2 Euclid's Algorithm

(a)
$$gcd(527, 323) = 17$$

Step (Recursive Call)	X	У
1	527	323
2	323	204
3	204	119
4	119	85
5	85	34
6	34	17
7	17	0

And then 17 would be returned, so the greatest common divisor is 17.

(b)
$$5^{-1} \equiv 11 \pmod{27}$$

We would like to implement the extended Euclid's algorithm on 27 and 5.

Step (Recursive Call)	X	у	Return
1	27	5	(1, -2, 11)
2	5	2	(1,1,-2)
3	2	1	(1,0,1)
4	1	0	(1, 1, 0)

And then (1, -2, 11) would be returned, so we have that gcd(27, 5) = 1 = -2 * 27 + 11 * 5. Thus, $5^{-1} \equiv 11 \pmod{27}$.

(c)
$$x = 17$$

Since we have that $5x + 26 \equiv 3 \pmod{27}$, so we have that $5x \equiv -23 \equiv 4 \pmod{27}$. Then, since we have from part (b) that $5^{-1} \equiv 11 \pmod{27}$, which is equivalent to $5*11 \equiv 1 \pmod{27}$, so we have that $5*11*4 \equiv 4 \pmod{27}$. Thus, $x = 11*4 = 44 \equiv 17 \pmod{27}$, so x = 17.

(d) Disprove

I will proceed by providing a counterexample. Consider a = 1, b = 0, c = 1, x = 0.

For any $x \in \mathbb{Z}$, we have that ax = 1x = cx + 0, which means that $ax \mod c$ would always be 0, which implies that a has no multiplicative inverse mod c, as indicated by the hypothesis of our preposition. Then, consider x = 0, by definition of modular arithmetic, we have that $ax = 1 * 0 = 0 \equiv b \pmod{c}$, so x = 0 is a solution to the equation $ax \equiv b \pmod{c}$. Thus, a = 1, b = 0, c = 1, x = 0 is a counterexample.