المتتاليات العددية

I]. تعاریف و رموز

المتتالية u هي دالة ترفق بكل عدد طبيعي n العدد u(n) حيث: u در من المتتالية بال من u دلا من u دلا من u در المتتالية بالمتتالية بالمتالية بالمتتالية بالمتتالية بالمتتالية بالمتتالية بالمتتالية بالمتالية بالمتتالية بالمتالية بالمتالية

u بدلا من u(n) حيث u_n هي صورة u بالمتتالية u

n ايضا الحد العام للمتتالية u او الحد الذي دليله المحمى u_n

 $(u_n)_{n\geq p}$ إذا كان $n\geq p$ نرمز للمتتالية بالرمز $n\geq p$

 $\mathbb N$ هو الحد الأول للمتتالية u إذا كانت معرفة على u_0

 \mathbb{N}^* هو الحد الأول للمتتالية u إذا كانت معرفة على u_1

 $n \geq p$ هو الحد الأول للمتتالية u إذا كانت معرفة من أجل u_n

 u_n يسمى n دليل المتتالية u أو دليل الحد يسمى

u هو دليل الحد الأول للمتتالية p

 u_n هي رتبة (n-p+1)

 $u_{(m-p+1)}$ عساب الحد الذي رتبته m أي حساب الحد

II]. طرق توليد متتالية عددية

[[]]. اتجاه تغير متتالية عدية

عموما: الخار كانت فإن u متزايدة u متزايدة u متزايدة u م $u_{n+1} < u_n$ متناقصة u ما $u_{n+1} = u_n$

1	و نقارنها مع	$\frac{u_{n+1}}{u_n}$	النسبة	نحسب	<u>:0</u>	طريقة
		u_n				

فإن	إذا كانت
س متزایدة u	$\frac{u_{n+1}}{u_n} > 1$
a متناقصة	$\frac{u_{n+1}}{u_n} < 1$
ثابتة u	$\frac{u_{n+1}}{u_n}=1$

$\overline{u_{n+1}-u_n}$ طريقة $oldsymbol{0}$: ندرس إشارة الفرق

فإن	إذا كانت		
u متزايدة	$u_{n+1}-u_n>0$		
u متناقصة	$u_{n+1}-u_n<0$		
تابتة <i>u</i>	$u_{n+1}-u_n=0$		

طريقة 2: ندرس تغيرات f إذا كانت المتتالية من الشكل: $u_n = f(n)$

المتتالية الهندسيةV

(1) تعریف

$$v_{n+1} = v_n \times q$$

q هو عدد حقيقي ثابت يسمى الأساس (2) عبارة الحد العام

$$v_n = v_p \times q^{n-p}$$

ين كان الحد الأول هو v_0 فإن v_0

$$v_n = v_0 \times q^n$$

ين كان الحد الأول هو v_1 فإن $\sqrt{}$

$$v_n = v_1 \times q^{n-1}$$

*ملاحظة:

إذا كان q=1 فإن المتتالية ثابتة.

(3) مجموع متتالية هندسية

$$S_n = v_p + v_{p+1} + \dots + v_n$$

$$oldsymbol{S_n} = S_n = egin{align*} 1 & - egin{align*} 1 & -$$

$$S_n = v_p \left(\frac{1 - q^{n-p+1}}{1 - q} \right)$$

 $v_0 + v_1 + \dots + v_n = v_0 \frac{1 - q^{n+1}}{1 - q}$

$$v_1 + v_2 + \dots + v_n = v_1 \frac{1 - q^n}{1 - q}$$

$$1+q+q^2+\cdots+q^n=rac{1-q^{n+1}}{1-q}$$

البرهان أن المتتالية هندسية

$$\frac{v_{n+1}}{v_n}$$
 نحسب النسبة

q اِذَا كَانَ: q = q حيث v_{n+1}

عدد ثابت خالي من n فإن عدد ثابت

طريقة $oldsymbol{v}_n$ على الشكل

$$\boxed{v_n = v_p \times q^{n-p}}$$

(5) الوسط الهندسي

و c ثلاث حدود متتابعة من متتالية هندسية b

$$u_{n+1} \times u_{n-1} = u_n^2$$
 أي $a \times b = c^2$

IV]. المتتالية الحسابية

1) تعریف

$$u_{n+1} = u_n + r$$

r هو عدد حقيقي ثابت يسمى الأساس

2 عبارة الحد العام

$$u_n = u_p + (n - p)r$$

إذا كان الحد الأول هو سون فإن:

$$u_n = u_0 + nr$$

يان الحد الأول هو u_1 فإن: $\sqrt{}$

$$u_n = u_1 + (n-1)r$$

*ملاحظة؛

إذا كان r=0 فإن المتتالية ثابتة.

(3) مجموع متتالية حسابية

$$S_n = u_p + u_{p+1} + \dots + u_n$$

$$S_n = rac{$$
عدد الحدود $}{2}$ الحد الأخير $+$ الحد الأول)

$$S_n = \frac{n-p+1}{2}(u_p + u_n)$$

$$u_0 + u_1 + \dots + u_n = \frac{n+1}{2}(u_0 + u_n)$$

$$u_1 + u_2 + \cdots + u_n = \frac{n}{2}(u_1 + u_n)$$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

(4) البرهان أن المتتالية حسابية

$\overline{u_{n+1}-u_n}$ طريقة $oldsymbol{0}$: نحسب الفرق

r اِذَا كَان $u_{n+1}-u_n=$

عدد ثابت خالي من n فإن u_n حسابية

طريقة 2: نكتب u_n على الشكل

$$u_n = u_p + (n - p)r$$

(5) الوسط الحسابي

و c ثلاث حدود متتابعة من متتالية حسابية b ، a

$$u_{n+1}+u_{n-1}=2u_n$$
 أي $a+b=2c$

VI]. المتتالية الثابتة

$$u_1=u_2=u_3=\cdots=u_n$$
 تعریف: هي المنتالية التي جميع حدودها متساوية أي (1)

2 البرهان أن المتتالية ثابتة

$$u_{n+1}=u_n=u_0$$
 يكفي إثبات أن $u_{n+1}-u_n=0$ أو أن $u_{n+1}-u_n=0$ أو أثبات أن المتتالية لا حسابية ولا هندسية $[VII]$

رببت ہیں ہمدیت کے مصنبیت و کے محدیت
$$u_{n+1} \neq q$$
 و اُن $u_{n+1} \neq q$ و اُن $u_{n+1} \neq q$ یکفی بر هان اُن $u_{n+1} \neq q$

$$\displaystyle rac{u_2}{u_1}
eq rac{u_1}{u_0}
eq u_2 - u_1
eq u_1 - u_0$$
 او بر هان أن $u_2 - u_1
eq u_1 - u_0$ و أن ج

VIII]. تقارب وتباعد متتالية

$$l \in \mathbb{R}$$
 حيث، $\displaystyle \lim_{n o +\infty} u_n = l \Longleftrightarrow u_n$

$$\displaystyle \lim_{n o +\infty} u_n = \pm \infty \Longleftrightarrow u_n$$
متباعدة u_n

$$\overline{\lim_{n o +\infty} u_n = \lim_{n o +\infty} f(n)}$$
 فإن $u_n = f(n)$ مبرهنة: إذا كانت $*$

IX]. نهاية متتالية باستعمال الحصر

$$\lim_{n\to+\infty}u_n=l \iff \begin{cases} \lim_{n\to+\infty}v_n=\lim_{n\to+\infty}w_n=l\\ v_n\leq u_n\leq w_n \end{cases}$$

$$\lim_{n\to+\infty}u_n=+\infty\iff \left\{\begin{array}{l}\lim_{n\to+\infty}v_n=+\infty\\u_n\geq v_n\end{array}\right\}$$

$$\lim_{n\to+\infty}u_n=-\infty\iff\begin{cases}\lim_{n\to+\infty}v_n=-\infty\\u_n\le v_n\end{cases}$$

X]. نهایة متتالیة هندسیة

التقارب	النهاية	إذا كان		
متباعدة	$\lim_{n\to+\infty}v_n=+\infty$	$v_0>0$ و	q > 1	0
مبعده	$\lim_{n\to+\infty}v_n=-\infty$	$v_0 < 0$ و		2
متقاربة	$\lim_{n\to+\infty}v_n=0$	-1 < q < 1		8
متباعدة	غير موجودة	$q \leq -1$		4

XI]. إثبات أن المتتالية غير رتيبة (غير متزايدة وغير متناقصة)

- $u_{n+1}-u_n$ نحسب الفرق $\widehat{1}$
- $u_{n+1}-u_n$ الفرق n مسب قيم n اندقش حسب وي
 - نستنتج أن u_n غير رتيبة (3)