

Sistema de monitoreo de un equipo de extracción de petróleo

Autor:

Ing. Eduardo Agustín Sciutto

Director:

Mag. Ing. Adrián S. Nowik (UP/PAE)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	7
4. Alcance del proyecto	7
5. Supuestos del proyecto	7
6. Requerimientos	8
7. Historias de usuarios (<i>Product backlog</i>)	9
8. Entregables principales del proyecto	0
9. Desglose del trabajo en tareas	0
10. Diagrama de Activity On Node	.1
11. Diagrama de Gantt	.3
12. Presupuesto detallado del proyecto	6
13. Gestión de riesgos	6
14. Gestión de la calidad	7
15. Procesos de cierre	.8

Registros de cambios

	Revisión	Detalles de los cambios realizados	Fecha
	0	Creación del documento	21 de junio de 2022
	1	Se completa hasta el punto 5 inclusive	2 de julio de 2022
	2	Se completa hasta el punto 9 inclusive	9 de julio de 2022
ĺ	3	Se completa hasta el punto 12 inclusive	17 de julio de 2022

Acta de constitución del proyecto

Buenos Aires, 21 de junio de 2022

Por medio de la presente se acuerda con el Ing. Ing. Eduardo Agustín Sciutto que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Sistema de monitoreo de un equipo de extracción de petróleo", consistirá esencialmente en la implementación de un prototipo de un sistema de monitoreo de un equipo de extracción de petróleo, y tendrá un presupuesto preliminar estimado de 614 hs de trabajo y ARS 2.162.300,00, con fecha de inicio 21 de junio de 2022 y fecha de presentación pública 21 de junio de 2023.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Nicolás D. Brunini PAE

Mag. Ing. Adrián S. Nowik Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

La gestión eficiente de un yacimiento productor de petróleo no electrificado y de periferia plantea grandes desafíos. El modelo de operación usualmente se basa en la presencia diaria de cuadrillas de operarios cuya principal función es recorrer cada instalación y realizar un relevamiento funcional. Excepcionalmente, ejecutan alguna tarea correctiva en función de lo identificado en la visita. En la actualidad, existen zonas donde los aparatos individuales de bombeo (AIB) no disponen de supervisión remota dado que originalmente la implementación de una solución tradicional de telemetría fue considerada económicamente inviable. La principal razón, es el costo de proveer un sistema alternativo de energía confiable para dicho equipamiento que generalmente está basado en paneles solares y baterías. Otra consideración es el riesgo de sabotaje y robo de equipamiento de medición costoso en zonas alejadas y con vigilancia deficiente.

El hecho de que un AIB deje de funcionar de manera imprevista, afecta directamente la producción de petróleo, por lo que resulta de valor disponer de una alerta inmediata ante dicha situación. Además, la información histórica de los períodos de tiempo de no funcionamiento facilita y hace más precisa la elaboración del informe de down-time por parte de los supervisores de producción.

Recientemente, la empresa operadora del yacimiento implementó una red LoRaWAN propia con extensa cobertura en el yacimiento. Sintéticamente, LoRaWAN es una tecnología de comunicación inalámbrica bidireccional, que hace posible administrar muchos nodos alimentados a baterías (con vida útil típica de varios años) conectados hasta varios kilómetros de distancia y transmitiendo a una muy baja tasa de datos (decenas de bytes pocas veces al día). Estas características hacen viable una implementación de internet de las cosas industrial (IIoT) para el caso mencionado, resaltando el aporte de mayor eficiencia y de reducción de costos operativos.

Otro aspecto para considerar es el de buscar una solución de rápida implementación y de mayor flexibilidad ante cambios, que aporte información relevante a los usuarios finales. Implementar un sistema de SCADA con tecnología tradicional es un trabajo complejo y demandante de tiempo, requiere la intervención de profesionales de distintos sectores dentro de la empresa ya que involucra tareas de configuración, calibración y enrutamiento en distintos sistemas onpremise. En muchos casos es justificada su utilización dada la criticidad e importancia de los procesos que se controlan y monitorean. Por otro lado, se ve una oportunidad en la utilización de distintos servicios en la nube, principalmente para procesar fuentes de datos no críticos que complementan o brindan nueva información de variables de campo y que se adaptan fácilmente a los cambios en las necesidades de visualización y notificación de los usuarios finales.

El objeto del presente proyecto es el desarrollo de una solución de monitoreo y alarmas de bajo costo para equipos AIB de un yacimiento de periferia. Se utilizarán una red LoRaWAN y componentes en la nube de Microsoft Azure. En particular, se implementará un prototipo que medirá el estado funcional del AIB. El servidor de red LoRaWAN canalizará la información generada por el sensor a un grupo de recursos creados en la nube de Microsoft Azure mediante el protocolo AMQP. En la nube se realizarán diferentes procesos, que contemplan la decodificación de la información, almacenamiento en base de datos y utilización de una aplicación back end que administrará el acceso a información estadística y la notificación de alertas a los usuarios autorizados. Los usuarios dispondrán de al menos un tipo de front end para el consumo de la información.

En la figura 1 se presenta el diagrama en bloques del sistema descripto.

Figura 1. Diagrama en bloques del sistema

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Juan A. Aranguren	PAE	Exec. Manager TEC-IT
Cliente	Ing. Nicolás D. Bru-	PAE	Leader UPO-OP II D5
	nini		
Impulsor	Eduardo O.	PAE	Exec. Manager IT Regional
	Domínguez		
Responsable	Ing. Eduardo	PAE	SR Specialist TEC-IT
	Agustín Sciutto		
Colaboradores	Gustavo G. Conrad	PAE	Specialist TEC-IT
	Germán Gornatti		
Orientador	Mag. Ing. Adrián S.	UP/PAE	Director Trabajo final
	Nowik		
Opositores	Sector de OT	PAE	USP-OP
Usuario final	Nestor O. Bochatey	PAE	Field Foreman UPO-OP II D5

A continuación se listan las principales características de cada interesado.

- Auspiciante: muy interesado en que la implementación resulte exitosa y sirva de modelo para nuevos desarrollos.
- Cliente: desea obtener resultados en corto tiempo. Se debe tener riguroso seguimiento del plan de trabajo acordado.
- Colaboradores: su dedicación a este proyecto es de tiempo parcial y no está reflejada en los objetivos de desempeño con sus gerencias funcionales. Se debe trabajar en sostener la motivación.
- Orientador: profesional de alta capacidad técnica y de gestión. Tener muy en cuenta sus observaciones.

- Usuario final: desde el inicio mantener un vínculo estrecho y capacitarlo adecuadamente en el uso de las nuevas herramientas. Buscar de convertirlo en un aliado.
- Opositores: el desarrollo del proyecto puede afectar intereses y actual metodología de trabajo del equipo de tecnología operacional (TO).

3. Propósito del proyecto

El propósito de este proyecto es impulsar la aplicación de nuevas tecnologías en la industria del petróleo y gas. Se busca implementar un sistema de monitoreo y alertas, utilizando una arquitectura típica de IIoT, para casos donde un sistema tradicional de telemetría no ha resultado económicamente viable.

4. Alcance del proyecto

El alcance del trabajo final incluye los siguientes aspectos.

- Adaptación de un nodo comercial LoRaWAN para detectar el estado de Marcha/Parada del motor de un AIB. Opcionalmente se evaluará incorporar otra variable física de tipo analógica, por ejemplo, vibración. Se busca realizar la selección, la integración y el ensayo del conjunto nodo más transductores.
- Conexión entre el servidor de red LoRaWAN y el componente IoT Hub de Microsoft Azure en la nube, utilizando el protocolo MQTT o AMQP.
- Decodificación de la carga útil de los mensajes enviados por los sensores. Filtrado y almacenamiento de información relevante en una base de datos.
- Creación de una aplicación de servidor y de una aplicación de interfaz de usuario para gestionar y entregar información de monitoreo y alarmas a los usuarios finales.

No se incluye en el alcance del proyecto lo siguiente.

- Estudios de confiabilidad y análisis de fallas relacionados al mantenimiento predictivo del prototipo a implementar.
- Arquitectura y configuración de la red LoRaWAN que da servicio de conexión de los sensores.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se asume lo siguiente.

• Se contará con el hardware y materiales necesarios para implementar los prototipos de medición. Además, se autorizará el alta de los mismos a la red LoRaWAN existente.

- Se tendrá acceso y apoyo de personal calificado para instalar y manipular los prototipos de medición en un grupo de AIB operativos del yacimiento.
- Se dispondrá de una suscripción activa a un grupo de recursos para implementar todos los componentes de la solución en la nube de Microsoft Azure.
- Existirán acuerdos y aprobaciones de los sectores de Seguridad Informática y Tecnología Operacional para establecer las conexiones de datos entre los componentes de la solución.

6. Requerimientos

Se presentan a continuación los requerimientos del proyecto.

- 1. Requerimientos asociados al dispositivo de medición.
 - 1.1. No debe requerir mano de obra calificada, tanto para la instalación como para la operación cotidiana.
 - 1.2. Debe ser robusto y soportar condiciones de clima extremo (grado de protección IP 67, soportar temperaturas entre -20°C y 50°C).
 - 1.3. Debe funcionar con baterías internas y poseer una autonomía de al menos 3 años.
 - 1.4. La batería debe ser comercialmente asequible y de fácil reemplazo.
 - 1.5. El estado e información de los sensores del dispositivo se deben poder consultar mediante una aplicación inalámbrica desde un celular y de forma sencilla.
 - 1.6. Debe permitir el traslado a una nueva ubicación sin requerir una reconfiguración local.
 - 1.7. Debe detectar y notificar de forma inmediata si un sensor tiene una falla de cableado.
- 2. Requerimientos asociados a la colecta e identificación de mensajes generados por los dispositivos.
 - 2.1. Se deberá definir un nomenclador de tópicos que sea flexible y escalable.
 - 2.2. La estructura de la carga útil del mensaje debe soportar futuras incorporaciones de sensores.
- 3. Requerimientos asociados al software en la nube.
 - 3.1. Se deberán utilizar componentes de la plataforma Azure de Microsoft.
 - 3.2. Los mensajes de los dispositivos se enviarán a un componente IoT Hub mediante protocolo AMQP.
 - 3.3. Se deberá decodificar y enrutar adecuadamente el flujo de datos proveniente de IoT
 - 3.4. Se debe establecer un flujo de datos hacia una base de datos de históricos.
 - 3.5. Se debe establecer un flujo de datos para procesar y enviar notificaciones de alarmas.
 - 3.6. Se deberá definir un mecanismo de notificación de alarmas y eventos a los usuarios registrados. Podrá ser por email y/o Telegram.
 - 3.7. La aplicación web dispondrá de un panel para visualizar información histórica de cada dispositivo.

- 3.8. La aplicación web permitirá la consulta de eventos y alarmas. Se debe recibir una notificación de forma inmediata ante un paro del motor.
- 3.9. Se deben recibir notificaciones de advertencia de nivel de batería bajo y algún otro parámetro que se identifique de utilidad, para realizar un correcto mantenimiento preventivo.
- 4. Requerimientos de integridad y seguridad.
 - 4.1. Se deberá establecer un mecanismo seguro de gestión y validación de usuarios de la aplicación web.
 - 4.2. El acceso a la configuración de los dispositivos de medición estará protegido por un usuario y contraseña. Será utilizado únicamente por personal autorizado del sector TI de la empresa.
- 5. Requerimientos de documentación.
 - 5.1. Se deberá elaborar el manual de configuración e instalación del dispositivo de medición.
 - 5.2. Se deberá documentar la configuración de todos los componentes desplegados en Microsoft Azure.
 - 5.3. Se deberá elaborar el manual de uso del software de usuario.
 - 5.4. Se deberá desarrollar el informe de avance del proyecto.
 - 5.5. Se deberá desarrollar la memoria final del proyecto.

7. Historias de usuarios (*Product backlog*)

Para la elaboración de historias de usuario se definió un índice de ponderación compuesto por la suma de tres propiedades: dificultad, complejidad e incertidumbre o riesgo. Cada propiedad es cuantificada mediante la serie de Fibonacci (0, 1, 2, 3, 5, 8, 13, ...) adoptándose el siguiente criterio que aplica a las tres propiedades por igual.

- Valores: 0, 1, 2 es una cuantificación baja.
- Valores: 3 y 5 es una cuantificación media.
- Valores: 8 o superior es una cuantificación alta.

A continuación, se detallan las historias de usuario recopiladas.

- Como supervisor de producción quiero ser notificado de la parada de un AIB de inmediato para poder enviar una cuadrilla y minimizar el downtime. Ponderación: 12 (dificultad: 5, complejidad: 5, riesgo: 2).
- Como supervisor de producción quiero tener acceso a una pantalla sencilla que me muestre el estado histórico de un AIB para poder calcular fácilmente el downtime. Ponderación: 10 (dificultad: 5, complejidad: 3, riesgo: 2).
- Como supervisor de producción deseo recibir las notificaciones importantes en mi celular para tener mejor tiempo de respuesta, ya que no siempre estoy en la oficina. Ponderación: 16 (dificultad: 8, complejidad: 5, riesgo: 3).

- Como encargado de mantenimiento quiero tener información frecuente del estado de carga de las baterías para programar eficientemente las tareas de las cuadrillas del sector.
 Ponderación: 6 (dificultad: 2, complejidad: 3, riesgo: 1).
- Como jefe de distrito quiero que mis colaboradores optimicen sus salidas al campo para poder dedicar más tiempo a tareas analíticas en la oficina. Ponderación: 12 (dificultad: 5, complejidad: 5, riesgo: 2).
- Como jefe de distrito quiero minimizar el uso de las horas de cuadrilla para poder reducir costos operativos. Ponderación: 12 (dificultad: 5, complejidad: 5, riesgo: 2).
- Como referente de TI quiero que la aplicación solo la puedan utilizar usuarios autorizados para preservar la confidencialidad e integridad de los datos. Ponderación: 11 (dificultad: 3, complejidad: 5, riesgo: 3).
- Como referente de TI quiero democratizar el acceso a la información para que nuevos usuarios puedan aportar más valor a sus tareas. Ponderación: 12 (dificultad: 5, complejidad: 2, riesgo: 5).
- Como desarrollador de la aplicación quiero armar un sistema flexible y escalable para incorporar nuevas funcionalidades en el futuro. Ponderación: 15 (dificultad: 5, complejidad: 5, riesgo: 5).

8. Entregables principales del proyecto

Los entregables del proyecto son:

- Diagrama esquemático del dispositivo de medición.
- Manual de configuración e instalación del dispositivo de medición.
- Documentación de configuración de componentes en Microsoft Azure.
- Código fuente del software de usuario.
- Manual de uso del software de usuario.
- Informe de avance del proyecto.
- Memoria final del proyecto.

9. Desglose del trabajo en tareas

- 1. Planificación de proyecto. (86 hs)
 - 1.1. Definición de la arquitectura de la solución. (8 hs)
 - 1.2. Investigación de componentes principales del sistema. (40 hs)
 - 1.3. Estimación de recursos necesarios y costos asociados. (8 hs)
 - 1.4. Definiciones de alcances, requerimientos y presupuestos. (30 hs)
- 2. Desarrollo del dispositivo de medición. (130 hs)

- 2.1. Análisis y definición de funcionalidades. (4 hs)
- 2.2. Selección de componentes. (18 hs)
- 2.3. Análisis y definición del procedimiento de montaje en el AIB. (20 hs)
- 2.4. Estudio, pruebas y definición de configuración del nodo LoRaWAN. (16 hs)
- 2.5. Análisis, pruebas y definición de transductores. (32 hs)
- 2.6. Integración y pruebas del conjunto nodo transductores en AIB operativo. (40 hs)
- 3. Estructura de mensajes. (42 hs)
 - 3.1. Definición de jerarquía de tópicos. (18 hs)
 - 3.2. Decodificación y escalado de carga útil. (24 hs)
- 4. Desarrollo de componentes en la nube. (178 hs)
 - 4.1. Despliegue y configuración del componente IoT Hub. (12 hs)
 - 4.2. Despliegue y configuración de la base de datos. (24 hs)
 - 4.3. Despliegue y configuración de funciones y flujo de notificaciones. (32 hs)
 - 4.4. Despliegue y configuración de componentes para la aplicación del servidor. (40 hs)
 - 4.5. Desarrollo de la interfaz de la aplicación de usuario. (40 hs)
 - 4.6. Desarrollo de la interfaz para notificaciones por Telegram. (30 hs)
- 5. Pruebas de Integración del sistema. (30 hs)
 - 5.1. Diseño y despliegue de pruebas de funcionalidad integral. (30 hs)
- 6. Documentación. (148 hs)
 - 6.1. Elaboración del informe de avance del proyecto. (30 hs)
 - 6.2. Elaboración del manual de configuración e instalación del dispositivo de medición. (24 hs)
 - 6.3. Elaboración de la documentación de configuración de componentes en Microsoft Azure. (24 hs)
 - 6.4. Elaboración del manual de uso del software de usuario. (24 hs)
 - 6.5. Elaboración del informe final del proyecto. (40 hs)
 - 6.6. Cierre del proyecto. (6 hs)

Cantidad total de horas: (614 hs)

10. Diagrama de Activity On Node

El diagrama AON correspondiente a todas las etapas del proyecto se muestran en la figura 2. La unidad de tiempo se encuentra definida en horas. El proyecto se inicia el 21 de junio de 2022 y finaliza el 2 de junio de 2023. El camino crítico tiene una duración de 398 horas y se resalta en color rojo. En las referencias se identifican los colores de cada etapa del proyecto.

Figura 2. Diagrama en Activity on Node

11. Diagrama de Gantt

En la figura 3 se aprecia la tabla del desglose de actividades con sus fechas de inicio y fin, duración y asignación de recursos. Se identifican solo 2 recursos, el principal es el ejecutor (e) y el secundario es el colaborador (c).

En la figura 4 se muestra el diagrama de Gantt. Para la elaboración del mismo, se tomó una jornada de trabajo de 2,5 horas diarias, lo cual distribuye las 614 horas del proyecto en 346 días corridos. Se asume un esfuerzo continuo desde el inicio hasta el fin del proyecto, dedicándole los últimos dos meses exclusivamente a la elaboración de la memoria final.

En la sección anterior se realizó un diagrama AON donde se identificaron tareas que podían realizarse de forma simultánea y se determinó un camino crítico. La realidad es que al ser el ejecutor un único recurso, las tareas debieron reacomodarse de forma secuencial para reflejar ésta situación más realista.

WBS	Nombre	Inicio	Fin	Duración	Asignado
1	▼ Planificación de proyecto	jun 21	ago 8	34d 1h	
1.1	Definición de arquitectura de la soluc	jun 21	jun 24	3d	e
1.2	Investigación de componentes princi	jun 24	jul 18	16d	e
1.3	Estimación de recursos necesarios y o	jul 18	jul 21	3d	e
1.4	Definiciones de alcances, requerimier	jul 21	ago 8	12d	e
2	▼ Desarrollo del dispositivo de medición	ago 8	oct 6	42d 2h	
2.1	Análisis y definición de funcionalidad	ago 8	ago 9	1d 1h	e
2.2	Selección de componentes	ago 10	ago 19	7d	e
2.3	Análisis y definición de procedimiento	ago 19	ago 25	4d	e, c
2.4	Estudio, pruebas y definición de confi	ago 29	sep 1	3d	e, c
2.5	Análisis, pruebas y definición de trans	sep 2	sep 12	6d 1h	e, c
2.6	Integración y pruebas del conjunto no	sep 12	sep 22	8d	e, c
2.7	Dispositivo listo	oct 6	oct 6	N/D	
3	▼ Estructura de mensajes	oct 6	oct 28	16d 2h	
3.1	Definición de jerarquía de tópicos	oct 6	oct 17	7d	e
3.2	Decodificación y escalado de carga út	oct 17	oct 28	9d 1h	e
3.3	Estructua de msg. lista	oct 28	oct 28	N/D	
4	▼ Desarrollo de componentes en la nub	oct 31	ene 16	55d	
4.1	Despliegue y configuración de compo	oct 31	nov 4	4d 2h	e
4.2	Despliegue y configuración de base d	nov 4	nov 18	9d 1h	e
4.3	Despliegue y configuración de funcior	nov 18	dic 7	12d 2h	e
4.4	Despliegue y configuración de compo	dic 7	dic 19	8d	e, c
4.5	Desarrollo de la interfaz de la aplicac	dic 19	dic 29	8d	e, c
4.6	Desarrollo de la interfaz para notifica	dic 29	ene 16	12d	e
5	 Pruebas de Integración del sistema 	feb 10	feb 20	6d	
5.1	Diseño y despliegue de pruebas de fu	feb 10	feb 20	6d	e, c
5.2	Integracion lista	feb 20	feb 20	N/D	
6	▼ Documentación	sep 22	jun 2	181d 1h	
6.1	Elaboración de informe de avance del	feb 20	mar 8	12d	e
6.2	Elaboración de manual de configuraci	sep 22	oct 6	9d 1h	e
6.3	Elaboración de documentación de co	ene 27	feb 10	9d 1h	e
6.4	Nube implementada	feb 10	feb 10	N/D	
6.5	Elaboración de manual de uso del sof	ene 16	ene 27	9d 1h	e
6.6	Elaboración de informe final del proy	mar 8	may 31	60d	e
6.7	Cierre del proyecto	may 31	jun 2	2d 1h	e

Figura 3. Desglose de actividades

Figura 4. Diagrama de Gantt

12. Presupuesto detallado del proyecto

El presupuesto se expresa en pesos argentinos, tomando como referencia la fecha de inicio del proyecto.

Los costos directos mayormente lo conforman el valor de las horas de ejecución de las tareas detalladas.

Como estimación de los costos indirectos se considera un 40% del total de costos directos. Forman parte de éstos licencias de software utilizadas, costos de servicios de comunicaciones, acceso a recursos informáticos de uso compartido, servicios de mantenimiento mensual, gastos de transporte dentro del yacimiento y alquileres de oficinas y mobiliario.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
Horas de desarrollo de ejecutor	614 h	\$ 1500	\$ 921.000				
Horas de soporte de colaborador	109 h	\$ 1500	\$ 163.500				
Cuadrilla de montaje en AIB	16 h	\$ 6.250	\$ 100.000				
Materiales: nodo, transductores y mat. menores	es y mat. menores 1 u \$ 300.000		\$ 300.000				
Suscripción mensual de grupo recursos en Azure	e 12 m \$ 5.000		\$ 60.000				
SUBTOTAL	\$ 1.544.500						
COSTOS INDIRECTOS							
Descripción	cipción Cantidad Valor unitario		Valor total				
40% de los costos directos 1 u		\$ 617.800	\$ 617.800				
TOTAL	\$ 2.162.300						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.