Probability and Mathematical Statistics in Data Science

Lecture 32: Section 11.5: The Error in Regression

Estimating Variance and Standard Deviation

The fitted (or predicted) values $\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n$ are obtained by successively substituting x_1, \ldots, x_n into the equation of the estimated regression line: $\hat{y}_1 = \hat{\beta}_0 + \hat{\beta}_1 x_1, \hat{y}_2 = \hat{\beta}_0 + \hat{\beta}_1 x_2, \ldots, \hat{y}_n = \hat{\beta}_0 + \hat{\beta}_1 x_n$ The residuals are the differences $y_1 - \hat{y}_1, y_2 - \hat{y}_2, \ldots, y_n - \hat{y}_n$ between the observed and fitted y values.

Estimating Variance and Standard Deviation of the Residuals

$$D = Y - \hat{Y}$$

The mean squared error of regression is

$$egin{aligned} Var(D) &= E(D^2) \ &= E(D_Y^2) - 2\hat{a}E(D_XD_Y) + \hat{a}^2E(D_X^2) \ &= \sigma_Y^2 - 2rrac{\sigma_Y}{\sigma_X}r\sigma_X\sigma_Y + r^2rac{\sigma_Y^2}{\sigma_X^2}\sigma_X^2 \ &= \sigma_Y^2 - 2r^2\sigma_Y^2 + r^2\sigma_Y^2 \ &= \sigma_Y^2 - r^2\sigma_Y^2 \ &= (1-r^2)\sigma_Y^2 \end{aligned}$$

SD of the Residual

The SD of the residual is therefore

$$SD(D) = \sqrt{1-r^2}\sigma_Y$$

Estimating Variance and Standard Deviation of the Residuals (in Practice)

The error sum of squares (equivalently, residual sum of squares), denoted by SSE, is

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

and the estimate of σ^2 is

$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}$$

Textbook Body Fat Example: Excel Output

The regression equation is:

Body Fat(%) =
$$-27.376 + 0.2499$$
 (weight)

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.69663276					
R Square	0.485297203					
Adjusted R Square	0.456702603					
Standard Error	7.049132279					
Observations	20					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	843.325214	843.3252	16.97164	0.000643448	
Residual	18	894.424786	49.69027			
Total	19	1737.75				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-27.37626233		-2.37077	0.029119	-51.63650899	-3.116015659
Weight	0.249874137	0.060653997	4.119665	0.000643	0.122444818	0.377303457

Estimating Variance and Standard Deviation (in Practice)

Decomposition of Sums of Sums of Squares

The Coefficient of Determination

The coefficient of determination, denoted by r^2 , is given by

$$r^2 = 1 - \frac{SSE}{SST}$$

It is interpreted as the proportion of observed y variation that can be explained by the simple linear regression model (attributed to an approximate linear relationship between y and x).

$$SSE = \sum y_i^2 - \hat{\beta}_0 \sum y_i - \hat{\beta}_1 \sum x_i y_i$$

$$SST = S_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - (\sum y_i)^2/n$$

Example

The scatter plot of the iodine value—cetane number data in Figure portends a reasonably high r² value.

$$\hat{\beta}_0 = 75.212432$$
 $\hat{\beta}_1 = -20938742$ $\sum y_i = 779.2$ $\sum x_i y_i = 71,347.30$ $\sum y_i^2 = 43,745.22$

we have

$$SST = 43,745.22 - (779.2)^2/14 = 377.174$$

 $SSE = 43,745.22 - (75.212432)(779.2) - (-.20938742)(71,347.30) = 78.920$

The coefficient of determination is then

$$r^2 = 1 - SSE/SST = 1 - (78.920)/(377.174) = .791$$

Relationship between Correlation and Slope of the Linear Regression Line

- In our model, we have a slope (b_1) :
 - The slope is built from the correlation and the standard deviations:

$$b_1 = r \frac{S_y}{S_x}$$

- \triangleright Our slope is always in units of y per unit of x.
- In our model, we also have an intercept (b_0) .
 - ▶ The intercept is built from the means and the slope:

$$b_0 = \overline{y} - b_1 \overline{x}$$

Our intercept is always in units of y.

Correlation Coefficient

- The expected product of the deviations of X and Y, $E(D_XD_Y)$ is called the **covariance** of X and Y.
- The problem with using covariance is that the units are multiplied and the value depends on the units
- Can get rid of this problem by dividing each deviation by the SD of the corresponding SD, that is, put it in standard units. The resulting quantity is called the **correlation coefficient** of X and Y:
- Note that it is a pure number with no units, and now we will prove that it is always between -1 and 1.

Calculating Correlation Coefficient (In Theory)

$$r = E\left[\left(\frac{X - \mu_X}{\sigma_X}\right)\left(\frac{Y - \mu_Y}{\sigma_Y}\right)\right] = E(Z_X \times Z_Y)$$

Calculating Correlation Coefficient (in Practice)

Sample correlation:

$$r = \frac{cov(X,Y)}{S_X S_Y}$$

where

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1} \left| S_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} \right| S_Y = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}}$$

$$S_{X} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

$$S_Y = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}}$$

Thinking about Correlation Calculation

Subject	X (Height)	Y (Weight)	X - XBAR	Y-YBAR	(X-XBAR)(Y-YBAR)	Pos/Neg
1	60	120	60-68=-8	120-150=-30	(-8)(-30) = +240	Pos
2	60	160	60-68=-8	160-150=+10	(-8)(+10) = -80	Neg
3	62					
4	62					
199	74	200	74-68=6	200-150=50	(6)(50) = +300	Pos
200	74	140	74-68=6	140-150=-10	(6)(-10) = -60	Neg
		XBAR	YBAR			
		68	150			

Strength of the relationship between two quantitative variables

Correlation Properties

- ▶ The sign of a correlation coefficient gives the direction of the association.
- Correlation is always between -1 and +1.
- ▶ Correlation *can* be exactly equal to -1 or +1, but these values are unusual in real data because they mean that all the data points fall *exactly* on a single straight line.

Weak
 Moderate
 Strong

 -.5 ≤
$$r$$
 ≤ .5
 either -.8 < r < -.5 or .5 < r < .8
 either r ≥ .8 or r ≤ -.8

Correlation as a measure of linear association

$$D = Y - \hat{Y}, E(D) = 0, Var(D) = (1 - r^2)\sigma_Y^2$$

- What if the correlation is very close to 1 or -1? What does this tell you about X & Y?
- What about if the correlation is close to 0? What does this tell you about X & Y?

Examples of Correlations

