Inrobin

Gareth W. Peters Dorota Toczydłowska Marta Campi

Experiment two speech signals

Frequency bands location

Set the notation of this experiment as follows:

 Ω is the set of M_{true} vectors of parameters where each vector is J dimensional

$$\Omega = \left\{ \Psi^1, \dots, \Psi^{M_{true}} \right\}$$

Let $\Psi^j = [\Psi^j_1, \dots, \Psi^j_J]$ which is the jth element of Ω set

 Ψ_h^j is hth element of Ψ^j

 $k(\cdot,\cdot;\Psi)$ a kernel function from parameterized by the parameter $\Psi, k: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$

Let **t** be a $1 \times N$ vector of real numbers

$$\mathbf{K} = k(\mathbf{t}, \mathbf{t}; \Psi = \Psi)$$

$$j \in \left\{1, \dots, M_{true}\right\}, m \in \left\{1, \dots, M\right\}, h \in \left\{1, \dots, J\right\}$$

$$n_{j,m} \text{ number of IMFs}$$

Algorithm 1: Algorithm

Input: Discrete speech signals

- 1. Fit a spline through each $\mathbf{x}_{j}^{(m)}$ denoted as $\hat{\mathbf{x}}_{j}^{(m)}$.
- 2. Apply the EMD to $\hat{\mathbf{x}}_{j}^{(m)}$ to get the IMFs decomposition and collect all the IMFs generated up to the stopping criterion chosen denoted as $\gamma_{j,1}^{(m)}, \gamma_{j,2}^{(m)}, \dots, \gamma_{j,v_{j,m}}^{(m)}$. For each j and for each m we might have different number of IMFs denote by $v_{j,m}$.

1

- 3. Compute the Instantaneous Frequency of each IMF denoted as $m{f}_{j,1}^{(m)}, m{f}_{j,2}^{(m)}, \dots, m{f}_{j,v_{j,m}}^{(m)}.$
- 4. Compare the frequencies with Spectral Component of the kernels

Figure 1: Spectrograms of three sentences for speaker 1 (female voice). From the top: the original signal, IMF1, IMF2 and IMF3 respectively.

Figure 2: Spectrograms of three sentences for speaker 1 (male voice). From the top: the original signal, IMF1, IMF2 and IMF3 respectively.