# Symmetric Integer Linear Optimization (SILO!)

#### Jeff Linderoth

Dept. of Industrial and Systems Engineering Univ. of Wisconsin-Madison linderoth@wisc.edu



JIM OSTROWSKI University of Tennessee



FRANÇOIS MARGOT Carnegie Mellon University



SILO

UW-Madison

March 5, 2014

#### Italian Arnolds

FABRIZIO ROSSI STEFANO SMRIGLIO Università di L'Aquila



#### What You Are In For



## Integer Linear Optimization (ILO)

$$\min_{x \in \{0,1\}^n} \{c^T x \mid Ax \ge b\} \qquad \text{(ILO)}$$

 $\bullet$  Today, we care about  $A \in \{0,1\}^{m \times n}$  and

$$\underset{x \in \{0,1\}^n}{\text{SCP}} \min_{x \in \{0,1\}^n} \{\mathbf{1}^T x \mid Ax \geq 1\} \quad \text{or} \quad \underset{x \in \{0,1\}^n}{\text{SPP}} \max_{x \in \{0,1\}^n} \{\mathbf{1}^T x \mid Ax \leq 1\}$$

#### Outline

- What is Symmetry in ILO?
- Motivation The Football Pool Problem
- Orbital Branching
- Isomorphism Pruning
- Flexible Isomorphism Pruning
- Computational Results

## Warning! This All Happened Some Time Ago...

"This is really embarrassing. I just forgot our state governor's name, but I know that you will help me recall him."

—Arnold, speaking to a taxpayer advocacy group



• I hope I recall enough to give an informative talk.

#### Football Pool Problem

- We motivate our solve for SILO (SCP) via gambling
- Predict the outcome of v soccer matches
- Giant Prize if all v are correct
- Also win if v-1 are correct: you mis-predict at most 1 game



#### The Football Pool Problem

What is the minimum number of tickets you must buy to assure yourself a win?

## Football ILO

- Let N be the set of possible outcomes (also the set of tickets)  $(|N| = 3^{\nu})$
- Binary variables:  $x_i = 1$  if I purchase ticket  $j \in N$
- Let  $A \in \{0,1\}^{|N| \times |N|}$  with  $\alpha_{ij} = 1$  iff ticket  $j \in N$  is a winner for outcome  $i \in N$

# ILO Formulation $\min \mathbf{1}^{\top} x$ s.t. $Ax \geq \mathbf{1}$ $x \in \{0,1\}^{|N|}$

## Football Matrix, v = 3

# Playing Football

Chose columns to cover all rows



# It's Pretty! The Football Matrix, v = 6



# $\nu = 3$ , Solution #1

| Answe | er #1 |    |  |
|-------|-------|----|--|
| M1    | M2    | М3 |  |
| W     | W     | W  |  |
| L     | L     | W  |  |
| L     | W     | L  |  |
| W     | L     | L  |  |
| D     | D     | D  |  |
|       |       |    |  |



# $\nu = 3$ , Solution #2

| Answer | #2 |    |
|--------|----|----|
| M1     | M2 | M3 |
| D      | W  | W  |
| L      | L  | W  |
| L      | W  | L  |
| D      | L  | L  |
| W      | D  | D  |
|        |    |    |



#### Solutions for v=3

| Answe | r #1 |    |  |
|-------|------|----|--|
| M1    | M2   | M3 |  |
| W     | W    | W  |  |
| L     | L    | W  |  |
| L     | W    | L  |  |
| W     | L    | L  |  |
| D     | D    | D  |  |

| Answer #2 |    |    |  |  |  |
|-----------|----|----|--|--|--|
| M1        | M2 | M3 |  |  |  |
| D         | W  | W  |  |  |  |
| L         | L  | W  |  |  |  |
| L         | W  | L  |  |  |  |
| D         | L  | L  |  |  |  |
| W         | D  | D  |  |  |  |

- These solutions are isomorphic.
  - $\bullet$  Swap W  $\leftrightarrow$  D in the first ticket
- There are LOTS of isomorphic solutions:
  - "Rename" W,L,D for any subset of the matches:  $(3!)^{\nu}$
  - 2 Reorder the matches: v!
- There are  $(3!)^3(3!) = 1296$  equivalent solutions for v = 3
- There are  $(3!)^6(6!) = 33,592,320$  equivalent solutions for  $\nu = 6$

# How Many Must I Buy?

### **Known Optimal Values**

| ν             | 1 | 2 | 3 | 4 | 5  |
|---------------|---|---|---|---|----|
| $ C_{v}^{*} $ | 1 | 3 | 5 | 9 | 27 |

#### The Football Pool Problem

What is  $|C_6^*|$ ?

 Despite significant effort on this problem for > 40 years, it is only known that

$$6571 \le C_6^* \le 73$$

#### Hooray For Us!

- We were able to improve the lower bound to 71
- It only took 140 CPU years!

## CPLEX Can't Solve Every IP

• Roughly  $10^8$  universe lifetimes in order to establish that  $|C_6^*| > 72$ 



# A Review of Symmetry and Algebra



# Symmetry

- Let  $\Pi^n$  be collection of permutations of  $\{1, 2, ..., n\}$
- Given  $\lambda \in \mathbb{R}^n$ ,  $\pi \in \Pi^n$  acts on  $\lambda$  by permuting its coordinates:  $\pi(\lambda) = (\lambda_{\pi_1}, \lambda_{\pi_2}, \dots \lambda_{\pi_n})$ .

- $\pi \in \Pi^n$  is a symmetry of IP if...
  - **1**  $\mathbf{v}$  feasible  $\Leftrightarrow \pi(\mathbf{v})$  feasible
  - $c^\mathsf{T} x = c^\mathsf{T} \pi(x)$



 The set of symmetries of IP (with composition of permutations) forms the symmetry group of IP

$$\mathcal{G}(\mathsf{IP}) = \{ \pi \in \Pi^n \mid \pi(x) \in \mathcal{F}, c^\mathsf{T} x = c^\mathsf{T} \pi(x) \quad \forall x \in \mathcal{F} \},$$

where  $\mathcal{F} = \{x \in \{0,1\}^n \mid Ax \ge b\}$  is the set of feasible solutions

# Symmetry and Branching

### Symmetry "Erases" Branching Decision

 In the presence of symmetry, branching does not effectively change the solution to the LP relaxation



- Let  $\hat{\mathbf{x}} = (1/2, 0, 1/4, 1, ...)^T$  be a solution to the LP relaxation
- If  $\pi_1 = (1,2) \in \mathcal{G}$ ,  $\pi_2 = (1,4) \in \mathcal{G}$  then  $z_i^- = z_i^+ = z_{LP}$ .
- You are guaranteed to have a bad branch



# Searching with Symmetry

"Big Mistake."

Jack Slater, Last Action Hero

ullet Suppose the permutation  $(1,2)\in \mathcal{G}$ 



• You evaluate many completely equivalent (isomorphic) subtrees

# About Symmetry Groups

- $\mathcal{G}(\mathsf{IP})$  is a property of the feasible region:  $\mathcal{F} = \emptyset \Rightarrow \mathcal{G}(\mathsf{IP}) = \Pi^n$
- ullet For our methods, we can work with any subgroup  $\Gamma\subset\mathcal{G}(\mathsf{IP})$
- If c = 1, b = 1, we can use the symmetry group of the matrix A:

$$\mathcal{G}(A) \stackrel{\mathrm{def}}{=} \{ \pi \in \Pi^n \mid \exists \sigma \in \Pi^m \text{ such that } P_\sigma A P_\pi = A \}$$

- Given A of "reasonable" size, there exist software packages (nauty, saucy) that can compute (generators of)  $\mathcal{G}(A)$  "effectively"
  - Actual algorithm is exponential, but in general works quickly

#### Orbits

• For a point  $z \in \mathcal{Z}$ , the orbit of z under  $\mathcal{G}$  is the set of all elements of  $\mathcal{Z}$  to which z can be sent by permutations in  $\mathcal{G}$ :

$$\operatorname{orb}(\mathcal{G},z) \stackrel{\mathrm{def}}{=} \{\pi(z) \mid \pi \in \mathcal{G}\}.$$

- Consider the orbits of each of coordinate axes:  $e_i, j \in N$
- By definition, if  $e_j \in \operatorname{orb}(\mathcal{G}, e_k)$  then  $e_k \in \operatorname{orb}(\mathcal{G}, e_j)$ , i.e. the variables  $x_j$  and  $x_k$  share the same orbit. Therefore, the union of the orbits

$$\mathcal{O}(\mathcal{G}) \stackrel{\mathrm{def}}{=} \bigcup_{j=1}^n \mathrm{orb}(\mathcal{G}, e_j)$$

forms a partition of  $N = \{1, 2, ..., n\}$ , which we refer to as the orbits of G.

ullet The orbits encode which variables are "equivalent" (symmetric) with respect to the symmetry  $\mathcal{G}$ .

## Ugh... More Notation



- Branch-and-bound node  $\alpha = (F_1^{\alpha}, F_0^{\alpha})$ ,
  - F<sub>1</sub><sup>a</sup>: Set of variables fixed to one
  - F<sub>0</sub><sup>a</sup>: Set of variables fixed to zero
- $\mathcal{F}(a)$ : The set of feasible solutions to the IP at node a
- The stabilizer of a set S in  $\mathcal{G}$  is the set of permutations in  $\mathcal{G}$  that send S to itself:  $\operatorname{stab}(S,\mathcal{G}) = \{\pi \in \mathcal{G} \mid \pi(S) = S\}.$
- $\operatorname{stab}(S, \mathcal{G})$  is a subgroup of  $\mathcal{G}$

#### The Upshot

• As we fix variables (to 1) at node  $\alpha$ , the symmetry "remaining" in the problem becomes  $\mathrm{stab}(\chi^\alpha_{F_1},\mathcal{G})$ 

# Orbital Branching: A Simple Idea



# **Orbital Branching**

- A way to exploit symmetry in your branching decision
- Let  $O \in \mathcal{O}(\mathcal{G}(IP))$  be an orbit of the symmetry group of the IP.
- Surely we can branch as

$$\sum_{i \in O} x_i \geq 1 \quad \text{or} \quad \sum_{i \in O} x_i \leq 0.$$

• If at least one variable  $i \in O$  is going to be one, and they are all "equivalent", then you may as well pick  $(i^*)$  one arbitrarily.

$$x_i^* = 1$$
 or  $\sum_{i \in \Omega} x_i = 0$ 

No, really. That's it. :-)

# An Alternative View of Orbital Branching

- Suppose that you have found that the variables  $x_e, x_f, x_g$  and  $x_h$  share an orbit at node  $\alpha$ ,  $O = \{e, f, g, h\}$ .
- Then you can surely branch as:



- ullet But the best solution you can find from nodes f, g, and h will be the same as the best solution you can find from node e
- In fact, solutions will be isomorphic
- $\bullet \Rightarrow$  Prune nodes f, g, and h

# **Orbital Branching Theorems**

#### Theorem: OB is Valid

All optimal solutions are not eliminated.

## Theorem: OB Reduces Symmetry

Let b and c be any two subproblems in the enumeration tree. Let a be the first common ancestor of b and c. If  $x \in \mathcal{F}(b)$  and  $y \in \mathcal{F}(c)$ , then  $\not\exists \pi \in \mathcal{G}(A(F_0^a, F_1^a))$  with  $\pi(x) = y$ .



#### But Can We Do Better!?

Can we branch and prune such that  $x \in \mathcal{F}(b)$  and  $y \in \mathcal{F}(c)$  are not equivalent (isomorphic) with respect to the original symmetry group  $\mathcal{G}$ ?

# Isomorphism Pruning



The admitedly very bad Joke

Can we "terminate" the search without exploring equivalent solutions?

## Search the Fundamental Domain!

#### It's Fundamental

• The (minimal) Fundamental Domain of a feasible region  $\mathcal{F}$  with respect to a (permutation) group  $\mathcal{G}$  is the *smallest subset*  $F \subseteq \mathcal{F}$ , such that if  $x \in \mathcal{F}$ , then  $x = \pi(y)$  for some  $\pi \in \mathcal{G}$ ,  $y \in F$ 

### Key Idea: Exploit Symmetry

- Restrict search to F, not  $\mathcal{F}$ !
- Put another way: for any feasible solution, x, we only need to consider one element in  $orb(\mathcal{G}, x)$ .
- By definition, any method that restricts itself to a fundamental domain  $\mathcal{F}$  will not encounter isomorphic solutions

# Creating a Fundamental Domain

### Order the solutions lexicographically

Adding the following lexicographic ordering constraints to F
creates a fundamental domain:

$$[2^n \ 2^{n-1} \ \dots \ 4 \ 2]^T x \le [2^n \ 2^{n-1} \ \dots \ 4 \ 2]^T \pi(x) \ \forall \pi \in \mathcal{G}$$

#### Not an Optimal Solution

- 2<sup>n</sup> term creates numerical instability.
- $|\mathcal{G}|$  can be large

#### Solutions?

• We need to find clever ways to enforce lexicographic inequalities without adding them to the problem formulation.

### Dr. Clever



- Isomorphism Pruning, developed by Margot (2002, 2003) in the context of IP, provides an algorithm for testing (at each node) if the set of variables fixed by branching violate a lexicographic inequality
- If a lexicographic inequality is violated, the node is pruned ⇒ only a fundamental domain is searched

## **Isomorphism Pruning Theorem:**

For node  $\alpha$  and symmetry group  $\mathcal{G}$ , let  $F_1^{\alpha}$  be the set of variables fixed to one (by branching decision) at node  $\alpha$ . If  $F_1^{\alpha}$  is not lexicographically minimal with respect to  $\operatorname{orb}(\mathcal{G},\chi_{F_1^{\alpha}})$ , node  $\alpha$  can be pruned.

# Isomorphism Pruning "Problems"

#### Problem #1

- Algorithm for testing if  $\chi_{F_1^\alpha}$  is lex min member of  $\operatorname{orb}(\mathcal{G},\chi_{F_1^\alpha})$  is exponential in the size of  $F_1^\alpha$ , but is "reasonably fast" if the tree is not very deep.
- This can be done using computational algebra packages such as GAP.

#### BIG Problem #2

- We need to ensure that the lex min member of  $\operatorname{orb}(\mathcal{G},\chi_{F_1^\alpha})$  occurs somewhere in the tree
  - (if the node would not otherwise be pruned by bound or infeasibility)

#### What to do?

Branch on variables in lexicographic order

# Isomorphism Pruning Tree



#### No Flexibility!

- You must branch on variable, regardless of impact on bound.
- Even if  $\hat{x}_d$  is not fractional at level d
- This is typically a very bad idea for branch and bound

#### I am the Greatest Thesis Advisor Ever!



"Why can't we define a 'local ordering' of the variables to define lexicographic min?"

"Because if we could, then I am sure that François would have thought of it"



## Jim's Reaction



• Thankfully, Jim rarely listens to me...

# Flexible Isomorphism Pruning



# François Does Not Think of Everything!

- Each node  $\alpha$  has rank vector  $R^{\alpha}$ .
- $R^{\alpha}[i] = j$  implies  $x_i$  was branched on at the ancestor node of  $\alpha$  at depth j. Variables not fixed by a branching at node  $\alpha$  are assigned the rank (-1).

## Flexible Isomorphism Theorem:

For node  $\alpha$  and symmetry group  $\mathcal{G},$  let  $F_1^\alpha$  be the set of variables fixed to one (by branching decision) at node  $\alpha.$  If  $R^\alpha(F_1^\alpha)$  is not lexicographically minimal with respect to  $R^\alpha(\operatorname{orb}(\mathcal{G},\chi_{F_1^\alpha})),$  node  $\alpha$  can be pruned.

#### The Good Part!

- This is true for any branching decisions.
- No additional (costly) computations are needed compared to regular isomorphism pruning

# Most Flexible Isomorphism Pruning Tree



| i          | 1 | 2  | 3  | 4 | 5 |
|------------|---|----|----|---|---|
| $R^{A}(i)$ | 2 | -1 | -1 | 1 | 3 |

| i          | 1 | 2 | 3  | 4 | 5  |
|------------|---|---|----|---|----|
| $R^{B}(i)$ | 3 | 2 | -1 | 1 | -1 |

## Flexible Isomorphism Pruning

#### **Facts**

 At every node α we still have an implicit set of lexicographic inequalities:

$$\sum_{i=1}^n 2^{n+1-R^\alpha(i)} x_i \leq \sum_{i=1}^n 2^{n+1-R^\alpha(\pi(i))} x_i \ \forall \pi \in \mathcal{G}$$

- The fundamental domain searched is not a polyhedron
- The branching decisions impact the fundamental domain that is searched. Only when the problem is done solving is the exact fundamental domain known.

#### **Proof Intuition**

 Because these constraints are "local" they do not affect behavior at other nodes in the tree.

## Branching: What To Do?

Combine "Strength" of Isomorphism Pruning



With "Flexibility" of Branching on Any Variable/Orbit



### Which Branchable Orbit to Choose?

- Given  $\hat{x}$  and (branchable) orbits  $O_1, O_2, \dots O_p$  at node  $\alpha$ , which orbit should be choose?
- We investigated (so far) lots of different branching rules. I will only talk of 3

- Branch Min Index: Branch on orbit that contains the smallest unfixed variable index. "Close" to Margot's original branching
- Branch Largest LP Solution: Branch on Orbit with most LP solution
- Strong Branching: For each orbit, create orbital branching dichotomy. Evaluate the two resulting children, and choose "the best"

## Computational Results



### Instance Families

- (Binary) Error Correcting Codes (cod(n,d)): Find maximum number of (0,1) n—vectors such that Hamming distance between each pair is  $\geq d$
- Covering Design (cov(v,k,t)): v > k > t: Find minimum number of k-sets of {1,...,ν} to "cover" all t-sets of {1,...,ν}.
- Covering Code (codbt(b,t)): Find minimum number of "codewords" such that every word is at most a (Hamming) distance 1 from a codeword.
- Steiner Triple System: (sts(n)): Find the "incidence width" of a Steiner Triple System of order n

## Number of Nodes

|          | CPLEX v11 | Largest LP |       | Min Index |       | Str. Branching |       |
|----------|-----------|------------|-------|-----------|-------|----------------|-------|
| Instance | w/Sym     | O.B.       | IsoP. | O.B.      | IsoP. | O.B.           | IsoP. |
| cod83    | 9338      | 35         | 35    | 23        | 23    | 23             | 23    |
| cod93    | 287998*   | 3531       | 2933  | 711       | 269   | 129            | 127   |
| cov954   | 1226      | 113        | 113   | 701       | 549   | 39             | 39    |
| cov1053  | 262628    | 3535       | 2639  | 893       | 607   | 569            | 435   |
| cov1054  | 94949*    | 52509      | 45577 | 567       | 417   | 426            | 311   |
| cov1075  | 21076     | 107        | 105   | 471       | 367   | 71             | 63    |
| codbt42  | -         | 73         | 73    | 1059      | 893   | 37             | 37    |
| codbt05  | 107816    | 303        | 285   | 1521      | 1245  | 103            | 103   |
| sts45    | 19931     | 9373       | 4469  | 6037      | 1553  | 1861           | 1203  |
| sts63    | 4805781   | 37243      | 6327  | 12365     | 4303  | 3221           | 2309  |
| sts81    | 13361288* | 2361       | 527   | 2995      | 585   | 991            | 509   |

# Tale of the Tape—Gurobi v3.0

|          | Symmetry = 0            |      | Symmetry = 2 |               |       |        |
|----------|-------------------------|------|--------------|---------------|-------|--------|
| Instance | Time                    | Gap% | Nodes        | Time          | Gap%  | Nodes  |
| cod105   | 7200                    | 50.0 | 150          | 173           | 0.0   | 7      |
| cod83    | 7200                    | 15.0 | 724601       | 6             | 0.0   | 372    |
| cod93    | 7200                    | 20.0 | 108572       | 905           | 0.0   | 54650  |
| codbt05  | 7200                    | 7.4  | 352025       | 7200          | 3.7   | 359268 |
| codbt33  | 8                       | 0.0  | 604          | 6             | 0.0   | 401    |
| codbt42  | 159                     | 0.0  | 75569        | 111           | 0.0   | 45912  |
| codbt61  | 10                      | 0.0  | 1485         | 7             | 0.0   | 950    |
| cov1053  | 7200                    | 5.9  | 919836       | 77            | 0.0   | 10958  |
| cov1054  | 7200                    | 2.0  | 189645       | 2330          | 0.0   | 103657 |
| cov1075  | 7200                    | 5.0  | 549355       | 17            | 0.0   | 665    |
| cov954   | 58                      | 0.0  | 31950        | 1             | 0.0   | 166    |
| sts27    | 1                       | 0.0  | 4044         | 0             | 0.0   | 78     |
| sts45    | 18                      | 0.0  | 61194        | 23            | 0.0   | 34839  |
| sts63    | 7200                    | 4.4  | 8698168      | 85            | 0.0   | 43135  |
| sts81    | 7200                    | 16.4 | 3252747      | 70            | 0.0   | 6317   |
|          | "I'm the party pooper." |      | "Ha          | sta la vista, | baby" |        |

# Tale of the Tape—CPLEX v12.1

| -        | Symmetry = 0 |      |          | Symmetry = 5 |      |          |
|----------|--------------|------|----------|--------------|------|----------|
| Instance | Time         | Gap% | Nodes    | Time         | Gap% | Nodes    |
| cod105   | 7200         | 52.4 | 13201    | 606          | 0.0  | 1120     |
| cod83    | 7200         | 14.3 | 1418001  | 79           | 0.0  | 15452    |
| cod93    | 7200         | 18.9 | 389028   | 7200         | 6.3  | 639001   |
| codbt05  | 7200         | 5.6  | 1035046  | 150          | 0.0  | 23059    |
| codbt33  | 8            | 0.0  | 1049     | 1            | 0.0  | 14       |
| codbt42  | 89           | 0.0  | 84039    | 4            | 0.0  | 2141     |
| codbt61  | 8            | 0.0  | 1833     | 1            | 0.0  | 61       |
| cov1053  | 7200         | 5.9  | 1495461  | 2234         | 0.0  | 448008   |
| cov1054  | 7200         | 2.0  | 191970   | 7200         | 2.0  | 169371   |
| cov1075  | 7200         | 6.4  | 1505168  | 57           | 0.0  | 12227    |
| cov954   | 64           | 0.0  | 36563    | 3            | 0.0  | 1351     |
| sts27    | 0            | 0.0  | 3532     | 0            | 0.0  | 1307     |
| sts45    | 10           | 0.0  | 59890    | 6            | 0.0  | 28775    |
| sts63    | 1585         | 0.0  | 7692765  | 736          | 0.0  | 3607609  |
| sts81    | 7200         | 13.1 | 23933498 | 7200         | 11.5 | 23415204 |

### Football Fail!

- Orbital Branching and Isomorphism Pruning solve codbt05 super fast
- The football pool problem is codbt06
- These methods (by themself) fail to make progress on the football pool problem



#### Key Idea!

- Enumerate "necessary conditions" for there to exist an optimal solution (code) of value/cardinality M
- If for each "necessary" condition, no such code of value M exists...
- ullet The smallest code must be of cardinality at least M+1

# Necessary Conditions by Subcode Enumeration

- Partition 729 outcomes (or tickets) W
   by the outcome of the first match
- $W = W_0 \cup W_1 \cup W_2$
- $w \in W_0$  covers 11 outcomes in  $W_0$
- Ticket  $w \in W_1$  covers 1 outcome in  $W_0$
- Ticket  $w \in W_2$  covers 1 outcome in  $W_0$
- An optimal "code" C\* (solution to the problem) has
  - $C_0^* \subset W_0$ ,  $|C_0^*| \stackrel{\text{def}}{=} y_0$
  - $C_1^* \subset W_1$ ,  $|C_1^*| \stackrel{\text{def}}{=} y_1$
  - $C_2^* \subset W_2$ ,  $|C_2^*| \stackrel{\text{def}}{=} y_2$

So if a code of size
 |C\*| = M exists, then it
 must satisfy

### Covering System

$$\begin{array}{rcl}
11y_0 + y_1 + y_2 & \geq & 243 \\
y_0 + 11y_1 + y_2 & \geq & 243 \\
y_0 + y_1 + 11y_2 & \geq & 243 \\
y_0 + y_1 + y_2 & = & M
\end{array}$$

# Sequence IP $(M, y_0, y_1, y_2)$

- Enumerate *all* (non-isomorphic) integer solutions  $(y_0, y_1, y_2)$  to the covering system
- Then solve...

$$\min \mathbf{1}^{\top} \boldsymbol{x}$$

s.t. 
$$Ax \ge 1$$
  
 $\sum_{i \in W_0} x_i = y_0$   
 $\sum_{i \in W_1} x_i = y_1$   
 $\sum_{i \in W_2} x_i = y_2$   
 $1^T x \le M$   
 $x \in \{0,1\}^{|W|}$ 

#### Improving the Lower Bound

- Solve for every (enumerated) sequence: (y<sub>0</sub>, y<sub>1</sub>, y<sub>2</sub>).
- If you find no solution, then M+1 is a valid lower bound

# Results of Preprocessing/Enuemration

 In the end, after even more tricks, we are left the following number of difficult, symmetric, integer programs to solve:

| M  | #sequences | Modified #Sequences |
|----|------------|---------------------|
| 65 | 0          | 0                   |
| 66 | 797        | 7                   |
| 67 | 1,723      | 13                  |
| 68 | 3,640      | 45                  |
| 69 | 7,527      | 102                 |
| 70 | 13,600     | 176                 |
| 71 | 24,023     | 264                 |
| 72 | 40,431     | 393                 |
|    |            | 1000                |

- Solving M = 66, 67, 68 IPs takes less than a week on a single CPU with isomorphism pruning.
- Other instances are (quite) difficult  $\Rightarrow$  we need a BIG computer

# Is This Big Enough For You?

| Site                     | Access Method            | Arch/OS      | Machines |
|--------------------------|--------------------------|--------------|----------|
| Wisconsin - CS           | Flocking                 | x86_32/Linux | 975      |
| Wisconsin - CS           | Flocking                 | Windows      | 126      |
| Wisconsin - CAE          | Remote submit            | x86_32/Linux | 89       |
| Wisconsin - CAE          | Remote submit            | Windows      | 936      |
| Lehigh - COR@L Lab       | Flocking                 | x86_32/Linux | 57       |
| Lehigh - Campus desktops | Remote Submit            | Windows      | 803      |
| Lehigh - Beowulf         | $ssh + Remote \; Submit$ | ×86_32       | 184      |
| Lehigh - Beowulf         | $ssh + Remote \ Submit$  | ×86_64       | 120      |
| OSG - Wisconsin          | Schedd-on-side           | x86_32/Linux | 1000     |
| OSG - Nebraska           | Schedd-on-side           | x86_32/Linux | 200      |
| OSG - Caltech            | Schedd-on-side           | x86_32/Linux | 500      |
| OSG - Arkansas           | Schedd-on-side           | x86_32/Linux | 8        |
| OSG - BNL                | Schedd-on-side           | x86_32/Linux | 250      |
| OSG - MIT                | Schedd-on-side           | x86_32/Linux | 200      |
| OSG - Purdue             | Schedd-on-side           | x86_32/Linux | 500      |
| OSG - Florida            | Schedd-on-side           | x86_32/Linux | 100      |

## Computational Grid, cont.

| Site        | Access Method | Arch/OS      | Machines |
|-------------|---------------|--------------|----------|
| TG - NCSA   | Flocking      | x86_32/Linux | 494      |
| TG - NCSA   | Flocking      | x86_64/Linux | 406      |
| TG - NCSA   | Hobble-in     | ia64-linux   | 1732     |
| TG - ANL/UC | Hobble-in     | ia-32/Linux  | 192      |
| TG - ANL/UC | Hobble-in     | ia-64/Linux  | 128      |
| TG - TACC   | Hobble-in     | x86_64/Linux | 5100     |
| TG - SDSC   | Hobble-in     | ia-64/Linux  | 524      |
| TG - Purdue | Remote Submit | x86_32/Linux | 1099     |
| TG - Purdue | Remote Submit | x86_64/Linux | 1529     |
| TG - Purdue | Remote Submit | Windows      | 1460     |
|             |               |              | 19,012   |
|             |               |              |          |

#### Grid 2.0

Grid technology has realy "taken off," since now I need two slides to list all of my resources

### Jealous?

- 19,012 processors sounds great, but sadly they aren't all mine.
- I can only use them when other, more important people aren't using them.
- This is the whole notion behind a concept called the computational grid
- Condor provides infrastructure for doing this type of computing.
- But still need to control the branch and bound algorithm.
- Computations must be flexible—fault tolerant and dynamic.
- Master-Worker: Isomorphism-Pruning enhanced branch and bound code was parallelized using software using MW.

## Large Scale Computation

 We solved the (symmetric) IPs on this collection of machines over a period of a few months

|                     | M = 69                | M = 70                |
|---------------------|-----------------------|-----------------------|
| Avg. Workers        | 555.8                 | 562.4                 |
| Max Workers         | 2038                  | 1775                  |
| Worker Time (years) | 110.1                 | 30.3                  |
| Wall Time (days)    | 72.3                  | 19.7                  |
| Worker Util.        | 90%                   | 71%                   |
| Nodes               | $2.85 \times 10^{9}$  | $1.89 \times 10^{8}$  |
| LP Pivots           | $2.65 \times 10^{12}$ | $1.82 \times 10^{11}$ |

# Simultaneous Workers, M = 71 attempt



## Why Did I Stop, You Ask?

### Global Warming Is All My Fault

- 200 CPU Years = 1.752M CPU Hours.  $\approx$  500 W per CPU hour  $\Rightarrow$  876 MWH for the calculation.
- ullet Roughly 1.1388 million pounds (569 tons) of CO2 produced

#### Car Travel

- Prius produces around one ton of CO2 for 5988 miles
- → I could dive my Prius about 3.4 million miles.





"Don't worry about that."

—Arnold, on the environment

#### Conclusions

- Don't blame Jeff for the cold.
- Some Symmetric IPs are still very difficult
- One may branch on any variable and still do isomorphism pruning.
- Still more work to determine how to best exploit this flexibility

### Thank you!

Any Questions?



## Arnold Non Sequitur

"Milk is for babies. When you grow up you have to drink beer."

— ARNOLD SCHWARZENEGGER, Pumping Iron



### **Publications**

- J. Linderoth, F. Margot, and G. Thain, "Improving Bounds on the Football Pool Problem via Symmetry Reduction and High-Throughput Computing", INFORMS Journal on Computing, 21:445-457, 2009.
- J. Ostrowski, J. T. Linderoth, F. Rossi, and S. Smriglio, "Orbital Branching," *Mathematical Programming*, 126:147-178, 2011.
- J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio, "Constraint Orbital Branching", IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 5035, 225-239, 2008.
- J. Ostrowski, J. T. Linderoth, F. Rossi, and S. Smriglio, "Solving Large Steiner Triple Covering Problems," *Operations Research* Letters, 39:127-131, 2011.
- J. Ostrowski, J. Linderoth, F. Margot, "Flexible Isomorphism Pruning," Working paper.