PET-BIDS Tool Demonstrations and Tutorials

Quantification

Granville J Matheson

Image analysis & Preprocessing

Quantification

Considerations

Study design

- Data and quantification strategy
 - Research question
 - Biological considerations
 - Radiotracer properties

Blood

bloodstream

- Combining blood data
- Modelling blood data

Pharmacokinetic modelling kinfitr

- Blood-TAC delay
- Noise structure (i.e. weights)
- Model selection
- Linearised models: t* choice

Blood processing using bloodstream

Autosampler

Manual

Manual

Manual

Blood Processing: The Problem

What we want:

• **Frequency**: High temporal granularity

• **Specificity**: Measurements of what we want

Accuracy: Little to no measurement error

In reality

- We can measure with high frequency, but not what we really want
- We can measure what we want but with low frequency
- Errors originate from all of the multiple sources

Autosampler

Goals

- 1. Combine
- 2. Improve

Manual

Manual

Manual

Manual sampling

Gamma counter

Autosampler

Whole blood radioactivity

Manual sampling

Gamma counter

Plasma radioactivity

Bound to blood cells

Plasma parent

Plasma metabolites

Bound to blood cells

Manual sampling

Plasma parent

Plasma metabolites

Bound to blood cells

Autosampler

Manual

Manual

Manual

Basic strategy

Linear interpolation of all curves followed by combination

More advanced strategy

Model some or all of the functions to reduce measurement error

<u>(Subjective) order of importance:</u>

- 1. Parent Fraction
- 2. Blood-to-plasma ratio
- 3. Arterial Input Function
- 4. (Whole blood)

bloodstream

Usage (docker)

→ simple linear interpolation of all curves

→ modelling of one or more of the curves

Usage (R)

remotes::install_github("mathesong/bloodstream")

→ installation

bloodstream("/path/to/bids_data/")

→ simple linear interpolation of all curves

bloodstream("/path/to/bids_data/", "config_file.json")

→ modelling of one or more of the curves

Create a customised bloodstream config file

Karolinska Institutet

Data Subset

Use these options to apply this config to a subset of the data. Values should be separated by semicolons. All measurements fulfilling all the conditions will be included. Leave options blank for no subsetting is desired, i.e. leaving sub blank implies that all subjects should be included.

sub		
ses		
rec		
task		
run		
TracerName		

Modelling Choices

Blood-to-Plasma Ratio

Parent Fraction

Select the modelling approach for each of the blood curves which should be fitted to the data. The default approach for each is simply to apply linear interpolation to the observed data. As a rule of thumb, modelling the parent fraction and the blood-to-plasma ratio are usually a good idea. Modelling the AIF and the whole blood are mostly best left for specific applications. For debugging, I recommend using simple interpolation and inspecting the plots and QC output.

Arterial Input Function

Whole Blood

Download

	7 ii toriur inpatri unction		20111110000
Parent Fraction Model Selection			
here are many options available for modellin Fit Individually: Choose the best-fitting mode nd applies that model to all of the data. Hiera	el` option, which will choose the	model which fits	best on average,
arent fraction model			
Interpolation			
Fit Individually: Choose the best-fitting model			
Fit Individually: Hill			
Fit Individually: Exponential			
Fit Individually: Power	to (min)		
Fit Individually: Sigmoid	Inf		
Fit Individually: Inverse Gamma			
Fit Individually: Gamma			
SAM dimension of the basis (k)			
6			
his value must sometimes be reduced when thei	re are too few data points or increa	ased for extra wia	aliness

bloodstream

Produces

- an html file to inspect all the fits
- Interpolated outputs

https://github.com/mathesong/bloodstream

Kinetic Modelling using *kinfitr*

Kinetic modelling

Kinetic modelling using kinfitr

Kinfitr is an R package which contains

- Blood processing methods
 - (bloodstream wraps around these functions)
- Invasive and non-invasive kinetic models
 - ~20 different models
- Weighting schemes
 - For accommodating changing noise the TAC
- Blood-to-TAC delay fitting methods
 - For aligning blood and brain data in time
- t* selection helpers
 - For using linearised kinetic models
- Miscellaneous
 - <u>Diagnostics</u>: Fit plots, residual plots, ease of model comparison
 - Convenience: Unit conversion, decay correction and un-correction
 - o <u>BIDS:</u> PET-BIDS parsing functionality

Full tutorials at granvillematheson.com

Pharmacokinetic Modelling of PET Data in R using kinfitr. Part 1: Theory.

A brief theoretical background.

a.k.a. Let me tell you why you this is cool

Posted by Granville Matheson Friday, February 21, 2020

Pharmacokinetic Modelling of PET Data in R using kinfitr. Part 2: Basics and Iteration

Basic usage and how best to iterate.

a.k.a. Let's take this baby for a test-drive

Posted by Granville Matheson Friday, February 21, 2020

Pharmacokinetic Modelling of PET Data in R using kinfitr. Part 3: Finding tstar

How to interpret the tstar finder outputs.

a.k.a. Admire my busy graphs

Posted by Granville Matheson Friday, February 21, 2020

Pharmacokinetic Modelling of PET Data in R using kinfitr. Part 4: Blood Processing

Storage and Modelling.

a.k.a. Model all the things

Posted by Granville Matheson Friday, February 21, 2020

kinfitr: The BIDS App!

- Needs to be able to automatically parse
 - PET-BIDS data (e.g. blood data)
 - PET-BIDS derivative data (i.e. output from other pipelines)
 - Processed blood data from e.g. bloodstream
 - Processed TAC data from e.g. petprep
- Needs to allow users to define complex chains of commands and allow checking at intermediate steps
- Want to allow users to experiment with optimal model configurations like graphical user interface (GUI) tools

Still in active development, but I've released an early version, and working on expanding functionality!

kinfitr: The BIDS App!

Two parts / interfaces

1. Region definition

index	name
2	Left-Cerebral-White-Matter
7	Left-Cerebellum-White-Matter
8	Left-Cerebellum-Cortex
10	Left-Thalamus
11	Left-Caudate
12	Left-Putamen
13	Left-Pallidum
16	Brain-Stem
17	Left-Hippocampus
18	Left-Amygdala
24	CSF
26	Left-Accumbens-area
28	Left-VentralDC
31	Left-choroid-plexus
41	Right-Cerebral-White-Matter
46	Right-Cerebellum-White-Matter
47	Right-Cerebellum-Cortex
49	Right-Thalamus
50	Right-Caudate
51	Right-Putamen
52	Right-Pallidum
	Right-Hippocampus
	Right-Amygdala
58	Right-Accumbens-area
	Right-VentralDC
63	Right-choroid-plexus
	AirCavity
	Skull
	Vermis
174	Pons
	CSF-ExtraCerebral
258	Head-ExtraCerebral
1001	ctx-lh-bankssts
1002	ctx-lh-caudalanteriorcingulate
1003	ctx-lh-caudalmiddlefrontal
1005	ctx-lh-cuneus
1006	ctx-lh-entorhinal
1007	ctx-lh-fusiform
	ctx-lh-inferiorparietal
1009	ctx-lh-inferiortemporal
	ctx-lh-isthmuscingulate
1011	ctx-lh-lateraloccipital
1012	ctx-lh-lateralorbitofrontal
1013	ctx-lh-lingual
1014	ctx-lh-medialorbitofrontal
1015	ctx-lh-middletemporal
1016	ctx-lh-parahippocampal
	ctx-lh-paracentral
	ctx-lh-parsopercularis
	ctx-lh-parsorbitalis
	ctx-lh-parstriangularis
	ctx-lh-pericalcarine
	ctx-lh-postcentral
	ctx-lh-posteriorcingulate
	ctx-lh-precentral
	ctx-lh-precuneus

Caudate

Putamen

Cingulate

This is considered common to all "analyses" of the data

Two parts / interfaces

- 1. Region definition
- 2. Modelling

- Separated into analyses, e.g.
 - Region subsets
 - Session subsets
 - Restricted to first 60 minutes
- Each analysis allows up to 3 models with parameter inheritance
- Each analysis consists of several parts, which can be executed individually, and each of which produces its own report
- A sandbox feature will allow experimenting with model configuration to assess appropriateness

To the demo...

https://github.com/mathesong/kinfitr_app

(usage instructions in the README)

Delay correction

Weights

