Doc. Ref. AMI

Appl. No. 09/030,832

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/12, C07K 13/00, C12N 5/10,

A1

(11) International Publication Number:

WO 94/13799

G01N 33/68

(43) International Publication Date:

23 June 1994 (23.06.94)

(21) International Application Number:

PCT/GB93/02506

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

Published

(22) International Filing Date:

7 December 1993 (07.12.93)

(30) Priority Data:

9225776.5 9318528.8 10 December 1992 (10.12.92) GB 7 September 1993 (07.09.93)

With international search report.

(71) Applicant (for all designated States except US): MERCK SHARP & DOHME LIMITED [GB/GB]; Hertford Road, Hoddesdon, Hertfordshire EN11 9BU (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): HADINGHAM, Karen, Louise [GB/GB]; Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). WHITING, Paul, John [GB/GB]; Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).
- (74) Agent: THOMPSON, John; Merck & Co., Inc., European Patent Department, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

(54) Title: STABLY TRANSFECTED CELL LINES EXPRESSING GABA-A RECEPTORS

(57) Abstract

The present invention relates to a stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor, which receptor comprises the $\alpha_1\beta_3\gamma_2$, $\alpha_2\beta_3\gamma_2$, $\alpha_5\beta_3\gamma_2$, $\alpha_1\beta_1\gamma_2s$, $\alpha_1\beta_2\gamma_2$, $\alpha_3\beta_3\gamma_2$ or $\alpha_6\beta_3\gamma_2$ subunit combination; to membrane preparations derived from cultures thereof; and to the use of the cell line in designing and developing GABAA receptor subtype-selective medicaments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU-	Hungary	NO	Norway
BG	Bulgaria	IE.	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgysten	RU	Russian Federation
CF.	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CB	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany .	MC	Monaco	TT	Trimidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
PI	Pinland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
CA	Cohen		•		

- 1 -

STABLY TRANSFECTED CELL LINES EXPRESSING GABA-A RECEPTORS

This invention concerns a cell line, and in 5 particular relates to a stable cell line capable of expressing human or animal GABAA receptors. invention further concerns the cloning of novel cDNA sequences encoding particular subunits of the human GABAA receptor. In addition, the invention relates to the use of the cell line in a screening technique for the design and development of subtype-specific medicaments.

10

15

20

25

30

Gamma-amino butyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous It mediates fast synaptic inhibition by opening the chloride channel intrinsic to the ${\tt GABA}_{A}$ receptor. This receptor comprises a multimeric protein of molecular size 230-270 kDa with specific binding sites for a variety of drugs including benzodiazepines, barbiturates and β -carbolines, in addition to sites for the agonist ligand GABA (for reviews see Stephenson, Biochem. J., 1988, <u>249</u>, 21; Olsen and Tobin, <u>Faseb J.</u>, 1990, <u>4</u>, 1469; and Sieghart, Trends in Pharmacol. Sci., 1989, 10, 407).

Molecular biological studies demonstrate that the receptor is composed of several distinct types of subunit, which are divided into four classes $(\alpha, \beta, \chi,$ and δ) based on their sequence similarities. To date, six types of α (Schofield et al., Nature (London), 1987, 328, 221; Levitan et al., Nature (London), 1988, 335, 76; Ymer <u>et al</u>., <u>EMBO J.</u>, 1989, <u>8</u>, 1665; Pritchett & Seeberg, J. Neurochem., 1990, 54, 802; Luddens et al., Nature (London), 1990, 346, 648; and Khrestchatisky et al., Neuron, 1989, $\underline{3}$, 745), three types of β (Ymer et al., EMBO J., 1989, 8, 1665), two types of / (Ymer et al., EMBO J., 1990, 9, 3261; and Shivers et al., Neuron, 1989, 3, 327) and one δ subunit (Shivers et al., Neuron, 1989,

35 3, 327) have been identified.

5

- 2 -

The differential distribution of many of the subunits has been characterised by in situ hybridisation (Sequier et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 7815; Malherbe et al., J. Neurosci., 1990, 10, 2330; and Shivers et al., Neuron, 1989, 3, 327) and this has permitted it to be speculated which subunits, by their co-localisation, could theoretically exist in the same receptor complex.

Various combinations of subunits have been co-10 transfected into cells to identify synthetic combinations of subunits whose pharmacology parallels that of bona fide GABA receptors in vivo (Pritchett et al., Science, 1989, <u>245</u>, 1389; Malherbe <u>et al.</u>, <u>J. Neurosci.</u>, 1990, <u>10</u>, 2330; Pritchett and Seeberg, J. Neurochem., 1990, 54, 15 1802; and Luddens et al., Nature (London), 1990, 346, 648). This approach has revealed that, in addition to an α and β subunit, either f_1 or f_2 (Pritchett et al., Nature (London), 1989, 338, 582; Ymer et al., EMBO J., 1990, 9, 3261; and Malherbe et al., J. Neurosci., 1990, 20 10, 2330) or \$\langle_3\$ (Herb et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 1433; Knoflach et al., FEBS Lett., 1991, 293, 191; and Wilson-Shaw et al., FEBS Lett., 1991, 284, 211) is also generally required to confer benzodiazepine sensitivity, and that the benzodiazepine pharmacology of 25 the expressed receptor is largely dependent on the identity of the α and χ subunits present. Receptors containing a δ subunit (i.e. $\alpha\beta\delta$) do not appear to bind benzodiazepines (Shivers et al., Neuron, 1989, 3, 327). Combinations of subunits have been identified which 30 exhibit the pharmacological profile of a BZ₁ type receptor $(\alpha_1\beta_1)_2$ and a BZ₂ type receptor $(\alpha_2\beta_1)_2$ or $\alpha_3\beta_1/2$, Pritchett et al., Nature (London), 1989, 338, 582), as well as two GABAA receptors with a novel pharmacology, $\alpha_5\beta_2\gamma_2$ (Pritchett and Seeberg, J. Neurochem., 1990, 54, 1802) and $\alpha_6\beta_2V_2$ (Luddens et al.; 35 Nature (London), 1990, 346, 648). Although the pharmacology of these expressed receptors appears similar

5

10

15

20

25

30

35

- 3 -

to that of those identified in brain tissue by radioligand binding, it has nonetheless not been shown that these receptor subunit combinations exist <u>in vivo</u>.

The present invention is concerned with the production of permanently transfected cells containing the GABAA receptor, which will be useful for screening for drugs which act on this receptor. The GABAA receptor has previously been expressed in Xenopus oocytes (Sigel et al., Neuron, 1990, 5, 703-711) and in transiently transfected mammalian cells (Pritchett et al., Science, 1989, 245, 1389-1392). However, both of those systems involve transient expression and are unsuitable for screening purposes.

We have now achieved the stable expression of the receptor.

Accordingly, the present invention provides a stably co-transfected eukaryotic cell line capable of expressing a ${\sf GABA}_A$ receptor, which receptor comprises at least one alpha, one beta and one gamma subunit.

This has been achieved by co-transfecting cells with three expression vectors, each harbouring cDNAs encoding for an α , β or χ GABAA receptor subunit. In a further aspect, therefore, the present invention provides a process for the preparation of a eukaryotic cell line capable of expressing a GABAA receptor, which comprises stably co-transfecting a eukaryotic host cell with at least three expression vectors, one such vector harbouring the cDNA sequence encoding for an alpha, another such vector harbouring the cDNA sequence encoding for a beta, and a third such vector harbouring the cDNA sequence encoding for a gamma $GABA_A$ receptor subunit. The stable cell-line which is established expresses an αβί GABAA receptor. Each receptor thereby expressed, comprising a unique combination of α , β and χ subunits, will be referred to hereinafter as a GABAA receptor "subunit combination". Pharmacological and electrophysiological data confirm that the recombinant

5

10

15

20

25

30

35

- 4 -

 $\alpha\beta \not \mid$ receptor expressed by the cells of the present invention has the properties expected of a native GABAA receptor.

Expression of the GABAA receptor may be accomplished by a variety of different promoterexpression systems in a variety of different host cells. The eukaryotic host cells suitably include yeast, insect and mammalian cells. Preferably the eukaryotic cells which can provide the host for the expression of the receptor are mammalian cells. Suitable host cells include rodent fibroblast lines, for example mouse Ltk, Chinese hamster ovary (CHO) and baby hamster kidney (BHK); HeLa; and HEK293 cells. It is necessary to incorporate at least one α , one β and one χ subunit into the cell line in order to produce the required receptor. Within this limitation, the choice of receptor subunit combination is made according to the type of activity or selectivity which is being screened for. For example, benzodiazepines (designated BZ) represent one class of drugs which act upon the GABAA receptor. The presence of an α_1 subunit is specific for a class of benzodiazepines having the pharmacology designated BZ₁; whereas α_2 to α_5 define different pharmacological profiles, broadly designated as BZ_2 . The type of β subunit is not critical in defining the class of benzodiazepine, although a β subunit is required. The / subunit is also important in defining BZ selectivity. It is likely that differentiation between α subunit selectivity is conferred by the identity of the particular / subunit present.

In order to employ this invention most effectively for screening purposes, it is preferable to build up a library of cell lines, each with a different combination of subunits. Typically a library of 5 or 6 cell line types is convenient for this purpose. Preferred subunit combinations include: $\alpha_1\beta_1 / 2$; $\alpha_1\beta_2 / 2$;

- 5 -

In a particular embodiment, the present invention provides a stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor comprising the $\alpha_1\beta_3 \not\mid_2$ subunit combination.

In a still further embodiment, the present invention provides a stably co-transfected eukaryotic cell line capable of expressing a human GABA_A receptor comprising the $\alpha_5\beta_3\sqrt{2}$ subunit combination.

In yet further embodiments, the present invention provides stably co-transfected eukaryotic cell lines capable of expressing human GABAA receptors comprising the $\alpha_1\beta_1/2_S$, $\alpha_1\beta_2/2_2$, $\alpha_3\beta_3/2_2$ and $\alpha_6\beta_3/2_2_2$ subunit combinations.

The DNAs for the receptor subunits can be obtained from known sources, and are generally obtained as specific nucleotide sequences harboured by a standard cloning vector such as those described, for example, by Maniatis et al. in Molecular Cloning, A Laboratory

Manual, Cold Spring Harbor Press, New York, 2nd edition, 1989. Preferably the cDNA sequences are derived from the human gene. However, for screening purposes, cDNAs from other species are also suitable, such as bovine or rat DNA. Known sources of GABAA receptor subunit cDNAs are as follows:

```
\alpha_1 bovine ) Schofield et al., Nature, 1987, 328,
```

5

10

 $[\]beta_1$ bovine) 221-227.

³⁵ α_1 human) Schofield et al., FEBS Lett., 1989, 244,

 $[\]beta_1$ human) 361-364.

- 6 -

			- 6 -
	α ₂ rat		Khrestchatisky et al., J. Neurochem.,
			1991, <u>56</u> , 1717.
	α ₂ bovine)	Levitan <u>et al</u> ., <u>Nature</u> , 1988, <u>335</u> ,
5	α_3 bovine		
	5	•	
	α _Λ rat		Wisden <u>et al</u> ., <u>FEBS Lett</u> ., 1991, <u>289</u> , 227.
	7		
	α ₄ bovine		Ymer <u>et al.</u> , <u>FEBS Lett</u> ., 1989, <u>258</u> ,
10	7		119-122.
	α ₅ rat		Pritchett and Seeburg,
	3		J. Neurochem., 1990, <u>54</u> , 1802-1804.
15	α _c rat)	Luddens <u>et al</u> ., <u>Nature</u> , 1990, <u>346</u> ,
	α ₆ bovine		•
	-6	,	
	β_2 bovine)	Ymer <u>et al</u> ., <u>EMBO J.</u> , 1989, <u>8</u> , 1665-1670.
	β_2 rat		
20	β_3 bovine		
	β_3 rat		
	β_3 human		Wagstaff et al., Am. J. Hum. Genet., 1991,
	•		<u>49</u> , 330.
25			
	\mathcal{Y}_1 human)	Ymer <u>et al</u> ., <u>EMBO J.</u> , 1990, <u>9</u> , 3261-3267.
•	∤ ₁ rat		
	y_1 bovine		
	0.1	•	
30	∤ ₂ human		Pritchett <u>et al</u> ., <u>Nature</u> , 1989, <u>338</u> ,
	0 2		582-585.
	χ_2 bovine		Whiting <u>et al</u> ., <u>Proc. Natl. Acad.</u>
	82 2012110		Sci. USA, 1990, <u>57</u> , 9966-9970.
35			<u>, 30,</u> 1330, <u>21,</u> 3300 3310.
55	γ_3 rat		Herb et al Proc Natl Acad Coi UCA
	63 Tac		Herb et al., Proc. Natl. Acad. Sci. USA,
			1992, <u>89</u> , 1433; and

- 7 -

Knoflach et al., FEBS Lett., 1991, 293,
191.

//3 mouse Wilson-Shaw et al., FEBS Lett., 1991, 284,
211.

δ rat Shivers et al., Neuron, 1989, 3, 327.

5

25

30

35

Certain cDNA sequences encoding various 10 subunits of the human GABAA receptor have hitherto been unavailable. These include in particular the sequences encoding the α_2 , α_3 , α_5 , α_6 and β_2 subunits, which nucleotide sequences are accordingly novel. We have now ascertained the cDNA sequences of the α_2 , α_3 , α_5 , α_6 and β_2 subunits of the human GABAA receptor. These 15 nucleotide sequences, together with the deduced amino acid sequences corresponding thereto, are depicted in Figures 2 to 6 of the accompanying drawings. The present invention accordingly provides in several additional aspects DNA molecules encoding the α_2 , α_3 , α_5 , α_6 and β_2 20 subunits of the human GABAA receptor comprising all or a portion of the sequences depicted in Figures 2, 3, 4, 5 and 6 respectively, or substantially similar sequences.

The sequencing of the novel cDNA molecules in accordance with the invention can conveniently be carried out by the standard procedure described in accompanying Example 3; or may be accomplished by alternative molecular cloning techniques which are well known in the art, such as those described by Maniatis et al. in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, New York, 2nd edition, 1989.

In another aspect, the invention provides a recombinant expression vector comprising the nucleotide sequence of a GABAA receptor subunit together with additional sequences capable of directing the synthesis of the said GABAA receptor subunit in cultures of stably co-transfected eukaryotic cells.

5

10

15

20

25

30

35

- 8 -

The term "expression vectors" as used herein refers to DNA sequences that are required for the transcription of cloned copies of recombinant DNA sequences or genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express eukaryotic genes in a variety of hosts such as bacteria, blue-green algae, yeast cells, insect cells, plant cells and animal cells. Specifically designed vectors allow the shuttling of DNA between bacteria-yeast, bacteriaplant or bacteria-animal cells. An appropriately constructed expression vector should contain: an origin of replication for autonomous replication in host cells, selective markers, a limited number of useful restriction enzyme sites, a high copy number, and strong promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.

The term "cloning vector" as used herein refers to a DNA molecule, usually a small plasmid or bacteriophage DNA capable of self-replication in a host organism, and used to introduce a fragment of foreign DNA into a host cell. The foreign DNA combined with the vector DNA constitutes a recombinant DNA molecule which is derived from recombinant technology. Cloning vectors may include plasmids, bacteriophages, viruses and cosmids.

The recombinant expression vector in accordance with the invention may be prepared by inserting the nucleotide sequence of the chosen GABAA subunit into a suitable precursor expression vector (hereinafter referred to as the "precursor vector") using conventional recombinant DNA methodology known from the art. The precursor vector may be obtained commercially, or

5

10

15

20

25

30

35

- 9 -

constructed by standard techniques from known expression vectors. The precursor vector suitably contains a selection marker, typically an antibiotic resistance gene, such as the neomycin or ampicillin resistance gene. The precursor vector preferably contains a neomycin resistance gene, adjacent the SV40 early splicing and polyadenylation region; an ampicillin resistance gene; and an origin of replication, e.g. pBR322 ori. The vector also preferably contains an inducible promoter, such as MMTV-LTR (inducible with dexamethasone) or metallothionin (inducible with zinc), so that transcription can be controlled in the cell line of this invention. This reduces or avoids any problem of

One suitable precursor vector is pMAMneo, available from Clontech Laboratories Inc. (Lee et al., Nature, 1981, 294, 228; and Sardet et al., Cell, 1989, 56, 271). Alternatively the precursor vector pMSGneo can be constructed from the vectors pMSG and pSV2neo as described in Example 1 herein.

toxicity in the cells because of the chloride channel

intrinsic to the GABAA receptor.

The recombinant expression vector of the present invention is then produced by cloning the GABAA receptor subunit cDNA into the above precursor vector. The required receptor subunit cDNA is subcloned from the vector in which it is harboured, and ligated into a restriction enzyme site, e.g. the HindIII site, in the polylinker of the precursor vector, for example pMAMneo or pMSGneo, by standard cloning methodology known from the art, and in particular by techniques analogous to those described in Example 1, step (b) herein. Before this subcloning, it is often advantageous, in order to improve expression, to modify the end of a subunit cDNA with additional 5' untranslated sequences, for example by modifying the 5' end of the χ_{2L} subunit DNA by addition of 5' untranslated region sequences from the α_1 subunit. DNA.

- 10 -

One suitable expression vector of the present invention is illustrated in Fig. 1 of the accompanying drawings, in which R represents the nucleotide sequence of a given alpha, beta or gamma subunit of the GABAA receptor, and the remainder of the expression vector depicted therein is derived from the precursor vector pMSGneo and constructed as described in accompanying Example 1, steps (a) and (b).

For each cell line of the present invention, three such vectors will be necessary, one containing an α subunit, one containing a β subunit, and the third containing a β subunit.

10

15

20

25

30

35

Cells are then co-transfected with the desired combination of three expression vectors. There are several commonly used techniques for transfection of eukaryotic cells in vitro. Calcium phosphate precipitation of DNA is most commonly used (Bachetti et al., Proc. Natl. Acad. Sci. USA, 1977, 74, 1590-1594; Maitland et al., Cell, 1977, 14, 133-141), and represents a favoured technique in the context of the present invention.

A small percentage of the host cells takes up the recombinant DNA. In a small percentage of those, the DNA will integrate into the host cell chromosome. Because the neomycin resistance gene will have been incorporated into these host cells, they can be selected by isolating the individual clones which will grow in the

presence of neomycin. Each such clone is then tested to identify those which will produce the receptor. This is achieved by inducing the production, for example with dexamethasone, and then detecting the presence of receptor by means of radioligand binding.

In a further aspect, the present invention provides protein preparations of GABAA receptor subunit combinations, especially human GABAA receptor subunit combinations, derived from cultures of stably transfected eukaryotic cells. The invention also provides

- 11 -

preparations of membranes containing subunit combinations of the GABAA receptor, especially human GABAA receptor subunit combinations, derived from cultures of stably transfected eukaryotic cells. In particular, the protein preparations and membrane preparations according to the invention will suitably contain the $\alpha_1\beta_1\chi_{2L}$, $\alpha_1\beta_3\chi_2$, $\alpha_2\beta_3\beta_2$, $\alpha_5\beta_3\beta_2$, $\alpha_1\beta_1\beta_2S$, $\alpha_1\beta_2\beta_2$, $\alpha_3\beta_3\beta_2$ or $\alpha_6\beta_3\beta_2$ subunit combinations of the human GABAA receptor, and will preferably contain a human GABAA receptor consisting of the $\alpha_1\beta_1\gamma_2$, $\alpha_1\beta_3\gamma_2$, $\alpha_2\beta_3\gamma_2$, $\alpha_5\beta_3\gamma_2$, $\alpha_1\beta_1\gamma_2$, $\alpha_1\beta_2\gamma_2$, $\alpha_3\beta_3 \chi_{2S}$ or $\alpha_6\beta_3 \chi_{2S}$ subunit combinations. In an especially preferred embodiment, the invention provides cell membranes containing a human GABAA receptor consisting of the $\alpha_1\beta_1/2L$, $\alpha_1\beta_3/2S$, $\alpha_2\beta_3/2S$, $\alpha_5\beta_3/2S$, $\alpha_1\beta_1 \lambda_{2S}$, $\alpha_1\beta_2 \lambda_{2S}$, $\alpha_3\beta_3 \lambda_{2S}$ or $\alpha_6\beta_3 \lambda_{2S}$ subunit combinations isolated from stably transfected mouse Ltk fibroblast cells.

10

15

20

25

30

35

The cell line, and the membrane preparations therefrom, according to the present invention have utility in screening and design of drugs which act upon the GABAA receptor, for example benzodiazepines, barbiturates, β -carbolines and neurosteroids. The present invention accordingly provides the use of the cell line described above, and membrane preparations derived therefrom, in screening for and designing medicaments which act upon the GABAA receptor. particular interest in this context are molecules capable of interacting selectively with GABAA receptors made up of varying subunit combinations. As will be readily apparent, the cell line in accordance with the present invention, and the membrane preparations derived therefrom, provide ideal systems for the study of structure, pharmacology and function of the various GABAA receptor subtypes.

The following non-limiting Examples illustrate the present invention.

- 12 -

EXAMPLE 1

PREPARATION OF $\alpha_1\beta_1\chi_{2L}$ TRANSFECTED CELLS

5

25

30

35

a) Construction of eukaryotic expression vector pMSGneo The approx. 2500 base pair HindIII-EcoRI fragment of the vector pMSG (purchased from Pharmacia Biosystems Limited, Milton Keynes, United Kingdom), 10 containing the gpt structural gene and SV40 polyadenylation signals was replaced by the approx. 2800 base pair HindIII-EcoRI fragment of pSV2neo (Southern, P.J. and Berg, P.J., Molecular and Applied Genetics, 1, 327-341, 1982) containing the neomycin resistance gene Neo^r and SV40 polyadenylation signals. The EcoRI and 15 HindIII sites were then removed by restriction digesting, blunt ending with klenow polymerase, and religating. EcoRI and HindIII cloning sites were then inserted at the XhoI and SmaI sites of the polylinker by conventional 20 techniques using EcoRI and HindIII linkers.

b) Cloning of subunit cDNAs into pMSGneo

Bovine α_1 and β_1 GABAA receptor cDNAs were obtained from the Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge (Scholfield, P. et al. Nature, 328, 221-227, 1987). Bovine χ_2 cDNA was cloned by the method of Whiting, P. et al. (Proc. Natl. Acad. Sci. USA, 87, 9966-9970, 1990). Bovine α_1 was subcloned from pbGR α sense by digestion with EcoRI, blunt ending the DNA with klenow polymerase, addition of HindIII linkers by ligation, digestion with HindIII and ligation into the HindIII site of pMSGneo. Bovine β_1 was subcloned from pbGR β sense by restriction digestion with EcoRI (partial digestion), klenow polymerase blunt ending, ligation of HindIII linkers, restriction digestion with HindIII and ligation into HindIII site of pMSGneo. Before subcloning into pMSGneo, the bovine χ_2 cDNA was modified from the

- 13 -

published sequence as follows. The 5' untranslated region of the bovine α_1 cDNA (bases 60-200 of the published sequence) was added to the 5' end of the published χ_2 sequence by amplifying the α_1 untranslated region using polymerase chain reaction, and then subcloning the product into the 5' BamHI (site in the polylinker of the Bluescript Sk cloning vector; Bluescript vector purchased from Stratagene, San Diego, U.S.A.) HindIII sites of the χ_2 cDNA. The modified χ_2 cDNA was then subcloned into pMSGneo by digestion with XbaI (site in the polylinker of the cloning vector), blunt ending with klenow polymerase, ligation of XhoI linkers, digestion with XhoI (site in the polylinker of the cloning vector), and ligation into XhoI site of pMSGneo.

Ltk cells were obtained from the Salk

c) Co-transfection of mouse Ltk cells

5

10

15

Institute for Biological Studies, San Diego, California. 20 Cells were grown at 37°C, 5-8% CO_2 , in Modified Eagles Medium containing penicillin, streptomycin and 10% fetal calf serum. The expression vector harbouring the $GABA_{A}$ receptor subunit DNAs for co-transfection was prepared by a standard protocol (Chen, C. and Okayama, H., BioTechniques, 6, 632-638, 1988). For co-transfection, 25 Ltk cells were plated in dishes (approx. 2x105 cells/dish) and grown overnight. The transfection was performed by calcium phosphate precipitation using a kit (purchased from 5 Prime -> 3 Prime Products, Westchester, 30 Pennsylvania). Co-transfection was performed according to manufacturers' instructions, using $5\mu g$ of each subunit DNA construct per 10cm dish of cells. After 2 days in culture the cells were divided 1:8 into culture medium containing lmg/ml neomycin [Geneticin (obtainable from Gibco BRL, Paisley, Scotland, U.K.)]. After a further 35 week the concentration was increased to 1.5mg/ml, and then 2mg/ml 1 week after that. Resistant clones of cells

- 14 -

were isolated and subcloned using cloning cylinders. Subclones were analysed using radioligand binding: subclones were grown in 10cm culture dishes, and when confluent changed into culture medium containing 1µM dexamethasone (obtainable from Sigma Chemical Company, Poole, Dorset, United Kingdom). 3-5 days later the cells were harvested, membranes prepared and used for radioligand binding (see Example 2, step (a) below) using the benzodiazepine antagonist ³H Ro15-1788 (obtained from New England Nuclear, Du Pont (U.K.) Ltd, Stevenage, United Kingdom). The clone expressing the highest amount of ³H Ro15-1788 binding was subcloned from a single cell by limiting dilution. The resultant clonal population of cells described below is referred to as population A.

15

10

5

EXAMPLE 2

CHARACTERIZATION OF $\alpha_1 \beta_1 \beta_{2L}$ TRANSFECTED CELLS

20

25

30

35

a) Radioligand binding

The nature of the recombinant $\alpha_1\beta_1/_{2L}$ GABAA receptors prepared as described in Example 1 was addressed by characterization of the benzodiazepine (BZ) binding pharmacology, using the BZ antagonist ^3H Ro15-1788. For radioligand binding assays, cells which had been induced by culture in dexamethasone containing medium for 3-5 days were scraped off into 50mM Tris, pH7.5, 100mM NaCl in the form of Tris buffered saline (TBS) and pelleted (20,000rpm, Sorvall RC5C centrifuge). The cell pellet was resuspended in 50mM Tris, pH7.5, homogenised using an Ultra-Turrax homogeniser and then pelleted as above. This was repeated once more, and the cells then resuspended in TBS (0.4ml per original 10cm dish of cells). Radioligand binding was performed in 0.1ml final volume TBS, containing 5-15 fmols of ^3H Ro15-

- 15 -

1788 binding sites. After 1 hour incubation on ice the membranes were harvested onto filters using a Brandel cell harvester, washed with cold TBS, and bound radioactivity determined by scintillation counting. The recombinant $\alpha_1\beta_1 I_{2L}$ receptors bound ³H Ro15-1788 with high affinity (KD 0.4nM), at levels of up to 200fmols/10cm dish of cells. No binding was seen to either untransfected Ltk cells, or population A cells which had not been induced by addition of dexamethasone to the culture medium, confirming that the ³H Rol5-1788 was binding to recombinant $\alpha_1\beta_1/2$ GABAA receptors. 3 H Rol5-1788 binding was inhibited by flunitrazepam, CL218872, FG8205, β CCM, zolpidem and Ro15-4513, confirming the BZ pharmacology of the recombinant receptor. Since it is established that only GABAA receptors containing an α , a β and a ζ subunit exhibit BZ binding (Pritchett, D. et al., Nature, 338, 582-585, 1989) these data confirm the nature of the recombinant $\alpha_1\beta_1/_2$ GABAA receptors expressed by population A cells.

20

25

30

35

5

10

15

b) Electrophysiology

The nature of the GABA_A receptor expressed by population A cells has been extensively characterised by electrophysiological techniques, using whole cell patch clamp. Only cells induced by culture in the presence of dexamethasone showed responses to GABA. Concentration response curves to GABA gave a log EC₅₀ of 5.2, and a Hill coefficient of 1.9. The response to GABA was potentiated by BZs flunitrazepam and CL218872, by the barbiturate pentobarbitone, and by the steroid alphaxalone. The response to GABA was antagonised by both bicuculline and picrotoxin. All these electrophysiological data confirm that the recombinant GABA_A receptor expressed by population A cells has all of the properties expected of a bona fide GABA_A receptor.

- 16 -

EXAMPLE 3

ISOLATION AND SEQUENCING OF CDNAS ENCODING HUMAN GABAA RECEPTOR α_2 , α_3 , α_5 , α_6 & β_2 SUBUNITS

5

10

15

a) cDNA libraries

cDNAs were cloned from human foetal brain (α_2 , α_3), hippocampal (α_5 , β_2) and cerebellum (α_6) lambda bacteriophage cDNA libraries. All cDNA libraries were constructed in the lambdaZAP vector, and were purchased from Stratagene (San Diego, California). For screening, the cDNA libraries were plated according to the manufacturer's instructions, at 40,000 pfu per 137 mm plate. Filter lifts were taken using Hybond N filters (Amersham) according to the manufacturer's instructions.

b) Isolation of cDNA encoding human α2 subunit

A bovine α_2 cDNA (obtained from E. Barnard, 20 Molecular Neurobiology, University of Cambridge, Hills Road, Cambridge; Levitan et al., Nature, 1988, 335, 76) was labelled to high specific activity (>1.109 cpm/μg) with ³²P by random priming and used as a probe. Library filters (8 replica filters) were prehybridised for 3-6 25 hours at 42°C in 5x SSPE (1x SSPE is 0.18M NaCl, 0.01M Na₃PO₄ [pH7.4], lmM EDTA), 5x Denhardt's solution, 100 μg/ml salmon sperm DNA, 0.1% sodium dodecyl sulphate (SDS), 30% formamide. Hybridisation was performed in the same buffer for 18 hours at 42°C, including 0.5-1.106 cpm ³²P-labelled probe per ml of hybridisation buffer. 30 Filters were washed at 55°C in 5x SSPE (2x 15 minutes) and 1x SSPE (2x 15 minutes) and exposed to Kodak XAR film for 1-3 days. Positive clones were plaque purified using standard techniques, and the Bluescript plasmid 35 (Stratagene) "rescued" according to manufacturer's instructions. cDNA clones were sequenced on both strands by standard techniques using Sequenase II enzyme (United

- 17 -

States Biochemicals). The nucleotide sequence of the cDNA encoding the human GABA_A receptor α_2 subunit, together with the deduced amino acid sequence corresponding thereto, is shown in Fig. 2 of the accompanying drawings.

c) <u>Isolation of cDNA encoding human α3 subunit</u>

5

10

15

20

25

30

35

A bovine α_3 cDNA (obtained from E. Barnard, Molecular Neurobiology, University of Cambridge, Hills Road, Cambridge; Levitan et al., Nature, 1988, 335, 76) was labelled to high specific activity with 32P by random priming and used as a probe. Library filters were prehybridised for 3-6 hours at 55°C in 5x SSPE, 5x Denhardt's solution, 0.1% SDS, 100 µg/ml salmon sperm DNA, and hybridised for 18 hours, 55°C in the same buffer, containing 0.5-lx 10⁶ cpm/ml of ³²P-labelled bovine α_3 cDNA as probe. Filters were washed and exposed to X-ray film as described above; cDNA clones were rescued and sequenced as described above. The longest α_3 cDNA clone was missing in approximately 100 bp of the 5' end of the coding region. This was obtained by PCR using as primers an oligonucleotide "anchor" primer derived from the T7 primer sequence of Bluescript vector (5'AGCGCGCGTAATACGACTCACTATAGGGCGAA3') and an oligonucleotide derived from sequence near the 5' end of the truncated \$\alpha_3\$ cDNA, containing an internal Hpal site (5'CAGCATGAATTGTTAACCTCATTGTA3'). Oligonucleotides were synthesised on an Applied Biosystems 380B synthesiser. PCR was performed as described above, and a 300bp PCR product obtained which was double digested with Hpal and Kpnl and subcloned into the similarly cut truncated α_3 cDNA to yield a full length human α_3 cDNA. The cDNA was sequenced on both strands as described above. nucleotide sequence of the cDNA encoding the human GABAA receptor α_3 subunit, together with the deduced amino acid

- 18 -

sequence corresponding thereto, is shown in Fig. 3 of the accompanying drawings.

d) Isolation of cDNA encoding human α5 subunit

5

10

15

20

30

35

A rat α_5 cDNA obtained by polymerase chain reaction (PCR) was used as a probe to screen the cDNA library. For PCR, sequences of the oligonucleotide primers were taken from the published a_5 sequences (Khrestchatisky et al., Neuron, 1989, 3, 745) and incorporated a Hind III site for subcloning purposes: 5' ATTATTCAAGCTTGCCATGGACAATGGAATGCTC3' (bp114-148); 5'GGTTTCCAGCTTACTTTGGAGAGGTAGC3' (bp1507-1535). PCR and subcloning of the PCR product into Bluescript SK-vector (Stratagene) for analysis was performed as described elsewhere (Whiting et al., Proc. Natl. Acad. Sci. USA, 1990, 87, 9966) except that rat brain cDNA was used as template. The rat α_5 cDNA was labelied with 32 P and used to screen the human hippocampal cDNA library, and positive α_5 clones rescued and sequenced as described for α_2 above. The nucleotide sequence of the cDNA encoding the human GABAA receptor α_5 subunit, together with the deduced amino acid sequence corresponding thereto, is shown in Fig. 4 of the accompanying drawings.

e) Isolation of cDNA encoding human α_6 subunit

A rat α_6 cDNA obtained by PCR was used as a probe to screen the cDNA library. PCR was performed as described above for α_5 , using oligonucleotide primers derived from the published rat α_6 sequence (Luddens et al., Nature, 1990, 346, 648) incorporating an EcoRI site for subcloning purposes: 5'GAGGAAGAATTCAGGAGGGTGACCT3' (bp48-72); 5'GAAAATAACGAATTCCAGTGTCCAGCTTT3' (bp1376-1404). The rat α_6 cDNA clone isolated by PCR was labelled with 32 P and used to screen a human cerebellum cDNA library, as described above for α_2 . Positive α_6 clones were purified, rescued and sequenced as described above. None of the cDNAs contained a complete coding

- 19 -

region. To obtain a full length cDNA 3 clones were joined together using convenient restriction sites. The nucleotide sequence of the cDNA encoding the human GABAA receptor α_6 subunit, together with the deduced amino acid sequence corresponding thereto, is shown in Fig. 5 of the accompanying drawings.

f) Isolation of cDNA encoding human β_2 subunit

5

10

15

20

25

30

35

Human β_2 cDNA was isolated using as a probe a short human β_2 cDNA obtained by PCR. PCR was performed as described above (except that the human cerebellum cDNA library was used as template), using oligonucleotide primers derived from the published rat β_2 sequence (Ymer et al., EMBO J., 1989, 8, 1665), incorporating EcoRI sites for subcloning purposes: 5' CAAAAGAATTCAGCTGAGAAAGCTGCTAATGC3' (bp1088-1119); 5' TCAGGCGAATTCTCTTTTGTGCCACATGTCGTTC3' (bp1331-1364). human β_2 clone obtained by PCR was radiolabelled with 32 P and used to screen a human hippocampal cDNA library, as described above for α_2 . The largest cDNA clone obtained lacked the 5' 500bp of the coding region of the β_2 subunit. This was obtained by PCR using as primers an oligonucleotide "anchor" primer derived from the T7 primer sequence of the Bluescript vector (5' AGCGCGCGTAATACGACTCACTATAGGGCGAA3'), and an oligonucleotide derived from sequence near the 5' end of the truncated β_2 cDNA, containing a Kpnl site (5' CATCCAGTGGGTACCTCCTTAGGT3'). PCR was performed as described above, and a 700bp PCR product obtained which was digested with kpnl and subcloned into the truncated cDNA clone (also Kpnl digested) to yield a full length human β_2 cDNA. The nucleotide sequence of the cDNA encoding the human GABA $_A$ receptor β_2 subunit, together with the deduced amino acid sequence corresponding

thereto, is shown in Fig. 6 of the accompanying drawings.

- 20 -

EXAMPLE 4

5

PREPARATION OF STABLY TRANSFECTED CELLS EXPRESSING $\alpha_1\beta_3\beta_{2S}$, $\alpha_2\beta_3\beta_{2S}$ AND $\alpha_5\beta_3\beta_{2S}$ SUBUNIT COMBINATIONS OF THE HUMAN GABA, RECEPTOR

Isolation and sequence of human α_2 and α_5 cDNAs have been described in Example 3. The sequence of human α_1 cDNA has been published previously by Schofield <u>et</u> 10 al., FEBS Lett., 1989, 244, 361. It differs from the bovine sequence at a single amino acid (trp95 in bovine α_1 ; arg in human α_1). To create a human α_1 cDNA the bovine sequence was converted to the human by site directed mutagenesis of amino acid 95 with the 15 oligonucleotide 5'GCAATGAAAATCCGGACTGGCAT3', using methods described elsewhere (K. Wafford and P. Whiting, FEBS Lett., 1992, 313, 113-117). The sequence of human χ_2 has been published previously by Pritchett et al., 20 Nature, 1989, 338, 582. A human \$\frac{1}{2}\$ cDNA was isolated by PCR using conditions described elsewhere (Whiting et al., Proc. Natl. Acad. Sci. USA, 1990, 87, 9966-9970), using human hippocampal cDNA library as template and oligonucleotide primers derived from the 5' and 3' 25 untranslated regions of the published χ_2 sequence, incorporating a Hind III restriction site: 5'GGGAGGGAAGCTTCTGCAACCAAGAGGC3', 5'ACCACATAGAAGCTTATTTAAGTGGAC3'. Sequencing indicated that the form of χ_2 used is the short form, χ_{2S} , lacking 30 the 24 bp insert in the putative cytoplasmic loop region (Whiting et al., Proc. Natl. Acad. Sci. USA, 1990, 87, 9966-9970). The sequence of human β_3 has been published by Wagstaff et al., Am. J. Hum. Genet., 1991, 41, 330-337. A human β_3 cDNA was isolated by screening a human foetal brain cDNA library (see Example 3) with a short 35 human eta_3 cDNA probe encoding the putative cytoplasmic loop domain which had been obtained using PCR.

- 21 -

Human α_1 , α_2 , α_5 , β_3 and χ_{2S} cDNAs were subcloned into the eukaryotic expression vector pMSGneo (see Example 1) using standard techniques (cf. Maniatis et al. in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, New York, 2nd Edition, 1989) and stable cell lines expressing human $\alpha_1\beta_3\chi_{2S}$, $\alpha_2\beta_3\chi_{2S}$ and $\alpha_5\beta_3\chi_{2S}$ GABAA receptors were established as described in Example 1.

10

15

5

EXAMPLE 5

PREPARATION OF STABLY TRANSFECTED CELLS EXPRESSING $\alpha_1\beta_1\delta_{2S}$, $\alpha_1\beta_2\delta_{2S}$, $\alpha_3\beta_3\delta_{2S}$ AND $\alpha_6\beta_3\delta_{2S}$ SUBUNIT COMBINATIONS OF THE HUMAN GABA_A RECEPTOR

Isolation of α_3 and α_6 cDNAs is as described in Example 3, and isolation of α_1 , β_3 and χ_{2S} cDNAs is as 20 described above in Example 4. Human eta_1 subunit cDNA was isolated by PCR from human brain cDNA as described above. Oligonucleotide primers used for the PCR were derived from the published human β_1 sequence (Schofield et al., FEBS Lett., 1989, 244, 361-364), 5' and 3' untranslated 25 regions incorporating Hind III restriction enzyme sites for subcloning:-5'TAATCAAGCTTAGTAATGTGGACAGTACAAAAT3' and 5'AAATGGAAGCTTTAGAACAGACCTCAGTGTACA3'. Human α_1 , α_3 , α_6 , β_1 , β_2 , β_3 and χ_{2S} cDNAs were subcloned into the 30 eukaryotic expression vector pMSGneo (see Example 1) using standard techniques (cf. Maniatis et al. in Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, New York, 2nd Edition, 1989) and stable cell lines expressing human $\alpha_1\beta_1 \chi_{2S}$, $\alpha_1\beta_2 \chi_{2S}$, $\alpha_3\beta_3 \chi_{2S}$ and 35 $lpha_6eta_3igstar_{2S}$ GABAA receptors were established as described in Example 1.

- 22 -SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT: (A) NAME: Merck Sharp & Dohme Limited (B) STREET: Hertford Road (C) CITY: Hoddesdon (D) STATE: Hertfordshire 10 (E) COUNTRY: England (F) POSTAL CODE (ZIP): EN11 9BU (ii) TITLE OF INVENTION: Stably transfected cell lines expressing GABA-A receptors 15 (iii) NUMBER OF SEQUENCES: 10 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk 20 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2310 base pairs 30 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

35

35

- 23 -

			(i>	()	FE	\TU	RE	:										
					(2	A)	NA	ME/	KE	Υ:	CD	S						
					(I	3)	LO	CAT	OI	N:	29	8.	. 16	83				
5																		
			(xi	.)	SEÇ	UE	NC	E C	ES	CRI	PT	IO	N:	SE	Q I	ID N	0:	1:
	GAA1	TCC	CCC (CTTG	CAGG	C G	AGCC	GGGG	c cc	TGCG	СССТ	CCC	CCTC	CGC	CCAG	CTCGGC	60	
10	CAAG	GGC	GCA 1	TTTG	CTGA	SC G	TCTG	GCGG(C CT	CTAC	CGGA	GCA	сстс	TGC	AGAG	GGCCGA	120	
	TCCT	CCA	GCC (CAGAI	GACG	C A	TGTG	ecec.	T CG	GCG	AGTG	ССТ	TGCA	GAG	AGAG	GAGTAG	180	
15	CTTG	CTG	GCT '	TTGA	ACGC	ST GI	GCGT	GGCA	G AT	ATTT	CAGA	AAG	CTTC.	AAG	AACA.	AGCTGG	240	
13	AGAA	GGG	AAG /	AGTT	ATTC	CT CI	CATA	TTCA	C C T (SCTTI	CAAC	TAC	TATT	CTI	ATTG	GGA	297	
	ATG	GAC	AAT	GGA	ATG	TTC	TCT	CCT	777	ATC	ATC	A T.C		***	CTC	CTT	7/5	
															Leu		345	
20	1			,	5		•		riie	10	net	116	LYS	ASII	15	Leu		
					Ī										13			
	стс	TTT	TGT	ATT	TCC	ата	246	TTA	TCC	ACT	CAC	777	ccc	***	754	546	707	
															Ser		393	
			-,•	20			7311	LCU	25	361	піз	rne	ыц	30		GIN		
25									2,7					20				
	ATG	CCA	ACC	AGT	TCA	ата	ΔΔΔ	GAT	GAG		AAT	CAC	880	A75	455	ATA	441	
	Met																441	
			35				-,-	40		••••	7311	лэр	45	116	****	ite		
•													7,		•			
30	TIT .	ACC	AGG	ATC	TTG	GAT	GGG	стс	TTG	GAT	GGC	TAC	GAC	AAC	AGA	CTT	489	
	Phe																	
		50					55					60						

CGG CCC GGG CTG GGA GAG CGC ATC ACT CAG GTG AGG ACC GAC ATC TAC 537

Arg Pro Gly Leu Gly Glu Arg Ile Thr Gln Val Arg Thr Asp Ile Tyr

- 24 -

	GTC	ACC	AGC	TTC	GGC	CCG	GTG	TCC	GAC	ACG	GAA	ATG	GAG	TAC	ACC	ATA	585
	Val	Thr	Ser	Phe	Gly	Pro	Val	Ser	Asp	Thr	Glu	Met	Glu	Туг	Thr	Ile	
					85					90					95		
5	GAC	GTG	111	TTC	CGA	CAA	AGC	TGG	AAA	GAT	GAA	AGG	CTT	CGG	TTT	AAG	633
	Asp	Val	Phe	Phe	Arg	Gln	Ser	Тгр	Lys	Asp	Glu	Arg	Leu	Arg	Phe	Lys	
				100					105					110			
	GGG	ccc	ATG	CAG	CGC	стс	CCT	стс	AAC	AAC	стс	стт	GCC	AGC	AAG	ATC	681
10	Gly	Pro	Het	Gln	Arg	Leu	Рго	Leu	Asn	Asn	Leu	Leu	Ala	Ser	Lys	Ile	
			115					120					125				
	TGG	ACC	CCA	GAC	ACG	TTC	TTC	CAC	AAC	GGG	AAG	AAG	TCC	ATC	GCT	CAC	729
	Тгр	Thr	Pro	Asp	Thr	Phe	Phe	His	Asn	Gly	Lys	Lys	Ser	Ile	Ala	His	
15		130					135					140					
	AAC	ATG	ACC	ACG	ccc	AAC	AAG	CTG	CTG	caa	CTG	GAG	GAC	GAC	GGC	ACC	777
	Asn	Met	Thr	Thr	Pro	Asn	Lys	Leu	Leu	Arg	Leu	Glu	Asp	Asp	Gly	Thr	
	145					150					155					160	
20																	
	CTG	СТС	TAC	ACC	ATG	CGC	TTG	ACC	ATC	TCT	GCA	GAG	TGC	ССС	ATG	CAG	825
	Leu	Leu	Tyr	Thr	Met	Arg	Leu	Thr	He	Ser	Ala	Glu	Cys	Pro	Met	Gln	
					165					170					175		
25	CTT	GAG	GAC	TTC	CCG	ATG	GAT	GCG	CAC	GCT	TGC	CCT	CTG	AAA	TTT	GGC	873
	Leu	Glu	Asp	Phe	Pro	Met	Asp	Ala	His	Ala	Cys	Рго	Leu	Lys	Phe	Gly	
				180					185					190			
	AGC	TAT	GCG	TAC	ССТ	AAT	TCT	GAA	GTC	GTT	TAC	GTC	TGG	ACC	AAC	GGC	921
30	Ser	Tyr	Ala	Туг	Pro	Asn	Ser	Glu	Val	Val	Tyr	Val	Тгр	Thr	Asn	Gly	
			195					200					205				
	TCC	ACC	AAG	TCG	GTG	GTG	GTG	GCG	GAA	GAT	GGC	TCC	AGA	CTG	AAC	CAG	969
	Ser	Thr	Lys	Ser	Val	Val	Val	Ala	Glu	Asp	Gly	Ser	Arg	Leu	Asn	Gln '	
35		210					215					220					

- 25 -

	1	AC	CAC	CTO	ATG	GGG	CAG	ACG	GTG	GGC	ACT	GAG	AAC	ATC	AGC	ACC	AGC	1017
	ī	yΓ	His	Leu	Het	Gly	Gln	Thr	Val	Gly	Thr	Glu	Asn	lle	Ser	Thr	Ser	
	2	25					230					235					240	
5																	AAG	1065
	1	hr	Gly	Glu	Туг	Thr	He	Met	Thr	Ala	His	Phe	His	Leu	Lys	Arg	Lys	
						245					250					255		
10																		1113
10	I	l e	Gly	Tyr			lle	Gln	Thr		Leu	Pro	Cys	Ile	Met	Thr	Val	
					260					265					270			
												CGG						1161
15			teu	275		vaı	Ser	Pne			Asn	Arg	Glu			Pro	Ala	
10				213					280					285				
	A	GG	ACA	GTT	TTT	GGG	GTC	ACC	ACG	GTG	cts	ACC	ATG	Arc	۸۲۲	רזר	۸۵۲	1209
												Thr						1207
			290					295					300		••••			
20																		
	A.	ГС	AGC	GCC	AGG	AAC	TCT	CTG	ССС	AAA	GTG	GCC	TAC	GCC	ACC	GCC	ATG	1257
	1	le	Ser	Ala	Arg	Asn	Ser	Leu	Рго	Lys	Val	Ala	Туг	Ala	Thr	Ala	Met	
	30)5					310					315					320	
25	G/	C	TGG	TTC	ATA	GCT	GTG	TGC	TAT	GCC	TTC	GTC	TIC	TCG	GCG	CTG	ATA	1305
	As	P	Тгр	Phe	He	Ala	Val	Cys	Туг	Ala	Phe	Val	Phe	Ser	Ala	Leu	Ile	
						325					330					335		
		_																
2.0												AGA						1353
30	Gl	u	Phe	Ala		Val	Asn	Туг	Phe		Lys	Arg	Gly	Тгр	Ala	Тгр	Asp	
					340					345					350			
	cc	c	ΔΔΔ	ΔΔΔ	פרר	TTC	GAA	CC4	cee	440	AT.							
												AAG Lys						1401
35	3.	,		355	~10	Leu	310	ald	360	LYS	116	LYS	LYS		Arg	Glu	val	
				درد					200					365				

PCT/GB93/02506

													. 0	_			
	ATA	CTA	AAT	AAG	TCA	ACA	AAC	GCT	111	ACA	ACT	GGG	AAG	ATG	TCT	CAC	1449
	He	Leu	Asn	Lys	Ser	Thr	Asn	Ala	Phe	Thr	Thr	Gly	Lys	Het	Ser	His	
		370					375					380					
5	ссс	CCA	AAC	ATT	CCG	AAG	GAA	CAG	ACC	CCA	GCA	GGG	ACG	TCG	AAT	ACA	1497
	Рго	Pro	Asn	Ile	Pro	Lys	Glu	Gln	Thr	Pro	Ala	Gly	Thr	Ser	Asn	Thr	
	385					390					395					400	
	ACC	TCA	GTC	TCA	GTA	AAA	CCC	TCT	GAA	GAG	AAG	ACT	TCT	GAA	AGC	AAA	1545
10	Thr	Ser	Val	Ser	Val	Lys	Pro	Ser	Glu	Glu	Lys	Thr	Ser	Glu	Ser	Lys	
					405					410					415		
	AAG	ACT	TAC	AAC	AGT	ATC	AGC	AAA	ATT	GAC	AAA	ATG	TCC	CGA	ATC	GTA	1593
	Lys	Thr	Туг	Asn	Ser	Ile	Ser	Lys	lle	Asp	Lys	Met	Ser	Arg	ile	Val	
15				420					425					430			
	TTC	CCA	GTC	TTG	TTC	GGC	ACT	TTC	AAC	TTA	GTT	TAC	TGG	GCA	ACG	TAT	1641
		Pro															
			435					440					445				
20																	
	TTG	AAT	AGG	GAG	CCG	GTG	ATA	AAA	GGA	GCC	GCC	TCT	CCA	AAA			1683
	Leu	Asn	Arg	Glu	Pro	Val	lle	Lys	Gly	Ala	Ala	Ser	Pro	Lys			
		450					455					460					
25	TAA	cccc	CCA C	ACTO	CCAA	IA -C1	CCAA	GACA	GCC	ATAC	TTC	CAGO	GAAA	TG (STACO	AAGGA	
																1743	;
	GAG		GC 1	CACA	GGGA	C TO	TCCA	TATO	TGA	GCAC	TAT	CTTT	CAGG	AA A		TGCAT	
																1803	
30																	
	GTT	TAATA	AT A	TGTA	CAAA	T AA	TATI	GCCT	TGA	TGTT	TCT	ATAT	GTAA	CT 1	CAGA	TGTTT	
														•		1863	
	CCA	GATG	TC C	CATT	GATA	A TT	CGAG	CAAA	CAA	CTTT	CIC	GAAA	ΔΔΓΔ	.G.C. 4	TACC	ATGAC	
35		-	-	•						• •	.					1923	

TGACACTCAG ATGCCCAGTA TCATACGTTG ATAGTTTACA AACAAGATAC GTATATTTTT

- 27 -

1983

AACTGCTTCA AGTGTTACCT AACAATGTTT TITATACTTC AAATGTCATT TCATACAAAT

2043

5

TITCCCAGTG AATAAATATT TTAGGAAACT CTCCATGATT ATTAGAAGAC CAACTATATT

2103

GCGAGAAACA GAGATCATAA AGAGCACGTT TTCCATTATG AGGAAACTTG GACATTTATG

10 2163

TACAAAATGA ATTGCCTTTG ATAATTCTTA CTGTTCTGAA ATTAGGAAAG TACTTGCATG

2223

15 ATCTTACACG AAGAAATAGA ATAGGCAAAC TITTATGTAG GCAGATTAAT AACAGAAATA

2283

2310

15

CATCATATGT TAGATACACA AAATATT

20

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 amino acids

25 (B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Asp Asn Gly Met Phe Ser Gly Phe Ile Met 1le Lys Asn Leu Leu

5 10

35 Leu Phe Cys Ile Ser Met Asn Leu Ser Ser His Phe Gly Phe Ser Gin

20 . 25

- 28 -

	Met	Pro	Thr	Ser	Ser	Val	Lys	Asp	Glu	Thr	Asn	Asp	Asn	ile	Thr	He
			3 5					40					45			
						•										
` -	Phe		Arg	Ile	Leu	Asp		Leu	Leu	Asp	Gly		Asp	Asn	Arg	Leu
5		50					55					60				
	Ara	Pro	Glv	Leu	Glv	Glu	Ara	He	Thr	Gln	Val	Ara	Thr	Asp	He	Ivr
	65		,		.,	70	3			•	75	3				80
		•														
10	Val	Thr	Ser	Phe	Gly	Pro	Val	Ser	Asp	Thr	Glu	Met	Glu	Туг	Thr	lle
*					85					90					95	
	Asp	Val	Phe	Phe	Arg	Gln	Ser	Тгр		Asp	Glu	Arg	Leu		Phe	Lys
15				100					105					110		
	Gly	Pro	Het	Gln	Ara	Leu	Pro	Leu	Asn	Asn	Leu	Leu	Ala	Ser	LVS	He
	·		115					120					125		-,-	
	Ιrp	Thr	Pro	Asp	Thr	Phe	Phe	His	Asn	Gly	Lys	Lys	Ser	Ile	Ala	His
20		130					135					140				
	145	Met	Thr	Thr	Pro	150	Lys	Leu	Leu	Arg	Leu 155	Glu	Asp	Asp	Gly	
	,-,					130					נכו					160
25	Leu	Leu	Туг	Thr	Met	Arg	Leu	Thr	lle	Ser	Ala	Glu	Cys	Pro	Met	Gln
					165			•		170					175	
	Leu	Glu	Asp	Phe	Pro	Met	Asp	Ala	His	Ala	Cys	Pro	Leu	Lys	Phe	Gly
				180					185					190		
30		•		_							_					
	ser	ıyr	Ala 195	Туг	Pro	ASN	Ser	Glu 200	val	Val	Tyr	.Val		Thr	Asn	Gly
			.,,					200					205			
	Ser	Thr	Lys	Ser	Val	Val	Val	Ala	Glu	Asp	Gly	Ser	Arg	Leu	Asn	Gln
35		210					215			·		220				

- 29 -

	Туг	His	Leu	Met	Gly	Gln	Thr	Val	Gly	Thr	Glu	Asn	He	Ser	Thr	Ser
	225					230					235					240
	Thr	GLV	Gtu	Туг	Thr	ile	Met	The	Δla	Hie	Phe	u;c	1 011	1 240	450	1.00
5		,		.,.		•••						5	LEU	Lys		Lys
3					245					250					255	
	Ile	Gly	Tyr	Phe	Val	Ile	Gln	Thr	Туг	Leu	Pro	Cys	ile	Met	Thr	Val
				260					265					270		
10	ile	Leu	Ser	Gln	Val	Ser	Phe	Trp	Leu	Asn	Ara	Glu	Ser	Val	Pro	Ala
			275					280			•					
								200					285			
	Arg	Thr	Val	Phe	Gly	Val	Thr	Thr	Val	Leu	Thr	Met	Thr	Thr	Leu	Ser
		290					295					300				
15								•								
	ile	Ser	Ala	Arg	Asn	Ser	Leu	Рго	Lys	Val	Ala	Туг	Ala	Thr	Ala	Met
	305					310					315	-				320
																200
		T	0 L -	••-				_								
20	ASP	пр	Pne	Ile		Val	Cys	Tyr	Ala	Phe	Val	Phe	Ser	Ala	Leu	lle
20					325					330					335	
	Glu	Phe	Ala	Thr	Val	Asn	Туг	Phe	Thr	Lys	Arg	Gly	Trp	Ala	Trp	Asp
				340					345					350		
25	Glv	Lvs	Lvs	Ala	Leu	GLu	Δla	د ا ۵	Lve	I i a	Lvc	Lve	Lve	•	c	14-1
	,	-,-	355		•••		~~•		Lys	116	Lys	Lys		Arg	Gtu	vat
•			222					360					365			
	Ile	Leu	Asn	Lys	Ser	Thr	Asn	Ala	Phe	Thr	Thr	Gly	Lys	Het	Ser	His
		370				•	375					380				
30																
	Pro	Pro	Asn	Ile	Pro	Lys	Glu	Gln	Thr	Pro	Ala	Gly	Thr	Ser	Asn	Thr
	385					390					395	•				
											3/3					400
		_														
	Ihr	Ser	Val	Ser	Val	Lys	Pro	Ser	Glu	Glu	Lys	Thr	Ser	Glu	Ser	Lys
35					405					410					415	

- 30 -

Lys Thr Tyr Asn Ser Ile Ser Lys Ile Asp Lys Met Ser Arg Ile Val .
420 425 430

Phe Pro Val Leu Phe Gly Thr Phe Asn Leu Val Tyr Trp Ala Thr Tyr
435 440 445

Leu Asn Arg Glu Pro Val Ile Lys Gly Ala Ala Ser Pro Lys
450 455 460

- 10 (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1408 base pairs
 - (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 27..1385

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AATTCTGCAT ITCAGTGCAC TGCAGG ATG GCG TCA TCT CTG CCC TGG CTG TGC 53

Met Ala Ser Ser Leu Pro Trp Leu Cys

30 1 5

ATT ATT CTG TGG CTA GAA AAT GCC CTA GGG AAA CTC GAA GTT GAA GGC 101

11e lle Leu Trp Leu Glu Asn Ala Leu Gly Lys Leu Glu Val Glu Gly

10 15 20 25

35

5

20

25

- 31 -

	AAC	TTC	TAC	TCA	GAA	AAC	GTC	AGT	CGG	ATC	CIG	GAC	AAC	TTG	CTT	GAA	149
	Asn	Phe	Туг	Ser	Glu	Asn	Val	Ser	Arg	He	Leu	Asp	Asn	Leu	Leu	Glu	
					30					35					40		
5	GGC	TAT	GAC	AAT	CGG	CTG	CGG	CCG	GGA	TTT	GGA	GGT	GCT	GTC	ACT	GAA	197
	Gly	Tyr	Asp	Asn	Arg	Leu	Arg	Pro	Gly	Phe	Gly	Gly	Ala	Val	Thr	Glu	
				45					50					55			
	GTC	AAA	ACA	GAC	ATT	TAT	GTG	ACC	AGT	111	GGG	ccc	GTG	TCA	GAT	GTG	245
10	Val	Lys	Thr	Asp	He	Tyr	Val	Thr	Ser	Phe	Gly	Pro	Val	Ser	Asp	Val	
			60					65					70				
	GAG	ATG	GAG	TAT	ACG	ATG	GAT	GTT	TTT	TTT	CGC	CAG	ACC	TGG	ACT	GAT	293
	Glu	Het	Glu	Tyr	Thr	Het	Asp	Val	Phe	Phe	Arg	Gln	Thr	Trp	Thr	Asp	
15		75					80					85					
	GAG	AGG	TTG	AAG	TTT	GGG	GGG	CCA	ACT	GAG	ATT	CTG	AGT	CTG	TAA	AAT	341
	Gŧu	Arg	Leu	Lys	Phe	Gly	Gly	Pro	Thr	Glu	lle	Leu	Ser	Leu	Asn	Asn	
	90				•	95					100					105	
20																	
	TTG	ATG	GTC	AGT	AAA	ATC	TGG	ACG	ССТ	GAC	ACC	TTT	TTC	AGA	AAT	GGT	389
	Leu	Met	Val	Ser	Lys	Ile	Trp	Thr	Pro	Asp	Thr	Phe	Phe	Arg	Asn	Gly	
					110					115					120		
25	AAA	AAG	TCC	ATT	GCT	CAC	AAC	ATG	ACA	ACT	ССТ	AAT	AAA	стс	TTC	AGA	437
	Lys	Lys	Ser	ile	Ala	His	Asn	Met	Thr	Thr	Pro	Asn	Lys	Leu	Phe	Arg	
				125					130					135			
	ATA	ATG	CAG	AAT	GGA	ACC	ATT	TTA	TAC	ACC	ATG	AGG	CTT	ACC	ATC	AAT	485
30	Ιle	Met	Gln	Asn	Gly	Thr	lle	Leu	Tyr	Thr	Met	Arg	Leu	Thr	Ile	Asn	
			140					145					150				
	GCT	GAC	TGT	ссс	ATG	AGG	CTG	GTT	AAC	TTT	сст	ATG	GAT	GGG	CAT	GCT	533
	Ala	Asp	Cys	Pro	Met	Arg	Leu	Val	Asn	Phe	Pro	Het	Asp	Gly	His	Ala	
35		155					160					165					

- 32 -

	161	LLA	CIL	AAG	,,,	466	AGC	IAI	CCI	IAI	LLL	AAA	AGI	GAA	AIL	AIA	201
	Cys	Pro	Leu	Lys	Phe	Gly	Ser	Туг	Ala	Туг	Pro	Lys	Ser	Glu	He	He ·	
	170					175					180					185	
5	TAT	ACG	TGG	AAA	AAA	GGA	CCA	стт	TAC	TCA	GTA	GAA	GTC	CCA	GAA	GAA	629
	Tyr	Thr	Тгр	Lys	Lys	Gly	Pro	Leu	Туг	Ser	Val	Glu	Val	Рго	Glu	Glu	
					190					195					200		
	тст	TCA	AGC	CTT	стс	CAG	TAT	GAT	CTG	ATT	GGA	CAA	ACA	GTA	TCT	AGT	677
10				Leu													
				205			.,.		210		•.,			215			
									2.0								
	CAC	A CA	ATT	AAA	TCT	885	404	CCT	CAA	TAC	CII	ATA	ATC	454	CTT	TAC	725
																	123
15	610	1111		Lys	Ser	ASII	INF	•	610	ıyr	vaı	ite		INF	vat	I y F	
15			220					225					230				
				CAA													773
	Phe		Leu	Gln	Arg	Lys		Gly	Туг	Phe	Met	He	Gln	Ile	Туг	Thr	
		235					240					245					
20																	
	ССТ	TGC	ATT	ATG	ACA	GTC	ATT	CTT	TCC	CAG	GTG	TCT	TTC	TGG	ATT	AAT	821
	Рго	Cys	1 (e	Met	Thr	Val	lle	Leu	Ser	Gln	Val	Ser	Phe	Trp	lle	Asn	
	250					255					260					265	
25	AAG	GAG	TCC	GTC	CCA	GCA	AGA	ACT	GTT	CTT	GGG	ATC	ACC	ACT	GTT	TTA	869
	Lys	Glu	Ser	Val	Рго	Ala	Arg	Thr	Val	Leu	Gly	He	Thr	Thr	Val	Leu	
					270					275					280		
	ACT	ATG	ACC	ACT	TTG	AGC	ATC	AGT	GCC	CGG	CAC	тст	TTG	CCA	AAA	GTG	917
30	Thr	Met	Thr	Thr	Leu	Ser	Ile	Ser	Ala	Arg	His	Ser	Leu	Pro	Lys	Val	
				285					290					295			
	TCA	TAT	GCC	ACT	GCC	ATG	GAT	TGG	TTC	ATA	GCT	GTT	TGC	TTT	GCA	TTC	965
				Thr													
35			300					305					310				

- 33 -

	GTC	TTC	TCT	GCT	CTT	ATC	GAG	TTC	GCA	GCT	GTC	AAC	TAC	T T T	ACC	AAT	1013
	Val	Phe	Ser	Ala	Leu	Ile	Glu	Phe	Ala	Ala	Val	Asn	Tyr	Phe	Thr	Asn	
		315					320					325					
5	CTT	CAG	ACA	CAG	AAG	GCG	AAA	AGG	AAG	GCA	CAG	111	GCA	GCC	CCA	ссс	1061
	Leu	Gln	Thr	Gln	Lys	Ala	Lys	Arg	Lys	Ala	Gln	Phe	Ala	Ala	Pro	Рго	
	330					335					340					345	
	ACA	GTG	ACA	ATA	TCA	AAA	GCT	ACT	GAA	CCT	TTG	GAA	GCT	GAG	ATT	GTT	1109
L O	Thr	Val	Thr	lle	Ser	Lys	Ala	Thr	Glu	Pro	Leu	Glu	Ala	Glu	ile	Val	
					350					355					360		
	TTG	CAT	ССТ	GAC	TCC	AAA	TAT	CAT	CTG	AAG	AAA	AGG	ATC	ACT	TCT	CTG	1157
	Leu	His	Pro	Asp	Ser	Lys	Туг	His	Leu	Lys	Lys	Arg	Ile	Thr	Ser	Lou	
L5				365					370					375			
	TCT	TTG	CCA	ATA	GTT	TCA	тст	TCC	GAG	GCC	AAT	AAA	GTG	СТС	ACG	AGA	1205
	Ser	Leu	Pro	Ile	Val	Ser	Ser	Ser	Glu	Ala	Asn	Lys	Val	Leu	Thr	Arg	
			380					385					390				
20																	
	GCG	ccc	ATC	TTA	CAA	TCA	ACA	ССТ	GTC	ACA	ССС	CCA	CCA	стс	CCG	CCA	1253
	Ala	Pro	Ile	Leu	Gln	Ser	Thr	Pro	Val	Thr	Рго	Pro	Рго	Leu	Pro	Pro	
		39 5					400					405					
25	GCC	TTT	GGA	GGC	ACC	AGT	AAA	ATA	GAC	CAG	TAT	TCT	CGA	ATT	стс	TTC	1301
	Ala	Phe	Gly	Gly	Thr	Ser	Lys	Ile	Asp	Gln	Туг	Ser	Arg	Ιle	Leu	Phe	
	410					415					420					425	
	CCA	GTT	GCA	111	GCA	GGA	TTC	AAC	CTT	GTG	TAC	TGG	GTA	GTT	TAT	CTT	1349
30	Pro	Val	Ala	Phe	Ala	Gly	Phe	Asn	Leu	Val	Tyr	1rp	Val	Val	Tyr	Leu	
					430					435					440		
	TCC	AAA	GAT	ACA	ATG	GAA	GTG	AGT	AGC	AGT	GTT	GAA	TAG	2777	rcc		1395
	Ser	Lys	Asp	Thr	Met	Glu	Val	Ser	Ser	Ser	Val	Glu					
35				445					450								

PCT/GB93/02506

	(2) INFORMATION FOR SEQ ID NO: 4:
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 453 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
. 10	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
15	Met Ala Ser Ser Lou Pro Trp Leu Cys Ile Ile Leu Trp Leu Glu Asn
13	1 5 10 15
	Ata Leu Gly Lys Leu Glu Val Glu Gly Asn Phe Tyr Ser Glu Asn Val
	20 25 30
20	Ser Arg Ile Leu Asp Asn Leu Leu Glu Gly Tyr Asp Asn Arg Leu Arg 35 40 45
	Pro Gly Phe Gly Gly Ala Val Thr Glu Val Lys Thr Asp Ile Tyr Val
25	50 55 60
	Thr Ser Phe Gly Pro Val Ser Asp Val Glu Met Glu Tyr Thr Met Asp
,	65 70 75 80
	Val Phe Phe Arg Gln Thr Trp Thr Asp Glu Arg Leu Lys Phe Gly Gly
30	85 90 95
	Pro Thr Glu Ile Leu Ser Leu Asn Asn Leu Met Val Ser Lys Ile Trp
	100 105 110
	·

35 Thr Pro Asp Thr Phe Phe Arg Asn Gly Lys Lys Ser Ile Ala His Asn

125

115 120

- 35 -

	Met	Thr	Thr	Pro	Asn	Lys	Leu	Phe	Arg	ile	Het	Gln	Asn	Gly	Thr	He
		130					135					140				
_		Tyr	Thr	Het	Arg		Thr	ile	Asn	Ala		Cys	Pro	Het	Arg	Leu
5	145					150					155					160
	Val	Asn	Phe	Pro	Met	, Asp	Gly	His	Ala	Cys	Pro	Leu	Lys	Phe	Gly	Ser
					165					170					175	
•																
10	Tyr	Ala	Tyr	Pro	Lys	Ser	Glu	Ile	lle	Tyr	Thr	īrp	Lys	Lys	Gly	Pro
				180					185					190		
	Leu	Туг	Ser	Val	Glu	Val	Pro	Glu	Glu	Ser	Ser	Ser	Leu	Leu	Gln	Tyr
			195					200					205			
15																
	Asp		Ile	Gly	Gln	Thr		Ser	Ser	Glu	Thr		Lys	Ser	Asn	Thr
		210					215					220				
	Glv	Glu	īvr	Val	He	Met	The	Val	Tvr	Pho	Hic	1 011	Cin	4-0	Luc	Not
20	225		.,.			230	••••	•••	•,,		235	Leu	u	VI A		240
																240
	Gly	Tyr	Phe	Met	Ile	Gln	ile	Tyr	Thr	Pro	Cys	He	Met	Thr	Val	Ile
					245					250					255	
25	Leu	Ser	Gln	Val	Ser	Phe	Тгр	lle	Asn	Lys	Glu	Ser	Val	Pro	Ala	Arg
				260					2 65					270		
	Thr	Val	Leu	Gly	Ile	Thr	Thr	Val	Leu	Thr	Het	Thr	Thr	Leu	Ser	He
			275					280					285			
30																
			Arg	His	Ser	Leu		Lys	Val	Ser	Туг		Thr	Ala	Met	Asp
		290					295					300				
	ĭen	Dh.o		A1 ~	V-1	C	۰.		Dh.		.					
35	305	rne	ııe	Ala		310	rne	ALB	rne	vaŧ		Ser	Ala	Leu		
	,,,,					J 10					315					320

- 36 -

Phe Ala Ala Val Asn Tyr Phe Thr Asn Leu Gin Thr Gin Lys Ala Lys 325 330 Arg Lys Ala Gln Phe Ala Ala Pro Pro Thr Val Thr Ile Ser Lys Ala 5 345 Thr Glu Pro Leu Glu Ala Glu Ile Val Leu His Pro Asp Ser Lys Tyr 355 360 10 His Leu Lys Lys Arg Ile Thr Ser Leu Ser Leu Pro Ile Val Ser Ser 375 380 Ser Glu Ala Asn Lys Val Leu Thr Arg Ala Pro Ile Leu Gin Ser Thr 390 395 400 15 Pro Val Thr Pro Pro Pro Leu Pro Pro Ala Phe Gly Gly Thr Ser Lys 405 410 415 Ile Asp Gln Tyr Ser Arg Ile Leu Phe Pro Val Ala Phe Ala Gly Phe 20 420 425 Asn Leu Val Tyr Trp Val Val Tyr Leu Ser Lys Asp Thr Met Glu Val 435 440 445 25 Ser Ser Ser Val Glu 450 (2) INFORMATION FOR SEQ ID NO: 5: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1866 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: cDNA

- 37 -

	ı	(ix) F	`EA	TU	RE:											
		ACGCCCGTG GCCATGCGCC TCACATTAGA ATTACTGCAC TGGGCAGACT AAGTTGGATC 180 CCTCTCTTC AGTGAAACCC TCAATTCCAT CAAAAACTAA AGGG ATG TGG AGA GTG 236 Met Trp Arg Val 1 GG AAA AGG GGC TAC TTT GGG ATT TGG TCC TTC CCC TTA ATA ATC GCC 284 Tg Lys Arg Gly Tyr Phe Gly 1le Trp Ser Phe Pro Leu 1le 1le Ala 5 10 15 20 CT GTC TGT GCG CAG AGT GTC AAT GAC CCT AGT AAT ATG TCG CTG GTT 332															
	(A) NAME/KEY: CDS (B) LOCATION: 2251646 (XI) SEQUENCE DESCRIPTION: SEQ ID NO: GAATTCCGCG CGGGGAAGGG AAGAAGAGGA CGAGGTGGCG CAGAGACCGC GGGAGAACAC 60 AGTGCCTCCG GAGGAAATCT GCTCGGTCCC CGGCAGCCGC GCTTCCCCTT TGATGTTTTG 120 GTACGCCGTG GCCATGCGCC TCACATTAGA ATTACTGCAC TGGGCAGACT AAGTTGGATC 180 TCCTCTCTTC AGTGAAACCC TCAATTCCAT CAAAAACTAA AGGG ATG TGG AGA GTG 236 Met Trp Arg Val 1 CGG AAA AGG GGC TAC TTT GGG ATT TGG TCC TTC CCC TTA ATA ATC GCC 284 Arg Lys Arg Gly Tyr Phe Gly 11e Trp Ser Phe Pro Leu IIe IIe Ala 5 10 15 20																
5	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: GAATICCGCG CGGGGAAGGG AAGAAGAGGA CGAGGTGGCG CAGAGACCGC GGGAGAACAC 60 AGTGCCTCCG GAGGAAATCT GCTCGGTCCC CGGCAGCCGC GCTTCCCCTT TGATGTTTTG 120 GTACGCCGTG GCCATGCGCC TCACATTAGA ATTACTGCAC TGGGCAGACT AAGTTGGATC 180 TCCTCTCTTC AGTGAAACCC TCAATTCCAT CAAAAACTAA AGGG ATG TGG AGA GTG 236 Met Trp Arg Val 1 CGG AAA AGG GGC TAC TTT GGG ATT TGG TCC TTC CCC TTA ATA ATC GCC 284 Arg Lys Arg Gly Tyr Phe Gly 11e Trp Ser Phe Pro Leu 11e 11e Ala 5 10 15 20 GCT GTC TGT GCG CAG AGT GTC AAT GAC CCT AGT AAT ATG TCG CTG GTT 332 Ala Val Cys Ala Gln Ser Val Asn Asp Pro Ser Asn Met Ser Leu Val																
	!	(xi) S	EQ	UE	NCE	E D	ES	CRI	PT	101	1:	SE	Q I	D N	0: 5	5:
10	GAATTCC	GCG C	GGGG	AAGG	G AA	GAAG	AGGA	CGA	GGTC	GCG	CAGA	GACC	GC (GGAC	SAACAC	60	
	AGTGCCT	cce c	AGGA	AATC	T GC	TCGG	TCCC	CGG	CAGO	CGC	GCTI	ccc	ו דד:	rgat (TTTTG	120	
	GTACGCC	GTG G	CCAT	GCGC	C TC	CACAT	TAGA	ATT	ACTO	CAC	TGGG	CAGA	CT /	AAGT1	GGATO	180	
15	тсстстс	TTC A	GTGA	AACC	с тс	CAATI	CCAT	CAA	AAAC	TAA	AGGG					236	
														D Arg	y vat		
												I					
20																284	
20		Arg	ыу	ıyr		Gly	116	ırp	Ser		Pro	Leu	He	He			
	,				10					15					20		
	CCT CTC	TCT	ccc /	C 4 C	ACT	CTC	AAT	C 4 C	CCT	ACT	444	470	TCC	CT.C	CTT	777	
																332	
25	ALG *61	Cys	ALG !		361	Val	WZII	изр		261	ASI	met	ser		val		
				23					30					33			
	AAA CAC	ACC	CIC	CAT	464	CTC	CTC			747						700	
																360	
	cys dia	••••	40	vsh	AI Y	Len	Leu	45	uty	ıyı	ASP	He	50	Leu	Arg		
30			40					٠,					9 0				
-	CCA GAT	III	GGA I	GGT	ccc	CCC	GTG	GCT	ara	GGG	ATG	ДДС	ATT	GAC	ATT	428	
	Pro Asp															7.0	
	р		,	- 1		. , 5	,,,,			J. 7		7311	, , ,	ASP			

35 GCC AGC ATC GAT ATG GTT TCT GAA GTC AAT ATG GAT TAT ACC TTG ACA 476
Ala Ser Ile Asp Met Val Ser Glu Val Asn Met Asp Tyr Thr Leu Thr
70 75 80

60

65

PCT/GB93/02506

- 38 -

	ATG	TAC	TTT	CAA	CAA	GCC	TGG	AGA	GAT	AAG	AGG	CTG	TCC	TAT	AAT	GTA	524
	Met	Tyr	Phe	Gln	Gln	Ala	Trp	Arg	Asp	Lys	Arg	Leu	Ser	Tyr	Asn	Val	
	85					90					95					100	
5																	
	ATA	ССТ	TTA	AAC	TIG	ACT	CTG	GAC	AAC	AGA	GTG	GCA	GAC	CAG	CTC	166	572
	He	Pro	Leu	Asn	Leu	Thr	Leu	Asp	Asn	Arg	Val	Ala	Asp	Gln	Leu	Trp	
					105					110					115		
10	GTG	ССТ	GAT	ACC	TAT	TTC	CTG	AAC	GAT	AAG	AAG	TCA	111	GTG	CAC	GGA	620
	Val	Pro	Asp	Thr	Туг	Phe	Leu	Asn	Asp	Lys	Lys	Ser	Phe	Val	His	Gly	
				120					125					130			
	GTG	ACT	GTT	AAG	AAC	CGC	ATG	ATT	CGC	CTG	CAT	ССТ	GAT	GGC	ACC	GTC	668
15	Val	Thr	Val	Lys	Asn	Arg	Met	Ile	Arg	Leu	His	Pro	Asp	Gly	Thr	Val	
			135					140					145				
	CTT	TAT	GGA	стс	AGA	ATC	ACA	ACC	ACA	GCT	GCC	TGC	ATG	ATG	GAC	CTA	716
	Leu	Туг	Gly	Leu	Arg	He	Thr	Thr	Thr	Ala	Ala	Cys	Met	Met	Asp	Leu	
20		150					155					160					
	AGG	AGG	TAC	CCA	CTG	GAT	GAA	CAA	AAC	TGC	ACC	TTG	GAA	ATT	GAG	AGC	764
	Arg	Arg	Tyr	Pro	Leu	Asp	Glu	Gln	Asn	Cys	Thr	Leu	Glu	He	Glu	Ser	
	165					170					175					180	
25																	
	TAT	GGA	TAC	ACA	ACT	GAT	GAC	ATT	GAG	TTT	TAC	TGG	CGT	GGC	GAT	GAT	812
	Tyr	Gly	Туг	Thr	Thr	Asp	Asp	He	Glu	Phe	Туг	Trp	Arg	Gly	Asp	Asp -	
					185					190					195		
30	AAT	GCA	GTA	ACA	GGA	GTA	ACG	AAA	ATT	GAA	CTT	CCA	CAG	TTC	TCT	ATT	860
	Asn	Ala	Val	Thr	Gly	Val	Thr	Lys	Ile	Glu	Leu	Pro	Gln	Phe	Ser	lle	
				200					205					210			
	GTA	GAT	TAC	AAA	CIT	ATC	ACC	AAG	AAG	GTT	GTT	TTT	TCC	ACA	GGT	TCC	908
5	Val	Asp	Tyr	Lys	Leu	He	Thr	Lys	Lys	Val	Val	Phe	Ser	Thr	Gly	Ser	
			215					220					225				

- 39 -

	TAT	CCC	AGG	TTA	тсс	CTC	AGC	TTT	AAG	стт	AAG	AGA	AAC	ATT	GGC	TAC	956
	Туг	Pro	Arg	Leu	Ser	Leu	Ser	Phe	Lys	Leu	Lys	Arg	Asn	He	Gly	Туг	
		230					235					240					
5	TTT	ATC	CTG	CAA	ACA	TAC	ATG	ССТ	TCC	ATC	CTG	ATT	ACC	ATC	СТС	TCC	1004
	Phe	Ile	Leu	Gln	Thr	Tyr	Het	Pro	Ser	He	Leu	He	Thr	Ile	Leu	Ser	
	245					250					255					260	
	TGG	GTC	TCC	TTC	TGG	ATT	AAT	TAC	GAT	GCT	TCA	GCT	GCA	AGG	GTG	GCA	1052
10	Тгр	Val	Ser	Phe	Trp	Ile	Asn	Tyr	Asp	Ala	Ser	Ala	Ala	Arg	Val	Ala	
					265					270					275		
	TTA	GGA	ATC	ACA	ACT	GTC	стс	ACA	ATG	ACC	ACA	ATC	AAC	ACC	CAC	CTC	1100
				Thr													
15		•		280					285	••••				290			
	CGG	GAA	ACT	STC	ССТ	ΛΑΑ	ATC	200	TAT	GTG	AAG	CCC	ATT	GAC	ATG	TAC	1148
				Leu													
			295			·		300	•		-•		305			.,.	
20							-										
	СТБ	ATG	GGG	TGC	TIT	GTC	TTC	GTT	TTC	ATG	GCC	CTT	CTG	GAA	TAT	GCC	1196
				Cys													
		310					315					320			.,.		
25	СТА	GTC	AAC	TAC	ATC	TTC	TTT	GGG	AGG	.GGG	CCC	CAA	CGC	CAA	AAG	AAA	1244
				Tyr													
	325					330		-		·	335		Ī		•	340	
	GCA	GCT	GAG	AAG	GCT	GCC	AGT	GCC	AAC	AAT	GAG	AAG	ATG	CGC	CTG	GAT	1292
30				Lys													
				•	345					350					355		
	GTC	AAC	AAG	ATG	GAC	CCC	CAT	GAG	AAC	ATC	TTA	CTG	AGC	ACT	CTC	GAG	1340
				Met													.540
			•														

- 40 -

												•	•				
	ATA	AAA	AAT	GAA	ATG	GCC	ACA	TCT	GAG	GCT	GTG	ATG	GGA	стт	GGA	GAC	1388
	1 le	Lys	Asn	Glu	Met	Ala	Thr	Ser	Glu	Ala	Val	Het	Gly	Leu	Gly	Asp	
			375					380					3 85				
5	ccc	AGA	AGC	ACA	ATG	CTA	GCC	TAT	GAT	GCC	TCC	AGC	ATC	CAG	TAT	CGG	1436
	Pro	Arg	Ser	Thr	Met	Leu	Ala	Туг	Asp	Ala	Ser	Ser	Ile	Gln	Туг	Arg	
		390					395					400					
	AAA	GCT	GGG	TTG	ССС	AGG	CAT	AGT	111	GGC	CGA	AAT	GCT	CTG	GAA	CGA	1484
10	Lys	Ala	Gly	Leu	Pro	Arg	His	Ser	Phe	Gly	Arg	Asn	Ala	Leu	Glu	Arg	
	405					410					415					420	
	CAT	GTG	GCG	CAA	AAG	AAA	AGT	CGC	CIE	AGG	AGA	CGC	GCC	TCC	CAA	CTG	1532
	His	Val	Ala	Gln	Lys	Lys	Ser	Arg	Leu	Arg	Arg	Arg	Ala	Ser	Gln	Leu	
15					425					430					435		
	AAA	ATC	ACC	ATC	ССТ	GAC	TTG	ACT	GAT	GTG	AAT	GCC	ATA	GAT	CGG	TGG	1580
	Lys	lle	Thr	He	Pro	Asp	Leu	Thr	Asp	Val	Asn	Ala	Ile	Asp	Arg	Trp	
				440					445					450			
20																	
	TCC	CGC	ATA	TTC	TTC	CCA	GTG	GTT	TTT	TCC	TTC	TTC	AAC	ATC	GTC	TAT	1628
	Ser	Arg	Ile	Phe	Phe	Pro	Val	Val	Phe	Ser	Phe	Phe	Asn	He	Val	Tyr	
			455					460					465				
25	TGG	CTT	TAT	TAT	GTG	AAC	TAA	AACA1	rgg (СТС	CCACT	rg g/	AAGC	AAGG/	4		1676
	Trp	Leu	Туг	Tyr	Val	Asn											
		470															
20	CTA	GATT	CCT C	CTC	MACC	A GT	TGT	CAGO	CTO	ATG	TAGG	ACT	GGA/	AAA (CACAT	CAATO	
30																1736	•
	CAG	SACAA	VAA C	TGAC	GCTA	IA AA	TAC	TTAC	3 770	CTG	CCT	ATC	TGTO	GT (CATI	TCATA	
																1796	1
2 =						_											
35	CCAT	TTGC	CT T	CCTI	CTCC	'T AA	CTAE	TCAA	TAC	ACT	ACC	TCCT	TOTA	CT 1	TTCC	ACTTA	

- 41 -

AAACGCAAGT 1866

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 474 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10

5

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

15 Met Trp Arg Val Arg Lys Arg Gly Tyr Phe Gly Ile Trp Ser Phe Pro

5 10 1

Leu Ile Ile Ala Ala Val Cys Ala Gln Ser Val Asn Asp Pro Ser Asn

20 25 30

20

Met Ser Leu Val Lys Glu Thr Val Asp Arg Leu Leu Lys Gly Tyr Asp

35 40 45

Ile Arg Leu Arg Pro Asp Phe Gly Gly Pro Pro Val Ala Val Gly Met

2.5 50 55 60

85

Asn Ile Asp lie Ala Ser Ile Asp Met Val Ser Glu Val Asn Met Asp

65 70 75 80

30 Tyr Thr Leu Thr Met Tyr Phe Gln Gln Ala Trp Arg Asp Lys Arg Leu

90

95

Ser Tyr Asn Val Ile Pro Leu Asn Leu Ihr Leu Asp Asn Arg Val Ala

100 105 110

35

Asp Gln Leu Trp Val Pro Asp Thr Tyr. Phe Leu Asn Asp Lys Lys Ser

115 120 125

	Phe	Val	His	Gly	Val	Thr	Val	Lys	Asn	Arg	Met	ile	Arg	Leu	His	Pro
		130					135					140				
_																
5	Asp	Gly	Thr	Val	Leu	Туг	Gly	Leu	Arg	He	Thr	Thr	Thr	Ata	Ala	Cys
	145					150					155					160
	Met	Het	Asp	Leu	Arg	Arg	Tyr	Pro	Leu	Asp	Glu	Gln	Asn	Cys	Thr	Leu
					165					170					175	
10																
	Glu	ile	Glu	Ser	Туг	Gly	Tyr	Thr	Thr	Asp	Asp	lle	Glu	Phe	Tyr	Тгр
				180					185					190		
	Arq	Glv	Asp	Asp	Asn	Ala	Val	Thr	SIV	Val	The	l ve	116	Glu	Loui	P. n
15	-	•	195	•				200	,			-,	205	-	•••	
								200					207			
	Gin	Dho	Sar	l l a	Ve.1	400	T				. .	•	•			
	G.111	210	361	ile	vat	ASP		Lys	Leu	ite	inr		Lys	vai	vat	Phe
		210					215					220				
20				_	_											
20		Inr	GLY	Ser	iyr		Arg	Leu	Ser	Leu		Phe	Lys	Leu	Lys	Arg
	225					230					235					240
	Asn	Ile	Gly	Tyr	Phe	ile	Leu	Gln	Thr	Tyr	Met	Pro	Ser	He	Leu	He
					245					250					255	
25																
	Thr	Ile	Leu	Ser	Trp	Val	Ser	Phe	Trp	lle	Asn	Туг	Asp	Ala	Ser	Ala
				260					265					270		
	Ala	Arg	Val	Ala	Leu	Gly	He	Thr	Thr	Val	Leu	Thr	Met	Thr	Thr	Ile
30			275					280					285			
	Asn	Thr	His	Leu	Arg	Glu	Thr	Leu	Рго	Lvs	Ile	Pro	Tvr	Val	Lvs	Ala
		290			Ī		295			-,-		300	.,.		-,5	
		-										550				
15	110	Acn	No+	Tyr	.بم ا	Mc+	CI v	C	Dh-	\/ e	nt -		01	W	••	
_		ush	net	1 71	LEU		σιγ	CYS	rne	val		vat	rne	net	ALA	
	305					310					315					320

- 43 -

Leu Glu Tyr Ala Leu Val Asn Tyr Ile Phe Phe Gly Arg Gly Pro Gln Arg Gln Lys Lys Ala Ala Glu Lys Ala Ala Ser Ala Asn Asn Glu Lys Met Arg Leu Asp Val Asn Lys Met Asp Pro His Glu Asn 1le Leu Leu Ser Thr Leu Glu Ile Lys Asn Glu Met Ala Thr Ser Glu Ala Val Met Gly Leu Gly Asp Pro Arg Ser Thr Met Leu Ala Tyr Asp Ala Ser Ser Ile Gln Tyr Arg Lys Ala Gly Leu Pro Arg His Ser Phe Gly Arg Asn Ala Leu Glu Arg His Val Ala Gln Lys Lys Ser Arg Leu Arg Arg Arg Ala Ser Gln Leu Lys Ile Thr Ile Pro Asp Leu Thr Asp Val Asn Ala Ile Asp Arg Trp Ser Arg Ile Phe Phe Pro Val Val Phe Ser Phe Phe Asn Ile Val Tyr Trp Leu Tyr Tyr Val Asn (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2189 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

5 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 214..1566 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: CCTAGCGCTC CTCTCCGGCT TCCACCAGCC CATCGCTCCA CGCTCTCTTG GCTGCTGCAG 60 15 TCTCTCTCTC TCTCTCCCAA GTTTCCTATC TCGTCAAGAT CAGGGCAAAA GAAGAAAACA 180 CCGAATTCTG CTTGCCGTTT CAGAGCGGCG GTG ATG AAG ACA AAA TTG AAC ATC 234 Met Lys Thr Lys Leu Asn Ile 20 TAC AAC ATC GAG TIC CTG CTT TTT GTT TTC TTG GTG TGG GAC CCT GCC 282 Tyr Asn Ile Glu Phe Leu Leu Phe Val Phe Leu Val Trp Asp Pro Ala 10 15 25 AGG TIG GTG CTG GCT AAC ATC CAA GAA GAT GAG GCT AAA AAT AAC ATT 330 Arg Leu Val Leu Ala Asn Ile Gln Glu Asp Glu Ala Lys Asn Asn Ile 25 30 30 ACC ATC TIT ACG AGA ATT CTT GAC AGA CTT CTG GAT GGT TAC GAT AAT 378 Thr Ile Phe Thr Arg Ile Leu Asp Arg Leu Leu Asp Gly Tyr Asp Asn 50 CGG CTT AGA CCA GGA CTG GGA GAC AGT ATT ACT GAA GTC TTC ACT AAC 426 35 Arg Leu Arg Pro Gly Leu Gly Asp Ser Ile Thr Glu Val Phe Thr Asn

- 45 -

	ATC	TAC	GTG	ACC	AGT	111	GGC	CCT	GTC	TCA	GAT	ACA	GAT	ATG	GAA	TAT	474
	ile	Tyr	Val	Thr	Ser	Phe	Gly	Pro	Val	Ser	Asp	Thr	Asp	Het	Glu	Tyr	
				75					80					85			
_																	
5			GAT														522
	Thr	Ile	Asp	Val	Phe	Phe	Arg		Lys	Trp	Lys	Asp	Glu	Arg	Leu	Lys	
			90					95					100				
	111	888	GGT	CCT	ATC	447	475	CTT	CC4	CT.4							
10			Gly														570
		105	٠.,		net	naii	110	Leo	Alg	Leu	ASII	115	Leu	net	мча	Ser	
												,,,					
	AAA	ATC	TGG	ACT	CCA	GAT	ACC	111	TTT	CAC	AAT	GGG	AAG	AAA	TCA	ATA	618
			Trp														0.0
15	120					125					130	•	•	-,-		135	
	GCT	CAT	AAT	ATG	ACA	ATG	CCA	AAT	AAG	116	CTT	CGA	ATT	CAG	GAT	GAT	666
	Ala	His	Asn	Met	Thr	Met	Pro	Asn	Lys	Leu	Leu	Arg	Ile	Gln	Asp	Asp	
					140					145					150		
20																	
	GGG	ACT	CTG	CTG	TAT	ACC	ATG	AGG	CTT	ACA	GTT	CAA	GCT	GAA	TGC	CCA	714
	Gly	Thr	Leu	Leu	Туг	Thr	Met	Arg	Leu	Thr	Val	Gln	Ala	Glu	Cys	Pro	
				155					160					165			
25																	
23			TTG														762
	Met	nis	Leu 170	GIU	ASP	rne	Pro		ASP	Ala	HIS	Ser		Рго	Leu	Lys	
			.,,					175					180				
	111	GGC	AGC	TAT	GCA	TAT	ACA	ACT	TCA	GAG	GTC	ACT	TAT	ATT	TCC	ACT	810
30			Ser														010
		185		Ť		•	190					195	.,.		p	••••	
												-					
	TAC	AAT	GCA	TCT	GAT	TCA	GTA	CAG	GTT	GCT	ССТ	GAT	GGC	TCT	AGG	TTA	858
			Ala														
35	200					205					210					215	

- 46 -

	AAT	CAA	TAT	GAC	CIC	CTG	GGC	CAA	TCA	ATC	GGA	AAG	GAG	ACA	ATT	AAA	906
	Asn	Gln	Туг	Asp	Leu	Leu	Gly	Gln	Ser	He	Gly	Lys	Glu	The	lle	Lys	
					220					225					230		
5	100	AGT	ACA	GGT	GAA	TAT	ACT	GTA	ATG	ACA	GCT	CAT	TIC	CAC	CTG	AAA	954
	Ser	Ser	Thr	Gly	Glu	Туг	Thr	Val	Met	Thr	Ala	His	Phe	His	Leu	Lys	
				235					240					245			
	AGA	AAA	ATT	GGG	TAT	111	GTG	ATT	CAA	ACC	TAT	CTG	ССТ	TGC	ATC	ATG	1002
10	Arg	Lys	ile	Gly	Tyr	Phe	Val	Ile	Gln	Thr	Туг	Leu	Pro	Cys	Ile	Met	
			250					255					260				
	ACT	GTC	ATT	стс	TCC	CAA	GTT	TCA	TTC	TGG	CTT	AAC	AGA	Gaa	TCT	GTG	1050
	Thr	Val	He	Leu	Ser	Gtn	Val	Ser	Phe	Trp	Leu	Asn	Arg	Glu	Ser	Val	
15		265					270					275					
	CCT	GCA	AGA	ACT	GTG	TTT	GGA	GTA	ACA	ACT	GTC	CTA	ACA	ATG	ACA	ACT	1098
	Pro	Ala	Arg	Thr	Val	Phe	Gly	Val	Thr	Thr	Val	Leu	Thr	Met	Thr	Thr	
	280					285					290					295	
20																	
	CTA	AGC	ATC	AGT	GCT	CGG	AAT	TCT	СТС	CCC	AAA	GTG	GCT	TAT	GCA	ACT	1146
-	Leu	Ser	He	Ser	Ala	Arg	Asn	Ser	Leu	Pro	Lys	Val	Ala	Туг	Ala	Thr	
					300					30 5					310		
25	GCC	ATG	GAC	TGG	TTT	ATT	GCT	GTT	TGT	TAT	GCA	TTT	GTG	TTC	TCT	GCC	1194
	Ala	Met	Asp	Trp	Phe	Ile	Ala	Val	Cys	Туг	Ala	Phe	Val	Phe	Ser	Ala	
				315					320					325			
	CTA	ATT	GAA	TTT	GCA	ACT	GTT	AAT	TAC	TTC	ACC	AAA	AGA	GGA	TGG	ACT	1242
30				Phe													
			330					3 35					340				
	TGG	GAT	GGG	AAG	AGT	GTA	GTA	AAT	GAC	AAG	AAA	AAA	GAA	AAG	GCT	TCC	1290
				Lys													Í
35		345					350		•			355		•			

- 47 -

	GTT	ATG	ATA	CAG	AAC	AAC	GCT	TAT	GCA	GTG	GCT	GTT	GCC	AAT	TAT	GCC	1338
	Val 1	Met	Ile	Gln	Asn	Asn	Ala	Туг	Ala	Val	Ala	Val	Ala	Asn	Tyr	Ala	
	360					365					370					375	
-																	
5	CCG A	AAT	CTT	TCA	AAA	GAT	CCA	GTT	CTC	TCC	ACC	ATC	TCC	AAG	AGT	GCA	1386
	Pro A	Asn	Leu	Ser	Lys	Asp	Pro	Val	Leu	Ser	Thr	He	Ser	Lys	Ser	Ala	
					380					385					390		
	ACC A	ACG	CCA	GAA	CCC	AAC	AAG	AAG	CCA	GAA	AAC	AAG	CCA	GCT	GAA	GCA	1434
10	Thr 1	Thr	Pro	Glu	Pro	Asn	Lys	Lys	Pro	Glu	Asn	Lys	Pro	Ala	Glu	Ala	
				39 5					400					405			
	AAG A	AAA	ACT	TTC	AAC	AGT	GTT	AGC	AAA	ATT	GAC	AGA	ATG	TCC	AGA	ATA	1482
	Lys l	.ys	Thr	Phe	Asn	Ser	Val	Ser	Lys	lle	Asp	Arg	Met	Ser	Ar g	He	
15			410					415					420				
	GTT T																1530
	Val P		Pro	Val	Leu			Thr	Phe	Asn	Leu	Val	Tyr	Тгр	Ala	Thr	
20	4	25					430					435					
20																	
	TAT T												TGAA	TTGA	GA		1576
	Tyr L	.eu	Asn	Arg			Val	Leu	Gly	Val	Ser	Pro					
	440					445					450						
25	CCC++																
23	CCCAT	611/	AI L	1116	GUA I	G IA	TAGC	AACA	TTA	ĄATT	TGG	TTTG	TTTT	GC T	ATGT		
																1636	
	CTGAC	TAA	TA A	rter	T 4 A T	T TC	***										
	CTGAC	100	'n n		IAAI	1 14	IGAI	LLAA	CAI	GIAC	AGI	AIGI	ATAT.	AG T	GACA		
30																1696	
	TACCA	GTAC	34 F	777	AATG	G AC	ACAT	CCAT	770	CT 4.4	czc						
		_,,,,	. .			.	nun i	UCAI	110	LIAA	.,,	A 1 GG	AACI	GC A	GACA		
																1756	
	CACTO	CATO	SC G/	AAA	CAGC	C AT	TGCC	1 111	TTA	AAGA	111	ACCC	TAGG:	מר ר	TGAT	TT&^^	
35			-	•				• •						nu u	· UAI	1816	
																1010	

GTGAATTICA AGTGACCIGA ITAATTICCI ATTCTICCAA ATGAGATGAA AATGGGGATC

1876

CIGTACAACC CITIGIGGAC CCTTITGGIT TAGCTCTTAA GTAGGGGTAT TITCTACTGT

5

TGCTTAATTA TGATGGAAGA TAACATTGTC ATTCCTAGAT GAATCCTTTG AAGTAACAAA

1996

CATTGTATCT GACATCAGCT CTGTTCATGA GTGCTCAGAG TCCCTGCTAA TGTAATTGGA

10

2056

AGCTIGGTAC ACATAAGAAA AACTAGAGAT TIGAAATCTA GCTATGAATT ACTCTATATA

2116

15 GTATCTATAG CCATGTACAT ATTACAGCAT GACAAGCTCG AAATAATTAT GAGTCAGCCC

2176

GAAAGATGTT AAT

2189

20

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 451 amino acids

25

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Lys Thr Lys Leu Asn Ile Tyr Asn Ile Glu Phe Leu Leu Phe Val

10

15

35 Phe Leu Val Trp Asp Pro Ala Arg Leu Val Leu Ala Asn Ile Gln Glu

20

25

- 49 -

	Asp	Glu		Lys	Asn	Asn	Ile		Ile	Phe	Thr	Arg		Leu	Asp	Arg
			35					40					45			
	Leu	Leu	Asp	Gly	Туг	Asp	Asn	Arg	Leu	Arg	Pro	Gly	Leu	Gly	Asp	Ser
5		50					55					60				
	ile	Thr	Glu	Val	Phe	Thr	Asn	ile	ĭvr	Val	Thr	Ser	Phe	GLv	Pro	Val
	65					70			·		75			,		80
10																
10	Ser	Asp	Thr	Asp	Met 85	Glu	Туг	Thr	Ile	Asp 90	Val	Phe	Phe	Arg	Gln 95	Lys
										,,					73	
	Trp	Lys	Asp	Glu	Arg	Leu	Lys	Phe	Lys	Gly	Pro	Met	Asn	lle	Leu	Arg
15				100					105					110		
13	Leu	Asn	Asn	Leu	Het	Ala	Ser	Lys	Ile	Trp	Thr	Pro	Asp	Thr	Phe	Phe
			115					120					125			
	His	Asn	el v	Lve	Lys	Ser	Val	Ala	uis	400	Wat	The		0		
20		130	u.,	-,3	-73	361	135	ALO	п15	ASII	net	140	met	Pro	ASN	LYS
	Leu 145	Leu	Arg	Ile	Gln	Asp 150	Asp	Gly	Thr	Leu		Tyr	Thr	Met	Arg	
	.,,					150					155					160
25	Thr	Val	Gln	Ala	Glu	Cys	Pro	Met	His	Leu	Glu	Asp	Phe	Pro	Met	Asp
					165					170					175	
	Ala	His	Ser	Cys	Pro	Leu	Lys	Phe	Gly	Ser	Туг	Ala	Туг	Thr	Thr	Ser
				180					185					190		
30	Cl	Val	Th =	7		.	. .	•	_							
	510	VOL	195	ıyı	Ile	тгр	INC	200	ASN	Ala	ser	ASP	Ser 205	Val	Gln	Val
35	Ala		Asp	Gly	Ser	Arg		Asn	Gln	Туг	Asp		Leu	Gly	Gln	Ser
J J		210					215					220				

- 50 -

	He	Gly	Lys	Glu	Thr	Ιle	Lys	Ser	Ser	The	Gly	Glu	Туг	Thr	Val	Het
	225					230					235					240
5	Thr	Ala	His	Phe	His 245		Lys	Arg	Lys	1 l e 250		Tyr	Phe	Val	11e 255	Gln
	The	Tve	Loui	Dea			Waa.	7 L-	V-1							
	••••	Туг	CCU	260		ite	net	1111	265	116	Leu	ser	GIN	270	ser	Pne
10	Trp	Leu		Arg	Glu	Ser	Val			Arg	Thr	Val		Gly	Val	Thr
			275					280					285			
	Thr	Val 290	Leu	Thr	Met	Thr	1hr 295	Leu	Ser	lle	Ser	Ala 300	Arg	Asn	Ser	Leu
15	Pro	Lys	Val	Ala	Tyr	Ala	Thr	Ala	Met	Asp	Тгр	Phe	lle	Ala	Val	Cys
	305					310					315					320
20	Туг	Ala	Phe	Val	Phe 325	Ser	Ala	Leu	lle	Glu 330	Phe	Ala	Thr	Val	Asn 335	Туг
	Pho	The	1			•	-									
	riie	Thr	Lys	340	GLY	пр	INF	ırp	345	Gly	Lys	Ser	Val	Val 350	ASN	Asp
25	Lys	Lys		Glu	Lys	Ala	Ser	Val	Met	Ile	Gln	Asn	Asn	Ala	Tyr	Ala
			355					360					365			
	Val	Ala 370	Val	Ala	Asn	Tyr	Ala 375	Pro	Asn	Leu	Ser	Lys 380	Asp	Pro	Val	Leu
30	Ser	Thr	1le	Ser	Lvs	Ser	Ala	Thr	ìhr	Pro	Glu	Pro	Asn	l ve	l ve	Pro
	385				•	390				. •	395	•	- , 241	-,3		400
	Glu	Asn	Lys	Рго	Ala	Glu	Ala	Lys	Lys	Thr	Phe	Asn	Ser	Val	Ser	Lys
35					405					410					415	

- 51 -

445

Ile Asp Arg Met Ser Arg Ile Val Phe Pro Val Leu Phe Gly Thr Phe 420 425 Asn Leu Val Tyr Trp Ala Thr Tyr Leu Asn Arg Glu Pro Val Leu Gly 5

440

Val Ser Pro

450

(2) INFORMATION FOR SEQ ID NO: 9: 10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1638 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

20

15

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 87..1562

25

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GAATTCCCTT GTTTCAGTTC ATTCATCCTT CTCTCCTTTC CGCTCAGACT GTAGAGCTCG 60

30 GTCTCTCCAA GTTTGTGCCT AAGAAG ATG ATA ATC ACA CAA ACA AGT CAC TGT 113 Met Ile Ile Thr Gln Thr Ser His Cys

TAC ATG ACC AGC CTT GGG ATT CTT TTC CTG ATT AAT ATT CTC CCT GGA 161 Tyr Met Thr Ser Leu Gly Ile Leu Phe Leu Ile Asn Ile Leu Pro Gly 15 20 25

- 52 -

	ACC	CACI	r GG1	CAA	GGG	GAA	TCA	AGA	CGA	CAA	GAA	ccc	GGC	GAC	. 771	GTG	209
	The	Thr	Gly	Glr	Gly	Glu	Ser	Arg	Arg	Gln	Glu	Pro	Gly	/ Asp	Phe	Val	
					30					35	ı				40)	
5					GGC												257
	Lys	Glr	n Asp	Ile	Gly	Gly	Leu	Ser	Pro	Lys	His	Ala	Pro	Asp	lle	Рго	
				45					50	1				55	1		
10					GAC												305
10	ASP	o Asp			Asp	Asn	ile			Phe	Thr	Arg			Asp	Arg	
			60	1				65					70)			
	CTT	CIG	GAC	נפר	TAT	GAC	880	ccc	CIC	CCA	CCT	ccc					~
					Туг												353
15		75		,	.,.		80	nı y	200	A1 Y	710	85	Lec	ську	ASP	Ala	
						•	-					0,					
	GTG	ACT	GAA	GTG	AAG	ACT	GAC	ATC	TAC	GTG	ACC	AGT	TTT	GGC	CCT	ata	401
					Lys												
	90					95					100			•		105	
20																	
	TCA	GAC	ACT	GAC	ATG	GAG	TAC	ACT	ATT	GAT	GTA	Ħ	TTT	CGG	CAG	ACA	449
	Ser	Asp	Thr	Asp	Met	Glu	Tyr	Thr	He	Asp	Val	Phe	Phe	Arg	Gln	Thr	
					110					115					120		
25					AGA												497
	Trp	His	Asp	Glu	Arg	Leu	Lys	Phe	Asp	Gly	Pro	Met	Lys	Ile	L eu	Pro	
				125					130					135			
20					CTG												545
30	Leu	Asn		Leu	Leu	Ala	Ser		lle	Trp	Thr	Pro	Asp	Thr	Phe	Phe	
			140					145					150				
	cac		cc.			.											
					AAA												593
35	п15		uly	LYS	Lys			Ala	His	Asn	Met		Thr	Pro	Asn	Lys	•
		155					160					165					

- 53 -

	CIG	CIC	AGA	HG	GTG	GAC	AAC	GGA	ACC	CTC	CTC	TAT	ACA	ATG	AGG	TTA	641
	Leu	Leu	Arg	Leu	Val	Asp	Asn	Gly	Thr	Leu	Leu	Туг	Thr	Met	Arg	Leu	
	170					175					180					185	
5	ACA	ATT	CAT	GCT	GAG	TGT	ССС	ATG	CAT	TTG	GAA	GAT	TII	ccc	ATG	GAT	689
	The	Ile	His	Ala	Glu	Cys	Pro	Het	His	Leu	Glu	Asp	Phe	Pro	Met	Asp	
					190					195					200		
	GTG	CAT	GCC	TGC	CCA	CTG	AAG	TTT	GGA	AGC	TAT	GCC	TAT	ACA	ACA	GCT	737
10	Val	His	Ala	Cys	Pro	Leu	Lys	Phe	Gly	Ser	Tyr	Ala	Туг	Thr	Thr	Ala	
				205					210				•	215			
	GAA	GTG	GTT	TAT	TCT	166	ACT	רזר	GGA	AAG	440	444	TCC	CIC	C44	CTC	785
				Tyr													10)
15			220	,	•		••••	225	0.,	-,3	ASII	Lys	230	Vat	Glu	val	
													230				
	GCA	CAG	GAT	CGT	TCT	cec	TTG	244	ГАС	TAT	CAC	CII	TTC	ccc	CAT	CTT	077
				Gly													833
		235		,		9	240	non	J(11	',	vsh	245	reu	БГУ	піѕ	vat	
20												24)					
	GTT	GGG	ACA	GAG	ΔΤΔ	ATC	ccc	TCT	ACT	A.C.A	CCA	CA.	***				004
				Glu													881
	250	,	••••		•••	255	ni y	Jei	361	****	260	610	туг	vat	vat		
											200					265	
25	ATA	ACC	CAC	TTC	CAT	CIC	440	rca.		477	***						
																	929
	••••	****	3	Phe	270	Leu	Lys	жгg	Lys		ц	ıyr	Phe	Val		Gln	
					210					275					280		
	ACC	TAC	TTC	CCA	701	470	470										
30				CCA													977
	••••	171	Leu	Pro	Lys	116	met	INC		He	Leu	Ser	Gln		Ser	Phe	
				285					290					2 95			
	700																
				AGA													1025
) <u>F</u>	ırp	Leu		Arg	Glu	Ser	Val		Ala	Arg	Thr	Vat	Phe	Gly	Val	Thr	
35			300					305					310				

- 54 -

	ACT	GTG	CTT	ACC	ATG	ACC	ACC	TTG	AGT	ATC	AGT	ecc	AGA	AAT	TCC	TTA	1073
	Thr	Val	Leu	Thr	Het	Thr	Thr	Leu	Ser	He	Ser	Ala	Arg	Asn	Ser	Leu	
		315					320					325					
5	CCT	AAA	GTG	GCA	TAT	GCG	ACG	GCC	ATG	GAÇ	TGG	TTC	ATA	GCC	GTC	TGT	1121
		Lys															
	330	•			•	335					340					345	
	TAT	GCC	TTT	GTA	111	TCT	GCA	CTG	ATT	GAA	111	GCC	ACT	GTC	AAC	TAT	1169
10		Ala															
	.,.				350	•••			•••	355		71.0	••••	***	360	•,,	
					3,0					337					300		
	TTC	۸۲۲	440	ccc	ACT	TCC	CCT	TCC	544								1217
		ACC															1217
15	Pne	Thr	Lys		ser	ırp	ALA	ırp		ыу	Lys	Lys	Val		Glu	Ala	
LS				365					370					375			
		GAG															1265
	Leu	Glu		Lys	Lys	Lys	Thr		Ala	Ala	Pro	Ala	Lys	Lys	Thr	Ser	
			380					385					390				
20																	
		ACC															1313
	Thr	Thr	Phe	Asn	ile	Val	Gly	Thr	Thr	Туг	Pro	ile	Asn	Leu	Ala	Lys	
		395					400					405					
_																	
25	GAC	ACT	GAA	TTT	TCC	ACC	ATC	TCC	AAG	GGC	GCT	GCT	CCC	AGT	GCC	TCC	1361
	Asp	Thr	Glu	Phe	Ser	Thr	lle	Ser	Lys	Gly	Ala	Ala	Pro	Ser	Ala	Ser	
	410					415					420					425	
	TCA	ACC	CCA	ACA	ATC	ATT	GCT	TCA	CCC	AAG	GCC	ACC	TAC	GTG	CAG	GAC	1409
30	Ser	Thr	Pro	The	Ile	Ite	Ala	Ser	Рго	Lys	Ala	Thr	Tyr	Val	Gln	Asp	
					430					435					440		
	AGC	CCG	ACT	GAG	ACC	AAG	ACC	TAC	AAC	AGT	GTC	AGC	AAG	GTT	GAC	AAA	1457
	Ser	Pro	Thr	Glu	Thr	Lys	Thr	Туг	Asn	Ser	Val	Ser	Lys	Val	Asp	Lys	
5				445					450					455			

- 55 -

ATT TCC CGC ATC ATC TIT CCT GTG CTC TIT GCC ATA TIC AAT CTG GTC 1505 Ile Ser Arg Ile Ile Phe Pro Val Leu Phe Ala Ile Phe Asn Leu Val 460 465

5 TAT TGG GCC ACA TAT GTC AAC CGG GAG TCA GCT ATC AAG GGC ATG ATC 1553 Tyr Trp Ala Thr Tyr Val Asn Arg Glu Ser Ala 11e Lys Gly Het 11e 475 480

CGC AAA CAG TAGATAGTGG CAGTGCAGCA ACCAGAGCAC TGTATACCCC 1602 10 Arg Lys Gln

490

GTGAAGCATC CAGGCACCCA AACCCCGGGG CTCCCC

1638

15

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 492 amino acids

20 (B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ile Ile Thr Gln Thr Ser His Cys Tyr Met Thr Ser Leu Gly Ile 1

10

30 Leu Phe Leu Ile Asn Ile Leu Pro Gly Thr Thr Gly Gln Gly Glu Ser

20 25

Arg Arg Gln Glu Pro Gly Asp Phe Val Lys Gln Asp Ile Gly Gly Leu

35 40

35

Ser Pro Lys His Ala Pro Asp Ile Pro Asp Asp Ser Thr Asp Asn Ile 50

	Thr	Ite	Phe	Thr	Arg	ile	Leu	Asp	Arg	Leu	Leu	Asp	Gly	Туг	Asp	Asn
	65					70					75					80
_	•		•	_			٠.									
5	Arg	Leu	Arg	Pro	Gly	Leu	Gly	Asp	Ala	Val	Thr	Glu	Val	Lys	Thr	Asp
					85					90					95	
	Ile	īvr	Val	The	Ser	Phe	GIV	Pro	Val	Sec	Asn	Thr	Asn	Net	Glu	Tvr
		.,.					,			•	ПОР	••••	,,up			.,.
				100					105					110		
10																
	Thr	He	Asp	Val	Phe	Phe	Arg	Gln	Thr	Trp	His	Asp	Glu	Arg	Leu	Lys
			115					120					125			
													123			
	Phe	Asp	Gly	Pro	Met	Lys	Ile	Leu	Pro	Leu	Asn	Asn	Leu	Leu	Ala	Ser
15		130					135					140				
	ive	110	Trp	The.	Dee	400	Y	Db	26-			61		4	•	
		116	пр	1111	P1 0		III	rne	rne	піѕ		υιу	LYS	Lys	Ser	vat
	145					150					155					160
20	Ala	His	Asn	Met	Thr	Thr	Pro	Asn	Lys	Leu	Leu	Arg	Leu	Val	Asp	Asn
					165					170		_			175	
					105					170					175	
	Gly	Thr	Leu	Leu	Tyr	Thr	Met	Arg	Leu	Thr	lle	His	Ala	Glu	Cys	Рго
				180					185					190		
25																
	W-4						_		_							
	net	HIS	Leu	Gtu	ASP	Phe	Pro	Met	Asp	Val	His	Ala	Cys	Pro	Leu	Lys
			195					200					205			
	Phe	Glv	Ser	Tvr	Ala	Tvr	The	The	Δla	GI ti	Val	Val	Tve	Sar	Ten	The
20	•			.,.		٠,٠			710	313	*81		17,	361	пр	****
30		210					215					220				
	Leu	Gly	Lys	Asn	Lys	Ser	Val	Glu	Val	Ala	Gln	Asp	Gly	Ser	Arg	Leu
	225					230					235	•	•		•	
						230					237					240
35	Asn	Gln	Tyr	Asp	Leu	Leu	Gly	His	Val	Val	Gly	Thr	Glu	Ile	lle	Arg
					245					250					255	

- 57 -

	Ser	Ser	Thr	Gly	Glu	Iyr	Val	Val	Het	Thr	Thr	His	Phe	His	Leu	Lys
				260					265					270		
	Arg	Lys	Ile	Gly	Туг	Phe	Val	He	Gln	Thr	Туг	Leu	Pro	Cys	Ile	Het
5			275					280			•		285	-,-		
								200					20)		•	
	Thr	Val	Ile	Leu	Ser	Gln	Val	Ser	Phe	Ιrp	Leu	Asn	Arg	Glu	Ser	Val
		290					295					300				
10	Pro	Ala	Arg	Thr	Val	Phe	Gly	Val	Thr	Thr	Val	Leu	Thr	Met	Thr	Thr
	305					310					315					320
																320
	Leu	Ser	ile	Ser	Ala	Arg	Asn	Ser	Leu	Pro	Lys	Val	Ala	Tyr	Ala	Thr
					325					330					335	
15																
	Ala	Met	Asp	Trp	Phe	Ile	Ala	Val	Cys	Tyr	Ala	Phe	Val	Phe	Ser	Ala
				340					345					350		_
														550		
	l ou i	110	c	Db	41 -	.			_							
20	Leu	rte		Phe	ALA	Inr	val		Туг	Phe	Thr	Lys	Arg	Ser	Trp	Ala
20			3 55					360					365			
	Trp	Glu	Gly	Lys	Lys	Val	Pro	Glu	Ala	Leu	Glu	Met	Lys	Lys	Lys	Thr
		370					375					380				
25	Pro	Ala	Ala	Pro	Ala	Lvs	Lvs	Thr	Ser	ìhr	Thr	Pho	Acn	110	Val	Clv
	385					390	-,-	••••	•••			,	7311	116		
						3,0					395					400
	Thr	Thr	Tyr	Рго	Ile	Asn	Leu	Ala	Lys	Asp	Thr	Glu	Phe	Ser	Thr	Ile
					405					410					415	
30																
	Ser	Lys	Gly	Ala	Ala	Pro	Ser	Ala	Ser	Ser	Thr	Рго	Thr	ile	Ile	Ala
				420					425			-		430		
		•							463					JU		
	_	_														
	Ser	Pro	Lys	Ala	Thr	Туг	Vai	Gln	Asp	Ser	Рго	Thr	Glu	Thr	Lys	Thr
35			435					440					445			

PCT/GB93/02506 WO 94/13799

- 58 -

Tyr Asn Ser Val Ser Lys Val Asp Lys 1le Ser Arg 1le 1le Phe Pro 460

455

Val Leu Phe Ala Ile Phe Asn Leu Val Tyr Trp Ala Thr Tyr Val Asn

5 470 475

Arg Glu Ser Ala Ile Lys Gly Met Ile Arg Lys Gln

485 490

- 59 -

Claims:

10

15

35

1. A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor comprising the $\alpha_1\beta_3 / 2$ subunit combination.

- 2. A stably co-transfected eukaryotic cell line capable of expressing a human GABA_A receptor comprising the $\alpha_2\beta_3\beta_2$ subunit combination.
 - 3. A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor comprising the $\alpha_5\beta_3\not|_2$ subunit combination.

4. A stably co-transfected eukaryotic cell line capable of expressing a human GABA_A receptor comprising the $\alpha_1\beta_1 \zeta_{2S}$ subunit combination.

- 5. A stably co-transfected eukaryotic cell line capable of expressing a human GABAA receptor comprising the $\alpha_1\beta_2 \zeta_2$ subunit combination.
- 6. A stably co-transfected eukaryotic cell line capable of expressing a human GABA_A receptor comprising the $\alpha_3\beta_3/2$ subunit combination.
- 7. A stably co-transfected eukaryotic cell line capable of expressing a human GABA_A receptor comprising the $\alpha_6\beta_3/_2$ subunit combination.
 - 8. A membrane preparation containing subunit combinations of the human ${\sf GABA}_A$ receptor derived from a culture of the stably co-transfected eukaryotic cells as claimed in any one of claims 1 to 3.

- 60 -

9. A membrane preparation containing subunit combinations of the human GABA_A receptor derived from a culture of the stably co-transfected eukaryotic cells as claimed in any one of claims 4 to 7.

5

10. A preparation as claimed in claim 8 containing a human GABA_A receptor consisting of the $\alpha_1\beta_3 \chi_{2S}$, $\alpha_2\beta_3 \chi_{2S}$ or $\alpha_5\beta_3 \chi_{2S}$ subunit combination isolated from stably co-transfected mouse Ltk⁻ fibroblast cells.

10

15

20

- 11. A preparation as claimed in claim 9 containing a human GABA_A receptor consisting of the $\alpha_1\beta_1\chi_{2S}$, $\alpha_1\beta_2\chi_{2S}$, $\alpha_3\beta_3\chi_{2S}$ or $\alpha_6\beta_3\chi_{2S}$ subunit combination isolated from stably co-transfected mouse Ltk⁻ fibroblast cells.
- 12. The use of the cell line as claimed in any one of claims 1 to 3, and membrane preparations derived therefrom, in screening for and designing medicaments which act upon the human GABAA receptor.
- 13. The use of the cell line as claimed in any one of claims 4 to 7, and membrane preparations derived therefrom, in screening for and designing medicaments which act upon the human $GABA_A$ receptor.

2/15

FIGURE 2

10	20 30	40	50	60 70
CCTAGCGCTC CTCTCCGG	CT TCCACCAGCC	CATCGCTCCA (CGCTCTCTTG (SCTGCTGCAG TCTCGGTCTC
80	90 100	110	120	130 140
TCTCTCTCTC TCTCTCTC	TC TCTCTCTCTC	TCTCTCTCTC 1	TCTCTCTCTC 1	CTCTCTCTC TCTCTCCAA
150 1	60 170	180	190	200 210
				200 210 CTTGCCGTTT CAGAGCGGCG
			000000000	FIRST CAGAGOGGCG
219 >			246	255 264
GTG ATG AAG ACA AAA MET Lys Thr Lys	TTG AAC ATC T Leu Asn Ile T	AC AAC ATC C	GAG TTC CTG	CTT TTT GTT TTC Leu Phe Val Phe
273			300	309 318
TTG GTG TGG GAC CCT	GCC AGG TTG G	TG CTG GCT 7	AAC ATC CAA	GAA GAT GAG GCT
Leu Val Trp Asp Pro 327				_
AAA AAT AAC ATT ACC			354	363 372
Lys Asn Asn Ile Thr	Ile Phe Thr A	rg Ile Leu I	Asp Arg Leu	Leu Asp Gly Tyr
381	390 3	199	408	417 426
GAT AAT CGG CTT AGA	CCA GGA CTG G	GA GAC AGT	ATT ACT GAA	GTC TTC ACT AAC
Asp Asn Arg Leu Arg 435			462	
	_			471 480
ATC TAC GTG ACC AGT Ile Tyr Val Thr Ser	Phe Gly Pro V	TC TCA GAT A al Ser Asp 1	ACA GAT ATG Thr Asp MET	GAA TAT ACA ATT Glu Tyr Thr Ile
489	498 5	507 5	516	525 534
GAT GTT TTC TTT CGA	CAA AAA TGG A	AA GAT GAA C	CGT TTA AAA	TTT AAA GGT CCT
Asp Val Phe Phe Arg				,
			570	579 588
ATG AAT ATC CTT CGA MET Asn Ile Leu Arg	Leu Asn Asn L	TA ATG GCT A eu MET Ala S	AGC AAA ATC Ser Lys Ile	TGG ACT CCA GAT Trp Thr Pro Asp
597	606 6	515	624	633 642
ACC TTT TTT CAC AAT	GGG AAG AAA T	CA GTA GCT	CAT AAT ATG	ACA ATG CCA AAT
Thr Phe Phe His Asn				
651			678 —— —— ——	687 696
AAG TTG CTT CGA ATT Lys Leu Leu Arg Ile	CAG GAT GAT G	GG ACT CTG (Gly Thr Leu I	CTG TAT ACC Leu Tyr Thr	ATG AGG CTT ACA MET Arg Leu Thr
705			732	741 750
GTT CAA GCT GAA TGC	CCA ATG CAC T	TG GAG GAT	TTC CCA ATG	GAT GCT CAT TCA
Val Gln Ala Glu Cys	Pro MET His L	Leu Glu Asp 1	Phe Pro MET	Asp Ala His Ser

3/15

FIGURE 2 (CONTINUED)

		759			768			777			786			795			804
TGT Cys	CCT Pro	CTG Leu	ĀĀĀ Lys	TTT Phe	GGC Gly	AGC Ser	TAT	GCA Ala	TAT	ACA Thr	ACT Thr	TCA Ser	GAG Glu	GTC Val	ACT Thr	TAT Tvr	
		813			822			831			840			849		-,-	858
TGG	ACT	TAC	AAT	GCA	TCT Ser	GAT	TCA	GTA	CAG	GTT	GCT	CCT	GAT	<u> </u>	TCT	ĀGG	
•		867			876	rup	Jei		GIII	Val		PIO	Asp		Ser	Arg	Leu
A N TT	CAN		<u> </u>			===		885			894			903			912
Asn	Gln	Tyr	Asp	Leu	CTG Leu	GGC Gly	CAA Gln	TCA Ser	ATC Ile	GGA Gly	AAG Lys	GAG Glu	ACA Thr	ATT Ile	AAA Lys	TCC	AGT Ser
		921			930			939			948			957	-		966
ACA	GGT	GAA	TAT	ACT	GTA	ATG	ACA	GCT	CAT	TTC	CAC	CTG	ĀĀĀ	ĀGĀ	AAA	ATT	GGG
1111	GIY		Tyr	Thr	Val	MET	Thr		His	Phe	His	Leu	ГÀЗ	Arg	Lys	Ile	Gly
===	===	975			984			993			1002			1011			1020
TAT	Phe	GTG Val	ATT Ile	CAA Gln	ACC Thr	TAT	CTG Leu	Pro	TGC Cys	ATC Ile	ATG MET	ACT Thr	GTC Val	ATT Ile	CTC	TCC	CAA Gln
		1029			1038			1047	-		1056			1065			1074
GTT	TCA	TTC	TGG	CTT	AAC	AGA	GAA	TCT	GTG	CCT	GCA	AGA	አር ሞ	CTC	<u> </u>	CCN	CD 2
Val	Ser	Phe	Trp	Leu	Asn	Arg	Glu	Ser	Val	Pro	Ala	Arg	Thr	Val	Phe	Gly	Val
	:	1083		;	1092		:	1101		:	1110		:	1119		1	128
ACA Thr	ACT Thr	GTC Val	CTA Leu	ACA Thr	ATG:	ACA Thr	ACT Thr	CTA Leu	AGC Ser	ATC Ile	AGT Ser	GCT Ala	CGG.	AAT	TCT	CTC	CCC
		1137			1146			1155			1164			1173			182
ĀĀĀ	GTG	GCT	TAT	GCA	ACT	GCC	ATG	GAC	क्ट्र	11111111111	2 17 17	CCT	Com.	mcm	<u> </u>	202	
Lys	Val	Ala	Tyr	Ala	Thr	Ala	MET	Asp	Trp	Phe	Ile	Ala	Val	Cys	Tyr	Ala	Phe
	:	1191		.:	1200		:	1209		1	1218		1	L227		1	236
GTG Val	TTC	TCT	GCC	CTA	ATT	GAA	TTT	GCA	ACT	GTT	AAT	TAC	TTC	ACC	AAA	ĀĢĀ	GGA.
		1245	Ala		Ile	GIU			Thr			Tyr	Phe	Thr	Lys	Arg	Gly
mcc					1254			1263			1272			1281	•		290
Trp	Thr	Trp	Asp	GGG	AAG Lys	AGT Ser	GTA Val	GTA Val	AAT Asn	GAC Asp	AAG Lys	AAA	AAA Lys	GAA Glu	AAG	GCT Ala	TCC Ser
		299			1308			1317			.326	-		1335			344
GTT	ATG	ATA	CAG	AAC	AAC	GCT	TAT	GCA	GTG	GCT	ভেক্ত	GCC	7.70	(T) (T)	CCC	~~~	
Val	MET	Ile	Gln	Asn	Asn	Ala	Tyr	Ala	Val	Ala	Val	Ala	Asn	Tyr	Ala	Pro	Asn
		353			1362			1371			1380			1389			.398
CTT	TCA Se-	AAA	GAT	CCA	GTT Val	CTC	TCC	ACC	ATC	TCC	AAG	ĀGŦ	GCA	ACC	ĀCG	ADD	GAA
		407	برد. .		Val				TTE			ser			Thr	Pro	Glu
<u> </u>					416			425			434			443			452
Pro	Asn	Lys	AAG Lys	CCA Pro	GAA Glu	AAC Asn	AAG Lys	CCA Pro	GCT Ala	GAA Glu	GCA Ala	AAG Lys	AAA Lys	ACT Thr	TTC Phe	AAC Asn	AGT Ser

4/15

FIGURE 2 (CONTINUED)

1461	147	0 14	179 1	L488	1497	1506
				TTT CCA GTT Phe Pro Val		
1515	152	24 15	33 :	L542	1551	1560
				AGA GAA CCT Arg Glu Pro		
1569		1589	1599	9 1609	1619	1629
AGT CCT TGA Ser Pro		ATGTTATCT1	TGGGATGTA	r agcaacatta	A AATTTGGTTT	GTTTTGCTAT
1639	1649	1659	1669	1679	1689	1699
GTACAGTCTG	ACTAATAACT	GCTAATTTGT	GATCCAACAT	GTACAGTATG	TATATAGTGA	CATAGCTTAC
1709	1719	1729	1739	1749	1.759	1769
CAGTAGACCT	TTAATGGAGA	CATGCATTTG	CTAACTCATG	GAACTGCAGA	CAGAAAGCAC	TCCATGCGAA
1779	1789	1799	1809	1819	1829	1839
AACAGCCATT	GCCTTTTTTA	AAGATTTACC	CTAGGACCTG	ATTTAAAGTG	AATTTCAAGT	GACCTGATTA
1849	1859	1869	1879	1889	1899	1909
ATTTCCTATT	CTTCCAAATG	AGATGAAAAT	GGGGATCCTG	TACAACCCTT	TGTGGACCCT	TTTGGTTTAG
1919	1929	1939	1949	1959	1969	1979
CTCTTAAGTA	GGGGTATTT	CTACTGTTGC	TTAATTATGA	TGGAAGATAA	CATTGTCATT	CCTAGATGAA
1989	1999	2009	2019	2029	2039	2049
TCCTTTGAAG	TAACAAACAT	TGTATCTGAC	ATCAGCTCTG	TTCATGAGTG	CTCAGAGTCC	CTGCTAATGT
2059	2069	2079	2089	2099	2109	2119
AATTGGAAGC	TTGGTACACA	TAAGAAAAAC	TAGAGATTTG	AAATCTAGCT	ATGAATTACT	CTATATAGTA
2129	2139	2149	2159	2169	2179	2189
TCTATAGCCA	TGTACATATT	ACAGCATGAC	AAGCTCGAAA	TAATTATGAG	TCAGCCCGAA	AGATGTTAAT

5/15

FIGURE 3

10	20	30.	40 50	60	70
GAATTCCCTT GTTTCA	GTTC ATTCATCO	CTT CTCTCCTT	TC CGCTCAGACT G	TAGAGCTCG GTC	TCTCCAA
80	89	98	107 11	6 125	
GTTTGTGCCT AAGAAG	ATG ATA ATC MET Ile Ile	ACA CAA ACA	A AGT CAC TGT TA Ser His Cys Ty	C ATG ACC AGC r MET Thr Ser	•
134	143	152	161	-	.79
CTT GGG ATT CTT T	TTC CTG ATT A	AT ATT CTC C sn Ile Leu F	CCT GGA ACC ACT Pro Gly Thr Thr	GGT CAA GGG G Gly Gln Gly G	AA Hu
188	197	206	215	224 2	233
TCA AGA CGA CAA C	GAA CCC GGG G Glu Pro Gly A	AC TTT GTG I	AAG CAG GAC ATT Lys Gln Asp Ile	GGC GGG CTG T	CT Ser
242	251	260	269	278 2	287
CCT AAG CAT GCC Pro Lys His Ala	CCA GAT ATT C Pro Asp Ile P	TO Asp Asp	AGC ACT GAC AAC Ser Thr Asp Asn	ATC ACT ATC T	rTC ?he
296	305	314	323		341
ACC AGA ATC TTG Thr Arg Ile Leu	GAT CGT CTT C Asp Arg Leu I	eu Asp Gly	TAT GAC AAC CGG Tyr Asp Asn Arg	CTG CGA CCT C	3 GG 31y
350	359	368	377	386	395
CTT GGA GAT GCA Leu Gly Asp Ala	GTG ACT GAA (Val Thr Glu V	TG AAG ACT Val Lys Thr	GAC ATC TAC GTG Asp Ile Tyr Val	ACC AGT TTT Thr Ser Phe	GGC Gly
404	413	422	431	440	449
CCT GTG TCA GAC. Pro Val Ser Asp	ACT GAC ATG O	GAG TAC ACT	ATT GAT GTA TTT Ile Asp Val Phe	TTT CGG CAG	ACA Thr
458	467	476	485	494	503
TGG CAT GAT GAA Trp His Asp Glu	AGA CTG AAA Arg Leu Lys	TTT GAT GGC Phe Asp Gly	CCC ATG AAG ATG	CTT CCA CTG	AAC Asn
512	521	530	539	548	557
AAT CTC CTG GCT Asn Leu Leu Ala	AGT AAG ATC Ser Lys Ile	TGG ACA CCG Trp Thr Pro	GAC ACC TTC TTC Asp Thr Phe Phe	CAC AAT GGC His Asn Gly	AAG Lys
566	575	584	593	602	611
AAA TCA GTG GCT Lys Ser Val Ala	CAT AAC ATG His Asn MET	ACC ACG CCC Thr Thr Pro	ASD Lys Leu Le	TAGA TTG GTG u Arg Leu Val	GAC Asp
620	629	638	647	6 56	665
AAC GGA ACC CTC Asn Gly Thr Leu	CTC TAT ACA Leu Tyr Thr	ATG AGG TTA MET Arg Leu	ACA ATT CAT GC Thr Ile His Al	T GAG TGT CCC a Glu Cys Pro	MEI .
674	683	692	701	710	719
CAT TTG GAA GAT His Leu Glu Asp	TTT CCC ATG Phe Pro MET	GAT GTG CAT Asp Val His	GCC TGC CCA CT Ala Cys Pro Le	G AAG TTT GGA u Lys Phe Gly	AGC Ser

6/15

FIGURE 3 (CONTINUED)

		728			737			746			755			764			773
TAT Tyr	GCC Ala	TAT Tyr	ACA Thr	ACA Thr	GCT Ala	GAA Glu	GTG Val	GTT Val	TAT Tyr	TCT Ser	TGG Trp	ACT Thr	CTC Leu	GGA Gly	AAG Lys	AAC Asn	AAA Lys
		782			791			800			809			818			827
TCC Ser	GTG. Val	GAA Glu	GTG Val	GCA Ala	CAG Gln	GAT Asp	GGT Gly	TCT Ser	CGC Arg	TTG Leu	AAC neA	CAG Gln	TAT Tyr	GAC Asp	CTT Leu	TTG Leu	GGC Gly
		836			845			854			863			872			881
CAT	GTT	GTT	GGG	ĀCĀ	GAG	ATA	ATC	CGG	TCT	ĀGT	ACA	GGA-	GAA	TAT	GTC	GTC	ATG
His	Val	Val	Gly	Thr	Glu	Ile	Ile	Arg	Ser	Ser	Thr	Gly	Glu	Tyr	Val	Val	MET
		890			899			908			917			926			935
ACA Thr	ACC Thr	CAC His	TTC	CAT	CTC	AAG	CGA	AAA	ATT	GGC	TAC	TTT	GTG Val	ATC	CAG Gln	ACC	TAC
		944			953	-,,0	9	962		Oly	971		,	980	9111	****	989
ምጥር	CCV		<u> አሞር</u>	አ ጥር		CTC	አጥሞ		TCT	<u> </u>			mmc		CTC	77 C	
Leu	Pro	Cys	Ile	MET	Thr	Val	Ile	Leu	Ser	Gln	Val	Ser	Phe	Trp	Leu	Asn	Arg
		998		:	1007		1	1016		1	1025		1	1034		3	.043
GAG	TCT	GTT	CCT	GCC	CGT	ACA	GTC	TTT	GGT	GTC	ACC	ACT	GTG	CTT	ACC Thr	ATG	ACC
GIU		1052	110		1061	1111			стА			THE			Thr		
								1070			L079 ——			1088		_	.097
Thr	Leu	AGT Ser	ATC Ile	AGT Ser	GCC Ala	AGA Arg	AAT Asn	TCC Ser	TTA Leu	CCT Pro	AAA Lys	GTG Val	GCA Ala	TAT	GCG Ala	ACG Thr	GCC Ala
		1106		:	1115		1	1124		1	1133		:	1142		:	151
ATG	GAC	TGG	TTC	ATA	GCC	GTC	TGT	TAT	GCC	TTT	GTA	TTT	TCT			ĀTT	GAA
MET	Asp	Trp	Phe	Ile	Ala	Val	Cve	M						GCA	CTG		
							Cys	Tyr	Ala	Phe	۷al	Phe	Ser	Ala	CTG	Ile	Glu
		1160			1169		3	1178		1	L187	Phe	Ser	Ala 1196	Leu	Ile	Glu L205
TTT Phe	GCC	ACT	GTC Val	AAC	TAT	TTC	ACC	1178 AAG	ccc	AGT	1187	Phe GCT	Ser TGG	Ala 1196 GAA	CTG Leu GGC Gly	Ile	Glu L205 AAG
TTT Phe	GCC Ala	ACT	GTC Val	AAC Asn	TAT	TTC	ACC Thr	1178 AAG	ccc	AGT Ser	1187	Phe GCT	Ser TGG Trp	Ala 1196 GAA	Leu GGC	Ile AAG Lys	Glu L205 AAG
Phe GTG	GCC Ala	ACT Thr 1214	Val	AAC Asn	TAT Tyr 1223 GAG	TTC Phe	ACC Thr	AAG Lys 1232	CGG Arg	AGT Ser	TGG Trp 1241	GCT Ala	TGG Trp	Ala 1196 GAA Glu 1250	GGC Gly	AAG Lys	Glu L205 AAG Lys L259
Phe GTG	GCC Ala CCA Pro	ACT Thr 1214 GAG Glu	Val	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu	TTC Phe	ACC Thr AAG	AAG Lys 1232 AAG Lys	CGG Arg	AGT Ser	TGG Trp 1241 CCA Pro	GCT Ala	TGG Trp GCC Ala	Ala I196 GAA Glu I250 CCA Pro	GGC Gly	AAG Lys	Glu L205 AAG Lys L259
GTG Val	GCC Ala CCA Pro	ACT Thr 1214 GAG Glu 1268	GCC Ala	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu 1277	TTC Phe ATG MET	ACC Thr Thr AAG Lys	AAG Lys 1232 AAG Lys	CGG Arg AAA. Lys	AGT Ser	TGG Trp 1241 CCA Pro	GCT Ala GCA Ala	TGG Trp GCC Ala	GAA Glu 1250 CCA Pro	GGC Gly GCA Ala	AAG Lys AAG Lys	AAG Lys AAA Lys
GTG Val	GCC Ala CCA Pro	ACT Thr 1214 GAG Glu 1268	GCC Ala	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu 1277	TTC Phe ATG MET	ACC Thr AAG Lys	AAG Lys 1232 AAG Lys 1286	CGG Arg	AGT Ser ACA Thr	TGG Trp 1241 CCA Pro 1295	GCT Ala GCA Ala	TGG Trp GCC Ala	Ala 1196 GAA Glu 1250 CCA Pro 1304	GGC Gly GCA Ala	AAG Lys AAG Lys	AAG Lys AAA Lys AAG
GTG Val	GCC Ala CCA Pro	ACT Thr 1214 GAG Glu 1268	GCC Ala	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu 1277	TTC Phe ATG MET	ACC Thr AAG Lys GTG Val	AAG Lys 1232 AAG Lys 1286	CGG Arg	ACA Thr	TGG Trp 1241 CCA Pro 1295	GCT Ala GCA Ala	TGG Trp GCC Ala	Ala 1196 GAA Glu 1250 CCA Pro 1304	GGC Gly GCA Ala	AAG Lys AAG Lys GCC Ala	AAG Lys AAA Lys AAG
GTG Val	GCC Ala CCA Pro AGC Ser	ACT Thr 1214 GAG Glu 1268 ACT Thr 1322	GCC Ala ACC Thr	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu 1277 AAC Asn 1331	TTC Phe ATG MET	ACC Thr AAG Lys GTG Val	AAG Lys 1232 AAG Lys 1286 GGG G1y 1340	GGG Arg	AGT Ser ACA Thr ACC Thr	TGG Trp 1241 CCA Pro 1295 TAT Tyr 1349	GCT Ala GCA Ala CCC Pro	TGG Trp GCC Ala ATC	GAA Glu 1250 CCA Pro 1304 AAC Asn 1358	GGC Gly GCA Ala CTG Leu	AAG Lys GCC Ala	AAA Lys AAA Lys AAA Lys AAG Lys
GTG Val	GCC Ala CCA Pro AGC Ser	ACT Thr 1214 GAG Glu 1268 ACT Thr 1322	GCC Ala ACC Thr	AAC Asn CTG Leu	TAT Tyr 1223 GAG Glu 1277 AAC Asn 1331	TTC Phe ATG MET	ACC Thr AAG Lys GTG Val	AAG Lys 1232 AAG Lys 1286 GGG G1y 1340	GGG Arg	AGT Ser ACA Thr ACC Thr	TGG Trp 1241 CCA Pro 1295 TAT Tyr 1349	GCT Ala GCA Ala CCC Pro	TGG Trp GCC Ala ATC	GAA Glu 1250 CCA Pro 1304 AAC Asn 1358	GGC Gly GCA Ala	AAG Lys GCC Ala	AAA Lys AAA Lys AAA Lys AAG Lys
GTG Val	GCC Ala CCA Pro AGC Ser	ACT Thr 1214 GAG Glu 1268 ACT Thr 1322	GCC Ala ACC Thr TTT Phe	AAC Asn CTG Leu TTC Phe	TAT Tyr 1223 GAG Glu 1277 AAC Asn 1331	TTC Phe ATG MET	ACC Thr AAG Lys GTG Val	AAG Lys 1232 AAG Lys 1286 GGG G1y 1340	GGG Arg	ACA Thr ACC Thr	TGG Trp 1241 CCA Pro 1295 TAT Tyr 1349	GCT Ala GCA Ala CCC Pro	TGG Trp GCC Ala ATC Ile	GAA Glu 1250 CCA Pro 1304 AAC Asn 1358	GGC Gly GCA Ala CTG Leu	AAG Lys GCC Ala TCA Ser	AAA Lys AAA Lys AAA Lys AAG Lys

7/15

FIGURE 3 (CONTINUED)

ACC AAG ACC TAC AAC AGT GTC AGC AAG GTT GAC AAA ATT TCC CGC ATC ATC TTT Thr Lys Thr Tyr Asn Ser Val Ser Lys Val Asp Lys Ile Ser Arg Ile Ile Phe CCT GTG CTC TTT GCC ATA TTC AAT CTG GTC TAT TGG GCC ACA TAT GTC AAC CGG Pro Val Leu Phe Ala Ile Phe Asn Leu Val Tyr Trp Ala Thr Tyr Val Asn Arg $\overline{\text{GAG}}$ $\overline{\text{TCA}}$ $\overline{\text{GCT}}$ $\overline{\text{ATC}}$ $\overline{\text{AAG}}$ $\overline{\text{GGC}}$ $\overline{\text{ATG}}$ $\overline{\text{ATC}}$ $\overline{\text{CGC}}$ $\overline{\text{AAA}}$ $\overline{\text{CAG}}$ $\overline{\text{TAG}}$ $\overline{\text{ATAGTGGCAG}}$ $\overline{\text{TGCAGCAACC}}$ $\overline{\text{Glu}}$ $\overline{\text{Ser Ala Ile Lys Gly MET Ile Arg Lys Gln}}$ AGAGCACTGT ATACCCCGTG AAGCATCCAG GCACCCAAAC CCCGGGGCTC CCC

3/15

FIGURE 4

10	20 30	40	50	60	70
GAATTCCCCC CTTGCAG	GCC GAGCCGGGG	CCTGCGCCCT	CCCCCTCCGC C	CAGCTCGGC CAAC	GGCGCA
80	90 100	110	120	130	140
TTTGCTGAGC GTCTGGC	GGC CTCTACCGG	A GCACCTCTGC	AGAGGGCCGA T	CCTCCAGCC CAG	AGACGAC
150	160 170	180	190	200	210
ATGTGGCGCT CGGGCGA			CTTGCTGGCT T	TGAACGCGT GGC	STGGCAG
220	230 240	0 250	260	270	280
ATATTTCAGA AAGCTTC	CAAG AACAAGCTG	G AGAAGGGAAG	AGTTATTCCT C	CATATTCAC CTG	CTTCAAC
290	*	309 :	318 3	327 33	6
TACTATTCTT ATTGGGA	> A ATG GAC AAT (MET Asp Asn (GGA ATG TTC	TCT GGT TTT F Ser Gly Phe J	ATC ATG ATC AAX	Ā s
345	354	363	372	381 39	90
AAC CTC CTT CTC TT Asn Leu Leu Leu Ph					
399	408	417	426	435 4	44
CAG ATG CCA ACC ACGIN MET Pro Thr Se					
453	462	471	480		98
ACC AGG ATC TTG GA	AT GGG CTC TTG	GAT GGC TAC	GAC AAC AGA	CTT CGG CCC G	<u>GG</u>
Thr Arg Ile Leu As	sp Gly Leu Leu	Asp Gly Tyr	Asp Asn Arg	Leu: Arg Pro G	ly
507	516	525	534		52
CTG GGA GAG CGC AT Leu Gly Glu Arg II					
561	570	579	588	597 6	06
CCG GTG TCC GAC AG Pro Val Ser Asp Tl	CG GAA ATG GAG	TAC ACC ATA	GAC GTG TTT	TTC CGA CAA A	<u>GC</u>
615	624	633	642		60
TGG AAA GAT GAA A					
Trp Lys Asp Glu A					
669	678	687	696	705 7	14
AAC CTC CTT GCC AGAS Leu Leu Ala S					
723	732	741	750	• •	68
AAG TCC ATC GCT C					
Lys Ser Ile Ala H					

9/15

FIGURE 4 (CONTINUED)

77	7	786	795	804	813	822
GAC GGC AC	C CTG CTC r Leu Leu	TAC ACC ATC	CGC TTG AC	TO ATC TOT GC	A GAG TGC CCC a Glu Cys Pro	ATG MET
83	1	840	849	858	867	876
CAG CTT GA	G GAC TTC u Asp Phe	CCG ATG GAT Pro MET Asp	GCG CAC GC Ala His Al	TGC CCT CTC	G AAA TTT GGC u Lys Phe Gly	AGC Ser
88	5	894	903	912	921	930
TAT GCG TA	C CCT AAT	TCT GAA GTO	GTT TAC G	TC TGG ACC AA	C GGC TCC ACC	ĀĀĞ
_					n Gly Ser Thr	
93		948	957	966 FG 150 G16 FS	975 - 252 252 352	984
TCG GTG GT Ser Val Va	G GTG GCG l Val Ala	GAA GAT GGG	Ser Arg L	eu Asn Gln Ty	C CAC CTG ATG r His Leu MET	Gly
99	3	1002	1011	1020	1029	1038
CAG ACG GT	G GGC ACT	GAG AAC ATO	AGC ACC A	GC ACA GGC GA	A TAC ACA ATC u Tyr Thr Ile	ATG
104	_	1056	1065	1074		1092
					C ATC CAG ACC	TAC
Thr Ala Hi	s Phe His	Leu Lys Ar	g Lys Ile G	ly Tyr Phe Va	l Ile Gln Thr	Tyr
110		1110	1119	1128		1146
CTT CCC TO Leu Pro Cy	C ATA ATG	ACC GTG AT Thr Val Il	C TTA TCA C e Leu Ser G	AG GTG TCC TI In Val Ser Ph	TT TGG CTG AAC ne Trp Leu Asn	Arg
115	55	1164	1173	1182	1191	1200
GAA TCA G	C CCA GCC	AGG ACA GT	T TTT GGG G	TC ACC ACG G	G CTG ACC ATG	ACG
		_			al Leu Thr MET	
120		1218	1227 - 	1236	1245	1254
Thr Leu Se	er Ile Ser	: Ala Arg As	n Ser Leu P	Pro Lys Val A	CC TAC GCC ACC la Tyr Ala Thr	Ala
120	53	1272	1281	1290	1299	1308
ATG GAC TO	G TTC ATA	GCT GTG TG	C TAT GCC 7	TTC GTC TTC TO	CG GCG CTG ATA	GAG Glu
13:	-	1326	1335	1344	1353	1362
TTT GCC A	G GTC AAT	TAC TTT AC	C AAG AGA C	GC TGG GCC TO	GG GAT GGC AAJ	AAA A
					rp Asp Gly Lys	
13		1380	1389	1398	1407	1416
GCC TTG G Ala Leu G	AA GCA GCG lu Ala Ala	AAG ATC AAA Lys Ile Ly	G AAA AAG (CGT GAA GTC A Arg Glu Val I	TA CTA AAT AAG le Leu Asn Ly:	G TCA s Ser
14		1434	1443	1452	1461	1470
ACA AAC G	CT TTT AC	A ACT GGG A	AG ATG TCT O	CAC CCC CCA A	AC ATT CCG AAG	G GAA s Glu
					-	

10/15

FIGURE 4 (CONTINUED)

147	9	1488	149	7	1506	1515	1524
CAG ACC CCI	GCA GGG	ACG TCG	AAT AC	A ACC TCA	GTC TCA GT	A AAA CCC TO	T GAA
						_	er Glu
1533		1542	155		1560	1569	1578
GAG AAG ACT	TCT GAA	AGC AAA	AAG AC	T TAC AAC	AGT ATC AG	C AAA ATT G	AC AAA
							-
1587		1596	160		1614	1623	1632
						TTA GTT TO	
1641		1650	165	_	1668	1677	•
				_		_ + · ·	1686 >
Ala Thr Ty	TTG AAT	AGG GAG Arg Glu	CCG GT Pro Va	G ATA AAA l Ile Lys	GGA GCC GC Gly Ala Al	C TCT CCA A	AA TAA Vs .
1696	170		1716	1726		·	1756
						CCAAGGAGAG	
	TOOMING	IC CANGA	CAGCC A	IACIICCAG	CGAAATGGIZ	CCAAGGAGAG	GITTIGCTCA
1766	17	76	1786	1796	1806	5 1816	1826
CAGGGACTCT	CCATATGT	GA GCACT	ATCTT T	CAGGAAATT	TTTGCATGT	TAATAATATG	TACAAATAAT
1836	18	46	1856	1866	1876	5 1886	1896
ATTGCCTTGA	TGTTTCTA	TA TGTAA	CTTCA G	ATGTTTCCA	AGATGTCCC	A TTGATAATTC	GAGCAAACAA
1906	19:	16	1926	1936	1940	1956	1966
CTTTCTGGAA	AAACAGGA'	TA CGATG	ACTGA C	ACTCAGATG	CCCAGTATC	A TACGTTGATA	GTTTACAAAC
1976	10	0.6	1006		207		
	19:	-	1996	2006			2036
AAGATACGTA	TATTTTTA	AC TGCTT	CAAGT G	TTACCTAAC	AATGTTTTT	r atacttcaaa	TGTCATTTCA
2046	20:	56	2066	2076	208	6 2096	2106
ምልሮል ልልሞሞሞም	СССВСТСВ:	מיהממ יהמ	ጥጥጥጥ ል	これなるでででで		r agaagaccaa	
	CCCMGIGA	AI AAAIA	IIIIA G	GAAACICIC	CAIGAIIAI	I AGAAGAÇCAA	CIMIMITGCG
2116	21:	26	2136	2146	215	6 2166	2176
AGAAACAGAG	ATCATAAA	GA GCACG	TTTTC C	ATTATGAGG	AAACTTGGA	C ATTTATGTAC	AAAATGAATT
2186	21	96	2206	2216	222	6 2236	2246
GCCTTTGATA	ATTCTTAC	TG TTCTG	AAATT A	.GGAAAGTAC	TTGCATGAT	C TTACACGAAG	AAATAGAATA
	•						
2256	22	66	2276	2286	229	6 2306	•
GGCAAACTTT	TATGTAGG	CA GATTA	ATAAC A	GAAATACAT	CATATGTTA	G ATACACAAAA	TATT

11/15

FIGURE 5

10	20	29	38 4	7 56
AATTCTGCAT TTCA	GTGCAC TGCAG	> G ATG GCG TC MET Ala Se	A TCT CTG CCC TG	G CTG TGC ATT
65	74	83	92	101 110
ATT CTG TGG CTA	GAA AAT GCC Glu Asn Ala	CTA GGG AAA Leu Gly Lys	CTC GAA GTT GAA Leu Glu Val Glu	GGC AAC TTC TAC
119	128	137	146	155 164
TCA GAA AAC GTC	AGT CGG ATC	CTG GAC AAC	TTG CTT GAA GGC	TAT GAC AAT CGG
				Tyr Asp Asn Arg
173	182	191	200	209 218
Leu Arg Pro Gly	Phe Gly Gly	GCT GTC ACT Ala Val Thr	GAA GTC AAA ACA Glu Val Lys Thr	GAC ATT TAT GTG Asp Ile Tyr Val
227	236	245	254	263 . 272
ACC AGT TTT GGG Thr Ser Phe Gly	CCC GTG TCA	GAT GTG GAG	ATG GAG TAT ACG	ATG GAT GTT TTT MET Asp Val Phe
281	290	299	308	317 326
TTT CGC CAG ACC	TGG ACT GAT	GAG AGG TTG	AAG TTT GGG GGG	CCA ACT GAG ATT
Phe Arg Gln Thr	Trp Thr Asp	Glu Arg Leu	Lys Phe Gly Gly	Pro Thr Glu Ile
335	344	353	362	371 380
CTG AGT CTG AAT Leu Ser Leu Asn	AAT TTG ATG Asn Leu MET	GTC AGT AAA Val Ser Lys	ATC TGG ACG CCT	GAC ACC TTT TTC Asp Thr Phe Phe
389	398	407	416	425 434
AGA AAT GGT AAA	AAG TCC ATT	GCT CAC AAC	ATG ACA ACT CCT	AAT AAA CTC TTC
				Asn Lys Leu Phe
. 443	452	461	470	479 488
Arg Ile MET Gln	Asn Gly Thr	Ile Leu Tyr	Thr MET Arg Leu	ACC ATC AAT GCT Thr Ile Asn Ala
497	506	515	524	533 542
GAC TGT CCC ATG	AGG CTG GTT	ASD Phe Pro	ATG GAT GGG CAT	GCT TGT CCA CTC Ala Cys Pro Leu
551	560	569	578	587 596
AAG TTT GGG AGC	TAT GCT TAT	CCC AAA AGT	GAA ATC ATA TAT	ACG TCC ANN ANN
Lys Phe Gly Ser	Tyr Ala Tyr	Pro Lys Ser	Glu Ile Ile Tyr	Thr Trp Lys Lys
605	614	623	632	641 650
GGA CCA CTT TAC Gly Pro Leu Tyr	TCA GTA GAA Ser Val Glu	GTC CCA GAA Val Pro Glu	GAA TCT TCA AGC Glu Ser Ser Ser	CTT CTC CAG TAT Leu Leu Gln Tyr
659 ·	668	677	· 686	695 704
GAT CTG ATT GGA	CAA ACA GTA	TCT AGT GAG	ACA ATT AAA TCT	AAC ACA GGT GAA
wah ren ite Già	Gin Thr Val	ser Ser Glu	Thr Ile Lys Ser	Asn Thr Gly Glu

12/15

FIGURE 5 (CONTINUED)

713	7:	22	731	740	749 758
TAC GTT ATA	ATG ACA G	TT TAC TTC C	CAC TTG CA	A AGG AAG	ATG GGC TAC TTC ATG MET Gly Tyr Phe MET
767	7	76	785	794	803 812
ATA CAG ATA	TAC ACT CO	TTGC ATT I	ATG ACA GT	TC ATT CTT	TCC CAG GTG TCT TTC Ser Gln Val Ser Phe
821	8:	30 (839	848	857 866
TGG ATT AAT	AAG GAG TO	CC GTC CCA (GCA AGA AC	T GTT CTT	GGG ATC ACC ACT GTT
Trp Ile Asn	Lys Glu S	er Val Pro 1	Ala Arg Th	r Val Leu	Gly Ile Thr Thr Val
875	8	34	893	902	911 920
TTA ACT ATG	ACC ACT T	IG AGC ATC	AGT GCC CG	G CAC TCT	TTG CCA AAA GTG TCA Leu Pro Lys Val Ser
929			947	956	-
					965 974 GCA TTC GTC TTC TCT
Tyr Ala Thr	Ala MET A	sp Trp Phe	ATA GCT GT Ile Ala Va	al Cys Phe	Ala Phe Val Phe Ser
983	9	92 10	001	1010	1019 1028
GCT CTT ATC	GAG TTC G	CA GCT GTC	AAC TAC TT	TT ACC AAT	CTT CAG ACA CAG AAG
				ne Thr Asn	Leu Gln Thr Gln Lys
1037			055	1064	1073 1082
GCG AAA AGG Ala Lys Arg	AAG GCA C	AG TTT GCA (GCC CCA CC	CO ACA GTG	ACA ATA TCA AAA GCT Thr Ile Ser Lys Ala
1091			109	1118	1127 1136
ACT GAA CCT	<u> </u>				TCC AAA TAT CAT CTG
Thr Glu Pro	Leu Glu A	la Glu Ile	Val Leu Hi	is Pro Asp	Ser Lys Tyr His Leu
1145	11.	54 1:	163	1172	1181 1190
AAG AAA AGG	ATC ACT T	CT CTG TCT	TTG CCA AT	TA GTT TCA	TCT TCC. GAG GCC AAT
			Leu Pro Il	le Val Ser	Ser Ser Glu Ala Asn
1199			217	1226	1235 1244
AAA GTG CTC Lys Val Leu	ACG AGA G	CG CCC ATC T la Pro Ile :	TTA CAA TO Leu Gln Se	A ACA CCT	GTC ACA CCC CCA CCA Val Thr Pro Pro Pro
1253			271	1280	1289 1298
CTC CCG CCA	GCC TTT G	GA GGC ACC	AGT AAA AT	TA GAC CAG	TAT TCT CGA ATT CTC
Leu Pro Pro	Ala Phe G	ly Gly Thr	Ser Lys Il	le Asp Gln	Tyr Ser Arg Ile Leu
1307	13	16 1	325	1334	1343 1352
TTC CCA GTT	GCA TTT G	CA GGA TTC	AAC CTT GT	TG TAC TGG	GTA GTT TAT CTT TCC Val Val Tyr Leu Ser
13.61			379		1398 . 1408
-				>	TTCCAGG ACAACCTGAA
Lys Asp. Thr	ט אאט טבה י	LU AGL AGC .	AU LIU LOP	an inc cit	ALCCAGO MCAACCTIAA

13/15

FIGURE 6

	20 30	40	50 60	70
GAATTCCGCG CGGGGAAGG	GG AAGAAGAGA CG	AGGTGGCG CAGAGACO	GC GGGAGAACAC AG	TGCCTCCG
80	90 100	. 110	120 130	140
GAGGAAATCT GCTCGGTC	CC CGGCAGCCGC GC	TTCCCCTT TGATGTT	TTG GTACGCCGTG GC	CATGCGCC
150 16	60 170	180	190 200	210
TCACATTAGA ATTACTGC	AC TGGGCAGACT AA	GTTGGATC TCCTCTC	FTC AGTGAAACCC TC	AATTCCAT
220	230 239	248	257	266
CAAAAACTAA AGGG ATG				
MET	Trp Arg Val Arg	Lys Arg Gly Tyr	Phe Gly Ile Trp	Ser
275	284 293	302	311	320
TTC CCC TTA ATA ATC Phe Pro Leu Ile Ile				
329	338 347	356	365	374
ATG TCG CTG GTT AAA	GAG ACG GTG GAT	AGA CTC CTG AAA	GGC TAT GAC ATT	CGT
MET Ser Leu Val Lys	Glu Thr Val Asp	Arg Leu Leu Lys	Gly Tyr Asp Ile	Arg
383	392 401	410	419	428
CTG AGA CCA GAT TTT				
Leu Arg Pro Asp Phe	Gly Gly Pro Pro	Val Ala Val Gly	MET Asn Ile Asp	Ile
437	446 455	464	473	482
GCC AGC ATC GAT ATG				
Ala Ser Ile Asp MET	Val Ser Glu Val	. Asn MET Asp Tyr	Thr Leu Thr MET	Tyr
491	500 509	518	527	536
TTT CAA CAA GCC TGG				
Phe Gln Gln Ala Trp	Arg Asp Lys Arg	, Leu Ser Tyr Asn	Val lie Pro Leu	Asn
545	554 563	572	581	590
TTG ACT CTG GAC AAC				
Leu Thr Leu Asp Asn	•	•		
599	608 617	7 626	635	644
CTG AAC GAT AAG AAG				
Leu Asn Asp Lys Lys		-	•	
653	662 671		689	698
CGC CTG CAT CCT GAT Arg Leu His Pro Asp	GGC ACC GTC CTT Gly Thr Val Lev	F TAT GGA CTC AGA u Tyr Gly Leu Arc	ATC ACA ACC ACA	GCT Ala

14/15

FIGURE 6 (CONTINUED)

					•		_										
		707			716			725			734			743			752
GCC Ala	TGC Cys	ATG MET	ATG MET	GAC Asp	CTA Leu	AGG Arg	AGG Arg	TAC Tyr	CCA Pro	CTG Leu	TAD	GAA Glu	CAA Gln	AAC Asn	TGC Cys	ACC Thr	TTG Leu
		761			770			779			788			797			806
GAA Glu	ATT Ile	GAG Glu	AGC Ser	TAT Tyr	GGA Gly	TAC Tyr	ACA Thr	ACT Thr	GAT Asp	GAC Asp	ATT Ile	GAG Glu	TTT Phe	TAC Tyr	TGG Trp	CGT Arg	GGC Gly
		815			824			833			842			851			860
GAT Asp	GAT Asp	AAT Asn	GCA Ala	GTA Val	ACA Thr	GGA Gly	GTA Val	ACG Thr	AAA Lys	ATT Ile	GAA Glu	CTT Leu	CCA Pro	CAG Gln	TTC Phe	TCT Ser	ATT Ile
		869			878			887			896			905			914
GTA Val	GAT Asp	TAC Tyr	ĀĀĀ Lys	CTT Leu	ATC Ile	ACC Thr	ĀĀĢ Lys	ĀĀĢ Lys	GTT Val	GTT Val	TTT Phe	TCC Ser	ACA Thr	GGT Gly	TCC Ser	TAT Tyr	CCC Pro
		923			932			941		•	950			959			968
AGG	TTA	TCC	CTC	ĀGC	TTT	AAG	CTT	AAG	ĀGĀ	AAC	ATT	GGC	TAC	TTT	ATC	CTG	CAA
Arg	Leu		Leu	Ser		Lys	Leu		Arg			GIÀ			TIE		
707	mac	977	CCT		986	CTG	300	995	<u> </u>		1004 TCC	<u> </u>		1013	ጥጥር		1022 አጥ ሞ
Thr	Tyr	MET	Pro	Ser	Ile	Leu	Ile	Thr	Ile	Leu	Ser	Trp	Val	Ser	Phe	Trp	Ile
	;	1031		:	1040		:	1049		:	1058		:	1067			1076
TAA	TAC	GAT	GCT	TCA	GCT	GCA	AGG	GTG Val	GCA	TTA	GGA	ATC	ACA	ACT	GTC	CTC	ACA
ASII		ASP	ATA	ser	WIG	Ala	Arg	• • •	AIG	Dea	Gry			****	Vai	1100	1.11
ASII	-	1085	Ala		1094	ALG		1103	Alu		1112			1121	Vai		1130
ĀTG	ACC	1085 ACA	ATC	AAC	L094	CAC His	CTC	1103 CGG	GAA	ACT	1112 <u>CTC</u>	CCT	ĀĀĀ	1121 ATC	CCC	TAT	1130 <u>GTG</u>
ĀTG	ACC Thr	1085 ACA	ATC	AAC Asn	L094	CAC	CTC Leu	1103 CGG	GAA	ACT Thr	1112 <u>CTC</u>	CCT	ĀĀĀ Lys	1121 ATC	CCC	TAT Tyr	1130 <u>GTG</u>
ATG MET	ACC Thr	ACA Thr 1139	ATC Ile	AAC Asn	ACC Thr 1148	CAC His	CTC Leu	CGG Arg 1157	GAA Glu TGC	ACT Thr	CTC Leu 1166	CCT Pro	AAA Lys GTT	1121 ATC 11e 1175 TTC	CCC Pro	TAT Tyr	GTG Val 1184
ATG MET	ACC Thr GCC Ala	ACA Thr 1139	ATC Ile	AAC Asn ATG MET	ACC Thr 1148	CAC His	CTC Leu ATG MET	CGG Arg 1157	GAA Glu TGC	ACT Thr TTT Phe	CTC Leu 1166	CCT Pro	AAA Lys GTT Val	1121 ATC 11e 1175 TTC	CCC Pro	TAT Tyr GCC Ala	GTG Val 1184
ATG MET AAG Lys	ACC Thr GCC Ala	ACA Thr 1139 ATT Ile	ATC Ile GAC Asp	AAC Asn ATG MET	ACC Thr 1148 TAC Tyr 1202	CAC His	CTC Leu ATG MET	CGG Arg 1157 GGG Gly 1211	GAA Glu TGC Cys	ACT Thr TTT Phe	CTC Leu 1166 GTC Val	CCT Pro TTC Phe	AAA Lys GTT Val	ATC Ile 1175 TTC Phe	CCC Pro	TAT Tyr GCC Ala	TTT Leu 1238
ATG MET AAG Lys	ACC Thr GCC Ala	ACA Thr 1139 ATT 11e 1193	GAC Asp	AAC Asn ATG MET	ACC Thr 1148 TAC Tyr 1202	CAC His	CTC Leu ATG MET	CGG Arg 1157 GGG Gly 1211	GAA Glu TGC Cys	ACT Thr TTT Phe	TTC Leu 1166 GTC Val 1220	TTC Phe	AAA Lys GTT Val	1121 ATC Ile 1175 TTC Phe 1229	CCC Pro ATG MET	TAT Tyr GCC Ala	GTG Val 1184 CTT Leu
AAG Lys	GCC Ala	ACA Thr 1139 ATT Ile 1193 TAT Tyr	GAC Asp	AAC Asn ATG MET	TAC TYP 1202 GTC Val	CAC His CTG Leu AAC	CTC Leu ATG MET	CGG Arg 1157 GGG Gly 1211 ATC 11e	GAA Glu TGC Cys TTC Phe	ACT Thr TTT Phe	TTC Leu 1166 GTC Val 1220 GGG Gly	TTC Phe	GTT Val	1121 ATC Ile 1175 TTC Phe 1229 CCC Pro 1283	ATG MET	TAT Tyr GCC Ala	TI 30 GTG Val 1184 CTT Leu 1238 CAA GIn
AAG Lys CTG Leu	GCC Ala	ACA Thr 1139 ATT 11e 1193 TAT Tyr 1247	GAC Asp	AAC Asn ATG MET	TAC Tyr 1202 GTC Val 1256	CAC His CTG Leu AAC Asn	CTC Leu ATG MET	CGG Arg 1157 GGG Gly 1211 ATC Ile 1265	GAA Glu TGC Cys TTC Phe	ACT Thr TTT Phe	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT	TTC Phe AGG Arg	AAA Lys GTT Val GGG Gly	ATC Ile 1175 TTC Phe 1229 CCC Pro 1283	TCCC Pro ATG MET	GCC Ala	TTT Leu 1238 CAA Gln
AAG Lys CTG Leu	GCC Ala GAA Glu AAA	ACA Thr 1139 ATT 11e 1193 TAT Tyr 1247	GAC Asp	AAC Asn ATG MET CTA Leu GAG	TAC Tyr 1202 GTC Val 1256	CAC His CTG Leu AAC Asn	TAC Tyr	CGG Arg 1157 GGG Gly 1211 ATC Ile 1265	GAA Glu TGC Cys TTC Phe	TTT Phe	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT	TTC Phe AGG Arg	GTT Val	ATC Ile 1175 TTC Phe 1229 CCC Pro 1283	TCCC Pro ATG MET	GCC Ala	TT Leu 1238 CAA Gln 1292 GAT
AAG Lys CTG Leu AAG Lys	GCC Ala GAA Glu AAA Lys	ACA Thr 1139 ATT Ile 1193 TAT Tyr 1247 GCA Ala 1301 AAG	GAC Asp GCC Ala	AAC Asn ATG MET CTA Leu GAG Glu	TAC TYP 1202 GTC Val 1256 Lys 1310	CAC His CTG Leu AAC Asn GCT Ala	TAC Tyr	GGG Gly 1211 ATC Ile 1265 AGT Ser 1319	GAA Glu TGC Cys TTC Phe	ACT Thr TTT Phe TTT Phe	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT ASD 1328	TTC Phe AGG Arg	GGG Gly AAG Lys	TTC Phe 1229 CCC Pro 1283 ATG MET 1337	CCC Pro ATG MET CAA Gln	TAT Tyr GCC Ala CGC Arg	TTT Leu 1238 CAA Gln 1292 GAT Asp
AAG Lys CTG Leu AAG Lys	GCC Ala GAA Glu AAAA Lys	ACA Thr 1139 ATT Ile 1193 TAT Tyr 1247 GCA Ala 1301 AAG	GAC Asp GCC Ala GCT Ala ATG	AAC Asn ATG MET CTA Leu GAG Glu	TAC TYP 1202 GTC Val 1256 Lys 1310	CAC His CTG Leu AAC Asn GCT Ala	TAC Tyr	GGG Gly 1211 ATC Ile 1265 AGT Ser 1319	GAA Glu TGC Cys TTC Phe	TTT Phe TTT Phe AAC Asn	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT ASD 1328	CCT Pro	GGG Gly AAG Lys	TTC Phe 1229 CCC Pro 1283 ATG MET 1337	CCC Pro ATG MET CAA Gln CGC Arg	TAT Tyr GCC Ala CGC Arg	TI 30 GTG Val 1184 CTT Leu 1238 CAA GIn 1292 GAT Asp 1346
AAG Lys CTG Leu AAG Lys GTC Val	GAA GAA ASN	1085 ACA Thr 1139 ATT 11e 1193 TAT Tyr 1247 GCA Ala 1301 AAG Lys 1355	GAC Asp GCC Ala ATG MET	AAC ASD ATG MET CTA Leu GAC GIU	TAC TYP 1202 GTC Val 1256 AAG Lys 1310 CCC Pro	CAC His CTG Leu AAC Asn GCT Ala	TAC Tyr GCC Ala GAG Glu	1103 CGG Arg 1157 GGG Gly 1211 ATC 11e 1265 AGT Ser 1319 AAC Asn 1373	GAA Glu TGC Cys TTC Phe	TTT Phe TTT Phe AAC Asn TTA Leu	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT ASD CTG Leu 1382	TTC Phe AGG Arg GAG Glu	GGG Gly AAG Lys ACT Thr	1121 ATC Ile 1175 TTC Phe 1229 CCC Pro 1283 ATG MET 1337 CTC Leu 1391	CCC Pro ATG MET CAA Gln CGC Arg	TAT Tyr GCC Ala CGC Arg	TABP 1346 TABP 1346 TABP 1346 TABP 1346
AAG Lys CTG Leu AAG Lys GTC Val	GAAAA Lys	1085 ACA Thr 1139 ATT 11e 1193 TAT Tyr 1247 GCA Ala 1301 AAG Lys 1355	GAC Asp GCC Ala ATG MET	AAC ASD ATG MET CTA Leu GAC GIU	TAC TYP 1202 GTC Val 1256 AAG Lys 1310 CCC Pro	CAC His CTG Leu AAC Asn GCT Ala	TAC Tyr GCC Ala GAG Glu	1103 CGG Arg 1157 GGG Gly 1211 ATC 11e 1265 AGT Ser 1319 AAC Asn 1373	GAA Glu TGC Cys TTC Phe	TTT Phe TTT Phe AAC Asn TTA Leu	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT ASD CTG Leu 1382	GAG Glu	GGG Gly AAG Lys ACT Thr	1121 ATC Ile 1175 TTC Phe 1229 CCC Pro 1283 ATG MET 1337 CTC Leu 1391	CCC Pro	TAT Tyr GCC Ala CGC Arg	TAAA Lys 1400 AAA AAA AAA AAA AAA AAA AAA
AAG Lys CTG Leu AAG Lys GTC Val	GAA Glu GAA Glu GAA Glu GAA Glu GAA Glu	1085 ACA Thr 1139 ATT 11e 1193 TAT Tyr 1247 GCA Ala 1301 AAG Lys 1355 ATG MET	GAC Asp GCC Ala ATG MET	AAC Asn ATG MET CTA Leu GAC Asp ACA Thr	TAC TYP 1202 GTC Val 1256 AAG Lys 1310 CCC Pro 1364 TCT Ser 1418	CAC His CTG Leu AAC Asn GCT Ala GAG Glu	TAC Tyr GCC Ala GAG Glu GCT Ala	1103 GGG Arg 1157 GGGG Gly 1211 ATC Ile 1265 AGT Ser 1319 AAC Asn 1373 GTG Val 1427	GAA Glu TGC Cys TTC Phe	TTT Phe AAC Asn TTA GGA Gly	TTC Leu 1166 GTC Val 1220 GGG Gly 1274 AAT ASD 1328 CTG Leu 1382 CTT Leu 1436	TTC Phe AGG Arg GAG Glu AGC Ser	GGG Gly AAG Lys ACT Thr	1121 ATC Ile 1175 TTC Phe 1229 CCC Pro 1283 ATG MET 1337 CTC Leu 1391 CCC Pro 1445	CCC Pro ATG MET CAA Gln CGC Arg	TAT Tyr GCC Ala CGC Arg CTG Leu ATA Ile	TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

15/15

FIGURE 6 (CONTINUED)

1463	1472	1481	1490	1499	1508
CAT AGT TTT	GGC CGA AAT	GCT CTG GAA	CGA CAT GTG	GCG CAA AAG	AAA AGT CGC
His Ser Phe	Gly Arg Asn	Ala Leu Glu	Arg His Val	Ala Gln Lys	Lys Ser Arg
1517	2320				
CTG AGG AGA	CGC GCC TCC	CAA CTG AAA	ATC ACC ATC	टिक हेर कर	ACT GAT GTG
Leu Arg Arg	Arg Ala Ser	Gln Leu Lys	Ile Thr Ile	Pro Asp Leu	Thr Asp Val
		•			THE ASP VAL
1571	1580	1589	1598	1607	1616
AAT GCC ATA	GAT CGG TGG	TCC CGC ATA	TTC TTC CCA	दिगद दिगम गणन	TCC TTC TTC
Asn Ala Ile	Asp Arg Trp	Ser Arg Ile	Phe Phe Pro	Val Val Phe	Ser Phe Phe
					our the the
1625	1634	1643		1659	1669 1679
AAC ATC CTC	TAT TOO COM	mam mam conc			
Asn Tle Val	THE TWO LOS	TAT TAT GTG	AAC TAA AAC	ATGGCCT CCCA	CTGGAA GCAAGGACTA
IIC vai	TAT ITD Den	Tyr Tyr Val	Asn .		
1689	1699	1709	1719	1729	1739 1749
					=
GATTCCTCCT	CAAACCAGTT G	TACAGCCTG AT	GTAGGACT TGG	AAAACAC ATCA	ATCCAG GACAAAGTG
1759	1769	1779	1789	1799	3,000
					1809 1819
ACGCTAAAAT 2	ACCTTAGTTG C	TGGCCTATC CT	GTGGTCCA TTT	CATACCA TTTG	GGTTGC TTCTGCTAAG
1829	1839	7040			
1029	1039	1849	1859		
TAATGAATAC	ACTAAGGTCC T	TGTGGTTTT CC	AGTTAAAA CGC	AAGT	
				-	

INTERNATIONAL SEARCH REPORT

Inter. nal Application No PCT/GB 93/02506

								
A. CLASS IPC 5	C12N15/12 C07K13/00 C12N5/1	O G01N33/68						
	The state of the s							
	to International Patent Classification (IPC) or to both national class	illeation and IPC						
	S SEARCHED Socumentation searched (classification system followed by classifica-	tion methods						
	C12N C07K G01N	iion symoon,						
December 1	tion searched other than minimum documentation to the extent that	and documents are included in the fields a						
·	and services over the minimum securities on the section sec	such described at the same of	EARTHU .					
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)						
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the r	clevant passages	Relevant to claim No.					
A	EUROPEAN JOURNAL OF PHARMACOLOGY vol. 189, no. 1 , 31 July 1990 pages 77 - 88							
	MOSS SJ; SMART TG; PORTER NM; NAYEE							
	J; STEPHENSON FA; MACDONALD RL; BARI							
	'Cloned GABA receptors are mainta stable cell line: allosteric and							
	properties.	Chamer						
	see the whole document							
								
X	US,A,5 166 066 (CARTER, D.B.) 24	November	1-9,12, 13					
	see the whole document							
, ,		ur ith .	1_15					
P,X	WO,A,92 22652 (MERCK SHARP & DOH GB) 23 December 1992 see the whole document	ME LID.;	1-13					
	266 CHE MHOLE GOCOMENC							
Purt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.					
* Special ca	tegories of cited documents:	"T" later document published after the inte						
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict wi cited to understand the principle or th						
"E" cartier	document but published on or after the international	invention "X" document of particular relevance; the						
filing of the fi	date ent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the do	t be considered to					
which	is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in						
O' docum	ent referring to an oral disclosure, use, exhibition or	document is combined with one or m ments, such combination being obvious	ore other such docu-					
	means ent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the same patent	•					
	actual completion of the international search	Date of mailing of the international se						
		08. 04. 94						
1	7 March 1994	yo. v4. 34						
Name and r	mailing address of the ISA	Authorized officer						
,	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk							
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Feer (+31-70) 340-3016	Nauche, S						

INTERNATIONAL SEARCH REPORT

information on patent family members

Inten sal Application No
PCT/GB 93/02506

Patent document cited in search report	Publication date	Patent memb		Publication date	
US-A-5166066	24-11-92	NONE			
WO-A-9222652	23-12-92	AU-A- CA-A-	1921192 2109193	12-01-93 12-12-92	

Form PCT/ISA/210 (patent family annex) (July 1992)