Содержание

1	Лекци	тя 1	2
	1.1	Расписание и формат обучения	2
	1.2	Комментарии к первой лабораторной работе	2
	1.3	Погрешности и устойчивость	2
	1.4	Модели на основе ОДУ	3
	1.5	Явные методы Рунге-Кутта	3
		1.5.1 Метод Эйлера (p=1)	4
		1.5.2 Численный метод Рунге-Кутта (p=2)	4
		1.5.3 Метод Пикара (приближённый аналитический метод)	4
2	Лекци	ия 2	6
	2.1	Геометрическое истолкование полученных результатов	6
	2.2	Методы Рунге-Кутта 4-го порядка точности	7
	2.3	Замечания о методах Рунге-Кутта	8
	2.4	Распространение метода Рунге-Кутта 4-то порядка на систему дифференци-	
		альных уравнений	8
	2.5	Применение метода Пикара	8
	2.6	Неявный метод Эйлера	9
	2.7	Метод Гира	10
	2.8	Замечание о многошаговых методах	10
	2.9	Метол Аламса 4-у шаговый (p=4)	10

1 Лекция 1

1.1 Расписание и формат обучения

Приём лабораторных:

Среда: 15:40 - 17:15, 237л

17:25 - 19:00 237л

Суббота: 13:50 - 15:25 243л

15:40 - 17:15 243л

Модули:

М1: 5 неделя, минимум 12 баллов, максимум 20 баллов, одна лабораторная

М2: 12 неделя, минимум 12 баллов, максимум 20 баллов, две лабораторные

МЗ: 17 неделя, минимум 18 баллов, максимум 30 баллов, одна лабораторная

Сдано больше двух лабораторных - автомат на экзамене.

1.2 Комментарии к первой лабораторной работе

$$\begin{cases} u'(x) = x^2 + u^2 u(0) = 0
\end{cases}$$
(1.1)

Результат:

- значения для $x \in [0, x_{max}]$ с заданным шагом h
- приближения Пикара с 1 по 4 порядок
- до второго знака после запятой точность
- график функции в интервале $[-x_{max}, x_{max}]$

1.3 Погрешности и устойчивость

Погрешности, возникающие при моделировании:

- Погрешность модели
- Погрешность метода
- Погрешность исходных данных
- Погрешность округления

Устойчивость - задача называется устойчивой (корректной), если решение единственно и устойчиво по входным данныхм. Плохо обусловленная задача: $\delta y = C \delta x, C >> 0$

1.4 Модели на основе ОДУ

Все дополнительные условия заданы в одной точке - задача Коши.

Все дополнительные условия заданы в разных точках - краевая задача.

Задача Коши:

$$u'(x) = f(x, u)$$

$$u(\xi) = \eta$$

Решением данной задачи является сведение уравнения к производным первого порядка при помощи замены переменных:

$$u^{n}(x) = f(x, u, u', ..., u^{n-2}, u^{n-1})$$

 $u^{(k)} = u_{k}$

$$\begin{cases} u'_k = u^{(k+1)} = u_{k+1}, 0 \leqslant k \leqslant n - 2 \\ u'_n = f(x, u_0, u_1, u_2, ..., u_{n-1}) \end{cases}$$
(1.2)

 $u_0 \equiv u$

$$u_k(\xi) = \eta_k, 0 \leqslant k \leqslant n-1$$

Методы решения:

- Аналитические
- Приближенно аналитические
- Численные

1.5 Явные методы Рунге-Кутта

$$u'(x) = f(x, u)$$

$$u(\xi) = \eta$$

$$a \leqslant x \leqslant b$$

Рисунок 1.1 — Значения на числовой прямой

$$w_N = \{x_i : a = x_0 < x_1 \dots < x_N\}$$

 $w_n = \{x_i : x_i = a + ih, i = \overline{0, N}\}$
 $y_i \to y(x_i)$

Сходимость разностного решения к точному на отрезке:

$$\forall x_i \in [a, b] : |y_i - u_i| \to 0, h \to 0 (i \to \infty)$$

1.5.1 Метод Эйлера (p=1)

$$u_{i+1}=u_i+h_i\cdot u_i'+rac{h^2}{2!}u_i''+rac{h^3}{3!}u_i'''+\dots$$
 здесь $u_i'=u'(x_i);u_i''=u''(x_i)\dots$ $y_{i+1}=y_i+h\cdot f(x_i,u_i),$ если $|y_i-u_i|=o(h^2),$ при $h\to 0,$ то метод имеет р-й порядок точности.

1.5.2 Численный метод Рунге-Кутта (р=2)

$$\begin{aligned} u_{i+1} &= u_i + h u_i' + \frac{h^2}{2} u_i'' + \dots \\ u_i' &= f_i = f(x_i, u_i) \\ u_i'' &= (u_i') = \frac{d}{dx} f = f_{x_i}' + f_{u_i}' \cdot f_i \\ y_{i+1} &= y_i + h f_i + \frac{h^2}{2} (f_{x_i}' + f_{y_i}' \cdot f_i), (p = 2), (2) \\ u''i &= \frac{f(x + \gamma h, y + \delta h) - f(x, y)}{\Delta x} \\ y_{i+1} &= y_i + h f_i + \frac{h^2}{2} (\frac{f(x + \gamma h, y + \delta h) - f(x, y)}{\Delta x}) = y_i + h [\beta f(x_i, y_i) + \alpha f(x_i + \gamma h, y_i + \delta h)] \ (3) \\ y_{i+1} &= y_i + h [\beta f(x_i + y_i) + \alpha (f(x_i, y_i) + f_x' \gamma h + f_y' \delta h)] = y_i + h [(\alpha + \beta) f(x_i, y_i) + \alpha \gamma h f_x' + \alpha \delta h f_y'] \ (4) \end{aligned}$$

Сравним (2) и (4):

$$\begin{cases}
\alpha + \beta = 1 \\
\alpha \gamma = \frac{1}{2} \\
\alpha \delta = \frac{1}{2} f(x_i, y_i)
\end{cases}$$
(1.3)

$$\begin{cases} \beta = 1 - \alpha \\ \gamma = \frac{1}{2\alpha} \\ \delta = \frac{1}{2\alpha} f(x_i, y_i) \end{cases}$$
 (1.4)

Из (3) видим, что:

$$y_{i+1}=y_i+h[(1-lpha)f(x_i,y_i)+lpha f(x_i+rac{1}{2lpha}h,y_i+rac{h}{2lpha}f(x_i,y_i))],$$
 на практике $lpha=1,lpha=rac{1}{2}$

1.5.3 Метод Пикара (приближённый аналитический метод)

$$u'(x) = f(x, u(x))$$
$$\frac{du}{dx} = f(x, u(x))$$

$$u(x) = u(\xi) + \int_{\xi}^{x} f(t, u(t)) dt$$
$$y^{(\delta+1)}(x) = u(\xi) + \int_{\xi}^{x} f(t, y^{(\delta)}(t)) dt$$

В лабораторной показать Пикара нужной точности (от 1 до 4).

2 Лекция 2

$$y_{n+1} = y_n + h_n[(1-\alpha)f(x_n, y_n) + \alpha f(x_n + \frac{h_n}{2\alpha}, y_n + \frac{h_n}{2\alpha}f(x_n, y_n))] + O(\max h_n^2)$$

2.1 Геометрическое истолкование полученных результатов

Рассмотрим для $\alpha = 1$:

$$y_{n+1} = y_n + h_n f(x_n + \frac{h_n}{2}, y_n + \frac{h_n}{2} f(x_n, y_n))$$

- 1) $y_{n+\frac{1}{2}} = y_n + \frac{h_n}{2} f(x_n, y_n)$
- 2) $y'_n = f(x_n + \frac{h_n}{2}, y_{n+\frac{1}{2}})$
- 3) $y_{n+1} = y_n + h_n y_n'$

Рисунок 2.1 — Геометрические результаты для a=1

Рассмотрим для $\alpha = \frac{1}{2}$:

$$y_{n+1} = y_n + \frac{h_n}{2} [f(x_n, y_n) + f(x_n + \frac{h_n}{2}, y_n + \frac{h_n}{2} f(x_n, y_n))]$$

- $1) \overline{y_{n+1}} = y_n + h_n f(x_n, y_n)$
- 2) $y'_{n+1} = f(x_n + h_n, \overline{y_{n+1}})$
- 3) $y'_{cp} = \frac{1}{2}(f(x_n, y_n) + y'_{n+1})$
- 4) $y_{n+1} = y_n + h_n \cdot y'_{cp}$

Рисунок 2.2 — Геометрические результаты для а = 1/2

2.2 Методы Рунге-Кутта 4-го порядка точности

Формула обеспечивает переход из узла n в узлел n + 1:

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_2 = hf(x_n + h, y_n + k_3)$$

Посмотрим, как формируется порядок точности в специальном варианте правой части:

Посмотрим, как формируется
$$u'(x) = f(x)$$
 $y_{n+1} = y_n + \int\limits_{x_n}^{x_{n+1}} f(x) dx$ При $\alpha = \frac{1}{2}$ $y_{n+1} = y_n + \frac{h}{2}(f(x_n) + f(x_{n+1}))$ По методу трапеции:

$$R_{trap} \leqslant \frac{x_N - x_O}{12} h^2 \cdot max |f'(x)|$$
 Рунге-Кутт 4-го порядка:
$$y_{n+1} = y_n + \frac{h}{6} (f(x_n) + 4f(x_n + \frac{h}{2}) + f(x_n + h)) - \text{метод Симпсона}$$
 $R_{simp} \leqslant \frac{x_n - x_O}{190 \cdot 16} h^4 \cdot max |f^{IV}(x)|, x_o \leqslant x \leqslant x_n$

2.3 Замечания о методах Рунге-Кутта

- 1) методы явные позволяет за строго зафиксированное количество шагов перейти из одного узла в другой
 - 2) позволяет производить расчёты с переменным шагом
- 3) если нужных производынх при интегрировании нет, то применение метода Симпсона бессмысленно, т.е. метод трапеции, треугольника и тд.
 - 2.4 Распространение метода Рунге-Кутта 4-то порядка на систему дифференциальных уравнений

На примере метода Рунге-Кутта 4-го порядка рассмотрим распространить результат на систему дифференциальных уравнений.

$$\begin{cases} u' = f(x, u, v) \\ v' = \phi(x, u, v) \\ u(\xi) = \eta_1 \\ v(\xi) = \eta_2 \end{cases}$$

$$(2.1)$$

$$u = y, v = z$$

$$\begin{aligned} y_{n+1} &= y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \\ z_{n+1} &= z_n + \frac{q_1 + 2q_2 + 2q_3 + q_4}{6} \\ k_1 &= hf(x_n, y_n, z_n), q_1 = h\phi(x_n, y_n, z_n) \\ k_2 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}), q_2 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}) \\ k_3 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}), q_3 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}) \\ k_4 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_3}{2}, z_n + \frac{q_3}{2}), q_2 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_3}{2}, z_n + \frac{q_3}{2}) \end{aligned}$$

Способ рассчёта выше применяется в вычислениях во второй лабораторной работе.

2.5 Применение метода Пикара

Возвращаясь к методу Пикара, сформулируем условие сходимости приближённого решения к точке.

- решение в ограниченной области
- правая часть f непрерывна
- условия Липшеца: $a \leqslant x \leqslant b, |f(x, u_1) f(x, u_2)| \leqslant \mathcal{L}|u_1 u_2|$

2.6 Неявный метод Эйлера

$$u' = f(x, u)$$

В явном методе Эйлера - $y_{n+1} = y_n + hf(x_n, y_n)$

В неявном методе Эйлера - $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ Последствия:

- 1) Решения может не быть, либо может быть несколько
- 2) Для решения уравнения необходимо подобрать метод

Применяется часто, поскольку является устойчивым.

Пример:

$$u' = -\alpha u, \alpha > 0$$

аналитическое решение: $u(x) = ce^{-\alpha x}$

Рисунок 2.3 — Сравнение явного и неявного метода Эйлера

$$y_{n+1} = y_n - \alpha y_n h = y_n (1 - \alpha h), 1 - \alpha h > 0, h < \frac{1}{2}$$

Применение явного метода может привести к расходящимся решениями и имеет ограничения на α . Чем больше α , тем больше шаг.

Неявный метод:

$$y_{n+1}=y_n-\alpha y_{n+1}h$$
 $y_{n+1}=rac{y_n}{1+lpha h}$ - ограничений на h нет.

В общем виде:

$$\sum_{k=0}^m a_k y_{n-k} = h(f(x_n,y_n))$$
 $m=1, a_0=1, a_1=-1$ $y_n-y_{n-1}=hf(x_n,y_n)$ - метод Эйлера.

2.7 Метод Гира

При
$$m=2$$
:

$$\frac{3}{2}y_n - 2y_{n-1} + \frac{1}{2}y_{n-2} = hf(x_n, y_n) + O(h^2)$$

При m=3:

$$\frac{11}{3}y_n - 3y_{n-1} + \frac{3}{2}y_{n-2} - \frac{1}{3}y_{n-3} = hf(x_n, y_n) + O(h^3)$$

Формул более высокого порядка точности не существует. Благоприятны с точки устойчивости решений.

2.8 Замечание о многошаговых методах

В многошаговых методах для получения решения в неизвестном узле необходимо знать значения в определённом количестве предыдущих узлов.

2.9 Метод Адамса, 4-х шаговый, (p=4)