КАФЕДРА №

ТЧЕТ АЩИЩЕН С ОЦЕНКОЙ		
РЕПОДАВАТЕЛЬ		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ	Г О ЛАБОРАТОРНОЙ РАБ	БОТЕ
Вычисле	ние математических выра	ажений
по курсу: О	СНОВЫ ПРОГРАММИРО	ВАНИЯ
АБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. №	подпись, дата	инициалы, фамилия

1.Цель работы: целью работы является вычисление сложных математических выражений, а также отладка программы для поиска ошибок.

2.Задание

Согласно варианту 17:

$$z_1 = \frac{\sqrt{(3m+2)^2 - 24m}}{3\sqrt{m} - \frac{2}{\sqrt{m}}}$$
$$z_2 = \sqrt{m}$$

Написать программу для расчёта двух выражений. Предварительно подготовить тестовые примеры по обеим формулам (в excel или с помощью калькулятора; результат вычисления по первой формуле должен совпадать со второй). Значение параметров тригонометрических функций должны задаваться пользователем в градусах.

Назначение: передача данных в функции z 1 и z 2 и получение значений из них и

3. Описание созданных функций:

Для реализации задания нам потребуются следующие функции:

Имя: main

последующее их сравнение **Входные данные**: нет. **Выходные данные**: нет.

Побочный эффект: отсутствует.

Тестовые данные:

Значение	Радианы	Функция 1	Функция 2
5	0,087266463	-0,295408975	-0,295408975
10	0,174532925	-0,417771379	-0,417771379
15	0,261799388	-0,511663354	-0,511663354

Прототип: int main()

Псевдокод

Функция проверки ввода данных is num()

Перевод градусы в радианы через функцию grad to rad()

Функция z 1

Функция z_2

Вывод в консоль значения z 1

Вывод в консоль значения z 2

Сравнение z_1 и z_2 с функцией rround()

Если rround(z1) равен rround(z2)

Вывод "Ответы равны"

Иначе

Вывод "Ответы не равны"

Блок-схема:

Имя: is_num

Назначение: проверка переменной а на корректность ввода

Входные данные: а(значение в градусах). **Выходные данные**: а(значение в градусах).

Побочный эффект: отсутствует. **Прототип:** double $a = is_num$

Псевдокод:

Цикл продолжается до тех пор, пока пользователь не введет корректное значение

Пока ввод числа 'a' не соответствует типу данных х или функция cin.peek() не встретит разрыв строки следующим введённым символом

Сброс ошибки сіп

Пока функция cin.get() не встретит разрыв строки

Вывод "Неверное введенное значение, попробуйте еще: "

Возврат значения 'а'

Блок-схема:

Имя: z_1

Назначение: вычисление функции (sqrt(pow(3*x+2,2)-24*x))/((3*sqrt(x))-(2/sqrt(x)))

Входные данные: а(значение в радианах). **Выходные данные**: z1(значение функции z1).

Побочный эффект: отсутствует.

Тестовые данные:

Значение	Радианы	Функция 1
5	0,087266463	-0,295408975
10	0,174532925	-0,417771379
15	0,261799388	-0,511663354
20	0,34906585	-0,59081795
25	0,436332313	-0,66055455
30	0,523598776	-0,723601255
35	0,610865238	-0,781578683

Прототип: double z_1(double m)

Псевдокод:

Высчитывания значения функции z1

Возврат значения z1

Блок-схема:

Имя: z_2

Назначение: вычисление функции -sqrt(x) **Входные данные**: а(значение в радианах). **Выходные данные**: z2(значение функции z2).

Побочный эффект: отсутствует.

Тестовые данные:

Значение	Радианы	Функция 2
5	0,087266463	-0,295408975
10	0,174532925	-0,417771379
15	0,261799388	-0,511663354
20	0,34906585	-0,59081795
25	0,436332313	-0,66055455
30	0,523598776	-0,723601255
35	0,610865238	-0,781578683

Блок-схема:

Имя: grad_to_rad

Назначение: перевод из градусов в радианы для вычисления функций

Входные данные: а(значение в градусых). **Выходные данные**: а(значение в радианах).

Побочный эффект: отсутствует.

Тестовые данные:

Значение	Радианы
5	0,087266463
10	0,174532925
15	0,261799388
20	0,34906585
25	0,436332313
30	0,523598776
35	0,610865238

Прототип: $a = grad_to_rad(a)$

Псевдокод:

Возврат значения deg / (180 / PI)

Блок-схема:

Имя: rround

Назначение: округление числа до 9 знаков после запятой(как в excel)

Входные данные: r – значение функции

Выходные данные: округлённое значение функции

Побочный эффект: отсутствует.

Псевдокод:

Возврат значения round(r * pow(10, 9)) / pow(10, 9)

Блок-схема:

4. Текст программы

```
#include <iostream> //ввод, вывод
       #include <cmath> // математические функции и константы
       #include <iomanip> //число знаков после точки
       using namespace std;
       const double PI = 3.141592654;
       // Функция для проверки ввода
       int is_num() {
           double a;
           while (!(cin >> a) || (cin.peek() != '\n')) {
               cin.clear();
               while (cin.get() != '\n'); {
                   cout << "Неверное введенное значение, попробуйте еще: ";
               return a;
           }
       }
       double z_1(double m) {
           double z1 = (sqrt(pow(3*m + 2, 2) - 24 * m)) / ((3 * sqrt(m)) - (2 / m))
sqrt(m)));
           return z1
       }
       double z_2(double m) {
           double z2 = -sqrt(m);
           return z2;
       }
       // перевод в радианы
       double grad to rad(double deg) {
           return (deg / (180 / PI));
       }
       // Функция округления
       double rround(double r) {
           return r = round(r * pow(10, 9)) / pow(10, 9);
       }
       int main() {
           setlocale(LC_ALL, "Russian");
           // ввод угла в градусах
           cout << "Введите угол (в градусах): ";
           double a = is_num();
           // перевод градусов в радианы
           a = grad_to_rad(a);
           // первое выражение
           double z1 = z_1(a);
           cout << setprecision(9) << "Z1 = " << z1 << endl;</pre>
           // второе выражение
           double z2 = z_2(a);
           cout << setprecision(9) << "Z2 = " << z2 << endl;</pre>
           int r = pow(10, 9);
           if (rround(z1) == rround(z2)) {
               cout << "Ответы равны";
           }
           else {
```

```
cout << "Ответы не равны";
}
}
```

5. Пример выполнения программы

Ниже показан пример выполнения программы.

Рис. 1 - Пример выполнения программы

Видно, что результаты расчётов совпадают с тестовыми данными.

6.Анализ результатов и вывода

В результате выполнения лабораторной работы были изучены принципы вычисления сложных математических выражений. Я научился запрашивать данные у пользователя, проверять их на корректность и работать с ними при помощи функций.

К достоинствам программы можно отнести:

- Производится проверка входных данных
- Каждое задание реализовано в виде отдельной функции, что позволяет использовать эти функции в других проектах.

Из недостатков можно отметить:

• Программа не оптимизирована.