Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 07

Letztes Update: 2017/11/19 - 15:19 Uhr

Hashing

Einleitung

Bei der Implementierung des Algorithmus vom Closest-Pair Problem wird überlicherweise auf Hashing zurückgegriffen. Hashing beschreibt dabei eine Funktion bzw. Abbildung, die eine große Eingabemenge (die Schlüssel) auf eine kleinere Zielmenge (die Hashwerte) abbildet¹. Auch bei Telefon- und Wörterbüchern (vgl. dazu Wörterbuchproblem) oder für Anwendungen, die OpenStreetMap-Daten verwenden, wird oft auf Hashing zurückgegriffen.

Beim Closest-Pair-Algorithmus kann mittels Hashing die Gitterzelle errechnet werden. Jede Gitterzelle erhält Koordinaten.

Die Maschenweite des Gitters sei w. Dann fällt ein Punkt $P(p_x, p_y)$ in die Gitterzelle

$$\left(\left\lfloor \frac{P_x}{w} \right\rfloor, \left\lfloor \frac{P_y}{w} \right\rfloor \right)$$

 ${\bf abgerundet}$

¹https://de.wikipedia.org/wiki/Hashfunktion

Beispiel

Sie $w = \frac{1}{2}$ und $P(p_x, p_y) = \left(\frac{15}{10}, \frac{7}{10}\right)$. Man erhält für das Gitter die Koordinaten

$$\left(\left\lfloor \frac{P_x}{w} \right\rfloor, \left\lfloor \frac{P_y}{w} \right\rfloor \right) = \left(\left\lfloor \frac{\frac{15}{10}}{\frac{1}{2}} \right\rfloor, \left\lfloor \frac{\frac{7}{10}}{\frac{1}{2}} \right\rfloor \right) = (3, 1)$$

Diese Koordinaten müssen noch gehasht werden.

Hashing formal

Gegeben sei **erstens** das *Universum U*, das immer sehr groß gewählt wird und typischerweise eine Teilmenge der natürlichen Zahlen darstellt, **zweitens** sei auch die vergleichsweise kleine Menge $S \subseteq U$ gegeben. Daraus folgt **drittens** n = |S|, also die Anzahl der Elemente in S. Das Ziel ist nun

Finde
$$h: U \to \{0, 1, \dots, m-1\}$$
 so
dass $\forall \ 0 \le i < m: \left| \ \{x \in S \mid h(x) = i\} \ \right| \le \left\lceil \frac{n}{2} \right\rceil$

Man sucht also eine Funktion h, sodass keine zwei Elemente aus S auf dieselbe Zahl zeigen.

Beispiel

Seien $U = \mathbb{N}, S = \{1, 7, 23, 99\}, n = 4$ und m = 5 gegeben. Dann ist die Funktion

$$h(x) = x \mod 5$$

eine sehr gute Hashfunktion für S.

$$\rightarrow h(1) = 1$$

$$\rightarrow h(7) = 2$$

$$\rightarrow h(23) = 3$$

$$\rightarrow h(99) = 4$$

Für die Menge $S' = \{2, 17, 22, 32\}$ ist h(x) aber eine sehr schlechte Hashfunktion.

$$\to h(2) = 2$$

$$\rightarrow h(17) = 2$$

$$\rightarrow h(22) = 2$$

$$\rightarrow h(32) = 2$$

Satz: Seien U, m und h gegeben, und sei k = |U| sowie $n = |S| \Rightarrow S \in \binom{U}{n}$. Dann gibt es für jedes n mit $1 \le n \le \frac{k}{m}$ ein S, sodass alle Elemente aus S von h auf denselben Wert in $\{0, 1, \cdots, m-1\}$ abgebildet werden.

Beweis: Nach Schubfachsystem existiert ein i mit $0 \le i < m$, sodass $\underbrace{|k^{-1}(i)|}_{x \in U \mid h(x) = i} \supseteq \frac{|U|}{m} = \frac{k}{m}$.

Nach Annahme ist $\frac{k}{m} \geq n$. Man kann nun $S \subseteq n^{-1}(i)$ mit |S| = n wählen für ein beliebiges i mit $k^{-1}(i) \geq \frac{U}{m}$.

Um eine gute Hashfunktion zu finden, müssen also immer auch die Daten betrachtet werden, die mit dieser Funktion gehasht werden.

Datenstruktur

Man betrachte die Datenstruktur Wörterbuch, die folgende Operationen unterstützt.

<pre>makeset()</pre>	Erzeugt ein leeres Wörterbuch	
<pre>insert(x, S)</pre>	Fügt $\underline{\text{Item }x}$ in Wörterbuch ein, überschreibt falls vorhanden	
	Key + Information	
delete(x, S)	Löscht Item x aus S	
lookup(x, S)	Gibt Item $x = (x, Info)$ aus, falls vorhanden	
Paar		

Man sucht eine Datenstruktur, die Zugriffe in $\mathcal{O}(1)$ erlaubt und dabei nicht mehr als $\mathcal{O}(n)$ Platz verbraucht.

Implementierungsansatz 1: Array für Items, Zähler für |S|

- makeset() Diese Operation gelingt in $\mathcal{O}(1)$.
- insert(x,S) kostet $\mathcal{O}(1)$, falls bekannt ist, dass noch kein Item mit demselben Schlüssel in S existiert. Ansonsten muss zuerst in $\mathcal{O}(n)$ geprüft werden, ob der Schlüssel bereits enthalten ist, bevor das Item in $\mathcal{O}(1)$ eingefügt werden kann.
- delete(x,S) Da nicht mithilfe des Index gelöscht wird, müssen die Einträge von S durchlaufen werden, um das Item zu löschen. Das braucht $\mathcal{O}(n)$.
- lookup(x,S) Es müssen wie bei delete(x,S) die Einträge durchlaufen werden, um das gesuchte Element zu finden. Das braucht ebenfalls $\mathcal{O}(n)$.

Vorteile	Nachteile
• Einfach	• Performance bei delete(x, S)
• Platzsparend	• Performance bei lookup(x, S)

Implementierungsansatz 2: Einfach/doppelt verkettete Listen

Im Allgemeinen verhält sich diese Datenstruktur für den Wörterbuchansatz recht ähnlich wie das Array aus dem ersten Ansatz.

Implementierungsansatz 3: Direkte Adressierung

Für diese Datenstruktur wird angenommen, dass das Schlüsseluniversum endlich und nicht zu groß ist:

$$U := \{0, 1, 2, \cdots, n-1\}$$

Man legt nun wie im ersten Ansatz ein Array an, diesmal mit der Größe k. An Position i steht die Information für Schlüssel i, falls eine Information für diesen Schlüssel abgelegt wurde. Ansonsten erhält man NIL.

Vorteil	Nachteil
• Alle Operationen bis auf makeset() in	• Platz und Größe des Schlüsseluniver-
$\mathcal{O}(1)$	sums (nicht der Menge S)

Implementierungsansatz 4: Suchstrukturen wie (2,3,4)-, AvL- oder RS-Bäume

Vorteil	Nachteil
• Platzverbrauch tatsächlich $\mathcal{O}(n)$	• Zugriffszeit nur in $\mathcal{O}(\log(n))$

Hashing mit Verkettung

Angenommen, ein gewähltes h ist nicht injektiv für S, das bedeutet, es gibt mehrere Elemente in $x, y \in S$ für die gilt h(x) = h(y). Man kann damit dennoch eine Hashdatenstruktur bauen:

$$h:U\in x\rightarrow \begin{array}{c} 0\\ 1\\ 2\\ \dots\\ m-1 \end{array}$$

Jeder Hasheintrag ist Kopf einer einfach verketteten Liste, $x \in S$ wird in der h(x)—ten verketteten Liste gespeichert.

• Platzbedarf:

$$\mathcal{O}(m+n) = \mathcal{O}\left(n \cdot \left(1 + \frac{1}{B}\right)\right)$$

 $B = \frac{n}{m}$ ist der Belegungsfaktor. Je kleiner B, desto ineffizienter ist die Datenstruktur, aber möglicherweise ist es dann einfacher, eine gute Hashfunktion zu finden.

• Zugriffszeit: Man nimmt an, h(x) kann in $\mathcal{O}(1)$ ausgewertet werden. Dann ist der Zugriff $x \in S$ in

$$\mathcal{O}(1 + \text{Position von } x \text{ in Liste } L_{h(x)})$$

und der Zugriff auf $x \in U \setminus S$ in

$$\mathcal{O}(1 + \text{Länge von } L_{h(x)})$$

Erwartete Suchzeit

Man nimmt an, h verteilt U gleichmäßig über $\{0,1,2,\cdots,m-1\}$, dass bedeutet

$$\forall i \in \{0, 1, 2, \dots, m-1\} : |\{k \in U | h(x) = i\}| \le \left\lceil \frac{|U|}{m} \right\rceil$$

Zum Beispiel $h(x) = x \mod m$

Satz: Sei x ein zufälliges (gleichverteiltes) Element aus $U \setminus S$ und $h \leq \frac{|U|}{2}$. Die erwartete Suchzeit nach Element x ist dann $\mathcal{O}(1+B)$

Beweis (erster Teil): Sei l_i die Anzahl der Elemente aus S, die in L_i gespeichert wurde = $|L_i|$. Es gilt $\sum_{i=0}^{m-1} l_i = n = |S|$. Die erwartete Suchzeit ist damit

$$E := \left(\sum_{i=0}^{m-1} \underbrace{\frac{\Pr(h(i) = i)}{\Pr(h(i) = i)}}_{\substack{\text{Beweis-} \\ \text{Einschub}}} \cdot l_i\right) + 1$$

Beweis (Einschub):

Hierbei sind die Elemente U_i die
jenigen Elemente aus U, welche auf i gehashed werden.

$$\begin{aligned} \Pr(h(x) = i) &= \frac{|U_i \setminus S|}{|U \setminus S|} \\ &\leq \frac{|U_i|}{|U \setminus S|} \\ &\leq \frac{\left\lceil \frac{|U|}{m} \right\rceil}{\frac{|U|}{2}} \\ &\leq \frac{\frac{|U|}{m}}{\frac{|U|}{2}} \\ &= \frac{2}{m} + \underbrace{\frac{2}{|U|}}_{n \leq \frac{|U|}{2}} \leq \underbrace{\frac{2}{m} + \frac{1}{n}}_{\text{Im zweiten Teileinsetzen}} \end{aligned}$$

Beweis (zweiter Teil):

$$E := \left(\sum_{i=0}^{m-1} \Pr(h(i) = i) \cdot l_i\right) + 1$$

$$\leq \left(\sum_{i=0}^{m-1} \left(\frac{2}{m} + \frac{1}{n}\right) \cdot l_i\right) + 1$$

$$= 1 + \frac{2}{m} \sum_{i=0}^{m-1} l_i + \frac{1}{n} \sum_{i=0}^{m-1} l_i$$

$$= 1 + \frac{2n}{m} + 1$$

$$= 2 + \frac{2n}{m}$$

$$= \mathcal{O}(1 + B)$$