Q. Find publicly available data for key factors that influence US home prices nationally. Then, build a data science model that explains how these factors impacted home prices over the last 20 years. Use the S&P Case-Schiller Home Price Index as a proxy for home prices: fred.stlouisfed.org/series/CSUSHPISA.

Ans

The Major Key factors that influences US home prices are:

- Economic Change
- Population
- Personal Income
- Employment
- Supply and Demand
- Mortgage Interest rates
- Labor Force Participation Rate
- Locations like Highways, Schools, Hospitals, etc.,
- Government Laws

Tools used:

- Programming Languages: Python
- Data Analysis Libraries: NumPy, pandas, matplotlib, seaborn
- Machine Learning Libraries: scikit-learn
- Data Visualization: Matplotlib, Seaborn

Data Collected

- Target (S&P/Case-Shiller U.S. National Home Price Index.)
- Population (Population includes resident population plus armed forces overseas.)
- Personal Income (Income that persons receive in return for their provision of labor, land, and capital used in current production and the net current transfer payments that they receive from business and from government.)
- Mortgage Rate (A mortgage rate is the interest rate charged for a home loan.(Percentage))

- Employment- (Population Ratio (emratio))
- Building Construction issued permit in US (Total Units)
- Labor Force Participation Rate (The participation rate is the percentage of the population that is either working or actively looking for work.)
- Median Sales Price. (Median Sales Price of Houses Sold for the United States.(US Dollars))
- Producer Price Index -Cement Manufacturing
- Producer Price Index by Industry: Concrete Brick
- New Privately-Owned Housing Construction Completed: (Total units in thousands)
- New Privately-Owned Housing Units Under Construction: Total Units in thousands

Feature Selection

In our analysis, we identified several key features and their correlations with the target variable, represented by the S&P Case-Shiller Home Price Index.

Feature	Correlation with Home Price Index
MSPUS	0.980146
PPI_Cement	0.955074
GDP	0.860633
income	0.946608
PPI_Concrete	0.985072
population	0.789974
total_emp_cons	0.511130
new_private_hw_under	0.633935

Feature	Correlation with Home Price Index
all_Const_Emp	0.563479
home_ow_rate	0.209294
monthly_supply	0.178504
permit	0.234189
house_st	-0.001372
new_private_house	-0.068468
unemployed_rate	-0.249211
IPI_Cement	-0.260807
p_saving_rate	-0.286001
emratio	-0.538776
mortgage_rate	-0.730709
labor_percent	-0.788313

The positive correlation values indicate a direct relationship with home prices, while negative values suggest an inverse relationship. Features with higher absolute correlation values have a larger impact on home prices.

Model Selection and Cross-Validation

In this project, we employed the **Lasso regression** model due to indications of significant collinearity in the dataset. The Lasso regression model is known for its ability to handle collinearity by applying L1 regularization, which encourages sparsity in feature coefficients.

To optimize the Lasso model's performance and select the best regularization hyperparameter (alpha), we utilized **cross-validation**.

• Optimal alpha: **0.0576**.

The cross-validation process resulted in the following **R-squared** scores for different folds:

• Fold 1: 0.9952

• Fold 2: 0.9939

Fold 3: 0.9933

• Fold 4: 0.9926

• Fold 5: 0.9932

mean R-squared : 0.9937

standard deviation R squared : 0.0009

Best Features With non-zero Coefficients

Here are the features and their respective coefficients obtained from our Lasso regression model:

Feature	Coefficient
p_saving_rate	-0.923351
IPI_Cement	0.196152
PPI_Concrete	16.893031
population	-8.945503
new_private_hw_under	4.770749
GDP	18.499826
house_st	2.103615
labor_percent	1.501053
all_Const_Emp	10.887265
monthly_supply	3.212566
unemployed_rate	7.251776
MSPUS	28.943474

These coefficients represent the impact of each feature on the prediction of home prices. Positive coefficients indicate a direct relationship with home prices, while negative coefficients suggest an inverse relationship.