ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Shielding ceria based catalysts from SO₂ poisoning in NH₃-SCR reaction: Modification effect of acid metal oxides

Yandi Cai ^{a,b,c}, Bifeng Zhang ^{a,b,c}, Haowei Yu ^{a,b,c}, Xiaoyu Ji ^{a,b,c}, Jingfang Sun ^{a,b,c}, Xizhang Wang ^d, Qiuhui Qian ^e, Lulu Li ^f, Annai Liu ^g, Wei Tan ^{a,b,c,*}, Fei Gao ^{a,b,c,*}, Lin Dong ^{a,b,c}

- a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- ^b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, PR China
- ^c State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- d Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 PR China
- ^e National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- f School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
- g Sinopec Catalyst Co. Ltd., Sinopec Group, Beijing 100029, PR China

ARTICLE INFO

Keywords: NH₃-SCR CeO₂ Acid metal oxides Shielding effect SO₂ resistance

ABSTRACT

Modifying CeO_2 with acid sites is a common strategy for designing efficient catalysts for the selective catalytic reduction of NO_x by NH_3 (NH_3 -SCR of NO_x). However, the effect of acid metal oxide modification on the SO_2 resistance of CeO_2 has not been well revealed. In this work, it was found that the SO_2 resistance of CeO_2 modified with several acid metal oxides (i.e., MoO_3 , WO_3 and Nb_2O_5), followed an order of $Mo/CeO_2 \ge W/CeO_2 > Nb/CeO_2$. Further systematic characterizations revealed that Mo-OH and W-OH on CeO_2 as Brønsted acid sites could better inhibit the SO_2 adsorption and the sulfation of active sites than highly dispersed NbO_x mainly as Lewis acid sites because NH_4^+ coordinated to Brønsted acid sites could help trap SO_2 to form ammonium sulfates rather than metal sulfates. The findings in this work provided important guidance for the design of efficient catalysts with superior SO_2 resistance performance.

1. Introduction

Nitrous oxides (NO_x) emitted by both mobile and stationary sources have been considered one of the most dangerous air pollutants, which could result in serious air pollution problems (e.g., photochemical smog, haze and acid rain, etc.) [1,2]. Driven by the tightening policies and increasing environmental awareness, various techniques, such as selective non-catalytic reduction of NO_x (SNCR), urea or ammonia selective catalytic reduction of NO_x (urea-SCR or NH_3 -SCR), etc., have been developed to realize elimination of NO_x [3–5]. Among them, NH_3 -SCR of NO_x was the most efficient one , and the efficient catalyst is the core of NH_3 -SCR technique [6,7]. By far, the most popular commercial catalyst for NH_3 -SCR is V_2O_5 -WO₃(MoO₃)/TiO₂, which exhibited superior deNO_x efficiency as well as satisfactory resistance to SO_2 poisoning at 300–400 °C [8,9]. However, the relatively poor low-temperature

activity and the biological toxicity posed by vanadium have led researchers to seek an alternative catalyst with enhanced low-temperature activity and satisfactory environmental friendliness.

Recently, environmentally benign ceria (CeO₂) based catalytic materials with superior redox properties have caught the attention of researchers for their potential in NH₃-SCR of NO_x [10–14]. Since the NH₃-SCR reaction was composed of two half reactions, *i.e.*, redox cycle and acidity cycle, to enhance the NH₃-SCR performance of CeO₂ based materials, modifying CeO₂ with acid metal oxides as new acid sites for NH₃ adsorption/activation has been taken as the most effective strategy. For example, Peng *et al.* reported that CeO₂ doped with WO₃ exhibited superior NH₃-SCR activity because WO₃ species could act as acid sites to facilitate the adsorption and activation of NH₃ [15]. Similarly, CeZrO_x catalysts modified with Nb₂O₅ and MoO₃ were also found to exhibit enhanced NH₃-SCR activity due to the improved surface acidity

E-mail addresses: tanwei@nju.edu.cn (W. Tan), gaofei@nju.edu.cn (F. Gao).

^{*} Corresponding authors at: Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

[16–18]. Moreover, as reported by us previously, besides using as acid sites for NH₃ adsorption, CeO₂ based materials modified with different acid metal oxides (*e.g.*, WO₃, MoO₃ and Nb₂O₅, *etc.*) showed different adsorption properties to reactant molecules, especially NO_x [19,20]. Specifically, highly dispersed WO₃ and MoO₃ could hinder the adsorption of NO_x on CeO₂, while Nb₂O₅ deposited on CeO₂ showed much less inhibition effect on the NO_x adsorption. It was also found that CeO₂ modified with MoO₃ exhibited superior resistance to SO₂ adsorption, the first step in the SO₂ poisoning progress on NH₃-SCR catalysts [21–23], thus helping alleviate SO₂ poisoning of CeO₂. Inspired by this, it was proposed that the modification with different acid metal oxides could change the adsorption characteristics of SO₂ on CeO₂ to different degrees, then generate different SO₂ resistance performance. Since improving the SO₂ resistance of CeO₂ based catalysts has become one of

2.2. Catalytic performance evaluation

The NH₃-SCR activity and N₂ selectivity on the prepared catalysts were evaluated on a fixed-bed quartz tube reactor. For each test, 200 mg catalyst was loaded into the middle of the quartz tube. The feeding gas consisted of 500 ppm NO, 500 ppm NH₃, 5% O₂ and 100 ppm SO₂ (when used), using N₂ as balance. For all tests, the total flow rate was 200 mL•min $^{-1}$, giving a WHSV (weight hourly space velocity) of 60,000 mL g $^{-1}$ h $^{-1}$. The effluent gas was continuously analyzed on an online Thermofisher iS10 FT-IR spectrometer equipped with a 2 m path-length gas cell (250 mL volume). The NO_x conversion and N₂ selectivity were determined according to the following equations:

$$NO_x$$
 conversion (%) =
$$\frac{[NO]_{in} - [NO]_{out} - [NO_2]_{out}}{[NO]_{in}} \times 100\%$$

$$N_2 \; \text{selectivity} \; (\%) \; = \; \frac{[NO]_{in} \; - \; [NO]_{out} \; + \; [NH_3]_{in} \; - \; \; [NH_3]_{out} - \; \; [NO_2]_{out} \; - \; \; 2[N_2O]_{out}}{[NO]_{in} \; - \; \; [NO]_{out} \; + \; \; [NH_3]_{in} \; - \; [NH_3]_{out}} \; \times \; 100\%$$

the hottest topics in the practical application of CeO_2 in low temperature NH_3 -SCR of NO_x and some other important reactions in the energy and environmental catalysis field, it is undoubtedly important to reveal the role of different metal oxides in shielding CeO_2 from SO_2 poisoning.

In this work, aimed at revealing the promotion effect of acid metal oxides modification on the NH₃-SCR activity and SO₂ resistance ability of CeO₂, and finding the most suitable acid metal oxide to achieve better SO₂ resistance, a series of CeO₂ catalysts modified with the optimal loadings of WO₃, MoO₃ and Nb₂O₅ were selected as model catalysts, and systematic catalytic performance/SO₂ resistance evaluation, various characterizations as well as mechanism study were conducted. It was deeply revealed that highly dispersed MoO₃ could better shield CeO₂ from SO₂ poisoning than highly dispersed WO₃ and Nb₂O₅ in NH₃-SCR reaction, which provided important guidance for the design of efficient catalysts with superior SO₂ resistance performance.

2. Materials and experimental methods

2.1. Catalyst preparation

WO₃/CeO₂, MoO₃/CeO₂ and Nb₂O₅/CeO₂ catalysts used in this work were prepared by wetness impregnation method. The CeO₂ support was prepared by thermal decomposition of Ce(NO₃)₃·6 H₂O in air at 550 °C for 4 h, with a ramping rate of 2 °C•min⁻¹. To deposit WO₃, MoO₃ and Nb₂O₅ onto CeO₂, a certain amount of the precursors of WO₃ $(H_{40}N_{10}O_{41}W_{12}\cdot nH_2O)$, MoO_3 $((NH_4)_6Mo_7O_{24}\cdot 4$ $H_2O)$ or Nb_2O_5 (C₄H₄NNbO₉·nH₂O) and oxalic acid (molar ratio of metals in precursor to oxalic acid was 1:1.5) were first dissolved in deionized water under vigorous stirring, and then CeO₂ support was added to the solution. Afterwards, the mixture was evaporated at 110 °C under vigorous stirring. The obtained solid was dried at 110 °C for 12 h, followed by the calcination in air at 500 °C for 4 h, with a ramping rate of 2 °C•min⁻¹. The prepared WO₃/CeO₂, MoO₃/CeO₂ and Nb₂O₅/CeO₂ catalysts were denoted as xW/CeO2, yMo/CeO2 and zNb/CeO2 (x, y or z mmol per $1000 \text{ m}^2 \text{ CeO}_2 = \text{The loading of WO}_3, \text{MoO}_3 \text{ or Nb}_2\text{O}_5 \text{ on CeO}_2).$ According to the results of further catalytic performance evaluation, WO₃/ CeO₂, MoO₃/CeO₂ and Nb₂O₅/CeO₂ catalysts with optimal loadings were denoted as W/CeO2, Mo/CeO2 and Nb/CeO2, respectively. For further catalytic performance evaluation, the catalysts were tableted and sieved into 40-60 mesh.

The catalysts after SO_2 resistance test were denoted as W/CeO_2 -used, Mo/CeO_2 -used and Nb/CeO_2 -used. The catalyst after regeneration was denoted as W/CeO_2 -R, Mo/CeO_2 -R and Nb/CeO_2 -R.

2.3. Catalyst characterization

The specific surface area of samples was measured by $\rm N_2$ -physisorption at 77 K on a Micromeritics ASAP-2020 analyzer $\it via$ Brunauer-Emmet-Teller (BET) method. Before each test, the sample was degassed in vacuum at 300 $^{\circ} \rm C$ for 3 h.

X-ray powder diffraction (XRD) patterns were collected on a Philips X'pert Pro diffractometer (APL, Switzerland) using Ni-filtered Cu K α radiation ($\lambda=0.15418$ nm). The X-ray tube was operated at 40 kV and 40 mA. The 2θ range was from 10 to 80° . The scan step was set as 0.02° . The scan speed was controlled at 10° •min $^{-1}$.

Raman spectra were collected on a HORIBA (Japan) LabRAM Aramis Raman spectrometer equipped with an ${\rm Ar}^+$ laser beam. The emission line was set at 532 nm, and the output power was 10 mW.

Thermogravimetry analysis-mass spectrum (TG-MS) analysis and differential thermal analysis (DTA) were conducted on Netzsch thermoanalyzer STA 449 C instrument. In each test, samples were heated from room temperature to 950 $^{\circ}\text{C}$ with a ramping rate of 10 $^{\circ}\text{C}\cdot\text{min}^{-1}$ in N2 flow (60 mL·min $^{-1}$). The trail gas was analyzed by an online mass spectrometer.

 $H_2\text{-temperature-programmed}$ reduction ($H_2\text{-TPR}$) experiments were performed on a quartz U-tube reactor connected to an online thermal conductivity detector (TCD). In each test, ca . 10 mg samples were loaded into the U-tube. $7\%~H_2/Ar~(10~mL\bullet min^{-1})$ was used as reducing reagent. Prior to the reduction process, the sample was pretreated by N_2 flow ($10~mL\bullet min^{-1}$) at $200~^\circ C$ for 1~h, and then cooled to room temperature. The reduction process was measured from room temperature to $950~^\circ C$, with a ramping rate of $10~^\circ C\bullet min^{-1} \cdot H_2O$ in the tail gas was removed by a cold trap before being passed into the TCD.

X-ray photoelectron spectroscopy (XPS) experiments were performed on a PHI 5000 Versa Probe system. Monochromatic Al K α (h ν = 1486.6 eV) was used as the radiation of the instrument, and the acceleration power was 15 kW. The binding energies of all elements were calibrated with C 1 s at 284.6 eV.

NH₃-temperature-programmed desorption (NH₃-TPD) experiments were conducted on a fixed-bed quartz tube reactor connected with an online Thermofisher iS10 FT-IR spectrometer equipped with a 2 m pathlength gas cell (250 mL volume). In each test, *ca.* 100 mg catalyst was loaded into the quartz tube, followed by pretreatment in Ar flow (100 mL•min $^{-1}$) at 300 °C for 30 min. Then the catalyst was saturated with NH₃ at room temperature. Afterwards, Ar flow (100 mL•min $^{-1}$)

was switched on to remove the weakly adsorbed NH₃. Finally, the catalyst was heated linearly from room temperature to 600 $^{\circ}$ C in Ar flow (100 mL•min⁻¹) with a ramping rate of 5 $^{\circ}$ C·min⁻¹.

In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) experiments were carried out on a Nicolet Nexus 5700 FTIR spectrometer equipped with an MCT detector. In each test, ca. 50 mg catalyst was loaded into the DRIFTS cell, pressed and mounted. Then the catalyst was pretreated with N₂ flow at 450 °C for 1 h. The background spectra of samples at different temperatures were collected during the cooling process and automatically subtracted from the sample spectra. The feeding gas (50 mL•min $^{-1}$) consisted of 3000 ppm NH₃ (when used), 3000 ppm NO (when used), 5 vol% O₂ (when used) and 100 ppm SO₂ (when used), using N₂ as balance. The spectra were collected from 650 to 4000 cm $^{-1}$, with a spectral resolution of 4 cm $^{-1}$ for 32 scans. The spectra were presented in the form of Kubelka-Munk.

3. Results And Discussion

3.1. Activity and SO₂ resistance of catalysts

The NH₃-SCR activity on xW/CeO₂, yMo/CeO₂ and zNb/CeO₂ was first tested and illustrated in Fig. S1. After the modification with WO₃, MoO₃ and Nb₂O₅, the NH₃-SCR activity on CeO₂ was significantly enhanced, which should be mainly resulted from the improvement of surface acidity [24–26]. xW/CeO₂, yMo/CeO₂ and zNb/CeO₂ also showed much higher N₂ selectivity than CeO₂ (Fig. S2). The optimal loadings of metal oxides for xW/CeO₂, yMo/CeO₂ and zNb/CeO₂ to achieve the best NH₃-SCR activity were 10, 14 and 18 mmol per 1000 m² CeO₂, respectively (Fig. 1a). CeO₂ catalysts modified with

optimal loadings of WO_3 , MoO_3 and Nb_2O_5 in the following sections were denoted as W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 for convenience.

Although a variety of CeO2 based catalysts have been reported to exhibit superior NH3-SCR activity even at low temperature (150–200 °C), the severe SO₂ poisoning effect made them far away from the practical application, especially in the low temperature range. Herein, to investigate the SO₂ resistance ability of W/CeO₂, Mo/CeO₂ and Nb/CeO2 at low temperatures, NH3-SCR activity on them was evaluated at 175 °C in the presence of 100 ppm SO2. As shown in Fig. 1b, once SO₂ was introduced to the samples at 175 °C, the NO_x conversions on W/CeO2, Mo/CeO2 and Nb/CeO2 all declined accordingly, which might be related to the poisoning of active sites by SO2 or the coverage of catalyst surface by ammonium sulfates, such as NH₄HSO₄ and (NH₄)₂SO₄ [27,28]. However, it is interesting that CeO₂ modified with different acid metal oxides showed different deactivation trends. To better evaluate the rate of deactivation resulted from SO₂ poisoning, the NO_x conversion as a function of time was normalized based on the initial NO_x conversion on fresh samples (Fig. 1c). It was found that the deNO_x efficiency of Nb/CeO₂ decreased by 80% in 8 h, much worse than that of W/CeO₂ (55%) and Mo/CeO₂ (55%), indicating that WO₃-CeO₂ and MoO₃-CeO₂ paired sites could better survive than Nb₂O₅-CeO₂ paired sites in the presence of SO₂. The reasons for the slight increase in the NO conversion on CeO2 at the beginning of adding SO₂ should be related to the deposition of sulfate species, which could act as Brønsted acid sites for the adsorption and activation of NH₃ [29].

Considering that the affinity of catalysts surface for SO_2 as well as the SO_2 adsorption amount could determine the SO_2 resistance performance of NH₃-SCR catalysts [21–23], $SO_2 + O_2$ penetration experiments were conducted, and the results were demonstrated in Fig. 1**d.** It was observed

Fig. 1. a) NO_x conversions on CeO_2 , W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 catalysts in NH_3 -SCR reaction; b) NO_x conversions on CeO_2 , W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 catalysts in the presence of 100 ppm SO_2 at 175 °C; c) Normalized NO_x conversions on W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 catalysts; d) SO_2 concentration in the outlet gas during the 100 ppm $SO_2 + 5\%$ O_2 penetration experiments at 175 °C. Reaction condition: 500 ppm NH_3 , 500 ppm NO_2 , 100 ppm SO_2 (when used), Ar as balance.

that acid metal oxides loaded on CeO_2 could alleviate the adsorption of SO_2 . Furthermore, Mo/CeO_2 and W/CeO_2 could be saturated with SO_2 much faster than Nb/CeO_2 , indicating that MoO_3 or WO_3 could better inhibit the adsorption of SO_2 on CeO_2 than Nb_2O_5 , which provided meaningful guidance for developing efficient CeO_2 based catalysts with better SO_2 resistance.

3.2. Structure of the catalysts

To better reveal the reasons for different SO_2 resistance performance of W/CeO₂, Mo/CeO₂ and Nb/CeO₂, systematic characterizations were conducted to investigate their structures. XRD patterns for CeO₂, xW/CeO₂, yMo/CeO₂ and zNb/CeO₂ were first collected (Fig. S3). For all CeO₂ catalysts modified with optimal loadings of acid metal oxides, all diffraction peaks were assigned to cubic fluorite CeO₂ (JCPDS 34–0394), and no additional peak assigned to crystalline acid metal oxides was observed, indicating that W, Mo and Nb species were highly dispersed on CeO₂.

According to the results of N_2 -physisorption experiments, W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 showed comparable specific surface area (SSA) and pore volume (Table S1), suggesting that SSA and pore volume would not contribute to the difference in their SO_2 resistance performance. The slight decrease ($< 10~m^2 \bullet g^{-1}$) in the SSA of CeO_2 after the deposition of acid metal oxides should be mainly due to the further calcination at $500~^{\circ}C$ for 4 h and slight pore blocking. Moreover, after the SO_2 resistance test, almost no change was observed in the SSA of W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 , indicating good structure stability in the presence of SO_2 .

To further study the surface structure of the prepared catalysts, Raman spectra of xW/CeO_2 , $y\text{Mo}/\text{CeO}_2$ and $z\text{Nb}/\text{CeO}_2$ were collected. For all samples, an intensive band at ca. 465 cm⁻¹ and a broad band at ca. 600 cm⁻¹ were observed (Fig. 2a and Fig. S4), which were related to the F_{2g} vibration mode of CeO₂ and oxygen defects (D band), respectively [30,31]. After the deposition of WO₃ onto CeO₂, two bands at 808 and 975 cm⁻¹ emerged as the loadings increased, which could be assigned to W-O-Ce stretching vibrations and surface dispersed WO₃ species (Fig. S4a) [32–34]. When the WO₃ loadings further increase to 12 mmol per 1000 m² CeO₂, several bands assigned to crystalline WO₃ (274, 330, 718 cm⁻¹) were observed, matching well with the results of

XRD (Fig. S3b). For yMo/CeO₂ catalysts (Fig. S4c), several bands at 700–1000 cm⁻¹ could be clearly observed, which were attributed to the stretching vibration of Mo-O-X (X = Mo or Ce) and the surface molybdena species, according to the previous report [20,24,35]. With the increase of MoO₃ loading amount, a new band at 959 cm⁻¹ emerged gradually and the band at 922 cm⁻¹ disappeared, which was related to the formation of surface polymeric molybdena species [36]. Bands assigned to bulk MoO₃ were not observed on all yMo/CeO₂ catalysts, which was consistent with the result of XRD. In Fig. S4e, a broad band ranging from 750 to 950 cm⁻¹ was observed on zNb/CeO₂, which was mainly related to polymeric niobium oxides species composed of moderately distorted octahedral [NbO₆] structures with terminal Nb=O bonds (864 $\rm cm^{-1}$) [25,37,38]. In short summary, for WO₃/CeO₂, MoO₃/CeO₂ and Nb₂O₅/CeO₂ catalysts with optimal loadings, the acid metal oxides on CeO2 were mainly in the form of highly dispersed polymeric metal oxides. Based on the results of Raman spectra (Fig. 2a) and previous reports [15,39,40], the configurations WO₃, MoO₃ and Nb₂O₅ species on W/CeO₂, Mo/CeO₂ and Nb/CeO₂ were proposed and demonstrated in Fig. 2b.

Moreover, the strong interaction between these highly dispersed acidic metal oxides and CeO_2 support might also contribute to the formation of more surface oxygen vacancies, which was further supported by the calculated relative concentration of oxygen vacancies on CeO_2 , W/CeO_2 , Mo/CeO_2 and Nb/CeO_2 catalysts according to their Raman spectra (Table S1, Relative concentration of oxygen defects = I_D/I_{F2g} . I_D and I_{F2g} represented the peak area of D bands and CeO_2 F_{2g} bands, respectively). The formation of more surface oxygen vacancies could better facilitate the activation of reactants, which could also account for the significantly improved catalytic performance of CeO_2 after the modification with acid metal oxides.

3.3. Sulfate species formed on CeO2, W/CeO2, Mo/CeO2 and Nb/CeO2

It has been reported that H_2 -TPR technique could be used not only to explore the reducibility of the catalysts but also to investigate the sulfate species formed on catalysts after SO_2 resistance test. As shown in Fig. 3a, three H_2 -consumption peaks were observed on the H_2 -TPR profiles for CeO_2 . Peak α (ca. 420 °C), peak β (ca. 540 °C) and peak γ (ca. 770 °C) could be attributed to the reduction of surface chemisorbed oxygen

Fig. 2. a) Raman spectra for CeO2, W/CeO2, Mo/CeO2 and Nb/CeO2 catalysts. b) Proposed configurations of WO3, MoO3 and Nb2O5 species on CeO2.

a) Solid: Fresh samples

50

Fig. 3. a) $\rm H_2$ -TPR profiles and b) Raman spectra for fresh and used CeO₂, W/CeO₂, Mo/CeO₂ and Nb/CeO₂ (Solid line: fresh samples, dash line: used samples).

species, surface Ce⁴⁺ and bulk CeO₂, respectively [41]. After the deposition of WO₃, MoO₃ and Nb₂O₅, peak β on W/CeO₂, Mo/CeO₂ and Nb/CeO₂ were all found to shift to higher temperatures, hinting at the formation of stronger interaction between highly dispersed acid metal oxides and CeO₂ [19,42]. As discussed above, highly dispersed acid metal oxides on CeO₂ all helped generate superior NH₃-SCR activity, however, W/CeO2, Mo/CeO2 and Nb/CeO2 exhibited different SO2 resistance performance due to their different adsorption properties for SO₂. Different from the H₂-TPR profiles for fresh samples, a new H_2 -consumption peak at 490–580 °C (peak δ) was observed on the H₂-TPR profiles for all used samples, which could be assigned to the reduction of the deposited sulfate species. More interestingly, the reduction of sulfate species on Mo/CeO2 occurred at much lower temperatures than those on CeO2-used, W/CeO2-used and Nb/CeO2-used, indicating that highly dispersed MoO₃ species strongly interacting with CeO₂ support could better weaken the interaction between sulfate species (SO₄²) and CeO₂ and inhibit the deep sulfation to form bulk sulfate species, thus significantly reducing the adsorption of SO₂ during the SO₂ resistance test [43,44].

To further investigate the impact of sulfate species on the states of dispersed acid metal oxides on W/CeO₂, Mo/CeO₂ and Nb/CeO₂, Raman spectra for those used catalysts were also collected (Fig. 3b). For CeO₂-used, a distinct peak at ca. 1000 cm⁻¹ assigned to surface sulfate species was observed. Similarly, for W/CeO₂, Mo/CeO₂ and Nb/CeO₂, the emerged band at ca. 963 and 1070 cm⁻¹ could also be attributed to the formation of sulfate species [45,46]. The almost negligible intensity of this band on Mo/CeO₂ further supported the viewpoint that much less

sulfate species were formed on Mo/CeO₂ comparing to W/CeO₂ and Nb/CeO₂. Moreover, a new band at *ca.* 817 cm⁻¹ related to the Nb-O symmetric modes of the NbO₄ tetrahedral structure was observed on Nb/CeO₂-used, suggesting that SO₂ could also react with octahedral [NbO₆] structure with terminal Nb=O bonds (864 cm⁻¹) to form NbO₄ tetrahedral structure. [47,48] The evolution of the surface structure of Nb/CeO₂ when exposed to SO₂-containing reaction flow could be one of the main reasons for its relatively poorer SO₂ resistance. As reported previously [19,49], Nb₂O₅ showed relatively better redox performance than MoO₃ and WO₃, well explaining that SO₂ could better react with Nb species on Nb/CeO₂ at a low temperature of 175 °C.

Based on the concentration of SO_2 in the outlet gas of $SO_2 + O_2$ adsorption experiment (Fig. 1d), it was proposed that the SO2 adsorption capacity followed an order of Mo/CeO2 < W/CeO2 < Nb/CeO2 < CeO₂. To further determine the amount of the sulfate species deposited on the catalysts after the SO₂ resistance test (Fig. 3a), TG-MS experiments were conducted. As shown in Fig. 4a-d, for all used catalysts, three weight loss steps were observed. According to previous reports, those three weight loss steps from low temperature to high temperature should be related to the desorption of adsorbed H₂O/NH₃, the decomposition of ammonium bisulfate (ABS, 2NH₄HSO₄ → 2NH₃ + 2 H₂O + $2SO_2 + O_2$) and the decomposition of $Ce(SO_4)_2$ or $Ce_2(SO_4)_3$ ($Ce(SO_4)_2$ \rightarrow CeO₂ + 2SO₂ + O₂, Ce₂(SO₄)₃ \rightarrow 2CeO₂ + 3SO₂ + O₂), respectively [46,50,51]. Interestingly, although the second step (300–550 °C) could be assigned to the decomposition of ABS, almost no SO2 was detected in this range, which could be due to the re-adsorption of SO2 by CeO2 to generate extra sulfated CeO₂ species [29]. Based on this understanding, the weight loss during the third step could be used to compare the amount of sulfate species on the used catalysts.

As marked in Fig. 4, sulfate species on Mo/CeO2-used (0.72%) were much less than those on W/CeO2-used (1.27%) and Nb/CeO2-used (1.50%), matching well with the expectation. The much more sulfate species on CeO2-used (2.56%) further confirmed that highly dispersed acid metal oxides could efficiently shield CeO_2 from SO_2 poisoning, and highly dispersed MoO3 species performed the best. Moreover, the amount of ABS formed on Mo/CeO2 (0.50%) was higher than that on W/ CeO₂-used (0.40%) and Nb/CeO₂-used (0.26%), suggesting that the total amount of sulfate species deposited on Mo/CeO2-used is not only minimal, but also more in the form of ABS. Furthermore, it was observed that the SO₂-desorption peak on used Mo/CeO₂ was located at lower temperatures (714 °C) comparing to that on used W/CeO2 (755 °C) and used Nb/CeO₂ (746 °C), suggesting that sulfated CeO₂ on used Mo/CeO₂ would decompose at lower temperature. Considering that the decomposition temperature (> 600 °C) of sulfated CeO2 on all catalysts was much higher than the operation temperature of NH₃-SCR catalysts (< 500 °C), the lower desorption temperature of SO₂ on the used catalysts could not contribute to the better SO₂ resistance of Mo/CeO₂. However, the lower desorption temperature of SO2 on Mo/CeO2 suggested that Mo coordinated to Ce could weaken the interaction between CeO₂ and SO₂, thus inhibiting the adsorption of SO₂ on Ce sites. That is, the deep sulfation of metal sites (mainly Ce sites) on Mo/CeO2 could be effectively retarded due to the easier reaction between NH3 species adsorbed on Mo (Mo-O-NH₄) and SO₂ to generate ABS and inhibitory effect of Mo on the interaction between CeO2 and SO2.

ATR-FTIR experiments were performed to further determine the states of sulfate species on used catalysts. As shown in Fig. 5a, several bands assigned to various sulfate species were observed at 1626, 1165, 1127, 1108, 1055, 985, 952 and 894 cm⁻¹ were related to surface sulfate species and the bands at 1211 and 985 cm⁻¹ could be further assigned to the bulk sulfate species. The relatively lower intensity of these bands assigned to bulk sulfate species on Mo/CeO₂-used confirmed that Mo modification could better shield CeO₂ from deep sulfation. The bands at 952 and 894 cm⁻¹ not observed on CeO₂ could be related to SO_2^{4-} species adjacent to W, Mo or Nb sites. The intensive band at ca. 1429 cm⁻¹ could be attributed to NH_4^+ in ABS, well supporting the viewpoint that abundant ABS was deposited on the catalysts in SO_2

Fig. 4. TG-MS and DTA plots for a) CeO₂-used, b) W/CeO₂-used, c) Mo/CeO₂-used and d) Nb/CeO₂-used catalysts.

Fig. 5. a) ATR-FTIR spectra and b) S 2p XPS for used catalysts.

resistance test.

XPS experiments were conducted to further investigate the surface states as well as the amount of sulfur species on the used catalysts. As shown in Fig. 5b, the intensity of S 2p XPS followed an order of $CeO_2 > Nb/CeO_2 > W/CeO_2 > Mo/CeO_2$, in good consistence with the results

of TG-MS that the least number of sulfate species were deposited on Mo/CeO₂ in the SO₂ resistance test. The relative concentration of S element on different catalysts was also calculated and listed in Table 1. XPS for W 4 f, Mo 3d and Nb 3d of fresh and used catalysts were also collected. As shown in Fig. S5a, the two peaks at ca. 37.3 eV (W 4 $f_{5/2}$) and ca. 35.2 eV

Table 1
Surface element concentration and Chemical states determined by XPS.

Samples	Surface atomic concentration (%)				Ce ³⁺ /Total Ce (%)	O _α /Total O (%)
	W/Mo/ Nb	Ce	0	S		
CeO ₂	-	22.2	77.8	-	16.0	36.6
W/CeO ₂	4.5	19.3	75.2	-	17.6	26.9
Mo/CeO ₂	6.5	16.6	76.9	-	16.3	24.4
Nb/CeO ₂	7.9	13.8	78.3	-	16.4	37.6
CeO2-used	-	22.2	73.6	4.2	19.4	51.7
W/CeO ₂ - used	4.9	18.8	73.8	2.5	21.8	31.4
Mo/CeO ₂ - used	5.6	16.3	77.1	1.0	18.1	25.6
Nb/CeO ₂ - used	8.9	16.2	71.4	3.5	18.9	47.4

(W 4 $f_{7/2}$) on W/CeO $_2$ could be assigned to the W $^{6+}$ species. Similarly, the peaks observed on Mo 3d XPS for Mo/CeO $_2$ and Nb 3d XPS for Nb/CeO $_2$ could be assigned to Mo $^{6+}$ and Nb $^{5+}$ species, respectively [19,20]. After being used in the SO $_2$ resistance test, no significant change was observed on those peaks for W/CeO $_2$, Mo/CeO $_2$ and Nb/CeO $_2$, indicating that SO $_2$ and the deposited sulfate species had limited impact on the states of W, Mo or Nb species. Moreover, the surface concentration of W, Mo and Nb species showed no significant change after the SO $_2$ resistance (Table 1), indicating that the dispersion of these species didn't change significantly.

Ce 3d XPS for fresh and used catalysts were also collected and further analyzed to investigate the chemical states of Ce species (Fig. S6). After the modification with WO₃, MoO₃ and Nb₂O₅, the concentration of surface Ce³⁺ on CeO₂ increased slightly, which should be due to the strong interaction between W/Mo/Nb and CeO₂ and the resulting distortion of the CeO₂ surface lattice. The formation of more Ce³⁺ on modified CeO₂ also matched well with the results of Raman spectra that more surface oxygen vacancies were formed on CeO₂ after the modification with acid metal oxides, since the formation of Ce³⁺ was always accompanied by the generation of oxygen vacancies [52]. It was also found that more Ce³⁺ species were formed on all used catalysts comparing to fresh catalysts (Fig. S7a and Table 1). As reported previously, the generation of more Ce³⁺ species in SO₂-containing atmosphere was related to the reaction between SO₂ and CeO₂ (2CeO₂ + 3SO₂ + O₂ \rightarrow Ce₂(SO₄)₃) [53].

O 1 s XPS for fresh and used catalysts were shown in Fig. S8. Peak O_{α} (ca. 531.8 eV) and peak O_{β} (ca. 529.6 eV) could be attributed to the surface oxygen species and lattice oxygen species, respectively [54]. As listed in Table 1, more surface oxygen species were formed on used catalysts, which should be related to the sulfated species (ABS and sulfated CeO₂). Moreover, as demonstrated by Fig. S7b, the increase in the concentration of surface oxygen species on Mo/CeO₂ (from 24.4% to 25.6%) after the SO₂ resistance test was much lower than that on CeO₂ (from 36.6% to 51.7%), W/CeO₂ (from 26.9% to 31.4%) and Nb/CeO₂ (from 37.6% to 47.4%), also confirming the formation of less sulfate species on Mo/CeO₂.

3.4. Relationship between surface acidity and deposited metal oxides/sulfate species

Considering that the surface acidity of catalysts played an important role in NH₃-SCR reaction, NH₃-TPD experiments were conducted on fresh and used catalysts (Fig. 6a and b). For fresh CeO₂, two NH₃-desorption peaks were observed, which were marked in red (ca. 160 °C, peak α) and blue (ca. 242 °C, peak β). Peak α and peak β could be assigned to the desorption of NH₃ bound to acid sites with weak and medium strength, respectively [44,55]. After being modified with W, Mo or Nb, an additional intensive NH₃-desorption peak marked in green

was observed at higher temperatures ($\it ca. 300\,^{\circ}C$, peak $\it \gamma$), which should be related to the highly dispersed WO₃, MoO₃ and Nb₂O₅ species serving as Brønsted acid sites or Lewis acid sites with strong strength. The improvement of surface acidity could be one of the main reasons for the enhanced NH₃-SCR activity on CeO₂ modified with WO₃, MoO₃ and Nb₂O₅.

After the SO_2 resistance test, the total amount of desorbed NH_3 on used catalysts was much higher than that on fresh catalysts. As reported previously, the increase in the total amount of acid sites on sulfated catalysts could be due to the deposition of abundant sulfate species, which could act as Brønsted acid sites [56]. For used CeO_2 , the presence of peak γ well supported the viewpoint that sulfated species deposited on CeO_2 could significantly enhance the surface acid species. However, NH_3 species (mainly in the form of NH_4^+) linked to sulfate species showed poor activity at low temperatures (≤ 175 °C). In addition, the increase in the amount of acid sites on different catalysts followed an order of CeO_2 ($113 \ \mu mol \cdot g^{-1}$) $> Nb/CeO_2$ ($83 \ \mu mol \cdot g^{-1}$) $> W/CeO_2$ ($71 \ \mu mol \cdot g^{-1}$) $> Mo/CeO_2$ ($43 \ \mu mol \cdot g^{-1}$), which was also highly correlated to the amount of sulfate species deposited on these catalysts.

To further determine the type of acid sites on fresh and used catalysts, in situ DRIFTS of NH3 adsorption experiments were conducted (Fig. 6c-i). Generally speaking, the peaks at 1100–1250 cm⁻¹ and 1580–1600 cm⁻¹ were mainly related to the NH₃ coordinated to Lewis acid sites (NH₃-L), while the peak at 1400-1500 cm⁻¹ and 1650–1800 cm⁻¹ could be attributed to NH₄ species linked to Brønsted acid sites (NH3-B). Other distinct bands should be ascribed to various nitrate species (Nit) generated by the oxidation of NH₃ species. For fresh CeO₂, NH₃ species were mainly adsorbed on Lewis acid sites, and NH₃-L species desorbed vigorously at low temperatures (< 200 °C), matching well with the results of NH₃-TPD (Fig. 6a). After the SO₂ resistance test, IR bands assigned to NH3-L species were not observed at low temperatures, which should be related to the sulfation of surface CeO2. The more intensive bands at ca. 1430 and 1680 cm⁻¹ observed on CeO₂-used should be related to NH3 species adsorbed on sulfated CeO2 (Brønsted acid sites). A new band at ca. 1300 cm⁻¹ assigned to NH₃ coordinated to Lewis acid sites was observed when the temperature increased to 200 °C or higher, due to the migration of NH₃ species from Brønsted acid sites to Lewis acid sites [57,58]. Different from what was observed on CeO₂, for fresh W/CeO2 and Mo/CeO2 catalysts, much more Brønsted acid sites were formed, and relatively weaker NH3-L bands were observed on both W/CeO₂ and Mo/CeO₂ catalysts, suggesting that highly dispersed WO₃ and MoO₃ species on CeO₂ would mainly act as Brønsted acid sites. More interestingly, although intensive NH₃-B bands still could be observed on W/CeO2-used and Mo/CeO2-used, the intensity of NH3-L bands on used catalysts was much weaker than that on fresh catalysts (Fig. 6e-h), which could be resulted from the sulfation of Lewis acid sites. Intensive NH₃-L and NH₃-B bands could be observed on fresh Nb/CeO₂ catalyst, which meant that highly dispersed NbOx sites on CeO2 could serve as both Lewis acid sites and Brønsted acid sites showing higher acid strength than those on bare CeO₂ (Fig. 6i). After the SO₂ resistance test, more Brønsted acid sites were formed on Nb/CeO2 and the intensity of NH₃-L bands showed a sharp decrease simultaneously (Fig. 6j), indicating that both Nb and Ce sites were sulfated or covered by ammonium sulfates. In short summary, W/Mo/Nb modification could greatly enhance the surface acidity of CeO2 from the aspect of amount and strength. After exposure to the SO₂-containing reaction stream, the surface sulfation of the catalysts would lead to an increase in Brønsted acid sites and a significant loss of Lewis acid sites.

According to the results of Raman spectra, TG-MS, ATR-FTIR, XPS and (*in situ*) NH₃-TPD experiments, the surface states of the used catalysts could be proposed. As shown in Fig. 7a, after the SO₂ resistance test, abundant surface sulfate species (ceric sulfates and ammonium sulfate species) were formed. After being modified with acid metal oxides, the amount of sulfate species deposited on CeO₂ decreased to different degrees, due to their shielding effect. For W/CeO₂ and Mo/CeO₂ catalysts (Fig. 7b and c), surface Brønsted acid sites (W-OH or Mo-

Fig. 6. NH₃-TPD profiles for a) fresh and b) used catalysts. *In situ* DRIFT of NH₃-TPD on c) CeO₂, d) CeO₂-used, e) W/CeO₂, f) W/CeO₂-used, g) Mo/CeO₂, h) Mo/CeO₂-used, i) Nb/CeO₂-used catalysts.

OH) could trap SO_x *via* generating ammonium sulfate species, and thus inhibit the direct interaction between SO_2 and CeO_2 . Moreover, polymeric tungsten/molybdenum oxides were stable when exposed to SO_2 -containing atmosphere, and Ce coordinated with Mo showed lower reactivity with SO_2 , as confirmed by the $SO_2 + O_2$ adsorption experiments (Fig. 1d). In contrast, for Nb/CeO_2 (Fig. 7d), fewer surface Brønsted acid sites and the reaction between polymeric niobium oxides and SO_2 would result in the deposition of more sulfate species, which accounted for the weaker SO_2 resistance of Nb/CeO_2 comparing to W/CeO_2 and Mo/CeO_2 . The lower adsorption of SO_2 on Mo/CeO_2 in NH_3 -SCR reaction should be attributed to the lower reactivity of Ce coordinated with CeV_2 and CeV_3 and inhibitory effect of CeV_3 on the direct interaction between CeV_3 and CeV_4 form CeV_3 and CeV_4 form CeV_4 form CeV_4 and CeV_4 form CeV_5 form CeV_6 form CeV_6 and CeV_6 form CeV_6 form CeV

3.5. Reaction mechanism

In situ DRIFTS of NO + $\rm O_2$ reacting with pre-adsorbed NH₃, and NH₃ reacting with pre-adsorbed NO_x species were conducted at a relatively low temperature of 175 °C to determine the active sites and reveal the reaction mechanism. Since Mo/CeO₂ and W/CeO₂ showed similar surface adsorption properties (Fig. 6), to simplify the workload, Mo/CeO₂, and Nb/CeO₂ were selected as the research objects. As shown in Fig. 8a, after the introduction of NO + O₂ flow to Mo/CeO₂ pre-adsorbed with NH₃, the intensity of the bands assigned to NH₃-L species (1183 and 1229 cm⁻¹) decreased rapidly and these two peaks vanished in 5 min, while NH₃-B species (1420 cm⁻¹) showed relatively lower reactivity to NO + O₂, indicating that NH₃-L species were more reactive than NH₃-B [59,60]. The consumption of NH₃ could also be well demonstrated by the change of IR bands at 2500–3500 cm⁻¹, ascribed to the adsorbed

Fig. 7. Proposed surface states of a) CeO_2 -used, b) W/CeO_2 -used, c) Mo/CeO_2 -used and d) Nb/CeO_2 -used catalysts. For simplicity, all ammonium species were presented in the form of ammonium bisulfates.

NH₃ species as well [56]. It was interesting to see that almost no adsorbed NO_x species were formed on Mo/CeO₂ in 30 min, suggesting that the highly dispersed MoOx species could effectively inhibit the adsorption of NOx, and the NH3-SCR reaction on Mo/CeO2 mainly followed Elev-Rideal (E-R) mechanism. For Nb/CeO2, both NH3-L species $(1126 \text{ and } 1210 \text{ cm}^{-1})$ and NH₃-B species (1420 cm^{-1}) showed superior reactivity in NO + O_2 flow, which were all consumed in 6 min (Fig. 8b). That's why Nb/CeO2 showed slightly higher NH3-SCR activity than Mo/CeO₂ at low temperature. When Nb/CeO₂ was saturated with NO₂, NO + O₂ flow was switched off and Nb/CeO₂ was purged by N₂ flow to remove weakly adsorbed NO_x. Afterwards, NH₃ flow was introduced to the DRIFTS cell again to investigate the reactivity of NO_x-ad species. Although the intensity of the band attributed to chelating bidentate nitrate species (1571 cm⁻¹) decreased slightly with the introduction of NH₃, the band related to bridging bidentate nitrate species (1594 cm⁻¹) was enhanced simultaneously, indicating that the adsorbed nitrate species on Nb/CeO2 would undergo a transformation instead of consumption when exposed to NH₃ [61-63]. So, the NH₃-SCR reaction on both Mo/CeO2 and Nb/CeO2 catalysts was proceeded by E-R mechanism.

To further understand the evolution of surface states of the catalysts in the presence of SO $_2$, in situ DRIFTS of NH $_3$ -SCR + SO $_2$ experiments

were performed (Fig. 9). For Mo/CeO₂, NH₃-L and NH₃-B species were observed when exposed to NH3-SCR flow, and no identifiable bands related to nitrate species could be found, further suggesting that the adsorption of NO_x on Mo/CeO₂ was inhibited. Upon the introduction of SO_2 to the feeding gas, a broad band centered at 1122 cm⁻¹ emerged on Mo/CeO2, which was attributed to sulfate species and enhanced with reaction time [29,44]. Moreover, it was found that the intensity of bands attributed to NH₃-B species increased with the introduction of SO₂, which could be due to the formation of sulfated species serving as Bronsted acid sites, matching well with the results of NH3-TPD. The enhancement in the bands related to NH3-B species also occurred on Nb/CeO_2 when exposed to NH_3 -SCR + SO_2 flow. Although the overlap of bands assigned to sulfates species and NH3-L made it difficult to directly observe the interaction between SO2 and Lewis acid site, in situ DRIFTS of NH₃-TPD results well proved that SO₂ would react with Lewis acid sites and then result in the vanishment of Lewis acid sites. Remarkably, different from what was observed on Mo/CeO₂, multiple IR bands attributed to sulfated species (1007, 1025, 1091, 1126, 1154, 1240, 1270 and 1294 cm $^{-1}$) were observed on Nb/CeO₂ [29,44], which could be due to that SO2 could interact with both Nb and Ce sites as discussed in Raman spectra section (Fig. 3b).

As illustrated in Fig. 10, the reactivity of adsorbed NH $_3$ species on sulfated catalysts (after the test shown in Fig. 9) were also evaluated. NH $_3$ -B species on sulfated Mo/CeO $_2$ were found to be still reactive to NO + O $_2$ flow, however, it would take ca. 30 min to complete the consumption of NH $_3$ (Fig. 10a), confirming that SO $_2$ would result in the deactivation of Mo/CeO $_2$. As for Nb/CeO $_2$, the surface sulfation also led to the decrease in the reactivity of adsorbed NH $_3$ species, and NH $_3$ -B species on sulfated Nb/CeO $_2$ even showed lower reactivity than those on sulfated Mo/CeO $_2$, in good consistence with the results of SO $_2$ resistance test (Fig. 1b). It should also be noted that the change in the intensity of IR bands assigned to various sulfate species on Nb/CeO $_2$ could be due to the consumption of NH $_3$ adsorbed on sulfated species linked to Nb sites. Since no band attributed to nitrate species emerged throughout the test, it could be concluded that the NH $_3$ -SCR reaction on Mo/CeO $_2$ and W/CeO $_2$ followed E-R mechanism before and after sulfation treatment.

Fig. 8. a) In situ DRIFTS of NO + O₂ reacting with pre-adsorbed (NH₃-ad) NH₃ on Mo/CeO₂ catalyst. b) In situ DRIFTS of NO + O₂ reacting with NH₃-ad and NH₃ reacting with pre-adsorbed NO_x (NO_x-ad) on Nb/CeO₂ catalyst.

Fig. 9. In situ DRIFTS of NH_3 -SCR $+ SO_2$ on a) Mo/CeO₂ and b) Nb/CeO₂.

Fig. 10. In situ DRIFTS of NO + O₂ reacting with pre-adsorbed NH₃-ad on a) sulfated Mo/CeO₂ and b) Nb/CeO₂. The sulfation treatment was conducted as shown in Fig. 9.

3.6. Regeneration and the Role of Ammonium Sulfates

As discussed above, the deposition of ammonium sulfates or the sulfation of active sites would result in the deactivation of W/CeO2, Mo/CeO2 and Nb/CeO2 catalysts. In industrial applications, calcination treatment has been widely applied for the regeneration of poisoned catalysts. Considering that ammonium sulfates deposited on W/CeO2, Mo/CeO2 and Nb/CeO2 catalysts could decompose at low temperatures (\leq 400 °C), W/CeO2-used, Mo/CeO2-used and Nb/CeO2-used catalysts were calcined at 400 °C (lower than the calcination temperature after the impregnation of acid metal species onto CeO2) in Ar flow for 2 h to investigate whether the removal of ammonium sulfates could help

regenerate the poisoned catalysts. As shown in Fig. 11 and Fig. S9, after the regeneration treatment (400 °C, Ar flow), the NO_X conversions on W/CeO₂-used, Mo/CeO₂-used and Nb/CeO₂-used catalysts at 175 °C were all found to increase. Since SO_2 would not be released but recaptured by catalysts when ammonium sulfates decomposed, it could be concluded that ABS showed a much more significant poisoning effect on CeO_2 and CeO_2 modified with acid metal oxides than the sulfation of CeO_2 . The amount of sulfate species on the regenerated catalysts was further determined by TG experiments (Fig. S10). It was found that the weight loss assigned to the decomposition of sulfate species on those regenerated catalysts was almost the same as that on corresponding used catalysts, well supporting the viewpoint that SO_2 generated by the

Fig. 11. NO_x conversions on fresh, used and regenerated catalysts at 175 °C.

decomposition of ammonium sulfates would be re-captured when the calcination temperature was 400 $^{\circ}\text{C}$ or lower. However, it must be noted that the calcination treatment (400 $^{\circ}\text{C}$) might result in the deep sulfation of active sites, especially Ce species [46]. That's why the regenerated catalysts still showed poorer catalytic performance than fresh catalysts. Considering that Mo/CeO₂ showed lower reactivity to SO₂ to form sulfated CeO₂, and the deposition of ammonium sulfates was the main reason for the deactivation of Mo/CeO₂ in NH₃-SCR when exposed to SO₂, Mo-CeO₂ catalysts might show promising application perspective in some reactions in the presence of SO₂ but without NH₃.

4. Conclusion

In this work, optimal loadings of acid metal oxides (MoO₃, Nb₂O₅, WO₃) were impregnated onto CeO₂ to investigate the impact of acid metal oxide modification on CeO₂ catalyst for NH₃-SCR of NO₃. Besides the expected improvement of the activity and N2 selectivity, significantly enhanced SO₂ resistance ability was also achieved on the CeO₂ modified with acid metal oxides comparing to bare CeO₂. Moreover, highly dispersed Mo or W species were found to better shield CeO₂ from SO₂ poisoning than highly dispersed Nb species. Besides serving as Brønsted acid sites for NH3 adsorption/activation, highly dispersed Mo and W species could also inhibit SO₂ from directly interacting with the catalysts. It was also revealed that the consumption of highly active Lewis acid sites by SO2 and the coverage of active sites by the deposited ammonium sulfates were the main reasons for the deactivation of CeO2 catalysts modified with acid metal oxides. The lowest affinity of Mo/ CeO₂ catalysts for SO₂ made surface Mo-O-Ce paired site an attractive element in constructing NH3-SCR catalysts with high SO2 resistance performance. This work provided a deep insight into designing efficient catalysts working under an SO2-containing atmosphere.

CRediT authorship contribution statement

The manuscript was written through the contributions from all authors. All authors have given approval to the final version of the manuscript.

CRediT authorship contribution statement

Yandi Cai: Methodology, Investigation, Validation, Data curation, Writing – original draft. Bifeng Zhang: Methodology, Validation. Haowei Yu: Methodology. Xiaoyu Ji: Methodology. Jingfang Sun: Writing – review & editing. Xizhang Wang: Resources, Methodology. Qiuhui Qian: Investigation. Lulu Li: Writing – review & editing. Annai Liu: Methodology. Wei Tan: Supervision, Conceptualization, Investigation, Validation, Data curation, Writing – original draft, Writing – review & editing. Fei Gao: Supervision, Conceptualization, Writing – review & editing. Lin Dong: Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21972063, 22272077, 22306090) and Natural Science Foundation of Jiangsu Province (BK20200012).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.123424.

References

- [1] J.A. James, S. Sung, H. Jeong, O.A. Broesicke, S.P. French, D. Li, J.C. Crittenden, Impacts of combined cooling, heating and power systems, and rainwater harvesting on water demand, carbon dioxide, and NO_x emissions for atlanta, Environ. Sci. Technol. 52 (2018) 3–10.
- [2] K. He, H. Huo, Q. Zhang, Urban air pollution in china: current status, characteristics, and progress, Annu. Rev. Energy Environ. 27 (2002) 397–431.
- [3] M.V. Twigg, Progress and future challenges in controlling automotive exhaust gas emissions, Appl. Catal. B: Environ. 70 (2007) 2–15.
- [4] R. Zhang, N. Liu, Z. Lei, B. Chen, Selective transformation of various nitrogencontaining exhaust gases toward N₂ over zeolite catalysts, Chem. Rev. 116 (2016) 3658–3721.
- [5] S.M. Mousavi, H. Fatehi, X.-S. Bai, Numerical study of the combustion and application of SNCR for NO reduction in a lab-scale biomass boiler, Fuel 293 (2021)
- [6] L.L. Guido Buscaa, Gianguido Ramisa, Francesco Bertic, Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: a review, Appl. Catal. B: Environ. 18 (1998) 1–36.
- [7] L. Han, S. Cai, M. Gao, J.-y Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective catalytic reduction of NO_x with NH₃ by using novel catalysts: State of the art and future prospects, Chem. Rev. 119 (2019) 10916–10976.
- [8] P. Forzatti, I. Nova, E. Tronconi, A. Kustov, J.R. Thøgersen, Effect of operating variables on the enhanced SCR reaction over a commercial V₂O₅-WO₃/TiO₂ catalyst for stationary applications, Catal. Today 184 (2012) 153–159.
- [9] M. Zhu, J.K. Lai, U. Tumuluri, Z. Wu, I.E. Wachs, Nature of active sites and surface intermediates during SCR of NO with NH₃ by supported V₂O₅-WO₃/TiO₂ catalysts, J. Am. Chem. Soc. 139 (2017) 15624–15627.
- [10] J.L. Liang Chen, Maofa Ge, DRIFT study on cerium-tungsten titiania catalyst for selective catalytic reduction of NO_x with NH₃, Environ. Sci. Technol. 44 (2010) 9590–9596.
- [11] J. Chen, Y. Chen, M. Zhou, Z. Huang, J. Gao, Z. Ma, J. Chen, X. Tang, Enhanced performance of ceria-based NO_x reduction catalysts by optimal support effect, Environ. Sci. Technol. 51 (2017) 473–478.
- [12] J. Ji, Y. Tang, L. Han, P. Ran, W. Song, Y. Cai, W. Tan, J. Sun, C. Tang, L. Dong, Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance, Chem. Eng. J. 445 (2022).
- [13] W. Tan, J. Wang, Y. Cai, L. Li, S. Xie, F. Gao, F. Liu, L. Dong, Molybdenum oxide as an efficient promoter to enhance the NH₃-SCR performance of CeO₂-SiO₂ catalyst for NO removal, Catal. Today, 397- 399 (2022) 475-483.
- [14] X. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F. Yang, J. Sun, C. Tang, L. Dong, Enhancing the deNO performance of MnO/CeO₂-ZrO₂ nanorod catalyst for lowtemperature NH₃-SCR by TiO₂ modification, Chem. Eng. J. 369 (2019) 46–56.
- [15] Y. Peng, K. Li, J. Li, Identification of the active sites on CeO₂-WO₃ catalysts for SCR of NO_x with NH₃: An in situ IR and Raman spectroscopy study, Appl. Catal. B: Environ. 140–141 (2013) 483–492.
- [16] S. Ding, F. Liu, X. Shi, K. Liu, Z. Lian, L. Xie, H. He, Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃, ACS Appl. Mater. Interfaces 7 (2015) 9497–9506.
- [17] Z. Liu, H. Su, J. Li, Y. Li, Novel MoO₃/CeO₂–ZrO₂ catalyst for the selective catalytic reduction of NO_x by NH₃, Catal. Commun. 65 (2015) 51–54.
- [18] S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO_x with NH₃ over CeZrO_x catalyst, Appl. Catal. B: Environ. 180 (2016) 766–774.
- [19] W. Tan, C. Wang, S. Yu, Y. Li, S. Xie, F. Gao, L. Dong, F. Liu, Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO_x removal by NH₃-SCR, J. Hazard. Mater. 416 (2021), 125826.

- [20] L. Li, C. Ge, J. Ji, W. Tan, X. Wang, X. Wei, K. Guo, C. Tang, L. Dong, Effects of different methods of introducing Mo on denitration performance and anti-SO₂ poisoning performance of CeO₂, Chin. J. Catal. 42 (2021) 1488–1499.
- [21] Y. Chen, C. Li, J. Chen, X. Tang, Self-prevention of well-defined-facet Fe₂O₃/MoO₃ against deposition of ammonium bisulfate in low-temperature NH₃-SCR, Environ. Sci. Technol. 52 (2018) 11796–11802.
- [22] C. Sun, H. Liu, W. Chen, D. Chen, S. Yu, A. Liu, L. Dong, S. Feng, Insights into the Sm/Zr co-doping effects on N₂ selectivity and SO₂ resistance of a MnO_x-TiO₂ catalyst for the NH₃-SCR reaction, Chem. Eng. J. 347 (2018) 27–40.
- [23] W. Tan, A. Liu, S. Xie, Y. Yan, T.E. Shaw, Y. Pu, K. Guo, L. Li, S. Yu, F. Gao, F. Liu, L. Dong, Ce-Si mixed oxide: A high sulfur resistant catalyst in the NH₃-SCR reaction through the mechanism-enhanced process, Environ. Sci. Technol. 55 (2021) 4017–4026.
- [24] Y. Peng, R. Qu, X. Zhang, J. Li, The relationship between structure and activity of MoO₃-CeO₂ catalysts for NO removal: influences of acidity and reducibility, Chem. Commun. 49 (2013) 6215–6217.
- [25] R. Qu, X. Gao, K. Cen, J. Li, Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH₃, Appl. Catal. B: Environ. 142–143 (2013) 290–297.
- [26] Z. Ma, X. Wu, H. Härelind, D. Weng, B. Wang, Z. Si, NH₃-SCR reaction mechanisms of NbO /Ce_{0.75}Zr_{0.25}O₂ catalyst: DRIFTS and kinetics studies, J. Mol. Catal. A: Chem. 423 (2016) 172–180.
- [27] K. Guo, J. Ji, R. Osuga, Y. Zhu, J. Sun, C. Tang, J.N. Kondo, L. Dong, Construction of Fe₂O₃ loaded and mesopore confined thin-layer titania catalyst for efficient NH₃-SCR of NO_x with enhanced H₂O/SO₂ tolerance, Appl. Catal. B: Environ. 287 (2021)
- [28] K. Guo, J. Ji, W. Song, J. Sun, C. Tang, L. Dong, Conquering ammonium bisulfate poison over low-temperature NH₃-SCR catalysts: A critical review, Appl. Catal. B: Environ. 297 (2021).
- [29] W. Tan, J. Wang, L. Li, A. Liu, G. Song, K. Guo, Y. Luo, F. Liu, F. Gao, L. Dong, Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO₂ resistant NH₃-SCR catalysts for NO removal, J. Hazard. Mater. 388 (2020), 121729
- [30] Z. Wu, M. Li, J. Howe, H.M. Meyer 3rd, S.H. Overbury, Probing defect sites on CeO₂ nanocrystals with well-defined surface planes by raman spectroscopy and O₂ adsorption. Jangmuir 26 (2010) 16595–16606.
- [31] S. Loridant, Raman spectroscopy as a powerful tool to characterize ceria-based catalysts, Catal. Today 373 (2021) 98–111.
- [32] M. Picquart, Science and technology-structural studies during gelation of WO₃ investigated by in-situ raman spectroscopy, J. Sol. -Gel Sci. Technol. 18 (2000) 199-206
- [33] I.E.W. Elizabeth, I. Ross-Medgaarden, Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and raman spectroscopy, J. Phys. Chem. C. 111 (2007) 15089–15099.
- [34] X. Li, X. Li, J. Li, J. Hao, High calcium resistance of CeO₂–WO₃ SCR catalysts: Structure investigation and deactivation analysis, Chem. Eng. J. 317 (2017) 70–79.
- [35] Y. Wu, G. Hu, Y. Xie, M. Guo, M. Luo, Solid state reaction of MoO₃–CeO₂ complex oxide studied by raman spectroscopy, Solid State Sci. 13 (2011) 2096–2099.
- [36] W. Yu, J. Zhu, L. Qi, C. Sun, F. Gao, L. Dong, Y. Chen, Surface structure and catalytic properties of MoO₃/CeO₂ and CuO/MoO₃/CeO₂, J. Colloid Interface Sci. 364 (2011) 435–442.
- [37] Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Impacts of niobia loading on active sites and surface acidity in NbO/CeO₂–ZrO₂ NH₃–SCR catalysts, Appl. Catal. B: Environ. 179 (2015) 380–394.
- [38] M.A. Bañares, I.E. Wachs, Molecular structures of supported metal oxide catalysts under different environments, J. Raman Spectrosc. 33 (2002) 359–380.
- [39] J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, Studies on surface structure of M_xO_y/MoO₃/CeO₂ system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH₃, Appl. Catal. B: Environ. 95 (2010) 144–152.
- [40] H.T. Kreissl, M.M.J. Li, Y.-K. Peng, K. Nakagawa, T.J.N. Hooper, J.V. Hanna, A. Shepherd, T.-S. Wu, Y.-L. Soo, S.C.E. Tsang, Structural studies of bulk to nanosize niobium oxides with correlation to their acidity, J. Am. Chem. Soc. 139 (2017) 12670–12680.
- [41] C.G. Maciel, Td.F. Silva, M.I. Hirooka, M.N. Belgacem, J.M. Assaf, Effect of nature of ceria support in CuO/CeO₂ catalyst for Prox-CO reaction, Fuel 97 (2012) 245–252.

- [42] Z. Ma, D. Weng, X. Wu, Z. Si, Effects of WO_x modification on the activity, adsorption and redox properties of CeO₂ catalyst for NO_x reduction with ammonia, J. Environ. Sci. 24 (2012) 1305–1316.
- [43] P.B.M. Waqif, O. Saur, J.C. Lavalley, G. Blanchard, O. Touret, Study of ceria sulfation, Appl. Catal. B: Environ. 11 (1997) 193–205.
- [44] S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Novel effect of SO₂ on the SCR reaction over CeO₂: Mechanism and significance, Appl. Catal. B: Environ. 136–137 (2013) 19–28.
- [45] J. Marlowe, S. Acharya, A. Zuber, G. Tsilomelekis, Characterization of sulfated SnO₂-ZrO₂ Catalysts and their catalytic performance on the tert-butylation of phenol, Catalysts 10 (2020).
- [46] L. Zhang, W. Zou, K. Ma, Y. Cao, Y. Xiong, S. Wu, C. Tang, F. Gao, L. Dong, Sulfated temperature effects on the catalytic activity of CeO₂ in NH₃-Selective catalytic reduction conditions, J. Phys. Chem. C. 119 (2015) 1155–1163.
- [47] I.N.M. Ziolek, Niobium compounds: Preparation, characterization, and application in heterogeneous catalysis, Chem. Rev. 99 (1999) 3603–3624.
- [48] J.D. Loyd, J. Burcham, Israel E. Wachs, In situ vibrational spectroscopy studies of supported niobium oxide catalysts, J. Phys. Chem. B 103 (1999) 6015–6024.
- [49] J. Zhang, Y. Fan, X. Yu, Z. Huang, W. Dai, L. Yang, Improvement on the catalytic performance of MoO₃ nanobelts for NH₃-SCR Reaction by SnO₂-modification: Enhancement of acidity and redox property, Catal. Lett. 152 (2021) 480–488.
- [50] L. Kylhammar, P.-A. Carlsson, H.H. Ingelsten, H. Grönbeck, M. Skoglundh, Regenerable ceria-based SO_x traps for sulfur removal in lean exhausts, Appl. Catal. B: Environ. 84 (2008) 268–276.
- [51] H.H. Wenqing Xu, Yunbo Yu, Deactivation of a CeTiO₂ catalyst by SO₂ in the selective catalytic reduction of NO by NH₃, J. Phys. Chem. C. 113 (2009) 4426–4432.
- [52] W. Tan, Y. Cai, S. Xie, J. Xu, K. Ma, K. Ye, L. Ma, S.N. Ehrlich, W. Zou, F. Gao, L. Dong, F. Liu, Constructing efficient CuO-CeO₂ catalyst for NO reduction by CO: New insights into the structure–activity relationship, Chem. Eng. J. 456 (2023).
- [53] L. Zhu, Z. Zhong, H. Yang, C. Wang, A comparative study of metal oxide and sulfate catalysts for selective catalytic reduction of NO with NH₃, Environ. Technol. 38 (2017) 1285–1294.
- [54] W. Tan, J. Wang, S. Yu, A. Liu, L. Li, K. Guo, Y. Luo, S. Xie, F. Gao, F. Liu, L. Dong, Morphology-sensitive sulfation effect on ceria catalysts for NH₃-SCR, Top. Catal. 63 (2020) 932–943.
- [55] Y. Xiong, C. Tang, X. Yao, L. Zhang, L. Li, X. Wang, Y. Deng, F. Gao, L. Dong, Effect of metal ions doping (M = Ti⁴⁺, Sn⁴⁺) on the catalytic performance of MnO/CeO₂ catalyst for low temperature selective catalytic reduction of NO with NH₃, Appl. Catal. A: Gen. 495 (2015) 206–216.
- [56] F. Liu, W. Shan, Z. Lian, J. Liu, H. He, The smart surface modification of Fe₂O₃ by WO for significantly promoting the selective catalytic reduction of NO with NH₃, Appl. Catal. B: Environ. 230 (2018) 165–176.
- [57] Z. Liu, S. Zhang, J. Li, L. Ma, Promoting effect of MoO₃ on the NO_x reduction by NH₃ over CeO₂/TiO₂ catalyst studied with in situ DRIFTS, Appl. Catal. B: Environ. 144 (2014) 90–95.
- [58] L. Li, L. Zhang, K. Ma, W. Zou, Y. Cao, Y. Xiong, C. Tang, L. Dong, Ultra-low loading of copper modified TiO₂/CeO₂ catalysts for low-temperature selective catalytic reduction of NO by NH₃, Appl. Catal. B: Environ. 207 (2017) 366–375.
- [59] B.J. Zhongbiao Wu, Yue Liu, Haiqiang Wang, Ruiben Jin, DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH₃, Environ. Sci. Technol. 41 (2007) 5812–5817.
- [60] X. Yao, R. Zhao, L. Chen, J. Du, C. Tao, F. Yang, L. Dong, Selective catalytic reduction of NO_x by NH₃ over CeO₂ supported on TiO₂: Comparison of anatase, brookite, and rutile, Appl. Catal. B: Environ. 208 (2017) 82–93.
- [61] B. Jiang, Z. Li, S.-c Lee, Mechanism study of the promotional effect of O₂ on low-temperature SCR reaction on Fe–Mn/TiO₂ by DRIFT, Chem. Eng. J. 225 (2013) 52–58
- [62] T. Chen, B. Guan, H. Lin, L. Zhu, In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides, Chin. J. Catal. 35 (2014) 294–301.
- [63] J. Liu, J. Meeprasert, S. Namuangruk, K. Zha, H. Li, L. Huang, P. Maitarad, L. Shi, D. Zhang, Facet–activity relationship of TiO₂ in Fe₂O₃/TiO₂ nanocatalysts for selective catalytic reduction of NO with NH₃: *In situ* DRIFTs and DFT studies, J. Phys. Chem. C. 121 (2017) 4970–4979.