Coursera - Applied Data Science Capstone Project

The Battle of Neighborhoods: Cuisines of New York City

Mayuresh Bakshi

Jul 2, 2020

Table of Contents

1.	Introduction & Business Problem	3
	1.1 Introduction	3
	1.2 Problem	3
	1.3 Target Audience	3
2.	Data	4
	2.1 Data Requirement	4
	2.2 Data Source	4
	2.3 Data Cleaning	5
3.	Methodology	6
	3.1 Food Venue Data	6
	3.2 Clustering	7
4.	Result	8
	4.1 Result Data	8
	4.1 Result Visualization	8
5.	Discussion	<i>9</i>
	5.1 Cluster 1	9
	5.2 Cluster 2	.10
	5.3 Cluster 3	.10
	5.4 Cluster 4	.10
	5.5 Cluster 5	.10
	5.6 Cluster 6	.11
6.	Conclusion	. 11
7.	Future Scope	. 12
8.	References	.12

1. Introduction & Business Problem

1.1 Introduction

New York City is the most populous city in the United States with an estimated population of around 8.4 Million. It is also the most densely populated city in the United States. With over 3.2 Million residents born outside the US, New York City is one of the most ethnically diverse cities. As we all know, with ethnic diversity comes a diversity of cuisines. New York City is home to more than 27,000 restaurants with Queens alone serving food from around 85 Countries.

1.2 Problem

Owing to cast diversity of food venues in New York City, we feel a need to explore the similarities between various neighborhoods in terms of Food Venues/Restaurant Types to determine which neighborhoods serve similar types of cuisines. As a part of the Coursera Applied Data Science Capstone Project by IBM, we are going to explore the various restaurants in all the neighborhoods in New York City and try to cluster them based on their types and location.

1.3 Target Audience

Curious foodies who want to explore various neighborhoods in New York City based on restaurants present in those neighborhoods.

2. Data

2.1 Data Requirement

Let's get a brief overview of the structure of New York City. New York City has a total of 5 boroughs and 306 neighborhoods. In order to segment the neighborhoods and explore them, we will need a dataset that contains the 5 boroughs and the neighborhoods that exist in each borough as well as the latitude and longitude of each neighborhood. Alongside this data, we are going to use the Foursquare API to get venue details for each neighborhood in the above dataset classified under Food Category.

2.2 Data Source

The dataset mentioned below contains each Neighborhood stored as a Key: Feature in JSON format.

Location Data:

• NYC Boroughs/Neighborhood Geospatial Dataset (Raw):

https://geo.nyu.edu/catalog/nyu_2451_34572

NYC Boroughs/Neighborhood Geospatial Dataset (Cleaned):

https://cocl.us/new_york_dataset

Venue Data:

- Venue details: https://developer.foursquare.com/
- Food Category Id: 4d4b7105d754a06374d81259
- Geospatial Coordinates: Geopy Library: https://geopy.readthedocs.io/en/stable/

2.3 Data Cleaning

Data from NYC Boroughs/Neighborhood Geospatial Dataset was downloaded to a JSON file and then stored in a pandas DataFrame. Following is the raw JSON data retrieved from the file.

Note that *type: Feature* contains the information we need like Neighborhood name, lat-long, borough.

```
{'type': 'Feature',
    'id': 'nyu_2451_34572.1',
    'geometry': {'type': 'Point',
        'coordinates': [-73.84720052054902, 40.89470517661]},
    'geometry_name': 'geom',
    'properties': {'name': 'Wakefield',
        'stacked': 1,
        'annoline1': 'Wakefield',
        'annoline2': None,
        'annolane3': None,
        'annoangle': 0.0,
        'borough': 'Bronx',
        'bbox': [-73.84720052054902,
        40.89470517661,
        -73.84720052054902,
        40.89470517661]}}
```

This data was then extracted and converted to a DataFrame as shown below:

Borough		Neighborhood	Latitude	Longitude
	Bronx	Wakefield	40.894705	-73.847201
	Bronx	Co-op City	40.874294	-73.829939
	Bronx	Eastchester	40.887556	-73.827806
	Bronx	Fieldston	40.895437	-73.905643

The DataFrame contains information for all 306 neighborhoods. This data will be used later on to fetch nearby venues using Foursquare API.

3. Methodology

3.1 Food Venue Data

Foursquare is a technology company that built a massive dataset of location data. We used the Foursquare API to fetch venues in the proximity of each neighborhood center. For this, we created a Foursquare API request URL –

This URL fetches venue data for the specified lat, lng and category id as shown below.

```
venue': {'id': '4b4429abf964a52037f225e3',
'name': "Arturo's",
'location': {'address': '5198 Broadway',
'crossStreet': 'at 225th St.',
'lat': 40.87441177110231,
'lng': -73.91027100981574,
'labeledLatLngs': [{'label': 'display',
    'lat': 40.87441177110231,
'lng': -73.91027100981574},
    ('label': 'entrance', 'lat': 40.874401, 'lng': -73.910339}],
'distance': 240,
'postalCode': '10463',
'cc': 'US',
'city': 'New York',
'state': 'NY',
'country': 'United States',
'formattedAddress': ['5198 Broadway (at 225th St.)',
'New York, NY 10463',
```

We limited the results to 100 venues within 500m of the neighborhood center. A function was then defined to call this API for each neighborhood and store the data in a DataFrame.

Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Wakefield	40.894705	-73.847201	Dunkin'	40.890459	-73.849089	Donut Shop
Wakefield	40.894705	-73.847201	Subway	40.890468	-73.849152	Sandwich Place
Wakefield	40.894705	-73.847201	Pitman Deli	40.896744	-73.844398	Food
Wakefield	40.894705	-73.847201	Central Deli	40.896728	-73.844387	Deli / Bodega
Wakefield	40.894705	-73.847201	Louis Pizza	40.898399	-73.848810	Pizza Place

This DataFrame does not contains data for all the 306 neighborhoods as some of them do not have any food venue within 500m of their centers.

3.2 Clustering

In order to cluster the neighborhoods together, we first need to understand the methodology we are going to use. K-means is a type of partitioning clustering. It is an unsupervised algorithm. That is, it divides the data into k non-overlapping subsets or clusters without any cluster internal structure or labels. This was implemented using Scikit Learn library in Python. It was found in previous data gathering activity that there are 135 different types of venue present in total from all neighborhoods. These types act as the features based on which the clustering was performed. In order to achieve this, each feature was encoded using one hot encoding. This assigned a 0 or 1 value to each venue in each neighborhood. The neighborhoods were then grouped and a frequency of occurrence of each type was calculated as a means of standardizing the data.

Neighborhood	Afghan Restaurant	African Restaurant	American Restaurant	Arepa Restaurant	Argentinian Restaurant	Asian Restaurant	Australian Restaurant	Austrian Restaurant	BBQ Joint	
Allerton	0.000000	0.00	0.041667	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Annadale	0.000000	0.00	0.200000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Arden Heights	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Arlington	0.000000	0.00	0.500000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Arrochar	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Arverne	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Astoria	0.000000	0.00	0.022989	0.000000	0.000000	0.000000	0.0	0.00	0.011494	
Astoria Heights	0.000000	0.00	0.000000	0.000000	0.000000	0.000000	0.0	0.00	0.000000	
Auburndale	0.000000	0.00	0.181818	0.000000	0.000000	0.000000	0.0	0.00	0.000000	

Next step was to cluster the data using k-means and display it on a map for better understanding the data.

The clustering was done using following code:

```
# set number of clusters
kclusters = 6
neighborhoods_grouped_clustering = neighborhoods_grouped.drop('Neighborhood', 1)
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(neighborhoods_grouped_clustering)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

4. Results

4.1 Result Data

The cluster label was added to the DataFrame containing neighborhood venue frequency. This DataFrame was joined with the first DataFrame containing Location and Borough Data for each neighborhood to create a DataFrame as shown below:

Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Bronx	Wakefield	40.894705	-73.847201	3	Deli / Bodega	Sandwich Place	Donut Shop	Pizza Place	Food
Bronx	Co-op City	40.874294	-73.829939	3	Restaurant	Fast Food Restaurant	Pizza Place	Deli / Bodega	Fried Chicken Joint
Bronx	Eastchester	40.887556	-73.827806	5	Caribbean Restaurant	Diner	Deli / Bodega	Seafood Restaurant	Fast Food Restaurant
Bronx	Riverdale	40.890834	-73.912585	1	Food Truck	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant
Bronx	Kingsbridge	40.881687	-73.902818	3	Pizza Place	Deli / Bodega	Sandwich Place	Donut Shop	Bakery

This DataFrame contains a Cluster Label for each Neighborhood and Top 5 most common venue types in that neighborhood.

4.1 Result Visualization

It is difficult to understand all the clusters from the above data view. One cannot visualize how the clusters exit in reality as they are just a number in this data. To visualize it properly, we plotted all these neighborhoods on the map using Folium library in Python.

Clustering of Neighborhoods based on Food Venue Types:

5. Discussion

The map gives us a better understanding of how the clusters exist in New York City. However, we still do not understand which cluster contains what types of restaurant. To check that, we displayed data of each cluster separately as shown below:

5.1 Cluster 1

Neighbo	rhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Country	y Club	Sandwich Place	Italian Restaurant	Chinese Restaurant	Wings Joint	English Restaurant
Ве	elmont	Italian Restaurant	Deli / Bodega	Pizza Place	Bakery	Spanish Restaurant
Edgewate	r Park	Italian Restaurant	Deli / Bodega	Pizza Place	Donut Shop	Japanese Restaurant
Carroll Ga	ardens	Italian Restaurant	Deli / Bodega	Pizza Place	Bakery	Thai Restaurant
Dyker H	leights	Italian Restaurant	Bagel Shop	Food	Food Truck	Hunan Restaurant
Upper Eas	st Side	Italian Restaurant	American Restaurant	Pizza Place	Diner	French Restaurant
	Soho	Italian Restaurant	Mediterranean Restaurant	Café	French Restaurant	Sandwich Place
Howard	Beach	Italian Restaurant	Bagel Shop	Deli / Bodega	Sandwich Place	Chinese Restaurant
Mariner's I	Harbor	Deli / Bodega	Italian Restaurant	Pizza Place	Donut Shop	Dosa Place
Tott	enville	Italian Restaurant	Deli / Bodega	Sandwich Place	Mexican Restaurant	Wings Joint
Old	Town	Italian Restaurant	Greek Restaurant	Deli / Bodega	Pizza Place	Middle Eastern Restaurant
New Dorp	Beach	Italian Restaurant	Deli / Bodega	Food	Diner	Restaurant

We can clearly conclude that Cluster 1 consists of Italian Restaurants in majority.

5.2 Cluster 2

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Riverdale	Food Truck	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant
Graniteville	Food Truck	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant

Cluster 2 is mostly Food Trucks and English Restaurants.

5.3 Cluster 3

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Floral Park	Indian Restaurant	Dosa Place	Chinese Restaurant	Pizza Place	Wings Joint
Jamaica Estates	Indian Restaurant	Wings Joint	Empanada Restaurant	Fish & Chips Shop	Filipino Restaurant

Cluster 3 hosts Indian Restaurants in majority.

5.4 Cluster 4

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Wakefield	Deli / Bodega	Sandwich Place	Donut Shop	Pizza Place	Food
Co-op City	Restaurant	Fast Food Restaurant	Pizza Place	Deli / Bodega	Fried Chicken Joint
Kingsbridge	Pizza Place	Deli / Bodega	Sandwich Place	Donut Shop	Bakery
Woodlawn	Deli / Bodega	Pizza Place	Bakery	Food Truck	Donut Shop
Norwood	Pizza Place	Deli / Bodega	Chinese Restaurant	American Restaurant	Mexican Restaurant
Pelham Parkway	Chinese Restaurant	Deli / Bodega	Italian Restaurant	Pizza Place	Donut Shop
Bedford Park	Pizza Place	Deli / Bodega	Chinese Restaurant	Fried Chicken Joint	Diner

Cluster 4 is a mix of Deli/Bodegas and Pizza Places.

5.5 Cluster 5

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Clason Point	Deli / Bodega	South American Restaurant	Wings Joint	English Restaurant	Fish & Chips Shop
Bedford Stuyvesant	Deli / Bodega	Fried Chicken Joint	Café	Pizza Place	BBQ Joint
Marine Park	Deli / Bodega	Chinese Restaurant	Pizza Place	Dosa Place	Dumpling Restaurant
South Ozone Park	Deli / Bodega	Sandwich Place	Donut Shop	Food Truck	Fast Food Restaurant
Whitestone	Deli / Bodega	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant
Briarwood	Deli / Bodega	Indian Restaurant	Sushi Restaurant	Diner	Donut Shop
Broad Channel	Deli / Bodega	Sandwich Place	Pizza Place	Empanada Restaurant	Fish & Chips Shop
Brookville	Deli / Bodega	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant
New Brighton	Deli / Bodega	Food	English Restaurant	Fish & Chips Shop	Filipino Restaurant
Grymes Hill	Deli / Bodega	American Restaurant	English Restaurant	Food	Fish & Chips Shop
South Beach	Deli / Bodega	English Restaurant	Food	Fish & Chips Shop	Filipino Restaurant

Cluster 5 is home to mostly Deli/Bodegas.

5.6 Cluster 6

Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
Eastchester	Caribbean Restaurant	Diner	Deli / Bodega	Seafood Restaurant	Fast Food Restaurant
Marble Hill	American Restaurant	Sandwich Place	Deli / Bodega	Diner	Donut Shop
Williamsbridge	Caribbean Restaurant	Deli / Bodega	Restaurant	Soup Place	Filipino Restaurant
Baychester	Donut Shop	American Restaurant	Sandwich Place	Mexican Restaurant	Pizza Place
City Island	Deli / Bodega	Seafood Restaurant	Spanish Restaurant	French Restaurant	Diner
West Farms	Chinese Restaurant	Donut Shop	Sandwich Place	Diner	Fast Food Restaurant
Mott Haven	Donut Shop	Pizza Place	Food	Spanish Restaurant	Bakery
Port Morris	Latin American Restaurant	Food	Chinese Restaurant	Food Truck	Spanish Restaurant
Longwood	Deli / Bodega	Chinese Restaurant	Fast Food Restaurant	Mexican Restaurant	Café

Cluster 6 displays the true diversity in terms of Food Venue Types.

This gives us much better insights in terms of clusters. We are able to understand how the features impacted the neighborhood partitioning in certain clusters.

6. Conclusion

As discussed in the previous section, we discovered the preferences for clusters based on Cuisine/Food Venue types as-

Cluster 1 — Satisfy your Italian cravings in the Red neighborhoods

Cluster 2 —Grab a bite on the go from Food Trucks in Purple neighborhoods

Cluster 3— Craving some spicy curry? Hop on to Blue neighborhoods for some Indian Food

Cluster 4— Grab New York Style Pizzas and fresh, hot food from Delis in the Turquois Zones

Cluster 5— Fresh meat products get the first priority in Light Green neighborhoods

Cluster 6 — I don't know what I want to eat Cluster (Orange neighborhoods)

In this **Applied Data Science Capstone Project**, we applied the various data manipulation techniques learned in *Data Analytics with Python* using the *Pandas* library. We also used the kmeans clustering taught in *Machine Learning with Python* to cluster various neighborhoods based on various types of Food Venues.

7. Future Scope

These clusters can be further refined by trying out different values of k for clustering or by changing the features used. The backend code can be added using a framework to provide users with the facility to enter what they want to eat and then displaying those results similar to food near me feature on Maps.

8. References

- NYC Information: https://en.wikipedia.org/wiki/New York City
- Pandas Library: https://pandas.pydata.org/
- Foursquare API: https://developer.foursquare.com/docs/places-api/
- Geocode Library: https://geopy.readthedocs.io/en/stable/
- Scikit-Learn Library: https://scikit-learn.org/stable/
- Folium Library: https://python-visualization.github.io/folium/modules.html