2D array of far- infrared thermal detectors: noise measurements and processing issues

B. Lakew^a, S. Aslam^b, T. Stevenson^c

NASA-Goddard Space Flight Center (GSFC)^{a,c}

MIE Corp^b

A magnesium diboride (MgB_2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.

Key words: superconductor, thermal detectors, IR, signal-to-noise.

Introduction:

For high temperature superconducting (HTS) thin films to be used as the thermistor materials in an IR detector ease of process and noise performance are two important factors.

 ${\rm MgB_2}$ is a simple binary intermetallic compound with a superconducting transition at 39 K [1]. Compared to the cuprate HTSs, it has lower T_c and a very sharp transition of ${\rm MgB_2}$. For the foreseeable future only moderately cooled focal planes (30-90K) are feasible on space missions because of stringent mass and power budgets. The lower operating temperatures are achievable using advanced cryo-cooling technology being developed both at NASA and elsewhere. One distinct advantage of growing high quality ${\rm MgB_2}$ thin films on silicon substrates is the potential for fabricating single and 2D bolometer arrays using standard micro-electro-mechanical systems (MEMS) micromachining processes.

Fig 1: Conceptual layout of the 2-D array far-IR bolometer. Each pixel: 100 x100μm.

MgB2 thin film growth conditions and sample preparation have been discussed in an earlier publication [2]. The 2-D array processing and Spectral Noise Voltage Density Measurement (S_v) will be discussed.

Table 1 summarizes the properties of the MgB_2 thin film and compares the temperature noise K_n values, where

$$K_{n} = S_{V} (I_{bias} dR / dT)^{-1}$$

The lower the K_n value the better the S/N ratio when the film is used as a thermistor in a bolometer.

HTS	(K)	dR / dT (K/T)	I _{bias} (mA)	$\frac{S_V}{(\text{nV}/\sqrt{\text{Hz}})}$	$K_{\rm n}$ at 10 Hz (10 ⁻⁹ $K/\sqrt{\rm Hz}$)
MgB ₂	38.27	12.4	4	0.34	6.8
YBaCuO *	90	2.5	6.35	0.8	50
GBaCuO	90.2	3414	50 x10 ⁻³	21	123

Table 2. Properties of the MgB₂ , YBaCuO and GBaCuO. The noise figures are at 10 Hz.

The noise value and K_n clearly show that MgB₂ thin films, grown on SiN/Si substrates, can provide better S/N than current cuprate-based HTS bolometers.

The results presented will show that high quality MgB_2 thin film can be grown on low stress SiN on Si, Present work on low thermal capacity membranes with optimal thermal conductance being micromachined/processed will be discussed.

The process optimization to create the 2-D array is under way and we anticipate the characterization of the pixels soon. This in turn will allow us to verify the S/N predictions made above.

^{*} HTS on sapphire [3,4], ** GdBCuO film on SiN [5]

Acknowledgments

This work is supported by NASA's Planetary Instrument Definition and Development (PIDD) Program

References

- Nagamatsu, J., et al, "Superconductivity at 39K in Magnesium Diboride", Nature 410, 63-64 (2001).
- Lakew, B., et al., "Effect of ionizing radiation on noise in MgB2 thin film — a candidate material for detector development for post-Cassini planetary missions", Physica C, 440,1-5 (2006).
- Lakew, B., et al., "High Tc Superconducting Bolometer on Chemically-Etched 7 um Thick Sapphire", Physica C, 329, 69-74 (2000).
- Lakew, B., et al, "High-Tc, transition-edge superconducting (TES) bolometer on a monolithic sapphire membrane—construction and performance", Sensors and Actuators A, 114, 36-40 (2004).
- de Nivelle, M.J.M.E., at al, "High-Tc bolometers with silicon-nitride spiderweb suspension for far-infrared detection", IEEE Trans. Appl. Supercond., 9(2), 3350-3353 (1999).