Chapter 6. Convergence of Random Variables and Monte Carlo Methods

6.1 Type of convergence

The two main types of convergence are defined as follows.

Let X_1, X_n, \cdots be a sequence of r.v.s, and X be another r.v.

- 1. X_n converges to X in probability, denoted by $X_n \stackrel{P}{\longrightarrow} X$, if for any constant $\epsilon > 0$, $P(|X_n X| > \epsilon) \to 0$ as $n \to \infty$.
- 2. X_n converges to X in distribution, denoted by $X_n \stackrel{D}{\longrightarrow} X$, if $\lim_n F_{X_n}(x) = F_X(x)$ for any x (at which F_X is continuous).

Remarks. (i) X may be a constant (as a constant is a r.v. with probability mass concentrated on a single point.)

(ii) If $X_n \xrightarrow{P} X$, it also holds that $X_n \xrightarrow{D} X$, but not visa versa.

Example 1. Let $X \sim N(0,1)$ and $X_n = -X$ for all $n \ge 1$. Then $F_{X_n} \equiv F_X$. Hence $X_n \xrightarrow{D} X$. But $X_n \not\stackrel{P}{\longleftrightarrow} X$, as for any $\epsilon > 0$

$$P(|X_n - X| > \epsilon) = P(2|X| > \epsilon) = P(|X| > \epsilon/2) > 0.$$

However if $X_n \stackrel{D}{\longrightarrow} c$ and c is a constant, it holds that $X_n \stackrel{P}{\longrightarrow} c$.

Note. We need the two types of convergence.

For example, let $\widehat{\theta}_n = h(X_1, \dots, X_n)$ be an estimator for θ .

Naturally we require $\widehat{\theta}_n \stackrel{P}{\longrightarrow} \theta$.

But $\widehat{\theta}_n$ is a random variable, it takes different values with different samples. To consider how good it is as an estimator for θ , we hope that the distribution of $(\widehat{\theta}_n - \theta)$ becomes more concentrated around 0 when n increases.

(iii) It is sometimes more convenient to consider the mean square convergence:

$$E\{(X_n - X)^2\} \to 0$$
 as $n \to \infty$,

denoted by $X_n \xrightarrow{m.s.} X$. It follows from Markov's inequality that

$$P(|X_n - X| > \epsilon) = P(|X_n - X|^2 > \epsilon^2) \le \frac{E\{|X_n - X|^2\}}{\epsilon^2}.$$

Hence if $X_n \stackrel{m.s.}{\longrightarrow} X$, it also holds that $X_n \stackrel{P}{\longrightarrow} X$, but not visa versa.

Example 2. Let $U \sim U(0,1)$ and $X_n = nI_{\{U<1/n\}}$. Then $P(|X_n| > \epsilon) \le P(U < 1/n) = 1/n \to 0$, hence $X_n \xrightarrow{P} 0$. However

$$E(X_n^2) = n^2 P(U < 1/n) = n \to \infty.$$

Hence $X_n \stackrel{m.s.}{\longleftrightarrow} 0$.

(iv) $X_n \xrightarrow{P} X$ does not imply $EX_n \to EX$.

Example 3. Let $X_n = n$ with probability 1/n and 0 with probability 1 - 1/n. Then $X_n \stackrel{P}{\longrightarrow} 0$. However $EX_n = 1 \not\rightarrow 0$.

(v) When $X_n \xrightarrow{D} X$, we also write $X_n \xrightarrow{D} F_X$, where F_X is the CDF of X.

However the notation $X_n \stackrel{P}{\longrightarrow} F_X$ does not make sense!

Slutsky's Theorem. Let X_n, Y_n, X, Y be r.v.s, g be a continuous function, and c is a constant.

(i) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$, $X_n Y_n \xrightarrow{P} XY$, and $g(X_n) \xrightarrow{P} g(X)$.

(ii) If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} c$, then $X_n + Y_n \xrightarrow{D} X + c$, $X_n Y_n \xrightarrow{D} cX$, and $g(X_n) \xrightarrow{D} g(X)$.

Note. $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$ does <u>not</u> in general imply $X_n + Y_n \xrightarrow{D} X + Y$.

Slutzky's theorem is very useful, as it implies, e.g., $\bar{X}_n^2 \stackrel{P}{\longrightarrow} \mu^2$, and $\bar{X}_n/S_n \stackrel{P}{\longrightarrow} \mu/\sigma$ (see Exercise 4.3).

Recall the limits of sequences of real numbers x_1, x_2, \cdots : if $\lim_{n\to\infty} x_n = x$ (or, simply, $x_n \to x$), we mean $|x_n - x| \to 0$ as $n \to \infty$.

For a sequence of r.v.s X_1, X_2, \dots , we say X is the limit of $\{X_n\}$ if $|X_n - X| \to 0$. Now there are some subtle issues here:

- (i) $|X_n X|$ is a r.v., it takes different values in the sample space Ω . Therefore $|X_n X| \to 0$ should hold (almost) on the entirely sample space. This calls for some probability statement.
- (ii) Since r.v.s have distributions, we may also consider $F_{X_n}(x) \to F_X(x)$ for all x.

Recall two simple facts: for any r.v.s Y_1, \dots, Y_n and constants a_1, \dots, a_n ,

$$E\left(\sum_{i=1}^{n}a_{i}Y_{i}\right)=\sum_{i=1}^{n}a_{i}EY_{i},\tag{1}$$

and if Y_1, \dots, Y_n are uncorrelated (i.e. $Cov(Y_i, Y_j) = 0 \ \forall \ i \neq j$)

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} Y_{i}\right) = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}(Y_{i}). \tag{2}$$

Proof for (2). First note that for any r.v. U, Var(U) = Var(U - EU). Because of (1), we may assume $EY_i = 0$ for all i. Thus

$$\operatorname{Var}(\sum_{i=1}^{n} a_{i}Y_{i}) = E(\sum_{i=1}^{n} a_{i}Y_{i})^{2} = E(\sum_{i=1}^{n} a_{i}^{2}Y_{i}^{2} + \sum_{i \neq j} a_{i}a_{j}Y_{i}Y_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2}E(Y_{i}^{2}) + \sum_{i \neq j} a_{i}a_{j}E(Y_{i}Y_{j}) = \sum_{i=1}^{n} a_{i}^{2}\operatorname{Var}(Y_{i}) + \sum_{i \neq j} a_{i}a_{j}(EY_{i})(EY_{j})$$

$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{Var}(Y_{i}).$$

6.2 Two important limit theorems: LLN and CLT

Let X_1, X_2, \cdots be IID with mean μ and variance $\sigma^2 \in (0, \infty)$. Let \bar{X}_n denote the sample mean:

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n), \qquad n = 1, 2, \dots.$$

We recall two simple facts:

$$E\bar{X}_n = \mu,$$
 $Var(\bar{X}_n) = \sigma^2/n.$

The (weak) Law of Large Numbers (LLN):

As
$$n \to \infty$$
, $\bar{X}_n \xrightarrow{P} \mu$.

The LLN is very natural: When the sample size increases, the sample mean becomes more and more close to the population mean. Furthermore, the distribution of \bar{X}_n degenerates to a single point distribution at μ .

Proof. It follows from Chebyshev's inequality directly.

To visualize the LLN, we simulate the sample paths for

```
> x <- rexp(10000) # generate 10000 random numbers from Exp(1)
> summary(x)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001666 0.2861000 0.7098000 1.0220000 1.4230000 8.6990000
> n <- 1:10000
> ms <- n
> for(i in 1:10000) ms[i] <- mean(x[1:i])
> plot(n, ms, type='l', ylab=expression(bar(Xn)),
    main='Sample means of Exponential Distribution')
> abline(1,0,lty=2) # draw a horizontal line at y=1
```

Sample means of Exponential Distribution

We repeat this exercise for Poisson(2):

Sample means of Poisson(2)

The Central Limit Theorem (CLT):

As
$$n \to \infty$$
, $\sqrt{n}(\bar{X}_n - \mu)/\sigma \xrightarrow{D} N(0, 1)$.

Note the CLT can be expressed as

$$P\left\{\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \le x\right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du = \Phi(x)$$

for any x, as $n \to \infty$, i.e. the *standardized* sample mean is approximately standard normal when the sample size is large. Hence in addition to $\sqrt{n}(\bar{X}_n - \mu)/\sigma \approx N(0, 1)$, we also see the expressions such as

$$\bar{X}_n \approx N(\mu, \sigma^2/n), \quad \bar{X}_n - \mu \approx N(0, \sigma^2/n), \quad \sqrt{n}(\bar{X}_n - \mu) \approx N(0, \sigma^2).$$

Note. The CLT is one of the reasons why normal distribution is the most useful and important distribution in statistics.

Example 4. If we take a sample X_1, \dots, X_n from U(0, 1), the standardized histogram will resemble the density function $f(x) = I_{(0,1)}(x)$, and the sample mean $\bar{X}_n = n^{-1} \sum_i X_i$ will be close to $\mu = EX_i = 0.5$, provided n is sufficiently large.

However the CLT implies $\bar{X}_n \approx N(0.5, 1/(12n))$ as $Var(X_i) = 1/12$. What does this mean?

If we take many samples of size n and compute the sample mean for each sample, we then obtain many sample means. The standardized histogram of those samples means resembles the PDF of N(0.5, 1/(12n)) provided n is sufficiently large.

```
> x <- runif(50000) # generate 50,000 random numbers from U(0,1)
> hist(x, probability=T) # plot histogram of the 50,000 data
```

```
> z <- seq(0,1,0.01)
> lines(z,dunif(z)) # superimpose the PDF of U(0,1)
> x <- matrix(x, ncol=500) # line up x into a 100x500 matrix
           # each column represents a sample of size 100
> par(mar=c(3,3,3,2), mfrow=c(2,2))  # plot 4 figures together
> meanx <- 1:500</pre>
> for(i in 1:500) meanx[i] <- mean(x[1:5,i])</pre>
        # compute the mean of the first 5 data in each column
> hist(meanx, probability=T, nclass=20, main='n=5')
> lines(z,dnorm(z,1/2,sqrt(1/(12*5))))
        # superimpose the PDF of N(.5, 1/(12*5))
> for(i in 1:500) meanx[i] <- mean(x[1:20,i])
> hist(meanx, probability=T, nclass=20, main='n=20')
> lines(z,dnorm(z,1/2,sqrt(1/(12*20))))
> for(i in 1:500) meanx[i] <- mean(x[1:60,i])</pre>
> hist(meanx, probability=T, nclass=20, main='n=60')
> lines(z,dnorm(z,1/2,sqrt(1/(12*60))))
> for(i in 1:500) meanx[i] <- mean(x[,i])</pre>
> hist(meanx, probability=T, nclass=20, main='n=100')
> lines(z,dnorm(z,1/2,sqrt(1/(12*100))))
```


Example 5. Suppose a large box contains 10,000 poker chips distributed as follows

Values of chips	\$5	\$10	\$15	\$30
No. of chips	5000	3000	1000	1000

Take one chip randomly from the box, let X be its nomination. Then its probability function is

X	5	10	15	30
probability	0.5	0.3	0.1	0.1

Furthermore $\mu = EX = 10$ and $\sigma^2 = Var(X) = 55$.

We draw 500 samples from this distribution, compute the sample means \bar{X}_n . When n is sufficiently large, we expect $\bar{X}_n \approx N(10, 55/n)$.

We create a plain text file 'porkerChip.r' as below, which illustrate the central limiting phenomenon for the samples from this simple distribution.

```
v<- runif(50000) # generate 50,000 U(0,1) random numbers</pre>
X < - V
for(i in 1:50000)
    if(y[i]<0.5) x[i]<-5 else {
        if(y[i]<0.8) x[i]<-10 else {
            ifelse(y[i]<0.9, x[i]<-15, x[i]<-30)
      # By now x are random numbers from the required distribution
        # of the poker chips
cat("mean", mean(x), "\n")
cat("variance", var(x), "\n")
x \leftarrow matrix(x, ncol=500) # line up x into a 100x500 matrix
                           # each column represents a sample of size 100
par(mar=c(3,3,3,2), mfrow=c(2,2)) # plot 4 figures together
meanx <- 1:500
```

```
z < -seq(5, 25, 0.1)
for(i in 1:500) meanx[i] <- mean(x[1:5,i])
        # compute the mean of the first 5 data in each column
hist(meanx, probability=T, main='n=5')
lines(z,dnorm(z,10,sqrt(55/5)))
       # draw N(10, 55/n) together with the histogram
for(i in 1:500) meanx[i] <- mean(x[1:20,i])
        # compute the mean of the first 20 data in each column
hist(meanx, probability=T, main='n=20')
lines(z,dnorm(z,10,sqrt(55/20)))
for(i in 1:500) meanx[i] <- mean(x[1:60,i])
        # compute the mean of the first 60 data in each column
hist(meanx, probability=T, main='n=60')
lines(z,dnorm(z,10,sqrt(55/60)))
for(i in 1:500) meanx[i] <- mean(x[,i])</pre>
        # compute the mean of the whole 100 data in each column
hist(meanx, probability=T, main='n=100')
```

lines(z,dnorm(z,10,**sqrt**(55/100)))

Example 6. Suppose X_1, \dots, X_n is an IID sample. A natural estimator for the population mean $\mu = EX_i$ is the sample mean \bar{X}_n . By the CLT, we can easily gauge the error of this estimation as follows:

$$P(|\bar{X}_n - \mu| > \epsilon) = P(\sqrt{n}|\bar{X}_n - \mu|/\sigma > \sqrt{n\epsilon/\sigma}) \approx P\{|N(0, 1)| > \sqrt{n\epsilon/\sigma}\}$$
$$= 2P\{N(0, 1) > \sqrt{n\epsilon/\sigma}\} = 2\{1 - \Phi(\sqrt{n\epsilon/\sigma})\}.$$

With ϵ , n given, we can find the value $\Phi(\sqrt{n}\epsilon/\sigma)$ from the table for standard normal distribution, if we know σ .

Remarks. (i) Let $\epsilon = 2\sigma/\sqrt{n} = 2 \times \text{STD}(\bar{X}_n)$ (as $\text{Var}(\bar{X}_n) = \sigma^2/n$), $P(|\bar{X}_n - \mu| < 2\sigma/\sqrt{n}) \approx 2\Phi(2) - 1 = 0.954$. Hence

If one estimates μ by \bar{X}_n and repeats it a large number times, about the 95% of times μ is within $2 \times STD(\bar{X}_n)$ -distance from \bar{X}_n .

(ii) Typically $\sigma^2 = \text{Var}(X_i)$ is unknown in practice. We estimate it using the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

In fact it still holds that

$$\sqrt{n}(\bar{X}_n - \mu)/S_n \xrightarrow{D} N(0, 1), \quad \text{as } n \to \infty.$$

Similar to Example 6 above, we have now

$$P(|\bar{X}_n - \mu| > \epsilon) \approx 2\{1 - \Phi(\sqrt{n\epsilon}/S_n)\}$$

Let
$$\epsilon = S_n/\sqrt{n}$$
, $P(|\bar{X}_n - \mu| > \epsilon) \approx 2\{1 - \Phi(1)\} = 0.317$, or $P(|\bar{X}_n - \mu| < S_n/\sqrt{n}) \approx 1 - 0.317 = 0.683$.

Let $\epsilon = 2S_n/\sqrt{n}$, we obtain:

$$P(|\bar{X}_n - \mu| < 2S_n/\sqrt{n}) \approx 0.954.$$

Hence

If one estimates μ by \bar{X}_n and repeats it a large number times, about the 95% of times the true value is within $(2S_n/\sqrt{n})$ -distance from \bar{X}_n .

Standard Error: $SE(\bar{X}_n) \equiv S_n/\sqrt{n}$ is called the standard error of the sample mean. Note

$$SE(\bar{X}_n) = \left\{ \frac{1}{n(n-1)} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \right\}^{1/2}.$$

The Delta Method. If $\sqrt{n}(Y_n - \mu)/\sigma \stackrel{D}{\longrightarrow} N(0,1)$ and g is a differentiable function and $g'(\mu) \neq 0$. Then

$$\frac{\sqrt{n}\{g(Y_n)-g(\mu)\}}{|g'(\mu)|\sigma}\stackrel{D}{\longrightarrow} N(0,1).$$

Hence if $Y_n \approx N(\mu, \sigma^2/n)$, then $g(Y_n) \approx N(g(\mu), (g'(\mu))^2 \sigma^2/n)$.

Example 7. Suppose $\sqrt{n}(\bar{X}_n - \mu)/\sigma \xrightarrow{D} N(0, 1)$ and $W_n = e^{\bar{X}_n} = g(\bar{X}_n)$ with $g(x) = e^x$. Since $g'(x) = e^x$, the Delta method implies $W_n \approx N(e^\mu, e^{2\mu}\sigma^2/n)$.

6.3 Monte Carlo methods

6.3.1 Basic Monte Carlo integration

The LLN may be interpreted as

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \int x f(x) dx$$

if $\{X_1, \dots, X_n\}$ is a sample from the distribution with PDF f.

In general, for any function h, we apply the LLN to the sample $H_i \equiv h(X_i)$ $(i = 1, \dots, n)$, leading to

$$\bar{H}_n \equiv \frac{1}{n} \sum_{i=1}^n h(X_i) \xrightarrow{P} E\{h(X_1)\} = \int h(x)f(x)dx. \tag{3}$$

Monte Carlo integration method: generate a sample $\{X_1, \dots, X_n\}$ from PDF f, then the integral on the RHS of (3) may be approximated by the mean \bar{H}_n .

To measure the accuracy of this Monte Carlo approximation, we may use the standard deviation σ/\sqrt{n} (if we know $\sigma^2 = \text{Var}(H_1)$), or the standard error:

$$\left(\frac{1}{n(n-1)}\sum_{i=1}^{n}\{h(X_i)-\bar{H}_n\}^2\right)^{1/2}.$$

Example 8. (Area of the quarter circle) The area of a quarter of the unit circle is $\pi/4 = 0.7854$.

Suppose we do not know the answer. It can be written as

$$J \equiv \int_0^1 \sqrt{1 - x^2} dx.$$

However it is not obvious how to solve this integral. We provide a Monte Carlo solution. Let

$$h(x) = \sqrt{1 - x^2}, \quad f(x) = I_{(0,1)}(x).$$

Then f is the PDF of U(0, 1) and

$$J = \int h(x)f(x)dx = E\{h(X)\},\$$

where $X \sim U(0, 1)$. Hence we generate a sample from U(0, 1) and estimate J by

$$\widehat{J} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{1 - X_i^2}, \quad SE = \left\{ \frac{1}{n(n-1)} \sum_{i=1}^{n} (\sqrt{1 - X_i^2} - \widehat{J})^2 \right\}^{1/2}.$$

The STD of \widehat{J} is σ/\sqrt{n} , where

$$\sigma^2 = \text{Var}(\sqrt{1 - X_1^2}) = E(1 - X_1^2) - (\frac{\pi}{4})^2 = \frac{2}{3} - (\frac{\pi}{4})^2 = 0.0498.$$

The R-function 'quartercircle.r' below perform this Monte Carlo calculation. It is used to produce the table

n	1000	2000	4000	8000
\widehat{J}	.7950	.7834	.7841	.7858
STD	.0071	.0050	.0035	.0025
SE	.0072	.0050	.0036	.0025

R-function 'quartercircle.r':

You may call the function to perform the simulation:

```
> source("quartercircle.r")
> t=quartercircle(2000)
> summary(t)
           Length Class Mode
                  -none- numeric
quarterarea 1
STD
           1 -none- numeric
    1 -none- numeric
SE
SampleSize 1
                 -none- numeric
> t
$quarterarea
[1] 0.7913048
$STD
[1] 0.00498999
$SE
[1] 0.004946009
$SampleSize
[1] 2000
> t$quarterarea
[1] 0.7913048
```

6.3.2 Composition (Sequential sampling)

Let $X \sim f_X(\cdot)$, $Y|X \sim f_{Y|X}(\cdot|X)$. To obtain

$$Y_1, \cdots, Y_n \sim_{iid} f_Y(\cdot) \equiv \int f_{Y|X}(\cdot|x) f_X(x) dx,$$

we may repeat the composition below *n* times:

Step 1. Draw X_i from $f_X(\cdot)$,

Step 2. Draw Y_i from $f_{Y|X}(\cdot|X_i)$.

Then $\{(X_i, Y_i), 1 \le i \le n\}$ are i.i.d. from the joint density

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x).$$

Hence Y_1, \dots, Y_n are i.i.d. from its marginal density $f_Y(\cdot)$.

Remarks.

- (a) This method is applied when it is difficult to sample directly from $f_Y(\cdot)$.
- (b) With $Y_1, \dots, Y_n \sim_{iid} f_Y(y)$, we may estimate E(Y) by $n^{-1} \sum_i \mathbf{Y}_i$. In general we estimate $E\{\psi(Y)\}$, for a known $\psi(\cdot)$, by

$$\bar{\psi} \equiv \frac{1}{n} \sum_{i=1}^{n} \psi(Y_i),$$

with the standard error

$$\frac{1}{\sqrt{n(n-1)}} \left[\sum_{i=1}^{n} \{ \psi(Y_i) - \bar{\psi} \}^2 \right]^{1/2}.$$

(c) The density function $f_Y(\cdot)$ may be estimated by

$$\widehat{f}_{Y}(y) = \frac{1}{n} \sum_{i=1}^{n} f_{Y|X}(y|X_i).$$

It also provides an estimate for EY: $\int y \widehat{f_Y}(y) dy$.

Example 9. Let $Y = X_1 + \cdots + X_T$, where X_1, X_2, \cdots are IID Bernoulli(p), $T \sim \text{Poisson}(\lambda)$, and T and X_i 's are independent. Then a sample from the distribution of Y can be drawn as follows:

- (i) Draw T_1, \dots, T_n independently from Poisson(λ),
- (ii) Draw $Y_i \sim \text{Bin}(T_i, p)$, $i = 1, \dots, n$, independently.

Example 10. Mixture of Normal distributions:

$$p N(\mu_1, \sigma_1^2) + (1 - p) N(\mu_0, \sigma_0^2), \quad p \in (0, 1),$$

(i.e. with PDF
$$\frac{p}{\sigma_1}\varphi(\frac{x-\mu_1}{\sigma_1}) + \frac{1-p}{\sigma_0}\varphi(\frac{x-\mu_0}{\sigma_0})$$
.)

A sample X_1, \dots, X_n can be drawn as follows:

- (i) $I_1, \dots, I_n \sim \text{Bernoulli}(p)$ independently,
- (ii) $X_i \sim N(\mu_{I_i}, \sigma_{I_i}^2)$, $i = 1, \dots, n$, independently.

Example 11. The lifetime X of a product follows the exponential distribution with mean $e^{1+U/4}$, where U is a quality index of the raw materials used in producing the product and $U \sim N(\mu, \sigma^2)$. Find the mean, variance and the PDF of X when $\mu = 1$ and $\sigma^2 = 2$.

As $X|U \sim Exp(e^{1+U/4})$ and $U \sim N(\mu, \sigma^2)$, we have

$$f_X(x) = \int f_{X|U}(x|u) f_U(u) du,$$

$$f_{X|U}(x|u) = e^{-(1+u/4)} \exp\{-xe^{-(1+u/4)}\} \quad \text{for } x > 0.$$

We use Monte Carlo simulation as follows:

- 1. Draw U_1, \dots, U_n from $N(\mu, \sigma^2)$
- 2. Draw X_i from $Exp(e^{1+U_i/4})$, $i = 1, \dots, n$.

Then the estimated mean for X is $\bar{X}_n = n^{-1} \sum_i X_i$ with the standard error $\hat{\sigma}/\sqrt{n}$, where

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

is an estimator for the variance of X. The estimated PDF is

$$\widehat{f}_X(x) = \frac{1}{n} \sum_{i=1}^n f_{X|U}(x|U_i) = \frac{1}{n} \sum_{i=1}^n e^{-(1+U_i/4)} \exp\{-xe^{-(1+U_i/4)}\}$$

We write R-function lifetimeMeanVar to simulate EX and Var(X), and lifetimePDF to produce the PDF f_X and also EX.

The function is saved in the file 'lifetimeMeanVar.r', we source it into R and produce the required results:

```
> source("lifetimeMeanVar.r")
> outcome <- lifetimeMeanVar(500,1,2)
> outcome$Mean
[1] 3.763913
> outcome$Min
[1] 0.02139847
> outcome$Max
[1] 50.12281
> outcome$StandardError
[1] 0.1906219
> outcome$Var
[1] 18.16836
```

You may also try summary(outcome).

The function lifetimePDF produces the PDF curve of X in the given range (xmin, xmax). It also computes EX according to the estimated PDF.

```
lifetimePDF <- function(n,xmin,xmax,mu,sigma2) {
    u <- rnorm(n, mu, sqrt(sigma2))
    eu <- exp(-1-u/4)
    h <- (xmax-xmin)/400
    x <- seq(xmin, xmax, h)
    fx <- x
    for(i in 1:401) fx[i] <- mean(eu*exp(-x[i]*eu))
    m <- sum(x*fx*h) # calculate the mean
    plot(x, fx, type='l', main="PDF of Lifetime")
    abline(0,0) # abline(a,b) draw the straight line y=a+bx
    cat("Mean", m, "\n") # print out the mean
} # Definition of function lifetimePDF' ends here</pre>
```

Source it into R to produce the required results:

```
> source("lifetimePDF.r")
> lifetimePDF(500,0,55,1,2)
```

> Mean 3.779971

PDF of Lifetime

6.3.3 Importance sampling

Let us consider the composition method discussed in section 6.3.2: To obtain an estimate for

$$f_Y(\cdot) = \int f_{Y|X}(\cdot|x) f_X(x) dx$$

or to obtain a sample from $f_Y(\cdot)$, we need to draw a sample $\{X_1, \dots, X_n\}$ from $f_X(\cdot)$.

However sometimes we cannot directly sample from $f_X(\cdot)$. Importance sampling offers an indirect way to achieve this goal via an appropriately selected PDF $p(\cdot)$.

Let $p(\cdot)$ be a density satisfying:

- (a) the support of p contains the support of f_X ,
- i.e. $p(\mathbf{x}) = 0$ implies $f_{\chi}(\mathbf{x}) = 0$, and
- (b) it is easy to sample from $p(\cdot)$.

Importance sampling method for approximating

$$J \equiv E\{h(X)\} = \int h(x)f_X(x)dx$$

- (i) Draw $X_1, \dots, X_n \sim_{i,i,d} p(\cdot)$
- (ii) Compute the estimator

$$\widehat{J} = \sum_{i=1}^{n} w_i h(X_i) / \sum_{i=1}^{n} w_i,$$

where $w_i = f_X(X_i)/p(X_i)$.

Importance sampling places weights greater than 1 on the regions where $f_X(x) > p(x)$, and downweights the regions where $f_X(x) < p(x)$.

Choice of $p(\cdot)$: as close to $f_X(\cdot)$ as possible among all PDF satisfying (a) and (b) in the previous page.

The standard error of \widehat{J} is

$$\left[\sum_{i=1}^{n} \{h(X_i) - \widehat{J}\}^2 w_i^2\right]^{1/2} / \sum_{i=1}^{n} w_i.$$

which is inflated when $p(\cdot)$ poorly approximates $f_X(\cdot)$.

Note. $\sum_{i=1}^{n} w_i$ can be viewed as a version of the effective sample size in the importance sampling. When $p(\cdot)$ differs substantially from $f_X(\cdot)$, all w_i are small. Hence the sampling is inefficient.

Remark. In the above calculation, we may *replace the PDF* $f_X(\cdot)$ *by* $g(\cdot) \equiv C_0 f_X(\cdot)$, where $C_0 > 0$ is an unknown constant. The algorithm stays the same but with the weights

$$w_i = g(X_i)/p(X_i).$$

For example, $f_X(x) = C_0^{-1} e^{-x^2/(|x|+2)}$, where the normalised constant $C_0 = \int e^{-x^2/(|x|+2)} dx$ is not easy to compute. In this case we may use $g(x) = e^{-x^2/(|x|+2)}$ instead of $f_X(x)$ in importance sampling.

Proof of Remark. By the LLN, as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}w_{i}\stackrel{P}{\longrightarrow}\int\frac{g(x)}{p(x)}p(x)dx=\int g(x)dx=C_{0}\int f_{X}(x)dx=C_{0},$$

and

$$\frac{1}{n} \sum_{i=1}^{n} w_i h(X_i) \xrightarrow{P} \int \frac{g(x)}{p(x)} h(x) p(x) dx$$

$$= \int g(x) h(x) dx = C_0 \int f_X(x) h(x) dx = C_0 E\{h(X)\}.$$

Hence, by Slutzky's theorem,

$$\sum_{i=1}^{n} w_i h(X_i) / \sum_{i=1}^{n} w_i \xrightarrow{P} E\{h(X)\}.$$

Application to sequential sampling: $f_Y(\cdot) = \int f_{Y|X}(\cdot|x)f_X(x)dx$

- (i) Draw $X_1, \dots, X_N \sim_{i.i.d.} p(\cdot)$,
- (ii) Draw $Y_i \sim f_{Y|X}(\cdot|X_i)$, $i = 1, \dots, n$, independently.

Let $w_i = g(X_i)/p(X_i)$ and $\mu_y = E(Y)$, then

$$\widehat{f}_{Y}(y) = \sum_{i=1}^{n} w_{i} f_{Y|X}(y|X_{i}) / \sum_{i=1}^{n} w_{i},$$

$$\widehat{\mu}_{y} = \sum_{i=1}^{n} w_{i} Y_{i} / \sum_{i=1}^{n} w_{i},$$

which is guaranteed by the fact $(X_i, Y_i) \sim_{i.i.d.} p(x) f_{Y|X}(y|x)$.

Note. Importance sampling does not yield correct samples, as

$$X_i \nsim f_X(\cdot), \qquad Y_i \nsim f_Y(\cdot)$$

Example 11 (Continue). Suppose now the quality index of the raw materials *U* follows a generalised normal distribution with PDF

$$f_U(u) \propto \exp\left\{-\frac{1}{2}\left|\frac{u-\mu}{\sigma}\right|^{\nu}\right\} \equiv g(u)$$

where v > 0 is a constant. Recall

$$f_{X|U}(x|u) = e^{-(1+u/4)} \exp\{-xe^{-(1+u/4)}\}$$
 for $x > 0$.

We adopt an importance sampling scheme as follows:

- 1. Draw U_1, \dots, U_n from $N(\mu, \sigma^2)$, compute the weight $w_i = g(U_i)/\phi(\frac{U_i \mu}{\sigma})$, where ϕ denotes the PDF of N(0, 1).
- 2. Draw X_i from $Exp(e^{1+U_i/4})$, $i = 1, \dots, n$.

Then the estimated mean for X is

$$\bar{X}_n = \sum_{i=1}^n w_i X_i / \sum_{i=1}^n w_i.$$

The estimated PDF is

$$\widehat{f}_X(x) = \frac{\sum_{i=1}^n w_i f_{X|U}(x|U_i)}{\sum_{i=1}^n w_i} = \frac{\sum_{i=1}^n w_i e^{-(1+U_i/4)} \exp\{-xe^{-(1+U_i/4)}\}}{\sum_{i=1}^n w_i}.$$

The R-function lifetimeMeanIS implements the above scheme for calculating *EX*:

The results for $\mu = 1$, $\sigma^2 = 2$ and $\nu = 0.5$ or 3 are as follows:

```
> source("lifetimeMeanIS.r")
> lifetimeMeanIS(5000,1,2,0.5)
$Mean
[1] 0.8827147
$Min
[1] 0.0003652474
$Max
[1] 57.21467
> lifetimeMeanIS(10000,1,2,3)
$Mean
[1] 1.616474
$Min
[1] 0.00125402
$Max
[1] 56.77547
```

The R-function lifetimePDF.IS implements the above scheme for estimating PDF f_X and E(X):

```
lifetimePDF.IS <- function(n,xmin,xmax,mu,sigma2,nu) {</pre>
  u <- rnorm(n, mu, sqrt(sigma2))</pre>
  Eu <- exp(-(1+u/4)) # Eu=e^{-(1+u/4)}
  w=exp(-0.5*abs((u-mu)/sqrt(sigma2))^nu)/dnorm((u-mu)/sqrt(sigma2))
           # compute the weights w i
  sumw <- sum(w)
  h < -(xmax-xmin)/400
  x <- seq(xmin, xmax, h)</pre>
  fx <- x
  t <- 1:n
  m <- ⊙
  for(i in 1:401) {
      t \leftarrow Eu*exp(-x[i]*Eu)
    # t = PDF of Exp(1/e^{(1+u/4)}) at x=x[i] --- THIS IS MORE
      fx[i] <- sum(t*w)/sumw</pre>
      m \leftarrow m + x[i] * fx[i] * h # calculate the mean
  plot(x, fx, type='l', main="PDF of Lifetime")
```

```
abline(o,o) # abline(a,b) draw the straight line y=a+bx
cat("Mean", m, "\n") # print out the mean
}
```

You may source it in, and try lifetimePDF.IS(5000,0,60,1,2,0.5) etc.

Importance of using appropriate sampling distributions

An alternative measure for the effective sample size (ESS) is defined as $n/\{1+cv(w)\}$, where cv(w) is the sample coefficient of variation of the weights

$$cv(w) = \left\{\frac{1}{n-1}\sum_{j=1}^{n}(w_j - \bar{w})^2\right\}^{1/2}/\bar{w}, \qquad \bar{w} = \frac{1}{n}\sum_{j=1}^{n}w_j.$$

We illustrate the importance of choosing 'correct' $p(\cdot)$ in the example below.

Example 12. Estimate μ for $N(\mu, 1)$ based on the importance sampling method using N(0, 1) as the sampling distribution $p(\cdot)$. The table below is produced by R-function effectN with n=1000.

, , , , , , , , , , , , , , , , , , ,	0			_		_
Estimated μ	-0.022	1.026	1.756	2.806	2.873	3.325
ESS	1000	448.9	246.1	113.4	65.7	33.8

```
effectN=function(n, mu) {
  x=rnorm(n)
  w=dnorm(x,mu,1)/dnorm(x)  # sampling weights
  muhat=mean(w*x)/mean(w)  # estimate for mu by importance sampling
  ess=n/(1+sqrt(var(w))/mean(w))  # effective sample size
  list(SampleSize=n, Mean=mu, EstimatedMean=muhat, ESS=ess)
}
```