

REPORT NO. EOTR-87-2

OTIC FILE COPY

FINAL REPORT

Investigation Into the Use of Normal and Half-Normal Plots for Interpreting Results from Screening Experiments

Charles W. Simon

Essex Corporation 1040 Woodcock Road Orlando, Florida 32803

25 March 1987

87

4 8,008

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AD-A179082

REPORT DOCUMENTATION PAGE					
18. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release:			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		distribution unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) EOTR 87-2		S. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION	7a. NAME OF MONITORING ORGANIZATION				
Essex Corporation	Naval Training Systems Center				
6c. ADDRESS (Gity, State, and ZIP Code)	. 227	7b. ADDRESS (City, State, and ZIP Code)			
1040 Woodcock Road, Sui Orlando, FL 32803	ce 227	Orlando, FL 32813-7100			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDEN	NTIFICATION N	IUMBER
Naval Air Systems Command	(п аррисаоне)	N61339-85-D	-0026		
.Bc. A. DRESS (City, State, and ZIP Code)			UNDING NUMBERS		
Washington, DC 20361		PROGRAM ELEMENT NO.		TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification) Investigation into the Results from Screening		lalf-Normal P	lots for Inte	erpreting	
12. PERSONAL AUTHOR(S) Charles W. Simon	Aper filleres		······································		
~~~~	F COVERED	14 DATE OF REPO	RT (Year Month Di	V) IS PAG	E COUNT
	е соvered 4/25/86 то <u>4/25/8</u> 7	25 March 19	RT (Year, Month, Di 187	<i>"</i>	E COUNT 152
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	10; source, remaining on research in metaboly and remaining of			ock number)	
FIELD GROUP SUB-GROUP	Normal and hal	and half-normal plots, Screening experiments,			
19. ABSTRACT (Continue on reverse if neces	ary and identify by block r	number)			
Daniel, in 1959, proposed the use of half-normal probability plots as a					
means of interpreting the results from unreplicated $2^{f}$ or $2^{(f-p)}$ factorial					
experiments. Zahn, in 1975, suggested modifications to Daniel's approach and					
investigated some operating characteristics of these plots, along with					
techniques for estimating population sigma from the slope of the standardized					
contrasts plotted on half-normal probability paper. That work is reviewed					
here.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT  Z1. ABSTRACT SECURITY CLASSIFICATION  UNCLASSIFIED  UNCLASSIFIED					
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Dennis C. Wightman (30)			(Include Area Code) -5130	22c. OFFICE N732	SYMBOL

经分分割。这分分分别是这个公司,是文文之之间,是文文文文章,是文文文文文章,是为公文文文文文文文文文文文文文文文文文文文学是《文文文文文》是文文文

# 19. Abstract (cont'd)

This project examines some properties and the usefulness of both normal and half-normal probability plots when applied to the interpretation of experimental data from screening experiments. The purpose of a screening experiment is to select from a very large number of potentially critical factors the ones that do have an important effect on the performance of a particular task, so that these may be investigated in depth.

Characteristics of the results from Monte Carlo simulations of 2^f experiments, where f = 5, 6, and 7, are studied. Artificial data from 5000 runs are created using as an error base a normal population with a mean of zero and a variance of one, to which from one to as many as 16 real effects are added of varying sizes. Ordered contrasts for both normal and half-normal plots are examined along with the "mislocation" of real effects at ranks other than where they are originally located prior to being combined with the error component. The relationship between number and sizes of real effects to percentage of real effects mislocated is determined.

The relative effectiveness of normal and half-normal plots is examined. The advantages and disadvantages of each are discussed in the context of the screening experiment. Examples are given of individual normal plots to show the unreliability of this graphic technique to detect marginal effects. Guardrails are supplied for half-normal plots for 2^f experiments, where k = 5 and 6. These guardrails are the theoretical sizes that contrasts must be to be called "real" at some probability level. The pros and cons regarding the use of these plots are discussed, both with and without being supplemented with the guardrails to facilitate the detection of real effects.

An annotated bibliography is supplied of 19 published papers relevant to this project, i.e., papers that describe alternative uses for probability plots and/or that have information which might improve the conduct of screening experiments. In addition, a list of publications are given which include Daniel's and Zahn's original papers on half-normal plots in their references. Numerous computer programs used for this project are provided.

# TABLE OF CONTENTS

<u>Section</u>		Page
	ACKNOWLEDGEMENTS	5
I	INTRODUCTION. Context. Bconomy. Multiplicity. Unreplicated Experiments. Confounding. Data Anomalies. Half-Normal Plots.	7 7 8 8 9 9
11	REVIEW OF DANIEL'S AND ZAHN'S PAPERS Daniel's Papers	13 13 15 16
	Zahn's Procedures for Estimating o	19 21 21
III	RATIONALE FOR THE PRESENT PROJECT	25
IV	CONSTRUCTING NORMAL AND HALF-NORMAL PLOTS	29 29 31 32
V	THE BASIC SIMULATION.  Constructing the Data Base.  Boundaries of the Experimental Space Examined in this Project.  Example.  Accuracy.  Relating Zahn's Parameters to Those Used in the Present Investigation.	33 33 35 35 38 38
VI	ANALYSES AND RESULTS	41 41 45 51 54 56 56



	the state of the s
م 	vuilability Codes
Dist	Avail and/or Special
A-1	

000

Possoboli possoboli sesosobi percece access independa percecian percecian percessi.

# TABLE OF CONTENTS (continued)

Section	1	Page
R-Spillover Estimating Over- and U Contrasts Single Run Data. Detection Estimating	lf-Normal Plot Data	65 65 73 73 75 75 87 93
Identifying Sign Experiments	ificant Effects in Unreplicated	98
Variations on th Graphical Techni	ns for Plots	103
	ts	
references		111
APPENDIX B - EXP	PERATURE SEARCH ECTED VALUES OF NORMAL AND HALF-NORMAL	
Appendix C - pro For	GRAM FOR GENERATING DATA BASES AND PERFORMING SUBSEQUENT ANALYSES	
APPENDIX D - COM VAL	D IN THIS REPORT PUTER PROGRAM FOR GENERATING EXPECTED UES OF NORMAL AND HALF-NORMAL ORDER	
APPENDIX R - DEV	TISTICS	
APPENDIX F - PRE	TRASTS	
	GRAM FOR GENERATING GUARDRAILS	
NOTATIONS AND TERMINO	)LOGY	149

# LIST OF ILLUSTRATIONS

<u> Piqur</u>	<u>e</u>	Page
1	Example of Half-Normal Plot	12
2	Example of Normal Plot	30
3	Example of Half-Normal Plot	31
4	Relating Number of Real Effects, Size of Real Effects,	
	and R-Spillover in First Intended Error Rank	64
5-a	Sample Individual Normal Plot for Situation:	
	$n=32$ , $k=31$ , $r=8+$ , $d=1.00\sigma$	77
5-b	Sample Individual Normal Plot for Situation:	
	$n=32$ , $k=31$ , $r=8+$ , $d=1.00\sigma$	78
5-c	Sample Individual Normal Plot for Situation:	
	n=32, k=31, r=8+, d = 1.00 $\sigma$	79
5-d	Sample Individual Normal Plot for Situation:	
	n=32, k=31, r=8+, d = 1.00 $\sigma$	80
6-a	Sample Individual Normal Plot for Situation:	
	$n=32$ , $k=31$ , $r=8+$ , $d=1.25\sigma$	81
6-b	Sample Individual Normal Plot for Situation:	
	$n=32$ , $k=31$ , $r=8+$ , $d=1.25\sigma$	82
6-c	Sample Individual Normal Plot for Situation:	
	$n=32$ , $k=31$ , $r=8+$ , $d=1.25\sigma$	83
7-a	Sample Individual Normal Plot for Situation:	
	n=32, k=31, r=5+,3-, d = 1.25\u00f3	84
7-b	Sample Individual Normal Plot for Situation:	
	n=32, k=31, r=5+,3-, d = 1.25\sigma	85
7-c	Sample Individual Normal Plot for Situation:	
	n=32, k=31, r=5+,3-, d = 1.25\sigma	86
8-a	Sample Individual Plots for Situation:	
	n=32, k=31, r=8+, d=1.67σ	88
8-ь	Individual Plots for Situation:	
	n=32, k=31, r=8+, d=1.67\sigma	89
8-c	Sample Individual Plots for Situation:	
	n=32, k=31, r=8+, d=1.67\sigma	90
9	Histogram of 50 Population Sigmas	
	Situation: n=32. k=31. n=8+. d=1.25σ	91

# LIST OF TABLES

(1) 本事をおからからは、「大事をおからからは、「大事をなるからなる」、「大事をなる。

Table		Page
1	Empirical Behavior of Version S in 2- and 4-Situations With Real Contrasts of Sizes 2" $\sigma$ ", 4" $\sigma$ ", and	
2	6"σ" Present, Using α = 0.05, 0.20, and 0.40 Example of Analyses: Contrast, Number of Real Effects,	24
	Standardized Contrast, and Contrast Standard Deviation at Each Rank	36
3	Example of Original and Standardized Ordered Contrasts	
4	#R _{i,k} , and Contrast Standard Deviations Expected Values of Normal Order Statistics for	43
	n = 23 and $n = 119$	44
5	Changes in Results as a Function of the Magnitude of Real Effects	46
6	Spillover of Real and Error Contrasts as a Function	
~	of Effect Size	50 52
7 8	Results with Mixed Positive and Negative Effects Results Where the Sizes of the Real	52
	Effects are Mixed	55
9	Changes in Results as a Function of the Number of Real Effects	57
10	Standardized Contrast Degradation and R-Spillover in	<b>J.</b>
	First Error Rank as a Function of n Where r - 8 and d _o = +1.00σ	61
11	Standardized Contrast Degradation and R-Spillover	
	in First Error Rank as a Function of n Where r = 8 and d = +1.000	63
12	Half-Normal Plot Data	66
13	Comparing R-Spillover of Normal and Half-Normal Plots on Population Sigma Estimations When the Number of Error	
	Contrasts are Over- and Underestimated	72
14	Comparing the Robustness of Normal and Half-Normal Plots on Population Sigma Estimations When the	
	Number of Error Contrasts are Over- and	
15	Underestimated	74
	Sigma on the Final Estimate of Sigma	92
16	Guardrails for Half-Normal Plots Where	94
	k = 31 and 63	74

# **ACKNOWLEDGEMENTS**

The help provided on this project by the following persons is gratefully acknowledged:

Dr. David G. Weinman, Department of Statistics, Hollins College, Virginia, a consultant on this project, who patiently provided explanations of statistical concepts and offered constructive advice regarding the editing of the report.

Dr. Daniel P. Westra, Essex Corporation, Orlando, who originally proposed this project and who directed and wrote some of the computer programs used for this project.

Ronald Mauk, who helped write the computer programs and ran many analyses.

Patrick Ellis, who ran numerous data analyses.

Patricia Patrizzi, who managed the preparation of this report.

# SECTION I

# INTRODUCTION

The purpose of this project was to investigate the operating characteristics of normal and half-normal plots and to evaluate their effectiveness when used to interpret data derived from screening experiments.

#### CONTEXT

Modern industrial and military equipments are frequently quite complex with interacting elements that may affect operator performance in unforeseeable ways. For several decades, efforts to optimize the design of such equipment have depended in part on the results from experiments in which representative operators are placed in representative situations and are required to perform representative tasks on the different equipment configurations in order to determine which configuration results in the best cost-effective performance.

While recognizing that a relatively large number of factors related to the operator and the environment, as well as the equipment itself, affect performance in any given task, investigators have carefully avoided studying more than a few equipment factors — usually less than four — at a time in any single experiment (Simon, 1976b). To cover a more expansive space, a series of few-factor experiments from different parts of the space are usually run. This spotted approach, however, quickly becomes economically unfeasible and never adequately covers the multifactor space of interest nor obtains sufficient information regarding factor interactions. Consequently, the information needed to properly design equipment in which 10 or 20 or more factors may have an impact on engineering decisions and operator performance is never obtained.

Simon (1973, 1977a, 1977b) proposed a holistic methodology whereby a great many factors could be investigated economically in a single human performance experiment. Its application to naval training-simulator equipment was

proposed (Simon, 1979) and successfully employed (Westra, Simon et al., 1981; Westra, 1982).

# **ECONOMY**

19900000 22121212131355555. 00000000

This holistic approach makes many-factor experiments economically feasible by collecting the data sequentially in small blocks. Rather than attempt to do this with a mosaic of small experiments located at different parts of the experimental space, the holistic approach collects the data with minimum precision over the total space and later improves the precision where it is needed. Initially, all of the potentially critical factors are studied in a screening design capable of defining the simplest model of the experimental world. While not precise, this early overview will reveal which factors and what segments of the total space are critical, usually a small fraction of the original effort. This screening phase reduces the data needed to bring the precision of the information to the required level. By testing after each block and collecting no more data once the experimental results adequately model the real world, considerable savings can be realized since a second— or third-order model is usually enough to approximate for all practical purposes the performance on a great many human performance tasks.

The interpretation of the results from a screening experiment requires a delicate balance between two opposing goals affecting the conduct of the future research. On the one hand, the investigator wants to reduce the number of candidate factors to a small enough number to make the subsequent data collection feasible. On the other hand, he wants to be certain that all factors likely to be critical in the task under investigation will be identified. When one must categorize a factor as critical or not on the basis of the screening data, the difficult decisions rest with the effects of marginal size.

# MULTIPLICITY

When a great many constrasts are being evaluated for significance at the same time -- 31 or 63 are the numbers frequently found in screening experiments -- some effects can appear several times larger than the average

even when <u>no</u> effect is real. For example, in an experiment with 31 contrasts, the size of the largest contrast can be 2.4 times larger than the average contrast purely by chance alone. Using the traditional 0.05 significance level in such an experiment would cause unreal effects to be judged real in over half of all experiments being done (Daniel, 1959, p. 312).

Most human performance investigators tend to overlook this problem of multiplicity when they use the conventional F-test of significance to evaluate the data from an analysis of variance. This neglect can lead to some serious misinterpretations unless the proper corrections are made in the allowable error rate of the individual comparisons as well as that of the overall family of contrasts.

#### UNREPLICATED EXPERIMENTS

As the number of factors to be studied increases, the amount of data that must be collected also increases. Large multifactor experiments are economically feasible only because the sequential application of fractional-factorial designs allows the size of the screening experiment to increase at a far slower rate than the number of factors being investigated.

However, even when fractional-factorials of the appropriate resolution are used, the amount of data which must be collected can still reach impractical limits. Logistical conditions as well as time limitations may be operating, for example, the availability of experimental subjects (operators) and of the equipment and supporting staff. For that reason, when 31 to 64 experimental conditions are involved, the traditional luxury of replicating the experiment may not be possible. Consequently, this unreplicated screening experiment will provide no direct estimate of the error variance to serve as the denominator of the F-test used to evaluate the significance of the experimental effects.

# CONFOUNDING

In the unreplicated experiment, therefore, error variance traditionally is estimated by other methods, namely: (1) Obtaining it from the results of

similar experiments done at another time, and (2) Pooling the variance of higher-order interaction effects on the <u>a priori</u> assumption that they are not. likely to be significant.

Neither technique is really justified in human performance research. For one thing, because of poor subject sampling procedures and of the large number of uncontrolled or unidentified factors that may differentially affect different experiments which may appear superficially the same, using the error variance from another experiment is risky business. For another, higher-order interactions — the term usually refers to effects that include third-order or higher interactions — may sometime be significant. This is particularly true in human performance experiments in which equipment and/or performance measurements are improperly scaled.

In screening experiments, the focus of this report, highly saturated fractional-factorials will be employed. Higher-order interaction effects, although expected to be insignificant, are generally confounded with the effects of interest and therefore unavailable for estimating error. While subsequent data collection will unconfound the critical effects, for the screening phase, some alternative way of estimating the error variance must be found when an unreplicated, fractional-factorial design is employed.

# DATA ANOMALIES

When data are sparsely drawn from coordinates over a larger experimental space (the screening experiment), when the performance of human operators is involved, and when the tasks are performed on complex equipment which may occasionally break down, irregularities in the experimental data may be expected. Without a dedicated effort to do so, these may not be recognized when they occur nor ever discovered after the data has been fed into a computer and regurgitated as an F-table of an analysis of variance. Conclusions drawn from such distorted data therefore are likely to be erroneous unless the investigator finds ways of discovering the abnormalities.

#### HALF-NORMAL PLOTS

The problems cited above are not unique to screening experiments and must be attended to. In large multifactor screening studies, the sequential approach should handle any overconcern with the confounding of effects during the early stages of the investigation. But there remain the problems of data interpretation brought about by the absence of an external estimate of error, the confusion from multiplicity, and the distortion from outliers. Half-normal plots, when introduced, seemed to help reduce, if not solve, these problems. In addition, this graphic presentation provides the investigator with a quick overview of his results, facilitating interpretation beyond any statistics.

Daniel (1956, 1959) is most frequently credited as being the one who popularized the use of the half-normal plot to interpret the results from unreplicated  $2^f$  and  $2^{f-p}$  factorial experiments and to search for anomalies in the data. These balanced designs are the ones most commonly used in screening studies. An example of how the imaginary results from an experiment using a  $2^4$  design would appear on a half-normal plot is shown in Figure 1.

This half-normal plot shows the empirical cumulative distribution of the set of 15 orthogonal, unsigned contrasts when plotted onto a special grid with the contrasts plotted on the abcissa and the positions of the expected values of order statistics for a half-normal distribution for 15 cases plotted on the ordinate. If no real effects are present in this data, the plots differing solely by chance would tend to fall along a straight line. In our example, however, the five largest points deviate sufficiently from the line formed by the remaining points. One would conclude that those five effects are probably real and that the remaining points are made up of error contrasts.

Daniel (1959) proposed the use of standardized half-normal plots. The raw contrasts,  $\mathbf{x}_1$ , are standardized,  $\mathbf{x}_1$ , by dividing each by an initial estimate of the standard error of the contrasts. He then plotted "guardrails" on his grid, i.e., lines connecting critical values representing the amount a contrast that might exceed the central slope of the null experiment purely by chance by some probable amount.



Figure 1. Example of Half-Normal Plot for a 2⁴
Factorial Experiment

Daniel (1959) also showed how the ordered data of the half-normal plot might provide clues to abnormalities in the data, detecting such things as bad values, heteroscedasticity, and defective randomization. Later, Daniel (1976) suggested that the full-normal plot, in which the signs of the contrasts are retained, would provide more information about the data characteristics than the half-normal plot of the absolute contrasts.

Zahn (1975a, b) suggested changes in Daniel's plotting procedures. He also proposed to use the slope, SL, of the plotted error contrasts on this standardized grid to provide a final internal estimate the standard error, s_C, from which an estimate, s, of the population sigma can be derived. In a series of Monte Carlo studies, he compared several methods of estimating the slope.

# SECTION II

#### REVIEW OF DANIEL'S AND ZAHN'S PAPERS

Daniel's and Zahn's papers on half-normal plots are reviewed here briefly as background for the present effort. While Hazen (1914) suggested the principle of linearizing the normal distribution in a study of floods, in recent years, Daniel's work is generally credited for popularizing and expanding the applications for normal and half-normal plots.

The extent to which people have found the half-normal plot to be useful is reflected in the number of papers between 1959 and the present that referenced Daniel's work (Appendix A). In the discussion below, Daniel's procedures are described as he did them, although subsequently Zahn suggested changes.

# DANIEL'S PAPER

Daniel (1959) proposed the use of the half-normal plot as a graphic tool for evaluating and interpreting certain classes of experimental data. He noted that bad values, heteroscedasticity, dependence of variance on means, and some types of defective randomization have characteristic forms on the plots. He also suggested that the half-normal plot might be used in an unreplicated experiment to estimate the population  $\sigma$ , where  $\sigma^2$  equals the variance of the data, and to use that information to identify which effects in a  $2^f$  or  $2^{f-p}$  experiment were significant.

Daniel modified normal probability paper to fit the half-normal case by deleting the given normal probability scale, P, and replacing it with one suitable for the half-normal case, where P' = 2P - 100. After marking off the ordinate scale with those revised values, he selected specific P' values as the plotting positions for k ranks using this equation:

$$P'_{i} = (i - 0.5) \div k; i = 1, 2, 3... k.$$
 (1)

Daniel plotted the unsigned contrasts on the grid's abscissa.

Daniel noted that if the experiment were a null one -- that is, no factor had a real effect --  $s_c$  can be roughly estimated by the contrast,  $x_a$  in k contrasts, where

For k = 31, 63, and 127, the s would be the contrasts at ranks 22, 44, and 86 respectively on the ordered contrast scale. However, if some effects are real, they must be removed before Equation 2 would be used.

Daniel suggested that by standardizing the half-normal plot, fixed "guardrails" could be drawn at different  $\alpha$  values, when  $\alpha$  is the probability of calling an observed contrast real when in fact it is not. He standardized his contrasts,  $\mathbf{x_i}$ , by dividing each one by the "best" estimate of the standard error of the contrasts,  $\mathbf{x_a}$ , in a null experiment.

Daniel used as his test statistic (on which the location of a guardrail was based):

$$t_1^{\Delta} = x_{1,k} + x_{a,k} \tag{3}$$

where:

- is the largest in absolute magnitude of the k contrasts from a random normal variable with a population mean of zero and variance  $\sigma^2$ .
- is the contrast at the rank determined by Equation 2, serving as an initial estimate of  $\sigma$ .

Daniel (and later Zahn) noted that the distribution of  $\log_{10} t_k^{(0)}$  "is quite closely approximated by a normal distribution" (p. 319). When the t-statistic is plotted on a normal probability scale it appears as a straight line.

Daniel drew a guardrail, for example, to yield an error rate of  $\alpha$ =0.05 false positives per experiment by drawing a line through the 0.05 critical values for the statistics  $t_{15}$ ,  $t_{14}$ ,  $t_{13}$ , and  $t_{12}$ .

Daniel proposed that guardrails representing a rather large error rate (i.e., false positive) be used, e.g., an a of 0.40 or even 0.80, "knowing that this will produce a number of 'false alarms'. The justification is of course in the increased sensitivity to small effects... Erroneously selected effects have good prospects of being exposed in later work. Missed real effects on the other hand are likely to be dropped from study, and if they are numerous, loss of knowledge of their combined effects may be serious." (Daniel, 1959, p. 322-325).

DANIEL'S CONCLUSIONS. Daniel concluded that "when only a small proportion of the totality of contrasts have effects, this plot can be used to make judgments about the reality of the largest effects found" (p. 339).

In general, effects or outliers have to be rather large, i.e., more than four times larger than  $x_a$  (the estimated  $\sigma$ ) to be clearly visible. Single outliers may frequently be detected from the plots when the smaller values, presumably error contrasts, do not point toward the origin. Corrective techniques were suggested (p. 331).

Daniel showed how multiple plots can improve the interpretation of split plot designs (p. 329). This is accomplished by plotting separately the positive and negative halves of the effect used to block on, done of course on a grid suited to the smaller number of contrasts per plot. The contrast used in blocking is omitted. One might expect different error variances for the two plots, a fact that is hidden in the combined plot and one that could distort the interpretation of the results.

Daniel also examined how variations in the plot pattern might be used to warn of deviations from normality in the data (p. 331~338). However, he pointed out that certain unusual patterns might have multiple causes. No systematic investigation of this process was pursued in his paper.

It is only fair to add that Daniel recognized that his paper was not definitive and that a better understanding of how and what he had proposed was still needed. He also emphasized the subjective basis of this graphic technique and warned that using it in a routine way as a substitute for an anslysis of variance might be "catastrophic" (p. 338). He noted that on an individual basis, there can be wide variations in the appearance of the plots, even when no effects were introduced into the original data. He raised questions regarding the best method of estimating the standard error of the contrasts and wondered whether the  $2^{p-q}$  experiment should be at least partially duplicated. He pointed out the importance of not relying solely on this graphic technique. He emphasized the dangers of a univariate (referring to the response) rather than a multivariate approach to research (p. 339).

# ZAHN'S PAPERS

Zahn (1975a, b) wrote two papers on the construction and operating characteristics of the half-normal plot. In the first paper, he proposed a change in the way in which Daniel prepared the half-normal grid and exposed a major flaw in the way Daniel selected the critical values for his guardrails. In the second paper, Zahn evaluated several ways of estimating the error variance (based on the slope of standardized error contrasts) from the data of an unreplicated experiment.

Zahn (1975a) suggested reversing the scales that Daniel plotted on the ordinate and abcissa of the plotting grid, to make the half-normal plot correspond more closely to the usual regression analysis graph on which the random variable is plotted as the ordinate" (p. 191). The half-normal percentiles were plotted on the horizontal axis. While configuring the grid either way would provide the same information, noticing which is being used before interpreting the plot patterns is important since real effects deviate from the null line in opposite directions in the two cases. Failing to perceive this difference could lead to serious errors in interpretation.

Zahn showed how Daniel erred in his calculations of the guardrails. The  $t_1 = x_1/x_a$ ,  $t_1 = 1, 2, ..., n$  which Daniel used are not half-normally distributed although he plotted them against percentiles of the standard half-normal distribution (p. 192). This discrepancy, however, proves to be small after the number of plotting positions exceed 20 (p. 193), the case of an experiment of size  $2^{f-p}$ , where (f-p) equals five. On the standardized grid, drawing a line from the original through the value at the rank nearest to the 0.683 probability value will represent the expected values at all ranks in a null experiment.

Zahn noted a more serious error in the calculations Daniel used to plot the position of his guardrails and the error rate they are intended to control (p. 195). Daniel, in calculating his t-statistic, failed to change the sample size in x for each rank, which resulted in erroneous tables from which his critical values were selected.

The choice of critical values depends on what aspect of false positive behavior one is trying to control. Zahn wished to control the probability of a non-zero family error rate, the PER. This is the probability of obtaining at least one false positive in the family of contrasts when no real contrasts are present. In the null situation, each test assumes that no effects are present, and yields at least one false positive if and only if the largest contrast is declared significant. This occurs when the test statistic for examining the largest contrast is larger than its  $\alpha$  level critical value. In that case, under the hypothesis that all contrasts equal zero, PER equals  $\alpha$  (p. 195).

Zahn proposed a theorem with limited proof, namely, that the "half-normal plot using  $\alpha$ -level critical values has PER equal to or less than  $\alpha$ ), regardless of how many real contrasts of various sizes are present in the experiment being analyzed (p. 195). The equation for the probability error rate for e independent tasks is:

$$PER = 1 = (1 - \alpha)^{e},$$
 (4)

This equation is not completely accurate when applied to ordered data, for in that case, the contrasts are not independent, although Equation 4 assumes they are.

In practice, however, it may be wise to set the guardrail with an  $\alpha$  value equal to a PER for (e + 1) contrasts as calculated for the F-test. Zahn (p. 198) cites as an example a study in which an F-test was used to determine whether or not four effects were real (out of the nine being examined) at a 0.05 significance level. The F-test in that case had an approximate PER of 0.37. On a half-normal plot, the same effects were declared significant when the 0.40 guardrail was used (p. 198).

Zahn's guardrails differ from Daniel's because Daniel miscalculated his t-statistic, t₁. The significance of any contrast depends not only on its distance from the expected contrast but also its rank. Thus the t-statistic, to be calculated using Equation 3, requires that the numerator and denominator in the t-statistic be reduced one rank each time a contrast is declared significant in order to test the next lower contrast.

Because Zahn generated his error contrasts directly, when he refers to the size of a real effect in terms of  $\sigma$  -- a symbol used in this paper to represent the population  $\sigma$  -- he is using it to represent the standard error of contrasts. The reader should be aware that the standard error of contrasts equals the population sigma times the square root of four over n. This fact does not affect the comparisons he made in his study. It can matter, however, when we wish to put Zahn's results in a broader context and compare them with the results in the investigation for this project. Similarly, the slopes of his error contrasts actually approximate the standard error of the contrasts although he refers to them as  $\sigma$ . From this point, when we refer to Zahn's  $\sigma$ 's, we shall put them in quotation marks, thus " $\sigma$ ", to remind us that it is really the standard error of the contrast.

Half-normal plots may be used to: (1) Detect real effects, and (2) Estimate the error variance. Zahn compared Daniel's procedure for using the half-normal plot, referred to as Version 0, against several versions of his

own. Whereas Daniel had used a single number to estimate "o", i.e., the contrast falling at the rank nearest the 0.683 percentile of the ordered contrasts, Zahn, in order to obtain a more stable and accurate estimate, combined selected error contrasts to calculate the slope of the regression line of the plots on a standardized half-normal grid. This slope is an estimate of "o."

ZAHN'S PROCEDURES FOR ESTIMATING o. Zahn's Version X procedure is this: After obtaining the ranked unsigned contrasts, he plots them at the appropriate plotting positions of a standardized half-normal grid. He still uses the rank nearest the 0.683 percentile as his initial estimate of "o" to standardize the scale of his vertical axis. The critical values for the guardrails are determined and plotted. Then starting with the largest contrast, he determines whether it is plotted beyond the guardrail. If so, he declares it significant and looks at the next largest, and so forth until a contrast is plotted within the guardrail or "until  $x_{n-r}$  is encountered" (p. 202). The remaining, smaller contrasts are all declared insignificant and are called the error contrasts. He replots these error contrasts on a new half-normal grid against the appropriate expected values of normal order statistics,  $z_{i,e}$  where i is the ith rank and e is the number of error contrasts. He next computes  $s_f$ , the final estimate of " $\sigma$ ", where  $s_f$  is the slope of the ordinary least squares regression line through the origin of x on z, fitted to the smallest m = [0.7(e+1)] of the e error contrasts. The equation for this final estimate of "o" is:

$$s_f = \sum_{i=1}^{n} x_i z_{ik} / \sum_{i=1}^{m} z_{ik}^2, \qquad (5)$$

where:

m = [0.7 (e + 1)].

The 0.7 value, the proportion of the error contrasts (plus one) that were used to estimate the slope, was empirically selected in Zahn's (1975b) second paper as being "a reasonable choice" (p. 206-208).

Zahn investigated several other versions which he felt might improve the detection process. In his <u>Version S</u>, instead of standardizing the contrasts with the rank nearest the 0.683 percentile as his initial estimate of "o", he used the slope of the regression line calculated with the smallest standardized contrasts up to and including the contrast at the rank nearest to the 0.683 percentile.

In his <u>Versions XR and SR</u>, Zahn wanted to see if replotting and reassessing would improve the power of the half-normal plot. In Version XR, if the largest contrast were found to exceed the guardrail, the remaining ordered contrasts would be restandardized and replotted using as an estimate of "o" the value at the rank nearest the 0.683 percentile for the remaining k-l contrasts and replotting on a new scale for k-l points. This process is iterated until no effects are found to exceed the guardrail. In Version SR, at each stage of the detection process, "o" is estimated from the slope of [0.67 k'] against k' normal order statistical values, where k' is the number of contrasts being examined for significance, a number which reduces at each iteration. When no more significant effects are determined, then k' = e.

Zahn noted that all of the versions are based on the assumption that the investigator knows how many contrasts are real and how many are error (p. 203). He tried another version, R, in which he also revised the initial estimate of " $\sigma$ " after the largest effect of any k' effects is declared significant and before the next ranked contrast is tested. In <u>Version R</u>, Zahn estimated " $\sigma$ " from a slope based on half the number of the contrasts being examined. This allowed him, therefore, to include up to half of the original k contrasts, rather than 0.7 k, as in Version X.

Others have investigated different techniques for estimating  $\sigma$  in an unreplicated design. These include the efforts by Lloyd (1952) using generalized least squares instead of ordinary least squares, and by Wilk,

Gnanadesikan, and Freeny (1963) using a maximum likelihood estimate of  $\sigma^2$ . None seemed to justify their application.

ZAHN'S INVESTIGATIONS. Zahn (1975b) performed an empirical Monte Carlo study -- 1000 runs -- of half-normal plots limited to the k = 15 contrast case. He first generated a set of pseudo-normal standard normal deviates to represent the 15 error contrasts. He then compared the sensitivity of the five techniques -- versions -- in detecting real effects at different  $\alpha$  settings when the number and size of the real contrasts were varied.

Whereas Daniel (1959) had investigated situations in which only one real contrast was present, ranging in size from one " $\sigma$ " to six " $\sigma$ ". Zahn studied two situations: Type 1 Situation: r real contrasts, all of size d; Type 2 Situation: r real contrasts all of size d and r' real contrasts all of size d'. For the Type 1 study, r equalled 1, 2, 4, and 6 real contrasts out of 15 contrasts and d equalled from zero to 8 " $\sigma$ ." In the Type II situation, r and r' both equalled either one or two, and d equalled 2, 4, or 6 " $\sigma$ " and d' equalled 4, 6, or 8 " $\sigma$ ." The sensitivity of each version was tested for  $\alpha$  = 0.05, 0.20, and 0.40.

Zahn also compared the above versions with the <u>nomination</u> approach. In that approach, the investigator decides <u>a priori</u> to combine the higher order interactions to form an estimate of error variance (Pearce, 1953). As stated in the introduction to this paper, the assumption must be made that these higher order effects are negligible and that they are not confounded with lower-order effects, and if it not a valid assumption, the results are flawed.

Zahn used two criteria for evaluating a version's performance: (1)

Detection rate, i.e., the proportion of real contrasts present in a situation which are detected, and (2) False positive behavior, the probability that at least one null contrast is declared significant, or the PER.

ZAHN'S CONCLUSIONS. It is difficult to draw sharp conclusions from Zahn's (1975b) results, although he does so to some extent within the limits of his investigation. Still it is apparent from the data that there are interactions

among many of the factors being manipulated. Results often depend on what values of n, r, and d are involved.

Some of his conclusions are:

- Detection rates decrease as size of the real effects contrasts decrease.
- 2. Detection rates decrease as the number of real contrasts increases.
- 3. Size and number of real contrasts interact in their effect on the detection rates (p. 206).
- 4. Increasing  $\alpha$  from 0.05 to 0.40 increases the detection rate but the probability of getting false positives also increases.
- 5. Though detection rate varied considerably from version to version, all false positive rates remain close to their respective  $\alpha$ 's. The largest differences occur when the one real contrast is small (p. 204).
- 6. Version R tended to be poorer than the other versions when the number of real effects were small (1 to 4 out of 15 contrasts), but unlike the other versions, it did not totally collapse when there were six real effects. However, its detection rate is still low and the estimate of "σ" is biased (p. 210). This could be explained by the fact that when there are 6 real contrasts out of only 15, the chances increase that the denominator of the test statistic would include the smaller real contrasts (p. 205).
- 7. Versions XR and SR yielded poorer detection rates when compared with Versions X and S respectively when two or four real effects were present in the 15 contrasts. In addition to being poorer, the iterative versions require more calculations (p. 205). Zahn concluded that revising the estimate of "o" after each significant result did not improve the detection rate and is not recommended (p. 210).

- 8. Among all versions, Zahn recommended using Version S (p. 205), although when an inspection is made of his tables, it can be seen that in some cases this superiority is not large (particularly when compared with Version X), and in some cases, it may not exist at all.
- 9. Zahn recommended using the half-normal plot rather than the nomination approach if equivalent PERs are desired, unless almost all null contrasts can be accurately nominated (p. 210). For screening purposes, one cannot use the nomination approach because the higher-order interactions are confounded with lower-order effects so that both can bias one another. This confounding is temporarily acceptable in screening experiments, since with a sequential methodology, one expects to eventually discover and isolate these effects.
- 10. Overall, Zahn's results suggest that detection rates are relatively poor in situations of considerable practical interest, that is, when there are more than just a few real effects and when the effects were not too large. In Table 1, partial data from Zahn's Table 5 (1975b, p. 207) shows the detection rate, PER, and final estimate of "o" for Version S with two or four real effects of size d = 2"o", s"o", or 6"o" critical values of 0.05, 0.20, and 0.40.

TABLE 1. EMPIRICAL BEHAVIOR OF VERSION S IN 2- and 4-SITUATIONS WITH REAL CONTRASTS OF SIZES 2" $\sigma$ ", 4" $\sigma$ ", and 6" $\sigma$ " PRESENT, USING  $\alpha$  = 0.05, 0.20, and 0.40 (From Zahn's Table 5 [1975b, p. 207])

Number of			Size of the Real Contrasts Present		
Real Contrasts Present	Criterion	α	2 <b>"</b> σ <b>"</b>	4 <b>"</b> 0"	6"ơ"
	Detection	0.05	.080	.539	.954
	Rate	0.20	.219	.821	.997
2		0.40	.365	.920	1.000
2	PER	0.05	.023	.044	.046
		0.20	.121	.166	.181
		0.40	.283	.341	.335
	Final Estimate	0.05	1.148	1.089	1.004
	of "o"	0.20	1.117	1.019	.982
		0.40	1.069	.971	.954
	Detection	0.05	.037	.270	.864
	Rates	0.20	.134	.654	.988
	Nation	0.40	. 247	.835	.999
4	PER	0.05	.008	.002	.000
		0.20	.050	.010	.000
		0.40	.143	.028	.000
	Final Estimate	0.05	1.335	1.432	1.124
	of "o"	0.20	1.297	1.235	1.002
		0.40	1.236	1.111	1.013

のでは他というとうできないというできます。 こうこうには、他のののののできないのできないのできないのできない。 そうには、そうとうというとは、大人というとなる。 またい アンドラ (Alicha Marie Alicha Marie Ali

[True  $\sigma = 1$ ]

#### SECTION III

# RATIONALE FOR THE PRESENT PROJECT

Daniel and Zahn's work on half-normal plots became the starting point for the present project. There appeared to be a number of reasons to examine further the operating characteristics of both normal and half-normal plots and to evaluate how plots might be employed when applied to the unique features that characterize the screening experiment.

Specifically, the major motivation for the present project derived from the following beliefs and for the reasons given:

1. <u>Little work had been done to investigate the operating characteristics of half-normal plots since Zahn's work in 1975</u>.

Zahn (1977) was asked if he were aware of any additional investigations of the operating characteristics of the half-normal following his work. He answered that after 1975 he did not continue in that line of research but that he was not aware of any work that had been done.

In a cursory review of the literature in which Daniel's and Zahn's work are referred to (see Appendix A), it is interesting to note that out of the more than 100 papers listed in the citation indexes, Zahn's work is only referred to by others three times. In reports in which the half-normal plot was used to test significance, decisions were generally made by "eye-balling" the data rather than by using the more precise guardrails.

2. Up to now, most of the work on plots as a test of significance had been with the half-normal plots, while the full-normal plot had been used to evaluate data quality.

After using the half-normal plot for some time, Daniel (1976) decided that a great many defects in experimental data "are strongly sign dependent, and

# SECTION III

# RATIONALE FOR THE PRESENT PROJECT

Daniel and Zahn's work on half-normal plots became the starting point for the present project. There appeared to be a number of reasons to examine further the operating characteristics of both normal and half-normal plots and to evaluate how plots might be employed when applied to the unique features that characterize the screening experiment.

Specifically, the major motivation for the present project derived from the following beliefs and for the reasons given:

1. <u>Little work had been done to investigate the operating characteristics of half-normal plots since Zahn's work in 1975.</u>

Zahn (1977) was asked if he were aware of any additional investigations of the operating characteristics of the half-normal following his work. He answered that after 1975 he did not continue in that line of research but that he was not aware of any work that had been done.

In a cursory review of the literature in which Daniel's and Zahn's work are referred to (see Appendix A), it is interesting to note that out of the more than 100 papers listed in the citation indexes, Zahn's work is only referred to by others three times. In reports in which the half-normal plot was used to test significance, decisions were generally made by "eye-balling" the data rather than by using the more precise guardrails.

2. Up to now, most of the work on plots as a test of significance had been with the half-normal plots, while the full-normal plot had been used to evaluate data quality.

After using the half-normal plot for some time, Daniel (1976) decided that a great many defects in experimental data "are strongly sign dependent, and

all are properties of subsets of the data set which are obscured in the half-normal plots by overaggregation* (p. 149). Daniel and others dropped the half-normal plot and began to use the full-normal primarily for evaluating data quality rather than as an aid to the detection process.

Draper and Smith (1981) described both the normal and half-normal plot as a means of evaluating residuals but without using guardrails to facilitate decisions regarding outliers.

3. Zahn's investigation was limited primarily to smaller designs than are likely to be used in screening experiments, suggesting that certain limitations noted by him might not apply with the larger designs.

The bulk of Zahn's (1975b) empirical study of the half-normal plot had been limited to the  $2^f$  designs, where k=4, and n=16. When he concludes that the plots might be useful if the number of real effects were limited to four, it was because four contrasts represented one-fourth of his data and there would be only 11 contrasts with which to estimate the error variance. When he frequently detected less than 60% of the real effects which were two to four times the size of the standard error of the contrasts (which, for his work, translates into one and two times the size of his population  $\sigma$ ), this too reflects the fact that with the smaller design, sensitivity will tend to be poorer.

It seemed desirable to determine whether the same problems would occur proportionately when the size of the experiment was increased. Thus, while four factors may decrease the sensitivity of a design with 15 contrasts, eight are unlikely to have as strong an effect on one with 31 contrasts, and the chances of picking out suitable null contrasts should increase. Furthermore, it seemed important to consider plot effectiveness when dealing more with real effects of marginal size.

4. Plot effectiveness would be better when used in screening designs where we are more concerned with avoiding Type II errors than avoiding Type I during . the detection process.

In a screening experiment, the investigator is more concerned about rejecting potentially critical factors than he is about erroneously accepting some null ones. At this phase of the experimental program, his data is not so precise that he should dare to eliminate factors with marginal effects. As Daniel suggested, for screening we should select our critical values nearer the 0.40  $\alpha$  level than at the 0.05 level. A reexamination of the data with an emphasis on reducing Type II errors at the expense of making Type I errors seemed justified.

5. Plots frequently provide the data in a form that is easier to interpret than the conventional F-test and in some cases may be the only technique available.

多々なななななない。

一般のないないは、他のなのななない。 あんちゃくらん 自己ないないなない まずない

There is no information inherent in the graphic approach that cannot be obtained from the data in numerical form. However, there is evidence to suggest that broad interpretations of the data can often be made more easily using the plots; on the other hand, precision is more readily obtained using numerical data. The visual presentation of plotted data, properly organized, can enable an investigator to see relationships and distortions that he might otherwise miss. Ordering by magnitude provides another overview of the data. It allows the investigator to quickly perceive groupings of factors -- i.e., main and interaction effects -- that have the greatest effect on performance. Such observations tend to favor the use of the plots in a screening study, where "ease of calculation is often more important than slight differences in stringency of conclusion" (Kurtz, Link et al., 1965). One big advantage of plots is that, without the benefit of statistics, they automatically adjust for multiplicity, which the (mis)user of the F-test may overlook when he tests a great many effects, one at a time, without adjusting for the fact that he would probably get some significant effects strictly by chance. With an unreplicated design, of course, no estimate of the error variance is available for doing the conventional F-test.

The above reasons supported the need for the present investigation of normal as well as half-normal plots on larger designs in order to maximize detection during the screening phase of an experimental program.

# SECTION IV

# CONSTRUCTING NORMAL AND HALF-NORMAL PLOTS

Normal and half-normal plots are graphic methods which allow the investigator to visually compare an empirically derived cumulative distribution of the effects with a cumulative distribution derived from a normally (or half-normally) distributed population. Once the contrasts have been calculated, the plots are constructed using normal probability paper.

One difference between the normal and the half-normal plot lies in the fact that the latter contains only the unsigned values of the k contrasts from a  $2^{f-p}$  factorial experiment while the former retains the signs. Another difference is that the half-normal plot is essentially a folded normal plot, a fact that requires the plotting positions to change accordingly.

#### CONSTRUCTING NORMAL PLOTS

The normal plot for k contrasts from a  $2^{f-p}$  fractional factorial experiment (where  $k = n - 1 = 2^{f-p} - 1$ ) is constructed in the following manner on normal probability paper:

1. The k contrasts are plotted in order of magnitude, with signs intact, on the linear scale of a normal probability grid. Whether this scale is placed on the ordinate or the abscissa is somewhat arbitrary. Zahn (1975a) suggested that the contrasts should be plotted on the ordinate in order to make the half-normal grid correspond more closely to the usual regression analysis graph on which the random variable is plotted as the ordinate; this same argument would apply to the normal plot. Since investigators using these plots to present their experimental results have done it both ways, a reader should be careful to determine which is being used in order not to misinterpret the patterns of plotted points. In one case, real effects fall off below the zero line and in the other, above the zero line. The author saw one unsophisticated user become confused and misinterpret his own data,

claiming a number of effects to be real when, in fact, the plots fell on the wrong side of the line, a sign of truncated data, not significant contrasts.

2. The points are plotted against the percentiles of the standard normal distribution on the other axis. The particular plotting positions of the normal distribution can be obtained from a table of expected values of normal order statistics (Owen, 1962, for up to n = 50; Harter, 1961, for up to 99). If one needs expected values for sets larger than 99, tables of expected values of normal order statistics may be generated using a Monte Carlo simulation. The expected values of normal and half-normal order statistics are given for n = 32, 63, and 127 in Appendix B. The programs used to generate expected values of order statistics for this report are given in Appendix C (normal plots) and Appendix D (half-normal plots). Barnett (1976) discusses several methods of estimating these values, including an alternative, simple yet fully efficient, estimation method proposed by Gupta (1952).

An example of a normal plot is shown in Figure 2. Three effects -- two positive and one negative -- are presumably real because of their distance from the null line.



Figure 2. Example of Normal Plot

STATES THE STATES OF THE STATE

# CONSTRUCTING HALF-NORMAL PLOTS

In the half-normal plot, the absolute contrasts -- values with the signs ignored -- are plotted against the percentiles of the standard half-normal distribution.

Percentiles for plotting positions of the half-normal distribution may be obtained from tables (Zahn, 1975a, between n = 6 and 20), simple calculations (Draper and Smith, 1966), or a computer program (Sparks, 1970; with a modification by Munford, 1972). The computer program used for this report is given in Appendix D. Leone, Nelson, and Nottingham (1961) also discuss some methods for estimating the expected values for the "folded normal distribution." Equation 1 may also be used to generate the expected values for the half-normal distribution, as Daniel did.



Figure 3. Example of Half-Normal Plot
(Using same data as in Figure 2)

The data used to generate the normal plot in Figure 2 was modified to generate an example of the half-normal plot shown in Figure 3.

## STANDARDIZED PLOTS

Instead of the raw contrasts, the investigator may wish to plot the standardized contrasts on which the guardrails, proposed by Daniel, may also be plotted. In theory, these can be obtained by satisfying the following equation:

Standardized contrast = 
$$\frac{\text{Obtained contrast}}{\sigma \sqrt{4/n}}$$
 (6)

where  $\sigma$  is the population standard deviation and n is the number of conditions in the experiment from which the contrasts were generated. In practice, however, the population standard deviation is not known and an estimated value, s, is used instead. With unreplicated designs, as the review of Daniel's and Zahn's work revealed, it is not an easy nor obvious task to find an accurate s.

#### SECTION V

#### THE BASIC SIMULATION

For this project, the basic data for creating <u>normal</u> plots were generated using a Monte Carlo approach. Simulation efforts were carried out at two laboratories: the Human Factors Laboratory at the Naval Training Systems Center, Orlando, Florida, and the Statistics Department, Hollins College, Virginia.

While the half-normal plot will not be ignored, for this investigation the normal plot was emphasized, as stated in the section on "Rationale," because so much work had already been done with the half-normal and because Daniel had suggested more information is available using signed contrasts.

The primary variables in this simulation were: Size of the experimental design (n); number of contrasts (k); number of real effects (r); size of the real effects (d); and number of positive real effects (r+). The computer program used to generate the data base and perform the subsequent analyses is given in Appendix C.

#### CONSTRUCTING THE DATA BASE

The steps in the simulation process are:

- Generate the sign matrix of a 2^f = n experimental design of desired size with the experimental conditions arranged in Yates' standard order.
- 2. Generate a set of n "scores" randomly selected from a normally distributed population with a mean score of zero and a variance of one (N [0,1]).
- 3. Randomly assign the numbers from Step 2 to the conditions in the experimental design from Step 1.

4. Calculate the k = (n - 1) contrasts from the data in Step 3 using Yates' algorithm.

The above four steps produce a set of randomly distributed contrasts — the mean differences between the two conditions of each experimental effect in the 2^f design — from a null experiment. The standard error of the contrasts equals:

$$s = \sigma \sqrt{4/n} \tag{7}$$

where  $\sigma$  is the population  $\sigma$ , which is 1.00 in this simulation, and n is the number of independent data points in the experiment. In the unreplicated experiment, n equals the number of independent experimental conditions. In the replicated experiment, n equals the total number of conditions. The derivation of Equation 7 is given in Appendix E.

To introduce real effects into the data:

- 5. Create r real effects which may all be of the same or different magnitudes (d_), of which r+ are positive and r- are negative.
- 6. The r effects are added to the <u>signed</u> contrasts which were randomly assigned (in Step 3) to the first r conditions of the design arranged in Yates' standard order. This assignment procedure for real effects is acceptable since no identification of specific effects is required.
- 7. The final contrasts, the composites of error and real effects, are ordered by the magnitude of the signed contrasts (when studying the normal-order plot) and of the unsigned contrasts (when studying the half-normal plots.

In the Monte Carlo program, the above steps were repeated 5000 times, the equivalent of running an experiment 5000 times. The mean and standard deviation of the contrasts occurring at each rank position of the ordered contrasts were obtained. Also, the real effects were tracked and the

number of times a real effect (regardless of magnitude) fell at each rank position was totalled.

#### BOUNDARIES OF THE EXPERIMENTAL SPACE EXAMINED IN THIS PROJECT

Since much of this effort was exploratory, a broad, multidimensional experimental space was examined unevenly, sampling relevant portions as questions arose.

## Factor parameters included:

Size of experimental design: n = 32, 64, 128

Number of ordered contrasts: k = 31, 63, 127

Number of real effects r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16

Number of positive effects  $r_1$  = The number ranged from 100% r down to

50% r in unit steps.

Size of effects:  $d = 0.50\sigma$ , 1.00 $\sigma$ , 1.15 $\sigma$  1.25 $\sigma$ ,

1.330, 1.500, 1.670,

2.00 and occasionally

intermediate values.

### **EXAMPLE**

An example of the data from the above procedure for a normal plot is given in Table 2 for the situation:

n = Design size = Number of experimental conditions =  $2^{f}$  = 32

k = Number of effects (contrasts or mean differences) = 2^f - 1 = 31

r = Number of real effects = 16 [Number of error contrasts, e = 15]

r+ = Number of positive real effects = 16

 $d_r$  = Magnitude of real effects = 1.00

# TABLE 2. EXAMPLE OF ANALYSES: CONTRAST, NUMBER OF REAL EFFECTS, STANDARDIZED CONTRAST, AND CONTRAST STANDARD DEVIATION AT EACH RANK

_			STANDARDIZED	STD.
#	CONTRAST	# R	CONTRAST	DEVIATION
1	-0.612	1	-1.730	Ø.194
2	-0.441	4	-1.246	Ø.148
3	-0.335	5	-0.947	Ø.131
4	-0.252	16	-0.714	Ø.123
5	-0.180	34	-0.510	Ø.117
6	<b>-0.117</b>	43	<b>-</b> Ø.331	Ø.115
7	-0.058	75	-0.164	Ø.114
8	-0.003	111	-0.009	0.112
9	0.054	169	0.154	0.112
10	0.112	239	Ø.317	Ø.112
11	Ø.172	393	0.486	0.112
12	0.234	564	Ø.661	0.112
13	0.300	876	Ø.849	Ø.113
14	Ø.373	1334	1.054	0.115
15	0.452	2029	1.278	Ø.115
16	0.533	2958	1.507	Ø.116
17	Ø.611	3692	1.730	Ø.115
18	Ø.683	4092	1.931	0.114
19	0.748	4438	2.115	Ø.111
20	0.809	4641	2.288	0.110
21	0.865	4789	2.446	0.108
22	0.921	4816	2.606	0.109
23	0.973	4883	2.753	0.107
24	1.027	4936	2.905	0.109
2.5	1.081	4946	3.056	0.110
26	1.137	4961	3.216	Ø.113
27	1.198	4979	3.388	0.116
2.8	1.265	4985	3.577	0.121
2.4	1.346	4995	3.806	0.130
(1)	1.451	4996	4.103	0.146
3.	1.622	500C	4.588	0.191

Three sets of data were obtained: (1) The mean contrasts at each position of the ordered data,  $x_{i,k}$ ; (2) The standard deviation of those means at each position,  $s_{i,k}$ ; and (3) The total number of real contrasts out of 5000 runs that appear at each rank of the ordered data,  $R_{i,k}$ .

The percentage of real effects that might occur at any rank in this simulation is:

$$R_{i,k} = [R_{i,k} \div 5000] \times 100.$$
 (8)

We shall refer to the real contrasts that fall at a rank where only error contrasts were intended as "R-spillover." We shall refer to the error contrasts that fall at a rank where only the real effects were intended as E-spillover. The E-spillover is obtained for the appropriate ranks by subtracting the  $R_{i,k}$  from 100% or the  $R_{i,k}$  from 5000.

Standardized values of the mean contrasts,  $z_{i,k}$ , were also derived from the raw contrasts using the following equation:

$$z_{i,k} = x_{i,k} \div \left[\sigma \sqrt{4/n}\right] \tag{9}$$

where

z = expected standardized contrast for rank i of k cases
i.k

x_{i,k} = the expected contrast for rank i of k cases

σ = population σ

n = number of experimental conditions in the design

In this phase of the analysis, where results are aggregates of the results from 5000 runs, the correct population sigma, i.e.,  $\sigma = 1.00$ , was used in Equation 9 as in Equation 7. In practice, and in the single experiment, it is unlikely that this value would be known and so would have to be estimated, s. We will also work with knowledge of how many real effects there are and at what ranks of the ordered contrasts they were intended to be located before being combined with the error component.

#### **ACCURACY**

While 5000 runs for the Monte Carlo studies seemed like a lot initially — Zahn had used only 1000 runs in his study — minor variations were observed when the same situations were recomputed or when computations were compared with other tables of expected values of normal order statistics or when the theoretical symmetry was not exact when expected at opposite ends of ordered data internal to certain tables. These variations were reduced when the Monte Carlo studies were made with 10,000 runs.

Careful study assured us that if the slight inaccuracy of the 5000 runs were accepted, there would be no alteration of any conclusion drawn in this report. By accepting the smaller number of runs, of course, computer costs and computing times were reduced considerably.

As a rule-of-thumb regarding the accuracy of our data, most of the time, contrasts and standardized contrasts were accurate to the second decimal place when rounded. As for the percent of real contrasts at each rank of the ordered contrasts, the numbers for the larger values seldom varied more than one or occasionally 2% from one set of data to another or within runs at each end of ordered contrasts which were theoretically the same. This latter inaccuracy is most visible in summary tables in which R-spillover values are given; this is because one set of data was used to prepare the tables while a second one, calculated with identical parameters, was used to provide clean copy for publication.

### RELATING ZAHN'S PARAMETERS TO THOSE USED IN THE PRESENT INVESTIGATION

To relate certain conditions drawn by Zahn to those reached in the present investigation, it is necessary to use a common scale when referring to the size of an effect. When Zahn referred to a real contrast "of size  $2\sigma$ ," he meant that the effect was two times the size of the standard error of the contrasts ( $\sigma_C$ ) in his experiment where n = 16. When we refer to a real contrast in this project "of size  $2\sigma$ ," we mean that the effect is two times the size of the population  $\sigma$  which is independent of the size of the

simulated data collection effort. This occurred because Zahn developed his 15 contrasts directly by sampling from a standard normal population of N[0,1], while in this project, the 16 "scores" for the null experiment were obtained from a standard normal population of N[0,1] and from those, the 15 contrasts were calculated. Zahn's population  $\sigma$ , to which he did not refer, was actually equal to 2.00, while ours was 1.00.

If one were only discussing the data within a study, which scale is used would be less important. If, however, we wish to relate the results from the two studies, the scales must be standardized.

(本語画のようできる語をあるののは間にあるような語言を含むなどの語画的なな。

Actually, when we express the size of a real effect in these simulations, three variables are involved, of which the third is determined by the other two. These variables are the population sigma, the size of the experiment, and the effect size. But effect size must be expressed in terms of population sigma or standard error of the contrast. Since the latter is a function of population sigma and experiment size, when contrast size is scaled by it, we cannot independently study the effects of real contrast size and experiment size. Because we ordinarily have no control over the population sigma in practice, it does us little good to be able to study independently the effect of real contrast size and changes in the population sigma.

For those reasons, we will scale the measures from both studies in terms of the population  $\sigma$ , since that is more in line with what would happen in the real world and because that will allow us to isolate the effects of real contrast size, d, and the experiment size, n.

One can relate the sizes of Zahn's effects to ours by converting them both to a multiple of population  $\sigma$ . Since he only used experiments of size n = 16, to express the size of his real effects in terms of the  $\sigma$ , as used in this project, it is only necessary to divide his values, which are in terms of  $s_C$  by two. In those terms, the effect of the population sigma remains constant, while the effects of contrast size and experiment size can be isolated.

#### SECTION VI

## ANALYSES AND RESULTS

Simulated data for  $2^{f}$  experimental designs were created and analyzed in order to:

- 1. Examine characteristics of expected values of normal order plots as a function of experiment size, n; number of ordered contrasts, k; number of real effects, r; size of real effects, d; and the number of positive real effects, r+.
  - 2. Compare the relative effectiveness of normal and half-normal plots.
  - 3. Examine individual plots.
- 4. Provide guardrails for evaluating half-normal plots for experiments of size, n = 32 and 64.

#### CHARACTERISTICS OF NORMAL PLOT DATA

The first analysis was carried out in order to examine the characteristics of expected values of ordered contrasts as a function of the size of the experiment, n; the number of ordered contrasts, k, which equal (n - 1) in an unreplicated design; the number of real effects, r; the number of positive real effects, r+; and the size(s) of the real effects (d_).

Let us not be too concerned with quantification and pay more attention to the patterns formed by the data. For starters, let us look at the mean contrast data for these parameters:

$$n = 32, k = 31, r = 8, d = +2\sigma$$

The ordered mean contrasts, the number of times a real effect appears at each position (out of 5000 runs), the contrast standard deviations of the new contrasts at each rank, and the standardized mean contrasts are given in Table 3-a.

For this aggregate data from 5000 cases, the eight real contrasts are easily distinguishable from the error contrasts. The spillover of real effects into the ranks where only error contrasts are intended were trivial in this example. Only 0.3% of the real effects were located at the 23rd (error) rank out of 5000 runs.

overall, the largest contrasts are the most variable. The contrast standard deviations at each rank show that variability is greatest at both ends of the intended error contrasts (ranks 1 and 23), being nearly double of what is found at the center of that set of 23 contrasts (rank 12). Unfortunately, these contrast standard deviations are not from normal distributions, particularly those of the larger and more important contrasts. Therefore, we cannot use them to establish the probability that a contrast at any particular rank would fall a certain distance from the expected value. Efforts to employ these contrast standard deviations to estimate the R-spillover at particular ranks proved too complex and inaccurate to pursue (see Appendix F).

Examination of the contrasts reveals an almost symmetrical set of values between ranks 1 and 23, with rank 12 at the pivot point. Since ranks 1 through 23 were intended to be the error contrasts in our simulation, and since there is practically no spillover of real effects into these ranks in this example, it is not surprising to find that these standardized "error" contrasts are almost identical -- within the two decimal point accuracy of our data -- to the expected values for normal order statistics (e.v.n.o.s.) for n = 23. These values are given in Table 4-a.

TABLE 3. EXAMPLE OF ORIGINAL AND STANDARDIZED ORDERED CONTRASTS, #R1.k, AND CONTRAST STANDARD DEVIATIONS

(a)

(b)

NORMAL PLOT DATA

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=8+0-, d=2.00

SITUATION: n=32, k=31, r=6+2-, d=2.00

									<u> </u>
	CONTRAST		STANDARDIZED CONTRAST	STD. DEVIATION		CONTRAST	# R	STANDARDIZED CONTRAST	STD. DEVIATION
ĭ	-Ø.681	* B	-1.927	Ø.18Ø		-2.198	* K 5000	-6.216	0.292
2		ø	-1.480	Ø.137	1 2	-1.800	4991	-5.091	Ø. 296
3		ĕl	-1.218	Ø.121	3	-0.680	<b>1</b> 998	-1.924	0.183
4	-0.360	øl	-1.017	0.111	4	-0.521	ដ	-1.474	Ø.138
5	-0.301	ดีไ	-Ø.851	0.105	5	-0.428	ø	-1.209	Ø.121
6		ø	-0.706	0.101	6	-0.357	ø	-1.010	0.111
7	-0.202	ø	-Ø.572	Ø.097	7	-Ø.297	ø	-0.839	0.105
8	-0.159	ø١	-0.450	0.095	8	-0.247	øl	-Ø.698	0.100
9	-0.118	0 .		0.093	9	-0.200	ě	-0.567	0.097
10	-0.078	ø   🤄	-0.221	0.092	10	-0.157	øl	-0.444	0.095
11	-0.039	0 0 0 17	-0.110	0.092	11	-Ø.116	ø	-0.328	0.094
12	0.000	וט	-0.00T	0.091	12	-0.076	이병	-0.215	0.092
13	0.038	8 6 6 6 6 Thrended	0.106	Ø.Ø91	13	-0.037	0 0 101	-0.103	0.092
14	0.077	0 2	0.217	0.091	14	0.001	0 1	0.003	0.092
15	0.116	0   5	Ø.329	0.093	15	0.039	al	a 11a	0.091
16	Ø.158	0 +	0.446	Ø.Ø94	16	0.078	g   g	Ø.219	0.091
17	0.201			Ø.096	17	0.117	0 2	0.330	0.093
18	0.248	0	0.702	0.100	18	Ø.158	6 6 6 ntend	0.448	0.095
19	0.299	0	Ø.845	0.104	19	0.202			0.097
20	Ø.359	0	1.014	Ø.111	20	0.249	Ø	סטו. ש	0.100
21	0.430	Ø	1.217	Ø.121	21	0.301	0	Ø.851	0.105
22	Ø.525	3	1.485	Ø.139	22	0.360	0	1.019	0.111
23	Ø.681	201	1.925	Ø.182	23	0.430	2	1.217	0.120
24	1.495	4977	4.229	Ø.216	24	0.523	3	1.479	0.135
25	1.696	5000	4.798	0.175	25	0.679	16	1.919	0.181
26	1.831	5000	5.179	Ø.16Ø	26	1.546	4980	4.374	0.227
27	1.946	5000 2	ส 5.505	Ø.154	27	1.771	4999	5.009	0.186
28	2.053	5000 9	9 5.806	0.154	28	1.928	5000	5.452	0.176
29	2.166	ן שטשכ 😅	6.125	0.160	29	2.073	5000	5.863	0.177
30	2.300	ו שששכ	6.303	0.174	30	2.233	5000	6.316	0.186
31	2.504	5000	7.081	Ø.217	31	2.452	5000	6.936	0.228

TABLE 4. EXPECTED VALUES OF NORMAL ORDER STATISTICS FOR n = 23 and n = 119.

(a) n = 23

assist cossesses, applicable constants accounts a property of the constant of

(b)

				57	-0.06312
			00.000	58	-0.04206
	ORDER		ORDER STATISTIC	59	-0.02103
	STATISTIC	# 1	-2.56913	60	0.00000
1	-1.92916	2	-2.21696	61	0.02103
2	-1.48137	3	-2.02022	62	0.04206
3	-1.21445	4	-1.87972	63	0.06312
4	-1.01356	5	-1.76869	64	0.08420 0.10532
5 6	-0.84697	6	-1.67595	65 66	Ø.12649
7	-0.70115 -0.56896	7	-1.59577	67	0.14771
8	-0.44609	8	-1.52463	68	8.16988
9	-0.32965	9	-1.46051	69	0.19037
10	-0.21755	10	-1.40183	70	Ø.21183
11	-0.10813	11	-1.34775 -1.29728	71	Ø.23339
12	0.00000	12 13	-1.24987	72	0.25505
13	0.10813	13	-1.20522	73	Ø. 27683
14	Ø.21755	15	-1.16277	74	0.29874
15	Ø.32965	16	-1.12237	75 76	0.32080 0.34301
16	0.44609	17	-1.08368	76 77	Ø.36541
17	Ø.56896 Ø.70115	18	-1.04661	78	Ø.388ØØ
18 19	Ø. 84697	19	-1.01088	79	0.41075
20	1.01356	20	-0.97638	80	0.43375
21	1.21445	21	-0.94304	81	Ø.45696
22	1.48137	22	-0.91077 -0.87936	82	0.48042
23	1.92916	23 24	-0.84880	83	0.50418
		24 25	-0.81900	84	Ø.52821
		26	-Ø.78996	85	Ø.55253
		27	-0.76152	86	0.57720 0.60223
		28	-0.73371	87 88	Ø.62763
		29	-0.70645	89	Ø.65344
		30	-0.67970	90	0.67971
		31	-0.65344	91	0.70645
		32	-0.62763	92	Ø.73371
		33 34	-0.60223 -0.57720	93	Ø.76153
		35	-0.55252	94	0.78997
		36	-0.52820	95	0.81900
		37	-0.50418	96	0.84881
		38	-0.48042	97	Ø.87935
		39	-0.45697	98 99	0.91078 0.94306
		40	-0.43374	100	0.97639
		41	-0.41075	101	1.01088
		42	-0.38800	102	1.04662
		43 44	-0.36541	103	1.08367
		44	-0.34301 -0.32079	104	1.12238
		45	-0.29874	105	1.16277
		47	-Ø.27682	106	1.20523
		48	-0.25504	107	1.24988
		49	-Ø.23338	108	1.29727
		50	-0.21183	109 110	1.34777
		51	-0.19037	111	1.46049
		52	-0.16900	112	1.52465
		53	-0.14771	113	1.59576
		54	-0.12649	114	1.67593
		55	-0.10532	115	1.76871
		56	-0.08420	116	1.87974
				117	2.02022
				118	2.21696
			ΛΛ	119	2.56913
			11.11		

What happens when some of the contrasts are positive and some are negative? In Table 3-b, mean contrasts were generated for the following situation:

$$n = 32$$
,  $k = 31$ ,  $r = 8$ ,  $d = +2.00\sigma$ ,  $d = -2.00\sigma$ 

Once again it is apparent that with real effects of this size and number, the R-spillover is trivial. This time, however, some spillover occurs at both ends of the scale.

EFFECT OF MARGINAL SIZE EFFECTS. If plots are to be used for screening studies, they must be helpful in detecting real effects that are marginal in size. Let us look at what happens to the estimated contrasts and the R-spillover when the sizes of the effects decrease. To do this, we will hold the other parameters fixed for the moment and use all positive real effects. The contrasts in Table 5 are average values over 5000 runs for this series of situations:

```
n = 32, k = 31, r = 8, and one table each for d = +0.50\sigma +1.00\sigma; +1.05\sigma; +1.15\sigma; +1.33\sigma; +1.50\sigma; and +1.67\sigma.
```

As the sizes of the real effects decrease, the probability increases that some real contrasts will be located at ranks other than the first eight positive ones where they were purposely placed for this simulation. Among the intended error contrasts, the more R-spillover at any rank, the further the expected contrast (mean of 5000 runs) at that rank deviates from the e.v.n.o.s. for the number of error contrasts, i.e., 23.

TABLE 5. CHANGES IN RESULTS AS A FUNCTION OF THE MAGNITUDE OF REAL EFFECTS

(a)

(b)

## NORMAL PLOT DATA

SITUATION: n= 32, k= 31, r= 8+0-, d=0.50

SITUATION: n= 32, k= 31, r= 8+0-, d=1.00

NORMAL PLOT DATA

			STANDARDIZED	-				STANDARDIZED	STD.
	CONTRAST	# R	CONTRAST	DEVIATION		CONTRAST	# R	CONTRAST	DEVIATION
1	-0.683	44	-1.931	0.179	1	-0.687	Ø	-1.944	0.184
2		87	-1.491	0.135	2	-0.526	1	-1,488	0.139
3	-0.433	103	-1.225	0.118	3	-0.432	3	-1.222	0.122
4	-0.362	136	-1.024	0.108	4	-0.361	5	-1.020	0.112
5		180	-0.862	0.101	5	-0.302	5	-0.854	0.105
6	-0.255	214	-0.722	0.098	6	-0.250	7	-0.708	0.101
7	-0.209	270	-0.593	0.093	7	-0.203	8	-0.573	0.097
8	-0.167	301	-0.472	0.091	8	-0.159	8	-0.450	0.095
9	-0.127	345	-0.361	0.088	وَ	-0.118	10	-0.332	0.094
10	-0.091	370	-0.257	0.087	10	-0.079	19	-0.222	0.093
11	-0.056	443	-0.158	0.086	11	-0.040	18	-0.113	0.092
12	-0.022	513	-0.061	0.085	12	-0.001	32	-0.004	0.092
13	0.012	580	0.035	0.084	13	0.036	50	0.103	0.091
14	0.046	643	0.130	0.084	14	0.074	81	0.210	0.091
15	0.080	730	0.225	0.084	15	0.114	81	0.321	0.092
16	0.113	802	0.319	0.084	16	0.153	116	0.434	0.093
17	0.147	<b>9</b> 59	0.415	0.084	17	0.196	127	0.554	0.094
18	0.182	1106	0.514	0.085	18	0.241	198	0.680	0.097
19	0.218	1101	0.616	0.085	19	0.289	276	Ø.816	Ø.Ø99
20	0.254	1287	0.719	0.086	20	0.343	423	Ø.969	0.102
21	0.292	1517	0.825	0.087	21	0.403	654	1.139	Ø.102
22	0.331	1680	0.936	0.089	22	0.474	1034	1.340	0.112
23	0.372	1817	1.053	0.091	23	0.556	1662	1.573	Ø.112
24	0.416	2029	1.175	0.094	24	0.654	2853	1.851	
25	0.463	2276	1.309	0.098	25	Ø.758			0.128
26	0.516	2481	1.458	0.102	26	0.756 0.859	3686	2.144	0.139
27	0.576	2850	1.630	0.110	27		4335	2.430	0.141
28	0.645	3213	1.824	Ø.118	28	0.959 1.060	4630	2.713	0.144
29	0.727	3573	2.057	Ø.132			4800	2.997	0.148
30	0.839	3981	2.374	0.154	29	1.171	4918	3.313	0.157
31	1.023	4369	2.894	0.134	30	1.305	4974	3.690	0.174
		4303	4.034	U.400	31	1.503	4986	4.250	0.215

# TABLE 5. (cont'd)

(c) (d)

NORMAL PLOT DATA

SITUATION: n= 32, k= 31, r= 8+0-, d=1.05

なる。自己のなるなどは、これのことのない。

# NORMAL PLOT DATA

Contract of the Contract of th

SITUATION: n= 32, k= 31, r= 8+0-, d=1.15

	32, ~						
COVERD & CE	. R	STANDARDIZED CONTRAST	STD. DEVIATION	CONTRAS		STANDARDIZED CONTRAST -1.934	DEVIATION 0.181
CONTRAST	-	-1.923	Ø.18Ø			-1.477	0.137
-0.680	1	-1.481	Ø.136	2 -0.522	·	-1.209	8.118
-0.524	1		Ø.117	3 -0.428		-1.011	8.111
-0.428	1	-1.210	ø. 1ø8	4 -0.358	3 0		0.106
-0.357	3	-1.010		5 -0.298	3 0	-0.843	0.102
-0.298	1	-0.842	0.102	6 -0.246		-0.697	
	t	-0.697	0.099	7 -0.198		-0.561	8.898
	4	-0.566	0.096			-0.440	0.096
-0.200	7	-0.443	0.094	•		-0.325	0.095
-0.157		-0.331	0.094	9 -8.11	•	-0.212	0.093
~0.117	11	-ø.219	0.092	10 -9.87	5 8	-0.102	0.092
-0.077	11		0.092	11 -0.03			0.092
~0.039	17	-0.109		12 0.00	39	0.008	0.092
0.000	18	-0.001	0.092	13 8.84	1 15	0.115	0.092
	25	0.106	0.092	14 0.07		ø.223	
	38	0.212	0.092		-	0.334	0.093
0.075		Ø.324	0.092		•	0.449	0.094
5 Ø.115	50	0.436	0.892	16 0.15	-	8.578	0.09
5 Ø.154	91		0.094	17 0.20		0.701	9.99
7 0.197	108	Ø.556	0.097	18 6.24		0.701	9.10
8 0.241	134	ø.681		19 0.29	8 131	0.842	ø. 10
9 0.291	209	ø.823	0.100	20 0.35	4 225	1.000	
	336	ø.979	0.104	21 0.41		1.179	0.11
	532	1.151	0.189		· · · · · · · · · · · · · · · · · · ·	1.401	0.11
0.407	913	1.355	0.115			1.694	Ø.13
2 0.479		1.614	0.122	23 0.59		2.091	0.14
3 0.571	1658		0,133	24 0.73		2.469	0.15
4 0.682	2943	1.938	0.140	25 0.87		2.800	0.14
5 0.793	3953	2.244		26 0.99	90 4688		0.14
6 0.899	4443	2.543	0.144	27 1.09	98 4861	3.105	0.14
7 1.882	4719	2.834	0.147	28 1.20		3.410	
•	4855	3.126	0.149			3.723	0.15
8 1.105	4942	3.439	0.154		• •	4.895	0.17
9 1.216		3.819	0.170		• •	4.655	0.21
0 1.350	4982		Ø.215	31 1.6	40 4770	1.0	
1.553	4993	4.392	U				

# TABLE 5. (cont'd)

(e)

(f)

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=8+0-, d=1.25

SITUATION: n=32, k=31, r=8+0-, d=1.33

NORMAL PLOT DATA

CONTRAST										
# CONTRAST				STANDARDIZED	STD.	_			STANDARDIZE	D STD.
1 -0.685		CONTRAST	# R					# R		
2 -0.526	ī		ø			1		Ø	~1.930	
3 -0.429	2	-0.526				2		Ø		
4 -0.358 0 -1.012 0.110 4 -0.361 0 -1.022 0.111 5 -0.299 0 -0.847 0.104 5 -0.303 0 -0.857 0.105 6 -0.248 0 -0.702 0.099 6 -0.252 0 -0.713 0.101 7 -0.201 0 -0.568 0.096 7 -0.252 0 -0.713 0.101 7 -0.201 0 -0.568 0.096 8 -0.158 0 -0.446 0.095 8 -0.159 0 -0.450 0.096 9 -0.117 0 -0.331 0.093 9 -0.117 1 -0.332 0.093 10 -0.078 2 -0.221 0.092 10 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.038 3 -0.108 0.091 12 -0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 12 0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.003 0.091 14 0.076 14 0.214 0.093 14 0.078 2 0.220 0.093 1.5 0.114 14 4 0.323 0.093 14 0.078 2 0.220 0.093 16 0.156 10 0.442 0.095 16 0.158 6 0.447 0.094 17 0.200 26 0.566 0.097 17 0.201 7 0.568 0.097 17 0.201 7 0.568 0.097 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 0.097 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 0.099 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 0.359 10 0.20 0.359 10 0.20 0.099 0.108 20 0.359 62 1.015 0.108 0.108 20 0.359 62 1.015 0.108 0.108 20 0.359 62 1.015 0.108 0.108 20 0.359 62 1.015 0.108 0.108 20 0.359 62 1.015 0.108 0.102 0.108 0.108 20 0.359 62 1.015 0.108 0.103 0.108 20 0.359 62 1.015 0.108 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.003 0.103 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.0			ä			3		Ø		
5         -0.299         0         -0.847         0.104         5         -0.303         0         -0.857         0.105           6         -0.248         0         -0.702         0.099         6         -0.252         0         -0.713         0.101           7         -0.201         0         -0.568         0.0996         7         -0.203         2         -0.576         0.098           8         -0.158         0         -0.446         0.095         8         -0.159         0         -0.450         0.096           9         -0.117         0         -0.331         0.093         9         -0.117         1         -0.332         0.093           10         -0.678         2         -0.221         0.092         10         -0.678         1         -0.222         0.092           11         -0.040         1         -0.113         0.092         11         -0.038         3         -0.108         0.091           12         -0.001         7         -0.003         0.092         13         0.001         1         0.003         0.091           13         0.076         14         0.214         0.093         14	4					4		Ø	-1.022	0.111
6 -0.248 0 -0.702 0.099 6 -0.252 0 -0.713 0.101 7 -0.201 0 -0.568 0.096 7 -0.263 2 -0.576 0.098 8 -0.158 0 -0.446 0.095 8 -0.159 0 -0.450 0.096 9 -0.117 0 -0.331 0.093 9 -0.117 1 -0.332 0.093 10 -0.078 2 -0.221 0.092 10 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.033 3 -0.108 0.091 12 -0.001 7 -0.003 0.092 12 0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.093 14 0.076 14 0.214 0.093 14 0.078 2 0.220 0.093 15 0.114 14 0.323 0.094 15 0.117 9 0.331 0.094 16 0.156 10 0.442 0.095 16 0.158 6 0.447 0.094 17 0.200 26 0.566 0.097 17 0.201 7 0.568 0.097 18 0.246 41 0.697 0.100 18 0.247 12 0.700 0.099 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 20 0.353 126 0.998 0.108 20 0.359 62 1.015 0.102 21 0.421 215 1.191 0.116 21 0.426 140 1.206 0.115 22 0.507 464 1.433 0.125 22 0.514 285 1.454 0.128 23 0.625 1141 1.767 0.142 23 0.641 950 1.812 0.149 24 0.815 3629 2.304 0.162 24 0.876 3939 2.478 0.173 25 0.963 4537 2.724 0.158 25 1.022 4889 3.316 0.156 27 1.196 4929 3.382 0.153 27 1.282 4960 3.626 0.153 28 1.304 4974 3.667 0.151 28 1.391 4984 3.935 0.153 29 1.417 4995 4.007 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.167 7.29 1.501 4999 4.244 0.160	5					5	-0.303	Ø	<b>-0.</b> 857	0.105
7 -0.201 0 -0.568 0.096 7 -0.203 2 -0.576 0.098 8 -0.158 0 -0.446 0.095 8 -0.159 0 -0.450 0.096 9 -0.117 1 1 -0.331 0.093 9 -0.117 1 -0.332 0.093 10 -0.078 2 -0.221 0.092 10 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.038 3 -0.108 0.091 12 -0.001 7 -0.003 0.092 12 0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.092 14 0.076 14 0.214 0.093 14 0.078 2 0.220 0.093 15 0.114 14 0.323 0.094 15 0.117 9 0.331 0.094 16 0.156 10 0.442 0.095 16 0.158 6 0.447 0.094 17 0.200 26 0.566 0.097 17 0.201 7 0.568 0.097 18 0.246 41 0.697 0.100 18 0.247 12 0.700 0.099 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 20 0.353 126 0.998 0.108 20 0.359 62 1.015 0.108 10 0.422 0.507 464 1.433 0.125 22 0.514 285 1.454 0.128 21 0.421 215 1.191 0.116 21 0.426 140 1.206 0.115 0.108 21 0.421 215 1.191 0.116 22 0.507 464 1.433 0.125 22 0.514 285 1.454 0.128 23 0.625 1141 1.767 0.142 23 0.641 950 1.812 0.149 24 0.815 3629 2.304 0.162 24 0.876 3939 2.478 0.173 25 0.963 4537 2.724 0.158 25 1.042 4694 2.946 0.165 27 1.196 4929 3.382 0.153 27 1.282 4960 3.626 0.153 28 1.304 4974 3.687 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.384 0.157 30 1.550 4996 4.			_			6	-0.252	Ø	-0.713	0.101
8 -0.158 0 -0.446 0.095 8 -0.159 0 -0.450 0.096 9 -0.117 0 -0.331 0.093 9 -0.117 1 -0.332 0.093 10 -0.078 2 -0.221 0.092 10 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.038 3 -0.108 0.091 12 -0.001 7 -0.003 0.092 12 0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.003 14 0.076 14 0.214 0.093 14 0.078 2 0.220 0.093 15 0.114 14 0.323 0.094 15 0.117 9 0.331 0.094 16 0.156 10 0.442 0.095 16 0.158 6 0.447 0.094 17 0.200 26 0.566 0.097 17 0.201 7 0.568 0.097 18 0.246 41 0.697 0.100 18 0.247 12 0.700 0.099 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 20 0.353 126 0.998 0.108 20 0.359 62 1.015 0.108 21 0.421 215 1.191 0.116 21 0.426 140 1.206 0.115 22 0.507 464 1.433 0.125 22 0.514 285 1.454 0.128 23 0.625 1141 1.767 0.142 23 0.641 950 1.812 0.149 24 0.815 3629 2.304 0.162 24 0.876 3939 2.478 0.173 25 0.963 4537 2.724 0.158 25 1.042 4694 2.9946 0.165 26 1.085 4815 3.069 0.152 26 1.172 4889 3.316 0.156 27 1.196 4929 3.382 0.153 27 1.282 4960 3.626 0.153 28 1.394 4974 3.687 0.151 28 1.391 4984 3.935 0.153 29 1.417 4995 4.007 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.171			_			7	-0.203	2 .	-0.576	0.098
9 -0.117 0 -0.331 0.093 9 -0.117 1 -0.332 0.093 10 -0.078 2 -0.221 0.092 10 -0.078 1 -0.222 0.092 11 -0.040 1 -0.113 0.092 11 -0.038 3 -0.108 0.091 12 -0.001 7 -0.003 0.092 12 0.001 1 0.003 0.091 13 0.037 10 0.106 0.092 13 0.039 3 0.111 0.092 14 0.076 14 0.214 0.093 14 0.078 2 0.220 0.093 15 0.114 14 0.323 0.094 15 0.117 9 0.331 0.094 16 0.156 10 0.442 0.095 16 0.158 6 0.447 0.094 17 0.200 26 0.566 0.097 17 0.201 7 0.568 0.097 18 0.246 41 0.697 0.100 18 0.247 12 0.700 0.099 19 0.296 55 0.837 0.104 19 0.299 54 0.845 0.102 20 0.353 126 0.998 0.108 20 0.359 62 1.015 0.102 20 0.353 126 0.998 0.108 20 0.359 62 1.015 0.108 21 0.421 215 1.191 0.116 21 0.426 140 1.206 0.115 22 0.507 464 1.433 0.125 22 0.514 285 1.454 0.128 23 0.625 1141 1.767 0.142 23 0.641 95 1.454 0.128 24 0.815 3629 2.304 0.162 24 0.876 3939 2.478 0.173 25 0.963 4537 2.724 0.158 25 1.042 4694 2.946 0.165 26 1.085 4815 3.069 0.152 26 1.172 4889 3.316 0.156 27 1.196 4929 3.382 0.153 27 1.282 4960 3.626 0.153 28 1.304 4974 3.687 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.171 30 1.633 4998 4.619 0.174						8	-0.159	ø	-0.450	0.096
10         -0.078         2         -0.221         0.092         10         -0.078         1         -0.222         0.092           11         -0.040         1         -0.113         0.092         11         -0.038         3         -0.108         0.091           12         -0.001         7         -0.003         0.092         12         0.001         1         0.003         0.091           13         0.037         10         0.106         0.092         13         0.039         3         0.111         0.092           14         0.076         14         0.214         0.093         14         0.078         2         0.220         0.093           15         0.14         14         0.323         0.094         15         0.117         9         0.331         0.093           16         0.156         10         0.442         0.095         16         0.158         6         0.447         0.094           17         0.200         26         0.566         0.097         17         0.201         7         0.568         0.097           18         0.246         41         0.697         0.100         18			_			9	-0.117	1	-0.332	0.093
11       -0.040       1       -0.113       0.092       11       -0.038       3       -0.108       0.091         12       -0.001       7       -0.003       9.092       12       0.001       1       0.003       0.091         13       0.037       10       0.106       0.092       13       0.039       3       0.111       0.092         14       0.076       14       0.214       0.093       14       0.078       2       0.220       0.093         15       0.114       14       0.323       0.094       15       0.117       9       0.331       0.094         16       0.156       10       0.442       0.095       16       0.158       6       0.447       0.094         17       0.200       26       0.566       0.097       17       0.201       7       0.568       0.097         18       0.246       41       0.697       0.100       18       0.247       12       0.700       0.099         19       0.296       55       0.837       0.104       19       0.299       54       0.845       0.102         20       0.353       126       0.998 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>10</td> <td>-0.078</td> <td>1</td> <td>-Ø.222</td> <td>0.092</td>			_			10	-0.078	1	-Ø.222	0.092
12         -0.001         7         -0.003         0.092         12         0.001         1         0.003         0.091           13         0.037         10         0.106         0.092         13         0.039         3         0.111         0.093           14         0.076         14         0.214         0.093         14         0.078         2         0.220         0.993           15         0.114         14         0.323         0.094         15         0.117         9         0.331         0.094           16         0.156         10         0.442         0.095         16         0.158         6         0.447         0.094           17         0.200         26         0.566         0.097         17         0.201         7         0.568         0.097           18         0.246         41         0.697         0.100         18         0.247         12         0.700         0.099           19         0.296         55         0.837         0.104         19         0.299         54         0.845         0.102           20         0.353         126         0.998         0.108         0.0359 <t< td=""><td></td><td></td><td>ī</td><td></td><td></td><td>11</td><td>-0.038</td><td>3</td><td>-0.108</td><td>0.091</td></t<>			ī			11	-0.038	3	-0.108	0.091
13         0.037         10         0.106         0.092         13         0.039         3         0.111         0.092           14         0.076         14         0.214         0.093         14         0.078         2         0.220         0.093           15         0.114         14         0.323         0.094         15         0.117         9         0.331         0.094           16         0.156         10         0.442         0.095         16         0.158         6         0.447         0.094           17         0.200         26         0.566         0.097         17         0.201         7         0.568         0.097           18         0.246         41         0.697         0.100         18         0.247         12         0.700         0.099           19         0.296         55         0.837         0.104         19         0.299         54         0.845         0.102           20         0.353         126         0.998         0.108         20         0.359         62         1.015         0.108           21         0.421         215         1.191         0.116         21         0			7			12	0.001	1		0.091
14       0.076       14       0.214       0.093       14       0.078       2       0.220       0.093         15       0.114       14       0.323       0.094       15       0.117       9       0.331       0.094         16       0.156       10       0.442       0.095       16       0.158       6       0.447       0.094         17       0.200       26       0.566       0.097       17       0.201       7       0.568       0.097         18       0.246       41       0.697       0.100       18       0.247       12       0.700       0.099         19       0.296       55       0.837       0.104       19       0.299       54       0.845       0.102         20       0.353       126       0.998       0.108       20       0.359       62       1.015       0.108         21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.	_		•			13	0.039	3	Ø.111	0.092
15						14	0.078	2	0.220	0.093
16       0.156       10       0.442       0.095       16       0.158       6       0.447       0.094         17       0.200       26       0.566       0.097       17       0.201       7       0.568       0.097         18       0.246       41       0.697       0.100       18       0.247       12       0.700       0.099         19       0.296       55       0.837       0.104       19       0.299       54       0.845       0.102         20       0.353       126       0.998       0.108       20       0.359       62       1.015       0.108         21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537						15	Ø.117	9	0.331	0.094
17       0.200       26       0.566       0.097       17       0.201       7       0.568       0.097         18       0.246       41       0.697       0.100       18       0.247       12       0.700       0.099         19       0.296       55       0.837       0.104       19       0.299       54       0.845       0.102         20       0.353       126       0.998       0.108       20       0.359       62       1.015       0.108         21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537       2.724       0.158       25       1.042       4694       2.946       0.165         27       1.196       4929 <td></td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td>Ø.158</td> <td>6</td> <td>0.447</td> <td>0.094</td>						16	Ø.158	6	0.447	0.094
18       0.246       41       0.697       0.100       18       0.247       12       0.700       0.099         19       0.296       55       0.837       0.104       19       0.299       54       0.845       0.102         20       0.353       126       0.998       0.108       20       0.359       62       1.015       0.108         21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537       2.724       0.158       25       1.042       4694       2.946       0.165         26       1.085       4815       3.069       0.152       26       1.172       4889       3.316       0.156         27       1.196       492				-		17	0.201	7	0.568	0.097
19						18	0.247	12	0.700	0.099
20       0.353       126       0.998       0.108       20       0.359       62       1.015       0.108         21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537       2.724       0.158       25       1.042       4694       2.946       0.165         26       1.085       4815       3.069       0.152       26       1.172       4889       3.316       0.156         27       1.196       4929       3.382       0.153       27       1.282       4960       3.626       0.153         28       1.304       4974       3.687       0.157       29       1.501       4999       4.244       0.160         30       1.550						19	0.299	54	0.845	0.102
21       0.421       215       1.191       0.116       21       0.426       140       1.206       0.115         22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537       2.724       0.158       25       1.042       4694       2.946       0.165         26       1.085       4815       3.069       0.152       26       1.172       4889       3.316       0.156         27       1.196       4929       3.382       0.153       27       1.282       4960       3.626       0.153         28       1.304       4974       3.687       0.157       29       1.501       4999       4.244       0.160         30       1.550       4996       4.384       0.171       30       1.633       4998       4.619       0.174						20	0.359	62	1.015	0.108
22       0.507       464       1.433       0.125       22       0.514       285       1.454       0.128         23       0.625       1141       1.767       0.142       23       0.641       950       1.812       0.149         24       0.815       3629       2.304       0.162       24       0.876       3939       2.478       0.173         25       0.963       4537       2.724       0.158       25       1.042       4694       2.946       0.165         26       1.085       4815       3.069       0.152       26       1.172       4889       3.316       0.156         27       1.196       4929       3.382       0.153       27       1.282       4960       3.626       0.153         28       1.304       4974       3.687       0.151       28       1.391       4984       3.935       0.153         29       1.417       4995       4.007       0.157       29       1.501       4999       4.244       0.160         30       1.550       4996       4.384       0.171       30       1.633       4998       4.619       0.174						21	Ø.426		1.206	0.115
23     0.625     1141     1.767     0.142     23     0.641     950     1.812     0.149       24     0.815     3629     2.304     0.162     24     0.876     3939     2.478     0.173       25     0.963     4537     2.724     0.158     25     1.042     4694     2.946     0.165       26     1.085     4815     3.069     0.152     26     1.172     4889     3.316     0.156       27     1.196     4929     3.382     0.153     27     1.282     4960     3.626     0.153       28     1.304     4974     3.687     0.151     28     1.391     4984     3.935     0.153       29     1.417     4995     4.007     0.157     29     1.501     4999     4.244     0.160       30     1.550     4996     4.384     0.171     30     1.633     4998     4.619     0.174						22	0.514	285	1.454	0.128
24     Ø.815     3629     2.304     Ø.162     24     Ø.876     3939     2.478     Ø.173       25     Ø.963     4537     2.724     Ø.158     25     1.042     4694     2.946     Ø.165       26     1.085     4815     3.069     Ø.152     26     1.172     4889     3.316     Ø.156       27     1.196     4929     3.382     Ø.153     27     1.282     4960     3.626     Ø.153       28     1.304     4974     3.687     Ø.151     28     1.391     4984     3.935     Ø.153       29     1.417     4995     4.007     Ø.157     29     1.501     4999     4.244     Ø.160       30     1.550     4996     4.384     Ø.171     30     1.633     4998     4.619     Ø.174						23	0.641	95ø	1.812	0.149
25     0.963     4537     2.724     0.158     25     1.042     4694     2.946     0.165       26     1.085     4815     3.069     0.152     26     1.172     4889     3.316     0.156       27     1.196     4929     3.382     0.153     27     1.282     4960     3.626     0.153       28     1.304     4974     3.687     0.151     28     1.391     4984     3.935     0.153       29     1.417     4995     4.007     0.157     29     1.501     4999     4.244     0.160       30     1.550     4996     4.384     0.171     30     1.633     4998     4.619     0.174						24	Ø.876	3939	2.478	0.173
26     1.085     4815     3.069     0.152     26     1.172     4889     3.316     0.156       27     1.196     4929     3.382     0.153     27     1.282     4960     3.626     0.153       28     1.304     4974     3.687     0.151     28     1.391     4984     3.935     0.153       29     1.417     4995     4.007     0.157     29     1.501     4999     4.244     0.160       30     1.550     4996     4.384     0.171     30     1.633     4998     4.619     0.174						25	1.042	4694	2.946	0.165
27     1.196     4929     3.382     Ø.153     27     1.282     496Ø     3.626     Ø.153       28     1.304     4974     3.687     Ø.151     28     1.391     4984     3.935     Ø.153       29     1.417     4995     4.007     Ø.157     29     1.501     4999     4.244     Ø.16Ø       30     1.550     4996     4.384     Ø.171     30     1.633     4998     4.619     Ø.174						26	1.172	4889	3.316	0.156
28     1.304     4974     3.687     0.151     28     1.391     4984     3.935     0.153       29     1.417     4995     4.007     0.157     29     1.501     4999     4.244     0.160       30     1.550     4996     4.384     0.171     30     1.633     4998     4.619     0.174						27	1.282	4960	3.626	Ø.153
29 1.417 4995 4.007 0.157 29 1.501 4999 4.244 0.160 30 1.550 4996 4.384 0.171 30 1.633 4998 4.619 0.174						28	1.391	4984	3.935	Ø.153
30 1.550 4996 4.384 0.171 30 1.633 4998 4.619 0.174						29		4999	4.244	0.160
41 1 44 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4						30	1.633	4998	4.619	0.174
						31	1.837	4999	5.195	Ø.219

## TABLE 5. (cont'd)

(g)

(h)

# NORMAL PLOT DATA

_____

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=8+0-, d=1.50 SITUATION: n=32, k=31, r=8+0-, d=1.67

-									
			STANDARDIZED	STD.				STANDARDIZE	STD.
	CONTRAST	# R	CONTRAST	DEVIATION		CONTRAST	# R	CONTRAST	DEVIATION
1	-0.681	Ď	-1.926	Ø.185	ĩ	-0.683	Ø	-1.931	Ø.182
2	-0.522	Ø	-1.478	0.136	2	-0.527	0	-1.490	0.137
3	-0.429	Ø	-1.214	Ø.119	3	-0.429	ß	-1.215	0.119
4	-0.358	Ø	-1.013	0.110	4	-0.358	Ø	-1.014	0.111
5	-0.298	Ø	-0.843	0.104	5	-0.300	Ø	-0.849	0.105
6	-0.247	Ø	-0.699	0.099	6	-0.249	Ø	-0.704	0.101
7	-0.201	Ø	-0.568	0.097	7	-0.202	Ø	-0.572	0.097
8	-0.157	Ø	-0.444	0.095	8	-0.159	Ø	-0.450	0.094
9	-0.117	1	-0.330	0.093	9	-0.118	Ø	<b>-0.334</b>	0.092
10	-0.077	Ø	-Ø.217	0.093	10	-0.079	Ø	-0.224	0.091
11	-0.038	Ø	-0.108	0.092	11	-0.039	Ø	-0.111	0.091
12	0.000	Ø	0.000	0.092	12	-0.001	0	-0.002	0.091
13	0.038	Ø	0.108	0.092	13	0.038	0	0.107	0.091
14	0.077	Ø	0.217	0.092	14	0.076	Ø	0.216	0.092
15	0.116	ø.	Ø.328	0.093	15	0.116	0	0.327	0.093
16	0.158	1	0.447	0.094	16	0.157	1	0.443	0.095
17	0.202	5	0.571	0.095	17	0.201	Ø	Ø.567	0.097
18	0.249	6	0.704	0.099	18	0.247	2	0.697	0.100
19	0.300	7	0.848	0.103	19	0.298	2	0.843	0.105
20	0.359	16	1.017	0.109	20	Ø.357	2	1.010	0.111
21	0.429	47	1.214	Ø.118	21	0.428	8	1.211	0.120
22	0.520	97	1.470	0.134	22	Ø.522	40	1.476	Ø.138
23	0.664	460	1.879	0.163	23	Ø.675	217	1.910	0.177
24	1.021	4498	2.887	0.192	24	1.174	4754	3.322	0.206
25	1.205	4896	3.408	0.168	25	1.368	4981	3.868	0.171
26	1.335	4975	3.775	0.157	26	1.502	4994	4.249	0.155
27	1.448	4993	4.096	0.152	27	1.616	4999	4.571	Ø.152
28	1.554	4998	4.396	0.152	28	1.725	5000	4.878	Ø.152
29	1.666	5000	4.712	0.159	29	1.837	5000	5.197	0.159
30	1.802	5000	5.098	0.177	30	1.976	5000	5.588	Ø.176
31	2.004	5000	5.669	Ø.219	31	2.176	5000	6.156	Ø.218

This can be seen in an examination of the 23 error contrasts in Table 5-b (in which the eight real effects are all of size,  $d_{e} = l\sigma$ ). They are no longer symmetrical about rank 12. If we compare them to the 23 e.v.n.o.s. in Table 4, we see that the contrasts closest in rank to the real effects, rank 23, is approximately 0.80 of the expected value and at rank 22, 0.90.

With the smaller real effects, the degrading of the expected contrasts from the correct number of e.v.n.o.s. is more apparent. At ranks 23, 22, and 21 in Table 5-b, the spillover of real effects into those intended-to-be error ranks was appr ximately 33%, 21%, and 14% respectively. That last value means that in one of seven experiments with 31 contrasts and eight real effects of size d = +1.00s, the eleventh largest effect will be real. Conversely, 7% of the time, the fifth largest ranking contrast will not be real.

A summary table, Table 6, provides an overview of the data in Tables 5-a through 5-h.

TABLE 6. SPILLOVER OF REAL AND ERROR CONTRASTS AS A FUNCTION OF EFFECT SIZE (Situation n = 32, k = 31, r = 8, all positive)

Effect	Effect	R	ank Wi	nere R-	-Spille	over	Perc	ent E-	-Spille	over
Size	Size	E	xceeds	this	Percer	ıt		at F	Rank	
(d s _c )	(d o)	5%	10%	15%	20%	25%	#24	#25	#26	#27
4.72	1.67	x	x	x	x	x	4	x	x	x
4.24	1.50	23	x	x	x	x	11	x	x	x
3.76	1.33	22	23	x	x	x	21	6	2	1
3.53	1.25	22	23	23	23	x	28	10	3	1
3.25	1.15	21	22	23	23	23	34	15	6	3
2.97	1.05	20	21	22	23	23	40	22	11	5
2.82	1.00	19	21	22	22	23	44	26	13	7
1.41	0.50	7	12	15	18	20	59	54	50	43

Table 6 shows, for example, that among 31 contrasts, of which eight are real, if all real effects are of size d = 1.15 $\sigma$  (or 3.25 $s_c$ ), we might expect to find one of them, not among the eight largest contrasts of the ordered values, but ranking tenth in size more than 10% of the time. Conversely, 15% of the time, the seventh largest contrast would actually be an error contrast. Since the numbers in Table 6 are all dependent on the size of the experiment and the number and sizes of the real effects, their value to the reader is only to show that caution is required when viewing a set of ordered contrasts and assuming the largest are the real effects, even when they deviate from the null line.

EFFECT OF HAVING MIXED POSITIVE AND NEGATIVE EFFECTS. Let us increase the realism of our simulated data by introducing some negative real effects as well. We have seen what happens when all real effects are bunched at the positive end. The data in Tables 7-a through 7-d allows us to see how the contrasts and the spillover of real and error contrasts into unintended locations change as the proportion of negative effects change. For this table, the following situations were generated.

n = 32, k = 31, r = 8,  $d = 1.00\sigma$ , with 1, 2, 3, or 4 of the eight real effects being negative.

Scanning the four tables that make up Table 7, one can see that more E-spillover and R-spillover occur at that end of the ordered contrasts where more real effects are intended to be located. For example, in Table 7-a, at the negative end where only one real negative effect was added, 11% of the runs would have real contrasts located at the first adjacent error rank, #2. At the other end, where seven positive real contrasts were added, 32% of the runs would have real contrasts located at the first adjacent error rank, #24.

Furthermore, the 23 mean contrasts in the ranks intended to contain error contrasts are no longer symmetrical as the expected values in Table 4 are. Instead, they are asymmetrical when the number of positive and negative real effects are uneven and are more degraded from their expected values on the end where the most real effects were originally added.

TABLE 7. RESULTS WITH MIXED POSITIVE AND NEGATIVE EFFECTS

(a)

(b)

NORMAL PLOT DATA

NORMAL PLOT DATA

こうには 単分の グラング 医している ののない のの を見る かんかん (人の)をしてい

SITUATION: n=32, k=31, r=6+2-, d=1.00SITUATION: n=32, k=31, r=7+1-, d=1.00

	CONTRAST	# R	STANDARDIZED CONTRAST	STD. DEVIATION	*	CONTRAST	# R	STANDARDIZED CONTRAST	STD. DEVIATION 0.277
•	-1.044	3905	-2.953	Ø.296	1	-1.203	4682	-3.403	Ø.218
1 2	-0.657	552	-1.858	0.165	2	-0.874	3445	-2.471	Ø.154
3	-0.517	225	-1.462	0.132	3	<b>-0.627</b>	869	-1.775	Ø.130
4	-0.426	130	-1.205	0.119	4	<b>-0.</b> 506	391	-1.432	
5	-0.356	64	-1.007	0.111	5	-0.421	215	-1.191	0.116
6	-Ø.299	34	-Ø.847	Ø.105	6	<b>-</b> Ø.353	126	-0.999	0.108
7	-0.249	39	-0.705	0.100	7	-Ø.295	98	-0.835	0.103
8	-0.249	21	-0.571	0.097	8	-0.244	59	-0.691	0.099
	-0.158	31	-0.447	0.094	9	-0.199	34	<b>-</b> Ø.562	0.096
9		12	-0.330	0.093	10	-Ø.155	31	-Ø.439	0.094
10	-0.117 -0.077	20	-0.219	0.092	11	-0.115	30	<b>-0.326</b>	0.093
11		29	-0.109	0.091	12	-0.076	29	-0.216	0.092
12			-0.001	Ø.090	13	-0.038	25	-0.107	0.092
13		35	0.107	Ø. Ø91	14	0.001	37	0.002	0.092
14		42	Ø. 217	0.091	15	0.039	35	0.110	0.092
15		50		Ø. Ø91	16	0.078	50	0.220	0.092
16		74	Ø.326	Ø. Ø93	17		67	0.330	0.095
17		103	0.441	Ø. Ø94	18	0.157	79	0.443	0.096
18		127	Ø.559	0.094 0.097	19	0.200	113	Ø.565	0.098
19		182	0.688	0.097 0.100	20	0.245	193	Ø.693	0.100
20		265	0.827		21	0.294	247	Ø.831	0.102
21	Ø.345	408	Ø.976	0.104	22	Ø.348	363	Ø.984	0.106
22		603	1,143	0.107	23	0.411	545	1.163	Ø.111
23		892	1.340	0.114	24		840	1.369	0.117
24	Ø.561	1610	1.588	0.124	25		1475	1.627	Ø.128
25	0.670	2873	1.895	ø.136	25		2885	1,960	0.143
26	Ø.783	3777	2.215	0.145	27	Ø.821	3916	2.323	Ø.155
27	0.896	4411	2.534	0.150	28		4469	2.683	ø.159
28	1.008	4708	2.852	0.153	26 29	-	4757	3.057	0.168
29	1.125	4858	3.181	0.162	_		4916	3,483	0.184
30	1.266	4942	3.581	Ø.173	30	1.450	4979	4.102	0.227
31		4978	4.182	Ø.216	31	1.420	73/3		

## TABLE 7 (cont'd)

(c)

(d)

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=5+3+, d=1.00

## NORMAL PLOT DATA

SITUATION: n= 32, k= 31, r= 4+4-, d=1.00

						· <del>-</del>			
			CELVIDADDY75D	STD.				STANDARDIZED	
_		4 -	STANDARDIZED	DEVIATION		CONTRAST	# R	CONTRAST	DEVIATION
-	CONTRAST	# R	CONTRAST	Ø.258	i	-1.370	4931	-3.876	0.244
1	-1.300	4864	-3.676		2	-1.118	4746	-3.163	0.203
2	-1.017	4404	-2.876	Ø.217	3	-Ø.929	4232	-2.627	Ø.184
3	-0.797	3191	-2.254	0.183	4	-0.755	3020	-2.136	Ø.165
4	-0.614	1130	-1.735	0.143	5	-0.602	1273	-1.702	Ø.139
5	-Ø.499	53Ø	-1.411	Ø.125	š	-ø.496	685	-1.403	0.121
6	-0.418	301	-1.182	0.114	7	-Ø.416	370	-1.178	0.110
7	-Ø.352	177	-Ø.997	0.106	8	-0.350	235	-0.991	0.104
8	-0.296	125	<del>-</del> Ø.838	0.102	9	-Ø.295	145	-0.834	0.099
9	-0.246	67	-Ø.695	0.099	10	-0.244	112	-0.691	Ø. Ø95
10	-0.200	64	-0.565	0.096	11	-Ø.199	93	-0.563 .	0.094
11	<b>-0.156</b>	46	-0.442	0.094	12	-Ø.157	54	-0.443	0.093
12	-0.116	47	-0.327	Ø.093	13	-Ø.116	44	-0.329	0.092
13	-0.076	20	-0.215	0.092	14	-0.077	35	-0.218	0.092
14	-0.038	31	-0.107	0.091	15	-0.039	31	-0.110	Ø.Ø91
15	0.000	27	0.001	0.091		-0.001	27	-0.002	0.091
16	0.038	40	0.108	0.091	16	0.038	30	0.106	0.092
17	0.076	37	Ø.216	0.092	17	Ø. Ø75	33	0.214	0.092
18	Ø.115	63	0.326	0.092	18	Ø.975 Ø.116	55	Ø. 328	0.093
19	0.156	77	0.442	0.094	19		54	0.441	0.094
20	0.199	98	Ø.562	Ø.096	20	Ø.156	73	Ø.562	0.097
21	0.245	132	0.692	ø.098	21	0.199 0.245	164	0.694	0.099
22	0.294	213	Ø.833	0.101	22	Ø. 296	160	Ø.836	0.101
23	0.348	286	0.984	0.105	23	0.350	248	Ø.99Ø	Ø.105
24	0.413	485	1.168	0.112	24		410	1.175	Ø.113
25	0.490	765	1.386	Ø.121	25	0.416 0.495	694	1.401	Ø.123
26	Ø.586	1390	1.657	Ø.133	26		1196	1.687	Ø.137
27	Ø.719	2986	2.033	Ø.153	27	Ø.596	3090	2.132	Ø.166
28	0.863	3975	2.442	Ø.166	28	8.754		2.613	Ø.187
29	1.018	4608	2.878	Ø.179	29	0.924	4193	3.139	0.205
30	1.183	4861	3.345	0.194	30	1.110	4704	3.139	0.248
21	1 414	4968	4.000	Ø.238	31	1.365	4923	3.001	01240

In a real experiment the data will neither be as smooth as this aggregate data nor will we know how many effects are real nor their sign. However, we can expect fewer spillovers on the end where the fewer obvious effects are visible.

EFFECT OF MIXING THE SIZES OF THE REAL EFFECT. Up to this point, in order to simplify the discussion, we have used simulations in which all real effects were of the same size. In practice this is unlikely to occur. Therefore, the information in these tables are illustrative at best and of limited practical value.

Let us see how the contrasts and spillover patterns change when the real effects are of different magnitudes. For this, let us examine this situation:

```
n = 32, k = 31, r = 8,d (one for each r) = +1.00\sigma, +1.00\sigma, +1.33\sigma, +1.67\sigma, +1.67\sigma, +2.00\sigma, +2.00\sigma.
```

The results are shown in Table 8.

It would be a valuable tool if a limited number of stylized tables of the type shown in this report could be prepared from which an investigator might draw data which he could then combine to fit his particular situation. Could we have predicted these results from the tables that we've already generated? To what extent does the data in Table 8 (where the average of the eight effects sizes equals 1.5) resemble the data in Table 5-g where d = +1.5\sigma? To what extent does the data in Table 8 resemble the averages of values from four sets of tables (Table 5-b, 5-f, 5-h, and 3-a) where all eight of the real effects are of size 1.00\sigma, 1.33\sigma, 1.67\sigma, and 2.00\sigma, respectively?

Fewer real effects spilled into the lower ranks when all eight effects were of size 1.5 $\sigma$  (Table 5-g) than when they were mixed, but with sizes averaging 1.5 $\sigma$  (Table 8). The smaller size real effects exert a much stronger effect on the data than the larger ones in the mixed data.

## TABLE 8. RESULTS WHERE THE SIZES OF THE REAL EFFECTS ARE MIXED

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=MIXED, d=1.00

-				
			STANDARDIZED	STD.
#	CONTRAST	# R	CONTRAST	DEVIATION
1	-Ø.681	Ø	-1.927	Ø.181
2	<b>-</b> Ø.525	1	-1.484	0.140
3	<b>-0.43</b> Ø	Ø	-1.216	Ø.122
4	<b>-0.</b> 359	1	-1.016	Ø.111
5 6	-0.300	1	-0.849	Ø.1Ø6
6	<b>-0.248</b>	2	-0.702	Ø.1Ø2
7	-0.201	Ø	<b>-0.</b> 569	0.098
8	<b>-0.157</b>	2 2	-0.444	0.096
9	<b>-0.116</b>		<b>-0.327</b>	0.095
10	-0.076	6	-0.216	Ø.Ø93
11	-0.037	4	-0.105	0.093
12	0.000	1 Ø	0.000	0.091
13	Ø.Ø39	16	0.109	0.092
14	0.076	16	Ø.216	0.092
15	Ø.116	29	Ø.328	0.093
16	Ø.158	21	Ø.446	Ø.Ø96
17	0.200	42	Ø.566	ø.ø98
18	0.246	46	Ø.696	0.100
19	0.298	91	Ø.842	0.104
2Ø	Ø.354	153	1.000	0.108
21	0.421	246	1.190	Ø.115
22	0.505	433	1.427	Ø.127
23	Ø.625	1042	1.767	Ø.149
24	Ø.827	3398	2.339	Ø.186
25	1.037	4554	2.934	0.194
26	1.235	4900	3.492	0.186
27	1.411	4985	3.992	0.182
28	1.589	4999	4.495	Ø.183
29	1.775	5000	5.020	Ø.191
3Ø	1.979	5000	5.598	0.206
31	2.256	5000	6.380	0.254

「一位置するののない。 なんののない かんののない (あのののを)

Nor does the average of results from four sets of data (Tables 5-f, 5-h, and 3-a) that bracket the mixed data in Table 8 adequately represent the results from the mixed data. Efforts to improve this resemblance using log and z-score transformations were also inadequate. Here again the smaller effects have a stronger influence on the degree of spillover and the degradation in contrast estimates. In fact, the mixed data fell between data where all effects were of size lo and 1.330, illustrating again the greater impact of the marginal effects.

Although not totally unexpected, these results indicate that no simple relationship exists. The idea of having a limited set of tables from which an investigator can select and recombine information to better understand his own particular results is not likely to become possible without considerable more work, if at all.

EFFECT OF A DIFFERENT NUMBER OF REAL EFFECTS. Zahn (1975b) found that as the number of real effects increased, there was a drop in the detection rate. Let us examine the effect of changing r while holding the other parameters constant, for the following situations:

$$n = 32$$
,  $k = 31$ ,  $d_r = +1.25\sigma$ ,  $r = 4$ ; 5; 6; 7; 9; 10; 12; or 16

The mean results from 5000 runs are given in Table 9.

As the number of real effects increase, the greater the chances are that one or more of the larger contrasts are not real.

EFFECT OF INCREASING THE SIZE OF THE EXPERIMENT. Since increasing n in an experiment decreases the size of the error variance, the sensitivity of the test for significance increases and more real effects are detectable. The same principle should apply to this plot data.

The following situations are shown in Table 10.

$$r = 8$$
,  $d = +1.00\sigma$ ,  $n = 32$ , 64, or 128, and  $k = (n - 1)$ .

TABLE 9. CHANGES IN RESULTS AS A FUNCTION OF THE NUMBER OF REAL EFFECTS

(a)

(b)

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=4+0+, d=1.25

NORMAL PLOT DATA

SITUATION: n= 32, k= 31, r= 5+0-, d=1.25

			STANDARDIZE	D STD.	_			STANDARDIZED	
#	CONTRAST	# R	CONTRAST	DEVIATION		CONTRAST	- •	CONTRAST	DEVIATION
1	-0.711	Ø	-2.011	Ø.179	7	-0.699	6	-1.977	Ø.179
2	<b>-0.</b> 552	Ø	-1.561	Ø.136	2	-0.545	0	-1.543	0.133
3	-0.461	Ø	-1.305	0.117	3	-0.454	Ø	-1.285	0.117
4	-0.394	Ø	-1.114	0.108	4	-0.383	Ø	-1.083	0.106
5	-0.338	1	-0.956	0.101	5	-0.327	Ø	-0.926	0.101
6	-Ø.289	Ø	-0.817	0.096	6	-0.278	Ø	-0.786	0.095
7	-0.245	Ø	-0.693	0.093	7	-0.233	1	-0.659	0.091
8	-0.205	Ø	-0.581	0.090	8	-0.193	Ø	-0.545	0.089
9	-0.169	Ø	-0.477	0.088	9	-0.154	Ø	-0.435	0.088
10	-0.134	Ø	-0.378	0.087	10	-0.118	Ø	-0.334	0.087
11	-0.099	Ø	-0.279	0.086	11	-0.083	1	-0.235	0.086
12	-0.065	Ø	-0.184	0.085	12	-0.049	2	-0.138	Ø.Ø85
13	-0.033	2	-0.093	0.085	13	-0.015	4	-0.042	Ø.Ø85
14	0.000	1	0.001	0.084	14	0.021	2	Ø.Ø58	0.084
15	0.033	3	0.094	0.085	15	0.053	6	0.151	0.085
16	0.067	4	0.189	0.085	16	0.088	6	0.248	0.085
17	0.100	5	0.283	0.085	17	0.122	4	Ø.345	0.086
18	Ø.135	7	Ø.381	0.086	18	Ø.159	11	0.449	0.088
19	0.171	14	0.483	0.087	19	0.198	12	0.559	0.090
20	0.209	23	Ø.591	0.089	20	0.238	17	Ø.674	Ø.092
21	0.249	17	0.705	0.092	21	0.282	38	Ø.797	0.096
22	Ø.292	31	0.825	0.095	22	0.330	55	0.933	0.099
23	Ø.339	42	0.958	0.099	23	0.384	78	1.087	0.104
24	0.394	66	1.114	0.104	24	0.450	140	1.274	0.114
25	0.461	126	1.304	Ø.113	25	0.535	320	1.513	Ø.125
26	0.545	284	1.542	Ø.125	26	0.659	915	1.864	0.147
27	0.671	765	1.899	Ø.15Ø	27	0.892	3836	2.524	Ø.187
28	0.938	3894	2.653	Ø.198	28	1.080	4661	3.053	0.186
29	1.158	4779	3.274	0.202	29	1.245	4913	3.521	0.184
30	1.359	4945	3.845	Ø.21Ø	30	1.421	4979	4.018	0.192
31	1.614	4991	4.564	0.247	31	1.654	4999	4.678	0.233
-				V 1 2 1 1					

# TABLE 9. (cont'd)

(c) (d)

## NORMAL PLOT DATA

SITUATION: n=32, k=31, r=6+0-, d=1.25 SITUATION: n=32, k=31, r=7+0-, d=1.25

NORMAL PLOT DATA

		# R	STANDARDIZED			CONTRAST	# R	STANDARDIZED CONTRAST	STD. DEVIATION
	CONTRAST		CONTRAST	DEVIATION	i	-Ø.685		-1.936	9.189
1	-0.694	Ø	-1.964	Ø.179	2	-Ø.531	ø	-1.503	0.133
2	-0.537	Ø	-1.520	0.134	3	-0.437	ĕ	-1.236	0.116
3	-0.445	Ø	-1.260	Ø.117	4	-0.368	ø	-1.040	0.107
4	-0.376	1	-1.062	Ø.108	5	-0.310	ø	-Ø.876	0.101
5	-0.317	Ø	-0.898	0.101	6	-0.258	ø	-0.730	0.098
6	-0.267	1	<b>-0.7</b> 55	0.096	7	-0.212	ø	-0.599	0.095
7	-0.221	1	-0.626	0.094	8	-0.170	Ø	-0.480	0.093
8	-0.181	Ø	-0.511	0.092	9	-Ø.170 -Ø.129	ø	-0.365	0.092
9	-0.142	1	-0.402	0.091	_		3	-Ø.303 -Ø.257	0.091
10	-0.104	Ø	<b>-</b> 0.295	ø.Ø89	10	-0.091	2	-0.149	0.091
11	-0.069	5	-0.194	0.088 、	11	-0.053	-	-0.043	0.090
12	-0.034	1	-0.095	Ø.087	12	-Ø.Ø15	4		0.090 0.091
13	0.002	3	0.005	Ø.Ø87	13	0.021	3	0.060	Ø. Ø91
14	0.036	8	0.102	Ø.Ø87	14	0.058	4	0.165	0.091
15	0.071	3	0.202	ø.Ø88	15	Ø.096	6	0.272	
16	0.107	3	0.303	0.088	16	Ø.135	12	0.383	0.092
17	0.144	16	0.408	0.090	17	Ø.175	8	0.495	0.094
18	Ø.183	14	Ø.518	0.091	18	0.218	21	0.617	0.095
19	Ø.224	27	0.633	0.094	19	Ø.263	39	0.744	0.097
20	Ø.269	26	Ø.762	0.096	20	0.312	81	0.883	0.100
21	Ø.318	49	0.901	0.100	21	Ø.369	114	1.043	0.105
22	Ø.375	73	1.062	0.104	22	Ø.435	226	1.230	0.113
23	0.443	183	1.252	0.112	23	Ø.517	396	1.463	0.124
24	Ø.528	386	1.493	0.124	24	Ø.635	1113	1.796	0.143
25	0.647	972	1.830	Ø.142	25	Ø.833	3648	2.356	ø.166
26	Ø.859	3769	2.428	Ø.173	26	Ø.993	4556	2.808	0.165
27	1.030	4621	2.912	0.173	27	1.127	4854	3.188	Ø.162
28	1.180	4881	3.337	Ø.172	28	1.250	4935	3.535	ø.163
29	1.321	4967	3.735	Ø.173	29	1.373	4984	3.883	Ø.168
				Ø.173	30	1.516	4993	4.289	0.181
30	1.475	4992	4.171	Ø. 184 Ø. 229	31	1.723	4998	4.875	0.222
31	1.698	4997	4.802	0.229					

TABLE 9. (cont'd)

(e)

(f)

## NORMAL PLOT DATA

SITUATION: n= 32, k= 31, r= 9+0-, d=1.25

# NORMAL' PLOT DATA

SITUATION: n= 32, k= 31, r=10+0-, d=1.25

	<del></del>					<del></del>			
	CONTRAST	# R	STANDARDIZED CONTRAST	STD. DEVIATION		CONTRAST	<b>₽</b> R	STANDARDIZED CONTRAST	STD. DEVIATION
ī	-Ø.675	, î	-1.908	Ø.183	í	-0.669	ø	-1.891	Ø.183
2	-0.516	Ø	-1.459	0.138	2	-0.509	ø	-1.439	Ø.139
3	-0.419	ø	-1.186	Ø.130	3	-0.409	ĕ	-1.157	0.122
4	-0.348	ø	-0.983	Ø.111	4	-0.338	ø	-0.956	6.113
5	-0.287	ø	-0.813	0.104	5	-0.278	ě	-0.785	0.109
6	-0.235	ø	-0.664	0.100	6	-Ø.223	ø	-0.632	6.164
7	-Ø.187	ě	-0.529	Ø. Ø98	7	-0.174	ĩ	-0.493	0.101
8	-0.143	ø	-0.404	Ø. Ø97	8	-0.128	ī	-0.363	0.099
9	-0.101	ĭ	-Ø.287	0.095	ğ	-0.084	ī	-0.238	0.097
10	-0.060	2	-0.171	0.093	10	-0.041	5	-0.115	0.096
11	-0.020	õ	-0.058	0.093	11	0.001	6	0.002	0.096
12	0.020	8	0.057	Ø. Ø93	12	0.043	6	Ø.121	Ø. Ø96
13	0.060	6	Ø.169	Ø. Ø92	13	0.085	6	0.240	Ø. Ø97
14	0.100	13	Ø.283	0.093	14	Ø.129	14	0.365	0.099
15	0.143	16	0.403	0.095	15	8.174	34	Ø.492	0.100
16	0.187	33	0.528	Ø.Ø97	16	0.222	57	0.627	0.102
17	0.235	37	0.664	Ø.100	17	0.275	69	0.777	0.102
18	0.286	66	Ø.81Ø	0.103	18	0.335	111	0.947	0.110
19	0.344	113	0.974	0.109	19	0.404	244	1.142	0.118
20	0.415	246	1.172	Ø.117	20	0.491	510	1.389	0.128
21	0.500	494	1.416	0.128	21	0.608	1278	1.720	0.141
22	0.620	1175	1.753	0.143	22	0.778	3560	2.202	Ø.152
23	0.798	3643	2.258	Ø.155	23	0.914	4465	2.585	0.147
24	0.941	4506	2.661	0.150	24	1.026	4795	2.901	0.139
25	1.052	4796	2.976	Ø.145	25	1.118	4926	3.162	0.137
26	1.154	4910	3.265	Ø.142	26	1.205	4953	3.407	Ø.136
27	1.252	4959	3.541	Ø.141	27	1.291	4975	3.652	Ø.136
28	1.350	4978	3.818	0.145	28	1.381	4992	3.905	0.139
29	1.456	4994	4.119	0.151	29	1.481	4995	4.188	0.147
30	1.584	4998	4.480	Ø.169	30	1.603	4996	4.534	0.163
31	1.781	5000	5.038	0.214	31	1.794	5000	5.074	Ø.206

TABLE 9. (cont'd)

(g)

(h)

NORMAL PLOT DATA

SITUATION: n=32, k=31, r=12+0-, d=1.25 SITUATION: n=32, k=31, r=16+0-, d=1.25

NORMAL PLOT DATA

					_				
			STANDARDIZED					STANDARDIZED	STD.
	CONTRAST	# R	CONTRAST	DEVIATION		CONTRAST	# R	CONTRAST	DEVIATION
1	-Ø.653	Ø	-1.846	0.188	1	-0.613	Ø	-1.733	0.191
2	-0.489	Ø	-1.383	0.142	2	-0.442	Ø	-1.249	0.150
3	-0.388	1	-1.099	0.125	3	-0.334	Ø	-0.946	0.132
4	-0.312	0	-0.884	0.117	4	-Ø.252	Ø	-0.711	0.124
5	-0.250	1	-0.708	0.110	5	-0.183	2	-0.517	0.118
6	-0.193	2	-0.546	0.105	6	-0.118	7	-0.333	0.114
7	-0.142	Ø	-0.401	0.103	7	-0.058	10	<b>-0.</b> 165	0.111
8	-0.093	Ø	-0.264	0.101	8	-0.002	18	-0.005	0.109
9	-0.047	7	-0.132	0.100	9	0.057	26	Ø.161	0.110
Ø	0.000	7	0.000	0.099	10	0.117	37	0.330	0.112
. 1	0.046	13	Ø.131	0.100	11	Ø.181	81	0.511	0.115
2	0.093	14	Ø.264	0.100	12	0.252	157	0.711	0.120
3	0.143	31	0.403	0.101	13	0.329	279	0.930	0.126
4	0.193	49	Ø.545	0.104	14	0.422	584	1.195	0.134
5	0.248	86	0.701	0.107	15	0.540	1409	1.527	0.141
6	0.309	119	0.875	0.111	16	0.698	3549	1.974	0.140
7	0.380	233	1.076	0.117	17	Ø.816	4394	2.308	0.131
8	0.467	518	1.322	0.127	18	0.909	4735	2.571	0.123
9	0.582	1352	1.645	0.140	19	0.986	4862	2.788	Ø.119
Ø	0.748	3525	2.115	0.149	20	1.052	4932	2.976	0.114
1	0.877	4487	2.479	0.145	21	1.114	4962	3.151	0.111
2	0.979	4768	2.768	0.137	22	1.169	4983	3.308	0.110
3	1.066	4888	3.016	0.129	23	1.225	4988	3.464	0.109
4	1.144	4953	3.235	0.127	24	1.277	4994	3.613	0.109
5	1.217	4964	3.442	Ø.125	25	1.332	4997	3.766	0.109
6	1.287	4986	3.640	Ø.126	26	1.389	4996	3.928	0.111
7	1.360	4997	3.848	0.129	27	1.449	5000	4.098	0.114
8	1.441	5000	4.075	0.132	28	1.517	4998	4.291	0.120
9	1.531	4999	4.331	0.142	29	1.597	5000	4.517	0.127
Ø	1.649	5000	4.663	0.158	30	1.701	5000	4.810	0.146
31	1.827	5000	5.168	0.201	31	1.874	5000	5 300	9 194

# TABLE 10. CHANGES IN RESULTS AS A FUNCTION OF THE SIZE OF THE EXPERIMENT

(a)

(b)

NORMAL PLOT DATA

MOKNAL	FLOI	De 1.11	

SITUATION: n= 64, k= 63, r= 8+8-, d=1.88

							STANDARDIZE	D STD.
		STANDARDIZED			CONTRAST	# R	CONTRAST	DEVIATION
CONTRAST	# R	CONTRAST	DEVIATION	1	-0.570	•	-2.281	0.114
-0.686	8	-1.948	6.182	2	-0.473	8	-1.893	Ø. 082
-Ø.525	8	-1.485	Ø.138	3	-0.419	6	-1.675	6.871 8.864
-0.430	ø	-1.215	6.121 6.112	4	-0.378	0	-1.512	9.868
-0.359 -0.299	1 5	-1.814	0.106	5	-0.346	0	-1.383	8.858
-0.248	6	-0.847 -0.708	0.101	6	-0.318	9	-1.274	0.855
-0.202	4	-0.700	0.098	7	-0.294	9	-1.176	0.053
-0.158	9	-0.446	Ø. Ø95	8	-0.272	0	-1.089	8.051
-0.117	18	-0.331	8.894	9	-0.252	Ø	-1.009	0.050
-8.878	14	-0.220	0.093	18	-0.234	0	-0.935 -0.867	0.048
-0.039	38	-0.111	0.092	11	-0.217	8	-9.804	8.847
-0.001	28	-0.004	0.091	12	-0.201	6	-6.743	8.846
0.036	40	0.102	0.091	13	-0.186	9 8	-0.684	9.84
8.874	62	6.269	6.692	14	-0.171	8	-0.627	8.049
0.114	83	6.323	0.092	15	-0.157	1	-6.574	8.04
8.154	109	0.436	0.092	16	-0.144	ŝ	-0.522	6.64
0.197	156	0.558	6.694	17	-0.130	8	-0.478	0.04
0.242	206	0.684	0.096	- 18	-0.117	6	-0.421	8.84
8.298	258	Ø. 820	8.099	19	-0.105	8	-0.371	8.84
0.343	444	0.971	0.102	28	-0.093	ě	-0.324	0.84
0.403	670	1.139	8.186	21	-8.881	ø	-0.278	6.04
9.472	1050	1.335	0.111	22	-0.069	ĭ	-8.236	0.64
0.555	1754	1.568	8.119	23	-0.058	Ġ	-6,184	0.04
0.652	2781	1.843	0.131	24	-8.846	ø	-0.137	8.84
0.755	3694	2.135	0.138	25	-0.034	6	-8.898	6.84
Ø.857	4288	2.423	9.141	26	-0.023	ě	-0.844	8.84
0.956	4618	2.784	0.143	27	-0.011		-0.001	6.84
1.658	4810	2.993	<b>0.</b> 146	28	8.000	ě	0.044	8.84
1.170	4918	3.308	0.153	29	8.811	ě	6.696	8.84
1.303	4959	3.684	ø.171	30	0.823	ī	6.136	8.84
1.506	4993	4.269	Ø.218	31	0.034 0.045	è	0.182	8.84
				32	8.057	3	0.229	8.04
				33 34	0.069	ě	8.276	8.84
				35	5.081	ĭ	0.322	6.94
				36	8.893	į	8.378	8.84
				37	0.105	4	0.428	8.84
				38	8.118	ì	8.471	8.84
				39	g. 131	4	0.523	9.84
				48	0.143	Ğ	0.573	8.84
				41	6.157	Ă	8.627	9.94
				42	9.171	ž	. 685	6.64
				43	<b>9.</b> 186	<u>-</u>	8.744	0.04
				11		7	0.006	9.84
				45		8	0.873	8.04
				46		6	8.948	8.0
				47		12	1.013	9.8
				48		21	1.091	0.0
				49		19	1.176	0.0
				50		43	1.267	0.0
				51		62	1.376	0.0
				52		105	1.505	0.0
				53		161	1.659	0.0
				54		354	1.862	0.0
				55		942	2.158	0.0
				56		3732	2.729	0.1
				57		4645	3.182	0.1
				58		4895	3.548	0.1
				59		4967	3.863	0.1
				68		4993	4.160	0.1
				61		4997	4.479	0.1
				63		4998	4.856	0.1
						5000	5.415	8.1

TABLE 10. (cont'd)

(c)

				57	-0.011	8	-0.662	8.820
				58	-0.807	Ğ	-0.646	0.828
				59	-0.003	ē	-0.620	8.020
				60	0.000	ě	8.881	0.020
				61	6.844	ā	8.622	6.620
				62	0.008	ē	8.044	0.020
	NORMA	L PLOT DATA		63	0.011	9	0.065	8.820
				64	0.015	8	0.086	0.020
SITUATION: n=	·128, k=	127, r= 8+8-,	d=1.99	65	8.819	6	8.186	6.620
				66	6.622	8	0.127	0.020
				67	8.826	8	6.148	0.020
		STANDARDIZE		68	0.030	6	0.176	8.820
<b>♦ CONTRAST</b>	# R	CONTRAST	DEVIATION	69	6.634	•	Ø.191	0.020
1 -0.454	0	-2.569	<b>0.6</b> 74 <b>6.</b> 653	78	0.038	8	9.212	6.020
2 -0.392	9	-2.215	0.033 0.044	71	9.641	ø	0.233	0.020
3 -0.357	e 8	-2.019	6.639	72	8.845	•	Ø.255	8.828
4 -0.332	9	-1.878	<b>0.0</b> 35	73	0.849	6	8.277	6.820
5 -0.312		-1.768	6.634	74	0.053	6	0.298	0.020
6 -0.296 7 -0.282	0 <b>8</b>	-1.675 -1.597	ø. ø33	75	8.857	9	6.320	0.820
8 -0.270	ø	-1.525	6.031	76 77	0.660 <b>0.8</b> 64	ě	0.342	6.820 6.820
9 -0.258	ě	-1.461	6.630	78	8.869	8	<b>0.</b> 365 <b>0.</b> 388	8.620
10 -0.248	ě	-1.462	6.029	79	0.073	ě	0.410	Ø. Ø21
11 -0.238	ø	-1.348	0.028	89	0.077	8	Ø. 434	8.021
12 -0.229	ā	-1.298	0.028	81	6.081	ě	0.457	0.021
13 -0.221	ě	-1.251	6.027	82	0.085	ä	6.486	6.021
14 -0.213	ø	-1.206	0.027	83	8.889	ě	Ø.5Ø4	0.021
15 -0.206	ø	-1.163	ø. Ø26	84	0.093	6	Ø.528	0.021
16 -0.199	ø	-1.124	<b>8.</b> 026	85	0.098	ğ	Ø.553	0.021
17 -Ø.192	ø	-1.085	Ø.025	86	0.102	ē	0.578	0.021
18 -0.185	8	-1.048	0.025	87	0.107	ē	0.603	0.022
19 -0.179	Ø	-1.013	0.024	88	0.111	8	0.628	0.622
20 -0.173	Ø	-0.978	0.024	89	0.116	Ø	Ø.654	8.022
21 -0.167	0	-0.945	8.024	96	0.120	0	Ø.68l	0.022
22 -0.161	Ð	-0.913	0.024 0.023	91	0.125	•	6.708	0.022
23 -0.156 24 -0.150	9 8	-0.882 -0.851	0.023	92	8.136		Ø.735	0.022
25 -0.145		-0.821	Ø. 923	93 94	6.135	8	g.763	0.022 0.023
26 -0.140	ø	-0.792	0.023	95	0.140 0.145	ě	Ø.791 Ø.821	6.023
27 -0.135	8	-8.764	0.023	96	0.151	9	0.851	0.023
28 -0.130	0	-0.735	6.022	97	<b>8.</b> 156	ě	Ø.882	0.023
29 -0.125	ø	-0.708	0.022	98	9.162	ě	0.914	6.621
30 -0.121	0	-0.682	9.022	99	0.167	ě	8.946	Ø. Ø24
31 -0.116	8	<b>-0.655</b>	0.822	100	8.173	0	0.979	8.824
32 -0.111	8	-0.638	0.022	101	0.179	8	1.013	0.024
33 -0.107	8	-9.685	9.922 9.822	102	Ø. 185	•	1.048	8.025
34 -0.102	9	-0.579	9.822	163	0.192	•	1.085	0.025
35 -0.098	g 8	-0.555 -0.531	8.621	184	6.199	9	1.124	0.025
36 -0.094 37 -0.089	i	-0.531	9.921	105	0.206	•	1.164	0.026
37 -0.089 38 -0.085	•	-0.482	6.621	186	8.213	•	1.208	0.627
39 -8.681	i	-0.458	0.021	107	0.221	9	1.252	0.027
40 -0.077	ě	-0.435	0.021	168 109	0.230 0.238	e e	1.299 1.349	9.028 0.029
41 -0.073	ā	-6.412	0.821	116	Ø.238	8	1.403	0.029
42 -0.069	6	-0.389	8.021	111	0.258	ő	1.468	0.029
43 -0.065	8	-0.366	8.821	112	0.270	ă	1.525	0.031
44 -0.061	ø	-0.344	0.021	113	Ø.282	ě	1.596	0.033
45 -0.057	0	-0.321	0.020	114	8.296	6	1.676	0.034
46 -0.053	8	-0.299	0.020	115	0.313	1	1.769	0.037
47 -0.849	0	-0.277	0.020	116	0.333	1	1.881	0.040
48 -0.045	9	-0.255	0.020	117	0.358	5	2.025	0.046
49 -0.041	0	-6.233	6.020	118	0.392	9	2.219	0.054
50 -0.037	8	-0.211	0.020	119	0.454	79	2.569	0.073
51 -0.034	ø	-0.190	0.020	120	0.749	4912	4.235	0.105
52 -0.030	9 e	-0.168	0.020 0.020	121	0.849	4993	4.804	0.086
53 -0.026 54 -0.022	9	-0.147 -0.126	8.020	122	8.917	5000	5.188	0.079
54 -0.022 55 -0.018	9	-0.126	8.028	123	0.973	5000	5.505	0.077
56 -0.015	8	-0.083	8.028	124 125	1.028 1.086	5000 5000	5.817	0.078
70 -0.017	•			125	1.154	5000	6.144 6.525	8.08J 8.088
				127	1.254	5000	7.091	9.103
				441		2000	7.071	

To make the comparison, let us examine the R-spillover in the first intended error rank adjacent to the rank of the eight positive real effects. The results are shown in Table 11.

TABLE 11. STANDARDIZED CONTRAST DEGRADATION AND R-SPILLOVER IN FIRST ERROR RANK AS A FUNCTION OF n WHERE r = 8 and  $d_8$  = +1.00 $\sigma$ 

k = n - 1	31	63	127
1st Error Rank	23	55	119
R-Spillover as 1st Error Rank Number of Intended Error Ranks Into Which Real Effects Might Fall More	34%	18%	2%
Than 5% of the Time	5	2	0
Mean Standardized Contrast	1.568	2.158	2.569
Expected Value	1.929	2.285	2.635
Degradation	19%	6%	2%
R-Spillover	34%	18%	2%

SUMMARY OF NORMAL PLOT CHARACTERISTICS AS A FUNCTION OF N, K, R, R+, AND D. It is apparent from the above data that contrast degradation and R-spillover are functions of all five parameters, n, k, r, R+, and d. In that regard, the results of any experiment are unique.

This suggests that preparing a set of generalizable tables would be a horrendous task and probably far too bulky to be used effectively, if at all. The search for the ideal solution, that is, to find a simple mathematical equation which expresses these relationships, is beyond the scope of this paper.

In Figure 4, however, a two-dimensional plot is given relating number of real effects and sizes of real effects (when all are equal) to R-spillover for n=32 and k=31. The results are surprisingly clean and simple, with a few exceptions, possibly due to the unreliability of the numbers and/or an inadequate model of the relationship. Work is ongoing to study this relationship further



できる。自身の主義のとのできないのである。これできないでは、特別ののでは、

Figure 4. Relating Number of Real Effects, Size of Real Effects, and R-Spillover in First Intended Error Rank.

#### NORMAL VERSUS HALF-NORMAL PLOT DATA

In a screening experiment, the primary concern is to detect all of the critical factors. Whether these factors have large or small effects is of minor importance in this initial phase, and interactions are only important to the extent that some critical ones may contain factors that do not otherwise show up as a critical main effect. That class of interaction, an "intrinsic" one, is of particular interest. During the screening phase, the investigator will have to weigh the cost-effectiveness of including some false positives in order not to miss some marginal real effects.

Is there a practical difference between normal and half-normal plots as an aid in the detection of real effects? Do they differ in the degree of R-spillover that occurs at ranks that fall at the border of real and error contrasts? There are many who continue to use the half-normal plot as a detection device. Daniel (1976), on the other hand, has more recently expressed a preference for the normal plot, although he tended to use it more as a tool to detect abnormalities in his experimental data. This change occurred because he felt that the signed contrasts of the normal plot provided more information than the absolute contrasts of the half-normal data.

In this section we will compare some advantages and disadvantages of normal and half-normal plotting insofar as the screening process is concerned.

R-SPILLOVER. The data for the following half-normal situations, an aggregate of 5000 runs, are shown in Table 12.

$$n = 32$$
,  $k = 31$ ,  $r = 8$ ,  $d = +1.00\sigma$ ;  $+1.25\sigma$ ;  $+1.5\sigma$ ; or 2.00 $\sigma$   
 $n = 64$ ;  $k = 63$ ;  $r = 8$ ,  $d = +1.00\sigma$ ,  $+1.25\sigma$ , or 1.50 $\sigma$   
 $n = 128$ ,  $k = 127$ ,  $r = 8$ ,  $d = +1.00\sigma$ 

In Table 13, the R-spillover patterns of these half-normal situations are compared with those of comparable normal situations (data in which the effects were all located at the positive end of the scale).

TABLE 12. HALF-NORMAL PLOT DATA (Situation: n = 32, k = 31, r = 8,  $d = 1.00\sigma$ )

(a) (b)

#	BIAS	#EFFECTS	STD DEV	STD BIAS	*	BIAS	#EFFECTS	STD DEV	STD BIAS
1	0.0187	30	0.01857	0. 0529	1	0.0184	1	0.01784	0. 0522
2	0. 0375	37	0. 02560	0. 1061	2	0. 0368	3	0. 02481	0. 1042
3	0. 0567	36	0. 03084	0.1604	3	0. 0558	3	0. 03029	0. 1579
4	0. 0757	43	0.03519	0. 2140	4	0. 0752	5	0. 03467	0. 2128
5	0.0951	38	0.03916	0. 2689	5	0. 0945	2	0. 03823	0. 2674
6	0.1149	45	0. 04236	0. 3250	6	0. 1144	8	0.04107	0. 3234
7	0.1344	41	0.04487	0. 3800	7	0. 1338	3	0. 04391	0. 3784
8	0.1548	61	0.04770	0. 4377	8	0. 1539	4	0. 04706	0. 4354
9	0.1764	74	0.05071	0. 4989	9	0. 1753	7	0. 04972	0. 4958
10	0.1982	66	0.05351	0. 5605	10	0. 1970	11	0. 05267	0. 5571
11	0. 2203	91	0. 05575	0. 6231	11	0. 2192	12	0. 05551	0. 6200
12	0. 24 : :	94	0.05802	0. 6880	12	0. 2420	26	0. 05756	0. 6844
13	0. 2668	142	0.06021	0. 7546	13	0. 2665	25	0.06010	0. 7539
14	0. 2916	148	0.06252	0.8247	14	0. 2926	37	0.06221	0.8275
15	0.3175	170	0.06554	0. 8981	15	0. 3200	37	0.06530	0. 9051
16	0.3456	212	0.06773	0. 9776	16	0. 3500	64	0.06788	0. 9900
17	0.3751	283	0.07081	1.0610	17	0. 3813	72	0. 07128	1.0784
18	0 4073	348	0. 07299	1. 1519	18	0.4158	82	0. 07502	1. 1762
19	0.4425	504	0.07649	1. 2515	19	0.4541	125	0.07988	1. 2843
20	0.4815	609	0.08049	1.3620	20	0. 4981	231	0. 08555	1.4088
21	0.5260	840	0.08611	1. 4878	21	0. 5515	375	0.09194	1. 5597
22	0.5753	1164	0. 09094	1. 6272	22	0. 6171	640	0. 10072	1. 7453
23	0. 6342	1610	0. 09968	1. 7937	23	0. 706 <del>9</del>	1251	0.11554	1. 9993
24	0. 7060	2443	0.10966	1.9968	24	0.8390	3178	0. 14162	2. 3731
25	0. 7875	3190	0. 12126	2, 2274	25	0. 9700	4252	0. 15021	2. 7435
26	U. 8740	3855	0. 12926	2. 4720	26	1.0865	4714	0. 14978	3. 0732
27	0. 9661	4380	0. 13858	2. 7325	27	1. 1993	4897	0. 15087	3. 3920
28	1.0618	4669	0. 14397	3. 0031	28	1. 3060	4951	0. 15447	3. 6940
29	1. 1717	4844	0.15569	3. 3142	29	1.4198	4987	0. 15757	4.0157
30	1. 3036	4947	0. 17253	3. 6873	30	1. 5516	4997	0. 17200	4. 3886
31	1. 4984	4986	0.20921	4. 2381	31	1. 7483	5000	0. 20577	4. 9450

# TABLE 12 (cont'd) (Situation: n = 64, k = 63, r = 8, $d = 1.00\sigma$ )

(c) (d)

	BIAS	#EFFECTS	-STD DEV	STD BIAS		5746			
1	0.0189	0	0.01797	0. 0536	#	BIAS	<b>#EFFECTS</b>	STD DEV	STD BIAS
Ž	0. 0377	ŏ	0.02518	0. 1067	1	0.0190	0	0.01803	0. 0538
3	0.0566	ŏ	0.03012	0. 1600	2	0. 0383	0	0. 02511	0.1083
4	0. 0760	ŏ	0.03445	0. 2149	3	0. 0571	0	0. 03006	0. 1616
5	0.0956	1	0.03822	0. 2703	4	0. 0761	0	0.03424	0. 2152
6	0. 1155	ò	0.04144	0. 3267	5	0.0952	0	0.03812	0. 2694
7	0. 1358	ŏ	0.04431	0. 3841	6	0. 1156	0	0.04118	0. 3270
8	0.1563	ĭ	0.04725	0. 4420	7	0. 1354	0	0.04404	0. 3831
9	0. 1771	2	0.04725	0. 5009	8	0.1562	0	0.04749	0.4419
10	0. 1771	1	0.04433	0. 5630	9	0. 1770	0	0.04978	0. 5007
11	0. 2218	Ô	0.05458	0. 6272	10	0.1990	0	0.05253	0. 5629
12	0. 2452	ŏ	0.05747	0. 6272	11	0. 2220	0	0.05504	0. 6279
13	0. 2701	5	0.05747	0. 7639	12	0. 2455	0	0. 05771	0. 6945
14	0. 2956	2	0.06334	0. 7837	13	<b>0. 269</b> 8	0	0.06009	0. 7631
15	0. 3230	3		0. 8380 0. 9135	14	0. 2958	0	0.06246	0. 8367
16	0.3519	7	0.06618	0. 9754	15	0. 3240	0	0.06528	0. 9164
17		=	0.06906		16	0. 3532	0	0.06859	0. 9990
	0.3839	10	0.07301	1. 0859	17	0. 3850	0	0.07253	1.0891
18	0.4196	13	0.07722	1. 1868	18	0. 4210	0	0.07738	1. 1909
19	0. 4590	20	0.08193	1, 2983	19	0.4611	0	0.08227	1.3041
20	0.5055	36	0.08948	1. 4297	20	0. 5077	Ó	0.08884	1. 4359
21	0. 5637	88	0.09756	1. 5944	21	0. 5660	ō	0.09842	1.6009
55	0. 6395	190	0. 11271	1.8088	52	0. 6460	3	0. 11577	1, 8272
23	0.7574	620	0. 13464	2. 1421	23	0. 7790	27	0. 15223	2. 2034
24	1. 0225	4217	0. 17780	2.8919	24	1.5027	4972	0. 20994	4. 2503
25	1. 1959	4842	0. 16831	3, 3826	25	1. 7000	4999	0. 17458	4. 8084
26	1. 3322	4953	0. 15874	3. 7682	26	1.8332	5000	0. 16083	5. 1850
27	1. 4455	4993	0. 15461	4, 0884	27	1. 9478	5000	0. 15484	5. 5093
58	1. 5544	5000	0. 15295	4. 3965	28	2. 0576	5000	0.15513	5. 8198
29	1. 6672	5000	0. 15986	4. 7155	29	2. 1714	5000	0. 15927	5. 8176 6. 1416
30	1. 7989	4999	0. 16929	5. 0880	30	2. 3084	4999	0. 17177	
31	1. 9989	5000	0. 20974	5. 6538	31	2. 5035	5000	0. 20710	6. 5291
						<b></b> -333	5550	U. ZU/ [U	7. 0810

## TABLE 12 (cont'd) (Situation: n = 128, k = 127, r = 8, $d = 1.00\sigma$ )

(e)

33 34

35

36 37

38

39

40

41

42

43

0. 2087 0. 2168

0. 2250 0. 2336

0. 2423

0 2515

0.2610

0 2709

0 2813

0 2919

0 3031

0 3150

				STANDARDIZED					
*	CONTRAST	#R	STD. DEV.	CONTRAST		0. 3276	' 21	0. 03803	1, 3104
1	0. 0056	0	0. 00555	0. 0222	45	0.3412	33	0. 03941	1. 3649
2	0.0113	ō	0.00769	0. 0452	46	0.3558	22	0. 04061	1. 4231
3	0.0169	ŏ	0.00952	0. 0678	47	0. 3556 0. 3717	45	0. 04243	1. 4867
4	0.0227	ō	0.01084	0. 0908	48	0.3717	56	0. 04420	1. 5567
5	0.0284	ŏ	0.01195	0. 1136	49	0. 4080	82	0. 04644	1.6320
6	0. 0340	ŏ	0.01301	0. 1362	50	0. 4301	76	0. 04917	1. 7203
7	0.0399	ō	0. 01397	0. 1596	51	0. 4554	161	0. 05249	1.8217
8	0.0457	ō	0.01500	0. 1826	52	0. 4880	288	0.05713	1. 9522
9	0.0514	ŏ	0. 01575	0. 2055	53	0. 5291	498	0. 06455	2. 1164
10	0.0571	ŏ	0.01652	0. 2286	54	0. 3271	1037	0. 07776	2, 3552
11	0.0629	ō	0.01719	0. 2514	55	0. 6971	3405	0. 10437	2. 7886
12	0.0687	ō	0.01801	0. 2750	56	0. 7961	4416	0. 1100B	3. 1845
13	0. 0747	ō	0.01860	0. 2988	57	0. 8840	4824	0. 10878	3, 5360
14	0.0807	ō	0.01911	0. 3228	58	0. 9632	4949	0. 10717	3. 8526
15	0.0866	1	0.01975	0. 3463	, 59	1. 0380	4985	0. 10890	4, 1519
16	0.0927	ō	0. 02029	0. 3707	60	1. 1194	4991	0. 11316	4, 4777
17	0. 0987	1	0. 02077	0. 3948	61 62	1. 2153	4999	0. 12284	4.8613
18	0. 1049	1	0. 02135	0. 4195	63	1. 3550	5000	0. 15014	5, 4200
19	0. 1111	ō	0.02196	0. 4445	63	1. 3300	0000		
20	0. 1174	ō	0. 02240	0. 4697					
21	0. 1237	Ō	0. 02294	0. 4947					
55	0. 1301	ō	0.02338	0. 5203					
23	0. 1367	Ō	0. 02395	0. 5467					
24	0.1433	1	0. 02440	0. 5732					
25	0.1500	2	0. 02491	0. 5999					
26	0. 1569	ō	0. 02541	0. 6275					
27	0. 1639	1	0.02600	0. 6557					
28	0. 1710	2	0. 02625	0. 6841					
29	0. 1782	2	0.02676	0. 7129					
30	0. 1854	2	0. 02716	0. 7417					
31	0. 1932	2	0. 02766	0. 7729					
32	0. 2009	1	0. 02809	0. 8035					
	0. 2007	ā	0.00079	0.8348					

0.8348

0.8670

0.9000

0.9344

0. 9691 1. 0059

1.0438

1.0835

1. 1251

1.1676

1.2126

1.2600

0.02879

0.02940 0. 02987

0.03044

0.03100 0. 03145

0. 03216

0.03293

0.03377

0.03479

0 03557

0 03677

13

5

16

٠4

15

TABLE 12 (cont'd) (Situation: n = 128, k = 127, r = 8,  $d = 1.00\sigma$ )

(f)

42 43

0 3035

				STANDARDIZED					
_	CONTRAST	∦R	STD. DEV.	CONTRAST			_		
*	0. 0055	0	0. 00345	0. 0222	45	0. 3278	1	0. 03754	1, 3111 1, 3655
1	0.0033	ŏ	0.00778	0. 0452	46	0. 3414	1	0.03893	1. 4242
2	0.0113	ŏ	0. 00950	0. 0677	47	0. 3561	1	0.04022	1. 4242
3 4	0. 0225	ŏ	0.01090	0. 0900	48	0.3718	1	0.04169	1. 5582
	0. 0282	ŏ	0.01219	0. 1127	49	0. 3896	2	0.04404	1. 6373
5		Ö	0. 01324	0. 1353	50	0. 4093	4	0. 04654	1. 7287
6	0. 0338 0. 0396	ŏ	0.01422	0. 1585	51	0. 4322	4	0. 04966	1. 8379
7	0.0375	ŏ	0.01516	0. 1819	52	0. 4595	10	0.05410	1. 9714
8		ö	0.01597	0. 2052	53	0.4929	18	0.06108	2. 1594
9	0.0513	ŏ	0.01677	0. 2288	54	0. 5399	51	0. 07071	2. 4790
10	0 0572	ŏ	0.01741	0. 2517	55	0, 6198	236	0. 09232	
11	0.0629	ŏ	0.01802	0. 2754	56	0. 9001	4698	0. 13805	3. 6003
12	0.0689	ŏ	0.01870	0. 2987	57	1.0358	4975	0. 12001	4. 1431
13	0. 0747		0.01937	0. 3230	58	1, 1290	4997	0.11184	4. 5161
14	0.0808	0	0. 02003	0. 3472	59	1.2107	4998	0. 10891	4. 8429
15	0.0868	0	0. 02045	0. 3713	60	1.2866	5000	0. 10949	5. 1465
16	0.0928		0.02043	0. 3957	61	1, 3678	5000	0.11420	5. 4712
17	0. 0989	0	0.02111	0. 4206	62	1.4632	5000	0. 12412	5. 8528
18	0. 1051	0		0. 4455	63	1,6054	5000	0. 15289	6. 4214
19	0.1114	0	0.02212	0. 4711					
20	0.1178	0	0.02263	0. 4969					
21	0.1242	0	0.02312	0. 5229					
55	0.1307	0	0.02352	0. 5491					
23	0. 1373	0	0.02401	0. 5756					
24	0.1439	0	0. 02449	0. 6023					
25	0.1506	0	0. 02501	0. 6297					
26	0. 1574	o	0. 02555	0.6570					
27	0.1643	O	0.02613	0. 6847					
28	0. 1712	0	0. 02661	0. 7130					
29	0.1782	o	0. 02696						
30	0.1856	Q	0. 02759	0. 7424					
31	0.1930	0	0. 02805	0. 7719 0. 8025					
32	0. 2006	0	0.02840						
33	0, 2086	0	0. 02889	0. 8345					
34	0. 2170	0	0. 02948	0. 8680					
35	0. 2252	0	0. 03007	0. 9009					
36	0. 2335	0	0. 03075	0. 9340					
37	0. 2423	1	0. 03106	0. 9694					
38	0.2515	0	E61E0.0	1.0060					
39	0.2611	0	0.03239	1.0446					
40	0 2713	0	0.03317	1.0851					
41	0 2814	0	0.03360	1.1256					
42	0 2923	0	0 03457	1.1690					

1.2142

1 2618

0 03654

03317 0 03360 0 03457 0 03544

TABLE 12 (cont'd) (Situation: n = 128, k = 127, r = 8,  $d = 1.00\sigma$ )

(g)

34

35

36

37 39

39

40

41

42

43

0. 2176

0. 2258

0. 2343

0. 2431 0. 2521

0. 2617

0.2716

0. 2818

0.2924

0. 3036 0. 3155

	**			STANDARDIZED			٠		•
#	CONTRAST	#R	STD. DEV.	CONTRAST					
1	0. 0057	۰	0.00546	0. 0226	45	0. 3285	0	0. <b>03887</b>	1. 3139
2	0.0113	0	0. 00764	0. 0452	46	0. 3421	0	0. 03991	1.3683
3	0.0171	0	0.00952	0. 0685	47	0. 3566	0	0.04138	1. 4266
4	0. 0229	0	0:01084	0. 0915	48	0. 3727	0	0. 04321	1. 4909
5	0. 0287	0	0.01205	0. 1150	49	0. 3903	0	0.04508	1. 5611
£	0. 0344	0	0.01311	0. 1378	50	0. 4100	0	0. 04699	1. 6399
7	G. 0401	0	0.01401	0. 1603	51	0. 4322	0	0. 05002	1. 7288
8	0. 0460	0	0.01502	0. 1839	52	0. 4594	0	0. 05419	1. 8377
9	0.0518	0	0.01590	0. 2072	53	0. 4938	0	0. 06074	1. 9752
10	0. 0576	0	0. 01667	0. 2303	54	0. 5408	3	0. 07134	2. 1630
11	0. 0634	0	0.01730	0. 2536	55	0. 6235	21	0. 09662	2. 4938
12	0. 0692	0	0.01803	0. 2767	56	1. 1429	4977	0. 15192	4. 5717
13	0. 0751	0	0.01868	0. 3005	57	1. 2859	4999	0. 12378	5, 1437
14	0.0810	0	0.01931	0. 3241	58	1. 3813	5000	0. 11336	5. 5253
15	0. 0870	0	0.01986	0. 3481	59	1. 4619	5000	0. 10999	5. 8477
16	0. 0932	0.	0. 02034	0. 3727	60	1. 5382	5000	0.11083	6. 1528
17	0. 0992	0	0.02080	0. 3968	61	1. 6200	5000	0. 11246	6. 4800
18	0. 1054	0	0.02141	0. 4217	62	1. 7159	5000	0. 12419	6. 8635
19	0. 1116	0	0. 02179	0. 4464	63	1. 8597	5000	0. 15253	7. 4387
20	0.1180	0	0. 02239	0. 4718					
21	0. 1244	0	0. 02280	0. 4975					
22	0. 1309	0	0. 02325	0. 5236					
23	0. 1376	0	0. 02395	0. 5503					
24	0.1442	0	0. 02458	0. 5766					
25	0. 1509	0	0. 02515	0. 6035					
26	0. 1578	0	0. 02563	0. 6311					
27	0. 1647	0	0. 02618	0. 6590					
28	0. 1719	0	0. 02668	0. 6878					
29	0. 1790	ŏ	0. 02710	0. 7160					
30	0. 1864	ō	0. 02765	0. 7456					
31	0. 1941	ō	0. 02834	0. 7764					
32	0.2018	ŏ	0. 02900	0. 8073					
33	0. 2096	ŏ	0. 02764	0. 8385					
24	0.017/	ž	0.02704	0.0000					

0.03031

0.03076

0.03132

0.03180

0.03258

0.03344

0.03422

. 0. 03482

0.03558

0. 03656 0.03774

000

0

0

000

0.8385 0. 8704 0. 9031

0.9373

0. 9723 1. 0086

1.0466

1.0863

1.1271

1.1695

1, 2143 1, 2620

TABLE 12 (cont'd) (Situation: n = 128, k = 127, r = 8,  $d = 1.00\sigma$ )

	(h)								
	(11)			STANDARDIZE	D 64	0. 1303	0	0. 01324	0. 7373
#	CONTRAST	#R	STD. DEY.	CONTRAST	65	0. 1329	ŏ	0.01324	0. 7373
1	0. 0019	0	0. 00188	0. 0107	66	0. 1354	ō	0.01340	0. 7657
ž	0.0038	ō	0. 00258	0. 0213	67	0. 1378	0	0.01359	0. 7798
3	0.0056	0	0.00317	0. 0319	' 68	0.1403	0	0. 01371	0. 7939
4	0. 0075	0	0. 00365	0. 0425	69	0. 1429	0	0. 01385	0. 8081
5	0.0093	0	0.00402	0. 0529	70 71	0.1454	0	0.01402	0. 8227
6 7	0.0112	0	0. 00440	0.0636	72	0. 1481 0. 1507	0	0. 01414 0. 01427	0. 8377
8	0. 0132 0. 0151	0	0. 00478 0. 00508	0. 0745 0. 0851	73	0. 1534	ŏ	0.01427	0. 8526 0. 8677
9	0. 0170	ŏ	0. 00540	0. 0959	74	0. 1561	ŏ	0.01449	0. 8833
10	0.0188	ō	0.00562	0. 1045	75	0.1589	0	0.01460	0. 8990
11	0. 0207	0	0. 00587	0. 1170	76	0.1616	0	0.01468	0. 9144
12	0. 0225	0	0.00612	0. 1273	77	0. 1644	O	0. 01483	0. 9302
13	0. 0244	0	0.00632	0. 1381	78	0.1673	0	0.01493	0. 9463
14	0.0263	0	0.00652	0. 1487	79 80	0. 1702 0. 1732	0	0.01511	0. 9629
15 16	0. 0282 0. 0301	0	0. 00674 0. 00697	0. 1594 0. 1703	81	0.1752	Ô	0. 01523 6. 01539	0. 9799 0. 9966
17	0.0319	Ö	0.00516	0. 1807	82	0. 1792	ŏ	0. 01558	1.0140
18	0. 0339	ō	0.00734	0. 1916	83	0. 1823	ō	0.01562	1.0313
19	0.0358	o	0.00754	0. 2023	84	0. 1855	0	0.01575	1.0494
20	0. 0377	0	0.00770	0. 2133	85	0. 1888	0	0.01599	1.0679
21	0. 0396	0	0.00789	0. 2242	86	0. 1921	0	0.01615	1.0869
22	0.0416	0	0.00805	0. 2351	87 80	0. 1955	0	0.01629	1. 1060
23 24	0. 0435 0. 0454	0	0.00819	0. 2458	88 89	0. 1989 0. 2024	0	0.01650	1.1250
25	0.0434	0	0. 00838 0. 00854	0. 2566 0. 2677	90	0. 2040	ŏ	0. 01673 0. 01690	1. 1450 1. 1554
26	0.0473	ŏ	0.00866	0. 2785	71	0. 2097	ŏ	0.01709	1. 1860
27	0.0512	ō	0.00882	0. 2899	92	0. 2135	ō	0.01732	1. 2077
28	0. 0532	Ó	0.00897	0. 3009	93	0. 2172	0	0. 01765	1. 2288
29	0.0551	0	0.00914	0. 3118	94	0. 2212	0	0. 01790	1. 2512
30	0.0571	0	0.00930	0. 3228	95	0. 2253	0	0.01811	1. 2742
31	0.0590	0	0.00943	0. 3339	96 97	0. <b>2295</b> 0. <b>2338</b>	0	0.01832	1. 2980
33 32	0. 0610 0. 062 <del>9</del>	0	0. 00956 0. 00969	0. 3451 0. 3560	77 78	0. 2382	ŏ	0. 01859 0. 01880	1. 3227 1. 3477
34	0.0650	ŏ	0.00787	0. 3674	99	0. 2429	ŏ	0.01926	1. 3740
35	0. 0669	ŏ	0. 00993	0. 3786	100	0. 2476	0	0.01961	1. 4005
36	0. 0690	Ō	0.01006	0. 3900	101	0 2524	0	.O. 0200B	1. 4279
37	0. 0710	0	001010	0. 4014	102	0. 2575	0	0. 02042	1. 4569
38	0. 0730	0	0. 01023	0. 4130	103	0. 2629	. 0	0. 02079	1. 4873
39 40	0. 0751	0	0.01032	0. 4249	104	0. 2685	0	0.02118	1. 5189
41	0. 0771 0. 0792	0	0. 01040 . 0. 01054	0. 4362 0. 4477	105	0. 2744	0	0. 02159	1. 5524
42	0.0812	ŏ	0. 01065	0. 4594	106	0. 2806	0	0. 02215	1. 5875
43	0. 0833	ŏ	0. 01073	0. 4710	107 108	0. 2872 0. 2941	0	0. 02248 0. 02323	1. 6246 1. 6638
44	0.0854	0	0.01087	0. 4831	109	0. 3015	ŏ	0. 02408	1. 7058
45	0. 0875	o	0. 01102	0. 4950	110	0. 3096	1	0. 02495	1.7514
46	0. 0876	ŏ	0.01102	0. 5069	111	0.3182	0	0. 02592	1.8002
47	0 0917	ō	0.01129	0.5189	112	0. 3277	0	0. 02672	1. 8537
46	0 0939	0	0.01139	0. 5311	113	0.3382	1	0. 02797	1.9133
49	0 0960	0	0.01153	0. 5432	114	0. 3504	0	0. 02956	1.9822
50	0.0982	0	0.01161	0. 5553	115 116	0. 3643 0. 3808	2 2	0. 03165 0. 03431	2. 0609 2. 1541
51	0 1004	0	0.01173	0, 5680 0, 5806	117	0.4014	10	0. 03794	2, 2707
52 53	0 1026 0 1049	0	0.01186 0.01196	0.5932	118	0.4313	16	0.04530	2, 4396
54	0 1071	Ö	0.01178	0.5058	419	0. 4833	86	0.06184	2. 7337
55	0 1093	ŏ	0.01220	0. 6182	120	0. 7493	4889	0.10396	4, 2385
56	0 1115	0	0.01228	0. 6308	121	0 8501	4993	0.08733	4.8090
57	0 1138	0	0.01241	0. 6437	122 123	0 9183 0 9753	5000 5000	0. 08054 0. 07752	5, 1945 5, 5170
58 50	0 1161	0	0.01250	0.6568	123	1 0297	<b>5</b> 000	0.07798	5. 8249
59 60	0.1184 0.1207	0	0. 01260 0. 01272	0.6699 0.6830	125	1.0855	5000	0.08081	6. 1406
51	0.1207	0	0.01272	0.6964	126	1.1529	5000	0. 08759	6. 5216
62	0.1255	ŏ	0.01297	0 7097	127	1. 2552	5000	0.10822	7. 1002
63	0.1278	0	0.01308	0.7232 7	l				

TABLE 13. COMPARING R-SPILLOVER OF NORMAL AND HALF-NORMAL PLOTS (5000 runs, Population sigma = 1.00) +2.00g +1.00g +1.25 $\sigma$ +1.50g N = 32, K = 31, r = 8, 1st error rank = 23 33%(20)* 23%(22) 10%(23) 0.3%(23) Normal Half-normal 32%(19) 25%(21) 12%(22) 0.5%(23) N = 64, K = 63, r = 8, 1st error rank = 55 Normal 18% (54) 4%(55) 0.3%(55) Half-normal 20%(54) 5%(55) 0.4%(55) N = 128, K = 127, r = 8, 1st error rank = 119 Normal 2%(119) Half-normal 2%(119)

For all practical purposes, the degree of R-spillover for the aggregate normal and half-normal plot data are not considerably different. While the normal plot data might appear to have a slight overall edge, having a slightly smaller R-spillover into the intended error ranks and having fewer ranks to inspect for real effects that have at least a 10% chance of being there, these differences are likely to be obscured in a single experiment. For the aggregate R-spillover data, a difference of 1% or 2% is probably within the accuracy of the data.

with normal plot data, we have seen how the R-spillover for the same number of real effects is less at the borders between intended real and error ranks when there are both positive and negative real effects, than is at the border when all are positive. Therefore, for the same number of real effects, the normal situation would be expected to result in a smaller R-spillover than the half-normal when positive and negative effects are present. This means that the chance of selecting error contrasts decreases with the normal plots.

^{*} The number in parentheses is the first rank with less than 10% R-spillover.

ESTIMATING SIGMA. To decide whether an effect is real or not with a certain error rate, the population sigma must be known. The population sigma can be estimated by calculating the slope of the standardized contrasts. These requirements lead to two circular situations, each a classic "Catch 22."

- 1. The exact number of the errors contrast can be known by identifying which contrasts represent real effects; the remaining ones, of course, are the error contrasts. But to determine how many contrasts are real, one must have an estimate of the standard error of the contrasts, which is derived from knowledge of the slope of the error contrasts. The accuracy of this estimate decreases markedly when the exact number of error contrasts are not known.
- 2. Standardized values must be used when the slope of the error contrasts is used to estimate the population sigma. To standardize the error contrasts, the correct estimate of the population sigma is required. While other ways have been suggested for estimating sigma, the slope of the contrasts is still the most accurate.

As the size of the real effects diminish or the number of real effects increase, the R-spillover also increases and the chance of determining the exact number of real effects and error contrasts also decreases.

With normal plots, there is an additional problem. We must not only decide how many error contrasts there are but also at what ranks they are located. Failure in either case means that we are plotting the error contrasts against the incorrect estimated values of order statistics. This result is an incorrect slope.

OVER- AND UNDERESTIMATING THE NUMBER OF ERROR CONTRASTS. Let us determine what happens to our estimate of the population sigma if we over- or underestimate the number of error contrasts in normal and half-normal plot data. The following situation will be usel:

$$n = 32$$
,  $k = 31$ ,  $r = 8$ ,  $d_{a} = +1.00$  [ $e = k - r = 23$ ]

As Zahn suggested, only the smallest 0.70 of the contrasts assumed to be error are used to calculate the slope. The results are given in Table 13.

TABLE 14. COMPARING THE ROBUSTNESS OF NORMAL AND HALF-NORMAL PLOTS
ON POPULATION SIGMA ESTIMATIONS WHEN THE NUMBER OF ERROR
CONTRASTS ARE OVER- AND UNDERESTIMATED

Number of Contrasts Used (0.7e)	Popu Mean Slope (Normal)	Mean Slope (Half-normal)
18 out of 26 (More) 18 out of 25 17 out of 24	0.95s [Aver.	1.05s] 1.15s 1.09s 1.04s
16 out of 23 (TRUE) 16 out of 22 15 out of 21	1.00s [Aver.	
14 out of 20 (Less)	1.14s [Aver.	

Note the inverse relationships that exist between the normal and the half-normal plot estimates when too many or too few error contrasts are used to estimate the sigma. For the normal plot data, underestimating the number of error contrasts lead to an overestimation of sigma, while with the half-normal plot data, it leads to an underestimation. The data in Table 14 suggests that estimates of the population sigma from normal plot data is somewhat more robust than from half-normal plot data, at least when the number of error contrasts are overestimated.

Since the data can be plotted either way once it has been obtained, the reciprocal results in Table 14 suggest that the best estimate of sigma can be obtained, whether the number of error contrasts are over- or underestimated, by averaging the estimate from the normal order data with that from the half-normal data. In the above table, when this was done with the correct answer being 1.00, we obtained an average value of 1.05 when 18 out of 26 error contrasts were used to calculate the slope and 0.99 when 14 out of 20 were used.

WHAT PROPORTION OF THE ERROR CONTRASTS SHOULD BE USED? In Version 5, Zahn threw away the larger 0.30 of the error contrasts before calculating the slope of the standardized contrasts. By noting how R-spillover relates to the degradation in the error contrasts from the expected values, it is apparent that this rule, empirically determined, is a consequence of the R-spillover that occurred. More R-spillover would be expected to occur in data from a n = 16 experiment than might be expected with larger experiments. In the half-normal plot, with four real effects out of 15 contrasts, Zahn's typical situation, the three largest contrasts -- 0.30 of the 11 error contrasts -- would not be included in the calculation of his slope. Those contrasts fall at the ranks where the greatest amount of spillover would ordinarily occur for moderate-sized effects. However, applying the same proportion to a larger design, e.g., n = 32, k = 31, with four real effects, the eight largest error contrasts would not be used out of 27. In view of the data shown in Table 12, that could be overly conservative.

### SINGLE RUN DATA

Up to this point, we have been examining aggregate data, the mean of 5000 runs. This tends to provide a cleaner picture than one would expect to find in a real-world, single-run experiment. In the remainder of this section, we will look at some results from individual runs, results taken at random from the 5000 runs of the earlier analyses.

DETECTION. In Figures 5 through 8, each normal plot represents a single run that was purposefully selected -- to illustrate a particular point -- from a set of 50 which the computer had randomally selected from the complete set of 5000 runs. The situations from which these plots were selected are:

Figure 5: n = 32, k = 31, r = 8+,  $d = 1.00\sigma$ Figure 6: n = 32, k = 31, r = 8+,  $d = 1.25\sigma$ Figure 7: n = 32, k = 31, r = 5+,3-,  $d = +1.25\sigma$ Figure 8: n = 32, k = 31, r = 8+,  $d = +1.67\sigma$  In both Figures 5-a and 5-b, the effects in the first seven ranks appear sufficiently off the error line to be considered real. However, this is incorrect. For this set of data, the actual locations of the real effects had been tracked. In fact, in Figure 5-a, the plot seventh from the largest was actually an error contrast and the plots in the eighth and seventeenth ranks were the remaining two real effects (R-spillover). In Figure 5-b, however, there were no inversions of real and error contrasts; the contrast in the eighth rank is actually real, although this would not have been detected by observing these plots. In Figure 5-c, there appear to be nine real effects, although in fact there are only eight; the contrast in the sixth rank is actually an error contrast (E-spillover). In Figure 5-d, it is almost impossible to determine how many real effects might be present. Actually, the eighth rank is an error contrast and the ninth rank is the last real effect.

In Figure 6, with an effect of more moderate size, d = 1.25 $\sigma$ , we see a plot (Figure 6-a) in which all eight might be detected, although the transition from real to error is not sharp (which could conceivably be the result of an inversion of real and error effects). In Figure 6-b, only six of the eight real effects are distinguishable. In Figure 6-c, a ninth additional real positive effect apparently stands out and there might be one real negative effect. Since the tracking capability had not been written into the simulation program when these plots were generated, we have no idea to what extent these apparent interpretations are correct.

In Figure 7, we also have eight real effects, d = 1.25, but five of them are positive and three negative. How does this show up on the plots? With normal plots and with the e.v.n.o.s. on the ordinate, the positive real effects should fall off below the line and the negative real effects should fall off above the line. Falling on the opposite sides indicates that the data may be truncated. From the plots in this figure, it can be seen that sometimes they're all apparently clearly visible (Figure 7-a), and sometimes none of them are (Figure 7-b). Much of the time, detectability falls in between, for example in Figure 7-c, with the five positive ones being questionable, and the three negatives being more clearly visible.



Figure 5-a. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+,  $d=1.00\sigma$ 



Figure 5-b. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+,  $d=1.00\sigma$ 



Figure 5-c. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+, d = 1.00 $\sigma$ 



where the sample individual Normal Plot for Situation:  $r_{\rm eff} \approx k/31, \ r_{\rm eff} \approx 1.00\sigma$ 



Figure 6-a. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+,  $d=1.25\sigma$ 



Figure 6-b. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+,  $d=1.25\sigma$ 



Figure 6 c. Sample Individual Normal Plot for Situation: n=32, k=31, r=8+,  $d=1.25\sigma$ 



Figure 7-a. Sample Individual Normal Plot for Situation: n=32, k=31, r=5+,3-,  $d=1.25\sigma$ 



Figure 7-b. Sample Individual Normal Plot for Situation: n=32, k=31, r=5+,3-,  $d=1.25\sigma$ 



Figure 7-c. Sample Individual Normal Plot for Situation: n=32, k=31, r=5+,3-,  $d=1.25\sigma$ 

Finally, in Figure 8, we can see how relatively large real effects influence individual plots. This still does not guarantee that there will not be some plots that are so ambiguous that not one of the eight effects stands out clearly (Figure 8-a). On the other hand, they may stand out quite clearly (Figure 8-b), or they may vaguely stand out, but with a slow transition rather than a distinct break between real and error contrasts (Figure 8-c). This last example makes one suspect there will be some inversions between real and error contrasts.

ESTIMATING SIGMA. In the aggregate data, estimates of the population sigma from slope calculations frequently produced satisfactory results. But those were based on the means of 5000 runs. How good might these estimates be for a single run?

This situation was investigated:

n = 32, k = 31, r = 8, r + = 8,  $d = 1.25\sigma$ .

With eight real effects, there are 23 error contrasts. For this analysis, all error contrasts were at the minus end of the continuum of a normal plot. A slope was calculated for the 15 smallest standardized error contrasts out of the 23 against their corresponding ranks of the e.v.n.o.s. for k=23. These 15 approximate the 0.70 part of the error contrasts that Zahn proposed should be used. The standardized error contrasts were used for the calculation since this enabled the slope to be the appropriate estimate of the population sigma, in this case equal to 1.00.

In Figure 9, a histogram is shown for 50 slopes (each from an individual run), selected at random from 5000 runs on the above situation. The mean slope of all 50 slopes is 1.002, which is equivalent to the true population sigma of 1.00. The standard deviation of these 50 slopes is 0.205. That means that if the distribution is essentially normal, 68% of the slopes for a single run would vary between 0.80 to 1.20. In the distribution shown in Figure 11, the values are actually 0.78 and 1.21 respectively, and the full range of individual sigmas for the same situation ranged from 0.52 to 1.45.



Figure 8 a. Cample Individual Plots for Situation: (1, k, G), r. 8*, d. 1.670



Figure 8 b. Individual Plots for Situation:  $n \approx 32$ , k  $\approx 31$ , r  $\approx 8+$ , d  $\approx 1.67$ 



Replied in the Company of the Artist Control of the Control of the Artist Control of the Control

Interval		Freg	Jency	Percer	
		_	uency		_
Name		<u>Int</u> .	<u>Cum</u> .	Int.	<u>Cum</u> .
.525000	XX	2	2	4.0	4.0
.550000		0	2	0.0	4.0
.575000		0	2	0.0	4.0
.600000		0	2	0.0	4.0
.625000		0	2	0.0	4.0
.650000		0	2 2 2 2	0.0	4.0
.675000		0	2	0.0	4.0
.700000	X	1	3	2.0	6.0
.725000	X	1	4	2.0	8.0
.750000	X	1	5	2.0	10.0
.775000	X	1	6	2.0	12.0
.800000	XXX	3	9	6.0	18.0
.825000	X	1	10	2.0	20.0
.850000	XX	2	12	4.0	24.0
.875000	X	1	13	2.0	26.0
.900000	x	1	14	2.0	28.0
.925000	X	1	15	2.0	30.0
.950000	XX	2	17	4.0	34.0
.975000	XXXX	4	21	8.0	42.0
1.000000	XXXX	4	25	8.0	50.0
1.025000	XXX	3	28	6.0	56.0
1.050000	XX	2	30	4.0	60.0
1.075000		0	30	0.0	60.0
1.100000	XXXX	4	34	8.0	68.0
1.125000	XXXX	4	38	8.0	76.0
1.150000	X	1	39	2.0	78.0
1.175000		0	39	0.0	78.0
1.200000	X	1	40	2.0	80.0
1.225000	XXXX	4	44	8.U	88.0
1.250000		0	44	0.0	88.0
1.275000		0	44	0.0	88.0
1.300000	XX	2	46	4.0	92.0
1.325000	λ	1	47	2.0	94.0
1.350000	XX	2	49	4.0	98.0
1.375 100		n	49	0.0	98.0
1.400000		0	49	0.0	98.0
1.4250.00		O	4.4	0.0	98.0
1.4 (1.1.3)	×	1	<b>5</b> 0	2.0	100.0

Figure 9. Histogram of 50 Population Sigmas itself in in C.,  $\kappa$  (1, n 9), d limit

This wide distribution is not untypical of the other distributions that were calculated but not shown here. What is important to note is that in a single experiment, the estimated population sigma may be off more than 20% over 32% of the time strictly by chance.

The analysis of the above data, as is the case with so much of the data in this report, took advantage of the fact that we knew what the correct sigma was and how many real and error effects there really were. We estimated the standardized contrasts using the correct value for the square root of four over n, or in this case, 0.3536. But, in the real world, we don't have this perfect knowledge. Just what effect does being off on the initial estimate of sigma, used to standardize our contrasts, really make in the final estimate of the population sigma?

In Table 15, the mean slope (or final estimate of the population sigma) for 5000 runs is shown along with its standard deviation when the estimated sigma used to calculate the standardized values is over- and underestimated.

The situation used was:

n = 32, k = 31, r = 8, d = +1.25 (see Table 5 c)

TABLE 15. EFFECT OF ERRORS IN THE INITIAL ESTIMATE OF SIGMA ON THE FINAL ESTIMATE OF SIGMA (50 runs)

<u>Initial Estimate of Sigma</u> (True Sigma - 1.00)	Final Mean Sigma	Inter 95%
O. A. S. C. L. Har	2.229	1 76 0.66
•		
	* * * * * * * * * * * * * * * * * * * *	1 41 0 50
	4	
	₩ 🐈 🛊	
(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	1	1 0 1

Overestimates of the initial sigma of the normal plots led to an underestimation of the population sigma, on average, and underestimation in the initial stage, to an overestimation of the population sigma. This phenomenon is strictly an arithmetic consequence of the fact that to convert the raw contrast to the standardized values used to estimate the slope, we divided by the initial estimate of sigma multiplied by the square root of four over n (see Equation 6). This can be illustrated in the following manner, holding the square root of four over n constant:

Initial Sigma	Raw Contrasts	Standardized Contrasts	Slope
l (True)	2,4,6,8,10	2,4,6,8,10	2
2 (Over)	2,4,6,8,10	1,2,3,4,5	1
0.5 (Under)	2,4,6,8,10	4,8,12,16,20	4

Although the standard deviation of the underestimated final sigma is smaller than the overestimation, the absolute differences from the true sigma are greater.

#### GUARDRAILS

In Table 16, the critical values (or guardrails) for  $\alpha$  = 0.05, 0.10, 0.20, and 0.40 are given for half-normal plot data when k = 31 and 63. These numbers would be used to test whether the largest contrast in any set of k's, is larger than the critical value for the given error rate,  $\alpha$ . If so, it would be judged real.

If this information is to be applied, the investigator would first plot his data on a half-normal grid and remove all effects that obviously fall off the line formed by the estimated values of order statistics for k. Sensitive to the R spillover that is likely to occur, he may examine one or two ranks below that point to detect logical candidates for real effects. For example, if Effects A and AB were obviously large and Effect B was at a borderline rank, it would be tentatively considered real. Once the tentative and obvious real effects have been removed, the remaining k contrasts will be tested one

TABLE 16. GUARDRAILS FOR HALF-NORMAL PLOTS WHERE k = 31 and 63

(a)

k	. 05	Values .10	of alph .20	. 40
31	3. 326	3. 056	2. 759	2. 408
30	3. 305	3.041	2. 740	2, 407
29	3. 328	3. 047	2. 739	2, 400
28	3. 317	3. 037	2. 735	2. 376
27	3. 300	3.015	2.715	2. 369
26	3. 345	3. 033	2. 723	2, 359
25	3. 261	2. 973	2. 668	2. 335
24	3. 243	2. 967	2. 661	2.313
23	3. 280	2. 968	2. 645	2. 296
22	3. 257	2. 952	2. 619	2. 269
21	3. 225	2. 934	2. 615	2. 255
20	3. 251	2. 945	2. 605	2, 234

(b)	k	. 05	Value , 10	s of alph ,20	. 40
	63	3, 446	3, 211	2. 960	2. 659
	62	3, 483	3, 236	2. 967	2. 662
	61	3. 473	3, 209	2. 951	2. 655
	60	3. 490	3, 234	2. 971	2. 660
	59	3, 473	3. 217	2. 949	2. 648
	58	3, 458	3, 202	2. 944	2. 636
	57	3. 431	3, 186	2.919	2. 622
	56	3, 445	3. 212	2. 947	2. 634
	55	3. 467	3. 209	2. 933	2. 626
	54	3, 439	3. 194	2. 918	2.611
	53	3. 410	3. 171	2. 907	2 605
	52	3, 441	3, 178	2. 906	2 6 3
	51	3, 427	3, 173	2 894	2 501
	50	3, 398	3, 158	2 891	841
	49	3, 415	3, 155	2 883	
	48	3. 422	3.166	2 889 2 8	• -
	47	3. 405	3 143	2 850	•
	46	3. 427	9 173	2 Heat	•
	45	3.397	3 135	. •	- '
	44	<b>3</b> 386	3 134		





Consider the section of the section

at a time against the appropriate values in Table 16. For example, if six contrasts have already been removed from an original 63, then we would compare the next contrast with the critical values at rank 57 in Table 16. If it exceeds the appropriate value, then the next lower contrast is examined against the critical values at rank 56, and so forth.

The critical values were obtained using a Monte Carlo approach employing 10,000 runs. The raw contrasts are standardized using an estimate of  $\sigma$ , based on the slope of the smallest 0.85 of the contrasts which are tentatively assumed to be error contrasts. The number of contrasts from which the smallest 0.85 are taken is reduced by one each time the critical values at a new rank are calculated. This accounts for the fluctuation in values seen in the tables as k decreases.

At each rank, the critical values were calculated for the case where k is the highest rank for the k contrasts. Thus, each time, the test is made on only the largest one.

The guardrails are not provided for all ranks, only enough to test down to rank 44 when starting with k = 63, and down to rank 20 when starting with k = 31. This allows us to test for 20 real effects when initially there are 63 contrasts and 12 real effects when initially there are 31 contrasts. If more critical values are needed, they may be generated using the computer program for guardrails developed by Dr. David G. Weinman given in Appendix G. That program can be modified to generate guardrails for normal as well as half-normal plots.

TO SECURE THE PROPERTY OF THE

It should not be overlooked that the use of guardrails at given alpha values is essentially a test to avoid Type 1 errors and the alpha indicates the probability that a nonreal effect will be included. But for screening purposes, it is the Type II error we wish to avoid. Therefore, in using these guardrails, one should probably use the larger alpha values, closer to the PER for the number of contrasts being examined; this increases the chances that a real effect will not be overlooked while allowing more null ones in. At the same time, the effective investigator will also inspect his data and rationally evaluate the effects tentatively considered to be real. This helps him determine which conditions will be included in the next block of the sequential data collection.

### SECTION VII

#### RELEVANT PAPERS

A literature search discovered more than 100 reports in which Daniel's (1959) and Zahn's (1975a, b) work on half-normal plots were referenced (Appendix A). Many of these reports only describe how the half-normal plot has been put to use to interpret particular experimental data, generally without the use of sophisticated criteria to establish significance. A few, mostly from the statistical journals, examined the operating characteristics of these plots or supplied alternative approaches to some of the problems of interest in this report. While not intended to be a complete selection, 18 from that group were chosen for review on the basis of the following criteria:

- 1. It is relevant and appears to have some potential for improving the methodology of holistic human performance experiments.
- 2. It is not so overwhelmingly mathematical that its practical methodology is doubtful.

The second secon

- 3. It illustrates alternative ways to use the normal or half-normal plot.
- 4. It proposes modified techniques in lieu of the normal or half-normal plot.
- 5. It provides illuminating nonmathematical discussions related to problems faced in this report.
- 6. It provides a list of references, some of which might prove fruitful to review further.

A short description of the selected references are reported below. It was beyond the scope of this project to study these in detail to determine if and how these techniques might be incorporated, along with the half-normal plot, into the methodology for a holistic approach to human performance research.

### IDENTIFYING SIGNIFICANT EFFECTS IN UNREPLICATED EXPERIMENTS

Box, G. B. P., and Meyer, R. D. An analysis for unreplicated fractional factorials. <u>Technometrics</u>, 1986, <u>28</u>, 11-18.

In the screening stage of industrial experimentation it is frequently true that the "Pareto Principle" applies. That principle states that, a large proportion of process variation is associated with a small proportion of the process variables. In such circumstances of "factor scarcity," unreplicated fractional designs and other orthogonal arrays have frequently been effective when used as a screen for isolating preponderant factors. A useful graphical analysis due to Daniel (1959) employs normal rather than half-normal plotting for that purpose. A more formal analysis is presented in this paper, which may be used to supplement such plots and hence to facilitate the use of those unreplicated experimental arrangements.

The technique relies on reasonably accurate estimates of two parameters; the probability of an active effect,  $\alpha$ , and the inflation factor of the standard deviation produced by the active effect, k. The authors rely on some existing literature (mainly from the chemical industry) to obtain an approximate estimate of what these values might be. Employing a Bayesian approach, they compute the posterior probability that an effect is real. They feel that by utilizing modern numerical computing methods, the posterior probability calculations they propose can rapidly be made to provide visual displays of probability plots of the type they employed. From their analysis, they can determine whether reasonably reliable conclusions regarding whether effects are real are possible from the existing data or whether further experimentation is needed. They claim that the "conclusions drawn from [their] analysis are usually insensitive to moderate changes in  $\alpha$  and  $\kappa$ , and [they] believe that little would be gained by attempting to be more precise" (p. 13). The extent to which this technique as an adjunct to Daniel's plotting procedure is applicable and practical in human performance research should be investigated further.

Box, G. B. P., and Meyer, R. D. Dispersion effects from the fractional designs. <u>Technometrics</u>, 1986, <u>28</u>, 19-27.

ÉMIC

The authors show how it is sometimes possible to use unreplicated fractional designs to identify factors that cause variability in performance as well as changes in average performance.

Holms, A. G., and Berrettoni, J. N. Chain-pooling ANOVA for two-level factorial replication-free experiments. Technometrics, 1969, 11, 725-746.

While Daniel concluded that the half-normal plot would be effective when only a few effects were significant, these investigations try to develop decision procedures to be used when more effects are significant and only a very small number of effects can be used to estimate the error variance. By testing the  $2^f-r-1$  mean squares in order of increasing magnitude, they use their procedure to try and estimate the number of null effects, which are then pooled into the denominator of the test statistic. The authors admit the technique is "good, even though it will not be shown analytically to be best." Appropriate risk functions are defined and several modifications of the suggested procedure are evaluated by Monte Carlo methods in terms of the risk functions.

# OTHER APPLICATIONS FOR PLOTS

Barnett, V. The study of outliers: Purpose and model. <u>Journal of the Royal</u>
<u>Statistical Society, Series C</u> (Applied Statistics), 1978, <u>27</u>, 242-250.

The article discusses and illustrates the value of categorizing the different reasons outliers occur, the ways of handling outliers, and the models for outlier-generation. The question is raised as to whether outliers should be removed "as alien contaminants" or ignored until there is overt practical evidence that they are unrepresentative.

Hills, M. On looking at large correlation matrices. <u>Biometrika</u>, 1969, <u>56</u>, 249-253.

Two graphical techniques are applied to a correlation matrix. The method of half-normal plotting is used to determine which coefficients are numerically too large to have come from zero population values. A z-transform is used before the absolute values of the correlated data are ordered and plotted. A visual clustering method is used also to select clusters of variable which have high positive correlations with each other.

Prew, R. D., Church, B. M. et al. Some factors limiting the growth and yield of winter wheat and their variation in two seasons. <u>Journal of Agricultural Science</u>, Cambridge, 1965, 104, 135-162.

The authors use the half-normal plot to examine the significance of 56 three-factor interactions, removed from the rest of the experimental data (p. 158-159). The square roots of the individual interaction mean squares were plotted.

Schweder, T., and Spjotvoll, B. Plots of P-values to evaluate many tests simultaneously. <u>Biometrika</u>, 1982, <u>69</u>, 493-502.

By applying a normal-scores transform to both axes, a P-value is converted to a normal plot. The inverse transformation may also be carried out. The properties of the P-value plot are studied in some detail for such problems as: Comparing all pairs of means in a one-way layout; testing all correlation coefficients in a large correlation matrix; and evaluating all 2X2 subtables in a contingency table. Using Hills's (see above) data for comparison, they tended to prefer the P-value plot over the half-normal plot (p. 497-498) for three reasons: (1) The uniform probability transform (the P-value) is widely used when testing hypotheses; (2) It is slightly easier to evaluate the variance of a P-value than of a half-normal plot; (3) It is somewhat easier to fit a line to the P-value plot (because the tails of both axes are too stretched out in the half-normal plot).

Snee, R. D. Graphical analysis of process variation studies. <u>Journal of Quality Technology</u>, 1983, <u>15</u>, 76-88.

Graphical techniques for analyzing the results of nested studies are presented and illustrated with examples. In addition to his "standard deviation control chart analysis," Snee also briefly covers the use of gamma probability plotting and data transformations (p. 85-88) to evaluate the homogeneity of a group of variances, that is, to determine whether they are all estimates of a single population variance. If the variances are homogeneous, then they will follow a  $\chi^2$  distribution which is a special case of the gamma family of distributions. The gamma plot operates like the probability plot. The half-normal distribution is a special case of the gamma distribution proposed by Wilk, Gnanadesikan, and Huyett (1962).

VARIATIONS ON THE NORMAL PLOT, GRAPHIC AND OTHERWISE

Andrews, D. F., and Tukey, J. W. Teletypewriter plots for data analysis can be fast: 6-line plots, including probability plots. <u>Journal of the Royal Statistical Society, Series C</u> (Applied Statistics), 1973, 22, 192.

Plots are generated which may be produced very quickly on a teletypewriter or similar remote terminal. The methods are useful for all displays which can be regarded as some form of the inspection of residuals. Versions for use in probability plotting, as an example not always thought of as an examination of residuals, are also given. One technique (mentioned in Daniel, 1959, p. 317) is described which avoids the need to fit a straight line: plot the log of the observed effect on an axis at 135° to the axis on which the log average quantiles are plotted (p. 199-200).

Box, G. B. P., and Tiao, G. C. A Bayesian approach to some outlier problems.

Biometrika, 1968, 55, 119-129.

The contents of this paper may never be applicable to human performance research because the authors assume a precision and set of <u>a priori</u> assumptions that are not likely to be achieved. The paper is cited here, however, because: (1) A nonquantitative Bayesian-like approach underlies the holistic approach to human performance research; (2) This paper is a precursor to the Box and Meyer paper cited earlier; (3) Anything Box writes should be understood, even if it isn't immediately applicable.

Margolin, B. H. Systematic methods for analyzing  $2^n 3^m$  factorial experiments with applications. <u>Technometrics</u>, 1967, 9, 245-259.

Two systematic procedures to facilitate the analysis of a complete 2ⁿ 3^m factorial experiment are discussed. The methods are applicable when all quantitative three-level factors are equally spaced and when the contrasts involving qualitative three-level factors appear as if the three-level factors were in fact quantitative and equally spaced. Algorithm I systematizes the calculation of the factor effects for the 2ⁿ 3^m series of designs. Algorithm II yields the set of fitted values, and hence the residuals, based on those factor effects which have been judged to be non-negligible. The two algorithms have additional and possibly more important uses in studying fractionated 2ⁿ3^m factorial experiments. Algorithm I can be used to facilitate the writing down of the cross-product matrix for any desired set of factor effects for a specified set of treatment comparisons. For the special case of the standard  $2^{f-p}$  series of designs, the two algorithms can be used to find the set of defining contrasts corresponding to a given set of treatment combinations, or to find the set of treatment combinations corresponding to a given set of defining contrasts. That the analysis breaks the sources of the three-level factor and its interactions into singledegrees-of-freedom components suggests that the data might be inspected using the normal or half-normal plot (p. 249).

MacDonald, P. The analysis of a 2ⁿ experiment by means of ranks. <u>Journal</u> of the Royal Statistical Society, Series C (Applied Statistics), 1971, 20, 259-270.

A method is proposed for the analysis of variance of ranked data from a factorial experiment of size 2ⁿ which may be replicated or not. A test of the hypothesis that a given linear contrast of means is zero is based on the corresponding contrast of the ranks of the observations in each replicate. An appropriate critical region for the test is based on the rank sum test, which is equivalent to the new test under certain null hypotheses. Two other forms of the test are also suggested. Estimates of the population contrasts may be obtained by means of an <u>ad hoc</u> procedure for resolving the ambiguity in the means of the test statistic, together with normalization. The method is intended especially for the case where no quantitative observations can be made, or with the unreplicated experiment when quantitative measurements are possible. An example is given in which the half-normal plot is employed to identify the significant effects (p. 263-269).

# GRAPHICAL TECHNIQUES IN STATISTICAL DATA ANALYSIS

Feder, P. I. Graphical techniques in statistical data analysis -- tools for extracting information from data. <u>Technometrics</u>, 1974, <u>16</u>, 287-299.

A case study is presented that demonstrates the usefulness of graphical techniques in the analysis of data. Crossplotting, probability plotting, and graphical multiple comparison procedures are discussed. It is shown how graphical displays both motivate the use of and help interpret the results of more usual numerical techniques. The entire discussion is centered around the analysis of a particular set of experimental data involving a comparison of treatments. It is shown step by step how the various graphical techniques, used in conjunction with more classical techniques, extract the information contained in the data.

Nair, V. N. On the behavior of some estimators from probability plots.

<u>Journal of the American Statistical Association</u>, 1984, 79, 823-831.

Fitting the straight line through a plot is used to estimate the standard error of the data. The author investigates the properties of those estimators. Estimators from weighted least square lines are considered and their asymptotic, finite-sample, robustness, and optimality properties are discussed. Included among these are the ordinary least squares estimators and estimators from least squares lines fitted after trimming or Winsorizing some of the extreme order statistics. The trimmed least squares estimators, with trimming properties reasonably chosen, provide a compromise between efficiency and robustness.

Wilk, M. B., and Gnanadesikan, R. Probability plotting methods for the analysis of data. <u>Biometrika</u>, 1968, <u>55</u>, 1-17.

This paper describes and discusses graphical techniques, based on the primitive empirical cumulative distribution function (e.c.d.f.) and on quantile (Q-Q) plots, percent (P-P) plots, and hybrids of these, which are useful in assessing a one-dimensional sample, either from original data or resulting from analysis. Areas of application include: the comparison of samples; the comparison of distributions; the presentation of results on sensitivities of statistical methods; the analysis of results on sensitivities of statistical methods; the analysis of collections of contrasts and of collections of sample variances; the assessment of multivariate contrasts; and the structuring of analysis of variance mean squares. Many of the objectives and techniques are illustrated by example. Normal and half-normal plots, one class of six defined orthogonal analysis-of-variance situations, are discussed in Section 6.2, titled, "The univariate single degree of freedom case."

### MULTIPLE COMPARISON PROCEDURES

Gnanadesikan, R., and Lee, R. T. Graphical techniques for internal comparisons amongst equal degree of freedom groupings in multiresponse experiments. <u>Biometrika</u>, 1970, <u>57</u>, 229-237.

Probability plotting methods are given for two summary statistics derived from equal degree-of-freedom sum of product matrices. The methods are useful for graphical internal comparisons of the 'magnitudes' of the sum of products matrices. Possible applications with multiresponse data include the simultaneous assessment of all the main effects, or all of the interactions of the same order, in a factorial experiment with  $m \geq 3$  levels for each factor, and the comparisons of several observed covariance matrices, for example, within-group covariance matrices in a multiresponse analysis of variance or discriminative analysis, each based on the same number of replicate observations. Illustrative applications are included.

Kurtz, T. E., Link, R. F., Tukey, J. W., and Wallace, D. L. Short-cut multiple comparisons for balanced single and double classifications: Part I, Results. <u>Technometrics</u>, 1965, <u>7</u>, 95-161.

This paper includes a general and considered discussion of multiple comparison procedures: When they should and should not be used, the importance of confidence procedures and their advantages over significance procedures, choice among multiple comparisons confidence procedures, and choice and description of error rates. It does not attempt to compare multiple comparison and multiple decision procedures. The authors make an interesting distinction among experiments intended for "decision, significance, confidence, or selection."

Following the Kurtz paper in the same journal, comments on it were made by J. E. Jackson, p. 163-165, and F. J. Anscombe, p. 167-168; Kurtz et al. replied (p. 169) to Anscombe's comments.

Andrews, D. F., Gnanadesikan, R., and Warner, J. L. Transformation of multivariate data. <u>Biometrics</u>, 1971, <u>27</u>, 825-840.

Methods which are extensions of Box and Cox's work (1964) are proposed for obtaining data-based transformations of multivariate observations to enhance the normality of their distribution and also possibly to simplify the model (e.g., improve additivity, homoscedasticity, etc.). Specifically, power transformations of the original variables are estimated to affect both marginal and joint normality. A method for improving directional normality is also described. Examples are included to illustrate some properties of the method with normal plots being employed to show the changes that occur in the data.

**単語できないとも国際のできるとの国際のないがはははない** 

Miller, R. G., Jr. Developments in multiple comparisons, 1966-1976. <u>Journal</u> of the American Statistical Association, 1977, 72, 779-788.

A bibliography of 255 references is supplied including some references on graphical techniques. However, papers on ranking and selection were omitted as well as those on outlier detection.

### SECTION VIII

### CONCLUSIONS

From both aggregate and individual plots, whether quantified or interpreted by eye, whether normal or half-normal, our analyses clearly show that the use of plots cannot be relied upon as a certain and sole means of interpreting the results from a 2^f factorial-type experiment. They have their advantages but they also have their limitations, and cannot be considered the final word as a detection tool.

If we do not aspire to quantify our decisions regarding the probability that a particular contrast is real, the complications are less severe. We can look at the plots, and sometimes pick out most of the real effects.

Sometimes, we won't be able to, but in all cases, it is the marginal real contrasts that will be the most difficult to detect and the marginal error contrasts that will be most difficult to reject.

The nature of the plots work against us. We have seen how the E- and the R-spillovers occur most frequently and over more ranks when the size of the real effects are smaller (and these are the marginal ones that need the most help in detecting), when the number of real effects increase (and for screening experiments we expect more rather than fewer real effects), and when the size of the experiment is smaller (which we prefer for the sake of economy).

It had been hoped that the guardrails would help reduce these problems. But this kind of quantification has proven to be little more than a numbers game, a quasi-scientific effort that still requires the investigator to use the same judgment he might have used had he not had the guardrails. For example, if we don't pick up enough real effects when a particular guardrail at one probability level is used, we are advised to raise the probability level until we're satisfied. After all, the guardrails set the error rate for calling an error contrast real, a decision which we are less concerned with in screening experiments than in calling the real contrast an error.

Calculating guardrails is a circular exercise. That means that to discover the correct answers, one must first know the correct answers. The guardrails that we need to help us decide which contrasts are real depend on an accurate estimate of the population sigma, inferred from one's data. Calculating the slope of the standardized error contrasts, or some part of them, is currently the best way to make this estimate. But to standardize the contrasts, one needs to know the population sigma, which is what we're trying to determine. As far as using the contrast closest to the 0.683 probability level for the half-normal plot (as originally suggested by Daniel) or 0.34 and 0.84 probability levels for the normal plot as the initial estimate of sigma, that can only lead to incorrect estimates unless there are a very few real effects, a condition not to be expected in screening experiments. We have seen how much a wrong guess distorts the final sigma estimate.

But the problem of circularity doesn't stop there. The slope that will serve as the best estimate of the population sigma is the plot relating the standardized error contrasts to the estimated values of normal order statistics for the correct number of error contrasts. But we can only know the correct number of error contrasts if we know the correct number of real contrasts, the purpose of this entire exercise in the first place.

Guardrails just don't add anything that might not be achieved using an informed rational approach, some appreciation of the E- and R-spillover for the particular experimental space, and a liberal attitude toward the inclusion of some error terms. A cursory examination of the literature in which plots are employed seems to suggest that today most investigators agree with this point; at least those who use probability plots don't use guardrails. The ineffectiveness of guardrails does not eliminate the usefulness of probability plots. F-tests have many of the same weaknesses in practice as plots have and have not some of their advantages. The author still believes that when used judiciously plots are still the best way to interpret the results from a screening experiment.

What advantages do probability plots have for identifying the critical factors? For one thing, they require an organization of the data in a way that may facilitate interpretation. By ordering the contrasts, one can frequently infer from the larger ones which marginal ones are also likely to be real. If the proper preliminary analysis is done before the experiment begins, a rational approach is unlikely to be any worse than using quardrails to make detection decisions and may be a whole lot better. For another thing, plots are a quick way to examine one's data. One doesn't need a computer, only a table of normal order statistics. Then too, when one is working with unreplicated designs, the plots can be used with no major assumptions, whereas if one still insists on using an analysis of variance for significance testing, it would be necessary to dream up an imaginary error variance, probably based on some combination of higher-order interaction effects, which aren't likely to be available in the early stages of a screening experiment anyway. As we move through the sequential stages of an experiment, adding blocks to unravel confounded effects, the effectiveness of plots improve because of the larger n. As an added advantage, probability plotting can be another way to examine one's data for abnormalities.

But should we use normal or half-normal plots? There were some indications that the normal plot had advantages in terms of the R-spillover over the half-normal, but not much. On the other hand, the half-normal eliminates the need to check both ends of the continuum since the absolute effects are all positive. Of course, once data are obtained, they can be plotted in both ways. Inspection of both plots can't hurt and may provide clues to borderline cases. It was seen that if one combined the data from a normal and a half-normal plot when making an initial estimate of sigma for purposes of standardizing the data, the average of the final estimate of sigma from both gave a more accurate estimate than either alone because of the reciprocal relationship.

From our literature search, we noted that investigators continue to use the plot as an aid to interpreting different kinds of data and for different purposes. Some continue to propose alternative solutions to problems for which probability plots were originally intended to solve.

### ADDITIONAL EFFORTS

Some problems that might be of interest to pursue (although to do so may not necessarily be cost-effective) would be to examine the effect of confounding on the effectiveness of probability plots. With screening experiments, main effects are confounded with all odd higher-order interaction effects and two-factor interaction effects are confounded not only with two-factor interactions, in some cases, but also the even higher-order interaction effects. The plot only treats the combination as a single degree of freedom. But it is not clear whether or how the probability of detecting critical factors is affected when four effects are confounded versus eight effects in an aliased interaction string of a fractional factorial.

Another thing that might be done would be to expand the relatively simple relationship discovered between r and d and the R-spillover and include n and to transform the data so as to improve the linearization of the equation.

[Note: This is being done.] The relation between R-spillover (and E-spillover) to contrast degradation still lends itself to quantification provided one can find pragmatic advantages in knowing how to use this information to interpret the individual experiment. Also, finding ways to relate results when the sizes of multiple real effects are different rather than equal, as in most of our examples, might make tables of R-spillover have greater utility.

Finally, it would be useful to find what has and hasn't been done regarding the use of probability plots to (1) examine the quality of one's data, and (2) interpret the results from multifactor-multivariate experiments.

#### REFERENCES

- Barnett, V. Convenient probability plotting position for the normal distribution. <a href="https://doi.org/10.1007/nc.25"><u>Applied Statistics</u></a>, 1976, 25, 47-50.
- Beyer, W. H. (Ed.). <u>Handbook of tables for probability and statistics</u>. Cleveland, OH: Chemical Rubber Company, 1966.
- Birnbaum, A. On the analysis of factorial experiments without replication. <u>Technometrics</u>, 1959, <u>1</u>, 343-357.
- Box, G. E. P., Hunter, W. G., and Hunter, J. S. <u>Statistics for experimenters</u>. New York: John Wiley and Sons, 1978.
- CompuMath Citation Indexes, Institute of Scientific Information, Philadelphia, PA.
- Daniel, C. Use of half-normal plots in interpreting factorial two-level experiments. <u>Technometrics</u>, 1959, <u>1</u>, 311-341.

SESSES DESCRIPTION OF SERVICES SESSESSES DESCRIPTION OF SERVICES SERVICES

- Daniel, C. <u>Application of statistics to industrial experimentation</u>. New York: John Wiley & Sons, 1976.
- Draper, N., and Smith, H. <u>Applied regression analysis</u> (2nd Ed.). New York: Wiley and Sons, 1981.
- Gupta, A. K. Estimation of the mean and standard deviation of a normal population from a censored sample. <u>Biometrika</u>, 1952, 39, 260-273.
- Harter, H. L. Expected values of normal order statistics. <u>Biometrika</u>, 1961, 48, 151-165.
- Hazen, A. Storage to be provided in impounding reservoirs for municipal water supply. <u>Transactions American Society of Civil Engineers</u>, 1914, <u>77</u>, 1539-1659.
- Kurtz, T. B., Link, R. F., Tukey, J. W., and Wallace, D. L. Short-cut multiple comparisons for balanced single and double classifications: Part 1: Results. <u>Technometrics</u>, 1965, <u>7</u>, 95-161. (In the same journal, see the comments regarding this article made by: J. E. Jackson, pp. 163-165; F. J. Anscombe, pp. 167-168; and a reply to Anscombe by Kurtz et al., p. 169.)
- Leone, F. C., Nelson, L. S., and Nottingham, R. B. The folded normal distribution. <u>Technometrics</u>, 1961, <u>3</u>, 543-558.
- Owens, D. B. Handbook of statistical tables. New York: Addison-Wesley, 1962.
- Pearce, S. C. <u>Field experimentation with fruit trees and other perenniel</u> <u>crops</u>. Bureau of Horticulture and Plantation Corps. East Mailings, Kent, England. 1953.

- Science Citation Indexes, Institute for Scientific Information, Philadelphia, PA.
- Simon, C. W. Fronomical multifactor designs for human factors engineering experiments. Culver City, CA: Hughes Aircraft Company, Technical Report No. P73-541A, June 1973. (AD A035-108).
- Simon, C. W. Methods for handling sequence effects in human factors engineering experiments. Culver City, CA: Hughes Aircraft Company, Technical Report No. P74-541A, December 1974. (AD A035-109)
- Simon, C. W. Analysis of human factors engineering experiments: Characteristics, results, and applications. Westlake Village, CA: Canyon Research Group, Inc., Technical Report No. CWS-02-76, August 1976. (AD A038-184)
- Simon, C. W. Design, analysis, and interpretation of screening designs for human factors engineering research. Westlake Village, CA: Canyon Research Group, Inc., Technical Report No. CWS-83-77A, September 1977a. (AD A056-985).
- Simon, C. W. New research paradigm for applied experimental psychology: A system approach. Westlake Village, CA: Canyon Research Group, Inc., Technical Report No. CWS-04-77A, October 1977b. (AD A056-984)
- Simon, C. W. Applications of advanced experimental methodologies to AWAVS training research. Orlando, FL: Naval Training Equipment Center, Technical Report No. NAVTRAEQUIPCEN 77-C-0065-1, January 1979. (AD A064-332).
- Sparks, D. N. Half-normal plotting. Applied Statistics, 1970, 19, 192-196.
- Westra, D. P. Simulator design features for carrier landing: II. In-simulator transfer of training. Orlando, FL: Naval Training Equipment Center, Technical Report No. NAVTRAEQUIPCEN 81-C-0105-1, December 1982.
- Westra, D. P., Simon, C. W., Collyer, S. C., and Chambers, W. S. Simulator design features for carrier landing: I. Performance experiments. Orlando, FL: Naval Training Equipment Center, Technical Report No. NAVTRAEQUIPCEN-78-C-006-7, September 1982.
- Zahn, D. A. Modifications of and revised critical values for the half-normal plot. <u>Technometrics</u>, 1975a, <u>17</u>, 189-200.
- Zahn, D. A. An empirical study of half-normal plots. <u>Technometrics</u>, 1975b, 17, 201-211.
- Zahn, D. A. Personal communication, 1977.

### APPENDIX A

### LITERATURE SEARCH

A search was made in the <u>Science Citation Indexes</u> from 1955 to 1986 and in the <u>CompuMath Citation Indexes</u> from 1981 to 1986 for any references to Daniel's (1959) and Zahn's (1975a,b) papers on half-normal plots.

The list below provides the authors, journals, and location within the journals of articles which referred to Daniel's and Zahn's papers. None of the report titles are given, although they may be found, if desired, in the Sources Indexes which accompany the <u>Science Citation</u> and <u>CompuMath Citation Indexes</u>. Even in its abbreviated form, however, this list provides enough information for a user to go directly to the appropriate journals to find an article.

The list is useful for those who wish to see how normal and half-normal plots have been used. A majority of the articles listed below describe applications rather than analyze or otherwise discuss or examine the operating characteristics of these plots. It cannot be assumed that this list is complete; for example, it does not include any references from government or industrial publications. The list does indicate the impact Daniel's paper has had on the interpretation of experimental data. That fact is particularly interesting in the light of Zahn's criticisms and the fact that Zahn's paper—undoubtedly more technically correct than Daniel's—is only referenced in these same volumes a few times. All of the listed papers were found in the Science Citation Index except those marked with an #, which came from the CompuMath Citation Index.

The references are organized according to the years contained in the individual volumes of these indexes.

# ARTICLES REFERENCING DANIEL'S (1959) PAPER ON HALF-NORMAL PLOTS

<u>Index Vol. Year(s</u> 1955-1969	s) <u>lst Author</u>	<u>Journal</u>	Volume	<u>lst Page</u>	<u>Year</u>
	Cox, DR	Technomet	9	481	67
	Draper, NR	Can Math B	11	475	68
	Fedorov, VD	Dan SSSR	188	913	69
	Fienberg, SE	Appl Stat	18	153	69
	Gorman, JW	Technomet	8	27	66
	Govindar, VM	Ind Eng PDD	7	573	68
	Healy, MJR	Appl Stat '	17	157	68
	Hills, M	Biometrika	56	249	69
	Holms, AG	Technomet	11	725	69
	Kurtz, TE	Technomet	7	95	65
	Margolin, BH	Technomet	9	245	67
	Myers, MH	J Chron Dis	19	923	66
	Shapiro, SS	Biometrika	52	591	65
	Stowe, RA	Ind Eng Ch	58	36	66
	Stowe, RA	Ind Eng Ch	61	11	69
	Webb, SR	Technomet	10	535	68
	Wilk, MB	Biometrika	55	1	68
1955-1964	Nddalman o				
	Addelman, S Addelman, S	Technomet	4	21	62 ~
	Banerlee, KS	Technomet	6	365	64
	Box, GEP	Ann Math St	34	1068	63
	Draper, NR	Technomet	4	301	62
	Elandt, RC	Biometrics	20	443	64
	Hunter, JS	Technomet	3	551	61
	Leone, FC	Technomet	6	41	64
	Stevens, CD	Technomet	3	543	61
	Sweeny, R	J Pharm Exp Ind Eng Ch	141	267	63
	Truax, HM	J Am Oil Ch	53	329	61
	Tukey, JW	Ann Math St	37	650	60
	Wilk, MB	Ann Math St	33	812	62
	Wilk, MB	J Am Stat A	36 50	613	64
	Wilk, MB	Technomet	58 4	152	63
		recuirone	•	1	67
1970-1974					
	Abdulrah, YA	Chem Eng Sc	28	1273	73
	Andrews, DF	Biometrics	27	825	71
	Andrews, DF	J Roy Sta C	22	192	73
	Anscombe, FJ	Am Statistn	27	17	73
	Congdon, CC	J Nat Canc	45	1055	70
	Dyer, DD	Technomet	15	489	73
	Egorov, NS	Mikrobiolog	42	863	73
	Evans, DA	J Roy Sta A	136	153	73
	Feder, PI	Technomet	16	287	74
	Fleming, AF	Med J Nust	2	429	74
	Gnanades, R	Ann Math St	41	292	70
	Gnanades, R	Biometrika	57	229	70

KAN BUNGSON BUNGSON BUNGSON BUNGSON BUNGSON BUNGSON BOND BOND BUNGSON BUNGSON

<u>Index Vol. Year(s)</u> <u>1970-1974</u> (cont'd)	1st Author	<u>Journal</u>	Volume	<u>lst Page</u>	<u>Year</u>
	Gnanades, R	J Roy Sta B	32	88	70
	Goldsmith, PL	J Roy Sta C	22	141	73
	Goswami, BC	Text Res J	42	605	72
	Guttman, I	Technomet	15	723	73
	MacDonal, P	J Roy Sta C	20	259	71
	Mallows, CL	Ann Math St	43	508	72
	Miller, B	Tappi	57	102	74
	Mueller, FX	J Paint Tech	43	54	71
	Munford, AJ	J Roy Sta C N	21	351	72
	Rubin, IB	Analyt Chem	43	717	71
	Scardino, FL	Text Res J	40	932	70
	Sparks, DN	Appl Stat N	19	192	70
	Winchest, SC	Text Res J	40	458	70
	Zahn, DA	Biometrics M	27	773	71
<u>1975-197</u> 9					
	Barnett, V	J Roy Sta A	139	318	78
	Barnett, V	J Roy Sta C	27	242	78
	Beck, T	Act Techn M	81	313	75
	Bennett, DR	J Anim Sci	45	768	77
	Coldwell, RL	IEEE Ind Ap	14	175	78
	Egorov, MS	Microbiolog	44	206	75
	Egorov, MS	Microbiolog	45	87	76
	Fienberg, SE	Am Statistn	33	165	79
	Gentleman, JF	Technomet	17	1	75
	Gogoleva, EV	Microbiolog	45	690	76
	Gruber, CM	J Med	10	65	79
	Gupta, SP	Soc Pet E J	19	166	79
	Muck, PM	J Water PC	49	2411	77
	Kale, BK	Sankmya B	38	356	76
	Lamb, GER	Text Res J	45	452	75
	Mead, R	Biometrics R	31	803	75
	Milko, ES	Microbiolog	46	395	77
	Murphy, TO	Chem Eng	84	168	77
	Rutella, GS	Clin Chem	25	1954	79
	Rosner, B	Technomet	19	307	77
	Rubin, IB	Analyt Chem R	51	541	79
	Sachs, L	Klin Woch R	55	973	77
	Shimalla, CJ	Text Res J	46	313	76
	Stavig, GR	Psychol B	83	236	76
	Turnbull, BW	Biometrics	34	555	78
	Wilkens, WD	IEEE El Ins	12	60	77
	Zahn, DA	Technomet	17	189	75
	Zahn, DA	Technomet	17	201	75

Sycien Necesses (Separation Necesses) (Separation (Separation))

Index Vol. Year(s) 1980	1st Author	<u>Journal</u>	<u>Volume</u>	<u>lst Page</u>	Year
	Gusev, NV	Microbiolog	49	19	80
	Holms, AG	Comm Stat B	9	51	80
	Lam, CL	J Food Sci	45	1720	80
	Maksimov, VN	Microbiolog	49	186	80
1981					
	Archer, RH	Eur J Appl	12	46	81
	Darby, SC	J Roy Sta A	144	296	81
	Eldin, SH	J Appl Poly M	26	1431	81
	Jurgenson, IA	Parazitolog	15	38	81
<u>1982</u>					
	nadu n	Technomet	24	103	82
	Bradu, D		24	493	82
	Schweder, T	Biometrika	69 23		
•	Stirling, WD	Statistica J Food Sci	31	211 844	82 82
	Wilkinson, SA	J rood SC1	47	044	62
1983					
	Cardone, MJ	J Aoac	66	1257	83
	Carroll, MB	Am Statistn E	37	31	83
	Cochrane, RL	Biol Reprod	28	134	83
	Huck, PM	Water Res	17	1403	83
	Malajczu, N	Ann Ap Biol	103	57	83
	Snee, RD	J Qual Tech	15	76	83
1984					
	Cox, DR	Int Stat R R	52	1	84
	Kotze, TJV	Appl Stat	33	215	84
4	Mauro, CA	Manag Sci	30	209	84
•	Nair, VN	J Am Stat A	79	823	84
	Ziegel, ER	Technomet D	26	98	84
1985			— <del>-</del>		
	Funk, W	Thin Sol Fi	128	45	85
	Kaitala, S	Ecol Bull		125	84
	Prew, RD	J Agr Sci	104	135	85
1986		-			
	Box, GEP	Technomet	28	11	86

## ARTICLES REFERENCING ZAHN'S (1975a,b) PAPERS ON HALF-NORMAL PLOTS

Index Vol. Year(s) 1975-1979	1st Author	<u>Journal</u>	Volume	<u>lst Page</u>	<u>Year</u>
Miller, RG Sachs, L	J Am Stat A Klin Woch	72 55	779 973	077 077	77 77
1980					
Dixon, WJ	Ann R Pharm	20	441	080	80
<u>1981-1986</u>					

None listed

# APPENDIX B

# EXPECTED VALUES OF NORMAL AND HALF-NORMAL ORDER STATISTICS FOR k = 31, 63, and 127

## NORMAL ORDER STATISTICS

	ORDER		ORDER			ORDER	65	6.61971
	STATISTIC		STATISTIC	3		STATISTIC	66	0.03942
ĩ	-2.05647	1	-2.33781			1 -2.59185	67	0.05914
2	-1.63167	, 2	-1.95626			2 -2.24250	68	0.07889
3	-1.38269	3	-1.73905			3 -2.04751	69	0.09868
4	-1.19804	4	-1.58179			1 -1.90849	78	0.11850
5	-1.04709	5	-1.45605			5 -1.79870	71	Ø.13837
6	-0.91688	6	-1.34981			5 -1.70701	72	0.15829
7	-0.80066	7	-1.25699		•	7 -1.62779	73	0.17828
8	-0.69438	8	-1.17388		8	3 -1.55772	74	0.19833
9	-0.59546	9	-1.09820		9	9 -1.49450	75	Ø.21847
10	-0.50206	10	-1.02834		19	7 -1.43669	76	0.23870
11	-0.41287	11	-0.96317		13	l <b>-1.</b> 38338	77	0.25903
12	-0.32686	12	-0.90188		12	2 -1.33376	78	8.27947
13	-0.24322	13	-0.84380		13	3 -1.28721	79	0.30000
14	-0.16126	14	-Ø.78844		14	-1.24331	80	Ø.32Ø68
15	-0.08037	15	-Ø.73539		15	-1.20171	81	0.34150
16	0.00000	16	-0.68436		16	-1.16204	82	0.36245
17	0.08037	17	-0.63504		17	-1.12415	83	0.38360
18	0.16126	18	-Ø.58724		18	-1.08776	84	0.40489
19	0.24322	19	-0.54073		. 19	-1.05286	85	0.42636
20	0.32686	20	-0.49537		20	-1.01913	86	0.44805
21	0.41287	21	-0.45191		21	-0.98650	87	0.46994
22	0.50206	22	-0.407.3		22		88	8.49288
23	0.59545	23	-0.36480		23		89	0.51443
24	0.69438	24	-0.32273		24		96	8.53784
25	0.80065	25	-0.28122		25	-0.86544	91	0.55997
26	0.91689	26	-0.24019		26		92	0.58317
27	1.04700	27	-Ø.19957		27	-0.80947	93	0.60670
28	1.19804	28	-0.15927		28	-0.78239	94	0.63058
29	1.38269	29	-0.11923		29	-0.75589	95	0.65479
30	1.63167	30	-0.07938		30	-0.72996	96	0.67941
31	2.05647	31	<b>-0.</b> 03966		31	-0.70447	97	0.70447
		32	0.00000		32	-0.67941	98	6.72997
		33	Ø. Ø3966		33	-0.65478	. 99	Ø.75589
		34	<b>0.</b> 07938		34	-0.63058	100	<b>6.</b> 78239
		35	Ø.11923		35	-0.60669	181	0.80948
		36	Ø.15927		36	-0.58317	162	0.83714
		37	Ø <b>.199</b> 57		37	-0.55997	103	Ø.86544
		38	0.24019		38	-0.53704	104	
		39	Ø.28122		39	-0.51443	185	0.92427
		40	0.32273		40	-0.49287	106	<b>8.</b> 95497
		41	0.36480		41	-0.46995	107	0.98651
		42	0.40753		42	-0.44805	108	1.01915
		43	0.45101		43	-0.42635	109	1.05286
		44	Ø.49536		44	-0.40488	110	1.08776
		45	0.54073		45	-0.38359	111	1.12413
		46	0.58724		46	-0.36245	112	1.16205
		47 48	0.63504		47	-0.34149	113	1.20171
			0.68436		48	-0.32068	114	1.24333
		49 50	0.73539		49 50	-0.30000	115	1.28722
			0.78844		58	-0.27947	116	1.33375
		51	0.84380		51	-0.25902	117	1.38340
		52	0.90188		52	-0.23869	118	1.43670
		53	0.96317		53	-0.21847	119	1.49449
		54	1.02833		54	-0.19833	120	1.55775
		55	1.09820		55	-0.17828	121	1.62778
		56	1.17388		56	-0.15829	122	1.70698
		57 50	1.25698		57	-0.13837	123	1.79873
		58	1.34981		58	-0.11850	124	1.90851
		59	1.45605		59	-0.09868	125	2.04752
		60	1.58178		60	-0.07889	126	2.24250
		61 62	1.73905	110	61	-0.05914	127	2.59185
		63	1.95626	119	62	-0.03914		
		0.3	2.33781		63	-0.01971		
					64	0.00000		
	يونون والمراج		Section 1	and the second	•. •. •.	0.00000		3.3.3.5.3

# APPENDIX B (cont'd)

# HALF-NORMAL ORDER STATISTICS

Number	Order Statistic	Number	Order Statistic
1	0. 037755	1	0.019230
5	0. 077344	2	0. 039096
3	0. 116146	4	0. 058495 0. 077851
4 5	0. 155737 0. 196288	€	0. 077564
6	0. 236848	, 5	0. 11701B
7	0. 277176	7	0. 137275
8	0. 318803	8	0. 156933
9	0. 361311	9	0.176493
10	0. 402889	10	0. 196258
11	0. 446393	11	0. 216200
12	0. 490765	12	0. 235971
13	O. 535489	13	0. 256196
14	0. 580973	14	0. 276680
15	0. 629700	15	0. 297813 0. 318330
16 17	0. 679548 0. 732111	16 17	0.339698
18	0. 786062	18	0.360498
19	0. 842622	19	0. 381368
20	0. 901025	20	0. 402650
21	0. 961400	21	0. 423443
22	1.026500	55	0. 445411
23	1.096640	23	0. 467422
24	1. 173480	24	0. 489720
25	1. 256180	25	0. 512424
26	1. 348710	26	0.534829
27 28	1. 457 <i>6</i> 50 1. 584930	27 28	0. 557291 0. 579992
29 29	1. 744760	58	0.603416
30	1. 959020	30	0.627738
31	2. 342680	31	0.651868
•		32	0. 676398
		33	0. 701125
		34	0. 727618
		35	0.753351
		36	0.779807 0.807111
		37 38	0. 834626
		39	0.862614
		40	0. 891383
		41	0. 921166
		42	0. 952432
		43	0. 983861
		44	1.016860
		45	1. 050560
		46	1,085090 1,121530
		47 48	1. 121530
		49	1. 199540
		50	1. 241350
		51	1. 285290
		52	1.332120
		53	1.383010
		54	1.435900
		55	1.493260
		56	1.555480
		57	1.624930
		58	1.704560
		59	1.797090
		60	1.908770
		61	2, 047880 2, 240550
		62 63	2. 592380
		93	2. 5.2335

### APPENDIX B (cont'd)

### HALF-NORMAL ORDER STATISTICS

1. 776400 1. 826620 1. 881770

1. 943290 2. 012240 2. 094940

2. 193610 2. 318260 2. 497170 2. 828630

126

Number	Order Statistic		
1	0.009809	58	0. 604956
ż	0. 019836	59	0. 616701
3	0. 029776	60	0. 628569
4	0. 039751	61	0. 640321
5	0. 049482	62	0. 652393
6	0. 059341	63	0. 664481
7	0. 069374	64	0. 676715
8	0. 079189	<b>6</b> 5	0. 689347
9	0. 089033	66	0. 701778
10	0. 098757	67	0. 714480
11	0. 108474	88	0. 727106
12	0. 118526	69	0. 740169
13	0. 128607	70	0. 753378
14	0. 138253	71	0. 766354
15	0.148170	72	0. 779366
16	0.158008	73 74	0. 792861
17	0.167908	74 75	0.806778
18	0. 177665	76	0. 820474
19	0. 187725	77	0.834340
20	0. 197852	78	0. 848549 0. 862394
21	0. 207862 0. 217746	79	0.876830
53 55	0. 217748	80	0.891408
23 24	0. 237906	81	0. 905992
25	0. 247963	82	0. 920773
59 50	0. 257876	83	0. 935736
27	0. 268187	84	0. 951191
28	0. 278347	85	0. 967161
29	0. 288580	86	0. 983027
30	0. 298931	87	0. 998870
31	0. 309051	88	1.014870
35	0. 319467	89	1.031260
33	0. 329850	90	1.048090
34	0. 340470	91	1.065140
35	0. 350732	92	1.083030
36	0. 361337	93	1.100680
37	0. 371741	94	1. 119210
38	0. 382275	95	1. 137670
39	0. 392913	96	1. 156790
40	0. 403483	97	1. 176400
41	0. 414017	<del>9</del> 8	1. 195660
42	0. 424991	99	1. 215710
43	0. 436135	100	1. 236340
44	0. 446763	101	1. 257680
45	0. 457691	102	1. 279600
46	0.468713	103	1.302500
47	0. 479703	104	1.325520
48	0. 490531	105 106	1. 349420 1. 373820
49	0.501775	107	1.373820
50	0.512986	108	1. 425780
51 52	0. 524642 0. 535977	109	1. 453400
53	0. 547388	110	1.482160
54	0. 558796	111	1.512110
55	0.570297	112	1.543380
56	0.581697	113	1.576830
57	0.593361	114	1.612090
	5. 57555 <u>1</u>	115	1.649600
		115	1.689460
		117	1.731980

### APPENDIX C

# PROGRAM FOR GENERATING DATA BASES AND FOR PERFORMING SUBSEQUENT ANALYSES USED IN THIS REPORT*

This program constructs experimental designs of the 2^f (or 2^{f-p}) type and will produce summary or "estimated" expected results for any combination of real and nonreal effects with minor modifications by the user. The program also produces a variety of other statistics and output which can be used to investigate the operating characteristics of multifactor experiments and normal plots. The program works by first constructing an experimental design of the 2^f type with the matrix filled with -ls and +ls to represent the (2) levels of the factors. Then random normal values (N(0,1)) are generated and "assigned" as data points to the experiment. There are options for assigning more than one data point to each cell of the design matrix.

The effects or contrasts for the experiment are then computed. Real or "true" effect values are then added to the estimated nonreal contrasts and the effects are then sorted according to size. This process is repeated some number of times (until desired accuracy is achieved -- 5000 in this report). and summary statistics giving means and standard deviations for the sorted contrasts are computed. The program also has subroutines for computing standard normal order statistics for any number of ordered values and these can be printed for both real and nonreal effects for comparison purposes. In its current form, certain selected summary statistics are printed to a disc file which can then be subjected to further analysis using other statistical packages. In this report, the normal plot routines in the BMDP statistical package were used to plot the obtained ordered values. This method was used to obtain normal plots for the outcome from a single experiment, the ordered summary statistics for all results, and the ordered summary statistics for intermediate results. The user can modify this output as necessary to conduct supplemental analyses. Currently, the program will also calculate slope statistics for various portions of the normal plot.

^{*} Questions regarding this program should be addressed to Dr. Daniel P. Westra, Essex Corporation, 1040 Woodcock Road, Orlando, FL 32813.

The user must input the following to the program:

- 1. The size of the experimental design (expressed as  $2^{f}$ ).
- 2. The number of real effects.

Phononoral according both references and the continue and the processing

- 3. The magnitude of each real effect.
- 4. Number of data points per cell (default to one).

```
THIS PROGRAM WAS WRITTEN ON A VAX-788 USING VAX FORTRAN-77+. THE FILE NAME WES.FOR .
        TO COMPILE: FOR WES
        TO TASK BUILD: LINK WES
INPUTS: THE INPUTS TO THIS PROGRAM ARE
                    1) THE SIZE OF THE DESIGN MATRIX.
2) THE NUMBER OF REAL EFFECTS.
3) THE MAGNITUDE OF EACH REAL EFFECT.
        OUTPUT: THERE ARE FIVE FILES THAT ARE CREATED
                    1) SIMON.DAT - THIS FILE HAS SUMMARY DATA AFTER EACH 188 RUNS.
                    2) WES.DAT - THIS FILE IS THE FINAL SUMMARY AFTER
                                         5000 RUNS.
                    3) SLOPE.DAT - THIS FILE WAS CREATED TO BE AN INPUT FILE TO THE BMDP PACKAGE 5D TO CALCULATE THE PLOT OF THREE
                                            SIGMA METHODS.
                    4) SIMONBMD.DAT - THIS FILE WAS CREATED TO BE AN INPUT
                                                PILE TO THE BMDP PACKAGE 5D TO PLOT
NEWE AFTER EACH 188TH RUN.
                   5) 2MD.DAT - THIS FILE WAS CREATED TO BE AN INPUT
FILE TO THE BMDP PACKAGE SD TO PLOT NEWE
AFTER 5888 RUNS.
      IMPLICIT REAL+4 (M)
c
      DIMENSION D(128), E(127), P(128,127), EN(127), X NS(128), EN1(127), E1(127), YEN(127), YEN2(127) DIMENSION ESS(127), RN(128), MAG(32), YENA(127), YENA2(127)
      INTEGER P,COUNT(127),T38,T58,T78,F38,L38,F58,L58,F78,L78,
X EFF(127),POSEFF,NEGEFF,K1,K2,NEWK,P38E,J38E,P58E,J58E
```

```
REAL+4 NEWE(127),D38,D58,D78,NEWD,COL1(127),COL2(127)
REAL+4 ONE(38),TWO(29),THREE(28),FOUR(27),FIVE(26)
REAL+4 SIX(25),SEVEN(24),NEWYEN(127),NEWYEN2(127)
REAL+4 ZHOZN(127),ZHOZE(127),ZHOZEI(127),ZEIGHT(127)
      REAL+4 ZEIGHT1 (127) , MAT (31,50)
C
      LOGICAL TEST (127)
Č
      SIGN MATRIX USED AS BASIS FOR GENERATING OTHER SIZE FACTORIALS.
      DATA ((P(I,J),J=1,3),I=1,4) /-1.,-1.,1.,-1.,-1.,-1.,-1.,1.,
x -1.,1.,1./
C
      OPEN (UNIT-11, TYPE='NEW', NAME='SLOPE. DAT.')
¢
      NR =5000
      SEED-SECNOS (8.8)
      NMAX MUST BE INPUT BY USER , IT SPECIFIES SIZE OF DESIGN ACCORDING TO 200NMAX.
      NSCELL ALSO USER INPUT. GIVES NO. SUBS PER CELL.
     WRITE (5,2)
FORMAT(' ENTER SIZE OF DESIGN MATRIX ')
ACCEPT 3,NMAX
FORMAT(12)
2
      NCMAX =NMAX -1
NFCON=2 **NMAX
      NFEFF-NFCON-1
      NSCELL-1
      IF (NMAX .EQ. 5) THEN P38 = 12
      P30 = 28
D30 = 9.
P50 = 9
L50 = 23
D50 = 15.
P70 = 6
L70 = 26
     D70 = 21.

NEWD = 0.1535533

ELSE IF (NMAX .EQ. 6) THEN

F30 = 23

L30 = 41

D30 = 19.
       F50 = 17
L50 = 47
D50 = 31
F70 = 10
L70 = 54
D70 = 45.
         NEWD - 8.25
       END IF
 c
       NTEMP=NFCON*NSCELL
       GENERATE THE DESIGN MATRIX
       DO 181 N1=2, NCMAX
          NC1=2**N1
NC1=2**N1
NC2=NC1*2
NST=NC1+1
NE1*NC1-1
           NE2=NC2-1
 С
С
С
       DUPLICATE EXISTING MATRIX
           DO 11 I-MST, NC 2
              DO 11 J=1, NE1
P(I,J)=P(I-NC1,J)
 11
                 CONTINUE
        GENERATE NEXT PACTOR
 č
           DO 15 I=1, NC1
              P(1,NC1) =-1.
                 CONTINUE
 15
           DO 16 I-NST, NC 2
              P(I,NC1)=1.
                 CONTINUE
 16
        MULT TERMS BY NEW FACTOR
  c
           DO 31 I=1.NC2
              DO 31 J=NST, NE2
P(I,J)=P(I,NC1)*P(I,J-NC1)
                 CONTINUE
  101 CONTINUE
```

```
DO 26 I-1, NTEMP
MS (I) = I
CONTINUE
DO 21 J-1, NPEPF
ESS (J) = 6.
COL1 (J) = 6.
ZNDZE (J) = 6.
ZNDZE (J) = 6.
ZNDZE (J) = 6.
COL2 (J) = 6.
COL2 (J) = 6.
CONTINUE
SLOPE36 = 6.
         26
                         SLOPE 78
                       T38 - 6
T58 - 6
T78 - 8
                       K1 - 8
K2 - 6
                       DO 91 I=1,32
MAG(I) = 8.8
CONTINUE
                     CONTINUE
WRITE (5,4)
FORMAT (' ENTER NUMBER OF REAL EFFECTS ')
ACCEPT 3,F
DO I = 1,F
TYPE-;
WRITE (5,5)
FORMAT (' ENTER HAGNITUDE OF EFFECTS ')
ACCEPT 6,MAG (I)
FORMAT (F7.4)
IF (MAG (I) .GT. 8.) POSEFF=POSEFF+1
IF (MAG (I) .LT. 8.) NEGEFF=NEGEFF+1
END DO
                    THE FOLLOWING IF BLOCK IS USED TO ASSIGN VARIABLES THE CORRECT VALUE DEPENDING OF THE THE DESIGN SIZE AND IF A 38 OR 58 PERCENT SLOPE ABOUT THE CENTER
                       IS NEEDED.
                   IF (NMAX .EQ. 5) THEN
IF (F.LE. 10) THEN
P30E = 8
J30E = 16
P50E = 5
J50E = 19
ELSE IF (F.EQ. 12) THEN
P30E = 6
J30E = 14
P50E = 3
J50E = 17
ELSE IF (F.EQ. 16) THEN
P30E = 4
J30E = 12
P50E = 1
J50E = 1
J50E = 15
END IF
                            END IP
c
                ELSE IF (NMAX .EQ.6) THEN

IF (F .EQ. 8) THEN

P30E = 19

J30E = 37

P50E = 13

J50E = 43

ELSE IF (F .EQ. 12) THEN
                   P38E = 17

J38E = 35

P58E = 11

J58E = 41

ELSE IP (F .EQ.16) THEN

P38E = 15

J38E = 33

P58E = 9

J50E = 39

END IF
```

```
0000
      THIS WILL ECHO CHECK THE POSITIVE AND NEGATIVE VALUES OF THE REAL EFFECTS.
      TYPE*, NEGEFF
      Kl = NPEFF-POSEFF
K2 = NPEFF-P
      ORDER STAT. FOR REAL AND NON-REAL EFFECTS
      DO I = 1,NFEFF
         CALL SCOR(I, NFEFF, SN, VAR)
YEN(I) = SN
YEN2(I) = VAR**.5
                                                 IORDER STAT. FOR NFEFF ISTD. DEV. FOR ORDER STAT.
         NEWYEN(I) = SN
NEWYEN2(I) = VAR**.5
      ORDER STAT. FOR NON-REAL EFFECTS
      DO I=1,K2
CALL SCOR(I,K2,SN,VAR)
YENA(I) = SN
YENA2(I) = VAR**.5
      ORDER STAT. FOR REAL EFFECTS
     DO I=1,P
CALL SCOR(I,F,SN,VAR)
ZEIGHT(I) = SN
ZEIGHT1(I) = VAR**.5
С
      CALL SORT (YEN, NFEFF)
      CALL SORT (YENA, K2)
CALL SORT (NEWYEN, NFEFF)
      CALL SORT (ZEIGHT, F)
      IF (NEGEFF .EQ. Ø)GOTO 9
 C
       DO I=1, NEGEFF
          EFF(I) = F

YEN(I) = ZEIGHT(I) + (MAG(I)/NEWD)

YEN2(I) = ZEIGHT1(I)
       IF (NEGEFF .GT. #)NEGEFF=NEGEFF+1
      IF (NEGEFF .EQ. 8) NEGEFF-1
      DO I=NEGEPF, K1

EFF(I) = K2

YEN(I) = YENA(I-(NEGEPF-1))

YEN2(I) = YENA2(I-(NEGEFF-1))
                                                       ILOOP TWO
       END DO
      K1 = K1 + 1
DO I=K1,NPEFF
EFF(I) = F
YEN(I) = ZEIGHT(I-K2) + (MAG(I-K2)/NEWD)
YEN2(I) = ZEIGHT1(I-K2)
      END DO
0000
      START OF LOOP FOR THE 18K (OR WHATEVER) RUNS
       ITEMP-188
      NEWK = 1
       DO 186 KK=1.NR
       RANDOM DRAW FROM N(8,1)
          CALL RNORMØ1 (NTEMP, RN, SEED)
         DO 589 I=1, NTEMP
D(I)=RN(I)
                CONTINUE
509
631
         DO 25 I=1, NFEFF
            TEST(I) = .FALSE.
EN1(I) = 0.
EN(I)=0.
25
                CONTINUE
```

なるである。 なななななななないのでは、これのこのでは、これのこのでは、これのないのは、これのないのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは

```
RANDOM ASSIGNMENT OF "SUBJECTS" TO CONDITIONS
                 NTEM 2=NTEM P-1
                 DO 38 I=1,NTEM2
IP=NTEMP-I+1
                    RAN - MTHSRANDOM (SEED)
                  ICH=RAN*POS+1
                  IS=NS (IP)
NS (IP) =NS (ICM)
NS (ICM) =IS
            NUMBERS REPRESENTING SUBJECTS MEAN LEVEL INPUT AND TALLIED
               DO 48 J=1, NPEFF
                  DO 48 I=1,NFCON
C=8.
            PROVISION TO PUT IN MORE THAN 1 SUB PER CELL.
                     K2=K+NSCELL-1
                     DO 43 K1=K,K2
II=NS(K1)
                    C=C+D(II)
CONTINUE
C=C/NSCELL
     43
                    K=K2+1
EN(J)=EN(J)+P(I,J)*C
CONTINUE
     48
     ċ
              JJ2=NFCON/2
     c
             USE ABS VALUES OF MEAN DIFFERENCES HERE IF DESIRED.
                 EN(I)=(EN(I))/FLOAT(JJ2)
CONTINUE
     41
              DO K = 1,F
EN(K) = EN(K) + MAG(K)
END DO
              DO I = 1, NFEFF
              EN1(I) = EN(I)
END DO
     C
           SORT EFFECT SIZES
              CALL SORT (EN, NPEPF)
           NOW COMPUTE SLOPE BASED ON CENTER POINTS. WE WILL USE
           29%, 55%, AND 68% OF THE DATA ABOUT THE MIDPOINT OF THE SORTED ARRAY.
           FIRST: 29%
              138 - 8
          SUM38XY - 8.
         SUM38X = 8.
SUM38XX = 8.
SUM38Y = 8.
SS38XY = 8.
         SS38XX = 8.

SS38XX = 8.

DO 238 I = F38,L38

SUM38XY = SUM38XY + (EN(I) * NEWYEN(I))

SUM38X = SUM38X + NEWYEN(I)

SUM38XX = SUM38X + (NEWYEN(I)**2)

SUM38Y = SUM38Y + EN(I)

CONTINUE
238
         CONTINUE
        SSJØXX = SUM3ØXY - ((SUM3ØX*SUM3ØY)/DJØ)
SSJØXX = SUMJØXX - ((SUMJØX**2)/DJØ)
SLOPEJØ = SLOPEJØ + (SSJØXY / SSJØXX)
```

かいいけいが 無力のシンシン もていいじじ 美ななななななな よって

```
NOW COUNT HOW MANY REAL EFFECTS OCCUR IN THE CALULATIONS FOR THE SLOPE OF 38% OF THE DATA.
                                    DO J = 1,F
DO K = F36,L36
IF(EN(K) .EQ. EN1(J)) I36 = I36 + 1
                                              END DO
                                    SUMSEXY - 8.
Sumsex - 8.
                           SUMSBX -
SUMSBX = 8.
SUMSBY = 8.
SSSBXX = 8.
SSSBXX = 8.
DO I = PS8,L58
S - 3XY = SUMSBXY + (EN(I) * NEWYEN(I))
= SUMSBX + NEWYEN(I) **2)
SUMS = SUMSBY + EN(I)

- ((SUMSBX * SUMSBY) / I
- (SUMSBX * SUMSBX * SUMSBY) / I
- (SUMSBX * SUMSBX * SUMSBX * SUM
                                   SS58 SUMSØXY - ((SUMSØX * SUMSØY) / DS8)

SS584 SUMSØXX - ((SUMSØX**2) / DS8)

SLOPE58 - SLOPE58 + (SS5ØXY / SS5ØXX)
                                   DC - 1,P
                                           IF(EN(K) .EQ. EN1(J)) I50 = I50 + 1
END DO
                         NOW 68%
                                   178 - 8
                                   SUMTEXY = 8.
                              SUM70X = 0.
SUM70XX = 0.
                              SUM78Y = 8.
SS78XY = 8.
                              SS/BXX = 8.
SS/BXX = 8.
DO I = P78,L78
SUM78XY = SUM78XY + (EN(I) * NEWYEN(I))
SUM78XX = SUM78X + NEWYEN(I)
SUM79XX = SUM78X + (NEWYEN(I)**2)
SUM78Y = SUM79Y + EN(I)
                            SONT/SI = SUN/SI + EN(1)

SNO DO

SS78XY = SUN78XY - ((SUM78X * SUM78Y) / D78)

SS78XX = SUN78XX - ((SUM78X**2) / D78)

SLOPE78 = SLOPE78 + (SS78XY / SS78XX)
                            DO J = 1,F
DO K = F78,L78
IF (EN(K) .EQ. EN1(J)) I78 = I78 + 1
END DO
C
                         DO K = 1, P

DO I = 1, NFEFF

IF(EN(I) .EQ. EN1(K)) THEN

COUNT(I) = COUNT(I) + 1

TEST(I) = .TRUE.
                            END DO
                            DO I-1, WFEFF
                                                                     IF (YEN(I) .EQ. $.8888) THEN
YEN(I) = $.88881
END IF
                                         END IF

COL1(I) = EN(I) / YEN(I)

COL2(I) = COL1(I) / NEWD

ZMDZE(I) = COL2(I)

NEWE (I) = EN(I) / NEWD

ZMDZN(I) = NEWE(I) / NEWYEN(I)
                 THE IF BLOCK THAT FOLLOWS IS ONLY EXECUTED EVERY ONE HUNDRED TIMES. A COMMENT OUT TO THE SIDE WILL TELL WHERE THE BLOCK STARTS AND STOPS.
                           IF (KK .EQ. ITEMP) THEN
                                                                                                                                                                                                            I START OF LOOP
                FIND MEDIAN SIGMA FOR FIRST 11 BIASES
                                    CALL SORT (NEWE, 11)
                                   DO I=1,11
ZMDZE1(I) = NEWE(I) / YEN(I)
                                   END DO
CALL SORT (ZMDZE1,11)
MEDIANSIGMA - ZMDZE1(6)
```

```
PIND SLOPE BASED ON 36% ABOUT THE CENTER
            MNOZ 3EXY-E.
            MNOZ 3 8X - 8.
            MNOZ 38XX -6.
           MNOZ 38Y = 6.
MNCZ 38XY = 8.
MNCZ 38X = 6.
           MNC238X = 0.
MNC238Y = 0.
           MEOZ 38XY -8.
           MEOZ 3 8X = 6.
           MEOZ 36XX -6.
           MECZ38Y=#.
MECZ38XY=#.
          MEC238XY=8.

MEC238X=8.

MEC238X=8.

MEC238Y=8.

MEC238Y=8.

MNOZ38X1=8.

MNOZ38X2 -MNOZ38XX + (NEME(J) * NEMYEN(J))

MNOZ38X3 -MNOZ38XX + (NEMYEN(J) * **2)

MNOZ38XY -MNOZ38XY + (NEME(J) * YENA(J))

MNCZ38XY -MNCZ38XY + (YENA(J) * YENA(J))

MNCZ38XX -MNCZ38XX + (YENA(J) **2)

MNCZ38XY -MNCZ38XX + (YENA(J) **2)

MNCZ38XY -MNCZ38XX + NEWE(J)
          END DO
DO J=P38E,J38E
                                                                                    [ * * MID OP E
(NEWE (J) * YENA (J))
               O J-P30E, J30E

MEC230X -MEC230X +

MEC230X -MEC230X +
                                                                              + YENA(J)
+ (YENA(J) **2)
                                                                               + (L) ama() + (L) aman())
                                                                            + NEWE(J) + NEW
+ (NEWYEN(J) + NEWYEN(J)
+ (NEWYEN(J) + 2)
+ NEWE(J)
         END DO
SSMNOZ 30XY =0.
SSMNOZ 30XX =0.
          SSMNCZ JØXY=0.
SSMNCZ JØXX=0.
         SSMEOZ 30XY = 0.
SSMEOZ 30XX = 0.
         SSMECZ 30XY =0.
       SSMECZJBXY=8.

SSMECZJBXX = MNOZJBXY - {(MNOZJBX * MNOZJBY)/DJB}

SSMNOZJBXY = MNOZJBXY - {(MNCZJBX * MNCZJBY)/DJB}

SSMNCZJBXX = MNCZJBXX - {(MNCZJBX**2)/DJB}

SSMNCZJBXX = MNCZJBXX - {(MNCZJBX**2)/DJB}

SSMNCZJBXX = MECZJBXY - {(MECZJBX**2)/DJB}

SSMECZJBXY = MECZJBXY - {(MECZJBX**2)/DJB}

SSMECZJBXX = MECZJBXX - {(MECZJBX**2)/DJB}
       SSMEOZ38XY - MEOZ38XY - ((MEOZ38X * MEOZ38Y)/D38)
SSMEOZ38XX - MEOZ38XX - ((MEOZ38X**2)/D38)
       MNCZ 38 = 8.
MEOZ 38 = 6.
      MECZ38=8.

MECZ38=9.

MNOZ38 = (SSMNOZ38XY / SSMNOZ38XX)

MNCZ38 = (SSMNCZ38XY / SSMNCZ38XX)

MECZ38 = (SSMECZ38XY / SSMECZ38XX)

MECZ38 = (SSMECZ38XY / SSMECZ38XX)

MNOZ58XY=8.
       MNOZ SEX -6.
      MNOZ SEXX=E.
     MNCZ 58XY =8.
MNCZ 58X =8.
MNCZ 58XX =8.
      MNC258Y = 8.
      MEOZ SOXY . .
     MEOZSØX=Ø.
MEOZSØXX=Ø.
      MEOZ SEY - B.
     MECZ SOXY = 0.
      MECZSAX + #.
     MECZ SAXX =0.
     MECZSEY-E.
```

```
FIND SLOPE BASED ON 58% OF THE CENTER
                                            DO K-PSO.LSO
                                                                                                                                                  I**MID OF N
                                                    J R-FSB, LSB MOZSBXY + (NEWE(K) * NEWYEN(K))
MNOZSBX = MNOZSBX + NEWYEN(K) ***
MNOZSBX = MNOZSBX + (NEWYEN(K) ***
MNOZSBX = MNOZSBX + (NEWYEN(K) ***
MNOZSBY = MNOZSBX + (NEWE(K) ***
MNOZSBXY = MNOZSBXY + (NEWE(K) ***
MNOZSBX = MNOZSBX + (NEWE(K) ***
MNOZSBX = MNOZSBXY + (NEWE(K) ***
MNOZSBX = MNOZSBXY + (NEWE(K) ***
MNOZSBX = MNOZSBX + (NEWE(K) ***
MNOZSBX = MNOZSBX + (NEWE(K) ***
MNOZSBX = MNOZSBXY + (NEWE(K) ***
MNOZSBX = MNOZSBX + (NEWE(K) ***
MNOZSBX + (NEWE(K) ***
MNOZSBX + (NEWE(K) ***
MNOZSBX + (NEWE(K) ***
MNOZS
                                                     MNCZ 58X = MNCZ 58X + YENA (K)
MNCZ 58XX= MNCZ 58XX + (YENA (K) **2)
MNCZ 58Y = MNCZ 58Y + NEWE (K)
                                            END DO
                                                   DO X-P502,J502
                                                     MEOZSBY - MEOZSBY + NEWE (K)
                                           END DO
                                           SSM NOZ SØXY = Ø.
SSM NOZ SØXX = Ø.
                                          SSMNCZ SØXY = Ø.
SSMNCZ SØXX = Ø.
                                       SSMEOZ SØXY = 0.
SSMEOZ SØXX = 0.
                                        SSMECZ SOXY =0.
SSMECZ SOXX =0.
                                     SSMECZ58XX = 8.

SSMNOZ58XY = MNOZ58XY - ((MNOZ58X * MNOZ58Y)/D58)

SSMECZ58XY = MECZ58XX - ((MNOZ58X * MECZ58Y)/D58)

SSMNOZ58XX = MNOZ58XX - ((MNOZ58X**2)/D58)

SSMNCZ58XX = MNCZ58XY - ((MNOZ58X**2)/D58)

SSMCZ58XY = MNCZ58XY - ((MNOZ58X * MNOZ58Y)/D58)

SSMECZ58XX = MECZ58XY - ((MECZ58X * MECZ58Y)/D58)

SSMECZ58XX = MECZ58XY - ((MECZ58X * MECZ58Y)/D58)

SSMEOZ58XX = MECZ58XX - ((MECZ58X * MECZ58Y)/D58)

SSMEOZ58XX = MECZ58XX - ((MECZ58X * MECZ58Y)/D58)

MNOZ58 = 8.
                                        MNOZ 58 -8.
                                       MNC258-8.
MEO258-8.
                                      MECZ 58 - 8.

MECZ 58 - 9.

MNOZ 58 - (SSMNOZ 58XY / SSMNOZ 58XX) | *SI

MECZ 58 - (SSMECZ 58XY / SSMECZ 58XX) | *SI

MECZ 58 - (SSMNOZ 58XY / SSMECZ 58XX) | *SI

MECZ 58 - (SSMECZ 58XY / SSMECZ 58XX)

MECZ 58 - (SSMECZ 58XY / SSMECZ 58XX)

OPEN (UNIT - 9, TYPE - 'NEW', FILE - 'SIMON. DAT')

WRITE (9, 793) KK, NFEFF, F, POSEFF

WRITE (9, 793) MAG (1)

WRITE (9, 798)

PORMAT (IX.'RUN'. IS. 3X.'K - '. IS. 3X.' R
                                                                                                                                                                                                                                        I*SLOPE MID N OZ
I*SLOPE MID E CZ
                                                                                                                                                                                                                                                          ISLOPE MID N CZ
                                        FORMAT(1X, 'RUN', 15, 3X, 'K=', 15, 3X, ' REALS=', 15, 3X, + EFFECTS=', 15)
FORMAT(1X, 'MAGNITUDE OF EFFECT IS', F7. 4//)
793
                                        DO I=1, NFEPF
IF(TEST(I)) then
                                                             WRITE (9, 791) EN (1), NEWE (1), ZM DZE (1), ZM DZH (1)
                                                             WRITE (9, 792)EN (I), NEWE (I), ZMDZE (I), ZMDZN (I)
                                                                      END IF
                                         END DO
                                      END DO
WRITE (9, 795) MEDIANS IGMA
WRITE (9, 856) MNOZ 38
WRITE (9, 851) MNCZ 38
WRITE (9, 852) MEDIANS
WRITE (9, 852) MEDIANS
WRITE (9, 854) MNOZ 58
WRITE (9, 855) MNCZ 58
WRITE (9, 855) MNCZ 58
WRITE (9, 856) MNCZ 58
                                       WRITE (9,856) MEOZ 58
WRITE (9,857) MECZ 58
                  WRITE SLOPE SCORES OUT FOR FREQ. DIST.
                                                                                 WRITE (11, *) MEDIANS IGMA, MECZ 30, MECZ 50
                   WRITEOUT DATA FOR BMDP
                                         DO I=1, NFEFF
MAT(1, NEWK) = NEWE(1)
```

END DO

```
C
795
858
                  PORMAT(' MED. OF ZMD/ZE',F15.5)
FORMAT(' MID. OF N 0Z30',F15.5)
FORMAT(' MID. OF N CZ30',F15.5)
FORMAT(' MID. OF E 0Z30',F15.5)
FORMAT(' MID. OF E 0Z30',F15.5)
FORMAT(' MID. OF N 0Z50',F15.5)
FORMAT(' MID. OF N 0Z50',F15.5)
FORMAT(' MID. OF C 0Z50',F15.5)
FORMAT(' MID. OF E 0Z50',F15.5)
FORMAT(' MID. OF Z 0Z50',F15.5)
    852
    854
   855
856
                                                                                   ZMD
   798
                                                                                                                ZND/ZE
                              ZMD/ZN')
                  CLOSE (UNIT-9)
ITEMP = ITEMP+188
   c
                   NEWK - NEWK+1
              END IF
                                                                                       I END OF LOOP
   791
              PORMAT (F15.5, 'R', 3F15.5)
           SUM UP FOR MEANS AND VARIANCES
               DO 45 I=1,NPEFF
                  E(I)=E(I)+EN(I)

E1(I) = E1(I) + EN1(I)

ESS(I)=ESS(I)+EN(I)**2

CONTINUE
              T38 - T38 + I38
T58 - T58 + I58
T78 - T78 + I78
          INC. COUNTER FOR THE 58 COLUMNS IN MATRIX MAT
   188 CONTINUE
          NOW WRITE MAT OUT FOR BMDP ANALYSIS
          OPEN (UNIT=15, TYPE='NEW', NAME='SIMONBMD.DAT', RECORDSIZE=899)
DO J=1, NFEFF
              WRITE (15, 792) (MAT (J, I), I=1, SØ)
           END DO
          CLOSE (UNIT=15)
          GET MEANS AND VARIANCES
          REP-NR
DO 120 J-1, NPEPP
             O 128 J=1,NFEFF

E(J)=E(J)/REP

E1(J) = E1(J) / REP

NEME(J) = E(J) / NEWD

ZMDZN(J) = NEWE(J) / NEWYEN(J)

IF(YEN(J) = E(J) / YEN(J) = .88881

COL1(J) = E(J) / YEN(J)

COL2(J) = COL1(J) / NEWD
            ESS (J) -ESS (J) /REP-E (J) **2
       ESS (J) = SQRT (ESS (J) / NEWD

ESS (J) = SQRT (ESS (J) ) / NEWD

CONTINUE

SLOPE38 = (SLOPE38 / REP) / NEWD

SLOPE38 = (SLOPE38 / REP) / NEWD

SLOPE38 = (SLOPE38 / REP) / NEWD
124
       OPEN (UNIT-6, TYPE-'NEW', FILE-'WES.DAT')
OPEN (UNIT-7, TYPE-'NEW', FILE-'2MD.DAT')
       NUMBER OF SUBJECTS PER CELL IS',13)
                                                         NUMBER OF RUNS IS 1.16)
                                                         NO. REAL EFFECTS IN THIS DESIGN IS', 15)
  788
       WRITE (6, 789)
WRITE (6, 798)
       DO 138 J-1, NFEFF WRITE (6,558) J,E(J), COUNT (J), NEWE (J), YEN (J),
  130
                   EFF(J), COL1(J), COL2(J), ZMDZN(J), ESS(J), YEN2(J)
785 FORMAT(18X, MAGNITUDE OF THE EFFECTS ARE ',8F7.4)
798 FORMAT(18X,
789 FORMAT (12X,
                       | 13x,' M.D. EFFECTS ZMD 2E | MD/ZE ZMD/ZE ZMD/ZN STD. sd. E.N. sd.') | FORMAT (18x, 13, P8.3, 1x, 17, 2x, F8.3, 2x, F8.3, 1x,
  550
                  ,12,')',3F18.3,2F18.3)
FORMAT(10X,13,F8.3,1X,F8.3,1X,'(',12,')',2F18.3)
  551
                       FORMAT (50F15.5)
       DO K=1, NFEFF
           WRITE (7, *) NEWE (K)
        END DO
       CLOSE (UNIT-7)
        STOP
       END
C
```

```
SUBROUTINE SORT (X, M)
          DIMENSION X (127)
         K-S
          DO 2 1-2,M
              J=I-1
IF(X(J) .LE. X(I)) GO TO 2
  X (I) .

X (I) = X (I)

X (I) = X (J)

X (J) = S

2 CONTINUE
         IF(K .EQ. #)RETURN
M=K
GO TO 1
          END
          SUBROUTINE RNORM $1 (N, X, SEED)
        TO GENERATE RANDOM NORMAL NUMBERS PROM UN. RANDOM NUMBERS BY BOX AND MULLER (1958) METHOD. IF R1 AND R2 ARE 2 UN. RAND NUMBERS, THEN 21=SORT (-2.*LOG (R1))*COS (2*PI*R2) 72=SORT (-2.*LOG (R1))*SIN (2*PI*R2) ARE A PAIR FORM N (8,1).
       IMPLICIT REAL*4 (M)
DIMENSION X (128)
DO 58 I=1,N,2
R1=MTH$RANDOM(SEED)
R2=MTH$RANDOM(SEED)
X(I)=SQRT(-2.*LOG(R1))*COS(6.2831853*R2)
X(I+1)=SQRT(-2.*LOG(R1))*SIN(6.2831853*R2)
CONTINUE
         RETURN
         END
0000
           SUBROUTINE SCOR (J, N, SCORE, VAR)
           COMPUTES THE E(x) OF THE JTH OP N RANKED NORMAL
          SCORES.

SCORE RETURNS WITH THE EXPECTED NORMAL SCORE.

VAR RETURNS WITH THE VARIANCE OF THE NORMAL SCORE.

COMPUTE THE CONTENT OF THE INTEGRAL LOG FORM

C = FACL(N)-FACL(J-1)-FACL(N-J)
          GET THE APPROX. NORMAL SCORE
          AN - SCR(J,H)
         AN = SCR(J,N)
ANN = AN
ANN = ANN-.1
IF (FUN(ANN,C,J,N) .GT. 8.) GO TO 3
RBOT = ANN
ANN = ANN+.1
         ANN = ANN+.1
IF (FUN (ANN,C,J,N) ,GT. S.) GO TO 4
RTOP = ANN
RNG = AN-RBOT
XU = AN
FU = XU*FUN (XU,C,J,N)
W = RNC/188.
PRT1 = S.
PRT1V = S.
```

STATES OF THE ST

```
START THE PIRST SIMPSON INTEGRATION
         XL = XU-W

XM = (XU+XL)/2.

FM = XM*FUN (XM,C,J,N)

FL = XL*FUN (XL,C,J,N)

Pl = PRT1+(FL4.*FM+PU)*W/6.

PRT1V = PRT1V+(XL*FL+4.*XM*FM+XU*FU)*W/6.

IF (PRT1.ZQ. P1) GO TO 15

W = W*1.1

XU = XL

FU = FL

PRT1 = P1

GO TO 18

CONTINUE

RNG = RTOF - AN
  19
          CONTINUE
RNG = RTOP - AN
XL = AN
PL = XL*PUN(XL,C,J,N)
W = RNG/188.
PRT2 = 8.
 CC
C
C
C
C
25
           START SECOND SIMPSON INTEGRATION
        XU = XL+W

XM = (XU+XL)/2.

FM = XM*FUN(XM,C,J,N)

PU = XD*FUN(XU,C,J,N)

P2 = PRT2+(PU4.*FM+PL)*W/6.

PRT2V = PRT2V+(XU*PU+4.*XM*FM+XL*PL)*W/6.

IF (PRT2.*EQ.P2) GO TO 25

W = W*1.1

XL = XU

PL = PU

PRT2 = P2

GO TO 28

CONTINUE

SCORE = PRT1+PRT2
          SCORE = PRT1+PRT2
SCR2 = PRT1V+PRT2V
VAR = SCR2-SCORE*SCORE
          RETURN
           END
0000
          FUNCTION FUN (X,C,J,N)
        DOUBLE PRECISION X, POPZ, P, Q, XJ, XN, FUN, FL
         XJ - J
XN - N
        XN = N
P = POFZ(X)
Q = 1.D8-P
PUN = 8.D8
IF (P .LE. 8.D8 .CR. Q .LE. g.D8)RETURN
FL = C+DLOG(P)*(XN-XJ)+DLOG(Q)*(XJ-1.D8)-X*X/2.D8-g.918938533D8
IF (FL .LT. -48.)RETURN
PUN = DEXP(FL)
          END
c
```

というというということのなるととは、これのなるとのできませんできます。

```
FUNCTION FACL(K)
      COMPUTES THE NATURAL LOG OF KI
ABOVE 36 USES STIRLINGS APPROXIMATION
       IF (K .GT. 36) GO TO 28

FACL = 8.

IF (K .LE. 1) RETURN

DO 18 I = 2, K

X = I
       PACL = FACL+ALOG(X)
       RETURN
      X = K
PACL = .918938533+ALOG(X)*(X+.5)-X+1./(12.*X)
28
       RETURN
       END
c
       FUNCTION SCR (J, N)
       RAPID APPROXIMATION TO THE JTH OF N EXPECTED NORMAL SCORES. USES BLOMS ALGORITHM WITH CORRECTIONS PROPOSED BY HARTLEY, BIOMETRIKA, 1961, 48, 151-165.
       XN = N
       X = ALOG18(XN)

IF (N .GT. 498) GO TO 18

A1 = .315865+.857974*X-.889776*X*X

A2 = .327511+.858212*X-.887989*X*X
       GO TO 28
A1 = .3752+.00976*X+.00008*X*X
A2 = .3866+.01418*X+.00029*X*X
       RETURN
        END
С
¢
       FUNCTION ZINV(P)
       QUICK APPROXIMATION TO THE INVERSE OF THE NORMAL DIST. FUNCTION EMERSON, BRMI, 1979,11, 397-398.
      SGN = -1.

Q = P

IP (Q-.5)2,2,1

SGN = 1.

Q = 1.-Q

Z = SQRT(-2.*ALOG(Q))

W = Z*(.18926+Z*.881388)

W = 1.+Z*(1.432788+W)

Q = .882853+Z*.818328

W = (2.515517+Z*Q)/W

ZINV = (Z-W)*SGN

RETURN
       RETURN
       END
       DOUBLE PRECISION FUNCTION POFZ (XX)
       NORMAL PROBABILITY INTEGRAL, -INFINITY TO X; X>S ALGRORITHM 26.2.11 P.932 ZELEN _SEVERO
       DOUBLE PRECISION X, XX, S, T, C, XN, SN
       X= DABS(XX)
POFZ = 1.D8
IF (X .GT. 8.35) GO TO 28
S = X
T = X
       T = X

C = X*X

XN = 0.D8

XN = XN+1.D0

T = T*C/(2.D0*XN+1.D0)

SN = S+T
     SN = S+T

IF (SN .EQ. S) GO TO 18

S = SN

GO TO 5

POFZ = .5D#+.39894228#4#14327D#*DEXP(-C/2.D#)*S

IF (XX .LT. #.D#) POFZ=1.D#-POFZ

RETURN
FND
```

### APPENDIX D

# COMPUTER PROGRAM FOR GENERATING EXPECTED VALUES OF NORMAL AND HALF-NORMAL ORDER STATISTICS

David G. Weinman, Ph.D.

This program was written in VAX-BASIC and run on the Hollins VAX 11-780 computer. The following program is for generating <a href="half-normal">half-normal</a> order statistics. To generate normal order statistics, delete the two references to absolute values (ABS) in line 230 and change comments regarding "half-normal" to "normal."

```
100 Rem -- Generate half-normal order statistics
110 DECLARE INTEGER GAP, I, J, N, NREP, NXT, P, REP, SORTFLAG, T, X
    DECLARE REAL A(128), ASUM(128), ADD, N1, TEMP, MEAN, STD
    RANDOMIZE
   NREP = 5000
120 FOR N = 20 TO 31
130
       N1 = N/2
140
       IF INT(N1) = N1 THEN
          K1 = N1
       ELSE
          K1 = N1 + 1
       END IF
       Z$ = STR$(N)
       DATA$ = "FACULTY: [DAVE. SIMON]HALFN" + Z$ + ". DAT"
150
       FOR I = 1 TO N
           ASUM(I) = 0
       NEXT I
160
       FOR REP = 1 TO NREP
           GOSUB 200 ! Generate N half-normal(0, 1) values
           GOSUB 400 ! Sort the values
           FOR I = 1 TO N
               ASUM(I) = ASUM(I) + A(I)
           NEXT I
170
       NEXT REP
       GOSUB 600 ! Calculate mean of order statistics and print
180 NEXT N
   GO TO Finish
```

### APPENDIX D (cont'd)

```
200 ! Generate N half-normal variates (Polar Marsaglia method)
210 FOR I = 1 TO K1
220
       V1 = 2 * RND - 1
      V2 = 2 * RND - 1
      R2 = V1*V1 + V2*V2
       IF R2 > 1 THEN 220
230
      Y_{,} = SQR((-2 * LDG(R2)) / R2)
      A(2*I-1) = ABS(V1 * Y)
      A(2*I)
              = ABS(\sqrt{2} * Y)
240 NEXT I
250 RETURN
400 ! Subroutine: Sort the array A
410 \text{ GAP} = N
420 WHILE GAP > 1
430
     GAP = GAP / 2
440 ! Put numbers GAP positions apart in order.
     TOP = N - GAP
     SORTFLAG = 0
     WHILE SORTFLAG = 0
        SORTFLAG = 1
        FOR I = 1 TO TOP
           NXT = I + GAP
           IF A(I) > A(NXT) THEN
              SORTFLAG = 0
              TEMP
                    = A(I)
              A(I)
                     = A(NXT)
              A(NXT)
                    = TEMP
           END IF
         NEXT I
     NEXT
   NEXT
450 RETURN
500 ! Calculate mean of order statistics
610 OPEN DATA$ FOR OUTPUT AS FILE #1
620 \text{ FOR I} = 1 \text{ TO N}
      MEAN = ASUM(I) / NREP
       PRINT #1, MEAN
630 NEXT I
640 CLOSE #1
680 RETURN
700 Finish: END
```

(4) またなななな。またとうとうでは、まずなどのなる。

### APPENDIX E

### DEVIATION OF STANDARD ERROR OF THE CONTRASTS

The standard error of the contrasts (s ) is the same as the standard error of the mean differences. The general equation for this is:

$$s_{C} = \sqrt{\begin{array}{ccc} \sigma_{1}^{2} & \sigma_{2}^{2} \\ \hline -- & + & -- \\ \hline n/2 & n/2 \end{array}}$$
  $[\sigma_{1} = \sigma_{2}]$ 

$$s_{c} = \sqrt{\frac{2\sigma^{2}}{n/2}}$$

$$s_c = \sqrt{\frac{2}{n/2}}$$

$$s_c = \sqrt{\sigma_2 - \frac{4}{n}}$$

### APPENDIX F

### PREDICTING R-SPILLOVER USING CONTRASTS AND CONTRAST STANDARD DEVIATIONS

David G. Weinman, Ph.D.

[The author asked Dr. Weinman to investigate whether or not the contrast standard deviation at each rank (see Table 1 for example) could be used to estimate the R-spillover. The R-spillover, it was felt, could be useful to an investigator who wants to decide whether it is likely that a smaller contrast may occur at a rank below where other techniques had determined the contrast was likely to be a real one. In the discussion below, Dr. Weinman explains what might be done, how complex it can be to do it correctly, and the theoretical limits of this approach.]

For any sample size  $n \ge 2$  from a normal population, the longest and smallest order statistics do not have a normal distribution. However, we attempt here to estimate spillover by using an assumption of normality, because a normal distribution often gives reasonable (approximately correct) results.

Consider the situation of n = 31 effects, and suppose we add 1.67 $\sigma$  to eight of these effects. Our 1.67 $\sigma$  is equal to [1.67 +  $\sqrt{4/32}$ ]s_c, where s_c is the standard error of a contrast, so we actually add [1.67 +  $\sqrt{4/32}$ ], or 4.723 to each of eight contrasts.

Then we have 31 effects, of which 23 are "error" effects, and 8 are "real" effects. The 23 error effects are distributed as 23 order statistics (from a sample of 23) from a normal (0, 1) distribution, while the 8 real effects are distributed as the order statistics from a sample of 8 from a normal  $(0.67 \pm \sqrt{4/32})$ , 1.00]] distribution.

From our simulation, the means and standard deviations are as follows for the longest 3 of 23 order statistics and the smallest 3 of 8 order statistics, with 4.723 added to the three smallest. We use x for the error effects and y for the real effects.

with some 5000 replications, we would expect to find 7.0, 21.5, and 174.0: real effects in positions 21, 22, and 23 respectively. On one run we found 11, 43, and 186 real effects in those positions. To summarize.

<u>Position</u>	Expected Number of Real Effects	Actual Number of Real Effects
21	7.0	11
22	21.5	43
23	174.0	186

The results for positions 21 and 23 are encouraging, but the prediction at position 22 is off by 100%.

This case -- 8 real effects of size  $1.67\sigma$  -- is one of the cleanest situations to deal with, because  $1.67\sigma$  is a large effect. With smaller real effects, many more probabilities must be calculated and the expected number of real effects is a poorer estimate of the actual number of real effects found in simulations.

<u>Orde</u> r	Contrast	Contrast Std. <u>Deviatio</u> n	Order	Contrast	Contrast Std. ( Deviation
<b>x</b> ₂₁	1.21934	0.33574	У1	3.29987	0.61065
×22	1.48096	0.27804	y ₂	3.87125	0.48929
x ₂₃	1.91716	0.48899	Y ₃	4.25065	0.44870

The spillover rate from real effects into error positions then involves the probabilities  $P(y_i < x_j)$  that some  $y_i$  is less than some  $x_j$ . Dropping the subscripts i and j, we have

$$P(y < x) = P(y-x < 0)$$

$$\mu_{x} - \mu_{y}$$

$$= P(z < \sigma_{x}^{2} + \sigma_{y}^{2})$$

where z is a standard N[0,1].

For i = 1,2 and j = 22,23, these probabilities are:

$$P(Y_1 < X_{23}) = .0384$$
  
 $P(Y_1 < X_{22}) = .0057$   
 $P(Y_1 < X_{21}) = .0014$   
 $P(Y_2 < X_{23}) = .0024$   
 $P(Y_2 < X_{22}) = .0000$ 

Then, assuming independence, we have the following probabilities of real effects spilling over into positions 21, 22, and 23.

Position	P (Real effect in position)
21	.0014
22	.0043 (= .00570014)
22	0348 (= 0384 - 0057 + 0024)

#### APPENDIX G

### PROGRAM FOR GENERATING GUARDRAILS

David G. Weinman, Ph.D.

This program was written in VAX-BASIC and run on the Hollins VAX 11-780 computer. The following program is for generating guardrails for half-normal plots. To generate guardrails for normal order statistics, delete the two references to absolute values (ABS) in line 250 and change comments regarding "half-normal" to "normal."

```
100 ! PROGRAM GUARD -- Obtain guardrails for half-normal plots
       Generate half-normal variables
       Find percentiles of largest order statistic / slope estimate
110 DECLARE INTEGER GAP, I. J. K1, M. N. NREP, NXT, P. REP. SORTFLAG
    DECLARE REAL NORM(64), A(64), LARGE(10000), R2, V1, V2, Y DECLARE REAL A05, A10, A20, A40, B, N1, R, SSX, SXY, TEMP
    RANDOMIZE
120 NREP = 5000
    ! Open output file and print header
    OUTFILE$ = "FACULTY: [DAVE. SIMON]ALPHA31, OUT"
    OPEN OUTFILE$ FOR OUTPUT AS FILE #1
130 PRINT #1, "Half Normal"
    PRINT #1, "Number of replications
                                                ", NREP
    PRINT #1
    PRINT #1,
                                         Values of alpha"
    PRINT #1,
                              . 05
                                                           . 40"
                                        . 10
                                                 . 20
    PRINT #1,
                                      **, ***
    ! Main program: N is the number of effects being considered
    ! Polar Marsaglia method generates an even number of values,
    ! so determine K1 and generate 2K1 values.
    ! Open input file and read ha'f-normal values.
140 FOR N = 31 TO 20 STEP -1
        N1 = N / 2
        IF INT(N1) = N1 THEN
           K1 = N1
        ELSE
           K1 = N1 + 1
        END IF
        INFILE$ = "FACULTY: [DAVE. SIMON]HALFN" + STR$(N) + ". DAT"
        OPEN INFILES FOR INPUT AS FILE #2
        FOR I = 1 TO N
            INPUT #2, NORM(I)
        NEXT I
        CLOSE #2
```

ののでは、実際ののできない。これできないのでは、大人のできない。

```
150
       FOR REP = 1 TO NREP
          GOSUB 200 ! Generate N half-normal(0, 1 ) values
          GOSUB 400
                   ! Sort array A and save largest value
          GOSUB 500 ! Calculate slope and divide largest value by it
       NEXT REP
160
       GOSUB 600 ! Sort the values of LARGE
       GOSUB 800 ! Print results
170 NEXT N
    CLOSE #1
180 GO TO Finish
200 ! Generate N half-normal variates (Polar Marsaglia method)
    ! as given in Morgan: Elements of Simulation
230 FOR I = 1 TO K1
       V1 = 2 * RND - 1
240
       V2 = 2 * RND - 1
       R2 = V1*V1 + V2*V2
       IF R2 > 1 THEN 240
250
       Y = SQR((-2 * LOG(R2)) / R2)
       A(2*I-1) = ABS(V1 * Y)
       A(2*I) = ABS(V2 * Y)
260 NEXT I
270 RETURN
400 ! Subroutine: Sort the array A (Shellsort)
410 GAP = N
420 WHILE GAP > 1
430
      GAP = GAP / 2
440 ! Put numbers GAP positions apart in order.
      TOP = N - GAP
      SORTFLAG = 0
      WHILE SORTFLAG = 0
        SORTFLAG = 1
        FOR I = 1 TO TOP
           NXT = I + GAP
IF A(I) > A(NXT) THEN
              SORTFLAG = 0
              TEMP
                     = A(I)
              A(I)
                     = A(NXT)
              A(NXT)
                      = TEMP
           END IF
         NEXT I
      NEXT
   NEXT
   LARGE(REP) = A(N)
450 RETURN
510 ! Subroutine: Calculate slope B and divide LARGE by it.
520 SXX = 0.0
530 SXY = 0.0
540 FOR I = 1 TO N
      SXX = SXX + NORM(I)^2
      SXY = SXY + NORM(I) + A(I)
   NEXT I
550 B = SXY / SXX
560 LARGE(REP) = LARGE(REP) / B
580 RETURN
```

日本では、東京である。 第一次のの第一次ののの第一次のののできません。 第一次ののできません。 第一次ののできません。 第一次ののできません。 第一次ののできません。 第一次ののできません。 第一次ののできません。 第一次ののできません。 第一次のできません。 第一次のできをもをもをもをもをもをもをもをもをもをもをもをもをもをもをもをもをもをも

```
600 ! Subroutine: Sort the first 2/5 values of array LARGE
       FOR I = 1 TO 1 + 2 * NREP / 5
LARG = LARGE(I)
610
           PSTN = I
           FOR NXT = I + 1 TO NREP
IF LARGE(NXT) > LARG THEN
                  LARG = LARGE(NXT)
                  PSTN = NXT
               END IF
           NEXT NXT
           LARGE(PSTN) = LARGE(I)
                      = LARG
           LARGE(I)
       NEXT I
 620
 650 RETURN
800 ! Subroutine: Calculate alpha values and print results
820 A05 = LARGE(NREP / 20) + LARGE(1 + NREP / 20)
    A05 = A05 / 2
    A10 = LARGE(NREP / 10) + LARGE(1 + NREP / 10)
    A10 = A10 / 2
    A20 = LARGE(NREP / 5) + LARGE(1 + NREP / 5)
   A20 = A20 / 2
   A40 = LARGE(2 * NREP / 5) + LARGE(1 + 2 * NREP / 5)
   A40 = A40 / 2
   PRINT #1 USING A$; N. A05, A10, A27, A40
830 RETURN
999 Finish: END
```

### NOTATIONS AND TERMINOLOGY

α	Probability of rejecting the null hypothesis when it is
	true; probability of making a Type 1 error.
Contrast	Difference between two means (the high and low, or
	positive and negative conditions of a balanced, two-level
	factorial design; an effect.
d r	Size of r real effects.
e	Number of error contrasts (or null contrasts) in the results of a $2^f$ or $2^{(f-r)}$ experiment.
	results of a 2 or 2 experiment.
Effect	Size of the mean difference or contrast.
e.v.n.o.s.	Expected values for normal order statistics.
E-spillover	Error contrasts that fall at ranks where real effects were
	introduced prior to adding an error component.
Expected value for	Positions on the normal probability scale for each of
normal order statistics	n items in rank order.
Half-normal Plot	Plot of absolute contrasts on half-normal probability
	paper.
i	Rank position of a value in a set of ordered values.
Intended error	Ranks where no real increments were added before real and
ranks	error components were combined and reranked.

## NOTATIONS AND TERMINOLOGY (cont'd)

k	Number of experimental effects. In unreplicated $2^{f}$ designs, $k = (n - 1)$ .
n	Number of independent observations in an experiment. In an unreplicated $2^f$ factorial design, $n = k+1$ . Also $n = (r + e)$ .
<u>₩</u> [0,1]	Normally distributed population with a mean of zero and a variance of one.
Normal plot	Ordered signed contrasts plotted on normal probability paper.
PER	Probability of a non-zero "family" error rate, dependent upon number of contrasts being tested.
P _i	Normal probability scale value at rank i.
P'i	Half-normal probability scale value at rank i.
r	Number of real or non-null effects in the set of k contrasts.
r+	Number of positive real effects (r- is number of negative real effects).
#R 1,k	Number of real effects that occurred at rank i of the ordered set of k contrasts during a Monte Carlo simulation (of 5000 runs in this report).
%R i,k	Percent real effects falling at rank i for k

effects.

### NOTATIONS AND TERMINOLOGY (cont'd)

R-spillover	Real effects that fall at ranks intended to be error contrasts.
σ	Population sigma or standard deviation. $\sigma^2$ equals the population variance, sometimes referred to as the error variance.
s	Estimation of the population $\sigma$
s _f	Final estimation of the population $\sigma$
s c	Standard error of the contrasts, obtained by multiplying the estimated population sigma by the square root of four over n.
s i,k	Standard deviation of a contrast at rank i of k contrasts
$\mathtt{t}_{\mathbf{i}}^{\Delta}$	Test statistic proposed by Daniel used to determine the probability that an effect of a certain size will occur. Determines location of guardrails.
SL	Slope of the e contrasts on a normal or a half-normal plot. May be calculated by some least squares regression technique. The slope of standardized contrasts serves is used to estimate the population sigma.
2 ^f or 2 ^(f-p)	Factorial or fractional factorial experiment with f factors at two levels each. (f-p) represents a $1/2^p$ fraction of a $2^f$ factorial. [Note: In two papers in Section VII on "Relevant Papers," the symbols $2^n$ and $2^n 3^m$ were used as the authors had used them. The n in that case is f as used in this report.]

### NOTATIONS AND TERMINOLOGY (cont'd)

x_{i,k} or x'_{i,k}

Contrast (i.e., mean difference) at rank i of k ordered contrasts for normal or half-normal data. The half-normal symbol is indicated by the prime.

i,k or x'i,k

Standardized contrasts, obtained by dividing raw contrasts by estimated population sigma for normal and half-normal data.

Versions S, X, R, SR, or XR

Different techniques investigated by Zahn for estimating the population sigma using the slope of the standardized contrasts.

x a,k Best estimate of the standard error of contrasts in a null experiment with k contrasts, with a = integer nearest 0.638k.

z_{i,k} or z'_{i,k}

Estimated value of order statistics at rank i any set of k values for normal or half-normal data. [Note: The k is used here to represent the number of contrasts being plotted, although most tables of e.v.n.o.s. use the symbol n.]