DETERMINATION OF MICROBIOLOGICAL **CONTAMINATION SOURCES DURING TURKISH WHITE** CHEESE PRODUCTION

Presented by: Ms. Liza Patel

Guru Nanak Khalsa College of Art, Science &

Commerce (Autonomous)

Department of Bioinformatics

M.Sc Bioinformatics, Part- I

17/04/2022

Table of content:

- Abstract
- Introduction
- Background
- Method and materials
- Result and discussion
- Conclusion
- References
- Appendix

Abstract:

- To determine the microbiological contamination sources during production of white cheese.
- Twenty nine different control points or sample types used for examination.
- Enumeration of Microorganisms.

Introduction:

- Turkish white cheese is a brined cheese.
- Soft or semi hard texture and a salty, acid taste.
- Previously classified under "safe foods"
- Cheese contaminated with pathogenic microorganism, threat to public health.
- Investigation of possible microbiological contamination sources.

Fig1. White Cheese

Background:

CHEESE:

- Cheeses are milk-based foods.
- Soft or hard cheese
- White-brined cheeses: Feta and Feta-type cheeses.
- Goat, sheep or cow milk, or a mixture of milks is used.

PRODUCTION:

- Milk pasteurization, starter cultures and rennet, milk coagulation and curd formation.
- Curd is drained in molds, cut into pieces, salted.
- Ripened in brine.
- Biochemical, physicochemical, and organoleptic characteristics.

☐ TRANSMISSION OF BACTERIAL PATHOGENS

- Direct contamination or cross-contamination events.
- Raw milk, Biofilms, air, production surfaces, cheese vat and cloth, curd cutting knife, etc.

Reception of raw milk Clarification Standardization of fat ratio Pasteurization (at 74 °C for 2 min) Cooling (to 32 °C) Addition of starter culture (1 % at 32 °C) Addition of rennet and CaCl2 (0.02 % at 30°C) Coagulation (completed in 90 min) Curd Cutting (curd size 2 cm3, curds rested for 10 min)

Fig2. Cheese Production setup

Fig3. White cheese contamination

Materials and methods:

□ SAMPLE COLLECTION

- Taken 10 times in different periods.
- From the production stages.
- Stored at 4 _C and processed within 24 h of collection.

SAMPLE PREPARATION

- Surface swab samples
- Prewetted swab in 0.1% sterile peptone water.
- Samples from workers hands
- Sterile latex gloves and 20 ml 0.1% sterile peptone water.
- Samples from environmental air
- Agar plates without lids.

□ STATISTICAL ANALYSIS

- Statistical software SPSS and MINITAB
- One way analysis of variance (ANOVA)
- Tukey-Kramer multiple comparisons tests
- Regression analyses

Result and discussion:

- Incoming raw milk was poor.
- Sample 6 and 2 of raw milk harbor E.coli, and coagulase positive staphylococci.
- Statistical analysis to determine the effect of equipment used on the increase of bacterial counts in milk.
- Cheese vat: aerobic mesophilic bacteria, coagulase positive staphylococci.
- Polyethylene separator sheet: aerobic mesophilic bacteria.

- Cheese cloth: Insignificant effect
- Curd cutting knife: aerobic mesophilic bacteria, coagulase positive staphylococci.
- Starter cultures: coagulase positive staphylococci, enterococci and psychrophilic bacteria.
- Brine and upper pressure plate: staphylococci
- Hands of working personnel: contributed to an important increase of staphylococci counts and increased the coliform bacterial counts of vacuum packed cheese.
- Floor and packaging material: psychrophilic bacteria
- Production area air and cold room air: yeasts and molds

Microorganism	Total aerobic mesophilic bacteria		Coliforms		Enterococci		Entero- bacteriaceae		Staphylococci		Yeasts and molds		Psychrophilic bacteria	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Samples														339
Raw milk ^a	8.43 Ac	0.39	7.16 A	0.84	6.20 A	0.61	6.56 A	0.91	5.82 A	0.55	4.65 A	0.29	6.04 A	0.71
Pasteurized milk	3.16 D	0.32	<1.0 E	0.00	<2.0 D	0.00	<1.0 C	0.00	<2.0 D	0.00	<2.0 F	0.00	<2.0 D	0.00
Milk in cheese vat	3.60 D	2.00	1.45 DE	1.37	1.78 C	0.96	0.96 C	1.29	1.74 C	0.96	0.46 EF	0.96	3.74 BC	1.06
Curd ^b	6.89 BC	1.26	1.77 CD	1.18	1.48 C	1.30	1.01 C	1.03	1.37 C	1.79	0.49 EF	1.04	4.58 B	0.81
Moulded cheese before salting	7.47 AB	1.08	3.06 BC	1.62	3.58 B	0.84	2.50 B	1.39	3.33 B	0.69	2.16 CD	1.34	4.05 BC	0.49
Moulded cheese after salting	6.86 BC	1.61	3.63 B	0.98	3.62 B	0.87	3.20 B	0.68	3.40 B	0.76	1.98 CDE	1.77	3.23 C	0.77
Cheese at cold holding	6.14 C	0.84	3.55 B	0.21	4.40 B	0.75	3.12 B	0.22	3.91 B	0.42	2.87 BC	1.53	4.33 BC	0.41
Vacuum packaged cheese	6.17 C	0.73	3.45 B	0.70	3.78 B	1.06	2.84 B	0.72	3.64 B	0.60	4.15 AB	0.52	4.98 AB	0.34

a Log cfu/ml.

Table 1
Results of the microbiological analyses of the samples (n =10) collected during the production of Turkish white cheese

b Log cfu/g.

^c A-F: Differences between the processing stages demonstrated with different capital letters in the same column are significant (p < 0.05).

Microorganism	Total aerobic mesophilic bacteria		Coliforms		Enterococci		Entero- bacteriaœae		Staphylococci		Yeasts and molds		Psychrophilic bacteria	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Samples		0.000	C-0.50	W. W. C		800000	05005	1000	0.000		0.0000	100000	core	
Rennet ^a	3.48	0.79	1.30	1.25	1.18	1.52	0.60	1.26	0.55	1.17	0.40	0.84	2.39	1.50
CaCl ₂	2.86	1.68	<1.0	0	0.60	1.26	<1.0	0	0.40	0.84	0.40	0.84	1.58	1.40
Starter culture	6.93	1.04	0.55	0.71	1.27	1.68	0.20	0.42	0.92	1.20	0.92	1.18	1.11	1.44
Brine	4.67	1.05	1.85	1.03	1.09	1.42	1.33	0.90	2.64	1.54	1.39	1.42	3.56	1.89
Cheese vatb	2.69	1.46	0.20	0.42	0.55	1.17	<1.0	0	0.62	1.31	0.80	1.03	0.67	1.41
Cheese cloth	1.34	1.73	<1.0	0.00	0.62	1.32	<1.0	0	<2.0	0.00	< 2.0	0	0.46	0.97
Polyethylene separator sheet	3.24	1.73	1.06	1.42	0.68	1.45	1.07	0.57	0.46	0.97	0.52	1.09	2.74	1.99
Milk stirrer	2.63	1.66	0.56	1.19	< 2.0	0	<1.0	0	< 2.0	0	0.46	0.97	2.80	1.71
Curd cutting knife	3.37	1.96	0.91	1.17	1.11	1.47	0.71	0.98	0.53	1.13	< 2.0	0	2.94	1.64
Side pressure plate	2.91	1.56	<1.0	0	0.68	1.45	<1.0	0	0.46	0.97	0.40	0.84	1.89	1.70
Upper pressure plate	3.16	0.58	<1.0	0	0.40	0.84	<1.0	0	1.09	1.50	0.86	1.11	2.45	1.31
Moulded cheese cutting knife	5.24	0.77	1.14	1,20	2.55	1.48	0.87	1.14	3.68	2.06	3.61	0.74	3.89	0.49
Cheese tray	3.62	1.05	1.06	1.39	2.03	1.75	0.91	1.23	3.38	0.82	1.97	1.79	2.17	2.10
Packaging material	0.80	1.03	<1.0	0	<2.0	0	<1.0	0	<2.0	0	<2.0	0	1,41	1.23
Floor	4.82	0.34	3.29	0.45	2.31	2.03	1.93	1.04	2.50	1.33	2.88	1.57	3.87	0.64
Wall	2.07	1.24	<1.0	0	1.05	1.36	0.49	1.04	1.01	1.31	0.80	1.03	1.38	1.79
Worker hand 1	4.59	0.71	0.20	0.42	1.77	1.65	<1.0	0	2.25	1.31	0.67	1.42	2.22	1.51
Worker hand 2	5.04	0.40	<1.0	0	1.26	1.64	<1.0	0	2.66	1.53	0.55	1.17	3.52	0.47

^{*} Log cfu/ml.

Table 2

Results of the microbiological analyses of the samples (n = 10) collected from starter culture, rennet, CaCl2, brine, equipment, packaging material, environmental and workers_ hands during Turkish white cheese production

b Log cfu/cm2.

Conclusion:

- Application of improved hygienic conditions in cleaning and disinfection of equipment.
- Training and routine auditing of personnel for GHP.
- Determined approach from the management about these applications is vital.
- Construction of a positive filtered air system.

References:

- Seran Temelli; Şahsene Anar; Cem Sen; Pelin Akyuva (2006). *Determination of microbiological contamination sources during Turkish white cheese production.*, 17(11), 0-861. doi:10.1016/j.foodcont.2005.05.012
- Possas, A., Bonilla-Luque, O. M., & Valero, A. (2021). From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses through Predictive Microbiology Models. *Foods*, *10*(2), 355. https://doi.org/10.3390/foods10020355
- Geronikou, Athina; Srimahaeak, Thanyaporn; Rantsiou, Kalliopi; Triantafillidis, Georgios; Larsen, Nadja; Jespersen, Lene (2020). Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Frontiers in Microbiology, 11(), 582778-. doi:10.3389/fmicb.2020.582778
- Tukey Multiple Comparison test. (n.d.). Retrieved April 8, 2022, from http://www.blackwellpublishing.com/specialarticles/jcn-8-304.pdf
- Glen, S. (2020). ANOVA Test: Definition, Types, Examples. Statistics How To. Retrieved April 8, 2022, from https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/ano-va/

- What is SPSS? | Features, Types, and Statistical Methods Of SPSS. (2019, June). EDUCBA. https://www.educba.com/what-is-spss/
- What is Minitab? | Learn the Uses and Features of Minitab. (2019, January 17). EDUCBA. https://www.educba.com/what-is-minitab/
- Equipment for cheese production | Tecnical. (n.d.). Www.tecnical.com. Retrieved
 April 17, 2022, from https://www.tecnical.com/en/products/production-of-cheese.html
- Nast, C. (2021, February 23). The Listeria Cheese Recall Has Been Expanded—What You Need to Know. SELF. Retrieved April 17, 2022, from https://www.self.com/story/soft-cheese-recall
- Expert Solutions To Spoilage In Cheese and Mild Acidic Yogurt. (n.d.).
 Www.dairyfoods.com. Retrieved April 17, 2022, from https://www.dairyfoods.com/articles/90720-expert-solutions-to-spoilage-in-cheese-and-mild-acidic-yogurt
- Dairy Food Production House With White Cheese Heads Growing Ripe On Shelves Stock Photo Image of milk, grated: 142394874. (n.d.). Www.dreamstime.com. Retrieved April 17, 2022, from https://www.dreamstime.com/dairy-food-production-house-white-cheese-theads-growing-ripe-shelves-farm-image142394874

Appendix:

- □ ANOVA test:
- A way to find out if survey or experiment results are significant.
- One Way ANOVA:
- Compare two means from two independent (unrelated) groups using the F-distribution.
- □ Tukey's multiple comparison test:
- Determine which means amongst a set of means differ from the rest.

► SPSS:

- Statistical Package for the Social Sciences.
- data analysis for descriptive statistics, numeral outcome predictions, and identifying groups.

Minitab:

- analyze and interpret data .
- Identifying trends and patterns.

Thank You