Lecture 2 (1.2 - 1.4)

Rui Li

September 18, 2018

Contents

1.2 - Sets	1
1.3 - Statements and Negation	2
1.4 - Quantifiers	2
1.2 - Sets	
Definition: a set is a collection of objects, called it's elements. Notation: $a \in S$ (a is an element of S) $a \notin S$ (a is not an element of S)	
The Natural Numbers $\mathbb{N} = \{1, 2, 3\}$ Thus $1 \in \mathbb{N}, 2 \in \mathbb{N}$, etc. However $0 \notin \mathbb{N}$. (in MATH135)	
The Integers $\overline{\mathbb{Z}} = \{2, -1, 0, 1, 2\}$ Thus $0 \in \mathbb{Z}, \pm 1 \in \mathbb{Z}, \frac{1}{2} \notin \mathbb{Z}$.	
The Rational Numbers $\mathbb{Q} = \{ \frac{a}{b} \colon a, b \in \mathbb{Z}, b \neq 0 \}$ Thus $1 = \frac{1}{1} \in \mathbb{Q}; \frac{1}{2} \in \mathbb{Q}; \sqrt{2} \notin \mathbb{Q} \text{ (Lecture 9)}.$	
The Real Numbers $\mathbb{R} \to \sqrt{2} \in \mathbb{R}; \sqrt{-1} \notin \mathbb{R}$ (Lecture 9).	
Examples: Odd natural numbers less than 10 is $\{1, 3, 5, 7, 9\}$. The set $S = \{1, 2, \{3\}\}$ has three elements $1 \in S, 2 \in S, \{3\} \in S$ but $3 \notin S$.	

Order is not relevant with sets, neither is multiplicity (the second 2 above is redundant)

The Empty Set

 $\emptyset = \{\}$ No elements.

Examples:

Set of integers both even and odd is \varnothing .

The set of elements common to both $\{3\}$, $\{\{3\}\}$ is \varnothing .

 $\{\varnothing\}$ has one element, \varnothing ($\varnothing \in \{\varnothing\}, \varnothing \notin \varnothing$).

 $\{\emptyset, \{\emptyset\}\}\$ has 2 elements.

1.3 - Statements and Negation

Definition: A statement is a sentence that is either true or false.

Examples of statements:

1 + 1 = 2

1 + 1 = 3

 $\sqrt{2} \notin \mathbb{Q}$

Not statements:

$$x^2 - x = 0$$

$$\frac{m-7}{2m+4} = 5$$

Negation

Definition: Let p be a statement, the negation of p is denoted $\neg P$, and is the statement with the opposite truth value.

P	$\neg P$	$\neg(\neg P)$
True	False	True
False	True	False

Double negation has the same truth values as P, so P is logically equivalent to it's double negation.

$$P \equiv \neg (\neg P)$$

Negation of 1+1=2 is $\neg(1+1=2)$, or $1+1 \neq 2$.

Negation of $\sqrt{2} \in \mathbb{Q}$ is $\sqrt{2} \notin \mathbb{Q}$. $\neg(\sqrt{2} \notin \mathbb{Q})$ is $\sqrt{2} \in \mathbb{Q}$ so $\neg(\neg(\sqrt{2} \in \mathbb{Q}))$ is $\sqrt{2} \in \mathbb{Q}$.

1.4 - Quantifiers

Definition:

A universally quantified statement is one of the form: $\forall x \in S, P(x)$

An existentially quantified statement: $\exists x \in S, P(x)$

Here:

 \forall "for all" - Universal

 \exists "there exists" - Existential

x is a variable

S is the domain of x (some set)

P(x) is an open sentence (one which becomes true or false when x is replaced by an element in S)

Examples:

$$\forall x \in \mathbb{R}, x^2 - x \ge 0 \tag{1}$$

$$\forall x \in \mathbb{Z}, x^2 - x \ge 0 \tag{2}$$

$$\exists x \in \mathbb{R}, x^2 - x < 0 \tag{3}$$

$$\exists x \in \mathbb{Z}, x^2 - x < 0 \tag{4}$$

$$\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5 \tag{5}$$

$$\exists m \in \mathbb{N}, \frac{m-7}{2m+4} = 5 \tag{6}$$

$$\forall m \in \mathbb{Z}, \frac{m-7}{2m+4} \neq 5 \tag{7}$$

$$\forall m \in \mathbb{N}, \frac{m-7}{2m+4} \neq 5 \tag{8}$$

- (1) False
- (2) True
- (3) True
- (4) False
- (5) True, m = -3
- (6) False
- (7) False
- (8) True

Practice:

- a) 64 is a perfect square
- b) $2^{2x-4} = 8$ has an integer solution
- c) $y = x^3 2x + 1$ has x intercept
- d) Every triangle is equivalent
- e) $\sqrt{2} \notin \mathbb{Q}$