We have the T-Univ-App rule in L fragment:

$$\frac{\Delta\Gamma\vdash^{L}e:\forall\alpha.A\quad\Delta\vdash B}{\Delta\Gamma\vdash^{L}e[B]:[B/\alpha]A}$$

Where well-formed substitutions are defined as follows:

Well formed type substitutions:

$$\mathcal{D}[\![.]\!] = \{\phi\}$$

$$\mathcal{D}[\![\Delta, \alpha]\!] = \{\rho[\alpha \to X] \mid \rho \in \mathcal{D}[\![\Delta]\!] \land FTV(X) \in dom(\rho)\}$$

Well formed value substitutions:

$$\begin{split} \mathcal{G}[\![.]\!] &= \{\phi\} \\ \mathcal{G}[\![\Gamma, x:\tau]\!]_k^\rho &= \{\gamma[x \to v] \mid \gamma \in \mathcal{G}[\![\Gamma]\!]_k^\rho \wedge v \in \mathscr{V}[\![\rho(\tau)]\!]_k\} \end{split}$$

To prove the soundness theorem using T-Univ-App case:

Given: $\Gamma \vdash^L e[B] : [B/\alpha]A, \ \Gamma \vDash_k \gamma, \ \Delta \vDash \rho$

To Prove: $\gamma(\rho(e[B])) \in \mathscr{C}[[\rho(B)/\alpha]A]_k^L$

Proof: From the definition of $\mathscr{C}[\![[\rho(B)/\alpha]A]\!]_k^L$, we need to prove

- . $\vdash^L \gamma(\rho(e[B])): [\rho(B)/\alpha]A$ By appeal to the substitution lemma
- if $\gamma(\rho([B/\alpha]e)) \leadsto^* v$, $\Delta \vdash B, \Delta \vdash \Gamma$, then it suffices to show that $v \in \mathscr{V}[\![\rho(B)/\alpha]A]\!]_k^L$

$$\gamma(\rho(e[B])) = \gamma(\rho(e))[\rho(B)] \tag{1}$$

if α doesn't occur in $dom(\rho)$.

By Induction Hypothesis,

$$\Delta\Gamma \vdash^{L} e : \forall \alpha. A$$

$$\gamma(\rho(e)) \in \mathscr{C}[\![\forall \alpha.A]\!]_k^L$$

By the definition of $\mathscr{C}[\![\forall \alpha.A]\!]_k^L$, $\gamma(\rho(e)) \leadsto^* v_1 \in \mathscr{V}[\![\forall \alpha.A]\!]_k^L$. Hence $\gamma(\rho(e))[\rho(B)] \leadsto^* v_1[\rho(B)]$ from eq.1.

Now as $v_1 \in \mathscr{V}[\![\forall \alpha.A]\!]_k^L$, it will look like $\land \alpha.v'$ for some v' s.t. $\forall T: Type, v'[T/\alpha] \in \mathscr{C}[\![T/\alpha]A]\!]_k^L$. Initialising $\rho(B)$ in T above, we get $v'[\rho(B)/\alpha] \in \mathscr{C}[\![\rho(B)/\alpha]A]\!]_k^L$. By definition of $\mathscr{C}[\![\rho(B)/\alpha]A]\!]_k^L$, $v'[\rho(B)/\alpha] \leadsto^* v'' \in \mathscr{V}[\![\rho(B)/\alpha]A]\!]_k^L$. But v'' is actually v, hence proved.