THB7128

高细分、大功率

两相混合式步进电机驱动芯片

一、 特性:

- 双全桥 MOSFET 驱动, 低导通电阻 Ron=0.53 Ω
- 最高耐压 40VDC, 大电流 3.3 A (峰值)
- 多种细分可选(1、1/2、1/4、1/8、1/16、1/32、1/64、1/128)
- 自动半流锁定功能
- 内置混合式衰减模式
- 内置输入下拉电阻
- 内置温度保护及过流保护

二、 管脚图:

三、 管脚说明:

端子	端子符号	端子说明
1	GND	地
2	CW/CCW	正 / 反转信号输入端
3	CLK	脉冲信号输入端
4	OSC1	斩波频率设定电容连接端
5	VREF	电流设定端
6	GND	地
7	OUT2B	B相 OUT输出端
8	NFB	B 相 电流检测电阻连接端
9	OUT1B	B相 OUT 输出端
10	GND	地
11	OUT2A	A 相 OUT 输出端
12	NFA	A 相 电流检测电阻连接端
13	OUT1A	A 相 OUT 输出端
14	VM	电源 VM 连接端
15	VCC	电源 VCC 端
16	M1	细分设置端
17	M2	细分设置端
18	М3	细分设置端
19	ENABLE	脱机信号控制端

四、 电器参数:

1、最高额定值 Absolute Maximum Ratings (Ta = 25°C)

项目	符号	额定值	符号	
最高耐压	VMmax	40	V	
最大输出电流	Iomax	3. 3	A	
最高逻辑输入电压	VINmax	6	V	
VREF 最高输入电压	VREFmax	3	V	
工作环境温度	Topg	$-30 \sim +105$	$^{\circ}\!\mathbb{C}$	
保存环境温度	Tstg	$-40 \sim +125$	$^{\circ}\!\mathbb{C}$	

2、 正常运行参数范围 Operating Range (Ta = 30 to 85°C)

参数	符号	最小	典型.	最大	单位
逻辑输入电压	VIN	4.5	5. 0	6	V
数字信号电源	VCC	4.5	5. 0	6	
电源电压	VM	9		40	V
输出电流	Io	0	_	3. 3	A
电流设定端	VREF	0		3	V

3、电器特性 Electrical Characteristics (Ta = 25°C, VREF =1.5 V, VM = 24 V)

项目	符号	条件	最小	标准	最大	符号
待机时消耗电流	IMstn	VCC=0		200		μА
消耗电流	IM	VCC=5V		4		mA
TSD 温度	TSD	设计保证		180		$^{\circ}$
Thermal Hysteresis 值	ΔTSD	设计保证		40		$^{\circ}$
逻辑端子输入电流	IinL1	VIN=0.8V		8		μА
	IinH1	VIN=5V		50		μА
逻辑输入"H"Level 电压	Vinh		2.0			V
逻辑输入"L"Level 电压	Vinl				0.8	V
斩波频率	Fch	Cosc1=100pF		100		KHz
0SC1 端子充放电电流	Iosc1			10		μА
斩波振荡电路	Vtup1			1		V
电压阈值	Vtdown1			0.5		V
VREF 端子输入电流	Iref	VREF=1.5V	-0.5			μА
DOWN 输出残电压	VolD0	Idown=1mA			400	mV
通电锁定切换频率	Falert			1.6		Hz
Blanking 时间	Tb1			1		uS
输出						
 输出 ON 阻抗	Ronu	Io=2.0A、上側 ON 阻抗		0.3		Ω
相口 ON PEDU	Rond	Io=2.0A、下側 ON 阻抗		0. 23		Ω
输出漏电流	Ioleak	VM=40V			50	μА
二极管正向压降	VD	ID = -2.0A		1		V
电流设定基准电压	VRF	VREF=1.5V、電流比 100%		300		mV
输出短路保护						
Timer Latch 时间	Tscp			256		μs

五、 端子说明

1、 CLK 脉冲输入端(脉冲上升沿有效)

CLK 输入	芯片工作状态		
	输出励磁 Step		
	保持励磁 Step		

2、 CW/CCW: 电机正反转控制端

CW/CCW 为低电平时,电机正转 CW/CCW 为高电平时,电机反转

3、 ENABLE: 使能端

ENABLE 端子为低电平时,输出强制关断,为高阻状态。 ENABLE 重新置为高电平时,恢复输出。

4、 细分设定(M1、M2、M3)

M1	M2	М3	细分数
L	L	L	1
Н	L	L	1/2
L	Н	L	1/4
Н	Н	L	1/8
L	L	Н	1/16
Н	L	Н	1/32
L	Н	Н	1/64
Н	Н	Н	1/128

5、 工作电流设定

VREF 电流设定端, 调整此端电压即可设定驱动电流值 Io(100%)=VREF*(1/5)*(1/Rs) Rs 为 NFA(B)外接检测电阻

(例) VREF=1.5V、Rs 电阻为 0.3Ω时,设定电流为:

Iout =
$$(1.5V/5)$$
 / 0.3Ω = $1.0A$

6、 斩波频率设定功能

斩波频率由 0SC1 端子端子-GND 间连接的电容,依据下面的公式设定。 $Fcp = 1 / (Cosc1 / 10 \times 10^{-6})$ (Hz)

(例) Cosc1=100pF 时, 斩波频率如下。

Fcp = 1
$$/ (100 \times 10^{-12} / 10 \times 10^{-6}) = 100 (kHz)$$

(电容值一般选在 100PF 至 470PF 之间,对应的斩波频率为 100KHz 至 21KHz)

7、 半流锁定电路

当 CLK 输入低于 1.6HZ 时, 芯片的输出电流将自动降为正常工作电流的一半。

8、 PFD 衰减模式

THB7128 衰减模式固定为混合式衰减模式,快衰和慢衰的比列为1:4。

9、 输出短路保护电路

该 IC 为防止对电源或对地短路导致 IC 损坏的情况,内置了短路保护电路,使输出置于 待机模式。检测出输出短路状态时,短路检出电路动作,关断一次输出。此后,延迟一段时间(typ:256uS)之后再度输出,如果输出仍然短路的话,将输出固定于待机模式。

由输出短路保护电路动作而使输出固定于待机模式的场合,可给 VCC 一个低电平来解除锁定。

六、 参考电路图 Wiring diagram

七、 封装尺寸 Package Dimensions

unit:mm (typ)

