1. Mnożniki Lagrange'a

1.1. **Przestrzeń styczna.** Niech $e_1, ..., e_n$ będzie bazą \mathbb{R}^n , a $x = x_1e_1 + ... + x_ne_n = (x_1, ..., x_n) \in \mathbb{R}^n$. Niech $f : \mathbb{R}^n \mapsto \mathbb{R}$ będzie funkcją taką, że dla każdego i istnieje

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}.$$

Gradient ∇f funkcji f zdefiniowany jest następująco:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), ..., \frac{\partial f}{\partial x_n}(x)\right).$$

Definicja 1.1. Mówimy, że funkcja f jest klasy $C^1(\mathbb{R}^n)$, gdy dla każdego i

(1.2)
$$\frac{\partial f}{\partial x_i} \quad jest \ funkcjq \ ciqgtq.$$

Piszemy $\frac{\partial f}{\partial x_i} \in C(\mathbb{R}^n), f \in C^1(\mathbb{R}^n).$

Oznaczenie. Dla $v, w \in \mathbb{R}^n$, $v \circ w = \sum_{i=1}^n v_i w_i$ oznacza iloczyn skalarny.

Definicja 1.3. Mówimy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}$ jest różniczkowalna, gdy

(1.4)
$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - \nabla f(x) \circ h|}{\|h\|} = 0.$$

Warunek (1.2) implikuje (1.4). Zauważmy, że z (1.4) wynika, że

$$(1.5) f(x+h) = f(x) + \nabla f(x) \circ h + o(h),$$

gdzie o(h) jest funkcją o własności

$$\lim_{h \to 0} \frac{o(h)}{\|h\|} = 0.$$

Istotnie,

$$f(x+h) - f(x) - \nabla f(x) \circ h = o(h),$$

Jeśli chcemy przybliżyć f(x+h) możemy więc napisać

(1.6)
$$f(x+h) \approx f(x) + \nabla f(x) \circ h.$$

Przykład 1.7. Znaleźć w przybliżeniu wartość $\sqrt{(6,02)^2 + (8,01)^2}$.

Rozważamy $f(x,y) = \sqrt{x^2 + y^2}$ w punkcie (6,8) dla h = (0,02;0,01). Wtedy f(6,8) = 10 i

$$\frac{\partial f}{\partial x}\Big|_{(6,8)} = \frac{x}{\sqrt{x^2 + y^2}}\Big|_{(6,8)} = \frac{3}{5}, \quad \frac{\partial f}{\partial y}\Big|_{(6,8)} = \frac{y}{\sqrt{x^2 + y^2}}\Big|_{(6,8)} = \frac{4}{5}$$

i

$$f(6,02;8,01) \approx 10 + \frac{3}{5} \cdot 0,02 + \frac{4}{5} \cdot 0,01.$$

W dalszym ciągu u będzie oznaczało dowolny element \mathbb{R}^n . Będziemy pisali

$$u = (u_1, ..., u_n) = (\bar{u}, u_n).$$

Wykresem funkcji $f: \mathbb{R}^{n-1} \mapsto \mathbb{R}$ nazywamy zbiór

$$S = \{ (\bar{x}, f(\bar{x})) : \bar{x} \in \mathbb{R}^{n-1} \}.$$

Definicja 1.8. Przestrzenią styczną T_x do S w punkcie $x=(\bar{x},f(\bar{x}))$ nazywamy hiperpłaszczyznę

(1.9)
$$T_x = \{ u \in \mathbb{R}^n : u_n - f(\bar{x}) = \nabla f(\bar{x}) \circ (\bar{u} - \bar{x}) \}.$$

Zauważmy, że równanie (1.9) można równoważnie napisać

$$(u_n - f(\bar{x}))(-1) + \nabla f(\bar{x}) \circ (\bar{u} - \bar{x}) = 0$$

czyli wektory $(\nabla f(\bar{x}), -1)$ i $u - (\bar{x}, f(\bar{x}))$ są prostopadłe. Można też zapisać

$$u_n - \nabla f(\bar{x}) \circ \bar{u} = f(\bar{x}) - \nabla f(\bar{x}) \circ \bar{x}$$

lub

$$u_n - \sum_{i=1}^{n-1} \frac{\partial f}{\partial x_i}(\bar{x})u_i = f(\bar{x}) - \nabla f(\bar{x}) \circ \bar{x}.$$

Przykład 1.10. Niech $f: \mathbb{R} \mapsto \mathbb{R}, f' \in C(\mathbb{R})$. W tym przypadku przypadku przestrzeń styczna jest prostą styczną w punkcie $(x_1, f(x_1))$ i ma równanie

$$u_2 - f(x_1) = f'(x_1)(u_1 - x_1)$$

lub równoważnie

$$u_2 = f'(x_1)(u_1 - x_1) + f(x_1).$$

Mamy równanie prostej o nachyleniu $f'(x_1)$ przechodzącej przez punkt $(x_1, f(x_1))$. Wektor kierunkowy prostej to $(1, f'(x_1))$, który jest prostopadły do $(f'(x_1), -1)$.

3

Przykład 1.11. Niech $f: \mathbb{R}^2 \mapsto \mathbb{R}, f \in C^1(\mathbb{R}^2)$. W tym przypadku przypadku przestrzeń styczna jest płaszczyzną styczną w punkcie $(\bar{x}, f(\bar{x}))$ i ma równanie

$$u_3 - f(\bar{x}) = \frac{\partial f}{\partial x_1}(\bar{x})(u_1 - x_1) + \frac{\partial f}{\partial x_2}(\bar{x})(u_2 - x_2)$$

lub równoważnie

$$u_3 = \nabla f(\bar{x})(\bar{u} - \bar{x}) + f(\bar{x}).$$

W konkretnym przypadku $f(\bar{x})=x_1^2+x_2^2$, mamy $\nabla f(\bar{x})=(2x_1,2x_2)$ i równanie $T_{(1,0,1)}$ jest następujące

$$u_3 - 1 = (2,0) \circ (\bar{u} - \bar{x}) = 2(u_1 - x_1).$$

Niech

(1.12)
$$L_x = \{ v = (\bar{v}, v_n) \in \mathbb{R}^n : v_n = \nabla f(\bar{x}) \circ \bar{v} \},$$

gdzie $v = (\bar{v}, v_n)$. Wektor v jest prostopadły do $(\nabla f(\bar{x}), -1)$. Zauważmy, że L_x jest przestrzenią liniową i

$$T_x = L_x + (\bar{x}, f(\bar{x})) = \{v + (\bar{x}, f(\bar{x})) : v \in L_x\}.$$

v jest tutaj elementem \mathbb{R}^n , ale traktowanym jako wektor czyli element przestrzeni liniowej. O $u \in \mathbb{R}^n$ myślimy jak o punkcie.

1.2. Zbiory otwarte i domknięte w \mathbb{R}^n . Dla $x \in \mathbb{R}^n$ niech

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Kulą (kulą otwartą) o środku w $x \in \mathbb{R}^n$ i promieniu r nazywamy zbiór

$$B_r(x) = \{ y \in \mathbb{R}^n : ||y - x|| < r \}.$$

Definicja 1.13. Zbiór $U \subset \mathbb{R}^n$ nazywamy otwartym jeśli dla każdego $x \in U$ istnieje r > 0 takie, że $B_r(x) \subset U$.

Przykłady zbiorów otwartych

- \bullet $B_r(x)$
- $\{x \in \mathbb{R}^2 : 0 < x < 1, \ 5 < x_2 < 10\}$
- $\{x \in \mathbb{R}^n : a_i < x_i < b_i, i = 1, ..., n\}$
- $\{x \in \mathbb{R}^n : x_i > 0, i = 1, ..., n\}$
- $\{x \in \mathbb{R}^2 : 0 < x_1 < 1, x_2 < f(x_1)\}$, gdzie $f : [0,1] \mapsto (0,\infty)$ jest funkcją ciągłą.

Zauważmy, że na zbiorze otwartym dobrze definiuje się różniczkowanie, bo dla $x \in U$, i dostatecznie małego t > 0, $x + te_i \in U$ i $f(x + te_i)$, a co za tym idzie

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}$$

jest dobrze zdefiniowane.

Definicja 1.14. Zbiór $F \subset \mathbb{R}^n$ nazywamy domkniętym jeśli $\mathbb{R}^n \setminus F$ jest otwarty.

Twierdzenie 1.15. Zbiór $F \subset \mathbb{R}^n$ jest domknięty wtedy i tylko wtedy, gdy dla każdego ciągu $x_m \in F$ zbieżnego do $x \in \mathbb{R}^n$ mamy $x \in F$.

Dowód powyższego twierdzenie będzie wkrótce na Analizie i Topologii.

Przykłady zbiorów domknietych

- $\{x \in \mathbb{R}^2 : 0 \le x \le 1, 5 \le x_2 \le 10\}$
- $\{x \in \mathbb{R}^n : a_i \le x_i \le b_i, \ i = 1, ..., n\}$
- $\{x \in \mathbb{R}^n : x_i \ge 0, i = 1, ..., n\}$
- $\{x \in \mathbb{R}^2 : 0 \le x_1 \le 1, x_2 = f(x_1)\}$, gdzie $f : [0,1] \mapsto \mathbb{R}$ jest funkcją ciągłą (wykres funkcji)
- $\{x\in\mathbb{R}^2:0\leq x_1\leq 1,x_2\leq f(x_1)\}$, gdzie $f:[0,1]\mapsto\mathbb{R}$ jest funkcją ciągłą
- $\overline{B_r(x)} = \{y \in \mathbb{R}^n : ||y x|| \le r\}$ (kula domknięta).

Poza \emptyset i \mathbb{R}^n żaden zbiór w \mathbb{R}^n nie jest jednocześnie otwarty i domknięty.

Definicja 1.16. Zbiór $K \subset \mathbb{R}^n$ nazywamy zwartym jeśli jest domknięty i ograniczony.

Na wykładzie topologii, zbiór zwarty w przestrzeni metrycznej był zdefiniowany nieco inaczej. W szczególnym przypadku \mathbb{R}^n wychodząc z ogólnej definicji można pokazać, że $K \subset \mathbb{R}^n$ jest zwarty wtedy i tylko wtedy gdy jest domknięty i ograniczony. Tak więc powyższa definicja jest raczej twierdzeniem. Będziemy jej używali, bo pozwala łatwo sprawdzić, że zbiór jest zwarty.

Przykłady zbiorów zwartych

- $\{x \in \mathbb{R}^2 : 0 \le x \le 1, 5 \le x_2 \le 10\}$
- $\bullet \ \{x \in \mathbb{R}^n : a_i \le x_i \le b_i, \ i = 1, ..., n, a_i, \ b_i \in \mathbb{R}\}\$
- $\{x \in \mathbb{R}^2 : 0 \le x_1 \le 1, x_2 = f(x_1)\}$, gdzie $f : [0,1] \mapsto \mathbb{R}$ jest funkcją ciągłą.
- $\overline{B_r(x)} = \{ y \in \mathbb{R}^n : ||y x|| \le r \}$

Zbiór

$${x \in \mathbb{R}^n : x_i \ge 0, \ i = 1, ..., n}$$

jest domknięty, ale nie jest zwarty.

Definicja 1.17. Funkcję f określoną na zbiorze D nazywamy ciągłą jeśli dla każdego ciągu $x_m \in D$ takiego, że $x_m \to x \in D$ mamy, że $f(x_m) \to f(x)$.

Dla przypomnienia: $x_m \to x$ wtedy i tylko wtedy, gdy $||x_m - x|| \to 0$.

Twierdzenie 1.18. Funkcja ciągła f określona na zbiorze zwartym $K \subset \mathbb{R}^n$ jest ograniczona i przyjmuje kresy tzn. istnieją punkty $x_1, x_2 \in K$ takie, że

$$f(x_1) = \min_{y \in K} f(y), \qquad f(x_2) = \max_{y \in K} f(y).$$

Dowód powyższego twierdzenia także powinien być na na Analizie i Topologii. Jest ono odpowiednikiem twierdzenia z teorii jednej zmiennej mówiącego, że funkcja ciągła na odcinku domknietym przyjmuje kresy.

1.3. Twierdzenie o mnożnikach Lagrange'a. U jest otwartym podzbiorem \mathbb{R}^n , g jest funkcją, a

$$(1.19) S = \{x \in U : g(x) = c\}.$$

Np. gdy $g(x, y, z) = x^2 + y^2 + z^2$ i c > 0, otrzymujemy sferę. Gdy $g(x) = h(\bar{x}) - x_n$, $x = (\bar{x}, x_n)$ i c = 0, S jest wykresem funkcji h. Istotnie g(x) = 0 wtedy i tylko wtedy, gdy $x_n = h(\bar{x})$.

Zakładamy, że funkcja f jest określona na S.

Definicja 1.20. Mówimy, że f przyjmuje minimum (maksimum) lokalne w x_0 jeśli istnieje r>0 takie, że

$$f(x_0) = \min_{x \in S \cap B_r(x_0)} f(x) \quad \left(f(x_0) = \max_{x \in S \cap B_r(x_0)} f(x) \right).$$

Twierdzenie 1.21 (Lagrange). Załóżmy, że funkcje $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ i $g: U \subseteq \mathbb{R}^n \to \mathbb{R}$ są klasy C^1 . Niech $S = \{x \in U: g(x) = c\}$. Jeśli funkcja $f|_S$ przyjmuje minimum lub maksimum lokalne w punkcie x_0 oraz $\nabla g(x_0) \neq 0$, to $\nabla f(x_0) = \lambda \nabla g(x_0)$ dla pewnej stałej λ . Tzn. gradienty $\nabla f(x_0)$ i $\nabla g(x_0)$ są równoległe.

Jeśli S jest zwarta, to f przyjmuje maksimum i minimum, a więc pośród tak znalezionych punktów będą punkty, gdzie jest maksimum i minimum, a pośród otrzymanych wartości funkcji największa i najmniejsza.

Trzeba znaleźć punkt $x \in U$ i stałą λ takie, że

$$\frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n) = \lambda \frac{\partial g}{\partial x_1}(x_1, x_2, \dots, x_n)$$

$$\vdots \qquad \vdots$$

$$\frac{\partial f}{\partial x_n}(x_1, x_2, \dots, x_n) = \lambda \frac{\partial g}{\partial x_n}(x_1, x_2, \dots, x_n)$$

$$g(x_1, x_2, \dots, x_n) = c$$

Mamy układ n+1 równań z n+1 niewiadomymi x_1, x_2, \ldots, x_n i λ .

Przykład 1.22. Niech $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, $a \ f(x,y) = x^2 - y^2$. Wtedy $\nabla f(x,y) = (2x, -2y) = \lambda \nabla g(x,y) = \lambda (2x, 2y)$.

Więc $x=\lambda x,\ y=-\lambda y.$ Czyli x=0 lub $\lambda=1.$ W pierwszym przypadku $y=\pm 1,\ a$ w drugim y=0 i $x=\pm 1.$ Mamy więc

$$f(0,\pm 1) = -1, \quad f(\pm 1,0) = 1$$

i są to najmniejsza i największa wartość funkcji na sferze.

Przykład 1.23. f(x, y, z) = x + z, $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$. Mamy $\nabla f(x, y, z) = (1, 0, 1)$, $\nabla g(x, y, z) = (2x, 2y, 2z)$.

Wektory te są równoległe, gdy y=0 oraz z=x. Zatem $2x^2=1$. Otrzymujemy dwa rozwiązania $\pm\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$ oraz

$$f\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = \sqrt{2}, \qquad f\left(-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right) = -\sqrt{2}.$$

Przykład 1.24. Na sferze $x^2 + y^2 + z^2 = 4$ znaleźć punkt najbliższy i najdalszy od punktu (3, 1, -1).

Rozważmy kwadrat odległości: $f(x,y,z) = ||(x,y,z) - (3,1,-1)||^2 = (x-3)^2 + (y-1)^2 + (z+1)^2$. Wtedy

$$\nabla f(x, y, z) = 2(x - 3, y - 1, z + 1) = \lambda \nabla g(x, y, z) = 2\lambda(x, y, z).$$

Mamy do dyspozycji równania

(1.25)
$$x-3 = \lambda x$$
, $y-1 = \lambda y$, $z+1 = \lambda z$, i $x^2 + y^2 + z^2 = 4$

lub równoważnie

$$(1.26) x(1-\lambda) = 3, y(1-\lambda) = 1, z(1-\lambda) = -1, i x^2 + y^2 + z^2 = 4.$$

Zauważmy, że $\lambda \neq 1$. Stad,

$$x = 3(1 - \lambda)^{-1}, \quad y = (1 - \lambda)^{-1}, \quad z = -(1 - \lambda)^{-1}.$$

Wstawiajac te wartości do równania sfery otrzymujemy

$$\frac{11}{(1-\lambda)^2} = 4, \quad 1-\lambda = \pm \frac{\sqrt{11}}{2}$$

i dwa punkty

$$p_1 = \left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{-2}{\sqrt{11}}\right), \text{ dla } \lambda = 1 - \frac{\sqrt{11}}{2}$$

$$p_2 = -p_1$$
 dla $\lambda = 1 + \frac{\sqrt{11}}{2}$.

 Z (1.25) wynika, że $f(x,y,z)=\lambda^2(x^2+y^2+z^2)=\bar{4\lambda^2}$, co dla p_1 daje odległość $2\left|1-\frac{\sqrt{11}}{2}\right|$, a dla p_2 odległość $2\left(1+\frac{\sqrt{11}}{2}\right)$.

Przykład 1.27. Rozważmy macierz symetryczną A wymiaru $n \times n$. Określamy

$$f(x) = (Ax, x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j, \quad x = (x_1, x_2, \dots, x_n).$$

Chcemy znaleźć ekstrema funkcji f(x) na

$$S = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : g(x) = x_1^2 + x_2^2 + \dots + x_n^2 = 1\}.$$

Mamy

$$\frac{\partial f}{\partial x_k}(x) = \sum_{i \neq k} a_{kj} x_j + \sum_{i \neq k} a_{ik} x_i + 2a_{kk} x_k = 2\sum_{i=1}^n a_{kj} x_j,$$

bo $a_{kj} = a_{jk}$. Dalej

$$\frac{\partial g}{\partial x_k}(x) = 2x_k.$$

Otrzymujemy więc układ równań

$$\sum_{j=1}^{n} a_{1j} x_j = \lambda x_1,$$

$$\sum_{j=1}^{n} a_{2j} x_j = \lambda x_2,$$

$$\sum_{j=1}^{n} a_{nj} x_j = \lambda x_n.$$

To oznacza, że $Ax = \lambda x$. Czyli x jest wektorem własnym o długości 1. Uporządkujmy wartości własne macierzy A według wielkości: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Niech v_1, v_2, \ldots, v_n oznaczają odpowiadające wektory własne o długości 1. Wtedy

$$f(v_k) = (Av_k, v_k) = \lambda_k(v_k, v_k) = \lambda_k.$$

Reasumując

$$\min_{\|x\|=1} (Ax, x) = \lambda_1, \qquad \max_{\|x\|=1} (Ax, x) = \lambda_n.$$

Przykład 1.28. Na zbiorze $S = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1, x_i \geq 0\}$ znajdziemy najmniejszą i największą wartość funkcji $f(x) = (1 + x_1)(1 + x_2)(1 + x_3)$.

Zauważmy, że S nie jest zbiorem postaci $S=\{x\in U: g(x)=c\}$ dla U otwartego, ale S jest zwarte i możemy szukać najmniejszej i największej wartości funkcji. Z równania na gradienty mamy

$$\nabla f = ((1+x_2)(1+x_3), (1+x_1)(1+x_3), (1+x_1)(1+x_2)) = \lambda(1,1,1).$$

Stąd $x_1 = x_2 = x_3 = 1/3$ i $f(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = (\frac{4}{3})^3 = \frac{64}{27}$. Ale to działa tylko na zbiorze $\{x_1 + x_2 + x_3 = 1, x_i > 0\}$, bo w Twierdzeniu Lagrange'a U jest otwarty.

Musimy więc założyć, że jedna zmienna jest zero, np. $x_1 = 0$, rozważyć zbiór $\{x_2 + x_3 = 1, x_2, x_3 \ge 0\}$ i funkcję $f(x) = (1 + x_2)(1 + x_3)$. Postępując jak wyżej i ograniczając się do $x_2 > 0, x_3 > 0$ otrzymujemy $x_2 = x_3 = \frac{1}{2}$ i $f(0, \frac{1}{2}, \frac{1}{2}) = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$.

W końcu, musimy jeszcze uwzględnić punkty, gdzie dwie współrzędne się zerują, co daje f(0,0,1)=2. Ze względu na symetrię zmiennych są to wszystkie przypadki. Stąd $\frac{64}{27}$ jest największą wartością, a 2 najmniejszą.

Przykład 1.29. Przy warunku x+y+z=48 znajdziemy najmniejszą funkcji $f(x)=x^2+y^2+z^2$.

Z Twierdzenia Lagrange'a mamy $(2x, 2y, 2z) = \lambda(1, 1, 1)$. Stąd x = y = z = 16 i f(16, 16, 16) = 768. Ale zbiór opisany warunkiem nie jest zwarty

Dlaczego jest to minimum? Zauważmy, że $f(x,y,z) \to \infty$, gdy $x \to \infty$ więc nie ma największej wartości. Powierzchnia jest niezwarta, więc musimy wykazać, że wartość minimalna jest przyjęta. Rozważmy kółko

$$S = \{(x, y, z) : x^2 + y^2 + z^2 \le 1000, x + y + z = 48\}.$$

f przyjmuje na S maksimum = 1000 i jakieś minimum, a poza S funkcja f jest większa niż 1000.

W sytuacji, gdy mamy zbiór zwarty o niepustym wnętrzu i brzegu zadanym jako poziomica (1.19), procedura znajdowania wartości największej i najmniejszej funkcji jest następująca

- 9
- 1. Znaleźć punkty krytyczne funkcji wewnątrz zbioru, tzn. punkty stacjonarne oraz punkty, w których nie można obliczyć pochodnych cząstkowych.
- 2. Znaleźć punkty krytyczne funkcji obciętej do brzegu zbioru, np. metodą mnożników Lagrange'a.
- 3. Obliczyć wartości funkcji w znalezionych punktach.
- 4. Wybrać wartość największą i najmniejszą.
- 1.4. Charakteryzacja przestrzeni stycznej przy pomocy krzywych. Niech I=(a,b), gdzie $-\infty \le a < b \le \infty$, co znaczy, że I może być odcinkiem, półprostą, całym \mathbb{R} . Dla wygody różniczkowania przyjmujemy, że I jest otwarty.

Definicja 1.30. Odwzorowanie $\gamma: I \mapsto \mathbb{R}^n$ klasy C^1 nazywamy krzywą. Piszemy $\gamma(t) = (\gamma_1(t), ..., \gamma_n(t)).$

Klasy C^1 oznacza, że dla każdego i

$$\gamma_i'(t) = \frac{d\gamma_i}{dt}(t)$$
 jest funkcją ciągłą.

Oznaczmy

$$\gamma'(t) = (\gamma_1'(t), ..., \gamma_n'(t))$$

Rozważmy $x \in S$ $(S = \{x \in U : g(x) = c\})$ i zbiór krzywych

$$\Gamma_x = \{ \gamma : I \mapsto \mathbb{R}^n, \ 0 \in I, \ \gamma(0) = x, \ \forall_t \ \gamma(t) \in S \}.$$

Na początek ograniczymy się do S będącego wykresem funkcji.

Twierdzenie 1.31. Załóżmy, że S jest wykresem funkcji f tzn.

$$S = \{ (\bar{x}, f(\bar{x})) : \bar{x} \in \mathbb{R}^{n-1} \} = \{ x \in \mathbb{R}^n : x_n - f(\bar{x}) = 0 \}$$

Wtedy

$$L_x = \{v: \exists_{\gamma \in \Gamma_x}, v = \gamma'(0)\}.$$

Dowód. Zwróćmy uwagę, że L_x było zdefiniowane jako przestrzeń wektorów prostopadłych do $(\nabla f(\bar{x}), -1)$. Zapiszmy $x = (\bar{x}, x_n)$ i

$$\gamma(t) = (\bar{\gamma}(t), \gamma_n(t)), \text{ gdzie } \bar{\gamma}(t) \in \mathbb{R}^{n-1}.$$

Jeśli $\gamma \in \Gamma_x$ to $\gamma_n(t) = f(\bar{\gamma}(t))$ czyli $\gamma(t) = (\bar{\gamma}(t), f(\bar{\gamma}(t)))$

$$\frac{d\gamma_n}{dt}(t) = \sum_{i=1}^{n-1} \frac{\partial f}{\partial x_i}(\bar{\gamma}(t)) \cdot \frac{d\gamma_i}{dt}(t),$$

a więc

$$\frac{d\gamma_n}{dt}(0) = \nabla f(\bar{x}) \circ \bar{\gamma}'(0).$$

Stąd $\gamma'(0) \in L_x$. Załóżmy teraz, że $v = (\bar{v}, v_n) \in L_x$ czyli o własności $v_n = \nabla f(\bar{x}) \circ \bar{v}$. i rozważmy krzywą

$$\gamma(t) = (\bar{x} + \bar{v}t, f(\bar{x} + \bar{v}t)).$$

Na przykład dla n = 3 mamy

$$\gamma(t) = (x_1 + v_1t, x_2 + v_2t, f(x_1 + v_1t, x_2 + v_2t)).$$

 $\gamma \in \Gamma_x$ i

$$\gamma'(0) = \left(v_1, ..., v_{n-1}, \frac{d}{dt} f(\bar{x} + \bar{v}t)(0)\right)$$
$$= \left(v_1, ..., v_{n-1}, \sum_{i=1}^{n-1} \frac{\partial f}{\partial x_i}(\bar{x}) \cdot v_i\right)$$
$$= (\bar{v}, \nabla f(\bar{x}) \circ \bar{v}) = v,$$

Powyższe twierdzenie jest prawdziwe także w ogólnej sytuacji

$$S = \{ x \in U : g(x) = c \}.$$

Wtedy definiujemy

$$L_x = \{v : \nabla g(x) \circ v = 0\}.$$

Zwróćmy uwagę, że gdy S jest wykresem funkcji f obie definicje L_x pokrywają się. Istotnie, dla $g(x) = f(\bar{x}) - x_n = 0$ mamy

$$\nabla g(x) = (\nabla f(\bar{x}), -1).$$

Twierdzenie 1.32. Niech $S = \{x \in U : g(x) = c\}, \nabla g(x) \neq 0.$ Wtedy

$$L_x = \{v: \exists_{\gamma \in \Gamma_x}, \ v = \gamma'(0)\}.$$

Powyższe twierdzenie zostanie udowodnione za kilka wykładów.

1.5. **Dowód Twierdzenia Lagrange'a o mnożnikach.** Załóżmy, że funkcje $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ i $g:U\subseteq\mathbb{R}^n\to\mathbb{R}$ sq klasy C^1 . Niech $S=\{x\in U:g(x)=c\}$. Jeśli funkcja $f|_S$ przyjmuje minimum lub maksimum lokalne w punkcie x_0 oraz $\nabla g(x_0)\neq 0$, to $\nabla f(x_0)=\lambda \nabla g(x_0)$ dla pewnej stałej λ . Tzn. gradienty $\nabla f(x_0)$ i $\nabla g(x_0)$ sq równoległe.

 $Dow \delta d$. Niech $\sigma(t): (-1,1) \to S$ będzie krzywą klasy C^1 przechodzącą przez x_0 w chwili t=0, tzn. $\sigma(0)=x_0$. Wtedy funkcja złożona $f(\sigma(t))$ przyjmuje ekstremum lokalne w chwili t=0. Zatem

$$0 = \frac{d}{dt} f(\sigma(t)) \Big|_{t=0} = \nabla f(\sigma(t)) \circ \sigma'(t) \Big|_{t=0} = \nabla f(x_0) \circ \sigma'(0)$$

Ponadto $\sigma'(0)$ jest wektorem stycznym do S w punkcie x_0 . Co więcej z Twierdzenia 1.32 wynika, że zbiór tych wektorów jest tożsamy z L_x , a więc tworzy podprzestrzeń liniową wymiaru n-1. Tzn. gradient $\nabla f(x_0)$ jest prostopadły do każdego wektora stycznego do S w punkcie x_0 . Zatem $\nabla f(x_0)$ jest prostopadły do przestrzeni stycznej do S w punkcie x_0 . Ale $\nabla g(x_0) \neq 0$ jest też prostopadły do tej przestrzeni stycznej. To oznacza, że $\nabla f(x_0)$ i $\nabla g(x_0)$ są równoległe.

1.6. Metoda mnożników Lagrange'a przy kilku warunkach. Załóżmy, że powierzchnia $S \subset \mathbb{R}^n$ jest określona przez k warunków

$$g_1(x_1, x_2, ..., x_n) = c_1,$$

 $g_2(x_1, x_2, ..., x_n) = c_2,$
 \vdots
 $g_k(x_1, x_2, ..., x_n) = c_k.$

Twierdzenie 1.33. Załóżmy, że wektory $\nabla g_1(x_0), \nabla g_2(x_0), \ldots, \nabla g_k(x_0)$ są liniowo niezależne. Jeśli funkcja $f|_S$ posiada ekstremum w punkcie $x_0 \in S$, to

$$\nabla f(x_0) = \lambda_1 \nabla g_1(x_0) + \lambda_2 \nabla g_2(x_0) + \ldots + \lambda_k \nabla g_k(x_0)$$

dla pewnych stałych $\lambda_1, \lambda_2, \dots, \lambda_k$.

Uwaga. Aby znaleźć punkt x_0 trzeba rozwiązać n+k równań przy n+k niewiadomych: n współrzędnych i k lambd.

Przykład 1.34. Znaleźć ekstrema funkcji f(x, y, z) = y + z przy warunkach $x^2 + z^2 = 1$ i $y^2 + z^2 = 4$.

Możemy przyjąć $g_1(x,y,z)=x^2+y^2$ oraz $g_2(x,y,z)=y^2+z^2$. Rozwiązujemy równanie $\nabla f=\lambda_1\nabla g_1+\lambda_2\nabla g_2$. Otrzymujemy 3 równania

$$0 = 2\lambda_1 x,$$

$$1 = 2\lambda_2 y,$$

$$1 = 2\lambda_1 z + 2\lambda_2 z.$$

Rozpatrzymy dwa przypadki.

- (a) x = 0. Wtedy $z = \pm 1$ oraz $y = \pm \sqrt{3}$.
- (b) $\lambda_1 = 0$. Wtedy y = z, zatem $z^2 = 2$. Otrzymujemy sprzeczność z warunkiem $x^2 + z^2 = 1$.

Wartość największa jest osiągnięta w punkcie $(0, \sqrt{3}, 1)$ a wartość najmniejsza w $(0, -\sqrt{3}, -1)$.

Przykład 1.35. Znaleźć ekstrema funkcji f(x, y, z) = x + 2y + 3z przy warunkach $x^2 + y^2 = 1$ i x - y + z = 1.

Możemy przyjąć $g_1(x, y, z) = x - y + z$ oraz $g_2(x, y, z) = x^2 + y^2$. Rozwiązujemy równanie $\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$. Otrzymujemy 3 równania

$$1 = \lambda + 2\mu x,$$

$$2 = -\lambda + 2\mu y,$$

$$3 = \lambda.$$

Stad

$$-2 = 2\mu x \quad x = -\frac{1}{\mu} \qquad (I - III)$$
$$5 = 2\mu y \quad y = -\frac{5}{2\mu} \qquad (II + III)$$

Wstawiając to do pierwszego warunku mamy

$$\frac{1}{\mu^2} + \frac{25}{4\mu^2} = 1, \quad \mu = \pm \frac{\sqrt{29}}{2}.$$

i

$$x = \mp \frac{2}{\sqrt{29}}, \quad y = \pm \frac{5}{\sqrt{29}}.$$

Z drugiego warunku

$$z = 1 \pm \frac{7}{\sqrt{29}}$$

i

$$f(x, y, z) = 3 \pm \sqrt{29}$$
.

Ze względu na to, że zbiór opisany przez warunki jest zwarty otrzymujemy w ten sposób największą i najmniejszą wartośc funkcji f.

 $Dowód\ Twierdzenia\ 1.33.$ Niech $\sigma(t)$ będzie krzywą klasy C^1 leżącą w powierzchni S taką, że $\sigma(0)=x_0.$ Mamy

$$g_j(\sigma(t)) = c_j$$
, dla $j = 1, 2, \dots, k$.

Zatem

$$0 = \frac{d}{dt}g_j(\sigma(t)) = \nabla g_j(\sigma(t)) \circ \sigma'(t).$$

Dla t = 0 otrzymujemy

$$\nabla g_j(x_0) \circ \sigma'(0) = 0$$
, dla $j = 1, 2, ..., k$.

To oznacza, że wektor $\sigma'(0)$ jest prostopadły do wektorów

$$\nabla g_1(x_0), \ \nabla g_2(x_0), \ \dots, \ \nabla g_k(x_0).$$

Wektor $\sigma'(0)$ jest styczny do powierzchni S w punkcie x_0 .

13

Podobnie jak dla k = 1 wymiar przestrzeni liniowej V_1 rozpiętej przez wszystkie wektory styczne $\sigma'(0)$ wynosi n - k.

Z kolei wymiar przestrzeni V_2 rozpiętej przez wektory $\nabla g_1(x_0), \nabla g_2(x_0), \ldots, \nabla g_k(x_0)$ wynosi k, o ile gradienty są liniowo niezależne. Ale V_1 i V_2 są do siebie prostopadłe, zatem $V_1^{\perp} = V_2$. Rozważmy funkcję $t \mapsto f(\sigma(t))$. Funkcja ta osiąga ekstremum dla t = 0. Czyli

$$0 = \frac{d}{dt} f(\sigma(t)) \Big|_{t=0} = \nabla f(x_0) \circ \sigma'(0),$$

dla dowolnej wyżej opisanej krzywej σ . Zatem $\nabla f(x_0) \in V_1^{\perp} = V_2$.

2. Twierdzenie o funkcji uwikłanej

Z teorii funkcji jednej zmiennej y=f(x) wiemy, że jeśli f jest klasy C^1 oraz $f'(x_0) \neq 0$, to równanie f(x)=y dla y w pobliżu $y_0=f(x_0)$ ma jednoznaczne rozwiązanie $x=f^{-1}(y)$ leżące w pobliżu x_0 . Rzeczywiście, rozważmy przypadek $f'(x_0)>0$. Zatem f'(x)>0 dla x w pewnym przedziale wokół x_0 , np. w $(x_0-\delta,x_0+\delta)$. Wtedy f(x) jest ściśle rosnąca w $(x_0-\delta,x_0+\delta)$. Zatem posiada funkcję odwrotną x=g(y). Proces odwracania jest możliwy i ważny również dla funkcji wielu zmiennych. Do tego dojdziemy, ale najpierw zajmiemy się rozwiązywaniem równań.

Rozważmy równanie F(x,y,z)=0. Przypuśćmy, że $F(x_0,y_0,z_0)=0$. Interesuje nas obliczenie zmiennej z z równania w pobliżu (x_0,y_0,z_0) . Tzn. chcemy, aby dla (x,y) blisko (x_0,y_0) znaleźć z blisko z_0 tak, aby F(x,y,z)=0. Np. niech $F(x,y,z)=x^2+y^2+z^2-1$ oraz F(0,0,1)=0. Wtedy

$$z = \sqrt{1 - x^2 - y^2} = g(x, y)$$

jest rozwiązaniem równania. g(x,y) jest funkcją klasy C^1 na zbiorze $B_1(0,0)=\{(x,y):x^2+y^2<1\}$. Ponadto jeśli oznaczymy $S=\{(x,y,z):x^2+y^2+z^2-1=0\}$ to

$$S \cap \{(x, y, z) : z > 0\} = \{(x, y, g(x, y)) : (x, y) \in B_1(0, 0)\}.$$

Pokazaliśmy, że istnieje otoczenie $\{(x,y,z):z>0\}$ punktu (0,0,1) i funkcja g klasy C^1 takie, że przekrój powierzchni z tym otoczeniem jest dokładnie wykresem funkcji g. Podobnie dla F(0,0,-1) rozwiązaniem jest

$$z = -\sqrt{1 - x^2 - y^2}.$$

Z kolei dla $F(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ mamy dwa rozwiązania

$$z = \pm \sqrt{1 - x^2 - y^2}$$

jeśli $x^2+y^2\leq 1$ lub brak rozwiązań, jeśli $x^2+y^2>1$. W tym przypadku nie ma otoczenia punktu $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, na którym z(x,y) byłoby funkcją klasy C^1 .

Rozważmy S zadane nieco bardziej skomplikowanym równaniem:

$$F(x, y, z) = xy + z + 3xz^5 - 4 = 0$$

w otoczeniu $B_{\varepsilon}(1,0) \times (1-\delta,1-\delta)$ punktu (1,0,1) będącego jego rozwiązaniem. Czy przekrój S ze zbiorem otwartym $B_{\varepsilon}(1,0) \times (1-\delta,1-\delta)$ jest wykresem pewnej funkcji q klasy C^1 ? tzn. czy

$$S \cap (B_{\varepsilon}(1,0) \times (1-\delta,1-\delta)) = \{(x,y,g(x,y)) : (x,y) \in B_{\varepsilon}(1,0)\} \text{ dla } g \in C^{1}?$$

W tym przypadku nie jest już tak łatwo wyliczyć z jako funkcję x, y.

Twierdzenie 2.1. Załóżmy, że funkcja $F: \mathbb{R}^3 \to \mathbb{R}$ jest klasy C^1 . Załóżmy, że

$$F(x_0, y_0, z_0) = 0$$
, oraz $\frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0$.

Wtedy równanie F(x,y,z)=0 ma jednoznaczne rozwiązanie w pobliżu (x_0,y_0,z_0) . Co więcej, z można jednoznacznie wyznaczyć jako funkcję (x,y) i funkcja ta jest klasy C^1 . Dokładniej, istnieje kula otwarta $U \subset \mathbb{R}^2$ o środku w (x_0,y_0) , przedział otwarty I wokół z_0 oraz funkcja

$$g: U \mapsto I, \quad g \in C^1(U),$$

taka, że

$$F(x, y, q(x, y)) = 0, \quad (x, y) \in U$$

oraz jeśli $(x,y,z) \in U \times I$ i F(x,y,z) = 0 to z = g(x,y). Inaczej mówiąc

$${F(x,y,z) = 0} \cap U \times I = {(x,y,g(x,y)) : (x,y) \in U}.$$

Zwróćmy uwagę, że dla $F(x, y, z) = x^2 + y^2 + z^2 - 1$ mamy

$$\frac{\partial F}{\partial z}(0,0,1) = 2$$
, a $\frac{\partial F}{\partial z}(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0) = 0$,

co uzasadnia warunek $\frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0$.

Przykłady.

(a) $F(x,y) = x^2y - y^2 = (x^2 - y)y$. Rozważmy punkt $(x_0,y_0) = (0,0)$. F(x,y) = 0 wtedy i tylko wtedy, gdy $y = x^2$ lub y = 0. W pobliżu punktu (0,0) mamy więc dwa rozwiązania. Nie można przedstawić y jako funkcji zmiennej x. Mamy dwie funkcje. Zauważmy, że $\nabla F(x,y) = (2xy,x^2 - 2y)$ czyli $\nabla F(0,0) = (0,0)$.

Sytuacja jest zupełnie inna w punkcie $(x_0,y_0)=(1,1)$. W pobliżu punktu $(1,1),\ F(x,y)=0$ wtedy i tylko wtedy, gdy $y=x^2$, mamy więc jedno rozwiązanie. W tym przypadku możemy wziąć $U=(1/2,3/2),\ I=(1/4,9/4)$. Zauważmy, że $\nabla F(1,1)=(2,-1)$.

(b) Rozważmy walec $F(x, y, z) = x^2 + y^2 - 1 = 0$ i punkt $(x_0, y_0, z_0) = (1/\sqrt{2}, 1/\sqrt{2}, 5)$. Mamy

$$\frac{\partial F}{\partial z}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 5\right) = 0, \quad \frac{\partial F}{\partial x}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 5\right) = \sqrt{2}$$

Nie można przedstawić z jako funkcji zmiennych x,y, ale można przedstawić x jako funkcję zmiennych y,z stałą w kierunku zmiennej z. Możemy wziąć $U=(1/\sqrt{2}-\delta,1/\sqrt{2}+\delta)\times\mathbb{R}\ni (y,z),\, (1/\sqrt{2}-\varepsilon,1/\sqrt{2}+\varepsilon)=I\ni x.$

Twierdzenie pozwala nam też na liczenie pochodnych funkcji g mimo, że nie mamy na nią jawnego wzoru.

Wiemy, że $z_0 = g(x_0, y_0)$ oraz F(x, y, g(x, y)) = 0 dla $(x, y) \in U$. Zatem

$$0 = \frac{\partial}{\partial x} F(x, y, g(x, y)) = \frac{\partial F}{\partial x} (x, y, g(x, y)) + \frac{\partial F}{\partial z} (x, y, g(x, y)) \frac{\partial g}{\partial x} (x, y).$$

Otrzymujemy

(2.2)
$$\frac{\partial g}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,g(x,y))}{\frac{\partial F}{\partial x}(x,y,g(x,y))}, \quad (x,y) \in \tilde{U} \subset U.$$

Z założenia $\frac{\partial F}{\partial z}(x_0,y_0,z_0)\neq 0$, zatem $\frac{\partial F}{\partial z}(x,y,g(x,y))\neq 0$, dla (x,y) w pobliżu (x_0,y_0) , bo funkcje F i g są klasy C^1 . Podstawiamy (x_0,y_0) aby otrzymać

(2.3)
$$\frac{\partial g}{\partial x}(x_0, y_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0, z_0)}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}.$$

Przykłady.

(a) Rozważamy równanie $F(x,y,z)=xy+z+3xz^5=4$ i rozwiązanie (1,0,1). Wtedy

$$\frac{\partial F}{\partial z}(1,0,1) = 1 + 15xz^4 \Big|_{(1,0,1)} = 16,$$

$$\frac{\partial F}{\partial x}(1,0,1) = y + 3z^5 \Big|_{(1,0,1)} = 3,$$

$$\frac{\partial F}{\partial y}(1,0,1) = x \Big|_{(1,0,1)} = 1.$$

Na podstawie wzoru (2.10) otrzymujemy

$$\frac{\partial g}{\partial x}(1,0) = -\frac{3}{16}, \quad \frac{\partial g}{\partial y}(1,0) = -\frac{1}{16}.$$

 $\frac{\partial g}{\partial x}$ jako funkcja na otoczeniu (1,0,1) jest dana wzorem

$$\frac{\partial g}{\partial x}(x,y) = \frac{y+3z^5}{1+15xz^4} \quad \text{gdy} \quad z = g(x,y)$$

czyli gdy jesteśmy na poziomicy (powierzchni).

(b) Niech $F(x,y,z) := x^3 + 3y^2 + 8xz^2 - 3yz^3 = 1$. W pobliżu jakich punktów powierzchnia zadana równaniem może być przedstawiona jako wykres funkcji z = g(x,y)? Obliczamy

$$\frac{\partial F}{\partial z} = 16xz - 9yz^2 \neq 0.$$

Zatem muszą być spełnione warunki $z \neq 0$ oraz $16x - 9yz \neq 0$. Jeśli chcemy obliczyć x = h(y, z), to

$$\frac{\partial F}{\partial x} = 3x^2 + 8z^2 \neq 0.$$

Wystarczy zatem, aby $x \neq 0$ lub $z \neq 0$.

Przykład 2.4. Znaleźć lokalne ekstrema funkcji z na powierzchni $x^2+y^2+z^3-3z=0$.

Mówimy o lokalnych ekstremach, bo powierzchnia jest nieograniczona. Mamy $x^2+y^2=-z^3+3z$. Gdy z dąży $-\infty$, to zawsze najdziemy (x,y) spełniające to równanie. Po pierwsze zauważmy, gdzie można rozwikłać z jako funkcję zmiennych x,y.

$$\frac{\partial F}{\partial z} = 3z^2 - 3 \neq 0 \quad \iff \quad z^2 \neq 1.$$

z=1daje $x^2+y^2=2,$ az=-1prowadzi do sprzeczności $x^2+y^2=-2.$ Poza okręgiem $z=1,\,x^2+y^2=2,$ możemy zrozwikłać i piszemy z=z(x,y). W otoczeniu punktów należących do tego okręgu nie mamy narzędzi do zbadania zachowania z.Różniczkując obustronnie $x^2+y^2+z^3-3z=0$ pox,otrzymujemy

$$2x + 3z^{2} \frac{\partial z}{\partial x} - 3\frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} 3(z^{2} - 1) = -2x$$

$$\frac{\partial z}{\partial x} = \frac{-2x}{3(z^{2} - 1)}, \quad \frac{\partial z}{\partial y} = \frac{-2y}{3(z^{2} - 1)}$$

Powyższe wzory mają sens o ile jesteśmy na powierzchni. $\frac{\partial z}{\partial y}$, $\frac{\partial z}{\partial x}$ znikają punkcie $x=0,\ y=0$. Wtedy $z=\pm\sqrt{3}$ lub z=0. $\frac{\partial F}{\partial z}$ nie znika w tych punktach i z=z(x,y). Różniczkując po x jeszcze raz mamy

$$2 + 6z \left(\frac{\partial z}{\partial x}\right)^2 + 3z^2 \frac{\partial^2 z}{\partial x^2} - 3\frac{\partial^2 z}{\partial x^2} = 0$$

$$\frac{\partial^2 z}{\partial x^2} 3(z^2 - 1) = -2 - 6x \left(\frac{\partial z}{\partial x}\right)^2$$

$$\frac{\partial^2 z}{\partial x^2} 3(z^2 - 1) = -2 - 6x \cdot \frac{4x^2}{9(z^2 - 1)^2}$$

Ten wzór także ma sens tylko na poziomicy. Różniczkując najpierw pox, a potem poy mamy

$$\frac{\partial}{\partial y} \left(2x + 3z^2 \frac{\partial z}{\partial x} - 3 \frac{\partial z}{\partial x} \right) = 6z \frac{\partial z}{\partial y} \frac{\partial z}{\partial x} + 3z^2 \frac{\partial^2 z}{\partial y \partial x} - 3 \frac{\partial^2 z}{\partial y \partial x} = 0$$

Stad

$$3(z^{2} - 1)\frac{\partial^{2} z}{\partial y \partial x} = -6z\frac{\partial z}{\partial y}\frac{\partial z}{\partial x} = -6z\frac{4xy}{9(z^{2} - 1)^{2}}$$

Mamy

$$\begin{split} \frac{\partial^2 z}{\partial x^2} &= -\frac{2}{6}, \quad \frac{\partial^2 z}{\partial y^2} = -\frac{2}{6} \quad \text{w } (0, 0, \sqrt{3}) \\ 3(z^2 - 1) \frac{\partial^2 z}{\partial y \partial x} &= 0, \quad \text{czyli} \quad \frac{\partial^2 z}{\partial y \partial x} = 0. \end{split}$$

Hesjan z w punkcie $(0,0,\sqrt{3})$ jest ujemnie określony (tzn. -Hesjan jest dodatnio określony), więc mamy lokalne maksimum. To samo w $(0,0,-\sqrt{3})$.

$$\frac{\partial^2 z}{\partial x^2} = \frac{2}{3}, \quad \frac{\partial^2 z}{\partial y^2} = \frac{2}{3} \quad \text{w } (0, 0, 0)$$
$$\frac{\partial^2 z}{\partial y \partial x} = 0 \quad \text{w } (0, 0, 0).$$

Hesjan z w punkcie (0,0,0) jest dodatnio określony, więc mamy lokalne minimum.

2.1. **Hesjan.** Korzystając z równania (2.2) możemy policzyć Hesjan funkcji g o ile F ma drugie pochodne. Różniczkując obustronnie równanie

$$\frac{\partial g}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,g(x,y))}{\frac{\partial F}{\partial z}(x,y,g(x,y))}, \quad (x,y) \in U.$$

jeszcze raz po x mamy

$$\frac{\partial}{\partial x}\frac{\partial g}{\partial x}(x,y) = -\frac{\partial}{\partial x}\left(\frac{\frac{\partial F}{\partial x}(x,y,g(x,y))}{\frac{\partial F}{\partial z}(x,y,g(x,y))}\right), \quad (x,y) \in U.$$

Korzystając z wzoru na pochodną ilorazu wyliczmy jej licznik

$$\left(-\frac{\partial^2 F}{\partial x^2} - \frac{\partial^2 F}{\partial z \partial x} \frac{\partial g}{\partial x}\right) \frac{\partial F}{\partial z} + \frac{\partial F}{\partial x} \left(\frac{\partial^2 F}{\partial x \partial z} + \frac{\partial^2 F}{\partial z^2} \frac{\partial g}{\partial x}\right).$$

Zwróćmy uwagę, że potrzebowaliśmy tylko pierwszej pochodnej funkcji g, co pokazuje przy okazji, że z faktu, że $F \in C^2$ (ciągłe pochodne drugiego rzędu) dowodzimy, że $g \in C^2(U)$. Wstawiając

$$\frac{\partial F}{\partial x} = -\frac{\partial g}{\partial x} \frac{\partial F}{\partial z},$$

w liczniku mamy

$$\left(-\frac{\partial^2 F}{\partial x^2} - 2\frac{\partial^2 F}{\partial z \partial x}\frac{\partial g}{\partial x} - \frac{\partial^2 F}{\partial z^2}\left(\frac{\partial g}{\partial x}\right)^2\right)\frac{\partial F}{\partial z}$$

a w mianowniku $\left(\frac{\partial F}{\partial z}\right)^2$. Załóżmy, że $\frac{\partial g}{\partial x}(x_0, y_0) = 0 = \frac{\partial g}{\partial x}(x_0, y_0)$. Wtedy wyrażenie upraszcza się bardzo.

$$\frac{\partial^2 g}{\partial x^2}(x_0, y_0) = -\left(\frac{\partial F}{\partial z}\right)^{-1} \frac{\partial^2 F}{\partial x^2}(x_0, y_0, g(x_0, y_0)).$$

Podobnie liczymy pozostałe drugie pochodne i w końcu w punkcie (x_0, y_0) mamy

(2.5)
$$Hess_{(x_0,y_0)}g = -\left(\frac{\partial F}{\partial z}\right)^{-1} HessF,$$

gdzie prawa strona jest wzięta w punkcie $(x_0, y_0, g(x_0, y_0)) = (x_0, y_0, z_0)$, a HessF jest częściowym Hesjanem F liczonym względem zmiennych x, y. Dokładniej, Hessg jest funkcją zmiennych (x, y), a prawa strona zmiennych (x, y, z). Równość zachodzi w (x_0, y_0, z_0) . Powyższy wzór jest bardzo wygodny do stwierdzenia czy w punkcie otrzymanym z zastosowania mnożników Lagrange'a mamy lokalne ekstremum zmiennej z = g(x, y).

Jeśli $\frac{\partial g}{\partial x}(x_0, y_0), \frac{\partial g}{\partial y}(x_0, y_0)$ nie zerują się, to wyrażenie na $\frac{\partial^2 g}{\partial x^2}$ robi się dużo bardziej skomplikowane:

(2.6)
$$\frac{\partial^2 g}{\partial x^2}(x,y) = -\langle (Hess_{x,z}F)(\nabla_{z,x}F), \nabla_{z,x}F \rangle \left(\frac{\partial F}{\partial z}\right)^{-3}$$

gdzie $\nabla_{z,x}F=\left(\frac{\partial F}{\partial z},\frac{-\partial F}{\partial x}\right)$ jest wektorem, a $Hess_{x,z}F$ macierzą 2×2 zastosowaną do tego wektora, a wszystko jest wzięte w punkcie (x,y,g(x,y))=(x,y,z) leżącym na powierzchni. Proszę zwrócić uwagę, że zmienne x,z są brane w innej kolejności w Hesjanie i w gradiencie.

Wzór robi się skomplikowany i nie będziemy się nim zajmować, ale warto wiedziec, że drugie pochodne cząstkowe funkcji g można wyrazić przez pochodne cząstkowe funkcji F.

Możemy też postąpic ogólniej. Załóżmy, że na powierzchni S danej równaniem $F(x)=0, x\in\mathbb{R}^n$, badamy ekstrema funkcji f. Jeśli S jest nieograniczona, nie możemy od razu stwierdzić, ze jest to maksimum czy minimum. Wyobraźmy sobie, że umiemy F(x)=0 rozwikłać względem jednej współrzędnej. Niech to będzie x_n . Wtedy lokalnie wokół punktu x_0 dla x spełniających F(x)=0 mamy

$$x_n = g(x_1, ..., x_{n-1})$$
 dla $(x_1, ..., x_{n-1}) \in U$,
 $f(x) = f(x_1, ..., x_{n-1}, g(x_1, ..., x_{n-1}).$

19

Żeby rozstrzygnąć, czy punkt x_0 otrzymany z mnożników Lagrange'a jest ekstremum potrzebujemy Hesjanu f, który wyrazi nam się przez pochodne cząstkowe funkcji f i F. F użyjemy do wyliczenia pochodnych g. Mamy

$$\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_n} \frac{\partial g}{\partial x_1} \right)
= \frac{\partial^2 f}{\partial x_1^2} + 2 \frac{\partial^2 f}{\partial x_1 \partial x_n} \cdot \frac{\partial g}{\partial x_1} + \frac{\partial^2 f}{\partial x_n^2} \cdot \left(\frac{\partial g}{\partial x_1} \right)^2 + \frac{\partial f}{\partial x_n} \cdot \frac{\partial^2 g}{\partial x_1^2}$$

a $\frac{\partial^2 g}{\partial x_1^2}$, $\frac{\partial g}{\partial x_1}$ wyliczamy z Hesjanu F. Wszystko musi być wzięte w punkcie otrzymanym z mnożników Lagrange'a.

2.2. **Dowód Twierdzenia o funkcji uwikłanej.** Napiszemy i udowodnimy to twierdzenie dla funkcji F określonej na \mathbb{R}^{n+1} .

Twierdzenie 2.7. Załóżmy, że funkcja $F: \mathbb{R}^{n+1} \to \mathbb{R}$ jest klasy C^1 . Będziemy stosować oznaczenie $(x, z) \in \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$. Załóżmy, że

$$F(x_0, z_0) = 0$$
, oraz $\frac{\partial F}{\partial z}(x_0, z_0) \neq 0$.

Wtedy równanie F(x,z) = 0 ma jednoznaczne rozwiązanie w pobliżu (x_0, z_0) . Tzn. istnieje kula otwarta $U \subset \mathbb{R}^n$ o środku w x_0 oraz przedział otwarty I wokół z_0 takie, że dla dowolnego wyboru $x \in U$ istnieje jedyne rozwiązanie $z \in I$ takie, że F(x,z) = 0. Ponadto funkcja z = g(x) jest klasy C^1 na U. Inaczej mówiąc

$$\{(x,z): F(x,z) = 0\} \cap (U \times I) = \{(x,g(x)): x \in U\}.$$

Uwaga 2.8. F może by określona na otwartym pod zbiorze \mathbb{R}^{n+1} . Dowód przebiega tak samo.

Analogicznie jak poprzednio wiele informacji o funkcji g można uzyskać mimo braku jawnego wzoru. Wiemy, że $z_0 = g(x_0)$ oraz F(x, g(x)) = 0 dla $x \in U$. Zatem

$$0 = \frac{\partial}{\partial x_i} F(x, g(x)) = \frac{\partial F}{\partial x_i} (x, g(x)) + \frac{\partial F}{\partial z} (x, g(x)) \frac{\partial g}{\partial x_i} (x).$$

Otrzymujemy

(2.9)
$$\frac{\partial g}{\partial x_i}(x) = -\frac{\frac{\partial F}{\partial x_i}(x, g(x))}{\frac{\partial F}{\partial x_i}(x, g(x))} \quad x \in \tilde{U} \subset U.$$

Z założenia $\frac{\partial F}{\partial z}(x_0, z_0) \neq 0$, zatem $\frac{\partial F}{\partial z}(x, g(x)) \neq 0$, dla x w pobliżu x_0 , bo funkcje F i g są klasy C^1 . Ewentualnie zmniejszając U na \tilde{U} mamy (2.9). Podstawiamy $x = x_0$, aby otrzymać

(2.10)
$$\frac{\partial g}{\partial x_i}(x_0) = -\frac{\frac{\partial F}{\partial x_i}(x_0, z_0)}{\frac{\partial F}{\partial z_i}(x_0, z_0)}.$$

Wniosek 2.11. Jeśli funkcja $f(x_1, x_2, ..., x_n)$ spełnia $f(a_1, a_2, ..., a_n) = 0$ oraz $\nabla f(a_1, a_2, ..., a_n) \neq 0$, to z równania

$$f(x_1, x_2, \dots, x_n) = 0$$

można obliczyć jedną zmienną względem pozostałych w pobliżu (a_1, a_2, \ldots, a_n) .

 $Dowód\ twierdzenia$. Z założenia mamy $\frac{\partial F}{\partial z}(x_0,z_0)\neq 0$. Rozważymy przypadek $\frac{\partial F}{\partial z}(x_0,z_0)>0$. Z ciągłości pochodnych cząstkowych można znaleźć U i I takie, że dla każdego $(x,z)\in U\times I$

$$\frac{\partial F}{\partial z}(x,z) > 0,$$

co oznacza, że przy ustalonym x funkcja $z \mapsto F(x,z)$ jest rosnąca. Mamy

$$F(x_0, z_0 + h) = F(x_0, z_0) + \frac{\partial F}{\partial z}(x_0, z_0)h + o(h).$$

Stąd dla dostatecznie małego a > 0, $F(x_0, z_0 + a) > 0$, $F(x_0, z_0 - a) < 0$. Możemy założyć, że $(z_0 - a, z_0 + a) \subset I$. Jeśli x jest dostatecznie blisko x_0 , to $F(x, z_0 + a) > 0$, $F(x, z_0 - a) < 0$. Zmniejszając ewentualnie U mamy

$$F(x, z_0 + a) > 0$$
, $F(x, z_0 - a) < 0$, dla $x \in U$
 $\frac{\partial F}{\partial z}(x, z) > 0$, dla $(x, z) \in U \times (z_0 - a, z_0 + a)$.

Zatem dla każdego $x \in U$, istnieje dokładnie jedno $z \in (z_0 - a, z_0 + a)$ takie, że F(x, z) = 0. Będziemy pisali z = g(x).

Pokażemy teraz, że g jest funkcją ciągłą. Załóżmy nie wprost, że $x_m \to x \in U$, ale $g(x_m)$ nie dąży do g(x). Ciąg $g(x_m)$ jest ograniczony. Istnieje zatem podciąg $g(x_{m_k})$ zbieżny do liczby $\tilde{z} \neq g(x)$ z przedziału $[z_0 - a, z_0 + a]$. Mamy

$$0 = F(x_{m_k}, g(x_{m_k})) \xrightarrow{k} F(x, \tilde{z}).$$

Stąd $F(x, \tilde{z}) = 0$. Ale $\tilde{z} \neq z_0 \pm a$, bo $F(x, z_0 \pm a) \neq 0$. Czyli \tilde{z} leży w przedziale $(z_0 - a, z_0 + a)$. Mamy też F(x, g(x)) = 0, więc otrzymujemy sprzeczność z jednoznacznością rozwiązania.

Zanim przejdziemy do różniczkowalności g, udowodnimy następujący lemat

Lemat 2.12. Dla funkcji $f : \mathbb{R}^n \to \mathbb{R}$ klasy C^1 mamy

$$f(x) - f(x_0) = \nabla f(x_0 + \theta(x - x_0)) \circ (x - x_0)$$

dla pewnej liczby $\theta = \theta(x, x_0), 0 < \theta < 1.$

Dowód lematu. Określamy funkcję $g(t) = f(x_0 + t(x - x_0))$ przy ustalonych punktach x i x_0 . Wtedy z twierdzenia Lagrange'a otrzymujemy

$$f(x) - f(x_0) = g(1) - g(0) = g'(\theta) = \nabla f(x_0 + \theta(x - x_0)) \circ (x - x_0).$$

Interesujemy się tak naprawdę odcinkiem między tymi punktami. Z lematu mamy

$$F(x,z) = F(x,z) - F(x_0, z_0)$$

= $\nabla F(x_0 + \theta(x - x_0), z_0 + \theta(z - z_0)) \circ (x - x_0, z - z_0)$

Oznaczmy

$$x_{\theta} = x_0 + \theta(x - x_0), \ z_{\theta} = z_0 + \theta(z - z_0), \ \nabla_x F = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right).$$

Wtedy

(2.13)
$$F(x,z) = \nabla_x F(x_\theta, z_\theta) \circ (x - x_0) + \frac{\partial F}{\partial z}(x_\theta, z_\theta)(z - z_0).$$

Zbadamy różniczkowalność funkcji g(x). Przyjmujemy $x = x_0 + he_i$. Wtedy $x - x_0 = he_i$ i

$$\nabla_x F(x_\theta, z_\theta) \circ (x - x_0) = \frac{\partial F}{\partial x_i}(x_\theta, z_\theta) h.$$

We wzorze (2.13) podstawiamy $z = g(x) = g(x_0 + he_i)$. Lewa strona wzoru zeruje się. Otrzymujemy więc

$$0 = \frac{\partial F}{\partial x_i}(x_{\theta}, z_{\theta})h + \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(g(x_0 + he_i) - g(x_0))$$

czyli

$$\frac{g(x_0 + he_i) - g(x_0)}{h} = -\frac{\frac{\partial F}{\partial x_i}(x_\theta, z_\theta)}{\frac{\partial F}{\partial z}(x_\theta, z_\theta)} \quad \text{dla} \quad (x_\theta, z_\theta) \in U \times (z_0 - a, z_0 + a).$$

Mamy

$$x_{\theta} = x_0 + \theta(x - x_0) = x_0 + \theta h e_i \xrightarrow[h \to 0]{} x_0,$$

$$z_{\theta} = z_0 + \theta(z - z_0) = g(x_0) + \theta[g(x_0 + h e_i) - g(x_0)] \xrightarrow[h \to 0]{} g(x_0) = z_0,$$

bo g jest ciągła. Zatem

$$\frac{\partial g}{\partial x_i}(x_0) = -\frac{\frac{\partial F}{\partial x_i}(x_0, z_0)}{\frac{\partial F}{\partial z}(x_0, z_0)}.$$

Ten sam dowód daje

$$\frac{\partial g}{\partial x_i}(x) = -\frac{\frac{\partial F}{\partial x_i}(x, z)}{\frac{\partial F}{\partial z}(x, z)}\Big|_{z=g(x)} \quad \text{dla} x \in U, z \in I, z = g(x).$$

Widzimy, że pochodne cząstkowe funkcji g są ciągłe, zatem g jest funkcją klasy C^1 .

2.3. Charakteryzacja przestrzeni stycznej. Używając twierdzenia o funkcji uwikłanej, udowodnimy teraz charakteryzację przestrzeni stycznej do poziomicy $S = \{x \in U \subset \mathbb{R}^n : F(x) = c\}$ w punkcie x_0 . Wtedy definiujemy

$$L_{x_0} = \{v : \nabla F(x_0) \circ v = 0\}$$
 i $T_x = \{u : \nabla F(x_0) \circ (u - x_0) = 0\}.$

Twierdzenie 2.14. Niech $S = \{x \in U : F(x) = c\}, \nabla F(x_0) \neq 0.$ Wtedy

$$L_{x_0} = \{v: \exists_{\gamma \in \Gamma_{x_0}}, \ v = \gamma'(0)\}.$$

Przypomnijmy, że

$$\Gamma_{x_0} = \{ \gamma : I \mapsto \mathbb{R}^n, \ 0 \in I, \ \gamma(0) = x_0, \ \forall_t \ \gamma(t) \in S \}.$$

Dowód. Istnieje i takie, że $\frac{\partial F}{\partial x_i}(x_0) \neq 0$. Dla ułatwienia zapisu możemy przyjąć, że i=n i będziemy pisać $x_0=(\bar{x}_0,x_{0,n}), \ x=(\bar{x},x_n)$. Z twierdzenia o funkcji uwikłanej istnieje otoczenie U punktu \bar{x}_0 , przedział $I\ni x_{0,n}$ i funkcja $g\in C^1(U)$ takie, że

$$S \cap (U \times I) = \{(\bar{x}, g(\bar{x})) : \bar{x} \in U\}.$$

Ponadto

$$\frac{\partial g}{\partial x_i}(\bar{x}) = -\left(\frac{\partial F}{\partial x_n}\right)^{-1} \frac{\partial F}{\partial x_i}(\bar{x}, g(\bar{x}).)$$

Stad

$$(-\nabla g(\bar{x}), 1) = \left(\frac{\partial F}{\partial x_n}\right)^{-1} \left(\nabla_{\bar{x}} F, \frac{\partial F}{\partial x_n}\right) = \left(\frac{\partial F}{\partial x_n}\right)^{-1} \nabla F,$$

gdzie wszystkie wartości po prawej stronie są wzięte w $(\bar{x}, g(\bar{x}))$. Warunek

$$\nabla F(\bar{x}_0, q(\bar{x}_0)) \circ v = 0$$

należenia do L_{x_0} , $x_0 = (\bar{x}_0, g(\bar{x}_0))$ jest więc równoważny

$$(2.15) (-\nabla g(\bar{x}_0), 1) \circ v = 0 \iff v_n = \sum_{i=1}^{n-1} \frac{\partial g}{\partial x_i} v_i.$$

Krzywa $\gamma \in \Gamma_{x_0}$ jest postaci $(\bar{\gamma}(t), \gamma_n(t)) = (\bar{x}, g(\bar{x}))$ czyli

$$\gamma_n(t) = g(\bar{\gamma}(t)).$$

Stąd

$$\gamma'(t) = \left(\gamma_1'(t), ..., \gamma_{n-1}'(t), \sum_{i=1}^{n-1} \frac{\partial g}{\partial x_i}(\bar{\gamma}(t))\gamma_i'(t)\right),\,$$

co jest równoważne warunkowi (2.15). Ponadto mając dany wektor $v = (\bar{v}, v_n)$ spełniający (2.15) możemy wytworzyć krzywą styczną do niego kładąc

$$\gamma(t) = (x_0 + t\bar{v}, g(x_0 + t\bar{v})).$$

Twierdzenie o funkcji uwikłanej daje nam taką możliwość. Inaczej nie bardzo wiadomo jak to zrobić. To kończy dowód.

2.4. Twierdzenie o funkcji uwikłanej dla większej liczby warunków. Chcemy obliczyć wielkości z_1, z_2, \dots, z_m z równań

(2.16)
$$F_{1}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

$$F_{2}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

$$\vdots$$

$$F_{m}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

i otrzymać rozwiązanie w postaci

(2.17)
$$z_1 = g_1(x_1, x_2, \dots, x_n),$$

$$z_2 = g_2(x_1, x_2, \dots, x_n),$$

$$\vdots$$

$$z_m = g_m(x_1, x_2, \dots, x_n).$$

Bedziemy stosować zapis

$$x = (x_1, x_2, \dots, x_n), \quad z = (z_1, z_2, \dots, z_m).$$

Załóżmy, że $(x_0, z_0) \in \mathbb{R}^n \times \mathbb{R}^m$ jest rozwiązaniem układu. Rozważamy wyznacznik

$$\Delta = \begin{vmatrix} \frac{\partial F_1}{\partial z_1}(x_0; z_0) & \frac{\partial F_1}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_1}{\partial z_m}(x_0; z_0) \\ \frac{\partial F_2}{\partial z_1}(x_0; z_0) & \frac{\partial F_2}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_2}{\partial z_m}(x_0; z_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial z_1}(x_0; z_0) & \frac{\partial F_m}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_m}{\partial z_m}(x_0; z_0) \end{vmatrix}$$

Twierdzenie 2.18 (o funkcji uwikłanej). Załóżmy, że funkcje $F_1, F_2, \ldots F_m$ określone na zbiorze otwartym $U \subset \mathbb{R}^{n+m}$ są klasy C^1 . Niech punkt $(x_0; z_0)$ będzie rozwiązaniem układu równań (2.16) oraz $\Delta \neq 0$. Wtedy istnieją liczby $\delta > 0$ i $\varepsilon > 0$ takie, że dla $||x - x_0|| < \delta$ istnieje jedyny z spełniający $||z - z_0|| < \varepsilon$ taki, że (x, z) jest rozwiązaniem układu równań (2.16). Ponadto funkcje g_1, \ldots, g_n są klasy C^1 .

Inaczej mówiąc

$$(B_{\delta}(x_0) \times B_{\varepsilon}(z_0)) \cap \{(x,z) : F_1(x,z) = \dots = F_m(x,z) = 0\} = \{(x,g(x)) : x \in U\},\$$

 $gdzie\ g(x) = (g_1(x), \dots, g_m(x)).$

Wiedzac, że

$$F_i(x, g(x)) = 0, \quad i = 1, ..., m$$

otrzymujemy układ m równań na podchodne cząstkowe funkcji $g_j(x)$. Mianowicie

$$0 = \frac{\partial}{\partial x_k} \Big(F_i(x, g(x)) \Big) = \frac{\partial F_i}{\partial x_k} (x, g(x)) + \sum_{i=1}^m \frac{\partial F_i}{\partial z_j} (x, g(x)) \frac{\partial g_j}{\partial x_k} (x).$$

Przykład 2.19. Czy w pobliżu (x, y; u, v) = (1, 1; 1, 1) można obliczyć u i v z równań

$$xu + yuv^2 = 2,$$

$$xu^3 + y^2v^4 = 2$$

jako funkcje zmiennych x i y

Przyjmujemy

$$F_1(x, y; u, v) = xu + yuv^2 - 2,$$

 $F_2(x, y; u, v) = xu^3 + y^2v^4 - 2.$

Mamy

$$\Delta = \begin{vmatrix} x + yv^2 & 2yuv \\ 3xu^2 & 4y^2v^3 \end{vmatrix}_{x=1, u=1, u=1, v=1} = \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = 2 \neq 0.$$

Chcemy obliczyć $\frac{\partial u}{\partial x}(1,1)$ i $\frac{\partial v}{\partial x}(1,1)$. Stosujemy różniczkowanie niejawne. Traktując u,v jako funkcje x,y, otrzymujemy

$$u + x \frac{\partial u}{\partial x} + yv^2 \frac{\partial u}{\partial x} + 2yuv \frac{\partial v}{\partial x} = 0,$$

$$u^3 + 3xu^2 \frac{\partial u}{\partial x} + 4y^2v^3 \frac{\partial v}{\partial x} = 0.$$

Podstawiamy x = 1, y = 1, v = 1, u = 1. Po uproszczeniu otrzymujemy

$$2\frac{\partial u}{\partial x} + 2\frac{\partial v}{\partial x} = -1,$$
$$3\frac{\partial u}{\partial x} + 4\frac{\partial v}{\partial x} = -1.$$

Zatem

$$\frac{\partial u}{\partial x}(1,1) = \frac{\begin{vmatrix} -1 & 2 \\ -1 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix}} = -1, \qquad \frac{\partial v}{\partial x}(1,1) = \frac{\begin{vmatrix} 2 & -1 \\ 3 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix}} = \frac{1}{2}.$$

To samo można zrobić w otoczeniu punktu (1, 1).

$$(x + yv^2) \frac{\partial u}{\partial x} + 2yuv \frac{\partial v}{\partial x} = -u,$$

$$3xu^2 \frac{\partial u}{\partial x} + 4y^2v^3 \frac{\partial v}{\partial x} = -u^3,$$

gdzie obie strony traktowane są jako funkcje (x,y). Możemy rozwiązać powyższy układ równań liniowych $(\Delta \neq 0$ w otoczeniu (1,1)) i wyliczyć $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$ o ile (x,y,u,v) sa ze sobą związane tak, że $F_1(x,y,u,v)=0, F_2(x,y,u,v)=0$. Wtedy otrzymamy $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$ jako funkcje (x,y).

Szczególnym przypadkiem twierdzenia o funkcji uwikłanej jest twierdzenie o funkcji odwrotnej. Chcemy z układu równań

(2.20)
$$f_1(x_1, x_2, \dots, x_n) = y_1,$$

$$f_2(x_1, x_2, \dots, x_n) = y_2,$$

$$\vdots$$

$$f_n(x_1, x_2, \dots, x_n) = y_n,$$

obliczyć x_1, x_2, \ldots, x_n , jako funkcje od y_1, y_2, \ldots, y_n . Załóżmy, że x = a i y = b jest rozwiązaniem układu. Rozważamy

$$F_1(x_1, \dots, x_n; y_1, \dots, y_n) = f_1(x_1, \dots, x_n) - y_1 = 0,$$

$$F_2(x_1, \dots, x_n; y_1, \dots, y_n) = f_2(x_1, \dots, x_n) - y_2 = 0,$$

$$\vdots$$

$$F_n(x_1, \dots, x_n; y_1, \dots, y_n) = f_n(x_1, \dots, x_n) - y_n = 0.$$

Teraz $x_1, ..., x_n$ będą grały taką rolę jak $z_1, ..., z_m$ w twierdzeniu o funkcji uwikłanej. Z twierdzenia o funkcji uwikłanej badamy wyznacznik

$$\Delta = \begin{vmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{vmatrix}_{\substack{x=a \\ y=b}} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}_{x=a}$$

Wyznacznik

$$\begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

nazywamy jakobianem odwzorowań f_1, f_2, \ldots, f_n .

Twierdzenie 2.21 (o funkcji odwrotnej). Niech $U \subset będzie$ otwartym podzbiorem przestrzeni \mathbb{R}^n . Rozważamy funkcje f_1, f_2, \ldots, f_n klasy C^1 na U. Załóżmy, że układ równań (2.20) ma rozwiązanie x = a, y = b dla $a \in U$. Jeśli

$$\Delta = \det \left[\frac{\partial f_i}{\partial x_j}(a) \right] \neq 0,$$

to układ ma jednoznaczne rozwiązanie dla y w pobliżu b i x w pobliżu a. Tzn. istnieją liczby $\delta, \varepsilon > 0$ takie, że dla $||y-b|| < \delta$ istnieje jedyny punkt $x \in U$ taki, że $||x-a|| < \varepsilon$

oraz x i y są rozwiązaniem układu (2.20). Ponadto funkcje

$$x_1 = g_1(y_1, y_2, \dots, y_n),$$

 $x_2 = g_2(y_1, y_2, \dots, y_n),$
 \vdots
 $x_n = g_n(y_1, y_2, \dots, y_n)$

są klasy $C^1(B_{\delta}(b))$.

Uwaga 2.22. Dowód twierdzenia wynika natychmiast z twierdzenia o funkcji uwikłanej. Teraz $x_1, ..., x_n$ grają taką rolę jak $z_1, ..., z_m$ w Twierdzeniu 2.18.

Zauważmy, że $\Delta \neq 0$ implikuje fakt, że $f = (f_1, ..., f_n)$ jest różnowartościowa na pewnym otoczeniu punktu a.

Przykład 2.23. Rozważmy układ równań

$$\frac{x^4 + y^4}{x} = u,$$
$$\sin x + \cos y = v.$$

W pobliżu jakich punktów możemy obliczyć x i y względem u i v ?

Od razu zauważamy, że funkcja $f(x,y) = ((x^4 + y^4)x^{-1}, \sin x + \cos y)$ nie jest różnowartościowa więc nie można jej odwrócić globalnie. Obliczamy jakobian

$$\Delta = \begin{vmatrix} 3x^2 - \frac{y^4}{x^2} & \frac{4y^3}{x} \\ \cos x & -\sin y \end{vmatrix}$$

Powinien być spełniony warunek $\Delta \neq 0$. Wyznacznik jest niezerowy np. dla $x = \frac{\pi}{2}$ i $y = \frac{\pi}{2}$. Wtedy $\Delta = -\frac{\pi^2}{2}$, $u = \frac{\pi^3}{4}$, v = 1. Zatem można rozwiązać układ w pobliżu $u = \frac{\pi^3}{4}$ i v = 1. Rozwiązania będą leżały w pobliżu $x = \frac{\pi}{2}$, $y = \frac{\pi}{2}$.

Wniosek 2.24. Przy założeniach Twierdzenia 2.21 istnieją zbiory otwarte $W \ni a$ i $V \ni b$ takie, że $f: W \mapsto V$ i $f^{-1}: V \mapsto W$ są wzajemnie jednoznaczne i klasy C^1 .

 $Dow \acute{o}d$. Istotnie, wystarczy wziąć $V=B_{\delta}(b)$ i $W=f^{-1}(V)\cap B_{\varepsilon}(0)=f^{-1}(B_{\delta}(b))\cap B_{\varepsilon}(0)$, gdzie $f^{-1}(V)$ oznacza przeciwobraz V. Powyższy przykład pokazuje, ze nie można wziąć $W=f^{-1}(V)$, bo globalnie f nie musi byc odwracalna. Jako funkcje na $V, f^{-1}=g$, gdzie $g(y)=(g_1(y),...,g_n(y))$.

Wniosek 2.25. Niech $U_1, U_2 \subset \mathbb{R}^n$ będą zbiorami otwartymi, a

$$f: U_1 \mapsto U_2$$

przekształceniem klasy C^1 i wzajemnie jednoznacznym. Załóżmy ponadto, że dla każdego $x \in U_1$

$$\Delta = \det \left[\frac{\partial f_i}{\partial x_j}(x) \right] \neq 0.$$

When $f^{-1}: U_2 \mapsto U_1 \text{ jest klasy } C^1.$

Samo nieznikanie wyznacznika nie wystarczy, patrz zadanie na liście 5.

Uwaga 2.26. Przedyskutujmy założenie $\Delta \neq 0$. Niech

$$Df(a) = \left[\frac{\partial f_i}{\partial x_j}(a)\right].$$

Wiemy, ze jeśli wszystkie pochodne cząstkowe funkcji f są ciągłe, to

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Df(a)(h)\|}{\|h\|} = 0,$$

co oznacza, że

$$f(a+h) = f(a) + Df(a)(h) + o(||h||).$$

f(a) + Df(a)(h) jest różnowartościowe, a skoro $o(\|h\|)$ jest mniejszego rzędu dla h blisko 0, to intuicyjnie $f(a) + Df(a)(h) + o(\|h\|)$ też powinno takie być.

Twierdzenie o funkcji odwrotnej można sformułować w postaci zbliżonej w zapisie do twierdzenia dla jednej zmiennej. Dla funkcji $f_1, f_2, \ldots, f_n : U \to \mathbb{R}$ tworzymy funkcję $f: U \to \mathbb{R}^n$ wzorem

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix} \in \mathbb{R}^n, \qquad x = (x_1, x_2, \dots, x_n).$$

Wtedy układ równań w twierdzenia o funkcji odwrotnej ma postać f(x) = y, gdzie

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Zauważmy, że $\Delta = \det(Df(a)) \neq 0$. Załóżmy, że f(a) = b dla $a \in U$. Wtedy dla $y \in B_{\delta}(b)$ istnieje jedyne rozwiązanie x w pobliżu a. Ponadto x = g(y), g jest klasy C^1 . i g jest funkcją odwrotną do funkcji f. Obliczmy Dg(y). Mamy

$$g(f(x)) = x$$
 dla $x \in W$.

Różniczkujemy obie strony. Wtedy

$$Dg(f(x)) Df(x) = I,$$

czyli

$$Dg(y) = (Df(x))^{-1}, \quad y = f(x).$$

Dla funkcji jednej zmiennej wzory mają postać $y=f(x),\, x=g(y)$ oraz

$$g'(y) = \frac{1}{f'(x)}.$$

Przykład 2.27. W pobliżu jakich punktów funkcja $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (x - y, x^5 + y^5)$$

 $jest \ odwracalna \ w \ spos\'ob \ C^1$?

$$\det Df(x,y) = \begin{vmatrix} 1 & -1 \\ 5x^4 & 5y^4 \end{vmatrix} = 5(x^4 + y^4).$$

Funkcja jest na pewno odwracalna na otoczeniu każdego punktu innego niż (0,0).

Zauważmy, że f jest 1-1 na \mathbb{R}^2 . Istotnie, jeśli $x-y=u, x^5+y^5=v$, to y=x-u i $x^5+(x-u)^5=v$. Chcemy pokazać, że dla dowolnych u, v rozwiążemy to równanie. Jeśli u=0, to $x=\sqrt[5]{v/2}=y$. Dla $u\neq 0$, niech $h(x)=x^5+(x-u)^5$. Wtedy $h'(x)=5x^4+5(x-u)^4>0$. Ponadto, gdy $x\to\pm\infty$, to $h(x)\to\pm\infty$. Więc $h:\mathbb{R}\mapsto\mathbb{R}$ jest wzajemnie jednoznaczne czyli mając u, v można wyliczyć x, a potem y. Ale nie wiemy czy f^{-1} jest różniczkowalna w (0,0).

Ponadto f(0,0) = (0,0) if $f: \mathbb{R}^2 \setminus \{(0,0)\} \mapsto \mathbb{R}^2 \setminus \{(0,0)\}$.

f jest 1-1 globalnie, jest odwracalna w sposób C^1 w otoczeniu każdego punktu innego niż (0,0) więc f^{-1} jest dobrze określona i klasy C^1 na $\mathbb{R}^2 \setminus (0,0)$.

Pokażemy teraz jak z twierdzenia o funkcji odwrotnej wynika twierdzenie o funkcji uwikłanej. Dla uproszczenia załóżmy, że mamy dwa równania, choć dowód jest kompletnie ogólny.

$$(2.28) F_1(x_1, ..., x_n; z_1, z_2) = 0 F_2(x_1, ..., x_n; z_1, z_2) = 0$$

czyli

$$F(x,z) = (F_1(x,z), F_2(x,z)).$$

 $F_1(a,b) = 0 = F_2(a,b).$

Rozważmy wyznacznik

$$\Delta = \det \begin{bmatrix} \frac{\partial F_1}{\partial z_1} & \frac{\partial F_1}{\partial z_2} \\ \frac{\partial F_2}{\partial z_1} & \frac{\partial F_2}{\partial z_2} \end{bmatrix}$$

Przypomnijmy twierdzenie:

Twierdzenie 2.29 (o funkcji uwikłanej). Załóżmy, że funkcje F_1 , F_2 są klasy $C^1(U)$. Załóżmy, że $F_1(a,b) = 0 = F_2(a,b)$ oraz $\Delta \neq 0$. Wtedy istnieją zbiory otwarte $U_1 \ni a$ i $V \ni b$ i funkcje $g_1, g_2 : U_1 \mapsto \mathbb{R}$ klasy C^1 takie, że $(x,z) \in U_1 \times V$ jest rozwiązaniem układu równań (2.28) wtedy i tylko wtedy, gdy

$$z_1 = g_1(x_1, ..., x_n)$$
 $z_2 = g_2(x_1, ..., x_n)$

Uwaga 2.30. W oryginalnym sformułowaniu mieliśmy $U_1 = B_{\delta}(a), V = B_{\varepsilon}(b)$.

 $Dow \acute{o}d$. Rozważmy funkcję $f: \mathbb{R}^n \times \mathbb{R}^2 \mapsto \mathbb{R}^n \times \mathbb{R}^2$

$$f(x,z) = (x, F(x,z)).$$

f jest klasy C^1 . Niech

$$Df(x,z) = \begin{bmatrix} I & 0 & 0 \\ \left[\frac{\partial F_1}{\partial x_j}\right] & \frac{\partial F_1}{\partial z_1} & \frac{\partial F_1}{\partial z_2} \\ \frac{\partial F_2}{\partial x_i} & \frac{\partial F_2}{\partial z_1} & \frac{\partial F_2}{\partial z_2} \end{bmatrix},$$

gdzie

$$\left[\frac{\partial F_1}{\partial x_i}\right] = \left[\frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n}\right].$$

det $Df(a,b) \neq 0$ i f(a,b) = (a,0). Istnieją więc zbiory otwarte $W_1 \ni (a,b)$, $W_2 \ni (a,0)$ i funkcja h klasy C^1 taka, że $h: W_2 \mapsto W_1$ i h jest odwrotna do f. $W_1, W_2 \subset \mathbb{R}^{n+2}$. W W_2 używamy współrzędnych (x,y). Zmniejszając ewentualnie W_1 możemy założyć, że $W_1 = U_1 \times V$. Jeśli $(x,y) \in W_2$ i y = F(x,z), to

$$h(x,y) = h(x, F(x,z)) = h(f(x,z)) = (x,z).$$

Stad

$$h(x,y) = (x, k(x,y))$$
 i $k \in C^1(W_2)$.

Załóżmy teraz, że F(x,z) = 0, $x \in U_1, z \in V$. Mamy f(x,z) = (x, F(x,z)) = (x,0). Nakładając obustronnie h mamy

$$(x,z) = h(f(x,z)) = h(x,0) = (x,k(x,0)),$$
 więc $z = k(x,0) = g(x)$ i $g = (g_1,g_2) \in C^1(U_1).$

Zastosowanie twierdzenia 2.18 do dowodu twierdzenia 1.33. Niech $U \subset \mathbb{R}^n \times \mathbb{R}^m$, $F_i : U \mapsto \mathbb{R}$ będą funkcjami klasy C^1 i

$$S = \{(x, z) \in U : F_1(x, z) = \dots = F_m(x, z) = 0\}.$$

Załóżmy, że $\nabla F_1(x_0, z_0), ..., \nabla F_m(x_0, z_0)$ są liniowo niezależne i zdefiniujmy

$$L_{(x_0,z_0)} = \{ v \in \mathbb{R}^{n+m} : \langle v, \nabla F_i(x_0,z_0) \rangle = 0, i = 1,...,m \}.$$

Wtedy dim $L_{(x_0,z_0)}=n$. Niech $\gamma:I\mapsto\mathbb{R}^{n+m}$, jak zwykle, oznacza krzywą klasy C^1 . Zdefiniujmy

$$\Gamma_{(x_0,z_0)} = \{ \gamma'(0) : \gamma : I \mapsto S, \gamma(0) = (x_0,z_0) \}.$$

Zauważmy, że

$$\Gamma_{(x_0,z_0)} \subset L_{(x_0,z_0)}.$$

Istotnie,

$$0 = \frac{d}{dt}(F_i(\gamma(t)))|_{t=0} = \nabla F_i(x_0, z_0) \circ \gamma'(0), \quad i = 1, ..., m.$$

Na odwrót, mając istnienie funkcji $g_i(x)=z$ takich, że $F_i(x,g_1(x),...,g_m(x))=0$ i dowolne $v\in\mathbb{R}^n$ możemy zdefiniować

$$\gamma(t) = (x_0 + tv, g_1(x_0 + tv), ..., g_m(x_0 + tv)) \subset S.$$

Wtedy

$$\gamma'(0) = (v, \nabla g_1(x_0) \circ v, ..., \nabla g_m(x_0) \circ v).$$

Stąd dim $\Gamma_{(x_0,z_0)}=n$ i

(2.31)
$$\Gamma_{(x_0,z_0)} = L_{(x_0,z_0)}.$$

Korzystając z (2.31) dowodzimy twierdzenia 1.33 tak samo jak twierdzenia Lagrange'a przy jednym warunku.

3. Wzór Taylora

Wzór Taylora dla funkcji wielu zmiennych można otrzymać ze wzoru Taylora dla jednej zmiennej. Zaczniemy od funkcji dwóch zmiennych. Postępujemy następująco. Załóżmy, że $f: \mathbb{R}^2 \mapsto \mathbb{R}$ jest funkcją klasy C^{r+1} (tzn. ma ciągłe pochodne cząstkowe rzędu r+1) w pewnym wypukłym otoczeniu U punktu (0,0) np. kuli otwartej $B_s(0,0)$. Wybierzmy punkt (x,y) z tego otoczenia i określmy funkcję $g: (-1-\varepsilon, 1+\varepsilon) \mapsto \mathbb{R}$ wzorem

$$g(t) = f(tx, ty).$$

Wtedy g jest klasy C^{r+1} i korzystając wielokrotnie z wzoru na pochodną funkcji złożonej dla punktów t z tego rozdziału otrzymujemy

$$g'(t) = \frac{\partial f}{\partial x}(tx, ty)x + \frac{\partial f}{\partial y}(tx, ty)y,$$
$$g''(t) = \frac{\partial^2 f}{\partial x^2}(tx, ty)x^2 + 2\frac{\partial^2 f}{\partial x \partial y}(tx, ty)xy + \frac{\partial^2 f}{\partial y^2}(tx, ty)y^2,$$

itd., ogólnie

(3.1)
$$g^{(m)}(t) = \sum_{i=0}^{m} {m \choose i} \frac{\partial^m f}{\partial x^i \partial y^{m-i}} (tx, ty) x^i y^{m-i}.$$

Za chwilę sprawdzimy (3.1) przez indukcję, ale najpierw zobaczmy jaki jest pożytek z tego wyrażenia. Mamy

$$f(x,y) = g(1) = \sum_{m=0}^{r} \frac{1}{m!} g^{(m)}(0) + \frac{1}{(r+1)!} g^{(r+1)}(\theta)$$

dla pewnego $\theta \in (0,1)$ zależnego od (x,y). Wstawimy teraz pochodne wyliczone w (3.1) i otrzymujemy

(3.2)
$$f(x,y) = \sum_{m=0}^{r} \frac{1}{m!} \sum_{i=0}^{m} {m \choose i} \frac{\partial^{m} f}{\partial x^{i} \partial y^{m-i}} (0,0) x^{i} y^{m-i} + R_{r}(x,y)$$

gdzie

$$R_{r}(x,y) = \frac{1}{(r+1)!} \sum_{i=0}^{r+1} {r+1 \choose i} \frac{\partial^{r+1} f}{\partial x^{i} \partial y^{r+1-i}} (\theta x, \theta y) x^{i} y^{r+1-i}.$$

Zauważmy, że $|R_r(x,y)| \le C(r,f) ||(x,y)||^{r+1} dla(x,y) \in B_s(0,0)$ (pochodne f współnie ograniczone), więc w szczególności

$$\lim_{(x,y)\to 0} \frac{R_r(x,y)}{\|(x,y)\|^r} \to 0.$$

Wzór (3.2) wydaje się dość nieprzyjemy, ale można go też zapisać jako

(3.3)
$$f(x,y) = \sum_{m=0}^{r} \sum_{i=0}^{m} \frac{1}{i!(m-i)!} \frac{\partial^{m} f}{\partial x^{i} \partial y^{m-i}} (0,0) x^{i} y^{m-i} + R_{r}(x,y).$$

(3.3) się lepiej uogólnia na więcej zmiennych. Zajmiemy się tym dalej, ale najpierw udowodnimy (3.1). Mamy

$$g^{(m+1)}(t) = \sum_{i=0}^{m} \binom{m}{i} \frac{\partial^{m+1} f}{\partial x^{i+1} \partial y^{m-i}} (tx, ty) x^{i+1} y^{m-i}$$

$$+ \sum_{i=0}^{m} \binom{m}{i} \frac{\partial^{m+1} f}{\partial x^{i} \partial y^{m-i+1}} (tx, ty) x^{i} y^{m-i+1}.$$

Zobaczmy najpierw jaki mamy współczynnik przy $x^{i+1}y^{m-i}$ dla i=0,...,m. Jest on równy

$$\binom{m}{i} + \binom{m}{i+1} = \binom{m+1}{i+1}$$

i zostaje nam jeszcze wyraz x^0y^{m+1} ze współczynnikiem 1. Otrzymujemy więc

$$g^{(m+1)}(t) = \sum_{i=0}^{m+1} {m+1 \choose i} \frac{\partial^{m+1} f}{\partial x^i \partial y^{m+1-i}} (tx, ty) x^i y^{m+1-i}.$$

Wzór (3.2) czy (3.3) nazywamy rozwinięciem Taylora rzędu r. Jest ono jedyne w następującym sensie

Twierdzenie 3.4. Niech $f: \mathbb{R}^2 \mapsto \mathbb{R}$ będzie funkcją rózniczkowalną r+1 krotnie. Załóżmy, że

$$f(x) = W(x) + R_r(x) = \tilde{W}(x) + \tilde{R}_r(x),$$

 $gdzie~W, ilde{W}~sq~wielomianami~dwóch~zmiennych~stopnia~r,~a~R_r, ilde{R}_r~majq~własność$

$$\lim_{x \to 0} \frac{R_r(x)}{\|x\|^r} = 0 = \lim_{x \to 0} \frac{\tilde{R}_r(x)}{\|x\|^r}.$$

$Wtedy\ W = \tilde{W}.$

Twierdzenie to jest zadaniem do rozwiązania. Wykorzystamy je w następującym przykładzie.

Przykład 3.5. Rozwinąć funkcję $f(x,y) = \sin(x^2 + y)$ we wzór Taylora rzędu 2.

Możemy liczyć pochodne cząstkowe:

$$\frac{\partial f}{\partial x} = \cos(x^2 + y)2x, \qquad \frac{\partial f}{\partial y} = \cos(x^2 + y),$$

$$\frac{\partial^2 f}{\partial x^2} = -\sin(x^2 + y)(2x)^2 + \cos(x^2 + y)2, \quad \frac{\partial^2 f}{\partial y^2} = -\sin(x^2 + y), \quad \frac{\partial^2 f}{\partial x \partial y} = -\sin(x^2 + y)2x.$$

Stąd

$$\frac{\partial f}{\partial y}(0,0) = 1, \qquad \frac{\partial^2 f}{\partial x^2}(0,0) = 2,$$

a pozostałe pochodne w zerze są równe 0 i

$$\sin(x^2 + y) = x^2 + y + R_2(x, y).$$

Możemy też postąpić inaczej. Z teorii jednej zmiennej wiemy, że dla $z \in \mathbb{R}$

$$\sin z = z + \tilde{R}_2(z)$$
 i $\lim_{z \to 0} \frac{\tilde{R}_2(z)}{z^2} = 0.$

Stąd

$$\sin(x^2 + y) = x^2 + y + \tilde{R}_2(x^2 + y)$$
 i $\lim_{(x,y)\to(0,0)} \frac{\tilde{R}_2(x^2 + y)}{(x^2 + y)^2} = 0.$

Żeby skorzystać z Twierdzenia 3.4 musimy pokazać, że

$$\lim_{(x,y)\to(0,0)} \frac{\tilde{R}_2(x^2+y)}{\|(x,y)\|^2} = 0.$$

Ale dla x dażących do zera

$$(x^2 + y)^2 \le 2(x^4 + y^2) \le 2(x^2 + y^2) = 2||(x, y)||^2$$

co pokazuje, że otrzymaliśmy właściwe rozwinięcie. Proszę zauważyć, że przy rozwinięciach wyższego rzędu druga metoda jest jeszcze bardziej efektywna.

Wprowadzimy teraz pojęcie wielowskaźników i zapiszemy (3.3) nieco zręczniej. $x \in \mathbb{R}^2$ zapisujemy teraz jako $x = (x_1, x_2)$, a wielowskaźnikiem α nazywamy parę $\alpha = (\alpha_1, \alpha_2)$, gdzie $\alpha_1, \alpha_2 \in \mathbb{N}$ ($0 \in \mathbb{N}$). Niech

$$\alpha! := \alpha_1! \alpha_2!, \quad |a| := \alpha_1 + \alpha_2$$
$$x^{\alpha} := x_1^{\alpha_1} x_2^{\alpha_2}, \quad D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}}.$$

Wtedy (3.3)

$$f(x_1, x_2) = \sum_{m=0}^{r} \sum_{i=0}^{m} \frac{1}{i!(m-i)!} \frac{\partial^m f}{\partial x_1^i \partial x_2^{m-i}} (0, 0) x_1^i x_2^{m-i} + R_r(x).$$

zapisuje się jako

(3.6)
$$\overline{f(x)} = \sum_{|\alpha| \le r} \frac{1}{\alpha!} D^{\alpha} f(0,0) x^{\alpha} + R_r(x)$$

i

(3.7)
$$R_r(x) = \sum_{|\alpha|=r+1} \frac{1}{\alpha!} D^{\alpha} f(\theta x, \theta y) x^{\alpha}.$$

Mamy analogiczne wzory dla funkcji d zmiennych. $x \in \mathbb{R}^d$ zapisujemy teraz jako $x = (x_1, ..., x_d)$, a wielowskaźnik $\alpha = (\alpha_1, ..., \alpha_d)$, gdzie $\alpha_1, ..., \alpha_d \in \mathbb{N}$. Niech

$$\alpha! := \alpha_1! \cdots \alpha_d! \quad |a| := \alpha_1 + \dots + \alpha_d$$

$$x^{\alpha} := x_1^{\alpha_1} \cdots x_d^{\alpha_d}, \quad D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \dots \frac{\partial^{\alpha_d}}{\partial x_d^{\alpha_d}} f.$$

Wtedy

(3.8)
$$f(x) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} D^{\alpha} f(0) x^{\alpha} + R_r(x)$$

i

(3.9)
$$R_r(x) = \sum_{|\alpha|=r+1} \frac{1}{\alpha!} D^{\alpha} f(\theta x) x^{\alpha}.$$

Dowód (3.8) jest analogiczny do dowodu (3.6). Niech q(t) = f(tx). Wtedy

(3.10)
$$g^{(k)}(t) = \sum_{|\alpha|=k} \frac{k!}{\alpha!} (D^{\alpha} f)(tx) x^{\alpha}.$$

Istotnie,

$$g^{(1)}(t) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i}(tx)x_i.$$

$$g^{(2)}(t) = \sum_{i,j=1}^{d} \frac{\partial^2 f}{\partial x_i \partial x_j}(tx) x_i x_j = \sum_{i=1}^{d} \frac{\partial^2 f}{\partial x_i^2}(tx) x_i^2 + \sum_{i \le j} 2 \frac{\partial^2 f}{\partial x_i \partial x_j}(tx) x_i x_j.$$

W ostatnim wzorze gdy $\alpha=(0,...0,1,0,...,0,1,0,...0)$ to $\alpha!=1$ i $\frac{2!}{\alpha!}=2$, gdy $\alpha=(0,...,0,2,0...,0),$ $\alpha!=2$ i $\frac{2!}{\alpha!}=1$. Mamy

$$f(x) = g(1) = \sum_{m=0}^{r} \frac{1}{m!} g^{(m)}(0) + \frac{1}{(r+1)!} g^{(r+1)}(\theta)$$

dla pewnego $\theta \in (0,1)$. Wstawimy teraz pochodne wyliczone w (3.10) i otrzymujemy

$$(3.11) f(x) = \sum_{m=0}^{r} \frac{1}{m!} \sum_{|\alpha|=m} \frac{m!}{\alpha!} (D^{\alpha} f)(0) x^{\alpha} + R_r(x) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} (D^{\alpha} f)(0) x^{\alpha} + R_r(x)$$

gdzie

$$R_r(x) = \frac{1}{(r+1)!} \sum_{|\alpha| = r+1} \frac{(r+1)!}{\alpha!} (D^{\alpha} f)(\theta x) x^{\alpha} = \sum_{|\alpha| = r+1} \frac{1}{\alpha!} (D^{\alpha} f)(\theta x) x^{\alpha}$$

Zauważmy, że $|R_r(x)| \leq C(r,f) \|x\|^{r+1}, \, x \in B_s(0),$ więc w szczególności

$$\lim_{x \to 0} \frac{R_r}{\|x\|^r} \to 0.$$

Mamy też analogiczne twierdzenie o jednoznaczności rozwinięcia.

Twierdzenie 3.12. Niech $f: \mathbb{R}^d \mapsto \mathbb{R}$ będzie funkcją różniczkowalną r+1 krotnie. Załóżmy, że

$$f(x) = W(x) + R_r(x) = \tilde{W}(x) + \tilde{R}_r(x),$$

gdzie W, \tilde{W} są wielomianami d zmiennych stopnia r, a R_r, \tilde{R}_r mają własność

$$\lim_{x \to 0} \frac{R_r(x)}{\|x\|^r} = 0 = \lim_{x \to 0} \frac{\tilde{R}_r(x)}{\|x\|^r}.$$

 $Wtedy\ W = \tilde{W}.$

Rozważmy teraz rozwinięcie w punkcie innym niż 0. Niech $f_a(x) = f(x + a)$. Wtedy

$$D^{\alpha} f_a(x) = (D^{\alpha} f)(x+a).$$

Istotnie, sprawdźmy na jednej pochodnej

$$\frac{\partial}{\partial x_1} f_a(x) = \frac{\partial}{\partial x_1} (f(x+a)) = \left(\frac{\partial}{\partial x_1} f\right) (x+a).$$

Mam więc

(3.13)
$$f(x+a) = f_a(x) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} (D^{\alpha} f_a)(0) x^{\alpha} + R_{r,a}(\theta x),$$

gdzie θ zależy od a i x. Niech y = x + a czyli x = y - a. Ponadto mamy $(D^{\alpha}f_a)(0) = (D^{\alpha}f)(a)$. Stąd

$$f(y) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} (D^{\alpha} f)(a) (y - a)^{\alpha} + R_{r,a}(\theta x).$$

Musimy jeszcze rozszyfrować $R_{r,a}(\theta x)$. Mamy

$$R_{r,a}(\theta x) = \sum_{|\alpha|=r+1} \frac{1}{\alpha!} (D^{\alpha} f_a)(\theta x) x^{\alpha}$$
$$= \sum_{|\alpha|=r+1} \frac{1}{\alpha!} (D^{\alpha} f)(a + \theta (y - a))(y - a)^{\alpha} =: R_{r,a}(y),$$

gdzie $0 < \theta < 1$ i zależy od a i y. W końcu mamy

(3.14)
$$f(y) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} (D^{\alpha} f)(a) (y - a)^{\alpha} + R_{r,a}(y).$$

Przykład 3.15. Wykorzystując wzór Taylora zanalizujemy teraz zachowanie funkcji f dwóch zmiennych w pobliżu zera w sytuacji, gdy pierwsze pochodne cząstkowe znikają w zerze.

Mamy

$$f(x) = f(0) + \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \frac{1}{2}\frac{\partial^2 f}{\partial x_1^2}(0)x_1^2 + \frac{\partial^2 f}{\partial x_1\partial x_2}(0)x_1x_2 + \frac{1}{2}\frac{\partial^2 f}{\partial x_2^2}(0)x_2^2 + R_2(x) = f(0) + \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \frac{1}{2}\langle Ax, x \rangle + R_2(x),$$

gdzie A oznacza hesjan f. W przykładzie 1.27 pokazaliśmy, że

$$\langle Ax, x \rangle \ge \lambda ||x||^2$$

gdzie λ jest mniejszą z wartości własnych. Jeśli więc obie wartości własne hesjanu są ściśle dodatnie i pierwsze pochodne znikają, to dla $x \neq 0$

$$(3.16) f(x) \ge f(0) + \frac{1}{2} \langle Ax, x \rangle - |R_2(x)| \ge f(0) + \lambda ||x||^2 - \varepsilon ||x||^2 > f(0).$$

Istotnie, dla każdego $\varepsilon > 0$ istnieje $\delta > 0$ takie, że $|R_2(x)| < \varepsilon ||x||^2$, gdy $||x|| < \delta$. Wystarczy wziąć $\varepsilon < \lambda/2$ i mamy (3.16).

Jeśli $\lambda_1 > 0$, a $\lambda_2 < 0$, to zamieniając zmienne $x = C\xi$ mamy

$$C^T A C = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right]$$

i

$$\langle Ax, x \rangle = x^T Ax = \xi^T C^T A C \xi = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2$$

Zauważmy ponadto, że

$$\frac{R_2(C\xi)}{\|\xi\|^2} = \frac{R_2(C\xi)}{\|C\xi\|^2} \frac{\|C\xi\|^2}{\|\xi\|^2} =: \varepsilon(\xi)$$

i $\frac{\|C\xi\|^2}{\|\xi\|^2} \leq \|C\|^2$ ($\|C\|$ -norma przekształcenia liniowego) oraz, gdy ξ jest dostatecznie małe, to $\frac{|R_2(C\xi)|}{\|C\xi\|^2} < \varepsilon$. Stąd $|\varepsilon(\xi)| < \|C\|^2 \varepsilon$ i

$$R_2(C\xi) = \varepsilon(\xi) \|\xi\|^2.$$

Więc

$$(f \circ C)(\xi) = f(C(\xi)) = f(x) = f(0) + \frac{1}{2}\lambda_1\xi_1^2 + \frac{1}{2}\lambda_1\xi_2^2 + R_2(C\xi)$$
$$= f(0) + \frac{1}{2}\lambda_1\xi_1^2 + \frac{1}{2}\lambda_2\xi_2^2 + \varepsilon(\xi)(\xi_1^2 + \xi_2^2)$$
$$= f(0) + \frac{1}{2}\xi_1^2(\lambda_1 + \varepsilon(\xi)) + \frac{1}{2}\xi_2^2(\lambda_2 + \varepsilon(\xi))$$

Jeśli $\xi = (\xi_1, 0)$, to

$$(f \circ C)((\xi_1, 0)) = f(0) + \frac{1}{2}\xi_1^2 (\lambda_1 + \varepsilon(\xi_1))$$
$$> f(0) + \frac{1}{2}\xi_1^2 (\lambda_1 - ||C||^2 \varepsilon)$$
$$> f(0) + \frac{1}{4}\xi_1^2 \lambda_1$$

dla $\varepsilon < \lambda/(2||C||^2)$ i dostatecznie małych ξ_1 . Podobnie dla $x = C(0, \xi_2)$

$$(f \circ C)((0, \xi_2)) = f(0) + \frac{1}{2}\xi_2^2 (\lambda_2 + \varepsilon(\xi_2))$$

$$< f(0) + \frac{1}{2}\xi_2^2 (\lambda_2 + ||C||^2 \varepsilon)$$

$$< f(0) + \frac{1}{4}\xi_2^2 \lambda_2$$

dla dostatecznie małych ξ_2 . Jeśli chcemy te kierunki wyznaczyć w terminach x musimy wyliczyć macierz C^{-1} . Przy większej ilości zmiennych mamy więcej możliwości.

W każdym przypadku modelujemy funkcję na zachowaniu wielomianu drugiego stopnia. Gdy wszystkie drugie pochodne znikają musimy wziąć pod uwagę kolejne pochodne (jeśli istnieją) i wielomiany wyższych stopni.

Przypomnijmy twierdzenie o pochodnej jednostajnie zbieżnego ciągu funkcji.

Twierdzenie 3.17. Funkcje $f_n(x)$ są różniczkowalne w sposób ciągły w przedziale [a,b]. Załóżmy, że ciągi $f_n(x)$ i $f'_n(x)$ sa jednostajnie zbieżne odpowiednio do f(x) i g(x). Wtedy f'(x) = g(x) (na końcach przedziału pochodne jednostronne). Tzn.

$$(\lim_{n \to \infty} f_n(x))' = \lim_{n \to \infty} f'_n(x).$$

Czyli pochodna granicy ciągu funkcji jest granica pochodnych.

Z Twierdzenia 3.17 wynika analogiczne dla wielu zmiennych.

Twierdzenie 3.18. Funkcje $f_n(x)$ są różniczkowalne w sposób ciągły na zbiorze otwartym $U \subset \mathbb{R}^d$. Załóżmy, że dla wszystkich wielowskaźników α o długości mniejszej równej m, ciągi $f_n(x)$ i $D^{\alpha}f_n(x)$ sa jednostajnie zbieżne odpowiednio do f(x) i $g_{\alpha}(x)$ na każdym przedziale $[a_1,b_1] \times ... \times [a_d,b_d] \subset U$. Wtedy $D^{\alpha}f(x) = g_{\alpha}(x)$ dla $|\alpha| \leq m$. Tzn.

$$D^{\alpha}(\lim_{n\to\infty}f_n(x)) = \lim_{n\to\infty}D^{\alpha}f_n(x).$$

Czyli pochodne cząstkowe granicy ciągu funkcji są granicami pochodnych.

Dowód. Niech $x \in (a_1, b_1) \times ... \times (a_d, b_d)$. Rozważmy ciąg $\frac{\partial f_n}{\partial x_1}(x_1, ..., x_d)$, który zbiega jednostajnie do $g_{(1,0,...,0)}$ i ustalmy $(x_2,...,x_d)$. Wtedy $f_n(t,x_2,...,x_d)$ jako funkcja zmiennej t zbiega jednostajnie do $g(t,x_2,...,x_d)$ na $[a_1,b_1]$. Podobnie $\frac{\partial}{\partial t}f_n(t,x_2,...,x_d)$ jako funkcja zmiennej t zbiega jednostajnie do $g_{(1,0,...,0)}(t,x_2,...,x_d)$ na $[a_1,b_1]$. Z Twierdzenia 3.17 otrzymujemy, że $g_{(1,0,...,0)}(t,x_2,...,x_d) = \frac{\partial}{\partial t}f(t,x_2,...,x_d)$. Dalej postępujemy indukcyjnie po długości wielowskaźnika. Np. zeby zrobić to dla pochodnych drugiego rzędu, musimy wiedzieć, że pochodne pierwszego rzędu są jednostajnie zbieżne.

Uwaga 3.19. Tak naprawdę twierdzenie 3.17 można osłabić: zbieżność jednostajna ciągu funkcji f_n nie jest potrzebna. Jeśli to wiemy, to analogicznie można osłabić twierdzenie 3.18.

Twierdzenia 3.17 i 3.18 można w standardowy sposób zastosować do jednostajnie zbieżnych szeregów funkcji i otrzyma odpowiednie konkluzje. Jeśli bowiem mamy jednostajnie zbieżny szereg $\sum_{n=1}^{\infty} f_n$ to sumy częściowe $s_n = f_1 + ... + f_n$ są jednostajnie zbieżne. Twierdzenie 3.18 zostanie wykorzystane do rozwiązania niektórych zadań.

4. Całki podwójne

Niech R będzie prostokątem $[a,b] \times [c,d]$. Rozważamy nieujemną funkcję f(x,y) określoną na R. Wykres ma postać powierzchni leżącej nad R. Powierzchnia z=f(x,y) oraz cztery pionowe płaszczyzny $x=a,\ x=b,\ y=c$ i y=d ograniczają obszar trójwymiarowy B. Chcemy obliczyć objętość tego obszaru. Jesli f jest ciągła, to

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dx \right) dy = \operatorname{vol}(B) = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dy \right) dx.$$

Powyższe całki liczymy jako iterowane, po kolei.

Przykłady.

(a) $f(x,y)=k,\,k\geq 0$. Obszar jest prostopadłościanem o wysokości k.

$$\int_{a}^{b} \int_{c}^{d} k \, dx \, dy = k(b-a)(d-c).$$

(b) $f(x,y) = 1-x, 0 \le x \le 1, 0 \le y \le 1$. Obszar jest połową sześcianu o boku 1.

$$\int_{0}^{1} \int_{0}^{1} (1-x) \, dx \, dy = \frac{1}{2}.$$

Będziemy się starali zdefiniować całkę podwójną tak by dla funkcji ciągłej f

(4.1)
$$\iint\limits_R f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dx \right) \, dy = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, dy \right) \, dx.$$

4.1. **Zasada Cavalieriego.** Przy bardziej złożonych funkcjach f(x,y) możemy zastosować zasadę Cavalieriego. Załóżmy, że bryła ma własność, że pola przekroju płaszczyznami równoległymi do ustalonej płaszczyzny, w odległości x od tej płaszczyzny, wynoszą A(x). Bryła mieści się pomiędzy płaszczyznami x=a i x=b. Wtedy zasada Cavalieriego mówi, że

$$V = \int_{a}^{b} A(x) \, dx.$$

Uzasadnijmy to nieco staranniej. Rozważmy nieujemną funkcję f(x,y) na $[a,b] \times [c,d]$. Pole przekroju płaszczyzną pionową $x=x_0$ wynosi

$$A(x_0) = \int_{0}^{d} f(x_0, y) \, dy.$$

Zatem objętość bryły wynosi

$$V = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx.$$

Można też zastosować cięcia płaszczyznami równoległymi do płaszczyzny pionowej y=0. Wtedy

$$V = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

Przykład 4.2. Używając reguły Cavalieriego policzymy objętość półkuli. Ustalmy x i przetnijmy półkulę płaszczyzną równoległą do osi y. Wtedy otrzymujemy półkole o promieniu $\sqrt{1-x^2}$. Wtedy $A(x)=\frac{1}{2}\pi(1-x^2)$. Zatem objętość wynosi

$$\int_{-1}^{1} \frac{1}{2}\pi(1-x^2) = \pi \int_{0}^{1} (1-x^2) = \frac{2}{3}\pi.$$

4.2. Ścisłe określenie całki podwójnej Riemanna. Podziałem prostokąta $R = [a, b] \times [c, d]$ nazywamy parę $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2)$, gdzie \mathcal{P}_1 jest podziałem przedziału [a, b], a \mathcal{P}_2 podziałem przedziału [c, d]:

$$\mathcal{P}_1 = \{x_0, x_1, \dots, x_n\}, \qquad \mathcal{P}_2 = \{y_0, y_1, \dots, y_m\}.$$

Podprzedziałem nazywamy każdy z prostokatów

$$S_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j].$$

Rozważamy funkcję f(x,y) określoną na R (dowolną, niekoniecznie ciągłą). Dla podprzedziału S niech

$$m_S(f) = \inf_{(x,y) \in S} f(x,y), \qquad M_S(f) = \sup_{(x,y) \in S} f(x,y).$$

Symbolem ΔS oznaczamy pole powierzchni prostokąta S. Sumy dolne i górne są zdefiniowane wzorami

$$L(\mathcal{P}, f) = \sum_{S \in \mathcal{P}} m_S(f) \Delta S, \qquad U(\mathcal{P}, f) = \sum_{S \in \mathcal{P}} M_S(f) \Delta S.$$

Jeśli $f(x,y) \geq 0$, to objętość obszaru pod wykresem mieści pomiędzy liczbami $L(\mathcal{P}, f)$ i $U(\mathcal{P}, f)$.

Podział $\mathcal{P}' = (\mathcal{P}'_1, \mathcal{P}'_2)$ nazywamy rozdrobnieniem podziału $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2)$, jeśli \mathcal{P}'_1 jest rozdrobnieniem \mathcal{P}_1 , a \mathcal{P}'_2 rozdrobnieniem \mathcal{P}_2 . Każdy prostokąt podziału \mathcal{P}' zawiera się w jakimś prostokącie podziału \mathcal{P} .

Mając dwa podziały \mathcal{P}' i \mathcal{P}'' zawsze znajdziemy $\tilde{\mathcal{P}}$, który jest rozdrobnieniem obu. Wystarczy wziąć $\tilde{\mathcal{P}} = (\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2)$ taki, że $\tilde{\mathcal{P}}_i$ jest rozdrobnieniem $\mathcal{P}'_i, \mathcal{P}''_i$ czyli np. $\tilde{\mathcal{P}}_i = \mathcal{P}'_i \cup \mathcal{P}''_i$.

Lemat 4.3. Jeśli \mathcal{P}' jest rozdrobnieniem \mathcal{P} , to

$$L(\mathcal{P}, f) \le L(\mathcal{P}', f), \qquad U(\mathcal{P}, f) \ge U(\mathcal{P}', f).$$

 $Dow \acute{o}d.$ JeśliR,Ssą prostokątami, $R\in \mathcal{P},\,S\subset R,\,S\in \mathcal{P}'$ jego podziałem, to

$$\sum_{S \subset R} M_S(f) \Delta S \le \sum_{S \subset R} M_R(f) \Delta S$$
$$= M_R(f) \sum_{S \subset R} \Delta S = M_R(f) \Delta R$$

Analogicznie

$$\sum_{S \subset R} m_S(f) \Delta S \ge \sum_{S \subset R} m_R(f) \Delta S$$
$$= m_R(f) \sum_{S \subset R} \Delta S = m_R(f) \Delta R$$

Określamy całki dolną i górną wzorami

$$\underbrace{\iint}_{R} f(x,y) \, dx \, dy = \sup_{\mathcal{P}} L(\mathcal{P}, f), \qquad \overline{\iint}_{R} f(x,y) \, dx \, dy = \inf_{\mathcal{P}} U(\mathcal{P}, f).$$

Mówimy, że funkcja f(x,y) jest całkowalna jeśli

$$\iint_{R} f(x,y) dx dy = \overline{\iint}_{R} f(x,y) dx dy.$$

Na razie ta definicja nie ma nic wspólnego z całką iterowaną (4.1).

Twierdzenie 4.4. Funkcja ograniczona f(x,y) na prostokącie R jest całkowalna wtedy i tylko wtedy, gdy dla dowolnej liczby $\varepsilon > 0$ można znaleźć podział \mathcal{P} spełniający

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon.$$

 $Dow \acute{o}d$. Załóżmy, że $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$. Wtedy

$$L(\mathcal{P}, f) \le \iint f(x, y) dx dy \le \iint f(x, y) dx dy \le U(\mathcal{P}, f)$$

i

$$\overline{\iint} f(x,y) \, dx \, dy - \iint f(x,y) \, dx \, dy < \varepsilon.$$

Załóżmy teraz, że funkcja jest całkowalna. Istnieją podziały $\mathcal{P}', \mathcal{P}''$ takie, że

$$L(\mathcal{P}', f) > \iint f(x, y) \, dx \, dy - \varepsilon$$
$$U(\mathcal{P}'', f) < \iint f(x, y) \, dx \, dy + \varepsilon.$$

Niech \mathcal{P} będzie wspólnym rozdrobnieniem podziałów \mathcal{P}' i \mathcal{P}'' . Wtedy

$$L(\mathcal{P}, f) \ge L(\mathcal{P}', f) > \iint f(x, y) \, dx \, dy - \varepsilon$$
$$U(\mathcal{P}, f) \le U(\mathcal{P}'', f) < \iint f(x, y) \, dx \, dy + \varepsilon.$$

Stad

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < 2\varepsilon.$$

Lemat 4.5. Każda funkcja ciągła f(x), o wartościach liczbowych, określona na zwartym podzbiorze $R \subset \mathbb{R}^2$ jest jednostajnie ciągła, tzn. gdy dwa argumenty funkcji są położone blisko siebie, to również wartości funkcji leżą blisko siebie. Czyli

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in R \ (\|x - y\| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon).$$

П

 $Dowód\ nie\ wprost.$ Załóżmy, że istnieje (złośliwa) liczba $\varepsilon > 0$ taka, że dla $\delta_n = \frac{1}{n}$ istnieją punkty x_n i y_n w R spełniające

$$||x_n - y_n|| < \frac{1}{n}, \qquad |f(x_n) - f(y_n)| \ge \varepsilon.$$

Z ciągu x_n można wybrać zbieżny podciąg x_{n_k} . Niech $x_{n_k} \longrightarrow x_0$. Wtedy

$$||y_{n_k} - x_0|| \le ||y_{n_k} - x_{n_k}|| + ||x_{n_k} - x_0|| \le \frac{1}{n_k} + ||x_{n_k} - x_0|| \xrightarrow{k} 0.$$

Czyli $y_{n_k} \xrightarrow{k} x_0$. Zatem $f(x_{n_k}) \xrightarrow{k} f(x_0)$ oraz $f(y_{n_k}) \xrightarrow{k} f(x_0)$. Otrzymujemy sprzeczność, bo $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$.

Jak wybieramy podciąg? Piszemy $x_n = (x_{n,1}, x_{n,2})$, wybieramy najpierw ciąg n_k taki, że $x_{n_k,1}$ jest zbieżny, a potem wybieramy podciąg z n_k tak by druga współrzędna też zbiegała.

Twierdzenie 4.6. Funkcja ciągła f jest całkowalna na prostokącie R.

Dowód. Z jednostajnej ciągłości, jeśli podział \mathcal{P} jest wystarczająco drobny tzn. taki, że dla każdego $S \in \mathcal{P}$, $M_S(f) - m_S(f) < \varepsilon/\Delta R$, to $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$.

Twierdzenie 4.7. Rozważmy dwie funkcje f i g, całkowalne na prostokącie R. Wtedy

- (i) $\iint\limits_R (f+g)\,dx\,dy = \iint\limits_R f\,dx\,dy + \iint\limits_R g\,dx\,dy.$
- (ii) $\iint_{\mathcal{D}} cf \, dx \, dy = c \iint_{\mathcal{D}} f \, dx \, dy.$
- (iii) $Je\acute{s}li\ f(x,y) \leq g(x,y)\ na\ R,\ to$

$$\iint\limits_R f \, dx \, dy \le \iint\limits_R g \, dx \, dy.$$

(iv) Niech R_i , $i=1,2,\ldots,n$, będą prostokątami o bokach równoległych do osi takimi, że $R=R_1\cup\ldots\cup R_n$, i wnętrza prostokątów R_i są rozłączne pomiędzy sobą. Załóżmy, że f jest całkowalna na każdym z nich to f jest całkowalna na R oraz

$$\iint\limits_{R} f \, dx \, dy = \sum_{i=1}^{n} \iint\limits_{R} f \, dx \, dy.$$

Ponadto jeśli f jest całkowalna na R, to jest całkowalna na każdym R_j .

Dowód. Prostokąty R_j , $j=1,2,\ldots,n$, nie muszą tworzyć podziału prostokąta R. Ale można rozdrobnić każdy z prostokątów R_i , aby uzyskać podział \mathcal{P} prostokąta R. Istotnie, niech $\mathcal{P}^{(j)}$ będzie podziałem prostokąta R_j . Bierzemy $\mathcal{P} = \left(\bigcup_j \mathcal{P}_1^{(j)}, \bigcup_j \mathcal{P}_2^{(j)}\right)$.

Załóżmy, że f jest całkowalna na R_j a $\mathcal{P}^{(j)}$ jest podziałem takim, że $U(\mathcal{P}^{(j)}, f) - L(\mathcal{P}^{(j)}, f) < \varepsilon/n$. Wtedy także

$$U(\mathcal{P}, f, R_i) - L(\mathcal{P}, f, R_i) < \varepsilon/n,$$

gdzie ostatnie wyrażenie oznacza ograniczenie podziału \mathcal{P} do prostokąta R_i . Stąd

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) \le \sum_{j} (U(\mathcal{P}, f, R_j) - L(\mathcal{P}, f, R_j)) < \varepsilon.$$

Załóżmy teraz, że f jest całkowalna na R. Jeśli mamy podział \mathcal{P} taki, że $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$, to dodając współrzędne wierzchołków prostokątów R_j otrzymamy jego rozdrobnienie \mathcal{P}' , które ograniczone do prostokąta R_j jest jego podziałem. Bierzemy $\mathcal{P}'_1 = \mathcal{P}_1 \cup \{a_1, b_1, ..., a_n, b_n\}$ i $\mathcal{P}'_2 = \mathcal{P}_2 \cup \{c_1, d_1, ..., c_n, d_n\}$, gdzie a_i, b_i są x-owymi współrzędnymi wierzchołków, a c_i, d_i y-owymi. Wtedy

$$U(\mathcal{P}', f, R_i) - L(\mathcal{P}', f, R_i) \le U(\mathcal{P}', f) - L(\mathcal{P}', f) < \varepsilon$$

bo

$$\sum_{S \subset R_i, S \in \mathcal{P}'} (M_S(f) - m_S(f)) \Delta S \le \sum_{S \in \mathcal{P}'} (M_S(f) - m_S(f)) \Delta S$$

i każdy wyraz sumy po lewej i po prawej jest nieujemny.

Twierdzenie 4.8 (Fubini). Załóżmy, że funkcja f(x,y) jest ciągła na prostokącie $[a,b] \times [c,d]$. Wtedy

$$\iint_R f(x,y) \, dx \, dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) dy.$$

 $Dow \acute{o}d$. Rozważamy podziały $a=x_0 < x_1 < \ldots < x_n = b$ i $c=y_0 < y_1 < \ldots < y_m = d$.

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left(\sum_{j=1}^{m} \int_{y_{j-1}}^{y_{j}} f(x, y) \, dy \right) dx$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_{i}} \underbrace{\left(\int_{y_{j-1}}^{y_{j}} f(x, y) \, dy \right)}_{F_{j}(x)} dx = \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_{i}} F_{j}(x) \, dx.$$

 $F_j(x)$ jest funkcją ciągłą na $[x_{i-1}, x_i]$, co wynika z lematu poniżej.

Lemat 4.9. Dla funkcji f(x,y) ciągłej na $[a,b] \times [c,d]$ funkcja $F(x) = \int_c^d f(x,y) dy$ jest ciągła na [a,b].

Dowód lematu.

$$|F(x_1) - F(x_2)| = \left| \int_c^d f(x_1, y) \, dy - \int_c^d f(x_2, y) \, dy \right| \le \int_c^d |f(x_1, y) - f(x_2, y)| \, dy.$$

Z jednostajnej ciągłości dla $\varepsilon > 0$ można znaleźć liczbę $\delta > 0$ taką, że

$$\|(x_1, y_1) - (x_2, y_2)\| < \delta \implies |f(x_1, y_1) - f(x_2, y_2)| < \frac{\varepsilon}{d - c}.$$

Wtedy dla $|x_1 - x_2| < \delta$ mamy $|f(x_1, y) - f(x_2, y)| < \frac{\varepsilon}{d-c}$. Ostatecznie

$$|F(x_1) - F(x_2)| \le \frac{\varepsilon}{d-c}(d-c) = \varepsilon.$$

Z twierdzenia o wartości średniej dla całki istnieją punkty ξ_{ij} , dla których

$$\int_{x_{i-1}}^{x_i} F_j(x) \, dx = F_j(\xi_{ij}) \Delta x_i, \quad x_{i-1} \le \xi_{ij} \le x_i.$$

Dalej

$$F_j(\xi_{ij}) = \int_{y_{j-1}}^{y_j} f(\xi_{ij}, y) \, dy = f(\xi_{ij}, \eta_{ij}) \Delta y_j, \quad y_{j-1} \le \eta_{ij} \le y_j,$$

dla pewnych punktów η_{ij} . Zatem

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_{ij}, \eta_{ij}) \underbrace{\Delta x_{i} \Delta y_{j}}_{\Delta S_{ij}},$$

gdzie $S_{ij}=[x_{i-1},x_i]\times[y_{j-1}.y_j]$. Punkt (ξ_{ij},η_{ij}) leży w $S_{ij},\ m_{S_{ij}}(f)\leq f(\xi_{ij},\eta_{ij})\leq M_{S_{ij}}(f)$. Stąd

$$L(\mathcal{P}, f) \le \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx \le U(\mathcal{P}, f),$$

gdzie \mathcal{P} jest podziałem wyznaczonym przez prostokąty S_{ij} . Ale

$$L(\mathcal{P}, f) \le \iint_{\mathcal{B}} f(x, y) dx dy \le U(\mathcal{P}, f).$$

Funkcja F jest całkowalna, więc można wybrać podział \mathcal{P} taki, że $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$. Wtedy

$$\left| \iint_R f(x,y) \, dx \, dy - \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx \right| < \varepsilon.$$

4.3. **Całkowalność.** Niekiedy będziemy musieli obliczać całki z funkcji nieciągłych, np. przy wyznaczaniu objętości brył, których podstawa nie jest prostokątem.

Przykład 4.10. Niech f(x,y) będzie nieujemną funkcją ciągła określoną w kole $x^2 + y^2 \le 1$. Chcemy obliczyć objętość obszaru pod wykresem. Wkładamy koło w kwadrat $[-1,1] \times [-1,1]$ i określamy funkcję

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & x^2 + y^2 \le 1, \\ 0 & x^2 + y^2 > 1. \end{cases}$$

Wtedy $V = \int_{[-1,1]\times[-1,1]} \tilde{f}(x,y) \, dx \, dy$. Zauważmy, że \tilde{f} może nie być ciągła na brzegu koła. Ogólnie, jeśli chcemy obliczyć całkę $\int_C f(x,y) \, dx \, dy$, gdzie $C \subset \mathbb{R}^2$, to wkładamy C w prostokąt R o bokach równoległych do osi i obliczamy

$$\int_{R} f(x,y) \mathbb{1}_{C}(x,y) \, dx \, dy.$$

Pojawia się problem całkowalności funkcji $f(x,y)\mathbb{I}_C(x,y)$, bo może nie być ciągła na ∂C . Jeśli $\mathbb{I}_C(x,y)$ jest całkowalna a f(x,y) jest ciągła, to iloczyn jest funkcją całkowalną, bo iloczyn funkcji całkowalnych jest całkowalny lub inny argument: zbiór punktów nieciągłości się nie powiększa.

Dla $C = \{(x,y) : x^2 + y^2 \le 1.\}$ funkcja $\mathbb{I}_C(x,y)$ jest nieciągła w punktach okręgu $x^2 + y^2 = 1$. Ogólnie funkcja $\mathbb{I}_C(x,y)$ jest nieciągła na brzegu zbioru C oznaczanym symbolem ∂C .

Definicja 4.11. Mówimy, że zbiór $A \subset \mathbb{R}^2$ ma miarę zero, jeśli dla dowolnej liczby $\varepsilon > 0$ istnieją prostokąty $\{R_n\}_{n=1}^{\infty}$ takie, że

$$A \subset \bigcup_{n=1}^{\infty} R_n, \qquad \sum_{n=1}^{\infty} \Delta R_n < \varepsilon.$$

Przykłady.

- (a) Punkt ma miarę zero. Skończony zbiór punktów ma miarę zero.
- (b) Przeliczalny zbiór punktów ma miarę zero. W szczególności zbiór punktów w kwadracie [0, 1]² o obu współrzędnych wymiernych ma miarę zero.
- (c) Poziomy odcinek ma miarę zero. Również ukośny odcinek ma miarę zero.
- (d) Kwadrat $[0,1]^2$ nie ma miary zero. Ogólniej prostokąt $[a,b] \times [c,d]$, $a \neq b$, $c \neq d$ nie ma miary zero.
- (e) Zbiór punktów kwadratu $[0,1]^2$ o obu współrzędnych niewymiernych nie ma miary zero.
- (f) Okrag ma miarę zero.

Prostokąty zdefiniowaliśmy wcześniej tak, że ich boki są równoległe do osi. W powyższej definicji to nie jest ważne. Warto wiedzieć, że następujące warunki są równoważne:

• dla dowolnej liczby $\varepsilon > 0$ istnieją prostokąty $\{R_n\}_{n=1}^{\infty}$ (o bokach niekoniecznie równoległych do osi) takie, że

$$A \subset \bigcup_{n=1}^{\infty} R_n, \qquad \sum_{n=1}^{\infty} \Delta R_n < \varepsilon.$$

• dla dowolnej liczby $\varepsilon > 0$ istnieją prostokąty $\{R_n\}_{n=1}^{\infty}$ (o bokach równoległych do osi) takie, że

$$A \subset \bigcup_{n=1}^{\infty} R_n, \qquad \sum_{n=1}^{\infty} \Delta R_n < \varepsilon.$$

• dla dowolnej liczby $\varepsilon > 0$ istnieją kule $\{B_n\}_{n=1}^{\infty}$ takie, że

$$A \subset \bigcup_{n=1}^{\infty} B_n, \qquad \sum_{n=1}^{\infty} \Delta B_n < \varepsilon.$$

Nie ma znaczenia czy R_n , B_n są otwarte czy domknięte. Zbiory miary zero zostaną starannie przerobione na Analizie i topologii i Teorii miary.

Twierdzenie 4.12. Ograniczona funkcja na prostokącie jest całkowalna wtedy i tylko wtedy, gdy zbiór jej punktów nieciągłości ma miarę zero.

Twierdzenie 4.13 (Fubini). Niech f będzie funkcją całkowalną na prostokącie $R = [a, b] \times [c, d]$. Dla $a \le x \le b$ niech

$$\underline{\int_{c}^{d}} f(x, y) \, dy = \mathcal{L}(x) \le \mathcal{U}(x) = \overline{\int_{c}^{d}} f(x, y) \, dy.$$

Wtedy funkcje $\mathcal{L}(x)$ i $\mathcal{U}(x)$ są całkowalne na [a,b] oraz

$$\iint_{R} f(x,y) dx dy = \int_{a}^{b} \mathcal{L}(x) dx = \int_{a}^{b} \mathcal{U}(x) dx.$$

Uwagi.

1. Jeśli funkcja $y\mapsto f(x,y)$ jest całkowalna na [c,d] dla $a\leq x\leq b,$ to

$$\iint\limits_{R} f(x,y) \, dx \, dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) dx.$$

2. Zamieniając rolami x i y i przyjmując, że funkcja $x\mapsto f(x,y)$ jest całkowalna na [a,b] dla $c\le y\le d$, otrzymamy

$$\iint\limits_{R} f(x,y) \, dx \, dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, dx \right) dy.$$

3. Zauważmy, że $f(x,\cdot)$ może nie być całkowalna, ale funkcje $\mathcal{L}(x)$ i $\mathcal{U}(x)$ nie sa takie złe, są całkowalne i nie różnią się za bardzo. W szczególności mają zbiory punktów nieciągłości miary zero i całki z \mathcal{L}, \mathcal{U} są równe.

 $Dow \acute{o}d$. Niech $\mathcal{P}=(\mathcal{P}_1,\mathcal{P}_2)$ będzie podziałem prostokąta R. Rozważmy jeden prostokąt podziału $S=S_1\times S_2$. Mamy

$$m_S(f) = m_{S_1 \times S_2}(f) \le m_{S_2}(f(x, \cdot)), \text{ dla } x \in S_1.$$

Zatem

$$\sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_2 \leq \sum_{S_2 \in \mathcal{P}_2} m_{S_2}(f(x, \cdot)) \Delta S_2$$

$$= L(\mathcal{P}_2, f(x, \cdot)) \leq \int_{-c}^{d} f(x, y) \, dy = \mathcal{L}(x), \quad \text{dla } x \in S_1.$$

Po wzięciu kresu dolnego względem $x \in S_1$ otrzymujemy

$$\sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_2 \le m_{S_1}(\mathcal{L}).$$

Zatem

$$L(\mathcal{P}, f) = \sum_{S_1 \in \mathcal{P}_1} \sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_1 \Delta S_2$$

$$= \sum_{S_1 \in \mathcal{P}_1} \left(\sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_2 \right) \Delta S_1$$

$$\leq \sum_{S_1 \in \mathcal{P}_1} m_{S_1}(\mathcal{L}) \Delta S_1 = L(\mathcal{P}_1, \mathcal{L}).$$

Podobnie pokazujemy, że $U(\mathcal{P}, f) \geq U(\mathcal{P}_1, \mathcal{U})$. Istotnie, ustalmy S_1 i weźmy $x \in S_1$

$$\sum_{S_2 \in \mathcal{P}_2} M_{S_1 \times S_2}(f) \Delta S_2 \ge \sum_{S_2 \in \mathcal{P}_2} M_{S_2}(f(x, \cdot)) \Delta S_2$$

$$= U(\mathcal{P}_2, f(x, \cdot)) \ge \overline{\int}_c^d f(x, y) \, dy = \mathcal{U}(x), \quad \text{dla } x \in S_1.$$

Biorac kres górny po x mamy

$$\sum_{S_2 \in \mathcal{P}_2} M_{S_1 \times S_2}(f) \Delta S_2 \ge M_{S_1}(\mathcal{U})$$

i

$$U(\mathcal{P}, f) = \sum_{S_1 \in \mathcal{P}_1} \sum_{S_2 \in \mathcal{P}_2} M_{S_1 \times S_2}(f) \Delta S_1 \Delta S_2$$

$$= \sum_{S_1 \in \mathcal{P}_1} \left(\sum_{S_2 \in \mathcal{P}_2} M_{S_1 \times S_2}(f) \Delta S_2 \right) \Delta S_1$$

$$\geq \sum_{S_1 \in \mathcal{P}_1} M_{S_1}(\mathcal{U}) \Delta S_1 = U(\mathcal{P}_1, \mathcal{U}).$$

Reasumując otrzymujemy

$$L(\mathcal{P}, f) \le L(\mathcal{P}_1, \mathcal{L}) \le U(\mathcal{P}_1, \mathcal{L}) \le U(\mathcal{P}_1, \mathcal{U}) \le U(\mathcal{P}, f).$$

47

i

$$L(\mathcal{P}, f) \leq L(\mathcal{P}_1, \mathcal{L}) \leq L(\mathcal{P}_1, \mathcal{U}) \leq U(\mathcal{P}_1, \mathcal{U}) \leq U(\mathcal{P}, f).$$

Z założenia f(x,y) jest całkowalna więc wybieramy \mathcal{P} tak, że $U(\mathcal{P},f)-L(\mathcal{P},f)<\varepsilon$. Stąd wynika, że $\mathcal{L}(x),\mathcal{U}(x)$ są całkowalne na [a,b]. Ponadto

$$L(\mathcal{P}, f) \le \iint_{R} f(x, y) \, dx \, dy \le U(\mathcal{P}, f),$$
$$L(\mathcal{P}, f) \le \int_{a}^{b} \mathcal{L}(x) \, dx \le U(\mathcal{P}, f)$$
$$(\mathcal{P}, f) \le \int_{a}^{b} \mathcal{U}(x) \, dx \le U(\mathcal{P}, f).$$

Zatem $\iint_B f(x,y) dx dy = \int_a^b \mathcal{L}(x) dx = \int_a^b \mathcal{U}(x) dx$.

Przykład 4.14. $D = \{(x,y) : x^2 + y^2 \le 1\}$. Znaleźć objętość obszaru pod wykresem funkcji f(x,y) = 2x + y + 5 na D. Obliczamy

$$\iint_{D} f(x,y) \, dx \, dy = \iint_{[-1,1]^{2}} (2x+y+5) \mathbb{I}_{D}(x,y) \, dx \, dy$$

$$= \int_{-1}^{1} \left(\int_{-1}^{1} (2x+y+5) \mathbb{I}_{D}(x,y) \, dy \right) dx = \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} (2x+y+5) \, dy \, dx$$

$$= 2 \int_{-1}^{1} (2x+5) \sqrt{1-x^{2}} \, dx = 10 \int_{-1}^{1} \sqrt{1-x^{2}} \, dx = 5\pi.$$

 $Calkowalność\ (2x+y+5)\mathbb{I}_D(x,y)\ wynika\ z\ twierdzeń\ 4.15\ i\ 4.12.$

Twierdzenie 4.15. Niech y = f(x) będzie funkcją ciągłą na [a,b]. Wtedy wykres funkcji f ma miarę zero.

Dowód. Ustalmy $\varepsilon > 0$. Można znaleźć liczbę naturalną N taką, że

$$|x-x'| < \frac{b-a}{N} \Rightarrow |f(x)-f(x')| < \frac{\varepsilon}{4(b-a)}.$$

Dzielimy przedział [a,b] na N równych części punktami $a=x_0 < x_1 < \ldots < x_N = b$. Każdy z punktów x przedziału [a,b] leży w jednym z przedziałów (x_{i-1},x_{i+1}) dla $i=1,2,\ldots,N-1$. Jeśli $x\in (x_{i-1},x_{i+1})$, to $|f(x)-f(x_i)|<\frac{\varepsilon}{4(b-a)}$. To oznacza, że

$$f(x) \in \left(f(x_i) - \frac{\varepsilon}{4(b-a)}, f(x_i) + \frac{\varepsilon}{4(b-a)} \right).$$

Zatem wykres jest zawarty w zbiorze

$$\bigcup_{i=1}^{N-1} (x_{i-1}, x_{i+1}) \times \left(f(x_i) - \frac{\varepsilon}{4(b-a)}, f(x_i) + \frac{\varepsilon}{4(b-a)} \right).$$

Suma pól składników tego zbioru wynosi

$$(N-1)\frac{2(b-a)}{N} \cdot \frac{\varepsilon}{2(b-a)} = \varepsilon.$$

Dla ograniczonego podzbioru $D \subset \mathbb{R}^2$ takiego, że ∂D ma miarę zero określamy

$$A(D) = \iint_D dx \, dy = \iint_R \mathbb{1}_D(x, y) \, dx \, dy,$$

gdzie R jest prostokatem zawierającym D. Niech \mathcal{P} będzie podziałem prostokąta R. Wtedy

$$L(\mathcal{P}, \mathbb{1}_D) = \sum_{S} m_S(\mathbb{1}_D) \Delta S, \qquad U(\mathcal{P}, \mathbb{1}_D) = \sum_{S} M_S(\mathbb{1}_D) \Delta S.$$

Wielkość $L(\mathcal{P}, \mathbb{I}_D)$ jest sumą pól prostokątów podziału całkowicie zawartych w D, natomiast $U(\mathcal{P}, \mathbb{I}_D)$ jest sumą pól prostokątów podziału mających część wspólną z D. Polem wewnętrznym nazywamy kres górny liczb $L(\mathcal{P}, \mathbb{I}_D)$ a polem zewnętrznym kres dolny liczb $U(\mathcal{P}, \mathbb{I}_D)$. Mówimy, że obszar D ma pole, jeśli pole wewnętrzne jest równe polu zewnętrznemu. Odpowiednio całka górna i dolna z \mathbb{I}_D są równe czyli \mathbb{I}_D jest całkowalna czyli ∂D ma miarę zero. Tak więc obszar D ma pole wtedy i tylko wtedy, gdy ∂D ma miarę zero. Mówimy wtedy, że obszar jest mierzalny w sensie Jordana.

Twierdzenie 4.16. Jeśli f(x,y) jest funkcją ciągłą w prostokącie R i $D \subset R$ jest mierzalny w sensie Jordana, to całka

$$\iint_D f(x,y) \, dx \, dy$$

jest dobrze określona.

 $Dow \acute{o}d$.

$$\iint_D f(x,y) \, dx \, dy = \iint_R f(x,y) \mathbb{1}_D(x,y) \, dx \, dy.$$

Funkcja $f(x,y)\mathbb{1}_D(x,y)$ może być nieciągła tylko w punktach ∂D .

Twierdzenie 4.17. Niech D_1 i D_2 będą ograniczonymi rozłącznymi podzbiorami \mathbb{R}^2 mierzalnymi w sensie Jordana. Dla funkcji f(x,y) ciągłej na $D_1 \cup D_2$ mamy

$$\iint_{D_1 \cup D_2} f(x, y) \, dx \, dy = \iint_{D_1} f(x, y) \, dx \, dy + \iint_{D_2} f(x, y) \, dx \, dy.$$

 $Dow \acute{o}d$. Wkładamy D_1 i D_2 w prostokąt R. Wtedy

$$\iint_{D_1 \cup D_2} f \, dx \, dy = \iint_R f \, \mathbb{I}_{D_1 \cup D_2} \, dx \, dy = \iint_R f \, [\mathbb{I}_{D_1} + \mathbb{I}_{D_2}] \, dx \, dy$$
$$\iint_R f \, \mathbb{I}_{D_1} \, dx \, dy + \iint_R f \, \mathbb{I}_{D_2} \, dx \, dy = \iint_{D_1} f \, dx \, dy + \iint_{D_2} f \, dx \, dy.$$

W szczególności $D_1 \cup D_2$ jest mierzalny w sensie Jordana.

Przykład 4.18. Dwa boki równoległoboku D znajdują się na poziomach y = c i y = d. Dolny bok mieści się pomiędzy x = a i x = b a górny pomiędzy a' i b' oraz a' > a. Wkładamy D w prostokąt $R = [a, b'] \times [c, d]$. Wtedy

$$A(D) = \iint_R \mathbb{1}_D(x, y) \, dx \, dy = \int_c^d \left(\int_a^{b'} \mathbb{1}_D(x, y) \, dx \right) \, dy.$$

Przy ustalonej wartości y funkcja $\mathbb{1}_D(x,y)$ jest równa 1 na przedziale długości b-a. Zatem

$$A(D) = \int_{c}^{d} (b-a) \, dy = (b-a)(d-c).$$

Przykład 4.19. Zmiana kolejności całkowania Rozważmy całkę iterowaną

$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} \sqrt{a^2 - y^2} \, dy \, dx = \iint_D \sqrt{a^2 - y^2} \, dx \, dy$$
$$= \int_0^a \int_0^{\sqrt{a^2 - y^2}} \sqrt{a^2 - y^2} \, dx \, dy = \int_0^a (a^2 - y^2) \, dy = a^3 - \frac{a^3}{3} = \frac{2}{3}a^3.$$

Przy zmienionej kolejności całkowania obliczenia okazały się łatwiejsze. Warto zauważyć że

$$D = \{(x,y) : 0 \le x \le a, \ 0 \le y \le \sqrt{a^2 - x^2}\} = \{(x,y) : 0 \le x, y, \quad x^2 + y^2 \le a^2\}.$$

Podobnie

$$\int_{1}^{2} \int_{0}^{\log x} (x-1)\sqrt{1+2e^{y}} \, dy \, dx = \int_{0}^{\log 2} \int_{e^{y}}^{2} (x-1)\sqrt{1+2e^{y}} \, dx \, dy$$
$$= \int_{0}^{\log 2} \sqrt{1+2e^{y}} \, (2-e^{y}) \frac{1}{2} (1+e^{y}-1) \, dy.$$

Wtedy

$$D = \{(x, y) : 1 \le x \le 2, \quad 0 \le y \le \log x\} = \{(x, y) : 0 \le y \le \log 2, \quad e^y \le x \le 2\}.$$

W ostatniej całce wykonujemy podstawienie $u = 1 + 2e^y$. Wtedy

$$e^y = \frac{u-1}{2} \qquad du = 2e^y \, dy.$$

Otrzymujemy

$$\int_{3}^{5} \sqrt{u} \left(2 - \frac{u - 1}{2} \right) \frac{1}{4} du.$$

4.4. Zamiana zmiennych 1.

Twierdzenie 4.20 (o zamianie zmiennych). Niech U i U^* będą zbiorami otwartymi $w \mathbb{R}^2(\mathbb{R}^n)$. Załóżmy, że $T: U^* \mapsto U$ jest odwzorowaniem różnowartościowym klasy C^1 takim, że $T(U^*) = U$ i det $DT(u) \neq 0$ dla wszystkich $u \in U^*$. Wtedy dla funkcji f(x) całkowalnej określonej na U mamy

$$\int_{U} f(x) \, dx = \int_{U^*} f(T(u)) \, |J_T(u)| \, du,$$

gdzie $J_T(u) = \det DF(u)$ jest jakobianem odwzorowania T w punkcie u.

Na razie nie wiemy, co to jest całka po zbiorze otwartym, ale wiemy, co to jest całka po ograniczonym zbiorze otwartym D mierzalnym w sensie Jordana. Twierdzenie jest prawdziwe tak jak stoi, ale dla naszych celów powinniśmy dorzucić założenie, że zbiory D, D^* , po których całkujemy, są ograniczone, a ich brzegi mają miarę zero.

Twierdzenie 4.21 (o zamianie zmiennych). Niech D i D^* będą zbiorami mierzalnymi w sensie Jordana otwartymi w $\mathbb{R}^2(\mathbb{R}^n)$. Załóżmy, że $T:IntD^*\mapsto D$ jest odwzorowaniem różnowartościowym klasy C^1 takim, że $T(IntD^*)=IntD$ i $\det DT(u)\neq 0$ dla wszystkich $u\in IntD^*$. Wtedy dla funkcji f(x) całkowalnej określonej na D mamy

$$\int_{D} f(x) \, dx = \int_{D^*} f(T(u)) \, |J_T(u)| \, du,$$

 $gdzie\ J_T(u) = \det DF(u)\ jest\ jakobianem\ odwzorowania\ T\ w\ punkcie\ u.$

Uwaga 4.22. Nie jest ważne co się dzieje na brzegach D, D^* i czy w ogóle T jest tam określone. To nie wpływa na całkę.

Jeśli T o własnościach jak w Twierdzenie 4.20 jest określone na pewnym otoczeniu U zbioru \bar{D}^* i D^* jest mierzalny w sensie Jordana, to D też taki jest. Podobnie, jeśli f jest całkowalna na \bar{D} (lub równoważnie na D, bo ∂D ma miarę zero) to $f \circ T$ jest całkowalna na \bar{D}^* . To ostatnie wynika z faktu, że

$$T^{-1}\left(Dis(f)\right) = Dis(f \circ T),$$

gdzie Dis(f)jest zbiorem punktów nieciągłości funkcji f. To wszystko sprawia, że możemy napisać

Twierdzenie 4.23 (o zamianie zmiennych). Niech U i U^* będą zbiorami otwartymi $w \mathbb{R}^2(\mathbb{R}^n)$. Załóżmy, że $T: U^* \mapsto U$ jest odwzorowaniem różnowartościowym klasy C^1 takim, że $\det DT(u) \neq 0$ dla wszystkich $u \in U^*$. Niech $\bar{D} \subset U$ będzie zbiorem mierzalnym w sensie Jordana i $T(D^*) = D$. Wtedy dla funkcji f(x) całkowalnej na D mamy

$$\int_{D} f(x) \, dx = \int_{D^*} f(T(u)) \, |J_T(u)| \, du,$$

gdzie $J_T(u)$ jest jakobianem odwzorowania T w punkcie u.

Uwaga 4.24. Dla u' blisko u mamy

$$T(u') \approx T(u) + DT(u)(u' - u),$$

czyli odwzorowanie T zachowuje się w przybliżeniu jak złożenie dwu przesunięć i przekształcenia liniowego o macierzy DT(u). Przy takim przekształceniu objętość obrazu małego przedziału S obliczamy wzorem

$$\Delta T(S) \approx \Delta S |J_T(u)|$$
, gdzie $u \in S$.

Przykład 4.25. Policzmy całkę $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Mamy

$$\begin{split} & \int_{-\infty}^{\infty} e^{-x^2} \, dx = 2 \int_{0}^{\infty} e^{-x^2} \, dx \\ & = 2 \left[\lim_{R \to \infty} \left(\int_{0}^{R} e^{-x^2} \, dx \right) \left(\int_{0}^{R} e^{-y^2} \, dy \right) \right]^{1/2} = 2 \left[\lim_{R \to \infty} \iint_{[0,R]^2} e^{-(x^2 + y^2)} \, dx \, dy \right]^{1/2} \end{split}$$

Niech $D_R = \{(x,y) : x,y \ge 0, x^2 + y^2 \le R^2\}$ oznacza część koła o środku w początku układu i promieniu R leżącą w pierwszej ćwiartce. Wtedy

$$\iint_{D_R} e^{-(x^2+y^2)} \, dx \, dy \le \iint_{[0,R]^2} e^{-(x^2+y^2)} \, dx \, dy \le \iint_{D_{R\sqrt{2}}} e^{-(x^2+y^2)} \, dx \, dy.$$

Użyjemy współrzędnych biegunowych

$$x = r \cos \varphi, \ y = r \sin \varphi, \quad 0 \le \varphi \le \frac{\pi}{2}, \ 0 \le r \le R.$$

To znaczy

$$T(r,\varphi) = (r\cos\varphi, r\sin\varphi) = (x,y).$$

Mamy

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r.$$

Prostokąt $[0,R] \times [0,\frac{\pi}{2}]$ jest przekształcony na D_R , a prostokąt $(0,R) \times (0,\frac{\pi}{2})$ na wnętrze ćwiartki koła

$$IntD_R = \{(x,y) : x,y > 0, x^2 + y^2 < R^2\}$$

i Tokreślone na $(0,R)\times(0,\frac{\pi}{2})$ wszystkie potrzebne własności. Zatem

$$\iint_{D_R} e^{-(x^2+y^2)} dx dy = \iint_{[0,R]\times[0,\frac{\pi}{2}]} e^{-r^2} r d\varphi dr = \int_0^R \int_0^{\frac{\pi}{2}} e^{-r^2} r d\varphi dr
= \frac{\pi}{2} \int_0^R e^{-r^2} r dr = \frac{\pi}{2} \left(-\frac{1}{2} e^{-r^2} \Big|_0^R \right) = \frac{\pi}{4} (1 - e^{-R^2}) \underset{R \to \infty}{\longrightarrow} \frac{\pi}{4}.$$

W świetle tych obliczeń otrzymujemy

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

Uwaga 4.26. Współrzędne biegunowe są użyteczne, gdy funkcja podcałkowa zawiera $x^2 + y^2$ a obszar całkowania jest kołem lub fragmentem koła. Rozważmy całkę $\iint_D \log(x^2+y^2) dx dy$, gdzie D jest wycinkiem koła opisanym przez warunki $a \le r \le b$ i $0 \le \varphi \le \frac{\pi}{2}$. Po zamianie zmiennych otrzymujemy

$$\int_{a}^{b} \int_{0}^{\frac{\pi}{2}} \log(r^{2}) r dr = \frac{\pi}{2} \int_{a}^{b} \log(r^{2}) r dr.$$

Niekiedy warto użyć współrzędnych biegunowych mimo, że obszar nie jest "wygodny".

Przykład 4.27. Rozważmy całkę

$$\iint_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy.$$

Ze względu na symetrię mamy

$$\iint_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy = 2 \iint_{\substack{[0,1]^2 \\ y \le x}} \sqrt{x^2 + y^2} \, dx \, dy.$$

Mamy $0 \le \varphi \le \frac{\pi}{4}$ oraz $0 \le r \cos \varphi \le 1$. Tzn. $0 \le r \le \frac{1}{\cos \varphi}$. Tutaj $r_{\max} = r(\varphi)$ zależy od kąta. Otrzymujemy więc

$$\iint_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy = 2 \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos \varphi}} r^2 \, dr \, d\varphi = \frac{2}{3} \int_0^{\frac{\pi}{4}} \frac{d\varphi}{\cos^3 \varphi} = \frac{2}{3} \int_0^{\frac{\pi}{4}} \frac{\cos \varphi}{(1 - \sin^2 \varphi)^2} \, d\varphi.$$

W ostatniej całce po podstawieniu $u = \cos \varphi$ otrzymamy całkę z funkcji wymiernej.

Definicja 4.28. Obszar $D \subset \mathbb{R}^2$ nazywamy łukowo spójnym, jeśli dla dowolnych dwóch punktów (x_1, y_1) i (x_2, y_2) w D można znaleźć funkcję ciągłą $\varphi : [0, 1] \to D$ taką, że $\varphi(0) = (x_1, y_1)$ oraz $\varphi(1) = (x_2, y_2)$.

Twierdzenie 4.29 (o wartości średniej). Niech f(x,y) będzie funkcją ciągłą na zwartym obszarze $D \subset \mathbb{R}^2$ mierzalnym w sensie Jordana i łukowo spójnym. Wtedy

$$\iint_D f(x,y) \, dx \, dy = f(x_0, y_0) A(D)$$

dla pewnego punktu (x_0, y_0) w D.

Dowód. Mamy

$$m = \min_{(x,y)\in D} f(x,y) = f(x_1,y_1), \qquad M = \max_{(x,y)\in D} f(x,y) = f(x_2,y_2)$$

dla pewnych punktów (x_1, y_1) i (x_2, y_2) w D. Dalej

$$m A(D) \le \iint_D f(x, y) dx dy \le M A(D).$$

53

Jeśli A(D) = 0, to teza jest spełniona. Niech A(D) > 0. Wtedy

$$f(x_1, y_1) = m \le \underbrace{\frac{1}{A(D)} \iint_D f(x, y) \, dx \, dy}_{\alpha} \le M = f(x_2, y_2).$$

Niech φ będzie funkcją ciągłą taką, że $\varphi:[0,1]\to D$ oraz $\varphi(0)=(x_1,y_1),\ \varphi(1)=(x_2,y_2).$ Rozważmy funkcję $g(t)=f(\varphi(t)).$ Wtedy g jest funkcją ciągłą oraz $g(0)=f(x_1,y_1)$ i $g(1)=f(x_1,y_1).$ Ponadto $g(0)\leq\alpha\leq g(1).$ Z własności Darboux mamy $g(t_0)=\alpha$ dla pewnej wartości $0\leq t_0\leq 1.$ Tzn. $f(\varphi(t_0))=\alpha$ oraz $\varphi(t_0)=(x_0,y_0).$

4.5. Całki potrójne i wielokrotne. Przedziałem $R\subset\mathbb{R}^N$ nazywamy iloczyn kartezjański

$$R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_N, b_N].$$

Objętością przedziału jest wielkość

$$\Delta R = (b_1 - a_1)(b_2 - a_2) \dots (b_N - a_N).$$

Podział \mathcal{P} przedziału R oznacza rodzinę podziałów $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_N)$, gdzie \mathcal{P}_i jest podziałem przedziału $[a_i, b_i]$ na k_i części. W ten sposób otrzymujemy podział R na $k_1k_2 \dots k_N$ części (podprzedziałów). Dla podprzedziału S określmy

$$m_S(f) = \inf_{x \in S} f(x), \qquad M_S(f) = \sup_{x \in S} f(x),$$

gdzie f(x) jest funkcją ograniczoną na przedziale R. Sumy dolne, górne, całkę dolną i górną oraz całkę określamy tymi samymi wzorami co dla funkcji jednej i dwu zmiennych. Ma ona analogiczne własności. Można podobnie udowodnić, że funkcje ciągłe są całkowalne.

Definicja 4.30. Mówimy, że zbiór $A \subset \mathbb{R}^N$ jest miary zero, jeśli istnieje ciąg przedziałów S_n taki, że

$$A \subset \bigcup_{n=1}^{\infty} S_n \qquad \sum_{n=1}^{\infty} \Delta S_n < \varepsilon,$$

dla dowolnie wcześniej ustalonej liczby dodatniej ε .

Twierdzenie 4.31. Ograniczona funkcja f określona na przedziale $R \subset \mathbb{R}^N$ jest całkowalna wtedy i tylko wtedy, gdy zbiór jej punktów nieciągłości ma miarę zero.

Twierdzenie 4.32 (Fubini). Niech $A \subset \mathbb{R}^N$ i $B \subset \mathbb{R}^M$ będą przedziałami. Załóżmy, że funkcja f określona na $A \times B \subset \mathbb{R}^N \times \mathbb{R}^M$ jest całkowalna. Dla $x \in A$ niech

$$\mathcal{L}(x) = \underline{\int}_{B} f(x, y) \, dy, \qquad \mathcal{U}(x) = \overline{\int}_{B} f(x, y) \, dy,$$

gdzie (x,y) jest punktem $z \mathbb{R}^N \times \mathbb{R}^M$, $x \in \mathbb{R}^N$, $y \in \mathbb{R}^M$. Wtedy funkcje $\mathcal{L}(x)$ i $\mathcal{U}(x)$ są całkowalne na A oraz

$$\int_{A\times B} f(x,y) \, dx \, dy = \int_{A} \mathcal{L}(x) \, dx = \int_{A} \mathcal{U}(x) \, dx$$
$$= \int_{A} \left(\underbrace{\int_{B}} f(x,y) \, dy \right) \, dx = \int_{A} \left(\overline{\int_{B}} f(x,y) \, dy \right) \, dx.$$

Jeśli funkcja f(x,y) jest ciągła, to można pominąć znaki całki dolnej i górnej.

Przykład 4.33. Rozważmy funkcję trzech zmiennych f(x, y, z) ciągłą na $R = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$. Określmy $A = [a_1, b_1] \times [a_3, b_3]$ i $B = [a_2, b_2]$. Wtedy

$$\iiint_{R} f(x, y, z) \, dx \, dy \, dz = \iint_{A} \left(\int_{a_{2}}^{b_{2}} f(x, y, z) \, dy \right) \, dx \, dz$$

$$= \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{2}}^{b_{2}} f(x, y, z) \, dy \right) \, dz \right) \, dx.$$

Mogliśmy zamienić całkę podwójną po A na całkę iterowaną bo całkowana funkcja zależy w sposób ciągły od x i z. Przy funkcji trzech zmiennych mamy sześć możliwości zamiany na całkę iterowaną.

Uwaga 4.34. Inny zapis całki iterowanej to:

$$\int_{a_1}^{b_1} \int_{a_3}^{b_3} \int_{a_2}^{b_2} f(x, y, z) \, dy \, dz \, dx = \int_{a_1}^{b_1} \, dx \int_{a_3}^{b_3} \, dz \int_{a_2}^{b_2} f(x, y, z) \, dy.$$

Twierdzenie 4.35. Dla funkcji ciągłej φ określonej na przedziałe $R \subset \mathbb{R}^{N-1}$ wykres funkcji φ , czyli zbiór $D = \{(x, \varphi(x)) : x \in R\}$ jest miary zero w \mathbb{R}^N .

Jeśli $D \subset \mathbb{R}^N$ nie jest przedziałem, to określamy

$$\int_{D} f(x) dx = \int_{R} f(x) \mathbb{1}_{D}(x) dx$$

dla przedziału R zawierającego D. Załóżmy, że f(x) jest funkcją ciągłą. Wtedy funkcja $f(x)\mathbb{1}_D(x)$ może byc nieciągła tylko w punktach brzegu ∂D . Jeśli ∂D ma miarę zero, to $f(x)\mathbb{1}_D(x)$ jest całkowalna, np. gdy zbiór ∂D jest sumą kilku wykresów funkcji ciągłych N-1 zmiennych.

Przykład 4.36. W jest obszarem w \mathbb{R}^3 określonym przez warunki $x, y \geq 0$ oraz $x^2 + y^2 \leq z \leq 2$. Chcemy obliczyć $\iiint_W x \, dx \, dy \, dz$.

Niech D będzie obszarem w płaszczyźnie (x,y) określonym przez $x,y\geq 0$ i $x^2+y^2\leq 2$. Wtedy

$$\iiint_{W} x \, dx \, dy \, dz = \iint_{D} dx \, dy \int_{x^{2} + y^{2}}^{2} x \, dz = \iint_{D} x(2 - x^{2} - y^{2}) \, dx \, dy$$

$$= \int_{0}^{\sqrt{2}} dx \int_{0}^{\sqrt{2} - x^{2}} x(2 - x^{2} - y^{2}) \, dy = \int_{0}^{\sqrt{2}} \left[x(2 - x^{2})^{3/2} - \frac{1}{3}x(2 - x^{2})^{3/2} \right] \, dx$$

$$= \frac{2}{3} \int_{0}^{\sqrt{2}} x(2 - x^{2})^{3/2} \, dx = -\frac{2}{15} (2 - x^{2})^{5/2} \Big|_{0}^{\sqrt{2}} = \frac{8}{15} \sqrt{2}.$$

Ścisłe uzasadnienie przejść do całek iterowanych jest następujące. Mamy

$$W \subset [0, \sqrt{2}] \times [0, \sqrt{2}] \times [0, 2] =: R.$$

Wiec

$$\begin{split} & \iiint_W x \, dx \, dy \, dz = \iiint_R x \, \mathbb{1}_W(x,y,z) \, dx \, dy \, dz = \iint_{[0,\sqrt{2}]^2} dx \, dy \int_0^2 x \, \mathbb{1}_W(x,y,z) \, dz \\ & = \iint_{[0,\sqrt{2}]^2} dx \, dy \int_0^2 x \, \mathbb{1}_D(x,y) \times \mathbb{1}_{[x^2+y^2,2]}(z) \, dz = \iint_{[0,\sqrt{2}]^2} dx \, dy \int_{x^2+y^2}^2 x \, \mathbb{1}_D(x,y) \, dz \\ & = \iint_{[0,\sqrt{2}]^2} x (2-x^2-y^2) \, \mathbb{1}_D(x,y) \, dx \, dy = \int_0^{\sqrt{2}} dx \int_0^{\sqrt{2-x^2}} x (2-x^2-y^2) \, dy. \end{split}$$

4.6. **Twierdzenie o zamianie zmiennych 2.** Dane są dwa zbiory D i D^* w \mathbb{R}^n i odwzorowanie $T: \mathbb{R}^n \to \mathbb{R}^n$ klasy C^1 , różnowartościowe oraz $T(D^*) = D$, det $DT(u) \neq 0$, $u \in \mathbb{R}^n$. Zakładamy, że D i D^* są mierzalne w sensie Jordana. Chcemy wyrazić wielkość $\iint_D f(x,y) \, dx \, dy$ jako całkę po zbiorze D^* z funkcji złożonej $f \circ T$.

Zaczniemy od przypadku $f \equiv 1$. Tzn. chcemy obliczyć $\iint_D dx dy = A(D)$ za pomocą całki po obszarze D^* z funkcji 1 ewentualnie domnożonej przez jakąś funkcję zależną od T.

Napiszmy twierdzenie o zamianie zmiennych dla $f \equiv 1$.

(4.37)
$$A(D) = \iint_D dx \, dy = \iint_{T(D^*)} dx \, dy = \iint_{D^*} |J_T(u, v)| \, du \, dv,$$

załóżmy, że D^* jest prostokątem i spróbujmy uzasadnić (4.37). Będziemy rozważać sytuację dwuwymiarową, ale rozumowanie dla \mathbb{R}^n jest analogiczne.

Wiemy, że jeśli T jest odwzorowaniem różniczkowalnym w (u_0, v_0) , to dla odwzorowania liniowego $DT(u_0, v_0)$ zadanego macierzą

$$DT(u_0, v_0) = \begin{pmatrix} \frac{\partial x}{\partial u}(u_0, v_0) & \frac{\partial x}{\partial v}(u_0, v_0) \\ \frac{\partial y}{\partial u}(u_0, v_0) & \frac{\partial y}{\partial v}(u_0, v_0) \end{pmatrix}$$

mamy

$$T(u,v) \approx T(u_0,v_0) + DT(u_0,v_0) \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix} =: \widetilde{T}(u,v) = \widetilde{T}_{u_0,v_0}(u,v),$$

gdzie $\Delta u = u - u_0$ oraz $\Delta v = v - v_0$. Załóżmy, że mamy podział \mathcal{P} prostokąta D^* . Jeśli S jest małym prostokątem z tego podziału, którego dolnym lewym wierzchołkiem jest punkt (u_0, v_0) , to obraz T(S) jest w przybliżeniu równoległobokiem $\widetilde{T}(S)$ oraz

$$\iint_{T(S)} dx \, dy = A(T(S)) \approx A(\widetilde{T}(S)) = |J_T(u_0, v_0)| \, A(S),$$

gdzie $J_T(u_0, v_0) = \det DT(u_0, v_0)$. Ostatnia równość wynika z definicji \tilde{T} . Wtedy

$$\iint_{T(D^*)} = \sum_{S \in \mathcal{P}} \iint_{T(S)} dx \, dy \approx \sum_{S \in \mathcal{P}} |J_T(u_0, v_0)| \Delta S \to \iint_{D^*} |J_T(u, v)| du \, dv,$$

gdy średnica \mathcal{P} dąży do 0. Kluczowe jest by wiedzieć, że

$$\sum_{S \in \mathcal{P}} A(T(S)) - \sum_{S \in \mathcal{P}} A(\tilde{T}(S)) \to 0,$$

gdy średnica podziału dąży do zera. Analogicznie postepujemy, gdy obszar D^* jest dowolny i został włożony w prostokąt R, który następnie podzieliliśmy na małe prostokąty S_k . Rozważamy tylko prostokąty S_k całkowicie zawarte w D^* . Gdy średnica $\mathcal{P} \to 0$ przybliżają one D^* coraz lepiej. Niech (u_k, v_k) oznacza lewy dolny wierzchołek prostokąta S_k . Wtedy

$$\iint_D dx \, dy = A(D) = A(T(D^*)) \approx A(\tilde{T}(D^*)) \approx \sum_k |J_T(u_k, v_k)| \, \Delta S_k.$$

W granicy, gdy średnica podziału daży do zera, otrzymamy

$$\iint_D dx \, dy = \iint_{D^*} |J_T(u, v)| \, du \, dv.$$

Dołóżmy teraz funkcję f. Oznaczmy $(x_k, y_k) = T(u_k, v_k)$. Mamy

$$\iint_{D} f(x, y) \, dx \, dy \approx \sum_{k} f(x_{k}, y_{k}) \, A(T(S_{k})) \approx \sum_{k} f(x_{k}, y_{k}) \, A(\tilde{T}(S_{k}))$$
$$= \sum_{k} f(x_{k}, y_{k}) |J_{T}(u_{k}, v_{k})| \, A(S_{k}) \to \iint_{D^{*}} f(T(u, v)) \, |J_{T}(u, v)| \, du \, dv.$$

Ostatecznie otrzymujemy wzór

(4.38)
$$\iint_{D} f(x,y) \, dx \, dy = \iint_{D_{*}^{*}} f(T(u,v)) |J_{T}(u,v)| \, du \, dv.$$

Nie jest to pełny dowód, a raczej agitacja.

Przykład 4.39. $\iiint_D e^{(x^2+y^2+z^2)^{3/2}} dx$, dy dz, gdzie D jest fragmentem kuli jednostkowej leżącym w pierwszym oktancie.

Zastosujemy współrzędne sferyczne

$$(4.40) x = r \sin \varphi \cos \psi, y = r \sin \varphi \sin \psi, z = r \cos \varphi,$$

gdzie $0 \le \varphi$, $\psi \le \frac{\pi}{2}$, $0 \le r \le 1$. Przyporządkowanie $(r, \varphi, \psi) \mapsto (x, y, z)$ określone wzorami wyżej nie jest różnowartościowe na $D^* = [0, 1] \times [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$, ale staje się takie, gdy r > 0. Określamy $T(r, \varphi, \psi) = (x, y, z)$ wg wzorów (4.40). Założenia Twierdzenia 4.21 są spełnione. Mamy

$$|J_T(r,\varphi,\psi)| = r^2 \sin \varphi.$$

Dalej

$$\begin{split} & \iiint_{D} e^{(x^2+y^2+z^2)^{3/2}} \, dx \, dy \, dz = \iiint_{D^*} e^{r^3} r^2 \sin \varphi \, dr \, d\varphi \, d\psi \\ & = \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} r^2 e^{r^3} \sin \varphi \, d\varphi \, d\psi \, dr = \frac{\pi}{2} \int_{0}^{1} r^2 e^{r^3} \, dr \int_{0}^{\frac{\pi}{2}} \sin \varphi \, d\varphi = \frac{\pi}{6} e^{r^3} \Big|_{0}^{1} = \frac{\pi}{6} (e-1). \end{split}$$

Przykład 4.41. *Obliczymy objętość kuli* $D = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2\}.$

Mamy

$$V = \iiint_V dx \, dy \, dz.$$

Przechodzimy do współrzędnych sferycznych.

$$V = \int_0^{\pi} d\varphi \int_0^{2\pi} d\psi \int_0^R r^2 \sin\varphi \, dr = 2\pi \int_0^R r^2 \, dr \int_0^{\pi} \sin\varphi \, d\varphi = \frac{4}{3}\pi R^3.$$

Obliczenia nie są do końca ścisłe, bo współrzędne nie są jednoznaczne na pełnej kuli. Zwróćmy jednak uwagę, że

$$T:(0,R)\times(0,\pi)\times(0,2\pi)\mapsto IntD\setminus(\{(x,0,z):x\geq 0,x^2+z^2< R\}\cup\{(0,0,z):|z|< R\}),$$
i na tak ograniczonej dziedzinie T ma wszystkie potrzebne własności, a to co zostało wyrzucone z kuli ma miarę zero.

Współrzędne cylindryczne określone są przez

$$x = r \cos \varphi,$$

$$y = r \sin \varphi,$$

$$z = z,$$

co oznacza, że w płaszczyźnie (x,y) przechodzimy do współrzędnych biegunowych. Wtedy

$$J = \frac{\partial(x, y, z)}{\partial(r, \varphi, z)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r.$$

Przykład 4.42.
$$I = \int_0^2 dx \int_0^{\sqrt{2x-x^2}} dy \int_0^a z \sqrt{x^2+y^2} dz$$
.

Obszar całkowania względem x i y jest opisany warunkami $0 \le x \le 2, \ 0 \le y \le \sqrt{2x-x^2}$. Po przekształceniu otrzymujemy $x^2+y^2 \le 2x, \ y \ge 0$. Rozpoznajemy górne półkole o promieniu 1 i środku w punkcie (1,0). Po przejściu do współrzędnych biegunowych otrzymujemy warunki $r \le 2\cos\varphi$ oraz $0 \le \varphi \le \pi/2$. Istotnie, przy danym φ , $r = r_{\text{max}}$ spełnia równanie

$$(r\cos\varphi - 1)^2 + (r\sin\varphi)^2 = 1$$
$$r^2 - 2r\cos\varphi + 1 = 1$$
$$r = 2\cos\varphi.$$

Zatem

$$\begin{split} I &= \int_0^{\frac{\pi}{2}} d\varphi \int_0^{2\cos\varphi} dr \int_0^a z r^2 \, dz = \frac{a^2}{2} \int_0^{\frac{\pi}{2}} \frac{r^3}{3} \Big|_0^{2\cos\varphi} \, d\varphi = \frac{4a^2}{3} \int_0^{\frac{\pi}{2}} \cos^3\varphi \, d\varphi \\ &= \frac{4a^2}{3} \int_0^{\frac{\pi}{2}} (1 - \sin^2\varphi) \cos\varphi \, d\varphi = \frac{4a^2}{3} \left(\sin\varphi - \frac{1}{3} \sin^3\varphi \right) \Big|_0^{\frac{\pi}{2}} = \frac{8a^2}{9}. \end{split}$$

Górne półkole sugeruje, że podstawienie

$$x = 1 + r\cos\varphi$$
, $y = r\sin\varphi$, dla $0 \le r \le 1$, $0 \le \varphi \le \pi$,

mogłoby być przydatne. Jednak po takim podstawieniu otrzymujemy ńieprzyjazną-ćałke

$$I = \int_0^{\pi} d\varphi \int_0^1 dr \int_0^a zr \sqrt{r^2 + 2r\cos\varphi + 1} \, dz = \frac{a^2}{2} \int_0^{\pi} d\varphi \int_0^1 r \sqrt{r^2 + 2r\cos\varphi + 1} \, dr.$$

4.6.1. Środek masy. W punktach P_1, P_2, \ldots, P_n umieszczamy masy m_1, m_2, \ldots, m_n . Środek masy P układu spełnia

$$\vec{OP} = \frac{\sum_{i=1}^{n} m_i \vec{OP_i}}{\sum_{i=1}^{n} m_i}.$$

Niech $P_i = (x_i, y_i, z_i), m = \sum_i m_i \text{ oraz } P = (\overline{x}, \overline{y}, \overline{z}).$ Wtedy

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{n} m_i x_i, \quad \overline{y} = \frac{1}{m} \sum_{i=1}^{n} m_i y_i, \quad \overline{z} = \frac{1}{m} \sum_{i=1}^{n} m_i z_i.$$

Jeśli masa jest rozłożona w sposób ciągły w obszarze D z gęstością masy $\varrho(x,y,z)$ w punkcie (x,y,z), to środek masy wyraża się wzorem

$$\overline{x} = \frac{\iiint\limits_{D} x \varrho(x, y, z) \, dx \, dy \, dz}{\iiint\limits_{D} \varrho(x, y, z) \, dx \, dy \, dz}.$$

Podobnie wzory mamy dla współrzędnych \overline{y} i \overline{z} .

Przykład 4.43. Znaleźć środek masy górnej półkuli o promieniu 1, czyli obszaru $x^2 + y^2 + z^2 \le 1$, $z \ge 0$. Przyjmujemy stałą gęstość masy $\varrho \equiv 1$. Ze względu na symetrię obszaru środek masy ma współrzędne $(0,0,\overline{z})$. Obliczamy

$$\overline{z} = \frac{3}{2\pi} \iiint_D z \, dx \, dy \, dz = \frac{3}{2\pi} \int_0^{\frac{\pi}{2}} d\varphi \int_0^{2\pi} d\psi \int_0^1 r \cos\varphi \, r^2 \sin\varphi \, dr = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}$$

4.6.2. Moment bezwładności. Rozważamy ciało D o gęstości masy $\varrho(x,y,z)$ w punkcie (x,y,z). Moment bezwładności względem osi x wyraża się wzorem

$$I_x = \iiint_D (y^2 + z^2) \varrho(x, y, z) \, dx \, dy \, dz.$$

Podobnie określa się momenty I_y oraz I_z .

Przykład 4.44. Obliczyć moment bezwładności względem osi z obszaru pomiędzy paraboloidą $z=x^2+y^2$, cylindrem $x^2+y^2=a^2$ oraz płaszczyzną z=0, przyjmując $\varrho \equiv 1$. Obszar opisany jest warunkami

$$0 \le z \le x^2 + y^2 \le a^2.$$

Użyjemy współrzędnych cylindrycznych. Wtedy

$$I_z = \iiint_D (x^2 + y^2) \, dx \, dy \, dz = \int_0^{2\pi} d\varphi \int_0^{a^2} dz \int_{\sqrt{z}}^a r^2 \cdot r \, dr$$
$$= 2\pi \int_0^{a^2} \frac{1}{4} (a^4 - z^2) \, dz = \frac{\pi}{2} \left(a^6 - \frac{1}{3} a^6 \right) = \frac{\pi}{3} a^6.$$

4.6.3. Potencjał grawitacyjny. W punkcie (x, y, z) umieszczamy masę M. Siła oddziaływania na masę m umieszczoną w punkcie (x_1, y_1, z_1) jest gradientem potencjału

$$V(x_1, y_z, z_1) = \frac{GmM}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}}.$$

Zakładamy, że masa jest rozmieszczona w obszarze D z gęstością $\varrho(x,y,z)$. Wtedy potencjał wyraża się wzorem

$$V(x_1, y_1, z_1) = \iiint_D \frac{Gm\varrho(x, y, z)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}} dx dy dz.$$

Siła oddziaływania na masę m umieszczoną w punkcie (x_1, y_1, z_1) jest równa $\nabla V(x_1, y_1, z_1)$.

Przykład 4.45. Załóżmy, że D jest obszarem zawartym pomiędzy sferami

$$x^2 + y^2 + z^2 = r_1^2$$
, $x^2 + y^2 + z^2 = r_2^2$,

gdzie $r_1 < r_2$. Przyjmujemy $\varrho \equiv 1$ oraz m = 1. Obliczymy wartość potencjału w punktach przestrzeni poza D.

Ze względu na niezmienniczość na obroty względem początku układu wystarczy obliczyć V(0,0,R). W obliczeniach użyjemy współrzędnych sferycznych.

$$\frac{1}{G}V(0,0,R) = \iiint_{D} \frac{dx \, dy \, dz}{\sqrt{x^{2} + y^{2} + (z - R)^{2}}}$$

$$= \int_{0}^{\pi} d\varphi \int_{0}^{2\pi} d\psi \int_{r_{1}}^{r_{2}} \frac{r^{2} \sin \varphi}{\sqrt{r^{2} - 2rR \cos \varphi + R^{2}}} \, dr = 2\pi \int_{r_{1}}^{r_{2}} dr \int_{0}^{\pi} \frac{r^{2} \sin \varphi}{\sqrt{r^{2} - 2rR \cos \varphi + R^{2}}} \, d\varphi$$

W wewnętrznej całce stosujemy podstawienie

$$u = r^2 - 2rR\cos\varphi + R^2$$
, $du = 2rR\sin\varphi d\varphi$.

$$\frac{1}{G}V(0,0,R) = \frac{\pi}{R} \int_{r_1}^{r_2} r \, dr \int_{(r-R)^2}^{(r+R)^2} \frac{du}{\sqrt{u}} \, du = \frac{2\pi}{R} \int_{r_1}^{r_2} r[r+R-|r-R|] \, dr.$$

Załóżmy, że $R < r_1$. Wtedy

$$\frac{1}{G}V(0,0,R) = \frac{2\pi}{R} \int_{r_1}^{r_2} 2Rr \, dr = 2\pi (r_2^2 - r_1^2).$$

Z kolei dla $R > r_2$ mamy

$$\frac{1}{G}V(0,0,R) = \frac{2\pi}{R} \int_{r_1}^{r_2} 2r^2 dr = \frac{4\pi}{3R} (r_2^3 - r_1^3).$$

Reasumując, wewnątrz obszaru potencjał jest stały (niezależny od R) zatem nie ma siły grawitacji. Z kolei na zewnątrz potencjał jest odwrotnie proporcjonalny do odległości punktu od początku układu. Zatem siła grawitacji jest odwrotnie proporcjonalna do kwadratu tej odległości.