<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Searching techniques: Linear and Binary</u> / <u>Week10 Coding</u>

Started on	Saturday, 25 May 2024, 10:41 AM
State	Finished
Completed on	Saturday, 25 May 2024, 10:50 AM
Time taken	8 mins 42 secs
Marks	5.00/5.00
Grade	100.00 out of 100.00

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order. You read an <u>list</u> of numbers. You need to arrange the elements in ascending order and print the result. The sorting should be done using bubble sort.

Input Format: The first line reads the number of elements in the array. The second line reads the array elements one by one.

Output Format: The output should be a sorted <u>list</u>.

For example:

Input	Result
6 3 4 8 7 1 2	1 2 3 4 7 8
5 4 5 2 3 1	1 2 3 4 5

Answer: (penalty regime: 0 %)

	Input	Expected Got	
~	6 3 4 8 7 1 2	1 2 3 4 7 8 1 2 3 4 7 8	~
~	6 9 18 1 3 4 6	1 3 4 6 9 18 1 3 4 6 9 18	~
~	5 4 5 2 3 1	1 2 3 4 5 1 2 3 4 5	~

Passed all tests! <

Correct

Marks for this submission: 1.00/1.00.

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

An element a[i] is a peak element if

```
A[i-1] \le A[i] > =a[i+1] for middle elements. [0 \le i \le n-1]
```

 $A[i-1] \le A[i]$ for last element [i=n-1]

A[i] > = A[i+1] for first element [i=0]

Input Format

The first line contains a single integer \boldsymbol{n} , the length of \boldsymbol{A} .

The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

8 9 10 2 6

Sample Output

10 6

For example:

Input	Result
4	12 8
12 3 6 8	

Answer: (penalty regime: 0 %)

```
n = int(input())
   arr = list(map(int, input().split()))
3
4
   p = []
5 v if arr[0] >= arr[1]:
       p.append(arr[0])
6
7 ▼ for i in range(1, n - 1):
       if arr[i - 1] <= arr[i] >= arr[i + 1]:
8 •
            p.append(arr[i])
9
10 v if arr[-1] >= arr[-2]:
        p.append(arr[-1])
11
12
13 | print(*p)
```

		Input	Expected	Got	
~	,	7 15 7 10 8 9 4 6	15 10 9 6	15 10 9 6	~
~	•	4 12 3 6 8	12 8	12 8	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

Question **3**Correct
Mark 1.00 out of 1.00

Write a Python program for binary search.

For example:

Input	Result
1,2,3,5,8 6	False
3,5,9,45,42 42	True

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	1,2,3,5,8	False	False	~
~	3,5,9,45,42 42	True	True	~
~	52,45,89,43,11 11	True	True	~

Passed all tests! <

Correct

Marks for this submission: 1.00/1.00.

```
Question 4
Correct
Mark 1.00 out of 1.00
```

Write a Python program to sort a <u>list</u> of elements using the merge sort algorithm.

For example:

Input	Result
5	3 4 5 6 8
6 5 4 3 8	

Answer: (penalty regime: 0 %)

```
1  n = int(input())
   arr = list(map(int, input().split()))
3
 4
   stack = [(0, n)]
5
 6 v while stack:
        start, end = stack.pop()
7
        if end - start > 1:
8
            mid = (start + end) // 2
9
10
            stack.extend([(start, mid), (mid, end)])
11
            arr[start:end] = sorted(arr[start:end])
12
13
14
15 print(*arr)
```

	Input	Expected	Got	
~	5 6 5 4 3 8	3 4 5 6 8	3 4 5 6 8	~
~	9 14 46 43 27 57 41 45 21 70	14 21 27 41 43 45 46 57 70	14 21 27 41 43 45 46 57 70	~
~	4 86 43 23 49	23 43 49 86	23 43 49 86	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

```
Question 5
Correct
Mark 1.00 out of 1.00
```

Given an listof integers, sort the array in ascending order using the Bubble Sort algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

```
Array is sorted in 3 swaps.

First Element: 1

Last Element: 6
```

Input Format

The first line contains an integer, n, the size of the <u>list</u> a.

The second line contains n, space-separated integers a[i].

Constraints

- 2<=n<=600
- \cdot 1<=a[i]<=2x10⁶.

Output Format

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

Sample Input 0

3

123

Sample Output 0

List is sorted in 0 swaps.

First Element: 1

Last Element: 3

For example:

Input	Result
3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3
5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9

Answer: (penalty regime: 0 %)

```
n = int(input())
   a = list(map(int, input().split()))
2
4
   swaps = 0
5 •
    for i in range(n):
       for j in range(n-1):
6
7
            if a[j] > a[j+1]:
8
                a[j], a[j+1] = a[j+1], a[j]
9
                swaps += 1
10
print(f"List is sorted in {swaps} swaps.")
```

```
12 | print(f"First Element: {a[0]}")
13 | print(f"Last Element: {a[-1]}")
14 |
```

	Input	Expected	Got	
~	3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3	List is sorted in 3 swaps. First Element: 1 Last Element: 3	~
~	5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9	List is sorted in 4 swaps. First Element: 1 Last Element: 9	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

■ Week10_MCQ

Jump to...

11