

End of Life Disposal for Three Libration Point Missions Through Manipulation of the Jacobi Constant and Zero Velocity Curves

*Jeremy Petersen (a.i. solutions)
Jonathan Brown (a.i. solutions)*

*2015 AAS/AIAA Astrodynamics Specialist Conference
August 10-13 2015
AAS 15-618*

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Introduction

- ***Flight Dynamics Facility (FDF) located at NASA Goddard Space Flight Center (GSFC) provides the flight dynamics expertise for three Sun-Earth/Moon L1 missions.***
 - Advanced Composition Explorer (ACE)
 - Launched August 1997
 - Solar and Heliospheric Observatory (SOHO)
 - Launched December 1995
 - Global Geospace Science WIND satellite
 - Launched November 1994
 - Entered Lagrange point orbit in 2004

Mission Overview

- ***SOHO – Large Amplitude Halo***
 - X/Y/Z Amplitude $\approx 206,000/667,000/120,000$ km
- ***WIND – Large Amplitude Lissajous***
 - Similar size to SOHO
- ***ACE – Small Amplitude Lissajous***
 - X/Y/Z Amplitude $\approx 80,000/260,000/158,000$ km

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

End of Life Requirements

- **NASA has established requirements for end of mission planning which include standards for limited debris in the orbit regimes that are most densely-populated with active missions. [NPR 8715.6A]**
 - Spacecraft must be removed from these protected regions within 25 years after the mission is completed; or,
 - If the mission lasts longer than five years, the spacecraft must be remove 30 years after launch.
- **For LEO missions, the requirement is most frequently accomplished by lowering the orbit, either actively with thrusters or passively due to atmospheric drag, and re-entering the atmosphere.**
- **For medium or geosynchronous Earth orbits, several altitude bands have been defined for graveyard orbits.**
- **Interplanetary missions, including heliocentric trajectories, have a distinct set of requirements with the primary goal of preventing inadvertent biological contamination. [NPR 8020.12 D]**
- **Deep space missions that do not target celestial objects (such a libration point orbiters) do not have these restrictions imposed on them unless an Earth return is planned.**
- **Given the age of these missions, it is prudent that a proper post-mission disposal strategy has been developed.**

Previous Libration Missions

- ***11 missions sent to Sun-Earth/Moon L1/L2***
 - Five active
 - ACE/WIND/SOHO/DSCOVR – Active at L1
 - GAIA – Active at L2
 - Six decommissioned
 - ISEE-3 – Sent to make first-ever flyby of a comet
 - Genesis – Solar wind sample return mission
 - Chang'e 2 – Visited an asteroid
 - WMAP, Herschel, and Planck – Placed into heliocentric orbits outside Earth's orbit
- ***The focus for this investigation is heliocentric orbit disposal through closing the L1 gateway with a large ΔV .***
 - Done to reduce complexity and risks

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Circular Restricted Three Body Problem

*Operational Orbit
and Associated
Zero Velocity
Curves*

*Closed L1 Gateway
Zero Velocity
Curves*

Departure Arcs / Departure Phase

Minimum ΔV Solution

SOHO – Required ΔV

SOHO – RLP Velocity

Velocity Magnitude Rotating Frame (Nondimensional)

Delta V Rotating Frame (m/s)

***Minimum ΔV solution
occurs at maximum
RLP velocity***

WIND – Required ΔV

ACE – Required ΔV

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Full Ephemeris Model

Monte Carlo Results - SOHO

Monte Carlo Results - WIND

Monte Carlo Results - ACE

Monte Carlo Results – SRP Effects

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Operational Challenges

- ***SOHO***
 - Long maneuver duration due to 5% duty cycle limitation.
 - Duration could exceed a single view period with the DSN.
 - Attitude would need to be changed from Sun pointing to Earth pointing.
- ***WIND***
 - History of performing large maneuvers, would offer the fewest operational challenges.
- ***ACE***
 - Would require updated attitude control strategy to maintain Earth pointing cruise portion.
 - Largest consumer of fuel during operations.
 - Lowest amount of fuel remaining.

Agenda

- *Introduction/Mission Overview (ACE, SOHO, WIND)*
- *End of Life Disposal Requirements*
- *Circular Restricted Three Body Problem Analysis*
- *Full Ephemeris Analysis*
- *Operational Challenges*
- *Conclusion*

Conclusion

- ***Based on analysis performed in the Circular Restricted Three Body Problem, reasonable ΔV values are achievable for closing the L1 gateway.***
 - SOHO: 6-12 m/s
 - WIND: 6-10 m/s
 - ACE: 1-2 m/s
- ***Monte Carlo analysis shows a dramatic drop in percentage of simulations returning to the Earth/Moon system at ΔV values in line with the CR3BP model.***
 - SOHO: 15 m/s
 - WIND: 13 m/s
 - ACE: 5 m/s
- ***Little correlation between the SRP force and the close approach distance.***
 - Further investigation is warranted
- ***Discussion with the each mission needs to occur to adapt strategy to real world limitations.***