

ANALISIS SPASIAL DENGAN R

ALDINO YANKE

R DAN R STUDIO

- If you do not have R and RStudio on your computer, proceed as follows:
 - Download base R for your operating system from https://cran.r-project.org.
 - Install it on your system.
 - Download RStudio desktop version for your operating system from https://www.rstudio.com/products/RStudio/.
 - Install it on your system.

R PACKAGE (LIBRARY)

- Dalam menjalankan suatu sintaks tertentu pada R maupun R studio diperlukan aktivasi package/library yang didalamnya terdapat sintaks yang akan kita run.
- Aktivasi bisa dilakukan jika package sudah terinstall pada device kita
- Jika belum terinstall maka perlu dilakukan instalasi. Alternatif cara untuk instalasi package:
 - Jika terhubung ke internet: install.packages("namapackage") CONtOh: install.packages(c("sp", "gstat"))
 - Jika sudah download binary (*.zip):
 install.packages ("drive:/namafile.zip", repos=NULL) contoh:
 install.packages ("C:/Program Files/R/nama file.zip", repos=NULL)
 - atau melalui menu: Packages > Install packages(s) from local files...
- Untuk mengakitfkan package yang akan digunakan menggunakan sintaks library

```
library(sp)
library(gstat)
```


TIPE DATA SPASIAL

ILUSTRASI DENGAN DATA MEUSE

```
Sintaks:
#praktikum jenis data spasial dengan data meuse (sp)
data(meuse)
#titik
coordinates(meuse) <- c("x", "y")</pre>
coordinates(meuse) <- ~x+y</pre>
plot(meuse, xlim=c(178600, 181400), ylim=c(329000, 333700))
title("points")
#polygon
data(meuse.riv)
meuse.1st <-
list(Polygons(list(Polygon(meuse.riv)), "meuse.riv"))
meuse.sr <- SpatialPolygons(meuse.1st)</pre>
plot(meuse.sr, col = "grey")
title("polygons")
```

```
#grid
data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
meuse.grid <- as(meuse.grid, "SpatialPixels")
image(meuse.grid, col = "grey")
title("grid")

#gabungan point, polygon, and grid
image(meuse.grid, col = "lightgrey")
plot(meuse.sr, col = "grey", add = TRUE)
plot(meuse,add = TRUE)</pre>
```


ILUSTRASI DENGAN DATA MEUSE (LIBRARY SP)

INTERPOLASI CURAH HUJAN METRO MANILA

Sebaran Nilai Amatan Precipitation

Ordinary Kriging

PETA TEMATIK GIZI BURUK PROVINSI DI JAWA BARAT

Sintaks:

```
#Input data eksternal
library(readxl)
setwd("C:\\asprak\\2022\\Spasial MPK\\1.
Analisis Spasial dengan R")
data.giziburuk<-read excel("data giziburuk
jabar.xlsx", sheet="Sheet1")</pre>
#membuka data shp
jabar<-readOGR(dsn="petajabar27", layer="Peta</pre>
Jabar 27")
plot(jabar)
library(raster)
jabar$gizi<-data.giziburuk$Giziburuk</pre>
spplot(jabar, "gizi", main="Peta Gizi Buruk
Bogor")
colfunc<-colorRampPalette(c("green",
"yellow","red"))</pre>
spplot(jabar, "gizi", col.regions=colfunc(6),
cuts = 5, main="Peta Sebaran")
```

Peta Gizi Buruk Bogor

MATRIKS BOBOT

Ketetanggaan (Contiguity)

Jarak

MATRIKS BOBOT KETETANGGAAN

- Wilayah yang dianggap sebagai tetangga berkode 1 dan yang bukan tetangga berkode
 0.
- Beberapa jenis Matriks Bobot Ketetanggaan:
 - Rook contiguity (persinggungan garis). Bobot wij diberikan nilai 1 untuk lokasi yang bersinggungan sisi dengan lokasi amatandan diberikan nilai0 untuk lainnya.
 - **Bishop contiguity** (persinggungan sudut). Bobot *wij* diberikan nilai 1 untuk lokasi yang bersinggungan sudut dengan lokasi amatandan diberikan nilai 0 untuk lainnya
 - Queen contiguity (Persinggungan sisi dan sudut). Bobot wij diberikan nilai 1 untuk lokasi yang bersinggungan sisi dan sudut dengan lokasi yang sedang diamati dan diberikan nilai0 untuk lainnya.

Rooks Case

Bishops Case

Queen's (Kings) Case

MATRIKS BOBOT KETETANGGAAN

QUEEN CONTIGUITY

```
#Queen Contiguity
queenjabar.w <- poly2nb(jabar, queen = T)</pre>
summary(queenjabar.w)
#menampilkan dalam bentuk matriks
queenjabar.w1<-nb2mat(queenjabar.w,style =
"B") #untuk melihat bentuk matriks bobot</pre>
View(queenjabar.w1)
#queen weights - plot
plot(jabar, border="white",col='gray')
coords<-coordinates(jabar)</pre>
plot(queenjabar.w, coords, add = TRUE, col
= "red")
```


ROOK CONTIGUITY

```
#Rook Contiquity
rookjabar.w <- poly2nb(jabar, queen=FALSE)</pre>
summary(rookjabar.w)
#menampilkan dalam bentuk matriks
rookjabar.w1<-nb2mat(rookjabar.w,style =
"B") #untuk melihat bentuk matriks bobot</pre>
View(rookjabar.w1)
#rook weights - plot
plot(jabar, border="white",col='gray')
coords<-coordinates(jabar)</pre>
plot(rookjabar.w, coords, add = TRUE, col =
"blue")
```


PERBANDINGAN QUEEN DAN ROOK CONTIGUITY

```
#Perbandingan
plot(jabar,
border="white",col='gray')
plot(queenjabar.w, coords, add =
TRUE, col = "red")
plot(rookjabar.w, coords, add =
TRUE, col = "blue")
```


K NEAREST NEIGHBOUR

- Untuk masing-masing area diidentifikasi k tetangga terdekatnya. Nilai k ditentukan peneliti. Misal k=2,3 dst.
- Sintaks:

```
\# k = 2
w.knn2<-knearneigh(coords, k=2, longlat =</pre>
TRUE)
knn2.w<-nb2listw(knn2nb(w.knn2))
summary(knn2.w)
#K-nn weight matrix - plot
plot(jabar, border="white", col='gray')
plot(knn2.w, coords, add = TRUE, col = "red")
\# k = 4
w.knn4<-knearneigh(coords, k=4, longlat =</pre>
TRUE)
knn4.w<-nb2listw(knn2nb(w.knn4))
summary(knn4.w)
#K-nn weight matrix - plot
plot(jabar, border="white", col='gray')
plot(knn4.w, coords, add = TRUE, col = "red")
```


BOBOT JARAK AMBANG

 Untuk masing-masing area diidentifikasi tetangga berdasarkan batas jarak ambang yang ditentukan peneliti. Misal diidentifikasi sebagai tetangga jika
 100 km maka area yang berjarak dibawah 100 km dianggap sebagai tetangga.

• Sintaks:

```
w.dnn1 <- dnearneigh(coords, 0, 1)
summary(w.dnn1)

#D-nn weight matrix - plot
plot(jabar,
border="white",col='gray')
plot(w.dnn1, coords, add = TRUE,
col = "red")</pre>
```


BOBOT JARAK INVERS

- Jarak menggambarkan kedekatan antar lokasi.
- Semakin dekat jarak *dij*, maka bobot *wij* semakin besar, artinya bobot merupakan fungsi terbalik dari jarak.
- Bobot jarak pangkat dinyatakan sebagai berikut:

$$w_{ij} = d_{ij}^{-\alpha}$$
 dengan $\alpha = 1$ atau $\alpha = 2$

• Sintaks:

```
coords<-coordinates(jabar)
D<-
as.matrix(dist(coordinates(jabar), method =
"euclidean"))
w=1/D
diag(w)<-0
invers.w<-mat2listw(w, style="W") #untuk
melihat matriks W
plot(jabar, border="white", col='gray')
coords<-coordinates(jabar)
plot(invers.w, coords, add = TRUE, col =
"red")</pre>
```


	Code	Description	
В		basic binary coding	
W		row standardised (sums over all links to n)	
С		globally standardised (sums over all links to n)	
U		equal to C divided by the number of neighbours (sums over all links to unity)	
S		the variance-stabilizing coding scheme	

PENJELASAN STYLE="W"

BOBOT JARAK EKSPONENSIAL

- Alternatif lain untuk bobot jarak pangkat adalah dengan menggunakan fungsi eksponensial dengan pangkat negative jarak dij.
- Sintaks:

```
alpha<-2
w.expo<-exp(-alpha*D)
diag(w.expo)<-0
eksp.w=mat2listw(w.expo,
style="W") #untuk melihat matriks
W
summary(eksp.w)</pre>
```


GLOBAL MORAN

- Menunjukkan ukuran autokorelasi spasial
- Bernilai -1 sampai dengan 1 (mirip dengan korelasi Pearson)
- Sintaks:

```
> moran(jabar$gizi, invers.w,
n=length(invers.w$neighbours), S0=Szero(invers.w))
```

\$Ι

[1] 0.1809582

\$K

[1] 2.796339

Positive autocorrelaton • Autokorelasi negatif

Tidak ada autokorelasi

> moran.test(jabar\$gizi, invers.w)

Moran I test under randomisation

data: jabar\$gizi

weights: invers.w

Moran I statistic standard deviate = 2.8255, p-value =

0.00236

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.180958247 -0.03

-0.038461538

0.006030471

MORANPLOT

- Menunjukkan bagaimana nilai suatu indikator relatif terhadap nilai indikator tetangganya.
- Untuk mengidentifikasi hotspot dan coldspot

LOCAL MORAN (LOCAL INDICATORS OF SPATIAL ASSOCIATION (LISA))

- Menunjukkan autokorelasi spasial yang bersifat local/ area tertentu
- Menunjukkan bagaimana nilai suatu indikator relatif terhadap nilai indikator tersebut dari area tetangga-tetangganya.

