Exercise 8. Exercises for the course "Discrete Mathematics" (2021)

Exercise 1. Let \mathcal{U} be any set (possibly infinite) and let $X = \mathcal{P}_f(\mathcal{U})$ be the set of all finite subsets of \mathcal{U} . X is then a poset under the partial ordering given by inclusion.

- (1) Show that X is a locally finite poset.
- (2) Show that the Mobius function $M(x,y) = (-1)^{|y|-|x|}$ for $x \subseteq y \in X$.

Exercise 2. Consider $\mathbb{Z}_{\geq 1}$ as a poset by the relation "x divides y", or written equivelently, $x \mid y$ for $x, y \in \mathbb{Z}_{\geq 1}$.

- (1) Show that this is a locally finite poset.
- (2) Show that the Mobius function is $M(x,y) = \mu(x/y)$, whenever $x \mid y$.

Exercise 3. Let \mathcal{U} be a set (not necessarily finite). We call a function $m: U \to \mathbb{Z}_{\geq 0}$ a "multiset". If $\operatorname{supp}(m) = \{u \in \mathcal{U} \mid m(u) > 0\}$ is a finite set, the multiset m is said to be finite. We think of multisets as sets where elements are allowed to repeat, each element u has the multiplicity m(u).

We say that a multiset $m_1 \subseteq m_2$ if for all $u \in \mathcal{U}$, $m_1(u) \leq m_2(u)$. For a finite multiset m, the cardinality of m is $|m| = \sum_{u \in \text{supp}(m)} m(u)$. The empty multiset $\phi : \mathcal{U} \to \mathbb{Z}_{\geq 0}$ is the zero function $\phi(u) = 0$ for all $u \in \mathcal{U}$.

Take X to be the set of all finite multisets on \mathcal{U} ,

- (1) Show that (X, \subseteq) is a locally finite poset.
- (2) Show that for $x \subseteq y$ the Mobius function is

$$M(x,y) = \begin{cases} 0 & \text{if } (x \setminus y)(u) \ge 2 \text{ for some } u \in \mathcal{U} \\ (-1)^{|x \setminus y|} & \text{otherwise} \end{cases}.$$

Here $x \setminus y$ is the multiset defined as $(x \setminus y)(u) = x(u) - \min(x(u), y(u))$ for any $x, y \in X$.

(3) Compare the Mobius function of this poset with the result for $(\mathbb{Z}_{\geq 1}, |)$ in the previous question. What do you observe?

Exercise 4. Take $X = \{1, 2, 3, ..., n\}$ with the usual ordering \leq . Consider the incidence algebra $\mathcal{A}(X)$. Let $M_n(\mathbb{C})$ be the complex matrices.

Consider the following map

$$\Psi: \mathcal{A}(X) \to M_n(\mathbb{C})$$

$$f \mapsto \Psi(f)$$

$$\Psi(f)_{ij} = f(i,j)$$

- (1) Show that this map is C-linear and that it is injective by finding the kernel of the map. What is the image of the map?
- (2) Show that $\Psi(f * g) = \Psi(f)\Psi(g)$. That is, show that the map Ψ is a \mathbb{C} -algebra homomorphism.
- (3) What is the $\Psi(Z)$ where $Z \in \mathcal{A}(X)$ is the zeta function? What is $\Psi(\delta)$ where $\delta \in \mathcal{A}(X)$ is the delta function.

(4) Find the Mobius function in $\mathcal{A}(X)$ using the map Ψ .

Exercise 5. Prove that every graph with n vertices and n-1 edges that does not contain a cycle is a tree.

Exercise 6. Prove that every connected graph with n vertices and n-1 edges is a tree.

Exercise 7. (Optional)

Put $\mathcal{U} = \{1, 2, 3, \dots, n\}$. Consider the poset $X = \mathcal{P}(\mathcal{U})$ ordered by inclusion \subseteq . Let A be a finite set and let $A_1, A_2, \dots, A_n \in \mathcal{P}(A)$. Define $F, f: X \to \mathbb{C}$ as

$$f(I) = \begin{cases} \left| \left(\bigcap_{i \in \mathcal{U} \setminus I} A_i \right) \setminus \left(\bigcup_{i \in I} A_i \right) \right| & \text{if } I \subsetneq \mathcal{U} \\ 0 & \text{if } I = \mathcal{U} \end{cases},$$

$$F(J) = \begin{cases} \left| \bigcap_{i \in \mathcal{U} \setminus J} A_i \right| & \text{if } J \subsetneq \mathcal{U} \\ \left| \bigcup_{i \in J} A_i \right| & \text{if } J = \mathcal{U} \end{cases}.$$

Prove that $F(J) = \sum_{I \subseteq J} f(I)$. Perform a Mobius inversion to write f in terms of F. Use this to prove the inclusion-exclusion principle.