Student Information

Full Name : Alperen OVAK

 $Id\ Number:\ 2580801$

Answer 1

a)

p	q	$\neg q$	$p \rightarrow q$	$p \wedge \neg q$	$p \to q \oplus p \land \neg q$
T	Т	F	Τ	F	T
T	F	Τ	\mathbf{F}	Т	T
F	\mathbf{T}	\mathbf{F}	${ m T}$	F	T
F	F	Τ	${ m T}$	F	T

b)

$$p \to ((q \lor \neg p) \to r) \equiv \neg p \lor ((q \lor \neg p) \to r)$$

$$table 7, Equivalence 1$$

$$table 7, Equivalence 1$$

$$table 6, De Morgan's Second Law$$

$$table 6, Idempotent Law$$

$$table 7, Equivalence 1$$

$$table 6, De Morgan's Second Law$$

$$table 7, Equivalence 3$$

$$table 7, Equivalence 3$$

$$table 7, Equivalence 3$$

$$table 6, De Morgan's Second Law$$

c)

- F
- F
- F
- T
- T

Answer 2

- a) $\exists x (P(Can, x) \land T(x, L))$
- b) $\forall x (T(x, L) \rightarrow \exists y (N(y, Turkish) \land P(y, x)))$
- c) $\forall x \exists y \exists z (T(x,S) \land R(x,y) \land T(y,S) \land R(x,z) \land T(z,S) \land (y=z))$

- d) $\exists y \exists z (W(M, y) \land \neg (P(z, y) \land N(z, English))$
- e) $\forall z \exists x \exists y ((x \neq y) \land N(x, Turkish) \land P(x, G) \land P(y, G) \land (P(z, G) \leftrightarrow (z \neq x \lor z = y)))$
- f) $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land (y \neq z))$

Answer 3

	$p \to q, (r \land s) \to p, (r$	$\land \neg q) \vdash \neg s$
1	$p \rightarrow q$	premise
2	$(r \wedge s) \to p$	premise
3	$(r \land \neg q)$	premise
4	r	$\wedge e, 3$
5	$\neg q$	$\wedge e, 3$
6	$r \wedge s$	assumption
7	p	\rightarrow e 2, 5
8	q	\rightarrow e 1,6
9	上	$\neg e 5, 8$
10	$\neg(r \land s)$	¬i 6 − 9
11	s	assumption
12	$r \wedge s$	∧i 4,11
13	上	$\neg e 10, 12$
14	$\neg s$	¬i 11 − 13

Answer 4

- $\exists x (S(x) \to P(x))$
 - $\forall x (P(x))$
 - $\exists y S(y)$

	$\exists x (P(x) \to S(x)), \forall x (P(x)) \vdash$	$\exists y S(y)$
1	$\exists x (P(x) \to S(x))$	premise
2	$\forall x(P(x))$	premise
3	$P(c) \to S(c)$	assumption
4	P(c)	$\forall e \ 2$
5	S(c)	\rightarrow e 3,4
6	$\exists y S(y)$	∃i 5
7	$\exists y S(y)$	$\exists e \ 3-6$