```
In [84]: import pandas as pd
import numpy as np

review=pd.read_csv('review_nc_asheville.csv')
listing=pd.read_csv('listing_nc_asheville.csv')

#1. Let us join the data first into one table
merged=pd.merge(listing,review,on='listing_id')
merged.head()
```

Out[84]:

	listing_id	zipcode	latitude	longitude	property_type	room_type	bathrooms	bedrooms	beds
0	38585	28804.0	35.65146	-82.62792	Private room in house	Private room	1.0	1.0	2.0
1	38585	28804.0	35.65146	-82.62792	Private room in house	Private room	1.0	1.0	2.0
2	38585	28804.0	35.65146	-82.62792	Private room in house	Private room	1.0	1.0	2.0
3	38585	28804.0	35.65146	-82.62792	Private room in house	Private room	1.0	1.0	2.0
4	38585	28804.0	35.65146	-82.62792	Private room in house	Private room	1.0	1.0	2.0

5 rows × 21 columns

The above result shows the dataframe - merged , after joining the review dataframe and listing dataframe using inner join.

Out[26]:

	listing_id	zipcode	latitude	longitude	bathrooms	bedrooms
count	1.473390e+05	146155.000000	147339.000000	147339.000000	147156.000000	147339.000000
mean	1.141278e+07	28798.507372	35.583347	-82.559164	1.188256	1.336903
std	7.805519e+06	21.453325	0.038532	0.042917	0.491695	0.929120
min	3.858500e+04	28701.000000	35.407702	-82.770131	0.000000	0.000000
25%	4.045013e+06	28801.000000	35.573400	-82.588910	1.000000	1.000000
50%	1.170103e+07	28804.000000	35.587130	-82.558600	1.000000	1.000000
75%	1.793540e+07	28806.000000	35.604230	-82.534220	1.000000	2.000000
max	3.105452e+07	28815.000000	35.685558	-82.417304	12.500000	34.000000

The above table shows us the descriptive statistics of merged dataframe.

```
In [27]: #3. Drop null values and fill null vlaues with relevant summary statist
merged.isnull().sum() # zipcode, bathrooms, beds, cancellation_policy and
merged.fillna({'bathrooms':merged['bathrooms'].mean(), 'beds':merged['betathrooms'].mean(), 'beds':merged['betathrooms'].mean(), 'beds':merged['betathrooms'].mean(), 'beds':merged['betathrooms'].merged.isnull().sum()
```

```
Out[27]: listing id
                                        0
          zipcode
                                        0
          latitude
                                        0
          longitude
                                        0
          property type
                                        0
          room type
                                        0
          bathrooms
                                        0
          bedrooms
                                        0
          beds
                                        0
          minimum nights
                                        0
          host listings count
                                        0
          instant bookable
                                        0
          cancellation policy
                                        0
          is business travel ready
                                        0
          price per person
          host_is_superhost
                                        0
          review id
                                        0
                                        0
          date
          reviewer id
                                        0
          reviewer name
                                        0
          sentiment
                                        0
          dtype: int64
```

```
In [37]:
             #4. Let us clean the data further using functions:
          2
            merged.dtypes
             merged['zipcode'] = merged['zipcode'].astype(int)
          3
             merged['bathrooms'] = merged['bathrooms'].astype(int)
             merged['bedrooms'] = merged['bedrooms'].astype(int)
             merged['beds'] = merged['beds'].astype(int)
             merged['price per person'] = merged['price per person'].round(2)
          7
             merged['sentiment'] = merged['sentiment'].round(2)
             merged.sort_values('sentiment',ascending=False,inplace=True)
             merged['instant_bookable_binary']=np.where(merged.instant_bookable ==
         11
             merged['is business travel ready binary']=np.where(merged.is business t
             merged['host_is_superhost_binary']=np.where(merged.host_is_superhost ==
         12
         13
             merged.head()
```

Out[37]:

	listing_id	zipcode	latitude	longitude	property_type	room_type	bathrooms	bedrooms
53681	6698737	28806	35.575910	-82.59421	Private room in bungalow	Private room	1	1
133625	22076023	28804	35.625548	-82.55522	House	Private room	1	1
129494	21131816	28806	35.612530	-82.59418	Private room in residential home	Private room	1	1
106655	17206606	28787	35.612180	-82.56962	House	Private room	1	1
25621	2477628	28801	35.589390	-82.56782	Entire residential home	Entire home/apt	1	2

5 rows × 26 columns

In the above data cleaning attempt, I converted integer values not needing a decimal point (like zipcode) to int. I also rounded floating point values to 2 decimal places for concise data. Then, I created binary values for columns having 't' and 'f' entries to be able to run regression on the data set later.

```
In [97]:
           1
              import seaborn
           2
           3
              seaborn.set(style='whitegrid')
           4
           5
              seaborn.scatterplot(x="price per person",
           6
                                    y="sentiment",
           7
                                    sizes=(40,400),
           8
                                    alpha=.5,
           9
                                    data=merged)
          10
```

Out[97]: <AxesSubplot:xlabel='price_per_person', ylabel='sentiment'>

In the figure above, we can see a scatterplot between sentiment score and price_per_person. It shows as price increases, sentiment score steadily increases, atleast from negative to the positive scale. We can also see a few dots around 3.0 sentiment score at a lower price point, which we can safely categorize as OUTLIERS. People are basically giving a good score to hotels having a decent price and all other desired features as compared to super expensive hotels. There is another OUTLIER of expensive stays around \$2500 having a positive sentiment score.

In [38]:

```
#5. Let us get further insights from the clean data set
mergedGroup1=merged.groupby('listing_id')[['review_id']].count()
mergedGroup1.rename(columns={'review_id':'No of Reviews per Listing'},i
mergedGroup1.sort_values('No of Reviews per Listing',ascending=False,in
mergedGroup1 #Number of reviews per listing in descending order
```

Out[38]:

No of Reviews per Listing

listing_id	
695196	804
2411109	607
2296152	602
3314819	557
6054250	460
15922343	1
5822540	1
28335156	1
5477385	1
31054515	1

2520 rows × 1 columns

Out[39]:

	listing_id	zipcode	latitude	longitude	property_type	room_type	bathrooms	bedrooms
53681	6698737	28806	35.575910	-82.59421	Private room in bungalow	Private room	1	1
133625	22076023	28804	35.625548	-82.55522	House	Private room	1	1
129494	21131816	28806	35.612530	-82.59418	Private room in residential home	Private room	1	1
106655	17206606	28787	35.612180	-82.56962	House	Private room	1	1
25621	2477628	28801	35.589390	-82.56782	Entire residential home	Entire home/apt	1	2

5 rows × 26 columns

```
In [41]:
```

```
1 #7. Further Insights
```

- 2 mergedGroup2=merged.groupby('year')[['review_id']].count()
- mergedGroup2.rename(columns={'review_id':'No of reviews'},inplace=True)
- 4 mergedGroup2.sort values('No of reviews', ascending=False, inplace=True)
- 5 mergedGroup2.head() # Top 5 year having maximum No of reviews

Out[41]:

No of reviews

year	
2018	59610
2017	39914
2016	23118
2015	15658
2014	5958

Out[42]:

Average sentiment score

year	
2011	0.408462
2018	0.391177
2013	0.379784
2012	0.379170
2017	0.377514

Out[43]:

No of Reviews

reviev	ver_name	
	Sarah	1632
	Michael	1325
	David	1307
	Emily	1163
	John	1152

reviewer name

Out[44]:

year		
2018	59610	0.391177
2017	39914	0.377514
2016	23118	0.371100
2015	15658	0.369193
2014	5958	0.367382

Out[45]:

zipcode		
28806	46772	0.384252
28801	39344	0.376310
28803	18530	0.389688
28805	17131	0.376346
28804	15666	0.377582

Out[46]:

Sentiment_Score_Mean

zipcode	
28815	0.437857
28732	0.392697
28803	0.389688
0	0.385625
28806	0.384252

Out[16]:

	listing_id	zipcode	latitude	longitude	bathrooms	bedrooms	beds	mi
listing_id	1.000000	-0.042081	-0.078539	0.004294	0.020234	0.054055	0.103379	
zipcode	-0.042081	1.000000	-0.001271	-0.015303	-0.025918	-0.023857	-0.011147	
latitude	-0.078539	-0.001271	1.000000	-0.036619	-0.019855	-0.022368	-0.030444	
longitude	0.004294	-0.015303	-0.036619	1.000000	-0.001133	-0.023790	-0.017681	
bathrooms	0.020234	-0.025918	-0.019855	-0.001133	1.000000	0.695541	0.605362	
bedrooms	0.054055	-0.023857	-0.022368	-0.023790	0.695541	1.000000	0.728002	
beds	0.103379	-0.011147	-0.030444	-0.017681	0.605362	0.728002	1.000000	
minimum_nights	-0.172713	0.009233	0.059826	0.031294	-0.009069	0.040210	0.008730	
host_listings_count	0.038915	0.010652	0.003392	0.021971	0.164730	0.098700	0.104487	
price_per_person	-0.047145	0.015280	0.125577	0.049678	0.003704	-0.104026	-0.166355	
review_id	0.639510	-0.029567	-0.049275	0.021070	0.005433	0.023901	0.063016	
reviewer_id	0.341550	-0.010659	-0.061874	0.029758	0.008580	0.016187	0.043226	
sentiment	0.041129	-0.002087	-0.014592	0.000526	-0.031878	-0.028017	-0.037566	
year	0.620539	-0.026941	-0.050081	0.026502	0.008229	0.023709	0.060082	

Out[47]: <AxesSubplot:>


```
In [57]:
             merged.isnull().sum()
             merged = merged.dropna(how='any')
           2
           3
             merged.shape
           4
             # statsmodels:
           5
             import statsmodels.api as sm
           7
             Y1=merged['sentiment']
             X1=merged[['minimum_nights','price_per_person','host_listings_count','i
           8
           9
             X1=sm.add_constant(X1)
          10
          11
             model1 = sm.OLS(Y1, X1)
          12
             results1 = model1.fit()
             results1.summary()
          13
```

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/tsatools.py:14
2: FutureWarning: In a future version of pandas all arguments of concat e xcept for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[57]: OLS Regression Results

Dep. Variable: sentiment R-squared: 0.004 OLS 0.004 Model: Adj. R-squared: Method: Least Squares F-statistic: 73.78 **Date:** Wed, 07 Sep 2022 Prob (F-statistic): 5.30e-122 37634. 01:18:40 Time: Log-Likelihood: No. Observations: 147163 AIC: -7.525e+04 **Df Residuals:** 147154 BIC: -7.516e+04 **Df Model:** 8 **Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.3885	0.002	204.981	0.000	0.385	0.392
minimum_nights	-0.0003	4.56e-05	-6.981	0.000	-0.000	-0.000
price_per_person	-0.0002	2.01e-05	-8.025	0.000	-0.000	-0.000
host_listings_count	-0.0001	4.69e-05	-3.003	0.003	-0.000	-4.9e-05
instant_bookable_binary	0.0014	0.001	1.383	0.167	-0.001	0.003
host_is_superhost_binary	0.0168	0.001	14.641	0.000	0.015	0.019
is_business_travel_ready_binary	2.636e-17	4.77e-19	55.222	0.000	2.54e-17	2.73e-17
bathrooms	-0.0056	0.002	-3.600	0.000	-0.009	-0.003
bedrooms	0.0019	0.001	2.210	0.027	0.000	0.004
beds	-0.0053	0.001	-8.694	0.000	-0.006	-0.004

 Omnibus:
 28958.948
 Durbin-Watson:
 0.008

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 123372.829

 Skew:
 0.917
 Prob(JB):
 0.00

 Kurtosis:
 7.094
 Cond. No.
 1.36e+18

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.66e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

From the above regression, we can note that:

- 1. R squared value is very low at 0.004, which means the dependent variables are not able to explain the variance in the independent variable and can only explain 0.4% of the variance.
- 2. the column 'instant_bookable_binary' is not a good fit to the model as it contains the value '0' within the interval of [0.025 0.975], which is the 95% confidence interval.
- 3. our Covariance type is 'nonrobust', which means we cannot minimize or eliminate variables.
- 4. for 5 of our independent variables, the coefficient of regression is NEGATIVE, which means if these variables increase, sentiment DECREASES and vice versa. (negative correlation)
- 5. for 3 of our independent variables, the coefficient of regression is POSITIVE, which means if these variables increase, sentiment INCREASES and vice versa (positive correlation)

#taking sample of the original data set In [63]: 1 2 3 sampleMerged = merged.sample(frac=0.1, replace=False, random_state=1) # 4 sampleMerged.head() 5 6 Y2=sampleMerged['sentiment'] 7 X2=sampleMerged[['minimum nights','price per person','host listings cou X2=sm.add constant(X2) 8 9 10 model2 = sm.OLS(Y2, X2)11 results2 = model2.fit() 12 results2.summary() #taking 10% fraction, R squared increased to 0.006 f

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/tsatools.py:14
2: FutureWarning: In a future version of pandas all arguments of concat e
xcept for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[63]: OLS Regression Results

Covariance Type:

0.006 sentiment Dep. Variable: R-squared: Model: OLS Adj. R-squared: 0.005 Least Squares Method: F-statistic: 10.18 **Date:** Wed, 07 Sep 2022 Prob (F-statistic): 2.77e-14 01:20:55 Log-Likelihood: 3700.9 Time: No. Observations: 14716 AIC: -7384. **Df Residuals:** 14707 BIC: -7316. Df Model: 8

nonrobust

coef std err P>|t| [0.025]0.975const 0.3849 0.006 62.449 0.000 0.373 0.397 -0.0003 0.000 -2.350 0.019 -0.001 -5.54e-05 minimum_nights -0.0002 7.48e-05 -2.936 0.003 price_per_person -0.000 -7.3e-05 -0.0003 0.000 -1.940 0.052 -0.001 2.73e-06 host_listings_count 0.0031 0.003 0.973 0.330 -0.003 0.009 instant bookable binary host is superhost binary 0.0203 0.004 5.560 0.000 0.013 0.027 -1.806e-18 6.61e-18 -0.273 0.785 -1.48e-17 1.12e-17 is_business_travel_ready_binary -0.0012 0.005 -0.240 0.811 0.009 bathrooms -0.011bedrooms 0.0019 0.003 0.704 0.481 -0.003 0.007 -0.003 -0.0069 0.002 -3.630 0.000 -0.011 beds

Omnibus: 2816.930 **Durbin-Watson:** 1.987

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 10380.444

Skew: 0.931 **Prob(JB):** 0.00

Kurtosis: 6.669 **Cond. No.** 1.34e+18

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.6e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [119]:
              dummyData = pd.get_dummies(merged, columns=['room_type','property_type'
              dummyData['instant bookable binary']=np.where(dummyData.instant bookabl
            2
            3
              dummyData['is business travel ready binary']=np.where(dummyData.is busi
            4
              dummyData['host is superhost binary']=np.where(dummyData.host is superh
            5
              dummyData.fillna({'bathrooms':dummyData['bathrooms'].mean(),'beds':dumm
            7
              dummyData.dropna(how='any', inplace=True)
            8
              dummyData.columns
            9
           10
           11
              Y10=dummyData['sentiment']
              X10=dummyData[['minimum nights','price per person','host listings count
           12
           13
                      'property_type_Bed and breakfast', 'property_type_Boutique hotel
                      'property_type_Bungalow', 'property_type_Cabin',
           14
           15
                      'property type Camper/RV', 'property type Campsite',
                      'property_type_Chalet', 'property_type_Condominium',
'property_type_Cottage', 'property_type_Earth House',
           16
           17
           18
                      'property_type_Entire apartment', 'property_type_Entire bungalow
           19
                      'property_type_Entire cabin', 'property_type_Entire chalet',
           20
                      'property type Entire condominium',
           21
                      'property type Entire condominium (condo)',
           22
                      'property_type_Entire cottage', 'property_type_Entire guest suit
           23
                      'property type Entire guesthouse', 'property type Entire house',
           24
                      'property_type_Entire loft', 'property_type_Entire place',
           25
                      'property type Entire rental unit',
           26
                      'property_type_Entire residential home',
           27
                      'property type Entire townhouse', 'property type Entire vacation
                      'property_type_Farm stay', 'property_type_Guest suite', 'property_type_Guesthouse', 'property_type_House',
           28
           29
           30
                      31
                      'property_type_Private room', 'property_type_Private room in apa
           32
                      'property type Private room in bed and breakfast',
           33
                      'property type Private room in bungalow',
           34
                      'property type Private room in cabin',
           35
                      'property_type_Private room in castle',
           36
                      'property_type_Private room in condominium',
                      'property_type_Private room in condominium (condo)',
           37
           38
                      'property type Private room in cottage',
           39
                      'property type Private room in farm stay',
           40
                      'property type Private room in guest suite',
           41
                      'property_type_Private room in house',
           42
                      'property type Private room in loft',
                      'property_type_Private room in rental unit',
           43
           44
                      'property type Private room in residential home',
           45
                      'property type Private room in townhouse',
           46
                      'property type Room in bed and breakfast',
           47
                      'property_type_Room in boutique hotel', 'property_type_Room in h
           48
                      'property type Shared room in hostel',
           49
                      'property type Shared room in rental unit', 'property type Tent'
                      'property_type_Tiny house', 'property_type_Townhouse',
           50
           51
                      'property type Treehouse', 'property type Yurt']]
           52
           53
              X10=sm.add constant(X10)
           54
              X10
           55
              model1 = sm.OLS(Y10, X10)
              results10 = model1.fit()
```

57 results10.summary()

nicariast						
property_type_Room in boutique hotel	3.696e+09	1.51e+09	2.453	0.014	7.43e+08	6.65e+09
property_type_Room in hotel	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Shared room in hostel	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Shared room in rental unit	3.455e-36	2.8e-36	1.232	0.218	-2.04e-36	8.95e-36
property_type_Tent	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Tiny house	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Townhouse	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Treehouse	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
property_type_Yurt	5.453e+08	2.22e+08	2.453	0.014	1.1e+08	9.81e+08
• " 00077 000 -		1 050				

In the above attempt, I tried to create a dummy dataframe using get_dummies() function from pandas to create binary values for each category in property_type and room_type. Finally, I added all these independent variables to my regression model in an attempt to find a better R squared value.

Result: R squared improved from 0.004 to 0.010, now explaining 1% of variance in this data set.

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/tsa/tsatools.py:14
2: FutureWarning: In a future version of pandas all arguments of concat e
xcept for the argument 'objs' will be keyword-only
x = pd.concat(x[::order], 1)

Out[76]:

OLS Regression Results

Dep. Variable:	SentimentLog	R-squared:	0.004
Model:	OLS	Adj. R-squared:	0.004
Method:	Least Squares	F-statistic:	75.08
Date:	Wed, 07 Sep 2022	Prob (F-statistic):	3.15e-124
Time:	01:35:37	Log-Likelihood:	3.1201e+05
No. Observations:	147163	AIC:	-6.240e+05
Df Residuals:	147154	BIC:	-6.239e+05
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.8540	0.000	6311.663	0.000	1.853	1.855
minimum_nights	-4.868e-05	7.07e-06	-6.884	0.000	-6.25e-05	-3.48e-05
price_per_person	-2.453e-05	3.11e-06	-7.889	0.000	-3.06e-05	-1.84e-05
host_listings_count	-2.276e-05	7.27e-06	-3.129	0.002	-3.7e-05	-8.51e-06
instant_bookable_binary	0.0002	0.000	1.167	0.243	-0.000	0.000
host_is_superhost_binary	0.0027	0.000	14.990	0.000	0.002	0.003
is_business_travel_ready_binary	2.328e-17	1.74e-19	134.149	0.000	2.29e-17	2.36e-17
bathrooms	-0.0009	0.000	-3.632	0.000	-0.001	-0.000
bedrooms	0.0003	0.000	2.253	0.024	3.94e-05	0.001
beds	-0.0008	9.41e-05	-8.729	0.000	-0.001	-0.001

 Omnibus:
 21198.581
 Durbin-Watson:
 0.008

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 78646.161

 Skew:
 0.700
 Prob(JB):
 0.00

 Kurtosis:
 6.296
 Cond. No.
 8.03e+18

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.8e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In the above atempt, I took the log of the dependent variable - sentiment - in an attempt to get a better R Squared value. As sentiment values were negative, I had to add numeric 2 to all entries in the sentiment column as maximum negative value was greater than -2, hence if we add 2 to the entire column, all values in the column would be positive.

Result: there was no improvement in R squared value and it was still at 0.004

```
In [82]: 1 sns.histplot(data=merged, x="sentiment", bins=20)
```

Out[82]: <AxesSubplot:xlabel='sentiment', ylabel='Count'>

Histogram showing sentiment score in bins of 20

```
In [83]: 1 sns.histplot(data=merged, x="SentimentLog", bins=20)
```

Out[83]: <AxesSubplot:xlabel='SentimentLog', ylabel='Count'>

Histogram showing the LOG of sentiment score in bins of 20