Ch6 Final Project - Testing For Treatment

Code

Rohan Bandaru

Step 1

Part 1

I will investigate the Cologuard test because it has a nice false-positive rate of 10%. The expected number of false positives in a group of five patients is $5 \times 0.1 = 0.5$

I will simulate 20 groups of 5 tests using R's built in random number function. 1 means a false positive and 0 means no false positive.

Group	Test 1	Test 2	Test 3	Test 4	Test 5	Total	
1	0	0	0	0	0	0	
2	0	0	0	0	1	1	
3	0	1	0	0	0	1	
4	0	0	1	0	0	1	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	0	0	1	0	1	2	
8	1	0	0	0	0	1	
9	0	1	0	1	0	2	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	0	0	0	0	1	1	
13	0	0	1	0	0	1	
14	0	0	0	0	1	1	
15	0	0	0	0	0	0	
16	0	0	0	0	0	0	
17	0	0	0	0	0	0	
18	0	0	1	0	0	1	
19	0	0	0	0	0	0	
20	0	0	0	0	0	0	

Part 2

From the simulated results above, I created this probability distribution:

X 0 1 2 3 4 5 P(X) 0.5 0.4 0.1 0 0 0

Code

[1] "The simulated expected number of false positives(mean) is 0.6"

Code

[1] "The simulated variation of false positives(standard deviation) is 0.680557047378721"

Expected value = $0.5 \times 0 + 0.4 \times 1 + 0.1 \times 2 + 0 \times 3 + 0 \times 4 + 0 \times 5 = 0.6$

Standard deviation = $sqrt((0-0.6)^2 \times 0.5 + (1-0.6)^2 \times 0.4 + (2-0.6)^2 \times 0.1) = 0.681$

Step 2

To find the mean and standard deviation of X x 2100, I simply multiply the mean and standard deviation by 2100

Code

[1] "The simulated expected unnecessary cost(mean) is 1260"

Code

[1] "The simulated variation of unnecessary costs(standard deviation) is 1429.16979949531"

Step 3

Part 1

I created this probability distribution from the binomial distribution formulas, not a simulation.

Code

X 0 1 2 3 4 5 P(X) 0.59049 0.32805 0.0729 0.0081 0.00045 1e-05

Code

- 1. It is in the shape of a binomial distribution
- 2. The expected number of false positives in a group of 5 is 0.5. $5 \times 0.1 = 0.5$
- 3. They were quite close to each other, with the simulated value being 0.6. This is less than 1/4 standard deviations away.

Part 2

This probability distribution is the probability that each trial is the first false positive.

- 1. It is in the shape of a geometric distribution
- 2. The expected number of tests to get a false positive is 10. 1/0.1 = 10

Conclusion

In conclusion, I recommend the Cologuard test. It only has a 10% chance of giving a false positive, thus the expected number of tests before you get a false positive is 10. Also, the predicted unnecessary cost is \$210 per test (\$252 according to simulations), and over 5 tests, \$1050 (\$1260 according to simulations). I'd say that is a reasonable price for detecting colon cancer that could otherwise be fatal.