

CityU

2021/22 Semester B

Home

Assignments

Discussions

Grades

Files

Syllabus

Modules

Collaborations

Library Resources

Class List (AIMS)

uReply

Panopto Recordings

Zoom

Office 365

TLQ

776

Final

Due May 4 by 11:40am Points 100 Submitting a file upload
File Types pdf Available May 4 at 9:30am - May 4 at 11:40am about 2 hours

Q1 (20 points) Given are the following eight transactions on items $\mathcal{V} = \{A, B, C, D, E, F\}$.

Transaction id	Transaction (set of items)		
1.	ABC		
2	BCD		
3	CDE		
4	BC		
5	CD		
6	ABCD		
7	ABD		
8	EF		

The support of an itemset/pattern $S \subseteq \mathcal{V}$ is the number of transactions containing all items of S. Let the minimum support be minSup = 2. A **frequent pattern** is an itemset whose supports are at least minSup. A **closed pattern** is a frequent pattern whose all supersets are less frequent than it. List all **closed patterns** and their corresponding **supports**.

Q2 (15 points) Given two data points $x, y \in \mathbb{R}^d$, define the distance between x and y as $dis(x,y) = 1 - \frac{x^T y}{|x|_2 |y|_2}$. Formulate an optimization problem of using such distance function to do K-Means clustering. Design an algorithm to solve this optimization problem. You can assume that the input dataset is $\{x_1, x_2, ..., x_n\}$ and the initial k centroids are $\{c_1, c_2, ..., c_k\}$. You also need to show that your algorithm can converge.

Q3 (10 points) We want to conduct a survey to learn for a population, what is the percentage of people who like Justin Bieber. To protect the privacy, we adopt the randomized response technique, where one randomly answers "yes" or "no" with probability p and answers truthfully with probability 1-p. Suppose the ratio of people answering "yes" is p according to our survey. How do we derive \hat{x} , an estimation of the real ratio of people who like Justin Bieber in the population?

Q4 (15 points) We have the following user rating matrix.

	a	b	С	d	e	f	g	h
A	4	5		5	1		3	2
В		3	4	3	1	2	1	
C	2		1	3		4	5	3

A, B, and C are users. a, b, ..., h are items. Compute the following from the rating matrix.
4.1 (5 points) Treat the matrix as binary where observed ratings are regarded as 1 and missing ratings are regarded as 0. Compute the Jaccard similarity between each pair of users.
4.2 (5 points) Treat missing ratings as 0 and compute the cosine similarity between each pair

of users. The cosine similarity between two vectors x and y is $cos(x, y) = \frac{x^T y}{|x|_2 |y|_2}$. 4.3 (5 points) Use the cosine similarity defined in 4.2 to perform user-based collaborative filtering to predict the rating of user A on item c.

Q5 (10 points) Suppose the Jaccard similarity between to documents x and y is s. If we apply the banding technique where we use (4,3) AND-OR followed by (3,4) OR-AND, how many hash functions do we need? What is the probability that (x,y) is a candidate pair?

Q6 (10 points) Suppose we use the Independent Cascade (IC) model to model the influence diffusion in a network. In the IC model, we have all the seed node(s) activated at round 0. For each node u firstly activated at round t, at round t+1, u tries to activate each of its inactive out-neighbor v (which means there is a directed edge (u,v)) with a success probability pp_{uv} . Note that if u fails to activate v at round t+1, u will not have another chance to activate v in the future rounds. The diffusion ends at a round when we do not have any newly activated nodes. Given a seed set S, to calculate the probability p_v that node v is activated in the diffusion started by S, one comes up with the following non-linear system.

$$p_{v} = \begin{cases} 1, & \text{if } v \in S \\ 1 - \prod_{(u,v) \in E} (1 - p_{u} * pp_{uv}), & \text{if } u \notin S \end{cases}$$

The intuition is that if v is not a seed, p_v depends on each of its in-neighbor u's (which means there is an edge (u, v)) probability of being activated. Suppose we can solve this non-linear system exactly, which means we can find all the p_v to make all the equations hold. Can we use the solution to this non-linear system to calculate each p_u exactly? Please provide your justification. (**Hint**: you may want to use the following influence graph as an example.)

Q7 (10 points) Define the graph G_n to have the 2n nodes

$$a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1}$$

and the following edges. Each node a_i , for i=0,1,...,n-1, is connected to the nodes b_j and b_k , where $j=2i \mod n$ and $k=(2i+1) \mod n$. For instance, the graph G_2 has the following edges $(a_0,b_0),(a_0,b_1),(a_1,b_0),(a_1,b_1)$.

7.1 (5 points) Find a perfect matching for G_6 .

7.2 (5 points) Prove that when n is an even number, we always have a perfect matching for G_n .

Q8 (10 points) For an undirected graph $G = \langle V, E \rangle$ without loops with nodes $V = \{v_1, \ldots, v_n\}$ and edges $E = \{e_1, \ldots, e_m\}$ (edges are ordered pairs $e_i = (v_j, v_k)$ indicating a connection to node v_j from node v_k , where j < k for ensuring no duplicate edges), the $n \times m$ matrix $B = (b_{ij})$ is defined as

$$b_{ij} := \begin{cases} +1 & \text{if } e_j = (v_i, v_x) \\ 0 & \text{if } v_i \notin e_j \\ -1 & \text{if } e_j = (v_x, v_i) \end{cases}$$

with v_x being an arbitrary node. Let L be the Laplacian matrix of G. Show that $L = BB^T$.

Submission

New Attempt

✓ Submitted!

May 4 at 11:35am

Submission Details

Download 56046680.pdf

You may not see all comments right now because the assignment is currently being graded.