第3节 四个常见条件的翻译 (★★★)

强化训练

1. (★★) 己知
$$f(x) = \sin(\frac{3}{4}x + \varphi)(0 < \varphi < \pi)$$
, 若 $f(\frac{\pi}{6}) = f(\frac{\pi}{2})$, 则 $\varphi = _____$.

答案: $\frac{\pi}{4}$

解析:条件 $f(\frac{\pi}{6}) = f(\frac{\pi}{2})$ 怎样翻译?若代入解析式求 φ ,则较麻烦,可考虑先求周期,若它们在一个周期 内,则可由此推断对称轴,将对称轴代入求 φ ,

由题意,
$$T = \frac{2\pi}{\frac{3}{4}} = \frac{8\pi}{3}$$
,所以 $\frac{\pi}{6}$ 与 $\frac{\pi}{2}$ 之间小于一个周期,

结合
$$f(\frac{\pi}{6}) = f(\frac{\pi}{2})$$
可得 $x = \frac{\pi}{3}$ 是 $f(x)$ 的一条对称轴,所以 $\frac{3}{4} \times \frac{\pi}{3} + \varphi = k\pi + \frac{\pi}{2}$,故 $\varphi = k\pi + \frac{\pi}{4} (k \in \mathbf{Z})$,

又
$$0<\varphi<\pi$$
,所以 $\varphi=\frac{\pi}{4}$.

2. $(2022 \cdot 四川绵阳模拟 \cdot \star \star)$ 若 $f(x) = \sin(\omega x + \varphi)(\omega > 0)$ 的图象与直线 y = m 的三个相邻交点的横坐 标分别是 $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$,则 $\omega = _____.$

答案: 4

解析:如图,水平线与f(x)的图象的相邻两个交点的中间必定是对称轴,

由题意, $x = \frac{\pi}{4}$ 和 $x = \frac{\pi}{2}$ 是相邻的两条对称轴,

所以
$$\frac{T}{2} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \Rightarrow T = \frac{\pi}{2} \Rightarrow \omega = \frac{2\pi}{T} = 4.$$

3. $(2023 \cdot 安徽模拟 \cdot ★★★) 已知函数 <math>f(x) = \sin(\omega x + \varphi)(\omega)$ 正整数, $0 < \varphi < \pi$)在区间 $(\frac{\pi}{4}, \pi)$ 上单调,

且
$$f(\pi) = f(\frac{3\pi}{2})$$
,则 $\varphi = ($

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

答案: B

解析: f(x)在($\frac{\pi}{4}$, π)上单调怎样翻译?可由内容提要1来推周期的范围,进而得到 ω 的范围,

$$f(x)$$
在 $(\frac{\pi}{4},\pi)$ 上单调 $\Rightarrow \frac{T}{2} \ge \pi - \frac{\pi}{4} = \frac{3\pi}{4} \Rightarrow T \ge \frac{3\pi}{2}$

所以
$$\omega = \frac{2\pi}{T} \le \frac{4}{3}$$
,又 $\omega \in \mathbb{N}^*$,所以 $\omega = 1$,

故
$$T = 2\pi$$
,且 $f(x) = \sin(x + \varphi)$,

有了周期,可看看 π 与 $\frac{3\pi}{2}$ 之间是否小于一个周期. 若是,则可由 $f(\pi) = f(\frac{3\pi}{2})$ 来推断对称轴,

由 $T = 2\pi$ 知 π 和 $\frac{3\pi}{2}$ 之间小于一个周期,

又
$$f(\pi) = f(\frac{3\pi}{2})$$
, 所以 $x = \frac{5\pi}{4}$ 是 $f(x)$ 的对称轴,

从而
$$\frac{5\pi}{4} + \varphi = k\pi + \frac{\pi}{2}$$
,故 $\varphi = k\pi - \frac{3\pi}{4} (k \in \mathbf{Z})$,

结合
$$0 < \varphi < \pi$$
可得 $\varphi = \frac{\pi}{4}$.

若将函数 f(x) 图象上各点的横坐标伸长为原来的 2 倍得到函数 g(x) 的图象,则 $g(x) = ____.$

答案:
$$2\sin(x+\frac{\pi}{3})$$
 《一数•高考数学核心方法》

解析:由内容提要 1, f(x)在[$\frac{\pi}{6}$, $\frac{\pi}{2}$]上单调递减 $\Rightarrow \frac{T}{2} \ge \frac{\pi}{2} - \frac{\pi}{6}$, 所以 $T \ge \frac{2\pi}{3}$,

条件中有 $f(\frac{\pi}{2}) = -f(\frac{\pi}{6})$,且给了在 $[\frac{\pi}{6}, \frac{\pi}{2}]$ 上单调,可由此推断对称中心,

如图, $(\frac{\pi}{3},0)$ 必为函数 f(x) 图象的一个对称中心,

还剩 $f(\frac{\pi}{2}) = f(\frac{2\pi}{3})$ 这个条件,可由它推断对称轴,

如图, $\left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$ 的宽度小于一个周期, 所以 $x = \frac{7\pi}{12}$ 为 f(x) 图象的一条对称轴,

由图可知
$$\frac{T}{4} = \frac{7\pi}{12} - \frac{\pi}{3}$$
,所以 $T = \pi$, $\omega = \frac{2\pi}{T} = 2$,故 $f(x) = 2\sin(2x + \varphi)$,

还需求 φ ,可代 $x = \frac{7\pi}{12}$ 这个最小值点, $f(\frac{7\pi}{12}) = 2\sin(2 \times \frac{7\pi}{12} + \varphi) = -2$,所以 $\sin(\frac{7\pi}{6} + \varphi) = -1$,

又
$$|\varphi| < \frac{\pi}{2}$$
,所以 $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,从而 $\frac{2\pi}{3} < \frac{7\pi}{6} + \varphi < \frac{5\pi}{3}$,故 $\frac{7\pi}{6} + \varphi = \frac{3\pi}{2}$,解得: $\varphi = \frac{\pi}{3}$,

所以 $f(x) = 2\sin(2x + \frac{\pi}{3})$,由题意, $g(x) = f(\frac{x}{2}) = 2\sin(x + \frac{\pi}{3})$.

《一数•高考数学核心方法》