Automatentheorie

endliche nicht deterministische ε-Automaten

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 3.Aufl. Springer Vieweg 2022;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien, Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.;
 Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

Wiederholung Aufgabe

- Erstellen Sie einen NEA über dem Alphabet {0,1,2}, der an der drittletzten Stelle eine 1, an der zweitletzten Stelle eine 0 oder 2 hat.
- Wandeln Sie diesen Automaten in einen DEA um. Geben Sie den Graphen und die Überführungsfunktion an.

Lösung Aufgabe

NEA Modellierung

Alphabet {0,1,2}

δ	3	0	1	2
q0	Ø		{q1, q0}	{q0}
q1	Ø	{q2}	ø {q3}	{q2}
q2				{q3}
q3	Ø	Ø	Ø	Ø

Lösung Aufgabe NEA in DEA

Alphabet {0,1,2}

δ	0	1	2
q0	q0	q4	q0
q1	q2	q3	q2
q2	q0	q4	q0
q3	q1	q4	q1
q4	q1	q4	q1

6 Agenda

- Aufbau und Definition von e-NEA
- Modellierung
- Umwandlung in NEA

Automaten mit ε-Übergängen (ε-NEA)

- Erweiterung des NEA durch sogenannte ε-Übergänge
- Das sind Zustandsübergänge bei denen kein Zeichen gelesen bzw. verbraucht wird.
- Vorteil:
 - Automaten sind kompakt und
 - noch leichter anzufertigen

ε-NEA Definition

Ein ε-NEA wird definiert als:

 $A = (Q, \Sigma, \delta, s_0, F)$ mit

 $Q = \{s_1, s_n\}$ eine nicht leere Menge von Zuständen.

 $\Sigma = \{e_1,...,e_n\}$ eine nicht leere Menge von Zeichen.

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \wp(Q)$ eine Funktion, die Überführungsfunktion, welche anders als im NEA auch spontan ohne Lesen eines Eingabezeichens den Zustand ändern kann.

 $s_0 \in S \setminus F$ der Anfangszustand.

F ⊆ S die nicht leere Menge von Endzustände.

	Obertunrungstunktion					
δ	0	1	2	3		
s ₀	{s ₀ }	Ø	Ø	{s ₁ }		
S ₁	Ø	{s ₁ }	Ø	{s ₂ }		
S_2	Ø	Ø	$\{S_2\}$	Ø		

و نام میلان ام میلاد میلاد میلاد میلاد میلاد میلاد میلاد ا

Aufgabe NEA

- Bauen Sie den Automaten mithilfe von FLACI "Abstrakte Automaten" nach.
- Was ist das Alphabet
- Welche Wort akzeptiert dieser Automat?

Verarbeiten eines Eingabewortes

- Betrachten Sie dazu die Verarbeitung des Wortes w = 00112 mit dem ε-NEA
 - i. $\delta(s_0,0) = \{s_0\} \cup \{s_1\} \cup \{s_2\} = \{s_0, s_1, s_2\}$
 - ii. $\delta(s_0,00) = \{s_0\} \cup \{s_1\} \cup \{s_2\}$
 - iii, $\delta(s_0,001) = \{s_1\} \cup \{s_2\}$
 - iv. $\delta(s_0,0011) = \{s_1\} \cup \{s_2\}$
 - V. $\delta (s_0,00112) = \{s_2\}$

$$L(NEA) = \{ w \in \Sigma \mid \delta(s_0, w) \cap F \neq 0 \}$$

Automaten mit ε-Übergängen Modellierung

- Modellieren Sie einen ε-NEA mit den Eigenschaften
 - Er soll alle Worte des Alphabets {0,1} akzeptieren, die entweder auf 01 oder 10 enden.
 - Er soll alle Worte des Alphabets {0,1,2} akzeptieren, die auf 0, 01,1 und 21 enden.
 - Erstellen Sie den Graphen und die Überführungsfunktion
 - Prüfen Sie ihren Automaten mit dem Tool FLACI

Automaten mit ε-Übergängen Lösung der Modellierung

- Modellieren Sie einen ε-NEA mit den Eigenschaften
 - Er soll alle Worte des Alphabets {0,1} akzeptieren, die entweder auf 01 oder 10 enden.

δ	ε	0	1
q0	{q1, q4}	{q0}	{q0}
q1	Ø	{q2}	Ø
q2	Ø	Ø	{q3}
q3	Ø	Ø	Ø
q4	Ø	Ø	{q5}
q5	Ø	{q6}	Ø
q6	Ø	Ø	Ø

Automaten mit ε-Übergängen Lösung der Modellierung

- Modellieren Sie einen ε-NEA mit den Eigenschaften
 - Er soll alle Worte des Alphabets {0,1,2} akzeptieren, die auf 0, 01, 1 und 21 enden.

δ	ε	0	1	2
q0	{q1, q4}	Ø	Ø	Ø
q1	Ø	{q2}	Ø	Ø
q2	{q3}	Ø	{q3}	Ø
q3	Ø	Ø	Ø	Ø
q4	{q5}	Ø	Ø	{q5}
q5	Ø	Ø	{q6}	Ø
q6	Ø	Ø	Ø	Ø

Äquivalenz mit NEA

- Es zeigt sich, dass zu jeder Sprachen L, die von einem ε-NEA akzeptiert wird, es auch einem entsprechenden NEA gibt und umgekehrt, d.h. zu jeder Sprache L die von einem NEA akzeptiert wird gibt es einen entsprechenden ε-NEA.
- Die Klasse der Sprachen eines ε-NEAs und NEAs sind äquivalent L(ε-NEA) = L(NEA)
- Zu jedem ε-NEA kann man einen äquivalenten NEA angeben.
- Das heißt:
 - Die Automaten DEA, NEA und ε-NEA sind äquivalent und gleichwertig und definieren die gleiche Sprachklasse. Die Sprachklasse der regulären Sprachen.

Transformation eines ε-NEA in ein NEA

- Der Algorithmus zielt darauf ab alle ε-Übergänge zu eliminieren.
- Wir nehmen dazu den folgenden ε-NEA als Beispiel

ε-ΝΕΑ

Im ersten Schritt wird der ε-Übergang von s_1 nach s_2 und in einem zweiten Schritt den ε-Übergang von s_0 nach s_1 entfernt.

Transformation eines ε-NEA in ein NEA

- 1. Schritt der ε-Übergangs von s₁ nach s₂
 - Betrachte den Zustand s₁.
 - ▶ Ist das Wort gelesen kann mit einem ϵ -Übergang in den Endzustand gelangt werden. \Rightarrow s₁ muss Endzustand werden.
 - Ist das Wort nicht gelesen und wird eine 2 gelesen, gelangt man in den Endzustand $s_2 \Rightarrow$ der ε-Übergang wird zu einem 2-Übergang.

Transformation eines ε-NEA in ein NEA

- 2. Schritt der ε-Übergangs von s₀ nach s₁
 - Betrachte den Zustand s₀. Folgendes ist möglich:
 - Ist das Wort gelesen kann man mit zwei ε-Übergänge in den Endzustand gelangen \Rightarrow s₀ muss Endzustand werden.
 - Ist das Wort nicht gelesen und wird eine 1 gelesen, gelangt man in den Endzustand $s_1 \Rightarrow$ der ε-Übergang wird zu einem 1-Übergang.
 - Ist das Wort nicht gelesen und wird eine 2 gelesen, muss man direkt nach s_2 gelangen. \Rightarrow Einfügen eines Links von s_0 nach s_2 .
- 3. Schritt entfernen aller ε-Übergänge

Transformation eines ε-NEA in ein NEA

- Aufstellen der Überführungsfunktion
 - Von s₀ aus kann man mit ε-Übergänge sowohl s₁ als auch s₂ erreicht werden ⇒ Zusammenfassen der Zustände zu einem Zustand
 - Von s₁ aus kann man mit einem ε-Übergang s₂ erreicht werden ⇒ Zusammenfassen der Zustände zu einem Zustand

ε-NEA

Überführungsfunktion

δ	0	1	2	[s]* _ε
s_0	{s ₀ }	Ø	Ø	$\{s_0, s_1, s_2\}$
S ₁	Ø	{s ₁ }	Ø	$\{s_1, s_2\}$
S ₂	Ø	Ø	{s ₂ }	{s ₂ }

Formal: Transformation eines ε-NEA in ein NEA

- Formale Definition des Algorithmus
 - $ightharpoonup s \in Q$, so sei $[s]^*_ε$ die Menge aller Zustände, die von s aus mit ε-Übergänge erreicht werden.

$$[s]_{\varepsilon}^* = \{ s' \in Q \mid s \rightarrow_{\varepsilon}^* s' \}$$

- Die Elimination erfolgt in zwei Schritten:
 - Eliminieren aller ϵ -Zyklen (ϵ -Zyklus: $s \to_{\epsilon} \dots \to_{\epsilon} s$.) Alle Zustände s des ϵ -Zyklus werden durch einen neuen Zustand s_n ersetzt und der ϵ -Zyklus wird gelöscht. Ist ein $s \in F$ so gehört auch $s_n \in F$.
 - ▶ Für jedes s ∈ Q und jedes a ∈ Σ :
 - Für jedes $s' \in [s]^*_{\epsilon}$ füge $\delta(s', a)$ ZU $\delta(s, a)$ hinzu. Ist $s' \in F$, so ist s auch Endzustand.
 - Lösche alle ε-Übergänge.

Aufgabe I

Umwandeln eines ε-NEA in einen NEA

Folgender Automat mit dem Alphabet {0,1} ist gegeben.

Erstellen Sie die Überführungsfunktion und dann wandeln Sie den Automaten in ein NEA um.

Aufgabe I

Umwandeln eines ε-NEA in einen NEA

Vereinfachen des Automaten

 \blacksquare Zustand q_2 ist nicht notwendig.

22

E-NEA I

Transformation eines ε-NEA in ein NEA

Aufstellen der Überführungsfunktion

Überführungsfunktion →

δ	3	0	1
q0	{q1}	Ø	{q1}
q1	{q3, q0}	{q3}	Ø
q3	Ø	Ø	{q0}

Eliminieren aller ε-Zyklen (ε-Zyklus: s →_ε →_ε s.) Alle Zustände q des ε-Zyklus werden durch einen neuen Zustand ersetzt und der ε-Zyklus wird gelöscht. Ist ein q ∈ F so gehört auch der neue Zustand dazu.

Hier werden die beiden Zustände q_1 und q_2 zu dem neuen Zustand q_1q_2 zusammengefasst.

E-NEA II

Transformation eines ε-NEA in ein NEA

- Aufstellen der Überführungsfunktion
 - Für jedes $q \in Q$ und jedes $a \in \Sigma$:
 - Für jedes s' \in [s]* füge δ (s', a) zu δ (s, a) hinzu.
 - ▶ Ist $s' \notin F$, so ist s auch Endzustand.

Überführungsfunktion

ε-NEA

	δ	0	1	
	*q ₃	{q ₂ }	{q ₀ }	
/ <u>_</u>	\rightarrow * q_0	{q ₃ }	{q ₀ }	0
			1	1
		<u> </u>	q_0	

δ	ω	0	1
q0	Ø	{q3}	{q1, q0}
q1	Ø	{q3}	{q0, q1}
q3	Ø	Ø	{q0}

ε-NEA I

Transformation eines ε-NEA in ein NEA

Umgewandelter NEA in DEA umwandeln

δ	0	1
q0	q1	q3
q1	q2	q3
q2	q2	q2
q3	q1	q3

Aufgabe II

Umwandeln eines ε-NEA in einen NEA

Erstellen Sie die Überführungsfunktion und dann wandeln Sie den Automaten in ein NEA und anschließend in ein DEA um.

26

E-NEA I

Transformation eines ε-NEA in ein NEA

- Aufstellen der Überführungsfunktion
 - Zustände q des ε-Zyklus werden durch einen neuen Zustand ersetzt und der ε-Zyklus wird gelöscht. Ist ein q ∈ F so gehört auch der neue Zustand dazu.

Keine Zyklen

Überführungsfunktion

δ	0	1	3
$\rightarrow q_0$	Ø	Ø	$\{q_1, q_2\}$
q_1	{q ₁ }	Ø	{q ₄ }
q_2	{q ₁ }	$\{q_0, q_3\}$	Ø
q_3	$\{q_2, q_4\}$	Ø	Ø
*q ₄	{q ₄ }	{q ₃ }	Ø

δ	ε	0	1
q0	{q1, q2}	Ø	Ø
q1	{q4}	{q1}	Ø
q2	Ø	{q1}	{q0, q3}
q3	Ø	{q4, q2}	Ø
q4	Ø	{q4}	{q3}

ε-NEA II

Transformation eines ε-NEA in ein NEA

- Aufstellen der Überführungsfunktion
 - Für jedes $q \in Q$ und jedes $a \in \Sigma$: Für jedes $s' \in [s]^*_{\varepsilon}$ füge $\delta(s', a)$ zu $\delta(s, a)$ hinzu. Ist $s' \in F$, so ist s auch Endzustand.

Start q0 ϵ q1 q4 q4 q4 q3 q3 q3

Überführungsfunktion

	δ	0	1	3	٤*
	$\rightarrow q_0$	Ø	Ø	$\{q_1, q_2\}$	$\{q_1,q_2,q_4\}$
	q_1	{q ₁ }	Ø	{q ₄ }	{ q ₄ }
	q_2	{q₁}	$\{q_0, q_3\}$	Ø	Ø
	q_3	$\{q_2, q_4\}$	Ø	Ø	Ø
V	*q ₄	$\{q_4\}$	{q ₃ }	Ø	Ø
	\rightarrow * q_0	$\{q_1, q_4\}$	$\{q_0, q_3\}$		
	*q ₁	$\{q_1, q_4\}$	{q ₃ }		

E-NEA II Der NEA und DEA

Überführungsfunktion

δ	3	0	1	
q0	Ø	{q1, q4}	{q3, q0}	
q1	Ø	{q4, q1}	{q3}	
q2	Ø	{q1}	{q0, q3}	
q3	Ø	{q4, q2}	Ø	
q4	Ø	{q4}	{q3}	

NEA

DEA

