Тропическая линейная алгебра

Никита Шапошник, Б05-025 научный руководитель: А. Э. Гутерман

1 Определения

Определение 1.1. Тропическая алгебра ([2], [3]) — это множество $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = \max(a, b)$$

 $a \odot b = a + b.$

Тропическая алгебра является полукольцом.

Множество матриц размера $n \times m$ над \mathbb{R}_{\max} будем обозначать через $\mathbb{R}_{\max}^{n \times m}$.

2 Матрицы и графы

Определение 2.1. Вещественная матрица A называется примитивной, если существует натуральное число m такое, что A^m положительна, то есть все числа в ней положительны. При этом наименьшее такое m называется экспонентой матрицы и обозначается через exp(A).

Теорема 2.2 (ЧТО ТАКОЕ ГРАФ СМЕЖНОСТИ Критерий примитивности матрицы, [10]). Неотрицательная квадратная матрица порядка n над \mathbb{R} примитивна тогда u только тогда, когда граф смежности этой матрицы сильно связен u НОК всех длин замкнутых путей (циклов) равно 1.

Теорема 2.3 (Виландта, [5]). Если неотрицательная квадратная матрица порядка n над полем вещественных чисел примитивна, то ее экспонента не превосходит число Виландта $Wi(n) = n^2 - 2n + 2$.

Примитивность и экспонента тропической матрицы определяется так же, как и в вещественном случае, с отличием лишь в том, что в степени матрицы не должно быть нулей тропического полукольца, т.е. $-\infty$.

Рассмотрим тропическую матрицу $A \in \mathbb{R}_{\max}^{n \times n}$. По ней можно построить ориентированный взвешенный граф $\mathcal{G}(A) = (V, E)$, где $V = \{1, 2, \dots, n\}$, а $E \subseteq V \times V$, где $(i, j) \in E$ тогда и только тогда, когда $a_{ij} \neq -\infty$. Веса рёбер определяются функцией $w : E \to \mathbb{R}$, $(i, j) \mapsto a_{ij}$. Говорят, что A является матрицей смежности графа $\mathcal{G}(A)$.

Наоборот, по взвешенному ориентированному графу аналогично можно построить матрицу смежности. Для этого нужно пронумеровать вершины и поставить в соответствующие ячейки матрицы веса рёбер.

3 Индекс цикличности

Определение 3.1. Индекс цикличности (или просто цикличность) ориентированного графа \mathcal{G} обозначается через $\sigma_{\mathcal{G}}$ и определяется следующим образом:

- 1. Если \mathcal{G} сильно связен, $u|V(\mathcal{G})| \geq 2$, то цикличность равна НОД всех длин ориентированных циклов в \mathcal{G} .
- 2. Если в \mathcal{G} есть только одна вершина (с петлей или без), то $\sigma_{\mathcal{G}}=1$.
- 3. Если G не сильно связен, то его цикличность равна HOK цикличностей всех максимальных его сильно связных подграфов.

Замечание 3.2 (Переформулировка критерия примитивности, см.[10]). Тропическая матрица $A \in \mathbb{R}_{\max}^{n \times n}$ примитивна тогда и только тогда, когда $\mathcal{G}(A)$ сильно связен и его индекс цикличности равен 1.

Заметим, что в сильно связном графе \mathcal{G} с цикличностью γ любые 2 пути, соединяющий 2 фиксированные вершины, имеют одинаковые длины по модулю γ . Из этого следует, что на множестве $V(\mathcal{G})$ можно ввести отношение эквивалентности: 2 вершины лежат в одном классе эквивалентности тогда и только тогда, когда длина пути от одной к другой кратна γ . Эти классы эквивалентности называются циклическими классами.

Пусть $\mathcal{G} = (V, E)$ — взвешенный ориентированный граф с матрицей смежности $A = (a_{ij}) \in \mathbb{R}_{\max}^{n \times n}$. Пусть C — это ориентированный цикл в \mathcal{G} с весами ребер $a_{i_1}, a_{i_2}, \ldots, a_{i_l}$. Средний вес ребра в C — это тропическое среднее геометрическое весов ребер в C:

$$w_a(C) = \sqrt[\infty]{a_{i_1} \odot a_{i_2} \odot \cdots \odot a_{i_l}} = \frac{1}{l}(a_{i_1} + a_{i_2} + \cdots + a_{i_l})$$

Определение 3.3. Ориентированный цикл называется критическим, если у него максимальный средний вес. Критический подграф \mathcal{G}^c графа \mathcal{G} — это объединение всех критических циклов в \mathcal{G} .

Обозначим максимальный средний вес цикла в $\mathcal{G}(A)$ через $\lambda(A)$, т.е.

$$\lambda(A) = \bigoplus_{k=1}^{d} \bigoplus_{i_1, \dots, i_k} (a_{i_1 i_2} \odot \dots \odot a_{i_{k-1} i_k})^{\odot 1/k} =$$

$$= \max_{k=1}^{d} \max_{i_1, \dots, i_k} \frac{(a_{i_1 i_2} + \dots + a_{i_{k-1} i_k})}{k}$$

4 CSR-декомпозиция

4.1 Необходимые определения

Назовем тропическую матрицу A (или соответствующий ей граф) неразложимой, если граф $\mathcal{G}(A)$ сильно связен, иначе — разложимой.

Назовем тропическую матрицу A (или соответствующий ей граф) полностью разложимой, если в графе $\mathcal{G}(A)$ нет ребер между различными компонентами сильной связности.

Рассмотрим тропическую матрицу $A \in \mathbb{R}_{\max}^{n \times n}$. Тогда звездой Клини матрицы A называется следующая матрица:

$$A^* = \bigoplus_{i=0}^{\infty} A^i = \bigoplus_{i=0}^{n-1} A^i$$

В матрице A^* в ячейке под номером i и j лежит длина оптимального пути от вершины i к вершине j по всему графу, без ограничения на длину пути. Условие $\lambda(A) \leq 0$ необходимо, так как иначе этот ряд расходится: можно идти по циклу с положительным средним весом и улучшать ответ. Так как дважды проходить через одну и ту же вершину не имеет смысла, можно ограничиться первыми n матрицами.

4.2 Матрицы CSR

Рассмотрим неразложимую $A \in \mathbb{R}_{\max}^{n \times n}$. Введем обозначения: $\sigma = \sigma(\mathcal{G}^c(A))$ – индекс цикличности критического подграфа, $M = ((\lambda(A)^- \odot A^\sigma)^*$. Здесь и далее для $a \in \mathbb{R}_{\max}$, $a \neq -\infty$ через a^- будем обозначать обратное по умножению к a, т.е. $a^- = -a$.

Определим матрицы $C,S,R\in\mathbb{R}_{\max}^{n\times n}$ следующим образом:

$$c_{ij} = \begin{cases} m_{ij}, \text{ если } j \in V(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}, \end{cases}$$

$$r_{ij} = \begin{cases} m_{ij}, \text{ если } i \in V(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}, \end{cases}$$

$$s_{ij} = \begin{cases} \lambda(A)^- \odot a_{ij}, \text{ если } (i,j) \in E(\mathcal{G}^c(A)) \\ -\infty, \text{ иначе}. \end{cases}$$

Если матрицы C, S, R определены по матрице A, будем писать $CS^tR[A]$ для произвольного t.

Теорема 4.1 ([7], [8]). Пусть $A \in \mathbb{R}_{\max}^{n \times n}$ неразложима. Тогда существует неотрицательное целое T(A) такое, что для любого $t \geq T(A)$:

$$A^{t} = \lambda(A)^{\odot t} \odot CS^{t}R[A]. \tag{1}$$

Заметим, что если $\lambda(A) = 0$, то (1) записывается в виде:

$$A^t = CS^t R[A].$$

Замечание 4.2 (Инвариантность относительно умножения на скаляр). *Если* $A' = A \odot \mu$, $\varepsilon \partial e \ \mu \in \mathbb{R}$, $mo \ \lambda(A') = \lambda(A) \odot \mu \ u \ CSR[A'] = CSR[A]$.

Значит, T(A) инвариантно относительно умножения матрицы на скаляр, что позволяет нам без разграничения общности говорить, что $\lambda(A) = 0$.

Утверждение 4.3 (Периодичность, см. [9]). Для любого $t \ge 0$ верно, что $CS^{t+\sigma}R[A] = CS^tR[A]$, где σ — это цикличность $\mathcal{G}^c(A)$. Иначе говоря, последовательность матриц $\{CS^tR[A]\}_{t\ge 0}$ периодична с периодом σ .

Значит, в силу равенства $A^t = CS^tR$ при $t \geq T(A)$, последовательность матриц A^t при $t \geq T(A)$ является периодической с периодом σ .

Введем несколько новых обозначений:

- 1. Через $W^{t,l}(i \to j)$ обозначим множество путей от вершины i к вершине j, имеющих длину t по модулю l;
- 2. Через $\mathcal{W}(i \xrightarrow{\mathcal{G}} j)$ обозначим множество путей от вершины i к вершине j, проходящих хотя бы через одну вершину из \mathcal{G} . Аналогично определяются $\mathcal{W}^t(i \xrightarrow{\mathcal{G}} j)$, $\mathcal{W}^{t,l}(i \xrightarrow{\mathcal{G}} j)$ граф над стрелкой добавляет ограничение на пути в множестве.
- 3. Для множества W через p(W) обозначим максимальный вес пути из множества W.

Утверждение 4.4 ([8]). Если $\lambda(A) = 0$, то верно следующее равенство:

$$(CS^{t}R[A])_{ij} = p(\mathcal{W}^{t,\sigma}(i \xrightarrow{\mathcal{G}^{c}(A)} j)), \tag{2}$$

где σ обозначает цикличность $\mathcal{G}^c(A)$.

Определим несколько характеристик графа.

Обхватом графа \mathcal{G} называется наименьшая длина цикла в \mathcal{G} и обозначается как $g(\mathcal{G})$. Через $\hat{g}(\mathcal{G})$ обозначается максимальный обхват среди всех компонент сильной связности графа \mathcal{G} .

Окружностью графа \mathcal{G} называется наибольшая длина цикла в \mathcal{G} и обозначается как $cr(\mathcal{G})$ (от английского circumference).

Максимальную длину простого пути в графе \mathcal{G} будем обозначать через $cd(\mathcal{G})$ (от английского cab-driver's diameter).

ДОБАВИТЬ ССЫЛКУ, учесть, что там было для T_1

Теорема 4.5 (Некоторые верхние оценки T(A), см. [8]). Для любой неразложимой $A \in \mathbb{R}^{n \times n}_{\max}$ имеем:

- 1. $T(A) \leq Wi(n)$;
- 2. $T(A) \le \hat{g}(n-2) + n;$
- 3. $T(A) \le (\hat{q} 1)(cr 1) + (\hat{q} + 1)cd$,

 $r\partial e \ \hat{g} = \hat{g}(\mathcal{G}^c(A)), \ cr = cr(\mathcal{G}(A)), \ a \ cd = cd(\mathcal{G}(A)).$

5 Примеры

5.1 Полный граф

Рассмотрим матрицу $A \in \mathbb{R}_{\max}^{n \times n}$, где $a_{ij} = 0$ для любых индексов i, j. Граф $\mathcal{G}(A)$ является полным, веса всех ребер в нём равны 0. Значит, критический подграф \mathcal{G}^c совпадает со всем графом \mathcal{G} .

Найдем матрицы C, S, R. Индекс цикличности полного графа $\sigma = 1$ (т.к. в нём есть циклы длины 1), следовательно $C = R = M = A^*, S = A$.

Так как для любого положительного t верно, что $A^t = A$, то $A^* = A$ и равенство $A^*A^tA^* = A^t$ выполняется для любого положительного t.

Следовательно, T=1.

5.2 Односторонний цикл

Рассмотрим матрицу смежности $A \in \mathbb{R}_{\max}^{n \times n}$ одностороннего цикла на n вершинах.

В силу инвариантности границ относительно домножения на скаляр из \mathbb{R} (замечание 4.2), можно рассматривать только тот случай, в котором $\lambda(A) = 0$. Тогда $\mathcal{G}^c(A) = \mathcal{G}(A)$, $\sigma = n$.

$$M = (A^n)^* = E^* = E = \begin{pmatrix} 0 & -\infty & \dots & -\infty \\ -\infty & 0 & \dots & -\infty \\ \dots & \dots & \dots \\ -\infty & -\infty & \dots & 0 \end{pmatrix} = diag(0, 0, \dots, 0)$$

Значит, $C=R=E,\ S=A,$ и для любого неотрицательного t верно $CS^tR[A]=A^t.$ Следовательно, T=0.

5.3 Двусторонний цикл

Рассмотрим матрицу смежности $A \in \mathbb{R}_{\max}^{n \times n}$ двустороннего цикла на n вершинах, все рёбра в котором имеют нулевой вес, тогда $\lambda(A) = 0$ и $\mathcal{G}^c(A) = \mathcal{G}(A)$. Пронумеруем вершины так, чтобы первый цикл состоял из вершин $1, 2, \dots n$ (в порядке обхода), а второй — из $n, n-1, \dots, 1$ (в порядке обхода). Чтобы избежать кратных рёбер, будем работать с $n \geq 3$.

Необходимо рассмотреть два случая: когда n нечётно и когда n чётно.

n нечетно. В этом случае цикличность критического графа $\sigma=1$, т.е. граф примитивен. Значит, T(A)=exp(A).

Утверждение 5.1. Экспонента данного графа равна n-1.

Доказательство. Заметим, что в A^{n-2} на главной диагонали стоят $-\infty$: n-2 нечётно, поэтому, чтобы вернуться в исходную вершину за n-2 шага, надо сменить чётность — пройти весь круг, так как остальные циклы имеют чётную длину. Но цикл имеет длину n, поэтому его пройти не получится. Значит, $exp(\mathcal{G}) \geq n-1$.

Покажем, что $A^{n-1} > -\infty$.

Зафиксируем произвольную вершину v графа. Назовем вершину v если до нее можно дойти из v за чётное число шагов. Заметим, что тогда все вершины графа четные, так как n нечетно и идти можно как по, так и против часовой стрелки. Наибольшая длина такого пути равна n-1. Значит, $A^{n-1} > -\infty$.

п четно. В этом случае $\sigma=2$ и граф не примитивен. $C=R=M=(A^2)^*, S=A$. Так как последовательность матриц CS^tR периодична с периодом $\sigma=2$ (см. [8]), то при $t\geq T(A)$

$$A^t = CS^tR = egin{cases} (A^2)^*, \text{ если } t \text{ четно.} \ A\odot (A^2)^*, \text{ если } t \text{ нечетно.} \end{cases}$$

В матрице $(A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на четном расстоянии друг от друга. Наибольшее расстояние между вершинами с одинаковой четностью равно $\frac{n}{2}$. Значит, условие при четном t выполняется при $t \geq \frac{n}{2}$, а при прочих t не выполняется.

В матрице $A\odot (A^2)^*$ небесконечные элементы стоят в клетках (i,j), если вершины i и j находятся на нечетном расстоянии друг от друга. Наибольшее расстояние между вершинами с разной четностью равно $\frac{n}{2}-1$. Значит, условие при четном t выполняется при $t\geq \frac{n}{2}-1$, а при прочих t— не выполняется.

Следовательно, $T(A) = \frac{n}{2}$.

5.4 Графы с нулевыми рёбрами

Функция T является обобщением экспоненты на непримитивные графы. Рассмотрим несколько примеров.

Рассмотрим примитивный граф с матрицей смежности A, в котором вес каждого ребра равен 0. Тогда критический подграф совпадает со всем графом: $\mathcal{G}^c(A) = \mathcal{G}(A) = \mathcal{G}$. Индекс цикличности примитивного графа $\sigma = 1$.

По утверждению 4.3 последовательность матриц $CS^tR[A]$ периодична с периодом $\sigma = 1$, то есть в этой последовательности все члены равны. Из утверждения 4.4 и примитивности A следует, что матрица $CS^tR[A]$ целиком состоит из 0 при любом t.

Заметим, что в любой степени матрицы A её элементы будут принимать только два значения: $-\infty$ и 0. Из определения T(A) следует, что $A^t = CS^tR[A]$ тогда и только тогда, когда $t \geq T(A)$. Значит, матрица A^t не содержит $-\infty$ тогда и только тогда, когда $t \geq T(A)$. Значит, T(A) = exp(A), если A примитивна.

Это приводит нас к более общему утверждению.

Утверждение 5.2. Рассмотрим примитивную матрицу A, у которой $\mathcal{G}(A)$ совпадает со своим критическим подграфом, $\lambda(A) = 0$. Если для двух произвольных фиксированных вершин u u v верно, что все пути из u в v имеют одинаковый вес, то $T(A) = \exp(A)$.

Доказательство. В силу условия на одинаковый вес между любыми двумя вершинами матрицы вида $CS^tR[A]$ принимают только одно значение (по утверждению 4.4), а значение конкретной ячейки матрицы A^t либо равно $-\infty$, либо совпадает с соответстующей ячейкой $CS^tR[A]$. Значит, условие $A^t = CS^tR[A]$ равносильно условию $A^t > -\infty$. Следовательно, T(A) = exp(A).

Заметим, что обратное утверждение неверно. Рассмотрим следующие графы:

В обоих графах экспонента совпадает с T (в обоих графах экспонента равна 2), но в графе (a) максимальный средний вес цикла равен -1, а в графе (b) критический подграф не совпадает со всем графом.

Рассмотрим неразложимую матрицу A такую, что в $\mathcal{G}(A)$ все рёбра имеют нулевой вес. Пусть его индекс цикличности равен σ .

6 Разные ромашки

Определение 6.1. Назовем ромашкой граф, состоящий из нескольких пересекающихся по одной вершине циклов.

Здесь и далее будем рассматривать графы-ромашки, состоящие из циклов длины, кратной σ , все рёбра в которых имеют вес 0.

Определение 6.2. Ромашку, состоящую из циклов длины $a_1\sigma, a_2\sigma, \ldots, a_n\sigma$, где числа a_1, \ldots, a_n взаимно просты в совокупности, $a_1 \leq a_2 \leq \cdots \leq a_n$ назовем $(a_1, \ldots, a_n; \sigma)$ -ромашкой.

Границу T, определенную для такой ромашки, будем обозначать через $T(a_1, \ldots, a_n; \sigma)$.

Заметим, что индекс цикличности такой ромашки равен σ и всего в ней $N = \sum_{i=1}^n a_i \sigma - n + 1$ вершин. Пусть вершина, в которой пересекаются все циклы, имеет номер 1. Пронумеруем вершины в порядке следующего обхода: начнем в вершине 1, далее пройдём по первому циклу, затем — по второму, и так далее до цикла с номером N (не изменяя номер у вершины 1).

Во всех примерах матрицу смежности рассматриваемого графа будем обозначать через $A \in \mathbb{R}_{\max}^{n \times n}$, а через C, S, R будем обозначать матрицы C, S, R, построенные по матрице A.

Теорема 6.3.
$$T(a_1, \ldots, a_n; \sigma) = (T(a_1, \ldots, a_n; 1) + 1)\sigma - 1.$$

Доказательство. Обозначим граф, соответствующий $(a_1, \ldots, a_n; 1)$ -ромашке через \mathcal{G} , а граф, соответствующий $(a_1, \ldots, a_n; \sigma)$ -ромашке — через \mathcal{G}_{σ} . Граф \mathcal{G}_{σ} получается из графа \mathcal{G} разделением каждого ребра на σ более мелких рёбер. Вершины \mathcal{G}_{σ} , лежащие в одном циклическом классе с вершиной 1, будем называть начальными. Для краткости будем обозначать $T(a_1, \ldots, a_n; 1)$ через T^1 , а $T(a_1, \ldots, a_n; \sigma)$ — через T^{σ} .

Покажем, что $T^{\sigma} > (T^1+1)\sigma - 2$. В \mathcal{G} есть 2 вершины, между которыми нет пути длины T^1-1 . Значит, в \mathcal{G}_{σ} между соответствующими начальными вершинами нет пути длины $(T^1-1)\sigma$. Обозначим эти вершины через u и v. Но тогда между вершинами \hat{u} и \hat{v} не будет пути длины $(T^1-1)\sigma + 2(\sigma-1) = (T^1+1)\sigma - 2$, где \hat{u} получается, если отойти от u на $\sigma-1$ шаг вперёд, а \hat{v} — от вершины v на $\sigma-1$ шаг назад (обе новые вершины существуют, так как любая вершина в \mathcal{G} лежит в цикле). Значит, $T^{\sigma} \geq (T^1+1)\sigma-1$.

Покажем, что $T^{\sigma} \geq (T^1+1)\sigma-1$. Для этого нужно доказать, что между любыми двумя вершинами u и v графа \mathcal{G}_{σ} есть путь длины $(T^1+1)\sigma-1$ от u до v. Путь длины $(T^1+1)\sigma-1$ от u до v состоит из трех частей: путь от u до ближайшей начальной вершины, путь между начальными вершинами, и путь от ближайшей начальной вершины до v. Суммарная длина первой и третьей частей не превосходит $2\sigma-2$, значит, длина второй части не меньше $(T^1-1)\sigma+1$. Но длина пути между двумя начальными вершинами должна быть кратна σ , поэтому длина второй части не меньше $T^1 \cdot \sigma$. Но, по определению T^1 , между любыми начальными вершинами есть путь длины $T^1 \cdot \sigma$. Значит, $T^{\sigma} \geq (T^1+1)\sigma-1$, и утверждение доказано.

Таким образом, при расчёте границы T для произвольной ромашки достаточно посчитать искомую границу при $\sigma = 1$, а затем получить ответ по формуле из утверждения 6.3.

Замечание 6.4. При $\sigma = 1$ $(a_1, \ldots, a_n; 1)$ -ромашка примитивна, все рёбра в ней имеют нулевой вес. Значит, граница T ромашки совпадает её экспонентой.

Введём вспомогательную функцию P:

Определение 6.5. Для взаимно простых в совокупности натуральных чисел $a_1 \leq \cdots \leq a_n$ обозначим через $P(a_1, \ldots, a_n)$ минимальное целое неотрицательное число, удовлетворяющее следующему свойству: любое $p \geq P(a_1, \ldots, a_n)$ выражается в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами $\lambda_1, \ldots, \lambda_n$, то есть

$$p = a_1 \lambda_1 + \dots a_n \lambda_n \tag{3}$$

. Число, выражающееся в виде линейной комбинации чисел a_1, \ldots, a_n с целыми неотрицательными коэффициентами, назовём выразимым.

Здесь и далее под линейной комбинацией будем понимать линейную комбинацию с целыми неотрицательными коэффициентами.

Теорема 6.6.
$$T(a_1,\ldots,a_n;1)=P(a_1,\ldots,a_n)+2a_n-2.$$

Доказательство. Предположим, что в $(a_1, \ldots, a_n; 1)$ -ромашке между любыми двумя вершинами существует путь длины t. Рассмотрим две произвольные вершины u и v. Любой путь длины хотя бы $a_n - 1$ проходит через вершину 1, и $t \ge a_n - 1$. Поэтому путь длины t от u до v состоит из трёх частей: пути от u до v (обозначим длину этой части через \hat{u}), λ_i циклов длины a_i для $i = 1 \ldots n$, и пути от v до v (обозначим длину этой части через v). Тогда имеет место равенство:

$$t = \hat{u} + a_1 \lambda_1 + \dots + a_n \lambda_n + \hat{v} \quad \Longleftrightarrow \quad t - \hat{u} - \hat{v} = a_1 \lambda_1 + \dots + a_n \lambda_n.$$

Сумма $\hat{u}+\hat{v}$ принимает любые значения от 0 до $2a_n-2$ (так как $0\leq \hat{u},\hat{v}\leq a_n-1$). Следовательно, для любого $t-2a_n+2\leq p\leq t$ должны существовать коэффициенты $\lambda_1,\ldots,\lambda_n$, удовлетворяющие уравнению

$$p = a_1 \lambda_1 + \dots + a_n \lambda_n. \tag{4}$$

При $t < P(a_1, \ldots, a_n) + 2a_n - 2$ минимальное значение p не превосходит $P(a_1, \ldots, a_n) - 1$, и, по определению $P(a_1, \ldots, a_n)$, при наименьшем значении p уравнение 4 решений не имеет — противоречие с наличием пути между u и v.

Напротив, при $t \ge P(a_1, \ldots, a_n) + 2a_n - 2$ наименьшее значение p не меньше $P(a_1, \ldots, a_n)$, и, в силу определения $P(a_1, \ldots, a_n)$, коэффициенты λ_i найдутся для любого возможного значения p.

Значит,
$$T(a_1, \ldots, a_n; 1) = P(a_1, \ldots, a_n) + 2a_n - 2.$$

Следствие 6.7 (Корректность функции P). Функция P определена корректно: её значение существует для любых возможных аргументов.

Доказательство. Рассмотрим $(a_1, \ldots, a_n; 1)$ -ромашку. По замечанию 6.4 этот граф примитивен и, следовательно, имеет экспоненту, которая, в свою очередь, совпадает с границей T для данной ромашки. По формуле из теоремы 6.6 имеем $P(a_1, \ldots, a_n) = T(a_1, \ldots, a_n; 1) - 2a_n + 2$.

Утверждение 6.8 (Свойства функции P).

- 1. Ecau $a_1 = 1$, mo $P(1, \ldots, a_n) = 0$.
- 2. $P(a_1, \ldots, a_n) \leq P(a_{i_1}, a_{i_2}, \ldots, a_{i_k})$, где $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ возрастающая последовательность индексов.
- 3. $P(a_1, \ldots, a_n) = P(b_1, \ldots, b_m)$, где набор b_1, \ldots, b_m получается из набора a_1, \ldots, a_n удалением повторяющихся элементов.
- 4. Если a_j делится на a_i , то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n)$.
- 5. Если a_j представляется в виде линейной комбинации меньших элементов, то $P(a_1, \ldots, a_n) = P(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n).$

Доказательство. 1) Действительно, если $a_1 = 1$, то любое неотрицательное число k выражается как $1 \cdot k$. Следовательно, P = 0.

- 2) Свойство следует из следующего факта: сумма $a_{i_1}\lambda_{i_1}+\cdots+a_{i_k}\lambda_{i_k}$ является частным случаем суммы $a_1\lambda_1+\cdots+a_n\lambda_n$.
- 3) При приведении подобных членов в сумме $a_1\lambda_1 + \cdots + a_n\lambda_n$ получается корректная сумма $b_1\mu_1 + \ldots b_m\mu_m$. С другой стороны, сумма $b_1\mu_1 + \ldots b_m\mu_m$ является корректной суммой вида $a_1\lambda_1 + \cdots + a_n\lambda_n$.
- 4) Очевидно, что любая сумма $a_1\lambda_1+\cdots+a_{j-1}\lambda_{j-1}+a_{j+1}\lambda_{j+1}+\cdots+a_n\lambda_n$ является суммой вида $a_1\lambda_1+\cdots+a_n\lambda_n$, где $\lambda_j=0$. С другой стороны, заменив a_j на $a_i\cdot\frac{a_j}{a_i}$, можно избавиться от слагаемого $a_j\lambda_j$ в сумме $a_1\lambda_1+\cdots+a_n\lambda_n$, что доказывает утверждение.
 - 5) Доказетельство этого свойства аналогично предыдущему.

Утверждение 6.9. P(a,b) = (a-1)(b-1).

Доказательство. Покажем, что $p = ab - a - b \neq ma + nb$ для любых целых неотрицательных m, n.

Предположим противное. Тогда:

$$ab - a - b = am + bn \iff ab = (m+1)a + (n+1)b$$

В силу взаимной простоты a и b получим, что n+1 \vdots a, и m+1 \vdots b. Тогда, в силу того, что $m,n\geq 0$, имеем 2 случая:

$$\begin{cases} n+1 = a \\ m+1 = 0 \end{cases} \begin{cases} n+1 = 0 \\ m+1 = b. \end{cases}$$

В обоих случаях получаем противоречие. Следовательно, $P(a,b) \ge (a-1)(b-1)$.

Теперь покажем, что $P(a,b) \le ab + b - a - 1$. Для любого $p \ge ab - b - a + 1$ решим уравнение:

$$am + bn = p$$

Так как a и b взаимно просты, числа из набора $0, b, 2b, \ldots, (a-1)b$ дают все a остатков по модулю a. Значит, существует единственное $0 \le n \le a-1$, что $bn \equiv p \pmod{a}$, причём $p-bn \geq 0$, так как

$$p - bn \ge ab - b - a + 1 - (a - 1)b = -a + 1 > -a \Longrightarrow p - bn \ge 0.$$

Значит, $m = \frac{p-bn}{a} \ge 0$.

ачит, $m=\frac{P-3n}{a}\geq 0$. Таким образом, нами были найдены целые $m\geq 0,\ n\geq 0$. Следовательно, P(a,b)=(a-1)(b-1).

Следствие 6.10. $T(a, b; \sigma) = (ab + b - a)\sigma - 1$.

Утверждение 6.11.
$$P(2,a,b)=egin{cases} P(2,b)=b-1, & \textit{если а чётно}, \\ P(2,a)=a-1, & \textit{иначе}. \end{cases}$$

Доказательство. Первый случай следует из свойства 4 утверждения 6.8.

Разберём второй случай: a нечётно. Неравенство $P(2, a, b) \leq P(2, a)$ следует из свойства 2 утверждения 6.8. Докажем обратное неравенство: необходимо показать, что с помощью слагаемых 2, a, b невозможно получить сумму a-2. Действительно, из трёх слагаемых можно использовать только одно: 2. Но a-2 нечётно — противоречие. Следовательно, P(2, a, b) = P(2, a).

Следствие 6.12.
$$T(2,a,b;\sigma) = \begin{cases} T(2,b;\sigma) = (3b-2)\sigma - 1, & \textit{если а нечётно,} \\ (2b+a-2)\sigma - 1, & \textit{иначе.} \end{cases}$$

Утверждение 6.13.
$$P(3,a,b) = \begin{cases} P(3,b) = 2(b-1), & \textit{если } a \ \vdots \ 3, \\ b-2, & \textit{если } a \ \not \ 3, a+b \ \vdots \ 3 \ u \ b < P(3,a) = 2a-2, \\ P(3,a) = 2(a-1), & \textit{иначе.} \end{cases}$$

Доказательство. Первый случай следует из свойства 4 утверждения 6.8.

Разберём второй случай. Покажем, что P(3, a, b) > b - 2. Предположим противное. Тогда число b-3 должно выражаться в виде линейной комбинации 2, a и b:

$$b-3=3\lambda_1+a\lambda_2+b\lambda_3$$

Тогда $\lambda_3=0$ и $\lambda_2\leq 1$. При $\lambda_2=0$ имеем $b=3\lambda_1+3$ \vdots 3. При $\lambda_2=1$ имеем $b-a=3\lambda_1+3$ \vdots 3. В обоих случаях a : 3, так как a + b : 3, что противоречит условию второго случая. Следовательно, $P(3, a, b) \ge b - 2$.

Докажем обратное неравенство: для любого $p \ge b - 2$ решим уравнение:

$$p = 3\lambda_1 + a\lambda_2 + b\lambda_3$$

Так как в правой части есть слагаемое $3\lambda_1$, то достаточно решить уравнение для p=b-2, p = b - 1 и p = b — тогда линейные комбинации для больших p получатся увеличением λ_1 .

•
$$p=b-2$$
. Если $b\equiv 2\pmod 3$, то $\lambda_1=\frac{b-2}{3}, \lambda_2=\lambda_3=0$.
Если $b\equiv 1\pmod 3$, то $a\equiv 2\pmod 3$, $b-2=(b-a-2)+a$ и $\lambda_1=\frac{b-a-2}{3}, \lambda_2=1, \lambda_3=0$.

- p = b 1. Если $b \equiv 1 \pmod{3}$, то $\lambda_1 = \frac{b-1}{3}, \lambda_2 = \lambda_3 = 0$. Если $b \equiv 2 \pmod 3$, то $a \equiv 1 \pmod 3$, b-2 = (b-a-1)+a и $\lambda_1 = \frac{b-a-1}{3}, \lambda_2 = 1, \lambda_3 = 0.$
- p = b. Тогда $\lambda_1 = \lambda_2 = 0, \lambda_3 = 1$.

Таким образом, P(3, a, b) = b - 2.

Перейдём к третьему случаю: если $b \ge P(3, a)$, то наличие слагаемого $b\lambda_3$ не повлияет на значение функции P: если некое p выражается в виде линейной комбинации с участием b, то $p \ge P(3, a)$ и, следовательно, выражается и без участия b. Следовательно, P(3, a, b) =P(a,b).

Рассмотрим последний случай: $a \not = 3$, $a + b \not = 3$, b < P(3, a). Неравенство $P(3, a, b) \ge$ P(a,b) следует из свойства 2 утверждения 6.8. Докажем обратное неравенство. Для этого покажем, что следующее уравнение не имеет решений:

$$2a - 3 = 3\lambda_1 + a\lambda_2 + b\lambda_3$$

Заметим, что $\lambda_3=0$, так как b<2a-a. Также, $\lambda_2\leq 1$. Тогда $(2-\lambda_2)a=3\lambda_1+3$ \vdots 3 противоречие с $a \not/ 3$. Значит, P(3, a, b) = P(a, b).

Следствие 6.14.
$$T(3,a,b;1)= \begin{cases} T(3,b;1)=4b-4, & \textit{если } a \ \vdots \ 3, \\ 3b-4, & \textit{если } a \not \ 3, a+b \ \vdots \ 3 \ \textit{u} \ \textit{m} < 2a-2, \\ 2a+2b-4, & \textit{uhave}. \end{cases}$$

Алгоритм вычисления функции P

Рассмотрим массив M длины a_1 , где в M[i] лежит минимальное выразимое число, сравнимое с *i* по модулю a_1 . Заметим, что M[0] = 0 и что $M[i] \equiv i \pmod{a_1}$.

Утверждение 6.15.
$$P(a_1,\ldots,a_n)=\max_{i=0}^{a_0-1}M[i]-a_1+1.$$

Доказательство. Пусть $\max_{i=0}^{a_0-1} M[i] - a_1 + 1 = M[k] - a_1 + 1$. Выразимость $M[k] - a_1$ вела бы к противоречию с определением массива M, так как $M[k] - a_1 \equiv M[k] \pmod{a_1}$. Значит, $P(a_1, \dots, a_n) \ge \max_{i=0}^{a_0-1} M[i] - a_1 + 1$.

Заметим, что если произвольное x выразимо, то и число $x+a_1$ выразимо. Из этого следует, что любое число, сравнимое с i по модулю a_1 и не меньшее M[i] выразимо. Значит, все числа, начиная с $M[k] - a_1 + 1$ выразимы — иначе M[k] было бы не максимальным числом в массиве M.

Следовательно,
$$P(a_1, \ldots, a_n) = \max_{i=0}^{a_0-1} M[i] - a_1 + 1.$$

Используя массив M, можно легко посчитать P(4, a, b). Здесь и далее через $x \ rem \ y$ будем обозначать остаток при делении x на y.

Утверждение 6.16 (Формула для P(4, a, b)).

- 1. $a : 4, b \not/ 2$. Torda P(4, a, b) = P(4, b).
- 2. $a \not\!\!/ 2, b \ \vdots \ 4, \ unu \ 0 \not\equiv a \equiv b \pmod{4}, \ unu \ a \not\!\!/ 2, b \ge P(4,a).$ Tor $\partial a \ P(4,a,b) = P(4,a).$
- 3. $a \equiv 2 \pmod{4}, b \not \mid 2$. $Tor \partial a P(4, a, b) = a + b 3$.

4. $a \not \mid 2, b \equiv 2 \pmod{4}$. Tor ∂a

$$P(4, a, b) = \begin{cases} a + b - 3, & \textit{если } b < 2a \\ 3a - 3, & \textit{иначе.} \end{cases}$$

5. $a, b \not \mid 2, a + b : 4, b < P(4, a)$. Тогда

$$P(4, a, b) = \begin{cases} 2a - 3, & ecnu \ b \le 2a \\ b - 3, & uhave. \end{cases}$$

Доказательство. Из свойства 4 утверждения 6.8 можно вывести случай a
otin 4, b
otin 2 и случай $a
otin 2, b
otin 4, a из свойства 5 того же утверждения — случай <math>0 \not\equiv a \equiv b \pmod{4}$.

Во всех остальных случаях посчитаем массив M, и по утверждению 6.15 найдём ответ. Заметим, M[0] всегда равен 0.

Докажем случай $a \not = 2, b \ge P(4, a)$. Тогда $M[a \ rem \ 4] = a, M[2] = 2a,$ и $M[4 - a \ rem \ 4] = 3a$ — число b слишком большое, чтобы повлиять на этот массив. Таким образом, максиму этого массива равен 3a, и ответом будет число 3a - 3 = P(4, a).

Разберём случай $a \equiv 2 \pmod 4$, $b \not = 2$. Заметим, что M[2] = a, $M[b \ rem \ 4] = b$, $M[4 - b \ rem \ 4] = a + b$. Максимум этого массива -a + b, поэтому ответ равен a + b - 3.

Разберём случай $a \not = 2, b \equiv 2 \pmod 4$. Тогда $M[a\ rem\ 4] = a$. На место M[2] есть два кандидата: 2a и b. Если b < 2a, то M[2] = b, и иначе -2a. Далее, для $M[4-a\ rem\ 4]$ имеем два варианта: 3a и a+b, и если b < 2a, то $M[4-a\ rem\ 4] = a+b$, и иначе -3a. Таким образом, если b < 2a, то ответ равен a+b-3, а иначе -3a-3=P(4,a).

Разберём последний случай: $a,b \not \mid 2,a+b \ \vdots \ 4,b < 3a-3$. Тогда $M[a\ rem\ 4]=a,M[b\ rem\ 4]=b$ и M[2]=2a. В зависимости от относительного расположения 2a и b имеем 2 различных возможных максимума массива M, откуда, по утверждению 6.18 находим ответ.

Приведём алгоритм, вычисляющий функцию P. На вход ему подаётся число n числа a_1, \ldots, a_n .

Алгоритм вычисляет массив M, а затем, по формуле из леммы 6.15, вычисляет ответ на поставленную задачу. Массив M вычисляется постепенно: изначально в каждой ячейке M[i] значения ∞ из \mathbb{R}_{\min} — это значит, что пока не было найдено ни одного выразимого числа, сравнимого с i по модулю a_1 . Если при последующем переборе было найдено некоторое p, сравнимое с i по модулю a_1 и меньшее M[i], то необходимо перезаписать в ячейку M[i] значение p.

Перебор начинается с рассмотрения всех линейных комбинаций с одним слагаемым (здесь и далее через количество слагаемых будем обозначать количество ненулевых коэффициентов λ_i в линейной комбинации вида 3). Затем будем перебирать линейные комбинации, на каждом шаге увеличивая максимальное количество слагаемых вдвое. Таким образом, необходимо сделать $\lceil log_2 n \rceil$ итераций, где $\lceil x \rceil$ — это округление числа x вверх.

Алгоритм 6.17.

1. Создадим массив M длины a_1 содержащий числа из \mathbb{R}_{\min} . Запишем во все ячейки значения ∞ .

- 2. На нулевой итерации переберём все линейные комбинации с одним слагаемым. Для этого для каждого a_i и для каждого множителя $0 \le k < a_1$ проверим, можем ли мы улучшить ответ: сравним $a_i^{\odot k} = a_i \cdot k$ с $M[a_i \cdot k \ rem \ a_1]$, и если в массиве записано большее число, то улучшим ответ: запишем в ячейку $a_i \cdot k \ rem \ a_1$ значение $a_i^{\odot k} = a_i \cdot k$.
- 3. На каждой следующей итерации будем перебирать все пары ячеек M[i] и M[j] и пытаться улучшить ответ: сравним $M[(i+j) \ rem \ a_1] \ c \ M[i] \odot M[j]$ (т.е. M[i] + M[j], если оба эти числа меньше ∞ , и ∞ иначе), и если в массиве записано большее число, то улучшим ответ: запишем в ячейку $(i+j) \ rem \ a_1$ значение $M[i] \odot M[j]$.
- 4. Всего необходимо сделать $\lceil log_2(n) \rceil + 1$ итераций. После этого ответом будет $\bigoplus_{i=0}^{a_0-1} M[i] a_1 + 1 = \max_{i=0}^{a_0-1} M[i] a_1 + 1.$

Для доказательства корректности докажем следующее утверждение.

Лемма 6.18. После итерации с номером d в ячейке M[i] лежит минимальное число, сравнимое c i по модулю a_1 , которое может быть представлено в виде линейной комбинации c не более чем 2^d слагаемыми, или ∞ , если такого числа не существует.

Доказательство. Докажем утверждение по индукции.

База: d=0. В шаге 1 перебираются все линейные комбинации вида $a_j \cdot k$, где $0 \le k < a_1$. Рассмотрим линейную комбинацию, которую мы не перебрали: $a_i \cdot m$. Так как мы не перебрали эту комбинацию, то $m \ge a_1$. Но тогда $a_i \cdot m \equiv a_i \cdot (m-a_1) \pmod{a_1}$ и $a_i \cdot m > a_i \cdot (m-a_1) \ge 0$ — эта линейная комбинация не может улучшить ответ. Значит, база верна.

Докажем переход. Предположим, утверждение доказано для d-1, докажем его для d. Обозначим массив M в состоянии до итерации с номером d через M'.

Рассмотрим произвольную ячейку M[i], в которой записано число, меньшее ∞ . Тогда существуют два индекса j и k такие, что i=(j+k) rem a_1 и M[i]=M'[j]+M'[k]. По предположению индукции в каждой ячейке массива M' лежит число, которое может быть представлено в виде линейной комбинации с не более чем 2^{d-1} слагаемыми. Значит, в M[i] лежит число, представимое в виде линейной комбинации с не более чем 2^d слагаемыми. По предположению индукции $M[i]=M'[j]+M'[k]\equiv j+k\equiv i\pmod{a_1}$.

Осталось доказать минимальность M[i]. Предположим противное: пусть существует число x < M[i], сравнимое с i по модулю a_1 и представимое в виде линейной комбинации с не более чем 2^d слагаемыми. Тогда эту комбинацию можно разбить на две меньших, в каждой из которых будет не более 2^{d-1} слагаемых. Обозначим суммы этих линейных комбинаций через S_1 и S_2 . Пусть $S_1 \equiv j \pmod{a_1}$, а $S_2 \equiv k \pmod{a_1}$.

Тогда $S_1+S_2=x < M[i] \leq M'[j]+M'[k]$ и или $S_1 < M'[j]$, или $S_2 < M'[k]$. В обоих случаях имеем противоречие с предположением индукции. Значит, предположение индукции верно и для d, что и требовалось доказать.

Утверждение 6.19. Алгоритм 6.17 корректен. Время его работы $-O(n \cdot a_1 + a_1^2 \cdot log \ n)$. Объем затраченной памяти $-O(a_1)$.

Доказательство. Докажем асимптотики. Первый шаг работает за $O(a_1)$, второй — за $O(a_1 \cdot n)$ (надо перебрать все $1 \le j \le n$ и все $0 \le k < a_1$). Третий работает за $O(a_1^2 \cdot log \ n)$, так как всего $O(log \ n)$ итераций, в каждой из которых надо перебрать пары (i,j), где $0 \le i,j \le a_1$. Четвертый — за $O(a_1)$. Итоговая сложность алгоритма: $O(n \cdot a_1 + a_1^2 \cdot log \ n)$.

Память тратится только на массив M длины a_1 . Значит, алгоритм требует $O(a_1)$ памяти.

Докажем корректность. По лемме 6.18 после итерации с номером d в ячейках массива M лежит информация об оптимальных линейных комбинациях с не более чем 2^d слагаемыми. Следовательно, после итерации с номером $\lceil log_2(n) \rceil$ в массиве M лежит информация об оптимальных линейных комбинациях из n слагаемых, то есть массив M будет наконец посчитан.

Во время работы алгоритма каждая ячейка массива M изменит своё значение хотя бы раз: это следует из корректности функции P. Значит, после последней итерации в массиве M не останется ∞ .

Далее ответ может быть получен по лемме 6.15.

На моём компьютере при $n=100, a_1=100$ алгоритм ни разу не показывал время, большее 0.2 с. При $n=1000, a_1=1000$ алгоритм работал не дольше 0.3 с. При $n=10000, a_1=10000$ алгоритм работает существенно медленнее: в районе 40 с.

6.1 Верхние оценки функции *P*

Утверждение 6.20. Функция $P(a_1, ..., a_n)$ оценивается сверху следующими функциями:

1.
$$Wi(N) - 2a_n + 2$$
,

2.
$$(a_1+1)N-2a_1-2a_n+2$$
,

3.
$$(a_1-1)(a_n-1)+a_1(2a_n-2)$$
,

где
$$N = \sum_{i=1}^{n} a_i - n + 1 - количество вершин в $(a_1, \dots, a_n; 1)$ -ромашке.$$

Доказательство. По замечанию 6.4 граница T данной ромашки совпадает с её экспонентой, которая по теореме 4.5 оценивается сверху числом Виландта от количества вершин Wi(N), функцией $\hat{g}(N-2)+N$ и функцией $(\hat{g}-1)(cr-1)+(\hat{g}+1)cd$.

Обхват (a_1, \ldots, a_n) -ромашки равен a_1 , её окружность равна a_n , а длина наибольшего простого пути не превышает $2a_n-2$.

Далее достаточно применить теорему 6.6.

References

- [1] Imre Simon On semigroups of matrices over the tropical semiring Theoretical Informaties and Applications (Tome 28 (1994) no. 3-4, pp. 277-294)
- [2] Semere Tsehaye Tesfay. A Glance at Tropical Operations and Tropical Linear Algebra Eastern Illinois University, 2015.
- [3] David Speyer, Bernd Sturmfels. *Tropical Mathematics* Mathematics Magazine, vol. 82, №3, June 2009.
- [4] Ю.М. Волченко *Max-plus алгебра и ее применение*, декабрь 2017
- [5] Hans Schneider. Wielandt's proof of the exponent inequality for primitive nonnegative matrices Department of Mathematics, University of Wisconsin at Madison, 2002.
- [6] Alexander Guterman, Elena Kreines, and Carsten Thomassen. Linear transformations of tropical matrices preserving the cyclicity index Special Matrices Volume 9, 2021.

- [7] Arthur Kennedy-Cochran-Patrick, Glenn Merlet, Thomas Nowak, Sergei Sergeev. New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank Linear Algebra and its Applications, 2020
- [8] Glenn Merlet, Thomas Nowak, Sergei Sergeev. https://www.sciencedirect.com/science/article/pii/S0024379514004777
- [9] Sergei Sergeev, Hans Schneider. CSR expansions of matrix powers in max algebra Transactions of the American Mathematical Society, December 2009
- [10] Brualdi RA, Ryser HJ. Combinatorial matrix theory. Cambridge: Cambridge University Press; 1991. (Encyclopedia of mathematics and its applications; 39).