Theorems of Fermat and Euler

Theorem (Fermat). Let p be a prime number. Then:

- (a). $a^{p-1} \equiv 1 \pmod{p}$ for all $a \in \mathbb{Z}$ such that $p \nmid a$
- (b). $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$

Proof. Part (a) was done last time. It used Exercise 10.40: If G is an abelian group of finite order n then $a^n=1$ for all $a\in G$.

(b). Let
$$a \in \mathbb{Z}$$
. If $p \mid a$ then $a^p \equiv 0 \equiv a \pmod{p}$.
If $p \nmid a$ then $a^p = a \cdot a^{p-1} \equiv a \cdot 1 = a \pmod{p}$.

Example (Modulo 7)

$$1^{6} = 1$$

$$2^{6} = (2^{3})^{2} = 8^{2} \equiv 1^{2} = 1 \pmod{7}$$

$$3^{6} = (3^{2})^{3} = 9^{3} \equiv 2^{3} = 8 \equiv 1 \pmod{7}$$

$$4^{6} \equiv (-3)^{6} = 3^{6} \equiv 1 \pmod{7}$$

$$5^{6} \equiv (-2)^{6} = 2^{6} \equiv 1 \pmod{7}$$

$$6^{6} \equiv (-1)^{6} = 1 \pmod{7}$$

Euler's ϕ Function

Definition. Let $n \in \mathbb{Z}^+$. Then

$$\phi(n) = |\{a \in \mathbb{Z}^+ : a \le n \text{ and } \gcd(a, n) = 1\}|$$

= $|\{a \in \mathbb{N} : a < n \text{ and } \gcd(a, n) = 1\}|$
= $|\mathbb{Z}_n^*|$.

Examples. $\phi(1) = 1$ and $\phi(p) = p - 1$ for all primes p.

Euler's Theorem

Theorem (Euler). Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If gcd(a, n) = 1 then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

Proof. Let $\gamma \colon \mathbb{Z} \to \mathbb{Z}_n$ be the group homomorphism from earlier in the semester. Then $\gamma(a) \in \mathbb{Z}_n^*$.

(This is true because $a \equiv \gamma(a) \pmod{n}$, and if $a \equiv b \pmod{n}$ then $\gcd(a,n) = \gcd(b,n)$. The latter can be seen from the definition of $\gcd(a,n)$

We then have $\gamma(a)^{\phi(n)} = 1$ in \mathbb{Z}_n (by Exercise 10.40); therefore $\gamma(a^{\phi(n)}) = 1$ in \mathbb{Z}_n ; therefore $a^{\phi(n)} \equiv 1 \pmod{n}$.

Solving
$$ax \equiv b \pmod{m}$$

Theorem. Let $m \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}_m$, and let $d = \gcd(a, m)$. Then the equation

$$ax = b$$

has no solutions in \mathbb{Z}_m if $d \nmid b$, and exactly d solutions in \mathbb{Z}_m if $d \mid b$.

Theorem. Let $m \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}$, and let $d = \gcd(a, m)$. Then the equation

$$ax \equiv b \pmod{m}$$

has no solutions if $d \nmid b$, and its solutions set is the union of exactly d congruence classes modulo m if $d \mid b$.

Examples

$$36x \equiv 15 \pmod{24}$$

$$155x \equiv 75 \pmod{65}$$

(on blackboard)