Magazine Subscription Analysis using two Group Classification Models

We implement logistic regression and Support Vector Machine Models to classify and predict the magazine subscription behavious.

```
import pandas as pd
from sklearn.model selection import train test_split, GridSearchCV,
StratifiedKFold
from sklearn.linear model import LogisticRegression
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import accuracy score, classification report
# Set pandas options
pd.set option('display.max columns', None)
pd.set option('display.max rows', None)
file path = r'C:\Users\sfaiz\OneDrive\Desktop\ALY 6020 Module 3
Project Syed Faizan\marketing campaign.xlsx'
data = pd.read excel(file path)
data.head()
         Year Birth
                      Education Marital Status
                                                  Income
                                                          Kidhome
Teenhome \
   5524
               1957
                     Graduation
                                         Single
                                                 58138.0
                                                                0
0
                     Graduation
1
  2174
               1954
                                         Single
                                                 46344.0
                                                                1
1
2
   4141
                     Graduation
               1965
                                       Together 71613.0
                                                                0
0
3
                                                                1
  6182
               1984
                     Graduation
                                       Together
                                                 26646.0
0
4
   5324
               1981
                            PhD
                                        Married
                                                 58293.0
                                                                1
  Dt Customer
               Recency
                        MntWines
                                  MntFruits
                                              MntMeatProducts
MntFishProducts
0
  2012-09-04
                    58
                             635
                                          88
                                                          546
172
  2014-03-08
                    38
                               11
2 2013-08-21
                    26
                             426
                                          49
                                                          127
111
```

3	2014-02-10	26	1	1	4		2	0
10 4 46	2014-01-19	94	17	3	43		11	8
	MntSweetProdu	cts Mnt	GoldPro	ds NumDea	lsPur	chases	NumWe	bPurchases
0		88		88		3		8
1		1		6		2		1
2		21	,	42		1		8
3		3		5		2		2
4		27		15		5		5
		_						
Ac	NumCatalogPurceptedCmp3 \	chases	NumStor	ePurchases	Num	WebVisi [.]	tsMont	:h
0		10		4				7
1		1		2				5
0 2		2		10				4
0		2		10				
3		0		4				6
0 4		3		6				5
0								
0 1 2 3 4	AcceptedCmp4 0 0 0 0 0 0	Accepte	edCmp5 0 0 0 0 0	AcceptedCm	p1 A 0 0 0 0	ccepted(Cmp2 0 0 0 0	Complain \ 0 0 0 0 0 0 0
0 1 2 3 4	Z_CostContact 3 3 3 3 3	Z_Reve		sponse 1 0 0 0				
da	ta.shape							
(2	240, 29)							
da	ta.isnull(). <mark>su</mark>	m ()						

```
ID
                         0
Year Birth
                         0
Education
                         0
                         0
Marital Status
Income
                        24
Kidhome
                         0
Teenhome
                         0
Dt Customer
                         0
                         0
Recency
MntWines
                         0
                         0
MntFruits
                         0
MntMeatProducts
MntFishProducts
                         0
MntSweetProducts
                         0
MntGoldProds
                         0
NumDealsPurchases
                         0
NumWebPurchases
                         0
NumCatalogPurchases
                         0
NumStorePurchases
                         0
NumWebVisitsMonth
                         0
AcceptedCmp3
                          0
AcceptedCmp4
                         0
AcceptedCmp5
                          0
                         0
AcceptedCmp1
AcceptedCmp2
                         0
                         0
Complain
Z_CostContact
                         0
Z Revenue
                         0
                         0
Response
dtype: int64
data = data[data['Income'].notnull()]
data.shape
(2216, 29)
data.isnull().sum()
ID
                        0
Year Birth
                        0
                        0
Education
                        0
Marital_Status
                        0
Income
Kidhome
                        0
Teenhome
                        0
                        0
Dt Customer
                        0
Recency
                        0
MntWines
                        0
MntFruits
```

MntMeatProducts	0
MntFishProducts	0
MntSweetProducts	0
MntGoldProds	0
NumDealsPurchases	0
NumWebPurchases	0
NumCatalogPurchases	0
NumStorePurchases	0
NumWebVisitsMonth	0
AcceptedCmp3	0
AcceptedCmp4	0
AcceptedCmp5	0
AcceptedCmp1	0
AcceptedCmp2	0
Complain	0
<pre>Z_CostContact</pre>	0
Z_Revenue	0
Response	0
dtype: int64	

data.dtypes

ID	int64
Year_Birth	int64
Education	object
Marital_Status	object
Income	float64
Kidhome	int64
Teenhome	int64
Dt_Customer	object
Recency	int64
MntWines	int64
MntFruits	int64
MntMeatProducts	int64
MntFishProducts	int64
MntSweetProducts	int64
MntGoldProds	int64
NumDealsPurchases	int64
NumWebPurchases	int64
NumCatalogPurchases	int64
NumStorePurchases	int64
NumWebVisitsMonth	int64
AcceptedCmp3	int64
AcceptedCmp4	int64
AcceptedCmp5	int64
AcceptedCmp1	int64
AcceptedCmp2	int64
Complain	int64
<pre>Z_CostContact</pre>	int64
Z_Revenue	int64

```
Response int64
dtype: object
```

Ignore warnings as some Hyperparameter tuning may produce extensive warnings

```
import warnings
# Ignore all warnings
warnings.filterwarnings("ignore")
```

Examining the target variable

```
import matplotlib.pyplot as plt
import seaborn as sns

# Count the occurrences of each class in the target variable
response_counts = data['Response'].value_counts()

# Plot the imbalance
plt.figure(figsize=(8, 6))
sns.barplot(x=response_counts.index, y=response_counts.values,
palette="viridis")

# Add labels and title
plt.title("Distribution of Target Variable 'Response'")
plt.xlabel("Response")
plt.ylabel("Count")
plt.xticks(ticks=[0, 1], labels=["No", "Yes"], rotation=0) #
Customize if labels are binary
plt.show()
```

Distribution of Target Variable 'Response'

Three issues to be dealt with by Data Cleansing :

- 1. The Dt_Customer column needs to be converted to an integer value that represents the time since subscription.
- 2. The 'object' columns need to be converted to numerical columns and encoded using ordinal encoding as one hot encoding may cause hyper-dimentionality.
- 3. The heavy imbalance in the target variable ought to be addressed and remedial measures ought to be taken.

Dt_Customer column converted to an integer value as 'Customer Tenure'.

Dt_Customer column needs to be converted to an integer value
data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'],

```
errors='coerce')
data = data.dropna(subset=['Dt Customer'])
data['Customer_Tenure'] = (pd.Timestamp.now() -
data['Dt Customer']).dt.days
data.head()
     ID Year Birth Education Marital Status
                                                  Income
                                                          Kidhome
Teenhome \
   5524
               1957
                     Graduation
                                         Single
                                                 58138.0
                                                                0
0
1
  2174
               1954 Graduation
                                         Single
                                                 46344.0
                                                                 1
1
2
  4141
               1965 Graduation
                                       Together 71613.0
                                                                 0
0
3
                                       Together
  6182
               1984 Graduation
                                                 26646.0
                                                                 1
0
4
                            PhD
                                                                 1
   5324
               1981
                                        Married
                                                 58293.0
0
  Dt Customer
               Recency MntWines MntFruits MntMeatProducts
MntFishProducts
0 2012-09-04
                    58
                             635
                                          88
                                                          546
172
   2014-03-08
                    38
                              11
                                           1
                                                            6
1
2
                              426
   2013-08-21
                    26
                                          49
                                                          127
111
                    26
                                                           20
3
  2014-02-10
                              11
10
4 2014-01-19
                    94
                              173
                                          43
                                                          118
46
   MntSweetProducts
                     MntGoldProds
                                    NumDealsPurchases
                                                       NumWebPurchases
\
0
                 88
                                88
                                                    3
                                                                      8
1
                                 6
                                                    2
                                                                      1
                                42
                                                    1
                                                                      8
2
                 21
3
                                 5
                                                    2
                                                                      2
                 27
                                15
                                                    5
                                                                      5
   NumCatalogPurchases
                        NumStorePurchases NumWebVisitsMonth
AcceptedCmp3 \
0
                    10
                                         4
                                                            7
0
```

1		1		2		5	
2		2		10		4	
0		0		4		6	
0 4		3		6		5	
0							
0	AcceptedCmp4 0 0	AcceptedCmp5	5 Accepte 9 9	dCmp1 0 0	AcceptedCmp2	Complain 0 0	\
2 3	0 0	(9 9 9	0	Ó	0 0	
4	7 (2.21(2.21)			0	() 	9	
0 1 2 3 4	Z_CostContact 3 3 3 3 3	Z_Revenue 11 11 11 11 11	Response 1 0 0 0 0 0	Custo	mer_Tenure 4461 3911 4110 3937 3959		

Removing dt_customer as it's data is found in customer tenure

```
# removing dt_customer as it's data is found in customer tenure
data_sansdt = data.drop(columns=['Dt_Customer'])
```

Encode categorical variables

```
# Encode categorical variables
categorical columns = ['Education', 'Marital Status']
for col in categorical columns:
    le = LabelEncoder()
    data sansdt[col] = le.fit transform(data sansdt[col])
data sansdt.head()
     ID Year Birth Education Marital Status
                                                 Income
                                                         Kidhome
Teenhome
  5524
               1957
                                                58138.0
                                                                0
1
  2174
               1954
                                             4 46344.0
                                                                1
1
```

2	4141	1965	2		5	71613	. 0	0	
3	6182	1984	2		5	26646	. 0	1	
0 4	5324	1981	4		3	3 58293	. 0	1	
0									
0 1 2 2	Recency 58 38 26 26	MntWines 635 11 426 11	MntFruits 88 1 49 4	: :		cts Mnt 546 6 127 20	FishPro	ducts 172 2 111 10	\
3	94	173	43		1	20 L18		46	
	MntSweet	Products	MntGoldPro	ds Num[)ealsPur	chases	NumWebI	Purchas	es
0		88		88		3			8
1		1		6		2			1
2		21		42		1			8
3		3		5		2			2
4		27		15		5			5
7		21		13		J			5
۸۵	NumCatal ceptedCmp		es NumStor	ePurchas	ses Num	nWebVisi	tsMonth		
0	ceptedciiip		10		4		7		
0			1		2		5		
0			2		10		4		
0			Θ		4		6		
0 4			3		6		5		
0			5		J		J		
0 1 2 3 4	Accepted	Cmp4 Acce 0 0 0 0 0	eptedCmp5 0 0 0 0 0	Accepted	O P P P P P P P P P P P P P P P P P P P	Accepted	Cmp2 Co 0 0 0 0 0	omplain 0 0 0 0 0	
0 1	Z_CostCo	ntact Z_F 3 3	Revenue Re 11 11	sponse 1 0	Custome	er_Tenur 446 391	1		

2	3	11	0	4110	
3	3	11	Θ	3937	
4	3	11	0	3959	

Combine children columns into one

```
# Combine children columns into one
data_sansdt['Total_Children'] = data_sansdt['Kidhome'] +
data_sansdt['Teenhome']
data_sansdt.drop(['Kidhome', 'Teenhome', 'ID'], axis=1, inplace=True)
```

Scale numerical features

```
# Scale numerical features
numerical_columns = [
    'Income', 'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts',
    'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
    'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
    'NumStorePurchases', 'NumWebVisitsMonth', 'Customer_Tenure'
]
scaler = StandardScaler()
data_sansdt[numerical_columns] =
scaler.fit_transform(data_sansdt[numerical_columns])
count = data[data['Year_Birth'] < 1940].shape[0]
print(count)</pre>
```

Limiting dataset to those born only after 1940 by dropping three data points

```
data_sansdt = data_sansdt[data_sansdt['Year_Birth'] >= 1940]
from collections import Counter
Counter(data_sansdt['Response'])
Counter({0: 1880, 1: 333})
import seaborn as sns
```

Visually checking how target variable imbalance impacts the dataset by examining a scatterplot between two predictors

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Define the predictors (X) and target (y)
X = data sansdt.drop(columns=['Response']) # Replace 'Response' with
the actual column name if different
y = data sansdt['Response']
# Scatterplot for the first two predictors
sns.scatterplot(
    x=X.iloc[:, 3], # First predictor
    y=X.iloc[:, 6], # Second predictor
                    # Target variable
    palette="viridis"
)
# Customize the plot
plt.title("Scatterplot of Two Predictors with Response as Hue")
plt.xlabel(X.columns[3]) # Label for the first predictor
plt.ylabel(X.columns[6]) # Label for the second predictor
plt.legend(title='Response')
plt.show()
```

Scatterplot of Two Predictors with Response as Hue

da	tal = data_s	ansdt				
da	tal.head()					
	Year_Birth	Education Mar	ital_Status	Income	Recency	MntWines
0	1957	2	4	0.234063	0.310532	0.978226
1	1954	2	4	-0.234559	-0.380509	-0.872024
2	1965	2	5	0.769478	-0.795134	0.358511
3	1984	2	5	-1.017239	-0.795134	-0.872024
4	1981	4	3	0.240221	1.554407	-0.391671
0 1 2 3 4	MntFruits 1.549429 -0.637328 0.569159 -0.561922 0.418348	MntMeatProducts 1.690227 -0.717986 -0.178368 -0.655551 -0.218505	-0.6 1.3 -0.5	ducts Mnt 54568 51038 40203 04892 52766	:SweetProdu 1.484 -0.633 -0.146 -0.585 -0.006	8827 8880 6821 6174

MntGoldProds NumCatalogPurch		sPurchases	NumWebPurcha	ses		
0 0.850031		0.351713	1.428	553		
2.504712 1 -0.732867	,	-0.168231	-1.125	881	-	
0.571082						
2 -0.037937 0.229327		-0.688176	1.428	553	-	
3 -0.752171		-0.168231	-0.760	962	-	
0.912837 4 -0.559135		1.391603	0.333	796		
0.112428						
1 -1.1 2 1.2 3 -0.5	hases Nu 54143 .69518 .91982 54143 .61232	mWebVisitsMo 0.693 -0.133 -0.543 0.280 -0.133	1574 3978 9829	dCmp3 Ac 0 0 0 0 0	ceptedCmp4 0 0 0 0 0	\
AcceptedCmp5	•	dCmp1 Accep	otedCmp2 Com	plain		
<pre>Z_CostContact 0 0</pre>	•	0	0	0	3	
1 0		0	0	0	3	
			-	-		
2 0		0	Θ	0	3	
3 0		0	0	0	3	
4 0		0	Θ	0	3	
Z_Revenue R 0 11 1 11 2 11	esponse 1 0 0	Customer_Ter 1.529 -1.188 -0.205	9129 3411	hildren 0 2 0		
3 11 4 11	0	-1.059		1		

Transforming year birth into the numerical 'Age' column for better manipulation

```
data_sansdt['Age'] = (pd.Timestamp.now() -
pd.to_datetime(data_sansdt['Year_Birth'], format='%Y')).dt.days // 365
data_sansdt = data_sansdt.drop(columns = 'Year_Birth')
```

data_sansd	t.head()			
Educatio	on Marital_Sta	tus Income	Recency MntWines	MntFruits
Ò	2	4 0.234063	0.310532 0.978226	1.549429
1	2	4 -0.234559	-0.380509 -0.872024	-0.637328
2	2	5 0.769478	0.795134 0.358511	0.569159
3	2	5 -1.017239	-0.795134 -0.872024	-0.561922
4	4	3 0.240221	1.554407 -0.391671	0.418348
1 - 6 2 - 6 3 - 6	Products MntFi 1.690227 0.717986 0.178368 0.655551 0.218505	shProducts Mnt 2.454568 -0.651038 1.340203 -0.504892 0.152766	1.484827 -0.633880 -0.146821 -0.585174 -0.000703	GoldProds \ 0.850031 -0.732867 -0.037937 -0.752171 -0.559135
NumDeals NumStorePur 0 0.554143		WebPurchases N	NumCatalogPurchases 2.504712	
1 1.169518	-0.168231	-1.125881	-0.571082	_
2 1.291982	-0.688176	1.428553	-0.229327	
3 0.554143	-0.168231	-0.760962	-0.912837	-
4 0.061232	1.391603	0.333796	0.112428	3
NumWebVi AcceptedCmp		eptedCmp3 Acce	eptedCmp4 Accepted	ICmp5
0	0.693232	0	0	0
0	-0.131574	0	0	0
0 2 0 3	-0.543978	0	0	0
3	0.280829	0	0	0
0 4 0	-0.131574	0	0	Θ
Accepted	dCmp2 Complain 0 0	Z_CostContact	t Z_Revenue Respo 3 11	onse \ 1

1	0	0	3	11	0
2	0	0	3	11	0
3	0	0	3	11	0
4	0	0	3	11	0
0 1 2 3 4	Customer_Tenure 1.529129 -1.188411 -0.205155 -1.059945 -0.951244	Total_Children 0 2 0 1 1	Age 67 70 59 40 43		

Scaling the Age column

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data sansdt['Age'] = scaler.fit transform(data sansdt[['Age']])
data sansdt.head()
              Marital Status
   Education
                                Income
                                         Recency
                                                  MntWines MntFruits
                                                             1.549429
0
                              0.234063 0.310532 0.978226
1
                           4 -0.234559 -0.380509 -0.872024 -0.637328
2
                              0.769478 -0.795134 0.358511
                                                             0.569159
                           5 -1.017239 -0.795134 -0.872024 -0.561922
3
                              0.240221 1.554407 -0.391671
                                                             0.418348
   MntMeatProducts
                    MntFishProducts
                                     MntSweetProducts
                                                       MntGoldProds \
0
          1.690227
                           2.454568
                                             1.484827
                                                           0.850031
1
         -0.717986
                          -0.651038
                                            -0.633880
                                                           -0.732867
2
         -0.178368
                           1.340203
                                            -0.146821
                                                           -0.037937
3
         -0.655551
                          -0.504892
                                            -0.585174
                                                           -0.752171
         -0.218505
                                            -0.000703
                                                          -0.559135
                           0.152766
   NumDealsPurchases
                      NumWebPurchases
                                       NumCatalogPurchases
NumStorePurchases \
            0.351713
                             1.428553
                                                  2.504712
0.554143
           -0.168231
                            -1.125881
                                                 -0.571082
1
1.169518
           -0.688176
                             1.428553
                                                 -0.229327
1.291982
```

3	-0.168231	-0.7609	62	-0.912837	-
0.554143 4 0.061232	1.391603	0.3337	96	0.112428	
NumWeb' AcceptedCr 0 1 0 2 0 3 0 4	VisitsMonth mpl \ 0.693232 -0.131574 -0.543978 0.280829 -0.131574	AcceptedCmp3 0 0 0 0 0	AcceptedCmp4 0 0 0 0 0	AcceptedCmp5	
Accepte 0 1 2 3 4	edCmp2 Comp 0 0 0 0 0	lain Z_CostCo 0 0 0 0 0	ntact Z_Rever 3 3 3 3 3	nue Response 11 1 11 0 11 0 11 0	\
0 1 2 3	er_Tenure T 1.529129 -1.188411 -0.205155 -1.059945 -0.951244	otal_Children 0 2 0 1	Age 1.018785 1.275248 0.334882 -1.289387 -1.032923		

Scaling the newly encoded columns

1	-0.352454	0.254202	-0.234559	-0.380509	-0.872024	-0.637328
2	-0.352454	1.182503	0.769478	-0.795134	0.358511	0.569159
3	-0.352454	1.182503	-1.017239	-0.795134	-0.872024	-0.561922
4	1.430358	-0.674098	0.240221	1.554407	-0.391671	0.418348
	MatMaatDraduct	c Mn+FichD	roducts M	ntSweetProd	dusts MatCo	oldDrode \
0 1 2 3 4	MntMeatProduct 1.69022 -0.71798 -0.17836 -0.65555 -0.21850	7 2 6 -0 8 1 1 -0	.454568 .651038 .340203 .504892	1.48 -0.63 -0.14	34827 6 33880 - 6 46821 - 6 35174 - 6	oldProds \ 0.850031 0.732867 0.037937 0.752171 0.559135
4	-0.21030	5 0	.132700	-0.00	70703 -0	7.339133
Nu	NumDealsPurcha mStorePurchases		Purchases	NumCatalog	Purchases	
0	0.351 554143		1.428553		2.504712	-
1	-0.168	231	-1.125881		-0.571082	-
2	169518 -0.688	176	1.428553		-0.229327	
1. 3	291982 -0.168	231	-0.760962		-0.912837	-
0. 4	554143 1.391	603	0.333796		0.112428	
-	061232		0.000.00		0.1111	
Ac	NumWebVisitsMoceptedCmp1 \	nth Accept	edCmp3 Ac	ceptedCmp4	AcceptedCm	ıp5
0	0.693	232	0	0		0
0 1	-0.131	574	0	0		0
0 2	-0.543	978	0	Θ		0
0	0.280		0	0		0
3	0.200	029	U	U		U
4 0	-0.131	574	0	0		0
U						
0	. 0	0		.0 —	0.0	1
1 2	0 0	0 0).0).0	0
2 3 4	0	Θ	Θ	.0	0.0	Θ
4	0	0	0	.0	0.0	0

```
Customer_Tenure Total_Children
                                       Age
                       -1.264914 1.018785
0
         1.529129
1
        -1.188411
                        1.404857 1.275248
2
        -0.205155
                        -1.264914 0.334882
3
        -1.059945
                        0.069971 -1.289387
        -0.951244
                         0.069971 -1.032923
dfSummary(data_sansdt)
<pandas.io.formats.style.Styler at 0x1cf209a55e0>
dfSummary(data sansdt)
<pandas.io.formats.style.Styler at 0x1cf209a55e0>
```

Checking for the assumptions of Regression - Linearity

```
import seaborn as sns
import matplotlib.pyplot as plt

# Create a pair plot
sns.pairplot(data_sansdt, diag_kind="kde", corner=True)

# Show the plot
plt.show()
```


Dropping the Z Cost contact and Z Revenue variables due to there zero standard deviation and minimal information

```
columns_to_drop = ['Z_CostContact', 'Z_Revenue']
existing_columns = [col for col in columns_to_drop if col in
data_sansdt.columns]

if existing_columns:
    data_sansdt.drop(columns=existing_columns, inplace=True)
    print(f"Dropped columns: {existing_columns}")
else:
    print("No matching columns to drop.")
```

Examining the skewed features and log transformation application

```
import numpy as np
# List of skewed predictors
skewed predictors = [
    'Income', 'MntWines', 'MntFruits', 'MntMeatProducts',
    'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'
]
# Handle negative values and apply log transformation
for col in skewed predictors:
    # Replace negative values with NaN
    data sansdt[col] = data sansdt[col].apply(lambda x: np.nan if x <</pre>
0 else x)
    # Apply log transformation
    data sansdt[col] = np.log1p(data sansdt[col])
for col in skewed predictors:
    data sansdt[col].fillna(data sansdt[col].median(), inplace=True)
# Check if transformation was successful
print("Log transformation applied to skewed predictors:")
print(data sansdt[skewed predictors].head())
Log transformation applied to skewed predictors:
     Income MntWines MntFruits MntMeatProducts
                                                   MntFishProducts \
0 0.210312 0.682200
                        0.935870
                                         0.989626
                                                           1.239697
1 0.511969 0.620372
2 0.570684 0.306389
                        0.646287
                                         0.683673
                                                           0.671193
                        0.450540
                                         0.683673
                                                           0.850238
3 0.511969 0.620372
                        0.646287
                                         0.683673
                                                           0.671193
4 0.215290 0.620372
                        0.349493
                                         0.683673
                                                           0.142164
   MntSweetProducts MntGoldProds
0
           0.910203
                         0.615202
1
           0.654775
                         0.625582
2
           0.654775
                         0.625582
3
           0.654775
                         0.625582
4
           0.654775
                         0.625582
```

Checking skew after transformation

```
from scipy.stats import skew

for col in skewed_predictors:
    print(f"Skewness of {col}: {skew(data_sansdt[col]):.2f}")

Skewness of Income: 1.57
Skewness of MntWines: 0.58
Skewness of MntFruits: 1.04
Skewness of MntMeatProducts: 0.58
Skewness of MntFishProducts: 0.70
Skewness of MntSweetProducts: 0.95
Skewness of MntGoldProds: 0.89
```

Examining the second assumption of regression modelling - Limited Multicollinearity

```
from scipy.cluster.hierarchy import linkage, dendrogram
import numpy as np
# Compute linkage for clustering
linkage matrix = linkage(correlation matrix, method='average')
# Plot dendrogram
plt.figure(figsize=(12, 8))
dendrogram(linkage matrix, labels=correlation matrix.columns,
leaf rotation=90)
plt. title("Dendrogram of Correlation Matrix")
plt.show()
# Reorder correlation matrix based on clustering
ordered indices = dendrogram(linkage matrix, no plot=True)['leaves']
reordered corr = correlation matrix.iloc[ordered indices,
ordered indices]
# Plot the reordered heatmap
plt.figure(figsize=(20, 14))
sns.heatmap(reordered_corr, annot=True, fmt=".2f", cmap="coolwarm",
cbar=True, square=True)
plt.title("Clustered Correlation Matrix")
plt.show()
```


											Clust	ered C	orrela	ition N	/latrix											_		- 1.0
NumDealsPurchases -	1.00	0.35	0.44	-0.01	0.24	0.07	-0.28		0.02	-0.04	0.00	-0.10		-0.13	-0.05	-0.08	-0.10	-0.01	-0.02	0.22	0.03	0.07	0.00	-0.02	0.00			
NumWebVisitsMonth -	0.35	1.00	0.42	-0.52	-0.05	-0.43	-0.30		-0.03	-0.01	-0.00	0.01	-0.28	-0.20	-0.10	-0.12	-0.13	-0.07	0.06	0.28	-0.04	-0.12	0.02	-0.03	-0.02			
Total_Children -	0.44	0.42	1.00	-0.44	-0.15	-0.32	-0.30	-0.22	-0.09	-0.07		-0.13	-0.28	-0.23	-0.09	-0.12	-0.11	-0.07	-0.02	-0.03	0.06	0.09	0.03	-0.02	0.02			
NumCatalogPurchases -	-0.01	-0.52	-0.44	1.00	0.39	0.52	0.29	0.23	0.14	0.10	0.22	0.16	0.32	0.31	0.10	0.13	0.13	0.15	0.10	0.10	0.07	0.13	-0.02	0.01	0.02		9-	0.8
NumWebPurchases -	0.24	-0.05	-0.15	0.39	1.00	0.52	-0.07	-0.13	0.16	0.03	0.15	0.04	0.14	0.16	0.08	0.06	0.01	0.09	0.04	0.19	0.08	0.16	-0.01	-0.00	-0.01			
NumStorePurchases -	0.07	-0.43	-0.32	0.52	0.52	1.00	0.02	-0.05	0.18	0.09	0.04	0.08	0.21	0.18	0.06	0.10	0.06	0.07	-0.07	0.11	0.07	0.14	-0.01	0.00	-0.00			
Income -	-0.28	-0.30	-0.30	0.29	-0.07	0.02	1.00	0.33	0.06	0.04	0.17	0.19	0.38	0.27	0.14	0.10	0.10	0.02	0.03	-0.05	-0.02	-0.08	-0.01	0.01	-0.00			- 0.6
MntMeatProducts -			-0.22	0.23	-0.13	-0.05	0.33	1.00	0.01	0.01	0.16	0.08	0.22	0.20	0.09	0.10	0.11	0.00	0.00	0.01	0.02	-0.09	-0.03	0.03	0.04			
AcceptedCmp4 -	0.02	-0.03	-0.09	0.14	0.16	0.18	0.06	0.01	1.00	0.30	0.18	0.27	0.31	0.24	0.01	-0.05	-0.01	-0.01	-0.08	0.02	0.06	0.07	-0.03	0.01	0.02			
AcceptedCmp2 -	-0.04	-0.01	-0.07	0.10	0.03	0.09	0.04	0.01	0.30	1.00	0.17	0.21	0.22	0.18	-0.02	-0.04	-0.04	0.00	0.07	0.01	0.02	0.01	-0.01	0.02	-0.00			
Response -	0.00	-0.00		0.22	0.15	0.04	0.17	0.16	0.18	0.17	1.00	0.21	0.32	0.30	0.03	0.03	0.02	0.05	0.25	0.20	0.09	-0.02	-0.00	-0.01	-0.20			- 0.4
MntWines -	-0.10	0.01	-0.13	0.16	0.04	0.08	0.19	0.08	0.27	0.21	0.21	1.00	0.40	0.23	-0.03	-0.01	-0.06	0.04	0.06	0.10	0.13	-0.00	-0.02	-0.02	0.01			
AcceptedCmp5 -		-0.28	-0.28	0.32	0.14	0.21	0.38	0.22	0.31	0.22	0.32	0.40	1.00	0.41	0.08	0.05	-0.01	0.07	0.08	-0.00	0.03	-0.02	-0.01	0.01	0.00			
AcceptedCmp1 -	-0.13		-0.23	0.31	0.16	0.18	0.27	0.20	0.24	0.18	0.30	0.23	0.41	1.00	0.09	0.08	0.12	0.06	0.10	-0.04	-0.01	0.01	-0.03	-0.02	-0.02		-	- 0.2
MntSweetProducts -	-0.05	-0.10	-0.09	0.10	0.08	0.06	0.14	0.09	0.01	-0.02	0.03	-0.03	0.08	0.09	1.00	0.22	0.20	0.03	0.01	0.03	-0.08	-0.02	-0.00	0.02	0.01			
MntFruits -	-0.08	-0.12	-0.12	0.13	0.06	0.10	0.10	0.10	-0.05	-0.04	0.03	-0.01	0.05	0.08	0.22	1.00	0.24	0.07	0.02	-0.01	-0.03	-0.04	-0.00	-0.02	-0.05			
MntFishProducts -	-0.10	-0.13	-0.11	0.13	0.01	0.06	0.10	0.11	-0.01	-0.04	0.02	-0.06	-0.01	0.12	0.20	0.24	1.00	0.08	0.01	0.00	-0.08	-0.01	-0.02	0.00	-0.00			- 0.0
MntGoldProds -	-0.01	-0.07	-0.07	0.15	0.09	0.07	0.02	0.00	-0.01	0.00	0.05	0.04	0.07	0.06	0.03	0.07	0.08	1.00	0.07	0.04	-0.03	0.02	0.00	-0.02	0.01			
AcceptedCmp3 -	-0.02	0.06	-0.02	0.10	0.04	-0.07	0.03	0.00	-0.08	0.07	0.25	0.06	0.08	0.10	0.01	0.02	0.01	0.07	1.00	-0.01	0.01	-0.06	0.01	-0.03	-0.03			
Customer_Tenure -																												
Education -																												0.2
						0.14																						
Complain -																								0.00				
Marital_Status -																									0.01			-0.4
Recency -																									1.00			
receitly -	0.00	1	0.02	0.02	0.01	0.00	1 0	0.04	1		1 0	1 50	1	-	0.01	1 92	97	1 60	,	- 0	-0.01		1	1	,			
	NumDealsPurchase	NumWebVisitsMonth	Total_Children	NumCatalogPurchase	NumWebPurchase	NumStorePurchase	Incom	MntMeatProduct	AcceptedCmp4	AcceptedCmp2	Respons	MntWine	AcceptedCmp5	AcceptedCmp	MntSweetProduct	MntFruit	MntFishProduct	MntGoldProd	AcceptedCmp3	Customer_Tenun	Educatio	Age	Complain	Marital_Status	Recency			

```
from statsmodels.stats.outliers_influence import
variance_inflation_factor
X = data_sansdt.drop(columns=['Response'])

# Replace missing values
X.fillna(X.median(), inplace=True)

# Drop constant columns
constant_cols = [col for col in X.columns if X[col].std() == 0]
X.drop(columns=constant_cols, inplace=True)

# Calculate VIF for each feature
vif_data = pd.DataFrame()
vif_data['Feature'] = X.columns
```

```
vif data['VIF'] = [variance inflation factor(X.values, i) for i in
range(X.shape[1])]
print(vif data)
                Feature
                              VIF
0
              Education 1.090374
1
         Marital Status 1.009655
2
                 Income 9.953536
3
                Recency 1.010645
4
               MntWines 8.823181
5
              MntFruits 8.648300
6
        MntMeatProducts 9.890597
7
        MntFishProducts 9.174705
8
       MntSweetProducts 8.442964
9
           MntGoldProds 6.763200
10
      NumDealsPurchases 1.656132
        NumWebPurchases 1.692045
11
12
   NumCatalogPurchases 2.194465
13
      NumStorePurchases 2.041905
14
      NumWebVisitsMonth 2.349884
15
           AcceptedCmp3
                        1.179194
16
           AcceptedCmp4 1.392726
17
           AcceptedCmp5 1.717832
18
           AcceptedCmp1 1.420706
19
           AcceptedCmp2 1.171125
20
               Complain 1.015093
21
        Customer Tenure 1.268243
22
         Total Children 1.790751
23
                    Age 1.131812
```

Data Splicing

```
# Split data into train-test sets
X = data sansdt.drop('Response', axis=1)
y = data_sansdt['Response']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.3, stratify=y, random state=42)
X train.head()
      Education Marital Status
                                  Income
                                                    MntWines
                                           Recency
MntFruits \
2211 -0.352454
                       1.182503 0.889335 -0.242301
                                                    0.491196
0.752421
925
       0.538952
                       1.182503 0.511969 1.692615
                                                    0.620372
0.040490
                       0.254202 0.511969 -1.693488
160
       0.538952
                                                    0.620372
0.646287
2014 -0.352454
                       0.254202 0.492917 -0.622374
                                                    1.113723
```

1.14825 725 - 0.64628	0.352454	-0.674098	0.511969	1.727167	0.620372	
	ntMeatProducts	MntFishPr	oducts Mn	tSweetProdu	ucts Mnt	GoldProds
\ 2211	1.408681	0.	698818	0.654	4775	0.160760
925	0.201308	0.	671193	0.654	4775	0.863408
160	0.683673	0.	671193	0.654	4775	0.625582
2014	0.749022	0.	076677	0.412	2579	0.625582
725	0.683673	0.	671193	0.654	4775	0.625582
No. 2211 925 160 2014 725	umDealsPurchas -0.6881 0.3517 -0.6881 -0.6881 -0.6881	76 13 76 -	urchases 0.698715 0.698715 1.125881 0.760962 0.760962		Purchases -0.229327 -0.571082 -0.912837 2.162957 -0.912837	\
N	umStorePurchas	es NumWebV	isitsMonth	Accepted	Cmp3 Acc	eptedCmp4
2211	0.9842	94	-1.368784		0	Θ
925	0.0612	32	1.105635		0	0
160	-1.1695	18	0.693232		0	0
2014	2.2150	44	-0.131574		0	Θ
725	-0.8618	30	0.280829		0	0
	cceptedCmp5 A r_Tenure \ 0	cceptedCmp1	•	Cmp2 Comp ³	lain 0	-
1.03524 925	0	0		0	0	
1.54889 160	3	Θ		0	0	
0.04683 2014		0		0	0	
1.66747 725		0		0	0	
1.64298		0		U	O T	
T	otal_Children	Age				

2211 925 160 2014 725	-1.264914 2.739742	1 -1.032923 1 -0.861947 2 0.933297 1 0.933297 1 0.249394				
X_tes	t.head()					
MntFr	Education Mar	rital_Status	Income	Recency	MntWi	nes
1359 0.646		0.254202	0.511969	-0.518718	0.620	372
	-2.135266	-0.674098	0.419643	-1.658936	0.620	372
1839 0.646	1.430358	-1.602398	0.184051	0.206876	1.059	719
	-0.352454	1.182503	0.489537	1.623511	1.013	451
561 1.431	-0.352454	0.254202	0.775604	0.897917	0.620	372
	MntMeatProduct	s MntFishPr	oducts Mn	tSweetProd	ucts	MntGoldProds
\ 1359	0.68367	73 0.	671193	0.65	4775	0.625582
1779	0.68367	'3 1.	041494	0.91	9956	0.625582
1839	0.70593	34 0.	531107	0.56	2035	1.266595
1151	0.12164	11 0.	680486	1.12	1449	0.625582
561	1.49230	0.	316259	1.28	2339	0.625582
	NumDealsPurcha	ases NumWebP	urchases	NumCatalog	Purcha	ses \
1359 1779	0.351 -0.688		0.760962 0.760962		-0.571 0.112	
1839 1151	4.511	L271	1.428553		0.795	937
561	0.351 -1.208		2.158392 0.698715		1.137	
	NumStorePurcha	ases NumWebV	isitsMonth/	Accepted	Cmp3	AcceptedCmp4
\ 1359	-0.554	1143	0.280829		0	0
1779	2.215	5044	-1.781187		0	0
1839	0.984	1294	0.280829		Θ	0
1151	0.368	3919	0.280829		0	0

561	0.36	8919	-1.368784		0	(9
	eptedCmp5	AcceptedCmp	1 AcceptedCmp	o2 C	omplain		
Customer_			0	0	0		
1359 0.422559	0		9	0	0	-	
1779	0		9	0	0	-	
0.106336			_	•			
1839 1.440191	0		9	0	0		
1151	0		9	0	0		
1.558774							
561	0		9	0	0		
0.120949							
	al_Childre	_					
1359 1779		7 -0.178045 4 -1.289387					
1839		1 1.275248					
1151	0.06997	1 0.420370					
561	-1.26491	4 -0.947435					

Logistic Regression Model

```
import statsmodels.api as sm
import pandas as pd
# Add a constant to the predictors (for intercept)
X_train_sm = sm.add_constant(X_train)
# Fit the logistic regression model
logit model = sm.Logit(y train, X train sm)
logit result = logit model.fit()
# Print the summary
print(logit_result.summary())
Optimization terminated successfully.
        Current function value: 0.272434
        Iterations 8
                        Logit Regression Results
______
_____
Dep. Variable:
                         Response No. Observations:
1549
                            Logit Df Residuals:
Model:
```

1524						
Method:			MLE Df	Model:		
24						
Date:		Thu, 21 Nov	2024 Pse	udo R-squ.:		
0.3566 Time:		21.2	32:07 Log	-Likelihood:		
-422.00		21.3	52.07 LUG	-LIKE (IIIOOU.		
converged:			True LL-	Null:		
-655.90						
Covariance	Type:	nonro	bust LLR	p-value:		
7.882e-84						
						====
		coef	std err	Z	P> z	
[0.025	0.975]				' '	
		4 6000	0 602	7 777	0.000	
const 5.871	-3.507	-4.6890	0.603	-7.777	0.000	-
Education	-3.307	0.2652	0.097	2.736	0.006	
0.075	0.455	0.2052	0.037	2.750	0.000	
0.0/3	0.733					

 00 - 06 1 -
6 -
6 -
6 -
1 -
.9 -
.0
- 0
1 -
т -
19 -
3
2
-
- 0
5 -
1
1
1
5 -
10 -
J
:0 -
9 9 3 9 3

AcceptedCmp3	2.0571	0.263	7.816	0.000	
1.541 2.573					
AcceptedCmp4	0.8895	0.332	2.675	0.007	
0.238 1.541					
AcceptedCmp5	1.4826	0.347	4.278	0.000	
0.803 2.162					
AcceptedCmp1	1.1984	0.355	3.374	0.001	
0.502 1.895					
AcceptedCmp2	1.1976	0.637	1.881	0.060	-
0.050 2.445					
Complain	0.4513	0.884	0.511	0.610	-
1.281 2.183					
Customer_Tenure	0.8997	0.110	8.197	0.000	
0.685 1.115					
Total_Children	-0.3735	0.133	-2.804	0.005	-
0.635 -0.112					
Age	0.0105	0.094	0.111	0.912	-
0.175 0.196					

logit_result.params.sort_values(ascending = False)

AcceptedCmp3	2.057070
AcceptedCmp5	1.482601
MntMeatProducts	1.290520
AcceptedCmp1	1.198401
AcceptedCmp2	1.197637
Customer Tenure	0.899668
Accepted mp4	0.889458
MntWines	0.687785
Complain	0.451253
Income	0.362861
NumWebPurchases	0.360328
MntFishProducts	0.337670
Education	0.265183
NumDealsPurchases	0.249827
MntFruits	0.242478
NumCatalogPurchases	0.162336
NumWebVisitsMonth	0.085186
Age	0.010462
Marital Status	-0.070877
MntSweetProducts	-0.095783
MntGoldProds	-0.286521
Total Children	-0.373522
Recency	-0.793045
NumStorePurchases	-0.793099
const	-4.688960
dtype: float64	11000000
42,001 100001	

```
import matplotlib.pyplot as plt

# Assuming logit_result.params exists, create sorted coefficients
sorted_coefficients = logit_result.params.sort_values(ascending=False)

# Plot the coefficients as a colorful bar plot
plt.figure(figsize=(10, 6))
sorted_coefficients[0:12].plot(kind='bar', color='skyblue',
edgecolor='black')
plt.title('Logistic Regression Coefficients', fontsize=16)
plt.xlabel('Features', fontsize=14)
plt.ylabel('Coefficient Value', fontsize=14)
plt.xticks(rotation=45, fontsize=10, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report

from sklearn.linear_model import LogisticRegression
logistic=LogisticRegression()
logistic.fit(X_train,y_train)
y_pred=logistic.predict(X_test)
```

Logistic Regression Metrics

```
score=accuracy_score(y_pred,y_test)
print(f" The Logisitc Regression Model Metrics: \n The accuracy is :
{score}")
print(f"The Classification Report is : \n
{classification report(y pred,y test)}")
print(f"The Confusion Matrix is : \n
{confusion_matrix(y_pred,y_test)}")
The Logisitc Regression Model Metrics:
The accuracy is: 0.8855421686746988
The Classification Report is:
               precision recall f1-score support
                                       0.94
                   0.97
                             0.90
                                                  608
           1
                   0.40
                             0.71
                                       0.51
                                                   56
                                       0.89
                                                  664
    accuracy
                   0.69
                             0.81
                                       0.72
                                                  664
   macro avg
weighted avg
                   0.92
                             0.89
                                       0.90
                                                  664
The Confusion Matrix is:
 [[548 60]
 [ 16 40]]
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
# Predict probabilities for the positive class
y pred proba = logistic.predict proba(X test)[:, 1]
# Calculate the ROC curve
fpr, tpr, thresholds = roc curve(y test, y pred proba)
# Calculate the AUC
auc score = roc auc score(y test, y pred proba)
print(f"AUC Score: {auc score:.4f}")
# Plot the ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc score:.4f})")
plt.plot([0, 1], [0, 1], linestyle='--', color='gray') # Diagonal
line
plt.title("Receiver Operating Characteristic (ROC) Curve for the
Logistic Regression Model")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
```

AUC Score: 0.8679

Hyperparameter Tuning and rectifying the Target variable imbalance by assigning weights

```
## Hyperparamter tuning
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
penalty=['l1', 'l2', 'elasticnet']
c_values=[100,10,1.0,0.1,0.01]
solver=['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
class_weight=[{0:w,1:y} for w in [1,10,50,100] for y in [1,10,50,100]]
params=dict(penalty=penalty,C=c_values,solver=solver,class_weight=class_weight)
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
cv=StratifiedKFold()
```

```
grid=GridSearchCV(estimator=model,param grid=params,scoring='accuracy'
,cv=cv)
grid.fit(X train,y train)
GridSearchCV(cv=StratifiedKFold(n splits=5, random state=None,
shuffle=False),
             estimator=LogisticRegression(),
             param_grid={'C': [100, 10, 1.0, 0.1, 0.01],
                          'class weight': [{0: 1, 1: 1}, {0: 1, 1: 10},
                                          \{0: 1, 1: 50\}, \{0: 1, 1:
100},
                                           {0: 10, 1: 1}, {0: 10, 1:
10},
                                           {0: 10, 1: 50}, {0: 10, 1:
100},
                                           {0: 50, 1: 1}, {0: 50, 1:
10},
                                           \{0: 50, 1: 50\}, \{0: 50, 1:
100},
                                           {0: 100, 1: 1}, {0: 100, 1:
10},
                                           {0: 100, 1: 50}, {0: 100, 1:
100}],
                          'penalty': ['l1', 'l2', 'elasticnet'],
                         'solver': ['newton-cg', 'lbfgs', 'liblinear',
'sag',
                                     'saga']},
             scoring='accuracy')
grid.best params
{'C': 1.0, 'class weight': {0: 1, 1: 1}, 'penalty': 'l1', 'solver':
'saga'}
best model = grid.best estimator
# Assuming coefficients are from a grid search fitted logistic
rearession model
grid coefficients = pd.Series(best model.coef .flatten(),
index=X train.columns).sort values(ascending=False)
# Plot the top 12 coefficients as a colorful bar plot
plt.figure(figsize=(10, 6))
grid coefficients[:12].plot(kind='bar', color='skyblue',
edgecolor='black')
plt.title('Top 12 Logistic Regression Coefficients (GridSearchCV)',
fontsize=16)
plt.xlabel('Features', fontsize=14)
plt.ylabel('Coefficient Value', fontsize=14)
plt.xticks(rotation=45, fontsize=10, ha='right')
```

```
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
y pred1=grid.predict(X test)
score=accuracy_score(y_pred1,y_test)
print(f" The Hyperparameter Tuned Logisitc Regression Model Metrics: \
n The accuracy is : {score}")
print(f"The Classification Report is : \n
{classification report(y pred1,y test)}")
print(f"The Confusion Matrix is : \n
{confusion matrix(y pred1,y test)}")
 The Hyperparameter Tuned Logisitc Regression Model Metrics:
The accuracy is: 0.8900602409638554
The Classification Report is:
               precision
                            recall f1-score
                                                support
           0
                   0.97
                             0.91
                                        0.94
                                                   605
           1
                   0.43
                             0.73
                                        0.54
                                                    59
    accuracy
                                        0.89
                                                   664
                   0.70
                             0.82
                                        0.74
                                                   664
   macro avg
weighted avg
                   0.92
                             0.89
                                        0.90
                                                   664
```

```
The Confusion Matrix is:
 [[548 57]
 [ 16 43]]
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
# Predict probabilities for the positive class
y pred probal = grid.predict proba(X test)[:, 1]
# Calculate the ROC curve
fpr, tpr, thresholds = roc curve(y test, y pred probal)
# Calculate the AUC
auc_score = roc_auc_score(y_test, y_pred_probal)
print(f"AUC Score: {auc score:.4f}")
# Plot the ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc score:.4f})")
plt.plot([0, 1], [0, 1], linestyle='--', color='gray') # Diagonal
plt.title("Receiver Operating Characteristic (ROC) Curve of
Hyperparameter tuned Logistic Model using GridsearchCV")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
AUC Score: 0.8706
```

Receiver Operating Characteristic (ROC) Curve of Hyperparameter tuned Logistic Model using GridsearchCV


```
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
import numpy as np
# Predict probabilities for the positive class
y pred probal = grid.predict proba(X test)[:, 1]
# Calculate the ROC curve
fpr, tpr, thresholds = roc curve(y test, y pred probal)
# Calculate the AUC
auc_score = roc_auc_score(y_test, y_pred_probal)
print(f"AUC Score: {auc score: .4f}")
# Plot the ROC curve with limited annotations
fig = plt.figure(figsize=(12, 8))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc_score:.4f})",
marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
# Add limited annotations for thresholds (e.g., every 10th point)
for i, xy in enumerate(zip(fpr, tpr, thresholds)):
    if i % 10 == 0: # Annotate every 10th point
```

```
plt.annotate(f'{np.round(xy[2], 2)}', xy=(xy[0], xy[1]),
fontsize=16, color='green')

# Axis labels and title
plt.title("Receiver Operating Characteristic (ROC) Curve of
Hyperparameter tuned Logistic Regression Model with Threshold
Annotations")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")

# Show legend
plt.legend(loc="lower right")

# Show grid
plt.grid()

# Show the plot
plt.show()

AUC Score: 0.8706
```


Hyperparameter Tuning using randomized search CV and rectifying the Target variable imbalance by assigning weights

```
from sklearn.model selection import RandomizedSearchCV
model=LogisticRegression()
randomcv=RandomizedSearchCV(estimator=model,param distributions=params
, cv=5, scoring='accuracy')
randomcv.fit(X train,y train)
RandomizedSearchCV(cv=5, estimator=LogisticRegression(),
                    param_distributions={'C': [100, 10, 1.0, 0.1,
0.01],
                                          'class weight': [{0: 1, 1: 1},
                                                            {0: 1, 1:
10},
                                                            {0: 1, 1:
50},
                                                            {0: 1, 1:
100},
                                                            {0: 10, 1:
1},
                                                            {0: 10, 1:
10},
                                                            {0: 10, 1:
50},
                                                            {0: 10, 1:
100},
                                                            {0: 50, 1:
1},
                                                            {0: 50, 1:
10},
                                                            {0: 50, 1:
50},
                                                            {0: 50, 1:
100},
                                                            {0: 100, 1:
1},
                                                            {0: 100, 1:
10},
                                                            {0: 100, 1:
50},
                                                            {0: 100, 1:
100}],
                                          'penalty': ['l1', 'l2',
'elasticnet'],
                                          'solver': ['newton-cg',
```

```
'lbfqs',
                                                    'liblinear', 'sag',
                                                    'saga']},
                   scoring='accuracy')
randomcv.best score
0.8760622194383547
randomcv.best params
{'solver': 'liblinear',
 penalty': 'l2',
 'class weight': {0: 50, 1: 50},
 'C': 10}
y pred2=randomcv.predict(X test)
score=accuracy score(y pred2,y test)
print(f" The Random Search CV Hyperparameter Tuned Logisitc Regression
Model Metrics: \n The accuracy is : {score}")
print(f"The Classification Report is : \n
{classification_report(y_pred2,y_test)}")
print(f"The Confusion Matrix is : \n
{confusion matrix(y pred2,y test)}")
The Random Search CV Hyperparameter Tuned Logisitc Regression Model
Metrics:
The accuracy is : 0.8855421686746988
The Classification Report is:
               precision recall f1-score
                                                support
           0
                   0.97
                             0.90
                                       0.94
                                                   606
           1
                   0.41
                                                    58
                             0.71
                                       0.52
    accuracy
                                       0.89
                                                   664
                                       0.73
                                                   664
   macro avq
                   0.69
                             0.80
                   0.92
                             0.89
                                       0.90
                                                   664
weighted avg
The Confusion Matrix is:
 [[547 59]
 [ 17 41]]
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
import numpy as np
# Predict probabilities for the positive class
y pred proba2 = randomcv.predict proba(X test)[:, 1]
# Calculate the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba2)
```

```
# Calculate the AUC
auc_score = roc_auc_score(y_test, y_pred_proba2)
print(f"AUC Score: {auc score:.4f}")
# Plot the ROC curve
plt.figure(figsize=(14, 8))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc score: .4f})")
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label="Random")
Model") # Diagonal line
# Add limited annotations for thresholds (e.g., every 50th point)
for i in range(0, len(thresholds), 10): # Change step size to adjust
annotation density
    plt.annotate(f'{np.round(thresholds[i], 2)}', (fpr[i], tpr[i]),
fontsize=14, color='green')
# Axis labels and title
plt.title("Receiver Operating Characteristic (ROC) of RandomCV
Hyperparameter Tuned Logistic Regression Model with thresholds")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
# Add legend
plt.legend(loc="lower right")
# Add grid
plt.grid()
# Show the plot
plt.show()
AUC Score: 0.8668
```


Support Vector Machine

```
from sklearn.svm import SVC
svcl=SVC(kernel='linear', probability=True)
svcl.fit(X train,y train)
SVC(kernel='linear', probability=True)
# Get feature names and coefficients
coefficients = svcl.coef_[0] # Coefficients for the first class
features = X train.columns # Feature names (if X train is a
DataFrame)
# Create a DataFrame for better visualization
coef df = pd.DataFrame({'Feature': features, 'Coefficient':
coefficients})
coef df = coef df.sort values(by='Coefficient', ascending=False)
print("Coefficients for Predictors:")
print(coef df)
Coefficients for Predictors:
                Feature Coefficient
15
           AcceptedCmp3
                            1.268511
17
           AcceptedCmp5
                            0.961150
        MntMeatProducts
                            0.928353
6
```

```
18
           AcceptedCmp1
                            0.905359
4
               MntWines
                            0.596882
16
           AcceptedCmp4
                            0.513408
21
        Customer Tenure
                            0.441372
7
        MntFishProducts
                            0.392129
2
                            0.381166
                 Income
19
           AcceptedCmp2
                            0.268985
5
              MntFruits
                            0.259621
20
               Complain
                            0.211284
11
        NumWebPurchases
                            0.192302
10
      NumDealsPurchases
                            0.137807
0
              Education
                            0.080210
12
    NumCatalogPurchases
                            0.046844
23
                            0.044956
14
      NumWebVisitsMonth
                           -0.003640
9
           MntGoldProds
                           -0.039200
1
         Marital Status
                           -0.049933
22
         Total_Children
                           -0.188926
3
                Recency
                           -0.355306
8
       MntSweetProducts
                           -0.381656
13
      NumStorePurchases
                          -0.417440
from sklearn.metrics import accuracy score, confusion_matrix,
classification report, roc curve, roc auc score
import matplotlib.pyplot as plt
# Predictions
y predl = svcl.predict(X test)
# Accuracy
print("Accuracy of the SVM Linear Kernel is:", accuracy score(y test,
y predl))
# Confusion Matrix
print("\nConfusion Matrix of the SVM Linear Kernel is:")
print(confusion matrix(y test, y predl))
# Classification Report
print("\nClassification Report of the SVM Linear Kernel is:")
print(classification report(y test, y predl))
# Predict probabilities for ROC curve
y pred proba = svcl.predict proba(X test)[:, 1]
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
auc score = roc auc score(y test, y pred proba)
# Print AUC
print(f"\nAUC Score: {auc score:.4f}")
```

```
# Plot ROC Curve
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc score: .4f})",
marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
plt.title("Receiver Operating Characteristic (ROC) Curve for Linear
Kernel SVC")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
Accuracy of the SVM Linear Kernel is: 0.8689759036144579
Confusion Matrix of the SVM Linear Kernel is:
[[530 34]
[ 53 47]]
Classification Report of the SVM Linear Kernel is:
              precision
                           recall f1-score
           0
                   0.91
                             0.94
                                       0.92
                                                   564
           1
                   0.58
                             0.47
                                       0.52
                                                   100
    accuracy
                                       0.87
                                                   664
                                       0.72
                   0.74
                             0.70
   macro avg
                                                   664
weighted avg
                   0.86
                             0.87
                                       0.86
                                                   664
AUC Score: 0.8556
```


Radial Basis Function Kernel Support Vector Classifier

```
# Train SVC with RBF kernel and probability=True
rbf = SVC(kernel='rbf', probability=True)
rbf.fit(X_train, y_train)
SVC(probability=True)
# Predictions
y pred rbf = rbf.predict(X test)
# Accuracy
print("Accuracy of the SVM RBF Kernel is:", accuracy score(y test,
y pred rbf))
# Confusion Matrix
print("\nConfusion Matrix of the SVM RBF Kernel is:")
print(confusion matrix(y test, y pred rbf))
# Classification Report
print("\nClassification Report of the SVM RBF Kernel is:")
print(classification_report(y_test, y_pred_rbf))
Accuracy of the SVM RBF Kernel is: 0.8795180722891566
Confusion Matrix of the SVM RBF Kernel is:
```

```
[[553 11]
[ 69 31]]
Classification Report of the SVM RBF Kernel is:
              precision recall f1-score support
           0
                   0.89
                             0.98
                                       0.93
                                                  564
           1
                   0.74
                             0.31
                                       0.44
                                                  100
                                       0.88
                                                  664
    accuracy
                   0.81
                             0.65
                                       0.68
                                                  664
   macro avg
                   0.87
                             0.88
                                       0.86
                                                  664
weighted avg
# Predict probabilities for ROC curve
y pred proba rbf = rbf.predict proba(X test)[:, 1]
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba_rbf)
auc_score = roc_auc_score(y_test, y_pred_proba_rbf)
# Print AUC
print(f"\nAUC Score: {auc score:.4f}")
# Plot ROC Curve
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc score:.4f})",
marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
plt.title("Receiver Operating Characteristic (ROC) Curve (RBF
Kernel)")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
AUC Score: 0.8825
```


Polynomial Kernel Support Vector Classifier

```
# Initialize SVC with Polynomial kernel and probability=True
poly = SVC(kernel='poly', probability=True)
# Fit the model to the training data
poly.fit(X train, y train)
SVC(kernel='poly', probability=True)
# Predict class labels on the test set
y pred poly = poly.predict(X test)
# Predict probabilities for ROC curve
y pred proba poly = poly.predict proba(X test)[:, 1]
# Calculate accuracy
accuracy_poly = accuracy_score(y_test, y_pred_poly)
print(f"Accuracy (Poly Kernel): {accuracy poly:.4f}")
# Generate confusion matrix
conf matrix poly = confusion matrix(y test, y pred poly)
print("\nConfusion Matrix (Poly Kernel):")
print(conf matrix poly)
# Generate classification report
```

```
class_report_poly = classification_report(y_test, y_pred_poly)
print("\nClassification Report (Poly Kernel):")
print(class_report_poly)
Accuracy (Poly Kernel): 0.8795
Confusion Matrix (Poly Kernel):
[[549 15]
[ 65 35]]
Classification Report (Poly Kernel):
              precision recall f1-score
                                              support
           0
                   0.89
                             0.97
                                       0.93
                                                  564
           1
                   0.70
                             0.35
                                       0.47
                                                   100
                                       0.88
                                                  664
    accuracy
                   0.80
                             0.66
                                       0.70
                                                  664
   macro avq
weighted avg
                   0.86
                             0.88
                                       0.86
                                                  664
# Compute ROC curve
fpr poly, tpr poly, thresholds poly = roc curve(y test,
y pred proba poly)
# Compute AUC score
auc_score_poly = roc_auc_score(y_test, y_pred_proba_poly)
print(f"\nAUC Score (Poly Kernel): {auc score poly:.4f}")
AUC Score (Poly Kernel): 0.8504
# Plot ROC Curve
plt.figure(figsize=(10, 6))
plt.plot(fpr_poly, tpr_poly, label=f"ROC Curve (AUC =
{auc_score_poly:.4f})", marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
plt.title("Receiver Operating Characteristic (ROC) Curve (Poly
Kernel)")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


Sigmoid Kernel Support Vector Classifier

```
# Initialize SVC with Sigmoid kernel and probability=True
sigmoid = SVC(kernel='sigmoid', probability=True)
# Fit the model to the training data
sigmoid.fit(X train, y train)
SVC(kernel='sigmoid', probability=True)
# Predict class labels on the test set
y pred sigmoid = sigmoid.predict(X test)
# Predict probabilities for ROC curve
y pred proba sigmoid = sigmoid.predict proba(X test)[:, 1]
# Calculate accuracy
accuracy_sigmoid = accuracy_score(y_test, y_pred_sigmoid)
print(f"Accuracy (Sigmoid Kernel): {accuracy sigmoid:.4f}")
# Generate confusion matrix
conf matrix sigmoid = confusion matrix(y test, y pred sigmoid)
print("\nConfusion Matrix (Sigmoid Kernel):")
print(conf matrix sigmoid)
# Generate classification report
```

```
class_report_sigmoid = classification_report(y_test, y_pred_sigmoid)
print("\nClassification Report (Sigmoid Kernel):")
print(class_report_sigmoid)
Accuracy (Sigmoid Kernel): 0.8223
Confusion Matrix (Sigmoid Kernel):
[[515 49]
[ 69 31]]
Classification Report (Sigmoid Kernel):
              precision recall f1-score
                                              support
           0
                   0.88
                             0.91
                                       0.90
                                                  564
           1
                   0.39
                             0.31
                                       0.34
                                                  100
                                       0.82
                                                  664
    accuracy
                   0.63
                             0.61
                                       0.62
                                                  664
   macro avq
weighted avg
                   0.81
                             0.82
                                       0.81
                                                  664
# Compute ROC curve
fpr sigmoid, tpr sigmoid, thresholds sigmoid = roc curve(y test,
y pred proba sigmoid)
# Compute AUC score
auc score sigmoid = roc auc score(y test, y pred proba sigmoid)
print(f"\nAUC Score (Sigmoid Kernel): {auc score sigmoid:.4f}")
AUC Score (Sigmoid Kernel): 0.6982
# Plot ROC Curve
plt.figure(figsize=(10, 6))
plt.plot(fpr sigmoid, tpr sigmoid, label=f"ROC Curve (AUC =
{auc_score_sigmoid:.4f})", marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
plt.title("Receiver Operating Characteristic (ROC) Curve (Sigmoid
Kernel)")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


Hyperparameter Tuning With SVC

```
from sklearn.model_selection import GridSearchCV
# defining parameter range
param grid = \{'C': [0.1, 1, 10, 100, 1000],
              'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
              'kernel': ['rbf']}
gridsvc=GridSearchCV(SVC(probability=True),param grid=param grid,refit
=True, cv=5, verbose=3)
gridsvc.fit(X train,y train)
Fitting 5 folds for each of 25 candidates, totalling 125 fits
[CV 1/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.852 total
time=
        0.9s
[CV 2/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.848 total
time=
        0.9s
[CV 3/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.848 total
time=
        0.9s
[CV 4/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.848 total
time=
        0.8s
[CV 5/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.851 total
        0.8s
time=
[CV 1/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.852 total
```

```
0.3s
time=
[CV 2/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.848 total
time=
        0.3s
[CV 3/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.848 total
time=
       0.3s
[CV 4/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.848 total
        0.3s
[CV 5/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.851 total
time=
        0.3s
[CV 1/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 3/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
      0.2s
[CV 4/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.851 total
       0.2s
[CV 1/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 3/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 4/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.851 total
time=
      0.2s
[CV 1/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.848 total
        0.2s
[CV 3/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 4/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.851 total
time=
        0.2s
[CV 1/5] END .........C=1, gamma=1, kernel=rbf;, score=0.865 total
time=
        0.8s
[CV 2/5] END .........C=1, gamma=1, kernel=rbf;, score=0.861 total
time=
       0.8s
[CV 3/5] END .........C=1, gamma=1, kernel=rbf;, score=0.858 total
time=
        0.9s
[CV 4/5] END .........C=1, gamma=1, kernel=rbf;, score=0.861 total
        0.9s
[CV 5/5] END .........C=1, gamma=1, kernel=rbf;, score=0.861 total
time=
        0.8s
```

```
[CV 1/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.868 total
time=
        0.3s
[CV 2/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.881 total
time=
        0.3s
[CV 3/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.855 total
time=
       0.3s
[CV 4/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.874 total
time=
       0.3s
[CV 5/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.864 total
time=
       0.3s
[CV 1/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.852 total
time=
       0.2s
[CV 2/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 3/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 4/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.851 total
time=
       0.2s
[CV 1/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.852 total
time=
        0.3s
[CV 2/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.848 total
time=
       0.3s
[CV 3/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.848 total
       0.3s
[CV 4/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.851 total
time=
        0.2s
[CV 1/5] END .....C=1, gamma=0.0001, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END .....C=1, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 3/5] END .....C=1, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 4/5] END .....C=1, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 5/5] END .....C=1, gamma=0.0001, kernel=rbf;, score=0.851 total
        0.2s
[CV 1/5] END ......C=10, gamma=1, kernel=rbf;, score=0.865 total
time=
        0.9s
[CV 2/5] END ......C=10, gamma=1, kernel=rbf;, score=0.855 total
time=
       0.9s
[CV 3/5] END ......C=10, gamma=1, kernel=rbf;, score=0.858 total
time=
        0.9s
[CV 4/5] END ......C=10, gamma=1, kernel=rbf;, score=0.858 total
time=
       0.9s
[CV 5/5] END ......C=10, gamma=1, kernel=rbf;, score=0.861 total
```

```
time=
        0.8s
[CV 1/5] END ......C=10, gamma=0.1, kernel=rbf;, score=0.839 total
        0.4s
time=
[CV 2/5] END ......C=10, gamma=0.1, kernel=rbf;, score=0.881 total
time=
       0.4s
[CV 3/5] END ......C=10, gamma=0.1, kernel=rbf;, score=0.865 total
time=
        0.4s
[CV 4/5] END ......C=10, gamma=0.1, kernel=rbf;, score=0.845 total
time=
        0.4s
[CV 5/5] END ......C=10, gamma=0.1, kernel=rbf;, score=0.858 total
time=
        0.4s
[CV 1/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.868 total
time=
        0.2s
[CV 2/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.897 total
time=
       0.3s
[CV 3/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.874 total
time=
        0.2s
[CV 4/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.858 total
time=
       0.2s
[CV 5/5] END .....C=10, gamma=0.01, kernel=rbf;, score=0.887 total
time=
        0.2s
[CV 1/5] END .....C=10, gamma=0.001, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END .....C=10, gamma=0.001, kernel=rbf;, score=0.848 total
        0.2s
time=
[CV 3/5] END .....C=10, gamma=0.001, kernel=rbf;, score=0.848 total
time=
        0.3s
[CV 4/5] END .....C=10, gamma=0.001, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 5/5] END .....C=10, gamma=0.001, kernel=rbf;, score=0.851 total
time=
        0.2s
[CV 1/5] END ....C=10, gamma=0.0001, kernel=rbf;, score=0.852 total
time=
        0.2s
[CV 2/5] END ....C=10, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 3/5] END ....C=10, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 4/5] END ....C=10, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END ....C=10, gamma=0.0001, kernel=rbf;, score=0.851 total
time=
        0.2s
[CV 1/5] END ......C=100, gamma=1, kernel=rbf;, score=0.865 total
time=
       0.8s
[CV 2/5] END ......C=100, gamma=1, kernel=rbf;, score=0.855 total
time=
        0.8s
[CV 3/5] END ......C=100, gamma=1, kernel=rbf;, score=0.858 total
        0.8s
[CV 4/5] END ......C=100, gamma=1, kernel=rbf;, score=0.858 total
time=
        0.9s
```

```
[CV 5/5] END ......C=100, gamma=1, kernel=rbf;, score=0.861 total
time=
        0.9s
[CV 1/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.832 total
time=
        0.4s
[CV 2/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.868 total
time=
        0.4s
[CV 3/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.855 total
time=
        0.4s
[CV 4/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.823 total
time=
       0.4s
[CV 5/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.845 total
time=
        0.4s
[CV 1/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.868 total
time=
        0.4s
[CV 2/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.884 total
time=
        0.4s
[CV 3/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.871 total
time=
        0.4s
[CV 4/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        0.3s
[CV 5/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.880 total
time=
        0.4s
[CV 1/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.874 total
time=
       0.3s
[CV 2/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.897 total
        0.3s
[CV 3/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.861 total
time=
        0.3s
[CV 4/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.861 total
        0.3s
time=
[CV 5/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.890 total
time=
        0.3s
[CV 1/5] END ...C=100, gamma=0.0001, kernel=rbf;, score=0.852 total
time=
       0.3s
[CV 2/5] END ...C=100, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.3s
[CV 3/5] END ...C=100, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
       0.2s
[CV 4/5] END ...C=100, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 5/5] END ...C=100, gamma=0.0001, kernel=rbf;, score=0.848 total
time=
        0.2s
[CV 1/5] END ......C=1000, gamma=1, kernel=rbf;, score=0.865 total
time=
        0.8s
[CV 2/5] END ......C=1000, gamma=1, kernel=rbf;, score=0.855 total
time=
        0.9s
[CV 3/5] END ......C=1000, gamma=1, kernel=rbf;, score=0.858 total
time=
       0.8s
[CV 4/5] END ......C=1000, gamma=1, kernel=rbf;, score=0.858 total
```

```
0.9s
time=
[CV 5/5] END ......C=1000, gamma=1, kernel=rbf;, score=0.861 total
        0.9s
time=
[CV 1/5] END .....C=1000, gamma=0.1, kernel=rbf;, score=0.835 total
       0.4s
[CV 2/5] END .....C=1000, gamma=0.1, kernel=rbf;, score=0.839 total
        0.4s
[CV 3/5] END .....C=1000, gamma=0.1, kernel=rbf;, score=0.842 total
time=
        0.4s
[CV 4/5] END .....C=1000, gamma=0.1, kernel=rbf;, score=0.816 total
time=
        0.4s
[CV 5/5] END .....C=1000, gamma=0.1, kernel=rbf;, score=0.854 total
time=
        0.4s
[CV 1/5] END ....C=1000, gamma=0.01, kernel=rbf;, score=0.848 total
time=
        1.2s
[CV 2/5] END ....C=1000, gamma=0.01, kernel=rbf;, score=0.887 total
time=
        1.2s
[CV 3/5] END ....C=1000, gamma=0.01, kernel=rbf;, score=0.868 total
       1.3s
[CV 4/5] END ....C=1000, gamma=0.01, kernel=rbf;, score=0.842 total
time=
        1.1s
[CV 5/5] END ....C=1000, gamma=0.01, kernel=rbf;, score=0.871 total
time=
        1.3s
[CV 1/5] END ...C=1000, gamma=0.001, kernel=rbf;, score=0.861 total
time=
        0.4s
[CV 2/5] END ...C=1000, gamma=0.001, kernel=rbf;, score=0.897 total
time=
        0.4s
[CV 3/5] END ...C=1000, gamma=0.001, kernel=rbf;, score=0.865 total
time=
      0.4s
[CV 4/5] END ...C=1000, gamma=0.001, kernel=rbf;, score=0.861 total
        0.4s
time=
[CV 5/5] END ...C=1000, gamma=0.001, kernel=rbf;, score=0.896 total
        0.4s
[CV 1/5] END ..C=1000, gamma=0.0001, kernel=rbf;, score=0.874 total
time=
        0.3s
[CV 2/5] END ..C=1000, gamma=0.0001, kernel=rbf;, score=0.900 total
time=
        0.3s
[CV 3/5] END ..C=1000, gamma=0.0001, kernel=rbf;, score=0.858 total
time=
       0.3s
[CV 4/5] END ..C=1000, gamma=0.0001, kernel=rbf;, score=0.868 total
time=
        0.2s
[CV 5/5] END ..C=1000, gamma=0.0001, kernel=rbf;, score=0.893 total
time=
       0.3s
GridSearchCV(cv=5, estimator=SVC(probability=True),
             param_grid={'C': [0.1, 1, 10, 100, 1000],
                          'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                         'kernel': ['rbf']},
             verbose=3)
```

```
# Print the best parameters
print("Best Parameters:", gridsvc.best params )
Best Parameters: {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
# Access the best model
best svc = gridsvc.best estimator
best svc
SVC(C=1000, gamma=0.0001, probability=True)
## Prediction with hyperparameter tuned SVC model
y pred4=gridsvc.predict(X test)
# Accuracy
print("Accuracy of the hyperparameter tuned SVC is:",
accuracy score(y test, y pred4))
# Confusion Matrix
print("\nConfusion Matrix of the hyperparameter tuned SVC is:")
print(confusion matrix(y test, y pred4))
# Classification Report
print("\nClassification Report of the hyperparameter tuned SVC is:")
print(classification report(y test, y pred4))
Accuracy of the hyperparameter tuned SVC is: 0.8870481927710844
Confusion Matrix of the hyperparameter tuned SVC is:
[[552 12]
[ 63 3711
Classification Report of the hyperparameter tuned SVC is:
              precision recall f1-score
           0
                   0.90
                             0.98
                                       0.94
                                                  564
                   0.76
           1
                             0.37
                                       0.50
                                                  100
                                       0.89
                                                  664
    accuracy
   macro avg
                   0.83
                             0.67
                                       0.72
                                                  664
weighted avg
                   0.88
                             0.89
                                       0.87
                                                  664
# Use the best model to predict probabilities
y pred probasvcg = best svc.predict proba(X test)[:, 1]
from sklearn.metrics import roc_curve, roc auc score
import matplotlib.pyplot as plt
# Compute ROC curve and AUC score for the probabilities
fpr, tpr, thresholds = roc curve(y test, y pred probasvcg)
auc score = roc auc score(y test, y pred probasvcg)
```

```
# Print AUC score
print(f"AUC Score (Best SVC): {auc score:.4f}")
# Plot the ROC curve
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {auc_score:.4f})",
marker='.')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random
Model')
plt.title("Receiver Operating Characteristic (ROC) Curve (Best SVC
from GridSearchCV)")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend(loc="lower right")
plt.grid()
plt.show()
AUC Score (Best SVC): 0.8724
```



```
import numpy as np
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt

# Compute ROC curve and AUC score
fpr, tpr, thresholds = roc_curve(y_test, y_pred_probasvcg)
```

```
auc score = roc auc score(y test, y pred probasvcg)
# Compute False Negative Rate (FNR)
fnr = 1 - tpr
# Convert FPR and FNR to percentages
fpr percentage = fpr * 100
fnr percentage = fnr * 100
# Print AUC score
print(f"AUC Score (Best SVC): {auc_score:.4f}")
# Plot the DET curve
plt.figure(figsize=(10, 6))
plt.plot(fpr_percentage, fnr_percentage, label="DET Curve",
marker='.')
# Set logarithmic scale for both axes
plt.yscale("log")
plt.xscale("log")
# Add title and labels with percentages
plt.title("Detection Error Tradeoff (DET) Curve (Best SVC from
GridSearchCV)")
plt.xlabel("False Positive Rate (%) [Log Scale]")
plt.ylabel("False Negative Rate (%) [Log Scale]")
# Add legend and grid
plt.legend(loc="upper right")
plt.grid(which='both', linestyle='--', linewidth=0.5)
# Show the plot
plt.show()
AUC Score (Best SVC): 0.8724
```


Feature Importance using SHAPly values

```
import shap
import matplotlib.pyplot as plt

# Train the best SVC model from GridSearchCV
best_svc = gridsvc.best_estimator_

# Explain the model predictions using SHAP
explainer = shap.Explainer(best_svc.predict, X_train) # Use the
prediction function
shap_values = explainer(X_train)

# Feature importance plot
plt.title("Feature Importance (SHAP Values)")
shap.summary_plot(shap_values, X_train, plot_type="bar")
PermutationExplainer explainer: 1550it [1:17:29, 3.01s/it]
```


