MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40: ... with Data Gathering, 9 hp Lecture 3a, spring 2023 Multiple linear regression - general and interaction

Mathematical Statistics / Centre for Mathematical Sciences
Lund University

27/3-23

Multiple regression: Example

Module of elasticity as a function of pressure and temperature: Temperature and pressure and resulting tension in 10 plastic parts;

Tension (Y)	Temperature (x_1)	Pressure (x_2)
$({\sf N}/{\sf mm}^2)$	(°C)	(kg/cm^2)
152	180	450
150	180	450
103	190	375
99	190	375
88	200	350
89	200	350
122	210	375
120	210	375
162	220	450
161	220	450

The quadratic relationship between x_1 and x_2 makes the (marginal) relationship between Y and x_1 look quadratic as well! See p0 in elasticity3d.rda for a rotatable 3D-plot.

- plots of Y vs individual covariates only unveil partial relationships. We do not know what happens when other covariates vary together.
- \blacktriangleright we can discover pairwise relationships between covariates by plotting x_1 vs x_2
- ▶ plotting x_1 vs x_2 does not say anything about the 3D joint relationship of (x_1, x_2, Y)
- ▶ if the plot (x_1, Y) is nonlinear, you can perhaps transform x_1 and/or Y but again, this is only going to linearize a partial relationship...
- our model (next slide) is

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i \qquad (*)$$

and in this case even if some **partial** relationships (x_j, Y) are nonlinear, the **entire** surface (*) above is perfectly suitable for the joint relationship.

Multiple linear regression model

See Lecture 1 for details.

- ▶ $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \epsilon_i$ for $i = 1, \ldots, n$ where $\epsilon_i \sim N(0, \sigma^2)$ are independent.
- ▶ $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$.

Estimates

- Least squares: find the β that minimizes $Q(\beta) = (\mathbf{Y} \mathbf{X}\beta)'(\mathbf{Y} \mathbf{X}\beta)$
- ▶ The solution satisfies the normal equztions: $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{Y}$
- $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \sim N_{p+1}(\boldsymbol{\beta}, \, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$
- ► Fitted values: $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')$
- ▶ Residuals: $\mathbf{e} = \mathbf{Y} \hat{\mathbf{Y}} = \mathsf{observed} \mathsf{predicted}$
- ► Residual variance: $\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^n e_i^2}{n (p+1)} = \frac{\mathbf{e}'\mathbf{e}}{n (p+1)}$

Example Model Example

- ▶ A given β_j expresses the *effect* of a change in covariate x_j on the expected value of Y, given all other covariates in the model;
- ▶ that is, β_j gives the change in E(Y) when x_j increases by 1 units, when all other covariates are kept fixed.
- ▶ in other words, β_j can only represent the partial (marginal) effect of x_j on Y; the effect is *conditional* on what other variables we have in the model.
- ▶ The relevance of x_j (hence the relevance of β_j) can be different if we introduce other covariates in the model.

The latter two concepts will be emphasized when we talk about hypothesis tests later.

Collinearity (re-discussed later in the course)

- ightharpoonup in order to determine $\hat{\beta}$ the matrix X'X must be invertible.
- ▶ The matrix \mathbf{X} is singular and $(\mathbf{X}'\mathbf{X})^{-1}$ has no unique solution if a linear combination of some of the x-variables equals one of the other x-variables. Then β cannot be uniquely estimated.
- ► The matrix **X** is nearly singular and (**X**′**X**)⁻¹ has an unstable solution if a linear combination of some of the *x*-variables almost equals one of the other *x*-variables. The same (almost) information included in several variables.
- \triangleright β -estimates will have huge variance.
- Correlated x-variables "compete" (one variable might be necessary if the other is not in the model, but not if both are in the model, etc.)
- Found by: plotting all *x*-variables against each other.
- ► Solution: Use only one of the problematic variables

Elasticity: estimates

Fitted plane: $\hat{Y} = -215.7 + 0.41x_1 + 0.65x_2$.

Effect of temperature change

Increase the temperature by Δ_1 °C from x_{01} to $x_{01}+\Delta_1$ while keeping the pressure fixed at x_{02} :

$$\begin{split} \hat{Y}_{\text{old}} &= \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \hat{\beta}_2 x_{02} \\ \hat{Y}_{\text{new}} &= \hat{\beta}_0 + \hat{\beta}_1 (x_{01} + \Delta_1) + \hat{\beta}_2 x_{02} \\ \hat{Y}_{\text{new}} - \hat{Y}_{\text{old}} &= \hat{\beta}_1 \Delta_1 = 0.41 \Delta_1 \text{ (N/mm}^2) \text{ regardless of the pressure.} \end{split}$$

Fitted plane

- trace 1
- trace 2

Predictions

If temperature = $200 \,^{\circ}$ C and pressure = $400 \, \text{kg/cm}^2$, $\mathbf{x}_0 = (1 \ 200 \ 400)$

what is the expected tension?

$$\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}} = -215.7 + 0.41 \cdot 200 + 0.65 \cdot 400 = 124.6 \, (\text{N/mm}^2).$$

▶ What tension values might we observe?

$$\hat{Y}_{\mathsf{pred}_0} = \mathbf{x}_0 \hat{\boldsymbol{\beta}} + \epsilon_0 = 124.6 + \epsilon_0 \quad (\mathsf{N}/\mathsf{mm}^2).$$

	estimate	s.e.	95% interval	
on average	$\hat{Y}_0 = 124.6$	1.87	(120.2, 129.0)	conf.
single obs.	$\hat{Y}_{pred_0} = 124.6 + \epsilon_0$	6.19	(110.0, 139.2)	pred.
Note: 6.19 =	$\sqrt{5.90^2 \pm 1.87^2}$			

Intervals for the plane

Estimated plane (green); confidence interval for the plane (brown) and prediction interval for observations (red).

Interaction

What happens if the effect of a change in temperature depends on the pressure? Add $x_3=x_1\cdot x_2=$ temperature \times pressure

Model with interaction term

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i, i = 1, \dots, 10,$$

 $\epsilon_i \sim N(0, \sigma^2)$

Variable		est.	s.e.	95 % C.I.
intercept	β_0	-1071.2	221.6	(-1613.4, -529.0)
temperature	eta_1	4.69	1.11	(1.98, 7.40)
pressure	eta_2	2.61	0.51	(1.37, 3.86)
$temp \times press$	eta_3	-0.0098	0.0025	(-0.016, -00036)
resid.std.dev	σ	3.40	df = 6	

Fitted plane: $\hat{Y} = -1071.2 + 4.69x_1 + 2.61x_2 - 0.0098x_1x_2$.

trace 1

Effect of temperature change: interaction

Increase the temperature by Δ_1 °C from x_{01} to $x_{01} + \Delta_1$ while keeping the pressure fixed at x_{02} :

$$\begin{split} \hat{Y}_{\text{old}} &= \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \hat{\beta}_2 x_{02} + \hat{\beta}_3 x_{01} x_{02} \\ \hat{Y}_{\text{new}} &= \hat{\beta}_0 + \hat{\beta}_1 (x_{01} + \Delta_1) + \hat{\beta}_2 x_{02} + \hat{\beta}_3 (x_{01} + \Delta_1) x_{02} \\ \hat{Y}_{\text{new}} - \hat{Y}_{\text{old}} &= (\hat{\beta}_1 + \hat{\beta}_3 x_{02}) \Delta_1 \text{ depends on the pressure!} \end{split}$$

Temperature effect for some different pressures:

$$\begin{split} x_{02} &= 350 : \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 350) \Delta_1 = 1.24 \Delta_1 \\ x_{02} &= 400 : \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 400) \Delta_1 = 0.75 \Delta_1 \\ x_{02} &= 450 : \hat{Y}_{\mathsf{new}} - \hat{Y}_{\mathsf{old}} = (\hat{\beta}_1 + \hat{\beta}_3 \cdot 450) \Delta_1 = 0.26 \Delta_1 \end{split}$$

Note: without the interaction we always had $0.41\Delta_1$.

Predictions: with interaction

If temperature = 200 $^{\circ}$ C and pressure = 400 kg/cm 2 ,

$$\mathbf{x}_0 = (1 \quad 200 \quad 400 \quad 80000)$$

what is the expected tension?

$$\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}} =
= -1071.2 + 4.69 \cdot 200 + 2.61 \cdot 400 - 0.0098 \cdot 80000 = 124.6.$$

What tension values might we observe?

$$\hat{Y}_{\mathsf{pred}_0} = \mathbf{x}_0 \hat{\boldsymbol{\beta}} + \epsilon_0 = 124.6 + \epsilon_0.$$

	estimate	s.e.	95% interval	
on average	$\hat{Y}_0 = 124.6$	1.08	(122.0, 127.2)	conf.
single obs.	$\hat{Y}_{pred_0} = 124.6 + \epsilon_0$	3.57	(115.9, 133.3)	pred.
N 9 F7	$\sqrt{9.412 + 1.002}$			

Note: $3.57 = \sqrt{3.41^2 + 1.08^2}$.

Note that both $\hat{\sigma}$ and all the intervals have become narrower. This model fits closer to the data!

Too close? Overfitting? Next week...

Example

trace 5

Conculsions from the basic residual analysis

The model with interaction has

- smaller residuals
- residuals closer to a normal distribution