电容降额规范

(内部)

Prepared by 拟制	付世勇	Date 日期	2021年3月2日
Reviewed by 审核	朱晓明	Date 日期	2021年3月15日
Reviewed by 审核		Date 日期	
Approved by 批准		Date 日期	

目 录

1.电泵	Ÿ	4
1.1.	- 非固体铝电解电容器	4
	固体电解电容器	
1.3.	薄膜电容器	8
1.4.	陶瓷电容	.10
1.5.	穿心和可变电容	.12
16	超级由容	

_	Н	

表1	非固体铝电解电容器降额要求	4
表2	固体电解电容器降额要求	
表3	薄膜电容器降额要求	
表4	陶瓷电容器降额要求	
表5	陶瓷电容封装、功耗及热阻表	12
表6	穿心和可变电容降额要求	12

图目录

未找到目录项。

1.电容

电容存在稳态、瞬态工作条件两种工作状态。划分电应力稳态、瞬态工作条件的依据是:

稳态工作条件为脉宽大于等于1S,或周期性出现的电压或电流。存在某一点(或区域),对应器件某项参数的最大应力,称为稳态条件下该项应力的最坏情况;

瞬态工作条件为脉宽小于1S,且周期性出现的电压或电流。

划分环境温度的稳态、瞬态工作条件的依据是:在一定时间内(一般以天为单位),异常温度(通常为高温)时间不超过整个时间的1%情况下为瞬态温度,在该区域中的某一点对应器件某项参数的最大应力,称为瞬态条件下的该项应力最坏情况;反之则为稳态工作环境条件。

1.1.非固体铝电解电容器

非固体铝电解电容主要分为插装和贴片两种,两种电容的内部结构和原理基本相同,只是在外部封装上有所不同,因此在降额要求上,两者相同

表1 非固体铝电解电容器降额要求

器件	降额参数	条件	降额要求
非固体插	环境稳态	稳态最坏情况	≪最高工作温度-10℃
装铝电容		瞬态[1]最坏情况	≪最高工作温度
	工作电压	持续工作电压	额定电压≤315V时: ≤0.90*额定电压
非固体		【稳态最坏情况】	额定电压>315V时: ≤0.95*额定电压
SMD铝电		非周期性浪涌电压	额定电压≤315V时: ≤1.15*额定电压(Peak)
容		【瞬态最坏情况(≤	额定电压>315V时: ≤1.10*额定电压(Peak)
	/	1S)]	
	纹波电流电	应按照频率系数,将约	文波电流 (即充放电电流) 折算到额定纹波电流同
	流[2] (Irms)	一频率。	

- 【1】铝电容瞬态温度情况,是指不超过1%的计算时间内,一般以天为单板,即1天内出现的时间总和不超过0.24小时的异常温度,可以认为是瞬态温度,与瞬态电压不一样。
 - 【2】电容器在应用中的纹波电流可以大于额定值,但不应超出安全应用区域,如果应用中电

容器的充放电电流超出安全应用区域,需具体评估应用风险。

- 【3】芯温法:将电容器芯子的核心温度(Tcore)作为输入条件,计算电容器寿命的方法。对于体积较大焊片型(Snap-in)和螺栓型(Screw)高压铝电解电容器,推荐采用芯温法估算寿命。
- 【4】纹波电流法:将电容器工作时的充放电电流和环境温度作为输入条件,计算电容器寿命的方法。对于体积较小的表贴型(V-chip)和引线型(Radical)铝电解电容器,推荐采用纹波电流估算寿命。
- 【5】对于液体铝电解电容,应根据实际应力条件估算应用寿命。寿命计算的基本理论模型是"10度法则",即应用温度每降低10度,电容器的应用寿命翻倍。

1.2. 固体电解电容器

固体电解电容器主要有钽电容、插装固体铝电解电容和表贴固体铝电解电容。

表贴固体铝电解电容有两种外形:塑封外形和圆柱形(V-chip)。塑封外形表贴固体铝电容内部为叠层结构,圆柱形(V-chip)表贴固体铝电容内部为卷绕结构。

钽电容目前包括以MnO2为阴极材料的普通钽电解电容、以导电聚合物Polymer钽电解电容。

总的来说,从降额设计角度,固体电解电容主要可分为MnO2钽电解电容,Polymer钽电解电容、固体铝电解电容三大类。

器件	降额参数		降额要求	
MnO2 固	工作电压Va[1]	稳态最坏情况	≤50%[2]	
体钽电解		瞬态最坏情况		≤55%
电容	环境温度Ta	稳态、瞬态最坏情况		≤Tmax-20°C
	反向电压	稳态最坏情况		禁止施加持续反向电
	Vre[3]		压	
-2		瞬态最坏情况	≤2%额定工作电压	
	电压变化dv/dt	瞬态最坏情况	≤10V/ms[4]	
	纹波电流Ia	当应用环境温度Ta≤	≤100%	
		当应用环境温度Ta≤	95℃时	≤80%
		当应用环境温度Ta≤	≤60%	
Polymer	工作电压Va[6]	Vr≤10 (V)	稳态最坏情况	≤85%额定电压
固体钽电			瞬态最坏情况	≤90%额定电压
解电容		10 <vr≤25 (v)<="" td=""><td>稳态最坏情况</td><td>≤70%额定电压</td></vr≤25>	稳态最坏情况	≤70%额定电压

瞬态最坏情况

≤80%额定电压

表2 固体电解电容器降额要求

		Vr>25 (V)	稳态最坏情况	≤60%额定电压
			瞬态最坏情况	≤80%额定电压
	环境稳态Ta	-	稳态最坏情况	≤Tmax-20°C
			瞬态最坏情况	≤Tmax
	反向电压Vre	-	稳态最坏情况	禁止施加持续反向电
				压
			瞬态最坏情况	≤2%额定工作电压
	电压变化dv/dt	-	瞬态最坏情况	≤15V/ms
	纹波电流Ia	当应用环境温度Ta≤	85℃时	≤100%
		当应用环境温度Ta≤	95℃时	€80%
		当应用环境温度Ta≤	105℃时	€70%
固体插件	工作电压Va	Vr≤10 (V)	Vr≤10 (V)	
铝电解电			瞬态最坏情况	≤95%额定电压
容		10 <vr≤25 (v)<="" td=""><td>稳态最坏情况</td><td>≤85%额定电压</td></vr≤25>	稳态最坏情况	≤85%额定电压
固 体			瞬态最坏情况	≤90%额定电压
SMD 铝		Vr>25 (V)	稳态最坏情况	≤70%额定电压
电容			瞬态最坏情况	≤80%额定电压
	环境稳态Ta	-	稳态最坏情况	≤Tmax-20°C
		. ,	瞬态最坏情况	≤Tmax
	反向电压Vre	-	稳态最坏情况	禁止施加持续反向电
	* • •			压
	11		瞬态最坏情况	≤0.5V (peak)
	脉冲电流	-	瞬态最坏情况	≤10A或10倍额定纹
	(Ipeak) t			波电流, 取较小者
1	纹 波 电 流	稳态最坏情况	1	≤100%
	(Irms)			
F. 7	3 5 0 5 TH / I. 6H . I. 6H			

【1】MnO2固体钽电解电容最终工作电压降额的选取还与稳定、电源回路的阻抗、电源上下电等有关,表中提供的考核原则仅为最低要求,实际的降额选取应根据电路应用条件来做调整。从实际应用统计及钽电容自身结构分析,高压系列的高CV值MnO2(≥25V/10uF)可靠性相对于低压钽电容要差。不建议12V以上的电路使用MnO2钽电容,除了某些高阻抗、限流或控制电路中,12V以上耐压可以考虑选择25V以上耐压电容外,一般低阻抗电源滤波不建议使用高压系列MnO2钽电容,即使是在低压电路中。

【2】对于可能出现的3.3V电压采用6.3V耐压或5.2V采用10V耐压等稍微超出50%降额的情况

(如降到额定电压的53%),只允许用在高阻抗、限流和控制电路中,在低阻抗大电流电压滤波(输出电流≥5A)电路中不允许。

- 【3】对于固体钽电解电容而言,反向电压在一般情况下是绝对不能允许出现的。
- 【4】MnO2钽电容对于快速变化的电压或电流冲击敏感,因此应严格限制钽电容器的电压变化速率dv/dt,在电压上升或下降曲线的任何一段,不能超过10V/ms。
- 【6】在正常工作中,温度长期超过85℃时,Polymer钽电容的电压降额需要进行进一步增加, 所有电压降额都在原来的基础上再降额80%,例如在长期超过85℃时,额定电压在10V以下的Polymer 钽电容只能用在10*85%*80%=6.8V以下的电路中。

1.3. 薄膜电容器

薄膜电容器件可分为插装和表贴两种封装形式。常用的薄膜电容大多使用如下四种介质材料,其中PET膜和PP膜是应用最为广泛的薄膜电容器用介质材料: PEN膜和PPS膜的熔点温度较高,一般用于制作耐高温薄膜电容器和SMD薄膜电容器。

PET——Polyethylene terephthalate film dielectric(聚乙烯对苯二甲酸酯介质膜)

PP——Polyethylene film dielectric(聚丙烯介质膜)

PEN——Polyethylene naphthalate film dielectric(聚萘乙烯介质膜)

PP——Polyethylene Sulfide film dielectric(聚苯硫醚介质膜)

表3 薄膜电容器降额要求

类型	用途	降额参数	条件	降额要求
	安规薄膜电	工作电压	稳态最坏情	Y电容工作电压: ≤100*额定电压;
	容器[1](专指		况	X电容工作电压:
	X、Y电容)			a)275-310Vac标称电压X电容:适用于
7				240Vac (或以下) 标称工频电网;
-/X				b) 330-350Vac标称电压X电容: 适用于
				277Vac (或以下) 标称工频电网;
				c) 440-480Vac标称电压X电容: 适用于
				380Vac(或以下)标称工频电网;
		浪涌电压	瞬态最坏情	按IEC60384-14规定,不允许超额应用
			况	
		环境温度		≤ 最高工作温度-10℃
	交流薄膜电	交流工作电	稳态最坏情	≤85%*额定交流电压
	容器[2]	压	况	

1		est 1. E 1- 12	
		瞬态最坏情	≤100%*额定交流电压
		况	
	浪涌电压	非周期性浪	≤95%*最大脉冲电压(当规格书未规定
		涌电压(持续	最大脉冲电压时,按1.25倍额定直流电压
		时间≤10ms)	计算)
	环境温度		≤最高工作温度[3]-10℃
	热点温度		≤最高工作温度-5℃
	[4]		11_
	Dv/dt	瞬态最坏情	≤80%
		况	
	纹波电流	稳态最坏情	≤90%
		况	* * * * * * * * * * * * * * * * * * * *
直流与脉冲	直流工作电	稳态最坏情	≤90%*额定直流电压
薄膜电容器	压	况	
		瞬态最坏情	≤100%*额定直流电压
		况	
	浪涌电压	非周期性浪	≤95*最大脉冲电压(当规格书未规定最
		涌电压	大脉冲电压时,按1.25倍额定直流电压计
		(持续时间	算)
•		≤10ms)	
	环境温度		≤额定温度-10℃
- X ,	热点温度		≪额定温度-5℃
XYX	[3]		
	dv/dt	瞬态最坏情	≤80%
		况	
	纹波电流	稳态最坏情	≤90%
/		况	

- 【1】安规电容器:符合IEC60384-14、UL1414、UL1283等'电磁干扰抑制电容器'标准,经过安规机构认证的可跨接于50~60Hz交流市电的火线、零线和地线之间的电容器,即X电容和Y电容。X电容和Y电容仅可用于EMC用途,不可用做逆变电路的平滑电容,也不可用电容式降压电路的降压电容。
 - 【2】交流薄膜电容器: 专为交流应用设计的薄膜电容器,交流电容器的典型应用是逆变电路

的平滑电容。电容式降压电路必须采用专门设计的降压电容器,不能使用一般用途的交流薄膜电容器,

- 【3】额定温度:额定温度可能低于上限工作温度,也可能等于上限工作温度。当规格书总没有说明额定温度时,默认额定温度等于上限工作温度。
- 【4】对于大型薄膜电容器(10A以上额定电流的薄膜电容器),需要测量电容内部热点温度,或依据电容器的热阻和充放电电流计算热点温度(说明:当无法测量或计算时,需要找厂商确认),热点温度不得超过规定;对于小型薄膜电容器,额定电流是按照内部热点温度不超过上限类别温度提示的,不需另外计算热点温度。

1.4. 陶瓷电容

陶瓷电容主要有单层陶瓷电容、MLCC电容、MLCC电容排。

表4 陶瓷电容器降额要求

				日前件恢文水	X		
器件	类型	降额参数	材料类别	环境温度	额定电压	条件	降额要求
插装多层	普通	工作电压	NPO	≤85°C	Vr<25V	稳态最坏	€85%
陶瓷,			(COG)		/	情况	
片式电容			U2J,X7R,			瞬态最坏	≤100%
排			X7S,X7T,			情况	
		_	X7U		Vr≥25V	稳态最坏	≤75%[1]
		17				情况	
		X	,			瞬态最坏	≤100%
						情况	
	TY			>85℃, ≤	Vr<25V	稳态最坏	€70%
1				125℃		情况	
-/2						瞬态最坏	≤80%
	4					情况	
	<u> </u>				Vr≥25V	稳态最坏	≤60%
						情况	
						瞬态最坏	≤80%
						情况	
			X5R,			稳态最坏	≤60%
			X6R/S,			情况	
			Y5V			瞬态最坏	≤80%

						情况	
		环境温度	所有	-	所有	稳态最坏	
		Та				 情况	Tmax-5 ℃
							[2]
						瞬态最坏	≪Tmax
						情况	
插装单层	普通	工作电压	NPO	≤85°C	Vr<25V	稳态最坏	<85%
陶瓷,			(COG)			情况	(0070
SMD陶瓷			U2J,X7R,			瞬态最坏	<100%
SIVIDPIII 配			X7S,X7T,			情况	10070
			X7U		17 > 2517		<750/F13
					Vr≥25V	稳态最坏	<75%[1]
						情况	
					X-)	瞬态最坏	≤100%
						情况	
				>85℃, ≤	Vr<25V	稳态最坏	≤70%
			_	125℃		情况	
						瞬态最坏	≤80%
						情况	
					Vr≥25V	稳态最坏	≤60%
						 情况	
			,			瞬态最坏	≤80%
						 情况	
	11		X5R,			稳态最坏	≤60%
,			X6R/S,			情况	10070
	(2)		Y5V			瞬态最坏	<80%
	2					情况	≈ 0070
	· /	77 15 79 15	rr+		rr+		
	/	环境温度	所有	-	所有	稳态最坏	
		Ta				情况	Tmax-5 °C
						晒上口口	[2]
						瞬态最坏	≪Tmax
						情况	
	安规	工作电压	所有	-所有	所有	稳态最坏	≤100%
		Va				情况	

				瞬态最坏	≤100
				情况	
环境温度	所有	-	所有	稳态最坏	€
Та				情况	Tmax-5 ℃
					[2]
				瞬态最坏	≤Tmax
				情况	

- 【1】对于-48V的接口电路,电压波动范围为-36V~-72V的情况下,可以使用100V的X7R陶瓷电容滤波,但是瞬态最坏情况建议不超过额定值。
- 【2】如果环境温度比较难获得,可以采用电容表面温度进行降额,其中壳温降额为稳态不超过额定温度Tmax,瞬态不超过Tmax+5 $^{\circ}$ C

下表为陶瓷电容各种封装允许功耗和热阻表。其中最大允许功耗单位为mW,在常温+25℃,20℃ 温升条件下得到。部分尺寸型号可根据长X宽,依据附件的热阻来大致判断,如1810可参看1210和1812的热阻大致确定。

实际上,陶瓷电容功耗和焊盘尺寸及覆铜面积相关,焊盘尺寸及覆铜面积越大,允许的功耗就越大。下表标称的热阻值为典型值,仅作设计参考。

EIA尺寸	长X宽 L*W	普通MLCC		高Q电容	
	(mm)	允许功耗mW	热阻 Rth(℃	允许功耗mW	热阻 Rth(℃
			/W)		/W)
0201	0.6 X 0.3	77	260	/	/
0402	1.0 X 0.5	87	230	91	219
0603	1.6 X 0.8	93	216	138	145
0805	2.0 X 1.25	97	207	177	113
1206	3.2 X 1.6	103	194	/	/
1210	3.2 X 2.5	136	147	282	70.9
1812	4.5 X 3.2	185	108	/	/
1111	2.97 X 2.97 X	/	/	400	50
	2.54				

表5 陶瓷电容封装、功耗及热阻表

1.5. 穿心和可变电容

表6 穿心和可变电容降额要求

器件	降额参数	工作条件	降额要求
穿心电容型EMI滤波器	工作电压V	瞬态最坏情况	≤60%
三端电容型EMI滤波器		稳态最坏情况	≤65%
云母电容	环境稳态	稳态、瞬态最坏情况	≤Tmax-10°C
	工作电流I	稳态最坏情况	≤60%
		瞬态最坏情况	≤60%
可变电容器	工作电压V	稳态最坏情况	≤60%
		瞬态最坏情况	≤65%
	环境温度	稳态、瞬态最坏情况	≤Tmax-10°C

1.6. 超级电容

表7 超级电容降额要求

器件	降额参数	条件	降额要
超级电容	工作电压Va[1]	稳态、瞬态最坏情况[1]	≤100%
	环境温度Ta[2]	稳态最坏情况	≤Tmax-5°C
		瞬态最坏情况	≤Tmax
	最低温度	稳态、瞬态最坏情况	≥Tmax+10°C
	反向电压Vre[5]	稳态最坏情况	禁止施加反向电压
		瞬态最坏情况	≤2%额定工作电压
	充放电电流Ia		≤100%
	预估寿命[3]		≥单板寿命*0.8[3][4]
水系电解质超级	工作电压Va	稳态、瞬态最坏情况	≤70%
电容	环境稳态Ta	稳态、瞬态最坏情况	≤Tmax-20°C
	最低温度	稳态、瞬态最坏情况	≥Tmax+20°C

- 【1】超级电容厂家在设计厂家在设计过程中,厂家已经加入降额冗余,因此实际工作中,电 压只要满足规格就可以。但瞬态电压也不允许超过规格值。
 - 【2】超级电容在任何情况下,都不允许超温应用。
- 【3】厂家在电容设计过程中,会留有一定余量,计算结果和实际寿命会有一定差别。因此估算寿命须不小于单板设计寿命的80%
 - 【4】很多厂家会直接提供工作环境下的寿命,如45℃下寿命4年,这个4年可以作为结果,认

为满足单板寿命要求为5年的需求。

【5】超级电容虽然加反压不会直接短路,但是会导致寿命减少。因此即使是小于2%额定电压的反压,也不能频繁施加。

