#### TIPOS DE MEMÓRIAS



Hierarquia das Memórias



# Porque ter mais de um tipo de memória em um sistema computacional?

- Velocidade;
- Capacidade;
- Custo;



### Tipos de Memórias



# Principais parâmetros para a classificação de um tipo de memória

- Tempo de Acesso;
- Ciclo de Memória;
- Capacidade de Armazenamento;
- Volatilidade;
- Tecnologia de Fabricação;
- Temporariedade;
- Custo.



#### Memória Secundária

A memória secundária é não-volátil e possui maior capacidade de armazenamento. Tem hoje como principais dispositivos HD, SSD, PENDRIVE e DVDs.





RAMAC 1957 – 50DISCOS DE 24POLEGADAS







Geometri a do HD







- Sistema de Arquivo:
- \* FAT(file allocation table) e NTFS(new technology file system)
- \* Ext(extended file system) e Swap (Área de troca)
- \* HFS Plus (hierarichical file system plus)



- Interfaces de Comunicação:
- SCSI-SAS (Small Computer System Interface) 12Gbit/ s no SSD







Paralelo ATA (Advanced Tecnology Attachement)
IDE (Integrated Drive Electronics) - TT Ultra DMA 133 - 133MB/s







**Serial ATA** – Taxa de transferência de 350Mbit/s à 6Gbit/s .







#### RAID HD

- RAID significa "Redundant Array of Inexpensive Disks"
- RAID Nível 0 Também é conhecido como "Striping" ou "Fracionamento".
- RAID Nível 1 Também é conhecido como "Mirror",
   "Duplexing" ou "Espelhamento".



#### CD DVD ...

#### CD-DA (Compact Disc Digital Audio)

De Computer Desktop Encyclopedia @ 1998 The Computer Language Co. Inc.



### Pendrives e Cartões





#### Solid State Disks (SSDs)



1995 - Para substituir as mídia magnética rotativa por memória não volátil

2009 - Use a memória flash NAND Multi-Level Cell

Sem partes móveis (sem rotação )

Elimina o atraso de busca e rotação (0,1-0,2 ms de tempo de acesso)

Baixo consumo de energia e leve



## Memória Principal

É constituída de dois tipos de tecnologia RAM e ROM e tem com objetivo armazenar toda informação que entra e sai da CPU.



## Memória Principal

RAM – Armazena programa e dados.



ROM - Armazena instruções e informações de hardware e dados.



## Memória do tipo RAM

 DRAM – Dynamic Random Access Memory.

 SRAM – Static Random Access Memory.

- É possível classificar os módulos de memória de duas formas:
  - Quanto ao formato usado (SIMM, DIMM, etc.)
  - Quanto à tecnologia usada (EDO, SDRAM, DDR, DDR2, etc.)

O chip de memória em si serve apenas para armazenar dados, não realiza nenhum tipo de processamento. Por isso, é utilizado um componente adicional, o controlador de memória, que pode ser incluído tanto no chipset da placa mãe, quanto dentro do próprio processador.

Para acessar um determinado endereço de memória, o controlador primeiro gera o valor RAS (Row Address Strobe), ou o número da linha da qual o endereço faz parte, gerando em seguida o valor CAS (Column Address Strobe), que corresponde à coluna. Quando o RAS é enviado, toda a linha é ativada simultaneamente; depois de um pequeno tempo de espera, o CAS é enviado, fechando o circuito e fazendo com que os dados do endereço selecionado sejam lidos ou gravados.







#### Latência

- ·A latência é o tempo que o controlador de memória precisa esperar entre a requisição de um dado e sua efetiva entrega(CL).
- ·As memórias DDR3 têm latências maiores do que as memórias DDR2, que por sua vez têm latências maiores do que as memórias DDR.

#### Latência Típica Outras Latências Disponíveis

DDR 3 2, 2.5 DDR2 5 3, 4 DDR3 7 6, 8, 9

Isto significa que as memórias DDR3 demoram mais pulsos de clock para começarem a transferir dados do que as memórias DDR2, mas isto não significa necessariamente uma espera de tempo maior (isto só é verdade quando comparamos memórias trabalhando com o mesmo clock).

| Tecnologia | Num Pentes | Num<br>Chips | Bits por<br>chip | Total Bits |
|------------|------------|--------------|------------------|------------|
| Simm       | 4          | 8            | 1                | 32         |
| Simm       | 1          | 8            | 4                | 32         |
| Dimm       | 1          | 8            | 8                | 64         |
| Dimm       | 2          | 4            | 8                | 64         |



#### Memória DDR



2 transferências por ciclo a partir das células de memória

#### Memória DRAM- SPD





#### Memória DDR II



4 transferências por ciclo a partir das células de memória

 Na DDR e DDRII em diante a diferença é maior em aplicativos que precisam manipular grandes blocos de dados e menor em aplicativos que lêem pequenos blocos de dados espalhados

#### Memória DRAM -RAMBUS



As memórias MRAM (Magnetoresistive RAM) utilizam células magnéticas para armazenar dados. A grande diferença da DRAM é que, ao invés de um capacitor, é usada uma célula magnética, que pode ser gravada e lida usando eletricidade e conserva seus dados por longos períodos sem precisar de refresh ou alimentação elétrica.

## TABELA DE EVOLUÇÃO DAS MEMÓRIAS DRAM

| ANO  | TECNOLOGI<br>A | VELOCIDAD<br>E | Taxa de<br>Transferência de<br>dados máxima. |
|------|----------------|----------------|----------------------------------------------|
| 1987 | FPM            | 60ns           | 140MB/s                                      |
| 1994 | EDO            | 60ns           | 160MB/s                                      |
| 1996 | PC66<br>SDRAM  | 66MHz          | 533MB/s                                      |
| 1998 | PC100SDRA<br>M | 100MHz         | 800MB/s                                      |
| 1999 | PC133SDRA<br>M | 133MHz         | 1066MB/s                                     |

## TABELA DE EVOLUÇÃO DAS MEMÓRIAS DRAM

| Memória   | Clock Real | Taxa de<br>Transferência<br>Máxima Teórica | Módulo de<br>Memória |
|-----------|------------|--------------------------------------------|----------------------|
| DDR200    | 100 MHz    | 1.600 MB/s                                 | PC-1600              |
| DDR266    | 133 MHz    | 2.133 MB/s                                 | PC-2100              |
| DDR333    | 166 MHz    | 2.666 MB/s                                 | PC-2700              |
| DDR400    | 200 MHz    | 3.200 MB/s                                 | PC-3200              |
| DDR2-400  | 200 MHz    | 3.200 MB/s                                 | PC2-3200             |
| DDR2-533  | 266 MHz    | 4.266 MB/s                                 | PC2-4200             |
| DDR2-667  | 333 MHz    | 5.333 MB/s                                 | PC2-5300             |
| DDR2-800  | 400 MHz    | 6.400 MB/s                                 | PC2-6400             |
| DDR2-1066 | 533 MHz    | 8.533 MB/s                                 | PC2-8500             |
| DDR3-800  | 400 MHz    | 6.400 MB/s                                 | PC3-6400             |
| DDR3-1066 | 533 MHz    | 8.500 MB/s                                 | PC3-8500             |
| DDR3-1333 | 666 MHz    | 10.666 MB/s                                | PC3-10600            |
| DDR3-1600 | 800 MHz    | 12.800 MB/s                                | PC3-12800            |



#### INTEL





#### AMD e Intel I





#### Memória Cache



É uma memória construída com tecnologia similar à dos Registradores, consequentemente, com velocidade de transferência compatível com a da CPU, reduzindo consideravelmente o tempo de espera da CPU instruções e dados. Ela está inserida entre a CPU e a MP no



### Registradores

Os registradores são unidades de memória que armazenam, temporariamente, na CPU, os dados a serem manipulados por uma instrução ou a própria, ou ainda seus resultados parciais ou finais de um processamento.