Cost-Benefit Analysis of Climate Policy

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #29: Wednesday March 31 2021

Considerations in Economic Policy Analysis

1. Compliance & Participation

If you make a policy, how many people/organizations/nations will follow it?

2. Discounting

If you have to pay the costs now, and don't get the benefits for a long time, the effective benefits are smaller.

Imagine you're a musician and you're buying a guitar.

- How much would you pay today for a guitar that you can have right away?
- How much would you pay today for a guitar that will be delivered in six months?

Much more detail on this next week (Wed. Apr. 7)

3. Tipping points

Optimal Policy: 100% efficient

Inefficient: Limited Participation

Optimal Policy: 100% efficient

Limited Participation with Discounting

Limited Participation with Discounting

Limited Participation with Discounting and Tipping Points

Summary of Principles:

- Higher damages with higher temperatures
- Higher costs of emissions abatement for lower temperature targets
- Higher costs when participation is limited and abatement is inefficient
- Lower damages when you account for discounting
- Tipping points can change everything

Microeconomics and Emissions Reduction

Technical Microeconomics

- Marginal costs:
 - The cost of the last unit produced
- Gross costs:
 - The total cost of *all* units produced
- Marginal costs and scale:
 - iPhones:
 - Billions of dollars to build the first iPhone
 - Less than \$500 to build the millionth iPhone
 - Production possibilities:
 - Economies of scale
 - Marginal costs fall as volume increases
 - Learning
 - The more you produce, the more you learn how to cut costs
 - Diminishing returns:
 - Marginal costs rise as volume increases
 - Takeaway: Whether costs go up or down depends on the details

Using Graphs to Avoid Math

- Costs vs. benefits for increasing CO₂ abatement
- MC = marginal cost to society of emissions (pollution)
- MB = marginal benefit of emissions (economic output)
- When MC > MB, it's worth cutting emissions.
- When MC < MB, cutting emissions costs more than it's worth.
- When MC = MB: equilibrium, optimal amount of emissions.

Slope of MB

- Costs vs. Benefits of Emissions
- Why does MB slope down?
 - Optimal emissions:
 - When energy is plentiful,
 diminishing returns on using more
 - Implications for cutting emissions:
 - Marginal benefit of emissions = marginal cost of cutting emissions.
 - Do cheap things first (small marginal cost to reduce emissions)
 - When you run out of cheap things, turn to expensive ones (higher marginal cost)

Slope of MC

- Costs vs. Benefits of Emissions
- Why does MC slope up?
 - Greater emissions mean more warming
 - Greater warming = greater damage:
 - Going from 3°C to 4°C is much worse than going from 2°C to 3°C
 - Benefit of reducing warming from 4°C to
 3°C is worth more than reducing it from
 3°C to 2°C

Marginal vs. Gross Benefit

- E = emissions (abatement)
- B = marginal benefit
- Blue area = total gross benefit to society from emissions

Marginal vs. Gross Cost

- E = emissions (abatement)
- C = marginal cost
- Blue area = total gross cost to society from emissions

Putting it Together

- Marginal benefit at E = B
- Marginal cost at E = C
- Marginal net benefit at E = (B - C)

Putting it Together

- Gross benefit at E = area under MB (light + dark blue)
- Gross cost at E = area under MC (dark blue)
- Gross net benefit at E =
 gross benefit gross cost
 - Light-blue trapezoid

Total Net Benefit

Optimizing Emissions

Optimum Emissions

- Optimum emissions = E*
- Actual emissions = E
- Little triangle on right:
 Costs > Benefits (net loss)
- EPA issues only enough permits to allow emissions of E*
- Free trading in permits cuts emissions to E* at lowest possible cost
- Total net benefits to society are maximized.

Optimum Emissions

- Optimum emissions = E*
- EPA issues only enough permits to allow emissions of E*
- Free trading in permits cuts emissions to E* at lowest possible cost
- Total net benefits to society are maximized.

Deadweight Losses

- Optimum: E*
- EPA cuts emissions too far, to E'
- Deadweight loss = empty triangle (difference between actual net benefit and optimum net benefit).

Deadweight Losses

- Optimum: E*
- EPA cuts emissions too far, to E'
- Deadweight loss = blue triangle (difference between actual net benefit and optimum net benefit).

