Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors

Charles Forsberg (ORNL)

Per F. Peterson (Univ. of California)
David F. Williams (ORNL)

Oak Ridge National Laboratory P.O. Box 2008; Oak Ridge, TN 37831-6165

E-mail: forsbergcw@ornl.gov
Tel: (865) 574-6783

International Congress on Advances in Nuclear Power Plants

> Seoul, Korea May 15–19, 2005

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. File: ICAPP05.FastReactor

Outline

- What has changed?
- The liquid-salt-cooled fast reactor (LSFR)
- Economics
- Technical Challenges
- Conclusions

There is New Interest in High-Temperature Reactors Because of Brayton Technologies

- High-temperature heat for a utility is only useful if it can be converted to electricity.
- Steam turbines (with a 550°C peak temperature) have been the only efficient, industrial method to convert heat to electricity
- Development of large efficient high-temperature Brayton cycles <u>in the last</u> <u>decade</u> makes hightemperature heat useful for electricity production
- New basis to consider high-temperature reactors

GE Power Systems MS7001FB

General Atomics GT-MHR Power Conversion Unit (Russian Design)

There is a New Interest in High-Temperature Reactors Because of Hydrogen Demand

(Heat Required at Temperatures Between 700–850°C)

There are Two Demonstrated High-Temperature Nuclear Reactor Coolants

Helium
(High Pressure/Transparent)

Liquid Fluoride Salts (Low Pressure/Transparent)

Liquid Salt Coolants Were Developed to Support Several Programs (1950–1970)

Molten Salt Reactors: Fuel Dissolved in Coolant

Aircraft Nuclear Propulsion Program

← ORNL Aircraft
Reactor Experiment:
2.5 MW; 882°C
Fuel Salt: Na/Zr/F

INEEL Shielded Aircraft Hanger→

Molten Salt Breeder Reactor Program

← ORNL Molten Salt Reactor Experiment Power level: 8 MW(t) Fuel Salt: 7Li/Be/F, Clean Salt: Na/Be/F

Air-Cooled Heat Exchangers →

Liquid Salt Coolants can be Used for Many Types of High-Temperature Reactors

General Electric S-PRISM

Fast Reactor Facility Design

Brayton Power Cycles

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The Liquid-Salt-Cooled Fast Reactor

Whigher-Temperature Liquid-Salt Coolant Replacing Sodium

Fast Reactor Core
(Picture of PFR Core)

High-Temperature, Low-Pressure Transparent Liquid-Salt Coolant

Liquid-Salt-Cooled Fast Reactor (LSFR)

LSFR Facility Layouts are Based on Sodium-Cooled Fast Reactors

Low Pressure, High Temperature, Liquid Cooled

The LSFR is Not a Molten Salt Reactor Cooled with a Clean Liquid Salt, No Fuel in Salt

- MSR programs operated test loops for hundreds of thousands of hours
- MSR programs developed code-qualified alloys of construction to 750°C
- Experience showed major efforts required to develop materials for molten fuel salt (high concentrations of fission products and actinides in salt)
- Experience showed low corrosion rates with clean salts (similar to experience with other coolants)

There are Significant Differences Between Liquid Salts and Sodium

Liquid Metal (Opaque; Na Boiling Point: 883°C)

Liquid Fluoride Salts (Transparent; Boiling Point >1200°C)

Liquid Salts Have Excellent Heat Transport Properties that Enable the Design of Large Reactors

Number of 1-m-diam. Pipes
Needed to Transport 1000 MW(t)
with 100°C Rise
in Coolant Temperature

	Water (PWR)	Sodium (LMR)	Helium	Liquid Salt
Pressure (MPa)	15.5	0.69	7.07	0.69
Outlet Temp (°C)	320	540	1000	1000
Coolant Velocity (m/s)	6	6	75	6

Multi-Reheat Brayton Cycles Enable the Efficient Use of High-Temperature Heat

Economics

LSFR Capital Costs Projected to be Less Than Sodium-Cooled Reactors

- 25% greater efficiency with high-temperature multi-reheat Brayton power cycle
- No sodium-water interactions (no steam cycle)
 - Salt non-reactive with air
 - Slow reaction with water
- Smaller equipment size with high volumetric-heat-capacity fluid
- Transparent coolant to aid refueling and inspection
- Smaller heat rejection system with higher temperatures

Technical Challenges

There are Major Technical Challenges Associated with the LSFR

New Reactor with Associated Uncertainties

- Salt selection
 - Nuclear properties
 - Melting points (350 to 500°C)
- Core design
- Clad materials of construction
 - Challenges
 - Higher temperatures
 - Liquid salt
 - Candidate alloy clad systems
 - ODS alloys
 - Nickel alloys
 - Molybdenum alloys

Conclusions: The LSFR May Address the Challenge of Fast Reactors—Economics

- Fast reactors have advantages in fuel production and waste management
- The challenge is economics
- LSFRs have potentially superior economics
 - Higher efficiency
 - Transparent fluid
 - Smaller equipment
- Technology built on sodiumcooled fast reactors
- New reactor concept with significant uncertainties

Backup Slides Backup Slides Backup Slides

The LSFR Uses a Liquid Salt Coolant

Good Heat Transfer, Low-Pressure Operation, and Transparent (In-Service Inspection)

Liquid Fluoride Salts Were Used in Molten Salt Reactors with Fuel in Coolant (LSFR Uses Clean Salt and Solid Fuel)

Aluminum is tapped from a Kitimat Works electrolytic-reduction cell into a steel vessel called a crucible. The crucible holds approximately 4,000 kg of aluminum and is used to

Molten Fluoride Salts Are Used to Make Aluminum in Graphite Baths at 1000°C

transfer the molten aluminum to the furnaces in the casting department.

Liquid-Salt-Cooled Reactors are Intrinsically High-Temperature Reactors

- Freezing points are between 350 and 500°C
 - Fluoride salts
 - Freezing point dependent on salt composition
- Not suitable for a lowtemperature reactor
- Salt-cooling matches new power cycles and needs
 - Brayton power cycles
 - Hydrogen production

R&D Challenge: Salt Selection

Requirements

- Low nuclear cross sections
- High thermodynamic stability relative to materials of construction (corrosion control)
- Appropriate physical properties (viscosity, low melting point)
- Potential candidate salts (partial list; mol %)
 - NaF (10%)-KF(48%)-ZrF₄(42%): mp: 385°C
 - NaF(6.2%)-RbF(45.8%)-ZrF₄(48%): mp: 380°C
 - NaF(50%)-ZrF₄(50%): mp: 510°C

R&D Challenge: Core Design

- Incentives to minimize coolant volume in the reactor core to maintain hard neutron spectrum
 - Very high volumetric heat capacity relative to sodium
 - Need only a fraction as much coolant in the core
 - Spectrum softening of fluorine is similar to sodium
 - Potential incentives for alternative fuel designs
- Liquid salt fundamental heat transfer differences
 - High volumetric heat capacity relative to sodium
 - Significantly lower thermal conductivity
 - Potential for significant infrared radiation heat transport in transparent coolant at higher temperatures
- Choice of fluoride salt to control physical properties
 - Neutron cross sections
 - Physical properties (viscosity, conductivity, etc.)

R&D Challenge: Fuel Clad

Requirements

- Higher temperature operation
- Corrosion control (fluorides of metals must be less thermodynamically stable than salt components)
- Radiation resistance
- Candidate clad systems (not a full list)
 - ODS alloys
 - Currently being developed for sodium-cooled reactors
 - Need for corrosion testing
 - Nickel alloys
 - Good compatibility with high-temperature salts
 - Mixed experience in high neutron fluxes
 - Molybdenum alloys
 - Excellent compatibility with high-temperature salts
 - Good neutronics
 - Concerns about ductility

The LSFR:

A good idea that still needs some work

End

End

End

