Hochschule Emden/Leer Fachbereich Technik Abteilung Elektrotechnik und Informatik

SS 2016

Schriftliche Prüfung im Fach: Theoretische Nachrichtentechnik Prüfer: Prof. Dr.-Ing. Johann-Markus Batke Tag der schriftlichen Prüfung: 21.6.2016

Studierende	er:		
staarererra	Name, Vorname		MatrNr.
	Einsicht genommen:		
	Datum, Unterschrift Prüfer	Datum, U	Interschrift Studierender

Allgemeine Hinweise

Bearbeitungszeit 90 Minuten **Anzahl der Aufgaben** 5 Hilfsmittel

• Formelsammlung der Klausur (s.u.)

- · Eigene Formelsammlung (handgeschrieben, 2 Seiten DIN A4). Die Formelsammlung ist mit abzugeben.
- HS-Taschenrechner

- · Beschriften Sie bitte alle Lösungsblätter mit Namen und Matrikelnummer und nummerieren Sie sie fortlaufend.
- · Alle Blätter bitte nur einseitig beschreiben.
- · Geben Sie bei Rechenaufgaben die Zwischenschritte an, so dass der Lösungsweg erkennbar
- Antworten sind, soweit möglich, zu begründen.
- Die Klausur ist mit ca. 50 % der Gesamtpunktzahl bestanden.

Aufgabe 1: Spezielle Funktionen (24 Punkte)

- (a) Skizzieren Sie die Funktionen
 - $x_1(t) = 3\operatorname{rect}_T(3t 3)$
 - $x_2(t) = \Delta_{2T}(t + 2T)$
- **(b)** Geben Sie einen Ausdruck für die skizzierten Funktionen an.

Aufgabe 2: Faltung im Zeitbereich (28 Punkte)

t (s)

Führen Sie die Faltung der Funktionen $x(t) = \text{rect}_2(t)$ und $y(t) = \Delta_1(t)$ im Zeitbereich durch. Skizzieren Sie dazu beide Funktionen sowie das Faltungsergebnis z(t) = x(t) * y(t). Geben Sie den Ausdruck für z(t) an.

Aufgabe 3: Fouriertransformation (18 Punkte)

Gegen ist die Funktion

$$h(t) = 1,5 \Delta \left(\frac{t}{\frac{t_0}{4}}\right) - 0,5 \operatorname{rect}\left(\frac{t}{t_0}\right)$$
 (1)

t (s)

mit $t_0 = \text{const.}$

- (a) Skizzieren Sie h(t) (Maßstabsempfehlung: $t_0 = 4$ cm).
- **(b)** Geben Sie die Fourier-Transformierte $H(\mathrm{j}\omega)$ zu h(t) an.

Name: Matrikelnummer:

Aufgabe 4: Systeme (11 Punkte)

Nebenstehende Schaltung soll als System betrachtet werden.

- (a) Berechnen Sie die Übertragungsfunktion $H(j\omega)$.
- **(b)** Geben Sie Betrag $|H(j\omega)|$ und Phase $\angle H(j\omega) = \varphi(\omega)$ an.
- (c) Geben Sie einen Ausdruck für die Gruppenlaufzeit an.

Hilfe: $(\arctan x)' = \frac{1}{1+x^2}$

Aufgabe 5: Modulation (19 Punkte)

Gegeben ist das Signal

$$s(t) = A \cos(2\pi f_1) \cos(2\pi f_0 - \phi_0) \tag{2}$$

mit $f_0 = 10 f_1$.

- (a) Welches Modulationsverfahren liegt vor? Geben Sie die vollständige Bezeichnung an.
- **(b)** Zeichnen Sie ein Blockschaltbild zur Erzeugung von s(t). Weisen Sie allen Größen den zum Modulationsverfahren gehörigen Fachausdruck zu.
- (c) Bestimmen Sie das Spektrum $|S(j\omega)|$ von s(t) und skizzieren Sie es.
- (d) Zeichnen Sie das Zeitbereichssignal für $A=8\,\mathrm{V}$ und $\phi_0=-\pi/2$ über eine Periode des Nutzsignals, geben Sie alle charakteristischen Werte an.

Name: Matrikelnummer: Matrikelnummer:

Hilfen

Zeitfunktion $f(t)$	Fourier-Transformierte $F(j\omega)$
$rect_{\mathcal{T}}(t)$	$T\operatorname{si}(\frac{T}{2}\omega)$
$\Delta_T(t)$	$T \operatorname{si}^2(\overline{\frac{7}{2}}\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
sgn(t)	$\frac{2}{\mathrm{i}\omega}$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\sin(\omega_0 t)$	$j\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
$\cos(\omega_0 t)$	$\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$

$$\omega = 2\pi f$$
; $\omega_0 = 2\pi/T$

	Zeitfunktion $f(t)$	Fourier-Transformierte $F(j\omega)$
Ähnlichkeitssatz	f(at)	$\frac{1}{ a }F(j\frac{\omega}{a})$
Linearität	$af_1(t) + bf_2(t)$	$aF_1(j\omega) + bF_2(j\omega)$
Verschiebungssatz	$f(t-t_0)$	$e^{-j\omega t_0}F(j\omega)$
	$e^{j\omega_0t}f(t)$	$F(\omega - \omega_0)$
Differentation	$f^{(n)}(t)$	$(j\omega)^n F(j\omega)$
Faltung	$f_1(t) * f_2(t)$	$F_1(j\omega) F_2(j\omega)$
	$f_1(t) f_2(t)$	$\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)$
Vertauschungssatz	F(-t)	$2\pi f(\omega)$

$$\sin(\omega t) = \frac{1}{2i} (e^{j\omega t} - e^{-j\omega t})$$

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$2\sin(x)\cos(y) = \sin(x - y) + \sin(x + y)$$

$$2\cos(x)\cos(y) = \cos(x - y) + \cos(x + y)$$

$$2\cos^{2}(x) = 1 + \cos(2x)$$