Richard A. Brealey Stewart C. Myers

MODERN VÁLLALATI PÉNZÜGYEK

Panem, 2005

A diákat készítette: Matthew Will

McGraw Hill/Irwin

3. fejezet

Jelenérték-számítás

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved

Tartalom

- Hosszú lejáratú eszközök értékelése
- Örökjáradék és annuitás
- Kamatos kamat
- Nominális és reálkamatláb (infláció)
- Példa: A jelenérték-számítás és a kötvények

Diszkonttényező = DF = 1 dollár jelenértéke

$$DF = \frac{1}{(1+r)^t}$$

Bármilyen pénzáramlás jelenértéke meghatározható diszkonttényezők segítségével.

$$PV = DF \times C_1 = \frac{C_1}{1 + r_1}$$

$$DF = \frac{1}{(1+r)^t}$$

 Bármilyen pénzáramlás jelenértéke meghatározható diszkonttényezők segítségével.

$$PV = DF \times C_t = \frac{C_t}{(1+r)^t}$$

◆ Az 1 + r kitevőjébe t helyettesítésével tetszőleges t időpontban felmerülő pénzáramlás jelenértéke meghatározható.

Példa

Ön éppen most vásárolt egy új számítógépet 3000 dollárért. A fizetési határidő 2 év. Mennyi pénzt kell ma félretennie a 2 évvel későbbi fizetéshez, ha 8 százalékos hozamot tud elérni pénzén?

Példa

Ön éppen most vásárolt egy új számítógépet 3000 dollárért. A fizetési határidő 2 év. Mennyi pénzt kell ma félretennie a 2 évvel későbbi fizetéshez, ha 8 százalékos hozamot tud elérni pénzén?

$$PV = \frac{3000}{(1.08)^2} = 2572.02 \,\$$$

• A jelenértékek összeadhatók, és így több pénzkifizetésből álló pénzáramlások is értékelhetők.

$$PV = \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots$$

Két dollár közül az egyiket jövőre, a másikat két év múlva kapja meg. Az egyes dollárok értékét diszkonttényezőnek nevezzük.

Tegyük fel, hogy $r_1 = 20\%$ és $r_2 = 7\%$.

Két dollár közül az egyiket jövőre, a másikat két év múlva kapja meg. Az egyes dollárok értékét diszkonttényezőnek nevezzük.

Tegyük fel, hogy $r_1 = 20\%$ és $r_2 = 7\%$.

$$DF_1 = \frac{1.00}{(1+0.20)^1} = 0.83$$

$$DF_2 = \frac{1.00}{(1+0.07)^2} = 0.87$$

Példa

Tegyük fel, hogy egy iroda-ház építése és eladása az alábbi pénzáramláshoz vezet. Tudjuk továbbá, hogy az elvárt hozam 7 százalék. Állítson össze egy jelenérték munkalapot és határozza meg a nettó jelenértéket.

0. év 1. év 2. év -150 000 -100 000 +300 000

Példa (folytatás)

Tegyük fel, hogy egy irodaház építése és eladása az alábbi pénzáramláshoz vezet. Tudjuk továbbá, hogy az elvárt hozam 7 százalék. Állítson össze egy jelenérték munkalapot és határozza meg a nettó jelenértéket.

		Pénzáramlás	Jelenérték
0	1.0	-150 000	-150 000
1	$\frac{1}{1.07} = 0.935$	-100 000	-93 500
2	$\frac{1}{(1.07)^2} = 0.873$	+300 000	+261 900
		NPV =	18 400 \$

Néha van gyorsított eljárás egy különböző időpontokban pénzármalást biztosító eszköz jelenértékének a meghatározására. Ezekkel rövid úton végezhetjük el a számolásokat.

Örökjáradék – Végtelen ideig tartó pénzáramlást biztosító eszköz (elméleti konstrukció).

$$Hozam = \frac{Pénzáramlás}{Jelenérték}$$
$$r = \frac{C}{PV}$$

Örökjáradék – Végtelen ideig tartó pénzáramlást biztosító eszköz (elméleti konstrukció).

$$PV = \frac{C_1}{r}$$

Annuitás – Olyan eszköz, amely meghatározott számú éven keresztül adott összeget biztosít.

Annuitás – Olyan eszköz, amely meghatározott számú éven keresztül azonos összeget biztosít.

Annuitás jelenértéke =
$$C \times \left[\frac{1}{r} - \frac{1}{r(1+r)^t} \right]$$

Annuitás

Példa

Ön szerződést köt arra, hogy havi 300 dollárért 4 éven keresztül lízingel egy autót. Sem a lízing elején, sem a végén nem kell egyéb összeget fizetnie. Mennyibe kerül a lízing, ha a tőke alternatívaköltsége havonta 0.5 százalék?

Annuitás

Példa (folytatás)

Ön szerződést köt arra, hogy havi 300 dollárért 4 éven keresztül lízingel egy autót. Sem a lízing elején, sem a végén nem kell egyéb összeget fizetnie. Mennyibe kerül a lízing, ha a tőke alternatívaköltsége havonta 0.5 százalék?

Lízing költsége =
$$300 \times \left[\frac{1}{0.005} - \frac{1}{0.005 (1 + 0.005)^{48}} \right]$$

Költség = 12 774.10 \$

i	ii	iii	iv	v	
Periódusok száma évente	Kamatláb periódusonként (%)	Éves névleges kamatláb (%)	Érték 1 év múlva		Éves kamatos kamat (%)
1 2	6	6	$\frac{1.06}{1.03^2}$	_ 1 0400	6.000 6.090
<u>2</u> 4		6		= 1.0609 = 1.06136	6.136
$\frac{12}{52}$	1.5 0.5 0.1154	6	$\begin{array}{c} 1.015^4 \\ 1.005^{12} \\ 1.001154^{52} \end{array}$	= 1.06168 = 1.06180	6.168
365	0.1154 0.0164	6 6	1.001154^{36} 1.000164^{36}		6.180 6.183

Példa

Tegyük fel, hogy felajánlanak önnek egy 6 százalékos éves névleges kamatozású autóvásárlási hitelt. Mit jelent ez, és mi a tényleges éves hozam, ha havonta történik a kamatfizetés?

Példa (folytatás)

Tegyük fel, hogy felajánlanak önnek egy 6%-os éves névleges kamatozású autóvásárlási hitelt. Mit jelent ez, és mi a tényleges éves hozam, ha havonta történik a kamatfizetés? Tegyük fel, hogy a hitel összege 10 000 dollár.

Hitel értéke 1 év múlva = $10\,000 \times (1.005)^{12}$

=10616.78

Éves kamatos kamat = 6.1678%

Infláció

Infláció – Az árszínvonal emelkedés üteme.

Nominális kamatláb – A befektetés értékének növekedési üteme.

Reálkamatláb – A befektetés vásárlóerejének növekedési üteme.

Infláció

$$1 + Reálkamatláb = \frac{1 + Nominális kamatláb}{1 + Inflációs ráta}$$

Közelítési formula

Reálkamatláb = Nominális kamatláb - Infláció

Infláció

Példa

Egy egyéves kormányzati kötvény hozama 5.9% és az inflációs ráta 3.3%. Mekkora a reálkamatláb?

$$1 + \text{Re\'alkamatl\'ab} = \frac{1 + 0.059}{1 + 0.033}$$

1 + Reálkamatláb = 1.025

Reálkamatláb = 0.025, vagyis 2.5%

Közelítés = 0.059 - 0.033 = 0.026, vagyis 2.6%

Kötvények értékelése

Példa

Mi az értéke a következő kötvénynek, ha ma 2002 októbere van?

- Egy IBM-kötvény öt éven keresztül minden szeptemberben 115 dollárt fizet. 2007 szeptemberében kifizeti az 1000 dolláros névértéket.
- A kötvény AAA minősítésű. A The Wall Street Journal szerint egy AAA minősítésű kötvény lejáratig számított hozama 7.5%.

Pénzáramlások

Kötvények értékelése

Példa (folytatás)

Mi az értéke a következő kötvénynek, ha ma 2002 októbere van?

- Egy IBM-kötvény öt éven keresztül minden szeptemberben 115 dollárt fizet. 2007 szeptemberében kifizeti az 1000 dolláros névértéket.
- A kötvény AAA minősítésű. A The Wall Street Journal szerint egy AAA minősítésű kötvény lejáratig számított hozama 7.5%.

$$PV = \frac{115}{1.075} + \frac{115}{(1.075)^2} + \frac{115}{(1.075)^3} + \frac{115}{(1.075)^4} + \frac{1,115}{(1.075)^5}$$

Kötvényárfolyamok és hozamok

