Particle spectrograph

Wave operator and propagator

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_1^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$ au_1^{\#1}{}_{lpha}$	$\tau_1^{\#2}{}_{\alpha}$
$\sigma_{1}^{\sharp 1} \dagger^{lpha eta}$	$\frac{1}{-\frac{3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3)}{16 (\beta_1 + 2 \beta_3)} + (\alpha_2 + \alpha_5) k^2}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$-\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_1^{\#2} \dagger^{lphaeta}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2)}{(1+k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$\frac{2ik(3\alpha_{0}+4(\beta_{1}+8\beta_{3}+3(\alpha_{2}+\alpha_{5})k^{2}))}{(1+k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	0	0	0	0
$ au_1^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$-\frac{2 i k (3 \alpha_0+4 (\beta_1+8 \beta_3+3 (\alpha_2+\alpha_5) k^2))}{(1+k^2)^2 (-3 (\alpha_0-4 \beta_1) (\alpha_0+8 \beta_3)+16 (\alpha_2+\alpha_5) (\beta_1+2 \beta_3) k^2)}$	$\frac{2k^2(3\alpha_0+4(\beta_1+8\beta_3+3(\alpha_2+\alpha_5)k^2))}{(1+k^2)^2(-3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)+16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)k^2)}$	0	0	0	0
$\sigma_{1}^{\!\scriptscriptstyle \# 1}\dagger^lpha$	0	0	0	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)}+(\alpha_4+\alpha_5)k^2}{8(2\beta_1+\beta_2)}$	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	0	$\frac{4 i (3 \alpha_0 - 4 \beta_1 + 4 \beta_2) k}{(1 + 2 k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$\sigma_1^{\!\#2}\dagger^lpha$	0	0	0	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2)}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$	0	$\frac{2 i \sqrt{2} k (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{4 i (3 \alpha_{0} - 4 \beta_{1} + 4 \beta_{2}) k}{(1 + 2 k^{2}) (-3 (\alpha_{0} - 4 \beta_{1}) (\alpha_{0} + 2 \beta_{2}) + 8 (\alpha_{4} + \alpha_{5}) (2 \beta_{1} + \beta_{2}) k^{2})}$	$-\frac{2i\sqrt{2}k(3\alpha_{0}+4(\beta_{1}+2\beta_{2}+3(\alpha_{4}+\alpha_{5})k^{2}))}{(1+2k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+2\beta_{2})+8(\alpha_{4}+\alpha_{5})(2\beta_{1}+\beta_{2})k^{2})}$	0	$\frac{4 k^2 (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$

	$\sigma_{2^{-}}^{#1} \dagger^{lphaeta\chi}$	$\tau_{2+}^{*1} + ^{\alpha\beta}$	$\sigma_{2^{+}}^{*1} \dagger^{\alpha\beta}$		$\mathcal{A}_{0^{ ext{-}1}}^{\sharp 1} +$	f ₀ ^{#2} †	f ₀ ^{#1} †	$\mathcal{A}_{0+}^{#1}$ +	ı	$\mathcal{A}_{2^{ ext{-}}}^{\sharp 1}\dagger^{lphaeta\chi}$	$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\mathcal{A}_{2^{+}}^{#1}\dagger^{lphaeta}$	
	0	$\frac{2i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k-16(\alpha_{1}+\alpha_{4})\beta_{1}k^{3}}$	$\frac{16 \beta_1}{-\alpha_0^2 + 4 \alpha_0 \beta_1 + 16 (\alpha_1 + \alpha_4) \beta_1 k^2}$	$\sigma_{2^{+}lphaeta}^{*1}$	0	0	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2$	$\mathcal{A}^{\#1}_{0^+}$	0	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$\left -\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_4)k^2\right $	$\mathcal{A}_{2}^{\#1}{}_{lphaeta}$
_					0	0	$2 \beta_2 k^2$	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$f_{0+}^{\#1}$ f	0	$2 \beta_1 k^2$	$) k^2 \left \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}} \right $	$f_{2}^{\#1}{}_{lphaeta}$
	0	$\frac{2(\alpha_0\text{-}4(\beta_1+(\alpha_1+\alpha_4)k^2))}{k^2(\alpha_0^2\text{-}4\alpha_0\beta_1\text{-}16(\alpha_1+\alpha_4)\beta_1k^2)}$	$\frac{2i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k-16(\alpha_{1}+\alpha_{4})\beta_{1}k^{3}}$	$\tau_{2}^{\#1}$	$0 \frac{\alpha_0}{2} + 4 \beta_3 + (\alpha_2 + \alpha_3) k^2$	0 0	0 0	0 0	$f_{0^{+}}^{#2}$ $\mathcal{A}_{0^{-}}^{#1}$	$-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2$	0	0	$\mathcal{A}_{2^{-}lphaeta\chi}^{\#1}$
	$\frac{1}{-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2}$	0	0	$\sigma_{2^{-}}^{\#1}lphaeta\chi$	$-\alpha_3)k^2$					$() k^2$			

	${\cal R}_{1}^{\#1}{}_{lphaeta}$	${\mathscr R}^{\#2}_{1^+lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	${\mathcal R}_{1^-lpha}^{\sharp 1}$	${\mathcal R}_{1-lpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\mathcal{A}_{1}^{\sharp 1}\dagger^{lphaeta}$	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3\alpha_0-4\beta_1+16\beta_3}{6\sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}\bar{l}(\beta_1+2\beta_3)k$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)k^2$	0	0	0	0
${\mathcal R}_1^{\sharp 1}\! +^lpha$	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_0-4\beta_1+4\beta_2)k$
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3} i \sqrt{2} (2 \beta_1 + \beta_2) k$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{6}$ i (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3}$ (2 $\beta_1 + \beta_2$) k^2

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
Total constraints/gau	ıge generators:	10

Massive and massless spectra

Massive particle				
Pole residue:	$-((3(\alpha_0^2(3\alpha_4 + 3\alpha_5 + 4\beta_1 + 2\beta_2) + \alpha_0(-2\alpha_4\beta_1 - 2\alpha_5\beta_1 - 4\beta_1^2 + 2\alpha_4\beta_2 + 2\alpha_5\beta_2 + \beta_2^2) + \alpha_0(-2\beta_1\beta_2(2\beta_1 + \beta_2) + \alpha_4(2\beta_1^2 + \beta_2^2) + \alpha_5(2\beta_1^2 + \beta_2^2))))/$ $(2(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)(3\alpha_0^2 + 6\alpha_0(-2\beta_1 + \beta_2) + \alpha_4(2\alpha_5\beta_1 + \alpha_5\beta_2 - 6\beta_1\beta_2 + \alpha_4(2\beta_1 + \beta_2))))) > 0$			
Polarisations:	3			
Square mass:	$\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 2\beta_2)}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)} > 0$			
Spin:	1			
Parity:	Odd			

	•-	3			
Snin:	Square mass:	Polarisations: 5	Pole residue:	Massive particle	ranty:
2	$\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{16 (\alpha_1 + \alpha_4) \beta_1} > 0$	5	$-\frac{2}{\alpha_0} + \frac{\alpha_1 + \alpha_4 + 2\beta_1}{2\alpha_1\beta_1 + 2\alpha_4\beta_1} >$	e	Loven

>	.~		
>	\checkmark		
) 🤟		
<i>k</i> ₁	ll ll		
- \	0-		
,/)		• • • • •	
•		•	
	•		

Massive particle	е
Pole residue:	$\frac{1}{\alpha_0} + \frac{\alpha_4 + \alpha_6 + 2\beta_2}{2\alpha_4\beta_2 + 2\alpha_6\beta_2}$
Polarisations:	1
Square mass:	$\frac{\alpha_0 (\alpha_0 + 2\beta_2)}{4(\alpha_4 + \alpha_6)\beta_2} > 0$
Spin:	0
Parity:	Even

	Massive part
?	Pole residue
$J^P = 0^-$	Polarisations
k^{μ} ?	Square mass
?	Spin:

	Massiv
?	Pole re
$J^P = 2^-$	Polaris
k^{μ} ?	Square
?	Spin:
	Parity:

Massive particle				
Pole residue:	$-\frac{1}{\alpha_2 + \alpha_3} > 0$			
Polarisations:	1			
Square mass:	$-\frac{\alpha_0+8\beta_3}{2(\alpha_2+\alpha_3)}>0$			
Spin:	0			
Parity:	Odd			

 $\tau_{0^{+}}^{\#1} +$

 $i \sqrt{2} (\alpha_0 + 2 \beta_2)$ $\alpha_0 (\alpha_0 + 2 \beta_2) k - 4 (\alpha_4 + \alpha_6) \beta_2 k^3$

 $\frac{\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2}{\frac{1}{2} \alpha_0 (\alpha_0 + 2 \beta_2) k^2 + 2 (\alpha_4 + \alpha_6) \beta_2 k^4}$

0

0

0

 σ_{0-1}^{*}

0

0

0

0

0

	Massive particl	e
	Pole residue:	$-\frac{1}{\alpha_1 + \alpha_2} > 0$
0	Polarisations:	5
?	Square mass:	$\frac{\alpha_0 - 4\beta_1}{4(\alpha_1 + \alpha_2)} >$
	Spin:	2
	Parity:	Odd

pole $\frac{1}{\alpha_0} > 0$