Das ist ja wohl die Höhe! Einfache Höhenmessung von **OSM-Objekten** von Lars Roskoden FOSSGIS-Konferenz 2016 – Salzburg

Bei Windkraftanlagen teilweise einfach aber evtl. unerlaubt:

WEA-NIS Europa Version 2.3

NOTFALL -

INFORMATIONSSYSTEM

Home Login

Rettung

Login Wartung

Das Projekt (FGW)

	Kennzeiche	en V - 2003	56		Rettung 112 - Feuer 112					
ı	Bundesland:					Brandenburg				
ı	Kreis:					Dahme-Spreewald				
١	Gemeinde:					Wildau				
	Kennzeichen	Тур	Zone	Koordinate	Koordinate	Standorthöhe	Nabenhöhe Rotordurchmess Nennleistu			
				Ost	Nord	über NN	über Grund			
	V - 200356	V90-2-95	33N	409746	5797539	50 m	95.0 m 90.0 m 2000 kW			

- 1. Försterdreieck (gleichschenkliges, rechtwinkliges Dreieck)
 - Vorteile:
 - Geodreieck verwendbar
 - schnell und einfach selbst zu bauen (z.B. aus Pappe)
 - Nachteile:
 - unflexibler Meßstandort (muß sich Höhe anpassen)
 - Ankathete am Auge nicht immer waagerecht
 - Objektpeilung unbequem
 - Meßfehler aufgrund Orographie

2. Peilstock

- Vorteile:
 - langes Lineal verwendbar
 - schnell und einfach selbst zu bauen (Stock schnitzen)
 - flexibler Meßstandort
- Nachteile:
 - Ankathete (Arm) nicht immer waagerecht
 - Meßfehler aufgrund Orographie

3. Zollstock

- Vorteile:
 - schnell zur Hand und platzsparend
 - auch zur Distanzmessung geeignet
 - flexibler und fester Meßstandort
- Nachteile:
 - Ankathete am Auge nicht immer waagerecht
 - Objektpeilung unbequem
 - Meßfehler aufgrund Orographie

4. Jakobsstab

- Vorteile:
 - relativ hohe Genauigkeit
 - flexibler Meßstandort
- Nachteile:
 - ist nicht so einfach zu bauen
 - paßt nicht in jede Hosentasche
 - Meßfehler aufgrundOrographie
 - ggf. zweite Person für Loteinhaltung

 $http://www.dms.uni-landau.de/mathelabor/simulationen/strahlensaetze/sites/kapitel_2_index.html \\$

5. Höhenwinkelmesser Marke Eigenbau

- Vorteile:
 - relativ hohe Genauigkeit (je nach Bastellust)
 - flexibler Meßstandort
 - einfach und günstig zu bauen (Kopie eines Geodreiecks)
 - gut im Rucksack verstaubar
- Nachteile:

Höhenmessung - FOSSGIS-Konferenz 2016 - Lars Roskoden

- je nach Bauart schnelle Abnutzung
- Meßfehler aufgrund Orographie

- 6. Smartphone-App's (Wasserwaage)
 - Vorteile:
 - hohe Genauigkeit (sensorabhängig)
 - flexibler Meßstandort
 - Meßwert ist einfach arretierbar
 - paßt in jede Hosentasche
 - kein Aufwand, keine Kosten
 - Nachteile:
 - bei heller Umgebung hoher Akkuverbrauch
 - Objektpeilung etwas unbequem
 - Meßfehler aufgrund Orographie

7. Sonnenstandshöhe mit Smartphone-App's

- Vorteile:
 - hohe Genauigkeit
 - ohne Berücksichtigung Augenhöhe
 - paßt in jede Hosentasche
 - kein Aufwand, keine Kosten
- Nachteile:
 - funktioniert nur bei Sonnenschein
 - Schattenende "unscharf"
 - tages-/jahreszeitabhängiger
 Meßstandort
 - Meßfehler aufgrund Orographie

Möglichkeiten zur Bestimmung von Höhenwinkeln Sonnenstandshöhe mit Smartphone-App Nachteil: Schattenende "unscharf" Höhenmessung – FOSSGIS-Konferenz 2016 – Lars Roskoden

Systematischen Meßfehler "Orographie" ausgleichen:

1. Schrittlänge

- Vorteile:
 - hinreichende Genauigkeit
 - ist schnell gemacht
 - hat fast jeder immer dabei
 - keine Kosten
- Nachteile:
 - OSM-Objekt muß erreichbar sein (keine Barrieren)
 - nicht immer gleichmäßig und gleich lang

- 2. Zollstock/Maßband
 - Vorteile:
 - gute Genauigkeit
 - klein und handlich
 - geringe Kosten
 - Nachteile:

Höhenmessung – FOSSGIS-Konferenz 2016 – Lars Roskoden

- OSM-Objekt muß erreichbar sein (keine Barrieren)
- teilweise aufwendig und unpraktisch

3. Meßrad

- Vorteile:
 - –/ gute Genauigkeit
 - schnelle Messung auf guten
 Oberflächen
- Nachteile:
 - OSM-Objekt muß erreichbar sein (keine Barrieren)
 - sperriger Transport
 - relativ teuer

4. Lasermeßgerät

- Vorteile:
 - –/ sehr gute Genauigkeit
 - klein und handlich
 - OSM-Objekt muß nicht erreichbar sein (z.B. Zaun)
 - (bedingt) schnelle Messung
- Nachteile:
 - ab ca. 10-20 Meter unpraktisch
 - Laserpoint bei Tageslicht nicht zu sehen
 - "zitternde" Hand bringt kein Ergebnis
 - Sichtverbindung zum OSM-Objekt
 - sehr teuer

Höhenmessung - FOSSGIS-Konferenz 2016 - Lars Roskoder

5. Koordinaten verwenden

- Vorteile:
 - relativ gute Genauigkeit
 - (bedingt) schnelle Messung
 - mit Smartphone-App (GPS-Gerät) direkt meßbar
 - Koordinaten-Entfernungs-Formel mit Tabellenkalkulationsprogramm
- Nachteile:

OSM-Objekt muß erreichbar sein (Barrieren umgehbar)

- üblicher GPS-Fehler
- Erde ist keine Kugel
- (zeit)aufwendig

13		SHALL SHAN THE	34 XX XX XX XX	4. 18076	DSG -					
	A	Α	В	С	D	E				
	1	P1_Lat	47,78925	0,83407976						
	2	P1_Lon	13,06139	0,22796426						
	3	P2_Lat	47,78926	0,83407993						
	4	P2_Lon	13,06112	0,22795955						
	5									
	6	Distanz	0,02019032	20,19 m						
	7									
*	8	ARCCOS(SIN(C1)*SIN(C3)+COS(C1)*COS(C3)*COS(C4-C2)(*6367,4445)								
600										

- 6. GIS-Programm mit Luftbild verwenden
 - Vorteile:
 - –/ gute Genauigkeit
 - OSM-Objekt muß nicht erreichbar sein
 - Messung auf dem Ellipsoid
 - Nachteile:
 - Geländeberührung vom Objekt muß sichtbar sein
 - möglicher Kartenversatz
 - (zeit)aufwendig

Fazit mit Tangenssatz und variablen Methoden von Winkelund Distanzermittlung ist die einfache Höhenmessung von OSM-Objekten im Meterbereich gut möglich (Profi-Geräte wurden nicht betrachtet) je nach Lust, Zeit, Anspruch und Geldbeutel sowie den Gegebenheiten vor Ort (Barrieren) sind dabei verschiedene Genauigkeiten erreichbar dann ist das ja wohl die Höhel Lars Roskoden

Lars Roskoden
FOSSGIS-Konferenz 2016 – Salzburg