Assignment3

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.py

Download latex code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.tex

GATE XE-C QUESTION 17

Box-S has 2 white and 4 black balls and box-T has 5 white and 3 black balls. A ball is drawn at random from box-S and put in box-T. Subsequently, the probability of drawing a white ball from box-T is? (rounding off to 2decimal places)

SOLUTION

Box-S has 2 white and 4 black balls.

Box-T has 5 white and 3 black balls.

Let A: Event of transfering white ball from box-S to box-T

Let B: Event of transfering black ball from box-S to box-T

Let C: Event of drawing white ball from box-T

Pr(C|A) =Probability of drawing whiteball from box-T after transfering white ball to box-T.

Pr(C|B) =Probability of drawing whiteball from box-T after transfering black ball to box-T.

Probability	Pr(A)	Pr (<i>B</i>)	Pr(C A)	Pr(C B)
value	$\frac{1}{3}$	$\frac{2}{3}$	<u>6</u> 9	<u>5</u> 9

TABLE 0: Table 1

From Baye's theorem

Substiting values from table (0) in (0.0.2)

$$Pr(C) = \frac{6}{9} \times \frac{1}{3} + \frac{5}{9} \times \frac{2}{3}$$
 (0.0.3)
= $\frac{16}{27}$ (0.0.4)

∴ Probability of drawing white ball from box-T = Pr(C) = $\frac{16}{27}$ = 0.59

