CSE215: Lecture 06 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 8, 2022

Things

- Attendance check
- Will ask IT Dept. for using a wireless mic
- A good reference of this course is SBU cse215 website.

Previous lecture

Argument

 $\begin{array}{c} \mathsf{Premise}_1 \\ \mathsf{Premise}_2 \\ \vdots \\ \mathsf{Premise}_m \end{array}$

Conclusion

use truth table to check if a logic argument is valid

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$p \to (q \lor r)$$

$$\sim (p \to q)$$

$$\cdot r$$

Final, 2020-1

Today

- Use inference rules to prove an argument is valid
- Predicates

Inference rules

Definition

 A rule of inference is a valid argument form that can be used to establish logical deductions

Modus Ponens

Definition

It has the form:

```
If p, then q
```

p

 $\therefore q$

• The term *modus ponens* in Latin means "method of affirming"

\cite{p}	q	p o q	p	q
Т	Τ	Т	Τ	Н
Т	F	F	Т	
F	Т	Т	F	
F	F	Т	F	

Example

• If the sum of the digits of 371,487 is divisible by 3, then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.

∴ 371,487 is divisible by 3.

Modus Tollens

Definition

• It has the form:

If p, then q $\sim q$

 $\therefore \sim p$

• The term modus tollens in Latin means "method of denying"

$\[p \]$	q	p o q	$\sim q$	$\sim p$
Т	Т	Т	F	
Т	F	F	Т	
F	Т	Т	F	
F	F	Т	Т	Т

Example

• If Zeus is human, then Zeus is mortal.

Zeus is not mortal.

... Zeus is not human.

Generalization

Definition

• It has the form:

p

 $\therefore p \lor q$

f(p)	q	p	$\boxed{p \lor q}$
Т	Т	Т	Τ
Т	F	Т	Т
F	Т	F	
F	F	F	

Example

- 35 is odd.
 - .: (more generally) 35 is odd or 35 is even.

Specialization

Definition

• It has the form:

$$p \wedge q$$

 $\therefore p$

$\int p$	q	$p \wedge q$	p
Т	Τ	Т	Н
Т	F	F	
F	Т	F	
F	F	F	

Example

- Ana knows numerical analysis and Ana knows graph algorithms.
 - .: (in particular) Ana knows graph algorithms

Conjunction

Definition

• It has the form:

p

 \boldsymbol{q}

 $\therefore p \land q$

for p	q	$p \wedge q$
Т	H	Т
Т	F	
F	Т	
F	F	

Example

• Lily loves mathematics.

Lily loves algorithms.

... Lily loves both mathematics and algorithms.

Elimination

Definition

• It has the form:

$$p \lor q$$

$$\sim q$$

$$\therefore p$$

• Intuition: When you have only two possibilities and you can rule one out, the other must be the case

p	q	$p \lor q$	$\sim q$	$\begin{array}{ c c }\hline p \end{array}$
Т	Т	Т	F	Τ
Т	F	Т	Т	Т
F	Т	Т	F	F
F	F	F	Т	F

Example

• Suppose x - 3 = 0 or x + 2 = 0.

Also, suppose x is nonnegative.

$$\therefore x = 3.$$

Transitivity

Definition

• It has the form:

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

• Can be generalized to a chain with any number of conditionals

Example

- If 18,486 is divisible by 18, then 18,486 is divisible by 9. If 18,486 is divisible by 9, then the sum of the digits of 18,486 is divisible by 9.
 - ... If 18,486 is divisible by 18, then the sum of the digits of 18,486 is divisible by 9.

Division into cases

Definition

• It has the form:

```
\begin{array}{l} p \lor q \\ p \to r \\ q \to r \\ \therefore r \end{array}
```

Example

ullet x is positive or x is negative.

```
If x is positive, then x^2 > 0.
```

If x is negative, then $x^2 > 0$.

$$\therefore x^2 > 0.$$

Summary of Inference rules

Name	Rule	Name	Rule	
Modus Ponens	$p \rightarrow q$	Elimination	$p \lor q$	$p \lor q$
	p		$\sim q$	$\sim p$
	$\therefore q$		$\therefore p$	$\therefore q$
Modus Tollens	$p \rightarrow q$	Transitivity	p o q	
	$\sim q$		$q \rightarrow r$	
	$\therefore \sim p$		$\therefore p \rightarrow r$	
Proof by division	$p \lor q$	Generalization	p	q
into cases	$p \rightarrow r$		$\therefore p \lor q$	$\therefore p \lor q$
	$q \rightarrow r$	Specialization	$p \wedge q$	$p \wedge q$
	∴ <i>r</i>		∴ p	$\therefore q$
Conjunction	p	Contradiction	$\sim p \to c$	
	q		$\therefore p$	
	$\therefore p \land q$			

Some wrong inference

Definition

A fallacy is an error in reasoning that results in an invalid argument

Fallacy: Converse error

Definition

• It has the form:

$$p \rightarrow q$$

 \boldsymbol{q}

 $\therefore p$

• Superficially resembles modus ponens but is invalid

p	q	p o q	q	p
Т	Т	Т	H	Н
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	F

Example

• If x > 2, then $x^2 > 4$.

$$x^2 > 4$$
.

 $\therefore x > 2$.

Fallacy: Inverse error

Definition

• It has the form:

$$p \rightarrow q$$

$$\sim p$$

$$\therefore \sim q$$

• Superficially resembles modus tollens but is invalid

p	q	p o q	$\sim p$	$\sim q$
Т	Т	Т	F	F
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

Example

• If x > 2, then $x^2 > 4$.

$$x \leq 2$$
.

$$\therefore x^2 \leq 4$$
.

Break; if T < 1h10

Exercises

Supply the missing statements using inference rules

1.	1. p→~q 2. p 3	Premise Premise 1,2 Modus Ponens	2. 1. ~p→q 2. ~p 3	Premise Premise 1,2 Modus Ponens
3.	1 1	Premise Premise 1,2 Modus Ponens	 1. (~p∧q)→(q∧~r) 2. ~p∧q 3 	Premise
	1. (~p∨q)→~(q∧r) 2. q∧r 3	Premise Premise 1,2 Modus Tollens	 6. 1. (~p∧q)→(q∧~ 2.~(q∧~r) 3 	
7.	1. ~(~p∨q) 2	Premise De Morgan	8. ~(p∧~q) 2	Premise De Morgan
9.	1. (p∧r)→~q 2. ~q→r	Premise Premise	10. 1. $(\sim p \land q) \rightarrow (q \land \sim r) \rightarrow s$	r) Premise Premise

1,2 Transitive Law

1,2 Transitive Law

11.	1. (p∧r)→~q	Premise	12. 1. $(\sim p \land q) \rightarrow (q \land \sim r)$	Premise
	2. ~q→r	Premise	2. (q∧~r)→s	Premise
	3. ~r	Premise	3. ~s	Premise
	4	1,2 Transitive Law	4	1,2 Transitive Law
	5	3,4 Modus Tollens	5	3,4 Modus Tollens
15.	1. $p\rightarrow (r \land q)$	Premise		
	2. ~r	Premise		
	3	2, Addition of ~q		

	5	1,4 Modus Tollens		
17.	1. (p∧q)→r	Premise	18. 1. p→r	Premise
	2. q	Premise	2. p	Premise
	3. p	Premise	3. s	Premise
	4	3,2 Rule C	4	1,2 Modus Ponens
	5	1.4 Modus Ponens	5	3.4 Rule C

3, De Morgan

These great exercises are taken from https://www.zweigmedia.com/RealWorld/logic/logicex5.html

Prove the following is valid using logical inference

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$\begin{array}{l} p \to (q \lor r) \\ \sim (p \to q) \\ \therefore r \end{array}$$

Solution

$$p \to (q \lor r)$$

$$\sim (p \to q)$$

$$\therefore r$$

- We assume $p \rightarrow (q \lor r)$, $\sim (p \rightarrow q)$ are true. We need to prove r is true.
- Thus, p -> (q ∨ r), ~(~p ∨ q) // since p->q = ~p ∨ q
- Thus, p -> (q ∨ r), p ∧ ~q //double negation & De Morgen laws
- Thus, p → (q ∨ r), p, ~q //specification
- Thus, q ∨ r, ~q // modus ponens
- Thus, r must be true // elimination
- We have proved the conclusion from the premises.

2020 Mid-exam-2

Problem 9. [5 points]

A set of premises and a conclusion are given. Use the valid arguments forms to deduce the conclusion from the premises, giving a reason for each step. Assume all variables are statement variables.

- 1. $b \lor \sim a \rightarrow c$
- 2. $\sim b \vee d$
- 3. $\sim e$
- **4.** $c \land \sim a \rightarrow \sim d$
- 5. $a \rightarrow e$
- **6**. ∴~ *b*

Solution

```
1. b \lor \sim a \to c

2. \sim b \lor d

3. \sim e

4. c \land \sim a \to \sim d

5. a \to e

6. \therefore \sim b
```

- From premises "3. ~e" and "5. a ->e", we know ~a is true, using Modus Tollens
- From "1. b∨~a -> c" and the fact that ~a is true, we know c is true using Modus Ponens
- From "4. c/\~a -> ~d" and the facts ~a is true and c is true", we know ~d is true using Modus Ponens
- From "2. ~b√d" and the fact that ~d is true, we know ~b is true using Elimination.
- So, we have proved the conclusion from the premises, and the argument is valid following inference rules.

Problem of truth tellers and liars

Problem

• There is an island containing two types of people: truth tellers who always tell the truth and liars who always lie. You visit the island and are approached by two natives who speak to you as follows:

A says: B is a truth teller.

B says: A and I are of opposite type.

• What are A and B?

Education is what remains after one has forgotten what one has learned in school. — Albert Einstein

Solution

A says: B is a truth teller.

B says: A and I are of opposite type.

- Assume A is a truth teller.
- Then, B is a truth teller from what A says.
- Then, A and B are of the opposite type. This is a contradiction!
- So, A must be a liar.
- Then, B must be a liar from what A says.
- This is consistent with what B says (which is a lie).
- Conclusion: Both A and B are liars.

Summary

Prove validity using inference rules

추석 잘 보내세요!