(1) Let F be a field. Show that a polynomial p(x) EF(x) of degree N has a most n roots in F. Let us prove the above by induction. First, suppose p(x) has degree \pm . Then $p(x) = a_0 + a_1 x = (x + a_0 a_1^{-1}) \cdot a_1$, where as, as EF and as = 0, and how only one root, -asai. Now suppose that polynomials of degine n-1 have at most N=1 roots in oud consider p(x) & F[x] of degree n with some most def, i.e. p(a) = 0. (If p(x) has no root, then we are done) Then by Division with Remainder $p(x) = (x-\alpha)q(x)$, where $q(x) \in F[x]$ of degree n-1. Then the next of p(x) are We can do this because the west ring F of and the roots of g(x). There cannot be any other is a field. β=d≠0 (and f(8) ≠0 for any β∈F root because different from & and the roots of q(x). Now we know that q(x) has at most n-1, roots, so p(x)=(x-a)q(x)has at most n roots, namely, those of qui and or!

(2) Let R be a ring. The whole ring R is on ideal of itself, called the unit ideal. Show that if an ideal I contains a unit, then it is the unit ideal.

I have at most n roots in F.

Let $U \in I$ denote this unit. By definition, $U' \in R$, so $U \cdot U'' = \bot \in I$. Then, $\bot \cdot P' \in I$ for all $P \in R$, meaning that $I \supset \bot \cdot R = R$. We know that $I \subset R$. Thus I = R. Therefore, if an ideal I contains a unit, then it is the unit ideal.

Thus by induction, a polynomial p(x) & F(x) of degree

(3) Let R be a ring and let a, b ER. Show that (a) = (b) if and only if a = wb tor some unit uER. $\frac{\partial f}{\partial x}$ (\Rightarrow) Juppose (α) = (b), a then $\alpha \in (b)$, so $\alpha = b \cdot x$ tor some ner. Similarly, be(a), so b= a.s ton Some SER. Then $\alpha = (a.s) \cdot r = a.s.$ So Sr = 1Then I has an inverse $(r^{-1}) = s \in \mathbb{R}$. So $Q = r \cdot b$ where her is a unit. (€) Suppose a=ub ton some unit UER. Then (a) = aR = (ub)R = (bu)R = b(uR) = bR = (b),Commutative associative unit ideal is the whole ring (Problem #2) Therefore, $(a) = (b) \iff a = ub$ for some unit $u \in R$. (4) Every non-zero ring has at least two ideals, the zero ideal and the unit ideal. Show that a non-zero ring is a field it and only it it how no other ideals. (⇒) Let I be a nonzero ideal of a tield F, and let & be a nonzero element of I. Since F is a field, of has an inverse of IEF, i.e. of is a unit. Then I contains a unit, &, and hence I is the unit ideal. (: If an ideal contains a unit, then it is the unit ideal; from Problem #2). So F has no other ideals besides (o) and (1). (\Leftarrow) Suppose that a non-zero ring R has no other ideals besides (0) and (4). Choose any nonzero element $\alpha \in R_s$ then $\alpha = (1)$ because $\alpha \neq 0$. Then IE (a), so I = d. r for some ref, i.e. a has an inverse of = r ER. Now of was an arbitrary nonzero element of R. so every honzero element of R has a multiplicative inverse, i.e. R is a field.

Show that the characteristic of a field is a prime number.

PF Let F denote a field and Q the unique homomorphism where $Z \to F$ defined by P(m) = 1 + + 1 (m terms). Then $\binom{n}{\in}Z$ ten Q = mZ for some $n \in M$ (: kernel is a subgroup).

Suppose n is not prime, i.e. suppose at M divides n, $a \neq 1$ and $a \neq n$. Then $Q(n) = Q(a \cdot n) = Q(a) Q(\frac{n}{n})$. And since heither a non $\frac{n}{n}$ is in the kernel (mZ) neither a non a is zero. Also, since a in a is a field. They have inverses $(a)^{-1}$ and $(a)^{-1}$, respectively. So a field. They have inverses $(a)^{-1}$ and $(a)^{-1}$, respectively. So a field. They have inverses $(a)^{-1}$ and $(a)^{-1}$, respectively. So a field a is a prime number, and the characteristic of a field is a prime number.

(6) Ch.11: 3.12 Let I and J be ideals of a ring R. Prove that the set I+J of elements of the form α ty, with α in I and y in J is an ideal. This ideal is called the sum of the ideals I and J.

If Suppose Z, $Z' \in I+J$. Then Z = x+y and Z' = x'+y' for some X, $X' \in I$ and Y, $Y' \in J$. Then Z + Z' = x+x'+y+y'. We know that $x+x' \in I$ and $y+y' \in J$, so

Z+Z'=(x+x)+(x+x) = Z+J /

hence I+J is closed under addition.

Now consider the same $Z=x+y\in I+J$ and take any $r\in R$. Then rZ=r(x+y)=rx+ry ("detilative law). We know that $rX\in I$ and $rY\in J$, so $rZ=rx+ry\in I+J$. Therefore, I+J is an ideal.

(7) Ch. 11 4.3 (dentify the following rings. (a) $\mathbb{Z}[x]/(x^2-3,3x+4)$. Od Let us consider the ideal (x2-3, 2x+4). We see $2(x^{2}-3)+(2-x)(2x+4)=2x^{2}-6+(4x+8-2x^{2}-4x)$ S. 2 € (x²-3, 2x++), and hence $(x^2-3, 2x+4) = (x^4+4, 2)$ Then $\mathbb{Z}[x]/(x^2-3,2x+4)\cong\mathbb{Z}[x]/(x^2+4,2)$ = F2[x]/x+1. Y Falil V) which has tour elements 0, 1, i, 1+i (b) $\mathbb{Z}[i]/(2+i) \cong (\mathbb{Z}[x]/(x^2+i))/(2+x)$ $\cong \mathbb{Z}[x]/(x^2+1, x+2)$ We see that (2-x)(x+2)+(x0)=5, so $t \in (x^2 + 1, x + 2)$ also. Then $\mathbb{Z}[i]/(2+i) \cong \mathbb{Z}[x]/(x+2+5)$ $\cong \left(\mathbb{Z}[x]/(x+2)\right)/(5)$ ≅ **Z**/(₅)

≌ F_F /

```
(continued)
```

```
(c) \mathbb{Z}[x]/(6,2x-1)
      We see that 6 \cdot \alpha - 3(2x-1) = 3, so
                 3 \in (6, 2x - 1) also.
      Hence (6, 2x-1) = (3, 2x+2), and thus
      \mathbb{Z}[x]/(6,2x-1)\cong\mathbb{Z}[x]/(3,2x+2)
                 \cong (\mathbb{Z}[\times]/(3))/(2\times+1)
                        □ 2 Zs[x]/(2x+2)/
                          = \mathbb{Z}_{2}[x]/(-(x+i))
                               Ħ,
  (d) \mathbb{Z}[x]/(2x^2-4, 4x-5)
      First, -8(2x^2-4)+(4x+5)(4x-5)=7\in(2x^2-4,4x-5)
      S_{6}(2x^{2}-4,4x^{2})=(4x+2,7)
      Then
              \mathbb{Z}[x]/(2x^2+1,4x-5)\cong \mathbb{Z}[x]/(4x+2,7)
   Since 2 \in \mathbb{Z}_7 is a unit (4x+2) = (8x+4) = (x+4) \cong (\mathbb{Z}[x]/(7))/(4x+2)
SO IF7[X]/(4x+2) = IF(X)/(x+4) = IF, = IF, [x]/(4x+2)
 The last iso is via eval at -4.
(e) \mathbb{Z}[x]/(x^2+3, t) \cong (\mathbb{Z}[x]/(t))/(x^2+3)
                               Fr[x] (x2+3)
                          \cong \mathbb{F}_{5}[x]/(x^{2}-2)
                               時[位] 人
```

(8) Ch: 11 44 Are the river Z[2]/(2+7) and Z[x]/(2x+7) iso marphic ? <u>Sol</u> Wo. Pf we know that Z[x]/(x+7) = Z[7] Now Consider a homomorphism $\varphi: \mathbb{Z}[\times] / (\Im \times +1) \longrightarrow \mathbb{Z}[\sqrt{2}].$ Then 9 must send 0 to 0 and 1 to 1, and x to some at b [7 & Z [7] such that $P(2x^2+7) = P(2)[P(x)]^{\frac{1}{2}} + P(7) = 0$ But 2 (a+b15)2+7 = 2 (a2+2ab15+7b2)+7 = 20 +146 +7 +20by7 which cannot equal sero with a b & Z because 2a2+14b2+7 is a positive integer while 2ab17 is either zero on non-integer (irrational.). (9) Ch. 11: 5.2 Let a be an element of a ting R. It we adjain an element & with the relation of = a, we expect to get a ring isomorphic to R. Prove that this is time. By the First Isomorphism Theorem, we have the new May R = R[d] with ternel (d-a) = R[d]/(d-a) Kernel of What map? Consider the map REXI-IR which is identity on R and sends a to d. Then a-de Kerp. So (a-d) c Kerp. Suppose p(x) & Ker (q). Then, as (x-1) is monic, we can write $p(x) = (x-x)q(x) + \Gamma , r \in \mathbb{R}$ By substituting x = x, we get y = 0. So $p(x) \in \frac{x}{x}$ (x - x). Thus (x - x) = (x - x). Since y = (x - x) = x. gives $R[X]/(X-X) \cong \mathbb{R}$