Advanced Data Structure and Algorithm

Divide-and-conquer and MergeSort

The plan

- Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?
 - Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms

- How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Sorting

- Important primitive
- For today, we'll pretend all elements are distinct.

example

Start by moving A[1] toward the beginning of the list until you find something smaller (or can't go any further):

Then move A[2]:

Then move A[3]:

Then we are done!

- 1. Does it work?
- 2. Is it fast?

- 1. Does it work?
- 2. Is it fast?

• Claim: The running time is $O(n^2)$

• Claim: The running time is $O(n^2)$


```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
        A[j+1] = A[j]
        j -= 1
        A[j+1] = current
```

```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
        A[j+1] = A[j]
        j -= 1
        A[j+1] = current
```

```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j \ge 0 and A[j] > current:
        A[j+1] = A[j]
        j = 1
        A[j+1] = current
```

In the worst case, about n iterations of this inner loop

```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
        A[j+1] = A[j]
        j -= 1
        A[j+1] = current
```

In the worst case, about n iterations of this inner loop

Running time is $O(n^2)$

1. Does it work?

2. Is it fast?

1. Does it work?

2. Is it fast?

• Okay, so it's pretty obvious that it works.

1. Does it work?

2. Is it fast?

• Okay, so it's pretty obvious that it works.

• HOWEVER! In the future it won't be so obvious, so let's take some time now to see how we would prove this rigorously.

Why does this work?

Say you have a sorted list, 3 4 6 8 , and another element 5 .

• Insert 5 right after the largest thing that's still smaller than 5. (Aka, right after 4).

Then you get a sorted list: 3

So just use this logic at every step.

Proof By Induction!

Recall: proof by induction

Maintain a loop invariant.

A loop invariant is something that should be true at every iteration.

Proceed by <u>induction</u>.

Four steps in the proof by induction:

- Inductive Hypothesis: The loop invariant holds after the ith iteration.
- Base case: the loop invariant holds before the 1st iteration.
- Inductive step: If the loop invariant holds after the ith iteration, then it holds after the (i+1)st iteration
- Conclusion: If the loop invariant holds after the last iteration, then we win.

Formally: induction

Loop invariant(i): A[0:i] is sorted.

A "loop invariant" is something that we maintain at every iteration of the algorithm.

- Inductive Hypothesis:
 - The loop invariant(i) holds at the end of the ith iteration (of the outer loop).
- Base case (i=0):
 - Before the algorithm starts, A[0] is sorted. ✓

This logic (see handout for details)

- Inductive step:
 - If the inductive hypothesis holds at step i-1, it holds at step i
 - Aka, if A[0:i-1] is sorted at step i-1, then A[0:i] is sorted at step i
- Conclusion:
 - At the end of the n-1'st iteration (aka, at the end of the algorithm), A[0:n-1] = A is sorted.
 - That's what we wanted! ✓

The first two elements, [4,6], make up a sorted list.

So correctly inserting 3 into the list [4,6] means that [3,4,6] becomes a sorted list.

This was iteration i=2.

Correctness of Insertion Sort

- **Inductive hypothesis.** After iteration *i* of the outer loop, A[0:i] is sorted.
- Base case. After iteration 0 of the outer loop (aka, before the algorithm begins), the list A[0] contains only one element, and this is sorted.
- Inductive step. Suppose that the inductive hypothesis holds for i-1, so A[0:i-1] is sorted after the i-1'st iteration. We want to show that A[0:i] is sorted after the i'th iteration.
- Suppose that k^{th} element is the largest integer in $\{0, \ldots, i-1\}$ such that A[k] < A[i]. Then the effect of the inner loop is to turn

$$[A[0], A[1], \ldots, A[k], \ldots, A[i-1], A[i]]$$

into

$$[A[0], A[1], ..., A[k], A[i], A[k+1], ..., A[i-1]]$$

Correctness of Insertion Sort

We claim that the following list is sorted:

$$[A[0], A[1], ..., A[k], A[i], A[k + 1], ..., A[i - 1]]$$

- This is because A[i] > A[k], and by the inductive hypothesis, we have A[k] ≥ A[j] for all j ≤ k, and so A[i] is larger than everything that is positioned before it.
- Similarly, by the choice of k we have $A[i] \le A[k+1] \le A[j]$ for all $j \ge k+1$, so A[i] is smaller than everything that comes after it. Thus, A[i] is in the right place. All of the other elements were already in the right place, so this proves the claim.
- Thus, after the i'th iteration completes, A[0:i] is sorted, and this establishes the inductive hypothesis for i.

Correctness of Insertion Sort

- Conclusion. By induction, we conclude that the inductive hypothesis holds for all $i \le n 1$. In particular, this implies that after the end of the n-1'st iteration (after the algorithm ends) A[0:n-1] is sorted.
- Since A[0:n-1] is the whole list, this means the whole list is sorted when the algorithm terminates, which is what we were trying to show.

What have we learned?

InsertionSort is an algorithm that correctly sorts an arbitrary n-element array in time $O(n^2)$.

Can we do better?

The plan

- Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?

- Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms

- How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Can we do better?

MergeSort: a divide-and-conquer approach

MergeSort

MergeSort Pseudocode

```
MERGESORT(A):
    n = length(A)
```

- if $n \le 1$: If A has length 1,
 - return A
- L = MERGESORT(A[0:(n/2)-1]) Sort the left half

It is already sorted!

- R = MERGESORT(A[n/2 : n-1]) Sort the right half
- return MERGE(L,R) Merge the two halves

What actually happens?

First, recursively break up the array all the way down to the base cases

Then, merge them all back up!

A bunch of sorted lists of length 1 (in the order of the original sequence).

Two questions

- 1. Does this work?
- 2. Is it fast?

Empirically:

- 1. Seems to work.
- 2. Seems fast.

It works

Inductive hypothesis:

"In every recursive call on an array of length at most i, MERGESORT returns a sorted array."

- Base case (i=1): a 1-element array is always sorted.
- Inductive step: Need to show:
 If L and R are sorted, then
 MERGE(L,R) is sorted.
- Conclusion: In the top recursive call, MERGESORT returns a sorted array.

- MERGESORT(A):
 - n = length(A)
 - **if** $n \le 1$:
 - return A
 - L = MERGESORT(A[0 : (n/2)-1])
 - R = MERGESORT(A[n/2 : n-1])
 - return MERGE(L,R)

It's fast

CLAIM:

MergeSort requires at most c*n (log(n) + 1) operations to sort n numbers.

- How does this compare to InsertionSort?
 - Recall InsertionSort used on the order of n^2 operations.

 $n \log(n)$ vs. n^2 ? (Analytically)

$n \log(n)$ vs. n^2 ? (Analytically)

- $\log(n)$ "grows much more slowly" than n
- $n \log(n)$ "grows much more slowly" than n^2

Aside:

Quick log refresher

- Def: log(n) is the number so that $2^{\log(n)} = n$.
- Intuition: log(n) is how many times you need to divide n by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1
$$\Rightarrow$$
 log(32) = 5

Halve 5 times

64, 32, 16, 8, 4, 2, 1 \Rightarrow log(64) = 6

Halve 6 times

log(128) = 7

log(256) = 8

log(512) = 9

log(n) grows very slowly!

log(# particles in the universe) < 280

Now let's prove the claim

CLAIM:

MergeSort requires at most c*n (log(n) + 1) operations to sort n numbers.

Let's prove the claim

How much work in this sub-problem?

How much work in this sub-problem?

Let k=n/2^t...

About how many operations does it take to run MERGE on two lists of size k/2?

- Time to initialize an array of size k
- Plus the time to initialize three counters
- Plus the time to increment two of those counters k/2 times each
- Plus the time to compare two values at least k times
- Plus the time to copy k
 values from the
 existing array to the big
 array.
- Plus...

k/2 k/2

- Time to initialize an array of size k
- Plus the time to initialize three counters
- Plus the time to increment two of those counters k/2 times each
- Plus the time to compare two values at least k times
- Plus the time to copy k values from the existing array to the big array.
- Plus...

Let's say no more than c*k operations.

Recursion tree

Recursion tree

Recursion tree Size of Amount of work # each at this level Level problems problem Size n c*n 0 n n/2 n/2 n/2n/4 c*n n/4 n/4 n/4 n/4 $n/2^t$ n/2^t n/2^t n/2^t n/2^t n/2^t $n/2^t$ 2^t Note: At the lowest level we only have two operations per problem, to get the length of the array and compare it to 1. 2*n ≅ c*n log(n)(Size 1)

Total runtime...

- c*n steps per level, at every level
- log(n) + 1 levels
- c*n (log(n) + 1) steps total

That was the claim!

What have we learned?

- MergeSort correctly sorts a list of n integers in at most c*n(log(n) + 1) operations.
 - c is roughly 11

A few reasons to be grumpy

Sorting

should take zero steps...

How we will deal with grumpiness

- Take a deep breath...
- Worst case analysis
- Asymptotic notation

