Results are obtained with h_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS USING OPTIONS LIKELIHOOD, $h_0^Q = h_t^P$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
$\omega \ ext{ci} \ ext{median}$	2.9373e - 07 ($\pm 4.3822e - 07$) 4.4080e - 10	8.3428e - 06 ($\pm 7.4910e - 06$) 2.1679e - 09	$2.0557e - 09$ $(\pm 1.1272e - 09)$ $1.1257e - 09$	$1.4603e - 06$ $(\pm 1.4013e - 06)$ $1.5347e - 09$	$1.9938e - 06$ $(\pm 1.8706e - 06)$ $1.3127e - 09$	$4.7113e - 07$ $(\pm 7.0501e - 07)$ $1.3856e - 09$	6.9592e - 07 ($\pm 8.3824e - 07$) 7.3148e - 10	3.5608e - 07 ($\pm 5.5763e - 07$) 2.7972e - 10	2.8373e - 07 ($\pm 5.2647e - 07$) 4.9914e - 10	
	1110000 10	2.10.00	1112010 00	1.001,0	1.012.0	1.00000	1.01100 10	2.10120 10		
lpha ci median	$2.6506e - 05 (\pm 5.9068e - 06) 2.1958e - 05$	$\begin{array}{c} 2.2808e - 05 \\ (\pm 6.1876e - 06) \\ 2.0325e - 05 \end{array}$	$\begin{array}{c} 2.0436e - 05\\ (\pm 4.9583e - 06)\\ 1.4954e - 05 \end{array}$	$1.5988e - 05 (\pm 3.4444e - 06) 1.5884e - 05$	$1.4776e - 05 (\pm 2.5542e - 06) 1.4270e - 05$	$1.3678e - 05 (\pm 1.8989e - 06) 1.2722e - 05$	$1.3866e - 05 (\pm 2.4092e - 06) 1.2912e - 05$	$9.2340e - 06 (\pm 1.3797e - 06) 9.1517e - 06$	$1.6279e - 05$ $(\pm 3.0725e - 06)$ $1.5918e - 05$	
$eta \ ext{ci} \ ext{median}$	$0.4708 \ (\pm 0.0902) \ 0.5549$	$0.3164 \ (\pm 0.0888) \ 0.3131$	0.4553 (± 0.1018) 0.6192	0.3331 (± 0.1060) 0.0023	0.1703 (± 0.0776) 0.0002	$0.1908 \ (\pm 0.0647) \ 0.0090$	0.2374 (± 0.0857) 0.0007	$0.1474 \ (\pm 0.0816) \ 0.0001$	$0.2896 \ (\pm 0.0940) \ 0.0010$	
γ^* ci median	$155.5027 \\ (\pm 41.3407) \\ 115.7838$	$256.7574 \\ (\pm 79.8138) \\ 148.3374$	176.9894 (±33.8088) 137.7486	$247.3834 \\ (\pm 75.2711) \\ 166.2098$	$225.9295 \\ (\pm 55.6646) \\ 189.4759$	$224.0573 \\ (\pm 13.4744) \\ 226.1581$	$257.7868 \\ (\pm 68.1243) \\ 205.5256$	$275.5854 \\ (\pm 52.2661) \\ 237.1314$	$191.7579 \\ (\pm 30.0767) \\ 159.7501$	
$egin{aligned} h_0^Q &= h_t^P \ & ext{ci} \ & ext{median} \end{aligned}$	$1.2843e - 04$ $(\pm 2.4166e - 05)$ $1.1288e - 04$	$1.5885e - 04$ $(\pm 2.8191e - 05)$ $1.3446e - 04$	$8.8858e - 05$ $(\pm 1.1827e - 05)$ $8.4289e - 05$	$6.0313e - 05$ $(\pm 8.7213e - 06)$ $4.8973e - 05$	$6.5265e - 05$ $(\pm 1.0436e - 05)$ $5.5260e - 05$	$1.1085e - 04$ $(\pm 1.8145e - 05)$ $9.2823e - 05$	$9.9075e - 05$ $(\pm 2.0030e - 05)$ $7.8758e - 05$	$4.0828e - 05$ $(\pm 6.5382e - 06)$ $3.3053e - 05$	$1.1258e - 04$ $(\pm 2.4678e - 05)$ $9.1614e - 05$	
MSE	1.3115	4.7861	2.6162	4.2244	8.4450	6.3652	10.9788	23.0601	13.4936	
IVRMSE	0.0639	0.0955	0.0867	0.0890	0.0933	0.0939	0.1111	0.1248	0.0897	
MAPE	0.0741	0.0936	0.1184	0.1292	0.1568	0.1523	0.1709	0.2464	0.1414	
OptLL	215.4291	208.3681	251.0076	333.0039	351.3072	436.8099	513.2066	555.4006	684.7143	

Results are obtained with h_0^P estimated

$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS}, \ h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \ \textbf{WITH} \ \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \ \textbf{FROM MLE UNDER P AND UPDATED UNDER Q}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω ci median	$8.5029e - 08$ $(\pm 1.2370e - 07)$ $4.8556e - 10$	$9.2714e - 06$ $(\pm 7.7090e - 06)$ $1.1932e - 09$	$1.9246e - 07$ $(\pm 3.0224e - 07)$ $9.6775e - 10$	$2.2129e - 06$ $(\pm 1.8052e - 06)$ $1.6296e - 09$	$1.9389e - 06$ $(\pm 1.8258e - 06)$ $1.4218e - 09$	$4.1610e - 07$ $(\pm 6.8777e - 07)$ $1.6699e - 09$	5.9987e - 07 ($\pm 8.0455e - 07$) 8.8906e - 10	3.5299e - 07 ($\pm 5.6074e - 07$) 3.4979e - 10	$5.5812e - 07$ $(\pm 7.5576e - 07)$ $6.2288e - 10$
lpha ci median	$2.5394e - 05 (\pm 6.0720e - 06) 1.7658e - 05$	$2.1003e - 05$ $(\pm 5.7736e - 06)$ $1.9181e - 05$	$1.8778e - 05$ $(\pm 4.5685e - 06)$ $1.2068e - 05$	$1.3908e - 05$ $(\pm 3.2313e - 06)$ $1.2723e - 05$	$1.3646e - 05$ $(\pm 2.3532e - 06)$ $1.3239e - 05$	$1.3883e - 05$ $(\pm 1.6292e - 06)$ $1.3217e - 05$	$1.3858e - 05$ $(\pm 2.2149e - 06)$ $1.3228e - 05$	$8.2692e - 06$ $(\pm 1.3559e - 06)$ $8.3302e - 06$	$1.5954e - 05$ $(\pm 2.6286e - 06)$ $1.4242e - 05$
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	0.5032 (± 0.0879) 0.5759	0.3363 (± 0.0885) 0.3823	0.4882 (± 0.0950) 0.5857	0.3724 (± 0.1069) 0.3025	0.1836 (± 0.0799) 0.0003	0.1643 (± 0.0627) 0.0007	$0.2466 \ (\pm 0.0871) \ 0.0018$	$0.1768 \\ (\pm 0.0910) \\ 0.0001$	0.2450 (± 0.0889) 0.0023
γ^* ci median	$152.7405 \\ (\pm 37.6445) \\ 112.0207$	$213.9027 \\ (\pm 46.4971) \\ 155.9251$	$178.3425 (\pm 39.1533) 147.8898$	$268.5595 \\ (\pm 83.1723) \\ 169.4020$	$\begin{array}{c} 254.9716 \\ (\pm 66.0837) \\ 202.0041 \end{array}$	$\begin{array}{c} 221.9130 \\ (\pm 11.4391) \\ 228.8470 \end{array}$	$209.9787 \\ (\pm 20.3795) \\ 208.6253$	301.8938 (± 52.8764) 261.8796	$202.9867 \\ (\pm 36.8218) \\ 167.7543$
$h_0^Q = h_t^P$ ci median	$1.2504e - 04$ $(\pm 2.3250e - 05)$ $1.0398e - 04$	$1.6094e - 04$ $(\pm 2.7914e - 05)$ $1.3887e - 04$	$8.8020e - 05$ $(\pm 1.1134e - 05)$ $7.9893e - 05$	$6.3516e - 05$ $(\pm 8.4851e - 06)$ $5.2671e - 05$	$6.4968e - 05 (\pm 1.0419e - 05) 5.4472e - 05$	1.0677e - 04 ($\pm 1.4866e - 05$) 8.9209e - 05	9.4593e - 05 ($\pm 1.8237e - 05$) 6.9330e - 05	$4.2065e - 05$ $(\pm 7.1338e - 06)$ $3.6036e - 05$	$1.2042e - 04$ $(\pm 2.5752e - 05)$ $1.0226e - 04$
MSE	1.1660	4.6442	2.4437	4.3159	7.5939	6.1701	10.7231	20.7106	13.3130
IVRMSE	0.0633	0.0921	0.0863	0.0894	0.0927	0.0927	0.1089	0.1237	0.0887
MAPE	0.0734	0.0906	0.1179	0.1315	0.1531	0.1484	0.1669	0.2416	0.1395
OptLL	216.3430	211.5388	252.2146	334.4711	356.0208	438.7128	515.4908	559.3221	688.0683

Results are obtained with h_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED WITH RESPECT TO OPTIONS LIKELIHOOD									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
$\omega \ ext{ci} \ ext{median}$	$1.2384e - 08$ $(\pm 1.9830e - 08)$ $4.2614e - 10$	$4.0086e - 07$ $(\pm 4.3891e - 07)$ $1.2486e - 09$	3.1333e - 08 ($\pm 4.5975e - 08$) 7.9886e - 10	$1.3755e - 07$ $(\pm 1.3389e - 07)$ $1.2631e - 09$	$6.9525e - 08$ $(\pm 1.0399e - 07)$ $7.7874e - 10$	$2.3119e - 08$ $(\pm 3.3431e - 08)$ $1.1199e - 09$	$4.5524e - 08$ $(\pm 6.5163e - 08)$ $8.6919e - 10$	$1.5096e - 08$ $(\pm 2.0662e - 08)$ $5.7281e - 10$	$1.8178e - 08$ $(\pm 2.3115e - 08)$ $7.1012e - 10$	
lpha ci median	$1.8162e - 05$ $(\pm 5.3349e - 06)$ $1.0695e - 05$	$1.4839e - 05$ $(\pm 5.5222e - 06)$ $7.6836e - 06$	$8.9367e - 06$ $(\pm 3.4023e - 06)$ $4.7572e - 06$	$6.2985e - 06$ $(\pm 2.2367e - 06)$ $3.3952e - 06$	$8.1050e - 06$ $(\pm 2.7073e - 06)$ $2.8549e - 06$	$7.2957e - 06$ $(\pm 2.0235e - 06)$ $4.3648e - 06$	$4.6588e - 06$ $(\pm 1.1279e - 06)$ $2.9570e - 06$	$2.9109e - 06$ $(\pm 1.1222e - 06)$ $1.4933e - 06$	$1.3426e - 05$ $(\pm 4.6039e - 06)$ $4.5110e - 06$	
$egin{array}{c} eta \ \mathbf{ci} \ \mathbf{median} \end{array}$	$0.6465 \ (\pm 0.0728) \ 0.7430$	$0.5668 \ (\pm 0.0805) \ 0.6600$	0.7271 (± 0.0603) 0.8060	0.7325 (± 0.0703) 0.8158	0.6222 (± 0.0847) 0.7748	0.5594 (± 0.0689) 0.6585	$0.6426 \ (\pm 0.0573) \ 0.6903$	$0.7106 \\ (\pm 0.0781) \\ 0.8071$	0.5391 (± 0.1047) 0.6888	
γ^* ci median	$134.3603 (\pm 13.3942) 127.2052$	$195.1009 \\ (\pm 27.1816) \\ 175.8919$	$191.4698 \\ (\pm 26.7061) \\ 171.5645$	$\begin{array}{c} 217.4109 \\ (\pm 41.1883) \\ 181.2201 \end{array}$	$\begin{array}{c} 237.1588 \\ (\pm 30.6111) \\ 221.1372 \end{array}$	$270.9957 \\ (\pm 33.9784) \\ 254.0407$	$\begin{array}{c} 276.1619 \\ (\pm 20.7518) \\ 294.1570 \end{array}$	324.0345 (± 31.8355) 327.0867	$\begin{array}{c} 227.4457 \\ (\pm 30.7136) \\ 198.2446 \end{array}$	
h_0^Q ci median	$1.2662e - 04$ $(\pm 3.5965e - 05)$ $9.2058e - 05$	$2.2087e - 04 (\pm 6.3341e - 05) 1.1459e - 04$	$8.4211e - 05 (\pm 1.6174e - 05) 6.0478e - 05$	$4.9742e - 05 (\pm 1.2877e - 05) 3.5047e - 05$	$4.9380e - 05 (\pm 1.6179e - 05) 2.7422e - 05$	$0.0001 \\ (\pm 3.1241e - 05) \\ 5.5033e - 05$	$6.8390e - 05 (\pm 2.1089e - 05) 3.8411e - 05$	$1.8939e - 05$ $(\pm 5.3916e - 06)$ $1.3835e - 05$	$1.3543e - 04$ $(\pm 4.7933e - 05)$ $4.6850e - 05$	
MSE	0.6622	1.0575	1.0914	0.6991	1.0554	1.3990	1.6195	2.2744	4.8658	
IVRMSE	0.0559	0.0659	0.0806	0.0776	0.0798	0.0917	0.0983	0.1006	0.0792	
MAPE	0.0662	0.0726	0.1098	0.1032	0.1205	0.1355	0.1307	0.1651	0.1233	
OptLL	226.0306	234.8200	265.2162	363.1728	389.5383	469.0620	572.8691	650.3873	729.6044	