Introduction to Algebraic Information Theory for Quantitative Finance Homework 3

August 30, 2025

Timothy Tarter
James Madison University
Department of Mathematics

- 1. Prove that if D is an integral domain, and D[x] is an polynomial integral domain,
 - $p, q \in D[x]$ implies that $\partial(p+q) \leq \max\{\partial p, \partial q\}$.
 - $\partial(pq) = \partial p + \partial q$.
- 2. Find $gcd(x^3 + x 2, x^7 x)$.
- 3. Find $gcd(x^4 + x^2 11, x^3 4)$.
- 4. Find $gcd(x^2 + 17, x^4 x^2)$.
- 5. Show that $\mathbb{R}[x]/\langle x^3+x+1\rangle$ is a field, and find what field it is isomorphic to via FHT.
- 6. Show that $\mathbb{Z}[x]$ is not a PID.
- 7. Show that $g = 7x^4 + 10x^3 2x^2 + 4x 5$ is irreducible over \mathbb{Q} .
- 8. Show that $x^3 + 3x + 12$ is irreducible over \mathbb{Q} .
- 9. Show that $5x^4 10x^3 + 10x 3$ is irreducible.
- 10. Show that $3x^4 7x + 5$ is irreducible.
- 11. Prove Gauss's lemma.
- 12. Prove that $\mathbb{Q}[\sqrt{2}]$ is a vector space. What is its basis? What is $[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}]$?
- 13. Prove that if L : K and M : L, [M : L][L : K] = [M : K].
- 14. Show that \mathbb{Q} is a subfield of $\mathbb{Q}[\sqrt{2}]$.