Quantum Field Theory

Problem 1. The Lie group of distance-preserving transformations of n-dimensional Euclidean space \mathbb{R}^n is given by the orthogonal group $O(n) = \{A \in GL(n, \mathbb{R}) \mid AA^T = I\}$. In \mathbb{R}^3 , it can also be thought of as the group of reflections and rotations under composition. Determine what type of matrices are the generators of the corresponding Lie algebra $\mathfrak{o}(n)$.

Problem 2. In Pauli's formalism for angular momentum, the spin operator is defined as $\vec{S} = \frac{\vec{\sigma}}{2}$, where $\vec{\sigma} \equiv (\sigma^1, \sigma^2, \sigma^3)$ are the Pauli matrices, obeying the commutation relations,

$$[\sigma^i, \sigma^j] = 2i\varepsilon^{ij}_{\ k}\sigma^k$$

where the indices of ε are raised and lowered by δ^{ij} and δ_{ij} respectively.

- Using only the commutation relations of the Pauli matrices, find the Casimir operator of this spin- $\frac{1}{2}$ representation.
- Denoting by $\vec{n} = (\sin\theta\cos\phi, \sin\theta\sin\theta, \cos\theta)$ a unit-norm vector, find the two-component eigen-spinor $|\psi_{\vec{n}}\rangle$ of the operator $\vec{S} \cdot \vec{n}$, with the eigenvalue $\frac{1}{2}$. There is no need to normalize the eigenstate $|\psi_{\vec{n}}\rangle$.

Note that Casimir operators of a Lie algebra are polynomials in the generators of a Lie algebra that commute with all the elements of the Lie algebra.

Problem 3. The six generators $J^{\mu\nu}$ of the Lie algebra of the Lorentz group SO(3,1) in the four-vector representation are given by

$$(J^{\mu\nu})^{\rho}_{\ \sigma} = i(\eta^{\mu\rho}\delta^{\nu}_{\sigma} - \eta^{\nu\rho}\delta^{\mu}_{\sigma})$$

where $\mu, \nu, \rho, \sigma = 0, 1, 2, 3$. $(J^{\mu\nu})^{\rho}_{\sigma}$ denotes the ρ, σ entry of the $J^{\mu\nu}$ matrix. Notice that $J^{\mu\nu} = -J^{\nu\mu}$ and $(J^{\mu\nu})_{\rho\sigma} = -(J^{\mu\nu})_{\sigma\rho}$, where the index is lowered with the Minkowski space metric η .

- 1. Write explicitly the six generators $J^{\mu\nu}$ as 4×4 matrices.
- 2. Compute the commutators of two Lorentz generators $[J^{\mu\nu},J^{\alpha\beta}]$.
- 3. Recall the three rotation generators are defined as $J^i = \frac{1}{2}\varepsilon^i_{\ jk}J^{jk}$ and the three boost generators are defined as $K^i = J^{i0}$. Compute the commutator $[K^i, K^j]$.

¹Louis Strehlow literally begged me to change the wording of this question, even provided me with the new wording.

Problem 4. For any $n \times n$ matrices A, B, C, prove the identity (Jacobi identity):

$$[[A, B], C] = [A, [B, C]] + [B, [A, C]] = 0$$

Consider the Lie algebra with the structure constants f^{ab}_{c} , i.e. there is a basis T^a in the Lie algebra such that $[T^a, T^b] = i f^{ab}_{c} T^c$.

The adjoint representation of the Lie algebra is defined by

$$(T_{adj}^a)^b_{\ c} = -if^{ab}_{\ c}.$$

Using the Jacobi identity, verify that,

$$[T_{adj}^a, T_{adj}^b] = i f_c^{ab} T_{adj}^c.$$

Problem 5. Write the commutation relations of the Poincaré algebra in terms of the operators $H = P^0, P^i, J^i, K^i$. You can use the representation of your choice.

Suppose that there is a dynamical system with Hamiltonian \mathcal{H} and symmetries generated by the rest of the generators of the Poincaré algebra. From the algebra, identify the generators associated with conserved charges.

Quantum Field Theory

Problem 1. Two different bases in a Clifford algebra are related by a similarity transformation

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\eta^{\mu\nu}\mathbf{1}$$

and

$$\gamma^{\mu'}\gamma^{\nu'} + \gamma^{\nu'}\gamma^{\mu'} = 2\eta^{\mu'\nu'}\mathbf{1}$$

there exists S such that

$$\gamma^{\mu'} = S \gamma^{\mu} S^{-1}$$

Use this to show that

- 1. $\bar{\psi}\psi$ transforms as a scalar under Lorentz transformations
- 2. $\bar{\psi}\gamma^{\mu}\psi$ transforms as a vector under Lorentz transformations
- 3. $\bar{\psi}\gamma^{\mu\nu}\psi$ transforms as a tensor under Lorentz transformations where $\gamma^{\mu\nu} = \frac{1}{2}(\gamma^{\mu}\gamma^{\nu} \gamma^{\nu}\gamma^{\mu})$
- 4. Find also the transformation of $\bar{\psi}\gamma_5\psi$, $\bar{\psi}\gamma_5\gamma^{\mu}\psi$ under both Lorentz and parity transformations.

where ψ is a Dirac spinor and $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$

Problem 2. For a Lorentz invariant theory, the conserved current associated to the Lorentz transformations is

$$J^{(\rho\sigma)\mu} = x^{\rho}\Theta^{\mu\sigma} - x^{\sigma}\Theta^{\mu\rho}$$

where $\Theta^{\mu\nu}$ is the energy-momentum tensor of the theory.

In particular for the complex scalar field

$$\mathcal{L} = \partial_{\mu} \phi^* \partial^{\mu} \phi - m^2 \phi^* \phi$$

where ϕ^* is the complex conjugate of ϕ .

The energy-momentum tensor is

$$\Theta_{\mu\nu} = \partial_{\mu}\phi^*\partial_{\nu}\phi + \partial_{\nu}\phi^*\partial_{\mu}\phi - \eta_{\mu\nu}\mathcal{L}$$

(i) Compute the conserved charges associated to spatial rotations

$$M^{ij} = \int d^3x \ J^{(ij)0}$$

Bring them into the form

$$M^{ij} = i \int d^3x \left[\phi^* L^{ij} \partial_0 \phi - \partial_0 \phi^* L^{ij} \phi \right]$$

for sufficiently decaying fields at infinity where

$$L^{ij} = i(x^i \partial^j - x^j \partial^i)$$

(ii) Define the bilinear form on the space of fields

$$\langle \phi_1 | \phi_2 \rangle = i \int d^3x \; (\phi_1^* \partial_0 \phi_2 - \phi_2 \partial_0 \phi_1^*) \equiv i \int d^3x \; \phi_1^* \overleftrightarrow{\partial_0} \phi_2$$

Show that $\langle \phi_1 | \phi_2 \rangle$ is time-independent provided that ϕ_1 , ϕ_2 satisfy the Klein-Gordon equation.

(iii) Demonstrate that

$$M^{ij} = \langle \phi | L^{ij} \phi \rangle$$

Also show that

$$P^{\mu} = \int d^3x \; \Theta^{0\mu} = \langle \phi | i \partial^{\mu} \phi \rangle$$

Problem 3. Let ψ be a Dirac spinor and consider the two different Lagrangians

$$\mathcal{L}_1 = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

$$\mathcal{L}_2 = \bar{\psi} \left(\frac{i}{2} \overleftrightarrow{\partial} \psi - m \right) \psi$$

- (i) Compute the field equations associated with both Lagrangians.
- (ii) Find the energy-momentum tensors associated with both \mathcal{L}_1 and \mathcal{L}_2 .
- (iii) Compute the difference in energy of the field configurations defined by the two different energy-momentum tensors i.e. compute $\Delta E = E_1 E_2$.

Quantum Field Theory

Problem 1. The equation that describes the minimally coupled Dirac field ψ to the electromagnetic potential A_{μ} is

$$(i\partial \!\!\!/ - e\gamma^{\mu}A_{\mu})\psi - m\psi = 0 \tag{1}$$

where e is the electric charge and γ^{μ} are the matrices

$$\gamma^0 = \begin{pmatrix} \mathbf{1}_{2\times 2} & 0 \\ 0 & -\mathbf{1}_{2\times 2} \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}.$$

The non-relativistic limit of this equation is

$$i\frac{\partial}{\partial t}\phi = \left(\frac{1}{2m}(i\vec{\partial} - e\vec{A})^2 + eA_0 - \frac{e}{2m}\vec{\sigma} \cdot \vec{B}\right)\phi \tag{2}$$

where \vec{B} is the magnetic field. Derive (2) from (1) using the approximations

$$i\partial_t \chi \ll m\chi$$
 and $eA_0 \ll m$

where
$$\psi = e^{-imt} \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$
.

Problem 2. Consider $U^r(p)$ and $V^s(p)$ as in the notes. Verify the following:

- (i) $\overline{U}^{s}(p) U^{r}(p) = 2m\delta^{rs}$
- (ii) $\overline{V}^s(p) V^r(p) = -2m\delta^{rs}$
- (iii) $\sum_{s=1,2} U^s(p) \, \overline{U}^s(p) = \not p + m \mathbf{1}_{4 \times 4}$
- (iv) $\sum_{s=1,2} V^s(p) \, \overline{V}^s(p) = \not p m \mathbf{1}_{4 \times 4}$

Problem 3. The Lagrangian of the electro-magnetic field is

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

- (i) Find the energy-momentum tensor $\Theta^{\mu\nu}$ of the theory.
- (ii) Demonstrate the conservation of $\Theta^{\mu\nu}$ subject to the field equations.
- (iii) Demonstrate that $\Theta^{\mu\nu}$ can be improved to $\tilde{\Theta}^{\mu\nu}$ such that $\tilde{\Theta}^{\mu\nu} = \tilde{\Theta}^{\nu\mu}$ and $\partial_{\mu}\tilde{\Theta}^{\mu\nu} = 0$.

Problem 4. The free real scalar field ϕ expressed in terms of the creation and annihilation operators can be written as

$$\phi(x) = \int \frac{\mathrm{d}^3 k}{2E_k} \left(a(k)e^{-ikx} + a^{\dagger}(k)e^{ikx} \right).$$

Express a(k) and $a^{\dagger}(k)$ in terms of ϕ and its canonical momentum π .

Quantum Field Theory

Problem 1. The Dirac Hamiltonian for an electron in a central potential V is

$$\mathbf{H} = \vec{\alpha} \cdot \vec{\mathbf{p}} + \beta \, m + V(r) \, \mathbf{1}$$

where $r = |\vec{x}|$, $\alpha^k = \gamma^0 \gamma^k$ and $\beta = \gamma^0$

- (i) Show that the operator H does not commute with the orbital angular momentum operator $\vec{L}=\vec{x}\times\vec{p}$
- (ii) Show that it does commute with $\vec{J} = \vec{L} + \frac{1}{2}\vec{\Sigma}$ where $\Sigma^{\mu\nu} = \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}]$ and $\vec{\Sigma}^k = \frac{1}{2}\epsilon^{kij}\Sigma^{ij}$ As usual $[x^i, p^j] = i\delta^{ij}$ 1 (The canonical commutator relations).

Problem 2. For any 3 operators or matrices X, Y, Z show that

- (1) $[[X,Y],Z] = [X,[Y,Z]] + [[X,Z],Y] = \{X,\{Y,Z\}\} \{\{X,Z\},Y\}$ where [X,Y] = XY-YX and $\{X,Y\} = XY+YX$
- (2) If $S^{\mu\nu} = \frac{1}{2} \Sigma^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$ evaluate $[S^{\mu\nu}, \gamma^{\rho}]$
- (3) Evaluate $[S^{\mu\nu}, S^{\rho\sigma}]$ what do you observe?
- (4) Express the matrices $\vec{\Sigma}^k = \frac{1}{2} \epsilon^{kij} \Sigma^{ij}$ in the standard basis.

Problem 3. Show that in the limit $m \to 0$, the solution u of the Dirac equation can be chosen to be an eigenvector of γ_5 . In the standard representation find the appropriate linear combination of u^1 and u^2 .

Show that they are also eigenvectors of the helicity operator

$$h = \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$$

Problem 4. Let ϕ be a quantised free scalar field.

(i) Show that

$$T^{\mu\nu} = :\partial^{\mu}\phi \ \partial^{\nu}\phi - \eta^{\mu\nu} \left(\frac{1}{2}\partial_{\lambda}\phi \ \partial^{\lambda}\phi - \frac{1}{2}m^{2}\phi^{2}\right):$$

1

satisfies $\partial_{\mu}T^{\mu\nu}=0$

(ii) Express

$$P^{\nu} = \int d^3x \ T^{0\nu}$$

in terms of the creation and the annihilation operators $a^*(k)$ and a(k).

Quantum Field Theory

Problem 1. A one-particle state is given by

$$|\psi\rangle = \int \frac{\mathrm{d}^3 k}{2E_{\mathbf{k}}} |\mathbf{k}\rangle \, \psi(\mathbf{k}).$$

- (i) What is the condition on $\psi(\mathbf{k})$ such that $|\psi\rangle$ be normalised?
- (ii) What is the probability that the energy of this particle is less than E?
- (iii) What is the state $a(\mathbf{k}) |\psi\rangle$?
- (iv) A spacetime-dependent wavefunction associated with $|\psi\rangle$ is defined as

$$\Psi(x) = \langle 0 | \phi(x) | \psi \rangle$$
.

- (a) Show that $\Psi(x)$ satisfies the Klein-Gordon equation.
- (b) Express $\Psi(x)$ in terms of $\psi(\mathbf{k})$.
- (c) Show that the density

$$\rho(x) = i\Psi^*(x)\partial_0\Psi(x) - i\Psi(x)\partial_0\Psi^*(x)$$

satisfies $\int d^3x \, \rho(x^0, \vec{x}) = 1$ if $\langle \psi | \psi \rangle = 1$.

Problem 2. (i) Evaluate the matrix elements between the one-particle states

$$\langle \mathbf{p}| : \phi(x)\phi(y) : |\mathbf{q}\rangle$$
 and $\langle \mathbf{p}| : \partial_{\mu}\phi(x)\partial_{\nu}\phi(x) : |\mathbf{q}\rangle$

where ϕ is a real free scalar field.

(ii) Calculate the expectation value of

$$T_{\mu\nu} = :\partial_{\mu}\phi\partial_{\nu}\phi: -\eta_{\mu\nu}: \frac{1}{2}\left(\partial_{\rho}\phi\partial^{\rho}\phi - m^{2}\phi^{2}\right):$$

in the state $|\psi\rangle$ of Problem 1 and express it in terms of $\Psi(x)$.

Problem 3. Define

$$(f,g) \equiv \int \frac{\mathrm{d}^3 k}{2E_{\mathbf{k}}} f^*(\mathbf{k}) g(\mathbf{k})$$

for any two functions f, g at k. A two-fermion state each of spin 1/2 is defined by

$$|\chi\rangle = \int \frac{\mathrm{d}^3 k_1}{2E_{\mathbf{k}_1}} \frac{\mathrm{d}^3 k_2}{2E_{\mathbf{k}_2}} |\mathbf{k}_1, \mathbf{k}_2\rangle f(\mathbf{k}_1) g(\mathbf{k}_2)$$

1

where (f, f) = (g, g) = 1 and (f, g) = 0 (as both fermions are of spin 1/2 the spin labels have been dropped).

- (i) Show that $\langle \chi | \chi \rangle = 1$.
- (ii) Write down the expression for $\langle \mathbf{k}_1, \mathbf{k}_2 | \chi \rangle$.
- (iii) Evaluate the expressions

$$\langle \chi | a^{\dagger}(\mathbf{k}) | \psi \rangle$$
 and $\langle \psi | a(\mathbf{k}) | \chi \rangle$

where
$$|\psi\rangle = \int \frac{\mathrm{d}^3 k}{2E_{\mathbf{k}}} |\mathbf{k}\rangle \, \psi(\mathbf{k}).$$

Problem 4. In the Coulomb gauge the only non-vanishing equal-time commutator between components of A_{μ} and its time-derivatives is

$$[A^{i}(x), \partial_{0}A^{j}(y)]\Big|_{x^{0}=y^{0}} = i \,\delta^{ij}\delta^{(3)}(\mathbf{x} - \mathbf{y}) + i \,\partial^{i}\partial^{j}\frac{1}{4\pi|\mathbf{x} - \mathbf{y}|}$$

- (i) Use this formula to evaluate the equal time commutators between components of electric and magnetic fields.
- (ii) The covariant commutation relations of A^{μ} in the Lorenz gauge are

$$[A^{\mu}(x), A^{\nu}(y)] = -i \eta^{\mu\nu} D(x - y)$$

- (a) Evaluate D(x-y)
- (b) Use this to express the commutator $[F_{\mu\nu}(x), F_{\rho\sigma}(y)]$ in terms of D(x-y).
- (iii) Use the results of (ii)(b) together with

$$D(x)\Big|_{x^0=0} = 0$$
 and $\partial_0 D(x)\Big|_{x^0=0} = -\delta^{(3)}(\mathbf{x})$

to verify the canonical commutation relations of the electric and magnetic fields in (i).

Quantum Field Theory

Problem 1. Let A and B be operators such that [A, B] = c1, where $c \in \mathbb{C}$. Show that,

- (i) $e^{\lambda A} B e^{-\lambda A} = B + \lambda c \mathbb{1}$.
- (ii) $e^{\lambda A} e^{\mu B} = e^{\mu B} e^{\lambda A} e^{\lambda \mu c}$.
- (iii) $e^{\lambda A + \mu B} = e^{\mu B} e^{\lambda A} e^{\frac{1}{2}\lambda\mu c}$.

Problem 2. A magnetic dipole is described by the vector potential,

$$\underline{A}(\underline{x}) = \underline{\mu} \times \underline{\partial} \, \frac{1}{4\pi |x|} = -\frac{\underline{\mu} \times \underline{x}}{4\pi |x|^3},$$

where μ is the (constant) dipole moment vector.

- (i) Compute the Fourier transform $\underline{A}(\underline{k})$.
- (ii) Calculate the scattering matrix element

$$\langle p', i' | S | p, i \rangle$$

for elastic scattering of an electron¹ by the dipole field.

(iii) Writing the S-matrix element as,

$$\langle p', i' | S | p, i \rangle = \delta_{i'i} 2E_p \delta^{(3)}(p'-p) + \delta(E_p - E_{p'})i\mathcal{M}_{i'i}(p', p),$$

the differential cross-section of the process is,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{16\pi^2} \sum_{i'} \frac{1}{2} \sum_{i} \left| \mathcal{M}_{i'i}(p', p) \right|^2$$

for scattering that² the initial and final spins are <u>not</u> measured. Compute $\frac{d\sigma}{d\Omega}$ for the case that \underline{p} is parallel to $\underline{\mu}$, i.e. the incident momentum \underline{p} is along the axis of the dipole.

Problem 3.

- (i) Give the Feynman rules of the $:\frac{\lambda_3}{3!}\phi^3 + \frac{\lambda_4}{4!}\phi^4$: theory in configuration space.
- (ii) Give the Feynman diagrams for the connected 3-point function in configuration space up to and including 1-loop corrections.
- (iii) Give the analytic expression of the Feynman diagrams in part (ii) including symmetry factors.

¹**N.B.**: In the sheet the professor has written what I could only interpret as "elector". At this time I am considering it to be a typo, subject to change as the course progresses.

²No idea what he means here, could be typo for "where".

Quantum Field Theory

Problem 1. Show that in the n-point function of an interacting scalar field theory, only connected diagrams contribute, i.e. the vacuum to vacuum sub-diagrams cancel.

Problem 2. Consider the correction to the 4-point function of ϕ^4 theory described by the diagram¹,

Using a Wick rotation to Euclidean space and the formulae

$$\frac{1}{K_E^2 + m^2} = \int_0^\infty \mathrm{d}s \, e^{-s(K_E^2 + m^2)},$$

and,

$$\int d^D k \ e^{-\frac{1}{2}k^T A k + B^T k} = \frac{(2\pi)^{\frac{D}{2}}}{\sqrt{\det A}} \ e^{\frac{1}{2}B^T A^{-1} B},$$

to integrate the internal momentum, find the divergence of the diagram using dimensional regularization.

Problem 3. The 1-loop correction to the photon's self-energy is,

Calculate the diagram and show that it is proportional to $(p_{\mu}p_{\nu} - \eta_{\mu\nu}p^2)$.

 $^{{}^{1}}$ **N.B.**: I have drawn the arrow on p_{2} exactly as given in the sheet, but I think it is a typo and should be the other way around.

Quantum Field Theory

Problem 1. Consider the scattering process

where a photon γ and an electron e scatter to a photon γ' and an electron e'. Use conservation of the 4-momentum to express the wavelength of the photon γ in terms of that of γ' and the scattering angle θ as indicated in the diagram. Perform the computation in the Lorentz frame in which e is at rest.

Remark. The process

where γ is a photon, e is an electron and $q \neq 0$ is not allowed in QED on momentum conservation grounds. Indeed, working in the frame p = (m, 0, 0, 0), conservation of momentum gives q = p - p'. Since q is null we have that $q^2 = (p - p')^2 = p^2 - 2pp' + (p')^2 = 0$ which implies $m^2 - 2mE_{p'} + m^2 = 0$ giving $E_{p'} = m$. This is a contradiction as $E_{p'} = \sqrt{\vec{p}^2 + m^2} > m$ if $q \neq 0$.

Problem 2. Consider the following 1-loop correction to the interaction vertex in QED:

Compute the diagram in dimensional regularization. You may use without proof that

$$\begin{split} \frac{1}{abc} &= 2 \int_0^1 \mathrm{d}x \int_0^{1-x} \mathrm{d}z \frac{1}{[a+(b-c)x+(c-a)z]} \\ \int \mathrm{d}^D k \frac{k^\mu}{(k^2-s+i\varepsilon)^n} &= 0 \\ \int \mathrm{d}^D k \frac{1}{(k^2-s+i\varepsilon)^n} &= i\pi^{D/2} (-1)^n \frac{\Gamma(n-D/2)}{\Gamma(n)} \frac{1}{s^{n-D/2}} \\ \int \mathrm{d}^D k \frac{k^\mu k^\nu}{(k^2-s+i\varepsilon)^n} &= i\pi^{D/2} (-1)^{n+1} \frac{\Gamma(n-D/2-1)}{2\Gamma(n)} \frac{g^{\mu\nu}}{s^{n-D/2-1}} \end{split}$$

where $g_{\mu\nu}$ is the Minkowski space metric.

Problem 3. At the lowest order, the diagrams that contribute to the Compton scattering are

where — is a fermion (electron) propagator and ~ is a photon propagator.

- (i) Use the Feynman rules to find the S-matrix elements for these processes.
- (ii) Writing the S-matrix as $S = \delta(p + k p' k') i (\mathcal{M}_a + \mathcal{M}_b)$ where \mathcal{M}_a and \mathcal{M}_b contributions correspond to the diagrams (a) and (b), the differential cross section is proportional to

$$A = \frac{1}{4} \sum_{\text{polarization}} \sum_{\text{spins}} |\mathcal{M}|^2$$

where $\mathcal{M} = \mathcal{M}_a + \mathcal{M}_b$ and we have averaged over initial and finals spins and polarizations. Show that

$$A = \frac{e^4}{16} \left(\frac{X_{aa}}{(pk)^2} + \frac{X_{bb}}{(pk')^2} - \frac{X_{ab} + X_{ba}}{(pk)(pk')} \right)$$

(impose the on-shell relations for p, p', k and k') where

$$X_{aa} = \operatorname{tr} \left\{ \gamma^{\mu} (\not p + \not k + m) \gamma^{\nu} (\not p + m) \gamma_{\nu} (\not p + \not k + m) \gamma_{\mu} (\not p' + m) \right\}$$

$$X_{bb} = \operatorname{tr} \left\{ \gamma^{\mu} (\not p - \not k' + m) \gamma^{\nu} (\not p + m) \gamma_{\nu} (\not p - \not k' + m) \gamma_{\mu} (\not p' + m) \right\}$$

$$X_{ab} = \operatorname{tr} \left\{ \gamma^{\mu} (\not p + \not k + m) \gamma^{\nu} (\not p + m) \gamma_{\mu} (\not p - \not k' + m) \gamma_{\nu} (\not p' + m) \right\}$$

$$X_{ba} = \operatorname{tr} \left\{ \gamma^{\mu} (\not p - \not k' + m) \gamma^{\nu} (\not p + m) \gamma_{\mu} (\not p + \not k + m) \gamma_{\nu} (\not p' + m) \right\}.$$

- (iii) Compute X_{aa} , X_{bb} , X_{ab} and X_{ba} in the frame that p = (m, 0, 0, 0).
- (iv) Use your results to find A.