OS-Climate Data Commons Overview

OS-Climate & Global Data Commons

OS-Climate applies a community-based open-source approach to solve data & analytics challenges required for investment to achieve Paris Climate Accord goals

OPEN SOURCE COMMUNITY

- Governance, licensing, and collaboration structures enabling stakeholders to share cost, intellectual property, and effort.
- Joint projects for new data, modelling, standards, and supporting technology

GLOBAL DATA COMMONS

- Curated access to library of public and private sources, for both transition and physical risk/opportunity
- More accurate corporate historical and forward-looking climate & ESG metrics as a public good

ANALYTICS TOOLS

- Integrate climate-related risk and opportunity into decisions by investors, financial institutions, regulators, etc
- Scenario analysis and alignment tools for climate change risk, physical risk and transition risk

A Data Mesh provides faster and broader access to climate data

·	Data Warehouse	Data Lake and Lakehouse	Data mesh
Single point of access to all your data	ETL required	✓ ELT required	Query federation
Cost-effective scaling and elasticity	Cost grows with data retained	Separation of storage and compute	Separation of storage and compute
Easily access new and existing data	★ ETL required	★ ELT required	No data movement required
Global security and compliance	Limited, by region	Limited, by region	Global / hybrid / multi- cloud data access
ANSI SQL interface	Specialized skills required (Spark, python, etc)	Specialized skills required (Spark, python, etc)	SQL-based interface

OS-Climate Data Commons Architecture Overview

Moving away from centralized data monoliths by adopting a distributed data mesh approach

Self-service data infrastructure

Standardized self-service infrastructure and tooling for creating, maintaining and managing data products

Decentralized data product ownership

Domain data product owners are responsible for all capabilities within a given domain, including discoverability, understandability, quality and security of the data

Federated governance

Common operating standards around data / metadata / data lineage management, quality assurance, security and compliance policies

Data Commons: Based on Open Data Hub and Operate First

Upstream code enhanced with operational excellence

Open Data Hub

Community driven upstream meta-project demonstrating AI/ML platform on Red Hat OpenShift comprised of open source projects

Operate First (https://www.operate-first.cloud/)

Incorporate operational experience into Open Data Hub - operating software and services in the Open for our community members

OS-Climate Data Commons

Data science platform based on Open Data Hub and delivered as a cloud service on Red Hat OpenShift on any public or private cloud provider

Open Data Hub: an open source ML architecture blueprint

GOALS

- Provide an end-to-end AI/ML platform leveraging Open Source components
- One stop easy operator deployment on Enterprise Kubernetes
- Provide Tools for each stage of the data science process and for all AI/ML user personas including:
 - Development tools for Data Scientists
 - ELT tools used by Data Engineers
 - Monitoring tools for model and services used by DevOps
- Act as a "glue" for a rich collection of open source data science projects, which also have enterprise offering

OS-Climate Data Commons Technical Approach

Building a blueprint for a distributed data platform on top of Open Data Hub

Major capabilities being added to support the Federated Data Governance Layer:

- Open Table Format for big data analytics, handling partitioning and time-travel / rollback (Apache Iceberg)
- Automated data versioning and data lineage (Pachyderm)
- Metadata management, data discovery, data quality, observability (OpenMetadata)
- Fine-grained Role Based Access Control (RBAC) with row-level and column-level permissions (Trino)
- Data Protection (IBM Fybrik + OPA)

Architecture: Data Pipelines

Machine Learning Platform

Data Science Platform Roadmap

Layer	Role	What we have now	Roadmap
Data Pipeline	Data integration, transformation, versioning, automation and overall management.	Build and manage end-to-end data pipelines on Jupyter notebooks provided as a service. Elyra provides visual pipeline editor and batch management with notebook and python scripts, as well as version control with Github.	Data testing, documentation, and profiling (great_expectations)
Train	Model training, optimization and validation.	Training of ML models via any available training operator in Kubeflow.	
Deploy	CI/CD pipelines development and management, model, experiment and data versioning.	Pipeline automation via Elyra / Kubeflow / Airflow. Data-driven pipelines, data versioning (Pachyderm), data lineage (DBT).	Improvements in templating / automation of metadata ingestion and management.
Manage	Data and metadata catalogs for data sets / pipelines / models. Security and compliance management.	Dataset metadata is managed into a data catalogue (OpenMetadata) and refreshed / versioned automatically.	Integration of metadata for security and compliance (Apache Ranger / Fybrik).
Serve	Make trained model available for inference to tool / application.	Kubeflow supports KFServing and Seldon Core by default. It has not been tested / documented.	

Architecture: Data Management

Identity & Access Management

Consolidated Real-Time Monitoring

Tool / Application **API** Gateway Virtual Data Security Management Layer Metadata Platform Distributed SQL Engine **Physical** Data Serving Layer Object Storage

Data Access Management

Layer	Role	What we have now	Roadmap
Object Storage	Secure access to data source for ingestion	Currently based on S3 with secret-based access controls. Proprietary data sits on standalone bucket. Secrets are only provided for ingestion pipelines developers.	Automatic secret retrieval by automated ingestion pipeline for production pipelines. Container storage implementation and review of data ingestion so it is not infrastructure-specific (boto3).
Data Serving	Manage data and schema versioning automatically with ACID transactions.	anage data and schema evolution automatically. Time travel enables reproducible queries that use exactly the same table snapshot, or lets users easily examine changes. Version rollback allows users to quickly correct problems by resetting tables to a good state.	
Distributed SQL Query Engine	Centralized data access and analytics with query federation. Authentication and data access controls for all data queries.	Integration with GitHub SSO via temporary JTW. Access management by catalog, schema (source / pipeline), table (data set), column (data elements). Can filter by row and mask data. integration with data catalogue (OpenMetadata).	Support of complex data types such as GeoTIFF.
Metadata Platform	Data schema & metadata management, lineage at the dataset level, data catalogue browse and search.	Data schema and metadata management, data catalogue.	Data compliance management at metadata level.
Data Security Management	Enable, monitor and manage data security across the platform (Admin GUI with authorization management and audit).	NA	Centralized management and monitoring of access at query engine level. Data security management at metadata level.
API Gateway	Enforce policies which control security aspects such as the authentication, authorization of services acquiring data for external applications / tools.	NA	API Gateway with distributed data management by data owner.

Demonstration Scope

Enabling real-time energy consumption and carbon emissions reporting through integration of Kepler with CO2 emissions statistics

Kubernetes Efficient Power Level Exporter (Kepler)

Kepler uses uses eBPF to probe energy related system stats and exports as Prometheus metrics.

- Red Hat, IBM, Intel are major contributors
- Measures K8s node energy usage thru processor Running Average Power Limit (RAPL) interfaces
- Current support x86_64, being extended to support ARM64 and S390 platforms
- Estimates pod energy usage from node usage, including CPU / GPU / RAM, leveraging ML models for the estimation
- More accurate than existing dashboards such as CCF / Scaphandre which report energy consumption based on CPU time
- Project applied for CNCF Sandbox

Next Steps: Find Out More

- Open Data Hub community page provides a Get Started guide at https://opendatahub.io/
- OS-Climate Data Commons Architecture:
 https://github.com/os-climate/oscaledata
 climate/oscaledata
- OS-Climate Data Commons article: https://towardsdatascience.com/making-climate-data-easy-to-find-use-and-share-5190a0926407
- Kepler GitHub: https://github.com/sustainable-computing-
 io/kepler

