БИЛЕТ 23

1.Классификация. Основные характеристики усилителей. Передаточные функции усилительные каскады.

Усилителем называют устройство, предназначенное для усиления входного электрического сигнала по напряжению, току или мощности за счет преобразования энергии источника питания в энергию выходного сигнала.

Таким образом, для обеспечения усиления сигнала усилитель (У), последовательно с которым соединен источник питания Еп, должен включать в себя нелинейный элемент, управляемый входным электрическим сигналом $\rm U_1$. К входной (управляющей) цепи усилителя подключен источник Ес усиливаемого сигнала (при этом $\rm Zc$ — комплексное значение внутреннего сопротивления источника), а к выходной — нагрузочное устройство с сопротивлением $\rm Zh$ (рис. 5.1).

Как видно, действие усилителя заключается в обеспечении условий, при которых маломощный сигнал U_1 управляет изменением существенно большего выходного напряжения U_2 , обусловленного наличием в выходной цепи источника питания E_1

Транзистор в аналоговых усилительных устройствах выполняет роль управляемого сопротивления (\underline{Zyc} на рис. 5.2).

Управляемые нелинейные элементы современных усилителей выполняются, как правило, с использованием биполярных и полевых транзисторов (см. гл. 2). Поэтому их часто называют транзисторными усилителями.

Связь выходного напряжения с параметрами используемых элементов описывается соответственно выражениями:

$$\dot{U}_{2} = \frac{\dot{E}_{n}Z_{H}}{Z_{H} + Z_{vc}};$$

$$\dot{U}_{2} = \frac{\dot{E}_{n}}{1 + Z_{62A}(1, Z_{yc} + 1, Z_{H})},$$

$$\dot{U}_{2} = \frac{\dot{E}_{n}}{1 + Z_{yc1}(1/Z_{yc2} + 1/Z_{H})}.$$

$$\dot{I}_{1} = \frac{\dot{E}_{n}}{1 + Z_{yc1}(1/Z_{yc2} + 1/Z_{H})}.$$
Рис. 51. Обобщенная структурная схема усилительного устройства

В зависимости от того, совпадает ли фаза выходного сигнала усилителя с фазой его входного сигнала или она сдвинута на 180°, усилители подразделяют соответственно на неинвертирующие и инвертирующие.

Классификация усилителей. По виду усиливаемого сигнала они делятся на усилители гармонических и импульсных сигналов. По типу усиливаемой величины их делят на усилители напряжения, тока и мощности. По диапазону усиливаемых частот различают усилители постоянного тока и усилители переменного тока. По виду соединительных цепей усилительных каскадов. Так как усилительные устройства строятся, как правило, на основе последовательного включения нескольких типовых каскадов, то различают усилители с гальванической (непосредственной) связью, предусматривающие

передачу между каскадами сигнала как переменного, так и постоянного токов; усилители с RC-связями, в которых между выходом предыдущего и входом последующего каскадов включают резистивноемкостную цепь, исключающую передачу сигналов постоянной» тока; усилители с индуктивной (трансформаторной) связью, в которых между каскадами включается трансформатор.

По виду нагрузки различают усилители с активной, актинии индуктивной и емкостной нагрузкой.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ УСИЛИТЕЛЯ

Коэффициент усиления — отношение установившихся значений выходного и входного сигналов усилителя. В зависимости от типа усиливаемой величины различают коэффициенты усиления:

по напряжению $K_U = \Delta U_2/\Delta U_1$;

πο τοκу $K_1 = \Delta I_2/\Delta I_1$;

по мощности $K_P = \Delta P_2/\Delta P_1$,

где $U_1,\,U_2,\,I_1,\,I_2$ — действующие напряжения и токи. Так как $\Delta P_1 = \Delta U_1 \Delta I_1$ и $\Delta P_2 = \Delta U_2 \Delta I_2$, то коэффициент усиления

Так как $\Delta P_1 = \Delta U_1 \Delta I_1$ и $\Delta P_2 = \Delta U_2 \Delta I_2$, то коэффициент усиления по мощности $K_P = K_U K_I$.

При каскадном соединении нескольких усилительных устройств произведение их коэффициентов усиления определяет общий коэффициент усиления системы, т. е.

$$K_{0.6 \text{iii}} = K_1 K_2 \dots K_n.$$
 (5.1)

Рис. 5.4. Амплитудно-частотная (а) и логарифмическая амплитудно-частотная (б) характеристики усилительного устройства

Полоса пропускания усилителя — диапазон рабочих частот $\Delta \omega$ в пределах которого коэффициент усиления не снижается ниже значения $1/\sqrt{2}\approx0.707$ от своего максимального значения K_{max} . Зависимость коэффициента усиления от частоты усиливаемого сигнала называется амплитудно-частотной характеристикой (АЧХ) усилителя. Пример АЧХ показан на рис. 5.4, a. Если восстановить перпендикуляр из точки на оси абсцисс, соответствующей значению $K_{lmax}/\sqrt{2}$, до пересечения с АЧХ, то не представляет труда графическим путем определить полосу пропускания усилителя. Проекция на ось абсцисс первой точки пересечения соответствует нижней (ω_n), а второй — верхней (ω_n) частотам пропускания усилителя. Тогда полоса пропускания

$$\Delta \omega := \omega_{\bullet} - \omega_{H}$$
.

Если коэффициент усиления измеряется в децибелах, то значениям граничных частот усиления $\omega_{\rm B}$ и $\omega_{\rm B}$ соответствует уменьшение коэффициента усиления на 3 дБ (рис. 5.4, 6).

$$\begin{split} R_{\rm BX} &= R_1 = (U_1/I_1)_{R_{\rm H}-{\rm const}}; \\ R_{\rm BHX} &= R_2 = (U_{\rm BHX}\,_{\rm X} - U_{\rm BHX})/I_{\rm BHX} = U_{\rm 2X}/I_{\rm 2K}. \end{split}$$

где U_{2x} — напряжение холостого хода на выходе усилителя $(R_n = \infty)$; I_{2x} — ток короткого замыкания $(R_k = 0)$. Выходная мощность усилителя — это та часть мощности, кото-

Выходная мощность усилителя — это та часть мощности, которая может быть выделена в нагрузочном устройстве. В случае активной нагрузки она равна

$$P_{\text{Bolx}} = P_2 = I_2^2 R_0 = U_2^2 G_0$$

где $G_n = 1/R_n$ — проводимость нагрузочного устройства.

Искажение сигналов в усилителе связано, во-первых, с нелинейной зависимостью выходного сигнала от входного, обусловленной нелинейностью статических ВАХ применяемых элементов, и, во-вторых, с частотной зависимостью аплитуды и фазы усиливаемого сигнала.

мого сигнала. Для количественной оценки нелинейных искажений служит коэффициент гармоник) К_п, в основу расчета которого положена оценка относительной величины высших гармоник к основной в выходном сигнале, т. е.

$$K_{\rm H} = \sqrt{A_2^2 + A_3^2 + \dots + A_n^2} / A_1,$$
 (5.5)

где $A_2 \dots A_n$ — действующие значения высших гармоник выходного сигнала, начиная со второй; A_1 — действующее значение первой (основной) гармоники выходного сигнала.

Количественно частотные искажения оцениваются коэффициентом частотных искажений М, численно равным отношению коэффициента усиления в области средних частот для амплитудночастотной характеристики к коэффициенту усиления на заданной частоте

$$M = K_U(\omega_{co})/K_U(\omega).$$

Передаточная функция.

Это связь напряжения выхода со входом. В общем случае система Диф уравнений. Записывают в операторной

$$W_1(p) = \frac{u_{\text{mix}}}{u_{\text{ext}}} = \frac{b_m p^m + b_{m-1} p^{m-1} + \ldots + b_0}{a_n p^n + a_{n-1} p^{n-1} + \ldots + a_0}.$$

форме:

Если несколько вх напряжений:

$$u_{\text{axi}} = W_1(p) u_{\text{axi}} + W_2(p) u_{\text{axi}}.$$

Передаточную функцию можно представить элементарными звеньями:

$$W(p) = \frac{\prod_{i=1}^{k} N_{i}(p)}{\prod_{i=1}^{l} N_{i}(p)} = \prod_{q=1}^{d} N_{q}(p).$$

2.Эквивалентная схема биполярного транзистора в h параметрах.

Схема в h параметрах

На практике для низкочастотных усилителей применяют чаще схему в h параметрах. Формулы для схемы с ОЭ.

$$\Delta U_{59} = h_{119} \Delta I_5 + h_{129} \Delta U_{K9}; \Delta I_K = h_{219} \Delta I_5 + h_{229} \Delta U_{K9}.$$

$$h_{113} = \left(\frac{\Delta U_{E3}}{\Delta I_{E}}\right)_{U_{K3}=0} = R_{BX B} = R_{BX B} (\beta + 1);$$

$$h_{213} = \left(\frac{\Delta I_{K}}{\Delta I_{E}}\right)_{U_{K3}=0} = \beta.$$

h12Э стремится к 0

Полученные h-параметры имеют следующий физический смысл: h11 э и h21э — входное сопротивление и коэффициент передачи тока эмиттера при коротком замыкании на выходе транзистора; h12 э и h22э — величины, обратные коэффициенту усиления по напряжению (коэффициент обратной связи по напряжению) и выходному сопротивлению (выходная проводимость) при обратном холостом ходе на входе транзистора.

3.Повышение быстродействия ключей на биполярных транзисторах.

Memod форсированного переключения транзистора широко применяют на практике для повышения

Оптимальным с точки зрения уменьшения времен переключения транзистора является управляющий сигнал, приведенный на рис. 10.16. Параметры этого сигнала должны выбираться из следующих условий: $I_{\rm Б\, HO}$ и $I_{\rm B\, 30}$ должны обеспечивать заданные времена включения и выключения транзистора; $I_{\rm B\, HSC}$ и $I_{\rm B\, 361}$ должны гарантировать работу транзистора соответственно в режимах насыщения и отсечки; интервалы t_1 и t_2 должны равняться $t_1 = t_{\rm 334} + t_{\rm 4} + t_{\rm 1848}$, $t_2 = t_{\rm pac} + t_{\rm cn} + t_{\rm ycr}$.

быстродействия ЭК. Суть данного метода состоит в том, что на интервалах включения и выключения формируют такие значения управляющего сигнала, которые существенно превосходят аналогичные, необходимые с точки зрения обеспечения стационарно включенного и выключенного состояний биполярного транзистора.

Наиболее просто эта идея реализуется в схеме с форсирующим конденсатором в управляющей цепи $\{\text{рис.}\}$. В момент включения управляющего сигнала $e_{y\pi p} = U_y$ у нас. в соответствии со вторым законом коммутации, входной базовый ток скачкообразно изменяется от 0 до Ібиф—начального импульса базового тока. По мере заряда конденсатора ток базы постепенно уменьшается до стационарного значения Ібнас (рис. 10.17,6). Базовый ток в момент включения еупр определяется выражением

$$I_{\mathrm{B}\,\mathrm{H}\Phi}pprox (U_{\mathrm{y}\,\mathrm{Hac}}+U_{C_{\mathrm{6}\,\mathrm{BMKS}}}-U_{\mathrm{59}})/R_{\mathrm{y}}.$$

Расчеты показывают, что существенную долю времени выключения биполярного транзистора, особенно при пассивном запирании, составляет время его рассасывания. Поэтому исключение этого интервала приводит к существенному повышению быстродействия СК