FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

OBJECTIVES

- Understand the basic concepts of intelligent agents.
- Develop general-purpose problem-solving agents, logical reasoning agents, and agents that reason under uncertainty.
- Employ AI techniques to solve some of today's real-world problem's.

Subject Code: AI32D1 Subject Name: Fundamentals of Artificial Intellige		ence
Course Outcome – COs		Cognitive
At the end of the course students should be able to,		Skill
CO- 01	Explain autonomous agents that make effective decisions in fully informed,	U
	partially observable, and adversarial settings.	
CO- 02	Choose appropriate algorithms for solving given AI problems	A
CO- 03	Design and implement logical reasoning agents	R, A
CO- 04	Design and implement agents that can reason under uncertainty	R, A
CO- 05	Understand the basic areas of artificial intelligence including problem solving,	U
	knowledge representation, reasoning, decision making, planning, perception and	
	action.	

UNIT I: AI AGENTS

Introduction to AI – Agents and Environments – Concept of rationality – Nature of environments – Structure of agents – Problem solving agents–Search algorithms– Uninformed search strategies.

UNIT II: PROBLEM SOLVING

9

Heuristic search strategies—heuristic functions - Local search and optimization problems — Local search in continuous space — Search with non-deterministic actions — Search in partially observable environments — Online search agents and unknown environments.

UNIT III: THEORY OF GAME PLAYING

9

Game theory – Optimal decisions in games – Alpha-beta search – Monte-Carlo tree search – Stochastic games – Partially observable games. Constraint Satisfaction Problems – Constraint propagation – Backtracking search for CSP – Local search for CSP – Structure of CSP.

UNIT IV: KNOWLEDGE BASED LOGICAL AGENTS

9

Knowledge-based agents – Propositional logic – Propositional theorem proving – Propositional model checking– Agents based on propositional logic. First-order logic – Syntax and semantics – Knowledge representation and engineering – Inferences in first-order logic–Forward chaining– Backward chaining– Resolution.

UNIT V: KNOWLEDGE REPRESENTATION

9

Ontological engineering-Objects and categories-Events-Mental objects and Modal logic- Reasoning systems for categories - Reasoning with default information. Classical planning-Algorithms for classical

planning-Heuristics for planning- Hierarchical planning-Non-deterministic domains-Time, Schedule, and Resources- Analysis.

TOTAL: 45 PERIODS

TEXT BOOKS

1. Stuart Russel and Peter Norvig, "Artificial Intelligence: A Modern Approach", Fourth Edition, Pearson Education, 2020.

REFERENCES

- 1. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.
- 2. Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill,2008.
- 3. Patrick H. Winston, "Artificial Intelligence", Third edition, Pearson Edition, 2006.
- 4. Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013.
- 5. Artificial Intelligence by Example: Develop machine intelligence from scratch using real artificial intelligence use cases -by Dennis Rothman, 2018.