Interpoladores trapezoidal.

Evitan que la velocidad varíe durante la mayor parte de la trayectoria (solo en los cambios de dirección)

Para ello:

Utiliza un inteporlador lineal (velocidad constante) durante todo el trayecto salvo en las cercanías de los cambios de dirección, donde usa un interpolador de segundo grado.

Interpolador trapezoidal. Caso velocidad inicial y final nula

$$q(t) = \begin{cases} q^{0} + s\frac{a}{2}t^{2} \\ q^{0} - s\frac{V^{2}}{2a} + sVt \\ q^{1} + s\left(-\frac{aT^{2}}{2} + aTt - \frac{a}{2}t^{2}\right) \end{cases}$$

 $\tau = \frac{V}{a}$ $T = s \frac{q^{1} - q^{0}}{V} + \frac{V}{a}$ V: velocidad máxima permitida a: aceleración máxima permitida $s: \text{ signo } \left(q^{1} - q^{0}\right)$

s: signo
$$(q^1 - q^0)$$

Interpoladores a tramos. Caso velocidad inicial y final no nula. Ajuste parabólico

- Al tener varios puntos, la velocidad de paso por los puntos intermedios no debe ser nula, pues daría lugar a movimientos discontinuos.
- Se puede conseguir variaciones suaves de una velocidad a otra a costa de <u>no pasar exactamente</u> por los puntos.
- El error cometido va en función inversa de la aceleración máxima permitida (a)
- Los puntos inicial y final se deben tratar como de velocidad nula

Ajuste parabólico

Tramos rectos:
$$\begin{cases} q(t) = \dot{q}_i (t - t_{i-1}) + q_{i-1} & t_{i-1} + \tau_{i-1} < t < t_i - \tau_i \\ con & \dot{q}_i = \frac{q_i - q_{i-1}}{t_i - t_{i-1}} & \tau_i = \frac{\dot{q}_{i+1} - \dot{q}_i}{2a} \end{cases}$$
Tramos parabólicos
$$\begin{cases} q(t) = \frac{1}{2} a (t - t_i)^2 + \frac{\dot{q}_{i+1} + \dot{q}_i}{a} t + C & t_i - \tau_i < t < t_i + \tau_i \\ con & C = -\frac{1}{2} a \tau_i^2 - \frac{\dot{q}_{i+1} + \dot{q}_i}{2} (t - \tau_i) + \dot{q}_i (t_i - \tau_i - t_{i-1}) + q_{i-1} \end{cases}$$

$$\begin{cases} q(t) = \frac{1}{2}a(t - t_i)^2 + \frac{q_{i+1} + q_i}{a}t + C & t_i - \tau_i < t < t_i + \tau_i \\ con = C - \frac{1}{2}a\tau^2 + \frac{\dot{q}_{i+1} + \dot{q}_i}{a}(t - \tau_i) + \dot{a}(t - \tau_i - t_i) + a \end{cases}$$

$$q(t) = \begin{cases} q^{0} + \frac{q^{1} - q^{0}}{T_{1}} t & 0 \le t \le T_{1} - \tau \\ q^{1} + \frac{\left(q^{1} - q^{0}\right)}{T_{1}} \left(t - T_{1}\right) + \frac{a}{2} \left(t - T_{1} + \tau\right)^{2} & T_{1} - \tau < t < T_{1} + \tau \\ q^{1} + \frac{q^{2} - q^{1}}{T_{2}} \left(t - T_{1}\right) & T_{1} + \tau < t < T_{1} + T_{2} \end{cases}$$

$$a = \frac{T_1(q^2 - q^1) - T_2(q^1 - q^0)}{2T_1T_2\tau}$$

$$e = \frac{a}{2}\tau^{2} = \frac{T_{1}(q^{2} - q^{1}) - T_{2}(q^{1} - q^{0})}{4T_{1}T_{2}}\tau$$