中山大学数据科学与计算机学院《高性能程序设计基础》实验 6

(2018-2019 学年秋季学期)

学 号: 16337113

姓 名: ____劳马东

教学班级: ___教务 2 班___

专业: 超算

一、实验题目

- 1、 完成正则采样排序 PSRS 的 MPI 算法;
- 2、 按要求使用 MPI 集合通信。

二、正则采样排序概述

快速排序算法的效率相对较高,并行算法在理想的情况下时间复杂度可达到 O(n),但它有一个严重的问题: 会造成严重的负载不平衡,最差情况下算法的复杂度可达 $O(n^2)$ 。并行正则采样排序克服了这一缺点,是一种基于均匀划分的负载平衡的并行排序算法。

(一) 算法流程

图 1. 正则采样排序示意图

假设待排序的元素 n 个, 处理器 p 个, 算法大体流程如下。

- 1、 首先将这 n 个元素均匀的分成 p 部分,每部分包含 $\frac{n}{p}$ 个元素(如图 1 矩形)。每个处理器负责其中的一部分,并对其进行局部排序:
- 2、 为确定局部有序序列在整个序列中的位置,每个处理器从各自的局部有序序列中选取几个代表元素(如图 1 第一列正方形);
 - 3、 将这些代表元素进行排序后选出 p-1 个主元 (如图 1 红色圆形);
 - 4、 每个处理器根据这 p-1 个主元将自己的局部有序序列分成 p 段;
- 5、 然后通过全局交换的方式,将 p 段有序序列分发给对应的处理器(如图 1 大圆),使第 i 个处理器都拥有各个处理器的第 i 段,共 p 段有序序列。

6、 每个处理器对这 p 段有序序列进行排序。最后,将各个处理器的有序段按顺序汇合起来,就是全局有序序列了。

三、实验过程

(一) 元素划分与采样

出于方便和性能考虑,每个进程直接从文件中并行读取元素。并行读取最重要的是解决文件指针定位的问题,即每个进程该从什么位置开始读取多少个元素?假设p个进程分别编号为01...p-2p-1,则显然进程i开始读的位置是前i-1个进程所读元素的和,即:

$$f(i) = \begin{cases} f(i-1) + balance(i-1) & i = 1, 2, ..., p-2, p-1\\ 0 & i = 0 \end{cases}$$
 (1)

其中 balance 函数返回对应进程的负载,即读取多少个元素。

那么如何相对均衡地分配负载呢? 方法是先给每个进程分配 $\lfloor \frac{n}{p} \rfloor$ 个元素,然后将剩下的 r 个元素分配给编号 0 到 r-1 的进程。

```
vector<uint_fast64_t> divide_read_directly(istream& in,
                                       uint fast64 t n,
                                       MPI Comm comm)
{
   Comm_Info info(comm);
   // 获取每个进程对应的负载(均衡)
   vector<uint_fast64_t> balance = get_v<uint_fast64_t>(n, info.comm_size);
   // 得到自己的负载的元素个数
   uint_fast64_t my_balance = balance[info.rank];
   vector<uint_fast64_t> local(my_balance);
   // 计算负载的前缀和, 每个数代表对应进程开始读的位置
   vector<uint_fast64_t> prefixes = get_prefix_sum<uint_fast64_t>(balance);
   // 每个数8个字节, 指针定位时乘上8(加1是为了跳过开头表示元素总数的那个数)
   in.seekg((prefixes[info.rank] + 1) * 8, ios::beg);
   for (auto& x: local)
      read(in, x);
   return local;
```

代码清单 1. 并行读取元素

1、 本地数据排序

排序原则上采用任何排序算法都可以,但是由于数据量比较大,如果使用空间复杂度较大的算法(如快速排序和归并排序),就很容易超出内存限制,导致程序崩溃。因此,实验中使用了 STL 的堆排序算法,时间复杂度是 $O(n\log n)$,空间复杂度是 O(1)。

2、 按进程数 p 等间隔采样

每个进程从其局部有序序列中选取 p 个样本,因此总共有 p^2 个样本,取数间隔为 $\frac{n}{p^2}$ 。

```
make_heap(local.begin(), local.end());
sort_heap(local.begin(), local.end());
int num_samples = info.comm_size * info.comm_size;
vector<uint_fast64_t> sample = copy_every_n(local, n / num_samples);
```

代码清单 2. 排序与采样

(二)划分主元

- 1、 收集样本: 一个进程(0号)用 MPI Gatherv 收集样本并对所有样本进行排序;
- 2、 采样获得主元: 按进程数 p 对全体样本等间隔采样;
- 3、用 MPI_Bcast 广播主元。

```
vector < uint fast64 t> global sample; // 存储全部样本
// 收集每个进程的样本
Gather(sample, global_sample, MPI_UINT64_T, 0, MPI_COMM_WORLD);
// 存储主元, p-1个
vector<uint_fast64_t> pivots(info.comm_size - 1);
if (info.rank == 0) {
   // 对所有样本排序, 使用归并排序
   auto it = global_sample.begin();
   for (int j = 0; j < info.comm_size - 1; ++j) {</pre>
       it += info.comm_size;
       inplace_merge(global_sample.begin(), it, it + info.comm_size);
   }
   // 从第p个开始, 等间隔p采样主元, 最终采得p-1个
   pivots = copy_every_n(global_sample, info.comm_size, info.comm_size);
// 广播主元
Bcast(pivots, MPI UINT64 T, 0, MPI COMM WORLD);
```

代码清单 3. 划分主元并广播

(三) 交换数据

1、 本地数据分块

将有序数组 a 中的元素,以数组 d 中的元素为分界线,划分成多个段。算法首先变量 d 中的每个分界点 x,将小于或等于 x 的元素存储在一维数组 seg 中,这个 seg 数组就是一段,最终所有的 seg 数组组成一个二维数组。

代码清单 4. 数组分段

2、全交互

该过程每个进程将自己局部序列的 p 个段按顺序发给 p 个进程,使用一个循环来将 p 个段 Gather 给对应进程,并返回各个进程第 i 段的长度,用数组 seg_length 记录,它的作用是在之后的归并排序中计算每个有序子段的范围。

代码清单 5. 全交互

(四) 归并排序

由于从各个进程收集到的子序列都是有序的,因此可以充分利用这一特性进行归并排序,而不是对整个序列应用其他排序算法。此外,为了降低空间复杂度,使用 STL 的原地归并算法,而不是普通归并(利用第三个数组存储归并中间结果)。

```
auto it = local2.begin();
for (int j = 0; j < info.comm_size - 1; ++j) {
   it += seg_length[j];
   inplace_merge(local2.begin(), it, it + seg_length[j + 1]);
}</pre>
```

代码清单 6. 有序子段归并

四、实验结果及分析

程序并行运行时间如表1,随着问题规模的扩大,程序的运行时间也在增加。在同样问题规模下,随着核数的增加,程序的运行时间都是先减少后增加: 当 $n=2^{10}$ 时,最佳核数为 4; 当 $n=2^{14}$ 时,最佳核数为 8,图2(a)给出了它的时间变化; 当 $n \geq 2^{18}$ 时,最佳核数为 16,图2(b)给出了 $n=2^{26}$ 时程序运行时间的变化。为什么在 $n \geq 2^{18}$ 之后,最佳核数固定为 16 呢?我认为,一方面是因为从 16 核到 32 核的跨度太大,也许最佳核数增加,只不过还是在 16 到 32 核;另一方面,核数增加带来的通信开销也是不可忽视的,不是说核数越多,程序运行时间就会减少。

	1	2	4	8	16	32	64	112
10	0.0006	0.0005	0.0004	0.0008	0.0017	0.0845	0.1734	0.4256
14	0.0095	0.0058	0.0034	0.0026	0.0035	0.9617	2.1998	4.1106
18	0.1496	0.0836	0.052	0.0391	0.0234	1.0252	1.9063	4.5854
22	1.9337	1.1124	0.6785	0.4255	0.3026	1.6503	2.7839	5.1287
26	31.975	17.984	9.7174	5.5852	3.8148	8.6407	16.445	31.124
30	574.91	328.01	178.36	108.74	72.627	111.56	207.94	385.34
31	1246.2	712.36	386.31	235.93	156.07	238.45	400.12	805.12
32	2482.6	1426.2	766.23	470.09	313.61	480.9	785.35	1521.6

表 1. 运行时间

加速比如表3。在元素个数不变的情况下,加速比的变化与并行运行时间变化相同;在核数不变时,随着问题规模的扩大,加速比先上升后下降,图2(c)和图2(d) 直观地显示了这一趋势。结合加速比公式 $S_p = \frac{1}{W_s + W_p/p}$,认为是当问题规模较小时,n 的增大更充分地发挥了每个核的计算能力,使并行部分所占的比例增大;而当规模达到一定程度,超过每个核的计算能力,继续增大 n 就没法继续获得加速了。就像一个人 1 小时能做 10 道题,而现在

只有 3 道题给他做,那这 1 小时他的速度就是 3 道题/h,而如果有 8 道题给他,他的速度就是 8 道题/h,但是要是给他 20 道题,他的速度也只能是 10 道题/h。

	2	4	8	16	32	64	112
10	1.2	1.5	0.75	0.352941176	0.007100592	0.003460208	0.001409774
14	1.637931034	2.794117647	3.653846154	2.714285714	0.00987834	0.004318574	0.002311098
18	1.789473684	2.876923077	3.826086957	6.393162393	0.145922747	0.07847663	0.032625289
22	1.738313556	2.849963154	4.54453584	6.390284204	1.171726353	0.694601099	0.377035116
26	1.777969306	3.290489226	5.724951658	8.381828667	3.700510375	1.944359988	1.027342244
30	1.752720954	3.223312402	5.287014898	7.915926584	5.153370384	2.76478792	1.491955156
31	1.749396373	3.225906655	5.282075192	7.98487858	5.226252883	3.11456563	1.5478438
32	1.740709578	3.240019315	5.281116382	7.916201652	5.162403826	3.161138346	1.631572029

表 2. 加速比

在问题规模一定时,效率随着核数的增加而降低;核数一定时,效率与加速比的变化趋势一致,先升后降。

	2	4	8	16	32	64	112
10	60	37.5	9.375	2.205882353	0.022189349	0.005406574	0.001258727
14	81.89655172	69.85294118	45.67307692	16.96428571	0.030869814	0.006747773	0.00206348
18	89.47368421	71.92307692	47.82608696	39.95726496	0.456008584	0.122619735	0.029129722
22	86.91567781	71.24907885	56.806698	39.93927627	3.661644852	1.085314217	0.336638497
26	88.8984653	82.26223064	71.56189572	52.38642917	11.56409492	3.038062481	0.917269861
30	87.63604768	80.58281005	66.08768622	49.47454115	16.10428245	4.319981124	1.332102818
31	87.46981863	80.64766638	66.0259399	49.90549113	16.33204026	4.866508797	1.382003393
32	87.03547889	81.00048288	66.01395477	49.47626032	16.13251196	4.939278666	1.456760741

表 3. 效率