QCD Rejection in fully hadronic ttH with BDT training

BDT (Boosted Decision Tree)

- → build many DTs O(100) ~ O(1000), so that the weighted average will be insensitive to fluctuations.
- → implement algorithm
 AdaBoost
 (adaptive boosting)

Training samples & procedures

- Signal:
 - ttH: had_V24_4__ttHTobb_M125_13TeV_powheg_pythia8
- Background:
 - ttbar : had_V24_4__TT_TuneCUETP8M1_13TeV-powheg-pythia8
 - QCD Multijets: had_V24_4__QCD_HT300to500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8, ~_HT500to700_~, ..., ~_HT2000toInf_~

Training Variables: jet_pt[0], jet_pt[1] ... jet_pt[5]

Training Variables: jet_eta[0] ... jet_eta[5]

Training Variables: jet_phi[0] ... jet_phi[5]

Training Variables: jet_qgl[0] ... jet_qgl[5]

Training Variables: aplanarity, isotropy, min_dr_btag, sphericity, log(C), log(D)

Training Variables: njets, nBCSVM

Training Variables: DD5j[12], DD3j4[12], Deta5j, Deta3j4, Dphi5j, Dphi4j5

Training Variables: DR5j, DR4j5, DW3j, DW5j6

Distance variables

Example 1:

- \rightarrow Dphi2j: the average Δφ of the 2nd closest jet to each jet in an event.
- → in this case:

j1:
$$\Delta \phi = a$$
, j2: $\Delta \phi = b$,
j3: $\Delta \phi = b$, j4: $\Delta \phi = c$
Dphi2j = $\frac{1}{4}$ (a + b + b + c)

Therefore, Dphi4j5: the average Δφ of the 4th closest jet to each jet of the first 5 jets in an event.

Example 2:

- \rightarrow DR = $\sqrt{(\Delta \phi^2 + \Delta \eta^2)}$
- \rightarrow DD & DW are similar to DR, but are used to penalize $\Delta \phi$ when $\Delta \eta$ is very small

BDT Training & Evaluation (1st attempt)

Input variables (16):

- jet_pt[0] ... jet_pt[3], jet_eta[0] ... jet_eta[3]
- aplanarity, isotropy, sphericity, min_dr_btag, log(C), log(D)
- njets, nBCSVM

However, we can't rely on njets & nBCSVM since later on we will categorize BDT distribution based on these two variables.

BDT Distribution (training: ttH vs QCD MC)

BDT Training & Evaluation (2nd attempt)

Input variables(30): → njets & nBCSVM are restricted

- jet_pt[0] ... jet_pt[5], jet_eta[0] ... jet_eta[5]
- jet_phi[0] ... jet_phi[5], jet_qgl[0] ... jet_qgl[5]
- aplanarity, isotropy, sphericity, min_dr_btag, log(C), log(D)

BDT Distribution (training: ttH vs QCD MC)

BDT Training & Evaluation (3rd attempt)

BDT Distribution (training: ttH vs QCD MC)

BDT Training & Evaluation (4th attempt)

Input variables (28): → variables that don't show too much discrimination are restricted

- jet_pt[0] ... jet_pt[3], jet_eta[0] ... jet_eta[3]
- jet_qgl[0] ... jet_qgl[3]
- aplanarity, isotropy, sphericity, min_dr_btag, log(C), log(D)
- DD5j[12], DD3j4[12]
- Deta5j, Deta3j4, Dphi5j, Dphi4j5, DR5j, DR4j5, DW3j, DW5j6

BDT Distribution (training: ttH vs QCD MC)

Comparison between the 3rd & the 4th attempts

ROC Curve for BDT Evaluation

The full training provides the best performance

Categorization for the full training BDT distribution when njets = 7

Categorization for the full training BDT distribution when njets = 8

BDT Distribution (training: ttH vs QCD MC)

ROC Curve for BDT Evaluation

BDT Distribution (training: ttH vs QCD MC)

ROC Curve for BDT Evaluation

Categorization for the full training BDT distribution when njets = 9

BDT Distribution (training: ttH vs QCD MC)

ROC Curve for BDT Evaluation

BDT Distribution (training: ttH vs QCD MC)

ROC Curve for BDT Evaluation

