Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. Although we use six numbers to represent a screw $\mathcal{S}=(\mathcal{S}_{\omega},\mathcal{S}_{v})$, the space of all screws is only 5-dimensional. Why?

1/1 point

- $\bigcirc \ \mathcal{S}_{\omega}$ must be unit length.
- $\bigcirc \ \mathcal{S}_v$ must be unit length.
- lacksquare Either \mathcal{S}_{ω} or \mathcal{S}_{v} must be unit length.
- **⊘** Correct

If both the angular and linear components of the screw are nonzero, then the screw is defined so that $\|\mathcal{S}_{\omega}\|=1$.

2. A transformation matrix T_{ab} , representing {b} relative to {a}, can be represented using the 6-vector exponential coordinates $\mathcal{S}\theta$, where \mathcal{S} is a screw axis (represented in {a} coordinates) and θ is the distance followed along the screw axis that displaces {a} to {b}. Which of the following is correct? Select all that apply.

1/1 point

- \square $T_{ab} = e^{S\theta}$
- $T_{ab} = e^{[S]\theta}$
- **⊘** Correct

 θ is just a scalar, so $[\mathcal{S}]\theta=[\mathcal{S}\theta].$

- $ightharpoonup T_{ab} = e^{[\mathcal{S}\theta]}$
- ✓ Correct

 θ is just a scalar, so $[S]\theta = [S\theta]$.

- **3.** The matrix representation of the exponential coordinates $\mathcal{S}\theta\in\mathbb{R}^6$ is $[\mathcal{S}\theta]$. What space does $[\mathcal{S}\theta]$ belong to?

1/1 point

- \bigcirc SO(3)
- O so(3)
- \bigcirc SE(3)
- se(3)
- **⊘** Correct

This is the space of matrix representations of twists (and exponential coordinates).

4. $T_{ab'}=T_{ab}e^{[\mathcal{S}\theta]}$ is a representation of the new frame {b'} (relative to {a}) achieved after {b} has followed

1/1 point

- lacktriangledown the screw axis ${\cal S}$, expressed in {b} coordinates, a distance heta .
- \bigcirc the screw axis \mathcal{S} , expressed in {a} coordinates, a distance θ .
- ✓ Correct

Multiplying the matrix exponential on the right means that ${\cal S}$ is interpreted as being represented in the frame (b) (the second subscript of T_{ab}).

5. $T_{ab'}=e^{[\mathcal{S}\theta]}T_{ab}$ is a representation of the new frame {b'} (relative to {a}) achieved after {b} has followed

1/1 point

- \bigcirc the screw axis \mathcal{S} , expressed in {b} coordinates, a distance θ .
- igodeligap the screw axis ${\mathcal S}$, expressed in {a} coordinates, a distance heta .
- ✓ Correct

Multiplying the matrix exponential on the left means that \mathcal{S} is interpreted as being represented in the frame {a} (the first subscript of T_{ab}).

The matrix exponential maps $[\mathcal{S}\theta] \in se(3)$ to a transformation matrix $T \in SE(3)$, where T is the representation of the frame (relative to $\{s\}$) that is achieved by following the screw \mathcal{S} (expressed in $\{s\}$) a distance θ from the identity configuration (i.e., a frame initially coincident with $\{s\}$).
The matrix exponential maps $[\mathcal{V}] \in se(3)$ to a transformation matrix $T \in SE(3)$, where T is the representation of the frame (relative to $\{s\}$) that is achieved by following the twist \mathcal{V} (expressed in $\{s\}$) for unit time from the identity configuration (i.e., a frame initially coincident with $\{s\}$).
\odot Correct If we choose $\mathcal{V}=\mathcal{S}\theta$, then following the twist \mathcal{V} for unit time is equivalent to following the screw axis \mathcal{S} a distance θ .
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
lacksquare The matrix log maps an element of $SE(3)$ to an element of $se(3)$.
lacksquare There is a one-to-one mapping between twists and elements of $se(3)$.
⊘ Correct