

Special Lecture 12

User in the Loop

Relevance Feedback

User Feedback

An IR system could be an interactive system

Use Scenario

- A query q or a classifier w is given
- Search engine retrieves a set of possible answers
 - \circ X_1 , X_2 , X_3 , etc.
- System guess the user intend and improve the answers
 - \circ x_7, x_{12}, x_{23} , etc.
- User is able to smartly navigate and get what she is looking for.
- E.g. Search for a specific fashion/design in a large database

Relevance Feedback

Personalization - Wikipedia, the free encyclopedia | R | X |

Personalization involves using technology to accommodate the differences between individuals. Once confined mainly to the Web, it is increasingly becoming a ... en.wikipedia.org/wiki/Personalized - 42k - Cached - Similar pages -

Relevant

Personalized Gifts from Personalization Mall Tox

It shows you went out of your way to find the perfect gift at to personalize it to make it theirs alone! At PersonalizationMall.com, we design most of our ...

www.personalizationmall.com/Default.aspx?&did=111028 - 47k
Cached - Similar pages -

Nonrelevant

What is personalization? - a definition from Whatis.com | |

Mar 6, 2007 ... On a Web site, personalization is the process of tailoring pages to individual users' characteristics or preferences.

searchorm.techtarget.com/sDefinition/0_,sid11_gci532341,00.html - 72k - Cached - Similar pages -

Too Explicit?

Pseudo Feedback and Query Expansion

What if the users are reluctant to provide any feedback.

Rocchio Model

$$Q_1 = \alpha Q_0 + \frac{\beta}{n_1} \sum_{i=1}^{n_1} R_i - \sum_{i=1}^{n_1} S_i$$

where

 Q_0 = the vector for the initial query

 R_i = the vector for the relevant document i

 S_i = the vector for the non-relevant documents i

 n_1 = the number of relevant documents chosen

 n_2 = the number of non-relevant documents chosen

 α , β and γ tune the importance of relevant and non relevant terms(in some studies best to set β to 0.75 and γ to 0.25)

Illustration (NN View)

Illustration (dot product view)

Challenges and Refinements

- Can we force user to say + and on the answers?
 - Often + is more clear ?. But not ve is not shared.
 - Cases when only + or Only is available.
- Often + is implicit (I click/browse) and not explicit.
- Examples:
 - Browsing for fashion (clothes)

Users in the ML systems

Interactive Classification

Goal: Optimize life-time Return On investment

Defining Characteristics

- Expensive domain experts
- Skewed class distribution(minority events)
- Concept/ Feature drift
- Biased sampling of labeled historical data
- Lots of unlabeled data

Another Scenario (Interactive ML)

Associated Issues

- Incremental and Computational Issues
 - How do we learn, adapt and forget
 - What is the basic knowledge and what do we adapt?
- Stability
 - Am I overlearning and changing too fast?
 - Stability, convergence and other algorithmic issues.

Personalization

Use Case (RF style)

Many Relevant Attributes

- Consider the following pieces of information
 - Geographical Location
 - Age, gender, ethnicity, religion, etc.
 - Interests
 - Previous reviews on products
 - 0
- How could these pieces of information help?
- How to collect these information?

Approaches

- Individual Vs Collaborative
- Reactive Vs Proactive
- User Vs Item Information

Individual Vs Collaborative

- Individual approach (E.g. Google Personalized Search)
 - Use only individual user's data
 - Generate user profile by analyzing
 - User's browsing behavior
 - User's active feedback on the system

Individual Vs Collaborative

- Advantage
 - Can be implemented on the client-side no privacy violation
- Disadvantage
 - Based only on past interactions.

Reactive Vs Proactive

- Reactive approach
 - Explicitly ask user for preferences
 - Either in the form of query or feedback
- Proactive approach
 - Learn user preferences by user behavior
 - No explicit preference demand from the user

Reactive Vs Proactive

- Behavior is extracted
 - Click-through rates
 - Navigational pattern

User Vs Item Information

- User Information
 - Geographic location (from IP address)
 - age, gender, marital status, etc. (explicit query)
 - Lifestyle, etc. (inference from past behavior)
- Item Information
 - Content of Topics movie genre, etc.
 - Product/ domain ontology

Thanks!!

Questions?