

دانشگاه تهران

دانشکده فنی مهندسی کامپیوتر دپارتمان الگوریتم ها و محاسبات

گزارش تمرین شماره ی پنج ، شش و هفت طراحی الگوریتم های خوشه بندی

نیلوفر آقایی ابیانه

۸۱۰۸۹۰۰۰۱

چکیده

در این پروژه ، از روش های خوشه بندی طبقه بندی مجموعه ای از داده ها استفاده شده است ؛ و نتایج حاصل تحلیل می شوند. در اینجا سه الگوریتم خوشه بندی کا تا میانگین ، سلسله مراتبی پایین با بالا و نگاشت خود سازمان دهی شده اند. در الگوریتم خوشه بندی نگاشت خود سازمان دهی شده از روش یادگیری البته به صورت کورکورانه است.

ا. مقدمه

در علم کامپیوتر، الگوریتم های مختلفی برای خوشه بندی وجود دارد. زمانی از خوشه بندی استفاده می شود که اطلاعاتی از داده ی اولیه وجود ندارد. با استفاده از الگوریتم های خوشه بندی توده ی داده ها مشخص می شود سپس با توجه به آنها اطلاعاتی استخراج می شود؛ بنابراین در خوشه بندی هدفی وجود ندارد. شکل ۱-۱ یک دسته از داده ها را در یک فضای دوبعدی نشان می دهد. در این شکل سه خو شه وجود دارد.

شکل ۱-۱ سه خوشه در فضای دوبعدی؛ هر رنگ بیانگر یک خوشه است. هر دایره در خوشه نماینده ی آن خوشه می باشد

الگوریتم های خوشه بندی متعدد از روش های مختلفی برای پیدا کردن خوشه ها^۶ استفاده می کنند. همه ی روش ها از معیار شباهت برای تشخیص نمونه هایی که در یک خوشه استفاده می کنند. در واقع این

[`]clustering

kmeans

[້] Hierarchical bottom-up

Self-Organizing Mapps (SOM)

unsupervised

[ີ] clusters

روش ها سعی بر این دارند نمونه هایی که شباهت بیشتری دارند یا در یک خوشه قرار دهند. خوشه بندی خوب است که بیشترین شباهت درون خوشه ای و کمترین شباهت برون خوشه ای داشته باشد.

یکی از معیار های رایج برای سنجش شباهت، فاصله نمونه ها است. فرمول های مختلفی برای اندازگیری فاصله دو نمونه وجود دارد؛ به عنوان مثال می توان به فرمول های فاصله ی مینکاسکی و منهتن آ اشاره کرد که به ترتیب در رابطه ها ی 1-1 و 1-7 آمده اند.

$$d(i,j) = \sqrt[q]{|x_{i} - x_{j}|^{q} + |x_{i} - x_{j}|^{q} + \cdots |x_{ip} - x_{jp}|^{q}}$$
 (1-1)

$$d(i,j) = |x_{i} - x_{j}| + |x_{i\tau} - x_{j\tau}| + \dots + |x_{ip} - x_{jp}|$$
 (1-7)

که $(x_{i_1}, x_{i_2}, \dots, x_{i_n})$ که $(x_{i_1}, x_{i_2}, \dots, x_{i_n})$ و $(x_{i_1}, x_{i_2}, \dots, x_{i_n})$ که $(x_{i_1}, x_{i_2}, \dots, x_{i_n})$ که است.

معیار فاصله که در سه روش خوشه بندی جلوتر ارائه می شود، فاصله اقلیدسی است. رابطه ی -7 فرمول این فاصله را نشان می دهد.

$$d(i,j) = \sqrt[r]{|x_{i} - x_{j}|^r + |x_{i} - x_{j}|^r + \cdots |x_{ip} - x_{jp}|^r}$$
 (1-r)

همانطور که اشاره شد، در خوشه بندی هدف وجود ندارد. لذا باید یک الگوریتم خوشه بندی چندین بار اجرا شود تا از بین آنها بهترین خوشه ها انتخاب شود. از طرفی یکی از مشکلات خوشه بندی این است که تعداد خوشه ها مشخص نیست. بنابراین الگوریتم های خوشه بندی باید برای تعداد خوشه های متعدد و به ازای هر کدام چندین بار اجرا شود تا از بین همه ی آنها بهترین انتخاب شود.

در ادامه سه الگوریتم خوشه بندی کا تا میانگین، سلسله مراتبی پایین با بالا و نگاشت خود سازمان دهی شده شبیه سازی شده اند. هر کدام از این الگوریتم ها را روی داده های ایریس و ست ایمیج اجرا می شوند.

⁾ Minkowski

[ັ] Manhattan

iris

^¹ satimage

برای این کار الگوریتم ها را برای تعداد خوشه های ۳ تا ۸ و به ازای هر کدام از این خوشه ها ۵ با الگوریتم اجرا می شود.

۲. الگوریتم ها

خوشه بندی سلسله مراتبی پایین با بالا I

در این روش ابتدا هر نمونه به عنوان یک خوشه در نظر گرفته می شود. در مرحله ی بعدی فاصله اقلیدسی دوبه دو ی خوشه ها حساب می شود. دو خوشه ای که فاصله ی کمتری نسبت به باقی فاصله ها دارند با هم ادغام می شوند و در یک خوشه نظر گرفته می شوند. سپس میانگین نمونه ها در این خوشه با عنوان نماینده ی آن خوشه در نظر گرفته می شود؛ و این روند مجددا تکرار می شود. این فرایند تا زمانیکه به تعداد خوشه های مورد نظر برسد تکرار می شود.

II خوشه بندی کا تا میانگین

در این روش ابتدا به تعداد خوشه ها از بین نمونه به صورت تصادفی مرکز انتخاب می شود (هر یک از این مرکز ها به عنوان یک خوشه در نظر گرفته می شود). سپس فا صله ی هر نمونه تا مرکز ها محاصبه می شود؛ و هر نمونه به خوشه ی مرکزی که فا صله ی کمتری دارد تعلق پیدا می کند. زمانیکه این کار برای همه ی نمونه ها انجام شد، برای هر خوشه میانگین نمونه های قرار گرفته در آن خوشه به عنوان مرکز جدید آن خوشه محاصبه می شود. اگر مرکز ها تغییر نکنند آنگاه الگوریتم متوقف می شود و خوشه ها را تعیین کرده است؛ در غیر این صورت این فرایند برای مرکزهای جدید بدست می آید. در این الگوریتم خلاف الگوریتم خوشه بندی سلسله مراتبی ممکن است شرایطی ایجاد شود که الگوریتم هیچگاه متوقف نشود (در هر بار تکرار مرکز خت تغییر کنند). لذا در اینجا در شبیه سازی ای الگوریتم، برای اجتناب از این مشکل یک شرط تعداد تکرار می گذاریم که اگر پس از ۱۰۰۰ باز تکرار مرکز ها هم چنان تغییر می کنند متوقف شود.

- ۱. به انتخاب اولیه مرکز ها بشدت وابسته است
 - ۲. سربار محاصباتی بالا دارد

_

[່] center

۳. کا بهینه باید پیدا شود

۴. در خیلی مواقع الگوریتم پایان پذیر نیست

III خوشه بندی نگاشت خود سازمان دهی شده

این روش اولین بار توسط مالسبورگ در سال ۱۹۷۳ ارائه شده و توسط کوهونن در سال ۱۹۷۳ ارائه شده و توسط کوهونن در سال ۱۹۸۲ تکمیل شد. این روش یک شبکه عصبی است که از آموزش رقابتی کورکورانه استفاده می کند و بر اساس مکانیزم کاری مغز انسان است.

این شبکه عصبی از دو لایه کاملا متصل تشکیل شده است: لایه ورودی ، لایه خروجی. شکل ۱-۲ ساختار این شبکه عصبی را نشان می دهد.

شکل ۱-۲ ساختار شبکه عصبی نگاشت خود سازمان دهی شده

تعداد نرون های لایه ورودی برابر با ابعاد فضای مسئله (تعداد ویژیگی ها) و تعداد نرون های لایه خروجی لایه خروجی برابر با تعداد خوشه ها است. هر نرون لایه ورودی به همه ی نرون های لایه خروجی متصل است و این اتصلات دارای وزن می باشند که در طی فرایند آموزش به روز می شوند.

روش کار به این صورت است که یک نمونه به لایه ورودی اعمال می شود. سپس فاصله این نمونه با همه مرکز ها محاصبه می شود؛ در نهایت آن نمونه متعلق به خوشه ای می شود که فاصله ی کمتری دارد پس نرون متناظر در لایه خروجی برنده می شود . فقط وزن یال های متصل به آن نرون طبق قاعده ی یادگیری ۱-۴ به روز می شود،

C.von der Malsburg

^{*} Kohonen

$$w(n+1) = w(n) + \eta(X-W) \tag{1-4}$$

که η نرخ آموزش(به صورت پویا)، ی بردار ورودی و w بردار وزن های متصل به نرون برنده است. پس از اینکه وزن های نرون برنده به روز شد ، وزن های نرون های همسایگی نرون برنده نیز به روز می شوند. در واقع یک تابع همسایگی وجود دارد که این تابع در گذر زمان به سمت صفر میل میکند. همچنین η نیز به سمت صفر میل کی کند. این فرایند تا زمانیکه همه نمونه ها خوشه بندی شوند ادامه پیدا می کند (شکل η).

شکل ۱-۳ نمودار نرخ آموزش و تابع همسایگی؛ شعاع تابع همسایگی در هر تکرار کم می شود.

۳. الگوریتم های ارزیابی خوشه بندی

همانطور که اشاره شد خوشه بندی خوب است که بیشترین شباهت درون خوشه ای و کمترین شباهت برون خوشه ای داشته باشد، کیفیت خوشه بندی به معیار شباهت استفاده شده در هر روش نیز بستگی دارد.

دراینجا دو روش برای ارزیابی الگوریتم های خوشه بندی ارائه می شود؛ ولی قبل از آن ابتدا چند علامت را توضیح می دهیم:

- تعداد خوشه ها : n_c
 - اه عداد بعد هاd
- فاصله ی بین دو نمونه : d(x,y)
 - میانگین j امین بعد : $ar{X_j}$
- ست. که X^T که X^T یک بردار ستونی است.

- بعد و آمین خوشه و iبعد: n_{ij}
- داده عناصر در j امین بعد در کل داده : n_j
 - مرکز iامین خوشه: v_j
 - امین خوشه $i:c_i$ •
 - ام اi : تعداد عناصر در خوشه ی $\|c_i\|$ •

ackprime شاخص دویس – بولدین I

این شاخص براساس معیارهای شباهت خوشه ها (R_{ij}) که از روی معیار پراکندگی یک خوشه (S_i) محاسبه می شود و شبیه نبودن خوشه ها (d_{ij}) است. معیار شباهت خوشه ها می تواند به صورت دلخواه تعریف شود اما باید در شروط زیر صدق کند.

- $R_{ii} \geq \cdot \bullet$
- $R_{ij} = R_{ji}$ •
- if $s_i = \cdot$ and $s_j = \cdot$ then $R_{ij} = \cdot$ •
- if $s_i > s_k$ and $d_{ij} = d_{ik}$ then $R_{ij} > R_{ik}$ •
- if $s_j = s_k$ and $d_{ij} < d_{ik}$ then $R_{ij} > R_{ik}$ •

معمولا R_{ij} به صورت زیر تعریف می شود:

$$R_{ij} = \frac{s_i + s_j}{d_{ij}}$$

$$d_{ij} = d(v_i, v_j) , \qquad s_i = \frac{1}{\|c_i\|} \sum_{x \in C_i} d(x, v_i)$$

و بنابراین شاخص دویس - بولدینگ به صورت زیر تعریف می شود:

$$DB = \frac{1}{n_c} \sum_{i=1}^{n_c} R_i \text{ where } R_i = \lim_{j=1}^{n_c} \sum_{i=1}^{n_c} R_{ij} \text{ if } i = 1 \dots n_c$$

_

Davis Bouldin Index

این شاخص میانگین شباهت بین هر خوشه و خوشه ای که بیشترین شباهت را با آن دارد، اندازه گیری می کند. از آن جایی که خوشه ها باید فشرده و جدا از هم باشند، مقدار کمتر این شاخص نشان دهنده ی خوشه بندی بهتر است.

II شاخص های RS و RMSSTD

شاخص RMSSTD (ریشه-میانگین-مجذور انحراف معیار) معادل واریانس خوشه ها می باشد. در واقع این شاخص شباهت خوشه ها را اندازه گیری می کند. از آن جایی که هدف خوشه بندی شناسایی گروه های مشابه است، بنابراین مقدار کم این شاخص نشان دهنده ی روش خوشه بندی بهتر است.

$$RMSSTD = \sqrt{\frac{\sum_{j=1...d}^{i=1...n_c} \sum_{k=1}^{n_{ij}} (x_k - \overline{x_j})^{\Upsilon}}{\sum_{j=1...d}^{i=1...n_c} (n_{ij} - \Upsilon)}}$$

شاخص RS (مجذور R) میزان عدم شباهت خوشه ها را اندازه گیری می کند. در واقع درجه شباهت بین گروه های مختلف را اندازه گیری می کند. مقدار این شاخص بین صفر و یک است. صفر به معنای داشتن خوشه هایی است که فرقی با هم ندارند و یک نشان دهنده ی تفاوت زیاد بین خوشه ها می باشد.

$$RS = \frac{ss_t - ss_w}{ss_t}$$

$$where \ ss_t = \sum_{j=1}^{d} \sum_{k=1}^{n_j} (x_k - \overline{x_j})^{\gamma} , \quad ss_w = \sum_{j=1...d}^{i=1...n_c} \sum_{k=1}^{n_{ij}} (x_k - \overline{x_j})^{\gamma}$$

۴. توابع در محیط متلب

MainHierarchicalClustering: تابع اصلى براى فراخوانى MainHierarchicalClustering: تابع شبيه سازى الگوريتم سلسله مراتبى پايين به بالا HierarchicalClustering: تابع اصلى براى فراخوانى kmeans

Kmeans: تابع شبیه سازی الگوریتم کا تا میانگین

MainSOM: تابع اصلى براى فراخواني M

SOM: نابع شبیه سازی نگاشت خود سازمان دهی شده :SOM: نابع شبیه سازی نگاشت خود سازمان دهی شده

RMSSTD و RS اشاخص هاى RMSSDT_and_RS

۵. آزمایش ها

در اجرای این الگوریتم ها از آنجا که هدفی وجود ندارد برای این که به خوشه بندی مناسبی رسید باید هر الگوریتم را چند بار اجرا کرد. از طرفی تعداد بهینه خوشه ها مشخص نیست و از این رو برای به دست آوردن تعداد خوشه مناسب باید الگوریتم را به ازای تعداد های متعددی از خوشه اجرا کرد.

در اینجا هر کدام از الگوریتم های خوشه بندی روی مجموعه داده ای ایریس و ست ایمیج اجرا می شوند. برای مجموعه داده ای ایریس هر الگوریتم برای تعداد خوشه های ۲ تا ۱۵جرا می شود. از طرفی به ازای هر تعداد خوشه مشخص هر الگوریتم ۵ بار اجرا می شود. در نهایت با استفاده از معیار های ارزیابی که گفته شد در هر الگوریتم از بین همه نتایج بهترین انتخاب می شوند. برای مجموعه داده ای ست ایمیج هر الگوریتم برای تعداد خوشه های ۴ تا ۱۸جرا می شود. از طرفی به ازای هر تعداد خوشه مشخص هر الگوریتم ۵ بار اجرا می شود.

برای الگوریتم کاتا میانگین از آنجا که هم اشاره شد ممکن الگوریتم متوقف نشود به صورت دستی شرط پایان در صورتی که خودش متوقف نشود، پس از ۱۰۰۰ بار تکرار گذاشته شد. شرط توقف الگوریتم نگاشت خود سازمان دهی شده زمانی است که وزن ها پس از یک نسل تغییر نکنند.

تعداد اجرا	تعداد عناصر در هر	نسل
	خوشه	
1	۱۰۰ ۵۰	1
۲	۵۰ ۱۰۰	1 • • •
٣	۱۰۰ ۵۰	1 • • •
۴	۵۰ ۱۰۰	1 • • •
۵	۵۰ ۱۰۰	1

جدول ۱-۱
اجرای الگوریتم kmeans برای ایجاد ۲ خوشه
روی مجموعه داده ای iris

1.4
1.3
1.2
1.1
1.0,9
0.8
0.7
1.15 2 2.5 3 3.5 4 4.5 5

شکل۱-۴ نمودار حاصل از توابع ارزیابیبرای جدول ۱-۱ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

تعداد اجرا	ر در هر	داد عناص	نسل تع
	ه		
1	49	۵۵ 49	1 * * *
۲	41	۵۰ ۵۹	1 • • •
٣	۵۳	۵۰ ۴۷	1
۴	۵٠	44 08	1
۵	١٣	۱۰۰ ۳۷	1 * * *

جدول ۱–۲ اجرای الگوریتم kmeans برای ایجاد۳ خوشه روی مجموعه داده ای iris

شکل۱-۵ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ رد

تعداد اجرا	ِ هر	سر در	د عناه	نسل		
	خوشه					
1	۵۹	۱۵	٣۵	۴۱	1	
۲	۲۷	۵٠	3	٣٧	٢	
٣	۵۳	49	۲.	۲۸	۵	
۴	kk	۵٠	۴۵	11	۲	
۵	49	44	٣.	77	٣	

جدول ۱-۳ اجرای الگوریتم kmeans برای ایجاد۴خوشه روی مجموعه داده ای iris

شکل۱-۶ نمودار حاصل از توابع ارزیابی برای جدول ۱-۳ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

تعداد اجرا	تعداد عناصر در هر					نسل
1	77	۲۳	49	١٨	٣٨	1 • • •
۲	74	۱٧	49	11	49	1 • • •
٣	٣۵	٩	78	٣١	49	1 • • •
۴	71	۱۸	۲۷	49	٣۵	1 • • •
۵	٣٣	٣٣	49	19	18	1

جدول ۱-۴ اجرای الگوریتم kmeans برای ایجاد۵خوشه روی مجموعه داده ای iris

شکل۱-۷ نمودار حاصل از توابع ارزیابی برای جدول ۱-۴ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ ردد

تعداد اجرا	تعداد عناصر در هر خوشه
1	V9 V1
۲	Y9 Y 1
٣	V9 V1
۴	V9 V 1
۵	Y9 Y1

1.8

0.8

جدول ۱-۵ اجرای الگوریتم Hierarchical برای ایجاد۲خوشه روی مجموعه داده ای iris

۵-

شکل1-A نمودار حاصل از توابع ارزیابی برای جدول $1-\Delta$ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص \mathbf{RS} با رنگ سبز شاخص \mathbf{RS} با رنگ ررد

تعداد اجرا	تعداد عناصر در هر خوشه
١	۸۵ ۲۷ ۳۱
۲	۱۳ ۲۹ ۵۸
٣	۱۳ ۷۹ ۵۸
۴	۱۳ ۲۹ ۵۸
۵	۸۵ ۲۷ ۱۳

جدول ۱-۶ اجرای الگوریتم Hierarchical برای ایجاد۳خوشه روی مجموعه داده ای iris

شکل۱-۹ نمودار حاصل از توابع ارزیابی برای جدول ۱-۶ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

تعداد اجرا	تعداد عناصر در هر خوشه
1	17 TY TI V9
۲	17 TY Y1 Y9
٣	17 TY TI V9
۴	۱۳ ۳۷ ۲۱ ۷۹

۵

1.5

0.5

جدول ۱-۷ اجرای الگوریتم Hierarchical برای ایجاد۴خوشه روی مجموعه داده ای iris

17 77 79

شکل۱-۱۰ نمودار حاصل از توابع ارزیابی برای جدول ۱-۷ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

تعداد اجرا	تعداد عناصر در هر خوشه
1	1 18 88 71 79
Y	1 18 88 71 79
٣	1 18 88 71 79
۴	1 18 88 71 79
۵	1 18 88 71 79

جدول ۱-۸ اجرای الگوریتم Hierarchical برای ایجاد ۵ خوشه روی مجموعه داده ای iris

شکل11-1 نمودار حاصل از توابع ارزیابی برای جدول 1- شاخص دیوس بلدین با رنگ قرمز شاخص MMSSDT با رنگ سبز شاخص 11-1 با رنگ سبز شاخص 11-1 با رنگ سبز شاخص 11-1 با رنگ شاخص 11-1 با رنگ شاخص 11-1 با رنگ زرد

جدول ۱-۹ اجرای الگوریتم SOM برای ایجاد ۲ خوشه روی مجموعه داده ای iris

تعداد اجرا	تعداد عناصر در هر خوشه	نسل
1	۵۰ ۱۰۰	77
۲	۱۰۰ ۵۰	77
٣	۵۰ ۱۰۰	77
۴	۵۰ ۱۰۰	77
۵	۵٠ ١٠٠	77

شکل ۱۲-۱۱ نمودار حاصل از توابع ارزیابی برای جدول ۱-۹ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

جدول ۱-۱۰ اجرای الگوریتم SOM برای ایجاد ۳ خوشه روی مجموعه داده ای iris

تعداد اجرا	تعداد عناصر در هر خوشه	نسل
1	44 B5 B.	74
۲	44 D. DS	74
٣	۵۶ ۵· ۴۴	74
۴	44 08 0.	74
۵	۵۶ ۵۰ ۴۴	74

شکل۱-۱۳ نمودار حاصل از توابع ارزیابی برای جدول ۱۰-۱ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

جدول ۱-۱۱ اجرای الگوریتم SOM برای ایجاد ۴ خوشه روی مجموعه داده ای iris

تعداد اجرا	ىر خوشە	در ه	ناصر	تعداد عا	نسل
1	49	49	۲۸	74	٣٨
۲	49	49	74	۲۸	٣٨
٣	49	۲۸	74	49	٣٨
۴	49	74	۲۸	49	٣٨
۵	۲۸	74	49	49	٣٨

شکل۱۴-۱ نمودار حاصل از توابع ارزیابی برای جدول ۱۱-۱۱ شاخص دیوس بلدین با رنگ قرمز شاخص RMSSDT با رنگ سبز شاخص RS با رنگ زرد

جدول ۱-۱۲ اجرای الگوریتم SOM برای ایجاد ۵ خوشه روی مجموعه داده ای iris

تعداد اجرا	عوشه	هر خ	ىر در	عناص	تعداد	نسل
1	74	۲۸	۱۵	٣۵	47	۵٠
۲	۱۵	٣۵	47	۲۸	74	۵۰
٣	74	47	٣۵	77	۱۵	۵٠
۴	۲۸	74	47	۱۵	٣۵	۵٠
۵	74	47	۲۸	٣۵	۱۵	۵٠

اکنون در اینجا این الگوریتم های خوشه بندی گفته شده برای مجموعه داده ای ایریس ارزیابی می شود.

با توجه جدول های ۱-۱ تا ۱-۴ و شکل های ۱-۴ تا ۱-۷، از بین ۲۰ اجرای الگوریتم کا تا میانگین (Kmeans) نتایج زیر حاصل می شود:

	بهترين تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	٢	٣	1.~1919Ye + ··
شاخص RMSSDT	۵	۵	4.70·146 — · 1
شاخص RS	۵	۴	∧.٢٧٧٩٢٣e — • ١

جدول ۱-۱۶ ارزیابی اجرای الگوریتم Kmeans با توجه به جدول های ۱-۱ تا ۱-۴ و شکل های ۱-۴ تا ۱-۷ روی مجموعه داده ای

با توجه جدول های -1 تا -1 و شکل های -1 تا -1 از بین -7 اجرای الگوریتم سلسله مراتبی پایین به بالا(Hierarchical) نتایج زیر حاصل می شود:

	بهترین تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	٢	١	1.81A477e + · ·
شاخص RMSSDT	۵	١	4.974249e — · 1
شاخص RS	۵	١	v.9⋅۲λ۶⋅e — ⋅ 1

جدول ۱−۷/ اجراي الگوريتم Hierarchical با توجه به جدول هاي ۱−۵ تا ۱−۸ و شكل هاي ۱−۸ تا ۱−۱۱ روي مجموعه داده اي iris

با توجه جدول های ۱-۹ تا ۱-۱۲ و شکل های ۱-۱۲ تا ۱-۱۵، از بین ۲۰ اجرای الگوریتم نگاشت خود سازمان دهی شده(SOM) نتایج زیر حاصل می شود:

	بهترين تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	٢	١	1. 1919 Ye + ••
شاخص RMSSDT	۵	٢	r.9raγare — · 1
شاخص RS	۵	٢	1.∆74177e — · 1

جدول ۱-۱۸ اجراي الگوريتم SOM با توجه به جدول هاي ۱-۹ تا ۱-۱۲ و شكل هاي ۱-۱۲ تا ۱-۱۵ روي مجموعه داده اي iris

برای الگوریتم کاتا میانگین از آنجا که هم اشاره شد ممکن الگوریتم متوقف نشود به صورت دستی شرط پایان در صورتی که خودش متوقف نشود، پس از ۲۰۰۰ بار تکرار گذاشته شد. شرط توقف الگوریتم نگاشت خود سازمان دهی شده زمانی است که وزن ها پس از یک نسل تغییر نکنند.

با اجرای الگوریتم کاتا میانگین، روی مجموعه داده ست ایمیج ،نتایج جدول های ۱-۱۹ تا ۱-۲۳ و شکل های ۱-۲۹ تا ۱-۲۰، زیر حاصل شده است. با اجرای الگوریتم سلسله مراتبی پایین به بالا روی مجموعه داده ای ست ایمیج نتایج جدول های ۱-۲۱ تا ۱-۲۸، زیر حاصل شده است. با اجرای الگوریتم نگاشت خود سازمان دهی روی مجموعه داده ای ست ایمیج نتایج جدول های ۱-۲۹ تا ۱-۳۳ و شکل های ۱-۲۶ تا ۱-۲۳ و شکل های ۱-۲۶ تا ۱-۲۳ و شکل های ۱-۲۶ تا ۱-۲۳ و شکل های ۱-۲۶ تا ۱-۲۰۰ زیر حاصل شده است.

تعداد اجرا	شه	تعداد عناصر در هر خوشه						
١	۱۳۰۵	7719	8.1	۱۸۱۰	۲۰۰۰			
٢	۵۹۹	۱۷۸۵	۱۸۵۹	7197	7			
٣	8.1	18.9	۱۸۱۰	7710	۲۰۰۰			
۴	۶۰۰	۱۷۵۷	1911	7187	7			
۵	۱۷۵۷	1911	7187	9	۲۰۰۰			

جدول ۱-۱۹ اجرای الگوریتم Kmeans برای ایجاد ۴ خوشه روی مجموعه داده ای

تعداد اجرا		تعداد عناصر در هر خوشه					
١	1807	18	۱۰۱۸	9	۱۵۶۰	۲٠٠٠	
٢	1807	9	1 - 1 Y	18.8	108.	7	
٣	1844	1.49	7.19	۵۷۳	1104	7	
۴	1808	9	1 - 1 Y	18.7	108.	7	
۵	108.	1698	1.7.	9	1809	7	

جدول ۱-۲۰ اجرای الگوریتم Kmeans برای ایجاد ۵ خوشه روی مجموعه داده ای satimage

تعداد اجرا	تعداد عناصر در هر خوشه							
١	۵۶۸	۸۶۵	۱۱۵۵	987	1011	1889	۲٠٠٠	
٢	۲۵	461	1149	1808	7,77	١٠٠۵	۲٠٠٠	
٣	977	1108	1880	188	۵۶۸	1011	۲٠٠٠	
۴	۱۱۵۸	۱۳۶۵	۸۶۳	۱۵۰۹	۵۶۸	977	۲٠٠٠	
۵	۱۵۰۷	۵۶۸	184	977	1108	1881	7	

جدول ۱-۲۱ اجراي الگوريتم Kmeans براي ايجاد ۶ خوشه روي مجموعه داده اي satimage

تعداد اجرا		تعداد عناصر در هر خوشه						
١	۸۶۱	1174	٧٣٣	1774	۵۶۸	969	908	۲٠٠٠
٢	1.4.	۸۷۳	۵۶۸	٩٨۵	1149	954	۸۶۷	7
٣	847	۵۹۶	1849	٧٧٩	1895	۵۶۷	11.4	7
۴	1.4.	1149	۸۶۷	۸۷۳	۵۶۸	۹۵۳	٩٨۵	۲٠٠٠
۵	۱۵۱۵	114	1100	1880	۲۷۵	97.	747	۲٠٠٠

جدول ۱-۲۲ اجراي الگوريتم Kmeans براي ايجاد٧ خوشه روي مجموعه داده اي satimage

تعداد اجرا		تعداد عناصر در هر خوشه						
١	947 190	1.79	۵۶۹	۸۲۰	919	417	۸۳۷	7
٢	7X4 X74	۸۶۵	1.79	904	444	۹۸۵	1100	7
٣	140 001	٩٧٨	1.04	YY 1	849	۵۶۶	1.4.	7
۴	904 788	147	١٢٢٨	490	٧٨۵	۱۱۰۸	٩۵٣	7
۵	984 084	1.77	۸۴۶	۸۰۳	۵۴۳	841	١٠٣٧	7

جدول ۱-۲۳ اجرای الگوریتم Kmeans برای ایجاد ۸ خوشه روی مجموعه داده ای

تعداد اجرا	وشه	تعداد عناصر در هر خوشه					
١	۳۷۵۵	۵۱۶	741	١٨٢٣			
٢	۳۷۵۵	۵۱۶	461	١٨٢٣			
٣	۳۷۵۵	۵۱۶	741	١٨٢٣			
۴	۳۷۵۵	۵۱۶	741	١٨٢٣			
۵	۳۷۵۵	۵۱۶	741	١٨٢٣			

جدول ۱-۲۴ اجرای الگوریتم Hierarchical برای ایجاد ۴ خوشه روی مجموعه داده ای satimage

تعداد اجرا	تعداد عناصر در هر خوشه					
1	777	۵۱۶	741	١٨٢٣	71	
٢	777	۵۱۶	441	١٨٢٣	71	
٣	7774	۵۱۶	741	١٨٢٣	71	
۴	777	۵۱۶	741	١٨٢٣	71	
۵	7774	۵۱۶	741	١٨٢٣	71	

جدول ۱-۲۵ اجرای الگوریتم Hierarchical برای ایجاد ۵ خوشه روی مجموعه داده ای satimage

شکل۱-۱۶ نمودار حاصل از توابع ارزیابی برای جدول ۱-۱۳؛ شاخص با رنگ سبز؛ RMSSDTديوس بلدين با رنگ قرمز؛ شاخص با رنگ زرد RSشاخص

شکل۱-۱۸ نمودار حاصل از توابع ارزیابی برای جدول ۱-۱۵؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛

شکل۱-۱۹ نمودار حاصل از توابع ارزیابی برای جدول ۱-۱۶؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زر

شکل۱-۲۰ نمودار حاصل از توابع ارزیابی برای جدول ۱-۱۷؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

تعداد اجرا	تعداد عناصر در هر خوشه						
١	۵۱۶	7191	741	١٨٢٣	۲۱	۵۴۳	
٢	۵۱۶	7191	741	١٨٢٣	71	۵۴۳	
٣	۵۱۶	7191	741	١٨٢٣	71	۵۴۳	
۴	۵۱۶	7191	741	١٨٢٣	۲۱	۵۴۳	
۵	۵۱۶	7191	741	١٨٢٣	71	۵۴۳	

جدول ۱-۲۶ اجرای الگوریتم Hierarchical برای ایجاد ۶ خوشه روی مجموعه داده ای satimage

تعداد اجرا	تعداد عناصر در هر خوشه							
١	7191	741	۳۰۱	١٨٢٣	۲۱	۵۴۳	710	
٢	7191	741	٣٠١	١٨٢٣	۲۱	۵۴۳	710	
٣	7191	741	٣٠١	١٨٢٣	71	۵۴۳	710	
۴	7191	741	٣٠١	١٨٢٣	۲۱	۵۴۳	710	
۵	7191	741	٣٠١	١٨٢٣	71	۵۴۳	710	

جدول ۱-۲۷ اجرای الگوریتم Hierarchical برای ایجاد ۷ خوشه روی مجموعه داده ای satimage

تعداد اجرا	تعداد عناصر در هر خوشه							
١	741	٣٠	7777	١٨٢٣	۲۱	۵۴۳	710	19
٢	441	٣٠	7117	١٨٢٣	۲۱	۵۴۳	710	19
٣	741	٣٠	7117	١٨٢٣	۲۱	۵۴۳	710	19
۴	441	٣٠	7117	١٨٢٣	۲۱	۵۴۳	710	19
۵	741	٣.	7777	١٨٢٣	71	۵۴۳	710	19

جدول ۱-۲۸ اجرای الگوریتم Hierarchical برای ایجاد ۸ خوشه روی مجموعه داده ای satimage

تعداد اجرا	شه	در هر خو	اد عناصر	تعدا	نسل
١	١٨٢۴	۱۹۰۵	۵۹۶	711.	٩
٢	١٨٢۴	711.	۵۹۶	۱۹۰۵	٩
٣	1174	۵۹۶	19.0	711.	٩
۴	۵۹۶	۱۹۰۵	١٨٢۴	711.	٩
۵	۱۹۰۵	۵۹۶	1174	711.	٩

جدول ۱-۲۹ اجراي الگوريتم SOM براي ايجاد ۴ خوشه روي مجموعه داده اي satimage

شکل۱-۲۱ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۴؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۲۳ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۶؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۲۲ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۵؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۲۴ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۷؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زر

شکل۱-۲۵ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۸؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

تعداد اجرا		ر خوشه	اصر در هر	تعداد عن		نسل
1	۵۸۹	1088	۱۵۰۳	1841	1179	٩
٢	1178	1088	۵۸۹	١۵٠٣	1841	٩
٣	۱۵۰۳	۵۸۹	1179	1088	1841	٩
۴	1188	1841	۵۸۹	۱۵۰۳	1088	٩
۵	1088	۵۸۹	1179	1841	۱۵۰۳	٩

جدول ۱-۳۰ اجرای الگوریتم SOM برای ایجاد ۵ خوشه روی مجموعه داده ای satimage

تعداد اجرا		تعداد عناصر در هر خوشه					
١	٨٨۶	1491	084	1199	۱۳۷۰	970	٩
٢	۱۳۷۰	1199	ለለዖ	054	970	1491	٩
٣	۱۳۷۰	224	$\lambda\lambda\mathcal{S}$	1199	970	1491	٩
۴	۹۲۵	254	۱۳۷۰	1491	1199	۸۸۶	٩
۵	۱۳۷۰	1491	084	٨٨۶	1199	970	٩

satimage جدول ۱–۳۱ اجرای الگوریتم SOM برای ایجاد ۶ خوشه روی مجموعه داده ای

تعداد اجرا		نسل					
١	۶۷۷	907 1177	۵۶۶	١٢٨٢	۸۶۰	97.	١.
٢	۹۵۳	18. 94.	۵۶۶	۶۷۷	1177	1777	١.
٣	۵۶۶	97. 904	1777	٨۶٠	944	1177	١.
۴	۵۶۶	16. 11.	844	904	١٢٨٢	1177	١.
۵	977	۵۶۶ ۱۲۸۲	۸۶۰	904	97.	1177	1 •

جدول ۱-۳۲ اجرای الگوریتم SOM برای ایجاد ۷ خوشه روی مجموعه داده ای satimage

تعداد اجرا		تعداد عناصر در هر خوشه							نسل
١	1774	717	1.4	1411	779	1194	988	٣٢٧	۱۵
٢	779	1276	1194	717	1.4	٣٢٧	988	1411	۱۵
٣	1.4	988	1411	1774	777	1194	779	717	۱۵
۴	1.4	1414	٣٢٧	779	988	1194	717	1411	۱۵
۵	1774	717	777	999	1.4	1411	779	1194	۱۵

satimage جدول ۱-۳۳ اجراى الگوريتم SOM براى ايجاد ۸ خوشه روى مجموعه داده اى

شکل۱-۲۶ نمودار حاصل از توابع ارزیابی برای جدول ۱-۲۹؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۲۸ نمودار حاصل از توابع ارزیابی برای جدول ۱-۳۱؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۳۰ نمودار حاصل از توابع ارزیابی برای جدول ۱-۳۳؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زر

شکل۱-۲۷ نمودار حاصل از توابع ارزیابی برای جدول ۱-۳۰؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زرد

شکل۱-۲۹ نمودار حاصل از توابع ارزیابی برای جدول ۱-۳۳؛ شاخص دیوس بلدین با رنگ قرمز؛ شاخص RMSSDT با رنگ سبز؛ شاخص RS با رنگ زر

اکنون در اینجا این الگوریتم های خوشه بندی گفته شده برای مجموعه داده ای ست ایمیج ارزیابی می شود. با توجه جدول های ۱-۱۹ تا ۱-۲۳ و شکل های ۱-۱۶ تا ۲۰-۱ از بین ۲۵ اجرای الگوریتم کا تا میانگین (Kmeans) نتایج زیر حاصل می شود:

	بهترین تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	Υ	۴	198199e + ·1
شاخص RMSSDT	٨	١	4.79.9h.e - · 1
شاخص RS	٨	١	λ.19۶∆1·e — ·1

جدول ۱-۳۴ ارزیابی اجرای الگوریتم Kmeans با توجه به جدول های ۱-۱۹ تا ۱-۲۳ و شکل های ۱-۱۶ تا ۱-۲۰ روی مجموعه داده ای satimage

با توجه جدول های ۱-۲۴ تا ۱-۲۸ و شکل های ۱-۲۱ تا ۱-۲۵، از بین ۲۵ اجرای الگوریتم سلسله مراتبی پایین به بالا(Hierarchical)نتایج زیر حاصل می شود:

	بهترین تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	۴	١	13.9185
شاخص RMSSDT	٨	١	٠.۶۵۲۲
شاخص RS	٨	١	٠.۵٧٧٣

جدول ۱–۳۵ اجرای الگوریتم Hierarchical با توجه به جدول های ۱–۲۴ تا ۱–۲۸ و شکل های ۱–۲۱ تا ۱–۲۵ روی مجموعه داده ای satimage

با توجه جدول های ۱-۲۹ تا ۱-۳۳ و شکل های ۱-۲۶ تا ۱-۳۰، از بین ۲۵ اجرای الگوریتم نگاشت خود سازمان دهی شده(SOM) نتایج زیر حاصل می شود:

	بهترین تعداد خوشه	شماره اجرا	مقدار شاخص
شاخص ديويس بلدين	۴	١	1. · 19AVVe + · 1
شاخص RMSSDT	٨	٣	۴.۳∨∨۴۲۴e — • 1
شاخص RS	٨	٣	1. · 98774e − · 1

جدول ۱-۳۶ اجرای الگوریتم SOM با توجه به جدول های ۱-۲۹ تا ۱-۳۳ و شکل های ۱-۲۶ تا ۱-۳۰ روی مجموعه داده ای satimage

ع. نتيجه گيري

با توجه به جداول ۱-۱ تا ۱-۵۱ و شکل های ۱-۴ تا ۱-۱۵ بهترین خوشه بندی ها از بین سه الگوریتم بیان شده روی مجموعه داده ای ایریس در جدول ۱-۳۷ آمده است.

	بهترین تعداد خوشه	شماره اجرا	مقدار شاخص	الگوريتم
شاخص ديويس بلدين	٢	١	1.٣1919Ve + ••	Kmeans ₉ SOM
شاخص RMSSDT	۵	٢	1.٣1919Ve + · ·	SOM
شاخص RS	۵	۲	λ.ΔΥ۴1٣Υe — · 1	SOM

جدول ۱-۳۷ بهترین نتایج از بین ۱۲ اجرای الگوریتم های خوشه بندی برای مجموعه داده ای iris

با توجه به جداول ۱-۱۹ تا ۱-۳۳ و شکل های ۱-۱۶ تا ۱-۳۰ بهترین خوشه بندی ها از بین سه الگوریتم بیان شده روی مجموعه داده ای ست ایمیج در جدول $1-\pi$ آمده است.

	بهترين تعداد خوشه	شماره اجرا	مقدار شاخص	الگوريتم
شاخص ديويس بلدين	۴	١	18.9186	Hierarchical
شاخص RMSSDT	٨	١	4.79.9h.e - · 1	Kmeans
شاخص RS	٨	٣	1. • 98774e — • 1	SOM

جدول ۱-۲۸ بهترین نتایج از بین ۲۰ اجرای الگوریتم های خوشه بندی برای مجموعه داده ای satimage