SEMINAR 12

- 1) În \mathbb{R} -spațiul vectorial \mathbb{R}^4 se consideră subspațiile generate astfel:
- c) $S = \langle u_1, u_2 \rangle$, cu $u_1 = (1, 2, 1, 0)$, $u_2 = (-1, 1, 1, 1)$, $T = \langle v_1, v_2 \rangle$, cu $v_1 = (2, -1, 0, 1)$, $v_2 = (1, -1, 3, 7)$;
- d) $S = \langle u_1, u_2, u_3 \rangle$, cu $u_1 = (1, 2, 1, -2), u_2 = (2, 3, 1, 0), u_3 = (1, 2, 2, -3),$ $T = \langle v_1, v_2, v_3 \rangle$, cu $v_1 = (1, 1, 1, 1), v_2 = (1, 0, 1, -1), v_3 = (1, 3, 0, -3).$

Găsiți câte o bază și dimensiunea pentru fiecare dintre subspațiile $S,\,T,\,S+T$ și $S\cap T.$

2) a) Fie $\varphi \in \mathbb{R}$. Să se arate că rotația în plan de unghi φ , adică funcția

$$h: \mathbb{R}^2 \to \mathbb{R}^2, \ h(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

este automorfism al lui \mathbb{R}^2 . Să se scrie matricea lui h în baza canonică a lui \mathbb{R}^2 (adică în baza (e_1, e_2) , cu $e_1 = (1, 0)$, $e_2 = (0, 1)$).

- b) Să se arate că funcțiile $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,-y) (simetria în raport cu axa Ox) și $g: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (-x,y) (simetria în raport cu axa Oy) sunt automorfisme ale lui \mathbb{R}^2 . Să se scrie matricele lui f, g, f-g, f+2g și $g\circ f$ în baza canonică.
- 3) Fie $f: \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (x+y,2x-y,3x+2y). Să se arate că f este o transformare liniară, să se arate că v = ((1,2),(-2,1)), respectiv v' = ((1,-1,0),(-1,0,1),(1,1,1)) este bază în \mathbb{R}^2 , respectiv \mathbb{R}^3 şi să se scrie matricea lui f în perechea de baze (v,v').

Suplimentar: Să se arate că fiecare dintre mulțimile ordonate de vectori (v_1, v_2, v_3) și (v'_1, v'_2, v'_3) cu

$$v_1 = (1, 2, 1), v_2 = (2, 3, 3), v_3 = (3, 7, 1)$$
 si $v_1' = (3, 1, 4), v_2' = (5, 2, 1), v_3' = (1, 1, -6)$

formează câte o bază a lui \mathbb{R}^3 și să se găsească legătura dintre coordonatele unui vector scris în cele două baze.

4) Fie $v = (v_1, v_2, v_3, v_4)$ o bază a \mathbb{R} -spațiului vectorial \mathbb{R}^4 , vectorii

$$u_1 = v_1, \ u_2 = v_1 + v_2, \ u_3 = v_1 + v_2 + v_3, \ u_4 = v_1 + v_2 + v_3 + v_4$$

şi $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ cu

$$[f]_v = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 0 & -1 & 2 \\ 2 & 5 & 3 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}.$$

Să se arate că $u = (u_1, u_2, u_3, u_4)$ este o bază a lui \mathbb{R}^4 și să se scrie matricea $[f]_u$.

5) Fie V un spațiu vectorial real, $v = (v_1, v_2, v_3)$ o bază a spațiului V, vectorii

$$u_1 = v_1 + 2v_2 + v_3, \ u_2 = v_1 + v_2 + 2v_3, \ u_3 = v_1 + v_2$$

și $f \in End_{\mathbb{R}}(V)$. Să se arate că $u = (u_1, u_2, u_3)$ este o bază a lui V și să se scrie matricea lui $[f]_v$ știind că

$$[f]_u = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{array}\right).$$

1

6) Fie V, V' două \mathbb{R} -spații vectoriale, $a=(a_1,a_2,a_3), b=(b_1,b_2,b_3)$ câte o bază în V, respectiv V' și $f:V\to V'$ o transformare liniară a cărei matrice în perechea de baze (a,b) este

$$[f]_{a,b} = \left(\begin{array}{rrr} -1 & 0 & 1\\ 1 & 0 & -1\\ 0 & 0 & 0 \end{array}\right).$$

Să se determine:

- i) f(v) pentru orice $v \in V$;
- ii) dimensiunea spațiilor vectoriale $\operatorname{Im} f$ și $\operatorname{Ker} f$;
- iii) matricea $[f]_{a',b'}$, unde $a' = (a_1, a_1 + a_2, a_1 + a_2 + a_3)$ și $b' = (b_1, b_1 + b_2, b_1 + b_2 + b_3)$.
- 7) Fie V, V' \mathbb{R} -spații vectoriale, $v=(v_1,v_2,v_3)$ o bază în $V,v'=(v_1',v_2',v_3')$ o bază în V' și $f:V\to V'$ transformarea liniară cu

$$[f]_{v,v'} = \left(\begin{array}{ccc} 0 & -1 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & -5 \end{array}\right).$$

Să se determine:

- i) dimensiunea și câte o bază pentru $\operatorname{Im} f$ și $\operatorname{Ker} f$;
- ii) $[f]_{v,e'}$ în cazul în care $V' = \mathbb{R}^3$, $v'_1 = (1,0,0)$, $v'_2 = (0,1,1)$, $v'_3 = (0,0,1)$ și e' este baza canonică a lui \mathbb{R}^3 ;
- iii) f(x) pentru $x = 2v_1 v_2 + 3v_3$, în condițiile de la ii).
- 8) Fie $f \in End_{\mathbb{Q}}(\mathbb{Q}^4)$ pentru care matricea în baza canonică este

a)
$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 3 & 2 & 3 & 2 \\ -1 & -3 & 0 & 4 \\ 0 & 4 & -1 & -3 \end{pmatrix}; b) \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 2 & 1 & 0 \\ 3 & 0 & -1 & -2 \\ 5 & -3 & -1 & 1 \end{pmatrix}.$$

Să se determine câte o bază în Ker f, Im f, Ker f + Im f şi Ker $f \cap \text{Im } f$.

TEMĂ: 1) Fie $S = \{(t, 2t, 3t) \mid t \in \mathbb{R}\}\$ și $T = \{(x, y, z) \mid x + y + z = 0\}.$

- i) Să se arate că S și T sunt subspații ale lui \mathbb{R}^3 .
- ii) Să se determine câte o bază în S și T.
- iii) Să se determine $S \cap T$ și S + T.
- 2) Fie $f: \mathbb{R}^3 \to \mathbb{R}^4$ aplicația liniară definită pe baza canonică astfel:

$$f(e_1) = (1, 2, 3, 4), f(e_2) = (4, 3, 2, 1), f(e_3) = (-2, 1, 4, 1).$$

Să se determine:

- i) f(v) pentru orice $v \in \mathbb{R}^3$;
- ii) matricea lui f în bazele canonice;
- iii) câte o bază în $\operatorname{Im} f$ și $\operatorname{Ker} f$.