

ECE 602: LUMPED LINEAR SYSTEMS

Professor Stan Żak

Observability tests for continuous-time (CT) linear time-invariant (LTI) systems

Observability tests for continuous-time (CT) linear time-invariant (LTI) systems

 Objective: Discuss test for observability of CT linear time-invariant (LTI) systems modeled as

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0$$

 $y(t) = Cx(t) + Du(t)$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, p < n, and $D \in \mathbb{R}^{p \times m}$

Recall the solution of the state equation,

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Observability definition

The system

$$\begin{array}{rcl}
\dot{x} &=& Ax + Bu \\
y &=& Cx + Du,
\end{array}$$

or equivalently the pair (A, C), is observable if there is a finite $t_1 > t_0$ such that for arbitrary $u(\cdot)$ and resulting $y(\cdot)$ over $[t_0, t_1]$, we can determine $x(t_0)$ from the knowledge of the system input u and output y.

• Note that once $x(t_0)$ is known, we can determine x(t) from knowledge of $u(\cdot)$ and $y(\cdot)$ over any finite time interval $[t_0, t_1]$

Preliminary manipulations

• The solution y(t)

$$oldsymbol{y}(t) = oldsymbol{C} e^{oldsymbol{A}(t-t_0)} oldsymbol{x}(t_0) + \int_{t_0}^t oldsymbol{C} e^{oldsymbol{A}(t- au)} oldsymbol{B} oldsymbol{u}(au) d au + oldsymbol{D} oldsymbol{u}(t)$$

- Subtract $\int_{t_0}^t Ce^{A(t- au)}Bu(au)d au+Du(t)$ from both sides
- Let

$$oldsymbol{g}(t) = oldsymbol{y}(t) - \int_{t_0}^t oldsymbol{C} e^{oldsymbol{A}(t- au)} oldsymbol{B} oldsymbol{u}(au) d au - oldsymbol{D} oldsymbol{u}(t)$$

Then we have

$$\mathbf{g}(t) = \mathbf{C}e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0),$$

where g is known to us

Observability tests

Theorem

The following statements are equivalent:

- (1) The pair (A, C) is observable;
- (2) The matrix $V(t_0, t_1) = \int_{t_0}^{t_1} e^{\mathbf{A}^T t} \mathbf{C}^T \mathbf{C} e^{\mathbf{A} t} dt$ is nonsingular for all $t_1 > t_0$;
- (3) The n columns of $Ce^{\mathbf{A}t}$ are linearly independent for all $t \in [0, \infty)$ over the real numbers; is full column rank n.

Observability tests—Contd

The following statements are equivalent:

- (1) The pair (A, C) is observable;
- (4) The observability matrix

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \in \mathbb{R}^{pn \times n}$$

is full column rank n.

$$\operatorname{rank} \left[\begin{array}{c} s I_n - A \\ C \end{array} \right] = n \quad \text{for all} \quad s \in \operatorname{eig}(A)$$

Relation between reachability and observability

- The pair (A, C) is observable if and only if the pair (A^{\top}, C^{\top}) is reachable, and the other way around;
- The pair (A, B) is reachable if and only if the pair (A^{\top}, B^{\top}) is observable

In other words

- The pair (A, C) is observable \iff the pair (A^{\top}, C^{\top}) is reachable
- The pair (A, B) is reachable \iff if the pair (A^{\top}, B^{\top}) is observable

$(1) \Longrightarrow (2)$ by contraposition

Recall

$$g(t) = Ce^{\mathbf{A}(t-t_0)}x(t_0)$$

• If $V(t_0, t_1)$ is singular, there exists a nonzero constant vector, say x_a , such that

$$oldsymbol{V}(t_0,t_1)oldsymbol{x}_a = \int_{t_0}^{t_1} e^{oldsymbol{A}^{ op}t} oldsymbol{C}^{ op} oldsymbol{C} e^{oldsymbol{A}t} dt \, oldsymbol{x}_a = oldsymbol{0}$$

- This implies that $Ce^{\mathbf{A}t}\mathbf{x}_a = \mathbf{0}$
- Therefore

$$g(t) = Ce^{\mathbf{A}t}x_0 = Ce^{\mathbf{A}t}(x_0 + x_a)$$

- Thus, $x(0) = x_0 + x_a$ yields the same response as $x(0) = x_0$, which means that we cannot determine the system state
- In other words, the state fails to be observable if the observability Gramian is singular

Example

• For the dynamical system model,

$$\dot{x} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix} \mathbf{x}
\mathbf{y} = \mathbf{c}\mathbf{x} = \begin{bmatrix} -1 & 1 \end{bmatrix} \mathbf{x},$$

find a non-zero initial vector $\mathbf{x}(0) = \mathbf{x}_0$ such that y(t) = 0 for all t > 0

• We have, $x(t) = e^{A_t}x_0$, where

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\left((s\mathbf{I} - \mathbf{A})^{-1}\right) = \begin{bmatrix} e^{2t} & 0 \\ e^{2t} - e^{-t} & e^{-t} \end{bmatrix}$$

Example—Contd

• Our objective is to find x_0 such that

$$\begin{bmatrix} -1 & 1 \end{bmatrix} e^{\mathbf{A}t} \mathbf{x}_0 = 0 = y(t), \quad \text{for all} \quad t \geq .$$

· For example, if

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}},$$

then y(t) = 0 for all $t \ge 0$

- Note that we were able to find $x_0 \neq \mathbf{0}$ such that y(t) = 0 for all $t \geq 0$, because for all $t \geq 0$, the columns of $ce^{\mathbf{A}t}$ are linearly dependent over the real numbers
- This is because the pair (A, c) is nonobservable
- The vector x_0 is in the null-space of the observability matrix

$$\left[\begin{array}{c}c\\cA\end{array}\right]$$