Evaluación de Desempeño: Diferencias Finitas vs Diferenciación Automática

Trabajo Final Integrador PINN - CEIA - FIUBA Quinto Bimestre 2024

Fabricio Lopretto (a1616)

Contenido

- 1. Objetivos
- 2. Introducción
- 3. Metodología
- 4. Resultados
- 5. Conclusiones

Objetivos

Objetivo general:

Comparar dos métodos: diferencias finitas y redes neuronales informadas por física.

Objetivos parciales:

- a) Hallar la solución por ambos métodos para tres tamaños diferentes de grilla, proponiendo diferentes arquitecturas para el método con redes neuronales informadas por física.
- b) Utilizar muestreos aleatorios de los puntos de colocación con la misma cantidad de muestras que en el caso de las grillas uniformes cuando corresponda.

Introducción

Se proponen dos formas de la ecuación de Poisson:

1 -
$$\nabla^2 u = \sin(\pi x) \sin(\pi y)$$
; 0 < x < 1, 0 < y < 1;
 $u(0, y) = u(1, y) = 0$; $y u(x, 0) = u(x, 1) = 0$,
2 - $\nabla^2 u = 0$, $5e^u$; 0 < x < 1, 0 < y < 1;
 $u(0, y) = u(x, 0) = 0$; $y \partial u(1, y)/\partial x = \partial u(x, 1)/\partial y = 0$,

Metodología: Diferencias Finitas

A partir del Polinomio de Taylor f: R->R:

$$f(xo + h) = f(xo) + f'(xo).h + (1/2).f''(xo).h^2 + ... + [1/(k!)].f^{(k)}(xo).h^k + R(xo,h)$$

Derivada de primero orden: $f'(x) = [f(x + \Delta x) - f(x - \Delta x)]/(2.\Delta x)$

Derivada de segundo orden:
$$f''(x) = [f(x + \Delta x) - 2f(x) + f(x - \Delta x)]/(\Delta x^2)$$

Operando: $\nabla^2 u(x,y) = \partial u^2/\partial^2 x + \partial u^2/\partial^2 y = [u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - 4u(i,j)]/\Delta x^2$

$$u(i,j) = (1/4).\left[u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - \Delta x^2 \cdot \nabla^2 u(x,y)\right]$$

Parámetros para el método iterativo tolerance = 1e-12 max iterations = 10000

Metodología: PINN

La función de pérdida L se compone de dos términos principales en este trabajo:

1. Pérdida de la ecuación de Poisson:
$$L_{ ext{Poisson}} = rac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} \left|
abla^2 u(x_i) - f(x_i)
ight|^2,$$

2. Pérdida de las condiciones de frontera:
$$L_{\rm BC} = \frac{1}{N_{\partial\Omega}} \sum_{i=1}^{N_{\partial\Omega}} |u(x_i) - g(x_i)|^2$$
 (para Dirichlet)

$$L_{
m BC} = rac{1}{N_{
m \partial\Omega}} \sum_{i=1}^{N_{
m \partial\Omega}} \left| rac{\partial u(x_i)}{\partial n} - g(x_i)
ight|^2 \quad ext{(para Neumann)}$$

La función de pérdida total se obtiene combinando ambos términos:

L = L Poisson + L BC

Metodología: Técnicas de mejora PINN

Implementación hard de las condiciones de borde:

$$u\theta(x,y) = g(x,y) + \phi(x,y) \cdot u'\theta(x,y)$$

- 1. g(x,y) es la función que describe la condición de borde
- φ(x,y) es una función clipping que es igual a 1 en el borde donde se impone la condición de borde, y menor a 1 en el interior del dominio.
- u'θ(x,y) es la solución entrenable que se ajustará para satisfacer sólo la EDP en el interior del dominio.

$$\nabla^2 u = sin(\pi, x). sin(\pi, y)$$
 un polinomio que se anule en el interior:

$$\phi(x, y) = x. (1 - x). y. (1 - y)$$

Solución Exacta

En el caso de la EDP dada por: $\nabla^2 u = \sin(\pi x)\sin(\pi y)$; 0 < x < 1, 0 < y < 1;

$$u(0, y) = u(1, y) = 0; y u(x, 0) = u(x, 1) = 0,$$

Se dispuso de la solución exacta: $u(x,y) = -[1/(2.\pi^2)].\sin(\pi.x).\sin(\pi.y).$

Operando: $\partial^2 u/\partial x^2 = (1/2).\sin(\pi.x).\sin(\pi.y)$ y $\partial^2 u/\partial y^2 = (1/2).\sin(\pi.x).\sin(\pi.y)$

$$\partial^{2} u/\partial x^{2} + \partial^{2} u/\partial y^{2} = (1/2). \sin(\pi. x). \sin(\pi. y) + (1/2). \sin(\pi. x). \sin(\pi. y) = \sin(\pi. x). \sin(\pi. y)$$

Experimento con: $\nabla^2 u = \sin(\pi x) \sin(\pi y)$

La norma-2 del error relativo mide la diferencia entre la solución exacta (u_{exacto}) y la solución aproximada ($u_{aproximada}$) en un conjunto de puntos. Se define como:

Norma-2 del error relativo =
$$\frac{\|u_{exacto} - u_{aproximada}\|_2}{\|u_{exacto}\|_2}$$

Por ejemplo, para una grilla de 1000x1000:

$$E[i,j] = u_{exacto}[i,j] - u_{aproximado}[i,j] \quad \text{para } i,j = 1,2,\dots,1000$$

$$\|E\|_2 = \sqrt{\sum_{i=1}^{1000} \sum_{j=1}^{1000} E[i,j]^2} \quad \|u_{exacto}\|_2 = \sqrt{\sum_{i=1}^{1000} \sum_{j=1}^{1000} (u_{exacto}[i,j])^2}$$

$$\text{Norma-2 del error relativo} = \frac{\|E\|_2}{\|u_{exacto}\|_2}$$

Conclusiones

- 1. El método de FD ha mostrado buenos resultados, proporcionando una morfología similar a la de la solución exacta. La solución obtenida mediante FD sobreestimó la intensidad en comparación con la solución exacta.
- 2. Las soluciones obtenidas mediante PINN también presentaron una morfología similar a la de la solución exacta. La solución obtenida con PINN subestimó la intensidad con respecto a la solución exacta.
- 3. La mejora en el desempeño resultó evidente cuando se incorporaron técnicas de mejora, como la implementación estricta de las condiciones de frontera.
- 4. Al aumentar la profundidad y/o el ancho de la red neuronal (PINN), se identificó mejoras en la solución. Especialmente en las condiciones de borde.
- 5. Al emplear puntos de colocación con distribuciones diferentes a la grilla uniforme, no se observaron diferencias significativas, ni al incrementar la cantidad de puntos de colocación o modificar su distribución dentro del dominio.
- 6. Disminución en el error relativo utilizando PINN al aumentar el ancho de la red, si bien solución por DF resultó mejor en este experimento en particular.

¡Muchas gracias!