Machine Learning, Tutorial 5 University of Bern

Abdelhak Lemkhenter, abdelhak.lemkhenter@inf.unibe.ch

23/10/2019

SVM

1. Suppose $K_1(x,y)$ and $K_2(x,y)$ are valid kernels. Show that each of the following items are valid kernels.

(a)
$$K(x,y) = \alpha K_1(x,y)$$
 where $\alpha \ge 0$

(b)
$$K(x,y) = K_1(x,y) + K_2(x,y)$$
.

(c)
$$K(x,y) = \alpha K_1(x,y) + \beta K_2(x,y)$$
 where $\alpha, \beta \geq 0$

(d)
$$K(x,y) = K_1(x,y)K_2(x,y)$$

(e)
$$K(x,y) = g(x)g(y)$$
 for $g: \mathbb{R}^n \to \mathbb{R}$

(f)
$$K(x,y) = (x^{\top}y + d)^d$$
 (polynomial kernel)

(g)
$$\exp\left(\frac{-||x-y||^2}{\sigma^2}\right)$$
 (radial basis function kernel)

Solution.
$$K_1(x,y) = \phi_1(x)^{\top} \phi_1(y), K_2(x,y) = \phi_2(x)^{\top} \phi_2(y).$$

(a)

$$\alpha K_1(x,y) = \alpha \phi_1(x)^{\top} \phi_1(y) = (\sqrt{\alpha} \phi_1(x)^{\top})(\sqrt{\alpha} \phi_1(y))$$

(b) $\begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}$ is the column vector obtained by concatenating $\phi_1(x)$ and $\phi_2(x)$.

$$K(x,y) = \phi_1(x)^{\top} \phi_1(y) + \phi_2(x)^{\top} \phi_2(y) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}^{\top} \begin{bmatrix} \phi_1(y) \\ \phi_2(y) \end{bmatrix} = \psi(x)^{\top} \psi(y)$$

(c) Follows from (a) and (b)

(d)

$$K_1(x,y)K_2(x,y) = \sum_{i=1}^n \phi_{1i}(x)\phi_{1i}(y) \sum_{j=1}^m \phi_{2j}(x)\phi_{2j}(y) =$$

$$\sum_{i=1}^n \sum_{j=1}^m (\phi_{1i}(x)\phi_{2j}(x))(\phi_{1i}(y)\phi_{2j}(y)) =$$

$$\sum_{k=1}^{mn} \phi_{12k}(x)\phi_{12k}(y) = \phi_{12}(x)^\top \phi_{12}(y)$$

(e) set
$$\phi(x) = g(x)$$

(f)

$$K(x,y) = \sum_{s=0}^{d} \begin{bmatrix} d \\ s \end{bmatrix} \alpha^{d-s} (x^{\top} y)^{s}$$

 $x^{\top}y$ is a kernel. using (d), (b) and (a) the proof simply follows.

(g)

$$K(x,y) = \exp\left(\frac{-||x-y||^2}{\sigma^2}\right) = \exp\left(\frac{-||x||^2||-y||^2 + 2x^\top y}{\sigma^2}\right)$$
$$= \exp\left(\frac{-||x||^2}{\sigma^2}\right) \exp\left(\frac{-||y||^2}{\sigma^2}\right) \exp\left(\frac{2x^\top y}{\sigma^2}\right)$$
$$= g(x)g(y) \sum_{i=0}^{\infty} \frac{2}{\sigma^2 i!} (x^\top y)^i$$

We can see that RBF kernel is formed by taking an infinite sum over polynomial kernels.

2. Consider the constrained minimization problem below. Solve it using the KKT conditions.

$$\min_{x,y} \qquad x^2 + y^2$$
 subject to
$$(x-3)^2 + y^2 \le 4$$

Solution

The Lagrangian of the problem is $L(\alpha, x, y) = x^2 + y^2 + \alpha((x-3)^2 + y^2 - 4)$. The KKT conditions are:

primal feasibility: $(x-3)^2 + y^2 \le 4$

dual feasibility: $\alpha \geq 0$

complementary slackness: $\alpha((x-3)^2 + y^2 - 4) = 0$

gradient of Lagrangian vanishes: $\frac{\partial L}{\partial x} = 2x + 2\alpha(x-3) = 0$

 $\frac{\partial L}{\partial y} = 2y + 2\alpha y = 0$

Because $1 + \alpha \ge 1 + 0 > 0$, the only way to satisfy the last equation $(1 + \alpha)y = 0$, if we set y = 0. According to the complementary slackness, either α or the other term is 0. If $\alpha = 0$, then x = 0 (from the 4^{th} equation). When x = 0 and y = 0, the primal feasibility is not satisfied, therefore $\alpha > 0$, therefore $(x - 3)^2 - 4 = 0$. This leads to x = 1 or x = 5, but only x = 1 is feasible. The solution is therefore x = 1 and y = 0.

Interpretation of the complementary slackness condition for convex optimization The general problem we are trying to solve is the given by equation 1 where f and h are convex functions. Let's note v^* and \hat{v}^* the solutions of the unconstrained and constrained problem respectively. We define the feasible set as $\{v|h(v) \leq 0\}$.

$$min_v f(v)$$
 (1) s.t. $h(v) \le 0$

We have two case. 1) $h(v^*) \le 0$. In this case, v^* is in the feasible set so \hat{v}^* should be equal to v^* . Therefore h should have no effect on the optimum of the Lagrangian, i.e $\alpha = 0$. 2) $h(v^*) > 0$. Therefore v^* is not a feasible solution, since the feasible set is convex, therefore \hat{v}^* will be located on the boundary of the feasible set, i.e. $h(\hat{v}^*)$. In both cases, the complementary slackness condition is satisfied.

Figure 1: Illustration of case 1: $h(x,y)=((x-3)^2+y^2-36)$. $v^*=\hat{v}^*=$ point A

Figure 2: Illustration of case 2: $h(x,y)=((x-3)^2+y^2-4)$. $v^*=$ point A, $\hat{v}^*=$ point B

3. Consider the following data set

- Suppose we use the SVM with a polynomial kernel for classification. What is the minimum degree of polynomial to achieve 0 training error? Explain your reasoning. **solution.** Four .Because mapping function has to cut x axis at least four times in the boundary of classes.
- Determine the four most probable support vectors with your suggested kernel. solution.

