Проектная работа. Knapsack Problem

Студент 1: Статный Дмитрий Студент 2: Смирнов Алексей

Весенний семестр, 2024

Вступление

Задача нашего проекта заключалась в рассмотрении возможной имплементации задачи Grid Scheduler в квантовой формулировке.

Одномерный рюкзак

Формулировка проблемы

Дано N предметов, n_i предмет имеет массу w_i и стоимость c_i . Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Одномерный рюкзак

Формулировка проблемы

Дано N предметов, n_i предмет имеет массу w_i и стоимость c_i . Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Формулировка одномерного рюкзака в QUBO

$$f_Q(x) = -\sum_{i=1}^{N} c_i x_i + \lambda (\sum_{i=1}^{N} w_i x_i + \sum_{k=0}^{\lfloor \log_2 W \rfloor} 2^k y_k - W)^2$$

Многомерный Мультирюкзак

Формулировка в терминах задач и серверов

Дано N задач, M серверов, i задача имеет следующие параметры: потребление памяти диска α_j , потребление оперативной памяти β_j и требует ядер γ_j . Необходимо найти такое подмножество задач, чтобы распределение ресурсов по M серверам было максимально, но количество ядер потребляемых совокупностью задач на i сервере не превосходило заданной величины A_i , по потребляемой памяти диска — B_i , а также по оперативной памяти — C_i . Каждая задача может быть запущена не более K раз.

Многомерный мультирюкзак в QUBO

$$f_{Q}(x) = -\lambda_{1} \cdot \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha_{ij} + \beta_{ij} + \gamma_{ij}) \cdot x_{ij} +$$

$$+ \lambda_{2} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \alpha_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} A_{i} \rfloor} 2^{b} \cdot \widetilde{a}_{ib} \right) - A_{i} \right]^{2} +$$

$$+ \lambda_{3} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \beta_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} B_{i} \rfloor} 2^{b} \cdot \widetilde{b}_{ib} \right) - B_{i} \right]^{2} +$$

$$+ \lambda_{4} \cdot \sum_{i=1}^{M} \left[\left(\sum_{j=1}^{N} \gamma_{ij} \cdot x_{ij} \right) + \left(\sum_{b=0}^{\lfloor \log_{2} C_{i} \rfloor} 2^{b} \cdot \widetilde{c}_{ib} \right) - C_{i} \right]^{2} +$$

$$+ \lambda_{5} \cdot \sum_{i=1}^{N} \prod_{j=1}^{M} \sum_{a=0}^{M} (x_{ij} - k)$$

Пример работы

Общее заключение

Решение работает на высоком уровне по рассматриваемой метрике оценки решения.

Общее заключение

Решение работает на высоком уровне по рассматриваемой метрике оценки решения.

Но всё равно задача остаётся достаточно сложной для получения точного ответа на квантовом компьютере.

Репозиторий проекта

