Was ist das Kreuzprodukt zweier Vektoren im 3-dimensionalen und wie berechnet man es?		Was ist Auslöschung?			
CGIS	# 3	Transformationen	CGIS	# 4	Transformationen
Ve	rschiebungsmat	trix um t	Rotatio	onsmatrix um die	x-Achse um Θ
CGIS	# 5	Transformationen	CGIS	# 6	Transformationen
Rotations	smatrix um die	y-Achse um Θ	Rotatio	onsamtrix um die	z-Achse um Θ
CGIS	# 7	Transformationen	CGIS	# 8	Transformationen
Rotation um einen Punkt P in Abhängigkeit der Verschiebungsmatrix um t und Θ		Scherungsmatrix, geschert um s			

CGIS

2

CGIS

1

Genauigkeitsverlust bei Rechenoperationen in IEEE754, tritt auf, falls eine Rechenoperation den relativen Fehler viel mehr als den absoluten erhöht. Die Subtraktion zweier ähnlicher und großer Zahlen endet in Auslöschung.

Das Kreuzprodukt ergibt einen Vektor, der senkrecht auf der aufgespannten Fläche der beiden Operanden steht. Der Betrag des neuen Vektors entspricht dem Flächeninhalt der aufgespannten Fläche.

Berechnet wird es durch die folgende Formel:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

$$R_x(\Theta) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\Theta & -\sin\Theta & 0\\ 0 & \sin\Theta & \cos\Theta & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T(t) = T(t_x, t_y, t_z) = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_z(\Theta) = \begin{pmatrix} \cos\Theta & -\sin\Theta & 0 & 0\\ \sin\Theta & \cos\Theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_y(\Theta) = \begin{pmatrix} \cos \Theta & 0 & \sin \Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \Theta & 0 & \cos \Theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$H(s) = \begin{pmatrix} 1 & s_{xy} & s_{xz} & 0 \\ s_{yx} & 1 & s_{yz} & 0 \\ s_{zx} & s_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T(P)R_{\{x,y,z\}}(\Theta)T(-P)$$

Mit welcher Formel kann man den Schnittpunkt der Linie $L(t) = P_0 + t \cdot \overrightarrow{d}$ mit der Polygonkante $E_n E_{n+1}$?

Farbberechnung des Punktes P in folgendem Dreieck:

CGIS

11 Baryzentr. Koordinaten

CGIS

12 Baryzentr. Koordinaten

Farbberechnung des Punktes P in folgendem Dreieck: Berechnung über die Fläche der entstehenden Teildreiecke

Berechnung der Fläche eines Dreieckes über die Vektoren $v_0 = P_1 - P_0$, $v_1 = P_2 - P_0$

CGIS

13

Transformationen

CGIS

14

Transformationen

Abbildung mittels Projektionsmatrix auf kanonisches Volumen $[-1, 1]^3$ (Pyramidenstumpf) (Perspektivische Projektionsmatrix)

orthografische Projektionsmatrix des Projektionswürfels $[l;r] \times [b;t] \times [f;n]$

CGIS

15

Transformationen

CGIS

16 Graph. Datenverarb.

perspektivische Projektionsmatrix (mit Berechnung der Projektions- und orthografischen Matrix)

Visualisierung

 $a_x = \text{Farbe (Masse) des Punktes}$

 P_x = baryzentrische Koordinaten des Punktes

 t_x = normierte baryzentrische Koordinate = $\frac{P_x}{P_1 + P_2 + P_3}$

 $a_p = a_o \cdot t_0 + a_1 c dot t_1 + a_2 \cdot t_2 \leftarrow \text{Farbe}$

$$S_i = P_0 + \frac{(E_n - P_0)\overrightarrow{n}}{\overrightarrow{d} \cdot \overrightarrow{n}} \cdot \overrightarrow{d}$$

Antwort

$$F = \frac{1}{2} \| v_0 \times v_1 \| = \frac{1}{2} \| (P_1 - P_0) \times (P_2 - P_0) \|$$

$$= \frac{1}{2} \begin{vmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \frac{1}{2} (A_x B_y + B_x C_y + C_x + A_y - A_x C_y - B_x A_y - C_x B_y)$$

11

Antwort

Antwort

Das ganze Dreieck hat den Flächeninhalt F, wobei gilt:

$$\bullet \ F = F_{P_0} + F_{P_1} + F_{P_2}$$

•
$$F_{P_0} = F(\Delta P_0 P_1 P),$$

 $F_{P_1} = F(\Delta P_1 P_2 P),$
 $F_{P_2} = F(\Delta P_2 P_0 P)$

• baryzentrische Koordinaten von P haben die Form (a,b,c), wobei gilt: $a=\frac{F_{P_0}}{F},\;b=\frac{F_{P_1}}{F},\;c=\frac{F_{P_2}}{F}$

14

Antwort

 $M_{ortho} = S(s)T(t)$

$$= \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{l+r}{l-r} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

#~13

Antwort

$$M_{per} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{n+f}{n-f} & \frac{2fn}{n-f}\\ 0 & 0 & -1 & 1 \end{pmatrix}$$

16

 $\begin{array}{l} \text{Messdaten} \to \text{Bild} \\ \text{Daten} \leftrightarrow \text{Bild} \end{array}$

Antwort

 $M_{ortho}^{-1} \cdot M_{per}$

$$= \begin{pmatrix} \frac{r-l}{2} & 0 & 0 & \frac{r+l}{2} \\ 0 & \frac{t-b}{2} & 0 & \frac{t+b}{2} \\ 0 & 0 & \frac{f-n}{2} & \frac{f+n}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{n+f}{n-f} & \frac{2fn}{n-f} \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$= \left(\begin{array}{cccc} n & 0 & 0 & \frac{r+l}{2} \\ 0 & n & 0 & \frac{t+b}{2} \\ 0 & 0 & -1 & \frac{f+n}{2} - fn \\ 0 & 0 & -1 & 1 \end{array}\right)$$

Weg der Daten zum Bildschirm (mit Grafik-Pipeline)

Weg der Daten zum Bildschirm (mit Grafik-Pipeline): Graphics systems

Antwort

Clipping

Projection

Rasterization

Framebuffer

24

Application program

Graphics systems

Framebuffer

Vertices

25 Antwort

- Modellierung (erzeugt Flächen und Vertices)
- Geometrische Verarbeitung (arbeitet auf Flächen und Vertices)
- \bullet Rasterisierung (erzeugt Fragmente)
- \bullet Fragmentverarbeitung

28

Antwort

Abschneiden von nicht sichtbarer Geometrie (außerhalb des Sichtvolumens)

27

Antwort

- Postion (x,y,z)
- Normale, Tiefe, Farbe, Alphawert (Transparenz)
- Standardisierte Verarbeitung

30

Antwort

- Entlastung der Rasterung
- bessere Performance

29

Antwort

32

Antwort

- geometrisch/analytisch bei der Geometrieverarbeitung
 → geometrische Objekte sind oft sehr groß (viele Fragmente), daher lohnt geometrisches Clipping
- Scissoring (nach dem Rastern im Framebuffer) \rightarrow ausschließlich bei nur gerasterten Objekten, z.B. Schriften
- Standardisierte Verarbeitung

31

- vollständig im Sichtvolumen (kein Clipping)
- vollständig außerhalb des Sichtvolumens (kein Clipping)
- teilweise im Sichtvolumen (Clipping)

Problem beim Clipping von Polygonen			Was ist Culling		
CGIS	# 35	Clipping	CGIS	# 36	Clipping
	Welche Cullingarten gib	t es?	Welc	he Probleme treten beir auf?	n Culling
CGIS	# 37	Rasterung	CGIS	# 38	Rasterung
	Was ist Rasterung			ung von Kreisen für die $(x) = x^2 + y^2 - R^2$, wobe Radius	
CGIS	# 39	Rasterung	CGIS	# 40	Rasterung
	Rasterung von Polygor	nen		Scanline-Algorithmu	ıs

Clipping

 $\overline{\text{CGIS}}$

34

Clipping

CGIS

33

# 34	Antwort	# 33	Antwort		
Das Entferr des Sichtvolun	nen nicht benötigter Geometrie, die innerhalb mens liegt.	Verarbeitung	olygone können "'zerfallen"', müssen vor der g tesseliert werden (in Dreiecke umgewandelt), nur konvexe Polygone unterstützt		
# 36	Antwort	# 35	Antwort		
Cullingt	 keine Szeneninformationen vorhanden, aber für viele Cullingtechniken benötigt geometrisch komplex 		• Backface Culling: Entfernen von Primitiven "'mit dem Rücken zur Kamera"', verfügbar in OpenGL bei geschlossenen Objekten: Flächen mit $N_p \cdot N > O$ werden beseitigt, wobei gilt: N_p = Normale der Fläche, N = Sichtlinie		
		andere	ion Culling: Entfernen von Geometrie, die von r überdeckt wird ustum Culling: Entfernen von Geometrie, die		
< 0 Punkt li > 0 Punkt li Liegt der Mit	iegt auf dem Kreis iegt innerhalb des Kreises iegt außerhalb des Kreises itelpunkt zwischen E und SE außerhalb des ie SE; liegt der Mittelpunkt innerhalb des	auf einSchrittzentral	Antwort ung eines analytisch beschriebenen Objektes diskretes Raster von Geometrie zum Fragment es Element der Rendering-Pipeline rt effizienten Algorithmus		
# 40	Antwort	# 39	Antwort		
• zeilenwe	eises "'scannen"' des Bildraumes	• Füllen	entlang einer (horizontalen) Scanlinie		
• pro Scanline:		• Wichtig: Innen-/Außentest für Pixel auf der Linie			
- Berechnung von Schnittpunkt mit gegebenem Primitiv					
- Sortieren der Schnittpunkte		1			
 Schnittpunktpaare nach "'Ungeradzahligkeitsrege bilden einen "'Span"' Verarbeiten der zu "'Spans"' gehörigen Pixel 		I" ⁷			
 Verarbeiten der zu Spans genorigen Fixei Ungeradzahligkeitsregel: 					
 Ungeradzannigkentsreger: Zeichnen von Pixel zwischen Paaren von SPs 					

	Tientang. Itaekbeite von T 10 ibt zu von.	<u> </u>	π 11	Bielitbalkeit
	– Pixel mit $s_{2n} < x < s_{2n+1}$ innerhalb des Polygons, Pixel mit $s_{2n+1} < x < s_{2n}$ außerhalb			
		Wel	lche Algorithmen gibt Sichtbarkeitsproble	
	Achtung: Rückseite von # 41 ist zu voll.	CGIS	# 42 Grafik	programmierung_
		Welc	che Kategorien von Far gibt es?	:bmodellen
CGIS	# 43 Grafikprogrammierung	CGIS	# 44 Grafik	programmierung
	additive Farbmischung		subtraktive Farbmisc	hung
CGIS	# 45 Grafikprogrammierung	CGIS	# 46	Beleuchtung
wahrnehmungsorientierte Farbmischung			Plenoptische Funkt	ion

 $\overline{\text{CGIS}}$

41

Sichtbarkeit

Achtung: Rückseite von # 40 ist zu voll.

# 41	Antwort	
nate Vort alyti Nach	ektraumalgorithmen: Berechnung in Weltkoordien des jeweiligen Modells teile: hohe Detailauflösung und Genauigkeit, anische Ausgabe der Resultate hteile: komplexe Verfahren, schwer parallelisier/implementierbar	
ordir Vort Nacl	draumalgorithmen: Berechnung in Bildschirmko- naten teile: einfacher Verfahren, parallelisierbar/impleme hteile: beschränkte Genauigkeit, hohes Daten- eicherplatzaufkommen	
# 42	Antwort	
	nnische (RGB,CMYK,YIQ) zeptionsorientierte (HSV,HLS,Theoretische, CIE)	
<u># 44</u> Intensit		# 43 Intensität wird addiert (Monitor, Projektor)
Intensitat wird subtrahiert (Drucker) CMYK		RGB, CIE-Farbraum
		· · · · · · · · · · · · · · · · · · ·
# 46	Antwort	# 45 Antwort
• 6-di	mensionale Funktion	Grundkomponenten: Sättigung, Helligkeit, Farbton/Farbe
methematische Beschreibung dessen, was wir sehenalle Strahlen an allen Punkten		HSV
		1

	${\rm Licht modelle}$			nn mit Licht passie uf eine Oberfläche	
CGIS	# 49	Beleuchtung	CGIS	# 50	Beleuchtung
	Welche Vorraussetzunge geometrische Opti		Re	enderinggleichung -	Theorie
CGIS	# 51	Beleuchtung	CGIS	# 52	Beleuchtung
	Annahmen bei Ope	nGL	Was t	ut eine Beleuchtung	${ m gsmethode?}$
CGIS	# 53	Shading	CGIS	# 54	Shading
F	Für was sind Schattierungsverfahren?			Shadingarten	

CGIS

47

Beleuchtung

 $\overline{\text{CGIS}}$

48

Grafikprogrammierung

 gestreut (in viele Richtungen reflektiert) gebrochen weitergeleitet 	 Wellenmodelle: Objektgröße vergleichbar mit Wellenlä Beugung, Interferenz, Polarisierung Quantenmodelle: Fluoressenz, Phosphoressenz
# 50 Antwort • beschreibt den Energietransport in einer Szene • Eingabe: - Lichtquellen - Geometrie der Flächen - Reflektionsverhalten (Material) der Flächen • Ausgabe: Radianzwerte an Oberflächenpunkten für alle Richtungen	 # 49 Antwort Licht breitet sich gradlinig aus Strahlen interagieren nicht miteinander (Summation) Strahlen haben Farbe (Wellenlänge) und Intensität
# 52 Antwort • berechnet das reflektierende Licht an einem Ort auf einer Oberfläche • verwendet lokale oder globale Beleuchtungsmodelle • arbeitet in Weltkoordinaten	# 51 Antwort • Punktlichtquellen • nur direkte Beleuchtung • Materialien: diffus, glänzend oder transparent
 # 54	 # 53

47

Antwort

Absorbtion, wird in der CG verwendet

 $\bullet\,$ geometrische Optik: Emission, Reflektion/Refraktion,

48

 \bullet absorbiert

 \bullet reflektiert

Pixel-Pipeline

Pixel und Geometrie-Pipeline

Geometry processing —

Pixels

Pixel processing ——

 $\stackrel{\cdot}{\text{Rasterization}} \rightarrow \text{Display}$

Vertices

 \downarrow

Unpack

↓
Pixel Map

↓
Lookuptable

↓
Pixel test
↓
Framebuffer

Antwort

 $\begin{array}{c} \operatorname{Pack} \\ \downarrow \\ \operatorname{Processor\ memory} \end{array}$

 \downarrow