Special Topics: Machine Learning (ML) for Networking

COL867 Holi, 2025

Traffic Classification
Tarun Mangla

Traffic Classification: Recap

 Categorize network traffic into different classes, typically application or traffic type or QoS category

- Potential approaches:
 - Port-based classification
 - Payload-based
 - Analyzing traffic characteristic using ML

Paper: Class-of-Service Mapping for QoS.. [Roughan2004]

• Given an aggregate (server IP or port), predict its Class of Service Y_j

Inference Model

Server IP or port to class of service

Remnant of the diffServ architecture

N/w Working -> Application = 2000
Server IP -> QOS
Ox Port

Class of Service

- Interactive: Telnet
- Bulk data transfer: SFTP
- Streaming:
- Transactional: DNS

Feature Extraction

- Four categories of features:
 - O Packet-level: packet size [Mean /Variance]
 - Flow-level: flow volume, # of packets
 - Intra-flow features: inter-arrival times, latency
 - Multi-flow: aggregate multiple connections (# connections, mean size per connection)
- Features extracted in a streaming manner

Training

- Data collection
 - Public traffic traces
 - Collected from within the ISP network
 - Server logs for a specific application
 - Within enterprise network collected over two different time intervals

- Data labeling
 - Port numbers
 - Application payload

Classification Accuracy

Total Samples in lest

	error rate			
algorithm	4 class	3 class	7 class	
LDA	5.6 %	3.4 %	10.9 %	
1-NN	7.9 %	3.4 %	12.6 %	
3-NN	5.1 %	2.5 %	9.4 %	
5-NN	5.6 %	2.5 %	9.9 %	
7-NN	5.6 %	2.8 %	9.7 %	
15-NN	6.2 %	3.4 %	11.4 %	

Application Type
La DAS
La HATTOR

Which are the most important features?

- Candidate features: average packet size, flow duration, bytes per flow, packet per flow, and root mean square packet size
- Most important features: Average packet size and flow duration

Separate FTP and Realmedia using inter-arrival Variability Metrics

1 Data cleaning ->

Application adaptation

From 2004 → 2024: What has changed

FROM POV TRAFFIC
CLASSIFICATION

- For good
 - Flexible and scalable network monitoring
 - Advancement in ML techniques
 - Compute capabilities
- For bad
 - Diversity of applications (e.g., IoT traffic)
 - More encryption

VPN / TOR

Scale

Deep Packet: A Novel Approach ... [Lotfollahi18]

Given an aggregate packet, predict its Class of Service application

Motivation: Feature engineering → sub-optimal (expensive, time-consuming, prone to errors)

Data Pre-processing

Deep Learning Models Considered

- Autoencoder
- Convolutional Neural Networks

Artificial Neural Networks: Multi-layer Perceptron

MIT:

- Multi-dimensional input features
- Apply weights and pass them through a neuron with non-linear activation functions
- The weights are derived during training using the backpropagation method
- Deep Neural Networks (DNNs): Similar to MLP but higher number of hidden layers

Autoencoder

Autoencoder

Training

- Use Tensorflow for training at the backend
- Use early stopping and dropout techniques to avoid overfitting
- Train on ISCX VPN-nonVPN dataset
 - Labeled application traffic
 - VPN and non-VPN traffic as well as Tor traffic

Results

Precusor TP+FN
FI-Score
TP+FP

0.99

0.98

1.00

1.00

1.00

0.99

Skype

Spotify

Torrent

Tor

VoipBuster

Vimeo

1. Troffic à mensples 2 Model - specific difference 3 Per-packet classifican

CNN SAE Application $\overline{F_1}$ Rc \Pr F_1 Rc \Pr AIM chat 0.760.870.810.640.760.70Email 0.820.97 0.890.970.990.94Facebook 0.950.96 0.960.950.940.95FTPS 1.00 1.00 1.00 0.770.970.86Gmail 0.950.97 0.940.960.940.930.96 0.97Hangouts 0.980.970.990.94ICQ0.720.690.800.760.690.69Netflix 1.00 1.00 1.00 0.980.991.00 SCP0.990.970.981.00 1.00 1.00 **SFTP** 1.00 1.00 0.960.700.811.00

0.93

0.98

0.99

1.00

0.99

0.98

0.95

0.98

0.99

1.00

0.99

0.99

0.94

0.98

0.99

1.00

0.99

0.98

 YouTube
 0.99
 0.99
 0.99
 0.98
 0.99
 0.99

 Wtd. Average
 0.98
 0.98
 0.98
 0.96
 0.95
 0.95

0.94

0.98

1.00

1.00

0.99

0.99

0.97

0.98

1.00

1.00

0.99

0.99

Comparison with Other Papers

Paper	Task	Metric	Results	Alg.
Deep Packet	Application	Accuracy	0.98	CNN
Yamansavascilar et al. (2017)	Identification		0.94	k-NN
Deep Packet	Traffic	Precision	0.93	CNN
Gil et al. (2016)	Characterization		0.90	C4.5

Why does DeepPacket work?

- DeepPacket does not inspect for keywords, how does it work?
- Ideal encryption scheme → produces patternless data
- But, all schemes use (different) pseudo-random generators
- Leads to patterns in the data

Patterns in the date

• Is that really true?

Ablation study

Difference between the two studies?

- Manual feature extraction
- Explainability/Generalizability?
 - Is the DL model doing shortcut learning?
- Scalability concerns