DEVOIR À LA MAISON Nº 15

Problème 1 —

Soit a et b deux réels tels que a < b et f une fonction de classe C^2 sur I = [a, b]. On suppose que f' est strictement négative sur I, que f'' est positive sur I et que f(a) > 0 et f(b) < 0.

Partie I – Description de la méthode de Newton

- 1. Montrer qu'il existe un unique réel $c \in I$ tel que f(c) = 0.
- 2. a. Soit $\mathfrak u$ un réel de I. Montrer que l'abscisse de l'intersection de la tangente à la courbe de f au point d'abscisse $\mathfrak u$ et de l'axe des abscisses est égale à $\mathfrak u \frac{f(\mathfrak u)}{f'(\mathfrak u)}$.
 - b. Soit g la fonction définie sur I par

$$\forall x \in I, \ g(x) = x - \frac{f(x)}{f'(x)}$$

On définit la suite (x_n) par $x_0 \in [a, c]$ et

$$\forall n \in \mathbb{N}, \ x_{n+1} = g(x_n)$$

Quelle est l'interprétation géométrique de la suite (x_n) ? On illustrera son propos par une figure soignée.

- 3. a. Justifier que q est dérivable sur I et déterminer sa dérivée.
 - **b.** En déduire les variations de **g** sur I.
 - **c.** Établir que $g([a,c]) \subset [a,c]$.
 - **d.** Établir que la suite (x_n) est à valeurs dans [a, c].

Partie II – Convergence de la méthode de Newton

- 1. a. Étudier le sens de variation de (x_n) .
 - **b.** Prouver que la suite (x_n) converge vers c.
- 2. a. Justifier l'existence de deux réels strictement positifs m et M tels que $|f'| \ge m$ et $|f''| \le M$ sur I.
 - b. A l'aide de l'inégalité de Taylor-Lagrange, montrer que

$$\forall x \in I, |g(x) - c| \leq (x - c)^2 \frac{M}{2m}$$

c. On pose $K = \frac{M}{2m}$. Montrer qu'il existe un entier naturel N tel que $K|x_N-c| < 1$. En déduire l'existence de deux constantes C > 0 et $k \in]0,1[$ telles que

$$\forall n\geqslant N,\, |x_n-c|\leqslant Ck^{2^n}$$

d. Soit $q \in]0,1[$. Montrer que la suite (x_n-c) est négligeable devant la suite (q^n) .