Final

Lei Xia (MML)

December 20, 2020

- 1. (a) Given that $f: (0,1] > 0, 1, f(x) = Z_i, \mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = 0) = 1/2$, it is known that $\mathbb{P}(f(x) = 0) = \mathbb{P}(f(x) = 1) = 1/2$. For f to be continuous, it cannot jump between 0 and 1: should always be 0 or 1. For $i \in [1, m]$, if $Z_1 = 0$, then $Z_2, ..., Z_m$ should all be $0 = P_1 = \frac{1}{2} * (\frac{1}{2})^{m-1}$; if $Z_1 = 1$, then $Z_2, ..., Z_m$ should all be $1 = P_2 = \frac{1}{2} * (\frac{1}{2})^{m-1}$. The probability that f is continuous is $P_1 + P_2 = (\frac{1}{2})^{m-1}$.
 - (b) Since X_i are IID independently distributed on (0,1], $\mathbb{P}(X_1 \in (\frac{i-1}{m}, \frac{i}{m}]) = \frac{i}{m} \frac{i-1}{m} = \frac{1}{m}$
 - (c) $\mathbb{P}(\{X_1,...,X_n\} \cap (\frac{i-1}{m},\frac{i}{m}] \neq \varnothing) = 1 \mathbb{P}(\{X_1,...,X_n\} \cap (\frac{i-1}{m},\frac{i}{m}] = \varnothing) = 1 \mathbb{P}(X_1 \cap (\frac{i-1}{m},\frac{i}{m}] = \varnothing) * \mathbb{P}(X_2 \cap (\frac{i-1}{m},\frac{i}{m}] = \varnothing) ... * \mathbb{P}(X_n \cap (\frac{i-1}{m},\frac{i}{m}] = \varnothing) = 1 (1 \frac{1}{m})^n$
 - (d) $\left(\frac{[mX_{n+1}]-1}{m}, \frac{[mX_{n+1}]}{m}\right] = \left(\frac{f(X_{n+1})-1}{m}, \frac{f(X_{n+1})}{m}\right]$. Also, $f(x) = Z_i, \mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = 0) = 1/2$, so $f(X_{n+1} = 0) = f(X_{n+1} = 1) = 1/2$.
 - i. $\mathbb{P} = 1/2: f(X_{n+1}) = 0$, then $(\frac{f(X_{n+1})-1}{m}, \frac{f(X_{n+1})}{m}] = (-\frac{1}{m}, 0]$. Given $X_i \in (0, 1], \mathbb{P}(\{X_1, ..., X_n\} \cap (\frac{[mX_{n+1}]-1}{m}, \frac{[mX_{n+1}]}{m}] = \varnothing) = \mathbb{P}(\{X_1, ..., X_n\} \cap (-\frac{1}{m}, 0] = \varnothing) = 1 => \mathbb{P}(\{X_1, ..., X_n\} \cap (\frac{[mX_{n+1}]-1}{m}, \frac{[mX_{n+1}]}{m}] \neq \varnothing) = 0$
 - ii. $\mathbb{P} = 1/2: f(X_{n+1}) = 1 = > (\frac{f(X_{n+1}) 1}{m}, \frac{f(X_{n+1})}{m}] = (0, \frac{1}{m}] = > \mathbb{P}(\{X_1, ..., X_n\} \cap (\frac{[mX_{n+1}] 1}{m}, \frac{[mX_{n+1}]}{m}] \neq \varnothing) = \mathbb{P}(\{X_1, ..., X_n\} \cap (0, \frac{1}{m}] \neq \varnothing) = 1 \mathbb{P}(\{X_1, ..., X_n\} \cap (0, \frac{1}{m}] = \varnothing) = (c) = 1 (1 \frac{1}{m})^n.$
 - As a result, $\mathbb{P}(\{X_1,...,X_n\} \cap (\frac{[mX_{n+1}]-1}{m},\frac{[mX_{n+1}]}{m}] \neq \emptyset) = \frac{1}{2}[1-(1-\frac{1}{m})^n].$
 - (e) Y_{n+1} needs to be Y_i all the time, which means that $X_i \in (\frac{[mX_{n+1}]-1}{m}, \frac{[mX_{n+1}]}{m}]$ always holds for X_i , i ranging from [1, n]. $\mathbb{P}(\hat{Y}_{n+1} = Y_i) = \sum_{k=1}^{n} \frac{1}{2}[1 (1 \frac{1}{m})^n] = \frac{1}{2}n (m-1)[1 (1 \frac{1}{m})^n]$.
- 2. (a) For period 1, when $\omega R_1 \geq 1$, $C_1 = 1 + \alpha(\omega R_1 1)$; when $\omega R_1 \leq 1$, $C_1 = 1 + \beta(\omega R_1 1)$. Combine these two factors into one, I get $C_1 = \omega R_1 = 1 + \alpha(\omega R_1 1)^+ \beta(\omega R_1 1)^-$. Given that the return in each period is independent from other periods', then

$$C_n = (\omega R_1)^n = > ln(C_n) = n \cdot ln(\omega R_1) = > \lim_n \frac{1}{n} ln(C_n) = ln(\omega R_1) = ln[1 + \alpha(\omega R_1 - 1)^+ - \beta(\omega R_1 - 1)^-].$$

(b) With probability p1,

$$f_1(\omega) = \omega(1+r_1) + (1-\omega)[1+\alpha(\omega R_1-1)^+ - \beta(\omega R_1-1)^-];$$

and with probability $(1 - p_1)$

$$f_2(\omega) = \omega(1+r_2) + (1-\omega)[1 + \alpha(\omega R_2 - 1)^+ - \beta(\omega R_2 - 1)^-].$$

Given $(R_2 - 1) \ge 0$ and $(R_2 - 1) \le 0$, then

$$f_1(\omega) = \omega(1+r_1) + (1-\omega)[1+\alpha(\omega r_1-1), \quad f_2(\omega) = \omega(1+r_2) + (1-\omega)[1+\beta(\omega r_2-1)],$$

then

$$f(\omega) = p_1 \cdot f_1(\omega) + p_2 \cdot f_2(\omega)$$

$$= -(\alpha p_1 r_1 + \beta (1 - p_1) r_2) \omega^2 + [(\alpha (r_1 + 1) - \beta (r_2 + 1) + r_1 - r_2) p_1 + \beta (r_2 + 1) + r_2] \omega - (\alpha - \beta) p_1 + (1 - \beta).$$

Standard quadratic equation. To max $f(\omega)$,

$$\omega = \frac{[\alpha(r_1+1) - \beta(r_2+1) + (r_1-r_2)]p_1 + \beta(r_2+1) + r_2}{2(\alpha p_1 r_1 + \beta(1-p_1)r_2)}$$

When $r_1 = 1, r_2 = -0.5, p_1 = 0.5,$

$$\omega = \frac{4\alpha + \beta + 1}{4\alpha - 2\beta}.$$

i.

$$\alpha = \frac{1}{100}, \beta = \frac{1}{100}, \omega = 52.5$$

ii.

$$\alpha=\frac{1}{2},\beta=1,\omega=\infty$$

iii.

$$\alpha = \frac{1}{2}, \beta = 2, \omega = -2.5$$

iv.

$$\alpha=1,\beta=1,\omega=3$$

3. (a)

$$f(x) = \frac{1}{1 + exp(-x)}, f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{t}{(1 + t)^2} = \frac{t}{t^2 + 1 + 2t} = \frac{1}{t + \frac{1}{t} + 2} \le \frac{1}{2 + 2} = \frac{1}{4}$$

, where $t=e^{-x}\in(0,\infty)$, so Lipschitz constant of logistic function is $\frac{1}{4}$.

- (b) $h(x) = g_1(g_2(x)), h'(x) = g'_1(g_2(x))g'_2(x) \le C_1C_2$. Lipschitz constant is C_1C_2 .
- (c) $X_{j+1,i}(x) = f(a_{j+1,i}^T X_j(x)), X_{j+1,i}'(x) f'(a_{j+1,i}^T X_j(x)) (a_{j+1,i}^T) X_{j,i}'(x) \le \frac{1}{4} ||a_{j+1,i} C_j|| \le \frac{1}{4} ||a_{j+1,i}||_{\infty} ||C_j||_{\infty}.$ Then the Lipschitz constant of $X_{j+1,i}(x)$ is $\frac{1}{4} ||a_{j+1,i}||_{\infty} ||C_j||_{\infty}.$
- (d) From (c) we know that

$$\begin{split} X'_{m,1}(x) &\leq \frac{1}{4} ||a_{m,1}||_{\infty} \cdot X'_{m-1,1}(x) \leq \frac{1}{4} a \cdot (X'_{m-1,1}(x)) \leq \frac{1}{4} a (\frac{1}{4} a \cdot X'_{m-2,1}(x)) = (\frac{1}{4} a)^2 X'_{m-2,1}(x) \\ &\leq \ldots \leq (\frac{1}{4} a)^m X'_{m-m,1}(x) = (\frac{1}{4} a)^m X'_{0,1}(x) = (\frac{1}{4} a)^m x'_i(x) = (\frac{1}{4} a)^m. \end{split}$$

4. (a) Höffding's inequality cannot be applied directly here because the first term is $\sup \hat{E}_n[f(X)]$ instead of a sum term, but Theorem 6.3.1 under this section can be applied. According to the Theorem 6.3.1,

$$\mathbb{P}(\sup_{g \in \mathcal{G}_n} |\hat{E}_n[g(X)] - E[g(X)]| \ge \epsilon) \le 2\mathcal{N}(\frac{\epsilon}{3}, \mathcal{G}_n, ||\cdot||_{\infty}) exp(-2n(\frac{\epsilon}{3B})^2)$$

, for \mathcal{G}_n a set of functions $g:\mathbb{R}^d\to[0,B]$. B=1 here, and just taking one side of this formula:

$$\mathbb{P}(\sup_{f \in \mathcal{F}_C} \hat{E}_n[f(X)] - E[f(X)] \ge \epsilon) \le \mathcal{N}(\frac{\epsilon}{3}, \mathcal{F}_C, ||\cdot||_{\infty}) exp(-2C(\frac{\epsilon}{3})^2)$$

$$\le (\frac{8}{\epsilon})^{((\frac{6C}{\epsilon})^d)} exp(-2C(\frac{\epsilon}{3})^2) = (\frac{24}{\epsilon})^{((\frac{6C}{\epsilon})^d)} exp(-\frac{2}{9}\epsilon^2C).$$

(b) Using Sauer's Lemma:

$$\mathbb{P}(\sup_{f \in \mathcal{F}} |\hat{E}_n[L(Y, f)] - E[L(Y, f)]| \ge \epsilon) \le 2(\frac{en}{d})^d exp(-2n\epsilon^2)),$$

it can be shown that

$$\mathbb{P}(\sup_{f \in \mathcal{F}} \hat{E}_n[L(Y, f)] - E[L(Y, f)] \ge \epsilon) \le (\frac{en}{d})^d exp(-2n\epsilon^2)),$$

then

$$\mathbb{P}(\hat{E}_n[L(Y,f)] - E[L(Y,f)] \ge \epsilon) \le \mathbb{P}(\sup_{f \in \mathcal{F}} \hat{E}_n[L(Y,f)] - E[L(Y,f)] \ge \epsilon) \le (\frac{en}{d})^d exp(-2n\epsilon^2)),$$

i.e.

$$\mathbb{P}(E_n[L(Y,\hat{f})] - E[L(Y,f^*)] \ge \epsilon) \le (\frac{en}{d})^d exp(-2n\epsilon^2))$$

(c) Substitute δ with $(1 - \delta)$ to range n in Sauer's Lemma:

$$n \leq \frac{128dlog(\frac{64d}{\epsilon^2}) + 64dlog(\frac{e}{d} + 16log(\frac{4}{1-\delta}))}{\epsilon^2}$$

$$n \geq \frac{\max(\frac{1}{2}log(\frac{1}{4(1-\delta)}), 8d)}{\epsilon^2}$$