

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER POR PATENTS PO Box (430 Alexandra, Virginia 22313-1450 www.opto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/644,171	08/20/2003	Peter Hans Redweik	11199	5784
26800 7550 9331/2009 JAMES M. STOVER TERADATA CORPORATION 2835 MIAMI VILLAGE DRIVE MIAMISBUGG. G11 45342			EXAMINER	
			LEMIEUX, JESSICA	
			ART UNIT	PAPER NUMBER
	-,		3693	
			MAIL DATE	DELIVERY MODE
			03/31/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/644,171 REDWEIK PETER HANS Office Action Summary Examiner Art Unit JESSICA L. LEMIEUX 3693 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims Claim(s) is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) _____ is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date __

Information Disclosure Statement(s) (PTO/SB/08)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Page 2

Application/Control Number: 10/644,171

Art Unit: 3693

DETAILED ACTION

This Non-Final Office action is in response to the application filed on August 20th,
 and in response to the applicant's arguments/amendments filed on December
 Action 2008. Claims 1, 3-9, 11-19, 21-27, 29-37, 39-45 and 47-54 are pending.

Continued Examination Under 37 CFR 1.114

2. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on December 19th, 2008 has been entered.

Response to Arguments

3. Applicant argues that the prior art does not specifically teach "applying one or more FV propensity rules to the selected accounts and applying one or more FV attrition rules to results of the FV propensity rules using the selected amounts and rates."
Applicant further states that "Sandretto refers only to determining a discount rate using an initial risk measure, discounting the inflation-adjusted cash flows at the discount rate to determine a present value for each set of cash flows, and then using the present values to determine simulated returns for each asset." Examiner respectfully disagrees.

Examiner notes that applicant's specification conceptually defines attrition rates as "the rate at which a cash flow will be decreased" (page 8, lines 25-26). Johnson teaches a discount factor. One skilled in the art at the time the invention was made

Art Unit: 3693

would understand that a discount factor is a rate used to discount or decrease future cash flow. Sandretto also teaches applying attrition rules/risk/rates (abstract & column 8, line 60-column 9, line 9). Examiner further notes that propensity is the probability that something is likely to happen, a risk measure. Johnson teaches risk. One skilled in the art at the time the invention was made would understand that propensity rules are rules that measure and determine risk, and consequently rates used to discount or decrease future cash flow to obtain a net present value. Examiner also notes that the equation in the reference is a Future Value (FV) equation solving for Net Present Value (NPV). It would have further been obvious to one skilled in the art at the time the invention was made that this equation could easily be manipulated to solve for Future Value or ay of the other variables in the equation. Sandretto further teaches applying propensity rules/amounts/rates (abstract & column 4, lines 13-16 & column 5, lines 12-14). Therefore, it would have also been obvious to one skilled in the art at the time the invention was made that propensity rules are rules that measure and determine risk and are used as taught by Johnson and Sandretto in order to determine an asset's discount rate and therefore future value. Examiner lastly notes that applying both attrition and propensity rates/rules/etc. as measures of risk as taught by Johnson and Sandretto allow for accounting for both the increases and decreases of value needed to more accurately estimate future value resulting from expected price changes such as inflation. Examiner lastly, asserts that Sandretto teaches applying one or more FV propensity rules (inflation-adjusted cash flows) to the selected accounts and applying one or more FV attrition rules (discounting the inflation-adjusted cash flows at the

Art Unit: 3693

discount rate) to results of the FV propensity rules using the selected amounts and rates.

4. Applicant argues that "applying one or more FV propensity rules to the selected accounts" is not recited in the claim and that they assume the Examiner meant to refer to the limitations "matching the FV propensity rule against the selected accounts."
Examiner notes that applicant is correct in their assumption.

Applicant argues that the prior art does not specifically teach "matching the FV propensity rule against the selected accounts." Applicant further states "there is no matching being performed, no matched accounts and no discussion of FV propensity rules [instead] Sandretto refers only to adjusting original cash flows for expected inflation." Examiner respectfully disagrees. Examiner asserts that Sandretto teaches applying one or more FV propensity rules (inflation-adjusted cash flows) to the selected accounts. Further, since Sandretto specifically teaches adjusting the original set of cash flows and each additional set of cash flows for expected inflation, which is done by matching the accounts to the propensity rules and invariably recognizing which account the propensity rules were applied to, Sandretto maintains a differential between the cash flows. Therefore, the prior art teaches matching the matched accounts to the results of the FV propensity rules.

Application/Control Number: 10/644,171
Art Unit: 3693

5. Applicant argues that the prior art does not specifically teach "determining an initial propensity rate for the matched accounts," "calculating a rate change for the matched account" and "calculating an effective propensity rate for each forecast period by applying the rate change to each initial propensity rate for each forecast period." Applicant further argues "there is no matching being performed, no matched accounts, and no discussion of propensity rates [instead] Sandretto refers only to a capital asset pricing model (CAPM) using an actual return on investment for an asset and a market portfolio from a prior period." Examiner respectfully disagrees.

Examiner notes that propensity is the probability that something is likely to happen, a risk measure. Johnson teaches risk. One skilled in the art at the time the invention was made would understand that propensity rules are rules that measure and determine risk, and consequently rates used to discount or decrease future cash flow to obtain a net present value. Examiner also notes that the equation in the reference is a Future Value (FV) equation solving for Net Present Value (NPV). It would have further been obvious to one skilled in the art at the time the invention was made that this equation could easily be manipulated to solve for Future Value or ay of the other variables in the equation. Sandretto further teaches applying propensity rules/amounts/rates (abstract & column 4, lines 13-16 & column 5, lines 12-14).
Further, Examiner notes that Sandretto teaches using the CAPM to estimate the risk of common stocks by using the risk measure to determine an asset's discount rate. This is done by using the returns from prior periods as a starting point, aka "initial rate."

Application/Control Number: 10/644,171 Page 6

Art Unit: 3693

Examiner also notes that Sandretto teaches a net change rate (inflation rate) for each forecast period. Examiner further notes that Sandretto explicitly states "determine an initial discount rate for each asset using the initial input risk measure for each asset and using different economic variables for each set of cash flows. Therefore, the prior art teaches calculating an effective propensity rate for each forecast period.

Applicant argues that the prior art does not specifically teach "performing the FV" 6. propensity rule to calculate an FV amount from FV expected values and the effective propensity rates for each forecast period." Examiner respectfully disagrees. Examiner further notes that propensity is the probability that something is likely to happen, a risk measure. Johnson teaches risk. One skilled in the art at the time the invention was made would understand that propensity rules are rules that measure and determine risk, and consequently rates used to discount or decrease future cash flow to obtain a net present value. Examiner also notes that the equation in the reference is a Future Value (FV) equation solving for Net Present Value (NPV). It would have further been obvious to one skilled in the art at the time the invention was made that this equation could easily be manipulated to solve for Future Value or ay of the other variables in the equation. Sandretto further teaches applying propensity rules/amounts/rates (abstract & column 4, lines 13-16 & column 5, lines 12-14). Therefore, it would have also been obvious to one skilled in the art at the time the invention was made that propensity rules are rules that measure and determine risk and are used as taught by Johnson and Sandretto in order to determine an asset's discount rate and therefore future value. Examiner lastly notes that applying both attrition and propensity rates/rules/etc. as

Art Unit: 3693

measures of risk as taught by Johnson and Sandretto allow for accounting for both the increases and decreases of value needed to more accurately estimate future value resulting from expected price changes such as inflation.

Examiner agrees with Applicant that a discount factor is a the rate used to derive net present value of a sum of money to be paid at a future date, however since future value is not always more or always less than the present value, it would be obvious to one skilled in the art at the time of invention that a discount factor can also be used as Applicant's propensity rate. Examiner therefore asserts that Sandretto teaches performing the FV propensity rule (discounting the inflation-adjusted cash flows at the discount rate) to calculate an FV amount from FV expected values and the effective propensity rates for each forecast period."

Examiner would also like to reiterate that Sandretto teaches matching results of a FV propensity rule to the matched accounts (column 8, lines 65-67), applying one or more FV propensity rules (risk) to the selected accounts using the selected amounts and rates (abstract & column 4, lines 13-16). Sandretto further discloses determining an initial propensity rate for the matched accounts (column 4, lines 40-55), calculating a rate change for the matched account (column 17, line 59- column 18, line 1), calculating an effective propensity rate (column 9, lines 11-19) for each forecast period (column 10, lines 1-7) by applying the rate change to each initial propensity rate (column 4, lines 36-67 & column 10, lines 1-7) for each forecast period (column 10, lines 1-7) performing the FV propensity rule to calculate an FV amount from FV expected values (abstract & column 4, lines 13-16) and the effective propensity rates (column 8, line 60- column 9,

Art Unit: 3693

line 19) for each forecast period (column 10, lines 1-7) and storing the FV amount (column 23, lines 25-26 and 60-61) and column 24, lines 17-23). Sandretto also teaches that the propensity rules can be used to determine an asset's discount rate (column 4, lines 13-16) and therefore the present value that Johnson discloses.

Examiner notes that the reference teaches both storing projected returns as well as storing Net Present Value, the components of Future Value. It would have been obvious to one skilled in the art at the time the invention was made that storing of the components of Future Value could be used to easily determine the FV amount as FV is merely a calculation of the NPV in addition to returns.

Examiner further notes that propensity is the probability that something is likely to happen, a risk measure. Johnson teaches risk. One skilled in the art at the time the invention was made would understand that propensity rules are rules that measure and determine risk, and consequently rates used to discount or decrease future cash flow to obtain a net present value. Examiner also notes that the equation in the reference is a Future Value (FV) equation solving for Net Present Value (NPV). It would have further been obvious to one skilled in the art at the time the invention was made that this equation could easily be manipulated to solve for Future Value or ay of the other variables in the equation. Sandretto further teaches applying propensity rules/amounts/rates (abstract & column 4, lines 13-16 & column 5, lines 12-14). Therefore, it would have also been obvious to one skilled in the art at the time the invention was made that propensity rules are rules that measure and determine risk and

Art Unit: 3693

are used as taught by Johnson and Sandretto in order to determine an asset's discount rate and therefore future value.

Examiner lastly notes that applying propensity rates/rules/etc. as measures of risk as taught by Johnson and Sandretto allow for accounting for deviations of value needed to more accurately estimate future value resulting from expected price changes such as inflation.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

 Claims 1, 3-5, 7, 19, 21-23, 25, 37, 39-41, and 43 are rejected under 35 U.S.C.
 103(a) as being unpatentable over US Patent Number 7,082,411 to Johnson et al (hereinafter Johnson) in view of US Patent Number 5,812,988 to Sandretto (hereinafter Sandretto).

As per claims 1, 19 and 37

Johnson discloses selecting accounts, amounts and rates (asset data) from account data stored in a database using selection criteria specified by one or more rules (column 4, lines 10-19) and performing one or more Future Value (FV) (C₁, expected payoff) calculations on the selected accounts (column 9, lines 3-26 & 58-60) wherein the FV calculations determine a present value of an expected profitability value (score) of additional products that may be purchased (column 9, lines 3-26 & 58-60). Johnson further discloses propensity rules (risk) (column 9, lines 20-22 & column 16, lines 49-51). Johnson discloses matching the FV propensity rule against the selected accounts (column 4, lines 10-15 & column 9, lines 20-22) and using the FV propensity rule to calculate a FV amount from FV expected values (column 9, lines 3-26).

Examiner notes that propensity is the probability that something is likely to happen, a risk measure. Johnson teaches risk. One skilled in the art at the time the

Art Unit: 3693

invention was made would understand that propensity rules are rules that measure and determine risk is a rate used to discount or decrease future cash flow to obtain a net present value. Examiner also notes that the equation in the reference is a Future Value equation solving for Net Present Value (NPV). It would have further been obvious to one skilled in the art at the time the invention was made that this equation could easily be manipulated to solve for Future Value or any of the other variables in the equation. Examiner further notes that Johnson further discloses assessing asset and respective data using an iterative and adaptive process (column 4, lines 10-13).

Johnson does not specifically teach applying one or more FV propensity rules (risk) to the selected accounts using the selected amounts and rates. Johnson also does not specifically teach determining an initial propensity rate for the matched accounts, calculating a rate change for the matched account, calculating an effective propensity rate for each forecast period by applying the rate change to each initial propensity rate for each forecast period, performing the FV propensity rule to calculate an FV amount from FV expected values and the effective propensity rates for each forecast period and storing the FV amount.

Sandretto teaches applying one or more FV propensity rules (risk) to the selected accounts using the selected amounts and rates (abstract & column 4, lines 13-16). Sandretto further discloses determining an initial propensity rate for the matched accounts (column 4, lines 40-55), calculating a rate change for the matched account (column 17, line 59- column 18, line 1), calculating an effective propensity rate (column 9, lines 11-19) for each forecast period (column 10, lines 1-7) by applying the rate change to each initial propensity rate (column 4, lines 36-67 & column 10, lines 1-7) for each forecast period (column 10, lines 1-7) performing the FV propensity rule to calculate an FV amount from FV expected values (abstract & column 4, lines 13-16) and the effective propensity rates (column 8, line 60- column 9, line 19) for each forecast period (column 10, lines 1-7) and storing the FV amount (column 23, lines 25-26 and 60-61) and column 24, lines 17-23). Sandretto also teaches that the propensity rules can be used to determine an asset's discount rate (column 4, lines 13-16) and therefore the present value that Johnson discloses. Examiner notes that the reference teaches both storing projected returns as well as storing Net Present Value, the components of Future Value. It would have been obvious to one skilled in the art at the time the invention was made that storing of the components of Future Value could be used to easily determine the FV amount as FV is merely a calculation of the NPV in addition to returns.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to apply one or more FV propensity rules (risk) to the selected accounts using the selected amounts and rates and to determining an initial propensity rate for the matched accounts, calculating a rate change for the matched account, calculating an effective propensity rate for each forecast period by applying the rate change to each initial propensity rate for each forecast period, performing the FV propensity rule to calculate the effective propensity rates for each forecast period and storing the FV amount as taught by Sandretto as the propensity rules can be used to determine an asset's discount rate and therefore present value and to account for both

Page 11

Application/Control Number: 10/644,171

Art Unit: 3693

the increases and decreases of value needed to more accurately estimate future value based upon the iterative and adaptive process disclosed by Johnson.

Johnson does not specifically teach applying propensity rules to the selected accounts and applying the attrition rules to results of the propensity rules.

Sandretto teaches applying propensity rules to the selected accounts and applying the attrition rules to results of the propensity rules (column 8, line 60- column 9, line 19).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to apply propensity rules to the selected accounts and applying the attrition rules to results of the propensity rules as taught by Sandretto to account for both the increases and decreases of value needed to more accurately estimate future value.

As per claims 3, 21 and 39

Johnson discloses the FV (C_1) is a possible future profitability value (expected payoff) (column 9, lines 3-10).

As per claims 4, 22 and 40

Johnson discloses the selected accounts contain current profitability values (current appraisal amount) (column 18, lines 8-20). Examiner notes that C_{o} is the investment at time 0 and therefore it would have been obvious to one skilled in the art at the time the invention was made that a current profitability value would be the value at the present time, time 0.

As per claims 5, 23 and 41

Johnson discloses the current profitability data is aggregated to provide an initial amount for the FV calculations (C_1) (column 9, lines 6-10).

As per claims 7, 25 and 43

Johnson discloses the selected rates are FV propensity rates (risk) (column 16, lines 49-51).

Sandretto also teaches the rates are FV propensity rates (risk) (column 5, lines 12-14).

8. Claims 6, 24 and 42 are rejected under 35 U.S.C. 103(a) as being unpatentable over US Patent Number 7,082,411 to Johnson et al (hereinafter Johnson) in view of US Patent Number 5,812,988 to Sandretto (hereinafter Sandretto) further in view of US Patent Number 5,852,811 to Atkins (hereinafter Atkins).

As per claims 6, 24 and 42

Johnson does not specifically teach the selected amounts are forecast amounts.

Art Unit: 3693

Atkins discloses the selected amounts are forecast amounts (projected future value of the asset) (column 25. lines 39-45 & 59-65).

Therefore it would have been obvious to one skilled in the art at the time the invention was made that the selected amounts are forecast amounts as taught by Atkins as a type of selected amount found in the database to select in order to determine values and rates regarding the asset utilizing the time value money equations.

9. Claims 8-9, 11-17, 26-27, 29-35, 44-45 and 47-53 rejected under 35 U.S.C. 103(a) as being unpatentable over US Patent Number 7,082,411 to Johnson et al (hereinafter Johnson) in view of US Patent Number 5,812,988 to Sandretto (hereinafter Sandretto) further in view of the Fundamentals of Financial Management by Kuhlemever (hereinafter Kuhlemever).

As per claims 8, 26 and 44

Johnson does not specifically teach a user specifies one or more forecast periods over which the FV calculations are performed.

Kuhlemeyer teaches a user specifies one or more forecast periods over which the FV calculations are performed (slides 5, 10 and 11).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to permit a user to specify one or more forecast periods over which the FV calculations are performed as taught by Kuhlemeyer to allow comparisons of future values at different time periods. It is required to recognize a range of situations including the worst case in order to make a business judgment considering a measure for risk management.

As per claims 9, 27 and 45

Johnson does not specifically teach a user specifies one or more rates for the forecast periods.

Kuhlemeyer teaches a user specifies one or more rates for the forecast periods (slides 5, 10 and 11).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to permit a user to specify one or more rates for the forecast periods as taught by Kuhlemeyer to allow comparisons of future values at different time periods using specific rates. It is required to recognize a range of situations including the worst case in order to make a business judgment considering a measure for risk management.

As per claims 11, 29 and 47

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Page 13

Application/Control Number: 10/644.171

Art Unit: 3693

Johnson does not specifically teach the FV propensity rule comprises a Constant (no compounding) method according to:

Amount, = Amount, * $(1 + R_0)$ * ((k-j + 1)/12) where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_0 is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches teach the FV propensity rule comprises a Constant (no compounding) method according to:

Amount, = Amount, * (1 + * R_o) * ((k-j + 1)/12) where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), R_o is the initial rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 6, 8, & 11). Examiner notes that although Kuhlemeyer does not specifically teach ((k-j +1)/12) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ((k-j +1)/12) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises a Constant (no compounding) method according to:

Amount, = Amount, * $(1 + R_0)$ * ($(k_j + 1)/12$) where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_0 is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kullemeyer to allow for a calculation of the future value of present money without compounding.

As per claims 12, 30 and 48

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson does not specifically teach the FV propensity rule comprises a Constant (with compounding) method according to:

Amount, = $Amount_0$ * (1 + R_m) * ((k -j + 1) / 12) where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_m is the monthly rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the FV propensity rule comprises a Constant (with compounding) method according to:

Amount, =Amount, * $(1 + \hat{R}_m)^i * ((k - j + 1) / 12)$ where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), R_m is the monthly rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that although Kuhlemeyer does not specifically teach ((k-j +1)/12) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ((k-j +1)/12) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Art Unit: 3693

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises a Constant (with compounding) method according to:

Amount, =Amount, * (1 $^+$ \tilde{R}_m) i * ((k -j + 1) / 12) where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_m is the monthly rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kuhlemeyer to allow for a calculation of the future value of present money with compounding.

As per claims 13, 31 and 49

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson does not specifically teach the FV propensity rule comprises an Additive (no compounding) method according to:

Amount, = Amount, * $(1 + i * (R_0 / 12)) * ((k - j + 1) / 12)$ where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_0 is the initial rate, is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the FV propensity rule comprises an Additive (no compounding) method according to:

Amount, = Amount, * $(1 + i * (R_o / 12)) * ((k - j + 1) / 12)$ where Amount, is the calculated amount by forecast period (FV), Amount_o is the initial amount (PV), R_o is the initial rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that (i * $(R_o / 12))$ can be rearranged to its equivalent $(R_o * (i/12))$. Therefore, although Kuhlemeyer does not specifically teach (i/12) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use (i/12) to denote a rate proportionate to the duration of time year to enable use of the same equation for shorter periods of time. Examiner further notes that although Kuhlemeyer does not specifically teach ((k-j+1)/12)) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ((k-j+1)/12) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises an Additive (no compounding) method according to:

Amount, = Amount, * $(1 + i * (R_0 / 12))^* ((k - j + 1) / 12)$ where Amount, is the calculated amount by forecast period, Amount, is the initial amount, R_0 is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific value of money equation as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money without compounding.

As per claims 14, 32 and 50 Johnson discloses calculating the time value of money (column 12, lines 34-36).

Art Unit: 3693

Johnson does not specifically teach the FV propensity rule comprises an Additive (with compounding) method according to:

Amount, = Amount_0 * (1 + Compounded_Rate)* ((k-j + 1)/12) where Amount, is the calculated amount by forecast period (FV), Amount₀ is the initial amount (PV), i is the forecast period (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded Rate is Rate, * Rate, * ... * Rate, (i).

Kuhlemeyer teaches the FV propensity rule comprises an Additive (with compounding) method according to:

Amount, = Amount, * (1 + Compounded_Rate) * ((k-j + 1)/12) where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), i is the forecast period, as the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate, * Rate, * Rate, * sides 8, 11 & 24). Examiner notes that a compounded rate to one skilled in the art at the time the invention was made would be found by (1+Rate,)*(1+Rate,)*("Rate,), whereby when the rates are equivalent would be the equivalent of (1+Rate) which the reference clearly shows in slides 8 and 11. However, as written examiner notes that Compounded_Rate is Rate, * Rate, * ... * Rate, whereby when the rates are equivalent could be rewritten as Rate/. Rate is in essence another value or rate that the reference teaches in slides 8 and 11. Examiner further notes that although Kuhlemeyer does not specifically teach ((k-j+1)/12) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ((k-j+1)/12) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises an Additive (with compounding) method according to:

Amount, = Amount, * (1 + Compounded_Rate) * ($(K_1 + 1)1/2$) where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), i is the forecast period (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate₁ * Rate₂ * ... * Rate₁ (i) as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money with compounding.

As per claims 15, 33 and 51

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson does not specifically teach the FV propensity rule comprises a Manual (no compounding) method according to:

Amount, = Amount₀ * $(1 + R_{man})$ * ((k - j + 1) / 12) where Amount_i is the calculated amount by forecast period, Amount_o is the initial amount, R_{man} is the manual rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the FV propensity rule comprises a Manual (no compounding) method according to:

Amount_i = Amount₀ * $(1 + R_{man})$ * ((k - j + 1) / 12) where Amount is the calculated amount by forecast period (FV), Amount₀ is the initial amount (PV), R_{man} is the manual

Art Unit: 3693

rate (j), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that although Kuhlemeyer does not specifically teach ($(k_j + 1)/12$) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ($(k_j + 1)/12$) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises a Constant (with compounding) method according to:

Amount, =Amount, * $(1 + \hat{R}_m)^i * ((k \cdot j + 1) / 12)$ where Amount, is the calculated amount by forecast period, j and j amount, j as the monthly rate, j is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kuhlemeyer to allow for a manual calculation of the future value of present money without compounding.

As per claims 16, 34 and 52

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson does not specifically teach the FV propensity rule comprises a Manual (with compounding) method according to:

Amount, = Amount_0 * (1 + $\text{Compounded}_{\text{Rate}}$)* ((k · j + 1) / 12) where Amount, is the calculated amount by forecast period, Amount, is the initial amount, i is the forecast period, j is the first month in a forecast period, k is the last month in a forecast period, and Compounded Rate is Rate, * Rate, * ... * Rate,

Kuhlemeyer teaches the FV propensity rule comprises a Manual (with compounding) method according to:

Amount, = Amount, * (1 + Compounded_Rate) * ((k-j + 1)/12) where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), i is the forecast period, j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate, * Rate, * ... * Rate, (slides 8, 11 & 24). Examiner notes that a compounded rate to one skilled in the art at the time the invention was made would be found by (1+Rate), *(1+Rate), *(Rate), whereby when the rates are equivalent would be the equivalent of (1+Rate) which the reference clearly shows in slides 8 and 11. However, as written examiner notes that Compounded_Rate is Rate, * Rate, * ... * Rate, whereby when the rates are equivalent could be rewritten as Rate/. Rate is in essence another value or rate that the reference teaches in slides 8 and 11. Examiner further notes that although Kuhlemeyer does not specifically teach ((k-j+1)/12) it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use ((k-j+1)/12) to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises a Manual (with compounding) method according to:

Art Unit: 3693

Amount, = Amount, * (1 + Compounded_Rate) * ((K-j + 1)/12) where Amount, is the calculated amount by forecast period (FV), Amount, is the initial amount (PV), i is the forecast period, (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate₁ * Rate₂ * ... * Rate_i (i) as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money with compounding.

As per claims 17, 35 and 53

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson does not specifically teach the FV propensity rule comprises a Constant method according to:

 $Amount_i = Amount_o \ where \ Amount_i \ is \ the \ calculated \ amount \ by \ forecast \ period,$ $Amount_o \ is \ the \ initial \ amount, \ and \ i \ is \ the \ forecast \ period.$

Kuhlemeyer teaches the FV propensity rule comprises a Constant method according to:

Amount_i = Amount_o where Amount_i is the calculated amount by forecast period (FV), Amount_o is the initial amount (PV), and i is the forecast period (n) (slide 3).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the FV propensity rule comprises a Constant method according to:

Amount_i = Amount_o where Amount_i is the calculated amount by forecast period, Amount_o is the initial amount, and i is the forecast period as taught by Kuhlemeyer to allow for a constant calculation of the future value of present money.

Allowable Subject Matter

10. Claims 18, 36 and 54 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims pending results of 27 CFR 1.105.

Conclusion

11. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. US Patent Number 6,901,406 to Nabe et al. discloses models used to determine profitability analysis, and probability scores in relation to response, attrition and risk. US Patent Number 7,249,138 to Wasserman discloses performing

Art Unit: 3693

financial processing by selecting accounts from a database and performing profitability calculations on the accounts selected from the database. US Patent Application Number US2002/0174049 to Kitahara discloses an analysis processor of profit models. WIPO Publication Number WO03/067395 to Breeden et al. discloses a modeling engine to determine forecasts from a portfolio database.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JESSICA L. LEMIEUX whose telephone number is (571)270-3445. The examiner can normally be reached on Monday-Thursday 8AM-5PM

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, James Kramer can be reached on 571-272-6783. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/644,171 Page 19

Art Unit: 3693

Examiner Art Unit 3693

/J. L. L./ Examiner, Art Unit 3693 March 2009

/Stefanos Karmis/ Primary Examiner, Art Unit 3693