Assignment 2

Q1. Let $\mathbf{X} = \{X_1, X_2, \cdots, X_n\}$ be an independent random sample from a uniformly distribution over the interval $[-\alpha, 0]$.

- (i) Find the MLE of α .
- (ii) Find a sufficient statistic for α .

Q2. One observation is taken on a discrete random variable X with p.d.f. (p.m.f.) $f(x;\theta)$ in the following table, where $\theta \in \{1,2,3\}$. Find the MLE of θ .

x	f(x;1)	f(x;2)	f(x;3)
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4
3	1/6	1/4	1/2
4	1/6	0	1/4

Q3. Let X_1, \dots, X_n be an independent random sample from the p.d.f. given by

$$f(x;\theta) = \frac{\theta}{x^2}, \quad 0 < \theta \le x < \infty.$$

- (i) Find the MLE of θ ;
- (ii) Calculate $E(X_1^{1/3})$;
- (iii) Find one MME of θ and show that it is consistent.

Q4. Let $X_1, X_2, \dots X_n$ be an independent random sample from the distribution with p.d.f.

$$f(x; p) = p(1-p)^x$$
, $x = 0, 1, 2, \dots$, where $0 .$

- (i) Find a complete and sufficient statistic of p;
- (ii) Find the UMVUE of p.
- **Q5**. Let $\mathbf{X}=\{X_1,X_2,\cdots,X_n\}$ be an independent random sample from the population $N\left(\frac{p}{q},\sigma_1^2\right)$, and $\mathbf{Y}=\{Y_1,Y_2,\cdots,Y_n\}$ be an independent random sample from the population $N(q,\sigma_2^2)$. Suppose that \mathbf{X} and \mathbf{Y} are independent, $q\neq 0$, $\sigma_1^2>0$, and $\sigma_2^2>0$.
 - (i) Show that $T_1 = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$ is an unbiased estimator of p;
 - (ii) Calculate $Var(T_1)$;
 - (iii) Show that $T_2 = \left(\frac{1}{n}\sum_{i=1}^n X_i\right)\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)$ is also an unbiased estimator of p;
 - (iv) Show that T_2 is a consistent estimator of p;
 - (v) When p=0 and $q^2=\frac{\sigma_2^2}{n}$, compare the efficiency of T_1 and T_2 .
 - **Q6**. Let X_1, \dots, X_n be an independent random sample from Poisson(λ).
 - (i) Show that both \overline{X} and $\frac{n}{n-1}S^2$ are unbiased estimators of λ ;
 - (ii) Find a sufficient and complete statistic for λ .
 - (iii) Find the Fisher information about λ contained in data X_1, \cdots, X_n .
 - (iv) Calculate the Cramer-Rao Lower Bound for estimation of λ ;
 - (v) Which estimator $(\overline{X} \text{ and } \frac{n}{n-1}S^2)$ should be preferred and why?
 - **Q7**. Let $X_1, X_2, \dots X_n$ be an independent random sample from $N(\theta, \theta^2)$ with $\theta \neq 0$.
 - (i) Find a sufficient statistic of θ ;
 - (Optional: Show that the sufficient statistic is not complete statistic of θ .)
 - (ii) Derive the maximum likelihood estimator of θ ;
 - (iii) Derive the asymptotic distribution of the estimator found in part (ii).

Q8. Let X_1, \dots, X_n be an independent random sample, where $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, \dots, n$. Suppose that n = 2m $(m \ge 2)$ is an even number, the value of σ_i (for $i = 1, 2, \dots, n$) is known, and

$$\mu_1 = \mu_2 = \dots = \mu_m = s_1, \quad \mu_{m+1} = \mu_{m+2} = \dots = \mu_n = s_2.$$

- (i) Show that $\widetilde{s}_1 = \frac{X_1 + 2X_2}{3}$ is unbiased estimator of s_1 .
- (ii) Find MLEs of s_1 and s_2 .

Furthermore, we set $\sigma_i^2 = \frac{m}{i}$.

- (iii) Will the MLE of s_1 be relative more efficient than \tilde{s}_1 and why?
- (iv) State the asymptotic distribution of both MLEs of s_1 and s_2 .
- (v) Show that both MLEs of s_1 and s_2 are consistent.
- **Q9**. Let X_1, X_2, \dots, X_n be an independent random sample from a distribution, which has the density given by

$$f(x;\theta) = \frac{\theta}{x^{\theta+1}}$$
 for $x \ge 1$,

where $\theta > 0$ is an unknown parameter.

- (i) Write down the likelihood function of θ based on X_1, X_2, \dots, X_n .
- (ii) Find a scalar sufficient statistic for θ .
- (iii) Find the Fisher information about θ contained in the data X_1, X_2, \dots, X_n , i.e., $I_n(\theta)$.
- (iv) Find the Cramer-Rao Lower Bound for estimation of θ .
- (v) What is the MLE of θ ?
- (vi) State the asymptotic distribution of the MLE you found in (v).