Solutions for Mandatory Assignment 1 for FunkAn 2020

Name: Minyi Zheng Student ID: tpk820

Problem 1

(a) Show that $||x||_0 = ||x||_X + ||Tx||_Y$ is a norm on X. Show that the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent if and only if T is bounded.

Proof First we show that $||x||_0$ is a norm on X.

$$||x + y||_{0} = ||x + y||_{X} + ||T(x + y)||_{Y} = ||x + y||_{X} + ||Tx + Ty||_{Y}$$

$$\leq ||x||_{X} + ||y||_{X} + ||Tx||_{Y} + ||Ty||_{Y} = ||x||_{0} + ||y||_{0}, \quad x, y \in X$$
(1)

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|T(\alpha x)\|_{Y} = |\alpha|\|x\|_{X} + \|\alpha T x\|_{Y}$$

$$= |\alpha|\|x\|_{Y} + |\alpha|\|T x\|_{Y} = |\alpha|\|x\|_{0}, \quad \alpha \in \mathbb{K}, x \in X$$
(2)

$$||x||_0 = 0$$
 if and only if $x = 0$
i.e. $||0||_0 = ||0||_X + ||T0||_Y = 0 + 0 = 0$ (3)

 $||x||_0$ satisfies all three criteria above. Hence, $||x||_0$ is a norm on X.

Next we show that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent if and only if T is bounded.

" \Rightarrow ": Assume that T is bounded. Then there exists C > 0, $C \in \mathbb{K}$ such that $||Tx||_Y \leq C||x||_X$, for all $x \in X$. We have

$$||x||_X \le ||x||_0 = ||x||_X + ||Tx||_Y \le ||x||_X + C||x||_X = |1 + C|||x||_X$$

Take $C_1 = 1$ and $C_2 = |1 + C|$, by definition, the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent since $C_1||x||_X \le ||x||_0 \le C_2||x||_X$.

"\(\infty\)": Assume that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent. Then there exists $0 < C_1 \le C_2 < \infty$, $C_1, C_2 \in \mathbb{K}$ such that $C_1 \|x\|_X \le \|x\|_0 \le C_2 \|x\|_X$, for all $x \in X$. Take $C = C_2$, by definition, T is bounded since $\|Tx\|_Y \le C \|x\|_X$, for all $x \in X$.

(b) Show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional.

Proof Choose a basis $\{e_1, e_2, \dots, e_n\}$ in X which may be taken to be unit vectors. Then,

$$Tx = \sum_{i=1}^{n} x_i Te_i,$$

and so by the triangle inequality,

$$||Tx|| = ||\sum_{i=1}^{n} x_i Te_i|| \le \sum_{i=1}^{n} |x_i|||Te_i||$$

Letting

$$M = \sup_{i} \{ \|Te_i\| \}$$

and using the fact that

$$\sum_{i=1}^{n} |x_i| \le C||x||$$

for some C > 0 which follows from the fact that any two norms on a finite-dimensional space are equivalent, one finds

$$||Tx|| \le (\sum_{i=1}^{n} |x_i|)M \le CM||x||$$

Thus, T is a bounded linear operator.

(c) Suppose that X is infinite dimensional. Show that there exists a linear map $T: X \to Y$, which is not bounded (= not continuous).

Proof Consider a sequence $(a_j)_1^n$ of linearly independent vectors in X. Define a linear functional f:

$$f(a_j) = j||a_j||$$

for each j=1,2,..., n. Complete this sequence of linearly independent vectors to a vector space basis of X (i.e. a Hamel basis $(e_i)_{i\in I}$ for X.), and define f at the other vectors in the basis to be zero. That is

$$f(e_i) = \begin{cases} i ||e_i|| & \text{if } i \le n; \\ 0 & \text{otherwise.} \end{cases}$$

f so defined will extend uniquely to a linear map on X and it is not bounded since there exists no C such that $||fx|| \le C||x||$ for all $x \in X$. Then, define a linear map T:

$$T: X \to Y$$
$$x \mapsto f(x)y$$

where y is an arbitrary nonzero vector in Y. T so defined is not bounded since f is not bounded.

Another solution (just a discussion, cannot make sure it is right):

Proof Choose an infinite linearly independent set $\{x_n|n\in\mathbb{N}\}$ such that $\|x_n\|=1$. An infinite linearly independent set exists, since X is infinite-dimensional. Normalizing the vectors does not influence the linear independence. There is a Hamel basis B containing this set.

Then there is a linear map $T: X \to Y$ (here $Y = \mathbb{R}$) such that $Tx_n = n$ and Tb = 0 for $b \in B \setminus \{x_n | n \in \mathbb{N}\}$. Let $\{r_n\}_n$ be any sequence of rationals which converges to b. Then $\lim_n Tr_n = b$, but Tb = 0. We can see that T is unbounded (= not continuous).

(d) Suppose that X is infinite dimensional. Argue that there exists a norm $\|\cdot\|_0$ on X, which is not equivalent to the given norm $\|\cdot\|_X$, and which satisfies $\|x\|_X \le \|x\|_0$, for all $x \in X$. Conclude that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

Proof There are many ways to construct such a norm $\|\cdot\|_0$. Here is an example:

Let $(X, \|\cdot\|_X)$ be an infinite dimensional normed space and $T: X \to \mathbb{R}$ be a linear non bounded map for the norm $\|\cdot\|_X$. Define $\|\cdot\|_0 := \|x\|_X + |Tx|$, for all $x \in X$. Then $\|\cdot\|_0$ is a norm which is not equivalent to $\|\cdot\|_X$ since T is not bounded, which we have proved in problem (a). Also, the norm $\|\cdot\|_0$ satisfies $\|x\|_X \le \|x\|_X + |Tx| = \|x\|_0$, for all $x \in X$.

Next we show that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

Assume that $(X, \|\cdot\|_0)$ were complete. Consider the identity map $I: (X, \|\cdot\|_0) \to (X, \|\cdot\|_X)$. Since $\|Ix\|_X = \|x\|_X \le \|x\|_0$, we have that I is a continuous linear map. Since $(X, \|\cdot\|_X)$ is a Banach space, I is also surjective. By the open mapping theorem, I is open. Whence, $I^{-1}: (X, \|\cdot\|_X) \to (X, \|\cdot\|_0)$ is continuous. Since I^{-1} is linear, it is also bounded:

$$||x||_0 = ||I^{-1}X||_0 \le C||x||_X$$

for some constant C > 0.

Therefore $\frac{1}{C}||x||_0 \le ||x||_X \le ||x||_0$. By definition, the two norms $||\cdot||_0$ and $||\cdot||_X$ would be equivalent. But this is a contradiction with the fact that they are not. Hence, $(X, ||\cdot||_0)$ is not complete if $(X, ||\cdot||_X)$ is a Banach space.

An Example Here is another example to construct a norm $\|\cdot\|_0$.

Define $T: x_i \mapsto iy \in Y$ for all $||x_i|| = 1$. Define $||\cdot||_0 := ||x||_X + ||Tx||_Y$, for all $x \in X$.

(e) Give an example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ satisfying $\|x\|' \le \|x\|$, for all $x \in X$, such that $(X, \|\cdot\|)$ is complete, while $(X, \|\cdot\|')$ is not. An Example Take $(X, \|\cdot\|) = (L_2([0, 1], m), \|\cdot\|_2)$. Define $\|x\|' := \|\cdot\|_1$. For $f \in L_2([0, 1], m)$,

by Cauchy-Schwarz:

$$\int_{[0,1]} |f(x)| \mathrm{d}m(x) \le \sqrt{\int_{[0,1]} |f(x)|^2 \mathrm{d}m(x)}.$$

Note that $(L_2([0,1],m),\|\cdot\|_2)$ is complete. Next we show that $(L_2([0,1],m)$ is not complete under $\|\cdot\|_1$.

Assume that $L_2([0,1],m)$ is complete under $\|\cdot\|_1$. Then by the Banach isomorphism theorem, there would be a constant C such that for any $f \in L_2([0,1],m)$, $\|f\|_2 \le C\|f\|_1$. In particular, if $f = \chi_A$ (the function that is equal to 1 on A and 0 otherwise) for $A \subset [0,1]$ measurable, we would get $m(A)^{\frac{1}{2}-1} \le C$, hence

$$\inf_{A:m(A)>0} m(A) > 0.$$

This condition implies that, together with finiteness of the measure space, that $L_2([0,1],m)$ is finite dimensional. However, $L_2([0,1],m)$ is infinite dimensional. Hence, $(L_2([0,1],m), \|\cdot\|_1)$ is not complete.

Problem 2

(a) Show that f is bounded on $(M, \|\cdot\|_p)$ and compute $\|f\|$.

Proof By Hölder's inequality (which mentioned in HW1 FunkAn20-21.pdf Problem 5),

$$||fx|| \le |a| + |b| \le (|a|^p + |b|^p)^{\frac{1}{p}} (1+1)^{1-\frac{1}{p}} = 2^{(1-\frac{1}{p})} ||x||_p$$

for x = (a, b, 0, 0, ...) and $p \in [1, \infty)$. Here we have C = 2 such that:

$$||fx|| \le 2^{(1-\frac{1}{p})} ||x||_p \le C||x||_p$$

for all $x \in M$. Hence f is bounded on $(M, \|\cdot\|_p)$.

Since equality can be attained for x = (1, 0, 0, 0, ...) we have

$$||f||_p = 2^{(1-\frac{1}{p})}$$

for $p \in [1, \infty)$. And it is trivial that $||f||_1 = 1$.

Another solution (probably the same solution):

Proof By a consequence of Hölder's inequality, in general, for vectors in \mathbb{C}^n where 0 < r < p:

$$||x||_p \le ||x||_r \le n^{(\frac{1}{r} - \frac{1}{p})} ||x||_p$$

Here we have $C = 2^{(1-\frac{1}{p})}$ such that:

$$||fx|| = ||x||_1 \le C||x||_p$$

for all $x \in M$. Hence f is bounded on $(M, \|\cdot\|_p)$.

By Remark 1.11. from Lecture1_FunkAn20-21.pdf, $||f|| = \sup\{||fx|| : ||x|| = 1\}$. Let x = (a, b, 0, 0, ...) where $a = b = \frac{1}{\sqrt[p]{2}}$ such that $||x||_p = 1$. Then

$$||f|| = \sup_{\|x\|_p = 1} |fx| \ge \frac{2}{\sqrt[p]{2}} = 2^{(1 - \frac{1}{p})},$$

for $p \in [1, \infty)$. And it is trivial that $||f||_1 = 1$.

(b) Show that if 1 , then there is a unique linear functional <math>F on $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Proof Given a generic vector

$$x = (a, b, x_3, x_4, ...) = ae_1 + be_2 + x_3e_3 + x_4e_4 + \cdots$$

From (a), we have $f x \leq 2^{(1-\frac{1}{p})} ||x||_p$. If $1 , by Theorem 2.3 from Lecture2_FunkAn20-21.pdf, suppose <math>F : \ell_p(\mathbb{N}) \to \mathbb{K}$ is a bounded extension of f with

$$||F||_p = 2^{1-\frac{1}{p}}.$$

Let $Fe_j = \alpha_j$. We can see that for all $j \ge 3$, by Hölder's inequality, it holds that

$$||F(ae_1 + be_2 + x_j e_j)|| = |a + b + x_j \alpha_j|$$

$$\leq (|a|^p + |b|^p + |x_j|^p)^{\frac{1}{p}} (1 + 1 + |\alpha_j|^{\frac{p}{p-1}})^{1 - \frac{1}{p}}$$

$$= (2 + |\alpha_j|^{\frac{p}{p-1}})^{1 - \frac{1}{p}} ||x||_p$$

Since equality can be attained, we have

$$(2+|\alpha_i|^{\frac{p}{p-1}})^{1-\frac{1}{p}} \le ||F||_p = 2^{1-\frac{1}{p}}, \quad \forall j \ge 3.$$

This shows $\alpha_j = 0$ for all $j \ge 3$, and it follows that

$$Fx = a + b$$

for all $x \in \ell_p(\mathbb{N})$. Thus there is a unique linear functional F as desired.

(c) Show that if p = 1, then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Proof Given a generic vector

$$x = (a, b, x_3, x_4, ...) = ae_1 + be_2 + x_3e_3 + x_4e_4 + \cdots$$

If p = 1, note that for any $\{\alpha_j\}_{j \ge 3}$ with $\sup_{j \ge 3} |\alpha_j| \le 1$, $Fe_j = \alpha_j$,

$$Fx = a + b + \sum_{j=3}^{\infty} \alpha_j x_j$$

is a bounded extension of *f* with

$$||F||_1 = 1 = ||f||_1$$
.

This shows that there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f|| for p = 1.

Problem 3

(a) Let $n \ge 1$ be an integer. Show that no linear map $F: X \to \mathbb{K}^n$ is injective.

Proof Since *X* is an infinite dimensional normed vector space, we can take a n+1-dimensional normed vector space *Y* in *X*. Then we have $F|_{Y}: Y \to \mathbb{K}^{n}$. By Rank-Nullity Theorem,

$$\dim(Y) = \dim(\operatorname{Im} F|_Y) + \dim(\operatorname{Ker} F|_Y).$$

Since $\dim(\mathbb{K}^n) = n$, it is clear that $\dim(\operatorname{Im} F|_Y) \leq n$. Since Y is a n+1-dimensional normed vector space over \mathbb{K} , it deduces that $\dim(\operatorname{Ker} F|_Y) \geq 1$. Hence, $F|_Y$ is not injective and F is not injective.

(b) Let $n \ge 1$ be an integer and let $f_1, f_2, \dots, f_n \in X^*$. Show that

$$\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}.$$

Proof Consider the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), \dots, f_n(x)), x \in X$. Suppose that when x = 0 we have $F(x) = (0, 0, \dots, 0)$. According to the previous problem, we have at least one more different vector $x' \neq 0$ such that $F(x') = (0, 0, \dots, 0)$. Namely,

$$f_i(0) = f_i(x') = 0,$$

for all i = 1, 2, ..., n. Hence,

$$\{0, x'\} \subseteq \bigcap_{j=1}^n \ker(f_j)$$

Now we can conclude that $\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}$.

(c) Let $x_1, x_2, ..., x_n \in X$. Show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n.

Proof For $1 \le j \le n$ let $f_j \in X^*$ be a bounded functional such that $f_j(x_j) = ||x_j||$ and $||f_j|| = 1$. Then the intersection of kernels

$$\bigcap_{j=1}^{n} \ker(f_j)$$

is a nontrivial subspace of X (which we have proved in the previous problem). Pick $y \in \bigcap_{i=1}^n \ker(f_i)$ such that ||y|| = 1 and notice that

$$||y - x_j|| = ||f_j|| ||y - x_j|| \ge |f_j(y - x_j)| = |f_j(y) - f_j(x_j)| = |0 - ||x_j||| = ||x_j||$$

which proves the claim. (Note that by definition of the operator norm we have $||f_j|| ||y - x_j|| \ge |f_j(y - x_j)|$)

(d) Show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0.

Proof Let $B_j := \{B(x_j, r_j) : r_j < ||x_j||\}$ be closed balls and these closed balls not containing 0 since $r_i < ||x_j||, j = 1, 2, ...$

Assume that we have a finite family of closed balls B_j covering S, j = 1, 2, ..., n. These balls are closed convex sets since any closed ball in a normed vector space is convex. ($||tx+(1-t)y-p|| \le t||x-p|| + (1-t)||y-p|| \le r$, for all $x, y \in B(p,r), 0 \le t \le 1$.) Then, by Theorem 3.6 (Lecture3_FunkAn20-21.pdf), we can find continuous functionals g_j such that $\text{Re}g_j(x) \ge 1$ for all $x \in B_j$. (If $x \in \bigcap_{j=1}^n \ker(g_j)$, then $g_j(x) = 0$ for all j. But $x \in B_j$ implies $\ker(g_j) \ge 1$.) Since the parallel hyperplane (given by the Hahn-Banach separation theorems) through the origin has codimension one and is disjoint from the ball, we have a subspace $\bigcap_{j=1}^n \ker(g_j)$ of finite codimension in X that is disjoint from the given finite set of closed balls. Namely, this vector space $\bigcap_{j=1}^n \ker(g_j)$ does not intersect any of the B_j .

Note that $\bigcap_{j=1}^n \ker(g_j) \neq \{0\}$ (problem (b)). Hence, we can always find an $x \in (\bigcap_{j=1}^n \ker(g_j)) \cap S$, i.e. $x \notin \bigcup_j B_j$ but $x \in S$, which is a contradiction. Therefore, no finite number of closed balls not containing 0 can cover S.

Another solution:

Proof Let $B_j := \{B(x_j, r_j) : r_j < \|x_j\|\}$ be closed balls and these closed balls not containing 0 since $r_j < \|x_j\|$, $j = 1, 2, \ldots$ Assume that we have a finite family of closed balls B_j covering S, $j = 1, 2, \ldots, n$. According to (c), there exist $y \in X$ with $\|y\| = 1$, which means $y \in S$, such that $\|y - x_i\| \ge \|x_i\| > r_i$. Hence, $y \notin B(x_i, r_i) \cap S$ and then $y \notin \bigcup_i (B(x_i, r_i)) \cap S$. Therefore, no finite number of closed balls not containing 0 can cover S.

(e) Show that *S* is non-compact and deduce further that the closed unit ball in *X* is non-compact.

Proof The previous problem implies that S is non-compact. Now we prove it. Assume that S were compact and for any $x \in S$ consider $B_x = \{v \in X | \|x - v\| < \frac{1}{2}\}$. Then $\{B_x\}_{x \in S}$ is an open cover of S and by compactness it has to contain a finite subcover $\{B_{x_1}, B_{x_2}, \dots, B_{x_n}\}$. However, $\{\overline{B_{x_1}}, \overline{B_{x_2}}, \dots, \overline{B_{x_n}}\}$ is a finite family of closed balls that can cover S, where $\overline{B_{x_i}} = \{v \in X | \|x_i - v\| \le \frac{1}{2}\}$, $i = 1, 2, \dots, n$. And none of $\overline{B_{x_i}}$ contains 0. Because given an $\|x\| = 1$ as an element of S and so $\|x - 0\| = \|x\| = 1 > \frac{1}{2}$. This contradicts what we have proved in problem (d). Thus, S is non-compact.

For the second part. Denote the closed unit ball by $\overline{B_u}$. Assume that $\overline{B_u}$ were compact. Since S is a closed subset of $\overline{B_u}$, S would be compact, which deduces that X would be finite dimensional. Hence the closed unit ball in X is non-compact.

Another way to show that the closed unit ball in *X* is non-compact:

S is a closed subset of the closed unit ball. Since a closed subset of a compact space is compact, S is compact. But S is not compact. So the closed unit ball in X is non-compact.

Problem 4

(a) Given $x \ge 1$, is the set $E_n \subset L_1([0,1], m)$ absorbing? Justify.

Proof Since $L_3([0,1],m) \subsetneq L_1([0,1],m)$ we can take $f \in L_1([0,1],m) - L_3([0,1],m)$, i.e., $f \in L_1([0,1],m)$ and $f \notin L_3([0,1],m)$. Then, $||f||_1 < \infty$ and $||f||_3 = \infty$. Assume that E_n is absorbing. Then there exists t > 0 such that $t^{-1}f \in E_n$. That is,

$$t^{-1}||f||_3 = ||t^{-1}f||_3 \le n$$

which means

$$||f||_3 \le tn < \infty$$

Thus $f \in L_3([0,1],m)$ and it is a contradiction. Therefore, the set $E_n \subset L_1([0,1],m)$ is not absorbing.

(b) Show that E_n has empty interior in $L_1([0,1],m)$, for all $n \ge 1$.

Proof Assume that E_n contains a non-empty open set U for some $n \ge 1$. Then there exists $f \in U$. So we have the open ball

$$B(f,\varepsilon) := \{ g \in L_1([0,1], m) : ||f - g||_1 < \varepsilon \} \subseteq E_n$$

for some $\varepsilon > 0$. For $0 \neq g \in L_1([0,1],m)$, we have $h := f + \frac{\varepsilon}{2\|g\|_1}g \in B(f,\varepsilon)$, and so it belongs to $L_1([0,1],m)$. Note that h is in the ball, and the ball is in E_n by assumption. Also note that $\int_{[0,1]} |f|^3 \mathrm{d}m \leq n$ means that $f \in L_3([0,1],m)$, so $E_n \subset L_3([0,1],m)$ by the definition of E_n . Hence, $h \in L_3([0,1],m)$. Then,

$$g = \frac{2\|g\|_1}{\varepsilon}(h-f) \in L_3([0,1], m),$$

from which we conclude that $L_3([0,1],m)=L_1([0,1],m)$. This is a contradiction. Hence, E_n has empty interior in $L_1([0,1],m)$, for all $n \ge 1$.

Another solution:

Proof Denote $E_n \subset V := L_1([0,1],m) \cap L_3([0,1],m)$. Note that $\int_{[0,1]} |f|^3 dm \le n$ means that $f \in L_3([0,1],m)$, so $E_n \subset L_3([0,1],m)$ by the definition of E_n . If V contains a non-empty open set U. Let $u \in U$ and $f \in L_1([0,1],m)$. Take t > 0 such that $u_t := (1-t)u + tf \in U$. Since

$$||u_t - u|| = |t|||f - u||,$$

we have

$$\lim_{t\to 0^+} u_t = u.$$

It follows that $u_t \in V$ and $u \in V$. Hence, $f = \frac{1}{t}(u_t - (1-t)u) \in V$. Then, $V = L_1([0,1],m)$ and E_n does not contain a non-empty open set. Hence, E_n has empty interior in $L_1([0,1],m)$.

(c) Show that E_n is closed in $L_1([0,1], m)$, for all $n \ge 1$.

Proof Take a sequence $(f_k) \in E_n$ such that $(f_k) \to f \in L_1([0,1],m)$, as $k \to \infty$. Note that there is a subsequence (f_{n_k}) which converges pointwise almost everywhere. It follows by Fatou's Lemma:

$$\int_{[0,1]} \liminf |f_{n_k}|^3 dm = \int_{[0,1]} |f|^3 dm = ||f||_3^3 \le \liminf \int_{[0,1]} |f_{n_k}|^3 dm \le n$$

Then, we have $f \in E_n$. Whence, every sequence $(f_k) \in E_n$ converges to $f \in E_n$. In other words, E_n is closed in $L_1([0,1],m)$, for all $n \ge 1$.

(d) Conclude from (b) and (c) that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Proof From (b) we show that E_n is nowhere dense in $L_1([0,1],m)$. Simply show it again: Let $f \in E_n$ and $g \in L_1([0,1],m) - L_3([0,1],m)$, then $f + \frac{1}{k}g \to f$ in $L_1([0,1],m)$ but $f + \frac{1}{k}g \notin E_n$ for all k. Hence E_n does not contain any interior points. Namely, E_n is nowhere dense in $L_1([0,1],m)$.

On the other hand, from (c) we show that E_n is closed in $L_1([0,1],m)$, for all $n \ge 1$. As $L_3([0,1],m) = \bigcup_n E_n$ is a union of nowhere dense sets, it is of first category in $L_1([0,1],m)$.

Problem 5

(a) Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

Proof $x_n \to x$ in norm, as $n \to \infty \iff \forall \epsilon > 0$ there exists a n_{ϵ} such that if $n > n_{\epsilon}$ then $||x_n - x|| < \epsilon$. In particular, by the triangle inequality, for $n > n_{\epsilon}$ we have

$$|||x_n|| - ||x||| \le ||x_n - x|| < \epsilon.$$

Hence $||x_n|| - ||x||$ as desired. Namely, $||x_n|| \to ||x||$, as $n \to \infty$.

(b) Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

A Counterexample Consider an orthonormal basis $(e_n)_{n\geq 1}$ in H. Then (note that $\langle \cdot, \cdot \rangle$ denotes the inner product in H),

$$\langle e_n, e_m \rangle = \delta_{mn}$$

where

$$\delta_{mn} = \begin{cases} 1 & \text{if } m = n; \\ 0 & \text{otherwise.} \end{cases}$$

Since H is an infinite dimensional Hilbert space, then the basis $(e_n)_{n\geq 1}$ is infinite and it converges weakly to 0. But $||e_n|| = 1 \to 1 \neq 0$. Simply prove this:

For $x \in H$, by Bessel's inequality, we have

$$\sum_{n} |\langle e_n, x \rangle|^2 \le ||x||^2$$

Therefore $|\langle e_n, x \rangle|^2 \to 0$. Hence, $|\langle e_n, x \rangle| \to 0$, i.e. $(e_n)_{n \ge 1}$ converges weakly to 0. However, $||e_n|| = 1 \to 1$. Clearly,

$$||e_n|| \to 1 \neq 0 = ||0||.$$

Whence, if $x_n \to x$ weakly, as $n \to \infty$, then it does not follow that $||x_n|| \to ||x||$, as $n \to \infty$.

(c) Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$? Give a proof or a counterexample.

Proof By Theorem 2.7 (Lecture2_FunkAn20-21.pdf), there exists a $f \in H^*$ such that ||f|| = 1 and f(x) = ||x||. By weak convergence,

$$||x|| = f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} |f(x_n)| \le \sup_{n \to \infty} ||x_n|| \le 1.$$

So it is true that $||x|| \le 1$.