Dokumentacja projektu bazy danych

Karolina Bakalarz, Amelia Bieda, Agnieszka Staszkiewicz, Aleksandra Szczur, Paweł Wojarnik 30 czerwca 2025

1 Użyte technologie

• Python

- mysql.connector służył do nawiązywania połączenia z bazą danych MariaDB oraz wykonywania zapytań SQL
- pandas umożliwił przekształcanie i analizę danych pobranych z bazy w formie DataFrame
- $-\,$ seaborn wykorzystany do tworzenia estetycznych wizualizacji statystycznych na podstawie danych z bazy
- matplotlib.pyplot użyty do rysowania podstawowych wykresów i modyfikacji wyglądu elementów graficznych
- matplotlib.colors.to_rgb umożliwił konwersję nazw kolorów na wartości RGB w celu dostosowania palety barw wykresów.
- matplotlib.patches.Patch wykorzystany do tworzenia niestandardowych elementów legendy i oznaczeń na wykresach.
- colorsys użyty do manipulowania przestrzeniami barw, np. przy konwersji między HLS a RGB w wizualizacji danych.
- warnings użyty do tłumienia ostrzeżeń Pythona pojawiających się przy zapytaniach lub operacjach na danych.
- IPython.display zostały użyte do czytelnego prezentowania wyników i wniosków w sformatowanej formie.
- -tabulate zostało użyte do estetycznego wyświetlania danych tabelarycznych w formacie tekstowym .
- SQL (MariaDB) definicja i tworzenie schematu bazy

2 Strukura repozytorium

Tabela 1: Tabela opisująca strukturę repozytorium.

Plik	Typ pliku	Zawartość pliku
inicjalizacja_bazy.ipynb	IPYNB	Skrypt SQL wykonany w Pythonie służący do
		tworzenia i inicjalizacji bazy danych.
analiza_danych.ipynb	IPYNB	Notebook zawierający kody, wizualizacje oraz
		opis wyników.
analiza_danych.pdf	PDF	Końcowy wygenerowany raport z analizą.
dokumentacja.pdf	PDF	Plik zawierający dokumentację projektu.

3 Instrukacja uruchomienia

1. Inicjalizacja struktury bazy danych

Uruchom w terminalu poniższą komendę:

mysql -h giniewicz.it -P 3306 -u team03 -pte@mloe < tworzenie_bazy.sql</pre>

2. Wypełnienie bazy danymi

jupyter inicjalizacja_bazy.ipynb

3. Wygenerowanie raportu

```
jupyter nbconvert --to pdf --TemplateExporter.exclude_input=True analiza_danych.ipynb
albo (gdy powyższe nie działa)
jupyter nbconvert --to pdf --no-input analiza_danych.ipynb
```

4 Schemet projektu bazy danych

Poniżej przedstawiamy gotowy diagram schematu bazy danych.

Rysunek 1: Schemat bazy danych.

5 Zależności funkcyjne

Zależności funkcyjne to reguły, które opisują powiązania między kolumnami w tabelach bazy danych. Mówią one, że jeśli znamy wartość jednej kolumny (lub kilku), to jesteśmy w stanie jednoznacznie określić wartość innej kolumny (lub grupy kolumn).

Zależność funkcyjną zapisujemy w postaci:

$$X \to Y$$

gdzie:

- X to kolumna (lub zestaw kolumn), od której zależy inna kolumna,
- \bullet Y to kolumna (lub kolumny), których wartość jest jednoznacznie wyznaczana przez X.

Klucze główne to szczególny przypadek zależności funkcyjnych — zawsze determinują wszystkie pozostałe kolumny w tabeli. Dzięki analizie zależności możemy też łatwiej dostrzec, gdzie występują klucze obce i jakie są powiązania między tabelami.

W poniższych punktach przedstawiono zależności funkcyjne zidentyfikowane w poszczególnych tabelach naszej bazy danych. Poza kluczami głównymi (które zostały oznaczone w ten sposób) możemy zauważyć, w jakich tabelach mamy tą samą kolumnę, np. metoda_id pojawia się w tabeli transakcje oraz metody platnosci.

Tabela: adresy

ullet adres_id o adres_id, miasto, ulica_numer, kod_pocztowy

Tabela: alergeny

 $\bullet \ \mathtt{alergen_id} \to \mathtt{alergen_id}, \, \mathtt{nazwa}$

Tabela: jedzenie

jedzenie_id → jedzenie_id, danie, liczba_kalorii, rodzaj, czy_wegetarianskie, czy_weganskie, opis

Tabela: jedzenie alergen

- jedzenie_id → jedzenie id, alergen id
- jedzenie_id → jedzenie_id (tabela jedzenie)
- alergen id \rightarrow alergen id (tabela alergeny)

Tabela: kierunek

kierunek_id → kierunek id, nazwa

Tabela: klienci

- klient_id → klient_id, plec, imie, nazwisko, e_mail, telefon, data_urodzenia, adres_id, czy_wegetarian,
 czy weganin, alergeny, waga, wzrost
- adres id \rightarrow adres id (tabela adresy)

Tabela: klient alergen

- klient_id \rightarrow klient id, alergen id
- klient id \rightarrow klient id (tabela klienci)
- alergen id \rightarrow alergen id (tabela alergeny)

Tabela: kontakt bliski

b_klienta_id → b klienta id, klient id, imie, nazwisko, relacja, telefon, email

Tabela: koszty organizacji

- \bullet koszt_id \to koszt id, wyprawa id, rodzaj kosztu id, kwota pln
- \bullet rodzaj_kosztu_id \rightarrow rodzaj_kosztu_id (tabela rodzaje_kosztow)

Tabela: metody platnosci

• $metoda_id \rightarrow metoda$ id, nazwa

Tabela: pojazdy

• pojazd_id -> pojazd_id, nazwa, typ, maksymalny_udzwig_w_tonach, liczba_miejsc, data_produkcji, data_ostatniej_kontroli, producent

Tabela: pracownicy

- pracownik_id → pracownik_id, plec, imie, nazwisko, data_urodzenia, adres_id, stanowisko_id, staz_w_firmie, wynagrodzenie_miesięczne, email, telefon
- adres id \rightarrow adres id (tabela adresy)
- $\bullet\,$ stanowisko_id \to stanowisko_id (tabela stanowiska)

Tabela: rodzaje kosztow

• rodzaj_kosztu_id → rodzaj kosztu id, nazwa, min kwota, max kwota

Tabela: rodzaje wypraw

- rodzaj_wyprawy_id -- rodzaj_wyprawy_id, nazwa, opis, cena_wyprawy_mln, czas_trwania_dni, dodatkowe aktywnosci, cena aktywnosci zl, kierunek id
- kierunek id \rightarrow kierunek id (tabela kierunek)

Tabela: stanowiska

stanowisko_id → stanowisko id, nazwa

Tabela: transakcje

- transakcja_id → transakcja_id, klient_id, wyprawa_id, data_transakcji, kwota_za_wyprawe_mln, czy_dod_atrakcja, kwota_atrakcji, metoda_id
- metoda id \rightarrow metoda id (tabela metody platnosci)

Tabela: uczestnicy wyprawy

- klient_id → klient_id, wyprawa_id
- klient id \rightarrow klient id (tabela klienci)
- wyprawa id \rightarrow wyprawa id (tabela wyprawy)

Tabela: wyprawy

 \bullet wyprawa_id \to wyprawa_id, data_startu, data_powrotu, pojazd_id, rodzaj_wyprawy_id, status

6 Uzasadnienie formy EKNF

Nasza baza danych została zaprojektowana w zgodzie z zasadami rozszerzonej postaci kluczowej (EKNF) i została opracowana z myślą o modelowaniu danych w praktycznych, złożonych systemach relacyjnych.

W EKNF dopuszczalne są niektóre zależności funkcyjne, których prawa strona nie jest kluczem kandydującym, pod warunkiem że nie wprowadzają redundancji ani anomalii aktualizacji. W naszym przypadku:

- Każda zależność funkcyjna ma po lewej stronie klucz główny lub jego nadzbiór, co spełnia wymóg EKNF.
- Nie występują anomalie wstawiania, usuwania ani aktualizacji, ponieważ dane są jednoznacznie identyfikowalne i dobrze zorganizowane dzięki normalizacji.
- Klucze obce są jasno określone i służą do odwzorowania relacji między bytami (np. adres_id, klient id, wyprawa id).

Z tego względu można uznać, że nasz projekt spełnia założenia EKNF, zapewniając jednocześnie wysoki poziom spójności logicznej i praktyczną użyteczność w analizie i rozwoju systemu.

7 Najtrudniejszy element realizacji projektu

W trakcie pracy nad naszym projektem napotkaliśmy różne problemy, jednak następujące były dla nas najtrudniejsze:

- 1. Wypełnienie bazy danych Trzeba zadbać, aby daty, ceny, i relacje między danymi były spójne logicznie i chronologicznie. Dane muszą wyglądać realistycznie (np. nie wysyłać klientów na Marsa za 20 zł). Łatwo popełnić błąd, który sprawi, że baza będzie niespójna.
- 2. Projektowanie schematu bazy danych zgodnego z EKNF Projektowanie schematu bazy zgodnego z EKNF wymagało starannego uporządkowania wszystkich zależności i relacji w sposób znormalizowany, jednocześnie dbając o przejrzystość oraz czytelność struktury bazy. Kluczowe było odpowiednie rozdzielenie danych oraz świadomy wybór kluczy głównych i obcych, w tym kluczy złożonych, aby zapewnić spójność i efektywność działania systemu.

8 Podział pracy

Podział pracy nad naszym projektem był następujący:

- Projekt i utworzenie schematu Agnieszka Staszkiewicz, Paweł Wojarnik
- Skryptowe wypełnienie bazy danych Agnieszka Staszkiewicz, Paweł Wojarnik, Aleksandra Szczur
- Analizowanie danych Karolina Bakalarz, Amelia Bieda, Aleksandra Szczur, Agnieszka Staszkiewicz
- Utworzenie raportu Agnieszka Staszkiewicz, Amelia Bieda
- Utworzenie dokumentacji Karolina Bakalarz, Amelia Bieda