Ayudantes: Pedro Schilling y Gabriela Denis

Profesora: Adriana Piazza

Microeconomía I ENECO/610 Ayudantía Repaso

Pregunta 1

Considere una economía de solamente 2 bienes: x y el bien compuesto y, cuyo precio es $p_y = 1$. Supongamos que una persona tiene preferencias \succeq racionales, continuas y localmente no saciadas.

1. El precio del bien x es $p_x = 1$ por cada unidad hasta un nivel de conusmo \hat{x} . Todo lo que se consume más allá de \hat{x} , se paga a precio $p_x' = 2$ (sólo exceso se paga a p_x'). Para la siguiente afirmación, dé una demostración o un contra-ejemplo (puede ser gráfico)

"Si \succeq es estrictamente convexa, la demanda Marshalliana es siempre un único punto."

2. El precio del bien x es $p_x = 1$ si el consumo es menor o igual a \hat{x} . Si el consumo supera el nivel \hat{x} , Todo lo consumido se paga a precio $p'_x = 2$. Para la siguiente afirmación, dé una demostración o un contra-ejemplo (puede ser gráfico)

"Si \succsim es estrictamente convexa, la demanda Marshalliana es siempre un único punto."

Pregunta 2

Considere una economía con T+1 bienes. El bien 0 es un bien numerario y los bienes $1, \ldots, T$ representan el consumo de electricidad en el momento $t=1,\ldots,T$. La producción de electricidad requiere la construcción de una planta de capacidad K donde K representa la cantidad máxima de electricidad que se puede producir en cualquier momento. La construcción de una planta de capacidad K requiere de ρK unidades del bien numerario y luego el costo de producir una unidad de electricidad en cualquier momento es γ unidades del numerario. Dado que no es óptimo construir una capacidad mayor que la capacidad máxima de electricidad proudcida en cualqueir momento, la producción establecida para la electricidad es

$$Y = \left\{ (-z_o, y_1, \dots, y_T) \in \mathbb{R}_- \times \mathbb{R}_+^T : Z_0 \ge \rho \left[\max_{1 \le t \le T} y_t \right] + \sum_{t=1}^T y_t \right\}$$

- a) Muestre que el conjunto de electricidad es convexo y presenta rendimientos constantes a escala.
- b) Para simplificar asuma que hay sólo una empresa que maximiza sus ganancas tomando los precios como dados, con T=2 y $p=(1,p_1,p_2)$. En el plano (y_1,y_2) dibuje las curvas de isocosto de la empresa.

Pregunta 3

Sea \mathcal{L} el espacio de las loterías en un mundo donde hay solamente dos consecuencias posibles $\mathcal{C} = \{c_1, c_2\}$. Sea $\pi : [0, 1] \to [0, 1]$ una función definida por

$$\pi(x) = \begin{cases} 0 & 0 \le x \le 1/4 \\ 1/2 & 1/4 \le x \le 3/4 \\ 1 & 3/4 \le x \le 1 \end{cases}$$

Definamos una función de utilidad $U: \mathcal{L} \to \mathbb{R}$ de la siguiente forma: dada la lotería L que asigna probabilidad p a la consecuencia c_1 y probabilidad 1-p a la consecuencia c_2 ,

$$U(L) = \pi(p)u_1 + \pi(1-p)u_2$$

Además, sabemos que $u_1 < u_2$

- a) Calcule U(L) para todo $L \in \mathcal{L}$.
- b) ¿La relación de preferencias inducida en \mathcal{L} por la función de utilidad U cumple la propiedad de independencia? Demuestre o de un contraejemplo.

Pregunta 4

Una persona tiene una función de utilidad de Bernoulli u cóncava y riqueza inicial w. L es una lotería que ofrece un pago A con probabilidad p y un pago de B con probabilidad 1-p (asuma que A>B).

- 1. Si el individuo es dueño del billete de lotería, encuentre la ecuación que caracteriza el precio mínimo al cuál estaría dispuesto a venderlo (p_V) . Ilustre gráficamente.
- 2. Si no tiene le billete de lotería, encuentre la ecuación del precio máximo que el individuo estaría dispuesto a pagar por el billete (p_C) . Ilustre gráficamente.
- 3. Si la función u presenta aversión absoluta al riesgo decreciente, p_V es mayor, igual o menor que p_C ? Justifique matemáticamente y dé una interpretación económica a su respuesta.