Mecânica e Campo Eletromagnético 2017/2018 – parte 1

Luiz Pereira

luiz@ua.pt

Tópicos

- Informações Gerais: conteúdos e avaliação
- Cinemática de massas pontuais
 - Grandezas cinemáticas: generalização 3D
 - Posição e trajectória
 - Deslocamento e distância
 - Velocidade e aceleração
 - Equações do movimento obtidas a partir do cálculo
 - · Casos particulares de movimento rectilíneo
 - Uniforme
 - · Uniformemente acelerado e retardado
 - Movimento de projéteis no plano
 - · Caso particular de movimento curvilíneo descrito em coordenadas retangulares
 - Exemplos de aplicação

Avaliação Teórico-Prática - Contínua (optativa: Final)

É obrigatória a inscrição no PACO para avaliação final (até 13 de Outubro)

- Avaliação ContínuaTrês avaliações
- 25% Laboratório + 75% TTP
 TTP: 15% AC1 + 15% AC2 + 70% Teste Final
- Exame Final
- 25 % Laboratório + 75% Exame Final

- AC1 (1h) : semana de 16 a 20 Outubro
- AC2 (1h): semana de 13 a 17 de Novembro
- Teste Final (2h): data provisória: 13 de Dezembro
- Laboratório
 - Notas anteriores desde 2013/14 válidas
- 40% AC + 60% RI

Reprovação para faltas > 20% das aulas

Programa

- Capítulo 1. Fundamentos de Mecânica Clássica1.1. Movimento Retilíneo 1D, 2D e 3D
 - 1.1. Cinemática da partícula
 - 1.2. Dinâmica da partícula
 - 1.3. Trabalho e Energia
 - 1.4. Dinâmica de um sistema de partículas
- Capítulo 2 Sistemas oscilatórios

Programa

- Capítulo 3 Campos elétrico e magnético
 - 3.1. Campo elétrico
 - 3.2. Potencial elétrico
 - 3.3. Lei de Gauss
 - 3.4. Capacidade e condensadores
 - 3.5. Corrente elétrica e resistência
 - 3.6. Campo magnético
 - 3.7. Indução Eletromagnética
 - 3.8. Equações de Maxwell
- Capítulo 4 Fenómenos ondulatórios

6

Trabalhos de Laboratório

1.ª Série – MECÂNICA

- 1 Dinâmica de Translação (movimento linear)
- 2 Lançamento de Projéteis (movimento a duas dimensões)
- 3 Dinâmica de Rotação (mecânica do corpo rígido e rotação)

2.º Série – CAMPO ELECTROMAGNÉTICO

- 4 Condensador de placas paralelas (campo elétrico)
- 5 Circuitos elétricos: Leis de Kirchoff (corrente elétrica e potencial)
- 6 Bobinas de Helmoltz (campo magnético)

Bibliografia recomendada

- Dossier pedagógico da Unidade Curricular.
- Apontamentos on-line da Unidade Curricular (http://elearning.ua.pt/) e referência incluídas.
- R. A. Serway Physics for Scientists and Engineers with Modern Physics, Saunders Golden Sunburst Series.
- P.A. Tipler e G. Mosca Física, Vol I, 5ª ed, Livros técnicos e Científicos Editora, S.A, Rio de Janeiro, 2006.
- Alonso & Finn- Física um curso universitário, Vol I e II, Edgard Bluecher.
- C. Kittel et al.- Curso de Fisica de Berkeley : Mecânica, Vol 1, Edgard Bluecher.
- H. J. Pain, The physics of Vibrations and Waves, Ed. Wiley.
- R. Resnick e D. Halliday Física, 4ª ed, Livros Técnicos e Científicos Editora.
- R. Kip, Fundamentals of Electricity and Magnetism, McGraw Hill.

8

A **Mecânica** é a ciência do movimento. Consiste num conjunto de regras e princípios que se aplicam a todos os tipos de movimento.

Para a análise e previsão dos movimentos, resultantes de interações conhecidas, foram criados conceitos importantes, como:

- > Quantidade de movimento
- > Força
- > Energia

No entanto, o principio da descrição do movimento baseia-se na cinemática...

Cinemática

- Objetivo: descrever o movimento independentemente das causas que o provocam
 - Reconhecer a diferença entre posição, espaço e deslocamento
 - Reconhecer a diferença entre velocidade e aceleração
 - Identificar movimento acelerado e retardado
 - Ser capaz de determinar o deslocamento, velocidade e aceleração usando equações do movimento
 - Interpretar gráficos posição vs tempo, velocidade vs t e aceleração vs t

10

Estado de Movimento

- Referencial em relação ao qual o movimento é analisado
- **Vetor posição**: fornece a posição da partícula em qualquer instante [t, $\vec{r}(t)$]

.1

Posição e Trajetória

- Trajetória lugar geométrico dos pontos ocupados por um ponto material (partícula) P ao longo do tempo (Ex. 2D)
- Deslocamento grandeza vetorial, variação na posição,

12

Posição e Trajetória (ex. 3D)

- Sistema de coordenadas cartesianas: posição de uma massa pontual M relativamente à origem
- Posição

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$$
$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

Vetores unitários:

versores

$$\hat{i}, \hat{j}, \hat{k}$$

Deslocamento e distância

14

Velocidade

Velocidade média

[L]/[T] m/s $\vec{v}_{m\acute{e}d} = \frac{\Delta \vec{r}(t)}{\Delta t}$ $\vec{v}_{m\acute{e}d} = \frac{\Delta \vec{r}(t)}{\Delta t}$

Velocidade

• Velocidade instantânea

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} =$$

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \frac{d}{dt} \left(x\hat{i} + y\hat{j} + z\hat{k} \right)$$

$$= v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

16

Posição, obtida pelo cálculo integral

• Dado que

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt}$$

Então

$$\vec{r}(t) = \int_{t_0}^{t} \vec{v}'(t') dt' + \vec{r}(t_0)$$

$$\vec{r}(t) = \left[\int_{t_0}^{t} v_x(t') dt' + x(t_0)\right] \hat{i} + \left[\int_{t_0}^{t} v_y(t') dt' + y(t_0)\right] \hat{j} + \left[\int_{t_0}^{t} v_z(t') dt' + z(t_0)\right] \hat{k}$$

$$\vec{r}(t) - \vec{r}(t_0) = \int_{t_0}^{t} \vec{v}'(t') dt'$$

Aceleração

Aceleração média

m/s²

$$\vec{a}_{m\acute{e}d} = \frac{\Delta \vec{v}(t)}{\Delta t}$$

18

Aceleração

• Aceleração instantânea

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} =$$

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d}{dt} \left(v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \right)$$

$$= a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d^2\vec{r}(t)}{dt^2}$$

Velocidade, obtida pelo cálculo integral

Dado que

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt}$$

Então

$$\vec{v}(t) = \int_{t_0}^{t} \vec{a}'(t') dt' + \vec{v}(t_0)$$

$$\vec{v}(t) = \left[\int_{t_0}^{t} a_x(t') dt' + v_x(t_0)\right] \hat{i} + \left[\int_{t_0}^{t} a_y(t') dt' + v_y(t_0)\right] \hat{j} + \left[\int_{t_0}^{t} a_z(t') dt' + v_z(t_0)\right] \hat{k}$$

$$\vec{v}(t) - \vec{v}(t_0) = \int_{t_0}^{t} \vec{a}'(t') dt'$$

Aceleração

- Traduz a variação do vetor velocidade por intervalo de tempo
- Não tem que ter o sentido do movimento

Velocidade e Aceleração

• MRU

MRUA

MRUR

22

Casos particulares de movimento a 1D (retilíneo)

Casos particulares de movimento a 1D (retilíneo)

e não correlacionados

Casos particulares de movimento a 1D (retilíneo)

Uniforme (v=c^{te})

12

 $Ex.: \vec{a}(t) = a(t)\hat{i}$

Casos particulares de movimento a 1D (retilíneo)

2) <u>Uniformemente variado</u> (a = c^{te}): acelerado ou retardado

$$a(t) = \frac{dv(t)}{dt}$$

$$x(t) - x(t_0) = \int_{t_0}^t v(t')dt'$$

$$x(t) - x(t_0) = \int_{t_0}^t \left[v_0 + a(t'-t_0)\right]dt'$$

$$x(t) - x(t_0) = v_0 \int_{t_0}^t dt' + a \int_{t_0}^t (t'-t_0)dt'$$

$$x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}(t - t_0)^2$$

26

Casos particulares de movimento a 1D (retilíneo)

• Uniformemente variado (a = cte): acelerado ou retardado

Eliminando t:

$$\begin{cases} x = x_0 + v_o t + \frac{1}{2}at^2 \\ v = \frac{dx}{dt} = v_o + at \end{cases}$$

$$\begin{cases} v = v_0 + at \Rightarrow t = \frac{v - v_0}{a} \\ substitutindo\ em\ x = x_0 + v_o t + \frac{1}{2}at^2 \end{cases}$$

$$v^2 = v_o^2 + 2a\left(x - x_o\right)$$

Casos particulares de movimento a 1D (retilíneo)

Uniformemente variado (a = c^{te}): acelerado (retardado)

 $v^2 = v_o^2 + 2a(x - x_o)$

http://www.PhysicsClassroom.com

Valores arbitrários e não correlacionados

28

Casos particulares de movimento a 1D (retilíneo)

• Uniformemente variado (a = cte): acelerado

Cálculo de v-v₀

Cinemática 3D (equações cinemáticas)

Genericamente

Movimento curvilíneo geral

Componentes tangencial e normal

- Quando uma partícula se movimenta ao longo de uma trajetória curvilínea por vezes é conveniente descrever o movimento usando sistemas de coordenadas distintas das cartesianas.
- Quando a trajetória do movimento é conhecida são frequentemente utilizadas as coordenadas nas direções tangente, t, e normal, n, à trajetória

□ *t* – sempre na direção do movimento

 \square *n* – perpendicular ao 1º e sempre dirigido para o centro de curvatura

Movimento curvilíneo geral

Componentes tangencial e normal

- O centro de curvatura O' localiza-se sempre do lado côncavo da trajetória; o raio de curvatura ρ é definido como a distância, medida na perpendicular, da curva ao centro de curvatura num dado ponto.
- A posição da partícula, em qualquer instante, pode ser descrita por uma só coordenada medida sobre a curva a partir de uma origem fixa, igual ao comprimento do arco, s(t).

Versores unitários $\hat{\mathbf{u}}_{t}, \hat{\mathbf{u}}_{n}$

32

Movimento curvilíneo geral

Componentes tangencial e normal

 A velocidade da partícula tangente à trajetória em qualquer instante será:

$$\vec{v}(t) = \frac{ds}{dt}\hat{u}_t = v \,\hat{u}_t$$

Movimento curvilíneo geral

Componentes tangencial e normal

- Num dado intervalo de tempo dt a partícula movimenta-se de A para B
- O incremento da variável da trajetória s corresponde a

$$ds = r d\theta$$

A intensidade da velocidade é então

$$v = \frac{ds}{dt} = r\frac{d\theta}{dt}$$

34

Movimento curvilíneo geral

Componentes tangencial e normal

 O vetor velocidade é tangente à trajetória em qualquer instante

$$\vec{v} = v \, \hat{u}_t$$

$$com$$

$$v = \frac{ds}{dt} = r \frac{d\theta}{dt}$$

Movimento curvilíneo geral

Componentes tangencial e normal

- Para determinar o vetor aceleração temos que diferenciar o vetor velocidade.
- O vetor aceleração reflete a alteração na intensidade, direção e sentido da velocidade

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left[v \, \hat{u}_t \right] = \frac{dv}{dt} \, \hat{u}_t + v \, \frac{d\hat{u}_t}{dt}$$

$$\frac{d\hat{u}_t}{dt} = \frac{d\theta}{dt}\hat{u}_n$$

36

Movimento curvilíneo geral

Componentes tangencial e normal

Assim, e como $v = r \frac{d\theta}{dt}$ então

$$\vec{a}(t) = \frac{dv}{dt}\hat{u}_t + v\frac{d\hat{u}_t}{dt}$$

$$\vec{a}(t) = \frac{dv}{dt}\hat{u}_t + \frac{v^2}{r}\hat{u}_n \iff \vec{a}(t) = a_t\hat{u}_t + a_n\hat{u}_n$$

$$com$$

$$a_t = \frac{dv}{dt}$$

$$a_n = \frac{v^2}{r}$$

$$a = \sqrt{a^2 + a^2}$$

Aceleração

Componentes normal e tangencial do vetor aceleração

a

 Traduz a variação no módulo do vector velocidade

.0

 a_{N}

■ Traduz a variação na direcção do vector velocidade

Aceleração

38

Movimento curvilíneo geral

Casos particulares:

1. Movimento retilíneo

$$a_n = \frac{at}{a_n}$$

Aceleração

Módulo de v varia (a $_t$ paralela à velocidade) Direção do vetor velocidade não se altera e ρ é infinito

Movimento curvilíneo geral

Casos particulares:

2. Movimento ao longo de uma curva com v=cte

Módulo de v não varia (a_t nula) a_n representa a variação no tempo da direção e sentido do vetor velocidade

40

Movimento curvilíneo geral

Casos particulares:

2. Movimento ao longo de uma curva com v=cte

$$a_t = \frac{dv}{dt} = 0$$

$$a_n = \frac{v^2}{R}$$

Movimento circular uniforme

Movimento curvilíneo geral

Casos particulares:

3. Componente tangencial $a_t = c^{te}$

$$\vec{a}(t) = a_t \hat{u}_t + a_n \hat{u}_n$$

Aceleração

Neste caso, e segundo esta direcção, tem-se

$$D(t) = D_0 + v_o(t - t_0) + \frac{1}{2}a_t(t - t_o)^2$$

$$v(t) = v_0 + a_t(t - t_0)$$

$$v^2 = v_0^2 + 2a_t(D - D_0)$$

42

Movimento curvilíneo geral

Coordenadas polares

Uma outra opção na descrição do movimento consiste em localizar a partícula através da distância radial, r e a posição angular θ em relação a uma direção fixa.

$$\vec{r}(t) = r \ \hat{u}_r$$

Versores unitários $\,\hat{u}_{r}^{},\,\hat{u}_{ heta}^{}$

Movimento Circular: Posição angular

Grandezas angulares

 Para este tipo de movimento (caso particular do movimento curvilíneo geral) a distância (comprimento do arco) s, o raio R e o ângulo θ relacionam-se por

$$\theta = \frac{s}{R}$$

 θ >0 no sentido contrário ao sentido dos ponteiros de um relógio (anti horário) a partir da linha de referência

 $1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$

θ é medido em radiano

$$\theta_{rad} = \frac{\pi}{180} \theta_{graus}$$

Movimento Circular: Velocidade angular média

Grandezas angulares

À medida que o corpo roda θ altera-se com o tempo.
 Podemos definir o deslocamento angular Δθ, como

$$\Delta\theta = \theta_f - \theta_i$$

 O que nos permite estabelecer a velocidade angular média como

$$\omega_{m\acute{e}d} = rac{\Delta heta}{\Delta t} = rac{ heta_f - heta_i}{t_f - t_i}$$

$$rad/s = s^{-1}$$

$$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$$

Movimento Circular: Velocidade angular instantânea

Grandezas angulares

velocidade angular instantânea

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

$$rad/s = s^{-1}$$

- ω >0 para uma rotação no sentido anti horário
- ω <0 para uma rotação no sentido horário

Movimento Circular: Período do movimento

Movimento periódico

 O período do movimento, T, corresponde ao tempo que a partícula demora a efetuar uma rotação completa

$$\omega = \frac{2\pi}{T}$$

$$T = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$
 $f = \frac{1}{T}$ $\mathbf{s}^{\text{-1}} = \mathbf{H}\mathbf{z}$

Movimento Circular: Aceleração angular média e instantânea

Grandezas angulares

Podemos definir,

$$\alpha_{m\acute{e}d} = \frac{\Delta\omega}{\Delta t} = \frac{\omega_f - \omega_i}{t_f - t_i}$$

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta\omega}{\Delta t} = \frac{d\omega}{dt}$$

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

$$rad/s^2 = s^{-2}$$

Movimento Circular Uniforme

Grandezas angulares versus grandezas lineares

$$\omega = c^{te}$$

$$\omega = \frac{d\theta}{dt}$$

$$\theta(t) - \theta(t_0) = \int_{t_0}^{t} \omega(t') dt'$$

$$\theta(t) = \theta_0 + \omega \int_{t_0}^{t} dt'$$

$$\theta(t) = \theta_0 + \omega (t - t_0)$$

$$s = R\theta$$

Movimento Circular Uniformemente acelerado ou retardado

Grandezas angulares versus grandezas lineares

$$\alpha = c^{te}$$

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

$$\omega(t) - \omega(t_0) = \int_{t_0}^{t} \alpha(t') dt'$$

$$\omega(t) = \omega_0 + \omega \int_{t_0}^{t} dt'$$

$$\omega(t) = \omega_0 + \alpha (t - t_0)$$

$$v = R\omega$$

$$\frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

$$\frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

$$\omega(t) - \omega(t_0) = \int_{t_0}^{t} \alpha(t')dt'$$

$$\omega(t) = \omega_0 + \omega \int_{t_0}^{t} dt'$$

$$\omega(t) = \omega_0 + \alpha(t - t_0)$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

Movimento Circular versus movimento linear

Linear	Circular (Rotação)
x	θ
v	ω
а	α
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
$v^2 = v_0^2 + 2a(x - x_0)$	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$

Movimento Circular:

Grandezas angulares versus grandezas lineares

$$v = \frac{ds}{dt} = \frac{d}{dt}(R\theta) = \omega R$$

$$a_n = \frac{v^2}{R} = \omega^2 R$$

$$a_t = \frac{dv}{dt} = \frac{d}{dt}(\omega R) = \alpha R$$

