Data Mining Regras de Associação

Prof. Dr. Joaquim Assunção

DEPARTAMENTO DE COMPUTAÇÃO APLICADA CENTRO DE TECNOLOGIA UFSM 2024

Fair user agreement

Este material foi criado para a disciplina de Mineração de Dados - Centro de Tecnologia da UFSM.

Você pode usar este material livremente*; porém, caso seja usado em outra instituição, **me envie um e-mail** avisando o nome da instituição e a disciplina.

*A maior parte deste material foi retirado do livro: "Joaquim V. C. Assunção. Uma Breve Introdução à Mineração de Dados: Bases Para a Ciência de Dados, com Exemplos em R. 192 páginas. Novatec. 2021. ISBN-10: 6586057507."

Prof. Dr. Joaquim Assunção. joaquim@inf.ufsm.br

Conviction

Similar a confiança, esta regra trata os conjuntos A e B como independentes, e no divisor usa a probabilidade de união do conjunto A com a negação do conjunto B.

Conviction é uma medida de implicação que resulta em 1 se os conjuntos não forem relacionados. $\neg(A, \neg B)$

Formalmente:

$$\frac{suporte(A)suporte(\bar{B})}{suporte(A \cup \bar{B})}$$

Leverage (influência)

Proposta por Piatetsky-Shapiro em 1991, é uma medida da diferença entre a probabilidade de A → B e a probabilidade esperada caso A e B fossem independentes.

$$suporte(A \Rightarrow B) - suporte(A)suporte(B)$$

Added Value

A confiança da regra menos o suporte da implicação. Um valor entre -5 e 1.

$$Conf(A \Rightarrow B) - Suporte(B)$$
.

Hands On!

• Dadas as variáveis abaixo. Gere regras de associação que implicam em goal==1. Calcule a conviçção e a influência para cada uma destas regras.

```
a <- c(1,1,0,0,1,1,0,1)
b <- c(0,1,0,1,1,0,0,0)
c <- c(0,1,1,0,1,1,1,0)
goal <- c(1,0,1,0,1,1,1,1)
```

Geração de regras - Candidatos

Já parou para pensar na quantidade de candidatos para as regras?

Ex: Se tivermos A,B,C, poderíamos gerar:

A A,B NULL

B B,C ABC

C A,C

Já parou para pensar na quantidade de regras possíveis por conjunto de itens???

Ex: Se tivermos A,B,C, poderíamos gerar:

$A \rightarrow B$	$B \rightarrow C$	$A,C \rightarrow B$	NULL
$B \rightarrow A$	$C \rightarrow B$	$A \rightarrow B,C$	$A,B,C \rightarrow NULL$
$A \rightarrow C$	$A,B \rightarrow C$	$B \rightarrow A,C$	NULL → A,B,C
$C \rightarrow A$	$B,C \rightarrow A$	$C \rightarrow B,A$	

Podemos cortar as inversas, para N itens teremos 2^N candidatos. ... 12 possíveis regras (descontando Null)

Ex: Se tivermos A,B,C, poderíamos gerar:

$A \rightarrow B$	$B \rightarrow C$	$A,C \rightarrow B$	NULL
$B \rightarrow A$	$C \rightarrow B$	$A \rightarrow B,C$	A,B,C -> NULL
$A \rightarrow C$	$A,B \rightarrow C$	$B \rightarrow A,C$	NULL→A,B,C
$C \rightarrow A$	$B,C \rightarrow A$	$C \rightarrow B,A$	

Podemos cortar as inversas, para N itens teremos $2^N ou (2^D)$ candidatos. ... 12 possíveis regras (descontando *Null*)

Agora vamos ver com 5 itens:

^{*} Exemplo do livro de Tan et. Al. (ver bibliografia da disciplina)

Na abordagem por Força Bruta cada item do conjunto é um candidato a frequente.

Primeiro se conta o suporte de cada item varrendo o conjunto.

^{*} Exemplo do livro de Tan et. Al. (ver bibliografia da disciplina)

Na abordagem por Força Bruta... 15 itens

O número total de possíveis regras é ainda maior!

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

Para um conjunto de 3 itens temos 12 regras.

Para um conjunto de 8 itens é possível ter 6050 regras!

Principio APRIORI

O princípio APRIORI leva tem base na estratégia de reduzir o número de candidatos que se dá por 2^D por meio de poda.

O princípio é:

"Se um conjunto é infrequente, então todos seus subconjuntos também serão infrequentes"

O suporte de um conjunto nunca é maior que o suporte de seus subconjuntos.

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Principio APRIORI

Figura 4.2: Apriori. Exemplo de poda. Todo conjunto derivado de d foi podado. Isso significa que boa parte das combinações possíveis não será computada.

Geração de regras – fluxo geral

TID	Itens
1	a, c, d
2	b, c, e
3	a, b, c, e
4	b, e

	,
Item	Suporte
а	2
b	3
С	3
е	3

	•
Candidato	Suporte
{a, b}	1
{a, c}	2
{a, e}	1
{b, c}	2
{b, e}	3
{c, e}	2

{a, c} {b, c}	2
(h c)	
το, τη	2
{b, e}	3
{c, e}	2

Regra Forte Suporte

{b, c, e} 2

Geração de regras forte – exemplo (suporte >= 2)

Hands On!

• Dado o seguinte conjunto:

Item	Contagem
Coca-Cola	9
Cerveja	6
Suco	2
Néctar	5
Tônica	1
Agua	4

Se o suporte mínimo for definido como 4.

- 1. Quais itens não seriam considerados?
- 2. Quantos conjuntos possíveis teríamos que verificar por força bruta?
- 3. Quantos possíveis regras teríamos?

Trabalho 1

Em dupla.

Ver a descrição na página da disciplina.

