

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic – toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 65

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10m/s^2$.

I. Pentru itemii 1 - 5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Mărimea fizică a cărei unitate de măsură în S I este $kg \cdot ms^{-2}$ este:

a. impulsul

b. lucrul mecanic

c. forta

d. acceleratia

2. Un corp este lansat cu viteza inițială $v_0 = 5m/s$ pe un plan orizontal. Coeficientul de frecare la alunecare a corpului pe panul orizontal este $\mu = 0.5$. Până la oprire corpul parcurge o distanță de:

a. 5m

b. 2,5*m*

c. 1m

d. 1,5*m*

3. Un punct material execută o mişcare circulară uniformă. Pe traiectoria circulară descrisă de punctul material, considerați trei poziții *A*, *B*, *C* astfel încât razele vectoare corespunzătoare pozițiilor A şi B respectiv B şi C să fie perpendiculare. Variația maximă a mărimii impulsului mecanic al punctului material se produce între pozițiile:

a. A, B

b. A , C

c. B . C

d. A , A

4. Un mobil parcurge prima jumătate din drumul său rectiliniu cu viteza constantă $v_1 = 30 \, km \, h^{-1}$ şi cea de-a doua jumătate cu viteza constantă $v_2 = 20 \, km \, h^{-1}$. Viteza medie realizată de mobil pe distanța respectivă este :

a. $25 \, km \, h^{-1}$

b. $24 \, km \, h^{-1}$

c. $12 km h^{-1}$

d. $50 \, km \, h^{-1}$

5. Asupra unui corp aflat în repaus pe un plan orizontal fără frecări începe să acționeze o forță orizontală constantă *F*. Dependența lucrului mecanic efectuat de forta *F* de viteza corpului corespunde graficului din figura:

II. Rezolvați următoarele probleme :

- 1. Un corp A cu masa m = 0.5 kg este lăsat liber pe un plan înclinat de la înălțimea h = 1m. Corpul alunecă fără frecare şi îşi continuă deplasarea pe un plan orizontal. Corpul se oprește după ce a parcurs pe planul orizontal distanța de 4 m.
- a. Determinați viteza corpului A la baza planului înclinat.
- **b**. Aflați valoarea coeficientului de frecare la alunecare dintre corpul A și planul orizontal.
- **c.** În situația în care corpul A ar ciocni perfect elastic un corp B cu aceeași masă m = 0.5 kg, aflat în repaus la jumătatea porțiunii orizontale parcurse de corpul A, determinați valoarea vitezei corpului B imediat după ciocnire.

15 puncte

- **2.** O bilă legată de un fir inextensibil cu lungimea $\ell = 1m$ este rotită uniform, în plan vertical cu frecventa $\nu = 2rot s^{-1}$.
- a. Indicați poziția de pe traiectoria bilei, în care ar trebui să se rupă firul astfel încât bila să urce pe verticală.
- b. Calculați înălțimea maximă la care ajunge bila, față de poziția în care se rupe firul dacă este îndeplinită condiția de la punctul a.
- c. Determinați spațiul parcurs de bilă în prima secundă de la ruperea firului, dacă este îndeplinită condiția de la punctul a.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 65

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 65

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} N/A^2$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Dacă notațiile sunt cele utilizate în manualele de fizică, atunci unitatea de măsură în S.I. a mărimii fizice descrise de relația $\rho \ell/s$ este:

a. N /m

b. A/m

c. T

d. Ω

2. Un ampermetru și un voltmetru au rezistențele R_A , respectiv R_V . Pentru ca aparatele să fie considerate ideale trebuie ca :

 \vec{a} . R_A, R_V să aibă valori foarte mici

b. R_A, R_V să aibă valori foarte mari

c. $R_A \rightarrow \infty, R_V \rightarrow 0$

d. $R_A \rightarrow 0, R_V \rightarrow \infty$

3. Graficul tensiunii la bornele unui generator în funcție de intensitatea curentului dintr-un circuit simplu în care rezistența de sarcină variază este reprezentat în figura alăturată. Rezistența internă a generatorului este :

a. 0Ω

b. 6Ω

 $c.12\Omega$

d. 96Ω

4. Inductanța unei bobine se exprimă prin relația :

a. <u> μ N</u>

b. $\frac{\mu N^2 S}{\ell}$

c. $\frac{\mu NIS}{2}$

d. $\frac{\mu N^2 I}{2\pi r}$

5. Tensiunea electromotoare indusă într-un conductor rectiliniu de lungime $\ell = 20cm$ ce se deplasează cu viteza v = 1m/s, perpendiculară pe liniile unui câmp magnetic uniform cu inductia B = 1T are valoarea:

a. 0.1*V*

h 021/

c 121

d. 0*V*

II. Rezolvati următoarele probleme:

- 1. O sursă de curent continuu cu t.e.m. E=10V și rezistența interioară $r=1\Omega$, alimentează un circuit format din două rezistoare electrice cu rezistențele R_1 și R_2 . Dacă rezistoarele sunt conectate în serie, intensitatea curentului din circuit este $I_s=2,5\,A$, iar dacă acestea sunt conectate în paralel $I_n=6\,A$. Determinați:
- a. tensiunea la bornele sursei, atunci când rezistoarele sunt conectate în paralel;
- b. valorile rezistențelor electrice ale celor două rezistoare ;
- \mathbf{c} . energia electrică disipată în circuitul exterior în timpul $t = 30 \, \text{min}$, atunci când cele două rezistoare sunt conectate în serie.

15 puncte

- 2. Două conductoare rectilinii, paralele, foarte lungi parcurse de curenți electrici staționari de același sens cu intensitățile $I_1 = 1A$, respectiv $I_2 = 2A$ se află în aer $(\mu_{aer} \cong \mu_0)$ la distanța d = 5cm unul de altul. Determinați :
- a. inducția câmpului magnetic rezultant la mijlocul distanței dintre conductoare ;
- **b.** forța ce se exercită asupra unității de lungime a unui conductor parcurs de curent electric de intensitate $l_3 = 1A$ plasat paralel cu celelalte două conductoare la distanța $d_1 = 4cm$ de primul și $d_2 = 3cm$ de al doilea;
- c. distanța față de primul conductor la care ar trebui să fie plasat acest al treilea conductor pentru a fi în echilibru.

15 puncte

Ministerul Educatiei și Cercetării – Serviciul National de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 65

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se cunosc: $R \cong 8.31 J/(mol \cdot K)$, $N_A = 6.023 \cdot 10^{23} \, mol^{-1}$, căldura molară izocoră a gazul ideal monoatomic $C_v = (3R)/2$, căldura molară izocoră a gazul ideal diatomic $C_v = (5R)/2$ și $C_p - C_v = R$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Unitatea de măsură în S.I. pentru presiune este:

a. torr-ul

b. atmosfera fizică

c. barul

d. Pa

2. Pentru un sistem format din două substanțe de naturi diferite cu masele m_i și m_2 , substanțe ale căror călduri specifice sunt c_i și respectiv c2 capacitatea calorică este:

a. $(m_1 + m_2)(c_1 + c_2)$

b. $m_1c_1 + m_2c_2$

d. $C_1 + C_2$

3. Un gaz efectuează un proces izocor dublându-și presiunea, apoi un proces izobar dublându-și volumul. Pe durata acestor procese temperatura gazului:

a. crește

b. scade

c. crește după care scade

d. scade după care crește

4. Dacă notațiile sunt cele utilizate în manualele de fizică, atunci mărimea notată cu R reprezintă :

a. constanta lui Boltzmann ;

b. constanta universală a gazului ideal :

c. numărul lui Avogadro;

d. exponentul adiabatic.

5. Randamentul termodinamic al unei transformări ciclice biterme este $\eta = 1 - \frac{|Q_2|}{Q_1}$. Relațiile dintre căldurile schimbate de sistem cu

cele două surse sunt :

a. $Q_1 < |Q_2|$

b. $Q_1 - |Q_2| = L$ **c.** $Q_1 = \eta |Q_2|$ **d.** $|Q_2| = \eta Q_1$

II. Rezolvați următoarele probleme:

1. Într-o butelie cu volumul V = 60 l se află heliu $(\mu_{He} = 4 kg \cdot kmol^{-1})$ la presiunea $p_i = 15 MPa$ și temperatura $t_i = 27 \, ^{\circ}C$. Se consumă gaz din butelie până când presiunea devine $p_2 = 10^6 Pa$ la temperatura $t_2 = 7 \,^{\circ}C$. Să se afle :

a. masa de heliu consumată;

b. numărul de molecule din unitatea de volum pentru gazul rămas în butelie ;

c. energia internă a gazului rămas în butelie.

15 puncte

2. Un gaz diatomic caracterizat de exponentul adiabatic $\gamma = C_P/C_V$ este supus transformării ciclice $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ prezentată în figura alăturată. Se cunosc: $p_2 = 2p_1$ și $T_4 = 2T_1$.

a. Reprezentați transformarea ciclică în coordonate (p, V) și (V, T).

b. Aflați raportul vitezelor termice din stările 3 și 1.

c. Aflați randamentul unui motor termic care ar funcționa după acest ciclu.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 65

D.OPTICĂ

Viteza luminii în vid este $c = 3 \cdot 10^8 \, m/s$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

- 1. Imaginea unui obiect liniar așezat perpendicular pe axa optică principală a unei oglinzi sferice este răsturnată în raport cu obiectul și se formează în aceeași poziție cu obiectul. Obiectul se află față de oglinda sferică ::
- a. în focar
- b. în centrul de curbură
- c. la jumătatea distanței focale
- d. nu se poate preciza
- 2. Pentru a obține un sistem afocal din două lentile convergente, coaxiale cu distanțele focale f_1 şi f_2 distanța dintre centrele optice ale celor două lentile trebuie să fie :
- **a.** $f_1 f_2$
- **b.** $f_1 + f_2$
- **c.** $f_1 \cdot f_2 / (f_1 + f_2)$
- **d.** $(f_1 + f_2)/2$
- 3. Diferenta de drum optic dintre două unde monocromatice care interferă este 0,4 λ . Diferenta de fază dintre cele două raze este :
- **a.** 0.8π rad
- **b.** 0.4π rad
- c. 0.2π rad
- **d.** π rad
- 4. Interfranja unei figuri de interferență reprezintă distanța dintre :
- a. maximele de ordin 1 și -1
- **b.** un minim și un maxim
- c. două maxime consecutive
- d. două maxime simetrice față de maximul central
- 5. Un fascicul paralel de radiație monocromatică este trimis perpendicular pe o rețea de difracție cu N = 500 trăsături pe milimetru. Dacă unghiul de difracție sub care se formează maximul de ordinul al doilea este $\alpha = \pi/6$ rad , atunci lungimea de undă a radiației, utilizate este :
- **a.** 2,5 μ m
- **b.** $0.5 \mu m$
- **c.** $0,75 \mu m$
- **d.** $0,25 \mu m$

II. Rezolvați următoarele probleme:

- 1. Imaginea reală a unui obiect liniar cu înălțimea $y_1 = 30 \, mm$ situat perpendicular pe axa optică principală a unei lentile convergente cu distanța focală $f = 50 \, cm$ se formează la 3m centrul optic al lentilei. Determinați:
- a. convergența lentilei;
- b. distanța la care se află obiectul față de lentilă;
- c. mărimea acestei imaginii.

15 puncte

- 2. Un dispozitiv Young situat în aer, având distanța dintre fante 2l = 0.5 mm și distanța dintre planul fantelor și ecran D = 1.2 m, este iluminat cu o sursă monocromatică de lumină ce emite radiații cu lungimea de undă în aer $\lambda = 500 nm$. Determinați:
- a. frecvența radiației monocromatice utilzate;
- **b.** mărimea interfranjei observată pe ecran ;
- ${f c.}$ mărimea interfranjei, dacă întreg dispozitivul se scufundă într-un mediu transparent cu indicele de refracție n=1,5 .

15 puncte

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările