MAT1847 OVERVIEW

A. Wortschöpfer

February 16, 2018

1 Riemann Surfaces

1.1 Simply Connected Surfaces

Definition 1. If $V \subset \mathbb{C}$ is an open set of complex numbers, a function $f: V \to \mathbb{C}$ is called **holomorphic** (or "complex analytic") if the first derivative

$$z \mapsto f'(z) = \lim_{h \to 0} \frac{(f(z+h) - f(z))}{h}$$

is defined and continuous as a function from V to \mathbb{C} , or equivalently if f has a power series expansion about any point $z_0 \in V$ which converges to f in some neighborhood of z_0 . Such a function is **conformal** if the derivative f'(z) never vanishes (for all $z \in U$).

Definition 2. By a **Riemann surface** S we mean a connected complex analytic manifold of complex dimension 1. The surface S is **simply connected** if every map from a circle *into* S can be continuously deforemed to a constant map. By definition, two Riemann surfaces S and S' are **conformally isomorphic** (or **biholomorphic**) if and only if there is a homeomorphism from S onto S' which is holomorphic in terms of the respective local charts.

Theorem 1 (Uniformization Theorem). Any simply connecnted Riemann surface is conformally isomorphic either

- 1. to the plane \mathbb{C} consisting of all complex nubmers z = x + iy
- 2. to the open disk $\mathbb{D} \subset \mathbb{C}$ consisting of all z with $|z|^2 = x^2 + y^2 < 1$, or
- 3. to the Riemann sphere $\hat{\mathbb{C}}$ consisting of \mathbb{C} together with a point at infinity, using $\zeta = 1/z$ as a chart in a neighborhood of the point at infinity.

These three cases are referred to as the **Euclidean**, **hyperbolic**, and **spherical** cases, respectively.

1.1.1 The unit disk \mathbb{D}

Some nice results about the surface \mathbb{D} are as follows:

Lemma 1 (Schwarz Lemma). If $f: \mathbb{D} \to \mathbb{D}$ is holomorphic map with f(0) = 0, then the derivative at the origin satisfies $|f'(0)| \le 1$. If equality holds, |f'(0)| = 1, then f is a rotation about the origin. That is, f(z) = cz for some constant c = f'(0) on the unit circle. On the other hand, if |f'(0)| < 1, then |f(z)| < |z| for all $z \ne 0$.

Lemma 2 (Maximum Modulus Principle). A nonconstant holomorphic function cannot attain its maximum absolute value at any interior point of its region of definition.

Lemma 3 (Cauchy's Derivative Estimate). If f maps the disk of radius r about z_0 into some disk of radius s, then

$$|f'(z_0)| \le s/r$$

A useful corollary of this is as follows:

Theorem 2 (Liouville's Theorem). A bounded function f which is defined and holomorphic everywhere on $\mathbb C$ must be constant.

Theorem 3 (Weierstrass Uniform Convergence Theorem). If a sequence of holomorphic functions $f_n: U \to \mathbb{C}$ converges uniformily to the limit function f, then f itself is holomorphic. Furthermore, the sequence of derivatives f'_n converges, uniformily on any compact set of U, to the derivatives f'.

1.1.2 Conformal Automorphism Groups

For any Riemann surface S, the notation $\mathcal{G}(S)$ will be used for the group consisting of all conformal automorphisms of S. The identity map will be denoted by $I = I_S \in \mathcal{G}(S)$.

Lemma 4 (Möbius Transformations). The group $\mathcal{G}(\hat{\mathbb{C}})$ of all conformal automorphisms of the Riemann sphere is equal to the group of all **fractional linear transformations** (also called **Möbius transformations**)

$$g(z) = \frac{az+b}{cz+d}$$

where the coefficients are complex numbers with $ad - bc \neq 0$.

The identification to the complex Lie group $\mathbb{PSL}_2(\mathbb{C})$ is as follows: Multiply the numerator and denominator by a common factor, then it is always possible to normalize so that the determinant ad-bc is equal to +1. The resulting coefficients are well defined up to a simultaneous change of sign. Thus it follows that the group $\mathcal{G}(\mathbb{C})$ of conformal transformations can be identified with the complex 3-dimensional Lie group $\mathbb{PSL}_2(\mathbb{C})$ consisting of all 2×2 complex matrices with determinant +1 modulo the subgroup $\{\pm I\}$.

Next, it is shown that both $\mathcal{G}(\mathbb{C})$ and $\mathcal{G}(\mathbb{D})$ can be considered as Lie subgroups of $\mathcal{G}(\hat{\mathbb{C}})$.

Corollary 1 (The Affine Group). The group $\mathcal{G}(\mathbb{C})$ of all conformal automorphisms consists of all affine transformations

$$f(z) = \lambda z + c$$

with complex coefficients $\lambda \neq 0$ and c.

Note every conformal automorphism f of \mathbb{C} extends uniquely to a conformal automorphism of $\hat{\mathbb{C}}$ with $\lim_{z\to\infty} f(z) = \infty$.

Theorem 4 (Automorphisms of \mathbb{D}). The group $\mathcal{G}(\mathbb{D})$ of all conformal automorphisms of the unit disk can be identified with the subgroup of $\mathcal{G}(\hat{\mathbb{C}})$ consisting of all maps

$$f(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z}$$

where a ranges over the open disk \mathbb{D} and where $e^{i\theta}$ ranges over the unit circle $\partial \mathbb{D}$.

This is no longer a *complex* Lie group. $\mathcal{G}(\mathbb{D})$ is a *real* 3-dimensional Lie group, having the topology of a "solid torus" $\mathbb{D} \times \partial \mathbb{D}$.

It is often more convenient to work with the **upper half-plane** \mathbb{H} , consisting of all complex numbers w = u + iv with v > 0.

Lemma 5 ($\mathbb{D} \cong \mathbb{H}$). The half-plane \mathbb{H} is conformally isomorphic to the disk \mathbb{D} under the holomorphic mapping

$$w \mapsto \frac{i-w}{i+w}$$

with inverse

$$z \mapsto \frac{i(1-z)}{1+z}$$

where $z \in \mathbb{D}$ and $w \in \mathbb{H}$.

Corollary 2 (Automorphisms of \mathbb{H}). The group $\mathcal{G}(\mathbb{H})$ consiting of all conformal automorphisms of the upper half-plane can be identified with the group of all fractional linear transformations $w \mapsto \frac{aw+b}{cw+d}$, where the coefficients a, b, c, d are real with determinant ad - bc > 0.

If we normalize so that ad - bc = 1, then the coefficients are well defined up to a simultaneous change of sign. Thus $\mathcal{G}(\mathbb{H})$ is isomorphic to the group $\mathbb{PSL}_2(\mathbb{R})$, consisting of all 2×2 real matrices with determinant +1 modulo the

subgroup $\{\pm I\}$.

To conclude this section, we will try to say something more about the structure of these three groups. For any map $f: X \to X$, it will be convenient to use the notation $\text{Fix}(f) \subset X$ for the set of all fixed points x = f(x). If f and g are commuting maps from X to itself, $f \circ g = g \circ f$, note that

$$f(\operatorname{Fix}(g)) \subset \operatorname{Fix}(g)$$

Now, we find the commuting elements of $\mathcal{G}(\mathbb{C})$, $\mathcal{G}(\mathbb{D})$, $\mathcal{G}(\hat{\mathbb{C}})$.

Lemma 6 (Commuting elements of $\mathcal{G}(\mathbb{C})$). Two non-identity affine transformations of \mathbb{C} commute if and only if they have the same fixed point set.

An affine transformation with two fixed points must be the identity map.

Now consider the group $\mathcal{G}(\hat{\mathbb{C}})$ of automorphisms of the Riemann sphere. By definition, an automorphism g is called an **involution** if $g \circ g = I$, but $g \neq I$.

Theorem 5 (Commuting elements of $\mathcal{G}(\hat{\mathbb{C}})$). For every $f \neq I$ in $\mathcal{G}(\hat{\mathbb{C}})$, the set $\mathrm{Fix}(f) \subset \hat{\mathbb{C}}$ contains either one point or two points (if f has more than 2 fixed points, it must be the identity map). In general, two nonidentity elements $f,g \in \mathcal{G}(\hat{\mathbb{C}})$ commute if and only if $\mathrm{Fix}(f) = \mathrm{Fix}(g)$. The only exceptions to this statement are provided by pairs of commuting involutions each of which interchanges the two fixed points of each other.

As an example, the involution f(z) = -z with $Fix(f) = \{0, \infty\}$ commutes with the involution g(z) = 1/z with $Fix(g) = \{\pm 1\}$.

We want a corresponding statement for the open disk \mathbb{D} . However, it is better to work with the closed disk $\overline{\mathbb{D}}$, in order to obtain a richer set of fixed points. Using Theorem 4, we see that every automorphism of the open disk extends uniquely to an automorphism of the closed disk so that $\mathcal{G}(\mathbb{D}) \cong \mathcal{G}(\overline{\mathbb{D}})$.

Theorem 6. For every $f \neq I$ in $\mathcal{G}(\mathbb{D}) \cong \mathcal{G}(\overline{\mathbb{D}})$, the set $\operatorname{Fix}(f) \subset \overline{\mathbb{D}}$ consists of either a single point of the boundary circle $\partial \mathbb{D}$, a single point of the open disk \mathbb{D} , or two points of $\partial \mathbb{D}$. Two nonidentity automorphisms $f, g \in \mathcal{G}(\mathbb{D})$ commute if and only if they have the same fixed point set in $\overline{\mathbb{D}}$.

1.2 Universal Coverings and the Poincaré Metric

Definition 3. A map $p: M \to N$ between connected manifolds is called a **covering map** if every point of N has a connected open neighborhood U within N which is **evenly covered**; that is, each component $p^{-1}(U)$ must map onto U by a homeomorphism. The manifold N is **simply connected** if it has no nontrivial coverings, that is, if every such covering map $M \to N$ is a homeomorphism. For any connected manifold N, there exists a covering map $\tilde{N} \to N$ such that \tilde{N} is simply connected. This is called the **universal covering** of N and is unique up to homeomorphism.

Definition 4. By a **deck transformation** associated with a covering map $p: M \to N$ we mean a continuous map $\gamma: M \to M$ which satisfies the identity $p \circ \gamma = p$. For our purposes, the **fundamental group** $\pi_1(N)$ can be defined as the group Γ consisting of all deck transformations for the universal covering $\tilde{N} \to N$. Note that this universal covering is always a **normal covering** of N. That is, given two points $x, x' \in M = \tilde{N}$ with p(x) = p(x'), there exists one and only one deck transformation which maps x to x'. It follows that N can be identified with the quotient \tilde{N}/Γ of \tilde{N} by this action of Γ .

In particular, we have that a given group Γ of homeomorphisms of a connected manifold M gives rise in this way to a normal covering $M \to {}^M/\Gamma$ if and only if

- 1. Γ acts **properly discontinuously**; that is, any compact set $K \subset M$ intersects only finitely many of its translates $\gamma(K)$ under the action of Γ ; and
- 2. Γ acts **freely**; that is, every nonidentity element of Γ acts without fixed points on M

Theorem 7 (Uniformization for Arbitrary Riemann Surfaces). Every Riemann surface S is conformally isomorphic to a quotient of the form \tilde{S}/Γ , where \tilde{S} is a simply connected Riemann surface, which is necessairly isomorphic to either \mathbb{D} , \mathbb{C} , or $\hat{\mathbb{C}}$,and where $\Gamma \cong \pi_1(S)$ is a group of conformal automorphisms which acts freely and properly discontinuously on \tilde{S} .

Since the action of Γ on \tilde{S} is properly discontinuous, Γ must be a **discrete** subgroup of $\mathcal{G}(\tilde{S})$; that is, there exists a neighborhood of the identity element in $\mathcal{G}(\tilde{S})$ which intersects Γ only in the identity element.

Corollary 3 (σ -Compactness). Every Riemann surface can be expressed as a countable union of compact subsets.

This follows from Theorem 7 and from the fact that this is true for all the three simply connected surfaces.