Contextual Typing

Xu Xue and Bruno C. d. S. Oliveira

The University of Hong Kong

· Let type annotations be reasonable and meaningful;

- Let type annotations be reasonable and meaningful;
 - o unambitious in complete type inference;
 - the places to put the annotations should be easy to predict;

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;
 - better error report;
 - better performance;
 - o etc.

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;
- Guidelines are easy to follow;

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;
- Guidelines are easy to follow;
 - for language designers;
 - and programmers;

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;
- Guidelines are easy to follow;
- Scalability is necessary;

- · Let type annotations be reasonable and meaningful;
- Type information propogation is local;
- Guidelines are easy to follow;
- Scalability is necessary;
- Implementation can be easily derived.

Merge type inference and type checking by two modes;

- Merge type inference and type checking by two modes;
 - \circ Inference mode: $\Gamma \vdash e \Rightarrow A$

- Merge type inference and type checking by two modes;
 - \circ Inference mode: $\Gamma \vdash e \Rightarrow A$
 - \circ Checking mode: $\Gamma \vdash e \Leftarrow A$

- Merge type inference and type checking by two modes;
 - \circ Inference mode: $\Gamma \vdash e \Rightarrow A$
 - \circ Checking mode: $\Gamma \vdash e \Leftarrow A$
- Mode-correct bidirectional type systems can be directly implemented;

- Merge type inference and type checking by two modes;
 - \circ Inference mode: $\Gamma \vdash e \Rightarrow A$
 - \circ Checking mode: $\Gamma \vdash e \Leftarrow A$
- Mode-correct bidirectional type systems can be directly implemented;

```
infer :: Env \rightarrow Term \rightarrow Type check :: Env \rightarrow Term \rightarrow Type \rightarrow Bool
```

- Merge type inference and type checking by two modes;
 - \circ Inference mode: $\Gamma \vdash e \Rightarrow A$
 - \circ Checking mode: $\Gamma \vdash e \Leftarrow A$
- Mode-correct bidirectional type systems can be directly implemented;

```
infer :: Env \rightarrow Term \rightarrow Type check :: Env \rightarrow Term \rightarrow Type \rightarrow Bool
```

Types are propogated to neighbouring expressions;

Bidirectional Typing: Problems

- Trade-off between expressive power and backtracking;
 - more expressive, less syntax-directness;
 - all-or-nothing inference strategy;
- Unclear annotatability and rule duplication;
- Inexpressive subsumption.

Our Proposal: Contextual Typing

- Quantitative Type Assignment Systems (QTASs);
 - as a specification for programmers;
 - tells you where the annotations are needed;
 - \circ parametrised with a counter: $\Gamma \vdash_n e : A$
- Syntax-directed Algorithmic Type Systems;
 - is decidable;
 - \circ parametrised with a context: $\Gamma \vdash \Sigma \Rightarrow e \Rightarrow A$

QTAS: STLC

$$\begin{array}{c} \text{DVAR} \\ x : A \in \Gamma \\ \hline \end{array}$$

DANN
$$\Gamma \vdash_{\infty} e : A$$

$$\frac{\Gamma \vdash_0 e_1 : A \longrightarrow B \qquad \Gamma \vdash_\infty e_2 : A}{\Gamma \vdash_0 e_1 e_2 : B}$$

$$\frac{\Gamma \vdash_0 e_1 : A \to B \qquad \Gamma \vdash_\infty e_2 : A}{\Gamma \vdash_0 e_1 e_2 : B} \qquad \frac{\Gamma \vdash_\infty e_1 : A \to B \qquad \Gamma \vdash_0 e_2 : A}{\Gamma \vdash_\infty e_1 e_2 : B}$$

$$\frac{\Gamma \vdash_0 e : A \qquad A = B}{\Gamma \vdash_\infty e : B}$$

Algo: STLC

$$\begin{array}{c} \text{ALIT} & \begin{array}{c} \text{AVAR} & \text{AANN} \\ x:A\in\Gamma & \hline {\Gamma\vdash A\Rightarrow e\Rightarrow B} \\ \hline \Gamma\vdash \Box\Rightarrow i\Rightarrow \text{Int} & \begin{array}{c} x:A\in\Gamma \\ \hline \Gamma\vdash \Box\Rightarrow x\Rightarrow A \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{AANN} \\ \Gamma\vdash A\Rightarrow e\Rightarrow B \\ \hline \Gamma\vdash \Box\Rightarrow e:A\Rightarrow A \end{array} \end{array}$$

 $\Gamma \vdash \Sigma \Rightarrow q \Rightarrow A$

If
$$\Gamma \vdash \Box \Rightarrow e \Rightarrow A$$
, then $\Gamma \vdash_0 e : A$.

If
$$\Gamma \vdash \Box \Rightarrow e \Rightarrow A$$
, then $\Gamma \vdash_0 e : A$.
If $\Gamma \vdash A \Rightarrow e \Rightarrow A$, then $\Gamma \vdash_\infty e : A$.

If
$$\Gamma \vdash \Box \Rightarrow e \Rightarrow A$$
, then $\Gamma \vdash_0 e : A$.
If $\Gamma \vdash A \Rightarrow e \Rightarrow A$, then $\Gamma \vdash_\infty e : A$.

Completeness

If
$$\Gamma \vdash \Box \Rightarrow e \Rightarrow A$$
, then $\Gamma \vdash_0 e : A$.
If $\Gamma \vdash A \Rightarrow e \Rightarrow A$, then $\Gamma \vdash_\infty e : A$.

Completeness

If $\Gamma \vdash_0 e : A$, then $\Gamma \vdash \Box \Rightarrow e \Rightarrow A$.

If
$$\Gamma \vdash \Box \Rightarrow e \Rightarrow A$$
, then $\Gamma \vdash_0 e : A$.
If $\Gamma \vdash A \Rightarrow e \Rightarrow A$, then $\Gamma \vdash_\infty e : A$.

Completeness

If
$$\Gamma \vdash_0 e : A$$
, then $\Gamma \vdash \Box \Rightarrow e \Rightarrow A$.

If
$$\Gamma \vdash_{\infty} e : A$$
, then $\Gamma \vdash A \Rightarrow e \Rightarrow A$.

Recap

- Contextual typing is a lightweight approach to type inference
 - that exploits partially known contextual information;
- It enables several improvements over bidirectional typing

Code Block

```
infer :: Int \rightarrow Int \rightarrow Int infer n1 n2 = n1 + n2
```