

§ 12 复数与复矩阵

我们学习的大部分线性代数知识都只考虑了实数情形,但复数情形不可避免会遇到.

例如
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 没有实特征值(除了极特殊情形)

目的: 比较实和复两种情形的异同.

①复数复习:

$$i^2 = -1$$
, 一个复数a + bi = z, 长度|z| = $\sqrt{a^2 + b^2}$ a实部(real part) b虚部(imaginary part)

共轭(complex conjugate)

$$z = a + bi$$
 \longrightarrow $\bar{z} = a - bi$

$$A = (a_{ij})_{n \times n}, a_{ij} \in C$$
 $\bar{A} \stackrel{\text{def}}{=} (\bar{a}_{ij})_{n \times n}$

性质:
$$\overline{AB} = \overline{A} \cdot \overline{B}$$
 $z\overline{z} = |z|^2$

{长度为1 (单位圆上)的复数} ── {二阶旋转矩阵},且保持乘法

$$z = \cos\theta + i\sin\theta \longrightarrow A_z = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

极分解(polar decomposition) $z = r(\cos\theta + i\sin\theta)$ $z = re^{i\theta} \quad z^n = r^n(\cos n\theta + i\sin n\theta)$ $e^{i\theta} = \cos\theta + i\sin\theta \text{ (Euler formula)}$ 单位根 $x^n = 1$ 有n个复根 $e^{\frac{2k\pi i}{n}}k = 0,1,...,n-1$ 令 $\omega = e^{\frac{2\pi i}{n}},1+\omega+\cdots\omega^{n-1}=0$ 例 求 $(1+i)^8$ $1+i=\sqrt{2}e^{i\frac{\pi}{4}} \quad (1+i)^8 = (\sqrt{2})^8e^{i2\pi} = 16$

②代数基本定理:

$$a_n x^n + \dots + a_1 x + a_0 = 0, a_i \in C f n$$
个复根(可能重复)

 $\forall a_i \in \mathbb{R}, a_n x^n + \dots + a_1 x + a_0 = 0
 的非实复根成对出现,即若z = a + bi(b \neq 0)是它的根,则z = a - bi也是它的根.$

➡ 奇次实系数方程总有一个实根.

实系数多项式(次数 \geq 1)f(x)可分解成 $f(x) = a(x - \lambda_1)^{n_1}...(x - \lambda_s)^{n_s}(x^2 - b_1x + c)^{e_1}...(x^2 - b_tx + c)^{e_t}$

例
$$x^{m} - 1 = \prod_{k=0}^{m-1} (x - \omega_{k})$$
 $\omega_{k} = e^{\frac{i2k\pi}{m}}$
$$(x - \omega_{k})(x - \omega_{m-k}) = x^{2} - 2\cos\frac{2k\pi}{m}x + 1 \quad \omega_{k} = \overline{\omega}_{m-k}$$

$$x^{m} + 1 = \prod_{k=0}^{m-1} (x - \xi_{k}) \quad \xi_{k} = e^{i\frac{\pi + 2k\pi}{m}}$$

证明:
$$\cos \frac{\pi}{2n+1} \cos \frac{2\pi}{2n+1} ... \cos \frac{n\pi}{2n+1} = \frac{1}{2^n}$$
可使用以上分解.

Fact-1: $-1 - cos2\theta - isin2\theta = -2cos\theta(cos\theta + isin\theta) \Rightarrow |-1 - cos2\theta - isin2\theta| = 2|cos\theta|$.

Fact-2: Set $\omega = \cos \frac{2\pi}{2n+1} + i \sin \frac{2\pi}{2n+1}$. Then $x^{2n} + x^{2n-1} + \dots + 1 = (x-\omega)(x-\omega^2) \cdots (x-\omega^{2n})$.

Fact-3: $\cos \frac{(2n+1-k)\pi}{2n+1} = \cos \frac{k\pi}{2n+1}$.

③共轭转置

设
$$A = (a_{ij})_{n \times n}$$
, $a_{ij} \in C$ $A^H = \overline{A^T} = (\overline{A})^T$ ("H"是"Hermitian"的简写)

例如:
$$Z = \begin{pmatrix} 1+i \\ i \end{pmatrix}$$
 $Z^H = (1-i -i)$ $Z^H = (1-i -i)$

$$A = \begin{pmatrix} 1 & i \\ 0 & 1+i \end{pmatrix} \qquad A^H = \begin{pmatrix} 1 & 0 \\ -i & 1-i \end{pmatrix}$$

性质: $(A^H)^H = A$, $(AB)^H = B^H A^H$

正如 R^n 上定义内积, C^n 上也能定义内积 $u,v \in C^n$

内积 =
$$\mathbf{u}^{H}\mathbf{v} = (\bar{\mathbf{u}}_{1} \cdots \bar{\mathbf{u}}_{n}) \begin{pmatrix} \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{n} \end{pmatrix} = \bar{\mathbf{u}}_{1}\mathbf{v}_{1} + \cdots + \bar{\mathbf{u}}_{n}\mathbf{v}_{n}$$

性质: $\mathbf{u}^{\mathbf{H}}\mathbf{v} = \overline{\mathbf{v}^{\mathbf{H}}\mathbf{u}}$

④厄米特矩阵(Hermite)

A是Hermite矩阵 \iff $A = A^H$ 例如 $\begin{pmatrix} 2 & 1+i \\ 1-i & 3 \end{pmatrix}$

性质1. Hermite阵对角线元为实数.

性质2. 设 $z \in C^n$, A是Hermite阵, 则 $z^H Az$ 是一实数.

性质3. 设A, B是Hermite阵, 则A + B也是. 进一步, 若AB

= BA,则AB是Hermite阵. $\Longrightarrow A^n$ 是Hermite阵.

性质4. 设A是一个n阶复矩阵, AA^H 、 $A + A^H$ 是Hermite阵.

性质5. 一个Hermite阵A特征值是实数.

证明:设 $Az = \lambda_0 z$,则 $z^H Az = \lambda_0 z^H z$.

性质6. 一个Hermite阵的不同特征值的特征向量相互正交. 证明: 设 $Az_1 = \lambda_1 z_1$, $Az_2 = \lambda_2 z_2$ $\lambda_1 \neq \lambda_2$ 我们有 $z_2^H Az_1 = \lambda_1 z_2^H z_1$, 因为A为Hermite阵, 所以有 $z_2^H Az_1 = z_2^H A^H z_1 = (Az_2)^H z_1 = \overline{\lambda_2} z_2^H z_1 = \lambda_2 z_2^H z_1$ \Rightarrow $(\lambda_1 - \lambda_2) z_2^H z_1 = 0 \Rightarrow z_2^H z_1 = 0$ 性质5.

⑤酉矩阵

$$U$$
是酉矩阵 $\iff U^HU=I_n$
一般地,设 U 是 $m\times n$ 阶复矩阵 $U=(u_1 \dots u_n)$
满足 $u_i^Hu_j=\begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$
则 $U^HU=I_n$

酉矩阵是正交矩阵的复类比.

 $U_{n\times n}$ 是酉矩阵 $\iff \forall z \in \mathbb{C}^n \ ||Uz|| = ||z||$

性质: U是酉阵,则U的特征值模长 = 1.

例如:
$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1-i\sqrt{3}}{2\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1+i\sqrt{3}}{2\sqrt{3}} \\ 0 & \frac{1+i\sqrt{3}}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

性质: 设U是酉阵,则 $|\det U|=1$.

酉矩和Hermite矩阵均为复正规矩阵,即 $A^{H}A = AA^{H}$

酉相似:设A,B是两n阶复矩阵.若存在酉阵U,使得 $A = U^H B U$,则A和B是酉相似.

定理 设A为复正规阵,则

- (1)向量 \mathbf{u} 是A的关于 λ 的特征向量 ⇔ \mathbf{u} 是 A^H 的关于 $\bar{\lambda}$ 的特征向量.
- (2)不同特征值的特征向量正交.

证明:

(1)设
$$Au = \lambda u$$
 即 $(A - \lambda I)u = 0$ 令 $B = A - \lambda I$ $\|B^{H}u\|^{2} = u^{H}BB^{H}u = u^{H}B^{H}Bu = \|Bu\|^{2} = 0$ $A^{H}u = \bar{\lambda}u$

(2)同Hermite情形

定理(Schur) 任一复矩阵A酉相似于一上三角阵.即存在U

满足
$$U^H = U^{-1}, U^H A U = \begin{pmatrix} \lambda_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & \lambda_n \end{pmatrix}$$

➡任一复正规阵酉相似于对角阵,特别地,酉阵相似于 $diag(c_1 \dots c_n)$ 其中 $|c_i| = 1$

一个实矩阵A是正规的 $\iff A^TA = AA^T$

例如,A正交或A对称(反对称)

A正规,则存在正交阵 Ω , Ω ^T $A\Omega$

$$= \begin{pmatrix} \begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix} & \ddots & & & \\ & \ddots & & & \\ & \begin{pmatrix} a_s & b_s \\ -b_s & a_s \end{pmatrix} & & & \\ & & \lambda_{2s+1} & & \\ & & & & \lambda_n \end{pmatrix}$$

其中 $\begin{pmatrix} a_k & b_k \\ -b_k & a_k \end{pmatrix}$ 特征根为 $\lambda_k = a_k + b_k i \overline{\lambda_k} = a_k - b_k i$ $\lambda_{2s+1}, \dots, \lambda_n$ 为实数.

特别地,一正交阵正交相似于

上文件正文作刊文子
$$\begin{pmatrix}
\cos\theta_1 & \sin\theta_1 \\
-\sin\theta_1 & \cos\theta_1
\end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix}
\cos\theta_s & \sin\theta_s \\
-\sin\theta_s & \cos\theta_s
\end{pmatrix}$$
±1
$$\vdots$$

例1 设A为n阶实正交阵. 若 $\lambda = \alpha + i\beta(\beta \neq 0)$ 是A的特征值, $x = x_1 + ix_2(x_{1,x_2} \in \mathbb{R}^n)$ 是A的关于 λ 的特征向量,则 $\|x_1\|$ = $\|x_2\|$, 且 x_1 , x_2 相互正交.

证明:
$$\lambda = \alpha + i\beta \pi \bar{\lambda} = \alpha - i\beta 均为A$$
的特征值.
 $Ax = \lambda x \Rightarrow A\bar{x} = \bar{\lambda}\bar{x}$ $\lambda \neq \bar{\lambda} \Rightarrow x\pi\bar{x}$ 正交 $x = x_1 + ix_2, \bar{x} = x_1 - ix_2$ $(\bar{x})^H x = 0 \Rightarrow ||x_1|| = ||x_2||, x_1^T x_2 = 0$

例2 证明:
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \pi \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$$
 酉相似
$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$$

例3 设A是Hermite阵,则I + iA非奇异. $U = (I - iA)(I + iA)^{-1}$ 是酉阵 $U^H = (I - iA)^{-1}(I + iA) = (I + iA)(I - iA)^{-1}$

回忆若f(x)满足f(x), f'(x) piecewise连续, 且f(x + L) = f(x)

则
$$f(x) = \frac{a_0}{2} + \sum (a_n \cos \frac{2\pi nx}{L} + b_n \sin \frac{2\pi nx}{L})$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{2\pi nx}{L} dx \quad b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{2\pi nx}{L} dx$$

令
$$V = \{f(x)|f(x)$$
如上条件 $\}$ → R^{∞}

$$f(x) \rightarrow (a_0, a_1, b_1, a_2, b_2, ...)$$

这是一个线性映射, $(a_0, a_1, b_1, ...)$ 是f(x)的逆Fourier变换

$$e^{ix} = \cos x + i \sin x$$
 $\Rightarrow \cos x = \frac{e^{ix} + e^{-ix}}{2}$ $\sin x = (\frac{e^{ix} - e^{-ix}}{2}) \cdot (-i)$

 $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi n}{L}t}, c_n = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{-i\frac{2\pi n}{L}t}.$ Set $\omega_n = \frac{2\pi n}{L}$. Then the Fourier transform of f(t) is

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt.$$

离散化形式:

$$\hat{f}(\omega_n) = \int_{-\infty}^{\infty} f(t)e^{-i\omega_n t}dt, \ n = 0, 1, \dots, N - 1. \Rightarrow \hat{f}(\omega_n) \approx \sum_{k=0}^{N-1} f(t_k)e^{-i\omega_n t_k}$$

$$f(t_j) = \sum_{k=-\infty}^{\infty} c_k e^{i\frac{2\pi k}{L}t_j}, \text{ Set } t_j = \frac{jL}{N} \Rightarrow f(t_j) \approx \sum_{k=0}^{N-1} c_k e^{i\frac{2\pi k j}{N}}.$$

$$Set A_j = f(t_j), a_k = c_k, \ f(t) \to (A_0, A_1, \dots, A_{N-1}), (c_k) \to (a_0, a_1, \dots, a_{N-1}).$$

$$N = 4,$$

$$A_0 = a_0 + a_1 + a_2 + a_3$$

$$A_1 = a_0 + ia_1 - a_2 - ia_3$$

$$A_2 = a_0 - a_1 + a_2 - a_3$$

$$A_3 = a_0 - ia_1 - a_2 + ia_3$$

$$\Rightarrow \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

一般地,
$$\begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_{N-1} \end{pmatrix} = F \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{pmatrix}$$

$$F_{s,t} = e^{i\frac{2\pi st}{N}}$$

$$\Leftrightarrow \omega_N = e^{i\frac{2\pi}{N}}$$

$$\Rightarrow F_{s,t} = \omega_N^{st} = F_{t,s}$$

F Fourier矩阵, F的列相互正交, 且F对称(非Hermite)

$$F^{-1} = \frac{1}{N}\bar{F}$$
 给定 $\begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_{N-1} \end{pmatrix}$, 求 $\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{pmatrix} = F^{-1} \begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_{N-1} \end{pmatrix}$ 需要 N^2 次乘法, $N(N-1)$ 次加法 $\begin{pmatrix} 288 \frac{1}{N} & 1 \\ 288 \frac{1}{N} & 1 \end{pmatrix}$ 的除法 计算量 = $O(N^2)$ 注记: $\begin{pmatrix} a_0 \\ \vdots \\ a_{N-1} \end{pmatrix}$ 是向量 $\begin{pmatrix} A_1 \\ \vdots \\ A_{N-1} \end{pmatrix}$ 关于某个正交基的坐标分量 $\begin{pmatrix} a_0, a_1, b_1, \dots \end{pmatrix}$ 是f(x)关于 $\{1, \cos x, \sin x, \dots \}$ 的坐标

快速Fourier变换减少了DFT的计算量到O(Nlog₂N)

N	N ²	Nlog ₂ N	FFT efficiency
256	65536	1024	64:1
512	262144	2304	114:1
1024	1048576	5120	205:1

注:
$$\lim_{N\to+\infty} \frac{\log_2 N}{N} = 0$$

我们解释算法:

$$N = 4 \quad \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} \quad i^4 = 1$$

引入记号:
$$p \leftarrow q$$
 α $q \leftarrow \alpha$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & i \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -i \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & i^2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & i^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$4a_0 = (A_0 + A_2) + (A_1 + A_3)$$

$$4a_1 = (A_0 - A_2) - i(A_1 - A_3)$$

$$4a_2 = (A_0 + A_2) - (A_1 + A_3)$$

$$4a_3 = (A_0 - A_2) + i(A_1 - A_3)$$

将A₀, A₁, A₂, A₃重新排序A₀, A₂, A₁, A₃, 使用记号,则

FFT算法将DFT算法分成log₂N段,每一段有^N2个butterfly operation.

N = 8, Step 1. 将 A_0 , A_1 , ... A_7 重新排序.

原则:考虑0,1,...,7的二进制,设j的二进制数的反转为n_i.

若j < n_j ,则交换 A_j 和 A_{n_i} .例如1的二进制数为001₂,反转为100₂

=4,1<4,交换A₁和A₄.

排序后为: A₀, A₄, A₂, A₆, A₁, A₅, A₃, A₇(奇偶分离)

 $\{A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7\} \rightarrow \{A_0, A_4, A_2, A_6\}, \{A_1, A_5, A_3, A_7\}$ \downarrow reordering

 $\{\mathsf{A}_0, \mathsf{A}_4, \mathsf{A}_2, \mathsf{A}_6, \mathsf{A}_1, \mathsf{A}_5, \mathsf{A}_3, \mathsf{A}_7\} \leftarrow \{\mathsf{A}_0, \mathsf{A}_4\} \{\mathsf{A}_2, \mathsf{A}_6\} \{\mathsf{A}_1, \mathsf{A}_5\} \{\mathsf{A}_3, \mathsf{A}_7\}.$

奇偶分离的原因:
$$\begin{pmatrix} a_0 \\ \vdots \\ a_{N-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \overline{N} \overline{F} \end{pmatrix} \begin{pmatrix} A_0 \\ \vdots \\ A_{N-1} \end{pmatrix}$$
 令 $p(x) = A_0 + A_1 x + \dots + A_{N-1} x^{N-1} = p_e(x^2) + x p_o(x^2)$ $p_e = A_0 + A_2 x^2 + \dots$ $p_o = A_1 + A_3 x^2 + \dots$
$$a_j = \frac{1}{N} \begin{pmatrix} 1, \overline{\omega}_N^j, \overline{\omega}_N^{2j}, \dots \end{pmatrix} \begin{pmatrix} A_0 \\ \vdots \\ A_{N-1} \end{pmatrix} = \frac{1}{N} p(\overline{\omega}_N^j) = \frac{1}{N} [p_e(\overline{\omega}_N^{2j}) + \overline{\omega}_N^j p_o(\overline{\omega}_N^{2j})] \quad j = 0, 1, \dots \frac{N}{2} - 1$$

$$a_{N/2+j} = \frac{1}{N} [p_e(\overline{\omega}_N^{2(N/2+j)}) + \overline{\omega}_N^{(N/2+j)} p_o(\overline{\omega}_N^{2(N/2+j)})]$$
 因为 $\overline{\omega}_N^{2j} = \overline{\omega}_N^j, \overline{\omega}_N^{N+2j} = \overline{\omega}_N^j$

为了方便,我们忽略 1_N ,只是记得在最后结果补上.

使用以上性质:

$$\begin{cases} a_j = p_e\left(\overline{\omega}_{\frac{N}{2}}^j\right) + \overline{\omega}_N^j p_o(\overline{\omega}_{\frac{N}{2}}^j)] \\ a_{\frac{N}{2}+j} = p_e\left(\overline{\omega}_{\frac{N}{2}}^j\right) - \overline{\omega}_N^j p_o(\overline{\omega}_{\frac{N}{2}}^j)] \end{cases} \quad j = 0,1,...\frac{N}{2}-1$$

$$\Rightarrow$$
b_j = p_e $\left(\overline{\omega}_{\frac{N}{2}}^{j}\right)$ b'_j = p_o $\left(\overline{\omega}_{\frac{N}{2}}^{j}\right)$, 我们以上讨论总结:

$$\begin{aligned} \mathbf{a}_{j} &= \mathbf{p}\left(\overline{\omega}_{N}^{j}\right) \\ \mathbf{j} &= 0, 1 \cdots, N-1 \end{aligned} \Longrightarrow \begin{cases} \mathbf{a}_{j} &= \mathbf{b}_{j} + \overline{\omega}_{N}^{j} \mathbf{b}_{j}' \\ \mathbf{a}_{N} &= \mathbf{b}_{j} - \overline{\omega}_{N}^{j} \mathbf{b}_{j}' \end{cases} \quad \mathbf{j} = 0, 1, \cdots \frac{N}{2} - 1 \end{aligned}$$

如图这是一个butterfly operation

$$\begin{array}{c} b_j \\ b_j' \end{array} \qquad \begin{array}{c} \overline{\omega}_N^j a_j \\ -\overline{\omega}_N^j a_{\underline{N}+j} \end{array}$$

对b_i,b'_i可以重复以上讨论.例如

$$\begin{aligned} b_j &= p_e \left(\overline{\omega}_{\frac{N}{2}}^j \right) & \begin{cases} b_j &= c_j + \overline{\omega}_{\frac{N}{2}}^j c_j' \\ b_j &= c_j + \overline{\omega}_{\frac{N}{2}}^j c_j' \end{cases} & j &= 0, 1, \dots, \frac{N}{4} - 1 \\ b_{\frac{N}{4} + j} &= c_j - \overline{\omega}_{\frac{N}{2}}^j c_j' \end{cases} & \downarrow \\ & \ddagger + c_i &= p_{ee} \left(\overline{\omega}_{N}^j \right), c_i' &= p_{eo} \left(\overline{\omega}_{N}^j \right) & \overline{\omega}_{\frac{N}{2}}^j \end{aligned}$$

其中
$$c_j = p_{ee}(\overline{\omega}_{\underline{N}}^j)$$
, $c_j' = p_{eo}(\overline{\omega}_{\underline{N}}^j)$

如图

$$A = \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \end{pmatrix} \xrightarrow{\text{reordering}} \begin{pmatrix} A_0 \\ A_4 \\ A_2 \\ A_6 \\ A_1 \\ A_5 \\ A_3 \\ A_7 \end{pmatrix} \xrightarrow{\text{combination}} \begin{pmatrix} a_{ee} \\ a_{eo} \\ a_{oe} \\ a_{oo} \end{pmatrix} \rightarrow \begin{pmatrix} a_e \\ a_o \end{pmatrix} \rightarrow a = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix}$$