

💙 Histoire 1

C'est dans son traité sur le triangle arithmétique, publié à titre posthume, que Blaise Pascal (1588 -1651) énonce pour la première fois, dans le cadre de l'arithmétique, le principe du raisonnement par récurrence ou principe d'induction. Giuseppe Peano (1858-1932), mathématicien italien dont les travaux les plus connus ont porté sur les fondements de la logique et la théorie des ensembles, prend comme axiome le **principe d'induction** pour construire l'ensemble des entiers naturels :« Si un ensemble E de nombres contient 0 et le successeur de tout nombre de E, alors tout nombre est dans E».

Suite numérique 1

🔁 Définition 1

Une suite est une fonction définie sur l'ensemble $\mathbb N$ des entiers naturels.

Si u est le nom de la suite, l'image de n par u se note u(n) (notation fonctionnelle) ou de manière plus usuelle u_n (notation indicielle).

L'ensemble des termes de la suite se note alors $(u_n)_{n\in\mathbb{N}}$.

A Capacité 1 Modéliser une situation par une suite

Une balle en caoutchouc est lâchée sans vitesse initiale d'une hauteur de 2 mètres au-dessus du sol. Le choc n'étant pas parfaitement élastique, la balle rebondit jusqu'à une hauteur de 1,60 mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\frac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite (h_n) où pour tout entier naturel n, h_n est la hauteur, exprimée en mètres, atteinte par la balle au n-ième rebond. On a alors $h_0 = 2$.

- 1. **a.** Calculer h_1 et h_2 .
 - **b.** Pour tout entier naturel n, exprimer h_{n+1} en fonction de h_n .
 - **c.** En déduire la nature de la suite (h_n) . Préciser ses caractéristiques.
 - **d.** Déterminer le sens de variation de la suite (h_n) .
- 2. Déterminer le nombre minimal N de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à 20 cm. Expliquer la démarche employée.

Suites et ordre 2

2.1 Ordre et opérations

🤁 Propriété 1

Soit *x*, *y* et *z* des réels.

- Pour tous réels x, y et z, si $x \le y$ alors $x + z \le y + z$
- Pour tous réels x, y et z, si $x \le y$ et z > 0 alors $xz \le yz$, et si x < y et z > 0 alors xz < yz
- Pour tous réels *x*, *y* et *z*, si $x \le y$ et z < 0 alors $xz \ge yz$ et si x < y et z < 0 alors xz > yz
- $x^2 \geqslant 0$ • Pour tout réel x,

A Capacité 2 Manipuler des encadrements

Démontrer que pour tout entier naturel n on a :

$$\frac{1}{2} \leqslant \frac{1}{1 + e^{-n}} < 1$$

Méthode de la différence

🤨 Propriété 2

Comparer deux nombres *x* et *y* revient à étudier le signe de leur différence.

•
$$x > y \iff x - y > 0$$

•
$$x \leqslant y \Longleftrightarrow x - y \leqslant 0$$

Capacité 3 Utiliser la méthode du signe de la différence

- **1.** Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_0 = 99$ et $u_{n+1} = u_n n^2 + 2n + 8$. Étudier le signe de $u_{n+1} - u_n$ et en déduire l'étude des variations de la suite (u_n) .
- **2.** Soit la suite (u_n) définie pour tout entier naturel n par $u_n = \sqrt{n}$.
 - **a.** Démontrer que pour tout entier naturel n, on a $u_{n+1} u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. En déduire le sens de variation de la suite (u_n) .
 - **b.** En déduire que pour tout entier naturel $n \ge 4$, on a $0 \le u_{n+1} u_n \le \frac{1}{2}$.

Ordre et fonctions de référence 2.3

🗓 Propriété 3

1. Fonction carré $x \mapsto x^2$

Si
$$0 \le a < b$$
 alors $0 \le a^2 < b^2$

et si
$$a < b \le 0$$
 alors $a^2 > b^2 \ge 0$

2. Fonction racine carré $x \mapsto \sqrt{x}$

Si $0 \le a < b$ alors $0 \le \sqrt{a} < \sqrt{b}$ ou deux nombres positifs (les racines) sont rangés dans le même ordre que leurs carrés

3. Fonction inverse $x \mapsto \frac{1}{x}$

Si
$$0 < a < b$$
 alors $0 < \frac{1}{b} < \frac{1}{a}$

et si
$$a < b < 0$$
 alors $0 > \frac{1}{a} > \frac{1}{b}$

4. Fonction exponentielle $x \mapsto e^x$.

$$a < b \Leftrightarrow e^a < e^b$$

et
$$a < b \Leftrightarrow e^{-a} > e^{-b}$$

- 5. Échelle des puissances.
 - Pour tout réel x tel que 0 < x < 1 on a $0 < x^3 < x^2 < x < \sqrt{x} < 1$.
 - Pour tout réel x tel que 1 < x on a $1 < \sqrt{x} < x < x^2 < x^3$.
 - Pour tout entier $n \ge 1$:
 - Si 0 < x < 1 alors $0 < x^n \le x < 1$.
 - Si 1 < x alors $1 < x \le x^n$.

🕏 Capacité 4 Comparer avec les fonctions de référence

- 1. Soit q un réel tel que 1 < q. Comparer $1 \frac{1}{q}$, $\left(1 \frac{1}{q}\right)^2$ et $\left(1 \frac{1}{q}\right)^3$.
- **2.** Soit un entier $n \ge 1$, comparer $e^{-\left(1+\frac{1}{n}\right)}$ et $e^{-\sqrt{1+\frac{1}{n}}}$

Opérations membre à membre

Propriété 4

Soient a, b, c et d quatre réels.

Si
$$a \leqslant b$$

et $c \leqslant d$
alors $a+c \leqslant b+d$

Si
$$0 \leqslant a \leqslant b$$

et $0 \leqslant c \leqslant d$
alors $0 \leqslant a \times c \leqslant b \times a$

A Capacité 5 Comparer membre à membre

- **1.** Démontrer que pour tout entier $k \ge 1$, on a $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$.
- **2.** Justifier que pour tout entier $k \ge 1$, on a : $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$.
- **3.** À l'aide d'un argument de *somme télescopique*, en déduire que pour tout entier $n \ge 1$, on a :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

4. En déduire que pour tout entier $n \ge 1$, on a $0 < \sum_{k=1}^{n} \frac{1}{(k+1)^2} < 1$.

Étude du sens de variation d'une suite

Définition 2

- Une suite (u_n) est **croissante** à partir du rang p si pour tout entier $n \ge p$ on a $u_n \le u_{n+1}$.
- Une suite (u_n) est **décroissante** à partir du rang p si pour tout entier $n \ge p$ on a $u_n \ge u_{n+1}$.
- Une suite (u_n) est **constante** à partir du rang p si pour tout entier $n \ge p$ on a $u_{n+1} = u_n$.

Méthode

Il existe plusieurs méthodes pour étudier le sens de variation d'une suite (u_n) .

- Si le terme général de (u_n) est donné par une formule explicite $u_n = f(n)$ et s'il existe un entier naturel p tel que f monotone sur $[p; +\infty[$ alors :
 - (u_n) est décroissante à partir du rang p si f décroissante sur $[p; +\infty[$.
 - (u_n) est croissante à partir du rang p si f croissante sur $[p; +\infty[$.
- On peut étudier le **signe de la différence** $u_{n+1} u_n$ et démontrer qu'il existe un rang p tel que pour tout entier $n \ge p$, $u_{n+1} - u_n$ est de signe constant.
 - Si « $\forall n \geqslant p$, $u_{n+1} u_n \leqslant 0$ » alors (u_n) est décroissante à partir du rang p.
 - Si « $\forall n \geqslant p$, u_{n+1} $u_n \geqslant 0$ » alors (u_n) est croissante à partir du rang p.
- \square Si (u_n) est de signe positif à partir d'un certain rang, on peut étudier le **rapport de deux termes** consécutifs $\frac{u_{n+1}}{u}$
 - Si « $\forall n \geqslant p$, $u_n > 0$ et $\frac{u_{n+1}}{u_n} \leqslant 1$ » alors (u_n) est décroissante à partir du rang p.
 - Si « $\forall n \geqslant p, u_n > 0$ et $\frac{u_{n+1}}{u_n} \geqslant 1$ » alors (u_n) est croissante à partir du rang p.

On peut utiliser un raisonnement par récurrence (voir 8).

\$

Capacité 6 Choisir une méthode adaptée pour étudier le sens de variation d'une suite

- **1.** | **Méthode 1** | : *Etudier le signe de* $u_{n+1} u_n$
 - **a.** Soit la suite (u_n) définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$, par $u_{n+1} = u_n(1 2u_n)$.
 - Étudier le signe de $u_{n+1} u_n$ pour $n \in \mathbb{N}$.
 - \square Conclure sur le sens de variation de la suite (u_n) .
 - **b.** Reprendre le même plan d'étude pour étudier le sens de variation de la suite (w_n) définie pour tout entier $n \in \mathbb{N}^*$ par $w_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$.
- **2.** Méthode 2: $Si(u_n)$ à termes strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ et 1

Soit la suite (u_n) définie par $u_0 > 0$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n e^{-n}$. On admet que pour tout entier $n \ge 0$, on a $u_n > 0$.

- Soit un entier $n \ge 0$, démontrer que $\frac{u_{n+1}}{u_n} \le 1$.
- \blacksquare En déduire le sens de variation de la suite (u_n) .
- **3.** Méthode 3 : $Si\ u_n = f(n)$, étudier les variations de $f\ sur\ [0; +\infty[$

Soit la suite (u_n) définie pour tout entier $n \ge 0$, par $u_n = \frac{e^n}{e^n + 1}$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^x + 1}$. On a pour tout entier $n \ge 0$, $u_n = f(n)$.

- Justifier que f est dérivable sur \mathbb{R} et déterminer l'expression de f'(x).

 ATTENTION, on peut dériver la fonction f mais pas la suite (u_n) car celle-ci n'est pas définie sur un intervalle!!!
- En déduire le sens de variation de la fonction f sur \mathbb{R} , puis le signe de $u_{n+1} u_n$ pour tout entier $n \ge 0$ et le sens de variation de (u_n) .

2.6 Suites bornées

Définition 3

- Une suite (u_n) est **majorée** s'il existe un réel M tel que pour tout entier n on ait $u_n \le M$. On dit que M est un **majorant** de (u_n) .
- Une suite (u_n) est **minorée** s'il existe un réel m tel que pour tout entier n on ait $u_n \ge m$. On dit que M est un **minorant** de (u_n) .
- Une suite (u_n) est **bornée** si elle est majorée et minorée c'est-à-dire qu'il existe des réels m et M tels que pour tout entier n on ait $m \le u_n \le M$

🚀 Capacité 7 Démontrer qu'une suite est bornée

Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_n =$ 3n + 2

n+2

1. On donne ci-contre la représentation graphique des premiers termes de la suite (u_n) dans un repère orthonormal.

Émettre une conjecture sur un minorant et un majorant possibles de la suite (u_n) .

2. Démontrer cette conjecture.

3 Suites arithmétiques et géométriques

3.1 Suites arithmétiques

Les preuves des propriétés ont été établies en classe de première

Définition 4

Une suite (u_n) est arithmétique s'il existe un réel r tel que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r$$

Le réel *r* est la raison de la suite.

Propriété 5

Soit (u_n) une suite arithmétique de raison r.

$$\forall n \in \mathbb{N}, \quad u_n = u_0 + n \times r$$

$$\forall p \in \mathbb{N}, \forall q \in \mathbb{N}, \quad u_p = u_q + (p - q) \times r$$

🔼 Théorème 1

Une suite (u_n) est arithmétique de raison r si et seulement s'il existe deux réels a et r tels que :

$$\forall n \in \mathbb{N}, \quad u_n = a + nr$$

Une suite est arithmétique si et seulement si sa représentation graphique dans un repère est constituée de points alignés.

🤼 Propriété 6

Soit (u_n) une suite arithmétique de raison r.

Pour tout $n \in \mathbb{N}$ on a:

$$\sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_{n-1} + u_n = (n+1) \times \frac{u_0 + u_n}{2}$$

Plus généralement, pour tout $p \in \mathbb{N}$, pour tout $q \in \mathbb{N}$ tel que $q \geqslant p$ on a :

$$\sum_{k=p}^{q} u_k = u_p + u_{p+1} + \dots + u_{q-1} + u_q = (q-p+1) \times \frac{u_p + u_q}{2} = \text{nombre de termes} \times \frac{\text{premier terme} + \text{dernier terme}}{2}$$

En particulier pour la suite arithmétique telle que pour tout $n \in \mathbb{N}$, $u_n = n$ on a :

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

🚀 Capacité 8 Étudier une suite arithmétique

On considère la suite $(u_n)_{n\geqslant 1}$ des entiers impairs successifs :

$$u_1 = 1$$
, $u_2 = 3$, $u_3 = 5$, ...

- **1.** Justifier que $(u_n)_{n\geqslant 1}$ est une suite arithmétique.
- **2.** Soit n un entier naturel positif, exprimer u_n en fonction de n.
- **3.** Démontrer que pour tout entier $n \ge 1$, on a $\sum_{k=1}^{n} u_k = n^2$.

3.2 Suites géométriques

Les preuves des propriétés ont été établies en classe de première

🐧 Définition 5

Une suite (u_n) est géométrique s'il existe un réel q tel que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = q \times u_n$$

Le réel *q* est la raison de la suite.

🤼 Propriété 7

Soit (u_n) une suite géométrique de raison q.

$$\forall n \in \mathbb{N}, \quad u_n = u_0 \times q^n$$

$$\forall m \in \mathbb{N}, \forall p \in \mathbb{N}, \quad u_m = u_p \times q^{m-p}$$

🕄 Propriété 8

Soit (u_n) une suite géométrique de raison $q \neq 1$.

Pour tout $n \in \mathbb{N}$ on a :

$$\sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_{n-1} + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

Plus généralement, Pour tout $p \in \mathbb{N}$, pour tout $m \in \mathbb{N}$ tel que $m \ge p$ on a :

$$\sum_{k=p}^{m} u_k = u_p + u_{p+1} + \dots + u_{m-1} + u_m = u_p \times \frac{1 - q^{m-p+1}}{1 - q} = \text{premier terme} \times \frac{1 - raison^{\text{nombre de termes}}}{1 - raison}$$

En particulier pour la suite géométrique telle que pour tout $n \in \mathbb{N}$, $u_n = q^n$ avec $q \neq 1$ on a :

$$\sum_{k=0}^{n} q^{k} = 1 + q + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

de Capacité 9 Étudier une suite géométrique

Soit $(u_n)_{n\geqslant 1}$ la suite arithmétique des entiers impairs définie dans l'exemple 9. On définit la suite $(v_n)_{n\geqslant 1}$ pour tout entier $n\geqslant 1$ par $v_n=\mathrm{e}^{u_n}$.

- **1.** Justifier que la suite $(v_n)_{n\geqslant 1}$ est géométrique.
- **2.** Calculer la somme $\sum_{k=1}^{30} v_k$.
- **3.** Soit un entier $n \ge 1$, exprimer en fonction de n le produit de termes consécutifs :

$$\prod_{k=1}^{n} \nu_k = \nu_1 \times \nu_2 \times \dots \times \nu_{n-1} \times \nu_n$$

Raisonnement par récurrence

Principe du raisonnement par récurrence

Exemple 1

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n par $u_{n+1} = u_n + 8n + 8$.

- **1.** Calculer u_1 et u_2 .
- 1,= No+ 8x0+8=3 et No= Mx+8x4+8=25
- 2. Compléter la fonction algorithmique et sa traduction en Python ci-dessous afin qu'elles retournent u_n pour un entier $n \ge 0$ passé en paramètre.

Algorithme

Fonction suiteU(n): u ← 1 Pour k allant de O.à M.1 u ← 从↓8 6+8 Retourne u

Python

```
def suiteU(n):
    u = 1
    for k in range(0., M):
        u = M+8*k.+.8
    return M
```

3. Compléter le tableau d'évolution des variables k et u lorsqu'on exécute l'algorithme pour l'entrée n=5.

	k = . O	k =	k = .2	k = 3	k = .!.
Variable <i>u</i>	1	3	25	43	81

4. Conjecturer une expression de u_n en fonction de n.

On peut conjecturer Mn=(2m11)2

Principe du raisonnement par récurrence

In considere la propriété l'n: un= (2m+1)

La propriété est mais pour les plus petits entiers: Po, Pr, Po et
sont viais. Si on démontre que pour tout entier noutrel n

fine on a l'implication Pn => Pm+1, alors on pourre
construée une chaîne infinie d'implications:

Lie Po => P1 => P2 => -- => Pn => Pm+1 =>

C'axiome de récurrence va nous permettre d'affirmer qu'il suffit de vérifier: hibblile

- *l'initialisation de la propriété*, c'est-à-dire que P₀ est vraie.
- puis *l'hérédité de la propriété*, c'est-à-dire que pour tout entier $n \ge 0$, si on suppose P_n vraie alors P_{n+1} est vraie aussi.

pour en conclure que P_n est vraie pour tout entier $n \ge 0$.

4.2 Axiome de récurrence

Axiome Axiome de récurrence

Soit une propriété P_n dépendant de l'entier naturel n.

- si P_{n_0} est vraie pour un entier naturel n_0 (*Initialisation*).
- et si pour tout entier $n \ge n_0$, l'hypothèse que P_n est vraie implique que P_{n+1} est vraie aussi. (*Hérédité*).

alors la propriété P_n est vraie pour tout entier naturel $n \ge n_0$.

Exemple de rédaction d'un raisonnement par récurrence

On va démontrer o	jue l'exi	oression de ι	ι_n conjectu	rée dans	l'exemple	est v	raie pou	r tout entie	$\operatorname{er} n \geqslant 0.$

• Soit un entier $n \ge 0$, notons P_n la propriété « \mathcal{M}_{m} ... $(2m+1)^2$ ».

Démontrons par récurrence que P_n est vraie pour tout entier $n \ge 0$:

- <u> I</u>	nitialisation (2x0+1) 2 = 1 = 1 = 1 = 1 danc Poet viaire
•	
- I	Hérédité Soit n un entier tel que $n \geqslant 0$, montrons que si P_n est vraie alors P_{n+1} est aussi vraie :
	Par hypothère de récurrence, on a Proprie.
	m en déduit que : un = 2m+1)2
(In veul démantrer que Pour est viaie c'est-à dire
•	Par hypothère de récurrence, on a P _m vraie In en déduit que : u _m = 2m+1 ² In veul-démantrer que P _{m+1} est vraie c'est-à_dire que : u _{m+1} = (2×m+1) +1) ²
Ġ	m construct remer à partir de la relation de récurrence et
d	o l'hypologie de récurrence:
•	unt : un + 8 m + 8 par relation de récurrence Lun= (2 m + 1,) ² par hypothèse de récurrence
W	un=[2m+1]2 par hypothèse de récurrence
	den Um = 1 m + 4 m + 1 + 8 m + 8 = (2 m + 3)
	$\mathcal{L}_{m+1} = \left(2\left(m+1\right)+1\right)^{2}$
O	on en déduit que P_{n+1} est aussi vraie.

Donc pour tout entier $n \ge 0$, si P_n est vraie alors P_{n+1} est vraie, la propriété est héréditaire.

Conclusion

La propriété P_n est initialisée pour n=0 et elle est héréditaire donc d'après l'axiome de récurrence elle est vraie pour tout entier $n \ge 0$.

Capacité 10 Démontrer avec un raisonnement par récurrence

- **1.** Soit la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n par $u_{n+1} = 2u_n 5$.
 - **a.** Démontrer par récurrence que la suite (u_n) est majorée par 5.
 - **b.** Démontrer par récurrence que la suite (u_n) est décroissante.

- **c.** Quelle propriété pourrait-on démontrer par récurrence pour répondre aux deux questions précédentes?
- **d.** Démontrer par récurrence que pour tout entier naturel n, on a $u_n = 5 2^{n+2}$.
- **2.** Soit (v_n) la suite définie par $v_0 = -1$ et pour tout entier naturel n par $v_{n+1} = \sqrt{3v_n + 4}$.
 - **a.** Démontrer que la fonction $f: x \mapsto \sqrt{3x+4}$ est croissante sur $[0; +\infty[$.
 - **b.** Démontrer par récurrence que pour tout entier $n \ge 1$ on a $0 \le v_n \le v_{n+1} \le 4$.
- **3.** Soit (u_n) une suite réelle telle que pour tout entier $n \ge 0$ on ait $u_{n+1} = u_n^3$.
 - **a.** Démontrer que si pour un entier $n \ge 0$, on a $-1 \le u_n \le 1$ alors on a $-1 \le u_{n+1} \le 1$.
 - **b.** Peut-on en déduire que pour tout entier $n \ge 0$ on a $-1 \le u_n \le 1$?

Suites et fractales : la carpette de Sierpinski

Étape 0 : 0 découpe

Étape 2 : 9 découpes

Étape 3 : 73 découpes

Question : Combien de carrés blancs à l'étape 100?

SpéMaths

Table des matières

1	Suite numérique	1							
2	Suites et ordre								
	2.1 Ordre et opérations	1							
	2.2 Méthode de la différence	2							
	2.3 Ordre et fonctions de référence	2							
	2.4 Opérations membre à membre	3							
	2.5 Étude du sens de variation d'une suite	4							
	2.6 Suites bornées	5							
3	Suites arithmétiques et géométriques	6							
	3.1 Suites arithmétiques	6							
	3.2 Suites géométriques	7							
4	Raisonnement par récurrence								
	4.1 Principe du raisonnement par récurrence	8							
	4.2 Axiome de récurrence								
	4.3 Exemple de rédaction d'un raisonnement par récurrence								