Name: Roll Number.....

• Answer precisely in the space given. No overwriting. Make assumptions, if really ambiguous.

• Questions 1-10: 1 Points; Questions 11-12: 2.5 Points. Total 15 Points. •

1. Consider a simple linear classifier, with bias. $\mathbf{w} = [2.5, 0.5, 1.5]^T$. This is tested on the following 5 samples. (\mathbf{x}_i, y_i)

$$([0,0]^T,+),([+1,+1]^T,+),([-1,+1]^T,+),([-1,-1]^T,-),([+1,-1]^T,-)$$

What is the accuracy of this classifier? Ans: ——-%.

2. A 3NN classifier is built over four training examples, and tested on the same test set of Q1.

$$([+2.0, 0.5]^T, +), (-3.0, +0.5]^T, -), ([0.0, 3.0]^T, +), ([0.0, -3.0]^T, -)$$

What is the accuracy of this classifier? Ans: ——-%.

- 3. Posterior probability of two classes (i.e., $P(\omega_1|\mathbf{x})$ and $P(\omega_2|\mathbf{x})$) for two classes in a binary classification problem (with $\mathbf{x} \in R^1$) are known to be normal distributions $\mathcal{N}(20, 25)$ and $\mathcal{N}(30, 5)$ respectively. Given a test sample of 25.1, predict the class. Ans:
- 4. Given the following confusion matrix.

	Predicted +ve	Predicted -ve
Actual +ve	A	В
Actual -ve	С	D

Write an expression for precision. Ans————

Write an expression for accuracy. Ans

5. An $N \times N$ matrix A is composed of consecutive N^2 integers starting from K. (i.e., $K, K + 1, \ldots, K + (N^2 - 1)$)

Rank of A is independent of N. (True or False?)

Rank of A is independent of K. (True or False?) ———

6. Bag I contain 10 white and 5 black balls. Bag II contains 15 white and 5 black balls.

A ball is drawn at random from one of the bags, and it is found to be white. What is the probability that it was drawn from Bag I.

Ans ------

- 7. A set of samples were pre-processed by a simple linear transformation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ Let d_{ij} is the distance between \mathbf{x}_i and \mathbf{x}_j and d'_{ij} is the distance between \mathbf{x}_i' and \mathbf{x}_j'

 - (b) When **A** is ρ **I**, a simple linear classifier $sign(\mathbf{w}^T\mathbf{x})$ will not report any change in accuracy after the transformation. True or False? ——

8.	Consider a vocabulary of size d . One hot representation of a word i , \mathbf{w}_i , is "1" at the
	location (index) corresponding to that word and zero else where. Given a document that
	contains P words, $\mathbf{w_1}, \dots, \mathbf{w_p}$, we compute

$$\mathbf{x} = \sum_{i=1}^{P} \mathbf{w}_i$$

Then,

- (a) \mathbf{x} is the histogram of the words, with its ith element x_i as the frequency of i th word.
- (b) \mathbf{x} is in \mathbb{R}^d independent of the number of words in the document.
- (c) \mathbf{x} is in \mathbb{R}^P independent of the vocabulary size.
- (d) $\sum_{i} x_i$ is $P(x_i)$ is the i th element of \mathbf{x})

Which of the above statements are True?

- 9. Consider the covariance matrix Σ
 - (a) Σ is symmetric
 - (b) Σ is PSD
 - (c) Σ is Diagonal if the distribution is Normal.
 - (d) Σ can not be Diagonal if the distribution is Normal.
 - (e) None of the above are true

Which of the above statements are True?

- 10. Consider the following statements:
 - (a) Product of Eigen values is Determinant of a matrix
 - (b) A matrix of $m \times n$ can have max (m,n) non-zero eigen values
 - (c) If determinant of a matrix is zero, means at least one of the eigen value is zero.
 - (d) Eigen vectors are orthogonal to each other (i.e., $\mathbf{v_1}^T\mathbf{v_2} = 0)$
 - (e) All the above are true

Which of the above statements are True?

$$\frac{\partial}{\partial \theta} \left(\boldsymbol{Y}^T \boldsymbol{Y} - 2 \boldsymbol{Y}^T \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} \right) = 0; \implies -2 \boldsymbol{X}^T \boldsymbol{Y} + 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = 0; \implies \boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Now find the closed form solution that minimizes this loss function (assume A is symmetric):

$$J(\theta) = (Y - X\theta)^{T} A (Y - X\theta)$$

- (a) $\theta = (X^T A X)^{-1} X^T Y$
- (b) $\theta = (X^T X)^{-1} X^T A Y$
- (c) $\theta = (X^T A X)^{-1} X^T A Y$
- (d) $\theta = (X^T A X)^{-1} X^T A^{-1} Y$
- (e) None of these

Write all correct options —

12. Consider the function

$$f(w) = w^2 + w + 1$$

We want to find the minima of the function using gradient descent. We start at $w^0 = 5.0$.

Write update equation for computing w^{k+1} from w^k . Ans:

What should be the learning rate η so that we reach the minima in a single step?

Ans: -----

Rough Work (will not be graded)

Name: Roll Number.....

• Answer precisely in the space given. No overwriting. Make assumptions, if really ambiguous.

- Questions 1-10: 1 Points; Questions 11-12: 2.5 Points. Total 15 Points. ‡
- 1. Consider a simple linear classifier, with bias. $\mathbf{w} = [2.5, 0.5, 1.5]^T$. This is tested on the following 5 samples. (\mathbf{x}_i, y_i)

$$([0,0]^T,+),([+1,+1]^T,+),([-1,+1]^T,+),([-1,-1]^T,-),([+1,-1]^T,-)$$

How many errors this classifier makes? Ans: ——-.

2. A 3NN classifier is built over four training examples, and tested on the same test set of Q1.

$$([+2.0, 0.5]^T, +), (-3.0, +0.5]^T, -), ([0.0, 3.0]^T, +), ([0.0, -3.0]^T, -)$$

What is the accuracy of this classifier? Ans: ——-%.

- 4. Given the following confusion matrix.

	Predicted +ve	Predicted -ve
Actual +ve	A	В
Actual -ve	С	D

Write an expression for recall. Ans —

Write an expression for accuracy. Ans

5. An $N \times N$ matrix A is composed of consecutive N^2 integers starting from K. (i.e., $K, K + 1, \ldots, K + (N^2 - 1)$)

Rank of A is independent of N. (True or False?) ———

Rank of A is independent of K. (True or False?)

6. Bag I contain 5 white and 10 black balls. Bag II contains 5 white and 15 black balls.

A ball is drawn at random from one of the bags, and it is found to be white. What is the probability that it was drawn from Bag I.

Ans ------

- 7. A set of samples were pre-processed by a simple linear transformation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ Let d_{ij} is the distance between \mathbf{x}_i and \mathbf{x}_j and d_{ij}' is the distance between \mathbf{x}_i' and \mathbf{x}_j'

(b) When A is ρ I , a simple linear classifier $sign(\mathbf{w}^T\mathbf{x})$ will not report any change i accuracy after the transformation. True or False? —
Consider a document is represented by a histogram of the words in the document. \mathbf{h} i.e., h is the number of occurrence of the i th word in the document.
We define a linguistic operation: Paraphrasing (P1). P1 is defined as permuting sentence in a document and rewriting a sentence by permuting the words.
(a) h is invariant to the P1
(b) h is not invariant to the P1
(c) ${f h}$ is invariant under in which order the vocabulary is constructed (eg. "a to z" or "to a")
(d) a Euclidean distance computed over \mathbf{h}_i and \mathbf{h}_j is invariant under in which order the vocabulary is constructed (eg. "a to z" or "z to a".)
Which of the above statements are True? ————
Consider the covariance matrix Σ
 (a) Σ is symmetric (b) Σ is PSD (c) Σ is Diagonal if the distribution is Normal. (d) Σ can not be Diagonal if the distribution is Normal. (e) None of the above are true
Which of the above statements are True? ————
Consider the following statements:
 (a) Product of Eigen values is Determinant of a matrix (b) A matrix of m × n can have max (m,n) non-zero eigen values (c) If determinant of a matrix is zero, means at least one of the eigen value is zero. (d) Eigen vectors are orthogonal to each other (i.e., v₁^Tv₂ = 0) (e) All the above are true
Which of the above statements are True? ————

8.

9.

10.

$$\frac{\partial}{\partial \theta} \left(\boldsymbol{Y}^T \boldsymbol{Y} - 2 \boldsymbol{Y}^T \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} \right) = 0; \implies -2 \boldsymbol{X}^T \boldsymbol{Y} + 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = 0; \implies \boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Now find the closed form solution that minimizes this loss function (assume A is symmetric):

$$J(\theta) = (Y - X\theta)^{T} A (Y - X\theta)$$

(a)
$$\theta = (X^T A X)^{-1} X^T Y$$

(b)
$$\theta = (X^T X)^{-1} X^T A Y$$

(c)
$$\theta = (X^T A X)^{-1} X^T A Y$$

(d)
$$\theta = (X^T A X)^{-1} X^T A^{-1} Y$$

(e) None of these

Write all correct options ————

12. Consider the function

$$f(w) = w^2 + w + 1$$

We want to find the minima of the function using gradient descent. We start at $w^0 = -5.0$.

Write update equation for computing w^{k+1} from w^k . Ans:

What should be the learning rate η so that we reach the minima in a single step?

Ans: ———

Rough Work (will not be graded)

Name: Roll Number.....

• Answer precisely in the space given. No overwriting. Make assumptions, if really ambiguous.

• Questions 1-10: 1 Points; Questions 11-12: 2.5 Points. Total 15 Points. †

1. Consider a simple linear classifier, with bias. $\mathbf{w} = [2.5, 0.5, 1.5]^T$. This is tested on the following 5 samples. (\mathbf{x}_i, y_i)

$$([0,0]^T,+),([+1,+1]^T,+),([-1,+1]^T,+),([-1,-1]^T,-),([+1,-1]^T,-)$$

What is the accuracy of this classifier? Ans: ——-%.

2. A 3NN classifier is built over four training examples, and tested on the same test set of Q1.

$$([+2.0, 0.5]^T, +), (-3.0, +0.5]^T, -), ([0.0, 3.0]^T, +), ([0.0, -3.0]^T, -)$$

How many errors this classifier makes? Ans: ———-

- 4. Given the following confusion matrix.

	Predicted +ve	Predicted -ve
Actual +ve	A	В
Actual -ve	С	D

Write an expression for accuracy. Ans

Write an expression for precision. Ans

5. An $N \times N$ matrix A is composed of consecutive N^2 integers starting from K. (i.e., $K, K+1,\ldots,K+(N^2-1)$)

Rank of A is independent of N. (True or False?)

Rank of A is independent of K. (True or False?)

6. Bag I contain 15 white and 5 black balls. Bag II contains 10 white and 5 black balls.

A ball is drawn at random from one of the bags, and it is found to be white. What is the probability that it was drawn from Bag I.

Ans ------

- 7. A set of samples were pre-processed by a simple linear transformation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ Let d_{ij} is the distance between \mathbf{x}_i and \mathbf{x}_j and d_{ij}' is the distance between \mathbf{x}_i' and \mathbf{x}_j'
 - (a) When **A** is a permutation matrix (i.e., every row and column has only one '1' and all other elements being '0'; Note: **A** need not be identity). Then, $d_{ij} = d'_{ij}$ for all i, j. True or False? ————
 - (b) When **A** is ρ **I**, a simple linear classifier $sign(\mathbf{w}^T\mathbf{x})$ will not report any change in accuracy after the transformation. True or False? ——

8.	Consider a document is represented by a histogram of the words in the document \mathbf{h} i.e., h_i is the number of occurrence of the i th word in the document.
	We define a linguistic operation: Paraphrasing (P2). P2 is defined as replacing a set of words by their respective synonym.
	(a) h is invariant to the P2
	(b) h is not invariant to the P2
	(c) ${f h}$ is invariant under in which order the vocabulary is constructed (eg. "a to z" or "z to a")
	(d) a Euclidean distance computed over \mathbf{h}_i and \mathbf{h}_j is invariant under in which order the vocabulary is constructed (eg. "a to z" or "z to a")
	Which of the above statements are True? ———
9.	Consider the covariance matrix Σ
	(a) Σ is symmetric
	(b) Σ is PSD
	(c) Σ is Diagonal if the distribution is Normal.
	(d) Σ can not be Diagonal if the distribution is Normal.
	(e) None of the above are true
	Which of the above statements are True? ———
10.	Consider the following statements:
	(a) Product of Eigen values is Determinant of a matrix
	(b) A matrix of $m \times n$ can have max (m,n) non-zero eigen values
	(c) If determinant of a matrix is zero, means at least one of the eigen value is zero.
	(d) Eigen vectors are orthogonal to each other (i.e., $\mathbf{v_1}^T \mathbf{v_2} = 0$)
	(e) All the above are true
	Which of the above statements are True? ———

$$\frac{\partial}{\partial \theta} \left(\boldsymbol{Y}^T \boldsymbol{Y} - 2 \boldsymbol{Y}^T \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} \right) = 0; \implies -2 \boldsymbol{X}^T \boldsymbol{Y} + 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = 0; \implies \boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Now find the closed form solution that minimizes this loss function (assume A is symmetric):

$$J(\theta) = (Y - X\theta)^{T} A (Y - X\theta)$$

(a)
$$\theta = (X^T A X)^{-1} X^T Y$$

(b)
$$\theta = (X^T X)^{-1} X^T A Y$$

(c)
$$\theta = (X^T A X)^{-1} X^T A Y$$

(d)
$$\theta = (X^T A X)^{-1} X^T A^{-1} Y$$

(e) None of these

Write all correct options —

12. Consider the function

$$f(w) = w^2 + w + 1$$

We want to find the minima of the function using gradient descent. We start at $w^0 = 5.0$.

Write update equation for computing w^{k+1} from w^k . Ans:

What should be w^1 if the learning rate $\eta = 0.1$?

Ans: ———

Rough Work(will not be graded)

Name: Roll Number......

- Answer precisely in the space given. No overwriting. Make assumptions, if really ambiguous.
- Questions 1-10: 1 Points; Questions 11-12: 2.5 Points. Total 15 Points.

1. Consider a simple linear classifier, with bias. $\mathbf{w} = [2.5, 0.5, 1.5]^T$. This is tested on the following 5 samples. (\mathbf{x}_i, y_i)

$$([0,0]^T,+),([+1,+1]^T,+),([-1,+1]^T,+),([-1,-1]^T,-),([+1,-1]^T,-)$$

How many errors this classifier makes? Ans: ———-

2. A 3NN classifier is built over four training examples, and tested on the same test set of Q1.

$$([+2.0, 0.5]^T, +), (-3.0, +0.5]^T, -), ([0.0, 3.0]^T, +), ([0.0, -3.0]^T, -)$$

How many errors this classifier makes? Ans: ——-.

- 3. Posterior probability of two classes (i.e., $P(\omega_1|\mathbf{x})$ and $P(\omega_2|\mathbf{x})$) for two classes in a binary classification problem (with $\mathbf{x} \in R^1$) are known to be normal distributions $\mathcal{N}(30,5)$ and $\mathcal{N}(40,25)$ respectively. Given a test sample of 34.9, predict the class. Ans:
- 4. Given the following confusion matrix.

	Predicted +ve	Predicted -ve
Actual +ve	A	В
Actual -ve	С	D

Write an expression for accuracy. Ans————

Write an expression for recall. Ans

5. An $N \times N$ matrix A is composed of consecutive N^2 integers starting from K. (i.e., $K, K + 1, \ldots, K + (N^2 - 1)$)

Rank of A is independent of N. (True or False?) ———

Rank of A is independent of K. (True or False?)

6. Bag I contain 5 white and 15 black balls. Bag II contains 5 white and 10 black balls.

- 7. A set of samples were pre-processed by a simple linear transformation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ Let d_{ij} is the distance between \mathbf{x}_i and \mathbf{x}_j and d'_{ij} is the distance between \mathbf{x}'_i and \mathbf{x}'_j

 - (b) When **A** is ρ **I**, a simple linear classifier $sign(\mathbf{w}^T\mathbf{x})$ will not report any change in accuracy after the transformation. True or False? ——

8.	Consider a vocabulary of size d . One hot representation of a word i , \mathbf{w}_i , is "1" at the
	location (index) corresponding to that word and zero else where. Given a document that
	contains P words, $\mathbf{w_1}, \dots, \mathbf{w_p}$, we compute

$$\mathbf{x} = \sum_{i=1}^{P} \mathbf{w}_i$$

Then,

- (a) \mathbf{x} is the histogram of the words, with its ith element x_i as the frequency of i th word.
- (b) \mathbf{x} is in \mathbb{R}^d independent of the number of words in the document.
- (c) \mathbf{x} is in \mathbb{R}^P independent of the vocabulary size.
- (d) $\sum_{i} x_i$ is $P(x_i)$ is the i th element of \mathbf{x})

Which of the above statements are True?

- 9. Consider the covariance matrix Σ
 - (a) Σ is symmetric
 - (b) Σ is PSD
 - (c) Σ is Diagonal if the distribution is Normal.
 - (d) Σ can not be Diagonal if the distribution is Normal.
 - (e) None of the above are true

Which of the above statements are True?

- 10. Consider the following statements:
 - (a) Product of Eigen values is Determinant of a matrix
 - (b) A matrix of $m \times n$ can have max (m,n) non-zero eigen values
 - (c) If determinant of a matrix is zero, means at least one of the eigen value is zero.
 - (d) Eigen vectors are orthogonal to each other (i.e., $\mathbf{v_1}^T\mathbf{v_2} = 0)$
 - (e) All the above are true

Which of the above statements are True?

$$\frac{\partial}{\partial \theta} \left(\boldsymbol{Y}^T \boldsymbol{Y} - 2 \boldsymbol{Y}^T \boldsymbol{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} \right) = 0; \implies -2 \boldsymbol{X}^T \boldsymbol{Y} + 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} = 0; \implies \boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Now find the closed form solution that minimizes this loss function (assume A is symmetric):

$$J(\theta) = (Y - X\theta)^{T} A (Y - X\theta)$$

(a)
$$\theta = (X^T A X)^{-1} X^T Y$$

(b)
$$\theta = (X^T X)^{-1} X^T A Y$$

(c)
$$\theta = (X^T A X)^{-1} X^T A Y$$

(d)
$$\theta = (X^T A X)^{-1} X^T A^{-1} Y$$

(e) None of these

Write all correct options ————

12. Consider the function

$$f(w) = w^2 + w + 1$$

We want to find the minima of the function using gradient descent. We start at $w^0 = -5.0$.

Write update equation for computing w^{k+1} from w^k . Ans:

What should be w^1 if the learning rate $\eta = 0.1$?

Ans: ———

Rough Work(will not be graded)