Notes on the course $An\'{a}lise\ no\ \mathbb{R}^n$, by Ailton Silva

Josenaldo Júnior

March 16, 2020

Análise no \mathbb{R}^n

Definition (Espaço Vetorial). Um *espaço vetorial* $(E, +, \cdot)$ é tal que as operações $+: E \times E \to E \text{ e} \cdot : \mathbb{R} \times E \to E$ satisfazem as seguintes propriedades:

- (E, +) é um grupo abeliano;
- $1 \cdot \boldsymbol{x} = \boldsymbol{x}$;
- $a \cdot (b \cdot \boldsymbol{x}) = (a \cdot b) \cdot \boldsymbol{x};$
- $(a+b) \cdot \mathbf{x} = a \cdot \mathbf{x} + b \cdot \mathbf{x}$;
- $\bullet \ a \cdot (\boldsymbol{x} + \boldsymbol{y}) = a \cdot \boldsymbol{x} + a \cdot \boldsymbol{y}.$

Definition (Produto Interno). Seja E um espaço vetorial. Um produto interno em E é uma função $\langle,\rangle:E\times E\to\mathbb{R}$ que verifica:

- 1. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$;
- 2. $\langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle$;
- 3. $\langle a\boldsymbol{x}, \boldsymbol{y} \rangle = a \langle \boldsymbol{x}, \boldsymbol{y} \rangle$;
- 4. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$, $e \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0 \iff \boldsymbol{x} = \boldsymbol{0}$.

Um espaço vetorial com produto interno é chamado de espaço com produto interno.

Definition (Matriz Definida Positiva). Uma matriz quadrada $A = (a_{ij})_n$ é definida positiva quando, para todo $\mathbf{x} \in \mathbb{R}^n$ não nulo,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j > 0$$

Fact. Dada uma matriz definida positiva $A=(a_{ij})_n$, a função $\langle :, \mathbb{R} \rangle^n \times \mathbb{R}^n \to \mathbb{R}$

dada por

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$$

é um produto interno. Podem-se, então, definir uma quantidade não enumerável de produtos internos no espaço \mathbb{R}^n .

Definition (Norma Associada ao Produto Interno). A norma $\|\|_{\langle,\rangle}: E \to \mathbb{R}$ associada a um produto interno (NAPI) \langle,\rangle de um espaço vetorial E é definida da seguinte forma:

$$\|oldsymbol{x}\|_{\langle,
angle}=\sqrt{\langleoldsymbol{x},oldsymbol{x}
angle}$$

Theorem 1 (Desigualdade de Cauchy-Schwarz).

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\|_{\langle,
angle} \cdot \|oldsymbol{y}\|_{\langle,
angle}$$

A igualdade é válida sse x e y são LD.

Fact.

$$\|oldsymbol{x} + oldsymbol{y}\|_{\langle,
angle} \leq \|oldsymbol{x}\|_{\langle,
angle} + \|oldsymbol{y}\|_{\langle,
angle}$$

Definition (Norma em um Espaço Vetorial). Uma norma num espaço E é uma aplicação $\| \| : E \to \mathbb{R}$ satisfazendo o seguinte:

- 1. $||x|| \ge 0$, $e ||x|| = 0 \iff x = 0$;
- 2. $||a\boldsymbol{x}|| = |a| ||\boldsymbol{x}||$ (homogeneidade);
- 3. $||x + y|| \le ||x|| + ||y||$ (designaldade triangular).

Um espaço vetorial é normado quando ele tem uma norma.

Fact. A NAPI é uma norma.

Fact. Seja $(E, \| \ \|)$ um espaço normado. Então

$$|||x|| - ||y||| < ||x - y||$$

Definition (Norma do Máximo).

$$\|\boldsymbol{x}\|_{\max} = \max_{1 \le i \le n} |x_i|$$

Fact. A norma do máximo é uma norma em \mathbb{R}^n . Definition (Norma da Soma).

$$\|\boldsymbol{x}\|_{\mathrm{s}} = \sum_{i=1}^{n} |x_i|$$

Fact. A norma da soma é uma norma em \mathbb{R}^n . Definition (Norma Euclidiana em \mathbb{R}^n).

$$\|\boldsymbol{x}\|_{\mathrm{euc}} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

A norma euclidiana também é chamada de norma usual em \mathbb{R}^n .

Fact. A norma euclidiana é uma norma em \mathbb{R}^n .

Definition (Identidade do Paralelogramo). Sejam E um espaço normado. A *identidade do paralelogramo* é dada por

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$$

Theorem 2. Uma norma é proveniente de um produto interno se, e somente se, ela verifica a identidade do paralelogramo.

Fact. As normas do máximo e da soma em \mathbb{R}^n não satisfazem a identidade do paralelogramo e, portanto, não são provenientes de produto interno.

Definition (Normas Equivalentes). As normas $\| \|_1$ e $\| \|_2$ são equivalentes quando existem $c_1, c_2 > 0$ tais que

$$c_1 \|\boldsymbol{x}\|_1 \leq \|\boldsymbol{x}\|_2 \leq c_2 \|\boldsymbol{x}\|_1$$

para todos os vetores do espaço.

Fact. Num espaço vetorial de dimensão finita, todas as normas são equivalentes. **Definition** (Bola Aberta). Seja (E, || ||) um espaço normado. Uma *bola aberta* de centro a e raio r > 0, denotada por B (a, r) (ou B_r(a)), é definida como sendo o seguinte conjunto:

$$B(a,r) = \{ x \in E : ||x - a|| < r \}$$

Definition (Bola Fechada). Uma bola fechada de centro a e raio r > 0, denotada por B [a, r] (ou B_r[a]), é definida como sendo o seguinte conjunto:

$$B[a, r] = \{ x \in E : ||x - a|| \le r \}$$

Definition (Esfera). Uma *esfera* de centro a e raio r > 0, denotada por S[a, r] (ou $S_r[a]$), é definida como sendo o seguinte conjunto:

$$S[a, r] = \{ x \in E ; ||x - a|| = r \}$$

Definition (Conjunto Limitado). Seja (E, || ||) um espaço normado e $X \subset E$. Dizemos que X é *limitado* quando existir r > 0 tal que

$$X \subset B[\mathbf{0}, r]$$

Do contrário, o conjunto é ilimitado (não é limitado).

Remark. Em \mathbb{R}^n , como todas as normas são equivalentes, para provar que um conjunto é limitado, basta limitá-lo em qualquer norma.

Definition (Função Limitada). Dados $(E, || \cdot ||_E)$ e $(F, || \cdot ||_F)$ espaços normados e $f: E \to F$, dizemos que f é limitada quando existe r > 0 tal que, para todo $x \in E$,

$$||f(\boldsymbol{x})||_F < r$$

Definition (Segmento). Seja (E, || ||) espaço normado. Dados $a, b \in E$, definimos o *segmento* (que liga a a b) como sendo o conjunto:

$$[a, b] = \{z \in E ; z = (1 - t)a + tb \text{ para algum } t \in [0, 1]\}$$

Definition (Conjunto Convexo). Dizemos que $X \subset E$ é convexo quando $[x, y] \subset X$ para todos $x, y \in X$.

Definition (Ponto Interior). Seja (E, || ||) espaço normado, e $X \subset E$. Dizemos que $a \in X$ é ponto interior a X quando existe $r_a > 0$ tal que $B(a, r_a) \subset X$.

Definition (Interior de um Conjunto). O conjunto dos pontos interiores de $X \subset E$ é chamado de *interior* de X é denotado por int X. **Fact.**

- 1. $\operatorname{int} X \subset X$
- 2. $X \subset Y \implies \operatorname{int} X \subset \operatorname{int} Y$

Definition (Conjunto Aberto). Dizemos que $A \subset E$ é aberto quando todo ponto do conjunto A é ponto interior a A, isto é, int A = A.

Fact. Bolas abertas são conjuntos abertos.

Fact (Propriedades de Abertos). Seja (E, || ||) um espaço normado. Então

- 1. Se X e Y são abertos em E, $X \cap Y$ é aberto em E.
- 2. Se $(X_{\lambda})_{\lambda \in L}$ é uma família de conjuntos abertos, então $\bigcup_{\lambda \in L} X_{\lambda}$ é um conjunto aberto.

Definition. Seja (E, || ||) um espaço normado, $X \subset E$ e $a \in E$. Dizemos que a pertence à fronteira de X, e denotamos $a \in \partial X$ (ou $a \in \operatorname{Fr} X$) quando $a \notin \operatorname{int} X$ e $a \notin \operatorname{int}(X^C)$.

Fact. Dado E espaço normado e $X \subset E$, então o conjunto $\{ \text{int } X, \text{int}(X^C), \text{Fr } X \}$ é uma partição de X.

Fact (Propriedades da Fronteira). Sejam E um espaço normado e $X \subset E$.

- 1. $X \subset \operatorname{int} X \cup \operatorname{Fr} X$.
- 2. Se Fr $X = \emptyset$, então X é aberto.

Definition (Abertos Relativos). Sejam E espaço normado e $A \subset X \subset E$. Dizemos que A é aberto em X (aberto relativo a X) quando dado $a \in A$, existe r > 0 tal que B $(a, r) \cap X \subset A$.

Theorem 3. Sejam E espaço normado e $A \subset X \subset E$. Então A é aberto em X sse existe $U \subset E$ aberto tal que $A = U \cap X$.