fn make_row_by_row_fallible

Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of make_row_by_row_fallible in mod.rs at commit f5bb719 (outdated¹).

make_row_by_row_fallible returns a Transformation that applies a user-specified function to each record in the input dataset. The function is permitted to return a data-independent error.

Vetting History

• Pull Request #562

1 Hoare Triple

Precondition

- DI (input domain) is a type with trait RowByRowDomain<DO>. This trait provides a way to apply a map function to each record in the input dataset to retrieve a dataset that is a member of the output domain, of type DO. The trait further implies that DatasetDomain is also implemented for DI.
- DO (output domain) is a type with trait DatasetDomain. DatasetDomain is used to define the type of the row domain.
- M (metric) is a type with trait DatasetMetric. DatasetMetric is used to restrict the set of valid metrics to those which measure distances between datasets.
- MetricSpace is implemented for (DI, M). Therefore M is a valid metric on DI.
- MetricSpace is implemented for (DO, M).
- row_function has no side-effects.
- If the input to row_function is a member of input_domain's row domain, then the output is a member of output_row_domain, or a data-independent error.

Pseudocode

```
def make_row_by_row_fallible(
    input_domain: DI,
    input_metric: M,
    output_row_domain: DO,
    # a function from input domain's row type to output domain's row type
    row_function: Callable([[DI_RowDomain_Carrier], DO_RowDomain_Carrier])
7 ) -> Transformation:
```

¹See new changes with git diff f5bb719..57e8e29 rust/src/transformations/manipulation/mod.rs

```
# where .translate is defined by the RowByRowDomain trait
9
      output_domain = input_domain.translate(output_row_domain)
11
12
      def function(data: DI_Carrier) -> DO_Carrier:
          # where .apply_rows is defined by the RowByRowDomain trait
13
          return DI.apply_rows(data, row_function)
14
15
      stability_map = new_stability_map_from_constant(1) #
17
18
      return Transformation (
          input_domain, output_domain, function,
19
          input_metric, input_metric, stability_map)
```

Postcondition

Theorem 1.1. For every setting of the input parameters (input_domain, input_metric, output_domain, row_function, DI, DO, M) to make_row_by_row such that the given preconditions hold, make_row_by_row raises an error (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

- 1. (Data-independent runtime errors). For every pair of members x and x' in input_domain, invoke(x) and invoke(x') either both return the same error or neither return an error.
- 2. (Appropriate output domain). For every member x in input_domain, function(x) is in output_domain or raises a data-independent runtime error.
- 3. (Stability guarantee). For every pair of members x and x' in input_domain and for every pair (d_{in}, d_{out}) , where d_{in} has the associated type for input_metric and d_{out} has the associated type for output_metric, if x, x' are d_{in} -close under input_metric, stability_map(d_{in}) does not raise an error, and stability_map(d_{in}) = d_{out} , then function(x), function(x') are d_{out} -close under output_metric.

2 Proofs

Proof. (Part 1 - appropriate output domain). By the definition of RowByRowDomain, DI.apply_rows(data, row_function) returns a dataset in input_domain.translate(output_row_domain), if row_function is a mapping between input_domain's row domain to output_row_domain. This is satisfied by the precondition on row_function. Thus, for all settings of input arguments, the function returns a dataset in the output domain.

Before proceeding with proving the validity of the stability map, we first provide a lemma.

Lemma 2.1. Let f denote the row_function. For any choice u, v of input arguments in the input domain, and any choice M for which DatasetMetric is implemented for, $d_M([f(u_1), f(u_2), ...], [f(v_1), f(v_2), ...]) \le d_M([u_1, u_2, ...], [v_1, v_2, ...]).$

Proof. Assume WLOG that any source of randomness is fixed when f is computed on u vs v. Given this assumption, and the precondition that f has no side-effects, if $u_i = v_i$, then $f(u_i) = f(v_i)$. That is, the row function cannot increase the distance between corresponding rows in any adjacent dataset. On the other hand, it is possible for $f(u_i) = f(v_i)$, even if $u_i \neq v_i$. For example, if f is a constant function, then $f(u_i) = f(v_i)$ for all i. Therefore, by any of the metrics that DatasetMetric is implemented for, f can only make datasets more similar.

Proof. (Part 2 – stability map). Take any two elements u, v in the input_domain and any pair (d_in, d_out), where d_in has the associated type for input_metric and d_out

has the associated type for output_metric. Assume u, v are d_in-close under input_metric and that stability_map(d_in) \leq d_out.

```
d_M(\mathtt{function}(u),\mathtt{function}(v)) = d_M([f(u_1),f(u_2),\ldots],[f(v_1),f(v_2),\ldots])
                                                                                         since {\tt DO} is a {\tt DatasetDomain}
                                    \leq d_M([u_1, u_2, ...], [v_1, v_2, ...])
                                                                                         by 2.1
                                    =d_M(u,v)
                                                                                         since DI is a {\tt DatasetDomain}
                                    = d_in
                                                                                         by the first assumption
                                    \leq T0.inf_cast(d_in)
                                                                                         by InfCast

    T0.one().inf_mul(T0.inf_cast(d_in))

                                                                                         by InfMul
                                    = stability_map(d_in)
                                                                                         by pseudocode line 16
                                    \leq \texttt{d\_out}
                                                                                         by the second assumption
```

It is shown that function(u), function(v) are $d_out\text{-}close$ under $output_metric$.