CS-1203 - Monsoon 2023 - Assignment 1

Ayush Kishor,

September 26, 2023

Heap Insertion Analysis

 $\begin{aligned} & \text{Comparison Counter} = 1 \\ & \text{Swap Counter} = 0 \end{aligned}$

 $\begin{aligned} & \text{Comparison Counter} = 2 \\ & \text{Swap Counter} = 1 \end{aligned}$

 $\begin{array}{l} {\rm Comparison\ Counter} = 3 \\ {\rm Swap\ Counter} = 2 \end{array}$

 $\begin{aligned} & \text{Comparison Counter} = 5 \\ & \text{Swap Counter} = 4 \end{aligned}$

 $\begin{array}{l} {\rm Comparison~Counter} = 7 \\ {\rm Swap~Counter} = 6 \\ {\rm and~so~on.......} \end{array}$

Now, we see a Max Heap has been formed through Heap Insert. Analysing the algorithm, we see that the number of operations (counts+swaps) = 39 which is roughly O(nlog(n)). Now let's analyse Heapify Algorithm

Heapify Analysis

We start with:

Second Iteration:

Third Iteration:

Counting the swaps and the comparisons, we get the total number of operations (comparisons + swaps) to be 28, which is roughly 3n or $\mathcal{O}(n)$

Iteration	Comparison Count	Swap Count
1	3	1
2	6	2
3	6 + 3 + 3	2 + 1 + 1
4	12 + 3 + 3 + 3	4+1+1+1
Total	21	7

Heap Insert vs Heapify

From the analysis of both algorithms on an array of integers from 0 to 9, we observe the total number of operations vary by a considerable margin, especially swaps. We can ascertain the time complexities to be O(nlog(n)) and O(n) respectively. Further, both algorithms come up with the same element i.e, a Max Heap but the ordering of elements vary.