IMPORTING NECESSARY LIBRARIES

```
In [96]: import numpy as np
   import pandas as pd
   import seaborn as sns  #Visualisation
   import matplotlib.pyplot as plt  #Visualisation
```

Reading CSV file Coffee_sales.csv

```
In [98]: df = pd.read_csv("E:/Unified Mentor Projects/Coffee_sales.csv",header=0) #Lod
In [99]: df.head() #Printing Head(First 5 rows) of the dataframe
```

Out[99]:

	date	datetime	cash_type	card	money	coffee_name
0	2024-03-01	2024-03-01 10:15:50.520	card	ANON-0000-0000-0001	38.7	Latte
1	2024-03-01	2024-03-01 12:19:22.539	card	ANON-0000-0000-0002	38.7	Hot Chocolate
2	2024-03-01	2024-03-01 12:20:18.089	card	ANON-0000-0000-0002	38.7	Hot Chocolate
3	2024-03-01	2024-03-01 13:46:33.006	card	ANON-0000-0000-0003	28.9	Americano
4	2024-03-01	2024-03-01 13:48:14.626	card	ANON-0000-0000-0004	38.7	Latte

```
In [100]: df.shape #Printing the Total Dimensions(Rows, Columns) of the dataframe
```

Out[100]: (1133, 6)

In [101]: df.info() #Describing the Data Types of each Column

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1133 entries, 0 to 1132
Data columns (total 6 columns):

type
bject
bject
bject
bject
loat64
bject
)

dtypes: float64(1), object(5)

memory usage: 53.2+ KB

```
In [102]: df.isnull().sum() #Checking Missing(null) Values in the dataframe
Out[102]: date
                          0
          datetime
                          0
          cash_type
                          0
          card
                         89
          money
                          0
          coffee name
          dtype: int64
In [103]: \#df = df.dropna() \#Dropping Missing Values from the dataframe
In [104]: | df[df['card'].isnull()]['cash_type'].value_counts()
Out[104]: cash_type
          cash
          Name: count, dtype: int64
In [105]: | ## From above output All of the transactions with null 'card' information are
          #Convert date and datetime to datetme format
In [106]:
          df['date']=pd.to_datetime(df['date'])
          df['datetime']=pd.to_datetime(df['datetime'])
          #Create column of Month, Weekdays, and Hours
          df['month']=df['date'].dt.strftime('%Y-%m')
          df['day']=df['date'].dt.strftime('%w')
          df['hour']=df['datetime'].dt.strftime('%H')
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1133 entries, 0 to 1132
          Data columns (total 9 columns):
                            Non-Null Count Dtype
               Column
               ____
                            _____
          ---
           0
               date
                            1133 non-null
                                            datetime64[ns]
                            1133 non-null
                                            datetime64[ns]
           1
               datetime
           2
               cash_type
                            1133 non-null
                                            object
           3
               card
                            1044 non-null
                                            object
                            1133 non-null
                                            float64
           4
               money
           5
               coffee name 1133 non-null
                                            object
           6
               month
                            1133 non-null
                                            object
           7
               day
                            1133 non-null
                                            object
                            1133 non-null
           8
               hour
                                            object
          dtypes: datetime64[ns](2), float64(1), object(6)
          memory usage: 79.8+ KB
```

```
In [107]: # Let's Check the Monthly Data
monthly_sales = df.groupby(['coffee_name','month']).count()['date'].reset_inde
monthly_sales
```

Out[107]:

coffee_name	month	Americano	Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate
0	2024- 03	36	34	20	6	30	10	22
1	2024- 04	35	42	43	6	19	7	13
2	2024- 05	48	58	55	9	17	8	14
3	2024- 06	14	69	46	5	19	10	14
4	2024- 07	36	65	32	9	14	14	11
4								•

Exploratory Data Analysis (EDA)

```
In [109]: df['cash_type'].hist()
```

Out[109]: <Axes: >


```
In [110]: #Plotting Barplot for Revenue generated by each coffee
   plt.figure(figsize=(10,4))
   x = sns.barplot(data=df,x='money',y='coffee_name',color='steelblue')
   x.bar_label(x.containers[0], fontsize=6)
   plt.xlabel('Revenue')
```

Out[110]: Text(0.5, 0, 'Revenue')

Latte is the product with the highest revenue, while Expresso is the one at the bottom.

```
In [112]: #Plotting Line Chart of Monthly sales of Coffee
    plt.figure(figsize=(12,6))
    sns.lineplot(data=monthly_sales,alpha=1)
    plt.legend(loc='upper left')
    plt.xticks(range(len(monthly_sales['month'])),monthly_sales['month'],size='smaplt.title("Line Chart of Monthly Sales of Coffee")
    plt.ylabel('Count')
```

Out[112]: Text(0, 0.5, 'Count')

As shown in the line chart above, Americano with Milk and Latte, and Cappuccino are top selling coffee types, while Cocoa and Expresso have

lowest sales. Additionally, Americano with Milk and Latte show an upward trending.

In [114]: weekday_sales = df.groupby(['day']).count()['date'].reset_index().rename(colum
weekday_sales

Out[114]:

	day	count
0	0	151
1	1	151
2	2	185
3	3	165
4	4	164
5	5	163
6	6	154

```
In [115]: #Plotting Barplot of Weekday Sales of Coffee
plt.figure(figsize=(12,6))
    sns.barplot(data=weekday_sales,x='day',y='count',color='steelblue')
    plt.xticks(range(len(weekday_sales['day'])),['Sun','Mon','Tue','Wed','Thur','F
    plt.ylabel("Count")
    plt.title("Bar Plot of Weekday Sales of Coffee")
```

Out[115]: Text(0.5, 1.0, 'Bar Plot of Weekday Sales of Coffee')

In [116]: #Let's see daily sales of coffee below
 daily_sales = df.groupby(['coffee_name','date']).count()['datetime'].reset_ind
 daily_sales

Out[116]:

coffee_name	date	Americano	Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate
0	2024- 03-01	1.0	4.0	0.0	1.0	0.0	0.0	3.0
1	2024- 03-02	3.0	3.0	0.0	0.0	0.0	0.0	0.0
2	2024- 03-03	1.0	2.0	0.0	1.0	2.0	0.0	2.0
3	2024- 03-04	0.0	1.0	0.0	0.0	0.0	1.0	0.0
4	2024- 03-05	0.0	0.0	0.0	1.0	1.0	0.0	4.0
145	2024- 07-27	0.0	5.0	4.0	0.0	0.0	2.0	0.0
146	2024- 07-28	0.0	1.0	0.0	0.0	0.0	1.0	0.0
147	2024- 07-29	3.0	2.0	2.0	1.0	0.0	0.0	2.0
148	2024- 07-30	2.0	12.0	2.0	0.0	3.0	2.0	0.0
149	2024- 07-31	2.0	6.0	1.0	2.0	4.0	0.0	0.0

150 rows × 9 columns

In [117]: #Let's see count of hourly sales of coffee
hourly_sales = df.groupby(['hour']).count()['date'].reset_index().rename(colum
hourly_sales

Out[117]:

	hour	count
0	07	13
1	80	44
2	09	50
3	10	133
4	11	103
5	12	87
6	13	78
7	14	76
8	15	65
9	16	77
10	17	77
11	18	75
12	19	96
13	20	54
14	21	70
15	22	35

```
In [118]: #Plotting BarPlot for count of Hourly sales of coffee
    sns.barplot(data=hourly_sales,x='hour',y='count',color='steelblue')
    plt.xlabel('Hour')
    plt.ylabel('Count')
```

Out[118]: Text(0, 0.5, 'Count')

Overall, two peak hours within each day can be observed: 10:00am and 7:00pm.

In [120]: hourly_sales_by_coffee = df.groupby(['hour','coffee_name']).count()['date'].re
hourly_sales_by_coffee

Out[120]:

coffee_name	hour	Americano	Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate
0	07	5.0	4.0	1.0	0.0	1.0	0.0	0.0
1	80	10.0	7.0	8.0	1.0	6.0	0.0	0.0
2	09	8.0	16.0	6.0	1.0	5.0	3.0	0.0
3	10	20.0	31.0	10.0	4.0	8.0	2.0	7.0
4	11	21.0	25.0	16.0	1.0	13.0	6.0	8.0
5	12	14.0	26.0	15.0	3.0	7.0	6.0	3.0
6	13	18.0	18.0	10.0	2.0	12.0	3.0	4.0
7	14	15.0	18.0	13.0	4.0	6.0	5.0	2.0
8	15	14.0	15.0	8.0	0.0	3.0	4.0	6.0
9	16	10.0	18.0	12.0	3.0	12.0	5.0	4.0
10	17	9.0	11.0	18.0	4.0	6.0	4.0	7.0
11	18	9.0	16.0	12.0	2.0	5.0	5.0	10.0
12	19	5.0	18.0	34.0	2.0	5.0	1.0	9.0
13	20	1.0	12.0	13.0	6.0	5.0	3.0	6.0
14	21	5.0	25.0	13.0	1.0	3.0	1.0	3.0
15	22	5.0	8.0	7.0	1.0	2.0	1.0	5.0
4								•

The plots above illustrate the shopping traffic for each product throughout the day. Notably, all products experience a peak in traffic around 10:00 AM, with this trend being particularly pronounced for Latte. Additionally, Cappuccino, Cocoa, and Hot Chocolate tend to be more popular during the evening hours, specifically between 6:00pm and 8:00pm.

Conclusion

From the analysis above, we have uncovered valuable insights into customer shopping patterns on a daily and weekly basis. We have identified the most popular coffee products and observed the shopping trends over time. These

findings are instrumental in optimizing inventory planning, designing the layout of vending machines, and determining the ideal restock times for coffee products.