-1-

SEQUENCE LISTING

<110>	Jan Wil	lbour e , s anow g, S	Stepl ski,	nen Tom	(US (asz	(US) only)		-							
<120>	Di	agno	stic	and	The	rape	utic	Age	nts					ı.			
<130>	12	3013	70/E	JH													
<150> <151>		60/ 02-0															
<150> <151>		0295 02-0														•	
<160>	4.6	5															
<170>	Pā	atent	In v	ersi	on 3	3.1											
<210><211><211><212><213>	18 DI	881 NA uman						•								·	
<220: <221: <222: <223:	> C: > (DS 94).	. (13:	23)			,										
<400 ataa	> 1 gaga	.gg c	catc	tgac	a gc	tcca	gata	cga	cagt	cac	tgtc	tcca	ta g	caac	gatgc	60)
ctac									atq	gct		ctg	tgg	gaa	tcc	114	1
ccc Pro	cag Gln	cag Gln 10	tgt Cys	atc Ile	atc Ile	ctg Leu	agc Ser 15	cca Pro	ctg Leu	agc Ser	gly ggg	tgg Trp 20	tgg Trp	ttt Phe	tcg Ser	162	2
atc Ile	gga Gly 25	atc Ile	tca Ser	ata Ile	ctg Leu	acc Thr 30	agt Ser	tca Ser	gct Ala	ctg Leu	gtg Val 35	ctc Leu	aag Lys	ccc Pro	caa Gln	21	0
atg Met 40	ctc Leu	aaa Lys	ggc Gly	gaa Glu	ctc Leu 45	cag Gln	act Thr	cga Arg	cct Pro	tct Ser 50	cag Gln	aga Arg	cct Pro	tca Ser	agg Arg 55	25	8
aag Lys	gcg Ala	ttc Phe	agg Arg	agg Arg 60	aac Asn	aac Asn	ttt Phe	gaa Glu	tat Tyr 65	acc Thr	cta Leu	gaa Glu	gct Ala	tca Ser 70	aaa Lys	30	6
tca	ctt	cga	cag	aag	cca	gga Glv	gac Asp	agt Ser	acc Thr	atg Met	acg Thr	tac Tyr	ctg Leu	aac Asn	aaa Lys	3 5	, 4

80 75 402 ggc cag ttc tat ccc atc acc ttg aag gag gtg agc agc agt gaa gga Gly Gln Phe Tyr Pro Ile Thr Leu Lys Glu Val Ser Ser Ser Glu Gly 90 atc cat cat ccc atc agc aaa gtt cga agt gtg atc atg gtg gtt ttt 450 Ile His His Pro Ile Ser Lys Val Arg Ser Val Ile Met Val Val Phe 110 105 gct gaa gac aaa agc aga gaa gat cag tta agg cat tgg aag tac tgg 498 Ala Glu Asp Lys Ser Arg Glu Asp Gln Leu Arg His Trp Lys Tyr Trp 130 125 cac tcc cgg cag cac acc gct aaa caa aga tgc att gac ata gct gac 546 His Ser Arg Gln His Thr Ala Lys Gln Arg Cys Ile Asp Ile Ala Asp 140 tat aaa gaa agc ttc aac act atc agt aac atc gag gag att gcg tat 594 Tyr Lys Glu Ser Phe Asn Thr Ile Ser Asn Ile Glu Glu Ile Ala Tyr 160 155 aac gcc att tcc ttc aca tgg gac atc aac gat gaa gca aag gtt ttc 642 Asn Ala Ile Ser Phe Thr Trp Asp Ile Asn Asp Glu Ala Lys Val Phe 175 170 atc tct gtg aac tgc tta agc aca gat ttc tct tcc cag aag gga gtg 690 Ile Ser Val Asn Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Val 185 aag ggg ttg cct ctt aac att caa gtt gat acc tat agt tac aac aac 738 Lys Gly Leu Pro Leu Asn Ile Gln Val Asp Thr Tyr Ser Tyr Asn Asn 210 205 200 ege age aac aag eet gtg cac egg gee tae tge eag ate aag gte tte 786 Arg Ser Asn Lys Pro Val His Arg Ala Tyr Cys Gln Ile Lys Val Phe 220 tgt gac aag gga gct gag cgg aaa atc agg gat gaa gaa cga aag caa 834 Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu Glu Arg Lys Gln 235 agc aaa aga aaa gtt tct gat gtt aaa gtg cca ctg ctt ccc tct cac 882 Ser Lys Arg Lys Val Ser Asp Val Lys Val Pro Leu Leu Pro Ser His 255 250 aag cga atg gat atc aca gtt ttc aaa ccc ttc att gat ctc gat act 930 Lys Arg Met Asp Ile Thr Val Phe Lys Pro Phe Ile Asp Leu Asp Thr 265 cag cct gtc ctc ttc att cct gac gtg cac ttt gcc aac ttg cag cgg 978 Gln Pro Val Leu Phe Ile Pro Asp Val His Phe Ala Asn Leu Gln Arg 290 285 280 ggc act cat gtc ctt ccc att gcc tct gaa gaa ttg gag ggt gaa ggc 1026 Gly Thr His Val Leu Pro Ile Ala Ser Glu Glu Leu Glu Gly Glu Gly 305 300

			aaa Lys 315													1074
			acc Thr													1122
			cga Arg										_	_		1170
			tct Ser	_	_		_	_	_	_			_			1218
			cat His													1266
			gtg Val 395													1314
	gac Asp		ttc	cagct	igc a	agatt	gaag	ga ag	geegg	3333	g tct	taca	agc			1363
tcad	ccct	gac g	ggaga	atcta	aa aq	ggcct	gcgg	g gco	cacaç	gctc	ccca	aggaç	gtt d	cagto	gcaggt	1423
gttt	ctag	gat o	cttad	ggtt	t g	gcaac	etgca	a ggt	caaco	cca	gtca	agcca	atg t	cgcc	cagcac	1483
aggt	ctat	gt (cgago	ggaat	-g g	gttco	ttgo	agg	gttgg	gagg	cggg	ggctg	gca t	ctg	gcttgg	1543
tggt	agca	att 1	taato	ctatt	g ca	attgo	gtgtt	: ttt	caga	atga	aaga	agaaa	atc o	catat	accat	1603
tato	gtttç	gaa 1	tttc	tgat	a ta	ataca	aggat	tta	aaagt	gaa	aact	ttat	tc d	caaga	agttaa	1663
caga	agtct	ct (gggaa	agcti	t ag	ggaca	atcto	g cta	acgtt	att	tato	caaaa	ata t	tggg	gatete	1723
tgc	cttgt	ge (ctaca	agtgt	c g	gggg	ctgo	c tog	gctag	gcag	aagt	caga	aa a	aggco	jatagg	1783
ctt	ggctt	tta a	aggat	ttc	gt go	ccctt	gcct	gaa	attca	agta	caac	eteca	act g	gccto	cacgtt	1843
agc	gggag	gcg (cacct	gaag	ga g	cacgo	39 9 99	g ago	ccct	et '	•					1881

<210> 2

<211> 410 <212> PRT

<213> human

<400> 2

Met Ala Ser Leu Trp Glu Ser Pro Gln Gln Cys Ile Ile Leu Ser Pro

Leu Ser Gly Trp Trp Phe Ser Ile Gly Ile Ser Ile Leu Thr Ser Ser 20 25 30

Ala Leu Val Leu Lys Pro Gln Met Leu Lys Gly Glu Leu Gln Thr Arg 35 40 45

Pro Ser Gln Arg Pro Ser Arg Lys Ala Phe Arg Arg Asn Asn Phe Glu 50 55 60

Tyr Thr Leu Glu Ala Ser Lys Ser Leu Arg Gln Lys Pro Gly Asp Ser 65 70 75 80

Thr Met Thr Tyr Leu Asn Lys Gly Gln Phe Tyr Pro Ile Thr Leu Lys
85 90 95

Glu Val Ser Ser Ser Glu Gly Ile His His Pro Ile Ser Lys Val Arg 100 105 110

Ser Val Ile Met Val Val Phe Ala Glu Asp Lys Ser Arg Glu Asp Gln 115 120 125

Leu Arg His Trp Lys Tyr Trp His Ser Arg Gln His Thr Ala Lys Gln 130 135 140

Arg Cys Ile Asp Ile Ala Asp Tyr Lys Glu Ser Phe Asn Thr Ile Ser 145 150 155 160

Asn Ile Glu Glu Ile Ala Tyr Asn Ala Ile Ser Phe Thr Trp Asp Ile 165 170 175

Asn Asp Glu Ala Lys Val Phe Ile Ser Val Asn Cys Leu Ser Thr Asp 180 185 190

Phe Ser Ser Gln Lys Gly Val Lys Gly Leu Pro Leu Asn Ile Gln Val 195 200 205

Asp Thr Tyr Ser Tyr Asn Asn Arg Ser Asn Lys Pro Val His Arg Ala 210 215 220

Tyr Cys Gln Ile Lys Val Phe Cys Asp Lys Gly Ala Glu Arg Lys Ile 225 230 235 240 Arg Asp Glu Glu Arg Lys Gln Ser Lys Arg Lys Val Ser Asp Val Lys 245

Val Pro Leu Pro Ser His Lys Arg Met Asp Ile Thr Val Phe Lys 265

Pro Phe Ile Asp Leu Asp Thr Gln Pro Val Leu Phe Ile Pro Asp Val 275 280 285

His Phe Ala Asn Leu Gln Arg Gly Thr His Val Leu Pro Ile Ala Ser 290 295

Glu Glu Leu Glu Gly Glu Gly Ser Val Leu Lys Arg Gly Pro Tyr Gly 305 310

Thr Glu Asp Asp Phe Ala Val Pro Pro Ser Thr Lys Leu Ala Arq Ile 325 330

Glu Glu Pro Lys Arg Val Leu Leu Tyr Val Arg Lys Glu Ser Glu Glu . 340

Val Phe Asp Ala Leu Met Leu Lys Thr Pro Ser Leu Lys Gly Leu Met 355 360 365

Glu Ala Ile Ser Asp Lys Tyr Asp Val Pro His Asp Lys Ile Gly Lys 375 370

Ile Phe Lys Lys Cys Lys Gly Ile Leu Val Asn Met Asp Asn Asn 385 390 395 400

Ile Val Lys His Tyr Ser Asn Glu Asp Thr 405 410

<210> 3

<211> 2361 <212> DNA

<213> human

<220>

<221> CDS

<222> (7)..(1860)

<223>

<400> 3

agcç	jcg a M	1et 7	nca c Thr C	ag g In (gag t Slu T	yr A	gac a Asp 7	aac a Asn I	aa d ys <i>I</i>	Arg I	cca c Pro V LO	gtg t Val I	tg g Leu V	gtt d /al I	ctt Leu	·	48
											tac Tyr						96
gag Glu	gcc Ala	tgg Trp	aaa Lys	tcc Ser 35	ttc Phe	ctg Leu	gaa Glu	aac Asn	cct Pro 40	ctc Leu	act Thr	gca Ala	gcg Ala	acc Thr 45	aaa Lys		144
											gcc Ala						192
ctg Leu	ctc Leu	tat Tyr 65	gac Asp	tac Tyr	tac Tyr	aag Lys	gtt Val 70	cca Pro	aga Arg	gag Glu	aga Arg	agg Arg 75	tca Ser	tca Ser	aca Thr		240
gca Ala	aag Lys 80	cca Pro	gag Glu	gtg Val	gag Glu	cac His 85	cct Pro	gag Glu	cca Pro	gat Asp	cac His 90	agc Ser	aaa Lys	aga Arg	aac Asn		288.
agc Ser 95	ata Ile	cca Pro	att Ile	gtg Val	aca Thr 100	gag Glu	cag Gln	ccc Pro	ctc Leu	atc Ile 105	tct Ser	gct Ala	gga Gly	gaa Glu	aac Asn 110		336
aga Arg	gtg Val	caa Gln	gta Val	ctg Leu 115	aaa Lys	aat Asn	gtg Val	cca Pro	ttt Phe 120	aac Asn	att Ile	gtc Val	ctt Leu	ccc Pro 125	cat His		384
											ctg Leu						432
acg Thr	aca Thr	gtc Val 145	act Thr	gtc Val	tcc Ser	ata Ile	gca Ala 150	acg Thr	atg Met	cct Pro	acc Thr	cac His 155	tcc Ser	atc Ile	aag Lys		480
											atc Ile 170						528
tat Tyr 175	His	cct Pro	gag Glu	ccc Pro	act Thr 180	gag Glu	cgg Arg	gtg Val	gtg Val	gtt Val 185	ttc Phe	gat Asp	cgg Arg	aay Asn	ctc Leu 190	•	576
aat Asn	act Thr	gac Asp	cag Gln	ttc Phe 195	Ser	tct Ser	ggt Gly	gct Ala	caa Gln 200	gcc Ala	cca Pro	aat Asn	gct Ala	caa Gln 205	agg Arg		624
cga Arg	act Thr	cca Pro	gac Asp 210	Ser	acc Thr	ttc Phe	tca Ser	gag Glu 215	acc Thr	ttc Phe	aag Lys	gaa Glu	ggc Gly 220	gtt Val	cag Gln		672
gag	gtt	ttc	ttc	ccc	tcg	gat	ctc	agt	ctg	cgg	atg	cct	ggc	atg	aat		720

Glu	Val	Phe 225	Phe	Pro	Ser	Asp	Leu 230	Ser	Leu	Arg	Met	Pro 235	Gly	Met	Asn	·
tca Ser	gag Glu 240	gac Asp	tat Tyr	gtt Val	ttt Phe	gac Asp 245	agt Ser	gtt Val	tct Ser	GJA aaa	aac Asn 250	aac Asn	ttt Phe	gaa Glu	tat Tyr	768
acc Thr 255	cta Leu	gaa Glu	gct Ala	Ser	aaa Lys 260	tca Ser	ctt Leu	cga Arg	cag Gln	aag Lys 265	cca Pro	gga Gly	gac Asp	agt Ser	acc Thr 270	816
atg Met	acg Thr	tac Tyr	ctg Leu	aac Asn 275	aaa Lys	ggc Gly	cag Gln	ttc Phe	tat Tyr 280	ccc Pro	atc Ile	acc Thr	ttg Leu	aag Lys 285	gag Glu	864
gtg Val	agc Ser	agc Ser	agt Ser 290	gaa Glu	gga Gly	atc Ile	cat His	cat His 295	ecc Pro	atc Ile	agc Ser	aaa Lys	gtt Val 300	cga Arg	agt Ser	912
gtg Val	atc Ile	atg Met 305	gtg Val	gtt Val	ttt Phe	gct Ala	gaa Glu 310	gac Asp	aaa Lys	agc Ser	aga Arg	gaa Glu 315	gat Asp	cag Gln	tta Leu	960
agg Arg	cat His 320	tgg Trp	aag Lys	tac Tyr	tgg Trp	cac His 325	tcc Ser	cgg Arg	cag Gln	cac His	acc Thr 330	gct Ala	aaa Lys	caa Gln	aga Arg	1008
tgc Cys 335	att Ile	gac Asp	ata Ile	gct Ala	gac Asp 340	tat Tyr	awa Xaa	gaa Glu	agc Ser	ttc Phe 345	aac Asn	act Thr	atc Ile	agt Ser	aac Asn 350	1056
atc Ile	gag Glu	gag Glu	att Ile	gcg Ala 355	tat Tyr	aac Asn	gcc Ala	att Ile	tcc Ser 360	Phe	aca Thr	tgg Trp	gac Asp	atc Ile 365	aac Asn	1104
gat Asp	gaa Glu	gca Ala	aag Lys 370	Val	ttc Phe	atc Ile	tct Ser	gtg Val 375	aac Asn	tgc Cys	tta Leu	agc Ser	aca Thr 380	Asp	ttc Phe	1152
tct Ser	tcc Ser	cag Gln 385	Lys	gga Gly	gtg Val	aag Lys	999 Gly 390	Leu	cct Pro	ctt Leu	aac Asn	att Ile 395	caa Gln	gtt Val	gat Asp	1200
acc Thr	tat Tyr 400	Ser	tac Tyr	aac Asn	aac	cgc Arg 405	Ser	aac Asn	aag Lys	cct Pro	gtg Val 410	His	cgg	gcc Ala	tac Tyr	1248
tgo Cys 415	Glr	ato Ile	aag Lys	ggto Val	ttc Phe	Cys	gac Asp	aag Lys	gga Gly	gct Ala 425	gag Glu	cgg Arg	aaa Lys	ato Ile	agg Arg 430	1296
gat Asp	gaa Glu	ı gaa ı Glı	a cga ı Arg	a aag Lys 435	Glr	ago Ser	aaa Lys	a aga s Arg	aaa J Lys 440	: Val	tct Ser	gat Asp	gtt Val	aaa Lys 445	: Val	1344
cca	a cto D Lei	g ctt ı Lei	ccc Pro	tct Ser	cac His	aag Lys	g cga s Arg	a atg g Met	g gat Asp	ato Ile	aca Thr	gtt Val	tto L Phe	c aaa e Lys	ccc Pro	1392

-8-

	450	4 !	55	460	
_	_			att cct gac gt Ile Pro Asp Va 475	
				ccc att gcc to Pro Ile Ala Se 490	
		-		ggg ccg tac gg Gly Pro Tyr G	
			_	ctg gcc cgg at Leu Ala Arg I 52	-
		Leu Tyr V		gag tca gaa ga Glu Ser Glu G 540	
			_	aag ggc ttg at Lys Gly Leu Me 555	
	_		_	aag att ggg aa Lys Ile Gly Ly 570	
				atg gac gac aa Met Asp Asp As	
5 5 5			_	ctg cag att ga Leu Gln Ile G 60	_
	tct tac aag Ser Tyr Lys 610	Leu Thr L		atc taaaggcctg Ile	1870
cgggccacag	ctccccagga g	ttcagtgca	ggtgtttcta	gatcttacgg tt	tggcaact 1930
gcaggtaacc	ccagtcagcc a	tgtcgccag	cacaggtcta	tgtcgaggga at	gggttcct 1990
tgcaggttgg	aggcggggct g	catctggct	tggtggtagc	atttaatcta tt	gcattggt 2050
gtttttcaga	tgaaagagaa a	tccatatac	cattatgttt	gaatttcctg ata	atatacag 2110
gatttaaagt	gaaaacttta t	tccaagagt	taacagagtc	tctgggaagc tt	taggacat 2170
ctgctacgtt	atttatcaaa a	tattgggat	ctctgccttg	tgcctacagt gt	egtgggee 2230
tgctcgctag	cagaagtcag a	aaaggcgat	aggcttggct	ttaaggattt cg	tgcccttg 2290
cctgaattca	gtacaactcc a	ctgcctcac	gttagcggga	gegeacetga ag	agtacggg 2350

2361

- 9 -

gggagccctc t <210> 4 <211> 618 <212> PRT <213> human <220> <221> misc_feature <222> (342)..(342) <223> The 'Xaa' at location 342 stands for Lys, or Ile. <400> 4 Met Thr Gln Glu Tyr Asp Asn Lys Arg Pro Val Leu Val Leu Gln Asn 10 Glu Ala Leu Tyr Pro Gln Arg Arg Ser Tyr Thr Ser Glu Asp Glu Ala 25 Trp Lys Ser Phe Leu Glu Asn Pro Leu Thr Ala Ala Thr Lys Ala Met 40 Met Ser Ile Asn Gly Asp Glu Asp Ser Ala Ala Ala Leu Gly Leu Leu 55 Tyr Asp Tyr Tyr Lys Val Pro Arg Glu Arg Arg Ser Ser Thr Ala Lys 70 75 Pro Glu Val Glu His Pro Glu Pro Asp His Ser Lys Arg Asn Ser Ile 85 Pro Ile Val Thr Glu Gln Pro Leu Ile Ser Ala Gly Glu Asn Arg Val . 100 105 Gln Val Leu Lys Asn Val Pro Phe Asn Ile Val Leu Pro His Gly Asn 115 120 Gln Leu Gly Ile Asp Lys Arg Gly His Leu Thr Ala Ser Asp Thr Thr 130 135 Val Thr Val Ser Ile Ala Thr Met Pro Thr His Ser Ile Lys Thr Glu 145 . 150 155 160

Thr Gln Pro His Gly Phe Ala Val Gly Ile Pro Pro Ala Val Tyr His

165 170 175

Pro Glu Pro Thr Glu Arg Val Val Val Phe Asp Arg Asn Leu Asn Thr 180 185 190

Asp Gln Phe Ser Ser Gly Ala Gln Ala Pro Asn Ala Gln Arg Arg Thr
195 200 205

Pro Asp Ser Thr Phe Ser Glu Thr Phe Lys Glu Gly Val Gln Glu Val 210 220

Phe Phe Pro Ser Asp Leu Ser Leu Arg Met Pro Gly Met Asn Ser Glu 225 230 235 240

Asp Tyr Val Phe Asp Ser Val Ser Gly Asn Asn Phe Glu Tyr Thr Leu 245 250 255

Glu Ala Ser Lys Ser Leu Arg Gln Lys Pro Gly Asp Ser Thr Met Thr 260 265 270

Tyr Leu Asn Lys Gly Gln Phe Tyr Pro Ile Thr Leu Lys Glu Val Ser 275 280 285

Ser Ser Glu Gly Ile His His Pro Ile Ser Lys Val Arg Ser Val Ile 290 295 300

Met Val Val Phe Ala Glu Asp Lys Ser Arg Glu Asp Gln Leu Arg His 305 310 315 320

Trp Lys Tyr Trp His Ser Arg Gln His Thr Ala Lys Gln Arg Cys Ile 325 330 335

Asp Ile Ala Asp Tyr Xaa Glu Ser Phe Asn Thr Ile Ser Asn Ile Glu 340 345 350

Glu Ile Ala Tyr Asn Ala Ile Ser Phe Thr Trp Asp Ile Asn Asp Glu 355 360 365

Ala Lys Val Phe Ile Ser Val Asn Cys Leu Ser Thr Asp Phe Ser Ser 370 380

Gln Lys Gly Val Lys Gly Leu Pro Leu Asn Ile Gln Val Asp Thr Tyr 385 390 395 400

Ser	Tyr	Asn	Asn	Arg 405	Ser	Asn	Lys	Pro	Val 410	His	Arg	Ala	Tyr	Cys 415	Glr
Ile	Lys	Val	Phe 420	Cys	Asp	Lys	Gly	Ala 425	Glu	Arg	Lys	Ile	Arg 430	Asp	Glı
Glu	Arg	Lys 435	Gln	Ser	Lys	Arg	Lys 440	Val	Ser	Asp	Val	Lys 445	Val	Pro	Leu
Leu	Pro 450	Ser	His	Lys	Arg	Met 455	Asp	Ile	Thr	Val	Phe 460	Lys	Pro	Phe	Ile
Asp 465	Leu	Asp	Thr	Gln	Pro 470	Val	Leu	Phe	Ile	Pro 475	Asp	Val	His	Phe	Ala 480
Asn	Leu	Gln	Arg	Gly 485	Thr	His	Val	Leu	Pro 490	Ile	Ala	Ser	Glu	Glu 495	Leu
Glu	Gly	Glu	Gly 500	Ser	Val	Leu	Lys	Arg 505	Gly	Pro	Tyr	Gly	Thr 510	Glu	Asp
Asp	Phe	Ala 515	Val	Pro	Pro	Ser	Thr 520	Lys	Leu	Ala	Arg	Ile ⁻ 525	Glu	Glu	Pro
Lys	Arg 530	Val	Leu	Leu	Туr	Val 535	Arg	Lys	Glu	Ser	Glu 540	Glu	Val	Phe	Asp
Ala 545	Leu	Met	Leu	Lys	Thr 550	Pro	Ser	Leu	Lys	Gly 555	Leu	Met	Glu	Ala	Il∈ 560
Ser	Asp	Lys	Tyr	Asp 565	Val	Pro	His	Asp	Lys 570	Ile	Gly	Lys	Ile	Phe 575	Lys
Lys	Cys	Lys	Lys 580	Gly	Ile	Ļeu	Val	Asn 585	Met	Asp	Asp	Asn	Ile 590	Val	Lys
His	Tyr	Ser 595	Asn	Glu	Asp	Thr	Phe 600	Gln	Leu	Gln	Ile	Glu 605	Glu	Ala	Gly

Gly Ser Tyr Lys Leu Thr Leu Thr Glu Ile 610 615 - 12 -

<210><211><212><212><213>	5 4532 DNA humar	1				٠										
<220><221><222><222><223>	CDS (67).	. (19	41)													
<400> ttgaaa	5 gtcc a	agttt	cacc	a ga	ıggct	gagg	, ctc	cago	jaaa	aggg	gago	aa g	jttca	ıttgga	.	60
tcaaac	atg t Met S	ca c Ser G	aa g In G	gag t Slu S	er A	jac a Asp A	at a Asn A	aat a Asn I	ys A	iga c Arg I .0	ta g eu V	tg g	jcc t la I	ta Jeu	:	108
gtg cc Val Pr 15	c atg o Met	ccc Pro	agt Ser	gac Asp 20	cct Pro	cca Pro	ttc Phe	aat Asn	acc Thr 25	cga Arg	aga Arg	gcc Ala	tac Tyr	acc Thr 30	;	156
agt ga Ser Gl	g gat u Asp	gaa Glu	gcc Ala 35	tgg Trp	aag Lys	tca Ser	tac Tyr	ttg Leu 40	gag Glu	aat Asn	ccc Pro	ctg Leu	aca Thr 45	gca Ala	:	204
gcc ac Ala Th	c aag r Lys	gcc Ala 50	atg Met	atg Met	agc Ser	att Ile	aat Asn 55	ggt Gly	gat Asp	gag Glu	gac Asp	agt Ser 60	gct Ala	gct Ala	;	252
gcc ct Ala Le																300
ctg ct Leu Le 80	eu Ser	gta Val	agc Ser	aaa Lys	gca Ala 85	agt Ser	gac Asp	agc Ser	caa Gln	gaa Glu 90	gac Asp	cag Gln	gag Glu	aaa Lys		348
aga aa Arg As 95	ac tgc sn Cys	ctt Leu	ggc Gly	acc Thr 100	agt Ser	gaa Glu	gcc Ala	cag Gln	agt Ser 105	aat Asn	ttg Leu	agt Ser	gga Gly	gga Gly 110		396
gaa aa Glu As	ac cga an Arg	gtg Val	caa Gln 115	gtc Val	cta Leu	aag Lys	act Thr	gtt Val 120	cca Pro	gtg Val	aac Asn	ctt Leu	tcc Ser 125	cta Leu		444
aat ca Asn G	aa gat ln Asp	cac His 130	ctg Leu	gag Glu	aat Asn	tcc Ser	aag Lys 135	cgg Arg	gaa Glu	cag Gln	tac Tyr	agc Ser 140	atc Ile	agc Ser		492
ttc co	cc gag ro Glu 145	Ser	tct Ser	gcc Ala	atc Ile	atc Ile 150	ccg Pro	gtg Val	tcg Ser	gga Gly	atc Ile 155	acg Thr	gtg Val	gtg Val		540
aaa g Lys A	ct gaa la Glu	gat Asp	ttc Phe	aca Thr	cca Pro	gtt Val	ttc Phe	atg Met	gcc Ala	cca Pro	cct Pro	gtg Val	cac His	tat Tyr		588

- 13 -

	160				165					170				-	
					gag Glu			Val							636
					ctg Leu										684
	_				gac Asp	_			_		_		_	-	732
					cgg Arg										780
_		-	_		agt Ser 245				_			_	_	_	828
					aag Lys										876
					gcc Ala										924
					atc Ile						-		_		972
					aac Asn										1020
					cat His 325										1068
_	_		_	 -	ttt Phe		_					_			1116
					ttt Phe										1164
					tgc Cys	_	_		-						1212
					ttg Leu										1260

aac a	aat Asn 400	cgt Arg	agc Ser	aat Asn	aaa Lys	ccc Pro 405	att Ile	cat His	ag Ar	a g g A	10	tat Tyr 410	tgc Cys	caç Glr	ga n I	tc le	aag Lys	I ;	1308
gtc (Val :	ttc Phe	tgt Cys	gac Asp	aaa Lys	gga Gly 420	gca Ala	gaa Glu	aga Arg	aa Ly	D 1	tc le 25	cga Arg	gat Asp	gaa Glu	ag uG	ag lu	cgg Arg 430	9	1356
aag Lys	cag Gln	aac Asn	agg Arg	aag Lys 435	aaa Lys	Gly 999	aaa Lys	ggc	Ca Gl	11 2	ıcc	tcc Ser	caa Gln	ac Th		aa In	tg:	C S	1404
aac Asn	agc Ser	tcc Ser	tct Ser 450	Asp	ggg Gly	aag Lys	ttg Leu	gct Ala 455	. A.	cc a la 1	ata [le	cct Pro	tta Leu	ca Gl 46	g a n I 0	aag Lys	aa Ly	g s	1452
agt Ser	gac Asp	atc Ile	Thi	tac Typ	tto Phe	aaa Lys	acc Thr 470	Met	g C(ct 9 ro 1	gat Asp	ctc Leu	cac His		a (cag Gln	cc Pr	a 0	1500
gtt Val	ctc Leu 480	Phe	ata a Ile	a cci	z gat o Asp	gtt Val 485	HIS	ttt Phe	t g e A	ca la	aac Asn	ctg Leu 490		n Ai	.g	acc Thr	99 G1	ja Y	1548
cag Gln 495	Val	tai Ty:	t ta r Ty	c aa r As	c acon n Thi	r Ası	gat Asp	ga o Gl	a c u A	ga .rg	gaa Glu 505		; gg / Gl	c ag y Se	gt er	gtc Val	сt Ье 51	t eu LO	1596
gtt Val	aaa Lys	a cg s Ar	g at g Me	g tt t Ph 51	c cg e Ar	g cc g Pr	c ate	g ga t Gl	u	gag Slu S20	gag Glu	ttt Phe	e gg	t ce y Pi	ca ro	gtg Val 525		ct ro	1644
tca Ser	aaq Ly:	g ca s Gl	g at n Me	et Ly	a ga 's Gl	a ga u Gl	a gg u Gl	g ac y Th 53	1 7	aag Lys	cga	g ya	g ct l Le		tg eu 40	tac Tyr	g g	tg al	1692
ag <u>c</u> Arg	g aa g Ly	g ga s Gl 54	u T	et ga nr As	ac ga	t gt p Va	g tt 1 Ph 55	ie As	at q	gca Ala	tto	g at ı Me	g tt t Le 59		ag ys	tc! Se:	t c r P	cc ro	1740
aca Th:	a gt r Va 56	1 L	ag g ys G	gc c	tg at eu Me	g ga et Gl	u A	g at la I	ta le	tct Ser	gag	g aa u Ly 57	J	at c yr C	sjà aa	ct	g c u F	ro	1788
gt Va 57	1 G1	ig a .u L	ag a ys I	ta g le A	ca aa la Ly 5	ag ct ys Le BO	et ta	ac a yr L	ag ys	aaa Lys	ag Se 58	נים ב	aa a ⁄s L	aa g ys (ggc	at Il	c t e I	tg Leu 590	1836
gt Va	g aa 1 As	ac a sn M	tg g et A	sp A	ac a sp A	ac a sn I	tc a le I	tc g le G	ag lu	cac His	, гу	c to	cg a er A	ac (gag Glu	ga As	L	acc Thr	1884
tt Ph	c a	tc c le L	eu P	ac a Asn N 510	itg g let G	ag a lu S	gc a er M	et v	tg al	gaç Glu	g gg ı Gl	gc t ly P	tc a he I	-, -	gto Va] 620		eg ar	ctc Leu	1932

atg gaa at Met Glu Il 62	e	g tttggcatc	c getttgget	g gagetetea	g	1981
tgcgttcctc	cctgagagag	acagaagccc	cagccccaga	acctggagac	ccatctcccc	2041
catctcacaa	ctgctgttac	aagaccgtgc	tggggagtgg	ggcaagggac	aggccccact	2101
gtcggtgtgc	ttggcccatc	cactggcacc	taccacggag	ctgaagcctg	agcccctcag	2161
gaaggtgcct	taggcctgtt	ggattcctat	ttattgccca	ccttttcctg	gagcccaggt	2221
ccaggcccgc	caggactctg	caggtcactg	ctagctccag	atgagaccgt	ccagcgttcc	2281
cccttcaaga	gaaacactca	tcccgaacag	cctaaaaaat	tcccatccct	tctctctcac	2341
ccctccatat	ctatctcccg	agtggctgga	caaaatgagc	tacgtctggg	tgcagtagtt	2401
ataggtgggg	caagaggtgg	atgcccactt	tctggtcaga	cacctttagg	ttgctctggg	2461
gaaggctgtc	ttgctaaata	cctccagggt	tcccagcaag	tggccaccag	gccttgtaca	2521
ggaagacatt	cagtcaccgt	gtaattagta	acacagaaag	tctgcctgtc	tgcattgtac	2581
atagtgttta	taatattgta	ataatatatt	ttacctgtgg	tatgtgggca	tgtttactgc	2641
cactggcctt	agaggagaca	cagacctgga	gaccgtttta	atgggggttt	ttgcctctgt	2701
gcctgttcaa	gagacttgca	gggctaggta	gagggccttt	gggatgttaa	ggtgactgca	2761
gctgatgcca	agatggactc	tgcaatgggc	atacctgggg	gctcgttccc	tgtccccaga	2821
ggaagccccc	teteettete	catgggcatg	actctccttc	gaggccacca	cgtttatctc	2881
acaatgatgt	gttttgcttg	actttccctt	tgcgctgtct	cgtgggaaag	gtcattctgt	2941
ctgagacccc	agctccttct	ccagctttgg	ctgcgggcat	ggcctgagct	ttctggagag	3001
cctctgcagg	gggtttgcca	tcagggccct	gtggctgggt	ctgctgcaga	gctccttggc	3061
tatcaggaga	atcctggaca	ctgtactgtg	cctcccagtt	tacaaacacg	cccttcatct	.3121
caagtggccc	tttaaaaggc	ctgctgccat	gtgagagctg	tgaacagctc	agctctgagt	3181
cggcaggctg	gggcttcctc	ctgggccacc	agatggaaag	ggggtattgt	ttgcctcact	3241
cctggatgct	gcgttttaag	gaagtgagtg	agaaagaatg	tgccaagata	cctggctcct	3301
gtgaaaccag	cctcaggagg	gaaactggga	gagagaagct	gtggtctcct	gctacatgcc	3361
ctgggagctg	gaagagaaaa	acactcccct	aaacaatcgc	aaaatgatga	accatcatgg	3421
gccactgttc	tctttgaggg	gacaggttta	ggggtttgcg	ttcgcccttg	tgggctgaag	3481
cactagettt	ttggtagcta	gacacatcct	gcacccaaag	gttctctaca	aaggcccaga	3541
ttgtttgta	aagcactttg	actcttacct	ggaggcccgc	tctctaaggg	cttcctgcgc	3601

tcccacctca	tctgtccctg	agatgcagag	caggatggag	ggtctgcttc	tagctcagct	3661
gtttctcctt	gaggttgcgg	aggaattgaa	ttgaatggga	cagagggcag	gtgctgtggc	3721
caagaagatc	tccgagcagc	agtgacgggg	caccttgctg	tgtgtcctct	gggcatgtta	3781
accettetgt	ggggccaaag	gtttgcatcg	tggatccagc	tgtgctccag	tctgtcccct	3841
cctcctccac	tctgactgcc	acgccccgga	ccagcagctt	ggggaccctc	cagggtacta	3901
atggggctct	gttctgagat	ggacaaattc	agtgttggaa	atacatgttg	tactatgcac	3961
ttcccatgct	cctagggtta	ggaatagttt	caaacatgat	tggcagacat	aacaacggca	4021
aatactcgga	ctggggcata	ggactccaga	gtaggaaaaa	gacaaaagat	ttggcagcct	4081
gacacaggca	acctacccct	ctctctccag	cctctttatg	aaactgtttg	tttgccagtc	4141
ctgccctaag	gcagaagatg	aattgaagat	gctgtgcatg	tttcctaagt	ccttgagcaa	4201
tcatggtggt	gacaattgcc	acaagggata	tgaggccagt	gccaccagag	ggtggtgcca	4261
agtgccacat	cccttccgat	ccattcccct	ctgcatcctc	ggagcacccc	agtttgcctt	4321
tgatgtgtcc	gctgtgtatg	ttagctgaac	tttgatgagc	aaaatttcct	gagcgaaaca	4381
ctccaaagag	ataggaaaac	ttgccgcctc	ttcttttttg	tcccttaatc	aaactcaaat	4441
aaġcttaaaa	aaaatccatg	gaagatcatg	gacatgtgaa	atgagcattt	ttttctttt	4501
tttttttt	tttaacaaag	tctgaactga	g			4532

<210> 6

<211> 625 <212> PRT

<213> human

Met Ser Gln Glu Ser Asp Asn Asn Lys Arg Leu Val Ala Leu Val Pro 5 10

Met Pro Ser Asp Pro Pro Phe Asn Thr Arg Arg Ala Tyr Thr Ser Glu 20

Asp Glu Ala Trp Lys Ser Tyr Leu Glu Asn Pro Leu Thr Ala Ala Thr 40

Lys Ala Met Met Ser Ile Asn Gly Asp Glu Asp Ser Ala Ala Leu 55

Gly Leu Leu Tyr Asp Tyr Tyr Lys Val Pro Arg Asp Lys Arg Leu Leu 65 70 75 80

Ser Val Ser Lys Ala Ser Asp Ser Gln Glu Asp Gln Glu Lys Arg Asn 85 90 95

Cys Leu Gly Thr Ser Glu Ala Gln Ser Asn Leu Ser Gly Gly Glu Asn 100 105 110

Arg Val Gln Val Leu Lys Thr Val Pro Val Asn Leu Ser Leu Asn Gln 115 120 125

Asp His Leu Glu Asn Ser Lys Arg Glu Gln Tyr Ser Ile Ser Phe Pro 130 135 140

Glu Ser Ser Ala Ile Ile Pro Val Ser Gly Ile Thr Val Val Lys Ala 145 150 155 160

Glu Asp Phe Thr Pro Val Phe Met Ala Pro Pro Val His Tyr Pro Arg 165 170 175

Gly Asp Gly Glu Glu Gln Arg Val Val Ile Phe Glu Gln Thr Gln Tyr 180 185 190

Asp Val Pro Ser Leu Ala Thr His Ser Ala Tyr Leu Lys Asp Asp Gln 195 200 205

Arg Ser Thr Pro Asp Ser Thr Tyr Ser Glu Ser Phe Lys Asp Ala Ala 210 215 220

Thr Glu Lys Phe Arg Ser Ala Ser Val Gly Ala Glu Glu Tyr Met Tyr 225 230 235 240

Asp Gln Thr Ser Ser Gly Thr Phe Gln Tyr Thr Leu Glu Ala Thr Lys 245 250 255

Ser Leu Arg Gln Lys Gln Gly Glu Gly Pro Met Thr Tyr Leu Asn Lys 260 265 270

Gly Gln Phe Tyr Ala Ile Thr Leu Ser Glu Thr Gly Asp Asn Lys Cys 275 280 285

Phe Arg His Pro Ile Ser Lys Val Arg Ser Val Val Met Val Val Phe

290 295 300

Ser Glu Asp Lys Asn Arg Asp Glu Gln Leu Lys Tyr Trp Lys Tyr Trp 305 310 315 320

His Ser Arg Gln His Thr Ala Lys Gln Arg Val Leu Asp Ile Ala Asp 325 330 335

Tyr Lys Glu Ser Phe Asn Thr Ile Gly Asn Ile Glu Glu Ile Ala Tyr 340 345 350

Asn Ala Val Ser Phe Thr Trp Asp Val Asn Glu Glu Ala Lys Ile Phe 355 360 365

Ile Thr Val Asn Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Val 370 375 380

Lys Gly Leu Pro Leu Met Ile Gln Ile Asp Thr Tyr Ser Tyr Asn Asn 385 390 395 400

Arg Ser Asn Lys Pro Ile His Arg Ala Tyr Cys Gln Ile Lys Val Phe 405 410 415

Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu Glu Arg Lys Gln
420 425 430

Asn Arg Lys Lys Gly Lys Gly Gln Ala Ser Gln Thr Gln Cys Asn Ser
435 440 445

Ser Ser Asp Gly Lys Leu Ala Ala Ile Pro Leu Gln Lys Lys Ser Asp 450 455 460

Ile Thr Tyr Phe Lys Thr Met Pro Asp Leu His Ser Gln Pro Val Leu 465 470 475 480

Phe Ile Pro Asp Val His Phe Ala Asn Leu Gln Arg Thr Gly Gln Val 485 490 495

Tyr Tyr Asn Thr Asp Asp Glu Arg Glu Gly Gly Ser Val Leu Val Lys 500 505 510

Arg Met Phe Arg Pro Met Glu Glu Glu Phe Gly Pro Val Pro Ser Lys 515 520 525

Gln	Met 530	Lys	Glu	Glu	Gly	Thr 535	Lys	Arg	Val	Leu	Leu 540	Tyr	Val	Arg	Lys	
Glu 545	Thr	Asp	Asp	Val	Phe 550	Asp	Ala	Leu	Met	Leu 555	Lys	Ser	Pro	Thr	Val 560	
Lys	Gly	Leu	Met	Glu 565	Ala	Ile	Ser	Glu	Lys 570	Tyr	Gly	Leu	Pro	Val 575	Glu _.	
Lys	Ile	Ala	Lys 580	Leu	Tyr	Lys	Lys	Ser 585	Lys	Lys	Gly	Ile	Leu 590	Val	Asn	
Met	Asp	Asp 595	Asn	Ile	Ile	Glu	His 600	Tyr	Ser	Asn	Glu	Asp 605	Thr	Phe	Ile	
Leu	Asn 610	Met	Glu	Ser	Met	Val 615	Glu	Gly	Phe	Lys	Val 620	Thr	Leu	Met	Glu	
Ile 625																
<210 <211 <212 <213	> 1 !> [870 NA IUMAN	1													
<220 <221 <222 <223	.> C !> (DS (47).	.(18	367)												
< 4 0 0																
agga	gat <u>c</u>	itg d	caaa	ictgt	it aa	agagt	ggtt	. att	tetg	agc	agaa	1		gg a		55
aat Asn	tcc Ser 5	att Ile	ctt Leu	cct Pro	att Ile	ttt Phe 10	ctt Leu	ttc Phe	agg Arg	tct Ser	gtg Val 15	cgg Arg	ctg Leu	cta Leu	aag Lys	103
aac Asn 20	gac Asp	cca Pro	gtc Val	aac Asn	ttg Leu 25	cag Gln	aaa Lys	ttc Phe	tct Ser	tac Tyr 30	act Thr	agt Ser	gag Glu	gat Asp	gag Glu 35	151
gcc Ala	tgg Trp	aag Lys	acg Thr	tac Tyr 40	cta Leu	gaa Glu	aac Asn	ccg Pro	ttg Leu 45	aca Thr	gct Ala	gcc Ala	aca Thr	aag Lys 50	gcc Ala	199

			-													
_	_		_		gga Gly	_	_	_	_	_		-	_	_		247
		_			atg Met			_	-	_			_			295
-					aat Asn											343
_			_	_	ctc Leu 105				_	_					_	391
	-	_			aac Asn									-	-	439
	_	_			ctg Leu							_				487
					ctc Leu											535
		_	_		ctg Leu			_		_	_		_			583
					ttt Phe 185											631
_		_		_	agc Ser				_	_		_		_	_	679
					ctg Leu											727
					aaa Lys											775
					aag Lys											823
					ccc Pro 265											871

ggc	ctt Leu	gcc Ala	ttg Leu	tcc Ser 280	Ser	aac Asn	aaa Lys	gtc Val	aag Lys 285	agt Ser	gtg Val	gtg Val	atg Met	gtt Val 290	Val	919
ttc Phe	gac Asp	aat Asn	gag Glu 295	aag Lys	gtc Val	cca Pro	gta Val	gag Glu 300	cag Gln	ctg Leu	cgc Arg	ttc Phe	tgg Trp 305	aag Lys	cac His	967
tgg Trp	cat His	tcc Ser 310	cgg Arg	caa Gln	ccc Pro	act Thr	gcc Ala 315	aag Lys	cag Gln	cgg Arg	gtc Val	att Ile 320	gac Asp	gtg Val	gct Ala	1015
ga _. c Asp	tgc Cys 325	aaa Lys	gaa Glu	aac Asn	ttc Phe	aac Asn 330	act Thr	gtg Val	gag Glu	cac His	att Ile 335	gag Glu	gag Glu	gtg Val	gcc Ala	1063
tat Tyr 340	aat Asn	gca Ala	ctg Leu	tcc Ser	ttt Phe 345	gtg Val	tgg Trp	aac Asn	gtg Val	aat Asn 350	gaa Glu	gag Glu	gcc Ala	aag Lys	gtg Val 355	1111
ttc Phe	atc Ile	ggc Gly	gta Val	aac Asn 360	tgt Cys	ctg Leu	agc Ser	aca Thr	gac Asp 365	ttt Phe	tcc Ser	tca Ser	caa Gln	aag Lys 370	gly gag	1159
gtg Val	aag Lys	ggt Gly	gtc Val 375	ccc Pro	ctg Leu	aac Asn	ctg Leu	cag Gln 380	att Ile	gac Asp	acc Thr	tat Tyr	gac Asp 385	tgt Cys	ggc Gly	1207
ttg Leu	ggc Gly	act Thr 390	gag Glu	cgc Arg	ctg Leu	gta Val	cac His 395	cgt Arg	gct Ala	gtc Val	tgc Cys	cag Gln 400	atc Ile	aag Lys	atc Ile	1255
ttc Phe	tgt Cys 405	gac Asp	aag Lys	gga Gly	gct Ala	gag Glu 410	agg Arg	aag Lys	atg Met	cgc Arg	gat Asp 415	gac Asp	gag Glu	cgg Arg	aag Lys	1303
cag Gln 420	ttc Phe	cgg Arg	agg Arg	aag Lys	gtc Val 425	aag Lys	tgc Cys	cct Pro	gac Asp	tcc Ser 430	agc Ser	aac Asn	agt Ser	ggc Gly	gtc Val 435	1351
aag Lys	ggc Gly	tgc Cys	ctg Leu	ctg Leu 440	tcg Ser	Gly	ttc Phe	agg Arg	ggc Gly 445	aat Asn	gag Glu	acg Thr	acc Thr	tac Tyr 450	ctt Leu	1399
cgg Arg	cca Pro	gag Glu	act Thr 455	gac Asp	ctg Leu	gag Glu	acg Thr	cca Pro 460	ccc Pro	gtg Val	ctg Leu	ttc Phe	atc Ile 465	ccc Pro	aat Asn	1447
gtg Val	cac His	ttc Phe 470	tcc Ser	agc Ser	ctg Leu	cag Gln	cgc Arg 475	tct Ser	gga Gly	g1A aaa	gca Ala	gcc Ala 480	ccc Pro	tcg Ser	gca Ala	1495
gga Gly	ccc Pro 485	agc Ser	agc Ser	tcc Ser	aac Asn	agg Arg 490	ctg Leu	cct Pro	ctg Leu	aag Lys	cgt Arg 495	acc Thr	tgc Cys	tcg Ser	ccc Pro	1543
ttc	act	gag	gag	ttt	gag	cct	ctg	ccc	tcc	aag	cag	gcc	aag	gaa	ggc	1591

Phe Thr Glu Glu Phe Glu Pro Leu	u Pro Ser Lys Gln Ala Lys Glu Gly
500 505	510 515
gac ctt cag aga gtt ctg ctg tat	t gtg cgg agg gag act gag gag gtg 1639
Asp Leu Gln Arg Val Leu Leu Ty:	r Val Arg Arg Glu Thr Glu Glu Val
520	525 530
ttt gac gcg ctc atg ttg aag acc	c cca gac ctg aag ggg ctg agg aat 1687
Phe Asp Ala Leu Met Leu Lys Thi	r Pro Asp Leu Lys Gly Leu Arg Asn
535	540 545
gcg atc tct gag aag tat ggg ttc	c cct gaa gag aac att tac aaa gtc 1735
Ala Ile Ser Glu Lys Tyr Gly Phe	e Pro Glu Glu Asn Ile Tyr Lys Val
550 555	5 560
tac aag aaa tgc aag cga gga atc	c tta gtc aac atg gac aac aac atc 1783
Tyr Lys Lys Cys Lys Arg Gly Ile	e Leu Val Asn Met Asp Asn Asn Ile
565 570	575
att cag cat tac agc aac cac gto	c gcc ttc ctg ctg gac atg ggg gag 1831
Ile Gln His Tyr Ser Asn His Val	l Ala Phe Leu Leu Asp Met Gly Glu
580 585	590 595
ctg gac ggc aaa att cag atc atc	c ctt aag gag ctg taa 1870
Leu Asp Gly Lys Ile Gln Ile Ile	E Leu Lys Glu Leu
600	605
<210> 8 <211> 607 <212> PRT <213> HUMAN	
<220> <221> misc_feature <222> (117)(117) <223> The 'Xaa' at location 11	17 stands for Leu, or Phe.
<220> <221> misc_feature <222> (172)(172) <223> The 'Xaa' at location 17	72 stands for Thr.
<400> 8	
Met Trp Met Asn Ser Ile Leu Pro	o Ile Phe Leu Phe Arg Ser Val Arg
1 5	10 15
Leu Leu Lys Asn Asp Pro Val Asn	Leu Gln Lys Phe Ser Tyr Thr Ser
20	25 30
Glu Asp Glu Ala Trp Lys Thr Tyr	Leu Glu Asn Pro Leu Thr Ala Ala
35 40	45

Thr Lys Ala Met Met Arg Val Asn Gly Asp Asp Ser Val Ala Ala 50 55 60

Leu Ser Phe Leu Tyr Asp Tyr Tyr Met Gly Pro Lys Glu Lys Arg Ile 70 75 80

Leu Ser Ser Ser Thr Gly Gly Arg Asn Asp Gln Gly Lys Arg Tyr Tyr
85 90 95

His Gly Met Glu Tyr Glu Thr Asp Leu Thr Pro Leu Glu Ser Pro Thr
100 105 110

His Leu Met Lys Xaa Leu Thr Glu Asn Val Ser Gly Thr Pro Glu Tyr
115 120 125

Pro Asp Leu Leu Lys Lys Asn Asn Leu Met Ser Leu Glu Gly Ala Leu 130 135 140

Pro Thr Pro Gly Lys Ala Ala Pro Leu Pro Ala Gly Pro Ser Lys Leu 145 150 155 160

Glu Ala Gly Ser Val Asp Ser Tyr Leu Leu Pro Xaa Thr Asp Met Tyr
165 170 175

Asp Asn Gly Ser Leu Asn Ser Leu Phe Glu Ser Ile His Gly Val Pro 180 185 190

Pro Thr Gln Arg Trp Gln Pro Asp Ser Thr Phe Lys Asp Asp Pro Gln 195 200 205

Glu Ser Met Leu Phe Pro Asp Ile Leu Lys Thr Ser Pro Glu Pro Pro 210 215 220

Cys Pro Glu Asp Tyr Pro Ser Leu Lys Ser Asp Phe Glu Tyr Thr Leu 225 230 235 240

Gly Ser Pro Lys Ala Ile His Ile Lys Ser Gly Glu Ser Pro Met Ala 245 250 255

Tyr Leu Asn Lys Gly Gln Phe Tyr Pro Val Thr Leu Arg Thr Pro Ala 260 265 270

Gly Gly Lys Gly Leu Ala Leu Ser Ser Asn Lys Val Lys Ser Val Val

WO 2004/015108 PCT/AU2003/001006

- 24 -

275 280 285 Met Val Val Phe Asp Asn Glu Lys Val Pro Val Glu Gln Leu Arg Phe 295 290 Trp Lys His Trp His Ser Arg Gln Pro Thr Ala Lys Gln Arg Val Ile 305 310 315 Asp Val Ala Asp Cys Lys Glu Asn Phe Asn Thr Val Glu His Ile Glu 330 335 325 Glu Val Ala Tyr Asn Ala Leu Ser Phe Val Trp Asn Val Asn Glu Glu Ala Lys Val Phe Ile Gly Val Asn Cys Leu Ser Thr Asp Phe Ser Ser 355 360 Gln Lys Gly Val Lys Gly Val Pro Leu Asn Leu Gln Ile Asp Thr Tyr 370 375 Asp Cys Gly Leu Gly Thr Glu Arg Leu Val His Arg Ala Val Cys Gln 390 395 400 385 Ile Lys Ile Phe Cys Asp Lys Gly Ala Glu Arg Lys Met Arg Asp Asp 405 410 415 Glu Arg Lys Gln Phe Arg Arg Lys Val Lys Cys Pro Asp Ser Ser Asn 425 430 420 Ser Gly Val Lys Gly Cys Leu Leu Ser Gly Phe Arg Gly Asn Glu Thr 435 . 440 445 Thr Tyr Leu Arg Pro Glu Thr Asp Leu Glu Thr Pro Pro Val Leu Phe 455 Ile Pro Asn Val His Phe Ser Ser Leu Gln Arg Ser Gly Gly Ala Ala 470 475 Pro Ser Ala Gly Pro Ser Ser Asn Arg Leu Pro Leu Lys Arg Thr 485 490 Cys Ser Pro Phe Thr Glu Glu Phe Glu Pro Leu Pro Ser Lys Gln Ala 505

420

Lys Glu Gly Asp Leu Gln Arg Val Leu Leu Tyr Val Arg Arg Glu Thr 515 520 Glu Glu Val Phe Asp Ala Leu Met Leu Lys Thr Pro Asp Leu Lys Gly 535 Leu Arg Asn Ala Ile Ser Glu Lys Tyr Gly Phe Pro Glu Glu Asn Ile 555 Tyr Lys Val Tyr Lys Lys Cys Lys Arg Gly Ile Leu Val Asn Met Asp 565 570 Asn Asn Ile Ile Gln His Tyr Ser Asn His Val Ala Phe Leu Leu Asp 580 585 Met Gly Glu Leu Asp Gly Lys Ile Gln Ile Ile Leu Lys Glu Leu 600 595 <210> 9 <211> 3113 <212> DNA <213> MURINE <220> <221> misc feature (2634)..(2634) <222> <223> n = any nucleotide <220> <221> misc_feature <222> (2968)..(2968) <223> n = any nucleotide <400> gttcctccat gggttccttg agttcctgac atggcttccc ttgatgatga actgtgtgac 60 ctaaacaqca taccaaatgt gacggagcag cccctcattt ctgctggaga aaacagggta 120 caagtgctga aaaacgtgcc cttcaacatc gtcctccccc atagcaacca gctgggcatt 180 gataagagag gccatctgac agctcccgat acaacagtca ctgtctccat agcgaccatg 240 cctacccact ccatcaagac agaaatccag ccgcacggct ttgctgtggg aatccctcca 300 gccgtgtacc actctgagcc caccgaacgc gtggtggttt ttgaccggag cctcagcact 360

gateagttea getetggeae teageceece aatgeteage ggaggaetee agaeteeace

480 ttctccqaqa ccttcaagga gggcgttcag gaggttttct tcccctcgga actcagcctt 540 cggatgccgg gcatgaattc agaggactat gtctttgaca atgtttctgg gaacaacttt 600 gagtataccc tggaagcctc caagtcactg cggcagaagc aaggggacag cactatgaca tacctgaata aaggccagtt ctatcctgtc accttaaagg aaggaagcag caatgaaggg 660 attcaccacc ctatcagcaa agttcgaagt gtgatcatgg tggtttttgc tgaagacaaa 720 agcagagaag accagctgag acactggaag tactggcact cccgtcagca cacggccaaa 780 cagaggtgca ttgacattgc tgactacaaa gaaagtttca acactatcag caacattgag 840 gagatagett ataacgecat trectreacg tgggacatca atgatgagge aaaggtette 900 960 atctctgtga actgcttgag cacagatttc tcttctcaga agggtgtgaa gggcttgcca ctcaacattc aaatcgacac atacagctat aacaaccgca gcaacaagcc ggttcaccgg 1020 gcctactgcc agataaaggt cttctgcgac aagggagctg aaaggaaaat tcgggatgaa 1080 gaacgaaaac agagcaagag aaaagtgtet gacgttaaag tgcagetget teeetcacac 1140 aaacggacag acatcacagt gttcaagccc ttcctggacc tcgacactca gcctgtcctc 1200 1260 ttcattccgg acgtgcattt taccaacctg cagcggggca gtcatgttct ttccctcccc totgaagaac tggaaggtga aggototgto ttgaaaagag ggocattogg aacogaagat 1320 1380 gactttggag ttcctcctcc tgctaagctg actcggacag aagaacccaa gagagtgctg ctctatqtcc gaaaggaatc agaagaagtc ttcgacgccc tgatgctcaa gacgccgtct 1440 ttgaagggcc tgatggaggc aatttcagac aagtatgatg tcccccatga caagattggg 1500 1560 aaaatattta agaagtgcaa aaaagggatc ctcgtgaaca tggacgacaa cattgtgaag cactactcca atgaggacac cttccagctg cagatagagg aagccggcgg ctcgtacaag 1620 ctcaccctga cagagattta aaggggcagg ggtggggggc gctcggctcc caggcgtggg 1680 aattcagtga aagtgttcca gctgagaagc ccaggcacct accctgcaga accttaaata 1740 tcagggaagg aacctttcac gtaggaaatg gcgctgtgta taccgtgctg tgttgatgtt 1800 ttcttttgga tagaaatcca tgtgttgttt tgttgttgtt gtttgaattt ctgatgtgct 1860 tagaaagcga agcatgagaa ctttgtaccg gatctaagag accatgggac cgtttgggtt 1920 acctgctcca ctacctgtca aagtctgcct gtgtccataa gagtggtggg ctactggctg 1980 gcgagagagg ggaaggcagt agcttgtctt tgaggctttt gtgttctcgc ctgacctcag 2040 totaactotg actgoottga ggagtgggoo cagoootcag caataaaggg ctaagcotto 2100

tecetecace	tctcctccag	tgtttactaa	atagggtgca	ttcctggaac	cttttcccgc	2160
aacttccctt	ggacatgtgg	actgcctttc	tgatgaagaa	cttgcgtgag	tgacagtgtg	2220
aagttagctc	tgttaaagct	gcgttgtata	taagtgcaat	atctttttga	aggtctgcct	2280
gtaaatgtgt	acatatatgt	ctgatataaa	tatataatat	ataaatgcgg	tgtctgtgta	2340
cagatagtga	aggcgagcag	gaagatctac	cttgaaatcc	ctcttagaga	agaggttaag	2400
ttattattga	taatgtggac	caag <u>cagg</u> ta	gaacgctgtt	ttcccaaaaa	caagcaagtg	2460
ttccctagca	tagcaaaaag	ccatctcatg	tggcagagcc	atctgctctt	gcgaatgttg	2520
tcaccgtgtg	ggtttctgca	ccctgagtgg	agctaatgga	agactggact	gcagctacta	2580
tatgaggtgt	gtgtgcaggt	gtcagccaag	ctgtgcccat	gcagagactc	agcngtgtca	2640
tgagccagcg	attcaaacca	aaatgggccg	attctacaag	gccatgtttc	agagcttcca	2700
agcatcagct	accgtgtgtt	tgaactggaa	ggcattcatg	aatttacata	actgtggcag	2760
gggaatgttt	tgtgcacact	taaatattta	agaacaaaac	gaaactttac	aatgtaaytt	2820
tataatgaat	cctgtaacag	aaatacaatt	gcgggtttct	ttaggttcag	ggaactagaa	2880
taggtcattt	gtatgagtag	gattgttagc	ggtatacgta	rgttaaaaag	tactctaatg	2940
aagtatgtga	acaaaatagc	tggttttnta	agatacggga	tacgggtcat	ataacaatat	3000
tttctatttt	gttttatgaa	atcagcttta	cttgttttaa	ttgtatcatt	gaacatgtgt	3060
tttaaaccaa	agggattgaa	ttttatatgt	ctatttcaaa	aaaaaaaaa	aaa	3113

<210> 10

Met Ala Ser Leu Asp Asp Glu Leu Cys Asp Leu Asn Ser Ile Pro Asn 5 10

Val Thr Glu Gln Pro Leu Ile Ser Ala Gly Glu Asn Arg Val Gln Val 20 25

Leu Lys Asn Val Pro Phe Asn Ile Val Leu Pro His Ser Asn Gln Leu 35

Gly Ile Asp Lys Arg Gly His Leu Thr Ala Pro Asp Thr Thr Val Thr 50 55

<211> 536 <212> PRT <213> MURINE

<400> 10

Val Ser Ile Ala Thr Met Pro Thr His Ser Ile Lys Thr Glu Ile Gln 65 70 75 80

Pro His Gly Phe Ala Val Gly Ile Pro Pro Ala Val Tyr His Ser Glu 85 90 95

Pro Thr Glu Arg Val Val Val Phe Asp Arg Ser Leu Ser Thr Asp Gln
100 105 110

Phe Ser Ser Gly Thr Gln Pro Pro Asn Ala Gln Arg Arg Thr Pro Asp 115 120 125

Ser Thr Phe Ser Glu Thr Phe Lys Glu Gly Val Gln Glu Val Phe Phe 130 135 140

Pro Ser Glu Leu Ser Leu Arg Met Pro Gly Met Asn Ser Glu Asp Tyr 145 150 155 160

Val Phe Asp Asn Val Ser Gly Asn Asn Phe Glu Tyr Thr Leu Glu Ala 165 170 175

Ser Lys Ser Leu Arg Gln Lys Gln Gly Asp Ser Thr Met Thr Tyr Leu 180 185 190

Asn Lys Gly Gln Phe Tyr Pro Val Thr Leu Lys Glu Gly Ser Ser Asn 195 200 205

Glu Gly Ile His His Pro .Ile Ser Lys Val Arg Ser Val Ile Met Val 210 215 220

Val Phe Ala Glu Asp Lys Ser Arg Glu Asp Gln Leu Arg His Trp Lys 225 230 235 240

Tyr Trp His Ser Arg Gln His Thr Ala Lys Gln Arg Cys Ile Asp Ile 245 250 255

Ala Asp Tyr Lys Glu Ser Phe Asn Thr Ile Ser Asn Ile Glu Glu Ile 260 265 270

Ala Tyr Asn Ala Ile Ser Phe Thr Trp Asp Ile Asn Asp Glu Ala Lys 275 280 285

- Val Phe Ile Ser Val Asn Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys 290 295 300
- Gly Val Lys Gly Leu Pro Leu Asn Ile Gln Ile Asp Thr Tyr Ser Tyr 305 310 315 320
- Asn Asn Arg Ser Asn Lys Pro Val His Arg Ala Tyr Cys Gln Ile Lys 325 330 335
- Val Phe Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu Glu Arg 340 345 350
- Lys Gln Ser Lys Arg Lys Val Ser Asp Val Lys Val Gln Leu Leu Pro 355 360 365
- Ser His Lys Arg Thr Asp Ile Thr Val Phe Lys Pro Phe Leu Asp Leu 370 375 380
- Asp Thr Gln Pro Val Leu Phe Ile Pro Asp Val His Phe Thr Asn Leu 385 390 395 400
- Gln Arg Gly Ser His Val Leu Ser Leu Pro Ser Glu Glu Leu Glu Gly 405 410 415
- Glu Gly Ser Val Leu Lys Arg Gly Pro Phe Gly Thr Glu Asp Asp Phe 420 425 430
- Gly Val Pro Pro Pro Ala Lys Leu Thr Arg Thr Glu Glu Pro Lys Arg
 435
 440
 445
- Val Leu Leu Tyr Val Arg Lys Glu Ser Glu Glu Val Phe Asp Ala Leu 450 455 460
- Met Leu Lys Thr Pro Ser Leu Lys Gly Leu Met Glu Ala Ile Ser Asp 465 470 475 480
- Lys Tyr Asp Val Pro His Asp Lys Ile Gly Lys Ile Phe Lys Lys Cys 485 490 495
- Lys Lys Gly Ile Leu Val Asn Met Asp Asp Asn Ile Val Lys His Tyr 500 505 510
- Ser Asn Glu Asp Thr Phe Gln Leu Gln Ile Glu Glu Ala Gly Gly Ser

- 30 -

515 520 525

Tyr Lys Leu Thr Leu Thr Glu Ile 530 535

<210> 11

<211> 3452

<212> DNA

<213> MURINE

<220>

<221> misc_feature

<222> (2973)..(2973)

<223> n = any nucleotide

<220>

<221> misc_feature

<222> (3307)..(3307)

<223> n = any nucleotide

<400> 11 egeogeteeg gacceaeege etgeogeege gegeogeege eegeogeete eteeceeegg 60 ategggtgta ctgtcccaac ccgaaagtcc agttctgcgg cccggcagcg gcgagcgagc 120 gcgatgacac aggagtacga caacaaaagg cccgtgctgg tacttcagaa tgaagccctc 180 tacccacage ggcgctccta taccagtgag gatgaagcct ggaagtegtt cetggaaaac 240 ceteteactg eggeaaceaa agegatgatg ageateaacg gagaegaaga eagegegget 300 gcgctgggcc tgctctatga ctactacaag gtccccagag agcgccggtc atcagccgta 360 aagcccgagg gagagcaccc agagccagag cacagcaaaa gaaacagcat accaaatgtg 420 acggagcagc ccctcatttc tgctggagaa aacagggtac aagtgctgaa aaacgtgccc 480 ttcaacatcg tcctccccca tagcaaccag ctgggcattg ataagagagg ccatctgaca 540 gctcccgata caacagtcac tgtctccata gcgaccatgc ctacccactc catcaagaca 600 gaaatccagc cgcacggctt tgctgtggga atccctccag ccgtgtacca ctctgagccc 660 accgaacgcg tggtggtttt tgaccggagc ctcagcactg atcagttcag ctctggcact 720 cagecececa atgeteageg gaggaeteca gaetecacet teteegagae etteaaggag 780 ggcgttcagg aggttttctt cccctcggaa ctcagccttc ggatgccggg catgaattca 840 gaggactatg tetttgacaa tgtttetggg aacaaetttg agtataeeet ggaageetee 900 aagtcactgc ggcagaagca aggggacagc actatgacat acctgaataa aggccagttc 960 tateetgtea eettaaagga aggaageage aatgaaggga tteaceacee tateageaaa 1020 1080 qttcgaagtq tgatcatggt ggtttttgct gaagacaaaa gcagagaaga ccagctgaga cactggaagt actggcactc ccgtcagcac acggccaaac agaggtgcat tgacattgct 1140 1200 gactacaaag aaagtttcaa cactatcagc aacattgagg agatagctta taacgccatt tccttcacgt gggacatcaa tgatgaggca aaggtcttca tctctgtgaa ctgcttgagc 1260 1320 acagatttet etteteagaa gggtgtgaag ggettgeeae teaacattea aategacaca tacagetata acaacegeag caacaageeg gtteaceggg cetaetgeea gataaaggte 1380 1440 ttctgcgaca agggagctga aaggaaaatt cgggatgaag aacgaaaaca gagcaagaga aaagtgtctg acgttaaagt gcagctgctt ccctcacaca aacggacaga catcacagtg 1500 ttcaagccct tcctggacct cgacactcag cctgtcctct tcattccgga cgtgcatttt 1560 accaacctgc ageggggcag teatgttett teceteceet etgaagaact ggaaggtgaa 1620 ggctctgtct tgaaaagagg gccattcgga accgaagatg actttggagt tcctcctcct 1680 gctaagctga ctcggacaga agaacccaag agagtgctgc tctatgtccg aaaggaatca 1740 gaagaagtet tegaegeeet gatgeteaag acgeegtett tgaagggeet gatggaggea 1800 atttcagaca agtatgatgt cccccatgac aagattggga aaatatttaa gaagtgcaaa 1860 1920 aaagggatee tegtgaacat ggaegacaae attgtgaage actaeteeaa tgaggacaee 1980 ttccaqctqc agatagagga agccggcggc tcgtacaagc tcaccctgac agagatttaa 2040 aggggcaggg gtggggggg ctcggctccc aggcgtggga attcagtgaa agtgttccag ctgagaagcc caggcaccta ccctgcagaa ccttaaatat cagggaagga acctttcacg 2100 taggaaatgg cgctgtgtat accgtgctgt gttgatgttt tcttttggat agaaatccat 2160 gtgttgtttt gttgttgttg tttgaatttc tgatgtgctt agaaagcgaa gcatgagaac 2220 tttgtaccgg atctaagaga ccatgggacc gtttgggtta cctgctccac tacctgtcaa 2280 agtotgootg tgtocataag agtggtgggo taotggotgg ogagagaggg gaaggcagta 2340 gettgtettt gaggettttg tgttetegee tgaeeteagt etaaetetga etgeettgag 2400 qaqtqqqccc agccctcagc aataaagggc taagccttct ccctccacct ctcctccagt 2460 gtttactaaa tagggtgcat tcctggaacc ttttcccgca acttcccttg gacatgtgga 2520 ctgcctttct gatgaagaac ttgcgtgagt gacagtgtga agttagctct gttaaagctg 2580 cqttqtatat aagtgcaata tctttttgaa ggtctgcctg taaatgtgta catatatgtc 2640 tgatataaat atataatata taaatgcggt gtctgtgtac agatagtgaa ggcgagcagg 2700

aagatctacc	ttgaaatccc	tcttagagaa	gaggttaagt	tattattgat	aatgtggacc	276
aagcaggtag	aacgctgttt	tcccaaaaac	aagcaagtgt	tccctagcat	agcaaaaagc	282
catctcatgt	ggcagagcca	tetgetettg	cgaatgttgt	caccgtgtgg	gtttctgcac	288
cctgagtgga	gctaatggaa	gactggactg	cagctactat	atgaggtgtg	tgtgcaggtg	294
tcagccaagc	tgtgcccatg	cagagactca	gcngtgtcat	gagccagcga	ttcaaaccaa	3000
aatgggccga	ttctacaagg	ccatgifica	gagcttccaa	gcatcagcta	ccgtgtgttt	3060
gaactggaag	gcattcatga	atttacataa	ctgtggcagg	ggaatgtttt	gtgcacactt	3120
aaatatttaa	gaacaaaacg	aaactttaca	atgtaayttt	ataatgaatc	ctgtaacaga	3180
aatacaattg	cgggtttctt	taggttcagg	gaactagaat	aggtcatttg	tatgagtagg	3240
attgttagcg	gtatacgtar	gttaaaaagt	actctaatga	agtatgtgaa	caaaatagct	3300
ggttttntaa	gatacgggat	acgggtcata	taacaatatt	ttctattttg	ttttatgaaa	3360
tcagctttac	ttgttttaat	tgtatcattg	aacatgtgtt	ttaaaccaaa	gggattgaat	3420
tttatatgtc	tatttcaaaa	aaaaaaaaa	aa			3452

<210> 12

<211> 618

<212> PRT

<213> MURINE

<400> 12

Met Thr Gln Glu Tyr Asp Asn Lys Arg Pro Val Leu Val Leu Gln Asn 1 5 10 15

Glu Ala Leu Tyr Pro Gln Arg Arg Ser Tyr Thr Ser Glu Asp Glu Ala 20 25 30

Trp Lys Ser Phe Leu Glu Asn Pro Leu Thr Ala Ala Thr Lys Ala Met 35 40 45

Met Ser Ile Asn Gly Asp Glu Asp Ser Ala Ala Ala Leu Gly Leu Leu 50 55 60

Tyr Asp Tyr Tyr Lys Val Pro Arg Glu Arg Arg Ser Ser Ala Val Lys 65 70 75 80

Pro Glu Gly Glu His Pro Glu Pro Glu His Ser Lys Arg Asn Ser Ile

Pro	Asn	Val	Thr 100	Glu	Glņ	Pro	Leu	Ile 105	Ser	Ala	Gly	Glu	Asn 110	Arg	Val
Gln	Val	Leu 115	Lys	Asn	Val	Pro	Phe 120	Asn	Ile	Val	Leu	Pro 125	His	Ser	Asn
Gln	Leu 130	Gly	Ile	Asp	Lys	Arg 135	Gly	His	Leu	Thr	Ala 140	Pro	Asp	Thr	Thr
Val 145	Thr	Val	Ser	Ile	Ala 150	Thr	Met	Pro	Thr	His 155	Ser	Ile	Lys	Thr	Glu 160
Ile	Gln	Pro	His	Gly 165	Phe	Ala	Val	Gly	Ile 170	Pro	Pro	Ala	Val	Tyr 175	His
Ser	Glu	Pro	Thr 180	Glu	Arg	Val	Val	Val 185	Phe	Asp	Arg	Ser	Leu 190	Ser	Thr
Asp	Gln	Phe 195	Ser	Ser	Gly	Thr	Gln 200	Pro	Pro	Asn	Ala	Gln 205	Arg	Arg	Thr
Pro	Asp 210	Ser	Thr	Phe	Ser	Glu 215	Thr	Phe	Lys	Glu	Gly 220	Val	Gln	Glu	Val
Phe 225	Phe	Pro	Ser	Glu	Leu 230	Ser	Leu	Arg	Met	Pro 235	Gly	Met	Asn	Ser	Glu 240
Asp.	Tyr	Val	Phe	Asp 245	Asn	Val	Ser	Gly	Asn 250	Asn	Phe	Glu	Tyr	Thr 255	Leu
Glu	Ala	Ser	Lys 260		Leu	Arg	Gln	Lys 265	Gln	Gly	Asp	Ser	Thr 270	Met	Thr
Tyr	Leu	. Asn 275		Gly	Gln	Phe	Tyr 280	Pro	Val	Thr	Leu	Lys 285	Glu	Gly	Ser
Ser	Asn 290		Gly	Ile	His	His 295		Ile	Ser	Lys	Val 300	Arg	Ser	Val	Ile
Met		. Val	. Phe	Ala	Glu 310		Lys	Ser	Arg	Glu 315		Gln	Leu	Arg	His 320

- Trp Lys Tyr Trp His Ser Arg Gln His Thr Ala Lys Gln Arg Cys Ile 325 330 335
- Asp Ile Ala Asp Tyr Lys Glu Ser Phe Asn Thr Ile Ser Asn Ile Glu 340 345 350
- Glu Ile Ala Tyr Asn Ala Ile Ser Phe Thr Trp Asp Ile Asn Asp Glu
 355 360 365
- Ala Lys Val Phe Ile Ser Val Asn Cys Leu Ser Thr Asp Phe Ser Ser 370 380
- Gln Lys Gly Val Lys Gly Leu Pro Leu Asn Ile Gln Ile Asp Thr Tyr 385 390 395 400
- Ser Tyr Asn Asn Arg Ser Asn Lys Pro Val His Arg Ala Tyr Cys Gln
 405 410 415
- Ile Lys Val Phe Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu 420 425 430
- Glu Arg Lys Gln Ser Lys Arg Lys Val Ser Asp Val Lys Val Gln Leu 435 440 445
- Leu Pro Ser His Lys Arg Thr Asp Ile Thr Val Phe Lys Pro Phe Leu
 450 455 460
- Asp Leu Asp Thr Gln Pro Val Leu Phe Ile Pro Asp Val His Phe Thr 465 470 475 480
- Asn Leu Gln Arg Gly Ser His Val Leu Ser Leu Pro Ser Glu Glu Leu
 485 490 495
- Glu Gly Glu Gly Ser Val Leu Lys Arg Gly Pro Phe Gly Thr Glu Asp 500 505 510
- Asp Phe Gly Val Pro Pro Pro Ala Lys Leu Thr Arg Thr Glu Glu Pro 515 520 525
- Lys Arg Val Leu Leu Tyr Val Arg Lys Glu Ser Glu Glu Val Phe Asp 530 535 540

Ala Leu Met Leu Lys Thr Pro Ser Leu Lys Gly Leu Met Glu Ala Ile 545 550 555 560

Ser Asp Lys Tyr Asp Val Pro His Asp Lys Ile Gly Lys Ile Phe Lys 565 570 575

Lys Cys Lys Gly Ile Leu Val Asn Met Asp Asp Asn Ile Val Lys 580 585 590

His Tyr Ser Asn Glu Asp Thr Phe Gln Leu Gln Ile Glu Glu Ala Gly
595 600 605

Gly Ser Tyr Lys Leu Thr Leu Thr Glu Ile 610 615

<210> 13

<211> 2195

<212> DNA

<213> murine

<400> 13

cgcccgggca ggtcagactt gaaagtccag tttcaccaga ggctgaggct ccaggaaaaq 60 gggagcgagt tcattggatc aaacatgtca caagagtcgg acaataataa aaqactaqtq 120 gcettagtgc ceatgeccag tgaccetece tteaacacee gaagageeta cacaagtgaq 180 gatgaggeet ggaagteata tetggagaac eccetgaetg eggeeaceaa ggeqatqatq 240 agcatcaacg gggacgagga cagtgctgcc gccctgggcc tgctctatga ctactacaag 300 360 gataaaagaa actgccttgg caccagtgaa gcccagatca atttgagcgg aggcgagaac 420 agagtgcagg ttctgaagac tgtcccggtg aacctctgtc taagtcaaga ccacatggag 480 aattogaago gogagoagta cagtgtatoo atcacegaga gototgoogt catecoogtg 540 tcaggcatca ccgtggtgaa agccgaggat ttcacaccgg tgttcatggc gcccccggtg 600 cactatecee gegeggaeag tgaggageag egegtggtta tetttgaaca qaeteagtae 660 gacetgeeet ceatageeag ceacagetee tateteaagg acgaeeageg cageaegeeg 720 gacagcacct acagcgagag ctttaaggac ggcgcctcgg agaaatttcg gagtacttct 780 gttggtgctg acgagtatac atatgaccag acgggaagtg gtacatttca gtacaccetg 840 gaagecacca aateteteeg teagaaacag ggggagggee ecatgaceta ceteaacaaa 900 qqacaattct atgccataac actcagtgag actggagaca acaaatgctt ccqacaccc 960

atcagcaaag	tcaggagtgt	ggtgatggtg	gtctttagtg	aagacaaaaa	ccgagatgag	1020
cagctgaaat	actggaagta	ctggcactcc	cggcagcaca	ctgccaagca	gagggtcctt	1080
gacattgctg	attacaagga	gagcttcaac	accatcggga	acattgaaga	gatcgcatac	1140
aatgctgttt	ccttcacctg	ggatgtgaac	gaggaggcaa	agatttttat	caccgtgaat	1200
tgcctgagta	cagatttctc	ctcccaaaag	ggtgtaaaag	gacttcccct	gatgattcag	1260
atcgacacgt	acagctacaa	caaccgcagc	aataaaccca	tccacagagc	atactgccag	1320
atcaaggtct	tctgtgacaa	gggagcagaa	agaaaaatcc	gggatgaaga	gagaaagcag	1380
aacaggaaga	aagggaaggg	ccaggcctct	caagcccagt	gcaacaactc	ctctgatggg	1440
aagatggccg	ccataccgtt	acagaagaag	agtgacatca	cgtacttcaa	aaccatgccc	1500
gacctgcact	cacageetgt	gctcttcata	ccagatgttc	actttgcaaa	cctacagagg .	1560
accggacagg	tttattacaa	cacagacgat	gagcgagaag 	gcagcagcgt	ccttgttaag	1620
cggatgttca	ggcccatgga	agaggagttt	ggtccaacac	cgtctaagca	gatcaaagaa	1680
gaaaacgtaa	aacgagtgct	tttatatgtg	aggaaggaga	acgatgacgt	cttcgatgct	1740
ctgatgctga	aatcacccac	ggtgaagggt	ctgatggaag	cgctgtctga	gaagtatggg	1800
ctgccagtgg	agaaaatcac	aaagctttat	aagaagagca	aaaagggcat	cctggtcaac	1860
atggatgaca	acațcattga	gcactattca	aatgaggaca	ccttcatcct	caacatggag	1920
agcatggtgg	aaggcttcaa	gatcacgctg	atggagatct	gagccctggg	tgtcccctcg	1980
ataggagctt	ttggtatact	ccttcctggg	agagatggga	tctctgccgc	cccaggacct	2040
ggagacccac	ccatctcact	cacctctcaa	gactgttaca	agactgctgg	gaagggggc	2100
agggcccaag	gcccagtaat	ggacttcctt	caactcttcc	acttgctccc	tatggagctg	2160
aagcctgagc	ccctcagcaa	atttcttctc	gtgcc			2195

<210> 14

<211> 625

<212> PRT

<213> murine

<400> 14

Met Ser Gln Glu Ser Asp Asn Asn Lys Arg Leu Val Ala Leu Val Pro 1 5 10 15

Met Pro Ser Asp Pro Pro Phe Asn Thr Arg Arg Ala Tyr Thr Ser Glu 20 25 30

- Asp Glu Ala Trp Lys. Ser Tyr Leu Glu Asn Pro Leu Thr Ala Ala Thr 35 40 45
- Lys Ala Met Met Ser Ile Asn Gly Asp Glu Asp Ser Ala Ala Ala Leu 50 55 60.
- Gly Leu Leu Tyr Asp Tyr Tyr Lys Val Pro Arg Asp Lys Arg Leu Leu 65 70 75 80
- Ser Val Ser Lys Ala Ser Asp Ser Gln Glu Asp Gln Asp Lys Arg Asn 85 90 95
- Cys Leu Gly Thr Ser Glu Ala Gln Ile Asn Leu Ser Gly Gly Glu Asn 100 105 110
- Arg Val Gln Val Leu Lys Thr Val Pro Val Asn Leu Cys Leu Ser Gln
 115 120 125
- Asp His Met Glu Asn Ser Lys Arg Glu Gln Tyr Ser Val Ser Ile Thr 130 135 140
- Glu Ser Ser Ala Val Ile Pro Val Ser Gly Ile Thr Val Val Lys Ala 145 150 155 160
- Glu Asp Phe Thr Pro Val Phe Met Ala Pro Pro Val His Tyr Pro Arg 165 170 175
- Ala Asp Ser Glu Glu Gln Arg Val Val Ile Phe Glu Gln Thr Gln Tyr 180 185 190
- Asp Leu Pro Ser Ile Ala Ser His Ser Ser Tyr Leu Lys Asp Asp Gln
 195 200 205
- Arg Ser Thr Pro Asp Ser Thr Tyr Ser Glu Ser Phe Lys Asp Gly Ala 210 215 220
- Ser Glu Lys Phe Arg Ser Thr Ser Val Gly Ala Asp Glu Tyr Thr Tyr 225 230 235 240
- Asp Gln Thr Gly Ser Gly Thr Phe Gln Tyr Thr Leu Glu Ala Thr Lys 245 250 255

Ser Leu Arg Gln Lys Gln Gly Glu Gly Pro Met Thr Tyr Leu Asn Lys 265 260 Gly Gln Phe Tyr Ala Ile Thr Leu Ser Glu Thr Gly Asp Asn Lys Cys 280 275 Phe Arg His Pro Ile Ser Lys Val Arg Ser Val Val Met Val Val Phe 295 290 Ser Glu Asp Lys Asn Arg Asp Glu Gln Leu Lys Tyr Trp Lys Tyr Trp 320 310 . 315 305 His Ser Arg Gln His Thr Ala Lys Gln Arg Val Leu Asp Ile Ala Asp 325 . 330 Tyr Lys Glu Ser Phe Asn Thr Ile Gly Asn Ile Glu Glu Ile Ala Tyr 345 350 340 Asn Ala Val Ser Phe Thr Trp Asp Val Asn Glu Glu Ala Lys Ile Phe 355 360 365 Ile Thr Val Asn Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Val 375 370 Lys Gly Leu Pro Leu Met Ile Gln Ile Asp Thr Tyr Ser Tyr Asn Asn 395 390 385 Arg Ser Asn Lys Pro Ile His Arg Ala Tyr Cys Gln Ile Lys Val Phe 410 Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu Glu Arg Lys Gln Asn Arg Lys Lys Gly Lys Gly Gln Ala Ser Gln Ala Gln Cys Asn Asn 440 Ser Ser Asp Gly Lys Met Ala Ala Ile Pro Leu Gln Lys Lys Ser Asp 455 Ile Thr Tyr Phe Lys Thr Met Pro Asp Leu His Ser Gln Pro Val Leu 470 475

Phe Ile Pro Asp Val His Phe Ala Asn Leu Gln Arg Thr Gly Gln Val

Tyr Tyr Asn Thr Asp Asp Glu Arg Glu Gly Ser Ser Val Leu Val Lys 505

Arg Met Phe Arg Pro Met Glu Glu Glu Phe Gly Pro Thr Pro Ser Lys 520

Gln Ile Lys Glu Glu Asn Val Lys Arg Val Leu Leu Tyr Val Arg Lys 530 535

Glu Asn Asp Asp Val Phe Asp Ala Leu Met Leu Lys Ser Pro Thr Val 550 555

Lys Gly Leu Met Glu Ala Leu Ser Glu Lys Tyr Gly Leu Pro Val Glu 565 570

Lys Ile Thr Lys Leu Tyr Lys Lys Ser Lys Lys Gly Ile Leu Val Asn 585

Met Asp Asp Asn Ile Ile Glu His Tyr Ser Asn Glu Asp Thr Phe Ile 595 600 605

Leu Asn Met Clu Ser Met Val Glu Gly Phe Lys Ile Thr Leu Met Glu 610 615 620

Ile

625

<210> 15

<211> 2831

<212> DNA

<213> murine

<220>

<221> CDS <222> (200)..(2008)

<223>

<220>

<221> misc feature

<222> (2806)..(2806)

<223> n = any nucleotide

<400> 15 acctgtgctt ccagccaatc agcgccaccg cagccgggga ccgctgtcag caaaatct	ca 60
acatccagag cgcaacgtag agcaaacgct tccccgggca ggaagggaat gtctgtgt	
gaggagaatt aagagacgag tggtcagcag cgcctgcgag ccaaccagag acggatcg	
ggaacctcgg agaaggaag atg tcg aat gaa ctt gat ttc agg tct gtg cg Met Ser Asn Glu Leu Asp Phe Arg Ser Val Ar 1 5 10	g 232 g
ttg ctg aag aat gac cct gtg agc ttc cag aag ttt ccc tac agt aat Leu Leu Lys Asn Asp Pro Val Ser Phe Gln Lys Phe Pro Tyr Ser Asn 15 20 25	280
gag gac gag gcc tgg aag aca tac ctg gag aac cct ttg acg gct gcc Glu Asp Glu Ala Trp Lys Thr Tyr Leu Glu Asn Pro Leu Thr Ala Ala 30 35 40	328
acc aaa gcc atg atg aga gtc aac ggg gac gag gag agt gtg gct gct Thr Lys Ala Met Met Arg Val Asn Gly Asp Glu Glu Ser Val Ala Ala 45	376 a
ctg agc ttc ctc tac gac tac tat atg ggt ccc aag gag aag cgg ata Leu Ser Phe Leu Tyr Asp Tyr Tyr Met Gly Pro Lys Glu Lys Arg Ile 60 65 70 75	a 424 e
ctg tcc tcc agc act ggt ggc cgg aat gac caa gga aag aag ttc tac Leu Ser Ser Ser Thr Gly Gly Arg Asn Asp Gln Gly Lys Lys Phe Tys 80 85 90	c 472 r
cac age atg gac tat gag eeg gat ett gee eec ete gag age eec ac His Ser Met Asp Tyr Glu Pro Asp Leu Ala Pro Leu Glu Ser Pro Th 95	a 520 _, r
cac ctc atg aaa ttt ttg aca gag aac gtg tct gga agt cca gac ta His Leu Met Lys Phe Leu Thr Glu Asn Val Ser Gly Ser Pro Asp Ty 110 115 120	c 568 r
aca gac cag ctc aag aaa aac aat ctg cta ggc ttg gag ggg gtt ct Thr Asp Gln Leu Lys Lys Asn Asn Leu Leu Gly Leu Glu Gly Val Le 125 130 135	a 616 u
ccc acc ccc ggc aag acc aat acc gtc ccc cca ggt ccg agt aaa ct Pro Thr Pro Gly Lys Thr Asn Thr Val Pro Pro Gly Pro Ser Lys Le 140 145 150	:u
gaa gcc agc tcc atg gac agc tac ctc ttg ccc gcc agt gac ata ta Glu Ala Ser Ser Met Asp Ser Tyr Leu Leu Pro Ala Ser Asp Ile Ty 160 165 170	at 712 vr
gac aat ggc tcc ctc aac tca tta ttt gag agc att cat ggg gtt cc Asp Asn Gly Ser Leu Asn Ser Leu Phe Glu Ser Ile His Gly Val Pr 175 180 185	ca 760 co
ccc aca cag cgc tgg cag cca gac agc acc ttc aaa gat gac cca ca Pro Thr Gln Arg Trp Gln Pro Asp Ser Thr Phe Lys Asp Asp Pro Gl	ag 808 ln

- 41 -

190		195	200	
gag tct ctg ct Glu Ser Leu Le 205	c ttc cct gat u Phe Pro Asp 210	att ctg aac Ile Leu Lys	g aca tcc ccg gac ccc cca Thr Ser Pro Asp Pro Pro 215	. 856
220	225	Leu Lys Ser	gac ttt gaa tac acc ctg Asp Phe Glu Tyr Thr Leu 230 235	904
,, -	240	245	ggg gag tca ccc atg gcc Gly Glu Ser Pro Met Ala 250	952
255	5 Gry Gin Phe	260	acc cta cgc acc cca gca Thr Leu Arg Thr Pro Ala 265	1000
270	, ned Ala ned ;	275	aaa gtc aag agc gtg gtg Lys Val Lys Ser Val Val 280	1048
285	290	ys val Pro	gtg gag cag ctg cgt ttc Val Glu Gln Leu Arg Phe 295	1096
tgg agg cac tgg Trp Arg His Trp 300	cat too ogg o His Ser Arg 0 305	cag ccc acc Gln Pro Thr	gcc aag cag cgc gtc atc Ala Lys Gln Arg Val Ile 310 315	1144
gac gta gct gac Asp Val Ala Asp	tgt aag gaa a Cys Lys Glu A 320	ac ttc aac asn Phe Asn 325	acg gtc cag cac att gaa Thr Val Gln His Ile Glu 330	1192
gag gtg gcc tat Glu Val Ala Tyr 335	aac gcg ctg t Asn Ala Leu S	cc ttt gtg er Phe Val 340	tgg aat gtc aac gag gaa Trp Asn Val Asn Glu Glu 345	1240
gcc aag gtg ttt Ala Lys Val Phe 350	ric Gry var A	ac tgt ctg a sn Cys Leu a 55	agc aca gac ttc tcc tcg Ser Thr Asp Phe Ser Ser 360	1288
cag aag gga gtg Gln Lys Gly Val 365	aag ggt gtc co Lys Gly Val Pr 370	cc ctg aac t ro Leu Asn I	ctg caa att gac acc tat Leu Gln Ile Asp Thr Tyr 375	1336
gac tgt gga gca Asp Cys Gly Ala 380	ggc.act gag co Gly Thr Glu Ar 385	d ren Agi E	cac cgt gct gtc tgc cag His Arg Ala Val Cys Gln 190 395	1384
7 1 1110	tgt gat aag gg Cys Asp Lys Gl 400	ya gct gag a Ly Ala Glu A 405	ngg aag atg cgc gat gat arg Lys Met Arg Asp Asp 410	1432
gaa cgg aag cag Glu Arg Lys Gln 415	ttt cga agg aa Phe Arg Arg Ly	g gtc aag t s Val Lys C 420	gc cca gac tcc agt aac ys Pro Asp Ser Ser Asn 425	1480

aat gca gga atc aag ggc tgc ctg ctg tca ggc ttc agg ggc aat gag Asn Ala Gly Ile Lys Gly Cys Leu Leu Ser Gly Phe Arg Gly Asn Glu 430 435 440	1528
acc aca tac ttg cgg cca gaa act gac ctg gag acc cag cct gtg ttg Thr Thr Tyr Leu Arg Pro Glu Thr Asp Leu Glu Thr Gln Pro Val Leu 445 450 455	1576
ttt atc ccc aat ctg cat ttt tcc agc cta cag cgc cca gga ggg gtt Phe Ile Pro Asn Leu His Phe Ser Ser Leu Gln Arg Pro Gly Gly Val 460 465 470 475	1624
gtc ccc tca gca gga cac agc agc tct gac agg ctg cct ctg aag cga Val Pro Ser Ala Gly His Ser Ser Ser Asp Arg Leu Pro Leu Lys Arg 480 485 490	1672
acc tgc tca ccc ttt gct gag gag ttt gag cct ctt cct tct aaa caa Thr Cys Ser Pro Phe Ala Glu Glu Phe Glu Pro Leu Pro Ser Lys Gln 495 500 505	1720
gcc aag gaa gat gac ctt cag aga gtt ctg ttg tat gtg agg agg gag Ala Lys Glu Asp Asp Leu Gln Arg Val Leu Leu Tyr Val Arg Arg Glu 510 515 520	1768
aca gag gag gtg ttt gac gcg ctc atg ttg aag acc ccg gac ctg aag Thr Glu Glu Val Phe Asp Ala Leu Met Leu Lys Thr Pro Asp Leu Lys 525 530 535	1816
ggc ctg agg aat gcg atc tct gag aag tac ggc ctc ccc gag gag aat Gly Leu Arg Asn Ala Ile Ser Glu Lys Tyr Gly Leu Pro Glu Glu Asn 540 545 550 555	1864
att tgc aaa gtc tac aag aaa tgc aag cga ggc atc ctg gtt aac atg Ile Cys Lys Val Tyr Lys Lys Cys Lys Arg Gly Ile Leu Val Asn Met 560 565 570	1912
gac aac aac atc atc caa cac tac agc aac cac gtg gcc ttc ctg ctg Asp Asn Asn Ile Ile Gln His Tyr Ser Asn His Val Ala Phe Leu Leu 575 580 585	1960
gac atg ggt gag ctg gac ggc aag atc cag atc atc ctg aag gag cta Asp Met Gly Glu Leu Asp Gly Lys Ile Gln Ile Ile Leu Lys Glu Leu 590 595 600	2008
tgagggcccg gcctcaagcg tcccacaccc ggggcccggc tcaagccacg tacaacctct	2068
tctgtgtcag ctgttacttg aaatgccttt ctttgggaaa gaggtctcgc aagcaaccaa	2128
ctcggtgatg tccaagccag ggagagacca agaaggttcc aggatctaaa tgtcccaccc	2188
aggetegaae teaeteeaga getteetgaa ageaeeeage eeaeeggaga gtetgageaa	2248
cacagaccca actgcctgct ttctcttcta agtcccgctg cagaggccct tacaggggac	2308
gggggtcaca ccaccttctc tgcagggcta cacccgctgt ctcgatcggt tctgacgttc	2368

actgtttcct	ttctaccaac	ttcagaccag	agagttctca	cactttggcc	aaataacttg	2428
aaaactcgtg	actttcacag	cagatgcctt	tgtgaggccc	ttggagagga	aactttctta	2488
ttgacttcct	cggcacaaga	tgtaagtcac	catcatcgag	ctgacaggaa	caaataccct	2548
tgccacctac	tgttgtacac	atttcttatt	tacagttttc	attatgtgat	tatatatata	2608
tatatgtaag	tatatattat	gtacatatat	gcaacatttt	gtatgtccat	gttacatttt	2668
tatcatttca	aaaatatgta	tttcatattt	cttgaactat	ttttttagct	gttattcgat	2728
tatgcatttt	gtatatcata	gggtttagta	ataaaagcct	acccatgcac	acttaaaaaa	2788
aaaaaaaaa	aaatatcnag	cttatcgata	ccgtcgacct	cga		2831

<210> 16

<211> 603 <212> PRT <213> murine

<220>

<221> misc_feature <222> (2806)..(2806)

<223> n = any nucleotide

<400> 16

Met Ser Asn Glu Leu Asp Phe Arg Ser Val Arg Leu Leu Lys Asn Asp 1 5

Pro Val Ser Phe Gln Lys Phe Pro Tyr Ser Asn Glu Asp Glu Ala Trp

Lys Thr Tyr Leu Glu Asn Pro Leu Thr Ala Ala Thr Lys Ala Met Met 40

Arg Val Asn Gly Asp Glu Glu Ser Val Ala Ala Leu Ser Phe Leu Tyr

Asp Tyr Tyr Met Gly Pro Lys Glu Lys Arg Ile Leu Ser Ser Ser Thr 75

Gly Gly Arg Asn Asp Gln Gly Lys Lys Phe Tyr His Ser Met Asp Tyr 90

Glu Pro Asp Leu Ala Pro Leu Glu Ser Pro Thr His Leu Met Lys Phe 100 105

Leu Thr Glu Asn Val Ser Gly Ser Pro Asp Tyr Thr Asp Gln Leu Lys
115 120 125

Lys Asn Asn Leu Gly Leu Glu Gly Val Leu Pro Thr Pro Gly Lys

Thr Asn Thr Val Pro Pro Gly Pro Ser Lys Leu Glu Ala Ser Ser Met 145 150 155 160

Asp Ser Tyr Leu Leu Pro Ala Ser Asp Ile Tyr Asp Asn Gly Ser Leu 165 170 175

Asn Ser Leu Phe Glu Ser Ile His Gly Val Pro Pro Thr Gln Arg Trp 180 185 190

Gln Pro Asp Ser Thr Phe Lys Asp Asp Pro Gln Glu Ser Leu Leu Phe 195 200 205

Pro Asp Ile Leu Lys Thr Ser Pro Asp Pro Pro Cys Pro Glu Asp Tyr 210 215 220

Pro Gly Leu Lys Ser Asp Phe Glu Tyr Thr Leu Gly Ser Pro Lys Ala 225 230 235 240

Ile His Ile Lys Ala Gly Glu Ser Pro Met Ala Tyr Leu Asn Lys Gly 245 250 255

Gln Phe Tyr Pro Val Thr Leu Arg Thr Pro Ala Gly Gly Lys Gly Leu 260 265 270

Ala Leu Ser Ser Ser Lys Val Lys Ser Val Val Met Val Val Phe Asp 275 280 285

Asn Asp Lys Val Pro Val Glu Gln Leu Arg Phe Trp Arg His Trp His 290 295 300

Ser Arg Gln Pro Thr Ala Lys Gln Arg Val Ile Asp Val Ala Asp Cys 305 310 315 320

Lys Glu Asn Phe Asn Thr Val Gln His Ile Glu Glu Val Ala Tyr Asn 325 330 335

Ala Leu Ser Phe Val Trp Asn Val Asn Glu Glu Ala Lys Val Phe Ile

340 . 345 . 350

Gly Val Asn Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Val Lys 355 360 365

Gly Val Pro Leu Asn Leu Gln Ile Asp Thr Tyr Asp Cys Gly Ala Gly 370 375 380

Thr Glu Arg Leu Val His Arg Ala Val Cys Gln Ile Lys Ile Phe Cys 385 390 395 400

Asp Lys Gly Ala Glu Arg Lys Met Arg Asp Asp Glu Arg Lys Gln Phe 405 410 415

Arg Arg Lys Val Lys Cys Pro Asp Ser Ser Asn Asn Ala Gly Ile Lys 420 425 430

Gly Cys Leu Leu Ser Gly Phe Arg Gly Asn Glu Thr Thr Tyr Leu Arg 435 440 445

Pro Glu Thr Asp Leu Glu Thr Gln Pro Val Leu Phe Ile Pro Asn Leu 450 455 460

His Phe Ser Ser Leu Gln Arg Pro Gly Gly Val Val Pro Ser Ala Gly 465 470 475 480

His Ser Ser Ser Asp Arg Leu Pro Leu Lys Arg Thr Cys Ser Pro Phe 485 490 495

Ala Glu Glu Phe Glu Pro Leu Pro Ser Lys Gln Ala Lys Glu Asp Asp 500 505 510

Leu Gln Arg Val Leu Leu Tyr Val Arg Arg Glu Thr Glu Glu Val Phe 515 520 525

Asp Ala Leu Met Leu Lys Thr Pro Asp Leu Lys Gly Leu Arg Asn Ala 530 540

Ile Ser Glu Lys Tyr Gly Leu Pro Glu Glu Asn Ile Cys Lys Val Tyr 545 550 555 560

Lys Lys Cys Lys Arg Gly Ile Leu Val Asn Met Asp Asn Asn Ile Ile 565 570

Gln His Tyr Ser Asn His Val Ala Phe Leu Leu Asp Met Gly Glu Leu 580 585 590

Asp Gly Lys Ile Gln Ile Ile Leu Lys Glu Leu 595 600

<210> 17

<211> 4840

<212> DNA

<213> drosphila

<400> 17

aaaaatagaa aaaacaacaa caaattggct tgaaaacgca aatgccaggc gcaacgcccc 60 cgaaccgacc cgcccctca acttttgcgc cctccagtag caatagcagc aatatgagca 120 gcagcaacat caaatgttag gccaaaatgc acaaaccgcc agcaacaaag gcagcaccaa 180 gcgaacgaaa caacaacagc tccacatacc acaaagagtg gcacattaga agcggccaaa 240 agcagccagc cgagagcatt gtgtaagcca aaggcccaga gagccaggct aaaagccccc 300 agacgcacaa caacaacaac aacaactaaa acagcacaaa gagtggcgaa aggtgcaccc 360 accagcaaaa cagcaacaac ggagcaacca acaacagcag cagcagcagc agcagccaca 420 tttcagttac agctccagac tcccaggttg cagactccca aagcaaacag actccagtcc 480 acgatecage tecageteca ecgatecgat ecaetgetee agegtgeteg agtgecatag 540 atecteacea agtgecaaaa teegeateet gateecaaga geteaaggea eeeeggeeea 600 aaattgagct gagaacgaaa cgaaggaagt tccttagtgc catagaaagc agttaatgaa 660 acaacgacta agacgaagat cgaccatcca gaaccggagg gagctaattg cgaacgaaag 720 aaaccacaaa gtgccttcca tcaatccgtt gataagtgat atttattatg tttatacttg 780 ccagcagccg aggcagcaac agcaatagca acaaccatag gggatcacgg catcgatgat 840 cagtccacga ccaagtccta gtgcaatccg gaatccagtt caaattagtt caataagccg 900 tatctaccac gtataatgtc cacatccacc gccacaacga gcgttatcac gtccaacgag 960 ctctcgctgt ccggccacgc ccacggtcac ggtcacgccc accagttgca ccagcacacc 1020 cacageegee taggagttgg egttggtgtt ggeateetta gegaegeate eetategeee 1080 atccaacaag gcagtggcgg ccacagcggc ggaggtaaca caaacagttc accactggcg 1140 cccaacggag tgccacttct cacaacaatg caccgatcac cggactcacc gcagccagaa 1200 ttggccacca tgacgaacgt caacgtgctg gatctgcaca cggataactc caagctgtac 1260

gacaaggagg	ctgtatttat	atacgaaacg	cccaaggtgg	tgatgccagc	ggatggcggg	1320
ggtggcaata	attccgatga	aggtcatgcc	atcgatgcgc	ggattgcggc	ccaaatgggc	1380
aaccaagccc	agcaacagca	gcagcagcaa	cagcagacgg	aacaccagcc	gctggccaag	1440
atcgagttcg	atgagaacca	gataatccgg	gtggtgggac	caaatggcga	gcaacagcaa	1500
atcatctcgc	gggagatcat	caatggggag	catcatatcc	tgtcgcgaaa	cgaggctggt	1560
gagcacattc	tcacacggat	cgtcagtgat	ccctccaagt	tgatgcccaa	tgacaatgca	1620
gtggccacgg	ccatgtacaa	ccaggcccaa	aagatgaaca	atgatcacgg	gcaggcggta	1680
tatcagacat	caccattgcc	gctagacgcg	tctgtattgc	attatagtgg	cggcaatgat	1740
tcgaatgtaa	ttaagacgga	ggccgatatc	tacgaggatc	acaagaaaca	tgcggctgca	1800
gcagcagctg	ctgccggcgg	aggatccatc	atatacacca	catccgatcc	gaacggagtg	1860
aatgtgaaac	aactgcccca	tttgacggta	ccccaaaaac	ttgatcccga	cctctatcaa	1920
gccgataagc	atatagattt	gatctacaac	gatggcagca	agacggtgat	ttactccact	1980
acggatcaga	agagtttgga	aatatactcg	ggcggcgaca	teggeageet	ggtgtccgac	2040
ggccaagtgg	tggtccaggc	gggactgccg	tatgccacca	ccaccggagc	cggcggccag	2100
cccgtctata	tcgtggccga	cggtgccttg	ccagcgggag	tcgaggagca	tctgcagagt	2160
ggaaagctca	atggccagac	cacacctatc	gatgtctctg	gcctatcgca	aaatgagatt	2220
caaggctttt	tgctcggctc	acacccctcg	tcatcggcga	cggtaagcac	aaccggcgtt	2280
gtctccacga	caacgatctc	gcatcaccag	caacagcagc	agcagcagca	acagcaacag	2340
cagcagcagc	agcagcaaca	ccagcagcag	cagcaacatc	ccggcgacat	tgttagtgcc	2400
gctggcgtgg	ggagcacggg	ctccattgtc	tcctctgcgg	cgcaacagca	gcagcagcag	2460
caactaatta	gcatcaaacg	agagcccgaa	gacttgcgca	aggatcccaa	gaatggcaac	2520
attgccggtg	cagcaacagc	aaatggaccc	ggttcggtca	taacccaaaa	gtcctttgat	2580
tatacggaat	tgtgccagcc	gggcacgctg	atcgatgcca	atggcagcat	acccgtcagc	2640
gtgaacagca	tccagcagag	aacggcggtc	catggcagcc	agaacagtcc	caccacatcg	2700
ctggtggaca	ccagcaccaa	tggatccacg	cgatcgcggc	cctggcacga	ctttggacgt	2760
cagaatgatg	ccgacaaaat	acaaatacca	aaaatcttca	caaacgtggg	cttccgatat	2820
cacctggaga	gccccatcag	ttcatcgcag	aggcgcgagg	acgatcgcat	cacctacatc	2880
aacaagggtc	aattctatgg	aataacgctg	gagtatgtgc	acgatgcgga	aaagcccatt	2940

aagaacacca ccgtcaagag tgtgatcatg ctaatgttcc gcgaggagaa gagtcccgag	
gatgagatca aggcctggca attctggcac agtcgtcagc attccgtgaa gcagagaatc	3060
ttggatgcag atacgaagaa ctcggttggc ctcgttggct gcatcgagga agtgtcgcac	3120
aatgccatcg ccgtctactg gaatccgctg gagagctccg ccaagatcaa cattgcggtt	3180
cagtgettga geaeggattt cageagteaa aagggaggee tgeegetgea egtacaaate	3240
gacacatttg aggaccccag agatacggcg gtcttccacc gcggctactg tcagataaag	3300
gtettetgeg ataagggege egaaegaaag aegegegatg aagageggeg ggeegecaaa	3360
cgaaagatga cagccacggg cagaaagaag ctggacgagc tttaccatcc ggtaacggat	3420
cggtccgagt tctatggcat gcaggacttc gccaagccgc cggtgctatt ctcgcccgcc	3480
gaggacatgg agaaggtagg teagetggge attggegetg ecaeeggeat gacatteaae	3540
cccctgagca acggcaactc caactccaac tcgcactcgt ccttgcagag cttctacggc	3600
catgagactg actegeogga cetgaagggg geeteacegt teetgeteea eggeoagaag	3660
gtggccacgc cgacgctcaa gttccacaac cattttccgc ccgacatgca gaccgataag	3720
aaggatcaca tactggacca gaacatgttg accagcacac ccctgaccga ctttggtccg	3780
ccgatgaagc gcggcaggat gacgccgccg acctcggaac gcgtgatgct gtacgtgcgg	3840
caggagaacg aggaggtgta tacaccgttg cacgtggtgc cgcccaccac gatcggcctg	
ctaaatgcga ttgaaaacaa atacaaaatc tcaacaacga gcataaataa catttatcgc	3900
acaaacaaga aggggattac tgcgaaaatt gacgatgaca tgatatcgtt ctactgcaac	3960
gaggacatet ttetgetgga ggtgeaacag ategaggaeg acetgtaega tgtgaegete	4020
acggagetge ccaatcagta gegetggeag taegggtage accegetaac egeacteaaa	4080
aaaaaaagca aacaaacaca caaattacgg acacaacaag ttgtttcaat aagccatttt	4140
ccatagagcc taagtctaaa tatcgtagtt ataataatgg gatccgcaac aaatcgagtt	4200
gcaacgaatg ttaagaacgc taacacaata cgcatgtaaa atgatacttt aaaattgatt	4260
tagttatttt agcaacaatg agattatcta aaattgtttg atcaaatttt acattctcgc	4320.
tatgtctata gataattcta agcccgtaag cccataagcg taatcgtaat cgtaatcgta	4380
ccgtgtattt atgctcatat ataaacaact atatatata atatatat atatatgtgc	4440
	4500
ggagtgcaac agtgtctgtc cagtaggaga taagtctcgt ttccgctccc ctgcttatgc	4560
tatgacetta ggtecaggge aagtatgagt taccgaatet atetattagg tgeatetaac	4620
gaaaggaatc attagetetg cacgaactet ageegtagee tattgtaate catttgtatg	4680

4740

4800

4840

									•						
ttt	ggct	taa	gcgt	ttta	ct t	gttg	aata	t aa	agtg	taaa	att	attt	ttg	aaaa	aaaaaa
acc	caca	caa	aaca	caaa	tc g	tttg	ttct	a ta	tttc	tgtt	tca	aaac	taa	ctcg	ttaccc
aca	atcc	cct	ctgt	tatg	ta t	aatt	agga	t ct	ctgt	acac					
<21 <21 <21 <21	1 >	18 1061 PRT muri	ne											-	
< 40	0 >	18													
Met 1	Ser	Thr	Ser	Thr 5	Ala	Thr	Thr	Ser	Val 10	Ile	Thr	Ser	Asn	Glu 15	Leu
Ser	Leu	Ser	Gly 20	His	Ala	His	Gly	His 25	Gly	His	Ala	His	Gln 30	Leu	His
Gln	His	Thr 35	His	Ser	Arg	Leu	Gly 40	Val	Gly	Val	Gly	Val 45	Gly	Ile	Leu
Ser	Asp 50	Ala	Ser	Leu	Ser	Pro 55	Ile	Gln	Gln	Gly	Ser 60	Gly	Gly	His	Ser
Gly 65	Gly	Gly	Asn	Thr	Asn 70	Ser	Ser	Pro	Leu	Ala 75	Pro	Asn	Gly	Val	Pro 80
Leu	Leu	Thr	Thr	Met 85	His	Arg	Ser	Pro	Asp 90	Ser	Pro	Gln	Pro	Glu 95	Leu
Ala	Thr	Met [°]	Thr 100	Asn	Val	Asn	Val	Leu 105	Asp	Leu	His	Thr	Asp 110	Asn	Ser
Lys	Leu	Tyr 115	Asp	Lys	Glu	Ala	Val 120	Phe	Ile	Tyr	Glu	Thr 125	Pro	Lys	Val
Val	Met 130	Pro	Ala	Asp	Gly	Gly 135	Gly	Gly	Asn	Asn	Ser 140	Asp	Glu	Gly	His
Ala 145	Ile	Asp	Ala	Arg	Ile 150	Ala	Ala	Gln	Met	Gly 155	Asn	Gln	Ala	Gln	Gln 160
Gln	Gln	Gln	Gln	Gln	Gln	Gln	Thr	Glu	His	Gln	Pro	Leu	Ala	Lys	Ile

1,70

175

165

- Glu Phe Asp Glu Asn Gln Ile Ile Arg Val Val Gly Pro Asn Gly Glu 180 185 190
- Gln Gln Gln Ile Ile Ser Arg Glu Ile Ile Asn Gly Glu His His Ile 195 200 205
- Leu Ser Arg Asn Glu Ala Gly Glu His Ile Leu Thr Arg Ile Val Ser 210 215 220
- Asp Pro Ser Lys Leu Met Pro Asn Asp Asn Ala Val Ala Thr Ala Met 225 230 235 240
- Tyr Asn Gln Ala Gln Lys Met Asn Asn Asp His Gly Gln Ala Val Tyr 245 250 255
- Gln Thr Ser Pro Leu Pro Leu Asp Ala Ser Val Leu His Tyr Ser Gly
 260 265 270
- Gly Asn Asp Ser Asn Val Ile Lys Thr Glu Ala Asp Ile Tyr Glu Asp 275 280 285
- His Lys Lys His Ala Ala Ala Ala Ala Ala Ala Gly Gly Ser 290 295 300
- Ile Ile Tyr Thr Thr Ser Asp Pro Asn Gly Val Asn Val Lys Gln Leu 305 . 310 315 320
- Pro His Leu Thr Val Pro Gln Lys Leu Asp Pro Asp Leu Tyr Gln Ala 325 330 335
- Asp Lys His Ile Asp Leu Ile Tyr Asn Asp Gly Ser Lys Thr Val Ile 340 345 350
- Tyr Ser Thr Thr Asp Gln Lys Ser Leu Glu Ile Tyr Ser Gly Gly Asp 355 360 365
- Ile Gly Ser Leu Val Ser Asp Gly Gln Val Val Val Gln Ala Gly Leu 370 375 380
- Pro Tyr Ala Thr Thr Gly Ala Gly Gly Gln Pro Val Tyr Ile Val 385 390 395 400

- Ala Asp Gly Ala Leu Pro Ala Gly Val Glu Glu His Leu Gln Ser Gly 405 410 415
- Lys Leu Asn Gly Gln Thr Thr Pro Ile Asp Val Ser Gly Leu Ser Gln
 420 425 430
- Asn Glu Ile Gln Gly Phe Leu Leu Gly Ser His Pro Ser Ser Ser Ala 435 440 445
- Thr Val Ser Thr Thr Gly Val Val Ser Thr Thr Thr Ile Ser His His 450 455 460
- Gln His Gln Gln Gln Gln His Pro Gly Asp Ile Val Ser Ala Ala 485 490 495
- Gly Val Gly Ser Thr Gly Ser Ile Val Ser Ser Ala Ala Gln Gln Gln 500 505 510
- Gln Gln Gln Leu Ile Ser Ile Lys Arg Glu Pro Glu Asp Leu Arg 515 520 525
- Lys Asp Pro Lys Asn Gly Asn Ile Ala Gly Ala Ala Thr Ala Asn Gly 530 535 540
- Pro Gly Ser Val Ile Thr Gln Lys Ser Phe Asp Tyr Thr Glu Leu Cys 545 550 555 560
- Gln Pro Gly Thr Leu Ile Asp Ala Asn Gly Ser Ile Pro Val Ser Val
 565 570 575
- Asn Ser Ile Gln Gln Arg Thr Ala Val His Gly Ser Gln Asn Ser Pro 580 585 590
- Thr Thr Ser Leu Val Asp Thr Ser Thr Asn Gly Ser Thr Arg Ser Arg 595 600 605
- Pro Trp His Asp Phe Gly Arg Gln Asn Asp Ala Asp Lys Ile Gln Ile 610 615 620

Pro Lys Ile Phe Thr Asn Val Gly Phe Arg Tyr His Leu Glu Ser Pro 625 630 635 640

Ile Ser Ser Ser Gln Arg Arg Glu Asp Asp Arg Ile Thr Tyr Ile Asn 645 650 655

Lys Gly Gln Phe Tyr Gly Ile Thr Leu Glu Tyr Val His Asp Ala Glu 660 665 670

Lys Pro Ile Lys Asn Thr Thr Val Lys Ser Val Ile Met Leu Met Phe 675 680 685

Arg Glu Glu Lys Ser Pro Glu Asp Glu Ile Lys Ala Trp Gln Phe Trp 690 695 700

His Ser Arg Gln His Ser Val Lys Gln Arg Ile Leu Asp Ala Asp Thr 705 710 715 720

Lys Asn Ser Val Gly Leu Val Gly Cys Ile Glu Glu Val Ser His Asn 725 730 735

Ala Ile Ala Val Tyr Trp Asn Pro Leu Glu Ser Ser Ala Lys Ile Asn 740 745 750

Ile Ala Val Gln Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Gly 755 760 765

Leu Pro Leu His Val Gln Ile Asp Thr Phe Glu Asp Pro Arg Asp Thr 770 775 780

Ala Val Phe His Arg Gly Tyr Cys Gln Ile Lys Val Phe Cys Asp Lys 785 790 795 800

Gly Ala Glu Arg Lys Thr Arg Asp Glu Glu Arg Arg Ala Ala Lys Arg 805 810 815

Lys Met Thr Ala Thr Gly Arg Lys Leu Asp Glu Leu Tyr His Pro 820 825 830

Val Thr Asp Arg Ser Glu Phe Tyr Gly Met Gln Asp Phe Ala Lys Pro 835 840 845

Pro Val Leu Phe Ser Pro Ala Glu Asp Met Glu Lys Val Gly Gln Leu

850

855

860

Gly Ile Gly Ala Ala Thr Gly Met Thr Phe Asn Pro Leu Ser Asn Gly 865 870 875 880

Asn Ser Asn Ser Asn Ser His Ser Ser Leu Gln Ser Phe Tyr Gly His 885 890 895

Glu Thr Asp Ser Pro Asp Leu Lys Gly Ala Ser Pro Phe Leu Leu His

Gly Gln Lys Val Ala Thr Pro Thr Leu Lys Phe His Asn His Phe Pro 915 920 925

Pro Asp Met Gln Thr Asp Lys Lys Asp His Ile Leu Asp Gln Asn Met 930 935 940

Leu Thr Ser Thr Pro Leu Thr Asp Phe Gly Pro Pro Met Lys Arg Gly 945 950 955 960

Arg Met Thr Pro Pro Thr Ser Glu Arg Val Met Leu Tyr Val Arg Gln 965 970 975

Glu Asn Glu Glu Val Tyr Thr Pro Leu His Val Val Pro Pro Thr Thr 980 985 990

Ile Gly Leu Leu Asn Ala Ile Glu Asn Lys Tyr Lys Ile Ser Thr Thr 995 1000 1005

Ser Ile Asn Asn Ile Tyr Arg Thr Asn Lys Lys Gly Ile Thr Ala 1010 1015 1020

Lys Ile Asp Asp Asp Met Ile Ser Phe Tyr Cys Asn Glu Asp Ile 1025 1030 1035

Phe Leu Leu Glu Val Gln Gln Ile Glu Asp Asp Leu Tyr Asp Val 1040 1040 1050

Thr Leu Thr Glu Leu Pro Asn Gln 1055 1060

<210> 19 <211> 21

- 54 -

DNA human				
				21
20			•	
21		•		•
DNA				
human				
			•	
misc_feature	•			
human p49 mgr				
20				2.1
ttcc ctcgacatag a				21
21				
20	•			
numan				
21				
atga cacaggagta				20
22				
20				
DNA				
human				
22				
tatg gagacagtga				20
				•
23				
20				
		•		
human				
23				
aaca aggacactgc				20
·				
24				
20				
murine				
24				
				20
	human 19 tttg atgccctgat g 20 21 DNA human misc_feature human p49 mgr 20 ttcc ctcgacatag a 21 20 DNA human 21 tatga cacaggagta 22 20 DNA human 22 tatg gagacagtga 23 20 DNA human 23 taaca aggacactgc 24 20 DNA murine	human 19 tttg atgccctgat g 20 21 DNA human misc_feature human p49 mgr 20 ttcc ctcgacatag a 21 20 DNA human 21 atga cacaggagta 22 20 DNA human 22 tatg gagacagtga 23 20 DNA human 23 2acaca aggacactgc 24 20 DNA murine 24	human 19 tttg atgccctgat g 20 21 DNA human misc_feature human p49 mgr 20 ttcc ctcgacatag a 21 20 DNA human 21 tatga cacaggagta 22 20 DNA human 22 tatg gagacagtga 23 20 DNA human 24 25 20 DNA human 27 28 29 20 DNA human 20 21 20 DNA human 21 22 22 20 DNA human 22 23 20 DNA human 23 24 20 DNA human 23 25 26 27 28 29 29 29 20 DNA human 20 21 21 22 22 22 23 24 25 25 26 26 27 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	human 19 tttg atgccctgat g 20 21 DNA human misc_feature human p49 mgr 20 ttcc ctcgacatag a 21 20 DNA human 21 atga cacaggagta 22 20 DNA human 22 20 DNA human 22 20 DNA human 23 20 DNA human 24 20 DNA human 23 caca aggacactgc

<210> 25 <211> 20 <212> DNA <213> murine					-	
<400> 25 agcgcgatga cacaggagta						20
<210> 26 <211> 20 <212> DNA <213> murine				,		
<400> 26 agtgccagag ctgaactgat			•			20
<210> 27 <211> 20 <212> DNA <213> murine						
<400> 27 tccatgggtt ccttgagttc		·		·		20
<210> 28 <211> 20 <212> DNA <213> murine				·		
<400> 28 agtgccagag ctgaactgat					•	20
<210> 29 <211> 20 <212> DNA <213> murine	·					÷
<400> 29 aaaggggagc gagttcattg						20
<210> 30 <211> 20 <212> DNA <213> murine						
<400> 30 agagctctcg gtgatggata					2	o
<210> 31 <211> 34 <212> DNA					· .	

<213>	dros	ophila	dopa	decarboxyl	ase promote	r		
<400> ggtggtg	31 . gctc	taataac	cegg	tttccaagat	gcgc			34
<210><211><211><212><213>	32 34 DNA dros	ophila	PCNA	promoter				
<400> gggtaaa	32 aaag	tgtgaad	caat	caaaccagtt	ggca	÷		34
<210><211><211><212><213>	33 84 DNA huma	n		,				
<400>	33 acac	ccaaac	ccac	acccacccac	aaacacacaa	accggcagtg	acaacaacca	60
		aataac						84
<210><211><212><212><213>	34 4747 DNA Dros	ophila						
<400> aaaaat	34 agaa	aaaaca	acaa	caaattggct	tgaaaacgca	aatgccaggc	gcaacgcccc	60
cgaacc	gacc	cgcccc	ctca	acttttgcgc	cctccagtag	caatagcagc	aatatgagca	120
gcagca	acat	caaatg	ttag	gccaaaatgc	acaaaccgcc	agcaacaaag	gcagcaccaa	180
gcgaac	gaaa	caacaa	cagc	tccacatacc	acaaagagtg	gcacattaga	agcggccaaa	240
agcagc	cage	cgagag	catt	gtgtaagcca	aaggcccaga	gagccaggct	aaaagccccc	300
agacgc	acaa	caacaa	.caac	aacaactaaa	acagcacaaa	gagtggcgaa	aggtgcaccc	360
accago	aaaa	cagcaa	caac	ggagcaacca	acaacagcag	cagcagcagc	agcagccaca	420
tttcag	ttac	agctcc	agac	tcccaggttg	cagactccca	aagcaaacag	actccagtcc	480
acgato	cágc	tccagt	tcca	ccgatccgat	ccactgctcc	agcgtgctcg	agtgccatag	540
atcctc	acca	agtgcc	aaaa	tccgcatcct	gatcccaaga	gctcaaggca	ccccggccca	600
aaatto	jagct	gagaac	gaaa	cgaaggaagt	tccttagtgc	catagaaagc	agttaatgaa	660
acaacg	jacta	agacga	agat	cgaccatcca	gaaccggagg	gagctaattg	cgaacgaaag	720
		~+acct	tcca	teaatecett	dataadtdat	atttattatq	tttatacttq	786

840	catcgatgat	gggatcacgg	acaaccatag	: agcaatagca	g aggcagcaac	ccagcagccg
900	caataagccg	caaattagtt	gaatccagtt	gtgcaatccg	a ccaagtccta	cagtccacga
960	gtccaacgag	gcgttatcac	gccacaacga	cacatccacc	gtataatgtc	tatctaccac
1020	ccagcacacc	accagttgca	ggtcacgccc	ccacggtcac	: ccggccacgc	ctctcgctgt
1080	cctatcgccc	gcgacgcatc	ggcatcctta	cgttggtgtt	: taggagttgg	cacageegee
1140	accactggcg	caaacagttc	ggaggtaaca	ccacagcggc	gcagtggcgg	atccaacaag
1200	gcagccagaa	cggactcacc	caccgatcac	cacaacaatg	tgecacttet	cccaacggag
1260	caagctgtac	cggataactc	gatctgcaca	caacgtgctg	tgacgaacgt	ttggccacca
1320	ggatggcggg	tgatgccagc	cccaaggtgg	atacgaaacg	ctgtatttat	gacaaggagg
1380	ccaaatgggc	ggattgcggc	atcgatgcgc	aggtcatgcc	attccgatga	ggtggcaata
1440	gctggccaag	aacaccagcc	cagcagacgg	gcagcagcaa	agcaacagca	aaccaagccc
1500	gcaacagcaa	caaatggcga	gtggtgggac	gataatccgg	atgagaacca	atcgagttcg
1560	cgaggctggt	tgtcgcgaaa	catcatatcc	caatggggag	gggagatcat	atcatctcgc
1620	tgacaatgca	tgatgcccaa	ccctccaagt	cgtcagtgat	tcacacggat	gagcacattc
1680	gcaggcggta	atgatcacgg	aagatgaaca	ccaggcccaa	ccatgtacaa	gtggccacgg
1740	cggcaatgat	attatagtgg	tctgtattgc	gctagacgcg	caccattgcc	tatcagacat
1800	tgcggctgca	acaagaaaca	tacgaggatc	ggccgatatc	ttaagacgga	tcgaatgtaa
1860	gaacggagtg	catccgatcc	atatacacca	aggatccatc	ctgccggcgg	gcagcagctg
1920	cctctatcaa	ttgatcccga	ccccaaaaac	tttgacggta	aactgcccca	aatgtgaaac
1980	ttactccact	agacggtgat	gatggcagca	gatctacaac	atatagattt	gccgataagc
2040	ggtgtccgac	tcggcagcct	ggcggcgaca	aatatactcg	agagtttgga	acggatcaga
2100	cggcggccag	ccaccggagc	tatgccacca	gggactgccg	tggtccaggc	ggccaagtgg
2160	tctgcagagt	tcgaggagca	ccagcgggag	cggtgccttg	tcgtggccga	cccgtctata
2220	aaatgagatt	gcctatcgca	gatgtctctg	cacacctatc	atggccagac	ggaaagctca
. 2280	aaccggcgtt	cggtaagcac	tcatcggcga	acacccctcg	tgctcggctc	caaggctttt
2340	acagcaacag	agcagcagca	caacagcagc	gcatcaccag	caacgatctc	gtctccacga
2400	tgttagtgcc	ccggcgacat	cagcaacatc	ccagcagcag	agcagcaaca	cagcagcagc
2460	gcagcagcag	cgcaacagca	tcctctgcgg	ctccattgtc	ggagcacggg	gctggcgtgg

caactaatta	gcatcaaacg	agagcccgaa	gacttgcgca	aggatcccaa	gaatggcaac	2520
attgccggtg	cagcaacagc	aaatggaccc	ggttcggtca	taacccaaaa	gtcctttgat	2580
tatacggaat	tgtgccagcc	gggcacgctg	atcgatgcca	atggcagcat	acccgtcagc	2640
gtgaacagca	tccagcagag	aacggcggtc	catggcagcc	agaacagtcc	caccacatcg	2700
ctggtggaca	ccagcaccaa	tggatccacg	cgatcgcggc	cctggcacga	ctttggacgt	2760
cagaatgatg	ccgacaaaat	acaaatacca	aaaatcttca	caaacgtggg	cttccgatat	2820
cacctggaga	gccccatcag	ttcatcgcag	aggcgcgagg	acgatcgcat	cacctacatc	2880
aacaagggtc	aattctatgg	aataacgctg	gagtatgtgc	acgatgcgga	aaagcccatt	2940
aagaacacca	ccgtcaagag	tgtgatcatg	ctaatgttcc	gcgaggagaa	gagtcccgag	3000
gatgagatca	aggcctggca	attctggcac	agtcgtcagc	attccgtgaa	gcagagaatc	3060
ttggatgcag	atacgaagaa	ctcggttggc	ctcgttggct	gcatcgagga	agtgtcgcac	3120
aatgccatcg	ccgtctactg	gaatccgctg	gagagctccg	ccaagatcaa	cattgcggtt	3180
cagtgcttga	gcacggattt	cagcagtcaa	aagggaggcc	tgccgctgca	cgtacaaatc	3240
gacacatttg	aggaccccag	agatacggcg	gtcttccacc	gcggctactg	tcagataaag	3300
gtcttctgcg	ataagggcgc	cgaacgaaag	acgcgcgatg	aagagcggcg	ggccgccaaa	3360
cgaaagatga	cagccacggg	cagaaagaag	ctggacgagc	tttaccatcc	ggtaacggat	3420
cggtccgagt	tctatggcat	gcaggacttc	gccaagccgc	cggtgctatt	ctcgcccgcc	3480
gaggacatgg	agaagagctt	ctacggccat	gagactgact	cgccggacct	gaagggggcc	3540
tcaccgttcc	tgctccacgg	ccagaaggtg	gccacgccga	cgctcaagtt	ccacaaccat	3600
tttccgcccg	acatgcagac	cgataagaag	gatcacatac	tggaccagaa	catgttgacc	3660
agcacacccc	tgaccgactt	tggtccgccg	atgaagcgcg	gcaggatgac	gccgccgacc	3720
tcggaacgcg	tgatgctgta	cgtgcggcag	gagaacgagg	aggtgtatac	accgttgcac	3780
gtggtgccgc	ccaccacgat	cggcctgcta	aatgcgattg	aaaacaaata	caaaatctca	3840
acaacgagca	taaataacat	ttatcgcaca	aacaagaagg	ggattactgc	gaaaattgac	3900
gatgacatga	tatcgttcta	ctgcaacgag	gacatctttc	tgctggaggt	gcaacagatc	3960
gaggacgacc	tgtacgatgt	gacgctcacg	gagctgccca	atcagtagcg	ctggcagtac	4020
gggtagcacc	cgctaaccgc	actcaaaaaa	aaaagcaaac	aaacacacaa	attacggaca	4080
caacaagttg	tttcaataag	ccattttcca	tagagcctaa	gtctaaatat	cgtagttata	4140
ataatgggat	ccgcaacaaa	tcgagttgca	acgaatgtta	agaacgctaa	cacaatacgc	4200

atgtaaaatg	atactttaaa	attgatttag	ttattttagc	aacaatgaga	ttatctaaaa	4260
ttgtttgatc	aaattttaca	ttctcgctat	gtctatagat	aattctaagc	ccgtaagccc	4320
ataagcgtaa	tcgtaatcgt	aatcgtaccg	tgtatttatg	ctcatatata	aacaactata	4380
tatatatata	tatatatata	tatgtgcgga	gtgcaacagt	gtctgtccag	taggagataa	4440
gtctcgtttc	cgctcccctg	cttatgctat	gaccttaggt	ccagggcaag	tatgagttac	4500
cgaatctatc	tattaggtgc	atctaacgaa	aggaatcatt	agctctgcac	gaactctagc	4560
cgtagcctat	tgtaatccat	ttgtatgttt	ggcttaagcg	ttttacttgt	tgaatataaa	4620
gtgtaaaatt	atttttgaaa	aaaaaaaacc	cacacaaaac	acaaatcgtt	tgttctatat	4680
ttctgtttca	aaactaactc	gttacccaca	atcccctctg	ttatgtataa	ttaggatctc	4740
tgtacac						4747

<210> 35

<211> 1030

<212> PRT

<213> Drosophila

<400> 35

Met Ser Thr Ser Thr Ala Thr Thr Ser Val Ile Thr Ser Asn Glu Leu 1 5 10 15

Ser Leu Ser Gly His Ala His Gly His Gly His Ala His Gln Leu His 20 25 30

Gln His Thr His Ser Arg Leu Gly Val Gly Val Gly Val Gly Ile Leu 35 40 45

Ser Asp Ala Ser Leu Ser Pro Ile Gln Gln Gly Ser Gly Gly His Ser 50 55 60

Gly Gly Gly Asn Thr Asn Ser Ser Pro Leu Ala Pro Asn Gly Val Pro 65 70 75 80

Leu Leu Thr Thr Met His Arg Ser Pro Asp Ser Pro Gln Pro Glu Leu 85 90 95

Ala Thr Met Thr Asn Val Asn Val Leu Asp Leu His Thr Asp Asn Ser 100 105 110

- Lys Leu Tyr Asp Lys Glu Ala Val Phe Ile Tyr Glu Thr Pro Lys Val 115 $$ 120 $$ 125
- Val Met Pro Ala Asp Gly Gly Gly Gly Asn Asn Ser Asp Glu Gly His
- Ala Ile Asp Ala Arg Ile Ala Ala Gln Met Gly Asn Gln Ala Gln Gln 145 150 155 160
- Gln Gln Gln Gln Gln Gln Thr Glu His Gln Pro Leu Ala Lys Ile 165 170 175
- Glu Phe Asp Glu Asn Gln Ile Ile Arg Val Val Gly Pro Asn Gly Glu 180 185 190
- Gln Gln Gln Ile Ile Ser Arg Glu Ile Ile Asn Gly Glu His His Ile 195 200 205
- Leu Ser Arg Asn Glu Ala Gly Glu His Ile Leu Thr Arg Ile Val Ser 210 220
- Asp Pro Ser Lys Leu Met Pro Asn Asp Asn Ala Val Ala Thr Ala Met 225 230 235 240
- Tyr Asn Gln Ala Gln Lys Met Asn Asn Asp His Gly Gln Ala Val Tyr 245 250 255
- Gln Thr Ser Pro Leu Pro Leu Asp Ala Ser Val Leu His Tyr Ser Gly 260 265 270
- Gly Asn Asp Ser Asn Val Ile Lys Thr Glu Ala Asp Ile Tyr Glu Asp 275 280 285
- His Lys Lys His Ala Ala Ala Ala Ala Ala Ala Gly Gly Gly Ser 290 295 300
- Ile Ile Tyr Thr Thr Ser Asp Pro Asn Gly Val Asn Val Lys Gln Leu 305 310 315
- Pro His Leu Thr Val Pro Gln Lys Leu Asp Pro Asp Leu Tyr Gln Ala 325 330 335
- Asp Lys His Ile Asp Leu Ile Tyr Asn Asp Gly Ser Lys Thr Val Ile

340	345	350

Tyr Ser Thr Thr Asp Gln Lys Ser Leu Glu Ile Tyr Ser Gly Gly Asp 355 360 365

Ile Gly Ser Leu Val Ser Asp Gly Gln Val Val Gln Ala Gly Leu 370 375 380

Pro Tyr Ala Thr Thr Gly Ala Gly Gly Gln Pro Val Tyr Ile Val 385 390 395 400

Ala Asp Gly Ala Leu Pro Ala Gly Val Glu Glu His Leu Gln Ser Gly
405 410 415

Lys Leu Asn Gly Gln Thr Thr Pro Ile Asp Val Ser Gly Leu Ser Gln 420 425 430

Asn Glu Ile Gln Gly Phe Leu Leu Gly Ser His Pro Ser Ser Ser Ala 435 440 445

Thr Val Ser Thr Thr Gly Val Val Ser Thr Thr Thr Ile Ser His His 450 455 460

Gln His Gln Gln Gln Gln His Pro Gly Asp Ile Val Ser Ala Ala 485 490 495

Gly Val Gly Ser Thr Gly Ser Ile Val Ser Ser Ala Ala Gln Gln Gln 500 505 510

Gln Gln Gln Leu Ile Ser Ile Lys Arg Glu Pro Glu Asp Leu Arg 515 520 525

Lys Asp Pro Lys Asn Gly Asn Ile Ala Gly Ala Ala Thr Ala Asn Gly 530 540

Pro Gly Ser Val Ile Thr Gln Lys Ser Phe Asp Tyr Thr Glu Leu Cys 545 550 555 560

Gln Pro Gly Thr Leu Ile Asp Ala Asn Gly Ser Ile Pro Val Ser Val
565 570 575

Asn Ser Ile Gln Gln Arg Thr Ala Val His Gly Ser Gln Asn Ser Pro 580 585 590

Thr Thr Ser Leu Val Asp Thr Ser Thr Asn Gly Ser Thr Arg Ser Arg 595 600 605

Pro Trp His Asp Phe Gly Arg Gln Asn Asp Ala Asp Lys Ile Gln Ile 610 620

Pro Lys Ile Phe Thr Asn Val Gly Phe Arg Tyr His Leu Glu Ser Pro 625 630 635 640

Ile Ser Ser Ser Gln Arg Arg Glu Asp Asp Arg Ile Thr Tyr Ile Asn 645 650 655

Lys Gly Gln Phe Tyr Gly Ile Thr Leu Glu Tyr Val His Asp Ala Glu 660 665 670

Lys Pro Ile Lys Asn Thr Thr Val Lys Ser Val Ile Met Leu Met Phe 675 680 685

Arg Glu Glu Lys Ser Pro Glu Asp Glu Ile Lys Ala Trp Gln Phe Trp 690 695 700

His Ser Arg Gln His Ser Val Lys Gln Arg Ile Leu Asp Ala Asp Thr 705 710 715 720

Lys Asn Ser Val Gly Leu Val Gly Cys Ile Glu Glu Val Ser His Asn 725 730 735

Ala Ile Ala Val Tyr Trp Asn Pro Leu Glu Ser Ser Ala Lys Ile Asn 740 745 750

Ile Ala Val Gln Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Gly 755 760 765

Leu Pro Leu His Val Gln Ile Asp Thr Phe Glu Asp Pro Arg Asp Thr 770 775 780

Ala Val Phe His Arg Gly Tyr Cys Gln Ile Lys Val Phe Cys Asp Lys 785 790 795 800

- Gly Ala Glu Arg Lys Thr Arg Asp Glu Glu Arg Arg Ala Ala Lys Arg 805 810 815
- Lys Met Thr Ala Thr Gly Arg Lys Leu Asp Glu Leu Tyr His Pro 820 825 830
- Val Thr Asp Arg Ser Glu Phe Tyr Gly Met Gln Asp Phe Ala Lys Pro 835 840 845
- Pro Val Leu Phe Ser Pro Ala Glu Asp Met Glu Lys Ser Phe Tyr Gly 850 855 860
- His Glu Thr Asp Ser Pro Asp Leu Lys Gly Ala Ser Pro Phe Leu Leu 865 870 875 . 880
- His Gly Gln Lys Val Ala Thr Pro Thr Leu Lys Phe His Asn His Phe 885 890 895
- Pro Pro Asp Met Gln Thr Asp Lys Lys Asp His Ile Leu Asp Gln Asn 900 905 910
- Met Leu Thr Ser Thr Pro Leu Thr Asp Phe Gly Pro Pro Met Lys Arg 915 920 925
- Gly Arg Met Thr Pro Pro Thr Ser Glu Arg Val Met Leu Tyr Val Arg 930 935 940
- Gln Glu Asn Glu Glu Val Tyr Thr Pro Leu His Val Val Pro Pro Thr 945 950 955 960
- Thr Ile Gly Leu Asn Ala Ile Glu Asn Lys Tyr Lys Ile Ser Thr 965 970 975
- Thr Ser Ile Asn Asn Ile Tyr Arg Thr Asn Lys Lys Gly Ile Thr Ala 980 985 990
- Lys Ile Asp Asp Asp Met Ile Ser Phe Tyr Cys Asn Glu Asp Ile Phe 995 1000 1005
- Leu Leu Glu Val Gln Gln Ile Glu Asp Asp Leu Tyr Asp Val Thr 1010 1015 1020

WO 2004/015108 PCT/AU2003/001006

- 64 -

Leu Thr Glu Leu Pro Asn Gln 1025 1030

<210> 36 <211> 5650 <212> DNA <213> Drosophila

<400> 36 aaaaataqaa aaaacaacaa caaattggct tgaaaacgca aatgccaggc gcaacgcccc 60 cgaaccgacc cgcccctca acttttgcgc cctccagtag caatagcagc aatatgagca 120 gcagcaacat caaatgttag gccaaaatgc acaaaccgcc agcaacaaag gcagcaccaa 180 gegaacgaaa caacaacage tecacatace acaaagagtg geacattaga ageggeeaaa 240 agcagccagc cgagagcatt gtgtaagcca aaggcccaga gagccaggct aaaagccccc 300 agacgcacaa caacaacaac aacaactaaa acagcacaaa gagtggcgaa aggtgcaccc 360 accagcaaaa cagcaacaac ggagcaacca acaacagcag cagcagcagc agcagccaca 420 tttcagttac agctccagac tcccaggttg cagactccca aagcaaacag actccagtcc 480 acgatccage tecagtteca eegateegat ceaetgetee agegtgeteg agtgecatag 540 atceteacea agtgecaaaa teegeateet gateecaaga geteaaggea eeeeggeeea 600 aaattgaget gagaacgaaa cgaaggaagt teettagtge catagaaage agttaatgaa 660 acaacgacta agacgaagat cgaccatcca gaaccggagg gagctaattg cgaacgaaag 720 aaaccacaaa gtgccttcca tcaatccgtt gataagtgat atttattatg tttatacttg 780 ccagcagccg aggcagcaac agcaatagca acaaccatag gggatcacgg catcgatgat 840 cagtocacga ccaagtocta gtgcaatoog gaatocagtt caaattagtt caataagoog 900 tatctaccac gtataatgtc cacatccacc gccacaacga gcgttatcac gtccaacgag 960 ctctcgctgt ccggccacgc ccacggtcac ggtcacgccc accagttgca ccagcacacc 1020 cacagoogoo taggagttgg ogttggtgtt ggoatootta gogacgcato cotatogooo 1080 atccaacaag gcagtggcgg ccacagcggc ggaggtaaca caaacagttc accactggcg 1140 cccaacggag tgccacttct cacaacaatg caccgatcac cggactcacc gcagccagaa 1200 ttggccacca tgacgaacgt caacgtgctg gatctqcaca cggataactc caagctgtac 1260 gacaaggagg ctgtatttat atacgaaacg cccaaggtgg tgatgccagc ggatggcggg 1320. ggtggcaata attccgatga aggtcatgcc atcqatqcqc qqattgcggc ccaaatgggc 1380 aaccaagccc agcaacagca gcagcagcaa cagcagacgg aacaccagcc gctggccaag 1440

atcgagttcg	atgagaacca	gataatccgg	gtggtgggad	: caaatggcga	gcaacagcaa	1500
atcatctcgc	gggagatcat	caatggggag	catcatatco	: tgtcgcgaaa	cgaggctggt	1560
gagcacattc	tcacacggat	cgtcagtgat	ccctccaagt	tgatgcccaa	ı tgacaatgca	1620
gtggccacgg	ccatgtacaa	ccaggcccaa	aagatgaaca	atgatcacgg	gcaggcggta	1680
tatcagacat	caccattgcc	gctagacgcg	tctgtattgc	attatagtgg	cggcaatgat	1740
tcgaatgtaa	ttaagacgga	ggccgatatc	tacgaggatc	acaagaaaca	tgcggctgca	1800
gcagcagctg	ctgccggcgg	aggatccatc	atatacacca	catccgatcc	gaacggagtg	1860
aatgtgaaac	aactgcccca	tttgacggta	ccccaaaaac	ttgatcccga	cctctatcaa	1920
gccgataagc	atatagattt	gatctacaac	gatggcagca	agacggtgat	ttactccact	1980
acggatcaga	agagtttgga	aatatactcg	ggcggcgaca	tcggcagcct	ggtgtccgac	2040
ggccaagtgg	tggtccaggc	gggactgccg	tatgccacca	ccaccggagc	cggcggccag	2100
cccgtctata	tcgtggccga	cggtgccttg	ccagcgggag	tcgaggagca	tctgcagagt	2160
ggaaagctca	atggccagac	cacacctatc	gatgtctctg	gcctatcgca	aaatgagatt	2220
caaggetttt	tgctcggctc	acacccctcg	tcatcggcga	cggtaagcac	aaccggcgtt	2280
gtctccacga	caacgatctc	gcatcaccag	caacagcagc	agcagcagca	acagcaacag	2340
cagcagcagc	agcagcaaca	ccagcagcag	cagcaacatc	ccggcgacat	tgttagtgcc	2400
gctggcgtgg	ggagcacggg	ctccattgtc	tcctctgcgg	cgcaacagca	gcagcagcag	2460
caactaatta	gcatcaaacg	agagcccgaa	gacttgcgca	aggatcccaa	gaatggcaac	2520
attgccggtg	cagcaacagc	aaatggaccc	ggttcggtca	taacccaaaa	gatcttgcac	2580
gtggatgcac	caacggcaag	tgaagctgat	aggcccagca	cacccagcag	cagcatcaac	2640
agcactgaaa	acactgaatc	ggactcacag	tcagtatcag	gatcagaatc	aggatcgccg	2700
ggagccagga	ccacagccac	actagagatg	tatgcaacca	cgggcggcac	acagatctat	2760
ctacagacct	cacatcccag	cacggcgagc	ggagcgggcg	gcggcgccgg	acccgctgga	2820
gccgccggcg	geggeggtgt	gtccatgcag	gcgcaaagtc	ccagtccggg	tccctatatc	2880
acggccaatg	actatggcat	gtacacggcc	agtcgcctgc	cacccggtcc	cccgcccacc	2940
agcaccacca	cgtttatagc	ggagccctcc	tactatcggg	aatactttgc	accggatggc	3000
caaggtggct	atgtgccggc	cagcacgagg	tctttgtatg	gcgacgtgga	cgtatccgta	3060
tctcagcccg (gcggagtggt	cacctatgag	ggccgctttg	ccggcagcgt	tccccgccc	3120

gccaccacca cegtgctaac cagegtgcat caccaccage aacagcagca gcaacaacag 3180 cagcatcaac agcagcagca gcagcaacag caccaccagc agcaacagca ccattcgcag 3240 gatggcaaga gcaatggcgg agcaacgcca ctctatgcca aagccattac ggcggcgggt 3300 ctaacggtgg atttgccaag tccggattcg ggcattggta cggatgccat tacaccgcgg 3360 gatcagacaa atatccaaca gtcctttgat tatacggaat tgtgccagcc gggcacgctg 3420 atcgatgcca atggcagcat acccgtcagc gtgaacagca tccagcagag aacggcggtc 3480 catggcagec agaacagtee caccacateg etggtggaea ecageaceaa tggatecaeg 3540 cgatcgcggc cctggcacga ctttggacgt cagaatgatg ccgacaaaat acaaatacca 3600 aaaatcttca caaacgtggg cttccgatat cacctggaga gccccatcag ttcatcgcag 3660 aggcgcgagg acgatcgcat cacctacatc aacaagggtc aattctatgg aataacgctg 3720 gagtatgtgc acgatgcgga aaagcccatt aagaacacca ccgtcaagag tgtgatcatg 3780 ctaatgttcc gcgaggagaa gagtcccgag gatgagatca aggcctggca attctggcac 3840 agtcgtcagc attccgtgaa gcagagaatc ttggatgcag atacgaagaa ctcggttggc 3900 ctcgttggct gcatcgagga agtgtcgcac aatgccatcg ccgtctactg gaatccgctg 3960 gagageteeg ecaagateaa cattgeggtt eagtgettga geaeggattt eageagteaa 4020 4080 aagggaggcc tgccgctgca cgtacaaatc gacacatttg aggaccccag agatacggcg gtcttccacc gcggctactg tcagataaag gtcttctgcg ataagggcgc cgaacgaaag 4140 acgcgcgatg aagagcggcg ggccgccaaa cgaaagatga cagccacggg cagaaagaag 4200 ctggacgagc tttaccatcc ggtaacggat cggtccgagt tctatggcat gcaggacttc 4260 gccaagccgc cggtgctatt ctcgcccgcc gaggacatgg agaaggtagg tcagctgggc 4320 attggcgctg ccaccggcat gacattcaac cccctgagca acggcaactc caactccaac 4380 tegeactegt cettgeagag ettetaegge catgagaetg aetegeegga eetgaagggg 4440 gecteacegt teetgeteea eggecagaag gtggccaege egaegeteaa gttecacaae 4500 cattttccgc ccgacatgca gaccgataag aaggatcaca tactggacca gaacatgttg 4560 accagcacac ccctgaccga ctttggtccg ccgatgaagc gcggcaggat gacgccgccg 4620 accteggaac gegtgatget gtaegtgegg caggagaacg aggaggtgta tacacegttg 4680 cacgtggtgc cgcccaccac gatcggcctg ctaaatgcga ttgaaaacaa atacaaaatc 4740 tcaacaacga gcataaataa catttatcgc acaaacaaga aggggattac tgcgaaaatt 4800 gacgatgaca tgatatcgtt ctactgcaac gaggacatct ttctgctgga ggtgcaacag 4860

atcgaggacg	acctgtacga	tgtgacgctc	acggagctgc	ccaatcagta	gcgctggcag	4920
tacgggtagc	acccgctaac	cgcactcaaa	aaaaaaagca	aacaaacaca	caaattacgg	4980
acacaacaag	ttgtttcaat	aagccatttt	ccatagagcc	taagtctaaa	tatcgtagtt	5040
ataataatgg	gatccgcaac	aaatcgagtt	gcaacgaatg	ttaagaacgc	taacacaata	5100
cgcatgtaaa	atgatacttt	aaaattgatt	tagttatttt	agcaacaatg	agattatcta	5160
aaattgtttg	atcaaatttt	acattctcgc	tatgtctata	gataattcta	agcccgtaag	5220
cccataagcg	taatcgtaat	cgtaatcgta	ccgtgtattt	atgctcatat	ataaacaact	5280
atatatatat	atatatatat	atatatgtgc	ggagtgcaac	agtgtctgtc	cagtaggaga	5340
taagtctcgt	ttccgctccc	ctgcttatgc	tatgacctta	ggtccagggc	aagtatgagt	5400
taccgaatct	atctattagg	tgcatctaac	gaaaggaatc	attagctctg	cacgaactct	5460
agccgtagcc	tattgtaatc	catttgtatg	tttggcttaa	gcgttttact	tgttgaatat	5520
aaagtgtaaa	attatttttg	aaaaaaaaa	acccacacaa	aacacaaatc	gtttgttcta	5580
tatttctgtt	tcaaaactaa	ctcgttaccc	acaatcccct	ctgttatgta	taattaggat	5640
ctctgtacac						5650

<210> 37

<211> 1331 ·

<212> PRT

<213> Drosophila

<400> 37

Met Ser Thr Ser Thr Ala Thr Thr Ser Val Ile Thr Ser Asn Glu Leu 1 5 10 15

Ser Leu Ser Gly His Ala His Gly His Gly His Ala His Gln Leu His 20 25 30

Gln His Thr His Ser Arg Leu Gly Val Gly Val Gly Val Gly Ile Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ser Asp Ala Ser Leu Ser Pro Ile Gln Gln Gly Ser Gly Gly His Ser 50 55 60

Gly Gly Gly Asn Thr Asn Ser Ser Pro Leu Ala Pro Asn Gly Val Pro 65 70 75 80

- Leu Leu Thr Thr Met His Arg Ser Pro Asp Ser Pro Gln Pro Glu Leu 85 90 95
- Ala Thr Met Thr Asn Val Asn Val Leu Asp Leu His Thr Asp Asn Ser 100 105 110
- Lys Leu Tyr Asp Lys Glu Ala Val Phe Ile Tyr Glu Thr Pro Lys Val 115 120 125
- Val Met Pro Ala Asp Gly Gly Gly Gly Asn Asn Ser Asp Glu Gly His 130 135 140
- Ala Ile Asp Ala Arg Ile Ala Ala Gln Met Gly Asn Gln Ala Gln Gln 145 150 155 160
- Gln Gln Gln Gln Gln Gln Thr Glu His Gln Pro Leu Ala Lys Ile 165 170 175
- Glu Phe Asp Glu Asn Gln Ile Ile Arg Val Val Gly Pro Asn Gly Glu 180 185 190
- Gln Gln Gln Ile Ile Ser Arg Glu Ile Ile Asn Gly Glu His His Ile 195 200 205
- Leu Ser Arg Asn Glu Ala Gly Glu His Ile Leu Thr Arg Ile Val Ser 210 215 220
- Asp Pro Ser Lys Leu Met Pro Asn Asp Asn Ala Val Ala Thr Ala Met 225 230 235 240
- Tyr Asn Gln Ala Gln Lys Met Asn Asn Asp His Gly Gln Ala Val Tyr 245 250 255
- Gln Thr Ser Pro Leu Pro Leu Asp Ala Ser Val Leu His Tyr Ser Gly 260 265 270
- Gly Asn Asp Ser Asn Val Ile Lys Thr Glu Ala Asp Ile Tyr Glu Asp 275 280 285
- His Lys Lys His Ala Ala Ala Ala Ala Ala Ala Ala Gly Gly Ser 290 295 300
- Ile Ile Tyr Thr Thr Ser Asp Pro Asn Gly Val Asn Val Lys Gln Leu

305					310					315					320
Pro	His	Leu	Thr	Val 325		Gln	Lys	Leu	Asp 330		Asp	Leu	Tyr	Gln 335	Ala
Asp	Lys	His	Ile 340	Asp	Leu	Ile	Tyr	Asn 345	Asp	Gly	Ser	Lys	Thr 350		Ile
Tyr	Ser	Thr 355	Thr	Asp	Gln	Lys	Ser 360		Glu	Ile	туг	Ser 365	Gly	Gly	Asp
Ile	Gly 370	Ser	Leu	Val	Ser	Asp 375	Gly	Gln	Val	Val	Val 380	Gln	Ala	Gly	Leu
Pro 385	Tyr	Ala	Thr	Thr	Thr 390	Gly	Ala	Gly	Gly	Gln 395	Pro	Val	туг	Ile	Val 400
Ala	Asp	Gly	Ala	Leu 405	Pro	Ala	Gly	Val	Glu 410	Glu	His	Leu	Gln	Ser 415	Gly
ГÀЗ	Leu	Asn	Gly 420	Gln	Thr	Thr	Pro	Ile 425	Asp	Val	Ser	Gly	Leu 430	Ser	Gln
Asn	Glu	Ile 435	Gln	Gly	Phe	Leu	Leu 440	Gly	Ser	His	Pro	Ser 445	Ser	Ser	Ala
Thr	Val 450	Ser	Thr	Thr	Gly	Val 455	Val	Ser	Thr	Thr	Thr 460	Ile	Ser	His	His
31n 165	Gln	Gln	Gln	Gln	Gln 470	Gln	Gln	Gln	Gln	Gln 475	Gln	Gln	Gln	Gln	Gln 480
Gln	His	Gln	Gln	Gln 485	Gln	Gln	His	Pro	Gly 490	Asp	Ile	Val	Ser	Ala 495	Ala
Sly	Val	Gly	Ser 500	Thr	Gly	Ser	Ile	Val 505	Ser	Ser	Ala	Ala	Gln 510	Gln	Gln
Sln	Gln	Gln 515	Gln	Leu	Ile	Ser	Ile 520	Lys ·	Arg	Glu	Pro	Glu 525	Asp	Leu	Arg
ys	Asp 530	Pro	Lys	Asn	Gly	Asn 535	Ile	Ala	Gly	Ala	Ala 540	Thr	Ala	Asn	Gly

- Pro Gly Ser Val Ile Thr Gln Lys Ile Leu His Val Asp Ala Pro Thr 545 550 550 560
- Ala Ser Glu Ala Asp Arg Pro Ser Thr Pro Ser Ser Ser Ile Asn Ser 565 570 575
- Thr Glu Asn Thr Glu Ser Asp Ser Gln Ser Val Ser Gly Ser Glu Ser 580 585 590
- Gly Ser Pro Gly Ala Arg Thr Thr Ala Thr Leu Glu Met Tyr Ala Thr 595 600 605
- Thr Gly Gly Thr Gln Ile Tyr Leu Gln Thr Ser His Pro Ser Thr Ala 610 615 620
- Ser Gly Ala Gly Gly Gly Ala Gly Pro Ala Gly Ala Ala Gly Gly Gly 625 630 635 640
- Gly Val Ser Met Gln Ala Gln Ser Pro Ser Pro Gly Pro Tyr Ile Thr 645 650 655
- Ala Asn Asp Tyr Gly Met Tyr Thr Ala Ser Arg Leu Pro Pro Gly Pro 660 665 670
- Pro Pro Thr Ser Thr Thr Thr Phe Ile Ala Glu Pro Ser Tyr Tyr Arg 675 680 685
- Glu Tyr Phe Ala Pro Asp Gly Gln Gly Gly Tyr Val Pro Ala Ser Thr 690 695 700
- Arg Ser Leu Tyr Gly Asp Val Asp Val Ser Val Ser Gln Pro Gly Gly 705 710 715 720
- Val Val Thr Tyr Glu Gly Arg Phe Ala Gly Ser Val Pro Pro Ala 725 730 735
- Thr Thr Thr Val Leu Thr Ser Val His His Gln Gln Gln Gln Gln 740 745 750
- Gln Gln Gln His Gln Gln Gln Gln Gln Gln Gln His His Gln
 755 760 765

- Gln Gln Gln His His Ser Gln Asp Gly Lys Ser Asn Gly Gly Ala Thr 770 775 780
- Pro Leu Tyr Ala Lys Ala Ile Thr Ala Ala Gly Leu Thr Val Asp Leu 785 790 795 800
- Pro Ser Pro Asp Ser Gly Ile Gly Thr Asp Ala Ile Thr Pro Arg Asp 805 810 815
- Gln Thr Asn Ile Gln Gln Ser Phe Asp Tyr Thr Glu Leu Cys Gln Pro 820 825 830
- Gly Thr Leu Ile Asp Ala Asn Gly Ser Ile Pro Val Ser Val Asn Ser 835 840 845
- Ile Gln Gln Arg Thr Ala Val His Gly Ser Gln Asn Ser Pro Thr Thr 850 855 860
- Ser Leu Val Asp Thr Ser Thr Asn Gly Ser Thr Arg Ser Arg Pro Trp 865 870 875 880
- His Asp Phe Gly Arg Gln Asn Asp Ala Asp Lys Ile Gln Ile Pro Lys 885 890 895
- Ile Phe Thr Asn Val Gly Phe Arg Tyr His Leu Glu Ser Pro Ile Ser 900 905 910
- Ser Ser Gln Arg Arg Glu Asp Asp Arg Ile Thr Tyr Ile Asn Lys Gly
 915 920 925
- Gln Phe Tyr Gly Ile Thr Leu Glu Tyr Val His Asp Ala Glu Lys Pro 930 935 940
- Ile Lys Asn Thr Thr Val Lys Ser Val Ile Met Leu Met Phe Arg Glu 945 950 955 960
- Glu Lys Ser Pro Glu Asp Glu Ile Lys Ala Trp Gln Phe Trp His Ser 965 970 975
- Arg Gln His Ser Val Lys Gln Arg Ile Leu Asp Ala Asp Thr Lys Asn 980 985 990

- Ser Val Gly Leu Val Gly Cys Ile Glu Glu Val Ser His Asn Ala Ile 995 1000 1005
- Ala Val Tyr Trp Asn Pro Leu Glu Ser Ser Ala Lys Ile Asn Ile 1010 1015 1020
- Ala Val Gln Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Gly 1025 1030 1035
- Leu Pro Leu His Val Gln Ile Asp Thr Phe Glu Asp Pro Arg Asp 1040 1045 1050
- Thr Ala Val Phe His Arg Gly Tyr Cys Gln Ile Lys Val Phe Cys 1055 1060 1065
- Asp Lys Gly Ala Glu Arg Lys Thr Arg Asp Glu Glu Arg Arg Ala 1070 1080
- Ala Lys Arg Lys Met Thr Ala Thr Gly Arg Lys Leu Asp Glu 1085 1090 1095
- Leu Tyr His Pro Val Thr Asp Arg Ser Glu Phe Tyr Gly Met Gln 1100 1105 1110
- Asp Phe Ala Lys Pro Pro Val Leu Phe Ser Pro Ala Glu Asp Met 1115 1120 1125
- Glu Lys Val Gly Gln Leu Gly Ile Gly Ala Ala Thr Gly Met Thr 1130 1135 1140
- Phe Asn Pro Leu Ser Asn Gly Asn Ser Asn Ser Asn Ser His Ser 1145 1150 1155
- Ser Leu Gln Ser Phe Tyr Gly His Glu Thr Asp Ser Pro Asp Leu 1160 1165 1170
- Lys Gly Ala Ser Pro Phe Leu Leu His Gly Gln Lys Val Ala Thr 1175 1180 1185
- Pro Thr Leu Lys Phe His Asn His Phe Pro Pro Asp Met Gln Thr 1190 1195 1200
- Asp Lys Lys Asp His Ile Leu Asp Gln Asn Met Leu Thr Ser Thr

- 73 -

-	1205					1210					1215					
	Leu 1220	Thr	Asp	Phe	Gly	Pro 1225	Pro	Met	Lys	Arg	Gly 1230	_	Met	Thr		
	Pro 1235	Thr	Ser	Glu	Arg	Val 1240	Met	Leu	Tyr	Val	Arg 1245	Gln	Glu	Asn		
	Glu 1250	Val	Tyr	Thr	Pro	Leu 1255	His	Val	Val	Pro	Pro 1260	Thr	Thr	Ile		
	Leu 1265	Leu	Asn	Ala	Ile	Glu 1270		Lys	Tyr	Lys	Ile 1275	Ser	Thr	Thr		
	Ile 1280	Asn	Asn	Ile	Tyr	Arg 1285	Thr	Asn	Lys	Lys	Gly 1290		Thr	Ala		
	Ile 1295	Asp	Asp	Asp	Met	Ile 1300	Ser	Phe	Tyr	Cys	Asn 1305	Glu	Asp	Ile		
	Leu 1310	Leu	Glu	Val	Gln	Gln 1315	Ile	Glu	Asp	Asp	Leu 1320	_	Asp	Val		
	Leu 1325	Thr	Glu	Leu	Pro	Asn 1330	Gln									
<210: <211: <212: <213:	> 55 > DN	557 IA	ohila	ı												
<400: aaaaa	-		aaca	acaa	a caa	attg	gct t	gaaa	aacgo	a aa	atgcca	aggc	gcaa	ıcgcccc	60)
cgaad	ccgac	c cg	gcccc	ctca	a act	tttg	ege d	cctcc	agta	ig ca	atago	cago	aata	tgagca	120)
gcago	caaca	ıt ca	aato	gttag	ggc	caaaat	gc a	acaaa	accgo	c aç	gcaaca	aaag	gcag	jcaccaa	180)
gcgaa	acgaa	a ca	aacaa	acago	tec	cacata	acc a	acaaa	agagt	g go	cacatt	aga	agco	gccaaa	240)
agcag	gccag	c cc	gagaç	gcatt	gtg	gtaago	cca a	aaggo	ccag	ja ga	agccag	ggct	aaaa	agccccc	300)
agaco	gcaca	a ca	acaa	caac	aac	caacta	aaa a	acago	cacaa	a ga	agtggd	gaa	aggt	gcaccc	360)
accaç	gcaaa	a ca	agcaa	caac	gga	agcaad	cca a	acaac	cagca	ıg ca	agcago	cagc	agca	agccaca	420)
tttca	agtta	c ag	gctcc	agad	tco	caggt	tg d	cagad	ctccc	a aa	agcaaa	acag	acto	cagtcc	480)

acgatccagc	tccagttcca	ccgatccgat	ccactgctcc	agcgtgctcg	agtgccatag	540
atcctcacca	agtgccaaaa	tccgcatcct	gatcccaaga	gctcaaggca	ccccggccca	600
aaattgagct	gagaacgaaa	cgaaggaagt	tccttagtgc	catagaaagc	agttaatgaa	660
acaacgacta	agacgaagat	cgaccatcca	gaaccggagg	gagctaattg	cgaacgaaag	720
aaaccacaaa	gtgccttcca	tcaatccgtt	gataagtgat	atttattatg	tttatacttg	780
ccagcagccg	aggcagcaac	agcaatagca	acaaccatag	gggatcacgg	catcgatgat	840
cagtccacga	ccaagtccta	gtgcaatccg	gaatccagtt	caaattagtt	caataagccg	900
tatctaccac	gtataatgtc	cacatccacc	gccacaacga	gcgttatcac	gtccaacgag	960
ctctcgctgt	ccggccacgc	ccacggtcac	ggtcacgccc	accagttgca	ccagcacacc	1020
cacageegee	taggagttgg	cgttggtgtt	ggcatcctta	gcgacgcatc	cctatcgccc	1080
atccaacaag	gcagtggcgg	ccacagegge	ggaggtaaca	caaacagttc	accactggcg	1140
cccaacggag	tgccacttct	cacaacaatg	caccgatcac	cggactcacc	gcagccagaa	1200
ttggccacca	tgacgaacgt	caacgtgctg	gatctgcaca	cggataactc	caagctgtac	1260
gacaaggagg	ctgtatttat	atacgaaacg	cccaaggtgg	tgatgccagc	ggatggcggg	1320
ggtggcaata	attccgatga	aggtcatgcc	atcgatgcgc	ggattgcggc	ccaaatgggc	1380
aaccaagccc	agcaacagca	gcagcagcaa	cagcagacgg	aacaccagcc	gctggccaag	1440
atcgagttcg	atgagaacca	gataatccgg	gtggtgggac	caaatggcga	gcaacagcaa	1500
atcatctcgc	gggagatcát	caatggggag	catcatatcc	tgtcgcgaaa	cgaggctggt	1560
gagcacattc	tcacacggat	cgtcagtgat	ccctccaagt	tgatgcccaa	tgacaatgca	1620
gtggccacgg	ccatgtacaa	ccaggcccaa	aagatgaaca	atgatcacgg	gcaggcggta	1680
tatcagacat	caccattgcc	gctagacgcg	tctgtattgc	attatagtgg	cggcaatgat	1740
tcgaatgtaa	ttaagacgga	ggccgatatc	tacgaggatc	acaagaaaca	tgcggctgca	1800
gcagcagctg	ctgccggcgg	aggatccatc	atatacacca	catccgatcc	gaacggagtg	1860
aatgtgaaac	aactgcccca	tttgacggta	ccccaaaaac	ttgatcccga	cctctatcaa	1920
gccgataagc	atatagattt	gatctacaac	gatggcagca	agacggtgat	ttactccact	1980
acggatcaga	agagtttgga	aatatactcg	ggcggcgaca	tcggcagcct	ggtgtccgac	2040
ggccaagtgg	tggtccaggc	gggactgccg	tatgccacca	ccaccggagc	cggcggccag	2100
cccgtctata	tcgtggccga	cggtgccttg	ccagcgggag	tcgaggagca	tctgcagagt	2160.
ggaaagctca	atggccagac	cacacctatc	gatgtctctg	gcctatcgca	aaatgagatt	2220

caaggetttt tgeteggete acaeeeeteg teateggega eggtaageae aaeeggegtt 2280 gtctccacga caacgatctc gcatcaccag caacagcagc agcagcagca acagcaacag 2340 cagcagcagc agcagcaaca ccagcagcag cagcaacatc ccggcgacat tgttagtgcc 2400 gctggcgtgg ggagcacggg ctccattgtc tcctctgcgg cgcaacagca gcagcagcag 2460 caactaatta gcatcaaacg agagcccgaa gacttgcgca aggatcccaa gaatggcaac 2520 attgccggtg cagcaacagc aaatggaccc ggttcggtca taacccaaaa gatcttgcac 2580 gtggatgcac caacggcaag tgaagctgat aggcccagca cacccagcag cagcatcaac 2640 agcactgaaa acactgaatc ggactcacag tcagtatcag gatcagaatc aggatcgccg 2700 ggagccagga ccacagccac actagagatg tatgcaacca cgggcggcac acagatctat 2760 ctacagaect cacateccag caeggegage ggageggeg geggegeegg accegetgga 2820 geegeeggeg geggeggtgt gteeatgeag gegeaaagte eeagteeggg teeetatate 2880 acggccaatg actatggcat gtacacggcc agtcgcctgc cacccggtcc cccgcccacc 2940 agcaccacca cgtttatagc ggagccctcc tactatcggg aatactttgc accggatggc 3000 caaggtggct atgtgccggc cagcacgagg tctttgtatg gcgacgtgga cgtatccgta 3060 teteageeeg geggagtggt cacetatgag ggeegetttg eeggeagegt teeeeegeee 3120 gccaccacca ccgtgctaac cagcgtgcat caccaccagc aacagcagca gcaacaacag 3180 cagcatcaac agcagcagca gcagcaacag caccaccagc agcaacagca ccattcgcag 3240 gatggcaaga gcaatggcgg agcaacgcca ctctatgcca aagccattac ggcggcgggt 3300 ctaacggtgg atttgccaag tccggattcg ggcattggta cggatgccat tacaccgcgg 3360 gatcagacaa atatccaaca gtcctttgat tatacggaat tgtgccagcc gggcacgctg 3420 ategatgeca atggeageat accegteage gtgaacagea tecageagag aacggeggte 3480 catggcagcc agaacagtcc caccacatcg ctggtggaca ccagcaccaa tggatccacg 3540 cgatcgcggc cctggcacga ctttggacgt cagaatgatg ccgacaaaat acaaatacca 3600 aaaatettea caaaegtggg etteegatat caeetggaga geeceateag tteategeag 3660 aggegegagg acgategeat cacetacate aacaagggte aattetatgg aataacgetg 3720 gagtatgtgc acgatgcgga aaagcccatt aagaacacca ccgtcaagag tgtgatcatg 3780 ctaatgttcc gcgaggagaa gagtcccgag gatgagatca aggcctggca attctggcac 3840 agtcgtcagc attccgtgaa gcagagaatc ttggatgcag atacgaagaa ctcggttggc 3900

ctcgttggct gcatcgagga agtgtcgcac aatgccatcg ccgtctactg gaatccgct	g 3960
gagageteeg eeaagateaa eattgeggtt eagtgettga geaeggattt eageagtea	a 4020
aagggaggee tgeegetgea egtacaaate gacacatttg aggaceecag agataegge	3 4080
gtettecace geggetactg teagataaag gtettetgeg ataagggege egaacgaaag	3 4140
acgegegatg aagageggeg ggeegeeaaa egaaagatga cageeaeggg cagaaagaa	4200
ctggacgage tttaccatee ggtaacggat eggteegagt tetatggeat geaggaette	4260
gccaagccgc cggtgctatt ctcgcccgcc gaggacatgg agaagagctt ctacggccat	4200
gagactgact cgccggacct gaagggggcc tcaccgttcc tgctccacgg ccagaaggtg	4320
gccacgccga cgctcaagtt ccacaaccat tttccgcccg acatgcagac cgataagaag	4380
gatcacatac tggaccagaa catgttgacc agcacacccc tgaccgactt tggtccgccg	
atgaagegeg geaggatgae geegeegaee teggaaegeg tgatgetgta egtgeggeag	4500
gagaacgagg aggtgtatac accgttggag mts.	4560
gagaacgagg aggtgtatac accgttgcac gtggtgccgc ccaccacgat cggcctgcta	4620
aatgcgattg aaaacaaata caaaatctca acaacgagca taaataacat ttatcgcaca	4680
aacaagaagg ggattactgc gaaaattgac gatgacatga tatcgttcta ctgcaacgag	4740
gacatettte tgetggaggt geaacagate gaggacgace tgtacgatgt gacgeteacg	4800
gagetgeeca ateagtageg etggeagtae gggtageace egetaacege aeteaaaaaa	4860
aaaagcaaac aaacacacaa attacggaca caacaagttg tttcaataag ccattttcca	4920
tagageetaa gtetaaatat egtagttata ataatgggat eegeaacaaa tegagttgea	
acgaatgtta agaacgctaa cacaatacgc atgtaaaatg atactttaaa attgatttag	4980
ttattttagc aacaatgaga ttatctaaaa ttgtttgatc aaattttaca ttctcgctat	5040
gtctatagat aattctaagc ccgtaagccc ataagcgtaa tcgtaatcgt aatcgtaccg	5100
tgtatttatg ctcatatata aacaactata taka	5160
tgtatttatg ctcatatata aacaactata tatatatata tatatata	5220
gtgcaacagt gtctgtccag taggagataa gtctcgtttc cgctcccctg cttatgctat	5280
gaccttaggt ccagggcaag tatgagttac cgaatctatc tattaggtgc atctaacgaa	5340
aggaatcatt agctctgcac gaactctage egtageetat tgtaatecat ttgtatgttt	5400
ggettaageg tittaetigt tgaatataaa gigtaaaatt attitigaaa aaaaaaaace	5460
cacacaaaac acaaatcgtt tgttctatat ttctgtttca aaactaactc gttacccaca	5520
atcccctctg ttatgtataa ttaggatctc tgtacac	5557
	,

<210> 39

<211> 1331

<212> PRT

<213> Drosophila

<400> 39

Met Ser Thr Ser Thr Ala Thr Thr Ser Val Ile Thr Ser Asn Glu Leu 1 5 10 15

Ser Leu Ser Gly His Ala His Gly His Gly His Ala His Gln Leu His 20 25 30

Gln His Thr His Ser Arg Leu Gly Val Gly Val Gly Val Gly Ile Leu 35 40 45

Ser Asp Ala Ser Leu Ser Pro Ile Gln Gln Gly Ser Gly Gly His Ser 50 55 60

Gly Gly Gly Asn Thr Asn Ser Ser Pro Leu Ala Pro Asn Gly Val Pro 65 70 75 80

Leu Leu Thr Thr Met His Arg Ser Pro Asp Ser Pro Gln Pro Glu Leu 85 90 95

Ala Thr Met Thr Asn Val Asn Val Leu Asp Leu His Thr Asp Asn Ser 100 105 110

Lys Leu Tyr Asp Lys Glu Ala Val Phe Ile Tyr Glu Thr Pro Lys Val

Val Met Pro Ala Asp Gly Gly Gly Gly Asn Asn Ser Asp Glu Gly His 130 135 140

Ala Ile Asp Ala Arg Ile Ala Ala Gln Met Gly Asn Gln Ala Gln Gln 145 150 155 160

Gln Gln Gln Gln Gln Gln Thr Glu His Gln Pro Leu Ala Lys Ile 165 170 175

Glu Phe Asp Glu Asn Gln Ile Ile Arg Val Val Gly Pro Asn Gly Glu 180 185 190

Gln Gln Gln Ile Ile Ser Arg Glu Ile Ile Asn Gly Glu His His Ile 195 200 205

- Leu Ser Arg Asn Glu Ala Gly Glu His Ile Leu Thr Arg Ile Val Ser 210 225 220
- Asp Pro Ser Lys Leu Met Pro Asn Asp Asn Ala Val Ala Thr Ala Met 225 230 235 240
- Tyr Asn Gln Ala Gln Lys Met Asn Asn Asp His Gly Gln Ala Val Tyr 245 250 255
- Gln Thr Ser Pro Leu Pro Leu Asp Ala Ser Val Leu His Tyr Ser Gly 260 265 270
- Gly Asn Asp Ser Asn Val Ile Lys Thr Glu Ala Asp Ile Tyr Glu Asp 275 280 285
- His Lys Lys His Ala Ala Ala Ala Ala Ala Ala Ala Gly Gly Ser 290 295 300
- Ile Ile Tyr Thr Thr Ser Asp Pro Asn Gly Val Asn Val Lys Gln Leu 305 310 315 320
- Pro His Leu Thr Val Pro Gln Lys Leu Asp Pro Asp Leu Tyr Gln Ala 325 330 335
- Asp Lys His Ile Asp Leu Ile Tyr Asn Asp Gly Ser Lys Thr Val Ile 340 345 350
- Tyr Ser Thr Thr Asp Gln Lys Ser Leu Glu Ile Tyr Ser Gly Gly Asp 355 360 365
- Ile Gly Ser Leu Val Ser Asp Gly Gln Val Val Val Gln Ala Gly Leu 370 375 380
- Pro Tyr Ala Thr Thr Gly Ala Gly Gly Gln Pro Val Tyr Ile Val 385 390 395 400
- Ala Asp Gly Ala Leu Pro Ala Gly Val Glu Glu His Leu Gln Ser Gly 405 410 415
- Lys Leu Asn Gly Gln Thr Thr Pro Ile Asp Val Ser Gly Leu Ser Gln 420 425 430

- Asn Glu Ile Gln Gly Phe Leu Leu Gly Ser His Pro Ser Ser Ser Ala 435 440 445
- Thr Val Ser Thr Thr Gly Val Val Ser Thr Thr Thr Ile Ser His His 450 455 460
- Gln His Gln Gln Gln Gln His Pro Gly Asp Ile Val Ser Ala Ala 485 490 495
- Gly Val Gly Ser Thr Gly Ser Ile Val Ser Ser Ala Ala Gln Gln Gln 500 505 510
- Gln Gln Gln Gln Leu Ile Ser Ile Lys Arg Glu Pro Glu Asp Leu Arg 515 520 525
- Lys Asp Pro Lys Asn Gly Asn Ile Ala Gly Ala Ala Thr Ala Asn Gly 530 535 540
- Pro Gly Ser Val Ile Thr Gln Lys Ile Leu His Val Asp Ala Pro Thr 545 550 555 560
- Ala Ser Glu Ala Asp Arg Pro Ser Thr Pro Ser Ser Ser Ile Asn Ser 565 570 575
- Thr Glu Asn Thr Glu Ser Asp Ser Gln Ser Val Ser Gly Ser Glu Ser 580 585 590
- Gly Ser Pro Gly Ala Arg Thr Thr Ala Thr Leu Glu Met Tyr Ala Thr 595 600 605
- Thr Gly Gly Thr Gln Ile Tyr Leu Gln Thr Ser His Pro Ser Thr Ala 610 615 620
- Ser Gly Ala Gly Gly Gly Ala Gly Pro Ala Gly Ala Ala Gly Gly 625 635 640
- Gly Val Ser Met Gln Ala Gln Ser Pro Ser Pro Gly Pro Tyr Ile Thr 645 650 655

- Ala Asn Asp Tyr Gly Met Tyr Thr Ala Ser Arg Leu Pro Pro Gly Pro 660 665 670
- Pro Pro Thr Ser Thr Thr Thr Phe Ile Ala Glu Pro Ser Tyr Tyr Arg 675 680 685
- Glu Tyr Phe Ala Pro Asp Gly Gln Gly Gly Tyr Val Pro Ala Ser Thr 690 . 695 700
- Arg Ser Leu Tyr Gly Asp Val Asp Val Ser Val Ser Gln Pro Gly Gly 705 710 715 720
- Val Val Thr Tyr Glu Gly Arg Phe Ala Gly Ser Val Pro Pro Ala 725 730 735
- Thr Thr Thr Val Leu Thr Ser Val His His His Gln Gln Gln Gln 740 745 750
- Gln Gln Gln His Gln Gln Gln Gln Gln Gln Gln His His Gln
 755 760 765
- Gln Gln Gln His His Ser Gln Asp Gly Lys Ser Asn Gly Gly Ala Thr 770 775 780
- Pro Leu Tyr Ala Lys Ala Ile Thr Ala Ala Gly Leu Thr Val Asp Leu 785 790 795 800
- Pro Ser Pro Asp Ser Gly Ile Gly Thr Asp Ala Ile Thr Pro Arg Asp 805 810 815
- Gln Thr Asn Ile Gln Gln Ser Phe Asp Tyr Thr Glu Leu Cys Gln Pro 820 825 830
- Gly Thr Leu Ile Asp Ala Asn Gly Ser Ile Pro Val Ser Val Asn Ser 835 840 845
- Ile Gln Gln Arg Thr Ala Val His Gly Ser Gln Asn Ser Pro Thr Thr 850 855 860
- Ser Leu Val Asp Thr Ser Thr Asn Gly Ser Thr Arg Ser Arg Pro Trp 865 870 875 880
- His Asp Phe Gly Arg Gln Asn Asp Ala Asp Lys Ile Gln Ile Pro Lys

885

890

895

- Ile Phe Thr Asn Val Gly Phe Arg Tyr His Leu Glu Ser Pro Ile Ser 900 905 910
- Ser Ser Gln Arg Arg Glu Asp Asp Arg Ile Thr Tyr Ile Asn Lys Gly 915 920 925
- Gln Phe Tyr Gly Ile Thr Leu Glu Tyr Val His Asp Ala Glu Lys Pro 930 935 940
- Ile Lys Asn Thr Thr Val Lys Ser Val Ile Met Leu Met Phe Arg Glu 945 950 955 960
- Glu Lys Ser Pro Glu Asp Glu Ile Lys Ala Trp Gln Phe Trp His Ser 965 970 975
- Arg Gln His Ser Val Lys Gln Arg Ile Leu Asp Ala Asp Thr Lys Asn 980 985 990
- Ser Val Gly Leu Val Gly Cys Ile Glu Glu Val Ser His Asn Ala Ile 995 1000 1005
- Ala Val Tyr Trp Asn Pro Leu Glu Ser Ser Ala Lys Ile Asn Ile 1010 1020
- Ala Val Gln Cys Leu Ser Thr Asp Phe Ser Ser Gln Lys Gly Gly 1025 1030 1035
- Leu Pro Leu His Val Gln Ile Asp Thr Phe Glu Asp Pro Arg Asp 1040 1045 1050
- Thr Ala Val Phe His Arg Gly Tyr Cys Gln Ile Lys Val Phe Cys 1055 1060 1065
- Asp Lys Gly Ala Glu Arg Lys Thr Arg Asp Glu Glu Arg Arg Ala 1070 1080
- Ala Lys Arg Lys Met Thr Ala Thr Gly Arg Lys Leu Asp Glu 1085 1090 1095
- Leu Tyr His Pro Val Thr Asp Arg Ser Glu Phe Tyr Gly Met Gln 1100 1105 1110

- Asp Phe Ala Lys Pro Pro Val Leu Phe Ser Pro Ala Glu Asp Met 1115 1120 1125
- Glu Lys Val Gly Gln Leu Gly Ile Gly Ala Ala Thr Gly Met Thr
- Phe Asn Pro Leu Ser Asn Gly Asn Ser Asn Ser Asn Ser His Ser 1145 1150 1155
- Ser Leu Gln Ser Phe Tyr Gly His Glu Thr Asp Ser Pro Asp Leu 1160 1165 1170
- Lys Gly Ala Ser Pro Phe Leu Leu His Gly Gln Lys Val Ala Thr
- Pro Thr Leu Lys Phe His Asn His Phe Pro Pro Asp Met Gln Thr
- Asp Lys Lys Asp His Ile Leu Asp Gln Asn Met Leu Thr Ser Thr 1205 1215
- Pro Leu Thr Asp Phe Gly Pro Pro Met Lys Arg Gly Arg Met Thr 1220 1225 1230
- Pro Pro Thr Ser Glu Arg Val Met Leu Tyr Val Arg Gln Glu Asn 1235
- Glu Glu Val Tyr Thr Pro Leu His Val Val Pro Pro Thr Thr Ile 1250 1260
- Gly Leu Leu Asn Ala Ile Glu Asn Lys Tyr Lys Ile Ser Thr Thr 1265 1270 1275
- Ser Ile Asn Asn Ile Tyr Arg Thr Asn Lys Lys Gly Ile Thr Ala 1280 1285 1290
- Lys Ile Asp Asp Asp Met Ile Ser Phe Tyr Cys Asn Glu Asp Ile 1295 1300 1305
- Phe Leu Leu Glu Val Gln Gln Ile Glu Asp Asp Leu Tyr Asp Val 1310 1315 1320

Thr i	Leu 1325	Thr	Glu	Leu	Pro	Asn 1330	Gln					
<210:									· 			
<211:												
<212>												
<213>	> mu:	rine										•
<400>												
ggato	agaag	aco	catgo	CC								18
<210>												
<211>												
<212>												
<213>	mur	ine										
<400>									•			
aggct	gttag	agt	tgġt	g								18
<210>	42											
<211>												
<212>	DNA											
<213>	mur:	ine										
<400>	42											
ctgtag	gccag	cttt	cato	2								18
<210>	43											
<211>	19											
<212>	DNA											
<213>	muri	ne										
<400>	43											
gctggt	gaaa	agga	cctc	t								19
<210>	44											
<211>	20										•	
<212>	DNA											
213>	muri	ne										
										-		
acagga	acta o	jaaca	accto	JC								20
	45											
211>	17											
	DNA											
213>	murin	e										
	45											
acattg	aag a	ggtg	gc									
		_										17

- 84 -

<210> 46 <211> 20 <212> DNA <213> MURINE

<400> 46
aagggtgagc aggttcgctt

20