ECE 340: Semiconductor Electronics

Chapter 9: Integrated Circuit

Wenjuan Zhu

Outline

- → Equivalent circuit for the MOSFET
 - Resistive load-NMOSFET-common-source amplifier
 - CMOS inverter (Integrated Circuits)
 - CMOS processing

Equivalent circuit of a MOSFET

- Gate capacitance: sum of distributed capacitance from gate to channel (C_{GS}, C_{GD}) and overlap capacitance (C_{OS}, C_{OD}) . C_{OD} is known as Miller overlap capacitance, represents a feedback path.
- Gate controlled constant-current source
- pn junction depletion capacitance (C_{JS}, C_{JD}) ,
- parasitic resistance (R_S, R_D)

Equivalent circuit of a MOSFET

Effective channel length:

$$L_{eff} = L - \Delta L_R$$

 ΔL_R is the spread of source drain under the gate

$$\frac{V_D}{I_D} = R_{Ch} + R_{SD} = \frac{L - \Delta L_R}{Z - \Delta Z} \frac{1}{\overline{\mu_n} C_i (V_G - V_T)} + R_{SD}$$

 ΔZ is the width reduction due to isolation process

Equivalent circuit of MOSFET (simplified model)

- The MOSFET acts like a voltage controlled current source
- The gate-drain capacitance acts as a feedback path
- The source and drain resistance induce ohmic losses and reduce drain current for a given drain voltage

Neglecting R_S and R_D :

$$\frac{V_{out}}{V_{in}} = \frac{g_m V_G R_L}{V_G} = g_m R_L$$

Outline

- Equivalent circuit for the MOSFET (small signal analysis)
- Resistive load-NMOSFET-common-source amplifier
 - CMOS inverter (Integrated Circuits)
 - CMOS processing

Resistive load-NMOSFET

- Gate voltage low no current flow, no voltage drop across R_L and V_{out} is high
- Gate voltage high -current flow, large voltage drop across R_L and V_{out} is low
- Voltage Transfer Characteristic (VTC): output voltage as a functior of input bias
 - *V_{OH}*: logic high level
 - V_{OL} : logic low level
 - V_{IL} and V_{IH} : unity gain points (betwee V_{IL} and V_{IH} the input is amplified)
 - V_m : logic threshold, point where output equals input

Resistive load-NMOSFET

 Load line used to create VTC (resistor current equals FET current)

When V_G is high, MOSFET is on:

Linear region

$$I_D = \frac{\overline{\mu_n} ZC_i}{L} \left[(V_G - V_T)V_D - \frac{1}{2}V_D^2 \right]$$

Saturation region:

$$I_D(sat.) = \frac{Z}{2L}\overline{\mu_n}C_i(V_G - V_T)^2$$

Resistor current (equal to MOSFET current):

$$I_D = I_L = \frac{V_{DD} - V_{OL}}{R_L}$$

(b) Drain characteristics and load line

Copyright ©2015 Pearson Education, All Rights Reserved

Resistive load-NMOSFET inverter

Ideally:

- Region III should be as steep as possible (high gain)
- V_m should be close to $V_{DD}/2$
- Noise immunity (noise margin how much variation in input voltage can be tolerated while still having correct output logic level
- Problems with resistive inverter:
 - power dissipation in resistor
 - V_{OL} is not zero
- Solution: CMOS

(c) Voltage transfer characteristic

Outline

- Equivalent circuit for the MOSFET (small signal analysis)
- Resistive load-NMOSFET-common-source amplifier
- CMOS inverter (Integrated Circuits)
 - CMOS processing

CMOS Inverter

PMOSFET bias comments

From a PMOS channel conductance perspective

CMOS inverter voltage transfer characteristics

- When V_{in} is low, NMOS is off, PMOS is on $\rightarrow V_{out}$ is high
- When V_{in} is high, NMOS is on, PMOS is off $\rightarrow V_{out}$ is low

⇒ Inverter

CMOS inverter voltage transfer characteristics

- Overall circuit voltage transfer characteristic determined by solving the set of equations where the NMOS current equal to the PMOS current
- The Id relationship used to determine the operation characteristic is chosen based on whether the FETs are in the linear or saturation operating regions

CMOS inverter voltage transfer characteristics

Slope = -1

 V_{IH}

NMOS sat. II PMOS lin.

NMOS lin. IV

 V_{DD}

 $V_{DD} - V_{TP}$

Region II Current Calculation

NMOSFET Drain Current (Saturation):

$$I_{DN} = \frac{k_n}{2} (V_{in} - V_{TN})^2$$

PMOSFET Drain Current (Linear):

$$I_{DP} = k_p \left[(V_{DD} - V_{in}) + V_{TP} - \frac{(V_{DD} - V_{out})}{2} \right] (V_{DD} - V_{out})$$

To determine operation point (VTC):

$$I_{DN} = I_{DP}$$
 So:

$$\frac{k_n}{2k_p}(V_{in} - V_{TN})^2 = \left[\frac{V_{DD}}{2} - V_{in} + V_{TP} + \frac{V_{out}}{2}\right](V_{DD} - V_{out})$$

 V_{TN} V_{IL}

Slope =

NMOS off I

 $V_{\rm out}$

 V_{OH}

 $=V_{DD}$

 V_{OL}

CMOS transition voltage

• VTC transition region V_m occurs at

$$\chi = \sqrt{\frac{k_n}{k_p}} = \sqrt{\frac{\mu_n}{\mu_p} \frac{(Z/L)_n}{(Z/L)_p}}$$

CMOS NOR

PMOS in series (slower)

CMOS NAND

Power dissipation

The input capacitance of the inverter is the parallel combination of the NMOSFET and PMOSFET:

$$C_{inv} = C_i \left\{ (ZL)_N + (ZL)_P \right\}$$

Multiplying this term by the fan-out gives a total load capacitance of "C"

The energy expended in charging "C" is given by integrating the product of the time-dependent voltage and the time-dependent current:

$$E_C = \int i_p(t) [V_{DD} - v(t)] dt = V_{DD} \int i_p(t) dt - \int i_p(t) v(t) dt$$

but
$$i_p(t) = C \frac{dv(t)}{dt}$$
 so:

$$E_{C} = V_{DD} \int C \frac{dv(t)}{dt} dt - \int Cv(t) \frac{dv(t)}{dt} dt = CV_{DD} \int_{0}^{V_{DD}} dv - C \int_{0}^{V_{DD}} v dv = CV_{DD}^{2} - \frac{1}{2}CV_{DD}^{2} = \frac{1}{2}CV_{DD}^{2}$$

During a discharge cycle:

$$E_d = \int i_n(t)v(t)dt = -\int_{V_{DD}}^0 Cv dv = \frac{1}{2}CV_{DD}^2$$

For a charge/discharge frequency "f":

$$P = CV_{DD}^2 f$$

Switch delay

The propagation delay time t_p is a metric for the switching speed of the gate.

 $t_{PHL} \equiv$ the time for the output to transition from V_{OH} to V_{OH} / 2

 $t_{PLH} \equiv$ the time for the output to transition from V_{OL} to V_{OH} / 2

The time needed to reach V_{OH} /2 is found by dividing charge stored in the capacitor by the charge or discharge current. Since the transistor providing the current is in

saturation, and
$$I(sat) = \frac{k}{2} (V_{DD} - V_T)^2$$
:

$$t_{PHL} = \frac{\frac{1}{2}CV_{DD}}{I_{DN}} = \frac{\frac{1}{2}CV_{DD}}{\frac{k_{N}}{2}(V_{DD} - V_{TN})^{2}}$$

$$t_{PLH} = \frac{\frac{1}{2}CV_{DD}}{I_{DP}} = \frac{\frac{1}{2}CV_{DD}}{\frac{k_{P}}{2}(V_{DD} + V_{TP})^{2}}$$

Outline

- Equivalent circuit for the MOSFET (small signal analysis)
- Resistive load-NMOSFET-common-source amplifier
- CMOS inverter (Integrated Circuits)
- → CMOS processing

CMOS processing

Self aligned process

NMOS fabrication in p-well

