				<u></u>	et k oo et	-el at	
Like (my other PMF.	its sum over all p	ossible outcomes	is equal to 1, kib	k! = e kiok! =	e e = 0	
	and Variance						
ELXI	K=0 K K! = K	00 e d k 00 e 0 1 k! = K:1 (k	-1)! = e of k=1 (k-1	1: = e of kip k!			
⇒ E[x]	-de e = d						
The state of	variance is V	/00 (.) o d					
ine	ariance is v	/hk(x)=a					
Approximati	g A Binomic	al RV					
we c	an approximate	e a binomial PMF	with Poisson w	hen n is large o	and p small.		
Let •	= n·p . we ha	we Px(k)=(n)pk	ı-P) ≈ e d k!				
Binomial RI							
Takal	r of success	in n trials of i	ndependent Ram	oull: Dib			
IOIGI							
	Px(K)=(K)PC	I-P) , k=0,1,2	·n . E[x]=n·p .	VARIX)=nP(I-P)			
Bernoulli RV							
we o	nly have 2 out	tcomes , " success"	and "failure"				
	P(K)= 1-P K=	1 0 ; EDX1=1.P+	oci-Pi=P; VARC	x) = P(1-P) + (1-P)	(0-P)2 = P(1-P)		
geometric R							
		at					
# of		e 1 ³⁴ success, Sx=					
	Px(k)=P(1-P)	"; E[x] = P ;	VAR(X)= P2				
# of {	ailures before ou	ur first succes, Sx	=0,1,2,				
	Px(N=P(I-P)K	; ECX1= P ; VAR	(X) = P2				
Uniform RV							
Let x		with a possible ou		niform,			
	px(x)= lo othe	,x; rwise ; E[x] = n + ·	₹+···+ ` ₹				
If the	sample space	is Sx = 1, 2,, n					
	P _x (k) = n , k= 1,	2,n ; E[X]: 2	; VAR(X) = 12				

	l or rejected, as fo	T					
	Day	P(email accepted)	P(email rejected)				
	Monday	0.55	0.35				
	Tuesday	0.20	0.30				
	Wednesday	0.25	0.35				
She also estimates answer the followi		A, the probability of	being accepted is 0.6. C	iven this information,			
a). P(email (n Mon)=P(email on Mon	AIP(AI + Plem	ail on Mon IR)Pcf	t) = 0.47		
b) Promoil o	n Tua & no	t on Mon) = ?					
PLT IMe)	= P(Me) =	P(M ^c) = 0.45	3				
ics. Placeep	ted on We	ed) =?					
	P(WIA)	P(A) P(WIR)P(R) = 0					
P(AIW)=	P(WIA)P(A)+1	P(WIR)P(R) = D.	517				