8	400.0	190	4422	12.5	72	1
## 72	19.0	3	70.0	97	2330	13.5	72	3
## 73	15.0	8	304.0	150	3892	12.5	72	1
## 74	13.0	8	307.0	130	4098	14.0	72	1
## 75	13.0	8	302.0	140	4294	16.0	72	1
## 76	14.0	8	318.0	150	4077	14.0	72	1
## 77	18.0	4	121.0	112	2933	14.5	72	2
## 78	22.0	4	121.0	76	2511	18.0	72	2
## 79	21.0	4	120.0	87	2979	19.5	72	2
## 80	26.0	4	96.0	69	2189	18.0	72	2
			122.0		2395	16.0	72	
## 81	22.0	4		86				1
## 82	28.0	4	97.0	92	2288	17.0	72	3
## 83	23.0	4	120.0	97	2506	14.5	72	3
## 84	28.0	4	98.0	80	2164	15.0	72	1
## 85	27.0	4	97.0	88	2100	16.5	72	3
## 86	13.0	8	350.0	175	4100	13.0	73	1
## 87	14.0	8	304.0	150	3672	11.5	73	1
## 88	13.0	8	350.0	145	3988	13.0	73	1
## 89	14.0	8	302.0	137	4042	14.5	73	1
## 90	15.0	8	318.0	150	3777	12.5	73	1
## 91	12.0	8	429.0	198	4952	11.5	73	1
## 92	13.0	8	400.0	150	4464	12.0	73	1
## 93	13.0	8	351.0	158	4363	13.0	73	1
## 94	14.0	8	318.0	150	4237	14.5	73	1
## 95	13.0	8	440.0	215	4735	11.0	73	1
ππ <i>3</i> 0	10.0	U	±±0.0	210	±100	11.0	10	1

## 96	12.0	8	455.0	225	4951	11.0	73	1
## 97	13.0	8	360.0	175	3821	11.0	73	1
## 98	18.0	6	225.0	105	3121	16.5	73	1
## 99	16.0	6	250.0	100	3278	18.0	73	1
## 100	18.0	6	232.0	100	2945	16.0	73	1
## 101	18.0	6	250.0	88	3021	16.5	73	1
## 102	23.0	6	198.0	95	2904	16.0	73	1
## 103	26.0	4	97.0	46	1950	21.0	73	2
## 104	11.0	8	400.0	150	4997	14.0	73	1
## 105	12.0	8	400.0	167	4906	12.5	73	1
## 106	13.0	8	360.0	170	4654	13.0	73	1
## 107	12.0	8	350.0	180	4499	12.5	73	1
## 108	18.0	6	232.0	100	2789	15.0	73	1
## 109	20.0	4	97.0	88	2279	19.0	73	3
## 110	21.0	4	140.0	72	2401	19.5	73	1
## 111	22.0	4	108.0	94	2379	16.5	73	3
## 112	18.0	3	70.0	90	2124	13.5	73	3
## 113	19.0	4	122.0	85	2310	18.5	73	1
## 114	21.0	6	155.0	107	2472	14.0	73	1
## 115	26.0	4	98.0	90	2265	15.5	73	2
## 116	15.0	8	350.0	145	4082	13.0	73	1
## 117			400.0	230	4278	9.5	73	1
## 118		4	68.0	49	1867	19.5	73	2
## 119			116.0	75	2158	15.5	73	2
## 120			114.0	91	2582	14.0	73	2
## 121			121.0	112	2868	15.5	73	2
## 122			318.0	150	3399	11.0	73	1
## 123			121.0	110	2660	14.0	73	2
## 124			156.0	122	2807	13.5	73	3
## 125			350.0	180	3664	11.0	73	1
## 126			198.0	95	3102	16.5	74	1
## 128			232.0	100	2901	16.0	74	1
## 129			250.0	100	3336	17.0	74	1
## 130		4	79.0	67	1950	19.0	74	3
## 131			122.0	80	2451	16.5	74	1
## 132		4	71.0	65	1836	21.0	74	3
## 133			140.0	75	2542	17.0	74	1
## 134	16.0	6	250.0	100	3781	17.0	74	1
## 135			258.0	110	3632	18.0	74	1
## 136			225.0	105	3613	16.5	74	1
## 137			302.0	140	4141	14.0	74	1
## 138			350.0	150	4699	14.5	74	1
## 139			318.0	150	4457	13.5	74	1
## 140			302.0	140	4638	16.0	74	1
## 141			304.0	150	4257	15.5	74	1
## 142		4	98.0	83	2219	16.5	74	2
## 143		4	79.0	67	1963	15.5	74	2
## 144		4	97.0	78	2300	14.5	74	2
## 145		4	76.0	52	1649	16.5	74	3
## 146		4	83.0	61	2003	19.0	74	3
## 147		4	90.0	75	2125	14.5	74	1
## 148		4	90.0	75	2108	15.5	74	2
## 149			116.0	75	2246	14.0	74	2
## 150			120.0	97	2489	15.0	74	3
							. =	-

## 1E1 OC O	4	100 0	0.2	0201	15 5	71	2
## 151 26.0	4	108.0	93 67	2391	15.5	74	3
## 152 31.0	4	79.0	67	2000	16.0	74	2
## 153 19.0	6	225.0	95	3264	16.0	75	1
## 154 18.0	6	250.0	105	3459	16.0	75	1
## 155 15.0	6	250.0	72	3432	21.0	75	1
## 156 15.0	6	250.0	72	3158	19.5	75	1
## 157 16.0	8	400.0	170	4668	11.5	75	1
## 158 15.0	8	350.0	145	4440	14.0	75	1
## 159 16.0	8	318.0	150	4498	14.5	75	1
## 160 14.0	8	351.0	148	4657	13.5	75	1
## 161 17.0	6	231.0	110	3907	21.0	75	1
## 162 16.0	6	250.0	105	3897	18.5	75	1
## 163 15.0	6	258.0	110	3730	19.0	75	1
## 164 18.0	6	225.0	95	3785	19.0	75	1
## 165 21.0	6	231.0	110	3039	15.0	75	1
## 166 20.0	8	262.0	110	3221	13.5	75	1
## 167 13.0	8	302.0	129	3169	12.0	75	1
## 168 29.0	4	97.0	75	2171	16.0	75	3
## 169 23.0	4	140.0	83	2639	17.0	75	1
## 170 20.0	6	232.0	100	2914	16.0	75	1
## 171 23.0	4	140.0	78	2592	18.5	75	1
## 172 24.0	4	134.0	96	2702	13.5	75	3
## 173 25.0	4	90.0	71	2223	16.5	75	2
## 174 24.0	4	119.0	97	2545	17.0	75	3
## 175 18.0	6	171.0	97	2984	14.5	75	1
## 176 29.0	4	90.0	70	1937	14.0	75	2
## 177 19.0	6	232.0	90	3211	17.0	75	1
## 178 23.0	4	115.0	95	2694	15.0	75	2
## 179 23.0	4	120.0	88	2957	17.0	75	2
## 180 22.0	4	121.0	98	2945	14.5	75	2
## 181 25.0	4	121.0	115	2671	13.5	75	2
## 182 33.0	4	91.0	53	1795	17.5	75	3
## 183 28.0	4	107.0	86	2464	15.5	76	2
## 184 25.0	4	116.0	81	2220	16.9	76	2
## 185 25.0	4	140.0	92	2572	14.9	76	1
## 186 26.0	4	98.0	79	2255	17.7	76	1
## 187 27.0	4	101.0	83	2202	15.3	76	2
## 188 17.5	8	305.0	140	4215	13.0	76	1
## 189 16.0	8	318.0	150	4190	13.0	76	1
## 190 15.5	8	304.0	120	3962	13.9	76	1
## 191 14.5	8	351.0	152	4215	12.8	76	1
## 192 22.0	6	225.0	100	3233	15.4	76	1
## 193 22.0	6	250.0	105	3353	14.5	76	1
## 194 24.0	6	200.0	81	3012	17.6	76	1
## 195 22.5	6	232.0	90	3085	17.6	76	1
## 196 29.0	4	85.0	52	2035	22.2	76	1
## 197 24.5	4	98.0	60	2164	22.1	76	1
## 198 29.0	4	90.0	70	1937	14.2	76	2
## 199 33.0	4	91.0	53	1795	17.4	76	3
## 200 20.0	6	225.0	100	3651	17.7	76	1
## 201 18.0	6	250.0	78	3574	21.0	76	1
## 202 18.5	6	250.0	110	3645	16.2	76	1
## 203 17.5	6	258.0	95	3193	17.8	76	1
## 204 29.5	4	97.0	71	1825	12.2	76	2

## OOF 30 O	4	0F 0	70	1000	17.0	76	2
## 205 32.0 ## 206 28.0	4 4	85.0	70 75	1990	17.0 16.4	76 76	3 3
## 200 20.0 ## 207 26.5	4	97.0	75 72	2155	13.6		1
## 207 20.3 ## 208 20.0	4	140.0 130.0	102	2565 3150	15.7	76 76	2
## 208 20.0 ## 209 13.0	8	318.0	150	3940	13.7	76 76	1
## 209 13.0 ## 210 19.0	4	120.0	88	3270	21.9	76 76	2
## 210 19.0 ## 211 19.0	6			2930		76 76	3
## 211 19.0 ## 212 16.5	6	156.0 168.0	108 120	3820	15.5 16.7	76 76	2
## 212 16.5 ## 213 16.5	8	350.0	180	4380	12.1	76 76	1
## 213 10.5 ## 214 13.0	8	350.0	145	4055	12.1	76 76	1
## 214 13.0 ## 215 13.0	8	302.0	130	3870	15.0	76	1
## 216 13.0	8	318.0	150	3755	14.0	76	1
## 210 13.0 ## 217 31.5	4	98.0	68	2045	18.5	77	3
## 217 31.3	4	111.0	80	2155	14.8	77	1
## 218 30.0 ## 219 36.0	4	79.0	58	1825	18.6	77	2
## 219 30.0 ## 220 25.5	4	122.0	96	2300	15.5	77	1
## 220 23.3 ## 221 33.5	4	85.0	70	1945	16.8	77	3
## 221 33.3 ## 222 17.5	8	305.0	145	3880	12.5	77	1
## 222 17.3 ## 223 17.0	8	260.0	110	4060	19.0	77	1
## 224 15.5	8	318.0	145	4140	13.7	77	1
## 225 15.0	8	302.0	130	4295	14.9	77	1
## 226 17.5	6	250.0	110	3520	16.4	77	1
## 227 20.5	6	231.0	105	3425	16.9	77	1
## 227 20.0	6	225.0	100	3630	17.7	77	1
## 229 18.5	6	250.0	98	3525	19.0	77	1
## 230 16.0	8	400.0	180	4220	11.1	77	1
## 231 15.5	8	350.0	170	4165	11.4	77	1
## 232 15.5	8	400.0	190	4325	12.2	77	1
## 233 16.0	8	351.0	149	4335	14.5	77	1
## 234 29.0	4	97.0	78	1940	14.5	77	2
## 235 24.5	4	151.0	88	2740	16.0	77	1
## 236 26.0	4	97.0	75	2265	18.2	77	3
## 237 25.5	4	140.0	89	2755	15.8	77	1
## 238 30.5	4	98.0	63	2051	17.0	77	1
## 239 33.5	4	98.0	83	2075	15.9	77	1
## 240 30.0	4	97.0	67	1985	16.4	77	3
## 241 30.5	4	97.0	78	2190	14.1	77	2
## 242 22.0	6	146.0	97	2815	14.5	77	3
## 243 21.5	4	121.0	110	2600	12.8	77	2
## 244 21.5	3	80.0	110	2720	13.5	77	3
## 245 43.1	4	90.0	48	1985	21.5	78	2
## 246 36.1	4	98.0	66	1800	14.4	78	1
## 247 32.8	4	78.0	52	1985	19.4	78	3
## 248 39.4	4	85.0	70	2070	18.6	78	3
## 249 36.1	4	91.0	60	1800	16.4	78	3
## 250 19.9	8	260.0	110	3365	15.5	78	1
## 251 19.4	8	318.0	140	3735	13.2	78	1
## 252 20.2	8	302.0	139	3570	12.8	78	1
## 253 19.2	6	231.0	105	3535	19.2	78	1
## 254 20.5	6	200.0	95	3155	18.2	78	1
## 255 20.2	6	200.0	85	2965	15.8	78	1
## 256 25.1	4	140.0	88	2720	15.4	78	1
## 257 20.5	6	225.0	100	3430	17.2	78	1
## 258 19.4	6	232.0	90	3210	17.2	78	1

## 259 20.6	6	231.0	105	3380	15.8	78	1
## 260 20.8	6	200.0	85	3070	16.7	78	1
## 261 18.6	6	225.0	110	3620	18.7	78	1
## 262 18.1	6	258.0	120	3410	15.1	78	1
## 263 19.2	8	305.0	145	3425	13.2	78	1
## 264 17.7	6	231.0	165	3445	13.4	78	1
## 265 18.1	8	302.0	139	3205	11.2	78	1
## 266 17.5	8	318.0	140	4080	13.7	78	1
## 267 30.0	4	98.0	68	2155	16.5	78	1
## 268 27.5	4	134.0	95	2560	14.2	78	3
## 269 27.2	4	119.0	97	2300	14.7	78	3
## 270 30.9	4	105.0	75	2230	14.5	78	1
## 271 21.1	4	134.0	95	2515	14.8	78	3
## 272 23.2	4	156.0	105	2745	16.7	78	1
## 272 23.2 ## 273 23.8	4	151.0	85	2855	17.6	78	1
## 274 23.9	4	119.0	97	2405	14.9	78	3
## 275 20.3	5	131.0	103	2830	15.9	78	2
## 275 20.3 ## 276 17.0	6	163.0	125	3140	13.6	78	2
## 270 17.0 ## 277 21.6	4	121.0	115	2795	15.7	78	2
## 278 16.2	6	163.0	133	3410	15.8	78 70	2
## 279 31.5	4	89.0	71	1990	14.9	78 70	2
## 280 29.5	4	98.0	68	2135	16.6	78	3
## 281 21.5	6	231.0	115	3245	15.4	79	1
## 282 19.8	6	200.0	85	2990	18.2	79	1
## 283 22.3	4	140.0	88	2890	17.3	79	1
## 284 20.2	6	232.0	90	3265	18.2	79	1
## 285 20.6	6	225.0	110	3360	16.6	79	1
## 286 17.0	8	305.0	130	3840	15.4	79	1
## 287 17.6	8	302.0	129	3725	13.4	79	1
## 288 16.5	8	351.0	138	3955	13.2	79	1
## 289 18.2	8	318.0	135	3830	15.2	79	1
## 290 16.9	8	350.0	155	4360	14.9	79	1
## 291 15.5	8	351.0	142	4054	14.3	79	1
## 292 19.2	8	267.0	125	3605	15.0	79	1
## 293 18.5	8	360.0	150	3940	13.0	79	1
## 294 31.9	4	89.0	71	1925	14.0	79	2
## 295 34.1	4	86.0	65	1975	15.2	79	3
## 296 35.7	4	98.0	80	1915	14.4	79	1
## 297 27.4	4	121.0	80	2670	15.0	79	1
## 298 25.4	5	183.0	77	3530	20.1	79	2
## 299 23.0	8	350.0	125	3900	17.4	79	1
## 300 27.2	4	141.0	71	3190	24.8	79	2
## 301 23.9	8	260.0	90	3420	22.2	79	1
## 302 34.2	4	105.0	70	2200	13.2	79	1
## 303 34.5	4	105.0	70	2150	14.9	79	1
## 304 31.8	4	85.0	65	2020	19.2	79	3
## 305 37.3	4	91.0	69	2130	14.7	79	2
## 306 28.4	4	151.0	90	2670	16.0	79	1
## 307 28.8	6	173.0	115	2595	11.3	79	1
## 308 26.8	6	173.0	115	2700	12.9	79	1
## 309 33.5	4	151.0	90	2556	13.2	79	1
## 310 41.5	4	98.0	76	2144	14.7	80	2
## 311 38.1	4	89.0	60	1968	18.8	80	3
## 312 32.1	4	98.0	70	2120	15.5	80	1

## 313 37.2	4	86.0	65	2019	16.4	80	3
## 314 28.0	4	151.0	90	2678	16.5	80	1
## 315 26.4	4	140.0	88	2870	18.1	80	1
## 316 24.3	4	151.0	90	3003	20.1	80	1
## 317 19.1	6	225.0	90	3381	18.7	80	1
## 318 34.3	4	97.0	78	2188	15.8	80	2
## 319 29.8	4	134.0	90	2711	15.5	80	3
## 320 31.3	4	120.0	75	2542	17.5	80	3
## 321 37.0	4	119.0	92	2434	15.0	80	3
## 322 32.2	4	108.0	75	2265	15.2	80	3
## 323 46.6	4	86.0	65	2110	17.9	80	3
## 324 27.9	4	156.0	105	2800	14.4	80	1
## 325 40.8	4	85.0	65	2110	19.2	80	3
## 326 44.3	4	90.0	48	2085	21.7	80	2
## 327 43.4	4	90.0	48	2335	23.7	80	2
## 328 36.4	5	121.0	67	2950	19.9	80	2
## 329 30.4	4	146.0	67	3250	21.8	80	2
## 330 44.6	4	91.0	67	1850	13.8	80	3
## 332 33.8	4	97.0	67	2145	18.0	80	3
## 333 29.8	4	89.0	62	1845	15.3	80	2
## 334 32.7	6	168.0	132	2910	11.4	80	3
## 335 23.7	3	70.0	100	2420	12.5	80	3
## 336 35.0	4	122.0	88	2500	15.1	80	2
## 338 32.4	4	107.0	72	2300	17.0	80	3
## 339 27.2	4	135.0	72 84	2490	15.7	81	1
## 340 26.6	4	151.0	84	2635	16.4	81	1
## 341 25.8	4	156.0	92	2620	14.4	81	1
## 341 23.5 ## 342 23.5	6	173.0	110	2725	12.6	81	1
## 343 30.0	4						
	4	135.0	84	2385	12.9	81	1
## 344 39.1		79.0 86.0	58 64	1755	16.9	81	3
## 345 39.0	4		64	1875	16.4	81	1
## 346 35.1	4	81.0	60	1760	16.1	81	3
## 347 32.3	4	97.0	67	2065	17.8	81	3
## 348 37.0	4	85.0	65 60	1975	19.4	81	3
## 349 37.7	4	89.0	62	2050	17.3	81	3
## 350 34.1	4	91.0	68	1985	16.0	81	3
## 351 34.7	4	105.0	63 65	2215	14.9	81	1
## 352 34.4	4	98.0	65	2045	16.2	81	1
## 353 29.9	4	98.0	65 74	2380	20.7	81	1
## 354 33.0	4	105.0	74 75	2190	14.2	81	2
## 356 33.7	4	107.0	75	2210	14.4	81	3
## 357 32.4 ## 358 32.9	4	108.0	75 100	2350	16.8	81	3
	4	119.0	100	2615	14.8	81	3
## 359 31.6	4	120.0	74	2635	18.3	81	3
## 360 28.1	4	141.0	80	3230	20.4	81	2
## 361 30.7	6	145.0	76	3160	19.6	81	2
## 362 25.4	6	168.0	116	2900	12.6	81	3
## 363 24.2	6	146.0	120	2930	13.8	81	3
## 364 22.4	6	231.0	110	3415	15.8	81	1
## 365 26.6	8	350.0	105	3725	19.0	81	1
## 366 20.2	6	200.0	88	3060	17.1	81	1
## 367 17.6	6	225.0	85	3465	16.6	81	1
## 368 28.0	4	112.0	88	2605	19.6	82	1
## 369 27.0	4	112.0	88	2640	18.6	82	1

```
## 370 34.0
                      4
                                112.0
                                                88
                                                      2395
                                                                    18.0
                                                                            82
                                                                                     1
## 371 31.0
                      4
                                112.0
                                                85
                                                      2575
                                                                    16.2
                                                                            82
                                                                                     1
## 372 29.0
                      4
                                135.0
                                                84
                                                      2525
                                                                    16.0
                                                                            82
                                                                                     1
## 373 27.0
                      4
                                                      2735
                                                                                     1
                                151.0
                                                90
                                                                    18.0
                                                                            82
## 374 24.0
                      4
                                140.0
                                                92
                                                      2865
                                                                    16.4
                                                                            82
                                                                                     1
## 375 36.0
                      4
                                105.0
                                                74
                                                      1980
                                                                    15.3
                                                                            82
                                                                                     2
## 376 37.0
                      4
                                 91.0
                                                68
                                                      2025
                                                                    18.2
                                                                            82
                                                                                     3
                                 91.0
## 377 31.0
                      4
                                                68
                                                      1970
                                                                    17.6
                                                                                     3
                                                                            82
## 378 38.0
                      4
                                105.0
                                                63
                                                      2125
                                                                    14.7
                                                                            82
                                                                                     1
## 379 36.0
                      4
                                                70
                                                                            82
                                                                                     1
                                 98.0
                                                      2125
                                                                    17.3
## 380 36.0
                      4
                                120.0
                                                88
                                                      2160
                                                                    14.5
                                                                            82
                                                                                     3
## 381 36.0
                      4
                                                75
                                                      2205
                                                                                     3
                                107.0
                                                                    14.5
                                                                            82
## 382 34.0
                      4
                                                70
                                                                                     3
                                108.0
                                                      2245
                                                                    16.9
                                                                            82
                                                                                     3
                      4
## 383 38.0
                                                67
                                                                            82
                                 91.0
                                                      1965
                                                                    15.0
## 384 32.0
                      4
                                 91.0
                                                67
                                                      1965
                                                                    15.7
                                                                            82
                                                                                     3
                                                                                     3
## 385 38.0
                      4
                                 91.0
                                                67
                                                      1995
                                                                    16.2
                                                                            82
## 386 25.0
                      6
                                181.0
                                               110
                                                      2945
                                                                    16.4
                                                                            82
                                                                                     1
                      6
## 387 38.0
                                262.0
                                                85
                                                      3015
                                                                    17.0
                                                                            82
                                                                                     1
## 388 26.0
                      4
                                156.0
                                                92
                                                      2585
                                                                    14.5
                                                                            82
                                                                                     1
## 389 22.0
                      6
                                                                                     1
                                232.0
                                               112
                                                      2835
                                                                    14.7
                                                                            82
## 390 32.0
                      4
                                144.0
                                                96
                                                      2665
                                                                    13.9
                                                                            82
                                                                                     3
## 391 36.0
                      4
                                135.0
                                                84
                                                      2370
                                                                    13.0
                                                                            82
                                                                                     1
## 392 27.0
                      4
                                151.0
                                                90
                                                      2950
                                                                    17.3
                                                                            82
                                                                                     1
## 393 27.0
                      4
                                140.0
                                                86
                                                      2790
                                                                    15.6
                                                                                     1
                                                                                     2
## 394 44.0
                      4
                                                52
                                                                    24.6
                                                                            82
                                 97.0
                                                      2130
## 395 32.0
                      4
                                135.0
                                                84
                                                      2295
                                                                    11.6
                                                                            82
                                                                                     1
## 396 28.0
                      4
                                120.0
                                                79
                                                      2625
                                                                    18.6
                                                                            82
                                                                                     1
##
   397 31.0
                      4
                                119.0
                                                82
                                                      2720
                                                                    19.4
                                                                            82
                                                                                     1
##
                                           name
## 1
                    chevrolet chevelle malibu
## 2
                             buick skylark 320
## 3
                            plymouth satellite
## 4
                                 amc rebel sst
## 5
                                   ford torino
## 6
                              ford galaxie 500
## 7
                              chevrolet impala
## 8
                             plymouth fury iii
## 9
                              pontiac catalina
## 10
                            amc ambassador dpl
## 11
                           dodge challenger se
## 12
                            plymouth 'cuda 340
## 13
                        chevrolet monte carlo
## 14
                      buick estate wagon (sw)
## 15
                        toyota corona mark ii
## 16
                               plymouth duster
## 17
                                     amc hornet
## 18
                                 ford maverick
## 19
                                   datsun pl510
## 20
                volkswagen 1131 deluxe sedan
## 21
                                    peugeot 504
## 22
                                    audi 100 ls
## 23
                                       saab 99e
## 24
                                       bmw 2002
## 25
                                    amc gremlin
```

```
## 26
                                   ford f250
## 27
                                   chevy c20
## 28
                                  dodge d200
## 29
                                    hi 1200d
## 30
                                datsun pl510
## 31
                         chevrolet vega 2300
                               toyota corona
## 32
## 34
                                 amc gremlin
  35
                  plymouth satellite custom
## 36
                   chevrolet chevelle malibu
##
   37
                             ford torino 500
## 38
                                 amc matador
  39
##
                            chevrolet impala
## 40
                  pontiac catalina brougham
## 41
                            ford galaxie 500
## 42
                           plymouth fury iii
## 43
                           dodge monaco (sw)
## 44
                   ford country squire (sw)
## 45
                         pontiac safari (sw)
## 46
                 amc hornet sportabout (sw)
## 47
                         chevrolet vega (sw)
## 48
                            pontiac firebird
## 49
                                ford mustang
## 50
                          mercury capri 2000
## 51
                                   opel 1900
## 52
                                 peugeot 304
## 53
                                   fiat 124b
## 54
                         toyota corolla 1200
## 55
                                 datsun 1200
## 56
                        volkswagen model 111
## 57
                            plymouth cricket
## 58
                       toyota corona hardtop
## 59
                          dodge colt hardtop
## 60
                           volkswagen type 3
## 61
                              chevrolet vega
## 62
                         ford pinto runabout
## 63
                            chevrolet impala
## 64
                            pontiac catalina
## 65
                           plymouth fury iii
## 66
                            ford galaxie 500
## 67
                          amc ambassador sst
## 68
                             mercury marquis
## 69
                        buick lesabre custom
## 70
                 oldsmobile delta 88 royale
## 71
                      chrysler newport royal
## 72
                             mazda rx2 coupe
## 73
                            amc matador (sw)
## 74
           chevrolet chevelle concours (sw)
## 75
                       ford gran torino (sw)
## 76
             plymouth satellite custom (sw)
## 77
                             volvo 145e (sw)
## 78
                         volkswagen 411 (sw)
## 79
                            peugeot 504 (sw)
## 80
                             renault 12 (sw)
```

##	81	ford pinto (sw)
##	82	datsun 510 (sw)
##	83	toyouta corona mark ii (sw)
##	84	dodge colt (sw)
##	85	toyota corolla 1600 (sw)
##	86	buick century 350
##	87	amc matador
##	88	chevrolet malibu
##	89	ford gran torino
##	90	dodge coronet custom
##	91 92	mercury marquis brougham
##	93	chevrolet caprice classic ford ltd
##	93 94	
##	9 4 95	plymouth fury gran sedan chrysler new yorker brougham
##	96	buick electra 225 custom
##	97	amc ambassador brougham
##	98	plymouth valiant
##	99	chevrolet nova custom
##	100	amc hornet
##	101	ford maverick
##	102	plymouth duster
##	103	volkswagen super beetle
##	104	chevrolet impala
##	105	ford country
##	106	plymouth custom suburb
##	107	oldsmobile vista cruiser
##	108	amc gremlin
##	109	toyota carina
##	110	chevrolet vega
##	111	datsun 610
##	112	maxda rx3
##	113	ford pinto
##	114	mercury capri v6
##	115	fiat 124 sport coupe
##	116	chevrolet monte carlo s
##	117	pontiac grand prix
##	118	fiat 128
##	119	opel manta
##	120	audi 100ls
##	121	volvo 144ea
##	122	dodge dart custom
##	123 124	saab 991e
##	124	toyota mark ii
	126	oldsmobile omega
##	128	plymouth duster amc hornet
##	129	chevrolet nova
##	130	datsun b210
##	131	ford pinto
##	132	toyota corolla 1200
##	133	chevrolet vega
##	134	chevrolet chevelle malibu classic
##	135	amc matador

##	136	plymouth satellite sebring
##	137	ford gran torino
##	138	buick century luxus (sw)
##	139	dodge coronet custom (sw)
##	140	ford gran torino (sw)
##	141	amc matador (sw)
##	142	audi fox
##	143	volkswagen dasher
##	144	opel manta
##	145	toyota corona
##	146	datsun 710
##	147	dodge colt
##	148	fiat 128
##	149	fiat 124 tc
##	150	honda civic
##	151	subaru
##	152	fiat x1.9
##	153	plymouth valiant custom
##	154	chevrolet nova
##	155	mercury monarch
##	156	ford maverick
##	157	pontiac catalina
##	158	chevrolet bel air
##	159	plymouth grand fury
##	160	ford ltd
##	161	buick century
##	162	chevroelt chevelle malibu
##	163	amc matador
##	164	plymouth fury
##	165	buick skyhawk
##	166	chevrolet monza 2+2
##	167	ford mustang ii
##	168	toyota corolla
##	169	ford pinto
##	170	amc gremlin
##	171	pontiac astro
##	172	toyota corona
##	173	volkswagen dasher
	174 175	datsun 710
	176	ford pinto
	177	volkswagen rabbit
	178	amc pacer audi 100ls
	179	peugeot 504
##	180	volvo 244dl
##	181	saab 991e
##	182	honda civic cvcc
##	183	fiat 131
##	184	opel 1900
##	185	opel 1900 capri ii
##	186	dodge colt
	187	renault 12tl
##	188	chevrolet chevelle malibu classic
##	189	dodge coronet brougham
11717	100	goage coroner proughtum

## 190	amc matador
## 191	ford gran torino
## 192	plymouth valiant
## 193	chevrolet nova
## 194	ford maverick
## 195	amc hornet
## 196	chevrolet chevette
## 197	chevrolet woody
## 198	vw rabbit
## 199	honda civic
## 200	dodge aspen se
## 201	ford granada ghia
## 202	pontiac ventura sj
## 203	amc pacer d/l
## 204	volkswagen rabbit
## 205	datsun b-210
## 206	toyota corolla
## 207	ford pinto
## 208	volvo 245
## 209	plymouth volare premier v8
## 210	peugeot 504
## 211	toyota mark ii
## 212 ## 213	mercedes-benz 280s cadillac seville
## 213 ## 214	
## 214 ## 215	chevy c10 ford f108
## 215 ## 216	dodge d100
## 210 ## 217	honda accord cvcc
## 217 ## 218	buick opel isuzu deluxe
## 219	renault 5 gtl
## 219 ## 220	plymouth arrow gs
## 221	datsun f-10 hatchback
## 222	chevrolet caprice classic
## 223	oldsmobile cutlass supreme
## 224	dodge monaco brougham
## 225	mercury cougar brougham
## 226	chevrolet concours
## 227	buick skylark
## 228	plymouth volare custom
## 229	ford granada
## 230	pontiac grand prix lj
## 231	chevrolet monte carlo landau
## 232	chrysler cordoba
## 233	ford thunderbird
## 234	volkswagen rabbit custom
## 235	pontiac sunbird coupe
## 236	toyota corolla liftback
## 237	ford mustang ii 2+2
## 238	chevrolet chevette
## 239	dodge colt m/m
## 240	subaru dl
## 241	volkswagen dasher
## 242	datsun 810
## 243	bmw 320i

```
## 244
                                  mazda rx-4
## 245
            volkswagen rabbit custom diesel
## 246
                                 ford fiesta
## 247
                            mazda glc deluxe
## 248
                              datsun b210 gx
## 249
                            honda civic cvcc
## 250
          oldsmobile cutlass salon brougham
## 251
                              dodge diplomat
## 252
                       mercury monarch ghia
## 253
                          pontiac phoenix lj
## 254
                            chevrolet malibu
## 255
                        ford fairmont (auto)
## 256
                         ford fairmont (man)
## 257
                             plymouth volare
## 258
                                 amc concord
## 259
                      buick century special
## 260
                              mercury zephyr
## 261
                                 dodge aspen
## 262
                             amc concord d/l
## 263
               chevrolet monte carlo landau
## 264
            buick regal sport coupe (turbo)
## 265
                                 ford futura
## 266
                             dodge magnum xe
## 267
                          chevrolet chevette
## 268
                               toyota corona
## 269
                                  datsun 510
## 270
                                  dodge omni
## 271
                  toyota celica gt liftback
## 272
                            plymouth sapporo
## 273
                      oldsmobile starfire sx
## 274
                               datsun 200-sx
## 275
                                   audi 5000
## 276
                                 volvo 264gl
## 277
                                  saab 99gle
## 278
                               peugeot 604sl
## 279
                         volkswagen scirocco
## 280
                             honda accord lx
## 281
                           pontiac lemans v6
## 282
                            mercury zephyr 6
## 283
                             ford fairmont 4
## 284
                            amc concord dl 6
## 285
                               dodge aspen 6
## 286
                  chevrolet caprice classic
## 287
                             ford 1td landau
## 288
                      mercury grand marquis
## 289
                             dodge st. regis
## 290
                    buick estate wagon (sw)
## 291
                   ford country squire (sw)
## 292
              chevrolet malibu classic (sw)
## 293
       chrysler lebaron town @ country (sw)
## 294
                            vw rabbit custom
## 295
                            maxda glc deluxe
## 296
                dodge colt hatchback custom
## 297
                               amc spirit dl
```

## 298	mercedes benz 300d
## 299	cadillac eldorado
## 300	peugeot 504
## 301	oldsmobile cutlass salon brougham
## 302	plymouth horizon
## 303	plymouth horizon tc3
## 304	datsun 210
## 305	fiat strada custom
## 306	buick skylark limited
## 307	chevrolet citation
## 308	oldsmobile omega brougham
## 309	pontiac phoenix
## 310	vw rabbit
## 311	toyota corolla tercel
## 312	chevrolet chevette
## 313	datsun 310
## 314	chevrolet citation
## 315	ford fairmont
## 316	amc concord
## 317	dodge aspen
## 318	audi 4000
## 319	toyota corona liftback
## 320	mazda 626
## 321	datsun 510 hatchback
## 322	toyota corolla
## 323	mazda glc
## 324	dodge colt
## 325	datsun 210
## 326	vw rabbit c (diesel)
## 327	vw dasher (diesel)
## 328	audi 5000s (diesel)
## 329	mercedes-benz 240d
## 330	honda civic 1500 gl
## 332	subaru dl
## 333	vokswagen rabbit
## 334	datsun 280-zx
## 335	mazda rx-7 gs
## 336	triumph tr7 coupe
## 338	honda accord
## 339	plymouth reliant
## 340	buick skylark
## 341	dodge aries wagon (sw)
## 342	chevrolet citation
## 343	plymouth reliant
## 344	toyota starlet
## 345	plymouth champ
## 346	honda civic 1300
## 347	subaru
## 348	datsun 210 mpg
## 349	toyota tercel
## 350	mazda glc 4
## 351	plymouth horizon 4
## 352	ford escort 4w
## 353	ford escort 2h
000	1014 000010 211

```
## 354
                            volkswagen jetta
## 356
                               honda prelude
## 357
                              toyota corolla
## 358
                                datsun 200sx
## 359
                                   mazda 626
## 360
                  peugeot 505s turbo diesel
## 361
                                volvo diesel
## 362
                             toyota cressida
## 363
                           datsun 810 maxima
## 364
                               buick century
## 365
                      oldsmobile cutlass ls
## 366
                             ford granada gl
## 367
                     chrysler lebaron salon
## 368
                          chevrolet cavalier
## 369
                   chevrolet cavalier wagon
## 370
                  chevrolet cavalier 2-door
## 371
                 pontiac j2000 se hatchback
## 372
                              dodge aries se
## 373
                             pontiac phoenix
## 374
                       ford fairmont futura
## 375
                        volkswagen rabbit l
## 376
                          mazda glc custom l
## 377
                            mazda glc custom
## 378
                     plymouth horizon miser
## 379
                              mercury lynx l
## 380
                           nissan stanza xe
## 381
                                honda accord
##
  382
                              toyota corolla
## 383
                                 honda civic
## 384
                          honda civic (auto)
## 385
                               datsun 310 gx
## 386
                      buick century limited
## 387
          oldsmobile cutlass ciera (diesel)
## 388
                 chrysler lebaron medallion
## 389
                              ford granada 1
## 390
                            toyota celica gt
## 391
                           dodge charger 2.2
## 392
                            chevrolet camaro
## 393
                             ford mustang gl
## 394
                                   vw pickup
## 395
                               dodge rampage
## 396
                                 ford ranger
## 397
                                  chevy s-10
```

pairs(Auto, main="Autos Dataset Scatterplot Matrix")

a)

##

Residuals:

```
##
      Min
               10 Median
                               3Q
                                      Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294
                                     -3.707 0.00024 ***
## cylinders
                            0.323282 -1.526 0.12780
                -0.493376
## displacement
                 0.019896
                            0.007515
                                       2.647 0.00844 **
                                     -1.230 0.21963
## horsepower
                -0.016951
                            0.013787
## weight
                -0.006474
                            0.000652
                                     -9.929 < 2e-16 ***
## acceleration
                 0.080576
                            0.098845
                                       0.815 0.41548
                 0.750773
                            0.050973
                                      14.729 < 2e-16 ***
## year
## origin
                 1.426141
                            0.278136
                                       5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

- c.i) The model does predict a relationship between the predictors and response; R² at 0.903 is high, expressing that the model fits training data well. The F-statistic is high (considering the number of observations is much larger than our number of predictors) and p value is very low, thus the null-hypothesis can be rejected.
- c.ii) Based on their low p values (highlighted by the 2-3 stars next to each p-value), displacement, weight, year and origin appear to have a statistically significant relationship to the response
- c.iii) With each passing year, mpg increases by ~0.75 mpg

d)

```
par(mfrow=c(2,2))
plot(model)
```


The residuals vs fitted plot can be used to diagnose non-linear behavior in residuals. There appears to be a parabolic shape to the residuals curves, where non-linear relationship that was not explained by the model was left out in the residuals. The Normal Q-Q plot shows if residuals are normally distributed; there is some deviation in the points that have gained labels: 326, 327 and 323 The Scale-Location plot shows that the residuals are randomly spread and homoscedastic The residuals vs leverage plot shows that residual 14 has leverage, but all points are within cook's distance, meaning there aren't any particular residual that is highly influential to regression results

e)

with some car knowledge that engine performance depends on an interaction of number of cylinders and total displacement, I believed it would be interesting to see whether this can influence our model:

```
model_interaction <- lm(mpg~cylinders*displacement, data=df)
summary(model_interaction)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cylinders * displacement, data = df)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    30
                                            Max
  -16.0432 -2.4308 -0.2263
                                2.2048
                                       20.9051
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          48.22040
                                      2.34712
                                              20.545 < 2e-16 ***
## cylinders
                          -2.41838
                                      0.53456 -4.524 8.08e-06 ***
## displacement
                          -0.13436
                                      0.01615 -8.321 1.50e-15 ***
## cylinders:displacement 0.01182
                                     0.00207
                                                5.711 2.24e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.454 on 388 degrees of freedom
## Multiple R-squared: 0.6769, Adjusted R-squared: 0.6744
## F-statistic:
                 271 on 3 and 388 DF, p-value: < 2.2e-16
```

Cylinders, displacement as well as their interaction proved to be very statistically significant in predicting mpg, which makes sense from a mechanical standpoint; more cylinders should allow for a more stable engine and higher RPMs, coupled with greater displacement fuel use can increase very quickly

Next I wondered whether there were strong interactions between year and origin, i.e. whether some countries of origin made great improvements overtime or vice veresa

```
model_interaction <- lm(mpg~year*origin, data=df)
summary(model_interaction)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ year * origin, data = df)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
  -11.3141 -3.7120 -0.6513
                               3.3621
                                       15.5859
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -83.3809
                          12.0000 -6.948 1.57e-11 ***
                                     8.305 1.68e-15 ***
## year
                 1.3089
                            0.1576
                17.3752
                                     2.543
                                             0.0114 *
## origin
                            6.8325
## year:origin -0.1663
                            0.0889 - 1.871
                                             0.0621 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.199 on 388 degrees of freedom
## Multiple R-squared: 0.5596, Adjusted R-squared: 0.5562
## F-statistic: 164.4 on 3 and 388 DF, p-value: < 2.2e-16
```

However, here the significance is rather weak

Finally, knowing that acceleration can have a very high penalty on fuel usage, and that horsepower is a function of RPM:

```
model_interaction <- lm(mpg~acceleration*horsepower, data=df)
summary(model_interaction)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ acceleration * horsepower, data = df)
##
## Residuals:
                      Median
                                    3Q
##
       Min
                 1Q
                                            Max
## -13.3442 -2.7324 -0.4049
                               2.4210
                                       15.8840
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                                 9.798 < 2e-16 ***
                          33.512440
                                      3.420187
                                                 3.777 0.000184 ***
## acceleration
                           0.800296
                                      0.211899
## horsepower
                           0.017590
                                      0.027425
                                                 0.641 0.521664
## acceleration:horsepower -0.015698
                                      0.002003 -7.838 4.45e-14 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.426 on 388 degrees of freedom
## Multiple R-squared: 0.6809, Adjusted R-squared: 0.6784
## F-statistic: 275.9 on 3 and 388 DF, p-value: < 2.2e-16
```

It turns out that a fast moving, high revving powerhouse consumes a ton of fuel: the interaction is statistically significant.

f)

```
\label{log_model_transform} $$ - \lim(\log(mpg) \sim cylinders + exp(displacement) + \log(horsepower) + \log(weight) + \log(acceleration summary(model_transform)) + \log(mpg) \sim cylinders + exp(displacement) + \log(horsepower) + \log(weight) + \log(acceleration summary(model_transform)) + \log(mpg) \sim cylinders + exp(displacement) + \log(horsepower) + \log(weight) + \log(acceleration summary(model_transform)) + \log(mpg) \sim cylinders + exp(displacement) + \log(horsepower) + \log(weight) + \log(acceleration summary(model_transform)) + \log(mpg) \sim cylinders + exp(displacement) + e
```

```
##
## Call:
## lm(formula = log(mpg) ~ cylinders + exp(displacement) + log(horsepower) +
      log(weight) + log(acceleration) + I(year^2) + origin, data = Auto)
##
##
## Residuals:
                                   30
##
       Min
                 1Q
                      Median
                                           Max
## -0.40259 -0.07022 -0.00125 0.06176
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      8.278e+00 3.461e-01 23.921 < 2e-16 ***
## cylinders
                     -1.515e-02
                                7.799e-03
                                            -1.942 0.05284 .
## exp(displacement) 1.922e-199 0.000e+00
                                                Inf < 2e-16 ***
                     -3.069e-01 5.805e-02 -5.287 2.09e-07 ***
## log(horsepower)
## log(weight)
                     -5.475e-01 6.743e-02 -8.119 6.46e-15 ***
## log(acceleration) -1.846e-01 5.754e-02
                                            -3.208 0.00145 **
## I(year^2)
                      1.959e-04 1.127e-05 17.385 < 2e-16 ***
## origin
                      2.401e-02 9.074e-03
                                             2.646 0.00847 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1124 on 384 degrees of freedom
## Multiple R-squared: 0.8927, Adjusted R-squared: 0.8908
## F-statistic: 456.5 on 7 and 384 DF, p-value: < 2.2e-16</pre>
```

Using a log transform of mpg proved a much better fit on its own; making additional transforms on predictor vectors, especially $\exp()$ on displacement and $\log()$ on horsepower, weight and acceleration further improved adjusted R^2 and reduced RSE

And now looking at the diagnostic plots:

```
par(mfrow=c(2,2))
plot(model_transform)

Residuals vs Fitted

Normal Q-Q

4 - 3870
```


We see that with the aforementioned transforms on our response and predictor variables, the non-linear

patterns on residuals greatly decreased (on the residuals vs fitted plot). Deviation of residuals from the straight line on Normal Q-Q plot also decreased, signifying more normally distributed residuals

Problem 10

Exercise 14 (p. 125)

a)

```
set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100)/10
y = 2 + 2*x1 + 0.3*x2 + rnorm(100)</pre>
```

Form of the model and regression coefficients

$$Y = 2 + 2x_1 + 0.3 x_2 + 8$$
 $B_0 = 2$
 $B_1 = 2$
 $B_3 = 0.3$

Figure 3: problem 10a

Per 3.36 in the book, the form has a quadratic shape but model is still linear

b)

```
print(cor(x1, x2))

## [1] 0.8351212

model <- lm(x2~x1)
plot(x1, x2)
abline(model, col='blue')</pre>
```


c)

```
model \leftarrow lm(y\sim x1+x2)
coef(model)
##
   (Intercept)
                                      x2
                         x1
      2.130500
                   1.439555
                                1.009674
summary(model)
##
## Call:
   lm(formula = y \sim x1 + x2)
##
##
##
  Residuals:
##
                 1Q Median
                                  3Q
       Min
                                         Max
   -2.8311 -0.7273 -0.0537
                             0.6338
                                      2.3359
##
##
##
   Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                              0.2319
                                       9.188 7.61e-15 ***
##
   (Intercept)
                  2.1305
## x1
                  1.4396
                              0.7212
                                       1.996
                                                0.0487 *
                  1.0097
                                       0.891
##
   x2
                              1.1337
                                                0.3754
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
## F-statistic: 12.8 on 2 and 97 DF, p-value: 1.164e-05
```

Only B0 is close to the true coefficients. B1 and B2 are nontrivially divergent from true coefficient values, with large std. error. We can marginally reject the null hypothesis for B1 as its p-value is below 5%. However, the p-value for B2 is quite high, so we cannot reject the null hypothesis.

d)

Coefficients:

(Intercept)

x2

##

2.3899

2.8996

```
model_x1only <- lm(y~x1)</pre>
summary(model_x1only)
##
## Call:
## lm(formula = y ~ x1)
##
## Residuals:
##
        Min
                   1Q
                        Median
## -2.89495 -0.66874 -0.07785 0.59221 2.45560
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                  2.1124
                              0.2307
                                       9.155 8.27e-15 ***
## (Intercept)
                  1.9759
                              0.3963
                                       4.986 2.66e-06 ***
## x1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared: 0.2024, Adjusted R-squared: 0.1942
## F-statistic: 24.86 on 1 and 98 DF, p-value: 2.661e-06
Std error is relatively low here as a ratio of the coefficient estimate compared to the multiple linear regression
case in 10.c. P-value is very low, thus we can reject the null-hypothesis of B1=0.
e)
model_x2only \leftarrow lm(y~x2)
summary(model_x2only)
##
## Call:
## lm(formula = y \sim x2)
##
## Residuals:
##
                   1Q
                        Median
                                      3Q
                                               Max
  -2.62687 -0.75156 -0.03598 0.72383
                                          2.44890
##
```

Again, std error is relatively low here as a ratio of the coefficient estimate compared to the multiple linear regression case in 10.c. P-value is very low, thus we can reject the null-hypothesis of B2=0.

12.26 < 2e-16 ***

4.58 1.37e-05 ***

Estimate Std. Error t value Pr(>|t|)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

0.1949

0.6330

Residual standard error: 1.072 on 98 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.1679
F-statistic: 20.98 on 1 and 98 DF, p-value: 1.366e-05

f)

The results do not contradict each other. From 10.b, we can see that x1 and x2 have significant collinearity and increase together. In a regression problem, this can cause problems due to the difficulty of separating out the individual effects of collinear predictors on the response.

```
\mathbf{g})
```

```
x1_{new} \leftarrow c(x1, 0.1)
x2_{new} \leftarrow c(x2, 0.8)
y_{new} \leftarrow c(y,6)
print(cor(x1_new, x2_new))
## [1] 0.7392279
model = lm(x2_new~x1_new)
plot(x1_new, x2_new)
abline(model, col='blue')
                     0
      Ö
                                                                                       0
                                                                                              0
      9.0
                                                                                      0
                                                                                         0
                                                                                          00
x2_new
      0.4
                                                                                        0
                              0
                                                                                       0
                              0
                                                                         0
      0.2
                     0
                                                                   0
                                                                        0
                              000
      0.0
                   0
               0
                            оо o
                0
            0.0
                             0.2
                                             0.4
                                                             0.6
                                                                             0.8
                                                                                              1.0
                                                  x1_new
```

```
model <- lm(y_new~x1_new+x2_new)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = y_new ~ x1_new + x2_new)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      3Q
                                              Max
##
   -2.73348 -0.69318 -0.05263
                                0.66385
                                          2.30619
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                 2.2267
                            0.2314
                                     9.624 7.91e-16 ***
## x1_new
                 0.5394
                            0.5922
                                     0.911 0.36458
## x2 new
                 2.5146
                            0.8977
                                     2.801 0.00614 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared: 0.2188, Adjusted R-squared: 0.2029
## F-statistic: 13.72 on 2 and 98 DF, p-value: 5.564e-06
model_x1only <- lm(y_new~x1_new)</pre>
summary(model_x1only)
##
## Call:
## lm(formula = y_new ~ x1_new)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -2.8897 -0.6556 -0.0909 0.5682 3.5665
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                     9.445 1.78e-15 ***
## (Intercept)
                 2.2569
                            0.2390
                 1.7657
                            0.4124
                                     4.282 4.29e-05 ***
## x1 new
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared: 0.1562, Adjusted R-squared: 0.1477
## F-statistic: 18.33 on 1 and 99 DF, p-value: 4.295e-05
model_x2only <- lm(y_new~x2_new)</pre>
summary(model_x2only)
##
## Call:
## lm(formula = y_new ~ x2_new)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    3Q
## -2.64729 -0.71021 -0.06899 0.72699
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.3451
                            0.1912 12.264 < 2e-16 ***
## x2_new
                 3.1190
                            0.6040
                                     5.164 1.25e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared: 0.2122, Adjusted R-squared: 0.2042
## F-statistic: 26.66 on 1 and 99 DF, p-value: 1.253e-06
```

By adding this point, the amount of response variability explained by the multiple linear regression model improves: adjusted R^2 went from 0.21 to 0.27. Here x1_new is no longer a statistically significant predictor.

The p-value for x2_new shifts down and we can reject the null hypothesis that B2=0.

In the both cases of simple linear regression using only either x1_new or x2_new as predictor, the null hypothesis can be rejected based on p-value.

plot(model, which=5)

The new point, labeled 101, becomes a high leverage point in the first model using multiple linear regression with both x1 and x2 as predictors.

plot(model_x1only, which=5)

Point 101 is also relatively high leverage in the x2 only model, but is still within Cook's distance.

plot(predict(model), rstudent(model))

No possible outliers in multiple linear regression model using both x1 and x2

Possible outlier lying outside of +3 studentised residual in simple linear regression model using x1

No outliers detected for simple linear regression model using $\mathbf{x}2$