GCD - Анализ

Наивни идеи

Първо ще разгледаме няколко наивни идеи, които могат да хванат само първия тест. Една такава идея е просто да итерираме през всички възможности от 0 до MAX_X , което ще означим с M. За дадена стойност Y правим заявката (M-Y,Y), тук отговорът ще е M, тогава и само тогава когато X=Y. Това решение прави средно (M+1)/2 заявки и получава под 2 точки. Можем да пробваме да открием делителите на X като питаме за всяко просто число P: $\left(0,P^k\right)$, където k е най-голямото цяло число, такова че $P^k < 2M$. След като направим това за всички прости до M, знаем че X е равно на произведението на отговорите на заявките. Това решение прави около $M/\ln M$ заявки. Всъщност можем да спираме и по-рано, ако текущото открито X (т.е. произведението на отговорите до сега) умножено по текущото просто число би надвишило M. Решението хваща първия тест за 10 точки, но не хваща втория.

Цифри в двоична

Първата по-смислена идея е да открием числото в двоична бройна система, цифра по цифра. Първо ще открием най-десния бит със заявката (0,2). Ако отговорът е 2, то числото е четно, т.е. най-десният му бит е 0, а иначе той е 1. Ще следим A' и B', които в началото ще са 0 и 1. На дадена стъпка знаем, че $X = A' \pmod{B'}$. Тогава питаме заявка (2B' - A', 2B'). Нека дефинираме следното: $R = \gcd(X + 2B' - A', 2B') / B'$ (отговорът винаги ще се дели на B'). R винаги е или 1, или 2. Ако R = 2, то $X + 2B' - A' = 0 \pmod{2B'}$; следва, че $X = A' \pmod{2B'}$; с други думи, текущият бит е 0. Следващата стъпка е $A'_{new} = A'$ и $B'_{new} = 2B'$. В другия случай, R = 1, тогава остава $X + 2B' - A' = B' \pmod{2B'}$; следва, че $X = B' + A' \pmod{2B'}$; с други думи, текущият бит е 1. Следващата стъпка е 10 и 11 и 12 и 13 и 13 и 14 и 14 и 15 и 15 и 15 и 15 и 16 и 16 и 16 и 17 и 18 и 19 и 1

Забележете, че не се възползваме изцяло от заявките си. Даваме B=2B', което може да е доста по-малко от 2M. Вместо това нека k е максималното цяло число, такова че $2^k < 2M$. Винаги ще питаме заявки с $B=2^k$. Нека отново започнем с A'=0 и B'=1. Питаме подобни заявки: (B-A',B) и дефинираме R по подобен начин: $R=\gcd(X+B-A',B)/B'$. Тук възможните стойности на R са повече, може да е всякаква (под M/B') степен на двойката. Това ни дава някаква бройка нули в двоичната репрезентация на X. Получаваме, че $X=A'\pmod{RB'}$, но това не е всичко. Това са само нулите, но фактът, че сме получили R, а не 2R, значи, че следващата цифра е в двоичния запис на X е 1. Това всъщност не важи, ако RB'=B, но в стандартния случай следва, че $X=RB'+A'\pmod{2RB'}$, т.е. следващата стъпка е: $A'_{new}=PB'+A'$ и $B'_{new}=2RB'$. Отново спираме, когато $B'\geq M$, т.е. когато B'=B. Забележете, че това решение всъщност прави по една заявка за всяка единица в записа на числото, плюс още една заяква, ако последната цифра е нула. За произволно число, в средния случай половината му цифри са единици и последната цифра е нула в половината случаи, т.е. решението прави $(\log_2 M+1)/2$ заявки и изкарва около 41 точки.

Китайска теорема за остатъците

Преди да разгледаме решения за повече точки, нека видим едно алтернативно за подобни точки, което също ще ни послужи за пълното решение. Ако знаем че $X=A_i' \pmod{B_i'}$ за няколко различни i, можем да открием $X=A' \pmod{B'}$, където $B'=\prod_i B_i'$, а A' смятаме по стандартен начин: Нека $H_i=B'/B_i'$ и нека $H_i^{-1}H_i=1 \pmod{B_i'}$, тогава $A'=\sum_i A_i'H_iH_i^{-1} \pmod{B'}$. Знаейки това, можем да направим решение, което открива X по модул степени на първите няколко прости числа, например: 16,9,25,7,11,13,17,19 (защото произведението им е над 10^9). Сега въпросът е как да открием A_i' -тата. Най-простият начин е с наивно итериране за всяко i по отделно, за дадено i, това отнема по средно $(B_i'+1)/2$ заявки. Това решение получава около 18 точки.

Можем да го подобрим като обаче зададем B=B' и итерираме A от 0 до $\max B_i-1$, т.е. до 24. Сега на всяка от тези стъпки имаме $Q=\gcd(X+B-A,B)$. За всяко i, проверяваме дали B_i' дели Q. Ако да, то $A_i'=Q\pmod{B_i'}$. В най-лошия случай това решение използва $\max B_i-1$, но често е по-малко. За $M=10^9$, средната бройка заявки е 15.8. Решението получава около 40 точки.

Цифри в шестична

Сега ще разгледаме как да разширим решението от двоична в повече или по интересни основи. Една идея е да откриваме числото в шестична. Тъй като $6=2\times3$, можем с до две заявки да откриваме текущата цифра. Нека $R=\gcd(X+6B'-A',6B')/B'$. Ако R=6, то цифрата е 0; ако R=3, то цифрата е 3; ако R е четно, то цифрата е четна и с една заявка откриваме дали е 2 или 4; случаят с нечетно R е аналогичен. Забележете, че накрая може да е нужно да направим една или две заявки в двоична, защото 6B' може да е повече от 2M. В този вид това решение прави приблизително $5/3\times\log_6 M\approx 0.64\times\log_2 M$ заявки и изкарва около 33 точки, но можем да го разширим със същия вид оптимизация като преди, като сложим $B=6^k$ с малко следената на какъв остатък остава за следващата стъпка. Тогава правим по една заявка за всяка единица, двойка и тройка и по две заявки за четворки и петици, плюс още една заявка ако последната цифра е нула. Общо решенето прави около $7/6\times\log_6 M\approx 0.45\times\log_2 M$ и изкарва към 49 точки.

Цифри в двоична с екстри

Друга простичка идея е да запазим същото решение както "оптимизираното" за цифри в двоична и да видим, че всъщност всички уравнения и заключения работят независимо на какво е равно B. Затова ще фиксираме, например, $B=27\times25\times7\times11\times13\times2^k$. Самото решение е идентично, с изключението, че когато "изчерпаме" всички степени на двойката в B, т.е. когато 2^k дели B', няма как да си гарантираме, че ще правим прогрес, та ще сменим $B=B'\times2^t\geq M$. Всъщност е възможно да оптимизираме това като динамично сменяме B-то, а не само веднъж, но това ще разгледаме в контекста на пълното решение. Трудно е да се сметне броя заявки нужни на това решение, защото понякога има шанс да открие седмична цифра, например, но по-късно не (след като вече знае числото по модул 7), също понякога може да открие над една двоична цифра, но понякога не, ако например текущо 2^{k-1} дели B'. Такива трудности ще стават все по-чести за по сложните решения, та затова от сега нататък ще казваме средния брой заявки за $M=10^9$ като конкретно число. Тук те са 10.11 и решението получава приблизително 66 точки. Подобно решение с динамично избиране на B-то изкарва около 74 точки.

Цифри в двоична и троична едновременно

Можем да видим, че при нито едно от горните две не максимизираме информацията, която извличаме на заявка. Например, във второто, може вече да знаем, че числото не е сравнимо с 1 по модул 3, но да направим заявка с A' сравнимо с 1 по модул 3, т.е. да не извличаме никаква информация по модул 3. Вместо това можем изцяло независимо да правим решението в двоична и в троична, като следим A'_2 , B'_2 , A'_3 и B'_3 . Решението в двоична ще процедира както вече описано. В троична, идеята е подобна, но трябва да следим и \mathcal{C}' , което е какви стойности сме пробвали за текущата цифра. Т.е. първо ще пробваме C'=0, после C'=1, а ако и двете не станат следва, че цифрата е 2. Вместо да разглеждаме заявки от вида (A,B), за по-удобно от сега нататък, ще използвам (B-A'',B). Заявките в двоична са, както и досега, с $B_2=B_2'\times 2^{t_2}$ и $A_2''=A_2'$, а заявките в троична са с $B_3=B_3'\times 3^{t_3}$ и $A_3''=A_3'+\mathcal{C}_3B_3'$ (забележете, че можем да въведем и \mathcal{C}_2 , но то винаги е равно на 0). Сега за да получим цялостна заявка: $B=B_2B_3$, а $A^{\prime\prime}$ намираме с Китайска теорема за остатъците, такова че $A'' = A_2 \pmod{B_2}$ и $A'' = A_3 \pmod{B_3}$. След като питаме заявката, дефинираме $R = \gcd(X + B - A'', B)/B'$, където $B' = B_2'B_3'$. Накрая, лесно можем да намерим степен на двойката R_2 и степен на тройката R_3 , такива че $R=R_2R_3$ и да направим нужните ъпдейти за двойката и за тройката поотделно. Остава да изберем t_2 и t_3 ; това са "колко още степени на 2 и 3 да сложим в B, над вече откритите". Когато работим само с 2 и 3като основи, не е много важно как правим това, затова просто ще вземем $k_2=k_3$ (или ако е нужно $t_2 = t_3 + 1$), така че $B \ge M$. Решението прави средно 9.53 заявки и изкарва около 70 точки.

Много прости основи едновременно

Всъщност нито една част от теорията горе не беше специфична за точно 2 и 3 като основи. Лесно можем да разширим всички части за произволна бройка прости числа като основи, например първите осем. Само става по-труден изборът на t_p -та. За сега ще зададем $t_p=1$ или $t_p=0$ за всяко просто, т.е. всяко просто число или е включено още веднъж, или не, като избираме кои да включим с някаква разумна евристика (ще опишем по-пълна такава след малко). Такова решение използва средно 8.24 заявки и изкарва около 79 точки. Сега нека да разгледаме по-пълния случай, в който избираме всякакви t_n -та. Това ще направим като за всяка степен (до някакъв максимум) на всяко разгледано просто число сметнем приблизително колко "по-ценна" е спрямо предишната степен. Първо да разгледаме първите степени. За дадено просто число, информацията на една цифра в p-ична е $\log_2 p$ бита, а бройка заявки нужни до откриване на следващата цифра в p-ична е най-много $p-C_p-1$, та ще зададем евристика $E_p^1=\log_2 p/(p-C_p-1)$. За по-горните степени, печелим информация само, когато познаем текущата цифра (вероятността за което е $1/(p-C_n)$) и когато междинните цифри са всички нули. Т.е. Вероятността да получим информация от степен i(където i>1) е $1/\left((p-C_p)\times {\mathbb p}^{i-2}\right)$. А колко информация ще бъде това? Ами това е еквивалентно да направим нормална заявка за p на първа степен, след като сме открили междинните нули и имаме $C_p=0$, т.е. следва, че $E_p^i=\log_2 p \, / \, \Big(ig(p-C_p ig) (p-1) p^{i-2} \Big)$. Сега просто ще сметнем всички тези E_p^i -та и ще ги сортираме в намаляващ ред. Ще итерираме през тях и всеки път ще включваме текущата степен на просто в общото ни B, ако то ще остане под 2M, а иначе ще я прескачаме. Това решение прави средно 7.01 заявки и изкарва приблизително 91 точки.

Изпускане на разни основи

Последните 10тина точки в задачата изискват няколко трика и са предназначени само за хората, които са намерили за лесни стъпките до сега и са успели бързо да ги имплементират. Можем да видим, че в предното ни решение, понякога имаме $t_p=0$, т.е. на текущата стъпка никога не откриваме никаква информация в основа p. Въпреки това, обаче имаме $B_p=B_p'$, което ненужно хаби част от капацитетът на заявката. Вместо това можем да задаваме $B_p=1$, ако $t_p=0$, и отново $B_p=B_p'\times p^{t_p}$, ако $t_p>0$. Това значително подобрява ефикасността на заявките на решението, макар и по никакъв начин да не го "подтикваме" към това да се възползва от това правило за капацитет (например може да е добра идея да пробваме да не включим нещо, което евристиката ни би искала да включи). Решението с тази оптимизация средно използва 6.51 заявки и получава около 97 точки.

Раница

Последната стъпка, само за истински отдадените състезатели, е да избираме t_p -тата по по-умен начин. Ще решаваме задача подобна на стандартната 0-1 раница. Основните разлики са две. Има "редици" от предмети, като от всяка "редица" трябва да вземем префикс от предмети. Това не е трудна промяна, като просто използваме два вложени цикъла и не записваме директно върху ДП масива, а го ъпдейтваме само между редиците. Втората, по-съществена разлика, е това, че става дума за много големи капацитети и теглата/цените на предметите се умножават, а не събират. За щастие няма чак толкова много различни произведения (а и всяко може да се получи по точно един начин). Още по-важно е, да елиминираме опции стриктно по-лоши от съседите си, т.е. ако имаме опции (B_1, E_1) и (B_2, E_2) , където $B_2 > B_1$ и $E_2 \le E_1$, да премахнем втората. Така на всяка стъпка е нужно да държим не повече от стотина елемента в свързан списък, през който итерираме за всеки предмет (просто число на дадена степен) и който допълваме между всеки две "редици" (т.е. когато сменяме от едно просто към друго). Това е достатъчно бързо за да мине комфортно в time limit-a, но ако по някаква причина не минава, можем да сложим по-ниски максимални степени за по-големите прости, без да смъкваме качеството на решението (доста интуитивно е, че никога няма да включим 19^4 като допълнителен делител, например). Решението ни с тази оптимизация средно прави 6.30 заявки и получава пълните 100 точки.

Автори: Емил Инджев (решение) и Радослав Димитров (идея)