

Tutorium 2

Betrag

reeller Zahl:
$$|x| = \sqrt{x^2}$$
 $x = -2$

komplexe Zahl:
$$|z| = \sqrt{z \cdot z^*}$$
 $z = -4 + 3i$

Aufgabe a)

Aufgabe b)

$$|-2| = 2$$

$$|-4+3i|=5$$

Darstellungsform von komplexen Zahlen

Alle Darstellungsformen

•
$$z = x + iy$$

•
$$z = |z| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

•
$$z = |z| \cdot e^{i\varphi}$$

Formel von Euler

$$e^{i\varphi} = \cos(\varphi) + i \cdot \sin(\varphi)$$

Formel von De Moivre

$$(\cos(\varphi) + i \cdot \sin(\varphi))^n = \cos(n\varphi) + i \cdot \sin(n\varphi)$$

Rechnen

$$(i+1)^4 = ?$$

$$4 \cdot e^{i\pi} = -4$$

Gleichung lösen

$$z^4 - 1 = 0$$

$$z_1 = 1$$

$$z_2 = -1$$

$$z_3 = i$$

$$z_4 = -i$$

Aufgabe

8. Bestimmen Sie alle komplexen Lösungen für die gilt:

a)
$$z^{3} = -i$$

b)
$$z^5 - 5 + 8i$$

Aufgabe a)

$$z_1 = e^{i\frac{1}{2}\pi}$$

$$z_2 = e^{i(\frac{1}{2}\pi + \frac{2}{3}\pi)} = e^{i\frac{7}{6}\pi}$$

$$z_3 = e^{i(\frac{1}{2}\pi + \frac{4}{3}\pi)} = e^{i\frac{11}{6}\pi}$$

Aufgabe

Wie lauten die Lösungen der folgenden Gleichungen? 8)

a)
$$z^{3} = 1$$

b)
$$z^4 = 16 \cdot e^{j \cdot 160^\circ}$$

a)
$$z^3 = j$$
 b) $z^4 = 16 \cdot e^{j \cdot 160^{\circ}}$ c) $z^5 = 3 - 4j$

Skizzieren Sie die Lage der zugehörigen Zeiger in der Gaußschen Zahlenebene.

LÖSUNG

Aufgabe a)

$$z_1 = e^{i\frac{1}{6}\pi}$$

$$z_2 = e^{i(\frac{1}{6}\pi + \frac{2}{3}\pi)} = e^{i\frac{5}{6}\pi}$$

$$z_3 = e^{i(\frac{1}{6}\pi + \frac{4}{3}\pi)} = e^{\frac{9}{6}\pi}$$

Aufgabe b)

$$z_1 = 2 \cdot e^{i\frac{2}{9}\pi}$$

$$z_2 = 2 \cdot e^{i(\frac{2}{9}\pi + \frac{2}{4}\pi)} = 2 \cdot e^{i\frac{13}{18}\pi}$$

$$z_3 = 2 \cdot e^{i(\frac{2}{9}\pi + \frac{4}{4}\pi)} = 2 \cdot e^{i\frac{11}{9}\pi}$$

Aufgabe c)

$$z_1 = \sqrt[5]{5} \cdot e^{i5,35}$$

$$z_2 = \sqrt[5]{5} \cdot e^{i(5,35 + \frac{2}{5}\pi)} \approx \sqrt[5]{5} \cdot e^{i6,6066} \approx \sqrt[5]{5} \cdot e^{i0,3235}$$

$$z_3 = \sqrt[5]{5} \cdot e^{i(5,35 + \frac{4}{5}\pi)} \approx \sqrt[5]{5} \cdot e^{i7,8632} \approx \sqrt[5]{5} \cdot e^{i1,5801}$$

$$z_4 = \sqrt[5]{5} \cdot e^{i(5,35 + \frac{6}{5}\pi)} \approx \sqrt[5]{5} \cdot e^{i9,1199} \approx \sqrt[5]{5} \cdot e^{i2,8367}$$

$$z_5 = \sqrt[5]{5} \cdot e^{i(5,35 + \frac{8}{5}\pi)} \approx \sqrt[5]{5} \cdot e^{i10,3765} \approx \sqrt[5]{5} \cdot e^{i4,1236}$$

Aufgabe

1. (a) Bestimmen Sie die kartesische Form von

$$z = \frac{(1+2i)(1-2i)}{3+(1+i)^2}.$$

(b) Bestimmen Sie sämtliche komplexen Lösungen der Gleichung

$$(z-2i)(z+1+i)^3 = -8z+16i.$$

(c) Skizzieren Sie in der Gaußschen Zahlenebene die Menge aller komplexen Zahlen z = x+iy, die die folgenden drei Bedingungen erfüllen:

$$|z - 2| \ge 1$$
, $|2\operatorname{Re}(z) - 1| \ge 1$ und $(\operatorname{Im}(z))^2 \le 1 + \operatorname{Re}(z)$.

Aus Ihrer Skizze sollte man erkennen, ob Randpunkte zur Menge gehören oder nicht.

Rechnen

1. (a) Bestimmen Sie die kartesische Form von

$$z = \frac{(1+2i)(1-2i)}{3+(1+i)^2}.$$

$$z = \frac{15 - 10 \cdot i}{13}$$