Lecture Notes

Author Name Goes Here

2019-08-26

Contents

1	Distributions 1		
	1.1	How do I get started	1
		Normal Distribution	
	1.3	Gamma distribution	4
	1.4	Cars	•
	1.5	tikz figures	2

iv CONTENTS

Chapter 1

Distributions

1.1 How do I get started

The R package **xtable** is useful. For a description of the bootstrap, see Efron (1979). A good book is (Cormen et al., 2009). This is Section 1.1. Check **index.Rmd** to see which R packages are loaded.

1.2 Normal Distribution

The probability density function for the standard normal distribution is (blanked out):

Equation (1.1) is awesome.

Here is a plot of the probability density function of a standard normal:

1.3 Gamma distribution

The gamma distribution has two parameters, shape k and scale θ , and is denoted $\Gamma(k,\theta)$. Data for a $\Gamma(1,2)$ distribution can be generated as follows:

```
# We set the seed here
set.seed(1)
k <- 1
ylab <- "Value" # set elsewhere
theta <- 2
x <- rgamma(10, shape=k, scale=theta)
print(x)
#> [1] 0.31028 3.76480 3.60902 1.67236 2.44509 2.31671 1.98004
#> [8] 0.61475 0.18924 0.31440
```

And here is the data plotted in Figure 1.1:

Figure 1.1: Gamma data for $\Gamma(1,2)$

Figure 1.1 should be above this line.

1.4. CARS 3

1.4 Cars

Here is some cars data:

Figure 1.2: Caption text for Figure and Table

Look at Figure 1.2, it contains a figure (a) and a table (b).

Here is a box of text, using ftext command:

Don't take the following too seriously.

See the code for this 'align' example for an example of creating a gapped 'align'.

Here is an aligned equation, need to use in ftext:

$$z = 2 \tag{1.2}$$

Equation (1.2) is blank in an align environment.

Using fequation:

$$t = 1 \tag{1.4}$$

It might be useful to include notes on the side, in the margin. These can be done using **sidenote**. Here is an example of a sidenote And more text goes here, and one can read the note in the margin to remember certain points.

1.5 tikz figures

Here is a figure created using tikz, which creates an intermediate tex and pdf.

Figure 1.3: Caption for tikz figure showing $\vec{\lambda}$, and with a sum $\sum_{i=1}^{3} x_i$.

Bibliography

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. MIT Press, 3rd edition.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26.