HW 6: Yokoi Connectivity Number

Source Code

All questions are written in Python code, please refer to the file "main.py". All images will be stored in the folder "res" (automatically create a new folder). In accordance with the **FAQ** of course website:

All parts of the question are written from scratch, except for plotting images

Answer

1. Binarize

Algorithm:

- 1) Iterate grayscale image
- 2) For every pixel, convert to 0 for any value less than 128 and 255 for the rest.

```
binarized = img.copy()
for i in range(height):
    for j in range(width):
        if binarized[i][j] < 128:
            binarized[i][j] = 0
        else:
            binarized[i][j] = 255
cv2.imwrite("res/binarized.bmp", binarized)</pre>
```


2. Downsample

Algorithm:

- 1) Make array of 64x64
- 2) Take values from binarized image with factor of 8

```
down = np.zeros(shape=(int(height/8), int(width/8)))
for i in range(down.shape[0]):
    for j in range(down.shape[1]):
        down[i][j] = binarized[i*8][j*8]
cv2.imwrite("res/downsampled.bmp", down)
```


3. Yokoi Connectivity Number

Algorithm:

- 1) Iterate pixels in downsampled image
- 2) Find neighborhood pixels around pixel in interest
- 3) Count a1, a2, a3, a4
- 4) Count f(a1, a2, a3, a4)

```
def hFunc(b, c, d, e):
   if (b == c):
        if ((d != b) or (e != b)):
           return 'q'
        elif ((d == b)) and (e == b)):
           return 'r'
   else:
       return 's'
def fFunc(a1, a2, a3, a4):
   if [a1, a2, a3, a4].count('r') == 4:
        return 5
   else:
       return [a1, a2, a3, a4].count('q')
def yokoiNumber(img):
   result = np.full(img.shape, ' ')
   for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            if img[i][j] != 0:
                pixels = neighborhoodPixels(img, (i,j))
                result[i][j] = fFunc(
                    hFunc(pixels[1][1], pixels[1][2],
pixels[0][2], pixels[0][1]),
                    hFunc(pixels[1][1], pixels[0][1],
pixels[0][0], pixels[1][0]),
                    hFunc(pixels[1][1], pixels[1][0],
pixels[2][0], pixels[2][1]),
                    hFunc(pixels[1][1], pixels[2][1],
pixels[2][2], pixels[1][2])
   return result
```

1	11111111	12111111111122322221 11111111111 0 0
2	15555551	115555555511 2 11 11 1155555555511 0
3	15555551	1 2115555112 21112221 155555555551 21
4	15555551	1 2 155112 22221511 155555555511 1
5	15555551 15555551	22 2112 22
6 7	15555551	12 1 121111 1321 15555555555511
8	15111551	1322 1155551111 1555555555555
9	111 1551	1 121555555511 15555555555511
10	11 1551	21155555511 15511155555511
11	21 1551	2 15555555111 1551 11555511
12	1 1551	2 155555555511 1551 115551 1
13	1551	1121155555555551 1551 15511 12
14 15	1551 1551	15555555555555511 1551 1111 111 1 222115555555555
16	1551	2 22 1 1555555555555511 151 11111 1551
17	1551	2 1 11555555555555551 151 115551 11551
18	1551	2 11555555555555555111511155511 115551
19	1551	12 115555555555555555555555555555555555
20	1551	11 θ 2215555555555555555555555555112 1155551
21	1551	111 22 15555555555555555555555555555555
22 23	1551	1511 1 125112111112111555555555111 11555551
24	1551 1551	15521 1 121 1 11 1 15555555111 0 15555551 1151 132 2 1155555111 0 115555551
25	1551	151 0 322 115555111 121 155555551
26	1551	1221 2 1555551 131 1155555551
27	1551	2 0 1 115555551 1 1155555551
28	1551	2 0 0 1155555551 0 1 155555551
29	1551	2 11555555551 21155555551
30	1551	1 0 11555555551 15555555551
31 32	1551 1551	1 11511115555521 1 115555555551 1 1 11111 1155511 2 15555555555
33	1551	1 1 11111 1155511 2 155555555551 131 111 15111 2 155555555555
34	1551	121 0 1121 1 111 1 2 1155555555551
35	1551	11 111 1 221 11 1 2 1555555555555
36	1551	12 0 1 21 121 11 1111 2 155555555555
37	1551	1 12 22 151111111551 2 11555555555551
38 39	1551	1 2 1555551115511 1 15555555555551 2 θ θ 22 12555551 15551 1 15555555555555
40	1551 1551	2 0 0 22 12555551 15551 1 15555555555555
41	1551	θ θ 21 155551 1 151 2 15555555555555
42	1551	2 15555112 151 2 15555555555555
43	1551	1 1 1 1155555511111 2 15555555555555
44	1551	2 22 111511111212 2115555555555555
45	1551	0 1 12 151 2 1 15555555111555551
46 47	1551 1551	0 0 0 1111 121 155555551 1555551 0 11111111 155555551 1555551
48	1551	θ 1111111 15555551 1555511 θ 115551 15555551
49	1551	15551 21111111 155511
50	11521	1 12 122155511 2 11 115511
51	1 151	0 1 1 155555111 2111 15511
52	22 1511	
53 54	22 1511	
55	2 151 2 1521	θ 1 11155555555511 155511 1511 θ 1 15555555555
56	2 151	121 1555555555551 15551 1551
57	2 1511	
58	21 1511	11 155555555555 111111151
59	11 151	θ 115555555555511 111511
60	11 151	15555555555551 151
61 62	11 151 11 151	θ 1155555555555551 211 115555555555555511 1
63	11 151	0 15555555555555
64	11 111	0 121111111111111