UNIVERSITY OF EDINBURGH SCHOOL OF MATHEMATICS

Generalised Regression Models

GRM: Problem Sheet 3 Semester 1, 2022–2023

Work on Questions 1, 2 and 3 in the workshop.

1. The observations y_1, y_2 and y_3 were taken on the random variables Y_1, Y_2 and Y_3 , where

$$Y_1 = \theta + e_1$$
 $Y_2 = 2\theta - \phi + e_2$ $Y_3 = \theta + 2\phi + e_3$ $E(e_i) = 0$, $var(e_i) = \sigma^2$ $(i = 1, 2, 3)$, $cov(e_i, e_j) = 0$ $(i \neq j)$.

Formulate this model in matrix notation, and thus find the vector of least squares estimates of the regression parameter vector $\begin{pmatrix} \theta \\ \phi \end{pmatrix}$. Obtain the covariance matrix of the least squares estimators, and use it to determine estimated standard errors of these estimators.

- 2. If X is an $n \times p$ matrix of rank p, verify that the matrix $X(X^TX)^{-1}X^T$ is symmetric, idempotent and of rank p.
- 3. The file Births.txt contains the number of normal births in a hospital recorded for each hour of the day, as described in Numerical Example 1.8. Denoting the number for hour t by y_t , fit a periodic regression of the number of births on hour in the form

$$E(Y_t|t) = \beta_0 + \beta_1 \cos\left(\frac{\pi t}{12}\right) + \beta_2 \sin\left(\frac{\pi t}{12}\right)$$
 $(t = 1, 2, ..., 24)$.

- (a) Calculate the least squares estimates of β_0 , β_1 and β_2 .
- (b) Hence obtain an estimate of the time at which the expected number is a maximum.
- 4. In the following cases, responses Y_i are assumed to be uncorrelated and have common standard deviation σ given the values of any explanatory variables. For each model described below:
 - express the model as a special case of the linear model defined in Section 3.3 of the lecture notes, $E(\mathbf{Y}|\mathbf{X}) = \mathbf{X}\boldsymbol{\beta}$, $var(\mathbf{Y}|\mathbf{X}) = \sigma^2 \mathbf{I}_n$, giving appropriate forms for the matrix \mathbf{X} and the vector $\boldsymbol{\beta}$ of unknown parameters;
 - obtain formulae for $\mathbf{X}^T \mathbf{X}$, $\mathbf{X}^T \mathbf{y}$ and the least squares estimate $\widehat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$;
 - try to simplify the formulae for $\widehat{\beta}$.
 - state the degrees of freedom for the residual sum of squares.
 - (a) The first m responses have expectation μ and the remaining n-m have expectation $\mu + \delta$, where μ and δ are unknown parameters (rather than μ and $\mu + \delta$).
 - (b) The first n_1 responses have expectation μ_1 , the next n_2 have expectation μ_2 and the final n_3 have expectation μ_3 .
 - (c) For i = 1, 2, ..., m, $E(Y_i | x_i) = \alpha_1 + \beta x_i$; for i = m + 1, ..., n, $E(Y_i | x_i) = \alpha_2 + \beta x_i$. Thus the first m responses satisfy one regression equation and the remaining n m satisfy another having the *same* slope but a different intercept.

- 5. Conduct the same exercise as in Question 4 for the following two models but do not attempt to simplify the formulae for $\widehat{\beta}$.
 - (a) Responses have expectations $\beta_0 + \beta_1 x_i + \beta_2 x_i^2$ (i = 1, 2, ..., n) which are quadratic in x.
 - (b) For i = 1, 2, ..., m, $E(Y_i | x_i) = \alpha + \beta_1 x_i$; for i = m + 1, ..., n, $E(Y_i | x_i) = \alpha + \beta_2 x_i$. So the first m and the remaining n m expectations satisfy regression equations with the *same* intercept but a different slope.
- 6. Suppose that a and c are scalars and **b** is a p-vector. Find simple expressions for the determinant and inverse of a $(p+1) \times (p+1)$ matrix of the form

$$\mathbf{A} = \left(\begin{array}{cc} a & \mathbf{b}^T \\ \mathbf{b} & c \, \mathbf{I}_p \end{array} \right) \, .$$

For what values of a, **b** and c is **A** singular?

7. A mechanical engineer is developing a method for studying the pattern of flow in a gas by photographing tiny light-scattering particles carried along with the gas. A transparent section in a tube containing the gas is used to illuminate the particles and photograph them at frequent intervals with a very short exposure. Suppose that the flow is effectively two-dimensional and that we can identify the particles appearing in successive photographs. Let the coordinates of the *i*th of *n* such particles be (x_{i1}, x_{i2}) in one photograph and (y_{i1}, y_{i2}) in the next. If the movement of the set of particles can be approximated by a translation plus a rotation and an enlargement then y_{i1} and y_{i2} should be given approximately by

$$y_{i1} \simeq \alpha_1 + \beta_1 x_{i1} + \beta_2 x_{i2},$$

 $y_{i2} \simeq \alpha_2 + \beta_1 x_{i2} - \beta_2 x_{i1},$

where α_1 , α_2 , β_1 and β_2 are unknown parameters. The engineer proposes to derive estimates $\widehat{\alpha}_1$, $\widehat{\alpha}_2$, $\widehat{\beta}_1$ and $\widehat{\beta}_2$ of these parameters by minimizing

$$\sum_{i} \left\{ (y_{i1} - \alpha_1 - \beta_1 x_{i1} - \beta_2 x_{i2})^2 + (y_{i2} - \alpha_2 - \beta_1 x_{i2} + \beta_2 x_{i1})^2 \right\}.$$

Use the theory of least squares estimation for the model $E(Y|X) = X\beta$ to derive the normal equations satisfied by $\widehat{\alpha}_1$, $\widehat{\alpha}_2$, $\widehat{\beta}_1$ and $\widehat{\beta}_2$ in terms of the following statistics:

$$\bar{x}_1, \ \bar{x}_2, \ \bar{y}_1, \ \bar{y}_2, \ t = n^{-1} \sum_i (x_{i1}^2 + x_{i2}^2), \ u = \sum_i (x_{i1} y_{i1} + x_{i2} y_{i2}), \ v = \sum_i (x_{i2} y_{i1} - x_{i1} y_{i2}).$$

Note that **X** is $2n \times 4$, and that it is convenient to write the vector of responses as

$$\mathbf{y} = \left(\begin{array}{ccccc} y_{11} & \dots & y_{n1} & y_{12} & \dots & y_{n2} \end{array}\right)^T.$$

[The intention of the study is that fitting this model to the data should help to identify any errors in an initial attempt to match the particles between successive photographs.]