TU Ilmenau

Numerik für Informatiker

1. Übungsblatt

Lösung zur Aufgabe 1:

Ein von Spannungsquellen freies Stromnetz sei aus den Widerständen R_1, \ldots, R_5 in Brückenschaltung (Wheatstone) aufgebaut:

Gegeben seien $I_0, R_1, \ldots, R_5 > 0$. Geben Sie das aus den Kirchhoffschen Gesetzen abgeleitete Gleichungssystem für die Ströme I_1, \ldots, I_5 in Matrixschreibweise an. Welches Kriterium müssen die Widerstände erfüllen, damit $I_3 = 0$ gilt?

Hinweis: Benutzen Sie die Kirchhoffschen Gesetze:

1.) *Knotenregel:* Die Summe aller Ströme, die in einen Knoten hinein- bzw. herausfließen, ist Null:

$$\sum_{n} I_n = 0.$$

2.) Maschenregel: In einem geschlossenen Stromkreis ist die Summe der Spannungen über alle Schaltelemente Null $(U_i = I_i \cdot R_i)$:

$$\sum_{n} U_n = 0.$$

Lösung:

Mithilfe der Kirchhoffschen Gesetze stellen wir Gleichungen auf, die sich aus dem Zusammenhang zwischen den I_i und R_i (i = 1, ..., 5) sowie I_0 ergeben:

Knotenregel:
$$Gl.1: \quad I_1 \quad +I_2 \qquad \qquad = I_0 \\ Gl.2: \quad I_1 \qquad -I_3 \quad -I_4 \qquad = 0 \\ Gl.3: \qquad I_2 \quad +I_3 \qquad -I_5 = 0 \\ Gl.4: \qquad \qquad I_4 \quad +I_5 = I_0 \quad \text{entspricht Gl.1 - Gl.2 - Gl.3}$$
 Maschenregel:
$$Gl.5: \quad R_1I_1 \quad -R_2I_2 \quad +R_3I_3 \qquad = 0 \\ Gl.6: \qquad \qquad R_3I_3 \quad -R_4I_4 \quad +R_5I_5 = 0 \\ Gl.7: \quad R_1I_1 \quad -R_2I_2 \qquad +R_4I_4 \quad -R_5I_5 = 0 \quad \text{entspricht Gl.5-Gl.6})$$

Aus diesen Gleichungen wird ein lineares Gleichungssystem mit den Unbekannten I_1, I_2, \ldots, I_5 aufgestellt, welches ggf. mit vorgegebenen Werten für die Widerstände gelöst werden kann.

$$A := \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ R_1 & -R_2 & R_3 & 0 & 0 \\ 0 & 0 & R_3 & -R_4 & R_5 \\ R_1 & -R_2 & 0 & R_4 & -R_5 \end{pmatrix}, \quad x := \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{pmatrix}, \quad b := \begin{pmatrix} I_0 \\ 0 \\ 0 \\ I_0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Ax = b ist ein überbestimmtes lineares Gleichungssystem, das im Allgemeinen keine Lösung hat, in diesem Fall sind aber zwei Gleichungen Linearkombinationen von anderen Gleichungen, deshalb entsteht durch Weglassen dieser beiden Gleichungen ein lineares Gleichungssystem mit 5 Gleichungen und 5 Unbekannten, welches bei günstiger Eingabe der Widerstände R_1 bis R_5 und der Stromstärke I_0 eine eindeutige Lösung hat.

Ist nun hinter I_3 kein Stromfluss mehr messbar (d. h. $I_3 = 0$), kann man Relationen zwischen den Widerständen R_1 , R_2 , R_4 und R_5 ermitteln:

- aus Gl2 \Longrightarrow (i) $I_1 = I_4$ aus Gl3 \Longrightarrow (ii) $I_2 = I_5$ aus Gl4 \Longrightarrow (iii) $R_1I_1 = R_2I_2$ aus Gl5 \Longrightarrow (iv) $R_4I_4 = R_5I_5$
- (i) in (iv) einsetzen: $I_1 = R_5 I_5 / R_4$. (ii) in (iii) einsetzen: $I_1 = R_2 I_5 / R_1$.
- Gleichsetzen: $R_5I_5/R_4 = R_2I_5/R_1 \Longrightarrow R_1R_5 = R_2R_4$.
- $R_1R_5 = R_2R_4$ ist notwendige Bedingung für $I_3 = 0$. Beachte, dass alle $R_i > 0$ sein müssen.

Diese Wheatstonebrücke wird bei der Messung eines unbekannten Widerstands (z. B.) R_1 verwendet. Hinter R_3 wird ein Strommessgerät geschaltet und die Widerstände R_2 , R_4 , R_5 so aufeinander abgestimmt, dass kein Stromfluss (d. h. $I_3 = 0$) mehr messbar ist. Aus $R_2R_4 = R_1R_5$ lässt sich dann der unbekannte Widerstand bestimmen.