

The f-Expectation Iteration Algorithm

K. Daudel¹, R. Douc², F. Portier¹, F. Roueff¹

¹ LTCI, Télécom Paris, Institut Polytechnique de Paris, France
² SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

Motivation

Compute / sample from the posterior density of the latent variables y given the data \mathcal{D} :

 $p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$.

Problem: the marginal likelihood $p(\mathcal{D})$ is untractable.

 \rightarrow Variational Inference methods see this as an optimisation problem over the variational family $\{y \mapsto q_{\theta}(y) : \theta \in \mathsf{T}\}.$

Let us now consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) q_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

where M is a subset of $M_1(T)$, the set of probability measures on (T, \mathcal{T}) .

Question: Can we define an iterative scheme which diminishes a given objective function at each step? \to Yes: the f-EI(ϕ) Algorithm!

The f-EI(ϕ) Algorithm

General Optimisation Problem: f convex over $(0, \infty)$, f(1) = 0

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \Psi^{(f)}(\mu) \quad \text{where} \quad \Psi^{(f)}(\mu) = \int_{\mathsf{Y}} f\left(\frac{\mu q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \; .$$

- \rightarrow the mapping $\mu \mapsto \Psi^{(f)}(\mu)$ is convex.
- \rightarrow includes *f*-Divergence posterior density approximation.

Let $\phi \in \mathbb{R}^*$, $\mu \in M_1(\mathsf{T})$ and let the sequence $(\mu_n)_{n \in \mathbb{N}}$ be defined by

$$\begin{cases} \mu_0 = \mu, \\ \mu_{n+1} = \mathcal{I}^{\phi}(\mu_n), & n \in \mathbb{N}. \end{cases}$$
 (1)

where for all $\zeta \in M_1(T)$,

- 1. Expectation step: $b_{\zeta}(\theta) = \int_{\gamma} q(\theta, y) f'\left(\frac{\zeta q(y)}{p(y)}\right) \nu(\mathrm{d}y)$,
- 2. Iteration step: $\mathcal{I}^{\phi}(\zeta)(d\theta) = \frac{\zeta(d\theta) \cdot |b_{\zeta}(\theta)|^{\phi}}{\zeta(|b_{\zeta}|^{\phi})}$.

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $q(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) < \infty$. (A2) $f:(0,\infty)\to\mathbb{R}$ is monotonous, strictly convex and continuously differentiable, and f(1)=0.

Theoretical Results

Divergence considered		Corresponding range
Reverse $KL f(u) = -\log(u)$		$\phi \in (0,1]$
α -divergence	$\alpha \in (-\infty, -1]$	$\phi \in (0, -1/\alpha]$
$f(u) = \frac{1}{\alpha(\alpha - 1)}(u^{\alpha} - 1)$	$\alpha \in (-1,1) \setminus \{0\}$	$\phi \in (0,1]$
	$\alpha \in (1, \infty)$	$\phi \in (1/(1-\alpha), 0)$

Table 1: Allowed (f, ϕ) in the f-EI (ϕ) algorithm

Theorem 1. Assume (A1). Let (f, ϕ) belong to Table 1. Then (A2) holds. Moreover, let $\mu \in M_1(T)$ be such that $\Psi^{(f)}(\mu) < \infty$. Then the sequence $(\mu_n)_{n \in \mathbb{N}}$ is well-defined and the sequence $(\Psi^{(f)}(\mu_n))_{n \in \mathbb{N}}$ is non-increasing.

(A3) T is a compact metric space, for all $y \in Y$, $\theta \mapsto q(\theta, y)$ is continuous + uniform boundedness of $\Psi^{(f)}$ and b_{μ} with respect to μ and θ .

Theorem 2. Assume (A1), (A3) and let (f, ϕ) belong to Table 1. Further assume that there exists $\mu, \bar{\mu} \in M_1(T)$ such that $\mu_n \Rightarrow \bar{\mu}$ as $n \to \infty$. Then $\bar{\mu}$ is a fixed point of \mathcal{I}^{ϕ} and

$$\Psi^{(f)}(\bar{\mu}) = \inf_{\zeta \in \mathcal{M}_{1,\mu}(\mathsf{T})} \Psi^{(f)}(\zeta).$$

Let $Y_1, ..., Y_K \stackrel{iid}{\sim} \mu q$ and define $b_{\mu,K}(\theta) = \frac{1}{K} \sum_{k=1}^K \frac{q(\theta, Y_k)}{\mu q(Y_k)} f'\left(\frac{\mu q(Y_k)}{p(Y_k)}\right)$.

Theorem 3. Assume (A1). Let (f, ϕ) belong to Table 1. Let $\mu \in M_1(T)$ be such that $\int_{\mathsf{T}} \mu(\mathrm{d}\theta) \mathbb{E}_{\mu q} [\{\frac{q(\theta, Y_1)}{\mu q(Y_1)} | f'\left(\frac{\mu q(Y_1)}{p(Y_1)}\right) | \}^{\phi}] < \infty$ and $\Psi^{(f)}(\mu) < \infty$. Then, \mathbb{P} – a.s.

$$\lim_{K \to \infty} \left\| \mathcal{I}_K^{\phi}(\mu) - \mathcal{I}^{\phi}(\mu) \right\|_{TV} = 0 ,$$

where $\mathcal{I}_K^{\phi}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta)\cdot|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})}$.

Density Approximation

We can access an unnormalized version p^* of the probability density \tilde{p}

$$\tilde{p}(y) = \frac{p^*(y)}{Z}$$
, where $Z := \int_{\mathbf{Y}} p^*(y)\nu(\mathrm{d}y)$.

Lemma 1. Assume (A1). For the α -divergence, optimising $D_f(\mu Q||\tilde{\mathbb{P}})$ (with respect to μ) is equivalent to optimising $\Psi^{(f)}(\mu;p)$ with $p=p^*$. Furthermore, for all $\alpha_+ \in (0,1) \cup (1,+\infty)$ and all $\alpha_- < 0$, we have

$$\forall \mu \in \mathcal{M}_1(\mathsf{T}), \quad \xi^{(\alpha^+)}(\mu q) \leqslant Z \leqslant \xi^{(\alpha^-)}(\mu q),$$

where
$$\xi^{(\alpha)}(\tilde{q}) := \left[\int_{\mathsf{Y}} \left(\frac{\tilde{q}(y)}{p^*(y)} \right)^{\alpha} p^*(y) \nu(\mathrm{d}y) \right]^{\frac{1}{1-\alpha}}$$
.

Mixture α -Approximate f-EI(ϕ)

Algorithm 1: Mixture α -Approximate f-EI(ϕ)

Input: p^* : unnormalized version of the density \tilde{p} , Q: Markov transition kernel, K: number of samples, $\Theta_J = \{\theta_1, ..., \theta_J\} \subset \mathsf{T}$: parameter set.

Output: Optimised weights λ .

Set $\lambda = \left[\frac{1}{J}, ..., \frac{1}{J}\right]$.

while the α -bound has not converged do

Sampling step: Draw independently K samples $Y_1, ..., Y_K$ from $\mu_{\lambda} q$.

Expectation step: Compute $\mathbf{A}_{\lambda} = (a_j)_{1 \leq j \leq J}$ where

$$a_{j} = \frac{1}{K} \sum_{k=1}^{K} q(\theta_{j}, Y_{k}) \mu_{\lambda} q(Y_{k})^{\alpha - 2} p^{*} (Y_{k})^{1 - \alpha}$$

and deduce $\boldsymbol{B}_{\lambda} = (\lambda_j a_j^{\phi})_{1 \leq j \leq J}, b_{\lambda} = \sum_{j=1}^J \lambda_j a_j^{\phi}$ and $c_{\lambda} = \sum_{j=1}^J \lambda_j a_j$.

 $\underline{\text{Iteration step}}: \ \text{Set}$

$$\xi_K^{(\alpha)}(\mu_{\lambda}q) \leftarrow c_{\lambda}^{1/(1-\alpha)}$$
$$\lambda \leftarrow \frac{1}{b_{\lambda}}B_{\lambda}$$

 \mathbf{end}

 $\rightarrow Score\ gradient:\ \tilde{q}\mapsto \mathcal{L}_A^{(\alpha)}(\tilde{q}):=\int_{\mathsf{Y}}\frac{1}{\alpha(\alpha-1)}\left(\frac{\tilde{q}(y)}{p^*(y)}\right)^{\alpha}p^*(y)\nu(\mathrm{d}y)\ ,$

$$\nabla_{\lambda} \mathcal{L}_{A}^{(\alpha)}(\mu_{\lambda} q) = (b_{\mu_{\lambda}}(\theta_{j}))_{1 \leqslant j \leqslant J} .$$

Numerical Experiments

Impact of ϕ (with fixed parameter set $\Theta = \{-2, 2\}$)

 $p^*(y) = Z \times [\gamma_1 \mathcal{N}(y; -s, 1) + \gamma_2 \mathcal{N}(y; s, 1)]$, where $\gamma_1 = 0.8 \ \gamma_2 = 0.2$, s = 2 and Z = 2

Impact of d and J (fully adaptive algorithm)

 $p^*(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})] \text{ with } s = 2 \text{ and } Z = 2$

References

- [1] R. Douc et al. Convergence of adaptive mixtures of importance sampling schemes. AOS 2007
- [2] JM Hernández-Lobato et al. Black-box α -divergence Minimization. ICML 2015.
- [3] Y. Li and RE. Turner. Rényi Divergence Variational Inference. NIPS 2016.