#4

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Bettina MOECKEL et al

SERIAL NO: New U.S. Application

FILED:

Herewith

FOR:

NUCLEOTIDE SEQUENCES WHICH CODE FOR THE rpoB GENE

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

C	T	р
J	ı	л

- □ Full benefit of the filing date of U.S. Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §120.
- ☐ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY

APPLICATION NUMBER

MONTH/DAY/YEAR

GERMANY

101 01 229.5

February 16, 2001

Certified copies of the corresponding Convention Application(s)

- is submitted herewith
- □ will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- were submitted to the International Bureau in PCT Application Number.
 Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed; and
 - (B) Application Serial No.(s)
 - □ are submitted herewith
 - □ will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman/F. Oblon

Registration No. 24,618

Daniel J. Pereira, Ph.D. Registration No. 45,518

22850

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

.

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 07 229.5

Anmeldetag:

16. Februar 2001

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Bezeichnung:

Neue für das rpoB-Gen kodierende Nukleotidse-

quenzen

IPC:

C 12 N, C 12 Q, C 07 H

Bemerkung:

Die nachgereichte Seite 39 der Beschreibung ist am

28. April 2001 eingegangen.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. Mai 2001 Deutsches Patent- und Markenamt Der Präsident

Inn Auftrag

Hiebinger

10

Neue für das rpoB-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das rpoB-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das rpoB-Gen verstärkt wird.

Stand der Technik

L-Aminosauren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und 30 Aminosäuren produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von

L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

5 Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

- Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-
- 15 Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

- Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpoB-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit 25 einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von
- 30 SEQ ID No. 2,

10

15

20

- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität der β -Untereinheit der RNA-Polymerase B aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenzhybridisiert, und gegebenenfalls
- (iv) funktionsneutralen Sinnmutationen in (i), die die Aktivität des Proteins/Polypeptides nicht verändern

Ein weiterer Gegenstand der Erfindung sind schließlich Polynukleotide ausgewählt aus der Gruppe

- a) Polynukleotide enthaltend mindestens 15
 25 aufeinanderfolgende Nukleotide ausgewählt aus der
 Nukleotidsequenz von SEQ ID No. 1 zwischen den
 Positionen 1 und 701
 - b) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der

Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 702 und 4199

c) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 4200 und 5099.

Weitere Gegenstände sind

- ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
- ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, 15 insbesondere Pendelvektor oder Plasmidvektor, und
 - coryneforme Bakterien, die den Vektor enthalten oder in denen das rpoB-Gen verstärkt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für die β -Untereinheit der RNA-Polymerase B kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder

10

5

20

25

30

Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des rpoB-Gens aufweisen. Sie sind ebenso zum Einbau in sogenannte "arrays", "micro arrays" oder "DNA chips" geeignet, um die entsprechenden Polynukleotide zu detektieren und zu bestimmen

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für die β -Untereinheit der

10 RNA-Polymerase B kodieren.

30

Solche als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 25, 26, 27, 28, 29 oder 30, bevorzugt mindestens 20, 21, 22, 23 oder 24, ganz besonders bevorzugt mindestens 15, 16, 17, 18 oder 19 aufeinanderfolgende

Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 31, 32, 33, 34, 35, 36, 37, 38, 39 oder 40, oder mindestens 41, 42, 43, 44, 45, 46, 47, 48, 49 oder 50 Nukleotiden. Gegebenenfalls sind auch Oligonukleotide mit einer Länge von mindestens 100, 150,

20 200, 250 oder 300 Nukleotiden geeignet.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es 25 sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens besonders 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%,

10

97% oder 99% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragmentes.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität der β -Untereinheit der RNA-Polymerase B und auch solche ein, die zu wenigstens 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

- Die Erfindung betrifft weiterhin ein Verfahren zur fermermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-
- Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das rpoB-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
- Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

15

20

25

30

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme, wie beispielsweise die L-Lysin produzierenden Stämme

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM5714 und
Corynebacterium glutamicum DSM12866.

Das neue, für die β -Untereinheit der RNA-Polymerase B kodierende rpoB-Gen von C. glutamicum wurde isoliert.

Zur Isolierung des rpoB-Gens oder auch anderer Gene von
C. glutamicum wird zunächst eine Genbank dieses

- Mikroorganismus in Escherichia coli (E. coli) angelegt.

 Das Anlegen von Genbanken ist in allgemein bekannten
 Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel
 seien das Lehrbuch von Winnacker: Gene und Klone, Eine
 Einführung in die Gentechnologie (Verlag Chemie, Weinheim,
- Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde.
- Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.
 - Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)).
- Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5amcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren

subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

- Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical
- 10 Analysis 39, 74-97 (1998)) untersucht werden.

Die neue für das Gen rpoB kodierende DNA-Sequenz von C. glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen

- 15 Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des rpoB-Genproduktes dargestellt. Es ist bekannt, daß wirtseigene Enzyme die N-terminale Aminosäure Methionin bzw. Formylmethionin des gebildeten Proteins abspalten können.
 - Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID
- No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner
- grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Derartige Mutationen werden unter anderem auch als neutrale Substitutionen bezeichnet. Weiterhin ist bekannt, daß Änderungen am Nund/oder C-Terminus eines Proteins dessen Funktion nicht
- 35 wesentlich beeinträchtigen oder sogar stabilisieren können.

Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter 20 Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der 30 Salzkonzentration beeinflußt bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50°C – 68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70%

- Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's
- Guide for Filter Hybridisation, Boehringer Mannheim,
 Mannheim, Deutschland, 1995) erreicht werden, wobei eine
 Temperatur von ca. 50°C 68°C eingestellt wird. Es ist
 gegebenenfalls möglich die Salzkonzentration bis auf 0,1x
 SSC zu senken. Durch schrittweise Erhöhung der
- Hybridisierungstemperatur in Schritten von ca. 1 2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur
- Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).
- Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
 - 30 Es wurde gefunden, daß coryneforme Bakterien nach Verstärkung des rpoB-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die

Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des

- 5 Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert.
- 10 Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung
- der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)). Tsuchiva und

- Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei
- Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 24 (1993)), in der japanischen Offenlegungsschrift
- JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
- Zur Verstärkung wurde das erfindungsgemäße rpoB-Gen 35 beispielhaft mit Hilfe von episomalen Plasmiden

verwendet werden.

5

10

überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch

- Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige
- Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73
- (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf
- et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode
- der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994))

30

beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"- Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

- Es wurde weiterhin gefunden, dass der Austausch von

 10 Aminosäuren, insbesondere in den Abschnitten zwischen

 Position 1 bis 10, 190 bis 200 und 420 bis 450 in der

 Aminosäuresequenz der β-Untereinheit der RNA-Polymerase B

 dargestellt in SEQ ID No. 2, die Lysinproduktion

 coryneformer Bakterien verbessern.
- Es wurde auch gefunden, dass der Austausch von Aminosäuren an einer oder mehreren Positionen ausgewählt aus der Gruppe a) Position 1 bis 10, b) Position 190 bis 200 und c) Position 420 bis 450 in der SEQ ID No. 2 gleichzeitig erfolgen kann.
- In dem Bereich zwischen Position 1 bis 10 wird der Austausch von L-Prolin an der Position 5 gegen L-Leucin, L-Isoleucin oder L-Valin bevorzugt.
- In dem Bereich zwischen Position 190 bis 200 wird der Austausch von L-Serin an der Position 196 gegen L-
 - 25 Phenylalanin oder L-Tyrosin bevorzugt.

In dem Bereich zwischen 420 bis 450 werden folgende Austausche bevorzugt: Austausch von L-Leucin an der Position 424 gegen L-Prolin oder L-Arginin, Austausch von L-Serin an der Position 425 gegen L-Threonin oder L-Alanin, Austausch von L-Glutamin an Position 426 gegen L-Leucin oder L-Lysin, Austausch von L-Asparaginsäure an Position 429 gegen L-Isoleucin, L-Valin oder L-Leucin, Austausch von L-Histidin an Position 439 gegen jede andere proteinogene

Aminosäure ausgenommen L-Histidin, wird der Austausch von L-Serin an Position 444 gegen L-Leucin, L-Tyrosin oder L-Tryptophan und Austausch von L-Leucin an Position 446 gegen L-Prolin oder L-Isoleucin.

- Ganz besonders bevorzugt, werden ein oder mehrere
 Aminosäureaustausche ausgewählt aus der Gruppe: L-Prolin an
 Position 5 gegen L-Leucin, L-Serin an Position 196 gegen
 L-Phenylalanin, L-Aspartat an Position 429 gegen L-Valin
 und L-Histidin an Position 439 gegen L-Tyrosin.
- In SEQ ID No. 3 ist die Basensequenz des in Stamm DM1547 enthaltenen Allels rpoB-1547 dargestellt. Das rpoB-1547 Allel kodiert für ein Protein, dessen Aminosäuresequenz in SEQ ID No. 4 dargestellt ist. Das Protein enthält an Position 5 L-Leucin, an Position 196 L-Phenylalanin und an Position 429 L-Valin. Die DNA Sequenz des rpoB-1547 Allels (SEQ ID No. 3) enthält folgende Basenaustausche gegenüber dem rpoB Wildtypgen (SEQ ID No. 1): Thymin an Position 715 anstelle von Cytosin, Thymin an Position 1288 anstelle von Cytosin und Thymin an Position 1987 anstelle von Adenin.
 - In SEQ ID No. 5 ist die Basensequenz des in Stamm DM1546 enthaltenen Allels rpoB-1546 dargestellt. Das rpoB-1546 Allel kodiert für ein Protein, dessen Aminosäuresequenz in SEQ ID No. 6 dargestellt ist. Das Protein enthält an Position 439 L-Tyrosin. Die DNA Sequenz des rpoB-1546 Allels (SEQ ID No. 5) enthält folgende Basenaustausche gegenüber dem rpoB Wildtypgen (SEQ ID No. 1): Thymin an Position 2016 anstelle von Cytosin.

Für die Mutagenese können klassische Mutageneseverfahren unter Verwendung mutagener Stoffe wie beispielsweise N
Methyl-N'-Nitro-N-Nitrosoguanidin oder ultraviolettes Licht verwendet werden. Weiterhin können für die Mutagenese invitro Methoden wie beispielsweise eine Behandlung mit Hydroxylamin (Miller, J. H.: A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia

coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992) oder mutagene Oligonukleotide (T. A. Brown: Gentechnologie für Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993) oder die Polymerasekettenreaktion (PCR), wie sie im Handbuch von Newton und Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994) beschrieben ist, verwendet werden.

Zusätzlich kann es für die Produktion von L-Aminosäuren
vorteilhaft sein, neben dem rpoB-Gen eines oder mehrere
Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der
Anaplerotik, des Zitronensäure-Zyklus, des PentosephosphatZyklus, des Aminosäure-Exports und gegebenenfalls
regulatorische Proteine zu verstärken, insbesondere
überzuexprimieren.

So kann für die Herstellung von L-Lysin zusätzlich zur Verstärkung des rpoB-Gens eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
 - das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Triosephosphat-Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk
 (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf (JP-A-09224661),
- das für die Pyruvat-Carboxylase kodierende Gen pyc (DE-A-198 31 609),

- das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- das für eine feed-back resistente Aspartatkinase
 kodierende Gen lysC (Kalinowski et al., Molecular Microbiologie 5(5), 1197-204 (1991)),
 - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
 - das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115), und
 - das für das ribosomale Protein S12 kodierende rpsL-Gen dargestellt in SEQ ID No. 7 und 8

verstärkt, insbesondere überexprimiert werden.

Der Begriff "Abschwächung" beschreibt in diesem

Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Weiterhin kann es für die Produktion von L-Aminosäuren 25 vorteilhaft sein, zusätzlich zur Verstärkung des rpoB-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
- das für die Glucose-6-Phosphat-Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),

- o das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114),
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)
- 5 abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Verstärkung des rpoB-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in:

Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren

wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

15

20

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
entsprechenden Natrium haltigen Salze verwendet werden. Das
Kulturmedium muß weiterhin Salze von Metallen enthalten wie
z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
notwendig sind. Schließlich können essentielle Wuchsstoffe
wie Aminosäuren und Vitamine zusätzlich zu den oben
genannten Stoffen eingesetzt werden. Dem Kulturmedium
können überdies geeignete Vorstufen zugesetzt werden. Die
genannten Einsatzstoffe können zur Kultur in Form eines
einmaligen Ansatzes hinzugegeben oder in geeigneter Weise
während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen
wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.
Ammoniakwasser oder saure Verbindungen wie Phosphorsäure
oder Schwefelsäure in geeigneter Weise eingesetzt. Zur
Kontrolle der Schaumentwicklung können Antischaummittel wie
z.B. Fettsäurepolyglykolester eingesetzt werden. Zur

Aufrechterhaltung der Stabilität von Plasmiden können dem
Medium geeignete selektiv wirkende Stoffe wie z.B.
Antibiotika hinzugefügt werden. Um aerobe Bedingungen
aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff
haltige Gasmischungen wie z.B. Luft in die Kultur
eingetragen. Die Temperatur der Kultur liegt normalerweise

10

bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Reinkulturen folgender Mikroorganismen wurden bei der

Deutschen Sammlung für Mikrorganismen und Zellkulturen

(DSMZ, Braunschweig, Deutschland)am 16. Januar 2001 gemäß

Budapester Vertrag hinterlegt:

- Corynebacterium glutamicum Stamm DM1546 als DSM 13993
- Corynebacterium glutamicum Stamm DM1547 als DSM 13994
- Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie
25 alle Techniken zur Restriktion, Klenow- und alkalische
Phosphatasebehandlung wurden nach Sambrook et al.
(Molecular Cloning. A Laboratory Manual (1989) Cold Spring
Harbour Laboratory Press, Cold Spring Harbor, NY, USA)
durchgeführt. Methoden zur Transformation von Escherichia
30 coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

Beispiel 1

5 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wird wie bei Tauch et al. (1995, Plasmid 33:168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland,

- 10 (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250)
- dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wird mit dem
- 20 Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
- Anschließend wird die Cosmid-DNA mit dem Restriktionsenzym
 BamHI (Amersham Pharmacia, Freiburg, Deutschland,
 Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten.
 Die auf diese Weise behandelte Cosmid-DNA wird mit der
 behandelten ATCC13032-DNA gemischt und der Ansatz mit T4DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland,
 Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04)
 behandelt. Das Ligationsgemisch wird anschließend mit Hilfe
- behandelt. Das Ligationsgemisch wird anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) werden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank werden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin ausplattiert werden. Nach Inkubation über Nacht bei 37°C werden rekombinante Einzelklone selektioniert.

Beispiel 2

25

Germany).

Isolierung und Sequenzierung des rpoB-Gens

Die Cosmid-DNA einer Einzelkolonie wird mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden,

Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH,

Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgt die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden,

Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wird mit dem Restriktionsenzym BamHI

(Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wird wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring

10

20

30

35

Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wird. Dieses Ligationsgemisch wird anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

Die Plasmidpräparation der rekombinanten Klone erfolgt mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgt nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wird der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgt in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten werden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate werden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wird mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergibt ein offenes Leseraster von 3497 Basenpaaren, welches als rpoB-Gen bezeichnet wird. Das rpoB-Gen kodiert für ein Protein von 1165 Aminosäuren.

```
SEQUENZPROTOKOLL
     <110> Degussa-Hüls AG
 5
     <120> Neue für das rpoB-Gen kodierende Nukleotidsequenzen
     <130> 000781 BT
     <140>
10
     <141>
     <160> 8
     <170> PatentIn Ver. 2.1
15
     <210> 1
     <211> 5099
     <212> DNA
     <213> Corynebacterium glutamicum
20
     <220>
     <221> CDS
     <222> (702)..(4196)
     <223> rpoB-Wildtypgen
25
     <400> 1
     acaatgtgac tegtgatttt tgggtggatc agegtacegg tttggttgte gatetagetg 60
     aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120
30
     tegacgeete cetegacgat geagetgtet etaagetggt tgeacaggee gaaageatee 180
     ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240
35
     ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300
     ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360
     ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420
40
     aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcqcqcqc qattqqtata 480
     ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540
45
     atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600
     agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660
     cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ccc 716
50
                                                    Met Leu Glu Gly Pro
     atc ttg gca gtc tcc cgc cag acc aag tca gtc gtc gat att ccc ggt
                                                                        764
     Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly
55
     gca ccg cag cgt tat tct ttc gcg aag gtg tcc gca ccc att gag gtg
                                                                        812
```

Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser Ala Pro Ile Glu Val

30

35

25

5	ccc Pro	G] À ààà	cta Leu 40	Leu	gat Asp	ctt Leu	caa Gln	ctg Leu 45	gat Asp	tct Ser	tac Tyr	tcc Ser	tgg Trp 50	ctg Leu	att Ile	ggt Gly	860
	acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc	gag Glu	gga Gly	gcc Ala	908
10	cgc Arg 70	gta Val	acc Thr	agc Ser	ggc	ctt Leu 75	gag Glu	aac Asn	att Ile	ctc Leu	gag Glu 80	gag Glu	ctc Leu	tcc Ser	cca Pro	atc Ile 85	956
15	cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
20	Glu	Asp	Val	Lys 105	Asn	Thr	Ile	Asp	Glu 110	Ala	Lys	gaa Glu	Lys	Asp 115	Ile	Asn	1052
25	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125	Ala	Glu	Phe	gtc Val	Asn 130	Asn	Thr	Thr	1100
20	Gly	Glu 135	Ile	Lys	Ser	Gln	Thr 140	Val	Phe	Ile	Gly	gat Asp 145	Phe	Pro	Met	Met	1148
30	Thr 150	Asp	Lys	Gly	Thr	Phe 155	Ile	Ile	Asn	Gly	Thr 160	gaa Glu	Arg	Val	Val	Val 165	1196
35	Ser	Gln	Leu	Val	Arg 170	Ser	Pro	Gly	Val	Tyr 175	Phe	gac Asp	Gln	Thr	Ile 180	Asp	1244
40	Lys	Ser	Thr	Glu 185	Arg	Pro	Leu	His	Ala 190	Val	Lys	gtt Val	Ile	Pro 195	Ser	Arg	1292
45	Gly	Ala	Trp 200	Leu	Glu	Phe	Asp	Val 205	Asp	Lys	Arg	gat Asp	Ser 210	Val	Gly	Val	1340
	cgt Arg	att Ile 215	gac Asp	cgc Arg	aag Lys	cgt Arg	cgc Arg 220	cag Gln	cca Pro	gtc Val	acc Thr	gta Val 225	ctg Leu	ctg Leu	aag Lys	gct Ala	1388
50	ctt Leu 230	ggc Gly	tgg Trp	acc Thr	act Thr	gag Glu 235	cag Gln	atc Ile	acc Thr	gag Glu	cgt Arg 240	ttc Phe	ggt Gly	ttc Phe	tct Ser	gaa Glu 245	1436
55	atc Ile	atg Met	atg Met	tcc Ser	acc Thr 250	ctc Leu	gag Glu	tcc Ser	gat Asp	ggt Gly 255	gta Val	gca Ala	aac Asn	acc Thr	gat Asp 260	gag Glu	1484

		gca Ala	ttg Leu	ctg Leu	gag Glu 265	atc Ile	tac Tyr	cgc Arg	aag Lys	cag Gln 270	cgt Arg	cca Pro	ggc Gly	gag Glu	cag Gln 275	cct Pro	acc Thr	1532
	5	cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
	10	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asn	cgc Arg	aag Lys	ctc Leu	1628
	15	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
	20	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
7		gtc Val	atg Met	act Thr	tct Ser 345	cca Pro	aat Asn	ggt Gly	gaa Glu	gag Glu 350	atc Ile	cca Pro	gtc Val	gag Glu	acc Thr 355	gat Asp	gac Asp	1772
	2 5	atc .Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
	30	cag Gln	aac Asn 375	cag Gln	gtc Val	cgt Arg	gtc Val	ggc Gly 380	ctg Leu	tcc Ser	cgc Arg	atg Met	gag Glu 385	cgc Arg	gtt Val	gtt Val	cgt Arg	1868
;	35	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
	40	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
		tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	g <u>a</u> c Asp	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012
4	15	act Thr	<u>c</u> ac His	aag Lys 440	cgt Arg	cgt Arg	ctg Leu	tcg Ser	gct Ala 445	ctg Leu	ggc Gly	ccg Pro	ggt Gly	ggt Gly 450	ctg Leu	tcc Ser	cgt Arg	2060
Ç	50	gag Glu	cgc Arg 455	gcc Ala	ggc Gly	atc Ile	gag Glu	gtt Val 460	cga Arg	gac Asp	gtt Val	cac His	cca Pro 465	tct Ser	cac His	tac Tyr	ggc Gly	2108
Ę	55	cgt Arg 470	atg Met	tgc Cys	cca Pro	att Ile	gag Glu 475	act Thr	ccg Pro	gaa Glu _.	ggt Gly	cca Pro 480	aac Asn	att Ile	ggc Gly	ctg Leu	atc Ile 485	2156
		ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	tat Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	cca Pro	ttc Phe	ggt Gly	ttc Phe	att Ile 500	gag Glu	2204

	5	acc Thr	cca Pro	tac Tyr	cgt Arg 505	Arg	atc Ile	atc Ile	gac Asp	ggc Gly 510	Lys	ctg Leu	acc Thr	gac Asp	cag Gln 515	Ile	gac Asp	2252
		tac Tyr	ctt Leu	acc Thr 520	gct Ala	gat Asp	gag Glu	gaa Glu	gac Asp 525	Arg	ttc Phe	gtt Val	gtt Val	gcg Ala 530	Gln	gca Ala	aac Asn	2300
	10	acg Thr	cac His 535	Tyr	gac Asp	gaa Glu	gag Glu	ggc Gly 540	Asn	atc Ile	acc Thr	gat Asp	gag Glu 545	acc Thr	gtc Val	act Thr	gtt Val	2348
	15	cgt Arg 550	Leu	aag Lys	gac Asp	ggc Gly	gac Asp 555	atc Ile	gcc Ala	atg Met	gtt Val	ggc Gly 560	cgc Arg	aac Asn	gcg Ala	gtt Val	gat Asp 565	2396
	20	tac Tyr	atg Met	gac Asp	gtt Val	tcc Ser 570	cct Pro	cgt Arg	cag Gln	atg Met	gtt Val 575	tct Ser	gtt Val	ggt Gly	acc Thr	gcg Ala 580	atg Met	2444
	5	att Ile	cca Pro	ttc Phe	ctg Leu 585	gag Glu	cac His	gac Asp	gat Asp	gct Ala 590	aac Asn	cgt Arg	gca Ala	ctg Leu	atg Met 595	ggc Gly	gcg Ala	2492
	•	aac Asn	atg Met	cag Gln 600	aag Lys	cag Gln	gct Ala	gtg Val	cca Pro 605	ctg Leu	att Ile	cgt Arg	gcc Ala	gag Glu 610	gct Ala	cct Pro	ttc Phe	2540
	30	gtg Val	ggc Gly 615	acc Thr	ggt Gly	atg Met	gag Glu	cag Gln 620	cgc Arg	gca Ala	gca Ala	tac Tyr	gac Asp 625	gcc Ala	ggc Gly	gac Asp	ctg Leu	2588
	35	gtt Val 630	att Ile	acc Thr	cca Pro	gtc Val	gca Ala 635	ggt Gly	gtg Val	gtg Val	gaa Glu	aac Asn 640	gtt Val	tca Ser	gct Ala	gac Asp	ttc Phe 645	2636
	40	atc Ile	acc Thr	atc Ile	atg Met	gct Ala 650	gat Asp	gac Asp	ggc Gly	aag Lys	cgc Arg 655	gaa Glu	acc Thr	tac Tyr	ctg Leu	ctg Leu 660	cgt Arg	2684
	45	aag Lys	ttc Phe	cag Gln	cgc Arg 665	acc Thr	aac Asn	cag Gln	ggc Gly	acc Thr 670	agc Ser	tac Tyr	aac Asn	cag Gln	aag Lys 675	cct Pro	ttg Leu	2732
		gtt Val	aac Asn	ttg Leu 680	ggc Gly	gag Glu	cgc Arg	gtt Val	gaa Glu 685	gct Ala	ggc Gly	cag Gln	gtt Val	att Ile 690	gct Ala	gat Asp	ggt Gly	2780
,	50	cca Pro	ggt Gly 695	acc Thr	ttc Phe	aat Asn	Gly	gaa Glu 700	atg Met	tcc Ser	ctt Leu	ggc Gly	cgt Arg 705	aac Asn	ctt Leu	ctg Leu	gtt Val	2828
!	55	gcg Ala 710	ttc Phe	atg Met	cct Pro	\mathtt{Trp}	gaa Glu 715	ggc Gly	cac His	aac Asn	tac Tyr	gag Glu 720	gat Asp	gcg Ala	atc Ile	atc Ile	ctc Leu 725	2876

		aac Asn	cag Gln	aac Asn	atc Ile	gtt Val 730	gag Glu	cag Gln	gac Asp	atc Ile	ttg Leu 735	acc Thr	tcg Ser	atc Ile	cac His	atc Ile 740	gag Glu	2924
	5	gag Glu	cac His	gag Glu	atc Ile 745	gat Asp	gcc Ala	cgc Arg	gac Asp	act Thr 750	aag Lys	ctt Leu	ggc Gly	gcc Ala	gaa Glu 755	gaa Glu	atc Ile	2972
	10	acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020
	15	gac Asp	cgc Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068
	20	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc Gly	gag Glu	acc Thr 800	gag Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116
		gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164
	5	gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc Gly	3212
	30	gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260
	35	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	3308
	40	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	ggt Gly	gtt Val	gtc Val	ggt Gly	aaa Lys 885	3356
		att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	cct Pro 900	gtt Val	3404
	45	gac Asp	atc Ile	atc Ile	ttg Leu 905	aac Asn	acc Thr	cac His	ggt Gly	gtt Val 910	cca Pro	cgt Arg	cgt Arg	atg Met	aac Asn 915	att Ile	ggt Gly	3452
!	50	cag Gln	gtt Val	ctt Leu 920	gag Glu	acc Thr	cac His	ctt Leu	ggc Gly 925	tgg Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	ggt Gly	tgg Trp	tcc Ser	3500
!	55	gtg Val	gat Asp 935	cct Pro	gaa Glu	gat Asp	cct Pro	gag Glu 940	aac Asn	gct Ala	gag Glu	ctc Leu	gtc Val 945	aag Lys	act Thr	ctg Leu	cct Pro	3548
		gca Ala 950	gac Asp	ctc Leu	ctc Leu	gag Glu	gtt Val 955	cct Pro	gct Ala	ggt Gly	tcc Ser	ttg Leu 960	act Thr	gca Ala	act Thr	cct Pro	gtg Val 965	3596

	5	ttc Phe	gac Asp	ggt Gly	gcg Ala	tca Ser 970	aac Asn	gaa Glu	gag Glu	ctc Leu	gca Ala 975	ggc Gly	ctg Leu	ctc Leu	gct Ala	aat Asn 980	tca Ser	3644
		cgt Arg	cca Pro	aac Asn	cgc Arg 985	gac Asp	ggc Gly	gac Asp	gtc Val	atg Met 990	gtt Val	aac Asn	gcg Ala	gat Asp	ggt Gly 995	aaa Lys	gca Ala	3692
	10	acg Thr	Leu	atc Ile 1000	gac Asp	ggt Gly	cgc Arg	Ser	ggt Gly LOO5	gag Glu	cct Pro	tac Tyr	Pro	tac Tyr 1010	ccg Pro	gtt Val	tcc Ser	3740
	15	Ile	ggc Gly 1015	tac Tyr	atg Met	tac Tyr	Met	ctg Leu 1020	aag Lys	ctg Leu	cac His	His	ctc Leu 1025	gtt Val	gac Asp	gag Glu	aag Lys	3788
	20	atc Ile 1030	His	gca Ala	cgt Arg	Ser	act Thr 1035	ggt Gly	cct Pro	tac Tyr	Ser	atg Met 1040	att Ile	acc Thr	cag Gln	Gln	cca Pro 1045	3836
4		ctg Leu	ggt Gly	ggt Gly	aaa Lys 1	gca Ala 1050	cag Gln	ttc Phe	ggt Gly	Gly	cag Gln .055	cgt Arg	ttc Phe	ggc Gly	Glu	atg Met 1060	gag Glu	3884
	1	gtg Val	tgg Trp	Ala	atg Met 1065	cag Gln	gca Ala	tac Tyr	Gly	gct Ala 1070	gcc Ala	tac Tyr	aca Thr	Leu	cag Gln 1075	gag Glu	ctg Leu	3932
	30	ctg Leu	Thr	atc Ile 1080	aag Lys	tct Ser	gat Asp	Asp	gtg Val .085	gtt Val	ggc Gly	cgt Arg	Val	aag Lys 1090	gtc Val	tac Tyr	gaa Glu	3980
	35	Ala	att Ile .095	gtg Val	aag Lys	ggc Gly	Glu	aac Asn 100	atc Ile	ccg Pro	gat Asp	Pro	ggt Gly .105	att Ile	cct Pro	gag Glu	tcc Ser	4028
	40	ttc Phe 1110	Lys	gtt Val	ctc Leu	Leu	aag Lys 115	gag Glu	ctc Leu	cag Gln	Ser	ttg Leu 120	tgc Cys	ctg Leu	aac Asn	Val	gag Glu 125	4076
	45	gtt Val	ctc Leu	tcc Ser	gca Ala 1	gac Asp 130	ggc Gly	act Thr	cca Pro	Met	gag Glu 135	ctc Leu	gcg Ala	ggt Gly	Asp	gac Asp 140	gac Asp	4124
		gac Asp	ttc Phe	Asp	cag Gln 145	gca Ala	ggc Gly	gcc Ala	Ser	ctt Leu 150	ggc Gly	atc Ile	aac Asn	Leu	tcc Ser 155	cgt Arg	gac Asp	4172
	50	gag Glu	Arg	tcc Ser 160	gac Asp	gcc Ala	gac Asp	Thr	gca Ala 165	tago	agat	ca g	aaaa	ıcaac	c gc	taga:	aatc	4226
	55	aagc	cata	ca t	cccc	cgga	c at	tgaa	gaga	tgt	tctg	ggg	ggaa	aggg	ag t	ttta	cgtgc	4286
		tcga	cgta	aa c	gtct	tcga	t ga	gctc	cgca	tcg	gcct	ggc	cacc	gccg	ac g	acat	ccgcc	4346
		gttg	gtcc	aa g	ıggtg	aggt	c aa	gaag	ccgg	aga	ccat	caa	ctac	cgaa	cc c	tcaa	gcctg	4406

	aga	agga	acgg	tctg	ttct	gc g	gagco	jtato	t to	ggto	caac	tcg	cgac	tgg	gagt	gcgcct	4466
	gc	ggtaa	igta	caaç	cgtg	rtc c	gcta	caag	ig go	atca	itctg	r tga	acgo	tgt	ggcg	ttgagg	4526
5	tca	ccaa	gtc	caag	gtgc	gc c	gtga	gcgc	a to	ggac	acat	tga	gctc	gct	gcac	cagtaa	4586
	ccc	cacat	ttg	gtac	ttca	ag g	ıgcgt	tcca	it ca	cgcc	tcgg	cta	cctt	ttg	gaco	ttgctc	4646
10	caa	agga	cct	ggac	ctca	tc a	tcta	cttc	g gt	gcga	acat	cat	cacc	agc	gtgg	acgaag	4706
	agg	ctcg	jcca	cago	gacc	ag a	ccac	tctt	g ag	gcag	aaat	gct	tctg	gag	aaga	aggacg	4766
	ttg	aggc	aga	cgca	gagt	ct g	acat	tgct	g ag	cgtg	ctga	aaa	gctc	gaa	gagg	atcttg	4826
15	ctg	aact	tga	ggca	gctg	gc g	ctaa	ggcc	gac	gctc	gccg	caa	ggtt	cag	gctg	ctgccg	4886
	ata	agga	aat	gcag	caca	tc c	gtga	gcgt	g ca	cago	gcga	aat	cgat	cgt	ctcg	atgagg	4946
20	tct	ggca	gac	cttc	atca	ag c	ttgc	tcca	a ag	caga	tgat	ccg	cgat	gag	aagc	tctacg	5006
	atg	aact	gat	cgac	cgct	ac g	agga	ttac	t to	accg	gtgg	tat	gggt	gca	gagt	ccattg	5066
	agg	cttt	gat	ccag	aact	tc g	acct	tgat	g ct	g							5099
25 30	<21 <21	0> 2 1> 1 2> P 3> C	165 RT	ebac	teri	um g	luta	micu	m								
		0> 2		··													
	Met 1	Leu	GIu	GLY	Pro 5	Ile	Leu	Ala	Val	Ser 10		Gln	Thr	Lys	Ser 15	Val	
35	Val	Asp	Ile	Pro 20	Gly	Ala	Pro	Gln	Arg 25	Туr	Ser	Phe	Ala	Lys 30	Val	Ser	
40	Ala	Pro	Ile 35	Glu	Val	Pro	Gly	Leu 40	Leu	Asp	Leu	Gln	Leu 45	Asp	Ser	Tyr	
`	Ser	Trp 50	Leu	Ile	Gly	Thr	Pro 55	Glu	Trp	Arg	Ala	Arg 60	Gln	Lys	Glu	Glu	
45	Phe 65	Gly	Glu	Gly	Ala	Arg 70	Val	Thr	Ser	Gly	Leu 75	Glu	Asn	Ile	Leu	Glu 80	
	Glu	Leu	Ser	Pro	Ile 85	Gln	Asp	Tyr	Ser	Gly 90	Asn	Met	Ser	Leu	Ser 95	Leu	
50	Ser	Glu	Pro	Arg 100	Phe	Glu	Asp	Val	Lys 105	Asn	Thr	Ile	Asp	Glu 110	Ala	Lys	
55	Glu	Lys	Asp 115	Ile	Asn	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125	Ala	Glu	Phe	
	Val	Asn 130	Asn	Thr	Thr	Gly	Glu 135	Ile	Lys	Ser	Gln	Thr 140	Val	Phe	Ile	Gly	

	Asp 145	Phe	Pro	Met	Met	Thr 150	Asp	Lys	Gly	Thr	Phe 155	Ile	Ile	Asn	Gly	Thr 160
5	Glu	Arg	Val	Val	Val 165	Ser	Gln	Leu	Val	Arg 170	Ser	Pro	Gly	Val	Tyr 175	Phe
	Asp	Gln	Thr	Ile 180	Asp	Lys	Ser	Thr	Glu 185	Arg	Pro	Leu	His	Ala 190	Val	Lys
10	Val	Ile	Pro 195	<u>Ser</u>	Arg	Gly	Ala	Trp 200	Leu	Glu	Phe	Asp	Val 205	Asp	Lys	Arg
15	Asp	Ser 210	Val	Gly	Val	Arg	Ile 215	Asp	Arg	Lys	Arg	Arg 220	Gln	Pro	Val	Thr
	Val 225	Leu	Leu	Lys	Ala	Leu 230	Gly	Trp	Thr	Thr	Glu 235	Gln	Ile	Thr	Glu	Arg 240
20	Phe	Gly	Phe	Ser	Glu 245	Ile	Met	Met	Ser	Thr 250	Leu	Glu	Ser	Asp	Gly 255	Val
	Ala	Asn	Thr	Asp 260	Glu	Ala	Leu	Leu	Glu 265	Ile	Tyr	Arg	Lys	Gln 270	Arg	Pro
25	Gly	Glu	Gln 275	Pro	Thr	Arg	Asp	Leu 280	Ala	Gln	Ser	Leu	Leu 285	Asp	Asn	Ser
30	Phe	Phe 290	Arg	Ala	Lys	Arg	Tyr 295	Asp	Leu	Ala	Arg	Val 300	Gly	Arg	Tyr	Lys
	Ile 305	Asn	Arg	Lys	Leu	Gly 310	Leu	Gly	Gly	Asp	His 315	_	Gly	Leu	Met	Thr 320
35	Leu	Thr	Glu	Glu	Asp 325	Ile	Ala	Thr	Thr	Ile 330	Glu	Tyr	Leu	Val	Arg 335	Leu
	His	Ala	Gly	Glu 340	Arg	Val	Met	Thr	Ser 345	Pro	Asn	Gly	Glu	Glu 350	Ile	Pro
40	Val	Glu	Thr 355	Asp	Asp	Ile	Asp	His 360	Phe	Gly	Asn	Arg	Arg 365	Leu	Arg	Thr
45	Val	Gly 370	Glu	Leu	Ile	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met
	Glu 385	Arg	Val	Val	Arg	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	Ile 400
50	Thr	Pro	Thr	Ser	Leu 405	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Ala	Ala	Ile 415	Arg
	Glu	Phe	Phe	Gly 420	Thr	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	Asp	Gln 430	Asn	Asn
55	Ser	Leu	Ser 435	Gly	Leu	Thr	<u>His</u>	Lys 440	Arg	Arg	Leu	Ser	Ala 445	Leu	Gly	Pro
	Gly	Gly 450	Leu	Ser	Arg	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460	Arg	Asp	Val	His

	Pro 465	Ser	His	Tyr	Gly	Arg 470	Met	Cys	Pro	Ile	Glu 475	Thr	Pro	Glu	Gly	Pro 480
5	Asn	Ile	Gly	Leu	Ile 485	Gly	Ser	Leu	Ala	Ser 490	Tyr	Ala	Arg	Val	Asn 495	Pro
10	Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu
	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val
15	Val	Ala 530	Gln	Ala	Asn	Thr	His 535	Tyr	Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp
	Glu 545	Thr	Val	Thr	Val	Arg 550	Leu	Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
20	Arg	Asn	Ala	Val	Asp 565	Tyr	Met	Asp	Val	Ser 570	Pro	Arg	Gln	Met	Val 575	Ser
25	Val	Gly	Thr	Ala 580	Met	Ile	Pro	Phe	Leu 585	Glu	His	Asp	Asp	Ala 590	Asn	Arg
	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arg
30		610	•				615					620	Arg			_
	625					630					635		Val			640
35					645					650			Gly		655	
40				660					665				Gly	670		
			675					680					Glu 685			
45		690					695					700	Met			
5.0	705					710					715		His			720
50					725					730			Asp		735	
55				740					745				Asp	750		
	Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val

	Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775		Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
5	Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	Lys	Val	Thr 795		Lys	Gly	Glu	Thr 800
	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810		Ile	Phe	Gly	Glu 815	_
10	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825		Val	Pro	His	Gly 830	Glu	Thr
15	Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
	Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys
20	Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
~	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro
25	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910	Pro	Arg
30	Arg	Met	Asn 915	Ile	Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	Gly 925	Trp	Leu	Ala
	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935	Pro	Glu	Asp	Pro	Glu 940	Asn	Ala	Glu	Leu
35	Val 945	Lys	Thr	Leu	Pro	Ala 950	Asp	Leu	Leu	Glu	Val 955	Pro	Ala	Gly	Ser	Leu 960
	Thr	Ala	Thr	Pro	Val 965	Phe	Asp	Gly	Ala	Ser 970	Asn	Glu	Glu	Leu	Ala 975	Gly
40	Leu	Leu	Ala	Asn 980	Ser	Arg	Pro	Asn	Arg 985	Asp	Gly	Asp	Val	Met 990	Val	Asn
45	Ala	Asp	Gly 995	Lys	Ala	Thr	Leu 1	Ile .000	Asp	Gly	Arg		Gly .005	Glu	Pro	Tyr
	Pro 1	Tyr .010	Pro.	Val	Ser	Ile 1	Gly 015	Tyr	Met	Tyr		Leu .020	Lys	Leu	His	His
50	Leu 025	Val	Asp	Glu	Lys 1	Ile 030	His	Ala	Arg		Thr 1035	Gly	Pro	Tyr		Met .040
	Ile	Thr	Gln	Gln 1	Pro 045	Leu	Gly	Gly		Ala 050	Gln	Phe	Gly		Gln 055	Arg
55	Phe	Gly	Glu 1	Met 060	Glu	Val	Trp		Met .065	Gln	Ala	Tyr		Ala 070	Ala	Tyr
	Thr	Leu 1	Gln .075	Glu	Leu	Leu		Ile 080	Lys	Ser	Asp		Val 085	Val	Gly	Arg

	Val Lys Val Tyr Glu Ala Ile Val Lys Gly Glu Asn Ile Pro Asp Pro 1090 1095 1100
5	Gly Ile Pro Glu Ser Phe Lys Val Leu Leu Lys Glu Leu Gln Ser Leu 105 1110 1115 1120
10	Cys Leu Asn Val Glu Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu 1125 1130 1135
	Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 1140 1145 1150
15	Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1155 1160 1165
20	<210> 3 <211> 5099 <212> DNA <213> Corynebacterium glutamicum
25	<220> <221> CDS <222> (702)(4196) <223> rpoB-Gen Allel 1547
30	<400> 3 acaatgtgac tcgtgatttt tgggtggatc agcgtaccgg tttggttgtc gatctagctg 60
	aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120
35	tegaegeete eetegaegat geagetgtet etaagetggt tgeaeaggee gaaageatee 180
	ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240
	ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300
40	ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360
	ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420
45	aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480
	ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540
	atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600
50	agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660
55	cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ctc 716 Met Leu Glu Gly Leu 1 5
<i>.</i>	atc ttg gca gtc tcc cgc cag acc aag tca gtc gtc gat att ccc ggt The Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly 10 15 20

		gca Ala	ccg Pro	cag Gln	cgt Arg 25	tat Tyr	tct Ser	ttc Phe	gcg Ala	aag Lys 30	gtg Val	tcc Ser	gca Ala	ccc Pro	att Ile 35	gag Glu	gtg Val	812
	5	ccc Pro	Gly	cta Leu 40	cta Leu	gat Asp	ctt Leu	caa Gln	ctg Leu 45	gat Asp	tct Ser	tac Tyr	tcc Ser	tgg Trp 50	ctg Leu	att Ile	ggt Gly	860
	10	acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc Gly	gag Glu	gga Gly	gcc Ala	908
	15	cgc Arg 70	gta Val	acc Thr	agc Ser	ggc Gly	ctt Leu 75	gag Glu	aac Asn	att Ile	ctc Leu	gag Glu 80	gag Glu	ctc Leu	tcc Ser	cca Pro	atc Ile 85	956
<u> </u>	20	cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
•		gaa Glu	gac Asp	gtc Val	aag Lys 105	aac Asn	acc Thr	att Ile	gac Asp	gag Glu 110	gcg Ala	aaa Lys	gaa Glu	aag Lys	gac Asp 115	atc Ile	aac Asn	1052
	25	tac Tyr	gcg Ala	gcg Ala 120	cca Pro	ctg Leu	tat Tyr	gtg Val	acc Thr 125	gcg Ala	gag Glu	ttc Phe	gtc Val	aac Asn 130	aac Asn	acc Thr	acc Thr	1100
	30 -	ggt Gly	gaa Glu 135	atc Ile	aag Lys	tct Ser	cag Gln	act Thr 140	gtc Val	ttc Phe	atc Ile	ggc Gly	gat Asp 145	ttc Phe	cca Pro	atg Met	atg Met	1148
	35	acg Thr 150	gac Asp	aag Lys	gga Gly	acg Thr	ttc Phe 155	atc Ile	atc Ile	aac Asn	gga Gly	acc Thr 160	gaa Glu	cgc Arg	gtt Val	gtg Val	gtc Val 165	1196
<u>ئ</u>	40	agc Ser	cag Gln	ctc Leu	gtc Val	cgc Arg 170	tcc Ser	ccg Pro	ggc Gly	gtg Val	tac Tyr 175	ttt Phe	gac Asp	cag Gln	acc Thr	atc Ile 180	gat Asp	1244
-	:	aag Lys	tca Ser	act Thr	gag Glu 185	cgt Arg	cca Pro	ctg Leu	cac His	gcc Ala 190	gtg Val	aag Lys	gtt Val	att Ile	cct Pro 195	t <u>t</u> c Phe	cgt Arg	1292
	45	ggt Gly	gct Ala	tgg Trp 200	ctt Leu	gag Glu	ttt Phe	gac Asp	gtc Val 205	gat Asp	aag Lys	cgc Arg	gat Asp	tcg Ser 210	gtt Val	ggt Gly	gtt Val	1340
	50	cgt Arg	att Ile 215	gac Asp	cgc Arg	aag Lys	cgt Arg	cgc Arg 220	cag Gln	cca Pro	gtc Val	acc Thr	gta Val 225	ctg Leu	ctg Leu	aag Lys	gct Ala	1388
	55	ctt Leu 230	ggc Gly	tgg Trp	acc Thr	act Thr	gag Glu 235	cag Gln	atc Ile	acc Thr	gag Glu	cgt Arg 240	ttc Phe	ggt Gly	ttc Phe	tct Ser	gaa Glu 245	1436
		atc Ile	atg Met	atg Met	tcc Ser	acc Thr 250	ctc Leu	gag Glu	tcc Ser	gat Asp	ggt Gly 255	gta Val	gca Ala	aac Asn	acc Thr	gat Asp 260	gag Glu	1484

	5	gca Ala	ttg Leu	ctg Leu	gag Glu 265	atc Ile	tac Tyr	cgc Arg	aag Lys	cag Gln 270	cgt Arg	cca Pro	ggc Gly	gag Glu	cag Gln 275	cct Pro	acc Thr	1532
		cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
	10	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asn	cgc Arg	aag Lys	ctc Leu	1628
	15	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
è	20	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
	25	Val	Met	act Thr	Ser 345	Pro	Asn	Gly	Glu	Glu 350	Ile	Pro	Val	Glu	Thr 355	Asp	Asp	1772
		atc Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
	30	cag Gln	aac Asn 375	cag Gln	gtc Val	cgt Arg	gtc Val	ggc 380	ctg Leu	tcc Ser	cgc Arg	atg Met	gag Glu 385	cgc Arg	gtt Val	gtt Val	cgt Arg	1868
	35	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
	40	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
	45	tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	g <u>t</u> c Val	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012
		act Thr	cac His	aag Lys 440	cgt Arg	cgt Arg	ctg Leu	tcg Ser	gct Ala 445	ctg Leu	ggc Gly	ccg Pro	ggt Gly	ggt Gly 450	ctg Leu	tcc Ser	cgt Arg	2060
	50	gag Glu	cgc Arg 455	gcc Ala	ggc Gly	atc Ile	gag Glu	gtt Val 460	cga Arg	gac Asp	gtt Val	cac His	cca Pro 465	tct Ser	cac His	tac Tyr	ggc Gly	2108
	55	cgt Arg 470	atg Met	tgc Cys	cca Pro	att Ile	gag Glu 475	act Thr	ccg Pro	gaa Glu	ggt Gly	cca Pro 480	aac Asn	att Ile	ggc Gly	ctg Leu	atc Ile 485	2156

	ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	Pro	ttc Phe	ggt Gly	ttc Phe	att Ile 500	gag Glu	2204
5	acc Thr	cca Pro	tac Tyr	cgt Arg 505	Arg	atc Ile	atc Ile	gac Asp	ggc Gly 510	aag Lys	ctg Leu	acc Thr	gac Asp	cag Gln 515	att Ile	gac Asp	2252
10	tac Tyr	ctt Leu	acc Thr 520	Ala	gat Asp	gag Glu	gaa Glu	gac Asp 525	cgc Arg	ttc Phe	gtt Val	gtt Val	gcg Ala 530	cag Gln	gca Ala	aac Asn	2300
15	acg Thr	cac His 535	tac Tyr	gac Asp	gaa Glu	gag Glu	ggc Gly 540	aac Asn	atc Ile	acc Thr	gat Asp	gag Glu 545	acc Thr	gtc Val	act Thr	gtt Val	2348
20	cgt Arg 550	Leu	aag Lys	gac Asp	Gly	gac Asp 555	atc Ile	gcc Ala	atg Met	gtt Val	ggc Gly 560	cgc Arg	aac Asn	gcg Ala	gtt Val	gat Asp 565	2396
	tac Tyr	atg Met	gac Asp	gtt Val	tcc Ser 570	cct Pro	cgt Arg	cag Gln	atg Met	gtt Val 575	tct Ser	gtt Val	ggt Gly	acc Thr	gcg Ala 580	atg Met	2444
25	att Ile	cca Pro	ttc Phe	ctg Leu 585	gag Glu	cac His	gac Asp	gat Asp	gct Ala 590	aac Asn	cgt Arg	gca Ala	ctg Leu	atg Met 595	ggc Gly	gcg Ala	2492
30	aac Asn	atg Met	cag Gln 600	aag Lys	cag Gln	gct Ala	gtg Val	cca Pro 605	ctg Leu	att Ile	cgt Arg	gcc Ala	gag Glu 610	gct Ala	cct Pro	ttc Phe	2540
35	gtg Val	ggc Gly 615	acc Thr	ggt Gly	atg Met	gag Glu	cag Gln 620	cgc Arg	gca Ala	gca Ala	tac Tyr	gac Asp 625	gcc Ala	ggc Gly	gac Asp	ctg Leu	2588
 40	gtt Val 630	att Ile	acc Thr	cca Pro	gtc Val	gca Ala 635	ggt Gly	gtg Val	gtg Val	gaa Glu	aac Asn 640	gtt Val	tca Ser	gct Ala	gac Asp	ttc Phe 645	2636
	atc Ile	acc Thr	atc Ile	atg Met	gct Ala 650	gat Asp	gac Asp	ggc Gly	aag Lys	cgc Arg 655	gaa Glu	acc Thr	tac Tyr	ctg Leu	ctg Leu 660	cgt Arg	2684
45	aag Lys	ttc Phe	cag Gln	cgc Arg 665	acc Thr	aac Asn	cag Gln	ggc Gly	acc Thr 670	agc Ser	tac Tyr	aac Asn	cag Gln	aag Lys 675	cct Pro	ttg Leu	2732
50	gtt Val	aac Asn	ttg Leu 680	ggc Gly	gag Glu	cgc Arg	gtt Val	gaa Glu 685	gct Ala	ggc Gly	cag Gln	gtt Val	att Ile 690	gct Ala	gat Asp	ggt Gly	2780
55	cca Pro	ggt Gly 695	acc Thr	ttc Phe	aat Asn	ggt Gly	gaa Glu 700	atg Met	tcc Ser	ctt Leu	ggc Gly	cgt Arg 705	aac Asn	ctt Leu	ctg Leu	gtt Val	2828
	gcg Ala 710	ttc Phe	atg Met	cct Pro	tgg Trp	gaa Glu 715	ggc Gly	cac His	aac Asn	tac Tyr	gag Glu 720	gat Asp	gcg Ala	atc Ile	atc Ile	ctc Leu 725	2876

	5	aac Asn	cag Gln	aac Asn	atc Ile	gtt Val 730	gag Glu	cag Gln	gac Asp	atc Ile	ttg Leu 735	acc Thr	tcg Ser	atc Ile	cac His	atc Ile 740	gag Glu	2924
		gag Glu	cac His	gag Glu	atc Ile 745	gat Asp	gcc Ala	cgc Arg	gac Asp	act Thr 750	aag Lys	ctt Leu	ggc	gcc Ala	gaa Glu 755	gaa Glu	atc Ile	2972
	10	acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020
	15	gac Asp	cgc Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068
.	20	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc Gly	gag Glu	acc Thr 800	Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116
	25	gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164
		gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc	3212
	30	gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260
	35	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	3308
ì,	40	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	ggt Gly	gtt Val	gtc Val	ggt Gly	aaa Lys 885	3356
	45	att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	cct Pro 900	gtt Val	3404
		gac Asp	atc Ile	atc Ile	ttg Leu 905	aac Asn	acc Thr	cac His	ggt Gly	gtt Val 910	cca Pro	cgt Arg	cgt Arg	atg Met	aac Asn 915	att Ile	ggt Gly	3452
	50	cag Gln	gtt Val	ctt Leu 920	gag Glu	acc Thr	cac His	ctt Leu	ggc Gly 925	tgg Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	ggt Gly	tgg Trp	tcc Ser	3500
	55	Val	gat Asp 935	cct Pro	gaa Glu	gat Asp	cct Pro	gag Glu 940	aac Asn	gct Ala	gag Glu	ctc Leu	gtc Val 945	aag Lys	act Thr	ctg Leu	cct Pro	3548

						gag Glu												3596
	5					tca Ser 970												3644
	10					gac Asp												3692
	15		Leu			ggt Gly		Ser					Pro					3740
. 🚣	20	Ile				tac Tyr	Met					His						3788
\			His			tcc Ser					Ser					Gln		3836
	25				Lys	gca Ala 1050				Gly					Glu			3884
	30			Ala		cag Gln			Gly					Leu				3932
	35		Thr			tct Ser		Asp					Val					3980
(C.	40	Ala			_	ggc Gly	Glu			_	_	Pro						4028
, ,	40		Lys			ctc Leu 1					Ser					Val		4076
	45				Ala	gac Asp 1130				Met					Asp			4124
	50			Asp		gca Ala			Ser					Leu				4172
	55		Arg			gcc Ala		Thr		tago	cagat	ca ç	gaaaa	acaa	ec go	ctaga	aatc	4226
		aago	ccata	aca t	cccc	ccgga	ac at	tgaa	agaga	a tgt	tct	gggg	ggaa	aaggg	gag t	tttta	acgtgc	4286
		tcga	acgta	aaa d	egtet	tcga	at ga	agcto	ccgca	a tc	ggcct	ggc	caco	egec	gac q	gacat	ccgcc	4346

		gttg	gtc	caa (gggt	gaggt	tc a	agaa	gccg	gag	accat	tcaa	cta	ccga	acc	ctcaa	agcctg	4406
	5	agaa	ggad	egg 1	tctg	ttct	gc g	agcg	tatct	to	ggtc	caac	tcg	cgac	tgg	gagt	gcgcct	4466
	J	gcgg	taaç	gta d	caago	cgtgi	tc c	gcta	caago	g gc	atcat	tctg	tga	acgc	tgt	ggcgt	ttgagg	4526
		tcac	caaç	gtc (caag	gtgc	gc c	gtga	gegea	a tg	ggac	acat	tga	gctc	gct	gcac	cagtaa	4586
	10	ссса	catt	tg (gtact	ttcaa	ag g	gcgti	tccat	ca	cgcci	tcgg	cta	cctt	ttg	gacci	ttgctc	4646
		caaa	ggad	cct	ggac	ctcat	tc a	tcta	ette	ggt	gcga	acat	cate	cacc	agc	gtgga	acgaag	4706
	15	aggo	tcg	cca d	cago	gacca	ag a	ccact	tctt	g ag	gcaga	aaat	gct	tctg	gag	aagaa	aggacg	4766
		ttga	ggca	aga d	cgca	gagto	ct g	acati	tgcto	gag	egtge	ctga	aaa	gctc	gaa	gagga	atcttg	4826
		ctga	actt	ga 🤄	ggca	gctg	gc g	ctaa	ggccg	g ac	gctc	gccg	caa	ggtt	cag	gctg	ctgccg	4886
	20	ataa	ggaa	aat q	gcago	cacat	c c	gtga	gcgtg	g ca	cago	gcga	aato	cgate	cgt	ctcga	atgagg	4946
		tctg	gcaç	gac o	ettea	atcaa	ag c	ttgc	tccaa	a ago	cagat	tgat	ccg	cgate	gag	aagct	tctacg	5006
	25	atga	acto	gat d	cgaco	cgcta	ac g	aggat	ttact	tca	accg	gtgg	tate	gggt	gca	gagto	ccattg	5066
		aggo	tttç	gat d	ccaga	actt	c g	accti	tgato	g ct	3							5099
	30	<210 <211 <212 <213	> 11 > PF	۲۲	ebact	eriu	ım gi	lutar	nicum	n								
	35	<400 Met 1		Glu	Gly	Leu 5	Ile	Leu	Ala	Val	Ser 10	Arg	Gln	Thr	Lys	Ser 15	Val	
.	40	Val	Asp	Ile	Pro 20	Gly	Ala	Pro	Gln	Arg 25	Tyr	Ser	Phe	Ala	Lys 30	Val	Ser	
.		Ala	Pro	Ile 35	Glu	Val	Pro	Gly	Leu 40	Leu	Asp	Leu	Gln	Leu 45	Asp	Ser	Tyr	
	45	Ser	Trp 50	Leu	Ile	Gly	Thr	Pro 55	Glu	Trp	Arg	Ala	Arg 60	Gln	Lys	Glu	Glu	
		Phe 65	Gly	Glu	Gly	Ala	Arg 70	Val	Thr	Ser	Gly	Leu 75	Glu	Asn	Ile	Leu	Glu 80	
	50	Glu	Leu	Ser	Pro	Ile 85	Gln	Asp	Tyr	Ser	Gly 90	Asn	Met	Ser	Leu	Ser 95	Leu	
	55	Ser	Glu	Pro	Arg 100	Phe ,	Glu	Asp	Val	Lys 105	Asn	Thr	Ile	Asp	Glu 110	Ala	Lys	
		Glu :	Lys	Asp 115	Ile	Asn	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125	Ala	Glu	Phe	

		Val	Asn 130	Asn	Thr	Thr	Gly	Glu 135	Ile	Lys	Ser	Gln	Thr 140	Val	Phe	Ile	Gly
	5	Asp 145	Phe	Pro	Met	Met	Thr 150	Asp	Lys	Gly	Thr	Phe 155	Ile	Ile	Asn	Gly	Thr 160
		Glu	Arg	Val	Val	Val 165	Ser	Gln	Leu	Val	Arg 170	Ser	Pro	Gly	Val	Tyr 175	Phe
	10	Asp	Gln	Thr	Ile 180	Asp	Lys	Ser	Thr	Glu 185	Arg	Pro	Leu	His	Ala 190	Val	Lys
	15	Val	Ile	Pro 195	<u>Phe</u>	Arg	Gly	Ala	Trp 200	Leu	Glu	Phe	Asp	Val 205	Asp	Lys	Arg
		Asp	Ser 210	Val	Gly	Val	Arg	Ile 215	Asp	Arg	Lys	Arg	Arg 220	Gļn	Pro	Val	Thr
	20	Val 225	Leu	Leu	Lys	Ala	Leu 230	Gly	Trp	Thr	Thr	Glu 235	Gln	Ile	Thr	Glu	Arg 240
`		Phe	Gly	Phe	Ser	Glu 245	Ile	Met	Met	Ser	Thr 250	Leu	Glu	Ser	Asp	Gly 255	Val
	25	Ala	Asn	Thr	Asp 260	Glu	Ala	Leu	Leu	Glu 265	Ile	Tyr	Arg	Lys	Gln 270	Arg	Pro
	30	Gly	Glu	Gln 275	Pro	Thr	Arg	Asp	Leu 280	Ala	Gln	Ser	Leu	Leu 285	Asp	Asn	Ser
		Phe	Phe 290	Arg	Ala	Lys	Arg	Tyr 295	Asp	Leu	Ala	Arg	Val 300	Gly	Arg	Tyr	Lys
	35	Ile 305	Asn	Arg	Lys	Leu	Gly 310	Leu	Gly	Gly	Asp	His 315	Asp	Gly	Leu	Met	Thr 320
		Leu	Thr	Glu	Glu	Asp 325	Ile	Ala	Thr	Thr	Ile 330	Glu	Tyr	Leu	Val	Arg 335	Leu
	40	His	Ala	Gly	Glu 340	Arg	Val	Met	Thr	Ser 345	Pro	Asn	Gly	Glu	Glu 350	Ile	Pro
	45	Val	Glu	Thr 355	Asp	Asp	Ile	Asp	His 360	Phe	Gly	Asn	Arg	Arg 365	Leu	Arg	Thr
		Val	Gly 370	Glu	Leu	Ile	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met
	50	Glu 385	Arg	Val	Val	Arg	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	Ile 400
		Thr	Pro	Thr	Ser	Leu 405	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Ala	Ala	Ile 415	Arg
	55	Glu	Phe	Phe	Gly 420	Thr	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	<u>Val</u>	Gln 430	Asn	Asn
		Ser	Leu	Ser 435	Gly	Leu	Thr	His	Lys 440	Arg	Arg	Leu	Ser	Ala 445	Leu	Gly	Pro

		Gly	Gly 450	Leu	Ser	Arg	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460		Asp	Val	His
	5	Pro 465	Ser	His	Tyr	Gly	Arg 470	Met	Cys	Pro	Ile	Glu 475	Thr	Pro	Glu	Gly	Pro 480
	10	Asn	Ile	Gly	Leu	Ile 485	Gly	Ser	Leu	Ala	Ser 490		Ala	Arg	Val	Asn 495	Pro
		Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505		Ile	Ile	Asp	Gly 510		Leu
	15	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525		Phe	Val
		Val	Ala 530	Gln	Ala	Asn	Thr	His 535	Tyr	Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp
	20	Glu 545	Thr	Val	Thr	Val	Arg 550	Leu	Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
	25	Arg	Asn	Ala	Val	Asp 565	Tyr	Met	Asp	Val	Ser 570		Arg	Gln	Met	Val 575	Ser
		Val	Gly	Thr	Ala 580	Met	Ile	Pro	Phe	Leu 585	Glu	His	Asp	Asp	Ala 590	Asn	Arg
	30	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arg
		Ala	Glu 610	Ala	Pro	Phe	Val	Gly 615	Thr	Gly	Met	Glu	Gln 620	Arg	Ala	Ala	Tyr
	35	Asp 625	Ala	Gly	Asp	Leu	Val 630	Ile	Thr	Pro	Val	Ala 635	Gly	Val	Val	Glu	Asn 640
vai	40	Val	Ser	Ala	Asp	Phe 645	Ile	Thr	Ile	Met	Ala 650	Asp	Asp	Gly	Lys	Arg 655	Glu
	,				Leu 660					665					670		
	45	Asn	Gln	Lys 675	Pro	Leu	Val	Asn	Leu 680	Gly	Glu	Arg	Val	Glu 685	Ala	Gly	Gln
		Val	Ile 690	Ala	Asp	Gly	Pro	Gly 695	Thr	Phe	Asn	Gly	Glu 700	Met	Ser	Leu	Gly
	50	Arg 705	Asn	Leu	Leu	Val	Ala 710	Phe	Met	Pro	Trp	Glu 715	Gly	His	Asn	Tyr	Glu 720
	55	Asp	Ala	Ile	Ile	Leu 725	Asn	Gln	Asn	Ile	Val 730	Glu	Gln	Asp	Ile	Leu 735	Thr
		Ser	Ile	His	Ile 740	Glu	Glu	His	Glu	Ile 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu

		Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
	5	Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775	Gly	Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
		Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	Lys	Val	Thr 795	Pro	Lys	Gly	Glu	Thr 800
	10	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810	Ala	Ile	Phe	Gly	Glu 815	Lys
	15	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
		Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
	20	Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys
, ,		Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
	25	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro
	30	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910	Pro	Arg
		Arg	Met	Asn 915	Ile	Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	Gly 925	Trp	Leu	Ala
	35	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935	Pro	Glu	Asp	Pro	Glu 940	Asn	Ala	Glu	Leu
		Val 945	Lys	Thr	Leu	Pro	Ala 950	Asp	Leu	Leu	Glu	Val 955	Pro	Ala	Gly	Ser	Leu 960
	40	Thr	Ala	Thr	Pro	Val 965	Phe	Asp	Gly	Ala	Ser 970	Asn	Glu	Glu	Leu	Ala 975	Gly
	45	Leu	Leu	Ala	Asn 980	Ser	Arg	Pro	Asn	Arg 985	Asp	Gly	Asp	Val	Met 990	Val	Asn
		Ala	Asp	Gly 995	Lys	Ala	Thr	Leu J	Ile 1000	Asp	Gly	Arg		Gly 1005	Glu	Pro	Tyr
	50	Pro 1	Tyr .010	Pro	Val	Ser	Ile 1	Gly .015	Tyr	Met	Tyr		Leu .020	Lys	Leu	His	His
		Leu 025	Val	Asp	Glu		Ile 1030	His	Ala	Arg		Thr 1035	Gly	Pro	Tyr		Met .040
٠	55	Ile	Thr	Gln		Pro .045	Leu	Gly	Gly		Ala .050	Gln	Phe	Gly		Gln .055	Arg
		Phe	Gly		Met .060	Glu	Val	Trp		Met .065	Gln	Ala	Tyr		Ala .070	Ala	Tyr

Thr Leu Gln Glu Leu Leu Thr Ile Lys Ser Asp Asp Val Val Gly Arg 1075 5 Val Lys Val Tyr Glu Ala Ile Val Lys Gly Glu Asn Ile Pro Asp Pro 1095 Gly Ile Pro Glu Ser Phe Lys Val Leu Leu Lys Glu Leu Gln Ser Leu 105 1115 10 Cys Leu Asn Val Glu Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu 1130 Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 15 1145 Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1160 1165 20 <210> 5 <211> 5099 <212> DNA 25 <213> Corynebacterium glutamicum <220> <221> CDS <222> (702)..(4196) 30 <223> rpoB-Gen Allel 1546 acaatgtgac tcgtgatttt tgggtggatc agcgtaccgg tttggttgtc gatctagctg 60 35 aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120 tegacgeete cetegacgat geagetgtet etaagetggt tgeacaggee gaaageatee 180 ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240 40 ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300 ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360 45 ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420 aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480 ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540 50 atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600 agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660 55 cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ccc 716 Met Leu Glu Gly Pro

		atc Ile	ttg Leu	gca Ala	gtc Val	tcc Ser 10	Arg	cag Gln	acc Thr	aag Lys	tca Ser 15	Val	gtc Val	gat Asp	att Ile	ccc Pro 20	ggt Gly	764
	5	gca Ala	ccg Pro	cag Gln	cgt Arg 25	Tyr	tct Ser	ttc Phe	gcg	aag Lys 30	gtg Val	tcc Ser	gca Ala	ccc Pro	att Ile 35	Glu	gtg Val	812
	10	ccc Pro	Gly	cta Leu 40	Leu	gat Asp	ctt Leu	caa Gln	ctg Leu 45	Asp	tct Ser	tac Tyr	tcc Ser	tgg Trp 50	ctg Leu	att Ile	ggt Gly	860
	15	acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc Gly	gag Glu	gga Gly	gcc Ala	908
	20	cgc Arg 70	Val	acc Thr	agc Ser	ggc Gly	ctt Leu 75	gag Glu	aac Asn	att Ile	ctc Leu	gag Glu 80	gag Glu	ctc Leu	tcc Ser	cca Pro	atc Ile 85	956
		cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
	25	gaa Glu	gac Asp	gtc Val	aag Lys 105	aac Asn	acc Thr	att Ile	gac Asp	gag Glu 110	gcg Ala	aaa Lys	gaa Glu	aag Lys	gac Asp 115	atc Ile	aac Asn	1052
	30	tac Tyr	gcg Ala	gcg Ala 120	cca Pro	ctg Leu	tat Tyr	gtg Val	acc Thr 125	gcg Ala	gag Glu	ttc Phe	gtc Val	aac Asn 130	aac Asn	acc Thr	acc Thr	1100
	35	ggt Gly	gaa Glu 135	atc Ile	aag Lys	tct Ser	cag Gln	act Thr 140	gtc Val	ttc Phe	atc Ile	ggc Gly	gat Asp 145	ttc Phe	cca Pro	atg Met	atg Met	1148
په توسيا	40	acg Thr 150	gac Asp	aag Lys	gga Gly	acg Thr	ttc Phe 155	atc Ile	atc Ile	aac Asn	gga Gly	acc Thr 160	gaa Glu	cgc Arg	gtt Val	gtg Val	gtc Val 165	1196
	·,	agc Ser	cag Gln	ctc Leu	gtc Val	cgc Arg 170	tcc Ser	ccg Pro	ggc Gly	gtg Val	tac Tyr 175	ttt Phe	gac Asp	cag Gln	acc Thr	atc Ile 180	gat Asp	1244
	45	aag Lys	tca Ser	act Thr	gag Glu 185	cgt Arg	cca Pro	ctg Leu	cac His	gcc Ala 190	gtg Val	aag Lys	gtt Val	att Ile	cct Pro 195	tcc Ser	cgt Arg	1292
	50	ggt Gly	gct Ala	tgg Trp 200	ctt Leu	gag Glu	ttt Phe	Asp	gtc Val 205	gat Asp	aag Lys	cgc Arg	gat Asp	tcg Ser 210	gtt Val	ggt Gly	gtt Val	1340
	55	cgt Arg	att Ile 215	gac Asp	cgc Arg	aag Lys	cgt Arg	cgc Arg 220	cag Gln	cca Pro	gtc Val	acc Thr	gta Val 225	ctg Leu	ctg Leu	aag Lys	gct Ala	1388
		ctt Leu 230	ggc Gly	tgg Trp	acc Thr	act Thr	gag Glu 235	cag Gln	atc Ile	acc Thr	gag Glu	cgt Arg 240	ttc Phe	ggt Gly	ttc Phe	tct Ser	gaa Glu 245	1436

	5	atc Ile	atg Met	atg Met	tcc Ser	acc Thr 250	ctc Leu	gag Glu	tcc Ser	gat Asp	ggt Gly 255	gta Val	gca Ala	aac Asn	acc Thr	gat Asp 260	gag Glu	1484
		gca Ala	ttg Leu	ctg Leu	gag Glu 265	atc Ile	tac Tyr	cgc Arg	aag Lys	cag Gln 270	cgt Arg	cca Pro	ggc Gly	gag Glu	cag Gln 275	cct Pro	acc Thr	1532
	10	cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
	15	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asn	cgc Arg	aag Lys	ctc Leu	1628
	20	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
ч - ,	25	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
		gtc Val	atg Met	act Thr	tct Ser 345	cca Pro	aat Asn	ggt Gly	gaa Glu	gag Glu 350	atc Ile	cca Pro	gtc Val	gag Glu	acc Thr 355	gat Asp	gac Asp	1772
	30	atc Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
	35	cag Gln	aac Asn 375	cag Gln	gtc Val	cgt Arg	gtc Val	ggc Gly 380	ctg Leu	tcc Ser	cgc Arg	atg Met	gag Glu 385	cgc Arg	gtt Val	gtt Val	cgt Arg	1868
1	40	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
	45	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
		tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	gac Asp	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012
	50	act Thr	<u>t</u> ac Tyr	aag Lys 440	cgt Arg	cgt Arg	ctg Leu	tcg Ser	gct Ala 445	ctg Leu	ggc Gly	ccg Pro	ggt Gly	ggt Gly 450	ctg Leu	tcc Ser	cgt Arg	2060
	55	gag Glu	cgc Arg 455	gcc Ala	ggc Gly	atc Ile	gag Glu	gtt Val 460	cga Arg	gac Asp	gtt Val	cac His	cca Pro 465	tct Ser	cac His	tac Tyr	ggc Gly	2108

		cgt Arg 470	atg Met	tgc Cys	cca Pro	att Ile	gag Glu 475	act Thr	ccg Pro	gaa Glu	ggt Gly	cca Pro 480	aac Asn	att Ile	ggc Gly	ctg Leu	atc Ile 485	2156
	5	ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	tat Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	cca Pro	ttc Phe	ggt Gly	ttc Phe	att Ile 500	gag Glu	2204
	10	acc Thr	cca Pro	tac Tyr	cgt Arg 505	cgc Arg	atc Ile	atc Ile	gac Asp	ggc Gly 510	aag Lys	ctg Leu	acc Thr	gac Asp	cag Gln 515	att Ile	gac Asp	2252
	15	tac Tyr	ctt Leu	acc Thr 520	gct Ala	gat Asp	gag Glu	gaa Glu	gac Asp 525	cgc Arg	ttc Phe	gtt Val	gtt Val	gcg Ala 530	cag Gln	gca Ala	aac Asn	2300
المنطقة	20	acg Thr	cac His 535	tac Tyr	gac Asp	gaa Glu	gag Glu	ggc Gly 540	aac Asn	atc Ile	acc Thr	gat Asp	gag Glu 545	acc Thr	gtc Val	act Thr	gtt Val	2348
		cgt Arg 550	ctg Leu	aag Lys	gac Asp	ggc Gly	gac Asp 555	atc Ile	gcc Ala	atg Met	gtt Val	ggc Gly 560	cgc Arg	aac Asn	gcg Ala	gtt Val	gat Asp 565	2396
	25	tac Tyr	atg Met	gac Asp	gtt Val	tcc Ser 570	cct Pro	cgt Arg	cag Gln	atg Met	gtt Val 575	tct Ser	gtt Val	ggt Gly	acc Thr	gcg Ala 580	atg Met	2444
	30	att Ile	cca Pro	ttc Phe	ctg Leu 585	gag Glu	cac His	gac Asp	gat Asp	gct Ala 590	aac Asn	cgt Arg	gca Ala	ctg Leu	atg Met 595	ggc Gly	gcg Ala	2492
	35	aac Asn	atg Met	cag Gln 600	aag Lys	cag Gln	gct Ala	gtg Val	cca Pro 605	ctg Leu	att Ile	cgt Arg	gcc Ala	gag Glu 610	gct Ala	cct Pro	ttc Phe	2540
	40	gtg Val	ggc Gly 615	acc Thr	ggt Gly	atg Met	gag Glu	cag Gln 620	cgc Arg	gca Ala	gca Ala	tac Tyr	gac Asp 625	gcc Ala	ggc Gly	gac Asp	ctg Leu	2588
	,	gtt Val 630	att Ile	acc Thr	cca Pro	gtc Val	gca Ala 635	ggt Gly	gtg Val	gtg Val	gaa Glu	aac Asn 640	gtt Val	tca Ser	gct Ala	gac Asp	ttc Phe 645	2636
•	45	atc Ile	acc Thr	atc Ile	atg Met	gct Ala 650	gat Asp	gac Asp	ggc Gly	aag Lys	cgc Arg 655	gaa Glu	acc Thr	tac Tyr	ctg Leu	ctg Leu 660	cgt Arg	2684
!	50	aag Lys	ttc Phe	cag Gln	cgc Arg 665	acc Thr	aac Asn	cag Gln	ggc Gly	acc Thr 670	agc Ser	tac Tyr	aac Asn	cag Gln	aag Lys 675	cct Pro	ttg Leu	2732
ţ	55	gtt Val	aac Asn	ttg Leu 680	ggc Gly	gag Glu	cgc Arg	gtt Val	gaa Glu 685	gct Ala	ggc Gly	cag Gln	gtt Val	att Ile 690	gct Ala	gat Asp	ggt Gly	2780
		cca Pro	ggt Gly 695	acc Thr	ttc Phe	aat Asn	Gly	gaa Glu 700	atg Met	tcc Ser	ctt Leu	ggc Gly	cgt Arg 705	aac Asn	ctt Leu	ctg Leu	gtt Val	2828

	5	gcg Ala 710	Phe	atg Met	cct Pro	tgg Trp	gaa Glu 715	ggc Gly	cac His	aac Asn	tac Tyr	gag Glu 720	gat Asp	gcg Ala	atc Ile	atc Ile	ctc Leu 725	2876
		aac Asn	cag Gln	aac Asn	atc Ile	gtt Val 730	gag Glu	cag Gln	gac Asp	atc Ile	ttg Leu 735	acc Thr	tcg Ser	atc Ile	cac His	atc Ile 740	gag Glu	2924
	10	gag Glu	cac His	gag Glu	atc Ile 745	gat Asp	gcc Ala	cgc Arg	gac Asp	act Thr 750	aag Lys	ctt Leu	ggc Gly	gcc Ala	gaa Glu 755	gaa Glu	atc Ile	2972
	15	acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020
	20	gac Asp	cgc Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068
	25	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc Gly	gag Glu	acc Thr 800	gag Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116
		gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164
	30	gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc Gly	3212
	35	gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260
6	40	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt. Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	3308
	45	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	ggt Gly	gtt Val	gtc Val	ggt Gly	aaa Lys 885	3356
		att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	cct Pro 900	gtt Val	3404
	50	gac Asp	atc Ile	atc Ile	ttg Leu 905	aac Asn	acc Thr	cac His	ggt Gly	gtt Val 910	cca Pro	cgt Arg	cgt Arg	Met	aac Asn 915	att Ile	ggt Gly	3452
	55	cag Gln	gtt Val	ctt Leu 920	gag Glu	acc Thr	cac His	Leu	ggc Gly 925	tgg Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	ggt Gly	tgg Trp	tcc Ser	3500

	gtg gat o Val Asp 1 935	cct gaa g Pro Glu A	at cct ga sp Pro Gl 94	u Asn	gct gag Ala Glu	ctc gtc Leu Val 945	Lys Thr	ctg cct Leu Pro	3548
5	gca gac (Ala Asp 1 950	ctc ctc g Leu Leu G	ag gtt co lu Val Pr 955	t gct o Ala	ggt tcc Gly Ser	ttg act Leu Thr 960	gca act Ala Thr	cct gtg Pro Val 965	3596
10	ttc gac o	ggt gcg t Gly Ala S 9	ca aac ga er Asn Gl 70	a gag u Glu	ctc gca Leu Ala 975	ggc ctg Gly Leu	ctc gct Leu Ala	aat tca Asn Ser 980	3644
15	cgt cca a Arg Pro A	aac cgc ga Asn Arg A 985	ac ggc ga sp Gly As	c gtc p Val	atg gtt Met Val 990	aac gcg Asn Ala	gat ggt Asp Gly 995	aaa gca Lys Ala	3692
20	Thr Leu 1	atc gac go [le Asp G]]	gt cgc tc .y Arg Se	c ggt r Gly 1005	gag cct Glu Pro	Tyr Pro	tac ccg Tyr Pro 1010	gtt tcc Val Ser	3740
	atc ggc t Ile Gly T 1015	ac atg ta Tyr Met Ty	c atg ct r Met Le 102	u Lys	ctg cac Leu His	cac ctc His Leu 1025	gtt gac Val Asp	gag aag Glu Lys	3788
25	atc cac of Ile His A	gca cgt to Ala Arg Se	c act gg Thr Gl 1035	t cct y Pro	Tyr Ser	atg att Met Ile 1040	acc cag Thr Gln	cag cca Gln Pro 1045	3836
30	ctg ggt g Leu Gly G	gt aaa go Gly Lys Al 105	a Gln Ph	c ggt e Gly	gga cag Gly Gln 1055	cgt ttc Arg Phe	Gly Glu	atg gag Met Glu 1060	3884
35	gtg tgg g Val Trp A	ca atg ca la Met Gl 1065	g gca ta n Ala Ty:	r Gly	gct gcc Ala Ala 070	tac aca Tyr Thr	ctt cag Leu Gln 1075	gag ctg Glu Leu	3932
40	ctg acc a Leu Thr I 10	tc aag tc le Lys Se 80	t gat gad r Asp Asp	c gtg o p Val ' 1085	gtt ggc Val Gly	Arg Val	aag gtc Lys Val .090	tac gaa Tyr Glu	3980
	gca att g Ala Ile V 1095	tg aag gg al Lys Gl	c gag aad y Glu Asi 1100	n Ile 1	ccg gat Pro Asp	cca ggt Pro Gly 1105	att cct Ile Pro	gag tcc Glu Ser	4028
45	ttc aag g Phe Lys V 1110	tt ctc ct al Leu Le	c aag gaq u Lys Gli 1115	g ctc (1 Leu (Gln Ser	ttg tgc Leu Cys 120	ctg aac Leu Asn	gtg gag Val Glu 1125	4076
50	gtt ctc t Val Leu S	cc gca ga er Ala As 113	p Gly Thi	cca a	atg gag Met Glu 1135	ctc gcg Leu Ala	Gly Asp	gac gac Asp Asp 140	4124
55	gac ttc g Asp Phe A	at cag gc sp Gln Al 1145	a ggc gcc a Gly Ala	Ser I	ctt ggc Leu Gly 150	atc aac Ile Asn	ctg tcc Leu Ser 1155	cgt gac Arg Asp	4172
	gag cgt to Glu Arg So 11	er Asp Al	c gac acc a Asp Thr	gca t Ala 1165	agcagat	ca gaaaa	caacc gc	tagaaatc	4226

aagccataca tcccccggac attgaagaga tgttctgggg ggaaagggag ttttacgtgc 4286 togacgtaaa cgtottogat gagotoogca toggootggo caccgoogac gacatoogco 4346 5 gttggtccaa gggtgaggtc aagaagccgg agaccatcaa ctaccgaacc ctcaagcctg 4406 agaaggacgg tetgttetge gagegtatet teggteeaac tegegaetgg gagtgegeet 4466 10 gcggtaagta caagcgtgtc cgctacaagg gcatcatctg tgaacgctgt ggcgttgagg 4526 tcaccaagtc caaggtgcgc cgtgagcgca tgggacacat tgagctcgct gcaccagtaa 4586 cccacatttg gtacttcaag ggcgttccat cacgcctcgg ctaccttttg gaccttgctc 4646 15 caaaggacct ggacctcatc atctacttcg gtgcgaacat catcaccagc gtggacgaag 4706 aggetegeea cagegaceag accaetettg aggeagaaat gettetggag aagaaggaeg 4766 20 ttgaggcaga cgcagagtct gacattgctg agcgtgctga aaagctcgaa gaggatcttg 4826 ctgaacttga ggcagctggc gctaaggccg acgctcgccg caaggttcag gctgctgccg 4886 ataaggaaat gcagcacatc cgtgagcgtg cacagcgcga aatcgatcgt ctcgatgagg 4946 25 tetggcagae ettcatcaag ettgetecaa ageagatgat eegegatgag aagetetaeg 5006 atgaactgat cgaccgctac gaggattact tcaccggtgg tatgggtgca gagtccattg 5066 30 aggetttgat ccagaacttc gacettgatg ctg 5099 <210> 6 <211> 1165 35 <212> PRT <213> Corynebacterium glutamicum <400> 6 Met Leu Glu Gly Pro Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val 40 Val Asp Ile Pro Gly Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser 45 Ala Pro Ile Glu Val Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr Ser Trp Leu Ile Gly Thr Pro Glu Trp Arg Ala Arg Gln Lys Glu Glu 50 Phe Gly Glu Gly Ala Arg Val Thr Ser Gly Leu Glu Asn Ile Leu Glu Glu Leu Ser Pro Ile Gln Asp Tyr Ser Gly Asn Met Ser Leu Ser Leu 55 Ser Glu Pro Arg Phe Glu Asp Val Lys Asn Thr Ile Asp Glu Ala Lys 100

		Glu	Lys	Asp 115	lle	Asn	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125		Glu	Phe
	5	Val	Asn 130	Asn	Thr	Thr	Gly	Glu 135		Lys	Ser	Gln	Thr 140		Phe	Ile	Gly
		Asp 145	Phe	Pro	Met	Met	Thr 150	Asp	Lys	Gly	Thr	Phe 155		Ile	Asn	Gly	Thr 160
	10	Glu	Arg	Val	Val	Val 165	Ser	Gln	Leu	Val	Arg 170		Pro	Gly	Val	Tyr 175	
	15				180					185					190		
				195		Arg			200					205			
	20		210			Val		215					220				
	V	225				Ala	230					235					240
	25					Glu 245					250					255	
	30				260	Glu				265					270		
				275		Thr			280					285			
	35		290			Lys		295					300				_
-	140	305				Leu	310					315					320
	40					Asp 325					330					335	
	45				340	Arg				345					350		
				355		Asp			360					365			
	50		370			Ile		375					380				
		~ 1					Glu	Ara	Met	Thr	Thr	Gln	Asp	Ala	Glu	802	Tla
	E E	Glu 385					390					395					400
	55	Thr	Pro	Thr	Ser	Leu 405 Thr	390 Ile	Asn	Val	Arg	Pro 410	395 Val	Ser	Ala	Ala	Ile 415	400 Arg

Ser Leu Ser Gly Leu Thr Tyr Lys Arg Arg Leu Ser Ala Leu Gly Pro 5 Gly Gly Leu Ser Arg Glu Arg Ala Gly Ile Glu Val Arg Asp Val His Pro Ser His Tyr Gly Arg Met Cys Pro Ile Glu Thr Pro Glu Gly Pro 475 10 Asn Ile Gly Leu Ile Gly Ser Leu Ala Ser Tyr Ala Arg Val Asn Pro 485 490 Phe Gly Phe Ile Glu Thr Pro Tyr Arg Arg Ile Ile Asp Gly Lys Leu 15 505 Thr Asp Gln Ile Asp Tyr Leu Thr Ala Asp Glu Glu Asp Arg Phe Val 520 20 Val Ala Gln Ala Asn Thr His Tyr Asp Glu Glu Gly Asn Ile Thr Asp 535 Glu Thr Val Thr Val Arg Leu Lys Asp Gly Asp Ile Ala Met Val Gly 25 Arg Asn Ala Val Asp Tyr Met Asp Val Ser Pro Arg Gln Met Val Ser 565 570 Val Gly Thr Ala Met Ile Pro Phe Leu Glu His Asp Asp Ala Asn Arg 30 580 585 Ala Leu Met Gly Ala Asn Met Gln Lys Gln Ala Val Pro Leu Ile Arg 600 35 Ala Glu Ala Pro Phe Val Gly Thr Gly Met Glu Gln Arg Ala Ala Tyr 615 Asp Ala Gly Asp Leu Val Ile Thr Pro Val Ala Gly Val Val Glu Asn 630 40 Val Ser Ala Asp Phe Ile Thr Ile Met Ala Asp Asp Gly Lys Arg Glu 645 Thr Tyr Leu Leu Arg Lys Phe Gln Arg Thr Asn Gln Gly Thr Ser Tyr 45 Asn Gln Lys Pro Leu Val Asn Leu Gly Glu Arg Val Glu Ala Gly Gln 675 50 Val Ile Ala Asp Gly Pro Gly Thr Phe Asn Gly Glu Met Ser Leu Gly Arg Asn Leu Leu Val Ala Phe Met Pro Trp Glu Gly His Asn Tyr Glu 705 55 Asp Ala Ile Ile Leu Asn Gln Asn Ile Val Glu Gln Asp Ile Leu Thr 725 730

		Ser	Ile	His	Ile 740	Glu	Glu	His	Glu	Ile 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu
	5	Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
		Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775	Gly	Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
	10	Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	Lys	Val	Thr 795	Pro	Lys	Gly	Glu	Thr 800
	15	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810	Ala	Ile	Phe	Gly	Glu 815	Lys
		Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
2	20	Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
		Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys
	25	Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
	30					885					890				Phe	895	
					900					905					Val 910		
	35			915					920					925	Trp		
			930					935					940		Ala		
	40	945					950					955			Gly		960
	45					965					970				Leu	975	_
					980					985					Met 990		
	50			995				1	.000				1	005	Glu		_
		1	010				1	.015				1	.020		Leu		
	55	Leu 025	Val	Asp	Glu	Lys 1	Ile 030	His	Ala	Arg		Thr 035	Gly	Pro	Tyr		Met 040
		Ile	Thr	Gln		Pro 045	Leu	Gly	Gly		Ala 050	Gln	Phe	Gly	Gly 1	Gln 055	Arg

	1060 1065 1070	
5	Thr Leu Gln Glu Leu Leu Thr Ile Lys Ser Asp Asp Val Val Gly Arg 1075 1080 1085	
10	Val Lys Val Tyr Glu Ala Ile Val Lys Gly Glu Asn Ile Pro Asp Pro 1090 1095 1100	
	Gly Ile Pro Glu Ser Phe Lys Val Leu Leu Lys Glu Leu Gln Ser Leu 105 1110 1115 1120	
15	Cys Leu Asn Val Glu Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu 1125 1130 1135	
	Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 1140 1145 1150	
4 , ²⁰	Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1155 1160 1165	
25	<210> 7 <211> 1775 <212> DNA <213> Corynebacterium glutamicum	
30	<220> <221> CDS <222> (500)(880) <223> rpsL-Gen	
35	<400> 7 , cagetetaca agagteta agtegegege attecateet ttegagege gatetteaaa (60
	ttcctccaaa gtgagttgac ctcgggaaac agctgcagaa agttcatcca cgacttggtt 1	120
40	tcggttaagg tcagtggcga gcttctttgc tggttcgttt ccttgaggaa cagtcatggg	180
5	aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag 2	240
45	teceaetett gtagttggga attgaeggea eetegeaete aagegeggta tegeeeetgg	300
	ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt 3	360
	cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca	420
50	togacaaget cagoottogt gttogtococ ogggogtoac gtcagcagtt aaagaacaac	480
	tccgaaataa ggatggttc atg cca act att cag cag ctg gtc cgt aag ggc 5 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly 1 5 10	532
55	cgc cac gat aag tcc gcc aag gtg gct acc gcg gca ctg aag ggt tcc Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser 15 20 25	580

		cct Pro	cag Gln	cgt Arg 30	cgt Arg	ggc Gly	gta Val	tgc Cys	acc Thr 35	cgt Arg	gtg Val	tac Tyr	acc Thr	acc Thr 40	acc Thr	cct Pro	aag Lys	628
	5				tct Ser													676
	10	ggc Gly 60	atc Ile	gag Glu	gtt Val	tcc Ser	gct Ala 65	tac Tyr	atc Ile	cct Pro	ggt Gly	gag Glu 70	ggc Gly	cac His	aac Asn	ctg Leu	cag Gln 75	724
	15	gag Glu	cac His	tcc Ser	atg Met	gtg Val 80	ctc Leu	gtt Val	cgc Arg	ggt Gly	ggt Gly 85	cgt Arg	gtt Val	aag Lys	gac Asp	ctc Leu 90	cca Pro	772
	.20				tac Tyr 95													820
•	120	aag Lys	gac Asp	cgc Arg 110	aag Lys	cag Gln	gct Ala	cgt Arg	tcc Ser 115	ccg Pro	cta Leu	cgg Arg	cgc Arg	gaa Glu 120	gag Glu	Gly ggg	ata Ile	868
	25		aaa Lys 125		gcg Ala	taaa	ıtcaç	gca ç	gctco	ctaaç	gc gt	ccaç	gtagt	tca	aggad	ccct		920
	30	gtat	acaa	igt d	ccgaç	gctc	gt ta	accca	gcto	gta	aaca	aaga	tcct	cato	egg t	ggca	agaag	980
	30	tcca	ccgc	ag a	agcgo	catco	gt ct	acgo	gtgca	cto	cgaga	atct	gccg	gtgaç	gaa g	gacco	gcacc	1040
		gato	cagt	ag g	gaaco	ctc	ja ga	aggo	ctctc	ggo	caacç	gtgc	gtcc	agac	ct o	gaag	gttcgt	1100
	35	tccc	gccg	gtg t	tggt	ggcg	jc ta	ecta	accaç	gto	gccag	gtgg	atgt	tcgc	cc a	agago	gcgca	1160
		aaca	ccct	cg o	cacto	ıcgtt	g gt	tggt	aaco	: ttc	cacco	gtc	agco	ıtcgt	ga g	gaaca	ccatg	1220
	40	atco	gageg	rtc t	tgca	aacc	ja ac	ettet	ggat	gca	gcca	aacg	gcct	tggc	gc t	tccg	gtgaag	1280
1	40	cgtc	gcga	ag a	cacc	caca	ia ga	tggc	agaç	gcc	caaco	gcg	cctt	cgct	ca c	ctaco	gctgg	1340
		tagt	acto	icc s	agac	atga	a aç	gecea	atca	cct	ttaa	agat	caac	gcct	gc c	ggcg	ccctt	1400
	45	caca	tttg	jaa t	aago	tggc	a go	ctgo	gttt	ctt	caac	ggcg	acto	ggct	tt t	agto	tcatt	1460
		aatg	cagt	tc a	ccgc	tgta	a ga	tago	taaa	tag	gaaac	cact	gttt	cggc	ag t	gtgt	tacta	1520
	50	aaaa	atco	at c	gtcac	ttgc	c to	gago	gtgo	tgc	ttga	atc	gcaa	gtta	ıgt ç	gcaa	aatgt	1580
		aaca	agag	aa t	tato	cgta	ıg gt	gaca	aact	ttt	taat	act	tggg	tato	tg t	cato	gatac	1640
		cccg	gtaa	ta a	ataa	gtga	a tt	acco	jtaac	caa	caaç	gttg	gggt	acca	ct c	gtggc	acaag	1700
	55	aagt	gctt	aa c	gato	taaa	c aa	ggto	cgca	aca	tcgg	gcat	catg	gcgc	ac a	tcga	tgctg	1760
		gtaa	gaco	ac c	jacca	ļ												1775

	_	<213 <213	0> 8 1> 12 2> PI 3> Co	RT	ebact	teri	um gi	lutar	nicur	n							
	5		0> 8 Pro	Thr	Ile	Gln 5	Gln	Leu	Val	Arg	Lys 10	Gly	Arg	His	Asp	Lys 15	Se
	10	Ala	Lys	Val	Ala 20	Thr	Ala	Ala	Leu	Lys 25	Gly	Ser	Pro	Gln	Arg 30	Arg	Gl
	15	Val	Суѕ	Thr 35	Arg	Val	Tyr	Thr	Thr 40	Thr	Pro	Lys	Lys	Pro 45	Asn	Ser	Ala
		Leu	Arg 50	Lys	Val	Ala	Arg	Val 55	Arg	Leu	Thr	Ser	Gly 60	Ile	Glu	Val	Se
B	20	Ala 65	Tyr	Ile	Pro	Gly	Glu 70	Gly	His	Asn	Leu	Gln 75	Glu	His	Ser	Met	Va:
		Leu	Val	Arg	Gly	Gly 85	Arg	Val	Lys	Asp	Leu 90	Pro	Gly	Val	Arg	Tyr 95	Lys
	25	Ile	Val	Arg	Gly 100	Ala	Leu	Asp	Thr	Gln 105	Gly	Val	Lys	Asp	Arg 110	Lys	Gli
	30	Ala	Arg	Ser 115	Pro	Leu	Arg	Arg	Glu 120	Glu	Gly	Ile	Ile	Lys 125	Asn	Ala	

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpoB-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c)

wobei das Polypeptid bevorzugt die Aktivität der β -Untereinheit der RNA-Polymerase B aufweist.

- 20 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
- Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

20

- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz
 (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
 - 6. Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
 - 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das rpoB-Gen verstärkt, insbesondere überexprimiert wird.
 - 9. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das rpoB-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
- 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß man Bakterien

einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

- 11. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.
- 12. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man einen mit einem
 Plasmidvektor transformierten Stamm einsetzt, und der
 Plasmidvektor die für das rpoB-Gen kodierende
 Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man die Expression des
 (der) Polynukleotides (e), das (die) für das rpoB-Gen
 kodiert (kodieren) verstärkt, insbesondere
 überexprimiert.
- 14. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man die
 regulatorischen/katalytischen Eigenschaften des
 Polypetids (Enzymprotein) erhöht, für das das
 Polynukleotid rpoB kodiert.
- 15. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
 - 15.2 das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap,

- 15.3 das für die Triosephosphat-Isomerase kodierende Gen tpi, 15.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk, 5 15.5 das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf, 15.6 das für die Pyruvat-Carboxylase kodierende Gen pyc, 15.7 das für die Malat-Chinon-Oxidoreduktase 10 kodierende Gen mgo, 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 15.9 das für den Lysin-Export kodierende Gen lysE, 15.10 das für das Zwal-Protein kodierende Gen zwal 15 15.11 das für das ribosomale Protein S12 kodierende rpsL-Gen verstärkt bzw. überexprimiert. 16. Verfahren gemäß Anspruch 9, dadurch 20 gekennzeichnet, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen
- fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
 - 16.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
 - 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB

15

20

25

- 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 17. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
- 5 18. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dad urch gekennzeichnet, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
 - 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für die β -Untereinheit der RNA-Polymerase B kodieren oder eine hohe Ähnlichkeit mit der Sequenz des rpoB-Gens aufweisen, d a d u r c h g e k e n n z e i c h n e t, daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4, als Hybridisierungssonden einsetzt.
 - 20. Verfahren gemäß Anspruch 18, d a d u r c h g e k e n n z e i c h n e t, daß man arrays, micro arrays oder DNA-chips einsetzt.
 - 21. Aus coryneformen Bakterien stammende DNA, kodierend für β-Untereinheiten der RNA-Polymerase B, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 1 bis 10 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.
 - 22. DNA gemäß Anspruch 21 d a d u r c h g e k e n n z e i c h n e t, daß diese für β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 5 in der SEQ ID No. 2 L-Leucin, L-Isoleucin oder L-Valin enthalten.

10

15

20

- 23. Aus coryneformen Bakterien stammende DNA, kodierend für β -Untereinheiten der RNA-Polymerase B, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 190 bis 200 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.
- 24. DNA gemäß Ansprüch 23 d a d u r c h g e k e n n z e i c h n e t, daß diese für β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 196 in der SEQ ID No. 2 L-Phenylalanin oder L-Tyrosin enthalten.
- 25. Aus coryneformen Bakterien stammende DNA, kodierend für β -Untereinheiten der RNA-Polymerase B, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 420 bis 450 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.
- 26. DNA gemäß Anspruch 25 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an den Positionen 439 in der SEQ ID No. 2 jede andere proteinogene Aminosäure ausgenommen L-Histidin enthalten.
- 27. DNA gemäß Anspruch 25 d a d u r c h
 g e k e n n z e i c h n e t, daß diese für die βUntereinheiten der RNA-Polymerase B kodieren, wobei die
 zugehörigen Aminosäuresequenzen an Position 424 in der
 SEQ ID No. 2 L-Prolin oder L-Arginin enthalten.
 - 28. DNA gemäß Anspruch 25 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 425 in der SEQ ID No. L-Threonin oder L-Alanin enthalten.
 - 29. DNA gemäß Anspruch 25 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-

Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 426 in der SEQ ID No. 2 L-Leucin oder L-Lysin enthalten.

- 30. DNA gemäß Anspruch 25 d a d u r c h
 g e k e n n z e i c h n e t, daß diese für die βUntereinheiten der RNA-Polymerase B kodieren, wobei die
 zugehörigen Aminosäuresequenzen an Position 429 in der
 SEQ ID No. L-Isoleucin, L-Valin oder L-Leucin
 enthalten.
- 31. DNA gemäß Anspruch 25 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 444 in der SEQ ID No. 2 L-Leucin, L- Tyrosin oder L-Tryptophan enthalten.
 - 32. DNA gemäß Anspruch 25 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-Untereinheiten der RNA-Polymerase B kodieren, wobei die zugehörigen Aminosäuresequenzen an Position 446 in der SEQ ID No. 2 L-Prolin oder L-Isoleucin enthalten.
- 33. Aus coryneformen Bakterien stammende DNA, kodierend für β-Untereinheiten der RNA-Polymerase B, wobei die zugehörigen Aminosäuresequenzen an einer oder mehreren Positionen ausgewählt aus der Gruppe a) Position 1 bis 10, b) Position 190 bis 200 und c) Position 420 bis 450 in der SEQ ID No. 2 gleichzeitig durch Aminosäureaustausch verändert sind.
- 34. DNA gemäß Anspruch 33 d a d u r c h
 g e k e n n z e i c h n e t, daß diese für die β30 Untereinheiten der RNA-Polymerase B kodieren, wobei die
 zugehörigen Aminosäuresequenzen in der SEQ ID No. 2 an
 einer oder mehreren Positionen ausgewählt aus der
 Gruppe a) Position 5 L-Leucin, b) Position 196 L-

10

Phenylalanin, c) Position 429 L-Valin, und d) Position 439 L-Tyrosin, enthalten.

- 35. DNA gemäß Anspruch 34 d a d u r c h g e k e n n z e i c h n e t, daß diese für die β-Untereinheit der RNA-Polymerase B kodiert, wobei die zugehörige Aminosäuresequenz an Position 5 L-Leucin, an Position 196 L-Phenylalanin, und an Position 429 L-Valin, enthält, dargestellt in SEQ ID No. 4.
- 36. DNA gemäß Anspruch 34 d a d u r c h
 g e k e n n z e i c h n e t, daß diese für die βUntereinheit der RNA-Polymerase B kodiert, wobei die
 zugehörigen Aminosäuresequenz an der Position 439 LTyrosin enthält, dargestellt in SEQ ID No. 6.
- 37. Aus coryneformen Bakterien stammende DNA, kodierend für die β -Untereinheit der RNA-Polymerase B, wobei die Basensequenz der DNA an der Position 715 Thymin enthält, an der Position 1288 Thymin enthält, und an der Position 1987 Thymin enthält, dargestellt in SEQ ID No. 3.
- 20 38. Aus coryneformen Bakterien stammende DNA, kodierend für die β -Untereinheit der RNA-Polymerase B, wobei die Basensequenz der DNA an der Position 2016 Thymin enthält, dargestellt in SEQ ID No. 5.

20

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das rpoB-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.

TRANSLATOR'S DECLARATION

I, Judith Atkinson, BA(Hons.), MITI., translator to Messrs. Taylor & Meyer of 20 Kingsmead Road, London, SW2 3JD, Great Britain, verify that I know well both the German and the English language, that I have prepared the attached English translation of pages of a German Patent application in the German language with the title:

Neue für das rpoB-Gen kodierende Nukleotidsequenzen

identified by the code number 000781 BT at the upper left of each page and corresponding to client/matter number of the law firm of

and that the attached English translation of this document is a true and correct translation of the document attached thereto to the best of my knowledge and belief.

I further declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that wilful false statements and the like are punishable by fine or imprisonment, or both, under 18 USC 1001, and that such false statements may jeopardize the validity of this document.

Date:	13th March 2001		By:	J.M. Athinson.
-------	-----------------	--	-----	----------------

Novel nucleotide sequences coding for the rpoB gene

The invention provides nucleotide sequences from coryneform bacteria coding for the rpoB gene, and a process for the production of amino acids by fermentation using bacteria in which the rpoB gene is enhanced.

Prior art

5

10

15

20

25

L-amino acids, especially L-lysine, are used in human medicine and in the pharmaceuticals industry, in the foodstuffs industry and, very especially, in the feeding of animals.

It is known that amino acids are produced by fermentation of strains of coryneform bacteria, especially Corynebacterium glutamicum. Because of their great importance, attempts are continuously being made to improve the production processes. Improvements to the processes may concern measures relating to the fermentation, such as, for example, stirring and oxygen supply, or the composition of the nutrient media, such as, for example, the sugar concentration during the fermentation, or working up to the product form by, for example, ion-exchange chromatography, or the intrinsic performance properties of the microorganism itself.

In order to improve the performance properties of such microorganisms, methods of mutagenesis, selection and mutant selection are employed. Such methods yield strains which are resistant to antimetabolites or are auxotrophic for metabolites that are important in terms of regulation, and which produce amino acids.

For a number of years, methods of recombinant DNA technology have also been used for improving the strain of L-amino acid-producing strains of Corynebacterium, by

amplifying individual amino acid biosynthesis genes and studying the effect on amino acid production.

Object of the invention

The inventors have set themselves the object of providing novel measures for the improved production of amino acids by fermentation.

Description of the invention

Where L-amino acids or amino acids are mentioned hereinbelow, they are to be understood as meaning one or more amino acids, including their salts, selected from the group L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-arginine. L-lysine is especially preferred.

Where L-lysine or lysine is mentioned hereinbelow, it is to be understood as meaning not only the bases but also the salts, such as, for example, lysine monohydrochloride or lysine sulfate.

- The invention provides an isolated polynucleotide from coryneform bacteria, containing a polynucleotide sequence coding for the rpoB gene, selected from the group
 - a) polynucleotide that is at least 70% identical with a polynucleotide that codes for a polypeptide containing the amino acid sequence of SEQ ID No. 2,
 - b) polynucleotide that codes for a polypeptide containing an amino acid sequence that is at least 70% identical with the amino acid sequence of SEQ ID No. 2,
- c) polynucleotide that is complementary to the polynucleotides of a) or b), and

d) polynucleotide containing at least 15 consecutive nucleotides of the polynucleotide sequence of a), b) or c),

the polypeptide preferably exhibiting the activity of the β -subunit of RNA polymerase B.

The invention also provides the above-mentioned polynucleotide, it preferably being a replicatable DNA containing:

- (i) the nucleotide sequence shown in SEQ ID No. 1, or
- (ii) at least one sequence that corresponds to sequence(i) within the region of the degeneracy of the qenetic code, or
 - (iii) at least one sequence that hybridizes with the sequence that is complementary to sequence (i) or (ii), and optionally
 - (iv) sense mutations in (i) which are neutral in terms of function and which do not change the activity of the protein/polypeptide.

Finally, the invention also provides polynucleotides selected from the group

- a) polynucleotides containing at least 15 consecutive nucleotides selected from the nucleotide sequence of SEQ ID No. 1 between positions 1 and 701
- b) polynucleotides containing at least 15 consecutive nucleotides selected from the nucleotide sequence of SEQ ID No. 1 between positions 702 and 4199
 - c) polynucleotides containing at least 15 consecutive nucleotides selected from the nucleotide sequence of SEQ ID No. 1 between positions 4200 and 5099.

20

25

30

The invention also provides

- a replicatable polynucleotide, especially DNA, containing the nucleotide sequence as shown in SEQ ID No. 1;
- a polynucleotide that codes for a polypeptide containing the amino acid sequence as shown in SEQ ID No. 2;
 - a vector containing the polynucleotide of the invention, especially a shuttle vector or a plasmid vector, and
 - coryneform bacteria which contain the vector or in which the rpoB gene has been enhanced.
- The invention also provides polynucleotides consisting substantially of a polynucleotide sequence, which are obtainable by screening, by means of hybridization, a corresponding gene library of a coryneform bacteria that contains the complete gene or parts thereof, using a probe containing the sequence of the polynucleotide of the invention according to SEQ ID No. 1 or a fragment thereof, and isolating the mentioned polynucleotide sequence.
 - Polynucleotides that contain the sequences of the invention are suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate in their complete length nucleic acids or polynucleotides or genes that code for the β -subunit of RNA polymerase B, or in order to isolate nucleic acids or polynucleotides or genes that are very similar to the sequence of the rpoB gene. They are likewise suitable for incorporation into so-called "arrays", "micro arrays" or "DNA chips" in order to detect and determine the corresponding polynucleotides.
 - Polynucleotides that contain the sequences of the invention are also suitable as primers, with the aid of which it is possible, by means of the polymerase chain reaction (PCR), to produce DNA of genes that code for the β -subunit of RNA polymerase B.

Such oligonucleotides acting as probes or primers contain at least 25, 26, 27, 28, 29 or 30, preferably at least 20, 21, 22, 23 or 24, very especially preferably at least 15, 16, 17, 18 or 19, consecutive nucleotides. Also suitable are oligonucleotides having a length of at least 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 or of at least 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides. Oligonucleotides having a length of at least 100, 150, 200, 250 or 300 nucleotides may also be suitable.

10 "Isolated" means removed from its natural environment.

"Polynucleotide" generally refers to polyribonucleotides and polydeoxyribonucleotides, it being possible for the RNA or DNA to be unmodified or modified.

The polynucleotides of the invention include a

polynucleotide according to SEQ ID No. 1 or a fragment
prepared therefrom, and also polynucleotides that are at
least especially from 70% to 80%, preferably at least from
81% to 85%, especially preferably at least from 86% to 90%,
and very especially preferably at least 91%, 93%, 95%, 97%

or 99%, identical with the polynucleotide according to SEQ
ID No. 1, or with a fragment prepared therefrom.

"Polypeptides" are to be understood as being peptides or proteins that contain two or more amino acids bonded *via* peptide bonds.

The polypeptides of the invention include a polypeptide according to SEQ ID No. 2, especially those having the biological activity of the β-subunit of RNA polymerase B, and also those that are at least from 70% to 80%, preferably at least from 81% to 85%, especially preferably at least from 86% to 90%, and very especially preferably at least 91%, 93%, 95%, 97% or 99%, identical with the polypeptide according to SEQ ID No. 2 and exhibit the mentioned activity.

٠.

The invention also provides a process for the production, by fermentation, of amino acids selected from the group L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-arginine, using coryneform bacteria which, in particular, already produce amino acids and in which the nucleotide sequences coding for the rpoB gene are enhanced, especially overexpressed.

The term "enhancement" in this connection describes the increasing of the intracellular activity of one or more enzymes or proteins in a microorganism that are coded for by the corresponding DNA, by, for example, increasing the number of copies of the gene or genes, using a strong promoter or using a gene or allele that codes for a corresponding enzyme or protein having a high level of activity, and optionally by combining those measures.

The microorganisms provided by the present invention can produce L-amino acids from glucose, saccharose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They may be representatives of coryneform bacteria, especially of the genus Corynebacterium. In the case of the genus Corynebacterium, special mention may be made of the species Corynebacterium glutamicum, which is known to those skilled in the art for its ability to produce L-amino acids.

Suitable strains of the genus Corynebacterium, especially of the species Corynebacterium glutamicum (C. glutamicum), are especially the known wild-type strains

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965

Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 and Brevibacterium divaricatum ATCC14020

and L-amino acid-producing mutants or strains prepared
therefrom, such as, for example, the L-lysine-producing
strains

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712

10 Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM5714 and
Corynebacterium glutamicum DSM12866.

The new rpoB gene of C. glutamicum coding for the β -subunit of RNA polymerase B has been isolated.

In order to isolate the rpoB gene or other genes from C. glutamicum, a gene library of that microorganism in Escherichia coli (E. coli) is first prepared. The 20 preparation of gene libraries is written down in generally known textbooks and handbooks. There may be mentioned as an example the textbook of Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Germany, 1990) or the handbook of Sambrook et al.: 25 Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989). A very well known gene library is that of the E. coli K-12 strain W3110, which has been prepared by Kohara et al. (Cell 50, 495-508 (1987)) in λ vectors. Bathe et al. (Molecular and General Genetics, 30 252:255-265, 1996) describe a gene library of C. glutamicum ATCC13032, which has been prepared with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the

25

E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575).

Börmann et al. (Molecular Microbiology 6(3), 317-326) (sic) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)).

For the preparation of a gene library of C. glutamicum in E. coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268). Suitable hosts are 10 especially those E. coli strains that are restriction- and recombination-defective. An example thereof is the strain DH5cmcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649). The long DNA fragments cloned with the 15 aid of cosmids can then in turn be subcloned into customary vectors suitable for sequencing and then sequenced, as is described, for example, in Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977). 20

The resulting DNA sequences can then be studied using known algorithms or sequence-analysis programs, such as, for example, that of Staden (Nucleic Acids Research 14, 217-232 (1986)), that of Marck (Nucleic Acids Research 16, 1829-1836 (1988)) or the GCG program of Butler (Methods of Biochemical Analysis 39, 74-97 (1998)).

The novel DNA sequence of C. glutamicum coding for the rpoB gene has been found and, as SEQ ID No. 1, forms part of the present invention. Furthermore, the amino acid sequence of the corresponding protein has been derived from the present DNA sequence using the methods described above. The resulting amino acid sequence of the rpoB gene product is shown in SEQ ID No. 2. It is known that enzymes belonging to the host are able to cleave the N-terminal amino acid

35

methionine or formylmethionine of the protein that is formed.

Coding DNA sequences that result from SEQ ID No. 1 by the degeneracy of the genetic code also form part of the invention. Likewise, DNA sequences that hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 form part of the invention. Furthermore, to those skilled in the art, conservative amino acid substitutions, such as, for example, the substitution of glycine with alanine or of aspartic acid with glutamic acid, in proteins are known as 10 sense mutations, which do not lead to any fundamental change in the activity of the protein, that is to say are neutral in terms of function. Such mutations are known inter alia also as neutral substitutions. It is also known that changes at the N- and/or C-terminus of a protein do 15 not substantially impair its function or may even stabilise it. The person skilled in the art will find relevant information inter alia in Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 20 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences that result in a corresponding manner from SEQ ID No. 2 likewise form part 25 of the invention.

Similarly, DNA sequences that hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 form part of the invention. Finally, DNA sequences that are produced by the polymerase chain reaction (PCR) using primers that result from SEQ ID No. 1 form part of the invention. Such oligonucleotides typically have a length of at least 15 nucleotides.

The person skilled in the art will find instructions on the identification of DNA sequences by means of hybridization inter alia in the handbook "The DIG System Users Guide for Filter Hybridization" from Boehringer Mannheim GmbH

• • • • •

(Mannheim, Germany, 1993) and in Liebl et al.

(International Journal of Systematic Bacteriology (1991)

41: 255-260). The hybridization takes place under stringent conditions, that is to say there are formed only hybrids in which the probe and the target sequence, i.e. the polynucleotides treated with the probe, are at least 70% identical. It is known that the stringency of the hybridization, including the washing steps, is influenced or determined by varying the buffer composition, the temperature and the salt concentration. The hybridization reaction is preferably carried out with relatively low stringency as compared with the washing steps (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

There may be used for the hybridization reaction, for example, a 5x SSC buffer at a temperature of approximately 15 from 50°C to 68°C. In that case, probes may also hybridize with polynucleotides that are less than 70% identical with the sequence of the probe. Such hybrids are less stable and are removed by washing under stringent conditions. That may be achieved, for example, by lowering the salt 20 concentration to 2x SSC and optionally subsequently to 0.5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Germany, 1995), a temperature of approximately from 50°C to 68°C being set. It is optionally possible to lower the salt concentration 25 down to 0.1x SSC. By raising the hybridization temperature stepwise from 50°C to 68°C in steps of approximately from 1 to 2°C, it is possible to isolate polynucleotide fragments that are, for example, at least 70% or at least 80% or at least from 90% to 95% identical with the sequence of the 30 probe used. Further instructions for hybridization are commercially available in the form of so-called kits (e.g. DIG Easy Hyb from Roche Diagnostics GmbH, Mannheim, Germany, Catalog No. 1603558).

The person skilled in the art will find instructions on the amplification of DNA sequences with the aid of the polymerase chain reaction (PCR) inter alia in the handbook of Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) and in Newton and Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994).

It has been found that coryneform bacteria produce amino acids in an improved manner after enhancement of the rpoB gene.

In order to achieve overexpression, the number of copies of 10 the corresponding genes can be increased, or the promoter and regulation region or the ribosome binding site, which is located upstream of the structural gene, can be mutated. Expression cassettes inserted upstream of the structural gene have a similar effect. By means of inducible promoters 15 it is additionally possible to increase the expression in the course of the production of amino acids by fermentation. Expression is also improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also enhanced by preventing degradation of the 20 enzyme protein. The genes or gene constructs may either be present in plasmids with different numbers of copies or be integrated and amplified in the chromosome. Alternatively, overexpression of the genes in question may also be achieved by changing the composition of the medium and the 25 manner in which culturing is carried out.

The person skilled in the art will find instructions thereon in Martin et al. (Bio/Technology 5, 137-146 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)),

30 Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), in European patent specification 0 472 869, in US patent 4,601,893, in Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991), in Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), in LaBarre et al. (Journal of

• • • • •

Bacteriology 175, 1001-1007 (1993)), in patent application WO 96/15246, in Malumbres et al. (Gene 134, 15-24 (1993)), in Japanese Offenlegungsschrift JP-A-10-229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), in Makrides (Microbiological Reviews 60:512-538 (1996)) and in known textbooks of genetics and molecular biology.

For the purposes of enhancement, the rpoB gene of the invention was overexpressed, for example, with the aid of episomal plasmids. Suitable plasmids are those which are 10 replicated in coryneform bacteria. Many known plasmid vectors, such as, for example, pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)), are based on the cryptic 15 plasmids pHM1519, pBL1 or pGA1. Other plasmid vectors, such as, for example, those which are based on pCG4 (US-A 4,489,160) or pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) or pAG1 (US-A 5,158,891), may likewise be used. 20

Also suitable are those plasmid vectors with the aid of which the process of gene amplification by integration into the chromosome can be applied, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for the duplication or 25 amplification of the hom-thrB operon. In that method, the complete gene is cloned into a plasmid vector that is able to replicate in a host (typically E. coli), but not in C. glutamicum. Suitable vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob 30 or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-32684; US-A 5,487,993), pCR®Blunt (Invitrogen, Groningen, Netherlands; Bernard et al., Journal of 35

20

30

Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al., 1991, Journal of Bacteriology 173:4510-4516) or pBGS8 (Spratt et al., 1986, Gene 41: 337-342). The plasmid vector containing the gene to be amplified is then transferred to the desired strain of C. glutamicum by conjugation or transformation. The method of conjugation is described, for example, in Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods of transformation are described, for example, in Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)). After homologous recombination by means of a "cross-over" occurrence, the resulting strain contains at least two copies of the gene in question. 15

It has also been found that the substitution of amino acids, especially in the sections between position 1 to 10, 190 to 200 and 420 to 450 in the amino acid sequence of the $\beta\text{-subunit}$ of RNA polymerase B shown in SEQ ID No. 2, improves the lysine production of coryneform bacteria.

It has also been found that the substitution of amino acids at one or more positions selected from the group a) position 1 to 10, b) position 190 to 200 and c) position 420 to 450 in SEQ ID No. 2 may take place simultaneously.

In the region between position 1 to 10, preference is given to the substitution of L-proline at position 5 by Lleucine, L-isoleucine or L-valine.

In the region between position 190 to 200, preference is given to the substitution of L-serine at position 196 by Lphenylalanine or L-tyrosine.

In the region between 420 to 450, the following substitutions are preferred: substitution of L-leucine at position 424 by L-proline or L-arginine, substitution of

L-serine at position 425 by L-threonine or L-alanine, substitution of L-glutamine at position 426 by L-leucine or L-lysine, substitution of L-aspartic acid at position 429 by L-isoleucine, L-valine or L-leucine, substitution of L-histidine at position 439 by any proteinogenic amino acid with the exception of L-histidine, is (sic) the substitution of L-serine at position 444 by L-leucine, L-tyrosine or L-tryptophan, and substitution of L-leucine at position 446 by L-proline or L-isoleucine.

- 10 Very special preference is given to one or more amino acid substitutions selected from the group: L-proline at position 5 by L-leucine, L-serine at position 196 by L-phenylalanine, L-aspartate at position 429 by L-valine, and L-histidine at position 439 by L-tyrosine.
- 15 SEQ ID No. 3 shows the base sequence of the allele rpoB-1547 contained in strain DM1547. The rpoB-1547 allele codes for a protein the amino acid sequence of which is shown in SEQ ID No. 4. The protein contains L-leucine at position 5, L-phenylalanine at position 196 and L-valine at position
- 20 429. The DNA sequence of the rpoB-1547 allele (SEQ ID No. 3) contains the following base substitutions as compared with the rpoB wild-type gene (SEQ ID No. 1): thymine at position 715 instead of cytosine, thymine at position 1288 instead of cytosine, and thymine at position 1987 instead of adenine.

SEQ ID No. 5 shows the base sequence of the allele rpoB1546 contained in strain DM1546. The rpoB-1546 allele codes
for a protein the amino acid sequence of which is shown in
SEQ ID No. 6. The protein contains L-tyrosine at position
30 439. The DNA sequence of the rpoB-1546 allele (SEQ ID
No. 5) contains the following base substitutions as
compared with the rpoB wild-type gene (SEQ ID No. 1):
thymine at position 2016 instead of cytosine.

There may be employed for the mutagenesis conventional methods of mutagenesis using mutagenic substances such as, for example, N-methyl-N'-nitro-N-nitrosoguanidine or ultraviolet light. There may also be used for the mutagenesis in vitro methods such as, for example, treatment with hydroxylamine (Miller, J. H.: A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992) or mutagenic oligonucleotides (T. A. Brown: Gentechnologie für Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993) or the polymerase chain reaction (PCR), as is described in the handbook of Newton and Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994).

In addition, it may be advantageous for the production of L-amino acids to enhance, especially to overexpress, in addition to the rpoB gene, one or more enzymes of the biosynthesis pathway in question, of glycolysis, of the anaplerotic pathway, of the citric acid cycle, of the pentose phosphate cycle, of amino acid export, and, optionally, regulatory proteins.

Accordingly, for the production of L-lysine, in addition to enhancing the rpoB gene, one or more genes selected from the group

- the gene dapA coding for dihydrodipicolinate synthase (EP-B 0 197 335),
 - the gene gap coding for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- the gene tpi coding for triose phosphate isomerase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - the gene pgk coding for 3-phosphoglycerate kinase
 (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

- the gene zwf coding for glucose-6-phosphate dehydrogenase (JP-A-09224661),
- the gene pyc coding for pyruvate carboxylase (DE-A-198 31 609),
- o the gene mgo coding for malate quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
 - the gene lysC coding for a feed-back resistant aspartate kinase (Kalinowski et al., Molecular Microbiologie 5(5), 1197-1204 (1991)),
 - the gene lysE coding for lysine export (DE-A-195 48 222),
 - the gene zwal coding for the Zwal protein (DE: 19959328.0, DSM 13115), and
- the rpsL gene coding for ribosomal protein S12 and shown in SEQ ID No. 7 and 8

may be enhanced, especially overexpressed.

The term "attenuation" in this connection describes the diminution or exclusion of the intracellular activity of one or more enzymes (proteins) in a microorganism that are coded for by the corresponding DNA, by, for example, using a weak promoter or using a gene or allele that codes for a corresponding enzyme having low activity, or by inactivating the corresponding gene or enzyme (protein), and optionally by combining those measures.

25 Furthermore, it may be advantageous for the production of L-amino acids, in addition to enhancing the rpoB gene, to attenuate, especially to diminish the expression of, one or more genes selected from the group

- the gene pck coding for phosphoenol pyruvate carboxykinase (DE 199 50 409.1; DSM 13047),
- the gene pgi coding for glucose-6-phosphate isomerase
 (US 09/396,478; DSM 12969),
- 5 the gene poxB coding for pyruvate oxidase (DE: 1995 1975.7; DSM 13114),
 - the gene zwa2 coding for the Zwa2 protein (DE: 19959327.2, DSM 13113).
- It may also be advantageous for the production of amino
 acids, in addition to enhancing the rpoB gene, to exclude
 undesired secondary reactions (Nakayama: "Breeding of Amino
 Acid Producing Micro-organisms", in: Overproduction of
 Microbial Products, Krumphanzl, Sikyta, Vanek (eds.),
 Academic Press, London, UK, 1982).
- The microorganisms produced according to the invention also form part of the invention and can be cultivated, for the purposes of the production of amino acids, continuously or discontinuously in the batch, fed batch or repeated fed batch process. A summary of known cultivation methods is described in the textbook of Chmiel (Bioprozeβtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook of Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).
- The culture medium to be used must meet the requirements of the strains in question in a suitable manner. Descriptions of culture media for various microorganisms are to be found in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology

 (Washington D.C., USA, 1981).

There may be used as the carbon source sugars and carbohydrates, such as, for example, glucose, saccharose,

10

15

30

35

lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as, for example, soybean oil, sunflower oil, groundnut oil and coconut oil, fatty acids, such as, for example, palmitic acid, stearic acid and linoleic acid, alcohols, such as, for example, glycerol and ethanol, and organic acids, such as, for example, acetic acid. Those substances may be used individually or in the form of a mixture.

There may be used as the nitrogen source organic nitrogencontaining compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. The nitrogen sources may be used individually or in the form of a mixture.

There may be used as the phosphorus source phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. The culture medium must also contain salts of metals, such as, for example, magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, may be used in addition to the above-mentioned substances. Suitable precursors may also be added to the culture medium. The mentioned substances may be added to the culture in the form of a single batch, or they may be fed in in a suitable manner during the cultivation.

In order to control the pH value of the culture, basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water, or acid compounds, such as phosphoric acid or sulfuric acid, are expediently used. In order to control the development of foam, anti-foams, such as, for example, fatty acid polyglycol esters, may be used. In order to maintain the stability of plasmids, suitable substances having a selective action, such as, for example,

antibiotics, may be added to the medium. In order to maintain aerobic conditions, oxygen or gas mixtures containing oxygen, such as, for example, air, are introduced into the culture. The temperature of the culture is normally from 20°C to 45°C and preferably from 25°C to 40°C. The culture is continued until the maximum amount of the desired product has formed. That aim is normally achieved within a period of from 10 hours to 160 hours.

Methods of determining L-amino acids are known from the
prior art. The analysis may be carried out, for example, as
described in Spackman et al. (Analytical Chemistry, 30,
(1958), 1190) by ion-exchange chromatography with
subsequent ninhydrin derivatization, or it may be carried
out by reversed phase HPLC, as described in Lindroth et al.
(Analytical Chemistry (1979) 51: 1167-1174).

Pure cultures of the following microorganisms were deposited on 16 January 2001 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty:

- 20 ∘ Corynebacterium glutamicum strain DM1546 as DSM 13993
 - o Corynebacterium glutamicum strain DM1547 as DSM 13994.

The process of the invention is used for the production of amino acids by fermentation.

The present invention is explained in greater detail below by means of Examples.

The isolation of plasmid DNA from Escherichia coli and all techniques for restriction, Klenow and alkaline phosphatase treatment were carried out according to Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA). Methods for the transformation of Escherichia coli are also described in that handbook.

The composition of common nutrient media, such as LB or TY medium, will also be found in the handbook of Sambrook et al..

Example 1

5 Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032

Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 is isolated as described in Tauch et al. (1995, Plasmid 33:168-179) and partially cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, 10 product description Sau3AI, Code no. 27-0913-02). The DNA fragments are dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics GmbH, Mannheim, Germany, product description SAP, Code no. 1758250). The DNA of cosmid vector SuperCosl (Wahl et al. (1987) Proceedings of 15 the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, product description SuperCos1 Cosmid Vektor Kit, Code no. 251301), is cleaved with the restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, product description XbaI, 20 Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase.

The cosmid DNA is then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, product description BamHI, Code no. 27-0868-04). The cosmid DNA so treated is mixed with the treated ATCC13032 DNA, and the batch is treated with T4-DNA ligase (Amersham Pharmacia, Freiburg, Germany, product description T4-DNA ligase, Code no. 27-0870-04). The ligation mixture is then packed in phages with the aid of Gigapack II XL Packing Extract (Stratagene, La Jolla, USA, product description Gigapack II XL Packing Extract, Code no. 200217).

For infection of E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575), the cells are taken up in 10 mM MgSO₄ and mixed with an aliquot of the phage suspension. Infection and titration of the cosmid library are carried out as described in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 mg/l ampicillin. After incubation overnight at 37°C, recombinant individual clones are selected.

Example 2

5

10

15

20

25

Isolation and sequencing of the rpoB gene

The cosmid DNA of an individual colony is isolated using the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) according to the manufacturer's instructions, and partially cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, product description Sau3AI, Product No. 27-0913-02). The DNA fragments are dephosphorylated with shrimp alkaline phosphatase (Roche Diagnostics GmbH, Mannheim, Germany, product description SAP, Product No. 1758250). After separation by gel electrophoresis, cosmid fragments having a size in the range from 1500 to 2000 bp are isolated using the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

The DNA of sequencing vector pZero-1, obtained from Invitrogen (Groningen, Netherlands, product description Zero Background Cloning Kit, Product No. K2500-01), is cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, product description BamHI, Product No. 27-0868-04). Ligation of the cosmid fragments into the sequencing vector pZero-1 is carried out as described by Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor), the DNA mixture

being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany). The ligation mixture is then electroporated into E. coli strain DH5 α MCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-347) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/l Zeocin.

Plasmid preparation of the recombinant clones is carried out using the Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany). Sequencing is effected by the dideoxy 10 chain termination method of Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhodamin Terminator Cycle Sequencing Kit" from PE Applied 15 Biosystems (Product No. 403044, Weiterstadt, Germany) is used. Separation by gel electrophoresis and analysis of the sequencing reaction is carried out in a "Rotiphorese NF Acrylamid/Bisacrylamid" gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) using the "ABI Prism 377" 20 sequencing device from PE Applied Biosystems (Weiterstadt, Germany).

The resulting crude sequence data are then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) Version 97-0. The individual sequences of the pZero1 derivatives are assembled to a coherent contig. The computer-assisted coding region analysis is prepared using the program XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231).

The resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence gives an open reading frame of 3497 base pairs, which is designated the rpoB gene. The rpoB gene codes for a protein of 1165 amino acids.

SEQUENCE LISTING

<110> Degussa-Hüls AG <120> Novel nucleotide sequences coding for the rpoB gene 5 <130> 000781 BT <140> 10 <141> <160> 8 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 5099 <212> DNA <213> Corynebacterium glutamicum 20 <220> <221> CDS <222> (702)..(4196) <223> rpoB wild-type gene 25 <400> 1 acaatgtgac tcgtgatttt tgggtggatc agcgtaccgg tttggttgtc gatctagctg 60 aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120 30 tcgacgcctc cctcgacgat gcagctgtct ctaagctggt tgcacaggcc gaaagcatcc 180 ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240 ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300 35 ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360 ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420 40 aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480 ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540 atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600 45 agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660 cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ccc 716 Met Leu Glu Gly Pro 50 atc ttg gca gtc tcc cgc cag acc aag tca gtc gtc gat att ccc ggt 764 Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly 55 15 gca ccg cag cgt tat tct ttc gcg aag gtg tcc gca ccc att gag gtg 812

	Ala	Pro	Gln	Arg 25	Tyr	Ser	Phe	Ala	Lys 30	Val	Ser	Ala	Pro	Ile 35	Glu	Val	
5	ccc Pro	G1y 999	cta Leu 40	cta Leu	gat Asp	ctt Leu	caa Gln	ctg Leu 45	gat Asp	tct Ser	tac Tyr	tcc Ser	tgg Trp 50	ctg Leu	att Ile	ggt Gly	860
10	acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc Gly	gag Glu	gga Gly	gcc Ala	908
1.5										ctc Leu							956
15										agc Ser 95							1004
20										gcg Ala							1052
25										gag Glu							1100
30										atc Ile							1148
2.5	acg Thr 150	gac Asp	aag Lys	gga Gly	acg Thr	ttc Phe 155	atc Ile	atc Ile	aac Asn	gga Gly	acc Thr 160	gaa Glu	cgc Arg	gtt Val	gtg Val	gtc Val 165	1196
35										tac Tyr 175							1244
40			Thr	Glu	Arg	Pro	Leu	His	Ala	gtg Val	Lys	Val	Ile		Ser		1292
45	ggt Gly	gct Ala	tgg Trp 200	ctt Leu	gag Glu	ttt Phe	gac Asp	gtc Val 205	gat Asp	aag Lys	cgc Arg	gat Asp	tcg Ser 210	gtt Val	ggt Gly	gtt Val	1340
50	cgt Arg	att Ile 215	gac Asp	cgc Arg	aag Lys	cgt Arg	cgc Arg 220	cag Gln	cca Pro	gtc Val	acc Thr	gta Val 225	ctg Leu	ctg Leu	aag Lys	gct Ala	1388
	ctt Leu 230	ggc Gly	tgg Trp	acc Thr	act Thr	gag Glu 235	cag Gln	atc Ile	acc Thr	gag Glu	cgt Arg 240	ttc Phe	ggt Gly	ttc Phe	tct Ser	gaa Glu 245	1436
55											Val					gag Glu	1484

	gca Ala	ttg Leu	ctg Leu	gag Glu 265	atc Ile	tac Tyr	cgc Arg	aag Lys	cag Gln 270	cgt Arg	cca Pro	ggc Gly	gag Glu	cag Gln 275	cct Pro	acc Thr	1532
5	cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
10					gct Ala												1628
15	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
20	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
20					cca Pro												1772
25					ggt Gly												1820
30					cgt Arg												1868
35	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
40	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
	tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	g <u>a</u> c Asp	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012
45					cgt Arg												2060
50													Ser			ggc Gly	2108
55												Asn				atc Ile 485	2156
	ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	tat Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	Pro	ttc Phe	ggt Gly	ttc Phe	att Ile 500	gag Glu	2204

5					cgc Arg												2252
5	tac Tyr	ctt Leu	acc Thr 520	gct Ala	gat Asp	gag Glu	ga a Glu	gac Asp 525	cgc Arg	ttc Phe	gtt Val	gtt Val	gcg Ala 530	cag Gln	gca Ala	aac Asn	2300
10	acg Thr	cac His 535	tac Tyr	gac Asp	gaa Glu	gag Glu	ggc Gly 540	aac Asn	atc Ile	acc Thr	gat Asp	gag Glu 545	acc Thr	gtc Val	act Thr	gtt Val	2348
15	cgt Arg 550	ctg Leu	aag Lys	gac Asp	ggc Gly	gac Asp 555	atc Ile	gcc Ala	atg Met	gtt Val	ggc Gly 560	cgc Arg	aac Asn	gcg Ala	gtt Val	gat Asp 565	2396
20					tcc Ser 570												2444
25	att Ile	cca Pro	ttc Phe	ctg Leu 585	gag Glu	cac His	gac Asp	gat Asp	gct Ala 590	aac Asn	cgt Arg	gca Ala	ctg Leu	atg Met 595	ggc Gly	gcg Ala	2492
23	aac Asn	atg Met	cag Gln 600	aag Lys	cag Gln	gct Ala	gtg Val	cca Pro 605	ctg Leu	att Ile	cgt Arg	gcc Ala	gag Glu 610	gct Ala	cct Pro	ttc Phe	2540
30					atg Met												2588
35					gtc Val												2636
40					gct Ala 650												2684
45					acc Thr												2732
					gag Glu												2780
50					aat Asn												2828
55					tgg Trp							Asp					2876
																gag Glu	2924

					730					735					740		
5			gag Glu														2972
10			gac Asp 760														3020
			ggt Gly														3068
15	_	_	ggt Gly	_	_			_							_	_	3116
20		_	ttg Leu		_	_				-	_	_	_	_	_	_	3164
25			tcc Ser														3212
30 -		_	cac His 840			_		_	_	_	_	_	_			_	3260
			atg Met														3308
35			aag Lys														3356
40		_	cct Pro	_	-	_	_					_				_	3404
45			atc Ile						_		-	_	_				3452
50			ctt Leu 920														3500
			cct Pro														3548
55			ctc Leu														3596
	ttc	gac	ggt	gcg	tca	aac	gaa	gag	ctc	gca	ggc	ctg	ctc	gct	aat	tca	3644

	Phe 2	Asp	Gly	Ala	Ser	Asn	Glu	Glu	Leu		Gly	Leu	Leu	Ala		Ser	
					970					975					980		
5	cgt (_	3692
10	acg (Leu					Ser					Pro					3740
	atc (ggc Gly 015	tac Tyr	atg Met	tac Tyr	Met	ctg Leu 1020	aag Lys	ctg Leu	cac His	His	ctc Leu L025	gtt Val	gac Asp	gag Glu	aag Lys	3788
15	atc Ile : 1030	cac His	gca Ala	cgt Arg	Ser	act Thr	ggt Gly	cct Pro	tac Tyr	Ser	atg Met 1040	att Ile	acc Thr	cag Gln	Gln	cca Pro 1045	3836
20	ctg (ggt Gly	ggt Gly	Lys	gca Ala 1050	cag Gln	ttc Phe	ggt Gly	Gly	cag Gln 1055	cgt Arg	ttc Phe	ggc Gly	Glu	atg Met 1060	gag Glu	3884
25	gtg Val		Ala					Gly					Leu				3932
30	ctg Leu	Thr					Asp					Val					3980
	gca Ala 1	att Ile 095	gtg Val	aag Lys	ggc Gly	Glu	aac Asn 1100	atc Ile	ccg Pro	gat Asp	Pro	ggt Gly 1105	att Ile	cct Pro	gag Glu	tcc Ser	4028
35	ttc Phe 1110	Lys			Leu					Ser					Val		4076
40	gtt Val			Ala	Asp	Gly	Thr	Pro	Met	Glu	Leu	Ala	Gly	Asp		Asp	4124
45	gac Asp		Asp					Ser					Leu		Arg		4172
50	gag Glu	Arg					Thr			caga	tca (gäaa	acaa	cc g	ctag	aaatc	4226
	aagc	cata	ıca t	cccc	ccgga	ac at	tga	agag	a tg	ttct	9999	gga	aagg	gag	tttt	acgtgc	4286
. .	tcga	cgta	aa o	egtet	ttcga	at ga	agct	ccgc	a to	ggcc	tggc	cac	cgcc	gac	gaca	tccgcc	4346
55	gttg	gtco	caa g	gggt	gaggt	tc a	agaa	gccg	g ag	acca	tcaa	cta	ccga	acc	ctca	agcctg	4406
	agaa	ggac	gg t	ctg	ttctg	gc ga	agcg	tatc	t to	ggtc	caac	tcg	cgac	tgg	gagt	gcgcct	4466

gcggtaagta caagcgtgtc cgctacaagg gcatcatctg tgaacgctgt ggcgttgagg 4526 tcaccaagtc caaggtgege cgtgageqea tgggacacat tgageteget geaccagtaa 4586 5 cccacatttg gtacttcaag ggcgttccat cacgcctcgg ctaccttttg gaccttgctc 4646 caaaggacct ggacctcatc atctacttcg gtgcgaacat catcaccagc gtggacgaag 4706 aggetegeea cagegaceag accaetettg aggeagaaat gettetggag aagaaggaeg 4766 10 ttgaggcaga cgcagagtct gacattgctg agcgtgctga aaagctcgaa gaggatcttg 4826 ctgaacttga ggcagctggc gctaaggccg acgctcgccg caaggttcag gctgctgccg 4886 15 ataaggaaat gcagcacatc cgtgagcgtg cacagcgcga aatcgatcgt ctcgatgagg 4946 tctggcagac cttcatcaag cttgctccaa agcagatgat ccgcgatgag aagctctacg 5006 atgaactgat cgaccgctac gaggattact tcaccqgtgg tatgggtgca gagtccattg 5066 20 aggetttgat ccagaactte gacettgatg etg <210> 2 25 <211> 1165 <212> PRT <213> Corynebacterium glutamicum <400> 2 30 Met Leu Glu Gly Pro Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser 35 Ala Pro Ile Glu Val Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr Ser Trp Leu Ile Gly Thr Pro Glu Trp Arg Ala Arg Gln Lys Glu Glu 40 Phe Gly Glu Gly Ala Arg Val Thr Ser Gly Leu Glu Asn Ile Leu Glu 45 Glu Leu Ser Pro Ile Gln Asp Tyr Ser Gly Asn Met Ser Leu Ser Leu Ser Glu Pro Arg Phe Glu Asp Val Lys Asn Thr Ile Asp Glu Ala Lys 50 Glu Lys Asp Ile Asn Tyr Ala Ala Pro Leu Tyr Val Thr Ala Glu Phe 115 Val Asn Asn Thr Thr Gly Glu Ile Lys Ser Gln Thr Val Phe Ile Gly 55 135

Asp Phe Pro Met Met Thr Asp Lys Gly Thr Phe Ile Ile Asn Gly Thr

150

5099

160

	Glu	Arg	Val	Val	Val 165	Ser	Gln	Leu	Val	Arg 170	Ser	Pro	Gly	Val	Tyr 175	Phe
5	Asp	Gln	Thr	Ile 180	Asp	Lys	Ser	Thr	Glu 185	Arg	Pro	Leu	His	Ala 190	Val	Lys
	Val	Ile	Pro 195	<u>Ser</u>	Arg	Gly	Ala	Trp 200	Leu	Glu	Phe	Asp	Val 205	Asp	Lys	Arg
10	Asp	Ser 210	Val	Gly	Val	Arg	11e 215	Asp	Arg	Lys	Arg	Arg 220	Gln	Pro	Val	Thr
15	Val 225	Leu	Leu	Lys	Ala	Leu 230	Gly	Trp	Thr	Thr	Glu 235	Gln	Ile	Thr	Glu	Arg 240
10	Phe	Gly	Phe	Ser	Glu 245	Ile	Met	Met	Ser	Thr 250	Leu	Glu	Ser	Asp	Gly 255	Val
20	Ala	Asn	Thr	Asp 260	Glu	Ala	Leu	Leu	Glu 265	Ile	Tyr	Arg	Lys	Gln 270	Arg	Pro
	Gly	Glu	Gln 275	Pro	Thr	Arg	Asp	Leu 280	Ala	Gln	Ser	Leu	Leu 285	Asp	Asn	Ser
25	Phe	Phe 290	Arg	Ala	Lys	Arg	Tyr 295	Asp	Leu	Ala	Arg	Val 300	Gly	Arg	Tyr	Lys
30	Ile 305	Asn	Arg	Lys	Leu	Gly 310	Leu	Gly	Gly	Asp	His 315	Asp	Gly	Leu	Met	Thr 320
	Leu	Thr	Glu	Glu	Asp 325	Ile	Ala	Thr	Thr	Ile 330	Glu	Tyr	Leu	Val	Arg 335	Leu
35	His	Ala	Gly	Glu 340	Arg	Val	Met	Thr	Ser 345	Pro	Asn	Gly	Glu	Glu 350	Ile	Pro
	Val	Glu	Thr 355	Asp	Asp	Ile	Asp	His 360	Phe	Gly	Asn	Arg	Arg 365	Leu	Arg	Thr
40	Val	Gly 370	Glu	Leu	Ile	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met
45	Glu 385	Arg	Val	Val	Arg	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	Ile 400
	Thr	Pro	Thr	Ser	Leu 405	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Ala	Ala	Ile 415	Arg
50	Glu	Phe	Phe	Gly 420	Thr	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	Asp	Gln 430	Asn	Asn
	Ser	Leu	Ser 435	Gly	Leu	Thr	<u>His</u>	Lys 440	Arg	Arg	Leu	Ser	Ala 445		Gly	Pro
55	Gly	Gly 450	Leu	Ser	Arg	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460		Asp	Val	His
	Pro 465	Ser	His	Tyr	Gly	Arg 470	Met	Cys	Pro	Ile	Glu 475		Pro	Glu	Gly	Pro 480

	Asn	Ile	Gly	Leu	Ile 485	Gly	Ser	Leu	Ala	Ser 490	Tyr	Ala	Arg	Val	Asn 495	Pro
5	Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu
10	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val
	Val	Ala 530	Gln	Ala	Asn	Thr	His 535	Tyr	Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp
15	Glu 545	Thr	Val	Thr	Val	Arg 550	Leu	Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
	Arg	Asn	Ala	Val	Asp 565	Tyr	Met	Asp	Val	Ser 570	Pro	Arg	Gln	Met	Val 575	Ser
20	Val	Gly	Thr	Ala 580	Met	Ile	Pro	Phe	Leu 585	Glu	His	Asp	Asp	Ala 590	Asn	Arg
25	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arg
	Ala	Glu 610	Ala	Pro	Phe	Val	Gly 615	Thr	Gly	Met	Glu	Gln 620	Arg	Ala	Ala	Tyr
30	625		_	_		630					635	_			Glu	640
	Val	Ser	Ala	Asp	Phe 645	Ile	Thr	Ile	Met	Ala 650	Asp	Asp	Gly	Lys	Arg 655	Glu
35	Thr	Tyr	Leu	Leu 660	Arg	Lys	Phe	Gln	Arg 665	Thr	Asn	Gln	Gly	Thr 670	Ser	Tyr
40			675					680	_				685		Gly	
		690		-	-		695				-	700			Leu	_
45	705					710					715				Tyr	720
	_				725					730					Leu 735	
50				740					745					750	Lys	
55	Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
	Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775	Gly	Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
	Arg	Asp	Gly	Asp	Ile	Leu	Val	Gly	Lys	Val	Thr	Pro	Lys	Gly	Glu	Thr

	785					790					795					800
_	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810	Ala	Ile	Phe	Gly	Glu 815	Lys
5	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
10	Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
	Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys
15	Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
20	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro
20	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910	Pro	Arg
25	Arg	Met	Asn 915	Ile	Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	Gly 925	Trp	Leu	Ala
	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935	Pro	Glu	Asp	Pro	Glu 940	Asn	Ala	Glu	Leu
30	Val 945	Lys	Thr	Leu	Pro	Ala 950	Asp	Leu	Leu	Glu	Val 955	Pro	Ala	Gly	Ser	Leu 960
35	Thr	Ala	Thr	Pro	Val 965	Phe	Asp	Gly	Ala	Ser 970	Asn	Glu	Glu	Leu	Ala 975	Gly
	Leu	Leu	Ala	Asn 980	Ser	Arg	Pro	Asn	Arg 985	Asp	Gly	Asp	Val	Met 990	Val	Asn
40	Ala	Asp	Gly 995	Lys	Ala	Thr	Leu	Ile 1000	Asp	Gly	Arg		Gly 1005	Glu	Pro	Tyr
		Tyr 1010	Pro	Val	Ser		Gly 1015	Tyr	Met	Tyr		Leu 1020	Lys	Leu	His	His
45	Leu 025	Val	Asp	Glu		Ile 1030	His	Ala	Arg		Thr 1035	Gly	Pro	Tyr		Met 1040
50	Ile	Thr	Gln		Pro 1045	Leu	Gly	Gly	_	Ala 1050	Gln	Phe	Gly		Gln 1055	Arg
30	Phe	Gly		Met L060	Glu	Val	Trp		Met 1065	Gln	Ala	Tyr		Ala 1070		Tyr
55	Thr		Gln 1075	Glu	Leu	Leu		Ile 1080	Lys	Ser	Asp		Val 1085	Val	Gly	Arg
		Lys 1090	Val	Tyr	Glu		Ile 1095	Val	Lys	Gly		Asn 1100	Ile	Pro	Asp	Pro

Gly Ile Pro Glu Ser Phe Lys Val Leu Leu Lys Glu Leu Gln Ser Leu 1115 105 1110 Cys Leu Asn Val Glu Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu 5 1125 1130 Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 1140 1145 10 Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1155 1160 15 <210> 3 <211> 5099 <212> DNA <213> Corynebacterium glutamicum 20 <220> <221> CDS <222> (702)..(4196) <223> rpoB gene allele 1547 25 <400> 3 acaatgtgac tcgtgatttt tgggtggatc agcgtaccgg tttggttgtc gatctagctg 60 aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120 30 tcgacgcctc cctcgacgat gcagctgtct ctaagctggt tgcacaggcc gaaagcatcc 180 ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240 ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300 35 ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt tgtttgctag 360 ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420 40 aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480 ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540 atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600 45 agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660 cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ctc 716 Met Leu Glu Gly Leu 50 1 atc ttg gca gtc tcc cgc cag acc aag tca gtc gtc gat att ccc ggt 764 Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly 10 20 55 gca ccg cag cgt tat tct ttc gcg aag gtg tcc gca ccc att gag gtg 812 Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser Ala Pro Ile Glu Val

30

25

	gly aaa								860
5	cct Pro 55								908
10	gta Val								956
15	gat Asp								1004
20	gac Asp								1052
	gcg Ala								1100
25	gaa Glu 135								1148
30	gac Asp								1196
35	cag Gln								1244
40	tca Ser								1292
	gct Ala								1340
45	att Ile 215								1388
50	ggc Gly								1436
55	atg Met								1484
	ttg Leu								1532

5									gca Ala		1580
J									aag Lys		1628
10									gag Glu		1676
15									gag Glu 340		1724
20									gat Asp		1772
25									ctg Leu		1820
		_		 _	_	_	 _	_	gtt Val	_	1868
30									tcc Ser		1916
35									gga Gly 420		1964
40									ggt Gly		2012
45									tcc Ser		2060
									tac Tyr		2108
50									ctg Leu		2156
55									att Ile 500		2204
									att Ile		2252

				505					510					515			
5						gag Glu											2300
10						gag Glu											2348
	_	_	_	_		gac Asp 555		_	_	_		_			_	_	2396
15		_	_	_		cct Pro	_	_	_	_		_					2444
20				_		cac His	_	_	_		_	_	_	_			2492
25						gct Ala											2540
30					_	gag Glu	_	_	_	_		_	_		_	_	2588
						gca Ala 635											2636
35						gat Asp	_		_	_	_						2684
40						aac Asn											2732
45						cgc Arg											2780
50						ggt Gly											2828
						gaa Glu 715											2876
55						gag Glu											2924
	gag	cac	gag	atc	gat	gcc	cgc	gac	act	aag	ctt	ggc	gcc	gaa	gaa	atc	2972

	Glu	His	Glu	Ile 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu	Gly	Ala	Glu 755	Glu	Ile	
5						aat Asn											3020
10						cgc Arg											3068
16						acc Thr 795											3116
15						gca Ala											3164
20						gtg Val											3212
25		_				cgc Arg		_	_	_	_	_	_			_	3260
30			_		_	atc Ile		_	_	_	_	_	_		_	_	3308
35						ggc Gly 875											3356
33		_		_	_	gat Asp	_					_				_	3404
40						acc Thr			Val		Arg	Arg					3452
45						cac His											3500
50						cct Pro											3548
55																gtg Val 965	3596
ລວ																tca Ser	3644

	cgt cca aa Arg Pro As			-	_	Ala Asp		_	92
5	acg ctt at Thr Leu Il 100	e Asp Gly	Arg Ser			_			40
10	atc ggc ta Ile Gly Ty 1015				His His			_	88
15	atc cac go Ile His Al 1030	a Arg Ser			_		Gln Gln		336
20	ctg ggt gg Leu Gly Gl			Gly Gly					884
20	gtg tgg gc Val Trp Al		_		_	Thr Leu		_	932
25	ctg acc at Leu Thr Il 108	e Lys Ser	Asp Asp					_	980
30	gca att gt Ala Ile Va 1095			_	Asp Pro				28
35	ttc aag gt Phe Lys Va 1110	l Leu Leu					Asn Val		76
4.0	gtt ctc tc Val Leu Se			Pro Met					124
40	gac ttc ga Asp Phe As					Asn Leu			172
45	gag cgt tc Glu Arg Se 116	r Asp Ala	Asp Thr		cagatca (gaaaacaac	c gctaga	aatc 42	226
50	aagccataca	tececegg	ac attga	agaga tg	ttctgggg	ggaaaggg	gag tttta	acgtgc 42	286
	tcgacgtaaa	cgtcttcg	at gagct	ccgca to	ggcctggc	caccgccg	gac gacat	cegee 43	346
	gttggtccaa	gggtgagg	tc aagaa	gccgg ag	accatcaa	ctaccgaa	cc ctcaa	agcctg 44	106
55	agaaggacgg	tctgttct	gc gagcg	tatct to	ggtccaac	tcgcgact	gg gagt	gegeet 44	166
	gcggtaagta	caagcgtg	tc cgcta	caagg gc	atcatctg	tgaacgct	gt ggcgt	ttgagg 45	526
	tcaccaagto	caaggtgc	gc cgtga	gcgca tg	ggacacat	tgagctcg	gct gcac	cagtaa 49	586

cccacatttg gtacttcaag ggcgttccat cacqcctcgg ctaccttttg gaccttgctc 4646 caaaggacct ggacctcatc atctacttcg gtgcgaacat catcaccagc gtggacgaag 4706 5 aggctcgcca cagcgaccag accactcttg aggcagaaat gcttctggag aagaaggacg 4766 ttgaggcaga cgcagagtct gacattgctg agcgtgctga aaagctcgaa gaggatcttg 4826 10 ctgaacttga ggcagctggc gctaaggccg acgctcgccg caaggttcag gctgctgccg 4886 ataaggaaat gcagcacatc cgtgagcgtg cacagcgcga aatcgatcgt ctcgatgagg 4946 tctggcagac cttcatcaag cttgctccaa agcagatgat ccgcgatgag aagctctacg 5006 15 atgaactgat cgaccgctac gaggattact tcaccggtgg tatgggtgca gagtccattg 5066 5099 aggetttgat ccagaacttc gacettgatg ctg 20 <210> 4 <211> 1165 <212> PRT <213> Corynebacterium glutamicum 25 <400> 4 Met Leu Glu Gly Leu Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val 30 Val Asp Ile Pro Gly Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser Ala Pro Ile Glu Val Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr 35 Ser Trp Leu Ile Gly Thr Pro Glu Trp Arg Ala Arg Gln Lys Glu Glu Phe Gly Glu Gly Ala Arg Val Thr Ser Gly Leu Glu Asn Ile Leu Glu 40 Glu Leu Ser Pro Ile Gln Asp Tyr Ser Gly Asn Met Ser Leu Ser Leu 45 Ser Glu Pro Arg Phe Glu Asp Val Lys Asn Thr Ile Asp Glu Ala Lys Glu Lys Asp Ile Asn Tyr Ala Ala Pro Leu Tyr Val Thr Ala Glu Phe 120 50 Val Asn Asn Thr Thr Gly Glu Ile Lys Ser Gln Thr Val Phe Ile Gly 130 Asp Phe Pro Met Met Thr Asp Lys Gly Thr Phe Ile Ile Asn Gly Thr 55 150 155 Glu Arg Val Val Ser Gln Leu Val Arg Ser Pro Gly Val Tyr Phe 165

Asp Gln Thr Ile Asp Lys Ser Thr Glu Arg Pro Leu His Ala Val Lys Val Ile Pro Phe Arg Gly Ala Trp Leu Glu Phe Asp Val Asp Lys Arg Asp Ser Val Gly Val Arg Ile Asp Arg Lys Arg Arg Gln Pro Val Thr Val Leu Leu Lys Ala Leu Gly Trp Thr Thr Glu Gln Ile Thr Glu Arg Phe Gly Phe Ser Glu Ile Met Met Ser Thr Leu Glu Ser Asp Gly Val Ala Asn Thr Asp Glu Ala Leu Leu Glu Ile Tyr Arg Lys Gln Arg Pro Gly Glu Gln Pro Thr Arg Asp Leu Ala Gln Ser Leu Leu Asp Asn Ser Phe Phe Arg Ala Lys Arg Tyr Asp Leu Ala Arg Val Gly Arg Tyr Lys Ile Asn Arg Lys Leu Gly Leu Gly Gly Asp His Asp Gly Leu Met Thr Leu Thr Glu Glu Asp Ile Ala Thr Thr Ile Glu Tyr Leu Val Arg Leu His Ala Gly Glu Arg Val Met Thr Ser Pro Asn Gly Glu Glu Ile Pro Val Glu Thr Asp Asp Ile Asp His Phe Gly Asn Arg Arg Leu Arg Thr Val Gly Glu Leu Ile Gln Asn Gln Val Arg Val Gly Leu Ser Arg Met Glu Arg Val Val Arg Glu Arg Met Thr Thr Gln Asp Ala Glu Ser Ile Thr Pro Thr Ser Leu Ile Asn Val Arg Pro Val Ser Ala Ala Ile Arg Glu Phe Phe Gly Thr Ser Gln Leu Ser Gln Phe Met Val Gln Asn Asn Ser Leu Ser Gly Leu Thr His Lys Arg Arg Leu Ser Ala Leu Gly Pro Gly Gly Leu Ser Arg Glu Arg Ala Gly Ile Glu Val Arg Asp Val His Pro Ser His Tyr Gly Arg Met Cys Pro Ile Glu Thr Pro Glu Gly Pro Asn Ile Gly Leu Ile Gly Ser Leu Ala Ser Tyr Ala Arg Val Asn Pro

	Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu
5	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val
10	Val	Ala 530	Gln	Ala	Asn	Thr	His 535	Tyr	Asp	Glu	Glu	Gly 540	Asn	Ile	Thr	Asp
	Glu 545	Thr	Val	Thr	Val	Arg 550	Leu	Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
15	Arg	Asn	Ala	Val	Asp 565	Tyr	Met	Asp	Val	Ser 570	Pro	Arg	Gln	Met	Val 575	Ser
	Val	Gly	Thr	Ala 580	Met	Ile	Pro	Phe	Leu 585	Glu	His	Asp	Asp	Ala 590	Asn	Arg
20	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arg
25	Ala	Glu 610	Ala	Pro	Phe	Val	Gly 615	Thr	Gly	Met	Glu	Gln 620	Arg	Ala	Ala	Tyr
	Asp 625	Ala	Gly	Asp	Leu	Val 630	Ile	Thr	Pro	Val	Ala 635	Gly	Val	Val	Glu	Asn 640
30	Val	Ser	Ala	Asp	Phe 645	Ile	Thr	Ile	Met	Ala 650	Asp	Asp	Gly	Lys	Arg 655	Glu
	Thr	Tyr	Leu	Leu 660	Arg	Lys	Phe	Gln	Arg 665	Thr	Asn	Gln	Gly	Thr 670	Ser	Tyr
35			675					680					685	Ala		
40		690					695					700		Ser		
	Arg 705	Asn	Leu	Leu	Val	Ala 710	Phe	Met	Pro	Trp	Glu 715	Gly	His	Asn	Tyr	Glu 720
45					725					730				Ile	735	
	Ser	Ile	His	Ile 740	Glu	Glu	His	Glu	11e 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu
50	Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
55	Leu	Lys 770	Asp	Leu	Asp	Asp	Arg 775	Gly	Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
	Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	Lys	Val	Thr 795	Pro	Lys	Gly	Glu	Thr 800
	Glu	Leu	Thr	Pro	Glu	Glu	Arg	Leu	Leu	Arg	Ala	Ile	Phe	Gly	Glu	Lys

		805	810	815
5	Ala Arg Glu Val 820		Met Lys Val Pro His Gl 825 83	-
J	Gly Lys Val Ile 835	Gly Val Arg His 840	Phe Ser Arg Glu Asp As 845	sp Asp Asp
10	Leu Ala Pro Gly 850	Val Asn Glu Met 855	Ile Arg Ile Tyr Val A	la Gln Lys
	Arg Lys Ile Gln 865	Asp Gly Asp Lys 870	Leu Ala Gly Arg His G 875	ly Asn Lys 880
15	Gly Val Val Gly	Lys Ile Leu Pro 885	Gln Glu Asp Met Pro Ph 890	ne Leu Pro 895
20	Asp Gly Thr Pro	_	Leu Asn Thr His Gly Va	al Pro Arg 10
	Arg Met Asn Ile 915	Gly Gln Val Leu 920	Glu Thr His Leu Gly Tr 925	cp Leu Ala
25	Ser Ala Gly Trp 930	Ser Val Asp Pro 935	Glu Asp Pro Glu Asn A	la Glu Leu
	Val Lys Thr Leu 945	Pro Ala Asp Leu 950	Leu Glu Val Pro Ala G 955	ly Ser Leu 960
30	Thr Ala Thr Pro	Val Phe Asp Gly 965	Ala Ser Asn Glu Glu Le 970	eu Ala Gly 975
35	Leu Leu Ala Asn 980	Ser Arg Pro Asn	Arg Asp Gly Asp Val Me 985 99	et Val Asn 90
	Ala Asp Gly Lys 995	Ala Thr Leu Ile 1000	Asp Gly Arg Ser Gly G	lu Pro Tyr
40	Pro Tyr Pro Val 1010	Ser Ile Gly Tyr 1015	Met Tyr Met Leu Lys Le 1020	eu His His
	Leu Val Asp Glu 025	Lys Ile His Ala 1030	Arg Ser Thr Gly Pro Ty 1035	yr Ser Met 1040
45		Pro Leu Gly Gly 1045	Lys Ala Gln Phe Gly G	ly Gln Arg 1055
50	Phe Gly Glu Met 1060		Met Gln Ala Tyr Gly A 1065 10	
	Thr Leu Gln Glu 1075	Leu Leu Thr Ile 1080	Lys Ser Asp Asp Val V 1085	al Gly Arg
55	Val Lys Val Tyr 1090	Glu Ala Ile Val 1095	Lys Gly Glu Asn Ile P	ro Asp Pro
	Gly Ile Pro Glu 105	Ser Phe Lys Val	Leu Leu Lys Glu Leu G 1115	ln Ser Leu 1120

Cys Leu Asn Val Glu Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu 1125 Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 5 Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1155 10 <210> 5 <211> 5099 <212> DNA 15 <213> Corynebacterium glutamicum <220> <221> CDS <222> (702)..(4196) 20 <223> rpoB gene allele 1546 <400> 5 acaatgtgac tegtgatttt tgggtggatc agegtacegg tttggttgtc gatctagetg 60 aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag aaattgcttt 120 25 togacgcotc cotogacgat gcagotgtot ctaagotggt tgcacaggcc gaaagcatcc 180 ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt gcggtattgg 240 30 ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga gaagcttaac 300 ctqctqttca aatagatttt ccctqtttcg aattgcggaa accccgggtt tgtttgctag 360 35 ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg gttggttgct 420 aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc gattggtata 480 ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc caagaccttg 540 40 atcaaggtgg tttaaaaaaaa ccgatttgac aaggtcattc agtgctatct ggagtcgttc 600 agggggatcg ggttcctcag cagaccaatt gctcaaaaat accagcggtg ttgatctgca 660 45 cttaatggcc ttgaccagcc aggtgcaatt acccgcgtga g gtg ctg gaa gga ccc 716 Met Leu Glu Gly Pro 764 atc ttg gca gtc tcc cgc cag acc aag tca gtc gat att ccc ggt Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Ile Pro Gly 50 15 10 gca ccg cag cgt tat tct ttc gcg aag gtg tcc gca ccc att gag gtg Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser Ala Pro Ile Glu Val 55 25 30 ccc ggg cta cta gat ctt caa ctg gat tct tac tcc tgg ctg att ggt Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr Ser Trp Leu Ile Gly

45

5	acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc Gly	gag Glu	gga Gly	gcc Ala	908
ک					ggc												956
10	cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
15	gaa Glu	gac Asp	gtc Val	aag Lys 105	aac Asn	acc Thr	att Ile	gac Asp	gag Glu 110	gcg Ala	aaa Lys	gaa Glu	aag Lys	gac Asp 115	atc Ile	aac Asn	1052
20	tac Tyr	gcg Ala	gcg Ala 120	cca Pro	ctg Leu	tat Tyr	gtg Val	acc Thr 125	gcg Ala	gag Glu	ttc Phe	gtc Val	aac Asn 130	aac Asn	acc Thr	acc Thr	1100
25					tct Ser												1148
23	acg Thr 150	gac Asp	aag Lys	gga Gly	acg Thr	ttc Phe 155	atc Ile	atc Ile	aac Asn	gga Gly	acc Thr 160	gaa Glu	cgc Arg	gtt Val	gtg Val	gtc Val 165	1196
30					cgc Arg 170												1244
35					cgt Arg												1292
40					gag Glu												1340
45					aag Lys												1388
13					act Thr											gaa Glu 245	1436
50																gag Glu	1484
55															Pro	acc Thr	1532
																aag Lys	1580

			280					285					290				
5	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asn	cgc Arg	aag Lys	ctc Leu	1628
1.0	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
10	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
15	gtc Val	atg Met	act Thr	tct Ser 345	cca Pro	aat Asn	ggt Gly	gaa Glu	gag Glu 350	atc Ile	cca Pro	gtc Val	gag Glu	acc Thr 355	gat Asp	gac Asp	1772
20	atc Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
25	cag Gln	aac Asn 375	cag Gln	gtc Val	cgt Arg	gtc Val	ggc Gly 380	ctg Leu	tcc Ser	cgc Arg	atg Met	gag Glu 385	cgc Arg	gtt Val	gtt Val	cgt Arg	1868
2.0	gag Glu 390	cgt Arg	atg Met	acc Thr	acc Thr	cag Gln 395	gat Asp	gcg Ala	gag Glu	tcc Ser	att Ile 400	act Thr	cct Pro	act Thr	tcc Ser	ttg Leu 405	1916
30	atc Ile	aac Asn	gtt Val	cgt Arg	cct Pro 410	gtc Val	tct Ser	gca Ala	gct Ala	atc Ile 415	cgt Arg	gag Glu	ttc Phe	ttc Phe	gga Gly 420	act Thr	1964
35	tcc Ser	cag Gln	ctg Leu	tct Ser 425	cag Gln	ttc Phe	atg Met	gac Asp	cag Gln 430	aac Asn	aac Asn	tcc Ser	ctg Leu	tct Ser 435	ggt Gly	ttg Leu	2012
40	act Thr	<u>t</u> ac Tyr	aag Lys 440	cgt Arg	cgt Arg	ctg Leu	tcg Ser	gct Ala 445	ctg Leu	ggc	ccg Pro	ggt Gly	ggt Gly 450	Leu	tcc Ser	cgt Arg	2060
45	gag Glu	cgc Arg 455	gcc Ala	ggc Gly	atc Ile	gag Glu	gtt Val 460	cga Arg	gac Asp	gtt Val	cac His	cca Pro 465	Ser	cac His	tac Tyr	ggc	2108
	cgt Arg 470	Met	tgc Cys	cca Pro	att Ile	gag Glu 475	Thr	ccg Pro	gaa Glu	ggt Gly	cca Pro 480	Asn	att Ile	ggc	ctg Lev	atc Ile 485	2156
50	ggt Gly	tcc Ser	ttg Leu	gct Ala	tcc Ser 490	Tyr	gct Ala	cga Arg	gtg Val	aac Asn 495	Pro	ttc Phe	ggt Gly	ttc Phe	att 11e 500	gag Glu	2204
55	acc Thr	cca Pro	tac Tyr	cgt Arg 505	Arg	atc Ile	atc Ile	gac Asp	ggc Gly 510	rys	ctg Leu	aco Thi	gac Asp	caç Glr 515	ı Ile	gac Asp	2252

									cgc Arg								2300
5	acg Thr	cac His 535	tac Tyr	gac Asp	gaa Glu	gag Glu	ggc Gly 540	aac Asn	atc Ile	acc Thr	gat Asp	gag Glu 545	acc Thr	gtc Val	act Thr	gtt Val	2348
10									atg Met								2396
15									atg Met								2444
20									gct Ala 590								2492
									ctg Leu								2540
25									gca Ala								2588
30									gtg Val								2636
35				_	_	_	_		aag Lys	_	_			_	_	_	2684
40									acc Thr 670								2732
									gct Ala								2780
45							_	_	tcc Ser			_			_	_	2828
50									aac Asn								2876
55									atc Ile								2924
									act Thr 750								2972

	acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020 880
5	gac Asp	cgc Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068
10	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc Gly	gag Glu	acc Thr 800	gag Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116
15	gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164
20	gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc Gly	3212
	gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260
25	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	3308
30	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	Gly	gtt Val	gtc Val	ggt	aaa Lys 885	3356
35	att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	Pro	gtt Val	3404
40	gac Asp	atc Ile	atc Ile	ttg Leu 905	Asn	acc Thr	cac His	ggt Gly	gtt Val 910	Pro	cgt Arg	cgt Arg	atg Met	aac Asn 915	ı Ile	ggt Gly	3452
	cag Gln	gtt Val	ctt Leu 920	Glu	acc Thr	cac	ctt Leu	ggc Gly 925	Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	Gly	tgg Trp	g tcc Ser	3500
45	gtg Val	gat Asp 935	Pro	gaa Glu	gat Asp	cct Pro	gag Glu 940	Asn	gct Ala	gag Glu	cto Leu	gto 1 Val 945	Lys	act Thi	cto r Lei	g cct 1 Pro	3548
50	gca Ala 950	a Asp	cto Lev	cto Lev	gag Glu	gtt Val 955	Pro	gct Ala	ggt Gly	tco Ser	tte Lev 960	ı Thi	gca r Ala	act Th:	t cct r Pre	t gtg o Val 965	3596
55	tto Phe	gac B Asp	ggt Gly	gcg Ala	g tca Ser 970	Asr	gaa Glu	ı gaç ı Glı	g cto ı Lev	gca 1 Ala 979	a Gly	c cto y Le	g cto u Len	gc 1 Al	t aa a As: 98	t tca n Ser 0	3644
	cgt Arg	c cca	a aac	c cgc	g gad g Asp	ggc Gly	gao / Asp	gto Val	atq l Me	g gti	t aad l Asi	c gc	g gat a As	gg Gl	t aa y Ly	a gca s Ala	3692

acg ctt atc gac ggt cgc tcc ggt gag cct tac ccg tac ccg gtt tcc Thr Leu Ile Asp Gly Arg Ser Gly Glu Pro Tyr Pro Tyr Pro Val Ser atc ggc tac atg tac atg ctg aag ctg cac cac ctc gtt gac gag aag Ile Gly Tyr Met Tyr Met Leu Lys Leu His His Leu Val Asp Glu Lys atc cac gca cgt tcc act ggt cct tac tcc atg att acc cag cag cca Ile His Ala Arg Ser Thr Gly Pro Tyr Ser Met Ile Thr Gln Gln Pro ctg ggt ggt aaa gca cag ttc ggt gga cag cgt ttc ggc gaa atg gag Leu Gly Gly Lys Ala Gln Phe Gly Gly Gln Arg Phe Gly Glu Met Glu 1060 -gtg tgg gca atg cag gca tac ggc gct gcc tac aca ctt cag gag ctg Val Trp Ala Met Gln Ala Tyr Gly Ala Ala Tyr Thr Leu Gln Glu Leu ctg acc atc aag tct gat gac gtg gtt ggc cgt gtc aag gtc tac gaa Leu Thr Ile Lys Ser Asp Asp Val Val Gly Arg Val Lys Val Tyr Glu gca att gtg aag ggc gag aac atc ccg gat cca ggt att cct gag tcc Ala Ile Val Lys Gly Glu Asn Ile Pro Asp Pro Gly Ile Pro Glu Ser ttc aag gtt ctc ctc aag gag ctc cag tcc ttg tgc ctg aac gtg gag Phe Lys Val Leu Leu Lys Glu Leu Gln Ser Leu Cys Leu Asn Val Glu gtt ctc tcc gca gac ggc act cca atg gag ctc gcg ggt gac gac Val Leu Ser Ala Asp Gly Thr Pro Met Glu Leu Ala Gly Asp Asp Asp gac ttc gat cag gca ggc gcc tca ctt ggc atc aac ctg tcc cgt gac Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile Asn Leu Ser Arg Asp gag cgt tcc gac gcc gac acc gca tagcagatca gaaaacaacc gctagaaatc 4226 Glu Arg Ser Asp Ala Asp Thr Ala aagccataca tcccccggac attgaagaga tgttctgggg ggaaagggag ttttacgtgc 4286 tegacgtaaa egtettegat gageteegea teggeetgge cacegeegae gacateegee 4346 gttggtccaa gggtgaggtc aagaagccgg agaccatcaa ctaccgaacc ctcaagcctg 4406 agaaggacgg tetgttetge gagegtatet teggteeaac tegegaetgg gagtgegeet 4466 geggtaagta caagegtgte egetacaagg geateatetg tgaaegetgt ggegttgagg 4526 tcaccaagtc caaggtgcgc cgtgagcgca tgggacacat tgagctcgct gcaccagtaa 4586 cccacatttg gtacttcaag ggcgttccat cacgcctcgg ctaccttttg gaccttgctc 4646

	caaaggacct ggacctcatc atctacttcg gtgcgaacat catcaccagc gtggacgaag 47	06
5	aggetegeea cagegaceag accaetettg aggeagaaat gettetggag aagaaggaeg 47	66
J	ttgaggcaga cgcagagtct gacattgctg agcgtgctga aaagctcgaa gaggatcttg 48	26
	ctgaacttga ggcagctggc gctaaggccg acgctcgccg caaggttcag gctgctgccg 48	86
10	ataaggaaat gcagcacatc cgtgagcgtg cacagcgcga aatcgatcgt ctcgatgagg 49	146
	tctggcagac cttcatcaag cttgctccaa agcagatgat ccgcgatgag aagctctacg 50	106
15	atgaactgat cgaccgctac gaggattact tcaccggtgg tatgggtgca gagtccattg 50	166
13	aggctttgat ccagaacttc gaccttgatg ctg 50	99
20	<210> 6 <211> 1165 <212> PRT <213> Corynebacterium glutamicum	
25	<400> 6 Met Leu Glu Gly Pro Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val 1 5 10 15	
3.0	Val Asp Ile Pro Gly Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser 20 25 30	
30	Ala Pro Ile Glu Val Pro Gly Leu Leu Asp Leu Gln Leu Asp Ser Tyr 35 40 45	
35	Ser Trp Leu Ile Gly Thr Pro Glu Trp Arg Ala Arg Gln Lys Glu Glu 50 55 60	
	Phe Gly Glu Gly Ala Arg Val Thr Ser Gly Leu Glu Asn Ile Leu Glu 65 70 75 80	
40	Glu Leu Ser Pro Ile Gln Asp Tyr Ser Gly Asn Met Ser Leu 85 90 95	
4.5	Ser Glu Pro Arg Phe Glu Asp Val Lys Asn Thr Ile Asp Glu Ala Lys 100 105 110	
45	Glu Lys Asp Ile Asn Tyr Ala Ala Pro Leu Tyr Val Thr Ala Glu Phe 115 120 125	
50	Val Asn Asn Thr Thr Gly Glu Ile Lys Ser Gln Thr Val Phe Ile Gly 130 135 140	
	Asp Phe Pro Met Met Thr Asp Lys Gly Thr Phe Ile Ile Asn Gly Thr 145 150 155 160	
55	Glu Arg Val Val Ser Gln Leu Val Arg Ser Pro Gly Val Tyr Phe 165 170 175	
	Asp Gln Thr Ile Asp Lys Ser Thr Glu Arg Pro Leu His Ala Val Lys 180 185 190	

Val Ile Pro Ser Arg Gly Ala Trp Leu Glu Phe Asp Val Asp Lys Arg Asp Ser Val Gly Val Arg Ile Asp Arg Lys Arg Arg Gln Pro Val Thr Val Leu Leu Lys Ala Leu Gly Trp Thr Thr Glu Gln Ile Thr Glu Arg Phe Gly Phe Ser Glu Ile Met Met Ser Thr Leu Glu Ser Asp Gly Val Ala Asn Thr Asp Glu Ala Leu Leu Glu Ile Tyr Arg Lys Gln Arg Pro Gly Glu Gln Pro Thr Arg Asp Leu Ala Gln Ser Leu Leu Asp Asn Ser Phe Phe Arg Ala Lys Arg Tyr Asp Leu Ala Arg Val Gly Arg Tyr Lys Ile Asn Arg Lys Leu Gly Leu Gly Gly Asp His Asp Gly Leu Met Thr Leu Thr Glu Glu Asp Ile Ala Thr Thr Ile Glu Tyr Leu Val Arg Leu His Ala Gly Glu Arg Val Met Thr Ser Pro Asn Gly Glu Glu Ile Pro Val Glu Thr Asp Asp Ile Asp His Phe Gly Asn Arg Arg Leu Arg Thr Val Gly Glu Leu Ile Gln Asn Gln Val Arg Val Gly Leu Ser Arg Met Glu Arg Val Val Arg Glu Arg Met Thr Thr Gln Asp Ala Glu Ser Ile Thr Pro Thr Ser Leu Ile Asn Val Arg Pro Val Ser Ala Ala Ile Arg Glu Phe Phe Gly Thr Ser Gln Leu Ser Gln Phe Met Asp Gln Asn Asn Ser Leu Ser Gly Leu Thr Tyr Lys Arg Arg Leu Ser Ala Leu Gly Pro Gly Gly Leu Ser Arg Glu Arg Ala Gly Ile Glu Val Arg Asp Val His Pro Ser His Tyr Gly Arg Met Cys Pro Ile Glu Thr Pro Glu Gly Pro Asn Ile Gly Leu Ile Gly Ser Leu Ala Ser Tyr Ala Arg Val Asn Pro Phe Gly Phe Ile Glu Thr Pro Tyr Arg Arg Ile Ile Asp Gly Lys Leu

510 500 505 Thr Asp Gln Ile Asp Tyr Leu Thr Ala Asp Glu Glu Asp Arg Phe Val 515 5 Val Ala Gln Ala Asn Thr His Tyr Asp Glu Glu Gly Asn Ile Thr Asp 535 Glu Thr Val Thr Val Arg Leu Lys Asp Gly Asp Ile Ala Met Val Gly 555 10 Arg Asn Ala Val Asp Tyr Met Asp Val Ser Pro Arg Gln Met Val Ser Val Gly Thr Ala Met Ile Pro Phe Leu Glu His Asp Asp Ala Asn Arg 15 Ala Leu Met Gly Ala Asn Met Gln Lys Gln Ala Val Pro Leu Ile Arg 20 Ala Glu Ala Pro Phe Val Gly Thr Gly Met Glu Gln Arg Ala Ala Tyr Asp Ala Gly Asp Leu Val Ile Thr Pro Val Ala Gly Val Val Glu Asn 25 Val Ser Ala Asp Phe Ile Thr Ile Met Ala Asp Asp Gly Lys Arg Glu Thr Tyr Leu Leu Arg Lys Phe Gln Arg Thr Asn Gln Gly Thr Ser Tyr 30 Asn Gln Lys Pro Leu Val Asn Leu Gly Glu Arg Val Glu Ala Gly Gln 35 Val Ile Ala Asp Gly Pro Gly Thr Phe Asn Gly Glu Met Ser Leu Gly Arg Asn Leu Leu Val Ala Phe Met Pro Trp Glu Gly His Asn Tyr Glu 715 40 Asp Ala Ile Ile Leu Asn Gln Asn Ile Val Glu Gln Asp Ile Leu Thr Ser Ile His Ile Glu Glu His Glu Ile Asp Ala Arg Asp Thr Lys Leu 45 745 Gly Ala Glu Glu Ile Thr Arg Asp Ile Pro Asn Val Ser Glu Glu Val 50 Leu Lys Asp Leu Asp Asp Arg Gly Ile Val Arg Ile Gly Ala Asp Val Arg Asp Gly Asp Ile Leu Val Gly Lys Val Thr Pro Lys Gly Glu Thr 55 Glu Leu Thr Pro Glu Glu Arg Leu Leu Arg Ala Ile Phe Gly Glu Lys 815 810 805

	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
5	Gly	Lys	Val 835	Ile	Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
	Leu	Ala 850	Pro	Gly	Val	Asn	Glu 855	Met	Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys
10	Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	Lys 880
15	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro
13	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910	Pro	Arg
20	Arg	Met	Asn 915	Ile	Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	Gly 925	Trp	Leu	Ala
	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935	Pro	Glu	Asp	Pro	Glu 940	Asn	Ala	Glu	Leu
25	Val 945	Lys	Thr	Leu	Pro	Ala 950	Asp	Leu	Leu	Glu	Val 955	Pro	Ala	Gly	Ser	Leu 960
30	Thr	Ala	Thr	Pro	Val 965	Phe	Asp	Gly	Ala	Ser 970	Asn	Glu	Glu	Leu	Ala 975	Gly
	Leu	Leu	Ala	Asn 980	Ser	Arg	Pro	Asn	Arg 985	Asp	Gly	Asp	Val	Met 990	Val	Asn
35	Ala	Asp	Gly 995	Lys	Ala	Thr		Ile 1000	Asp	Gly	Arg		Gly 1005	Glu	Pro	Tyr
		Tyr 1010	Pro	Val	Ser		Gly 1015	Tyr	Met	Tyr		Leu 1020	Lys	Leu	His	His
40	Leu 025	Val	Asp	Glu	_	Ile 1030	His	Ala	Arg		Thr 1035	Gly	Pro	Tyr		Met 1040
45	Ile	Thr	Gln	Gln	Pro 1045	Leu	Gly	Gly		Ala 1050	Gln	Phe	Gly		Gln 1055	Arg
	Phe	Gly		Met 1060	Glu	Val	Trp		Met 1065		Ala	Tyr	Gly	Ala 1070		Tyr
50	Thr		Gln 1075	Glu	Leu	Leu		Ile 1080		Ser	Asp	Asp	Val 1085		Gly	Arg
		Lys 1090	Val	Tyr	Glu		Ile 1095		Lys	Gly	Glu	Asn 1100		Pro	Asp	Pro
55	Gly 105		Pro	Glu		Phe 1110		Val	Leu		Lys 1115		Leu	Gln	Ser	Leu 1120
	Cys	Leu	Asn		Glu 1125		Leu	Ser	Ala	Asp 1130		Thr	Pro	Met	Glu 1135	Leu ;

Ala Gly Asp Asp Asp Phe Asp Gln Ala Gly Ala Ser Leu Gly Ile 1140 1145 1150

5 Asn Leu Ser Arg Asp Glu Arg Ser Asp Ala Asp Thr Ala 1155 1160 1165

10 <210> 7 <211> 1775 <212> DNA <213> Corynebacterium glutamicum 15 <220> <221> CDS <222> (500)..(880) <223> rpsL gene 20 <400> 7 cagctctaca agagtgtcta agtggcgggc attccatgct ttggaggagc gatcttcaaa 60 ttcctccaaa gtgagttgac ctcgggaaac agctgcagaa agttcatcca cgacttggtt 120 tcggttaagg tcagtggcga gcttctttgc tggttcgttt ccttgaggaa cagtcatggg 180 25 aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag 240 teccaetett gtagttggga attgaeggea eetegeacte aagegeggta tegeceetgg 300 30 ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt 360 cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca 420 tegacaaget cageettegt gttegteece egggegteac gteageagtt aaagaacaac 480 35 tecgaaataa ggatggtte atg eea act att eag eag etg gte egt aag gge Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly 40 580 cgc cac gat aag tcc gcc aag gtg gct acc gcg gca ctg aag ggt tcc Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser 15 cct cag cgt cgt ggc gta tgc acc cgt gtg tac acc acc cct aag 628 45 Pro Gln Arg Arg Gly Val Cys Thr Arg Val Tyr Thr Thr Pro Lys 30 676 aag cct aac tct gct ctt cgt aag gtc gct cgt gtg cgc ctt acc tcc Lys Pro Asn Ser Ala Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser 50 45 724 ggc atc gag gtt tcc gct tac atc cct ggt gag ggc cac aac ctg cag Gly Ile Glu Val Ser Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln 55 65 60 gag cac tcc atg gtg ctc gtt cgc ggt ggt cgt gtt aag gac ctc cca 772 Glu His Ser Met Val Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro 90 85 80

820 ggt gtc cgt tac aag atc gtc cgt ggc gca ctg gat acc cag ggt gtt Gly Val Arg Tyr Lys Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val 105 95 5 aag gac cgc aag cag gct cgt tcc ccg cta cgg cgc gaa gag ggg ata 868 Lys Asp Arg Lys Gln Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile 120 110 920 att aaa aat gcg taaatcagca gctcctaagc gtccagtagt tcaggaccct 10 Ile Lys Asn Ala 125 gtatacaagt ccgagctcgt tacccagctc gtaaacaaga tcctcatcgg tggcaagaag 980 15 tccaccgcag agcgcatcgt ctacggtgca ctcgagatct gccgtgagaa gaccggcacc 1040 gatccagtag gaaccctcga gaaggctctc ggcaacgtgc gtccagacct cgaagttcgt 1100 tecegeegtg ttggtggege tacetaceag gtgeeagtgg atgttegeee agagegegea 1160 20 aacaccctcg cactgcgttg gttggtaacc ttcacccgtc agcgtcgtga gaacaccatg 1220 atcgagcgtc ttgcaaacga acttctggat gcagccaacg gccttggcgc ttccgtgaag 1280 25 cgtcgcgaag acacccacaa gatggcagag gccaaccgcg ccttcgctca ctaccgctgg 1340 tagtactgcc aagacatgaa agcccaatca cctttaagat caacgcctgc cggcgccctt 1400 cacatttgaa taagctggca gcctgcgttt cttcaaggcg actgggcttt tagtctcatt 1460 30 aatgcagttc accgctgtaa gatagctaaa tagaaacact gtttcggcag tgtgttacta 1520 aaaaatccat gtcacttgcc tcgagcgtgc tgcttgaatc gcaagttagt ggcaaaatgt 1580 35 aacaagagaa ttatccgtag gtgacaaact ttttaatact tgggtatctg tcatggatac 1640 cccggtaata aataagtgaa ttaccgtaac caacaagttg gggtaccact gtggcacaag 1700 aagtgettaa ggatetaaae aaggteegea acateggeat eatggegeae ategatgetg 1760 40 1775 gtaagaccac gacca 45 <210> 8 <211> 127 <212> PRT <213> Corynebacterium glutamicum 50 <400> 8 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly Arg His Asp Lys Ser 15 Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser Pro Gln Arg Arg Gly 55 Val Cys Thr Arg Val Tyr Thr Thr Pro Lys Lys Pro Asn Ser Ala

	Leu	Arg 50	Lys	Val	Ala	Arg	Val 55	Arg	Leu	Thr	Ser	Gly 60	Ile	Glu	Val	Ser
5	Ala 65	Tyr	Ile	Pro	Gly	Glu 70	Gly	His	Asn	Leu	Gln 75	Glu	His	Ser	Met	Val
	Leu	Val	Arg	Gly	Gly 85	Arg	Val	Lys	Asp	Leu 90	Pro	Gly	Val	Arg	Туг 95	Lys
10	Ile	Val	Arg	Gly 100	Ala	Leu	Asp	Thr	Gln 105	Gly	Val	Lys	Asp	Arg 110	Lys	Glr
15	Ala	Arg	Ser 115	Pro	Leu	Arg	Arg	Glu 120	Glu	Gly	Ile	Ile	Lys 125	Asn	Ala	

Patent claims

10

- An isolated polynucleotide from coryneform bacteria, containing a polynucleotide sequence coding for the rpoB gene, selected from the group
- a) polynucleotide that is at least 70% identical with a polynucleotide that codes for a polypeptide containing the amino acid sequence of SEQ ID No. 2,
 - b) polynucleotide that codes for a polypeptide containing an amino acid sequence that is at least 70% identical with the amino acid sequence of SEQ ID No. 2,
 - c) polynucleotide that is complementary to the polynucleotides of a) or b), and
 - d) polynucleotide containing at least 15 consecutive nucleotides of the polynucleotide sequence of a), b) or c),
 - the polypeptide preferably exhibiting the activity of the β -subunit of RNA polymerase B.
- A polynucleotide as claimed in claim 1, wherein the
 polynucleotide is a DNA, preferably a recombinant DNA,
 that is replicatable in coryneform bacteria.
 - 3. A polynucleotide as claimed in claim 1, wherein the polynucleotide is an RNA.
- 4. A polynucleotide as claimed in claim 2, containing the nucleic acid sequence as shown in SEQ ID No. 2.
 - 5. A replicatable DNA as claimed in claim 2, containing
 - (i) the nucleotide sequence shown in SEQ ID No. 1, or

25

- (ii) at least one sequence that corresponds to sequence (i) within the region of the degeneracy of the genetic code, or
- (iii) at least one sequence that hybridizes with the sequence that is complementary to sequence (i) or (ii), and optionally
 - (iv) sense mutations in (i) that are neutral in terms
 of function.
- 6. A replicatable DNA as claimed in claim 5, wherein the hybridization is carried out under a stringency corresponding to not more than 2x SSC.
 - 7. A polynucleotide sequence as claimed in claim 1, which codes for a polypeptide containing the amino acid sequence shown in SEQ ID No. 2.
- 15 8. A coryneform bacteria in which the rpoB gene is enhanced, especially overexpressed.
 - 9. A process for the production of L-amino acids, especially L-lysine, by fermentation, which process comprises carrying out the following steps:
- a) fermenting the coryneform bacteria that produce the desired L-amino acid, in which bacteria at least the rpoB gene or nucleotide sequences coding therefor are enhanced, especially overexpressed;
 - b) concentrating the L-amino acid in the medium or in the cells of the bacteria, and
 - c) isolating the L-amino acid.
 - 10. A process as claimed in claim 9, wherein there are used bacteria in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally enhanced.

- 11. A process as claimed in claim 9, wherein there are used bacteria in which at least some of the metabolic pathways that reduce formation of the desired L-amino acid are excluded.
- 5 12. A process as claimed in claim 9, wherein there is used a strain transformed using a plasmid vector, and the plasmid vector carries the nucleotide sequence coding for the rpoB gene.
- 13. A process as claimed in claim 9, wherein expression of the polynucleotide(s) coding for the rpoB gene is enhanced, especially overexpressed.
 - 14. A process as claimed in claim 9, wherein the regulatory/catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide rpoB codes are increased.
 - 15. A process as claimed in claim 9, wherein for the production of L-amino acids there are fermented coryneform microorganisms in which at the same time one or more genes selected from the group
- 20 15.1 the gene dapA coding for dihydrodipicolinate synthase,
 - 15.2 the gene gap coding for glyceraldehyde 3-phosphate dehydrogenase,
- 15.3 the gene tpi coding for triose phosphate isomerase,
 - 15.4 the gene pgk coding for 3-phosphoglycerate kinase,
 - 15.5 the gene zwf coding for glucose-6-phosphate dehydrogenase,
- 30 15.6 the gene pyc coding for pyruvate carboxylase,

- 15.7 the gene mqo coding for malate quinone oxidoreductase,
- 15.8 the gene lysC coding for a feed-back resistant aspartate kinase,
- 5 15.9 the gene lysE coding for lysine export,
 - 15.10 the gene zwal coding for the Zwal protein
 - 15.11 the gene rpsL coding for ribosomal protein S12 are enhanced or overexpressed.
- 16. A process as claimed in claim 9, wherein for the
 production of L-amino acids there are fermented
 coryneform microorganisms in which at the same time one
 or more genes selected from the group
 - 16.1 the gene pck coding for phosphoenol pyruvate carboxykinase,
- 15 16.2 the gene pgi coding for glucose-6-phosphate isomerase,
 - 16.3 the gene poxB coding for pyruvate oxidase
 - 16.4 the gene zwa2 coding for the Zwa2 protein are attenuated.
- 20 17. A coryneform bacteria containing a vector that carries a polynucleotide as claimed in claim 1.
 - 18. A process as claimed in one or more of the preceding claims, wherein microorganisms of the species Corynebacterium glutamicum are used.
- 19. A method of finding RNA, cDNA and DNA, in order to isolate nucleic acids, or polynucleotides or genes, that code for the β -subunit of RNA polymerase B or are

25

very similar to the sequence of the rpoB gene, which method comprises using as hybridization probes the polynucleotide containing the polynucleotide sequences as claimed in claims 1, 2, 3 or 4.

- 5 20. A method as claimed in claim 18, wherein arrays, micro arrays or DNA-chips are used.
 - 21. A DNA from coryneform bacteria, coding for β -subunits of RNA polymerase B, wherein the associated amino acid sequences have been altered between positions 1 to 10 in SEQ ID No. 2 by amino acid substitution.
 - 22. A DNA as claimed in claim 21, which DNA codes for β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 5 in SEQ ID No. 2 L-leucine, L-isoleucine or L-valine.
- 15 23. A DNA from coryneform bacteria, coding for β -subunits of RNA polymerase B, wherein the associated amino acid sequences have been altered between positions 190 to 200 in SEQ ID No. 2 by amino acid substitution.
- 24. A DNA as claimed in claim 23, which DNA codes for β 20 subunits of RNA polymerase B, the associated amino acid sequences containing at position 196 in SEQ ID No. 2 Lphenylalanine or L-tyrosine.
 - 25. A DNA from coryneform bacteria, coding for β -subunits of RNA polymerase B, wherein the associated amino acid sequences have been altered between positions 420 to 450 in SEQ ID No. 2 by amino acid substitution.
- 26. A DNA as claimed in claim 25, which DNA codes for the β-subunits of RNA polymerase B, the associated amino acid sequences containing at positions (sic) 439 in SEQ
 30 ID No. 2 any proteinogenic amino acid with the exception of L-histidine.

- 27. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 424 in SEQ ID No. 2 L-proline or L-arginine.
- 5 28. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 425 in SEQ ID No. (sic) L-threonine or L-alanine.
- 29. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 426 in SEQ ID No. 2 L-leucine or L-lysine.
- 30. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 429 in SEQ ID No. (sic) L-isoleucine, L-valine or L-leucine.
 - 31. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 444 in SEQ ID No. 2 L-leucine, L-tyrosine or L-tryptophan.
 - 32. A DNA as claimed in claim 25, which DNA codes for the β -subunits of RNA polymerase B, the associated amino acid sequences containing at position 446 in SEQ ID No. 2 L-proline or L-isoleucine.
- 33. A DNA from coryneform bacteria, coding for β-subunits of RNA polymerase B, wherein the associated amino acid sequences have been altered simultaneously at one or more positions selected from the group a) position 1 to 10, b) position 190 to 200 and c) position 420 to 450 in SEQ ID No. 2 by amino acid substitution.
 - 34. A DNA as claimed in claim 33, which DNA codes for the β -subunits of RNA polymerase B, the associated amino

acid sequences containing in SEQ ID No. 2 at one or more positions selected from the group a) position 5 L-leucine, b) position 196 L-phenylalanine, c) position 429 L-valine and d) position 439 L-tyrosine.

- 5 35. A DNA as claimed in claim 34, which DNA codes for the β-subunit of RNA polymerase B, the associated amino acid sequence containing L-leucine at position 5, L-phenylalanine at position 196 and L-valine at position 429, shown in SEQ ID No. 4.
- 36. A DNA as claimed in claim 34, which DNA codes for the β -subunit of RNA polymerase B, the associated amino acid sequence containing L-tyrosine at position 439, shown in SEQ ID No. 6.
- 37. A DNA from coryneform bacteria, coding for the βsubunit of RNA polymerase B, wherein the base sequence
 of the DNA contains thymine at position 715, thymine at
 position 1288 and thymine at position 1987, shown in
 SEQ ID No. 3.
- 38 . A DNA from coryneform bacteria, coding for the β subunit of RNA polymerase B, wherein the base sequence of the DNA contains thymine at position 2016, shown in SEQ ID No. 5.

Abstract

10

15

The invention relates to an isolated polynucleotide containing a polynucleotide sequence selected from the group

- 5 a) polynucleotide that is at least 70% identical with a polynucleotide that codes for a polypeptide containing the amino acid sequence of SEQ ID No. 2,
 - b) polynucleotide that codes for a polypeptide containing an amino acid sequence that is at least 70% identical with the amino acid sequence of SEQ ID No. 2,
 - c) polynucleotide that is complementary to the polynucleotides of a) or b), and
 - d) polynucleotide containing at least 15 consecutive nucleotides of the polynucleotide sequence of a), b) or c),

and to a process for the production of L-amino acids by fermentation using coryneform bacteria in which at least the rpoB gene is present in enhanced form, and to the use of polynucleotides containing the sequences of the invention as hybridization probes.