Chore: Brute Force Bounties

Elliot Greenlee, Jason Liang, Parker Diamond April 26, 2018

Objective

Molecule interactions can be approximated with simulations in OpenMM.

These simulations are computationally intensive, so we want to distribute the workload and reduce repeated work.

We would like a service where users can outsource jobs to other computers, with a nominal payout, and receive the results at a later time.

The system needs to receive job files, verify their integrity and feasibility, and make them available to clients.

Approach

Publish-Subscribe Bounty Server:

Users register to the bounty server and can post jobs or fulfill jobs

Jobs with the highest payout are given out until they are completed

Results are accepted after a validation period where other users can refute a submitted solution

Client is a Conda environment that seamlessly send/receives jobs from the server

Methods

Schedule

Came up with a somewhat different idea in January

Pared down our overly-ambitious idea in February

Started workflow 12 weeks ago (4 hours/week)

Started server 4 weeks ago (4 hours/ week)

Started client 4 weeks ago (2 hours/week)

Future Directions

- Security:
 - Ensuring job feasibility
 - Validation without re-computation
 - Secure client against potentially malicious jobs
- Generalization:
 - New job types
- Workflow:
 - Improve molecule descriptions
 - Use appropriate simulation settings/standards

Chore: Brute Force Bounties

Elliot Greenlee, Jason Liang, Parker Diamond April 26, 2018