Image Processing, part 2

PABLO MALDONADO

Image Pyramids

Histograms

Color distribution as descriptors

Effect of brightness

R. Klette. Concise Computer Vision. ©Springer-Verlag, London, 2014.

Effect of brightness

R. Klette. Concise Computer Vision. ©Springer-Verlag, London, 2014.

6	2	3	4	5
5	5	6	7	5
5	6	4	8	6
4	7	4	3	4
8	5	6	6	7

https://flir.custhelp.com/ci/fattach/get/40007/0/filename/Histogram+equalization.pdf

Histogram Equalization

Intensity	Frequency
0	0
1	0
2	1
3	2
4	5
5	6
6	6
7	3
8	2
9	0
Та	ble 1

i	T(i)		
0	0		
1	0		
2	0		
3	1		
4	2		
5	5		
6	7		
7	8		
8	9		
9	9		
Table 2			

https://flir.custhelp.com/ci/fattach/get/40007/0/filename/Histogram+equalization.pdf

https://flir.custhelp.com/ci/fattach/get/40007/0/filename/Histogram+equalization.pdf

Localized histograms

R. Klette. Concise Computer Vision. © Springer-Verlag, London, 2014.

Template Matching

- •Similar to convolutions, we pass a template image across a moving window and calculate a "similarity score".
- ■The output is an array/"similarity heatmap" that contains the most likely matches.
- Different criteria for similarity.

Example

image

https://docs.opencv.org/4.0.0/d4/dc6/tutorial_py_template_matching.html

Hough Transform

Motivation: Lane detection

R. Klette. Concise Computer Vision. ©Springer-Verlag, London, 2014.

Image vs Parameter space

•However, the parameter space (a,b) has a small problem: you cannot represent vertical lines with finite values.

Instead, we use the **Hesse normal form** to parameterize a line.

In this parameter space, points = sinusoidal curves.

R. Klette. Concise Computer Vision. ©Springer-Verlag, London, 2014.

Circle detection

Circle detection: Fixed radius

Each point in geometric space (left) generates a circle in parameter space (right). The circles in parameter space intersect at the (a,b) that is the center in geometric space.

Circle detection: Unknown radius

