

Inventory Based Recommendation Algorithms

Du Chen

Antai College of Economics and Management, Shanghai Jiao Tong University (SJTU)

Joint work with:

Ying Rong, Xun Zhang, Huan Zheng from Antai, SJTU

Yuming Deng, Guangrui Ma, Hao Ge, Yunwei Qi from Alibaba Group

Outline

- Background
- Recommendation Algorithms
- Simulation Results
- 4 Conclusion

Background

- Freshippo is a supermarket owned by Alibaba Group
- Both online and offline channels, but a large portion of the revenue is from its online channel

3000+ SKUs

Get replenished every morning; Dispose; Limited inventory

Home Page

Cart Page

Background

Alibaba Recommendation Workflow

- Greedy Algorithm (maximum expected revenue recommended first) causes 50% loss of optimal revenue
- Research Question:
 - How does Freshippo make real-time Top-K recommendation to arrived customers so that revenue is maximized in a single day, especially when products are perishable and have limited inventories

Notations

- n: the online retailer sells n products
- r_i: price of product i
- w_i: salvage value of product i
- T: total periods, one customer arrives in each period.
- S: total segments.
- \widehat{ctr}_{it}^S , \widehat{cvr}_{it}^S : historical click through rate (ctr) and conversion rate (cvr)
- C_i: initial inventory of product i
- \hat{b}_i^s : initial inventory of product i at the beginning of segment s
- K: assortment cardinality. K = 20

Linear Programming Based Algorithm

LP model is based on history data: maximizing revenue in segment s

$$[P1] \ \max \qquad \sum_{i=1}^n \sum_{t=1}^{\hat{T}_s} c\hat{v}r_{it}^s c\hat{t}r_{it}^s r_i x_{it} + \sum_{i=1}^n w_i I_i$$
 s.t.
$$\sum_{t=1}^{\hat{T}_s} c\hat{v}r_{it}^s c\hat{t}r_{it}^s x_{it} + I_i = \hat{b}_i^s, \ \forall i=1,2\dots n (1) \ \text{Inventory Constraint}$$

$$\sum_{i=1}^n x_{it} \leq K, \ \forall t=1,2,\dots \hat{T}_s \qquad \qquad \text{Cardinality Constraint}$$

$$I_i \geq 0, \ \forall i=1,2,\dots,n \\ 0 \leq x_{it} \leq 1, \forall i,t \qquad \qquad \text{Standard Constraint}$$

Linear Programming Based Algorithm____

 Shadow Price α_i^s: opportunity cost of recommending product i during segment s

$$[P1] \ \max \qquad \sum_{i=1}^n \sum_{t=1}^{\hat{T}_s} c\hat{v}r_{it}^s c\hat{t}r_{it}^s r_i x_{it} + \sum_{i=1}^n w_i I_i$$
 Shadow Price / Dual Price s.t.
$$\sum_{t=1}^{\hat{T}_s} c\hat{v}r_{it}^s c\hat{t}r_{it}^s x_{it} + I_i = \hat{b}_i^s, \ \forall i=1,2\dots n (1)$$

$$\alpha_i^s$$

$$\sum_{i=1}^n x_{it} \leq K, \ \forall t=1,2,\dots \hat{T}_s$$

$$I_i \geq 0, \ \forall i=1,2,\dots,n$$

$$0 \leq x_{it} \leq 1, \forall i,t$$

Linear Programming Based Algorithm

• Instruct real-time recommendation by modifying ranking scores with $lpha_i^{\scriptscriptstyle S}$

```
Algorithm 1 LP-based Algorithm
 1: for s=1,2,...,S do
         Prepare parameters (c\hat{v}r_{it}^s c\hat{t}r_{it}^s, \hat{b}_i^s)
                                                                                                                 > Segment-specified parameters
         Solve [P1] with above parameters
 3:
         Get the shadow price \alpha_i^s of constraint (1)
 4:
         for Customer t in Period T_s do
 5:
             Remove products with zero inventory value
 6:
             Get the estimation of cvr_{it}^s ctr_{it}^s
 7:
             score_{it} \leftarrow (r_i - \alpha_i^s)cvr_{it}^sctr_{it}^s
 8:
             Sort \{score_{it}\}_{i=1}^n in descending order, obtain sorted rank [i]
 9:
             S^i = \{i : |i| \le K\}
10:
         end for
11:
12: end for
```


Inventory-Balancing (IB) Algorithm

- Modify ranking scores with an inventory-based penalty function Ψ
- An increasing penalty function $\Psi: [0,1] \rightarrow [0,1]$ with $\Psi(0) = 0, \Psi(1) = 1$
- In our study, $\Psi(x) = \frac{e}{e-1} (1 e^{-x})^*$

$$Score_{it} = \Psi\left(\frac{I_i^{t-1}}{C_i}\right)(r_i - w_i)ctr_{it}cvr_{it}$$

Algorithm 2 Inventory Balancing Algorithm

```
1: for period t=1,2,...,T do
2: score_{it} \leftarrow \Psi(I_i^{t-1}/C_i)(r_i - w_i)cvr_{it}ctr_{it}
3: Sort \{score_{it}\}_{i=1}^n in descending order, obtain sorted rank [i]
4: x_{it} = 1 if [i] < K, x_{it} = 0 otherwise
```

5: end for

^{*} Golrezaei N, Nazerzadeh H, Rusmevichientong P. Real-time optimization of personalized assortments[J]. Management Science, 2014, 60(6): 1532-1551.

Dataset

- Two-day page view data from 5:55 AM to 22:55 PM in a store, which includes approximately 27 millions records for each day
- Each record contains SKUID, predicted CTR, predicted CVR, pvtimestamp,
 and pvid
- Price, product category (nonperishable or perishable), salvage value, and initial inventory level at the beginning of the day

TABLE I
DESCRIPTIVE STATISTICS ABOUT SKUS

		Mean	Std	Min	25%	50%	75%	Max
Non-perishable Product	Price	2.54	2.58	0.48	1.75	2.11	2.57	4.79
	Salvage	2.49	2.53	0.43	1.70	2.06	2.52	4.74
	Initial Inventory	3.55	3.99	1.00	2.40	3.00	3.64	6.79
Perishable Product	Price	2.46	2.80	0.01	1.77	2.11	2.55	5.80
	Salvage	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Initial Inventory	4.76	5.52	1.00	2.89	3.69	4.61	6.91

Simulation Results

We compared four algorithms

Algorithms	Scores	Meanings		
GREEDY	$ctr_{it} * cvr_{it} * r_i$	Expected Revenue (ER)		
LP-based Algorithm	$ctr_{it}*cvr_{it}(r_i-lpha_i^s)$	Adjusted ER rule out opportunity cost		
IB Algorithm	$\Psi\left(\frac{I_i^{t-1}}{c_i}\right) * ctr_{it} * cvr_{it} * r_i$	Adjusted ER modified by penalty function		
REAL	$\mathit{ctr}_{it} * \mathit{cvr}_{it} + \mathit{ctr}_{it}$	Click + Conversion		

Simulation Results

Table 2. Numerical Study Results

	Without Salvage			With Salvage			
	GREEDY	LP-based	IB	REAL	LP-based	IB	REAL
Revenue-Related		-1day -1seg			-1seg		
Sales Volume	-	-2.84% +2.33%	+4.29%	+4.56%	-1.00%	-2.71%	+4.56%
Revenue	-	+0.12% +0.70%	+1.97%	-11.11%	-4.50%	-3.98%	-11.11%
Peri.Ratio	-	-14.18% -7.22%	-3.78%	-0.64%	+13.95%	+18.54%	-0.64%
Revenue+Salvage	-	-0.84% -0.06%	+0.16%	-1.53%	+0.85%	+1.24%	-1.53%
RevenuePerPv	-	+0.11% +0.67%	+2.01%	-11.06%	-4.46%	-4.02%	-11.06%
RevenuePerOrder	-	+2.89% -1.31%	-2.54%	-14.11%	-3.85%	-1.40%	-14.11%
Inventory-Related							
Sold-out Rate	-	-3.06% +0.33%	+3.29%	+2.02%	+0.22%	-5.32%	+2.02%
Leftover Rate	-	+0.00% -2.62%	-6.63%	-2.61%	-3.11%	+0.16%	-2.61%

Sales Volume: IB+4.29%, LP+2.33%; REAL+4.56%

Revenue: IB+1.97%

Sales Volume & Revenue : decreasing

Peri.Ratio: LP+13.95, IB+18.54

Conclusion

higher revenue compared to prevailing greedy algorithms.

Incorporating salvage values can boost sales volume of perishable products.

Inventory Based Recommendation Algorithms

Du Chen, Yuming Deng, Guangrui Ma, Hao Ge, Yunwei Qi, Ying Rong, Xun Zhang, Huan Zheng*

