Midterm question 3

November 1, 2022

Part A

For this question we simply need to compute a valid solution to these three equations, $1.2 = c_1c_4s_5.2 - s_1c_5.2 - s_1d_3$, $.8 = s_1c_4s_5.2 + c_1c_5.2 + c_1d_3$, $.5 = -s_4s_5.2 + d_1 + d_2$. For this we are considering d_1 to be 0. First we will solve the most easy part, the z axis. If we hold θ_4 and θ_5 at their current values we get .3 for d_2 . Conveniently if we keep θ_4 and θ_5 at their current position our other equations simplify nicely to $1.2 = -\sin\theta_1d_3$ and $.8 = \cos\theta_1d_3$.I then used wolfram alpha to solve this system of equations, which gave me $d = \frac{2\sqrt{13}}{5}$ and $\theta_1 = 2.15$.

Part B

In part A the solution i found would result in a total of .1m of movement from d_2 , 1.13m of movement from d_3 and 2.15° in θ_1 . Comparing this to other solutions that include moving the "hand" part of the arm this is the lowest.