1) Areas Between Curves

- 1. Find the area of the region enclosed by the curves $y = x^2$ and y = x + 6.
- 2. Determine the area between $y = \sin(x)$ and $y = \cos(x)$ from x = 0 to $x = \frac{\pi}{2}$.
- 2) Average Value of a Function
- 3. Compute the average value of the function $f(x) = 2x^3 3x^2 + x$ on the interval [1,4].
- 4. Find the average value of $f(x) = \sqrt{x}$ on the interval [0, 9].
- 3) Volumes of Solids
- 5. Use the disk method to find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = 0 about the x-axis from x = 0 to x = 2.
- 6. Find the volume of the solid formed by rotating the curve $y=\sqrt{x},\ 0\leq x\leq 4,$ about the y-axis.

4) More Integration Problems

7. Find the area of the region bounded by $y = e^x$, $y = e^{-x}$, and x = 1.

8. Compute the volume of the solid obtained by rotating the region enclosed by $y = \ln(x)$, y = 0, and x = e around the y-axis.

9. Determine the volume of the solid formed by rotating the region between the curves $y=x^3$ and y=x around the line y=x.

Solutions to Worksheet on Applications of Integrals

November 3, 2023

Solutions

1) Areas Between Curves

1. The area of the region enclosed by $y = x^2$ and y = x + 6 is given by

$$\int_{-2}^{3} \left[(x+6) - x^2 \right] dx = \left[\frac{x^2}{2} + 6x - \frac{x^3}{3} \right]_{-2}^{3} = \frac{125}{6}.$$

2. The area between $y = \sin(x)$ and $y = \cos(x)$ from x = 0 to $x = \frac{\pi}{2}$ is

$$[\sin(x) + \cos(x)]_0^{\frac{\pi}{4}} + [-\cos(x) - \sin(x)]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \sqrt{2}.$$

2) Average Value of a Function

1. The average value of $f(x) = 2x^3 - 3x^2 + x$ on [1, 4] is

$$\frac{1}{4-1} \left[\frac{x^4}{2} - x^3 + \frac{x^2}{2} \right]_1^4 = \frac{125}{6}.$$

2. The average value of $f(x) = \sqrt{x}$ on [0, 9] is

$$\frac{1}{9} \left[\frac{2}{3} x^{3/2} \right]_0^9 = 2.$$

3) Volumes of Solids

1. The volume of the solid obtained by rotating $y=x^2$ about the x-axis from x=0 to x=2 is

$$\pi \left[\frac{x^5}{5} \right]_0^2 = \frac{32\pi}{5}.$$

2. The volume of the solid formed by rotating $y = \sqrt{x}$, $0 \le x \le 4$, about the y-axis is

$$\pi \left[\frac{x^3}{3} \right]_0^4 = \frac{64\pi}{3}.$$

1

4) More Integration Problems

1. The area of the region bounded by $y = e^x$, $y = e^{-x}$, and x = 1 is

$$2\left[e^{x}+e^{-x}\right]_{0}^{1}=2(e+\frac{1}{e}-2).$$

2. The volume of the solid obtained by rotating the region enclosed by $y = \ln(x)$, y = 0, and x = e around the y-axis is

$$2\pi \left[\frac{x^2}{2}\ln(x) - \frac{x^2}{4}\right]_1^e = \frac{\pi e^2}{2}.$$

3. The volume of the solid formed by rotating the region between the curves $y = x^3$ and y = x around the line y = x is

$$\pi \left[\frac{(x^3 - x)^2}{2} \right]_0^1 = \frac{\pi}{2}.$$