Due data: 10/24/2018, end of the day. Please submit the following 2 files via Canvas:

- 1) For question 1 4, please submit in a word file or a PDF file;
- 2) For question 5, please submit a .ipynb file (Python jupiter notebook file).

Question 1 (6 points):

Please briefly explain the main idea of following learning algorithms:

- 1) MAP Learning
- 2) Support Vector Machine
- 3) Bias-variation trade-off

Question 2 (5 points):

Consider again the example application of Bayes rule in Section 6.2.1 of Tom Mitchell's textbook (or slide # 6 of Lecture 6). Suppose the doctor decides to order a second laboratory test for the same patient and suppose the second test returns a positive result as well. What are the posterior probabilities of *cancer* and $\neg cancer$ following these two tests? Assume that the two tests are independent.

Question 3 (6 points):

Consider the following set of training examples:

Instance	Classification	a_1	a_2
1	+	Т	Т
2	+	T	T
3	_	T	\mathbf{F}
4	+	F	F
5	_	F	T
6	_	F	\mathbf{T}

- (a) What is the entropy of this collection of training examples with respect to the target function classification?
- (b) What is the information gain of a_2 relative to these training examples?

Question 4 (5 points):

Use **Naïve Bayes classifier** to classify the following new instance of the target concept *PlayTennis* that we discussed in Chapter 3:

New instance: <Outlook = sunny, Temperature = mild, Humidity = normal, wind = strong>
You are given the following 14 training examples:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

[Please refer to lecture slides Lecture 6, pages 28 – 30; and Mitchell textbook section 6.9.]

Question 5: Programming Problem (18 points):

In this programming problem, you will get familiar with building a decision tree, using cross validation to prune a tree, evaluating the tree performance, and interpreting the result.

Potential packages to use and short tutorials:

- (1)http://scikit-learn.org/stable/modules/tree.html
- (2) http://chrisstrelioff.ws/sandbox/2015/06/25/decision_trees_in_python_again_cross_validation.html

```
from sklearn import tree # tree library

tree.DecisionTreeClassifier() # for classification tree

tree.DecisionTreeRegressor() # for regression tree

# X: design matrix; Y: labels

fit(X, Y) # fit a tree

predict(X) # make prediction on test data

tree.export_graphviz(model) # visualize tree

from sklearn.model_selection import KFold # K-fold cross validation
```

from sklearn.grid_search import GridSearchCV

In python, you may have to do gridsearch and cross validation using

GridSearchCV() to choose the best parameters. Try use different values for "max_leaf_nodes": [None, 1,2,3,4,5,6,7,8,9], (see reference 2).

classification tree

Use the titanic.csv dataset included in the assignment.

Step 1: read in Titanic.csv and observe a few samples, some features are categorical and others are numerical. Take a random 70% samples for training and the rest 30% for test.

Step 2: fit a decision tree model using independent variables 'pclass + sex + age + sibsp' and dependent variable 'survived'. Plot the full tree. Make sure 'survived' is a qualitative variable taking 1 (yes) or 0 (no) in your code. You may see a tree similar to this one:

Step 3: check the performance of the full model: in-sample and out-of-sample accuracy, defined as:

in-sample percent survivors correctly predicted (on training set) in-sample percent fatalities correctly predicted (on training set) out-of-sample percent survivors correctly predicted (on test set) out-of-sample percent fatalities correctly predicted (on test set)

Step 4: use cross-validation to find the best parameter to prune the tree. You should be able to plot a graph with the 'tree size' as the x-axis and 'number of misclassification' as the Y-axis. Find the minimum number of misclassification and choose the corresponding tree size to prune the tree. You may have a plot similar to:

Step 5: prune the tree with the optimal tree size. Plot the pruned tree. You may see a similar tree like this:

Step 6: Report as many details as you can on the final pruned tree.

Required reports on: in-sample and out-of-sample accuracy, defined as

in-sample percent survivors correctly predicted (on training set) in-sample percent fatalities correctly predicted (on training set) out-of-sample percent survivors correctly predicted (on test set) out-of-sample percent fatalities correctly predicted (on test set)

Check whether there is improvement in out-of-sample for the full tree (bigger model) and the pruned tree (smaller model).