Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	Charan Kumar
Student Roll Number	211419104187
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

In [1]:	Ampur L panuas as pu														
In [3]:															
In [4]:	df														
Out[4]:	R	owNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
							2.11	iii.					***	444	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0,00	2	1	0	96270.64	0
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt import
numpy as np
df_ex_0=df.loc[df['Exited']==0]
df_ex_1=df.loc[df['Exited']==1]
plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')
plt.xlabel('Balance') plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1) Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution: df.describe(include='all')

Descriptive Statistics In [12]: df.describe(include='all') RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estim count 10000.00000 1.000000e+04 10000 10000.000000 10000 10000 10000.000000 10000.000000 10000.000000 10000.000000 10000.00000 10000.000000 unique NaN NaN 2932 NaN 3 2 NaN NaN NaN NaN NaN NaN France Male top freq NaN NaN 32 NaN 5014 5457 NaN NaN NaN NaN NaN mean 5000,50000 1,569094e+07 NaN 650,528800 NaN NaN 38,921800 5,012800 76485,889288 1,530200 0,70550 0,515100 100 std 2886,89568 7,193619e+04 NaN 96,653299 NaN NaN 10,487806 2,892174 62397,405202 0,581654 0,45584 0,499797 57 min 1.00000 1.556570e+07 NaN 350,00000 NaN NaN 18.00000 0.00000 0.00000 1,00000 25% 2500.75000 1.56285ae+07 NaN 584.00000 NaN NaN 32.000000 3.000000 0.000000 1.000000 0.00000 0.000000 511 50% 5000.50000 1.569074e+07 NaN 652.000000 NaN NaN 37.000000 5.000000 97198.540000 1.000000 1.00000 1.000000 100 75% 7500.25000 1.575323e+07 NaN 718.000000 NaN NaN 04.000000 7.000000 127644.240000 2.000000 1.000000 1.000000 149 max 10000.00000 1.581569e+07 NaN 850.000000 NaN NaN 92.000000 10.000000 250898.090000 4.000000 1.00000

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns
sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing import LabelEncoder from
collections import Counter as count le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

	coding													
	from sklearn.preprocessing import LabelEncoder from collections import Counter as count													
16	<pre>le=LabelEncoder()</pre>													
<pre>df['Geography']=le.fit_transform(df['Geography']) df['Gender']=le.fit_transform(df['Gender']) df['Surname']=le.fit_transform(df['Surname'])</pre>														
dt	ļ.													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0 1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	3
	1 2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	
	2 3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	-
	3 4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	(
	4 5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	(
								***					***	
				771	0	1	39	5	0.00	2	1	0	96270.64	
999		15606229	1999	471										
	9996	15606229 15569892	1999	516	0	1	35	10	57369.61	1	1	1	101699.77	(
99	9996 96 9997					1	35 36	10 7	57369.61 0.00	1	1	1	101699.77 42085.58	
99	9996 96 9997 97 9998	15569892	1336	516	0		36	7				1		

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13]
y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution: from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution: from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)