Graduate Program Numerics Optimization and optimal decision

M. Debouté¹ L. Hirwa-Shema¹ A. Barrabès²

¹M2 CMI Optim Université de Bordeaux

²M2 Economic risks and data science Université de Bordeaux

Friday, 9th September 2022

- Challenge ROADEF/EURO
- 2 Our work
 - Mathematical model
 - Results

3 In sight

Challenge ROADEF/EURO

- 2 Our work
 - Mathematical model
 - Results
- 3 In sight

Google ROADEF/EURO challenge

Large-scale machine reassignment problem : improving the utilization of a set of machines.

- Processes assigned to machines consuming ressources.
- Hard constraints on moving processes.
- Several costs: load, balance and move related costs.

Google ROADEF/EURO challenge

Large-scale machine reassignment problem : improving the utilization of a set of machines.

- Processes assigned to machines consuming ressources.
- Hard constraints on moving processes.
- Several costs: load, balance and move related costs.

Objective

The objective consists in minimizing the weighted sum of all previous costs.

- 1 Challenge ROADEF/EURO
- 2 Our work
 - Mathematical model
 - Results

3 In sight

Variables

Let $p \in \mathcal{P}$, $m \in \mathcal{M}$, $s \in \mathcal{S}$, $l \in \mathcal{L}$, $n \in \mathcal{N}$, $r \in \mathcal{R}$ and $b \in \mathcal{B}$.

$$\bullet \ x_{p,m} = \left\{ \begin{array}{ll} 1 & \text{if } M(p) = m \\ 0 & \text{otherwise} \end{array} \right..$$

•
$$y_{s,l} = \begin{cases} 1 & \text{if } \exists (p,m) \in (s \times l) \mid M(p) = m \\ 0 & \text{otherwise} \end{cases}$$

•
$$z_{s,n} = \begin{cases} 1 & \text{if } \exists (p,m) \in (s \times n) \mid M(p) = m \\ 0 & \text{otherwise} \end{cases}$$

•
$$lc_{m,r} \geqslant 0, lc_r \geqslant 0, a_{m,r} \geqslant 0, bc_{b,m} \geqslant 0$$
 and $bc_b \geqslant 0$.

•
$$\forall p \in \mathcal{P}, \sum\limits_{m \in \mathcal{M}} x_{p,m} = 1.$$
 (Assignment)

- $\forall (r,m) \in (\mathcal{R} \times \mathcal{M}), \sum\limits_{p \in \mathcal{P}} x_{p,m} \times R_{p,r} \leqslant C_{m,r}.$ (Hard capacity)
- $\forall (s, m) \in (S \times M), \sum_{p \in s} x_{p,m} \leq 1.$ (Conflict)
- Let $s \in \mathcal{S}$ and $l \in \mathcal{L}$. $\forall (p, m) \in (s \times l), x_{p,m} \leqslant y_{s,l}$. (Spread 1)
- $\forall (l,s) \in (\mathcal{L} \times \mathcal{S}), \sum_{p \in s} (\sum_{m \in l} x_{p,m}) \geqslant y_{s,l}.$ (Spread 2)
- $\forall s \in \mathcal{S}, \sum_{l \in \mathcal{L}} y_{s,l} \geqslant spreadMin(s)$. (Spread 3)

- $\forall s_1 \in \mathcal{S}, \forall s_2 \in Dep(s_1), \forall n \in \mathcal{N}, z_{s_1,n} \leqslant z_{s_2,n}$. (Dependency 1)
- $\forall s \in \mathcal{S}, \forall n \in \mathcal{N}, \forall p \in \mathcal{S}, \forall m \in n, x_{p,m} \leqslant z_{s,n}$. (Dependency 2)
- $\forall s \in \mathcal{S}, \forall n \in \mathcal{N}, \sum\limits_{m \in n} (\sum\limits_{p \in s} x_{p,m}) \geqslant z_{s,n}.$ (Dependency 3)
- $\forall r \in TR, \forall m \in \mathcal{M},$ $\sum_{p \mid M_0(p) = m} R_{p,r} + \sum_{p \mid M_0(p) \neq m} R_{p,m} \times x_{p,m} \leqslant C_{m,r}.$ (Transient)

- $\forall (r,m) \in (\mathcal{R} \times \mathcal{M}), \sum_{p \in \mathcal{P}} (x_{p,m} \times R_{p,r}) SC_{m,r} \leqslant lc_{m,r}$ and $lc_r := \sum_{m \in \mathcal{M}} lc_{m,r}.$ (Load cost)
- $\forall (r,m) \in (\mathcal{R} \times \mathcal{M}), a_{m,r} = C_{m,r} \sum_{p \in \mathcal{P}} R_{p,r} \times x_{p,m}$ $\forall (b,m) \in (\mathcal{B} \times \mathcal{M}), bc_{b,m} \geqslant t_b \times a_{m,r_1} - a_{m,r_2}$ and $\forall b \in \mathcal{B}, bc_b = \sum_{m \in \mathcal{M}} bc_{b,m}$ (Balance cost)
- $pmc := \sum_{p \in \mathcal{P}} (1 x_{p,M_0(p)}) \times PMC(p)$. (Process move cost)

•
$$\forall s \in \mathcal{S}, smc_s := \sum\limits_{p \in s} (1 - x_{p,M_0(p)} \text{ and } \forall s \in \mathcal{S}, smc \geqslant smc_s.$$
 (Service move cost)

•
$$\forall p \in \mathcal{P}, mmc_p := \sum_{m \in \mathcal{M}} x_{p,m} \times MMC_{M_0(p),m}$$

and $mmc := \sum_{p \in \mathcal{P}} mmc_p$. (Machine move cost)

Objective function

Function to minimize

$$\min \sum_{r \in \mathcal{R}} weight_{loadCost}(r) \times lc_r$$
 $+ \sum_{b \in \mathcal{B}} weight_{balanceCost}(b) \times bc_b$
 $+ weight_{processMoveCost} \times pmc$
 $+ weight_{serviceMoveCost} \times smc$
 $+ weight_{machineMoveCost} \times mmc$.

Testing our code on the instances of the dataset A

Instance	Status	Objective value	Gap (%)	Time (s)
1	Optimal	44306501	0	0.068
2	Feasible	777531842	10^{-4}	Time out
3	Optimal	583005719	0	16.328
4	Feasible	262086758	7.50	Time out
5	Optimal	727578311	0	2.230
6	Feasible	8592396	99.99	Time out
7	Feasible	1111598241	50.38	Time out
8	Feasible	1375256887	24.48	Time out
9	No solution	X	Х	Time out
10	No solution	X	Х	Time out

8 cores of 2.4 GHz, 8go RAM, time limit : 1 hour, gap tolerance : 10e-8.

- Challenge ROADEF/EURO
- 2 Our work
 - Mathematical model
 - Results

3 In sight

- We obtained 6 good results out of 10. An idea to improve those results is to combine MILP solver with some local search and a metaheuristic.
- We propose the following heuristic algorithm (gradient descent) in order to obtain a better initial solution for the MILP solver.

```
Data: initialSol. Processes. Machines
Result: solution
solution \leftarrow initialSol:
currCost \leftarrow cost(initialSol);
prevCost \leftarrow currCost + 1;
while currCost - prevCost < 0 do
    prevCost \leftarrow currCost:
    for p \in Processes do
        for m \in Machines do
            if isFeasible(move(p, m)) and moveCost(p, m) < 0
             then
                currCost \leftarrow currCost + moveCost(p, m);
                solution \leftarrow move(p, m)
            end
        endfor
    endfor
```