Pós-Prática Emissão Termoelétrica

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

> Instituto de Física de São Carlos Universidade de São Paulo

> > 29/05/2024

Frederick Guthrie

Thomas Edison (1875)

Observou que uma bola de ferro aquecida a alta temperatura acumulava carga negativa ao seu redor.

- Descobriu que um filamento metálico, sob vácuo, emitia elétrons quando aquecido.
- Percebeu que havia um fluxo de elétrons preferencial em apenas uma direção: do filamento aquecido para uma placa a menor temperatura;

John A. Fleming (1904) Aplicou o efeito para converter um sinal fraco AC em outro DC.

(1901)

Demonstrou que o número de elétrons emitidos por um filamento aquecido depende da temperatura conforme uma equação do tipo Arrhenius:

$$k = Ae^{-\frac{E_a}{RT}}$$

A exponencial denota a fração de moléculas com energia maior ou igual a Ea.

> Função Trabalho:

Representação esquemática dos níveis de energia associados a elétrons em um metal.

- Energia de Fermi (EF): define o maior nível energético que os elétrons podem ocupar;
- Função Trabalho (W): energia mínima necessária para extrair um elétron de um sólido;
- Depende da constituição química, do agrupamento dos elétrons e da condição da superfície.

Contato entre dois metais:

- Movimentação de cargas devido à diferença entre as funções trabalho;
- A movimentação ocorre até que haja um campo elétrico que iguale o potencial químico dos metais;

$$V_A - V_B = -e(W_A - W_B)$$

Representação esquemática dos níveis de energia associados a elétrons em um metal.

Equação de Richardson-Dushman:

Densidade de corrente máxima emitida por um metal à temperatura T:

$$j = A_0 T^2 exp\left(-rac{W}{K_B T}
ight)$$
 , $A_0 = 4\pi rac{k_B^2 em}{h^3} \sim 1.2 imes 10^6 Am^{-2} K^{-2}$

Considerando a dependência da função trabalho com a temperatura:

$$W = W_0 + \alpha T \implies j = A_0 exp\left(-\frac{\alpha}{k_B}\right) T^2 exp\left(-\frac{W_0}{k_B T}\right)$$

Lei de Child-Langmuir:

Representação de duas placas metálicas sob vácuo conectadas por um amperímetro. Tem-se o potencial experienciado pelo elétron ilustrado nas situações: (a) na ausência de cargas espaciais, e (b) na presença de uma nuvem de elétrons

- Cargas espaciais: região com excesso de carga;
- Corrente de saturação: corrente constante entre as placas, depende apenas de T.

$$j = \frac{4}{9} \epsilon_0 \sqrt{\frac{2e}{m}} \frac{V_{AB}^{3/2}}{d^2}$$

OBJETIVOS

- Verificar o efeito termiônico;
- Obter as curvas IxV para diferentes temperaturas de filamento;
- Verificar a lei de Child-Langmuir;
- Determinar a função de trabalho do cátodo;
- Calcular a razão e/m;
- Observar a retificação para correntes alternadas.

Pirômetro óptico

Diagrama do aparato experimental a ser utilizado, onde temos um tubo diodo, uma fonte de alimentação e um pirômetro óptico.

Diagrama do tubo diodo Leybold.

- 1 Cátodo;
- 2 Filamento de tungstênio;
- 3 Anodo;
- UF Tensão de aquecimento do filamento;
- UA Tensão de anodo;
- la Corrente de anodo.

Fotografias do equipamento a ser utilizado.

Efeito termiônico:

- Determinar a corrente la em função da tensão Ua para diferentes temperaturas do filamento (diferentes tensões UF);
- Espera-se obter o seguinte resultado:

Corrente em função da tensão para diferentes temperaturas do filamento.

- (a) Região com carga espacial: vale a lei de Child-Langmuir;
- **(b)** Região de saturação de corrente: o valor de saturação aumenta com a temperatura.

> Função trabalho do cátodo:

• Manter a tensão $U_A = 0 V$, medir a corrente I_A para diferentes temperaturas do

filamento.

$$j = A_0 T^2 exp\left(-\frac{W}{K_B T}\right)$$

$$\ln\left(\frac{j}{T^2}\right) = -\frac{W}{k_B T} + \ln\left(A_0\right)$$

Tungstênio: W=4.5eV

Gráfico esperado para o experimento.

Determinação da razão e/m:

Calcular a razão e/m para diferentes temperaturas.

Diagrama do tubo diodo com as bobinas de Helmholtz.

Gráfico esperado para o experimento.

$$evB = m\frac{v^2}{d}$$
$$\frac{1}{2}mv^2 = eV$$

$$\frac{e}{m} = \frac{2V}{(Bd)^2}$$

$$B = \left(\frac{5}{4}\right)^{\frac{3}{2}} \frac{\mu_0 NI}{R}$$

Retificação:

 Observar o fenômeno de retificação aplicando um potencial alternado entre o cátodo e ânodo.

Diagrama do tubo diodo com as uma tensão alternada.

Gráfico esperado para o experimento.

Efeito Termoiônico:

$$j = \frac{4}{9} \epsilon_0 \sqrt{\frac{2e}{m}} \frac{V_{AB}^{3/2}}{d^2}$$

Comparação dos dados experimentais com a lei de Child-Langmuir

$$ln(j) = rac{3}{2} \ln(V_{AB}) + ln \left(rac{4}{9}\epsilon_0 \sqrt{rac{2e}{m}}
ight)$$

Comparação dos dados experimentais com a lei de Child-Langmuir

Função trabalho do cátodo:

$$\ln\left(\frac{j}{T^2}\right) = -\frac{W_0}{k_b T} + \left[\ln\left(A_0\right) - \frac{\alpha}{k_b}\right]$$

$$\Rightarrow W_0 = 4.503 \pm 0.002$$

Tungstênio: W=4.5eV

$$\Rightarrow \alpha = (3.29 \pm 0.01) \cdot 10^{-4} \ [eV/K]$$

Ajuste linear para estimar a função trabalho e o parâmetro de dependência α.

Comparação dos pontos experimentais com a equação de Richardson-Dushman para diferentes valores de α .

> Razão (e/m):

Gráfico da corrente no ânodo em função do campo.

T (°C)	B (mT)	e/m (C/Kg)	Erro relativo
1600	0.309 ± 0.001	$0.549 \cdot 10^{-11}$	68.80%
1700	0.256 ± 0.001	$0.704 \cdot 10^{-11}$	59.97%
1800	0.270 ± 0.001	$0.569 \cdot 10^{-11}$	67.64%
Esperado		$1.759 \cdot 10^{-11}$,

Ajustes para a estimativa do campo de corte.

> Retificação:

Retificação para diferentes formatos de onda.

Retificação no modo XY do osciloscópio.

Retificação no regime de saturação da corrente.

T (°C)	Tempo (ms)	Coef. Ang.
1603	1.792	2.013
1698	1.762	2.721
1800	1.751	3.177
1900	1.739	3.319

Ajuste para estimação dos parâmetros.

Conclusões

- Obtemos curvas experimentais de IxV condizentes com a lei de Child-Langmuir, com melhores resultados para altas temperaturas;
- Obtemos a função trabalho do tungstênio e caracterizamos o parâmetro α para ajustar os dados com a equação de Richardson-Dushman no regime de saturação;
- Estimamos a razão carga-massa e obtemos um erro relativo médio de 65.47% em comparação ao valor esperado;
- Foi observado o fenômeno de retificação condizente com o esperado e, além disso, analisamos o comportamento das curvas em função da temperatura.

27