Automatizační cvičení

A4	30.	3 - PLC s OP – Regulace rychlosti proudění vzduchu		
Karolína L	edvinková		1/7	Známka:
11.4.2024		18.4.2024		Odevzdáno:

Zadání:

Navrhněte program pro spojitou regulaci rychlosti proudění vzduchu v potrubí. Snímač rychlosti proudění kalibrujte pomocí anemometru. Regulační obvod ovládejte pomocí operátorského panelu (dále jen OP). Ovládání musí umožnit číselné zadání hodnoty rychlosti, její změnu po krocích a také zapnutí a vypnutí celé regulace. Analogový výstup pro ovládání měniče. Při řešení použijte jazyk GRAFCET. Kalibrujte na rychlost 0,7 m/s.

Schéma zapojení pracoviště (situační / ideové schéma):

Konfigurace prvků použitých v úloze:

Název	Význam
%Q2.0	Výstupní signál osciloskopu
%QW4.1	Výstupní signál vzduchového okruhu
%M0 - %M4	Pomocné relé
%TM0 - %TM1	Blikač
%IW3.2	Analogový vstup anemometru
%MW101:x	Stránky
%MW100:Xx	Fx
%MWx	Paměťové registry
%MW0	Uložení hodnoty kalibrace
%MW1	Uložení hodnoty regulace
%MW2	Uložení regulační odchylky
%MW3	Uložení akční hodnoty

Adress	Function	Access
n+0	Function Keys	XBT ->PLC
n+1	Number of page to be processed	XBT <->PLC
n+2	LEDs command	XBT<- PLC

Stránka 1

F1: KALIBRACE

F2: REGULACE F3:MANUÁL

Stránka 2

KALIBRACE: %MW0

F1:+ / F2:- F4:STOP

Stránka 3

REGULACE

Y = %MW1 F4:STOP

Stránka 4

MANUÁL

F1:ZAP / F2:VYP F4:STOP

Konfigurace PLC

TSX DMZ28DT

16x digitální vstup

12x digitální výstup (24 V DC / 0,5 mA)

TSXAEZ414

4kanálový modul analogových vstupů

(16 bitů; vstupy: napětí (0-10 V), proud (4-20 mA), termočlánek)

Kanál 1 nastaven na 0-10 V, filtr 1

TSXASZ200

2kanálový modul analogových výstupů

Kanál 1 nastaven na 4÷20 mA

Výpis programu:

Grafcet:

LD:

Podmínky přechodu:

X0: přechod do bloku 1 – 2. stránka OP – kalibrace

X1: přechod do bloku 2 – 3. stránka OP – regulace

X2: přechod do bloku 3 – 4. stránka OP – manuální ovládání

X3: přechod do inicializačního bloku - 1. stránka OP – výběr

Blok 0 (open continuous action): Inicializační blok

Blok 1 (open continuous action): Kalibrace

Kalibrace pro 0,7 m/s: 585

Blok 2 (open continuous action): Regulace

Blok 3: Manuální ovládání

%X3

Postup:

- 1) Nastavíme OP Magelis a vytvoříme stránky
- 2) Zapneme PL-07 a zaškrtneme funkci GRAFCET
- 3) Vytvoříme schéma bloků a podmínek pro přechod bloků
- 4) Nastavíme bloky do vyhovující funkce
- dle vykonání funkce: před/při/po stisku tlačítka
- 5) V LD naprogramujeme jednotlivé bloky podle toho, jakou mají mít funkci
- 6) Ozkoušíme program v praxi
- 7) Ukončíme cvičení
- 8) Vypracujeme technickou zprávu

Výpis programu:

Viz Příloha

Komentář k programu:

Viz Výpis programu

Graf:

Závěr:

V tomto cvičení jsem dokázala navrhnout I regulátor, který reguloval. Regulaci se mi povedlo vylepšit pomocí různých úprav rovnic, ale stále nebyla optimální. Po delším čase se hodnota ustálila.

Přílohy:

Výpis programu (3)