ECS763P Natural Language Processing

Week 2 Text Classification

Matthew Purver (with material from Jurafsky & Martin book, Ng machine learning course)

Coursework 1

Lab sessions weeks 2-5:

- Train & test an SVM-based anger detector
- Build a simple language model
- Build a simple topic model
- Apply them to see what people were angry about during last week's tube strike
- See you on Wednesday!

Text Classification Tasks

- Classification is the core method in:
 - Spam filtering
 - Document categorisation
 - Language identification
 - Sentiment analysis
- And a key component in:
 - Dialogue systems
 - Opinion mining
 - Author identification

— ...

Text Classification: definition

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output: a predicted class $c \in C$
- Classifier: a function $\gamma:d \rightarrow c$
- Example: spam filtering
 - $-C = \{spam, not_spam\}$

Rule-based classifiers

- We could use a set of rules:
 - Simple dictionary lookup
 - More complex (weighted) combinations
- Manual
 - Can be high accuracy
 - Requires expert knowledge and high maintenance
- Automatically derived
 - E.g. rule-based learners, decision trees
 - (see Data Mining lectures)
 - Usually brittle unless in restricted domains

Statistical classifiers

- Supervised machine learning
- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_l\}$
 - a training set of m hand-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$
- Output: a learned classifier $\gamma:d \rightarrow c$

Linear classifiers

Bayes' Rule

$$P(c,d) = P(c | d)P(d) = P(d | c)P(c)$$

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Generative models:

Naïve Bayes

- Bayes' Rule:
 - For a document d and a class c

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

MAP (maximum a-posteriori) classifier:

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$
$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c)P(c)$$

Document as features X₁, X_n

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

Naïve Bayes

- But how can we calculate $P(x_1, x_2, ..., x_n \mid c)$
 - (how often will we see it?)
- Instead, assume:
 - features are unordered words ("bag of words")
 - features are conditionally independent

$$P(x_1, \dots, x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot P(x_3 \mid c) \cdot \dots \cdot P(x_n \mid c)$$

• So:
$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$
$$= \underset{c_{j} \in C}{\operatorname{argmax}} \log(P(c_{j})) + \sum_{i \in positions} \log(P(x_{i} \mid c_{j}))$$

Learning a Naïve Bayes Model

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}} \qquad \qquad \hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

– "maximum likelihood model"

• But what if we haven't seen "viagra" with $c = not_spam$? $\hat{P}(w_i \mid c_j) = 0!$

Smoothing

 Need to reserve some probability mass for unobserved events

• E.g. Laplace (add-1, add-N) smoothing for Naïve Bayes

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} \left(count(w, c) + 1\right)} = \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

Worked example

	#DOCS	viagra	\$\$\$	help	matt	hi	and	email	nlp
SPAM	50	24	30	14	7	33	50	23	0
NOT	200	1	0	21	150	129	200	51	32
	P(c)	P(w c)							
SPAM	0.2	. (** */							
NOT	0.8								

Worked example

	#DOCS	viagra	\$\$\$	help	matt	hi	and	email	nlp
SPAM	50	24	30	14	7	33	50	23	0
NOT	200	1	0	21	150	129	200	51	32
	1				T	T			
	P(c)	P(w c)							
SPAM	0.2	0.48	0.60	0.28	0.14	0.60	1.0	0.46	0.00
NOT	0.8	0.01	0.00	0.11	0.75	0.65	1.0	0.26	0.16

Worked example

	#DOCS	viagra	\$\$\$	help	matt	hi	and	email	nlp
SPAM	50	24	30	14	7	33	50	23	0
NOT	200	1	0	21	150	129	200	51	32
	P(c)	P(w c)							
SPAM	0.2	0.48	0.60	0.28	0.14	0.60	1.0	0.46	0.00
NOT	0.8	0.01	0.00	0.11	0.75	0.65	1.0	0.26	0.16
	log	log							
SPAM	-1.61	-0.74	-0.51	-1.27	-1.97	-0.51	0.00	-0.78	-Inf
NOT	-0.22	-5.30	-Inf	-2.25	-0.29	-0.44	0.00	-1.37	-1.35

• Can we classify:

hi matt want some viagra?

Naïve Bayes: Summary

- Very fast, low storage requirements
- A good dependable baseline for text classification
- Robust to irrelevant features
 - Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
 - Decision Trees suffer from fragmentation in such cases especially if little data
- But often the independence assumptions don't hold
 - Other classifiers usually give better accuracy

Logistic Regression

- Naïve Bayes is a linear classifier
 - Decision is a linear function of weighted feature values
- But:
 - we calculate feature weights & boundary independently
 - (i.e. we're assuming statistical independence)
 - we're using a generative model

$$y = \operatorname{argmax}_{v} P(y|x) = \operatorname{argmax}_{v} P(x|y).P(y)$$

- Why not:
 - estimate the boundary directly?
 - use a discriminative model? $y = argmax_y P(y|x)$

Logistic Regression

Output is a linear combination of features

$$p(y \mid x) = \sum_{i} w_{i}.x_{i}$$

i.e. weight matrix w, feature vector x

$$p(y \mid x) = \vec{w} \cdot \vec{x}$$

- ... with exponential to make it positive ...
- ... and normalised to [0-1]

$$p(y \mid x) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

Now learn the optimal w

Logistic Regression

Output

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Error function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- We want $\min_{\theta} J(\theta)$
- We can find it by gradient descent
 - given a labelled training set

Overfitting

Regularisation

Logistic regression cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)} + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

Regularisation: add in a term for weights learned:

$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

- Smaller parameter values
 - = "simpler" hypothesis
 - = less prone to overfitting

Support Vector Machines

- Like logistic regression, but:
 - Maximum margin criterion
 - (via different form of cost function)
 - choice of parameter C
 - Kernel function
 - (allows easy calculation of non-linear functions)
 - choice of kernel
 - Linear
 - Polynomial
 - Radial basis function

Classifiers: Summary

- Naïve Bayes:
 - Not particularly high accuracy (false independence assumption)
 - Fast, easy, dependable baseline
 - Be careful with smoothing!
- Logistic Regression:
 - Higher accuracy
 - Good for small numbers of features
 - Be careful with regularisation!
- Support Vector Machines:
 - Good for large numbers of features
 - Very robust, dependable, good accuracy
 - Be careful with choice of cost parameter C, kernel function

Features

- All classifiers can only be as good as their features
 - What do we use?
- Bag of words assumption
 - Good baseline!
- N-gram features
 - Subsequences of N consecutive words
 - Often with START, END symbols
- Weighting?
 - Binary features: 1 if present, 0 if not
 - Count-based features: frequency, log(frequency)
 - Text length normalisation
 - TF-IDF weighting
 - Term frequency = how often does term appear in this text?
 - Inverse document frequency = how rare are texts containing term?

Tokenisation & Normalisation

- We want to split a string into words
 - Tokenisation

```
• I thought "I like it!"

→ [I, thought, I, like, it]
```

First try: split on non-alphanumeric?

- And have predictable, regular forms
 - Normalisation
 - WINDOWS = Windows = windows
 - First try: convert to lower-case?

Regular Expressions

```
• Disjunctions [wW] (windows Windows)
• Ranges [a-z][A-Z][0-9][a-zA-Z]

    Negations [^a]

Wildcards ? . * +
  windows? window.? window*
Anchors ^ $

    Classes \w \s \W \S

    Find all instances of the word "the":

                     Misses capitalized examples
   the
                     Incorrectly returns other or theology
   [tT]he
   [^a-zA-Z][tT]he[^a-zA-Z]
  \b[tT]he\b
```

Surprisingly powerful and commonly used!

Tokenisation

For English:

```
split(r'\W') or split(r'\b')
```

- (or many similar options)
- How about Chinese?

```
莎拉波娃现在居住在美国东南部的佛罗里达。
<mark>莎拉波娃 现在 居住 在 美国</mark>东南部 的 佛罗里达
Sharapova now lives in US southeastern Florida
```

- Characters are generally 1 syllable and 1 morpheme.
- Average word is 2.4 characters long. No spaces!
- Standard baseline segmentation algorithm:
 - 1. Start pointer at beginning of string
 - 2. Find longest word in dictionary matching string starting at pointer
 - 3. Move pointer over word, go to 2

Tokenization

- How about Japanese?
 - multiple alphabets intermingled
 - dates/amounts in multiple formats

End-user can express query entirely in hiragana!

- How about German?
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - (wait for sequence modelling lecture ...)

Spelling Correction

- Spelling errors are common (26% of web queries)
 - Detection
 - Correction
- Hard to estimate error probability directly
 - (have we seen x before?) $P(w \mid x)$
- Bayes' Rule again!

$$P(w \mid x) = \frac{P(x \mid w)P(w)}{P(x)}$$

Spelling Correction

- Need probability of original word
 - estimate from corpus
 - "unigram language model" (see next week)
- P(w)

- Need probability of error introduction
 - "noisy channel model"
 - e.g. probability of:
 - Leaving a character out
 - Tranposing two characters
 - Adding a space character
 - ... etc
 - estimate from corpus of errors
- E.g. Kernighan et al (1990)

 $P(x \mid w)$

$$\frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}w_i]}, \text{ if deletion}$$

$$\frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, \text{ if insertion}$$

$$\frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, \text{ if substitution}$$

$$\frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, \text{ if transposition}$$

Stemming / Lemmatisation

We often want base form (stem, lemma)

```
windows → window
estimating → estimate (→ estimat)
running → run
are, is → be
```

Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Porter's algorithm The most common English stemmer

```
Step 1a
                                                 Step 2 (for long stems)
   sses → ss caresses → caress
                                                    ational → ate relational → relate
   ies \rightarrow i ponies \rightarrow poni
                                                    izer→ ize digitizer → digitize
                    caress → caress
   ss \rightarrow ss
                                                    ator→ ate operator → operate
   s \rightarrow \phi \quad cats \rightarrow cat
Step 1b
                                                 Step 3 (for longer stems)
    (*v*)inq \rightarrow \emptyset walking \rightarrow walk
                                                    al \rightarrow \emptyset revival \rightarrow reviv
                      sing \rightarrow sing
                                                    able \rightarrow \emptyset adjustable \rightarrow adjust
    (*v*)ed \rightarrow \emptyset plastered \rightarrow plaster
                                                    ate \rightarrow \emptyset activate \rightarrow activ
```

Why check for vowels in Step 1b?

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing
```

Stemming in other languages

- What if we're working with Turkish?
 - Uygarlaştıramadıklarımızdanmışsınızcasına
 - `(behaving) as if you are among those whom we could not civilize'

```
Uygar `civilized' + laş `become'
+ tır `cause' + ama `not able'
+ dık `past' + lar 'plural'
+ ımız 'p1pl' + dan 'abl'
+ mış 'past' + sınız '2pl' + casına 'as if'
```

- More advanced grammar-based methods:
 - e.g. finite state transducers (see later)

Advanced Features

- Now we can extract word features
 - unigrams, n-grams

```
milk is good and not expensive
[START milk], [milk is], [is good], [good and], [and not], [not expensive],
[expsnsive END]
[START milk is], [milk is good], [is good and], [good and not], ...
```

- What about other features?
- Word class features

```
I like milk, I like sugar, ... → I like NN
```

- Needs part-of-speech tagging
- Semantic roles

```
I like milk, I like sugar, \dots \rightarrow like(me,NN)
```

Needs syntactic/semantic parsing

Negation

What do n-gram models do with:

```
milk is not very good
milk is not really very good
milk is not bad but good
```

- Really we need to know syntactic/semantic dependencies
 - Parsing: see later lectures

```
milk is not bad but good
```

- But we can use some handy approximations
 - e.g. add neg_ prefix to every word between negation and punctuation / coordination

```
milk is not neg_really neg_very neg_good
milk is not neg_bad but good
```

Evaluation

How do we evaluate?

- What if we have unbalanced classes?
 - E.g. 90% negative, 10% positive
 - How good is the accuracy of this classifier?
 x → negative

Precision and recall

Precision: % of selected items that are correct
 Recall: % of correct items that are selected

	correct	not correct
selected	tp	fp
not selected	fn	tn

$$P = tp/(tp+fp)$$

$$R = tp/(tp+fn)$$

A combined measure: F

 A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- The harmonic mean is a very conservative average
- People usually use balanced F1 measure
 - i.e., with $\beta = 1$ (that is, $\alpha = \frac{1}{2}$): $F = \frac{2PR}{(P+R)}$

Unbalanced Datasets

What if our training data isn't balanced?

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

- (and logistic example)
- Is this representative of the test data?
 - If no; probably not OK!
 - If yes; probably OK for NB, maybe not for LR
- Solutions:
 - over/under-sample training data
 - (beware over-sampling in cross-validation!)
 - weighted cost function
 - (usually better if possible)

Overfitting

Development Test Sets and Crossvalidation

Training set

Development Test Set

Test Set

- Metric: P/R/F1 or Accuracy
- Unseen test set
 - avoid overfitting ('tuning to the test Training Set Dev Test
 - more conservative estimate of performance
- Cross-validation over multiple splits
 - Handle sampling errors from different datasets
 - Pool results over each split
 - Compute pooled dev set performance

Training Set Dev Test

Training Set Dev Test

Dev Test Training Set

Test Set

Avoiding over-fitting

- Always use a held-out test set
- Select parameters via cross-validation
 - (be careful with selection criteria!)
 - Or with a separate development set
- Use regularisation / smoothing
- Avoid high dimensionality of feature set
 - -N>>d
 - You know about feature selection from Data Mining ...

Neural Networks

e.g. Kalchbrenner et al. (2014)

Example: Sentiment Analysis

- Purver et al. (2012)
 - See paper on QM+

Experimenting with Distant Supervision for Emotion Classification

Matthew Purver* and Stuart Battersby†

*Interaction Media and Communication Group † Chatterbox Analytics
School of Electronic Engineering and Computer Science
Queen Mary University of London
Mile End Road, London E1 4NS, UK

m.purver@qmul.ac.uk

stuart@cbanalytics.co.uk

Abstract

We describe a set of experiments using automatically labelled data to train supervised classifiers for multi-class emotion detection in Twitter messages with no manual intervention. By cross validating between mod-

in unconventional style and without accompanying metadata, audio/video signals or access to the author for disambiguation, how can we easily produce a gold-standard labelling for training and/or for evaluation and test? One possible solution that is becoming popular is crowd-sourcing the la-

Choices

- Training set?
- Labelling?
- Feature selection?
- Test set?
- Features?
- Classifier?
- Balancing?

Live London Emotion Map

http://www.eecs.qmul.ac.uk/~mpurver/emomap/

• (happy = yellow, sad = blue, angry = red)

