## **Advanced Robot Perception**

Fortgeschrittene Konzepte der Wahrnehmung für Robotersysteme

Georg von Wichert, Siemens Corporate Technology

# WAHRNEHMUNG MIT PUNKTEWOLKEN

## Wahrnehmungsaufgabe

- Aufgabe: Extraktion von Fakten aus unstrukturierten Sensordaten, z.B.
  - Für den Roboter relevante Objekte in der Umgebung
  - Lage / Pose, Klasse, Instanz



# Beispiel: Objekterkennung und -lokalisierung

- Drei wesentliche Verarbeitungsschritte
  - Segmentierung
  - Gegebenenfalls Erkennung / Vermessung
  - Lagebestimmung



## Segmentierung

- Aufteilung der Daten in inhaltlich zusammenhängende Teilmengen
  - Was ist ein Segment? Kommt darauf an!
  - Segmente entsprechen beispielsweise Objekten
  - Definition (und Lösung) aufgabenabhängig





Binarisierung mit Schwellwert





## Ebenenfit mit RANSAC



### Extraktion der Einzelobjekte



- Pro Objekt gibt es eine zusammenhängende Teil-Punktewolke
  - Punkte, deren minimaler euklidischer Abstand untereinander kleiner als der zu den Nachbarobjekten ist
- Segmentierung mit dem sogenannten "Region growing"
  - Andere Möglichkeit z.B. k-Means

## Segmentierung







- Segmentierung: Inhaltlich zusammengehörige Teilmengen der Daten finden
- Zwei grundsätzliche Ansätze
  - Segmentierung durch Modellanpassung ("model fit")
    - Ebenenfit mit RANSAC
  - Segmentierung durch Clustering
    - "Region Growing"
    - Clusteringverfahren aus der Statistik: Hierarchisches Clustering, K-Means, ...

# Vermessung und Lagebestimmung







# Was lernen wir jetzt daraus?

- Wahrnehmung: Extrahiert strukturierte Information aus unstrukturierten Sensordaten
  - Anzahl vorhandener Objekte
  - Position und Formparameter für jedes Objekt
- Das beschriebene Vorgehen ist nur eine von vielen Möglichkeiten, aber recht typisch
  - Modellannahmen: Einzelne Objekte auf Tischebene aufrechtstehend, rotationssymmetrisch, "flaschenförmig"







# Was lernen wir jetzt daraus?

- Starke Dimensionsreduktion durch Wahl der Objekt- und Szenenmodellierung
  - Objektlage (senkrecht auf Tisch): 6D Pose ->
     3D Pose
  - Rotationssymmetrie: 3D Pose -> 2D Pose
  - Abstrahiertes Flaschenmodell: Form 5D
- Schätzung der verbliebenen 7D
   Parametervektoren mit verhältnismäßig vielen Sensormessungen (3D Punkte) -> erhöht die Genauigkeit
  - Siehe auch Tischebene





# Was lernen wir jetzt daraus?

- Nutzt wissen über die Szene -> funktioniert nicht / schlecht bei Abweichungen von den Annahmen
  - z.B. sich (fast) berührende Flaschen stören die Segmentierung
- Aber auch wenn alles klappt: Fehler bleiben! Immer!
  - Messfehler: z.B. Objektradius niemals
  - Strukturfehler: 3 **rdose**
- bekommt beiben immer O Es bleiben immer O Es bleiben immer Es bleiben immer weim Zylinder meter für Minimierung des Ges
  - Folge der Modellannahmen



# Hierarchisches Clustering

- Agglomerativ: Starte mit einzelnen Punkten und fasse diese dann sukzessive zu Clustern zusammen
  - Kombiniere immer die beiden Cluster, die den geringsten Abstand zueinander haben
- Divisiv: Starte mit einem Cluster und unterteile dann sukzessive
  - Teile immer in die beiden Teilcluster, die den größten Abstand zueinander haben



## K-Means Clustering

- Annahme: Wir wissen, dass es k Cluster in den Daten gibt!
- K-Means Algorithmus:
  - 1. Wähle *k* Datenpunkte als Clusterzentren aus
  - 2. Solange sich die Clusterzentren ändern
    - Ordne jeden Datenpunkt dem nächstgelegenen Clusterzentrum zu
    - Stelle sicher, dass jedem Clusterzentrum mindestens ein Punkt zugeordnet wurde
      - z.B. zufällige Zuordnung von weit entfernten Punkten
    - Berechne die Clusterzentren neu, indem sie durch den Schwerpunkt der zugeordneten Punkte ersetzt werden



# K-Means Clustering



# K-Means für 2D-"Segmentierung"

Farb-"Kompression":



Segmentierung:



Nur Farbe

Farbe und Ort

#### K-Means erzeugt soviele Cluster, wie vorgegeben!



Korrekte Segmentierung

Übersegmentierung

# "Klassiker der 3D-Datenverarbeitung"

- Viele Algorithmen beinhalten die Suche des nächsten Punkts im m-dimensionalen Raum
  - Bisher: Region Growing, k-means, ICP, ... u.v.m.
- Lineare Suche bei großen Punktemengen extrem aufwändig, linear in der Größe der Suchmenge
  - O(n\*d): n ist die Anzahl der Punkte, d ist die Dimension des Raums
- Alternative: Suchbäume
  - Kd-Trees

#### 2-dimensionale kd-Trees

- Eine Datenstruktur für räumliche Anfragen in R<sup>2</sup>
  - Nicht das theoretische Optimum
  - Wird aber in der Praxis sehr häufig verwendet

- Aufwand für Baumaufbau: O(nlogn)
- Speicheraufwand: O(n)
- Abfragezeit: O(n<sup>1/2</sup>+k)

#### 2-dimensionale kd-Trees

- Algorithmmus:
  - Wähle x- oder y- Koordinate (abwechselnd)
  - Wähle den Median der gewählten Koordinate; dies defniniert eine horizontale oder vertikale Gerade
  - Wiederhole dies auf beiden Seiten der Ebene rekursiv
- Daraus ergibt sich dann ein Binärbaum:
  - Größe O(n)
  - Tiefe O(logn)
  - Aufbau O(nlogn)











# Der fertige kd-Tree





### Zuständigkeitsregion des Knoten v



Region(v): Der Teilbaum mit der Wurzel v speichert die schwarz eingetragenen Punkte

#### Suche in kd-Trees

- Bereichssuche in 2D
  - Geben sei eine Menge von n Punkten. Erzeuge eine Datenstruktur, die für jedes Abfragerechteck R alle Punkte innerhalb von R liefert.

#### kd-tree: Bereichssuche

- Rekursives Vorgehen, startet bei v = root
- Suche (v,R)
  - Wenn v ein Blatt des Baumes ist, liefere alle Punkte innerhalb von v, falls es in R liegt
  - Anderenfalls, wenn Region(v) in R liegt, liefere alle Punkte im Teilbaum von v
  - Sonst:
    - Wenn die Region(left(v)) die Abfrage R schneidet, dann Suche (left(v),R)
    - Wenn die Region(right(v)) die Abfrage R schneidet, dann Suche (right(v),R)

#### d-dimensionale kd-Trees

Eine Datenstruktur für räumliche Anfragen in Rd

- Aufwand für Baumaufbau: O(nlogn)
- Speicherbedarf: O(n)
- Abfragezeit: O(n<sup>1-1/d</sup>+k)

#### Aufbau d-dimensionaler kd-Trees

- Der Konstruktionsalgorithmus ist ähnlich wie in 2D
- An der Wurzel teilen wir die Punkte in zwei gleich große Teilmengen, getrennt durch eine Hyperebene senkrecht zur x<sub>1</sub>-Achse
- Die etntsandenen Teilmengen teilen wir dann entsprechend der zweiten Koordinatenrichtung: snkrecht zur x<sub>2</sub>-Achse
- •
- Bei Baumtiefe d, beginnen wir wieder mit der ersten Koordinate
- Die Rekursion stops läuft, bis nur noch ein Punkt übrig ist, dieser wird als "Blatt" des Baums abgelegt.

#### kd-Trees

- Kd-Trees funktionieren gut bei wenig bis mitteldimensionalen Räumen
- In der Praxis sehr verbreitet
- Zahllose Varianten: Vor allem hinsichtlich Baumaufbau (Heuristiken...)

 Weit verbreitet zur Beschleunigung der Nächster-Nachbar-Suche!

# "Klassiker der 3D-Datenverarbeitung"

• Letze Woche: Parametrisches Modell der Flasche



- Alternative: Modellierung durch Registrierung von 3D Punktewolken
- "Iterative Closest Points"-Algorithmus



Paul J. Besl und Neil D. McKay, A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), Feb. 1992

Ausgangspunkt: Zwei Punktemengen

$$Y := \{y_1,...,y_n\} \qquad X = \{x_1,...,x_m\}$$
 Messung Modell

Abstandsmaß: Punkt zu Modell

$$d(y_i, X) = \min_{x_i \in X} ||x_j - y_i||$$

 Transformation auftrennen nach Translation und Rotation



# Optimale Rotation (bei bekannten Korrespondenzen)

 Transformation der Modellpunkte auf die gemessenen Punkte mit der Rotationsmatrix R, dem Translationsvektor t, der Skalierung c und dem unvermeidlichen Rauschen s, des jeweiligen Punktes

$$y_i = cRx_i + t + s_i, \quad i = 1...n$$

$$E^{2} = \frac{1}{n} \sum_{i=1}^{n} ||y_{i} - (cRx_{i} + t)||^{2}.$$

 Verschiebung beider Punktemengen in ihren jeweiligen Schwerpunkt

$$\mu_X := \frac{1}{n} \sum_{i=1}^n x_i, \quad \mu_Y := \frac{1}{n} \sum_{i=1}^n y_i$$

$$q_{Xi} := x_i - \mu_X, \quad q_{Yi} := y_i - \mu_Y$$

 Gesucht: Optimale Transformation (im Sinne des minimalen quadratischen Fehlers E<sup>2</sup>)

$$\hat{R}, \hat{t}, \hat{c} = \underset{R,c,t}{\operatorname{argmin}} E^2$$

# Optimale Rotation (bei bekannten Korrespondenzen)

- Verschiebung beider Punktemengen in ihren jeweiligen Schwerpunkt
- Neue Fehlerfunktion (ohne Translation)
- Kreuzkovarianmatrix der Punkte
- Varianz der Modellpunkte
- Lösung des Minimierungsproblems über Singulärwertzerlegung von D



$$q_{Xi} := x_i - \mu_X, \quad q_{Yi} := y_i - \mu_Y$$

$$E^{2} = \sum_{i=1}^{n} \|q_{Yi} - \hat{c}\hat{R}q_{Xi}\|^{2}$$

$$D = \frac{1}{n} \sum_{i=1}^{n} q_{Yi} * q_{Xi}^{T}$$

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^n ||q_{Xi}||^2$$

$$D = USV^T$$
 S: Diagonalmatrix



$$\hat{R}, \hat{t}, \hat{c} = \underset{R,c,t}{\operatorname{argmin}} E^2$$

# Optimale Rotation (bei bekannten Korrespondenzen)

Lösung des
 Minimierungsproblems über
 Singulärwertzerlegung von D

Singular Value
Decomposition (SVD)

- Finde U, S und V, sodass  $D = USV^T$ 

S: Diagonalmatrix

$$\hat{R} = UK_1V^T, \quad K_1 = \begin{cases} I, & \text{falls } det(D) \ge 0, \\ diag(1, ..., 1, -1), & \text{falls } det(D) < 0. \end{cases}$$

$$\hat{c} = \frac{1}{\sigma_X^2} spur(SK_2), \quad K_2 = \begin{cases} I, & \text{falls } det(U)det(V) = 1, \\ diag(1, ..., 1, -1), & \text{falls } det(U)det(V) = -1. \end{cases}$$

$$\hat{t} = \mu_Y - \hat{c}\hat{R}\mu_X$$

Umeyama, Shinji. "Least-squares estimation of transformation parameters between two point patterns." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 13.4 (1991): 376-380.

Wenn die Punktkorrespondenzen bekannt sind, kann man die optimale Transformation berechnen (siehe vorhergehende Folien)



- Wie finden wir die richtigen Korrespondencen:
  - User input? Merkmalsdetektion? Signaturen?
- Alternative: Wir nehmen einfach an, dass immer die nächsten Punkte zusammen gehören!



- ... und wiederholen das solange, bis der Restfehler E<sup>2</sup> unter eine geeignet zu wählende Schwelle fällt
  - Iterative Closest Points (ICP)

Paul J. Besl und Neil D. McKay, A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (2), Feb. 1992

- Konvergiert aus "ausreichend guter" Startposition
  - Problem: Lokale Minima!



- 1. Verschiebe beide Punktemengen in ihren Schwerpunkt
- 2. Wähle z.B. 1000 zufällige Punkte aus dem Modell
- 3. Ordne jeden dieser Punkte seinem nächsten Nachbarn aus der Messung zu
  - Optional, aber sinnvoll: Ignoriere Paare, deren Abstand > k-mal der
     Median aller Abstände ist
- 4. Berechne die optimale Transformation  $\hat{R}, \hat{t}, \hat{c} = \operatorname*{argmin}_{R,c,t} E^2$
- 5. Gehe zu 2. solange der Restfehler  $E^2$  über einer Schwelle t liegt oder eine Anzahl  $N_{max}$  von Iterationen nicht überschritten wurde

- Wie immer bei derartigen Basisalgorithmen, gibt es zahllose Varianten
  - Hier: Punktmenge zu Punktmenge
  - Andere: Punktmenge zu parametrischem Modell, es muß möglich sein Abstände der Punkte zum Modell zu berechnen
  - Beispiel: Punkt zu Ebene, seitliche Verschiebungen erhöhen den Fehler nicht (Vorteil!), erfordert lokale Normalenschätzung





# ICP-Anwendungsbeispiel

Modellierung von 3D Objekten









## ICP-Anwendungsbeispiel

- Modellierung von 3D Objekten
  - Registrierung von Teilpunktewolken aus unterschiedlichen Ansichten



#### Diese Woche

- Ein paar Algorithmenklassiker für den Umgang mit Punktewolken
  - Clusterbildung mit k-Means und Agglomeration
  - Registrierung mit ICP
  - Nachbarschaftsuche mit dem kd-Tree

Kamerageometrie