

Instytut Telekomunikacji

Praca dyplomowa magisterska

na kierunku Telekomunikacja w specjalności Telekomunikacja

Ataki odmowy usługi oraz sposoby im przeciwdziałania w sieciach operatorskich

Mikołaj Kowalski Numer albumu 230346

promotor dr hab. inż. Wojciech Mazurczyk

0.1. git last changes

mwrep mwrep graphicspath lets try mwrep

Streszczenie

Polskie streszczenie pracy	
Dalsza część streszczenia	
I coś jeszcze	

Słowa kluczowe: polskie, słowa, kluczowe, pracy

Denial of Service in telecommunication networks – attacks and mitigation

English abstract...

Something more...

And something else...

Keywords: english, keywords

Oswiadczenie o autorstwie pracy z USOS

Spis treści

	0.1.	git last changes	ii
1.	Wst	cęp: znaczenie niezawodnej infrastruktury sieciowej	1
	1.1.	Zastosowanie testów sieci i urządzeń sieciowych	1
		1.1.1. Dlaczego warto testować infrastrukturę	1
		1.1.2. Dlaczego warto testować urządzenia sieciowe	1
	1.2.	Wprowadzenie do wysokiej dostępności (ang. HA) i równoważenia obciążenia	
		(ang. LB)	1
		1.2.1. Algorytmy Load-Balancing	1
		1.2.2. Znaczenie session-persistence	1
		1.2.3. Przykłady	1
2.	Prz	egląd generatorów ruchu sieciowego	3
	2.1.	Generatory sprzętowe	3
	2.2.	Generatory programowe w Linuksie	3
		2.2.1. Metody generowania wielkowolumenowego ruchu	3
		2.2.2. Funkcjonalności różnych generatorów/frameworków	3
		2.2.3. Wyspecjalizowane generatory	3
		2.2.4. Fuzzery	3
	2.3.	Generatory – analiza komparatywna	3
		Metody analizy ruchu sieciowego	4
		2.4.1. Metody opierające się na (kopii) ruchu	4
		2.4.2. Analiza komparatywna (tabelka)	4
3.	Wpi	rowadzenie do ataków odmowy usługi i istniejące sposoby	
	_	eciwdziałania	5
	-	Motywy/powody ataków	5
		3.1.1. Straty wizerunkowe, odpływ klientów, okupy, kasa dla botmasterów	5
	3.2.	Możliwe skutki ataków	5
	0.2.	3.2.1. Kilka przykładów historycznych medialnych ataków	5
	2 2	Charakterystyka ataków za rok 2016 w sieci OPL	5
	3.4.	Klasyfikacja ataków	5
	-	Mitygacja ataków DDoS	
	5.5.	<i>v</i>	6
		3.5.1. Metody	6
		3.5.2. Rozwiązania na rynku	6
4.	Pod	Isumowanie	7
Bi	bliog	grafia	i
$\mathbf{S}\mathbf{k}$	crót		ii
$\mathbf{S}\mathbf{k}$	crót		ii

Słownik terminów	iii
Słownik terminów	iii
${f Załączniki}$ ap $1\ldots\ldots\ldots\ldots\ldots\ldots$	vii vii
Spis rysunków	ii
Spis tablic	iii
Spis załączników	0

1. Wstęp: znaczenie niezawodnej infrastruktury sieciowej

Wstęp do pracy.

- 1.1. Zastosowanie testów sieci i urządzeń sieciowych
- 1.1.1. Dlaczego warto testować infrastrukturę

Sprawdzenie możliwości architektury Symulacja ataków (pentesty) Poznanie realnej wydajności infrastruktury

1.1.2. Dlaczego warto testować urządzenia sieciowe

Zgodność ze specyfikacją Szukanie podatności w urządzeniach Rola testów przy zakupach (nowych inwestycjach) - spełnienie wymagań projektowych

1.2. Wprowadzenie do wysokiej dostępności (ang. HA) i równoważenia obciążenia (ang. LB)

Co to jest High-Availbility (HA) i dlaczego to robimy, Single Point of Failure

Cel uzyskania niezawodnej i optymalnie wykorzystanej architektury

Test Frame per Second (FPS)

- 1.2.1. Algorytmy Load-Balancing
- 1.2.2. Znaczenie session-persistence
- 1.2.3. Przykłady

Alteon VADC asd

(ten rozdział jest ponieważ praca dotyczy również testowania architektury, w testach przewidziany jest LB, zob. schematy labu)

 $\begin{array}{l} \mathbf{HAProxy} \ \mathrm{asd} \\ \mathbf{Keepalived} \ + \ \mathbf{pacemaker} \ \mathrm{asd} \end{array}$

2. Przegląd generatorów ruchu sieciowego

2.1. Generatory sprzętowe
charakterystyka, przykłady
— Spirent— Ixia
2.2. Generatory programowe w Linuksie
2.2.1. Metody generowania wielkowolumenowego ruchu
Opis procesu generowania pojedynczego pakietu w Linuksie
Po co robić memory zero-copy Szybkie vs wolne backendy: SOCKET_RAW, libpcap, netmap, PF_RING, AF_PACKET
2.2.2. Funkcjonalności różnych generatorów/frameworków
Badanie: netsniff-ng, scapy, PKTGEN)
2.2.3. Wyspecjalizowane generatory
JMeter
2.2.4. Fuzzery
Na tą chwilę brak wiedzy/doświadczenia z tego typu programami
2.3. Generatory – analiza komparatywna
(tabelka zalety-wady)
Funkcjonalność vs Wydajność vs Cena

Metoda	Funkcjonalność	Wydajność	Cena
A	15	15	1
В	10	15	2
С	12	13	3
D	110	230	4

2.4. Metody analizy ruchu sieciowego

$2.4.1.\ {\rm Metody}$ opierające się na (kopii) ruchu

Urządzenie in-line

Kopia ruchu (port-mirroring)

Backendy: netmap, PF_RING, pcap

Metody statystyczne

Flowy: sFlow, NetFlow

SNMP/Netconf

2.4.2. Analiza komparatywna (tabelka)

Algorytm	Czas symulacji [sek]										
Algorytm	implementacji X	implementacji Y									
A	15	15									
В	10	15									
С	12	13									
D	110	230									

3. Wprowadzenie do ataków odmowy usługi i istniejące sposoby przeciwdziałania

w tym rodziale ma się
znaleźć także
przegląd
literatury
naukowej
związanej
z DDoS i

obroną i na tym tle pokazanie o czym będzie Pana

- 3.1. Motywy/powody ataków
- 3.1.1. Straty wizerunkowe, odpływ klientów, okupy, kasa dla botmasterów
- 3.2. Możliwe skutki ataków
- 3.2.1. Kilka przykładów historycznych medialnych ataków
- 3.3. Charakterystyka ataków za rok 2016 w sieci OPL
- 4.3.1. Średnie natężenie
- 4.3.2. Szczytowy ruch
- 4.3.3. Średnia długość trwania
- 4.3.4. Szczytowa długość trwania
- 4.3.5. Procentowo protokoły
- 4.3.6. Atakujący wg kraju
- 4.3.7. Inne zobaczymy co się da wyciągnąć (więcej niż raport certu)
- 4.3.8. Być może porównanie do 2015 i wyznaczenie trendu \info{tak, porównanie to dobry k

3.4. Klasyfikacja ataków

Nie mogę opisać wszystkich ataków które są na świecie, trzeba znaleźć kryterium stopu – $\underline{\text{Na}}$ razie lista jest wstępna, pisana z pamięci. Trzeba pamietac o multivector attacks

- 1. Wg źródła
 - a) Strumieniowe DoS
 - b) Rozproszone (Distributed) DDoS
 - c) Rozproszone (Distributed) DDoS
 - d) Odbite (Reflected) DRDoS

tu oczywiście trzeba
dobrać odpowiednie
kryterium,
żeby najlepiej to
odpowiadało
tym atakom,
które będą
przeprowadzane w
części eksperymentalnej
pracy dyplomowej.

- e) Wzmocnione (Amplified) DRADoS
- 2. Wg warstwy protokołu
 - 4.4.2.1. L3:
 - 4.4.2.1.1. GRE
 - 4.4.2.2. L4:
 - 4.4.2.2.1. TCP flood flagi: SYN, ACK, SYN-ACK, PSH, FIN, FRAG
 - 4.4.2.2. UDP flood, UDP fragment
 - 4.4.2.2.3. ICMP flood
 - 4.4.2.2.4. TCP out of state
 - 4.4.2.3. L6
 - 4.4.2.3.1. THC-SSL-DoS (HTTPS renegotiation flood)
 - 4.4.2.4. L7
 - 4.4.2.4.1. HTTP
 - 4.4.2.4.1.1. Flood (GET/POST)
 - 4.4.2.4.1.2. Low and slow
 - 4.4.2.4.2. SNMP, DNS+DNSSEC, NTP

3.5. Mitygacja ataków DDoS

3.5.1. Metody

Tryb in-line

BGP Flowspec

Mitgacja w cloudzie / scrubbing center

3.5.2. Rozwiązania na rynku

 $Radware\ DefensePro\ +\ DefenseFlow$

Arbor

FastNetMon

• • •

4. Podsumowanie

Podsumowanie. Drugi paragraf.

Odniesienie do Aksın i in., 2006.

 ${\bf W}$ rozdziale $\ref{eq:continuous}$ przedstawiono cośtam, a w 4 coś innego.

Na rysunku ?? umieszczono pingwina :)

Bibliografia

Aksın, Özge i in. (2006). "Effect of immobilization on catalytic characteristics of saturated Pd-N-heterocyclic carbenes in Mizoroki-Heck reactions". W: *J. Organomet. Chem.* 691.13, s. 3027–3036.

Skrót

FPS Frame per Second. 1

 ${\bf HA}\,$ High-Availbility. 1

LB Load-Balancing. 1

Słownik terminów

Single Point of Failure is a generic term referring to the family of Unix-like computer operating systems that use the Linux kernel. 1

Spis rysunków

Spis tablic

Spis załączników

	_ 1																																																:
1.1	1																																																VI
٠ı	~ -	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	* *

Załączniki

ap1

asdasd