Sucessões

Maria Joana Torres

2021/22

Sucessão

Definição:

Uma função $u: \mathbb{N} \longrightarrow \mathbb{R}$ diz-se uma sucessão real.

À regra de correspondência $n \longmapsto u(n)$ chamamos **termo geral da sucessão** e ao elemento u(n) chamamos **termo de ordem** n.

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$

 $n \longmapsto u(n) = u_n$

Representamos a sucessão u de uma das seguintes formas:

- $(u_1, u_2, \ldots, u_n, \ldots)$
- $(u_n)_{n\in\mathbb{N}}$
- $(u_n)_m$ simplesmente, se daí não advier confusão.

Dada uma sucessão, o seu contradomínio designa-se por conjunto dos termos da sucessão. Dizemos que uma sucessão é **definida por recorrência** se o termo de ordem n da sucessão for definido à custa de alguns dos n-1 termos anteriores.

Exemplo:

$$\begin{cases} u_1 = \sqrt{2} \\ u_{n+1} = \sqrt{2 + u_n}, \quad \forall n \in \mathbb{N} \end{cases}$$

Primeiras definições

Definição: Uma sucessão $(u_n)_n$ diz-se:

- constante se $u_n = a$, $\forall n \in \mathbb{N}$, para algum $a \in \mathbb{R}$;
- limitada inferiormente ou minorada se

$$\exists a \in \mathbb{R} : u_n \ge a, \, \forall n \in \mathbb{N};$$

limitada superiormente ou majorada se

$$\exists b \in \mathbb{R} : u_n \le b, \, \forall n \in \mathbb{N};$$

limitada se é, simultaneamente minorada e majorada, ou seja se

$$\exists a, b \in \mathbb{R} : a \leq u_n \leq b, \forall n \in \mathbb{N};$$

ou equivalentemente, se

$$\exists M \in \mathbb{R}^+ : |u_n| \le M, \, \forall n \in \mathbb{N}.$$

Primeiras definições

Definição: Uma sucessão $(u_n)_n$ diz-se:

crescente se

$$u_n \leq u_{n+1}, \ \forall n \in \mathbb{N};$$

em particular, estritamente crescente se

$$u_n < u_{n+1}, \ \forall n \in \mathbb{N};$$

decrescente se

$$u_{n+1} \le u_n, \ \forall n \in \mathbb{N};$$

em particular, estritamente decrescente se

$$u_{n+1} < u_n, \ \forall n \in \mathbb{N};$$

monótona se é crescente ou decrescente.

Convergência de sucessões

Definição:

Dado $a\in\mathbb{R}$, diz-se que uma sucessão $(u_n)_n$ é convergente para a, que tende para a ou que tem limite a, se

$$\forall \epsilon > 0 \ \exists p \in \mathbb{N} \ \forall n \ge p \qquad |u_n - a| < \epsilon.$$

Escreve-se $(u_n)_n \xrightarrow[n]{} a$, $u_n \xrightarrow[n]{} a$ ou $\lim_n u_n = a$.

Convergência de sucessões

Definição:

Uma sucessão $(u_n)_n$ diz-se **convergente** se existir um número real a tal que

$$\lim_{n} u_n = a.$$

Uma sucessão que não é convergente diz-se divergente.

Resultados sobre convergência de sucessões

Teorema [Unicidade do limite]:

Uma sucessão não pode convergir para dois limites diferentes.

Resultados sobre convergência de sucessões

Teorema:

Toda a sucessão convergente é limitada.

A recíproca do Teorema anterior é falsa, isto é, nem toda a sucessão limitada é convergente.

Por exemplo, a sucessão $u_n=(-1)^n$, $n\in\mathbb{N}$, é limitada mas não é convergente.

Do teorema anterior sai uma consequência muito importante: se uma sucessão não é limitada então ela é divergente.

Exemplo: A sucessão definida por $u_n=2n;\ n\in\mathbb{N}$, é divergente, porque não é limitada.

Resultados sobre convergência de sucessões

Teorema:

Seja $(u_n)_n$ uma sucessão monótona e limitada. Então $(u_n)_n$ é convergente e:

- 1. se $(u_n)_n$ é crescente, $\lim_n u_n = \sup\{u_n : n \in \mathbb{N}\};$
- 2. se $(u_n)_n$ é decrescente, $\lim_n u_n = \inf\{u_n : n \in \mathbb{N}\}.$

Propriedades aritméticas dos limites

Teorema:

Sejam $(u_n)_n$ e $(v_n)_n$ duas sucessões convergentes respetivamente para a e para b. Então:

- 1. $(u_n + v_n)_n$ é uma sucessão convergente para a + b;
- 2. $(u_n v_n)_n$ é uma sucessão convergente para ab;
- 3. se $v_n \neq 0$ para todo $n \in \mathbb{N}$ e $b \neq 0$, então $\left(\frac{u_n}{v_n}\right)_n$ é uma sucessão convergente para $\frac{a}{b}$.

Propriedades aritméticas dos limites

Teorema:

Sejam $(u_n)_n$ uma sucessão convergente para zero e $(v_n)_n$ uma sucessão limitada. Então $(u_nv_n)_n$ é uma sucessão convergente para zero.

<u>Teorema</u> [das sucessões enquadradas]:

Sejam $(u_n)_n$ e $(w_n)_n$ duas sucessões convergentes tais que

$$\lim_{n} u_n = \lim_{n} w_n = a.$$

Seja $(v_n)_n$ outra sucessão tal que, a partir de uma certa ordem, se tem

$$u_n \leq v_n \leq w_n$$
.

Então $(v_n)_n$ também é convergente e $\lim_n v_n = a$.

Definição:

Dada uma sucessão $(u_n)_n$ de números reais, uma sua **subsucessão** é uma restrição da correspondente aplicação $u:\mathbb{N}\longrightarrow\mathbb{R}$ a um subconjunto infinito de \mathbb{N} , digamos

$$N^* = \{n_1, n_2, \dots, n_p, \dots\}, \text{ com } n_1 < n_2 < \dots < n_p \dots$$

Tal subsucessão representa-se por $(u_n)_{n\in\mathbb{N}^*}$ ou por $(u_{n_p})_{p\in\mathbb{N}}.$

Subsucessões

Teorema:

Se $(u_n)_n$ é uma sucessão convergente para a, qualquer sua subsucessão é convergente para a.

Corolário:

- 1. Se $(u_n)_n$ possui uma subsucessão divergente então $(u_n)_n$ é também divergente.
- 2. Se $(u_n)_n$ possui duas subsucessões convergentes para limites diferentes então $(u_n)_n$ é divergente.
- 3. Se $(u_n)_n$ é uma sucessão convergente possuindo uma subsucessão de limite a então $\lim_n u_n = a$.
- 4. Se $\lim_n u_n = a$ então, para todo $k \in \mathbb{N}$, $\lim_n u_{n+k} = a$.

Limites infinitos

Definição:

Diz-se que uma sucessão $(u_n)_n$ tende para $+\infty$ (resp. $-\infty$) se

$$\forall M \in \mathbb{R} \ \exists p \in \mathbb{N} \ \forall n \ge p \qquad u_n > M \qquad \text{(resp. } u_n < M\text{)}.$$

Escreve-se
$$\lim_n u_n = +\infty$$
 ou $u_n \xrightarrow{n} +\infty$ (resp. $\lim_n u_n = -\infty$ ou $u_n \xrightarrow{n} -\infty$).

Teorema:

- 1. Toda a sucessão crescente e não limitada tende para $+\infty$;
- 2. Toda a sucessão decrescente e não limitada tende para $-\infty$.

Infinitésimos vs infinitamente grandes

Teorema:

Se $(u_n)_n$ é uma sucessão tal que $u_n \neq 0$, $\forall\, n \in \mathbb{N}$, então $\lim_n u_n = 0$ se e só se $\lim_n \frac{1}{|u_n|} = +\infty$.

Nota:

A proposição anterior diz-nos que o inverso de um infinitésimo (sucessão convergente para zero) é, em módulo, um infinitamente grande e que o inverso de um infinitamente grande em módulo é um infinitésimo.

Indeterminações

No cálculo de limites de sucessões, algumas indeterminações comuns são:

$$\frac{0}{0}$$
, $\infty - \infty$, $0 \times \infty$, $\frac{\infty}{\infty}$, 0^0 , ∞^0 , 1^∞ .