Concours Blanc : Mathématiques

(Temps: 4 heures)

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les étudiants sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Les réponses doivent toutes être soigneusement justifiées. Les calculatrices sont interdites.

Barème indicatif:

Exercice 1. (Polynômes de Legendre)

Dans tout l'exercice, n désigne un entier naturel, $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et $\mathbb{R}_n[X]$ l'ensemble des polynômes réels de degré inférieur ou égal à n. On identifiera polynômes et fonctions polynomiales associées. Pour tout $k \in \mathbb{N}$, on note $P^{(k)}$ la dérivée k-ème du polynôme P. Pour tout $n \in \mathbb{N}$, on considère les polynômes définis par :

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$

La famille (L_n) est appelée la famille des polynômes de Legendre. Pour tout polynôme P, on note $\mathcal{L}(P)$ le polynôme :

$$\mathscr{L}(P) = \left[\left(X^2 - 1 \right) P' \right]'$$

I Préliminaires

- 1. (a) Calculer L_0, L_1, L_2 et L_3 .
 - (b) Pour tout $n \in \mathbb{N}$, déterminer le degré et le coefficient dominant de L_n .
 - (c) En déduire que la famille (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- 2. Montrer que L_{2n} (respectivement L_{2n+1}) est une fonction paire (respectivement impaire).
- 3. (a) Montrer que pour tout $n \in \mathbb{N} : L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^k (X+1)^{n-k}$.
 - (b) En déduire les valeurs de $L_n(-1)$ et de $L_n(1)$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$,

$$U'_{n+1} - 2(n+1)XU_n = 0$$

$$(X^2 - 1) U'_n - 2nXU_n = 0$$

(b) En dérivant les égalités polynomiales précédentes, montrer que la suite (L_n) vérifie :

$$L'_{n+1} = XL'_n + (n+1)L_n$$
$$\mathscr{L}(L_n) = n(n+1)L_n$$

(c) En déduire que la restriction de \mathscr{L} à $\mathbb{R}_n[X]$ est un endomorphisme que nous noterons \mathscr{L}_n . Exprimer la matrice de \mathscr{L}_n dans la base (L_0, \ldots, L_n) .

II Étude d'un produit scalaire et d'une base orthogonale

Pour tous $P, Q \in \mathbb{R}[X]$, on pose :

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)dx$$

- 4. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$. On notera $\|\cdot\|$ la norme euclidienne associée.
- 5. Montrer que pour tous $P, Q \in \mathbb{R}[X] : \langle \mathcal{L}(P), Q \rangle = \langle P, \mathcal{L}(Q) \rangle$. On dit que \mathcal{L} est un endomorphisme auto-adjoint.
- 6. (a) Montrer que pour tout $m \in \mathbb{N}$, la famille $(L_n)_{n \in [0,m]}$ est une base orthogonale de $\mathbb{R}_m[X]$.
 - (b) Montrer que pour tout $n \in \mathbb{N}, L_{n+1} \in \mathbb{R}_n[X]^{\perp}$.
- 7. Montrer que $||L_n||^2 = \frac{2}{2n+1}$.

III Deux propriétés supplémentaires

- 8. En considérant un polynôme $Q = \prod_{i=1}^{k} (X a_i)$ de $\mathbb{R}_n[X]$, montrer que L_{n+1} possède n+1 racines réelles distinctes, toutes dans l'intervalle]-1,1[.
- 9. Calculer la distance de X^{n+1} au sous-espace vectoriel $\mathbb{R}_n[X]$.

Exercice 2. (Temps d'arrêt)

Pour tout entier n tel que $n \ge 2$, on considère une urne U_n contenant n boules numérotées de 1 à n. On effectue, dans U_n , des tirages indépendants d'une boule avec remise. On suppose que tous les tirages dans U_n sont équiprobables. On s'arrête dès que l'on obtient une boule déjà obtenue.

On suppose l'expérience modélisée par un espace probabilisé fini (Ω, P) et on note T_n la variable aléatoire égale au nombre de tirages effectués.

1. Déterminer $T_n(\Omega)$ et justifier que :

$$P\left(T_n > n+1\right) = 0$$

2. Prouver que pour tout entier naturel k tel que $k \leq n$, on a :

$$P(T_n > k) = \frac{n!}{(n-k)!n^k}$$

Pour tout $n \ge 2$, on considère la variable aléatoire $Y_n = \frac{T_n}{\sqrt{n}}$. Soit $y \in]0, +\infty[$ fixé.

Pour tout entier $n \ge 2$, on note $k_n(y)$ l'entier naturel égal à la partie entière de $y\sqrt{n}$ de sorte que l'on a :

$$k_n(y) \leqslant y\sqrt{n} < 1 + k_n(y)$$

3. Justifier que pour tout entier $n \ge 2$:

$$P(Y_n > y) = P(T_n > k_n(y))$$

4. Rappeler la formule de Stirling et montrer que :

$$P(Y_n > y) \underset{n \to +\infty}{\sim} e^{-k_n(y)} \left(1 - \frac{k_n(y)}{n}\right)^{k_n(y) - n}$$

- 5. (a) Déterminer le développement limité à l'ordre 2 au voisinage de 0 de la fonction $f: t \longmapsto -t + (t-1) \ln(1-t)$.
 - (b) En déduire que :

$$\lim_{n \to +\infty} \left(-k_n(y) + (k_n(y) - n) \ln \left(1 - \frac{k_n(y)}{n} \right) \right) = -\frac{y^2}{2}$$

6. Montrer que:

$$\lim_{n \to +\infty} P\left(Y_n \leqslant y\right) = 1 - e^{-\frac{y^2}{2}}$$

Exercice 3. (Matrices symplectiques)

Dans tout le problème, n désigne un entier naturel non nul : $n \in \mathbb{N}^*$.

— Dans $\mathscr{E}_n = \mathcal{M}_{n,1}(\mathbb{R})$ espace vectoriel réel de dimension n, on utilisera le produit scalaire canonique défini par :

$$\forall U, V \in \mathscr{E}_n, \ (U \mid V) = U^{\top} V$$

- On notera $\mathcal{M}_n = \mathcal{M}_n(\mathbb{R})$, l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Dans \mathcal{M}_n , on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $-\mathscr{G}_n = GL_n(\mathbb{R}) = \{M \in \mathscr{M}_n, \det(M) \neq 0\}$ désigne le groupe linéaire des matrices inversibles de \mathscr{M}_n .
- On sera enfin amené à utiliser des décompositions par blocs. On rappelle en particulier que si $A, B, C, D, A', B', C', D' \in \mathcal{M}_n$ on a alors dans \mathcal{M}_{2n} :

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$
$$\det \begin{pmatrix} A & C \\ 0_n & D \end{pmatrix} = \det \begin{pmatrix} A & 0_n \\ C & D \end{pmatrix} = \det(A) \det(D)$$

I Propriétés sur les matrices symplectiques

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de \mathcal{M}_{2n} définie par :

$$J = \left(\begin{array}{cc} 0_n & -I_n \\ I_n & 0_n \end{array}\right)$$

On note:

$$\mathscr{S}p_{2n} = \left\{ M \in \mathscr{M}_{2n}, M^{\top}JM = J \right\}$$

- 1. Calculer J^2 et J^{\top} en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse.
- 2. Vérifier que $J \in \mathcal{S}p_{2n}$ et que pour tout réel α ,

$$K(\alpha) = \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix} \in \mathscr{S}p_{2n}$$

- 3. Pour tout $U \in \mathcal{G}_n$, vérifier que $L_U = \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^{\top} \end{pmatrix}$ est dans $\mathcal{S}p_{2n}$.
- 4. Si $M \in \mathcal{S}p_{2n}$, préciser les valeurs possibles de $\det(M)$.
- 5. Montrer que le produit de deux éléments de $\mathcal{S}p_{2n}$ est un élément de $\mathcal{S}p_{2n}$.
- 6. Montrer qu'un élément de $\mathcal{S}p_{2n}$ est inversible et que son inverse appartient à $\mathcal{S}p_{2n}$.
- 7. Montrer que si $M \in \mathscr{S}p_{2n}$ alors $M^{\top} \in \mathscr{S}p_{2n}$. Soit M une matrice de \mathscr{M}_{2n} écrite sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n$

8. Déterminer les relations sur A, B, C, D caractérisant l'appartenance de M à $\mathcal{S}p_{2n}$.

II Centre de $\mathcal{S}p_{2n}$

On s'intéresse ici au centre \mathcal{Z} de $\mathscr{S}p_{2n}$ c'est-à-dire : $\mathcal{Z} = \{M \in \mathscr{S}p_{2n}, \forall N \in \mathscr{S}p_{2n}, MN = NM\}.$

9. Justifier l'inclusion suivante : $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$. Réciproquement, soit $M \in \mathcal{Z}$ écrite sous la forme :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n$

- 10. En utilisant $L = \begin{pmatrix} I_n & I_n \\ 0_n & I_n \end{pmatrix}$ et sa transposée, obtenir $B = C = 0_n$ et D = A, A étant inversible.
- 11. Soit $U \in \mathscr{G}_n$. En utilisant $L_U = \begin{pmatrix} U & 0_n \\ 0_n & (U^{-1})^{\top} \end{pmatrix}$, montrer que A commute avec toute matrice $U \in \mathscr{G}_n$.
- 12. Conclure que $A \in \{-I_n, I_n\}$ et $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$. Indication : on montrera d'abord que les matrices $I_n + E_{i,j}$ commutent avec A, où $(E_{i,j}, 1 \leq i, j \leq n)$ est la base canonique de \mathcal{M}_n .