Übungen zur Vorlesung "Stochastik für Studierende der Informatik"

Blatt 3

Abgabetermin: Montag, 07.05.2018, bis 10.15 Uhr in den Briefkästen im Gebäude 051 (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Beim Pokerspiel Texas Hold'em wird ein 52-Blatt-Kartenspiel (das heißt die Karten von 2 bis 10, sowie Bube, Dame, König, Ass und das jeweils in den vier verschiedenen Farben) verwendet und jeder von insgesmat 10 Spielern erhält zu Beginn 2 Karten. Mit welcher Wahrscheinlichkeit erhält

- (a) mindestens ein Spieler zwei Asse?
- (b) mindestens ein Spieler die Kombination aus 2 und 7 auf die Hand, wobei die Farbe und Reihenfolge der Karten egal sei?

Aufgabe 2 (4 Punkte)

Die Übertragung eines Bits kann durch folgende Ereignisse beschrieben werden:

$$S_0 := \{ \text{"0" gesendet} \}, \quad E_0 := \{ \text{"0" empfangen} \},$$

 $S_1 := \{ \text{"1" gesendet} \}, \quad E_1 := \{ \text{"1" empfangen} \}.$

Die Wahrscheinlichkeit für einen Übertragungsfehler beträgt 1%. Es wird ein zufälliges Bit gesendet, dessen Wert mit Wahrscheinlichkeit p gleich 1 ist, also $\mathbb{P}(S_1) = p$ und $\mathbb{P}(S_0) = 1 - p$.

- (a) Berechnen Sie die bedingten Wahrscheinlichkeiten $\mathbb{P}(S_0|E_0)$, $\mathbb{P}(S_1|E_0)$, $\mathbb{P}(S_1|E_1)$ und $\mathbb{P}(S_0|E_1)$.
- (b) Bei welchen p gilt $\mathbb{P}(S_1|E_1) > \frac{1}{2}$?

Aufgabe 3 (4 Punkte)

In einem Forum wird eine Frage gestellt, woraufhin sieben Personen eine Antwort auf diese verfassen, allerdings unabhängig voneinander. Jeder von ihnen gibt mit einer Wahrscheinlichkeit von 70% eine korrekte Antwort. Mit welcher Wahrscheinlichkeit

- (a) haben alle sieben Personen mit ihrer Antwort Recht?
- (b) hat keiner von ihnen Recht?
- (c) gibt mindestens eine Person die richtige Antwort?
- (d) antworten genau drei Personen richtig?

Begründen Sie ihre Antwort!

Aufgabe 4 (2 Punkte)

Es sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum und $A, B, C \subset \Omega$ beliebige Ereignisse mit P(A) > 0 und 0 < P(B) < 1. Zeigen Sie

$$P(A \cap B) = P(A) \cdot P(B) \Leftrightarrow P(A|B) = P(A|B^c)$$

Aufgabe 5 (2 Punkte)

Aus der Menge $\{1, 2, ..., 100\}$ werden zufällig zwei Zahlen herausgegriffen. Wenn die kleinere der beiden Zahlen ≤ 20 ist, mit welcher Wahrscheinlichkeit ist dann die größere ≥ 80 ?