Semaine 8 : Fonctions numériques, fonctions continues sur $\mathbb R$

Questions de cours

Question de cours 1 : Théorème de la limite monotone

Enoncer et prouver le théorème de la limite monotone.

Question de cours 2 : Continuité des fonctions lipschitziennes

Soit $f: A \subseteq \mathbb{R}$. Montrer que si f est lipschitzienne sur A, f est continue sur A.

Question de cours 3: Image d'une partie compacte par une fonction continue

Montrer que l'image d'une partie compacte par une fonction continue est compacte.

Exercices

(*) Exercice 1: Une recherche de fonction

Soit $f \in C^0(\mathbb{R})$. On suppose que pour tout $x \in \mathbb{R}$, f(2x) = f(x). Montrer que f est constante.

(*) Exercice 2: Une fonction périodique

Soit $f \in C^0(\mathbb{R})$ une fonction périodique. Montrer que f est bornée.

(*) Exercice 3: Un maximum?

Soit $f \in C^0(\mathbb{R})$. On suppose que $f(x) \underset{x \to -\infty}{\longrightarrow} l_1$ et que $f(x) \underset{x \to +\infty}{\longrightarrow} l_2$, avec $(l_1, l_2) \in \mathbb{R}^2$. Montrer que f est bornée.

(**) Exercice 1 : Un théorème de point fixe

Soit $f \in C^0([0,1],\mathbb{R})$. On suppose que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe.

(**) Exercice 2 : Un autre théorème de point fixe

Soit $f \in C^0([0,1])$. Montrer que f admet un point fixe.

(**) Exercice 3: Une première formule de la moyenne

Soient $(f,g) \in (C^0([a,b],\mathbb{R}))^2$. On suppose que g est positive. Montrer que :

$$\exists c \in [a,b], \int_a^b f(t)g(t)\,\mathrm{d}t = f(c)\int_a^b g(t)\,\mathrm{d}t$$

(**) Exercice 4: Encore un point fixe

Soit $f \in C^0(\mathbb{R}_+)$ et $\alpha \le 1$. On suppose que $\frac{f(x)}{x} \underset{x \to +\infty}{\longrightarrow} \alpha$. Montrer que f admet un point fixe.

(***) Exercice 1: Une seconde formule de la moyenne

Soient $(f,g) \in \left(C^0([a,b],\mathbb{R})^2\right)$. On suppose que g est positive et décroissante. Montrer que :

$$\exists c \in [a, b], \int_a^b f(t)g(t) dt = f(a) \int_a^c g(t) dt$$

(***) Exercice 2: Le lemme de Riemann-Lebesgue

Soit $f \in C^0([0,1],\mathbb{R})$. Montrer que :

$$\int_0^1 f(t)e^{int} dt \underset{n \to +\infty}{\longrightarrow} 0$$

(On rappelle que si $(a,b) \in \mathbb{R}^2$, $g \in C^0([a,b]$, il existe $(e_n)_{n \in \mathbb{N}}$ une suite de fonctions en escaliers sur [a,b] qui converge uniformément vers g sur [a,b].)

(***) Exercice 3: Applications propres

Soit $f \in C^0(\mathbb{R})$. Montrer qu'il y a équivalence entre les propositions suivantes.

- 1. $|f(x)| \underset{x \to \pm \infty}{\longrightarrow} +\infty$.
- 2. pour tout compact $K \subset \mathbb{R}$, $f^{-1}(K)$ est compact.