A Book of Abstract Algebra (2nd Edition)

Bookmark Show all steps: (Chapter 23, Problem 1EI ON **Problem** Recall that V_n is the multiplicative group of all the invertible elements in \mathbb{Z}_n . If V_n happens to be cyclic, say $V_n = \langle m \rangle$, then any integer $a \equiv m \pmod{n}$ is called a *primitive root* of n. Prove that *a* is a primitive root of *n* iff the order of \bar{a} in V_n is $\phi(n)$. Step-by-step solution Step 1 of 4 Here, objective is to prove that, a is a primitive root of n if and only if the order of a in v_n is $\phi(n)$ Comment Step 2 of 4 Primitive root of *n*: V_n is the multiplicative group of all the invertible elements in Z_n . If V_n happens to be cyclic $V_n = m$. Then any integer $a = m \pmod{n}$ is called a primitive root of n. Comment

Step 3 of 4

Consider Euler's phi function $\phi(n)$. It measures the positive integers up to n and that are relative prime to n. It is a multiplicative function. That is $\phi(mn) = \phi(m)\phi(n)$; if $\gcd(m,n) = 1$ So this function determines the order of the multiplicative group of integers modulo n.

Comment

Step 4 of 4 V_n is also multiplicative group of all the invertible elements in Z_n Then, the number of elements in Z_n is determined by Euler's function $\phi(n)$ By using Euler's theorem $a^{\phi(n)} = 1 \mod n$;
For every a co prime to n.
Therefore, the order of a in a is a in a in a is a in a in

Hence, proved

Comment