

LINEAR ALGEBRA

UE19MA251

APARNA B S

Department of Science and Humanities

Agenda

- Singular value and singular vector
- Positivity of a Singular value
- Number of Singular values
- Singular value decomposition(SVD)
- Proofs of SVD
- Matrices and SVD
- Singular vectors and fundamental subspaces

Singular Value and Singular Vector

A **singular value** of a real matrix A is the square root of a non-zero eigenvalue of (A^TA) .

It means to find the singular values of A, one needs to find the non-zero eigenvalues of (A^TA) .

Singular vector. If σ is a singular value of A, then there exists $v \neq 0$ such that

$$\left(oldsymbol{A}^Toldsymbol{A}
ight)oldsymbol{v}=\sigma^2oldsymbol{v}$$

Such a v is called a right singular vector of A with singular value σ . It is an eigenvector of $\begin{pmatrix} A^TA \end{pmatrix}$ with eigenvalue σ^2 .

Positivity of a Singular Value

A singular value is always positive.

The matrix (A^TA) is positive semi-definite:

$$x^{T}(A^{T}A)x = (Ax)^{T}(Ax) = ||Ax||^{2} \ge 0$$

so the eigenvalues of (A^TA) must be non-negative, and the non-zero eigenvalues must be positive. Hence a singular value is positive.

Number of Singular Values

A matrix of rank r has exactly r singular values.

$$n - (n - r) = r$$

Notation. Singular values are denoted by $\sigma_1, \ldots, \sigma_r$.

Singular Value Decomposition (SVD)

A real matrix can be decomposed by its singular values and singular vectors. This is called singular value decomposition.

$$A = U\Sigma V^T$$

where Σ is an $m \times n$ "diagonal" matrix with the singular values of \boldsymbol{A} as the leading diagonal elements, \boldsymbol{U} is an $m \times m$ orthogonal matrix with the eigenvectors of $\left(\boldsymbol{A}\boldsymbol{A}^T\right)$ as columns, and \boldsymbol{V} is an $n \times n$ orthogonal matrix with the eigenvectors of $\left(\boldsymbol{A}^T\boldsymbol{A}\right)$ as columns.

Proof of SVD

$$\left(\mathbf{A}\mathbf{A}^T\right)\mathbf{u}_i = \frac{\mathbf{A}\mathbf{A}^T\mathbf{A}\mathbf{v}_i}{\sigma_i} = \frac{\mathbf{A}\sigma_i^2\mathbf{v}_i}{\sigma_i} = \sigma_i^2\mathbf{u}_i, \ i = 1, \dots, r$$

So u_i is an eigenvector of $\left(AA^T\right)$ with the same eigenvalue σ_i^2 . Let $v_{r+1}\ldots v_n$ be orthonormal eigenvectors of $\left(A^TA\right)$ with eigenvalue 0, and $u_{r+1}\ldots u_m$ be eigenvectors of $\left(AA^T\right)$ with eigenvalue 0. Construct matrices U and V by

$$oldsymbol{U} = egin{bmatrix} oldsymbol{u}_1 & \dots & oldsymbol{u}_m \end{bmatrix}, \; oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & \dots & oldsymbol{v}_n \end{bmatrix}$$

THANK YOU

Aparna B. S

Department of Science & Humanities

aparnabs@pes.edu