IDS PROJECT REPORT

"PREDICTING WHETHER THE INCOME EXCEEDS A GIVEN INCOME BASED ON CENSUS DATA"

Team Members:

- 20UCC087 Rahul Vijayvargiya
- 20UCS034 Aryan Gupta
- 20UCC091 Sahil Yadav
- 20UCC118 Vivek Singh

GitHub REPOSITORY:

<u>View Here – GitHub repository for this project</u>

Course Instructors:

- Dr. Alok Dutta.
- Dr. Subrat Dash.
- Dr. Sakhti Balan.

Department of Computer Science Engineering The LNM Institute of Information Technology

Table of Contents

Introduc	ction	3
Problen	n Statement	3
Attribute	es Involved	4
	ch	
	ction to Dataset	
miroda		
Impleme	entation	6
1.	Importing Libraries and Loading Dataset	
2.	Data Exploration	8
3.	Data visualization	15
4.	Data Pre-processing	25
5.	ML Classification Algorithms(explanation)	28
	a) Logistic Regression b) Decision Tree c) Random Forest d) Support Vector Machine e) Naïve Bayes	30 31 32
6.	ML Classification Algorithms (Code)	34
	a) Logistic Regression b) Decision Tree c) Random Forest d) Support Vector Machine e) Naïve Bayes	35 36 37
	Conclusion	39
	References	39

Problem Statement:

Performing Data Pre-processing and preliminary analysis to predict whether the income of an adult will exceed 50k per year or not by developing a supervised machine learning model.

We need to collect a dataset from the given website and perform the following steps:

- 1. Data pre-processing and its visualization.
- 2. Explain all the inferences we got from our data.
- **3.** Explain what ML Classification Algorithms are being used and Why?
- **4.** Implementing those algorithms.
- 5. Output the result of the testing set and its visualization.

All the tasks are performed with the help of pre-existing Python Libraries such as:

- scikit learn
- matplotlib
- seaborn
- numpy
- pandas

Attributes involved:

Age.

Work class.

Final Weight.

Education.

Education Number of Years.

Marital-status.

Occupation.

Relationship.

Race.

Sex.

Capital-gain.

Capital-loss.

Hours-per-week.

Native-country.

(All these attributes can be made clear by their names easily, so not going in deep to define them all.)

Approach:

We will follow a straightforward procedure. First, we'll read the dataset in a format which we'll use throughout the project, then separate the sentiments and statements. Then we looked at things like the number of statements in a particular category, whether there are any missing values and the relationship between the length of the statement and the sentiment. Then, after text preprocessing, the dataset is split into training and testing datasets, and various ML classification algorithms are used to evaluate their efficiency.

Introduction to Dataset:

We will use Jupyter Notebook for this

Dataset consists of:

- Dataset characteristics: Multivariate
- Area: Social
- Number of Instances: 32561
- Number of Attributes: 14
- Attributes Characteristic: Categorial, Integer
- Associated Task: Classification, Regression
- Missing Values: Yes
- Date Donated: 1996-05-01

Data Set: Also included in Repository. (<u>Linked</u> above)

Implementation:

We will use Jupyter Notebook for this project.

1. Importing Libraries and Loading Dataset:

(i) <u>Importing Libraries:</u>

Basically, we need to first import the libraries here.

- pandas: for manipulation and analysis of data.
- **NumPy**: contains a large collection of high-level mathematical functions to operate on large, arrays and matrices with multiple dimensions.
- matplotlib: for embedding plots.
- **seaborn**: for drawing attractive and informative statistical graphics.
- SK-Learn: for ML Classification Algorithms used in the project.
- •Sys and Warnings: to ignore warnings.

```
In [1]:
         #Importing Libraries
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.model selection import train test split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import confusion_matrix,accuracy_score,plot_confusion_matrix
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model_selection import cross_val_score
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.preprocessing import LabelEncoder
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC
         from sklearn.model_selection import GridSearchCV
         import warnings
         warnings.simplefilter(action='ignore')
```

(ii) Reading Data Set:

a) Importing

In [2]:	<pre># Data Importing df = pd.read_csv("adult.csv") print(df.shape) df.head()</pre>															
	(3	2561,	15)													
Out[2]:		age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.country	income
	0	90	?	77053	HS-grad	9	Widowed	?	Not-in- family	White	Female	0	4356	40	United-States	<=50K
	1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in- family	White	Female	0	4356	18	United-States	<=50K
	2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female	0	4356	40	United-States	<=50K
	3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-States	<=50K
	4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-States	<=50K

b) Overall Description of the dataset

In [4]:	<pre>df.describe()</pre>									
Out[4]:		age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week			
	count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000			
	mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456			
	std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429			
	min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000			
	25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000			
	50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000			
	75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000			
	max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000			

2. Data Exploration:

Distribution of Data based on different Categorical Attributes:

a) For Work Class:

	Total count	Percentage
Private	22696	0.697030
Govt-Employees	4351	0.133626
Self-Employed	3657	0.112312
null	1836	0.056386
Without-pay	14	0.000430
Never-worked	7	0.000215

b) For Education:

	Total count	Percentage
High-School	13556	0.416326
Some-college	7291	0.223918
Bachelors	5355	0.164461
Masters	1723	0.052916
Assoc-voc	1382	0.042443
Elementary-School	1147	0.035226
Assoc-acdm	1067	0.032769
Prof-school	576	0.017690
Doctorate	413	0.012684
Preschool	51	0.001566
c) For Occupation:	Total count	Percentage
Prof-specialty	4140	0.127146
Craft-repair	4099	0.125887

Exec-managerial	4066	0.124873
Adm-clerical	3770	0.115783
Sales	3650	0.112097
Other-service	3295	0.101195
Machine-op-inspct	2002	0.061485
null	1843	0.056601
Transport-moving	1597	0.049046
Handlers-cleaners	1370	0.042075
Farming-fishing	994	0.030527
Tech-support	928	0.028500
Protective-serv	649	0.019932
Priv-house-serv	149	0.004576
Armed-Forces	9	0.000276

d) For relationship:

	Total count	Percentage
Husband	13193	0.405178
Not-in-family	8305	0.255060
Own-child	5068	0.155646
Unmarried	3446	0.105832
Wife	1568	0.048156
Other-relative	981	0.030128

e) <u>For race:</u>

	Total count	Percentage
White	27816	0.854274
Black	3124	0.095943

Asian-Pac-Islander	1039	0.031909
Amer-Indian-Eskimo	311	0.009551
Other	271	0.008323

f) For marital status:

	Total count	Percentage
Married	15417	0.473481
Never-married	10683	0.328092
Separated	5468	0.167931
Widowed	993	0.030497

g) For sex:

	Total count	Percentage
Male	21790	0.669205
Female	10771	0.330795

h) For Native. Country:

	Total count	Percentage
United-States	29170	0.895857
Mexico	643	0.019748
null	583	0.017905
Philippines	198	0.006081
Germany	137	0.004207
Canada	121	0.003716
Puerto-Rico	114	0.003501
El-Salvador	106	0.003255

India	100	0.003071
Cuba	95	0.002918
England	90	0.002764
Jamaica	81	0.002488
South	80	0.002457
China	75	0.002303
Italy	73	0.002242
Dominican-Republic	70	0.002150
Vietnam	67	0.002058
Guatemala	64	0.001966
Japan	62	0.001904
Poland	60	0.001843
Columbia	59	0.001812
Taiwan	51	0.001566
Haiti	44	0.001351
Iran	43	0.001321
Portugal	37	0.001136
Nicaragua	34	0.001044
Peru	31	0.000952
Greece	29	0.000891
France	29	0.000891
Ecuador	28	0.000860
Ireland	24	0.000737
Hong	20	0.000614
Cambodia	19	0.000584
Trinadad&Tobago	19	0.000584
Laos	18	0.000553

Thailand	18	0.000553
Yugoslavia	16	0.000491
Outlying-US(Guam-USVI-etc) 14		0.000430
Hungary	13	0.000399
Honduras	13	0.000399
Scotland	12	0.000369
Holland-Netherlands	1	0.000031

i) For Income:

	Total count	Percentage		
<=50K	24720	0.75919		
>50K	7841	0.24081		

Process Involved:

(i) Converting missing value into the null values:

Just for the easiness, we had replaced "?" with null and then we cross checked it.

(ii) Merging and replacing the attributes in the list:

(a) For Education: Merged the High School grad, 1st to 12th into Schooling, Replaced the bachelors to undergraduates and masters to postgraduates.

```
# merging and replacing elements in the list
         school = ['HS-grad', '12th', '11th', '10th', '9th','1st-4th','5th-6th','7th-8th', 'Preschool']
         df['education'].replace(to_replace = school, value = 'Schooling', inplace = True)
         df['education'].replace(to_replace = ['Bachelors'], value = "Undergraduates", inplace = True)
         df['education'].replace(to_replace = ['Masters'], value = "Post-Graduates", inplace = True)
         df['education'].value_counts()
Out[9]: Schooling
                        14754
        Some-college
                          7291
        Undergraduates
        Post-Graduates
                          1723
        Assoc-voc
                          1382
        Assoc-acdm
                          1067
        Prof-school
                          576
        Doctorate
                           413
        Name: education, dtype: int64
```

(b) <u>For Marital Status:</u> Merged the married-spouse-absent, married-civ-spouse, married-AF-spouse into married, separated and divorced into separated and replaced never-married into single.

(c) For Work Class: Merged self-emp-not-inc and self-emp-inc into Self-Employed, merged Local-gov, State-gov and federal-gov into govt-employees and replaced never worked to unemployed

```
In [11]:
            self_employed = ['Self-emp-not-inc','Self-emp-inc']
            govt_employees = ['Local-gov','State-gov','Federal-gov']
            df['workclass'].replace(to_replace = self_employed ,value = 'Self-Employed',inplace = True)
df['workclass'].replace(to_replace = govt_employees,value = 'Govt-Employees',inplace = True)
            df['workclass'].replace(to_replace = ['Never-worked'], value = 'Unemployed', inplace = True)
            df['workclass'].value_counts()
                               22696
Out[11]: Private
           Govt-Employees
                              4351
           Self-Employed
                               3657
           null
                                1836
           Without-pay
                                14
           Unemployed
           Name: workclass, dtype: int64
```

3. Data Visualization:

Here we would try to find out a relation between each column of the final numerical dataset and the target attribute income. This can be achieved by creating a Bar graph between income and each of the other columns.

(i) Checking the total number of people having income greater than 50K and less than or equal to 50K:

This means almost 75% of people having income less than or equal to 50K and almost 25% of people having income greater than 50K.

(ii) Exploring the distribution of population on the basis of numerical features:

- a) Maximum people belong from the age group of 15-50
- b) Generally, people work from 30-40 hours per week
- c) Maximum number of people are qualified up to 8th Standard.

(iii) Exploring the data based on Capital Gain and Capital Loss:

- a) 1519 people having capital loss above the median value which is almost 4.67%
- b) 2712 people having capital gain above the median value which is almost 8.33%
- c) Almost 92% of people having capital gain equals to zero.

Total Observations:

```
Number of observations having capital gain and capital loss zero: (28330, 15)
*********** workclass *********
Private
                    19982
Govt-Employees 3714
Self-Employed 2960
null 1655
Without-pay 12
Unemployed 7
Name: workclass, dtype: int64
******* education ********
schooling 13342
Some-college 6533
Some-college 6533
Undergraduates 4384
Post-Graduates 1300
Assoc-voc 1194
Assoc-acdm 930
Prof-school 363
Doctorate 284
Name: education, dtype: int64
********* marital.status *********
Married 12603
               9914
Single
Separated 4934
Widowed
                 879
Name: marital.status, dtype: int64
*********** occupation *********
Craft-repair 3593
Adm-clerical 3408
Adm-clerical 3408
Prof-specialty 3290
Exec-managerial 3219
Sales 3138
Other-service 3122
Machine-op-inspct 1806
                       1662
null
Transport-moving 1416
Handlers-cleaners 1274
Farming-fishing 890
Tech-support 795
Protective-serv 570
Priv-house-serv 139
Armed-Forces 8
Name: occupation, dtype: int64
```

Male 18551 Female 9779

Name: sex, dtype: int64

United-States	25320
Mexico	612
null	493
Philippines	174
Germany	117
Puerto-Rico	103
Canada	103
El-Salvador	95
Cuba	85
India	79
Jamaica	78
England	78
South	68
Dominican-Republic	67
Italy	65
China	64
Guatemala	60
Vietnam	57
Columbia	55
Poland	53
Japan	51
Taiwan	44
Haiti	42
Portugal	35
Iran	35
Nicaragua	30
Peru	29
France	26
Ecuador	25
Ireland	21
Greece	20
Hong	19
Thailand	18
Laos	17
Trinadad&Tobago	17
Yugoslavia	15
Outlying-US(Guam-USVI-etc)	14
Cambodia	14
Honduras	12
Scotland	11
Hungary	9
Name: native.country, dtype	e: int64

```
************* income ***********
```

<=50K 22939 >50K 5391

Name: income, dtype: int64

Details for the capital gain greater than zero:

In [17]:	<pre>df.loc[df['capital.gain'] > 0,:].describe()</pre>							
Out[17]:		age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	
	count	2712.000000	2.712000e+03	2712.000000	2712.000000	2712.0	2712.000000	
	mean	44.016224	1.880805e+05	11.066003	12938.541298	0.0	43.510324	
	std	13.268269	1.033775e+05	2.663273	22395.413530	0.0	12.207654	
	min	17.000000	1.930200e+04	1.000000	114.000000	0.0	1.000000	
	25%	35.000000	1.180670e+05	9.000000	3411.000000	0.0	40.000000	
	50%	43.000000	1.759390e+05	10.000000	7298.000000	0.0	40.000000	
	75%	52.000000	2.364735e+05	13.000000	14084.000000	0.0	50.000000	
	max	90.000000	1.033222e+06	16.000000	99999.000000	0.0	99.000000	

The maximum capital gain is 99999 by 159 observations

Details for the capital loss greater than zero:

The Maximum capital loss is 4356 by 3 observations

Observation distribution among different fields when the capital loss is greater than or equal to the 1871 (mean) and their income is less than or equal to 50k

Observations distributed among different fields when the maximum capital gain is 99999

- 1. Maximum of observations have graduated from high schools
- 2. They generally worked for more than 50 hours per week

Given below are the tables comparing between observations having income greater than 50k and less than or equal to 50k based on the categorical attributes:

After displaying the comparison between the observations based on categorical attributes, we move towards the mathematical values of correlation between the attributes...

The Correlation Matrix using seaborn.heatmap() function:

Now, we move forward towards the data pre-processing.

4. Data Pre-processing:

1. We removed the numerical data present in the given data.

- 2. We then changed the income into 0 and 1, 0 represents income less than or equal to 50k and 1 represents greater than 50k
- 3. Then we changed the categorical data into natural numbers for the convenience.

```
In [45]:
           df['relationship'] = df['relationship'].map({'Own-child': 0, 'Not-in-family': 1,
                                                                               'Wife': 2,
                                                                               'Husband': 3,
                                                                               'Unmarried': 4,
                                                                                'Other-relative': 5}).astype(int)
In [46]:
Out[46]:
                 workclass
                            education marital.status occupation relationship race sex
                                                                                      native.country income
               0
                                                  3
                                                            13
                                                                               3
                                                                                        United-States
                                                                                                          0
                                                                                        United-States
                                                                                        United-States
               2
                         4
                                    5
                                                  3
                                                            13
                                                                               0
                                                                                                          0
               3
                                                                                        United-States
                                                                                                           0
               4
                                    5
                                                             4
                                                                          0
                                                                               3
                                                                                        United-States
                                                                                                           0
          32556
                                    5
                                                  2
                                                             2
                                                                          1
                                                                               3
                                                                                    0
                                                                                        United-States
                                                                                                          0
          32557
                                                                               3
                                                                                        United-States
                                                                                                           0
                                                                                        United-States
          32558
                                    1
                                                  0
                                                             5
                                                                               3
                                                                                                           1
          32559
                                                            14
                                                                               3
                                                                                        United-States
                                                                                                          0
                                                  2
                                                                               3
                                                                                        United-States
          32560
                                                            14
                                                                                                          0
          32561 rows × 9 columns
```

4. Then we removed the native country attribute.

. Contract								
df								
	workclass	education	marital.status	occupation	relationship	race	sex	income
0	4	1	3	13	1	3	1	0
1	1	1	3	7	1	3	1	0
2	4	5	3	13	4	0	1	0
3	1	1	1	5	4	3	1	0
4	1	5	1	4	0	3	1	0
		-	-		-			
32556	1	5	2	2	1	3	0	0
32557	1	2	0	6	2	3	-1	0
32558	1	1	0	5	3	3	0	1
32559	1	1	3	14	4	3	1	0

3. Then we split the data into 2 parts, X and Y. X contains categorical data and Y contains income in form of 0 and 1.

```
In [50]:
    dfx = pd.DataFrame(X)
    dfy = pd.DataFrame(Y)
```

4. We then split the X and Y into 2 parts each in the ratio 3:1 for training data and testing data.

```
In [51]:
# Splitting the data in the ratio 3:1 where 3 is for training data and 1 is for testing data
X_train, X_test, Y_train, Y_test = train_test_split(dfx, dfy, test_size = 0.25, random_state = 42)
print(X_train.shape)
print(Y_train.shape)
print(Y_test.shape)

(24420, 7)
(8141, 7)
(24420, 1)
(8141, 1)
```

5. ML CLASSIFICATION ALGORITHMS:

After we have a clean dataset, we can use our prediction algorithms to forecast the quality of our wine. Instead of just one classification algorithm, we use five in our project to predict the results.

We wanted to compare their accuracy results to see which algorithm worked best on our dataset, so we used all of these algorithms. We applied the algorithms given below:

- Logistic regression
- Decision Tree Classifier
- o Random Forest Classifier
- Naive Bayes Classifier
- Support Vector Machine
- For each case, we have visualized the Confusion Matrix along with it.
- We have also displayed the accuracy percentage for each case too.

(i) Logistic Regression:

IF we talk about most fundamental structure then, Logistic Regression is a model based on statistics. It is used when we have a categorical dependent variable(y), instead of continuous.

This model is used to calculate the probability of a certain class. It can also be used for multiclass attribute values as well.

It basically follows the linear regression model, but the continuous output value is passed through a function called as "Sigmoid Function" which is used to scale the value between 0 and 1. a threshold value selected. For our problem which is a 2-Class, if the sigmoid function gives a value greater than threshold, then class 1 is selected, otherwise class 0.

This sigmoid function helps to scale the values between 0-1.

(ii) Decision Tree Classifier

This model forms a decision tree based on the input dataset. It helps to predict the class of a new input record.

It is like a tree structure, with each node representing a condition on attribute values. Based on the condition output, we select our path (answer to conditions) and proceed to predict our class till we encounter a leaf node(output class variables).

We have learnt that decision trees are made with the help of GINI Index, Entropy calculations etc which measure impurity, to try to determine what should be taken as the best split.

(iii) Random Forest Classifier

This classifier follows an ensemble learning. Instead of one, multiple decision trees work as an "ensemble". It adds randomness to the ensemble by randomly creating a forest of decision trees.

Each decision tree produces an output and the final class for the input record is done by majority voting. They are found to be more accurate than single decision trees, but have an extended time for training.

Random Forest Classifier

Structure of how random forest works

(iv) Support Vector Machine

Support Vector Machine uses a supervised learning algorithm. <u>It</u> is used to find a hyperplane that will separate the data classes.

Now, there may be many hyperplanes which can separate the data, but <u>SVM tries to find the best fit line for this separation.</u>

This classifier generally works well when there is a clear line of separation between the classes, and the dataset is not large enough.

Find hyperplane maximizes the margin => B1 is better than B2

Structure of SVM

(v) Naive Bayes Classifier

Naive Bayes classifier is based on the Bayes theorem which we study in Probability. In ML, it takes an assumption that there is independence among the attributes X(i) when prediction for the class.

• The formula for calculating probability using Bayes Theorem.

x represents features calculated individually.

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability
$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Where,

- P(c|x) is the posterior probability of class c given predictor (features).
- *P*(*c*) is the probability of *class*.
- P(x|c) is the <u>likelihood</u> which is the probability of *predictor* given *class*.
- P(x) is the prior probability of predictor.
- If we take this assumption, then it becomes Naive Bayes Classifier.
 - Assume independence among attributes X_i when class is given:

-
$$P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$$

6. IMPLEMENTATION OF THE ALGORITHMS AND THEIR CONFUSION MATRIX

a) Logistic Regression:

```
In [52]:
                                           # Using Logistic Regression
                                            operation1 = LogisticRegression()
                                            # Train our model with the training data
                                            operation1.fit(X_train, Y_train)
                                            Y_pred = operation1.predict(X_test)
In [53]:
                                            score1 = accuracy_score(Y_test, Y_pred)
                                           print("Prediction Accuracy = " + str(score1*100))
                                       Prediction Accuracy = 78.92150841419972
In [54]:
                                           class_names = [0,1]
                                           fig, ax = plt.subplots(figsize=(8,4))
                                            \verb|plot_confusion_matrix| (operation 1, X_test, Y_test, cmap=plt.cm.Reds, labels=class_names, ax=ax, values\_formatrix)| (operation 2, X_test, Y_test, Y_t
                                           plt.title('Confusion Matrix')
                                            plt.grid(False)
                                            plt.show()
                                                                                            Confusion Matrix
                                                                                                                                                                                                                     5000
                                                                                    5673
                                                 0
                                                                                                                                                      524
                                                                                                                                                                                                                     4000
                                       True label
                                                                                                                                                                                                                   3000
                                                                                                                                                                                                                   2000
                                                                                  1192
                                                                                                                                                      752
                                                 1
                                                                                                                                                                                                                   1000
                                                                                        0
                                                                                                    Predicted label
```

Accuracy: 78.92%

Right Prediction: 5673 + 752 = 6425Wrong Prediction: 1192 + 524 = 1944

b) Decision Tree Classifier:

```
In [58]: operation2 = DecisionTreeClassifier()
    operation2.fit(X_train, Y_train)
    Y_pred = operation2.predict(X_test)

In [59]:    score2 = accuracy_score(Y_test, Y_pred)
    print('Prediction Accuracy = ' + str(score2*100))

Prediction Accuracy = 82.01695123449207

In [60]:    class_names = [0,1]
    fig, ax = plt.subplots(figsize=(8,4))
    plot_confusion_matrix(operation2, X_test, Y_test,cmap=plt.cm.Reds,labels=class_names,ax=ax,value)
    plt.title('Confusion Matrix')
    plt.grid(False)
    plt.show()
```


Accuracy: 82%

Right Prediction: 5661 + 1015 = 6676 Wrong Prediction: 929 + 536 = 1492

c) Random Forest Classifier:

```
In [64]:
          operation4 = RandomForestClassifier()
          operation4.fit(X_train, Y_train)
          Y_pred = operation4.predict(X_test)
In [65]:
          score4 = accuracy_score(Y_test, Y_pred)
          print('Prediction Accuracy = ' + str(score4*100))
         Prediction Accuracy = 82.36088932563567
In [66]:
          class_names = [0,1]
          fig, ax = plt.subplots(figsize=(8,4))
          plot_confusion_matrix(operation4, X_test, Y_test,cmap=plt.cm.Reds,labels=class_names,ax=ax,v
          plt.title('Confusion Matrix')
          plt.grid(False)
          plt.show()
                      Confusion Matrix
                                                   5000
           0 -
                    5662
                                    535
```


Accuracy: 82.36%

Right Prediction: 5662 + 535 = 6705 Wrong Prediction: 901 + 535 = 1436

d) Support Vector Machine:

Support Vector Machine

```
In [67]:
    operation5 = SVC()
    operation5.fit(X_train, Y_train)
    Y_pred = operation5.predict(X_test)

In [68]:
    score5 = accuracy_score(Y_test, Y_pred)
    print('Prediction Accuracy = ' + str(score5*100))

Prediction Accuracy = 80.75175039921385

In [69]:
    class_names = [0,1]
    fig, ax = plt.subplots(figsize=(8,4))
    plot_confusion_matrix(operation5, X_test, Y_test,cmap=plt.cm.Reds,labels=class_names,ax=
    plt.title('Confusion Matrix')
    plt.grid(False)
    plt.show()
```


Accuracy: 80.75%

Right Prediction: 5719 + 855 = 6574Wrong Prediction: 1089 + 478 = 1567

e) Naive Bayes Classifier:

```
In [61]:
                                                   operation3 = GaussianNB()
                                                   operation3.fit(X_train, Y_train)
                                                   Y_pred = operation3.predict(X_test)
In [62]:
                                                   score3 = accuracy_score(Y_test, Y_pred)
                                                   print('Prediction Accuracy = ' + str(score3*100))
                                               Prediction Accuracy = 72.153298120624
In [63]:
                                                   class names = [0,1]
                                                   fig, ax = plt.subplots(figsize=(8,4))
                                                   plot\_confusion\_matrix(operation3, X\_test, Y\_test, cmap=plt.cm.Reds, labels=class\_names, ax=ax, values\_f(specific test) and the plot\_confusion\_matrix(operation3, X\_test, Y\_test, cmap=plt.cm.Reds, labels=class\_names, ax=ax, values\_f(specific test) and the plot\_confusion\_matrix(operation3, X\_test, Y\_test, cmap=plt.cm.Reds, labels=class\_names, ax=ax, values\_f(specific test) and the plot\_confusion\_matrix(operation3, X\_test) and the plot\_confusio
                                                   plt.title('Confusion Matrix')
                                                   plt.grid(False)
                                                   plt.show()
                                                                                                           Confusion Matrix
                                                                                                                                                                                                                                                       4000
                                                          0 -
                                                                                                 4483
                                                                                                                                                                            1714
                                                                                                                                                                                                                                                       3500
                                                                                                                                                                                                                                                       3000
                                              True label
                                                                                                                                                                                                                                                       2500
                                                                                                                                                                                                                                                      2000
                                                                                                                                                                            1391
                                                                                                   553
                                                         1
                                                                                                                                                                                                                                                      1500
                                                                                                                                                                                                                                                      1000
                                                                                                                     Predicted label
```

Accuracy: 72.15%

Right Prediction: 4483 + 1391 = 5874 Wrong Prediction: 553 + 1704 = 2257

7. CONCLUSION

To summarize our results from the implementations, we get the following table:

Algorithms	Accuracy
Logistic Regression	78.92%
Decision Tree	82%
Random Forest	82.36%
Support Vector Machine	80.75%
Naive Bayes	72.15%

From the results, it is clear that Random Forest Algorithm gives the highest accuracy of 82.36% on our dataset.

7. REFRENCES

- The class presentations of IDS
- Official documentations of Seaborn, Matplotlib, scikit-learn, Pandas, Numpy
- https://archive.ics.uci.edu/ml/datasets/Adult