EYP 1025-1027 Modelos Probabilísticos Clase 13

Profesor: Reinaldo B. Arellano-Valle

Departamento de Estadística Pontificia Universidad Católica de Chile

Contenido I

- Esperanza de Funciones de un Vector Aleatorio
 - Aplicaciones: Fgm, covarianza y correlación
 - Ejemplos

Dado un vector aleatorio (X_1,\ldots,X_n) en $(\Omega,\,\mathcal{C},\,P)$ y una función real valorada $g:\mathbb{R}^n\longrightarrow\mathbb{R}$, entonces la transformación $Y=g(X_1,\ldots,X_n)$ define una variable aleatoria en $(\Omega,\,\mathcal{C},\,P)$, ya que para cada $\omega\in\Omega$, se tiene que $Y(\omega)=g(X_1(\omega),\ldots,X_n(\omega))\in\mathbb{R}$.

Aunque, en general, es importante conocer en la distribución de la variable aleatoria $g(X_1, \ldots, X_n)$, podemos prenscindir de ella para el calculo de su esperanza (cuando existe).

Teorema 1.1

$$E\{g(X_1,\ldots,X_n)\}$$

$$=\begin{cases} \sum \cdots \sum_{(x_1,\ldots,x_n)\in\mathbb{R}^n} g(x_1,\ldots,x_n) f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) & \text{c.d.} \\ \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1 \cdots dx_n & \text{c.c.} \end{cases}$$

(provisto que las sumatorias y las integrales convergan)

Aplicaciones: Fgm, covarianza y correlación

1) Esperanza de funciones lineales

Si $g(x_1,\ldots,x_n)=\sum_{i=1}^n a_ix_i+b$, donde a_1,\ldots,a_n,b son constantes reales, entonces

$$\mathsf{E}\left(\sum_{i=1}^n a_i X_i + b\right) = \sum_{i=1}^n a_i \mathsf{E}(X_i) + b,$$

provisto que $E(|X_i|) < \infty$ para todo i = 1, ..., n.

Por ejemplo, si $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ es la media muestral de X_1,\ldots,X_n , entonces

$$\mathsf{E}(\bar{X}) = \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathsf{E}(X_{i}).$$

En particular, si todas las X_i 's tienen la misma media, digamos $\mathsf{E}(X_i) = \mu$ para $i=1,\dots,n$, entonces

$$\mathsf{E}(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu \quad \forall n = 1, 2, \dots \quad (*)$$

Esto ocurre, por ejemplo, cuando X_1,\ldots,X_n corresponde a una muestra aleatoria (m.a.) de una distribución F (población) con media μ , lo cual equivale a decir que $X_1,\ldots,X_n \overset{\text{iid}}{\sim} F$, donde F una distribucón con media μ .

El resultado (*) indica que la media muestral \bar{X} es un predictor insegado de la media poblacional $\mu.$

Ejemplo 1.1

Sean $X_1, \ldots, X_n \stackrel{iid}{\sim} \exp(\lambda)$. Sabemos que a media de la distribución exponencial es

$$\mu = \int_0^\infty x \underbrace{\lambda e^{-\lambda x}}_{f_X(x)} dx = \frac{1}{\lambda} \implies \mathrm{E}(\bar{X}) = \frac{1}{\lambda}.$$

II) Función generadora de momentos (fgm) multivariada

Si $g(x_1,\ldots,x_n)=\prod_{i=1}^n e^{t_ix_i}=e^{\sum_{i=1}^n t_ix_i}$, entonces $\mathsf{E}\{g(X_1,\ldots,X_n)\}$ define la fgm conjunta de X_1,\ldots,X_n , provisto, obviamente, que ella exista; es decir:

Definición 1.1

La fgm de conjunta de X_1, \ldots, X_n se difine como,

$$M_{X_{1},...,X_{n}}(t_{1},...,t_{n}) = E\left(e^{\sum_{i=1}^{n} t_{i}X_{i}}\right)$$

$$= \begin{cases} \sum \cdots \sum_{(x_{1},...,x_{n}) \in \mathbb{R}^{n}} e^{\sum_{i=1}^{n} t_{i}x_{i}} f_{X_{1},...,X_{n}}(x_{1},...,x_{n}) & \text{c.d.} \end{cases}$$

$$= \begin{cases} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{\sum_{i=1}^{n} t_{i}x_{i}} f_{X_{1},...,X_{n}}(x_{1},...,x_{n}) dx_{1} \cdots dx_{n} & \text{c.c.} \end{cases}$$

provisto que la esperanza exista para todo $(t_1, \ldots, t_n) \in \mathbb{R}^n$ tal que $|t_k| < h_k$, algún $(h_1, \ldots, h_k) \in \mathbb{R}^n$, con $h_k > 0$ para todo $k = 1, \ldots, n$.

Propiedades de la fgm multivariada:

- (i) $M_{X_1,\ldots,X_k}(t_1,\ldots,t_k)=M_{X_1,\ldots,X_k,X_{k+1},\ldots,X_n}(t_1,\ldots,t_k,0,\ldots,0)$ para todo $k=1,\ldots,n-1$.
- $(\mathrm{ii}) \quad \tfrac{\partial^{k_1+\cdots+k_n} M_{X_1,\ldots,X_n}(t_1,\ldots,t_n)}{\partial t_1^{k_1}\cdots \partial t_n^{k_n}} \,|_{t_1=\cdots=t_n=0} \, = \mathsf{E}(X_1^{k_1}\times\cdots\times X_n^{k_n}).$
- (iii) X_1,\ldots,X_n son va's independientes si, y sólo si,

$$M_{X_1,...,X_n}(t_1,...,t_n) = \prod_{i=1}^n M_{X_i}(t_i)$$

para todo (t_1, \ldots, t_n) donde las fgm's existen.

(iv) Si
$$Y = \sum_{i=1}^{n} a_i X_i + b$$
, entonces,

$$M_Y(t) = e^{bt} M_{X_1,...,X_n}(a_1 t,...,a_n t).$$

Así, si X_1, \ldots, X_n son va's independientes, entonces

$$M_Y(t) = e^{bt} \prod_{i=1}^{n} M_{X_i}(a_i t).$$

En particular, si $X_1, \ldots, X_n \stackrel{iid}{\sim} M(t)$ e $Y = \sum_{i=1}^n X_i$, entonces

$$M_{\sum_{i=1}^{n} X_i}(t) = \{M(t)\}^n$$
.

Ejemplo 1.2

Sean $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$. Pruebe que $Y = \sum_{i=1}^n X_i \sim Bin(n, p)$.

Demostración Ya que $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$, entonces

$$X_1, \dots, X_n \stackrel{iid}{\sim} M(t) = (1 - p + pe^t).$$

Luego, la fgm de $Y = \sum_{i=1}^{n} X_i$ es,

$$\begin{aligned} M_Y(t) &= M_{\sum_{i=1}^n X_i}(t) \\ &= \{M(t)\}^n \\ &= (1 - p + pe^t)^n \longrightarrow \text{ fgm de la distribución } Bin(n, p). \end{aligned}$$

Por la unicidad de la fgm se concluye que $Y = \sum_{i=1}^{n} X_i \sim Bin(n, p)$.

Ejemplo 1.3

Sean que X_1 e X_2 va's independientes, con $X_i \sim N(\mu_i, \sigma^2)$, i = 1, 2.

Encuentre la distribución de $Y = X_1 - X_2$.

Solución Ya que $X_i \sim N(\mu_i, \sigma^2)$, entonces $M_{X_i}(t) = e^{\mu_i t + \frac{1}{2}\sigma^2 t^2}$ para i = 1, 2. Además, como X_1 y X_2 son va's independientes, entonces la fgm de $Y = X_1 - X_2$ es,

$$\begin{split} M_{X_1-X_2}(t) &= M_{X_1}(t) M_{X_2}(-t) \\ &= e^{\mu_1 t + \frac{1}{2}\sigma^2 t^2} e^{-\mu_2 t + \frac{1}{2}\sigma^2 t^2} \\ &= e^{(\mu_1 - \mu_2)t + \frac{1}{2}(2\sigma^2)t^2}, \forall \ t \in \mathbb{R}. \end{split}$$

Como $M_{X_1-X_2}(t) = e^{(\mu_1-\mu_2)t+\frac{1}{2}(2\sigma^2)t^2}$ es la fgm de una distribución normal con media $\mu_1 - \mu_2$ y varianza $2\sigma^2$, se concluye que $X_1 - X_2 \sim N(\mu_1 - \mu_2, 2\sigma^2)$.

III) Covarianza y Correlación

Si
$$n=2$$
, con $X_1=X$ y $X_2=Y$, sean $\mu_X=\mathsf{E}(X)$, $\mu_Y=\mathsf{E}(Y)$, $\sigma_X^2=\mathsf{Var}(X)$ y $\sigma_Y^2=\mathsf{Var}(Y)$, y suponga que $0<\sigma_X^2<\infty$ y $0<\sigma_Y^2<\infty$. Entonces, la función $g(x,y)=(x-\mu_X)(y-\mu_Y)$ permite definir la covarianza entre las va's X e Y ; es decir:

Definición 1.2

La convarianza entre dos variables aleatorias X e Y se define como,

$$\operatorname{Cov}(X,Y) = \operatorname{E}\{(X - \mu_X)(Y - \mu_Y)\}\$$

$$= \begin{cases} \sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) & \text{c.d.} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dy dx & \text{c.c.} \end{cases}$$

Notación alternativa e interpretación:

$$\sigma_{XY} := \mathsf{Cov}(X,Y)$$

Interpretación:

$$\begin{array}{ll} \sigma_{XY}>0 \implies \text{asociación} +, \\ \sigma_{XY}<0 \implies \text{asociación} -, \\ \sigma_{XY}=0 \implies \text{no hay asociación lineal}. \end{array}$$

Propiedades de la covarianza: Para dos va's X e Y definidas sobre el mismo espacio de probabilidades, se tiene que:

- (i) Cov(X,Y) = E(XY) E(X)E(Y) (formula alternativa)
- (ii) $Cov(X, X) = Var(X) \ge 0$ (operador positivo definido)
- (iii) Cov(X, Y) = Cov(Y, X) (simetría)
- (iv) $\mathsf{Cov}(X,c) = \mathsf{Cov}(c,X) = 0$ para cualquier constante $c \in \mathbb{R}$
- (v) Si X e Y son va's independientes, entonces Cov(X,Y)=0

Nota: Si X e Y son independientes, entonces g(X) y h(Y) también son va's idependientes, para cualquier funciones g y h

(vi) $\operatorname{Cov}(aX+b,Y)=a\operatorname{Cov}(X,Y)$ y $\operatorname{Cov}(aX+b,X)=a\operatorname{Var}(X),$ donde a y b son constantes

$$\text{(vii)} \quad |\mathsf{Cov}(X,Y)| \leq \sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)} \quad \text{(designal dad de Couchy-Schwarz)}$$

Definición 1.3

La correlación (coeficiente de correlación) entre dos variables aleatorias X e Y, se define como,

$$\rho_{XY} = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

La Propiedad (vii) $\Longrightarrow |\rho_{XY}| \le 1$, con igualdad si, y sólo si Y = aX + b para $a \ne 0$, de acuerdo con y la Propiedad (vi).

Más formalmente:

Teorema 1.2

Suponga que X es una variable aleatoria tal que $0 < \sigma_X^2 < \infty$. Si existen constantes $a \neq 0$ y b tal que Y = aX + b, entonces, $\rho_{XY} = 1$ si a > 0 (asociación lineal +) y $\rho_{XY} = -1$ si a < 0 (asociación lineal -).

Demostración 1.1

Como $Var(aX + b) = a^2Var(X)$ y Cov(X, aX + b) = aVar(X), la definición de correlación implica que,

$$\rho(X, aX + b) = \frac{\text{Cov}(X, aX + b)}{\sqrt{\text{Var}(X)\text{Var}(aX + b)}} = \frac{a}{\sqrt{a^2}} = \begin{cases} 1 & \text{si } a > 0, \\ -1 & \text{si } a < 0. \end{cases}$$

IV) Varianza de funciones lineales

Considerando nuevamente la funcion lineal $Y = \sum_{i=1}^n a_i x_i + b$, ahora podemos calcular su varianza:

Sean X_1, \ldots, X_n va's con varianzas finitas y a_1, \ldots, a_n, b constantes en \mathbb{R} . Vimos que

$$\mathsf{E}\left(\sum_{i=1}^{n} a_i X_i + b\right) = \sum_{i=1}^{n} a_i \mathsf{E}(X_i) + b. \quad (*)$$

Ahora, podemos también afirmar que,

$$\operatorname{Var}\left(\sum_{i=1}^n a_i X_i + b\right) = \sum_{i=1}^n a_i^2 \operatorname{Var}(X_i) + 2 \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} a_i a_j \operatorname{Cov}(X_i,X_j). \quad (**)$$

En particular, si las va's X_1,\dots,X_n son independientes, entonces $\mathrm{Cov}(X_i,X_j)=0\ \forall\ i\neq j,$ y de (**) se tiene que,

$$\operatorname{Var}\left(\sum_{i=1}^{n}a_{i}X_{i}+b\right)=\sum_{i=1}^{n}a_{i}^{2}\operatorname{Var}(X_{i}).$$

Por ejemplo, colocando para n=2, $X_1=X$ y $X_2=Y$, entonces de (**) se tiene que,

$$\begin{aligned} \operatorname{Var}(X+Y) &= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y), \\ \operatorname{Var}(X-Y) &= \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X,Y). \end{aligned}$$

En particular,

$$Cov(X, Y) = 0 \Longrightarrow Var(X \pm Y) = Var(X) + Var(Y).$$

Demostración de (*): Sea $Y = \sum_{i=1}^{n} a_i X_i + b$. La definición de varianza de una va Y y el resultado en (*) implican que,

$$\begin{aligned} \mathsf{Var}(Y) &= \mathsf{E} \left\{ (Y - \mathsf{E}(Y))^2 \right\} \\ &= \mathsf{E} \left\{ \left[\sum_{i=1}^n a_i X_i + b - \sum_{i=1}^n a_i \mathsf{E}(X)_i - b \right]^2 \right\} \\ &= \mathsf{E} \left\{ \left[\sum_{i=1}^n a_i (X_i - \mathsf{E}(X_i)) \right]^2 \right\} \\ &= \mathsf{E} \left\{ \sum_{i=1}^n \sum_{j=1}^n a_i a_j (X_i - \mathsf{E}(X_i)) (X_j - \mathsf{E}(X_j)) \right\} \\ &= \sum_{i=1}^n \sum_{j=1}^n a_i a_j \mathsf{E} \left\{ (X_i - \mathsf{E}(X_i)) (X_j - \mathsf{E}(X_j)) \right\} \end{aligned}$$

$$\begin{split} &= \sum_{i=1}^{n} a_{i}^{2} \mathsf{E} \left\{ (X_{i} - \mathsf{E}(X_{i}))^{2} \right\} \\ &+ \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} a_{i} a_{j} \mathsf{E} \left\{ (X_{i} - \mathsf{E}(X_{i}))(X_{j} - \mathsf{E}(X_{j})) \right\} \\ &= \sum_{i=1}^{n} a_{i}^{2} \mathsf{Var}(X_{i}) + \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} a_{i} a_{j} \mathsf{Cov}(X_{i}, X_{j}) \\ &= \sum_{i=1}^{n} a_{i}^{2} \mathsf{Var}(X_{i}) + 2 \sum_{\substack{1 \leq i,j \leq n \\ i < j}} a_{i} a_{j} \mathsf{Cov}(X_{i}, X_{j}) \end{split}$$

Ejemplo 1.4

Sean X_1, \ldots, X_n va's iid, con media μ y varianza σ^2 . Entonces, la media y la varianza de la media muestral $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ estan dadas por,

$$E(\bar{X}) = \mu$$
 y $Var(\bar{X}) = \frac{\sigma^2}{n}$.

Ejemplo 1.5

Suponga que $X_i \stackrel{\text{ind.}}{\sim} N(\mu_i, \sigma_i^2)$, i = 1, ..., n. Entonces, usando la fgm podemos probar que,

$$Y = \sum_{i=1}^{n} a_i X_i + b \sim N(\underbrace{\sum_{i=1}^{n} a_i \mu_i + b}_{\text{E}(Y)}, \underbrace{\sum_{i=1}^{n} a_i \sigma_i^2}_{\text{Var}(Y)}),$$

de modo que la distribución normal es cerrada bajo transformaciones lineales de va's normales independientes.

Ejemplos

Ejemplo 1.6

Supoga que un estudiante debe rendir una prueba verbal y una cuantitativa. Sea X el puntaje en el examen verbal, e Y el puntaje en el examen cuantitativo. Se desea encontrar la correlación entre X e Y. Para ello, se supone que la fdp conjunta de X e Y está dada por,

$$f_{X,Y}(x,y) = \begin{cases} 2xy + 0.5 & \text{para } 0 \le x \le 1 \text{ y } 0 \le y \le 1 \\ 0 & \text{eoc} \end{cases}$$

Para calcularemos la covarianza Cov(X,Y), primero se deben calcular las medias μ_X y μ_Y de X e Y, respectivamente. La simetría en la fdp conjunta, implica que X e Y tienen la misma distribución marginal; por lo tanto, $\mu_X = \mu_Y$, donde,

$$\mu_X = \int_0^1 \int_0^1 (2x^2y + 0.5x) \, dy dx$$
$$= \int_0^1 (x^2 + 0.5x) \, dx = \frac{1}{3} + \frac{1}{4} = \frac{7}{12},$$

y $\mu_Y = \frac{7}{12}$. Luego,

$$Cov(X,Y) = \int_0^1 \int_0^1 \left(x - \frac{7}{12}\right) \left(y - \frac{7}{12}\right) (2xy + 0.5) dy dx = \frac{1}{144}.$$

Además, $\sigma_X^2 = \sigma_Y^2 = 11/144$, de modo que $\rho(X,Y) = 1/11$. Aunque, un algo baja, la correlación entre los puntajes es positiva.