MTH142 Intro to Stats:: **CHEAT SHEET**

Getting started

Signing into RStudio

http://hcc-rstudiosrv1.hcc.edu:8787/

Username: Your HCC email with @hcc.edu Password: Your HCC password

Downloading MTH142Rtutorials:

install.packages("remotes") remotes::install_git("https://github.com/Nics-Github/MTH142Rtutorials" Select 3 to install no updates.

.Rmd files

New .rmd File>New File>R Markdown...

Uploading a file Lower Right quadrant click upload

Knitting a file click the knit button and save.

Exporting a file select file in lower right quadrant click **more** then **Export...**

Screen Shots

Mac: Shift + Command + 3

Chromebook: Shift + Ctrl +

Libraries

library(MTH142Rtutorials)
library(mosaic)

library(openintro)
library(tidyverse)

Variables

a variable <- c(1,2,3)

assignment operator

 $\mu \$

\$H o\$

 $ne\$

 $\sim \$

 αx

Math Type

takes the vector 1.2.3 and

saves it as a variable with the

Use \$\$ to enclose math type.

\$\sigma\$

 \hat{p}

\$\alpha\$

\$\approx.\$

Graphs

box plots

gf_boxplot(~weight,data=cars93) gf_boxplot(type~weight,data=cars93)

View Data Sets

First six rows (tail() works too)

makes window for all data

show variable names only

cars93 is the data set

qlimpse(cars93)

head(cars93)

view(cars93)

names(cars93)

histograms

gf_histogram(~weight,data=cars93)

bar

gf bar(~type,data=cars93)

scatter plots

gf point(weight~mpg city,data=cars93)

lines

gf_point(hp~mpg) %>%
gf_lm(hp~mpg)

titles and labels

gf_histogram(~weight,data=cars93,xab="weight",ylab="count",title="weight in pounds")

Summary Statistics

favstats(~weight,data=cars93)

outputs mean,sd, and five number summary

fivenum(~weight,data= cars93)

Just the five number summary

summary(cars93)

summarizes all the variables

tally(~cars93)

counts the observations

tally(~type,data=cars93)

counts the observation by subgroup

Confidence Intervals

From Data

prop.test(~type,success="small",data=cars93,conf.level=0.95,correct=FALSE)

produces a 95% confidence interval for the proportion of cars that were small in 1993.

t.test(~weight,data=cars93)

produces a 95% confidence interval for the mean weights of cars sold in 1993.

From Statistics

prop.test(20,60,conf.level=0.90,correct=FALSE)

produces a 90% confidence interval for the population proportion given 20 successes in 60 trials.

For mean use formula below

For the confidence interval of the mean from statistics we use the following formula:

 $\bar{x} \pm t^*SE$

List of Standard Error formulas

$$SE = \sqrt{\frac{p(1-p)}{n}}$$

SE for a single proportion

$$SE = \frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}}$$

SE for a single mean or paired means.

$$SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

SE for two means (not paired)

MTH142 Intro to Stats:: **cheat sheet**

R Markdown cont.

New chunk click the green c+ and select r

Rename a file

Click the box next to the file and chose rename.

Uploading Data

- 1. Copy and paste data into a spreadsheet.
- 2. Variables are column headers (no spaces in variable name)
- 3. Save as an .xls file to your computer (no spaces in file names)
- 4. Upload .xls file

5. Click on the file you uploaded > Import Dataset

normal distribution

xpnorm(1,mean=0,sd=1)

Outputs the probability if z=1 from a standard normal dist.

xqnorm(0.01,mean=0, sd=1)

Outputs the z-score if probability=0.01

$$z^* = \frac{p - p}{(SE)}$$

This is the formula for a z*-score for a single proportion.

help

To get more info on a dataset, load a library then use? library(MTH142Rtutorials)

?MTH142Rtutorials

binomial distribution

dbinom(x=4, size=5,prob=0.25)

Outputs the probability of 4 successes in a trial of size 5 with a probability of success of 0.25

pbinom(x=2,size=5,prob=0.25)

Outputs the probability of 0,1,or 2 successes in a trial of size 5 with a probability of success of 0.25

student t distribution

xpt(1,df=11)

outputs the p-value if t=1 and 11 degrees of freedom

xqt(0.01,df=11)

outputs the t-score if probability=0.01

$$t^* = \frac{\bar{x} - \mu}{SE}$$

This is the formula for a t*-score for a single mean.

Hypothesis Tests

Proportions

prop.test(~type,success="small",p=0.5, data=cars93,alternative="t", correct=FALSE)

Outputs a two tailed hypothesis test with parameter p=0.5.

prop.test(x=20, n=60, p=0.5, correct=FALSE)

Outputs the results of hypothesis test with 20 successes in 60 trials

binom.test(~type,success="small", data=cars93, conf.level=0.90, ci.method="Wald")

Outputs a 90% confidence interval. Can use prop.test if appropriate.

Single Mean

t.test(~weight,data=cars93, mu=2000, alternative="g")

Outputs of a right tailed hypothesis test with parameter mu=2000.

Difference of Means

t.test(time hrs~division,data=nyc marathon, alternative="t")

Computes the difference of men and women winning times in NYC marathon

ANOVA

cars anova<-aov(weight~type,data=cars93)

performs the analysis of variance and saves it as a variable "cars_anova"

anova(cars anova)

outputs the summary of the analysis

Linear Regression

cars linear<-lm(price~weight,data=cars93)

performs the linear regression and saves it as a variable "cars linear"

msummary(cars linear)

outputs the linear summary of the regression