$A_n(n \geq 5)$ 是单群的证明

戚天成™

复旦大学 数学科学学院

2023年10月30日

这份笔记的目的是记录"当正整数 $n \ge 5$ 时, 交错群 A_n 是单群."这一事实的证明.

Theorem 1. 给定正整数 $n \ge 1$, 则 A_n 是单群的充要条件是 $n \ne 4$.

Proof. 当 n=1,2 时 A_1 是平凡群,为单群. 当 n=3 时, A_3 是 3 阶群,作为素数阶循环群是单群. 当 n=4 时,易验证 $K=\{(1),(12)(34),(13)(24),(14)(23)\}$ 是 A_4 的正规子群,所以 A_4 不是单群. 因此要证明原命题我们只需要证明当 $n\geq 5$ 时, A_n 是单群. 现设正整数 $n\geq 5$ 且 N 是 A 是正规子群,满足 N 至少两个元素,如果能证明 $N=A_n$,那么我们就说明了 A_n 是单群. 在证明 $N=A_n$ 前,我们先说明要证明 $N=A_n$ 只需证明 N 包含一个3-轮换. 事实上,如果 $(ijk)\in N$,当 $\{1,2\}\subseteq \{i,j,k\}$ 时,那么存在正整数 t 使得 $(12t)\in N$,于是对任何正整数 $s\notin \{1,2,t\}$,取 $r\in \{1,2,3,...,n\}-\{1,2,s,t\}$,有 $(ts)(rs)(12t)(rs)(ts)=((ts)(rs))(12t)((ts)(rs))^{-1}=(12s)$,故由 $A_n=\langle (123),(124),...,(12n)$ 立即得到 $N=A_n$. 如果 i,j,k 中恰好包含一个 1 或者 2,以 i=1 为例,有 $(21k)=(j2)(1j)(1jk)(1j)(j2)\in N$,这就转化为了前面已经讨论过的情形,故 $N=A_n$. 如果 i,j,k 中不含 1,2,那么由 $(12k)=(j2)(i1)(ijk)(i1)(j2)\in N$ 同样转化为前面讨论过的情形. 因此我们把证明 $N=A_n$ 化归为证明 N 包含一个 3-轮换. 设 $\sigma\neq (1)\in N$,我们分下面 4 种情况讨论:

Case 1. 当 σ 的不相交轮换分解中存在长度至少为 4 的轮换因子时. 设 $\sigma = (a_1 a_2 \cdots a_r)\tau$, 这里正整数 $r \geq 4$, 置换 τ 是 σ 轮换分解式中其余和 $(a_1 a_2 \cdots a_r)$ 不相交的置换的乘积, 它和 $(a_1 a_2 \cdots a_r)$ 也不相交. 取 $\delta = (a_1 a_2 a_3) \in A_n$, 则 $\sigma^{-1} \delta \sigma \delta^{-1} \in N$. 直接计算知

$$\sigma^{-1}\delta\sigma\delta^{-1} = \tau^{-1}(a_ra_{r-1}\cdots a_2a_1)(a_1a_2a_3)(a_1a_2\cdots a_r)\tau(a_1a_2a_3) = (a_ra_1a_2)(a_1a_3a_2) = (a_1a_3a_r),$$

所以 $(a_1a_3a_r) \in N$, 从而结合前面的讨论知 $N = A_n$.

Case 2. 当 σ 的不相交轮换分解中每个轮换因子长度不超过 3 时, 且至少有两个 3-轮换因子. 设

$$\sigma = (a_1 a_2 a_3)(a_4 a_5 a_6)\tau,$$

这里 τ 是和 $(a_1a_2a_3), (a_4a_5a_6)$ 不相交的置换. 取 $\delta = (a_1a_2a_4) \in A_n$, 则 $\sigma^{-1}\delta\sigma\delta^{-1} \in N$. 直接计算知

$$\sigma^{-1}\delta\sigma\delta^{-1} = \tau^{-1}(a_6a_5a_4)(a_3a_2a_1)(a_1a_2a_4)(a_1a_2a_3)(a_4a_5a_6)\tau(a_1a_2a_4) = (a_1a_2a_4a_6a_3)\tau(a_1a_2a_4)\tau(a_1a_2a_4)(a_1a_2a_4)\tau(a$$

这说明 N 包含一个长度为 5 的轮换, 这就转化成了情形 1, 于是 $N = A_n$.

Case 3. 当 σ 的不相交轮换分解中每个轮换因子长度不超过 3 时, 且恰好有一个 3-轮换因子. 如果 σ 轮换分解中没有 2-轮换因子, 那么 σ 自身就是一个 3-轮换, 由此得到 $N=A_n$. 否则, σ 是一个 3-轮换与一些不相交 2-轮换的乘积, 设 $\sigma=(a_1a_2a_3)\tau$, 这里 τ 是一些与 $(a_1a_2a_3)$ 不相交的对换的乘积, 那么 $\sigma^2=(a_1a_3a_2)\in N$, 所以 $N=A_n$.

Case 4. 当 σ 是一些不相交对换的乘积时. 因为 $\sigma \neq (1) \in A_n$, 所以 σ 是偶数个不相交对换乘积, 设为 $\sigma = (a_1a_2)(a_3a_4)\tau, \tau$ 为其余不相交对换的乘积. 取 $\delta = (a_1a_2a_3) \in A_n$, 那么 $\sigma^{-1}\delta\sigma\delta^{-1} = (a_1a_3)(a_2a_4) \in N$. 记

$$\gamma = (a_1 a_3)(a_2 a_4), \xi = (a_1 a_3 b) \in A_n, b \in \{1, 2, ..., n\} - \{a_1, a_2, a_3, a_4\},$$

那么
$$\gamma^{-1}\xi\gamma\xi^{-1} = (a_1a_3b) \in N$$
, 所以 $N = A_n$.