Cheatsheet for 18.6501x by Blechturm Page 1 of x	$\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{0\}$.	Univariate Gaussians Parameters μ and $\sigma^2 > 0$, continuous	$F_X^{-1}(1-\alpha) = \alpha$	7 Covariance The Covariance is a measure of how
1 Algebra	Positive (or negative) definiteness implies	$f(x) = \frac{1}{\sqrt{(2\pi\sigma)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	If $X \sim N(0, 1)$:	much the values of each of two corre- lated random variables determine each
Absolute Value Inequalities:	positive (or negative) semi-definiteness.	$V(2\pi\sigma) \qquad 2\sigma^2$ $\mathbb{E}[X] = \mu$	$\mathbb{P}(X > q_{\alpha}) = \alpha$	other
$ f(x) < a \Rightarrow -a < f(x) < a$ $ f(x) > a \Rightarrow f(x) > a \text{ or } f(x) < -a$	If the Hessian is positive definite then f	$Var(X) = \sigma^2$	5 Expectation $\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) dx$	$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$
2 Calculus	attains a local minimum at <i>a</i> (convex).	Invariant under affine transformation:	$\mathbb{E}[g(X)] = \int_{-inf}^{+inf} g(x) \cdot f_X(x) dx$	$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
Differentiation under the integral sign	If the Hessian is negative definite at a, then f attains a local maximum at a	$aX + b \sim N(X + b, a^2 \sigma^2)$		$Cov(X,Y) = \mathbb{E}[(X)(Y - \mu_Y)]$
$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \mathrm{d}t \right) = f(x,b(x))b'(x) -$	(concave).	Symmetry:	$\mathbb{E}[X Y=y] = \int_{-inf}^{+inf} x \cdot f_{X Y}(x y) \ dx$	Possible notations:
$f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t) dt.$ Concavity in 1 dimension	If the Hessian has both positive and negative eigenvalues then <i>a</i> is a saddle point	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	Integration limits only have to be over the support of the pdf. Discrete r.v. same	$Cov(X,Y) = \sigma(X,Y) = \sigma_{(X,Y)}$
If $g: I \to \mathbb{R}$ is twice differentiable in the	for f.3 Important probability distributions	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	as continuous but with sums and pmfs.	Covariance is commutative:
interval I: concave:	Bernoulli	Standardization:	Total expectation theorem:	Cov(X, Y) = Cov(Y, X)
if and only if $g''(x) \le 0$ for all $x \in I$	Parameter $p \in [0,1]$, discrete	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	$\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X Y = y] dy$	Covariance with of r.v. with itself is
strictly concave: if $g''(x) < 0$ for all $x \in I$	$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t - \mu}{\sigma}\right)$	Expectation of constant <i>a</i> :	variance:
convex:	$\mathbb{E}[X] = p$ $Var(X) = p(1-p)$	Higher moments:	$\mathbb{E}[a] = a$	$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$
if and only if $g''(x) \ge 0$ for all $x \in I$		$\mathbb{E}[X^2] = \mu^2 + \sigma^2$	Product of independent r.vs <i>X</i> and <i>Y</i> :	Useful properties:
strictly convex if: $g''(x)>0$ for all $x \in I$	Binomial Parameters <i>p</i> and <i>n</i> , discrete. Describes the number of successes in n indepen-	$\mathbb{E}[X^{3}] = \mu^{3} + 3\mu\sigma^{2}$ $\mathbb{E}[X^{4}] = \mu^{4} + 6\mu^{2}\sigma^{2} + 3\sigma^{4}$	$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Cov(aX + h, bY + c) = abCov(X, Y)
	dent Bernoulli trials.		Product of dependent r.vs <i>X</i> and <i>Y</i> :	Cov(X, X + Y) = Var(X) + cov(X, Y)
Multivariate Calculus The Gradient ∇ of a twice differntiable	$p_{x}(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, k = 1,, n$	Uniform Parameters a and b , continuous.	$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Cov(aX + bY, Z) = aCov(X, Z) +
function f is defined as: $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$	$\mathbb{E}[X] = np$	$\mathbf{f}_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$	$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	bCov(Y,Z)
$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial f} \end{pmatrix}$	Var(X) = np(1-p)	$\mathbb{E}[X] = \frac{a+b}{2}$	Linearity of Expectation where <i>a</i> and <i>c</i>	If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are independent,
$\theta_1 = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \longrightarrow \begin{pmatrix} \frac{\partial \theta_1}{\partial \theta_2} \\ \frac{\partial \theta_2}{\partial \theta_2} \end{pmatrix}$	Multinomial	$Var(X) = \frac{(b-a)^2}{12}$	are given scalars:	their Covariance is zero. The converse is not always true. It is only true if <i>X</i> and
$\theta = \begin{bmatrix} \frac{\partial}{\partial 2} \\ \vdots \\ \frac{\partial}{\partial d} \end{bmatrix} \mapsto \begin{bmatrix} \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial}{\partial f} \end{bmatrix}$	Parameters $n > 0$ and p_1, \dots, p_r .	Maximum of n iid uniform r.v.	$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	Y form a gaussian vector, ie. any linear combination $\alpha X + \beta Y$ is gaussian for all
$\left(\frac{\theta_d}{\partial \theta_d}\right) \left(\frac{\partial f}{\partial \theta_d}\right) \Big _{\theta}$	$p_X(x) = \frac{n!}{x_1!,\dots,x_n!} p_1,\dots,p_r$	Minimum of n iid uniform r.v.	If Variance of <i>X</i> is known:	$(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$.
Hessian	$\mathbb{E}[X_i] = n * p_i$ $Var(X_i) = np_i(1 - p_i)$		$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	8 Law of large Numbers and Central Li- mit theorem univariate
The Hessian of f is a symmetric matrix	Poisson	Cauchy continuous, parameter <i>m</i> ,	6 Variance	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and
of second partial derivatives of f	Parameter λ . discrete, approximates the binomial PMF when n is large, p is small,	$f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$	Variance is the squared distance from the mean.	$Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$ and
$\mathbf{H}h(\theta) = \nabla^2 h(\theta) = \begin{pmatrix} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \end{pmatrix}$	and $\lambda = np$.	$\mathbb{E}[X] = notdefined!$ Var(X) = notdefined!	$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$
$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda)\frac{\lambda^k}{k!}$ for $k = 0, 1, \dots$		$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	Law of large numbers:
$ \left \begin{array}{ccc} \vdots \\ \frac{\partial^2 h}{\partial \theta_A \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_A \partial \theta_A}(\theta) \end{array} \right ^{\in \mathbb{R}} $	$\mathbb{E}[X] = \lambda$ $Var(X) = \lambda$	$\operatorname{med}(X) = P(X > M) = P(X < M)$ $= 1/2 = \int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	Variance of a product with constant a :	$\overline{X_n} \xrightarrow[n \to \infty]{P,a.s.} \mu$.
A symmetric (real-valued) $d \times d$ matrix A	Exponential	$J_{1/2} \pi = 1 + (x - m)^2$ 4 Quantiles of a Distribution	$Var(aX) = a^2 Var(X)$	$\frac{1}{n}\sum_{i=1}^{n}g(X_i)\xrightarrow[n\to\infty]{P,a.s.}\mathbb{E}[g(X)]$
is: Positive semi-definite:	Parameter λ , continuous $f_x(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{otherwise} \end{cases}$	Let α in $(0,1)$. The quantile of order $1-\alpha$ of a random variable X is the number q_{α}	Variance of sum of two dependent r.v.:	Central Limit Theorem:
T . $-d$	10. 0.W.	such that:	Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)	$\sqrt{(n)} \xrightarrow{\overline{X_n} - \mu} \xrightarrow{(d)} N(0,1)$
Positive definite:	$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$	$q_{\alpha} = \mathbb{P}(X \le q_{\alpha}) = 1 - \alpha$		***
$\mathbf{x}^{T} \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}$	$\mathbb{E}[X] = \frac{1}{\lambda}$	$\mathbb{P}(X \ge q_{\alpha}) = \alpha$	Variance of sum of two independent r.v.:	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$
Negative semi-definite (resp. negative definite):	$Var(X) = \frac{1}{\lambda^2}$	$F_X(q_\alpha) = 1 - \alpha$	Var(X + Y) = Var(X) + Var(Y)	Variance of the Mean:

 $Var(\overline{X_n}) =$ $(\frac{\sigma^2}{n})^2 Var(X_1 + X_2, ..., X_n) = \frac{\sigma^2}{n}$.

Expectation of the mean:

9 Statistical models

 $E, \{P_{\theta}\}_{\theta \in \Theta}$

Cheatsheet for 18.6501x by Blechturm

E is a sample space for X i.e. a set that

 $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on E.

contains all possible outcomes of X

of some possible values of Θ .

 $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$.

Identifiability:

 $\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\Theta}$

depend on θ .

strongly consistent.

Bias of an estimator:

 $Bias(\hat{\theta}_n = \mathbb{E}[\hat{\theta_n}] - \theta$

Quadratic risk of an estimator:

 $\sqrt{(n)}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$

10 Estimators

 $\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$

 $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$

A Model is well specified if:

A statistic is any measurable functionof

the sample, e.g. $\overline{X_n}$, $max(X_i)$, etc. An Esti-

mator of θ is any statistic which does not

An estimator $\hat{\theta}_n$ is weakly consistent

if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow[n\to\infty]{P} \mathbb{E}[g(X)]$. If

the convergence is almost surely it is

Asymptotic normality of an estimator:

 σ^2 is called the **Asymptotic Variance** of

 $\hat{\theta}_n$. In the case of the sample mean it the

variance of a single X_i . If the estimator

is a function of the sample mean the

Delta Method is needed to compute

the Asymptotic Variance. Asymptotic Variance ≠ Variance of an estimator.

 $E[\overline{X_n}] = \frac{1}{n} E[X_1 + X_2, ..., X_n] = \mu.$

Let $(E,(\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model based on observations $X_1,\ldots X_n$ and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$. Non asymptotic confidence interval of

11 Confidence intervals

 $R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2] = Bias^2 + Variance \quad \mathbb{R}^d$:

 $\mathbf{X}:\Omega\longrightarrow\mathbb{R}^d$

 $\omega \longrightarrow \begin{vmatrix} X^{(2)}(\omega) \\ \vdots \\ \vdots \\ \vdots \end{vmatrix}$

 $(X^{(1)}(\omega))$

ponents $X^{(1)}, \ldots, X^{(d)}$.

CDF of X:

 $\mathbb{E}[X] =$

where each $X^{(k)}$, is a (scalar) random variable on Ω .

PDF of X: joint distribution of its com-

level $1 - \alpha$ for θ : Any random interval \mathcal{I} , depending on

the sample $X_1, ... X_n$ but not at θ and such that: $\mathbb{P}_{\theta}[\mathcal{I} \ni \theta] \ge 1 - \alpha, \ \forall \theta \in \Theta$ Confidence interval of asymptotic level

Any random interval \mathcal{I} whose boundari- $\mathbb{R}^d \to [0,1]$ Θ is a parameter set, i.e. a set consisting es do not depend on θ and such that: $\mathbf{x} \mapsto \mathbf{P}(X^{(1)} < x^{(1)}, \dots, X^{(d)} < x^{(d)}).$ $\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$ θ is the true parameter and unknown.

In a parametric model we assume that The sequence $X_1, X_2, ...$ converges in probability to **X** if and only if each compo-Two-sided asymptotic CI Let $X_1,...,X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A two-sided CI is a function depending on nent of the sequence $X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability to $X^{(k)}$. \tilde{X} giving an upper and lower bound in which the estimated parameter lies Expectation of a random vector $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probabi-

> lity $\mathbb{P}(\theta \in \mathcal{I}) \geq 1 - q_{\alpha}$ and conversely $\mathbb{P}(\theta \notin \mathcal{I}) \leq \alpha$ Since the estimator is a r.v. depending on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a mean $\mathbb{E}[\hat{\theta}_n]$. After finding those it is possible to standardize the estimator using the CLT. This yields an asymptotic CI:

The expectation of a random matrix is $\mathcal{I} = \hat{\theta}_n + \big[\frac{-q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}, \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}\big]$ the expected value of each of its elements. This expression depends on the real variance $Var(X_i)$ of the r.vs, the variance has to be estimated. Three possible methods: plugin (use sample mean), solve (solve quadratic inequality), conservative

Delta Method If I take a function of the mean and want to make it converge to a function of the

(use the maximum of the variance).

 $\sqrt{n}(g(\widehat{m}_1) - g(m_1(\theta)))$ $\mathcal{N}(0, g'(m_1(\theta))^2 \sigma^2)$

12 Hypothesis tests Onesided **Twosided** P-Value

13 Random Vectors A random vector $\mathbf{X} = (X^{(1)}, ..., X^{(d)})^T$ of dimension $d \times 1$ is a vector-valued $\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$ function from a probability space ω to

Let $X = \{X_{ij}\}$ be an $n \times p$ random matrix. Then $\mathbb{E}[X]$, is the $n \times p$ matrix of numbers (if they exist): $\begin{bmatrix} \mathbb{E}[X_{11}] & \mathbb{E}[X_{12}] & \dots & \mathbb{E}[X_{1p}] \\ \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \end{bmatrix}$

The expectation of a random vector is

the elementwise expectation. Let X be a

random vector of dimension $d \times 1$.

 $\mathbb{E}[X_{n1}]$ $\mathbb{E}[X_{n2}]$... $\mathbb{E}[X_{np}]$ Let *X* and *Y* be random matrices of the same dimension, and let A and B be conformable matrices of constants.

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$ **Covariance Matrix**

Let *X* be a random vector of dimension $d \times 1$ with expectation μ_X . Matrix outer products!

are independent. The linear transform of a gaussian

 $AX + B = N_d(A\mu + b, A\Sigma A^T)$

A and B is a gaussian:

Multivariate CLT

and $Cov(X) = \Sigma$

 $X \sim N_d(\mu, \Sigma)$ with conformable matrices

Let $X_1,...,X_d \in \mathbb{R}^d$ be independent copies of a random vector X such that

 $\mathbb{E}[x] = \mu \ (d \times 1 \text{ vector of expectations})$

Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the identity

 $\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \Sigma)$

 $\sqrt{(n)}\Sigma^{-1/2}\overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$

Multivariate Delta Method Gradient Matrix of a Vector Function:

Given a vector-valued function

 $f: \mathbb{R}^d \to \mathbb{R}^k$, the gradient or the gradient matrix of f, denoted by ∇f , is the $d \times k$

 $= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_d} & \cdots & \frac{\partial f_k}{\partial x_d} \end{pmatrix}$

This is also the transpose of what is known as the Jacobian matrix J_f of f.

General statement, given

• $(\mathbf{T}_n)_{n\geq 1}$ a sequence of random vectors

• satisfying $\sqrt{n} \left(\mathbf{T}_n - \vec{\theta} \right) \xrightarrow[n \to \infty]{(d)} \mathbf{T}$,

tinuously differentiable at $\vec{\theta}$,

then

 $\sqrt{n} \left(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta}) \right) \xrightarrow[n \to \infty]{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$

With multivariate Gaussians and Sample mean:

Let $T_n = \overline{X}_n$ where \overline{X}_n is the sample average of $X_1, ..., X_n \stackrel{iid}{\sim} X$, and

• a function $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^k$ that is con-

If $\mu = 0$ and Σ is the identity matrix, then

X is called a standard normal random

If the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate Gaussians, and hence the components

Where $det(\Sigma)$ is the determinant of Σ ,

which is positive when Σ is invertible.

 $\mathbb{E} \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \dots \\ X_d - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d]$

 $\Sigma = Cov(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$

The covariance matrix Σ is a $d \times d$ matrix.

It is a table of the pairwise covariances of

the elemtents of the random vector. Its

diagonal elements are the variances of

the elements of the random vector, the

off-diagonal elements are its covariances.

Note that the covariance is commutative

 $Cov(AX + B) = Cov(AX) = ACov(X)A^{T} =$

Every Covariance matrix is positive

A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ is

a Gaussian vector, or multivariate Gaussi-

an or normal variable, if any linear combi-

nation of its components is a (univariate)

Gaussian variable or a constant (a "Gaus-

sian"variable with zero variance), i.e., if

 $\alpha^T \mathbf{X}$ is (univariate) Gaussian or constant

for any constant non-zero vector $\alpha \in \mathbb{R}^d$.

The distribution of, X the d-dimensional

Gaussian or normal distribution, is

completely specified by the vector mean

 $\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and

the $d \times d$ covariance matrix Σ . If Σ is

 $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)},$

invertible, then the pdf of *X* is:

e.g. $\sigma_{12} = \sigma_{21}$

 $A\Sigma A^{T}$

definite.

 $\Sigma < 0$

Alternative forms:

 $= \mathbb{E}[XX^T] - \mu_X \mu_X^T$

 $\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$

Gaussian Random Vectors

Multivariate Gaussians

Cheatsheet for 18.6501x by Blechturm Page 3 of x	$\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$ 15 Likelihood	Poisson Likelihood:	$\operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_i) \right)$	Asymptotic normality of the maximum li- kelihood estimator
$\vec{\theta} = \mathbb{E}[X]$. The (multivariate) CLT then gives $T \sim \mathcal{N}(0, \Sigma_X)$ where Σ_X is	Let $(E, \{P_{\theta}\}_{\theta \in \Theta})$ denote a discrete or continuous statistical model. Let p_{θ} denote		Gaussian Maximum-loglikelihood esti- mators:	Under certain conditions (see slides) the MLE is asymptotically normal. This applies even if the MLE is not the sample
the covariance of X . In this case, we have:	the pmf or pdf of P_{θ} . Let $X_1,, X_n \stackrel{iid}{\sim} P_{\theta^*}$ where the parameter θ^* is unknown.	Loglikelihood: $\ell_n(\lambda) =$ $= -n\lambda + \log(\lambda)(\sum_{i=1}^n x_i) - \log(\prod_{i=1}^n x_i!)$	MLE estimator for $\sigma^2 = \tau$: $\hat{\tau}_n^{MLE} = \frac{1}{n} \sum_{i=1}^n X_i^2$	average. The asymptotic variance of the MLE is the inverse of the fisher information.
$\sqrt{n} \left(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta}) \right) \xrightarrow[n \to \infty]{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$	Then the likelihood is the function $L_n : E^n \times \Theta$	Gaussian $ = -nx + \log(x)(\sum_{i=1}^{n} x_i) - \log(\prod_{i=1}^{n} x_i) $	$I_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ MLE estimators:	$\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$
$\nabla \mathbf{g}(\vec{\theta})^T \mathbf{T} \sim \mathcal{N}\left(0, \nabla \mathbf{g}(\vec{\theta})^T \Sigma_{\mathbf{X}} \nabla \mathbf{g}(\vec{\theta})\right)$	$L_n(x_1,,x_n,\theta) = \prod_{i=1}^n P_{\theta}[X_i = x_i]$	Likelihood:	$\hat{\mu}_n^{MLE} = \frac{1}{n} \sum_{i=1} (x_i)$	16 Method of Moments
$(\mathbf{T} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}}))$	Loglikelihood:	$L(x_1 \dots x_n; \mu, \sigma^2) =$	15.1 Fisher Information	Let $X_1,, X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$,
14 Distance between distributions Total variation	121111111111111111111111111111111111111	$= \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$	The Fisher information, captures the negative of the expected curvature of the	del $(\mathbb{E}, \{P_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$, for some $d \ge 1$ Population moments:
The total variation distance TV between the propability measures P and Q with a	$=\sum_{i=1}^{n}ln(f_{\theta}(x_{i}))$	Loglikelihood:	loglikelihood function. Let $(\mathbb{R}, \{P_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous	
sample space E is defined as:	Bernoulli	$\ell_n(\mu, \sigma^2) =$	statistical model. Let $f_{\theta}(x)$ denote the	$m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$
$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} \mathbf{P}(A) - \mathbf{Q}(A) ,$	Likelihood 1 trial: $L_1(p) = p^x (1-p)^{1-x}$	$= -n\log(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$	pdf (probability density function) of the continuous distribution P_{θ} . Assume that	Empirical moments:
Calculation with f and g :	Loglikelihood 1 trial:	Exponential Likelihood:	$f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ .	$\widehat{m_k}(\theta) = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$
$TV(\mathbf{P}, \mathbf{Q}) = \begin{cases} \frac{1}{2} \sum_{x \in E} f(x) - g(x) , & \text{discr} \\ \frac{1}{2} \int_{x \in E} f(x) - g(x) dx, & \text{cont} \end{cases}$	$\ell_1(p) = x \log(p) + (1-x)\log(1-p)$	$L(x_1x_n;\lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right)$	Formula for the calculation of Fisher	Convergence of empirical moments:
Symmetry: $ (2 \int x \in E(f(x)) g(x) dx, \text{cont} $	Likelihood n trials:	Loglikelihood:	Information of <i>X</i> :	$\widehat{m_k} \xrightarrow[n \to \infty]{P,a.s.} m_k$
$d(\mathbf{P}, \mathbf{Q}) = d(\mathbf{Q}, \mathbf{P})$ nonnegative:	$L_n(x_1,\ldots,x_n,p) = \sum_{n=1}^n x_n$	Uniform	$C^{\infty} \left(\frac{\partial f_{\theta}(x)}{\partial \theta} \right)^2$	$(\widehat{m_1},\ldots,\widehat{m_d}) \xrightarrow[n\to\infty]{P,a.s.} (m_1,\ldots,m_d)$
$d(\mathbf{P}, \mathbf{Q}) \geq 0$	$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$	Likelihood: $L(x_1 x_n; b) = \frac{1(\max_i(x_i \le b))}{b^n}$	$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$	MOM Estimator M is a map from the pa-
definite: $d(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$	Loglikelihood n trials:	U	Models with one parameter (ie. Bernulli):	rameters of a model to the moments of its distribution. This map is invertible,
triangle inequality: $d(\mathbf{P}, \mathbf{V}) \le d(\mathbf{P}, \mathbf{Q}) + d(\mathbf{Q}, \mathbf{V})$	$\ell_n(p) =$	Loglikelihood:	$\mathcal{I}(\theta) = Var(\ell'(\theta))$	(ie. it results into a system of equations
If the support of P and Q is disjoint:	$= \sum_{i=1}^{n} x_i \ln(p) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p)$	Maximum likelihood estimation	$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$	that can be solved for the true parameter vector θ^*). Find the moments (as many
	Binomial	Cookbook: take the log of the likelihood function. Take the partial derivative of		as parameters), set up system of equati- ons, solve for parameters, use empirical
$d(\mathbf{P}, \mathbf{V}) = 1$ KL divergence	Likelihood:	the loglikelihood function with respect to the parameter. Set the partial derivati-	Models with multiple parameters (ie. Gaussians):	moments to estimate.
the KL divergence (also known as rela-	$L_n(x_1,\ldots,x_n,p,n) =$	ve to zero and solve for the parameter.	,	$\psi:\Theta o\mathbb{R}^d$
tive entropy) KL between between the propability measures P and Q with the	$= nC_x p^x (1-p)^{n-x} = p^{x_i} (1-p)^{1-x_i}$	If an indicator function on the pdf/pmf does not depend on the parameter, it can be ignored. If it depends on the parame-	$\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$	$\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$
common sample space E and pmf/pdf functions f and g is defined as:	Loglikelihood:	ter it can't be ignored because there is an discontinuity in the loglikelihood functi-	Cookbook:	$M^{-1}(m_1(\theta^*), m_2(\theta^*), \dots, m_d(\theta^*))$ The MOM estimator uses the empirical
$KL(\mathbf{P}, \mathbf{O}) = \left(\sum_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)}\right)\right), \text{ discr}$	$\ell_n(p, n) = \\ = \ln(nC_x) + x\ln(p) + (n-x)\ln(1-p)$	on. The maximum/minimum of the X_i is then the maximum likelihood estimator.	Better to use 2nd derivative.	moments:
$KL(\mathbf{P}, \mathbf{Q}) = \begin{cases} \sum_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right), & \text{discr} \\ \int_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx, & \text{cont} \end{cases}$	C is a constant from n choose k, disap-	Maximum likelihood estimator:	 Find loglikelihood 	$M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \dots, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$
Not a distance! Sum over support of <i>P</i> !	pears after differentiating.	Let $\left\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\right\}$ be a statistical model as-	Take second derivative (=Hessian	Assuming M^{-1} is continuously differentiable at $M(0)$, the asymptotical variance
Asymetric in general: $KL(P,Q) \neq KL(Q,P)$	Multinomial Parameters $n > 0$ and $p_1,, p_r$. Sample	sociated with a sample of i.i.d. random variables $X_1, X_2,, X_n$. Assume that the-	if multivariate)	of the MOM estimator is:
Nonnegative: $KL(P,Q) \ge 0$	space= $E = 1, 2, 3,, j$	re exists $\theta^* \in \Theta$ such that $X_i \sim \mathbf{P}_{\theta^*}$. The maximum likelihood estimator is the	 Massage second derivative or Hessian (isolate functions of X_i to use 	- (1)
Definite: if $P = Q$ then $KL(P,Q) = 0$	Likelihood:	(unique) θ that minimizes $KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$	with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbf{E}[\mathbf{H}\ell(\theta)]$.	$\sqrt{(n)}(\widehat{\theta_n^{MM}} - \theta) \xrightarrow[n \to \infty]{(d)} N(0,\Gamma)$
Does not satisfy triangle inequality in	$p_x(x) = \prod_{j=1}^n p_j^{T_j}$, where $T^j = \mathbb{1}(X_i = j)$	over the parameter space. (The minimizer of the KL divergence is unique due	• Find the expectation of the functions of X_i and substitute them back	where,
general: $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$	is the count how often an outcome is seen in trials.	to it being strictly convex in the space of distributions once is fixed.)	into the Hessian or the second derivative. Be extra careful to subsi-	$\Gamma(\theta) = \left[\frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right]^T \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right]$
Estimator of KL divergence:		$\widehat{\theta}_n^{MLE} =$	tute the right power back. $\mathbb{E}[X_i] \neq$	$\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$
$KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right],$	Loglikelihood: $\ell_n = \sum_{j=2}^n T_j \ln(p_j)$	$\underset{\theta}{\operatorname{argmin}}_{\theta \in \Theta} \widehat{KL}_{n}(\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta}) =$	$\mathbb{E}[X_i^2].$	Σ_{θ} is the covariance matrix of the random vector of the moments
$[p_{\theta}(X)]'$	$\sim n - \angle j = 2 \cdot j \cdot \prod P j j$	$\operatorname{argmax}_{\theta \in \Theta} \sum \ln p_{\theta}(X_i) =$	 Don't forget the minus sign! 	$(X_1^1, X_1^2,, X_1^d).$

17 M-estimation

Generalization of maximum likelihood estimation. No statistical model needs to be assumed to perform M-estimation.

Median

18 Hubert loss

$$h_{\delta}(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| < \delta \\ \delta(|x| - \delta/2) & \text{if } |x| > \delta \end{cases}.$$

the derivative of Huber's loss is the clip function :

$$\begin{array}{ll} \operatorname{clip}_{\delta}(x) & := & \frac{d}{dx}h_{\delta}(x) & = \\ \delta & \operatorname{if} x > \delta \\ x & \operatorname{if} - \delta \le x \le \delta \end{array}$$