Querying the Guarded Fragment via Resolution

Sen Zheng, Renate A. Schmidt

University of Manchester, UK

June 6, 2022

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \overline{y}(G(\overline{x}) \to \varphi)$ and $\exists \overline{y}(G(\overline{x}) \land \varphi)$ if free variables of φ are among \overline{x}

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \overline{y}(G(\overline{x}) \to \varphi)$ and $\exists \overline{y}(G(\overline{x}) \land \varphi)$ if free variables of φ are among \overline{x}

Boolean conjunctive query (BCQ)

- $\exists \overline{x} \varphi(\overline{x})$: a conjunction of atoms containing only constants and variables as arguments
- $\bullet \ \exists x_{1...6}(A(x_1,x_2) \land B(x_1,x_3) \land C(x_3,x_4,x_5) \land D(x_5,x_6))$

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \overline{y}(G(\overline{x}) \to \varphi)$ and $\exists \overline{y}(G(\overline{x}) \land \varphi)$ if free variables of φ are among \overline{x}

Boolean conjunctive query (BCQ)

- $\exists \overline{x} \varphi(\overline{x})$: a conjunction of atoms containing only constants and variables as arguments
- $\bullet \ \exists x_{1...6}(A(x_1,x_2) \land B(x_1,x_3) \land C(x_3,x_4,x_5) \land D(x_5,x_6))$

BCQ answering for GF

 $\Sigma \cup \mathcal{D} \models q$, given Σ in GF, ground atoms \mathcal{D} , a BCQ q.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久(で)

Motivation

BCQ answering for GF

- Query containment/evaluation/entailment
- Constraint-satisfaction/homomorphism problem
- Ontology-based data access (OBDA) systems

Motivation

BCQ answering for GF

- Query containment/evaluation/entailment
- Constraint-satisfaction/homomorphism problem
- Ontology-based data access (OBDA) systems

S. Zheng, R. A. Schmidt PAAR 2020

3 / 16

Problems of interest

Some known results:

- Resolution decides GF [?, ?]
- Retrieving answers over GF is undecidable [?] $(\exists y(Axy \land Byz) \text{ derives } \neg Axy \lor \neg Byz \lor qxz)$
- Querying GF is 2EXPTIME-complete [Vince Bárány and Georg Gottlob and Martin Otto(2010)]

Problems of interest

Some known results:

- Resolution decides GF [?, ?]
- Retrieving answers over GF is undecidable [?] $(\exists y(Axy \land Byz) \text{ derives } \neg Axy \lor \neg Byz \lor qxz)$
- Querying GF is 2EXPTIME-complete
 [Vince Bárány and Georg Gottlob and Martin Otto(2010)]

Problems of insterest:

- No practical procedure exists for querying GF
- No practical procedure for BCQ rewriting for GF

Aim:
$$\Sigma \cup \mathcal{D} \models q \Leftrightarrow \Sigma \cup \mathcal{D} \cup Q \models \bot$$
 (*Q* means $\neg q$)

$$\mathbf{Aim} \colon \Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \bot \qquad (Q \text{ means } \neg q)$$

$$\mathbf{Aim} \colon \Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \bot \qquad (Q \text{ means } \neg q)$$

Guarded Clause:

- $D_1(fxy, x) \vee \neg Gxy$, $\neg D_2(fx, x) \vee \neg Gxy$, $\neg D_3(fxy, x) \vee \neg Gx$
- Covering and guardedness

MANCHESTER

$$\mathbf{Aim} \colon \Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \bot \qquad (Q \text{ means } \neg q)$$

Guarded Clause:

- $D_1(fxy, x) \vee \neg Gxy$, $\neg D_2(fx, x) \vee \neg Gxy$, $\neg D_3(fxy, x) \vee \neg Gx$
- Covering and guardedness

Query Clause:

- $\neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$
- Negative and compound-term-free

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

Handling query clauses

Acyclic query clause:

$$Q_a = \neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$$

Cyclic query clause:

$$Q_c = \neg A(x_1, x_2, x_3) \vee \neg B(x_3, x_4, x_5) \vee \neg C(x_5, x_6, x_7) \vee \neg D(x_7, x_8, x_1)$$

S. Zheng, R. A. Schmidt PAAR 2020 MANCHINER 6 / 16

Handling query clauses

The separation rule:

Sep:
$$\frac{N \cup \{C \vee D\}}{N \cup \{\neg d_s(\overline{x}) \vee C, \ d_s(\overline{x}) \vee D\}}$$

- lacktriangledown var(C) $\not\subseteq$ var(D) and var(D) $\not\subseteq$ var(C)
- - Replacement rule!

$$Q_a = \neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$$

MANCHESTER

S. Zheng, R. A. Schmidt

$$Q_a = \neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$$

Chained variables: x_1, x_3, x_5 Isolated variables: x_2, x_4, x_6

MANCHESTER

$$Q_a = \neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$$

Chained variables: x_1, x_3, x_5 Isolated variables: x_2, x_4, x_6

$$Q_a = \neg A(x_1, x_2) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$$

Chained variables: x_1, x_3, x_5 Isolated variables: x_2, x_4, x_6

Sep:

- Remove isolated variables
- Replace isolated-variable literals by definers

S. Zheng, R. A. Schmidt PAAR 2020 MANCHESTER

$$Q_a = \neg A(x_1, x_2) \vee \neg B(x_1, x_3) \vee \neg C(x_3, x_4, x_5) \vee \neg D(x_5, x_6)$$

Chained variables: x_1, x_3, x_5 Isolated variables: x_2, x_4, x_6

Sep:

- Remove isolated variables
- Replace isolated-variable literals by definers

$$Q_a \vdash_{Sep}$$

- $\neg A(x_1, x_2) \lor d_1(x_1)$
- $\neg d_1(x_1) \lor \neg B(x_1, x_3) \lor \neg C(x_3, x_4, x_5) \lor \neg D(x_5, x_6)$
- ...

MANCHESTER

- 1. $\neg A(x_1, x_2) \lor d_1(x_1)$ 2. $\neg d_1(x_1) \lor \neg B(x_1, x_3) \lor d_2(x_3)$
- 3. $\neg d_2(x_3) \lor \neg C(x_3, x_4, x_5) \lor d_3(x_5)$ 4. $\neg d_3(x_5) \lor \neg D(x_5, x_6)$

$$Q_c = \neg A(x_1, x_2, x_3) \lor \neg B(x_3, x_4, x_5) \lor \neg C(x_5, x_6, x_7) \lor \neg D(x_7, x_8, x_1)$$

$$Q_c = \neg A(x_1, x_2, x_3) \vee \neg B(x_3, x_4, x_5) \vee \neg C(x_5, x_6, x_7) \vee \neg D(x_7, x_8, x_1)$$

Chained variable: x_1, x_3, x_5, x_7 Isolated variable: x_2, x_4, x_6, x_8

$$Q_c = \neg A(x_1, x_2, x_3) \vee \neg B(x_3, x_4, x_5) \vee \neg C(x_5, x_6, x_7) \vee \neg D(x_7, x_8, x_1)$$

Chained variable: x_1, x_3, x_5, x_7 Isolated variable: x_2, x_4, x_6, x_8

$$Q_c = \neg A(x_1, x_2, x_3) \vee \neg B(x_3, x_4, x_5) \vee \neg C(x_5, x_6, x_7) \vee \neg D(x_7, x_8, x_1)$$

Chained variable: x_1, x_3, x_5, x_7 Isolated variable: x_2, x_4, x_6, x_8

$$Q_c \vdash_{Sep}$$
:

- $\bullet \neg A(x_1, x_2, x_3) \lor d_1(x_1, x_3)$
- $\neg d_1(x_1, x_3) \lor \neg B(x_3, x_4, x_5) \lor \\ \neg C(x_5, x_6, x_7) \lor \neg D(x_7, x_8, x_1)$
- ...

$$Q = \neg d_1(x_1, x_3) \lor \neg d_2(x_3, x_5) \lor \neg d_3(x_5, x_7) \lor \neg d_4(x_7, x_1)$$

Only chained variables

$$Q = \neg d_1(x_1, x_3) \lor \neg d_2(x_3, x_5) \lor \neg d_3(x_5, x_7) \lor \neg d_4(x_7, x_1)$$

Only chained variables

TRes + T-Trans TRes:

- Macro inference rule on Q
- Inspired by 'MAXVAR' [?]

T-Trans:

- Structural transformation on TRes resolvents
- ullet Obtain guarded clauses and a query clause Q'
- \circ Q' is smaller than Q

How to perform inferences to obtain clauses in our class?

•
$$Q = \neg d_1(x_1, x_3) \lor \neg d_2(x_3, x_5) \lor \neg d_3(x_5, x_7) \lor \neg d_4(x_7, x_1)$$

$$\bullet \ \ C_1 = d_1(x, gxy) \vee \neg G_1xy \qquad C_2 = d_2(gxy, x) \vee P(hxy) \vee \neg G_2xy$$

•
$$C_3 = d_3(f_X, x) \vee \neg G_3 x$$
 $C_4 = d_4(x, f_X) \vee \neg G_4 x$

How to perform inferences to obtain clauses in our class?

$$Q = \neg d_1(x_1, x_3) \lor \neg d_2(x_3, x_5) \lor \neg d_3(x_5, x_7) \lor \neg d_4(x_7, x_1)$$

$$\bullet \ \ C_1 = d_1(x, gxy) \lor \neg G_1xy \qquad C_2 = d_2(gxy, x) \lor P(hxy) \lor \neg G_2xy$$

•
$$C_3 = d_3(f_X, x) \vee \neg G_3 x$$
 $C_4 = d_4(x, f_X) \vee \neg G_4 x$

TRes:

- Compute the mgu σ' among Q, C_1 4: $\{x_1/fx, x_3/g(fx, y), x_5/fx, x_7/x\}$
- Perform a 'partial inference' on top variable (x_3) literals in Q
- Resolve Q, C_1 and C_2 using the mgu σ : $\{x_1/x, x_3/gxy, x_5/x\}$
- Compute 'partial conclusion' $R = \neg G_1 xy \lor \neg G_2 xy \lor P(hxy) \lor \neg d_3(x, x_7) \lor \neg d_4(x_7, x)$
- Makes 'maximal selection resolution' redundant

$$R = \neg G_1 xy \lor \neg G_2 xy \lor P(hxy) \lor \neg d_3(x, x_7) \lor \neg d_4(x_7, x)$$

Neither a guarded clause nor a query clause.

$$R = \neg G_1 xy \lor \neg G_2 xy \lor P(hxy) \lor \neg d_3(x, x_7) \lor \neg d_4(x_7, x)$$

• Neither a guarded clause nor a query clause.

$$R = \neg G_1 xy \lor \neg G_2 xy \lor P(hxy) \lor \neg d_3(x, x_7) \lor \neg d_4(x_7, x)$$

• Neither a guarded clause nor a query clause.

T-Trans represents *R* by

- Guarded clause $\neg G_1 xy \lor \neg G_2 xy \lor P(hxy) \lor d_t(x,y)$
- Query clause Q': $\neg d_t(x, y) \lor \neg d_3(x, x_7) \lor \neg d_4(x_7, x)$

Q':

- Non-cyclic
- Breaks at least one cycle
- Smaller than Q

BCQ rewriting procedure **Q-Rewrite**

- Goal-oriented
- No grounding needed
- Saturate $\{\Sigma \cup \neg q\}$ to obtain Σ_q before considering $\mathcal D$
- $\mathcal{D} \cup \Sigma \models q$ reduces to $\mathcal{D} \models \Sigma_q$ **Tractable!** (in data complexity)

S. Zheng, R. A. Schmidt PAAR 2020 MANCHESIER 14 /

Conclusions and future work

- First practical BCQ answering/rewriting procedures over GF
- Sep is useful in decoupling non-cyclic chains
- But be careful with infinitely many definers
- 'Partial inference' in of the form **TRes** is insteresting

Conclusions and future work

- First practical BCQ answering/rewriting procedures over GF
- Sep is useful in decoupling non-cyclic chains
- But be careful with infinitely many definers
- 'Partial inference' in of the form TRes is insteresting
- Querying the loosely guarded fragment?
- Querying the guarded negation fragment (\approx) ?
- Deciding fluted logic?
- Implementations and empirical evaluations

Thanks!