Amendments to the Claims

- (Currently amended) A method for calibrating a blood property sensor, the method comprising:
 - (a) connecting an arterial tubing portion of a dialysis system to withdraw blood from a patient and connecting a venous tubing portion of the dialysis system to deliver blood to the patient;
 - (b) passing diluted blood having a dilution indicator past the blood property sensor in the venous tubing portion;
 - (c) determining at least one property of the diluted blood passing the blood property sensor in the venous tubing portion; and
 - (d) determining a calibration coefficient \underline{K} of the blood property sensor corresponding to the determined blood property of the diluted blood passing the blood property sensor in the venous tubing portion and the relationship $K = -\frac{V_{hij}}{V + V_{hij}} * \Delta U_{hij}$ where $\underline{V_{Irij}}$ is a volume of the dilution indicator: $\underline{V} = (Q_B Q_{UF}) * \Delta T_{Irij}$ where \underline{Q}_B is a blood flow rate in the arterial tubing portion, \underline{Q}_{UF} is an ultrafiltration rate of the dialysis system, $\underline{\Delta}_{T_{Irij}}$ is the transit time of the dilution indicator; and $\underline{\Delta}_{U_{Irij}}$ is integrated $\underline{\Delta}_{T_{Irij}}$.
- (Original) The method of Claim 1, further comprising determining a blood volume change corresponding the calibration coefficient.
 - 3. (Cancelled)

- (Original) The method of Claim 1, further comprising employing an ultrasound sensor as the blood property sensor.
- 5. (Previously presented) The method of Claim 1, wherein determining at least one property of the diluted blood includes determining one of protein concentration, saline or electrolyte of the diluted blood.
- 6. (Previously presented) The method of Claim 1, wherein determining at least one property of the diluted blood includes measuring one of a photometric, optical, electrical or thermal property of the diluted blood.
- 7. (Previously presented) The method of Claim 1, wherein passing a dilution indicator past the blood property sensor includes passing a known volume of the dilution indicator past the blood property sensor.

- 8. (Currently amended) A method for calibrating a blood property sensor in a blood system having a vascular portion and an extracorporeal portion, the method comprising:
 - (a) introducing an indicator bolus upstream of a blood property sensor in the extracorporeal portion to form diluted blood;
 - (b) measuring a property of the diluted blood with the blood property sensor in the extracorporeal portion; and
 - (c) determining a calibration coefficient of the blood property sensor corresponding to the measured property of the diluted blood and the relationship $K = -\frac{V_{bij}}{V + V_{bij}} * \Delta U_{bij}$ where V_{Inj} is a volume of the indicator bolus: $V = (Q_B Q_{JF}) * \Delta T_{Inj}$ where Q_B is a blood flow rate in the extracorporeal portion, Q_{UF} is an ultrafiltration rate of a dialysis system, ΔT_{Inj} is the transit time of the indicator bolus: and ΔU_{Inj} is integrated over ΔT_{Inj} .
- (Previously presented) The method of Claim 8, wherein introducing the indicator bolus is effective to change an ultrasound velocity in the diluted blood.
- 10. (Previously presented) The method of Claim 8, wherein measuring a property of diluted blood includes measuring one of photometric, optical, electrical or thermal property of the diluted blood.

- 11. (Previously presented) The method of Claim 8, wherein measuring a property of diluted blood includes measuring one of protein concentration, saline, ultrasound velocity or electrolyte of the diluted blood.
- (Currently amended) An apparatus for calibrating a blood property sensor in a blood system, comprising:
 - (a) an extracorporeal portion having a first end adapted to be connected to a vascular portion of the blood system at an upstream end and a second end adapted to be connected to the vascular portion at a downstream end;
 - (b) a blood property sensor coupled to the extracorporeal portion for detecting a property of diluted blood flowing within the extracorporeal portion; and
 - (c) means for determining a calibration coefficient of the blood property sensor corresponding to the detected property of the diluted blood and the relationship $K = -\frac{V_{hij}}{V + V_{hij}} * \Delta U_{hij}$ where $\underline{V_{Inj}}$ is a volume of a dilution indicator forming the diluted blood; $\underline{V} = (Q_B Q_{JF}) * \Delta T_{Inj}$ where \underline{Q}_B is a blood flow rate in the extracorporeal portion, \underline{Q}_{UF} is an ultrafiltration rate of a dialysis system connected to the extracorporeal portion, $\underline{\Delta}_{Inj}$ is the transit time of the diluted blood; and $\underline{\Delta}_{Inj}$ is integrated over $\underline{\Delta}_{Inj}$.
- 13. (Original) The apparatus of Claim 12, wherein the blood property sensor is one of a photometric, optical, electrical or thermal sensor.

- 14. (Original) The apparatus of Claim 12, wherein the extracorporeal portion includes an arterial length and the blood property sensor is located along the arterial length.
- 15. (Currently amended) An apparatus for calibrating a blood property sensor in a blood system having an extracorporeal portion, comprising:
 - (a) a blood property sensor coupled to the extracorporeal portion for detecting a property of diluted blood flowing within the extracorporeal portion; and
 - (b) means connected to the blood property sensor for determining a calibration coefficient of the blood property sensor corresponding to the detected property of the diluted blood in the extracorporeal portion and the relationship $K = -\frac{V_{boj}}{V + V_{boj}} * \Delta U_{boj}$ where V_{Inj} is a volume of a dilution indicator forming the diluted blood: $V = (Q_B Q_{UF}) * \Delta T_{Inj}$ where Q_B is a blood flow rate in the extracorporeal portion, Q_{UF} is an ultrafiltration rate of a dialysis system connected to the extracorporeal portion. ΔT_{Inj} is the transit time of the diluted blood; and ΔU_{Inj} is integrated over ΔT_{Inj} .

- 16. (Currently amended) A method of calibrating a blood property sensor in an extracorporeal blood circuit fluidly connected to a vascular blood circuit, the method comprising:
 - (a) introducing a change to a predetermined blood property;
 - (b) measuring a corresponding change in the blood property at a blood property sensor in the extracorporeal blood circuit; and
 - (c) determining a calibration coefficient of the blood property sensor corresponding to the measured change and the relationship $K = -\frac{V_{hij}}{V + V_{hij}} * \Delta U_{hij} ~\text{where} ~ \underline{V_{Inj}} ~\text{is a volume of a dilution indicator}$

introducing the change in the predetermined blood property: $\underline{V} = (Q_B - Q_{UF}) * \Delta T_{Inp} \text{ where } Q_B \text{ is a blood flow rate in the extracorporeal}$ blood circuit, Q_{UF} is an ultrafiltration rate of a dialysis system connected to the extracorporeal blood circuit, $\underline{\Delta T_{Inp}}$ is the transit time of the dilution indicator; and $\underline{\Delta U_{Inp}}$ is integrated over $\underline{\Delta T_{Inp}}$.

- 17. (Currently amended) A method of calibrating a blood property sensor in an extracorporeal blood circuit, the method comprising:
 - (a) introducing a known amount of indicator into an extracorporeal blood circuit;
 - (b) measuring a change in a blood parameter corresponding to passage of the indicator at a blood property sensor coupled to the extracorporeal blood circuit; and
 - (c) determining a calibration coefficient of the blood property sensor corresponding to the measured change and the relationship $K = -\frac{V_{hij}}{V + V_{hij}} * \Delta U_{hij} \text{ where } \underline{V_{Inj}} \text{ is a volume of the introduced indicator:}$ $\underline{V} = (Q_B Q_{UF}) * \Delta T_{Inj} \text{ where } \underline{Q_B} \text{ is a blood flow rate in the extracorporeal}$ blood circuit, Q_{UF} is an ultrafiltration rate of a dialysis system connected to the extracorporeal blood circuit, $\underline{\Delta T_{Inj}}$ is the transit time of the introduced indicator; and $\underline{\Delta U_{Inj}}$ is integrated over $\underline{\Delta T_{Inj}}$.

- 18. (Currently amended) A method of calibrating a blood property sensor in an extracorporeal blood circuit fluidly connected to a vascular blood circuit, the method comprising:
 - (a) measuring a blood property of a dilution indicator bolus passing a blood property sensor in the extracorporeal blood circuit; and
 - (b) determining the calibration coefficient of the blood property sensor corresponding to the measured blood property and the relationship $K = -\frac{V_{Inj}}{V + V_{Inj}} * \Delta U_{Inj}$ where $\underline{V_{Inj}}$ is a volume of the dilution indicator: $\underline{V} = (Q_B Q_{UF}) * \Delta T_{Inp}$ where Q_B is a blood flow rate in the extracorporeal blood circuit, Q_{UF} is an ultrafiltration rate of a dialysis system connected to the extracorporeal blood circuit, $\underline{\Delta T_{Inj}}$ is the transit time of the dilution indicator; and $\underline{\Delta U_{Inj}}$ is integrated over $\underline{\Delta T_{Inj}}$.