Leçon 105. Groupes des permutations d'un ensemble fini. Applications

Devs:

- Décomposition de Bruhat
- Table des caractères de S_4

Références:

- 1. Ulmer, Théorie des groupes
- 2. Perrin, Cours d'algèbre
- 3. Gourdon, Algèbre
- 4. Caldero-Germoni, H2G2
- 5. Peyre, L'algèbre discrète de la transformée de Fourier
- 6. FGN, Oraux X-ENS Algèbre 1

1 Généralités sur le groupe symétrique

1.1 Définitions et premières propriétés

Définition 1. On appelle groupe symétrique d'ordre n le groupe S_n des bijections entre [1, n] et lui-même. Le groupe S_n est d'ordre $|S_n| = n!$.

Notation 2. Pour $\sigma \in S_n$, on note généralement σ sous la forme du tableau

$$\left(\begin{array}{ccc} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{array}\right).$$

Définition 3. Soit $\sigma \in S_n$. Les éléments $i \in \{1, ..., n\}$ qui vérifient $\sigma(i) = i$ sont appelés points fixes de σ , et on note $Fix(\sigma)$ l'ensemble de ses points fixes.

On appelle support de σ , et on le note $Supp(\sigma)$, l'ensemble $\{1,\ldots,n\}\setminus Fix(\sigma)$.

Proposition 4. Soit $\sigma, \rho \in S_n$. On a toujours $\operatorname{Supp}(\sigma \rho) \subset \operatorname{Supp}(\sigma) \cup \operatorname{Supp}(\rho)$. Si $\operatorname{Supp}(\sigma) \cap \operatorname{Supp}(\rho) = \emptyset$, on dit que σ et ρ sont des permutations à support disjoint, et dans ce cas, on a $\operatorname{Supp}(\sigma \rho) = \operatorname{Supp}(\sigma) \sqcup \operatorname{Supp}(\rho)$ et

- $\sigma \rho(i)$ est égal à $\sigma(i)$ si $i \in \text{Supp}(\sigma)$ et à $\rho(i)$ si $i \in \text{Supp}(\rho)$,
- $\sigma \rho = \rho \sigma$,

• $\sigma \rho = \operatorname{Id}_n \iff \sigma = \rho = \operatorname{Id}_n$

Exemple 5. On considère $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ et $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. Alors $Supp(\sigma) = \{1, 2\}$ et $Supp(\tau) = \{2, 3\}$, et on vérifie que σ et τ ne commutent pas. En particulier, le résultat précédent est faux lorsque le support n'est pas disjoint, et le groupe S_n n'est, en général, pas commutatif (sauf pour n = 1 ou n = 2).

Proposition 6. (théorème de Cayley)

Si G est fini de cardinal n, alors G est isomorphme à un sous-groupe de S_n .

Remarque 7. Le théorème de Cayley a une utilité pratique assez restreinte, car S_n a un cardinal beaucoup plus gros que G.

1.2 Cycles, orbites et types

 $\begin{array}{lll} \textbf{D\'efinition 8.} & Soit \ \ell \geq 1 \ \ un \ \ entier \ \ et \ \ i_1, \dots, i_\ell \ \ des \ \ \'el\'ements \ \ destincts \ \ de \ \llbracket 1, n \rrbracket. \ \ La \\ permutation \ \gamma & d\'efinie \ par \ \gamma(j) = \left\{ \begin{array}{lll} j & \text{si } j \notin \{i_1, \dots, i_\ell\} \\ j+1 & \text{si } j \in \{i_1, \dots, i_{\ell-1}\} \\ i_1 & \text{si } j = i_{\ell-1} \end{array} \right. \ \ est \ \ not\'ee \ \ (i_1, \dots, i_\ell) \ \ et \ \ est \\ appel\'ee \ \ cycle \ \ de \ \ longueur \ \ell. \end{array}$

Un cycle de longueur deux est appelé une transposition.

Proposition 9. Dans S_n , les k-cycles sont au nombre de $\binom{n}{k}(k-1)!$.

Théorème 10.

Toute permutation $\sigma \in S_n$ s'écrit comme produit $\sigma = \gamma_1 \cdots \gamma_m$ de cycles γ_i de longueur $\ell \geq 2$ dont les supports sont deux à deux disjoints et correspondent aux orbites de l'action du groupe $\langle \sigma \rangle$ sur l'ensemble $\{1, \ldots, n\}$. Cette décomposition est unique à l'ordre des facteurs près.

Exemple 11. La permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} \in S_6$ se décompose en $\sigma = (1, 2, 4)(3, 5)$.

Définition 12. Soit $n \ge 0$. On appelle type d'une permutation $\sigma \in S_n$, et on note $[\ell_1, \ldots, \ell_m]$, la liste des cardinaux ℓ_i des orbites dans $\{1, \ldots, n\}$ de l'action de $\langle \sigma \rangle$ sur $\{1, \ldots, n\}$, rangée en ordre croissant.

Proposition 13. Une permutation $\sigma \in S_n$ de type $[\ell_1, \ldots, \ell_n]$ a pour ordre le plus petit multiple commun des ℓ_i .

Proposition 14. Deux permutations σ et ρ sont conjuguées dans S_n si et seulement si elles ont le même type. En particulier, pour $\omega \in S_n$, et tout cycle $(i_1, \ldots, i_\ell) \in S_n$, on a l'identité

$$\omega(i_1,\ldots,i_\ell)\omega^{-1}=(\omega(i_1),\ldots,\omega(i_\ell)).$$

2 Section 3

Corollaire 15. Les classes de conjugaison des éléments de S_n sont uniquement déterminées par leur type. La proposition 9 permet alors de déterminer le cardinal de ces classes, ce qui est utile notamment pour dresser la table des caractères de S_n , comme on le fera dans le cas n=4.

Exemple 16. Les classes de conjugaison de S_4 sont :

- [1] : La classe de l'identité, qui possède 1 élément.
- [2]: La classe des transpositions, qui possède 6 éléments.
- [2, 2] : La classe des doubles transpositions, qui possède 3 éléments.
- [3]: La classe des 3-cycles, qui possède 8 éléments.
- [4]: La classe des 4-cycles, qui possède 6 éléments.

1.3 Générateurs

Proposition 17. Tout cycle $(i_1 \cdots i_{\ell})$ s'écrit comme produit de transpositions $(i_1i_2)(i_2i_3)\cdots(i_{\ell-1}i_{\ell})$.

Corollaire 18. Le groupe symétrique est engendré par les transpositions.

Proposition 19. Le groupe symétrique S_n est engendré par $(1,2), (1,3), \ldots, (1,n)$. Il est aussi engendré par (1,2) et $(1,2,3,\ldots,n)$.

2 Signature et groupe alterné

2.1 Le morphisme signature

Définition 20. Soit $\sigma \in S_n$. On appelle signature de σ , et on note $\varepsilon(\sigma)$, le nombre

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}.$$

Proposition 21. L'application ε : $S_n \to \{-1, 1\}$ est un morphisme de groupes. Son noyau est appelé le groupe alterné, noté A_n . C'est un sous-groupe distingué de S_n .

Proposition 22. La parité du nombre de transpositions dans la décomposition en produit de transpositions $\sigma \in S_n$ ne dépend pas de la décomposition, et $\varepsilon(\sigma)$ vaut 1 ou -1 selon que ce nombre est pair ou impair.

Proposition 23. Si $\sigma \in S_n$ est de type $[\ell_1, \ldots, \ell_m]$, alors

$$\varepsilon(\sigma) = (-1)^{\ell_1 - 1} (-1)^{\ell_2 - 1} \cdots (-1)^{\ell_m - 1}.$$

2.2 Propriétés du groupe alterné

Définition 24. On dit qu'une permutation $\sigma \in \mathcal{S}_n$ est paire si $\varepsilon(\sigma) = 1$. L'ensemble des permutations paire est donc $\mathcal{A}_n = \text{Ker}(\varepsilon)$.

Proposition 25. Pour $n \ge 2$, le groupe A_n est un sous-groupe distingué d'indice 2 de S_n . Il contient $\frac{n!}{2}$ éléments.

Proposition 26. Les cycles de longueur 3 engendrent A_n .

Proposition 27. Le groupe A_n est simple pour n > 5.

Corollaire 28. On a $D(A_n) = A_n$ pour $n \ge 5$ et $D(S_n) = A_n$ pour $n \ge 2$, où D désigne le groupe dérivé.

3 Quelques applications des groupes symétriques

3.1 En algèbre linéaire : déterminant et groupe linéaire

Définition 29. Soit E_1, \ldots, E_p et F des k-espaces vectoriels. Une application :

$$f: E_1 \times \cdots \times E_p \to F$$

est dite p-linéaire si en tout point, les p applications partielles sont linéaires. Si p=2, f est dite bilinéaire. L'ensemble de ces applications est noté $\mathcal{L}(E_1,\ldots,E_p,F)$. C'est un k-espace vectoriel.

Si $E_1 = \cdots = E_p = E$ et F = k, on parle de forme p-linéaire sur E, et l'ensemble des formes p-linéairs sur E est noté $\mathcal{L}_p(E,k)$.

Définition 30. Soit $f \in \mathcal{L}_p(E, k)$.

- f est dite alternée si $f(x_1,...,x_n)=0$ dès que deux vecteurs parmi les x_i sont équix.
- f est dite antisymétrique si l'échange de deux valeurs dans le p-uplet (x_1, \ldots, x_p) donne à f des valeurs opposées.

Proposition 31. f est antisymétrique si et seulement si pour tout $\sigma \in \mathcal{S}_p$ et pour tout $(x_1, \ldots, x_p) \in E^p$, on a $f(x_{\sigma(1)}, \ldots, x_{\sigma(p)}) = \varepsilon(\sigma) f(x_1, \ldots, x_p)$.

Quelques applications des groupes symétriques

Théorème 32. L'ensemble des formes n-linéaires alternées sur E forme un k-espace vectoriel de dimension 1. De plus, il existe une unique forme n-linéaire alternée prenant la valeur 1 sur une base donnée de E. On l'appelle déterminant dans la base B et on la note \det_B .

Proposition 33. Soit $(x_1, \ldots, x_n) \in E^n$. On a:

$$\det_{B}(x_{1},\ldots,x_{n}) = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Définition 34. Soit $f \in \mathcal{L}(E)$ et $B = (e_1, ..., e_n)$ une base de E. Le scalaire $\det_B(f(e_1), ..., f(e_n))$ ne dépend pas de la base choisie. On l'appelle déterminant de f et on le note $\det(f)$.

Proposition 35. Le déterminant vérifie les propriétés suivantes :

- $Si\ f, g \in \mathcal{L}(E)\ alors\ \det(f \circ g) = \det(f) \cdot \det(g)$.
- On $a \det \operatorname{Id}_E = 1$.
- Si $f \in \mathcal{L}(E)$, alors $f \in GL(E) \iff \det f \neq 0$, et dans ce cas on a $\det(f^{-1}) = (\det f)^{-1}$.

Définition 36. On note $B_n(\mathbb{K})$ l'ensemble des matrices triangulaires inversibles de $\mathrm{GL}_n(\mathbb{K})$. C'est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$.

Définition 37. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n . Pour $\sigma \in \mathcal{S}_n$, on note w_{σ} l'application linéaire donnée par $w_{\sigma}(e_i) = e_{\sigma(i)}$ pour tout $i \in [1, n]$.

Proposition 38. L'application $w: \sigma \mapsto w_{\sigma}$ est un morphisme de groupes injectif de S_n dans $GL_n(\mathbb{K})$.

Développement 1 :

Théorème 39. (décomposition de Bruhat)

En notant, pour $\sigma \in S_n$, $B_n(\mathbb{K})$ $w_{\sigma} B_n(\mathbb{K}) := \{tw_{\sigma} s : t, s \in B_n(\mathbb{K})\}$, on a la décomposition :

$$\mathsf{GL}_n(\mathbb{K}) = \bigsqcup_{\sigma \in \mathcal{S}_n} B_n(\mathbb{K}) w_{\sigma} B_n(\mathbb{K})$$

3.2 En géométrie : groupes d'isométries et table de \mathcal{S}_4

On considère un espace affine euclidien $\mathcal E$ dirigé par l'espace vectoriel $E=\mathbb R^n$. $\|.\|$ désigne la norme issue du produit scalaire $\langle .|. \rangle$ sur $\mathcal E$.

Définition 40. On appelle application affine de \mathcal{E} dans lui-même une application $f: \mathcal{E} \to \mathcal{E}$, telle qu'il existe $\varphi \in \mathcal{L}(\mathbb{R}^n)$ vérifiant :

$$\forall A, B \in \mathcal{E} \quad \overrightarrow{f(A)f(B)} = \varphi(\overrightarrow{AB})$$

Dans ce cas, on dit que φ est la partie linéaire de f et on note $\varphi =: \vec{f}$. On note $Aff(\mathcal{E})$ l'ensemble des applications affines de \mathcal{E} dans lui-même.

On appelle isométrie de \mathcal{E} toute application $\varphi \colon \mathcal{E} \to \mathcal{E}$ qui conserve les distances :

$$\forall x, y \in \mathcal{E} \quad \|\varphi(x) - \varphi(y)\| = \|x - y\|$$

On appelle isométrie affine de $\mathcal E$ une application affine de $\mathcal E$ dans lui-même qui est une isométrie.

Définition 41. On appelle groupe affine de A l'ensemble $GA(\mathcal{E})$ des applications affine de A dans lui-même bijectives.

Proposition 42. On a $GA(\mathcal{E}) = \{ f \in Aff(\mathcal{E}) \mid \vec{f} \in GL(E) \}.$

Définition 43. Soit X une partie de \mathcal{E} . Le groupe d'isométries de X, note $\mathrm{Is}(X)$, est constitué des isométries affines qui laissent X invariant. C'est un sous-groupe de $\mathrm{GA}(\mathcal{E})$.

Le groupe des déplacements de X, noté $\operatorname{Is}^+(X)$, est le sous-groupe des appications de $\operatorname{Is}(X)$ dont le déterminant de la partie linéaire vaut 1.

Lemme 44. Le groupe d'isométries d'un ensemble convexe laisse stable ses points extrémaux.

Proposition 45. On considère $\mathcal{E} = \mathbb{R}^3$ en tant qu'espace affine euclidien.

Le groupe d'isométries du tétraèdre Δ_4 est isomorphe à S_4 , et son groupe des déplacements est isomorphe à A_4

Le groupe d'isométries du cube C_6 est isomorphe au produit $S_4 \times \mathbb{Z}/2\mathbb{Z}$, et son groupe des déplacements est isomorphe à S_4 .

Développement 2 :

Théorème 46. La table des caractères de S4 est donnée par

	[1]	[2]	[2, 2]	[3]	[4]
χ_1	1	1	1	1	1
χ_{ε}	1	-1	1	1	-1
χ_s	3	1	-1	0	-1
χ_W	2	0	2	-1	0
χς	3	-1	-1	0	1

3.3 En théorie des groupes : les théorèmes de Sylow

Définition 47. Pour $n \in \mathbb{N}$ et \mathbb{K} un corps, on note $U_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux sont tous égaux à 1. On admet que c'est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$.

Proposition 48. Soit p un nombre premier et $n \in \mathbb{N}$. Alors on a :

$$|\operatorname{GL}_n(\mathbb{F}_p)| = (p^n - 1) \cdots (p^n - p^{n-1}) = mp^{\frac{n(n-1)}{2}}$$
 et $|U_n(\mathbb{F}_p)| = p^{\frac{n(n-1)}{2}}$

4 Section 3

Où $m = (p-1) \cdots (p^n-1)$ est premier avec p.

Proposition 49. Soit G un p-groupe agissant sur un ensemble X. On considère l'ensemble des points fixes de X pour cette action $X^G := \{x \in X : \forall g \in G \mid gx = x\}$. Alors on a l'égalité :

$$|X| \equiv |X^G| [p]$$

Définition 50. Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. On dit que H < G est un p-Sylow de G si c'est un sous-groupe d'ordre p^{α} .

Théorème 51. (Sylow via le théorème de Cayley)

Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

Exemple 52. Tout groupe d'ordre 15 est isomorphe à $\mathbb{Z}/15\mathbb{Z}$.

Exemple 53. Il n'existe pas de groupe simple d'ordre 63 et 255.