In [1]:	<pre>II. Modos de Vibración 1. Librerías import numpy as np np.set printoptions(formatter = {'float': lambda x: '{0:0.5f}'.format(x)})</pre>
	<pre>import matplotlib.pyplot as plt from tabulate import tabulate</pre> 2. Grados de Libertad
In [2]:	<pre>while True: try: gdl = int(input('* Ingrese el número de grados de libertad: ')) break except ValueError: print('! Ingrese un número de GDL válido.\n')</pre>
	<pre>print(f'* El modelo es de {gdl} GDL.') * El modelo es de 2 GDL. 3. Matriz de Rigidez</pre>
	$\mathbf{K} = \left(egin{array}{cccccccc} K_1 + K_2 & -K_2 & 0 & \cdots & 0 & 0 \ -K_2 & K_2 + K_3 & -K_3 & \cdots & 0 & 0 \ 0 & -K_3 & K_3 + K_4 & \cdots & 0 & 0 \ dots & dots & dots & dots & dots & dots \end{array} ight)$
In [3]:	$\mathbf{K} = \begin{bmatrix} 0 & -K_3 & K_3 + K_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & K_{n-1} + K_n & -K_n \\ 0 & 0 & 0 & \cdots & -K_n & -K_n \end{bmatrix}$ 3.1 Rigideces de Entrepiso
	<pre>for i in range(gdl): while True: try:</pre>
	except ValueError: print(f'\n! Ingrese un valor de K{i + 1} válido.') > Rigidez K1 = 155555.56 kg/cm > Rigidez K2 = 87179.49 kg/cm 3.2 Formulación de la Matriz de Rigidez
In [4]:	-
	<pre>k1 = k[i] # Rigidez posterior try: k2 = k[i + 1] except IndexError: k2 = 0</pre>
	<pre>## Llenado de la matriz # Posición actual K[i, i] = k1 + k2 # Posición derecha if i + 1 < gdl: K[i, i + 1] = -k2</pre>
	# Posición izquierda if i - 1 >= 0: K[i, i - 1] = -k1
In [5]:	<pre>3.3 Representación de la Matriz de Rigidez K_r = tabulate(K, tablefmt = 'fancy_grid') print(' Matriz K = \n') print(K_r) • Matriz K =</pre>
	242735 -87179.5 -87179.5 87179.5
	4. Matriz de Masas $\mathbf{M} = \begin{pmatrix} m_1 & 0 & \cdots & 0 \\ 0 & m_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_n \end{pmatrix}$
In [6]:	4.1 Masas Concentradas
	<pre>for i in range(gdl): while True: try:</pre>
	<pre>print(f'\n! Ingrese un valor de M{i + 1} válido.') > Masa M1 = 154.74 kg-s2/cm > Masa M2 = 150.25 kg-s2/cm 4.2 Formulación de la Matriz de Masas</pre>
In [7]:	<pre>M = np.zeros((gdl, gdl)) for i in range(gdl): M[i, i] = m[i] 4.3 Representación de la Matriz de Masas</pre>
In [8]:	•
	154.74 0 0 150.25 5. Frecuencias y Períodos
	Para el cálculo de las frecuencias modales se parte de la expresión:
	${\bf K}\cdot{\bf X}=\omega^2~{\bf M}\cdot{\bf X}$ • Multiplicando por la <i>inversa de la Matriz de Masas</i> ${\bf M}^{-1}$ a ambos miembros se tiene:
	$\mathbf{M}^{-1}\cdot\mathbf{K}\cdot\mathbf{X}=\omega^2\;\mathbf{X}$
	• Lo cual equivale al <i>Problema de Valores Característicos</i> (PVC) de la matriz ${f A}$. ${f A}\cdot{f X}=\lambda\cdot{f X}$ 5.1 Obtención de la Matriz ${f A}$
In [9]:	<pre>M_ = np.linalg.inv(M) A = np.matmul(M_, K) 5.2 Representación de la Matriz A</pre>
In [10]:	<pre>A_r = tabulate(A, tablefmt = 'fancy_grid') print('- Matriz A:\n') print(A_r) - Matriz A:</pre>
	1568.66 -563.393 -580.23 580.23 5.3 Autovalores de A
In [11]:	<pre>A_lambda = np.linalg.eig(A)[0][::-1] print('- Autovalores:') for i in range(gdl): print(f'\n\t* \lambda[i] + 1) = {A_lambda[i]:.2f}')</pre>
	- Autovalores: * \(\lambda 1 = 318.70 \) * \(\lambda 2 = 1830.19 \) 5.4 Cálculo de Frecuencias
In [12]:	<pre>w = np.sqrt(A_lambda) print('- Frecuencias circulares (rad/s)') for i in range(gdl):</pre>
	<pre>print(f'\n\t* w{i + 1} = {w[i]:.4f}') # Frecuencias f = w / (2 * np.pi) print('\n- Frecuencias naturales (Hz)') for i in range(gdl):</pre>
	<pre>print(f'\n\t* f{i + 1} = {f[i]:.4f}') - Frecuencias circulares (rad/s) * w1 = 17.8523 * w2 = 42.7807</pre>
	- Frecuencias naturales (Hz) * f1 = 2.8413 * f2 = 6.8088 5.5 Cálculo de Períodos
In [13]:	<pre>print('- Períodos (s)') for i in range(gdl): print(f'\n\t* T{i + 1} = {T[i]:.3f}')</pre>
	- Períodos (s) * T1 = 0.352 * T2 = 0.147 6. Modos de Vibración
	• A partir de la solución de la <i>matriz de vectores propios</i> ${f X}$ de la matriz ${f A}$ se tiene:
	$\mathbf{X} = \left[\left\{X_n\right\}\cdots\left\{X_2\right\}\left\{X_1\right\}\right]$ • Donde cada vector X_i se conoce como modo de vibración. Este, es un vector unitario $tomado\ de\ forma\ vertical\ dentro\ de\ la\ matriz.$
	• Existen diversos métodos para normalizar los modos de vibración. El más conveniente, para una posterior aplicación del <i>Método Dinámico Modal Espectral</i> , es aquel respecto a la <i>Matriz de Masas</i> \mathbf{M} . $\phi_i = \frac{X_i}{\sqrt{X_i^T \cdot \mathbf{M} \cdot X_i}}$
In [14]:	<pre>X = Mp.IIMarg.erg(A)[I] X_r = tabulate(X, tablefmt = 'fancy_grid')</pre>
	print('- Matriz X:\n') print(X_r) - Matriz X: 0.907039 0.410917
In [15]:	6.2 Vectores de Modos de Vibración # Traspuesta de la matriz de autovectores de A Xt = X.T
	<pre>x = np.empty((gdl, gdl)) print('- Vectores x:') for i in range(gdl): x[i] = Xt[gdl - i - 1].flatten() print(f'\n\t* Vector x{i + 1} = {x[i]}')</pre>
	- Vectores x: * Vector x1 = [0.41092 0.91167] * Vector x2 = [0.90704 -0.42105] 6.3 Normalización Respecto a la Matriz de Masas
In [16]:	<pre>phi = np.copy(x) for i in range(gdl): # Normalización en una línea, por César Sánchez phi[i] = x[i] / np.sqrt(x[i] @ M @ x[i].reshape(-1, 1))</pre>
	<pre>print('\n- Vectores Normalizados Φ:') for i in range(gdl): print(f'\n\t* Vector Φ{i + 1} = {phi[i]}') - Vectores Normalizados Φ: * Vector Φ1 = [0.03344 0.07419]</pre>
In [17]: Out[17]:	* Vector Φ2 = [0.07310 -0.03394] phi[0] array([0.03344, 0.07419])
In [18]:	7. Interpretación de Resultados plt.rcParams['figure.figsize'] = 4.5 * len(phi), 8 plt.rcParams['font.family'] = 'Georgia' plt.rcParams['font.style'] = 'italic' plt.style.use('grayscale')
In [19]:	<pre># Creación de subplots fig, axs = plt.subplots(1, gdl) # Título global fig.suptitle('Modos de Vibración', fontsize = '26')</pre>
	<pre>for i, x in enumerate(phi): y = [] for j in range(len(phi[i])): y.append(6 * (j + 1) / len(phi[i])) axs[i].set_title(f'i = {i + 1}', fontsize = '14')</pre>
	<pre>axs[i].yaxis.set_visible(False) axs[i].xaxis.set_visible(False) axs[i].plot(0, 0, marker = '_', markersize = 30) # Posición inicial axs[i].plot(np.zeros(len(phi[i])), y, marker = 'o', markersize = 23, linestyle = '', color = '#d8dcd6', zor axs[i].plot(np.zeros(len(phi[i]) + 1), np.append(0, y), linestyle = '', color = '#d8dcd6')</pre>
	<pre># Posición final axs[i].plot(x, y, marker = 'o', markersize = 23, linestyle = '', color = '#c14a09', zorder = 1) axs[i].plot(np.append(0, x), np.append(0, y), linestyle = '-', color = '#c14a09', alpha = 0.75) # Vectores desplazamiento</pre>
	<pre>axs[i].quiver(np.zeros(len(phi[i])), y, x, np.zeros(len(phi[i])), scale = 1, zorder = 2, color = '#d8dcd6', # Frecuencias circulares axs[i].text(0, -0.5, f'w{i + 1} = {w[i]:.2f} rad/s', fontsize = 11, ha = 'center', color = '#363737') axs[i].set_xlim([-1.5 * abs(phi).max(), 1.5 * abs(phi).max()]) axs[i].set_ylim([-1, 7])</pre> plt.show()
	$Modos\ de\ Vibraci\'on$ $i=1$ $i=2$
	w ₁ = 17.85 rad/s w ₂ = 42.78 rad/s 8. Dependencias
In [20]:	%load_ext watermark # Compilador y librerías %watermark -v %watermark -iv
	<pre># Sistema operativo %watermark -m # Fecha de subida %watermark -u -n -t -z Python implementation: CPython Python version : 3.9.5</pre>
	Python version : 3.9.5 IPython version : 7.24.1 sys : 3.9.5 (default, May 18 2021, 14:42:02) [MSC v.1916 64 bit (AMD64)] numpy : 1.20.2 matplotlib: 3.3.4 Compiler : MSC v.1916 64 bit (AMD64) OS : Windows
	Release : 10 Machine : AMD64 Processor : Intel64 Family 6 Model 165 Stepping 3, GenuineIntel CPU cores : 12 Architecture: 64bit Last updated: Mon Jun 21 2021 12:17:33SA Pacific Standard Time