	E.T.S.I.A.E. Matemática Aplicada a la Ing. Aeroespacial AMP. DE MATEMÁTICAS (3° DE GRADO)	D.N.I.: SOLUCION 1 ^{er} Apellido: 2 ^{do} Apellido: Nombre:	Curso 18/19 (29.10.18) Tiempo 1h. 30 m. Valor 15 puntos Ter Parcial
	diferencias	guiente recuadro la solución general del sis	
	B. (3 puntos) Anotar en el sign	uiente recuadro el valor de la integral $I = \int_{\Gamma} \frac{\bar{z} + i}{ z - i ^2} dz = \int_{\mu} \frac{(z - i)}{(z - i)^2} dz$	dz=dz=dz Re(z)
I: F(donde Γ es el segmento recto punto 1 del eje real $(z(t) = t)$	orientado con origen en el punto $-i$ del eje	
= Log(1		$\Gamma = -\frac{1}{Z} \ln Z + \tilde{c} \frac{\Pi}{4}$	$F'(z) = \frac{1}{z-i} \forall z \in D$ Hay independencia del
	de singularidad, así como el v	$f(z) = \frac{z \cosh z}{\sinh z} = \frac{P(z)}{Q(z)}, Py Q \text{ and } ro \text{ sus puntos singulares aislados, especifican } ralor del residuo de f(z) en dichos puntos.$	do en cada caso el tipo
E0 = 0 P	im Chz = 1 = 1 Zk	E Kni K==1, IZ Polos (p, zk)= kni simples	ez-ez=0(=) ez=1=ezkni
de p s	Res(f,0)=0	=0 = singularidad evitable Res (p.0) = 0	Q'(ZK) = cosh(Kni) = cosknin
	Anotar en el siguiente recuad negativas de z) en el entorno	ro, la parte principal del desarrollo en serie $0 < z < R$, especificando el valor de R	de Laurent (potencias Ceros simple, de 1/e

HAY MÁS PREGUNTAS AL DORSO R = min | Zk - 0 | = 11

 $R = \Pi$

Parte principal:

= ZK = Kni

Singularidad evotable

o Lema 3: $z = \pm 1$ Polos => $\begin{cases} \int_{CE_2}^{E=0} \int_{$