These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Code-breaking algorithms have also existed for centuries. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Scripting and breakpointing is also part of this process. Programming languages are essential for software development. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. There are many approaches to the Software development process. Techniques like Code refactoring can enhance readability.