Modes

CDC

CER

OFE

CIR

Feedback

XTS-AES

COMP412 Computer Security

Lec 04 Block Cipher Operation

Dr. Xiaochen Yuan 2021/2022

Modes

ECE

CB

CF

СТІ

Feedbac

XTS-AE

Contents

Modes of Operation

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

Feedback Characteristics of Modes

Modes

FCB

CB

CFI

СТ

Feedbac

XTS-AFS

Modes of Operation

- Block cipher: operates on fixed length b-bit input to produce b-bit ciphertext
- What about encrypting plaintext longer than b bits?
 - Break plaintext into b-bit blocks (padding if necessary) and apply cipher on each block
- Security issues arise: different modes of operation have been developed

Block Cipher

Operation

FCB

Contents

Electronic Code Book (ECB)

Modes

ECB

CRO

CFE

СТГ

reeubau

XTS-AF

Electronic Code Book (ECB) Encryption

- Each block: 64 bits
- Same key in each block
- Independently

Modes

ECB

CEL

CFL

OFF

CTE

Feedha

V/TC AE/

Electronic Code Book (ECB) Decryption

Mode

FCB

CB

CFI

СТІ

reeabac

XTS-AES

Summary

- Each block of 64 plaintext bits is encoded independently using same key
- Typical applications: secure transmission of single values (e.g. encryption key)
- Problem: with long message, repetition in plaintext may cause repetition in ciphertext

Modes

11000

CBC

CFE

СТІ

_ .

i eeubau

XTS-AES

Contents

Modes of Operation

Electronic Code Book

Cipher Block Chaining Mode (CBC)

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

Feedback Characteristics of Modes

Modes

ECI

CBC

CF

Cit

Oi

CII

i ecubac

XTS-AE

Cipher Block Chaining Mode (CBC) Encryption

- Each block: 64 bits
- Same key in each block
- Initialization Vector (IV) necessarily
- IV XORed P1, Ci XORed Pi+1

Question: How to avoid the repetition in ciphertext for repetition in plaintext?

Modes

ECB

CBC

CEL

CF

СТ

reeuba

XTS-AE

Cipher Block Chaining Mode (CBC) Decryption

Modes

CBC

CFI

OT.

. ___

CBC Summary

- Input to encryption algorithm is XOR of next 64-bits plaintext and preceding 64-bits ciphertext
- Typical applications: General-purpose block-oriented transmission; authentication
- Initialisation Vector (IV) must be known by sender/receiver, but secret from attacker
 - In particular, it must be impossible to predict the IV for any given plaintext;
 - For maximum security, IV should be protected against unauthorized changes.
 - E.g., send the IV using ECB encryption.

Modes

Block Cipher Operation

CD

CB

CFB

....

CII

i ecubaci

XIS-AE

Contents

Modes of Operation

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode (CFB)

Output Feedback Mode

Counter Mode

Feedback Characteristics of Modes

Modes

ECB

CFB

OE

CTF

Feedba

XTS-AES

Cipher Feedback Mode (CFB) Encryption

- Totally: b bits
- Each time process s bits
- Shift register applied each time
- Initialization Vector (IV) necessarily

Modes

Mode

CRO

CFB

CFE

OFF

CTE

Feedba

XTS-AF9

Cipher Feedback Mode (CFB) Decryption

Modes

LCL

CB

CFB

OF

CII

Feedbac

XTS-AES

CFB Summary

- Converts block cipher into stream cipher
 - No need to pad message to integral number of blocks
 - Operate in real-time: each character encrypted and transmitted immediately
- Input processed s bits at a time
- Preceding ciphertext used as input to cipher to produce pseudo-random output
- XOR output with plaintext to produce ciphertext
- Typical applications: General-purpose stream-oriented transmission; authentication

Block Cipher

Operation

OFB

Contents

Output Feedback Mode (OFB)

Modes

ECB.

CRC

CFF

CIL

OFB

CTF

Feedba

XTS-AE

Output Feedback Mode (OFB) Encryption

- Initialization Vector (IV) necessarily
 - IV must be a nonce,
 - must be unique to each execution of the encryption operation
 - Because each encryption output depends only on the key and the IV.

Modes

ECR.

CB(

CFF

CIL

OFB

CTF

Feedbad

XTS-AES

Output Feedback Mode (OFB) Decryption

Mode

ECB

CB

CF

OFB

- -

OFB Summary

- > Converts **block cipher** into **stream cipher**
 - OFB has structure of a typical stream cipher;
 - Distinction from the stream cipher is OFB encrypts <u>a full block</u> at a time; while many stream ciphers encrypt <u>one byte</u> at a time.
- Similar to CFB, except input to encryption algorithm is preceding encryption output
- Typical applications: stream-oriented transmission over noisy channels (e.g. satellite communications)
- Advantage compared to CFB: bit errors do not propagate
- Disadvantage: more vulnerable to message stream modification attack

Block Cipher

Operation

CTR

Contents

Counter Mode (CTR)

Modes

LCI

CFB

CTR

i ccubaci

XTS-AES

Counter Mode (CTR) Encryption

- Initial Counter value must be a **nonce**
- All the counter values across all the messages should be unique.
- Same key in each block

Modes

ECE

CBO

CFF

0. -

OFF

CTR

Feedbad

XTS-AE

Counter Mode (CTR) Decryption

Modes

ECB

CB

CFI

OE

CTR

Feedbac

XTS-AF9

CTR Summary

- Converts block cipher into stream cipher
- Each block of plaintext XORed with encrypted counter
- Typical applications: General-purpose block-oriented transmission; useful for high speed requirements
- Efficient hardware and software implementations
- Simple and secure

Modes

ECB

CEI

Ü. .

CII

Feedback

XTS-AES

Contents

Modes of Operation

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

Feedback Characteristics of Modes

Modes

FCB

CFB

CI L

Feedback

XTS-AES

Feedback: CBC and CFB

(a) Cipher block chaining (CBC) mode

(b) Cipher feedback (CFB) mode

·

Modes

CBO

CED

CID

OFF

CTF

Feedback

XTS-AE

Feedback: OFB and CTR

(c) Output feedback (OFB) mode

(d) Counter (CTR) mode

Madaa

Block Cipher Operation

ECD

CB

CF

0.5

CT

Feedbac

XTS-AES

Contents

Modes of Operation

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

Feedback Characteristics of Modes

Modes

CFE

CTI

Feedback

XTS-AFS

XTS-AES Encryption of Single Block

- P_i The jth block of plaintext
- i The value of the 128-bit tweak; a nonnegative integer.

Modes

ECB.

CB

CFF

CI L

СТІ

Feedback

XTS-AES

XTS-AES Decryption of Single Block

Prove: Decrypted P = Plaintext P?

XTS-AES Encryption

Block Cipher Operation

Modes

ECB

CB

CED

CIL

OFE

CIK

Feedbac

XTS-AES Decryption

Block Cipher Operation

Modes

ECE

CBO

CFB

E---

Mode

ECB

CD

CF

OF

CII

Feedbac

XTS-AFS

Encryption for Stored Data

- XTS-AES designed for encrypting stored data (as opposed to transmitted data)
- The P1619 standard was designed to specify the requirement for encrypting stored data.

"data at rest" differ somewhat from those for transmitted data.

Mode

ECE

CB

CFI

CT

Feedba

XTS-AES

Storage Encryption Requirements

- > The **ciphertext** is freely available for an attacker.
- The data layout is not changed on the storage medium and in transit. The encrypted data must be the same size as the plaintext data.
- Data are assessed in fixed sized blocks, independently from each other.
- Encryption is performed in 16-byte blocks, independently from other blocks.
- There are no other metadata used, except the location of the data blocks within the whole data set.
- The same plaintext is encrypted to different ciphertexts at different locations, but always to the same ciphertext when written to the same location again.
- A standard conformant device can be constructed for decryption of data encrypted by another standard conformant device.