Scilab Textbook Companion for Internal Combustion Engine by M. l. Mathur and R. P. Sharma¹

Created by
Manish Yadav
B.E.
Mechanical Engineering
M.I.T.S. Gwalior, M.P.
College Teacher
None
Cross-Checked by
Bhavani

December 16, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Internal Combustion Engine

Author: M. l. Mathur and R. P. Sharma

Publisher: Dhanpat Rai Publications, New Delhi

Edition: 8

Year: 2010

ISBN: 9788189928469

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction	8
2	Air Standard Cycles	14
3	Fuel Air Cycles	37
5	Combustion in SI Engines	48
7	Comparison of SI and CI Engines	50
8	Fuels	53
10	Air Capacity of Four Stroke Engines	64
11	Carburetion	66
12	Fuel Injection	78
14	Engine Friction and Lubrication	83
15	Engine Cooling	85
16	Two Stroke Engines	87
17	Supercharging	89
18	Testing and Performance	96

26	Gas Turbines	120
27	Testing of Internal Combustion Engines According to In-	
	dian and International Standards	134

List of Scilab Codes

Exa 1.1	Calculation of cubic capacity and clearance volume	8
Exa 1.2	Calculation of brake power and friction power	9
Exa 1.3	Calculation of mechanical efficiency	9
Exa 1.4		10
Exa 1.5		11
Exa 1.6		12
Exa 1.7		12
Exa 2.1		14
Exa 2.2	Calculations on the Carnot cycle	14
Exa 2.3		15
Exa 2.4		16
Exa 2.5		17
Exa 2.6	Calculations on Otto cycle	18
Exa 2.7		19
Exa 2.8	Calculations on Otto cycle	20
Exa 2.9	Calculations on Otto cycle	21
Exa 2.10	Calculations on Otto cycle	22
Exa 2.11	Calculations on diesel cycle	23
Exa 2.12	Calculations on diesel cycle	24
Exa 2.13	Calculations on diesel cycle	25
Exa 2.14	Calculations on diesel cycle	26
Exa 2.15	Calculations on dual combustion cycle	27
Exa 2.16	Calculations on dual combustion cycle	28
Exa 2.17	Calculations on dual combustion cycle	29
Exa 2.18	Calculations on dual combustion cycle	30
Exa 2.19	Calculations for comparision of Otto cycle and Diesel	
	cycle	31
Exa 2.20	Calculations for Otto cycle and Limited pressure cycle	33

Exa 2.21	Calculations for comparision of Atkinson and Otto cycle 35				
Exa 2.22	Calculations on Joule cycle				
Exa 3.1	Effect of variable specific heat on efficiency				
Exa 3.2	Effect of variable specific heat on maximum pressure . 38				
Exa 3.3	Calculations on diesel engine				
Exa 3.4	Calculations on dual combustion cycle 40				
Exa 3.5	Effect of molecular contraction				
Exa 3.6	Calculations on Otto cycle				
Exa 5.1	Calculation of optimum spark timing 48				
Exa 7.1	Calculations for comparison of SI and CI engine 50				
Exa 7.2	Calculations for comparison of SI and CI engine 51				
Exa 8.1	Calculation of lowest calorific value				
Exa 8.2	Calculation of relative fuel air ratio by volume 54				
Exa 8.3	Calculations on Petrol engine				
Exa 8.4	Calculation of mass of air				
Exa 8.5	C7H16 in Petrol engine				
Exa 8.6	Incomplete combustion of Petrol				
Exa 8.7	Analysis of fuel from exhaust gas analysis 60				
Exa 8.8	Orsat analysis				
Exa 8.9	Calculations on gas engine				
Exa 10.1	Calculations on SI engine 64				
Exa 11.1	Calculation of the throat diameter 66				
Exa 11.2	Calculation of throat diameter and orifice diameter 67				
Exa 11.3	Calculation of suction at throat				
Exa 11.4	Calculation of the diameter of fuel jet 69				
Exa 11.5	Calculations on carburettor				
Exa 11.6	Calculations on carburettor				
Exa 11.7	Change in air fuel ratio at altitude				
Exa 11.8	Calculation of air fuel ratio				
Exa 11.9	Effect of air cleaner				
Exa 12.1	Calculation of quantity of fuel injected				
Exa 12.2	Calculation of orifice area				
Exa 12.3	Calculation of orifice diameter				
Exa 12.4	Calculations on spray penetration 80				
Exa 12.5	Calculations on diesel engine fuel pump 81				
Exa 14.1	Calculation of saving in fuel				
Exa 14.2	Variation of bsfc with speed				
Exa 15.1	Comparison of cooling water required 85				
6					

Exa 16.1	Calculations on 2 stroke IC engine	87
Exa 17.1	Estimation of increase in brake power	89
Exa 17.2	Supercharged diesel engine	90
Exa 17.3	Normally aspirated and supercharged engine	92
Exa 17.4	Supercharged four stroke oil engine	93
Exa 18.1	Calculations on petrol engine	96
Exa 18.2	Calculations on Gas engine	97
Exa 18.3	Calculations on oil engine	99
Exa 18.4	Calculations on oil engine	101
Exa 18.5	Calculations on six cylinder petrol engine	102
Exa 18.6	Calculations on two stroke engine	104
Exa 18.7	Calculations by Morse test	106
Exa 18.8	Calculations on six cylinder diesel engine	107
Exa 18.9	Calculations on six cylinder petrol engine	109
Exa 18.10	Calculations on gas engine	111
Exa 18.11	Calculations from indicator diagram	113
Exa 18.12	Calculations on diesel engine	113
Exa 18.13	Calculations on four stroke engine	115
Exa 18.14	Calculations on petrol engine	117
Exa 18.15	Hit and miss governing	118
Exa 18.16	Calculations on two stroke engine	119
Exa 26.1	Calculations on Brayton cycle	120
Exa 26.2	Calculations on Joule cycle	121
Exa 26.3	Calculations for zero efficiency	122
Exa 26.4	Calculations on gas turbine	123
Exa 26.5	Calculations on gas turbine	124
Exa 26.6	Calculations on gas turbine with heat exchanger	125
Exa 26.7	Calculations on compound gas turbine	126
Exa 26.8	Calculations on automotive gas turbine	128
Exa 26.9	Calculations on Helium gas turbine	129
Exa 26.10	Calculations on closed cycle gas turbine	131
Exa 27.1	Calculations on non supercharged CI engine	134
Exa 27.2	Calculations on turbocharged CI engine	135
Exa 27.3	Calculations on turbocharged CI engine	136
Exa 27.4	Simulating site ambient conditions	137
Exa 27.5	Calculations on unsupercharged SI engine	138
Exa 27.6	Calculations on turbocharged CI engine	139
Exa. 27 7	Calculations on turbocharged CI engine	140

Chapter 1

Introduction

Scilab code Exa 1.1 Calculation of cubic capacity and clearance volume

```
1 // Calculation of cubic capacity and clearance volume
2 clc, clear
3 // Given:
4 n=4 //Number of cylinders
5 d=68/10 //Bore in cm
6 l=75/10 //Stroke in cm
7 r=8 //Compression ratio
8 // Solution:
9 V_s = (\%pi/4)*d^2*1 //Swept volume of one cylinder in
     cm^3
10 cubic_capacity=n*V_s //Cubic capacity in cm^3
11 / Since, r = (V_c + V_s) / V_c
12 V_c=V_s/(r-1) // Clearance volume in cm<sup>3</sup>
13 //Results:
14 printf("\n The cubic capacity of the engine = \%.1 f
     cm^3", cubic_capacity)
15 printf("\n The clearance volume of a cylinder, V_c =
      \%.1 f cm^3 n n", V_c)
```

Scilab code Exa 1.2 Calculation of brake power and friction power

```
//Calculation of brake power and friction power
clc,clear
//Given:
ip=10 //Indicated power in kW
eta_m=80 //Mechanical efficiency in percent
//Solution:
//Since, eta_m = bp/ip
bp=(eta_m/100)*ip //Brake power in kW
fp=ip-bp //Friction power in kW
//Results:
printf("\n The brake power delivered, bp = %d kW\n", bp)
printf(" The friction power, fp = %d kW\n\n",fp)
```

Scilab code Exa 1.3 Calculation of mechanical efficiency

```
1 // Calculation of mechanical efficiency
2 clc, clear
3 // Given:
4 bp=100 //Brake power at full load in kW
5 fp=25 //Frictional power in kW (printing error)
6 // Solution:
7 eta_m=bp/(bp+fp) //Mechanical efficiency at full
     load
8 //(a)At half load
9 bp=bp/2 //Brake power at half load in kW
10 eta_m1=bp/(bp+fp) //Mechanical efficiency at half
     load
11 //(b)At quarter load
12 bp=bp/2 //Brake power at quarter load in kW
13 eta_m2=bp/(bp+fp) //Mechanical efficiency at quarter
      load
14 // Results:
```

Scilab code Exa 1.4 Calculations on four stroke petrol engine

```
1 // Calculations on four stroke petrol engine
2 clc, clear
3 //Given:
4 bp=35 //Brake power in kW
5 eta_m=80 //Mechanical efficiency in percent
6 bsfc=0.4 //Brake specific fuel consumption in kg/kWh
7 A_F = 14/1 //Air - fuel ratio
8 CV=43000 // Calorific value in kJ/kg
9 //Solution:
10 //(a)
11 ip=bp*100/eta_m //Indicated power in kW
13 fp=ip-bp //Frictional power in kW
14 //(c)
15 / Since, 1 kWh = 3600 kJ
16 eta_bt=1/(bsfc*CV/3600) //Brake thermal efficiency
17 //(d)
18 eta_it=eta_bt/eta_m*100 //Indicated thermal
      efficiency
19 // (e)
20 m_f=bsfc*bp //Fuel consumption in kg/hr
22 m_a=A_F*m_f // Air consumption in kg/hr
23 //Results:
24 printf("\n (a)The indicated power, ip = \%.2 \text{ f kW} \setminus \text{n} (b)
      The friction power, fp = \%.2 \, \text{f kW}, ip, fp)
```

Scilab code Exa 1.5 Calculations on SI engine

```
1 // Calculations on SI engine
2 clc, clear
3 // Given:
4 F_A=0.07/1 //Fuel-air ratio
5 bp=75 //Brake power in kW
6 eta_bt=20 //Brake thermal efficiency in percent
7 rho_a=1.2 // Density of air in kg/m^3
8 rho_f=4*rho_a //Density of fuel vapour in kg/m<sup>3</sup>
9 CV=43700 // Calorific value of fuel in kJ/kg
10 //Solution:
11 m_f=bp*3600/(eta_bt*CV/100) //Fuel consumption in kg
12 m_a=m_f/F_A //Air consumption in kg/hr
13 V_a=m_a/rho_a //Volume of air in m^3/hr
14 V_f=m_f/rho_f //Volume of fuel in m^3/hr
15 V_mixture=V_f+V_a // Mixture volume in m^3/hr
16 //Results:
17 printf("\n The air consumption, m_a = \%.1 f \text{ kg/hr}",
18 printf("\n The volume of air required, V_a = \%.1 f m
      ^3/\mathrm{hr}",V_a)
19 printf("\n The volume of mixture required = \%.1 \,\mathrm{fm}
      ^3/hr n n, V_{mixture} //(printing error)
20 //Answer in the book is printed wrong
```

Scilab code Exa 1.6 Calculations on diesel engine

```
1 // Calculations on diesel engine
2 clc, clear
3 // Given:
4 bp=5 //Brake power in kW
5 eta_it=30 //Indicated thermal efficiency in percent
6 eta_m=75 // Mechanical efficiency in percent (
      printing error)
7 //Solution:
8 ip=bp*100/eta_m //Indicated power in kW
9 CV=42000 // Calorific value of diesel (fuel) in kJ/kg
10 m_f=ip*3600/(eta_it*CV/100) //Fuel consumption in kg
     /hr
11 //Density of diesel(fuel) = 0.87 \text{ kg/l}
12 rho_f = 0.87 // Density of fuel in kg/l
13 V_f=m_f/rho_f //Fuel consumption in l/hr
14 isfc=m_f/ip //Indicated specific fuel consumption in
      kg/kWh
15 bsfc=m_f/bp //Brake specific fuel consumption in kg/
     kWh
16 //Results:
17 printf("\n The fuel consumption of engine, m_f in,\n
      (a) kg/hr = \%.3 f kg/hr/n (b) litres/hr = \%.2 f l/hr
     ",m_f,V_f)
18 printf("\n\n (c) Indicated specific fuel consumption,
      isfc = \%.3 f kg/kWh", isfc)
19 printf("\n (d)Brake specific fuel consumption, bsfc
     = \%.3 f kg/kWh/n/n", bsfc)
20 //Data in the book is printed wrong
```

Scilab code Exa 1.7 Calculations on two stroke CI engine

```
1 // Calculations on two stroke CI engine
2 clc, clear
3 // Given:
4 bp=5000 //Brake power in kW
5 fp=1000 //Friction power in kW
6 m_f=2300 //Fuel consumption in kg/hr
7 \text{ A\_F}=20/1 \text{ } // \text{Air-fuel ratio}
8 CV=42000 // Calorific value of fuel in kJ/kg
9 //Solution:
10 //(a)
11 ip=bp+fp //Indicated power in kW
12 //(b)
13 eta_m=bp/ip //Mechanical efficiency
14 //(c)
15 m_a=A_F*m_f // Air consumption in kg/hr
16 // (d)
17 eta_it=ip*3600/(m_f*CV) //Indicated thermal
      efficiency
18 // (e)
19 eta_bt=eta_it*eta_m //Brake thermal efficiency
20 //Results:
21 printf("\n (a)The indicated power, ip = %d kW",ip)
22 printf("\n (b) The mechanical efficiency, eta_m = %d
      percent", eta_m * 100)
23 printf("\n (c) The air consumption, m_a = \%d \, kg/hr",
      m_a)
24 printf("\n (d)The indicated thermal efficiency,
      eta_it = \%.1f percent\n (e)The brake thermal
      efficiency, eta_bt = \%.1f percent\n\n",eta_it
      *100,eta_bt*100)
```

Chapter 2

Air Standard Cycles

Scilab code Exa 2.1 Calculations on Carnot engine

```
//Calculations on Carnot engine
clc,clear
//Given:
T2=27+273 //Temperature of cooling pond in K
tea=30 //Efficiency in percent
Q2=200 //Heat received by cooling pond in kJ/s
//Solution:
//Since, eta = (Q1-Q2)/Q1 = (T1-T2)/T1
T1=T2/(1-(eta/100)) //Temperature of heat source in K
Q1=Q2/(1-(eta/100)) //Heat supplied by source in kJ/s
Power=round(Q1-Q2) //Power of engine in kJ/s
//Results:
printf("\n Temperature of heat source, T1 = %.1f degreeC",T1-273)
printf("\n Power of engine = %d kW\n\n",Power)
```

Scilab code Exa 2.2 Calculations on the Carnot cycle

```
1 // Calculations on the Carnot cycle
2 clc, clear
3 // Given:
4 T3=800+273, T1=15+273 //Temperature of a hot and cold
       reservoir in K
5 P3=210, P1=1 //Maximum and minimum pressure in bar
6 //Solution:
7 //Refer fig 2.21
8 eta_carnot=1-(T1/T3) //Efficiency of Carnot cycle
9 T4=T3 //Isothermal process 3-4
10 g=1.4 //Specific heat ratio (gamma)
11 P4=P1*(T4/T1)^(g/(g-1)) // Initial pressure of
     isentropic process 4-1 in bar
12 R=0.287 //Specific gas constant in kJ/kgK
13 Q3_4=R*T3*\log(P3/P4) //Heat supplied in kJ/kg
14 W3_4=Q3_4 //Work supplied in kJ/kg
15 Net_work=eta_carnot*Q3_4 //Net work output in kJ/kg
16 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
17 W4_1=cv*(T4-T1) //Work for isentropic process in kJ/
     kg
18 Gross_work=W3_4+W4_1 // Gross_work_supplied_in_kJ/kg
19 work_ratio=Net_work/Gross_work //Work ratio
20 //Results:
21 printf("\n The efficiency of the Carnot cycle,
     eta\_carnot = \%.1 f percent", eta\_carnot*100)
22 printf("\n The work ratio of the Carnot cycle = \%.3 f
     \n\n", work_ratio)
```

Scilab code Exa 2.3 Calculation of air standard efficiency of Otto cycle

```
1 // Calculation of air standard efficiency of Otto
        cycle
2 clc, clear
3 // Given:
```

```
4 d=17,1=30 //Bore and stroke in cm
5 V_c=0.001025 //Clearance volume in m^3
6 //Solution:
7 V_s=(%pi/4)*d^2*l //Swept volume in cc
8 V_c=V_c*10^6 //Clearance volume in cc
9 V=V_c+V_s //Total cylinder volume in cc
10 r=V/V_c //Compression ratio
11 g=1.4 //Specific heat ratio(gamma)
12 eta=1-1/r^(g-1) //Air standard efficiency
13 //Results:
14 printf("\n The Air standard efficiency of Otto cycle
    , eta = %.1f percent\n\n",eta*100)
```

Scilab code Exa 2.4 Calculations on constant volume cycle

```
1 // Calculations on constant volume cycle
2 clc, clear
3 //Given:
4 P1=97 //Pressure at the beginning (1) in kN/m^2
5 T1=40+273 //Temperature at the beginning (1) in K
6 r=7 //Compression ratio
7 Q=1200 //Heat supplied in kJ/kg
8 g=1.4 //Specific heat ratio (gamma)
9 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
10 // Solution:
11 //(a)
12 T2=T1*(r)^(g-1), T3=round(Q/cv+T2) // Temperature at
      2, 3 in K
13 //(b)
14 eta=1-1/r^{(g-1)} //Thermal efficiency
15 //(c)
16 W=Q*eta //Workdone per cycle in kJ/kg
17 //Results:
18 printf("\n (a) The maximum temperature attained in
```

```
the cycle, T3 = %d degreeC",T3-273)
19 printf("\n (b)The thermal efficiency of the cycle,
        eta = %.1f percent",eta*100)
20 printf("\n (c)The workdone during the cycle/kg of
        working fluid, W = %d kJ\n\n",W)
```

Scilab code Exa 2.5 Calculations on Otto cycle

```
1 // Calculations on Otto cycle
2 clc, clear
3 // Given:
4 r=8 //Compression ratio
5 P1=1, P3=50 // Pressure at 1, 3 in bar
6 T1=100+273 //Temperature at 1 in K
7 m=1 //Air flow in kg
8 R=0.287 //Specific gas constant in kJ/kgK
9 g=1.4 //Specific heat ratio (gamma)
10 //Solution:
11 //Refer fig 2.22
12 // Point 1
13 V1=m*R*10^3*T1/(P1*10^5) // Ideal gas equation,
      Volume at 1 in m<sup>3</sup>
14 // Point 2
15 P2=P1*r^g // Pressure at 2 in bar
16 V2=V1/r //Volume at 2 in m<sup>3</sup>
17 T2=P2*V2*T1/(P1*V1) //Temperature at 2 in K
18 // Point 3
19 V3=V2 //Constant volume process, Volume at 3 in m<sup>3</sup>
20 T3=(P3/P2)*T2 //Temperature at 3 in K (Wrong in book
      )
21 // Point 4
22 P4=P3*(1/r)^g //Pressure at 4 in bar
23 V4=V1 //Constant volume process, Volume at 4 in m<sup>3</sup>
24 T4=T1*(P4/P1) // Temperature at 4 in K
25 cv=R/(g-1) //Specific heat at constant volume in kJ/
```

```
kgK
26 ratio=(cv*(T3-T2))/(cv*(T4-T1)) //Ratio of heat
       supplied to the heat rejected (Round off error)
   //Results:
27
28 printf("\n Point 1:\n Pressure = %d bar, Volume = %
       .4 \text{ f m}^3, Temperature = \% \text{d degreeC}, P1, V1, T1-273)
  printf("\n\n Point 2:\n Pressure = \%.1 f bar, Volume
       = \%.4 \,\mathrm{f} \,\mathrm{m}^3, Temperature = \%.1 \,\mathrm{f} \,\mathrm{degreeC}", P2, V2, T2
       -273)
30 printf("\n Point 3:\n Pressure = %.1f bar, Volume
       = \%.4 \,\mathrm{f} \,\mathrm{m}^3, Temperature = \%.1 \,\mathrm{f} \,\mathrm{degreeC}", P3, V3, T3
31 printf("\n Point 4:\n Pressure = %.2 f bar, Volume
       = \%.4 \,\mathrm{f} \,\mathrm{m}^3, Temperature = \%.1 \,\mathrm{f} \,\mathrm{degreeC}", P4, V4, T4
       -273)
32 printf("\n\n Ratio of heat supplied to the heat
       rejected = \%.3 \text{ f} \times \text{n}, ratio)
33 //Textbook answer for T3 is wrong
34 //Round off error in the value of 'ratio'
```

Scilab code Exa 2.6 Calculations on Otto cycle

```
// Calculations on Otto cycle
clc,clear
// Given:
P1=1 // Pressure at 1 in bar
T1=15+273 // Temperature at 1 in K
r=8 // Compression ratio
Q1=1000 // Heat added in kJ/kg
cv=0.718 // Specific heat at constant volume in kJ/kgK
g=1.4 // Specific heat ratio (gamma)
// Solution:
// Refer fig 2.23
// (a)
```

```
13 P2=P1*(r)^g // Pressure at 2 in bar
14 T2=T1*r^(g-1) // Temperature at 2 in K
15 T3=Q1/cv+T2 //Temperature at 3 in K (Round off error
16 //(b)
17 eta=1-1/r^(g-1) //Air standard efficiency
19 W=Q1*eta //Work done in kJ/kg (Round off error)
20 //(d)
21 Q2=Q1-W //Heat rejected in kJ/kg
22 //Results:
23 printf("\n (a) The maximum temperature in the cycle,
     T3 = \%d \ degreeC", T3-273)
24 printf("\n (b)The air standard efficiency, eta = \%.1
     f percent",eta*100)
25 printf("\n (c)The workdone per kg of air = \%d kJ/kg"
      , W)
26 printf("\n (d)The heat rejected = \%d kJ/kg",Q2)
27 //Round off error in the values of 'T3' and 'W'
```

Scilab code Exa 2.7 Calculations on Otto cycle

```
//Calculations on Otto cycle
clc,clear
//Given:
P1=1.05,P2=13,P3=35 //Pressure at 1, 2, 3 in bar
T1=15+273 //Temperature at 1 in K
cv=0.718 //Specific heat at constant volume in kJ/kgK
R=0.287 //Specific gas constant in kJ/kgK
//Solution:
r="V1/V2" //Compression ratio
g=R/cv+1 //Specific heat ratio(gamma)
r=(P2/P1)^(1/g) //By adiabatic process relation
eta=1-1/r^(g-1) //Air standard efficiency
```

Scilab code Exa 2.8 Calculations on Otto cycle

```
1 // Calculations on Otto cycle
2 clc, clear
3 // Given:
4 r=8 // Compression ratio
5 T1=20+273 // Temperature at 1 in K
6 P1=1 // Pressure at 1 in bar
7 Q1=1800 // Heat added in kJ/kg
8 cv=0.718 // Specific heat at constant volume in kJ/kg
9 g=1.4 // Specific heat ratio (gamma)
10 // Solution:
11 T2=T1*r^(g-1) // Temperature at 2 in K
12 T3=Q1/cv+T2 // Temperature at 3 in K (printing error)
13 P2=P1*(r)^g // Pressure at 2 in bar
14 P3=P2*(T3/T2) // Pressure at 3 in bar
15 T4=T3/r^(g-1) // Temperature at 4 in K
```

```
16 eta=1-1/r^(g-1) //Air standard efficiency
17 W1_2=cv*(T1-T2) //Work done for process 1-2 in kJ/kg
18 W3_4=cv*(T3-T4) //Work done for process 3-4 in kJ/kg
19 W=W1_2+W3_4 //Net work done for the cycle in kJ/kg
20 V1 = cv*(g-1)*10^3*T1/(P1*10^5) // Ideal gas equation,
      Volume at 1 in m<sup>3</sup>/kg
21 V2=V1/r //Volume at 2 in m<sup>3</sup>/kg
22 \text{ V_s=V1-V2} //\text{Swept volume in } \text{m}^3/\text{kg}
23 mep=W*1000/(V_s*10^5) //Mean effective pressire in
24 //Results:
25 printf("\n The maximum temperature, T3 = \%d K", T3)
26 printf("\n The maximum pressure, P3 = \%.1 f \text{ bar}", P3)
27 printf("\n The temperature at the end of the
      expansion process, T4 = \%d K", T4)
28 printf ("\n The air standard efficiency, eta = \%.1 \,\mathrm{f}
      percent", eta*100)
29 printf("\n The mean effective pressure of the cycle,
       mep = \%.1 f bar n ", mep)
30 //Answers in the book are wrong
```

Scilab code Exa 2.9 Calculations on Otto cycle

```
//Calculations on Otto cycle
clc,clear
//Given:
power=50 //Internal power in kW
N=4800 //Engine speed in rpm
l=80,d=80 //Stroke and bore of engine in mm
n=4 //Number of cylinders
V_c=50000 //Clearance volume in mm^3
delta_P=45 //Pressure rise during combustion in bar
g=1.4 //Specific heat ratio(gamma)
//Solution:
//Refer fig 2.24
```

Scilab code Exa 2.10 Calculations on Otto cycle

```
1 // Calculations on Otto cycle
2 clc, clear
3 //Given:
4 CV=42000 // Calorific value of the fuel in kJ/kg
5 a=30/100,b=70/100 //Fraction of compression stroke
      at point a, b
6 P_a=1.33, P_b=2.66 // Pressure at point a, b
7 n=1.33 //Polytropic index
8 eta_cycle=50/100 //Air standard cycle efficiency
9 //Solution:
10 //Refer fig 2.25
11 / Since, compression follows PV^n = C
12 / \text{Thus}, P_a * V_a \hat{n} = P_b * V_b \hat{n}
13 //Assume a_b = V_a/V_b
14 a_b=(P_b/P_a)^(1/n) //Ratio of volume at a to volume
15 // Defining the function, ratio of r(compression
```

```
ratio)
16 function [ratio] = Volume(r)
        V_a = 1 + 0.7 * (r - 1)
17
        V_b = 1 + 0.3 * (r - 1)
18
19
        ratio=V_a/V_b-a_b
20 endfunction
21 funcprot(0)
22 \text{ r=fsolve}(1, \text{Volume}) // \text{Compression ratio}
23 g=1.4 //Specific heat ratio (gamma)
24 eta=round (1000*(1-1/r^{(g-1)}))/1000 // Air standard
       efficiency
25 eta_it=eta_cycle*eta //Indicated thermal efficiency
26 / \text{Since}, 1 \text{ kWh} = 3600 \text{ kJ}
27 Q1=3600/eta_it //Heat supplied in kJ/kWh
28 isfc=Q1/CV //Indicated specific fuel consumption in
      kg/kWh
29 //Results:
30 printf("\n The compression ratio, r = \%.2 f",r)
31 printf("\n The fuel consumption, isfc = \%.3 \text{ f kg/kWh}\
      n \ n", isfc)
```

Scilab code Exa 2.11 Calculations on diesel cycle

```
//Calculations on diesel cycle
clc,clear
//Given:
r=14 //Compression ratio
P1=1 //Pressure at 1 in bar
T1=27+273,T3=2500+273 //Temperature at 1 and 3 in K
//Solution:
//Refer fig 2.26
g=1.4 //Specific heat ratio(gamma)
T2=T1*(r)^(g-1) //Temperature at 2 in K
P2=P1*(T2/T1)^(g/(g-1)) //Pressure at 2 in bar
rho=T3/T2 //Cut off ratio
```

```
13 T3_T4=(r/rho)^(g-1) //Temperature ratio T3/T4
14 T4=round(T3/T3_T4) //Temperature at 4 in K
15 eta=1-((T4-T1)/(g*(T3-T2))) // Efficiency of diesel
      cvcle
16 R=0.287, cp=1.005, cv=0.718 // Specific gas constant,
      heat capacities at constant pressure and volume
      in kJ/kgK
17 V1=R*T1*10^3/(P1*10^5) //Volume at 1 in m^3/kg
18 V_s=V1*(1-1/r) //Stroke volume in m<sup>3</sup>/kg
19 mep=(cp*(T3-T2)-cv*(T4-T1))*10^3/(V_s*10^5) //Mean
      effective pressure in bar
20 //Results:
21 printf("\n The thermal efficiency of the diesel
      cycle, eta = \%.1 f percent", eta*100)
22 printf("\n The mean effective pressure of the cycle,
      pm = \%.2 f bar n ", mep)
```

Scilab code Exa 2.12 Calculations on diesel cycle

```
1 // Calculations on diesel cycle
2 clc, clear
3 //Given:
4 P1=1, P2=50 // Pressure at 1, 2 in bar
5 V1=1, V3=0.1 // Volume at 1, 3 in m<sup>3</sup>
6 T1=18+273 //Temperature at 1 in K
7 g=1.4 //Specific heat ratio (gamma)
8 //Solution:
9 T2=T1*(P2/P1)^((g-1)/g) //Temperature at 2 in K
10 V2=V1*(P1/P2)*(T2/T1) //Volume at 2 in m<sup>3</sup>
11 T3 = round(T2*(V3/V2)) // Temperature at 2 in K (
      printing error)
12 V4=V1 //Constant volume process, volume at 4 in m<sup>3</sup>
13 T4=T3*(V3/V4)^(g-1) //Temperature at 4 in K
14 eta=1-((T4-T1)/(g*(T3-T2))) // Efficiency of diesel
      cycle
```

Scilab code Exa 2.13 Calculations on diesel cycle

```
1 // Calculations on diesel cycle
2 clc, clear
3 // Given:
4 r=18 //Compression ratio
5 p=10 //percentage of stroke at which constant
      pressure process ends
6 P1=1,T1=20+273 //Pressure and temperature at 1 in
     bar and K
7 V_a=100 //Volume of air used per hour in m^3/hr
8 g=1.4 //Specific heat ratio (gamma)
9 // Solution:
10 // Refer fig 2.27
11 // Calculation of cut off ratio (rho)
12 V_c=1 //Assume clearance volume in unit
13 V_s=r-V_c //Swept volume in unit
14 V3=V_c+V_s*p/100 //Volume at constant pressure
      process ends or point 3 in unit
15 V2=V_c //Volume at constant pressure process starts
     or point 2 in unit
16 rho=V3/V2 //Cut off ratio
17 eta=1-((rho^g-1)/(r^(g-1)*g*(rho-1))) //Thermal
      efficiency
18 P2=P1*(r)^g // Pressure at 2(maximum) in bar (
      printing error)
19 P3=P2 //Constant pressure process, pressure at 3 in
```

```
bar
20 T2=T1*(r)^(g-1) //Temperature at 2 in K
21 T3=T2*rho //Temperature at 3(maximum) in K
22 //Consider the cycle for 100 m<sup>3</sup> of swept volume
      with air, thus
23 V_s=V_a //Swept volume in m^3/hr
24 V2=V_s/(r-1) //Volume at 2 in m<sup>3</sup>/hr
25 V1=V_s+V2 //Volume at 1 in m^3/hr
26 V3=rho*V2 //Volume at 3 in m^3/hr
27 V4=V1 //Constant volume process, volume at 4 in m<sup>2</sup>
28 P4=P3*(V3/V4)^g //Pressure at 4 in bar
29 \quad W = (P2*(V3-V2)+((P3*V3-P4*V4)-(P2*V2-P1*V1))/(g-1))
      *10<sup>5</sup> //Work done in cycle in Nm
30 \text{ ip=W/3600}
31 //Results:
32 printf("\n (a) The maximum temperature, T3 = \%d
      degreeC and the maximum pressure, P2 = \%.1 f bar",
      T3-273, P2)
33 printf("\n (b) The thermal efficiency of the engine,
      eta = \%d percent", eta*100)
34 printf("\n (c) The indicated power of the engine, ip
      =\%.2 f kW\n\n",ip/1000)
35 //Answers in the book are wrong
```

Scilab code Exa 2.14 Calculations on diesel cycle

```
1 // Calculations on diesel cycle
2 clc, clear
3 // Given:
4 d=15,l=20 // Diameter and stroke of cylinder in cm
5 p1=10 // Percentage of stroke volume equal to
        clearance volume
6 p2=6 // Percentage of stroke at which cut off takes
        place
7 g=1.4 // Specific heat ratio (gamma)
```

```
8  //Solution:
9  //Refer fig 2.28
10  V_s=(%pi/4)*d^2*1 //Stroke volume in cm^3
11  V_c=p1*V_s/100 //Clearance volume in cm^3
12  V1=V_s+V_c //Total volume at 1 in cm^3
13  V2=V_c //Volume at 2 in cm^3
14  V3=V2+p2*V_s/100 //Volume at 3 in cm^3
15  r=V1/V2 //Compression ratio
16  rho=V3/V2 //Cut off ratio
17  eta=1-((rho^g-1)/(r^(g-1)*g*(rho-1))) //Thermal efficiency
18  //Results:
19  printf("\n The air standard efficiency of the engine , eta = %d percent\n\n",eta*100)
```

Scilab code Exa 2.15 Calculations on dual combustion cycle

```
1 // Calculations on dual combustion cycle
2 clc,clear
3 //Given:
4 r=15 //Compression ratio
5 P1=1,T1=25+273,V1=.1 //Pressure, temperature, volume
       at 1 in bar, K, m<sup>3</sup>
6 P4=65, T4=1500+273 // Pressure and temperature at 4 in
       bar and K
7 cv=0.718 //Specific heat at constant volume in kJ/
8 g=1.4 //Specific heat ratio (gamma)
9 // Solution:
10 //Refer fig 2.29
11 V2=V1/r //Volume at 2 in m<sup>3</sup>
12 P2=P1*(r)^g // Pressure at 2 in bar
13 T2=T1*(r)^(g-1) //Temperature at 2 in K
14 P3=P4 //Pressure at 3 in bar
15 T3=T2*(P3/P2) // Temperature at 3 in K
```

```
16 V3=V2 //Volume at 3 in m<sup>3</sup>
17 V4=V3*(T4/T3) //Volume at 4 in m<sup>3</sup>
18 V5=V1 //Volume at 5 in m<sup>3</sup>
19 P5=P4*(V4/V5)^g // Pressure at 5 in bar
20 T5=T4*(V4/V5)^(g-1) //Temperature at 5 in K
21 eta=1-(T5-T1)/((T3-T2)+g*(T4-T3)) //Thermal
       efficiency
22 //Results:
23 printf("\n Point 1:\n Pressure = %d bar, Volume = %
       .1 f m^3, Temperature = %d degreeC", P1, V1, T1-273)
24 printf("\n\n Point 2:\n Pressure = \%.1 f bar, Volume
      = \%.4 \,\mathrm{f} \,\mathrm{m}^3, Temperature = \%\mathrm{d} \,\mathrm{degreeC}, P2, V2, T2
      -273)
25 printf("\n\n Point 3:\n Pressure = \%d bar, Volume =
      \%.4 \text{ f m}^3, Temperature = \% \text{d degreeC}, P3, V3, T3-273)
  printf("\n\n Point 4:\n Pressure = %d bar, Volume =
      \%.4 \text{ f m}^3, Temperature = \%d degreeC", P4, V4, T4-273)
27 printf("\n Point 5:\n Pressure = %.2 f bar, Volume
      = \%.1 \, \text{f m}^3, Temperature = \% \, \text{d degreeC}, P5, V5, T5
      -273)
28 printf("\n The thermal efficiency of the cycle,
      eta = %d percent", eta*100)
  //Answers in the book are wrong
```

Scilab code Exa 2.16 Calculations on dual combustion cycle

```
// Calculations on dual combustion cycle
clc,clear
// Given:
r=18 // Compression ratio
P1=1.01,P3=69 // Pressure at 1, 3 in bar
T1=20+273 // Temperature at 1 in K
cv=0.718 // Specific heat at constant volume in kJ/kgK
cp=1.005 // Specific heat at constant pressure in kJ/
```

```
kgK
9 g=1.4 //Specific heat ratio (gamma)
10 R=0.287 //Specific gas constant in kJ/kgK
11 //Solution:
12 T2=T1*r^(g-1) // Temperature at 2 in K
13 P2=P1*r^g // Pressure at 2 in bar
14 T3=T2*(P3/P2) // Temperature at 3 in K
15 Q_v=cv*(T3-T2) //Heat added at constant volume in kJ
  //Given, Heat added at constant volume is equal to
16
      heat added at constant pressure
17 T4=Q_v/cp+T3 // Temperature at 4 in K
18 rho=T4/T3 //Cut off ratio
19 T5=T4*(rho/r)^(g-1) //Temperature at 5 in K
20 Q1=2*Q_v //Heat supplied in cycle in kJ/kg
21 Q2=cv*(T5-T1) //Heat rejected in kJ/kg
22 eta=1-Q2/Q1 //Thermal efficiency
23 W=Q1-Q2 //Work done by the cycle in kJ/kg
24 V1=1*R*T1/(P1*100) //Volume at 1 in m^3/kg
25 V2=V1/r //Volume at 2 in m<sup>3</sup>/kg
26 V_s = V1 - V2 //Swept volume in m<sup>3</sup>/kg
27 mep=W/(V_s*100) //Mean effective pressure in bar
28 //Results:
29 printf("\n The air standard efficiency, eta = \%.1 \, \mathrm{f}
      percent", eta*100)
30 printf("\n The mean effective pressure, mep = \%.2 \,\mathrm{f}
      bar \n \n", mep)
```

Scilab code Exa 2.17 Calculations on dual combustion cycle

```
1 // Calculations on dual combustion cycle
2 clc, clear
3 // Given:
4 P1=1 // Pressure at 1 in bar
5 T1=50+273 // Temperature at 1 in K
```

```
6 r=14,rho=2,alpha=2 //Compression ratio, cut off
     ratio, pressure ratio
7 g=1.4 //Specific heat ratio (gamma)
8 cp=1.005 //Specific heat at constant pressure in kJ/
9 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
10 //Solution:
11 //Refer fig 2.30
12 T2=T1*ceil(100*r^(g-1))/100 // Temperature at 2 in K
13 P2=round(P1*r^g) // Pressure at 2 in bar
14 P3=alpha*P2 //Pressure at 3 in bar
15 T3=T2*(P3/P2) //Temperature at 3 in K
16 T4=T3*rho //Temperature at 4 in K
17 e=r/rho //Expansion ratio
18 T5=T4/e^(g-1) //Temperature at 5 in K (Round off
     error)
19 Q1=cv*(T3-T2)+cp*(T4-T3) //Heat added in kJ/kg
20 Q2=cv*(T5-T1) //Heat rejected in kJ/kg
21 eta=1-Q2/Q1 //Air standard efficiency
22 //Results:
23 printf ("\n The temperature\n\tT1 = \%d K\n\tT2 = \%d K
     ,T4,T5)
24 printf ("\n\n The ideal thermal efficiency, eta = \%.1
     f percent\n'n", eta*100)
25 //Round off error in the value of 'T5'
```

Scilab code Exa 2.18 Calculations on dual combustion cycle

```
1 // Calculations on dual combustion cycle
2 clc, clear
3 // Given:
4 r=15 // Compression ratio
5 P1=1,P3=55 // Pressure at 1, 3 in bar
```

```
6 T1=27+273 //Temperature at 1 in K
7 g=1.4 //Specific heat ratio (gamma)
8 cp=1.005 //Specific heat at constant pressure in kJ/
      kgK
9 cv=0.718 //Specific heat at constant volume in kJ/
      kgK
10 //Solution:
11 / Refer fig 2.31
12 T2=T1*r^(g-1) // Temperature at 2 in K
13 P2=P1*r^g //Pressure at 2 in bar
14 alpha=P3/P2 //Constant volume pressure ratio
15 T3=T2*(P3/P2) // Temperature at 3 in K
16 Q1_v=cv*(T3-T2) //Heat supplied at constant volume
      in kJ/kg
17 T4=poly(0, "T4") // Defining temperature at 4 as
      unknown in K
18 //Given, heat supplied at constant volume, Q1_v is
      twice of heat supplied at constant pressure, Q1_p
19 Q1_p=cp*(T4-T3) //Heat supplied at constant pressure
      in kJ/kg
20 T4=roots(Q1_v-2*Q1_p) // Temperature at 4 in K
21 rho=T4/T3 //Cut off ratio
22 e=r/rho //Expansion ratio
23 T5=T4/e^(g-1) //Temperature at 5 in K
24 eta=1-(T5-T1)/((T3-T2)+g*(T4-T3)) //Thermal
      efficiency
25 \text{ eta=round} (100*\text{eta})
26 //Results:
27 printf("\n The constant volume pressure ratio, alpha
      =\%.2 \,\mathrm{f}",alpha)
28 printf("\n The cut off ratio, rho = \%.2 \, \text{f}", rho)
29 printf("\n The thermal efficiency of the cycle, eta
     = \% d percent \n\n", eta)
```

Scilab code Exa 2.19 Calculations for comparision of Otto cycle and Diesel cycle

```
1 // Calculations for comparision of Otto cycle and
      Diesel cycle
2 clc, clear
3 //Given:
4 n=6 //Number of cylinders
5 V_s=300 //Engine swept volume in cm<sup>3</sup> per cylinder
6 r=10 //Compression ratio
7 N=3500 //Engine speed in rpm
8 bp=75 //Brake power in kW
9 P1=1 //Pressure at 1 in bar
10 T1=15+273 //Temperature at 1 in K (misprint)
11 cv=0.718 // Specific heat at constant volume in kJ/
12 cp=1.005 //Specific heat at constant pressure in kJ/
13 g=1.4 //Specific heat ratio (gamma)
14 // Solution:
15 //Refer fig 2.32
16 //Otto cycle
17 eta_o=1-1/r^(g-1) // Cycle efficiency
18 Q1=bp/eta_o //Rate of heat addition in kW
19 P_o=bp/n //Power output per cylinder in kW
20 W_o=P_o/(N/(2*60)) //Work output per cycle per
      cylinder in kJ
21 mep_o=W_o/V_s*10^6/100 //Mean effective pressure in
22 T2=T1*r^(g-1) //Temperature at 2 in K
23 Q1=Q1/(n*N/(2*60)) //Heat supplied per cycle per
      cylinder in kJ
24 R=0.287 //Specific gas constant in kJ/kgK
25 v1=R*T1/(P1*100) //Volume of air in m^3/kg
26 \text{ V1=V_s/(1-1/r)*10^--6} //\text{Volume at 1 in m^3}
27 m=V1/v1 //Mass of the air in kg
28 T3=T2+Q1/(m*cv) //Temperature at 3 in K
29 // Diesel cycle
```

```
30 T3!=T2+Q1/(m*cp) //Temperature at 3 in diesel cycle
      in K
31 rho=T3!/T2 //Cut off ratio for diesel cycle
32 eta_d=1-((rho^g-1)/(r^(g-1)*g*(rho-1))) //The air
      standard efficiency
33 Power=eta_d*bp/(eta_o) //Power output in kW
34 P_d=Power/n //Power output per cylinder in kW
35 W_d=P_d/(N/(2*60)) //Work output per cycle per
      cylinder in kJ
36 mep_d=W_d/V_s*10^6/100 //Mean effective pressure in
      bar
37 //Results:
38 printf("\n The rate of heat addition same for both
      Petrol and Diesel engine, Q1 = \%.1 \text{ f kW}, bp/eta_o)
39 printf("\n For Petrol engine\n\t Cycle efficiency,
      eta = \%.3 \text{ f} \land \text{t} Mean effective pressure, mep = \%.2
      f bar\n\t The maximum temperature of the cycle,
      Tmax = \%.0 f K, eta_o, mep_o, T3)
40 printf("\n For Diesel engine\n\t Cycle efficiency,
      eta = \%.2 \text{ f} \land \text{t} Mean effective pressure, mep = \%.2
      f bar\n\t The maximum temperature of the cycle,
      Tmax = \%.0 f K \setminus n \setminus t Power output = \%.1 f kW", eta_d,
      mep_d,T3!,Power)
```

Scilab code Exa 2.20 Calculations for Otto cycle and Limited pressure cycle

```
8 //Solution:
9 //Refer fig 2.33
10 g=1.4 //Specific heat ratio (gamma)
11 R=0.287 //Specific gas constant in kJ/kgK
12 cp=1.005 //Specific heat at constant pressure in kJ/
     kgK
13 V1=1*R*T1/(P1*100) //Volume at 1 in m^3/kg
14 V5=V1 //Volume at 5 in m^3/kg
15 V2=V1/r //Volume at 2 in m<sup>3</sup>/kg
16 V3=V2 //Volume at 3 in m<sup>3</sup>/kg
17 V_s = V1 - V2 //Swept volume in m<sup>3</sup>/kg
18 T2=T1*r^(g-1) // Temperature at 2 in K
19 P2=P1*r^g //Pressure at 2 in bar
20 //(a) Limited-pressure cycle
21 P3=70 //Limited maximum pressure in bar
22 T3=T2*(P3/P2) //Temperature at 3 in K
23 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
24 Q_v=cv*(T3-T2) //Heat supplied at constant volume in
25 Q_p=Q1-Q_v //Heat supplied at constant pressure in
26 T4=Q_p/cp+T3 //Temperature at 4 in K
27 V4=V3*(T4/T3) //Volume at 4 in m^3/kg
28 T5=T4*(V4/V5)^(g-1) //Temperature at 5 in K
29 Q2=cv*(T5-T1) //Heat rejected in kJ/kg
30 W=Q1-Q2 //Work done in kJ/kg
31 eta1=W/Q1 //Efficiency of Limited pressure cycle
32 mep1=W/(V_s*100) //Mean effective pressure in bar
33 //(b) Constant volume cycle
34 // All the heat is supplied at constant volume in
      constant volume cycle
35 T6=Q1/cv+T2 //Temperature at 6 in K
36 P6=P2*T6/T2 //Pressure at 6 in bar
37 T7=T6*(1/r)^(g-1) // Temperature at 7 in K
38 Q2=cv*(T7-T1) //Heat rejected in kJ/kg
39 W=Q1-Q2 //Work done in kJ/kg
40 eta2=W/Q1 //Efficiency of constant volume cycle
```

```
41 mep2=W/(V_s*100) //Mean effective pressure in bar
42 //If gases expanded isentropically to their original
      pressure of 1 bar, this point is named as 8
43 P8=P1 // Pressure at 8 in bar
44 T8=T6*(P8/P6)^((g-1)/g) //Temperature at 8 in K
45 Q3=cp*(T8-T1) //Heat rejected at constant pressure
     in kJ/kg
46 W_inc=Q2-Q3 //Work increased if gas expanded
      isentropically in kJ/kg
  //Results:
48 printf("\n (a) For Limited pressure cycle\n The
     mean effective pressure, mep = \%.2 f  bar n t The
     thermal efficiency, eta = \%.1f percent", mep1, eta1
     *100)
49 printf("\n (a) For Constant volume cycle\n The
     mean effective pressure, mep = \%.1 f bar\n\t The
     thermal efficiency, eta = \%.1f percent", mep2, eta2
     *100)
50 printf("\n
                  Additional work per kg of charge = \%
      .1 f kJ \ n \ ", W_{inc}
```

Scilab code Exa 2.21 Calculations for comparision of Atkinson and Otto cycle

```
// Calculations for comparison of Atkinson and Otto
    cycle
clc,clear
// Given:
r=6 // Compression ratio
P1=1,P3=20 // Pressure at 1, 3 in bar
T1=27+273 // Temperature at 1 in K
g=1.4 // Specific heat ratio (gamma)
// Solution:
// Refer fig 2.34
eta_otto=1-1/r^(g-1) // Efficiency of Otto cycle (
```

```
printing error)

11  //For Atkinson cycle

12  e=(P3/P1)^g //Expansion ratio

13  eta_atk=1-g*(e-r)/(e^g-r^g) //Efficiency of Atkinson cycle

14  //Results:
15  printf("\n Efficiency of Otto cycle = %.2f percent", eta_otto*100)

16  printf("\n Efficiency of Atkinson cycle = %.1f percent\n\n",eta_atk*100)

17  //Answer in the book is printed wrong
```

Scilab code Exa 2.22 Calculations on Joule cycle

```
1 // Calculations on Joule cycle
2 clc, clear
3 //Given:
4 P1=1.02, P2=6.12 // Pressure at 1, 2 in bar
5 T1=15+273, T3=800+273 //Temperature at 1, 3 in K
6 g=1.4 //Specific heat ratio (gamma)
7 cp=1.005 //Specific heat at constant pressure in kJ/
      kgK
8 // Solution:
9 //Refer fig 2.18
10 r_p=P2/P1 //pressure ratio
11 eta=1-1/r_p^((g-1)/g) //Thermal efficiency
12 \text{ r_w=1-(T1/T3)*r_p^((g-1)/g)} //\text{Work ratio}
13 // Results:
14 printf ("\n The thermal efficiency, eta = \%.1 \,\mathrm{f}
      percent", eta*100)
15 printf("\n The work ratio, r_w = \%.2 f \ln ", r_w)
```

Fuel Air Cycles

Scilab code Exa 3.1 Effect of variable specific heat on efficiency

```
1 // Effect of variable specific heat on efficiency
2 clc, clear
3 //Given:
4 r=7 //Compression ratio
5 g=1.4 //Specific heat ratio (gamma)
6 cv=0.718 //(Assume) Specific heat at constant volume
     in kJ/kgK
7 dcv=1*cv/100 //Change in specific heat in kJ/kgK
8 // Solution:
9 R=cv*(g-1) // Specific gas constant in kJ/kgK
10 eta=round (100*(1-1/r^{(g-1))})/100 // Efficiency when
      there is no change in specific heat
11 function [eta]=Otto(cv) //Defining efficiency as a
     function of specific heat
       eta=1-1/r^{(R/cv)}
12
13 endfunction
14 funcprot(0)
15 detaBydcv=derivative(Otto,cv) //Derivative of
      efficiency wrt to specific heat at initial value
      of specific heat
16 detaByeta=detaBydcv*dcv/eta //Change in efficiency
```

```
wrt to initial value of efficiency
17 //Results:
18 printf("\n The percentage change in the efficiency
        of Otto cycle = %.3 f percent", detaByeta*100)
19 if (detaByeta < 0) then
20        disp("decrease")
21 end</pre>
```

Scilab code Exa 3.2 Effect of variable specific heat on maximum pressure

```
1 // Effect of variable specific heat on maximum
      pressure
2 clc, clear
3 // Given:
4 r=6 //Compression ratio
5 CV=44000 // Calorific value in kJ/kg of fuel
6 A_F=15/1 //Air-fuel ratio
7 P1=1 //Pressure at 1 in bar
8 T1=60+273 //Temperature at 1 in K
9 n=1.32 //Index of compression
10 T=poly(0, "T") // Defining temperature(T) as unknown
     in K
11 cv=0.71+20D-5*T //Specific heat at constant volume
     as a function of temperature (T) in kJ/kgK
12 cv_c=0.71 //Constant specific heat in kJ/kgK
13 //Solution:
14 // Refer fig 3.19
15 P2=P1*r^n //Pressure at 2 in bar
16 T2=floor(T1*r^(n-1)) // Temperature at 2 in K
17 T3 = poly(0, "T3") // Defining temperature(T3) as
     unknown in K
18 T_av=(T3+T2)/2 //Average temperature during
     combustion of charge in K
19 cv_mean=horner(cv,T_av) //Mean specific heat in kJ/
     kgK
```

```
20 //Assume cycle consumes 1 kg of air
21 m_a=1, m_f=m_a/A_F, m_c=m_f+m_a //Mass of air, fuel,
      and charge in kg
22 Q1=CV*m_f //Heat added per kg of air in kJ/kg
23 T3_v = roots(Q1 - cv_mean*m_c*(T3 - T2)), T3_v = T3_v(2) //
      Temperature at 3 in K
24 P3_v=P2*T3_v/T2 // Pressure at 3 in bar
25 //For constant specific heat
26 T3_c = roots(Q1 - cv_c * m_c * (T3 - T2)) // Temperature at 3
      for constant specific heat in K
27 P3_c=P2*T3_c/T2 //Pressure at 3 for constant
      specific heat in bar
28 // Results:
29 printf("\n The maximum pressure in the cycle for
      variable specific heat, P3 = \%.1f bar", P3_v)
30 printf("\n The maximum pressure in the cycle for
      constant specific heat, P3 = \%.1 \, f \, bar \ n\ ", P3_c)
```

Scilab code Exa 3.3 Calculations on diesel engine

```
14 cp=addf(cv,R) //Specific heat at constant pressure
     as a function of temperature (T) in kJ/kgK
15 //Since, heat transfer at constant pressure, Q1 =
     integration (cp*dt) from T2 to T3
16 //Thus, Q1 is the function of T3. Defining the
      function Q1 of T3
  function [Q1toCV] = difference(T3)
17
       Q1=integrate(cp, T', T2, T3)
18
       Q1toCV = Q1 - CV/m_c
19
20 endfunction
21 //Since, heat transfer at constant pressure must be
      equal to calorific value per kg of charge
22
  //Thus, their difference must be zero, function
     Q1toCV is solve for zero
23 T3=fsolve(1, difference)
24 T3=round(T3) //Temperature at the end of constant
      pressure proces (3) in K
25 rho=T3/T2 //Cut off ratio
26 V2=1 //Assume clearance volume in unit
27 V3=rho //Volume at 3 in units
28 p=(V3-V2)*100/(r-V2) //percentage of stroke at which
       constant pressure process ends
29 //Results:
30 printf ("\n At %.2f percentage of stroke combustion
     is completed. \n\n",p)
```

Scilab code Exa 3.4 Calculations on dual combustion cycle

```
1 // Calculations on dual combustion cycle
2 clc, clear
3 // Given:
4 P1=1 // Pressure at 1 in bar
5 T1=90+273 // Temperature at 1 in K
6 r=13 // Compression ratio
7 Q1=1675 // Heat supplied per kg of air in kJ/kg
```

```
8 Q1_v=Q1/2,Q1_p=Q1/2 //Heat supplied at constant
     volume and pressure per kg of air in kJ/kg
9 g=1.4 //Specific heat ratio (gamma)
10 R='0.287' //Specific gas constant in kJ/kgK
11 cv = 0.71 + 20D - 5*T' // Specific heat at constant volume
       as a function of temperature (T) in kJ/kgK
12 //Solution:
13 // Refer fig 3.21
14 P2=P1*r^g //Pressure at 2 in bar
15 T2=T1*r^(g-1) // Temperature at 2 in K
16 //Since, heat transfer at constant volume, Q1_v =
     integration (cv*dt) from T2 to T3
17
  //Thus, Q1_v is the function of T3. Defining the
      function Q1_v of T3
18 function [Q1_vtoQ1]=Volume(T3)
       Q1_v=integrate(cv, T', T2, T3)
       Q1_vtoQ1=Q1_v-Q1/2
20
21 endfunction
22 //Since, heat transfer at constant volume must be
      equal to half of total heat added
23 //Thus, their difference must be zero, function
     Q1_vtoQ1 is solve for zero
24 T3=fsolve(1, Volume) //Temperature at 3 in K
25 P3=P2*T3/T2 // Pressure at 3 in bar
26 cp=addf(cv,R) //Specific heat at constant pressure
      as a function of temperature (T) in kJ/kgK
27 //Since, heat transfer at constant pressure, Q1_p =
     integration (cp*dt) from T3 to T4
  //Thus, Q1_p is the function of T4. Defining the
     function Q1_p of T4
29 function [Q1_ptoQ1]=Pressure(T4)
30
       Q1_p = integrate(cp, 'T', T3, T4)
31
       Q1_ptoQ1=Q1_p-Q1/2
32 endfunction
  //Since, heat transfer at constant pressure must be
      equal to half of total heat added
34 //Thus, their difference must be zero, function
     Q1_ptoQ1 is solve for zero
```

```
35 T4=fsolve(1,Pressure) //Temperature at 4 in K
36 rho=T4/T3 //Cut off ratio
37 p=(rho-1)*100/(r-1) //Percentage of stroke at which
        cut off occurs
38 //Results:
39 printf("\n The maximum pressure in the cycle, P3 = %
        .1f bar",P3)
40 printf("\n The percentage of stroke at which cut off
        occurs = %.2f percent\n\n",p)
```

Scilab code Exa 3.5 Effect of molecular contraction

```
1 // Effect of molecular contraction
2 clc, clear
3 // Given:
4 r=7 //Compression ratio
5 CV=44000 // Calorific value of the fuel in kJ/kg
6 A_F=13.67 //Air fuel ratio of the mixture
7 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
8 n=1.3 // Polytropic index
9 P1=1,T1=67+273 //Pressure and temperature at the
     beginning in bar and K
10 // Solution:
11 //Refer fig 3.22
12 C=12 //Atomic mass of Carbon(C)
13 H=1 //Atomic mass of Hydrogen (H)
14 0=16 //Atomic mass of Oxygen(O)
15 p=23 // Percentage of oxygen in air by mass
16 //Stoichiometric equation of combustion of fuel (
     C6H14)
17 //
       [C6H14] + x[O2] = y[CO2] + z[H2O]
18 //Equating coefficients
19 x=9.5, y=6, z=7 // Coefficients of stoichiometric
     equation
```

```
20 A_F_g = x*2*0/(6*C+14*H)*100/p // Gravimetric air fuel
      ratio
21 MS=A_F_g/A_F*100 // Actual mixture strength in
      percent
22 //Combustion is incomplete
23 //Stoichiometric equation of incomplete combustion
      of fuel (C6H14)
         MS/100[C6H14] + x[O2] = a[CO2] + b[CO] + c[H2O]
  //Equating coefficients
26 a=4.39,b=2.36,c=7.87 //Coefficients of
      stoichiometric equation
27
  //Stoichiometric equation of combustion of fuel (
     C6H14) by adding Nitrogen
        MS/100[C6H14] + x[O2] + x*79/21[N2] = a[CO2] +
28
     b[CO] + c[H2O] + x*79/21[N2]
29 m1=MS/100+x+x*79/21 //Moles before combustion
30 m2=a+b+c+x*79/21 // Moles after combustion
31 Me=(m2-m1)/m1*100 // Molecular expansion in percent
32 T2=T1*r^(n-1) // Temperature at 2 in K
33 m_c=A_F+1 //Mass of charge in kg
34 T3=CV/(m_c*cv)+T2 //Temperature at 3 in K
35 \quad T3 = round(T3)
36 P3=P1*r*(T3/T1) //Pressure at 3 in bar (printing
      error)
37
  //Temperature and pressure considering molecular
      expansion
38 T3!=T3 //Temperature remains same at 3 in K
39 P3!=P3*m2/m1 // Pressure at 3 in bar
40 // Results:
41 printf("\n\t The molecular expansion = \%.2 f percent\
     n", Me)
42 printf ("\n (a) Without considering the molecular
      contraction\n\t The maximum pressure, P3 = \%.2 f
      bar \ T The maximum temperature, T3 = \%.0 f \ K, P3,
     T3)
43 printf("\n (b) Considering the molecular contraction\
     n \ t The maximum pressure, P3 = \%.2 f  bar \ n \ t The
```

```
maximum temperature, T3 = \%.0\,\mathrm{f} K",P3!,T3!) 44 //Answer in the book is wrong
```

Scilab code Exa 3.6 Calculations on Otto cycle

```
1 // Calculations on Otto cycle
2 clc, clear
3 // Given:
4 p=15 //Clearance volume in percentage of
      displacement volume
5 V_s=2.8 //Swept volume in litres
6 N=2500 //Engine speed in rpm
7 Q1=1400 //Heat added in kJ/kg
8 T1=27+273 //Temperature at inlet in K
9 P1=100 //Pressure at inlet in kPa
10 R=0.287 //Specific gas constant in kJ/kgK
11 // Solution:
12 //Refer fig 3.23
13 //By using gas tables
14 //Refer Ideal-gas properties of air
15 V2=(p/100)*(V_s/1000) //Volume at 2 (Clearance
     volume) in m<sup>3</sup>
16 V3=V2 //Volume at 3 in m<sup>3</sup>
17 V1=V_s/1000+V2, V4=V1 //Volume at 1, 4 in m<sup>3</sup>
18 // Process 1-2
19 vr1=621.2, pr1=1.3860, u1=214.09, phi1=5.7016 //
      Relative specific volume, relative pressure,
      specific internal energy (kJ/kg), specific entropy
      (kJ/kgK) at 1 (from air tables)
20 vr2=vr1*(V2/V1) //Relative specific volume at 2
21 vr=[81.89 78.61], T=[660 670], pr=[23.13 24.46], u
      =[481.01 488.81] //Relative specific volume,
      temperature (K), relative pressure, specific
      internal energy (kJ/kg) (extracted from air tables
```

```
22 //Finding the corresponding temperature at vr2 by
      interpolation
23 T2=interpln([vr;T],vr2) //Temperature at 2 in K
24 //Finding the corresponding relative pressure at T2
     by interpolation
25 pr2=interpln([T;pr],T2) //Relative pressure at 2
26 //Finding the corresponding specific internal energy
      at T2 by interpolation
27 u2=interpln([T;u],T2) //specific internal energy at
     2 \text{ in } kJ/kg
28 P2=P1*(pr2/pr1) // Pressure at 2 in kPa
29 // Process 2-3
30 u3=Q1+u2 //Specific internal energy at 3 in kJ/kg
31 vr=[2.356 2.175 2.012],T=[2100 2150 2200],pr=[2559
     2837 3138], u=[1775.3 1823.8 1872.8] //Relative
      specific volume, temperature (K), relative
     pressure, specific internal energy (kJ/kg) (
      extracted from air tables)
32 //Finding the corresponding relative specific volume
      at u3 by interpolation
33 vr3=interpln([u;vr],u3) //Relative specific volume
      at 3
34 //Finding the corresponding relative pressure at u3
     by interpolation
35 pr3=interpln([u;pr],u3) //Relative pressure at 3
36 //Finding the corresponding temperature at u3 by
     interpolation
37 T3=interpln([u;T],u3) // Temperature at 3(maximum) in
      K (Round off error)
38 P3=P2*(T3/T2) // Pressure at 3(maximum) in kPa
39 // Process 3-4
40 vr4=vr3*(V4/V3) //Relative specific volume at 4
41 vr=[15.241 14.470], T=[1180 1200], pr=[222.2 238.0], u
     =[915.57 933.33], phi = [7.1586 7.1684] // Relative
      specific volume, temperature (K), relative
     pressure, specific internal energy (kJ/kg),
      specific entropy (kJ/kgK) (extracted from air
      tables)
```

```
42 //Finding the corresponding temperature at vr4 by
      interpolation
43 T4=interpln([vr;T],vr4) //Temperature at 4 in K
44 //Finding the corresponding specific internal energy
      at T4 by interpolation
45 u4=interpln([T;u],T4) //Specific internal energy at
     4 in kJ/kg
46 //Finding the corresponding relative pressure at T4
     by interpolation
47 pr4=interpln([T;pr],T4) //Relative pressure at 4
48 P4=P3*(pr4/pr3) // Pressure at 4 in kPa
49 //Finding the corresponding specific entropy at T4
     by interpolation
50 phi4=interpln([T;phi],T4) //Specific entropy at 4 in
      kJ/kgK
51 // Process 4-1
52 Q2=u1-u4 //Heat rejected in kJ/kg
53 W=Q1+Q2 //Work done in kJ/kg
54 eta=W/Q1 // Efficiency
55 m=P1*V1/(R*T1) //Mass of air in cycle in kg
56 \text{ W=m*W*N/60} // \text{Rate of work in kW}
57 Delta_s=phi1-phi4-R*log(P1/P4) //Change in specific
     entropy between 1 and 4 in kJ/kgK
  AE=Q2-T1*(Delta_s) //Available portion of energy of
     Q2 in kJ/kg (Round off error)
59 p_AE=AE/Q2 //Available energy in percentage of Q2
60 // Without using gas tables
61 g=1.4 // Specific heat ratio (gamma)
62 cv=0.718 //Specific heat at constant volume in kJ/
     kgK
63 r=V1/V2 //Compression ratio
64 eta!=1-1/r^(g-1) // Efficiency
65 // Process 1-2
66 T2=T1*(r)^(g-1) //Temperature at 2 in K
67 P2=P1/100*(r)^g //Pressure at 2 in bar
68 // Process 2-3
69 T3!=Q1/cv+T2 //Temperature at 3(maximum) in K
70 P3!=P2*T3!/T2 //Pressure at 3(maximum) in bar
```

```
71 // Process 3-4
72 T4=T3!*(1/r)^(g-1) //Temperature at 4 in K
73 Q2=cv*(T1-T4) //Heat rejected in kJ/kg
74 W!=Q1+Q2 //Work done in kJ/kg
75 eta!=W!/Q1 // Efficiency
76 power=m*W!*N/60 //Power in kW
77 Delta_s=cv*log(T1/T4) //Change in specific entropy
      between 1 and 4 in kJ/kgK
78 AE!=Q2-T1*Delta_s //Available portion of energy of
      Q2 in kJ/kg (Round off error)
79 p_AE!=AE!/Q2 //Available energy in percentage of Q2
      (Round off error)
80 // Results:
81 printf("\n Constant specific heat:\n\t Maximum
      temperature, Tmax = \%.1 f K \setminus n \setminus t Maximum pressure,
      Pmax = \%.1 f bar h t Thermal efficiency, eta = \%.2
      portion of heat rejected = \%.1 \,\mathrm{f} kJ/kg (\%.1 \,\mathrm{f}
      percent)", T3!, P3!, eta!*100, power, abs(AE!), p_AE
      ! *100)
82 printf("\n Variable specific heat:\n\t Maximum
      temperature, Tmax = \%.0 f K \setminus n \setminus t Maximum pressure,
      Pmax = \%.1 f bar \ Thermal efficiency, eta = \%.1
      f percent\n\t Power = \%.1 f kW n t Available
      portion of heat rejected = \%.1 \,\mathrm{f} kJ/kg (\%.1 \,\mathrm{f}
      percent)", T3, P3/100, eta*100, W, abs(AE), p_AE*100)
83 //Round off error in 'T3', 'AE', 'AE!', 'p_AE!'
```

Combustion in SI Engines

Scilab code Exa 5.1 Calculation of optimum spark timing

```
1 // Calculation of optimum spark timing
2 clc, clear
3 // Given:
4 theta_s=25 //Angle at which spark occurred before top
      dead centre in degrees
5 theta_d=3 //Angle at which delay ended before top
     dead centre in degrees
6 theta_c=-12 //Angle at which combustion finish after
      top dead centre in degrees
7 p=15 // Percentage increase of delay period at half
      closing the throttle
8 //Solution:
9 DP=theta_s-theta_d //Delay period in degrees
10 CP=theta_d-theta_c //Combustion period in degrees
11 //(a) Full throttle, half speed
12 DA1=DP/2 //Delay angle in degrees
13 TP1=DA1+CP //Total period in degrees
14 TS1=TP1+theta_c //Time of spark before top dead
      centre in degrees
15 //(b) Half throttle, half speed
16 DA2=(DP/2)+(DP/2)*p/100 //Delay angle in degrees
```

Comparison of SI and CI Engines

Scilab code Exa 7.1 Calculations for comparison of SI and CI engine

```
1 // Calculations for comparison of SI and CI engine
2 clc, clear
3 // Given:
4 //For SI engine
5 F_A1=1/13.5 //Fuel air ratio
6 CV1=44000 // Calorific value in kJ/kg
7 eta_bt1=25 //Brake thermal efficiency in percent
8 m_f1=1 //Fuel consumption in kg/hr
9 //For CI engine
10 A_F2=25/1 // Air fuel ratio
11 CV2=42000 // Calorific value in kJ/kg
12 eta_bt2=38 //Brake thermal efficiency in percent
13 //Solution:
14 //(a) SI engine
15 bp1=m_f1*CV1*eta_bt1/(100*3600) //Brake power in kW
16 bsfc1=m_f1/bp1 //Brake specific fuel consumption in
     kg/kWh
17 m_a1=bsfc1/F_A1 //Air consumption in kg/kWh
18 //(a) CI engine
```

```
19 m_f2=1 //Fuel consumption in kg/hr
20 bp2=m_f2*CV2*eta_bt2/(3600*100) //Brake power in kW
21 bsfc2=m_f2/bp2 //Brake specific fuel consumption in
      kg/kWh
22 m_a2=bsfc2*A_F2 //Air consumption in kg/kWh
23 // Comparison
24 R_bp=bp1/bp2 //Ratio of brake power of SI to CI
25 R_bsfc=bsfc1/bsfc2 //Ratio of brake specific fuel
      consumption of SI to CI
26 R_m_a=m_a1/m_a2 //Ratio of fuel consumption of SI to
       CI
27 //Results:
28 printf("\n For SI engine\n\tBrake output, bp = \%.2 f
     kW/kg of fuel\n\tBrake specific fuel consumption,
       bsfc = \%.3 f kg/kWh, bp1, bsfc1)
29 printf ("\n For CI engine\n\tBrake output, bp = \%.1 f
     kW/kg of fuel\n\tBrake specific fuel consumption,
       bsfc = \%.3f kg/kWh, bp2, bsfc2)
30 printf("\n The air consumption\n\tfor SI engine, m_a
       = \%.2 f kg/kWh\n\tfor CI engine, m_a = \%.2 f kg/
     kWh", m_a1, m_a2)
31 printf("\n Comparison of SI to CI \setminus h \setminus bp = \%.3 f \setminus h \setminus b
      tbsfc = \%.3 f \ n \ tair consumption = \%.3 f \ n \ ", R_bp,
      R_bsfc,R_m_a)
```

Scilab code Exa 7.2 Calculations for comparison of SI and CI engine

```
1 //Calculations for comparison of SI and CI engine
2 clc, clear
3 //Given:
4 //For SI engine
5 s1=0.72 //Specific gravity of gasoline fuel
6 CV1=44800 //Calorific value of gasoline fuel in kJ/kg
7 eta_bt1=20 //Brake thermal efficiency in percent
```

```
8 A_F1=14 // Air fuel ratio
9 //For CI engine
10 s2=0.87 //Specific gravity of diesel oil
11 CV2=43100 // Calorific value of diesel oil in kJ/kg
12 eta_bt2=30 //Brake thermal efficiency in percent
13 A_F2=21 //Air fuel ratio
14 // Solution:
15 //SI engine
16 bsfc_SI=3600*100/(eta_bt1*CV1) //Brake specific fuel
       consumption in kg/kWh
17 m_a_SI=A_F1*bsfc_SI //Air consumption in kg/kWh
18 //CI engine
19 bsfc_CI=3600*100/(eta_bt2*CV2) //Brake specific fuel
       consumption in kg/kWh
20 m_a_CI=A_F2*bsfc_CI //Air consumption in kg/kWh
21 // Results:
22 printf("\n For SI engine\n\tBrake specific fuel
      consumption, bsfc_SI = \%.3f kg/kWh/n/tAir
      consumption = \%.2 \, \text{f} \, \text{kg/kWh}", bsfc_SI, m_a_SI)
23 printf("\n For CI engine\n\tBrake specific fuel
      consumption, bsfc_CI = \%.3 f kg/kWh\n\tAir
      consumption = \%.2 f \text{ kg/kWh}", bsfc_CI, m_a_CI)
```

Fuels

Scilab code Exa 8.1 Calculation of lowest calorific value

```
1 //Calculation of lowest calorific value
2 clc, clear
3 //Given:
4 HCV=46900 // Highest calorific value (HCV) of petrol
      in kJ/kg
5 pH2=14.4/100 //Composition of Hydrogen in petrol by
6 ufg=2304.4 //Latent heat of evaporation for water in
       kJ/kg
7 // Solution:
8 // 2[H2] + [O2] = 2[H2O]
9 H=1 //Atomic mass of Hydrogen (H)
10 0=16 // Atomic mass of Oxygen (O)
11 //Assume 1 kg of fuel consume
12 mH2=1*pH2 //Mass of Hydrogen in kg/kg of fuel
13 m_a=2*(2*H+0)/(2*2*H)*mH2 //Mass of water produced
      in kg/kg of fuel
14 LCV=HCV-m_a*ufg //Lowest calorific value in kJ/kg
15 // Results:
16 printf("\n The LCV of petrol = \%.0 \, \text{f kJ/kg} \, \text{n}", LCV)
```

Scilab code Exa 8.2 Calculation of relative fuel air ratio by volume

```
1 // Calculation of relative fuel air ratio by volume
2 clc, clear
3 // Given:
4 pCO2=13/100 //Composition of Carbon di oxide in dry
     exhaust gas
  //Solution:
6 p_v=21/100 //Composition of Oxygen in air by volume
7 C=12 //Atomic mass of Carbon(C)
8 H=1 //Atomic mass of Hydrogen (H)
9 0=16 //Atomic mass of Oxygen(O)
10 //Combustion equation
11 // [C8H18] + a[O2] + (1-p_v)/p_v*a[N2] = x[CO2] + y
      [H2O] + z [O2] + w [N2]
12 //On balancing the reaction
13 x=8,y=9 // Coefficients of combustion equation
14 function M=f(a) //Defining the function, M of
     coefficient a for calculation of a
       z=a-x-y/2 //On balancing O
15
       w=(1-p_v)/p_v*a //On balancing N
16
      M=x/(x+z+w)-pCO2
17
18 endfunction
19 //Since, Composition of CO2 calculated from the
     equation must be equal to the given composition
     of CO2
20 //Thus, function M solve for zero to get value of a
21 a=fsolve(1,f) //Moles of air required
22 A_F_act=a/p_v //Air fuel ratio by volume
23 //For chemically correct mixture
24 a=x+y/2 //Moles of air required
25 A_F_cc=a/p_v // Chemically correct air fuel ratio
26 ratio=(1/A_F_act)/(1/A_F_cc)*100 //Ratio of actual
     to chemically correct fuel air ratio by volume
```

Scilab code Exa 8.3 Calculations on Petrol engine

```
1 // Calculations on Petrol engine
2 clc, clear
3 // Given:
4 pC=84, pH2=16 // Percentage of Carbon, Hydrogen in
5 p_v=20.9 // Percentage of Oxygen in air by volume
6 //Solution:
7 C=12 //Atomic mass of Carbon(C)
8 H=1 //Atomic mass of Hydrogen (H)
9 0=16 //Atomic mass of Oxygen(O)
10 N=14 //Atomic mass of Nitrogen(N)
11 m_f=100 //Mass of fuel (assume) in kg
12 //Combustion equation
13 //pC/C[C] + pH2/2[H2] + [a[O2] + (100-p_v)/p_v*a[N2]
      [] = [] b [CO2] + d [O2] + e [N2] + f [H2O]
14 //Equating coefficients
15 b=pC/C, f=pH2/2, d=b/6, a=b+d+f/2 // Coefficients of
      combustion equation
16 m_a=a*2*0 + (100-p_v)/p_v*a*2*N //Mass of air
      supplied in kg
17 A_F=m_a/m_f //Air fuel ratio
18 P_e=d/(a-d)*100 // Percentage excess air
19 //Results:
20 printf ("\n (a) The air fuel ratio by mass, A.F = \%.1 f
     /1", A_F)
21 printf("\n (b)The percentage excess air supplied = \%
      .1 f percent n n, P_e)
```

Scilab code Exa 8.4 Calculation of mass of air

```
1 // Calculation of mass of air
2 clc, clear
3 //Given:
4 MS=25 // Mixture strength in percent
5 p=23.1 //Percentage of oxygen in air by mass
6 // Solution:
7 C=12 //Atomic mass of Carbon(C)
8 H=1 //Atomic mass of Hydrogen (H)
9 0=16 //Atomic mass of Oxygen(O)
10 N=14 //Atomic mass of Nitrogen(N)
11 m_f=1 //Mass of fuel(C6H14) in kg
12 mC = (6*C)/((6*C) + (14*H)) // Mass of Carbon in kg
13 mH = (14*H)/((6*C) + (14*H)) //Mass of Hydrogen in kg
14 \text{ m_a} = (2*0/C*mC+0/(2*H)*mH)*100/p //Mass of air in kg
15 //For 25 percent rich mixture
16 m_f = m_f + m_f * MS/100 // Mass of fuel(C6H14) in kg
17 A_F=m_a/m_f //Air fuel ratio
18 mO2=p/100*A_F //Mass of Oxygen available in kg
19 mO2_1=0/(2*H)*mH //Oxygen required for combustion of
      H to H2O in kg
20 mH2O=mH*(1+O/(2*H)) //Mass of H2O produced in kg
21 mO2_2=0/C*mC //Oxygen required for combustion of C
     to CO in kg
22 mCO=mC*(1+0/C) //Mass of CO produced in kg
23 m02_3=m02-(m02_1+m02_2) //Mass of Oxygen remaining
     for combustion of CO to CO2
24 mCO_b=mO2_3*(C+O)/O //Mass of CO burned to CO2 in kg
25 mCO2=mCO_b*(1+0/(C+0)) //Mass of CO2 produced in kg
26 mCO_ub=mCO-mCO_b //Mass of CO unburned in kg
27 nH20=mH20/(2*H+0) //Moles of H2O
28 nCO2=mCO2/(C+2*O) //Moles of CO2
29 nCO=mCO\_ub/(C+O) //Moles of CO
```

Scilab code Exa 8.5 C7H16 in Petrol engine

```
1 //C7H16 in Petrol engine
2 clc, clear
3 //Given:
4 p_v=21 // Percentage of Oxygen in air by volume
5 p_e=50 //Percentage of excess air supplied
6 // Solution:
7 m_f=100 //Mass of fuel (assume) in kg
8 C=12 //Atomic mass of Carbon(C)
9 H=1 //Atomic mass of Hydrogen(H)
10 0=16 //Atomic mass of Oxygen(O)
11 N=14 //Atomic mass of Nitrogen(N)
12 a=poly(0, 'a') // Defining unknown number of moles of
      stoichiometric oxygen
13 //Combustion equation
14 / m_f / (7*C+16*H) [C7H16] + (1+p_e/100)*[a[O2] + (100-100)*[a[O2]]
     p_v)/p_v*a[N2] = b[CO2] + d[O2] + e[N2] + f[
     H<sub>2</sub>O
15 //Equating coefficients
16 b=m_f/(7*C+16*H)*7 //Moles of CO2 on balancing of C
17 f=m_f/(7*C+16*H)*16/2 // Moles of H2O on balancing of
```

```
Η
18 d=p_e/100*a //Excess moles of oxygen
19 a=roots((1+p_e/100)*a-(b+d+f/2)) //Balancing Oxygen
      of both sides
20 m_a=a*2*0+(100-p_v)/p_v*a*2*N //Mass of air supplied
       in kg
21 A_F=m_a/m_f //Air fuel ratio
22 d=p_e/100*a //Moles of Oxygen in products of
      combustion
  e=(1+p_e/100)*(100-p_v)/p_v*a //Moles of Nitrogen in
       products of combustion
24 nT=b+d+e+f //Total number of moles in product of
      combustion
25 pH2O=f/nT*100,pCO2=b/nT*100,pO2=d/nT*100,pN2=e/nT
      *100 //Percentage volumetric composition of the
      products of combustion
26 //Results:
27 printf("\n (a) The stoichiometric air fuel
      consumption by mass, A_F = \%.2 f:1", A_F)
28 printf("\n (b)The percentage volumetric composition
      N2 = \%.1 \text{ f} \setminus \text{n} \setminus \text{t} H2O = \%.2 \text{ f} \setminus \text{n} \setminus \text{n}, pCO2, pO2, pN2, pH2O)
```

Scilab code Exa 8.6 Incomplete combustion of Petrol

```
//Incomplete combustion of Petrol
clc,clear
//Given:
pC=85,pH2=15 //Percentage of Carbon, Hydrogen in
fuel
A_F=14 //Air fuel ratio by mass
p_m=23.2 //Percentage of oxygen in air by mass
//Solution:
m_f=100 //Mass of fuel (assume) in kg
m_a=A_F*m_f //Mass of air in kg
```

```
10 C=12 //Atomic mass of Carbon(C)
11 H=1 //Atomic mass of Hydrogen (H)
12 0=16 //Atomic mass of Oxygen(O)
13 N=14 //Atomic mass of Nitrogen(N)
14 p_v=20.9 //Percentage of Oxygen in air by volume
15 //Combustion equation
16 /pC/C[C] + pH2/2[H2] + [a[O2] + (100-p_v)/p_v*a[N2]
      [] = [] b [CO2] + d [CO] + [] e [N2] + f [H2O]
17 //Equating coefficients
18 f=pH2/2 // Moles of H2O on balancing of H
19 a=m_a/(2*0+(100-p_v)/p_v*2*N) // Balancing Oxygen of
      both sides
20
  //On balancing C of both sides we get, b + d = pC/C
           eq (1)
21 //On balancing O of both sides we get, b + d/2 + f/2
                eq (2)
\frac{22}{\sqrt{\text{Solving equations}}} (1) and (2)
23 A=[1 1;1 1/2], B=[pC/C;a-f/2], SOL=A\setminus B // Taking matrix
       A, B to get solution matrix, SOL = [b;d]
24 \text{ b=SOL}(1), \text{d=SOL}(2) //\text{Moles of CO2}  and CO
25 e=(100-p_v)/p_v*a //Moles of Nitrogen in products of
       combustion
26 mC=b/m_f*C //Mass of carbon burning to CO2 in kg per
       kg of fuel
27 mCO2=b/m_f*(C+2*O) //Mass of CO2 produced in kg
28 mCO=d/m_f*(C+O) //Mass of CO produced in kg
29 mN2=e/m_f*(2*N) //Mass of N2 produced in kg
30 mH2O=f/m_f*(2*H+O) //Mass of H2O produced in kg
31 //Results:
32 printf("\n (a) The mass of the carbon burning to CO2
      = \%.3 \, f \, kg", mC)
33 printf("\n (b) The mass of each of the gases in the
      exhaust per kg of fuel\n\t CO2 = \%.2 f \ kg\n\t CO =
       \%.2 \text{ f kg} \land \text{t} N2 = \%.2 \text{ f kg} \land \text{t} H2O = \%.2 \text{ f kg} \land \text{n},
      mCO2, mCO, mN2, mH2O)
```

Scilab code Exa 8.7 Analysis of fuel from exhaust gas analysis

```
1 // Analysis of fuel from exhaust gas analysis
2 clc, clear
3 // Given:
4 pCO2=12/100, pCO=2/100, pCH4=4/100, pH2=1/100, pO2
     =4.5/100 //Composition of Carbon di oxide (CO2),
     Carbon mono oxide (CO), Methane (CH4), Hydrogen (H2)
      , Oxygen (O2) in dry exhaust gas
5 pN2=1-(pCO2+pCO+pCH4+pH2+pO2) // Composition of
     Nitrogen (N2) in dry exhaust gas
6 //Solution:
7 C=12 //Atomic mass of Carbon(C)
8 H=1 //Atomic mass of Hydrogen (H)
9 p_v=21 //Percentage of Oxygen in air by volume
10 //Let X be the mass of the fuel per mole dry exhaust
11 //Let Y be the mole of O2 per mole dry exhaust gas
12 //Let 1 kg of fuel contain p kg of C and q kg of H2
13 //Combustion equation
14 /X*(p/C[C] + q/(2*H)[H2]) + Y[O2] + (100-p_v)/p_v*Y
      [N2] = pCO2[CO2] + pCO[CO] + pCH4[CH4] + pH2[H2]
     + pO2[O2] + a[H2O] + pN2[N2]
15 // Equating coefficients
16 Y=pN2/((100-p_v)/p_v) // Nitrogen(N) balance
17 a=2*(Y-(pCO2+pCO/2+pO2)) //Oxygen(O) balance
18 Xp=C*(pCO2+pCO+pCH4) // Carbon(C) balance; X*p
19 Xq = (2*H)*(2*pCH4+pH2+a) //Hydrogen(H) balance; X*q
20 p_q=Xp/Xq //Ratio of C to H2 in fuel
21 // Results:
22 printf("\n The proportion by mass of Carbon to
     Hydrogen in the fuel = \%.2 f/1 n, p_q)
```

Scilab code Exa 8.8 Orsat analysis

```
1 //Orsat analysis
2 clc, clear
3 // Given:
4 pCO2=7.5, pCO=1, pO2=9.4 // Percentage of Carbon di
      oxide (CO2), Carbon mono oxide (CO), Oxygen (O2) in
      dry exhaust gas
5 P=1.02 //Pressure of the exhaust gas in bar
6 pO_v=21 //Percentage of Oxygen in air by volume
7 pN_v=79 //Percentage of Nitrogen in air by volume
8 M=29 //Molecular weight of air
9 //Solution:
10 C=12 //Atomic mass of Carbon(C)
11 H=1 //Atomic mass of Hydrogen (H)
12 //Let 100*x moles of air be used with fuel per 100
     mole of dry exhaust products
13 pN2=100-(pC02+pC0+p02) // Composition of Nitrogen (N2)
       in dry exhaust gas
14 //Combustion equation
         a[C] + b[H2] + pO_v*x[O2] + pN_v*x[N2] = pCO2
15 //
      [CO2] + pCO[CO] + pO2[O2] d[H2O] + pN2[N2]
16 //Equating coefficients
17 a=pCO2+pCO //Carbon(C) balance
18 x=pN2/pN_v // Nitrogen(N) balance
19 d=2*(p0_v*x-(pC02+p02+pC0/2)) //Oxygen(O) balance
20 d = round(10*d)/10
21 b=d //Hydrogen(H) balance
22 \text{ m_a=100*x*M} //\text{Mass of air in kg}
23 m_f = a * C + b * 2 * H //Mass of fuel in kg
24 A_F=m_a/m_f //Air fuel ratio
25 pC=a*C/m_f*100 //Percentage of Carbon(C) in fuel
26 pH2=100-pC //Percentage of Hydrogen (H2) in fuel
27 nT=pCO2+pCO+pO2+pN2+d //Total number of moles in
```

```
product of combustion
28 CO2=pCO2/nT*100,O2=pO2/nT*100,CO=pCO/nT*100,N2=pN2/
     nT*100, H20=d/nT*100 // Percentage volumetric
     composition of the products of combustion
29 PP=d/nT*P //Partial pressure of H2O in bar
30 //From steam tables
31 if (PP==0.0825) then
32
       T=42.8 //Saturation temperature in degreeC
33 end
34 // Results:
35 printf("\n (a) The air fuel ratio used, A_{-}F = \%.1 f",
36 printf("\n (b) The mass analysis of the fuel\nt
     Carbon = \%.1 f percent\n\t Hydrogen = \%.1 f percent
     ",pC,pH2)
37 printf("\n (c)The wet products analysis in percent\n
     = \%.2 \, f \setminus h \setminus t \, \text{Steam} = \%.1 \, f'', \text{CO2,O2,C0,N2,H2O}
38 printf("\n (d)The minimum temperature to which the
     exhaust may be cooled before condensation occurs
     = \%.1 f degreeC \ n \ ", T)
```

Scilab code Exa 8.9 Calculations on gas engine

```
// Calculations on gas engine
clc,clear
// Given:
pH2=49.4/100,pC0=18/100,pCH4=20/100,pC4H8=2/100,p02
=0.4/100,pN2=6.2/100,pC02=4/100 // Composition of
Coal gas
MW=20 // Mixture weakness in percent
// Solution:
// Combustion equations for determining the moles of
Oxygen used
// 2[H2] + [O2] ---> 2[H2O] // For Hydrogen
```

```
9 //2[CO] + [O2] \longrightarrow 2[CO2] //For Carbon mono
      oxide
10 / [CH4] + 2[O] \longrightarrow [CO2] + 2[H2O]
                                                 //For Methane
11 / [C4H8] + 6[O2] \longrightarrow 4[CO2] + 4[H2O]
                                                   //For C4H8
12 nO2=sum([pH2/2 pCO/2 2*pCH4 6*pC4H8 pO2]) //Moles of
       O2 required (error)
13 nCO2=sum([pCO pCH4 4*pC4H8 pCO2]) //Moles of CO2
14 nH20=sum([pH2 2*pCH4 4*pC4H8]) //Moles of H2O
15 p_v=21 // Percentage of Oxygen in air by volume
16 n_a=n02/p_v*100 //Moles of air required
17 n_f=1 //For 1 mole of fuel
18 A_F=n_a/n_f //Air fuel ratio
19 //For weak mixture
20 A_F_act=A_F*(1+MW/100) // Actual air fuel ratio
21 nN2 = (1-p_v/100) *A_F_act //Moles of N2
22 n02=p_v/100*A_F_act-n02 //Excess moles of Oxygen in
      products
23 nN2=nN2+pN2 // Moles of Nitrogen in products
24 nT_d=nCO2+nO2+nN2 //Total dry moles of product
25 nT_w=nT_d+nH20 //Total wet moles of product
26 p_d=[nCO2 nO2 nN2]*100/nT_d //Percentage volumetric
      composition of the dry products of combustion
27 p_w=[nCO2 nH2O nO2 nN2]*100/nT_w //Percentage
      volumetric composition of the wet products of
      combustion
28 // Results:
29 printf("\n The stoichiometric air fuel ratio used,
      A_F = \%.1 f/1", A_F)
30 printf("\n The wet products analysis in percent\n\t
      CO2 = \%.0 \text{ f} \text{ h} \text{ t} H2O = \%.2 \text{ f} \text{ h} \text{ t} O2 = \%.2 \text{ f} \text{ h} \text{ t} N2 =
      \%.2 f", p_w(1), p_w(2), p_w(3), p_w(4))
31 printf("\n The dry products analysis in percent\n\t
      CO2 = \%.2 \text{ f} \land \text{h} \land O2 = \%.2 \text{ f} \land \text{h} \land N2 = \%.2 \text{ f} \land \text{h} \land \text{n}, p_d
      (1), p_d(2), p_d(3)
32 //Answers in the book are wrong
```

Air Capacity of Four Stroke Engines

Scilab code Exa 10.1 Calculations on SI engine

```
1 // Calculations on SI engine
2 clc, clear
3 //Given:
4 n=6 //Number of cylinders
5 V_d=700 //Displaced volume per cylinder in cm<sup>3</sup>
6 bp=78 //Brake power in kW
7 N=3200 //Angular speed of engine in rpm
8 m_f=27 //Petrol consumption in kg/hr
9 CV=44 // Calorific value in MJ/kg
10 // Solution:
11 //(1)
12 A_F=12 //Air-fuel ratio
13 P1=0.9, T1=32+273 //Intake air pressure and
      temperature in bar and K
14 m_a=A_F*m_f // Air consumption in kg/hr
15 R=287 // Specific gas constant in J/kgK
16 rho_a=P1*10^5/(R*T1) //Density of air in kg/m^3
17 eta_vol=m_a/(60*rho_a*V_d*n*10^-6*N/2) //Volumetric
      efficiency
```

Carburetion

Scilab code Exa 11.1 Calculation of the throat diameter

```
1 // Calculation of the throat diameter
2 clc, clear
3 // Given:
4 m_a=5 //Mass of air in kg/min
5 P1=1.013 //Pressure of air in bar
6 T1=27+273 //Temperature of air in K
7 C1=0, C2=90 //Flow velocity at opening and throat in
     m/s
8 Cv=0.8 // Velocity coefficient
9 cp=1.005 //Specific heat at constant pressure in kJ/
10 g=1.4 //Specific heat ratio (gamma)
11 // Solution:
12 // Refer fig 11.32
13 // Defining, y as a function of P2
14 //This function is the difference of C2 actual and
     C2 given
15 function [y]=f(P2)
       C2_act = 0.8*sqrt(2*cp*1000*T1*(1-(P2/P1)^((g-1)/g))
16
          )))
       y=C2_act-C2
17
```

Scilab code Exa 11.2 Calculation of throat diameter and orifice diameter

```
1 // Calculation of throat diameter and orifice
     diameter
2 clc, clear
3 //Given:
4 m_a=6, m_f=.45 //Mass of air and fuel in kg/min
5 rho_f=740 //Density of fuel in kg/m^3
6 P1=1.013 //Pressure of air in bar
7 T1=27+273 //Temperature of air in K
8 C2=92 //Flow velocity at throat in m/s
9 Cv=0.8 // Velocity coefficient
10 Cd_f=0.60 // Coefficient of discharge of fuel
11 cp=1.005 //Specific heat at constant pressure in kJ/
     kgK
12 g=1.4 // Specific heat ratio (gamma)
13 // Solution:
14 // Defining, y as a function of P2
```

```
15 //This function is the difference of C2 actual and
     C2 given
16 function [y]=f(P2)
       C2_act = Cv * sqrt (2*cp*10^3*T1*(1-(P2/P1)^((g-1)/g)
17
          ))
       y=C2_act-C2
18
19 endfunction
20 funcprot(0);
21 //The function f is solve for zero to get the value
22 P2=fsolve(1,f) //Pressure at throat in bar
23 R=0.287 //Specific gas constant in kJ/kgK
24 rho1=P1*100/(R*T1) //Mass density at opening in kg/m
  rho2=rho1*(P2/P1)^(1/g) //Mass density at throat in
     kg/m^3
26 A2=m_a/(60*rho2*C2) //Cross section area at throat
     in m<sup>2</sup>
27 d2=sqrt(4*A2/%pi) //Diameter of cross section in m
28 deltaP_v=P1-P2 // Pressure drop at venturi in bar
29 deltaP_f = 0.75 * deltaP_v // Given, Pressure drop at
      fuel metering orifice in bar
30 \text{ A_f=m_f/(60*Cd_f*sqrt(2*rho_f*deltaP_f*10^5))} //Area
       of cross section of fuel nozzle in m^2
31 d_f=sqrt(4*A_f/%pi) //Diameter of cross section of
      fuel nozzle in m
32 //Results:
33 printf ("\n The throat diameter of the choke, d2 = \%
      .3 f cm, d2*100)
34 printf("\n The orifice diameter, d_f = \%.2 f mm \ln n",
     d_f *1000
```

Scilab code Exa 11.3 Calculation of suction at throat

```
1 // Calculation of suction at throat
```

```
2 clc, clear
3 // Given:
4 d=10,1=12 //Bore and stroke in cm
5 n=4 //Number of cylinders
6 N=2000 //Speed of engine in rpm
7 d2=3 //Diameter of throat in cm
8 eta_vol=70 //Volumetric efficiency
9 rho_a=1.2 //Density of air in kg/m^3
10 Cd_a=0.8 // Coefficient of discharge for air
11 // Solution:
12 V_s = (\%pi/4)*d^2*1*n*10^-6 //Swept volume of engine
13 V_act=eta_vol*V_s*N/(2*100*60) // Actual volume
      sucked in m<sup>3</sup>/s
14 m_a=V_act*rho_a //Mass of air sucked in kg/s
15 deltaP_v = (m_a*4/(Cd_a*\%pi*d2^2*10^-4))^2/(2*rho_a)
      //Pressure drop at venturi in pascal
16 //Results:
17 printf("\n The suction at the throat = \%.4 \text{ f bar} \cdot \text{n}"
      , deltaP_v/10^5)
18 //Answer in the book is wrong
```

Scilab code Exa 11.4 Calculation of the diameter of fuel jet

```
//Calculation of the diameter of fuel jet
clc,clear
//Given:
m_f=7.5 //Mass of fuel in kg/hr
s=0.75 //Specific gravity of the fuel
T1=25+273 //Temperature of air in K
A_F=15 //Air fuel ratio
d=22 //Diameter of choke tube in mm
z=4 //Elevation of the jet in mm
Cd_a=0.82,Cd_f=0.7 //Coefficient of discharge for air and fuel
```

```
11 P1=1.013 //Pressure of air in bar
12 g=9.81 //Accelaration due to gravity in m/s<sup>2</sup>
13 //Solution:
14 R=0.287 //Specific gas constant in kJ/kgK
15 rho_a=P1*100/(R*T1) //Mass density of air in kg/m^3
16 rho_f=s*1000 //Mass density of fuel in kg/m<sup>3</sup>
17 m_a=A_F*m_f/3600 //Mass of air in kg/s
18 deltaP_v = (m_a*4/(Cd_a*\%pi*d^2*10^-6))^2/(2*rho_a) //
      Pressure drop at venturi in pascal
19 A_f=m_f/(3600*Cd_f*sqrt(2*rho_f*(deltaP_v-z*10^-3*g*
     rho_f))) //Area of cross section of fuel nozzle
     in m^2
20 d_f=sqrt(4*A_f/%pi) //Diameter of cross section of
      fuel nozzle in m
21 //Results:
22 printf("\n The diameter of the fuel jet of a simple
      carburettor, d_f = \%.3 f mm n n ", d_f *1000
23 //Answer in the book is wrong
```

Scilab code Exa 11.5 Calculations on carburettor

```
//Calculations on carburettor
clc,clear
//Given:
V_s=1489 //Capacity of the engine in cc
N=4200 //Speed of the engine in rpm
eta_v=70 //Volumetric efficiency
A_F=13 //Air fuel ratio
C2=90 //Flow velocity at throat in m/s
Cd_a=0.85,Cd_f=0.66 //Coefficient of discharge for air and fuel
s=0.74 //Specific gravity of the fuel
z=6 //Elevation of the jet in mm
P1=1.013 //Pressure of air in bar
T1=27+273 //Temperature of air in K
```

```
14 g=1.4 // Specific heat ratio (gamma)
15 cp=1.005 //Specific heat at constant pressure in kJ/
      kgK
16 //Solution:
17 V_s=V_s*10^-6 //Swept volume in m<sup>3</sup>
18 V_act=eta_v*V_s*N/(2*100*60) // Actual volume sucked
      in m^3/s
19 R=0.287 //Specific gas constant in kJ/kgK
20 m_a=P1*10^5*V_act/(R*10^3*T1) //Mass of air sucked
      in kg/s
21 // Defining, y as a function of P2
22 //This function is the difference of C2 actual and
      C2 given
23 function [y]=f(P2)
24
       C2_act = sqrt(2*cp*10^3*T1*(1-(P2/P1)^((g-1)/g)))
       y=C2_act-C2
25
26 endfunction
27 funcprot(0);
28 //The function f is solve for zero to get the value
      of P2
29 P2=fsolve(1,f) //Pressure at throat in bar
30 V2=V_act*(P1/P2)^(1/g) //Volume at throat in m<sup>3</sup>/s
31 A2=V2/(C2*Cd_a) //Cross section area at throat in m
32 d2=poly(0, 'd2') //Defining the diameter of choke as
      unknown in m
33 d_f = d2/2.5 //Given
34 d2=roots(\%pi/4*(d2^2-d_f^2)-A2) // Diameter of choke
35 m_f=m_a/A_F //Mass of fuel sucked in kg/s
36 \quad A_f = m_f / (Cd_f * sqrt (2*s*1000*(P1*10^5 - P2*10^5 - z)))
      *10^-3*9.81*s*1000))) //Area of cross section of
      fuel nozzle in m^2
37 d_f=sqrt(4*A_f/%pi) //Diameter of cross section of
      fuel nozzle in m
38 // Results:
39 printf("\n The diameter of the fuel jet of a simple
      carburettor, D_{\text{jet}} = \%.2 \text{ f mm} n n \ \text{, d_f*1000}
```

Scilab code Exa 11.6 Calculations on carburettor

```
1 // Calculations on carburettor
2 clc, clear
3 // Given:
4 V_s=1710 //Capacity of the engine in cc
5 N=5400 //Speed of the engine in rpm
6 eta_vol=70 //Volumetric efficiency
7 n=2 //Number of carburettor
8 A_F=13 //Air fuel ratio
9 C2=107 //Flow velocity at throat in m/s
10 Cd_a=0.85, Cd_f=0.66 // Coefficient of discharge for
      air and fuel
11 s=0.75 //Specific gravity of the fuel
12 z=6 //Elevation of the jet in mm
13 P1=1.013 //Pressure of air in bar
14 T1=27+273 //Temperature of air in K
15 g=1.4 // Specific heat ratio (gamma)
16 cp=1.005 //Specific heat at constant pressure in kJ/
      kgK
17 // Solution:
18 V_s=V_s*10^-6 //Swept volume in m<sup>3</sup>
19 V_{act=eta\_vol*V_s*N/(2*100*60)} // Actual volume
      sucked in m<sup>3</sup>/s
20 V_act=V_act/n //Actual volume of air sucked through
      each carburettor in m<sup>3</sup>/s
21 R=0.287 //Specific gas constant in kJ/kgK
22 \text{ m_a=P1*10^5*V_act/(R*10^3*T1)} //\text{Mass of air sucked}
      in kg/s
23 // Defining, y as a function of P2
24 //This function is the difference of C2 actual and
     C2 given
25 function [y]=f(P2)
       C2_act = sqrt(2*cp*10^3*T1*(1-(P2/P1)^((g-1)/g)))
26
```

```
27
       y=C2_act-C2
28 endfunction
29 funcprot(0);
30 //The function f is solve for zero to get the value
      of P2
31 P2=fsolve(1,f) // Pressure at throat in bar
32 V2=V_act*(P1/P2)^(1/g) //Volume at throat in m<sup>3</sup>/s
33 A2=V2/(C2*Cd_a) //Cross section area at throat in m
34 d2=poly(0, 'd2') //Defining the diameter of choke as
      unknown in m
35 d_f = d2/2.5 //Given
36 d2 = roots(\%pi/4*(d2^2-d_f^2)-A2) // Diameter of choke
      in m
37 m_f=m_a/A_F //Mass of fuel sucked in kg/s
38 A_f = m_f/(Cd_f * sqrt(2*s*1000*(P1*10^5-P2*10^5-z))
      *10^-3*9.81*s*1000))) //Area of cross section of
      fuel nozzle in m^2
39 d_f=sqrt(4*A_f/%pi) //Diameter of cross section of
      fuel nozzle in m
40 // Results:
41 printf ("\n The diameter of the choke tube, D = \%.2 f
     cm", d2(1)*100)
42 printf("\n The diameter of the fuel jet of a simple
      carburettor, D_f = \%.2 f \text{ mm} n n', d_f *1000
```

Scilab code Exa 11.7 Change in air fuel ratio at altitude

```
//Change in air fuel ratio at altitude
clc,clear
//Given:
ha=5000 //Altitude in m
A_F=14 //Air fuel ratio at sea level
Pl=1.013 //Pressure of air in bar at sea level
T1=27+273 //Temperature of air in K at sea level
```

```
8 R=0.287 //Specific gas constant in kJ/kgK
9 function t=f1(h),t=ts-0.0065*h,endfunction //
      Temperature (t in degree C) as a function of
      altitude (h in m)
10 function h=f2(P),h=19200*log10(1.013/P),endfunction
     // Altitude (h in m) as a function of pressure (P in
      bar)
11 //Solution:
12 ts=T1-273 //Sea level temperature in degreeC
13 T2=f1(ha) //Temperature at altitude(ha = 5000 m) in
      degreeC
14 T2=T2+273 //in K
15 // Defining, y as a function of P
16 //This function is the difference of function (f2)
     and ha given
17 function y=f(P),y=f2(P)-ha,endfunction
18 //The function f is solve for zero to get the value
      of P2
19 P2=fsolve(1,f) // Pressure at altitude (ha = 5000 m)
     in bar
20 rho_a=P2/(R*T2) //Density of air at altitude in kg/m
21 rho_s=P1/(R*T1) //Density of air at sea level in kg/
     m^3
22 A_F_a=A_F*sqrt(rho_a/rho_s) //Air fuel ratio at
      altitude
23 //Results:
24 printf("\n The air fuel ratio supplied at 5000 m
      altitude by a carburettor = \%.2 \text{ f} \times \%, A_F_a)
```

Scilab code Exa 11.8 Calculation of air fuel ratio

```
1 // Calculation of air fuel ratio
2 clc, clear
3 // Given:
```

```
4 d2=20, d_f=1.25 //Diameter of throat and fuel nozzle
      in mm
5 Cd_a=0.85, Cd_f=0.66 // Coefficient of discharge for
      air and fuel
6 z=5 //Elevation of the jet in mm
7 rho_a=1.2, rho_f=750 //Mass density of air and fuel
      in kg/m^3
8 deltaP_a=0.07 // Pressure drop of air in bar
9 g=9.806 //Accelaration due to gravity in m/s<sup>2</sup>
10 // Solution:
11 //(a) Nozzle lip is neglected
12 A_f = (\%pi/4) * d_f^2, A2 = (\%pi/4) * d2^2 // Area of cross
      section of fuel nozzle and venturi in mm<sup>2</sup>
13 m_a1=Cd_a*A2*sqrt(2*rho_a*deltaP_a), m_f1=Cd_f*A_f*
      sqrt(2*rho_f*deltaP_a) // Air flow and fuel flow
14 A_F1=m_a1/m_f1 //Air fuel ratio
15 //(b) Nozzle lip is taken into account
16 m_a2=m_a1 //Air flow remain same
17 m_f2=Cd_f*A_f*sqrt(2*rho_f*(deltaP_a-z*10^-3*g*rho_f)
      *10^-5)) //Fuel flow
18 A_F2=m_a2/m_f2 //Air fuel ratio
19 //(c) Minimum velocity required to start the fuel
      flow when nozzle lip is provided
20 //To just start the fuel flow pressure difference in
       venturi must be equivalent to the nozzle lip
      pressure
21 deltaP_a=z*10^-3*g*rho_f //Pressure difference in N/
22 C2=sqrt(2*deltaP_a/rho_a) //Minimum velocity of air
      at throat in m/s
23 //Results:
24 printf("\n The air fuel ratio when the nozzle lip is
       neglected = \%.1 f", A_F1)
25 printf("\n The air fuel ratio when the nozzle lip is
       taken into account = \%.3 \,\mathrm{f}", A_F2)
26 printf("\n The minimum velocity required to start
      the fuel flow when lip is provided = \%.2 \, \text{f m/s}, C2
      )
```

Scilab code Exa 11.9 Effect of air cleaner

```
1 // Effect of air cleaner
2 clc, clear
3 //Given:
4 A_F=14 //Air fuel ratio at sea level
5 P2=0.834 //Pressure at venturi throat without an air
       cleaner in bar
6 P1=1.013 //Pressure of air in bar at sea level
7 deltaP_ac=30 //Pressure drop to air cleaner in mm of
       mercury
8 \text{ m_a=250} //\text{Air flow in kg/hr}
9 // Solution:
10 //No air cleaner
11 deltaP_a1=P1-P2 //Pressure difference at venturi
      throat in bar
12 //When air cleaner is fitted
13 deltaP_ac=deltaP_ac/750 //Pressure drop to air
      cleaner in bar
14 p=poly(0, 'p') // Defining pressure at venturi throat
      with an air cleaner as unknown in bar
15 deltaP_a2=P1-deltaP_ac-p //Pressure difference at
      venturi throat in bar
16 //For same air flow and constant coefficients
     pressure difference in above two cases is same
17 p=roots(deltaP_a2-deltaP_a1) // Pressure at venturi
      throat with an air cleaner in bar
18 deltaP_f=P1-p // Pressure difference at venturi
      throat when air cleaner is fitted in bar
19 A_F_f=A_F*sqrt(deltaP_a1/deltaP_f) // Air fuel ratio
     when air cleaner is fitted
20 //Results:
21 printf("\n (a) The throat pressure when the air
      cleaner is fitted, P = \%.3 f bar",p)
```

22 printf("\n (b) Air fuel ratio with air cleaner is fitted = $\%.2 \, f \n\n$ ", A_F_f)

Fuel Injection

Scilab code Exa 12.1 Calculation of quantity of fuel injected

```
1 // Calculation of quantity of fuel injected
2 clc, clear
3 // Given:
4 n=6 //Number of cylinders
5 bsfc=245 //Brake specific fuel consumption in gm/kWh
6 bp=89 //Brake power in kW
7 N=2500 //Engine speed in rpm
8 s=0.84 //Specific gravity of the fuel
9 // Solution:
10 m_f=bsfc*bp/(1000) //Fuel consumption in kg/hr
11 m_f=m_f/n //Fuel consumption per cylinder in kg/hr
12 m_f = (m_f/3600)/(N/(2*60)) //Fuel consumption per
     cycle in kg
13 V_f=m_f*1000/s //Volume of fuel consume per cycle in
      cc
14 // Results:
15 printf("\n The quantity of fuel to be injected per
     cycle per cylinder, V_f = \%.4 \, f \, cc, V_f
```

Scilab code Exa 12.2 Calculation of orifice area

```
1 // Calculation of orifice area
2 clc, clear
3 //Given:
4 n=8 //Number of cylinders
5 bp=368 //Brake power in kW
6 N=800 //Engine speed in rpm
7 bsfc=0.238 //Brake specific fuel consumption in kg/
     kWh
8 P1=35, P2=60 // Beginning pressure and maximum
     pressure in cylinder in bar
9 P1_i=210, P2_i=600 //Expected pressure and maximum
      pressure at injector in bar
10 theta_i=12 //Period of injection in degrees
11 Cd=0.6 // Coefficient of discharge for the injector
12 s=0.85 //Specific gravity of the fuel
13 P_atm=1.013 //Atmospheric pressure in bar
14 // Solution:
15 m_f=bsfc*bp/(n*60) //Fuel consumption per cylinder
     in kg/min
16 m_f=m_f/(N/2) //Fuel consumption per cycle in kg
17 t=theta_i/360*60/N //Time for injection in s
18 m_f=m_f/t //Fuel consumption per cycle in kg/s
19 deltaP1=P1_i-P1 // Pressure difference at beginning
     in bar
20 deltaP2=P2_i-P2 //Pressure difference at end in bar
21 deltaP_av=(deltaP1+deltaP2)/2 //Average pressure
      difference in bar
22 A_f=m_f/(Cd*sqrt(2*s*1000*deltaP_av*10^5)) // Orifice
      area of fuel injector in m<sup>2</sup>
23 // Results:
24 printf("\n The Orifice area of fuel injector, Af = \%
     .5 f cm^2, A_f *10000
```

Scilab code Exa 12.3 Calculation of orifice diameter

```
1 // Calculation of orifice diameter
2 clc, clear
3 //Given:
4 bp=15 //Brake power per cylinder in kW
5 N=2000 //Engine speed in rpm
6 bsfc=0.272 //Brake specific fuel consumption in kg/
     kWh
  API=32 //American Petroleum Institute specific
      gravity in degreeAPI
8 theta_i=30 //Period of injection in degrees
9 P_i=120 //Fuel injection pressure in bar
10 P_c=30 //Combustion chamber pressure in bar
11 Cd=0.9 // Coefficient of discharge for the injector
12 function rho=specificgravity(API),rho=141.5/(131.5+
     API), endfunction //Specific gravity(rho) as a
     function of API
13 //Solution:
14 s=specificgravity(API) //Specific gravity of fuel
15 m_f=bsfc*bp*2/(N*60) //Fuel consumption in kg
16 t=theta_i/360*60/N //Time for injection in s
17 m_f=m_f/t //Fuel consumption per cycle in kg/s
18 A_f = m_f / (Cd * sqrt (2*s*1000*(P_i - P_c)*10^5)) / Orifice
       area of fuel injector in m<sup>2</sup>
19 A_f=A_f*10^6 //Orifice area of fuel injector in mm^2
20 d_f=sqrt(4*A_f/%pi) //Diameter of fuel orifice in mm
21 //Results:
22 printf("\n The diameter of the fuel orifice, d = \%.2
     f mm n n", d_f)
```

Scilab code Exa 12.4 Calculations on spray penetration

```
1 // Calculations on spray penetration 2 clc, clear
```

```
3 //Given:
4 s1=20 // Distance of penetration in cm
5 t1=16 // Penetration time in millisec
6 P_i1=140 //Injection pressure in bar
7 s2=s1 //Same distance of penetration in cm
8 P_i2=220 //Injection pressure in bar
9 P_c=15 //Combustion chamber pressure in bar
10 //Solution:
11 deltaP1=P_i1-P_c //Pressure difference for 140 bar
      injection pressure
12 deltaP2=P_i2-P_c //Pressure difference for 220 bar
     injection pressure
13 t2=t1*(s2/s1)*sqrt(deltaP1/deltaP2) //Penetration
      time for 220 bar injection pressure in millisec
14 //Results:
15 printf("\n Penetration time for 220 bar injection
      pressure, t2 = \%.1 f \text{ milli-seconds} \n\n", t2)
16 //Answer in the book is wrong
```

Scilab code Exa 12.5 Calculations on diesel engine fuel pump

```
//Calculations on diesel engine fuel pump
clc, clear
//Given:
V_b=7 //Volume of fuel in the barrel in cc
D_l=3, L_l=700 //Diameter and length of fuel delivery line in mm
V_iv=3 //Volume of fuel in the injection valve in cc
P2=200 //Delivery pressure in bar
P1=1 //Sump pressure in bar
V_d=0.15 //Volume to be delivered in cc
C=78.8D-6 //Coefficient of compressibility
d=8 //Diameter of the plunger in mm
//Solution:
V_l=%pi/4*D_l^2*L_l*10^-3 //Volume of fuel in
```

Engine Friction and Lubrication

Scilab code Exa 14.1 Calculation of saving in fuel

```
1 // Calculation of saving in fuel
2 clc, clear
3 //Given:
4 bp=80 //Brake power in kW
5 eta_m=80 // Mechanical efficiency in percent
6 bsfc=258 //Brake specific fuel consumption in gm/kWh
7 Reduction=3.7 //Reduction in friction power in kW
8 // Solution:
9 ip1=bp*100/eta_m //Initial indicated power in kW
10 fp1=ip1-bp //Initial friction power in kW
11 fp2=fp1-Reduction //Final friction power in kW
12 ip2=bp+fp2 //Final indicated power in kW
13 eta_m2=bp/ip2 //Final mechanical efficiency
14 bsfc2=bsfc*(eta_m/(100*eta_m2)) //Final brake
      specific fuel consumption in gm/kWh
15 Saving=bp*(bsfc-bsfc2)/1000 //Saving in fuel in kg/
     hr
16 // Results:
17 printf("\n (a)The new mechanical efficiency, eta_m =
      \%.3 f", eta_m2)
18 printf("\n (b)The new bsfc = \%.1 \,\mathrm{f} gm/kWh", bsfc2)
```

```
19 printf("\n (c)The saving in fuel per hour = \%.2 \, f \, kg/hr \cdot n \cdot n", Saving)
20 //Answers in the book are wrong
```

Scilab code Exa 14.2 Variation of bsfc with speed

```
1 // Variation of bsfc with speed
2 clc,clear
3 //Given:
4 eta_it=30 //Indicated thermal efficiency in percent
5 fp_1500=18 // Friction power at 1500 rpm in kW
6 fp_2500=45 //Friction power at 2500 rpm in kW
7 bp=75 //Brake power in kW
8 CV=44000 // Calorific value of fuel in kJ/kg
9 //Solution:
10 isfc=3600/(CV*eta_it/100) //Indicated specific fuel
     consumption in kg/kWh
11 eta_m_1500=bp/(bp+fp_1500) //Mechanical efficiency
     at 1500 rpm
12 bsfc_1500=isfc/eta_m_1500 //Brake specific fuel
     consumption at 1500 rpm in kg/kWh
13 eta_m_2500=bp/(bp+fp_2500) //Mechanical efficiency
      at 2500 rpm
14 bsfc_2500=isfc/eta_m_2500 //Brake specific fuel
     consumption at 2500 rpm in kg/kWh
15 //Results:
16 printf("\n The brake specific fuel consumption\n\tat
      1500 \text{ rpm}, bsfc_{1}500 = \%.3 \text{ kg/kWh/n/tat} 2500 rpm
      , bsfc_2500 = \%.3 f kg/kWh\n\n", bsfc_1500,
     bsfc_2500)
```

Engine Cooling

Scilab code Exa 15.1 Comparison of cooling water required

```
1 //Comparison of cooling water required
2 clc, clear
3 //Given:
4 bp=100 //Brake power in kW
5 deltaT=30 //Temperature raised of water in degreeC
6 p_p=30,p_d=26 //Percentage of energy going to
     coolent in petrol and diesel
7 eta_p=26, eta_d=31 // Efficiency of petrol and diesel
      engine in percent
8 s=4.1868 //Specific heat capacity of water in J/kgK
9 // Solution:
10 // Petrol engine
11 CW_p = bp*(p_p/100)/((eta_p/100)*deltaT*s) //Amount of
      cooling water required in petrol engine in kg/s
12 // Diesel engine
13 CW_d = bp*(p_d/100)/((eta_d/100)*deltaT*s) //Amount of
      cooling water required in diesel engine in kg/s
14 //Results:
15 printf("\n Amount of cooling water required in
      petrol engine = \%d kg/hr", CW_p*3600)
16 printf("\n Amount of cooling water required in
```

Two Stroke Engines

Scilab code Exa 16.1 Calculations on 2 stroke IC engine

```
1 // Calculations on 2 stroke IC engine
2 clc, clear
3 //Given:
4 n=2 //Number of cylinders
5 N=4000 //Angular speed of engine in rpm
6 eta_v=0.77 //Volumetric efficiency
7 eta_m=0.75 // Mechanical efficiency
8 V_f=10 //Fuel consumption in l/hr
9 s=0.73 //Specific gravity
10 h=10500 //Enthalpy of fuel in kcal/kg
11 A_F=18 //Air-fuel ratio
12 v_p=600 //Speed of piston in m/min
13 imep=5 //Indicated mean effective pressure in atm
14 T=298,P=1.013 //Standard temperature and pressure in
      K and bar
15 //Solution:
16 R=0.287 //Specific gas constant in kJ/kgK
17 m_f=V_f*s //Fuel consumption in kg/hr
18 m_a=A_F*m_f //Air consumption in kg/hr
19 m_c=m_f+m_a //Mass of total charge in kg/hr
20 m=round(m_c/eta_v) //Mass of charge corresponding to
```

```
the swept volume in kg/hr
21 V=(m/2)*R*T/(P*100) //Volume of charge consumed in m
      ^3/hr
22 V_s = V*10^6/(60*N) //Swept volume by piston per
      stroke in cc
23 L=v_p*100/(2*N) //Stroke length of cylinder in cm
24 d=sqrt(4*V_s/(%pi*L)) //Bore of cylinder in cm
25 IHP=round(imep*V_s*N*n/450000) //Indicated horse
      power in metric HP
26 BHP=IHP*eta_m //Brake horse power in metric HP
27 \text{ eta_t=BHP}*736*3600/(V_f*s*h*4187) //Thermal
      efficiency
28 // Results:
29 printf("\n The engine dimensions\n\t Stroke length,
      L = \%.1 f \text{ cm} \ \text{n} \ \text{t} \text{ Bore}, \ d = \%.1 f \text{ cm}, \ L, d
30 printf("\n The brake power output, BHP = \%.1 f metric
       HP", BHP)
31 printf("\n The thermal efficiency, eta_t = \%.1 \,\mathrm{f}
      percent \ n \ ", eta_t * 100)
```

Supercharging

Scilab code Exa 17.1 Estimation of increase in brake power

```
1 //Estimation of increase in brake power
2 clc, clear
3 // Given:
4 V_s=3000 //Total swept volume in cc
5 ip=14 //Indicated power in kW/m<sup>3</sup>
6 N=3500 //Engine speed in rpm
7 eta_v=80 //Volumetric efficiency in percent
8 T1=27+273 //Atmospheric temperature in K
9 P1=1.013 //Atmospheric pressure in bar
10 r_p=1.7 //pressure ratio
11 eta_C=75 //Isentropic efficiency of blower in
      percent
12 eta_m=80 // Mechanical efficiency in percent
13 g=1.4 //Specific heat ratio (gamma)
14 // Solution:
15 V_s=V_s*N/2*1D-6 // Total swept volume in m<sup>3</sup>/min
16 Vi=V_s*eta_v/100 //Unsupercharged induced volume in
     m^3/min
17 P2=P1*r_p //Blower delivery pressure in bar
18 T2!=T1*r_p^{(g-1)/g} // Isentropic temperature at 2
     in K
```

```
19 T2! = ceil(T2!)
20 T2=(T2!-T1)/(eta_C/100)+T1 //Temperature at 2 in K
21 V1=V_s*(P2/T2)*(T1/P1) //Volume at atmospheric
      conditions in m<sup>3</sup>/min
22 Vi_inc=V1-Vi //Increase in induced volume in m^3/min
23 ip_inc1=ip*Vi_inc //Increased in ip from air induced
      in kW
24 ip_inc2=(P2-P1)*100*V_s/60 //Increased in ip due to
     increased induction pressure in kW
25 ip_inc=ip_inc1+ip_inc2 //Total increase in ip in kW
26 bp_inc=eta_m/100*ip_inc //Total increase in bp in kW
27 R=0.287 //Specific gas constant in kJ/kgK
28 cp=1.005 //Specific heat in kJ/kgK
29 m2=P2*100*V_s/(R*T2*60) //Mass of air delivered by
     the blower in kg/s
30 Power=m2*cp*(T2-T1)/(eta_m/100) //Power required by
     the blower in kW
31 bp_inc=bp_inc-Power //Net increase in brake power in
      kW
\frac{32}{Results}:
33 printf("\n The net increase in the brake power = \%.1
     f kW n n, bp_inc)
```

Scilab code Exa 17.2 Supercharged diesel engine

```
1 //Supercharged diesel engine
2 clc,clear
3 //Given:
4 T1=10+273 //Temperature at sea level in K
5 P1=1.013 //Pressure at sea level in bar
6 bp=250 //Brake power in kW
7 eta_v=78 //Volumetric efficiency in percent
8 bsfc=0.245 //Brake specific fuel consumption in kg/kWh
9 A_F=17 //Air fuel ratio
```

```
10 N=1500 //Engine speed in rpm
11 h=2700 // Altitude in m
12 P_a=0.72 //Pressure at altitude in bar
13 p=8 //Percentage of gross power taken by the
      supercharger
14 T2=32+273 //Temperature of air leaving the
      supercharger in K
15 // Solution:
16 // Unsupercharged
17 m_f=bsfc*bp/60 //Fuel consumption in kg/min
18 m_a=A_F*m_f //Air consumption in kg/min
19 m_a=m_a/(N/2) //Air consumption per cycle in kg
20 m1=m_a/eta_v*100 //Mass of air corresponding to
      swept volume
21 R=0.287 //Specific gas constant in kJ/kgK
22 \text{ V_s=m1*R*T1/(P1*100)} //\text{Swept volume in m}^3
23 bmep=bp/(V_s*N/(60*2)) //Brake mean effective
      pressure in kN/m<sup>2</sup>
24 //Supercharged
25 bp2=bp/(1-p/100) //Gross power produced by the
      engine in kW
26 m_a2=bp2/bp*m_a //Mass of air required per cycle in
  m2=m_a2/eta_v*100 //Mass of air corresponding to
      swept volume
28 P2=m2*R*T2/(V_s*100) //Pressure of air leaving the
      supercharger in bar
29 deltaP=P2-P_a //Increase in pressure required in bar
30 //Results:
31 printf ("\n The required engine capacity, V_s = \%.4 f
     m^3", V_s)
32 printf("\n The anticipated brake mean effective
      pressure, bmep = \%.1 \, \text{f bar}, bmep/100)
33 printf("\n The increase of air pressure required at
      the supercharger = \%.3 \, \text{f bar} \, \text{n}", deltaP)
```

Scilab code Exa 17.3 Normally aspirated and supercharged engine

```
1 //Normally aspirated and supercharged engine
2 clc, clear
3 // Given:
4 V_s=3300 //Swept volume in cc
5 //For normally aspirated
6 bmep1=9.3 //Brake mean effective pressure in bar
7 N1=4500 //Engine speed in rpm
8 eta_it1=28.5 //Indicated thermal efficiency in
      percent
9 eta_m1=90 // Mechanical efficiency in percent
10 m1=205 //Mass of unboosted engine in kg
11 //For supercharged
12 bmep2=12.1 //Brake mean effective pressure in bar
13 N2=4500 //Engine speed in rpm
14 eta_it2=24.8 //Indicated thermal efficiency in
      percent
15 eta_m2=90 // Mechanical efficiency in percent
16 m2=225 //Mass of boosted engine in kg
17 h=poly(0, 'h') // Defining the unknown h hours
      duration
18 CV=44000 // Calorific value of fuel in kJ/kg
19 // Solution:
20 //For normally aspirated
21 bp1=bmep1*100*V_s/1D+6*N1/(2*60) //Brake power in kW
22 \text{ bp1} = \text{round}(\text{bp1})
23 ip1=bp1/eta_m1*100 //Indicated power in kW
24 m_f1=ip1/(eta_it1/100*CV) //Fuel flow in kg/s
25 m_f1=m_f1*3600*h //Mass of fuel flow in h hours in
     kg
26 Mass1=(m1+m_f1)/bp1 //Specific mass in kg/kW
27 //For supercharged
28 bp2=bmep2*100*V_s/1D+6*N2/(2*60) //Brake power in kW
```

```
29 \text{ bp2} = \text{round}(\text{bp2})
30 ip2=bp2/eta_m2*100 //Indicated power in kW
31 m_f2=ip2/(eta_it2/100*CV) //Fuel flow in kg/s
32 \text{ m_f2=m_f2*3600*h} //Mass of fuel flow in h hours in
      kg
33 Mass2=(m2+m_f2)/bp2 //Specific mass in kg/kW
34 for h=0:0.01:10; // Defining the range of h(hours)
       if (horner(Mass1,h) > horner(Mass2,h)) then //
35
          Specific mass of boosted engine is always be
          less than unboosted
36
            continue
37
       else
38
            h_max=h
39
            break
40
       end
41 end
42 / Results:
43 printf("\n The maximum value of h hours duration,
      h_{max} = \%.2 f hours n', h_{max}
```

Scilab code Exa 17.4 Supercharged four stroke oil engine

```
//Supercharged four stroke oil engine
clc,clear
//Given:
T1=20+273 //Temperature of air enters the compressor in K

Q1=1340 //Heat added to air in kJ/min
T3=60+273 //Temperature of air leaves the cooler or enters the engine in K

P3=1.72 //Pressure of air leaves the cooler or enters the engine in bar
eta_v=0.70 //Volumetric efficiency of engine
n=6 //Number of cylinders
d=90,l=100 //Bore and stroke of cylinder in mm
```

```
11 N=2000 //Engine speed in rpm
12 T=147 //Output brake torque in Nm
13 eta_m=0.75 // Mechanical efficiency
14 //Solution:
15 bp=2*%pi*N/60*T*10^-3 //Brake power in kW
16 ip=bp/eta_m //Indicated power in kW
17 ip=ip/n //Indicated power per cylinder in kW
18 A=(\%pi/4)*d^2*1D-6 //Area of cylinder in m<sup>2</sup>
19 l=1*1D-3 //Stroke of cylinder in m
20 imep=ip/(1*A*N/(2*60)) //Indicated mean effective
      pressure in kN/m<sup>2</sup>
21 imep=imep/100 //Indicated mean effective pressure in
22 V_s=n*A*1*N/2 //Engine swept volume in m<sup>3</sup>/min
23 Vi=V_s*eta_v //Induced volume of air in m^3/min
24 R=0.287 //Specific gas constant in kJ/kgK
25 cp=1.005 //Specific heat in kJ/kgK
26 m_e=P3*100*Vi/(R*T3) //Mass of air induced into the
      engine in kg/min
27 Q1=1340/60 //Heat added to air in kW
28 m_c=1 //Assume for calculation
29 function y=f(T2)
30
       W_c = m_c * cp * (T2 - T1) / Work done on air in
          compressor kW
31
       Q_c = m_c * cp * (T2 - T3) //Heat given to the air
          passes through the cooler in kW
32
       y=W_c/Q_c-bp/Q1
33 endfunction
34 T2=fsolve(500,f) //Temperature of air leaving the
      compressor in K
35 m_c=bp*60/(cp*(T2-T1)) //Mass of air flow into the
      compressor in kg/min
36 //Results:
37 printf("\n (a) The engine indicated mean effective
      pressure, imep = \%.2 \, \text{f bar}, imep)
38 printf("\n (b) The air consumption in the engine, m_e
      =\%.2 f kg/min",m_e)
39 printf("\n (c) The air flow into the compressor, m_c
```

Testing and Performance

Scilab code Exa 18.1 Calculations on petrol engine

```
1 // Calculations on petrol engine
2 clc, clear
3 //Given:
4 n=4 //Number of cylinders
5 d_o=7.5 //Diameter of orifice in cm
6 Cd=0.6 // Coefficient of discharge for orifice
7 d=11,l=13 //Bore and stroke in cm
8 N=2250 //Engine speed in rpm
9 bp=36 //Brake power in kW
10 m_f=10.5 //Fuel consumption in kg/hr
11 CV=42000 // Calorific value in kJ/kg
12 deltaP_o=4.1 // Pressure drop across orifice in cm of
      water
13 P=1.013 // Atmospheric pressure in bar
14 T=15+273 //Atmospheric temperature in K
15 g=9.81 //Accelaration due to gravity in m/s^2
16 // Solution:
17 / (a)
18 eta_bt=bp*3600/(m_f*CV) //Brake thermal efficiency
20 A=\%pi/4*d^2*10^-4 //Area of cylinder in m^2
```

```
21 bmep=bp*1000/(n*1/100*A*N/(2*60)) //Brake mean
      effective pressure in Pascal
22 //(c)
23 rho_w=1000 //Mass density of water in kg/m<sup>3</sup>
24 deltaP_o=rho_w*g*deltaP_o/100 // Pressure drop across
       orifice in N/m<sup>2</sup>
25 R=0.287 //Specific gas constant in kJ/kgK
26 rho_a=P*10^5/(R*10^3*T) //Mass density of air in kg/
     m^3
27 \text{ A_o=\%pi/4*d_o^2*10^-4} // \text{Area of orifice in m^2}
28 m_a=Cd*A_o*sqrt(2*deltaP_o*rho_a) // Air inhaled in
V_s = (\pi/4) * d^2*1*n*N/(2*60)*10^-6 //Swept volume in
       m^3/s
30 eta_vol=m_a/V_s //Volumetric efficiency
31 //Results:
32 printf("\n (a) Brake thermal efficiency, eta_bt = \%.3
      f", eta_bt)
33 printf("\n (b) Brake mean effective pressure, bmep =
     \%.3 \, f \, bar", bmep*10^-5)
34 printf("\n (c) Volumetric efficiency, eta_vol = %.3 f\
      n \ n", eta_vol)
```

Scilab code Exa 18.2 Calculations on Gas engine

```
// Calculations on Gas engine
clc,clear
// Given:
d=24,1=48 // Bore and stroke in cm
D_b=1.25 // Effective diameter of the brake wheel in m
P=1236 // Net load on brake in N
N=77 // Average engine explosions in min
N1=226.7 // Average speed at output shaft in rpm
imep=7.5 // Indicated mean effective pressure in bar
```

```
10 Vg1=13 //Gas used in m<sup>3</sup>/hr
11 T1=15+273, P1=771 // Temperature and pressure of the
      gas in K and mm of mercury
12 T2=0+273, P2=760 //Normal temperature and pressure (N
      .T.P.) in K and mm of mercury
13 CV=22000 // Calorific value of the gas in kJ/m^3
14 m_w=625 //Mass of cooling water used in kg/hr
15 T1_w = 25 + 273, T2_w = 60 + 273 // Inlet and outlet
      temperature of cooling water in K
16 // Solution:
17 / (a)
18 T=P*D_b/2 //Brake torque delivered in Nm
19 bp=2*%pi*N1/60*T //Brake power in W
20 ip=imep*10^5*1*\%pi/4*d^2*N/60*10^-6 //Indicated
     power in W
21 eta_m=bp/ip //Mechanical efficiency
22 //(b)
23 Vg2=(P1/P2)*(T2/T1)*Vg1 //Gas consumption at N.T.P.
     in m^3/hr
24 //(c)
25 eta_it=ip/1000*3600/(Vg1*CV) //Indicated thermal
      efficiency
26 //Heat balance sheet
27 Q1=Vg2/60*CV //Heat supplied in kJ/min
28 Q_bp=bp/1000*60 //Heat equivalent to brake power in
     kJ/min
29 cp=4.1868 //Specfic heat of water in kJ/kgK
30 Q_w=m_w/60*cp*(T2_w-T1_w) //Heat in cooling water in
      kJ/min
31 Q_r=Q1-Q_bp-Q_w //Heat to exhaust, radiation in kJ/
     min
\frac{32}{Results}:
33 printf("\n (a) The mechanical efficiency of the
      engine, eta_m = \%.1 f percent", eta_m*100)
34 printf("\n (b)The gas consumption at N.T.P. = \%.1 f m
      ^3/hr", Vg2)
35 printf("\n (c)The indicated thermal efficiency,
      eta_it = \%.1f percent", eta_it*100)
```

Scilab code Exa 18.3 Calculations on oil engine

```
1 // Calculations on oil engine
2 clc, clear
3 // Given:
4 d=18,1=36 //Bore and stroke in cm
5 N=285 //Average engine speed in rpm
6 T=393 //Brake torque delivered in Nm
7 imep=7.2 //Indicated mean effective pressure in bar
8 m_f=3.5 //Fuel consumption in kg/hr
9 m_w=4.5 //Mass of cooling water used in kg/min
10 deltaT_w=36 //Cooling water temperature rise in
     degreeC
11 A_F=25 //Air-fuel ratio
12 T2=415+273 //Exhaust gas temperature in K
13 P=1.013 //Atmospheric pressure in bar
14 T1=21+273 //Room temperature in K
15 CV=45200 // Calorific value in kJ/kg
16 p=15 // Perentage of hydrogen contained by the fuel
17 R=0.287 //Specific gas constant in kJ/kgK
18 cv=1.005, cp=2.05 // Specific heat for dry exhaust
     gases and superheated steam in kJ/kgK
19 //Solution:
21 ip=imep*10^2*1*%pi/4*d^2*N/(2*60)*10^-6 //Indicated
```

```
power in kW
22 ip=round(10*ip)/10
23 eta_it=ip*3600/(m_f*CV) //Indicated thermal
      efficiency
24 //(b)
25 m_a=m_f*A_F/60 //Mass of air inhaled in kg/min
26 \text{ m_a=round} (100*\text{m_a})/100
27 \text{ V_a=m_a*R*T1/(P*100)} //\text{Volume of air inhaled in m}^3/
28 V_s = (\%pi/4)*d^2*1*10^-6*N/2 //Swept volume in m^3/
     min
29 eta_vol=V_a/V_s // Volumetric efficiency
30 //Heat balance sheet
31 Q1=m_f/60*CV //Heat input in kJ/min
32 bp=2*%pi*N/60*T*10^-3 //Brake power in W
33 Q_bp=bp*60 //Heat equivalent to brake power in kJ/
     min
34 cp_w=4.1868 //Specific heat of water in kJ/kgK
35 Q_w=m_w*cp_w*deltaT_w //Heat in cooling water in kJ/
     min
36 m_e=m_a+m_f/60 //Mass of exhaust gases in kg/min
37 //Since, 2 mole of hydrogen gives 1 mole of water on
       combine with 1 mole of oxygen
38 //Thus, 1 mole of hydrogen gives 1/2 mole or 9 unit
     mass of water
39 m_h=m_f/60*p/100 //Mass of hydrogen in kg/min
40 m_s=9*m_h //Mass of steam in exhaust gases in kg/min
41 m_d=m_e-m_s //Mass of dry exhaust gases in kg/min
42 Q_d=m_d*cv*(T2-T1) //Heat in dry exhaust gases in kJ
      /min
43 lv=2256.9 //Latent heat of vapourisation of water in
      kJ/kg
44 Q_s=m_s*((373-T1)+lv+cp*(T2-373)) //Heat in steam in
      exhaust gases in kJ/min
45 Q_r=Q1-Q_bp-Q_w-Q_d-Q_s //Heat in radiation in kJ/
     min
46 // Results:
47 printf("\n (a) The indicated thermal efficiency,
```

```
eta_it = \%.1f percent", eta_it*100)
48 printf("\n (b)The volumetric efficiency, eta_vol = \%
      .1 f percent", eta_vol*100)
49 printf ("\n
                    Heat balance sheet \n \ Heat input = \%
      .1 f kJ/min, %d percent",Q1,Q1/Q1*100)
50 printf("\n\t Heat equivalent to b.p. = \%.1 \, f \, kJ/min,
      \%.1f percent", Q_bp, Q_bp/Q1*100)
51 printf("\n\t Heat in cooling water = \%.1 \text{ f kJ/min}, \%
      .1 f percent", Q_w, Q_w/Q1*100)
52 printf("\n\t Heat in dry exhaust gases = \%.1 \,\mathrm{f}\ \mathrm{kJ/min}
      , \%.1 f percent",Q_d,Q_d/Q1*100)
53 printf("\n\t Heat in steam in exhaust gases = \%.1 \,\mathrm{f}
      kJ/min, %.1f percent", Q_s, Q_s/Q1*100)
54 printf("\n\t Heat in radiation = \%.1 \text{ f kJ/min}, \%.1 \text{ f}
      percent", Q_r, Q_r/Q1*100)
```

Scilab code Exa 18.4 Calculations on oil engine

```
1 // Calculations on oil engine
2 clc, clear
3 //Given:
4 n=4 //Number of cylinders
5 d_o=5 //Diameter of orifice in cm
6 Cd=0.6 // Coefficient of discharge for orifice
7 d=10.5,1=12.5 //Bore and stroke in cm
8 N=1200 //Engine speed in rpm
9 T=147 //Brake torque delivered in Nm
10 m_f=5.5 //Fuel consumption in kg/hr
11 CV=43100 // Calorific value in kJ/kg
12 deltaP_o=5.7 //Head across orifice in cm of water
13 P1=1.013 //Atmospheric pressure in bar
14 T1=20+273 // Atmospheric temperature in K
15 g=9.81 //Accelaration due to gravity in m/s<sup>2</sup>
16 // Solution:
17 //(a)
```

```
18 bp=2*%pi*N/60*T*10^-3 //Brake power in kW
19 eta_bt=bp*3600/(m_f*CV) //Brake thermal efficiency
21 A=\%pi/4*d^2*10^-4 //Area of cylinder in m^2
22 bmep=bp*1000/(n*1/100*A*N/(2*60)) //Brake mean
      effective pressure in N/m<sup>2</sup>
23 //(c)
24 rho_w=1000 //Mass density of water in kg/m<sup>3</sup>
25 deltaP_o=rho_w*g*deltaP_o/100 //Pressure drop across
       orifice in N/m<sup>2</sup>
26 R=0.287 //Specific gas constant in kJ/kgK
27 rho_a=P1*10^5/(R*10^3*T1) //Mass density of air in
      kg/m^3
28 \text{ rho}_a = \text{round} (10*\text{rho}_a)/10
29 A_o = \%pi/4*d_o^2*10^-4 //Area of orifice in m^2
30 V_a=Cd*A_o*sqrt(2*deltaP_o/rho_a) //Air inhaled in m
      ^{^{\circ}}3/\mathrm{s}
31 V_s = (\%pi/4)*d^2*l*n*N/(2*60)*10^-6 //Swept volume in
       m^3/s
32 eta_vol=V_a/V_s // Volumetric efficiency
33 // Results:
34 printf("\n (a) Brake thermal efficiency, eta_bt = \%.1
      f percent",eta_bt*100)
35 printf("\n (b)Brake mean effective pressure, bmep =
      \%.2 f bar",bmep*10^-5)
36 printf("\n (c) Volumetric efficiency, eta_vol = %.1 f
      percent \ n\ ", eta_vol*100)
```

Scilab code Exa 18.5 Calculations on six cylinder petrol engine

```
1 // Calculations on six cylinder petrol engine
2 clc, clear
3 // Given:
4 n=6 // Number of cylinders
5 d=7.5, l=9 // Bore and stroke in cm
```

```
6 R_b=38 //Torque arm radius of the brake wheel in cm
7 P1=324 //Net load when all cylinders operating on
     brake in N
8 N=3300 //Engine speed in rpm
9 P2=245 //Net load when each cylinder is inoperative
     in N
10 m_f = .3 //Fuel consumption in kg/min
11 CV=42000 // Calorific value in kJ/kg
12 m_w=65 //Mass of cooling water used in kg/min
13 deltaT_w=12 //Cooling water temperature rise in
     degreeC
14 m_a=14 //Mass of air blown in kg/min
15 T1_a=10+273, T2_a=55+273 //Inlet and outlet
      temperature of air blown in K
16 //Solution:
17 bp=2*\%pi*N/60*(P1*R_b/100)*10^-3 //Brake power when
      all the cylinders operating in kW
18 bp1=2*%pi*N/60*(P2*R_b/100)*10^-3 //Brake power when
       each cylinder is inoperative in kW
19 ip=n*(bp-bp1) //Total ip of the engine in kW
20 A=\%pi/4*d^2*10^-4 //Area of cylinder in m^2
21 bmep=ip*1000/(n*1/100*A*N/(2*60)) //Brake mean
      effective pressure in N/m<sup>2</sup>
22 //Heat balance sheet
23 Q1=m_f*CV //Heat input in kJ/min
24 Q_bp=bp*60 //Heat equivalent to brake power in kJ/
     min
25 cp_w=4.1868 //Specfic heat of water in kJ/kgK
26 \, Q_w=m_w*cp_w*deltaT_w //Heat in cooling water in kJ/
     min
27 cp_a=1.005 //Specific heat of air in kJ/kgK
28 Q_a=m_a*cp_a*(T2_a-T1_a) //Heat to ventilating air
     in kJ/min (Wrong in book)
29 Q_e=Q1-Q_bp-Q_w-Q_a //Heat to exhaust and other
     losses in kJ/min
30 //Results:
31 printf("\n (a)The indicated mean effective pressure,
      bmep = \%.1 \, f \, bar", bmep*10^-5)
```

Scilab code Exa 18.6 Calculations on two stroke engine

```
1 // Calculations on two stroke engine
2 clc, clear
3 //Given:
4 N=450 //Engine speed in rpm
5 P=450 //Net load on brake in N
6 imep=2.9 //Indicated mean effective pressure in bar
7 m_f=5.4 //Fuel consumption in kg/h
8 deltaT_w=36.1 //Cooling water temperature rise in
     degreeC
9 m_w=440 //Mass of cooling water used in kg/h
10 A_F=31 //Air-fuel ratio
11 T1_g=20+273, T2_g=355+273 // Inlet and outlet
     temperature of exhaust gases blown in K
12 P1=76 // Atmospheric pressure in cm of Hg
13 d=22,1=27 //Bore and stroke in cm
14 D_b=1.5 // Effective diameter of the brake wheel in m
15 CV=44000 // Calorific value in kJ/kg
16 p=15 // Percentage of hydrogen by mass contained by
     the fuel
17 R=0.287 //Specific gas constant in kJ/kgK
18 cp_g=1.005,cp_s=2.05 //Specific heat for dry exhaust
```

```
gases and superheated steam in kJ/kgK
19 // Solution:
20 ip=imep*10^2*1*%pi/4*d^2*N/(60)*10^-6 //Indicated
      power in kW
21 eta_it=ip*3600/(m_f*CV) //Indicated thermal
      efficiency
22 bp=2*\%pi*N/60*(P*D_b/2)*10^-3 //Brake power in kW
23 bp = round(10*bp)/10
24 bsfc=m_f/bp*1000 //Brake specific fuel consumption
     in gm/kWh
V_s = (\%pi/4)*d^2*1*10^-6*N //Swept volume in m^3/min
26 m_a=m_f*A_F/60 //Mass of air inhaled in kg/min
27 P1=1.0132 //Atmospheric pressure equivalent to 76 cm
       of Hg in bar
28 T1=293 //Atmospheric temperature in K
29 V_a=m_a*R*T1/(P1*100) //Volume of air inhaled in m
      ^3/\min
30 \ V_a = round (100 * V_a) / 100
31 eta_vol=V_a/V_s //Volumetric efficiency
32 //Heat balance sheet
33 Q1=m_f/60*CV //Heat input in kJ/min
34 Q_bp=bp*60 //Heat equivalent to brake power in kJ/
     min
35 cp_w=4.1868 //Specfic heat of water in kJ/kgK
36 Q_w=m_w/60*cp_w*deltaT_w //Heat in cooling water in
     kJ/min
37 m_e=m_a+m_f/60 //Mass of exhaust gases in kg/min
38 //Since, 2 mole of hydrogen gives 1 mole of water on
      combine with 1 mole of oxygen
39 //Thus, 1 mole of hydrogen gives 1/2 mole or 9 unit
     mass of water
40 m_h=m_f/60*p/100 //Mass of hydrogen in kg/min
41 m_s=9*m_h //Mass of steam in exhaust gases in kg/min
42 m_d=m_e-m_s //Mass of dry exhaust gases in kg/min
43 Q_d=m_d*cp_g*(T2_g-T1_g) //Heat in dry exhaust gases
      kJ/min
44 lv=2256.9 //Latent heat of vapourisation of water in
      kJ/kg
```

```
45 Q_s=m_s*((373-T1_g)+lv+cp_s*(T2_g-373)) //Heat in
      steam in exhaust gases in kJ/min
46 Q_r=Q1-Q_bp-Q_w-Q_d-Q_s //Heat in radiation in kJ/
      min
47 // Results:
48 printf("\n (a) The indicated thermal efficiency,
      eta_it = \%.1f percent", eta_it*100)
49 printf("\n (b) Brake specific fuel consumption = \%.1 f
       gm/kWh", bsfc)
  printf("\n (c)The volumetric efficiency, eta_vol = \%
      .1f percent", eta_vol*100)
51 printf("\n
                   Heat balance sheet \n \ Heat input = \%
      .1 f kJ/min, %d percent",Q1,Q1/Q1*100)
52 printf("\n\t Heat equivalent to b.p. = \%.1 \, f \, kJ/min,
     \%.1 f percent", Q_bp, Q_bp/Q1*100)
53 printf("\n\t Heat in cooling water = \%.1 \,\mathrm{f} kJ/min, \%
      .1 f percent", Q_w, Q_w/Q1*100)
54 printf("\n\t Heat in dry exhaust gases = \%.1 \,\mathrm{f} kJ/min
      \%.1f percent", Q_d, Q_d/Q1*100)
55 printf("\n\t Heat in steam in exhaust gases = \%.1 f
      kJ/min, %.1f percent", Q_s, Q_s/Q1*100)
56 printf("\n\t Heat in radiation = \%.1 \,\mathrm{f} kJ/min, \%.1 \,\mathrm{f}
      percent", Q_r, Q_r/Q1*100)
```

Scilab code Exa 18.7 Calculations by Morse test

```
// Calculations by Morse test
clc,clear
//Given:
n=12 //Number of cylinders
function bp=f(W),bp=W*N/180,endfunction //Power law
    of engine
d=38,1=50 //Bore and stroke in cm
N=200 //Engine speed in rpm
Wall1=2000,Wall2=2020 //Brake loads when all
```

```
cylinders are firing in N
9 Wn=[1795 1814 1814 1795 1804 1819 1800 1824 1785
      1804 1814 1795] //Brake load when cylinder number
       1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are out in
      N
10 // Solution:
11 W=(Wall1+Wall2)/2 //Average of brake loads when all
      cylinders are firing in N
12 bp=f(W) //Total brake power in kW
13 ipn=bp-f(Wn) //Indicated power of cylinders number
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 in kW
14 ip=sum(ipn) //Total indicated power equal to sum of
      individual in kW
15 eta_m=bp/ip // Mechanical efficiency
16 A=\%pi/4*d^2*10^-4 //Area of cylinder in m<sup>2</sup>
17 bmep=bp*1000/(n*1/100*A*N/(60)) //Brake mean
      effective pressure in Pascal
18 // Results:
19 printf("\n The brake mean effective pressure, bmep =
      \%.2 f bar", bmep*10^-5)
20 printf("\n The mechanical efficiency, eta_m = \%.1 \,\mathrm{f}
      percent \ n\ ", eta_m*100)
```

Scilab code Exa 18.8 Calculations on six cylinder diesel engine

```
1 // Calculations on six cylinder diesel engine
2 clc,clear
3 // Given:
4 n=6 // Number of cylinders
5 function bp=f(W),bp=W*N/20000,endfunction // Power
law of engine
6 d=95,l=120 // Bore and stroke in mm
7 N=2400 // Engine speed in rpm
8 C_H=83/17 // Carbon Hydrogen ratio by mass in fuel
9 d_o=30 // Diameter of orifice in mm
```

```
10 Cd=0.6 //Orifice coefficient of discharge
11 P=550 //Net load on brake in N
12 P1=750 //Ambient pressure in mm of Hg
13 T1=25+273 //Ambient temperature in K
14 deltaP_o=14.5 //Head over orifice in cm of Hg
15 s=0.831 //Specific gravity of fuel
16 t=19.3 //Time to use 100 cc fuel in s
17 V_f=100 //Volume of fuel used in t seconds in cc
18 //Solution:
19 //(a)
20 bp=f(P) //Brake power at brake load in kW
21 A=\%pi/4*d^2*10^-6 //Area of cylinder in m^2
22 bmep=bp*1000/(n*1/1000*A*N/(2*60)) //Brake mean
      effective pressure in Pascal
23 //(b)
24 T=bp*1000/(2*%pi*(N/60)) //Brake torque in Nm
25 //(c)
26 rho_f = s*1000 //Fuel density in kg/m^3
27 \text{ m_f=V_f*10^--6/t*3600*rho_f} //Fuel flow rate in kg/hr
28 bsfc=m_f/bp //Brake specific fuel consumption in kg/
     kWh
29 // (e)
30 R=0.287 //Specific gas constant in kJ/kgK
31 P1=P1/760*1.01325 //Ambient pressure in bar
32 \text{ rho}_a=P1*10^5/(R*10^3*T1) //Mass density of air in
      kg/m^3
33 deltaP_o=13.6*1000*9.81*deltaP_o/100 // Pressure drop
       across orifice in N/m<sup>2</sup>
34 \text{ A_o=\%pi/4*d_o^2*10^-6} //Area of orifice in m^2
35 V_a=Cd*A_o*sqrt(2*deltaP_o/rho_a) //Air inhaled in m
36 \text{ V_s} = (\%\text{pi/4}) * \text{d^2} * 1 * n * \mathbb{N} / (2 * 60) * 10^{-9} / \text{Swept volume in}
      m^3/s
37 eta_vol=V_a/V_s //Volumetric efficiency
39 pH=17, pC=pH*C_H // Percentage of Hydrogen and Carbon
      in fuel
40 pO=23.3 // Percentage of Oxygen in air
```

```
41 H=1,C=12,O=16 //Atomic masses of Hydrogen, Carbon,
      Oxygen in gm
42 \text{ mO2=pC/100*(2*O/C)+pH/100*(O/(2*H))} //Oxygen
      required in kg/kg of fuel
43 m_a=m02/(p0/100) //Mass of air in kg/kg of fuel
44 A_F_t=m_a // Theoritical air fuel ratio
45 m_a_act=V_a*rho_a //Actual air mass flow rate in kg/
46 A_F_act=m_a_act/m_f*3600 //Actual air fuel ratio
47 P_e = (A_F_act - A_F_t)/A_F_t*100 //Percentage excess
      air
48 //Results:
49 printf("\n (a) The brake mean effective pressure,
     bmep = \%.3 f bar", bmep*10^-5)
50 printf("\n (b)The brake torque, T = \%.1 f Nm",T)
51 printf("\n (c)The brake specific fuel consumption,
      bsfc = \%.3 f kg/kWh", bsfc)
52 printf("\n (d)The percentage excess air = \%.1 f
      percent", P_e)
53 printf("\n (e)The volumetric efficiency, eta_vol = %
      .1 f percent n", eta_vol*100)
```

Scilab code Exa 18.9 Calculations on six cylinder petrol engine

```
bar
9 T1=17+273 //Temperature of mixture entering the
      cylinder in K
10 m_f=31.3 //Mass of the petrol used in kg/hr
11 N=1500 //Engine speed in rpm
12 \text{ m=1}, T=0+273, P=1.013, V=0.773 //Mass, temperature,}
      pressure, volume, of air in kg, K, bar, m<sup>3</sup>
13 p=23/100 //Composition of Oxygen in air by mass
14 //Solution:
15 C=12 //Atomic mass of Carbon(C)
16 H=1 //Atomic mass of Hydrogen (H)
17 0=16 //Atomic mass of Oxygen(O)
18 N2=14 //Atomic mass of Nitrogen(N)
19 A_F_s = (pC*2*0/C+pH2*0/(2*H))/(p) //Stoichiometric
      air fuel ratio
20 //Stoichiometric equation of combustion of fuel (
      petrol)
      0.82/12[C] + 0.18/2[H2] + [0.21[O2] + 0.79[N2]
      ] \times x = a [CO2] + b [CO] + c [H2O] + d1 [N2]
22 //Equating coefficients
23 a=pC/C, c=pH2/(2*H) //On balancing C and H
24 d1=pN2/pCO2*a //On taking composition of CO2 and N2
      in exhaust
25 x=d1/0.79 //On balancing N
26 \text{ m_a=(p*2*0)+((1-p)*2*N2)} //\text{Mass of air per mole air}
      in kg/mole
27 A_F_act=x*m_a // Actual air fuel ratio
28 P_e=(A_F_act-A_F_s)/A_F_s*100 //Percentage excess
29 R_a=P*100*V/(m*T) // Specific gas constant for air in
       kJ/kgK
30 V_a=A_F_act*R_a*T1/(P1*100) //Volume of air in m^3
31 / \text{Given}, \text{rho}_{-f} = 3.35 * \text{rho}_{-a}, V_{-f} = 1/3.35 * V_{-a}
32 V_f = V_a/A_F_act*1/3.35 //Volume of fuel in m<sup>3</sup>/kg of
33 V_m=V_a+V_f //Total volume of mixture in m<sup>3</sup>/kg of
      fuel
34 V_m1=V_m*m_f/60 // Mixture aspirated in m<sup>3</sup>/min
```

Scilab code Exa 18.10 Calculations on gas engine

```
1 // Calculations on gas engine
2 clc, clear
3 //Given:
4 d=27, 1=45 //Bore and stroke in cm
5 D_b=1.62 // Effective diameter of the brake wheel in
6 t=38.5 //Duration of test in min
7 N=8080, N1=3230 //Number of revolutions and
      explosions
8 P=903 //Net load on brake in N
9 imep=5.64 //Indicated mean effective pressure in bar
10 Vg1=7.7 //Gas used in m<sup>3</sup>
11 T1=27+273 //Temperature of the gas in K
12 deltaP1=135 // Pressure difference of gas above
      atmospheric pressure in mm of water
13 Patm=750 //Atmospheric pressure in mm of Hg
14 CV=18420 // Calorific value of the gas in kJ/m<sup>3</sup> at N
15 m_w=183 //Mass of cooling water used in kg
```

```
16 deltaT_w=47 //Cooling water temperature rise in
     degreeC
17 // Solution:
18 P1=Patm+deltaP1/13.6 //Gas pressure in mm of Hg
19 P1=P1/750 //Gas pressure in bar
20 T2=0+273, P2=1.013 //Normal temperature and pressure
     (N.T.P.) in K and bar
21 Vg2=(P1/P2)*(T2/T1)*Vg1 //Gas consumption at N.T.P.
     in m<sup>3</sup>
22 Q1=Vg2/t*CV //Heat supplied in kJ/min
23 T=P*D_b/2 //Brake torque delivered in Nm
24 bp=2*%pi*(N/t*1/60)*(T)*10^-3 //Brake power in kW
25 \text{ bp=round}(10*bp)/10
26 Q_bp=bp*60 //Heat equivalent to brake power in kJ/
     min
27 A=\%pi/4*d^2*10^-4 //Area of cylinder in m^2
28 ip=imep*10^2*1/100*A*(N1/t*1/60) //Indicated power
     in kW
29 ip = round(10*ip)/10
30 Q_ip=ip*60 //Heat equivalent to indicated power in
     kJ/min
31 fp=ip-bp //Frictional power in kW
32 Q_fp=fp*60 //Heat equivalent to frictional power in
     kJ/min
33 cp=4.1868 //Specfic heat of water in kJ/kgK
34 Q_w=m_w/t*cp*(deltaT_w) //Heat in cooling water in
     kJ/min
35 Q_e=Q1-Q_bp-Q_w //Heat to exhaust, radiation in kJ/
36 eta_it=Q_ip/Q1 //Indicated thermal efficiency
37 eta_bt=Q_bp/Q1 //Brake thermal efficiency
38 // Results:
39 printf("\n The indicated thermal efficiency, eta_it
     = \%.1 f percent", eta_it*100)
40 printf("\n The brake thermal efficiency, eta_bt = \%
      .1f percent", eta_bt*100)
41 printf("\n\n Heat balance sheet\n\t Heat supplied
     by the gas = \%d kJ/min, \%d percent",Q1,Q1/Q1*100)
```

Scilab code Exa 18.11 Calculations from indicator diagram

```
1 // Calculations from indicator diagram
2 clc, clear
3 //Given:
4 Li=100 //Length of indicator diagram in mm
5 Ai = 2045 // Area of indicator diagram in mm<sup>2</sup>
6 Pi=2/10 //Pressure increment in cylinder from
      indicator pointer in bar/mm
7 d=100, l=100 //Bore and stroke in mm
8 N=900 //Engine speed in rpm
9 eta_m=75 // Mechanical efficiency in percent
10 //Solution:
11 Hi_av=Ai/Li //Mean height of indicator diagram in mm
12 imep=Hi_av*Pi //Mean effective pressure in bar
13 ip=imep*100*%pi/4*d^2*1*N/(2*60)*10^-9 //Indicated
      power in kW
14 bp=ip*eta_m/100 //Brake power in kW
15 // Results:
16 printf("\n The mean effective pressure, mep = \%.2 \, \mathrm{f}
      bar", imep)
17 printf("\n The indicated power, ip = \%.2 \text{ f kW}", ip)
18 printf("\n The brake power, bp = \%.2 \text{ f kW} \cdot \text{n}", bp)
```

Scilab code Exa 18.12 Calculations on diesel engine

```
1 // Calculations on diesel engine
2 clc, clear
3 //Given:
4 n=6 //Number of cylinders
5 bp=110 //Brake power in kW
6 N=1600 //Engine speed in rpm
7 CV=43100 // Calorific value in kJ/kg
8 pC=86.2/100, pH2=13.5/100, pNC=0.3/100 // Composition
      of Carbon, Hydrogen and non combustibles in fuel
9 eta_v=78 //Volumetric efficiency in percent
10 eta_it=38 //Indicated thermal efficiency in percent
11 eta_m=80 // Mechanical efficiency in percent
12 MS=110 // Mixture strength in percent
13 l_d=1.5 //Stroke bore ratio (1/d)
14 v_a=0.772 //Specific volume of air in m<sup>3</sup>/kg
15 p_m=23.1/100, p_v=20.8/100 // Composition of Oxygen in
       air by mass and volume
16 // Solution:
17 C=12 //Atomic mass of Carbon(C)
18 H=1 //Atomic mass of Hydrogen (H)
19 0=16 // Atomic mass of Oxygen (O)
20 N2=14 //Atomic mass of Nitrogen(N)
21 A_F_s = (pC*2*0/C+pH2*0/(2*H))/p_m //Stoichiometric
      air fuel ratio
22 A_F_act = (1+MS/100)*A_F_s //Actual air fuel ratio
23 Ma=(p_m*2*0)+((1-p_m)*2*N2) / Molecular mass of air
      per mole air in kg/mole
  //Stoichiometric equation of combustion of fuel (
      petrol)
        0.862/12[C] + 0.135/2[H2] + [p_v[O2] + (1-p_v)]
25
     [N2] \times x = a[CO2] + b[H2O] + c[O2] + d[N2]
26 //Equating coefficients
27 a=pC/C, b=pH2/(2*H) //On balancing C and H
28 x=A_F_act/Ma //Moles of air
29 c=p_v*x-a-b/2 //On balancing O
30 d=(1-p_v)*x //On balancing N
31 \text{ pCO2=a/(a+c+d),pO2=c/(a+c+d),pN2=d/(a+c+d)} //
      Composition of Carbon di oxide, Oxygen, Nitrogen
```

```
in dry exhaust
32 ip=bp/eta_m*100 //Indicated power in kW
33 m_f=ip/(eta_it/100*CV)*60 //Mass of fuel in kg/min
34 m_a=m_f*A_F_act //Mass of air in kg/min
35 V_a=m_a*v_a //Volume of air in m^3/min
36 \text{ V_s=V_a/eta_v*100 } //\text{Swept volume in m}^3/\text{min}
37 \text{ V_s=V_s/(n*N/2)} //\text{Swept volume in m}^3
38 function y=f(d) //Defining a function, f of unknown
     bore, d
39
       l=l_d*d //Stroke in terms of bore
       y = \%pi/4*d^2*l - V_s
40
41 endfunction
42 d=fsolve(1,f) //Function f solve for zero, bore in m
43 l=l_d*d //Stroke in m
44 //Results:
45 printf("\n The volumetric composition of dry exhaust
       n \ tN2 = \%.2 f \ percent, pCO2*100, pO2*100, pN2*100)
46 printf("\n The bore of the engine, d = \%.2 f cm\n The
       stroke of the engine, l = \%.2 \text{ f cm/n/n}, d*100, 1
     *100)
```

Scilab code Exa 18.13 Calculations on four stroke engine

```
// Calculations on four stroke engine
clc,clear
// Given:
d=150,l=250 // Bore and stroke in mm
Li=50 // Length of indicator diagram in mm
Ai=450 // Area of indicator diagram in mm²2
ISR=1.2 // Indicator spring rating in mm
N=420 // Engine speed in rpm
T=217 // Brake torque delivered in Nm
m_f=2.95 // Fuel consumption in kg/hr
CV=44000 // Calorific value in kJ/kg
```

```
12 m_w=0.068 //Mass of cooling water used in kg/s
13 deltaT_w=45 //Cooling water temperature rise in K
14 cp=4.1868 //Specfic heat capacity of water in kJ/kgK
15 //Solution:
16 Hi_av=Ai/Li //Mean height of indicator diagram in mm
17 imep=Hi_av/ISR //Mean effective pressure in bar
18 ip=imep*100*%pi/4*d^2*l*N/(2*60)*10^-9 //Indicated
     power in kW (Error in book)
19 bp=2*\%pi*(N/60)*(T)*10^-3 //Brake power in kW
20 eta_m=bp/ip //Mechanical efficiency (Error in book)
21 eta_bt=bp*3600/(m_f*CV) //Brake thermal efficiency
22 bsfc=m_f/bp //Brake specific fuel consumption in kg/
     kWh (Error in book)
23 //Energy balance
24 Power_f=m_f/3600*CV //Power in fuel in kW
25 Power_w=m_w*cp*deltaT_w //Power to cooling water in
     kW
26 Power_e=Power_f-bp-Power_w //Power to exhaust,
      radiation in kW
27 //Results:
28 printf("\n The mechanical efficiency, eta_m = %d
      percent", eta_m * 100)
29 printf ("\n The brake thermal efficiency, eta_bt = \%
      .1 f percent", eta_bt*100)
30 printf("\n The specific fuel consumption, bsfc = \%.3
      f kg/kWh", bsfc)
31 printf("\n
                   Energy balance \n\t Power in fuel = \%
      .1 f kW, %d percent", Power_f, Power_f/Power_f*100)
32 printf("\nt Brake power = \%.2 \, f \, kW, \%.1 \, f \, percent", bp
      ,bp/Power_f*100)
33 printf("\n\t Power to cooling water = \%.1 \text{ f kW}, \%.1 \text{ f}
      percent", Power_w, Power_w/Power_f *100)
34 printf("\n\t Power to exhaust, radiation = \%.1 \text{ f kW},
     %.1f percent", Power_e, Power_e/Power_f*100)
35 //Answers in the book are wrong
```

Scilab code Exa 18.14 Calculations on petrol engine

```
1 // Calculations on petrol engine
2 clc, clear
3 //Given:
4 n=6 //Number of cylinders
5 d=70,1=100 //Bore and stroke in mm
6 V_c=67 //Clearance volume in cm<sup>2</sup>
7 N=3960 //Engine speed in rpm
8 m_f=19.5 //Fuel consumption in kg/hr
9 T=140 //Brake torque delivered in Nm
10 CV=44000 // Calorific value in kJ/kg
11 g=1.4 //Specific heat ratio for air (gamma)
12 //Solution:
13 bp=2*%pi*N/60*T*10^-3 //Brake power in kW
14 A=\%pi/4*d^2*10^-6 //Area of cylinder in m<sup>2</sup>
15 bmep=bp*1000/(n*1/1000*A*N/(2*60)) //Brake mean
      effective pressure in Pascal
16 eta_bt=bp*3600/(m_f*CV) //Brake thermal efficiency
17 V_s = (\%pi/4)*d^2*1/1000 //Swept volume of one
      cylinder in cm<sup>3</sup>
18 r=(V_s+V_c)/V_c // Compression ratio
19 eta=1-1/r^(g-1) //Air standard efficiency
20 eta_r=eta_bt/eta //Relative efficiency
21 //Results:
22 printf("\n (a)The brake power, bp = \%d kW", bp)
23 printf("\n (b)The brake mean effective pressure,
     bmep = \%.2 f bar", bmep*10^-5)
24 printf("\n (c)The brake thermal efficiency, eta_bt =
      \%.1f percent", eta_bt*100)
25 printf("\n (d)The relative efficiency, eta_r = \%.1 \,\mathrm{f}
      percent \ n\ ", eta_r * 100)
```

Scilab code Exa 18.15 Hit and miss governing

```
1 //Hit and miss governing
2 clc, clear
3 //Given:
4 d=178, l=330 //Bore and stroke in mm
5 N=400 //Engine speed at full load in rpm
6 wmep=6.2 //Working loop mep in bar
7 pmep=0.35 //Pumping loop mep in bar
8 mep_dc=0.62 //Mean effective pressure from the dead
     cycles in bar
9 N_f=47 //Number of firing strokes at no load in rpm
10 //Solution:
11 imep=wmep-pmep //Net indicated mean effective
     pressure per cycle in bar
12 N_d=N/2-N_f //Number of dead cycles at no load in
13 ip1=imep*100*l*%pi/4*d^2*N_f/60*10^-9 //Indicated
     power at no load in kW
14 pp_dc=mep_dc*100*1*%pi/4*d^2*N_d/60*10^-9 //Pumping
     power of dead cycles when no load in kW
15 fp=ip1-pp_dc //Friction power in kW
16 ip=imep*100*1*%pi/4*d^2*N/(2*60)*10^-9 //Indicated
     power at full load in kW
17 bp=ip-fp //Brake power at full load in kW
18 eta_m=bp/ip //Mechanical efficiency at full load
19 //Results:
20 printf("\n The brake power at full load, b.p. = \%.2 f
      kW", bp)
21 printf("\n The mechanical efficiency at full load,
     eta_m = \%.1 f percent\n\n",eta_m*100)
```

Scilab code Exa 18.16 Calculations on two stroke engine

```
1 // Calculations on two stroke engine
2 clc, clear
3 // Given:
4 d=200, l=250 //Bore and stroke in mm
5 imep=4.5*10^5 //Indicated mean effective pressure in
      N/m^2
6 m_f=7 //Fuel consumption in kg/hr
7 CV=43500 // Calorific value in kJ/kg
8 N=180 //Engine speed in rpm
9 // Solution:
10 //(a)
11 ip=imep*l*%pi/4*d^2*N/60*10^-9*10^-3 //Indicated
     power in kW
12 //(b)
13 eta_it=ip*3600/(m_f*CV) //Indicated thermal
      efficiency
14 // Results:
15 printf("\n (a) The indicated power, ip = \%.1 \text{ f kW}", ip)
16 printf("\n (b) The indicated thermal efficiency,
      eta_it = \%.1f percent \n\n", eta_it*100)
```

Chapter 26

Gas Turbines

Scilab code Exa 26.1 Calculations on Brayton cycle

```
1 // Calculations on Brayton cycle
2 clc, clear
3 //Given:
4 P1=101.325 //Pressure at the beginning(1) in kPa
5 T1=27+273 //Temperature at the beginning (1) in K
6 r_p=6 //pressure ratio
7 g=1.4 //Specific heat ratio (gamma)
8 cp=1.005 //Specific heat in kJ/kgK
9 W_TC=2.5 // Ratio of Turbine work and compressor work
10 m=1 //Assume mass in kg
11 //Solution:
12 //Refer fig 26.22
13 T2=T1*r_p^((g-1)/g) //Temperature at 2 in K
14 T3=poly(0, 'T3') // Defining temperature at 3 as a
     unknown in K
15 T4=T3/r_p^{(g-1)/g} // Defining temperature at 4 in
     terms of T3 in K
16 W_C=m*cp*(T2-T1) // Compressor work in kJ
17 W_T=m*cp*(T3-T4) // Turbine work in kJ
18 T3=roots(W_T-W_TC*W_C) //Temperature at 3 in K
19 T4=horner(T4,T3) // Temperature at 4 in K
```

Scilab code Exa 26.2 Calculations on Joule cycle

```
1 // Calculations on Joule cycle
2 clc, clear
3 // Given:
4 T1=25+273, T3=825+273 //Minimum and maximum
      temperature in K
5 \text{ r_p=4.5} // \text{pressure ratio}
6 eta_C=85,eta_T=90 //Isentropic efficiencies of
      compressor and turbine in percent
7 P=1300 //Power rating of the turbine in kW
8 cp=1.005 //Specific heat in kJ/kgK
9 g=1.4 //Specific heat ratio (gamma)
10 // Solution:
11 //Refer fig 26.23
12 T2!=T1*r_p^((g-1)/g) //Isentropic temperature at 2
     in K
13 T2=(T2!-T1)/(eta_C/100)+T1 // Temperature at 2 in K
14 T4!=T3/r_p^{(g-1)/g} // Isentropic temperature at 4
     in K
15 T4=T3-eta_T/100*(T3-T4!) // Temperature at 4 in K
16 W_C=cp*(T2-T1) // Compressor work in kJ/kg
17 W_T = cp*(T3-T4) // Turbine work in kJ/kg
18 Q1=cp*(T3-T2) //Heat added in kJ/kg
19 W=W_T-W_C //Work output in kJ/kg (Round off error)
20 eta=W/Q1 //Cycle efficiency
21 r_w=W/W_T //Work ratio
22 HR=3600/(eta) //Heat rate in kJ/kWh (Round off error
```

Scilab code Exa 26.3 Calculations for zero efficiency

```
1 // Calculations for zero efficiency
2 clc, clear
3 //Given:
4 T1=25+273, T3=750+273 //Minimum and maximum
     temperature in K
5 r_p=4 //pressure ratio
6 eta_C=75 //Isentropic efficiency of compressor in
     percent
7 g=1.4 //Specific heat ratio (gamma)
8 //Solution:
9 //Refer fig 26.24
10 T2!=T1*r_p^((g-1)/g) //Isentropic temperature at 2
11 T2=(T2!-T1)/(eta_C/100)+T1 // Temperature at 2 in K
12 T4!=T3/r_p^{(g-1)/g} // Isentropic temperature at 4
     in K
13 //For zero efficiency of the cycle (T3-T4) = (T2-T1)
14 eta_T=(T2-T1)/(T3-T4!) // Turbine efficiency
15 // Results:
16 printf("\n The turbine efficiency for zero cycle
```

Scilab code Exa 26.4 Calculations on gas turbine

```
1 // Calculations on gas turbine
2 clc, clear
3 //Given:
4 P1=1, P2=6 // Pressure at entering and leaving of
     compressor in bar
5 T1=27+273 //Temperature at entering in K
6 T3=700+273 //Maximum temperature in K
7 eta_C=0.80, eta_T=0.85 //Isentropic efficiencies of
     compressor and turbine in percent
8 eta_c=0.98 //Combustion efficiency in percent
9 P3=P2-0.1 //Pressure at 3 after falling 0.1 bar in
     bar
10 cp_a=1.005 //Specific heat of air in kJ/kgK
11 g=1.4 //Specific heat ratio (gamma)
12 cp_g=1.147 // Specific heat of gas in kJ/kgK
13 g1=1.333 //Specific heat ratio (gamma) of gas
14 CV=42700 // Calorific value of fuel in kJ/kg
15 // Solution:
16 //Refer fig 26.25
17 T2!=T1*(P2/P1)^((g-1)/g) //Isentropic temperature at
      2 in K
18 T2=(T2!-T1)/(eta_C)+T1 // Temperature at 2 in K
19 T4!=T3/(P3/P1)^{(g1-1)/g1)} // Isentropic temperature
     at 4 in K
20 T4=T3-eta_T*(T3-T4!) //Temperature at 4 in K
21 W_C=cp_a*(T2-T1) // Compressor work in kJ/kg
22 W_T=cp_g*(T3-T4) //Turbine work in kJ/kg
23 W=W_T-W_C //Work output in kJ/kg
24 Q1=cp_g*(T3-T2)/eta_c //Heat added in kJ/kg
25 eta=W/Q1 //Cycle efficiency
26 r_w=W/W_T //Work ratio
```

Scilab code Exa 26.5 Calculations on gas turbine

```
1 // Calculations on gas turbine
2 clc, clear
3 //Given:
4 P1=1, P2=6.20 // Pressure at entering and leaving of
     compressor in bar
5 T1=300 //Temperature at entering in K
6 eta_C=88,eta_T=90 //Isentropic efficiencies of
     compressor and turbine in percent
7 CV=44186 // Calorific value of fuel in kJ/kg
8 F_A=0.017 //Fuel air ratio
9 cp_a=1.005 // Specific heat of air in kJ/kgK
10 g=1.4 //Specific heat ratio (gamma)
11 cp_g=1.147 // Specific heat of gas in kJ/kgK
12 g1=1.333 //Specific heat ratio (gamma) of gas
13 //Solution:
14 // Refer fig 26.26
15 T2!=T1*(P2/P1)^{(g-1)/g} // Isentropic temperature at
      2 in K
16 T2=(T2!-T1)/(eta_C/100)+T1 // Temperature at 2 in K
17 m_a=1 //Assume mass of air in kg
18 m_f = F_A * m_a //Mass of fuel in kg
```

```
19 T3=(cp_a*m_a*T2+m_f*CV)/(cp_g*(m_a+m_f)) //
      Temperature at 3 in K
20 \text{ r_p=P2/P1 } // \text{pressure ratio}
21 T4!=T3/r_p^{(g1-1)/g1} // Isentropic temperature at 4
       in K
22 T4=T3-eta_T/100*(T3-T4!) //Temperature at 4 in K
23 W_C=m_a*cp_a*(T2-T1) // Compressor work in kJ/kg
24 W_T = (m_a + m_f) * cp_g * (T3 - T4) / Turbine work in kJ/kg
25 W=W_T-W_C //Work output in kJ/kg
26 Q1=m_f*CV //Heat added in kJ/kg
27 eta=W/Q1 //Cycle efficiency
28 //Results:
29 printf("\n The turbine work, W_T = \%.2 f kJ/kg", W_T)
30 printf("\n The compressor work, W_C = \%.2 f kJ/kg",
      W_C)
31 printf ("\n The thermal efficiency, eta = \%.2 \,\mathrm{f}
      percent \n\n", eta*100)
```

Scilab code Exa 26.6 Calculations on gas turbine with heat exchanger

```
14 cp_g=1.07 //Specific heat of gas in kJ/kgK
15 g1=1.365 //Specific heat ratio (gamma) of gas
16 // Solution:
17 // Refer fig 26.27
18 T2!=T1*r_p^{(g-1)/g} // Isentropic temperature at 2
19 T2=(T2!-T1)/(eta_C/100)+T1 // Temperature at 2 in K
20 W=W/m //Specific work output in kJ/kg
21 Q1=W/eta //Heat added in kJ/kg
22 W_C=cp_a*(T2-T1) //Compressor work in kJ/kg
23 W_T=W+W_C // Turbine work in kJ/kg
24 function y=f(T4)
       T3=T4-Q1/cp_g // Defining temperature at 3 in
25
          terms of T4 in K
26
       T5=T4-W_T/cp_g // Defining temperature at 5 in
          terms of T4 in K
       y=(cp_a*(T3-T2))/(cp_g*(T5-T2))-e
27
28 endfunction
  //Since effectiveness from the relation must be
      equal to the given effectiveness
30 //Thus their difference must be equal to Zero, thus
     function, f solve for zero to get the value of
      variable (T4)
31 T4=fsolve(1000,f) //Temperature at 4 in K
32 T5=T4-W_T/cp_g //Temperature at 5 in K
33 T5!=T4/r_p^{(g1-1)/g1} //Isentropic temperature at 5
      in K
34 eta_T=(T4-T5)/(T4-T5!) // Isentropic efficiency of
      turbine
35 //Results:
36 printf("\n The isentropic efficiency of the gas
     turbine, eta_T = \%.1 f percent\n\n",eta_T*100)
```

Scilab code Exa 26.7 Calculations on compound gas turbine

```
1 // Calculations on compound gas turbine
2 clc, clear
3 // Given:
4 r_p=4 //pressure ratio
5 eta_C=0.86, eta_HPT=0.84, eta_LPT=0.80 // Isentropic
      efficiencies of compressor and high and low
      pressure turbine in percent
6 e=70 //Effectiveness of heat exchanger in percent
7 eta_d=0.92 //Mechanical efficiency of drive to
     compressor
8 T4=660+273, T6=625+273 //Temperature of gases
     entering H.P. turbine and L.P. turbine in K
9 cp_a=1.005 //Specific heat of air in kJ/kgK
10 g=1.4 // Specific heat ratio (gamma)
11 cp_g=1.15 //Specific heat of gas in kJ/kgK
12 g1=1.333 //Specific heat ratio(gamma) of gas
13 T1=15+273 // Atmospheric temperature in K
14 P1=1 //Atmospheric pressure in bar
15 //Solution:
16 //Refer fig 26.28, 26.29
17 P2=r_p*P1, P4=P2 // Pressure at 2, 4 in bar
18 T2!=T1*r_p^{(g-1)/g} // Isentropic temperature at 2
     in K
19 T2=(T2!-T1)/(eta_C)+T1 // Temperature at 2 in K
20 W_C=cp_a*(T2-T1) // Compressor work in kJ/kg
21 W_HPT=W_C/eta_d //Work done by H.P. turbine in kJ/kg
22 T5=T4-W_HPT/cp_g //Temperature at 5 in K
23 T5!=T4-(T4-T5)/(eta_HPT) //Isentropic temperature at
      5 in K
24 P5=P4/(T4/T5!)^{(g1/(g1-1))} // Pressure at 5 in bar
25 P6=P5, P7=P1 // Pressure at 6, 7 in bar
26 T7!=T6*(P7/P6)^{(g1-1)/g1} // Isentropic temperature
      at 7 in K
27 T7=T6-eta_LPT*(T6-T7!) //Temperature at 7 in K
28 W_LPT=cp_g*(T6-T7) //Work done by L.P. turbine in kJ
     /kg
29 T3=poly(0, 'T3') // Defining temperature at 3 as a
     unknown in K
```

```
30 e1=(cp_a*(T3-T2))/(cp_g*(T7-T2)) // Effectiveness in
      terms of T3
31 //Effectiveness from the relation must be equal to
      the given effectiveness
32 //Thus their difference must be zero
33 T3=roots(e1-e/100) //Temperature at 3 in K
34 W=cp_g*(T6-T7) //Work output in kJ/kg (error in book
35 Q1=cp_g*(T4-T3)+cp_g*(T6-T5) //Heat added in kJ/kg
36 eta=W/Q1 //Cycle efficiency
37 //Results:
38 printf("\n The pressure of the gas entering L.P.T.,
     P6 = \%.2 f bar", P6)
39 printf("\n The net specific power, W = \%.2 f \text{ kW/kg/s}"
40 printf("\n The overall efficiency, eta = \%.4 \text{ f} \cdot \text{n}",
      eta)
41 //Answer is wrong in book
```

Scilab code Exa 26.8 Calculations on automotive gas turbine

```
//Calculations on automotive gas turbine
clc,clear
//Given:
r_p=6 //pressure ratio
e=65 //Effectiveness of heat exchanger in percent
T5=800+273,T1=15+273 //Inlet temperature to H.P.
    turbine and L.P. compressor in K
m=0.7 //Mass flow rate in kg/s
eta_C=0.8,eta_HPT=0.85,eta_LPT=0.85 //Isentropic
    efficiency of compressor and high and low
    pressure turbine in percent
eta_d=98 //Mechanical efficiency to drive compressor
    in percent
eta_c=97 //Combustion efficiency in percent
```

```
11 CV=42600 // Calorific value of fuel in kJ/kg
12 cp=1.005 //Assume specific heat in kJ/kgK
13 g=1.4 //Specific heat ratio (gamma)
14 // Solution:
15 //Refer fig 26.30, 26.31
16 P1=1 //Atmospheric pressure in bar
17 P3=r_p*P1, P5=P3, P7=P1 // Pressure at 3, 5, 7 in bar
18 T3!=T1*r_p^{(g-1)/g} // Isentropic temperature at 3
     in K
19 T3! = round(T3! * 10) / 10
20 T3=(T3!-T1)/(eta_C)+T1 //Temperature at 3 in K
21 W_C=m*cp*(T3-T1) //Compressor work in kW
22 W_HPT=W_C*100/eta_d //Work done by H.P. turbine in
     kW
23 T6=T5-W_HPT/(m*cp) //Temperature at 6 in K
24 T6!=T5-(T5-T6)/(eta_HPT) //Isentropic temperature at
       6 in K
25 P6=P5/(T5/T6!)^{(g/(g-1))} / Pressure at 6 in bar
26 T7!=T6*(P7/P6)^{(g-1)/g} // Isentropic temperature at
      7 in K
27 T7=T6-eta_LPT*(T6-T7!) //Temperature at 7 in K
28 W=m*cp*(T6-T7) //Net power developed in kW
29 T4=e/100*(T7-T3)+T3 //Temperature at 4 in K
30 Q1=m*cp*(T5-T4)*100/eta_c //Heat supplied in kJ/s
31 eta=W/Q1 //Overall thermal efficiency
32 sfc=Q1*3600/(CV*W) //Specific fuel consumption in kg
     /kWh
33 //Results:
34 printf("\n (a)The net power developed, W = \%.2 f \text{ kW}",
     W)
35 printf("\n (b)The overall thermal efficiency, eta =
     \%.1f percent", eta*100)
36 printf("\n (c)The specific fuel consumption, sfc = \%
     .3 f kg/kWh n n", sfc)
```

Scilab code Exa 26.9 Calculations on Helium gas turbine

```
1 // Calculations on Helium gas turbine
2 clc, clear
3 // Given:
4 P1=4, P2=16 // Pressure at entering and leaving of
     compressor in bar
5 T1=320, T2=590 // Temperature at entering and leaving
      of compressor in K
6 e=70 //Effectiveness of heat exchanger in percent
7 P3=15.5, P4=4.2 // Pressure at entering and leaving of
       turbine in bar
8 T3=1400, T4=860 //Temperature at entering and leaving
       of turbine in K
9 P=100 //Net power output in MW
10 cp_h=5.2 // Specific heat of helium in kJ/kgK
11 g_h=1.67 //Specific heat ratio(gamma) for helium
12 //Solution:
13 //Refer fig 26.32, 26.33
14 T2!=T1*(P2/P1)^((g_h-1)/g_h) // Isentropic
     temperature at 2 in K
15 eta_C=(T2!-T1)/(T2-T1) //Compressor efficiency
16 T4!=T3/(P3/P4)^{(g_h-1)/g_h} //Isentropic
     temperature at 4 in K
17 eta_T=(T3-T4)/(T3-T4!) // Turbine efficiency
18 Tx=T2+(T4-T2)*e/100 // Temperature at leaving of
     regenerator in K
19 Q1=cp_h*(T3-Tx) //Heat supplied in kJ/kg
20 W_T = cp_h * (T3 - T4) / Turbine work in kJ/kg
21 W_C=cp_h*(T2-T1) // Compressor work in kJ/kg
22 W=W_T-W_C //Work output in kJ/kg
23 eta=W/Q1 //Cycle efficiency
24 T5=T4-(Tx-T2) //Temperature at 5 in K
25 Qout=cp_h*(T5-T1) //Heat rejected in precooler in kJ
26 m_h=P*1000/W //Helium flow rate in kg/s
27 // Results:
28 printf("\n (a)The compressor efficiency, eta_C = \%.3
```

```
f\n\tThe turbine efficiency, eta_T = %.3f",eta_C,
    eta_T)

29 printf("\n (b)The thermal efficiency of the cycle,
    eta = %.1f percent",eta*100)

30 printf("\n (c)The heat rejected in the cooler before
    compressor, Qout = %.1f kJ/kg",Qout)

31 printf("\n (d)The helium flow rate for the net power
    output of 100 MW, m = %.2f kg/s\n\n",m_h)
```

Scilab code Exa 26.10 Calculations on closed cycle gas turbine

```
1 // Calculations on closed cycle gas turbine
2 clc, clear
3 //Given:
4 r_p=9 //Overall pressure ratio
5 eta_LPC=85, eta_HPC=85 //Isentropic efficiency of L.P
     . and H.P. compressors in percent
6 eta_LPT=90, eta_HPT=90 //Isentropic efficiency of L.P
     . and H.P. turbine in percent
7 T1=300, T5=1100 //Inlet temperature to turbine and
     compressor in K
8 cp_ar=0.5207 //Specific heat of Argon in kJ/kgK
9 g_ar=1.667 // Specific heat ratio (gamma) for Argon
10 R_ar=0.20813 //Specific gas constant for Argon in kJ
     /kgK
11 //Solution:
12 //Refer fig. 26.34, 26.35
13 m_ar=1 //Assume mass flow rate in kg/s
14 P1=1 //Assume pressure at entering to L.P.
     compressor in bar
15 P2=sqrt(r_p)*P1 // Pressure at leaving to L.P.
     compressor in bar
16 P3=P2 //Pressure at entering to H.P. compressor in
17 P4=r_p*P1 //Pressure at leaving to H.P. compressor
```

```
in bar
  T2!=T1*(P2/P1)^{(g_ar-1)/g_ar)}/Isentropic
      temperature at 2 in K
19 T2=(T2!-T1)/(eta_LPC/100)+T1 // Temperature at 2 in K
20 W_LPC=m_ar*cp_ar*(T2-T1) //Work required by L.P.
      compressor in kJ/kg/s
21 T3=T1 //Temperature at 3 in K
22 T4!=T3*(P4/P3)^((g_ar-1)/g_ar) //Isentropic
      temperature at 4 in K
23 T4=(T4!-T3)/(eta_HPC/100)+T3 // Temperature at 4 in K
24 //Work required is same for both L.P.C. and H.P.C.
      as pressure ratio is same for both
25
  W_HPC=W_LPC //Work required by H.P. compressor in kJ
     / kg / s
  P5=P4, P6=P2, P7=P6, P8=P1 // Pressure at 5, 6, 7, 8 in
  T6!=T5/(P5/P6)^{(g_ar-1)/g_ar)}/Isentropic
27
      temperature at 6 in K
28 T6=T5-eta_HPT/100*(T5-T6!) // Temperature at 6 in K
29 W_HPT=m_ar*cp_ar*(T5-T6) //Work done by H.P. turbine
       in kJ/kg/s
30 //Work done is same for both L.P.T. and H.P.T. as
      pressure ratio is same for both
31 W_LPT=W_HPT //Work done by L.P. turbine in kJ/kg/s
32 T7=T5 //Temperature at 7 in K
\frac{33}{a} / \frac{a}{a}
34 W=(W_HPT+W_LPT)-(W_HPC+W_LPC) //Net work done in kW/
     kg
35 //(b)
36 \text{ r_w=W/(W_HPT+W_LPT)} //\text{Work ratio}
37 //(c)
38 Q1_c=m_ar*cp_ar*(T5-T4) //Heat supplied in
      combustion chamber in kJ/kg/s
39 Q1_r=m_ar*cp_ar*(T7-T6) //Heat supplied in reheater
      in kJ/kg/s
40 eta=W/(Q1_c+Q1_r) // Overall efficiency
41 // Results:
42 printf("\n (a) The work done per kg of fuel flow, W =
```

```
\%.1 \ f \ kW/kg", W) 43 printf("\n (b)The work ratio, r_w = \%.3 \ f",r_w) 44 printf("\n (c)The overall efficiency, eta = \%.3 \ f\n\n ",eta)
```

Chapter 27

Testing of Internal Combustion Engines According to Indian and International Standards

Scilab code Exa 27.1 Calculations on non supercharged CI engine

```
1 // Calculations on non supercharged CI engine
2 clc, clear
3 // Given:
4 Pr=500 //Standard reference brake power in kW
5 eta_m=85 // Mechanical efficiency in percent
6 br=220 //Standard specific fuel consumption in g/kWh
7 px=87 //Site ambient air pressure in kPa
8 Tx=45+273 //Site ambient temperature in K
9 phix=80/100 //Relative humidity at site
10 //Solution:
11 //Refer table 27.1, 27.2 and 27.3
12 a=1 //Factor
13 m=1, n=0.75, q=0 //Exponents
14 psx=9.6 //Saturation vapour pressure at site in kPa
15 psr=3.2 //Standard saturation vapour pressure in kPa
16 pr=100 //Standard total barometric pressure in kPa
17 Tr=298 //Standard air temperature in K
```

Scilab code Exa 27.2 Calculations on turbocharged CI engine

```
1 // Calculations on turbocharged CI engine
2 clc, clear
3 //Given:
4 Pr=1000 //Standard reference brake power in kW
5 eta_m=90 // Mechanical efficiency in percent
6 Pir=2 //Boost pressure ratio
7 Tra=313 //Substitute reference air temperature in K
8 Pimax=2.36 //Maximum boost pressure ratio
9 h=4000 // Altitude in m
10 px=61.5 // Site ambient air pressure in kPa
11 Tx=323 //Site ambient temperature in K
12 Tcx=310 //Charge air coolent temperature at site in
     K
13 //Solution:
14 //Refer table 27.1, 27.2 and 27.3
15 m=0.7, n=1.2, q=1 //Exponents
16 pr=100 //Standard total barometric pressure in kPa
17 Tcr=298 //Standard charge air coolent temperature in
```

```
K
18 Tr=298 //Standard air temperature in K
19 pra=pr*Pir/Pimax //Standard reference pressure in
     kPa
20 pra=round(10*pra)/10
21 k=(px/pra)^m*(Tra/Tx)^n*(Tcr/Tcx)^q //The ratio of
     indicated power
22 alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment
      factor
23 Px1=round(alpha*Pr) //Brake power at site in kW
24 //If reference conditions are not changed
25 k=(px/pr)^m*(Tr/Tx)^n*(Tcr/Tcx)^q //The ratio of
     indicated power
26 alpha=k-0.7*(1-k)*(100/eta_m-1) //Power adjustment
     factor
27 Px2=round(alpha*Pr) //Brake power at site in kW
28 //Results:
29 printf("\n Power available at an altitude of 4000m,
     Px = \%d kW", Px1)
30 printf("\n Power available at an altitude of 4000m
     if reference conditions are not changed, Px = %d
     kW \ n", Px2)
```

Scilab code Exa 27.3 Calculations on turbocharged CI engine

```
1 // Calculations on turbocharged CI engine
2 clc, clear
3 // Given:
4 Px=640 // Brake power at site in kW
5 px=70 // Site ambient air pressure in kPa
6 Tx=330 // Site ambient temperature in K
7 Tcx=300 // Charge air coolent temperature at site in K
8 eta_m=85 // Mechanical efficiency in percent
9 py=100 // Test ambient pressure in kPa
```

```
10 Tcy=280 //Charge air coolent temperature at test in
11 Ty=300 //Test ambient temperature in K
12 // Solution:
13 //Refer table 27.1, 27.2 and 27.3
14 m=0.7, n=1.2, q=1 // Exponents
15 pr=100 //Standard total barometric pressure in kPa
16 Tcr=298 //Standard charge air coolent temperature in
      K
17 Tr=298 //Standard air temperature in K
18 kr = (px/pr)^m * (Tr/Tx)^n * (Tcr/Tcx)^q //The ratio of
     indicated power
19 kr = floor(1000*kr)/1000
20 alphar=kr-0.7*(1-kr)*(100/eta_m-1) //Power
     adjustment factor
21 Pr=Px/alphar //Standard reference brake power in kW
22 ky=(py/pr)^m*(Tr/Ty)^n*(Tcr/Tcy)^q //The ratio of
      indicated power at test
23 alphay=ky-0.7*(1-ky)*(100/eta_m-1) //Power
      adjustment factor at test
24 Py=Pr*alphay //Brake power at test in kW (Round off
      error)
25 //Results:
26 printf("\n Power developed under test ambient
      conditions, Py = \%.0 f kW, Py)
27 //Round off error in the value of 'Py'
```

Scilab code Exa 27.4 Simulating site ambient conditions

```
//Simulating site ambient conditions
clc,clear
//Given:
//Datas are taken from Ex. 27.3
Px=640 //Brake power at site in kW
eta_m=85 //Mechanical efficiency in percent
```

```
7 px=70 //Site ambient air pressure in kPa
8 py=100 //Standard total barometric pressure in kPa
9 Tx=330 //Site ambient temperature in K
10 Ty=300 //Test ambient temperature in K
11 p2_py=2.5 // Pressure ratio
12 by=238 // Specific fuel consumption at test in g/kWh
13 // Solution:
14 / \text{Refer table } 27.1, 27.2 \text{ and } 27.3
15 m=0.7, n=1.2, q=1 //Exponents
16 ky=(py/px)^m //The ratio of indicated power at test
17 alphay=ky-0.7*(1-ky)*(100/eta_m-1) //Power
      adjustment factor at test
18 Py=round(Px*alphay) //Brake power at test in kW
19 //From fig 27.1
20 Tx_Ty=Tx/Ty //Temperature ratio
21 p1_py=0.925 //Ratio
22 p1=p1_py*py //Air pressure after throttle in kPa (
      printing error)
23 Betay=ky/alphay //Fuel consumption adjustment factor
       at test
24 bx=by/Betay //Specific fuel consumption at site in g
      /kWh
  //Results:
25
26 printf("\n Power developed on the test bed, Py = \%d
     kW", Py)
27
  printf("\n The pressure behind the throttle plate,
     p1 = \%.1 f kPa", p1)
28 printf("\n The fuel consumption adjusted to site
      ambient conditions, bx = \%d g/kWh", bx)
29 //Answer in the book is printed wrong
```

Scilab code Exa 27.5 Calculations on unsupercharged SI engine

```
1 // Calculations on unsupercharged SI engine 2 clc, clear
```

```
3 //Given:
4 Py=640 //Brake power at test in kW
5 py=98 //Test ambient pressure in kPa
6 Ty=303 //Test ambient temperature in K
7 phiy=0.8 //Relative humidity at test
8 //Solution:
9 //Refer table 27.1, 27.3
10 psy=4.2 //Saturation vapour pressure at test in kPa
11 psr=3.2 //Standard saturation vapour pressure in kPa
12 pr=100 //Standard total barometric pressure in kPa
13 Tr=298 //Standard air temperature in K
14 phir=0.3 //Standard relative humidity
15 alpha_a=((pr-phir*psr)/(py-phiy*psy))^1.2*(Ty/Tr)
     ~0.6 //Correction factor for CI engine
16 Pr=round(alpha_a*Py) //Standard reference brake
     power in kW
17
  //Results:
18 printf("\n The power at standard reference
     conditions, Pr = \%d kW", Pr)
```

Scilab code Exa 27.6 Calculations on turbocharged CI engine

```
//Calculations on turbocharged CI engine
clc,clear
//Given:
Py=896 //Brake power at test in kW
py=96 //Test ambient pressure in kPa
Ty=302 //Test ambient temperature in K
phiy=0.2 //Relative humidity at test
px=98 //Site ambient air pressure in kPa
Tx=315 //Site ambient temperature in K
phix=0.4 //Relative humidity at site
N=1800 //Engine speed in rpm
V_s=51.8 //Swept volume in litres
m_f=54.5 //Fuel delivery in gm/s
```

```
14 pi=2.6 //Pressure ratio
15 //Solution:
16 //Refer table 27.1, 27.3
17 psy=4.8 //Saturation vapour pressure at test in kPa
18 psx=8.2 //Saturation vapour pressure at site in kPa
19 q=m_f*1000/(N/(2*60)*V_s) //Fuel delivery in mg/
      litrecycle
20 qc=round(q/pi) //Corrected fuel delivery inmg/
      litrecycle
  //Applying condition given in fig 27.2 for value of
21
      engine factor (fm)
22 if (qc <= 40) then
23
       fm = 0.3;
24 elseif (qc >= 65) then
25
       fm = 1.2;
26 else
27
       fm = 0.036 * qc - 1.14;
28 end
29 fa=((px-phix*psx)/(py-phiy*psy))^0.7*(Ty/Tx)^1.5 //
      Atmospheric factor
30 alpha_d=fa^fm // Correction factor for CI engine
31 Px=alpha_d*Py //Brake power at site in kW
32 //Results:
33 printf("\n Power at site ambient conditions, Px = \%d
      kW", Px)
```

Scilab code Exa 27.7 Calculations on turbocharged CI engine

```
// Calculations on turbocharged CI engine
clc,clear
// Given:
Py=700 // Brake power at test in kW
py=96 // Test ambient pressure in kPa
Ty=302 // Test ambient temperature in K
phiy=0.2 // Relative humidity at test
```

```
8 px=69 // Site ambient air pressure in kPa
9 Tx=283 //Site ambient temperature in K
10 phix=0.4 //Relative humidity at site
11 N=1200 //Engine speed in rpm
12 V_s=45 //Swept volume in litres
13 m_f=51.3 //Fuel delivery in gm/s
14 pi=2.0 //Pressure ratio
15 eta_m=85 // Mechanical efficiency in percent
16 //Solution:
17 pr=100 //Standard total barometric pressure in kPa
18 Tr=298 //Standard air temperature in K
19 phir=0.3 //Standard relative humidity
20 //Refer table 27.1, 27.3
21 psy=4.1 //Saturation vapour pressure at test in kPa
22 psx=1.2 //Saturation vapour pressure at site in kPa
23 psr=3.2 //Standard saturation vapour pressure in kPa
24 q=m_f*1000/(N/(2*60)*V_s) //Fuel delivery in mg/
      litrecycle
25 qc=round(q/pi) //Corrected fuel delivery in mg/
      litrecvcle
  //Applying condition given in fig 27.2 for value of
     engine factor (fm)
27 if (qc <= 40) then
28
       fm = 0.3;
29 elseif (qc >= 65) then
30
       fm = 1.2;
31 else
32
       fm = 0.036 * qc - 1.14;
33 end
34 \text{ fa} = ((px-phix*psx)/(py-phiy*psy))^0.7*(Ty/Tx)^1.5 //
     Atmospheric factor
35 alpha_d=fa^fm //Correction factor for CI engine
36 //Applying condition given in section 27.4.2
37 if (alpha_d > 0.9) & (alpha_d < 1.1) then
38
       Px=alpha_d*Py
39 else
       fa=((pr-phir*psr)/(py-phiy*psy))^0.7*(Ty/Tr)^1.5
40
           //Atmospheric factor
```

```
alpha_d=fa^fm // Correction factor for CI engine
41
       Pr=alpha_d*Py //Standard reference brake power
42
          in kW
       m=0.7, n=2 //Exponents
43
       k=(px/pr)^m*(Tr/Tx)^n //The ratio of indicated
44
       alpha=k-0.7*(1-k)*(100/eta_m-1) //Power
45
          adjustment factor
       Px=alpha*Pr //Brake power at site in kW
46
47 end
48 // Results:
49 printf("\n Power at site ambient conditions, Px = %d
      kW", Px)
50 //Answer in the book is wrong
```