FCC Test Report

Report No.: AGC01826170501FE02

FCC ID : 2AI62T71V3

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION : rugged tablet

BRAND NAME : HUGEROCK

MODEL NAME : T70,T71,T70V2,T71V3

CLIENT: SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED

DATE OF ISSUE : June 29, 2017

STANDARD(S) : FCC Part 22H & 24E&27(L) Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC01826170501FE02 Page 2 of 62

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	June 29, 2017	Valid	Original Report

TABLE OF CONTENTS

TABLE OF CONTENTS	3
1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2 RELATED SUBMITTAL(S) / GRANT (S)	8
2.3 TEST METHODOLOGY	
2.4 TEST FACILITY	
2.5 MEASUREMENT INSTRUMENTS	8
2.6 SPECIAL ACCESSORIES	
2.7 EQUIPMENT MODIFICATIONS	10
3. SYSTEM TEST CONFIGURATION	11
3.1 EUT CONFIGURATION	11
3.2 EUT EXERCISE	11
3.3 GENERAL TECHNICAL REQUIREMENTS	
3.4 CONFIGURATION OF EUT SYSTEM	
4. SUMMARY OF TEST RESULTS	13
5. DESCRIPTION OF TEST MODES	13
6. OUTPUT POWER	14
6.1 CONDUCTED OUTPUT POWER	
6.2 RADIATED OUTPUT POWER	21
6.3. PEAK-TO-AVERAGE RATIO	25
7. OCCUPIED BANDWIDTH	27
7.1 MEASUREMENT METHOD	27
7.2 PROVISIONS APPLICABLE	27
7.3 MEASUREMENT RESULT	28
APPENDIX A:BANDWIDTH	28
8. BAND EDGE	33
8.1 MEASUREMENT METHOD	33

8.2 PROVISIONS APPLICABLE	33
8.3 MEASUREMENT RESULT	33
APPENDIX B: BAND EDGES COMPLIANCE	33
9. SPURIOUS EMISSION	36
9.1 CONDUCTED SPURIOUS EMISSION	36
APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL	38
9.2 RADIATED SPURIOUS EMISSION	
MEASUREMENT PROCEDURE	45
11.2. TEST SETUP	46
10. FREQUENCY STABILITY	50
10.1 MEASUREMENT METHOD	50
10.2 PROVISIONS APPLICABLE	
10.3 MEASUREMENT RESULT	52
Appendix D:Frequency Stability	52
PHOTOGRAPHS OF TEST SETUP	61
CONDUCTED EMISSION	61

Page 5 of 62

1. VERIFICATION OF COMPLIANCE

Applicant	SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED
Address	FLAT/RM A10 9/F SILVERCORP INTERNATIONAL TOWER 707713 NATHAN ROAD MONGKOK KL Hong Kong
Manufacturer	Shenzhen SOTEN Technology Co., Ltd.
Address	10th Floor, 2nd Building, BaiWang Research and Development Building, No. 5308
Address	Shahe west Road, Xili, Nanshan District, ShenZhen, China
Product Designation	rugged tablet
Brand Name	HUGEROCK
Test Model	T71V3
Series Model	T70,T71,T70V2
Difference Description	All the same except the model name.
Date of test	June 15, 2017~June 29, 2017
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA- 603-D-2010. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E and 27(L).

The test results of this report relate only to the tested sample identified in this report.

Tested By

Dota Zhang(Zhang Jianfeng)

Bore Sie

Bart Xie(Xie Xiaobin)

Approved By

Solger Zhang(Zhang Hongyi)
Authorized Officer

June 29, 2017

June 29, 2017

Page 6 of 62

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

,	3		
Product Designation:	rugged tablet		
Hardware version:	M6035-71-SUBBoard-V3		
Software version:	T71V3-20170210-EN		
	☑GSM 850 ☑PCS 1900 (U.S. Bands)		
	⊠GSM 900 ⊠DCS 1800 (Non-U.S. Bands)		
Frequency Bands:	☑UMTS FDD Band II ☑UMTS FDD Band V		
	☐UMTS FDD Band IV (U.S. Bands)		
	☑UMTS FDD Band I ☑UMTS FDD Band VIII (Non-U.S. Bands)		
Antenna Type	PIFA Antenna		
	GSM / GPRS : GMSK		
Type of Modulation	EDGE : GMSK/8PSK		
	WCDMA: QPSK		
Antonno goin(CSM):	GSM850: -0.9dBi; PCS1900: -1.5dBi;		
Antenna gain(GSM):	WCDMA850: -0.9dBi; WCDMA21900:-1.5dBi		
Power Supply:	DC 3.7V by battery		
Battery parameter:	DC3.7V/10000mAh		
Single Card:	WCDMA / GSM Card Slot		
GPRS Class	12		
Extreme Vol. Limits:	DC3.4 V to 4.2 V (Normal: DC3.7 V)		
Extreme Temp. Tolerance	-10℃ to +50℃		
*** Noto: 1 The High Veltage	DC4 2)/ and Law Valtage DC2 4\/ were declared by manufacturar		

^{***} Note: 1. The High Voltage DC4.2V and Low Voltage DC3.4V were declared by manufacturer

- 2. The EUT couldn't be operating normally with higher or lower voltage.
- 3. Other functions have been performed according to verification procedure except for MS function.

2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst case as a representative.

^{***} **Note:** 1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V, only these modes were used for all tests.

Report No.: AGC01826170501FE02 Page 7 of 62

GSM/WCDMA Card Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average
	(dBm)	(dBm)	Burst Power (dBm)
GSM 850	30.46	32.85	30.82
PCS 1900	26.66	28.82	26.89
WCDMA BAND II	21.40	23.64	21.54
WCDMA BAND V	21.30	23.63	21.55

Report No.: AGC01826170501FE02 Page 8 of 62

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2Al62T71V3**, filing to comply with the FCC Part 22H&24E &27L requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D-2010, and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

KDB 971168 D01 Power Meas License Digital Systems v02r02

2.4 TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,	
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents of ANSI/TIA-603-D-2010.

2.5 MEASUREMENT INSTRUMENTS

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9168	D69250	Mar 1, 2016	Feb 28, 2018
Trilog Broadband Antenna(substituted antenna) (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 2, 2017	June 1, 2018
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 2, 2017	June 1, 2018
Spectrum analyzer	Agilent	E4407B	MY46185649	June 2, 2017	June 1, 2018
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2017
Horn Antenna(substituted antenna) (1G-18GHz)	ETS LINDGREN	3117	00034609	Mar 1, 2016	Feb 28, 2018

Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 6, 2016	July 5, 2017
RF Cable	SCHWARZBECK	AK9515H	96220	July 7, 2016	July 6, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 2, 2017	June 1, 2018
Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016	July 6, 2017
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016	July 6, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 2, 2017	June 1, 2018
COMMUNICATION TESTER	AGILENT	8960	GB46490550	July 24,2016	July 23, 2017
RF attenuator	N/A	RFA20db	68	N/A	N/A
Signal Generator	AGILENT	N5182A	MY50140530	Oct 15,2016	Oct 14,2017
Signal Generator(substituted equipment)	AGILENT	E8257D	MY45141029	Oct 15,2016	Oct 14,2017

Report No.: AGC01826170501FE02 Page 10 of 62

2.6 SPECIAL ACCESSORIES

The battery was supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 11 of 62

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 GENERAL TECHNICAL REQUIREMENTS

Item Number	Item	Description	FCC Rules	
1	Output Dower	Conducted output power	2.1046/22.913(a) (2) / 24.232	
ı	Output Power	Radiated output power	(c) /27.50(d)(2)	
2	Peak-to-Average	Dook to Average Retic	24 222(4)/27 E0(4)/E)	
2	Ratio	Peak-to-Average Ratio	24.232(d)/27.50(d)(5)	
		Conducted	2.4054 / 22.047 /	
3	Spurious Emission	spurious emission	2.1051 / 22.917 /	
		Radiated spurious emission	24.238/27.53(h)	
4	Frequency Stability		2.1055/22.355 /24.235	
4			/27.54	
5	Occupied Bandwidth		2.1049 (h)(i)	
6	5 5		22.917(a)/24.238(a)	
6	Emission Bandwidth		/27.53(h)	
7	Pand Edga		22.917(a)/24.238(a)	
7	Band Edge		/27.53(h)	

Report No.: AGC01826170501FE02 Page 12 of 62

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Remark
1	rugged tablet	T71V3	FCC ID: 2AI62T71V3	EUT
2	Adapter	8395-UW01-1070	DC 5.3V/2A	Accessory
3	Battery	8070120	DC3.7V/ 1000mAh	Accessory
4	USB Cable	N/A	N/A	Accessory

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 13 of 62

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result
		Conducted Output Power	2.1046/22.913(a) (2) / 24.232 (c)/	Pass
1	Output Power	Radiated	27.50(d)(2)	
	Dook to Averege	Output Power		
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)/27.50(d)(5)	Pass
	Spurious Emission Radiated Spurious Emission	Conducted		Pass
3		Spurious Emission	2.1051/22.917/24.238/27.53(h)	
3		Radiated		
4	Frequency Stability		2.1055/22.355/24.235/27.54	Pass
5	Occupied Bandwidth		2.1049 (h)(i)	Pass
6	Emission Bandwidth		22.917(a)/24.238(a)/27.53(h)	Pass
7	Band Edge		22.917(a)/24.238(a)/27.53(h)	Pass
8	Mains Conducted Emission		15.107 / 15.207	Pass

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

***Note: GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA

***Note: GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V, mode have been tested during the test.

The worst condition was recorded in the test report if no other modes test data.

Page 14 of 62

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes (GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS1900, WCDMA/HSPA band II, WCDMA/HSPA band V) at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

	Conducted Output Power Limits for GPRS/EDGE 850 band					
Mode	Nominal Peak Power	Tolerance(dB)				
GSM	33 dBm (2W)	- 2				
EDGE	27 dBm(0.5W)	±2				
	Conducted Output Power Limits for GPRS	S/EDGE 1900 band				
Mode	Nominal Peak Power	Tolerance(dB)				
GSM	30 dBm (1W)	- 2				
EDGE	26 dBm (0.4W)	±2				
	Conducted Output Power Limits for	UMTS band II				
Mode	Nominal Peak Power	Tolerance(dB)				
WCDMA	24 dBm (0.25W)	- 2				
Conducted Output Power Limits for UMTS band V						
Mode	Nominal Peak Power	Tolerance(dB)				
WCDMA	24 dBm (0.25W)	- 2				

GSM 850:

Mada	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Mode	(MHz)	Power	Power		Power	Factor(dB)	Power(dBm)
	824.2	33	32.85	-0.15	30.82	-9	21.82
GSM850	836.6	33	32.72	-0.28	30.65	-9	21.65
	848.8	33	32.46	-0.54	30.31	-9	21.31
GPRS850	824.2	33	32.58	-0.42	30.12	-9	21.12
(1 Slot)	836.6	33	32.32	-0.68	30.29	-9	21.29
(1 3101)	848.8	33	32.31	-0.69	30.09	-9	21.09
GPRS850	824.2	30	29.23	-0.77	27.27	-6	21.27
(2 Slot)	836.6	30	29.17	-0.83	27.20	-6	21.20
(2 3101)	848.8	30	29.05	-0.95	27.15	-6	21.15
GPRS850	824.2	28.23	27.61	-0.62	25.46	-4.26	21.20
(3 Slot)	836.6	28.23	27.50	-0.73	25.41	-4.26	21.15
(3 3101)	848.8	28.23	27.34	-0.89	25.22	-4.26	20.96
CDDC0F0	824.2	27	26.46	-0.54	24.31	-3	21.31
GPRS850	836.6	27	26.49	-0.51	24.63	-3	21.63
(4 Slot)	848.8	27	26.27	-0.73	24.25	-3	21.25

Mode	Channel	Frequency	Peak Power	Avg.Burst Power
Wiode		(MHz)	(dBm)	(dBm)
FDCF	128	824.2	26.63	23.52
EDGE (1 Slot)	189	836.6	26.71	23.33
(1 3101)	251	848.8	26.14	23.41
EDGE	128	824.2	23.72	20.55
(2 Slot)	189	836.6	23.20	20.34
(2 3101)	251	848.8	23.36	20.40
EDGE	128	824.2	22.70	19.27
	189	836.6	22.44	19.28
(3 Slot)	251	848.8	22.97	19.41
EDGE	128	824.2	22.03	18.23
	189	836.6	21.62	18.12
(4 Slot)	251	848.8	21.97	18.35

PCS 1900:

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	30	28.82	-1.18	26.89	-9	17.89
GSM1900	1880	30	28.75	-1.25	26.73	-9	17.73
	1909.8	30	28.74	-1.26	26.68	-9	17.68
GPRS1900	1850.2	30	28.31	-1.69	26.29	-9	17.29
	1880	30	28.19	-1.81	26.33	-9	17.33
(1 Slot)	1909.8	30	28.21	-1.79	26.26	-9	17.26
GPRS1900	1850.2	27	25.42	-1.58	23.24	-6	17.24
	1880	27	25.11	-1.89	23.18	-6	17.18
(2 Slot)	1909.8	27	25.49	-1.51	23.40	-6	17.40
CDDC1000	1850.2	25.23	23.54	-1.69	20.79	-4.26	16.53
GPRS1900	1880	25.23	23.41	-1.82	20.85	-4.26	16.59
(3 Slot)	1909.8	25.23	23.30	-1.93	20.83	-4.26	16.57
CDDC1000	1850.2	24	22.13	-1.87	20.12	-3	17.12
GPRS1900	1880	24	22.13	-1.87	20.06	-3	17.06
(4 Slot)	1909.8	24	22.03	-1.97	20.07	-3	17.07

Mode	Channel	Frequency	Peak Power	Avg.Burst Power
Wiode		(MHz)	(dBm)	(dBm)
EDCE	512	1850.2	25.55	22.26
EDGE	661	1880	25.19	22.28
(1 Slot)	810	1909.8	25.64	22.49
EDGE	512	1850.2	23.52	20.58
(2 Slot)	661	1880	23.76	20.62
(2 3101)	810	1909.8	23.51	20.60
FDCF	512	1850.2	23.35	20.34
EDGE	661	1880	23.24	20.30
(3 Slot)	810	1909.8	23.32	20.29
ED0E	512	1850.2	22.35	19.25
EDGE	661	1880	22.23	19.17
(4 Slot)	810	1909.8	22.43	19.09

UMTS BAND II

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Power
	1852.6	24	23.64	-0.36	21.54
WCDMA 1900 RMC	1880	24	23.37	-0.63	21.22
	1907.4	24	23.28	-0.72	21.32
	1852.6	24	23.31	-0.69	21.00
WCDMA 1900 AMR	1880	24	23.21	-0.79	20.93
Alviix	1907.4	24	23.27	-0.73	21.08
LICDDA	1852.6	24	22.85	-1.15	20.62
HSDPA -	1880	24	22.76	-1.24	20.21
Subtest 1	1907.4	24	22.70	-1.30	20.32
HSDPA	1852.6	24	22.52	-1.48	20.53
	1880	24	22.51	-1.49	20.29
Subtest 2	1907.4	24	22.41	-1.59	20.27
LIODDA	1852.6	24	22.53	-1.47	20.31
HSDPA -	1880	24	22.41	-1.59	20.01
Subtest 3	1907.4	24	22.51	-1.49	20.37
LICEDA	1852.6	24	22.58	-1.42	20.36
HSDPA -	1880	24	22.35	-1.65	19.92
Subtest 4	1907.4	24	22.75	-1.25	20.26
LICLIDA	1852.6	24	22.66	-1.34	20.53
HSUPA -	1880	24	22.68	-1.32	20.39
Subtest 1	1907.4	24	22.59	-1.41	20.06
LICLIDA	1852.6	24	22.61	-1.39	20.51
HSUPA	1880	24	22.65	-1.35	20.54
Subtest 2	1907.4	24	22.56	-1.44	20.59
LICLIDA	1852.6	24	22.83	-1.17	20.70
HSUPA	1880	24	22.84	-1.16	20.87
Subtest 3	1907.4	24	22.57	-1.43	20.65
LICLIDA	1852.6	24	22.47	-1.53	20.40
HSUPA	1880	24	22.45	-1.55	20.52
Subtest 4	1907.4	24	22.74	-1.26	20.30
HCLIDA	1852.6	24	22.69	-1.31	20.42
HSUPA	1880	24	22.67	-1.33	20.61
Subtest 5	1907.4	24	22.38	-1.62	20.32

MTS BAND V

Mada	Frequency	Reference	Dook Dower	Talamanaa	Avg.Burst
Mode	(MHz)	power	Peak Power	Tolerance	Power
	826.6	24	23.45	-0.55	21.24
WCDMA 850 RMC	836.4	24	23.63	-0.37	21.55
	846.4	24	23.50	-0.50	21.30
	826.6	24	23.27	-0.73	21.31
WCDMA 850 AMR	836.4	24	23.43	-0.57	21.27
AWIIX	846.4	24	23.25	-0.75	21.14
LICDDA	826.6	24	22.54	-1.46	20.82
HSDPA -	836.4	24	22.49	-1.51	20.38
Subtest 1	846.4	24	22.17	-1.83	20.73
HEDDA	826.6	24	22.37	-1.63	20.23
HSDPA -	836.4	24	22.48	-1.52	20.20
Subtest 2	846.4	24	22.67	-1.33	20.66
LICDDA	826.6	24	22.00	-2.00	20.01
HSDPA -	836.4	24	22.02	-1.98	20.09
Subtest 3	846.4	24	22.12	-1.88	20.28
LIODDA	826.6	24	22.34	-1.66	20.48
HSDPA	836.4	24	22.44	-1.56	20.18
Subtest 4	846.4	24	22.69	-1.31	20.20
HELIDA	826.6	24	22.62	-1.38	20.25
HSUPA	836.4	24	22.46	-1.54	20.37
Subtest 1	846.4	24	22.66	-1.34	20.22
HSUPA -	826.6	24	22.00	-2.00	20.36
	836.4	24	22.37	-1.63	20.45
Subtest 2	846.4	24	22.61	-1.39	20.13
HSUPA -	826.6	24	22.44	-1.56	20.40
	836.4	24	22.63	-1.37	20.22
Subtest 3	846.4	24	22.43	-1.57	20.32
HSUPA -	826.6	24	22.07	-1.93	20.72
	836.4	24	22.56	-1.44	20.40
Subtest 4	846.4	24	22.82	-1.18	20.47
HSUPA -	826.6	24	22.33	-1.67	20.20
	836.4	24	22.31	-1.69	20.27
Subtest 5	846.4	24	22.30	-1.70	20.35

Page 19 of 62

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)		
For all combinations of ,DPDCH,DPCCH	0≤ CM≤3.5	MAY(CM 4 O)		
HS-DPDCH,E-DPDCH and E-DPCCH	U≤ CIVI≤3.5	MAX(CM-1,0)		
Note: CM=1 for $\beta_a/\beta_a=12/15$ $\beta_{ba}/\beta_a=24/15$ For all other combinations of DPDCH DPCCH				

Note: CM=1 for β $_{\rm c}/\beta$ $_{\rm d}$ =12/15, β $_{\rm hs}/\beta$ $_{\rm c}$ =24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Report No.: AGC01826170501FE02 Page 20 of 62

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 21 of 62

6.2 RADIATED OUTPUT POWER

6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-D-2010 were applied.

- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

6.2.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) and 27.50(d)(4) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) and 27.50(d)(4) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Report No.: AGC01826170501FE02 Page 22 of 62

Mode	Nominal Peak Power
GPRS/EDGE 850	<=38.45 dBm (7W)
GPRS/EDGE 1900	<=33 dBm (2W)
UMTS BAND II	<=33 dBm (2W)
UMTS BAND V	<=38.45 dBm (7W)

Report No.: AGC01826170501FE02 Page 23 of 62

6.2.3 MEASUREMENT RESULT

	Radiated Power (ERP) for GPRS/EDGE 850						
		Res	sult				
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion			
		(dBm)	Of Max. ERP				
	824.2	30.31	Horizontal	Pass			
	836.6	30.46	Horizontal	Pass			
GSM	848.8	30.37	Horizontal	Pass			
	824.2	27.74	Vertical	Pass			
	836.6	27.75	Vertical	Pass			
	848.8	28.16	Vertical	Pass			
	824.2	24.49	Horizontal	Pass			
	836.6	24.11	Horizontal	Pass			
EDOE	848.8	23.99	Horizontal	Pass			
EDGE —	824.2	22.52	Vertical	Pass			
	836.6	22.68	Vertical	Pass			
	848.8	21.99	Vertical	Pass			

	Radiated Power (E.I.R.P) for GPRS/EDGE 1900						
		Res	sult				
Mode	Frequency	Max. Peak	Polarization	Conclusion			
		E.I.R.P.(dBm)	Of Max. E.I.R.P.				
	1850.2	26.61	Horizontal	Pass			
	1880.0	26.32	Horizontal	Pass			
GSM	1909.8	26.66	Horizontal	Pass			
GSIVI	1850.2	24.03	Vertical	Pass			
	1880.0	23.44	Vertical	Pass			
	1909.8	23.54	Vertical	Pass			
	1850.2	23.72	Horizontal	Pass			
	1880.0	23.53	Horizontal	Pass			
EDGE	1909.8	24.58	Horizontal	Pass			
EDGE	1850.2	24.16	Vertical	Pass			
	1880.0	23.28	Vertical	Pass			
	1909.8	23.93	Vertical	Pass			

Report No.: AGC01826170501FE02 Page 24 of 62

	Radiated Power (E.I.R.P) for UMTS band II						
		Res	ult				
Mode	Frequency	Max. Peak E.I.R.P	Polarization	Conclusion			
		(dBm)	Of Max. E.I.R.P	Conclusion			
	1852.6	21.40	Horizontal	Pass			
	1880	21.38	Horizontal	Pass			
LIMTO	1907.4	20.93	Horizontal	Pass			
UMTS	1852.6	18.72	Vertical	Pass			
	1880	19.08	Vertical	Pass			
	1907.4	18.40	Vertical	Pass			

	Radiated Power (ERP) for UMTS band V						
		Result					
Mode	Frequency	Max. Peak ERP	Polarization Of Max. E.I.R.P.	Conclusion			
		(dBm)					
	826.6	21.09	Horizontal	Pass			
	836.4	21.30	Horizontal	Pass			
LIMTO	846.4	20.94	Horizontal	Pass			
UMTS	826.6	18.73	Vertical	Pass			
	836.4	19.09	Vertical	Pass			
	846.4	18.80	Vertical	Pass			

Note: Above is the worst mode data.

Page 25 of 62

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.3.3 MEASUREMENT RESULT

Modes	GSM 850(GSM)		
Channel	128	190	251
Silainioi .	(Low)	(Mid)	(High)
Frequency	824.2	836.6	0.40.0
(MHz)	024.2	030.0	848.8
Peak-To-Average Ratio (dB)/GPRS	2.05	2.08	2.10
Peak-To-Average Ratio (dB)/EDGE	3.15	3.26	3.11

Modes	GSM 1900 (GSM)		
Channel	512	661	810
Gilainio	(Low)	(Mid)	(High)
Frequency	1850.2	1880	1909.8
(MHz)		1000	1303.0
Peak-To-Average Ratio (dB)/GPRS	2.03	2.05	2.06
Peak-To-Average Ratio (dB)/EDGE	3.20	3.05	3.13

Report No.: AGC01826170501FE02 Page 26 of 62

Modes	UMTS BAND II		
Channel	9663	9800	9937
Grannor	(Low)	(Mid)	(High)
Frequency (MHz)	1852.6	1880	1907.4
Peak-To-Average Ratio (dB)	2.11	2.13	2.07

Modes	UMTS BAND V		
Channel	4358	4407	4457
Gildillici	(Low)	(Mid)	(High)
Frequency (MHz)	826.6	836.6	846.4
Peak-To-Average Ratio (dB)	2.18	2.13	2.17

Page 27 of 62

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

Report No.: AGC01826170501FE02 Page 28 of 62

7.3 MEASUREMENT RESULT

APPENDIX A:BANDWIDTH

Test Results

Test	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
Band	Mode	Channel	(KHZ)	(KHZ)	verdict
		LCH	247.34	315.18	PASS
	GSM	MCH	247.70	308.23	PASS
0014050		HCH	245.46	312.37	PASS
GSM850		LCH	247.10	313.48	PASS
	EDGE	MCH	249.49	309.60	PASS
		HCH	246.54	315.59	PASS

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	verdict
		LCH	243.44	312.80	PASS
	GSM	MCH	247.35	313.88	PASS
00144000		HCH	245.90	309.40	PASS
GSM1900		LCH	245.54	301.76	PASS
	EDGE	MCH	247.34	314.94	PASS
		HCH	249.04	307.57	PASS

Test Band=GSM850/GSM1900

Test Mode=GSM/ EDGE

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 850		LCH	4210.8	4867	PASS
	UMTS	MCH	4199.2	4849	PASS
		HCH	4205.9	4857	PASS

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 1900		LCH	4224.1	4888	PASS
	UMTS	MCH	4229.7	4910	PASS
		HCH	4235.2	4929	PASS

For WCDMA Test Band=WCDMA850/WCDMA1900 Test Mode=UMTS

Page 33 of 62

8. BAND EDGE

8.1 MEASUREMENT METHOD

- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >=3 x RBW, Detector=RMS, Number of points>=2 x Span/RBW, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) < 24.238(a) and KDB 971168 V02r02

8.3 MEASUREMENT RESULT

APPENDIX B: BAND EDGES COMPLIANCE

Test Results

For GSM

Test Band=GSM850/GSM1900

Test Mode=GSM

For WCDMA Test Band=WCDMA850/WCDMA1900 Test Mode=UMTS

