

Master in Computer Vision Barcelona

Image Classification

Ramon Baldrich

Artificial Intelligence in Computer Vision

Machine learning for image classification:

Data driven methods: Deep Convolutional Networks: 3 sessions

From hand-crafted to learnt features

Fine tuning of pre-trained CNNs

Training a CNN from scratch

Xception 0.92

configuration	train accuracy	test accuracy
frozen backbone	.98	.893
exit flow	1	.924
block 8	1	.926
block 7	1	.924
block 6	.97	.931
block 5	1	.926
block 4	1	.920
block 3	1	.917
block 2	1	.931
block 1	1	. 93 0
train whole model	V	.909

train accuracy

configuration

Dropout

	accuracy	loss
raining (baseline)	0.901	0.448
testing (baseline)	0.92	0.431
training (optuna)	0.98	0.07
testing (optuna)	0.979	0.09

We saw how in general it is better to finetune some of the feature extractor's layers on our dataset, instead of keeping it entirely frozen.

test accuracy

.887

Nevertheless, it is not advisable to totally unfreeze it.

.989

VGG16 0.89

ResNet50 ??

Better use train/val loss

Test accuracy after training			Added Dropout after every conv	
Dropped Blocks	Accuracy	Loss	Accuracy	Loss
50 pp 1	0.5717	1.2997	0.5992	1.2404
100 000 1000 1000 1000 1000 1000 1000	0.7954	0.6399	0.8020	0.6324
40 gr 2	0.8899	0.3545	0.8824	0.3846
100 100 100 100 100 100 100 100 100 100	0.9380	0.2162	0.9419	0.2098
1000 1 0000 2 1000 3 1000 5 10	0.9318	0.2031	0.9274	0.2067

Inception v3 0.85-ish

Used Augmentation	Values	Accuracy (V3)	Accuracy (V4)
Horizontal flip	True	0.843	0.885
Vertical flip	True	0.822	0.885
Rotation	30	0.854	0.823
Rotation	10	0.875	0.906
Zoom	0.2 - 52	0.375	0.865
Feature-wise center	True	0.864	0.875
Feature-wise STD norm	True	0.885	0.896
Shear range	0.2	0.885	0.875
Feature-wise center + Feature-wise STD norm	True, True	0.875	0.885
Horizontal flip + Vertical flip	True, True	0.844	0.843

InceptionResnetV2 0.92

Removed Partition of Validation blocks Accuracy (per group) 0 87.6 4 36 1|2|1 50 M 8 32 2|4|2 45 M 89,5 16 24 4|8|4 89,1

8|16|8

9|18|9

19 M

14 M

88.9

89,1

Removing blocks method 1:

32

36

Removing blocks method 2:

Removed group	Parameters	Validation Accuracy
Block8-s	32785384	0.92
Block17-s	5478408	0.91
Block35-s	567896	0.90

We achieved a validation accuracy of 89% with a network having 500k parameters (108 times less parameters than the original network) using only 400 training images

MobileNet 0.91

Same accuracy removing 2 blocks

~88% Validation Accurracy on small dataset

Focus on the message

https://wandb.ai/mcv-m3-g6/task 1 sweep/reports/Slides-M3-Week-4-Team-6--VmlldzozNDM0NTY1?accessToken=poxugew27pus1iukp4o5e39l53d8lrf0by30c6tugq firps0dnin4rwq7gz2tp6w

DenseNet121 0.917

Model	Epochs	Num parameters	Validation accuracy
Original	50	7M	0.9318
Original	300	7M	0.9542
Removing 1 DB (x16)	300	5M	0.941
Removing 2 DB (x24,x16)	300	1.5M	0.825
Removing 3 DB (x24,x16,x12)	300	380.000	0.52
Removing 1 DB + adding dense [1024]	300	5M	0.9393
Removing 2 DB + adding dense [1024]	300	1.5M	0.832
Removing 3 DB + adding dense [1024]	300	520.000	0.601

Dataset	Validation accuracy
MIT	0.941
MIT_small_1	0.845 5%!
MIT_small_1 data augmentation	0.895

NasNetMobile 0.913

EfficientNetB0 0.886

0.855 on small dataset

ConvNextTiny 0.934

Training set	Accuracy
MIT_small_1	0.9165
MIT_small_2	0.9318
MIT_small_3	0.9335
MIT_small_4	0.9419
MIT_training(transfer learning)	0.9343

Data aug.

After scaling down our search space the following data augmentation parameter values resulted in models with high accuracies:

- Height shift: <0.06
- Horizontal flip: True
- Rotation: <10 deg
- Shear shift: < 0.28
- Vertical flip: False
- Width shift: <0.13
- Zoom: <0.1

D.A depends on the architecture

Group	grade
1	10
2	6
3	9
4	8
5	10
6	8
7	10
8	9
9	9
10	9

EXTRA: Interpretability - Class Activation Maps

EXTRA: Interpretability - Errors analysis

(Ground truth => Network prediction)

Opencountry => Mountain

Tallbuilding => Highway

of other classes in the image. This is very clear with opencountry.

Coast => Tallbuilding

Forest => Mountain

Opencountry => Coast

Opencountry => Inside_city

