Sprawozdanie z zadania na Informatykę w Medycynie Wykrywanie naczyń dna siatkówki oka Sebastian Michoń 136770, Patryk Jedlikowski 136723

1 Wstęp

Dane sa 3 różne notebooki

- 1. Basic_version.ipynb rozwiązanie na 3.0 baseline model, wykorzystujący podstawowe techniki przetwarzania obrazów, w tym operacje morfologiczne.
- 2. kNN_version.ipynb rozwiązanie na 4.0 wersja, która wykorzystuje podobieństwo (odległość) obserwacji w zbiorze testowym do obserwacji ze zbioru treningowego celem przyporządkowania elementu ze zbioru testowego do odpowiedniej klasy. Skorzystano tutaj z wariancji kolorów i momentów centralnych
- 3. Random_forest.ipynb rozwiązanie na 5.0 wersja używa podzbioru obserwacji do stworzenia pojedynczego drzewa "silnego predyktora" (strong learner), po stworzeniu 50 takich drzew (które nie są ze sobą związane) i procesie trenowania ich używane są one do stwierdzenia, czy dany fragment obrazu jest naczyniem krwionośnym. Do Hyperparameter Tuningu (Znalezienie najlepszej maksymalnej wartości głębokości drzewa) użyta została k-krotna skrośna walidacja.

2 Model podstawowy

- 1. Wczytywany jest obraz w czerni i bieli (w kolejnych wersjach algorytmu kNN i Random forest to się zmieni)
- 2. Wstępne przetwarzanie składa się z: normalizacji histogramu kolorów, denoisingu (który ma praktycznie zerowy wpływ na jakość predykcji) oraz 11-krotnego poddania obrazu wpływowi kernela Gaussa (blura, 5*5) dzięki temu obraz jest dużo bardziej rozmyty, co ułatwi znalezienie tylko interesujących z perspektywy zadania krawędzi.
- 3. Właściwe przetwarzanie obrazu to użycie filtra prewitta do wyróżnienia wszystkich krawędzi, które później, w końcowej fazie będę modyfikował.
- 4. Końcowa faza przetwarzania to, kolejno:
 - (a) Nałożenie zerodowanej maski obiektywu na powstały obraz: erozja rozszerzy czarną przestrzeń (obwódkę) maski obiektywu, następnie wykonana zostanie operacja logicznego & na rozszerzonej masce i obrazie powstałym po użyciu filtra krawędziowego. Dzięki temu usunę z obrazu po filtrowaniu krawędzie na zetknięciu maski z właściwym obrazem.
 - (b) Usunięcie wykrytych krawędzi tam, gdzie obraz jest najjaśniejszy dzięki temu usunę białą plamkę widoczną na każdym obrazie z końcowego efektu przetwarzania. Opiera się to na thresholdingu: usuwam krawędzie tam, gdzie stopień jasności jest wyższy niż $\frac{2}{3}$ maksymalnej jasności obrazu (czyli wyższy niż 165).
 - (c) Dokonuję kolejno morfologicznego domknięcia i erozji obrazu. Dzięki temu grubość krawędzi na obrazie wynikowym zostanie zmniejszona, ponadto zostaną one wypełnione od wewnątrz.

5. Do ewaluacji algorytmu użyto średniej geometrycznej miar: precision i recall. Średnia geometryczna była wygodniejsza od arytmetycznej, ponieważ mocniej zaniżała oszacowaną skuteczność algorytmu, jeśli jedno z recall/precision było bliskie 0. Dla 20 przetwestowanych obrazów z zestawu średnia średnich geometrycznych tych miar to 0.5729099817180116.

3 Klasyfikator odległościowy

- 1. Wczytywany jest obraz zarówno w czerni i bieli, jak i w kolorze
- 2. Nie dokonano wstępnego przetwarzania, ponieważ nie prowadziło ono do zwiększenia skuteczności, wręcz przeciwnie usunięcie normalizacji histogramu kolorów zwiększyło średnią geometryczną precision i recall o 0.05. Być może wynika to z większego rozrzutu miar przy zmianach histogramu przy stałym znaczeniu wariancji między kolorami dla całego dataseta, a co za tym idzie mniejszej użyteczności wariancji po skalowaniu obrazu.
- 3. Aby wytrenować algorytm, wybrany został podzbiór punktów jednego obrazu. Podzbiór był wybierany w taki sposób, że:
 - (a) Losuję koordynaty x, y pojedynczego punkt z obrazu.
 - (b) Jeśli koordynaty te należą do punktu, który nie został jeszcze wybrany i nie należy do maski i albo jest naczyniem krwionośnym, albo losowo wybrana liczba całkowita z przedziału $x \in <0; 3>: x \equiv 0 \pmod 4$ to zostaje dodany do zbioru wybranych punktów. Dzięki temu liczba wybranych punktów z obu klas jest bardziej zrównoważona, bo na 10 wylosowanych par liczb około jedna reprezentuje naczynie krwionośne, a ten algorytm zwiększa tą liczbę. Oczywiście dla zbioru testowego nie używam kategoryzacji na naczynia krwionośne i resztę wyniku używam dopiero do ewaluacji skuteczności. W innym przypadku zaniżałbym liczbę false negatives, zwiększając tym samym kluczowy z perspektywy oceny skuteczności recall.
 - (c) Dla każdego punktu z wybranego zbioru punktów znajdowana jest informacja o nim, w tym: intensywność kolorów w punkcie, wariancje kolorów w obrazie o rozmiarze 10*10, którego centrum jest ten punkt (używany jest padding zerami, aby każdy podobraz, włącznie z tymi na brzegach obrazu mógł uzyskać takie informacje), a także jego momenty centralne, wartość koloru w punkcie na czarno-białym obrazie (aby móc odsiać białą plamkę) i informacja, czy wokół punktu jest zetknięcie dwóch płaszczyzn maski obiektywu aby odsiać krawędzie nie będące naczyniami krwionośnymi wokół maski obiektywu. Nie używałem momentów Hu, ponieważ spowalniały one proces predykcji nie zwiększając skuteczności algorytmu.
 - (d) Dla wybranego zbioru punktów znajdowana jest także informacja o wartośći maski eksperckiej (z naczyniami krwionośnymi) w tym punkcie dla zbioru treningowego do trenowania algorytmu, dla testowego do estymacji jego skuteczności.
 - (e) Przed treningiem dokonana zostaje normalizacja zbioru testowego i treningowego bez niej algorytm osiąga takie same rezultaty, ale proces trenowania i predykcji wykonuje się około 10 razy wolniej. Wagi dla poszczególnych zmiennych są takie same (uniform).
 - (f) Algorytm jest trenowany na wybranych danych z 3 obrazów, po 40000 różnych punktów z każdego. Testowanie dla pojedynczego obrazu także odbywa się z udziałem 40000 punktów
- 4. Analogicznie wybierany jest zbiór informacji do testowanego obrazu. W ramach testowania tak samo jak w poprzednim rozwiązaniu porównywany jest rezultat treningu z maską ekspercką. Rezultaty są niższe o około 0.11 dla średniej geometrycznej w stosunku do tych z zadania poprzedniego, zmniejsza się także accuracy które nie używa w tym algorytmie punktów spoza

maski obiektywu. Punkty z maski zawsze były klasyfikowane jako true negative, co nie ma wpływu ani na precision, ani recall, tylko na accuracy.

4 Las drzew losowych

- 1. Proces wstępnego przetwarzania (czyli jego brak) i wybór punktów jednego obrazu jest analogiczny do kNN-a. Różnicą jest występowanie hyperparameter tuningu używającego k-krotnej skrośnej walidacji i ternary searcha, a także proces treningu.
- 2. Trening odbywa się na wybranych punktach z 3 różnych obrazów, ręcznie wybranych, które były relatywnie niepodobne do siebie to dało możliwość lepszego pokrycia zbioru testowego. W treningu pokryto 600.000 punktów z 3 obrazów ($3*\frac{1}{40}$ obrazka), te obrazy później miały najwyższe średnie geometryczne i accuracy w trakcie testowania wartość średniej geometrycznej wynosiła około 0.65-0.74, accuracy 0.95. Ponadto zaprzestano równoważenia zbioru treningowego w kontekście klas, bo to nie wpływało pozytywnie na jakość tego algorytmu.
- 3. K-skrośna walidacja została użyta do hyperparameter tuningu: z wybranego zestawu treningowego wyodrębniane są losowo 4 zbiory, następnie dla danych a,b 4 lasy są trenowane na 3 grupach i testowane na 4., każdy las testowany na innej z 4 grup. a,b oznaczają maksymalną głębokość drzewa: zakładane jest, że zależność precyzji drzewa od głębokości jest najpierw niemalejąca (im większa głębokość, tym wyższa precyzja drzewo o głębokości 2 uchwyci więcej informacji niż drzewo o głębokości 1), następnie nierosnąca (im większa głębokość, tym większa złożoność pamięciowa i tym więcej zbędnych informacji zapamiętuje drzewo gdyby nie operowanie na lesie, a nie pojedynczym drzewie, niechybnie zaszedłby overfitting). To daje podstawy do użycia ternary searcha szukam dla przedziału < l; r > możliwych wartości maksymalnej głębokości wartości maksymalizującej średnią średnich geometrycznych recall i precision na zbiorach testowych. Wartość ta będzie użyta jako hiperparametr w ostatecznym trenowaniu algorytmu na całym zbiorze treningowym. Poszukuję jej tak:
 - (a) znajduję $a = \lfloor \frac{r}{3} \rfloor, b = \lfloor \frac{2*r}{3} \rfloor$
 - (b) Jeśli wartość funkcji f (średnia średnich geometrycznych) jest większa dla f(a) to znaczy, że funkcja maleje już gdzieś na przedziale < a; b>, a zatem osiąga supremum w przedziale < 0; b> przypisuję zatem r=b
 - (c) Analogicznie, dla f(b) > f(a) funkcja rośnie gdzieś na przedziale < a; b >, a zatem osiąga supremum w przedziale < a; r > przypisuję zatem l = a
 - (d) Jeśli f(a)=f(b), to supremum musi leżeć pomiędzy nimi przypisuję l=a, r=b

5 Tablica wynków

Oznaczenia i skróty:

- 1. title nazwa obrazka
- 2. tp True positive liczba takich rezultatów w wybranym podzbiorze
- 3. tn True negative
- 4. fp False positive
- 5. fn False negative
- 6. acc Accuracy = $\frac{tp+tn}{tp+tn+fp+fn}$

7. prec - Precision =
$$\frac{tp}{tp+fp}$$

8. rec - Recall =
$$\frac{tp}{tp+fn}$$

9. sgeom - średnia geometryczna rec i prec: $\sqrt{rec*prec}$

 ${\bf W}$ ostatniej linijce tablicy algorytmu umieszczono średnie wyliczanych parametrów.

Table 1: Efektywność poszczególnych algorytmów: Random Forest bez preprocessingu. Pogrubiono obrazy dane na zbiorze treningowym

title	tp	tn	fp	fn	acc	prec	rec	sgeom
RFC-01_dr	6204	186538	5976	1283	0.9637	0.8286	0.5094	0.6497
RFC-02_dr	6247	180672	8819	4263	0.9346	0.5944	0.4146	0.4964
RFC-03_dr	4871	181496	9575	4059	0.9318	0.5455	0.3372	0.4289
RFC-04_dr	3496	183237	9814	3454	0.9337	0.5030	0.2627	0.3635
RFC-05_dr	12091	101481	2851	83578	0.5679	0.1264	0.8092	0.3198
RFC-06_dr	14173	103494	3752	78582	0.5883	0.1528	0.7907	0.3476
RFC-07_dr	9181	177662	9162	3996	0.9342	0.6967	0.5005	0.5905
$ m RFC$ -08 $ m _dr$	11053	180594	6866	1488	0.9582	0.8813	0.6168	0.7373
RFC-09_dr	14940	11829	1037	172195	0.1338	0.0798	0.9351	0.2732
RFC-10_dr	11718	167469	9229	11585	0.8959	0.5029	0.5594	0.5304
RFC-11_dr	14505	159607	5738	20151	0.8706	0.4185	0.7165	0.5476
RFC-12_dr	8341	182453	7788	1419	0.9540	0.8546	0.5171	0.6648
RFC-13_dr	4974	181989	11250	1788	0.9348	0.7356	0.3066	0.4749
RFC-14_dr	9412	177742	8556	4291	0.9358	0.6869	0.5238	0.5998
RFC-01_h	18471	99702	5413	76415	0.5909	0.1947	0.7734	0.3880
RFC-02_h	15813	158602	7551	18035	0.8721	0.4672	0.6768	0.5623
RFC-03_h	21357	31084	3554	144006	0.2622	0.1292	0.8573	0.3328
RFC-04_h	19172	29259	2921	148649	0.2422	0.1142	0.8678	0.3149
RFC-05_h	7913	175137	13449	3502	0.9152	0.6932	0.3704	0.5067
RFC-06_h	11401	169258	12829	6513	0.9033	0.6364	0.4705	0.5472
RFC-ALL	0	0	0	0	0.7662	0.4921	0.5908	0.4838

Table 2: Efektywność poszczególnych algorytmów: kNN bez preprocessingu. Pogrubiono obrazy dane na zbiorze treningowym

title	tp	tn	fp	fn	acc	prec	rec	sgeom
kNN-01_dr	1281	36302	1046	1372	0.9396	0.4828	0.5505	0.5156
kNN-02_dr	1502	35273	1567	1659	0.9194	0.4752	0.4894	0.4822
kNN-03_dr	767	36344	2125	765	0.9278	0.5007	0.2652	0.3644
kNN-04_dr	1133	35736	1634	1498	0.9217	0.4306	0.4095	0.4199
kNN-05_dr	2241	31646	620	5494	0.8472	0.2897	0.7833	0.4764
kNN-06_dr	2494	29520	1046	6941	0.8003	0.2643	0.7045	0.4315
kNN-07_dr	1867	34594	1700	1840	0.9115	0.5036	0.5234	0.5134
kNN-08_dr	924	35613	2679	785	0.9134	0.5407	0.2565	0.3724
kNN-09_dr	333	36439	2884	345	0.9193	0.4912	0.1035	0.2255
kNN-10_dr	2498	33478	1708	2317	0.8994	0.5188	0.5939	0.5551
kNN-11_dr	2610	33391	1365	2635	0.9000	0.4976	0.6566	0.5716
kNN-12_dr	558	36266	2655	522	0.9206	0.5167	0.1737	0.2995
kNN-13_dr	587	36243	2590	581	0.9207	0.5026	0.1848	0.3047
kNN-14_dr	947	35477	2686	891	0.9106	0.5152	0.2607	0.3665
kNN-01_h	3291	33010	1619	2081	0.9075	0.6126	0.6703	0.6408
kNN-02_h	3342	33855	1288	1516	0.9299	0.6879	0.7218	0.7047
kNN-03_h	4081	20177	859	14884	0.6064	0.2152	0.8261	0.4216
kNN-04_h	3980	21491	554	13976	0.6368	0.2217	0.8778	0.4411
kNN-05_h	1688	35051	2667	595	0.9185	0.7394	0.3876	0.5353
kNN-06_h	2712	34004	2167	1118	0.9179	0.7081	0.5559	0.6274
kNN-ALL	0	0	0	0	0.8784	0.4857	0.4997	0.4635

Table 3: Efektywność poszczególnych algorytmów: Image processing

title	tp	tn	fp	fn	acc	prec	rec	sgeom
Proc-01_dr	305250	7460420	111032	308642	0.9487	0.4972	0.7333	0.6038
Proc-02_dr	342994	7292673	178884	370793	0.9328	0.4805	0.6572	0.5620
Proc-03_dr	267790	7150689	226610	540255	0.9063	0.3314	0.5416	0.4237
Proc-04_dr	318585	6729966	143594	993199	0.8611	0.2429	0.6893	0.4092
Proc-05_dr	367518	7374879	141460	301487	0.9459	0.5494	0.7221	0.6298
Proc-06_dr	357308	7115321	260658	452057	0.9129	0.4415	0.5782	0.5052
Proc-07_dr	508672	6931136	127687	617849	0.9089	0.4515	0.7993	0.6008
Proc-08_dr	404988	7166842	210789	402725	0.9250	0.5014	0.6577	0.5743
Proc-09_dr	219287	7525484	335160	105413	0.9462	0.6754	0.3955	0.5168
Proc-10_dr	511777	7055860	203112	414595	0.9245	0.5525	0.7159	0.6289
Proc-11_dr	476029	7165393	216908	327014	0.9335	0.5928	0.6870	0.6381
Proc-12_dr	332399	7180235	224325	448385	0.9178	0.4257	0.5971	0.5042
Proc-13_dr	363293	7330776	196186	295089	0.9400	0.5518	0.6493	0.5986
Proc-14_dr	452117	6875380	172819	685028	0.8952	0.3976	0.7235	0.5363
Proc-01_h	535643	6877202	298245	474254	0.9056	0.5304	0.6423	0.5837
Proc-02_h	580357	6516935	228081	859971	0.8671	0.4029	0.7179	0.5378
Proc-03_h	494976	7020955	369195	300218	0.9182	0.6225	0.5728	0.5971
Proc-04_h	526077	6993019	245524	420724	0.9186	0.5556	0.6818	0.6155
Proc-05_h	458840	7310816	279946	135742	0.9492	0.7717	0.6211	0.6923
Proc-06_h	611006	7048768	218864	306706	0.9358	0.6658	0.7363	0.7001
Proc-ALL	0	0	0	0	0.9197	0.5120	0.6560	0.5729

Figure 1: Pełny obrazek poddany standardowemu przetwarzaniu obrazu - więcej przykładów w notebooku jupytera

Figure 2: Przykład działania algorytmu kNN - z lewej efekt kNN, z prawej maska ekspercka

Figure 3: Przykład działania algorytmu Random Forest - z lewej efekt lasu, z prawej maska ekspercka

6 Wnioski

- 1. Proste rozwiązanie oparte na manualnym przetwarzaniu obrazu osiągnęło satysfakcjonującą skuteczność o średniej geometrycznej rzędu 0.58.
- 2. Rozwiązanie oparte na lesie drzew decyzyjnych działa bardzo dobrze na danych, których podzbiór (choćby rzędu $\frac{1}{200}$) był dany na treningu algorytmu. W takich przypadkach rozwiązanie spisywało się lepiej niż każdy inny model. W pozostałych przypadkach nie funkcjonowało tak dobrze wynika to zapewne z różnorodności danych, w szczególności związanych z dodatkowymi plamkami na obrazach. Problemu tego nie rozwiązuje, a być może nawet pogłębia normalizacja.
- 3. Rozwiązanie oparte na k-tym najbliższym sąsiedzie działało przeciętnie nawet na danych, które widziało, natomiast było dużo bardziej odporne na dane odstające, wcześniej niewidziane accuracy nigdy nie spadło poniżej 0.6, czego nie można powiedzieć o lesie drzew decyzyjnych.
- 4. Aby algorytmy te działały lepiej, należałoby albo uzyskać lepsze dane, albo trenować na dużo większym zestawie treningowym. Dotyczy to w mniejszym stopniu kNN-a niż losowego lasu, który zależy tylko i wyłącznie od ilości danych zwizanych z obrazami, które testuje. Lasy drzew losowych rzadko są używane do image processingu, ponieważ po przekroczeniu pewnej ilości informacji właściwie nie są w stanie się nauczyć nowych wzorców, w przeciwieństwie do sieci neuronowych. Nie dało się tego zauważyć w tym projekcie, ponieważ operowano na bardzo małym zbiorze treningowym, przez co las losowy nie pokazał pełni swoich możliwości.