BECA / Huson / 11.1 IB Math SL 26 September 2018 Name:

Homework: Function graphs, inverses

Hint: many of these problems can be solved using calculator graphing tools.

1a. Let $f(x) = x^3 - 2x - 4$. The following diagram shows part of the curve of f.

The curve crosses the *x*-axis at the point P.

Write down the *x*-coordinate of P.

[1 mark]

2a. [4 marks]

Consider the function $f(x) = x^2 - 4x + 1$.

Sketch the graph of f , for $-1 \le x \le 5$.

2b. [1 mark]

This function can also be written as $f(x)=(x-p)^2-3$.

Write down the value of p.

2c. [4 marks]

The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a translation of

$$\begin{pmatrix} 0 \\ 6 \end{pmatrix}$$

Show that $g(x) = -x^2 + 4x + 5$.

2d. [3 marks]

The graph of *g* is obtained by reflecting the graph of *f* in the *x*-axis, followed by a translation of

$$\begin{pmatrix} 0 \\ 6 \end{pmatrix}$$

The graphs of f and g intersect at two points.

Write down the *x*-coordinates of these two points.

3a. The diagram below shows the graph of a function f , for $-1 \leq x \leq 2$.

Write down the value of f(2).

[1 mark]

3b. Write down the value of $f^{-1}(-1)$.

[2 marks]

3c. Sketch the graph of $oldsymbol{f}^{-1}$ on the grid below.

[3 marks]

5a. The following diagram shows the graph of y=f(x), for $-4 \leq x \leq 5$.

Write down the value of f(-3).

[1 mark]

5b. Write down the value of $f^{-1}(1)$.

[1 mark]

5c. [2 marks]

Find the domain of f^{-1} .

5d. [3 marks]

On the grid above, sketch the graph of f^{-1} .

6a. [3 marks]

Let $f(x)=5-x^2$. Part of the graph of f is shown in the following diagram.

The graph crosses the $\emph{x}\text{-}\text{axis}$ at the points A and B

Find the $m{x}$ -coordinate of $m{A}$ and of $m{B}$