Lecture no 1 LIMITS AND CONTINUITY

Example of Limit:

λ		1.0	1.5	1.9	1.95	1.99	1.995	1.999	2	2.001	2.005	2.01	2.05	2.1	2.5	3.0
f(.	r) 1.00	00000	1.750000	2.710000	2.852500	2.970100	2.985025	2.997001		3.003001	3.015025	3.030100	3.152500	3.310000	4.750000	7.000000

Αc

Left side Right side

1.1.1 LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but not equal to a), then we write

$$\lim_{x \to a} f(x) = L \tag{6}$$

which is read "the limit of f(x) as x approaches a is L" or "f(x) approaches L as x approaches a." The expression in (6) can also be written as

$$f(x) \to L \quad \text{as} \quad x \to a$$
 (7)

1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but greater than a), then we write

$$\lim_{x \to a^+} f(x) = L \tag{14}$$

and if the values of f(x) can be made as close as we like to L by taking values of x sufficiently close to a (but less than a), then we write

$$\lim_{x \to a^{-}} f(x) = L \tag{15}$$

Expression (14) is read "the limit of f(x) as x approaches a from the right is L" or "f(x) approaches L as x approaches a from the right." Similarly, expression (15) is read "the limit of f(x) as x approaches a from the left is L" or "f(x) approaches L as x approaches a from the left."

1

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-sided limit of a function f(x) exists at a if and only if both of the one-sided limits exist at a and have the same value; that is,

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

Example of two sided limits:

Example:

▲ Figure 1.1.14

Example of Infinite Limits:

1 0 1 1

X	-1	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1	1
$\frac{1}{X}$	-1	-10	-100	-1000	-10,000		10,000	1000	100	10	1

1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

$$\lim_{x \to a^{-}} f(x) = +\infty \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = +\infty$$

denote that f(x) increases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$\lim_{x \to a} f(x) = +\infty$$

Similarly, the expressions

$$\lim_{x \to a^{-}} f(x) = -\infty \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = -\infty$$

denote that f(x) decreases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$\lim_{x \to a} f(x) = -\infty$$

▲ Figure 1.1.16

Continuity:

▲ Figure 1.5.1

- The function f is undefined at c (Figure 1.5.1a).
- The limit of f(x) does not exist as x approaches c (Figures 1.5.1b, 1.5.1c).
- The value of the function and the value of the limit at c are different (Figure 1.5.1d).

- **1.5.1 DEFINITION** A function f is said to be *continuous at* x = c provided the following conditions are satisfied:
- 1. f(c) is defined.
- 2. $\lim_{x \to c} f(x)$ exists.
- $3. \quad \lim_{x \to c} f(x) = f(c).$

Example 1 Determine whether the following functions are continuous at x = 2.

$$f(x) = \frac{x^2 - 4}{x - 2}, \qquad g(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ 3, & x = 2, \end{cases} \qquad h(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ 4, & x = 2 \end{cases}$$

▲ Figure 1.5.2

- **1.5.2 DEFINITION** A function f is said to be *continuous on a closed interval* [a, b] if the following conditions are satisfied:
- 1. f is continuous on (a, b).
- f is continuous from the right at a.
- 3. f is continuous from the left at b.

Example 2 What can you say about the continuity of the function $f(x) = \sqrt{9 - x^2}$?

Solution. Because the natural domain of this function is the closed interval [-3, 3], we will need to investigate the continuity of f on the open interval (-3, 3) and at the two endpoints. If c is any point in the interval (-3, 3), then it follows from Theorem 1.2.2(e) that

 $\lim_{x \to c} f(x) = \lim_{x \to c} \sqrt{9 - x^2} = \sqrt{\lim_{x \to c} (9 - x^2)} = \sqrt{9 - c^2} = f(c)$

which proves f is continuous at each point in the interval (-3, 3). The function f is also continuous at the endpoints since

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to 3^{-}} (9 - x^{2})} = 0 = f(3)$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to -3^{+}} (9 - x^{2})} = 0 = f(-3)$$

Thus, f is continuous on the closed interval [-3, 3] (Figure 1.5.5).

▲ Figure 1.5.5