Evaluating material models in TensorMechanics, re: finite strain, and comparing to SolidMechanics, both in 2D and 3D

Problem setup:

Mesh: generated mesh, 1x1 in 2D (1x1x1 in 3D)

Coordinate system: xy(z)

AuxVariables: strain_yy, stress_yy (TM = RankTwoAux; SM = MaterialTensorAux) BCs: FunctionPresetBC, disp_y = -0.2*t on top, sides (+ back/front) constrained

Time: $end_t = 4.0$

in SM: Material = Elastic, NonlinearPlaneStrain

in TM: Material = ComputeIsotropicElasticityTensor, ComputePlaneStrain (ComputeFiniteStrain in 3D), ConputeFiniteStrainElasticStress

Theory:

The disp_y at the end of four seconds should be -0.8. This is correct in all four simulations. Based on this displacement, the final strain_yy should be:

Results:

- Requires small time step: default dt = 1.0, strain_yy (and therefore stress_yy) results very incorrect:

	TM, 2D	TM, 3D		SM, 2D	SM, 3D	
Material	CPFS	CFS	i i	Elastic	Elastic	
	CIET	CIET	-			
	CFSES	CFSES	-			
Formulation			ı	NLPS	NLPS	
disp_y	-0	.8	-0.8	-0.8	-0.8	
strain_yy	0.075822242	L5 0.07	58222415	-1.3495648341	-1.3495648341	
stress_yy	1.02E+0)5	1.02E+05	-1.82E+06	-1.82E+06	
E	1.00E+0	06	1.00E+06	1.00E+06	1.00E+06	
poisson	0	.3	0.3	0.3	0.3	
stress / strain	1.35E+0	06	1.35E+06	1.35E+06	1.35E+06	

Where material definitions are:

CPFS ComputePlaneFiniteStrain
CFS ComputeFiniteStrain

CIET ComputeIsotropicElasticityTensor CFSES ComputeFiniteStrainElasticStress

NLPS NonlinearPlaneStrain

– With small time step, strain results are correct (dt = 0.01):

	TM, 2D	TM, 2D TM, 3D		SM, 2D		SM, 3D	
Material	CPFS	CFS		Elastic	Elasti	Elastic	
	CIET CIET						
	CFSES	CFSE	S				
Formulation				NLPS	NLPS		
disp_y	-	0.8	-0.8	-	0.8	-0.8	
strain_yy	-1.6093732	473 -1.	6093732473	-1.60937450	699 -1.0	6093745699	
stress_yy	-2.17E-	-06	-2.17E+06	-2.17E-	+06	-2.17E+06	
E	1.00E-	-06	1.00E+06	1.00E-	+06	1.00E+06	
poisson		0.3	0.3		0.3	0.3	
stress / strain	1.35E-	-06	1.35E+06	1.35E-	+06	1.35E+06	

These strain values are very close to the expected value based on theory (-1.6094379124341).

Conclusions:

- Model is accurate for strain with small time step (dt=0.1), in both SM and TM.
- Model is very inaccurate for strain with larger time step (dt=1.0), in both SM and TM.
- To resolve time step issue, model used to evaluate strain would need to be changed (currently Rashid, 1993).
- Using dt=0.1 also yields relatively accurate results (-1.6023377300219 for strain_yy in 2D TM).