INFERENCES - RESEAUX DE NEURONES LOIS PHYSIQUES

K. KADI - R. GAYNO R. LEMORE - I. FAILLE 17-04-2023

LOIS - ARCGEOSIM - APPLICATIONS

LOIS PHYSIQUE API

Conteneurs: Variables Tableaux... Un support:
Un tableau
Tout le maillage
Une zone...

Inférence sur un réseau de neurones entrainé

Fonction:
En un point
En une maille...

Variables Manager (P,RHO,MU...)

Evaluateur

Fonctions Manager RHO=f(P,T)...

SÉLECTION D'UN FRAMEWORK D'INFÉRENCE C++

SÉRIALISATION ET INFERENCES

Sérialiser :

écrire le modèle d'une manière sérielle structurée sous forme de dictionnaire

• Inférer :

désérialiser le modèle et de le remettre sous sa forme initiale de graph puis de faire des prédictions avec différentes entrées et obtenir les réponses

Création et entraînement en Python

PyTorch, TensorFlow

Formats

.pt, .pb, .onnx

Inférence C++
Torch,

TensorFlow,

ONNXRuntime

PLATEFORME DE BENCHMARK

ENTRAINEMENT: PYTORCH, TENSORFLOW...

PLATEFORME DE BENCHMARK

INFERENCE: TORCH, TENSORFLOW, ONNXRUNTIME...

MODÈLE NON LINÉAIRE FONCTION DU BATCH SIZE (MONDELE:NL 1-4-16-32-1)

SCALABILITE MPI (MONDELE:NL 1-4-16-32-1, BATCH SIZE=10E8)

ONNXRUNTIME

TENSORFLOW TORCH inference_0 --- inference_1 --- inference_2 -----inference_1 -----inference_2 ----inference_3 -----inference_4 -----inference_5 ——inference_3 ——inference_4 ——inference_5 inference_6 inference_7 inference_8 inference_6 inference_7 inference_8 100 100 LATENCY (S) LATENCY (S) 10 0,1 12 20 24 12 MPI PROCS MPI PROCS

PROFILAGE MÉMOIRE

SCALABILITE NOMBRE DE COUCHE DU DNN (2-10N-2)

SCALABILITÉ SUR GPU

Finergies nouvelles

LOI DNN « GETUP » DANS GEOXIM

LAWS GEOXIM: SOLID PHASE ELASTIC PROPERTIES

- Elastic properties : computation in several stages
- lacksquare Solid System bulk and shear moduli (K_S, G_S)
 - Standard averages

 - Voigt bound (arithmetic) : $M_v = \sum_{\alpha \ solid \ phase} F_{\alpha} M_{\alpha}$ Reuss bound (harmonic) : $\frac{1}{M_{\rm R}} = \sum_{\alpha \ solid \ phase} F_{\alpha} \frac{1}{M_{\alpha}}$
 - Voigt-Reuss-Hill average $M_{VRH} = \frac{1}{2}(M_v + M_R)$
 - If no Reactive Transport
 - SolidElasticModuliLawConfig
 - Solid elastic properties are given in tables
 - With reactive Transport
 - GeochemicalSolidElasticModuliLawConfig
 - Inputs are implicitly defined
 - Pure Mineral Elastic properties are defined in a database
 - Defined in <external-data>
 - With mandatory columns Young and Poisson
 - Mapping between minerals of the database and geochemical minerals

```
<geoxim-law name="SolidElasticModuliLawConfig">
    <input>
        <rock-volume-fraction>[Phase]Rock::VolumeFraction</rock-</pre>
volume-fraction>
    </input>
    <parameters>
        <homogeneisation-method>Voigt</homogeneisation-method>
        <table-poisson-coefficient>0.3</table-poisson-coefficient>
        <table-young-modulus>10.e+9</table-young-modulus>
   </parameters>
</geoxim-law>
```

```
<geoxim-lawname="GeochemicalSolidElasticModuliLawConfig">
  <parameters>
   <homogeneisation-method>VoigtReussHill</homogeneisation-method>
    <mechanical-database>dtbMeca</mechanical-database>
    <mineral-model-mapping>
      <!--Syntax : Mineral: MecaMineral -->
      <map>Calcite:Calcite</map>
      <map>QuartzA:Quartz</map>
     </mineral-model-mapping>
 </parameters>
</geoxim-law>
```

LAWS GEOXIM: ELASTIC PROPERTIES

- System bulk and shear moduli (K, G) knowing (ϕ, K_S, G_S)
 - Hashin-Shtrikman upper bound

$$K(\phi) = \frac{4K_SG_S(1-\phi)}{3K_S\phi + 4G_S} \quad G(\phi) = \frac{(1-\phi)G_S(9K_S + 8G_S)}{K_S(9+6\phi) + G_S(8+12\phi)}$$

- Service HashinShtrinkmanElasticModuliLawConfig
 - Implicit inputs and outputs
- Simple Law from Bemer et al 2004

$$K(\phi) = K_S \frac{1}{1 + \frac{\alpha_K \phi}{1 - \phi}}$$
 $G(\phi) = G_S \frac{1}{1 + \frac{\alpha_G \phi}{1 - \phi}}$

- Service ElasticModuliLawConfig
 - Implicit inputs and outputs
- Service ByZoneElasticModuliLawConfig
 - Similar with parameters defined by zones

```
<geoxim-law name="HashinShtrinkmanElasticModuliLawConfig">
 </geoxim-law>
<geoxim-law name="ElasticModuliLawConfig">
  <parameters>
    <alpha-bulk>7</alpha-bulk>
    <alpha-shear>12</alpha-shear>
    <max-acceptable-porosity>0.49/ max-acceptable-porosity>
  </parameters>
</geoxim-law
              <geoxim-law name="ByZoneElasticModuliLawConfig">
                  <parameter>
                    <zonation>[System]System::Facies</zonation>
                  </parameter>
                  <br/>
<br/>
by-zone-parameters>
                    <zone-id>1
                    <parameters>
                       <alpha-bulk>14</alpha-bulk>
                       <alpha-shear>8</alpha-shear>
                    </parameters>
                  </by-zone-parameters>
                  <br/>
<br/>
<br/>
dy-zone-parameters>
                    <zone-id>2</zone-id>
                    <parameters>
                      <alpha-bulk>14</alpha-bulk>
                      <alpha-shear>8</alpha-shear>
                    </parameters>
                  </by-zone-parameters>
```

</geoxim-law>

GETUP

- Intérêt pour les utilisateurs métiers
- Difficile à intégrer comme librairie d'ArcGeoSim
- Evaluation explicite de ces propriétés

GETUP

ECHANTILLONNAGE ET DATA SET

ENTRAINEMENT HYPERPARMETRES 2 MINERAUX

ENTRAINEMENT 2 ET 6 RESEAUX DE NEURONES « GETUP »

Matériaux	Neurones	3 layers	loss_train	loss_val
3	400	[256, 128, 16]	0.0006483	0.0006465
7	256	[64, 128 , 64]	0.1481	0.1497

TEST RESEAUX 3 INPUTS

INFERENCE ONNX DANS LES LOIS

config.xml
Compilation time

file .arc runtime

SIMULATION GEOXIM ERREUR ENTRE UNE TABLE* GETUP ET NOTRE RÉSEAU

	Module d'élasticité (K)	Module de cisaillement (G)
Erreur relative minimale	0.0%	0.0%
Erreur relative moyenne	0,111%	0,089%
Erreur relative maximale	4,360%	3,611%
Ecart type	0,427%	0,323%
Quantile d'ordre 95%	0,225%	0,278%

*table à pas constant de taille 30 x 30 Time in [0.0,0.49] s F_{Quartz} in [0.45, 0.585] m^3

ERREUR RESEAU DE NEURONES A HAUTES POROSITÉS

Erreur pour différents phi, en fonction de VFQuartz et VFCalcite

Erreur relative du réseau sur K en fonction de F_{Quartz} $F_{Calcite}$ pour phi \in [0.40, 0.45, 0.49] (Erreur en %)

- Erreur sensiblement plus haute à phi = 0.49
- Grande erreur pour $F_{Calcite} < 0.045$

ERREUR RESEAU DE NEURONES AU COURS DE LA SIMULATION GEOXIM

RESULTATS SIMULATION GETUP VS LOIS ANALYTIQES

Différences sur K en fonction du temps (incluant le déplacement x80) Différences sur G en fonction du temps (incluant le déplacement x80)

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- **y** @IFPENinnovation

