Class 8 mini project

Destiny (A16340362)

```
# Save your input data file into your Project directory
  wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)</pre>
  wisc.data <- wisc.df[,-1]</pre>
Now we'll store the diagnostics column for later and exclude it from the data set that I will
actually do things with that I will call wisc.data
  diagnosis <-as.factor(wisc.df$diagnosis)</pre>
  wisc.data <- wisc.df[,-1]</pre>
     Q1. How many observations are in this dataset?
  nrow(wisc.df)
[1] 569
     Q2. How many of the observations have a malignant diagnosis?
  table(wisc.df$diagnosis)
  В
      М
357 212
     Q3. How many variables/features in the data are suffixed with _mean?
  x <- colnames(wisc.df)
```

grep("_mean", x, fixed = TRUE)

```
[1] 2 3 4 5 6 7 8 9 10 11

length(grep("_mean", x, fixed = TRUE))
```

[1] 10

Principal Component Analysis

We need to sclae our input data before PCA as some of the columns are measured in terms of very different unites with different means and different variances. The upshot here is that we set scale-TRUE to agrument prcomp() Scaling basically helps to normalize the data since each piece of the data is scaled extremly different

Check column means and standard deviations
colMeans(wisc.data)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
          1.412729e+01
                                   1.928965e+01
                                                             9.196903e+01
             area_mean
                                smoothness_mean
                                                        compactness_mean
          6.548891e+02
                                   9.636028e-02
                                                             1.043410e-01
        concavity_mean
                            concave.points_mean
                                                            symmetry_mean
          8.879932e-02
                                   4.891915e-02
                                                            1.811619e-01
fractal_dimension_mean
                                      radius_se
                                                               texture_se
          6.279761e-02
                                   4.051721e-01
                                                            1.216853e+00
          perimeter_se
                                                            smoothness_se
                                         area_se
          2.866059e+00
                                   4.033708e+01
                                                            7.040979e-03
        compactness se
                                   concavity se
                                                       concave.points se
          2.547814e-02
                                   3.189372e-02
                                                             1.179614e-02
           symmetry_se
                           fractal_dimension_se
                                                            radius_worst
          2.054230e-02
                                   3.794904e-03
                                                             1.626919e+01
         texture worst
                                perimeter_worst
                                                               area worst
          2.567722e+01
                                   1.072612e+02
                                                            8.805831e+02
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
          1.323686e-01
                                   2.542650e-01
                                                             2.721885e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          1.146062e-01
                                   2.900756e-01
                                                            8.394582e-02
```

apply(wisc.data,2,sd)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
          3.524049e+00
                                   4.301036e+00
                                                            2.429898e+01
             area mean
                                smoothness_mean
                                                        compactness_mean
          3.519141e+02
                                                            5.281276e-02
                                   1.406413e-02
        concavity mean
                            concave.points mean
                                                           symmetry mean
          7.971981e-02
                                   3.880284e-02
                                                            2.741428e-02
fractal dimension mean
                                      radius se
                                                              texture se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                                           smoothness se
                                        area_se
          2.021855e+00
                                   4.549101e+01
                                                            3.002518e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
                                                            radius_worst
           symmetry_se
                           fractal_dimension_se
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture_worst
                                perimeter_worst
                                                              area_worst
                                                            5.693570e+02
          6.146258e+00
                                   3.360254e+01
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
          2.283243e-02
                                   1.573365e-01
                                                            2.086243e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          6.573234e-02
                                   6.186747e-02
                                                            1.806127e-02
```

Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                          PC22
                                  PC23
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

PC29 PC30
Standard deviation 0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=diagnosis)

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)? 0.4427
- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data? PC1 through PC3 so need 3 componets
- Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data? PC 1 through PC 7 so need at least 7 components
- Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why? This plot is extremly clumped together and difficult to read and understand since the data isn't spread out.

biplot(wisc.pr)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?


```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

##Communicating PCA results >Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data? It would need 5 PC

##Heirachical clustering

Can we just use custering on the original data and get some insgift into M vs B It's rather diffuclt, this "tree" look like a hot mess

```
#distance matrix needed for hclust
data.dist <- dist(scale(wisc.data))
wisc.hclust <- hclust(data.dist)
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
wisc.hclust <- hclust(data.dist)
plot(wisc.hclust)
abline(h=19, col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

The better matches for the cuttung into the number of clusters is at lower numbers since the B and M clusters tend to be grouped or clustered more together, whereas with cutting into 4 clusters it's more spread out and not clumped together

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=2)
table(wisc.hclust.clusters, diagnosis)</pre>
```

diagnosis

```
wisc.hclust.clusters B M
1 357 210
2 0 2
```

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

Using ward.D2 gives the best results with that dataset because minimizes the amount of variance between the clusters so things look a bit more neat and organized.

```
method="ward.D2"
```

##Combine 5 This approach will take not the original data, but out PCA results and work with them

```
d <- dist(wisc.pr$x[, 1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust object

grps <- cutree(wisc.pr.hclust, k=2)
grps</pre>

040200	0/10517	84300903	0/2/0201	01250100	0/2706	011250	01150000
_							
1	1	1		1			
844981		845636					
1	1		1				1
		849014					
2	1	1		2	2	_	_
852552	852631	852763	852781	852973		853401	853612
1	1	1	1	1	2	1	1
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	1	2	2	1
855167	855563	855625	856106	85638502	857010	85713702	85715
2	1	1	1	2	1	2	1
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2	2	1	2	2
857637	857793	857810		858970	858981	858986	859196
1	1	2	2	2	2	1	2
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	2	2	1	2	1	1
859717	859983						8610908
1	2	2	2	2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	1	2	2	2	2	1	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	1	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	2	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1	1	2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	2	1	1	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	1	2	2	2	2	2
869254	869476	869691		86973702	869931	871001501	871001502
2							1
							871149

1	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703		8810955	8810987
1	2			1			1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	_	1	_			1
8813129	88143502	88147101	88147102	88147202			88199202
2	2	2	2	2	1	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	_	2	1	_	_	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2			1		2	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	_	2	1		_	1
88649001	886776	887181				888570	889403
1	1	-			_	1	2
889719	88995002	8910251	8910499		8910720	8910721	
1	1	_	_	_	_	_	2
8910988		8911163				8911800	
1	2	_	2	2	_	2	2
8912049	8912055				8912521		8913
1	2			2			2
8913049		89143602					
1	2						
		892214					
2		2			2		
		89344					
2	2						2
		894047					
2	2				1		2
	894618	894855					
2	1	2	1	2	2	2	2

8953902	805633	808830	206261	207122	897137	20737/	907/19901
0900902		1		09/132		091314	
897604	_			89813		_	898431
2	1	2	09012			2	
89864002	898677	898678	_		899147	_	_
2		2	2			099107	
899987					901028	_	_
099901		901011	9010256			9010333	
_	901041	9010598					
2		2		9010077			9011493 2
9011971							901303
9011971	9012000	9012315	9012566				
901315	_				901836		
901313 1	2013379	2	9013030 1				
902727	_				90312		
902121		202913		903011			
903507					90401602		
1		2		20401001		2	
90439701					904971	_	
1	2	2	2041			903109	
90524101	905501				905557	_	
90324101		903302	903320			903000	
	90602302				906564		
2	90002302	2	900290				
907145					90769602	_	_
2		2	2				
908194					909220		
1		2	1				
_	_			_	9110720	_	_
2		2	2			1	
_					911201		
2	1	2		2		2	
9112366	_	_			911296202	_	911320501
2		2	2				
911320502					911366		
2				1			2
911384		911391					911916
2			2				
	91227						913505
2				2			1
					914101		
2							
					91504		

1	2	1	1	2	1	2	1
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	2	2	2	1	2	2
915691	915940	91594602	916221	916799	916838	917062	917080
1	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
1	2	2	2	2	1	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	2	1
92751							
2							

plot(wisc.pr\$x[,1:2], col=grps)

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

The newly created model is pretty good with the separation of the two diagnosis because the way the B and M are split in a pretty even manner.

```
table(diagnosis, grps)
```

grps diagnosis 1 2 B 24 333 M 179 33