Combined TiO₂-Chlorination and electrolytic TiCl_x-Reduction

Titanium is produced by the Kroll process since 1946 with:

- low efficiency (batch wise operation)
- high cost
- complicated equipment
- low productivity (process takes up to six days)
- high energy consumption
- limited capacities for the increasing demand for titanium
- → need for a faster and cheaper production process

Composite anode:

- Anode composition (C, TiO₂) calculated according to the chlorination of pellets via packed bed process
- Reaction proceeds via the shrinking particle model
 → optimal composition matches the stoichiometric one
- Calculation via the "extend of reaction"-mechanism

Current density vs. potential – anodic reactions

Experimental proof that TiCl₂ forms with priority

Result:

It is possible to form titanium by in-situ chlorination of a ${\rm TiO_2}$ composite anode and electrolytic reduction of ${\rm TiCl_x}$ at the cathode.

Next steps:

- Testing of alternative electrolytes
- Define major process parameters (temperature, current density, TiCl₂-concentration)
- Improvement of the composite anode
- Testing of different cathode materials
- Improvement of electrolyte refining

Invention of the new IME-process:

Forming titanium by in-situ chlorination of a TiO₂ composite anode and electrolytic reduction of TiCl_x at the cathode.

 $TiCl_x \rightarrow Ti^{x+} + xCl^{-}$ cathodic deposition:

 $Ti^{3+} + e^{-} \rightarrow Ti^{2+} + 2e^{-} \rightarrow Ti$

 $\mathrm{TiO_2} + \mathrm{2C} + \mathrm{xCI} \rightarrow \mathrm{TiCl_x} + \mathrm{2CO/CO_2}$

Avoidance of Ti^{4+} Ti + $3Ti^{4+}$ = $4Ti^{3+}$ Ti + Ti^{4+} = $2Ti^{2+}$

Work packages of the process development:

- Buildup of an electrolysis cell
- Electrolyte development
- Development of a TiO₂-C-composite anode
- Testing the feasibility of the proposed process

Current density vs. potential - cathodic reactions

Experimental proof that TiCl₂ is electrochemically reduced before other electrolyte components

Thanks for Funding:

5a Helmholtz Young Investigators Group together with the DLR in Cologne:

"Electrolytic Production Routes for Titanium Matrix Composites"

Contact: Claudia Kommer ckommer@ime-aachen.de IME-Proccess Metallurgy and Metal Recycling, RWTH Aachen Tel. 49 (0) 241 80 95 856