MMAN2300 Engineering Mechanics 2 Part B: Rigid Body Dynamics Problem solving session – 4 WEEK 10_S2_2018

Question 1:

The angular accelerations of the two bars are zero and sleeve C slides at a constant velocity of 1 m/s relative to bar BD. Find the acceleration (magnitude) of sleeve C if $\omega_{AB} = 2$ rad/s CCW and $\omega_{BD} = 4$ rad/s CCW.

 $[a_c = 10.431 \,\mathrm{m/s^2}]$

Question 2:

Pin A in the bell crank AOD is guided by the flanges of the collar B, which slides with a constant velocity v_B of 0.9 m/s along the fixed shaft for an interval of motion. For the position $\theta = 30^{\circ}$, determine the acceleration of the plunger CE whose upper end is positioned by the radial slot in the bell crank.

Questions 3-4:

Block *B* of the mechanism is confined to move within the slot member *CD*. If *AB* is rotating at a constant rate of $\omega_{AB} = 3$ rad/s and the centre of rotation *A* is fixed, determine:

- (a) The angular velocity (magnitude and direction) of member *CD* at the instant shown.
- (b) The angular acceleration (magnitude and direction) of link *CD* at the instant shown.

[$\omega_{CD} = 0.75 \text{ rad/s CW}$; $\alpha_{CD} = 1.947 \text{ rad/s}^2 \text{ CCW}$]