

Fraudulent Prediction on E-commerce transactions

Presented by The Mugiwara Pirates With Adam, Armen, Kranta & Stéphanie

01 Introduction

Project overview

Dataset

E-commerce transactions

。Goal

Predict fraudulent transactions

。 Questions

What are the most important features or characteristics that contribute to the likelihood of a transaction being fraudulent?

Can we build an accurate machine learning model to predict whether a transaction is fraudulent or not?

Data selection and preparation

1,491,586 rows

Total number before sampling

75,060

Fraudulent data

150,000

After undersampling (50/50)

Vata cleaning

Null values

No null values to remove

Duplicates

No duplicates

Wrong data

Negative age values → replaced by median age

03 feature engineering and selection

Features

- Transaction ID
- Customer ID
- Transaction Amount
- Transaction Date
- Payment Method
- Product Category
- Quantity
- Customer Age
- Customer Location
- Device Used

- IP Address
- Shipping Address
- Billing Address
- Is Fraudulent
- Account Age Days
- Transaction Hour

Features

TRANSACTION ID

CUSTOMER ID

TRANSACTION AMOUNT

TRANSACTION DATE

PAYMENT METHOD

PRODUCT CATEGORY

QUANTITY

CUSTOMER AGE

CUSTOMER LOCATION

DEVICE USED

----IP ADDRESS

SHIPPING ADDRESS

BILLING ADDRESS

IS FRAUDULENT

ACCOUNT AGE DAYS

TRANSACTION HOUR

Feature Selection

Numerical

- TRANSACTION AMOUNT
- QUANTITY
- CUSTOMER AGE
- ACCOUNT AGE DAYS
- TRANSACTION HOUR

Added:

- DAY OF THE WEEK
- MONTH

Scaling: MINMAX

Categorical

- PAYMENT METHOD
- PRODUCT CATEGORY
- DEVICE USED
- ADDRESS MATCH

Action taken: ONE-HOT ENCODING

Model Building and evaluation

Models tested

Classifier Model	Precision		Recall		FI		Accuracy	
	0	1	0	1	0	1		
Random Forest	0.73	0.76	0.79	0.70	0.76	0.73	0.74	
Ada boost	0.72	0.76	0.79	0.69	0.75	0.72	0.74	
Bagging	0.73	0.77	0.79	0.70	0.76	0.73	0.75	
Bagging Bootstrap	0.73	0.76	0.78	0.71	0.76	0.73	0.75	
Gradient boosting	0.72	0.75	0.78	0.69	0.75	0.72	0.73	

Models tested

Classifier Model	Precision		Recall		FI		Accuracy
	0	1	0	1	0	1	
Random Forest	0.73	0.76	0.79	0.70	0.76	0.73	0.74
Ada boost	0.72	0.76	0.79	0.69	0.75	0.72	0.74
Bagging	0.73	0.77	0.79	0.70	0.76	0.73	0.75
Bagging Bootstrap	0.73	0.76	0.78	0.71	0.76	0.73	0.75
Gradient boosting	0.72	0.75	0.78	0.69	0.75	0.72	0.73

Models tested

Classifier Model	Precision		Recall		Fl		Accuracy	
	0	1	0	1	0	1		
Random Forest	0.73	0.76	0.79	0.70	0.76	0.73	0.74	
Ada boost	0.72	0.76	0.79	0.69	0.75	0.72	0.74	
Bagging	0.73	0.77	0.79	0.70	0.76	0.73	0.75	
Bagging Bootstrap	0.73	0.76	0.78	0.71	0.76	0.73	0.75	
Gradient boosting	0.72	0.75	0.78	0.69	0.75	0.72	0.73	

14

Hyperparameter tuning

Grid Search Cross Valuation

	precision	recall	f1-score	support
0 1	0.73 0.76	0.78 0.71	0.76 0.73	15169 14831
	0.70	0.71		
accuracy macro avg	0.75	0.75	0.75 0.75	30000 30000
weighted avg	0.75	0.75	0.75	30000

07

Key findings

Thanks!

Do you have any questions?

