CSCI 5922, Spring 2020

Lecture 1

- Course outline
- Introduction
- Life of a DL practitioner
- Course logistics

Course topics

Fundamentals of deep learning

- Linear / logistic regression
- Multi-layer perceptrons
- Differentiable programming: auto-differentiation and back-prop
- Activation functions
- Training and optimization
 - Stochastic gradient descent and its variants
 - Regularization
 - {batch, layer, group}-norm

DL in computer vision

- Understand architectures
 - Image classification
 - Object detection
 - Embedding / few-shot learning

Family

Camera

Screenshots

Hey this one ain't so bad.

59%

Portrait

match

Mohammed Al Mazrouie

DL in NLP

- Word embeddings
- Sequence modeling (mostly RNNs)
- Attention mechanisms
- Transformers, BERT

Open in Google Translate

Feedback

ay:	Great. Let's meet at Jack's at Gam, men:
ne	Taco Tuesday
	Jacqueline Bruzek
25	Taco Tuesday
s	Hey Jacqueline,
١	Haven't seen you in a while and I hope you're doing well. Let's get together soon for tacos. If you bring the chips and salsa
ſ	
а	
0	
0	
0	

Other NLP tasks

Named-entity recognition

 $[Jim]_{Person}$ bought 300 shares of [Acme Corporation] $_{Organization}$ in [2006] $_{Time}$.

Part-of-speech tagging/syntactic parsing

Question Answering (Information Retrieval)

Q: What is the tallest landmark in Paris?

A: Eiffel Tower at 300 meters high.

Selectional Preference

Coreference resolution

[The thieves] are worried that once [the police] increase patrol of the street, [they] will be *caught* more easily.

[The thieves] are worried that once [the police] increase patrol of the street, [they] will *catch* more criminals.

Selectional Preference

Coreference resolution

[The thieves] are worried that once [the police] increase patrol of the street, [they] will be *caught* more easily.

[The thieves] are worried that once [the police] increase patrol of the street, [they] will *catch* more criminals.

Word Meaning in Context

Word sense disambiguation

I went to deposit a check at the bank [financial institute].

He went fishing by the bank [land alongside a river].

Unsupervised learning

- Autoencoders
- Variational autoencoders
- GANs

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414-2423).

Computing

- Tensorflow 2.0
- Python

Other topics?

- Model interpretability
- Speech recognition
- Reinforcement learning
- Non-euclidean DL (graph NNs)

Logistics

- Grading (tentative)
 - 40% Assignments
 - o 20% Midterm
 - 5% Project proposals
 - 30% Final project
 - 5% Participation
- Office hours
 - o TBD

Instructors

Neuroscience and computer vision

- Seek image representations that enable modeling of brain response to visual stimuli
- Pixels-to-voxel modeling is challenging because of limited data size, noisy signal
- Borrow architecture from computer vision, train on fMRI data

Visual bag-of-words

Dictionary learning

$$\min_{\mathbf{A} \in \mathbb{R}^{p \times n}, \mathbf{D} \in \mathcal{D}} \sum_{i=1}^{n} \underbrace{\frac{1}{2} \|\mathbf{x}^{i} - \mathbf{D}\boldsymbol{\alpha}^{i}\|_{2}^{2}}_{\mathbf{data \ fitting}} + \underbrace{\lambda \|\boldsymbol{\alpha}^{i}\|_{1}}_{\mathbf{sparsity}}$$

2-layer sparse coding network

ILSVRC Challenge (ImageNet)

ILSVRC Challenge (1.2 million images)

CNN non-CNN

%error
15.3
26.1
26.9
27.0
29.6
33.4

2013 Teams	%error
Clarifai (NYU spinoff)	11.7
NUS (singapore)	12.9
Zeiler-Fergus (NYU)	13.5
A. Howard	13.5
OverFeat (NYU)	14.1
UvA (Amsterdam)	14.2
Adobe	15.2
VGG (Oxford)	15.2
VGG (Oxford)	23.0

2014 Teams	%error
GoogLeNet	6.6
VGG (Oxford)	7.3
MSRA	8.0
A. Howard	8.1
DeeperVision	9.5
NUS-BST	9.7
TTIC-ECP	10.2
XYZ	11.2
UvA	12.1

AlexNet

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

What is DL?

"DL is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization. That's it."

-Yann LeCun

CNNs for area V4

Abbasi-Asl, R., Chen, Y., Bloniarz, A., Oliver, M., Willmore, B. D., Gallant, J. L., & Yu, B. (2018). The DeepTune framework for modeling and characterizing neurons in visual cortex area V4. bioRxiv, 465534.

Other research interests

- Biological neural networks in c. elegans
- Causal inference: improving randomized experiments with ML
- Parallelized training of random forests

ML SWE @ Google

Full-stack ML SWE

- Gathering training data
- Maintaining training database
- Designing non-ML baselines
- Training ML models
- Continuous benchmarking
- Regression testing
- Serving models
- Monitoring servers
- On-call

Model robustness

- Training vs test-time distribution
 - Input changes from dependent services
- Understanding possible infrastructure weaknesses
- Harden against adversarial attacks

TFX

