Redes de Computadores

Redes de Computadores

Camada Física

Prof. Clausius Duque Reis clausius.reis@ufpr.br

Camada	Nome
5	Aplicação
4	Transporte
3	Rede
2	Enlace
1	Física

Agenda

- Conceitos Básicos
- Meios de Transmissão
- Modulação Digital e Multiplexação

- Agenda
 - Conceitos Básicos
 - Meios de Transmissão
 - Modulação Digital e Multiplexação

Conceitos Básicos

Tópicos:

- Informação e Sinal;
- Analógico e Digital;
- Perdas na Transmissão;
- Largura de Banda;
- Taxa máxima de dados de um canal;
- Latência;
- Velocidade de sinalização.

Informação e Sinal

- Processo de comunicação (transmissão de informação de um ponto a outro):
 - Geração de uma ideia na origem;
 - Descrição da ideia por um conjunto de símbolos;
 - Codificação dos símbolos para transmissão em um meio físico;
 - Transmissão dos símbolos codificados ao destino;
 - Decodificação e reprodução dos símbolos no destino;
 - Recriação da ideia transmitida pelo destinatário.

Informação e Sinal

Informação:

 Estão associadas às ideias ou aos dados manipulados pelos agentes que as criam, manipulam e processam

Sinais:

 Correspondem à materialização específica dessas informações utilizada no momento da transmissão

 Termos normalmente utilizados no contexto de comunicação de dados para qualificar tanto a natureza das informações quanto a característica dos sinais utilizados para a transmissão;

Natureza da informação:

- Computadores são equipamentos que manipulam informações em bits que correspondem a dois valores discretos: 0 e 1;
- Informações geradas por fontes sonoras ou visuais apresentam variações contínuas de amplitude;

Característica dos sinais:

- Analógicos: conjunto infinito de valores que variam continuamente com o tempo;
- Digitais: conjunto finito (discreto) de valores;

 Termos normalmente utilizados no contexto de comunicação de dados para qualificar tanto a natureza das informações quanto a característica dos sinais utilizados para a transmissão;

Natureza da informação:

- Computadores são equipamentos que manipulam informações em bits que correspondem a dois valores discretos: 0 e 1;
- Informações geradas por fontes sonoras ou visuais apresentam variações contínuas de amplitude;

Característica dos sinais:

- Analógicos: conjunto infinito de valores que variam continuamente com o tempo;
- Digitais: conjunto finito (discreto) de valores;

Sinal Analógico:

Sinal Digital:

- Amplitude
- Frequência
- Fase

a. A signal with high peak amplitude

b. A signal with low peak amplitude

- Amplitude
- Frequência
- Fase

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

- Amplitude
- Frequência
- Fase

a. 0 degrees

b. 90 degrees

c. 180 degrees

Domínio de Tempo e Domínio da Frequência:

a. A sine wave in the time domain (peak value: 5 V, frequency: 6 Hz)

b. The same sine wave in the frequency domain (peak value: 5 V, frequency: 6 Hz)

Domínio de Tempo e Domínio da Frequência:

a. Time-domain representation of three sine waves with frequencies 0, 8, and 16

 b. Frequency-domain representation of the same three signals

Sinais compostos:

 Jean Fourier provou que qualquer sinal periódico expresso em função do tempo pode ser composto pela combinação de ondas senoidais simples de diferentes frequências (Série de Fourier);

Exemplo:

Sinais Digitais

- Caracteriza-se pela presença de pulsos de amplitude fixa (níveis);
- O sinal é constituído através de uma sequência de intervalos de tamanho fixo iguais a T segundos (intervalos de sinalização).

a. A digital signal with two levels

b. A digital signal with four levels

Sinais Digitais

- Para transportar n bits serão necessários 2ⁿ diferentes níveis;
- De forma equivalente, se uma sinalização utiliza L níveis (em uma potência inteira de 2), então o número de bits codificados por nível será de log, L bits.
- Exemplos:
 - 1 bit = 2 níveis;
 - 2 níveis = log₂ 2 bits = 1 bit;

• 4 níveis = log_2 4 bits = 2 bits.

a. A digital signal with two levels

b. A digital signal with four levels

- Qualquer tipo de informação, seja ela analógica ou digital, pode ser transmitida tanto através de um sinal analógico quanto por um sinal digital;
- Exemplo: voz sendo transmitida por um sinal digital:

- Causas de perdas nas transmissões:
 - Atenuação:
 - Distorção;
 - Ruído.

- Causas de perdas nas transmissões:
 - Atenuação;
 - Distorção:
 - Ruído.

- Causas de perdas nas transmissões:
 - Atenuação;
 - Distorção;
 - Ruído:
 - Em sinal analógico:

- Causas de perdas nas transmissões:
 - Atenuação;
 - Distorção;
 - Ruído:
 - Em sinal digital:

Largura de Banda

- Nenhum recurso de transmissão é capaz de transmitir sinais sem perda de parte da energia no processo;
- Largura de Banda (bandwidth):
 - Faixa de frequência transmitidas sem serem fortemente atenuadas;
 - As amplitudes são transmitidas sem redução de 0 até fc (Hz);
 - Restrições quanto à largura e banda:
 - Dependente do meio: propriedades físicas do meio, como largura e comprimento de um cabo;
 - **Filtros**: Canais sem fio (802.11) tem permissão para usar até 20 MHz, assim rádios 802.11 filtram frequências acima deste valor;

Largura de Banda

Banda Base:

Sinais que v\u00e3o de \u00b8 at\u00e9 uma frequência m\u00e1xima definida;

Banda Passante:

- Os sinais podem ser deslocados para ocupar faixas de frequência mais altas;
- Ou seja, sinais superiores aos sinais de banda base;

Filtro passa-baixas:

- Filtro que permite a passagem de baixas frequências sem dificuldades e atenua (ou reduz) a amplitude das frequências maiores que uma frequência de corte;
- Filtro passa-altas;
- Filtro passa-faixa.

Taxa máxima de dados

- Até mesmo um canal perfeito tem uma capacidade de transmissão finita (Henry Nyquist);
- Então ele determinou que, em um canal sem ruído a taxa máxima de transferência de dados é dada por:

$$MC_N = 2 * B * log_2 V bits/s$$

- onde:
 - MC_N = taxa máxima de transferência de dados no canal sem ruídos;
 - B = largura de banda do canal;
 - V = número de níveis discretos utilizados;
- Exemplo: Um canal de 3 KHz sem ruído não pode transportar mais que 6.000 bps usando sinais binários (dois níveis).

Taxa máxima de dados

 Posteriormente, Shannon determinou a taxa de transferência máxima de um canal com ruído:

$$MC_s = B * log_2 (1 + S/N) bits/s$$

- onde:
 - MCs= taxa máxima de transferência de dados no canal com ruídos;
 - B = largura de banda do canal;
 - SNR = Relação sinal-ruído (em decibéis dB);
 - $SNR = 10 * log_{10} S/N;$
- Exemplo: Uma rede ADSL com canal de 1 MHz com ruído de cerca de 40 dB não pode transportar mais que 13 Mbps usando sinais binários (dois níveis).
 - $\log_{10} S/N = 40 / 10 = 4$, ou seja, $S/N = 10^4 = 10.000$
 - $MCs = 1M * log_2 10.001 = 13.3 M bits / s$

Latência

- Tempo decorrido entre o envio e a recepção de um sinal;
- Ou seja, tempo gasto pelo sinal para sair da origem e chegar ao destino;

Velocidade de sinalização

- Número de vezes por segundo que um sinal é inserido na linha;
- Medido em bauds;
- Em uma linha de b bauds não significa que trafegam b bits/s;
- Exemplo:
 - Dibit (2 bits/baud);
 - Tribit (3 bits/baud).

Fase	bits
0	00
90	01
180	10
270	11

- Agenda
 - Conceitos Básicos
 - Meios de Transmissão
 - Modulação Digital e Multiplexação

Meios de transmissão

Tópicos

- Introdução
- Meios guiados
- Meios não-guiados

Meios de transmissão - Introdução

Vale lembrar o objetivo da camada física:

- Transmitir um fluxo bruto de bits de uma máquina para outra;

Vários meios físicos podem ser usados:

- Cabos coaxiais, fibra óptica, água, ar, etc...
- Qualquer meio físico capaz de transportar informações é passível de ser usado;

Cada um tem suas peculiaridades:

- Largura de banda;
- Atenuação;
- Imunidade a ruído;
- Custo;
- Facilidade de instalação;
- etc...

Meios de transmissão - Introdução

- Os meios podem ser agrupados em:
 - Guiados:
 - Utiliza um condutor para transportar sinais do emissor ao receptor;
 - Exemplos: fio de cobre e fibra óptica;
 - Não-Guiados:
 - Usa ondas propagadas pelo ar em diferentes frequências;
 - Exemplos: rádio, raios laser transmitidos pelo ar.

Meios guiados

Abordaremos:

- Pares trançados;
- Cabo coaxial;
- Linhas de energia elétrica;
- Fibra óptica.

Pares Trançados

- Meio mais antigo e mais comum;
- Consiste de dois fios de cobre que são trançados para evitar interferência;
- Permite a transmissão de dados analógicos ou digitais;
- A largura de banda depende da espessura do fio e da distância;
- Pode transmitir dados por alguns quilômetros sem necessidade de amplificação;
- Baixo custo de instalação.

Pares Trançados

Pode ser de vários tipos:

Categoria	Descrição
3	Mais antigo. Usa um número maior de voltas para reduzir a interferência e permitir distâncias maiores. Pode atingir velocidades de 100 Mbps a 1Gbps.
5	Utiliza menos voltas que o Cat 3. Quatro pares são agrupados em uma capa plástica para protegê-los e mantê-los unidos.
6 e 7	Possuem especificações mais rígidas para aceitar maiores larguras de banda. Podem chegar a 10 Gbps. Cat 7 possui blindagem para reduzir a suscetibilidade à interferência externa e linhas cruzadas.

Pares Trançados

Conector RJ-45:

RJ-45 Male

Cabo coaxial

- Composto de:
 - Um fio de cobre na parte central;
 - Um material isolante envolvendo o fio de cobre;
 - Um condutor externo em malha (capa de cobre);
 - Uma capa plástica protetora.

Cabo coaxial

- Melhor blindagem que o par trançado:
 - Maiores distâncias e velocidades mais altas;
- Dois tipos de cabos:
 - 50 ohms: utilizado para transmissão digital;
 - 75 ohms: utilizado para transmissão analógica (TV a cabo);
- Uma boa combinação de alta largura de banda (GHz) e excelente imunidade a ruído.

Cabo coaxial

Conectores

Linhas de energia elétrica

- É uma rede de cabeamento muito mais comum do que a de telefonia e TV a cabo;
- Também podem ser utilizadas para comunicação de dados;
- Sua utilização é uma ideia antiga apesar de não ser muito comum;
- Exemplo de uma possível utilização:

Linhas de energia elétrica

- Vantagens:
 - Alcance multo grande;
 - Altas taxas de transmissão;
- Desvantagens:
 - Regulamentação por parte dos órgãos competentes;
 - Interferências em outros aparelhos;
 - Muito sensível a ruídos.

- Da espessura de um fio de cabelo;
- Taxa de erros praticamente nula;
- Alta largura de banda:
 - Altas taxas de transmissão;
 - Teoricamente → 50 Tbps;
 - Na prática → 100 Gbps:
 - Devido às conversões de sinal elétrico / óptico;
 - Somos incapazes de realizar a conversão de forma mais rápida;
 - Uma possível solução: um sistema completamente óptico;
 - Transmissão dos dados unidirecional (simplex).

- Componentes de um sistema óptico:
 - Fonte de luz:
 - Converte sinais elétricos em pulsos de luz;
 - Bit 1: pulso de luz;
 - Bit 0: ausência de luz;
 - Dois tipos de fonte de luz: LEDs ou Lasers semicondutores;
 - Meio de transmissão:
 - Fibra de vidro ultrafina;
 - A luz não é afetada por ruídos elétricos;
 - Detector:
 - Converte pulsos de luz em sinais elétricos;
 - Normalmente é um fotodiodo.

Transmissão

Transmissão (2)

- Vários feixes de luz podem estar em uma mesma fibra, contanto que cada um seja refletido em um ângulo;
- Dois tipos de fibras:
 - Multimodo: que pode transportar mais de um sinal de luz;
 - Monomodo: transmitem apenas um sinal de luz;
- Fibras monomodo permitem uma largura de banda maior, mas são mais caras.

Composição do cabo

Vantagens:

- Largura de banda maior;
- Atenuação (50 Km);
- Imunidade a interferências eletromagnéticas;
- Resistência à corrosão (vidro ou plástico v.s. cobre);
- Peso;
- Imune a derivações;

Desvantagens:

- Instalação e manutenção;
- Unidirectional (simplex);
- Custo.

Meios não-guiados

Abordaremos:

- Transmissão sem fios;
- Espectro eletromagnético;
- Transmissão de rádio;
- Transmissão de microondas;
- Transmissão de infravermelho;
- Transmissão via luz;
- Satélites de comunicação.

Transmissão sem fios

- Caracteriza-se pela ausência de cabos na comunicação;
- Uma boa alternativa quando há limitações geográficas;
- Em vários casos o cabeamento envolve custos altos e torna-se inviável:
 - A moderna comunicação sem fios teve seu início nas ilhas havaianas. Lá os usuários estavam separados por grandes distâncias marítimas e o sistema de telefonia era precário;
- Usuários móveis precisam estar permanentemente on-line, sem depender da infraestrutura de comunicação terrestre.

Espectro eletromagnético

- A transmissão sem fio se dá através da propagação de ondas eletromagnéticas;
- As ondas eletromagnéticas podem se propagar pelo espaço livre;
- Cada onda possui:
 - Uma determinada frequência número de oscilações por segundo medida em Hertz (Hz);
 - Um comprimento de onda (m);
- O espectro eletromagnético representa toda a faixa de frequências usada para transmissões.

Espectro eletromagnético

Como é usado na comunicação:

Espectro eletromagnético

- Cada porção do espectro possui vantagens e desvantagens que a tornam adequada a uma determinada aplicação:
 - São usadas as faixas de rádio, micro-ondas, infravermelho e luz visível;
 - As faixas de ultravioleta, raios X e raios gama são perigosas para os seres vivos.
- A utilização do espectro é regulada pelos governos nacionais:
 - Licitação de bandas;
 - Concessões;
- Algumas faixas são liberadas para uso geral:
 - Equipamentos de baixa potência;
 - Infravermelho;

Transmissão de rádio

- Amplamente utilizadas para comunicação;
- Facilidade na geração;
- Podem percorrer longas distâncias;
- Penetram no interior de construções;
- Viajam e todas as direções;
- Sujeitas à interferências de motores e outros equipamentos.

Transmissão de rádio

- Propagação das ondas:
 - Nas bandas VLF, LF e MF se propagam perto do solo, obedecendo a curvatura da terra;
 - Nas bandas HF e VHF elas são rebatidas na ionosfera (entre 100 a 500 km de altura).

Transmissão de microondas

- Trafegam praticamente em linha reta;
- Repetidores são necessários para grandes distâncias;
- Antenas precisam estar alinhadas;
- Não penetram tão bem no interior de construções;
- Frequências superiores a 4 GHz são absorvidas pela água;
- Muito utilizado em sistemas de telefonia de longa distância, móvel e em sinais de televisão.

Transmissão de infravermelho

- Utilizadas em comunicação de curto alcance;
- Controle remoto, celulares e algumas interfaces de computadores;
- Transmissor e receptor precisam estar alinhados (não 100%);
- Não atravessam objetos sólidos;
- Susceptibilidade a interferência de luz ambiente forte.

Transmissão via luz

- Ou transmissão óptica, ou óptica do espaço livre;
- Exemplo: Conectar duas LANs de prédios distintos através de lasers instalados em seus telhados:
 - A transmissão será unidirecional;
 - Cada prédio precisará de um emissor de raio laser e de um fotodetector;
 - Oferece largura de banda alta e relativamente seguro;
 - Instalação é fácil;
 - Não precisa de licença;
 - Entretanto...:

Transmissão via luz

- Entretanto...:
 - Feixe de luz estreito
 - Sensível a condições climáticas (vento, temperatura, neblina, etc)

- Podem ser considerados grandes repetidores de microondas no céu;
- O período orbital varia com o raio da órbita (altura) do satélite:
 - Quanto mais alto mais longo o período;
 - 35.800 km 24 horas;
- Limitação de "regiões" (alturas):
 - Cinturões de Van Allen: camadas de partículas;
 - Satélites seriam destruídos.

- Tipos de satélites:
 - Geoestacionários (GEO Geoestationary Earth Orbit);
 - Órbita média (MEO Medium-Earth Orbit);
 - Órbita baixa (LEO Low-Earth Orbit);

Tipos de satélites e algumas propriedades:

- Satélites Geoestacionários (GEO):
 - Geoestationary Earth Orbit;
 - Altitude: 35.800;
 - Período de 24 horas: parece estar parado no céu;
 - Alocação de slots de órbita feito pela ITU (International Telecommunication Union).

- Satélites de órbita média (MEO):
 - Medium-Earth Orbit;
 - Altitude muito mais baixas que os GEOs;
 - Período de 6 horas para circular a Terra;
 - Devem ser acompanhados à medida que se movem;
 - Atualmente utilizados apenas para GPS (Global Positioning System);

- Satélites de órbita baixa (LEO):
 - Low-Earth Orbit;
 - Baixas altitudes;
 - Necessário um número muito maior para se obter uma cobertura completa;
 - Pela proximidade da Terra:
 - Necessidade de menor potência;
 - Atrasos menores;
 - Custo de lançamento mais baixos.
 - Exemplos:
 - Iridium;
 - Globalstar.
 - Starlink (350km, 550km e 1150km)

Satélites Iridium

Satélites Globalstar

A Camada Física

Agenda

- Conceitos Básicos
- Meios de Transmissão
- Modulação Digital e Multiplexação

- Canais com ou sem fio transportam sinais analógicos;
- Como utilizar estes meios para enviar informações digitais?
- Modulação Digital:
 - Processo de conversão entre bits e sinais que os representam;
- Esquemas transmissão em banda base:
 - NRZ (Non-Return-to-Zero);
 - NRZI (Non-Return-to-Zero Inverted);
 - Manchester;
 - Codificação 4B/5B;
- Esquemas transmissão em banda passante:
 - ASK (Amplitude Shift Keying);
 - FSK (Frequency Shift Keying);
 - PSK (Phase Shift Keying);
 - QAM (Quadrature Phase Shift Keying).

NRZ (Non-Return-to-Zero):

- Codificação depende apenas do estado do bit;
- Tensão positiva representa "1", tensão negativa representa "0";
- Presença de luz representa "1", ausência de luz representa "0";

NRZI (Non-Return-to-Zero Inverted):

- Codificação depende do estado anterior;
- Quando ocorre bit "1" o sinal é invertido e quando ocorre bit "0" nada acontece (ou vice-versa).

- NRZ e NRZI possuem problemas de sincronização:
 - No NRZ para longas sequências de "0" e "1";
 - No NRZI apenas para sequências de "0" (ou de "1").

a. Sent

Manchester

- Realiza uma inversão no meio de cada estado para a representação e sincronização da transmissão:
 - Bit "1": realiza uma transição positiva;
 - Bit "0": realiza uma transição negativa;

Problema: exige largura de banda duas vezes maior que o NRZ.

- Codificação 4B/5B:
 - Minimiza o problema de sincronização do NRZI;
 - Reduz sequências de 0;
 - Cada 4 bits são mapeados para uma sequência de 5 bits:

Dados (4B)	Código (5B)	Dados (4B)	Código (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

- ASK (Amplitude Shift Keying):
 - Altera valores de amplitudes para representar os bits (b);
- FSK (Frequency Shift Keying):
 - Altera valores de frequência para representar os bits (c);
- PSK (Phase Shift Keying):
 - Altera valores de fases para representar os bits (d);

- Variações do PSK:
 - O que vimos anteriormente é também denominado BPSK, B de binary (duas fases);
 - Pode-se usar mais fases para aumentar a taxa de transferência:
 - 4 fases = QPSK (Q de Quadrature):

Fase	bits	
0	00	
90	01	
180	10	
270	11	

- QAM (Quadrature Amplitude Modulation Keying):
 - Combina ASK com PSK;
 - Altera-se amplitude e fase;
 - Exemplos:
 - QAM-8 (3 bits);
 - QAM-16 (4 bits);
 - QAM-64 (6 bits);
 - Diagramas de constelação:

Multiplexação

- Canais são normalmente compartilhados por vários sinais;
- Vários sinais em um fio é melhor do que um fio para cada sinal;
- Multiplexação:
 - Compartilhamento de um único canal através de vários sinais;
 - Objetivo: maximizar o número de conexões (conversações);

- Métodos de multiplexação:
 - Por divisão de frequência (FDM);
 - Por divisão de tempo (TDM);
 - Por divisão de comprimento de onda (WDM).

Multiplexação por frequência

- FDM (Frequency Division Multiplexing);
- Utiliza-se da banda passante para compartilhar um canal;
- Divide o espectro em bandas de frequência, uma para cada sinal.

 (a) Largura de banda original. (b) Aumento da largura de banda com a frequência. (c) Canal multiplexado.

Multiplexação por divisão de tempo

- TDM (Time Division Multiplexing);
- Usuários se alternam em um rodízio: cada um utiliza toda a largura de banda por um pequeno período.

Multiplexação por divisão de comprimento de onda

- WDM (Wavelength Division Multiplexing);
- Variação do FDM;
- Utilizado em canais de fibra óptica;
- Utiliza diferentes comprimentos de onda fazendo uso da banda passante.

