Template Week 1 – Bits & Bytes

Student number: 522880	Stude	ent	num	ber:	522880
------------------------	-------	-----	-----	------	--------

What are Bits & Bytes?

Bits are the basic storage size of a computer, storing either a 0 or a 1

A byte is the combination of 8 of those bits, forming the smallest addressable size on the computer.

What is a nibble?

Half a byte

What relationship does a nibble have with a hexadecimal value?

It can be displayed by one hexadecimal value

Why is it wise to display binary data as hexadecimal values?

If you want to save screen space - yes

What kind of relationship does a byte have with a hexadecimal value?

It can be displayed as two hex numbers

An IPv4 subnet is 32-bit, show with a calculation why this is the case.

Highest IPv4 address -> 255.255.255.255 -> 2^8 *2^8 *2^8 = 2^32

Assignment 1.2: Your favourite colour

Hexadecimal colour code:

#A020F0

Assignment 1.3: Manipulating binary data

Colour	Colour code hexadecimaal (RGB)	Big Endian	Little Endian
RED	#FF0000	FF0000	0000FF
GREEN	#00FF00	00FF00	00FF00
BLUE	#0000FF	0000FF	FF0000
WHITE	#FFFFFF	FFFFF	FFFFFF
Favourite (previous assignment)	#A020F0	A020F0	F020A0

Screenshot modified BMP file in hex editor:

(THE VALUE IS RECORDED IN BGR DUE TO HISTORICAL REASONS)

(Also I did it in Notepad++ because I'm a bad student)

Bonus point assignment – week 1

Convert your student number to a hexadecimal number and a binary number.

Explain in detail that the calculation is correct. Use the PowerPoint slides of week 1.

Binary:

522880 / 2 =	261440) R0
261440 / 2 =	130720) RO
130720 / 2 =	65360	R0
65360 / 2 =	32680	R0
32680 / 2 =	16340	R0
16340 / 2 =	8170	R0
8170 / 2 =	4085	R0
4085 / 2 =	2042	R1
2042 / 2 =	1021	R0
1021 / 2 =	510	R1
510 / 2 =	255	R0
255 / 2 =	127	R1
127 / 2 =	63	R1
63 / 2 =	31	R1
31 / 2 =	15	R1
15 / 2 =	7	R1
7 / 2 =	3	R1
3 / 2 =	1	R1
1/2=	0	R1

Binary = 111 1111 1010 1000 0000

Hex:

Binary => 111 1111 1010 1000 0000

0111 =>	decimal 7 =>	hex 7
1111 =>	decimal 15 =>	hex F
1010 =>	decimal 10 =>	hex A
1000 =>	decimal 8 =>	hex 8
0000 =>	decimal 0 =>	hex 0

Hexadecimal Number = 7FA80

Ready? Save this file and export it as a pdf file with the name: week1.pdf