

EFFECT PRODUCED ON PORTLAND CEMENT  
BY THE ADDITION OF HYDRATED LIME

BY

C. A. KNUEPFER

L. D. HOOK

ARMOUR INSTITUTE OF TECHNOLOGY

1915

691.5  
K 78



**Illinois Institute  
of Technology  
UNIVERSITY LIBRARIES**

AT 378

Knuepfer, C. A.

A study of the effects  
produced on Portland cement

**For Use In Library Only**







A STUDY OF THE EFFECTS PRODUCED ON PORTLAND  
CEMENT BY THE ADDITION OF VARIOUS  
PERCENTAGES OF HYDRATED LIME

A THESIS

PRESENTED BY  
CLAUDE ALBERT KNUEPFER  
LEONARD DOOLITTLE HOOK

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

CIVIL ENGINEERING

APPROVED:

*A. E. Phillips*  
PROFESSOR OF CIVIL ENGINEERING

*H. M. Raymond*  
DEAN OF ENGINEERING STUDIES

*L. C. Morris*  
DEAN OF CULTURAL STUDIES

DATE *May 26<sup>th</sup> 1915.*

ILLINOIS INSTITUTE OF TECHNOLOGY  
PAUL V. GALVIN LIBRARY  
35 WEST 33RD STREET  
CHICAGO, IL 60616



## ACKNOWLEDGMENTS

The writers are greatly indebted for the invaluable assistance given them by Mr. P. C. Huntley, Instructor in Experimental Engineering, Armour Institute of Technology, and wish to thank him for his interest and efforts in their behalf.

They also wish to express their appreciation for the hearty cooperation extended them by Mr. Stanley Dean, Assistant Professor of Civil Engineering, Armour Institute of Technology, Mr. B. L. McNulty and Mr. G. S. Hird of the Mitchell Lime Company, and Mr. H. C. Abbot of the Barber Asphalt Company.

and published figures who would be well  
able to make more accurate calculations  
about the "debtors" of national debt  
in our opinion in substitution and  
also to do away with all debts at  
the same time.

## PREFACE

This paper is divided into two parts.

Part 1 deals with a discussion of the methods used in the mixing and testing laboratories and the results attained. It contains several sets of curves which give the average results of all tests.

Part 2 contains a complete set of laboratory data, which may be referred to should the results of any particular test be desired.

C.A.K.

L.D.H.

## Answers

1. Every time we feel bad about ourself we are probably being asked to do something that makes us feel good about ourselves. This is called the "pleasure principle". We are born with a built-in pleasure center in our brain that tells us what we need to do to make us happy. This pleasure center is located in the midbrain, just above the brain stem. It is also called the limbic system. The pleasure center is very sensitive to pleasure and pain. When we do something that gives us pleasure, the pleasure center sends a signal to the midbrain telling it to release a hormone called dopamine. Dopamine is a chemical that makes us feel good. It is also called the "feel good" hormone. Dopamine is released when we do things that give us pleasure, such as eating, drinking, sex, exercise, and so on. Dopamine is also released when we do things that are good for us, such as working hard, learning new things, and helping others.

## TABLE OF CONTENTS

|                                            |      |   |
|--------------------------------------------|------|---|
| Acknowledgments . . . . .                  | Page | 1 |
| Preface . . . . .                          | 2    |   |
| Table of Contents . . . . .                | 3    |   |
| List of Illustrations and Curves . . . . . | 4    |   |
| PART 1                                     |      |   |
| Introduction . . . . .                     | 7    |   |
| Laboratory Equipment and Apparatus Used    | 14   |   |
| Materials Used . . . . .                   | 22   |   |
| Description of Tests . . . . .             | 24   |   |
| Proportions . . . . .                      | 24   |   |
| Time of Set . . . . .                      | 31   |   |
| Consistency . . . . .                      | 31   |   |
| Mixing . . . . .                           | 35   |   |
| Moulding . . . . .                         | 35   |   |
| Storage . . . . .                          | 36   |   |
| Testing . . . . .                          | 36   |   |
| Results of Tests . . . . .                 | 38   |   |
| Conclusion . . . . .                       | 45   |   |
| PART 2                                     |      |   |
| Laboratory Data . . . . .                  | 68   |   |

## ANSWER SHEET

1. **ANSWER** **1** **ANSWER** **2** **ANSWER** **3** **ANSWER** **4** **ANSWER** **5** **ANSWER** **6** **ANSWER** **7** **ANSWER** **8** **ANSWER** **9** **ANSWER** **10** **ANSWER** **11** **ANSWER** **12** **ANSWER** **13** **ANSWER** **14** **ANSWER** **15** **ANSWER** **16** **ANSWER** **17** **ANSWER** **18** **ANSWER** **19** **ANSWER** **20** **ANSWER** **21** **ANSWER** **22** **ANSWER** **23** **ANSWER** **24** **ANSWER** **25** **ANSWER** **26** **ANSWER** **27** **ANSWER** **28** **ANSWER** **29** **ANSWER** **30** **ANSWER** **31** **ANSWER** **32** **ANSWER** **33** **ANSWER** **34** **ANSWER** **35** **ANSWER** **36** **ANSWER** **37** **ANSWER** **38** **ANSWER** **39** **ANSWER** **40** **ANSWER** **41** **ANSWER** **42** **ANSWER** **43** **ANSWER** **44** **ANSWER** **45** **ANSWER** **46** **ANSWER** **47** **ANSWER** **48** **ANSWER** **49** **ANSWER** **50** **ANSWER** **51** **ANSWER** **52** **ANSWER** **53** **ANSWER** **54** **ANSWER** **55** **ANSWER** **56** **ANSWER** **57** **ANSWER** **58** **ANSWER** **59** **ANSWER** **60** **ANSWER** **61** **ANSWER** **62** **ANSWER** **63** **ANSWER** **64** **ANSWER** **65** **ANSWER** **66** **ANSWER** **67** **ANSWER** **68** **ANSWER** **69** **ANSWER** **70** **ANSWER** **71** **ANSWER** **72** **ANSWER** **73** **ANSWER** **74** **ANSWER** **75** **ANSWER** **76** **ANSWER** **77** **ANSWER** **78** **ANSWER** **79** **ANSWER** **80** **ANSWER** **81** **ANSWER** **82** **ANSWER** **83** **ANSWER** **84** **ANSWER** **85** **ANSWER** **86** **ANSWER** **87** **ANSWER** **88** **ANSWER** **89** **ANSWER** **90** **ANSWER** **91** **ANSWER** **92** **ANSWER** **93** **ANSWER** **94** **ANSWER** **95** **ANSWER** **96** **ANSWER** **97** **ANSWER** **98** **ANSWER** **99** **ANSWER** **100** **ANSWER**

**A** **B** **C** **D** **E**

1. **ANSWER** **1** **ANSWER** **2** **ANSWER** **3** **ANSWER** **4** **ANSWER** **5** **ANSWER** **6** **ANSWER** **7** **ANSWER** **8** **ANSWER** **9** **ANSWER** **10** **ANSWER** **11** **ANSWER** **12** **ANSWER** **13** **ANSWER** **14** **ANSWER** **15** **ANSWER** **16** **ANSWER** **17** **ANSWER** **18** **ANSWER** **19** **ANSWER** **20** **ANSWER** **21** **ANSWER** **22** **ANSWER** **23** **ANSWER** **24** **ANSWER** **25** **ANSWER** **26** **ANSWER** **27** **ANSWER** **28** **ANSWER** **29** **ANSWER** **30** **ANSWER** **31** **ANSWER** **32** **ANSWER** **33** **ANSWER** **34** **ANSWER** **35** **ANSWER** **36** **ANSWER** **37** **ANSWER** **38** **ANSWER** **39** **ANSWER** **40** **ANSWER** **41** **ANSWER** **42** **ANSWER** **43** **ANSWER** **44** **ANSWER** **45** **ANSWER** **46** **ANSWER** **47** **ANSWER** **48** **ANSWER** **49** **ANSWER** **50** **ANSWER** **51** **ANSWER** **52** **ANSWER** **53** **ANSWER** **54** **ANSWER** **55** **ANSWER** **56** **ANSWER** **57** **ANSWER** **58** **ANSWER** **59** **ANSWER** **60** **ANSWER** **61** **ANSWER** **62** **ANSWER** **63** **ANSWER** **64** **ANSWER** **65** **ANSWER** **66** **ANSWER** **67** **ANSWER** **68** **ANSWER** **69** **ANSWER** **70** **ANSWER** **71** **ANSWER** **72** **ANSWER** **73** **ANSWER** **74** **ANSWER** **75** **ANSWER** **76** **ANSWER** **77** **ANSWER** **78** **ANSWER** **79** **ANSWER** **80** **ANSWER** **81** **ANSWER** **82** **ANSWER** **83** **ANSWER** **84** **ANSWER** **85** **ANSWER** **86** **ANSWER** **87** **ANSWER** **88** **ANSWER** **89** **ANSWER** **90** **ANSWER** **91** **ANSWER** **92** **ANSWER** **93** **ANSWER** **94** **ANSWER** **95** **ANSWER** **96** **ANSWER** **97** **ANSWER** **98** **ANSWER** **99** **ANSWER** **100** **ANSWER**

**A** **B** **C** **D** **E**

## LIST OF ILLUSTRATIONS AND CURVES

| Fig.                                                                                                                                                    |  | Page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|
| 1 - Details of Briquette Gang Mould                                                                                                                     |  | 16   |
| 2 - Vicat Apparatus                                                                                                                                     |  | 17   |
| 3 - Sketch of "45 degree" Method Used in Determining Density of Lime and Cement                                                                         |  | 18   |
| 4 - Sketch of "Sieve" Method Used in Determining Density of Lime and Cement                                                                             |  | 19   |
| 5 - Shot Machine Used for Testing Briquettes                                                                                                            |  | 20   |
| 6 - Compression Machine Used for Testing Cubes                                                                                                          |  | 21   |
| <br>Plates                                                                                                                                              |  |      |
| 1 - Curves and Table Showing the Relation between Percentage of Lime as a Percent (by wt.) to a Percent of Lime and Cement (by wt.)                     |  | 26   |
| 2 - Curve and Table Showing the Relation between Percentage of Lime, as a Percent of Lime and Cement (by vol.) to a Percent of Lime and Cement (by wt.) |  | 29   |
| 3 - Curves Showing the Relation between Initial and Final Sets of Neat Cement Pastes and Percent of Lime, as a Percent of Lime and Cement (by wt.)      |  | 32   |
| 4 - Curve Showing Relation between the Normal Consistency of Meat Paste and Percentage of Lime, as a Percent of Lime and Cement (by wt.)                |  | 33   |

in many other circumstances the result

is not

always quite satisfactory (in addition - )

extremely difficult -

and one observes "success" too often - in  
order just to make the analytical solution obvious

- and that would "destroy" the method -  
and one may say it from experience

- that one finds it hard to find the right  
way

and one has no solution methodology - in  
general

indeed

one finds with particular systems how otherwise -  
one might be able to get the right procedure  
and one observes a lot of "one off" solutions  
and one finds it difficult to generalise

one finds one problem about how much - if  
one could be confident enough  
of a theory with respect to how much the same  
theory would be useful for forecasts of

one finds with respect to temporal anomalies -  
one finds the word "local" has different  
meanings for different people and  
one finds they must be more  
precise

one finds with respect to seasonal trends  
one finds with the same language terms  
one finds in the word "the" one finds  
the word "annual" and one finds

LIST OF ILLUSTRATIONS AND CURVES (Cont'd.)

| Plates                                                                                                                                                            | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5 - Feret's Percentage of Water for<br>Portland Cement Mortar of Standard<br>Consistency                                                                          | 34   |
| 6-11 - Curves Showing the Relation between<br>the Compressive and Tensile Strengths<br>and Percentage of Lime, as a Percent<br>of Total Lime and Cement (by wt.)  | 50   |
| 12-17 - Curves Showing the Relation between<br>the Compressive and Tensile Strengths<br>and Number of Days of Set                                                 | 56   |
| 18-25 - Curves Showing the Relation between<br>the Compressive and Tensile Strengths<br>and Percentage of Lime as a Percent<br>of Total Lime and Cement (by vol.) | 62   |

With regard to the requirements of the law, it is important to note that the term "commercial" is defined as relating to business or trade, and does not include personal or household use.

the first time in the history of the world, the people of the United States have been compelled to go to war with their own government.

HYDRATED LIME IN PORTLAND CEMENT

PART 1

Containing a Discussion of the Methods  
Used in the Mixing and Testing Laboratories  
and the Results Attained.

—CIVIL PROTECTION AND DISASTER MANAGEMENT

L. Rizzo

and all other publications in English  
and foreign languages, from ancient to modern,  
classical and contemporary literature, as well as  
scholarship, art, music and film.

## INTRODUCTION

The increased use and importance of Portland cement as a building material has led to a discussion of the possibilities of improving certain of its characteristics. Compounds, which would waterproof Portland cement concrete, have been tried; adulterants have been added to decrease the cost, materials have been used to increase the plasticity of a Portland cement mortar, and various other improvements have been offered.

It had been attempted to strengthen lime mortar by adding Portland cement. This led to the attempt to cheapen cement mortar by the addition of slaked lime. Where the strength of a mortar was not the depending factor of any work, (as is often the case), it would seem that the use of large quantities of slaked lime in Portland cement would be of little moment. There were other advantages which seemed to be gained by the addition of lime to Portland cement.

## ANSWER

— you are interested the new definition will  
allow each definition established a new dimension that  
is allowed to be utilized along with the other methods  
utilized. This will allow the user to maintain  
the same system for both computation while adding  
a whole new set of capabilities that can not  
be done just over what they have, also will potentially  
allow a user to go quickly and efficiently  
and effectively create answers and answers  
that are much more detailed and better if  
you look at the current standard answer you will see  
that it is just a simple linear response of input to output  
and does not take into account all of the variables and factors to calculate  
an answer and the output is extremely raw and unrefined  
and has no details. So additional effort to do  
what is needed would be to allow users to not  
only utilize the old linear answer but also  
utilize an answer that is much more refined and  
more detailed or will be sometime off so

## HYDRATED LIME IN PORTLAND CEMENT

It was not, however, until the increased production and use of the hydrated lime brought attention to the possibilities of its use that the issue was entered into deeply. Hydrated lime, is by far a more superior material than ordinary slaked lime, is a fine, dry, white powder which, as its name indicates, is quick lime already hydrated. It may be used for any purpose which lump lime is used for. The hydration being mechanical is more complete and uniform than the hydration of lump lime. There are not the small particles of free lime in a properly made hydrate that there are in lump lime. This as we know, is a very important feature. Hydrated lime is at present the only material which seems to favorably affect several properties of Portland cement. Because of this, attention has been forcibly called to the use of the two as a mixture.

The lack of plasticity of a Portland cement mortar does not allow the use of a pure



## HYDRATED LIME IN PORTLAND CEMENT

mortar in general practice. It has been observed everywhere that it is difficult to get a laborer to mix it sufficiently. By the addition of lime it was early noted that the plasticity was so increased as to render the mixing comparatively easy. Troweling is also made easier and better work results when lime has been added to the mortar.

Where a construction, necessitating the handling of concrete chutes, is in progress, the difficulty and labor expense encountered in keeping the chute clear and the concrete in motion often materially increases the cost of the work. The concrete will not stay in a mass but will scatter and, in a sticky manner, retard the flow in various places. The addition of lime to the concrete seems to act as a lubricant for the concrete stays in a connected mass and flows freely through the chutes.

We know that the richer a concrete, the less permeable it is. If there we should want an impermeable concrete, an excess of cement

## ANNUAL REPORT OF THE BOARD

The Board which I will now proceed to nominate  
has been established by the State Legislature and consists  
of myself and my wife Mrs. H. W. Gurney,  
and such other persons as may be nominated  
and chosen by the Board itself and the members  
and officers of the Board or any committee  
of the Board. The Board may consist of  
any number of persons and shall  
be constituted by nomination of myself  
and my wife and such other persons as may  
be nominated by the Board itself and the  
members and officers of the Board.

It is the desire of the Board that the  
Board shall consist of three members and  
that the Board shall be constituted by  
nomination of myself and my wife  
and such other persons as may be  
nominated by the Board itself and the  
members and officers of the Board.  
The Board shall consist of three members  
and shall be constituted by nomination of  
myself and my wife and such other  
persons as may be nominated by the Board  
itself and the members and officers of the  
Board.

## HYDRATED LIME IN PORTLAND CEMENT

should be used. This is of course practically impossible owing to the cost issues and the fact that rich concretes are more subject to check cracking and are far less constant in volume, under atmospheric changes, than are the weaker concretes. This increased impermeability is undoubtedly due to the void filling properties of the finely ground cement.

Thomson states that, of the finer particles in a mortar, those below the No. 40 sieve affect the permeability much more than the others. It seems then, reasonable to assume that the finer the particles, the more effect they will have on the permeability of a mortar.

Portland cement is a sandy product as compared to the fine hydrated lime. If the addition of hydrated lime to concrete makes the concrete less permeable, we can, then attribute a large part of the success to the finely divided particles of lime. In a series of tests on damp-proofing and water-proofing compounds



## HYDRATED LIME IN PORTLAND CEMENT

made by the Bureau of Standards of the Department of Commerce and Labor, the results of the hydrated lime adulterant were among the best.

There may be some chemical action which makes the combination of hydrated lime and Portland cement less susceptible to the flow of water, but in all probability the void filling property of the lime is the chief reason.

The conclusion of Thomson and many other investigators is that the addition of hydrated lime increases the water tightness or impermeability of the concrete.

The use of concrete for road work is becoming more extended each year. One of the difficulties of concrete road construction is the fact that the top and often the bottom are covered with hair cracks. Mr. R. S. Edwards attributes the hair cracks to the following causes:

While the cement is setting, the moisture near the lower surface is being absorbed by the



## HYDRATED LIME IN PORTLAND CEMENT

ground and that from the upper surface it is being evaporated. Thus before final set, some of the moisture necessary to the setting of the cement is lost, consequently a layer at the top and at the bottom is of less strength than the concrete in the middle of the section. If we could incorporate some material in the concrete, which would hold a surplus of water until the set is completed, we would here have a valuable adjunct to concrete, particularly when used under conditions such as those of road construction. Mr. Edwards maintains that hydrated lime serves this purpose in concrete. The matter should at least bear further investigation.

The preceding paragraphs show the many advantages to be gained by the addition of hydrated lime in Portland cement. Should these benefits be attained without any particular decrease of the strength properties of Portland cement, then we will have something of immense



## HYDRATED LIME IN PORTLAND CEMENT

commercial value.

As no complete tests on this phase of the subject have as yet been published, the writers have attempted in this paper to determine the effects in tension and compression produced by the addition of various percentages of hydrated lime to Portland cement mortars, taking as mixes the most common mortars, 1:2 and 1:3. A parallel set of tests was also made on neat cement test pieces for comparative purposes.

With the above in view, this paper is submitted.

## TABLE II

The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I. The results of the experiments on the influence of the culture of the pine on the growth of the seedlings of the various species are given in Table I.

TABLE III

## LABORATORY EQUIPMENT AND APPARATUS USED

The laboratory equipment consisted of trowels, scales, beakers, graduates, pans, glass plates and every other thing necessary to carry on the work laid out.

The materials used were stored in water-tight and almost airtight steel receptacles, so that there was little chance of foreign materials or moisture affecting them during the period of laboratory work.

The mixing plates were of glass, 20" x 30" in size. The gang moulds were of brass; the compression pieces being one inch cubes and the tension pieces of standard form as shown in figure 1. The moist cabinet was a receptacle, about 25" x 32" x 42", with a four inch water pan at the bottom. The pans for storage of the test pieces, after the twenty-four hour period, were 20" x 30" x 5" in depth.

The apparatus used for the specific gravity test consisted of the standard Le Chatelier's



## HYDRATED LIME IN PORTLAND CEMENT

specific gravity apparatus. The normal consistency of the neat paste was determined by means of a Vicat needle, similar to that in figure 2.

The accelerated test on the pats was made in a steam oven, about 5" x 30" x 15" in size, with shelves above the water line so that the pats were continually kept in a steam bath.

A temporary apparatus was erected to determine the density of the hydrated lime and the Portland cement. The "45 degree" method is shown in figure 3 and the "Sieve" method in figure 4.

The machine used for testing the briquettes was a 1000# Riehle shot machine similar to that shown in figure 5. The cubes were tested in a 10000# Olsen testing machine, shown in figure 6.



A - Details for Briquette  
B - Details for Gang Mould



Figure 1.





Figure 2



## "45°" METHOD

Determination of Density of Lime and Cement



Figure 3



## "SIEVE" METHOD

Determination of Density  
of Lime and Cement



Sieve A moved horizontally on bars B allowing material to fall through to Beaker.

Figure 4





Figure 5





Figure 6



## MATERIALS USED

The Portland cement used was from the Mitchell Mills of the Lehigh Portland Cement Company and had the following chemical composition:

|                       |           |             |
|-----------------------|-----------|-------------|
| Silica                | - - - - - | 21.50%      |
| Oxide of Iron         | )         |             |
|                       | )         | - - - 8.84% |
| Alumina               | )         |             |
| Oxide of Lime         | - - - -   | 62.09%      |
| Oxide of Magnesia     | - -       | 3.06%       |
| Loss, SO <sub>3</sub> | - - - -   | 1.47%       |

The following figures relative to the Portland cement are the average results of two determinations.

Specific gravity - - - 3.10

Fineness -

4.1% retained on No. 100 sieve

18.2% retained on No. 200 sieve

Normal consistency - - - 24%

Time of initial set - 3 hrs. 15 min.

Time of final set - - 4 hrs. 15 min.



## HYDRATED LIME IN PORTLAND CEMENT

The cement for these tests was taken direct from bin without being previously ignited.

The lime used was the Mitchell Lime Company's hydrate of the following chemical composition.

Calcium Oxide - - - 72.70%

Silica                )  
Iron and Alumina    )      1.44%  
                      )

Magnesium oxide    - - 1.59%

Sulphuris           - - - - .69%

Loss                - - - - - 23.42%

The fineness of the lime as determined by two tests was as follows:

0.6% retained on the No. 100 sieve

0.95% retained on the No. 200 sieve

Note: The residue on the No. 100 sieve was discolored and was apparently largely foreign material.

The sand used was standard Ottawa sand, screened to pass a No. 20 sieve and be retained on a No. 30 sieve.



## DESCRIPTION OF TESTS

### Proportions

The tests were made on mortars of one part cement and lime to two parts sand, and one part cement and lime to three parts sand. A parallel set of tests was also made on neat cement test pieces. The addition of stone should cause no change in results if added in such proportions that the voids are properly filled.

The proportions used were taken according to weight measurement, the total of lime and cement being taken as one part of the mixture to a definite number of parts of sand. In the laboratory data given in Part 2, the lime is taken as a certain percentage of the cement. Should it be desired to convert the lime percentage into a percentage of the total lime and cement, the curve and table of Plate 1 may be used. The curves of Plates 6 to 17 inclusive give the strength in terms of the percent of the total lime and cement. The volume rela-



## HYDRATED LIME IN PORTLAND CEMENT

tions are shown in the curves of Plates 18 to 23 inclusive.

On some jobs, volume measurements are used. In order that the results obtained might be given in terms of volume measurements, the density of the lime and cement was determined. While these densities may not be strictly correct, yet they are relatively correct, since the lime and cement determinations were made by the same methods and under the same conditions. An average of six determinations by two methods was taken as the correct density of the lime and cement. The data for the "sieve" method follows:

|    | Wt. of lime<br>and beaker | Wt. of<br>beaker | Wt. of<br>Lime |
|----|---------------------------|------------------|----------------|
| 1. | 212.1                     | 100.2            | 111.9          |
| 2. | 211.6                     | 100.2            | 111.4          |
| 3. | 211.5                     | 100.2            | 111.3          |
| 4. | 210.5                     | 100.2            | 110.3          |
| 5. | 212.0                     | 100.2            | 111.8          |
| 6. | 212.7                     | 100.2            | 112.5          |
|    | Average                   |                  | <u>111.56</u>  |

the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

It is the first time in the history of the world.

FREEMAN AND SNOW

## PLATE I

Curve Showing Relation Between  
 Percentage of Lime, as Percent of Cement  
 (by weight) to Per Cent of Lime and  
 Cement (by weight)





## HYDRATED LIME IN PORTLAND CEMENT

|    | Wt. of Cement<br>and beaker | Wt. of<br>beaker | Wt. of<br>Cement |
|----|-----------------------------|------------------|------------------|
| 1. | 418.9                       | 100.2            | 318.7            |
| 2. | 420.6                       | 100.2            | 320.4            |
| 3. | 420.4                       | 100.2            | 320.2            |
| 4. | 422.6                       | 100.2            | 322.4            |
| 5. | 424.1                       | 100.2            | 323.9            |
| 6. | 435.0                       | 100.2            | 329.8            |
|    |                             | Average          | <u>322.5</u>     |

The "sieve" method is shown in the sketch of figure 4. The "45 degree" method is shown in the sketch in figure 3. Note the height of fall is the same in both methods. This was done to insure a uniformity of results. The data for the "45 degree" method follows:

|    | Wt. of Lime<br>and beaker | Wt. of<br>beaker | Wt. of<br>Lime |
|----|---------------------------|------------------|----------------|
| 1. | 211.3                     | 100.2            | 111.1          |
| 2. | 210.4                     | 100.2            | 110.2          |
| 3. | 211.85                    | 100.2            | 111.65         |
| 4. | 208.6                     | 100.2            | 108.4          |
| 5. | 209.3                     | 100.2            | 109.1          |
| 6. | 210.6                     | 100.2            | <u>110.4</u>   |
|    |                           | Average          | <u>108.47</u>  |



## HYDRATED LIME IN PORTLAND CEMENT

Note: Weights are given in grams.

The weight of the beaker was taken as the average of three weighings.

The average value of the lime by the two methods was taken as 110.0 grams.

The volume of the beaker was taken as 275 cc., the average of two determinations.

From the above data, the density of the lime and cement was determined as follows:

$$\text{Wt. of cement} \quad \frac{322.5}{275} = 1.17 \text{ gms/cc.}$$

$$\text{Wt. of lime} \quad \frac{110.0}{275} = 0.4 \text{ gms/cc.}$$

$$\frac{0.4}{1.17} \times 100 = 34.15\%$$

Density of lime is 0.3415 as compared with cement.

The curve and table of Plate 2, shows the relation between the percent of lime (by weight) of the total lime and cement. The curves in figures to inclusive give the strength results in terms of the percentage of lime by



FREEMAN AND SNOOK

## PLATE 2

Curve Showing Relation Between  
 Percentage of Lime, as % of Lime and  
 Cement (by Volume) to % of Lime  
 and Cement (by Weight)

% of Lime as % of Lime and Cement (by Volume)

% of Lime as % of Lime and Cement (by weight)



% of Lime  
 As % of Lime  
 and Cement  
 by wt. by vol.

|       |      |
|-------|------|
| 0     | 0    |
| 3.84  | 10.5 |
| 5.67  | 15.0 |
| 7.40  | 19.0 |
| 9.09  | 22.6 |
| 10.70 | 25.9 |
| 12.2  | 28.9 |
| 13.8  | 31.9 |
| 15.2  | 34.4 |
| 16.67 | 37.0 |



## HYDRATED LIME IN PORTLAND CEMENT

volume.

The formula used for converting the weight measurements was derived as follows:

Let  $m$  = reciprocal of density of cement

Let  $km$  = reciprocal of density of lime

$$mx \% \text{ of cement (by wt.)} = \text{vol. of cement} = X$$

$$kmx \% \text{ of lime (by wt.)} = \text{vol. of lime} = Y$$

$$\text{Total vol. of lime and cement} = X + Y$$

$$\text{Proportion (by vol.) of lime} = \frac{Y}{X + Y}$$

$$\frac{1}{m} = 1.17 \quad m = 0.855$$

$$\frac{1}{km} = 0.4 \quad km = 2.5$$

Example:

$$\begin{aligned} \% \text{ of cement (by wt.) of total lime and} \\ \text{cement} &= 96.16 \end{aligned}$$

$$\begin{aligned} \% \text{ of lime (by wt.) of the total lime and} \\ \text{cement} &= 3.84 \end{aligned}$$

$$.855 \times 96.16 = 82.216 = X$$

$$2.5 \times 3.84 = 9.6 = Y$$

$$\frac{9.6}{82.216 + 9.6} \times 100 = 10.5\% \text{ or percentage of lime (by vol.) of the total lime and cement.}$$



## HYDRATED LIME IN PORTLAND CEMENT

### Time of Set

The addition of lime to the neat paste increased the time of initial and final set as shown in the curves of Plate 3.

### Consistency

The normal consistency of all neat pastes was determined by means of the Vicat apparatus, shown in figure 2. The effect upon the normal consistency of the cement produced by the addition of lime is clearly shown in the data. The gradual increase is shown at a glance by referring to the curve of Plate 4.

Feret's percentage of water for Portland cement mortar of standard consistency, tabulated in Plate 5, was used in determining the consistency of mortars. These figures agree very closely with the results of formulas commonly used to obtain this result. The mortars were in all cases of a quaking consistency; water could easily be brought to the surface under the pressure of the trowel.



FREEMAN AND SNOOK

## PLATE 3

Curves Showing Relation Between  
 Initial and Final Sets of Neat Cement  
 Paste and % of Lime, as % of  
 Lime and Cement (by weight)





FREEMAN AND SNOW

## PLATE 4

Curve Showing Relation Between  
Normal Consistency of Neat Paste  
and Percentage of Lime,  
as % of Lime and Cement (by weight)





## PLATE 5

Feret's Percentages of  
Water for Portland Cement Mortar  
of Standard Consistency

| % of<br>Neat<br>Cement<br>Mortar | Per Cent of Water in<br>Terms of Cement and Sand |      |      |      |      |
|----------------------------------|--------------------------------------------------|------|------|------|------|
|                                  | 1:1                                              | 1:2  | 1:3  | 1:4  | 1:5  |
| 18                               | 12.0                                             | 10.0 | 9.0  | 8.4  | 8.0  |
| 19                               | 12.3                                             | 10.2 | 9.2  | 8.5  | 8.1  |
| 20                               | 12.7                                             | 10.4 | 9.3  | 8.7  | 8.2  |
| 21                               | 13.0                                             | 10.7 | 9.5  | 8.8  | 8.3  |
| 22                               | 13.3                                             | 10.9 | 9.7  | 8.9  | 8.4  |
| 23                               | 13.7                                             | 11.1 | 9.8  | 9.1  | 8.5  |
| 24                               | 14.0                                             | 11.3 | 10.0 | 9.2  | 8.6  |
| 25                               | 14.3                                             | 11.6 | 10.2 | 9.5  | 8.8  |
| 26                               | 14.7                                             | 11.8 | 10.3 | 9.5  | 8.9  |
| 27                               | 15.0                                             | 12.0 | 10.5 | 9.6  | 9.0  |
| 28                               | 15.3                                             | 12.2 | 10.7 | 9.7  | 9.1  |
| 29                               | 15.7                                             | 12.5 | 10.8 | 9.9  | 9.2  |
| 30                               | 16.0                                             | 12.7 | 11.0 | 10.0 | 9.3  |
| 31                               | 16.3                                             | 12.9 | 11.2 | 10.1 | 9.4  |
| 32                               | 16.7                                             | 13.1 | 11.3 | 10.3 | 9.5  |
| 33                               | 17.0                                             | 13.3 | 11.5 | 10.4 | 9.6  |
| 34                               | 17.3                                             | 13.6 | 11.7 | 10.5 | 9.7  |
| 35                               | 17.7                                             | 13.8 | 11.8 | 10.7 | 9.9  |
| 36                               | 18.0                                             | 14.0 | 12.0 | 10.8 | 10.0 |
| 37                               | 18.3                                             | 14.2 | 12.2 | 10.9 | 10.1 |
| 38                               | 18.7                                             | 14.4 | 12.3 | 11.1 | 10.2 |
| 39                               | 19.0                                             | 14.7 | 12.5 | 11.2 | 10.3 |
| 40                               | 19.3                                             | 14.9 | 12.7 | 11.3 | 10.4 |
| 41                               | 19.7                                             | 15.1 | 12.8 | 11.5 | 10.5 |
| 42                               | 20.0                                             | 15.3 | 13.0 | 11.6 | 10.6 |
| 43                               | 20.3                                             | 15.6 | 13.2 | 11.7 | 10.7 |
| 44                               | 20.7                                             | 15.8 | 13.3 | 11.9 | 10.8 |
| 45                               | 21.0                                             | 16.0 | 13.5 | 12.0 | 11.0 |
| 46                               | 21.3                                             | 16.1 | 13.7 | 12.1 | 11.1 |



## HYDRATED LIME IN PORTLAND CEMENT

### Mixing

All materials were weighed. The cement and lime were spread evenly on the glass plate and mixed dry before adding the sand. The aggregate was again mixed dry after the sand was added. A crater was then made in the center and the proper percentage of water added. The materials were turned from the outer edge into the crater with the aid of the trowels, until all the water was absorbed. The mass was then kneaded for about two minutes when it appeared to be perfectly mixed. A single batch, of approximately 3000 grams, was mixed to make fifteen briquettes, fifteen cubes and from three to five pats.

All batches were mixed by the same man who attempted a uniformity of procedure.

### Moulding

The moulds, with inner surfaces oiled, were placed on glass plates. The paste or mortar was pressed into the moulds, care being taken



## HYDRATED LIME IN PORTLAND CEMENT

to put the same pressure on each test piece, and the surface struck off and smoothed with a trowel.

### Storage

All test pieces were kept in the moist cabinet for approximately twenty-four hours, the exact number of hours being noted on the data sheets. The moulds were then removed and the one-day test made. The remaining test pieces were kept immersed in water in the storage pans until tested. One pat was kept immersed in water and one exposed to the air, and observed at intervals for any track of cracking, distortion, checking or disintegrating.

### Testing

The one-day test was made as soon as the moulds were removed. The other tests were made as soon as the test pieces were taken from the pans, on the proper day. Three test pieces of each batch were tested, one day, seven days, and twenty-eight days after date of mixing, an average of three being taken as the correct value.



## HYDRATED LIME IN PORTLAND CEMENT

The test picces were tested in the machines previously noted. The cubes were placed on a ball and socket block and between two blotters so that the pressure would be more evenly distributed.

Besides the pats previously mentioned, after being in the moist cabinet for twenty-four hours, a third pat was placed in a steam bath for five hours and observed for the same defects as were noted in the others.



## RESULTS OF TESTS

As previously mentioned, all the data has been plotted in the form of curves. It is not claimed that these curves are perfectly accurate, i.e., drawn thru the exact points. Under the assumption that the results would be more or less uniform, the curves were drawn to represent a fair average of the points plotted. Only after careful investigation were they drawn.

Although there were several departures from expected results, yet it may be said that they were, in general, uniform.

The form and evenness of texture of the briquette were highly satisfactory, being exceedingly uniform.

Owing to shrinkage, (especially in the pieces containing the higher percentages of lime) and the small size of the cubes, it was noticed that some of the pieces were not true cubes.

Lack of uniformity, in the tests of the cubes (though not seriously so) may be partly



## HYDRATED LIME IN PORTLAND CEMENT

attributed to this.

As could be deduced from the above, it was noticed that the amount of shrinkage in setting increased with the percentage of lime added. With the exception of the two highest percentages of lime in the neat cement, however, the pats showed no signs of cracking or disintegrating in either the water, air or accelerated tests.

The one-day tests were not as satisfactory as the other tests, though they were up to standard.

The Standard Specifications for Portland Cement adopted by the American Society for Testing Materials and other engineering societies, contains the following paragraph on

### TENSILE STRENGTH

"The minimum requirements for tensile strength of briquettes, one square inch in cross section, shall be as follows, and the cement shall show no retrogression in strength within the periods specified:

## Some interesting observations

### On the subject of

the 11th century and the 12th century church at  
Wimborne Minster. The former was built mostly  
about 1100, the latter about 1150.

The first had a single tower and a single  
chancel, while the second had mostly  
single bays and single aisles, and the choir  
had three bays and three aisles. The main  
aisle had three bays and three aisles.

Thus

the first was built in 1100, and the second in 1150.  
The former had a single tower and a single chancel,  
while the latter had three bays and three aisles, and  
the choir had three bays and three aisles.

### Conclusion

Thus the two churches are very similar, both  
in their exterior and interior. The former  
had a single tower and a single chancel,  
while the latter had three bays and three aisles, and  
the choir had three bays and three aisles.

Thus the two churches are very similar,

## HYDRATED LIME IN PORTLAND CEMENT

| Age                                         | Neat Cement | Strength |
|---------------------------------------------|-------------|----------|
| 24 hours (in moist air)                     |             | 175#     |
| 7 days (one day in moist air, 6 in water)   | 500#        |          |
| 28 days (one day in moist air, 27 in water) | 600#        |          |

One Part Cement, Three Parts Standard  
Ottowa Sand

|                                             |      |
|---------------------------------------------|------|
| 7 days (one day in moist air, 6 in water)   | 200# |
| 28 days (one day in moist air, 27 in water) | 275# |

By referring to the curves of Plates 6, 7 and 8, it will be seen that the addition of 12% (by weight) hydrated lime, does not weaken the neat paste enough to bring the tensile strength below the minimum allowed value. It is also shown that the addition of 8% hydrated lime to the 1:3 mortar gives strength results above the standard requirements.

No increase in tensile strength which some investigators say should result, was noted when small percentages of hydrated lime were added to the cement mortar.

It may be taken as a general rule, that the



## HYDRATED LIME IN PORTLAND CEMENT

compressive strength of a material increases with the tensile strength. Merriman gives the compressive strength of one month old neat Portland cement paste as 3000 pounds per square inch. By referring to the curves of Plate 10, it will be seen that with the addition of 16-2/3% (by weight) of hydrated lime, the value of neat cement is 3000 pounds per square inch. Merriman gives the strength of hydraulic mortars as 6 to 10 times the tensile strength. The standard German specifications require the compressive strength of concretes and mortars to be at least ten times their tensile strength. In the compression curves, it will be seen that the compressive strength exceeds in the majority of cases the tensile strength in the proportion of more than 10 to 1. This agrees very favorably with the above three statements.

It was found in both the neat paste and cement mortar tests, that the compressive strength increased with a small addition (4 or



## HYDRATED LIME IN PORTLAND CEMENT

5%) of hydrated lime.

Enough test pieces were made to complete the three months and one year test (previously mentioned) but only enough time has elapsed to allow of a few three months tests. It is possible that some interesting results showing a fair increase in strength after the three months period, will be developed. This would, though, be more apt to occur, were the pieces allowed to set in the air since it is a known fact that the final set of lime occurs a long time after being placed, and only in air.

and the world without constraint.

### and I had about 1/2

minutes to do what I wanted to do  
I just did it. I was very nervous about  
what would happen after I got home.  
I was afraid that my parents would  
be angry at me and that they would  
not let me go to school again. But I was  
able to calm myself down and I was able  
to talk to my parents and explain what  
had happened and why I had done it. They  
were very understanding and supportive.  
They told me that I made a mistake but  
they also told me that I was a good person  
and that they were proud of me. I am still  
worried about what will happen if I get  
caught but I know that I did the right thing  
and that I will be okay.

## CONCLUSION

We have seen that by the addition of hydrated lime to Portland cement, the following benefits resulted:

1. Increased plasticity, which
  - a) destroys the excess friction caused by the angular sand and stone particles, hence it becomes a lubricant.
  - b) makes mixing easier, hence cheaper labor expense and a better mix.
  - c) allows an easier flow, hence better for chute work, etc.
  - d) causes concrete to automatically fall into place, hence eliminating "stone pockets" and making certain of a complete covering of steel reinforcing.
2. Increased density, which
  - a) makes the concrete more water-proof, hence, the alternate wetting and drying, so detrimental to all concrete work, is largely eliminated. (Note: The Bureau of

## ANSWER

The author's answer is as follows:

It is well known that the best way to  
analyze any problem is to first understand  
the problem well enough  
to find a way to solve it.  
This can be done by  
writing down the problem and  
then trying to solve it.  
The author has been asked to  
solve the following problem:  
A man walks with  
a child across a stream. He  
cannot walk across the stream alone, and  
he cannot leave his child  
alone in the stream. How  
can he get across the stream  
with his child?

## HYDRATED LIME IN PORTLAND CEMENT

Standards found hydrated lime to be the best adulterant, as concerns the impermeability of the cement, on the two weeks tests.

b) Increases the hardness or toughness, hence of particular value in road construction.

c) Eliminated white efflorescence of salts.

d) Gives whiter and more uniform color, (Haff).

3. Keeps an excess of moisture in concrete, thus

a) Holding enough moisture to allow a complete set of the comparatively slow acting cement combination.

b) Helping to prevent hair cracks on surface, due to lack of moisture.

In adding lime, we are adding a material which is in itself "mildly cementitious", and which (since both Portland cement and hydrated lime are neutral) causes no unknown or uncertain

4

• 17 •

## HYDRATED LIME IN PORTLAND CEMENT

chemical actions to be set up, (Warner). Thus there need be no fear that some new action will take place.

The results of these tests show a gradual decrease in the tensile strength of Portland cement mortars, by increasing the proportion of hydrated lime. This decrease is not, however, of sufficient amount to condemn the use of hydrated lime in Portland cement. The advantages gained by its use are so numerous and of such great value, that they more than counterbalance the slight decrease in strength, (i.e. when the hydrated lime is used in the proper proportions).

It should be remembered that the kind of lime and cement used will materially affect the results. By referring to the chemical analysis of the lime and cement used, (see "Materials Used"), it will be seen that when we added the hydrated lime to the Portland cement, we added a lime high in calcium oxide to a cement already high in calcium oxide. Different results would

• 2 • 4 8 2 8

## HYDRATED LIME IN PORTLAND CEMENT

most likely be obtained if a low calcium lime or cement, or a high dolomitic lime was used.

The fact that both the lime and cement were high in CaO, may account for the lack of increased tensile strength, which some investigators say should result from the addition of small percentages of hydrated lime to Portland cement.

Some investigators claim an increased, others a decreased strength of mortars containing hydrated lime, when the mortar is allowed to set under water. This varies with the percentage of lime. A mortar with a high percentage of lime will not set at all under water. In foundation work, it is then not desirable to have too much lime present, even though the strength required is not high.

In conclusion, the writers' wish is to strongly recommend the use of hydrated lime in Portland cement mortars and concrete, when used in the proper proportion. It is not advisable to use a leaner mix and add hydrated lime to



## HYDRATED LIME IN PORTLAND CEMENT

keep the impermeability or other properties of the cement the same as those of a richer mix without the addition of the lime, but, with the same richness or mix, the adding of lime is highly desirable.

On unimportant work, a fairly high percentage of lime may be used. In the more important engineering jobs, where the strength is an important factor, the use of 12% (by weight), equivalent to about a 14% replacement of cement, of hydrated lime, will not lower the tensile strength below the minimum requirements.

Higher percentages may be used, depending on the character of the work.

Where it is desired to limit the use of hydrated lime within the requirements of the specifications on a job, the conditions under which the concrete is to be used, the kind of lime and cement used, and the strength required must be thoroughly investigated. When this is done, complete satisfaction will result.



## HYDRATED LIME IN PORTLAND CEMENT

The writers hope that these experiments will be continued, taking among other things, the following into consideration:

1. Effect on the strength when the test pieces are allowed to set in air.
2. Effect on the strength by the addition of various percentages of dolomitic hydrated lime when the test pieces are allowed to set in water and in air.



## STRENGTH CURVES



FREEMAN AND SNOW

PLATE 6  
One day tests.





FREEMAN AND SNOW

PLATE 7  
7 day tests





FREEMAN AND SNOW

PLATE 8  
28 day tests





FREEMAN AND SNOW

PLATE 9  
One day tests





FREEMAN AND SNOOK

PLATE 10  
7 day tests



FREEMAN AND SNOW

PLATE II  
28 dar tests





PLATE 12  
Neat-tension tests





FREEMAN AND SNOW

PLATE 13  
1:2 - tension tests





FREEMAN AND SNOW

PLATE 14  
1:3-tension tests





PLATE 15  
Neat-Compression tests





PLATE 16  
1.2 - Compression tests





FREEMAN AND SNOW

PLATE 17  
1:3 Compression tests

Compressive strength 11/18.5.





FREEMAN AND SNOW

PLATE 18  
One day tests





FREEMAN AND SNOW

PLATE 19  
7 day tests



FREEMAN AND SNOOK

PLATE 20  
28 day tests



FREEMAN AND SNOOK

PLATE 21  
One day tests





FREEMAN AND SNOOK

PLATE 22  
7 day tests



FREEMAN AND SNOW

PLATE 23  
28 day tests



PART 2

LABORATORY DATA



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX A

0

% Lime

Normal Consistency 24 %

Mixed February 3, 1915

Time of Set: Initial 3-15 hrs. Final: 4-15 hrs.  
60 60

| No | Hr. Mixed | Tested Date | Hr. By | Tensile Stress<br>Briquette | Comp. Stress<br>Cube | Average | Remarks |
|----|-----------|-------------|--------|-----------------------------|----------------------|---------|---------|
| 1  | 12:30     | 2/4/15      | 1:15 H | 350                         |                      |         |         |
| 2  |           |             |        | 271                         | 341                  |         |         |
| 3  |           |             |        | 402                         |                      |         |         |
| 4  |           |             | K      |                             | 3402                 |         |         |
| 5  |           |             |        |                             | 3495                 | 3511    |         |
| 6  |           |             |        |                             | 3620                 |         |         |
| 7  |           | 2/10/15     | H      | 763                         |                      |         |         |
| 8  |           |             |        | 684                         | 745                  |         |         |
| 9  |           |             |        | 788                         |                      |         |         |
| 10 |           |             | K      |                             | 5925                 |         |         |
| 11 |           |             |        |                             | 7978                 | 7488    |         |
| 12 |           |             |        |                             | 8562                 |         |         |
| 13 |           | 3/3/15      | H      | 956                         |                      |         |         |
| 14 |           |             |        | Flaw                        | 923                  |         |         |
| 15 |           |             |        | 891                         |                      |         |         |
| 16 |           |             | K      |                             | 5715                 |         |         |
| 17 |           |             |        |                             | 5440                 | 5660    |         |
| 18 |           |             |        |                             | 5820                 |         |         |
| 19 |           | 5/11/15     | H      | 860                         |                      |         |         |
| 20 |           |             |        | 834                         | 824                  |         |         |
| 21 |           |             |        | 789                         |                      |         |         |
| 22 |           |             | K      |                             | 9500                 |         |         |
| 23 |           |             |        |                             | 1080                 | 9617    |         |
| 24 |           |             |        |                             | 8270                 |         |         |
| 25 |           |             |        |                             |                      |         |         |
| 26 |           |             |        |                             |                      |         |         |
| 27 |           |             |        |                             |                      |         |         |
| 28 |           |             |        |                             |                      |         |         |
| 29 |           |             |        |                             |                      |         |         |
| 30 |           |             |        |                             |                      |         |         |
| 31 |           |             |        |                             |                      |         |         |
| 32 |           |             |        |                             |                      |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   | OK      |
| 2  | Normal in water | OK      |
| 3  | Accelerated     | OK      |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX K

4

% Lime

Normal Consistency 26 $\frac{1}{2}$  %

Mixed March 24, 1915

Time of Set: Initial 3-15 hrs. Final: 4-25 hrs.  
60

| No | Hr.<br>Mixed  | Tested |     | Tensile Stress |           | Comp. Stress |      | Remarks |
|----|---------------|--------|-----|----------------|-----------|--------------|------|---------|
|    |               | Date   | Hr. | By             | Briquette | Average      | Cube |         |
| 1  | 11:00 3/25/15 | 1:     | H   | 305            |           |              |      |         |
| 2  |               |        |     | 279            | 280       |              |      |         |
| 3  |               |        |     | 256            |           |              |      |         |
| 4  |               |        | K   |                |           | 2960         |      |         |
| 5  |               |        |     |                |           | 2760         | 2890 |         |
| 6  |               |        |     |                |           | 2950         |      |         |
| 7  | 3/31/15       |        | H   | 569            |           |              |      |         |
| 8  |               |        |     | 687            | 599       |              |      |         |
| 9  |               |        |     | 549            |           |              |      |         |
| 10 |               |        | K   |                |           | 7850         |      |         |
| 11 |               |        |     |                |           | 6560         | 7337 |         |
| 12 |               |        |     |                |           | 7600         |      |         |
| 13 | 4/21/15       |        | H   | 830            |           |              |      |         |
| 14 |               |        |     | 860            | 836       |              |      |         |
| 15 |               |        |     | 817            |           |              |      |         |
| 16 |               |        | K   |                |           | 8000         |      |         |
| 17 |               |        |     |                |           | 8260         | 8130 |         |
| 18 |               |        |     |                |           | Flaw         |      |         |
| 19 |               |        |     |                |           |              |      |         |
| 20 |               |        |     |                |           |              |      |         |
| 21 |               |        |     |                |           |              |      |         |
| 22 |               |        |     |                |           |              |      |         |
| 23 |               |        |     |                |           |              |      |         |
| 24 |               |        |     |                |           |              |      |         |
| 25 |               |        |     |                |           |              |      |         |
| 26 |               |        |     |                |           |              |      |         |
| 27 |               |        |     |                |           |              |      |         |
| 28 |               |        |     |                |           |              |      |         |
| 29 |               |        |     |                |           |              |      |         |
| 30 |               |        |     |                |           |              |      |         |
| 31 |               |        |     |                |           |              |      |         |
| 32 |               |        |     |                |           |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

Neat Cement Paste

MIX J

6

% Lime

Normal Consistency 26 $\frac{1}{2}$  %

Mixed March 24, 1915

Time of Set: Initial 3-10 hrs.  
60 Final: 4-30 hrs.  
60

| No | Hr.<br>Mixed | Tested |     | Tensile Stress |            | Comp. Stress |      | Remarks |
|----|--------------|--------|-----|----------------|------------|--------------|------|---------|
|    |              | Date   | Hr. | By             | Brigquette | Average      | Cube |         |
| 1  | 9:15 3/25/15 | 1:     | H   | 250            |            |              |      |         |
| 2  |              |        |     | 380            | 271        |              |      |         |
| 3  |              |        |     | 284            |            |              |      |         |
| 4  |              |        | K   |                |            | 4080         |      |         |
| 5  |              |        |     |                |            | 3750         | 3915 |         |
| 6  |              |        |     |                |            | Flaw         |      |         |
| 7  | 3/31/15      |        | H   | 621            |            |              |      |         |
| 8  |              |        |     | 500            | 624        |              |      |         |
| 9  |              |        |     | 750            |            |              |      |         |
| 10 |              |        | K   |                |            | 7130         |      |         |
| 11 |              |        |     |                |            | 4380         | 6073 |         |
| 12 |              |        |     |                |            | 6710         |      |         |
| 13 | 4/21/15      |        | H   | 750            |            |              |      |         |
| 14 |              |        |     | 824            | 772        |              |      |         |
| 15 |              |        |     | 743            |            |              |      |         |
| 16 |              |        | K   |                |            | 8920         |      |         |
| 17 |              |        |     |                |            | 7500         | 8193 |         |
| 18 |              |        |     |                |            | 8170         |      |         |
| 19 |              |        |     |                |            |              |      |         |
| 20 |              |        |     |                |            |              |      |         |
| 21 |              |        |     |                |            |              |      |         |
| 22 |              |        |     |                |            |              |      |         |
| 23 |              |        |     |                |            |              |      |         |
| 24 |              |        |     |                |            |              |      |         |
| 25 |              |        |     |                |            |              |      |         |
| 26 |              |        |     |                |            |              |      |         |
| 27 |              |        |     |                |            |              |      |         |
| 28 |              |        |     |                |            |              |      |         |
| 29 |              |        |     |                |            |              |      |         |
| 30 |              |        |     |                |            |              |      |         |
| 31 |              |        |     |                |            |              |      |         |
| 32 |              |        |     |                |            |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste MIX H 8 % Lime  
 Normal Consistency 27- % Mixed March 19, 1915  
 Time of Set: Initial 3-10 hrs. Final: 4-30 hrs.  
60

| No | Hr.<br>Mixed | Tested |     | Tensile Stress |           | Comp. Stress |      | Remarks |
|----|--------------|--------|-----|----------------|-----------|--------------|------|---------|
|    |              | Date   | Hr. | By             | Briquette | Average      | Cube |         |
| 1  | 9:30 3/20/15 |        | 11  | H              | 350       |              |      |         |
| 2  |              |        |     |                | 333       | 331          |      |         |
| 3  |              |        |     |                | 311       |              |      |         |
| 4  |              |        |     | K              |           |              | 2720 |         |
| 5  |              |        |     |                |           |              | 2970 | 2730    |
| 6  |              |        |     |                |           |              | 2500 |         |
| 7  | 3/26/15      |        |     | H              | 539       |              |      |         |
| 8  |              |        |     |                | 552       | 530          |      |         |
| 9  |              |        |     |                | 500       |              |      |         |
| 10 |              |        |     | K              |           |              | 8170 |         |
| 11 |              |        |     |                |           |              | 7520 | 8127    |
| 12 |              |        |     |                |           |              | 8690 |         |
| 13 | 4/16/15      |        |     | H              | 544       |              |      |         |
| 14 |              |        |     |                | 540       | 529          |      |         |
| 15 |              |        |     |                | 502       |              |      |         |
| 16 |              |        |     | K              |           |              | 8130 |         |
| 17 |              |        |     |                |           |              | 8040 | 8085    |
| 18 |              |        |     |                |           |              | Flaw |         |
| 19 |              |        |     |                |           |              |      |         |
| 20 |              |        |     |                |           |              |      |         |
| 21 |              |        |     |                |           |              |      |         |
| 22 |              |        |     |                |           |              |      |         |
| 23 |              |        |     |                |           |              |      |         |
| 24 |              |        |     |                |           |              |      |         |
| 25 |              |        |     |                |           |              |      |         |
| 26 |              |        |     |                |           |              |      |         |
| 27 |              |        |     |                |           |              |      |         |
| 28 |              |        |     |                |           |              |      |         |
| 29 |              |        |     |                |           |              |      |         |
| 30 |              |        |     |                |           |              |      |         |
| 31 |              |        |     |                |           |              |      |         |
| 32 |              |        |     |                |           |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

|                    |              |                                       |                                |
|--------------------|--------------|---------------------------------------|--------------------------------|
| <u>Neat</u> Cement | <u>Paste</u> | <u>MIX B</u>                          | <u>10</u> % Lime               |
| Normal Consistency | 27 %         |                                       | Mixed <u>February 8</u> , 1915 |
|                    |              | Time of Set: Initial <u>3-15</u> hrs. | Final: <u>4-35</u> hrs.        |
|                    |              | 60                                    | 60                             |

| No | Hr.<br>Mixed | Tested  |     | Tensile Stress |           | Comp. Stress |       | Remarks |
|----|--------------|---------|-----|----------------|-----------|--------------|-------|---------|
|    |              | Date    | Hr. | By             | Briquette | Average      | Cube  |         |
| 1  | 10:30        | 2/9/15  | 1:  | H              | 262       |              |       |         |
| 2  |              |         | 15  |                | 261       | 252          |       |         |
| 3  |              |         | .   |                | 234       |              |       |         |
| 4  |              |         |     | K              |           |              | 1980  |         |
| 5  |              |         |     |                |           |              | 1650  | 1830    |
| 6  |              |         |     |                |           |              | 1860  |         |
| 7  |              | 2/15/15 |     | H              | 524       |              |       |         |
| 8  |              |         |     |                | 585       | 554          |       |         |
| 9  |              |         |     |                | 554       |              |       |         |
| 10 |              |         |     | K              |           |              | 6647  |         |
| 11 |              |         |     |                |           |              | 7538  | 6475    |
| 12 |              |         |     |                |           |              | 5240  |         |
| 13 |              | 3/8/15  |     | H              | 691       |              |       |         |
| 14 |              |         |     |                | 723       | 695          |       |         |
| 15 |              |         |     |                | 672       |              |       |         |
| 16 |              |         |     | K              |           |              | 10200 |         |
| 17 |              |         |     |                |           |              | 5980  | 7155    |
| 18 |              |         |     |                |           |              | 5286  |         |
| 19 |              | 5/11/15 |     | H              | 709       |              |       |         |
| 20 |              |         |     |                | 625       | 656          |       |         |
| 21 |              |         |     |                | 634       |              |       |         |
| 22 |              |         |     | K              |           |              | 5530  |         |
| 23 |              |         |     |                |           |              | 5160  | 5345    |
| 24 |              |         |     |                |           |              | Flaw  |         |
| 25 |              |         |     |                |           |              |       |         |
| 26 |              |         |     |                |           |              |       |         |
| 27 |              |         |     |                |           |              |       |         |
| 28 |              |         |     |                |           |              |       |         |
| 29 |              |         |     |                |           |              |       |         |
| 30 |              |         |     |                |           |              |       |         |
| 31 |              |         |     |                |           |              |       |         |
| 32 |              |         |     |                |           |              |       |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   | OK      |
| 2  | Normal in water | OK      |
| 3  | Accelerated     | OK      |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX C

12

% Lime

Normal Consistency 30 %

Mixed February 10, 1915

Time of Set: Initial 3-25 60 hrs. Final: 4-45 60 hrs.

| No | Hr.<br>Mixed  | Tested |    | Briquette | Tensile Stress<br>Average | Comp. Stress<br>Cube<br>Average | Remarks |
|----|---------------|--------|----|-----------|---------------------------|---------------------------------|---------|
| 1  | 11:00 2/11/15 | 1:     | H  | 254       |                           |                                 |         |
| 2  |               |        | 15 | 255       | 254                       |                                 |         |
| 3  |               |        |    | Flaw      |                           |                                 |         |
| 4  |               |        | K  |           |                           | 1160                            |         |
| 5  |               |        |    |           |                           | 1540                            | 1513    |
| 6  |               |        |    |           |                           | 1840                            |         |
| 7  | 2/17/15       |        | H  | 540       |                           |                                 |         |
| 8  |               |        |    | 615       | 543                       |                                 |         |
| 9  |               |        |    | 474       |                           |                                 |         |
| 10 |               |        | K  |           |                           | 6040                            |         |
| 11 |               |        |    |           |                           | 4425                            | 4905    |
| 12 |               |        |    |           |                           | 4250                            |         |
| 13 | 3/10/15       |        | H  | 658       |                           |                                 |         |
| 14 |               |        |    | 676       | 640                       |                                 |         |
| 15 |               |        |    | 614       |                           |                                 |         |
| 16 |               |        | K  |           |                           | 4670                            |         |
| 17 |               |        |    |           |                           | 7780                            | 6730    |
| 18 |               |        |    |           |                           | 7740                            |         |
| 19 | 5/11/15       |        | H  | 680       |                           |                                 |         |
| 20 |               |        |    | 624       | 622                       |                                 |         |
| 21 |               |        |    | 563       |                           |                                 |         |
| 22 |               |        | K  |           |                           | 9260                            |         |
| 23 |               |        |    |           |                           | 5300                            | 8230    |
| 24 |               |        |    |           |                           | 10140                           |         |
| 25 |               |        |    |           |                           |                                 |         |
| 26 |               |        |    |           |                           |                                 |         |
| 27 |               |        |    |           |                           |                                 |         |
| 28 |               |        |    |           |                           |                                 |         |
| 29 |               |        |    |           |                           |                                 |         |
| 30 |               |        |    |           |                           |                                 |         |
| 31 |               |        |    |           |                           |                                 |         |
| 32 |               |        |    |           |                           |                                 |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   | OK      |
| 2  | Normal in water | OK      |
| 3  | Accelerated     | OK      |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX D

14

% Lime

Normal Consistency 31 %

Mixed February 10 1915

Time of Set: Initial 3-30 hrs. Final: 5 hrs.  
60

| No | Hr.<br>Mixed | Tested<br>Date | Hr.<br>By | Tensile Stress<br>Briquette | Comp. Stress<br>Cube | Average | Remarks |
|----|--------------|----------------|-----------|-----------------------------|----------------------|---------|---------|
| 1  | 3:00         | 2/11/15        | 1: H      | 190                         |                      |         |         |
| 2  |              |                |           | 213                         | 201                  |         |         |
| 3  |              |                |           | 200                         |                      |         |         |
| 4  |              |                | K         |                             | 980                  |         |         |
| 5  |              |                |           |                             | 840                  | 937     |         |
| 6  |              |                |           |                             | 990                  |         |         |
| 7  |              | 2/17/15        | H         | 486                         |                      |         |         |
| 8  |              |                |           | 559                         | 510                  |         |         |
| 9  |              |                |           | 485                         |                      |         |         |
| 10 |              |                | K         |                             | 4968                 |         |         |
| 11 |              |                |           |                             | 4800                 | 4927    |         |
| 12 |              |                |           |                             | 5012                 |         |         |
| 13 |              | 3/10/15        | H         | 591                         |                      |         |         |
| 14 |              |                |           | 687                         | 595                  |         |         |
| 15 |              |                |           | 507                         |                      |         |         |
| 16 |              |                | K         |                             | 6110                 |         |         |
| 17 |              |                |           |                             | 7620                 | 6650    |         |
| 18 |              |                |           |                             | 6220                 |         |         |
| 19 |              | 5/11/15        | H         | 618                         |                      |         |         |
| 20 |              |                |           | 533                         | 586                  |         |         |
| 21 |              |                |           | 606                         |                      |         |         |
| 22 |              |                | K         |                             | 10330                |         |         |
| 23 |              |                |           |                             | 9630                 | 9090    |         |
| 24 |              |                |           |                             | 7310                 |         |         |
| 25 |              |                |           |                             |                      |         |         |
| 26 |              |                |           |                             |                      |         |         |
| 27 |              |                |           |                             |                      |         |         |
| 28 |              |                |           |                             |                      |         |         |
| 29 |              |                |           |                             |                      |         |         |
| 30 |              |                |           |                             |                      |         |         |
| 31 |              |                |           |                             |                      |         |         |
| 32 |              |                |           |                             |                      |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   | OK      |
| 2  | Normal in water | OK      |
| 3  | Accelerated     | OK      |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX E

16

% Lime

Normal Consistency 33 %

Mixed February 15, 1915

Time of Set: Initial 3-35 hrs. Final: 5-15 hrs.

60

60

| No | Hr.<br>Mixed | Tested  |     |    | Tensile Stress<br>Briquette | Comp. Stress<br>Cube | Remarks |
|----|--------------|---------|-----|----|-----------------------------|----------------------|---------|
|    |              | Date    | Hr. | By | Average                     | Average              |         |
| 1  | 10:30        | 2/16/15 | 1:  | H  | 175                         |                      |         |
| 2  |              |         |     |    | 197                         | 182                  |         |
| 3  |              |         |     |    | 173                         |                      |         |
| 4  |              |         |     | K  |                             | 1672                 |         |
| 5  |              |         |     |    |                             | 1170                 | 1547    |
| 6  |              |         |     |    |                             | 1800                 |         |
| 7  |              | 2/23/15 |     | H  | 469                         |                      |         |
| 8  |              |         |     |    | 414                         | 449                  |         |
| 9  |              |         |     |    | 464                         |                      |         |
| 10 |              |         |     | K  |                             | 3805                 |         |
| 11 |              |         |     |    |                             | 3825                 | 3877    |
| 12 |              |         |     |    |                             | 4000                 |         |
| 13 |              | 3/15/15 |     | H  | 496                         |                      |         |
| 14 |              |         |     |    | 555                         | 543                  |         |
| 15 |              |         |     |    | 578                         |                      |         |
| 16 |              |         |     | K  |                             | 3860                 |         |
| 17 |              |         |     |    |                             | 4850                 | 4390    |
| 18 |              |         |     |    |                             | 4460                 |         |
| 19 |              |         |     |    |                             |                      |         |
| 20 |              |         |     |    |                             |                      |         |
| 21 |              |         |     |    |                             |                      |         |
| 22 |              |         |     |    |                             |                      |         |
| 23 |              |         |     |    |                             |                      |         |
| 24 |              |         |     |    |                             |                      |         |
| 25 |              |         |     |    |                             |                      |         |
| 26 |              |         |     |    |                             |                      |         |
| 27 |              |         |     |    |                             |                      |         |
| 28 |              |         |     |    |                             |                      |         |
| 29 |              |         |     |    |                             |                      |         |
| 30 |              |         |     |    |                             |                      |         |
| 31 |              |         |     |    |                             |                      |         |
| 32 |              |         |     |    |                             |                      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   | OK      |
| 2  | Normal in water | OK      |
| 3  | Accelerated     | OK      |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste MIX F 18 % Lime  
Normal Consistency 34 % Mixed February 17, 1915  
Time of Set: Initial 4 hrs. Final: 5-30 60 hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress<br>Brigquette | Average | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|------------------------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By |                              |         | Cube         | Average |         |
| 1  | 9:30         | 2/18/15 | 1: H   | 139                          |         |              |         |         |
| 2  |              |         |        | 152                          | 136     |              |         |         |
| 3  |              |         |        | 117                          |         |              |         |         |
| 4  |              |         | K      |                              |         | Flaw         |         |         |
| 5  |              |         |        |                              |         | 1295         | 1107    |         |
| 6  |              |         |        |                              |         | 920          |         |         |
| 7  |              | 2/24/15 | H      | 435                          |         |              |         |         |
| 8  |              |         |        | 403                          | 414     |              |         |         |
| 9  |              |         |        | 404                          |         |              |         |         |
| 10 |              |         | K      |                              |         | 3070         |         |         |
| 11 |              |         |        |                              |         | 4525         | 3785    |         |
| 12 |              |         |        |                              |         | 3760         |         |         |
| 13 |              | 3/17/15 | H      | 621                          |         |              |         |         |
| 14 |              |         |        | 609                          | 596     |              |         |         |
| 15 |              |         |        | 560                          |         |              |         |         |
| 16 |              |         | K      |                              |         | 5965         |         |         |
| 17 |              |         |        |                              |         | 6390         | 5792    |         |
| 18 |              |         |        |                              |         | 5020         |         |         |
| 19 |              |         |        |                              |         |              |         |         |
| 20 |              |         |        |                              |         |              |         |         |
| 21 |              |         |        |                              |         |              |         |         |
| 22 |              |         |        |                              |         |              |         |         |
| 23 |              |         |        |                              |         |              |         |         |
| 24 |              |         |        |                              |         |              |         |         |
| 25 |              |         |        |                              |         |              |         |         |
| 26 |              |         |        |                              |         |              |         |         |
| 27 |              |         |        |                              |         |              |         |         |
| 28 |              |         |        |                              |         |              |         |         |
| 29 |              |         |        |                              |         |              |         |         |
| 30 |              |         |        |                              |         |              |         |         |
| 31 |              |         |        |                              |         |              |         |         |
| 32 |              |         |        |                              |         |              |         |         |

PAT

| No | Test            | Remarks                         |
|----|-----------------|---------------------------------|
| 1  | Normal in air   | Cracks within twenty four hours |
| 2  | Normal in water | " " " "                         |
| 3  | Accelerated     | " " " "                         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

Neat Cement Paste

MIX G

20

% Lime

Normal Consistency 36 %

Mixed February 17 1915

Time of Set: Initial 4-30 hrs. Final: 6 hrs.  
60

| No | Hr. Mixed | Tested Date | Hr. By | Tensile Stress<br>Briquette | Average | Comp. Stress<br>Cube | Average | Remarks |
|----|-----------|-------------|--------|-----------------------------|---------|----------------------|---------|---------|
| 1  | 2:00      | 2/18/15     | 1: H   | 108                         |         |                      |         |         |
| 2  |           |             |        | 115                         | 117     |                      |         |         |
| 3  |           |             |        | 128                         |         |                      |         |         |
| 4  |           |             | K      |                             |         | 645                  |         |         |
| 5  |           |             |        |                             |         | 570                  | 608     |         |
| 6  |           |             |        |                             |         | 610                  |         |         |
| 7  |           | 2/24/15     | H      | 428                         |         |                      |         |         |
| 8  |           |             |        | 380                         | 391     |                      |         |         |
| 9  |           |             |        | 364                         |         |                      |         |         |
| 10 |           |             | K      |                             |         | 3580                 |         |         |
| 11 |           |             |        |                             |         | 2560                 | 2980    |         |
| 12 |           |             |        |                             |         | 2800                 |         |         |
| 13 |           | 3/17/15     | H      | 479                         |         |                      |         |         |
| 14 |           |             |        | 521                         | 498     |                      |         |         |
| 15 |           |             |        | 495                         |         |                      |         |         |
| 16 |           |             | K      |                             |         | 5250                 |         |         |
| 17 |           |             |        |                             |         | 5720                 | 5473    |         |
| 18 |           |             |        |                             |         | 5450                 |         |         |
| 19 |           |             |        |                             |         |                      |         |         |
| 20 |           |             |        |                             |         |                      |         |         |
| 21 |           |             |        |                             |         |                      |         |         |
| 22 |           |             |        |                             |         |                      |         |         |
| 23 |           |             |        |                             |         |                      |         |         |
| 24 |           |             |        |                             |         |                      |         |         |
| 25 |           |             |        |                             |         |                      |         |         |
| 26 |           |             |        |                             |         |                      |         |         |
| 27 |           |             |        |                             |         |                      |         |         |
| 28 |           |             |        |                             |         |                      |         |         |
| 29 |           |             |        |                             |         |                      |         |         |
| 30 |           |             |        |                             |         |                      |         |         |
| 31 |           |             |        |                             |         |                      |         |         |
| 32 |           |             |        |                             |         |                      |         |         |

PAT

| No | Test            | Remarks                         |
|----|-----------------|---------------------------------|
| 1  | Normal in air   | Cracks within twenty four hours |
| 2  | Normal in water | " " " "                         |
| 3  | Accelerated     | " " " "                         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:2 Cement Mortar MIX A1 0 % Lime  
Normal Consistency 12 $\frac{1}{2}$  % Mixed February 24, 1915

Time of Set: Initial - - - hrs. Final: - - - hrs.

| No | Hr.<br>Mixed | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|--------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date   | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 9:30 2/25/15 | 1:     | H      | 140            |         |              |         |         |
| 2  |              |        |        | 152            | 147     |              |         |         |
| 3  |              |        |        | 149            |         |              |         |         |
| 4  |              |        | K      |                |         | 1360         |         |         |
| 5  |              |        |        |                |         | 1120         | 1207    |         |
| 6  |              |        |        |                |         | 1140         |         |         |
| 7  | 3/3/15       |        | H      | 344            |         |              |         |         |
| 8  |              |        |        | 356            | 363     |              |         |         |
| 9  |              |        |        | 390            |         |              |         |         |
| 10 |              |        | K      |                |         | 1910         |         |         |
| 11 |              |        |        |                |         | 1690         | 1720    |         |
| 12 |              |        |        |                |         | 1560         |         |         |
| 13 | 3/24/15      |        | H      | 495            |         |              |         |         |
| 14 |              |        |        | 527            | 504     |              |         |         |
| 15 |              |        |        | 490            |         |              |         |         |
| 16 |              |        | K      |                |         | 3710         |         |         |
| 17 |              |        |        |                |         | 3540         | 3880    |         |
| 18 |              |        |        |                |         | 4390         |         |         |
| 19 |              |        |        |                |         |              |         |         |
| 20 |              |        |        |                |         |              |         |         |
| 21 |              |        |        |                |         |              |         |         |
| 22 |              |        |        |                |         |              |         |         |
| 23 |              |        |        |                |         |              |         |         |
| 24 |              |        |        |                |         |              |         |         |
| 25 |              |        |        |                |         |              |         |         |
| 26 |              |        |        |                |         |              |         |         |
| 27 |              |        |        |                |         |              |         |         |
| 28 |              |        |        |                |         |              |         |         |
| 29 |              |        |        |                |         |              |         |         |
| 30 |              |        |        |                |         |              |         |         |
| 31 |              |        |        |                |         |              |         |         |
| 32 |              |        |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

MIX K1

4

% Lime

1:2 Cement Mortar

Normal Consistency 11.9 %

Mixed March 29, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed  | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks        |
|----|---------------|--------|--------|----------------|---------|--------------|---------|----------------|
|    |               | Date   | Hr. By | Briquette      | Average | Cube         | Average |                |
| 1  | 10:30 3/30/15 |        | H      | 151            |         |              |         |                |
| 2  |               |        |        | 143            | 156     |              |         |                |
| 3  |               |        |        | 175            |         |              |         |                |
| 4  |               |        | K      |                |         | 1460         |         |                |
| 5  |               |        |        |                |         | 1360         | 1480    |                |
| 6  |               |        |        |                |         | 1620         |         |                |
| 7  | 4/6/15        |        | H      | 453            |         |              |         |                |
| 8  |               |        |        | 383            | 404     |              |         | Eight day test |
| 9  |               |        |        | 375            |         |              |         |                |
| 10 |               |        | K      |                |         | 3530         |         | Eight day test |
| 11 |               |        |        |                |         | 3250         |         |                |
| 12 |               |        |        |                |         | 3500         |         |                |
| 13 | 4/26/15       |        | H      | 482            |         |              |         |                |
| 14 |               |        |        | 490            | 493     |              |         |                |
| 15 |               |        |        | 507            |         |              |         |                |
| 16 |               |        | K      |                |         | 4450         |         |                |
| 17 |               |        |        |                |         | 5080         | 4943    |                |
| 18 |               |        |        |                |         | 5300         |         |                |
| 19 |               |        |        |                |         |              |         |                |
| 20 |               |        |        |                |         |              |         |                |
| 21 |               |        |        |                |         |              |         |                |
| 22 |               |        |        |                |         |              |         |                |
| 23 |               |        |        |                |         |              |         |                |
| 24 |               |        |        |                |         |              |         |                |
| 25 |               |        |        |                |         |              |         |                |
| 26 |               |        |        |                |         |              |         |                |
| 27 |               |        |        |                |         |              |         |                |
| 28 |               |        |        |                |         |              |         |                |
| 29 |               |        |        |                |         |              |         |                |
| 30 |               |        |        |                |         |              |         |                |
| 31 |               |        |        |                |         |              |         |                |
| 32 |               |        |        |                |         |              |         |                |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

1:2 Cement Mortar

MIX J1

6

% Lime

Normal Consistency 11.9 %

Mixed March 26, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks        |
|----|--------------|---------|--------|----------------|---------|--------------|---------|----------------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |                |
| 1  | 10:30        | 3/27/15 | 11 H   | 146            |         |              |         |                |
| 2  |              |         |        | 105            | 127     |              |         |                |
| 3  |              |         |        | 130            |         |              |         |                |
| 4  |              |         | K      |                |         | 720          |         |                |
| 5  |              |         |        |                |         | 800          | 750     |                |
| 6  |              |         |        |                |         | 730          |         |                |
| 7  |              | 4/3/15  | H      | 322            |         |              |         |                |
| 8  |              |         |        | 300            | 311     |              |         | Eight day test |
| 9  |              |         |        | Flaw           |         |              |         |                |
| 10 |              |         | K      |                |         | 2350         |         |                |
| 11 |              |         |        |                |         | 2380         | 2453    | Eight day test |
| 12 |              |         |        |                |         | 2630         |         |                |
| 13 |              | 4/23/15 | H      | 371            |         |              |         |                |
| 14 |              |         |        | 370            | 324     |              |         |                |
| 15 |              |         |        | 232            |         |              |         |                |
| 16 |              |         | K      |                |         | 4160         |         |                |
| 17 |              |         |        |                |         | 2820         | 3250    |                |
| 18 |              |         |        |                |         | 2770         |         |                |
| 19 |              |         |        |                |         |              |         |                |
| 20 |              |         |        |                |         |              |         |                |
| 21 |              |         |        |                |         |              |         |                |
| 22 |              |         |        |                |         |              |         |                |
| 23 |              |         |        |                |         |              |         |                |
| 24 |              |         |        |                |         |              |         |                |
| 25 |              |         |        |                |         |              |         |                |
| 26 |              |         |        |                |         |              |         |                |
| 27 |              |         |        |                |         |              |         |                |
| 28 |              |         |        |                |         |              |         |                |
| 29 |              |         |        |                |         |              |         |                |
| 30 |              |         |        |                |         |              |         |                |
| 31 |              |         |        |                |         |              |         |                |
| 32 |              |         |        |                |         |              |         |                |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

1:2 Cement Mortar

MIX H1

8

% Lime

Normal Consistency 12 %

Mixed March 26, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks        |
|----|--------------|---------|--------|----------------|---------|--------------|---------|----------------|
|    |              | Date    | Hr. By | Brigquette     | Average | Cube         | Average |                |
| 1  | 9:00         | 3/27/15 | H      | 164            |         |              |         |                |
| 2  |              |         |        | 157            | 160     |              |         |                |
| 3  |              |         |        | Flaw           |         |              |         |                |
| 4  |              |         | K      |                |         | 840          |         |                |
| 5  |              |         |        |                |         | 1020         | 930     |                |
| 6  |              |         |        |                |         | Flaw         |         |                |
| 7  |              | 4/3/15  | H      | 377            |         |              |         |                |
| 8  |              |         |        | 412            | 410     |              |         | Eight day test |
| 9  |              |         |        | 440            |         |              |         |                |
| 10 |              |         | K      |                |         | 3010         |         |                |
| 11 |              |         |        |                |         | 2460         | 2877    | Eight day test |
| 12 |              |         |        |                |         | 3160         |         |                |
| 13 |              | 4/23/15 | H      | 440            |         |              |         |                |
| 14 |              |         |        | 413            | 429     |              |         |                |
| 15 |              |         |        | 433            |         |              |         |                |
| 16 |              |         | K      |                |         | 3270         |         |                |
| 17 |              |         |        |                |         | 2760         | 3015    |                |
| 18 |              |         |        |                |         | Flaw         |         |                |
| 19 |              |         |        |                |         |              |         |                |
| 20 |              |         |        |                |         |              |         |                |
| 21 |              |         |        |                |         |              |         |                |
| 22 |              |         |        |                |         |              |         |                |
| 23 |              |         |        |                |         |              |         |                |
| 24 |              |         |        |                |         |              |         |                |
| 25 |              |         |        |                |         |              |         |                |
| 26 |              |         |        |                |         |              |         |                |
| 27 |              |         |        |                |         |              |         |                |
| 28 |              |         |        |                |         |              |         |                |
| 29 |              |         |        |                |         |              |         |                |
| 30 |              |         |        |                |         |              |         |                |
| 31 |              |         |        |                |         |              |         |                |
| 32 |              |         |        |                |         |              |         |                |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

MIX Bl

10

% Lime

1:2 Cement Mortar  
Normal Consistency 14 %

Mixed February 24, 1915

Time of Set: Initial - - - hrs. Final: - - - hrs.

| No | Hr.<br>Mixed  | Tested  |     | Tensile Stress |           | Comp. Stress |      | Remarks |
|----|---------------|---------|-----|----------------|-----------|--------------|------|---------|
|    |               | Date    | Hr. | By             | Briguette | Average      | Cube |         |
| 1  | 12:45 2/25/15 |         | 1:  | H              | 95        |              |      |         |
| 2  |               |         |     |                | 107       | 102          |      |         |
| 3  |               |         |     |                | 105       |              |      |         |
| 4  |               |         |     | K              |           |              | 740  |         |
| 5  |               |         |     |                |           |              | 640  | 733     |
| 6  |               |         |     |                |           |              | 820  |         |
| 7  |               | 3/3/15  |     | H              | 313       |              |      |         |
| 8  |               |         |     |                | 286       | 300          |      |         |
| 9  |               |         |     |                | 300       |              |      |         |
| 10 |               |         |     | K              |           |              | 2705 |         |
| 11 |               |         |     |                |           |              | 2350 | 2405    |
| 12 |               |         |     |                |           |              | 2160 |         |
| 13 |               | 3/24/15 |     | H              | 427       |              |      |         |
| 14 |               |         |     |                | 470       | 439          |      |         |
| 15 |               |         |     |                | 421       |              |      |         |
| 16 |               |         |     | K              |           |              | 5610 |         |
| 17 |               |         |     |                |           |              | 5070 | 5320    |
| 18 |               |         |     |                |           |              | 5280 |         |
| 19 |               |         |     |                |           |              |      |         |
| 20 |               |         |     |                |           |              |      |         |
| 21 |               |         |     |                |           |              |      |         |
| 22 |               |         |     |                |           |              |      |         |
| 23 |               |         |     |                |           |              |      |         |
| 24 |               |         |     |                |           |              |      |         |
| 25 |               |         |     |                |           |              |      |         |
| 26 |               |         |     |                |           |              |      |         |
| 27 |               |         |     |                |           |              |      |         |
| 28 |               |         |     |                |           |              |      |         |
| 29 |               |         |     |                |           |              |      |         |
| 30 |               |         |     |                |           |              |      |         |
| 31 |               |         |     |                |           |              |      |         |
| 32 |               |         |     |                |           |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Kneepfer

LABORATORY DATA

1:2 Cement Mortar

MIX C1

12

% Lime

Normal Consistency 12 $\frac{1}{2}$  %

Mixed February 26, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks      |
|----|--------------|---------|--------|----------------|---------|--------------|---------|--------------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |              |
| 1  | 10:30        | 2/27/15 | 11 H   | 144            |         |              |         |              |
| 2  |              |         |        | 146            | 143     |              |         |              |
| 3  |              |         |        | 139            |         |              |         |              |
| 4  |              |         | K      |                |         | 730          |         |              |
| 5  |              |         |        |                |         | 740          | 733     |              |
| 6  |              |         |        |                |         | 730          |         |              |
| 7  |              | 3/8/15  | H      | 410            |         |              |         |              |
| 8  |              |         |        | 460            | 418     |              |         | Ten day test |
| 9  |              |         |        | 385            |         |              |         |              |
| 10 |              |         | K      |                |         | 2620         |         |              |
| 11 |              |         |        |                |         | 3545         | 3155    | Ten day test |
| 12 |              |         |        |                |         | 3300         |         |              |
| 13 |              | 3/26/15 | H      | 368            |         |              |         |              |
| 14 |              |         |        | 436            | 409     |              |         |              |
| 15 |              |         |        | 425            |         |              |         |              |
| 16 |              |         | K      |                |         | 5890         |         |              |
| 17 |              |         |        |                |         | 5540         | 5543    |              |
| 18 |              |         |        |                |         | 5200         |         |              |
| 19 |              |         |        |                |         |              |         |              |
| 20 |              |         |        |                |         |              |         |              |
| 21 |              |         |        |                |         |              |         |              |
| 22 |              |         |        |                |         |              |         |              |
| 23 |              |         |        |                |         |              |         |              |
| 24 |              |         |        |                |         |              |         |              |
| 25 |              |         |        |                |         |              |         |              |
| 26 |              |         |        |                |         |              |         |              |
| 27 |              |         |        |                |         |              |         |              |
| 28 |              |         |        |                |         |              |         |              |
| 29 |              |         |        |                |         |              |         |              |
| 30 |              |         |        |                |         |              |         |              |
| 31 |              |         |        |                |         |              |         |              |
| 32 |              |         |        |                |         |              |         |              |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:2 Cement Mortar

MIX D1

14

% Lime

Normal Consistency 13.8 %

Mixed March 1

, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 9:30         | 3/2/15  | 1: H   | 130            |         |              |         |         |
| 2  |              |         |        | 176            | 153     |              |         |         |
| 3  |              |         |        | 134            |         |              |         |         |
| 4  |              |         | K      |                |         | 870          |         |         |
| 5  |              |         |        |                |         | 1020         | 983     |         |
| 6  |              |         |        |                |         | 1060         |         |         |
| 7  |              | 3/8/15  | H      | 335            |         |              |         |         |
| 8  |              |         |        | 336            | 327     |              |         |         |
| 9  |              |         |        | 312            |         |              |         |         |
| 10 |              |         | K      |                |         | 3040         |         |         |
| 11 |              |         |        |                |         | 3288         | 3309    |         |
| 12 |              |         |        |                |         | 3600         |         |         |
| 13 |              | 3/29/15 | H      | 505            |         |              |         |         |
| 14 |              |         |        | 392            | 451     |              |         |         |
| 15 |              |         |        | 456            |         |              |         |         |
| 16 |              |         | K      |                |         | 3960         |         |         |
| 17 |              |         |        |                |         | 5050         | 4253    |         |
| 18 |              |         |        |                |         | 3750         |         |         |
| 19 |              |         |        |                |         |              |         |         |
| 20 |              |         |        |                |         |              |         |         |
| 21 |              |         |        |                |         |              |         |         |
| 22 |              |         |        |                |         |              |         |         |
| 23 |              |         |        |                |         |              |         |         |
| 24 |              |         |        |                |         |              |         |         |
| 25 |              |         |        |                |         |              |         |         |
| 26 |              |         |        |                |         |              |         |         |
| 27 |              |         |        |                |         |              |         |         |
| 28 |              |         |        |                |         |              |         |         |
| 29 |              |         |        |                |         |              |         |         |
| 30 |              |         |        |                |         |              |         |         |
| 31 |              |         |        |                |         |              |         |         |
| 32 |              |         |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:2 Cement Mortar

MIX El

16

% Lime

Normal Consistency 14.3 %

Mixed March 3,

1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 9:30         | 3/4/15  | H      | 130            |         |              |         |         |
| 2  |              |         |        | 120            | 123     |              |         |         |
| 3  |              |         |        | 120            |         |              |         |         |
| 4  |              |         | K      |                |         | 710          |         |         |
| 5  |              |         |        |                |         | 810          | 757     |         |
| 6  |              |         |        |                |         | 750          |         |         |
| 7  |              | 3/10/15 | H      | 304            |         |              |         |         |
| 8  |              |         |        | 334            | 319     |              |         |         |
| 9  |              |         |        | 319            |         |              |         |         |
| 10 |              |         | K      |                |         | 3460         |         |         |
| 11 |              |         |        |                |         | 3120         | 3183    |         |
| 12 |              |         |        |                |         | 2970         |         |         |
| 13 |              | 3/31/15 | H      | 383            |         |              |         |         |
| 14 |              |         |        | 422            | 413     |              |         |         |
| 15 |              |         |        | 432            |         |              |         |         |
| 16 |              |         | K      |                |         | 3620         |         |         |
| 17 |              |         |        |                |         | 4540         | 4090    |         |
| 18 |              |         |        |                |         | 4110         |         |         |
| 19 |              |         |        |                |         |              |         |         |
| 20 |              |         |        |                |         |              |         |         |
| 21 |              |         |        |                |         |              |         |         |
| 22 |              |         |        |                |         |              |         |         |
| 23 |              |         |        |                |         |              |         |         |
| 24 |              |         |        |                |         |              |         |         |
| 25 |              |         |        |                |         |              |         |         |
| 26 |              |         |        |                |         |              |         |         |
| 27 |              |         |        |                |         |              |         |         |
| 28 |              |         |        |                |         |              |         |         |
| 29 |              |         |        |                |         |              |         |         |
| 30 |              |         |        |                |         |              |         |         |
| 31 |              |         |        |                |         |              |         |         |
| 32 |              |         |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:2 Cement Mortar MIX F1 18 % Lime  
Normal Consistency 14.5 % Mixed March 3, 1915  
Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 12:15        | 3/4/15  | 1: H   | 126            |         |              |         |         |
| 2  |              |         |        | 100            | 118     |              |         |         |
| 3  |              |         |        | Flaw           |         |              |         |         |
| 4  |              |         | K      |                |         | 820          |         |         |
| 5  |              |         |        |                |         | 860          | 777     |         |
| 6  |              |         |        |                |         | 650          |         |         |
| 7  |              | 3/10/15 | H      | 325            |         |              |         |         |
| 8  |              |         |        | 337            | 321     |              |         |         |
| 9  |              |         |        | 302            |         |              |         |         |
| 10 |              |         | K      |                |         | 3180         |         |         |
| 11 |              |         |        |                |         | 2790         | 2863    |         |
| 12 |              |         |        |                |         | 2620         |         |         |
| 13 |              | 3/31/15 | H      | 401            |         |              |         |         |
| 14 |              |         |        | 441            | 425     |              |         |         |
| 15 |              |         |        | 433            |         |              |         |         |
| 16 |              |         | K      |                |         | 4040         |         |         |
| 17 |              |         |        |                |         | 4590         | 4917    |         |
| 18 |              |         |        |                |         | 5120         |         |         |
| 19 |              |         |        |                |         |              |         |         |
| 20 |              |         |        |                |         |              |         |         |
| 21 |              |         |        |                |         |              |         |         |
| 22 |              |         |        |                |         |              |         |         |
| 23 |              |         |        |                |         |              |         |         |
| 24 |              |         |        |                |         |              |         |         |
| 25 |              |         |        |                |         |              |         |         |
| 26 |              |         |        |                |         |              |         |         |
| 27 |              |         |        |                |         |              |         |         |
| 28 |              |         |        |                |         |              |         |         |
| 29 |              |         |        |                |         |              |         |         |
| 30 |              |         |        |                |         |              |         |         |
| 31 |              |         |        |                |         |              |         |         |
| 32 |              |         |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:2 Cement Mortar

MIX G1

20

% Lime

Normal Consistency 14.8 %

Mixed March 5

, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 10:30        | 3/6/15  | H      | 85             |         |              |         |         |
| 2  |              |         |        | 100            | 91      |              |         |         |
| 3  |              |         |        | 89             |         |              |         |         |
| 4  |              |         | K      |                |         | 540          |         |         |
| 5  |              |         |        |                |         | 460          | 490     |         |
| 6  |              |         |        |                |         | 470          |         |         |
| 7  |              | 3/12/15 | H      | 296            |         |              |         |         |
| 8  |              |         |        | 301            | 299     |              |         |         |
| 9  |              |         |        | 299            |         |              |         |         |
| 10 |              |         | K      |                |         | 2145         |         |         |
| 11 |              |         |        |                |         | 2500         | 2088    |         |
| 12 |              |         |        |                |         | 1620         |         |         |
| 13 |              | 4/3/15  | H      | 349            |         |              |         |         |
| 14 |              |         |        | 397            | 371     |              |         |         |
| 15 |              |         |        | 367            |         |              |         |         |
| 16 |              |         | K      |                |         | 2840         |         |         |
| 17 |              |         |        |                |         | 3610         | 3130    |         |
| 18 |              |         |        |                |         | 2950         |         |         |
| 19 |              |         |        |                |         |              |         |         |
| 20 |              |         |        |                |         |              |         |         |
| 21 |              |         |        |                |         |              |         |         |
| 22 |              |         |        |                |         |              |         |         |
| 23 |              |         |        |                |         |              |         |         |
| 24 |              |         |        |                |         |              |         |         |
| 25 |              |         |        |                |         |              |         |         |
| 26 |              |         |        |                |         |              |         |         |
| 27 |              |         |        |                |         |              |         |         |
| 28 |              |         |        |                |         |              |         |         |
| 29 |              |         |        |                |         |              |         |         |
| 30 |              |         |        |                |         |              |         |         |
| 31 |              |         |        |                |         |              |         |         |
| 32 |              |         |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX A2

0

% Lime

Normal Consistency 10 %

Mixed March 10, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |     | Tensile Stress |           | Comp. Stress |      | Remarks |
|----|--------------|---------|-----|----------------|-----------|--------------|------|---------|
|    |              | Date    | Hr. | By             | Briquette | Average      | Cube |         |
| 1  | 9:30         | 3/11/15 | 11  | H              | 74        |              |      |         |
| 2  |              |         |     |                | 97        | 85           |      |         |
| 3  |              |         |     |                | 85        |              |      |         |
| 4  |              |         |     | K              |           |              | 640  |         |
| 5  |              |         |     |                |           |              | 560  | 630     |
| 6  |              |         |     |                |           |              | 690  |         |
| 7  |              | 3/17/15 |     | H              | 215       |              |      |         |
| 8  |              |         |     |                | 200       | 225          |      |         |
| 9  |              |         |     |                | 260       |              |      |         |
| 10 |              |         |     | K              |           |              | 2110 |         |
| 11 |              |         |     |                |           |              | 1875 | 1862    |
| 12 |              |         |     |                |           |              | 1600 |         |
| 13 |              | 4/8/15  |     | H              | 310       |              |      |         |
| 14 |              |         |     |                | 284       | 286          |      | 29 day  |
| 15 |              |         |     |                | 263       |              |      | test    |
| 16 |              |         |     | K              |           |              | 1390 |         |
| 17 |              |         |     |                |           |              | 1490 | 1690    |
| 18 |              |         |     |                |           |              | 2190 | 29 day  |
| 19 |              |         |     |                |           |              |      | test    |
| 20 |              |         |     |                |           |              |      |         |
| 21 |              |         |     |                |           |              |      |         |
| 22 |              |         |     |                |           |              |      |         |
| 23 |              |         |     |                |           |              |      |         |
| 24 |              |         |     |                |           |              |      |         |
| 25 |              |         |     |                |           |              |      |         |
| 26 |              |         |     |                |           |              |      |         |
| 27 |              |         |     |                |           |              |      |         |
| 28 |              |         |     |                |           |              |      |         |
| 29 |              |         |     |                |           |              |      |         |
| 30 |              |         |     |                |           |              |      |         |
| 31 |              |         |     |                |           |              |      |         |
| 32 |              |         |     |                |           |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

MIX K2

1:3 Cement Mortar

4 % Lime

Normal Consistency 10.3 %

Mixed March 31, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks        |
|----|--------------|---------|--------|----------------|---------|--------------|---------|----------------|
|    |              | Date    | Hr. By | Briquette      | Average | Cube         | Average |                |
| 1  | 11:30        | 4/1/15  | H      | 71             |         |              |         |                |
| 2  |              |         |        | 80             | 79      |              |         |                |
| 3  |              |         |        | 85             |         |              |         |                |
| 4  |              |         | K      |                |         | 670          |         |                |
| 5  |              |         |        |                |         | 720          | 617     |                |
| 6  |              |         |        |                |         | 460          |         |                |
| 7  |              | 4/8/15  | H      | 266            |         |              |         |                |
| 8  |              |         |        | 240            | 254     |              |         | Eight day test |
| 9  |              |         |        | 255            |         |              |         |                |
| 10 |              |         | K      |                |         | 1510         |         |                |
| 11 |              |         |        |                |         | 1570         | 1807    | Eight day test |
| 12 |              |         |        |                |         | 2340         |         |                |
| 13 |              | 4/28/15 | H      | 305            |         |              |         |                |
| 14 |              |         |        | 384            | 345     |              |         |                |
| 15 |              |         |        | Flaw           |         |              |         |                |
| 16 |              |         | K      |                |         | 2130         |         |                |
| 17 |              |         |        |                |         | 3170         | 2537    |                |
| 18 |              |         |        |                |         | 2310         |         |                |
| 19 |              |         |        |                |         |              |         |                |
| 20 |              |         |        |                |         |              |         |                |
| 21 |              |         |        |                |         |              |         |                |
| 22 |              |         |        |                |         |              |         |                |
| 23 |              |         |        |                |         |              |         |                |
| 24 |              |         |        |                |         |              |         |                |
| 25 |              |         |        |                |         |              |         |                |
| 26 |              |         |        |                |         |              |         |                |
| 27 |              |         |        |                |         |              |         |                |
| 28 |              |         |        |                |         |              |         |                |
| 29 |              |         |        |                |         |              |         |                |
| 30 |              |         |        |                |         |              |         |                |
| 31 |              |         |        |                |         |              |         |                |
| 32 |              |         |        |                |         |              |         |                |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX J2

6 % Lime

Normal Consistency 10.4 %

Mixed March 31, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |     | Tensile Stress |           | Comp. Stress |      | Remarks        |
|----|--------------|---------|-----|----------------|-----------|--------------|------|----------------|
|    |              | Date    | Hr. | By             | Briquette | Average      | Cube | Average        |
| 1  | 10:30        | 4/1/15  | 11  | H              | 79        |              |      |                |
| 2  |              |         |     |                | 57        | 63           |      |                |
| 3  |              |         |     |                | 53        |              |      |                |
| 4  |              |         |     | K              |           |              | 660  |                |
| 5  |              |         |     |                |           |              | 640  | 677            |
| 6  |              |         |     |                |           |              | 830  |                |
| 7  |              | 4/8/15  |     | H              | 242       |              |      |                |
| 8  |              |         |     |                | 205       | 225          |      |                |
| 9  |              |         |     |                | 229       |              |      | Eight day test |
| 10 |              |         |     | K              |           |              | 1610 |                |
| 11 |              |         |     |                |           |              | 1250 |                |
| 12 |              |         |     |                |           |              | 1580 | Eight day test |
| 13 |              | 4/28/15 |     | H              | 298       |              |      |                |
| 14 |              |         |     |                | 284       | 290          |      |                |
| 15 |              |         |     |                | 287       |              |      |                |
| 16 |              |         |     | K              |           |              | 2090 |                |
| 17 |              |         |     |                |           |              | 2450 | 2323           |
| 18 |              |         |     |                |           |              | 2430 |                |
| 19 |              |         |     |                |           |              |      |                |
| 20 |              |         |     |                |           |              |      |                |
| 21 |              |         |     |                |           |              |      |                |
| 22 |              |         |     |                |           |              |      |                |
| 23 |              |         |     |                |           |              |      |                |
| 24 |              |         |     |                |           |              |      |                |
| 25 |              |         |     |                |           |              |      |                |
| 26 |              |         |     |                |           |              |      |                |
| 27 |              |         |     |                |           |              |      |                |
| 28 |              |         |     |                |           |              |      |                |
| 29 |              |         |     |                |           |              |      |                |
| 30 |              |         |     |                |           |              |      |                |
| 31 |              |         |     |                |           |              |      |                |
| 32 |              |         |     |                |           |              |      |                |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX H2

8

% Lime

Normal Consistency 10.5 %

Mixed March 29

, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed  | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks           |
|----|---------------|--------|--------|----------------|---------|--------------|---------|-------------------|
|    |               | Date   | Hr. By | Briquette      | Average | Cube         | Average |                   |
| 1  | 11:30 3/30/15 | 11     | H      | 69             |         |              |         |                   |
| 2  |               |        |        | 55             | 60      |              |         |                   |
| 3  |               |        |        | 57             |         |              |         |                   |
| 4  |               |        | K      |                |         | 520          |         |                   |
| 5  |               |        |        |                |         | 630          | 567     |                   |
| 6  |               |        |        |                |         | 550          |         |                   |
| 7  | 4/6/15        |        | H      | 223            |         |              |         |                   |
| 8  |               |        |        | 156            | 204     |              |         |                   |
| 9  |               |        |        | 233            |         |              |         | Eight day<br>test |
| 10 |               |        | K      |                |         | 1590         |         |                   |
| 11 |               |        |        |                |         | 1500         | 1623    | Eight day         |
| 12 |               |        |        |                |         | 1780         |         | test              |
| 13 | 4/26/15       |        | H      | 233            |         |              |         |                   |
| 14 |               |        |        | 269            | 260     |              |         |                   |
| 15 |               |        |        | 279            |         |              |         |                   |
| 16 |               |        | K      |                |         | 1710         |         |                   |
| 17 |               |        |        |                |         | 1500         | 1907    |                   |
| 18 |               |        |        |                |         | 2510         |         |                   |
| 19 |               |        |        |                |         |              |         |                   |
| 20 |               |        |        |                |         |              |         |                   |
| 21 |               |        |        |                |         |              |         |                   |
| 22 |               |        |        |                |         |              |         |                   |
| 23 |               |        |        |                |         |              |         |                   |
| 24 |               |        |        |                |         |              |         |                   |
| 25 |               |        |        |                |         |              |         |                   |
| 26 |               |        |        |                |         |              |         |                   |
| 27 |               |        |        |                |         |              |         |                   |
| 28 |               |        |        |                |         |              |         |                   |
| 29 |               |        |        |                |         |              |         |                   |
| 30 |               |        |        |                |         |              |         |                   |
| 31 |               |        |        |                |         |              |         |                   |
| 32 |               |        |        |                |         |              |         |                   |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

MIX B2

10

% Lime

1:3 Cement Mortar  
Normal Consistency 10.5 %

Mixed March 8, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|--------------|---------|--------|----------------|---------|--------------|---------|---------|
|    |              | Date    | Hr. By | Brigquette     | Average | Cube         | Average |         |
| 1  | 9:30         | 3/9/15  | 1: H   | 78             |         |              |         |         |
| 2  |              |         |        | 64             | 74      |              |         |         |
| 3  |              |         |        | 81             |         |              |         |         |
| 4  |              |         | K      |                |         | 560          |         |         |
| 5  |              |         |        |                |         | 5.80         | 543     |         |
| 6  |              |         |        |                |         | 500          |         |         |
| 7  |              | 3/15/15 | H      | 227            |         |              |         |         |
| 8  |              |         |        | 226            | 225     |              |         |         |
| 9  |              |         |        | 222            |         |              |         |         |
| 10 |              |         | K      |                |         | 850          |         |         |
| 11 |              |         |        |                |         | 1020         | 880     |         |
| 12 |              |         |        |                |         | 770          |         |         |
| 13 |              | 4/6/15  | H      | 290            |         |              |         |         |
| 14 |              |         |        | 290            | 295     |              |         |         |
| 15 |              |         |        | 305            |         |              |         |         |
| 16 |              |         | K      |                |         | 2160         |         |         |
| 17 |              |         |        |                |         | 2100         | 2303    |         |
| 18 |              |         |        |                |         | 2650         |         |         |
| 19 |              |         |        |                |         |              |         |         |
| 20 |              |         |        |                |         |              |         |         |
| 21 |              |         |        |                |         |              |         |         |
| 22 |              |         |        |                |         |              |         |         |
| 23 |              |         |        |                |         |              |         |         |
| 24 |              |         |        |                |         |              |         |         |
| 25 |              |         |        |                |         |              |         |         |
| 26 |              |         |        |                |         |              |         |         |
| 27 |              |         |        |                |         |              |         |         |
| 28 |              |         |        |                |         |              |         |         |
| 29 |              |         |        |                |         |              |         |         |
| 30 |              |         |        |                |         |              |         |         |
| 31 |              |         |        |                |         |              |         |         |
| 32 |              |         |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX C2

12 % Lime

Normal Consistency 11 %

Mixed March 10, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed  | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|---------------|--------|--------|----------------|---------|--------------|---------|---------|
|    |               | Date   | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 12:30 3/11/15 |        | H      | 56             |         |              |         |         |
| 2  |               |        |        | 64             | 60      |              |         |         |
| 3  |               |        |        | Flaw           |         |              |         |         |
| 4  |               |        | K      |                |         | 350          |         |         |
| 5  |               |        |        |                |         | 305          | 315     |         |
| 6  |               |        |        |                |         | 290          |         |         |
| 7  | 3/17/15       |        | H      | 179            |         |              |         |         |
| 8  |               |        |        | 160            | 177     |              |         |         |
| 9  |               |        |        | 193            |         |              |         |         |
| 10 |               |        | K      |                |         | 1670         |         |         |
| 11 |               |        |        |                |         | 1660         | 1593    |         |
| 12 |               |        |        |                |         | 1450         |         |         |
| 13 | 4/8/15        |        | H      | 245            |         |              |         |         |
| 14 |               |        |        | 219            | 245     |              |         | 29 day  |
| 15 |               |        |        | 270            |         |              |         | test    |
| 16 |               |        | K      |                |         | 1570         |         |         |
| 17 |               |        |        |                |         | 2770         | 2150    | 29 day  |
| 18 |               |        |        |                |         | 2110         |         | test    |
| 19 |               |        |        |                |         |              |         |         |
| 20 |               |        |        |                |         |              |         |         |
| 21 |               |        |        |                |         |              |         |         |
| 22 |               |        |        |                |         |              |         |         |
| 23 |               |        |        |                |         |              |         |         |
| 24 |               |        |        |                |         |              |         |         |
| 25 |               |        |        |                |         |              |         |         |
| 26 |               |        |        |                |         |              |         |         |
| 27 |               |        |        |                |         |              |         |         |
| 28 |               |        |        |                |         |              |         |         |
| 29 |               |        |        |                |         |              |         |         |
| 30 |               |        |        |                |         |              |         |         |
| 31 |               |        |        |                |         |              |         |         |
| 32 |               |        |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX D2

14 % Lime

Normal Consistency 11.2 %

Mixed March 12, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed  | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|---------------|--------|--------|----------------|---------|--------------|---------|---------|
|    |               | Date   | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 10:30 3/13/15 | 11     | H      | 84             |         |              |         |         |
| 2  |               |        |        | 78             | 81      |              |         |         |
| 3  |               |        |        | Flaw           |         |              |         |         |
| 4  |               |        | K      |                |         | 570          |         |         |
| 5  |               |        |        |                |         | 560          | 557     |         |
| 6  |               |        |        |                |         | 540          |         |         |
| 7  | 3/19/15       |        | H      | 198            |         |              |         |         |
| 8  |               |        |        | 163            | 187     |              |         |         |
| 9  |               |        |        | 181            |         |              |         |         |
| 10 |               |        | K      |                |         | 1530         |         |         |
| 11 |               |        |        |                |         | 1450         | 1397    |         |
| 12 |               |        |        |                |         | 1210         |         |         |
| 13 | 4/9/15        |        | H      | 248            |         |              |         |         |
| 14 |               |        |        | 252            | 251     |              |         |         |
| 15 |               |        |        | 254            |         |              |         |         |
| 16 |               |        | K      |                |         | 2370         |         |         |
| 17 |               |        |        |                |         | 3120         | 2630    |         |
| 18 |               |        |        |                |         | 2400         |         |         |
| 19 |               |        |        |                |         |              |         |         |
| 20 |               |        |        |                |         |              |         |         |
| 21 |               |        |        |                |         |              |         |         |
| 22 |               |        |        |                |         |              |         |         |
| 23 |               |        |        |                |         |              |         |         |
| 24 |               |        |        |                |         |              |         |         |
| 25 |               |        |        |                |         |              |         |         |
| 26 |               |        |        |                |         |              |         |         |
| 27 |               |        |        |                |         |              |         |         |
| 28 |               |        |        |                |         |              |         |         |
| 29 |               |        |        |                |         |              |         |         |
| 30 |               |        |        |                |         |              |         |         |
| 31 |               |        |        |                |         |              |         |         |
| 32 |               |        |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

MIX E2

16

% Lime

1:3 Cement Mortar  
Normal Consistency 11.5 %

Mixed March 15, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |     | Tensile Stress |           | Comp. Stress |      | Remarks |
|----|--------------|---------|-----|----------------|-----------|--------------|------|---------|
|    |              | Date    | Hr. | By             | Briquette | Average      | Cube |         |
| 1  | 9:30         | 3/16/15 | 11  | H              | 70        |              |      |         |
| 2  |              |         |     |                | 82        | 69           |      |         |
| 3  |              |         |     |                | 56        |              |      |         |
| 4  |              |         |     | K              |           |              | 540  |         |
| 5  |              |         |     |                |           |              | 500  | 507     |
| 6  |              |         |     |                |           |              | 480  |         |
| 7  |              | 3/22/15 |     | H              | 188       |              |      |         |
| 8  |              |         |     |                | 180       | 179          |      |         |
| 9  |              |         |     |                | 168       |              |      |         |
| 10 |              |         |     | K              |           |              | 1580 |         |
| 11 |              |         |     |                |           |              | 1712 | 1577    |
| 12 |              |         |     |                |           |              | 1440 |         |
| 13 |              | 4/12/15 |     | H              | 182       |              |      |         |
| 14 |              |         |     |                | 212       | 218          |      |         |
| 15 |              |         |     |                | 261       |              |      |         |
| 16 |              |         |     | K              |           |              | 1340 |         |
| 17 |              |         |     |                |           |              | 2130 | 1710    |
| 18 |              |         |     |                |           |              | 1660 |         |
| 19 |              |         |     |                |           |              |      |         |
| 20 |              |         |     |                |           |              |      |         |
| 21 |              |         |     |                |           |              |      |         |
| 22 |              |         |     |                |           |              |      |         |
| 23 |              |         |     |                |           |              |      |         |
| 24 |              |         |     |                |           |              |      |         |
| 25 |              |         |     |                |           |              |      |         |
| 26 |              |         |     |                |           |              |      |         |
| 27 |              |         |     |                |           |              |      |         |
| 28 |              |         |     |                |           |              |      |         |
| 29 |              |         |     |                |           |              |      |         |
| 30 |              |         |     |                |           |              |      |         |
| 31 |              |         |     |                |           |              |      |         |
| 32 |              |         |     |                |           |              |      |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

MIX F2

18

% Lime

1:3 Cement Mortar  
Normal Consistency 11.7 %

Mixed March 17, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed | Tested  |     | Tensile Stress |           | Comp. Stress |      | Remarks     |
|----|--------------|---------|-----|----------------|-----------|--------------|------|-------------|
|    |              | Date    | Hr. | By             | Briquette | Average      | Cube |             |
| 1  | 9:30         | 3/18/15 | 11  | H              | 82        |              |      |             |
| 2  |              |         |     |                | 68        | 74           |      |             |
| 3  |              |         |     |                | 71        |              |      |             |
| 4  |              |         |     | K              |           |              | 520  |             |
| 5  |              |         |     |                |           |              | 380  | 433         |
| 6  |              |         |     |                |           |              | 400  |             |
| 7  |              | 3/24/15 |     | H              | 220       |              |      |             |
| 8  |              |         |     |                | 193       | 201          |      |             |
| 9  |              |         |     |                | 189       |              |      |             |
| 10 |              |         |     | K              |           |              | 1720 |             |
| 11 |              |         |     |                |           |              | 1780 | 1693        |
| 12 |              |         |     |                |           |              | 1580 |             |
| 13 |              | 4/15/15 |     | H              | 247       |              |      |             |
| 14 |              |         |     |                | 303       | 277          |      | 29 day test |
| 15 |              |         |     |                | 282       |              |      |             |
| 16 |              |         |     | K              |           |              | 3500 |             |
| 17 |              |         |     |                |           |              | 2500 | 2673        |
| 18 |              |         |     |                |           |              | 2020 | 29 day test |
| 19 |              |         |     |                |           |              |      |             |
| 20 |              |         |     |                |           |              |      |             |
| 21 |              |         |     |                |           |              |      |             |
| 22 |              |         |     |                |           |              |      |             |
| 23 |              |         |     |                |           |              |      |             |
| 24 |              |         |     |                |           |              |      |             |
| 25 |              |         |     |                |           |              |      |             |
| 26 |              |         |     |                |           |              |      |             |
| 27 |              |         |     |                |           |              |      |             |
| 28 |              |         |     |                |           |              |      |             |
| 29 |              |         |     |                |           |              |      |             |
| 30 |              |         |     |                |           |              |      |             |
| 31 |              |         |     |                |           |              |      |             |
| 32 |              |         |     |                |           |              |      |             |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



A STUDY OF THE EFFECTS PRODUCED ON PORTLAND CEMENT BY THE ADDITION  
OF VARIOUS PERCENTAGES OF HYDRATED LIME

By  
Leonard D. Hook  
and  
Claude A. Knuepfer

LABORATORY DATA

1:3 Cement Mortar

MIX G2

20

% Lime

Normal Consistency 12 %

Mixed March 17, 1915

Time of Set: Initial \_\_\_\_\_ hrs. Final: \_\_\_\_\_ hrs.

| No | Hr.<br>Mixed  | Tested |        | Tensile Stress |         | Comp. Stress |         | Remarks |
|----|---------------|--------|--------|----------------|---------|--------------|---------|---------|
|    |               | Date   | Hr. By | Briquette      | Average | Cube         | Average |         |
| 1  | 12:30 3/18/15 | 11     | H      | 40             |         |              |         |         |
| 2  |               |        |        | 48             | 44      |              |         |         |
| 3  |               |        |        | Flaw           |         |              |         |         |
| 4  |               |        | K      |                |         | 310          |         |         |
| 5  |               |        |        |                |         | 260          | 277     |         |
| 6  |               |        |        |                |         | 260          |         |         |
| 7  | 3/24/15       |        | H      | 164            |         |              |         |         |
| 8  |               |        |        | 183            | 169     |              |         |         |
| 9  |               |        |        | 149            |         |              |         |         |
| 10 |               |        | K      |                |         | 1220         |         |         |
| 11 |               |        |        |                |         | 1450         | 1400    |         |
| 12 |               |        |        |                |         | 1530         |         |         |
| 13 | 4/15/15       |        | H      | 206            |         |              |         |         |
| 14 |               |        |        | 228            | 210     |              |         | 29 day  |
| 15 |               |        |        | 197            |         |              |         | test    |
| 16 |               |        | K      |                |         | 1880         |         |         |
| 17 |               |        |        |                |         | 1930         | 1933    | 29 day  |
| 18 |               |        |        |                |         | 1990         |         | test    |
| 19 |               |        |        |                |         |              |         |         |
| 20 |               |        |        |                |         |              |         |         |
| 21 |               |        |        |                |         |              |         |         |
| 22 |               |        |        |                |         |              |         |         |
| 23 |               |        |        |                |         |              |         |         |
| 24 |               |        |        |                |         |              |         |         |
| 25 |               |        |        |                |         |              |         |         |
| 26 |               |        |        |                |         |              |         |         |
| 27 |               |        |        |                |         |              |         |         |
| 28 |               |        |        |                |         |              |         |         |
| 29 |               |        |        |                |         |              |         |         |
| 30 |               |        |        |                |         |              |         |         |
| 31 |               |        |        |                |         |              |         |         |
| 32 |               |        |        |                |         |              |         |         |

PAT

| No | Test            | Remarks |
|----|-----------------|---------|
| 1  | Normal in air   |         |
| 2  | Normal in water |         |
| 3  | Accelerated     |         |

Remarks:



## BIBLIOGRAPHY

- R.J. Wig and P.H. Bates, Technologic Paper No. 3  
of the U.S. Bureau of Standards.
- E.W. Lazell, American Society of Testing Materials,  
Proceedings, Vol. 10, 1910, page 328.
- S.E. Thomson, American Society of Testing Mater-  
ials, Vol. 10, 1908, page 500.
- R.C. Haff, "Tests and Uses of hydrated Lime", Ce-  
ment Era, Feb. 1915, page 69.
- Chas, Warner, Paper on "Hydrated Lime in Concrete  
Roads".
- Chas, Warner, "Strength Tests and Mixtures of  
Hydrated Lime and Portland Cement", Engineer-  
ing News, Dec. 17, 1903, page 554.
- R.S. Edwards, paper on "The Use of Hydrated Lime  
in Concrete Pavements".
- E.F. Burchard and W.E. Emely, U.S. Geologic Sur-  
vey, Bulletin on "The Source, Use, and Manu-  
facture of Lime".
- W.E. Emely, Bulletin No. 11 of the National Lime  
Manufacturers' Association.
- L.C. Sabin, Cement and Concrete, page 260.
- S.Y. Brigham, Eng. News, Aug. 27, 1903, pages  
320 and 321.













