Curso: Procesamiento Electrónico de Potencia CIRCUITOS FERROMAGNÉTICOS EN C.A. continuación

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

AGENDA

1 PÉRDIDAS EN NÚCLEOS FERROMAGNÉTICOS

 Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.

- Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.
- Uno de ellos, es debido a la característica no lineal del núcleo.

- Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.
- Uno de ellos, es debido a la característica no lineal del núcleo.
- Este efecto produce las pérdidas denominadas por histéresis.

- Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.
- Uno de ellos, es debido a la característica no lineal del núcleo.
- Este efecto produce las pérdidas denominadas por histéresis.
- El otro tipo de pérdidas es producto de la condición de un campo magnético variante en el tiempo.

- Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.
- Uno de ellos, es debido a la característica no lineal del núcleo.
- Este efecto produce las pérdidas denominadas por histéresis.
- El otro tipo de pérdidas es producto de la condición de un campo magnético variante en el tiempo.
- Este se conoce como pérdidas por corrientes parásitas.

- Un circuito ferromagnético en C.A. va a presentar dos tipos de pérdidas de energía.
- Uno de ellos, es debido a la característica no lineal del núcleo.
- Este efecto produce las pérdidas denominadas por histéresis.
- El otro tipo de pérdidas es producto de la condición de un campo magnético variante en el tiempo.
- Este se conoce como pérdidas por corrientes parásitas.
- En resumen, un tipo de pérdidas es producido por el tipo de material, y el otro tipo es debido al tipo de energía eléctrica utilizado.

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

$$W_{\phi} = V \int_{-B_r}^{B_m} H \, \mathrm{d}B$$

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

$$W_{\phi} = V \int_{-B_r}^{B_m} H \, \mathrm{d}B$$

ullet Lo cual es claro que $W_\phi>0$

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

$$W_{\phi} = V \int_{-B_r}^{B_m} H \, \mathrm{d}B$$

ullet Lo cual es claro que $W_\phi>0$

• Si tomamos la trayectoria a-c, al calcular la energía tendríamos

$$W_{\phi} = V \int_{-B_r}^{B_m} H \, \mathrm{d}B$$

• Lo cual es claro que $W_{\phi}>0=>$ sistema **absorbe** energía.

• Ahora, al calcular la energía en la trayectoria c-d tendríamos

• Ahora, al calcular la energía en la trayectoria c-d tendríamos

Ahora, al calcular la energía en la trayectoria c-d tendríamos

$$W_{\phi} = V \int_{B_m}^{B_r} H \, \mathrm{d}B$$

• Ahora, al calcular la energía en la trayectoria c-d tendríamos

$$W_{\phi} = V \int_{B_m}^{B_r} H \, \mathrm{d}B$$

ullet Lo que nos da que $W_\phi < 0$

• Ahora, al calcular la energía en la trayectoria c-d tendríamos

$$W_{\phi} = V \int_{B_m}^{B_r} H \, \mathrm{d}B$$

ullet Lo que nos da que $W_\phi < 0$

• Ahora, al calcular la energía en la trayectoria c-d tendríamos

$$W_{\phi} = V \int_{B_m}^{B_r} H \, \mathrm{d}B$$

• Lo que nos da que $W_\phi < 0 =>$ circuito **entrega** energía.

• En la trayectoria d-f, la energía sería

• En la trayectoria d-f, la energía sería

• En la trayectoria d-f, la energía sería

$$W_{\phi} = V \int_{B_r}^{-B_m} H \, \mathrm{d}B$$

• En la trayectoria d-f, la energía sería

$$W_{\phi} = V \int_{B_r}^{-B_m} H \, \mathrm{d}B$$

• Acá, $W_{\phi}>0$

• En la trayectoria d-f, la energía sería

$$W_{\phi} = V \int_{B_r}^{-B_m} H \, \mathrm{d}B$$

• Acá, $W_{\phi}>0$

• En la trayectoria d-f, la energía sería

$$W_{\phi} = V \int_{B_r}^{-B_m} H \, \mathrm{d}B$$

• Acá, $W_{\phi} > 0 =>$ circuito **absorbe** energía.

• Por último, para la trayectoria f-a, la energía sería

• Por último, para la trayectoria f-a, la energía sería

Por último, para la trayectoria f-a, la energía sería

$$W_{\phi} = V \int_{-B_m}^{-B_r} H \, \mathrm{d}B$$

Por último, para la trayectoria f-a, la energía sería

$$W_{\phi} = V \int_{-B_m}^{-B_r} H \, \mathrm{d}B$$

• $W_{\phi} < 0$

Por último, para la trayectoria f-a, la energía sería

$$W_{\phi} = V \int_{-B_m}^{-B_r} H \, \mathrm{d}B$$

• $W_{\phi} < 0$

Por último, para la trayectoria f-a, la energía sería

$$W_{\phi} = V \int_{-B_m}^{-B_r} H \, \mathrm{d}B$$

• $W_{\phi} < 0 =>$ circuito **entrega** energía.

• Del análisis anterior comprobamos que el área del anillo de histéresis representa las pérdidas de energía de un circuito ferromagnético.

- Del análisis anterior comprobamos que el área del anillo de histéresis representa las pérdidas de energía de un circuito ferromagnético.
- ¿En qué forma se pierde esta energía?

- Del análisis anterior comprobamos que el área del anillo de histéresis representa las pérdidas de energía de un circuito ferromagnético.
- ¿En qué forma se pierde esta energía?

- Del análisis anterior comprobamos que el área del anillo de histéresis representa las pérdidas de energía de un circuito ferromagnético.
- ¿En qué forma se pierde esta energía? ¡CALOR!

• El flujo dentro de un núcleo ferromagnético es variante en el tiempo, lo que implica que induce una tensión.

- El flujo dentro de un núcleo ferromagnético es variante en el tiempo, lo que implica que induce una tensión.
- Como el material del núcleo es conductor eléctrico también, esa tensión producirá una corriente dentro del mismo.

- El flujo dentro de un núcleo ferromagnético es variante en el tiempo, lo que implica que induce una tensión.
- Como el material del núcleo es conductor eléctrico también, esa tensión producirá una corriente dentro del mismo.
- ¿Por qué esta corriente (i_{par}) no sigue la convención de la regla de la mano derecha?

- El flujo dentro de un núcleo ferromagnético es variante en el tiempo, lo que implica que induce una tensión.
- Como el material del núcleo es conductor eléctrico también, esa tensión producirá una corriente dentro del mismo.
- ¿Por qué esta corriente (i_{par}) no sigue la convención de la regla de la mano derecha?
- Debido a la Ley de Lenz ☺

• Esta corriente produce calentamiento en el núcleo.

- Esta corriente produce calentamiento en el núcleo.
- Además, produce un flujo que se opone al flujo principal, lo que provoca una deformación en la distribución de $\phi(t)$.

- Esta corriente produce calentamiento en el núcleo.
- Además, produce un flujo que se opone al flujo principal, lo que provoca una deformación en la distribución de $\phi(t)$.
- Esta deformación en el flujo se denomia "efecto piel magnético".

- Esta corriente produce calentamiento en el núcleo.
- Además, produce un flujo que se opone al flujo principal, lo que provoca una deformación en la distribución de $\phi(t)$.
- Esta deformación en el flujo se denomia "efecto piel magnético".
- Para evitar estas situaciones, se hace lo siguiente:

- Esta corriente produce calentamiento en el núcleo.
- Además, produce un flujo que se opone al flujo principal, lo que provoca una deformación en la distribución de $\phi(t)$.
- Esta deformación en el flujo se denomia "efecto piel magnético".
- Para evitar estas situaciones, se hace lo siguiente:

- Esta corriente produce calentamiento en el núcleo.
- Además, produce un flujo que se opone al flujo principal, lo que provoca una deformación en la distribución de $\phi(t)$.
- Esta deformación en el flujo se denomia "efecto piel magnético".
- Para evitar estas situaciones, se hace lo siguiente:

