Parametrically
As above but x = x(t) y = y(t)

ds = (x2+ y2)2 dt

look at the local intinitesimal contribution



$$L = \int_{0}^{b} ds = \int_{0}^{b} \left[ r^{2} \left( \frac{dr}{d\theta} \right)^{2} \right]^{1/2} d\theta$$

Example Are length of a quoter of a circle

Cartesian 
$$x^2+y^2=a^2 \iff y=\sqrt{a^2-x^2}$$

$$L=\sqrt{1+y^2}dx$$

$$y'=-\frac{x}{a^2-x^2}$$

$$L = \int_{0}^{\alpha} 1 + y'^{2} dx$$

$$y' = \frac{-x}{x^{2}}$$

$$L = \int_{0}^{\alpha} \int_{1}^{1+\frac{2\pi}{\alpha^{2}-2\pi}} ds = \int_{0}^{\alpha} \int_{0}^{2\pi} ds$$

$$= a \left[ arcsin(\frac{x}{\alpha}) \right]^{\alpha} = \frac{\pi \alpha}{2}.$$

$$Polar$$

$$L = \int_{0}^{\pi} \int_{1}^{2\pi} \int_{1}^{2\pi} ds = \frac{\pi \alpha}{2}.$$

$$Example \quad Arc \quad length \quad of \quad in finite \quad spiral$$

$$C = e^{-0rzh} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0rr} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0r} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0r} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0r} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0r} + \frac{1}{4r^{2}e^{-0r}} d\theta \qquad e^{-rz}$$

$$= \int_{0}^{\pi} -2\pi e^{-0r} + \frac{1}{4r^{2$$

|                     | The numerators of these expressions for                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------|
|                     | Sery are often called the first moment of mass.                                                             |
|                     |                                                                                                             |
|                     | To generalise to a two dimensional plate l'amina, we consider a continous mass distribution                 |
|                     | Couth Sau                                                                                                   |
|                     | density = mass<br>viit<br>avea                                                                              |
|                     | Coccedi                                                                                                     |
|                     | the mass element located at (xi, yi).                                                                       |
|                     | 4                                                                                                           |
|                     | Example                                                                                                     |
| -                   | If the mass density p you                                                                                   |
|                     | is uniform then.                                                                                            |
| 0.1                 | Total Muss = p Sydx                                                                                         |
|                     | 10 cm biass = 6 Jagasa Jagas Post                                                                           |
|                     | Solit the over inter stains a shown The man of                                                              |
|                     | each strip is purply The centre of may is at                                                                |
|                     | Split the area intro strips a shown. The mass of each strip is pydsc. The centre of mass is at 2 (oc, 9/2). |
|                     | C C C                                                                                                       |
|                     | 6° = x(pydox) = porydox =   xydox                                                                           |
| gal <sub>le</sub> . | M Spyck 12                                                                                                  |
|                     | Jagore                                                                                                      |
| Jh                  | CONCORD CC 3                                                                                                |
|                     | g = \( \frac{1}{2} \) (pada) = \( \frac{5}{2}y^2  dx = \frac{1}{2} \) \( \frac{1}{2}y^2  dx \)              |
|                     | M Spydse Sydse                                                                                              |
| X                   | There ideas according to                                                                                    |
|                     | These ideas generalise to:                                                                                  |
|                     | -D a dimensions                                                                                             |
|                     | -5 Serond moment of May) (moment of inertia)                                                                |
|                     | - SCOR LIGIO OF LOSS (LIGION OF THE LIGI                                                                    |





$$= 2\pi \int_{0}^{1} x + \frac{1}{4\pi} dx$$

$$= \frac{4\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{4\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{4\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= \frac{2\pi}{3} \left[ (x + \frac{1}{4})^{\frac{3}{2}} - (\frac{1}{4})^{\frac{3}{2}} \right] = \frac{\pi}{6} \left( 5^{\frac{3}{2}} - 1 \right)$$

$$= 2\pi \int_{\mathbb{R}^{2}}^{\mathbb{R}} R dx = \frac{\pi}{4\pi} R^{2}$$

$$= 2\pi \int_{\mathbb{R}^{2}$$