

A novel Graphical User Interface for Non-Invasive Brain Stimulations

Gregor Dederichs
May 2024

Content

Introduction

- Temporal Interference
- Current Interface Limitations

Explored Approaches

- Troubleshooting in MATLAB
- NI-MAX software
- Alternative Python packages

Results – HummelGUI

- Setup
- Functionalities and features
- Code structure & Adding features, Limitations

Introduction

Temporal Interference

Noninvasive Method for Deep-Brain Stimulation

Temporally Interfering Electric Fields

• Low frequency envelopes drive neuron spiking

Low amplitude envelopes do not recruit neurons

 $Envelope(\Delta f)$

EPFL

Temporal Interference

Parameters allow steerability

Adapted from Violante et al. 2023

- Implications for Neurological Diseases
 - Alzheimer's disease
 - Parkinson's disease
 - Stroke
 - ...
- Controlled through a Graphical User Interface (GUI)

User Interface Limitations

Voltage Discharge

- Occurs when using a trigger
- Can be pain-causing for patients
- Impractical for user Prevents safe termination of stimulations

No flexibility

- Parameters are fixed
- No parameter update possible during stimulations

Not open source

Decreased accessibility and sharing

Impractical Blinding

Unblinding risks and decreased usability

EPFL

Explored Approaches

DAQ Theory and MATLAB
Troubleshooting

NI-MAX Software

Alternative packages for Python

Gregor Dederichs

MATLAB Troubleshooting

- Voltage Discharge Probable Source
 - Entire signal is stored in DAQ
 - Stop → Simultaneous release
 - Without triggers: Internal control of DAQ → Spike Prevented
 - With triggers: Error when closing trigger channels

DAQ freezes: Internal control lost → **Voltage Spike**

NI-MAX Software

Free software by National Instruments

Device Test Panel

- Allows testing of simple features
- Improper trigger setup → Voltage Spike

Virtual Testing

- Through NI-MAX
- Virtual devices Rapidly test certain features without a complete setup

Device Setup

- Device specifications
- Device status checks
- Device configuration Renaming devices

EPFL

Alternative Python Package

- Package: nidaqmx
 - API for interacting with the NI-DAQmx driver
 - Open source → Increased accessibility

- Limitations
 - API created generally for all NI DAQs
 - Not all DAQs are compatible with all functionalities

- Notably limited on current DAQs
 - Attempts to hard-code functionalities failed
 - Example: No timing configuration on USB-6216
 - Needs explicit specification in Python
 - Idea: Subdivide signal to be able to update it on the fly
 - Problem: Accumulates delay

HummelGUI For NI USB-6341

Gregor Dederichs

EPFL

System Setup

Connections

- Identical to current setup
 - BNC 1: "AO0" to stimulator 1
 - BNC 2: "AO1" to stimulator 2
 - BNC 3: "PFI0" to trigger port
 - USB: DAQ to computer running GUI

Dependencies

- Different from current setup
- Python and related packages
 - Numpy
 - PyQt6
 - Pyqtgraph
 - Nidaqmx
 - Pandas
 - Matplotlib

Intended Use

- Troubleshooting
- Testing Parameters
- Checking Functionality
- Titration

Gregor Dederic

Selecting Stimulation

- Drop down menu
 - iTBS
 - cTBS
 - TBS control
 - TI

Adjusting Parameters

- Value Fields
 - Duration
 - Frequency
 - Currents
- Save Option
 - Avoids unnecessary saves during troubleshooting
- Reset Button

Checking Waveform

- Created Through a Button
- Necessary before Running Stimulation in Settings Mode
- Yellow lines mark signal between rampup and –down
- Zoom on x-axis only for easy visualisation

Gregor Dederichs

Running Stimulation

- Choose Number of Repetitions
- Trigger Option
- While Running
 - Update stimulation
 - Does not restart repetition count
 - Stop stimulation
 - Instantly updates to a ramp down signal
 - No Discharge

Features and Functionalities – Blind Mode

- Intended Use
 - Study Experiments
 - Removes access to parameters and waveforms
 - No unblinding risk

Features and Functionalities – Blind Mode

- Selecting IDs
 - Only from Existing
 Data in excel file
 - Load stimulation with button – Check Label
- Saving Options
 - Parameters are saved to parameter_history (directory) – Modifiable

Features and Functionalities – Blind Mode

Running Stimulation

- Identical to Settings Mode
- Trigger option
- Run, update and Stop options

Label

- In Blind and Settings Modes
- Guides User with all important steps (errors, status, ...)

Code Structure – Functional Files

Implement GUI function and DAQ communication (stimulation)

File	Function	Modifications
main.py	Launching GUI	None
GUI.py	GUI Layout	Adding Widgets
	Waveform Creation	Adding Signals – following previous implementations as template – see also utility files
GUI_worker.py	DAQ Communication	Rare – Technical Functionalities (ex: changing trigger settings)
	Running Tasks	None

Code Structure – Utility Files

Implement Underlying Structure and Utility

File	Function	Modifications
util.py	Storing Defaults	Setting/Adding Defaults
fbase.py	Storing Base Functions	Rare
iTBS.py	Creates Signals of Different Stimulation One File per Stimulation	Adding new Stimulations – using previous files as template – see also GUI.py
cTBS.py		
TBS_ctrl.py		
TI.py		

Gregor Dederichs

Hummel Lab Graphical User Interface

Code Availability

- Available on GitHub
 - https://github.com/gdederichs/HummelGUI
 - Quick Guide
 - Installation Procedure
 - Setup Instructions
 - Detailed GUI Functionalities
 - File Descriptions
 - Future Modifications Guide

Thank You