8. Tinjau sampel acak berukuran n dari distribusi eksponensial dua parameter, $X_i \sim \text{EXP}(1, \eta)$. Tunjukkan bahwa $S = X_{1:n}$ adalah statistik cukup untuk η dengan menggunakan teorema faktorisasi.

Solusi:

PDF dari distribusi $X \sim \text{EXP}(1, \eta)$ adalah

$$f(x;\eta) = \begin{cases} e^{-(x-\eta)} &, & x > \eta \\ 0 &, & \text{lainnya} \end{cases}$$

Kemudian definisikan fungsi indikator dari himpunan (η, ∞) sebagai

$$I_{\eta}(x) = \begin{cases} 1 & , & x > \eta \\ 0 & , & x < \eta \end{cases}$$

Sehingga, PDF dari sampel acak X_1, \ldots, X_n adalah

$$f(x; \eta) = \prod_{i=1}^{n} f(x_i; \eta)$$

$$= \prod_{i=1}^{n} e^{-(x_i - \eta)} I_{\eta}(x_i)$$

$$= e^{-\sum_{i=1}^{n} (x_i - \eta)} \prod_{i=1}^{n} I_{\eta}(x_i)$$

Perhatikan bahwa

$$\prod_{i=1}^{n} I_{\eta}(x_i) = \begin{cases} 1 & , & x_1, \dots, x_n > \eta \\ 0 & , & \text{lainnya} \end{cases} = \begin{cases} 1 & , & x_{1:n} > \eta \\ 0 & , & \text{lainnya} \end{cases}$$

Dari informasi di atas, didapatkan $\prod_{i=1}^n I_{\eta}(x_i)=1$ jika dan hanya jika min $x_i=x_{1:n}>\eta$. Sehingga

$$f(x; \eta) = e^{-\sum_{i=1}^{n} x_i + n\eta} I_{\eta}(\min x_i)$$
$$= \exp\left(-\sum_{i=1}^{n} x_i\right) \exp(n\eta) I_{\eta}(\min x_i)$$

Perhatikan bahwa fungsi diatas berbentuk $f(\underline{x};\eta) = g(T(\underline{x}\,|\,\eta))h(\underline{x})$ dengan

$$g(T(\underline{x} \mid \eta)) = \exp(n\eta)I_{\eta}(\min x_i)$$
$$h(\underline{x}) = \exp\left(-\sum_{i=1}^{n} x_i\right)$$

Sehingga, $S = T(\underline{x}) = X_{1:n}$ adalah statistik cukup untuk η .

9. Tinjau sampel acak berukuran n dari distribusi Weibull, $X_i \sim \text{WEI}(\theta, \beta)$.

- (a) Tentukan statistik cukup untuk θ dengan β diketahui, misalkan $\beta = 2$.
- (b) Jika β tidak diketahui, dapatkah Anda menemukan statistik cukup tunggal untuk β ?

Solusi:

PDF dari distribusi Weibull adalah

$$f(x; \theta, \beta) = \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-(x/\theta)^{\beta}}, \quad x > 0$$

Dengan $\theta, \beta > 0$.

(a) Dengan $\beta = 2$, maka PDF dari sampel acak X_1, \ldots, X_n adalah

$$f(x;\theta) = \prod_{i=1}^{n} f(x_i;\theta,2)$$

$$= \prod_{i=1}^{n} \frac{2}{\theta^2} x_i e^{-(x_i/\theta)^2}$$

$$= \left(\prod_{i=1}^{n} x_i\right) \frac{2^n}{\theta^{2n}} \exp\left(-\sum_{i=1}^{n} (x_i/\theta)^2\right)$$

$$= \left(\prod_{i=1}^{n} x_i\right) \frac{2^n}{\theta^{2n}} \exp\left(-\frac{1}{\theta^2} \sum_{i=1}^{n} x_i^2\right)$$

Dengan teorema faktorisasi diperoleh bahwa

$$g(T(\underline{x} \mid \theta)) = \frac{2^n}{\theta^{2n}} \exp\left(-\frac{1}{\theta^2} \sum_{i=1}^n x_i^2\right)$$
$$h(\underline{x}) = \prod_{i=1}^n x_i$$

Sehingga, $T(\underline{x}) = \sum_{i=1}^{n} x_i^2$ adalah statistik cukup untuk θ .

(b) Dengan β tidak diketahui, maka PDF dari sampel acak X_1,\dots,X_n adalah

$$f(x; \theta, \beta) = \prod_{i=1}^{n} f(x_i; \theta, \beta)$$

$$= \prod_{i=1}^{n} \frac{\beta}{\theta^{\beta}} x_i^{\beta - 1} e^{-(x_i/\theta)^{\beta}}$$

$$= \frac{\beta^n}{\theta^{n\beta}} \left(\prod_{i=1}^{n} x_i^{\beta - 1} \right) \exp\left(-\sum_{i=1}^{n} (x_i/\theta)^{\beta} \right)$$

Distribusi Weibull termasuk dalam keluarga eksponensial, sehingga dapat ditulis ulang sebagai

$$f(\underline{x}; \theta, \beta) = \frac{\beta^n}{\theta^{n\beta}} \exp\left((\beta - 1) \sum_{i=1}^n \ln x_i - \sum_{i=1}^n \left(\frac{x_i}{\theta} \right)^{\beta} \right)$$

Dengan teorema keluarga eksponensial, kita dapat mengidentifikasi statistik cukup sebagai berikut:

$$w_1(\theta, \beta) = \beta - 1$$

$$w_2(\theta, \beta) = -\frac{1}{\theta^{\beta}}$$

$$T_1(\underline{x}) = \sum_{i=1}^n \ln x_i$$

$$T_2(\underline{x}) = \sum_{i=1}^n x_i^{\beta}$$

Dapat dilihat bahwa β berada di kedua koefisien dari statistik cukup T_1 dan T_2 , sehingga tidak ada statistik cukup tunggal untuk β .

- 10. Misalkan X_1, \ldots, X_n adalah sampel acak dari distribusi normal, $X_i \sim N(\mu, \sigma^2)$.
 - (a) Tentukan statistik cukup tunggal untuk μ dengan σ^2 diketahui.
 - (b) Tentukan statistik cukup tunggal untuk σ^2 dengan μ diketahui.

Solusi:

Diketahui PDF dari distribusi normal adalah

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Kemudian karena distribusi normal merupakan keluarga eksponensial, maka dapat ditulis ulang sebagai

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{x\mu}{\sigma^2} - \frac{x^2}{2\sigma^2}\right)$$

dengan h(x) = 1, $c(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)$, $t_1(x) = x$, $t_2(x) = x^2$, $w_1(\mu, \sigma^2) = \frac{\mu}{\sigma^2}$, dan $w_2(\mu, \sigma^2) = -\frac{1}{2\sigma^2}$.

- (a) Karena σ^2 diketahui, maka hasil diatas menunjukkan bahwa $T_1(x) = \sum_{i=1}^n x_i$ adalah statistik cukup tunggal untuk μ , karena μ hanya berada pada koefisien dari T_1 .
- (b) Karena μ diketahui, maka hasil diatas menunjukkan bahwa σ^2 mempunyai statistik cukup bersama $\left(\sum_{i=1}^n x_i^2, \sum_{i=1}^n x_i\right)$. Hal ini dapat dibayangkan bahwa rumus varians pastilah memperhitungkan kedua statistik cukup tersebut, sehingga tidak ada statistik cukup tunggal untuk σ^2 .
- 11. Tinjau sampel acak berukuran n dari distribusi uniform, $X_i \sim \text{UNIF}(\theta_1, \theta_2)$.
 - (a) Tunjukkan bahwa $X_{1:n}$ statistik cukup untuk θ_1 , jika θ_2 diketahui.
 - (b) Tunjukkan bahwa $X_{1:n}$ dan $X_{n:n}$ statistik cukup secara bersama untuk θ_1 dan θ_2 .

Solusi:

Diketahui PDF dari distribusi uniform adalah

$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2 - \theta_1} &, & \theta_1 \le x \le \theta_2 \\ 0 &, & \text{lainnya} \end{cases}$$

Kemudian definisikan fungsi indikator dari himpunan $[\theta_1, \theta_2]$ sebagai

$$I_{[\theta_1,\theta_2]}(x) = \begin{cases} 1 &, & \theta_1 \le x \le \theta_2 \\ 0 &, & \text{lainnya} \end{cases}$$

(a) Dengan θ_2 diketahui, maka PDF dari sampel acak X_1, \dots, X_n adalah

$$f(x; \theta_1) = \prod_{i=1}^{n} f(x_i; \theta_1, \theta_2)$$

$$= \prod_{i=1}^{n} \frac{1}{\theta_2 - \theta_1} I_{[\theta_1, \theta_2]}(x_i)$$

$$= \frac{1}{(\theta_2 - \theta_1)^n} \prod_{i=1}^{n} I_{[\theta_1, \theta_2]}(x_i)$$

Agar fungsi diatas tak nol, maka haruslah $x_1,x_2,\ldots,x_n\geq \theta_1$ atau dapat ditulis min $X_i=\theta_1$. Kemudian dengan teorema faktorisasi

$$g(T(x \mid \theta_1)) = \frac{I_{[\theta_1, \theta_2]}(\min x_i)}{(\theta_2 - \theta_1)^n}$$
$$h(x) = 1$$

Sehingga, $X_{1:n}$ adalah statistik cukup untuk θ_1 .

(b) Dengan θ_1 dan θ_2 tidak diketahui, maka PDF dari sampel acak X_1,\dots,X_n adalah

$$f(x; \theta_1, \theta_2) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2)$$

$$= \prod_{i=1}^n \frac{1}{\theta_2 - \theta_1} I_{[\theta_1, \theta_2]}(x_i)$$

$$= \frac{1}{(\theta_2 - \theta_1)^n} I_{[\theta_1, \theta_2]}(x_{1:n}) I_{[\theta_1, \theta_2]}(x_{n:n})$$

Sehingga, $X_{1:n}$ dan $X_{n:n}$ adalah statistik cukup secara bersama untuk θ_1 dan θ_2 .