Bayesian Statistics in Astrophysics

Jack Walton October 23, 2019

Disclaimer

I am *not* talking about my own research because:

- Most of you saw me talk at the applied PGR conference at the end of June
- 2. I have no new results since June (I suspended studies for 3 months over summer)

Figure 1: No new research here...

Table of contents

Bayesian & frequentist statistics

Sunspot occurrence: a case study

Bayesian & frequentist statistics

Frequentist statistics

- This approach to statistics will be familiar to most
- Think *p*-values, hypothesis testing, confidence intervals etc.
- However, it is not the only statistical framework (nor is it the focus of this talk...)

Bayesian vs. frequentist statistics

The difference between Bayesians and frequentists lies in the interpretation of probability...

For a frequentist:

An event's probability is the limit of its relative frequency in many trials

For a Bayesian:

An event's probability is a degree of belief

Why Bayesian?

- Philosophically aligns with how we practice science: *updating* our *beliefs* in light of *new evidence*
- Allows the inclusion of expert information through a *prior distribution*
- For events that only occur once, how appropriate is a methodology which relies on repeatability?

Bayes' Theorem

$$\pi(\theta \,|\, \mathbf{x}) = \frac{\pi(\theta) \, \mathsf{L}(\mathbf{x} \,|\, \theta)}{\int_{\Theta} \pi(\mathbf{x} \,|\, \theta) \, \mathsf{d}\theta}$$

- $\pi(\theta)$ represents our prior beliefs
- $L(\mathbf{x} \mid \theta)$ is the likelihood of observing \mathbf{x} given the model & parameters θ
- $\int_{\Theta} \pi(\mathbf{x} \mid \theta) d\theta$ is the normalising constant (probability of \mathbf{x})
- $\pi(\theta \mid \mathbf{x})$ represents our posterior beliefs

Figure 2: Purportedly Bayes

Bayes' Theorem

Typically, $\int_{\Theta} \pi(\mathbf{x} \mid \theta) \, \mathrm{d}\theta$ is very difficult to compute.

Instead we often consider:

$$\pi(\theta \mid \mathbf{x}) \propto \pi(\theta) \times L(\mathbf{x} \mid \theta)$$

posterior \propto prior \times likelihood

Figure 2: Purportedly Bayes

MCMC

- MCMC Markov Chain Monte Carlo
- · Class of algorithms used to sample from probability densities
- We can use them to sample from $\pi(\theta \mid \mathbf{x})$, our posterior distribution
- Avoids the computation of $\pi(\mathbf{x})$

- Probabilistic programming language wrote in C++. Accessed via interfaces with Python, R, Matlab, Julia...
- Stan implements current state-of-the-art MCMC algorithms
- Named after Stanislaw Ulam, a mathematician and nuclear physicist and pioneer of Monte-Carlo methods.

Figure 3: Stanislaw & the FERMIAC

Sunspot occurrence: a case study

What are sunspots?

- Dark regions which appear on the surface of the sun
- Cooler areas, caused by concentrations of magnetic field flux
- Precursor to more dramatic events such as solar flares and coronal mass ejections
- Significant concern for astronauts living in space, airline passengers on polar routes and satellite engineers

Figure 4: Sunspots

We shall use the mean annual data for the International Sunspot number, under the responsibility of the Royal Observatory in Belgium since 1980.

Figure 5: Royal observatory of Belgium

Normal AR(1) model

$$S_t \sim Normal(\mu_t, \sigma^2)$$

 $\mu_t = \varphi_1 + \varphi_2 S_{t-1}$

Given the observed data can we infer the parameters φ_1 , φ_2 and σ ?

Results: summary

Parameter	mean	2.5%	97.5%	ESS
arphi1	14.90	8.35	21.33	4500
$arphi_2$	0.82	0.75	0.88	4500
σ	35.91	33.20	38.81	5500

Table 1: Summary of posterior samples after running Stan for 10 000 iterations (3 seconds).

Results: posterior densities

Results: posterior predictives

Negative Binomial AR(1) model

$$egin{aligned} S_t &\sim \mathsf{NB}(p_t, heta) \ p_t &= heta/(heta + \mu_t) \ \log(\mu_t) &= arphi_1 + arphi_2 \mathsf{S}_{t-1} \end{aligned}$$

Given the observed data can we infer the parameters φ_1 , φ_2 and θ ?

Results: summary

Parameter	mean	2.5%	97.5%	ESS
arphi1	3.33	3.21	3.46	5300
$arphi_2$	0.01	0.01	0.01	6300
θ	2.55	2.16	2.99	5200

Table 2: Summary of posterior samples after running Stan for 10 000 iterations (30 seconds).

Results: posterior densities

Results: posterior predictives

Conclusion

- Modern computing power is making Bayesian methodologies more accessible
- Many 'black-box' MCMC implementations make inference pain-free
- The inclusion of prior information can be useful for astronomical events which have limited observational data

References

Joseph M Hilbe, Rafael S De Souza, and Emille EO Ishida. **Bayesian models for astrophysical data: using R, JAGS, Python, and Stan.**Cambridge University Press, 2017.

