Álgebra Universal e Categorias

2º teste

____ duração: 1h30min | tolerância: 10min _____

- 1. Sejam \mathcal{A} uma álgebra e $\theta \in \mathrm{Con}\mathcal{A}$. Considere a aplicação $\alpha: A \to A/\theta$ definida por $\alpha(a) = [a]_{\theta}$, para todo $a \in A$.
 - (a) Mostre que α é um epimorfismo de \mathcal{A} em \mathcal{A}/θ .

A aplicação α é um epimorfismo se:

(i) α é um homomorfismo de \mathcal{A} em \mathcal{A}/θ , i.e., se, para qualquer símbolo de operação n-ário f, $n \in \mathbb{N}_0$, e para qualquer $(a_1,\ldots,a_n) \in A^n$,

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{A}/\theta}(\alpha(a_1),\ldots,\alpha(a_n));$$

(ii) α é sobrejetiva.

As condições (i) e (ii) são simples de verificar. De facto,

(i) Para qualquer símbolo de operação n-ário f, $n \in \mathbb{N}_0$, e para qualquer $(a_1, \ldots, a_n) \in A^n$,

$$\alpha(f^{\mathcal{A}}(a_1, \dots, a_n)) = [f^{\mathcal{A}}(a_1, \dots, a_n)]_{\theta}$$

$$= f^{\mathcal{A}/\theta}([a_1]_{\theta}, \dots, [a_n]_{\theta})$$

$$= f^{\mathcal{A}/\theta}(\alpha(a_1), \dots, \alpha(a_n)).$$

- (ii) A aplicação α é sobrejetiva, pois, para qualquer $[a]_{\theta} \in \mathcal{A}/\theta$, existe $a \in A$ tal que $\alpha(a) = [a]_{\theta}$.
- (b) Mostre que $\ker \alpha = \theta$. Justifique que α é um monomorfismo se e só se $\theta = \triangle_A$.

Tem-se

$$\ker \alpha = \{(a, b) \mid \alpha(a) = \alpha(b)\}.$$

Logo, para quaisquer $a, b \in A$,

$$(a,b) \in \ker \alpha \Leftrightarrow \alpha(a) = \alpha(b) \Leftrightarrow [a]_{\theta} = [b]_{\theta} \Leftrightarrow (a,b) \in \theta.$$

Portanto, $\ker \alpha = \theta$.

Admitamos que α é um monomorfismo. Então α é um homomorfismo e é uma aplicação injetiva. Mostremos que $\theta=\triangle_A$. Uma vez que θ é uma relação de equivalência, a relação θ é reflexiva e, portanto, temos $\triangle_A\subseteq \theta$. Além disso, para quaisquer $a,b\in A$,

$$\begin{array}{rcl} (a,b) \in \theta & \Rightarrow & (a,b) \in \ker \alpha \\ & \Rightarrow & \alpha(a) = \alpha(b) \\ & \Rightarrow & a = b \\ & \Rightarrow & (a,b) \in \triangle_A. \end{array} \qquad \text{$(\alpha \ \text{\'e injetiva})$}$$

Logo $\theta = \triangle_A$.

Reciprocamente, admitamos que $\theta = \triangle_A$. Então, para quaisquer $a,b \in A$,

$$\alpha(a) = \alpha(b) \Rightarrow (a, b) \in \ker \alpha \Rightarrow (a, b) \in \theta \Rightarrow (a, b) \in \Delta_A \Rightarrow a = b.$$

Portanto α é injetiva. Uma vez que α é um homomorfismo e é injetiva, então α é um monomorfismo.

2. (a) Seja A uma álgebra cujo reticulado de congruências pode ser representado pelo digrama de Hasse

i. Justifique que a álgebra $\mathcal A$ não é diretamente indecomponível e indique álgebras $\mathcal B$ e $\mathcal C$ não triviais tais que $\mathcal A\cong\mathcal B\times\mathcal C$.

Uma álgebra \mathcal{A} é diretamente indecomponível se e só se \triangle_A e ∇_A são as únicas congruências fator de \mathcal{A} .

Uma congruência $\theta \in \text{Con}\mathcal{A}$ diz-se uma congruência fator de \mathcal{A} se existe $\theta' \in \text{Con}\mathcal{A}$ tal que $\theta \cap \theta' = \triangle_A$, $\theta \vee \theta' = \nabla_A$, $\theta \circ \theta' = \theta' \circ \theta$.

Do reticulado $\mathrm{Con}\mathcal{A}$ conclui-se que $\theta_1\cap\theta_4=\theta_1\wedge\theta_4=\triangle_A$, $\theta_1\vee\theta_4=\nabla_A$. Além disso, sabe-se que $\theta_1\circ\theta_4=\theta_4\circ\theta_1$. Logo θ_1 e θ_4 são congruências fator. Uma vez que $\theta_1,\theta_4\not\in\{\triangle_A,\nabla_A\}$, então \triangle_A e ∇_A não são as únicas congruências fator de \mathcal{A} e, portanto, \mathcal{A} não é diretamente indecomponível.

Uma vez que (θ_1, θ_4) é um par de congruências fator, temos $\mathcal{A} \cong \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4$. As álgebras \mathcal{A}/θ_1 e \mathcal{A}/θ_4 não são triviais, uma vez que \mathcal{A} não é trivial (pois $\mathrm{Con}\mathcal{A} \neq \{\Delta_A\}$) e $\theta_1, \theta_1 \in \mathrm{Con}\mathcal{A}\setminus\{\nabla_A\}$.

ii. Diga, justificando, se os reticulados $Con(A/\theta_1)$ e $Con(A/\theta_3)$ são isomorfos.

Pelo Teorema da Correspondência sabe-se que $\mathcal{C}on(\mathcal{A}/\theta_1)\cong [\theta_1,\nabla_A]$ e $\mathcal{C}on(\mathcal{A}/\theta_3)\cong [\theta_3,\nabla_A]$. Os reticulados $\mathcal{R}_1=[\theta_1,\nabla_A]$ e $\mathcal{R}_3=[\theta_3,\nabla_A]$ podem ser representados, respetivamente, pelos diagramas de Hasse seguintes

Considerando que $\{\theta_1, \nabla_A\}$ e $\{\theta_3, \theta_4, \nabla_A\}$ são conjuntos finitos com um número distinto de elementos, não é possível definir uma aplicação bijetiva entre estes conjuntos. Logo não é possível definir um isomorfismo entre os reticulados $[\theta_1, \nabla_A]$ e $[\theta_3, \nabla_A]$. Portanto, os reticulados $\mathcal{C}on(\mathcal{A}/\theta_1)$ e $\mathcal{C}on(\mathcal{A}/\theta_3)$ não são isomorfos.

- (b) Dê um exemplo de, ou justifique que não existe um exemplo de:
 - i. Uma álgebra subdiretamente irredutível que não seja diretamente indecomponível.

Toda a álgebra subdiretamente irredutível é diretamente indecomponível. Logo não existe qualquer álgebra nas condições indicadas.

ii. Uma álgebra diretamente indecomponível que não seja subdiretamente irredutível.

A cadeia com três elementos ${\bf 3}$ é diretamente indeomponível, pois 3 é um número primo e toda a álgebra com um número primo de elementos é diretamente indcomponivel. Esta álgebra não é subdiretamente irredutível, pois o monomorfismo α de ${\bf 3}$ em ${\bf 2}\times{\bf 2}$ definido da forma a seguir indicada

é um mergulho subdireto, pois a sua imagem é um produto subdireto de $(\mathcal{A}_i)_{i\in\{1,2\}}$, onde $\mathcal{A}_1=\mathcal{A}_2=\mathbf{2}$, mas nem $p_1\circ\alpha$ nem $p_2\circ\alpha$ é um monomorfismo.

- 3. Considere os operadores de classes de álgebras H e S. Mostre que:
 - (a) HS é um operador de fecho.

Mostremos que HS é um operador de fecho. Pretendemos mostrar que, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 :

- (1) $\mathbf{K}_1 \subseteq HS(\mathbf{K}_1)$;
- (2) $(HS)^2(\mathbf{K}_1) \subseteq HS(\mathbf{K}_1)$;
- (3) $\mathbf{K}_1 \subseteq \mathbf{K}_2 \Rightarrow HS(\mathbf{K}_1) \subseteq HS(\mathbf{K}_2)$.

As condições (1), (2) e (3) seguem facilmente das propriedades dos operadores H e S.

(1) Para qualquer operador $O \in \{S, H\}$ e para qualquer classe de álgebras \mathbf{K}' , tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$. Logo, para qualquer classe de álgebras \mathbf{K}_1 , tem-se $\mathbf{K}_1 \subseteq S(\mathbf{K}_1)$ e $S(\mathbf{K}_1) \subseteq HS(\mathbf{K}_1)$. Assim, $\mathbf{K}_1 \subseteq HS(\mathbf{K}_1)$.

(2) Para qualquer classe de álgebras \mathbf{K}_1 , tem-se

$$HSHS(\mathbf{K}_1) \stackrel{(i)}{\subseteq} HHSS(\mathbf{K}_1) \stackrel{(ii)}{=} HS(\mathbf{K}_1).$$

- (i) $SH \le HS$; (ii) $H^2 = H$; $S^2 = S$.
- (3) Para qualquer operador $O \in \{S, H\}$ e para quaisquer classes de álgebras \mathbf{K} e \mathbf{K}' ,

$$\mathbf{K} \subseteq \mathbf{K}' \Rightarrow O(\mathbf{K}) \subseteq O(\mathbf{K}').$$

Assim, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 ,

$$\mathbf{K}_1 \subseteq \mathbf{K}_2 \quad \Rightarrow \quad S(\mathbf{K}_1) \subseteq S(\mathbf{K}_2) \\ \Rightarrow \quad HS(\mathbf{K}_1) \subseteq HS(\mathbf{K}_2).$$

De (1), (2) e (3), conclui-se que HS é um operador de fecho.

(b) HSH = HS.

Pretendemos mostrar que HSH=HS, ou seja, pretendemos provar que, para qualquer classe de álgebras \mathbf{K} , $HSH(\mathbf{K})=HS(\mathbf{K})$.

Ora, para qualquer classe de álgebras \mathbf{K} , temos

$$HSH(\mathbf{K}) \stackrel{(i)}{\subseteq} HHS(\mathbf{K}) \stackrel{(ii)}{=} HS(\mathbf{K}).$$

(i) $SH \leq HS$; (ii) $H^2 = H$.

A inclusão contrária também é válida. De facto, para qualquer classe de álgebras \mathbf{K} , tem-se $\mathbf{K} \subseteq H(\mathbf{K})$, donde resulta $S(\mathbf{K}) \subseteq SH(\mathbf{K})$ e, por conseguinte, $HS(\mathbf{K}) \subseteq HSH(\mathbf{K})$. Logo HS = HSH.

4. Sejam C e D as categorias definidas pelos diagramas seguintes

$$\mathbf{C} \quad h \underbrace{\mathrm{id}_{A} \underbrace{f}_{g}}_{h} \underbrace{f}_{B} \mathrm{id}_{B} \qquad \qquad \mathbf{D} \quad \mathrm{id}_{X} \underbrace{f}_{X} \underbrace{h'}_{Y} \underbrace{f}_{Y} \mathrm{id}_{Y}$$

onde $h \neq id_A$ e $h = g \circ f$.

(a) Justifique que $g \circ f \circ g = g$ e $h \circ h = h$.

Uma vez que $f \in \hom_{\mathbf{C}}(A,B)$, $g \in \hom_{\mathbf{C}}(B,A)$ e \mathbf{C} é uma categoria, tem-se $f \circ g \in \hom_{\mathbf{C}}(B,B)$. Considerando que $g \in \hom_{\mathbf{C}}(B,A)$, $f \circ g \in \hom_{\mathbf{C}}(B,B)$ e \mathbf{C} é uma categoria, segue que $g \circ f \circ g \in \hom_{\mathbf{C}}(B,A)$. Então, como g é o único \mathbf{C} -morfismo de B em A, concluímos $g \circ f \circ g = g$.

Atendendo a que $h=g\circ f$, $g\circ f\circ g=g$ e a operação \circ é associativa, temos

$$h \circ h = (g \circ f) \circ (g \circ f) = (g \circ f \circ g) \circ f = g \circ f = h.$$

(b) Defina a categoria $C \times D$ por meio de um diagrama.

A categoria $\mathbf{C} \times \mathbf{D}$ é a categoria definida pelo diagrama

Além dos morfismos indicados no diagrama, são também morfismos de ${f C}$ os seguintes:

$$(id_A, id_X) : (A, X) \to (A, X),$$
 $(id_A, id_Y) : (A, Y) \to (A, Y),$ $(id_B, id_X) : (B, X) \to (B, X),$ $(id_B, id_Y) : (B, Y) \to (B, Y).$

 ${\sf Cotações:} \quad 1. (2,5+2,5); 2. (2,5+1,75+1,25+1,25); 3. (2,5+2,0); 4. (1,75+2,0).$