Fault Localization: Incorporating normalized code length as parameter for coefficient based faulty ranking program

Presented by :이다 and 길랑

Advance Software Engineering Fall 2022

Content

- Topic and key issue to be addressed
- Proposed approach and methods
- Experiment results and analysis
- Key findings

Topic & Key Issue

- Topic selected: Fault Localization
- Key issues to be addressed:
 - 1. Improving fault localization accuracy by investigating the importance (weights) of different testing coverage information.
 - 2. Improving suspiciousness scoring accuracy by leveraging syntactical feature.

Proposed approach

- Based on testing coverage information, suspiciousness factors can be divided into two categories.
 - More suspicious: N_{CF} , N_{US}
 - Less suspicious: N_{CS} , N_{UF}
- Faulty scoring formulation
 - More suspicious $(A) = N_{CF} + N_{US}$
 - Less suspicious $(B) = N_{CS} + N_{UF}$
 - $Score = \alpha A \beta B$
- Adding syntactical feature L (statement length)
 - Refined score = $\alpha A \beta B + \gamma L$

Methods

1. Data preprocessing to extract required features for each Java Program in the evaluation set.

Example: time1

```
org.joda.time.Partial#221 F
org.joda.time.field.UnsupportedDurationField#227 F
org.joda.time.field.UnsupportedDurationField#228 F
org.joda.time.field.UnsupportedDurationField#229 F
org.joda.time.Partial#217 T
org.joda.time.Chronology#63 3432 1 513 0 5
org.joda.time.DateTimeField#33 3526 1 419 0 5
org.joda.time.DateTimeFieldType#41 30 0 3915 1 7
org.joda.time.DateTimeFieldType#73 3528 1 417 0 8
```


Methods

- 2. Compute the normalized value of each feature
- 3. Calculate the suspiciousness score for each line of code
- 4. Compute the suspiciousness ranking and Exam Score

Performance without weight: A - B + L

		Proposed	Dstar	Jaccard
1	'chart19.txt'	0.193462308	0.000667111	0.241827885
2	'closure1.txt'	0.006813075	0.008407625	0.267739364
3	'closure10.txt'	0.015508622	0.013570044	0.258953168
4	'closure100.txt'	0.0183161	0.009748892	0.484194978
5	'closure101.txt'	0.67875383	0.352400409	0.018215867
6	'closure102.txt'	0.523537415	0.514829932	0.240816327
7	'closure103.txt'	0.984585742	0.444123314	0.19894027
8	'closure104.txt'	0.00310559	0.003992902	0.283496007
9	'closure105.txt'	0.009294466	0.020490072	0.396915927
10	'closure106.txt'	0.118925831	0.016943734	0.408407928
11	'closure107.txt'	0.013057546	0.013173099	0.48648024
12	'closure109.txt'	0.003916193	0.000783239	0.241237517
13	'closure11.txt'	0.114109763	0.053251223	0.310994385
14	'closure110.txt'	0.906006006	0.781181181	0.78048048
15	'closure112.txt'	0.001639486	0.006989386	0.416774528
16	'closure113.txt'	0.001757469	0.001318102	0.289762742
17	'closure115.txt'	0.015403235	0.010122126	0.386731214
18	'closure116.txt'	0.000287991	0.000671978	0.327541519
19	'clocure117 tvt'	∩ 7 <i>/</i> 11925∩91	0 755376561	∩ 75 <i>/</i> 172217Q
136	'time4.txt'	0.002604167	0.010416667	0.524553571
137	'time5.txt'	0.679693795	0.601128122	0.601128122
138	'time6.txt'	0.025623736	0.039447067	0.302090357
139	'time7.txt'	0.006245496	0.003843382	0.370405957
140	'time8.txt'	0.345534407	0.324304539	0.324304539
1/11	'time9.txt'	0.029304029	0.021245421	0.260805861

RESULT

Comparison	Method	Number of	Win
Companison	Method	Wins	Percentage
	Proposed Method	61	44%
The best overall	Dstar	66	47%
The pest overall	Jaccard	10	7%
	Tie	3	2%
	Proposed Method	63	45%
Proposed vs Dstar	Dstar	75	53%
	Tie	3	2%
	Proposed Method	111	79%
Proposed vs Jaccard	Jaccard	29	21%
	Tie	1	1%

The significance of weight of each parameter

$$\alpha A - \beta B + \gamma L$$

The significance of weight of each parameter $\alpha A - \beta B + \gamma L$

The significance of weight of each parameter

$$\alpha A - \beta B + \gamma L$$

Average Exam Score Performance

Win Percentage of Proposed Method (vs Dstar & Jaccard)

The threshold of parameter setting

Based on those exploration, we get a rule of Parameter Setting

- 1. Higher α , higher performance.
- 2. Higher β , higher performance.
- 3. The optimum performance of γ at 0.1
- By iterating each parameter based on that rule, we define threshold setting at α = 0.9; β = 0.9; γ = 0.1.
- This is the minimum required setting to met Dstar performance.

Performance comparison with Jaccard and Dstar

$$\alpha$$
 = 0.9; β = 0.9; γ = 0.1

$$\alpha$$
 = 1; β = 1; γ = 0.1

RESULT

Comparison	Method	Number of Wins	Win Percentage
	Proposed Method	69	49%
The best overall	Dstar	59	42%
	Jaccard	11	8%
	Tie	1	1%
	Proposed Method	70	50%
Proposed vs Dstar	Dstar	70	50%
	Tie	1	1%
	Proposed Method	111	79%
Proposed vs Jaccard	Jaccard	29	21%
	Tie	1	1%

RESULT

Comparison	Method	Number of	Win
	1110011001	Wins	Percentage
	Proposed Method	72	51%
The best overall	Dstar	56	40%
	Jaccard	11	8%
	Tie	1	1%
Proposed vs Detar	Proposed Method	73	52%
Proposed vs Dstar	Dstar	67	48%
	Tie	1	1%
	Proposed Method	112	79%
Proposed vs Jaccard	Jaccard	28	20%
	Tie	1	1%

Ablation Study

	Proposed	Dstar	Without Length
1 'chart19.txt'	0.152101401	0.000667111	0.133755837
2 'closure1.txt'	0.007392912	0.008407625	0.008335145
3 'closure10.txt'	0.011835527	0.013570044	0.013570044
4 'closure100.txt'	0.011225997	0.009748892	0.210044313
5 'closure101.txt'	0.632107593	0.352400409	0.652400409
6 'closure102.txt'	0.518639456	0.514829932	0.524829932
7 'closure103.txt'	0.975313102	0.444123314	0.973747592
8 'closure104.txt'	0.002218279	0.003992902	0.003992902
	0.002218279 0.111111111	•	
134 'time27.txt'	3,000000	0.116421569	0.116421569
134 'time27.txt' 135 'time3.txt'	0.11111111	0.116421569 0.542159763	0.116421569 0.60022189
134 'time27.txt' 135 'time3.txt' 136 'time4.txt'	0.111111111 0.762943787	0.116421569 0.542159763 0.010416667	0.116421569 0.600221899 0.01041666
134 'time27.txt' 135 'time3.txt' 136 'time4.txt' 137 'time5.txt'	0.111111111 0.762943787 0.005952381	0.116421569 0.542159763 0.010416667 0.601128122	0.116421569 0.600221899 0.01041666 0.667203869
134 'time27.txt' 135 'time3.txt' 136 'time4.txt' 137 'time5.txt' 138 'time6.txt' 139 'time7.txt'	0.111111111 0.762943787 0.005952381 0.669621273	0.116421569 0.542159763 0.010416667 0.601128122 0.039447067	0.116421569 0.600221899 0.010416669 0.667203869 0.01011463
8 'closure104.txt' 134 'time27.txt' 135 'time3.txt' 136 'time4.txt' 137 'time5.txt' 138 'time6.txt' 139 'time7.txt' 140 'time8.txt'	0.11111111 0.762943787 0.005952381 0.669621273 0.009777478	0.116421569 0.542159763 0.010416667 0.601128122 0.039447067 0.003843382	0.003992902 0.116421569 0.600221899 0.010416669 0.667203869 0.010114633 0.003843389 0.485358713

RESULT

Comparison	Method	Number of Wins	Win Percentage
Droposedive	Proposed Method	78	55%
Proposed vs	Without Length	55	39%
Without Length	Tie	8	6%
	Proposed Method	73	52%
Proposed vs Dstar	Dstar	67	48%
	Tie	1	1%
Without Length vs	Without Length	52	37%
Dstar	Dstar	75	53%
	Tie	14	10%

Length of Code Distribution

■ faulty ■ non faulty

Exam Score Comparison of Coefficient Based Fault Localization Techniques

• From the histogram we can see that the Exam score variance is 1 with mean close to 0

t-Test: Proposed vs Jaccard

	Proposed	Jaccard
Mean	0.2314	0.3952
Variance	0.1072	0.0509
Observations	141	141
Hypothesized Mean Difference	0	
df	140	
Alpha	0.05	
P(T<=t) one-tail	1.2576E-11	
P(T<=t) two-tail	2.5152E-11	

t-Test: Proposed vs DStar

	Proposed	DStar
Mean	0.2314	0.2147
Variance	0.1072	0.0934
Observations	141	141
Hypothesized Mean Difference	0	
df	140	
Alpha	0.05	
P(T<=t) one-tail	0.124515	
P(T<=t) two-tail	0.24903	

Key Findings

- The syntactical feature length helps in improving the fault localization performance.
- The proposed method outperforms Jaccard in all parameters setup.
- The proposed method reaches Dstar performance with threshold parameter setting (α = 0.9; β = 0.9; γ = 0.1)

Public Repository

https://github.com/archive05/fault-localization

