

planetmath.org

Math for the people, by the people.

4 surface bundles

Canonical name 4SurfaceBundles
Date of creation 2013-03-22 16:01:40
Last modified on 2013-03-22 16:01:40
Owner juanman (12619)
Last modified by juanman (12619)

Numerical id 12

Author juanman (12619)

Entry type Feature Classification msc 55R10

Related topic SurfaceBundleOverTheCircle

Four Kleinbottle bundles $K \subset M \to S^1$.

There are four because the extended mapping class group for the genus two, non orientable surface K the Klein bottle, is $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

This group is generated by a Dehn-twist τ about the unique two-sided curve in K and by the y-homeomorphism, both representing two isotopy classes of order two.

These bundles are

- $K \times S^1$, the trivial Cartesian product
- $K \times_{\tau} S^1$,
- $K \times_y S^1 = K \times I^O \cup_{(0,1)} M \ddot{o} \times S^1$,
- $K \times_{y\tau} S^1$.

Where $K \times I^O$ is the orientable twisted I-bundle over K, among the three I-bundles over K. The symbol $\cup_{(0,1)}$ is used to indicate that, the meridian in $\partial(M\ddot{o}\times S^1)$ is attached to the meridian of $\partial(K \times I^O)$, both 2-tori. $M\ddot{o}$ is the Möbius band.

Now, since those monodromies are periodic then they are also homeomorphic respectively to the Seifert fiber spaces

- $\bullet \ (NnI, 2|0) = K \times S^1,$
- $(NnI, 2|1) = (K \times S^1 \setminus intW) \cup_{(1,1)} W$,
- $(NnII, 2|0) = K \times_y S^1 = K \times I^O \cup_{(0,1)} M\ddot{o} \times S^1$ and
- $(NnII, 2|1) = (K \times_u S^1 \setminus intW) \cup_{(1,1)} W$

Where W is a solid torus in the space and $\cup_{(1,1)}$ is the Dehn surgery: meridian of ∂W to the longitude of $\partial (K \times S^1 \setminus \text{int} W)$.

The non trivial homeomorphisms were given by Per Orlik and Frank Raymond, in 1969.