Kronig-Penney model

Task 1

Given:

- a = 1.5 Å (well width)
- b = 1.0 Å (barrier width)
- V(x) varies from 0 to 10 eV.

Model: Kronig–Penney model (delta-function limit when $b \to 0$ but here b fixed, finite rectangular barriers).

The band gap width between 1st and 2nd bands depends on the strength of the periodic potential.

Approximate gap formula (for delta-potential version):

$$V_0 b = P(\text{strength}), E_q \approx 2 \mid V_G \mid$$

where V_G is the Fourier component of potential for reciprocal vector $G = 2\pi/(a+b)$. For finite rectangular barriers, the gap at $k = \pi/(a+b)$ (BZ boundary) increases with V_0 .

Trend:

- When $V_0 = 0$, free electron \rightarrow no gap.
- As V_0 increases, gap increases monotonically, saturating slowly.

Rough plot description:

- x-axis: V_0 (eV)
- y-axis: Band gap E_g (eV)
- Curve: Starts at (0,0), rises sharply for small V_0 , then increases more slowly toward saturation.

 $E_a(V_0) \propto \text{ something like} 2\sqrt{V_0 E_1} \text{ initially, then linear? Actually from KP equation:}$

KP equation:

$$\cos(ka) = \cos(k_1 a) + P \frac{\sin(k_1 a)}{k_1 a}, P$$

$$= \frac{mV_0 ba}{\hbar^2}$$
 (in some units)

Gap occurs when | RHS |> 1 is not possible \rightarrow gap width $\Delta \approx 2V_0 \frac{\sin{(\pi a/(a+b))}}{\pi}$ for small V_0 ? Actually, known:

For delta-barrier: $E_g \approx 2V_0b/a$ for small P, but here b fixed, so $E_g \propto V_0$ initially.

Conclusion for plot: Linear rise for small V_0 , then sublinear, saturating.

Task 2

Given:

- $a = 1.5 \,\text{Å}$
- $V_0 = 5 \text{ eV}$
- Vary barrier width b.

Effect: Increasing *b* increases the "duty cycle" of the barrier, increasing the effective potential strength.

In delta limit $(b \to 0)$, $P = mV_0ba/\hbar^2 \to \text{gap}$ proportional to $P \to \text{proportional}$ to b. For finite b, the Fourier component V_G is:

$$V_{G} = \frac{1}{a+b} \int_{0}^{b} V_{0}e^{-iGx}dx, G = 2\pi/(a+b)$$

$$|V_{G}| = \frac{V_{0}}{a+b} |\frac{1-e^{-iGb}}{iG}| = \frac{V_{0}}{a+b} \cdot \frac{2|\sin(Gb/2)|}{G}$$

So $E_g \propto |V_G| \propto \frac{\sin(\pi b/(a+b))}{\pi/(a+b)}$.

Thus $E_g(b)$ increases from b=0 to a maximum at b/(a+b)=0.5 (when $\sin (\pi b/(a+b))=1$), then decreases to 0 when b=a+b (all barrier, no well \to no gap? Actually period changes). But physically, when b increases too much, the bands become flat, but gap max at $b\approx a$.

Rough plot:

- x-axis: b (Å) from 0 to ~3 Å
- y-axis: E_q
- Curve: Starts at 0 for b=0, peaks around $b\approx a=1.5$ Å, then decreases toward 0 as $b\to\infty$ (infinite barrier \to isolated wells \to degenerate levels \to gap between bands? Actually gap between ground and first excited state in a well remains, but in periodic model, when b large, tunneling negligible, band width \sim 0, gap \sim fixed? Need care.)

Actually in KP model, as b increases with a fixed, potential becomes more like a square well array: gap between bands approaches the difference between quantized levels in a single well of width a. So gap saturates, not goes to 0. My earlier sine-form wrong for large b.

Better: For large b, $E_g \rightarrow E_2 - E_1$ of a well of size a, independent of b. So plot: increase, then saturate.

Task 3

Amorphous solid lacks long-range order but has short-range order (similar atomic spacing). From Tasks 1 and 2:

Gap depends on potential strength (related to atomic potential — chemical composition) and spatial width of potential barrier/well (related to atomic spacing and atomic size).

In amorphous solid:

- Well depth $V_0 \rightarrow$ determined by atomic nuclear charge and screening \rightarrow chemical element.
- Well width $a \rightarrow$ related to nearest-neighbor distance (short-range order).

Thus, even without periodicity, if the short-range potential is similar to crystalline case (same atom type and bond length), the band gap can persist because the gap originates from the strong potential scattering at $k \approx \pi$ /interatomic spacing, which exists in amorphous phase due to retention of short-range order.

Conclusion: Key short-range properties:

- 1. Atomic potential strength (atomic number)
- 2. Nearest-neighbor distance (well width)
- 3. Coordination (affects potential shape)

Example: SiO₂ amorphous: Si–O bond length and strong ionic potential → large gap ~9 eV.

Task 4

Bragg law: $2d\sin \theta = n\lambda$.

For electrons in crystal: $\lambda = 2\pi/k$, Bragg condition $\rightarrow k = n\pi/d$.

At BZ boundary $k = \pi/d$, electrons satisfy Bragg condition \rightarrow strong reflection \rightarrow standing waves \rightarrow band gap.

Electrons with k far from BZ boundary propagate freely (no Bragg reflection).

Crystal effect for other k:

- For k not near BZ boundary, nearly free electron behavior.
- Crystal potential causes **band curvature** (effective mass changes) due to E(k) deviation from parabola.
- Also, for k near BZ center, small periodic perturbation \rightarrow slightly lowered energy compared to free electron.

Task 5

Empty lattice model: V = 0, but impose periodicity — fold free electron dispersion into reduced zone scheme.

1D lattice period a.

Free electron: $E(k) = \frac{\hbar^2 k^2}{2m}$.

Reduced zone scheme: For any k in first BZ $(-\pi/a, \pi/a]$,

$$E_n(k) = \frac{\hbar^2}{2m} (k + \frac{2\pi n}{a})^2, n = 0, \pm 1, \pm 2, \dots$$

First three bands $(n = 0, \pm 1)$:

- n = 0: $E_0(k) = \frac{\hbar^2 k^2}{2m}$ parabola centered at k = 0.
- n=-1: $E_{-1}(k)=\frac{\hbar^2}{2m}(k-\frac{2\pi}{a})^2$ in 1BZ, shift equivalent to $k+2\pi/a\to$ actually $k-2\pi/a$ mapped to k in 1BZ: Let $k'=k-2\pi/a$, in 1BZ k' is $k-2\pi/a$ if k>0 small? Better:

Actually n=-1: $k-2\pi/a \to \text{in reduced zone}$, use $k-2\pi/a=k-G$ with $G=2\pi/a$, so $E(k)=\frac{\hbar^2}{2m}(k-2\pi/a)^2$, but for k in 1BZ, plot that.

Better: Explicit:

Let $G = 2\pi/a$.

Band 1 (n = 0): $E = \frac{\hbar^2 k^2}{2m}$, minimum 0 at k = 0.

Band 2
$$(n=-1)$$
: $E=\frac{\hbar^2(k-G)^2}{2m}$. In 1BZ, at $k=-\pi/a$, $k-G=-\pi/a-2\pi/a=-3\pi/a$, $E=\frac{\hbar^2(9\pi^2/a^2)}{2m}$. At $k=\pi/a$, $k-G=\pi/a-2\pi/a=-\pi/a$, $E=\frac{\hbar^2\pi^2/a^2}{2m}$. So it's a parabola decreasing from $k=-\pi/a$ to $k=\pi/a$.

Band 3
$$(n = 1)$$
: $E = \frac{\hbar^2 (k+G)^2}{2m}$. At $k = -\pi/a$, $k + G = \pi/a$, $E = \frac{\hbar^2 \pi^2/a^2}{2m}$. At $k = \pi/a$, $k + G = 3\pi/a$, $E = \frac{\hbar^2 9\pi^2/a^2}{2m}$, so increasing parabola.

Wavefunction:

$$\psi_{nk}(x) = e^{ikx}u_{nk}(x), u_{nk}(x) = \operatorname{const} \cdot e^{iG_n x}, G_n = n \frac{2\pi}{a}.$$

So $\psi_{nk}(x) \propto e^{i(k+G_n)x}$ — plane wave.

Plot: In 1BZ, three bands:

- n=0: upward parabola from 0 at k=0 to $\hbar^2(\pi/a)^2/2m$ at edges.
- n=-1: symmetric with n=1 actually degenerate at BZ boundary. Actually at $k = \pi/a$, n=-1 and n=1 both have $E = \hbar^2 (\pi/a)^2 / 2m$. At k = 0, n=-1: $E = \hbar^2 (2\pi/a)^2 / 2m$, n=1 same. So band 2 and 3 are degenerate at center and boundaries? Wait, check:

At k = 0:

n=-1:
$$E = (-2\pi/a)^2 = 4\pi^2/a^2$$
 times $\hbar^2/2m$

n=1: same.

So bands 2 and 3 are degenerate everywhere? No, because at k nonzero, (k+G) and (k-G) magnitudes differ unless k=0. Actually they're degenerate only at k=0.

So bands:

Band 1: bottom 0 at k=0

Band 2 & 3: both start at $4\pi^2\hbar^2/2ma^2$ at k=0, then one decreases to $\pi^2\hbar^2/2ma^2$ at k= π/a (n=-1), the other increases to $9\pi^2\hbar^2/2ma^2$ at k= π/a (n=1). So they cross. In empty lattice, no gap at crossing.

Task 6

2D square lattice, lattice constant a.

Reciprocal lattice vectors: $\mathbf{G} = (m, n) \frac{2\pi}{a}$.

Path X to M:

X point: $(\pi/a, 0)$

M point: $(\pi/a, \pi/a)$

So we vary k_y from 0 to π/a , keeping $k_x = \pi/a$.

Empty lattice bands:

$$E(\mathbf{k}) = \frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{G}|^2$$

with $\mathbf{k} = (\pi/a, k_v)$.

Choose small **G** values:

$$\mathbf{G} = (0,0), (\pm 1,0), (0,\pm 1), (\pm 1,\pm 1), (-1,1), (1,-1) \text{ etc.}$$

Compute for each:

1.
$$G = (0,0)$$
:

$$\mathbf{k} + \mathbf{G} = (\pi/a, k_v)$$

$$E = \frac{\hbar^2}{2m} [(\pi/\alpha)^2 + k_y^2]$$
 — increases with k_y .

2.
$$G = (-1,0) \cdot 2\pi/a = (-2\pi/a, 0)$$
:

$$\mathbf{k} + \mathbf{G} = (\pi/a - 2\pi/a, k_v) = (-\pi/a, k_v)$$

Same magnitude as above \rightarrow degenerate with G=(0,0) band.

3.
$$G = (0, -1) \cdot 2\pi/a = (0, -2\pi/a)$$
:

$$\mathbf{k} + \mathbf{G} = (\pi/a, k_v - 2\pi/a)$$

Magnitude: $(\pi/a)^2 + (k_y - 2\pi/a)^2$ — large at $k_y = 0$, min at $k_y = 2\pi/a$ outside range.

4.
$$G = (-1, -1) \cdot 2\pi/\alpha = (-2\pi/\alpha, -2\pi/\alpha)$$
:

$$\mathbf{k} + \mathbf{G} = (-\pi/a, k_y - 2\pi/a)$$
 magnitude same as above case symmetric.

Better to list few lowest at $k_v = 0$ (X point):

At X: $k_x = \pi/a$, $k_y = 0$:

- G=(0,0): $E = (\pi/a)^2$ in units $\hbar^2/2m$.
- G=(-1,0): same as above.
- G=(0,-1): $(\pi/a)^2 + (2\pi/a)^2 = 5(\pi/a)^2$
- G=(-1,-1): same 5.
- G=(1,0): $(3\pi/a)^2 = 9$
- G=(0,1): $(\pi/a)^2 + (2\pi/a)^2 = 5$ again.

So lowest band: doubly degenerate E=1 unit at X.

As k_v increases, these bands disperse.

We can plot E vs k_v from 0 to π/a for these G's.

Bands:

Band1: G=(0,0) & (-1,0) degenerate: $E = 1 + k_y^2$ in units of $(\pi/a)^2\hbar^2/2m$.

Band2: G=(0,-1) & (-1,-1): $E = 1 + (k_y - 2)^2$ but 2 in units of π/a , so at $k_y = 0$, E=1+4=5,

at $k_y = 1$, E=1+1=2, at $k_y = 1$ (M point), E=2.

Band3: G=(1,0): $E = (3)^2 + k_y^2 = 9 + k_y^2$ — high.

Band4: G=(0,1): $E = 1 + (k_y + 2)^2$ at $k_y = 0$, E=5, increases.

Band5: G=(1,1): $E = (3)^2 + (k_y + 2)^2$ very high.

So five lowest bands: two low ones (degenerate), then next at E=5 at X, splitting with k_y .

Plot: E vs k_v from 0 to 1 (in units of π/a), energies in units of $(\pi^2 \hbar^2)/(2ma^2)$.