$\mathbb{Z}/n\mathbb{Z}$

Cours		
1	Cong	ruences
	1.1	Définition
	1.2	Compatibilité avec les lois
	1.3	Le petit théorème de Fermat
2	L'anneau $\mathbb{Z}/n\mathbb{Z}$	
	2.1	Complément : ensemble quotient
	2.2	L'ensemble $\mathbb{Z}/n\mathbb{Z}$
	2.3	Structure d'anneau
	2.4	Calcul dans $\mathbb{Z}/n\mathbb{Z}$
3	Inver	rsibles de $\mathbb{Z}/n\mathbb{Z}$
4		néorème chinois
	4.1	Présentation du problème chinois
	4.2	Structure d'anneau produit
	4.3	À propos de la notation
	4.4	Le théorème chinois
5	Indic	atrice d'Euler
6		exes
	6.1	Démonstrations du petit théorème de Fermat
		•
Exercic	es	
$\operatorname{Ex}\epsilon$	ercices	du CCINP
$\operatorname{Ex}\epsilon$	ercices	de calcul
Exe	ercices	
Pet	its prol	blèmes d'entrainement

1 Congruences

1.1 Définition

<u>Définition</u>. Soit $n \in \mathbb{N}^*$. Pour $a, b \in \mathbb{Z}$, on dit que a **est congru à** b **modulo** n si et seulement si $n \mid b - a$. On note $a \equiv b \mid n \mid$ ou parfois $a \equiv b \bmod n$.

Proposition. La relation de congruence modulo n est un relation d'équivalence sur \mathbb{Z} .

1.2 Compatibilité avec les lois

Proposition. Soit $n \in \mathbb{N}^*$, $a, b, c, d \in \mathbb{Z}$. On a alors :

$$\left. \begin{array}{l} a \equiv b \; [n] \\ c \equiv d \; [n] \end{array} \right\} \implies a + c \equiv b + d \; [n]$$

$$\left. \begin{array}{l} a \equiv b \; [n] \\ c \equiv d \; [n] \end{array} \right\} \; \Longrightarrow \; ac \equiv bd \; [n]$$

Corollaire. Si $a \equiv b$ [n], alors pour tout $k \in \mathbb{N}$, $a^k \equiv b^k$ [n].

Exemple. Justifier le critère de divisibilité par 3: la somme des chiffres dans l'écriture en base 10 est divisible par 3.

1.3 Le petit théorème de Fermat

Petit théorème de Fermat.

Soit p un nombre premier, a un entier non multiple de p. Alors :

$$a^{p-1} \equiv 1 \ [p]$$

2 L'anneau $\mathbb{Z}/n\mathbb{Z}$

2.1 Complément : ensemble quotient

<u>Définition</u>. Soit X un ensemble et \mathcal{R} une relation d'équivalence sur X. Pour $x \in X$, on appelle classe d'équivalence de x pour la relation \mathcal{R} , et on note \overline{x} , l'ensemble des éléments $y \in X$ tels que $y\mathcal{R}x$:

$$y \in \overline{x} \iff y\mathcal{R}x$$

<u>Proposition.</u> Si $y \in \overline{x}$, alors $\overline{y} = \overline{x}$. On dit que y est un représentant de la classe d'équivalence \overline{x} .

Proposition. Les classes d'équivalences pour \mathcal{R} forment une partition de X: elles sont non vides, deux à deux disjointes et leur réunion est X.

2.2 L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Définition. Soit $n \ge 2$. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} par la relation de congruence modulo n.

Exemple. Pour n = 2, on a :

$$\mathbb{Z}/2\mathbb{Z} = \{I, P\} = \{\overline{0}, \overline{1}\}$$

2/10 http://mpi.lamartin.fr **2024-2025**

Proposition. Soit $n \ge 2$. L'ensemble $\mathbb{Z}/n\mathbb{Z}$ est un ensemble à n élément, que l'on peut décrire ainsi :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

Remarque. La description donnée ci-dessus n'est pas la seule possible. Ainsi :

$$\begin{split} \mathbb{Z}/7\mathbb{Z} &= \{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6}\} \\ &= \{\overline{-3},\overline{-3},\overline{-1},\overline{0},\overline{1},\overline{2},\overline{3}\} \end{split}$$

2.3 Structure d'anneau

Rappel. Pour $n \ge 2$, il existe une unique loi de groupe sur $\mathbb{Z}/n\mathbb{Z}$, encore notée +, pour laquelle l'application $k \mapsto \overline{k}$ soit un morphisme de groupes, i.e. :

$$\forall a, b \in \mathbb{Z}, \ \overline{a+b} = \overline{a} + \overline{b}$$

Remarque. Si l'on considère $x,y\in\mathbb{Z}/n\mathbb{Z}$ et que l'on veut parler de x+y, on envisage donc $a,b\in\mathbb{Z}$ qui sont des représentants des classes d'équivalence x et y: $\overline{a}=x$ et $\overline{b}=y$. Alors :

$$x + y = \overline{a + b}$$

Proposition. Pour $n \geqslant 2$, il existe une unique loi interne sur $\mathbb{Z}/n\mathbb{Z}$, notée \times , pour laquelle l'application :

$$\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
 vérifie :

$$k \mapsto \overline{k}$$

$$\forall a,b \in \mathbb{Z}, \ \overline{a \times b} = \overline{a} \times \overline{b}$$

Alors $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif, dont l'unité est $\overline{1}$.

Exemple. Dresser la table d'addition de $\mathbb{Z}/5\mathbb{Z}$.

Dresser la table de multiplication de $\mathbb{Z}/5\mathbb{Z}$, de $\mathbb{Z}/6\mathbb{Z}$.

Remarque. Notons bien que :

$$\begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ k & \mapsto & \overline{k} \end{array}$$

est un morphisme surjectif de l'anneau $(\mathbb{Z},+,\times)$ sur l'anneau $(\mathbb{Z}/n\mathbb{Z},+,\times)$.

2.4 Calcul dans $\mathbb{Z}/n\mathbb{Z}$

Remarque. On travaille dans $\mathbb{Z}/n\mathbb{Z}$, où $n \ge 2$.

 $\overline{Pour \ k}, a \in \mathbb{Z}, \text{ que représentent :}$

$$k \, \overline{a}, \, \overline{ka} \, \operatorname{et} \, \overline{k} \, \overline{a}$$

Exemple. Est-ce que l'écriture suivante, dans $\mathbb{Z}/17\mathbb{Z}$, a du sens?

$$\overline{15} \times (\overline{3})^{-1} = \overline{5}$$

Remarque. On évite de dire : « soit $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ », mais plutôt : « soit $x \in \mathbb{Z}/n\mathbb{Z}$ et a un représentant de x, c'est-à-dire tel que $x = \overline{a}$.

En particulier, si on définit :

$$f: \mathbb{Z}/n\mathbb{Z} \rightarrow \dots$$

on peut vouloir écrire $\overline{a} \mapsto f(a)$, c'est-à-dire définir f(x) en utilisant un représentant de x. Mais il faut bien justifier qu'alors, la définition est indépendante du choix du représentant :

$$\overline{a} = \overline{b} \implies f(a) = f(b)$$

2024-2025 http://mpi.lamartin.fr **3/10**

Exemple. Résoudre, dans $\mathbb{Z}/11\mathbb{Z}$, l'équation :

$$x^2 - \overline{6}x + \overline{5} = \overline{0}$$

Exemple. Résoudre, dans $\mathbb{Z}/31\mathbb{Z}$, l'équation :

$$x^2 - \overline{11}x - \overline{1} = \overline{0}$$

Exemple. Discuter, suivant les valeurs de $a \in \mathbb{Z}/13\mathbb{Z}$, le nombre de solutions de l'équation :

$$x^2 + x + a = \overline{0}$$

Proposition. Pour p premier, calculer Card(A) où :

$$A = \left\{ x^2, \ x \in \left(\mathbb{Z}/p\mathbb{Z} \right)^* \right\}$$

3 Inversibles de $\mathbb{Z}/n\mathbb{Z}$

Théorème.

Soit n entier, $n \ge 2$. Les éléments inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ sont les classes \overline{k} où $k \in \{0, \dots, n-1\}$ est premier avec n.

Remarque. Ce sont les générateurs du groupe cyclique $(\mathbb{Z}/n\mathbb{Z}, +)$.

Définition. On note $\varphi(n)$ le nombre d'inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$:

$$\varphi(n) = \text{Card} (\{k \in \{0, \dots, n-1\}, k \land n = 1\})$$

 φ s'appelle l'indicatrice d'Euler.

Remarque. On convient que $\varphi(1) = 1$.

Théorème d'Euler.

Soit
$$n \ge 2$$
. Si $a \wedge n = 1$, alors $a^{\varphi(n)} \equiv 1$ [n].

Remarque. Lorsque n est premier, on reconnaît le petit théorème de Fermat.

Théorème.

Les trois propriétés suivantes sont équivalentes :

- (i) $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un corps;
- (ii) $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau intègre;
- (iii) n est premier.

Notation. Pour p nombre premier, on note \mathbb{F}_p le corps $\mathbb{Z}/p\mathbb{Z}$.

4/10 http://mpi.lamartin.fr **2024-2025**

4 Le théorème chinois

4.1 Présentation du problème chinois

Exemple.

- 1. Déterminer une relation de Bézout entre 14 et 25.
- 2. Déterminer x_1 et x_2 dans $\mathbb Z$ tels que :

$$\begin{cases} x_1 \equiv 1 \ [14] \\ x_2 \equiv 0 \ [25] \end{cases} \text{ et } \begin{cases} x_2 \equiv 1 \ [14] \\ x_2 \equiv 0 \ [25] \end{cases}$$

3. Utiliser x_1 et x_2 pour déterminer une solution du système :

$$\begin{cases} x_1 \equiv 2 \ [14] \\ x_2 \equiv 3 \ [25] \end{cases}$$

4. Déterminer toutes les solutions du système précédent.

Remarque. Pourquoi le système :

$$\begin{cases} x_1 \equiv 2 \ [26] \\ x_2 \equiv 3 \ [38] \end{cases}$$

n'a pas de solution?

4.2 Structure d'anneau produit

<u>Définition.</u> Soit (A, +, *) et (B, +, *) deux anneaux. On définit **l'anneau produit** en munissant le produit cartésien $A \times B$ des lois :

$$(a,b) + (a',b') = (a+a',b+b')$$

 $(a,b) \times (a',b') = (a*a',b*b')$

Proposition. Muni de cette structure, $A \times B$ est un anneau.

Remarque. On peut étendre cette définition et cette proposition au cas d'un nombre fini d'anneaux.

4.3 À propos de la notation

Remarque. Pour $a \in \mathbb{Z}$, on note \overline{a} l'élément de $\mathbb{Z}/n\mathbb{Z}$ qui est la classe de a. Mais si on travaille à la fois dans $\mathbb{Z}/n\mathbb{Z}$ et $\overline{\mathbb{Z}/m\mathbb{Z}}$, la notation devient ambiguë.

Notation. Pour $n \ge 2$ et $a \in \mathbb{Z}$, on note :

$$(a \bmod n)$$
 ou $[a]_n$

la classe de a modulo n, que l'on note aussi \overline{a} lorsqu'il n'y a pas d'ambiguité.

Exemple. Préciser le diagramme de l'application :

$$\phi: a \mapsto (a \mod 14, a \mod 25)$$

Est-ce un morphisme d'anneaux?

Quel est son noyau?

4.4 Le théorème chinois

Théorème chinois.

Soit m, n entiers ≥ 2 , premiers entre eux. Alors l'application :

$$\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
 $a \mod mn \mapsto (a \mod m, a \mod n)$

est correctement définie, et est un isomorphisme d'anneaux.

Remarque. Si l'on dispose d'une relation de Bézout :

$$mu + nv = 1$$

l'isomorphisme réciproque est :

 $(a \mod m, b \mod n) \mapsto (anv + bmu \mod mn)$

Corollaire. Soit m, n entiers ≥ 2 , premiers entre eux. Alors le système de congruences :

$$\begin{cases} x \equiv a \ [m] \\ y \equiv b \ [n] \end{cases}$$

admet au moins une solution $x_0 \in \mathbb{Z}$.

L'ensemble des solutions est $x_0 + mn\mathbb{Z}$.

Généralisation. Soit n_1, \ldots, n_k entiers ≥ 2 , deux à deux premiers entre eux, alors :

$$\mathbb{Z}/(n_1 \dots n_k)\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \dots \times \mathbb{Z}/n_k\mathbb{Z}$$

 $a \mod n_1 \dots n_k \mapsto (a \mod n_1, \dots, a \mod n_k)$

est correctement définie, et est un isomorphisme d'anneaux.

Exemple. Résoudre le système de congruences :

$$\begin{cases} n \equiv 4 \ [5] \\ n \equiv 1 \ [7] \end{cases}$$

5 Indicatrice d'Euler

Rappel. Pour $n \ge 2$, $\varphi(n)$ désigne le nombre d'inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$, ou encore le nombre d'entiers premiers avec n parmi $\{0, \ldots, n-1\}$, ou encore le nombre de générateurs du groupe cyclique $(\mathbb{Z}/n\mathbb{Z}, +)$.

Théorème d'Euler. Soit n entier, $n \ge 2$ et $a \in \mathbb{Z}$. Si a est premier avec n, alors $a^{\varphi(n)} \equiv 1$ [n].

Corollaire (petit théorème de Fermat). Soit p un nombre premier. Pour tout a non multiple de p, $a^{p-1} \equiv 1$ [p].

Théorème.

Soit $m, n \in \mathbb{N}^*$. Si m et n sont premiers entre eux, alors :

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Proposition. Si p est premier et $k \in \mathbb{N}^*$, alors :

$$\varphi(p^k) = p^k - p^{k-1}$$

6/10 http://mpi.lamartin.fr 2024-2025

Théorème.

Soit $n \ge 2$ un entier. On a :

$$\varphi(n) = n \prod_{\substack{p \text{ premier} \\ p|n}} \left(1 - \frac{1}{p}\right)$$

Exemple. Calculer $\varphi(36)$.

6 Annexes

6.1 Démonstrations du petit théorème de Fermat

Petit théorème de Fermat.

Soit p un nombre premier, a un entier non multiple de p. Alors :

$$a^{p-1} \equiv 1 [p]$$

Première preuve.

On note k l'ordre de \overline{a} dans le groupe $(\mathbb{Z}/p\mathbb{Z})^*$:

$$a^k \equiv 1 [p]$$

Mais l'ordre d'un élément divise le cardinal du groupe : $k \mid p-1.$ Donc il existe q tel que kq=p-1. En élevant à la puissance q la relation précédente, on a donc $\left(a^k\right)^q\equiv 1^q$ [p], c'est-à-dire :

$$a^{p-1} \equiv 1 [p]$$

 $Seconde\ preuve.$

• Tout d'abord, pour tout $a \in \mathbb{N}$:

$$(a+1)^p = a^p + 1 + \sum_{k=1}^{p-1} {p \choose k} a^k$$

 $\equiv a^p + 1 [p]$

$$\equiv a^p + 1 [p]$$

$$\equiv a^p + 1 [p]$$
car $p \mid \binom{p}{k}$ pour tout $k \in \{1, \dots, p-1\}$.
En effet :

$$k\binom{p}{k} = p\binom{p-1}{k-1}$$

donc $p \mid k \binom{p}{k}$ avec p et k premiers entre eux, donc $p \mid \binom{p}{k}$ par le lemme de Gauss.

- On raisonne alors par récurrence sur $a \in \mathbb{N}^*$.
 - Pour a = 1, on a bien-sûr $a^p \equiv a [p]$.
 - On suppose que $a^p \equiv a [p]$.

 $(a+1)^p \equiv a^p + 1$ [p] par le point précédent $\equiv a+1\ [p]$ par hyp. de récurrence

 $\circ~$ On a montré, par récurrence que :

$$\forall a \in \mathbb{N}^*, \ a^p \equiv a \ [p]$$

• Si $b = -a \in \mathbb{Z}_{-}^*$,

$$b^{p} = (-a)^{p}$$
$$= -a^{p}$$
$$\equiv -a [p]$$
$$\equiv b [p]$$

• On a donc $p \mid a^p - a = a(a^{p-1} - 1)$. Or p est premier et a n'est pas multiple de p, donc a et p sont premiers entre eux. Par le lemme de Gauss, on a donc :

$$p \mid a^{p-1} - 1$$

7/10

14.1

- 1. Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que : si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- 2. Soit p un nombre premier.
 - (a) Prouver que $\forall k \in [1, p-1], p$ divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$.
 - (b) Prouver que : $\forall n \in \mathbb{N}, \ n^p \equiv n \mod p$. **Indication** : procéder par récurrence.
 - (c) En déduire, pour tout entier naturel n, que : p ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

14.2

1. En raisonnant par l'absurde, montrer que le système

$$(S): \begin{cases} x \equiv 5 & [6] \\ x \equiv 4 & [8] \end{cases}$$

n'a pas de solution x appartenant à \mathbb{Z} .

- 2. (a) Énoncer le théorème de Bézout dans \mathbb{Z} .
 - (b) Soit a et b deux entiers naturels premiers entre eux. Soit $z \in \mathbb{C}$.

Prouver que : $(a \mid c \text{ et } b \mid c) \iff ab \mid c$.

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 5 & [16] \\ x \equiv 4 & [15] \end{cases}$ nue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans $\mathbb Z$ du système (S).

On exprimera les solutions en fonction de la solution particulière x_0 .

14.3

Résoudre dans $\mathbb{Z}/5\mathbb{Z}$ l'équation :

$$x^2 + x + 3 = 0$$

14.4

Résoudre l'équation :

$$x^2 = \overline{1}$$

- (a) dans $\mathbb{Z}/7\mathbb{Z}$;
- (b) dans $\mathbb{Z}/8\mathbb{Z}$.

14.5

Résoudre dans \mathbb{Z} :

- (a) $6x + 2 \equiv 0$ [11];
- (b) $6x + 2 \equiv 0$ [10];
- (c) $6x + 2 \equiv 0$ [9].

14.6

Résoudre dans $\mathbb Z$ le système :

$$\begin{cases} x \equiv 5 \ [17] \\ x \equiv 4 \ [6] \end{cases}$$

14.7

Résoudre dans $\mathbb Z$:

(c)
$$\begin{cases} x \equiv 7 \ [9] \\ x \equiv 6 \ [7] \\ x \equiv 3 \ [5] \end{cases}$$

14.8

Soit p premier, et $k \in \mathbb{N}$ tel que $k \wedge (p-1) = 1$. Montrer que :

$$\begin{array}{ccc} f : \, \mathbb{Z}/p\mathbb{Z} & \to & \mathbb{Z}/p\mathbb{Z} \\ x & \mapsto & x^k \end{array}$$

est bijective.

14.9

Combien y a-t-il d'éléments inversibles dans $\mathbb{Z}/69\mathbb{Z}$? dans $\mathbb{Z}/99\mathbb{Z}$?

Petits problèmes d'entrainement

14.10

(a) Résoudre, dans $\mathbb{Z}\times\mathbb{Z},$ le système :

$$\begin{cases} x + y \equiv 4 \text{ [11]} \\ xy \equiv 10 \text{ [11]} \end{cases}$$

(b) Résoudre, dans $\mathbb{Z} \times \mathbb{Z}$, le système :

$$\begin{cases} x + y \equiv 4 \ [341] \\ xy \equiv 10 \ [341] \end{cases}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
 puis $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$

On considère p un nombre premier différent de 2.

- (b) Montrer que $x \mapsto x^{-1}$ est une bijection de $(\mathbb{Z}/p\mathbb{Z})^*$ sur lui-même.
- (c) Montrer que $\sum_{x \in (\mathbb{Z}/p\mathbb{Z})^*} x^{-1} = \overline{O}.$
- (d) On écrit :

$$1 + \frac{1}{2} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

où a et b sont entiers et premiers entre eux. Utiliser la question précédente pour montrer que $p \mid a$.

On va justifier le résultat par une autre méthode.

- (e) Montrer que les éléments de $\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ sont les racines dans $\mathbb{Z}/p\mathbb{Z}$ du polynôme $X^{p-1}-\overline{1}$.
- (f) En déduire la valeur de :

$$\sum_{k=1}^{p-1} \left(\prod_{\substack{j=1\\j\neq k}}^{p-1} \overline{j} \right)$$

puis retrouver le résultat : $p \mid a$.

14.12

Soit $a \in \mathbb{Z}$ et $n \geqslant 2$.

- (a) On suppose $a \wedge n = 1$. Montrer que $a^{\varphi(n)} \equiv 1$ [n].
- (b) On suppose $a^{n-1} \equiv 1$ [n] et $a^d \not\equiv 1$ [n] pour tout $d \in \mathbb{N}$ diviseur strict de n-1. Montrer que n est un nombre premier.

|14.13|

Soit a, n entiers ≥ 2 . On pose $N = a^n - 1$. Montrer que:

$$n \mid \varphi(N)$$

14.14

Montrer que, pour tout $n \ge 3$, $\varphi(n)$ est pair.

|14.15|

Soit $n \in \mathbb{N}^*$.

- (a) Soit $d \in \mathbb{N}$ un diviseur de n. Dénombrer les $k \in [1, n]$ tels que $k \wedge n = d$.
- (b) En déduire que :

$$n = \sum_{\substack{d \mid n \\ d \geqslant 0}} \varphi(d)$$

14.16

Montrer que, pour tout $n \ge 3$:

$$\varphi(n) \geqslant \frac{n \ln(2)}{\ln(n) + \ln(2)}$$

14.17

On note $T = (t_{ij})_{ij} \in \mathcal{M}_n(\mathbb{R})$ la matrice où :

$$t_{ij} = \begin{cases} 1 & \text{si } i \mid j \\ 0 & \text{sinon} \end{cases}$$

et $D \in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale :

$$D = \operatorname{Diag}(\varphi(1), \dots, \varphi(n))$$

où φ est la fonction indicatrice d'Euler.

- (a) Exprimer le coefficient en position (i, j) de $T^{\top}DT$ en fonction de $i \wedge j$.
- (b) En déduire la valeur du déterminant :

$$\begin{vmatrix} 1 \wedge 1 & 1 \wedge 2 & \dots & 1 \wedge n \\ 2 \wedge 1 & 2 \wedge 2 & \dots & 2 \wedge n \\ \vdots & & & \vdots \\ n \wedge 1 & n \wedge 2 & \dots & n \wedge n \end{vmatrix}$$