Traffic Detection with yolov5

Team: TrafficZero

Institution : Islamic University of TechnologyMembers : Refaat Mohammad Alamgir,

Ali Abir Shuvro, Mueeze Mushabbir, Md Ashfaq Raiyan, Nusrat Jahan Rani

Summary

Traffic congestion in Dhaka is a huge problem. To tackle this, we use AI to detect different types of vehicles. This data can then be used in the future to eradicate traffic.

Methods used

- State of the art yolov5 model. Specifically yolov5x which is famous for its fast learning and good accuracy.
- Batch size of 16 was used.
- Models with different hyperparameters were trained and ensembled to give better results in inference.
- Augmentation techniques were applied to make the dataset more diversified and generate better learning of weights.
- The training set was rigorously analyzed and some shortcomings in detection were spotted like: horizontal bicycles, horizontal rickshaw, differentiating Truck and Pickup, differentiating Cars, Minivans and Suvs, Low light images and partially visible objects.
- After round 1, we annotated the test dataset of round 1 and also used custom datasets available on the Internet to improve our model.

Results

 One such model's mAP which was trained for 200 epochs in round 2.

 Summary of class labels and bounding boxes after training :

 A typical inference image (on round 2 test dataset)

References

Model used -

yolov5x (https://github.com/ultralytics/yolov5)

Datasets used -

- 1) Training dataset provided by DhakaAl [1]
- 2) Poribohon-BD [2]
- 3) vehicle-dataset [3]
- 3) Test dataset for round 1 (annotated ourselves after the end of round 1) [1]

