MEX 学习笔记

司英成

2021年12月17日

摘要

本文是根据 github 上的一个 latex-cookbook(https://github.com/xinychen/latex-cookbook) 学习 LATEX 的基本使用,本文也使用 LATEX 编写。

目录

第一章	横空出世的 IATEX	9
1.1	Tex 和 IATEX	9
1.2	引领浪潮的 IATEX	10
	1.2.1 I ^{AT} EX 的出现	10
	1.2.2 IFT _E X 的特点	11
	1.2.3 IFT _E X 编辑器	13
1.3	应运而生的在线系统	14
	1.3.1 IATEX 在线系统的出现	14
	1.3.2 IATEX 在线系统的特点	15
1.4	IATEX 问答社区	17
	1.4.1 问答社区的介绍	17
	1.4.2 高频访问问题	18

6 目录

引言

1977 年,计算机科学家克努斯博士¹开发了一款名为 TeX 的文档排版系统,作为一种计算机程序语言,它能够专门用于制作各类技术文档,并且对制作包含数学公式的技术文档具有良好的适用性。克努斯博士开发 TeX 其实存在一些意外:上世纪 70 年代,克努斯博士在修改自己的著作时,由于当时的排版质量差到让他难以容忍,所以他便转而开始思考能否开发出高质量的文档排版系统。

在使用过程中,TeX 制作文档的方式非常特殊,与今天常用的办公软件 Word 等截然不同,它是完全使用计算机程序语言来制作文档的。由于其对计算机语言的高度依赖,这款系统的使用门槛较高,但也具有很多优点,其中最为人称道的优点是它可以书写大量复杂的数学表达式。基于 TeX,兰波特博士 ²于 1985 年开发了另一款文档排版系统,名为 LaTeX,兰波特博士设计这款系统初衷是让人们从排版样式这些繁琐的细节中解放出来,从而将精力集中在文档结构和文档内容上,这一做法很快便让LaTeX 取代了 TeX。后来,LaTeX 的众多开发者对 LaTeX 最初版本进行了更新和提升,也就是我们今天一直在用的 LaTeX。

¹Donald E. Knuth, 直译名为唐纳德·尔文·克努斯, 中文名为高德纳, 美国计算机科学家, 现代计算机科学的先驱人物, 在计算机科学及数学领域著有多部影响深远的著作, 于 1974 年获得图灵奖。

²Leslie Lamport, 直译名为莱斯利·兰波特, 美国计算机科学家, 于 2013 年获得图灵奖, 他获得图灵奖的原因并非在于开发了 LaTeX, 而是源于他在所研究的学术领域做出的突出贡献。

8 目录

第一章 横空出世的 IATEX

1.1 Tex 和 I₄T_EX

TeX 是一种专门用于文档排版的计算机程序语言,同时也是一款文档排版系统,它几乎和微软推出的 Office 办公软件同时出现,后来成为人们制作文档的两种最佳工具。TeX 和 Office 制作文档的方式截然不同,Office 的使用门槛并不高,只要掌握一些基本操作就能够制作文档;而 TeX 则需要一定的计算机编程基础,除了一些基本命令,还要掌握 TeX 环境和一些特定的宏包。实际应用中,TeX 以其高质量、高效率的排版输出,特别是数学公式的排版能力而闻名,被科研工作者广泛用于科技文档的制作。

TeX 是怎么出现的呢? 有时候, 新生事物的出现往往会伴随着一定的契机和巧合。在 20 世纪 70 年代末, 克努斯博士正准备出版其著作《计算机程序设计艺术》时, 他发现出版社提供的排版效果不太理想, 当时的计算机排版技术也十分粗糙, 这严重影响了他的著作的印刷质量, 于是, 他计划花费几个月的时间开发出一套更有效的文档排版系统, 具体的开发目标是实现高质量的书籍排版。

由于克努斯博士此次在数学公式的排版上下足了功夫,就在他启动这项计划不久后,他收到了美国数学协会 (American Mathematical Society, AMS) 的邀请,克努斯博士在此次邀请中汇报的内容是"基于 TeX 排版,如何让计算机服务于数学",这次汇报成功吸引了一大批数学家的目光。由于 TeX 在数学公式排版方面的优秀表现,比如数学公式的自动间距调整,TeX 后来摇身一变成为了书写数学公式的"利器"。

为了提升 TeX 的开发质量,克努斯博士悬赏奖励任何能够在 TeX 中发现程序漏洞的人,也就是我们一般认为的"找 bug"。每一个 bug 的奖励金额从 2.56 美元(16 进制的 100 美分)开始,以后每发现一个 bug,都会翻倍,直到 327.68 美元封顶。然而,克努斯博士从未因此而损失大笔金钱,因为 TeX 中的 bug 极少,而真正发现 bug 的人在获得支票后往往因其纪念价值而不愿兑现。

随着时间的推移, TeX 也派生出了很多优秀的软件, 其中最著名的派生软件便是 LaTeX。另外, 美国数学学会也发布了 TeX 版本的数学公式宏包, 其中, 以 ams 命

图 1.1: 克努斯博士, 注: 图片来源为克努斯博士的维基百科

名的宏包就有 amsfonts、amsmath、amssymb 等,这些宏包都可以在 LaTeX 上进行使用,在 LaTeX 上使用这些宏包可以编辑出各种数学公式。

参考资料

TeX 的维基百科介绍: https://zh.wikipedia.org/wiki/TeX.

1.2 引领浪潮的 IATEX

1.2.1 IATEX 的出现

LaTeX 是一款高质量的文档排版系统,LaTeX 在读法上一般发作 Lay-tek 或者 Lah-tek 的音,而不是大家普遍认为的 Lay-teks。LaTeX 的历史可以追溯到 1984 年,兰波特博士作为早期开发者在这一年发布了 LaTeX 的最初版本。事实上,LaTeX 完全是兰伯特博士的意外所得,他当年出于自己写书的需要,在早先发布的文档排版系统 TeX 基础上新增了一些特定的宏包,为了便于自己日后可以重复使用这些宏包,他将这些宏包进行规整,于是,便有了相应的标准宏包 (standard macro package)。谁曾想,正是这些不经意间开发出来的宏包,在经过后续封装和发布使用手册之后,形成了 LaTeX 的雏形。

在很长一段时间里, LaTeX 的版本其实没有多少大的更新, 从技术层面来说, LaTeX 实在没有什么可供更新的地方了, 它最初的面貌已趋近于完美且深入人心。 LaTeX 的最初版本是由兰伯特博士于上世纪 80 年代初开发出来的, 目前, 广泛使用

图 1.2: 兰伯特博士,注:图片来源为兰伯特博士的维基百科

的版本 LaTeX2e 是在 1994 年发布的,发布后一直没有大的更新,甚至发布后的首次 更新出现在二十多年后的 2020 年。尽管 LaTeX2e 的后续版本更新工作早在上世纪九十年代初就已经开展了,但时至今日,新版的 LaTeX 仍未进入人们的视野。从开发 者兰伯特博士的角度来看,开发 LaTeX 的目的是为了降低 TeX 的使用门槛、更容易 地发挥 TeX 强大的排版功能,提供一款高质量、解释性强的计算机程序语言,所以 LaTeX 最初的风格就是精简,这也是为什么 LaTeX 在日后可供提升的地方不是很多的原因。

1.2.2 IATEX 的特点

由于种种原因,时至今日,TeX 几乎淡出了人们的视线,不过我们现在依旧能看到:在使用 LaTeX 制作文档时,通常需要创建一个以.tex 为拓展名的文件。对于很多人来说,日常制作各类文档的首选可能是 Word 等软件,它简单好用、所写即所见,但当我们制作几十页甚至上百页的文档时,Word 的劣势就会展露无疑,因为我们需要投入大量的时间和精力来对文档内容进行排版。反观 LaTeX,它对文档的排版都是自动完成的,我们根本不需要像 Word 那样完全手动调整格式,另外,使用 LaTeX 插入各种图形、表格、公式、文献时,相应的索引出错的可能性也非常小,这些优点都是 Word 所无法比拟的。

在上个世纪 80 年代和 90 年代, LaTeX 的用户群体非常庞大, 然而, 在世纪之交, 随着微软推出的一系列 Windows 操作系统快速发展, 例如红极一时的 XP 系统,

相应的办公软件 Microsoft Office 也以其便捷性吸引了人们的视线,致使大量 LaTeX 用户转而使用 Microsoft Office。即便如此,时至今日,LaTeX 的用户群体依旧十分庞大,这主要得益于 LaTeX 强大的文档排版能力,虽然 LaTeX 复杂的语法结构、不容配置的编译环境让很多初学者望而却步,但 LaTeX 能让用户更专注于内容创作,而非锦上添花的"排版",这一显著特点契合了人们对质量和效率的追求,使得 LaTeX 在文档排版、论文撰写等方面占有重要地位。在此基础上,具体来说,使得 LaTeX 历久弥新的关键可以归纳为以下五点:

- 1. LaTeX 是专门用于制作文档的计算机程序语言。在众多计算机程序语言中, LaTeX 可以制作排版连贯性极好的专业文档。
- 2. 独特的创作方式。尽管 LaTeX 沿用了 TeX 排版系统,但使用 LaTeX 制作文档时,内容创作和文档生成却是分开的,有需要的时候,我们可以预览创作的文档。因此,在创作的过程中,创作者不再像使用办公软件 Word 那样,既要关注创作内容,又要同步关注繁琐的排版和格式,使用 LaTeX 制作文档能在真正意义上让创作者专注于创作内容本身。更值得一提的是,当文档篇幅较大时,使用 LaTeX 无疑会让我们节省大量的时间和精力。
- 3. 简单的逻辑结构。使用 LaTeX 制作文档时,创作者可以通过一些非常简单的逻辑结构进行创作,如 chapter (章)、section (节)、table (表格)。因此,LaTeX 的使用门槛并不像真正的程序语言那么高。很多人或许在使用 LaTeX 的过程中都不会用到 for 等基本的循环语句。
- 4. 对数学公式以及特殊符号的支持程度。众所周知, LaTeX 在开发之初, 是作为数学和计算机相关研究人员的创作工具, 这类群体喜欢使用 LaTeX 的原因无外 乎是 LaTeX 可以通过一些简单的代码生成复杂的数学表达式和特殊符号。
- 5. 编译以.tex 为拓展名的 LaTeX 文件后会得到一个 PDF 文档, PDF 文档不存在 跨平台、兼容性等问题,可以在各种操作系统上打开。

当然,除了上述五点,实际上可能还有十分重要的一点,那就是 LaTeX 能够制作各类文档,从科技论文、技术报告、著作、学位论文、幻灯片甚至到科技绘图一应俱全,当然它也支持嵌入图片、绘制图形、设计表格、插入参考文献等。

从 LaTeX 的出现到当下,它已经形成了一套非常高效的文档制作环境:

• 文档类型 (document class)。文档类型是文档排版样式的基调,这些类型包括文章 (article)、报告 (report)、幻灯片 (beamer)等,在.tex 文件中申明文档类型后,我们就可以开始文档创作了。

- 宏包 (package)。它是 LaTeX 中的重要辅助工具,也可以把它理解为一般意义上的工具包。在使用时,调用宏包的基本命令为\usepackage,举例来说,包含颜色命令的宏包为 color,其调用语句为\usepackagecolor。随着 LaTeX 的发展,越来越多的宏包被开发出来,这些宏包能满足特定的需求(如制表、插图、绘图),同时也能让 LaTeX 代码变得更加简洁,我们只需要用简单的\usepackage命令就能调用所我们需要用到的宏包。
- 模板 (template)。LaTeX 的发展催生了很多视觉和审美效果极好的模板,包括论文模板、幻灯片模板、报告模板甚至著作模板,这些模板在一定程度上能减少创作者在文档排版上的时间开销,也有很多学术刊物会给投稿作者提供相应的 LaTeX 模板。

通过对比 LaTeX 和 Word, 我们还会看到:

- 第一, LaTeX 的.tex 源文件是无格式的,编译之后,根据特定的模板和指定的格式形成最终的 PDF 文档,因此,使用 LaTeX 制作各类文档能够很方便地切换模板和修改格式;
- 第二, LaTeX 对公式、图表以及文献引用的支持是 Word 所无法比拟的, 尤为特殊的是, 当文献数量达到上百篇时, 在 Word 中修改参考文献可能是"牵一发而动全身", 费时耗力, 而 LaTeX 根据已经整理好的.bib 文件可自动完成文献引用和生成。

1.2.3 LATEX 编辑器

实际上,配置 LaTeX 环境包括两部分,即编译器和编辑器,对应的英文表达分别是 editor 和 complier,两者不是一回事。LaTeX 编译器又称为 LaTeX 编译工具,可根据系统安装相应的编译工具:

- Linux 系统:可安装 TeX Live,该编辑器拥有 LaTeX 编辑器;
- Mac OS 系统:可安装 Mac TeX,该编译器拥有完整的 TeX/LaTeX 环境和 LaTeX 编辑器;
- Windows 系统:可安装 MiKTeX 或 TeX Live,两者都拥有完整的 TeX/LaTeX 环境和 LaTeX 编辑器。

目前,我们可以接触到很多 LaTeX 编辑器,这些编辑器的界面大致有两部分组成,即 LaTeX 源码编译区域和 PDF 文档预览区域。前面也提到了几款 LaTeX 编译器,但如果想要提高 LaTeX 的使用体验,以下几款 LaTeX 编辑器比较受人推崇:

- TeXworks: 这是 TeX Live 自带的一款轻量级编辑器。
- TeXstudio: 这款编辑器集代码编译与文档预览于一身。
- WinEdt: 这是 CTeX 自带的一款编辑器。
- VS Code: 这是微软推出的一款免费文本编辑器,功能包括文本编辑、日常开发等。
- Atom: 这是一款开源的跨平台编辑器(GitHub 网址为 https://github.com/atom/atom), 支持多种程序语言。

1.3 应运而生的在线系统

1.3.1 IATEX 在线系统的出现

上世纪 80 年代,LaTeX 作为一件新生事物,在发布之初便引起了人们极大的兴趣,虽然在制作文档方面拥有很多办公软件都无法比拟的强大优势,尤其在数学公式编写及高效排版上具有很大优势,但是由于其较高的使用门槛(使用计算机程序语言进行编译)和安装成本(本地安装需要花费大量的时间配置相应的环境),在很长一段时间里,LaTeX 主要用户都是科研工作者。然而,LaTeX 在线系统的出现已实实在在地改变了这一尴尬局面。

随着信息技术快速发展、互联网深度普及,人们的工作生活方式也在发生着很大改变,很多过去安装在本地的操作软件都被搬到了浏览器上,人们无须在个人计算机上安装各类办公软件就能进行办公,这带来了极大的便利。不过这类在线系统也存在一些先决条件,例如,出于计算资源方面的考虑,通常要求在线系统的类型不能是计算密集型,因为计算密集型的在线系统往往需要大量的计算资源作支撑。反观 LaTeX,尽管我们可以认为 LaTeX 是一种计算机程序语言,但实际上,其对计算资源的需求并不是很大。

在过去,受网速限制,使用线上系统几乎是一件难以想象的事。然而,在线系统的兴起并非空穴来风,一方面是目前的网速已经跟过去发生了质的变化,另一方面则是上网成本在急剧降低,互联网触手可及,已经成为人们日常生活和工作中不可或缺的一部分。以前,我们可能已经习惯了在本地计算机上安装和使用各类软件或者集成开发环境,不过以 LaTeX 为例,在本地计算机上安装的集成开发环境也有很多缺陷:

• 第一, 我们需要为安装 LaTeX 编辑器腾出很大的存储空间;

- 第二, 某些特定的宏包需要额外安装和配置, 但安装过多宏包之后又会使 LaTeX 变得很臃肿, 甚至是不友好;
- 第三,当我们在本地计算机使用 LaTeX 制作文档时,我们很难与合作者进行协同创作。

在这个背景下,一些成熟的 LaTeX 在线系统逐渐走进人们的视野,并受到很多用户的喜爱,其中,最为著名的 LaTeX 在线系统便是 overleaf.com。这些 LaTeX 在线系统不仅支持各种语言、各种拓展宏包等复杂的 LaTeX 环境,同时也支持实时编译和实时预览编译后的文档,就算是换一台电脑,也丝毫不会影响创作过程,创作完成之后,可以选择下载压缩文件包(如.zip),也可以只导出 PDF 文档,毫无疑问,这些人性化的设计都是为了让 LaTeX 更加便捷和高效。除此之外,现有的 LaTeX 在线系统还提供大量的 LaTeX 模板库,科技论文、毕业设计、幻灯片、海报、简历等参考模板一应俱全,就连 LaTeX 使用文档也数不胜数。

在线系统 overleaf

Overleaf 是一个初创的科技企业,它的主要业务是构建现代化协作创作工具,即 LaTeX 在线系统,旨在让科学研究变得更加便捷和高效。目前,Overleaf 已合并另一款著名的 LaTeX 在线系统 ShareLaTeX,在全球范围内拥有超过 600 万用户,这些用户大多是来自于高校和研究机构的研究人员、老师以及学生,只要打开网址 overleaf.com,用户无需在本地计算机配置 LaTeX 环境就可以创建各种 LaTeX 项目。

关于 Overleaf 的介绍可参考 https://www.overleaf.com/about。

1.3.2 IATEX 在线系统的特点

以 Overleaf 为例,该 LaTeX 在线系统往往具备以下几点特征:

- 免费和开源。可以免费注册和使用,不用下载和安装 LaTeX 编辑器,这一点对于初学者来说无疑是非常友好的;
- 使用简单。不管是在计算机、手机还是其他终端上,我们只需要使用浏览器打开 overleaf.com 就可以开始创作,另外,由于 Overleaf 界面非常简洁,所以用户使用起来也非常便利;
- 支持实时在线编辑。有各类 LaTeX 插件,编辑功能十分完善,且具有实时编译和预览功能;

图 1.3: Overleaf 首页,图片来源于 Overleaf 官网

- 支持在线协作。创作文档时,我们可以将文档项目分享给合作者进行协作,Overleaf 支持实时编译,不会出现版本控制混乱等问题;
- 支持双向定位。可以在 LaTeX 代码与 PDF 文档内容之间进行双向定位;
- 提供丰富的模板库。Overleaf 有着非常庞大的模板库,不仅有正式的学术论文、 学位论文和书籍的参考模板,还有很多美观的报告、简历、幻灯片模板。就论文 写作来说,用户可以在 Overleaf 官网找到众多期刊的 LaTeX 模板,根据使用说 明,用户很容易就能用于撰写自己的论文;
- 提供大量的帮助文档。LaTeX 提供了齐全的帮助文档,从 LaTeX 快速入门、基础操作到编译数学公式,应有尽有、一应俱全,且这些文档内容具有很强的实操性。

LaTeX 在线系统的出现大大降低了 LaTeX 的使用门槛,也为用户省去了繁琐的安装和配置过程。其实,LaTeX 在线系统的出现并非个例,很多办公软件为迎合用户需求和时代发展趋势,陆续转变了产品研发思路,包括微软在线 Office 系统、腾讯在线文档等在内的很多在线系统都走进了人们的视野,这些在线系统能够在线备份、满足人们对随时随地办公的需求,在确保便捷和高效的同时,在线和共享的理念正在潜移默化地影响着人们的办公模式。

图 1.4: Overleaf 编辑器界面,主要由代码区域和文档预览区域组成

1.4 IATEX 问答社区

在 LaTeX 刚被发布和推出的那个年代,相关资源如使用手册、教程等远没有今天这么丰富,同时,获取渠道也没有今天这么便捷。在互联网触手可及的今天,我们能通过一个浏览器访问到各种相关学习素材,遇到代码 bug,也能在一些专业的问答社区找到最佳的解决方案。毫无疑问,对于今天的我们来说,如何利用好互联网资源至关重要。

1.4.1 问答社区的介绍

对于从事计算机相关的技术人员来说,专业的技术问答社区往往是不可多得的资源,它能帮助很多技术人员提升个人编程能力、学习新技术,同时解决一些技术困扰,例如解决编程时遇到的 bug。对于各类计算机程序语言而言,Stack Exchange 作为一个著名的技术问答社区,覆盖了大量编程相关的技术问题和优质回答,就算是一些较为细致的问题,我们往往都能找到想要的答案。Stack Exchange 问答社区按计算机程序语言类型进行划分,我们所关心的 LaTeX 问答通常被分配在 TeX Stack Exchange 社区(网址为 https://tex.stackexchange.com/)。截至目前,TeX Stack Exchange 已经覆盖了关于 TeX、LaTeX 以及其他排版系统的用户在使用中遇到的诸多问题,并且这些问题多与 LaTeX 相关。

Stack Exchange

网址为 https://stackexchange.com/, 它与 Stack Overflow 问答社区在全球范围 内拥有广泛的用户群体

除了 Stack Exchange 这种涵盖了多种计算机程序语言的技术问答社区, LaTeX forum 社区 (https://latex.org/forum/) 是一个专门面向 LaTeX 的技术交流平台,它 拥有非常活跃的用户群体和丰富的问答资源,并拥有超过 10 万篇分门别类的技术帖子,我们可以根据浏览量从该平台一览高频访问问题。

实际上,不管是 LaTeX 初学者还是高级用户,在遇到 LaTeX 使用问题时,去问答社区寻找解决方案都是一种非常有效的方式。TeX Stack Exchange 社区非常活跃,每天都会有大量关于 LaTeX 的问题和回答,且每个问题下面的回答都会根据用户的认可度进行排序,回答一般比较细致。

1.4.2 高频访问问题

顾名思义,高频访问问题是指访问量较高的问题。LaTeX forum 社区已经将众多问答帖子进行了分门别类整理,针对某一特定话题,展开内容即可看到各类问题的访问情况。