درس مبانی نظریه محاسبه

جلسه چهارم

ماشینهای متناهی و زبانهای منظم

Finite Machines and Regular Languages

زبانهای منظم: از دیدگاه محاسباتی

تعریف: هر عضو یک زبان را یک رشته می گوییم.

تعریف: اگر a یک حرف باشد، عبارت a^k به معنی a یک حرف باشد.

تعریف: زبان (مجموعه) A منظم است اگر و فقط اگر توسط یک ماشین متناهی (معین) پذیرفته شود.

چند نمونه از زبانهای منظم:

- مجموعه همه رشتههایی با الفبای $\Sigma = \{a\}$ است که طول فرد دارند. lacksquare
- مجموعه همه رشته هایی با الفبای $\Sigma = \{0,1\}$ است که شامل زیررشته $\Sigma = \{0,1\}$ هستند.
 - ◄ مجموعه اعداد طبيعي
 - ◄ مجموعه اعداد گويا

$$L = \{a^n b^n \mid n \ge 0\}$$

معرفی چند عملگر برای زبانها

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
 ه و $B \in A$ اجتماع زبانهای $A \in B$

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$
 ه اشتراک زبانهای $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

$$AB = \{xy \mid x \in A \text{ and } y \in B\}$$
 اتصال

$$A = \{ab, ac\}, B = \{d, ba\} \Rightarrow AB = \{abd, acd, abba, acba\}$$

◄ ستاره

$$A^* = \{x_1 \dots x_k \mid k \ge 0 \text{ and } x_k \in A\}$$

به عبارت دیگر، هر رشته در A^* از چسپاندن کپی هایی از رشتههای داخل A بدست آمده است. توجه کنید این کپی ها میتوانند یکسان باشند.

$$A^* = \{\epsilon, A, AA, AAA, AAAA, \ldots\}$$

$$A = \{ \operatorname{good}, \operatorname{bad} \} \qquad B = \{ \operatorname{boy}, \operatorname{girl} \} \qquad \Sigma = \{ \operatorname{a}, \operatorname{b}, \dots, \operatorname{z} \}$$

$$A \cup B = \{ \operatorname{good}, \operatorname{bad}, \operatorname{boy}, \operatorname{girl} \}$$

$$A \circ B = \{ \operatorname{goodboy}, \operatorname{goodgirl}, \operatorname{badboy}, \operatorname{badgirl} \}$$

$$A^* = \{ \varepsilon, \operatorname{good}, \operatorname{bad}, \operatorname{goodgood}, \operatorname{goodbad}, \operatorname{badgood}, \operatorname{badbad}, \operatorname{goodgoodgood}, \operatorname{gooddooddbad}, \operatorname{goodbaddbod}, \operatorname{goodbadbad}, \dots \}$$

$$\Sigma = \{a,b\}$$

- $\Sigma^* = \infty$ همه رشتههایی که با الفبای که میتوان ساخت
 - دقت کنید Σ^* شامل رشته تهی ϵ نیز هست.

$$\Sigma\Sigma = \{aa, bb, ab, ba\}$$

$$(\Sigma\Sigma)^* = ? \blacktriangleleft$$

$$\Sigma\Sigma^*=?$$

$$\Sigma^+ = \Sigma^*/\{\epsilon\}$$

$$\Sigma = \{a,b\}$$

همه رشتههایی از الفبای Σ است که تعداد رخداد a در آنها فرد است.

همه رشتههایی از الفبای Σ است که کاراکتر اول و آخر رشته مثل هم باشد. B

$$AA$$
, BB , A^* , B^* , $(A \cup \Sigma)^*$

▶ AA = aهمه رشتههایی از الفبای Σ که تعداد رخداد a در آنها زوج و غیر صفر است.

اثبات:

 $w\in AA \ \Rightarrow \ w=xy, \ x\in A \ \mathrm{and} \ y\in A$ پس بنا به تعریف A، تعداد رخداد a در w باید زوج و بیشتر از صفر باشد.

حال فرض کنید تعداد a در w زوج و بیشتر از صفر باشد. نشان می دهیم w عضوی از AA است. می توان رشته w را به دو قسمت x و y تقسیم کرد بطوریکه

w = xy

 $w \in AA$ و تعداد a در x و y فرد باشد.

اثبات: دقت کنید که B شامل رشته ϵ است. اول نشان می دهیم $BB \subseteq \Sigma^*$ این قسمت بدیهی است.

$$w \in BB \implies w \in \Sigma^*$$

حال باید نشان دهیم $\Sigma^* \subseteq BB$. برای این منظور، باید نشان دهیم:

$$w \in \Sigma^* \ \Rightarrow \ w \in BB \ \Rightarrow \ w = xy, \ x \in B, y \in B$$

مىتوان حالات مختلف را بررسى كرد:

- $w=w\epsilon, \ x=w,y=\epsilon$ اگر حرف اول و آخر w یکی باشد، آنگاه
 - $w=a \ldots b$ اگر حرف اول و آخر یکی نباشد. b اولین b در رشته (از سمت چپ) را در نظر بگیرید.

$$w = \underbrace{a \dots a}_{x} \underbrace{b \dots b}_{y}$$

قضیه: اگر A و B دو زبان منظم باشند آنگاه $A \cup B$ یک زبان منظم است.

اثبات: برای اثبات منظم بودن A باید نشان دهیم یک ماشین متناهی وجود دارد که A را میپذیرد.

چون A و B منظم هستند پس ماشین متناهی M_1 وجود دارد که A را میپذیرد و ماشین متناهی M_2 وجود دارد که B را میپذیرد.

 $A\cup B$ ایده: با استفاده از ماشینهای M_1 و M_2 ماشین M را برای زبان میسازیم.

نمی توانیم اول رشته ورودی را به M_1 بدهیم و سپس رشته را به M_2 بدهیم چون زمانیکه پردازش M_1 تمام شده است رشته ورودی مصرف شده و از بین رفته است.

باید M را طوری طراحی کنیم انگار M همزمان اجرای M_1 و M را روی رشته ورودی شبیهسازی می کند.

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \quad M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$$
ماشین $M = (Q, \Sigma, \delta, q_0, F)$ را بصورت زیر تعریف می کنیم.

مجموعه
$$Q=Q_1 imes Q_2=\{(r_1,r_2)\ |\ r_1\in Q_1,\ r_2\in Q_2\}$$
 وضعيتهاى Q ضرب كارتزين دو مجموعه Q_1 است.

$$\delta((r_1,r_2),a) = (\delta_1(r_1,a),\delta_2(r_2,a))$$

$$q_0 = (q_1, q_2) \blacktriangleleft$$

$$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

یک مثال:

قضیه: اگر A و B دو زبان منظم باشند آنگاه $A\cap B$ یک زبان منظم است.

 $F = F_1 \times F_2$ مانند حالت اجتماع است با این تفاوت که

قضیه: اگر A و B دو زبان منظم باشند آنگاه AB یک زبان منظم است.

این قضیه را در جلسه آینده با استفاده از ایده ماشینهای متناهی نامعین اثبات می کنیم.

نمایی کلی از مفاهیم فصل اول

