

数字集成电路设计 第五章 功 耗

白雪飞 中国科学技术大学微电子学院

提纲

- 引言
- 动态功耗
- 静态功耗
- 能量-延时优化
- 低功耗体系结构

引言

定义

■ 瞬时功率 (Instantaneous Power)

■ 电路元件消耗或提供的瞬时功率定义为该元件的电流和电压的乘积

$$P(t) = I(t)V(t)$$

- 能量 (Energy)
 - 在某一时间间隔T内消耗或提供的能量是瞬时功率的积分

$$E = \int_{0}^{T} P(t) dt$$

- 平均功率 (Average Power)
 - 在某一时间间隔T上的平均功率定义为

$$P_{ ext{avg}} = rac{E}{T} = rac{1}{T} \int_{0}^{T} P(t) dt$$

电路元件的功率与能量

■ 电阻消耗的瞬时功率

$$P_R(t) = \frac{V_R^2(t)}{R} = I_R^2(t)R$$

■ 电压源提供的瞬时功率

$$P_{V_{\rm DD}}(t) = I_{\rm DD}(t)V_{\rm DD}$$

电压源

■ 电容充电/放电时存储/释放的能量

$$egin{aligned} E_C &= \int\limits_0^\infty I(t)V(t)\mathrm{d}t = \int\limits_0^\infty Crac{\mathrm{d}V}{\mathrm{d}t}V(t)\mathrm{d}t \ &= C\int\limits_0^{V_C}V(t)\mathrm{d}V = rac{1}{2}CV_C^2 \end{aligned}$$

$$V_c$$
 $V_c = C \frac{dV}{dt}$

CMOS反相器翻转过程

当输入从"1"翻转到"0"时

- NMOS管截止而PMOS管导通,将负载电容充电至 $V_{
 m DD}$
- 存储在负载电容中的能量为

$$E_{\scriptscriptstyle C} = rac{1}{2} C_{\scriptscriptstyle L} V_{\scriptscriptstyle
m DD}^2$$

 $E_C = \frac{1}{2}C_L V_{
m DD}^2$

CMOS反相器及负载电容

电源提供的能量为

$$E_{V_{ ext{ iny DD}}} = \int\limits_0^\infty I(t) V_{ ext{ iny DD}} \mathrm{d}t = \int\limits_0^\infty C_L rac{\mathrm{d}V}{\mathrm{d}t} V_{ ext{ iny DD}} \mathrm{d}t = C_L V_{ ext{ iny DD}} \int\limits_0^{V_{ ext{ iny DD}}} \mathrm{d}V = C_L V_{ ext{ iny DD}}^2$$

- 电源提供的能量中,一半存储在负载电容中,另一半消耗在PMOS管中
- 当输入从"0"翻转回"1"时
 - PMOS管截止而NMOS管导通,存储在电容中的能量释放并消耗在NMOS管中
 - 这一翻转跳变过程中没有从电源获取任何能量

CMOS反相器翻转过程

CMOS反相器翻转过程中电压、电流、功率和能量变化

电源电压: 1.0 V,输入信号频率: 1 GHz,负载电容: 150 fF

动态功耗

■ 翻转功耗

lacktriangleright 假设逻辑门以平均频率 f_{sw} 翻转,在时间间隔T内,负载电容将被充电和放电 Tf_{sw} 次,则平均翻转功耗为

$$P_{ ext{switching}} = rac{E}{T} = rac{Tf_{ ext{sw}}CV_{ ext{DD}}^2}{T} = CV_{ ext{DD}}^2 f_{ ext{sw}}$$

■ 大多数逻辑门并非在每个时钟周期都发生翻转,平均翻转功耗也可以表示为

$$P_{\text{switching}} = \alpha C V_{\text{DD}}^2 f$$

- 时钟频率 f
- 活动因子(Activity Factor) α
 - 节点从0跳变至1的概率
 - 时钟的活动因子为1,静态CMOS逻辑的活动因子经验值约为0.1

■ 短路功耗

■ 晶体管翻转过程中,上拉网络和下拉网络同时部分导通造成的短路电流功耗

功耗来源

■ 动态功耗 (Dynamic Power)

- 翻转功耗 (Switching Power)
- 短路电流 (Short Current)

■ 静态功耗 (Static Power)

- 亚阈值泄漏电流 (Subthreshold Leakage)
- 栅泄漏电流 (Gate Leakage)
- 结泄漏电流 (Junction Leakage)
- 有比电路中的竞争电流 (Contention Current)

$$egin{align*} P_{
m dynamic} = P_{
m switching} + P_{
m shortcircuit} \ P_{
m static} = (I_{
m sub} + I_{
m gate} + I_{
m junct} + I_{
m contention}) V_{
m DD} \ P_{
m total} = P_{
m dynamic} + P_{
m static} \ \end{array}$$

Niagara2处理器的功耗

65-nm CMOS, 84 W@1.1 V, 1.4 GHz (JSSC, 43(1), 2008, 6–20)

动态功耗

动态功耗

■ 翻转功耗

- 动态功耗大部分由翻转功耗构成
- 节点的电容是此节点上栅电容、扩散电容、连线电容之和
- 节点的等效电容是其实际电容与活动因子之积
- 在电源电压和频率已知的情况下,翻转功耗取决于所有节点的等效电容之和

■ 短路功耗

- 通常小于整个功耗的10%,可以比较保守地估计为翻转功耗的10%
- 纳米工艺下的短路功耗通常可以忽略不计

■ 动态功耗的优化方法

- 选择能满足目标性能的最低工作频率
- 选择能支持目标工作频率的最低电源电压
- 通过使不需要工作的模块进入休眠状态减小活动因子
- 通过优化电路减小每一部分的总负载电容

动态功耗估算举例

例: 某1-V电源电压65-nm工艺的片上数字系统,沟道长度为50 nm,即 λ =25 nm。 芯片共有 10^9 个晶体管,其中:

逻辑管:数量 $50 \,\mathrm{M}$,平均宽度 12λ ,平均活动因子0.1;

存储管:数量 $950 \,\mathrm{M}$,平均宽度 4λ ,平均活动因子0.02。

晶体管的栅电容为 $1 \, \text{fF}/\mu m$,扩散电容为 $0.8 \, \text{fF}/\mu m$,忽略连线电容。

■ 求: 试估算芯片工作在1 GHz时的翻转功耗。

■ 解:

逻辑管总电容 $C_{\text{logic}} = (50 \times 10^6) (12\lambda) (0.025 \ \mu\text{m}/\lambda) ((1+0.8) \ \text{fF/}\mu\text{m}) = 27 \ \text{nF}$ 存储管总电容 $C_{\text{mem}} = (950 \times 10^6) (4\lambda) (0.025 \ \mu\text{m}/\lambda) ((1+0.8) \ \text{fF/}\mu\text{m}) = 171 \ \text{nF}$ 翻转功耗 $P_{\text{switching}} = (0.1 \times C_{\text{logic}} + 0.02 \times C_{\text{mem}}) (1.0 \ \text{V})^2 (10^9 \ \text{Hz}) = 6.12 \ \text{W}$

活动因子

■ 降低活动因子

- 降低活动因子是降低动态功耗的非常有效和易于实现的途径
- 若电路完全关断,则其活动因子和动态功耗都降为零
- 时钟门控 (Clock Gating): 通过停止时钟来关断电路模块

■ 活动因子的估算

- 时钟信号的活动因子为1
- 真随机数据的活动因子为0.25
- 静态CMOS逻辑的活动因子经验值约为0.1
- 逻辑门的活动因子可以通过计算其翻转概率进行估算
- 毛刺(Glitch)会增加活动因子

时钟门控

■ 时钟门控的作用

- 将时钟信号与使能信号相"与"来关断闲置电路模块的时钟
- 有效降低活动因子和节点电容
 - 时钟信号的活动因子非常高,lpha = 1
 - 时钟网络具有很大的节点电容
 - 关断寄存器时钟可以阻止其翻转,并停止其下游组合逻辑的翻转活动
- 需要判断电路模块是否为闲置状态

■ 时钟门控逻辑电路

- 使能信号可直接用于带使能端的寄存器
- 时钟有效时,使能信号必须保持稳定
 - 对于上升沿触发的系统,可使用锁存器 保证使能信号只在时钟低电平期间变化
- 时钟门控可用于电路模块时钟网络前端

时钟门控逻辑

翻转概率

■ 翻转概率

- 节点的活动因子是其从"0"翻转到"1"的概率
- 与电路的逻辑功能有关
- 由节点为逻辑"1"的概率可以估算活动因子
- 毛刺会引起额外的翻转,并提高活动因子

■ 活动因子的估算

■ 令 P_i 为节点i处于逻辑"1"的概率,则节点i的活动因子为

$$\alpha_i = \overline{P}_i P_i; \quad \overline{P}_i = 1 - P_i$$

- 逻辑门的输出概率可由输入概率计算得到
- 当路径包含重聚的扇出时,输入信号之间 存在相关性,因而需要应用条件概率计算
- 没有更好数据的情况下,可估计为 α =0.1

逻辑门输出逻辑"1"的概率

逻辑门	P_{Y}
AND2	$P_A P_B$
AND3	$P_A P_B P_C$
OR2	$1 - \overline{P_{\scriptscriptstyle A}} \overline{P_{\scriptscriptstyle B}}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P_A}\overline{P_B}$
XOR2	$P_{A}\overline{P_{B}}+\overline{P_{A}}P_{B}$

翻转概率举例

■ **例**: 若所有输入信号为逻辑 "1"的概率皆为P=0.5,求以下四输入与门电路中各节点的活动因子。

四输入与门电路及节点信号概率和活动因子

毛刺 (Glitch)

逻辑门链中的毛刺

电容

■ 翻转电容

- 来自电路中的连线和晶体管
- 良好的平面规划和布局可以降低连线电容
- 选择较少的逻辑级数和较小的晶体管可以 降低器件的电容

■ 晶体管尺寸选择

- 非关键路径上采用最小尺寸的门
- 采用较大的每级努力,仅比最小延时稍微增加一些,就可以显著减小晶体管尺寸, 节省很大比例的能量
- 缩小具有较高活动因子或较大尺寸的门
- 采用反相器或缓冲器驱动长连线,而不采 用具有较高逻辑努力的复杂门

在延时约束下调整门的尺寸

(JSSC, 39(8), 2004, 1282–1293)

电压和频率

■ 电压和频率的选择

- 每个电路模块都运行在能够满足性能需求的最低电压和最低频率
- 芯片划分成多个电压域,或根据工作模式调整电源电压
- 芯片划分成多个频率域,降低频率可以减小晶体管尺寸或降低电源电压
- 电压域 (Voltage Domain)
 - 为不同电路模块分别提供不同的电源电压
 - 每个电压域根据电路的时序和特性需要进行电源电压优化
 - 当信号从低电压域传输至高电压域时,需要使用电平转换器
- 动态电压/频率调整 (Dynamic Voltage/Frequency Scaling, DVFS)
 - 根据工作负荷动态调整电源电压和时钟频率

跨越电压域

 $当 n_1$ 为高电平 V_{DDH} 时, V_{DDL} 域的门翻转更快,需注意污染延时变化

当 n_2 为高电平 V_{DDL} 时, V_{DDH} 域PMOS管 V_{gs} <0,导通或增加泄漏电流

A=0时,N2导通,Y=0,X=1 (V_{DDH}) A=1时,N1导通,X=0,Y=1 (V_{DDH})

高低电压域的反相器直连

电平转换器

动态电压/频率调整

- 动态电压调整 (Dynamic Voltage Scaling, DVS)
- 动态电压/频率调整 (Dynamic Voltage/Frequency Scaling, DVFS)
- 超动态电压调整 (Ultra-Dynamic Voltage Scaling, UDVS)

DVFS系统

DVFS降低能耗

静态功耗

静态功耗来源

■ 静态功耗

- 即使在芯片处于静态(Quiescent)时也存在功耗
- 具有低阈值电压和薄栅氧的纳米工艺中,静态功耗约占总功耗的1/3

■ 静态功耗来源

■ 泄漏:名义上关断的器件中流过的电流

■ 亚阈值泄漏:截止晶体管的沟道

■ 栅泄漏: 栅极电容

■ 结泄漏:源/漏扩散区与衬底之间的反偏二极管

■ 竞争电流:有比电路中导通晶体管之间流过的电流

亚阈值泄漏

■ 亚阈值泄漏电流

■ 应当截止的晶体管中流过的漏源电流

$$I_{ds}\!=\!I_{ ext{off}}\!\cdot\!10^{rac{V_{gs}+\eta(V_{ds}-V_{ ext{DD}})-k_{\gamma}V_{sb}}{S}}igg(\!1\!-\!\mathrm{e}^{rac{-V_{ds}}{v_{T}}}\!igg)$$

■ 当*V_{ds}*>50 mV时,简化为

$$I_{ ext{sub}} = I_{ ext{off}} \cdot 10^{rac{V_{gs} + \eta(V_{ds} - V_{ ext{DD}}) - k_{\gamma}V_{sb}}{S}}$$

■ 各项参数在65-nm工艺的典型取值

■ V_{qs} =0且 V_{ds} = V_{DD} 时的亚阈值电流

$$I_{
m off} = \left\{ egin{array}{ll} 100 \; {
m nA/\mu m} \; @ \; V_t \,{=}\, 0.3 \; {
m V} \ 10 \; {
m nA/\mu m} \; @ \; V_t \,{=}\, 0.4 \; {
m V} \ 1 \; {
m nA/\mu m} \; @ \; V_t \,{=}\, 0.5 \; {
m V} \end{array}
ight.$$

- DIBL系数 $\eta = 100 \text{ mV/V}$
- 体效应系数 $k_{\gamma}=0.1$
- 亚阈值斜率 S=100 mV/decade

泄漏与阈值电压的关系

(TVLSI, 15(6), 2007, 660–671)

堆叠效应

■ 串联截止晶体管的泄漏电流

■ 如右图串联截止晶体管,假设 $V_x > 50 \text{ mV}$,则有

$$I_{\mathrm{sub}} = \underbrace{I_{\mathrm{off}} \cdot 10^{\frac{\eta(V_x - V_{\mathrm{DD}})}{S}}}_{\mathrm{N1}} = \underbrace{I_{\mathrm{off}} \cdot 10^{\frac{-V_x + \eta((V_{\mathrm{DD}} - V_x) - V_{\mathrm{DD}}) - k_\gamma V_x}{S}}}_{\mathrm{N2}}$$

$$V_x = \frac{\eta V_{\mathrm{DD}}}{1 + 2\eta + k_\gamma}$$

$$I_{\mathrm{sub}} = I_{\mathrm{off}} \cdot 10^{\frac{-\eta V_{\mathrm{DD}} \left(\frac{1 + \eta + k_\gamma}{1 + 2\eta + k_\gamma}\right)}{S}} \approx I_{\mathrm{off}} \cdot 10^{\frac{-\eta V_{\mathrm{DD}}}{S}}$$
串联截止晶体管

■ 堆叠效应 (Stack Effect)

- 串联截止晶体管的泄漏电流显著减低
- 两个截止晶体管堆叠,亚阈值泄漏降低至约 $1/10~(V_{DD}=1.0~\mathbf{V})$
- 三个或更多截止晶体管堆叠,亚阈值泄漏更低

栅泄漏

■ 栅泄漏

- 当电压应用于栅极时载流子隧穿薄栅介质引起
- 栅泄漏与介质厚度和栅源电压有极强的相关性
- PMOS管栅泄漏比NMOS管低一个数量级,可以忽略不计

■ 串联堆叠晶体管的栅泄漏

- 如右图串联堆叠晶体管
- 若N1导通而N2截止,则
 - N1: V_{qs} = V_{DD} ,栅泄漏最大
 - N2: 截止,无栅泄漏
- 若N1截止而N2导通,则
 - N1: 截止,无栅泄漏
 - N2: V_{qs} = V_t ,栅泄漏可忽略不计
- 使晶体管堆叠并使截止晶体管靠近电源/地可以降低栅泄漏

串联堆叠晶体管

亚阈值泄漏和栅泄漏举例

■ 例:如右图三输入与非门,参数如下:

栅氧厚度: 15 Å, 沟道长度: 60 nm

导通NMOS管栅泄漏: 6.3 nA, PMOS管栅泄漏忽略

 $V_{ds}=V_{DD}$ 时,NMOS管亚阈值泄漏: $5.63\,\mathrm{nA}$

 $|V_{ds}|=V_{DD}$ 时,PMOS管亚阈值泄漏: 9.3 nA

■ 解: 栅泄漏和亚阈值泄漏电流如下表所示,单位: nA

输入状态 (ABC)	$oldsymbol{I_{\mathrm{sub}}}$	$oldsymbol{I_{ ext{gate}}}$	$oldsymbol{I_{ ext{total}}}$	$oldsymbol{V}_x$	V_z	
000	0.4	0	0.4	堆叠效应	堆叠效应	
001	0.7	0	0.7	堆叠效应	$V_{ m DD}\!\!-\!\!V_t$	
010	0.7	1.3	2.0	中间电压	中间电压	
011	3.8	0	3.8	$V_{\mathrm{DD}}\!\!-\!\!V_t$	$V_{ m DD}\!\!-\!\!V_t$	
100	0.7	6.3	7.0	0	堆叠效应	
101	3.8	6.3	10.1	0	$V_{ m DD}\!\!-\!\!V_t$	
110	5.6	12.7	18.3	0	0	
111	28.3	19.0	47.3	0	0	

结泄漏和竞争电流

■ 结泄漏

- 源/漏扩散区处于与衬底不同电位时发生
- 结泄漏与其他泄漏相比通常很小
- 高阈值电压晶体管中,BTBT和GIDL可以使结泄漏接近亚阈值泄漏水平

■ 竞争电流

- 静态CMOS逻辑电路没有竞争电流
- 有比电路、电流模式逻辑电路、模拟电路存在静态电流
- 此类电路应在休眠模式时关断

静态功耗估算举例

例:考虑动态功耗估算例题中的片上系统。

电源电压: 1 V; 沟道长度为50 nm, $\lambda = 25 \text{ nm}$ 。芯片共有 10^9 个晶体管,其中:

逻辑管:数量 $50 \,\mathrm{M}$,平均宽度 12λ ,95%高阈值电压器件,5%低阈值电压器件;

存储管:数量 $950 \,\mathrm{M}$,平均宽度 4λ ,高阈值电压器件。

截止器件的亚阈值泄漏:低阈值电压器件 $100 \, \text{nA}/\mu\text{m}$,高阈值电压器件 $10 \, \text{nA}/\mu\text{m}$;

栅泄漏: 5 nA/μm; 结泄漏忽略不计。

■ 求: 试估算芯片的静态功耗。

■ 解:

低阈值器件总宽度 $W_{\text{LVT}} = (50 \times 10^6) (12\lambda) (0.025 \ \mu\text{m}/\lambda) (0.05) = 0.75 \times 10^6 \ \mu\text{m}$ 高阈值器件总宽度 $W_{\text{HVT}} = \left[(50 \times 10^6) (12\lambda) (0.95) + (950 \times 10^6) (4\lambda) \right] (0.025 \ \mu\text{m}/\lambda)$ $= 109.25 \times 10^6 \ \mu\text{m}$

亚阈值泄漏电流 $I_{\text{sub}} = (W_{\text{LVT}} \times 100 \text{ nA/}\mu\text{m} + W_{\text{HVT}} \times 10 \text{ nA/}\mu\text{m})/2 = 583.75 \text{ mA}$

栅泄漏电流 $I_{\text{gate}} = [(W_{\text{LVT}} + W_{\text{HVT}}) \times 5 \text{ nA/}\mu\text{m}]/2 = 275 \text{ mA}$

静态功耗 $P_{\text{static}} = (584 \text{ mA} + 275 \text{ mA}) (1.0 \text{ V}) = 858.75 \text{ mW}$

电源门控

■ 电源门控 (Power Gating)

- 关断休眠模块的电源
- 由虚拟电源V_{DDV}供电
- 输出门控以免无效电平传至下游电路

■ 电源门控设计

- 模块状态的保持或恢复
 - 状态保持寄存器,使用第二电源保持状态
 - 重要寄存器内容存入存储器中,并在恢复供电时从存储器重新载入

■ 电源门控粒度

- 细粒度(Fine-Grained): 对单个逻辑门进行电源门控
- 粗粒度(Coarse-Grained):整个模块共享一个电源门控开关

■ 开关管尺寸设计

- 开关管上的电压降增加正常工作的延时,开关管尺寸需要足够大以减少影响
- 宽开关管的翻转造成较大的动态功耗,只有电路休眠时间足够长才比较有效

泄漏的控制

■ 泄漏与延时的权衡

- 休眠模式下以低泄漏为优化目标
- 工作模式下以低延时为优化目标

■ 降低泄漏的方法

- 多阈值电压
 - 仅在关键路径使用低阈值电压晶体管保持性能
 - 在非关键路径使用高阈值电压晶体管减少泄漏
- 堆叠效应
 - 休眠模式下控制输入向量
- 可变阈值电压
 - 通过体效应调制阈值电压
 - 使用低V_t器件但休眠模式下应用反向体偏置减少泄漏
 - 使用高V_t器件但工作模式下应用正向体偏置提高性能

能量-延时优化

最小能耗

■ 功耗-延时积

- Power-Delay Product, PDP
- 一个操作的功耗与其完成时间之积, 即该操作的能耗

■ 最小能耗工作点

- 在不考虑延时的情况下,一个操作 可能消耗的最小能量
- 发生于 V_{DD} < V_t 的亚阈值工作状态
- 栅泄漏、结泄漏以及短路功耗可以 忽略不计
- 总能耗为翻转能耗和泄漏能耗之和, 在二者曲线交叉点处附近达到最小

最小能耗工作点

(JSSC, 40(9), 2005, 1778–1786)

能耗和延时等值线图

环形振荡器的能耗和延时等值线

等值线定义: 最小能耗与能耗之比 (ISVLSI, 2002, 7-11)

最小能耗-延时积

■ 能耗-延时积

- Energy-Delay Product, EDP
- 均衡能耗和延时重要性的常用度量标准

■ 最小能耗-延时积

■ 若忽略泄漏,由α幂律模型可得

$$ext{EDP} = k rac{C_{ ext{eff}}^2 V_{ ext{DD}}^3}{(V_{ ext{DD}} - V_t)^{lpha}}$$

■ 使EDP取最小值的电源电压为

$$V_{ ext{DD-opt}} = rac{3}{3-lpha} V_t, ~~ 1 \leqslant lpha \leqslant 2$$

■ 若考虑泄漏,可通过EDP等值线进行分析

能耗-延时积的等值线

(JSSC, 32(8), 1997, 1210–1216)

低功耗体系结构

微结构

■ 处理器

- 处理器性能随晶体管数量的平方根增长
- 采用较多数量的简单内核去处理任务和数据级的并行性
- 较小的内核具有较短的连线和较快的存储器访问速度

■ 存储器

- 存储器具有比逻辑低得多的功耗密度
- 存储器活动因子很小并且具有规整性,可以简化对泄漏的控制
- 优先考虑采用较大的存储器而非较快的处理器进行任务加速

■ 专用功能单元

- 专用功能单元提供的能量效率通常比通用处理器高一个数量级
- 用于高计算强度应用的加速器使处理器从这些任务中解脱出来

并行性和流水线

并行性(Parallelism)与流水线(Pipeline)

电源管理模式

	СО НЕМ	CO LFM	C1/C2	C4	C6
Core voltage	1	1		_	_
Core clock	小	小	OFF	OFF	OFF
PLL	小	小	N	OFF	OFF
L1 caches			flushed	flushed	off
L2 caches				Partial flush	off
Wakeup time	active —	active	() <1μs	<30 μs	<100μs
Power		_	_	_	_

Intel Atom处理器的电源管理模式

(JSSC, 44(1), 2009, 73–82)

本章结束