Linear Interpolation from Cells

- Most visualization algorithms have to deal with discrete data
 - Data attributes that define at the cell vertices

Example: Produce a color map from a 2D regular grid

- 1. Interpolate the values from the cell corners to get the value of P
- 2. Apply a color to P

Example: Produce a color map from a 2D regular grid

- 1. Interpolate the values from the cell corners to get the value of P
- 2. Apply a color to P

Example: Produce a color map from a 2D regular grid

- 1. Interpolate the values from the cell corners to get the value of P
- 2. Apply a color to P

Linear Interpolation (LERP)

 Linear interpolation (lerp): connecting two points with a straight line in the function plot

Linear Interpolation (LERP)

• General form: $V_p = \Sigma w_i * v_i$ (weighted sum)

Linear Interpolation (LERP)

• General form: $V_p = \Sigma w_i * v_i$ (weighted sum)

- Essential information needed:
 - Cell type
 - Data at cell corners
 - Parametric coordinates of the point in question (P)
 - Related to the position of point P in the cell

LERP in Line

LERP in Line

• Parametric coordinate of P: $\alpha = a/(a+b)$

LERP in Line

- Parametric coordinate of P: $\alpha = a/(a+b)$
- Linearly interpolated value of P:

$$V_{p} = (1-\alpha) * V_{1} + \alpha * V_{2}$$

$$lerp(v1,v2,\alpha)$$

S04-01

Parametric coordinates of P: (α, β, γ)

$$\alpha = \delta A / (\delta A + \delta B + \delta C)$$

$$\beta = \delta B / (\delta A + \delta B + \delta C)$$

$$\gamma = \delta C / (\delta A + \delta B + \delta C)$$

$$\beta = \delta C / (\delta A + \delta B + \delta C)$$
Baricentric Coordinates

• Linearly interpolated value of P: $V_A * \alpha + V_B * \beta + V_C * \gamma$

$$V_A * \alpha + V_B * \beta + V_C * \gamma$$

• Parametric coordinates of P: (α, β)

$$\alpha = a / width;$$

- Parametric coordinates of P: (α, β)
 - $\alpha = a / width;$
 - Value at $L_1 = \text{Lerp}(V_A, V_B, \alpha)$;
 - Value at $L_2 = \text{Lerp}(V_C, V_D, \alpha)$;

• Parametric coordinates of P: (α, β)

$$\alpha = a / width;$$

• Parametric coordinates of P: (α, β)

 $\alpha = a / width; \beta = b / height$

• Parametric coordinates of P: (α, β)

$$\alpha = a / width; \beta = b / height$$

• Linearly interpolated value of P: Lerp(V_{L1} , V_{L2} , β)

Parametric coordinates of P: (α, β)

$$\alpha = a / width; \beta = b / height$$

Bi-linear interpolation Bi-Lerp (V_A, V_B, V_C, V_D)

Linearly interpolated value of P: Lerp(V_{L1} , V_{L2} , β)

S04-02

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);
- Value at P = Lerp(A,B, PA/AB);

Tri-linear interpolation

Another way to perform calculate the value at P:

• Parametric coordinates of P: (α, β) $\alpha = a$ / width; $\beta = b$ / depth (along y); $\gamma = c$ / height

Another way to perform calculate the value at P:

- Parametric coordinates of P: (α, β, γ) $\alpha = a$ / width; $\beta = b$ / depth (along y); $\gamma = c$ / height
- Value at P = $(1-\alpha)(1-\beta)(1-\gamma)V_0 + \alpha(1-\beta)(1-\gamma)V_1 + \\ (1-\alpha)\beta(1-\gamma)V_2 + \alpha\beta(1-\gamma)V_3 + \\ (1-\alpha)(1-\beta)\gamma V_4 + \alpha(1-\beta)\gamma V_5 + \\ (1-\alpha)\beta\gamma V_6 + \alpha\beta\gamma V_7$

Lerp in Tetrahedron

Lerp in Tetrahedron

- Break the tetrahedron ABCD into four sub tetrahedra:
 ABCP, BDCP, ACDP, ADBP
- Calculate the volume of each small tetrahedra
- Calculate P's parametric (tetrahedral) coordinates based on the ratios of the volumes

Lerp in Tetrahedron

• Tetrahedral coordinates of P: $(\alpha, \beta, \gamma, \delta)$

$$\alpha = V_{BDCP} / V_{ABCD}$$

$$\beta = V_{ACDP} / V_{ABCD}$$

$$\gamma = V_{ADBP} / V_{ABCD}$$

$$\delta = V_{ABCP} / V_{ABCD}$$

• Linearly interpolated value of P: $V_A * \alpha + V_B * \beta + V_C * \gamma + V_D * \delta$

$$V_A * \alpha + V_B * \beta + V_C * \gamma + V_D * \delta$$

Volume of Tetrahedron

$$V = \frac{1}{6} \det \begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{bmatrix} = \frac{1}{6} \det(\mathbf{J}) = \frac{1}{6} J.$$

V will be positive if when you look at the triangle $_{123}$ from vertex 4, vertex 1 2 3 are In a counter clockwise order