

Quantum Invariant and Equivariant Graph Neural Networks for HEP Analysis

Google Summer of Code (GSOC) Contributor under the Machine Learning for Science (ML4SCI) Organization

Roy T. Forestano

ML4SCI Quantum Machine Learning for HEP (QMLHEP) Group University of Florida Department of Physics

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

(Jet (n), Multiplicity (m), Feature (l))

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

Multiplicity $(m) \equiv \text{Nodes with Features (/)}$ $\mathbf{x}_{\alpha}^{(il)} \in \{\mathbf{p}_{T}, \eta, \phi, \mathbf{m}_{p}\}$

(1)

(Jet (n), Multiplicity (m), Feature (/))

Dataset [7]

Graphically Structured Data $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

 $(1, m_1, l)$

Multiplicity $(m) \equiv$ Nodes with Features (/)

$$x_{\alpha}^{(il)} \in \{p_T, \eta, \phi, m_p\}$$
 (1)

$\mathbf{Jet}(n) \equiv \mathbf{Graph} \ \mathbf{with} \ \mathbf{Labels} \ \mathbf{(not \ shown)}$

 $y_n \in \{0,1\}$ for Binary Classification (2)

(Jet (n), Multiplicity (m), Feature (/))

(1,1,l) (1,2,l)

Data Distributions & Feature Engineering @

Data Distributions & Feature Engineering

Data Distributions & Feature Engineering

Feature set $h_{\alpha}^{(il)}$ with $l = 0, 1, 2, \dots, 7$: $h_{\alpha}^{(il)} \equiv \{p_{T,\alpha}^{(i)}, y_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}, \phi_{\alpha}^{(i)}$ $m_{T,\alpha}^{(i)} = \sqrt{m_{\alpha}^{(i)2} + p_{T,\alpha}^{(i)2}},$ $E_{\alpha}^{(i)} = m_{T,\alpha}^{(i)} \cosh(y_{\alpha}^{(i)}),$ $p_{x,\alpha}^{(i)} = p_{T,\alpha}^{(i)} \cos(\phi_{\alpha}^{(i)}),$ $p_{\mathbf{v},\alpha}^{(i)} = p_{T,\alpha}^{(i)} \sin(\phi_{\alpha}^{(i)}),$ $p_{Z,\alpha}^{(i)} = m_{T,ii} \sinh(y_{\alpha}^{(i)}) \}$

Data Distributions & Feature Engineering

Feature set
$$h_{\alpha}^{(il)}$$
 with $l=0,1,2,\ldots,7$:

$$egin{aligned} h_{lpha}^{(il)} &\equiv \{ m{p}_{T,lpha}^{(i)}, m{y}_{lpha}^{(i)}, m{\phi}_{lpha}^{(i)}, \ m_{T,lpha}^{(i)} &= \sqrt{m_{lpha}^{(i)2} + m{p}_{T,lpha}^{(i)2}}, \ E_{lpha}^{(i)} &= m_{T,lpha}^{(i)} \mathrm{cosh}(m{y}_{lpha}^{(i)}), \ m{p}_{x,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{cos}(m{\phi}_{lpha}^{(i)}), \ m{p}_{y,lpha}^{(i)} &= m{p}_{T,lpha}^{(i)} \mathrm{sin}(m{\phi}_{lpha}^{(i)}), \ m{p}_{z,lpha}^{(i)} &= m_{T,ij} \mathrm{sinh}(m{y}_{lpha}^{(i)}) \} \end{aligned}$$

Edge Connections a_{ij}

$$\Delta R_{lpha}^{(jj)} = \sqrt{\left(\phi_{lpha}^{(i)} - \phi_{lpha}^{(j)}
ight)^2 + \left(y_{lpha}^{(i)} - y_{lpha}^{(j)}
ight)^2}$$

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

Input Embedding

Classical

Quantum

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,\sigma_{ij}) \rightarrow$$

$$\mathcal{U}_{ij}(x_i,x_j)
ightarrow$$

$$\mathbf{m}_{ij}(\mathbf{h}_i^I,\mathbf{h}_j^I,\sigma_{ij},\boxed{|\mathbf{x}_i-\mathbf{x_j}|})$$

$$\mathcal{U}_{ij}(|\mathbf{x}_i - \mathbf{x_j}|$$

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_a \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

$\begin{array}{ll} \textbf{Input Embedding} \\ \textbf{Classical} & \textbf{Quantum} \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij}) \rightarrow & \mathcal{U}_{ij}(\textbf{x}_i,\textbf{x}_j) \rightarrow \\ \textbf{m}_{ij}(\textbf{h}_i^l,\textbf{h}_j^l,a_{ij},\left| |\textbf{x}_i-\textbf{x}_{\mathbf{j}}| \right|) & \mathcal{U}_{ij}(\left| |\textbf{x}_i-\textbf{x}_{\mathbf{j}}| \right|) \end{array}$

Equivariance

Equivariance

A function φ is equivariant with respect to group G,G' transformations $g \in T_g \subset G, g' \in S_g \subset G'$ if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for

Invariance

Invariance

A function φ is invairant with respect to a group G transformation $g \in T_g \subset G$ if

$$\varphi(g \cdot x) = \varphi(x) \tag{4}$$

best for

Equivariance

Equivariance

A function φ is equivariant with respect to group G,G' transformations $g\in T_g\subset G, g'\in \mathcal{S}_g\subset G'$ if

$$\varphi(g \cdot x) = g' \cdot \varphi(x) \tag{5}$$

best for

Layer Structure

Classical	Quantum		
$gx_i^I o$	$\mathcal{U}(gx) ightarrow$		
$gx_i^I + C\sum_{i \neq i} (gx_i^I - gx_j^I)\phi_X(\mathbf{m}_{ij})$	$\mathcal{U}_g\mathcal{U}(x)\mathcal{U}_g^\dagger$		

GNN

EGNN

QGNN

EQGNN

Results

Table: Metric comparison between the classical and quantum graph models.

Model	$ \Theta $	N_h	Р	Train ACC	Val ACC	Test AUC
GNN	5122	10	5	74.25%	74.80%	63.36 %
EGNN	5252	10	4	73.66%	74.08%	67.88 %
QGNN	5156	8	6	74.00%	73.28%	61.43 %
EQGNN	5140	8	6	74.42%	72.56%	75.17 %

Conclusion and Outlook

Takeaways

- Statement: Quantum GNNs exhibit enhanced classifier performance over their classical GNN
 counterparts based on the best test AUC scores produced after the training of the models
 while relying on a similar number of parameters, hyperparameters, and model structures.
- However, the community requires a significant improvement in quantum APIs.
 - E.g. Pennylane does not support broadcastable operators, i.e. train on one graph at a time.
 - Quantum algorithms took nearly 100 times as long to train.
 - Difficult to construct the quantum layers with enough trainable parameter flexibility.
- Model improvements include
 - Further theoretical foundations for complex quantum algorithms.
 - More general equivariance, e.g. unitary SU(2), Lorentz SO(1,3) etc.
 - Greater complexity, e.g. quantum attention mechanism (AT).
 - Testing among different tasks, e.g. classification, regression, etc.
 - Improved quantum optimizers and API integration.

Resources and Software

Developing and Documentation

Computing and Testing

Blogging and Connecting

Resources and Code

Figure: Code (left) and website (right).