Exercise 2 Probability Theory 2020 Autumn

Hanmo Chen Student ID 2020214276

October 10, 2020

Contents

1	Problem 1
	Problem 2 2.1 (i)
	Problem 3 (Conditionally convergent series) 3.1 (i)
	3.2 (ii)
_	Problem 4 4.1 (i)

1 Problem 1

Define the number of each dice as X_1, X_2, X_3 and event A as $X_1 > X_2 > X_3$ and B as X_1, X_2, X_3 . Obviously there are $6^3 = 216$ possible combinations of (X_1, X_2, X_3) with equal probability. So we just need to find the size of $A = \{(X_1, X_2, X_3) | X_1 > X_2 > X_3, X_1, X_2, X_3 \in \{1, 2, \dots 6\}\}$

Fix $X_1 = i$, $X_2 = j < i$, there are j - 1 possible choices of X_3 . So the size of A is

$$\sum_{i=1}^{6} \left(\sum_{j=1}^{i-1} (j-1) \right) = \sum_{i=1}^{6} \left(\frac{(i-1)(i-2)}{2} \right) = 20$$
 (1)

Symmetrically, |A| = |B| = 20. So $P(X_1 > X_2 > X_3) = P(X_1 < X_2 < X_3) = \frac{20}{216} = \frac{5}{54}$

2 Problem 2

2.1 (i)

Using the Lagrange Multiplier method,

$$L = H(X) + \lambda_1(\sum_{k=1}^{n} p_k - 1) + \lambda_2(\sum_{k=1}^{n} p_k x_k - \mu)$$
 (2)

To maximize L,

$$\begin{cases} \frac{\partial L}{\partial p_k} = 0 & (k = 1, 2, \dots, n) \\ \frac{\partial L}{\partial \lambda_1} = 0 & (3) \\ \frac{\partial L}{\partial \lambda_2} = 0 & (3) \end{cases}$$

And

$$\frac{\partial L}{\partial p_k} = -1 - \log(p_k) + \lambda_1 + \lambda_2 x_k = 0 \Longleftrightarrow p_k = e^{\lambda_2 x_k + \lambda_1 - 1} = Cr^{x_k}$$
(4)

where $C = e^{\lambda_1 - 1}$, $r = e^{\lambda_2}$ which are constants determined by $\sum_{k=1}^n p_k = 1$ and $\sum_{k=1}^n x_k p_k = \mu$.

2.2 (ii)

For a countable support set, let $n \to \infty$,

$$L = H(X) + \lambda_1 (\sum_{k=1}^{\infty} p_k - 1) + \lambda_2 (\sum_{k=1}^{\infty} p_k x_k - \mu)$$
 (5)

To maximize L,

$$\begin{cases} \frac{\partial L}{\partial p_k} = 0 & (k = 1, 2, \dots, \infty) \\ \frac{\partial L}{\partial \lambda_1} = 0 \\ \frac{\partial L}{\partial \lambda_2} = 0 \end{cases}$$
(6)

And

$$\frac{\partial L}{\partial p_k} = -1 - \log(p_k) + \lambda_1 + \lambda_2 x_k = 0 \iff p_k = e^{\lambda_2 x_k + \lambda_1 - 1} = Cr^{x_k}$$
(7)

where $C = e^{\lambda_1 - 1}$, $r = e^{\lambda_2}$ which are constants determined by $\sum_{k=1}^{\infty} p_k = 1$ and $\sum_{k=1}^{\infty} x_k p_k = \mu$. For the case of $x_k = k$,

$$\begin{cases} \sum_{i=1}^{\infty} p_k = \sum_{i=1}^{\infty} Cr^k = \frac{Cr}{1-r} = 1\\ \sum_{k=1}^{\infty} x_k p_k = \sum_{i=1}^{\infty} Ckr^k = \frac{Cr}{(1-r)^2} = \mu \end{cases}$$
(8)

So $C = \mu - 1, r = \frac{\mu - 1}{\mu}$ and $P(X = k) = Cr^k$ is a geometric distribution.

3 Problem 3 (Conditionally convergent series)

3.1 (i)

According to Leibniz's test, $S_n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges, thus

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{n+k} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1+k/n} = \int_0^1 \frac{1}{1+x} dx = \ln 2$$
 (9)

3.2 (ii)

Notice that $1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{2}(1 - \frac{1}{2}), \frac{1}{3} - \frac{1}{6} - \frac{1}{8} = \frac{1}{2}(\frac{1}{3} - \frac{1}{4})$ and so on. Thus,

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{\ln 2}{2}$$
 (10)

3.3 (iii)

 $\frac{1}{n} > \ln(1 + \frac{1}{n}) = \ln(n+1) - \ln(n)$, so $\sum_{k=1}^{n} \frac{1}{k} > \ln(n+1)$, and the infinite sum converges. So the series $\frac{(-1)^{(n+1)}}{n}$ is conditionally convergent but not absolutely convergent.

4 Problem 4

4.1 (i)

For $X \sim \text{Geometric}(p), \text{we have } E(X) = \frac{1}{p} \text{ and } E(X^2) = \frac{2-p}{p^2}.$

Because P(X - 1 = k | X > 1) = P(X = k),

$$E[X^{3}|X>1] = E[(X-1)^{3} + 3(X-1)^{2} + 3(X-1) + 1|X>1]$$

$$= E[X^{3}] + 3E[X^{2}] + 3E[X] + 1$$

$$= E[X^{3}] + \frac{6-3p}{p^{2}} + \frac{3}{p} + 1$$
(11)

Also, $E[X^3] = E[X^3|X > 1](1-p) + p$.

$$E[X^3] = \frac{\left(\frac{6}{p^2} + 1\right)(1-p) + p}{p} = \frac{6 - 6p + p^2}{p^3}$$
 (12)