

CCIE Enterprise Infrastructure OSPF

OSPF

- Стандартный открытый протокол
- Находит соседей обменом hello-пакетами
- Обменивается с установленными соседями LSA (Link State Announcement), в которых передает:
 - С какими маршрутизаторами установлено соседство
 - Как устроена топология
 - Какие ІР-сети анонсируются

	LSA	Установленные соседи	R2
98	R2	R1, R3	
LSD	R3	R2, R4	R1 R3
R 1	R4	R1, R3	R4

Версии протокола OSPF

• OSPFv2:

- Работает только поверх IPv4
- Обменивается только маршрутами IPv4
- RFC 2328
 - Устаревшие RFC для OSPFv2: 1131, 1247, 1583, 2178
 - 50+ дополнительных RFC для различных костыльных механизмов
- Multicast 224.0.0.5 (Hello) и 224.0.0.6 (DR), вложение IP 89

OSPFv3:

- Работает только поверх IPv6
- Обменивается маршрутами как IPv4, так и IPv6
- RFC 5340
- Multicast ff02::5 (Hello) и ff02::6 (DR), вложение IP 89

Отслеживание состояний каналов

- Каждый маршрутизатор строит топологию сети
 - Обнаруживает непосредственно подключенных соседей
 - Отсылает им и получает от них информацию о связях маршрутизаторов
 - Строит карту связей и просчитывает кратчайшие маршруты до каждого узла
 - Пользуется полученными маршрутами для нахождения шлюза для каждой анонсированной в топологии сети

Особенности протоколов Link State

- Преимущества:
 - Эффективно используют полосу пропускания
 - Быстро реагируют на изменения в сети
 - Гарантируют защиту от петли
- Недостатки
 - Вычислительно существенно более сложны по сравнению с ДВ-протоколами
 - Плохо масштабируются в сетях с произвольной топологией
 - Рассчитаны на работу с топологией, а не с маршрутной информацией IP
 - Обросли немыслимым количеством костылей

Hello

- Hello-пакеты отсылаются по таймеру на всех интерфейсах OSPF
 - Используется local multicast (224.0.0.5)
 - В каждом пакете указывается информация о конфигурации маршрутизатора
 - С непротиворечиво настроенными соседями устанавливается соседство
 - Должны совпасть таймеры Hello Interval и Dead Interval
 - Должны совпасть номер региона и флаг stub
 - Пакеты должны пройти процедуру аутентификации

Алгоритм SPF

- OSPF использует алгоритм Дейкстры для нахождения кратчайшего пути в топологии между двумя маршрутизаторами
 - Метрика стоимость пути до удаленной сети
 - Стоимость пути = сумма стоимостей интерфейсов, составляющих путь
 - Меньше стоимость пути более вероятно прохождение трафика по нему

	LSA	Соседи	Сети
R1 LSDB	R2	R1 (10), R3 (20)	
	R3	R2 (20), R4 (10)	10.0.0.0/24 (15)
	R4	R1 (5), R3 (10)	

Сеть	Маршрут	Стоимость
10.000/24	R3-R2-R1	45
10.0.0.0/24	R3-R4-R1	30

Router ID

- Каждый маршрутизатор выпускает LSA, которые подписываются его уникальным идентификатором
 - ID обязан быть уникальным в пределах всей топологии
 - И не меняться в течение всего срока работы OSPF
- Идентификатор 32-битное число
 - Часто записывается в форме IP-адреса
- Возможные способы назначения
 - Вручную
 - Взять самый маленький IP-адрес на устройстве
 - Взять какой-нибудь еще IP-адрес на устройстве
 - Например, маршрутизаторы Cisco предпочитают брать самый большой IP-адрес с виртуальных loopback-интерфейсов

Состояние соседства

- Hello protocol
 - INIT: принимаются Hello без указания «нас» как соседа
 - 2WAY: принимаются Hello с указанием «нас» как соседа
- Database Exchange
 - EXSTART: согласование стартовых Sequence Number, выбор Master
 - EXCHANGE: обмен пакетами Database Description
 - LOADING: обмен пакетами Link State Request и Link State Update
 - FULL: синхронизированные LSDB
- Также существуют состояния ATTEMPT и DOWN
- Детально процесс разбирается далее в курсе

Синхронизация таблиц топологии

• Состояние 2WAY и FULL стабильные, остальные - переходные

Регионы в OSPF

- Маршрутизаторы описывают в выпускаемых LSA топологию сети
 - При изменениях в топологии все маршрутизаторы пересчитывают ее
 - Если топология большая и сложная, пересчет занимает много ресурсов
- OSPF позволяет разбить автономную систему на регионы (area)
 - Внутри региона топология считается «по-честному»
 - За пределы региона адресная информация передается в ДВ-стиле
- Классификация маршрутизаторов
 - Internal Router
 - Area Border Router
 - Backbone Router
 - AS Boundary Router

Иерархическая топология

- OSPF гарантирует защиту от петель
 - Внутри региона нативно: кратчайшие пути петель содержать не могут
 - Между регионами используется топология "звезда"
- Центральный регион имеет особую роль (0.0.0.0, backbone, transit)

OSPF: типы LSA

LSA B OSPFv2

- Тип 1, Router LSA: описывает топологию и подключенные префиксы
- Тип 2, Network LSA: оптимизирует топологию в multiaccess сетях
- Тип 3, Summary LSA: синхронизирует маршруты между регионами
- Типы 4,5,7: используются для инъекции внешних маршрутов
- Типы 9,10,11: Opaque LSA для передачи иной информации
- Типы 6,8: экзотика, не поддерживаются Cisco

Router LSA (тип 1)

- Выпускаются каждым маршрутизатором, по одной в каждый регион
- Содержат топологическую и адресную информацию:
 - С какими маршрутизаторами (RID) установлено P2P-соседство
 - Какие транзитные и тупиковые сети (префиксы) подключены

Проблема: multiaccess-каналы

• Если в канале возможно наличие более чем двух маршрутизаторов, полная синхронизация LSDB «каждый с каждым» неэффективна

Designated Router

- Оптимизация: в канале выбирается Designated Router (DR)
 - Максимальный Priority+RID, схема без преемптинга
 - DR синхронизирует LSDB со всеми маршрутизаторами в канале
 - DROTHER между собой остаются в 2WAY
- Если есть связь с DR, то есть и связь с остальными
 - У всех маршрутизаторов синхронизирована LSDB
 - Для отказоустойчивости выбирается Backup DR (BDR)

Network LSA (тип 2)

1.1.1.1

- Designated Router выпускает Network LSA (тип 2) для общего канала:
 - С какими маршрутизаторами DR полностью синхронизировал LSDB
 - Какие подключенные префиксы используются в канале
- В Router LSA (тип 1) вместо информации о соседях указывается информация о подключенной Network LSA

4.4.4.4

DROTHER

5.5.5.5

6.6.6.6

2.2.2.2

DROTHER

3.3.3.3

Проблема: несколько регионов

- Область распространения LSA 1 и 2 типов регион
 - Все маршрутизаторы в регионе синхронизируют LSDB между собой
 - Маршрутизаторы в других регионах не получают информацию о топологии
 - Вообще говоря, им она не особенно интересна
- Решение: передавать адресную информацию между регионами
 - Маршрутизатор на границе между регионами (ABR, Area Border Router) формирует в другие регионы анонсы об имеющихся префиксах

Summary LSA (тип 3)

- ABR транслирует в регион префиксы, известные в других регионах
 - Из LSA типов 1 и 2 ненулевых регионов в LSA типа 3 региона 0
 - Из LSA типов 1, 2 и 3 региона 0 в LSA типа 3 ненулевых регионов
 - Область распространения LSA3 регион
 - В LSA3 указывается суммарная стоимость пути от ABR до анонсируемой сети
- Каждый ABR генерирует по одной Summary LSA на каждый префикс

Проблема: внешние для OSPF маршруты

- Маршрутизатор OSPF в LSA1/2 может анонсировать соседям только подключенные (directly connected) префиксы с интерфейсов OSPF
- Соседям может быть интересно знать про другие префиксы из RIB
 - Статические маршруты
 - Динамические маршруты, полученные в другом протоколе маршрутизации
 - Подключенные префиксы на интерфейсах, не включенных в OSPF
- Решение: распространять эту информацию по аналогии с LSA3
 - Маршрутизатор на границе автономной системы (ASBR, Autonomous System Boundary Router) формирует анонс об имеющихся внешних префиксах

External LSA (тип 5)

- ASBR транслирует в AS префиксы, известные из других источников
 - Область распространения LSA5 вся автономная система
 - B LSA5 указывается ASBR RID и некоторая стоимость пути от ASBR до сети
 - Может также указываться Forwarding Address IP-адрес, через который пойдет трафик
 - LSA5 бывают двух типов:
 - Тип 1: указывается стоимость, посчитанная по схожей с OSPF методике
 - Тип 2: указывается стоимость, посчитанная по принципиально отличной методике

• Каждый ASBR генерирует по одной External LSA на каждый

Проблема: как добраться до ASBR?

- В LSA5 указывается внешняя стоимость маршрута и RID ASBR
 - Router ID топологическая информация, видна в LSA1
 - За пределами региона маршрут до ASBR по LSA1/2 построить невозможно
- Решение: распространять информацию об ASBR по аналогии с LSA3
 - Маршрутизатор на границе между регионами (ABR, Area Border Router) формирует в другие регионы анонсы об известных ему ASBR

ASBR Summary LSA (тип 4)

- ABR транслирует в регион информацию об известных ASBR
 - ASBR Router ID
 - Суммарную стоимость пути от ABR до ASBR
 - Область распространения LSA4 регион
- Каждый ABR генерирует по одной LSA4 на каждый известный ASBR

Метрика intra-area маршрута OSPF

- Складывается из двух компонентов:
 - Стоимость анонсированной сети на LSA-источника (0 для LSA2)
 - Суммарная стоимость пути до LSA-источника (вычисляется из LSA1)

Маршрутизатор	Метрика сети 10.0.0.0/24
R1	А (подключенная сеть)
R2	A (анонсированная стоимость на R1) + В (суммарная стоимость пути до R1)
R3	A (анонсированная стоимость на R1) + B+C (суммарная стоимость пути до R1)
R4	А (анонсированная стоимость на R1) + B+C+D (суммарная стоимость пути до R1)

Метрика inter-area маршрута OSPF

- Складывается из двух компонентов:
 - Стоимость анонсированной сети на ABR (указывается в LSA3)
 - Суммарная стоимость пути до ABR (вычисляется из LSA1)

Маршрутизатор	Метрика сети 10.0.0.0/24	
R1	А (подключенная сеть)	
R2	A (анонсированная стоимость на R1) + В (суммарная стоимость пути до R1)	
R3	A+B (стоимость LSA3 от R2) + C (суммарная стоимость пути до R2)	
R4	A+B (стоимость LSA3 от R2) + C+D (суммарная стоимость пути до R2)	

Стоимость пути до ASBR

- Складывается из двух компонентов:
 - Суммарная стоимость пути от ABR до ASBR (указывается в LSA4)
 - Суммарная стоимость пути до ABR (вычисляется из LSA1)

Маршрутизатор	Стоимость пути до ASBR (R1)
R1	-
R2	В (суммарная стоимость пути до R1)
R3	В (стоимость LSA4 от R2) + С (суммарная стоимость пути до R2)
R4	B+C (стоимость LSA4 от R3) + D (суммарная стоимость пути до R3)

Метрика external маршрута OSPF

- Состоит из двух независимых компонентов:
 - Стоимость пути от ASBR до внешней сети (указывается в LSA5)
 - Суммарная стоимость пути до Forwarding Address или (при FA=0) ASBR RID (вычисляется из LSA4 и LSA1)

Маршрутизатор	Внешняя стоимость	Стоимость пути до ASBR (R1)
R1	-	-
R2	А (стоимость в LSA5)	В (суммарная стоимость пути до R1)
R3	А (стоимость в LSA5)	В (стоимость LSA4 от R2) + С (суммарная стоимость пути до R2)
R4	А (стоимость в LSA5)	B+C (стоимость LSA4 от R3) + D (суммарная стоимость пути до R3)

Метрика Е1 и Е2

- LSA5 бывают двух типов:
 - Тип 1: внешняя стоимость считается по схожей с OSPF методике
 - Тип 2: внешняя стоимость считается по отличной методике
- Компоненты метрики в LSA5 типа 1 можно складывать друг с другом
 - Если два ASBR предлагают LSA5 типа 1, OSPF предпочтет маршрут с минимальной суммой внешней и внутренней стоимости
- Компоненты метрики в LSA5 типа 2 нельзя складывать друг с другом
 - Если два ASBR предлагают LSA5 типа 2, OSPF предпочтет маршрут с минимальной внешней стоимостью

15

10

10

20

Предпочтения маршрутов по RFC 2328

- LSA1: intra-area маршруты
- LSA3: inter-area маршруты
- LSA5 тип 1: внешние маршруты со сравнимой с OSPF стоимостью
- LSA5 тип 2: внешние маршруты с несравнимой с OSPF стоимостью

LS Type

Point-to-point neighborship (соседняя LSA1)

Transit network (соседняя LSA2)

• Stub network (адресная информация)

OSPF: Convergence and Scalability

В этом разделе

- Loop Free Alternate
- Nonstop Forwarding
- Nonstop Routing
- BFD
- Prefix Suppression
- Stub Router

Loop Free Alternate

Loop Free Alternative

- OSPF LFA FRR позволяет быстро (в течение ~ 50 мс) переключаться на резервный путь
- В обычной ситуации, OSPF должен пересчитать весь граф в случае выхода интерфейса из строя
- C LFA FRR, OSPF делает предварительный расчёт
 - Резервный next-hop устанавливается внутрь FIB

Основная идея

- Маршрутизатор А делает всю калькуляцию
- Другие маршрутизаторы не вовлечены в процесс
- Repair Path (LFA):
 - Трафик от В не должен вернуться к А
 - Трафик должен миновать упавший интерфейс

Классический SPF

• Необходимо запустить SPF и в качестве корневого устройства поставить **себя**

Хак SPF для LFA (rSPF)

• Необходимо запустить SPF, но в качестве корневого устройства поставить **соседа**

LFA методы

- IGP может запускать LFA в одном из двух режимов
 - Per prefix
 - Резервный путь для каждого префикса считается независимо
 - Per link
 - Резервный путь для всех префиксов через один next-hop
 - не поддерживается в IOS-XE

А что если ...

- Трафик к D2 передаётся на E от N2
- Трафик к D1 возвращается обратно к S

Per-link vs Per-prefix

Per-link

- Простой расчёт, один rSPF для соседа
- Всё или ничего

Per-prefix

• Расчёт для каждого префикса через каждого соседа

Основные блоки

- До аварии
 - Альтернативный NH устанавливается в RIB и IGP local RIB (LRIB)
 - Альтернативный NH устанавливается в FIB (CEF)
- Во время аварии
 - Детектирования потери интерфейса/соседа
 - Триггер для IP-FRR LFA: переключить префиксы в FIB
- После аварии
 - Обычная конвергенция (SPF)

Основные блоки

А если альтернатив несколько?

- Когда OSPF должен выбрать резервный путь, он может смотреть не только на наименьшую метрику, но и учитывать дополнительные параметры
 - SRLG (Shared Risk Link Groups)
 - Interface Protection
 - Broadcast Interface Protection
 - Node Protection
 - Downstream Path
 - Line-Card Disjoint Interfaces
 - Metric
 - Equal-Cost Multipath

Shared Risk Link Group (SRLG)

- Ручная настройка
- Если два интерфейса подключены к одному коммутатору, идут через одну физическую трассу, то логично назначить им одинаковые SRLG

Primary Path

Interface Disjoint

- Предпочесть альтернативный next-hop, который располагается за другим интерфейсом
- Ethernet суб-интерфейсы считаются *разными* интерфейсами

Lowest-Metric

- Предпочесть путь с наименьшей метрикой
- У команды нет ключевого значения "required"
 - Т.к. метрика присутствует всегда 😊

Linecard-disjoint

- Предпочесть путь, который использует интерфейс, находящийся на другой линейной карте
 - В виртуальной лаборатории не удастся эмулировать

Node protecting

• Предпочесть путь, который не проходит через тот же маршрутизатор, который используется в качестве основного next-hop

Broadcast interface disjoint

• Понизить приоритет альтернативным маршрутам, которые используют тот же широковещательный домен, что и путь через основной next-hop

Downstream

- Выключен по-умолчанию
- По сути поведение очень похоже на EIGRP Feasible Condition
- Мне не очень понятно, зачем такая опция вообще нужна в LS протоколе

Secondary-Path

- Выключен по-умолчанию
- Предпочесть пусть, который не является частью ЕСМР

Основные шаги конфигурации

- Включить FRR для зоны или глобально
- Включить FRR prefix-priority

```
(config-router)#fast-reroute per-prefix enable prefix-priority { high | low }
```

- Настроить приоритет префиксов (route-map | RPL)
 - /32 = "high" на IOS
 - только match tag | route-type | ip address

```
(config-router)#prefix-priority high route-map { ROUTE-MAP }
```

• Добавить/изменить tie-breakers

```
(config-router)#fast-reroute per-prefix tie-break { TIE } [required] index { INDEX }
```


Пример конфигурации

```
interface Ethernet1/0
srlg gid 100
interface Ethernet6/0
ip ospf fast-reroute per-prefix candidate disable
router ospf 1
prefix-priority high route-map lfa-ospf
fast-reroute per-prefix enable prefix-priority high
fast-reroute per-prefix tie-break srlg index 10
fast-reroute per-prefix tie-break node-protecting index 20
fast-reroute keep-all-paths
ip prefix-list lfa-high seq 5 permit 10.0.0.0/8 ge 30
route-map lfa-ospf permit 10
match ip address prefix-list lfa-high
```


Пример конфигурации

```
R9#show ip cef 5.5.5.5

5.5.5.5/32

nexthop 10.5.9.5 GigabitEthernet1.59

repair: attached-nexthop 10.9.5.5 GigabitEthernet1.95

nexthop 10.9.5.5 GigabitEthernet1.95

repair: attached-nexthop 10.5.9.5 GigabitEthernet1.59

R9#show ip route repair-paths 5.5.5.5
```

```
R9#show ip route repair-paths 5.5.5.5

Routing entry for 5.5.5.5/32

Known via "ospf 1", distance 110, metric 2, type intra area

Last update from 10.5.9.5 on GigabitEthernet1.59, 00:01:40 ago

Routing Descriptor Blocks:

10.9.5.5, from 5.5.5.5, 00:01:40 ago, via GigabitEthernet1.95

Route metric is 2, traffic share count is 1

Repair Path: 10.5.9.5, via GigabitEthernet1.59

* 10.5.9.5, from 5.5.5.5, 00:01:40 ago, via GigabitEthernet1.59

Route metric is 2, traffic share count is 1

Repair Path: 10.9.5.5, via GigabitEthernet1.95
```


Non-Stop Forwarding (Graceful Restart)

NSF? Wtf?

- Мы уже познакомились с понятием FRR быстрая конвергенция в случае изменения сети
- Часто в ядре стоят устройства, у которых есть два управляющих модуля (Supervisor)
- К чему приведёт переключение SUP?
- Основной идеей NSF (Nonstop Forwarding) является минимизация времени, в течение которого сеть не способна доставлять трафик в место назначение после события переключения SUP
- Основной целью NSF является продолжать пересылку IP-пакетов, после того, как на устройстве произошло переключение SUP

Логика работы NSF

- В случае события переключения SUP (или RP switchover), новый RP перехватывает управление устройством и запускает новый процесс маршрутизации
- Новый процесс OSPF пытается восстановить соседство (adjacency) со всеми предыдущими соседями
- Если NSF настроен для прокола, CEF (FIB) фиксируется (для того, чтобы устройство продолжало пересылку трафика, не смотря на то, что RIB (таблица маршрутизации) пуста
- Во время восстановления соседства, ни одно из устройств не извещает остальную сеть о событии
- Только когда прокол маршрутизации завершает передачу всей необходимой информации, данные попадают в RIB и (оттуда) могут обновить CEF

NSF может таить в себе проблемы

- Падает SW4 (1 мембер)
- длительное переключение вызвано фиксацией CEF на время работы процесса NSF

%LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down

TACKMGR-4-SWITCH_REMOVED: Switch 1 has been REMOVED from the stack

12:26:03.996: OSPF: IETF NSF complete check for area 0 process 1

OSPF: will poll [count 10] interface status for GigabitEthernet3/0/1

OSPF: Graceful Restart timer expired for process 1, terminating IETF NSF

Основные шаги

- Устройство информирует соседей, что процесс OSPF перегружается
 - Graceful restart mode
- Отправляется grace LSA (LSA 9-го типа)
- Соседи отправляют LS ACK и переходят в Helper Mode
- В течение grace периода, соседи работают так, как если бы restarting router не сообщал об изменениях
- В течение перезагрузки OSPF процесса, RIB/FIB не изменяется
- После перезагрузки, переустанавливается OSPF соседство

Основные шаги

- Когда GR завершён, restarting router удаляет Grace LSA
- Пересоздаются все LSA, порождённые маршрутизатором
- Запускается SPF чтобы освежить таблицу маршрутизации

Примечания

- Для работы GR необходима аппаратная поддержка функционала
- Устройства, которые поддерживают Helper Mode = NSF-aware
- Устройства, которые поддерживают GR = NSF-capable

Non-Stop Routing

Проблемы с GR

- Все маршрутизаторы должны поддерживать механизм GR для конкретного протокола
- Switchover может быть наиболее неприятным на PE
 - Маленькие СЕ могут не поддерживать GR
- В некоторых ситуациях GR может замедлить конвергенцию сети

Nonstop Routing, о чём это?

- NSR использует внутренние процессы маршрутизатора для поддержания копии Control Plane на резервном управляющем модуле в актуальном состоянии
- Switchover абсолютно прозрачен для всех соседей

Ограничения

- OSPF NSR может потребовать большого количества памяти
- Переключение между управляющими модулями занимает ~ 2 сек. В течение этого времени OSPF не может отправлять Hello сообщения
 - Аккуратнее с маленькими таймерами

Router# show ip ospf 1 nsr
Standby RP
Operating in duplex mode

Redundancy state: STANDBY HOT

Peer redundancy state: ACTIVE

ISSU negotation complete

ISSU versions compatible

Routing Process "ospf 1" with ID 10.1.1.100

NSR configured

Checkpoint message sequence number: 3290

Standby synchronization state: synchronized

Bidirectional Forwarding Detection

BFD

- BFD очень легковесный и быстрый протокол, предназначенный для определения нарушения сетевой связности
- BFD работает независимо
- Может работать в двух режимах
 - асинхронный
 - по-требованию (demand)
 - не уверен, что кто-либо из вендоров его реализовал

Асинхронный режим

- Наиболее классический режим Hello/Holddown
- BFD отправляет Hello. И если не видит сообщений от соседа регистрируется факт недоступности
- Данный триггер передаётся всем протоколам, которые подписаны на BFD
- Возможно включение функционала Echo
 - Сосед не обрабатывает прилетающие BFD Hello, а просто отправляет их обратно

Формат пакета

- Diag код, описывающий причину перехода состояния сессии из UP во что-либо другое
- Дискриминатор мультиплексирование сессий
- Min Interval:
 - desired TX = предпочитаемый интервал
 - required RX = минимально поддерживаемый
- Биты:
 - H = "I Hear You"
 - P = "Poll"
 - F = "Final"

Настройка

(config-if)#bfd interval 300 min_rx 600 multiplier 3

- interval = как часто устройство отправляет BFD пакеты
- min_rx = как часто ожидаем приём BFD пакетов

Установление сессии

- BFD не изучает IP адреса соседей
 - их сообщает привязанный протокол (напр. OSPF)
- Все пакеты передаются с помощью UDP
- Зарезервированный Destination Port
- Если видим Н бит и Your Disc поле, то сессия установлена

Изменение таймеров

- При изменении таймеров, устройство выставляет Р бит
- Если удалённый маршрутизатор увидел Р бит, в ответном сообщении выставляется F бит
 - это не подтверждение принятия изменений

• Не требует переустановления

Потеря BFD соседа

- Если не приходит контрольный пакет в течение detect-timer [(Required Minimum RX Interval) * (Detect Multiplier)], то сосед помечается как потерянный
- Сам BFD на это никак не реагирует
- Факт потери соседа передаётся привязанному протоколу, который реагирует на данное событие

BFD на модульных платформах

- На RSP располагается BFD сервер, а на линейной карте BFD агент
- BFD сервер получает информацию об IP адресах соседей
- BFD агент создаёт все сессии
- Все BFD пакеты отправляются на CPU линейной карты
 - если включен HW Offload, то BFD обрабатывается на Network Processor (NP)
 - позволяет увеличить количество поддерживаемых BFD сессий

Сокрытие транзитных сетей

Сокрытие транзитных сетей

• Штатно в OSPFv2 префиксы транзитных сетей попадают в RIB

- RFC 6860 позволяет OSPF сократить количество записей в RIB
 - На интерфейсах P2P и P2MP не анонсируются connected-сети
 - B LSA1 создается point-to-point link до RID, но не создается stub-запись для адреса
 - Ha broadcast и NBMA интерфейсах адреса анонсируются в LSA2
 - В LSA2 отправляется DR IP с маской /32
 - Новые роутеры не устанавливают в RIB маршруты из LSA2 с маской /32

Тупиковый маршрутизатор

Тупиковый маршрутизатор

- Иногда (напр. во время проведения миграционных работ) необходимо отвести трафик от маршрутизатора
- Сделать это можно, выставив максимальную метрику для OSPF интерфейсов
- В определённых ситуациях надо дождаться конвергенции BGP

R1(config-router)#max-metric router-lsa on-startup?

<5-86400> Time, in seconds, router-LSAs are originated with max-metric

wait-for-bgp Let BGP decide when to originate router-LSA with normal metric

Networking For everyone