

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электротехника **Отчет по контрольной работе №1.**

Студент: Евстигнеев Дмитрий Группа: R3242 Преподаватель: Горшков К.С.

Задача.

ЗАДАНИЕ 4

Цепь представлена пятнадцатью формальными вариантами схем без элементов. Перед анализом необходимо скомпоновать схему варианта цепи, дополнив формальную структуру источниками и элементами. В таблицах 4.1- 4.4 приведены параметры источников. Номера источников ЭДС совпадают с номерами тех ветвей, в которых эти источники расположены; стрелками указаны направления действия источников. В продолжении таблиц 4.1- 4.4 приведены параметры резистивных элементов.

В качестве примера показана компоновка схемы 1-го варианта с параметрами из таблицы 4.1 и ее продолжения.

Определить:

- значения токов в ветвях, напряжений на резистивных элементах цепи;
 суммарную мощность, отдаваемую источниками энергии;
- суммарную мощность, рассеиваемую элементами цепи.
- составить баланс мощностей;
- -построить потенциальную диаграмму для любого замкнутого контура, содержащего два источника ЭДС.

Таблица 4.1

Вариант	Параметры источников ЭДС $E[B]$			
	Ball or di	484C-1115C	40.00	
	#6.7.T.I	5.5	W11 1 18	
	↓±, ↓	74, 10		1
4	$\Psi E_1 = 6.5$	$\rightarrow E_3 = 14$	$\Psi E_5 = 26$	4

Вариант	Схема	Ветвь 1	Ветвь 2	Ветвь 3	Ветвь 4	Ветвь 5	Ветвь 6
		-					
4	4	9	5	3	1	2	

Решение.

Для наглядности сделаю векторную иллюстрацию полученной схемы (рис. 1)

Рисунок 1. Схема, нарисованная в Adobe Illustrator

Далее обозначим узлы и направление тока (рис. 2)

Рисунок 2. Схема с отмеченными узлами и течением тока

Воспользуемся правилом Кирхгофа, рассчитаем данные:

1. Узлы
$$\begin{cases} I_2 + I_4 = I_1 + I_5 \\ I_5 + I_3 = I_4 \\ I_{\overline{1}} = I_{\overline{2}} + I_{\overline{3}} \end{cases}$$
 2. Контуры
$$\begin{cases} U_{R1} + U_{R2} = U_{E1} \\ U_{R2} - U_{R3} - U_{R4} = U_{E3} \\ U_{R4} + U_{R5} = U_{E5} \end{cases} \xrightarrow{\begin{cases} I_1 R_1 + I_2 R_2 = U_{E1} \\ I_2 R_2 - I_3 R_3 - I_4 R_4 = U_{E3} \\ I_4 R_4 + I_5 R_5 = U_{E5} \end{cases}$$
 Из 1 и 2 \rightarrow
$$\begin{cases} I_2 + I_4 - I_1 - I_5 = \mathbf{0} \\ I_3 + I_5 - I_4 = \mathbf{0} \\ I_{\overline{1}} - I_{\overline{2}} - I_3 = \mathbf{0} \\ I_1 R_1 + I_2 R_2 = E_1 \\ I_2 R_2 - I_3 R_3 - I_4 R_4 = E_3 \\ I_4 R_4 + I_5 R_5 = E_5 \end{cases}$$

$$3. \begin{pmatrix} -1 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ R_1 & R_2 & 0 & 0 & 0 \\ 0 & R_2 & -R_3 & -R_4 & 0 \\ 0 & 0 & 0 & R_4 & R_5 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ E_1 \\ E_3 \\ E_5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 9 & 5 & 0 & 0 & 0 \\ 0 & 5 & -3 & -1 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 6,5 \\ 14 \\ 26 \end{pmatrix} \rightarrow \begin{cases} I_1 = \frac{\Delta 1}{\Delta} \\ I_2 = \frac{\Delta 2}{\Delta} \\ I_3 = \frac{\Delta 3}{\Delta} \\ I_4 = \frac{\Delta 4}{\Delta} \\ I_5 = \frac{\Delta 5}{\Delta} \end{cases}$$

$$\begin{cases} I_1 = \frac{236}{289} A = 0,8166089 \\ I_2 = \frac{78}{289} A = 0,26989619 \\ I_3 = \frac{-314}{289} A = -1,086505 \\ I_4 = \frac{-2714}{289} A = -9,3910034 \\ I_5 = \frac{2400}{289} A = 8,3044982 \end{cases}$$

4.
$$S = E_1 I_1 + E_3 I_3 + E_5 I_5 = 6.5 * \frac{236}{289} + 14 * \frac{-314}{289} + 26 * \frac{2400}{289} = \frac{59538}{289} \text{ BT}$$

$$P = I_1^2 R_1 + I_2^2 R_2 + I_3^2 R_3 + I_4^2 R_4 + I_5^2 R_5 = 9(\frac{236}{289})^2 + 5(\frac{78}{289})^2 + 3(\frac{-314}{289})^2 + (\frac{2714}{289})^2 + 2(\frac{2400}{289})^2 = \frac{59538}{289} \text{ BT}$$

Построим и проведем симуляцию в утилите LTSpice (рис. 3)

Рисунок 3. Симуляция в LTSpice