MOLECULAR DYNAMICS

Sparsh Agarwal

2022AM11223

1. Initialization

- Positions: Initial positions are read from liquid256.txt, which specifies atom positions within a cubic cell of side length L=6.8.
- Velocities:
 - Random velocities were generated in the range [-1, 1] for all components (x, y, z).
 - Adjusted to ensure zero net momentum:

$$\mathbf{v}_i = \mathbf{v}_i - rac{1}{N} \sum_{j=1}^N \mathbf{v}_j$$

• Scaled to match the target temperature $T=300\,\mathrm{K}$:

$$\mathbf{v}_i \leftarrow \mathbf{v}_i imes \sqrt{rac{3Nk_BT}{\sum_{j=1}^N m|\mathbf{v}_j|^2}}$$

2. Force Calculation

• Lennard-Jones Potential: Used to model the interaction between particles:

$$V(r) = 4\epsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight]$$

where:

- r: Distance between particles.
- ϵ : Depth of the potential well.
- σ : Distance where V(r) = 0.
- Force: Derived as the negative gradient of the potential:

$$F(r) = -rac{\mathrm{d}V(r)}{\mathrm{d}r} = 48\epsilon \left[rac{\sigma^{12}}{r^{13}} - rac{\sigma^6}{r^7}
ight]$$

• Cutoff Scheme: Forces and potentials are truncated at $r_{\rm cut}=2.5\sigma$. The potential is shifted to ensure continuity:

```
compute_potential_energy(positions):
    """Compute total potential energy of the system."""
    potential_energy = 0.0
    for i in range(N):
        for j in range(i + 1, N):
            # Periodic boundary conditions
            delta = positions[i] - positions[j]
            delta=apply_pbc(delta,system_size) # Nearest image convention
            r2 = np.dot(delta, delta)
            r cut=2.5 * sigma
            if r2 < (r cut)**2: # Apply cutoff at r < 2.5*sigma
                r = np.sqrt(r2)
                #smooth functiona s discussed in class
                potential energy += lj potential(r)
                potential energy-=lj potential(r cut)
                potential energy-=(r-r cut)*lj force(r cut)
    return potential energy
```

$$F_{
m modified}(r) = F(r) - F(r_{
m cut})$$

Why This Formula Is Necessary:

- Without the linear correction term, the force would not transition smoothly to zero, potentially
 causing the system to behave unphysically.
- ullet This modification ensures both the potential and its derivative are continuous at $r_{
 m cut}$.

Solution part-3

Temperature Monitoring

The system's instantaneous temperature is derived from the kinetic energy using the formula:

$$T = rac{2}{3Nk_B}K, \quad K = rac{1}{2}m\sum_{i=1}^N |ec{v}_i|^2$$

Part-4 and Part-5

- 3. Time Integration
 - Velocity Verlet Algorithm: Used to integrate the equations of motion:

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \mathbf{v}(t)\Delta t + rac{\mathbf{F}(t)}{m}rac{\Delta t^2}{2}$$

$$\mathbf{v}(t+\Delta t) = \mathbf{v}(t) + rac{\mathbf{F}(t) + \mathbf{F}(t+\Delta t)}{2m} \Delta t$$

 Periodic Boundary Conditions: Applied to ensure particles leaving one side of the simulation box re-enter from the opposite side.

```
def apply_pbc(delta, box_size):
    """Apply periodic boundary conditions to delta."""
    delta -= box_size * np.round(delta / box_size)
    return delta

    0.0s
```


- 1. Energy Conservation and System Stability:
- The left plot shows three energy components over 200 time steps:
 - o Kinetic energy (blue line) starts low and quickly rises to stabilize
 - Potential energy (orange line) starts high (negative) and quickly stabilizes
 - Total energy (green line) remains constant after initial equilibration, indicating good energy conservation
- The constant total energy suggests the Velocity Vervlet algorithm is working correctly, as it should be symplectic and conserve energy
- 2. Temperature Evolution (right plot):
- The temperature shows characteristic behavior of a molecular dynamics simulation:

- o Initial rapid rise from near-zero to approximately 1.5×10^{22} (in reduced units)
- o After equilibration (around step 25), the temperature fluctuates around a mean value
- o These fluctuations are normal and represent thermal fluctuations in the system
- The magnitude of fluctuations appears reasonable for a stable simulation
- 3. System Behavior:
- The initial sharp changes in both plots represent the equilibration phase
- After about 25 time steps, the system reaches a quasi-equilibrium state where:
 - o Energy components maintain stable average values
 - o Temperature oscillates around a mean value
- The simulation appears well-behaved with no signs of numerical instabilities
- 4. Physical Interpretation:
- The negative potential energy indicates attractive interactions between particles dominate
- The kinetic energy stabilization suggests the velocity distribution has reached a Maxwell-Boltzmann-like distribution

Temperature Equilibration

```
def check_temperature_equilibration(temperatures, T_target, temp_diff_threshold=1.0, std_threshold=0.5):
    if len(temperatures) < 100:
        return False # Not enough data points yet

    recent_temperatures = temperatures[-100:]
    mean_temp = np.mean(recent_temperatures)
    temp_std = np.std(recent_temperatures)

# Check both mean deviation and fluctuation stability
    return (np.abs(mean_temp - T_target) < temp_diff_threshold and temp_std < std_threshold)

✓ 0.0s</pre>
```

Discussion

1. Why This Method Is Effective:

- Combining temperature difference and fluctuation stability ensures robust equilibration detection.
- The velocity-based temperature calculation links directly to the system's kinetic energy, ensuring accuracy.

2. Interpretation of Results:

- The equilibration step indicates when the system reaches a steady-state temperature.
- Deviations before equilibration may highlight transient effects or initialization artifacts.

Discussion on Momentum Plot

The graph depicts the conservation of momentum over time in the x-, y-, and z-directions. Ideally, the momentum in each direction should remain constant and close to zero in a well-equilibrated molecular dynamics simulation. However, the plot shows minor fluctuations around zero, with occasional deviations that are not exactly zero.

Reasons for Non-Zero Momentum

1. Numerical Approximations:

 Molecular dynamics simulations rely on numerical integration methods (e.g., Verlet or Velocity-Verlet). These methods are not perfectly accurate and may introduce small errors in each time step, accumulating over time.

2. Finite Precision of Calculations:

Simulations are performed using floating-point arithmetic, which has finite precision. This
can lead to rounding errors that manifest as small deviations in momentum.

3. Initial Conditions:

 If the initial velocities are not perfectly assigned to satisfy zero total momentum (or the randomization process introduces bias), the system may exhibit slight residual momentum throughout the simulation.

4. Thermostat Effects:

If a thermostat is used to control the temperature, it may slightly perturb the system's
velocities, indirectly impacting the momentum. This effect is usually minor but can lead to
fluctuations.

5. Boundary Effects:

 For systems with periodic boundary conditions, particles exiting one side and entering another can introduce minor inconsistencies in momentum conservation, especially near the boundaries.