Project 2

171044032 Tunker Tercan

C code 8

1- while (! calculate); 2- a=a-in; 3- b= b-in; 4- mult =0; 5- while (a > 0) { b- mult = mult +b; 7- a=a-1;

State Diggram !

Early FSM8

We need to separate this to because we can use one addition at a one clock cycle

Datapath 8

- we need 3 registers for a, b and mult.
- We can only use one odder unit
- Use three nuxes, one for loading a, rest of them will be used for adder
- And one comparetor for is a greater than O

Draw Datapath:

Boolean Exp	ression	0				
Present State P1 P1 P0	Inputs a-gt0 calculate		NextState N2 N1 NO			N2 = P2'P1P0 N1 = P2'P1'P0 + P2'P1P0'a-g+0 + P2 P1'P0
0 0 0	_	0	0	0	0	M= P1 P1 P0 + P2 P1P0 a_g+0+121 110
000	-	4	0	0	0	NO = P2'P1'P0'calculate + P2'P1P0'a-9t0
001	-	-	0		0	= P2'P0'l Pi'calculate + P1 a-9+0)
010	0	-	0			
010	1	-	0	{	1	MI - PUPITED & PURITION PORTION
0 1 1	_	_	1	0	0	
100	_	-	0	ł	0	

Present		State		Outputs					
	P2	PI	PO	100d-a	d- bool	reset_mult	load_mult	select_a	select_operand
so				0	0	0	0	0	0
sl		0		1	1	1	0	0	0
	0	1	0	0	0	0	0	0	0
23	0	1	1	O	0	0	ł	0	0
24	1	0	0	1	0	0	0	4.	1

load-a = SI+S4 reset_mult = SI Select_a = S4 load-b = SI load-mult = S3 Select_operand = S4

* After i designed datapath, I realized there is no need to use reset_mult and select_operand because load_b = reset_mult and select_operand, so I decided to not to use them.

Optimized Datapath:

Control Unit:

FSM:

Main:

Simulation:

- This FSM does not work non positive integers.

Test Case: Work on positive integers

Test Data: a_in = 7, b_in = 43, mult =?

Excepted Result: mult = 301

Simulation:

- Set up the inputs

- Press calculate and program will do the rest

- Enters first state

- Second state

- Third state

- Fourth state

- As you can see, addition added to mult and after this state, it should return to state 2 and it will continue to loop until a_register equals to zero.

- When a_register becomes zero, multiplication will end, and program will go to the start state

- Mult equals to 301. Our simulation successfully ended.