TC1028 Pensamiento Computacional para Ingeniería

Matrices

ITESM Campus Querétaro

Matriz o lista anidada

Una lista o arreglo lo definimos como la relación entre un nombre y un conjunto de localidades.

Decimos que la estructura de datos que definimos en el arreglo es de una sola dimensión ya que utilizamos un solo valor para identificar a cada localidad (0,1,2,...,n-1).

Matriz o lista anidada

Una matriz o lista anidada también es una colección de localidades asociadas a un nombre, sólo que los datos se organizan en dos dimensiones. Por ello, para hacer referencia a una localidad del arreglo se necesitan de dos números:

* El número de renglón

* El número de columna

Matriz o lista anidada

- De la misma manera que en los arreglos, la numeración de renglones y de columnas inicia desde 0.
- Si por ejemplo definimos una matriz de 6 renglones y 6 columnas,
 el primer elemento de la colección se encontraría en:
 - renglón 0
 - columna 0
- Y el último elemento se encontraría en:
 - renglón 5
 - columna 5

Definición de una matriz

 La definición de variables de tipo matriz es similar a los arreglos, la forma general de declarar una variable matriz es la siguiente:

```
matriz = [ ][ ]
matriz = [ [1, 2, 3 ],[4, 5, 6],[7, 8, 9] ]
```

Localidades de una matriz

- Una vez que hemos declarado la variable matriz, ¿Cómo tenemos acceso a los valores? indicando el renglón y la columna de dicha localidad.
- Para esto debemos recordar que los renglones están numerados de 0 a r-1 (en donde r es el número de renglones del arreglo) y que las columnas están numeradas de 0 a c-1 (en donde c es el número de columnas del arreglo).

Localidades de una matriz

Para hacer referencia a una localidad específica de una matriz debemos escribir el nombre de la variable y entre corchetes el número de renglón y el número de columna de la localidad.

$$M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]$$

Así por ejemplo, la manera como referenciamos a la primera localidad de la matriz **M** que se definió anteriormente es M[0][0] y la última localidad es M[2][2]

Asignaciones a una localidad de la matriz

La forma de asignar un valor a una localidad específica de la matriz es la siguiente:

nombre[renglon][columna] = valor

en donde **nombre** es el nombre de la variable matriz, **renglon** es el número del renglón de la localidad y columna el número de columna de la localidad de la matriz y valor es cualquier valor del tipo con que fue definida la matriz.

Actividad Grupal

Realizar ejercicios con matrices para comprender su funcionamiento.

¿Cómo quedaría la matriz siguiente al ejecutar las instrucciones descritas?

$$M = [[1,20,30,40], [2,10,20,20], [30,20,10,20], [40,20,20,10]]$$

$$x1 = 10$$

$$x2 = 20$$

$$M[0][0] = X1$$

$$M[1][0] = X2$$

$$M[0][3] = M[0][0] * x2$$

-	0	1	2	3
0	10	20	30	?
1	20	10	20	20
2	30	20	10	20
3	40	20	20	10

¿Cual sería el valor de X dada la siguiente matriz?

M = [[10,20,30,40], [20,10,20,20], [30,20,10,20], [40,20,20,10]] X = M[0][0] + M[0][1] + M[0][2] + M[0][3]

_	0	1	2	3
0	10	20	30	40
1	20	10	20	20
2	30	20	10	20
3	40	20	20	10

Matrices o listas anidadas

```
a = [[1, 2, 3], [4, 5, 6]]
print(a[0])
print(a[1])
```

El primer elemento de a aquí - a[0] - es una lista de números [1, 2, 3].

El segundo elemento de a aquí - a[1] - es otra lista de números [4, 5, 6] .

El primer elemento de esta nueva lista es a[0][0] == 1; además:

$$a[0][2] == 3$$

$$a[1][0] == 4$$

$$a[1][1] == 5$$

$$a[1][2] == 6$$

Matrices o listas anidadas

- Para procesar una matriz bidimensional, normalmente utilizas ciclos anidados.
- El primer ciclo itera a través del número de renglón, el segundo ciclo recorre los elementos dentro de un renglón.

Matices o listas anidadas

- La estructura compañera de las matrices son dos ciclos for anidados.
- El acceso a los elementos de una matriz puede ser de dos formas:
 - 1. A través del iterador for renglon in matriz: for elemento in renglon: print(elemento, end=' ') print()

2. A través del índice

```
for i in range(0, len(matriz)):
    for j in range(0, len(matriz[i])):
        print(matriz[i][j], end=' ')
    print()
```

For anidados

- Esta estructura de doble ciclo nos permite recorrer todas las localidades el arreglo, con el primer ciclo for se recorren los renglones, y con el segundo ciclo se recorren las columnas de cada renglón.
- En el primer ciclo se recorre cada renglón, para ello la variable del ciclo (i) toma los valores:

que son precisamente los números de cada renglón de la matriz.

For anidados

En el segundo ciclo para el renglón i, se recorre cada columna de la matriz, para ello la variable del ciclo (j) toma los valores:

que son precisamente los números de cada columna de la matriz.

Actividad Grupal

Escriba el código de la función **iniciaMatriz**, que recibe una matriz de enteros de **3** renglones y **3** columnas y le asigna a cada localidad el valor de **5**.

matriz = [[1, 2, 3],[4, 5, 6],[7, 8, 9]] iniciaMatriz(matriz)

Actividad Grupal

Escriba el código de la función imprimeMatriz, que recibe una matriz de enteros de enteros de 3 renglones y 3 columnas y despliega en pantalla el contenido de la matriz.

def imprimeMatriz (M):

for i in range(0, len(M)):

for j in range(0, len(M[i])):

print(M[i][j], end= ' ')

print()

matriz = [[1, 2, 3],[4, 5, 6],[7, 8, 9]] imprimeMatriz(matriz)

Solución

1 2 3

456

'89

Actividad colaborativa

(3 minutos)

Escriba el código de la función iniciaMatriz2, que recibe una matriz de enteros de 3 renglones y 3 columnas y le asigna a cada localidad un número consecutivo correspondiente del 1 al 9

_	0	1	2
0	1	2	3
1	4	5	6
2	7	8	9

```
def iniciaMatriz2 (M):
    num = 1
   for i in range(0, len(M)):
     for j in range(0, len(M[i])):
           M[i][j] = num
           num = num + 1
```

matriz = [[5, 5, 5],[5, 5, 5],[5, 5, 5]] iniciaMatriz2(matriz)

Actividad colaborativa

(5 minutos)

- Escriba el código de la función sumaMatrices, que recibe las matrices A, B y C de enteros de 3 renglones y 3 columnas cada una.
- El procedimiento asignará en la localidad correspondiente de la matriz C la suma de las matrices A más B.

$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \end{bmatrix} + \begin{bmatrix} 1 & 3 & 5 \\ 9 & 11 & 13 \\ 17 & 19 & 21 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 8 \\ 14 & 17 & 20 \\ 26 & 29 & 32 \end{bmatrix}$$

```
def sumaMatrices (A, B, C):
    for i in range(0, len(A)):
        for j in range(0, len(A[i])):
        C[ i ][ j ] = A[i][j] + B[i][j]
```

```
m1 = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]
m2 = [ [5, 5, 5], [5, 5, 5], [5, 5, 5] ]
m3 = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ]
sumaMatrices(m1, m2, m3)
```


Actividad Grupal

Integrar todos los procedimientos vistos anteriormente en un solo programa para verificar su funcionamiento

