Eine Woche, ein Beispiel

4.10 non-Archimedean local field F

wiki: local field

See https://mathoverflow.net/questions/17061/locally-profinite-fields for different definition of local fields. We follow wiki instead.

Classification,

- finite extension of Q_p - $F_q((T))$ $(q = p^*)$

Process:

- 1. Basic structures and results.
- 2. Topological results.
- 3. representation of (F, +) and F^{\times} (next week)
- 1. Basic structures and results
 - 1.1. None of them is ala closed.

Moreover,
$$O$$
 is DVR, K is finite,
$$U^{(0)}/U^{(1)} \overset{\text{split iso}}{\cong} K^{\times} \qquad U^{(n)}/U^{(n+1)} \overset{\text{hon-canonical}}{\cong} K \qquad n \ge 1$$

$$U^{(0)}/U^{(n)} \overset{\text{hon-split iso}}{\cong} (O/A^{n})^{\times} \underset{n \ge 1}{\longrightarrow} U^{(m+1)}/U^{(m+1)} \overset{\text{hon-canonical}}{\cong} O/A^{m-n} \qquad 2n+1 \ge m \ge n \ge 0$$

$$\downarrow^{2} \qquad \downarrow^{2} \qquad$$

1.3.
$$F^{\times} \cong \langle \pi \rangle \times \mathcal{O}^{\times} \cong \langle \pi \rangle \times \mu_{q-1} \times \mathcal{U}^{(1)}$$

e.g. when $F = \mathbb{Q}_{p}$, $\mathbb{Q}_{p}^{\times} \cong \int \mathbb{Z} \oplus \mathbb{Z}_{(q-1)\mathbb{Z}} \oplus \mathbb{Z}_{p}$ $p \neq 2$
 $\mathbb{Z} \oplus 0 \oplus (\mathbb{Z}_{2\mathbb{Z}} \oplus \mathbb{Z}_{2})$ $p = 2$
Thus When $p \geq 3$, $(p\mathbb{Z}_{p}, +) \xrightarrow{\exp} (1+p\mathbb{Z}_{p}, \cdot)$ is an iso as topological gps.

2. Topological results.

 $O = \lim_{n \to \infty} O/\mu^n$ is opt and profinite group, while F is loc. opt and loc. profinite group $O = \lim_{n \to \infty} O/u^n$ is opt and profinite group, while F^{\times} is loc. opt and loc. profinite group.

Cpt open subgps of (F,+) are $f|_{J^k}$.

Cpt open subgps of F^x are not restricted in $\{U^{(k)}\}$, but $\{U^{(k)}\}$ is a nbhol system of F^x , i.e., $\{aU^{(k)}\}_{a\in F^x}$ is a topological basis of F^x .

Fopen subgps $] \subseteq \text{fclosed subgps}]$ for (F, +) and F^{\times} . \mathbb{Q} . Are there any other opt closed subgp? A. Yes. e.g. $\text{fol} \subseteq (F, +)$ file F^{\times} . \mathbb{Q} . Can we classify all opt closed subgp?

E.g. Q_{pr} : = the splitting field of X^9-X over Q_p = $q=p^r$ = the unique unramified extension of Q_p of degree r

Gal (Opr/Op) = Gal (IFpr/IFp) = Z//rZ

3. Haar measure

G. loc. profinite gp

$$C^{\infty}(G) := \{f, G \rightarrow C \mid f \text{ is loc const}\}$$

 $C^{\infty}_{c}(G) := \{f \in C^{\infty}(G) \mid \text{supp } f \in G \text{ is } \text{cpt}\}$

Rink G has topo basis fgk] gea cpt open.

Def (Left Haar integral & Left Haar measure)

integral: I.
$$C_c^{\infty}(G) \longrightarrow \mathbb{C}$$
 st

· (left invarient) $I(f(g-)) = I(f(-))$

· (positive) $I(f) \ge 0$

eft invarient)
$$I(f(g-)) = I(f(-)) \qquad \forall f \in C_{c}^{\infty}(G) \quad g \in G$$
ositive)
$$I(f) \geqslant 0 \qquad \forall f \in C_{c}^{\infty}(G) \quad f \geqslant 0$$
measure: $M \subseteq L(G) \longrightarrow \mathbb{R} \qquad S \subset G \quad \text{opt open} \mapsto I(\mathbf{1}_{S})$

reasure: $M_{\mathsf{G}}: \mathcal{L}(\mathsf{G}) \longrightarrow \mathbb{R}$

Lebesque σ-algebra, see https://math.stackexchange.com/question s/3117419/lebesgue-sigma-algebra The domain of \mathbf{I} is not extended, so here it is not perfect.

relation/notation: $I(f) = \int_{G} f(g) d\mu_{G}(g)$

Rmk Left Haar mea

Left Haar measure exists and is unique(up to scalar) on every loc. cpt gp G, see https://www.diva-portal.org/smash/get/diva2:1564300/FULLTEXTo1.pdf

Def Unimodular. left Haar measure = right Haar measure Rmk. G is cpt \Rightarrow G is unimodular \Leftrightarrow $\delta_G = 1$ G is abelian

where $\delta_G: G \longrightarrow C^*$ is determined by $d\mu_G(xg) = \delta_G(g) d\mu_G(x)$.

Actually, $\forall K \leq G$ opt open , $S_G|_K = \mathbb{1}_K$. e.g. $(F, +), (O, +), F^*, O^*$ are all unimodular. Is $GL_2(\mathcal{O}_p)$ unimodular?