UNEX SISTEMAS DE INFORMAÇÃO

ANNA BEATRIZ SILVA LIMA, KAILLA DE SOUZA COSTA, JOÃO ARTHUR NASCIMENTO MASCARENHAS, GIOVANNA SALOMÃO RODRIGUES, VICTOR ROGÉRIO AGUIAR DO ROSÁRIO, SAMIRA DE JESUS SANTOS

ESTUDO DE CASO

FEIRA DE SANTANA 2023

1. TOPOLOGIA DE REDE

Cenário: Uma empresa de médio porte, chamada TechConnect, está planejando atualizar sua infraestrutura de rede para melhorar a conectividade e a confiabilidade de seus sistemas. A equipe de TI da empresa está revisando as opções de topologia de rede para determinar qual atende melhor às suas necessidades.

Perguntas:

1. Quais são os principais fatores que a equipe de TI da TechConnect deve considerar ao escolher uma topologia de rede?

R: Os principais fatores a serem considerados são: confiabilidade, custo, desempenho, segurança, gerenciamento e escalabilidade.

2. Discuta os prós e contras das seguintes topologias de rede: estrela, barramento, anel e malha. Qual delas você recomendaria para a TechConnect e por quê?

R: Estrela: Fácil de gerenciar e confiável, permitindo também o isolamento de falhas. Porém, por ter um controle mais centralizado, depende muito do nó/hub central, além de ser uma topologia mais custosa:

Barramento: Topologia simples e mais barata. Entretanto, é menos confiável por ser vulnerável a colisão de dados, além do fato de que uma falha em um segmento pode afetar os outro, e não é escalável;

Anel: Possui confiabilidade quanto a colisões e é escalável, mas é mais complexa de gerenciar e vulnerável quanto a falhas em um nó, podendo afetar toda a rede;

Malha: Muito confiável, escalável e com redundância, porém é uma topologia de valor mais elevado e mais complexa quanto ao gerenciamento por conta do número de conexões.

Assim, a topologia mais recomendada pela TechConnect seria a malha.Por ser mais confiável e possuir bom desempenho é uma boa escolha para a empresa. Além disso, é uma topologia com grande redundância, sendo tolerante a falhas. Levando em consideração que a TechConnect é uma empresa de médio porte, o custo-benefício comparado a outras topologias vale a pena, apesar de seu valor mais elevado.

3. Como a escolha da topologia de rede pode afetar a redundância e o desempenho da rede da TechConnect?

R: Pelo fato de a topologia escolhida possuir alta redundância por conta das conexões independentes com cada dispositivo, a rede se torna muito resistente a falhas, já que se um nó falhar, há muitos outros caminhos para o compartilhamento de dados e não afeta outros nós, tornando a topologia muito segura se comparada a outras com menos redundância. Além disso, as diversas conexões distintas oferecem maior desempenho, já que evita a colisão e congestão na comunicação da rede ao ter vários caminhos que tornam a comunicação possível. Irá afetar a empresa também financeiramente, já que por ser uma topologia de qualidade, segurança, privacidade e bom desempenho terá um custo maior.

2. MODELO OSI

Cenário: A equipe de suporte técnico da TechConnect está enfrentando um problema de conectividade em sua rede. Eles suspeitam que o problema esteja relacionado às camadas do modelo OSI e precisam diagnosticar e resolver o problema o mais rápido possível.

Perguntas:

1. Descreva as sete camadas do modelo OSI e explique brevemente a função de cada uma delas.

R: Camada Física: nesta camada são especificados como os dispositivos se conectam fisicamente (como hubs) e seus meios de transmissão (como cabos de rede). Os dados são transferidos por esses meios em bits e processados na próxima camada.

Camada de Enlace: é nesta camada que são definidas as tecnologias de acesso a rede, como as VLans, topologias como a Token Ring ou a topologia ponto-a-ponto. É também aqui que funcionam dispositivos como switch. Além disso, ela possui duas subcamadas: a MAC, que possibilita a conexão e o controle de acesso de diversos computadores em uma rede, e a LLC, onde temos o controle de fluxo dos dados na rede.

Camada de Rede: é nesta camada que temos o endereçamento IP de origem e destino, que também prioriza determinados pacotes e decide qual caminho seguir para enviar os dados. Essa camada basicamente controla o roteamento entre a origem e o destino do pacote. O endereço

MAC é o endereço físico de quem envia o pacote, já o endereço IP é a identificação da sua máquina na rede.

Camada de Transporte: é esta camada que gerencia o transporte dos pacotes para assegurar o sucesso no envio e recebimento de dados. Protocolos muito comuns nessa camada são o TCP e o UDP. Sendo o UDP mais rápido por não garantir a entrega da mensagem, diferente do TCP.

Camada de Sessão: Esta camada é responsável por estabelecer e encerrar a conexão entre hosts. É ela quem inicia e sincroniza os hosts. Camada de Apresentação: esta camada é responsável por transformar os dados para que a próxima camada possa utilizá-los. Nesta camada, realizamos conversão em caractere, conversão e compactação de dados e se necessário, criptografia de dados.

Camada de Aplicação: a camada final do modelo OSI é a camada que consome os dados. Nesta camada, temos programas que garantem a interação humano-computador.

2. Como a equipe de suporte técnico da TechConnect pode usar o modelo OSI para identificar em qual camada o problema de conectividade pode estar ocorrendo?

A equipe de suporte poderia utilizar o modelo OSI verificando cada camada em sequência, possibilitando o isolamento do problema e identificando em qual camada ele está presente. Isso ajudará a direcionar as tentativas de solução de maneira eficaz.

3. Suponha que o problema de conectividade seja relacionado à camada de transporte. Quais protocolos e tecnologias podem estar causando o problema, e como a equipe de suporte técnico pode resolvê-lo?

R: Os protocolos que podem estar dando problema são o TCP e o UDP. Para tentar solucioná-los, eles podem verificar o firewall, monitorar o tráfego, verificar a configuração de roteamento, atualizar drivers, verificar os configs de QoS e NAT, analisar os logs, isolar os dispositivos problemáticos ou reconfigurar protocolos.

4. Qual é a importância do modelo OSI na padronização e na solução de problemas de rede? Como ele facilita a comunicação entre diferentes sistemas e fabricantes de equipamentos?

R: Ele estabelece uma estrutura padronizada com sete camadas, permitindo que sistemas e fabricantes sigam regras comuns para

garantir compatibilidade e interoperabilidade. Ao dividir a comunicação em camadas, o modelo simplifica a complexidade da transmissão de dados, facilitando a compreensão do processo de comunicação. Além disso, promove a interoperabilidade, permitindo que dispositivos de diferentes fabricantes se comuniquem eficazmente. A divisão em camadas também simplifica a identificação e resolução de problemas, economizando recursos. E, por ser flexível, o modelo pode incorporar novas tecnologias, permitindo a evolução das redes ao longo do tempo. Em resumo, o Modelo OSI é fundamental para o funcionamento eficiente e harmonioso das redes de computadores.

3. PROTOCOLO ARP

Cenário: Na rede da TechConnect, os usuários relataram problemas intermitentes de conectividade. A equipe de TI suspeita que pode haver problemas relacionados ao Protocolo ARP (Address Resolution Protocol) e está investigando essa possibilidade.

Perguntas:

1. O que é o Protocolo ARP e qual é a sua função em uma rede local?

R: O Protocolo ARP é responsável por relacionar os endereços físicos (MAC) e lógicos (IP). A função do Protocolo ARP é descobrir qual o endereço MAC de um dispositivo que está utilizando um determinado IP através da Tabela ARP.

2. Explique o processo de resolução de endereço ARP, incluindo como um dispositivo obtém o endereço MAC de outro dispositivo na mesma rede.

R: O processo de resolução do endereço ARP se dá a partir do momento em que um dispositivo precisa se comunicar com outro dentro da rede, porém apenas o endereço IP do dispositivo de destino é conhecido pelo dispositivo inicial. Assim, o dispositivo emissor envia um ARP Request, que é basicamente uma solicitação que "pergunta" a todos os dispositivos da rede se aquele IP conhecido por ele é o IP dos dispositivos que estão na rede, uma procura por um correspondente. Esse ARP Request possui o IP do dispositivo de destino e o endereço MAC da máquina emissora. Caso o IP seja correspondente a um ou

mais dispositivos da rede, estes mandam um ARP Reply para o dispositivo emissor, que é uma resposta com o seu endereço IP (o mesmo conhecido pelo dispositivo emissor) e seu endereço MAC. Assim, quando esta resposta é recebida, o dispositivo emissor atualiza a sua tabela ARP com o novo endereço MAC descoberto.

Descreva as medidas que a equipe de TI da TechConnect pode tomar para solucionar problemas de ARP e melhorar a estabilidade da rede.

R: Algumas medidas podem ser tomadas dependendo do problema. Para identificação de onde está o problema, é essencial um monitoramento da rede e verificação da tabela ARP, objetivando descobrir se houve alteração em algum IP estático, muitas solicitações ARP ou até mesmo solicitações falsas. Por segurança, faz-se necessária também a verificação para saber se não houve um ataque com cópia/espelhamento de endereço MAC em outra máquina, gerando uma troca de dados entre a máquina emissora e uma máquina invasiva, em vez da máquina original. Pode ser feita também análise de possíveis conflitos gerados por máquina de mesmo IP, o que poderia ser resolvido com o cadastro de IPs diferentes para estas. Outras soluções como segmentação da rede, para limitar o trafego de solicitações ARP e isolar o problema ou a introdução de redundância em dispositivos essenciais para o funcionamento da rede, evitando problemas caso um deles falhe.