Coding Answers

StatGen Genealogical analysis workshop 1

Tree sequence has 73 nodes, of which 20 are "sample nodes" Tree sequence has 150 edges, 99 sites, and 100 mutations

```
print(ts.site(11))
print(ts.site(12))

Site(id=11, position=94774.0, ancestral_state='C', mutations=[Mutation(id=11, site=11, node=38, derived_state='T', parent=-1, metadata=b'', time=3830.17173 6387555)], metadata=b'')
Site(id=12, position=96396.0, ancestral_state='T', mutations=[Mutation(id=12, site=12, node=51, derived_state='G', parent=-1, metadata=b'', time=4291.70181 3964168), Mutation(id=13, site=12, node=51, derived_state='T', parent=12, met adata=b'', time=3973.698606992847)], metadata=b'')
```

Exercise 2: print out the site object for site 11 and again for site 12

Exercise 4: print out the age (in generations ago) of the oldest node in the first tree
ts.node(63)

Node(id=63, flags=0, time=2108.0062486338006, population=0, individual=-1, metadata=b'')

Exercise 5a: Display the individuals table
ts.tables.individuals

id	flags	location	parents	metadata
0	0			{'name': 'Ada'}
1	0			{'name': 'Bob'}
2	0			{'name': 'Cat'}
3	0			{'name': 'Dee'}
4	0			{'name': 'Eli'}
5	0			{'name': 'Fi'}
6	0			{'name': 'Guy'}
7	0			{'name': 'Hal'}
8	0			{'name': 'lda'}
9	0			{'name': 'Jo'}

```
# Exercise 5b: Display the populations table
ts.tables.populations
```

id metadata

0 {'description': '', 'name': 'pop_0'}

```
# Exercise 6: iterate over all 99 variants in `ts`, printing out the genotypes at each site
# For brevity, illustrate using the simplified_ts which has only 5 samples
for v in ts.variants():
    print(
        v.genotypes, # the decoded variation data
[1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0]
[1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0]
[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]
[0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1]
[1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0]
[0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1]
[0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1]
[0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 1]
[1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0]
[0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1]
```

[0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1]

 $[1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0]$

 $[0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1]$

Exercise 8: plot the density of variable sites in fixed-sized windows along the genome
plt.stairs(site_density, window_locations, baseline=None)

<matplotlib.patches.StepPatch at 0x7f2a1d97d0c0>


```
import msprime
mutation rate = 2e-7 # Higher than the human average of ~1e-8
high mutation ts = msprime.sim mutations(ts, rate=mutation rate, random seed=123)
# Exercise 9: illustrate that with high mutation rate, the density of variable sites tends
# to the average branch length statistic. Do this by using the same plotting code as in the
# previous code cell, but substituting `high_mutation_ts` for `ts`.
# Use the branch length as the statistic
fig, (ax1, ax2) = plt_subplots(ncols=2, figsize=(15, 3))
plt.subplots adjust(wspace=0.3)
site_density = high_mutation_ts.segregating_sites(windows=window_locations)
branch_length \ high_mutation_ts.sygregating_sites(windows=window_locations, mode="branch")
# Same as the previous plot
ax1.stairs(site_density, window_locations, baseline=None)
ax1.set_xlabel("Genome position (bp)")
ax1.set ylabel(f"Proportion of variable sites")
# Genealogical equivalent (mode="branch")
ax2.stairs(branch length, window locations, baseline=None)
ax2.set xlabel("Genome position (bp)")
ax2.set_ylabel(f"Genealogical equivalent\n(average branch length)")
plt.suptitle(
    "Two views of the segregating sites statistic (low mutation rate)"
    f", plotted in {step/1000:.0f} Kb windows")
plt.show()
```

Two views of the segregating_sites statistic (low mutation rate), plotted in 50 Kb windows


```
# Exercise 10: plot Tajima's D in windows along the genome
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(15, 3))
plt.subplots adjust(wspace=0.3)
window_locations, step = np.linspace(0, ts.sequence_length, num=21, retstep=True)
diversity_site = ts.Tajimas_D(windows=window_locations)
diversity_branch = ts.Tajimas_D(windows=window_locations, mode="branch")
ax1.stairs(diversity_site, window_locations, baseline=None)
ax1.set xlabel("Genome position (bp)")
ax1 set_ytabet(" Average proportion of sites\nthat vary between pairs")
ax1.axhline(0, linestyle=":")
# Genealogical equivalent (mode="branch")
ax2.stairs(diversity_branch, window_locations, baseline=None)
ax2.set xlabel("Genome position (bp)")
ax2 cet_,label(f"Genealegical equivalent\n(av. branch length between pairs)")
ax2.axhline(0, linestyle=":")
plt.suptitle(r"Two views of genetic diversity ($\pi$), " + f"plotted in {step/1000:.0f} Kb windows")
plt.show()
```

Two views of genetic diversity (π), plotted in 50 Kb windows

StatGen Genealogical analysis workshop 2

```
# Exercise 1: Set `ts` to a new large tree sequence, generated using msprime.sim_ai
# specific parameters (random_seed=2022, etc.), then output the tree sequence summa
ts = msprime.sim_ancestry(
    samples=20_000,
    sequence_length=1_000_000,
    recombination_rate=1e-8, # Small recombination rate
    population_size=20_000, # Rough "effective population size" suitable for humans
    random_seed=2022
)
ts
```

1 -	. —
, a	i •.
TS	ידואוי
CO	1/16

Tree Sequence

Trees	8615
Sequence Length	1000000.0
Time Units	generations
Sample Nodes	40000
Total Size	7.2 MiB
Metadata	No Metadata

Table	Rows	Size	Has Metadata
Edges	112914	3.4 MiB	
Individuals	20000	546.9 KiB	
Migrations	0	8 Bytes	
Mutations	0	16 Bytes	
Nodes	86673	2.3 MiB	
Populations	1	224 Bytes	V
Provenances	1	954 Bytes	
Sites	0	16 Bytes	

: # Exercise 2: Print out the mutations table. Notice that one site has mts_small.tables.mutations

:	id	site	node	time	derived_state	parent	metadata
	0	0	0	6280.57457692	Т	-1	b''
	1	1	1	300.03900794	С	-1	b''
	2	2	5	17601.10716936	Α	-1	b''
	3	3	5	31041.47149974	G	-1	b''
	4	3	1	25271.85405329	С	-1	b''
	5	4	4	9037.19890652	Α	-1	b''
	6	5	1	19218.67456043	Т	-1	b''
	7	6	1	10675.94608952	Α	-1	b''
	8	7	5	20843.39959853	С	-1	b''
	9	8	1	13428.65262360	С	-1	b''
	10	9	5	36455.12186042	С	-1	b''

Exercise 3: Add lots of mutations to the huge genealogy you simulated earlier.
msprime.sim_mutations(ts, rate=1e-8, random_seed=2022)

tskit	Tree Sequence
-------	---------------

Trees	8615
Sequence Length	1000000.0
Time Units	generations
Sample Nodes	40000
Total Size	7.7 MiB
Metadata	No Metadata

Table	Rows	Size	Has Metadata
Edges	112914	3.4 MiB	
Individuals	20000	546.9 KiB	
Migrations	0	8 Bytes	
Mutations	9126	329.8 KiB	
Nodes	86673	2.3 MiB	
Populations	1	224 Bytes	$\overline{\checkmark}$
Provenances	2	1.6 KiB	
Sites	9087	221.9 KiB	

```
# Exercise 4: Loop over the populations, printing out Fst between each and pop_0.
for i in range(1, 8):
    print(mts.Fst([pop_0_sample_ids, mts.samples(population=i)]))
```

- -0.000422956776944039
- 0.0042090861564245685
- 0.005307754295978628
- 0.005136715463367136
- 0.0038666037155368205
- 0.005215474313021495
- 0.0018151588832213683

Exercise 5: plot a histogram of Fst values, and also print out the mean.
plt.hist(Fst_vals)

<BarContainer object of 10 artists>)

