§11.1 (Sequences)

§11.2 (Summing an Infinite Series)

November 15, 2016

§11.3 (Convergence of Series with Positive Terms)

- (1) A sequence **converges** to a limit L if for every number $\varepsilon > 0$, there is M such that $|a_n L| < \varepsilon$ of all n > M.
- (2) If f is continuous and $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} f(a_n) = \boxed{f(L)}^{(2)}$.
- (3) A sequences is called:
 - (a) **bounded** (3) if there exists M such that $|a_n| \leq M$ for all n.
 - (b) **monotone** (4) if either $a_n < a_{n+1}$ or $a_n > a_{n+1}$ for all n.
- (4) If a sequence is both bounded ⁽⁵⁾ and monotone ⁽⁶⁾, then it converges.
- (5) The divergence test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (6) A series that looks like $a_n = cr^n$ is called **geometric.** If $|r| \ge 1$, then it diverges [9].

$$\sum_{n=K}^{\infty} cr^n = \frac{cr^K}{1-r}$$
 (10)

- (7) **The integral test:** Assume that $a_n = f(n)$ for $n \ge M$. If $\int_M^\infty f(x) dx$ converges, then $\sum_{n=0}^\infty a_n$ converges.

 [11] If $\int_M^\infty f(x) dx$ diverges, then $\sum_{n=0}^\infty a_n$ diverges.

 [12]
- (8) The comparison test: If $a_n \le b_n$, and $\sum_{n=0}^{\infty} b_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges. If $\sum_{n=0}^{\infty} b_n$ diverges diverges.
- (9) **Limit comparison test:** Let $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.
 - (a) If L > 0 (16), then $\sum a_n$ converges if and only if $\sum b_n$ converges.
 - (b) If $L = \infty$ and $\sum a_n$ converges, then $\sum b_n$ converges.
 - (c) If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.

§11.1 (Sequences)

§11.2 (Summing an Infinite Series)

November 15, 2016

- §11.3 (Convergence of Series with Positive Terms)
- (1) True or false?

(a)
$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} a_k$$

SOLUTION: True.

(b)
$$\sum_{n=4}^{6} a_n = \sum_{i=1}^{4} a_{i+3}$$

SOLUTION: False.

(c)
$$\sum_{n=2}^{\infty} a_{n+3} = \sum_{n=5}^{\infty} a_n$$

SOLUTION: True

(d) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

SOLUTION: False.

(e) If
$$\lim_{n\to\infty} a_n = \infty$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

SOLUTION: True.

(f) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\lim_{n\to\infty} a_n = \infty$.

SOLUTION: False.

(2) Determine the limit of the sequence or show that the sequence diverges.

(a)
$$a_n = \frac{e^n}{2^n}$$

SOLUTION:

$$a_n = \frac{e^n}{2^n} = \left(\frac{e}{2}\right)^n$$

Note that e > 2, so e/2 > 1. Hence,

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\left(\frac{e}{2}\right)^n=\infty.$$

(b)
$$b_n = \frac{3n+1}{2n+4}$$

SOLUTION: As $n \to \infty$, the top and the bottom are both polynomial of the same degree, so only the leading coefficients matter. Hence,

$$\lim_{n\to\infty}\frac{3n+1}{2n+4}=\frac{3}{2}.$$

(c)
$$c_n = \frac{\sqrt{n}}{\sqrt{n}+4}$$

SOLUTION:

$$\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} + 4} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{\sqrt{n}}}{\frac{\sqrt{n}}{\sqrt{n}} + \frac{4}{\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{1 + \frac{4}{\sqrt{n}}} = \frac{1}{1 + 0} = 1.$$

(3) Show that the sequence given by $a_n = \frac{3n^2}{n^2+2}$ is strictly increasing, and find an upper bound.

SOLUTION: Consider the function $f(x) = \frac{3x^2}{x^2+2}$. The derivative of f is

$$f'(x) = \frac{12x}{(x^2+2)^2}.$$

For x > 0, f'(x) > 0, so the function is strictly increasing. Therefore, the sequence $a_n = f(n)$ is strictly increasing.

To find an upper bound, observe that

$$a_n = \frac{3n^2}{n^2 + 2} \le \frac{3n^2 + 6}{n^2 + 2} = \frac{3(n^2 + 2)}{n^2 + 2} = 3.$$

Therefore, M = 3 is an upper bound.

(4) Determine the limit of the series or show that the series diverges.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$$

SOLUTION: This is geometric, and converges to $\frac{1}{1-1/4} = \frac{4}{3}$.

(b)
$$\sum_{n=0}^{\infty} e^n$$

SOLUTION: $\lim_{n\to\infty} e^n = \infty$, so this diverges.

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

SOLUTION: This is the Harmonic series, which diverges.

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

SOLUTION: This is a telescoping series. First perform partial fractions to see that

$$\frac{1}{n(n-1)} = \frac{-1}{n} + \frac{1}{n-1}$$

Then the sum is

$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots = 1$$

(e)
$$\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1}$$
 (Limit Comparison Test)

SOLUTION: Use the limit comparison test. Let $a_n = \frac{n^2}{n^4 - 1}$. Since for n large, $\frac{n^2}{n^4 - 1} \approx \frac{n^2}{n^4} = \frac{1}{n^2}$, apply Limit comparison with $b_n = \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n^2}{n^4 - 1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^4}{n^4 - 1} = 1 \neq 0.$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges because it's a *p*-series, so $\sum_{n=2}^{\infty} a_n$ also converges.

(f)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2^n}$$
 (Comparison Test)

SOLUTION: For n > 1, we have

$$\frac{1}{\sqrt{n}+2^n} \le \frac{1}{2^n} = \left(\frac{1}{2}\right)^n.$$

The series $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ converges since it is geometric with r=1/2. So the comparison test tells us that this series converges too.

(g)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 (Integral Test)

SOLUTION: Integrate

$$\int_2^\infty \frac{1}{x(\ln x)^2} \, dx.$$

Substitute $u = \ln x$, $du = \frac{1}{x} dx$. Then

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 2}^{\infty} \frac{1}{u^{2}} du = -\frac{1}{u} \Big|_{\ln 2}^{\infty} = -\frac{1}{\ln \infty} + \frac{1}{\ln 2} = \frac{1}{\ln 2}$$

The integral converges, so the series converges as well.