Autres (Applications/Dénombrement/Arithmétique)

Jérémy Meynier

Applications

Exercice 1

Soient E, F, G trois ensembles, $f: E \mapsto F$ et $g: F \mapsto G$

- 1. Montrer que si $g \circ f$ est surjective alors g est surjective
- 2. Montrer que si $g \circ f$ est injective alors f est injective

Exercice 2

Soit E un ensemble et $p: E \mapsto E/p \circ p = p$

- 1. On suppose p injective. Montrer que $p = id_E$
- 2. On suppose p surjective. Montrer que $p = id_E$

Exercice 3

Soient E et F des ensembles, $f: E \mapsto F$ et $g: F \mapsto E$. On suppose que $g \circ f$ est bijective. Montrer que f est injective et que g est surjective.

Exercice 4

Soient E, F, G des ensembles, $f: E \mapsto F$ et $g: F \mapsto G$.

- 1. On suppose $g \circ f$ injective et f surjective. Montrer que g est injective.
- 2. On suppose $g \circ f$ surjective et g injective. Montrer que f est surjective.

Exercice 5

Soit E un ensemble et $f: E \mapsto E/$ $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Jérémy Meynier 2

Arithmétique

Exercice 1

Soit $p\geq 5$ un nombre premier. Montrer que p^2-1 est divisible par 24.

Exercice 2

Trouver le dernier chiffre de l'écriture décimale de $1997^{2001^{2003}}$

Exercice 3

Trouver les deux derniers chiffres de l'écriture décimale de 2^{2018}

Exercice 4

Montrer, si $n \in \mathbb{N}$, que $4^n + 15n - 1 \equiv 0$ [9]

Exercice 5

Montrer que, $\forall n \in \mathbb{N}, 6|5n^3 + n$

Exercice 6

Montrer que, $\forall n \in \mathbb{N}, 42|n^{13}-n$

Dénombrement

Exercice 1

Montrer avec un argument combinatoire que $\sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} = \binom{n+m}{r}$

Exercice 2

Montrer avec un argument combinatoire que $k \binom{n}{k} = n \binom{n-1}{k-1}$

Exercice 3

Montrer avec un argument combinatoire que $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Exercice 4