Itay Goldstein and Ady Pauzner

Xiaobo YU

Columbia Business School

June 8, 2020

Outline

- Introduction
- 2 Model
- Benchmark
- Banks
- Compute Equilibrium
- Comparative Statics

Motivation

- ► Theory
 - ▶ Diamond & Dybvig has multiple equilibria
 - ► They cannot determine the probability of runs
 - ... and hence the welfare having banks
 - Runs not related to fundamentals
- Empirics
 - ▶ Bank runs result from coordination failure in theory
 - Bank runs occur following negative shocks in reality
- Solution
 - Global Games

Model Setting

- Project
 - Return 1 if liquidated at t = 1 (cf L < 1 in D& D)
 - Return R with proba. $p(\theta)$ at t=2 and 0 otherwise
- Investor
 - \blacktriangleright A fraction λ suffers liquidty shocks $u(c_1)$
 - ► The rest don't $u(c_1 + c_2)$
 - $-\frac{cu''}{v'} > 1$: to get $c^{FB} > 1$
- Information
 - \bullet $\theta \sim Unif[0,1]$
 - ► Each investor observes $\theta_i = \theta + \varepsilon_i, \varepsilon_i \sim Unif[-\varepsilon, \varepsilon]$
 - Efficiency: $\mathbb{E}[p(\theta)]u(R) > u(1)$

Autarky

Each investor invests 1 at t = 1.

With proba. λ , he is impatient and liquidates

With proba $1 - \lambda$, he is patient and gets

Total Welfare

$$\lambda u(1) + (1 - \lambda)u(R)$$

Each investor invests 1 at t=1. With proba. λ , he is impatient and liquidates.

$$\lambda u(1) + (1 - \lambda)u(R)$$

Autarky

Each investor invests 1 at t = 1. With proba. λ , he is impatient and liquidates.

With proba $1 - \lambda$., he is patient and gets

Total Welfare

$$\lambda u(1) + (1 - \lambda)u(R)$$

Autarky

Each investor invests 1 at t = 1. With proba. λ , he is impatient and liquidates.

With proba $1 - \lambda$., he is patient and gets

Total Welfare

$$\lambda u(1) + (1 - \lambda)u(R)$$

Social Planner chooses c_1 to maximize

$$\max_{c_1} \lambda u(c_1) + (1 - \lambda)u\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)]$$

$$\frac{\lambda u'(c_1) - (1 - \lambda) \frac{\lambda R}{1 - \lambda} u'\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)] = 0$$

At
$$c_1 = 1$$
, by $-\frac{cu''}{u'} > 1$

$$1u'(c_1) > Ru'(R) > Ru'(R)\mathbb{E}[p(\theta)]$$

Social Planner chooses c_1 to maximize

$$\max_{c_1} \lambda u(c_1) + (1 - \lambda)u\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)]$$

FOC.

$$\frac{\lambda u'(c_1) - (1 - \lambda) \frac{\lambda R}{1 - \lambda} u'\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)] = 0$$

At
$$c_1 = 1$$
, by $-\frac{cu''}{u'} > 1$

$$1u'(c_1) > Ru'(R) > Ru'(R)\mathbb{E}[p(\theta)]$$

Social Planner chooses c_1 to maximize

$$\max_{c_1} \lambda u(c_1) + (1 - \lambda)u\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)]$$

FOC.

$$\frac{\lambda u'(c_1) - (1-\lambda)\frac{\lambda R}{1-\lambda}u'\left(\frac{1-\lambda c_1}{1-\lambda}R\right)\mathbb{E}[p(\theta)] = 0$$

At
$$c_1 = 1$$
, by $-\frac{c u''}{u'} > 1$

$$1u'(c_1) > Ru'(R) > Ru'(R)\mathbb{E}[p(\theta)]$$

Social Planner chooses c₁ to maximize

$$\max_{c_1} \lambda u(c_1) + (1 - \lambda)u\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)]$$

FOC.

$$\frac{\lambda u'(c_1) - (1 - \lambda) \frac{\lambda R}{1 - \lambda} u'\left(\frac{1 - \lambda c_1}{1 - \lambda}R\right) \mathbb{E}[p(\theta)] = 0$$

At
$$c_1=1$$
, by $-rac{cu''}{u'}>1$

$$1u'(c_1) > Ru'(R) > Ru'(R)\mathbb{E}[p(\theta)]$$

Risk Sharing: $c_1^{FB} > 1$

Note: Only the idiocyncratic liquidity shock can be diversified

Banks

Bank Contracts

- ▶ Promise $r_1 > 1$ if withdraw at t = 1
- Receive \tilde{r}_2 if wait until t=1
- Subject to sequential service constraint

Withdraw at	$n < 1/r_1$	$n \ge 1/r_1$
1	r_1	r_1 with proba. $\frac{1}{nr_1}$
2	$\frac{1-nr_1}{1-n}R$ with proba. $p(\theta)$	0

$$p(\theta_i)u\left(\frac{1-nr_1}{1-n}R\right)>u(r_1) \text{ and } n<1/r_1$$

Bank Contracts

- ▶ Promise $r_1 > 1$ if withdraw at t = 1
- Receive \tilde{r}_2 if wait until t=1
- Subject to sequential service constraint

Suppose a fraction *n* choose to withdraw

Withdraw at	$n < 1/r_1$	$n \geq 1/r_1$
1	r_1	r_1 with proba. $\frac{1}{nr_1}$
2	$\frac{1-nr_1}{1-n}R$ with proba. $p(\theta)$	

$$p(\theta_i)u\left(\frac{1-nr_1}{1-n}R\right)>u(r_1) \text{ and } n<1/r_1$$

- ▶ Promise $r_1 > 1$ if withdraw at t = 1
- ▶ Receive \tilde{r}_2 if wait until t = 1
- ► Subject to sequential service constraint

Suppose a fraction n choose to withdraw

Withdraw at	$n < 1/r_1$	$n \geq 1/r_1$
1	r_1	r_1 with proba. $\frac{1}{nr_1}$
2	$\frac{1-nr_1}{1-n}R$ with proba. $p(\theta)$	

Withdraw at t = 2 if

$$p(\theta_i)u\left(\frac{1-nr_1}{1-n}R\right)>u(r_1) \text{ and } n<1/r_1$$

Question: what is n?

- ▶ Promise $r_1 > 1$ if withdraw at t = 1
- ightharpoonup Receive \tilde{r}_2 if wait until t=1
- Subject to sequential service constraint

Suppose a fraction n choose to withdraw

Withdraw at	$n < 1/r_1$	$n \geq 1/r_1$
1	r_1	r_1 with proba. $\frac{1}{nr_1}$
2	$\frac{1-nr_1}{1-n}R$ with proba. $p(\theta)$	

Withdraw at t = 2 if

$$p(\theta_i)u\left(rac{1-nr_1}{1-n}R
ight)>u(r_1) ext{ and } n<1/r_1$$

Question: what is n?

Investor Inference

When
$$-\varepsilon < \theta_i < \varepsilon$$
,

Unif
$$[0, \theta_i + \varepsilon]$$

When $\varepsilon < \theta_i < 1 - \varepsilon$,

$$Unif[\theta_i - \varepsilon, \theta_i + \varepsilon]$$

When
$$1 - \varepsilon < \theta_i < 1 + \varepsilon$$
,

$$Unif[\theta_i - \varepsilon, 1]$$

Note: Though $p(\theta)$ unrestricted, the joint uniformality implies

$$p(\theta_i) \approx p(\theta) + p'(\theta) \epsilon$$

Investor Inference

When
$$-\varepsilon < \theta_i < \varepsilon$$
,

$$Unif[0, \theta_i + \varepsilon]$$

When $\varepsilon < \theta_i < 1 - \varepsilon$,

Unif
$$[\theta_i - \varepsilon, \theta_i + \varepsilon]$$

When $1 - \varepsilon < \theta_i < 1 + \varepsilon$,

$$Unif[\theta_i - \varepsilon, 1]$$

Note: Though $p(\theta)$ unrestricted, the joint uniformality implies

$$p(\theta_i) \approx p(\theta) + p'(\theta)\varepsilon_i$$

We want when θ is sufficiently low, all withdraw at t=1 regardless of others' actions.

Let $\theta(r_1)$ solves

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies p^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon$$

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies \rho^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon$$

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies p^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon$$

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

When $\theta_i < \underline{\theta}(r_1) - \varepsilon$, she belives $\theta < \underline{\theta}(r_1)$ a.s. and withdraws. We need it to hold for all $r_1 > 1$ and for all i at $\theta = 0$.

Note $\underline{\theta}(r_1)$ is increasing in r_1 (why?) and $\theta_i < \varepsilon$ at $\theta = 0$ A sufficient condition is

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies p^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon$$

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies p^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon$$

$$u(r_1) = p(\theta)u\left(\frac{1-\lambda r_1}{1-\lambda}R\right)$$

$$\varepsilon < \underline{\theta}(1) - \varepsilon \implies p^{-1}\left(\frac{u(1)}{u(R)}\right) > 2\varepsilon.$$

Banks 00000000

We want when θ is sufficiently high, all patient investors wait regardless of other's action.

$$\frac{R - nr_1}{1 - n} > r_1$$

$$1 - \varepsilon > \overline{\theta} + \varepsilon$$

Adding Global Games: Upper Lower Region (Deus Ex Machina)

We want when θ is sufficiently high, all patient investors wait regardless of other's action.

To get this, we assume $p(\theta)=1$ and when $\theta\in[\overline{\theta},1]$, liquidation at t=1 yields R with certainty.

Then, no more than $\frac{nr_1}{R}$ needs to be liquidated. By waiting, the agent can get

$$\frac{R - nr_1}{1 - n} > r_1$$

And a sufficient condition is

$$1 - \varepsilon > \overline{\theta} + \varepsilon$$

We want when θ is sufficiently high, all patient investors wait regardless of other's action. To get this, we assume $p(\theta)=1$ and when $\theta \in [\overline{\theta},1]$, liquidation at t=1 yields R with certainty. Then, no more than $\frac{nr_1}{B}$ needs to be liquidated.

By waiting, the agent can get

$$\frac{R - nr_1}{1 - n} > r_1$$

And a sufficient condition is

$$1 - \varepsilon > \overline{\theta} + \varepsilon$$

Adding Global Games: Upper Lower Region (Deus Ex Machina)

We want when θ is sufficiently high, all patient investors wait regardless of other's action. To get this, we assume $p(\theta)=1$ and when $\theta \in [\overline{\theta},1]$, liquidation at t=1 yields R with certainty. Then, no more than $\frac{nr_1}{R}$ needs to be liquidated. By waiting, the agent can get

$$\frac{R-nr_1}{1-n} > r_1$$

And a sufficient condition is

$$1 - \varepsilon > \overline{\theta} + \varepsilon$$

We want when θ is sufficiently high, all patient investors wait regardless of other's action. To get this, we assume $p(\theta) = 1$ and when $\theta \in [\overline{\theta}, 1]$, liquidation at t = 1 yields R with certainty.

Then, no more than $\frac{nr_1}{R}$ needs to be liquidated. By waiting, the agent can get

$$\frac{R-nr_1}{1-n} > r_1$$

And a sufficient condition is

$$1-\varepsilon > \overline{\theta} + \varepsilon$$

Adding Global Games: Upper Lower Region (Deus Ex Machina)

We want when θ is sufficiently high, all patient investors wait regardless of other's action.

To get this, we assume $p(\theta) = 1$

and when $heta \in [\overline{ heta},1]$, liquidation at t=1 yields R with certainty.

Then, no more than $\frac{nr_1}{R}$ needs to be liquidated.

By waiting, the agent can get

$$\frac{R-nr_1}{1-n} > r_1$$

And a sufficient condition is

$$1-\varepsilon>\overline{\theta}+\varepsilon$$

Theorema Egregium

The game admits a unique equilibrium in which a patient investor i runs if and only if $\theta_i < \theta^*$

Let $n(\theta, \theta')$ be the fraction of investors who run when

- the state is θ and ...
- under the strategy profile that patient i runs iff $\theta_i < \theta'$.

$$\begin{split} n(\theta, \theta') &= \lambda + (1 - \lambda) \operatorname{Pr}(\varepsilon_i < \theta' - \theta) \\ &= \begin{cases} 1 & \theta < \theta' - \varepsilon \\ \lambda & \theta > \theta' + \varepsilon \\ \lambda + (1 - \lambda) \left(\frac{1}{2} + \frac{\theta' - \theta}{2\varepsilon}\right) & \text{Otherwise} \end{cases} \end{split}$$

Banks

Let $n(\theta, \theta')$ be the fraction of investors who run when

- the state is θ and ...
- under the strategy profile that patient i runs iff $\theta_i < \theta'$.

$$n(\theta, \theta') = \lambda + (1 - \lambda) \Pr(\varepsilon_i < \theta' - \theta)$$

$$= \begin{cases} 1 & \theta < \theta' - \varepsilon \\ \lambda & \theta > \theta' + \varepsilon \\ \lambda + (1 - \lambda) \left(\frac{1}{2} + \frac{\theta' - \theta}{2\varepsilon}\right) & \text{Otherwise} \end{cases}$$

Let $n(\theta, \theta')$ be the fraction of investors who run when

- the state is θ and ...
- under the strategy profile that patient i runs iff $\theta_i < \theta'$.

Banks

$$n(\theta, \theta') = \lambda + (1 - \lambda) \Pr(\varepsilon_i < \theta' - \theta)$$

$$= \begin{cases} 1 & \theta < \theta' - \varepsilon \\ \lambda & \theta > \theta' + \varepsilon \\ \lambda + \left(1 - \lambda\right) \left(\frac{1}{2} + \frac{\theta' - \theta}{2\varepsilon}\right) & \text{Otherwise} \end{cases}$$

Note: no equilibrium/optimization in this formula, purely algebra

The incremental utility from running for an informed investor at θ

Banks

00000000

$$v(\theta, n) = \begin{cases} p(\theta)u\left(\frac{1-nr_1}{1-n}R\right) - u(r_1) & \lambda \le n \le 1/r_1 \\ -\frac{1}{nr_1}u(r_1) & 1/r_1 < n < 1 \end{cases}$$

The incremental utility from running for an informed investor at θ

$$v(\theta, n) = \begin{cases} p(\theta)u\left(\frac{1 - nr_1}{1 - n}R\right) - u(r_1) & \lambda \le n \le 1/r_1 \\ -\frac{1}{nr_1}u(r_1) & 1/r_1 < n < 1 \end{cases}$$

The incremental utility from running for an informed investor at θ

$$v(\theta, n) = \begin{cases} p(\theta)u\left(\frac{1-nr_1}{1-n}R\right) - u(r_1) & \lambda \le n \le 1/r_1 \\ -\frac{1}{nr_1}u(r_1) & 1/r_1 < n < 1 \end{cases}$$

Let $\Delta^{r_1}(\theta_i, \theta')$ be the expected differential utility when

- \blacktriangleright the investor observes θ_i and ...
- under the strategy profile that patient i runs iff $\theta_i < \theta'$.

$$\Delta^{r_1}(\theta_i, \theta') = \mathbb{E}[\nu(\theta, n(\theta, \theta'))|\theta_i]$$

Necessary condition

$$\Delta^{r_1}(\theta^*,\theta^*)=0$$

ls it also sufficient?

Not so obvious ...

Higher θ doesn't necessarily implies a higher incentive to run ...

But here it is! Why? Single crossing

Necessary condition

$$\Delta^{r_1}(\theta^*,\theta^*)=0$$

Is it also sufficient?

Not so obvious ...

Higher θ doesn't necessarily implies a higher incentive to run ... But here it is! Why? Single crossing!

Necessary condition

$$\Delta^{r_1}(\theta^*,\theta^*)=0$$

Is it also sufficient?

Not so obvious ...

Higher θ doesn't necessarily implies a higher incentive to run ...

But here it is! Why? Single crossing

Necessary condition

$$\Delta^{r_1}(\theta^*,\theta^*)=0$$

Is it also sufficient?

Not so obvious ...

Higher θ doesn't necessarily implies a higher incentive to run ...

But here it is! Why? Single crossing!

The investor θ^* 's posterior is

$$Unif[\theta^* - \varepsilon, \theta^* + \varepsilon]$$

If $\theta = \theta^* + \varepsilon$, $\theta_i > \theta^*$, all run: n = 1.

If $\theta = \theta^* - \varepsilon$, $\theta_i < \theta^*$, only patient ones run: $n = \lambda$.

And *n* is linear in between.

So posterior of θ^* is

$$Unif[\lambda, 1]$$

The investor θ^* 's posterior is

$$Unif[\theta^* - \varepsilon, \theta^* + \varepsilon]$$

If $\theta = \theta^* + \varepsilon$, $\theta_i > \theta^*$, all run: n = 1.

$$\mathit{Unif}[\lambda,1]$$

The investor θ^* 's posterior is

$$Unif[\theta^* - \varepsilon, \theta^* + \varepsilon]$$

If
$$\theta = \theta^* + \varepsilon$$
, $\theta_i > \theta^*$, all run: $n = 1$.
If $\theta = \theta^* - \varepsilon$, $\theta_i < \theta^*$, only patient ones run: $n = \lambda$.

$$Unif[\lambda, 1]$$

The investor θ^* 's posterior is

$$Unif[\theta^* - \varepsilon, \theta^* + \varepsilon]$$

If $\theta = \theta^* + \varepsilon$, $\theta_i > \theta^*$, all run: n = 1. If $\theta = \theta^* - \varepsilon$, $\theta_i < \theta^*$, only patient ones run: $n = \lambda$. And n is linear in between.

So posterior of θ^* is

$$Unif[\lambda, 1]$$

The investor θ^* 's posterior is

$$Unif[\theta^* - \varepsilon, \theta^* + \varepsilon]$$

If $\theta = \theta^* + \varepsilon$, $\theta_i > \theta^*$, all run: n = 1.

If $\theta = \theta^* - \varepsilon$, $\theta_i < \theta^*$, only patient ones run: $n = \lambda$.

And *n* is linear in between.

So posterior of θ^* is

$$Unif[\lambda, 1]$$

Recall

$$v(\theta, n) = \begin{cases} p(\theta)u\left(\frac{1-nr_1}{1-n}R\right) - u(r_1) & \lambda \le n \le 1/r_1 \\ -\frac{1}{nr_1}u(r_1) & 1/r_1 < n < 1 \end{cases}$$

Banks

and at the limit

$$\lim_{\varepsilon \to 0} \Delta^{r_1}(\theta^*, \theta^*) = \nu(\theta^*, n(\theta^*, \theta^*))$$

We have

$$p(\theta^*) \int_{\lambda}^{1/r_1} u\left(\frac{1-nr_1}{1-n}R\right) dn - u(r_1)(1/r_1-\lambda) - u(r_1)\frac{\ln(r_1)}{r_1} = 0$$

Compute Equilibrium

000

$p(\theta^*) \int_{1}^{1/r_1} u\left(\frac{1-nr_1}{1-n}R\right) dn = u(r_1)\left(\frac{1+\ln(r_1)}{r_1}-\lambda\right)$

Comparative Statics

$$p(\theta^*) \int_{\lambda}^{1/r_1} u\left(\frac{1-nr_1}{1-n}R\right) dn = u(r_1) \left(\frac{1+\ln(r_1)}{r_1} - \lambda\right)$$

Thm 2: higher $r_1 \implies$ higher θ^*

Comparative Statics

$$p(\theta^*) \int_{\lambda}^{1/r_1} u\left(\frac{1-nr_1}{1-n}R\right) dn = u(r_1)\left(\frac{1+\ln(r_1)}{r_1}-\lambda\right)$$

Thm 2: higher $r_1 \implies$ higher θ^* Intuition:

- Direct: high payment increases the incentive to run
- Indirect: high payment increases estimation of people running

Compute Equilibrium

At the limit $\varepsilon \to 0, \overline{\theta} \to 1$, a benevolent banking system maximize

$$\int_0^{\theta^*} \frac{u(r_1)}{r_1} d\theta + \int_{\theta^*}^1 \left[\lambda u(r_1) + (1-\lambda) \rho(\theta^*) u\left(\frac{1-nr_1}{1-n}R\right) \right] d\theta$$

At the limit $\varepsilon \to 0, \overline{\theta} \to 1$, a benevolent banking system maximize

$$\int_0^{\theta^*} \frac{u(r_1)}{r_1} d\theta + \int_{\theta^*}^1 \left[\lambda u(r_1) + (1-\lambda) \rho(\theta^*) u\left(\frac{1-nr_1}{1-n}R\right) \right] d\theta$$

Thm 4&3: $r_1^* < c^{FB}$, and if $\theta(1)$ not too large, $r_1^* > 1$.

At the limit $\varepsilon \to 0, \overline{\theta} \to 1$, a benevolent banking system maximize

$$\int_0^{\theta^*} \frac{u(r_1)}{r_1} d\theta + \int_{\theta^*}^1 \left[\lambda u(r_1) + (1-\lambda) \rho(\theta^*) u\left(\frac{1-nr_1}{1-n}R\right) \right] d\theta$$

Thm 4&3: $r_1^* < c^{FB}$, and if $\theta(1)$ not too large, $r_1^* > 1$.

- $ightharpoonup r_1^*$ cannot be larger than c_1^{FB}
 - Loss from imperfect risk sharing
 - Loss from runs
- ▶ By deviating from c_1^{FB}
 - Loss from risk sharing is second order
 - ► Gain from reducing runs is first order

At the limit $\varepsilon \to 0, \overline{\theta} \to 1$, a benevolent banking system maximize

$$\int_0^{\theta^*} \frac{u(r_1)}{r_1} d\theta + \int_{\theta^*}^1 \left[\lambda u(r_1) + (1-\lambda) \rho(\theta^*) u\left(\frac{1-nr_1}{1-n}R\right) \right] d\theta$$

Thm 4&3: $r_1^* < c^{FB}$, and if $\theta(1)$ not too large, $r_1^* > 1$.

- At $r_1 = 1$, $\theta^* = 0$ no one runs and no risk sharing.
- ightharpoonup By increasing r_1 a little bit
 - ► Most investors benefit from risk sharing: first order
 - ▶ Runs occur when $\theta \in [\theta(1), \theta^*]$: runs not costly as p small
 - ▶ Runs more costly in $[0, \underline{\theta}(1)]$: not too large if $\underline{\theta}(1)$ small

Uniqueness