1 (a) Mass, length and time are SI base quantities. State two other base quantities.

1.

2.

[2]

(b) A mass *m* is placed on the end of a spring that is hanging vertically, as shown in Fig. 1.1.

Fig. 1.1

The mass is made to oscillate vertically. The time period of the oscillations of the mass is *T*.

The period T is given by

$$T = C \sqrt{\frac{m}{k}}$$

where *C* is a constant and *k* is the spring constant.

Show that C has no units.

2	(a)	Define	pressure.
---	-----	--------	-----------

......[1

(b) A cylinder is placed on a horizontal surface, as shown in Fig. 2.1.

Fig. 2.1

The following measurements were made on the cylinder:

mass = $5.09 \pm 0.01 \text{ kg}$ diameter = $9.4 \pm 0.1 \text{ cm}$.

(i) Calculate the pressure produced by the cylinder on the surface.

(ii) Calculate the actual uncertainty in the pressure.

(iii) State the pressure, with its actual uncertainty.

3 The resistance R of a uniform metal wire is measured for different lengths l of the wire. The variation with l of R is shown in Fig. 3.1.

Fig. 3.1

(a)	The points shown in	Fig. 3.1 do no	ot lie on the best-fit line.	Suggest a reason for t	his
(u)	The points shown in	1 1g. 5. 1 do 11	of the off the best-fit line.	ouggest a reason for t	1113

ַן ד

(b) Determine the gradient of the line shown in Fig. 3.1.

(c) The cross-sectional area of the wire is $0.12 \, \text{mm}^2$.

your answer in (b) to determine the resistivity of the metal of the wire.

(d) The resistance R of different wires is measured. The wires are of the same metal and same length but have different cross-sectional areas A.

On Fig. 3.2, sketch a graph to show the variation with A of R.

Fig. 3.2

[2]

4 A trolley moves down a slope, as shown in Fig. 4.1.

Fig. 4.1

The slope makes an angle of 25° with the horizontal. A constant resistive force $F_{\rm R}$ acts up the slope on the trolley.

At time t = 0, the trolley has velocity $v = 0.50 \,\mathrm{m\,s^{-1}}$ down the slope.

At time t = 4.0 s, $v = 12 \text{ m s}^{-1}$ down the slope.

(a) (i) Show that the acceleration of the trolley down the slope is approximately $3 \,\mathrm{m}\,\mathrm{s}^{-2}$.

[2]

(ii) Calculate the distance x moved by the trolley down the slope from time t = 0 to t = 4.0 s.

 $x = \dots m [2]$

(iii) On Fig. 4.2, sketch the variation with time t of distance x moved by the trolley.

Fig. 4.2

[1]
N [2]

5 A motor is used to move bricks vertically upwards, as shown in Fig. 5.1.

Fig. 5.1

The bricks start from rest and accelerate for 2.0s. The bricks then travel at a constant speed of 0.64 m s⁻¹ for 25 s. Finally the bricks are brought to rest in a further 3.0s.

The total mass of the bricks is 25 kg.

- (a) Determine the change in kinetic energy of the bricks
 - (i) in the first 2.0s,

(ii) in the next 25s,

(iii) in the final 3.0 s.

(b)	The bricks are in a container. The weight of the container and bricks is 350 N.		
	Calculate, for the lifting of the bricks and container when travelling at constant speed,		
	(i)	the gain in potential energy,	
		energy gain = J [3]	
	(ii)	the power required.	
		NA FOL	
		power = W [2]	

6	Dist	inguish between <i>melting</i> and <i>evaporation</i> .
	mel	ting:
	eva	poration:
		[4
7	(a)	A cell with internal resistance supplies a current. Explain why the terminal potential difference (p.d.) is less than the electromotive force (e.m.f.) of the cell.
		[1

(b) A battery of e.m.f. 12 V and internal resistance $0.50\,\Omega$ is connected to a variable resistor X and a resistor Y of constant resistance, as shown in Fig. 7.1.

Fig. 7.1

The resistance R of X is increased from 2.0Ω to 16Ω . The variation with R of the current I in the circuit is shown in Fig. 7.2.

Fig. 7.2

Calculate,	for	I =	1.2 A,

(i) the p.d. across X,

p.d. =V [2]

(ii) the resistance of Y,

resistance = Ω [3]

(iii) the power dissipated in the battery.

power =W [2]

(c) Fig. 7.2 to explain the variation in the terminal p.d. of the battery as the resistance *R* of X is increased.

[1]

8	(a)	Explain how stationary waves are formed.	
			Ŋ

(b) The arrangement of apparatus used to determine the wavelength of a sound wave is shown in Fig. 8.1.

Fig. 8.1

The loudspeaker emits sound of one frequency. The microphone is connected to a cathode-ray oscilloscope (c.r.o.).

The waveform obtained on the c.r.o. for one position of the microphone is shown in Fig. 8.2.

Fig. 8.2

The time-base	setting of	the c.r.o. is	s 0.20 ms cm	₁ –1
THE WHILE BUSE	octining of	1110 0.1.0. 1	3 0.201113 011	٠.

(i)

	[2]
(ii)	Explain how the apparatus is used to determine the wavelength of the sound.
	[2]
(iii)	The wavelength of the sound wave is 0.26 m. Calculate the speed of sound in this experiment.
	speed = ms ⁻¹ [2]

Fig. 8.2 to show that the frequency of the sound is approximately 1300 Hz.