Evolutionary_Algorithm_ MCSE662 COURSE NAME MCE 079 05536 Assignment2 on Optimization

	Assignment - ; Evolutionary Optimization MCE 079 05536 Algorithms; CHAPTER-2.
Ans 2:1	Considering min f (Se), where
	$f(x) = 40 + \sum_{i=1}^{4} x_i^2 - 10 \cos(x \pi x_i) \text{and} $
	(d) is the Rastrigin function
3.1	a) Independent variables are 2, 22,23 and 24
1000	Decision variable are 2, 2, 2, 2, 2, 2,
	1 1 1 1 2 2 2 2 2 2 2 4
7500	Solution features are also 2,22,23 & 24
1000	
211	6 This is a 4 dimentional perablem.
2:1	© The solution is $\alpha_1 = \alpha_2 = \alpha_3 = 3\alpha_4 = 0$
1900	
2.1	Omin $f(x) \Rightarrow maxg(x)$, so, $g(x) = -(f(x)) = -4 - Z = x^2 + 10 \cos(x - x)$

2.2 (a) f(x) has an (x) infinite number of local minimax: $2^* = \frac{3\pi}{2} + 2^* + 2$

Ans. 2.3 Considering $f(x) = x^3 + 4x^2 - 4x^4 + 1$ i. $f(x) = 9x^4 + 8x - 4$ [By applying power suck] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -8 \pm \sqrt{8^2 - 4x_3} \times (-4)$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8^2 - 4x_3} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] i. $x = -3 \pm \sqrt{8} \times (-3 \pm \sqrt{4})$ [notes of quadratic eqn.] 2.3(a) When x = 0.43; x = -3.09; minima: $2 \approx 0.43$ and $f(x) \approx 0.10$ 2.36) When 2 = -3.10 then $f(x) = (-3.10)^{2} + 4(-3.10)^{2} - 4(-3.10) + 1$ = 22.05So, f(x) has one local maxima, $2 \approx -3.10$ and f(x) = 22.052.36) f(x) does not have any gholoal minima as it decreases without bound, $2 \rightarrow -\infty$.

2.36) f(x) does not have any gholoal maxima because in decreases without bound as $2 \rightarrow \infty$.

Ans 2:4	Considering problem 2:3 and flx) = x3+42+1-42 lout, with constrains & E [-5,3]
24(a)	$f(x)$ has two local military 2.3) with $f(x^*) \approx 0.10$ (from solution 2.3) and $x^* = -5$ with $f(x^*) = (-5)^3 + 4(-5)^2 + 4(-5) + 1$
2.46)	$f(x)$ has two local maxima; $x^* \approx 3'10$ with $f(x^*) \approx 22.05$ [from solution 2'3] and $x^* = 3$ with $f(x^*) = (3)^3 + 4x9-4(3)+1$
2'4(e)	f(x) has one global minima; x*2 = -5 with f(xx) = -4
2:4(d)	f(x) has one global maximum: $2^{*}_{2}=3$ with $f(x^{*}_{2})=52$.

And There are N! possible permutation of N cities. If the starting city does not matter, then the number of possible noutes reduced to N! (N=(N-1)!.

If the direction of travel does not matter, then the number of possible matter, then the number of possible matter, then the number of possible matter and success to (N-1)!/2.

2.7 a) If we consider routes with different beginnings and ending citites as surique noutes and we consider noutes with different trovel directions as unique, then there are 7! = 5,040 closed noutes. If the starting city does not matter then possible nontes number is 7! = (7-1)! = 6! = 720. If we done not consider routes with different startings and different directions of travel as different noutes, then unique closed loops are 6! = 360 numbers.

