Une fonction f sera dite régulière en x de \mathbf{R} , si f(x) est la moyenne arithmétique des limites à droite et à gauche de f en x.

I. — Soit f une fonction définie sur \mathbf{R} , continue par morceaux. Au réel h strictement positif, on associe la fonction f_h définie sur \mathbf{R} par

(1)
$$f_h(x) = \frac{1}{2h} \int_{x=h}^{x=h} f(t) \ dt.$$

- 1º Montrer que, quel que soit h > 0, la fonction f_h est définie sur \mathbf{R} et bornée sur tout segment.
- 2º Montrer que la fonction f_h est continue.
- 3º Étudier, pour x fixé, la limite de $f_h(x)$, quand h tend vers 0.
- 4º Quand la fonction f est supposée de plus régulière pour tout x de \mathbf{R} , la limite des fonctions f_h quand h tend vers 0 est-elle toujours uniforme sur \mathbf{R} ?
- II. Soit une fonction φ , définie sur \mathbf{R} , continue par morceaux, nulle hors d'un intervalle fermé borné $\mathbf{I} = [-\alpha, \alpha] \ (\alpha > 0)$. Soit f une fonction définie sur \mathbf{R} , continue par morceaux. On considère les fonctions, notées $f * \varphi$ et $\varphi * f$, définies sur \mathbf{R} par

(2)
$$(f * \varphi)(x) = \int_{-\infty}^{+\infty} f(t) \varphi(x-t) dt$$
 et (3) $(\varphi * f)(x) = \int_{-\infty}^{+\infty} \varphi(t) f(x-t) dt$.

- 1º Justifier l'existence des intégrales (2) et (3) et comparer les fonctions $f * \varphi$ et $\varphi * f$.
- 2º Déterminer une fonction φ_h telle que, pour la fonction f_h définie par (1), on ait $(f * \varphi_h)(x) = f_h(x)$.
- 3° On dira qu'une fonction ρ , définie sur \mathbf{R} , vérifie l'hypothèse (H), si elle satisfait aux conditions suivantes:

(H)
$$\begin{cases}
a) & \rho \text{ est continue, à valeurs positives, nulle en dehors} \\
d'un intervalle fermé borné $[-\alpha, \alpha] (\alpha > 0); \\
b) & \int_{-\infty}^{+\infty} \rho(t) dt = \int_{-\alpha}^{+\alpha} \rho(t) dt = 1.
\end{cases}$$$

Soit ρ une fonction vérifiant (H). Montrer que pour chaque entier strictement positif, n, la fonction ρ_n définie par

$$\rho_n(x) = n\rho(nx)$$

vérifie (H).

Montrer que si f est continue par morceaux, et continue en x_0 , on a $\lim_{n \to +\infty} (\rho_n * f)(x_0) = f(x_0)$.

Si ρ est supposée paire, calculer en x, point de discontinuité de f continue par morceaux, la limite, quand n tend vers l'infini, de $(\rho_n * f)(x)$.

4º On considère les fonctions g_n (n entier strictement positif), définies sur \mathbf{R} , par

(5)
$$g_n(x) = (1 - x^2)^n$$
 pour $|x| \le 1$ et $g_n(x) = 0$ pour $|x| > 1$.

- a) Démontrer qu'il existe des constantes a_n (que l'on ne demande pas de calculer) telles que les fonctions h_n , définies par $h_n(x) = \frac{1}{a_n} g_n(x)$, vérifient (H).
- b) Démontrer que pour chaque δ appartenant à]0,1], les fonctions h_n convergent uniformément vers 0 sur chacun des segments $[-1,-\delta]$ et $[\delta,1]$ quand n tend vers l'infini.
 - 5° Soit une fonction f, continue sur \mathbf{R} , nulle hors de $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
- a) Montrer que la suité des fonctions $(h_n * f)$ converge uniformément vers f sur \mathbf{R} quand n tend vers l'infini.
 - b) Montrer qu'il existe des polynômes P_n tels que pour $|x| \le \frac{1}{2}$ on ait $P_n(x) = (f * h_n)(x)$.
- 6º En déduire que pour toute fonction g continue dans un intervalle fermé borné [a, b], il existe une suite de polynômes Q_n tels que, pour tout x de [a, b], on ait $\lim_{n \to +\infty} Q_n(x) = g(x)$, cette limite étant uniforme sur [a, b].
- III. Dans cette partie on utilise le résultat de la question 6°, du paragraphe II. Les deux questions A et B sont indépendantes.
- A) Soit f une fonction définie sur \mathbf{R} , continue par morceaux, nulle hors de [a, b], telle que, pour tout entier n $(n \ge 0)$, on ait $\int_a^b f(t)t^n dt = 0$.

Montrer alors que f est nulle sur [a, b], sauf peut-être aux points où f est discontinue.

B) Soit f une fonction définie continue sur [0, 1]. Pour n entier strictement positif on pose

(6)
$$B_n(f)(t) = \sum_{p=0}^n C_n^p f\left(\frac{p}{n}\right) (1-t)^{n-p} t^p, \quad \text{où} \quad C_n^p = \frac{n(n-1)\dots(n-p+1)}{p!}.$$

1º On pose $f_0(t) = 1$ et $f_m(t) = t^m$ pour m entier strictement positif.

20 **c**

- a) Montrer que pour n > m, il existe un scalaire $u_{m,n}$ et un polynôme $Q_{m,n}(t)$ de degré m-1, au plus (polynôme nul pour m=0), tels que $B_n(f_m)(t)=u_{m,n}t^m+\frac{1}{n}Q_{m,n}(t)$.
 - b) Montrer que, pour m fixé, les scalaires $u_{m,n}$ tendent vers 1 quand n tend vers l'infini.
- c) Montrer que les coefficients de $Q_{m,n}(t)$ sont majorés en valeur absolue, par une constante A_m , indépendante de n.
- 2º En déduire que, pour toute fonction polynôme S, les polynômes B_n(S) convergent uniformément vers S sur [0, 1] quand n tend vers l'infini.
- 3º Montrer que pour toute fonction f continue sur [0, 1], les polynômes $B_n(f)$ convergent uniformément vers f sur [0, 1] quand n tend vers l'infini.