Self-organizing map Juraj Mašlej Project2

1. Implenentation of SOM: we used our implementation from lecture

2. Parameters:

Map size

We used different map sizes, mostly of square topology.

Metric

We had implemented 3 different metric functions on lecture, for project we choose to use 1 max.

$$1_{\max}(a, b) = \max(a[0] - y[b], a[1] - b[1])$$

Alpha, Lambda

As for alpha_s we experimented with values between 0.2 and 0.8, for alpha_f we used 0.01. Regarding lambda, we used 0.1 for lambda_f, lambda_s was dependent of map size, lambda_s = metric(diagonal distance in map) * 0.5

3. Params used for graph-generating data:

metric = l_max epochs = 100alpha_s = 0.7alpha_f = 0.01lambda f = 0.1

4. Graphs:

<u>4.1. Counts</u>

size = how many times neuron was activated color = for which class of data is neuron being activated

4.2. Average adjustment of neuron positions per epoch

4.3. Average quantization error per epoch

4.4. Heatmaps, sorted by atributes 1 to 7

Heatmap for atribute 1.

Heatmap for atribute 2.

Heatmap for atribute 3.

Heatmap for atribute 4.

Heatmap for atribute 5.

Heatmap for atribute 6.

4.5. U-matrices, horizontal and vertical

Horizontal

Vertical

