ISCTE-IUL LICENCIATURA DE CIÊNCIA DE DADOS

TODO Título

TODO Subtítulo

```
André Plancha, 105289

<Andre_Plancha@iscte-iul.pt>
Tomás Ribeiro, 105220

<tfroo1@iscte-iul.pt>
Afonso Silva, 105208

<agsos@iscte-iul.pt>
Rui Chaves, 104914

<rfpcs1@iscte-iul.pt>

17/12/2022

Versão 0.0.2
```

```
df <- read.csv(here("data", "listings.csv"))
shape <- st_read(here("data", "SF Planning Neighborhood Groups Map"))
tmap_mode("plot")
shape_plot <- shape %>%
    ggplot() + geom_sf() + theme(legend.position = "bottom")
```

A base de dados que nos foi disponibilizada vem do projeto, fundado por Murray Cox com a missão de "[...] fornecer dados e defesa sobre o impacto do Airbnb em comunidades residenciais" [2].

A base de dados contém 6629 entradas, e cada uma delas representa um registo de um anúncio para o aluguer de um alojamento disponível no Airbnb, em São Francisco, Califórnia. Cada alojamento contém informação sobre o seu preço, localização, hospedeiro, o tipo de alojamento, as *reviews* do alojamento, e licensa do alojamento.

```
data.frame(row.names = colnames(df), type = sapply(df,
    class)) %>%
    showT()
```

	type
id	numeric
name	character
host_id	integer
host_name	character
neighbourhood_group	logical
neighbourhood	character
latitude	numeric
longitude	numeric
room_type	character
price	integer
minimum_nights	integer
number_of_reviews	integer
last_review	character
reviews_per_month	numeric
calculated_host_listings_count	integer
availability_365	integer
number_of_reviews_ltm	integer
license	character

De forma a perceber melhor a base dados, o Airbnb disponibiliza de um "dicionário de dados" [1] que explica o significado de cada uma das variáveis:

- id: Número que representa um identificador único do anúncio;
- name: Título do anúncio:
- host id: Identificador único da conta do hospedeiro;
- host_name: Nome da conta do hospedeiro (Normalmente este campo inclui apenas o primeiro nome ou nome da instituição hospedeira);
- **neighbourhood_group**: Este campo encontra-se vazio e não inclui descrição no dicionário;
- neighbourhood: Embora este campo não inclua descrição no dicionário, nesta base de dados este campo representa os bairros de São Francisco como definido pelo Departamento de Planeamento da cidade (os bairros de São Francisco não contém fronteiras oficiais e dependem da fonte (tldrify.com/19p8), logo a definição das fronteiras definidas pelo Airbnb tiveram de ser determinadas; mais à frente será demonstrado as fronteiras);
- latitude/longitude: Coordenadas geográficas do alojamento;
- room_type: Tipo de alojamento, entre "Quarto privado", "Quarto partilhado", "Quarto de hotel", e "Casa/Apartamento inteiro";
- price: Preço do alojamento por noite em USD;
- minimum_nights: Número mínimo de noites que o hospedeiro exige para alugar o alojamento;
- **number_of_reviews**: Número total de *reviews* que o alojamento tem desde o seu registo no Airbnb;
- last review: Data da última review que o alojamento recebeu;
- reviews_per_month: Número médio de reviews que o alojamento recebe por mês;
- calculated_host_listings_count: Número de alojamentos que o hospedeiro tem disponíveis em São Francisco;
- availability_365: Número de dias que o alojamento está disponível por ano.
- number_of_reviews_ltm: Número de reviews que o alojamento recebeu nos últimos 12 meses;
- license: A licença/autorização/número de registo do alojamento.

Para o nosso objetivo, algumas colunas não vão ser úteis, devido à sua naturaza. Estas são o id, name, as categorias que referem informações sobre o hóspede (estas colunas conseguem justificar valores atípicos, principalmente em termos de preço; e.g. Um preço extremamente alto pode acontecer devido a um hotel de luxo na cidade. Estes problemas vão ser discutidos mais à frente.), a disponibilidade do alojamento durante o ano, e a licença do alojamento. Como o nosso objetivo será prever o preço esperado baseado na localização do apartamento, não vamos também utilizar variáveis associadas aos hóspedes, como o número de reviews e o número de alojamentos que o hóspede tem disponíveis em São Francisco.

Cada registo contém as coordenadas geográficas, e se as representármos graficamente, podemos verificar que uma grande parte dos alojamentos concentrados encontram-se a nordoeste da cidade, principalmente em *Downtown/Civic Center*, mas que também existem muitos alojamentos no resto das cidades.

Inesperadamente, o mapa mostra alguns pontos de alojamento fora da cidade, mas julgamos que não vá interferir com as nossas análises, devido ao correto agrupamento (demonstrado mais à frente) e à proximidade da cidade. Embora a razão nos seja desconhecida, acreditamos que o próprio Airbnb agrupa desta forma esses locais devido à sua proximidade com a cidade.

A concentração torna-se mais óbvia quando visualizamos o mapa de calor.

```
rast <- (shape_plot + stat_bin2d(data = df,
    aes(x = longitude, y = latitude), alpha = 0.7,
    bins = 30, linejoin = "round") + scale_fill_viridis_c(option = "C"))
rast</pre>
```


O mapa claramente demonstra a concentração de alojamentos na zona clara, mas também consegue-se observar uma grande quantidade, embora mais dispersos, na zona central.

```
df %>%
    group_by(neighbourhood) %>%
    summarise(n = n(), freq = n/nrow(df)) %>%
    arrange(-n) %>%
    head(8) %>%
    showT()
```

neighbourhood	n	freq
Downtown/Civic Center	745	0.1123850
Mission	558	0.0841756
South of Market	450	0.0678835
Western Addition	418	0.0630563
Nob Hill	328	0.0494796
Outer Sunset	281	0.0423895
Bernal Heights	280	0.0422386
Haight Ashbury	276	0.0416352
0		

A tabela mostra que a maioria dos alojamentos listados estão localizados no distrito de *Downtown/Civic Center* e *Mission*.

```
filter(neighbourhood == "Downtown/Civic Center")),
aes(y = latitude, x = longitude), color = "red",
alpha = 1, size = 0.1) + theme(legend.position = "none")
```


Este gráfico demonstra que os bairros conformem com a definição do Departamento de Planejamento da cidade. Demonstra também a posição do distrito *Downtown/Civic Center* a vermelho, conforme o mapa de calor.

```
ggplot(data = df, aes(price)) + geom_boxplot() +
    coord_flip()
```


Este boxplot do preço consegue notar imediatamente a existem de muitos valores atípicos, o que equivalem a preços muito altos, comparado com a média de preços dos registos, 303.465 USD. Estes preços vão sem dúvida interferir com as nossas análises. Estes preços conseguem ser justificados quando analisamos a fonte destes preços altos.

```
df %>%
    select(name, price) %>%
    arrange(-price) %>%
    head(7) %>%
    showT(T)
```

name	price
Harbor Court Hotel, Bay View King Room	25000
Harbor Court Hotel, Bay View Queen Room	25000
Hotel Griffon by the Bay, queen bedded room	25000
1-Bedroom Suite with One Bed and One	20000
Sofabed at Fairmont San Francisco by	
Suiteness	
Suite plus Connecting Room with Three Beds	20000
and One Sofabed at Fairmont San Francisco	
by Suiteness	
Suite plus Connecting Room with Two Beds	20000
and One Sofabed at Fairmont San Francisco	
by Suiteness	
1-Bedroom Suite with One Bed at Fairmont	20000
San Francisco by Suiteness	

Estes preços equivalem a alojamentos de luxo. Estes alojamentos vão ter que ser tratadas de forma diferente quando a for feita a modelação, pois não são comparáveis com o resto dos alojamentos.

Como tentativa de mitigar estes altos verdadeiros *outliers*, será provavelmente necessário fazer uma transformação logarítmica do objetivo, de forma a reduzir a influência destes valores no modelo.

```
upper_limit <- quantile(df$price, 0.975) +
    20
ggplot(data = df, aes(price)) + geom_boxplot() +
    coord_flip() + xlim(0, upper_limit)
## Warning: Removed 158 rows containing non-finite values (`stat_boxplot()`).</pre>
```


Este boxplot mostra que a maioria dos alojamentos tem preços entre 103 e 254 USD. Este facto torna-se ainda mais evidente quando analisamos a distribuição dos preços. O gráfico mostra também que há muitos alojamentos fora destes limites, podendo ser valores atípicos também, embora não tão extremos como aqueles vistos anteriormente. No entanto, à primeira vista estes não devem ser valores atípicos, devido à sua quantidade, mesmo quando comparado com o número de registos.

```
ggplot(data = df, aes(price)) + geom_histogram(binwidth = 25,
    aes(y = ..density..)) + geom_density(color = "red") +
    xlim(0, upper_limit)
```


A distribuição de preços apresentada demonstra que a maioria dos alojamentos se encontram no limite mostrado anteriormente, e a distribuição parece aproximar-se de uma distribuição χ_k^2 , com um pequeno grau de liberdade. Curiosamente, o gráfico mostra que os preços parecem aumentar algumas vezes cada 50 USD, o que pode ser devido ao facto de que os hospedeiros escolhem preços redondos, como 50, 100, 175, etc. Este fenómeno parece ser mais visível nos 250 e nos 500.

```
df %>%
    ggplot(aes(y = price, x = forcats::fct_reorder(neighbourhood,
        price, .fun = median))) + geom_boxplot() +
    coord_cartesian(ylim = c(0, upper_limit)) +
    theme(axis.text.x = element_text(angle = 90,
        vjust = 0.5, hjust = 1)) + labs(x = "")
```


Os boxplots mostram que os preços dos alojamentos não variam bastante de acordo com o bairro sendo que o ponto médio não varia bastante entre bairros, excepto os bairros Twin Peaks, e Presidio. No entanto, o gráfico mostra uma grande variância dos preços em todos os bairros.

```
df %>%
    group_by(room_type) %>%
    summarise(n = n(), freq = n()/nrow(.),
        averagePrice = mean(price)) %>%
    showT()
```

room_type	n	freq	averagePrice
Entire home/apt	4243	0.6400664	275.8965
Hotel room	65	0.0098054	266.2154
Private room	2239	0.3377583	360.1474
Shared room	82	0.0123699	211.7683

A tabela mostra que a maioria dos alojamentos são apartamentos ou casas inteiras, enquanto que os quartos privados são menos frequents. Mostra também a pequena quantidade de quartos de hoteis e de alojamentos partilhados, sendo estes apenas 2% dos registos. Isto pode levar a ser necessário o use de alguma técnica de *oversampling* para os quartos de hotel e de alojamentos partilhados, de forma a aumentar a quantidade de registos destes tipos de alojamentos.

A tabela também expoem que os quartos privados são os mais caros em média, enquanto que os alojamentos partilhados são os mais baratos. Enquanto que o preço médio das salas partilhadas é esperado, é supreendente que os quartos privados sejam mais caros em média que as casas inteiras e os quartos de hotel. Isto pode ser porque a diferença entre "quarto privado" e "quarto de hotel" pode ser confusa, tanto que os hoteis de alto preço notados em cima estão caracterizados como "quartos privados".

```
df %>%
    group_by(room_type) %>%
    filter(price < upper_limit) %>%
    summarise(n = n(), freq = n()/nrow(.),
        averagePrice = mean(price)) %>%
    showT()
```

room_type	n	freq	averagePrice
Entire home/apt	4131	0.6388803	233.9990
Hotel room	63	0.0097433	241.0159
Private room	2192	0.3390040	135.2176
Shared room	80	0.0123724	78.3125

Se excluirmos os apartamentos de luxo, conseguimos observar valores mais esperados; quartos de hoteis serem os mais caros com preços aproximados aos das casas inteiras, e os alojamentos partilhados serem os mais baratos. Os preços médios dos quartos privados desceram significativamente, e isto pode ser explicado pela classificação de alojamentos de luxo como "quartos privados". Nós suspeitamos que, sem os quartos de luxo, esta nova categoria identifica-se mais com albergues.

```
ggplot(df, aes(x = price, y = room_type,
    fill = room_type)) + geom_density_ridges() +
    xlim(0, upper_limit) + theme_ridges() +
    theme(legend.position = "none")
## Picking joint bandwidth of 24.6
```


O diagrama apresentado demonstra as distribuições dos preços por tipo de alojamento. Este corrobora que os quartos de hóteis sejam os mais caros, mas parece demonstrar que a maioria dos outros grupos se encontram com preços semelhantes, com uma diferença na densidade na cauda do gráfico, explicando assim a alta média de apartamentos inteiros; ou seja, a maioria dos alojamentos inteiros estão de acordo com quartos privados, mas existem mais alojamentos inteiros mais caros.

REFERÊNCIAS

- [1] tinyurl.com/DataDictAirbnb. Accessed: 24/11/2022.
- $[2] \ About \ Inside \ Airbnb. \ \verb"insideairbnb.com/about.html". \ Acessado: \ 24/11/2022.$