

CMPT 103 Term Project

Segregation Modeling

www.macewan.ca/ComputerScience

Description

- For the project this term we will build a modeling/simulation program that will show what happens if people living in a city want their neighbours to be the same as them.
- This program is based on a model of segregation developed by an economist named Thomas Schelling.

The Idea

- The idea is fairly straightforward. If enough neighbours are similar, people stay. If not enough neighbours are the same, the agent will move.
- If the percentage of neighbours is below the "similarity threshold", the neighbour is dissatisfied.
- This similarity threshold can be changed to see how it affects segregation.

www.macewan.ca/ComputerScience

Starting setup

Agents placed randomly in grid

 Agents are placed randomly in a grid. A 50/50 split of each type and some portion of spaces are empty

Satisfaction Threshold

An agent is either satisfied or dissatisfied based on whether a threshold of neighbours are the same as them. Here are threshold of 30% might be used

Dissatisfied because only 1/4 (25%) of neighbors are X

	X	X	0	Χ	0
1		0	0	0	0
ĺ	Χ	Χ			
	Χ	0	Χ	Χ	Χ
	Χ	0	0		0

www.macewan.ca/ComputerScience

Moving

Each *round* dissatisfied agents will be moved to a random open location. In the below example, dissatisfied agents are marked with an asterisk(*)

Dissatisfied agents marked with *

	n - n			
Χ	Χ*	0	Χ*	0
	0	0	0	0
Χ	Х			
Χ	0*	Χ	Χ	Χ
Χ	0	0		0*

All dissatisfied agents relocated

Χ		0		0
0	0	0	0	0
Χ	Х	Х		Χ
Χ		Χ	Χ	Χ
Χ	0	0	0	

Rounds

- Each *round* or *step* your program will find the dissatisfied agents and move them to a new location.
- Note that empty squares are not included in the satisfaction calculation.
- All dissatisfied agents are moved each round.

The Grid

- The simulation consists of a 30 x 30 grid of squares. 10% of the squares are empty (white) and the remaining squares are equally divided between red and blue.
- Each square must be 20 pixels square
- Each square represents an agent
- Each agent can have between 3 and 8 neighbour squares.

Segregation

 You can see that even within three rounds/steps that the segregation becomes apparent.

Buttons

- Your program must implement 4 buttons
 - Reset
 - Reset the board to a random layout with 10% blank and the others evenly red/blue
 - Step
 - Perform one round/step
 - Run
 - Perform rounds/steps until changes are "minimal"
 - Quit
 - Close the window and exit the Python program

www.macewan.ca/ComputerScience

Input

- There is one input text box with a label "Similarity" that allows you to modify the similarity threshold that determines if agents are satisfied or not.
- Modifying this input allows the user to experiment to see how fast segregation occurs with different thresholds

Run

- When "Run" is clicked your program should perform rounds of moving dissatisfied agents until the map is not changing much
- You will have to decide what a good stopping condition will be and clearly document it

Submission guidelines

- The project is due Friday, June 17th
- Milestone 1
 - Due June 3
 - Draw board and quit when "Quit" clicked
- Milestone 2
 - Due June 10
 - Randomize board when "Reset" clicked
- Further marking details to come...