Análisis multiparamétrico de la actividad del lago de lava en el Volcán Masaya

S. Pedraza-Espitia

Tutor y comité evaluador:

R. Campion¹

S. de-la-Cruz-Reyna¹

J. M. Espíndola-Castro¹

¹Departamento de vulcanología, Instituto de Geofísica Universidad Nacional Autónoma de México

Enero 2018

Contenido

- 1. Introducción
- 2. Planteamiento del problema
- 3. Objetivos
- 4. Metodología
- 5. Cronograma

Volcán Masaya

- ▶ Ubicado al sur de Nicaragua (635 m s.n.m.)
- ▶ Desde diciembre de 2015 apareció un lago de lava en cráter Santiago.

Lago de lava en cráter Santiago (Foto de Roscoe).

Lagos de lava

 Características: en contacto con la atmósfera, convección eficiente. Después de generar erupciones efusivas se drenan por fracturas del edificio volcánico.

Harris et al., 1999)

Lagos de lava

 Características: en contacto con la atmósfera, convección eficiente.

Lagos de lava

 Características: en contacto con la atmósfera, convección eficiente. Después de generar erupciones efusivas se drenan por fracturas del edificio volcánico.

(Harris et al., 1999)

Caos

- ▶ No es sinonimo de desorden
- ▶ Presente en procesos de convección

Planteamiento del problema

Planteamiento del problema

Justificación

Un lago de lava activo representa una ventana abierta sobre una cámara magmática, los resultados de este estudio permitirán entender mejor los procesos de circulación de magma.

Hipótesis

El análisis de datos de series de tiempo contiene información relevante del comportamiento de los procesos en el magma.

Objetivos

Objetivo general

Entender el comportamiento del lago de lava usando datos multiparamétricos geoquímicos y geofísicos. Buscar correlaciones entre las variables que se han medido.

Objetivos específicos

- ▶ Procesar imágenes de la cámara UV para obtener series de tiempo de la emisión de SO₂.
- Procesar videos de la actividad del lago para obtener campos de velocidad de las corrientes superficiales del magma en el lago.
- Determinar el contenido frecuencial de los datos
- Análisis de la variación temporal de las frecuencias (espectrogramas)
- Intentar explicar los datos usando la teoría del caos.
- Estimar el flujo de magma que alimenta el lago.

Metodología

Instrumentación

- ▶ La cámara UV, utiliza dos sensores CCD y filtros a 310 y 330 nm para medir la radiación difusa absorbida por moléculas de SO₂ en estos dos rangos espectrales. Con el procesamiento de imágenes de absorbancia se cuantifican las densidades de columna SO₂.
- ▶ Un sismómetro y sensor acústico se usa para registrar series de tiempo de las intensidades del tremor cerca del volcán. Datos continuos con un sismómetro de banda ancha (120 s 50 Hz) de 3 componentes instalados durante 7 días en dos lugares diferentes cerca del lago (300 m)
- Videocámara para monitoreo de la actividad de los lagos

Metodología

- Calcular transformada de Fourier de todos los datos
- ▶ Dibujar los espectros de amplitud correspondientes
- Hacer espectrogramas (diagrama frecuencia-tiempo)
- ▶ Ejemplos simples para simular Caos en 1D: función logística (crecimiento de una población única), péndulo. En 2D interacción entre poblaciones y en 3D modelo de Lorenz

Ecuación logística

- logistica.py
- ▶ logistica.sh

Cronograma

Cronograma

Actividad	Semestre			
	1	2	3	4
Cursos obligatorios y optativos	Х	Х		
Revisión bibliográfica	Х	Х	Х	
Instalación de software	Х	Х		
Salida al campo para hacer mediciones		Х		
Procesamiento de datos		Х	Х	
Redacción de tesis			.,	
(introducción, métodos, resultados)			X	
Redacción de tesis				X
(resultados, discusión, conclusión, resumen)				

Tabla Actividades

Contenido

- 1. Introducción
- 2. Planteamiento del problema
- 3. Objetivos

- 4. Metodología Ecuación logística
- 5. Cronograma

Referencias

- Harris, A., L. Flynn, D. A. Rothery, C. Oppenheimer, y S. B. Sherman
 - 1999. Mass flux measurements at active lava lakes: Implications for magma recycling. J. Geophys. Res, Pp. 7117–1136.
- Legrand, D., D. Rouland, M. Frogneux, R. Carniel, D. Charley, G. Roult, y C. Robin
 - 2005. Interpretation of Very Long Period tremors at Ambrym volcano, Vanuatu as quasi-Static Displacement Field related to two distinct magmatic sources. Geophysical Research Letters, 32.
- Lorenz, E. N.
 - 1963. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20:130-141.
- Roscoe, R.
 - 2016. Masaya volcano. Recuperado de www.photovolcanica.com/VolcanoInfo/Masaya/Masaya.html Consultado el 16 de diciembre de 2017.
- Tazieff, H.
 - 1994. Permanent lava lakes: observed facts and induced mechanisms. Journal of Volcanology and Geothermal Research, 63:3-11.
- Williams, S.
 - 1983. Geology and Eruptive Mechanisms of Masaya Caldera Complex, Nicaragua. PhD thesis, Dartmouth College.

Ésta presentación se encuentra disponible en git.io/salvador

Gracias