Notas de Clase en

Mecánica Estadística

Borja Diez borjadiez1014@gmail.com 2 de mayo de 2024

Estas notas de clase están basadas en el curso dictado por el Dr. Ignacio Araya durante el primer semestre del año 2024 en la Universidad Arturo Prat y han sido escritas con propósito de estudio personal.

Las notas están divididas por clase. Adicionalmente han sido complementadas con desarrollos de cálculo personal y comentarios sacados principalmente de Lecture notes on statistical mechanics de Scott Pratt.

${\rm \acute{I}ndice}$

1.	Clase 1 1.1. Introducción: Estados microscópicos y entropía	4
2.	Clase 2 2.1. Entropía, ignorancia y teorema ergódico	8
3.		11 11 15 16 16
4.	Clase 4 4.1. Ensamble micro-canónico 4.2. Ensamble canónico 4.3. Ensamble Gran Canónico 4.4. Ensamble isobárico-isotérmico	17 17 17 17 17
5.	Clase 5 5.1. Relaciones termodinámicas	21 21 21 22 23 26
6.	Clase 6 6.1. Fuerzas a temperatura finita	27 28 30
7.	Clase 7 7.1. Mecánica estadística de partículas no-interactuantes	33
8.	Clase 8	36
9.	Clase 9 9.1. Función partición de un gas ideal monoatómico	40 40 41
10	.Clase 10	44

3 Índice

11.Clase 11	48
11.1. Teorema de equiparación generalizado	48
11.2. Teorema del Virial	49
12.Clase 12	52
12.1. Gases degenerados	52
12.2. Gas degenerado de bosones y condensado de Bose-Einstein	52
12.3. Gas degenerado de Fermi	55

1.1. Introducción: Estados microscópicos y entropía

La termodinámica describe sistemas formados por una colección de elementos (muchos, $N \sim N_A = 6.02 \times 10^{23}$) en términos de variables que capturan el comportamiento colectivo del sistema. Por ejemplo, presión, volumen, energía, número de elementos potencial químico, entropía, temperatura.

En mecánica estadística, las variables se dividen en 2 tipos principales:

- Extensivas: La magnitud es proporcional al tamaño o escala del sistema:
 - Volúmen (V)
 - Energía (U)
 - Número de elementos (N)
 - Entropía (S)
- Intensivas: La magnitud no es proporcional al tamaño del sistema:
 - Presión (P)
 - \bullet Temperatura (T)
 - Potencial químico (μ)

Estas variables corresponden a características (conceptos) atribuibles a los sistemas de forma colectiva (sin hacer mención a su estructura microscópica).

La mecánica estadística considera los microestados de un sistema dado por las **configu**raciones cuánticas en los que puede existir.

Una configuración microscópica (en términos de las cantidades termodinámicas) corresponde a michos microsestados diferentes, indistinguibles macroscópicamente. De lo anterior surgen las nociones de **degenerancia** y **entropía**.

La entropía mide el número de estados cuánticos accesibles a un sistema.

Es un postulado que un sistema cerrado puede estar en cada microestado accesible con igual probabilidad.

Dado Ω estados accesibles, la entropía S se define como

$$S = k \log \Omega \tag{1.1}$$

donde k es la constante de Boltzman.

En general $\Omega = \Omega(u, V, N)$. Los microsestados son accesibles para el sistema si tienen la misma energía U.

 Ω es el número de microestados caracterizados por (U, V, N). Luego, son la **degenerancia** del estados microscópico representado por (U, V, N). A esta entropía se le llama **entropía de grano fino**.

También son importantes nociones que describen cambios de equilibrio entre sistemas. Por ejemplo, temperatura y calor.

Cuando 2 sistemas cerrados, cada uno con cierta energía se ponen en contacto, la energía total se preserva, pero hay un flujo de energía de un sistema a otro (intercambio de calor).

Otro postulado establece que el número de estados accesibles al sistema combinado aumenta. (Aumento de entropía).

Ejemplo 1.1. Si inicialmente hay Ω_{1i} estados accesibles al primer sistema y Ω_{2i} estados accesibles al segundo sistema

entonces hay $\Omega_{\text{tot},i} = \Omega_{1i} \cdot \Omega_{2i}$ estados accesibles al sistema combinado. Luego, la transferencia de calor (ΔQ) hay $\Omega_{tot,f} = \Omega_{if} \cdot \Omega_{2f}$ estados accesibles al sistema combinado

$$\Omega_{tot,f} > \Omega_{tot,i} \tag{1.2}$$

En términos de la entropia:

$$S_{1i} = k \log \Omega_{1i}, \qquad S_{2i} = k \log \Omega_{2i} \tag{1.3}$$

Luego,

$$S_{tot,i} = k \log \Omega_{tot,i} \tag{1.4}$$

$$= k \log(\Omega_{1i} \cdot \Omega_{2i}) \tag{1.5}$$

$$= k \log(\Omega_{1i}) + k \log(\Omega_{2i}) \tag{1.6}$$

Así,

$$S_{tot,i} = S_{1i} + S_{2i} \tag{1.7}$$

Se concluye que la entropía es extensiva.

Notemos ademas que

$$\Omega_{tot,f} > \Omega_{tot,i} \quad \Rightarrow \quad S_{tot,f} > S_{tot,i}$$
 (1.8)

es decir, la entropía aumenta en un proceso de transferencia de calor.

¿Cuál es la condición de equilibrio para que termine un proceso de transferencia de calor? Cuando ambos sistemas quedan a la misma **temperatura**. Para definir temperatura, consideremos que en el nuevo equilibrio térmico:

$$\left(\frac{\partial S_1}{\partial U}\right)_{N,V} = -\left(\frac{\partial S_2}{\partial U}\right)_{N,V}$$
(1.9)

- La energía interna U cambia en ambos sistemas
- La ganancia ΔU_1 en el sistema 1 es igual a la perdida ΔU_2 en el sistema 2 (conservación de la energía).

$$\Delta U_1 + \Delta U_2 = 0 \tag{1.10}$$

- La entropía total aumenta, al cambiar U. Luego, ΔU deja de fluir cuando S_{tot} deja de cambiar.
- Se puede demostrar que el proceso continua hasta que (de lo anterior)

$$\left[\left(\frac{\partial S_1}{\partial U} \right)_{N,V} = - \left(\frac{\partial S_2}{\partial U} \right)_{N,V} \right] \tag{1.11}$$

Cuando

$$\left(\frac{\partial S_1}{\partial U}\right)_{NV} = -\left(\frac{\partial S_2}{\partial U}\right)_{NV} \tag{1.12}$$

entonces

$$\left(\frac{\partial S_{tot}}{\partial U}\right)_{N,V} = \left(\frac{\partial (S_1 + S_2)}{\partial U}\right)_{N,V} = \left(\frac{\partial S_1}{\partial U}\right)_{N,V} + \left(\frac{\partial S_2}{\partial U}\right)_{N,V} = 0$$
(1.13)

Luego,

$$\left[\left(\frac{\partial S_{tot}}{\partial U} \right)_{N,V} = 0 \right]$$
(1.14)

y la entropía deja de aumentar con la transferencia de calor. Luego, el proceso se detiene. Así, conviene definir la temperatura T:

$$\boxed{\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{N,V}} \qquad \text{Al aumentar } T \text{ aumenta } U. \tag{1.15}$$

Notamos que

$$T_1 = T_2 \quad \Rightarrow \quad \frac{1}{T_1} = \frac{1}{T_2} \quad \Rightarrow \quad \left(\frac{\partial S_1}{\partial U}\right)_{NV} = \left(\frac{\partial S_2}{\partial U}\right)_{NV}$$
 (1.16)

Corolario 1.1. La transferencia de calor ocurre por gradiente de temperatura (el calor fluye desde e sistema de mayor temperatura hacia el de menor temperatura, asta que las temperaturas sean iguales).

1.2. Probabilidad de una configuración y factor de Boltzmann

De la definición clásica de probabilidad, se tiene

$$P = \frac{\text{\#casos favorables}}{\text{\#casos posibles}}$$
 (1.17)

El cuociente entre la probabilidad de dos estados macroscópicos es igual al cociente de sus degeneraciones.

Considere un sistema pequeño de 2 estados, S_p y un sistema grande o reservorio térmico S_r . Sea U_0 la energía del sistema combinado y U_p la energía del sistema pequeño. Suponga que la energía del sistema U_p puede ser $U_p = \epsilon$ y $U_p = 0$.

- Para $U_p = 0$, $U_r = U_0$ (U_r energía del reservorio térmico)
- Para $U_p = \epsilon$, $U_r = U_0 \epsilon$

El cociente entre las probabilidades esta dado por

$$\frac{P(\epsilon)}{P(0)} = \frac{\Omega(U_0 - \epsilon)}{\Omega(U_0)} = \frac{e^{\frac{S}{k}(U_0 - \epsilon)}}{e^{\frac{S}{k}(U_0)}} = \frac{\text{Prob. del } S_p \text{ con energía } \epsilon}{\text{Prob. del } S_p \text{ con energía } 0}$$
(1.18)

Luego, $\Omega(U)$ es la degeneración del reservorio térmico con energía U.

Expandiendo en serie de Taylor

$$S(U_0 - \epsilon) \approx S(U_0) - \epsilon \left(\frac{\partial S}{\partial U_0}\right) = S(U_0) - \frac{\epsilon}{T}$$
 (1.19)

Reemplazando en la exponencial de (1.18),

$$\frac{P(\epsilon)}{P(0)} \approx e^{-\frac{\epsilon}{kT}}$$
(1.20)

Conocido como el factor de Boltzmann.

La probabilidad relativa entre 2 estados escala como la exponencial de menos la diferencia de energía dividida por kT.

2.1. Entropía, ignorancia y teorema ergódico

Principio de máxima entropía: La configuración de un sistema desde el punto de vista macroscópico, es tal que maximiza la entropía, dada una serie de restricciones.

Considere un número grande de sistemas idéntcos $(N_s \to \infty)$, cada uno de los cuales puede estar en un estado específico.

Sea n_i el número de sistemas que están en el estado i. Definimos la ignorancia I (o la degeneración Ω) como el número de formas de arreglar el sistema conjunto dado $\{n_i\}$ (factor multinomial)

$$I = \frac{N_s!}{n_0! n_1! \dots}, \qquad \sum_i n_i = N_s$$
 (2.1)

Ejemplo 2.1. 10 dados, cada uno puede estar en 6 estados. Luego, de tirarlos se obtiene que

$$n_1 = 4 \tag{2.2}$$

$$n_2 = 3 \tag{2.3}$$

$$n_3 = 0 (2.4)$$

$$n_4 = 0 (2.5)$$

$$n_5 = 0 \tag{2.6}$$

$$n_6 = 3 \tag{2.7}$$

entonces la configuración del sistema dada esta ignorancia es

$$I = \frac{10!}{4!3!3!} \tag{2.8}$$

Esta ignorancia considera que sólo se conocen las poblaciones de los estados (cuantos sistemas hay en cada estado) y el número total de sistemas, pero que *no es posible distinguir* entre sistemas que están en un mismo estado.

Buscamos una configuración (conjunto de poblaciones de estados) que maximice la ignorancia, sujeto a la restricción

$$\sum_{i} n_i = N_s \tag{2.9}$$

Definimos¹

$$S = k \ln I \tag{2.10}$$

Entonces

$$S = k \ln \left(\frac{N_s!}{n_0! n_i \cdots} \right) = k [\ln(N_s!) - \sum_i \ln(n_i!)]$$
 (2.11)

sujeto a (2.9).

¹Cantidad extensiva. Maximizar I implica maximizar S (ya que el ln es monótono.) ln $I \uparrow = S \uparrow$

$$\left| \ln(n!) \approx n \ln(n) - n \right| \tag{2.12}$$

En efecto,

$$\ln(n!) = \ln(1 \cdot 2 \cdot \dots \cdot n) = \sum_{i=1}^{n} \ln(i) \approx \int_{1}^{n} \ln(x) dx$$
 (2.13)

$$= x \ln x - x \bigg|_{1}^{n} \tag{2.14}$$

$$= (n \ln n - n) - (\ln(1) - 1) \tag{2.15}$$

$$= n \ln n - n + 1 \tag{2.16}$$

$$= n \ln n - (n-1) \tag{2.17}$$

$$\approx n \ln n - n, \quad \text{para } n \gg 1$$
 (2.18)

Usando la aproximación de Sterling en (2.11)

$$S \approx k \left[(N_s \ln(N_s) - \mathcal{N}_s) - \sum_i (n_i \ln(n_i) - \mathcal{N}_i) \right]$$
 (2.19)

$$= k \left[N_s \ln(N_s) - \sum_i n_i \ln(n_i) \right]$$
(2.20)

donde usamos que $N_s = \sum_i n_i$.

Dado N_s fijo, buscamos $\{n_i\}$ que maximice S sujeto a (2.9). Como queremos maximizar utilizamos multiplicadores de Lagrange².

$$S_{\{\sum_{i} n_{i} = N\}} = k \left[N_{s} \ln(N_{s}) - \sum_{i} n_{i} \ln(n_{i}) + \lambda \left(\sum_{i} n_{i} - N_{s} \right) \right]$$

$$(2.21)$$

Ahora

$$L = \frac{S}{N_s k}, \qquad \mu = \frac{\lambda}{k} \tag{2.22}$$

Nos queda

$$L = \ln(N_s) - \sum_{i} \left(\frac{n_i}{N_s}\right) \ln(n_i) + \mu \left[\sum_{i} \left(\frac{n_i}{N_s}\right) - 1\right]$$
 (2.23)

Definimos la probabilidad de que en la configuración total, un sistema cualquiera este en el estado i como

$$P_i = \frac{n_i}{N_s} \tag{2.24}$$

Reescribimos

$$\ln(n_i) = \ln\left(\frac{n_i}{N_s}N_s\right) = \ln(P_i) + \ln(N_s)$$
(2.25)

²Recordar que para una restricción holonómica $f(n_i) = 0$ se incluye λf .

Reemplazamos

$$L = \ln(N_s) - \sum_{i} P_i \left(\ln(P_i) + \ln(N_s) \right) + \mu \left[\sum_{i} P_i - 1 \right]$$
 (2.26)

$$= \ln(N_s) - \sum_{i} P_i \ln(P_i) - \sum_{i} P_i \ln(N_s) + \mu \left[\sum_{i} P_i - 1 \right], \qquad \sum_{i} P_i = 1 \qquad (2.27)$$

$$= \ln(\mathcal{N}_s) - \sum_i P_i \ln(P_i) - \ln(\mathcal{N}_s) + \mu \left[\sum_i P_i - 1 \right]$$
(2.28)

Nos queda

$$L = -\sum_{i} P_{i} \ln(P_{i}) + \mu \left[\sum_{i} P_{i} - 1 \right]$$
 (2.29)

Las variables dinámicas son $\{P_i, \lambda\}$. Maximizando L

$$\frac{\partial L}{\partial P_i} = 0 \tag{2.30}$$

$$\frac{\partial L}{\partial \mu} = 0 \tag{2.31}$$

Ahora, de (2.29),

$$\frac{\partial L}{\partial P_i} = -(\ln P_i + 1) + \mu = 0 \tag{2.32}$$

$$\frac{\partial L}{\partial \mu} = \sum_{i} P_i = 1 \tag{2.33}$$

donde μ es constante. De (2.32).

$$P_i = e^{\mu - 1} = P, \qquad \sum_i P = 1$$
 (2.34)

es decir, en la configuración que maximiza la entropía, cada estado es igualmente probable (la probabilidad es igual a una constante que no depende de i).

Hay s estados posibles, luego

$$sP = 1 \quad \Rightarrow \qquad P = \frac{1}{s} \tag{2.35}$$

Esto implica que la probabilidad de cada estado en la configuración de máxima entropía es

$$\frac{1}{\text{\# estados posibles}} \tag{2.36}$$

luego,

$$\boxed{n_i = N_s P = \frac{N_s}{s}}, \qquad \Rightarrow \qquad \sum_{i=1}^s n_i = N_s \tag{2.37}$$

La ocupación de cada estado, en la configuración que maximiza la entropía (y que maximiza la ignorancia o degeneración) es igual al número de sistemas presentes dividido en el número de estados posibles.

3.1. Principio fundamental de la termodinámica

La configuración total **maximiza la entropía**, sujeta a restricciones macroscópicas que dependen de las cantidades fluctuantes conservadas.

En la Clase 2 vimos que si suponemos una configuración N_s sistemas los que pueden existir en m estados diferentes, siendo sus ocupaciones el conjunto:

$$\{n_i\}_{i=1}^m \tag{3.1}$$

la ignorancia I, o degenerancia Ω esta dada por

$$I = \frac{N_s!}{\prod_{i=1}^m n_i} \tag{3.2}$$

Se define la entropía S como

$$S = \kappa \ln I \tag{3.3}$$

Usando Stearling, se tiene

$$\frac{S}{\kappa} = N_s \ln(Ns) - Ns - \left[\sum_{i=1}^{m} \left(n_i \ln(n_i) - n_i \right) \right]$$
(3.4)

Usando que $\sum_{i=1}^{m} = N_s$,

$$\frac{S}{\kappa} = N_s \ln(Ns) - \sum_{i=1}^{m} n_i \ln(n_i) / \frac{1}{N_s}$$
(3.5)

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln(n_i)$$
(3.6)

Usando que

$$\ln(n_i) = \ln\left(\frac{n_i}{N_s}N_s\right) = \ln\left(\frac{n_i}{N_s}\right) + \ln(N_s)$$
(3.7)

reemplazando en (3.6),

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \left[\ln\left(\frac{n_i}{N_s}\right) + \ln(N_s)\right]$$
(3.8)

$$= \ln(N_s) - \sum_{i=1}^{m} \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) - \sum_{i=1}^{m} \left(\frac{n_i}{N_s}\right) \ln(N_s)$$
 (3.9)

pero usando (2.24)

$$\sum_{i=1}^{m} \left(\frac{n_i}{N_s} \right) = \sum_{i=1}^{m} P_i = 1 \tag{3.10}$$

así,

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) - \ln(N_s)$$
(3.11)

$$= -\sum_{i=1}^{m} \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) \tag{3.12}$$

$$\Rightarrow \boxed{\frac{S}{\kappa N_s} = -\sum_{i=1}^{m} \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right)}$$
(3.13)

Definimos la probabilidad de que un sistema esté en el estado i como (2.24)

$$P_i = \frac{n_i}{N_s} \tag{3.14}$$

y la entropia de Shannon como

$$\boxed{\frac{S}{\kappa N_s} = -\sum_{i=1}^m P_i \ln(P_i)}$$
(3.15)

Por el principio fundamental del termodinámica, sin imponer conservación de las cantidades conservadas. Pero considerando

$$\sum_{i=1}^{m} P_i = 1 \tag{3.16}$$

maximizamos la entropía

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) + \lambda \left(\sum_{i=1}^{m} P_i - 1\right)$$
(3.17)

donde λ son los multiplicadores de Lagrange y $\sum_{i=1}^m P_i - 1$ es una restricción holonómica.

$$\left(\frac{\partial L}{\partial P_i}\right)_{P_i,\lambda} = 0, \qquad \forall i \neq j \tag{3.18}$$

$$\left(\frac{\partial L}{\partial \lambda}\right)_{P_i} = 0
\tag{3.19}$$

De (3.18)

$$-\ln(P_i) - P_i \frac{1}{P_i} + \lambda = 0 (3.20)$$

$$\Rightarrow \ln(P_i) = \lambda - 1 \tag{3.21}$$

obtenemos

$$P_i = e^{\lambda - 1} \tag{3.22}$$

notemos que esta expresión es independiente de i. De (3.19),

$$\sum_{i=1}^{m} P_i - 1 = 0 \tag{3.23}$$

$$\Rightarrow \sum_{i=1}^{m} P_i = 1 \tag{3.24}$$

$$\Rightarrow \sum_{i=1}^{m} P_i = mP = me^{\lambda - 1} = 1 \tag{3.25}$$

luego

$$P_i = \frac{1}{m} \quad \Rightarrow \quad n_i = \frac{N_s}{m} \quad \Rightarrow \quad \lambda = -\ln(n) + 1$$
 (3.26)

Sin imponer restricciones de conservación, excepto que la suma de las probabilidades de los estados es igual a 1, obtenemos que la configuración que maximiza la entropía es la distribución uniforme de estados equiprobables. La ocupación de cada uno de los m estados es:

$$n_i = \frac{N_s}{m} \tag{3.27}$$

Si imponemos conservación de la energía,

- Cada estado i tiene energía E_i
- \blacksquare Si las ocupaciones de dichos estados son n_i , la energía total de la configuración es

$$E = \sum_{i=1}^{m} E_i n_i {3.28}$$

■ Agregamos la conservación de E como una restricción al funcional de entropía.

Sea S_E la restricción

$$S_E = \beta \kappa \left(E - \sum_{i=1}^m E_i n_i \right) \tag{3.29}$$

con β un multiplicador de Lagrange. Consideremos

$$L_E = \frac{S_E}{\kappa N_s} = \beta \left(\bar{E} - \sum_{i=1}^m E_i P_i \right) \tag{3.30}$$

donde

$$\bar{E} = \frac{E}{N_s} \tag{3.31}$$

es la energía promedio del sistema.

Luego, nuestro Lagrangeano queda

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) - \lambda \left(\sum_{i=1}^{m} P_i - 1\right) - \beta \left(\sum_{i=1}^{m} E_i P_i - \bar{E}\right)$$
(3.32)

Ahora,

$$\left(\frac{\partial L}{\partial P_i}\right)_{P_i,\lambda} = \ln(P_i) - 1 - \lambda - \beta E_i \tag{3.33}$$

$$\left(\frac{\partial L}{\partial \beta}\right)_{P_i,\lambda} = \sum_{i=1}^m E_i P_i = \bar{E} \tag{3.34}$$

$$\left(\frac{\partial L}{\partial \lambda}\right)_{P_i,\beta} = \sum_{i=1}^m P_i = 1 \tag{3.35}$$

$$ln(P_i) = -\lambda - \beta E_i - 1$$
(3.36)

entonces

$$P_i = e^{-\lambda - \beta E_i - 1} \tag{3.37}$$

$$P_i = e^{-\lambda - 1} e^{-\beta E_i} \tag{3.38}$$

$$P_{i} = e^{-\lambda - 1} e^{-\beta E_{i}}$$

$$\sum_{i=1}^{m} P_{i} = 1 \Rightarrow \sum_{i=1}^{m} e^{-\lambda - 1} e^{-\beta E_{i}} = 1$$
(3.38)

$$\Rightarrow (e^{-\lambda - 1}) \sum_{i=1}^{m} e^{-\beta E_i} = 1 \tag{3.40}$$

$$\Rightarrow e^{-\lambda - 1} = \frac{1}{\sum_{i=1}^{m} e^{-\beta E_i}} \tag{3.41}$$

tenemos

$$\boxed{P_i = \frac{e^{-\beta E_i}}{\sum_{i=1}^m e^{-\beta E_i}}} \quad \Rightarrow \quad \boxed{Z = \sum_{i=1}^m e^{-\beta E_i}} \quad \Rightarrow \quad \boxed{P_i = \frac{e^{-\beta E_i}}{Z}}$$
(3.42)

En el caso de imponer conservación de la energía, la configuración solo puede explorar conjuntos de ocupaciones $\{n_i\}_{i=1}^n$ que tengan la misma energía total.

En general, la configuración equiprobable no es alcanzable necesariamente, ya que tiene una energía total particular, que puede ser diferente a la energía inicial dada.

En particular, la energía de la configuración equiprobable es

$$E_{\text{equi}} = \sum_{i=1}^{m} E_i n_i \tag{3.43}$$

$$=\sum_{i=1}^{m} E_i \frac{N_s}{m} \tag{3.44}$$

esto implica

$$E_{\text{equi}} = \frac{N_s}{n} \sum_{i=1}^{m} E_i$$
(3.45)

Si $E \neq E_{\rm equi}$, la configuración equiprobable es inalcanzable. Para E consevado, la probabilidad de que un sistema esté en el estado i es

$$P_i = \frac{e^{-\beta E_i}}{Z} \tag{3.46}$$

donde

$$Z = \sum_{i=1}^{m} e^{-\beta E_i}$$
 (3.47)

se conoce como la función de partición y $e^{-\beta E_i}$ se llama factor de Boltzmann y tiene la interpretación de un peso estadistico.

- \blacksquare Z es la suma de todos los pesos
- lacktriangle La ocupación del estado i es

$$n_i = N_s P_i = N_s \frac{e^{-\beta E_i}}{Z} \tag{3.48}$$

3.2. Conservación de energía y carga Q

Q puede ser número de partículas, carga eléctrica, momento angular, magnetización, etc...

Q es una cantidad macroscópica, extensiva, diferente de (E,V,S) que caracteriza la configuración macroscópica y que se conserva entre las distintas configuraciones.

El Lagrangeano se verá

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) - \lambda \left(\sum_{i=1}^{m} P_i - 1\right) - \beta \left(\sum_{i=1}^{m} E_i P_i - \bar{E}\right) - \beta \mu \left(\sum_{i=1}^{m} Q_i P_i - \bar{Q}\right)$$
Conservación de la energía Conservación de la carga (3.49)

con \bar{Q} la carga promedio del sistema.

Ahora

$$-\ln(P_i) - 1 - \lambda - \beta E_i - \beta \mu Q_i = 0 \tag{3.50}$$

$$P_i = e^{\lambda - 1 - \beta E_i - \beta \mu Q_i} = 0 \tag{3.51}$$

$$P_i = e^{-\lambda - 1} e^{-\beta (E_i + \mu Q_i)} \tag{3.52}$$

usando $\sum_{i=1}^{m} P_i = 1$,

$$\sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)} = \frac{1}{e^{-\lambda - 1}}$$
(3.53)

Definimos

$$Z_{GC} = \sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)}$$
(3.54)

entonces

$$P_i = \frac{e^{-\beta(E_i + \mu Q_i)}}{Z_{GC}} \tag{3.55}$$

donde Z_{GC} es la función partición Gran Canónica y corresponde a la suma de los pesos estadisticos $e^{-\beta(E_i + \mu Q_i)}$. $n_i = N_s P_i$ es la ocupación de los estados.

3.3. Ensambles, funciones de partición y potenciales termodinámicos

- Maximizando la entropía, sujeto a diferentes restricciones, hemos encontrado la probabilidad de ocupación de los estados posibles de los sistemas.
- Dichas probabilidades pueden interprearse como pesos estadisticos para cada estado, normalizados por una función partición.
- Dependiendo de las cantidades conservadas las funciones partición son distintas.
- El conjunto de configuraciones posibles dadas las restricciones, definen la noción de ensamble.
- A cada tipo de ensamble, especificado por ciertas cantidades conservadas, le corresponde una función partición.

Ensamble	Can. fluctuantes conservadas	Can. fijas	Función partición	Pot. termodinámico
Microcanónico		E, V, Q	I	S
Canónico	E	T, V, Q	$z = \sum_{i=1}^{m} e^{-\beta E_i}$	F
Gran Canónico	E,Q	T, V, μ	$z = \sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)}$	$\Omega_{ m GC}$
Isobárico	E, V	T, P, Q		

donde

$$\beta = \frac{1}{T} \tag{3.56}$$

Notas que β , μ y P son intensivas.

 $T = \frac{1}{\beta}$ viene dado por el multiplicador de Lagrange asociado a la conservación de energía.

3.4. Ensamble termodinámico*

En mecánica estadística primero uno debe considerar que cantidades desea mantener fijas, y que cantidades desea permitir que varíen (pero con el constraint de que su promedio sea algún valor). Esta elección define el **ensamble**. Los ensambles difieren en las cantidades que varían. Si un cantidad es permitida que varíe, entonces un multiplicador de Lagrange determina la cantidad promedio para cada ensamble.

Ensamble	Energía	Cargas
Microcanónico	Fija	Fija
Canónico	Varía	Fija
Gran Canónico	Varía	Varía

4.1. Ensamble micro-canónico

De la Clase 3 vimos que en el ensamble micro-canónico

$$P_i = \frac{n}{N_s} \tag{4.1}$$

cada estado equiprobable. (E, V, Q) están fijos.

4.2. Ensamble canónico

$$P_i = \frac{1}{Z_{\rm C}} e^{-\beta E_i} \tag{4.2}$$

$$Z_{\rm C} = \sum_{i=1}^{m} e^{-\beta E_i} \tag{4.3}$$

$$\bar{E} = \sum_{i=1}^{m} P_i E_i \quad \text{(restricción)} \tag{4.4}$$

$$\beta = \frac{1}{T} \tag{4.5}$$

(T, V, Q) están fijos. \bar{E} es fluctuante.

4.3. Ensamble Gran Canónico

$$P_i = \frac{1}{Z_{GC}} e^{-\beta E_i - \alpha Q_i} \tag{4.6}$$

$$Z_{\rm GC} = \sum_{i=1}^{m} e^{-\beta E_i - \alpha Q_i} \tag{4.7}$$

$$\bar{E} = \sum_{i=1}^{m} P_i E_i \tag{4.8}$$

$$\bar{Q} = \sum_{i=1}^{m} P_i Q_i \tag{4.9}$$

$$\beta = \frac{1}{\kappa T} \tag{4.10}$$

$$\alpha = -\frac{\mu}{\kappa T} \tag{4.11}$$

Aquí (4.8) y (4.9) son restricciones. (T, V, μ) están fijos. \bar{E} y \bar{Q} son fluctuantes.

La configuración de cada ensamble **maximiza la entropía** sujeta a las restricciones correspondientes, implementadas mediante multiplicadores de Lagrange.

A partir de ahora introduciremos la siguiente notación,

- \blacksquare T: temperatura
- μ: potencial químico
- z: función partición
- \bullet κ : Constante de Boltzmann

Partiendo de la función partición (considerando el ensamble Gran Canónico por generalidad), se tiene

$$\bar{E} = \sum_{i=1}^{m} P_i E_i = \frac{\sum_{i=1}^{m} E_i e^{-\beta E_i - \alpha Q_i}}{Z}$$
(4.12)

$$= -\left(\frac{\partial}{\partial\beta}\ln(Z)\right)_{\alpha} \tag{4.13}$$

$$\bar{E} = \kappa T^2 \left(\frac{\partial}{\partial T} \ln(Z) \right)_{\mu/T}$$
(4.14)

con

$$\beta = \frac{1}{\kappa T} \quad \Rightarrow \quad \frac{\partial}{\partial \beta} = -T^2 \kappa \frac{\partial}{\partial T} \tag{4.15}$$

también tenemos

$$\bar{Q} = \frac{\sum_{i=1}^{m} Q_i e^{-\beta E_i - \alpha Q_i}}{Z} \tag{4.16}$$

$$= -\left(\frac{\partial}{\partial \alpha} \ln(Z)\right)_{\beta} \tag{4.17}$$

$$\bar{Q} = \kappa T \left(\frac{\partial}{\partial \mu} \ln(Z) \right)_T \tag{4.18}$$

con

$$\alpha = \frac{\mu}{\kappa T} \quad \Rightarrow \quad \frac{\partial}{\partial \alpha} = \kappa T \frac{\partial}{\partial \mu}$$
 (4.19)

También es posible relacionar la función partición con la entropía

$$S = -\kappa \sum_{i=1}^{m} P_i \ln(P_i) \tag{4.20}$$

$$= \kappa \sum_{i=1}^{m} P_i(\ln(Z) + \beta E_i + \alpha Q_i)$$
(4.21)

$$= \kappa \left(\ln(Z) + \beta \bar{E} + \alpha \bar{Q} \right) \tag{4.22}$$

luego

$$S = \kappa \ln(z) + \frac{\bar{E}}{T} - \frac{\mu \bar{Q}}{T} \qquad \Rightarrow \qquad \boxed{-\kappa T \ln(z) = \bar{E} - TS - \mu Q}$$
 (4.23)

Para los diferentes ensambles, existen potenciales termodinámicos definidos en términos de $\ln(Z)$. ³

Potencial Gran Canónico

$$\Omega_{\rm GC} = -\kappa T \ln(Z_{\rm GC}) = \bar{E} - TS - \mu \bar{Q} \tag{4.24}$$

Energía libre de Hemholtz

$$F = -\kappa T \ln(Z_{\rm C}) = \bar{E} - TS \quad (Q_i = 0) \tag{4.25}$$

Existen relaciones entre los potenciales termodinámicos de los diferentes ensambles. Por ejemplo, definiendo la **densidad de estados**

$$\rho(Q, E) = \frac{e^{S(Q, E)/\kappa}}{\delta E} \tag{4.26}$$

 $\rho(Q, E)$ cuenta el número de estados con carga Q y energía entre E y $E + \delta E$. De aquí podemos obtener la energía libre de Hemholtz como

$$F(Q,T) = -\kappa T \ln(Z_{\rm C}) = -\kappa T \ln \int dE \rho(Q,E) e^{-E/\kappa T}$$
(4.27)

Finalmente el potencial Gran Canónico, puede calcularse como

$$\Omega_{\rm GC}(\mu, T) = \kappa T \ln(Z_{\rm GC}) = -T \ln\left(\sum_{Q} e^{-F(Q, T)/\kappa T} e^{\mu Q/\kappa T}\right)$$
(4.28)

4.4. Ensamble isobárico-isotérmico

En el ensamble isobárico-isotérmico (T, P, Q) son constantes y (\bar{E}, \bar{V}) son fluctuantes.

Notemos que V es una cantidad extensiva (proporcional al número total de sistemas N_s). Si no hay restricciones entre sistemas, el potencial Gran Canónico por unidad de volumen es independiente del volumen (cada región es igual a cualquier otra).

Por último, la presión se define como menos la derivada del potencial termodinámico (Gran Canónico) con respecto al volumen. Luego,

$$\Omega_{\rm GC} = \omega_{\rm GC} V \tag{4.29}$$

donde $\omega_{\rm GC}$ es el potencial Gran Canónico por unidad de volumen. Se sigue que

$$\frac{\partial \omega_{\rm GC}}{\partial V} = 0 \tag{4.30}$$

 $^{^3{\}rm Los}$ signos y los factores delante son por razones históricas, desafortunadamente. :(

así,

$$P = \frac{\partial}{\partial V} \Omega_{\rm GC} = -\omega_{\rm GC} = -\frac{\Omega_{\rm GC}}{V}$$
 (4.31)

Entonces

$$\Omega_{GC} = -PV = -\kappa T \ln(Z_{GC}) = E - TS - \mu Q$$
(4.32)

$$PV = TS - E + \mu Q \tag{4.33}$$

Se define G, la **enegía libre de Gibbs**, como⁴

$$G = \mu Q = E - TS + PV \tag{4.34}$$

G es el potencial termodinámico del ensamble isobárico-isotérmico. Además, podemos obtener la siguiente relación

$$E = TS - PV + \mu Q \tag{4.35}$$

conocida como la relación de Euler.

 $^{^{4}}$ se deriva de (4.33)

5.1. Relaciones termodinámicas

Hasta el momento hemos obtenido las siguientes relaciones termodinámicas

Relación de Euler

$$E = TS - PV + \mu Q \tag{5.1}$$

• Energía libre de Hemholtz

$$F = -\kappa T \ln(Z_{\rm C}) = E - TS \tag{5.2}$$

Potencial gran canónico

$$\Omega_{\rm GC} = -PV = -\kappa T \ln(Z_{\rm GC}) = E - TS - \mu Q \tag{5.3}$$

■ Energía libre de Gibbs

$$G = \mu Q = E - TS + PV \tag{5.4}$$

Por otro lado, las funciones de partición de cada ensamble y la relación de E y Q con ellas vienen dadas por 5

$$Z_{\rm C} = \sum_{i=1}^{m} e^{-\beta E_i}, \qquad \beta = \frac{1}{T}$$
 (5.5)

$$Z_{GC} = \sum_{i=1}^{m} e^{-\beta E_i - \alpha Q_i}, \qquad \alpha = -\frac{\mu}{T}$$
 (5.6)

$$\bar{E} = \kappa T^2 \left(\frac{\partial}{\partial T} \ln(Z) \right)_{\mu/T} \tag{5.7}$$

$$\bar{Q} = \kappa T \left(\frac{\partial}{\partial \mu} \ln(Z_{\rm GC}) \right)_T \tag{5.8}$$

5.2. Derivación de las leyes de la termodinámica

De (5.3)

$$\Omega_{\rm GC} = -PV = -\kappa T \ln(Z_{\rm GC}) = E - TS - \mu Q \tag{5.9}$$

despejando para S

$$S = \kappa \ln(Z_{GC}(\mu/T, T, V)) + \frac{E}{T} - \left(\frac{\mu}{T}\right)Q$$
(5.10)

 $^{^5}$ Notar que no escribimos la barra de promedio en \bar{E} y \bar{Q} ya que se sobreentiende donde corresponde.

luego,

$$dS = \left(\kappa \frac{\partial \ln Z_{GC}}{\partial T} - \frac{E}{T^2}\right) dT + \left(\kappa \frac{\partial \ln Z_{GC}}{\partial (\mu/T)} - Q\right) dQ + \kappa \frac{\partial \ln Z_{GC}}{\partial V} dV + \frac{dE}{T} - \frac{\mu dQ}{T}$$
(5.11)

pero

$$PV = T \ln Z_{\rm GC} \qquad \Longrightarrow \qquad \ln Z_{\rm GC} = \frac{P}{T}V$$
 (5.12)

tomando la derivada parcial con respecto a V

$$\frac{\partial \ln Z_{\rm GC}}{\partial V} = \frac{P}{T} \tag{5.13}$$

reemplazando en (5.11),

$$dS = \left(\kappa \frac{\partial \ln Z_{GC}}{\partial T} - \frac{E}{T^2}\right) dT + \left(\kappa \frac{\partial \ln Z_{GC}}{\partial (\mu/T)} - Q\right) dQ + \frac{P}{T} dV + \frac{dE}{T} - \frac{\mu dQ}{T}$$
(5.14)

usando (5.7) y (5.8) se cancelan los primeros dos términos, obteniendo

$$dS = \frac{P}{T}dV + \frac{dE}{T} - \frac{\mu dQ}{T}$$
(5.15)

$$TdS = PdV + dE - \mu dQ$$
 (5.16)

conocida como la segunda ley de la termodinámica.

5.3. Relaciones de equilibrio termodinámico

Consideremos dos sistemas C_1 y C_2 , los cuales pueden intercambiar energía y carga, y ademas pueden modificar su volumen. De las leyes de conservación se tiene

$$dE_1 = -dE_2, dQ_1 = -dQ_2, dV_1 = -dV_2$$
(5.17)

también se tiene

$$dS_{\text{total}} = dS_1 + dS_2 \tag{5.18}$$

Es decir, el cambio en la entropía es la suma de los cambios de la entropía de cada sistema.

Ahora

$$dS_i = \frac{P_i}{T_i} dV_i + \frac{1}{T_i} dE_i - \frac{\mu_i}{T_i} dQ_i$$
(5.19)

Esto es el cambio de la entropía en cada sistema dado por la segunda ley de la termodinámica. Por lo tanto

$$dS_{\text{total}} = dS_1 + dS_2 = \left(\frac{P_1}{T_1} - \frac{P_2}{T_2}\right) dV_1 + \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dE_1 + \left(\frac{\mu_1}{T_1} - \frac{\mu_2}{T_2}\right) dQ_1$$
 (5.20)

Pero del principio de la máxima entropía, la configuración maximiza la entropía (sujeto a las restricciones de conservación). Luego, en todo proceso termodinámico, $dS_{\text{total}} \geq 0$.

La condición de equilibrio termodinámico requiere $dS_{total} = 0$. Por lo tanto la condición de equilibrio establece:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}, \qquad \frac{1}{T_1} = \frac{1}{T_2}, \qquad \frac{\mu_1}{T_1} = \frac{\mu_2}{T_2}$$
(5.21)

entonces

$$P_1 = P_2 \tag{5.22}$$

$$T_1 = T_2 (5.23)$$

$$\mu_1 = \mu_2 \tag{5.24}$$

esto implica también que le intercambio de energía interna o calor (E) se produce desde el sistema de mayor temperatura hacia el de menor temperatura, el intercambio de cargas (Q) ocurre desde el sistema de mayor potencial químico hacia el de menor potencial químico y el cambio de volumen (V) ocurre de modo que el sistema con mayor presión se expande y de menor presión se contrae.

5.4. Otras relaciones termodinámicas

Por un lado

$$E = TS - PV + \mu Q \tag{5.25}$$

si derivamos

$$dE = dTS + TdS - dPV - PdV + d\mu Q + \mu dQ$$
(5.26)

además de la segunda ley,

$$dE = TdS - PdV + \mu dQ \tag{5.27}$$

reemplazamos dE en lo anterior y obtenemos

$$\boxed{SdT - VdP + Qd\mu = 0} \tag{5.28}$$

Acerca de los potenciales termodinámicos

El potencial gran canónico viene dado por

$$\Omega = E - \mu Q - TS \tag{5.29}$$

derivamos

$$d\Omega = dE - d\mu Q - \mu dQ - dTS - TdS \tag{5.30}$$

usando de nuevo la segunda ley

$$TdS = PdV + dE - \mu dQ \tag{5.31}$$

y obtenemos

$$d\Omega = -SdT - PdV - Qd\mu$$
(5.32)

Notar que el ensamble gran canónico tiene (T, V, μ) dijos y (E, Q) fluctuantes. Luego,

$$\Omega = \Omega(T, V, \mu) \tag{5.33}$$

У

$$d\Omega = \left(\frac{\partial\Omega}{\partial T}\right)_{V,\mu} dT + \left(\frac{\partial\Omega}{\partial V}\right)_{T,\mu} dV + \left(\frac{\partial\Omega}{\partial\mu}\right)_{T,V} d\mu \tag{5.34}$$

Por lo tanto,

$$\left(\frac{\partial\Omega}{\partial T}\right)_{V,\mu} = -S \tag{5.35}$$

$$\left(\frac{\partial\Omega}{\partial V}\right)_{T,\mu} = -P\tag{5.36}$$

$$\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,V} = -Q\tag{5.37}$$

Para la energía libre de Hemholtz en su versión integrada viene dada por

$$F = E - TS \tag{5.38}$$

$$dF = dE - dTS - TdS \tag{5.39}$$

Usando nuevamente la segunda ley, obtenemos

$$dF = -PdV + \mu dQ - SdT$$
 (5.40)

En la definición del ensamble canónico, (T, V, Q) estan fijos, y E fluctua. Luego, F = F(T, V, Q), por lo tanto

$$dF = \left(\frac{\partial F}{\partial T}\right)_{V,Q} dT + \left(\frac{\partial F}{\partial V}\right)_{T,Q} dV + \left(\frac{\partial F}{\partial Q}\right)_{T,V} dQ$$
 (5.41)

luego,

$$\left(\frac{\partial F}{\partial T}\right)_{V,Q} = -S \tag{5.42}$$

$$\left(\frac{\partial F}{\partial V}\right)_{TO} = \mu \tag{5.43}$$

$$\left(\frac{\partial F}{\partial Q}\right)_{T,V} = -P \tag{5.44}$$

Para la energia libre de Gibbs,

$$G = E + PV - TS \tag{5.45}$$

$$dG = dE + dPV + PdV - dTS - TdS$$
(5.46)

Haciendo un procedimiento similar al de los casos anteriores, se tiene

$$dG = -SdT + VdP + \mu dQ$$
 (5.47)

en el ensamble isobárico-isotérmico, (T,P,Q) están fijas y (E,V) fluctúa. Luego, G=G(T,P,Q), y por tanto

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,Q} dT + \left(\frac{\partial G}{\partial P}\right)_{T,Q} dP + \left(\frac{\partial G}{\partial Q}\right)_{P,T} dQ$$
 (5.48)

por tanto

$$\left(\frac{\partial G}{\partial T}\right)_{P,Q} = -S \tag{5.49}$$

$$\left(\frac{\partial G}{\partial P}\right)_{TO} = V \tag{5.50}$$

$$\left(\frac{\partial G}{\partial Q}\right)_{P,T} = \mu
\tag{5.51}$$

La **entalpía** se define como

$$H = E + PV (5.52)$$

entonces

$$dH = dE + dPV + PdV \tag{5.53}$$

reemplazando dE de la segunda ley,

$$dH = TdS + VdP + \mu dQ$$
 (5.54)

Por tanto en el **ensamble de Joule-Thompson**, del cual la es su potencial termodinámico, tiene (S, P, Q fijos y V fluctuante, es decir, H = H(S, P, Q). Luego,

$$dH = \left(\frac{\partial H}{\partial S}\right)_{PO} dS + \left(\frac{\partial H}{\partial P}\right)_{SO} dP + \left(\frac{\partial H}{\partial Q}\right)_{PS} dQ$$
 (5.55)

Luego, nos queda

$$\left(\frac{\partial H}{\partial S}\right)_{P,Q} = T
\tag{5.56}$$

$$\left(\frac{\partial H}{\partial P}\right)_{S,O} = V \tag{5.57}$$

$$\left(\frac{\partial H}{\partial Q}\right)_{P,S} = \mu \tag{5.58}$$

Finalmente, para el ensamble microcanónico, las cantidades fijas son (E, V, Q) y de la segunda ley se tiene

$$dE = TdS - PdV + \mu dQ \tag{5.59}$$

Luego, se puede despejar

$$dS = \left(\frac{1}{T}\right) dE + \left(\frac{P}{T}\right) dV - \left(\frac{\mu}{T}\right) dQ \tag{5.60}$$

y considerando que a (E,V,Q)fijos, se tiene que S=S(E,V,Q) y

$$dS = \left(\frac{\partial S}{\partial E}\right)_{V,Q} dE + \left(\frac{\partial S}{\partial V}\right)_{E,Q} dV + \left(\frac{\partial S}{\partial Q}\right)_{V,E} dQ$$
 (5.61)

se tiene que

$$\left(\frac{\partial S}{\partial E}\right)_{V,Q} = \frac{1}{T} \tag{5.62}$$

$$\left(\frac{\partial S}{\partial V}\right)_{E,Q} = \frac{P}{T} \tag{5.63}$$

$$\left(\frac{\partial S}{\partial Q}\right)_{VE} = -\frac{\mu}{T} \tag{5.64}$$

5.5. Resumen: ensambles y potenciales termodinámicos

Como resumen, tenemos la siguiente tabla que relaciona los distintos ensambles con sus potenciales termodinámicos y variables fijas:

Ensamble	Potencial termodinámico	Variabes fijas
Microcanónico	Entropía (S)	(E, V, Q)
Canónico	Energía libre de Hemholtz (F)	(T, V, Q)
Gran Canónico	Potencial gran canónico ($\Omega_{\rm GC}$)	(T, V, μ)
Isobárico-Isotérmico	Energía libre de Gibbs (G)	(T, P, Q)
Joule-Thompson	Entalpía (H)	(S, P, Q)

6.1. Fuerzas a temperatura finita

El trabajo por hecho por una fuerza al recorrer una distancia dx, está dado por

$$W = -\int_{\boldsymbol{x}_1}^{\boldsymbol{x}_2} \boldsymbol{f} \cdot d\boldsymbol{x} \tag{6.1}$$

Esto es una contribución a la energía del sistema.

Supongamos un movimiento en x. Luego incluyendo la contribución de W a la energía del sistema, la cual funcionalmente es análoga al termino -PdV, tenemos

$$dE = TdS - PdV + \mu dQ - fdx \tag{6.2}$$

donde $f = |\mathbf{f}_x|$ es la magnitud de la fuerza.

Ahora, suponamos que el sistema está a T constante. Consideremos F(T,V,Q) y la relacionamos con f:

$$F = E - TS \tag{6.3}$$

$$dF = dE - SdT - TdS \tag{6.4}$$

Considerando (6.2) se tiene

$$dF = -SdT - PdV + \mu dQ - fdx \tag{6.5}$$

$$\implies f dx = -dF - S dt - P dV + \mu dQ \tag{6.6}$$

si consideramos (T, V, Q) fijos, se tiene

$$f dx = -dF \tag{6.7}$$

luego,

$$f = -\left(\frac{\partial F}{\partial x}\right)\Big|_{T,V,Q} \tag{6.8}$$

es decir, la energía libre de Hemholtz F = E - TS juega el rol de potencial.

Notemos que F puede obtenerse directamente de la función partición canónica,

$$F = -\kappa T \ln(Z_{\rm C}) \tag{6.9}$$

Ejemplo 6.1. Un ejemplo estándar consiste en derivar la ley de Hooke para una cadena de N eslabones a temperatura T.

6.2. Relaciones de Maxwell

Las relaciones de Maxwell consisten en un conjunto de equivalencias entre derivadas de variables termodinámicas.

Todas las relaciones de Maxwell pueden ser derivadas desde la relación fundamental de la termodinámica,

$$dS = \beta dE + (\beta P)dV - (\beta \mu)dQ \tag{6.10}$$

de donde podemos identificar directamente,

$$\beta = \left. \frac{\partial S}{\partial E} \right|_{V,Q} \tag{6.11}$$

$$\beta P = \left. \frac{\partial S}{\partial V} \right|_{E,Q} \tag{6.12}$$

$$\beta \mu = -\left. \frac{\partial S}{\partial Q} \right|_{VE} \tag{6.13}$$

Ejemplo 6.2. Considere

$$dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dQ$$
(6.14)

Notamos que para F(x,y) continua y 2 veces diferenciable, se tiene

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} \tag{6.15}$$

es decir, sus derivadas conmutan. Luego, por ejemplo

$$\frac{\partial^2 S}{\partial E \partial V} = \frac{\partial^2 S}{\partial V \partial E} \tag{6.16}$$

$$\left(\frac{\partial}{\partial E} \left(\frac{\partial S}{\partial V}\right)_{E,Q}\right)_{V,Q} = \left(\frac{\partial}{\partial V} \left(\frac{\partial S}{\partial E}\right)_{V,Q}\right)_{E,Q}$$
(6.17)

$$\Longrightarrow \boxed{\frac{\partial}{\partial E} \left(\frac{P}{T}\right)_{V,Q} = \frac{\partial}{\partial V} \left(\frac{1}{T}\right)_{E,Q}} \tag{6.18}$$

Notar que cada potencial termodinámico depende de tres variables y por lo tanto se pueden escoger tres diferentes relaciones entre dobles derivadas. Luego como son 5 potenciales termodinámicos diferentes (para cada uno de los 5 ensambles), tenemos 15 relaciones diferentes entre sus dobles derivadas. Estas son 15 relaciones de Maxwell.

Ejemplo 6.3. Consideremos G = G(T, P, Q), así

$$dG = -SdT + VdP + \mu dQ \tag{6.19}$$

Ahora

$$\frac{\partial^2 G}{\partial T \partial P} = \frac{\partial^2 G}{\partial P \partial T} \tag{6.20}$$

$$\left(\frac{\partial}{\partial T} \left(\frac{\partial G}{\partial P}\right)_{T,Q}\right)_{P,Q} = \left(\frac{\partial}{\partial P} \left(\frac{\partial G}{\partial T}\right)_{P,Q}\right)_{T,Q}$$
(6.21)

$$\Longrightarrow \left| \frac{\partial T}{\partial V} \right|_{P,Q} = -\left. \frac{\partial S}{\partial P} \right|_{T,Q}$$
 (6.22)

Consideremos otro ejemplo.

Ejemplo 6.4. Muestre que

$$\left(\frac{\partial E}{\partial Q}\right)_{S,P} = \mu - P\left(\frac{\partial \mu}{\partial P}\right)_{S,Q} \tag{6.23}$$

Vemos que V no aparece. Luego, despejamos la relación de V de la segunda ley

$$dE = TdS - PdV + \mu dQ \tag{6.24}$$

$$\implies dV = \frac{T}{P}dS + \frac{\mu}{P}dQ - \frac{1}{P}dE$$
 (6.25)

De aquí podemos considerar, sumando E/P para eliminar la dependencia de dE,

$$d\left(V + \frac{E}{P}\right) = dV + \frac{dE}{dP} + Ed\left(\frac{1}{P}\right)$$
(6.26)

Pasando el último término de (6.25) hacia el lado derecho y reemplazando (6.26),

$$d\left(V + \frac{E}{P}\right) = \frac{T}{P}dS + \frac{\mu}{P}dQ - Ed\left(\frac{1}{P}\right)$$
(6.27)

Entonces

$$\frac{\partial^2(V+E/P)}{\partial(1/P)\partial Q} = \frac{\partial^2(V+E/P)}{\partial Q\partial(1/P)} \tag{6.28}$$

Notemos que si y sólo si (1/P) es constante,

$$\left(\frac{\partial}{\partial(1/P)}\left(\frac{\partial\mu}{\partial P}\right)\right)_{SQ} = \left(\frac{\partial}{\partial Q}E\right)_{SP}$$
(6.29)

Usando que

$$\frac{\partial}{\partial (1/P)} = -P^2 \frac{\partial}{\partial P} \tag{6.30}$$

tenemos

$$\left(\frac{\partial E}{\partial Q}\right)_{S,P} = -P^2 \left(\frac{\partial}{\partial P} \left(\frac{\partial \mu}{\partial P}\right)\right)_{S,Q} \tag{6.31}$$

$$\left(\frac{\partial E}{\partial Q}\right)_{S,P} = -P^2 \left(-\frac{1}{P^2}\mu + \frac{1}{P}\left(\frac{\mu}{P}\right)_{S,Q}\right) \tag{6.32}$$

$$\left[\left(\frac{\partial E}{\partial Q} \right)_{S,P} = \mu - P \left(\frac{\partial \mu}{\partial P} \right)_{S,Q} \right] \tag{6.33}$$

6.3. Fluctuaciones

De la función de partición es posible obtener momentos de orden superior para las variables termodinámicas 6 . Por ejemplo, tenemos

$$Z_{\rm C} = \sum_{i} e^{-\beta E_i} \tag{6.34}$$

y por definición la energía promedio viene dada por

$$\langle E \rangle = \sum_{i} E_{i} P_{i} \tag{6.35}$$

у

$$P_i = \frac{e^{-\beta E_i}}{Z_C} \tag{6.36}$$

por lo tanto, de (4.13),

$$\langle E \rangle = \frac{\sum_{i} E_{i} e^{-\beta E_{i}}}{Z_{\rm C}} = -\frac{1}{Z_{\rm C}} \frac{\partial Z_{\rm C}}{\partial (1/\kappa T)}$$
 (6.37)

Entonces

$$\langle E \rangle = -\frac{\partial}{\partial (1/\kappa T)} \ln(Z_{\rm C}) = \kappa T^2 \frac{\partial}{\partial T} \ln(Z_{\rm C})$$
(6.38)

Además,

$$\langle E^2 \rangle = \sum_i E_i^2 P_i = \frac{\sum_i E_i^2 e^{-Ei/\kappa T}}{Z_{\rm C}}$$
(6.39)

Notar que dado que

$$\beta = \frac{1}{\kappa T} \tag{6.40}$$

en términos de β tenemos

$$Z_{\rm C} = \sum_{i} e^{-\beta E_i} \tag{6.41}$$

luego

$$\frac{\partial}{\partial \beta} \ln(Z_{\rm C}) = -\frac{1}{Z_{\rm C}} \sum_{i} E_i e^{-\beta E_i}$$
(6.42)

$$= -\langle E \rangle \tag{6.43}$$

es decir,

$$\frac{\partial}{\partial \beta} \ln(Z_{\rm C}) = -\langle E \rangle \tag{6.44}$$

⁶Los momentos de orden superior se pueden entender como derivadas de orden superior de la función partición con respecto a los multiplicadores de Lagrange.

Calculemos ahora la segunda derivada con respecto a β ,

$$\frac{\partial^2}{\partial \beta^2} \ln(Z_{\rm C}) = \frac{\partial}{\partial \beta} \left(-\frac{1}{Z_{\rm C}} \sum_i E_i e^{-\beta E_i} \right)$$
(6.45)

$$= \left(\frac{1}{Z_{\rm C}^2} \frac{\partial}{\partial \beta} \sum_i E_i e^{-\beta E_i}\right) + \frac{1}{Z_{\rm C}} \sum_i E_i^2 e^{-\beta E_i}$$

$$(6.46)$$

$$= \left(-\frac{1}{Z_{\rm C}^2} E_j \sum_j e^{-\beta E_j}\right) \left(\sum_i E_i e^{-\beta E_i}\right) + \frac{1}{Z_{\rm C}} \sum_i E_i^2 e^{-\beta E_i}$$
(6.47)

$$= \left(-\frac{1}{Z_{\rm C}}E_j \sum_{i} e^{-\beta E_j}\right) \left(\frac{1}{Z_{\rm C}} \sum_{i} E_i e^{-\beta E_i}\right) + \frac{1}{Z_{\rm C}} \sum_{i} E_i^2 e^{-\beta E_i}$$
(6.48)

$$= -\langle E \rangle^2 + \langle E^2 \rangle \tag{6.49}$$

así,

$$\frac{\partial^2}{\partial \beta^2} \ln(Z_{\rm C}) = \langle E^2 \rangle - \langle E \rangle^2$$
(6.50)

Propiedad 6.1. Sea $\langle E \rangle$ el valor promedio de una cantidad, entonces la varianza de E se puede escribir de dos maneras equivalentes

$$Var(E) = \langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$$
(6.51)

En efecto,

$$\langle (E - \langle E \rangle)^2 \rangle = \sum_{i} P_i \left(E_i - \sum_{j} P_j E_j \right)^2 \tag{6.52}$$

$$= \sum_{i} P_{i} \left(E_{i}^{2} - 2E_{i} \sum_{j} P_{j} E_{j} + \left(\sum_{j} P_{j} E_{j} \right)^{2} \right)$$
 (6.53)

$$= \sum_{i} P_i E_i^2 - 2 \left(\sum_{i} P_i E_i \right) \left(\sum_{j} P_j E_j \right) + \underbrace{\sum_{i} P_i}_{i} \left(\sum_{j} P_j E_j \right)^2$$
 (6.54)

$$= \langle E^2 \rangle - 2 \langle E \rangle^2 + \langle E \rangle^2 \tag{6.55}$$

$$= \langle E^2 \rangle - \langle E \rangle^2 \tag{6.56}$$

Luego, (6.50) se puede escribir como

$$\left| \frac{\partial^2}{\partial \beta^2} \ln(Z_{\rm C}) = \left\langle (E - \langle E \rangle)^2 \right\rangle \equiv \text{Var}(E) \right|$$
 (6.57)

Además, podemos reescribir esto en términos de derivadas de T, usando

$$\beta = \frac{1}{\kappa T} \implies \frac{\partial}{\partial \beta} = -\kappa T^2 \frac{\partial}{\partial T}$$
 (6.58)

luego,

$$\frac{\partial}{\partial \beta} \left(\frac{\partial}{\partial \beta} \ln Z_{\rm C} \right) = \frac{\partial}{\partial \beta} \left(-\kappa T^2 \frac{\partial}{\partial T} \ln Z_{\rm C} \right) \tag{6.59}$$

$$= \kappa^2 T^2 \frac{\partial}{\partial T} \left(T^2 \frac{\partial}{\partial T} \ln Z_{\rm C} \right) \tag{6.60}$$

$$= \kappa^2 T^2 \left(2T \frac{\partial}{\partial T} \ln Z_{\rm C} + T^2 \frac{\partial^2}{\partial T^2} \ln Z_{\rm C} \right)$$
 (6.61)

finalmente, se tiene

$$Var(E) = 2\kappa^2 T^3 \frac{\partial}{\partial T} \ln Z_{\rm C} + \kappa^2 T^4 \frac{\partial^2}{\partial T^2} \ln Z_{\rm C}$$
(6.62)

De la clase anterior se tiene

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln(Z_{\rm C})$$
 (7.1)

$$Var(E) = \frac{\partial^2}{\partial \beta^2} \ln(Z_C) = \langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$$
 (7.2)

La función partición también puede relacionarse con la fluctuación de la carga y con la covarianza entre la carga y la energía según

$$\operatorname{Var}(Q) = \left\langle (Q - \langle Q \rangle)^2 \right\rangle = \frac{\partial^2}{\partial \alpha^2} \ln Z_{GC}$$
 (7.3)

$$|\operatorname{Cov}(E,Q) = \langle (E - \langle E \rangle)(Q - \langle Q \rangle) \rangle = \frac{\partial}{\partial \alpha} \frac{\partial}{\partial \beta} \ln Z_{GC}$$
 (7.4)

En efecto, para (7.3) la demostración es análoga al procedimiento que se usó para mostrar (6.50) pero ahora considerando Z_{GC} .

Para mostrar (7.4), calculemos la doble derivada de l
n $Z_{\rm GC}$ con respecto a α y
 $\beta,$

$$\begin{split} \partial_{\beta}\partial_{\alpha} \ln Z_{\text{GC}} &= \partial_{\beta} \left(\frac{1}{Z_{\text{GC}}} \partial_{\alpha} \left(\sum_{i} e^{-\beta E_{i} - \alpha Q_{i}} \right) \right) \\ &= \partial_{\beta} \left(-\frac{1}{Z_{\text{GC}}} Q_{i} \sum_{i} e^{-\beta E_{i} - \alpha Q_{i}} \right) \\ &= \left(\frac{1}{Z_{\text{GC}}^{2}} Q_{i} \partial_{\beta} Z_{\text{GC}} \right) \left(\sum_{i} e^{-\beta E_{i} - \alpha Q_{i}} \right) + \frac{1}{Z_{\text{GC}}} Q_{i} E_{i} \sum_{i} e^{-\beta E_{i} - \alpha Q_{i}} \\ &= -\frac{1}{Z_{\text{GC}}^{2}} \left(\sum_{j} E_{j} e^{-\beta E_{j} - \alpha Q_{j}} \right) \left(\sum_{i} Q_{i} e^{-\beta E_{i} - \alpha Q_{i}} \right) + \frac{1}{Z_{\text{GC}}} Q_{i} E_{i} \sum_{i} e^{-\beta E_{i} - \alpha Q_{i}} \\ &= \langle EQ \rangle - \langle E \rangle \langle Q \rangle \end{split}$$

es decir,

$$Cov(E, Q) = \partial_{\beta}\partial_{\alpha} \ln Z_{GC} \tag{7.5}$$

Los calores específicos están asociados a las fluctuaciones. Por ejemplo

$$\left(\frac{\partial E}{\partial T}\right)_{V,\alpha} = \frac{1}{\kappa T^2} \left\langle (E - \langle E \rangle)^2 \right\rangle$$
(7.6)

En efecto, usando que

$$\langle E \rangle = -\partial_{\beta} \ln Z_{\rm GC}, \qquad \partial_T = -\frac{1}{\kappa T^2} \partial_{\beta}$$
 (7.7)

se tiene

$$\left(\frac{\partial E}{\partial T}\right)_{V\alpha} = -\frac{1}{\kappa T^2} \frac{\partial}{\partial \beta} \left(-\frac{\partial}{\partial \beta} \ln Z_{GC}\right)$$
(7.8)

$$= \frac{1}{\kappa T^2} \frac{\partial^2}{\partial \beta^2} \ln Z_{\rm GC} \tag{7.9}$$

$$= Var(E) \tag{7.10}$$

7.1. Mecánica estadística de partículas no-interactuantes

Generalmente cuando uno piensa en gases, uno piensa en la ley de los gases ideales, ley que es válida para gases que están suficientemente diluidos tal que las interacciones entre sus partículas puede ser despreciada y la estadística de partículas idénticas puede ser ignorada. Ahora consideraremos igualmente que las interacciones entre partículas pueden ser despreciadas, pero consideraremos en detalle los efectos de la estadística cuántica, la cual juega un rol importante en situaciones en todos los campos de la física. Por ejemplo, el concepto de gas de Fermi juega es fundamental para entender la estructura nuclear, estelar y propiedades de metales y superconductores. Para sistemas de Bose, la degeneración cuántica puede manejar la creación de super-fluídos, tales como Helio líquido. A pesar de la presencia de interacciones fuertes entre los constituyentes, el rol de la degeneración cuántica puede jugar un rol dominante al determinar las propiedades y comportamiento de numerosos sistemas. Comenzaremos el estudio, considerando gases no-interactuantes, el cual consiste en un conjunto de modos de momentum independientes.

Consideremos un grupo de partículas no interactuantes en una caja. Supongamos que la caja tiene dimensiones L_x, L_y, L_z tales que $x \in [0, L_x], y \in [0, L_y], z \in [0, L_z]$. Recordemos que los autoestados son:

$$\psi_{n_x,n_y,n_z} \sim \sin\left(\frac{p_x x}{\hbar}\right) \sin\left(\frac{p_y y}{\hbar}\right) \sin\left(\frac{p_z z}{\hbar}\right)$$
 (7.11)

con

$$p_x = \frac{\hbar \pi n_x}{L_x}, \qquad p_y = \frac{\hbar \pi n_y}{L_y}, \qquad p_z = \frac{\hbar \pi n_z}{L_z}, \qquad \{n_x, n_y, n_z\} \in \mathbb{N}$$
 (7.12)

Aquí, los n_i corresponden a los armónicos de la función de onda para una partícula en un pozo de potencial rectangular con paredes de potencial infinito. Esto implica que la función de onda se anula en las paredes de la caja. Notar que el número de estados disponible hasta $n = \sqrt{n_x^2 + n_y^2 + n_z^2}$ puede aproximarse como un octavo por el volúmen de la esfera de radio n

$$\frac{1}{8} \frac{4}{3} \pi n^3 = N \tag{7.13}$$

Luego, el número de estados contenidos entre un armónico n + dn se puede aproximar como

$$dN = \frac{4\pi n^2 dn}{8} = \frac{d^3 n}{8} \tag{7.14}$$

Finalmente, considerando que

$$n_x = \frac{L_x}{\pi \hbar} p_x, \qquad n_y = \frac{L_y}{\pi \hbar} p_y, \qquad n_z = \frac{L_z}{\pi \hbar} p_z \tag{7.15}$$

$$d^{3}n = dn_{x}dn_{y}dn_{z} = \frac{L_{z}L_{y}L_{z}}{(\pi\hbar)^{3}}d^{3}p = \frac{V}{(\pi\hbar)^{3}}d^{3}p$$
 (7.16)

Se tiene que el número de estados con momentum entre P y P + dP está dado por

$$dN = \frac{V}{(2\pi\hbar)^3} d^3 p$$
 (7.17)

Finalmente, si la partícula tiene spin s, existe una degenerancia interna dada por (2s+1), correspondiente a los posibles estados de spin para el mismo (n_x, n_y, n_z) . Entonces

$$dN = (2s+1)\frac{V}{(2\pi\hbar)^3}d^3p$$
 (7.18)

Nota: Es importante notar que dN se refiere al número de modos, o estados de una sola partícula, no al número de partículas ni al número de estados del sistema.

Encontremos ahora la función partición Z_{GC} , la cual depende de si la partícula es un bosón o un fermión. Para fermiones puede existir máximo una partícula en cada estado, mientras que para bosones no hay restriciones del número de partículas en cada estado. Veamos esto a partir de las propiedades de simetría de las funciones de onda.

Para ver esto, consideremos un sistema de 2 partículas 1 y 2 no interactuantes. La función de nda total del sistema será

$$\psi_{\text{total}}(\boldsymbol{x}_1, \boldsymbol{x}_2) \sim \psi_1(\boldsymbol{x}_1)\psi_2(\boldsymbol{x}_2) \tag{7.19}$$

• Para los bosones la función de onda es simétrica bajo intercambio de a pares de partículas,

$$\psi_{\text{total}}^{\text{bosón}}(\boldsymbol{x}_1, \boldsymbol{x}_2) = \frac{1}{\sqrt{2}} \psi_1(\boldsymbol{x}_1) \psi_2(\boldsymbol{x}_2) + \frac{1}{\sqrt{2}} \psi_2(\boldsymbol{x}_1) \psi_1(\boldsymbol{x}_2) = \psi_{\text{total}}^{\text{bosón}}(\boldsymbol{x}_2, \boldsymbol{x}_1)$$
(7.20)

Esto se cumple aunque ψ_1 y ψ_2 sean differentes.

 Para los fermiones la función de onda es antisimétrica bajo intercambio de a pares de partículas,

$$\psi_{\text{total}}^{\text{fermion}}(\boldsymbol{x}_1, \boldsymbol{x}_2) = \frac{1}{\sqrt{2}}\psi_1(\boldsymbol{x}_1)\psi_2(\boldsymbol{x}_2) - \frac{1}{\sqrt{2}}\psi_2(\boldsymbol{x}_1)\psi_1(\boldsymbol{x}_2) = -\psi_{\text{total}}^{\text{bosón}}(\boldsymbol{x}_2, \boldsymbol{x}_1)$$
 (7.21)

luego, la función de onda total es antisimétrica.

Supongamos ahora que ambas partículas estan en el mismo estado, es decir

$$\psi_1(\boldsymbol{x}) = \psi_2(\boldsymbol{x}) \tag{7.22}$$

¿Cuánto vale $\psi_{\text{total}}^{\text{fermión}}(\boldsymbol{x}, \boldsymbol{x})$? En este caso $\psi_{\text{total}}^{\text{fermión}} = 0$. Luego, no puede haber 2 fermiones en un mismo estado.

De la clase pasada tenemos

- Bosón: no hay límite para la ocupación de un estado.
- Fermión: ocupación máxima es 1 (máximo una partícula por estado)

Este comportamiento se deduce directamente de la paridad de la función de onda, la cual es simétrica bajo el intercambio de pares de partículas para los bosones antisimétrica para los fermiones.

Por otro lado, el número de estados disponibles para una partícula libre no interactuante en una caja de volúmen V con momentum en el elemento diferencial $d^D p$ es ⁷

$$dN = (2s+1)\frac{V}{(2\pi\hbar)^D}d^Dp$$
(8.1)

Derivemos la función partición en el ensamble gran canónico (el ensamble más general a volumen constante). Tenemos que

$$Z_{GC} = \sum_{i} e^{-\beta E_i - \alpha Q_i} = \sum_{i} e^{-\beta (E_i - \mu Q_i)}$$
 (8.2)

Recordemos que i son las configuraciones posibles del sistema total, E_i es la energía total de la configuración i, y Q_i es la carga (o número de partículas) total.

Para un conjunto de sistemas no interactuantes (por ejemplo, partículas en diferentes estados de momentum p) la función de partición del sistema total es igual al producto de las funciones de partición de cada subsistema.

Consideremos como caso de interés, un gas de partículas no interactuantes con momentum p y carga q las cuales son consideradas independientes una de otra. Cada estado de momentum p tiene una ocupación n_p . Luego, la función partición parcial para el estado de momentum p está dada por

$$Z_p = \sum_{n_p} e^{-n_p \beta(\epsilon_p - \mu q)} \tag{8.3}$$

Acá

$$\epsilon(p) = \frac{p^2}{2m}, \qquad \epsilon(p) = \sqrt{p^2 c^2 + m^2 c^2}$$
(8.4)

para cases no-relativistas y relativistas respectivamente.

La energía total de la configuración de momentum p es

$$E = n_p \epsilon(p) \tag{8.5}$$

y la carga total

$$Q = n_p q \tag{8.6}$$

⁷ Notar que para D=3, $\mathrm{d}^3p=4pp^2\mathrm{d}p$, y en general para $\mathrm{d}^Dp=\Omega p^{D-1}\mathrm{d}p$. Para D=2 por ejemplo, $\mathrm{d}^2p=2\pi p\mathrm{d}p$.

El sistema total admite configuraciones $\{n_{p_1}, n_{p_2}, ...\}$ que corresponden a n_{p_1} partículas con momentum p_1, n_{p_2} con momentum p_2 , etc. Luego, la función partición total es

$$Z_{GC} = \sum_{\{n_{p_1}, n_{p_2}, \dots\}} e^{-\beta(n_{p_1}\epsilon(p_1) + n_{p_2}\epsilon(p_2) + \dots)} e^{\beta\mu q(n_{p_1} + n_{p_2} + \dots)}$$
(8.7)

Suponiendo cada suma de e como la multiplicidad de las exponenciales, queda

$$Z_{GC} = \prod_{n_p} Z_p \tag{8.8}$$

Podemos evaluar \mathbb{Z}_p dependiendo de si las partículas son bosones o fermiones. Para los fermiones:

$$n_p \in \{0, 1\} \tag{8.9}$$

$$Z_p = \sum_{n_p=0}^{1} e^{-n_p \beta(\epsilon(p) - \mu q)}$$
 (8.10)

$$Z_p = 1 + e^{-\beta(\epsilon(p) - \mu q)}$$
(8.11)

Para los bosones:

$$n_p \in \{0, 1, 2, 3, \dots\} \tag{8.12}$$

$$Z_p = \sum_{n_p=0}^{\infty} e^{-n_p \beta(\epsilon(p) - \mu q)}$$
(8.13)

Podemos escribir

$$Z_p = \sum_{n_p=0}^{\infty} \underbrace{\left(e^{\beta(\epsilon(p)-\mu q)}\right)^{n_p}}_{R^{n_p}} \tag{8.14}$$

usando que

$$1 + R + R^2 + \dots = \frac{1}{1 - R} \tag{8.15}$$

se tiene

$$Z_p = \frac{1}{1 - e^{\beta(\epsilon(p) - \mu q)}}$$
(8.16)

Además, de (8.8),

$$\ln(Z_{\rm GC}) = \sum_{p} \ln(Z_p) \tag{8.17}$$

Así,

$$\ln(Z_p) = \mp \left(1 \mp e^{\beta(\epsilon(p) - \mu q)}\right)$$
(8.18)

donde - para los bosones y + para los fermiones.

Por último, considerando que para el estado de momentum entre p y $p+\mathrm{d}p$ hay una vacancia (# de estados posibles) donde por $\mathrm{d}N$ se tiene: ⁸

$$\ln(Z_{\rm GC}) = (2s+1) \int_{\mathbb{R}^D} \frac{V d^D p}{(2\pi\hbar)^D} (\mp) \ln\left(1 \mp e^{-\beta(\epsilon(p) - \mu q)}\right)$$
(8.19)

Dada la función partición, podemos calcular $\langle Q \rangle$ y $\langle E \rangle$ para el sistema (correspondiente a un gas de partículas coon (T, V, μ) constantes).

En particular, calculemos,

$$\langle Q \rangle = -\frac{\partial}{\partial \alpha} \ln Z_{\rm GC} = \frac{\partial}{\partial (\beta \mu)} \ln Z_{\rm GC}, \qquad \langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z_{\rm GC}$$
 (8.20)

$$\langle Q \rangle = (2s+1) \int_{\mathbb{R}^D} \frac{V d^D p}{(2\pi\hbar)^D} \cdot \frac{q e^{-\beta(\epsilon(p) - \mu q)}}{1 \mp e^{\beta(\epsilon(p) - \mu q)}}$$
(8.21)

dividiendo por el volúmen, tenemos que la densidad de carga, donde q es la carga de una partícula es

$$\frac{\langle Q \rangle}{V} = (2s+1) \int_{\mathbb{R}^D} \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} f(\epsilon(p)) q$$
 (8.22)

donde

$$f(\epsilon(p)) = \frac{e^{-\beta(\epsilon(p) - \mu q)}}{1 \mp e^{\beta(\epsilon(p) - \mu q)}}$$
(8.23)

la cual es la función de ocupación (o probabilidad de ocupación) para la energía ϵ . $f(\epsilon)$ representa la probabilidad relativa (no normalizada) de que una partícula tenga energía ϵ .

Para el caso particular de que se escoja q=1, se tiene que Q=N con N el número total de partículas y N/V la densidad numérica.

Si se escoge q=m (con m masa de una partícula), se tiene Q=M con M la masa total tM/V la densidad de masa.

Ahora calculemos $\langle E \rangle$,

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z_{\rm GC}$$
 (8.24)

$$= (2s+1) \int_{\mathbb{R}^D} \frac{V d^D p}{(2\pi\hbar)^D} \cdot \frac{\epsilon(p) e^{-\beta(\epsilon(p) - \mu q)}}{1 \mp e^{\beta(\epsilon(p) - \mu q)}}$$
(8.25)

luego, la densidad de energía expresada en términos de la función de ocupación es

$$\frac{\langle E \rangle}{V} = (2s+1) \int_{\mathbb{R}^D} \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} f(\epsilon(p)) \epsilon(p)$$
(8.26)

⁸Recordemos que para índice de suma continua, la sumatoria se convierte en una integral.

En general, sea j(p) una cantidad correspondiente a una propiedad de una partícula que depende del momentum p, la densidad total de dicha propiedad, J/V está dada por

$$\boxed{\frac{J}{V} = (2s+1) \int_{\mathbb{R}^D} \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} f(\epsilon(p)) j(p)}$$
(8.27)

Si j(p) es constante (independiente de p) se recupera el caso de q. Explícitamente, las funciones de ocupación pueden clasificarse como:

$f(\epsilon)$	Distribución
$\frac{e^{-\beta(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}}$	Fermi-Dirac
$\frac{e^{-\beta(\epsilon-\mu)}}{1-e^{-\beta(\epsilon-\mu)}}$	Bose-Einstein
$e^{-\beta(\epsilon-\mu)}$	Boltzmann

Notar que si se considera q=1 para que $f(\epsilon)$ permita calcular la densidad de número N/V.

Notar que para $e^{-\beta(\epsilon-\mu)} \ll 1$, (Fermi-Dirac) ~ (Bose-Einstein) ~ (Boltzmann). A esto se le llama **límite clásico**.

9. Clase 9

9.1. Función partición de un gas ideal monoatómico

Para el ensamble canónico tenemos $Z_{\rm C}=e^{-\beta\epsilon_i}$, con (T,V,Q) fijos. Supongamos que la energía es función del momentum y de la posición (canónicos conjugados) $\epsilon=\epsilon(\boldsymbol{p},\boldsymbol{q})$ en particular para una partícula relativista de spin 0.

$$E(\mathbf{p}, \mathbf{q}) = \frac{\mathbf{p}^2}{2m} + V(q) \tag{9.1}$$

Para el gas ideal monoatómico consideramos despreciable las interacciones entre sus partículas y que V=0. Ahora considerando que el número de estados con momentum entre p y p+dp y posición q y q+dq esta dados por

$$dN = \frac{d^3 \mathbf{p} d^3 \mathbf{q}}{(2\pi\hbar)^3} = \frac{(dp_x dp_y dp_z)(dq_x dq_y dq_z)}{(2\pi\hbar)^3}$$
(9.2)

tenemos

$$Z_{\rm C} = \int_{\mathbb{R}^6} \frac{\mathrm{d}^3 \mathbf{p} \mathrm{d}^3 \mathbf{q}}{(2\pi\hbar)^3} e^{-\beta \epsilon(\mathbf{p}, \mathbf{q})}$$

$$\tag{9.3}$$

Recordar que para $V(|\mathbf{q}|) = 0$, la integral en $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ puede factorizarse y se obtiene V (lo que teníamos antes)

$$dN = \frac{V d^3 \mathbf{p}}{(2\pi\hbar)^3} \tag{9.4}$$

Teniendo la función partición, es posible calcular los valores promedio de observables tales como las energías (cinética, potencial, etc.) del sistema.

Notar que $(2\pi\hbar)^3$ es el elemento de volúmen del espacio de face y representa una discretización del sistema. En particular, $(d^3pd^3q)/(2\pi\hbar)^3$ es el número de estados que *caben* en el prisma del espacio de fase con lados dx, dy, dz. Esto puede entenderse a partir del principio de incertidumbre ya que $\Delta x \Delta p_x \sim h$.

Calculemos la energía cinética promedio en el eje x,

$$\left\langle \frac{p_x^2}{2m} \right\rangle = \frac{\int \frac{\mathrm{d}^3 \mathbf{p} \mathrm{d}^3 \mathbf{q}}{(2\pi\hbar)^3} \left(\frac{p_x^2}{2m} \right) e^{-\beta \left(\frac{p_x^2 + p_y^2 + p_z^2}{2m} + V(q) \right)}}{\int \frac{\mathrm{d}^3 \mathbf{p} \mathrm{d}^3 \mathbf{q}}{(2\pi\hbar)^3} e^{-\beta \left(\frac{p_x^2 + p_y^2 + p_z^2}{2m} + V(q) \right)}}$$
(9.5)

Podemos notar que la exponencial puede ser separada en el producto de exponenciales, y como cada exponencial depende de una variable distinta (x, y, z) en la integral podemos escribir el producto de las integrales ya que serán de variables independientes cada una. Por lo tanto, podemos cancelar todo lo que no depende de x entre en numerador y el denominador de forma que nos queda

$$\left\langle \frac{p_x^2}{2m} \right\rangle = \frac{2 \int_0^\infty \mathrm{d}p_x \left(\frac{p_x^2}{2m}\right) e^{-\frac{\beta p_x^2}{2m}}}{2 \int_0^\infty \mathrm{d}p_x e^{-\frac{\beta p_x^2}{2m}}}$$
(9.6)

debido a que el argumento de las integrales es par. Haciendo

$$u = \frac{p_x^2}{2m} \implies \mathrm{d}p_x = \sqrt{\frac{m}{2u}} \mathrm{d}u \tag{9.7}$$

tenemos,

$$\left\langle \frac{p_x^2}{2m} \right\rangle = \frac{\int_0^\infty \sqrt{\frac{m}{2u}} u e^{-\beta u} du}{\int_0^\infty \sqrt{\frac{m}{2u}} e^{-\beta u} du}$$
(9.8)

$$= \frac{\int_0^\infty \sqrt{u} e^{-\beta u} du}{\int_0^\infty \frac{1}{\sqrt{u}} e^{-\beta u} du}$$
(9.9)

$$=\frac{1}{2\beta}\tag{9.10}$$

Por lo tanto,

$$\left[\left\langle \frac{p_x^2}{2m} \right\rangle_T = \frac{1}{2} \kappa T \right] \tag{9.11}$$

Notar que

$$\left\langle \frac{p_x^2}{2m} \right\rangle_T = \left\langle \frac{p_y^2}{2m} \right\rangle_T = \left\langle \frac{p_z^2}{2m} \right\rangle_T = \frac{1}{2}\kappa T \tag{9.12}$$

y por lo tanto, el valor promedio de la energía cinética de una partícula no relativista es

$$\langle E_c \rangle_T = \frac{3}{2} \kappa T, \quad \text{con} \quad E_c = \frac{p_x^2 + p_y^2 + p_z^2}{2m}$$
 (9.13)

9.2. Ejemplos varios

Ejemplo 9.1. Considere

$$V(\mathbf{q}) = \frac{1}{2}m\omega^2 V(|\mathbf{q} - \mathbf{q}_0|), \quad \text{con} \quad \mathbf{q}_0 = (x_0, y_0, z_0)$$
 (9.14)

y encuentre $\langle V \rangle_T$.

Solución 9.1. El potencial es

$$V(x,y,z) = \frac{1}{2}m\omega^2 \left[(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 \right]$$
 (9.15)

y la energía

$$E = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + V(x, y, z)$$
(9.16)

Para calcular $\langle V \rangle_T$ usamos lo anterior

$$\langle V \rangle_T = \frac{\int \frac{\mathrm{d}^3 p \mathrm{d}^3 q}{(2\pi\hbar)^3} V(x, y, z) e^{-\beta E}}{\int \frac{\mathrm{d}^3 p \mathrm{d}^3 q}{(2\pi\hbar)^3} e^{-\beta E}}$$
(9.17)

pero

$$E = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + V(x, y, z)$$
(9.18)

luego, hay varios términos que se cancelan entre sí en (9.17), resultando

$$\langle V \rangle_T = \frac{\int d^3 x e^{-\beta V(x,y,z)} V(x,y,z)}{\int e^{-\beta V(x,y,z)}}$$
(9.19)

Haciendo el siguiente cambio de variable,

$$u_x = x - x_0, u_y = y - y_0, u_z = z - z_0 (9.20)$$

se tiene que $u^2 = u_x^2 + u_y^2 + u_z^2$. Entonces

$$\langle V \rangle_T = \frac{\int d^3 x e^{-\beta \left(\frac{1}{2}m\omega^2 u^2\right)} \left(\frac{1}{2}m\omega^2 u^2\right)}{\int e^{-\beta \left(\frac{1}{2}m\omega^2 u^2\right)}}$$
(9.21)

Haciendo

$$v = \frac{1}{2}m\omega^2 u^2 \implies u = \sqrt{\frac{2v}{m\omega^2}}$$
 (9.22)

$$\implies dv = m\omega^2 u du \implies du = \frac{dv}{\sqrt{2vm\omega^2}}$$
 (9.23)

Luego, como las 3 integrales en x, y, z son iguales, hacemos la del eje x y multiplicamos por 3. Esto es,

$$\langle V \rangle_T = 3 \frac{\int e^{-\beta v} \frac{\mathrm{d}v}{\sqrt{2vm\omega^2}} v}{\int e^{-\beta v} \frac{\mathrm{d}v}{\sqrt{2mv\omega^2}}}$$
(9.24)

$$=3\frac{\int e^{-\beta v}\sqrt{v}dv}{\int e^{-\beta v}\frac{1}{\sqrt{v}}dv}$$
(9.25)

$$=\frac{3}{2}\kappa T\tag{9.26}$$

donde el dominio de integración es de 0 a ∞ . Luego,

$$\langle V \rangle_T = \frac{3}{2} \kappa T \tag{9.27}$$

Ejemplo 9.2. Considere una molécua diatómica formada por 2 átomos de masas m_1 y m_2 . Considere que el potencial entre ambos átomos, dado por $V(|q_1 - q_2|)$ puede aproximarse como

$$V(u) \approx V(u_0) + V'(u_0)(u - u_0) + \frac{1}{2}V''(u_0)(u - u_0)^2$$
(9.28)

donde u_0 es la distancia de equilibrio de potencial y $u = q_1 - q_2$.

1. Escribe el Hamiltoniano del sistema.

2. Encuentre la función partición canónica.

3. Encuentre
$$\sqrt{\langle (u-u_0)^2 \rangle} = \sqrt{\frac{3\kappa T}{V''(u_0)}}$$
.

Solución 9.2. 1. Como es una molécula diatómica

$$H = \frac{\mathbf{p}_1^2}{2m} + \frac{\mathbf{p}_2^2}{2m} + V(|q_1 - q_2|)$$
(9.29)

$$= \frac{\boldsymbol{p}_{1}^{2}}{2m} + \frac{\boldsymbol{p}_{2}^{2}}{2m} + V(u_{0}) + \underbrace{V'(u_{0})(u - u_{0})}_{\text{derivada en la posición}}^{0} + \underbrace{\frac{1}{2}V''(u_{0})(u - u_{0})^{2}}_{C}$$
(9.30)

2. La función partición canónica viene dada por

$$Z_{\rm C} = \int_{\mathbb{R}^6} \frac{\mathrm{d}^3 \boldsymbol{q_1} \mathrm{d}^3 \boldsymbol{q_2} \mathrm{d}^3 \boldsymbol{p_1} \mathrm{d}^3 \boldsymbol{p_2}}{(2\pi\hbar)^6} e^{-\beta \left(\frac{\boldsymbol{p_1}^2}{2m} + \frac{\boldsymbol{p_2}^2}{2m} + V(u_0) + \frac{1}{2}V''(u_0)(u - u_0)^2\right)}$$
(9.31)

3.

$$\langle (|\boldsymbol{q}_1 - \boldsymbol{q}_2| - u_0)^2 \rangle = \frac{\frac{1}{2} \int d^3 \boldsymbol{q}_1 d^3 \boldsymbol{q}_2 e^{-\beta C(\frac{1}{2}(u - u_0)^2)} C(u - u_0)^2}{\int d^3 \boldsymbol{q}_1 d^3 \boldsymbol{q}_2 e^{-\beta \frac{1}{2}(u - u_0)^2}}$$
(9.32)

Donde se calculan las integrales que dependen de p_1 y p_2 y la constante $V(u_0)$.

Clase 10 10.

Usaremos coordenadas del centro de masa para simplificar el cálculo. Para ello definimos

$$\mu = \frac{m_1 m_2}{m_1 + m_2}, \quad M = m_1 + m_2 \tag{10.1}$$

Esto implica que

$$\boldsymbol{p}_1 = m_1 \dot{\boldsymbol{q}}_1, \qquad \boldsymbol{p}_2 = m_2 \dot{\boldsymbol{q}}_2 \tag{10.2}$$

$$q_{\rm cm} = \frac{m_1 \mathbf{q}_1 + m_2 \mathbf{q}_2}{m_1 + m_2}, \qquad \mathbf{q}_{\rm rel} = \mathbf{q}_2 - \mathbf{q}_1$$
 (10.3)

$$q_{\text{cm}} = \frac{m_1 \mathbf{q}_1 + m_2 \mathbf{q}_2}{m_1 + m_2}, \qquad \mathbf{q}_{\text{rel}} = \mathbf{q}_2 - \mathbf{q}_1$$

$$\dot{\mathbf{q}}_{\text{cm}} = \frac{m_1 \dot{\mathbf{q}}_1 + m_2 \dot{\mathbf{q}}_2}{m_1 + m_2}, \qquad \dot{\mathbf{q}}_{\text{rel}} = \dot{\mathbf{q}}_2 - \dot{\mathbf{q}}_1$$

$$(10.3)$$

у

$$\mathbf{p}_{\rm cm} = M\dot{\mathbf{q}}_{\rm cm}, \qquad \dot{\mathbf{q}}_{\rm rel} = \dot{\mathbf{q}}_2 - \dot{\mathbf{q}}_1$$
 (10.5)

$$\mathbf{p}_{\text{rel}} = \mu \dot{\mathbf{q}}_{\text{rel}} = \frac{m_1 \mathbf{p}_2 - m_2 \mathbf{p}_1}{m_1 + m_2}$$
 (10.6)

Entonces el Hamiltoniano quedará (en coordenadas del centro de masa)

$$H = \frac{\mathbf{p}_{\rm cm}^2}{2M} + \frac{\mathbf{p}_{\rm rel}^2}{2\mu} + V(u_0) + \frac{1}{2}C(|\mathbf{q}_{\rm rel} - u_0|)^2$$
(10.7)

Ahora, el principio de incertidumbre (consideremos el cm como una partícula libre en el espacio de fase). Debemos encontrar el volumen en el espacio de fase:

$$\Delta q_{i,1} \Delta p_{i,1} \sim h \Leftrightarrow \frac{\mathrm{d}p_{i,1} \mathrm{d}p_{i,1}}{(2\pi\hbar)} \Leftrightarrow [q_{i,1}, p_{j,1}] = i\hbar \delta_{ij}$$
 (10.8)

$$\Delta q_{i,2} \Delta p_{i,2} \sim h \Leftrightarrow \frac{\mathrm{d}p_{i,2} \mathrm{d}p_{i,2}}{(2\pi\hbar)} \Leftrightarrow [q_{i,2}, p_{j,2}] = i\hbar \delta_{ij}$$
 (10.9)

y las coordenadas del centro de masa

$$[\hat{q}_i^{\text{cm}}, \hat{p}_i^{\text{cm}}] = i\hbar \delta_{ij}, \qquad [\hat{q}_i^{\text{rel}}, \hat{p}_i^{\text{rel}}] = i\hbar \delta_{ij}, \qquad [\hat{q}_i^{\text{rel}}, \hat{p}_i^{\text{cm}}] = 0$$
 (10.10)

queda

$$\frac{\mathrm{d}q_i^{\mathrm{cm}}\mathrm{d}p_i^{\mathrm{cm}}}{(2\pi\hbar)}, \qquad \frac{\mathrm{d}q_i^{\mathrm{rel}}\mathrm{d}p_i^{\mathrm{rel}}}{(2\pi\hbar)} \tag{10.11}$$

Finalmente la función partición queda

$$Z_{\rm C} = \int_{\mathbb{R}^{12}} \frac{\mathrm{d}\boldsymbol{p}_{\rm cm} \mathrm{d}\boldsymbol{q}_{\rm cm} \mathrm{d}\boldsymbol{p}_{\rm rel} \mathrm{d}\boldsymbol{q}_{\rm rel}}{(2\pi\hbar)^6} e^{-\beta H(\boldsymbol{q}_{\rm rel}, \boldsymbol{p}_{\rm rel}, \boldsymbol{p}_{\rm cm}, \boldsymbol{q}_{\rm cm})}$$
(10.12)

Notar que tenemos 6 grados de libertad: 3 traslacionales cm, 2 rotacionales rel (molécula diatómica) y 1 elongación entre la partículas.

Primero encontramos $\langle V(q_{\rm rel} - V(u_0)) \rangle_+$,

$$\langle V(q_{\rm rel} - V(u_0)) \rangle_{+} = \frac{\int_{\mathbb{R}^{12}} \frac{\mathrm{d} \mathbf{p}_{\rm cm} \mathrm{d} \mathbf{q}_{\rm rel} \mathrm{d} \mathbf{q}_{\rm rel}}{(2\pi\hbar)^6} \left(\frac{1}{2}C(|q_{\rm rel}| - u_0)^2\right) e^{-\beta H}}{\int_{\mathbb{R}^{12}} \frac{\mathrm{d} \mathbf{p}_{\rm cm} \mathrm{d} \mathbf{q}_{\rm rel} \mathrm{d} \mathbf{q}_{\rm rel}}{(2\pi\hbar)^6} e^{-\beta H}}$$
(10.13)

Recordar que

$$V(\text{rel}) \approx V(u_0) + \frac{1}{2}V''(u_0)(u - u_0)^2$$
 (10.14)

$$|q_{\rm rel} - u_0| \ll u_0 \tag{10.15}$$

$$q_{\rm rel} \approx u_0 \tag{10.16}$$

Nos ayuda

$$\langle V(q_{\rm rel}) - V(u_0) \rangle_{+} = \frac{\int d^3 \mathbf{q}_{\rm rel} \left(\frac{1}{2} C(|q_{\rm rel}| - u_0)^2 \right) e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2 \right)}}{\int d^3 \mathbf{q}_{\rm rel} e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2 \right)}}$$
(10.17)

En coordenadas esféricas

$$\langle V(q_{\rm rel}) - V(u_0) \rangle_{+} = \frac{\int d^3 \mathbf{q}_{\rm rel} q_{\rm rel}^2 \left(\frac{1}{2} C(|q_{\rm rel}| - u_0)^2 \right) e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2 \right)}}{\int d^3 \mathbf{q}_{\rm rel} q_{\rm rel}^2 e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2 \right)}}$$
(10.18)

donde se usó que $q_{\rm rel}^2$ es el Jacobiano en coordenadas esféricas y que las integrales del ángulo sólido se cancelan entre ellas.

Usando aproximación de pequeñas oscilaciones, podemos hacer la siguiente aproximación

$$\langle V(q_{\rm rel} - V(u_0)) \rangle_T \approx \frac{\int_{-\infty}^{\infty} dq_{\rm rel} u_0^2 \left(\frac{1}{2} C(q_{\rm rel} - u_0)\right) e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2\right)}}{\int_{-\infty}^{\infty} dq_{\rm rel} u_0^2 e^{-\beta \left(\frac{1}{2} C(q_{\rm rel} - u_0)^2\right)}}$$
(10.19)

Donde usamos que la región para $q_{\rm rel} < 0$ debe está fuertemente reprimida por la exponencial, para justificar los límite de integración. Así, podemos resolver la integral de manera analítica y asumiendo estas suposiciones no hay error en extender los límites de integración.

Para pequeñas oscilaciones en torno a mínimo se debe imponer una restricción en la temperatura

$$\kappa T \ll \frac{1}{2} C u_0 \tag{10.20}$$

Para resolver hacemos los siguientes cambios de variable

$$\omega_1 = q_{\text{rel}} - u_0 \implies -\infty < \omega_1 < \infty \tag{10.21}$$

$$\omega_2 = \frac{1}{2}C\omega_1^2 \implies d\omega_2 = C\omega_1 d\omega_1$$
 (10.22)

así

$$\frac{\mathrm{d}\omega_2}{C\omega_1} = \mathrm{d}\omega_1 \implies \frac{\mathrm{d}\omega_2}{\sqrt{2C\omega_2}} = \mathrm{d}\omega_1 \tag{10.23}$$

Notemos que después de hacer el cambio de variable, el integrando es par, por lo que podemos hacer dos veces la integral de 0 a ∞ ,

$$\langle V(|q_{\rm rel}| - V(u_0)) \rangle = \frac{2 \int_0^\infty \frac{d\omega_2}{\sqrt{2C\omega_2}} \omega_2 e^{-\beta\omega_2}}{2 \int_0^\infty \frac{d\omega_2}{\sqrt{2C\omega_2}} e^{-\beta\omega_2}}$$
(10.24)

$$=\frac{1}{2\beta} = \frac{1}{2}\kappa T\tag{10.25}$$

Luego el RMS (root mean square), queda

$$\sqrt{\langle (q_{\rm rel} - u_0)^2 \rangle_T} = \sqrt{\frac{\frac{1}{2}\kappa T}{\frac{1}{2}C}} = \sqrt{\frac{\kappa T}{C}}$$
 (10.26)

$$\sqrt{\langle (q_{\rm rel} - u_0)^2 \rangle_T} = \sqrt{\frac{\kappa T}{C}}$$
(10.27)

Ejemplo 10.1. Considere una cadena, formada por ENE eslabones de largo l cada uno. Suponga un espacio uni-dimensional, de forma que cada eslabón puede orientarse hacia la derecha o hacia la izquierda. Suponga que no ha gasto o ganancia energética en cambiar la orientación de un eslabón.

- 1. Derive la fuerza de tensión de la cadena en función de su longitud L, a temperatura T, considerando $L \ll Nl$.
- 2. Verifique que se cumple la ley de Hooke y encuentre la dependencia de la constante elástica con la temperatura.

Solución 10.1. Sea N_r el número de eslabones orientados hacia la derecha y N_l el número de eslabones orientados hacia la izquerda. El número de configuraciones posibles es

$$\Omega = \frac{N!}{N_r!N_l!} \tag{10.28}$$

de aquí se tiene que Ω es máximo cuando $N_r = N_l = \frac{N}{2}$. La configuración equiprobable maximiza la entropía irrestricta (salvo $N_r + N_l = N$).

Cuando la enrgía de la configuración no depende de la misma, E es no fluctuante (fi-jo). Lueg, el sistema está descrito por un ensamble microcanónico ($\Omega = \Omega(E,V,Q)$ o $S = S(E,V,Q) = \kappa \ln \Omega$).

Ahora, usnado la aproximación de Stearling (2.12), se tiene

$$S = \kappa(\ln(N!) - \ln(N_r!) - \ln(N_l!)) \tag{10.29}$$

$$\approx \kappa (N \ln(N) - N - N_r \ln(N_r) + N_r - N_l \ln(N_l) + N_l), \qquad N = N_r + N_l$$
 (10.30)

$$= \kappa (N \ln(N) - N_r \ln(N_r) - N_l \ln(N_l))$$
(10.31)

$$= -\kappa N \left[\left(\frac{N_r}{N} \right) \ln(N_r) + \left(\frac{N_l}{N} \right) \ln(N_l) - \left(\frac{N_l + N_r}{N} \right) \ln(N_l + N_r) \right]$$
(10.32)

$$= -\kappa N \left[\left(\frac{N_r}{N} \right) \ln \left(\frac{N_r}{N} \right) + \left(\frac{N_l}{N} \right) \ln \left(\frac{N_l}{N} \right) \right]$$
 (10.33)

Usando la fórmula de entropía de Shannon

$$\frac{S}{\kappa N} = -\sum_{i} P_i \ln(P_i), \qquad P_r = \frac{N_r}{N}, \qquad P_l = \frac{N_l}{N}$$
(10.34)

Definimos

$$L = l(N_r - N_l) \tag{10.35}$$

$$N_r = N_l = \frac{N}{2}(1 \pm \epsilon), \qquad \epsilon = \frac{L}{Nl} \ll 1$$
 (10.36)

Luego reemplazamos en S,

$$S = \kappa N \left[\ln(2) - \left(\frac{1}{2} (1 + \epsilon) \ln(1 + \epsilon) + \frac{1}{2} (1 - \epsilon) \ln(1 - \epsilon) \right) \right]$$
 (10.37)

Así, tenemos que si la tensión de la cuerda es F, para extender la cuerda en dL se necesita un trabajo d $\omega = F dL$. Luego, la energía interna del sistema satisface

$$dE = TdS + FdL \tag{10.38}$$

$$dS = \frac{1}{T}dE - \frac{F}{T}dL \tag{10.39}$$

Por tanto,

$$F = -T \left(\frac{\partial S}{\partial L}\right)_E \tag{10.40}$$

como es la derivada de S a E constante, se puede usar la expresión anterior del ensamble microcanónico. Además

$$L = Nl\epsilon \tag{10.41}$$

$$\frac{\partial}{\partial L} = \frac{1}{Nl} \frac{\partial}{\partial E} \tag{10.42}$$

Entonces se tiene

$$\left(\frac{\partial S}{\partial L}\right)_{E} = \frac{1}{Nl} \left(\frac{\partial S}{\partial E}\right) = -\frac{\kappa}{2l} \ln \left(\frac{1+\epsilon}{1-\epsilon}\right)$$
 (10.43)

Luego,

$$F = -T \left(\frac{\partial S}{\partial L} \right)_E = \frac{\kappa}{2l} \ln \left(\frac{1+\epsilon}{1-\epsilon} \right), \qquad \epsilon \ll q, \quad \ln(q \pm \epsilon) \sim \pm \epsilon$$
 (10.44)

Entonces

$$F \approx \frac{\kappa T}{l} \epsilon \tag{10.45}$$

reemplazamos el valor de F,

$$F = \frac{\kappa T}{Nl^2} L \tag{10.46}$$

Finalmente

$$F_{\text{Hooke}} = -F = -\frac{\kappa T}{Nl^2}L$$
(10.47)

con

$$\kappa_{\text{Hooke}}(T) = \frac{\kappa T}{Nl^2}$$
 (10.48)

11. Clase 11

11.1. Teorema de equiparación generalizado

Teorema 11.1. Dado un Hamiltoniano $H=H(\tau)$ cualquiera:

$$\left\langle \tau \frac{\partial H}{\partial \tau} \right\rangle_T = \kappa T \tag{11.1}$$

donde τ es alguna variable del espacio de fase p o q^9 .

Hacemos las siguientes suposiciones

$$H(\tau \to \infty) \to \infty$$
 (11.2)

ó

$$\tau \in D, \quad |D| < \infty \tag{11.3}$$

Demostración 11.1.

$$\left\langle \tau \frac{\partial H}{\partial \tau} \right\rangle = \frac{\int d\tau \tau \frac{\partial H}{\partial \tau} e^{-\beta H(\tau)}}{\int d\tau e^{-\beta H(\tau)}}$$
(11.4)

(Cancelando todas las variables del espacio de fase que no entran en el promedio). Notemos que

$$\frac{\partial}{\partial \tau} \left(e^{-\beta H(\tau)} \right) = -\beta e^{-\beta H(\tau)} \frac{\partial H}{\partial \tau} = -\frac{1}{\kappa T} e^{-\beta H(\tau)} \frac{\partial H}{\partial \tau}$$
(11.5)

Luego,

$$\left\langle \tau \frac{\partial H}{\partial \tau} \right\rangle = \frac{-\kappa T \int d\tau \tau \frac{\partial}{\partial \tau} \left(e^{-\beta H(\tau)} \right)}{\int d\tau e^{-\beta H(\tau)}}$$
(11.6)

Integrando por partes

$$\left\langle \tau \frac{\partial H}{\partial \tau} \right\rangle = \frac{\kappa T \left(\tau e^{-\beta H} \Big|_{-\infty}^{\infty} + \int d\tau e^{-\beta H} \right)}{\int d\tau e^{-\beta H}}$$
(11.7)

 Si

$$\tau e^{-\beta H} \Big|_{-\infty}^{\infty} = 0 \tag{11.8}$$

entonces

$$\left| \left\langle \tau \frac{\partial H}{\partial \tau} \right\rangle = \kappa T \right| \qquad \Box \tag{11.9}$$

Notar que para

$$H(\tau \to \pm \infty) \to \infty$$
 (11.10)

se cumple que

$$\tau e^{-\beta H} \to 0 \tag{11.11}$$

⁹Podemos pensar $\tau = (p, q)$.

con la condición $\tau \to \pm \infty$.

Ahora, cuando $\tau \in D$ siendo D un dominio acotado, no ocurre que $\tau \to \pm \infty$. La manera de modelar esta situación es considerar que hay una barrera de potencial en los bordes del dominio D.. Luego, en este caso $H(\tau) \to \infty$ con $\tau \in D$.

en este caso la integral en τ tiene como límites el borde del dominio. Entonces, el término de borde es

$$\tau e^{-\beta H(\tau)} \bigg|_{\partial D} = 0 \tag{11.12}$$

11.2. Teorema del Virial

En mecánica clásica, existe un teorema análogo al teorema de equipartición llamado teorema del Virial:

Teorema 11.2.

$$\left\langle p_i \frac{\partial H}{\partial p_i} \right\rangle = \left\langle q_i \frac{\partial H}{\partial q_i} \right\rangle$$
 (11.13)

Notar que el promedio $\langle \rangle$ no necesariamente es un promedio térmico. Es térmico para sistemas en equilibrio térmico que se les puede asociar una temperatura. En general, $\langle \rangle$ se llama promedio del ensamble.

Demostración 11.2. Consideremos

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}t}(q_i p_i) \right\rangle = \left\langle p_i \dot{q}_i \right\rangle + \left\langle q_i \dot{p}_i \right\rangle \tag{11.14}$$

y usando las ecuaciones de Hamilton

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$
 (11.15)

obtenemos

$$\left\langle p_i \frac{\partial H}{\partial p_i} \right\rangle - \left\langle q_i \frac{\partial H}{\partial q_i} \right\rangle = \left\langle \frac{\mathrm{d}}{\mathrm{d}t} (q_i p_i) \right\rangle$$
 (11.16)

Asumimos *ergodicidad*. Luego

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}t}(q_i p_i) \right\rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \left(\frac{\mathrm{d}}{\mathrm{d}t}(p_i q_i) \right) \mathrm{d}t$$
 (11.17)

$$= \lim_{\tau \to \infty} \frac{1}{\tau} \left(p_i(\tau) q_i(\tau) - p_i(0) q_i(0) \right)$$
 (11.18)

$$=0, \quad \text{para } p_i(\tau)q_i(\tau)\bigg|_{\tau\to\infty} < 0 \tag{11.19}$$

entonces se demuestra que

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}t}(q_i p_i) \right\rangle = 0 \tag{11.20}$$

y luego

$$\left| \left\langle p_i \frac{\partial H}{\partial p_i} \right\rangle = \left\langle q_i \frac{\partial H}{\partial q_i} \right\rangle \right| \qquad \Box$$
 (11.21)

La demostración de este teorema asume dos puntos importantes:

- 1. **Ergodicidad**: Es posible igualar un promedio de ensamble (promedio sobre configuraciones posibles) a un promedio temporal. Eso significa que en un tiempo infinito, el sistema explora todas la configuraciones posibles. ((11.17))
- 2. En un tiempo infinito, los valores de p_i y q_i son siempre finitos (por el límite de $\tau \to \infty$, considerando el $1/\tau$ para que el límite exista. De manera contraria seria algo como ∞/∞ .) ((11.19))

Ejemplo 11.1. Considere el sistema uni-dimensional con potencial

$$V(x) = Cx^n, \quad n \ge 1 \tag{11.22}$$

- 1. Encuentre α tal que $\langle E_c \rangle = \alpha \langle V \rangle$, donde $\langle E_c \rangle$ y $\langle V \rangle$ son las energías cinéticas y potenciales promedio.
- 2. Encuentre $\langle V \rangle_T$.

Solución 11.1. 1. El Hamiltoniano viene dado por

$$H = E_c + V \tag{11.23}$$

$$H(p,x) \implies H = \frac{p^2}{2m} + Cx^n$$
 (11.24)

Entonces, usando el teorema de virial,

$$\left\langle p \frac{\partial H}{\partial p} \right\rangle = \left\langle x \frac{\partial H}{\partial x} \right\rangle \tag{11.25}$$

$$\left\langle p\left(\frac{p}{m}\right)\right\rangle = \left\langle x\left(Cnx^{n-1}\right)\right\rangle$$
 (11.26)

$$\underbrace{\left\langle \frac{p^2}{m} \right\rangle}_{2E_c} = n \underbrace{\left\langle x^n C \right\rangle}_{V} \tag{11.27}$$

Nos queda

$$2\langle E_c \rangle = n \langle V \rangle \tag{11.28}$$

$$\langle E_c \rangle = \underbrace{\frac{n}{2}}_{\alpha} \langle V \rangle \tag{11.29}$$

Luego,

$$\alpha = \frac{n}{2} \tag{11.30}$$

2.

$$2\langle E_c \rangle_T = n \langle V \rangle_T = \kappa T \tag{11.31}$$

luego,

$$\boxed{\langle V \rangle_T = \frac{\kappa T}{n}} \tag{11.32}$$

Podemos notar que como el potencial es Cx^n el factor del denominador va como el exponente del potencial.

Nota: Si quisiéramos calcular el promedio de E_c ,

$$2\langle E_c \rangle = n \langle V \rangle \tag{11.33}$$

$$\langle E_c \rangle = \frac{n}{2} \left(\frac{\kappa T}{n} \right) \tag{11.34}$$

$$\langle E_c \rangle = \frac{1}{2} \kappa T \tag{11.35}$$

donde vemos que como E_c es cuadrática en p, el resultado está dividido en 2.

12. Clase 12

12.1. Gases degenerados

El término gases degenerados se refiere al hecho de que hay algunos modos para los cuales la probabilidad de ocupación $f(\epsilon)$ es mucho menor que uno. En tales casos, los bosones y fermiones se comportan de manera muy distinta.

Consideremos

$$f(T - \mu) = \frac{e^{-\beta(\epsilon - \mu)}}{1 \pm e^{-\beta(\epsilon - \mu)}}$$
(12.1)

con $f(T - \mu)$ la función de ocupación:

$$+:$$
 para fermiones (12.2)

$$-:$$
 para bosones (12.3)

Cuando $f(T - \mu) \approx 1$ se dice que el gas está degenerado.

12.2. Gas degenerado de bosones y condensado de Bose-Einstein

De (8.22), la densidad numérica viene dada por

$$\rho = \frac{N}{V} = (2s+1) \int \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} \left(\frac{e^{-(\epsilon(p)-\mu)/\kappa T}}{1 - e^{-(\epsilon(p)-\mu)/\kappa T}} \right)$$
(12.4)

Suponemos un gas no-relativista, luego la relación de dispersión está dada por

$$\epsilon(p) \approx \frac{p^2}{2m} \tag{12.5}$$

Podemos ver que para $\mu \geq 0$, $f(\epsilon - \mu)$ tiene una divergencia

$$p \in [0, \infty), \qquad \epsilon(p) \in [0, \infty)$$
 (12.6)

En particular, para $\epsilon \to \mu$, se tiene que $f(\epsilon - \mu) \to \infty$. En este caso hay una formación de un condensado de Bose-Einstein.

Estudiemos el caso límite $\mu=0^-$ para encontrar la densidad requerida para la condensación de Bose:

$$\rho = (2s+1) \int \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} \frac{e^{-\frac{p^2}{2m\kappa T}}}{1 - e^{-\frac{p^2}{2m\kappa T}}}$$
(12.7)

$$= (2s+1) \int \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} \sum_{n=0}^{\infty} e^{-(n+1)p^2/(2m\kappa T)}$$
(12.8)

$$= (2s+1) \int \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} \sum_{n=1}^{\infty} e^{-(np^2/(2m\kappa T))}$$
 (12.9)

$$= (2s+1) \int_0^\infty \frac{\Omega_D p^{D-1} dp}{(2\pi\hbar)^D} \sum_{n=1}^\infty \left(e^{-p^2/(2m\kappa T)} \right)^n$$
 (12.10)

donde Ω_D es el ángulo sólido y se usó el hecho de que

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1 \tag{12.11}$$

Haciendo el siguiente cambio de variable,

$$u = \frac{p}{\sqrt{m\kappa T}}, \qquad du = \frac{dp}{\sqrt{m\kappa T}}$$
 (12.12)

se tiene

$$\rho = (2s+1) \int_0^\infty \frac{\Omega_D u^{D-1}}{(2\pi\hbar)^D} (m\kappa T)^{(D-1)/2} (m\kappa T)^{1/2} du \sum_{n=1}^\infty \left(e^{-u^2/2} \right)^n$$
 (12.13)

$$= (2s+1)\frac{(m\kappa T)^{D/2}}{(2\pi\hbar)^D} \sum_{n=1}^{\infty} \int d^D u e^{-nu^2/2}$$
(12.14)

Propiedad 12.1.

$$\sum_{n=1}^{\infty} \int d^D u e^{-nu^2/2} = \left(\int d^D u e^{-u^2/2} \right) \sum_{n=1}^{\infty} n^{-D/2}$$
 (12.15)

Prueba 12.1. Queremos mostrar que

$$\int d^D u e^{-nu^2/2} = n^{-D/2} \int d^D u e^{-u^2/2}$$
(12.16)

En efecto,

$$\int d^D u e^{-nu^2/2} = \Omega_D \int_0^\infty u^{D-1} de^{-nu^2/2}$$
(12.17)

Haciendo

$$z = \sqrt{n}u \implies u = \frac{z}{\sqrt{n}} \implies du = \frac{dz}{\sqrt{n}}$$
 (12.18)

tenemos

$$\int d^{D}u e^{-nu^{2}/2} = \Omega_{D} \int_{0}^{\infty} \frac{dz}{\sqrt{n}} \left(\frac{z}{\sqrt{n}}\right)^{D-1} e^{-z^{2}/2}$$
(12.19)

$$= \Omega_D \int_0^\infty dz z n^{-D/2} e^{-z^2/2}$$
 (12.20)

$$= n^{-D/2} \int_0^\infty \mathrm{d}z^D e^{-z^2/2} \tag{12.21}$$

$$= n^{-D/2} \int_0^\infty du^D e^{-u^2/2}$$
 (12.22)

luego, se sigue (12.15).

Así, ρ nos queda

$$\rho = (2s+1)\frac{(m\kappa T)^{D/2}}{(2\pi\hbar)^D} \left(\int d^D u e^{-u^2/2} \right) \sum_{n=1}^{\infty} n^{-D/2}$$
 (12.23)

Para D=1 ó D=2 la sumatoria es divergente. Luego, ρ puede ser arbitrariamente grande sin que llegue al valor 0. Es decir, $\forall \rho>0, \exists \mu<0$. Entonces no hay condensación de Bose-Einstein.

Para $D \geq 3$,

$$\sum_{n=1}^{\infty} n^{-D/2} \tag{12.24}$$

es convergente!. En particular ¹⁰

$$\sum_{n=1}^{\infty} n^{-D/2} = \zeta\left(\frac{D}{2}\right) \tag{12.26}$$

Entonces para D=3,

$$\rho(\mu = 0, T) = (2s + 1) \frac{(m\kappa T)^{3/2}}{(2\pi\hbar)^3} \underbrace{\left(4\pi \int_0^\infty u^2 e^{-u^2/2} du\right)}_{(2\pi)^{3/2}} \zeta\left(\frac{3}{2}\right)$$
(12.27)

donde u^2 es la Jacobiano. Luego, usando la propiedad

Propiedad 12.2.

$$\int_0^\infty u^2 e^{-u^2/2} du = \sqrt{\frac{\pi}{2}}$$
 (12.28)

nos queda

$$\rho_c(T) = (2s+1)\frac{(m\kappa T)}{(2\pi)^{3/2}\hbar^3} \zeta\left(\frac{3}{2}\right)$$
 (12.29)

Notar que $\rho_c(T)$ es la densidad de condensación en función de la temperatura, es decir, es la densidad a la cual el potencial químico μ se hace cero. En general, μ es negativo y se interpreta como el costo de energía por partícula de poner una nueva en el sistema.

Cuando a T fija, $\rho > \rho_c(T)$, el sistema se encuentra en dos fases:

- 1. Una fase a densidad $\rho_c(T)$ descrita por la función de ocupación de Bose-Einstein a $\mu = 0$ $(f(T, \mu = 0))$.
- 2. Una fase a densidad $(\rho \rho_c(T))$ tal que todas las partículas se encuentran en el estado fundamental. A esta fase se le llama condensado de Bose-Einstein.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (12.25)

 $^{^{10} \}mathrm{Recordar}$ que la función zeta de Riemann se define como

12.3. Gas degenerado de Fermi

En el caso de los fermiones, la función de ocupación viene dada por

$$f(T - \mu, \beta) = \frac{e^{-\beta(\epsilon - \mu)}}{1 + e^{-\beta(\epsilon - \mu)}}$$
(12.30)

Notar que para $\beta \to \infty (T \to 0)$, se tiene

$$f(\epsilon - \mu, \beta) = \Theta(\mu - \epsilon) = \begin{cases} 1, & \epsilon < \mu \\ \frac{1}{2}, & \epsilon = \mu \\ 0, & \epsilon > \mu \end{cases}$$
 (12.31)

De acá se desprende que

$$\frac{e^{-\beta(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}} = \begin{cases}
\lim_{x \to \infty} \frac{x}{1+x} = 1 \\
\lim_{x \to 0} \frac{0}{1+0} = 0
\end{cases}$$
(12.32)

Esto se entiende del hecho de que como máximo puede haver un fermión en cada estado. Considere la densidad numérica a T=0,

$$\rho = \frac{N}{V} = (2s+1) \int \frac{d^{D}p}{(2\pi\hbar)^{D}} f(\epsilon - \mu, T)$$
 (12.33)

a T = 0, de (12.31) se tiene

$$\rho = \frac{N}{V} = (2s+1) \int \frac{\mathrm{d}^D p}{(2\pi\hbar)^D} \Theta(\mu - \epsilon)$$
 (12.34)

Entonces de la función de Heaviside la cual fija los límites de la integral,

$$\rho = (2s+1) \int_0^{p(\epsilon=\mu)} \frac{\Omega_D p^{D-1} dp}{(2\pi\hbar)^D}$$
 (12.35)

pero para una partícula no-relativista se tiene

$$\epsilon = \frac{p^2}{2m}, \implies p(\epsilon = \mu) = \sqrt{2m\mu}$$
(12.36)

luego tenemos

$$\rho = (2s+1)\frac{\Omega_D}{(2\pi\hbar)^D} \frac{1}{D} (\sqrt{2m\mu})^D$$
 (12.37)

Finalmente

$$\rho = (2s+1)\frac{\Omega_D}{D(2\pi\hbar)^D} (2m\epsilon_f)^{D/2}$$
(12.38)

donde μ a T=0 se le llama energía de Fermi ϵ_f .

El potencial químico para un gas de Fermi es positivo. Representa una ganancia energética por el solo hecho de que una partícula ocupe cierto estado.

Notar que a T=0, todos los estados con energía $\epsilon<\epsilon_f$ están ocupados (con una partícula en cada estado).

Para $T \ge 0$ se tiene que $f(\epsilon - \mu)$ es una función que interpola entre 0 para $(\mu - \epsilon) \le 0$ y 1 para $(\mu - \epsilon) \ge 0$.

Ejemplo 12.1. Use

$$P = -\left(\frac{\partial E}{\partial V}\right)_{S.N} \tag{12.39}$$

para encontrar P(N) la presión degenerada de Fermi como función del número de fermiones en el gas (use s=1/2). Para $m=m_n$ transforme a P(M). ¿Cuál es la presión en el interior de una estrella de neutrones de masa M? (Desprecie factores relativistas)

Hints:

- Use $\rho(\epsilon_f)$.
- Encontrar $\langle E \rangle / V$ como función de ϵ_f .
- Despejar $\epsilon_f(\rho)$ y reemplazar en $\langle E \rangle / V$ para encontrar $\langle E \rangle (V, N)$ a T = 0.
- Usar

$$P = -\left(\frac{\partial E}{\partial V}\right)_{S,N} \tag{12.40}$$

Referencias