

Computer Architecture

Hamed Farbeh
Department of Computer Engineering and
Information Technology
Amirkabir University of Technology
farbeh@aut.ac.ir

Today's Topics

- Introduction to Computer Organization
- Computer History
- · Moore's Law

Copyright Notice

- · Lectures adopted from:
 - "Computer Organization & Language" handouts, Dept. of CE, SUT, by Prof. H. Asadi, 2016.

Introduction

- What Is a Computer?
 - An <u>electronic device</u> capable of <u>storing and</u> <u>processing information</u> in accordance with a predetermined set of <u>instructions</u>
 - Oxford English Dictionary
 - A <u>machine</u> that manipulates <u>data</u> according to a set of <u>instructions</u>
 - A general purpose device that can be programmed to carry out a set of arithmetic or logical operations
 - · Wiki

Introduction (cont.)

- Where are Computers?
 - PCs
 - Cars
 - Toys

Lecture 1

- Home appliances
 - · Microwaves, refrigerators, TVs
- In your pocket ☺
 - · Cell phones, IPoDs, MP3 players
- Or maybe in your shoes!!!

Introduction (cont.)

Where are Computers?

Computer System

- A computer system consists of <u>hardware</u> and <u>software</u> that are combined to provide a tool to solve problems (with best performance)
 - Hardware may include:
 - · CPU, memory, disks, printers, screen, keyboard, mouse
 - Other peripherals
 - Software may include:
 - System software
 - A general environment to create specific applications
 - Application software
 - A tool to solve a specific problem

Computer System (cont.)

- Most complicated machines ever built on the earth
 - For example,
 - Dual-core Intel Itanium-2 9000 processor contains 1.72 billion transistors
 - Xilinx Virtex7: Over 6 billions transistors
 - A Boeing airplane has only 4 million parts
 - How can we comprehend these computer systems?
 - Using hierarchical abstraction levels

Computer System (cont.)

- · Hierarchical Abstractions
 - Applications
 - Systems software
 - Assembly/machine language
 - Architectural issues
 - · i.e., caches, virtual memory, pipelining
 - Boolean logic, 1s and Os
 - · Sequential logic, finite state machines
 - · Combinational logic, arithmetic circuits
 - Transistors used to build logic gates (CMOS)
 - Semiconductors/silicon used to build transistors
 - Properties of atoms, electrons, and quantum dynamics

Computer Organization

- Computer Components
 - Input, output, memory, control unit, & datapath

Types of Computer Systems

- Desktops
- Servers
- Embedded Systems

- Desktops
 - General purpose computers
 - Variety of software
 - Designed for use by individuals
 - · PCs, Notebooks

- Servers
 - High-end computing systems
 - · Consists of several CPUs
 - Used by multiple users
 - Networked based
 - High capacity, performance, reliability
 - Range from small servers to building sized

- Servers
 - Supercomputers highest performance servers

 Hundreds of CPUs, TBs of memory, PBs of storage

- Embedded Systems
 - A computer system designed to perform one or a few dedicated functions
 - Often with real-time, power, high reliability, low-cost, size/weight constraints
 - Hidden as components of systems

- Embedded Systems
 - Widest range of applications!
 - · Telecommunications systems: routers, ...
 - Consumer electronics: cell phones, PDAs, MP3 players, digital cameras, printers, fax machines, ...

• Transportation systems: cars (ABS, airbag controller, ...), aircrafts

- Embedded Systems
 - Q1: Embedded systems are specialpurpose designed; why?
 - To further reduce cost and power consumption
 - Q2: Is performance a major metric?
 - · As long as we satisfy real-time constraint
 - · Further performance increase not desired

Computer Organization (cont.)

- · Components of a Desktop System
 - Processor
 - Memory system
 - Power supply
 - Cooling system
 - Motherboard
 - I/Os
 - Disk drive, network card (on-chip), video card (on-chip), keyboard, mouse, printer, mouse, camera, ...

Computer Organization: Inside the Box

Computer Organization (cont.)

- · Components of an Embedded Computer
 - Processor
 - Memory system
 - Power supply
 - Cooling system
 - Sensors
 - Converters (ADC, DAC)
 - Actuators

20

Computer Organization (cont.)

A Typical Computer Org.

Memory Bus (GB/sec)

Main Memory (DRAM)

Inside the Processor (CPU)

- Datapath
 - Performs operations on data
- · Control
 - Sequences datapath and memory accesses
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor (CPU)

AMD Barcelona: 4 processor cores

Computer Organization (cont.)

A Typical Embedded Computer

Common Bus

Flash

Market: Application (cont.)

Market: CPU Brand

27

Computer History

- Non-Electronic Computing Machines
 - Abacus
 - Punch machine
 - Difference engine
 - Analytical engine
- · Electro-Mechanical Computers
- Electronic Computers

· Non-Electronic Computing Machines

Lecture:

- · Non-Electronic Computing Machines
 - "Program" on punch cards
 - "Input" & "Output" on punch cards, too!

- Non-Electronic
 Computing Machines
 - Difference engine, 1823
 - Evaluated polynomial functions using additions
 - · By Charles Babbage
 - Special-purpose computer
 - Built by George & Edward Shuetz in 1855
 - Read more on Wiki
 - http://en.wikipedia.org/ wiki/Difference_engine

Non-Electronic
 Computing Machines

- Analytical engine, 1833

- · ElectroMechanical Computing Machines
 - Early 1900s

Lecture 1

- Switches, relays

- Electronic Computers
 - 1st generation: vacuum tubes
 - · 1945-1955
 - 2nd generation: BJT transistors
 - · 1955-1965
 - 3rd generation: integrated circuits
 - · 1965-1974

- · 3rd generation: integrated circuits
 - 8085 Microprocessor

6450 Transistors

- · Electronic Computers
 - 4th generation: VLSI
 - · 1974-1989
 - 5th generation: ULSI

· 1990-present

Pentium III

Motorola MC68040

Electronic Computing Machines

- ENIAC, 1946
 - By Eckert & Mauchly, UPENN
 - 1st programmable electronic digital computer
 - 18,000 vacuum tubes
 - 30 ton, 80 by 8.5 feet
 - 1900 additions per second
 - Programmed by 3000 switches
 - · Used Von Neumann stored program model
 - Read more on Wiki:
 - http://en.wikipedia.org/wiki/ENIAC Lecture 1

- · Electronic Computing Machines
 - UNIVAC, 1951
 - First commercial computer
 - Contract price: \$400K, total price: \$1M
 - Sold 48 copies
 - IBM 701, 1952
 - · Leased at 12K per month
 - Shipped 19 copies
 - IBM 650, 1953
 - · Mass produced, 2000 copies!
 - \$200K ~ \$400K

· Electronic Computing Machines

Lecture 1

· Electronic Computing Machines

Technology Advances

Year	Technology Used in Computers	Relative Performance per unit cost
~1950	Vacuum tube	1
1960s	Transistor	35
1975	Integrated circuit	900
1995	Very large scale integrated circuit	2,400,000
2005	Ultra large scale integrated circuit	6,200,000,000

- Electronic Computing Machines
 - Read more on Wiki
 - http://en.wikipedia.org/wiki/Computer
 - http://en.wikipedia.org/wiki/History_of_com puting_hardware

- CPU History
 - Intel 4004,
 - 1st single chip CPU in textbooks
 - · 1970
 - 4-bit processor
 - 2,300 transistors
 - 16-pin DIP package
 - About 100 kHz
 - 100K OPs per second
 - · More info at Intel website
 - www.intel.com/museum

- CPU History
 - Intel Itanium
 - Montecito
 - · 2004
 - 64-bit processor
 - 1.7 billion transistors
 - 1.7 GHz
 - Issue up to 8 instructions per cycle
 - 26 MB of cache memory

Moore's Law

- What happened from 1970 to 2004?
 - Transistor count doubles every 24-month
 - Some say every 18-month

- · Who's Moore?
 - Gordon Moore a co-founder of Intel Corp.
- Corollaries of Moore's Law
 - Performance of computers doubles every two-year
 - Per unit cost
 - Power consumption doubles every 18 months
 - Per unit area
 - Hard disk capacity doubles every 24 months
 - RAM storage capacity doubles every 24 months
 - Capital cost of a semiconductor fab doubles every 24 months

More on Moore's Law on Wiki

46

· End of Moore's Law?

- End of Moore's Law?
 - Transistor physical dimensions
 - · Gate oxide thickness
 - Power wall
 - Amount of power consumed per inch square

- End of Moore's Law?
 - Future of VLSI technology is unknown
 - Probably no more scaling after 2015
- Possible Solutions
 - Parallel & distributed processing
 - Reconfigurable hardware computing
 - Non-silicon technologies
 - Nano-technologies
 - Carbon nano-tubes, molecular switches
 - Biological computers
 - DNA self-assembly
 - Quantum computing

What We Learned So Far?

- Computer Organization
- Types of Computers
- Computer History
- CPU History
- · Moore's Law

