Todo:

- Aufgabe III 13 Verknüpfung von Relationen
- Rechenregeln Quantoren
- Injektiv, bijektiv, surjektiv
- Eulerkreise: Algorithmen
- Rechnregeln kartesisches Produkt L.5-3
- Kruskal, von Prim Algorithman
- Skizze "Wertemenge", "Definitionsbereich", "Bildmenge"

Martin Hediger, FHNW

1 Zahlenmengen

 $\mathbb{N}:=\{0,1,2,\ldots\}$ - natürliche Zahlen $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2,\ldots\}$ - ganze Zahlen $\mathbb{Q}:=\{\tfrac{m}{n}|m\in\mathbb{Z}\wedge n\in\mathbb{N}\wedge n\neq 0\}$ - rationale Zahlen $\mathbb{R}:=\{x|x\text{ als endlicher oder unendlicher Bruch darstellbar}\}$ - reelle Zahlen

2 Aussagenlogik

Α	В	$A \wedge B$	A	В	$\mid A \vee B$	A	В	$A \implies B$
0	0	0	0	0	0	0	0	1
0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	0
1	1	1	1	1	1	1	1	1
A	В	A ← B		·				
0	0	1						
0	1	0						
1	0	0						
1	1	1						

3 Mengenalgebra

3.1 Rechenregeln

Operatoren	$\cap/\cup \to AND/OR \to Konj/Disj$	
Idempotenz	$A \cap A = A$	$A \cup A = A$
Kommutativ	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Identität	$A \cap G = A$	$A \cup \emptyset = A$
	$A \cap \emptyset = \emptyset$	$A \cup G = G$
Assoziativ	$(A \cap B) \cap C = A \cap (B \cap C)$	
	$(A \cup B) \cup C = A \cup (B \cup C)$	
Absorption	$A \cap (A \cup B) = A$	$A \cup (A \cap B) =$
Distributiv	$A \cap (B \cup B) = (A \cap B) \cup (A \cap C)$	` ,
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
De Morgan	$(A \cap B)^c = A^c \cup B^c$	$(A \cup B)^c = A^c$
Komplementär	$A \cap A = \emptyset$	$A \cup A^{c'} = G$
•	$(A^c)^c = A$	
	$G^c = \emptyset$	
	$\emptyset^c = G$	
Teilmengen	$A \subseteq B \implies (A \cap B = A)$	
8.	$A \subseteq B \implies (A \cup B = B)$	
	$(A \subseteq B) \land (B \subseteq C) \Longrightarrow (A \subseteq C)$	

3.2 Definitionen

```
Vereinigung: A \cup B := \{x \in G | x \in A \lor x \in B\}
Schnitt: A \cap B := \{x \in G | x \in A \land x \in B\}
Differenz: A \setminus B := \{x \in G | (x \in A \land x \not\in B)\}
Sym Diff.: A \triangle B := \{x \in G | (x \in A \land x \not\in B) \lor (x \in B \land x \not\in A)\}
Complement: A^c := \{x \in G | x \not\in A\} = G \setminus A
Kart. Produkt: A \times B := \{(x,y) | x \in A \land y \in B\}
```

4 Relationen

Reflexivität: Jeder Knoten hat eine Schleife, $\forall x \in A: (x, x) \in R$. Kontrollieren: $(x, x) \in R$?

Symmetrie: Für jeden Pfeil gibt es einen Pfeil in Gegenrichtung (Schleifen siend gleichzeitig Pfeil uend Pfeil in Gegenrichtung). Kontrollieren $(x, y) \in R$ und $(y, x) \in R$?

 $\forall x, y \in A : ((x, y) \in R \implies (y, x) \in R)$

Antisymmetrie: Für jeden Pfeil, der nicht Schleife ist, gibt es keinen Pfeil in Gegenrichtung.

 $\forall x, y \in A : (x \neq y \land (x, y) \in R \implies (y, x) \notin R)$

Kontrollieren $(x,y) \in R$ und $(y,x) \notin R$? Falls ja ist es antisymmetrisch

Transitivität: Jeder Pfad entlang zweier Pfeile (mit gleichem Richtungssinn) hat einen abkürzenden Pfeil vom Anfangs- zum Endknoten des Pfades

 $\forall x, y, z \in A : ((x, y) \in R \land (y, z) \in R \implies (x, z) \in R)$

Beachten: für Transitivität ist erforderlich mind. zwei Paare $(x,y) \in R$ und $(y,z) \in R$ zu haben, ansonsten wäre Prämisse der Definition der Implikation nicht erfüllt. Wenn nicht zwei Paare vorhanden sind $\in R$, ist die Relation automatisch transitiv.

4.1 Äquivalenzrelationen

Definition: Eine binäre Relation $R \subseteq A \times A$ heisst Äquivalenzrelation gdw. sie reflexiv, symmetrisch, transitiv ist.

Zwei Objekte $x, y \in A$ mit $(x, y) \in R$ heissen dann äquivalent zueinander, geschrieben $x \sim y$, oder auch $\sim (x, y)$ wenn $(x, y) \in \sim$ ist. Äquivalenzklasse: $[x]_+ := \{y \in A | x \sim y\}$

Beispiel: Äquivalenzrelation mit drei Äquivalenzklassen

 $x \sim y \iff 3 | |x - y|$ (3 teilt Betrag): $[0]_{\sim} = \{0, 3, 6, 9, ...\}$ $[1]_{\sim} = \{1, 4, 7, 10, ...\}$

 $^{c} \cap B^{c}[2]_{\sim} = \{2, 5, 8, 11, \dots\}$

Äquivalenzrelationen partitionieren ihre Menge und sind gegenseitig disjunkt.

4.2 Ordnungsrelationen

Definition: Eine Relation R auf Menge A heisst Halbordnung gdw.

R reflexiv, antisymmetrisch, transitiv ist.

Beispiel: $M := \{0,1,2,3\}$, dann ist $\preceq := \{(x,y) \in M^2 | x \leq y\}$ eine Halbordnung auf M.

Teilbarkeit: $a|b\iff \exists m\in\mathbb{Z}:b=ma$

4.3 Grundbegriffe Halbordnungen

Minimales Element: Keine direkten Vorgänger Kleinstes Element: Alle anderen Elemente nachfolger von x Maximales Element: Keine direkten Nachfolger Grösstes Element: Alle anderen Elemente Vorgänger von x

Zeichnen: Starten bei Knoten von dem möglichst viele Pfeile ausgehen (ohne Schleifen). Dann weitergehen, transitive Pfeile weglassen. Gerichteter Graph: $a \to b \to c$, $a \to c$ wird zu a - b - c.

4.4 Verknüpfung

```
Definition: R \subseteq A \times B und S \subseteq B \times C, Verknüpfung S \circ R := \{(x,z) \in A \times C | \exists y \in B : ((x,y) \in R \land (y,z) \in S)\}
```

4.5 Inverse Relation

Relation umdrehen: Beide Mengen vertauschen und Pfeile umdrehen $\mathbb{R}^{-1}.$

Definition: Für $R \subseteq A \times B$, $R^{-1} = \{(y, x) \in B \times A | (x, y) \in R\}$

5 Funktionen

5.1 Allgemein

Bei (totalen) Funktionen geht von linken Knoten genau ein Pfeil aus. Eine totale Funktion ist rechtseindeutig. **Rechtseindeutigkeit:** Das was ich rechts habe ist für ein linkes Element eindeutig.

Beispiel: Ist homogene Relation $R_3 = \{(x,y) \in \mathbb{R}^2 | y^2 = x\}$ eine Funktion?

Nein, denn es sind z.b. $(1,-1) \in R_3$, aber auch $(1,1) \in R_3$. Somit existieren für $x=1 \in \mathbb{R}$ zwei Elemente $y_1=-1 \in \mathbb{R}$ und $y_2=1 \in \mathbb{R}$, so dass $(1,1) \in R_3$ und $(1,-1) \in R_3$ ist.

5.2 Injektiv, Surjektiv, Bijektiv

surjektiv: Alle Elemente der Wertemenge B gehören zur Bildmenge f(A):

 $\forall y \in B \exists x \in A : f(x) = y, \text{ dh. falls } f(A) = B$

injektiv: Für zwei verschiedene Argumente $x_1,x_2\in A$ sind die dazugehörigen Funktionswerte $f(x_1)$ und $f(x_2)$ unterschiedlich:

 $\forall x_1, x_2 \in A : (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$