

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Implementing Batch Norm Crisa some intermediate values in NN μ: m ≥ 2⁽ⁱ⁾

Batch Normalization

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Working with mini-batches

Implementing gradient descent

for t=1 num Mini Bortches Compute Cornal Pap on X 8t3. It eat hidden lay, use BN to report 2 with 2 Tell. Update partes Wes: = Wi-adwind } = Bin adwind Bin adwind } = Bin adwind Bin Works w/ momente, RMSpap, Adam.

Batch Normalization

Why does Batch Norm work?

Learning on shifting input distribution

Why this is a problem with neural networks?

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.