- 1. TOPSIS
- 2. 熵值法
- 3. PROMETHEE
- 4. VAR向量自回归
- 5. 遗传算法

1. TOPSIS

1. 适用范围:综合多个评价指标,选出最优/最劣对象

2. 主要思想: 综合考虑当前对象与最优对象、最劣对象之间的距离

3. 使用过程:

Algorithm 1: TOPSIS 算法流程

Input 原始数据集 $X = \{x_1, x_2 \cdots, x_n\}$ 各指标权重 $w = (w_1, w_2, \dots, w_m)$

Process

1. 对原始数据集中的指标属性同向化 X'

2. 构造向量归一化后的标准化矩阵 $Z = \{z_1, z_2, \dots, z_n\}$

3. for Z 的每一列 Z; do

4. 最劣方案 Z^- 的第 i 维度 ← Z_i 元素最小值

5. 最优方案 Z^+ 的第 i 维度 $\leftarrow Z_i$ 元素最大值

6. end for

7. for $z_i \in Z$ do

8. z_i 与最优方案的接近程度 $D_i^+ \leftarrow$ 式(7.1)

9. z_i 与最劣方案的接近程度 $D_i^- \leftarrow$ 式(7.2)

10. z_i 与最优方案的贴近程度 C_i \leftarrow 式(8)

11. end for

12. 根据 C_i 大小进行排序

Output 各数据样本 TOPSIS 评价结果 知乎 @Suranyi

2. 煽值法

1. 适用范围: 从原始数据集(不同行表示不同对象,不同列表示不同属性)推算出各属性的权重

2. 主要思想: 某属性的离散程度越大,则越混乱,熵值越大,权重越大

3. 适用过程:

○ 归一化原始数据集(不用进行同向化处理):

$$p_{ij} = rac{x_{ij}}{\displaystyle\sum_{i=1}^n x_{ij}}$$

。 计算各属性的熵值:

$$e_j = -k\sum_{i=1}^n p_{ij} \ln p_{ij}, \quad (j=1,2,\cdots,m)$$

其中 k 与样本数量有关,常取 $k=1/\ln n$,此外,补充定义:若 $p_{ij}=0$,则令 $p_{ij}\ln p_{ij}=0$

。 计算各属性的权重系数:

$$h_j=rac{1-e_j}{\displaystyle\sum_{k=1}^m (1-e_k)}, \quad (j=1,2,\cdots,m)$$

熵权系数 h_j 越大,则该指标代表的信息量越大,表示其对综合评价的作用越大。

3. PROMETHEE

1. 适用范围:综合多个评价指标,选出最优/最劣对象

2. 主要思想: 当前对象在当前指标超过一个对象,则加上一个当前指标的权重

3. 使用过程(有n个对象, t个属性):

○ 定义偏好函数: 一般直接取差即可, 大于0置1, 小于0置0即可

$$P_k(a_i,a_j) = \phi(a_{ik}-a_{jk}) = egin{cases} 1, a_{ik}-a_{jk} \geq 0 \ 0, a_{ik}-a_{jk} \leq 0 \end{cases}$$

。 定义偏好优先指数函数:

$$\prod(a_i, a_j) = \sum_{k=1}^{t} \omega_k P_k(a_i, a_j)$$

 \circ 定义对象 a_i 的偏好优序级别的正负方向(流入流出):

$$\vec{\Phi}(a_i) = \sum_{j=1}^{n} \prod (a_i, a_j)$$
 (2)

$$\Phi(a_i) = \sum_{i=1}^n \prod (a_i, a_i)$$
 (3)

式中: $\Phi(a_i)$ ——方案 a_i 超过另外方案的程度, $\Phi(a_i)$ —— 方案 a_i 被超过的程度。

4. VAR向量自回归

传统的时间序列模型只考虑了纵向比较: $y_t = \beta_1 \cdot y_{t-1} + \beta_2 \cdot y_{t-2} + \dots$

传统的回归模型只考虑了横向比较: $y_t = \beta_1 x_t + \beta_2 z_t + \dots$

向量自回归既考虑了纵向比较, 又考虑了横向比较:

$$y_t = \beta_1 \cdot y_{t-1} + \alpha_1 \cdot x_{t-1} + \beta_2 \cdot y_{t-2} + \alpha_2 \cdot x_{t-2} + \dots$$

5. 遗传算法

1. 适用范围: 求解基于带约束的单目标优化问题 (多目标优化也可以转换成单目标优化)

2. 主要思想: 模拟自然过程

3. 算法流程 (确定编码方式,适应函数,群体规模,变异概率和终止条件):

max
$$f(x_1,x_2)=x_1^2+x_2^2$$

s.t. $x_1 \in \{1,2,3,4,5,6,7\}$
 $x_2 \in \{1,2,3,4,5,6,7\}$

- 。 1) 确定个体编码方式:每个解对应一个编码,此题将十进制数编码成无符号二进制数,例如基因型 $X=101\ 110$,对应解为 $X=[5,6]=[x_1,x_2]$
- 2) 确实初始群体规模:

本例中, 群体规模的大小取为4, 即群体由4个个体组成, 每个个体可通过随机方法产生。

如: 011101, 101011, 011100, 111001

- 。 3) 适应度计算:将目标函数的值当作个体适应度即可
- 4) 选择: 采取与适应度成正比的概率确定繁衍个体

个体编号	初始群体p(0)	X ₁	X ₂	适值	占总数的百分比	选择次数	选择结果
1	011101	3	5	34	0.24	1	011101
2	101011	5	3	34	0.24	1	111001
3	011100	3	4	25	0.17	0	101011
4	111001	7	1	50	0.35	2	111001
总和				143	1 00	70	
	24%	24	1%		17850	35%	
				S	Ve		
0	1#	2	0	Mes	3#	4#	1

。 5) 交叉:

个体编号	选择结果	配对情况	交叉点位置	交叉结果
1 2 3 4	01 1101 11 1001 1010 11 1110 01	1-2 3-4	1-2: 2 3-4: 4	011001 111101 101001 111011
	1		000	

可以看出,其中新产生的个体"111101"。 111011"的适应度较原来两个个体的适应度都要高。

○ 6) 变异:

个体编号	交叉结果	变异点	变异结果	子代群体p(1)
1	011001	4	011101	011101
2	111101	5	111111	111111
3	101001	2	111001	111001
4	111011	6	111010	111010

至此完成了一轮循环,可以看出经过一代进化,种群适应度的最大值和平均值都提升了4. 实现:遗传算法、模拟退火、蚁群算法等可以直接调用scikit-opt库