	Python Lab-8MNIST Exr 1 Name- Jatin Karthik
	Matriculation no313301 import numpy as np import pandas as pd import matplotlib.pyplot as plt 1. Loading the MNIST digits dataset via sklearn provided built-in utility function(s).
In [5]:	<pre>from sklearn.datasets import load_digits #digits = load_digits() #print(digits.data.shape) mnist = load_digits() type(mnist) mnist.keys()</pre>
	<pre>X=pd.DataFrame(mnist.data) import matplotlib.pyplot as plt plt.gray() plt.matshow(digits.images[1])</pre>
	plt.show() X <figure 0="" 432x288="" axes="" size="" with=""> 0 1 2 3 4 5 6 7 0- 1- 2-</figure>
	3 - 4 - 5 - 6 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 4 - 7 - 7
ut[14]: -	0 1 2 3 4 5 6 7 8 9 54 59 60 61 62 63 0 0.0 0.0 1.0 0.0
n [33]:	1797 rows × 64 columns Y=pd.DataFrame(mnist.target) Y=np.ravel(Y) Y array([0, 1, 2,, 8, 9, 8])
In [21]:	<pre>fig, axes = plt.subplots(2, 10, figsize=(28,28)) for i in range(20): axes[i//10, i %10].imshow(mnist.images[i], cmap='gray'); axes[i//10, i %10].axis('off') axes[i//10, i %10].set_title(f"target: {mnist.target[i]}") plt.tight_layout() target: 0</pre>
	target: 0 target: 1 target: 2 target: 3 target: 4 target: 5 target: 6 target: 7 target: 8 target: 9
ıt[24]:	np.shape(mnist.images) (1797, 8, 8) As we can see there are 1797 images in toatl with 8x8 pixels, so we need to set aside 20% of the images for testing which would be approximately 360 images for training.
n [27]:	from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.2) MLPClassifier stands for Multi-layer Perceptron classifier which in the name itself connects to a Neural Network. Unlike other classification algorithms such as Support Vectors or Naive Bayes Classifier, MLPClassifier relies on an underlying Neural Network to perform the task of classification. from sklearn.model_selection import cross_val_score #Importing MLPClassifier
n [81]:	<pre>from sklearn.neural_network import MLPClassifier #Initializing the MLPClassifier classifier = MLPClassifier(hidden_layer_sizes=(150,50), max_iter=50,activation = 'relu', solver='adam', random_state=3116) #Fitting the training data to the network m=classifier.fit(X_train, Y_train) m</pre>
n [82]:	MLPClassifier(hidden_layer_sizes=(150, 50), max_iter=50, random_state=3116) #Predicting y for X_val y_pred = classifier.predict(X_test) Accuracy without cross validation #Importing Confusion Matrix from sklearn.metrics import confusion_matrix
	<pre>from sklearn.metrics import accuracy_score #Comparing the predictions against the actual observations in y_val cm= confusion_matrix(y_pred, Y_test) #Printing the accuracy print("Accuracy of MLPClassifier : ", cm) accuracy_score(Y_test, classifier.predict(X_test))</pre> Accuracy of MLPClassifier : [[44 0 0 0 0 0 0 0 0 0]]
ut[83]:	[0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	<pre>With k cross validation import warnings warnings.filterwarnings('ignore') scores=cross_val_score(m,X_train,Y_train,scoring='r2',cv=5) print(scores) print("Average scores with 5 cross validation on train dataset ", np.mean(scores))</pre>
n [85]:	[0.97323037 0.93538293 0.88156867 0.94299816 0.90430782] Average scores with 5 cross validation on train dataset 0.9274975882600204 from sklearn.model_selection import cross_val_predict pred=cross_val_predict(m, X_test, Y_test) scores_test=cross_val_score(m, X_test, Y_test, cv=5) print("Accuracy on test datset is", np.mean(scores_test)) Accuracy on test datset is 0.93611111111111111
\$	Random search hyperparameter optimisation:- MLPClassifier has the hyperparametersactivation, alpha, batch_size, beta_1,beta_2 early_stopping, epsilon,hidden_layer_sizes,learning_rate_learning_rate_init, max_iter, momentum,nesterovs_momentum, power_t, random_state,shuffle, solver, tol, validation_fraction,verbose and warm_start. In my opinion the three things which really matter in these hyperparameters are alpha, hidden_layer_sizes and iterations(which are epochs). So, I decided to define a random search function for these. #try using random function and implement this def randomsearch(): i = 0 df = pd.DataFrame(columns = ['alpha', 'max_iter', 'hidden_layer_sizes', 'train_acc', 'test_acc'])
	<pre>for a in [0.00001,0.001,0.01,0.1, 1, 10]: for mi in [10,100,200,500,1000,2000]: for l in [(10,5),(50,20),(100,50),(150,60),(200,100)]: #st = time() mlp = MLPClassifier(alpha=a, hidden_layer_sizes=l, max_iter=mi) mlp.fit(X_train, Y_train) #end = time() - st acc_tr = accuracy_score(Y_train, mlp.predict(X_train)) # Train Accuracy</pre>
	<pre>acc = accuracy_score(Y_test, mlp.predict(X_test)) # Test Accuracy</pre>
	alpha max_iter hidden_layer_sizes train_acc test_acc 0 0.00001 10 (10,5) 0.165623 0.166667 1 0.00001 10 (50, 20) 0.729297 0.705556 2 0.00001 10 (100, 50) 0.954071 0.952778 3 0.00001 10 (150, 60) 0.969381 0.977778 4 0.00001 10 (200, 100) 0.999953 0.986556 5 0.00001 10 (200, 100) 0.999953 0.980556 5 0.00001 100 (10,5) 0.892136 0.877778 6 0.00001 100 (50, 20) 1.000000 0.972222 7 0.00001 100 (100, 50) 1.000000 0.986111 8 0.00001 100 (150, 60) 1.000000 0.986111
	9 0.00001 100 (200, 100) 1.000000 0.991667 10 0.00001 200 (10, 5) 0.949200 0.944444 11 0.00001 200 (50, 20) 1.000000 0.983333 12 0.00001 200 (100, 50) 1.000000 0.991667 14 0.00001 200 (200, 100) 1.000000 0.991667 14 0.00001 500 (10, 5) 0.988866 0.958333 15 0.00001 500 (50, 20) 1.000000 0.958389 16 0.00001 500 (50, 20) 1.000000 0.988889 17 0.00001 500 (50, 20) 1.000000 0.988889 18 0.00001 500 (150, 60) 1.000000 0.988889
	19 0.00001 500 (200, 100) 1.000000 0.991667 20 0.00001 1000 (10, 5) 0.999304 0.947222 21 0.00001 1000 (50, 20) 1.000000 0.991667 22 0.00001 1000 (150, 60) 1.000000 0.994444 23 0.00001 1000 (150, 60) 1.000000 0.994444 24 0.00001 1000 (200, 100) 1.000000 0.988889 25 0.00001 2000 (10, 5) 0.999304 0.933333 26 0.00001 2000 (50, 20) 1.000000 0.988889 27 0.00001 2000 (50, 20) 1.000000 0.988889 28 0.00001 2000 (150, 60) 1.000000 0.983333
	29 0.00001 2000 (200, 100) 1.000000 0.994444 30 0.00010 10 (10, 5) 0.117650 0.133333 31 0.00010 10 (50, 20) 0.745303 0.730556 32 0.00010 10 (100, 50) 0.923452 0.919444 33 0.00010 10 (150, 60) 0.971468 0.972222 34 0.00010 10 (200, 100) 0.992345 0.975000 35 0.00010 100 (10, 5) 0.76618 0.769444 36 0.00010 100 (50, 20) 0.999304 0.980556 37 0.00010 100 (100, 50) 1.000000 0.972222 38 0.00010 100 (100, 50) 1.000000 0.972222 39 0.00010 100 (200, 100) 1.000000 0.997222
	0 0.00010 200 (10,5) 0.933890 0.900000 41 0.00010 200 (50,20) 1.000000 0.983333 42 0.00010 200 (150,60) 1.000000 0.986111 43 0.00010 200 (150,60) 1.000000 0.983333 44 0.00010 200 (200, 100) 1.000000 0.983333 45 0.00010 500 (10,5) 0.976340 0.927778 46 0.00010 500 (50,20) 1.000000 0.983333 47 0.00010 500 (100,50) 1.000000 0.983333 48 0.00010 500 (150,60) 1.000000 0.983333 49 0.00010 500 (200,100) 1.000000 0.983333
	50 0.00010 1000 (10, 5) 1.000000 0.941667 51 0.00010 1000 (50, 20) 1.000000 0.975000 52 0.00010 1000 (100, 50) 1.000000 0.975000 53 0.00010 1000 (150, 60) 1.000000 0.988889 54 0.00010 1000 (200, 100) 1.000000 0.991667 55 0.00010 2000 (10, 5) 0.99304 0.952778 56 0.00010 2000 (50, 20) 1.000000 0.994444 58 0.00010 2000 (150, 60) 1.000000 0.994444 59 0.00010 2000 (200, 100) 1.000000 0.994444
	60 0.00100 10 (10, 5) 0.176061 0.191667 61 0.00100 10 (50, 20) 0.688935 0.700000 62 0.00100 10 (100, 50) 0.963118 0.969444 63 0.00100 10 (150, 60) 0.979819 0.975000 64 0.00100 10 (200, 100) 0.995129 0.983333 65 0.00100 100 (10, 5) 0.859429 0.841667 66 0.00100 100 (50, 20) 1.000000 0.986111 67 0.00100 100 (150, 60) 1.000000 0.991667 68 0.00100 100 (200, 100) 1.000000 0.988889
	70 0.00100 200 (10, 5) 0.929019 0.90000 71 0.00100 200 (50, 20) 1.000000 0.986111 72 0.00100 200 (150, 60) 1.000000 0.98889 73 0.00100 200 (200, 100) 1.000000 0.991667 75 0.00100 500 (10, 5) 0.99373 0.930556 76 0.00100 500 (50, 20) 1.000000 0.98889 78 0.00100 500 (100, 50) 1.000000 0.988889 79 0.00100 500 (200, 100) 1.000000 0.988889 80 0.00100 100 (10, 5) 0.99304 0.925000
	81 0.00100 1000 (50, 20) 1.000000 0.986111 82 0.00100 1000 (150, 60) 1.000000 0.984444 84 0.00100 1000 (200, 100) 1.000000 0.988889 85 0.00100 2000 (50, 20) 1.000000 0.983333 86 0.00100 2000 (50, 20) 1.000000 0.983333 87 0.00100 2000 (50, 20) 1.000000 0.986111 88 0.00100 2000 (150, 60) 1.000000 0.986111 89 0.00100 2000 (200, 100) 1.000000 0.988889 90 0.01000 100 (200, 100) 1.000000 0.988889 90 0.01000 100 (200, 100) 1.000000 0.988889
	91 0.01000 10 (50, 20) 0.72993 0.708333 92 0.01000 10 (100, 50) 0.943633 0.936111 93 0.01000 10 (150, 60) 0.972860 0.944444 94 0.01000 10 (200, 100) 0.989562 0.983333 95 0.01000 100 (10, 5) 0.843424 0.869444 96 0.01000 100 (50, 20) 1.000000 0.969444 97 0.01000 100 (100, 50) 1.000000 0.991667 98 0.01000 100 (150, 60) 1.000000 0.9958889 100 0.01000 200 (10, 5) 0.949896 0.988333
	101 0.01000 200 (50, 20) 1.000000 0.983333 102 0.01000 200 (100, 50) 1.000000 0.983333 103 0.01000 200 (150, 60) 1.000000 0.986111 104 0.01000 200 (200, 100) 1.000000 0.988889 105 0.01000 500 (10, 5) 0.993041 0.930556 106 0.01000 500 (50, 20) 1.000000 0.975000 107 0.01000 500 (100, 50) 1.000000 0.988889 108 0.01000 500 (150, 60) 1.000000 0.988889 109 0.01000 500 (200, 100) 1.000000 0.988889 100 0.01000 500 (150, 60) 1.000000 0.988889 100 0.01000 500 (200, 100) 1.000000 0.988889 100 0.01000 1000 1000 (10, 5) 1.000000 0.988889
	111 0.01000 1000 (50, 20) 1.000000 0.977778 112 0.01000 1000 (100, 50) 1.000000 0.991667 113 0.01000 1000 (150, 60) 1.000000 0.991667 114 0.01000 1000 (200, 100) 1.000000 0.991667 115 0.01000 2000 (10, 5) 0.986778 0.927778 116 0.01000 2000 (50, 20) 1.000000 0.977778 117 0.01000 2000 (50, 20) 1.000000 0.977778 118 0.01000 2000 (100, 50) 1.000000 0.991667 118 0.01000 2000 (150, 60) 1.000000 0.991667 119 0.01000 2000 (200, 100) 1.000000 0.991667 119 0.01000 2000 (200, 100) 1.000000 0.983333 120 0.10000 10 (10, 5) 0.172582 0.150000
	121 0.10000 10 (50, 20) 0.803758 0.802778 122 0.10000 10 (100, 50) 0.951983 0.947222 123 0.10000 10 (150, 60) 0.979123 0.983333 124 0.10000 10 (200, 100) 0.986778 0.977778 125 0.10000 100 (10, 5) 0.520529 0.544444 126 0.10000 100 (50, 20) 1.00000 0.975000 127 0.10000 100 (100, 50) 1.000000 0.988889 128 0.10000 100 (150, 60) 1.000000 0.988889 129 0.10000 100 (200, 100) 1.000000 0.988889 129 0.10000 200 (10, 5) 0.967989 0.92222
	131 0.10000 200 (50, 20) 1.000000 0.980556 132 0.10000 200 (100, 50) 1.000000 0.988889 134 0.10000 200 (200, 100) 1.000000 0.988889 135 0.10000 500 (10, 5) 0.984690 0.916667 136 0.10000 500 (50, 20) 1.000000 0.975000 137 0.10000 500 (100, 50) 1.000000 0.983333 138 0.10000 500 (150, 60) 1.000000 0.983333 139 0.10000 500 (200, 100) 1.000000 0.983333 140 0.10000 1000 (10, 5) 0.98688 0.927778
	141 0.10000 1000 (50, 20) 1.000000 0.983333 142 0.10000 1000 (100, 50) 1.000000 0.991667 144 0.10000 1000 (200, 100) 1.000000 0.994444 145 0.10000 2000 (10, 5) 0.999304 0.947222 146 0.10000 2000 (50, 20) 1.00000 0.983333 147 0.10000 2000 (100, 50) 1.00000 0.988889 148 0.10000 2000 (200, 100) 1.00000 0.988889 149 0.10000 2000 (200, 100) 1.00000 0.988889 150 1.00000 10 (10, 5) 0.25470 0.244444 151 1.00000 10 (50, 20) 0.795407 0.791667
	151
	162 1.00000 200 (100, 50) 1.00000 0.991667 163 1.00000 200 (150, 60) 1.00000 0.991667 164 1.00000 200 (200, 100) 0.99334 0.991667 165 1.00000 500 (10, 5) 0.99337 0.944444 166 1.00000 500 (50, 20) 1.00000 0.986111 167 1.00000 500 (150, 60) 1.00000 0.986111 169 1.00000 500 (200, 100) 0.998608 0.983333 170 1.00000 1000 (10, 5) 0.998608 0.977778 171 1.00000 1000 (50, 20) 1.00000 0.983333
	172 1.00000 1000 (100, 50) 1.00000 0.986111 173 1.00000 1000 (150, 60) 1.00000 0.983333 174 1.00000 1000 (200, 100) 1.00000 0.991667 175 1.00000 2000 (10, 5) 0.997216 0.969444 176 1.00000 2000 (50, 20) 1.00000 0.988889 177 1.00000 2000 (100, 50) 1.00000 0.991667 179 1.00000 2000 (200, 100) 1.00000 0.991667 180 10.00000 10 (10, 5) 0.270007 0.275000 181 10.00000 10 (50, 20) 0.716075 0.705556
	182 10.00000 10 (100, 50) 0.956855 0.955556 183 10.00000 10 (150, 60) 0.970772 0.975000 184 10.00000 10 (200, 100) 0.985386 0.969444 185 10.00000 100 (10, 5) 0.831594 0.827778 186 10.00000 100 (50, 20) 0.981211 0.983333 187 10.00000 100 (100, 50) 0.982603 0.983333 188 10.00000 100 (150, 60) 0.982603 0.983333 189 10.00000 100 (200, 100) 0.972164 0.977778 190 10.00000 200 (10, 5) 0.872651 0.852778 191 10.00000 200 (50, 20) 0.979123 0.972222
	192 10.00000 200 (100, 50) 0.978427 0.98333 193 10.00000 200 (150, 60) 0.980556 194 10.00000 200 (200, 100) 0.99819 0.980556 195 10.00000 500 (10, 5) 0.969381 0.958333 196 10.00000 500 (10, 5) 0.981907 0.977778 197 10.00000 500 (100, 50) 0.981917 0.9775000 198 10.00000 500 (150, 60) 0.981907 0.980556 199 10.00000 500 (150, 60) 0.981907 0.980556 199 10.00000 500 (100, 50) 0.981907 0.980556 190 10.00000 1000 (10, 5) 0.969381 0.963889 200 10.00000 1000 (50, 20) 0.984690 0.980556 201 10.00000 1000 (100, 50) 0.984690 0.980556
	203 10.00000 1000 (150, 60) 0.978427 0.980556 204 10.00000 1000 (200, 100) 0.977731 0.972222 205 10.00000 2000 (10, 5) 0.952679 0.961111 206 10.00000 2000 (50, 20) 0.981907 0.977778 207 10.00000 2000 (100, 50) 0.979819 0.975000 208 10.00000 2000 (150, 60) 0.981907 0.980556 209 10.00000 2000 (200, 100) 0.980515 0.977778
I	alpha 10 max_iter 2000 hidden_layer_sizes (200, 100) train_acc 1 test_acc 0.997222 dtype: object Inference:The more the hidden_layer_sizes with the same minimal lpha and iterations, the better the test accuracy becomes, so all we need to find is a sweet spot between alpha, iterations and a larger hidden_layer_sizes to give the best test accuracy. Therefore, The best hyperparameter values are when alpha=10, max_iter=2000 and hidden_layer_sizes=(200,100)
In []: [