

- Definizione di ricorsione e strategie divide et impera
- Semplici algoritmi ricorsivi
- Merge Sort
- Quicksort
- Esempi più complessi di algoritmi ricorsivi

Il tour del cavaliere

Si desidera trovare una sequenza di mosse del cavallo tale per cui questo tocca una ed una sola volta ciascuna casella di una scacchiera N×N.

Si ricorda che un cavallo – in posizione (i,j) può muovere in 8 possibili caselle:

Inizializzazioni

```
#define DIM 6
int a[8],b[8],scacc[DIM][DIM];
void main(void)
{ int     i,     j,     result;
     a[0]=2; b[0]=1; a[1]=1; b[1]=2;
     a[2]=-1; b[2]=2; a[3]=-2; b[3]=1;
     a[4]=-2; b[4]=-1; a[5]=-1; b[5]=-2;
     a[6]=1; b[6]=-2; a[7]=2; b[7]=-1;

for( i=0; i<DIM; i++)
     for( j=0; j<DIM; j++)
     scacc[i][j] = 0;</pre>
```

a.a. 2001/2002

a.a. 2001/2002

}

Programma principale

2

M

Muovi (1)

```
int muovi( int mossa, int posx, int posy)
{  int    i,ret,newposx,newposy;
  if( mossa == (DIM*DIM+1))
    return(1);
  for( i=0; i<8; i++)
    {    newposx = posx + a[i];
    newposy = posy + b[i];</pre>
```

5 a.a. 2001/2002

Muovi (2)

3

Si supponga che N=4.

7 a.a. 2001/2002

Complessità

- Il numero di mosse possibili ad ogni passo è al più 8.
- Il numero di passi è N².
- Quindi l'albero ha un numero di nodi ≤ 8^{N^2}.
- Nel caso peggiore
 - la soluzione corrisponde alla foglia più a destra
 - l'albero è completo.
- In tal caso il numero di chiamate recursive prima di trovare la soluzione è $\Theta(8^{N^2})$.