SRIVI INSTITUTE OF SCIENCE & TECHNOLOGY (Deemed to be University u/s 3 of UCC Act, 1956)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

18MAB302T-DISCRETE MATHEMATICS FOR ENGINEERS

	(Deemed to be University u/s 3 of UGC Act, 1956)		
		UNIT 1-SET THEORY & RELATIONS	
Sl.No.		TUTORIAL SHEET 1-QUESTIONS-PART(A)	
1	Simplify the following using set theoretical laws:		
	(ANB)U(ANBNČND)U(ÂNB)		
2	Write the dual of $(A \cap B)U(A \cap \check{C})U(\hat{A} \cap B)$		
3	a)Give an example of arelation which is neither reflexive nor irreflexive?		
	b)Can any relation which is irreflexive and symmetric be transitive?Justify?		
4	Let $X=\{1,2,3,4\}$ and $R=\{(x,y)/x>y\}$ Draw the graph of R and also find its matrix.		
5	Give a relation which is both partial order relation and equivalence relation on a set.		
Part – B			
6	If A and B are	B are any two sets prove analytically,a)A Ω (B-C)=(A Ω B)-(A Ω C)	
	$b)A\times(B\cap C)=(A\times B)\cap(A\times C)$		
7	If R is a relation on Z defined by aRb iff a)3a+b is a multiple of 4		
	b)2a+3b=5n,n is an integer.		
	Prove the above relations are equivalence relations.		
8		tet $R=\{(1,2), (3,4), (2,2)\}$, and $S=\{(4,2), (2,5), (3,1), (1,3)\}$ be relations on $\{1,2,3,4\}$.	
	Find $R \circ S, S \circ R$, $(R \circ S) \circ R$, $R \circ (S \circ R)$, $R \circ R, S \circ S$, $R \circ R \circ R$.		
9	If the relation R on the set $X = \{1,2,3,\ldots,7\}$ defined by aRb iff $a \equiv b \pmod{3}$. Find the		
	pairs in R, find the partition induced by the equivalence relation R on X.		
10	For the poset {3,5,9,15,24,45}		
	a)find the maximal and minimal elements.		
	b)the greatest and the least elements.		
	,	ounds and LUB of {3,5}	
1.1	d)the lower bounds and GLB of {15,45}.		
11		n $R = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,3),(4,4)\}$ defined on	
	$X=\{1,2,3,4\},f$	ind the transitive closure of R using Warshall's algorithm.	
12	For the relatio	n $R=\{(1,3),(1,4),(2,1),(2,3),(2,4),(3,4)\}$ defined on $X=\{1,2,3,4\}$ find the	
	properties of the	he relation R.	