

Linear Algebra II Best-Fit Subspaces

Ming-Hsuan Kang

Best-fit Subspaces

Given a $m \times n$ real matrix A, let $\{\vec{x}_1^t, \dots, \vec{x}_m^t\}$ be the rows of A, which is a subset of \mathbb{R}^n . A k-dimensional subspace W in \mathbb{R}^n is called a best-fit k-subspace of $\{\vec{x}_1, \dots, \vec{x}_m\}$. if

$$W \in \operatorname*{arg\,min}_{W':dimW'=k} \left\{ \sum_{i=1}^m \|\vec{x}_i - \operatorname{proj}_{W'}(\vec{x}_i)\|^2 \right\}.$$

Together with the fact

$$\|\vec{x}_i\|^2 = \|\operatorname{proj}_{W'}(\vec{x}_i)\|^2 + \|\vec{x}_i - \operatorname{proj}_{W'}(\vec{x}_i)\|^2,$$

it is equivalent to

$$W \in \underset{W':dimW'=k}{\operatorname{arg max}} \left\{ \sum_{i=1}^{m} \|\operatorname{proj}_{W'}(\vec{x_i})\|^2 \right\}.$$

Example

What will be the best-fit 1-subspaces for the following data points?

Example

The following are the best-fit 1-subspaces.

Fitting Energy Function

For convenience, define the fitting energy function to be

$$E_A(W) := \sum_{i=1}^m \|\operatorname{proj}_W(\vec{x_i})\|^2.$$

Note that if $\{\vec{w}_1, \dots, \vec{w}_k\}$ is an orthonormal basis of W, then

$$E_A(W) = \sum_{i=1}^m \sum_{i=1}^k \|\operatorname{proj}_{\vec{w}_j}(\vec{x}_i)\|^2.$$

On the other hand,

$$A\vec{w}_j = \begin{pmatrix} \vec{x}_1^t \\ \vdots \\ \vec{x}^t \end{pmatrix} \vec{w}_j = \begin{pmatrix} \vec{x}_1^t \vec{w}_j \\ \vdots \\ \vec{x}^t \vec{w}_i \end{pmatrix} \quad \text{and} \quad |\vec{x}_i^t \vec{w}_j| = \|\text{proj}_{\vec{w}_j}(\vec{x}_i)\| , \forall i.$$

Thus,

$$E_A(W) = \sum_{i=1}^k ||A\vec{w}_i||^2.$$

Best-fit Subspace

Now we can rewrite the definition of best-fit k-subspaces.

Definition

A k-dimensional subspace W in \mathbb{R}^n is called a best-fit k-subspace of the row vectors of an $m \times n$ matrix A, if

$$E_A(W) = \sum_{j=1}^k ||A\vec{w}_j||^2$$

is maximal among all k-dimensional subspaces. Here $\{\vec{w}_1, \cdots, \vec{w}_k\}$ is an orthonormal basis of W.

Singular Values and Left Singular Vectors

Note that

$$||A\vec{u}||^2 = \vec{u}^t A^t A \vec{u}$$

and we have shown that A^tA is always an $n \times n$ positive semi-definite matrix. Let

$$\lambda_1 \geq \cdots \geq \lambda_n \geq 0$$

be the list of all eigenvalues of A and $\{\vec{v}_1, \dots, \vec{v}_n\}$ be a corresponding orthonormal eigenbasis.

Definition

The value λ_i is called the *i*-th singular value and $\{\vec{v}_1, \dots, \vec{v}_n\}$ is called a set of left singular vectors.

Remark. The set of singular values is unique but the set of left singular vectors is not unique.

Properties of Singular Values and Left Singular Vectors

Theorem

For $1 \le i \le n$, we have

$$\lambda_i = \max_{\vec{v}} \{ \|A\vec{v}\|^2 \} \quad \text{and} \quad \vec{v_i} \in \arg\max_{\vec{v}} \{ \|A\vec{v}\|^2 \},$$

where \vec{v} runs through all unit vectors orthogonal to \vec{v}_j for all j < i.

Proof. Let \vec{v} be a unit vector orthogonal to \vec{v}_j for all j < i. We can express \vec{v} as $a_i \vec{v}_i + \cdots + a_n \vec{v}_n$ for some a_i . Then

$$1 = \|\vec{v}\|^2 = a_i^2 + \dots + a_n^2$$
 and

$$||A\vec{v}||^2 = \vec{v}^t A^t A \vec{v} = (a_i \vec{v}_i + \dots + a_n \vec{v}_n)^t (\lambda_i a_i \vec{v}_i + \dots + \lambda_n a_n \vec{v}_n)$$

= $\lambda_i a_i^2 + \dots + \lambda_n a_n^2 \le \lambda_i (a_i^2 + \dots + a_n^2) = \lambda_i$.

Therefore, when $\vec{v} = \vec{v_i}$, $\lambda_i = ||A\vec{v_i}||^2$ is the maximum.

Singular Vectors and Best-fit Subspaces

Theorem

The subspace spanned by the first k left singular vectors of A is a best-fit k-subspace of the rows of A.

Proof

Let V_k be the subspace spanned by the first k left singular vectors. We shall prove the following statement by induction on k. For any k-dimensional subspace W, there exists an orthonormal basis $\{\vec{w}_1, \cdots, \vec{w}_k\}$ such that

$$||A\vec{w}_i|| \leq ||A\vec{v}_i||$$
 for all $i = 1, \dots, k$.

Then

$$E_A(W) = ||A\vec{w}_1||^2 + \dots + ||A\vec{w}_k||^2 \le ||A\vec{v}_1||^2 + \dots + ||A\vec{v}_k||^2 = E_A(V_k).$$

Thus, V_k is a best-fit k-subspace.

For k=1, by the previous theorem, $\|A\vec{v}_1\| \geq \|A\vec{w}\|$ for any unit vector \vec{w} . Especially, $\|A\vec{v}_1\| \geq \|A\vec{w}_1\|$ for any unit vector \vec{w}_1 in W.

Proof

Suppose the statement holds for all subspaces of dimensional less then k. Let W be a k-dimensional subspace. Then

$$\dim W + \dim(V_{k-1})^{\perp} = k + (n-k+1) = n+1 > n,$$

so $W\cap (V_{k-1})^\perp$ is a non-zero subspace. Choose a unit vector \vec{w}_k in $W\cap (V_{k-1})^\perp$. Then by the previous theorem, we have

$$||A\vec{v}_k|| \geq ||A\vec{w}_k||.$$

Let W_0 be the orthogonal complement of \vec{w}_k in W, which is of dimension k-1. By induction, W_0 admits an orthonormal basis $\{\vec{w}_1, \cdots \vec{w}_{k-1}\}$ such that

$$||A\vec{v}_i|| \ge ||A\vec{w}_i||$$
 for all $i = 1, \dots, k-1$.

Combining the above result, $\{\vec{w}_1, \cdots \vec{w}_k\}$ is the desired orthonormal basis of W. The proof is complete.