Full name: Mach Vĩnh Phát

SID: 20125104 Class: 20CTT2

LAB 02: DECISION TREE

I. Tasks

No	Specification	Completion
1	Preparing the datasets	100%
2	Building the decision tree classifiers	100%
3	Evaluating the decision tree classifiers	100%
	Classification report and confusion matrix	100%
	Comments	100%
4	The depth and accuracy of a decision tree	100%
	Trees, tables, and charts	100%
	Comments	100%
Total		100%

II. Work

1) Preparing the datasets

- Step 1: I use panda library to read the input file

```
data = pd.read csv('../Dataset/connect-4.data', header=None)
```

- Step 2: shuffle data following requirement

```
data = shuffle(data)
```

- Step 3: Split data into 2 parts: attribute (first 42 values) and classification (1 value – the last value in each line)

```
attribute = data.iloc[:, :-1]
classification = data.iloc[:, -1]
```

- Step 4: Replace all the attributes which are 'x', 'o', 'b' to 1, 2, 3 corresponding for the convenience of calculation.

```
attribute = attribute.replace({'x': 1, 'o': 2, 'b': 3})
```

- Step 5: Split the data into train and test sets with different proportions (40/60), (60/40), (80/20), (90/10)

train_test_proportion = [(0.4, 0.6), (0.6, 0.4), (0.8, 0.2), (0.9, 0 .1)]

- Step 6: Visualize the distributions of classes in all the data sets: please see the visualization of this section in folder **Image/Visual_Preparing**

2) Building the decision tree classifiers

- Step 1: Use function train_test_split to slit whole dataset becomes 4 subsets: feature_train, label_train, feature_test, label_test
- Step 2: I use function **DecisionTreeClassifier** to create the decision tree and **set the criterion = 'entropy'** which gives the higher accuracy of final results. I don't use criterion = 'giny' since it gives me the accuracy less than entropy and Mrs.Thao said that we have not learned gini.
- Step 3: Use function **fit:** fits the decision tree to the training data.
- Step 4: Visualize the tree and save it in pdf file at Image/Decision_Tree/dt_(x,y).pdf where x, y are tranning and test corresponding.

Figure 1: Example a small branch of decision tree with train/test 40/60

3) Evaluating the decision tree classifiers

- Step 1: use **predict** function: make the predictions on test data.
- Step 2: use function **classification_report** to print the report which has precision, recall, f1-score, support for each class in each proportion and also the accuracy.

- Step 3: print the confusion matrix to check the predicted class.
- Comments:

Train proportion: 40.0/60.0							
	precision	recall	f1-score	support			
draw	0.21	0.23	0.22	3870			
loss	0.59	0.58	0.59	9981			
win	0.82	0.82	0.82	26684			
accuracy			0.70	40535			
macro avg	0.54	0.54	0.54	40535			
weighted avg	0.71	0.70	0.70	40535			
[[878 1129	1863]						
[1237 5798	2954]						
[1989 2866 21829]]							
Complete proportion 40.0/60.0							
Complete time: 1.4946982860565186 seconds							

Train proport	ion: 60.0/40	.0						
	precision	recall	f1-score	support				
draw	0.24	0.24	0.24	2580				
loss	0.61	0.61	0.61	6654				
win	0.83	0.83	0.83	17789				
accuracy			0.72	27023				
macro avg	0.56	0.56	0.56	27023				
weighted avg	0.72	0.72	0.72	27023				
[[629 778	1173]							
[818 4056	1780]							
[1211 1786	[1211							
Complete proportion 60.0/40.0								
Complete time	Complete time: 1.0796403884887695 seconds							

Train proport	ion: 80.0/20.	.0						
	precision	recall f1-score		support				
draw	0.25	0.27	0.26	1290				
loss	0.63	0.61	0.62	3327				
win	0.84	0.84	0.84	8895				
accuracy			0.73	13512				
macro avg	0.57	0.57	0.57	13512				
weighted avg	0.73	0.73	0.73	13512				
[[344 371 !	575]							
[435 2034	[435 2034 858]							
[612 834 7449]]								
Complete proportion 80.0/20.0								
Complete time: 0.8097066879272461 seconds								

Train proportion	: 90.0/10	.0					
pr	ecision	recall	f1-score	support			
draw	0.29	0.29	0.29	645			
loss	0.65	0.64	0.65	1664			
win	0.84	0.85	0.85	4447			
accuracy			0.74	6756			
macro avg	0.59	0.59	0.59	6756			
weighted avg	0.74	0.74	0.74	6756			
[[185 178 282]						
[184 1066 414]						
[280 385 3782]]							
Complete proportion 90.0/10.0							
Complete time: 0.6716187000274658 seconds							
,							

- o In all cases of trainning/test, the best f1-score is label "win". And the one less than is in label "loss", the last one is "draw".
- The major diagonal following top left to right bottom order corresponds to draw, loss, win.
- o In 40/60:

- About 77% of label "draw" is predicted to "loss" and "win".
- About 41% of label "loss" is predicted to "draw" and "win".
- About 18% of label "win" is predicted to "draw" and "loss".

o In 60/40:

- About 75% of label "draw" is predicted to "loss" and "win".
- About 39% of label "loss" is predicted to "draw" and "win".
- About 16% of label "win" is predicted to "draw" and "win".

o In 80/20:

- About 73% of label "draw" is predicted to "loss" and "win".
- About 38% of label "loss" is predicted to "draw" and "win".
- About 16% of label "win" is predicted to "draw" and "win".

o In 90/10:

- About 70% of label "draw" is predicted to "loss" and "win".
- About 35% of label "loss" is predicted to "draw" and "win".
- About 14% of label "win" is predicted to "draw" and "win".
- Perfomance of the classifier depending on how the train and test data are split. When the train increases and test decreases, the classifier performs marginally better. With an increase in the percentage of test sets, the accuracy, precision, recall, and f1-score all show a little decline.

4) The depth and accuracy of a decision tree

- Step 1: Using the same implementation as 3) but now i set default train/test is (0.8, 0.2) (80/20) and limited the maximum depth: [None, 2 to 7]

Max_depth	None	2	3	4	5	6	7
Accuracy	73%	66%	66%	68%	68%	69%	70%

Figure 2: Example decision tree max_depth = 2

Figure 3: Example decision tree max_depth = 3

- Comments: In the decision tree without max depth, we can see that the accuracy is 73%. The accuracy is increased equivalent to the maximum depth of the decision tree. Therefore, we can conclude that the larger the depth, the higher the accuracy. You can view all the images in Image/Decision_Tree/dt_depth_X.pdf where X is the max_depth.