粒子物理学

第7章: 对称性与夸克模型

张雷,车轶旻,南京大学物理学院 Based on M. Thomson's notes

Particle Zoo

- 1950-60s,加速器诞生后,很多 新粒子被发现
 - 总数超过了元素周期表的元素数,呈现结构
 - 不可能都是基本粒子!

Strangeness

- · <u>kaons</u> or 超子<u>hyperons</u> Σ and Λ , 在粒子对撞中成对产生(大量地),但是衰变远比预期缓慢(考虑到其质量和产生截面)
 - 推断存在一种新的守恒量"奇异数(strangeness)",在产生时守恒,但是衰变过程中不守恒
- 奇异数在强相互作用和电磁相互作用中守恒,但是在弱相互作用中不守恒
 - 因此,最轻的含奇异数的粒子不能通过强作用衰变,且必须通过更缓慢的 弱作用衰变

Hadronic cross section Ration

$$R_{\rm had}(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

Fig. 11.3 Ratio R of (11.6) as a function of the total e^-e^+ center-of-mass energy. (The sharp peaks correspond to the production of narrov 1^- resonances just below or near the flavor thresholds.)

Hadron Wavefunctions

Quarks are always confined in hadrons (i.e. colourless states)

Treat quarks as identical fermions with states labelled with spatial, spin, flavour and colour. $\psi = \psi_{\text{space}} \psi_{\text{flavour}} \psi_{\text{spin}} \psi_{\text{colour}}$

All hadrons are colour singlets, i.e. net colour zero

Mesons
$$\psi_{
m colour}^{qar q}=rac{1}{\sqrt{3}}(rar r+gar g+bar b)$$

Baryons $\psi_{
m colour}^{qqq}=rac{1}{\sqrt{6}}(rgb+gbr+brg-grb-rbg-bgr)$

Parity

Parity operator \hat{P} performs spatial inversion $|\hat{P}|\psi(\vec{r},t)\rangle = |\psi(-\vec{r},t)\rangle$

- Eigenvalue of \hat{P} called Parity $\hat{P}|\psi
 angle = P|\psi
 angle, \qquad P=\pm 1$
 - Most particles are eigenstates of Parity and in this case P represents intrinsic Parity of a particle/antiparticle.
 - Parity is a useful concept. If the Hamiltonian for an interaction commutes with $\hat{P}: [\hat{P}, \hat{H}] = 0$,

then Parity is conserved in the interaction:

Parity conserved in the strong and EM interactions, but not in the weak interaction.

Parity

对于角动量为 ℓ 的两粒子复合系统: $P = P_1P_2(-1)^{\ell}$

• 其中 P_{1/2} 是粒子的本征宇称

量子场论:

- 费米子和反费米子: 宇称 相反
- 玻色子和反玻色子: 宇称 相同

惯例:

- 夸克和轻子: $P_{q/\ell} = +1$, 反夸克和反轻子: $P_{\bar{q}/\bar{l}} = -1$
- 规范玻色子: (γ, g, W, Z) 为矢量场J^P = 1⁻, P_γ = -1

Light Mesons

介子是q 和 \bar{q} 的束缚态

考虑由轻夸克(u, d, s)组成的基态介子
 mu ~ 0.3 GeV, md ~ 0.3 GeV, ms ~ 0.5 GeV

- 基态($\ell = 0$): 介子 "自旋" (总角动量)由 $q\bar{q}$ 自旋态给出两个可能的 $q\bar{q}$ 自旋态: S=0,1
- S = 0: pseudoscalar mesons; S = 1: vector mesons 介子字称: (q and \bar{q} have opposite parity)
- $P = P(q)P(\bar{q})(-1)\ell = (+1)(-1)(-1)\ell = -1$ (for $\ell = 0$)
- Flavour States: $u\bar{d}$, $u\bar{s}$, $d\bar{u}$, $d\bar{s}$, $s\bar{u}$, $s\bar{d}$, and $u\bar{u}$, $d\bar{d}$, $s\bar{s}$ mixtures

预期有:

9个 $J^P = 0^-$ 介子: Pseudoscalar nonet; 9个 $J^P = 1^-$ 介子: Vector nonet

$u\overline{u} d\overline{d} s\overline{s}$ States

 $u\bar{u}$ $d\bar{d}$ and $s\bar{s}$ states all have zero flavour quantum numbers and can mix

$$J^P = 0^-$$

$$\pi^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$$
 $\eta = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$
 $J^P = \mathbf{1}$
 $\eta' = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$

$$\rho^{0} = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$$

$$\omega^{0} = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})$$

$$\phi = s\bar{s}$$

混合系数在实验上由介子质量和衰变来确定

$$M(
ho^0
ightarrow e^+ e^-) \sim rac{e}{q^2} \left[rac{1}{\sqrt{2}}(Q_u e - Q_d e)
ight]$$

$$\Gamma(
ho^0
ightarrow e^+e^-)\propto \left[rac{1}{\sqrt{2}}(rac{2}{3}-(-rac{1}{3}))
ight]^2=rac{1}{2}$$

$$\Gamma(\omega^0
ightarrow e^+ e^-) \propto \left[\frac{1}{\sqrt{2}} (\frac{2}{3} + (-\frac{1}{3})) \right]^2 = \frac{1}{18}$$

$$\Gamma(\phi
ightarrow e^+e^-) \propto \left[rac{1}{3}
ight]^2 = rac{1}{9}$$

$$M \sim Q_q \alpha \quad \Gamma \sim Q_q^2 \alpha^2$$

Predict: $\Gamma_{0}:\Gamma_{\omega}:\Gamma_{\Delta}=9:1:2$ Experiment: $(8.8\pm2.6):1:(1.7\pm0.4)$

Meson Masses Spin-spin Interaction

Meson masses are only partly from constituent quark masses:

• $m(K) > m(\pi) \Rightarrow$ 说明 $m_s > m_u$, m_d 495 MeV 140 MeV

Not the whole story...

• $m(\rho) > m(\pi) \Rightarrow$ although both are $u\bar{d}$ 770 MeV 140 MeV

Only difference is the orientation of the quark spins ($\uparrow\uparrow$ vs $\uparrow\downarrow$)

⇒ spin-spin interaction

Meson Masses Spin-spin Interaction

QED: Hyperfine splitting in H_2 ($\ell = 0$)

Energy shift due to electron spin in magnetic field of proton

$$\Delta E = \vec{\mu}.\vec{B} \propto rac{2}{3}\vec{\mu}_e.\vec{\mu}_p \propto lpha rac{\vec{S_e}}{m_e}rac{\vec{S_p}}{m_p}$$
 use $\vec{\mu} = rac{e}{2m}\vec{S}$

QCD: Colour Magnetic Interaction

- 夸克和胶子的基本相互作用形式与电子和光子的相同
- 因此,也有色磁相互作用

$$\Delta E \propto lpha_s rac{ec{S}_1}{m_1} rac{ec{S}_2}{m_2}$$

Meson Masses Meson Mass Formula ($\ell = 0$)

$$M_{qar{q}}=m_1+m_2+Arac{ec{S_1}}{m_1}rac{ec{S_2}}{m_2}$$
 where A is a constant

For a state of spin
$$\vec{S} = \vec{S_1} + \vec{S_2}$$
 $\vec{S^2} = \vec{S_1^2} + \vec{S_2^2} + 2\vec{S_1} \cdot \vec{S_2}$

$$\vec{S_1}.\vec{S_2} = rac{1}{2} \left(\vec{S^2} - \vec{S_1^2} - \vec{S_2^2}
ight) \quad \vec{S_1^2} = \vec{S_2^2} = \vec{S_1} (\vec{S_1} + 1) = rac{1}{2} \left(rac{1}{2} + 1
ight) = rac{3}{4}$$

给出
$$\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} \vec{S}^2 - \frac{3}{4}$$
 $J^P = 0^-$ 介子: $\vec{S}^2 = 0$ $\Rightarrow \vec{S}_1 \cdot \vec{S}_2 = -3/4$ $J^P = 1^-$ 介子: $\vec{S}^2 = S(S+1) = 2$ $\Rightarrow \vec{S}_1 \cdot \vec{S}_2 = +1/4$

$$M_{q\bar{q}} = m_1 + m_2 - \frac{3A}{4m_1m_2} \quad (J^P = 0^-)$$

$$M_{q\bar{q}} = m_1 + m_2 + rac{A}{4m_1m_2} \quad (J^P = 1^-)$$

Meson Masses

 m_u =0.305 GeV, m_d =0.308 GeV, m_s =0.487 GeV, A=0.06 GeV³

上述参数可以很好地拟 合不同味道组合的质量 $(u\bar{d}, u\bar{s}, d\bar{u}, d\bar{s}, s\bar{u}, s\bar{d})$

η和η'是混合态,如:
$$\eta = \frac{1}{\sqrt{6}} \left(u \bar{u} + d \bar{d} - 2 s \bar{s} \right)$$

$$M_{\eta} = \frac{1}{6} \left(2 m_u - \frac{3A}{4 m_u^2} \right) + \frac{1}{6} \left(2 m_d - \frac{3A}{4 m_d^2} \right) + \frac{4}{6} \left(2 m_s - \frac{3A}{4 m_s^2} \right)$$

Baryons

• 重子由3个不可区分夸克组成(味道为波函数中的另一个量子数)

$$\psi_{baryon} = \psi_{space} \, \psi_{flavour} \, \psi_{spin} \, \psi_{colour}$$

 ψ_{baryon} 在交换任意2个夸克下, 必须是反对称

举例: $\Omega^{-}(sss)$ 波函数 ($\ell = 0, J = 3/2$)

• $\psi_{\text{spin}} \psi_{\text{flavour}} = s \uparrow s \uparrow s \uparrow e$ 对称的 ⇒ 要求 ψ_{colour} 反对称

只考虑基态($\ell=0$),零轨道角动量 ψ_{space} 对称的

→ 所有强子都是色单态

$$\psi_{\text{colour}} = 1\sqrt{6}(\text{rgb} + \text{gbr} + \text{brg} - \text{grb} - \text{rbg} - \text{bgr})$$
 反对称的

• 因此, ψ_{spin} ψ_{flavour} 必须是对称的

Baryon spin wavefunctions (ψspin)

联合 3 个自旋1/2 夸克: 总自旋 J = 1/2 ⊕ 1/2 ⊕ 1/2 = 1/2 or 3/2

- 考虑 J = 3/2,容易写出|3/2,3/2>态的自旋波函数: |3/2,3/2>=|↑↑↑>
- 利用阶梯算符Ĵ_产生其他态

$$\hat{J}_{-}\left|rac{3}{2},rac{3}{2}
ight>=(\hat{J}_{-}\uparrow)\uparrow\uparrow+\uparrow(\hat{J}_{-}\uparrow)\uparrow+\uparrow\uparrow(\hat{J}_{-}\uparrow)$$

$$\sqrt{\frac{35}{22} - \frac{31}{22}} \left| \frac{3}{2}, \frac{1}{2} \right\rangle = \downarrow \uparrow \uparrow + \uparrow \downarrow \uparrow + \uparrow \uparrow \downarrow$$
$$\left| \frac{3}{2}, \frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} (\downarrow \uparrow \uparrow + \uparrow \downarrow \uparrow + \uparrow \uparrow \downarrow)$$

$$\left|\frac{3}{2}, \frac{3}{2}\right\rangle = \uparrow \uparrow \uparrow$$

$$\left|\frac{3}{2}, \frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}(\downarrow \uparrow \uparrow + \uparrow \downarrow \uparrow + \uparrow \uparrow \downarrow)$$

 $\hat{J}_{-}|j,m\rangle = \sqrt{j(j+1) - m(m-1)}|j,m-1\rangle$

给出J = 3/2 态:

All symmetric under

interchange of any two spins

$$\left|\frac{3}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}(\uparrow\downarrow\downarrow + \downarrow\uparrow\downarrow + \downarrow\downarrow\uparrow)$$

$$\left|\frac{3}{2}, -\frac{3}{2}\right\rangle = \downarrow\downarrow\downarrow$$

Baryon Masses Baryon Mass Formula ($\ell = 0$)

$$M_{qqq} = m_1 + m_2 + m_3 + A' \left(\frac{\vec{S}_1}{m_1} \cdot \frac{\vec{S}_2}{m_2} + \frac{\vec{S}_1}{m_1} \cdot \frac{\vec{S}_3}{m_3} + \frac{\vec{S}_2}{m_2} \cdot \frac{\vec{S}_3}{m_3} \right)$$
 其中 A' 是常数

• 举例: 所有夸克的质量相同 $m_1 = m_2 = m_3 = m_q$

$$M_{qqq} = 3m_q + A' \sum_{i < j} \frac{\vec{S}_i \cdot \vec{S}_j}{m_q^2} \qquad \vec{S}^2 = \left(\vec{S}_1 + \vec{S}_2 + \vec{S}_3\right)^2 = \vec{S}_1^2 + \vec{S}_2^2 + \vec{S}_3^2 + 2 \sum_{i < j} \vec{S}_i \cdot \vec{S}_j$$

$$2 \sum_{i < j} \vec{S}_i \cdot \vec{S}_j = S(S+1) - 3\frac{1}{2}(\frac{1}{2}+1) = S(S+1) - \frac{9}{4}$$

$$\sum_{i < j} \vec{S}_i \cdot \vec{S}_j = -\frac{3}{4} \left(J = \frac{1}{2}\right) \qquad \sum_{i < j} \vec{S}_i \cdot \vec{S}_j = +\frac{3}{4} \left(J = \frac{3}{2}\right)$$

如, 质子(uud) 对比Δ (uud) – 同样的夸克成分

$$M_p = 3m_u - \frac{3A'}{4m_u^2}$$
 $M_{\Delta} = 3m_u + \frac{3A'}{4m_u^2}$

Baryon Masses

Colour factor of 2

Excellent agreement using

- m_u =0.362 GeV, m_d =0.366 GeV, m_s =0.537 GeV, A'=0.026 GeV3 ~ A/2 组分夸克 质量依赖于强子波函数,且包含了胶子云和 $q\bar{q}$ 对
- ⇒对于介子和重子,取值略有不同

磁偶极矩来自:带电夸克的轨道运动;夸克的自旋相关的内秉磁矩

轨道运动: 经典的电流环

$$\mu = IA = \frac{qv}{2\pi r}\pi r^2 = \frac{qpr}{2m} = \frac{q}{2m}L_z$$

量子力学得到相同结果
$$\hat{\mu} = g_{\ell} \frac{q}{2m} \hat{L}_z$$
 g_{ℓ} : "g-factor" $= 1$ 带电粒子, $= 0$ 中性粒子

内秉自旋

粒子內秉自旋的磁矩算符
$$\hat{\mu} = g_s \frac{q}{2m} \hat{S}_z$$

g_s: "spin g-factor" = 2 对于自旋1/2的点状狄拉克粒子

狄拉克费米子夸克的磁矩算符
$$\hat{\mu} = Q \frac{e}{m} \hat{\mathbf{S}}$$
 and $\hat{\mu}_z = Q \frac{e}{m} \hat{S}_z$

Spin-up
$$(m_s = +1/2)$$
 $\mu_u = \langle u \uparrow | \hat{\mu}_z | u \uparrow \rangle = \left(+\frac{2}{3} \right) \frac{e\hbar}{2m_u} = +\frac{2m_p}{3m_u} \mu_N$
 $\mu_d = \langle d \uparrow | \hat{\mu}_z | d \uparrow \rangle = \left(-\frac{1}{3} \right) \frac{e\hbar}{2m_d} = -\frac{m_p}{3m_d} \mu_N$

Spin-down
$$(m_s = -1/2)$$
 $\langle d \downarrow | \hat{\mu}_z | d \downarrow \rangle = -\mu_d$ $\langle u \downarrow | \hat{\mu}_z | u \downarrow \rangle = -\mu_u$

重子总磁矩:
$$\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}^{(1)} + \hat{\boldsymbol{\mu}}^{(2)} + \hat{\boldsymbol{\mu}}^{(3)}$$

• 三个组分夸克磁矩的矢量和

质子磁矩
$$\mu_p = \langle \hat{\mu}_z \rangle = \langle p \uparrow | \hat{\mu}_z^{(1)} + \hat{\mu}_z^{(2)} + \hat{\mu}_z^{(3)} | p \uparrow \rangle$$

质子波函数:
$$|p\uparrow\rangle = \frac{1}{\sqrt{6}}(2u\uparrow u\uparrow d\downarrow - u\uparrow u\downarrow d\uparrow - u\downarrow u\uparrow d\uparrow)$$

与磁矩:

$$\mu_{p} = \tfrac{1}{6} \left\langle (2u \uparrow u \uparrow d \downarrow - u \uparrow u \downarrow d \uparrow - u \downarrow u \uparrow d \uparrow) \, | \, \hat{\mu}_{z} | \, (2u \uparrow u \uparrow d \downarrow - u \uparrow u \downarrow d \uparrow - u \downarrow u \uparrow d \uparrow) \right\rangle$$

考虑味道和自旋态的正交性 $\langle u \uparrow u \uparrow d \downarrow | u \downarrow u \uparrow d \uparrow \rangle = 0$,质子磁矩表达式

可以简化为:

$$\begin{split} \mu_{\mathrm{p}} &= \tfrac{4}{6} \, \langle \mathbf{u} \uparrow \mathbf{u} \uparrow \mathbf{d} \downarrow | \hat{\mu}_z | \, \mathbf{u} \uparrow \mathbf{u} \uparrow \mathbf{d} \downarrow \rangle + \tfrac{1}{6} \, \langle \mathbf{u} \uparrow \mathbf{u} \downarrow \mathbf{d} \uparrow | \hat{\mu}_z | \, \mathbf{u} \uparrow \mathbf{u} \downarrow \mathbf{d} \uparrow \rangle \\ &\quad + \tfrac{1}{6} \, \langle \mathbf{u} \downarrow \mathbf{u} \uparrow \mathbf{d} \uparrow | \hat{\mu}_z | \, \mathbf{u} \downarrow \mathbf{u} \uparrow \mathbf{d} \uparrow \rangle \,. \end{split}$$

$$\hat{\mu}_z |\mathbf{u}\uparrow\rangle = +\mu_{\mathbf{u}} |\mathbf{u}\uparrow\rangle$$
 and $\hat{\mu}_z |\mathbf{u}\downarrow\rangle = -\mu_{\mathbf{u}} |\mathbf{u}\downarrow\rangle$
 $\hat{\mu}_z |\mathbf{d}\uparrow\rangle = +\mu_{\mathbf{d}} |\mathbf{d}\uparrow\rangle$ and $\hat{\mu}_z |\mathbf{d}\downarrow\rangle = -\mu_{\mathbf{d}} |\mathbf{d}\downarrow\rangle$

得到
$$\mu_p = \frac{4}{6} (\mu_u + \mu_u - \mu_d) + \frac{1}{6} (\mu_u - \mu_u + \mu_d) + \frac{1}{6} (-\mu_u + \mu_u + \mu_d)$$

因此,夸克模型预言质子的磁矩为: $\mu_{\rm p}=\frac{4}{3}\mu_{\rm u}-\frac{1}{3}\mu_{\rm d}$

中子磁矩由u、d夸克互换得到 $\mu_{\rm n}=\frac{4}{3}\mu_{\rm d}-\frac{1}{3}\mu_{\rm u}$

假设
$$m_{\rm u} \approx m_{\rm d}$$
, 意味着 $\mu_{\rm u} = -2\mu_{\rm d}$ $\frac{\mu_{\rm p}}{\mu_{\rm n}} = \frac{4\mu_{\rm u} - \mu_{\rm d}}{4\mu_{\rm d} - \mu_{\rm u}} = -\frac{3}{2}$ 质子中子的磁矩比为:

• $m_{\rm H} = 0.338 \; {\rm GeV}$, $m_{\rm d} = 0.322 \; {\rm GeV}$ and $m_{\rm s} = 0.510 \; {\rm GeV}$

Baryon Magnetic Moments in Quark Model

对于其他 $\ell=0$ 重子也可以得到,预言 $\mu_n/\mu_p=-2/3$

• 对比实验值 -0.685

Baryon	μ_B in Quark Model	Predicted $[\mu_N]$	Observed $[\mu_N]$
p (uud)	$\frac{4}{3}\mu_{u}-\frac{1}{3}\mu_{d}$	+2.79	+2.793
n (ddu)	$\frac{4}{3}\mu_d-\frac{1}{3}\mu_u$	-1.86	-1.913
Λ (uds)	μ_{s}	-0.61	-0.614 ± 0.005
Σ^+ (uus)	$\frac{4}{3}\mu_u - \frac{1}{3}\mu_s$	+2.68	$+2.46 \pm 0.01$
Ξ^0 (ssu)	$\frac{4}{3}\mu_s - \frac{1}{3}\mu_u$	-1.44	-1.25 ± 0.014
Ξ^- (ssd)	$\frac{4}{3}\mu_s - \frac{1}{3}\mu_d$	-0.51	-0.65 ± 0.01
Ω^- (sss)	$3\mu_s$	-1.84	-2.02 ± 0.05

如下参数可以与数据较好地符合: $m_u=m_d=0.336$ GeV, $m_s\sim0.509$ GeV

Hadron Decays

强子可通过强相互作用衰变到轻质量态。前提:

- 能量运行,即,母粒子质量大于子粒子质量
- 强相互作用中, 角动量和宇称必须守恒

举例:

$$\rho^{0} \to \pi^{+}\pi^{-}$$
 $\Delta^{++} \to p\pi^{+}$
 $m(\rho 0) > m(\pi +) + m(\pi -)$
 $m(\Delta + +) > m(p) + m(\pi +)$
 $769 \quad 140 \quad 140 \text{ MeV}$
 $1231 \quad 938 \quad 140 \text{ MeV}$

还需要检查末态中 全同粒子, 举例:

$$\omega^0 \to \pi^0 \pi^0$$
 $\omega^0 \to \pi^+ \pi^- \pi^0$ $m(\omega^0) > m(\pi^0) + m(\pi^0)$ $m(\omega^0) > m(\pi^+) + m(\pi^-) + m(\pi^0)$ 782 135 MeV 782 140 140 135 MeV

Look at isospin, $\rho = |1,0\rangle \rho = |1,0\rangle$ and $\pi 0 = |1,0\rangle \pi 0 = |1,0\rangle$.

SU(2) isospin is a good symmetry in strong interactions, it must be conserved.

Looking at the isospin of the final state:

$$|1,0\rangle \otimes |1,0\rangle = \sqrt{2}/3|2,0\rangle + 0|1,0\rangle - \sqrt{1}/3|0,0\rangle$$

There is no $|1,0\rangle|1,0\rangle$ component in the final state, and therefore the process is not allowed by SU(2) isospin symmetry.

Hadron Decays

强子可通过电磁相互作用衰变

举例:
$$\rho^0 \to \pi^0 \gamma$$
 $\Sigma^0 \to \Lambda^0 \gamma$ $m(\rho^0) > m(\pi^0) + m(\gamma)$ $m(\Sigma^0) > m(\Lambda^0) + m(\gamma)$ 769 135 MeV 1193 1116 MeV

质量最轻的态 $(p, K^{\pm}, K^{0}, \overline{K^{0}}, \Lambda, n)$ 要求衰变过程中改变夸克味道

• 因此,通过弱相互作用衰变 (see later).

Summary of light (uds) hadrons

Baryons and mesons are composite particles (complicated).

- However, naive Quark Model can be used for masses/magnetic moments.
- Reasonably consistent values for the constituent quark masses:

	$m_{u/d}$	m_s
Meson Masses	307 MeV	487 MeV
Baryon Masses	364 MeV	537 MeV
Baryon Magnetic Moments	336 MeV	509 MeV
$m_u \sim m_d$	~ 335 MeV, m	- < 510 MeV

Hadrons decay

- Via strong interaction to lighter mass states if energetically feasible.
- Can also via EM interaction.
- Lightest mass states require a change of quark flavour to decay
 - Therefore decay via the weak interaction (see later).

Introduction/Aims

- > 对称性是粒子物理学的一个核心
 - 粒子物理学研究的其中一个目标:发现自然界的基本对称性
- > 本节课将对称性运用到夸克模型,将得到:
 - 推导强子波函数
 - 引出概念: "色"和QCD(下节课)
 - 最终解释强子为什么只存在介子 $(q\overline{q})$, 重子(qqq)或反重子 (\overline{qqq})
 - ▶ 引入SU(2) 和 SU(3) 对称群,以及他们在粒子物理中重要作用
 - > 分立对称性在弱相互作用后讲

- ightharpoonup 设如下变换后物理结果不变 $\psi o \psi' = \hat{U} \psi$ 如 坐标轴的转动
- ightarrow 概率归一条件要求 $\langle \psi | \psi \rangle = \langle \psi' | \psi' \rangle = \langle \hat{U} \psi | \hat{U} \psi \rangle = \langle \psi | \hat{U}^\dagger \hat{U} | \psi \rangle$
 - $ightharpoonup \hat{U}^{\dagger}\hat{U}=1$ i.e. $\widehat{m{v}}$ has to be unitary

在对称变换下、物理结果要保持不变需要所有的QM矩阵元不变

$$\langle \psi | \hat{H} | \psi \rangle = \langle \psi' | \hat{H} | \psi' \rangle = \langle \psi | \hat{U}^{\dagger} \hat{H} \hat{U} | \psi \rangle$$

i.e. require
$$\hat{U}^\dagger \hat{H} \hat{U} = \hat{H} \stackrel{ imes \hat{U}}{\longrightarrow} \hat{U} \hat{U}^\dagger \hat{H} \hat{U} = \hat{U} \hat{H} \longrightarrow \hat{H} \hat{U} = \hat{U} \hat{H}$$

therefore

$$[\hat{H},\hat{U}]=0$$

 $\widehat{m{U}}$ commutes with Hamiltonian

» 现在考虑无穷小变换 (ε为小量)

$$\hat{U} = 1 + i \varepsilon \hat{G}$$
 (\hat{G} : Generator transformation)

$$\hat{U}$$
的幺正性 $\hat{U}\hat{U}^{\dagger} = (1 + i\varepsilon\hat{G})(1 - i\varepsilon\hat{G}^{\dagger}) = 1 + i\varepsilon(\hat{G} - \hat{G}^{\dagger}) + O(\varepsilon^2)$ 忽略 ε^2 项
$$UU^{\dagger} = 1 \qquad \qquad \hat{G} = \hat{G}^{\dagger}$$

即 \widehat{G} 是厄米,因此对应一个可观测量G!

》此外,
$$[\hat{H},\hat{U}]=0$$
 \Rightarrow $[\hat{H},1+i\varepsilon\;\hat{G}]=0$ \Rightarrow $[\hat{H},\hat{G}]=0$ 而量子力学中 $\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{G}\rangle=i\langle[\hat{H},\hat{G}]\rangle=0$ 即, G 是一个守恒量

自然界每种对称性都有一个守恒的可观测量

<u>举例</u>: Infinitesimal spatial translation $x \rightarrow x + \varepsilon$

即 预期物理规律在如下变换保持不变 $\psi(x) \rightarrow \psi' = \psi(x+\varepsilon)$

$$\psi'(x) = \psi(x + \varepsilon) = \psi(x) + \frac{\partial \psi}{\partial x} \varepsilon = \left(1 + \varepsilon \frac{\partial}{\partial x}\right) \psi(x)$$

but
$$\hat{p}_x = -i\frac{\partial}{\partial x} \implies \psi'(x) = (1 + i\varepsilon \hat{p}_x)\psi(x)$$

对称性变换的产生子: $\hat{p}_x \rightarrow p_x$ 守恒

- 物理规律的平移不变性 意味着 动量守恒!
- 通常对称性操作可能依赖多个参数 $\hat{U} = 1 + i\vec{\epsilon}.\vec{G}$

举例: 三维平移的无穷小变换
$$\vec{r} \rightarrow \vec{r} + \vec{\varepsilon}$$
 $\vec{p} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ $\hat{U} = 1 + i\vec{\varepsilon}.\vec{p}$

• 有限的变换可以表达成一系列无穷小变换

$$\hat{U}(\vec{\alpha}) = \lim_{n \to \infty} \left(1 + i \frac{\vec{\alpha}}{n} \cdot \vec{G} \right)^n = e^{i\vec{\alpha} \cdot \vec{G}}$$

<u>举例</u>:有限的一维空间平移: $x \to x + x_0$ 其中 $\hat{U}(x_0) = e^{ix_0\hat{p}_x}$

$$\psi'(x) = \psi(x + x_0) = \hat{U}\psi(x) = \exp\left(x_0 \frac{\mathrm{d}}{\mathrm{d}x}\right)\psi(x)$$

$$= \left(1 + x_0 \frac{\mathrm{d}}{\mathrm{d}x} + \frac{x_0^2}{2!} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \dots\right)\psi(x)$$

$$= \psi(x) + x_0 \frac{\mathrm{d}\psi}{\mathrm{d}x} + \frac{x_0^2}{2!} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \dots$$

i.e. obtain the expected Taylor expansion

Symmetries in Particle Physics: Isospin

- ightarrow 质子和中子的质量相似。核力近似与电荷无关,即 $V_{pp}pprox V_{np}pprox V_{nn}$
- ▶ 为反映次对称性,海森堡 (1932) 提出:如果可以"关闭"质子的电荷

则质子和中子完全相同

- 提出将质子和中子看作一个 $p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- ▶ 类比自旋1/2粒子的自旋朝上/朝下,引入同位旋

ISOSPIN

- > 预期物理规律在同位旋空间的转动下保持不变
 - 中子和质子形成总同位旋的二重态,其总同位旋 $I=\frac{1}{2}$,第三分量 $I_3=\pm\frac{1}{2}$

将此想法扩展到夸克:假设强相互作用中所有味道的夸克都一样(确实!)

本课件中"同位旋对称性"等同于"味道对称性"

Flavour Symmetry of Strong Interaction

因为 $m_u \approx m_d$:

强相互作用有近似的味道对称性,即上夸克和下夸克互换不改变物理

• 选择基矢为
$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

▶ 强相互作用u↔d交换不变性表达为抽象的同位旋空间的"旋转"的不变性

$$\begin{pmatrix} u' \\ d' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix}$$

- 2x2 幺正矩阵:依赖4个复数(即8个实参数),和4个约束 $\hat{U}^{\dagger}\hat{U}=1$
 - ➡ 8-4=4个独立的矩阵 群论中,四个矩阵形成了 U(2) 群
- ightharpoonup 其中一个矩阵对应只有相位变化, $\hat{U}_1=\left(egin{array}{cc}1&0\0&1\end{array}
 ight)e^{i\phi}$ 而没有味道变换,这里可以忽略

Flavour Symmetry of Strong Interaction

- ightharpoonup 剩下的三个矩阵形成一个SU(2)群 (special unitary),其中 $|\det U = 1|$
- ightarrow 用厄米产生子 \hat{G} 表示对于无穷小变换 $\hat{U} = 1 + i \varepsilon \hat{G}$

$$\det U = 1 \quad \Longrightarrow \quad Tr(\hat{G}) = 0$$

 \triangleright 泡利自旋矩阵是 \widehat{G} 的一个线性选择

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
 $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
味道对称性与自旋

有相同的变换性质!

- ightarrow 定义同位旋: $ec{T}=rac{1}{2}ec{\sigma}$ $\hat{U}=e^{iec{lpha}.ec{T}}$
- > 对于无穷小变换

$$\hat{U} = 1 + \frac{1}{2}i\vec{\varepsilon}.\vec{\sigma} = 1 + \frac{i}{2}(\varepsilon_1\sigma_1 + \varepsilon_2\sigma_2 + \varepsilon_3\sigma_3) = \begin{pmatrix} 1 + \frac{1}{2}i\varepsilon_3 & \frac{1}{2}i(\varepsilon_1 - i\varepsilon_2) \\ \frac{1}{2}i(\varepsilon_1 + i\varepsilon_2) & 1 - \frac{1}{2}i\varepsilon_3 \end{pmatrix}$$

由幺正性要求,得其行列式
$$U^{\dagger}U = I + O(\varepsilon^2)$$
 $\det U = 1 + O(\varepsilon^2)$

Properties of Isopin

ightharpoonup 性质与自旋相同 $[T_1,T_2]=iT_3$ $[T_2,T_3]=iT_1$ $[T_3,T_1]=iT_2$

$$[T^2, T_3] = 0 T^2 = T_1^2 + T_2^2 + T_3^2$$

类似自旋,有三个非对易算符 T_1,T_2,T_3 ,其对应的观测量不能同时确定。 因此, 通过总同位旋 I 和同位旋第三分量 I 。来标记状态

注:同位旋与自旋没有任何关系 – 只是数学相同

•本征态: 类比角动量的本征态 $|s,m
angle
ightarrow |I,I_3
angle$

其中
$$T^2|I,I_3\rangle = I(I+1)|I,I_3\rangle$$
 $T_3|I,I_3\rangle = I_3|I,I_3\rangle$

•根据同位旋: $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |\frac{1}{2}, +\frac{1}{2}\rangle$ $d = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |\frac{1}{2}, -\frac{1}{2}\rangle$

$$I = \frac{1}{2}, \quad I_3 = \pm \frac{1}{2}$$

•一般而言
$$I_3 = \frac{1}{2}(N_u - N_d)$$

Properties of Isopin

类比自旋阶梯算符

$$T_{+}|I,I_{3}\rangle = \sqrt{I(I+1) - I_{3}(I_{3}+1)}|I,I_{3}+1\rangle$$
 $T_{-}|I,I_{3}\rangle = \sqrt{I(I+1) - I_{3}(I_{3}-1)}|I,I_{3}-1\rangle$

Step up/down in I_3 until reach end of multiplet $T_+|I,+I\rangle=0$ $T_-|I,-I\rangle=0$ $T_{+}u = 0$ $T_{+}d = u$ $T_{-}u = d$ $T_{-}d = 0$

- ▶ 阶梯算符: 产生 u→d 和 d→u 的转变
- ▶ 同位旋组合:如双底夸克系统的同位旋是多少,准确地类比自旋组合(即角动量)

$$|I^{(1)},I_3^{(1)}\rangle|I^{(2)},I_3^{(2)}\rangle \rightarrow |I,I_3\rangle$$
 • I_3 相加性: $I_3=I_3^{(1)}+I_3^{(2)}$

- I 矢量相加的整数: 从 $|I^{(1)}-I^{(2)}|$ 到 $|I^{(1)}+I^{(2)}|$
- 强相互作用中同位旋变换对称性意味着守恒量的存在
 - 强相互作用中 I3 和 I是守恒的,类比J2 和J 的角动量守恒

Combining Quarks: derive proton wave-function

- > 首先合并两个夸克, 然后在第三个: 利用费米波函数反对称的要求
 - 同位旋可用于定义多夸克态,如 两夸克;这里我们有四种组合:

注: \bigcirc 代表两个态有相同 I_3

• 立刻能确定极值(I3相加性)

$$uu \equiv |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle = |1, +1\rangle$$

$$dd \equiv |\frac{1}{2}, -\frac{1}{2}\rangle|\frac{1}{2}, -\frac{1}{2}\rangle = |1, -1\rangle$$

• 使用阶梯算符以得到 |1,0>

$$T_{-}|1,+1\rangle = \sqrt{2}|1,0\rangle = T_{-}(uu) = ud + du \implies |1,0\rangle = \frac{1}{\sqrt{2}}(ud + du)$$

$$|1,0\rangle = \frac{1}{\sqrt{2}}(ud + du)$$

• 发现末态 |0,0>与 |1,0>正交 $|0,0\rangle = \frac{1}{\sqrt{2}}(ud-du)$

$$|0,0\rangle = \frac{1}{\sqrt{2}}(ud - du)$$

- 总同位旋不同的态在物理上也不同
 - 在交换1-2夸克下,同位旋为1的态是对称的,而单态则是反对称的

矩阵的直积

· 以电子自旋为例:

- 升算符 $T^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, 降算符 $T^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
- 两个基态: $|\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$A = (a_{ij})_{m \times n}$$
和 $B = (b_{ij})_{p \times q}$, $A \otimes B = (a_{ij}B)_{mp \times nq}$
$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}_{mp \times nq}$$

・ 现在考虑两个电子,用直积构建Hilbert空间—— $S_1\otimes S_2$:

•
$$|\uparrow\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, |\uparrow\downarrow\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, |\downarrow\uparrow\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, |\downarrow\downarrow\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

•
$$T_1^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes I_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, T_2^+ = I_2 \otimes \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

•
$$T^+|\downarrow\downarrow\rangle = T_1^+|\downarrow\downarrow\rangle + T_2^+|\downarrow\downarrow\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle$$

Combining Quarks: derive proton wave-function

▶ 从4种可能的同位旋二重态组合得到同位旋为1的三重态和一个同位旋为0的单态

$$2 \otimes 2 = 3 \oplus 1$$

$$dd \qquad \frac{\frac{1}{\sqrt{2}}(ud + du)}{I_{\pm}} \qquad uu$$

$$-1 \qquad T_{\pm} \qquad 0 \qquad T_{\pm} \qquad +1$$

$$I_{3} \qquad 0 \qquad I_{3}$$

- ▶ 两个I=1/2的态组合,得到I=1的三重态和I=0的单态。
- ▶ 如果再增加一个I=1/2的态(一个额外的上或下夸克)
 - 从上面4个态的任意一个,得到两个新同位旋态
 - I=0的态,只能为I=1/2; I=1的态,可以为I=3/2也可以为I=1/2

• 使用阶梯算符和正交性,把态分类到多态:例如,从ddd开始提升

Combining Quarks: derive proton wave-function

➢ 从ddd=|3/2,-3/2>导出 所有 I=3/2的态

· 从前一页的[2]重态给出另外一个|1/2,±1/2>二重态

两个二重态的导出

- 从前一页的[6]重态,利用正交性找到|1/2,±1/2>态
 - $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle$ \triangle \Rightarrow $\left|\frac{3}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}(udd + dud + ddu)$ \bot \Rightarrow
 - $\nabla I_3 = -\frac{1}{2}$ 且属于6重态,所以必须是ddu 和 $\frac{1}{\sqrt{2}}(ud + du)d$ 的线性组合
 - $\left|\frac{1}{2}, -\frac{1}{2}\right| = A \cdot ddu + B \cdot \left(\frac{1}{\sqrt{2}}(ud + du)d\right)$
 - $\left\langle \frac{3}{2}, -\frac{1}{2} \right| \frac{1}{2}, -\frac{1}{2} = A + \frac{2B}{\sqrt{2}} = 0$
 - $\left\langle \frac{1}{2}, -\frac{1}{2} \right| \frac{1}{2}, -\frac{1}{2} = A^2 + B^2 = 1$
 - $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = -\frac{1}{\sqrt{6}}(2ddu udd dud)$
- ✓ **课堂练习: 请**同样方法得到 $\left|\frac{1}{2}, + \frac{1}{2}\right| = ?$

两个二重态的导出

• 从前一页的[6]重态,利用正交性找到|1/2,±1/2>态

•
$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle \triangle i \left|\frac{3}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{3}}(udd + dud + ddu) \bot \hat{\Sigma}$$

•
$$\nabla I_3 = -\frac{1}{2}$$
且属于6重态,所以必须是 ddu 和 $\frac{1}{\sqrt{2}}(ud+du)d$ 的线性组合

•
$$\left|\frac{1}{2}, -\frac{1}{2}\right| = A \cdot ddu + B \cdot \left(\frac{1}{\sqrt{2}}(ud + du)d\right)$$

•
$$\left\langle \frac{3}{2}, -\frac{1}{2} \right| \frac{1}{2}, -\frac{1}{2} = A + \frac{2B}{\sqrt{2}} = 0$$

•
$$\left(\frac{1}{2}, -\frac{1}{2} \middle| \frac{1}{2}, -\frac{1}{2} \right) = A^2 + B^2 = 1$$

•
$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = -\frac{1}{\sqrt{6}}(2ddu - udd - dud)$$

• 同样方法得到
$$\left|\frac{1}{2}, +\frac{1}{2}\right| = \frac{1}{\sqrt{6}}(2uud - udu - duu)$$

· 从前一页的[2]重态给出另外一个|1/2,±1/2>二重态

•
$$\left|\frac{1}{2}, -\frac{1}{2}\right| = \frac{1}{\sqrt{2}}(udd - dud)$$

•
$$\left|\frac{1}{2}, +\frac{1}{2}\right| = \frac{1}{\sqrt{2}}(udu - duu)$$

$$\frac{\frac{1}{\sqrt{2}}(ud - du)d}{-\frac{1}{2}} \xrightarrow{\frac{1}{\sqrt{2}}(ud - du)u} I_3$$

$$-\frac{1}{2} \quad 0 \quad +\frac{1}{2}$$

Combining Quarks: derive proton wave-function

★ 八个态 uuu, uud, udu, udd, duu, dud, ddu, ddd 分成1个 同位旋四重态 和 2个 同位旋 二重态

$$2 \otimes 2 \otimes 2 = 2 \otimes (3 \oplus 1) = (2 \otimes 3) \oplus (2 \otimes 1) = 4 \oplus 2 \oplus 2$$

不同的多重态有不同的对称性特征

四重态在交换任意两个夸克对称

$$\begin{cases} \left| \frac{3}{2}, +\frac{3}{2} \right\rangle = uuu \\ \left| \frac{3}{2}, +\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} (uud + udu + duu) \\ \left| \frac{3}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} (ddu + dud + udd) \\ \left| \frac{3}{2}, -\frac{3}{2} \right\rangle = ddd \end{cases}$$

混合对称: 1-2交换对称

$$\begin{cases} |\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{1}{\sqrt{6}}(2ddu - udd - dud) \\ |\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2uud - udu - duu) \end{cases}$$

混合对称: 1-2交换反对称

$$\mathbf{M}_{\mathbf{A}} \begin{cases} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{2}} (udd - dud) \\ \left| \frac{1}{2}, +\frac{1}{2} \right\rangle = \frac{1}{\sqrt{2}} (udu - duu) \end{cases}$$

混合对称态对于,如交换1-3夸克,没有明确的对称性

Combining Spin

▶ 运用同样的数学来确定3个自旋1/2粒子组合的可能自旋波函数

四重态在交换任意 两个夸克对称

 $\begin{array}{c}
\left(\left| \frac{3}{2}, + \frac{3}{2} \right\rangle = \uparrow \uparrow \uparrow \\
\left| \frac{3}{2}, + \frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} (\uparrow \uparrow \downarrow + \uparrow \downarrow \uparrow \uparrow + \downarrow \uparrow \uparrow \uparrow) \\
\left| \frac{3}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} (\downarrow \downarrow \uparrow + \downarrow \uparrow \downarrow + \uparrow \downarrow \downarrow) \\
\left| \frac{3}{2}, -\frac{3}{2} \right\rangle = \downarrow \downarrow \downarrow
\end{array}$

混合对称: 1-2交换对称

$$\mathbf{M}_{\mathbf{S}} \begin{cases} |\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{1}{\sqrt{6}}(2\downarrow\downarrow\uparrow -\uparrow\downarrow\downarrow -\downarrow\uparrow\downarrow) \\ |\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2\uparrow\uparrow\downarrow -\uparrow\downarrow\uparrow -\downarrow\uparrow\uparrow) \end{cases}$$

混合对称: 1-2交换反对称

$$\mathbf{M_A} \begin{cases} |\frac{1}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow \downarrow - \downarrow \uparrow \downarrow) \\ |\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow) \end{cases}$$

现在可以构建三个夸克组合的总波函数

Baryon Wave-functions (ud)

- ▶ 夸克是费米子,因此要求: 总波函数在交换任意两个夸克下为反对称
 - 总波函数表达为: $\psi = \phi_{\mathrm{flavour}} \chi_{\mathrm{spin}} \xi_{\mathrm{colour}} \eta_{\mathrm{space}}$
- > 对于全部qqq束缚态色波函数反对称("色单态"见后续QCD章节)
 - 此处仅考虑最低质量态, 无轨道角动量的基态重子
 - 对于L=0, 空间波函数对称 (-1)L.
 - $\xi_{
 m colour}\eta_{
 m space}$ anti-symmetric $\xi_{
 m flavour}\chi_{
 m spin}$ symmetric $\xi_{
 m colour}\eta_{
 m space}$
- 两种方式构建自旋-同位旋的完全对称波函数
 - lacksquare 合并总的自旋和同位旋的对称波函数 $\phi(S)\chi(S)$

Baryon Wave-functions (ud)

- ② 合并自旋和同位旋的混合对称波函数
 - $\phi(M_S)\chi(M_S)$ 和 $\phi(M_A)\chi(M_A)$ 在交换1-2夸克下是对称的
 - 不足: 这些组合对于1-3交换, 没有明确的对称性

• 自旋向上的质子波函数为:

$$|p\uparrow\rangle = \frac{1}{6\sqrt{2}}(2uud - udu - duu)(2\uparrow\uparrow\downarrow - \uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow) + \frac{1}{2\sqrt{2}}(udu - duu)(\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow)$$

Anti-quarks and Mesons (u and d)

ightharpoonup u, d 夸克 和 \overline{u} , \overline{d} 反夸克表示为同位旋二重态

$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$

$$\frac{d}{-\frac{1}{2}} \qquad u$$

$$-\frac{1}{2} \qquad +\frac{1}{2}$$

$$I_3$$

$$\frac{\overline{u}}{-\frac{1}{2}} \qquad +\frac{1}{2}$$

$$\overline{u} \qquad -\overline{d}$$

$$-\frac{1}{2} \qquad +\frac{1}{2}$$

$$\overline{u} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- ▶ 要点: 反夸克二重态的排序和符号保证反夸克和夸克以相同方式变换(见附录I)
 - 这使得物理预言在 \mathbf{u} - \mathbf{d} 夸克和 $\overline{\mathbf{u}}$ - $\overline{\mathbf{d}}$ 交换下不变
- 考虑阶梯算符作用在 反夸克同位旋态

$$T_+\overline{u} = T_+\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\0 & 0 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix} = -\overline{d}$$

• 效应为:

$$T_{+}\overline{u} = -\overline{d}$$
 $T_{+}\overline{d} = 0$ $T_{-}\overline{u} = 0$ $T_{-}\overline{d} = -\overline{u}$

• 对比

$$T_{+}u = 0$$
 $T_{+}d = u$ $T_{-}u = d$ $T_{-}d = 0$

> 现在可以通过上/下夸克组合来构建介子态

· 考虑 qq 组合的同位旋态

$$|1,+1\rangle = |\frac{1}{2},+\frac{1}{2}\rangle \overline{|\frac{1}{2},+\frac{1}{2}\rangle} = -u\overline{d} \qquad |1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle \overline{|\frac{1}{2},-\frac{1}{2}\rangle} = d\overline{u}$$

Bar: 反夸克的同位旋

为得到I₃=0 态,使用阶梯算符和正交性

$$T_{-}|1,+1\rangle = T_{-}[-u\overline{d}]$$

$$\sqrt{2}|1,0\rangle = -T_{-}[u]\overline{d} - uT_{-}[\overline{d}]$$

$$= -d\overline{d} + u\overline{u}$$

$$|1,0\rangle = \frac{1}{\sqrt{2}} \left(u\overline{u} - d\overline{d} \right)$$

• 正交性给出:

$$|0,0\rangle = \frac{1}{\sqrt{2}} \left(u\overline{u} + d\overline{d} \right)$$

▶ 总结:

I=1的三重态 和 I=0单态

• 可以记作

$$2 \otimes \overline{2} = 3 \oplus 1$$

夸克二重态 反夸克二重态

* 单态是阶梯算符的"尽头"
$$T_+|0,0\rangle=T_+\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})=\frac{1}{\sqrt{2}}\left(-u\overline{d}+u\overline{d}\right)=0$$

▶ 总结:

I=1的三重态 和 I=0单态

• 可以记作

$$2 \otimes \overline{2} = 3 \oplus 1$$

夸克二重态 反夸克二重态

* 单态是阶梯算符的"尽头"
$$T_+|0,0\rangle = T_+\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d}) = \frac{1}{\sqrt{2}}\left(-u\overline{d}+u\overline{d}\right) = 0$$

 \checkmark 课堂练习: 类似证明 $T_{-}|0,0\rangle=0$

- > 将奇异(strange)夸克包括进来
 - 由于 $m_s > m_u, m_d$ 其并非严格的对称性,但 m_s 和 m_u, m_d 差别不是很大
 - 可以认为在强相互作用中(及其产生的强子态)存在s↔u↔d交换对称性

注: 任何基于该假设的结果都只是近似的, 因为该对称性不是严格的

• 味道对称性 (uds) 可表达为 $\begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} u \\ d \\ s \end{pmatrix}$

· 3x3幺正矩阵依赖于9个复数,即18实参数

$$\hat{U}^{\dagger}\hat{U}=1$$
 给出9个约束

| 这9个矩阵形成一个 U(3) 群 |

- 类似前述, 其中1个矩阵只是单位矩阵乘以一个复相角, 与味道对称性无关
- **剩下的 8 个矩阵** \det U=1 形成一个SU(3) 群 $\vec{T} = \frac{1}{2}\vec{\lambda}$ $\hat{U} = e^{i\vec{\alpha}.\vec{T}}$ (厄米产生子)

- ➤ SU(3)味道对称性
 - 3个夸克态可以表示为

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- ➤ SU(3) uds 味道对称性包含SU(2) ud 对称性
 - 因此前三个矩阵可记为: $\lambda_1 = \begin{pmatrix} \sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} \sigma_2 & 0 \\ 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} \sigma_3 & 0 \\ 0 & 0 \end{pmatrix}$

$$\square \qquad \square \qquad \lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- 同位旋第三分量: $I_3 = \frac{1}{2}\lambda_3$ 其中 $I_3 u = +\frac{1}{2}u$ $I_3 d = -\frac{1}{2}d$ $I_3 s = 0$
- I3: 一个态中"上夸克数 减去 下夸克数"

考虑u⇔s和d⇔s 交换对应的矩阵

- 这样除了 $\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 还有2个无迹对角矩阵。但这3个对角矩阵并不独立
- 第八个矩阵入的定义: 如下线性组合

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \stackrel{\boldsymbol{d}}{\bullet}$$

指定2D平面的"垂直位置"

只需要两个坐标轴(量子数)来确定二维平面的一个态: (I₃,Y)

另外6个矩阵形成6个阶梯算符,来改变态

$$egin{align} T_{\pm} &= rac{1}{2}(\lambda_1 \pm i\lambda_2) \ V_{\pm} &= rac{1}{2}(\lambda_4 \pm i\lambda_5) \ U_{\pm} &= rac{1}{2}(\lambda_6 \pm i\lambda_7) \ \end{pmatrix}$$

以及八个盖尔曼(Gell-Mann)矩阵

$$\begin{array}{c|c} \mathbf{u} \leftrightarrow \mathbf{d} & \lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{array}$$

$$\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Quarks and anti-quarks in SU(3) Flavour

Quarks

$$I_3u = +\frac{1}{2}u; \quad I_3d = -\frac{1}{2}d; \quad I_3s = 0$$

$$Yu = +\frac{1}{3}u; \quad Yd = +\frac{1}{3}d; \quad Ys = -\frac{2}{3}s$$

Anti-quarks have opposite SU(3) flavour quantum numbers

Anti-Quarks

$$I_3\overline{u} = -\frac{1}{2}\overline{u}; \quad I_3\overline{d} = +\frac{1}{2}\overline{d}; \quad I_3\overline{s} = 0$$

$$Y\overline{u} = -\frac{1}{3}\overline{u}; \quad Y\overline{d} = -\frac{1}{3}\overline{d}; \quad Y\overline{s} = +\frac{2}{3}\overline{s}$$

SU(3) Ladder Operators

- SU(3) uds 味道对称性包含ud, us 和 ds的SU(2)对称性
 - 例如, u↔s对称性"V-spin"和 相应的u↔s阶梯算符

$$V_{+} = \frac{1}{2}(\lambda_{4} + i\lambda_{5}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$V_{\pm} = \frac{1}{2}(\lambda_{4} \pm i\lambda_{5})$$
$$U_{\pm} = \frac{1}{2}(\lambda_{6} \pm i\lambda_{7})$$

其中
$$V_+ s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = +u$$

6个阶梯算符的效果:

✓ 课堂练习: SU(3)阶梯算符

SU(3) 阶梯算符

$$T_{\pm}=rac{1}{2}(\lambda_1\pm i\lambda_2) \ V_{\pm}=rac{1}{2}(\lambda_4\pm i\lambda_5) \ U_{\pm}=rac{1}{2}(\lambda_6\pm i\lambda_7)$$

课堂练习: SU(3)阶梯算符

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) \; \lambda_2 = \left(egin{array}{ccc} 0 & -i & 0 \ i & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$\lambda_6 = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight) \;\; \lambda_7 = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 - i \ 0 & i & 0 \end{array}
ight)$$

$$T_{\pm}=rac{1}{2}(\lambda_1\pm i\lambda_2) \ V_{\pm}=rac{1}{2}(\lambda_4\pm i\lambda_5) \ U_{\pm}=rac{1}{2}(\lambda_6\pm i\lambda_7)$$

$$T_{+}d = V_{+}s = U_{+}s = U_{-}u = U_{-}d = U_{-}d = U_{-}d$$

SU(3) Ladder Operators

- ➤ SU(3) uds 味道对称性包含ud, us 和 ds的SU(2)对称性
 - 例如, u⇔s对称性"V-spin"和 相应的u⇔s阶梯算符

$$V_{+} = \frac{1}{2}(\lambda_{4} + i\lambda_{5}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

其中
$$V_+ s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = +u$$

▶ 6个阶梯算符的效果:

$$T_{+}d = u;$$
 $T_{-}u = d;$ $T_{+}\overline{u} = -\overline{d};$ $T_{-}\overline{d} = -\overline{u}$
 $V_{+}s = u;$ $V_{-}u = s;$ $V_{+}\overline{u} = -\overline{s};$ $V_{-}\overline{s} = -\overline{u}$
 $U_{+}s = d;$ $U_{-}d = s;$ $U_{+}\overline{d} = -\overline{s};$ $U_{-}\overline{s} = -\overline{d}$

所有其他组合的结果零

SU(3) 阶梯算符

$$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$$
 $V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5)$
 $U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$
 $U_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$

ightharpoonup 使用阶梯算符构造uds介子,从9个可能的 $q\overline{q}$ 态出发

- \rightarrow 3个中心态(Y = 1, I₃ = 0)的获得,利用阶梯算符和正交性
 - 从外部态出发,6中方法到达中心

$$T_{+}|d\overline{u}\rangle = |u\overline{u}\rangle - |d\overline{d}\rangle$$
 $T_{-}|u\overline{d}\rangle = |d\overline{d}\rangle - |u\overline{u}\rangle$
 $V_{+}|s\overline{u}\rangle = |u\overline{u}\rangle - |s\overline{s}\rangle$ $V_{-}|u\overline{s}\rangle = |s\overline{s}\rangle - |u\overline{u}\rangle$
 $U_{+}|s\overline{d}\rangle = |d\overline{d}\rangle - |s\overline{s}\rangle$ $U_{-}|d\overline{s}\rangle = |s\overline{s}\rangle - |d\overline{d}\rangle$

- 六个态中只有2个是线性独立的
 - 但 Y=0,I₃=0的态有3个
- 因此,其中1个态在不同的多重态中
 - 即,不能通过阶梯算符到达

- ightharpoonup 从右边3个态构建2个线性独立、正交的态 $\left|u\overline{u}
 ight
 angle \left|d\overline{d}
 ight
 angle \, \left|u\overline{u}
 ight
 angle \left|s\overline{s}
 ight
 angle \, \left|d\overline{d}
 ight
 angle \left|s\overline{s}
 ight
 angle$
- ▶ 如果味道SU(3)对称性严格成立的话,态的选择就不重要
 - 但由于 $m_s > m_{u,d}$,该对称性是近似的
- \triangleright 实验上,在m~140 MeV 观测到三个轻介子: π^+ , π^0 , π^-
 - 确认同位旋三重态中一个态 (π^0) : $\psi_1 = \frac{1}{\sqrt{2}}(u\overline{u} d\overline{d})$ (前面推导过)
 - 第二个态通过其他(与 π^0 正交的)两个态的线性组合得到 $\psi_2 = \alpha(|u\overline{u}\rangle |s\overline{s}\rangle) + \beta(|d\overline{d}\rangle |s\overline{s}\rangle)$

具有正交归一性:
$$\langle \psi_1 | \psi_2 \rangle = 0$$
 $\langle \psi_2 | \psi_2 \rangle = 1$ $\psi_2 = \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s})$

• 最后一个态 (不在同一多重态) 可通过与 ψ_1 和 ψ_2 的正交性来得到

$$\psi_3 = \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$$
 SINGLET

- ightharpoonup 利用阶梯算符 $T_+\psi_3 = T_-\psi_3 = U_+\psi_3 = U_-\psi_3 = V_+\psi_3 = V_-\psi_3 = 0$ 确认 $\psi_3 = \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$ 是"无味道"的单态
 - 因此夸克和反夸克组合产生9个态,可分为一个八重态和一个单态

- ightharpoonup 对比2个自旋1/2粒子的组合 $2\otimes 2=3\oplus 1$ 自旋1的三重态 $|1,-1\rangle,\,|1,0\rangle,\,|1,+1\rangle$ 自旋0的单态 $|0,0\rangle$
 - 自旋三重态由阶梯算符连接,正如介子八重态由味道阶梯算符连接
 - · 单态不携带角动量---对应的SU(3)味道单态是"无味道的"

<u> 赝标量介子</u> (L=0, S=0, J=0, P=-1)

- SU(3)味道群是近似的, Y=0,I₃=0的 物理态可以是八重态和单态的混合
 - 经验性地认为:

<u>矢量介子</u> (L=0, S=1, J=1, P=-1)

• 对于矢量介子物理态近似"理想混合":

$$\rho^{0} = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$$

$$\omega \approx \frac{1}{\sqrt{2}} (u\overline{u} + d\overline{d})$$

$$\phi \approx s\overline{s}$$

- 如质子波函数的推导可以看出,重子态的构造是枯燥的
 - 集中在多重态结构而不是推导完整波函数

注:此处数学也与色动力学相关

首先合并2个夸克:

产 产生一个对称的六重态和反对称的三重态:

- 如质子波函数的推导可以看出,重子态的构造是枯燥的
 - 集中在多重态结构而不是推导完整波函数

注:此处数学也与色动力学相关

首先合并2个夸克:

产 产生一个对称的六重态和反对称的三重态:

▶ 现加入第三个夸克:

- 基于六重态和三重态,分成两部分考虑
 - 再次,集中于多重态结构(对于波函数,参考关于质子波函数的讨论)
- $\mathbf{0}$ 构建六重态 $3 \otimes 6 = 10 \oplus 8$

> 现加入第三个夸克:

- 基于六重态和三重态,分成两部分考虑
 - 再次,集中于多重态结构(对于波函数,参考关于质子波函数的讨论)
- \bullet 构建六重态 $3 \otimes 6 = 10 \oplus 8$

❷ 构建三重态:

• 类似uds介子,合并 $\overline{3} \times 3$,我们再次得到一个八重态和一个单态

- 利用阶梯算符验证波函数 $\psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uds usd + dsu dus + sud sdu)$ 是单态,如 $T_+\psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uus - usu + usu - uus + suu - suu) = 0$
- 》 总之,uds 三夸克的组合可以分解为 $3 \otimes 3 \otimes 3 = 3 \otimes (6 \oplus \overline{3}) = 10 \oplus 8 \oplus 8 \oplus 1$

Baryon Decuplet

ho 重子态(L=0):味道对称和自旋对称的自旋3/2十重态波函数 $\phi(S)\chi(S)$

▶ 如果 SU(3)味道对称性是严格对称性,上述所有的质量相同(破坏的对称性)

Baryon Octet

通过味道混合对称和自旋混合对称的波函数构建 自旋1/2八重态

 $lpha\phi(M_S)\chi(M_S)+eta\phi(M_A)\chi(M_A)$ 参考前述关于质子的讨论理解如何得到波函数

★ 注:没有整体反对称的自旋波函数,因此无法通过反对称味道单态构建整体对称的波函数

Summary

- ➢ 讨论了 SU(2) ud 和 SU(3) uds 味道对称性
- ▶ 尽管这些味道对称性只是近似成立,仍然可以被用来解释观测到的介子/重子的多重态结构
- > SU(3)对称性的结果,如预言的波函数,应对被谨慎对待
 - 因为 m_s ≠ m_{u.d}
- > 引入单态 的"无自旋"或者"无味道"概念
- ➤ 下节课讨论色和量子色动力学QCD

Appendix: SU(2) anti-quark representation

$$ightharpoonup$$
 定义反夸克二重态 $\overline{q} = \begin{pmatrix} -d \\ \overline{u} \end{pmatrix} = \begin{pmatrix} -d^* \\ u^* \end{pmatrix}$

Non-examinable

• 夸克二重态
$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$
 变换规则为 $q' = Uq$

$$\begin{pmatrix} u' \\ d' \end{pmatrix} = U \begin{pmatrix} u \\ d \end{pmatrix} \qquad \begin{array}{c} \text{Complex} \\ \text{conjugate} \end{array} \qquad \begin{pmatrix} u'^* \\ d'^* \end{pmatrix} = U^* \begin{pmatrix} u^* \\ d^* \end{pmatrix}$$

・按照反夸克二重态表示
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{q}' = U \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{q}$$

• 因此反夸克变换为
$$\overline{q}' = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) U^* \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \overline{q}$$

Appendix: SU(2) anti-quark representation

• 一般地
$$2x2$$
幺正矩阵可以写为: $U = \begin{pmatrix} c_{11} & c_{12} \\ -c_{12}^* & c_{11}^* \end{pmatrix}$

・ 给出
$$\overline{q}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} c_{11}^* & c_{12}^* \\ -c_{12} & c_{11} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \overline{q}$$

$$= \begin{pmatrix} c_{11} & c_{12} \\ -c_{12}^* & c_{11}^* \end{pmatrix}$$

$$= U\overline{q}$$

• 因此反夸克二重态
$$\overline{q} = \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix}$$

与夸克二重态以相同的方式变换
$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$

▶ 注意: 这是SU(2)的特殊性质,对于SU(3)则没有类似的反夸克表示