

FORT DEVENS GROUP 1B SITES

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT DRMO YARD

CONTRACT DACA31-94-D-0061 DELIVERY ORDER NUMBER 0003

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

November 1996

20070206238

PRINTED ON RECYCLED PAPER

Distribution Unlimited Approved for Public Release

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT FOR DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD FORT DEVENS, MASSACHUSETTS

CONTRACT DACA31-94-D-0061 DELIVERY ORDER NUMBER 0003

Prepared for:

U.S. Army Environmental Center Aberdeen Proving Ground, Maryland

Prepared by:

Radiation Science, Inc. Cranbury, New Jersey

Oversight by:

ABB Environmental Services, Inc. Wakefield, Massachusetts

NOVEMBER 1996

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT FOR

DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD FORT DEVENS, MASSACHUSETTS

Table of Contents

- 1.0 Introduction
 - 1.1 Site History
 - 1.2 Surface Conditions
 - 1.3 Other Contaminants
 - 1.4 Project Summary
- 2.0 Release Criteria
- 3.0 Survey Methods
- 4.0 Survey Results
 - 4.1 Pre-remediation
 - 4.2 Post-remediation
- 5.0 Data Quality Review
 - 5.1 Field Data
 - 5.2 Laboratory Data
 - 5.3 Overall Evaluation

6.0 Conclusions

Appendix A	Field	Measurements
------------	-------	--------------

- Appendix B Soil Analysis Results
- Appendix C Post Remediation Soil Analysis Results
- Appendix D Calibration Certificates & MDA Calculations
- Appendix E PCB/TCLP Lead QC Summaries (Drums 1-5) and COC Records
- Appendix F Radioactive Package Shipment Survey Record

EXECUTIVE SUMMARY

This Radiological Survey Report has been prepared in accordance with the U.S. Army Environmental Center (USAEC) scope of work for Contract No. DACA31-94-D-0061, Delivery Order No. 0003, Modification 1. The scope of work modification sets forth the requirements for performing a radiological survey at the Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts.

The DRMO Yard is currently undergoing environmental restoration as Area of Contamination (AOC) 32 in accordance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The pavement and surface soils have been contaminated primarily with inorganics and polychlorinated biphenyls (PCBs) from yard operations. In addition to these findings, the U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) conducted a preliminary survey to establish the history of radioactive sources at Fort Devens. The locations of sources, the activity of those sources, and the uses, accidents, and leaks that may have contaminated any areas at Fort Devens are presented by USACHPPM in an industrial radiation historical data review report entitled "Industrial Radiation Historical Data Review No. 27-43-E3QX-95 Fort Devens, Massachusetts" and dated November 7, 1994.

One of the outdoor sites identified in the report is the DRMO Yard which is located at the north end of the Main Post on the corner of Cook Street and Market Street in the town of Ayer. The DRMO Yard is comprised of three fenced enclosures. These fenced yards are identified in this report as the west yard, east yard and the tire recycling yard. According to the historical data review report by USACHPPM, there was a potential for radium contamination from jeep crushing activities that occurred within these yards. For an undetermined period of time, jeeps were crushed without removal of speedometer, fuel, temperature, battery and oil pressure gages with radium faces. Based on a record search, crushing potentially occurred within the north end of the east yard, the tire recycling yard, and on a 40- by-100-foot concrete pad (former building slab) east of Building 204. No crushing was reported to be performed within the west yard.

As a result of the preliminary survey by USACHPPM, the USAEC contracted ABB Environmental Services, Inc. (ABB-ES) to perform a radiological survey at the DRMO Yard to investigate for potential contamination from radium 226 (Ra-226) in soils and on paved surfaces. The Army identified the following areas as "affected" areas as defined by NUREG/CR-5849 Manual for Conducting Radiological Surveys in Support of License Termination, (NRC, 1992):

• The tire recycling yard (an approximate 2,915 square meter [m²] unpaved area).

- The north portion of the east yard (an approximate 6,980 m² paved area with 690 m² unpaved perimeter). Existing concrete barriers, which demarcated a PCB spill area, were used as a conservative definition of the "northern portion" of the east yard. The PCB spill occurred where transformers were stored and crushing operations were once performed.
- The 12- by-31-meter (m) concrete pad east of Building T-204 and approximate 10-m-wide perimeter around the pad (1,000 m² unpaved and 220 m² paved perimeter).

The Army identified the area south of the concrete barrier in the east yard as an "unaffected" area requiring survey as defined by NUREG/CR-5849, due to the uncertainty of the boundary where crushing was performed in the north end of the yard.

The radiological field work was subcontracted to Radiation Science, Inc., a radiological contractor from Cranbury, New Jersey. In August 1995, Radiation Science, Inc. performed an initial site survey within the defined affected and unaffected areas of the DRMO Yard. The work was performed in accordance with the Final Radiological Work Plan DRMO Yard, Fort Devens Massachusetts, dated August 4, 1995. A grid, consisting of 10-m-by-10-m grid squares was established over all surveyed areas to establish a survey reference system. One hundred percent of the affected areas and 10 percent of the unaffected area were scanned using a sodium iodide (NaI) detector.

Measurements of total alpha and total beta/gamma surface activity were made at any location exhibiting elevated count rates (hot spot areas) plus 30 random locations within paved areas within affected and unaffected areas. Dose equivalent measurements were collected with a Bicron tissue equivalent MicroRem meter from every grid square within affected areas and from 30 randomly selected grid squares in the unaffected area.

Soil samples for laboratory analyses were collected at a rate of four samples per grid square in unpaved affected areas and one sample per 30 randomly selected grid squares in the unpaved portions of the unaffected area. Analysis was for Ra-226 using gamma spectroscopy. Ten locations were selected from an area approximately 300 to 500 feet west of the site survey area to determine background levels for dose rates, gamma count rates and Ra-226 concentrations in soil.

Results from the August 1995 radiological site survey revealed the presence of one radium dial indicator, one gage, and 10 hot spots under paved areas within the north end of the east yard. Maximum readings at the site were obtained within the 10- by-10-m grid containing the radium dial indicator and an unidentified source below the pavement. Measurements within this grid square were as follows: background up to 112,300 counts per minute (cpm) (gamma scan); 15 to 55 micro Rem per hour (μ Rem/hr) (dose rate);

RADIOLOGICAL SURVEY AND REMEDIATION

total beta/gamma measurements measured $28,623 \pm 1303$ beta/gamma disintegrations per minute (dpm)/100 square centimeters (cm²) and 55 total alpha dpm/100 cm². The survey discovered no surface contamination on paved areas at any of the yards and no soil contamination within the tire recycling yard, the concrete pad area east of Building T-204, and the south portion of the east yard.

Following the radiological site survey, Radiation Science, Inc. returned to the site to excavate through the pavement and investigate/remediate the hot spot areas detected during the site survey at the north end of the east yard. Hot spot areas were found to be predominantly contaminated soil (only one fully intact dial was found below the pavement). Contaminated soil was containerized in five 55-gallon drums and relinquished to the Army for disposal. Composited samples were collected for each drum for laboratory analyses of Ra-226, PCBs, and Toxicity Characteristic Leaching Procedure (TCLP) Lead. Maximum concentrations were 89 picocuries per gram (pCi/g) above background Ra-226, 1,800 micrograms per kilogram (μ g/kg) PCBs (Aroclor 1254), and 107,000 microgram per liter (μ g/L) TCLP Lead. TCLP lead concentrations in two of the five drums exceeded the TCLP regulatory limit of 5,000 μ g/L.

Upon soil removal, a composite soil sample was collected from the walls and bottom of each of the 10 hot spot excavations and from around the radium dial indicator and gage. All samples revealed Ra-226 concentrations below the release limit of 3.75 pCi/g. The average Ra-226 concentration of the 12 soil samples was 1.13 pCi/g, above background. This average value is approximately 30 percent of the release limit. Based upon the initial site survey and the remedial results, the east yard, tire recycling yard, and concrete pad area east of Building T-204 meet the release criteria established for total alpha contamination and Ra-226 concentrations in soil.

[THIS PAGE INTENTIONALLY LEFT BLANK]

ı

ł

1.0 INTRODUCTION

The U.S. Army Environmental Center (USAEC) has directed ABB Environmental Services, Inc. (ABB-ES), under Contract No. DACA31-94-D-0061, Delivery Order No. 0003 Modification 1, to conduct radiological survey work at the Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts.

The U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) conducted a preliminary survey to establish the history of radioactive sources at Fort Devens. The locations of sources, the activity of those sources, and the uses, accidents, and leaks that may have contaminated any areas at Fort Devens are presented by USACHPPM in an industrial radiation historical data review report (USACHPPM, 1994). One of the outdoor sites identified in the report is the DRMO Yard which is located at the north end of the Main Post on the corner of Cook Street and Market Street in the town of Ayer. The DRMO Yard is comprised of three fenced enclosures on both sides of Cook Street (Figure 1). These fenced yards are identified in this report as the west yard, east yard and the tire recycling yard. According to the historical data review report by USACHPPM, there was a potential for radium contamination from jeep crushing activities that occurred within these yards. For an undetermined period of time, jeeps were crushed without removal of speedometer, fuel, temperature, battery and oil pressure gages with radium faces. As a result of the preliminary survey by USACHPPM, the USAEC contracted ABB-ES to perform a radiological survey within the DRMO Yard to investigate for potential contamination from radium 226 (Ra-226) in surface soils and on paved surfaces.

USAEC also requested that ABB-ES search and review historical information to define more precisely where jeep crushing may have occurred within the DRMO Yard. The search for historical information involved interviewing Fort Devens personnel; reviewing historical aerial photographs, Fort Devens record vault drawings, and Department of Defense (DoD) regulations; and visiting the site to inspect topography and other site conditions (ABB-ES, 1995). The following information regarding site background and crushing operations was derived from this background research.

1.1 Site History

Formerly, the Army cut jeeps (in half or quarter following a predetermined and precise procedure) in the DRMO yard so that they could not be resold for use by the general public. Later, the Army discovered that buyers who bought the jeeps for "scrap metal" were welding the frames back together and selling them as operable jeeps. For liability purposes, the Army began to crush the jeeps. Army personnel crushed the jeeps using tank retrievers and other tracked vehicles. Later, contractors hired by the buyer crushed the jeeps by using the clam shell bucket of the crane as the jeeps were loaded to be

taken away. At other times, a mobile car crusher was used. Although exact dates could not be recalled, crushing likely occurred before the Directorate of Logistics (DOL) was instructed to remove the radium gages prior to sending the chassis to DRMO.

Jeep cutting was initially performed in the east yard. When the Army started crushing jeeps, they were concerned that the paved areas would be dug-up by the operation. As a result, for "a few summers" they crushed jeeps on a 40- by-100-ft concrete pad (former building slab) east of Building 204 (Figure 1). When contractors began crushing jeeps, it was performed in the northern portion of the east yard and tire recycling yard.

No evidence was found that would suggest that jeep crushing was performed in the west yard. Historically, the west yard was used as a staging area for merchandise which was recycled, sold as scrap, or auctioned. Items typically staged in the west yard included office furniture, batteries, and scrap metal. The east yard was used for storage of larger items such as transformers, vehicles, and storage tanks, as well as for cutting and crushing operations.

Based on this information, the Army identified the following areas as "affected" areas as defined by NUREG/CR-5849 Manual for Conducting Radiological Surveys in Support of License Termination, (NRC, 1992):

- The tire recycling yard (an approximate 2,915 square meter [m²] unpaved area).
- The north portion of east yard (an approximate 6,980 m² paved area with 690 m² unpaved perimeter). The existing concrete barriers (Figure 1), which demarcated a polychlorinated biphenyl (PCB) spill area, were used as a conservative definition of the "northern portion" of the east yard. The PCB spill occurred where transformers were stored and where crushing operations were once performed.
- The 370 m² concrete pad east of Building T-204 and approximate 10-meter (m) wide perimeter around the pad (1,000 m² unpaved and 220 m² paved perimeter).

No crushing was reportedly performed at the south end of the east yard. However, due to the uncertainty of the boundary where crushing was performed in the east yard, the Army surveyed the area south of the concrete barriers as an "unaffected area", as defined by NUREG/CR-5849 (NRC, 1992).

1.2 Surface Conditions

The west yard was constructed and paved in August 1979 when DRMO took over the property west of Cook Street and constructed Building P-213 (warehouse). Record drawings for Building P-213 and the west yard show that there was a layer of approximately 10 inches (in) of coal that remained from a former coal pile over the area prior to construction of the west yard.

Aerial photographs show that the entire east yard was completely paved sometime between 1969 and 1972. Based on conversations with DRMO personnel, jeep crushing was believed to have started after the east yard was paved. Between the fence that surrounds the east yard and the paved surface is an approximate 10-ft-wide perimeter that is covered with sporadic vegetation, gravel, and sand. There are two unpaved spots (approximately 20 to 30 feet [ft] in diameter) located in the northern portion of the east yard where pavement has been removed (believed to be associated with PCB spill cleanup). The yard most recently used for tire recycling at the north end of the east yard is totally unpaved.

During a site visit, ABB-ES noted the presence of coal fragments intermixed with the sand and gravel along the west fence of the east yard. In an aerial photograph taken in 1965, approximately 25 percent of the east yard (southwest side) appears noticeably stained (black), presumably with coal from the coal pile which, at the time, was located directly across Cook Street. Coal ash was also formerly hauled down Cook Street, past the DRMO Yard, for disposal in the Shepley's Hill landfill. The presence of coal and coal ash in the east yard (and perhaps the tire recycling yard) could influence the results of a radiological survey due the potential presence of naturally occurring radioactive uranium, radium or potassium. As a result, a background survey was performed in consideration of these possible influences (refer to Section 3.0, Survey Methods).

The concrete pad located east of Building T-204 is surrounded by pavement on the west end and vegetation on the remaining three sides.

1.3 Other Contaminants

The DRMO Yard is also currently undergoing environmental restoration as Area of Contamination (AOC) 32 in accordance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The pavement and surface soils have been contaminated primarily with inorganics and PCBs from yard operations.

1.4 Project Summary

The purpose of the radiological work was to assess the potential for surface soil and paved surface contamination from Ra-226. It is the Army's intent that the radiological work described in this report demonstrates that the site meets the required release criteria for unrestricted use, from the radiological standpoint, based upon guidelines established by the U.S. Nuclear Regulatory Commission (NRC).

This report represents the final release survey of the east yard, tire recycling yard, and concrete pad east of Building T-204 at the DRMO Yard. Radiation Science, Inc. (RSI) conducted an initial site survey and characterization, remediation, and final release survey over a period beginning August 1995 until the date of this report.

The initial survey for radioactive material was performed as described in the Radiological Survey Work Plan (ABB-ES, 1995). The systematic survey methods discovered one radium dial indicator (needle), one gage, and 10 hotspots under paved areas of the east yard (north end) indicating the presence of radioactive material. The dial indicator and gage were recovered and secured from open soil off the edge of paved areas. The survey discovered no paved surface contamination and no soil contamination outside these areas.

Site remediation and final release of the contaminated areas were performed in accordance with the Radiological Survey Work Plan Addendum (ABB-ES, 1996) and completed in June 1996. Confirmatory soil samples were analyzed and the results are presented in this report. The east yard now meets the release criteria established for total alpha contamination and Ra-226 concentrations in soil. The tire recycling yard and concrete pad east of Building T-204 met all release criteria as found, with no remediation necessary.

Waste generated as a result of this project was containerized and relinquished to the Army for disposal. The results of radiological characterization of the waste are included in this final report.

The sections that follow in this report discuss the work summarized above. Section 2.0 defines the release criteria used during the radiological survey. Section 3.0 recounts the methods used to perform the background survey and site (pre-remediation) survey within the east DRMO Yard, tire recycling yard and the concrete pad area east of Building T-204. Section 4.0 summarizes the survey results from the pre-remediation and resultant post-remediation work. Section 5.0 reviews the data quality of the field survey and laboratory results. Section 6.0 presents the conclusions realized from the radiological work performed at the DRMO Yard.

2.0 RELEASE CRITERIA

The release criteria for this project are based on NUREG-1500, "Working Draft Regulatory Guide on Release Criteria for Decommissioning". A discussion of the release criteria and their derivation is provided in the Radiological Work Plan (ABB-ES, 1995). These release criteria are 1,020 disintegrations per minute (dpm)/100 square centimeters (cm²) total surface alpha contamination, and 3.75 picocuries (pCi) of Ra-226 per gram (g) of soil, above locally determined background levels.

3.0 SURVEY METHODS

The site survey was conducted as described in the Radiological Survey Work Plan (ABB-ES, 1995) and follows the recommendations provided in NUREG-5849, "Manual for Conducting Radiological Surveys in Support of License Termination" (NRC, 1992). Table 1 summarizes the type and frequency of survey that was performed in each area.

Ten locations (Figure 2) approximately 300 to 500 ft west of the site survey area were used to determine background levels for dose rates, gamma count rate, and Ra-226 concentration in soil. This area included both paved and unpaved surfaces, as well as areas where coal was stored previously. Background for each type of surface, as well as soil concentrations were determined and results are reported in Appendix B.

The DRMO Yard was divided into four survey units: (1) tire recycling yard (unpaved), (2) east yard north (paved with unpaved areas), (3) east yard south of the concrete barriers (paved with unpaved areas), and the concrete pad east of Building T-204 (concrete surface and unpaved perimeter). Only the east yard south of the concrete barriers was designated an "unaffected unit". A 10-m-by-10-m grid was established over all areas, as depicted in Figure 3. All survey results are keyed to those grid identification numbers.

Each grid was scanned with a 2- by-2-inch sodium iodide (NaI) crystal, with the meter in ratemeter mode. Using the audio output to identify hotspots, the detector was held 3 inches above ground level and was moved over the area at a slow pace. Any location exhibiting elevated count rates was identified for further investigation. The range of count rates detected in each grid is reported.

Measurements of the total alpha and total beta/gamma surface activity were made at any hotspots identified during the gamma scan. In addition 30 random locations were selected for measurement in each paved survey unit, the east yard (north and south of the concrete barrier) and the concrete pad.

Dose equivalent measurements were obtained at waist level with a Bicron tissue

equivalent microRem meter. Thirty random grid squares were selected in the unaffected area. One measurement was collected per randomly selected grid square in the unaffected area. One measurement per every grid square was collected in the affected areas.

Soil samples were obtained to a depth of 6 inches and at the rate of four samples per grid square in unpaved affected areas and at a rate of one sample in each of 30 randomly selected grid squares in unpaved, unaffected areas. One soil sample was also collected from each background location.

4.0 SURVEY RESULTS

4.1 Pre-Remediation

The field survey results recorded for the initial characterization (pre-remediation) are reported in Appendix A. The total alpha, total beta-gamma measurements as well as the dose rate and results of the gamma scan are presented by grid for each area. No total activity measurements are recorded for the tire recycling yard as this area contains no paved surfaces.

The gamma scan results for each grid are reported (Appendix A); however, these values are used for diagnostic purposes and not used for comparison to any regulatory limit. Areas exhibiting gamma count rates greater than twice background were outlined in paint and classified as "hotspots" for further study in the remediation phase. Figure 4 indicates the locations of all identified hotspots. No areas exceeded the total alpha contamination limit of 1,020 dpm/100 cm². No dose rates (excluding hotspots) exceeded 5 microRem per hour above background.

The laboratory results of the soil analysis are presented in Appendix B. Soil samples obtained during the characterization were analyzed by PACE Environmental Laboratories (PACE). Post remediation samples were analyzed by Quanterra, in St. Louis, Missouri., and Environmental Science & Engineering (ESE) of Gainesville, Florida. At all laboratories, samples were analyzed by gamma spectroscopy.

The average Ra-226 concentration in soil for all areas is within two standard deviations of background. The highest value from the 200 soil samples obtained in unpaved areas was 1.6 pCi/g of Ra-226. This is less than half the release limit of 3.75 pCi/g.

4.2 Post-Remediation

The hot spot areas were remediated by cutting and removing the pavement, locating the areas of elevated radioactivity with a NaI detector, and excavating the soil with hand

tools. The pieces of pavement were scanned and disposed as radioactive or non-radioactive based on the scan results. Five 55-gallon drums of waste were generated and relinquished to the Army for disposal at an approved disposal facility as directed by the Radiation Waste Division of the Industrial Operations Command (IOC), Rock Island, Illinois. Hot spot areas were found to be predominantly contaminated soil (only one fully intact dial was found below the pavement). Composited samples were collected for each drum for laboratory analyses of Ra-226, PCBs, and Toxicity Characteristic Leaching Procedure (TCLP) Lead. Maximum concentrations were 89 pCi/g above background Ra-226, 1,800 micrograms per kilogram ($\mu g/kg$) PCBs (Aroclor 1254), and 107,000 microgram per liter ($\mu g/L$) TCLP Lead. TCLP lead concentrations in two of the five drums exceeded the TCLP regulatory limit of 5,000 μ g/L. Drum characterization results are summarized in Table 2. PCB and TCLP Lead OC Summaries and Chain of Custody documentation for Drums 1 through 5 are provided in Appendix E. Data quality review for Ra-226 analyses is summarized in Section 5.0. The results of radiological dose rate and smear surveys performed on the drums for staging and transportation purposes are included in Appendix F.

At the end of each phase of remediation, a soil sample was obtained from the bottom and sides of the excavation for each hotspot. The average value from the 12 soil samples obtained in the excavated hotspots was 1.13 pCi/g of Ra-226, above background. This is approximately 30 percent of the release limit.

5.0 DATA QUALITY REVIEW

Providing quality data for a remediation project is based on certain key elements as discussed in EPA guidance documents (EPA 504/G-93/071). These are known as PARCC (precision, accuracy, representativeness, completeness, and comparability) parameters. In addition, the sensitivity of measurements, expressed as the Minimum Detectable Activity (MDA) must be sufficiently low to detect contamination that is less than or equal to 25 percent of the release criteria (NRC, 1992). The process for assessing these parameters, as well as the project specific results, are discussed below.

Field measurements and quality control were provided by RSI. Laboratory measurements and quality control were provided by PACE, ESE and Quanterra, with the data quality review conducted by RSI.

5.1 Field Measurements

Precision. Precision is a test of how closely a measurement can be replicated. Replicate measurements for total alpha and beta contamination were made by obtaining two one-minute counts in sequence at the same location. Slightly more than 4 percent of the total measurements were duplicated in this manner. The formula below was used to

RADIOLOGICAL SURVEY AND REMEDIATION

determine the relative percent difference (RPD). The average RPD for alpha was 22 percent and for beta 9 percent. The higher RPD for alpha contamination is because the small values, i.e. near background, are hard to replicate. This is acceptable however, because one is most concerned with precision for contamination measurements near the release limits, not near background. Better reproducibility is expected as the countrate approaches the release criteria. The RPD for the dose rate measurements was 2 percent. One could expect measurements of contaminated areas at this site to be reproduced within \pm RPD for each category with similar instrumentation and count times.

$$RPD = \frac{Measurement - Replicate Measurement}{(Measurement + Replicate Measurement) / 2} x 100%$$

Accuracy. Accuracy is a test of how close the meters response is to a known value. The beta standard used for this project was a Technetium-99 two-inch diameter nickel plated source (serial# 1699-94) with a radioactivity level of 15,000 dpm as certified by the National Institute of Standards and Testing (NIST). The alpha standard was a Thorium-230 source of the same configuration, also NIST traceable. Counting efficiencies were based on these two standards. Contamination in a geometry different from the calibration standards may be detected with a different efficiency. The difference between the meters efficiency for a point source and large areas of contamination is estimated to be less than 6 percent (NRC, 1995a).

To ensure continued accuracy in the field a check log was established at the beginning of the project. Operational and source checks for field instruments were performed each day of use, and recorded on the logsheet. A source check "jig" was used to ensure the source and meter were always in the same position relative to one another. All recorded measurements in this report were obtained with meters which met the criteria for useability.

Representativeness. Representative data is that data which accurately reflects the environment where the measurement was obtained. One measurement of this parameter is to simply compare the number of times the premise the data is intended to show fails, compared to the number of times the premise is tested. For this project, the premise is elevated count rates on or above the surface indicate subsurface contamination. The equation used is:

Representativeness =
$$(1 - F/N) \times 100$$
%

where: F = number of times the premise fails

N = number of times the premise is tested

For this project the data is 100 percent representative. All hotspots identified during the scanning survey were subsequently proven to be hotspots based on the samples obtained during the remediation phase.

Completeness. Completeness is a measure of the amount of valid data obtained compared to the amount that was specified. For the purposes of evaluation, data defined as invalid through a QA review is subtracted from the complete data set to determine the number of valid data points. Generally, completeness greater than 95 percent is desirable. For the field measurements of dose rate, alpha, and beta contamination, all data obtained was valid, thereby providing 100 percent completeness.

Comparability. Comparability is a non-quantitative evaluation of the agreement between different types of data sets which should be, intuitively, related to each other. For example, on this project, all locations exhibiting elevated dose rates, also exhibited elevated gamma count rates, illustrating total comparability of these two data sets. Although the beta contamination has a relatively short range, it too is comparable with the gamma data. The alpha results are not comparable with any other data, as its range of affect is limited to several centimeters.

Sensitivity. To determine the suitability of a meter for a measurement, the MDA is compared with the project specific release limits. The minimum detectable activity was calculated using an equation from NUREG-5849, and the average of the daily background and source checks. The MDA for total alpha measurements (55 dpm/100 cm²) was 5.4 percent of the fixed contamination release limit (1,020 dpm/100 cm²). Therefore, the instrumentation employed was suitable for detecting contamination at the release limit and distinguishing it from background. MDA calculations are presented in Appendix D, as well as calibration certificates for field instrumentation.

5.2 Laboratory Analysis

For the initial survey, PACE analyzed 210 soil samples by gamma spectroscopy to determine the Ra-226 concentration. In the next phase, 18 soil samples were analyzed by Quanterra and ESE to confirm the efficacy of remediation. The first contract laboratory, PACE, was no longer in business at the time of the data review.

Precision. To assess the precision, (reproducibility) of laboratory analysis, PACE reanalyzed 20 samples out of 210, roughly 10 percent. The re-analysis was an immediate recount of a sample on the same detector. The average RPD was 6 percent with a range of zero to 14 percent. However, an error was discovered in the reporting of QA data. A duplicate analysis was reported as 0.75 pCi/g for both counts, yet the raw data provides two different values, 0.73 pCi/g and 0.75 pCi/g. This is merely a transcription error and does not affect the quality of the data.

Duplicate samples, that is two samples collected from the "same" location, were also collected for post-remediation analyses. Two out of 18 samples were duplicated providing an average RPD of 31 percent. While this value is higher than the pre-remediation analysis RPD, it also includes the error in trying to reproduce a sampling event in the field, with a high activity, small-sized discrete contaminant, i.e. radioluminescent paint chips. Six samples generated after the last phase of remediation were analyzed by ESE. Of those six, four were duplicated under acceptable counting conditions. The average RPD was 6 percent.

Accuracy. Accuracy for laboratory analysis is based on the efficiency and energy calibration of the detector, and how close the standard simulates the unknown sample. PACE provided documentation of energy and efficiency calibrations during the time frame the samples were analyzed. However, the standard was geometry "X", a 0.5-liter Marinelli beaker, while the samples were counted in a 1.0-liter Marinelli beaker (geometry "T"). Also the density of the standard, 3.2 grams per cubic centimeter (g/cc), was almost twice the density of some of the samples at 1.8 g/cc. This is a conservative error in that the detector will "see" gamma rays with a lower efficiency in the higher density material, as compared with the lower density samples. As a result, the total activity in the samples may be slightly overestimated.

Quanterra also utilized NIST traceable standards. However, in one instance, the standard was out of calibration for more than one year prior to use. Generally decay corrections for standards are not propagated past four or five half-lives. Use of this "old standard" reduced the 11 point standard to a 6 point standard. Because of this, there are no efficiency points between 166 kev and 662 kev. The probable effect is that the reported uncertainty is slightly underestimated. In addition, the energy calibration was conducted with a 0.5-liter Marinelli, while the efficiency calibration and samples were in a 45-g Petri dish geometry. However, the difference in geometry between samples and standards is much less important for the energy calibration than it is for the efficiency calibration.

ESE provided a certificate of calibration for a NIST traceable source used for the efficiency calibration of their counting system. The standard was in the same geometry as the samples and prepared within the previous 12 months. The count times were of sufficient duration to produce acceptable minimum detectable activities.

Representativeness. Whether or not the laboratory analysis of soil samples is representative of the contaminant levels on site is really a function of the sampling program, i.e. the number of samples per unit area. Because the sampling was designed using guidance in NUREG-5849 (NRC, 1992), it is assumed the NRC or any other state or federal regulatory agency would consider the number and location of soil samples to be representative of the contaminant levels on site.

Completeness. For the first phase of laboratory analysis, conducted by PACE, 210 soil samples were specified. Chain of custody forms and analytical results indicate all 210 samples were received, prepared, analyzed, and reported, with no losses or rejections. Therefore, the laboratory data for this phase was 100 percent complete. In the second phase, a minimum of one sample from each remediated hotspot was expected, and a minimum of one sample from each hotspot was obtained. All samples collected were received by the laboratories intact and subsequently analyzed. Those results, as reported here, are acceptable and provide 100 percent completeness of the laboratory data for this project.

Comparability. Because this parameter relates two data sets, and the laboratory data only produced a single data set (Ra-226 in soil) it is difficult to compare the results within a laboratory. However, comparability between the laboratory and field data was high. That is, hotspots identified in the field produced soil samples with elevated Ra-226 concentrations.

Sensitivity. MDA calculations were provided by all laboratories as part of the computer generated data report. The counting error due solely to random statistical fluctuations, expressed as sigma, was evaluated as part of the analytical sensitivity. NUREG-5849 recommends the 2 sigma error be less than 20 percent of the reported value.

The MDA values for PACE (pre-remediation) were on the order of 0.2 to 0.3 pCi/g, less than 10 percent of the Ra-226 release criteria of 3.75 pCi/g. The statistical counting error at the 95 percent level, (2 sigma) was generally less than 20 percent of the reported value.

Quanterra results were reported with MDAs at an average value of 1.2 pCi/g, approximately 32 percent of the release criteria. In addition, the two sigma errors are on the order of 40 to 50 percent of the reported results. This may be due to the small sample size (45 g), and the inhomogeneity of the contaminant, as previously discussed in the paragraph entitled "Precision".

ESE counted all samples for a sufficient length of time to ensure all results were above their minimum detectable activity.

5.3 Overall Data Evaluation

The data is suitable for use, and adequately characterizes the contamination levels on site. Comparing the 95 percent confidence level upper limit of the measured values (i.e. result \pm 2 sigma) to the release criteria provides an added margin of safety in assuring compliance with the release criteria.

6.0 CONCLUSIONS

The initial survey for radioactive material performed in August 1995 revealed the presence of one radium dial indicator (needle), one gage, and 10 hotspots under paved areas of the east yard (north end) indicating the presence of radioactive material. The dial indicator and gage were recovered and secured from open soil off the edge of paved areas. The survey discovered no paved surface contamination and no soil contamination at the other three survey areas (south end of the east yard, the tire recycling yard, and the concrete pad area east of Building T-204). The average Ra-226 concentration in soil for all unpaved areas is within two standard deviations of background. The highest value from the 200 soil samples obtained in unpaved areas was 1.6 pCi/g of Ra-226. This is less than half the release limit of 3.75 pCi/g.

Site remediation of detected hot spot areas and final release of the north end of the east yard was completed in June 1996. The remediation resulted in generating five 55-gallon drums of waste. Hot spot areas were predominantly found to be contaminated soil. Following soil removal, a confirmation soil sample was obtained from the bottom and sides of the excavation for each hotspot. Final confirmation samples which were collected from the hotspot areas revealed that Ra-226 concentrations were all below the release criteria of 3.75 pCi/g, above background. The average value from the 12 soil samples obtained in the excavated hotspots was 1.13 pCi/g of Ra-226, above background. This is approximately 30 percent of the release limit.

Based upon the initial site survey and the remedial results, the paved and unpaved portions of the east yard, tire recycling yard, and concrete pad area east of Building T-204 meet the required release criteria for unrestricted use based upon guidelines established by the NRC.

References

- ABB Environmental Services, Inc. (ABB-ES), 1995 "Final Radiological Survey Work Plan, Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts"; August 4, 1995
- ABB Environmental Services, Inc. (ABB-ES), 1995. Memorandum entitled "Historical Data Search and Radiological Survey Implications AOC 32 (DRMO Yard), Fort Devens, Massachusetts"; June 16, 1995.
- ABB Environmental Services, Inc. (ABB-ES), 1996 "Final Radiological Survey Work Plan Addendum, Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts"; February 14, 1996.
- U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM), 1994. "Industrial Radiation Historical Data Review No. 27-43-E3QX-95 Fort Devens Massachusetts"; November 7, 1994.
- U.S. Environmental Protection Agency (EPA), 1994 EPA 540/G-93/071 Data Quality Objectives Process for Superfund. Washington, DC 1994.
- U.S. Nuclear Regulatory Commission (NRC), 1994. "NUREG-1500 Working Draft Regulatory Guide on Release Criteria for Decommissioning: NRC Staff's Draft for Comment". Draft Report for Comment, August, 1994.
- U.S. Nuclear Regulatory Commission (NRC), 1992. "NUREG/CR-5849 Manual for Conducting Radiological Surveys in Support of License Termination", Prepared by J. D. Berger, Environmental Survey and Site Assessment Program, Energy/Environmental Systems Division, Oak Ridge Associated Universities, Oak Ridge, TN; Prepared for U.S. Nuclear Regulatory Commission; Draft Report for Comment, June 1992.
- U.S. Nuclear Regulatory Commission (NRC), 1995 NUREG-1506 Measurement Methods for Radiological Surveys in Support of New Decommissioning Criteria. Draft Report for Comment, August 1995.
- U.S. Nuclear Regulatory Commission (NRC), 1995a NUREG-1507 Minimum

 Detectable Concentrations with Typical Radiation Survey Instruments for Various
 Contaminants and Field Conditions. Draft Report for Comment, August 1995.

[THIS PAGE INTENTIONALLY LEFT BLANK]

DRMO Grid Identification Map

H8

НЭ

√A9

B9

C9

D9

B10

D10

Tire Recycling Yard

East Yard: North of Jersey Barrier

-- Concrete

- Excavation

Concrete Pad

Al	A2	A3	A4	A.5
	4:11:11:11		4.11.11.11	
Bl	B2.	B3:	B4	1 55
Cl	C2	C3	C4	⊡ C5

GRID IDENTIFICATION MAP

RADIOLOGICAL SURVEY **DRMO YARD** FORT DEVENS, MA

FIGURE 3

Jersey Barrier

TABLE 1 RADIOLOGICAL SURVEY DRMO YARD FORT DEVENS, MASSACHUSETTS

EMENTS MEASUREMENT/SAMPLING FREQUENCY	m); (1) scanning 100% of paved and unpaved area (7,670 m²);	: (2a) 30 randomly selected locations (paved area);	(2b) 1 measurement/100 m² of paved and unpaved areas; and (2b) 1 measurement/100 m² of paved and unpaved areas; and	perimeter. (3) 4 samples every 100 m² within unpaved borders (690 m²)	1); (1) scanning 10% of paved and unpaved areas (283 nt²);	(2a) 30 randomly selected locations (paved area);	hr); and (2b) 30 randomly selected locations (paved and unpaved area); and	perimeter. (3) 30 randomly selected samples within unpaved areas.	1); (1) scanning 100% of area (2,915 m²);	of dose rate (2) 4 measurements every 100 m²; and	(3) 4 samples every 100 m².	(1) scanning 100% of concrete area and 10 meter wide perimeter area (approx. 1,600 m²);	(2a) 30 (total) randomly selected locations (concrete pad and paved perimeter area);	(upm/100cm/), (2b) 1 measurement/100 m² of entire area; and	perimeter of (3) 4 samples every 100 m² within 10 m unpaved perimeter of pad.	(1,2,& 3) 10 off-site locations representative of coal pile/coal ash areas.	ster above the	
SURVEY ELEME	(1) Gamma surface scan (cpm);	(2) Direct measurements for:	b) Dose rate (μ R/h	(3) Soil sampling at unpaved perimeter.	(1) Gamma surface scan (cpm);	(2) Direct Measurements of:	b) Dose rate (µR/hr); and	(3) Soil sampling at unpaved perimeter.	(1) Gamma surface scan (cpm);	(2) Direct measurements of do (m.R/hr): and	(3) Soil sampling of surface soils	(1) Gamma surface scan (cpm);	(2) Direct measurements of:	b) Dose rate (µR/hr);	(3) Soil sampling at unpaved perimeter of concrete pad.	(1) Gamma surface scan (cpm);	(2) Direct measurements 1 meter above the surface for dose rate (\(\mu\) R/hr); and	(3) Soil sampling.
AREA CLASSIFICATION	Affected Area; Paved surface w/	unpaved perimeter	•		Unaffected Area;	unpaved perimeter			Affected Area;			Affected Area;	grass and paved					
SITE AREA	East Yard - North of Jersev Barriers	(6.980 m² paved:	690 m² unpaved)		East Yard - South	(2.330 m² naved:	500 m² unpaved)		Tire Recycling	(2.915 m²	unpaved)	Concrete Pad	204)	(370 m² concrete; and 1,000 m²	unpaved and 220 m² paved	Background		

TABLE 2 DRUM CHARACTERIZATION RESULTS

RADIOLOGICAL SURVEY DRMO YARD FORT DEVENS, MASSACHUSETTS

DRUM	TOTAL PCBs (μg/kg)	TCLP LEAD (µg/L)	RA-226 ^(g) (pCi/g)
1	1,800 ^(a)	107,000 ^(d)	89.3
2	380 ^{b)}	71,000 ^(d)	56.7
3 ^(c)	480 ^(a)	2,290	10.6
4	ND ^(e)	471	4.4
5	259 ^(f)	29,900 ^(d)	1.1

- (a) Concentrations reported are for Aroclor 1254. Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 were below the detection limit ($< 33 \mu g/kg$
- (b) Concentration reported is for Aroclor 1260. Aroclor 1016, 1221, 1232, 1242, 1248, and 1254 were below the detection limit (< 33 \(mu\)g/kg).
- (c) Drum 3 also contains dials and needles (separated from the soil in a container) located during the August and February radiological work
- (d) TCLP lead concentrations exceed the TCLP regulatory limit of 5,000 μ g/L.
- (e) Below detection limits ($<32 \mu g/kg$ except Aroclor 1254; $<490 \mu g/kg$ for Aroclor 1254).
- (f) Concentration reported is for Aroclor 1254. Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 were below the detection limit (< 15.1 µg/kg)
- (g) Concentrations are above site background (0.77 pCi/g) at 95% confidence level.

Analysis was by the following analytical methods:

PCBs - Method 8080

TCLP Lead - Method 1311 (extraction) and Method 6000/7000 (analysis)

Ra-226 Gamma Spectroscopy - Method 901.1

Appendix A

Field Measurements

Location: Fort Devens, MA, Background Area

Location	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

1	6	9.8		10.9
2	6	10.0	1	11.5
3	5	9.9	•	11.2
4	7	9.6		11.0
5	6	11.4	_	12.0
6	7	11.3	-	15.0
7	7	10.2	•	12.8
8	5	10.6	•	13.7
9	6	11.4	•	14.0
10	7	10.8	•	12.2

Radiation Science, Inc.

Approved by:

Location: Fort Devens, MA, East Yard-North

	T	τ	1	<u></u>
Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (µRem / hr)	Gamma Scan Range (cpm x 10³)
A1	1.t. 55	3626 ± 708	8	10.3 - 12.5
A2			8	10.5 - 12.4
A3	l.t. 55	2592 ± 672	7	11.5 - 12.5
A4			6	11.3 - 12.6
A 5	l.t. 55	2567 ± 672	7	11.5 - 12.6
A6			8	11.5 - 12.7
A7	1.t. 55	2629 ± 674	7	11.3 - 12.7
A8			6	11.4 - 12.6
A 9	1.t. 55	4137 ± 725	5	11.0 - 12.6
A10			7	11.0 - 12.7
A11			6	10.9 - 12.6
B1			7	11.2 - 12.4
B2*			15	10.9 - 28.2
B2*			25	10.9 - 43.7
B2*	1.t. 55	28623 ± 1303	55	10.9 - 112.3
В3			7	11.2 - 12.6
B4			6	11.0 - 12.6
B5			8	10.8 - 12.4
В6	1.t. 55	4436 ± 735	8	11.3 - 12.6
B7			7	11.4 - 12.5
B8	l.t. 55	l.t. 995	7	11.6 - 12.7
B9			8	11.4 - 12.6
B10			6	11.5 - 12.7
B11	l.t. 55	3240 ± 695	6	11.5 - 12.8
C1			6	11.7 - 12.6

Radiation Science, Inc	diation Science,	Inc.
------------------------	------------------	------

Approved by: Themas There

Location: Fort Devens, MA, East Yard- North

	T			
Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
C2*	l.t. 55	19551 ± 1124	45	11.4 - 71.8
C3*	l.t. 55	21009 ± 1155	30	11.3 - 83.6
C4	l.t. 55	3738 ± 712	6	11.4 - 12.9
C5			5	11.4 - 12.7
C6	l.t. 55	3352 ± 699	5	11.5 - 12.8
C7			5	11.2 - 12.6
C8			7	11.3 - 12.7
C9			7	11.3 - 12.8
C10	1.t. 55	4349 ± 732	7	11.5 - 12.5
C11			7	11.5 - 12.5
D1	1.t. 55	3614 ± 708	8	11.6 - 13.2
D2			7	11.6 - 13.1
D3*	1.t. 55	8847 ± 867	30	11.4 - 37.0
D4*	l.t. 55	11639 ± 941	18	11.6 - 42.4
D4*	1.t. 55	6143 ± 789	10	11.6 - 20.7
D4*	1.t. 55	5433 ± 738	10	11.6 - 22.3
D4*	1.t. 55	4536 ± 867	10	11.6 - 21.0
D5			7	11.3 - 12.9
D6			5	11.1 - 12.8
D7	l.t. 55	3364 ± 699	7	11.5 - 12.7
D8			7	11.4 - 12.6
D9			5	11.4 - 12.7
D10			6	11.3 - 12.8
D11	l.t. 55	3751 ± 712	6	11.4 - 12.8
E1			8	11.4 - 13.2

Radiation Science, Inc.

Approved by: Journal Save

Location: Fort Devens, MA, East Yard-North

Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
E2	l.t. 55	3713 ± 711	7	11.5 - 12.9
E3			7	11.4 - 12.8
E4			7	11.4 - 12.9
E5	l.t. 55	3477 ± 703	7	11.4 - 12.7
E6			6	10.0 - 12.7
E7			5	11.1 - 12.6
E8	l.t. 55	3265 ± 696	6	11.3 - 12.5
E9	l.t. 55	3938 ± 719	6	11.0 - 12.5
E10	l.t. 55	3427 ± 702	7	11.2 - 12.6
E11			6	11.1 - 12.5
F1*	l.t. 55	3389 ± 700	20	11.2 - 37.4
F2			7	11.4 - 12.5
F3	l.t. 55	3614 ± 708	6	11.5 - 12.9
F4*	1.t. 55	4673 ± 743	13	11.5 - 21.3
F5	67 ± 42	4012 ± 721	6	11.2 - 12.7
F6			6	10.6 - 11.9
F7	l.t. 55	3601 ± 707	6	11.4 - 12.8
F8			6	11.3 - 12.7
F9	1.t. 55	3813 ± 715	7	11.4 - 12.8
F10			7	11.3 - 12.6
G3			6	11.4 - 12.7
G4	1.t. 55	3290 ± 697	6	11.5 - 12.7
G5			6	11.5 - 14.7
G6	97 ± 47	2069 ± 654	7	9.3 - 12.1
G7			6	11.4 - 12.5

Rac	lia	tion	ı Sci	ence	.Inc.
TS (11 ¢	- 1 -	LIVI			

Approved by

Location: Fort Devens, MA, East Yard- North

Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
G8			7	11.3 - 12.7
G9			- 6	11.4 - 12.6
G10	1.t. 55	3664 ± 710	7	11.4 - 12.5
H6			5	11.3 - 12.6
H7			6	11.4 - 12.9
H8	l.t. 55	3826 ± 715	7	11.4 - 12.8
H9			6	11.2 - 12.7
H10			5	11.4 - 12.8
18			6	11.3 - 12.8
I 9			6	11.2 - 12.7
I10			6	11.4 - 12.8

Radiation Science, Inc.

Approved by:

Location: Fort Devens, MA, East Yard-South

	T	T		
Grid ID	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem /hr)	Gamma Scan Range (cpm x 10³)
A1	-	-	-	-
A2	l.t. 55	3664 ± 710	5	-
A3	l.t. 55	3900 ± 717	6	-
A4	1.t. 55	1981 ± 650	6	-
A 5	1.t. 55	3738 ± 712	6	_
A6	1.t. 55	3489 ± 704	7	-
A7	l.t. 55	4100 ± 724	7	_
A8	l.t. 55	3763 ± 713	6	
A9	_	-	-	_
A10	1.t. 55	3801 ± 714	7	-
B1	l.t. 55	3165 ± 393	7	•
B2	-	•	-	-
В3	1.t. 55	2766 ± 679	6	-
B4	1.t. 55	3514 ± 704	7	•
B5	1.t. 55	3551 ± 706	6	11.3 - 12.7
В6	-	-	-	-
B7	1.t. 55	2717 ± 677	7	-
B8	1.t. 55	3364 ± 699	6	-
B9	1.t. 55	3913 ± 718	7	-
B10	l.t. 55	3776 ± 713	7	-
C1	l.t. 55	3713 ± 711	7	-
C2	1.t. 55	3477 ± 703	6	-
C3	l.t. 55	3265 ± 696	6	11.2 - 12.6
C4	-	-	-	•

Radiation	Science	Inc
Nautativii	ocience	XIIII.

Approved by:___

Location: Fort Devens, MA, East Yard-South

Grid ID	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem /hr)	Gamma Scan Range (cpm x 10³)
C5	l.t. 55	3938 ± 719	6	-
C6	l.t. 55	3427 ± 702	7	-
C7	l.t. 55	3389 ± 700	8	-
C8	-	-	-	11.6 - 13.1
C 9	l.t. 55	3614 ± 708	7	-
C10	l.t. 55	3776 ± 713	6	_
D1	~	-	-	-
D2	-	-	-	_
D3	1.t. 55	4100 ± 724	6	-
D4	l.t. 55	4137 ± 725	6	-
D5	~	-	-	-
D6	l.t. 55	3065 ± 689	7	-
D7	l.t. 55	2766 ± 679	7	-
D8	-	-	-	-
D9	l.t. 55	3601 ± 707	7	•
D10	l.t. 55	3676 ± 710	6	-

Radiation Science, Inc.

Approved by:

Date: 9/15/95

page 2

Location: Fort Devens, MA, Concrete Pad

Grid ID	Total Alpha (dpm /100 cm²)	Total Beta (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
A1	1.t. 55	3315 ± 698	5	11.4 - 12.9
A2	l.t. 55	1358 ± 627	7	11.6 - 13.0
A3	l.t. 55	2642 ± 674	7	11.7 - 13.0
A4	l.t. 55	2143 ± 656	7	12.0 - 14.4
A5	l.t. 55	1969 ± 650	5	11.8 - 14.5
B1-1	l.t. 55	3352 ± 699	6	10.5 - 11.9
B1-2	1.t. 55	2679 ± 676		
B1-3	1.t. 55	2928 ± 684		
B1-4	1.t. 55	2642 ± 674		
B2-1	l.t. 55	1732 ± 641	5	11.0 - 12.1
B2-2	l.t. 55	1682 ± 639		
B2-3	1.t. 55	1994 ± 651		
B2-4	l.t. 55	1919 ± 648		
B3-1	1.t. 55	2019 ± 652	6	10.9 - 11.7
B3-2	1.t. 55	2330 ± 663		
B3-3	1.t. 55	2081 ± 654		
B3-4	1.t. 55	2143 ± 656		
B4-1	59 ± 40	1570 ± 635	. 5	11.0 - 11.7
B4-2	l.t. 55	1371 ± 627		
B4-3	l.t. 55	1782 ± 643		
B4-4	1.t. 55	1595 ± 636		
B5	l.t. 55	1894 ± 647	6	11.3 - 13.6

Radiation Science, Inc.

Approved by:

Date: 4/5/95

page 1

Location: Fort Devens, MA, Concrete Pad

Grid ID	Total Alpha (dpm /100 cm²)	Total Beta (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
C1-1	l.t. 55	2654 ± 675	6	10.6 - 11.7
C1-2	l.t. 55	2530 ± 670		
C1-3	l.t. 55	2941 ± 685		
C1-4	l.t. 55	2492 ± 669		
C2	l.t. 55	1894 ± 647	6	11.1 - 13.5
C3	l.t. 55	2405 ± 666	7	11.2 - 14.0
C4	l.t. 55	2729 ± 677	6	11.2 - 13.7
C5	l.t. 55	1682 ± 639	6	10.8 - 14.0

Radiation Science, Inc.

Approved by

Date: 9/15/95

Grid ID	Dose Rate	Gamma Scan
	(μRem /hr)	Range (cpm x 10³)

A1-1	6	11.2 - 12.3
A1-2	6	
A1-3	6	
A1-4	7	
A2-1	7	11.4 - 12.0
A2-2	6	
A2-3	6	
A2-4	6	
A3-1	7	11.5 - 12.0
A3-2	7	
A3-3	6	
A3-4	6	
A4-1	5	11.8 - 13.4
A4-2	7	
A4-3	7	
A4-4	6	
A5-1	7	11.6 - 14.1
A5-2	7	·
A5-3	6	
A5-4	8	
B1-1	6	11.2 - 12.6
B1-2	8	
B1-3	7	
B1-4	6	

-	1	•			\sim	•			T
17	24	12	11/	ጎተገ		~1	മന	CO	Inc.
7.	au	Ia	LΙ	JIL	·	L	CII		-1111

Approved by:_

Date: 015/95

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

B2-1	7	11.0 - 12.3
B2-2	7	
B2-3	6	
B2-4	6	
B3-1	7	11.6 - 12.8
B3-2	6	
B3-3	6	
B3-4	7	
B4-1	7	11.7 - 13.7
B4-2	5	
B4-3	7	
B4-4	7	
B5-1	5	11.5 - 13.8
B5-2	7	
B5-3	6	j
B5-4	6	
C1-1	6	10.9 - 11.7
C1-2	6	
C1-3	7	
C1-4	6	
C2-1	6	11.5 - 12.3
C2-2	6	
C2-3	6	
C2-4	7	

Radiation Science, Inc.

Approved by:

Date: 9/15/95

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

C3-1	7	11.3 - 12.8
C3-2	8	
C3-3	7	
C3-4	7	
C4-1	6	11.7 - 13.7
C4-2	8	
C4-3	7	
C4-4	7	
C5-1	6	11.8 - 14.2
C5-2	7	
C5-3	7	
C5-4	7	
D1-1	6	11.3 - 12.5
D1-2	7	
D1-3	7	
D1-4	6	
D2-1	6	11.3 - 12.2
D2-2	8	
D2-3	6	
D2-4	6	
D3-1	6	11.2 - 12.5
D3-2	7	
D3-3	7	
D3-4	7	

Radiation Science, Inc.

Approved by:

Date: 4/13/95

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10 ³)

D4-1	7	11.4 - 14.0
D4-2	5	
D4-3	6	
D4-4	7	
D5-1	8	11.6 - 14.2
D5-2	8	·
D5-3	7	
D5-4	7	
E1-1	7	11.4 - 12.6
E1-2	7	·
E1-3	8	•
E1-4	6	
E2-1	7	11.2 - 12.6
E2-2	6	
E2-3	7	
E2-4	7	
E3-1	6	11.3 - 12.5
E3-2	8	
E3-3	6	
E3-4	7	
E4-1	7	11.4 - 13.9
E4-2	7	1
E4-3	7	
E4-4	8	

Radiation Science, Inc.

Approved by: homos to Rado

Date: 9/15/95

CONTAMINATION MEASUREMENT RESULTS

September 11, 1995

Location: Fort Devens, MA, Tire Yard

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10 ³)

E5-1	6	11.2 - 14.0
E5-2	8	
E5-3	7	
E5-4	. 8	

Radiation Science, Inc.

Approved by:_

Date: 9/15/95

Appendix B

Pre-Remediation Soil Analysis Results

PACE ID	Location	Ra-226	2 sigma
69699	Bckgd 1	0.75	0.13
69702	Bckgd 2	0.47	0.12
69710	Bckgd 3	0.56	0.11
69729	Bckgd 4	0.77	0.15
69737	Bckgd 5	0.68	0.14
69745	Bckgd 6	1.1	0.21
69753	Bckgd 7	0.89	0.16
69761	Bckgd 8	0.87	0.17
69800	Bckgd 9	0.93	0.17
69818	Bckgd 10	0.75	0.14

0.777
0.05787055
0.76
0.75
0.18300273
0.03349
0.63
0.47
1.1
10

East DRMO Yard North

PACE ID	Location	Ra-226 pCi/g	2 sigma
69770	1	0.81	0.16
69788	2	0.76	0.14
69796	3	0.88	0.16
69966	4	0.78	0.12
69974	5	0.68	0.1
69982	6	0.86	0.14
69990	7	0.97	0.16
70000	8	0.96	0.15
70026	9	0.89	0.15
70034	10	1	0.18
70069	11	1.3	0.17
70077	12	0.96	0.16
70085	13	0.93	0.16
70093	14	1.1	0.2
70107	15	11	0.18
70115	16	0.71	0.11
69826	17	0.87	0.14
69834	18	0.79	0.12
69842	19	0.7	0.1
69850	20	1.2	0.15
69869	21	0.9	0.12
69877	22	0.86	0.12
69885	23	0.8	0.12
69893	24	0.57	0.1
69907	25	0.72	0.11
69915	26	0.61	0.11
69923	27	0.78	0.13
69931	28	1.2	0.16
73904	HS1	287	15
73912	HS2	1.9	0.22

With	hotspots
Mean	10.4496667
Standard Error	9.53632933
Median	0.875
Mode	0.78
Standard Devia	52.2326269
Variance	2728.24731
Range	286.43
Minimum	0.57
Maximum	287
Count	30
Without I	aatanata
Without I	
Mean	0.87821429
Standard Error	0.03319038
Median	0.865
Mode	0.78
Standard Devis	
Variance	0.03084484
Range	0.73

Minimum Maximum Count 0.57 1.3 28

East DRMO Yard South

PACE ID	Location	Ra-226	2 sigma
69940	11	0.9	0.15
70255	2	0.6	0.11
70263	3	1.1	0.18
70271	4	0.77	0.11
70280	5	0.8	0.11
70298	6	0.74	0.14
70301	7	0.59	0.09
70310	8	0.54	0.12
70328	9	0.68	0.14
70336	10	0.69	0.1
70344	11	0.75	0.14
70352	12	0.59	0.14
70360	13	0.71	0.11
70379	14	0.76	0.22
70123	15	0.63	0.1
70131	16	0.71	0.12
70140	17	0.72	0.12
70158	18	0.62	0.1
70166	19	0.76	0.16
70174	20	0.56	0.1
70182	21	0.64	0.09
70190	22	0.73	0.17
70204	23	0.72	0.14
70212	24	0.66	0.13
70220	25	0.62	0.09
70239	26	0.71	0.1
70247	27	0.63	0.1
71880	28	0.56	0.1
71898	29	0.82	0.14
71901	30	0.9	0.14

Mean	0.707
Standard Error	0.02166702
Median	0.71
Mode	0.71
Standard Devis	0.11867516
Variance	0.01408379
Range	0.56
Minimum	0.54
Maximum	1.1.
Count	30

Concrete Pad

PACE ID	Location	Ra-226	2 sigma	
71910	A1-1	0.7	0.1	
71928	A1-2	0.61	0.11	_
71936	A1-3	0.56	0.1	_
71944	A1-4	0.66	0.1	_
71952	A2-1	0.74	0.12	_
71960	A2-2	0.81	0.25	_
71979	A2-3	0.5	0.1	ND
71987	A2-4	0.81	0.13	_
71995	A3-1	0.86	0.14	_
72002	A3-2	0.83	0.17	_
71324	A3-3	0.87	0.16	_
71332	A3-4	0.87	0.2	_
71340	A4-1	1.3	0.24	_
71359	A4-2	0.68	0.14	_
71367	A4-3	0.7	0.13	_
71375	A4-4	0.88	0.14	_
71383	A5-1	0.77	0.13	_
71391	A5-2	0.66	0.12	_
71405	A5-3	0.67	0.13	_
71413	A5-4	0.58	0.12	_
71421	B5-1	0.73	0.13	_
71430	B5-2	0.61	0.13	_
71448	B5-3	0.76	0.14	-
71456	B5-4	0.55	0.09	_
71464	C2-1	0.57	0.09	_
71472	C2-2	0.52	0.13	
71480	C2-3	0.67	0.09	_
71499	C2-4	0.62	0.1	
71502	C3-1	0.7	0.12	_
71510	C3-2	0.68	0.1	_
71529	C3-3	0.81	0.11	_
71537	C3-4	0.71	0.12	-
71545	C4-1	0.72	0.12	_
71533	C4-2	0.57	0.09	-
71561	C4-3	0.53	0.09	_
71570	C4-4	0.65	0.1	
71588	C5-1	0.54	0.09	-
71596	C5-2	0.45	0.08	-
71863	C5-3	0.71	0.12	_
71871	C5-4	0.79	0.13	_

Mean	0.69875
Standard Error	0.02346899
Median	0.69
Mode	0.7
Standard Devis	0.1484309
Variance	0.02203173
Range	0.85
Minimum	0.45
<u>Maximum</u>	1.3
Count	40

71731 A1-1 0.95 0.17 71740 A1-2 0.072 0.013 71758 A1-3 0.92 0.17 71766 A1-4 0.86 0.16 71774 A2-1 0.85 0.15 71782 A2-2 0.99 0.15 71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 <	PACE ID	Location	Ra-226	2 sigma
71758 A1-3 0.92 0.17 71766 A1-4 0.86 0.16 71774 A2-1 0.85 0.15 71782 A2-2 0.99 0.15 71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 <td>71731</td> <td>A1-1</td> <td>0.95</td> <td>0.17</td>	71731	A1-1	0.95	0.17
71766 A1-4 0.86 0.16 71774 A2-1 0.85 0.15 71782 A2-2 0.99 0.15 71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74080 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 <td>71740</td> <td>A1-2</td> <td>0.072</td> <td>0.013</td>	71740	A1-2	0.072	0.013
71774 A2-1 0.85 0.15 71782 A2-2 0.99 0.15 71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74100 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 <td>71758</td> <td>A1-3</td> <td>0.92</td> <td>0.17</td>	71758	A1-3	0.92	0.17
71774 A2-1 0.85 0.15 71782 A2-2 0.99 0.15 71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 <td>71766</td> <td>A1-4</td> <td>0.86</td> <td>0.16</td>	71766	A1-4	0.86	0.16
71790 A2-3 1 0.17 71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 <td>71774</td> <td>A2-1</td> <td>0.85</td> <td></td>	71774	A2-1	0.85	
71804 A2-4 0.99 0.18 71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 <	71782	A2-2	0.99	0.15
71812 A3-1 0.7 0.13 71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 </td <td>71790</td> <td>A2-3</td> <td>1</td> <td>0.17</td>	71790	A2-3	1	0.17
71820 A3-2 0.75 0.14 71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 </td <td>71804</td> <td>A2-4</td> <td>0.99</td> <td>0.18</td>	71804	A2-4	0.99	0.18
71839 A3-3 0.64 0.12 71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 <td>71812</td> <td>A3-1</td> <td>0.7</td> <td>0.13</td>	71812	A3-1	0.7	0.13
71847 A3-4 0.82 0.13 74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72100 B3-3 0.86 0.13 <td>71820</td> <td>A3-2</td> <td>0.75</td> <td>0.14</td>	71820	A3-2	0.75	0.14
74048 A4-1 0.55 0.19 74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72118 B3-4 0.64 0.12 <td>71839</td> <td>A3-3</td> <td>0.64</td> <td>0.12</td>	71839	A3-3	0.64	0.12
74056 A4-2 0.5 0.09 74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 <td>71847</td> <td>A3-4</td> <td>0.82</td> <td>0.13</td>	71847	A3-4	0.82	0.13
74064 A4-3 0.57 0.08 74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 <td>74048</td> <td>A4-1</td> <td>0.55</td> <td>0.19</td>	74048	A4-1	0.55	0.19
74072 A4-4 0.48 0.09 74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 <td>74056</td> <td>A4-2</td> <td>0.5</td> <td>0.09</td>	74056	A4-2	0.5	0.09
74080 A5-1 0.53 0.09 74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 <td>74064</td> <td>A4-3</td> <td>0.57</td> <td>0.08</td>	74064	A4-3	0.57	0.08
74099 A5-2 0.62 0.08 74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 <td>74072</td> <td>A4-4</td> <td>0.48</td> <td>0.09</td>	74072	A4-4	0.48	0.09
74102 A5-3 0.67 0.21 74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 <td>74080</td> <td>A5-1</td> <td>0.53</td> <td>0.09</td>	74080	A5-1	0.53	0.09
74110 A5-4 0.63 0.11 71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 <td>74099</td> <td>A5-2</td> <td>0.62</td> <td>0.08</td>	74099	A5-2	0.62	0.08
71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73734 B5-4 0.64 0.12 <td>74102</td> <td>A5-3</td> <td>0.67</td> <td>0.21</td>	74102	A5-3	0.67	0.21
71855 B1-1 0.68 0.14 72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73734 B5-4 0.64 0.12 <td>74110</td> <td>A5-4</td> <td>0.63</td> <td>0.11</td>	74110	A5-4	0.63	0.11
72010 B1-2 0.7 0.15 72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73734 B5-4 0.64 0.12 72134 C1-2 0.72 0.16 <td>71855</td> <td>B1-1</td> <td>0.68</td> <td></td>	71855	B1-1	0.68	
72029 B1-3 0.76 0.14 72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72134 C1-2 0.72 0.16 <td>72010</td> <td>B1-2</td> <td>0.7</td> <td>0.15</td>	72010	B1-2	0.7	0.15
72037 B1-4 0.58 0.11 72045 B2-1 0.84 0.16 72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 <td>72029</td> <td>B1-3</td> <td></td> <td></td>	72029	B1-3		
72053 B2-2 0.89 0.17 72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15 <td>72037</td> <td>B1-4</td> <td>0.58</td> <td></td>	72037	B1-4	0.58	
72061 B2-3 1.2 0.17 72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72045	B2-1	0.84	0.16
72070 B2-4 0.7 0.14 72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72053	B2-2	0.89	0.17
72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72061	B2-3	1.2	0.17
72088 B3-1 0.56 0.1 72096 B3-2 0.59 0.12 72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72070	B2-4	0.7	0.14
72100 B3-3 0.86 0.13 72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72088	B3-1	0.56	
72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72096	B3-2	0.59	0.12
72118 B3-4 0.64 0.12 74129 B4-1 0.9 0.11 74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72100	B3-3	0.86	0.13
74137 B4-2 0.77 0.11 74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72118	B3-4	0.64	
74145 B4-3 0.57 0.1 73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	74129	B4-1	0.9	0.11
73696 B4-4 0.95 0.18 73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	74137	B4-2	0.77	0.11
73700 B5-1 0.62 0.13 73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	74145	B4-3	0.57	0.1
73718 B5-2 0.54 0.12 73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	73696	B4-4	0.95	0.18
73726 B5-3 1.1 0.18 73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	73700	B5-1	0.62	0.13
73734 B5-4 0.64 0.12 72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	73718	B5-2	0.54	0.12
72126 C1-1 0.85 0.19 72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	73726	B5-3	1.1	0.18
72134 C1-2 0.72 0.16 72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	73734	B5-4	0.64	0.12
72142 C1-3 0.67 0.14 72150 C1-4 0.73 0.15	72126	C1-1	0.85	0.19
72150 C1-4 0.73 0.15	72134	C1-2	0.72	0.16
72150 C1-4 0.73 0.15	72142	C1-3	0.67	0.14
71600 C2-1 0.82 0.12	72150	C1-4	0.73	0.15
	71600	C2-1	0.82	0.12

Mean	0.75172
Standard Error	0.02082609
Median	0.72
Mode	0.64
Standard Devis	0.20826091
Variance	0.04337261
Range	1.528
Minimum	0.072
Maximum	1.6
Count	100

71618	C2-2	0.99	0.16
71626	C2-3	0.91	0.12
71634	C2-4	0.93	0.15
71642	C3-1	0.74	0.11
71650	C3-2	0.72	0.11
71669	C3-3	0.75	0.1
71677	C3-4	0.72	0.1
73742	C4-1	0.75	0.13
73750	C4-2	0.78	0.15
73769	C4-3	1.1	0.2
73777	C4-4	0.64	0.14
73785	C5-1	1.1	0.16
73793	C5-2	1	0.17
73807	C5-3	1	0.17
73815	C5-4	1.2	0.18
71685	D1-1	0.67	0.01
71693	D1-2	0.8	0.12
71707	D1-3	0.79	0.13
71715	D1-4	0.79	0.13
71723	D2-1	0.76	0.12
71170	D2-2	0.59	0.12
71189	D2-3	0.7	0.12
71197	D2-4	0.36	0.08
71200	D3-1	0.57	0.12
71219	D3-2	0.65	0.12
71227	D3-3	0.55	0.011
71235	D3-4	0.58	0.12
73823	D4-1	0.68	0.12
73831	D4-2	0.66	0.12
73920	D4-3	0.73	0.1
73939	D4-4	0.68	0.11
73947	D5-1	0.65	0.11
73955	D5-2	0.63	0.1
73963	D5-3	0.68	0.1
73971	D5-4	0.77	0.11
71243	E1-1	1	0.17
71251	E1-2	1.2	0.17
71260	E1-3	0.66	0.11
71278	E1-4	0.6	0.13
71286	E2-1	0.47	0.1
71294	E2-2	0.55	0.12
71308	E2-3	0.63	0.11
71316	E2-4	0.53	0.11
74005	E3-1	0.47	0.09
74013	E3-2	0.47	0.09
74021	E3-3	0.64	0.1

Ft. Devens Tire Yard

74030	E3-4	0.64	0.11
73980	E4-1	0.74	0.11
73998	E4-2	0.95	0.14
73840	E4-3	1.6	0.2
73858	E4-4	0.98	0.13
73866	E5-1	0.86	0.12
73874	E5-2	0.92	0.13
73882	E5-3	0.82	0.11
73890	E5-4	0.85	0.12

Appendix C

Post-Remediation Soil Analysis Results

Post Remediation Samples

Sample ID	Location	Ra-226	2 sigma
10427-001	Hotspot 1	2.07	0.9
DVRAD*1	Hotspot 2	0.924	0.065
DVRAD*3	Hotspot 3	0.886	0.067
10427-004	Hotspot 4	2.7	0.88
10427-005	Hotspot 5	3.15	0.97
10427-006	Hotspot 6	3.49	0.97
DVRAD*3	Hotspot_7	1.66	0.142
10882-001	Hotspot 8	1.85	1.04
10427-009	Hotspot 9	2.38	0.82
DVRAD*4	Hotspot 10	0.908	0.065
650073912	Hotspot 11	1.9	0.22
DVRAD*5	Hotspot 12	0.841	0.065

Mean	1.89658333
Standard Error	0.26308451
Median	1.875
Standard Devia	0.91135149
Variance	0.83056154
Range	2.649
Minimum	0.841
Maximum	3.49
Count	12

Appendix D

Calibration Certificates

BICRON • 6801 Cochran Road • Solon, Ohio 44139

Phone: (216) 248-7400 • Fax: (216) 349-6581

Instrument Calibration Certificate # 1689

Customer	RADIATION SCIENCE	Ordei	Number	 14002
Instrument	MICRO REM	S/N	B260U	 NEW

Calibration Data

Range	Exposure Rate uR/h	Instrument Reading uR/h	% Error	Exposure Rate uR/h	Instrument Reading uR/h	% Error
X1000	160,000.0	160,000.0	0.0	40,000.0	40,000.0	0.0
X100	16,000.0	16,000.0	0.0	4,000.0	4,000.0	0.0
X10	1,600.0	1,600.0	0.0	400.0	400.0	0.0
X1	160.0	160.0	0.0	40.0	40.0	0.0
X0.1	16.0	16.0	0.0	4.0	4.0	0.0

Calibration Sour Intensity at 1 me		/H Date _	06/13/95	Source to Det Geometry	ector PER	PENDICULAR
Zero Check	ок	HV Check	ок	Threshold Se	t	N/A
Battery Ok Checkband	ок	Scaler Rate Response +/-	N/A - 1%	_ Geotropic Ch +/- 2		ок
Reproducibility	ок	(Checked 3 ti	imes, identic	cal conditions +/-	10%)	
Check Source	N/	'A	Check So	urce Reading	N/A	
Quality Assuranc	e Review By:	ТВ		Date	07/26/95	
Calibrated By		RC		Date	07/26/96	
Re-Cal Due		07/26/96		_		

INSTRUMENT FIELD CHECK LOG

Bicron Micro Rem meter Cesium-137 Meter: Source:

Activity: 5 microcuries

Serial # B260U Serial # Cs-7A

	Initials	TMC	mr	3	W	ma											
Source	dose rate		10 m	(0 m	Jm01	10 ml											
Back-	ground	5-7 mg	5-7 mg	5-72 10mg	5-7mK	5-7mg 10 mg											
HV	(OK)	>)	1	7												
BAT	(OK)	>	>	>		7											
	Time	1900	C630	1530	2001	14 30											
	Date	8/17/95	3/18/15	8/18/95	8/2a/9s	08/13/4 /1430											
	Meas #		8	19	20	21											
	Initials	Sur	SA	J. J. J.	,		MA	M	m	ma	AW)	MO	Jan	AM.	J. J. W.	m	W.Z
Source	dose	1	0/	10 mg			10 mg			10 mg	10mg	10,01	10 mg	10 Jul	J. O	10mR	2)~(C)
Back-	ground	5-7R	t-9	5-7	5-7	5-7	5-7	5-7	2-7	5-7	2-5	6-5	5-7	5-7	L-3	2.5	2-7
HW	(OK)	7	>	7	7				>	7	>	>	>	J	/	>	>
BAT	(OK)	>			/	>			>	>	>	>	>	1	ſ		5
	Time	8:40	1400 hg	1400 HI	pe:L0	1530	0730	025/	0270	1530	0830	1530	0800	1020	0 £30	0621	5830
	Date	817/95	54/1/8	56/8/2	156/4/8	>6/6/s	\$/10/95	3/10/95	─ ₹	8/11/95	8/4/8	8/14/99 1530	8/15/95	8/15/95/1920	56/91/8	8/10/8	18/17/45
	Meas #	14	6	3	د . <u></u>	5	و.	7	B	8	0	11	(9	(3	14	Ŋ	9

INSTRUMENT FIELD CHECK LOG

Ludlum Model 43-1-1 Phoswich detector Ludlum Model 2223 Scaler Ratemeter **Detector:** Meter:

Technecium-99 Thorium-230 Source: Source:

一方刻

6,410 DPM 15,000 DPM Activity: Activity:

Serial #: 102933 Serial #: 010421

Serial #: S-3689B Serial #: 1699-94

5910.1. W. 33 Des. 1	11.61 21 may sample to	
	•	

						,										
Initials	7.47	13	*	MA	AM T	AN.	m	M.A.	A.	XXXXX	√W.	J.	\$	1 m	3	The state of the s
Net Alpha	3329	3540	3007	70b2	3059	4.65	3949	2940	37.50	20 HB	3015	2938	28.	3047	30.61	2988
Source Alpha	3329	35.48	3015	2909	3064	2975	2953	2996	3156	305Z	30 C	3943	3012	3101	3008	2993
Bckgrnd Alpha	0	8	8	7	5	1	4	e	و	و	6	5		ţ	5	5
Net Beta (cpm)	2920/	ALLIG	2348	5554	8122	2.3.70 2.3.444	2282	2635	Sett Sett	3454	3.5.7. 7.7.7.	2490	1234 1487	なが	1052	24.70 J
Source Beta	3077	2985	1657	5185	4898	2990	72828	2 96:7	2711	2821	2888	2718	2400	9628	2802	2773
Bckgrnd Beta	757	300	248	278	258	297	276	272	261	293	302	338	25(279	30(303
Δt (min)	7	4	4	٦,	4	CR	2	CE	B	d	φ	cb	d	م	4	4
HV (Vdc)	650	650	୯୯୬	650	650	650	650	650	6,78	650	650	650	650	650	650	0,59
BAT (OK)	/	>		>	>	>	7	>	>	>	>	>	7		\mathcal{L}	``>
Time	15:60	00:10	1530	6730	1500	6730	533	0800	(530	0800	1900	0830	1730	0830	1900	0930
Date	\$/4/05	50/6/8	3/6/8	SEL 0/8/01/8	8/10/95	8/1/95 6730	8/11/95 1530	8/14/05	8/4/95 1530	8/15/65/0800	8/15/95 1900	8/16/95	8/16/18	8/17/95/0830	00618461/8	8/18/95/0930
Meas. #	-1	7	2	4	5	૭	_	8	6	0	=	C	(3	`	1.5	ی

Form 01

INSTRUMENT FIELD CHECK LOG

Ludlum Model 2223 Scaler Ratemeter Meter:

Ludlum Model 43-1-1 Phoswich detector Thorium-230 Technecium-99 Detector: Source: Source:

Activity: 6,410 DPM Activity: 15,000 DPM

Serial #: 102933 Serial #: 010421

Serial #: S-3689B

Serial #: 1699-94

			,	,		 	,	,	,	 			
Initials	₹ M	JW.	de	1 /w	1mp -								
Net Alpha	1 .	3002	2980										
Source Alpha	144C	3008	2966	1758	1690								
Bckgrnd Alpha	3	و	و	5	(x)								
Net Beta (cpm)	7.500	2336	1052	3125									
Source Beta	2582	2611	2590	3125	2633								
Bckgrnd Beta	285	275	289	227	252								
Δt (min)	CA	8	7	-1	-1						,		
HV (Vdc)	5.0	650	650	٥٤٥	<i>لەرى</i>				-				
BAT (OK)	>	>	2	>	->								. :
Time	1300	Oroj	1430	1220	/r eto								
Date	2051 34/81/8	8/22/95 1000	8) Whr	9/19/95/1220	3/19/19/ /6 ED								
Meas. #	7	18	19	30	77							ı	

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

CUSTOM	IER RADIATION SC	IENCE, INC.				ORDE	R NO	208285	
Mfg	Ludlum Measurei	ments, Inc.	Model	2223		Serial No	10293	13	
Mfg	Ludlum Measure	ments, Inc.	Model	43-1-1		Serial No.	RN DIOYZ	-1	
Cal. Dat	e09/13/94	Co	al Due Date0	9/13/95	Cal. Inter	val <u>] Y</u> e	<u>.</u> Meterfa	ce <u>202</u>	-601
Check ma	ark 🗹 applies to appli	cable instr. and	or detector IAW mfg. spe	ec. T	75 °F	RH	_45_% Alt_	<u>707.8</u> r	mm Hg
☐ New	Instrument Instrum	nent Received	☑ Within Toler. +-10%	10-20%	Out of Tol.	Requir	ing Repair		
Mec Mec	hanical ck.	Meter Z	eroed [] Backgrour	nd Subtract	[] Input Sens.	Linearity	
F/S R		Reset c	k. [Mindow O			· 	•	
▼ Audi	io ck.	☐ Alarm S	etting ck.	Batt. ck. (N	Ain. Volt)	2.2_VDC	Through old		
strument	Volt Set	_ V Input Sens	. Comments mV Det. O	oer. <u>725</u>	V at <u>Com</u>	ments mV	Threshold Dial Ratio	=	
▼ ⊦	dV Readout (2 points)	Ref./Inst	500 /	500	_ V Ref./Inst	2000	/	2000	v
COMM	ENTS: 1700	V			······································				
Alpha t	threshold = 120 n	nVノヘヘ							
3eta tr Beta wi	nreshold = 3.5 m indow =30 mV.	av.							
	with del. Connect	n							
		,							
Samma Celibr	ration: GM detectors positioned p	perpendicular to source	except for M 44-9 in which the front o			100			
	RANGE/MULTIPL	IED	REFERENCE CAL. POINT		RUMENT REC FOUND READ		INSTRUMEN' METER REAL		
	KANGL/MOLITE	.ILK	CALI FOINT	A3 .	I COND READ	MING	MEIEK KEAL	JING	
						 ,			
									
									
•	*Uncertainty within ± 10%	6 C.F. within ± 20	%			Ro	inge(s) Calibro	ated Electroni	cally
	REFERENCE	INSTRUMENT	INSTRUMENT	R	EFERENCE	INSTRUM	MENT	INSTRUMENT	
	CAL. POINT	RECEIVED	METER READING		CAL. POINT	RECEIV	ED	METER READ	ING*
gital adout	. 500 K cpm	_ 500 11-3	50413	Log Scale _	500 K cpm	5	Dok	500 K	
	50 K cpm	200 (1	500)		50 K cpm		iok	SOK	
	5 K cpm	_5∞1	5001	_	5 K cpm		5K	5 K	
	500 cpm	<u> </u>		-	500 cpm		<u> </u>	200	
	50 cpm				50 cpm		50	50	
er Internati	onal Standards Organization	i members, or have t	has been calibrated by standard been derived from accepted val	is traceable to the ues of natural phy	 National Institute of the State of the State	re been derived	by the ratio type o	f calibration tech	niques.
			0-45662A and ANSI N323-1978.			State of	Texas Calibratio	n License No. L	0-1963
	e Instruments and								
s-137 Gar	mma S/N ∐1162 ∐ G	;112 LJ M565 L	☐ 5105 ☐ T1008 ☐ T879				L. Neutro	on Am-241 Be S	/N T-304
✓ Alph	na S/N Pu239	7 #8743	_ 🗹 Beta S/N	C-14 .S	ir-90 🔲	Other			
₩ m 50	00 S/N638	93	Oscilloscope S/N_		[V	Multimeter	S/N	57770262	
v		·							
Calibrate	ed By:	Mohael	More		Date		1-13-94		
. .	()	1	7/1		5-4-	9-13-	54		
Reviewe	a By:	mil	1 remings		Date	/	<u> </u>		
FORM C22A	N 02/04/94								

TMA/Eberline Albuquerque Laboratory
7021 Pan American Hwy. NE
Albuquerque, NM 87109
(505) 345-3461 • FAX # (505) 761-5416

CERTIFICATE OF CALIBRATION

	ta Standard
	S.O.# <u>S-02780</u>
Description of Standard:	P.O.#94001
Model No. DNS-12 Serial No. 1699-9	lsotope <u>Technetium-99</u>
Electroplated on polished <u>Stainless Steel</u>	disc, 0.79 mmthic
otal diameter of 4.77 cm and	danactive diameter of 4,45 c
The radioactive material is permanently fixed to the disc by surface.	yheat treatment without any covering over the acti
Measurement Method:	
of beta particles emitted in the hemisphere above the act and at the operative voltage. The calibration is traceable source S/N 2393/91. Measurement Result:	e to NIST by reference to an NIST calibrated be
he observed beta count rate from the surface of the dis	
9,340 ± 467	
he total disintegration rate (dpm) assuming 25 % baisc, was	ackscatter of beta particles from the surface of the
15 000 + 748	(_0.00673μCi)
The uncertainty of the measurement is which is onfidence level, and the estimated upper limit of system	
he uncertainty of the measurement is5_% which is	
the uncertainty of the measurement is 5 % which is onlidence level, and the estimated upper limit of system	Reviewed by:

TMA/Eberline Albuquerque Laboratory							
7021 Pan American Hwy. NE							
Albuquer que, NM 87109							
(505) 345-3461 • FAX # (505) 761-5416							

CERTIFICATE OF CALIBRATION

	Electropi	ated Alpha	Standard			
				S.O.#	S-02780	
Description of Standard:				P.O.#	94001	
Model No. <u>DNS-11</u>	Serial No	S-3689)B ·	lsotope	Thorium-	-230
Electroplated on polisheds	stainless Steel		disc,	0.79		mmthick
Total diameter of 4	.77	_cmandan	active diame	eter of	4.45	cm
The radioactive material is pe surface.	ermanently fixed to t	hedisc by h	at treatment	twithout ar	ny covering o	ver the active
Measurement Method:						
Alpha source S/N2393/ Measurement Result: The observed alpha particle vas		surface of th	ne disc per m	ninute (cpr	m) on the cal	ibration date
3,210	<u> </u>	128				
he total disintegration rate (vas	dpm) assuming 1.5	% backscat	erofalpha p	articles fro	om the surfac	e of the disc,
6,410	±256		(0.0	00289	<i>μ</i> Ci)	
The uncertainty of the meast confidence level, and the est	surement is <u>4</u> stimated upper limit	% which is of systema	the sum of rice error in the	random co iis measur	ounting error ement.	at the 99%
Calibrated by: <u>Arlene Gu</u>	tierrez	R	eviewed by:_	Charle	Kanlon	
Calibration technician:	erleu s	Elting	A. Represer	ntative:	Lath	Bunk
Calibration date: 1/10/9	и	Re	eviewed date	: <i>1</i>	-12-44	

Appendix E

PCB/TCLP Lead QC Summaries and Chain of Custody Records PCB QC SUMMARY
Drums 1,243

609.05

2F PCB SURROGATE RECOVERY

Lab	Name: <u>QUANTERRA, MO</u>	Contract: 609-05
-----	----------------------------	------------------

Lab Code: ITMO Case No.: SAS No.: SDG No.: 10427

Level:(low/med) LOW

	EPA	S1	S2
	SAMPLE NO.	(DCB)#	(TCMX)#
		=====	======
01	PBLK01	136	114
02	PSPK01	143	116
03	DRUM#1	125	103
04	DRUM#1DL	137	
05	DRUM#1MS	123	101
06	DRUM#1MSDL	131	
07	DRUM#1MSD	120	101
08	DRUM#1MSDDL	146	!
09	DRUM#2	- ₁₃₂	96
10	DRUM#3	140	105
11		_	
12			
13			
14			
15	· · · · · · · · · · · · · · · · · · ·		· · · · · ·
16			
17			
18			
			ADV

ADVISORY QC LIMITS

S1 (DCB) = Decachlorobiphenyl S2 (TCMX) = Tetrachlorom-m-xylene

(10-267)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

page <u>1</u> of <u>1</u>

FORM II PEST-2

1/87 Rev.

3F SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Name: <u>QUANTERRA, MO</u>		Contract: 609-05					
Code: ITMO Case No.:	-	SAS No.:S	SDG No.	:	10427		
rix Spike - EPA Sample No.:	DRUM	‡1		Level:	(low/med	d) LOW	
	SPIKE	SAMPLE	MS		MS	, QC	
		CONCENTRATION		FRATION	ક	LIMITS	
COMPOUND	(ug/kg)			/Kg)			
Aroclor-1016	170		1		216 *	ı	
Aroclor-1260	170	0	360		215_*		
		l	l			1	
COMPOUND	(ug/kg)	CONCENTRATION (ug/Kg)	REC #	RPD	QC L	REC.	
						50-114	
Aroclor 1260	170 170	210230	_127_* _138_*	_44		_8-127	
# Column to be used to flag * Values outside of QC lim: RPD: out of Spike Recovery:4	its				risk		
COMMENTS:							
COMMENTS:							

FORM III PEST-2

SOIL PCB SPIKE BLANK(LCS) RECOVERY

SPIKE SPIK	SPK92640 SPK92640 SPIKE SPK QC ADDED CONCENTRATION KEC REC. COMPOUND (ug/kg) (ug/kg) REC REC. CONCENTRATION REC. REC. CONCENTRATION REC. REC.	ame: <u>OUANTERRA, MO</u>		Contrac	t:	609-05
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC.	SPIKE SPIKE SPK QC ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC. ===================================	ode: <u>ITMO</u> Case No.:_		SAS No.:S	DG No.	10427
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC.	ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC.	Blank No.:	SPK92640			
ADDED CONCENTRATION % LIMITS COMPOUND (ug/kg) (ug/kg) REC # REC. Aroclor-1016 170 150 92 50-114	ADDED CONCENTRATION % LIMITS COMPOUND (ug/kg) (ug/kg) REC # REC. Aroclor-1016 170 150 92 50-114					
ADDED CONCENTRATION % LIMITS COMPOUND (ug/kg) (ug/kg) REC # REC. Aroclor-1016 170 150 92 50-114	ADDED CONCENTRATION % LIMITS COMPOUND (ug/kg) (ug/kg) REC # REC. Aroclor-1016 170 150 92 50-114					
COMPOUND (ug/kg) (ug/kg) REC # REC. ====================================	COMPOUND (ug/kg) (ug/kg) REC # REC. ====================================					
Aroclor-1016	Aroclor-1016	COMPOUND		4		
Aroclor-1016	Aroclor-1016		=======	=========	=====	=====
Arocior-1260	AFOCIOF-1260	Aroclor-1016				
		Arocior-1260	—— —— ¹⁷⁰ ——			-8-12/
				1		· · · · · · · · · · · · · · · · · · ·
		Column to be used to	flag recovery	and RPD values	with a	an asterisk
# Column to be used to flag recovery and RPD values with an asterisk	Column to be used to flag recovery and RPD values with an asterisk	r Values outside of OC	limits			
		values outside of QC	TIMICS	•		
		ND: not determined				
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits ND: not determined	* Values outside of QC limits					
* Values outside of QC limits	* Values outside of QC limits		6	2	. مولاد ساد 7	_
* Values outside of QC limits	* Values outside of QC limits	spike kecovery:0	out or	outside	s IIIIIICS	
* Values outside of QC limits	* Values outside of QC limits ND: not determined	COMMENTS:				

FORM III PEST-2

4C PCB METHOD BLANK SUMMARY

Lab Name: <u>QUANTERRA, MO</u>	(Contract: 609-05						
Lab Code: ITMO Case No.:	SAS No.:_	SDG No.: 10427						
Lab Sample ID: BLK92640 Lab File ID:								
Matrix: (soil/water) SOIL Level(low/med) LOW								
Date Extracted: 02-28-96	Ext	traction: (SepF/Cont/Sonc) SONC						
Date Analyzed (1): 02-28-96 Date Analyzed (2):								
Time Analyzed (1).		me Analyzed (2):						
Instrument ID (1): GCA	Ins	strument ID (2):						
GC Column ID (1): DB-5MS	GC	Column ID (2):						
THIS METHOD BLANK APPLI	ES TO THE FOLLO	WING SAMPLES, MS AND MSD:						
EPA	LAB	DATE DATE						
SAMPLE NO.	SAMPLE ID	ANALYZED 1 ANALYZED 2						
	=======================================	j j						
01 PSPK01	SPK92640	_02-28-96_						
02 DRUM#1	10427-012	_02-28-96_						
03 DRUM#1DL	10427-012DL	02-29-96						
04 DRUM#1MS	10427-012MS	02-28-96						
05 DRUM#1MSDL	10427-012MSDL_	02-29-96						
06 DRUM#1MSD	10427-012MSD	02-28-96						
07 DRUM#1MSDDL	10427-012MSDDL							
08 DRUM#2	10427-013	02-28-96						
09 DRUM#3	10427-014	02-28-96						
10								
11								
12								
13								
. 14	<u> </u>							
	•							
COLOUTIVE		.6						
COMMENTS:								

page <u>1</u> of <u>1</u>

FORM IV PEST

1/87 Rev.

METHOD BLANK

Drums 1,243

1D PCB ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>QUANTERRA, MO</u> Contract:	PBLK01
Lab Code: ITMO Case No.: S	AS No.: SDG No.: 10427
Matrix: `(soil/water)SOIL	Lab Sample ID: BLK92640
Sample wt/vol: <u>30.0</u> (g/ml) <u>G</u>	Lab File ID:
Level: (low/med) LOW	Date Sampled:
% Moisture: not dec dec	Date Extracted:02-28-96
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: 02-28-96
GPC Cleanup: (Y/N) N pH:	Dilution Factor:1
CAS NO. Compound	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
12674-11-2Aroclor-1016 11104-28-2Aroclor-1221 11141-16-5Aroclor-1232 53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254 11096-82-5Aroclor-1260	33 U

U: Concentration of analyte is less than the value given.

FORM I PEST

Software Version: 3.3 <4811>

Sample Name : BLK 92640 Time

Sample Number: 27

Operator

: 02/28/96 15:14

Study

Instrument : GC_A(DB-5MS,DB-1701) A/D mV Range : 1000 Channel: A

AutoSampler : HP 7673A

Rack/Vial : 0/0

Interface Serial #: 8116920948 Data Acquisition Time: 02/28/96 14:59

Delay Time : 1.00 min. : 15.00 min. End Time Sampling Rate : 2.9412 pts/sec

Raw Data File : G:\USERS\ACQUIRE\GC1\AA18992.RAW : G:\USERS\ACQUIRE\GC1\AA18992.RST Result File Instrument File: g:\users\acquire\method\A8080.ins

Process File : AAPCB : AA1660 Sample File

Sequence File : G:\USERS\ACQUIRE\METHOD\A960228.seq

: 200.000000 Inj. Volume : 0 ul Area Reject Sample Amount : 30.0000 Dilution Factor : 10.00

Noise Threshold: 10 Area Threshold : 100 Bunch Factor: 1 Multiplier : 1.0000 Divisor : 1.0000 Adder : 0.0000

Instrument Conditions:

/GCA,,,;

Instrument: GC A

Column Ch A :D8-5MS 30M X .32mm X 1.0um Ch B :D8-608 30M X .32mm X 0.5um

Carrier Gas

:H (12 ml/min)

Temperature

:170C-->20C/min-->220c-->4c/min.-->250C(2min) :Inj. Vol is 2.0 ul split into 1.0ul/col

Notes Divisor = % Solids/100

Dil. Factor = Final Vol X Any Dilutions

Total Number of Peaks Detected: 27

PCB REPORT

Peak	Time	Area	Component	Conc.	XREC.	XREC.
#	[min]	[uV*sec]	Name	ppb	TCHX	DBC
	1.96	385907.5	SURR. Group	73.77	1e+03	221.32
	2.83	2310.0	AR 1016 Group	0.77	11.62	2.32
	•••••	388217.4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	74.55		*********

Group Report For : AR 1016 Group

Peak #	Time [min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCMX	XREC. DBC
10	2.50	337.6	AR 1016 (1-3)	0.11	1.70	0.34
11	2.83	1972.3	AR 1016 (2-3)	0.66	9.92	1.98
0	3.60	0.0	AR 1016 (3-3)	0.00	0.00	0.00
	•••••	2310.0		0.77	• • • • • • • • • • • • • • • • • • • •	

Group Report For : AR 1260 Group

Peak #	Time [min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCHX	XREC. DBC	
0	7.03	0.0	AR 1260 (1-4)	0.00	0.00	0.00	
ŏ	7.16	0.0	AR 1260 (2-4)	0.00	0.00	0.00	
Ŏ	7.61	0.0	AR 1260 (3-4)	0.00	0.00	0.00	
Ō	8.38	0.0	AR 1260 (4-4)	0.00	0.00	0.00	
	• • • • • • •						
		0.0		0.00			

Group Report For : SURR. Group

XREC. TREC. Area . Conc. Peak Time Component

0148

Resu	lt File :	AA18992.RST	, Prin	ted On 02/28	3/96 15:14			p c
#	(min)	[uV*sec]		Name	ppb	TCMX	DBC	
6	1.96	184159.3	TCMX	••••••	7.60	113.98	22.80	***************************************
24	8.64	575.3	DBC		0.05	9,60	0.14	
27	14.00	201172.9	DCB		9.08	136.37	27.23	
••••		385907.5	•••••	• • • • • • • • • •	16.72			***************************************

Types and reasons for Manual Analysis if perfprmed on this sample:

1. Manual Identification: RT shift, Wrong peak, Interference from...

2. Manual Integration: Incorrect integration, Interference from...

Other No Han

No Hanual Anglysis were performed on this sample.

PCB

Sample Name : BLK 92640

: g:\users\acquire\gc1\AA18992.raw FileName

: A8080.ins Method

Start Time : 1.00 min Scale Factor: 1.0

End Time : 15.00 min Plot Offset: 12 mV

Sample #: 27

Date: 02/28/96 15:14

Time of Injection: 02/28/96 14:59 Low Point: 11.56 mV High P

Page 1 of 1

High Point : 105.58 mV

Plot Scale: 94.0 mV

Response [mV]

INORGANIC SAMPLE DATA

Drums 1,243

609.05 10427

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: QUANTERRA MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427
SOW No.: SW846	
EPA Sample No. DRUM #1 DRUM #2 DRUM #3 PBT92922	Lab Sample ID _P10427-012 _P10427-013 _P10427-014 _PBT92922
Were ICP interelement correction	ns applied ? Yes/No YES
Were ICP background corrections	applied ? Yes/No YES
If yes - were raw data gene application of background o	corrections ? Yes/No NO_
Comments:	
conditions of the contract, both other than the conditions detail in this hardcopy data package ar	e is in compliance with the terms and technically and for completeness, for led above. Release of the data contained in the computer-readable data submitted norized by the Laboratory Manager or the by the following signature.
Signature:	Name:
Date:	Title:
	COVED DAGE - IN TCID

1 INORGANIC ANALYSES DATA SHEET

	CRMOTE	310
EPA	SAMPLE	NO.

Lab Name: QUAN	TERRA_MO		Contract: 60	9.05	DRUM #1	
	b Code: ITMO Case No.:					
_	Matrix (soil/water): WATER				le ID: P10427	
Level (low/med)): LOW	_			eived: 02/26/9	
% Solids:	0.0)				
Cor	ncentration	Units (ug,	/L or mg/kg dry	y weight): UG/L_	
		2			T.,	
		_	Concentration	}	_ M	
	7439-92-1	Lead	107000		P_	
					-	
					-[-]	
					- -	
					_ _	
					- -	
					_ _	
					_11	
Color Before:		Clari	ty Before:		Texture:	
Color After:		Clari	ty After:		Artifacts:	,
Comments:						
						
		F	ORM I - IN		TCI	

0002

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: QUAN	Lab Name: QUANTERRA_MO			Contract: 609.05		
Lab Code: ITMC	Lab Code: ITMO Case No.:			SAS No.: SDG N		
Matrix (soil/w	Matrix (soil/water): WATER			Lab Sampl	e ID: P10427-014	
Level (low/med	l): LOW_	_		Date Rece	ived: 02/26/96	
% Solids:	0.	0				
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: UG/L_	
	CAS No.	Analyte	Concentration	C Q	М	
	7439-92-1	Lead	2290		<u>P_</u>	
Color Before:		Clari	ty Before:		Texture:	
Color After:		Clari	ty After:	· · · · · · · · · · · · · · · · · · ·	Artifacts:	
Comments:						
		F	ORM I - IN		TCLP	

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: QUANTERRA_MO			Contract: 60	PBT92922	
Lab Code: ITMO Case No.:					
	Matrix (soil/water): WATER				e ID: PBT92922
Level (low/med	l): LOW_	_	1	Date Rece	ived: 03/04/96
% Solids:	0.	0			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight)	: UG/L_
	CAS No.	Analyte	Concentration	C Q	М
	7439-92-1	Lead	34.3	Ū	<u>P_</u>
Color Before:		Clari	ty Before:		Texture:
Color After:		Clari	ty After:		Artifacts:
Comments:					
•		Er/	ODM T _ TNT		

FORM I - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10427
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	

Concentration Units: ug/L

									П
Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	bration Found	%R(1)	M
Lead	4000.0	_3966.82	_99.2	4000.0	_4045.47	101.1	_3967.26	_99.2	P_
·									
									—
									_

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10427
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui: Found	ng Cal: %R(1)	ibration Found	%R(1)	М
Lead				4000.0	_3990.00	_99.8			P_

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2B CRDL STANDARD FOR AA AND ICP

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO_ Case No::	SAS No.: SDG No.: 10427
AA CRDL Standard Source:	SPX/SOL+/LL_
ICP CRDL Standard Source:	SOL+/SPX

Concentration Units: ug/L

					Initial	RDL Standard for ICP Ltial Final Found %R Found %R		
Lead					186.48			

FORM II (PART 2) - IN

3 BLANKS

Lab Name: QUANTERRA_MO	Contract: 6	09.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10427
Preparation Blank Matrix (soil/water): WATER	
Preparation Blank Concentration Unit	s (ug/L or mg/kg):	UG/L

Analyte	Initial Calib. Blank (ug/L)	С	Conti	int B.	uing Calib lank (ug/L) 2	rai	tion 3	С	Prepa- ration Blank C M
Lead	34.3	Ū	34.3	Ū	34.3	Ū	34.3	Ū	34.300 U P
		_		_		_		_	
		_	,	_				_	
		-		_		_		-	
 		-		-		-		-	
		-		_		-		-	
		_		_		_			
		_		_		_		_	
		-		_		-		-	
		-		-		_		-	
		-		_		-		-	
				_					
		_		_		_		_	
		_		_		_		_	
		-		_		-		-	
		-		-		-		-	
		_		_				_	
		_		_		_		_	
		_				 —		_]
\ <u></u>		-		-		-		-	
		-		-		-		-	
		_		_	I		1	ı —	

FORM III - IN

4 ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	QUANT	ERRA_N	10		Cor	ntract:	609.05	
Lab	Code:	ITMO_	_Case	No.:	SAS	No: _		SDG No.: 10427	
ICP	ID Numb	er: T	JA1100)		ICS	Source:	SOL+/SPX	

Concentration Units: ug/L

	Tr	rue	In	itial Found	d		Final Found	d
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	%R
Lead	0	1000	-2	886.4	_88.6	36	911.0	_91.1

FORM IV - IN

7 LABORATORY CONTROL SAMPLE

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO_ Case No.:	SAS No.: SDG No.: 10427
Solid LCS Source:	
Aqueous LCS Source: SOL+/CHEMPUR	

Analyte	Ĭ	eous (ug/I Found		True	Sol: Found	id C	(mg/kg) Lin	mits	%R
Lead	_1000.0	_1073.69	107.4_			_			
						-			
						_			
						-		i	
						_			
						_			
						-]
						_			
						-			
	ļ					-			
						_			
						-			
						-			
						_			
						-			l
						_			
						_			
						-		·	

FORM VII - IN

10 Instrument Detection Limits (Quarterly)

Lab Name: (ab Name: QUANTERRA_MO				: 609.05_	
ab Code:	ITMO_ Case	No.:	SAS	No.:	SDG N	Jo.: 10427
CP ID Numl	ber:	TJA1100)	Date:	01/01/96	;
lame AA I	D Number :					
urnace AA	ID Number	:				
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	М
	Lead	_220.35_		100_	34.3	P
		1	<u></u>	! !	· · · · · · · · · · · · · · · · · · ·	·
Comments:						
•			FOR	M X - IN		TCL

0012

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

ab Code: ITMO_ Case	No .					
	- NO.:	SAS No.: SDG No.: 10427				
CP ID Number: TJA11	roo	Date:	10/01/9	95		
Wave- length	11	nterelement (
Analyte (nm)	Al	Ca	Fe	Mg	AS_	
Lead 220.35						

FORM XI (Part 1) - IN

11B ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: QUANTERRA_MO			Contract: 609.05						
Lab Code: I	Lab Code: ITMO_ Case No.:			SAS No.: SDG No.: 10427					
ICP ID Numb	per: TJA110	0	Date:	10/01/95					
1			······································						
	Wave-	Ir	Interelement Correction Factors for :						
Analyte	length (nm)	NA_	TH_	ש		control of the Control			
Lead			-0.0017600_	_0.0009690					
			······································						

FORM XI (Part 2) - IN

0014

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	QUANTE	erra_mo		_	Contract:	609.0	5	
Lab	Code:	ITMO_	Case No.:		SAS	No.:	_ s	DG No.:	10427
ICP	ID Nur	mber: T	FJA1100			Date:	01/01	/96	
			Analyte	Time	Cor	ug/L)	М		
			Lead	5.00		50000.0) <u>P</u>		
							_		
							_		
							_]		
							_		
								·	
			[[1	
Com	ments:								
-									

FORM XII - IN

13 PREPARATION LOG

Lab	Name:	QUANTERRA_MO	Contract:	609.05
Lab	Code:	ITMO Case No.:	SAS No.:	SDG No.: 10427

Method: P_

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
DRUM #1	03/01/96 03/01/96 03/01/96 03/01/96		100 100 100 100
PBT92922 PBW93089	03/01/96 03/01/96		100

FORM XIII - IN

14 ANALYSIS RUN LOG

Lab Name:	QUANTERRA_MO	Contract: 609.05
Lab Code:	ITMO Case No.:	SAS No.: SDG No.: 10427
Instrument	ID Number: TJA1100	Method: P_

Start Date: 03/01/96 End Date: 03/01/96

EPA				-									Α	na	Įуt	ces	5									
Sample	D/F	Time	ે %	R	P				T		Т		T	T	T	Γ.									Т	T
No.					В						1															
S0	1.00	1535	<u> </u>		\overline{X}	-	-	-1	-	-		- -	- -	- —	-	-	_	-	_	_	-	_	-	-	-1	- -
s	1.00	1538			X	-	-	-	-	-	- -	- -	- -	- -	-	-	-	-		-	 	-	-		- -	- -
S	1.00	1541			1	-	-	-	-1	-1	-1-	- -	-1-	-1-	-	-	-		_	-	-	-	-	-		-1-
S	1.00	1545			-	-	-	-		-	- -	- -	- -	- -	-	-	_	-	_	-	-	_	-	-	-1	- -
ICV	1.00	1548			X	-	-	-1	-	-	- -	- -	- -	-	_	_	_	-	-	-	-	-	-		-1	-/-
ICB	1.00	1551			X	_	-	-	-	-1	-1-	-1-	- -	-1-	_	_	-	_	-	-	-	-	-	-	-1	- -
CRI	1.00	1554			X	-	-	-1	-	-	- -	- -	- -	- -	-	_	_	-	-	_	_	-	-		-1	- ÷
S	1.00	1557			X	—	-	-	-1	-	- -	- -	- -	- -	-	-	-	-	-	-	-	-	-	-	-1	- -
ICSA	1.00	1600			X	-	-	-	-	-1	-1-	-1-	- -	. -	-	-	_	-	-	_	-	-	-	-	-	-1-
ICSAB	1.00	1604			X	_	_	-1	-1	-	- -	- -	- -	-	-	-	-	-	-	-	_	_	-	-	-	- -
PBW93089	1.00	1607			X	_	_	-1	-1	-	-1-	- -	- -		-	-	-	-	-	_		-	_	-	-1	- -
LCSW93089-1	1.00	1610			X	-	_	-	-1	-	- -	- -	- -	.	-	_	_	_		-	_	_	-	-	-	- -
ZZZZZZ	1.00	1613				-	-	_	-1	_	- -	- -	- -	-	-	_	_	_	-	_	_	-	-		-1	- -
ccv	1.00	1616			X	-	_	-1	-	-	- -	- -	- -	-	-	_	_	-	-	_	_	-	-1	-	-1	- -
CCB	1.00	1620			X	-	-	-1	-	-1	_ -	-1-	- -	- -	-	-	_	-	_	_	_	_	-	-	-1	- -
$ZZZ\overline{ZZZ}$	1.00	1623					_	-1	-1	-	- -	- 1	- -	-	-	-	-	-	-	_	_	-	-	-	-1.	_ -
ZZZZZZ	1.00	1626			-		_			-1	-1-	-	-)-	_	-	-	-	-	_	_	_	-	- }	-	_ .	-1-
ZZZZZZ	1.00	1629	-		1	-	-	-		_	- -	- -	- -	_	-	-	_	_	_	_	_	-		-	- -	- -
ZZZZZZ	5.00	1632	-		-	_	_	-	-	-	- -	- -	- -	. _	_	_	_	_	_	_		-1	-	_	-1.	- -
ZZZZZZ	1.00	1635			-	-	_	-1	-1	_	_ -	- -	_ _	-	_	-	_	-	_	-	_	_	-1	-	-1.	_ -
ZZZZZZ	1.00	1639			-	-	_	_	-	-1	_ -	- -	- -	-	-	_		_	_	_	_	-1	-	-	-1.	_ -
ZZZZZZ	1.00	1642			-			-	-1	_	- -	- -	_ _	-1-	-	_	_	_	_	_		-	_	-	-1-	- -
CCV	1.00	1645			X	_	_	_	-		_ -	- -	_ _	-	_	_	_	_	_	_	_	-	_	_	_ .	- -
CCB	1.00	1648			X	_		_		_	_ _	_ -	- -	-	-	_	_	_	_	_	_	_	-	-	_1.	_ -
DRUM #1	1.00	1651			X	[]		_	-1	_		_ -	_ _	-	-	_	_	_	-	_	_	-	_	-1	_[- -
DRUM #2	1.00	1655			X	-		-1	-1	_	_ -	- -	_ _	. _	-	_		_	_	-	_	-	_	_	_ .	_ _
DRUM #3	1.00	1658			X	-	-	-	-1	_	- -	- -	_ _	. _	-	_	_	_	-1	_	-	_	-	_	-1-	- -
ZZZZZZ	1.00	1701				-	_	_	-1	-1	- -	_ -	- -	1	-	-	_	-	-	_	_	-	_	-	-1.	- -
PBT92922	1.00	1704			X	_			_		_ -	_ -	_ _		-	_	_		_	_	_	_		_	_	_ _
ICSA	1.00	1707			X	-	_		_	_	_ -	_ -	_ _	-	-	_	_	_	_	_	_					- -
ICSAB	1.00	1710			X	-	_		-	-	_[-	_ -	_ _	-	-	_	-	_	-1	_	_	_	-	-1	_	- -
CCV	1.00	1714			X	-	-	_		-	_ -	- -	- -	1-	-	_	_	-	-	_	_	_	_	_	-1-	_ _
	1				1	_	_	-	-1	-1	- -	- -	_ _	_	_	_		-1	-	-1	-	-1	-	-	-1.	-1-

FORM XIV - IN

14 ANALYSIS RUN LOG

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427
Instrument ID Number: TJA1100	Method: P_
Start Date: 03/01/96	End Date: 03/01/96

Start Date: (03/01/	96							Εı	nd	Da	ate	e :	0:	3/	01,	/9	6										
EPA Sample	D/F	Time	٥	R	<u> </u>				1					Aı	na.	lyt	te	5										
No.			ľ	K	P B																							
CCB	1.00	1717			X	_	- -	_	<u> </u>	-	-	 -	- -	- -	<u>-</u>	- -	_	- -	 -	_ _	- -	_ _	- -	_	_	- -	- -	_ _
					_	- -	_	-	_	-	_	_	_	-	_	_	_	_	- -	 -	_	_ _	=	_ _	_	- -	- -	_
					-	_	_	_	-	_	_	_	_	_	-	_	 -	- -	_	_	-	_	<u> </u>	_	- -	_	_ _	_
					_	_	_	 - -	_	-	_	_	_	_	 - -	_	_	_	_	_	_		_	-	-	_		_
					_	_	_	_	-	_	_	_	_ _	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	-	_
					_	<u>-</u>	 - 	_ _	_	_	_	_	_ _	_	<u>-</u>	_ _	_	_	_	_	_	_	_ _	_	_	_	_	
					_	 -	_ _	_ _	- -	_		_	-	_ _	_ _	_ _	-	_	_	_ _	_	_	_	_	_	_		-
					- -	- -	_	_ _	_ _	_		_	_ _	_ _	-	- -	_	_	_	_	_ _	_	_ _	_	<u> </u>	-	_	_
					_	_	-	_	_	-	=	=	_	_	_ _	-	_	_	_	_	_	_	_ _	_	- -	_		-
					-	_	_	_	-	-	=	-	_	_	_	_	_	_	-	_	-	_	_	_	_	-		_
					-	_	_	_			_	_	_		_	_	_			_		_			_			
					_	<u>-</u>	_	_			_	_		_	_	_	_		_	-	_	_		_	_		_	_
	_				- -	_ _	_	_	_	_		_			_			_	_	_		_	_		_			_
					- -	<u> </u>	_	- -	_	_	=	_	_		_	_	=	=	_	_	<u>-</u>	-	_	_	_	_	_	_
					_	_	_	_	-	-	-	-			_	_	_		_	_	=	- -	=	- -	_		_	_
						_	_	_			_	_	_	_	_		_	_	_	_	_	_	_	_	_		_	_

FORM XIV - IN

CHAIN OF CUSTODY SAMPLE LOG-IN/RECEIPT RECORDS

Drums 1,2+3

Account: 11084 Project: 609.05 ABB GAS No. 609.05 Rev. 0
Haster Sample Login: 10427

Entered and Reviewed by: Finat:

A. Field

Project Manager:

Draft:

FI ROVION: Offer my

Sample Header Template:

Soil #1	Sample No. Client ID Comments Comments Container Type	C-Hetrix Anelysis	Date: Collected R.	Received D	Due Shipper	2	Red Category Red Sample No.
Solit #1	Data:				- 1		(Container Mambers: & Filled)
Plastic-IL RAD/GAMMA/O4 S COLD 11-MAI-96 21-AAG-96 Risa (216339) (216339	10427-001 GAMM*Radium 226 only	ios	21-FEB-96 1	5:00 26-FEB-96 09:0) 18-MAR-96 FED EX	ä	R4731-001
Pleatic Aboltowal Soil Aboltowal Aboltowal Soil Aboltowal Aboltowal Soil Aboltowal A	1 PN - Plastic-1L	RAD/GANDA/O4 RAD/SCREEN/O4		11-MAR-96 11-MAR-96	21-AUG-96 R14B 24-AUG-96 R14B		(216339:100) (216339:100)
Pleatic-11	4010-42 -Radium 226 only	·.		5;00 26-FEB-96 09;0	3 18-MAR-96 FED EX	ř.	R4731-002
Pleatic-11 RAD/CAMMA/O4 S		RAD/GANNA/94 RAD/SCREEN/94		11-MAR-96 11-MAR-96	21-AUG-96 E14B 24-AUG-96 R14B		(216340:100) (216340:100)
Pleatic-11 RAD/GAMMA/O4 S COLD 11-MAR-96 23-AMG-96 R148 (216341 121-MAR-96 CALD 11-MAR-96 FEB EX 3** (216342 121-MAR-96 FEB EX 3** (216343 121-MAR-96 FEB EX 3** (216	10427-0020UP SOIL #2 REPLICATE GAMMA-Radium 226 only	Soil	23-FEB-96-1	0:10 26-FEB-96 09:0	16-HAR-96 FED EX	*	R4730-001
Soli #3 Soil	1 PM - Plastic-1L	RAD/GAMMA/94 RAD/SCREEN/94		11-MAR-96 11-MAR-96	23-AUG-96 R148 24-AUG-96 R148		(216341:100)
Plastic-1L RAD/GAMBA/O4 S COLD 11-MAR-96 23-MLG-96 R148 (216342 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216343 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216343 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216343 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216343 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216343 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216344 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216344 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216344 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216344 2010 MA) SCREEN/04 S COLD 11-MAR-96 23-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 24-MLG-96 R148 (216345 2010 MA) SCREEN/04 S COLD 11-MAR-96 R148 (216345 2010 MA) SCREEN/04 S COLD	10427-003 SOIL #3 GAMMA-Radium 226 only	Soil,	23-FEB-96 1	0:00 26-FEB-96 09:0	18-MAR-96 FED EX	Ħ.	R4731-003
Soil #6	1 PM - Plastic-1L 1	RAD/GANNA/O4 RAD/SCREEN/O4			23-AUG-96 R148 24-AUG-96 R148		(216342:100) (216342:100)
Plastic-1L RAD/GAMMA/O44 S COLD 11-NAR-96 23-AUG-96 R148 (216343 2011 #5	527-004 SOIL #4 GAWMA-Redium 226 only	\$0i1	23-FEB-96 1	0:00 26-FEB-96 D9:01	16-MAR-96 FED EX	*	R4731-004
### Soil #5 **RAD/GAMPA/O4 **SOIL #6 **SO	1 PM - Plastic-1L	AD/GAMMA/G4 RAD/SCREEN/G4		11-MAR-96 11-MAR-96	23-A46-96 R148 24-A46-96 R148		(216343;100)
Plastic-1L RAD/SCREEN/O4 S	1=Radium 226	Soil	23-FEB-96-1):10 26-FEB-96 09:00	18-HAR-96 FED EX	Ä	RA731-005
SOIL #6 Soil 23-FEB-96 10:20 26-FEB-96 09:00 18-MAR-96 FED EX 3+ Plestic-1L RAD/GAMMA/04 S COLD 11-MAR-96 23-AUG-96 E14B (216345		RAD/GAMMA/G4 RAD/SCREEN/G4		11-948-96 11-948-96	23-AUG-96 R14B 24-AUG-96 R14B		(216344: 100)
RAD/GAMMA/Q4 5 COLD 11-MAR-96 23-AUG-96 E14B RAD/SCREEN/Q4 5 COLD 11-MAR-96 24-AUG-96 E14B	rRadium 226	Soil	23-FEB-96 10):20 26-FEB-96 09:00	18-148-96 FED EX	Ä	R4731-006
		rad/ganna/q4 rad/screen/q4		11-HAR-96 11-HAR-96	23-AUG-96 E14B 24-AUG-96 E14B		(216345:100) (216345:100)

3**Sample has not been rad screened.

Page 1

Account: 11084 Project: 609.05 ABB GAS No. 609.05 Rev. 0
Master Sample Login: 10427

Project Manager: A. Field

PH Revieu: Entered and Reviewed by: Sample Meader Template: finel: Draft:

· sample neader lemplate:					
Sample No. Client ID Comments	C-Matrix	Date: Collected	Received	Due Shipper	Red Category Red Sample No.
# Container Type Data:	Analysis	Class Preservative	ve Anal. Due Date	e Hold Date Site	(Container Numbers: X Filled)
10427-007 SOIL #7 GAMBNA-Radium 226 cnly	Soil	23-FEB-96 10:25	5 26-FEB-96 09:00 18-MAR-96 FED	18-MAR-96 FED EX	3° R4731-007
1 PM - Plastic-1L	RAD/GAMMA/Q4 RAD/SCREEN/Q4	0100 s	11-MAR-96 11-MAR-96	23-AUG-96 R148 24-AUG-96 R148	(216346:100) · (216346:100)
10427-008 SOLL #8 GAVEN=Redium 226 only	. 1198	23-FEB-96 10:3	23-FEB-96 10:30:26-FEB-96 09:00 18-MAR-96 FED	18-MAR-96 FED EX	3ª R4731-008 Come
1 PN - Plastic-1L	RAD/GANNA/04 RAD/SCREEN/04	s corp	11-MAR-96 11-MAR-96	23-AUG-96 R14B 24-AUG-96 R14B	(216347:100) (216347:100)
10427-009 SOIL #9 GAMMA=Radium 226 only	Soil	23-fEB-96 10:35	5 26-FEB-96 09:00 18-MAR-96 FED	18-MAR-96 FED EX	3* R4731-009
1 PM - Plastic-1L	RAD/GAMMA/O4 RAD/SCREEN/O4	groop s	11-MAR-96 11-MAR-96	23-AUG-96 R148 24-AUG-96 R148	(216346:100)
10427-010 SOIL #10 GAMM-Radium 226 only	Pos	23-FEB-96 10;6	23-FEB-96 10;40 26-FEB-96 09:00 18-MAR-96 FED	18-MAR-96 FED EX	3* R4731-010
1 PN - Plastic-1L	RAD/GAMMA/G4 RAD/SCREEN/G4	0100 s s	11-MAR-96 11-MAR-96	23-AUG-96 R148 24-AUG-96 R148	(216349:100)
10427-011 \$01L #12 GAWA-Radium 226 only	Pool	23-FEB-96 10¢6	23-FEB-96 10:45 26-FEB-96 D9:00 18-NAR-96 FED	18-MAR-96 FED EX	3* R4731-011
1 PN - Plastic-11	RAD/GANNA/D4 RAD/SCREEN/D4	9000	11-HAR-96 11-HAR-94	23-AUG-96 R14B	(216350;100)
10427-012 DRUM #1 GAMMA-Radium 226 only//ICLP METALS-Pb Only.	Soil :TALS=Pb Only.	23-FEB-96 08:0	23-FEB-96 08:00 26-FEB-96 09:00 18-NAR-96 FED	18-MAR-96 FED EX	(2162501:100) 3° R4731-012
1 PN - Plastic-1L 1 AM - Amber Glass-250ML 0 1	RAD/GAWNA/Q4 RAD/SCREEN/Q4 EXTMETAL/TCLP/Q4 ICAP/TCLP/Q4 PCB/8080/Q4	S & & & & &	11-MAR-96 11-MAR-96 11-MAR-96 11-MAR-96	23-AUG-96 R148 24-AUG-96 R148 22-MAR-96 R148 21-AUG-96 R148	(216351:100) (216351:100) (216352:100) (216352:100)
GAST-013 DRUM #2 GAMMA-Radium 226 only//TCLP METALS-Pb Only.	Soit :TALS=Pb Only.	23-FEB-96 10;55	23-FEB-96 10;55 26-FEB-96 09:00 18-NAR-96 FED EX	18-MAR-96 FED EX	(216352:100) 3* R6731-013
1 PM - Plastic-1L	RAD/GAMPIA/Q4	corp s	11-MAR-04	27.41.C.04 B1/2	

(216353;100)

23-AUG-96 R148

11-HAR-96

0,100

s

3*=Sample has not been rad screened.

31

	0	
8	609.05 Rev.	
Quanterra February 26, 1996 04:19 pm	Account: 11084 Project: 609.05 ABB QAS No.	Manter County tonia, 40/37

A. Field

Project Manager:

Draft:	Final:	Entered and	Entered and Reviewed by:		PH Revieu:	rieu:		
Sample He	Sample Header Template:							
Sample No.		Client 10	C-Matrix	Date: Collected	lected	Received D	Due Shipper	Red Category Rad Sample No.
# Con	# Container Type		Analysis	Class	Preservative	Class Preservative Anal. Due Date	Hold Date Site	(Container Numbers: % Filled)
₹	AM - Amber Glass-250ML	250ML	RAD/SCREEN/94 EXTMETAL/TCLP/94 ICAP/TCLP/94 PCB/8080/94	w w w	0700 0700 0700 0700	11-MAR-96 11-MAR-96 11-MAR-96 11-MAR-96	24-AUG-96 R148 22-MAR-96 R148 21-AUG-96 R148 06-MAR-96 R148	(216353:100) (216354:100) (216354:100)
10427-014 GANEA	\=Radium 22	DRUM #3 6 only//TCLP MET	Soit TALS=Pb Only.	-23	FEB-96 11:10	23-FEB-96 11:10 26-FEB-96 09:00 18-WAR-96 FED EX	3-WAR-96 FED EX	3* R4731-016
	PM - Plastic-1L AM - Amber Glass-250ML	SO4L	RAD/GANNA/Q4 RAD/SCREEN/Q4 EXTNETAL/TCLP/Q4 ICAP/TCLP/Q4 PC8/8080/Q4	w w w w	000000000000000000000000000000000000000	11-MAR-96 11-MAR-96 11-MAR-96 11-MAR-96	23-AUG-96 R14B 24-AUG-96 R14B 22-NAR-96 R14B 21-AUG-96 R14B 08-NAR-96 R14B	(216355:100) (216355:100) (216356:100) (216356:100) (216356:100)

(216355:100) (216356:100) (216356:100) (216356:100) (216356:100)

23-AUG-96 R14B 24-AUG-96 R14B 22-NAR-96 R14B 21-AUG-96 R14B 08-NAR-96 R14B

3°≥Sample has not been rad screened.

CMP GC CARA GASB

Chain of Custody Record

Environmental Services

	`	Talephone Nun	oper (Area Code)	VFax Number		Las Number			i Ni
THE ICE ICE TRIPER IN	rluben Ri	(617)69	1-5/2 E	(617) John 245-6606/1617)216-5060	05-3/2	09	Page	-	
Waltehelf "	MA CIPCO	Site Contact 7	Tarroh	. 90				netyste	
of Rad Sun] [Fed FX	Carrier Marchin Number Fedt X # 4978717	Fedt X # 4978717634			91 (
ontacifurchase Order/Quole No.	/						ار الحاسة المرود		
Sample I.D. No. and Description	Date Time	e Sample Type	Total	Containers	Preservative	Condition on Receipt	- (8-) - (27-)		
T# jios	2/2/36 1500	2	11	13	ia	1001	a –		
1 42 Roolicato	_			- 1 4 A 4	110				
तं संड	2/2 4/96 1000	000		7	77				
D # 10	2/23/96 1000	-		1-1	300				
2) # C	421 48kg	0		1	97		<i>V</i>		
2 - C	a	ć		-	á		9		I
+ + 6		14		1	2		 -		
4 4 2	13/94	0		7	27				
# 3	90	א		1	9)!		0		
0 # 0		a		7	ie		\$ 2		
A. H. C.	7/2	5	•	4	À				f
Delta + 2	0000 46727A	-	11 + 22.4	Parachet H.	100	7X			T
4	311 al/2/h		11-22-41	7.3	2				+
A THE TO SE	3111 36/27/2	*	11 -2 Stat Minghorn	1	14	3			
Special Instructions									\neg
dentification				Sample Disposal					
Ium Around Time Benefited	Skin Irritant Poison B	B Unknown	nown	Return To Ckent	Kent	M Dismosal Pry Lab	- Ambine Es	:	
Normal Krush		0001000	3	Project Specific (Specify)	pecify)		D. AMON	Months	-
Holinquished By		Date		1 Acceived By	Yes	1	Date	Time	
2 Relinquished By	1	Date	Time	3	Y	Try	ተ- ኛ	2-16-76 09:	3.
3 Reincuished Bu				4. necessor by		;	Date		
		Date	Time	3. Received By			Date	Time	

COPIED 10. RW+ AF

DATE: 2-26-96

TIME: 09:10

BY 273

Login No.: 10427

Condition Upon Receipt Variance Report St. Louis Laboratory

roj e c Dippe	z No: et/No	### ### ### ##########################	Initia	ted b	-26-86 Time: 0900 by: In 1 milk 10 Numbers: 11557
1.		Sample received broken/leaking.	8.	0	Sample ID on container dose not match sample ID
2.		Sample received without proper preservative.	_		on paperwork. Explain:
		Cooler temperature not within 4C ± 2			
		Record temperature:		0	All analysis on sight on any sight of the same
		— M		0	All coolers on airbill not received with shipment. Other (explain below):
3.	п	Sample received in improper container.		_	Count (expense seasow):
J. ▲	_	Sample received without proper paperwork. Ex	niain•		<u> </u>
₹.		Sample (eccived washes proper paperwors. and	,		
5.		Paperwork received without sample.			
6.		No sample ID on sample container.			
7		Custody tape disturbed/broken/missing.			
votes		o variances were noted during sample receipt.			re Upen Receipt:
Corre	ective	Action:		·	en e
	1	Client's Name:	Informed verbally on:	-	Ву:
		Client's Name:	Informed in writing o	.	By:
_		Sample(s) processed "as is".			
_		Sample(s) on hold until:			f released, actify:
Samç	ole Co	nerol Supervisor Review: (or designate)	M Stake	_ [2-26-86 2-26-86
Proje	ict Ma	nagement Review:	- JG	_ D	ode: a de 1
SL-A	DMIN	SIGNED ORIGINAL MI -0004, Revised 11/24/95	u et be re tained d	TE	PROJECT PILE

PCB QC SUMMARY
Drum 4

609.05

2F PCB SURROGATE RECOVERY

Lab Name: <u>QUANTERRA, MO</u>	Contract: 609-05
Lab Code: ITMO Case No.:	SAS No.: SDG No.:_10882
Level:(low/med) <u>LOW</u>	
EPA	S1 C2

ADVISORY
QC LIMITS
S1 (DCB) = Decachlorobiphenyl (58-205)
S2 (TCMX) = Tetrachlorom-m-xylene (48-180)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

page <u>1</u> of <u>1</u>

FORM II PEST-2

1/87 Rev.

SOIL PCB SPIKE BLANK(LCS) RECOVERY

Lab Name: QUANTERRA, MO		Contrac	:t:	609-05	
Lab Code: ITMO Case No.:		SAS No.: S	DG No.:	10882	
Spike Blank No.: SF	PK98205	·			
COMPOUND " Aroclor-1016 Aroclor-1260	SPIKE ADDED (ug/kg) ====================================	SPIKE CONCENTRATION (ug/kg) ====================================	SPK % REC # ====== 94 99	QC LIMITS REC. ===== 50-114 _8-127	
		I			
# Column to be used to fl	lag recovery	and RPD values	with a	an asteri	sk
* Values outside of QC li	imits				
ND: not determined					
Spike Recovery: 00	out of	2 outside	e limit:	3	·

FORM III PEST-2

4C PCB METHOD BLANK SUMMARY

	PCB METHOD BL	ANK SUMMARY
Lab Name: <u>QUANTERRA, MO</u>		Contract: 609-05
Lab Code: ITMO Case No.:_	SAS No	.: SDG No.:_10882
Lab Sample ID: BLK98205	· · · · · · · · · · · · · · · · · · ·	Lab File ID:
Matrix:(soil/water)SOII	<u>L</u>	Level(low/med) LOW
Date Extracted: 04-24	-96	Extraction: (SepF/Cont/Sonc) SONC
Date Analyzed (1): 04-25	- 96	Date Analyzed (2):
Time Analyzed (1): 14:	54	Time Analyzed (2):
Instrument ID (1): GCA		Instrument ID (2):
GC Column ID (1): DB-5M	<u>s</u>	GC Column ID (2):
THIS METHOD BLA	ANK APPLIES TO THE FO	LLOWING SAMPLES, MS AND MSD:
01 PSPK01 02 #5 WAS 03 04 05 06 07 08 09 10 11 12 13 14	E NO. SAMPLE ID SPK98205	DATE ANALYZED 1 ANALYZED 2 ANALYZ
COMMENTS:		
		*

METHOD BLANK

1D PCB ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: QUANTERRA, MO Contract: 609-05		PBLK01
Lab Code: ITMO Case No.: SAS No.:	SDG No.: 1	0882
Matrix: (soil/water)SOIL	Lab Sample ID:	BLK98205
Sample wt/vol: 30.0 (g/ml) G	Lab File ID:	
Level: (low/med) <u>LOW</u>	Date Sampled:	
% Moisture: not dec dec Da	ate Extracted: 0	4-24-96
Extraction: (SepF/Cont/Sonc)SONC	Date Analyzed:0	4-25-96
GPC Cleanup: (Y/N) N pH:	Dilution Factor:	1
	TRATION UNITS: or ug/Kg) UG/KG	Q
12674-11-2Aroclor-1016	33	Ü
11104-28-2Aroclor-1221	33	ַ <u>"</u> "
11141-16-5Aroclor-1232	33	
53469-21-9Aroclor-1242	33	U
12672-29-6Aroclor-1248 11097-69-1Aroclor-1254		
11096-82-5Aroclor-1260	33	

U: Concentration of analyte is less than the value given.

FORM I PEST

Software Version: 3.3 <4811>

Sample Name : BLK 98205

Sample Number: 24 Operator

Time

: 04/25/96 15:10

A/D mV Range : 1000

Study

Instrument : GC_A(DB-5MS,DB-608) AutoSampler : HP 7673A Rack/Vial : 0/0

Channel: A

Interface Serial #: 8116920948 Data Acquisition Time: 04/25/96 14:54

Delay Time : 1.00 min. End Time : 15.00 min. Sampling Rate : 2.9412 pts/sec

Raw Data File : G:\USERS\ACQUIRE\GC1\AA20235.RAW : G:\USERS\ACQUIRE\GC1\AA20235.RST Result File Instrument File: g:\users\acquire\method\A8080.ins

Process File : AAPCB Sample File : AA1660

Sequence File : G:\USERS\ACQUIRE\METHOD\A960425.seq

Inj. Volume : 0 ul Sample Amount : 30.0000 Ares Reject : 200.000000

Dilution Factor : 10.00

Noise Threshold: 10 Multiplier : 1.0000 Area Threshold : 100 Bunch Factor: 1

Divisor : 1.0000 Adder : 0,0000

Instrument Conditions:

/GCA,,,; Instrument: GC A

Ch A :D8-5MS 30M X .32mm X 1.0um Column Ch B :DB-608 30M X .32mm X 0.5um

Carrier Gas

:H (12 ml/min)

Temperature Notes

:170C-->20C/min-->220c-->4c/min.-->250C(2min)

:Inj. Vol is 2.0 ul split into 1.0ul/col

Divisor = % Solids/100

Dil. Factor = Final Vol X Any Dilutions

Total Number of Peaks Detected: 32

PCB REPORT

Peak	Time	Area	Component	Conc.	XREC.	XREC.
#	(min)	[uV*sec]	Name	ppb	TOX	DBC
	1.96	399106.6	SURR. Group	76.30	1e+03	228.89
	2.82	3352.9	AR 1016 Group	1.12	16.87	3.37
	8.20	23946.2	AR 1260 Group	4.58	68.67	13.73
••••		426405.7		82.00		

Group Report For : AR 1016 Group

Time [min]	Area [uV*sec]	Component Name	Conc. ppb	TCHX	XREC. DSC
2.49	451.9	AR 1016 (1-3)	0.15	2.27	0.45
2.82	2901.1	AR 1016 (2-3)	0.97	14.59	2.92
3.60	0.0	AR 1016 (3-3)	0.00	0.00	0.00
	[min] 2.49 2.82	[min] [uV*sec] 2.49 451.9 2.82 2901.1	[min] (uV*sec) Name 2.49 451.9 AR 1016 (1-3) 2.82 2901.1 AR 1016 (2-3)	[min] [uV*sec] Name ppb 2.49 451.9 AR 1016 (1-3) 0.15 2.82 2901.1 AR 1016 (2-3) 0.97	[min] [uV*sec] Name ppb TCRX 2.49 451.9 AR 1016 (1-3) 0.15 2.27 2.82 2901.1 AR 1016 (2-3) 0.97 14.59

3352.9

1.12 CDL

Group Report For : AR 1260 Group

Peak #	Time [min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TOX	XREC. DBC	
0	7.02	0.0	AR 1260 (1-4)	0.00	0.00	0.00	
Õ	7.16	0.0	AR 1260 (2-4)	0.00	0.00	0.00	
Ŏ	7.61	0.0	AR 1260 (3-4)	0.00	0.00	0.00	
29	8.20		AR 1260 (4-4)	4.58	68.67	13.73	

23946.2

4.58 LDL

Group Report For : SURR. Group

00123

Resul	it File :	AA20235.RST,	Printed On 04/25/96	15:10			pege
Peak #	Time (min)	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCMX	XREC. DBC	
8 30 32	1.96 8.65 14.02	188053.3 734.7 210318.6	TCIOX DBC CDCB	7.76 0.06 9.49	116.39	23.28 0.18 28.47	•••••••••••••••••••••••••••••••••••••••

17.31

Types and reasons for Manual Analysis if performed on this sample:

1. Manual Identification: RT shift, Wrong peak, Interference from...

2. Manual Integration: Incorrect integration, Interference from...

3. Other

6. No Manual Analysis were performed on this sample.

Analyst: J. Forsette 0430ab

399106.6

PCB

Sample Name : BLK 98205

FileName : g:\users\acquire\gc1\AA20235.raw

Method

: A8080.ins

Start Time : 1.00 min Scale Factor: 1.0

End Time : 15.00 min Plot Offset: 13 mV

Page 1 of 1

Sample #: 24 Date: 04/25/96 15:10 Time of Injection: 04/25/96 14:54 Low Point: 13.20 mV High P Plot Scale: 98.2 mV

High Point : 111.43 mV

INORGANIC SAMPLE DATA

Drum 4

609.05

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Code: ITMO Case No.:SAS No.:SDG No.: 10882	Lab Name: QUA	ANTERRA_MO	Contract: 609.05	
EPA Sample No. Lab Sample ID P10882-005 PBT98878	Lab Code: ITM	10 Case No.:	SAS No.: SDG	No.: 10882
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Yes/No YES If each of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Date: Name: Date: Title:	SOW No.: SW84	16	•	
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:		#5 WA DR #4	P10882-005	
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP interelement corrections applied ? Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name:				
Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				
Were ICP background corrections applied ? If yes - were raw data generated before application of background corrections ? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				
If yes - were raw data generated before application of background corrections? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitteen floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:	Were ICP inte	erelement corrections	applied ?	Yes/No YES
application of background corrections? Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				Yes/No YES
Comments: I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:	If yes - applicat	 were raw data generation of background cor 	ted before rections ?	Yes/No NO
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				· -
conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				
conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				
conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitte on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. Signature: Name: Date: Title:				
Date: Title:	conditions of other than th in this hard on floppy dis	the contract, both the conditions detailed to copy data package and skette has been author	echnically and for compl dabove. Release of the in the computer-readable rized by the Laboratory M	eteness, for data contained data submitted anager or the
	Signature:		Name:	
	_			
	Date:		Title:	

INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.
	OWITE THE	TAO.

	·				#5 WA DR #4
Lab Name: QUAN	TERRA_MO		Contract: 609	9.05	
Lab Code: ITMO	Case No	o.:	SAS No.:	SDG	No.: 10882
Matrix (soil/wa	ater): WATE	₹	I	Lab Sample	ID: P10882-005
Level (low/med)): LOW_	-	I	Date Recei	ved: 04/17/96
% Solids:	0.0	ס			
Coı	ncentration	Units (ug,	/L or mg/kg dry	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q	м
	7439-92-1	Lead	471		<u>P_</u>
					_
				-	
Galam Bafama				 _	Texture:
Color Before:			ty Before:		
Color After:		Clari	ty After:		Artifacts:
Comments:					
		F	ORM I - IN		ייריד.ם

00002

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: QUAN	TERRA_MO		Contract: 609	PBT98878				
Lab Code: ITMO Case No.:			SAS No.: SDG No.: 10882					
Matrix (soil/w	vater): WATE	R	1	Lab Samp	le ID: PBT98878			
Level (low/med	l): LOW_	_	I	Date Rec	eived: 04/17/96			
% Solids:	0.	0						
Co	ncentration	Units (ug	/L or mg/kg dry	y weight): UG/L_			
	CAS No.	Analyte	Concentration	c Q	М			
	7439-92-1	Lead	39.8	₫	_ _ P			
				-				
				-				
				-				
Color Before:		Clari	ty Before:		Texture:			
Color After:		Clari	ty After:		Artifacts:			
00101								

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10882
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	ibration Found	%R(1)	M
Lead	_4000.0	_4044.48	101.1	_4000.0	_4032.17	100.8	_4021.31	100.5	P_

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10882
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	
Conce	ntration Units: ug/L	

	_								П
Analyte	Initia True	al Calibr Found	%R(1)	True	Continui: Found	ng Cali %R(1)	ibration Found	%R(1)	
Lead				4000.0	_3995.93	_99.9			:
									- -
	-								- -
									: -
									: -
									. -
									: -
									: - -
									-

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2B CRDL STANDARD FOR AA AND ICP

Lab Name: QUANTERRA_MO	Contract: 6	09.05
Lab Code: ITMO_ Case No.:	SAS No.:	SDG No.: 10882
AA CRDL Standard Source:	SPX/SOL+/LL_	
ICP CRDL Standard Source:	SOL+/SPX	
	Concentration Units: ug/L	

Analyte		tandard fo	or AA %R	True	CRDL Star Initial Found		for ICP Fina Found	l %R
Lead				200.0	214.85	107.4	!	
						<u> </u>		
						<u> </u>		
								İ
								

FORM II (PART 2) - IN

3 BLANKS

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10882
Preparation Blank Matrix (soil/water	:): WATER
Preparation Blank Concentration Unit	s (ug/L or mg/kg): UG/L_

1									T-1
Analyte	Initial Calib. Blank (ug/L)	С	Conti	nı B. C	ling Calib lank (ug/L) 2	rat) C	cion 3	С	Prepa- ration Blank C M
Lead	39.8	Ū	39.8	Ū	39.8	Ū	39.8	Ū	39.800 U P
						ľ		١	
		-		_		-		-	-
		-		-		-		-	
		-		_				-	
		-		_		-		-	
		-1		_		-		-	
		-		-		-		-	
		-		_		-		-	
		-		_		-		-	
		-		-		-		-	
		-		-		-		-	
		_		_		-		-	
		-		_		-	ļ 	-	
		_		_		-		-	
		-		_		-		-	
		_		_		-		-	
		_		_		-		-	
		_		_		1		1	
		_						-	
		_		_		-		_	
		_		_					
				_					
		_		_		-		-	
				_		-		_	

FORM III - IN

4 : ICP INTERFERENCE CHECK SAMPLE

Lab Name:	QUANTERRA_MO	Contract:	609.05
Lab Code:	ITMOCase No.:	SAS No:	SDG No.: 10882
ICP ID Num	ber: TJA1100	ICS Source:	SOL+/SPX

Concentration Units: ug/L

Analyte	True Sol Sol. A AB		Initial Found Sol. Sol. A AB %R			Final Found Sol. Sol. A AB %R			
Lead	0	1000	49	968.7	96.9	46	950.1	_95.0	
					 				

FORM IV - IN

7 LABORATORY CONTROL SAMPLE

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO_ Case No.:	SAS No.: SDG No.: 10882
Solid LCS Source:	
Aqueous LCS Source: SOL+/CHEMPUR	

Analyte	Aque True	ous (ug/I Found		True	Sol: Found	id C	(mg/kg) Lin	nits	%R
Lead	_1000.0	991.29	_99.1_			_			
						_			
						_ _			
						- -			
						_			
						_			
						_			
						_			
						_			
						_			
						_			
						-			
						-			

FORM VII - IN

10
Instrument Detection Limits (Quarterly)

				Contract:		
Lab Code:	ITMO_ Case	No.:	SAS	No.:	SDG N	To.: 10882
ICP ID Num	nber:	TJA110	0	Date:	04/01/96	5
Flame AA I	D Number :		····			
Furnace AA	ID Number	:				
		Wave-				
	Analyte	length	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
	Lead]	l	100_		

FORM X - IN

11A ICP: INTERELEMENT CORRECTION FACTORS (ANNUALLY)

	Wave- length				actors for :	
Analyte	(nm)	AL	Ca	Fe	Mg	AS_
Lead	_220.35	_0.0013200	_0.0000000_	_0.0000000	_0.0000000	0.0000
						····
						-
	l					
	l				_	

FORM XI (Part 1) - IN

00011

11B ICP: INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: (QUANTERRA_M	0	Contr	act: 609.05 ₋		
Lab Code: :	ITMO_ Case :	No.:	SAS No.:	SDG	No.: 10882	····
[CP ID Num	ber: TJA110	0	Date:	10/01/95		
,						
	Wave- length	I	nterelement	Correction 1	Factors for	:
Analyte	(nm)	NA_	TH_	<u> </u>		
Lead	220.35	_0.000000	-0.0017600_	_0.0009690		
Comments:						

FORM XI (Part 2) - IN

12 : ICP LINEAR RANGES (QUARTERLY)

Lab Name: QUANTERRA_MO		Contract: 6	09.05
Lab Code: ITMO_ Case No.:		SAS No.:	SDG No.: 10882
ICP ID Number: TJA1100		Date: 0	4 /01/96
Analyte Lead	Integ. Time (sec.) 5.00	Concentration (ug/L)	MP
Comments:			

FORM XII - IN

13 PREPARATION LOG

Lab Name:	QUANTERRA_MO	_ Contract:	609.05
Lab Code:	ITMO Case No.:	SAS No.:	SDG No.: 10882

Method: P_

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
#5 WA DR #4_ LCSW99006_ PBT98878_ PBW99006	04/30/96 04/30/96 04/30/96 04/30/96		100 100 100 100

FORM XIII - IN

14 ANALYSIS RUN LOG

Lab	Name:	QUANTERRA	_MO	Contract:	609.05_		
Lab	Code:	ITMO	Case No.:	SAS No.:		DG No.:	10882

Instrument ID Number: TJA1100 ____ Method: P_

Start Date: 04/30/96 End Date: 04/30/96

EPA			_										Ar	nal	.yt	es	3									
Sample Sample	D/F	Time	%	R	P		\neg			Т		Τ	Г			\neg					Т					$\overline{}$
No.	, ,		•		В											}										
50	1.00	1301			$\overline{\mathbf{x}}$	-	-	-	- -	- -	- -	- -	-	-	-	-	-	-	-	-	-	-	-	-	_	-
S	1.00	1304			X	-	-	-	-1-	- -	- -	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S	1.00	1307			1	-	-		-1	- -	- -	- -	1-	1-1	-	-	-	-	-	-	-	-	-	_	-	-
S	1.00	1311			-	-	-	-	-1-	- -	- -	- -	-	-	_	-	-	-	-	-	-	-	-	-	-	-
īcv	1.00	1314			\overline{X}	-	-	-	-1.	- -	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ICB	1.00	1317			X	-	_	-	-1.	- -	- -	- -	-	-	-	-1	-	-	-	-	-		-	_	-	-
CRI	1.00	1320			X	-	-	-1	-1.	-1.	- -	- -	1-	-	-	-		-	-	-	-	-	-	-		-
S	1.00	1324			X	_	-	-	-1.	-1:	- -	- -	-	-	-	-	-	-	-	-	-	-	-	_	-	-
ICSA	1.00	1329			X	-	-	-1	-1.	-1.	- -	-1-	1-		-	-		-1	-	-	-	-	-	-	-	-
ICSAB	1.00	1332			X	-	-	-1	- -	~ `	- -	- -	-	-	-	-	-1	-	-	-	-	-	-	-	-	-
PBW99006	1.00	1336			X	-	-	-	-1.	- :	- -	- -	1-	1-	-	_	-		-	-	-	-	_	_	_	-
LCSW99006	1.00	1339			X	-	-	-	- -	-1.	- -	- -	-	1-1	-	-	-1	-	-	-	_	-	_	-	-	-
ZZZZZZ	1.00	1342				-	-	-	-1.	-1:	- -	- -	1-		-	-	-	-	-	-	-	-	_	_	-	-
CCV	1.00	1345			$\overline{\mathbf{X}}$	_	-	-	-1.	- :	-1-	- -	-	1-	-	-	-1	-	-	_	-	-		_	-	-
ССВ	1.00	1348			X	_	-	-1		- :	- -	- -		-	-	-	-	-	-	-	-	-	_	_	-	-
#5 WA DR #4	1.00	1352			X	-			-1	- -	- -	- -	1-	-	-		-	-	-	_	-	-	_	_	-	-
ZZZZZZ	1.00	1355				-	-		-1.	- -	-1-	- -	1-	-		_			-	-	-	-	-	_	-	-
ZZZZZZ	1.00	1358			-	-	-	-1	-1	-1.	- -	- -	1-	1-	-	-	-	-		-	-1		-	-	-	-
ZZZZZZ	1.00	1401			_	_	_		-1.	-1	- -	-	-	-	-	_	-	-	-		-	-	-	-	-	-
ZZZZZZ	1.00	1404			-	_	_	-1	-1	- -	- -	- -	1-	1-	 –	-	-	-	-		-	-	-	-	_	-
ZZZZZZ	1.00	1408			-	_	_	-	-1	-	- -	- -	1-	-	-	-	-	_	-	-	-	-	_	_	-	-
ZZZZZZ	1.00	1411				-	_	—	-1	-1	- -	-	1-	-		-		-1	-	-	_	-	_	-	_	-
ZZZZZZ	5.00	1414			-		_	-	-1	-	- -	- -	-	-	-	-	-		-	-	-	-		-	_	-
PBT98878	1.00	1417			X	-	_		-1	-	- -	-1-	-	-	-	-	-	-	-	-	_	-1	_	-	_	-
ZZZZZZ	1.00	1420				_	_	-	-1	-1	- -	- -	1-	-	-	_	-	-	_	-	-1	-	_	-	_	-
CCV	1.00	1424			X	_	_	1-1	-1	-1	- -	- -	-	-	-	-	-	-	-	-	-	_	_	_	_	-
CCB	1.00	1427			X	_	_		-1	-1	- -	- -	1-	-	-	-	-	-	-	-	-	-	_	_	_	-
ZZZZZZ	3.00	1430				-	_	-	-1	- :	- -	- -	1-	-	-	-	-	-	-	-	-	-	_	-	_	-
ZZZZZZ	3.00	1433			1-	_	-	-	-1	-	- -	- -	1-	-	-	-	-	-	-	-	-	-	_	-	-	1-
ZZZZZZ	3.00	1436			1-1	-	-	-	-	-1	-1-	- -	-	-	-	-	-	-	-	-	-		-		-	-
PBT98878	1.00	1440			1-1		-	-	-1	-1	- -	- -	-	-	-	-	-	-	-	-	-		_	-	-	-
ICSA	1.00	1443			X	-	-	-	-1	-	- -	- -	1-	-	-	-	-	_	-	-	-	-	-	_	-	-

FORM XIV - IN

14 ANALYSIS RUN LOG

Lab	Name:	QUANTERRA_	MO	Contract: 609.05	
Lab	Code:	ITMO	Case No.:	SAS No.:	SDG No.: 10882
Inst	rument	ID Number	c: TJA1100	Method: P	

Start Date: 04/30/96 End Date: 04/30/96

EPA				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Π				·					An	al	yt	es	3									
Sample No.	D/F	Time	왕	R	P B																						
ICSAB CCV CCB	1.00	1446 1449 1452			X X X -		— — — —			_ _ _ _					_ _ _	- - -		- - - -			_ _ _ _	_ _ _ _	_ _ _ _	 - - - -		-	_
					- - -	 - - - -		1 1 1 1	- - - -	_						_		_		1 1 1 1		1 1 1 1			_ _ _ _	-	-
							- - - -	1 1 1 1	_	- - -				-	_	_		_	_			1	-	_ _ _		- - -	_
													_	-	_ _ _	-		_ _ _	_					_	_ _ _ _	- - -	_ _ _ _
					- - -	- - -	-	_ _ _ _	_ _ _	_	- -	- - -	_ _ _	-	_	-	_		_	_						- - -	_
					- - -		1 1 1 1	1 1 1	_					-			_ _ _ _		_					1 1 1 1	1111		
					- - -	- - -	_ _ _		-		-			_	_	-	_		_		1 1 1	_ _ _	_ _ _	1 1 1	1 1 1	-	_

FORM XIV - IN

CHAIN OF CUSTODY SAMPLE LOG-IN/RECEIPT RECORDS

DRUM 4

Page 1

		Quante	18, 1996	03:44 pm		
Project Manager: A. Field	Account:	11084	609.05 ABB QAS umple Login: 108	No. 609.05 Rev. 0	•	
Draft: Final: Entered and Reviewed by:	Reviewed by:	Am A	PM Review:	len my sex	exp	
Sample No. Client ID	C-Matrix	Date: Collected	red Received	Pie		
Container Type	Analysis	Class Pro	rvative	Hold Da	<pre>rad category Rad Sample No. (Container Numbers: * Filled)</pre>	-
10882-001 #1 HOLE #6	5011	16-APR	-96 08:30 17-APR-96 0	16-APR-96 08:30 17-APR-96 09:20 08-MAY-96 FED-EX	3* R4896-001	1
PN - Plastic-1L	RAD/GAMMA/Q4 RAD/SCREEN/Q4	choo s	D 01-MAY-96 01-MAY-96	6 15-0CT-96 S4J 6 14-0CT-96 S4J	(22557:100)	
10882-002 #2 HOLE #10	Soil	16-APR-	.96 08:40 17-APR-96 0	16-APR-96 08:40 17-APR-96 09:20 08-MAY-96 FED-EX	3* R4896-002	
1 PN - Plastic-1L	RAD/GANFG/Q4 RAD/SCREEN/Q4	S COLD	.D 01-MAY-96 .D 01-MAY-96	6 15-0CT-96 S4J 6 14-0CT-96 S4J	(225558:100) (225558:100)	
10862-003 #3 DUPLICATE #10	Soil	16-APR-	16-APR-96 08:40 17-APR-96 09:20 08-MAY-96 FED-EX	9:20 08-MAY-96 FED-EX	3* R4896-003	
1 PN - Plastic-1L 1	RAD/GAMMA/Q4 RAD/SCREEN/Q4	S COLD	D 01-MAY-96 D 01-MAY-96	15-0CT-96 S4J	(225559:100) (225559:100)	
10882-004 #4 WASTE DRUM #4	Soil	16-APR-	16-APR-96 08:45 17-APR-96 09:20 08-MAY-96 FED-EX):20 08-MAY-96 FED-EX	3* R4896-004	
1 PN - Plastic-1L	RAD/GAMMA/Q4 RAD/SCREEN/Q4	S COLD	D 01-MAY-96 D 01-MAY-96	15-0CT-96 S4J 14-0CT-96 S4J	(225560:100) (225560:100)	
10882-005 #5 WASTE DRUM #4 ICAP/TCLP = PB ONLY.	Soil	16-APR-	16-APR-96 08:56 17-APR-96 09:20 08-MAY-96 FED-EX	:20 08-MAY-96 FED-EX	3* R4896-005	
2 PN - Plastic-1L 2 1	EXTMETAL/TCLP/Q4 ICAP/TCLP/Q4 PCB/8080/Q4 RAD/SCREEN/Q4	07100 S 07100 S 07100 S	01 -MAY - 96 01 -MAY - 96 01 -MAY - 96 01 -MAY - 96	14-MAY-96 S4J 13-OCT-96 S4J 30-APR-96 S4J 14-OCT-96 S4J	(225561:100 225577:99) (225561:100 225577:99) (225578:98) (225561:100)	

Tenr 4's Cart 6922

Chain of Custody Record

Wuanterra
Environmental
Services

Pale 17-76 09:20 Chain Of Custody Number 7 70 Time Months Page / Date Archive For 440 dy 1181/ 1208 Lab Number 1.10p Condition on Receipt Disposal By Lab Date 3×100 100% %00/ 1000 100% Preservative 617 245-6606 Kone NUNR Nune Carrier/Waybill Number | S16 4794 057 None 6014 350 - 350 1 Cold Return To Client Project Specific (Specify) 41/16 D856 Sail 4 750-1 350-11 Ş. Sample Disposal 1. Received By Juke Jacobson Containers 3. Received By Herb Colby Telephone Number (Args Code)/Fax Number Туре to Febra 4/16/96 14130 Date 1/16/95 Time 0915 Total Volume Unknown Project Manager Sample Type Site Contact 105 50.1 4/14/46 04560 Sail 201 4/16/96 0845 Sail 0830 0 480 96/91/4 0680 16/91/h Poison B Time LOF Audubon Rd STE 25 ke field MA 01880 Services 16/91/h CONTINUED AS OCCUPATION NO. Date Skin Irritant A 88-ES ABB Environmental Waste Draw #4 Waste Drum "4 Wash Drum #4 Sample I.D. No. and Description Duplake 10 2. Relinquished By Co. 3. Relinquished By | || Flammable Hile . 10 Hole *8 Wake Pield Possible Hazard Identification Tum Around Time Required O Normal Special Instructions Non-Hazard 800 Comments **5** Client 4

DISTRIBUTION: WHITE . State with Samala CANADY OF

	iii	NE //.e./ F	ipon Receipt Va L. Louis Labors		Logia No.: 10882
lient	t:	ABB	Dec	. Y	-17-96 709:20
		: 8V 534.CT 609.6	25 Inin	eted h	7-17-96 TO 120 y: 2nd M LLD
		: FeOEX 3169734 05	7 25		Numbers://74 6
		Variance (Check all that apply):			
1.	а	Sample received broken/leaking.	8.	a	Sample ID on container does not match sample ID
2.		Sample received without proper preservative.	,	_	on paperwork. Explain:
		Cooler temperature not within 4°C ±	2 -C		
		Record temperature:			
		□ pH		a	All coolers on airbill not received with shipment.
		O other:		0	Other (explain below):
3.		Sample received in improper container.		-	, , , , , , , , , , , , , , , , , , ,
J.	<u> </u>	Sample received without proper paperwork. E.	enle in .		
₽.	u	Sample received wanted proper paperwork. E.	Apean		
5.		Paperwork received without sample.			
5. 6.	_	No sample ID on sample container.			
7.	_	Custody tape disturbed/broken/missing.			
lotes	•	e variances were noted during sample receipt. Action:	Castar Team		re Upon Receipt: 4°C
		Client's Name:	informed verbally o	a :	Ву:
a		Client's Name:	Informed in writing	oa: _	Ву:
•		Sample(s) processed "as is".			
a		Sample(s) on hold until:			f released, soully:
	•	narol Supervisor Review: (or designess)	MIL		2000: 4-17-94 2000: 4-14-96
•		SIGNED ORIGINAL I	MUST BE RETAINED	IN THE	2 PROJECT FILE 00078

QC Summary

Drum 5

ESE BATCH

: G73308

NALYSIS

: EPA 8080/3540

TYPE

: FDER/SW

ANALYST : VICTOR BAUDER EXTRACTOR : CURTIS GUINYARD ATA ENTRY : VICTOR BAUDER

REPORT DATE/TIME : 07/31/96 09:47 ANALYSIS DATE/TIME : 07/14/96

REPORT DATE/TIME

EXTRACT DATE : 07/16/96

STATUS

: FINAL

ETHOD BLANK CORRECTION METHOD : NONE SATHAMA LOT: QEES

FIELD GRP OC TYPE ESE

ID

DRUM 5

1296066G 0201

PROJECT NUMBER PROJECT NAME ABB FT DEVENS TASK 7 LAB COORDINATOR JOSEPH VONDRICK

V5.S

CLIENT

DATE

TIME

ANALYZED 07/22/96 ANALYZED 06:07PM

HOLDING TIMES CHECK

SAMPLE

SAMPLE

V5S*99

CODE

ANALYTE

ANL DATE EXT DATE SMP DATE H.T. OVER

L HOLDING TIMES MET

Method Blank Sample Summary

ATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND	DET LMT
//19/96	MB*THAMA*1	39514*8080/3540-G	PCB-1016	UG/KG-	ND	13.3
07/19/96	MB*THAMA*1	39491*8080/3540-G	PCB-1221	UG/KG-	ND	13.3
07/19/96	MB*THAMA*1	39495*8080/3540-G	PCB-1232	UG/KG-	ND	13.3
7/19/96	MB*THAMA*1	39499*8080/3540-G	PCB-1242	UG/KG-	ND	13.3
7/19/96	MB*THAMA*1	39503*8080/3540-G	PCB-1248	UG/KG-	ND	13.3
7/19/96	MB*THAMA*1	39507*8080/3540-G	PCB-1254	UG/KG-	ND	13.3
07/19/96	MB*THAMA*1	39511*8080/3540-G	PCB-1260	UG/KG-	ND	13.3

rrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	*RECV	RECV_CRIT
07/19/96	CCS*1060*133	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	200	219	110	67-119
7/19/96	CCS*1060*133	96519*SUR	DECACHLOROBIPHENYL	UG/KG	200	221	111	51-169
7/19/96	MB*THAMA*1	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	58.3	87.4	67-119
7/19/96	MB*THAMA*1	96519*SUR	DECACHLOROB I PHENYL	UG/KG	66.7	73.4	110	51-169
07/19/96	SP1*THAMA*1	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	55.4	83.1	67-119
7/19/96	SP1*THAMA*1	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	71.4	107	51-169
7/22/96	DA*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	60.9	91.3	67-119
7/22/96	DA*DV5S*99	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	82.3	123	51-169
07/19/96	SPM1*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	48.2	72.3	67-119
07/19/96	SPM1*DV5S*99	96519*SUR	DECACHLOROB I PHENYL	UG/KG	66.7	63.9	95.8	51-169
7/19/96	SPM2*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	49.1	73.6	67-119
7/19/96	SPM2*DV5S*99	96519*SUR	DECACHLOROB I PHENYL	UG/KG	66.7	67.0	100	51-169
07/19/96	CCS*1060*143	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	200	223	112	67-119
07/19/96	CCS*1060*143	96519*SUR	DECACHLOROBI PHENYL	UG/KG	200	207	104	51-169
7/22/96	CCS*1254*14	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG		NA		67-119
7/22/96	CCS*1254*14	96519*SUR	DECACHLOROB I PHENYL	UG/KG		NA		51-169

Batch Narrative - G73308 Analysis: EPA 8080/3540 Updated by 1781

CCS*1060*143 HAS PCB-1016 AT 21.0% DIFFERENCE WHICH IS SLIGHTLY ABOVE THE 20.0% CRITERIA. THE SAMPLE DOES NOT HAVE ANY PCB-1016 IN IT. ALL OTHER CCS COMPOUNDS ARE WITHIN CRITERIA. VSB 7-23-96

Updated by 3377

PROBLEM:

Sample matrix spike not within acceptance criteria:

PB UN*DV5SL*99 Exceeds criteria. (Recovery Limit 100 +/- 15)

EXPLANATION:Sample concentration is greater than 4 times the spike concentration.

PROBLEM:

Sample matrix spike duplicate not within acceptance criteria: PB UN*DV5SL*99 Exceeds criteria. (Recovery Limit 100 +/- 15) EXPLANATION:Sample concentration is greater than 4 times the spike concentration.

Analyst		DATE	
Reviewer		DATE	
			

Summary	TARGET FOUND *RECV RECV CRIT R.P.D. R.P.D. CRIT.	110.1 N/A N/A	116.9 N/A N/A	98.0 75-137 31	
ng, Inc	FOUNE	294	312	19.6	ng, Inc Summary
Sngineerir SUMMARY Y and Rep	TARGET	267	267	20.0	ingineerir SUMMARY tecovery S
Environmental Science & Engineering, Inc. FT DEVENS SOIL QC SUMMARY Matrix Spike (SP) Recovery and Replicate	DATE	07/19/96		01/30/96	Environmental Science & Engineering, Inc. FT DEVENS SOIL QC SUMMARY Sample Matrix Spike (SPM) Recovery Summary
Standard	BATCH SAMPLE	G73308 SP1*THAMA*1	SP1*THAMA*1	G73649 SP*QC*1	Sa
. 07/31/96	UNITS STOR*METH	UG/KG- 39514*8080/3540-G G73308 SP1*THAMA*1	UG/KG- 39511*8080/3540-G	JG/L 1051*6020-G	07/31/96
	UNI	()SD	ng/50	ng/,	

NAME PCB-1016 PCB-1260 LEAD, TOTAL

NAME	UNITS	UNITS STOR*METH	BATCH SAMPLE	DATE	TARGET FOUND	FOUND	*RECV	RECV CR.	T UNSPIKED	R.P.D.	*RECV RECV CRIT UNSPIKED R.P.D. R.P.D. CRIT.
PCB-1016	UG/KG-	39514*8080/3540-G	JG/KG- 39514*8080/3540-G G73308 SPM1*DV5S*99	96/61/10	303	360	118.9	N/A	0.0		N/A
PCB-1016	UG/KG-		SPM2*DV5S*99		303	324	107.0 N/A	N/A	0.0	10.5	N/A
PCB-1260	UG/KG-	JG/KG- 39511*8080/3540-G	SPM1*DV5S*99		303	482	159.2	N/A	0.0		N/A
PCB-1260	UG/KG-		SPM2*DV5S*99		303	506	167.2	N/A	0.0	5.0	N/A
LEAD, TOTAL	ng/r	UG/L 1051*6020-G	G73649 SPM1*DV5SL*99	07/31/96	22.2	800	3600	75-137	29900		31
LEAD, TOTAL	ng/r		SPM2*DV5SL*99		22.2	800	3600	75-137	29900	0.1	31
		01/31/96		Environmental Science & Engineering, Inc.	ngineering	I, Inc.					
			FT DEVENS SOIL QC SUMMARY Spike into Matrix (SPX) Recovery Summary	FT DEVENS SOIL OC SUMMARY Ito Matrix (SPX) Recovery 3	SUMMARY Covery Sun	mary					

*RECV RECV CRIT UNSPIKED	29900
RECV CR	N/A
*RECV	-5679 N/A
TARGET FOUND	-318
TARGET	5.6
DATE	96/08/L0
BATCH SAMPLE	G73649 SPX*DV5SL*99
STOR*METH	1051*6020-G
UNITS	UG/L
NAME	LEAD, TOTAL

Environmental Science and Engineering, Inc. FT DEVENS SOIL QC SUMMARY

		Sta	ındard Matr	ix Spike 1	Standard Matrix Spike Recovery and Replicate Statistics Summary	Statistics Summary
STORET*METHOD NAME	Z	MINIMUM	MAXIMUM	AVERAGE	I MAXIMUM AVERAGE STANDARD DEVIATION	
39514*8080/3540PCB-1016	1	110.1	110.1	110.1	0.0	
39511*8080/3540PCB-1260	-	116.9	116.9	116.9	0.0	
1051*6020-G LEAD, TOTAL		98.0	0.86	0.86	0.0	

1 110.1 110.1 110.1 0.0	116.9	1 98.0 98.0 98.0 0.0	Environmental Science and Engineering, Inc.	PT DEVENS SOIL OC SUMMARY	Sample Matrix Spike Recovery Statistics Summary	N MINIMUM MAXIMUM AVERAGE STANDARD DEVIATION	2 107.0 118.9 113.0 8.4	2 159.2 167.2 163.2 5.7	2 3600 3600 3600 0.0
39514*8080/3540PCB-1016	39511*8080/3540PCB-1260	1051*6020-G LEAD, TOTAL				STORET * METHOD NAME	39514*8080/3540PCB-1016	39511*8080/3540PCB-1260	1051*6020-G LEAD, TOTAL

Environmental Science and Engineering, Inc. FT DEVENS SOIL OC SUMMARY	Spike into Matrix Recovery Statistics Summary	N MINIMUM MAXIMUM AVERAGE STANDARD DEVIATION	1 -5679 -5679 -5679 0.0
		STORET*METHOD NAME	1051*6020-G LEAD, TOTAL

Chains of Custody (copies)

Drum 5

CHAIN OF CUSTODY RECORD	SAMPLE TYPE	2808 - - 1181 -a	824	RUM 5 2 XX Soil OV 55499	List-DVSSA					RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) DATE/TIME RECEIVED BY: (SIGNATURE)	RECEIVED FOR DISPOSAL BY: DATE/TIME REMARKS TC LP-/cad only and PCB in Soil (Signature) Ra-226 (3-10 PCilg)
CHAIN	ME O WORLD	Ft. Devens - JICHIU Mag. Survey C-ABB-ES		DRUM						DATE/TIME RECEIVED BY:	DATE/TIME RECEIVED BY:	DATE/TIME RECEIVED FOR
	<u>a</u>	9376.02 Ft. Devens SAMPLERS (SIGNATURE) Zimarh Zam - 188-ES	STA. NO. DATE TIME	(5111 1/14/1)						<u> </u>	RELINQUISHED BY: (SIGNATURE)	RELINQUISHED BY: (SIGNATURE)

Environmental Science & Engineering, Inc. 07-03-96 *** FIELD LOGSHEET *** FIELD GR PROJECT NUMBER 1296066G 0201 FG NAME: FT DEVENS ABB LEACHATE LAB COORD. J	** FIELD GROUP: DV5SL $7/19$ LAB COORD. JOSEPH VONDRICK
ESE # SITE/STA HAZ? FRACTIONS (CIRCLE) DATE TIME PARAMETER LIST CC Per 33V	per 350
MER A (HAZI I FO	S MAY BE USED , HAZARD CODE AND NOTES SPECIFICS IF KNOWN nce & Engineering, Inc.
SAMPLED BY: (Name/Organization)	
RELINQUISHED : (Name/Organization/Date/Time) VIA: REC'D BY (Name/Or	(Name/Organization/Date/Ti
1 (3 RAHAM TACOS /ESE /7/3/10 /pm pureiving	WILL MESS
2	7/3/15 1300
33	cc 7/3/80

Interior Temp? N Deg C Cot Inter (#) more samples on If Yes, Seals Intact? Yes Mo describe: SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping SAMPLE CUSTODIAN: Custody Seals Used? Yes/No If Yes, Sea Preservatives Audited? Yes/No Any Problems? Yes/No) If

Appendix F

Radioactive Package Shipment Survey Record

DRUW# (
Date Surveyed 2/23/96 Surveyed By Tom Bracks
Transported By License Plate #
Type of Package 55 gallor drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # BICTON # 3966N
Reading at Contact 50 Reading at 3 ft
Smear Survey
Survey Instrument & serial # Model #2223 Serial # 102933
Results $\frac{26}{\text{dpm}/100 \text{ cm}^2}$ α
Results $\frac{2 496}{}$ dpm/100 cm ² β / γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity)
Radium 226 in soil and Esphalt nix
Reviewed By: Seas July Date: 2/27/96
Radiation Science, Inc. Form RW01

Drum # or
Date Surveyed 3/23/96 Surveyed By TON Bracke
Transported By License Plate #
Type of Package 55 gallow drom Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # BICRON = B966N
Reading at Contact 50 Reading at 3 ft. 10
Smear Survey
Survey Instrument & serial = Model # 3223 Serial # 162933
Results 22ℓ dpm/100 cm ² α
Results $\frac{2496}{}$ dpm/100 cm ² β/γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity)
Radium 226 in soil and asphalt mix
Reviewed By: San Dule: 3/2+/96
Radiation Science, Inc. Form RW01

DEON#3
Date Surveyed 2/23/96 Surveyed By Tom Doucke
Transported By License Plate #
Type of Package 55 921/00 drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # BICTON #- 8966N
Reading at Contact 55 Reading at 3 ft. 10
Smear Survey
Ludlum Scaler/Ratemeter Survey Instrument & serial # Mode! # 2223 Scenal # 10 2933
Results $\angle 2\ell$ dpm/100 cm ² α
Results dpm/100 cm² β/γ Contamination greater than 2,2000 dpm/100 cm² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium 226 IN Soil and Asphalt MIX, Radium 226 In DAIN - Bugue, glastic + muter)
Reviewed By: 1000 Date: 2127/9/

Radiation Science, Inc.

Form RW01

Drum = 4
Date Surveyed 4/16/96 Surveyed By Scott Dennerlein
Transported By License Plate #
Type of Package 55 gullon drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # Bicron * B966N
Reading at Contact 15 µR/hr Reading at 3 ft. 10 µR/hr
Smear Survey
Survey Instrument & serial # Ludlum 2223 # 102933
Results $\frac{230}{}$ dpm/100 cm ² α
Results $\frac{2500}{\text{dpm}/100 \text{ cm}^2}$ $\beta/\sqrt{3}$
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium - 226 in soil /asphalt
OLSIS V
Reviewed By: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Author Delynos, the Author

Drum #5
Date Surveyed 6/12/96 Surveyed By South Denner lein
Transported By License Plate #
Type of Package 55 gallon drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # Bicron * B966N
Reading at Contact
Smear Survey
Survey Instrument & serial # Indlum 2223 # 10293?
Results 230 dpm/100 cm ² α
Results $\frac{2500}{}$ dpm/100 cm ² β/γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity)
Radium-220 in soil/asphalt
Reviewed By: The Date: \$896
Radiation Science, Inc. Form XX