

μPD8041AH, μPD8741A 8-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH UNIVERSAL PPI

Description

The μ PD8041AH and μ PD8741A are programmable peripheral interface controllers intended for use in master/slave configurations with 8048, 8080A, 8085A, 8086, and other 8- and 16-bit microprocessors. The μ PD8041AH/8741A functions as a totally self-sufficient controller with its own program and data memory to effectively unburden the master CPU from I/O handling and peripheral control functions.

The bus structure and data and status registers of the μ PD8041AH/8741A allow easy interface to the master processor bus. This enables the processor to perform control tasks which offload main system processing and more efficiently distribute processing functions.

The μ PD8041AH/8741A contains an 8-bit CPU, 1K \times 8 program memory, 64 \times 8 data memory, 18 I/O lines, a counter/timer, and a clock generator. The program memory for the μ PD8041AH is factory mask-programmed, while program memory for the μ PD8741A is UV EPROM for more flexibility.

Features

- □ Complete single chip microcomputer
 - 8-bit CPU
 - 1K × 8 ROM
 - 64 × 8 RAM
 - 8-bit timer/counter
 - 18 I/O lines
- 8048-, 8080A-, 8085A-, 8086-compatible bus structure
- ☐ Asynchronous slave-to-master interface
 - 8-bit status register
 - Two data registers
- ☐ Interrupt, DMA, or polled operation
- □ Expandable I/O
- □ Single +5 V power supply

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD8041AHC	40-pin plastic DIP	11 MHz
μPD8741AD	40-pin cerdip with quartz window	6 MHz

Pin Configuration

83-002894A	TESTO C XTAL1 C RESET C SS C EA C RD C WAR C SYNC C D ₀ C D ₁ C D ₂ C D ₃ C D ₅ C D ₆ C VSS C	3 4 5 6 7 8 9 10 WHZ/8/HYJV080d ¹ 11 15 16 17 18 19	40	83,002804.6
------------	---	--	----	-------------

Pin Identification

No.	Symbol	Function
1	TO	Testable input 0
2	XTAL1	Crystal input 1
3	XTAL2	Crystal input 2
4	RESET	Reset input
5	SS	Single step input
6	CS	Chip select input
7	EA	External access input
8	RD	Read strobe input
9	A ₀	Address input 0
10	WR	Write strobe output
11	SYNC	SYNC output
12-19	D ₀ -D ₇	Bidirectional data bus
20	V _{SS}	Ground potential
21-24, 35-38	P2 ₀ -P2 ₇	Quasi-bidirectional Port 2
25	PROG	Program pulse output
26	V _{DD}	Programming supply voltage
27-34	P1 ₀ -P1 ₇	Quasi-bidirectional Port 1
39	T1	Testable input 1
40	V _{CC}	Primary power supply

Pin Functions

XTAL1 (Crystal 1)

XTAL1 is one side of the crystal or external oscillator or external frequency source.

XTAL2 (Crystal 2)

XTAL2 is the other side of the crystal or frequency source.

T0 (Test 0)

T0 is the testable input using conditional transfer functions JT0, and JNT0. T0 can also be used during programming as a testable flag.

T1 (Test 1)

T1 is the testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.

RESET (Reset)

An active low on RESET initializes the processor. RESET is also used for PROM programming, verification, and power-down.

SS (Single Step)

An active low on \overline{SS} , together with the SYNC output, allows the processor to single step through each instruction in program memory.

EA (External Access)

An active high on EA disables internal program memory and fetches and accesses external program memory.

RD (Read)

RD will pulse low when the processor reads data and status words from the data bus buffer or status register.

WR (Write)

WR will pulse low when the processor writes data or status words to the data bus buffer or status register.

D₀-D₇ (Data Bus)

 D_0 – D_7 is a three-state, bidirectional data bus. D_0 – D_7 interfaces the μ PD8041AH/8741A to the 8-bit master system's data bus.

P10-P17 (Port 1)

P10-P17 is an 8-bit quasi-bidirectional port.

P2n-P27 (Port 2)

P2₀–P2₇ is an 8-bit quasi-bidirectional port. P2₀–P2₃ output the high-order four bits of the address during an external program memory fetch. P2₀–P2₃ also function as a 4-bit I/O bus for the μ PD82C43 I/O port expander. P2₄–P2₇ can be used as port lines or interrupt requests ($\overline{\text{IBF}}$ and OBF) and DMA handshake signals (DRQ and $\overline{\text{DACK}}$).

PROG (Program Pulse)

PROG is used in programming the μ PD8041AH/8741A. PROG is also used as an output pulse during a fetch when interfacing with the μ PD82C43 I/O port expander.

V_{CC} (Primary Power Supply)

 V_{CC} is the primary power supply. V_{CC} must be $\pm 5\,\mathrm{V}$ during programming and operation of the $\mu PD8041AH$.

VDD (Programming Supply Voltage)

 V_{DD} is the programming supply voltage for programming the $\mu PD8741AH$. It is $+5\,V$ for normal operation of the $\mu PD8041AH/8741A$. V_{DD} is also the low power standby input for the ROM version.

VSS (Ground)

VSS is ground potential.

Block Diagram

Absolute Maximum Ratings

 $T_{\Delta} = 25$ °C

1A = 20 Q	
Power supply voltage, V _{CC}	-0.5 V to +7.0 V
Power supply voltage, V _{DD}	-0.5 V to +7.0 V
Input voltage, V _{IN}	-0.5 V to +7.0 V
Output voltage, V ₀	-0.5 V to +7.0 V
Operating temperature, T _{OPT}	0°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_{\Delta} = 25$ °C

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	C ₁			10	pF	
Output capacitance	C _{IO}			20	ρF	

μ PD8041AH, μ PD8741A

DC Characteristics

 $T_A = 0$ °C to +70 °C, $V_{CC} = V_{DD} = +5$ V ±10%; μ PD8041AH: $V_{DD} = +5$ V ±5%; μ PD8741A: $V_{SS} = 0$ V

			Lin	nits			
		μPD8	741A	μ PD8 0	41AH		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Input voltage low	V _{IL}	-0.5	0.8	-0.5	0.8	V	All except X1, X2, and RESET
	V _{IL1}	-0.5	0.6	- 0.5	0.6	٧	X1, X2, RESET
Input voltage high	ViH	2.0	V _{CC}	2.0	V _{CC}	V	Except X1, X2, and RESET
pac ronagog	V _{1H1}	3.8	V _{CC}	3.8	V _{CC}	٧	X1, X2, RESET
Output voltage low	V _{OL}		0.45		0.45	V	D_0-D_7 , SYNC, $I_{0L}=2.0 \text{ mA}$
output voltage ion	V _{OL1}		0.45		0.45	٧	Except PROG, I _{OL} = 1.0 mA
	V _{OL2}		0.45		0.45	V	PROG, $I_{OL} = 1.0 \text{ mA}$
Output voltage high	V _{OH}	2.4		2.4		٧	$D_0 - D_7$, $I_{0H} = -400 \mu\text{A}$
outer remage mg.	V _{OH1}	2.4		2.4		V	All other outputs: $1_{OH} = -50 \mu\text{A}$
Input current low	ILI		0.5		0.5	mA	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ : V _{IL} = 0.8 V
mpat darront low	1 _{LI1}		0.2		0.2	mA	SS, RESET; V _{IL} = 0.8 V
Input leakage current	l _{IL}		±10		±10	μΑ	T0, T1, \overline{RD} , \overline{WR} , \overline{CS} , EA, A ₀ , $V_{SS} \le V_{IN} \le V_{CC}$
Output leakage current	I _{OL}		±10		±10	μА	D_0 - D_7 , High Z state, V_{SS} +0.45 V \leq V_{IN} \leq V_{CC}
Supply current (total)	l _{DD}		15		15	mA	V _{DD}
	IDD +ICC	 	135		125	mA	

AC Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = V_{DD} = +5 V \pm 10\% V_{SS} = 0 V$

DBB Read

		-	Lin	nits			
		μ PD 8	741A	µPD80	141AH		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
CS, A ₀ setup to RD ↓	t _{AR}	300		0		ns	
CS, A ₀ hold after RD †	t _{RA}	30		0		ns	
RD pulse width	t _{RR}	300		160		ns	
CS, A ₀ , to data out delay	t _{AD}		370		130	ns	μ PD8041A / 8741A: C_L = 150 pF μ PD8041AH: C_L = 100 pF
RD ↓ to data out delay	t _{RD}		200		130	пŝ	μ PD8041A / 8741A: C _L = 150 pF μ PD8041AH: C _L = 100 pF
RD 1 to data float delay	t _{DF}		140		85		
Cycle time	tcy	2.5	15	1.36	15	ns	

AC Characteristics (cont) $T_A=0\,^{\circ}\text{C to }+70\,^{\circ}\text{C}, V_{CC}=V_{DD}=+5\,\text{V}\pm10\,^{\circ}\text{V}_{SS}=0\,\text{V}$

DBB Write

			Lin	nits			
		μ PD 8	741A	μ PD8 ()41AH		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
CS, A ₀ setup to WR ↓	t _{AW}	0		0		ns	
CS, A ₀ hold after WR ↑	t _{WA}	0		0		ns	
WR pulse width	t _{WW}	250		160		ns	μPD8041A / 8741A: t _{CY} = 2.5 μs
Data setup to WR ↑	t _{DW}	150		130		ns	
Data hold after WR ↑	twp	0		0		ns	

Port 2

			Lin	nits			
		μ PD 8	741A	μ PD 80	041AH		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
Port control setup to PROG ↓	t _{CP}	110		100		ns	μPD8041AH: C _L = 80 pF
Port control hold after PROG↓	t _{PC}	100		60		ns	μPD8041AH: C _L = 20 pF
Input data setup to PROG ↓	t _{PR}		810		650	ns	μPD8041AH: C _L = 80 pF
Input data hold time	tpF	0	150	0	150	ns	μPD8041AH: C _L = 20 pF
Output data setup time	t _{DP}	250		200		ns	μPD8041AH: C _L = 80 pF
Output data hold time	t _{PD}	65		65		ns	μ PD8041AH: C _L = 20 pF
PROG pulse width	tpp	1200		700		ns	

DMA

			Lin	nits			
		μPD	3741A	µPD8	041AH		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
DACK setup time to	†ACC	0		0		ns	
DACK hold time after RD, WR	†CAC	0		0		ns	
Data output delay after DACK	t _{ACD}		225		130	ns	μPD8041A / 8741A: C _L = 150 pF
DRQ clear delay time after RD, WR	tcra		200		130	ns	μ PD8041AH: C _L = 100 pF

AC Timing Test Points

Timing Waveforms

Read Operation (DBBOUT Register)

Write Operation (DBBIN Register)

PORT 2

DMA

PORT(EA = 1)

Functional Description

Two data bus buffers, an 8-bit status register, the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ inputs, and expandable I/O lines enhance the $\mu\text{PD8041AH/8741A}$. These features enable easier master/slave interface and increased functionality.

Data Bus Buffers

Figure 1 shows how the input and output data bus buffers enable a smooth data flow to and from the master processors.

Figure 1. Data Bus Buffers

Status Register

The 8-bit status register includes four user-definable bits, ST₄-ST₇. Use the MOV STS, A instruction (90H) to define bits ST₄-ST₇ by moving accumulator bits 4-7 to bits 4-7 of the status register. Bits ST₀-ST₃ are not affected.

Figure 2 shows the format of the status register.

Figure 2. Status Register Format

	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
•	ST ₇	ST ₆	ST ₅	ST ₄	F1	F0	IBF	OBF

RD and WR

The \overline{RD} and \overline{WR} inputs are edge-sensitive. Figure 3 shows that status bits \overline{IBF} , OBF, F1, and F0 are affected on the trailing edge at \overline{RD} or \overline{WR} .

Figure 3. RD and WR Inputs

Port 24-Port 27

P24 and P25 can be used as either port lines or buffer status flag lines. This allows you to make OBF and \overline{IBF} status available externally to interrupt the master processor. Upon execution of the EN FLAGS instruction (F5H), P24 becomes the OBF pin. When a 1 is written to P24, the OBF pin is enabled and the status of OBF is output. A0 to P24 disables the OBF pin AND the pin remains low. This pin indicates valid data is available from the $\mu PD8041AH/8741A$.

An EN FLAGS instruction execution also enables P2 $_5$ to indicate that the μ PD8041AH/8741A is ready to accept data. A $_1$ written to P2 $_5$ enables the \overline{IBF} pin and the status of \overline{IBF} is available on P2 $_5$. A $_0$ written to P2 $_5$ disables the \overline{IBF} pin. If OBF is not true, the data at the data bus is invalid.

P2 $_6$ and P2 $_7$ can be used as either port lines or DMA handshake lines to allow DMA interface. The EN DMA instruction (E5H) enables P2 $_6$ and P2 $_7$ to be used as DRQ (DMA request) and $\overline{\text{DACK}}$ (DMA acknowledge), respectively.

When a 1 is written to P26, DRQ is activated and a DMA request is issued. The EN DMA instruction deactivates DRQ. You can also deactivate DRQ by adding \overline{DACK} with \overline{RD} or \overline{WR} . Execution of the EN DMA instruction enables P27 (\overline{DACK}) to function as a chip select input for the data bus buffer registers during DMA transfers.

Instruction Set	on Set				ľ											Flags		ļ	
					9	Perati	Operation Code		1	1		, september		4	ũ	ī	ų,	08F	STST,
Mnemonic	Operand	Operation	5	۵	2	7	۵	2	5	8	Cycles		1		1	ı		l	
Accumulator						1	,	,	1	-	,	,	.		l				
ADD	A, # data	(A) ← (A) + data	0 42	၀ ဗိ	ა გ	o \$	o &	о _С	- 5	- 용	7	,							
ADD	A, Rr	$(A) \leftarrow (A) + (Rr)$ r = 0-7	0	-	-	0	-	<u>_</u>	_	_	-	-	•						
ADD	A, @ Rr	(A) \leftarrow (A) + ((Rr)) r = 0-1	0	-	-	0	0	0	0	_	-	-	•			ļ			
ADDC	A, # data	$(A) \leftarrow (A) + (C) + data$	0 40	0 8	0 %	- 4	0 &	o &	4 - 4	- &	2	2							
ADDC	A, Rr	(A) \leftarrow (A) + (C) + (Rr) r = 0-7	0	-	-	-	-	_	_	_	-	-	•						
ADDC	A, @ Rr	(A) \leftarrow (A) + (C) + ((Rr)) r = 0-1	0	-	-	-	0	0	0	_	-	-	•						
ANL	A, # data	(A) ← (A) AND data	9	- 8	ဝန်	d ₄	ဝခ္	9	- £	- 용	2	2						İ	
ANL	A, Rr	(A) \leftarrow (A) AND (Rr) $r = 0-7$	0	-	0	-	-	_	_	_	-	-							
ANL	A, @ Rr	(A) (A) AND ((Rr)) r = 0-1	0	-	0	-	0	0	0	_	-	-	l						
ld'S	¥	(A) ← NOT (A)	0	0	-	-	0	-	-	-	-	-							
SIS	4	(A) ← 0	0	0	-	0	0	-	-	-	-	-							
DA	A		0	-	0	-	0	-	-	-	-	- ,	•				İ		
DEC	A	(A) ← (A) – 1	0	0	0	0	0	-	-	-	- -	-							
INC	A	(A) ← (A) +1	0	0			0	-	-	-	- .	- •							
ORL	A, # data	(A) (A) OR data	0 p	- ₽°	- - -	o \$	0 d ₃	o 5	두	چ -	2	7							
ORL	A, Br	(A) ← (A) 0R (Rr) r = 0-7	0	-	0	0	-	_	-	-	-	-		ı					
ORL	A, @ Rr	(A) (A) OR ((Rr)) r = 0-1	0	-	0		0	0	0	_	-	-							
H.	A	$(AN + 1) \leftarrow (AN); N = 0-6$ $(A_0) \leftarrow (A_7)$	-	-		0	0	-	-	-	-	-							

NEC

Instruci	Instruction Set (cont)																
					ŏ	Operation Code	Code								Flags	_	
Mnemonic	Operand	Operation	7	ءٌ	š	4	ڇ	20	2	Cycles	Bytes	ပ	ş	2	E	95	D7 D6 D5 D4 D3 D2 D1 D0 Cycles Bytes C AC F0 F1 IBF OBF ST4-ST7
Accumulator (cont)	cont)																
RLC	٧	$(AN + 1) \leftarrow (AN)$; N = 0-6 $(A_0) \leftarrow (C)$ $(C) \leftarrow (A_7)$	-	-	-	-	0	·	1	-	-	•					
RR	A	$(AN) \leftarrow (AN + 1); N = 0-6$ $(A_7) \leftarrow (A_0)$	0	-	-	-	0	-	-	-	-						
RRC	A	$(AN) \leftarrow (AN + 1); N = 0-6$ $(A_7) \leftarrow (C)$ $(C) \leftarrow (A_0)$	0	-	-	0	0	-	-	-	-	•					
SWAP	A	(A ₄ -A ₇) ← (A ₀ -A ₃)	0	-	0	0	0	_	-	-	-						
XRL	A, # data	(A) ← (A) XOR data	- 6	1 1 0 1 d ₇ d ₆ d ₅ d ₄	o &	- 4	0 ಕ್ಟ	0 1 d ₂ d ₁	- 8	2	2						
XRL	A, Br	(A) \leftarrow (A) X0R (Rr) r = 0-7	-	-	0	-	-	_	_	-	 -						
XBL	A, @ Rr	(A) \leftarrow (A) XOR ((Rr)) r = 0-1	-	-	0	-	0	0	_	-	-						

Instruct	Instruction Set (cont)				å	Operation Code	900				ļ				Flags	
Mnemonic	Operand	Operation	0	å	å	°0 70	200	2 D	õ	Cycles	Bytes	ပ	2	5	F 08F	514-517
Branch											,					
NIN7	Br addr	$(Rr) \leftarrow (Rr) - 1; r = 0-7$	-			0	_	<u>-</u>	_	2	2					
			42	ge Ge					eg G							
		(rc0-rc7) = add		_						0	,					
JBb	addr	$(PC_0 - PC_7) \leftarrow addr if B_b = 1$	D2	<u>م</u> و	ව ස	- 7	9 9	- 42	- %	1	1					
		(rc) - (rc) + 2 rB = 0	3	3					1		,			ļ		
2	addr	$(PC_0-PC_7) \leftarrow addr$ if $C = 1$,	- ,	- ,	- ;	- , - ,	- 6	> é	7	7					
		$(PC) \leftarrow (PC) + 2 \text{ if } C = 0$	47	.g		ı	1	١	Ì	,	6					
IFO	addr	(PC_0-PC_7) - addr if $F0 = 1$	-	0	_	-	0	-	0 ,	5	7					
,		$(PC) \leftarrow (PC) + 2 \text{ if } F0 = 0$	аZ	કુ				-						ļ		
ũ	addr	(PC ₀ −PC ₇) ← addr if F1 = 1	0	-				-	0	2	2					
-		$(PC) \leftarrow (PC) + 2 \text{ if } F1 = 0$	a ₇	ક્ર	a5	94 9										
OWI	addr	(PCs-PC10) + (addrs-addr10)	a ₁₀	ag	88	0	0	10	0	2	2					
Line		(PC ₀ -PC ₇) (addr ₀ -addr ₇)	a ₇	8	a5			a ₂ a ₁								
		(PC ₁₁) DBF														
ddWi	A @	(PC ₀ -PC ₇) ← ((A))	-	0	-	-	0	0	-	2	-					
	: S	(PC-PC-) 4- addr if C = 0	-	-	-				0	2	2					
ON C	anni	$(PC) \leftarrow (PC) + 2ifC = 1$	a ₇	å	a _S	94 (a3 6	a ₂ a ₁						ļ		
Land	7000	(PCo-PC-) addr if IBF = 0	-	-	0			1 1	0	2	2					
Jaino	ann	$(PC) \leftarrow (PC) + 2 \text{ if } BF = 1$	a ₇	3 6	.a 5	g.	33	a ₂ a								
100		(PC _n -PC ₂) addr if 08F = 1	-	0	0	0	0	1	0	7	2					
JOBE		$(PC) \leftarrow (PC) + 2 \text{ if } OBF = 0$	a ₇	9 6	a5			a ₂ a								
O.F.	oddr	(PCo-PC-) 4- addr if T0 = 0	0	0	-	0	0	-	1	2	7					
OINIC	000	(PC) - (PC) + 2 if T0 = 1	a 7	а ₆	9 5			į								
INI	addr	$(PC_0 - PC_7) \leftarrow addr \text{ if } T1 = 0$	0	-	0	0	0		0 .	2	2					
•		$(PC) \leftarrow (PC) + 2 \text{ if } 71 = 1$	a ₇	કુ	સુ			95 95						ì		
JNZ	addr	$(PC_0-PC_7) \leftarrow addr \text{ if } A = 0$	-	0	0	₩,	0 ,	- ;	- 6	5	2					
		$(PC) \leftarrow (PC) + 2 \text{ if } A = 1$	47	g g	કુ	ŀ	ļ	1			c					
FIL	addr	$(PC_0-PC_7) \leftarrow addr if TF = 1$	0	0	0		ο,		- c	7	7					
		$(PC) \leftarrow (PC) + 2 \text{ if } TF = 0$	a ₇	89	£,	- 1	- 1		1	١	,		ı			
OLI.	addr	(PC ₀ -PC ₇) ← addr if T0 = 1	0	0	-	•	0	-	1 0	2	7					
2		$(PC) \leftarrow (PC) + 2 \text{ if } T0 = 0$	a7	а ₆	g ₅	a4	-		ļ							
E	addr	(PC ₀ -PC ₇) ← addr if T1 = 1	0	-	0	-	0		1 0	2	5					
		$(PC) \leftarrow (PC) + 2 \text{ if } T1 = 0$	a7	ge ge	æ	34	ı	l			,					
Zſ	addr	$(PC_0-PC_7) \leftarrow addr \text{ if } A = 0$	- ;	<u>ئ</u>	0 ,	; ٥	، ٥	 - %	- 4	2	7.					
		(PC) ← (PC) + 2 II A = 1	47	g	Ç.	8	3	1								

NEC

D7 D6 D5 D4 D3 D2 D1 D6 Cycles Bytes 0 0 0 0 0 1 0 1						ľ	Operation Code	n Code								E	Flags		
Enable the external interrupt input (BS) + 0 (BS) + 1 Enable interrupt input (BS) + 0 (BS) + 1 Enable interrupt input (BS) + 1 Enable interrupt input (BS) + 0 (BS) + 1 Enable interrupt input (BS) + 0 A. Rr (A) ← (Rr): r = 0-7 A. Ø Rr (Rr) + − (A): r = 0-7 Br. A. Ø A (Rr) + (A): r = 0-7 A. Ø A (Rr): r = 0-7 A. Ø Br. A (Rr): r = 0-7 A. Ø	Mnemonic	Operand	Operation	6	å	õ	4	2			ıL	ycles	Bytes	C	2	Ξ		PB PF	514-517
The first project p	Control	Fnable the external		-	-	c	-	-	-	0	-	-	-						
Disable the external interrupt input: (BS) ← 0 (BS) ← (BS) ← (BS) ← (BS) ← (BS) (BS) ← (BS)	į	interrupt input		,	,	•	,	,		,	.								
(BS) $\leftarrow 0$ (185) $\leftarrow 0$ (185) $\leftarrow 0$ (185) $\leftarrow 0$ (185) $\leftarrow 1$ (185) $\rightarrow 1$ (185)	DIS	Disable the external interrupt input		0	0	0	-	0	-	0	-	-	-						
Enable DMA handshake Enable DMA handshake Enable interrupt to master A. # data A. # data A. # data A. # data A. # Gata A. # Rr A. # Gata A. # Rr A. # Rr A. # Gata A. # Rr A	SEL RB0	(BS) ← 0		-	-	0	0	0	-	0	-	-	-						
Enable DMA handshake Enable interrupt to master A. # data A. # data A. # data A. # data A. # GR A. # Cala A. # GR A. # Cala A. # GR A.	SEL RB	(BS) ← 1		-	-	0	-	0	-	0	-	-	-						
A. # data (A) ← data 0 0 1 0 0 1	EN DMA	Enable DMA handshak	9)	-	-	-	-	0	-	0	-	-	-						·
A, # data A, # data A, # data A, # data A, # data A, # data A, # data A, # data A, # GRr A, # GR	EN FLAGS	interrupt to r	ster	-	-	-	0	0	-	0	-	-	-						
A, # data (A) +- data 0 0 0 1 0 0 1 1 2 A, Rr A,	Data Moves																		
A, Rr A, Θ Rr	MOV	A, # data	(A) ← data	40	0 %	— გ	o \$	o &	° 5°		- 융	2	2					:	
A, $\textcircled{@}$ Rr A, \textcircled{A} Rr Br. \textcircled{A} A data Br. \textcircled{A} A data Br. \textcircled{A} A data Br. \textcircled{A} A data Br. \textcircled{A} A (Rr) \textcircled{A} - (As): $r = 0 - 7$ Br. \textcircled{A} A (Rr) \textcircled{A} - (As): $r = 0 - 7$ Br. \textcircled{A} A (Rr) \textcircled{A} - (As): $r = 0 - 1$ Br. \textcircled{A} A (Rr) \textcircled{A} - (As): $r = 0 - 1$ Br. \textcircled{A} A (Br. \textcircled{A} A) - ((Rr.)) = 0 - 1 A, $\textcircled{\textcircled{B}}$ Rr A, $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}}$ A $\textcircled{\textcircled{A}} $ A $\textcircled{\textcircled{A}}$	MOV	A, Rr	(A) ← (Rr); r = 0-7	-	-	-	-	-	L	_	_	-	-						
A, PSW (A) \leftarrow (PSW) 1 1 0 0 1	MOV	A, @ Rr	(A) \leftarrow ((Rr)); r = 0-1	-	-	-	-	0	0	0	_	-	-						
Rr, # data (Rr) + - data; r = 0-7 1 0 1 1 r r r 2 Rr, A (Rr) + - (A); r = 0-7 1 0 1 0 1 r r 1 @ Rr, A (Rr) + - (A); r = 0-1 1 0 1 r r r 1 PSW, A (Rr) + - data; r = 0-1 1 0 1 1 0 0 r r 1 PSW, A (PSW) + - (A) 1 1 0 1 0 0 r r 2 A, @ A (PCO-PC) + - (A) 1 1 0 1 0 0 r 1 1 A, @ A (PCO-PC) + - (A) 1 1 0 0 0 1 </td <td>MOV</td> <td>A, PSW</td> <td>(A) ← (PSW)</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MOV	A, PSW	(A) ← (PSW)	-	-	0	0	0	-	-	_	-	-						
Rr, A (Rr) \leftarrow (A): $r = 0-7$ 1 0 1 0 1 r r r 1 @ Rr, A ((Rr)) \leftarrow (A): $r = 0-1$ 1 0 1 0 0 0 r 1 PSW, A (PSW) \leftarrow (A) 1 1 0 1 1 0 0 r 2 PSW, A (PSW) \leftarrow (A) 1 1 0 1 0 0 r 2 A, @ A (PC ₀ -PC ₀) \leftarrow (A) 1 1 0 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 <td>MOV</td> <td>Rr, # data</td> <td>(Rr) ← data; r = 0-7</td> <td>4 -</td> <td>0 %</td> <td>- &</td> <td>- 4</td> <td>- &</td> <td>- 8</td> <td>- &</td> <td>- 용</td> <td>2</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MOV	Rr, # data	(Rr) ← data; r = 0-7	4 -	0 %	- &	- 4	- &	- 8	- &	- 용	2	2						
	MOV	Rr, A	$(Rr) \leftarrow (A); r = 0-7$	-	0	-	0	-	_	_	L	-	-						
$@$ Rr, # data ((Rr)) \(+ \) data: r = 0-1 1 0 1 1 0 0 0 r 2 PSW, A (PSW) \(+ (PC) \) (A) \(+ (PC) \) (A) \(+ (PC) \) 1 1 0 1 0 0 1 1 1 A, @A (PC_0-PC_7) \(- (A) \) 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 <td>MOV</td> <td>@ Rr, A</td> <td>$((Rr)) \leftarrow (A); r = 0-1$</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td> -</td> <td>0</td> <td>0</td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MOV	@ Rr, A	$((Rr)) \leftarrow (A); r = 0-1$	-	0	-	0	-	0	0	_	-	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MOV	@ Rr, # data	((Rr)) data; r = 0-1	4	ဝမ္	- 운	- 4	0 to	0 6		- 용	2	2						
A, @ A $(PC_0 - PC_7) \leftarrow (A)$ 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOV	PSW, A	(PSW) ← (A)	-	-	0	-	0	-	-		-	-						
A, @ A $(PC_0 - PC_7) \leftarrow (A)$ 1 1 1 0 0 0 1 1 1 $(PC_0 - PC_7) \leftarrow (A)$ $(PC_0 - PC_{10}) \leftarrow 0.01$ $(A) \leftarrow ((PC_1))$ $(A) \leftarrow ((PC_$	MOVP	A, @ A	$(PC_0-PC_7) \leftarrow (A)$ $(A) \leftarrow ((PC))$	-	0	-	0	0	0	-		2	-						
A, Rr $(A) \leftrightarrow (Rr)$; $r = 0-7$ 0 0 1 0 1 r r r r r r r r r r	MOVP3	A, @ A	$(PC_0-PC_7) \leftarrow (A)$ $(PC_8-PC_{10}) \leftarrow 011$ $(A) \leftarrow ((PC))$	_	-	-	0	0	0	-	-	2	-	•					
A, @ Rr (A ₀ -A ₂) \leftrightarrow ((Rr)) ₀ -((Rr)) ₃ ; 0 0 1 1 0 0 0 r A, @ Rr (A ₀ -A ₂) \leftrightarrow ((Rr)) ₀ -((Rr)) ₃ ; 0 0 1 1 0 0 0 r	XCH	A, Rr	(A) ↔ (Rr); r = 0-7	0	0	-	0	-	_	_	L	-	-						
A, @ Rr $(A_0-A_3) \leftrightarrow ((Rr))_0-((Rr))_3$; 0 0 1 1 0 0 0	XCH	A, @ Rr	(A) \leftrightarrow ((Rr)); r = 0-1	0	0	-	0	0	0	0	_	-	1						
	хсно	A, @ Br	$(A_0-A_3) \leftrightarrow ((Rr))_0-((Rr))_3;$ r = 0-1	0	0	-	-	0	0	0	L	-	-						

_
≂
=
۰
O
_
7
-3
0,
5
0
2
ö
3
-
Ξ
72
-

						Operati	Operation Code									Ē	Flags		
Mnemonic	Operand	Operation	9	్డ	õ	4	تم	20	ō	۵	Cycles	Bytes	ပ	¥	5	E	量	OBF	ST4-ST7
Flags				1	1														
CPLC		(C) NOT (C)	-	0	-	0	0	-	-	-	-	-	•						
CPL F0		(F0) ← NOT (F0)	-	0	0	-	0	-	0	-	-	-			•				
CPL F1		(F1) ← NOT (F1)	-	0	-	-	0	-	0	-	-	-				•			
CLRC		0 → (O)	-	0	0	-	0	-		-	-	-	•						
CLR F0		(F0) ← 0	-	0	0	0	0	-	0	-	-	-			•				
CLRF1		(F1) ← 0	-	0	-	0	0	-	0	-	-	-				•			
MOV STS, A		ST4-ST7 A4-A7	-	0	0	-	0	0	0	0	-	-							
Input / Output				!															
ANL	Pp, # data	(Pp) \leftarrow (Pp) AND data p = 1-2	- 4	ဝန	0 %	- \$	- _E	0 45	σ£	- و	2	2							
ANLD	Pp, A	(Pp) \leftarrow (Pp) AND (A ₀ -A ₃); p = 4-7	-	0	0	-	-	-	م	٩	2	-		1					
2	A, Pp	(A) \leftarrow (Pp); p = 1-2	0	0	0	0	-	0	۵	۵	2	-							
2	A, 088	(A) (DBB)	0	0	-	0	0	0	-		-	-					•		
MOVD	A, Pp	$(A_0-A_3) \leftarrow (Pp); p = 4-7$ $(A_4-A_7) \leftarrow 0$	0	0	0	0	-	-	,a	<u>م</u>	2	-							
MOVD	Pp, A	(Pp) \leftarrow (A ₀ -A ₃); p = 4-7	0	0	-	-	-	-	۵	۵	-	-							
ORLD	Pp, A	(Pp) \leftarrow (Pp) OR (A ₀ -A ₃); p = 4-7	-	0	0	0	-	-	۵	۵	-	-					:		
ORL	Pp, # data	(Pp) \leftarrow (Pp) OR data p = 1-2	t- 4	0 %	o &	0 2	~ చి	60	o 2.	⋴ 융	2	2							
TU0	DBB, A	(DBB) ← (A)	0	0	0	0	0	0	-	0	-	-							
OUTL	Pp, A	$(Pp) \leftarrow (A); p = 1-2$	0	0	-	-	-	0	۵	a	-	-							
Registers																			
DEC	Rr (Rr)	(Rr) \leftarrow (Rr) - 1; r = 0-7	-	-	0	0			٦	ı	-	-							
INC	Rr	$(Rr) \leftarrow (Rr) + 1; r = 0-7$	0	0	0	1	1	ľ	ľ	ı	1	-							
INC	@ Rr	$((Rr)) \leftarrow ((Rr)) + 1;$ r = 0-1	0	0	0	-	0	0	0	_	-	-							

NEC

					٥	Operation Code	Code								Ę	5		
Mnemonic	Operand	Operation	o 2	ద	ō,	4	ã	20	6	Cycles	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ Cycles Bytes C AC F0 F1 IBF OBF ST ₄ -ST ₇	ပ	¥	윤	Ξ	늘	OBF	ST4-ST7
Subroutine																		
CALL	addr	((SP)) \leftarrow (PC), (PSW ₄ -PSW ₇), (SP) \leftarrow (SP) + (SP) + ((SP)) (PG ₉ -PC)) \leftarrow (addr ₁ -addr ₁) (PC ₀ -PC ₇) \leftarrow (addr ₁ -addr ₇) (PC ₁) \leftarrow DBF	a10 a7	а _б	85. 85.	an ag ag 1 0 1 0 0 0 az az az az az az az az az az az az az	a ₃	42	а в	0 2	2							

Instruction Set (cont)

0 0

0 0

0

0

 $(SP) \leftarrow (SP) = 1$ $(PC) \leftarrow ((SP))$

RETR ᇤ

0 0

OCTO	100/ 100/	-		۱							
עום ש	$(dS) \rightarrow (AS) \rightarrow $	-	>	>	-	>	>	_	7	_	
Timer / Counter											
EN TCNTI	Enable internal interrupt flag for timer / counter output.	0	0	-	0	0	-		-	-	
DIS TCNTI	Disable internal interrupt flag for timer / counter output.	0	0	-	-	0	-		_	-	
MOV A, T	(A) ← (T)	0	-	0	0	0		_	0	-	
MOV T, A	(T) ← (A)	0	-	-	0	0	0	-	0	-	
STOP TCNT	Stop count for event counter.	0	-	-	0	0	_		_	-	
STRT CNT	Start count for event counter.	0	-	0	0	0	0 0 0 1 0		_	-	
STRT T	Start count for timer.	0	-	0	-	0	_	0	_	-	
Miscellaneous											
NOP	No operation performed.	0	0	0	0	0	0 0	0	-	-	
Note:											

(1) Operation code designations rand p form the binary representation of the registers and ports involved.

⁽²⁾ The dot under the appropriate flag bit indicates that its contents is subject to change by the instruction it appears in.

⁽³⁾ References to the address and data are specified in bytes 2 and/or 1 of the instruction.

⁽⁴⁾ Numerical subscripts appearing in the operation column reference the specific bits affected.

Instruction Set (cont)

Symbol Definitions

Symbol	Description
Α	Accumulator
AC	Auxiliary carry flag
addr	Program memory address (12 bits)
Bb	Bit designator (b = 0-7)
BS	Bank switch
BUS	Bus port
С	Carry flag
CLK	Clock signal
CNT	Event counter
D	Nibble designator (4 bits)
data	Number of expression (8 bits)
DBF	Memory bank flip-flop
F0, F1	Flags 0, 1
l	Interrupt
Р	In-page operation designator
IBF	Input buffer full flag
Pp	Port designator (p = 1, 2 or 4-7)
PSW	Program status word

Symbol	Description
Rr	Register designator (r = 0, 1 or 0-7)
SP	Stack pointer
T	Timer
TF	Timer flag
T0, T1	Testable inputs 0, 1
X	External RAM
#	Prefix for immediate data
@	Prefix for indirect address
\$	Current value of program counter
(x)	Contents of external RAM location
((x))	Contents of memory location addressed by the contents of external RAM location
+	Replaced by
OBF	Output buffer full flag
DBB	Data bus buffer
AND	Logical product (logical AND)
OR	Logical sum (logical OR)
XOR	Exclusive-OR