DEVOIR 3. MÉTRIQUES KÄHLÉRIENNES ET FIBRÉS VECTORIELS HOLOMORPHES

Exercices avec \star : remettre uniquement ces exercices (Exercices 4, 7, 8, 9, 10).

Exercices avec $\star\star$: pas à rendre, mais essayez de lire quelques références et de vous en convaincre.

Exercices sans \bigstar : ce sont des exercices standards ; si vous ne les connaissez pas, il est important de les apprendre.

Exercice 1. Soit (M, ω) une variété kählérienne et f une fonction réelle de classe C^2 , à support compact sur M. Montrer que pour $\varepsilon \in \mathbb{R}$ suffisamment petit, $\omega + \varepsilon$ i $\partial \bar{\partial} f$ est une métrique kählérienne sur M.

Exercice 2. Soit $U \subset \mathbb{C}^n$ un ouvert et $\omega = \frac{\mathrm{i}}{2} \sum_{j,k=1}^n h_{j\bar{k}} \mathrm{d}z_j \wedge \mathrm{d}\bar{z}_k \in \mathcal{A}^{1,1}(U)$. Montrer que $\omega^n = (\frac{\mathrm{i}}{2})^n \det(h_{j\bar{k}}) \mathrm{d}z_1 \wedge \mathrm{d}\bar{z}_1 \wedge \cdots \wedge \mathrm{d}z_n \wedge \mathrm{d}\bar{z}_n$.

Exercice 3 (Lemme du $\partial \bar{\partial}$ local). Soit $\Delta \subset \mathbb{C}^n$ un polydisque. Étant donné une (1,1)-forme $\alpha \in \mathcal{A}^{1,1}(\Delta) \cap \mathcal{A}^2_{\mathbb{R}}(\Delta)$, $d\alpha = 0$, montrer qu'il existe $f \in \mathcal{C}^{\infty}(\Delta)$ tel que $\alpha = i\partial \bar{\partial} f$.

Exercice 4. \bigstar Soit (M, J, ω) une variété kählérienne compacte. Vérifier que les deux identités kählériennes suivantes sont équivalentes :

$$[\Lambda_{\omega}, \bar{\partial}] = -i\partial^* \qquad [\bar{\partial}^*, L_{\omega}] = i\partial.$$

Exercice 5. Sur \mathbb{C}^n muni de sa métrique kählérienne standard et pour $f \in C^2(\mathbb{C}^n, \mathbb{R})$, vérifier que $\Delta_{\mathrm{d}} f$ est (à un facteur multiplicatif près) le Laplacien que vous avez appris en analyse complexe ou en cours d'EDP

Exercice 6. Soit (M, J, ω) une variété kählérienne compacte. Montrer que Δ_d , $\Delta_{\bar{\partial}}$ commutent avec $*, L_{\omega}, \Lambda_{\omega}, \bar{\partial}, \bar{\partial}^*, \bar{\bar{\partial}}$, et $\bar{\partial}^*$.

Exercice 7. \bigstar Soit M une variété kählérienne compacte et $\pi: L \to M$ un fibré en droites holomorphe muni d'une métrique hermitienne h, d'une connexion de Chern ∇_h et de sa courbure $F_{\nabla_h} \in \mathcal{A}^{1,1}(M) \cap \mathcal{A}^2_{\mathbb{R}}(M)$.

- (1) Étant donné $f \in C^2(M, \mathbb{R})$, calculer la courbure de la connexion de Chern associée à la métrique hermitienne $e^{-f}h$ en fonction de F_{∇_h} et de f.
- (2) En déduire que la classe de F_{∇_h} dans $H_{\bar{\partial}}^{1,1}(M)$ ne dépend pas de h.
- (3) En utilisant le Lemme du $\partial \bar{\partial}$, montrer que toute forme dans la classe $[F_{\nabla_h}]$ est la courbure d'une métrique hermitienne sur L.

Exercice 8. \bigstar Soit $L \to M$ un fibré en droites holomorphe et L^{-1} son fibré dual. Étant donné une connexion ∇ sur L, on définit un opérateur $\nabla^* : \Gamma(L^{-1}) \to \Gamma(T^*M \otimes L^{-1})$ en posant $(\nabla_X^*\sigma)(s) = X(\sigma(s)) - \sigma(\nabla_X s)$ pour tout $s \in \Gamma(L)$ et $X \in \Gamma(TM)$. Montrer que ∇^* est une connexion sur L^{-1} et que $F_{\nabla^*} = -F_{\nabla}$.

Exercice 9. \bigstar Étant donné une variété complexe compacte M l'ensemble des fibrés en droites holomorphes sur M, muni du produit tensoriel, forme un groupe abélien $\operatorname{Pic}(M)$. Montrer que l'application $c_1:\operatorname{Pic}(M)\to H_{\bar\partial}^{1,1}(M)$ donnée par $c_1(L)=[\frac{\mathrm{i}}{2\pi}F_{\nabla_h}]$, où h est une métrique hermitienne arbitraire sur L, est bien définie et un homomorphisme de groupes. En particulier, $c_1(L)^{\otimes k}=kc_1(L)$.

Exercice 10 (Le fibré tautologique). \bigstar Soit $L = \mathcal{O}_{\mathbb{P}^n}(-1)$ le fibré en droites tautologique $\pi : L \to \mathbb{P}^n$ dont la fibre L_x au-dessus de $x \in \mathbb{P}^n$ est la droite complexe $x \in \mathbb{C}^{n+1}$.

- (1) Vérifier que L est naturellement un sous-fibré holomorphe du fibré trivial $\mathbb{P}^n \times \mathbb{C}^{n+1}$ et qu'ainsi la métrique hermitienne standard sur \mathbb{C}^{n+1} induit une métrique hermitienne sur L.
- (2) Calculer la courbure de Chern associée sur L et montrer qu'elle vaut $\lambda \omega_{FS}$ pour une constante négative $\lambda < 0$ (où ω_{FS} désigne la métrique de Fubini–Study sur \mathbb{P}^n). (Indication : vous pouvez consulter, par exemple, le livre de Voisin.)
- (3) En déduire que la courbure de la connexion de Chern induite sur le dual $L^{-1} = \mathcal{O}_{\mathbb{P}^n}(1)$ est un multiple positif de la métrique de Fubini–Study (cf. Exercice 8).

Exercice 11. Soit M l'éclatement de \mathbb{C}^{n+1} à l'origine (voir Devoir 1). Donner un biholomorphisme entre M et l'espace total du fibré tautologique \mathbb{P}^n .

2 DEVOIR 3

Exercice 12. Soient E_1 et E_2 deux fibrés vectoriels sur M munis respectivement des connexions ∇^{E_1} et ∇^{E_2} . Soient s_1 et s_2 des sections locales de E_1 et E_2 , respectivement. On définit

$$\nabla^{E_1 \oplus E_2}(s_1 \oplus s_2) = \nabla^{E_1}(s_1) \oplus \nabla^{E_2}(s_2), \quad \text{et} \quad \nabla^{E_1 \otimes E_2}(s_1 \otimes s_2) = \nabla^{E_1}(s_1) \otimes s_2 + s_1 \otimes \nabla^{E_2}(s_2).$$

- (1) Vérifier que $\nabla^{E_1 \oplus E_2}$ et $\nabla^{E_1 \otimes E_2}$ sont des connexions sur $E_1 \oplus E_2$ et $E_1 \otimes E_2$ respectivement.
- (2) Montrer que $F_{\nabla^{E_1 \oplus E_2}} = F_{\nabla^{E_1}} \oplus F_{\nabla^{E_2}}$, et $F_{\nabla^{E_1 \otimes E_2}} = F_{\nabla^{E_1}} \otimes \operatorname{Id}_{E_2} + \operatorname{Id}_{E_1} \otimes F_{\nabla^{E_2}}$.
- (3) En notant que $\operatorname{End}(E) = E \otimes E^*$, en déduire que $F_{\nabla^{\operatorname{End}(E)}} = [F_{\nabla^E}, \bullet]$.

Exercice 13 (Section 4.A du livre de Huybrechts). $\bigstar \bigstar$ Soit (M, J, ω) une variété kählérienne. Montrer que la connexion de Chern $\nabla^{\mathbb{C}}$ sur $T^{1,0}M$ correspond à la connexion de Levi-Civita $\nabla^{\mathbb{LC}}$ sur TM via l'isomorphisme $TM \simeq T^{1,0}M$ induit par $X \mapsto \frac{1}{2}(X - iJX)$.

Exercice 14 (Fibrés projectifs (vous pouvez suivre le section 3.3.2 du livre de Voisin)). $\bigstar \bigstar$ Soit $\pi: E \to M$ un fibré holomorphe de rang r+1 au-dessus d'une variété complexe compacte M, et notons $E^{\times} := E \setminus \{\text{section nulle}\}$. On définit $\mathbb{P}(E)$ comme le quotient de E^{\times} par l'action naturelle de \mathbb{C}^* fibre à fibre.

- (1) Vérifier que l'application π se descend en une application bien définie $\hat{\pi}: \mathbb{P}(E) \to M$ telle que $\hat{\pi}^{-1}(p)$ coïncide avec l'ensemble des droites complexes de la fibre $E_p = \pi^{-1}(p)$. En particulier, $\hat{\pi}^{-1}(p) \simeq \mathbb{P}^r$.
- (2) Vérifier qu'un atlas holomorphe $\{U_i\}_{i\in I}$ de M trivialisant E fournit des identifications $\hat{\pi}^{-1}(U_i) \simeq U_i \times \mathbb{P}^r$, et que les morphismes projectifs associés aux fonctions de transition de E induisent les fonctions de transition de l'atlas $\{\hat{\pi}^{-1}(U_i)\}$ sur $\mathbb{P}(E)$.
- (3) En déduire que cela munit $\mathbb{P}(E)$ d'une structure complexe pour laquelle $\hat{\pi}: \mathbb{P}(E) \to M$ est holomorphe.
- (4) Considérer le fibré vectoriel holomorphe $p: \hat{\pi}^*E \to \mathbb{P}(E)$. Rappeler que la fibre de $\hat{\pi}^*E$ en $x \in \mathbb{P}(E)$ est $E_{\hat{\pi}(x)}$. Se convaincre que $\mathcal{O}_{\mathbb{P}(E)}(-1) := \{\xi \in \hat{\pi}^*E \mid \xi \in p(\xi)\}$ est un fibré en droites holomorphe sur $\mathbb{P}(E)$, et montrer que, pour $p \in M$, la restriction (pullback) de $\mathcal{O}_{\mathbb{P}(E)}(-1)$ à la fibre $\mathbb{P}(E)_p = \hat{\pi}^{-1}(p) \simeq \mathbb{P}^r$ coïncide avec le fibré tautologique de \mathbb{P}^r .
- (5) Considérer maintenant une métrique hermitienne h sur E. Montrer qu'elle induit une métrique hermitienne, encore notée h, sur $\mathcal{O}_{\mathbb{P}(E)}(-1)$.
- (6) Montrer que la restriction de $-F_{\nabla_h}$ à une fibre $\mathbb{P}(E)_p$ est positive pour tout $p \in M$.
- (7) Conclure que si (M, ω) est compacte et kählérienne, il existe $\lambda > 0$ tel que $\lambda \hat{\pi}^* \omega F_{\nabla_h}$ soit une forme kählérienne sur $\mathbb{P}(E)$.

Exercice 15 (Éclatements (vous pouvez suivre le section 3.3.3 du livre de Voisin)). $\bigstar \bigstar$ Soit X une variété complexe de dimension n et $Y \subset X$ une sous-variété complexe fermée de dimension m = n - k < n. On note \widetilde{X}_Y l'éclatement de X le long de Y avec l'application de contraction $\pi: \widetilde{X}_Y \to X$ (voir la feuille d'exercices 1).

- (1) On note $\iota: Y \hookrightarrow X$ l'inclusion. Montrer que le fibré normal $N_{Y/X} := \iota^*TX/TY$ est un fibré holomorphe au-dessus de Y (c'est un fait standard que le quotient d'un fibré vectoriel holomorphe par un sous-fibré holomorphe est encore holomorphe).
- (2) Soit $U \subset X$ un ouvert tel que $U \cap Y = Z(f_1^U) \cap \cdots \cap Z(f_k^U)$, où $f^U = (f_1^U, \dots, f_k^U) : U \to \mathbb{C}^k$ est holomorphe (et 0 est une valeur régulière). Montrer que $\{df_i\}_{i=1,\dots,k}$ fournit un repère du fibré dual du fibré normal au-dessus de $U \cap Y$.
- (3) Supposons k=1. Montrer qu'il existe un fibré en droites $L \to X$ qui est trivial sur $X \setminus Y$ et qui coïncide avec le fibré dual du fibré normal $N_{Y/X}$ au-dessus de Y. (Indication: utiliser les cocycles de transition.)
- (4) Montrer que $\pi^{-1}(Y) \simeq \mathbb{P}(N_{Y/X})$ en tant que variétés complexes.
- (5) Montrer que $\mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1) \simeq N_{\pi^{-1}(Y)/\widetilde{X}_Y}$ en tant que fibrés holomorphes au-dessus de $\pi^{-1}(Y)$.
- (6) Se convaincre que $\pi^{-1}(Y)$ est une sous-variété complexe fermée de codimension complexe 1 dans \widetilde{X}_Y . En utilisant (3), montrer qu'il existe un fibré en droites $\mathcal{L} \to \widetilde{X}_Y$ dont la restriction à $\pi^{-1}(Y)$ coïncide avec $\mathcal{O}_{\mathbb{P}(N_{Y/X})}(-1)$.
- (7) En utilisant (6), et en supposant (X, ω) compacte kählérienne, montrer qu'il existe une métrique hermitienne h sur \mathcal{L}^{-1} et $\lambda > 0$ tels que $F_{\nabla_h} + \lambda \pi^* \omega$ soit une forme kählérienne sur \widetilde{X}_Y .