Generating data by sampling from EBM

Aapo Hyvärinen for the NNDL course, 16 April 2025 (second half)

- Definition of sampling as generating new data from a pdf
- Markov Chain Monte Carlo methods
- Combining score matching and MCMC
- Langevin algorithm as an example of MCMC
- Application in Generative AI of images
- Diffusion models

Literature: Bishop's book Chapter 14 and Sections 20.1 and 20.3

The sampling problem formulation

- Given a (possibly unnormalized) pdf p, generate a data point x from that distribution
- ▶ We focus here on sampling in \mathbb{R}^n
- In general, this is quite difficult
- ► Consider, e.g. the Laplacian pdf $p(x) = \exp(-\sqrt{2}|x|)/\sqrt{2}$

How could you sample from it? Not obvious.

- \triangleright Even more difficult if p is given by a NN and dim(x) high!
- No simple method efficient in high dimensions exists
- (Terminological point: "sample/ing" has different meanings)

Sampling as the basis for generative AI of images

- ▶ If p is the pdf of images, sampling generates new images
 - Basis of modern GenAl of images
- ► In statistics literature, *p* given as a mathematical formula, but here, we have to *learn* it
 - Any method for learning energy-based model could be used
- Typical DL sampling methods use the score function
 - ⇒ Learning naturally by score matching
- Some of the state-of-the-art systems (Dall-e, Stable Diffusion) work approximatively like this:
 - Denoising score matching + sampling by "diffusion model"
 - ... with of course a huge number of technicalities perfected
- Same approach should work on similar data domains:
 - Video, audio
 - Sensor data (e.g. biomedical)
 - Etc.
- ▶ Generating text is very different (not \mathbb{R}^n), not considered here

Markov Chain Monte Carlo (MCMC) methods

- ▶ Most good sampling methods in \mathbb{R}^n for large n are MCMC
- Markov Chain means here that the method is iterative, producing a sequence of points ξ_1, ξ_2, \ldots so that the distribution approaches p
- "Monte Carlo": Name of a famous gambling casino, refers to the fact that the algorithm is stochastic
- Well-known methods: Metropolis-Hastings algorithm, Hamiltonian Monte Carlo, NUTS, etc.
- ▶ Here, we briefly consider some methods typically used in DL:
 - ► Langevin algorithm: very simple, quite good
 - ► (Generative) Diffusion Models: more complex, state-of-the-art
- ► For in-depth information, e.g. course Computational Statistics

Langevin algorithm ("flow")

- ▶ Perhaps the simplest MCMC method to work well in \mathbb{R}^n
- \triangleright Starting from a random point \mathbf{x}_0 , compute the sequence

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mu \phi_{\mathbf{x}}(\mathbf{x}_t) + \sqrt{2\mu} \, \mathbf{n}_t \tag{1}$$

where

- $m{\phi}_{\mathbf{x}} =
 abla_{\mathbf{x}} \log p(\mathbf{x})$, score function of \mathbf{x} (learned beforehand)
- $ightharpoonup \mu$ is a step size (difficult to choose as always)
- **n**_t is Gaussian noise from $\mathcal{N}(\mathbf{0},\mathbf{I})$ (easy to generate by libraries)
- Theorem: For infinitesimal μ and in the limit of infinite t, x_t will be a sample from p.
- Remark: This is the "unadjusted" version valid for infinitesimal μ
 - to give exact sampling even for a non-infinitesimal μ , an "adjusted" method ("MALA") can be used
 - ightharpoonup ... but rarely used in DL since it needs p_{un} , score is not enough

An intuitive interpretation of Langevin algorithm

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mu \phi_{\mathbf{x}}(\mathbf{x}_t) + \sqrt{2\mu} \, \mathbf{n}_t \tag{2}$$

- lacktriangle The score function ϕ_{x} works a bit like in a gradient method
 - gives direction of increasing probability
 - $ightharpoonup \mathbf{x}_t$ tends to go to areas where there is a lot of probability mass
 - ightharpoonup this term alone would make \mathbf{x}_t to go the modes and stay there
- \triangleright Gaussian noise \mathbf{n}_t introduces randomness
 - ▶ the system cannot get stuck anywhere (e.g. in the modes)
 - forces "exploration" of the whole space
 - but this term alone would give just white gaussian noise
- "Seek higher probability but explore at the same time"
- Important to have the right balance between the two terms: sophisticated theory gives us μ vs. $\sqrt{2\mu}$ in above

Illustration of sampling by Langevin

[Show demo langevin.jl]

Image generation by EBM+MCMC: simple variant (DSM+Langevin) summarized

1. Learn density model by denoising score matching: Add Gaussian noise of covariance $\sigma^2 \mathbf{I}$ to the data to get

$$\tilde{\mathbf{x}}(i) = \mathbf{x}(i) + \mathbf{n}(i) \tag{3}$$

Minimize the following with respect to θ :

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\mathbf{x}(i) - [\tilde{\mathbf{x}}(i) + \sigma^2 \phi(\tilde{\mathbf{x}}(i); \boldsymbol{\theta})]\|^2$$
 (4)

where ϕ is NN with parameters θ .

Denote optimal value by θ^* .

2. Generate data by Langevin algorithm: Starting from a random **x**₀, repeat

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mu \phi(\mathbf{x}_t; \boldsymbol{\theta}^*) + \sqrt{2\mu} \, \mathbf{n}_t \tag{5}$$

and "after a while", you have a generated image (data point).!

Image generation by EBM+MCMC: some results

- 1. Learn density model by (denoising) score matching
- 2. Generate data by Langevin algorithm
- Some examples with dynamics:

Rows: different \mathbf{x}_0 ; Horizontal axis: Iteration t (rescaled). From (Yang and Ermon, 2019)

Problem of noise in DSM

- But we have a problem:
 - ▶ DSM does not estimate the score function of the real image but a noisy version (see slides on SM)
 - ... while basic SM is too heavy to compute in a deep NN due to second derivatives
- Several solutions:
 - 1. Use such a small noise level that it is not visible
 - but learning in DSM can be unstable for very small noise
 - 2. Estimate score function for several noise levels, extrapolate to zero noise
 - means more computation but still feasible
 - 3. SOTA: Use generative diffusion models
 - They are based on scores for noisy data
 - Still needs to estimate score for many noise levels
 - ► More complex theory
 - ▶ Best generated images (Stable Diffusion, Dall-e)
 - 4. Use something else than DSM
 - ► E.g. NCE? Active field of research...

Using prompts in generation

- ► The method above gives just any random image similar to those training set
- Real systems typically use input, e.g. a textual prompt
- This is formalized as conditional (possibly unnormalized) probability $p(\mathbf{x}|\mathbf{u})$ where \mathbf{u} is some representation of prompt
- Conditional score function defined in obvious way

$$\phi_{\mathsf{x}|\mathsf{u}}(\mathsf{x}|\mathsf{u}) = \nabla_{\mathsf{x}} \log p(\mathsf{x}|\mathsf{u}) \tag{6}$$

- The NN computing the score is given the concatenated vector (x, u) as input
- All the methods above can be easily adapted to use such conditioning
 - Intuitively, think of data in two classes, $\mathbf{u} \in \{1,2\}$: the scores are just learned separately for the two classes, and the score of the desired class is used for generation

Basic idea of generative diffusion models (1)

"Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration" (Wikipedia)

- ▶ In probabilistic terms, something like: starting from a structured case, go towards randomness
- ▶ Diffusion process defined as a stochastic process:
 - starting from a point following initial distribution p
 - add Gaussian noise little by little
 - ending up with just Gaussian noise

Figure by Croitoru et al (2023)

Basic idea of generative diffusion models (2)

- ▶ In generative AI, the idea is to reverse the diffusion process
 - starting from an initial Gaussian noise
 - remove Gaussian noise little by little (denoising)
 - ending up with data following "original" distribution p
- ▶ More precisely, it is a *reverse* or *denoising* diffusion model

- Denoising is performed by a denoising autoencoder
 - Equivalent to using the score function; the one for noisy data
 - ⇒ In generative diffusion models, estimation of *noisy* score function is not a bug but a feature

Formal definition of generative diffusion model (almost)

- \triangleright An observed data point (image) is the initial point \mathbf{x}_0
- Diffusion created by adding Gaussian noise

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \mathbf{n}_t \tag{7}$$

with some hyperparameters β_t

- ▶ How to revert this? Try to find $p(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
 - This is "denoising" but reconstructing the whole distribution
 - ► Learn a NN, $\mathbf{g}_{\theta}(\mathbf{x};t)$, to give mean $\mathsf{E}\{\mathbf{x}_{t-1}|\mathbf{x}_t\}$
 - lacktriangle Kind of DSM, so Tweedie-Miyasawa shows connection to ϕ_{x}
 - ▶ Variance $var{\mathbf{x}_{t-1}|\mathbf{x}_t}$ is a simple function of the β_t
 - This is Gaussian at least with infinitesimal noise
- Must learn denoising function g for many noise levels t
- For learning g, many variants:
 - Denoising score matching / Denoising autoencoder
 - Variational MLE (kind of VAE)
- ▶ Generation by successively sampling from $p(\mathbf{x}_{t-1}|\mathbf{x}_t)$, starting from Gaussian noise \mathbf{x}_T for some large initial T
- ► For details, check Algorithms 20.1 , 20.2 in Bishop's book

Conclusion

- Sampling from a given pdf is a classic problem in statistics
- Reborn in DL as sampling from a pdf learned from the data
 - First learn pdf by energy-based models, then do MCMC
- ▶ Basis of state-of-the-art generation in \mathbb{R}^n
 - Images, but also potentially audio, video, etc.
 - (Text is very different and often uses other methods)
- Langevin algorithm is a simple fundamental method
- Diffusion models are state-of-the-art at the moment
 - Theory is compatible with Denoising SM
 - Works well even in with real images
- Generative adversarial networks (GAN) are another option (see next lecture)