MATH 3310

Grading Rubric for Homework Assignment #2: Parsimonious logical system; 6 people at a party implies some troika are mutual acquaintances or strangers; some Number Theory stuff.

Author:

1. Proving or disproving $\{\mathcal{M}, \Phi, \neg, \wedge, \vee, \Longrightarrow\}$ can be reduced to $\{\mathcal{M}, \Phi, \nabla\}$.

			_
ullet Author attempts to convert usual operations into $ abla$	0	1	2
• Author successfully translates \neg into \triangledown (P ∇ P)	0	1	2
• Author successfully translates \vee into \triangledown (probably $(P\nabla Q)\nabla(P\nabla Q)$)	0	1	(2)
• Author translates \land (probably $(P\nabla P)\nabla(Q\nabla Q))$	0	1	(2)
• Author translates \implies (probably $((P\nabla P)\nabla Q)\nabla((P\nabla P)\nabla Q)$)	0	1	(2)
• Author claims the system cannot be reduced AND gives a counterexample	0	1	2
Readability			
Truth tables are not simply displayed	0	1	2
 Author notes how to interpret the truth tables 	0	1	2
• Fluency	0	1	(2)

2. Proving there's always a monochrome triangle when 6 points are completely connected by lines randomly colored red and blue. Equivalently: there's always a winner in the red/blue triangle-finding game.

Author makes an attempt	0	1	2
• Author reduces cases to considering one point and the 5 lines incident to it	0	1	2
• Author's argument is convincing	0	1	2
• Readability (If drawings or figures are used, Author explains them)	0	1	2 2 2
• Fluency	0	1	2

3. Prime machine?¹

• Author claims $n^2 + n + 41$ is not a prime machine	0	1	2
• Author provides a counterexample	0	1	2
• with sufficient detail	0	1	2
• Readability	0	1	2
• Fluency	0	1	2

4. Proving if $9 \mid \sum d_i$, then $9 \mid d_1 d_2 \cdots d_n$.

• Author correctly uses the definit	ion of divisor	0	1	2
 Author's tactic is legit and coge 	nt (doesn't 'divide', not example-based, not circular ²)		1	
• Author uses $a \mid b \land a \mid c \implies a \mid$	$(\mathfrak{b}+\mathfrak{c})$ or some other relationship correctly ³	0	1	2
• Readability	The last bit of the argument isn't super clear.	0	1	2
• Fluency	Great job overall though!	0	1	2

Subtotal X = 42/46; Scale: $\left[X \times \frac{30}{42}\right] = 30/30$

¹If Author claims $n^2 + n + 41$ is a prime machine, assess Readability and give 1 point for Fluency only if a proof is attempted; 0 for Fluency otherwise.

² "Never assume what you are trying to prove unless you are trying to prove you're an idiot" — Trevor Williams, former student.

³The point to assess is whether they make any unproved statements of fact such as "Since $a \mid (b+c), a \mid b$ ".