Normalization 2: Boyce Codd Normal Form

Example

Suppose instructors can have multiple offices. We might have this relation:

inst_offices(ID, name, office)

For example:

ID	name	office
gill1992	Harman	DH282
gill1992	Harman	MH999
benr9431	Ben	MH213

Is there redundancy here?

Identifying the redundancy

ID	name	office
gill1992	Harman	DH282
gill1992	Harman	MH999
benr9431	Ben	MH213

We can see 'Harman' multiple times, and know that ID determines the name.

Question: Would the fact that ID → name cause redundancy if ID were a key in this table?

Another Example

Let's look at students and their advisers:

advises(inst_ID, student_ID, student_name)

For example:

inst_ID	student_ID	student_name
gill1992	john4320	John Harper
gill1992	vlim5230	Victor Lim
benr9431	john4320	John Harper

Is there redundancy here?

Identifying the redundancy

inst_ID	student_ID	student_name
gill1992	john4320	John Harper
gill1992	vlim5230	Victor Lim
benr9431	john4320	John Harper

Redundancy can exist if two things are present.

Question: What are they?

- 1. a functional dependency exists
- 2. the possibility of multiple rows involving the source of the multiple dependencies

Conditions for redundancy

inst_ID	student_ID	student_name
gill1992	john4320	John Harper
gill1992	vlim5230	Victor Lim
benr9431	john4320	John Harper

Two conditions are present:

- a functional dependency:
 - student_ID → student_name
- 2. the possibility of multiple rows: student_ID is not a superkey

Remember:
a functional
dependency
involves two
sets of
attributes of
a single
table

Boyce Codd Normal Form (BCNF)

A relation schema R is in **Boyce Codd Normal Form** if:

- \square whenever there's a (non-trivial) functional dependency $X \to Y$ for R
- \square then X is be a superkey for R

This is exactly our idea from the examples.

To show a relation schema is not in BCNF:

 \blacksquare just show a FD $X \to Y$ such that X is not a superkey

Question

Here is the "instructor offices" schema

inst_offices(ID, name, office)

Is it in Boyce Codd Normal Form?

- a) yes
- b) no, because of FD ID \rightarrow name
- c) no, because of FD ID, office → name
- d) no, because of FD ID → name and because ID isn't a superkey

Fixing redundancy by "splitting"

This schema isn't in BCNF:

ID	name	office
gill1992	Harman	DH282
gill1992	Harman	MH999
benr9431	Ben	MH213

So, problem solved?

These schemas are in BCNF:

ID	name
gill1992	Harman
benr9431	Ben

ID	office
gill1992	DH282
gill1992	MH999
benr9431	MH213

How is table-splitting a solution?

Idea:

Splitting a table into two seems okay if the original table could be reconstructed from the two new tables

Problem:

Can you reconstruct any table no matter how you split it up?

"Reconstructing" a table

ID	name
gill1992	Harman
benr9431	Ben

natural join

ID	office
gill1992	DH282
gill1992	MH999
benr9431	MH213

ID	name	office
gill1992	Harman	DH282
gill1992	Harman	MH999
benr9431	Ben	MH213

This is okay, but can you always reconstruct after splitting?

"Reconstructing" a table, part 2

