Ministerul Educației, Cercetării și Tineretului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa finală – Timișoara, 30 aprilie 2008

CLASA A XII-A - SOLUŢII

Subiectul 1. Întrucât f este continuă pe intervalul $(0, \infty)$ şi mărginită, rezultă că f este integrabilă pe intervalul [0, x], oricare ar fi $x \geq 0$. Prin urmare, funcția $F: [0, \infty) \to \mathbb{R}$,

$$F(x) = \int_0^x f(t) dt,$$

este derivabilă pe intervalul $(0, \infty)$ și F'(x) = f(x),

Deoarece

$$\left(\frac{F(x)}{x}\right)' = \frac{xf(x) - F(x)}{x^2} \ge 0,$$

Subiectul 2. Conform inegalității Cauchy-Schwarz,

$$\left(\int_{0}^{1/2} x f'(x) dx\right)^{2} \leq \left(\int_{0}^{1/2} x^{2} dx\right) \left(\int_{0}^{1/2} (f'(x))^{2} dx\right)$$

$$= \frac{1}{24} \int_{0}^{1/2} (f'(x))^{2} dx,$$

$$\left(\int_{1/2}^{1} (1-x)f'(x) dx\right)^{2} \leq \left(\int_{1/2}^{1} (1-x)^{2} dx\right) \left(\int_{1/2}^{1} (f'(x))^{2} dx\right)$$

$$= \frac{1}{24} \int_{1/2}^{1} (f'(x))^{2} dx, \dots 2 \text{ puncte}$$

de unde

$$\frac{1}{24} \left(\int_0^1 (f'(x))^2 dx \right) \ge \left(\int_0^{1/2} x f'(x) dx \right)^2 + \left(\int_{1/2}^1 (1-x) f'(x) dx \right)^2 \dots 1 \text{ punct}$$

Integrând prin părți și folosind condiția f(1/2) = 0, obținem

$$\int_0^{1/2} x f'(x) dx = -\int_0^{1/2} f(x) dx \text{ si } \int_{1/2}^1 (1-x) f'(x) dx = \int_{1/2}^1 f(x) dx. \dots 1 \text{ punct}$$

Rezultă că

$$\frac{1}{24} \left(\int_0^1 (f'(x))^2 dx \right) \ge \left(\int_0^{1/2} f(x) dx \right)^2 + \left(\int_{1/2}^1 f(x) dx \right)^2
\ge \frac{1}{2} \left(\int_0^{1/2} f(x) dx + \int_{1/2}^1 f(x) dx \right)^2
= \frac{1}{2} \left(\int_0^1 f(x) dx \right)^2,$$

de unde inegalitatea din enunţ. 3 puncte

(b) Dacă
$$A = \{x_1, x_2, \dots, x_n\}$$
, atunci

$$\{(x_1^k, x_2^k, \dots, x_n^k) : k \in \mathbb{N}^*\} \subseteq A \times A \times \dots \times A.$$

Subiectul 4. (a) Fie $a \in G$ un element de ordinul p și $H = \langle a \rangle =$ $\{e,a,\ldots,a^{p-1}\}$. Notăm cu $I=\{x_1,x_2,\ldots,x_k\}$, unde $x_1=a$, un sistem complet de reprezentanți ai relației de echivalență pe G: x este echivalent cu y modulo H dacă $x^{-1}y \in H$. Întrucât $|x_iH| = p$, rezultă că n = kp, deci k = n/p. Orice endomorfism este perfect determinat de valorile sale pe I: dacă $x \in x_s H$, atunci $x = x_s a^t$, deci $f(x) = f(x_s) f(a)^t$. Prin urmare, (b) Egalitatea are loc dacă $|\mathrm{End}(G)| \, = \, |G^I|,$ deci dacă orice funcție $f: I \to G$ se extinde (ca la punctul (a)) la un endomorfism al lui G. Fie $b \in G$. Deoarece există $f \in \text{End}(G)$ astfel încât f(a) = b, rezultă că $b^p=f(a^p)=f(e)=e,$ deci $x^p=e,$ oricare ar fi $x\in G.$ Conform teoremei lui Cauchy, $n = p^{\alpha}$, $\alpha \in \mathbb{N}^*$. De asemenea, dacă $x, y \notin H$ sunt două elemente neechivalente modulo H, atunci oricare ar fi $u, v \in G$, există $f \in \text{End}(G)$ astfel încât f(x) = u şi f(y) = v. Dacă $\alpha = 1$, atunci |G| = p şi $G \cong (\mathbb{Z}_p, +)$. În acest caz, egalitatea are loc, deoarece $|\operatorname{End}(\mathbb{Z}_p,+)| = p = \sqrt[p]{p^p}$. Dacă $\alpha \geq 2,$ atunci $|I|=p^{\alpha-1} \geq 2.$ De
oarece $x_2^{-1} \notin H,$ dacă $x_2^{-1} \notin x_2H,$ atunci ar exista $f \in \text{End}(G)$ astfel încât $f(x_2) = e$ și $f(x_2^{-1}) = a$ — contradicție. Deci $x_2^{-1} \in x_2H$, de unde $x_2^2 \in H$. Pentru p impar, p = 2m + 1, am obţine o contradicție: $x_2^{-1} = (x_2^2)^m \in H$. Deci p = 2. În particular, $x^2 = e$, oricare ar fi $x \in G$, i.e. G este abelian. Dacă $\alpha \geq 3$, atunci $|I| \geq 2^2 = 4$. Deoarece x_2x_3 nu aparține niciuneia dintre clasele H, x_2H , x_3H , rezultă că există $f \in \text{End}(G)$ astfel încât $f(x_2) = f(x_3) = e$ și $f(x_2x_3) = a$ — contradicție.

Prin urmare, $\alpha=2$, |G|=4 şi $x^2=e$, oricare ar fi $x\in G$, i.e. G este izomorf cu grupul $K=\{e,a,b,ab\}$ al lui Klein. Orice funcție $f:\{a,b\}\to K$ se extinde la un unic endomorfism, deci $|\operatorname{End}(K)|=16=\sqrt[2]{4^4}$ și inegalitatea de la punctul (a) este egalitate. Prin urmare, grupurile căutate sunt grupurile aditive \mathbb{Z}_p , p prim, și grupul K al lui Klein. 4 puncte