ОКТЧ. Лекция 1

Сергей Григорян

2 сентября 2024 г.

1 Контакты

telegram = @ax_equals_b

2 Основные понятия

Определение 2.1. Мн-во - первичное понятие

Обозначение.

$$\{1, 2, 3\}$$
$$\{n \in \mathbb{N} \colon 5|n\}.$$
$$\{x^2 \colon x \in \{1, 2, \dots, 5\}\}.$$

Обозначение.

Принадлежность: $a \in A$

Bce эл-ты из A содерж. e $B:A\subset B\iff \forall a\in A\colon a\in B$

Факты:

- а) $A \subset A$ рефлексивность
- b) $A\subset B,\, B\subset A\iff A=b$ антисимметричность
- c) $A \subset B, B \subset C \Rightarrow A \subset C$ транзитивность $\forall a \in A \Rightarrow a \in B \Rightarrow a \in C$
- d) $\emptyset \subset A$

Определение 2.2.

 $\overline{\mbox{\bf Объединение}}$ мн-в A и $B=A\cup B=\{x|x\in A\lor x\in B\}$

Определение 2.3.

 $\overline{\textbf{\Pi}$ ересечение мн-в A и $B=A\cap B=\{x|x\in A\land x\in B\}$

Определение 2.4.

 $\overline{$ Pазностью мн-в A и $B=A \backslash B=\{x|x\in A \land x\not\in B\}$

Определение 2.5.

 $\overline{\mathbf{C}$ имм. разн-ю мн-в A и $B=A\triangle B=\{x|x\in A\backslash B\lor x\in B\backslash A\}$

Утверждение 2.1. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Доказательство.

$$A \cup (B \cap C) \iff x \in A \land x \in B \cap C \iff .$$

$$x \in A \lor (x \in B \land x \in C) \iff x \in A \lor x \in B \land x \in A \lor x \in C.$$

$$x \in A \cup B \land x \in A \cup C \iff (A \cup B) \cap (A \cup C).$$

<u>Обозначение</u>. Универсум U - мн-во, кот. принадлежат все рассм. эл-ты.

$$\Rightarrow \overline{A} = U \backslash A$$

Определение 2.6. Кортеж - упоряд. набор эл-ов:

- Кортеж длины $0 = \emptyset$
- ullet Если $T=(a_1,\cdots,a_n),$ то $(a,a_1,\cdots,a_n)=a,a,T$ кортеж длины n+1
- Кортеж длины 2 упорядоченная пара.

Определение 2.7. Декартово произ-е $A \times B = \{(a,b) | a \in A, b \in B\}$

Определение 2.8. Декартова степень $A^n = A \times A \times \cdots \times A \longleftrightarrow_{trustme} (a_1, a_2, \cdots, a_n)$