Using deep learning to diagnose knee injuries on magnetic resonance images: current potential and limitations

Nicolai Sandau, MD Stig Brorson, MD PhD DMSc

Centre for Evidence-Based Orthopedics, Dept. of Orthopedic Surgery, Zealand University Hospital

Background

RESEARCH ARTICLE

Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet

Nicholas Bien 1°, Pranav Rajpurkar 1°, Robyn L. Ball 2, Jeremy Irvin 1, Allison Park 1, Erik Jones 1, Michael Bereket 1, Bhavik N. Patel 3, Kristen W. Yeom 3, Katie Shpanskaya 3, Safwan Halabi 3, Evan Zucker 3, Gary Fanton 4, Derek F. Amanatullah 4, Christopher F. Beaulieu 3, Geoffrey M. Riley 3, Russell J. Stewart 3, Francis G. Blankenberg 3, David B. Larson 3, Ricky H. Jones 3, Curtis P. Langlotz 3, Andrew Y. Ng 1‡, Matthew P. Lungren 3‡

1 Department of Computer Science, Stanford University, Stanford, California, United States of America, 2 Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, California, United States of America, 3 Department of Radiology, Stanford University, Stanford, California, United States of America, 4 Department of Orthopedic Surgery, Stanford University, Stanford, California, United States of America

Methods: Data

• 1250 cases

• Training: 1130

Validation: 120


```
130
     203
                26
                          43
          120
206
     51
     53
          231
               102
                     158
                          191
               156
          99
                    224
                          139
     79
          153
               156
                    168
                          89
     132
          83
                65
                     134
                          230 /
```

Methods: Deep learning model

Results: ACL

Results: Meniscus

Results: GradCAM

Limitations

- Lack of generalizability
 - Patient population
 - Different scanners
 - Other pathologies
- Potential solution: More high quality data

Conclusions

- Deep learning methods has the potential to aid radiologists and orthopedic surgeons in the diagnosis of meniscus and ACL injuries on MRI.
- More high quality data is needed to improve generalizability.

Thank you!

Nicolai Sandau, MD
Centre for Evidence-Based Orthopedics,
Dept. of Orthopedic Surgery,
Zealand University Hospital,
Denmark
✓ nicsa@regionsjaelland.dk