Certamen 3 Cálculo Integral

7 de junio de 2017

Profesores Patricio Cumsille - Juan Espinoza

P1. (Teorema Fundamental del Cálculo).

a) Encuentre una función f y un número real a > 0 tales que

$$6 + \int_{a}^{x} \frac{f(t)}{t^2} dt = 2\sqrt{x}, \quad \forall x > 0.$$

b) Sea g una función dos veces derivable en \mathbb{R} . Se define la función f mediante las fórmula

$$f(x) = \int_0^x g(x - t) \sin t dt.$$

Demostrar que se verifica la relación f''(x) + f(x) = g(x) para todo $x \in \mathbb{R}$.

Indicación: Hacer el cambio de variables u = x - t.

P2. (Sumas de Riemann).

a) Identifique la sumatoria

$$S_n = 2\sum_{i=1}^n \frac{(3n+2i)^p}{n^{p+1}}, \quad p \in \mathbb{N},$$

como una suma de Riemann, determinando la función y la partición involucradas. Calcule $\lim_{n\to\infty} S_n$.

b) Usando la definición de integral como límite de una suma de Riemann, calcule la integral

$$\int_0^1 (6x+3)dx.$$

Indicación: Puede serle útil recordar la fórmula $\sum_{i=1}^n i = \frac{n(n+1)}{2}$.

- **P3.** (Aplicaciones de la Integral). Un toro de revolución se genera al rotar el círculo de ecuación $(x-R)^2 + y^2 = r^2$ en torno al eje y, donde R > r.
 - a) Plantee una integral para hallar el volumen del toro.
 - b) Calcule el volumen del toro.

Indicación: Puede serle útil recordar la fórmula $V=2\pi\int_a^b x \left|f(x)-g(x)\right| dx.$