Randomization

Silje Synnøve Lyder Hermansen

03-12-2019

We've completed the first part of the course: Congrats!

We've completed the first part of the course: Congrats!

▶ Our focus has been on *describing* data: GLMs

We've completed the first part of the course: Congrats!

- ▶ Our focus has been on *describing* data: GLMs
- Now, we'll focus on *research design*: causal inference

We've completed the first part of the course: Congrats!

- ▶ Our focus has been on *describing* data: GLMs
- Now, we'll focus on *research design*: causal inference

The goal of the social sciences

The goal of the social sciences

We run regressions to learn about the world, which means...

► To describe data

We run regressions to learn about the world, which means...

▶ To describe data → observe the world

- ▶ To describe data → observe the world
 - ... but how do we know if it's not an illusion?

- ▶ To describe data → observe the world
 - but how do we know if it's not an illusion?
- ▶ To make causal claims

- ► To describe data → observe the world
 - but how do we know if it's not an illusion?
- ightharpoonup To make causal claims ightharpoonup manipulate the world

- ▶ To describe data → observe the world
 - but how do we know if it's not an illusion?
- ightharpoonup To make causal claims ightarrow manipulate the world
 - ▶ ... in the social sciences, that's not always possible

- ▶ To describe data → observe the world
 - ... but how do we know if it's not an illusion?
- ightharpoonup To make causal claims ightarrow manipulate the world
 - in the social sciences, that's not always possible
- ⇒ We design studies to approximate manipulation

Two (compatible) approaches.

▶ **Logic of inference:** (King, Keohane and Verba, 1994)

- ▶ **Logic of inference:** (King, Keohane and Verba, 1994)
 - ► We can only imperfectly observe the world

- ▶ Logic of inference: (King, Keohane and Verba, 1994)
 - ▶ We can only imperfectly observe the world
 - but we can theorize (causal mechanism)

- Logic of inference: (King, Keohane and Verba, 1994)
 - ▶ We can only imperfectly observe the world
 - ▶ ... but we can theorize (causal mechanism)
 - and test hypotheses (observable implications)

- ▶ Logic of inference: (King, Keohane and Verba, 1994)
 - ▶ We can only imperfectly observe the world
 - ▶ ... but we can theorize (causal mechanism)
 - ... and test hypotheses (observable implications)
- ⇒ A closer connection between theory and statistics (e.g. EITM).

Two (compatible) approaches.

▶ **Logic of inference:** (King, Keohane and Verba, 1994)

- ▶ **Logic of inference:** (King, Keohane and Verba, 1994)
- ▶ Potential outcomes (Donald Rubin)

- ▶ **Logic of inference:** (King, Keohane and Verba, 1994)
- ▶ Potential outcomes (Donald Rubin)

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

► We can manipulate the first event

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

 \blacktriangleright We can manipulate the first event \rightarrow what happens then?

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

- ightharpoonup We can manipulate the first event ightharpoonup what happens then?
- ► Can we infer what would have happened if we did not manipulate?

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

- ightharpoonup We can manipulate the first event ightharpoonup what happens then?
- ► Can we infer what would have happened if we did not manipulate?
- ⇒ Potential outcomes

- ▶ Logic of inference: (King, Keohane and Verba, 1994)
- Potential outcomes (Donald Rubin)

- Logic of inference: (King, Keohane and Verba, 1994)
- ▶ Potential outcomes (Donald Rubin)
 - causal effect: difference between what is and could have been

- ▶ Logic of inference: (King, Keohane and Verba, 1994)
- ▶ Potential outcomes (Donald Rubin)
 - causal effect: difference between what is and could have been
- ⇒ a set of methods designed for causal inference with observational data

The conundrum

The conundrum

The true causal effect

What is causal effect?

Imagine two versions of me.

What is causal effect?

Imagine two versions of me.

▶ I have a headache and I take an aspirine $(Y_{1.Silie})$.

What is causal effect?

Imagine two versions of me.

- ▶ I have a headache and I take an aspirine $(Y_{1,Silie})$.
- ▶ I have a headache but receive no treatment $(Y_{0.Silie})$.

What is causal effect?

Imagine two versions of me.

- ▶ I have a headache and I take an aspirine $(Y_{1.Silie})$.
- ▶ I have a headache but receive no treatment $(Y_{0.Silie})$.
- \Rightarrow the causal effect is $Y_1 Y_0$

True causal effect

Y_{0, silje}

A causal effect is the difference between two potential outcomes

A causal effect is the difference between two potential outcomes

▶ ... but – at best – I can only observe one outcome.

True causal effect is NOT POSSIBLE to observe

A causal effect is the difference between two potential outcomes

A causal effect is the difference between two potential outcomes

- ▶ ... but at best I can only observe one outcome.
- ⇒ We have to compare two different individuals

Plan B

Plan B: Can we compare across cases?

Let's compare my headache now with Øyvind's current headache $(Y_{1.Silie} - Y_{1.Ovvind})$

Let's compare my headache now with Øyvind's current headache $(Y_{1,Silje} - Y_{1,Oyvind})$

Let's compare my headache now with Øyvind's current headache $(Y_{1,Silje} - Y_{1,Oyvind})$

Can we compare two individuals post treatment?

Plan B

Let's compare my headache now with Øyvind's current headache $(Y_{1,Silje} - Y_{1,Oyvind})$

Let's compare my headache now with Øyvind's current headache $(Y_{1,Silje} - Y_{1,Oyvind})$

but did he even have a headache before?

Plan B

Is there a selection bias?

How did Øyvind's case look untreated?

Plan B

Is there a selection bias?

How did Øyvind's case look untreated?

How did Øyvind's case look untreated?

Plan B

What do we compare?

The solution

We have to observe Øyvind's untreated headache $(Y_{0,Oyvind})$ and compare with treated me $(Y_{1,Silje})$

The solution

We have to observe Øyvind's untreated headache ($Y_{0,Oyvind}$) and compare with treated me ($Y_{1,Silje}$)

$$Y_{Silje} - Y_{Oyvind} = Y_{1,Silje} - Y_{0,Oyvind}$$

$$= Y_{1,Silje} - Y_{0,Silje} + Y_{0,Silje} - Y_{0,Oyvind}$$
(1)

- ► Causal effect: $Y_{1,Silje} Y_{0,Silje}$
- ▶ Selection bias: $Y_{0,Silje} Y_{0,Oyvind}$

How to do it?

How to do it?

We use statistics

We cannot observe two potential outcomes, but we can rely on the law of large numbers (LLN).

We use statistics

We cannot observe two potential outcomes, but we can rely on the law of large numbers (LLN).

► We use **average** causal effect

Average causal effect = Differences in means - Selection bias

Differences in means

▶ We create a **dummy** for treated vs. untreated observations:

$$D_i = \begin{cases} 1 & \Leftrightarrow & treated \\ 0 & \Leftrightarrow & untreated \end{cases} \tag{2}$$

We calculate the differences in means

$$= Avg_n[Y_i|D_i = 1] - Avg_n[Y_i|D_i = 0]$$
 (3)

Differences in means

We create a dummy for treated vs. untreated observations:

$$D_i = \begin{cases} 1 & \Leftrightarrow & treated \\ 0 & \Leftrightarrow & untreated \end{cases} \tag{4}$$

We calculate the differences in means

$$= Avg_n[Y_i|D_i = 1] - Avg_n[Y_i|D_i = 0] = Avg_n[Y_{1,i}|D_i = 1] - Avg_n[Y_{0,i}|D_i = 0]$$
(5)

Basic assumption

We have to assume that the treatment has the same effect accross all units

Basic assumption

We have to assume that the treatment has the same effect accross all units

▶ then we can compare across units

Basic assumption

We have to assume that the treatment has the same effect accross all units

- ▶ then we can compare across units
- \blacktriangleright contrast that with the effect of β in OLS vs GLM

Now we have to get rid of the selection bias!

Now we have to get rid of the selection bias!

► A priori selecting units without bias:

Now we have to get rid of the selection bias!

▶ A priori selecting units without bias: randomization

Now we have to get rid of the selection bias!

- ▶ A priori selecting units without bias: randomization
- ► A posteriori assessing the bias and extract it:

Now we have to get rid of the selection bias!

- ▶ A priori selecting units without bias: randomization
- ► A posteriori assessing the bias and extract it: Rubin's contribution

Why not just compare?

Consider the fate of young mothers

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)31411-8/fulltext

The gold standard

Randomization is the gold standard. This requires

Randomization is the gold standard. This requires

manipulation

Randomization is the gold standard. This requires

ightharpoonup manipulation ightarrow experiments

Randomization is the gold standard. This requires

- ▶ manipulation → experiments
- ▶ a sufficient number of units (LLN)

Randomization is the gold standard. This requires

- ightharpoonup manipulation ightharpoonup experiments
- ightharpoonup a sufficient number of units (LLN) ightharpoonup statistical power
- ⇒ Randomization eliminates bias

Even when we randomize, we check for signs of selection bias

we cannot observe the bias

- we cannot observe the bias
- but we can check the balance of possible correlates (of bias)

- we cannot observe the bias
- but we can check the balance of possible correlates (of bias)
- ⇒ Here comes the social science theories back in!

Even when we randomize, we check for signs of selection bias

⇒ We verify the balance of pre-treatment variables

The post hoc fixes