Notes for Mathematics for Physics: A Guided Tour for Graduate Students

Gregory Feldmann

December 29, 2019

Contents

1	\mathbf{Cal}	culus of variations	2
	1.1	Minimising functionals of y and $y^{(1)}$	2
	1.2	Functionals of higher order derivatives	3
	1.3	Functionals of multiple functions	3
	1.4	Functionals of multiple functions and higher order derivatives	3
	1.5	Functionals of multiple functions, multiple independent variables	
		and higher order derivatives	4
	1.6	Constraints	4
		1.6.1 Integral constraints	4
		1.6.2 Holonomic constraints	5
		1.6.3 Non-holonomic constraints	5
	1.7	Examples	5
		1.7.1 Lagrangian mechanics	5
	1.8	Variable end points	5
2	Fun	action spaces	6
3	Linear ordinary differential equations		6
4	Linear differential operators		6
5	Gre	een functions	6

1 Calculus of variations

A functional J is a map $J: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$. We restrict ourselves to functionals of the form

$$J[y] = \int_{x_1}^{x_2} F(x, y, y^{(1)}, y^{(2)}, \dots) dx$$
 (1)

where $y^{(n)}$ denotes the n^{th} derivative of y with respect to x.

1.1 Functionals of y and $y^{(1)}$

For $J = \int F dx$, where f depends only on x, y and y', we show how to derive the Euler-Lagrange equation and find the y that optimises J.

Let ϵ be a small, arbitrary real number, η an arbitrary function of x and y an arbitrary function of x in C^{∞} . A small perturbation in y is given by $y = y^* + \epsilon \eta$, where y^* is the unperturbed y. Also let $\delta J = J[y^* + \epsilon \eta] - J[y^*]$ and $\delta F = \{F(x,y,y^{(1)}) - F(x,y^*,y^{*(1)})\}$, where δ is the variation operator. The change in J associated with going from y to $y^* + \epsilon \eta$ is given by

$$\delta J = \int_{x_1}^{x_2} \delta F dx \tag{2}$$

A necessary condition for the minimisation of J is $\delta J=0$. We then use a Taylor expansion of δF around $\epsilon=0$, discarding all terms second order and above.

$$\delta F \approx \epsilon \left(\frac{\partial F}{\partial u} \eta + \frac{\partial F}{\partial u^{(1)}} \eta^{(1)} \right)$$
 (3)

Using integration by parts, we can find an alternate expression for $\frac{\partial F}{\partial y^{(1)}}\eta^{(1)}$

$$\int_{x_1}^{x_2} \frac{\partial F}{\partial y^{(1)}} \eta^{(1)} dx = \frac{\partial F}{\partial y^{(1)}} \eta \bigg|_{x_1}^{x_2} - \int_{x_1}^{x_2} \frac{d}{dx} \frac{\partial F}{\partial y^{(1)}} \eta dx$$

As we assume $\epsilon=0$ at x_1 and x_2 , $\frac{\partial F}{\partial y^{(1)}}\eta\bigg|_{x_1}^{x_2}=0$. So we have

$$\frac{\partial F}{\partial y^{(1)}}\eta^{(1)} = -\frac{d}{dx}\frac{\partial F}{\partial y^{(1)}}\eta$$

We substitute this into (3) to obtain

$$\delta F \approx \epsilon \eta \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y^{(1)}} \right)$$

Substituting this expression into (2) results in

$$\int_{x_1}^{x_2} \delta F dx = \int_{x_1}^{x_2} \epsilon \eta \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y^{(1)}} \right) dx = 0$$

Supposing that η and ϵ are not identically zero, we conclude that

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y^{(1)}} = 0 \tag{4}$$

(4) is known as an Euler-Lagrange equation. The expression on the left hand side is referred to as the functional derivative of δJ with respect to y.

1.2 Functionals of higher order derivatives

If F is a function of higher order derivatives of y, e.g. $y^{(5)}$ or $y^{(26)}$, then the Euler-Lagrange equation is extended as follows. Suppose F is a function of the N^{th} order derivative of y. The Euler-Lagrange equation is

$$\frac{\partial F}{\partial y} + \sum_{n=1}^{N} (-1)^n \frac{d^n}{dx^n} \left(\frac{\partial F}{\partial y^{(n)}} \right) = 0 \tag{5}$$

1.3 Functionals of multiple functions

When F is a function of multiple functions y_i and their derivatives y_{ix} , where each y_i is a function of x, then we get a separate Euler-Lagrange equation for each y_i

$$\frac{\partial F}{\partial y_i} - \frac{d}{dx} \frac{\partial F}{\partial y_i^{(1)}} = 0 \tag{6}$$

1.4 Functionals of multiple functions and higher order derivatives

Combining the previous two sections, the Euler-Lagrange equations for functionals of multiple functions y_i and higher order derivatives $y_i^{(n)}$ are given by

$$\frac{\partial F}{\partial y_i} + \sum_{n=1}^{N} (-1)^n \frac{d^n}{dx^n} \left(\frac{\partial F}{\partial y_i^{(n)}} \right) = 0 \tag{7}$$

for each i corresponding to a y_i .

1.5 Functionals of multiple functions, multiple independent variables and higher order derivatives

The next logical step is to introduce multiple independent variables. Let μ_m be indices spanning the independent variables x_{μ_m} . Let $y_i^{(n)_{\mu_m}}$ denote the n^{th} partial derivative of y_i with respect to x_{μ_m} . Given a total of M independent variables, functionals of multiple functions y_i and higher order derivatives $y_i^{(n)_{\mu_m}}$, the Euler-Lagrange equation for each y_i is as follows

$$\frac{\partial F}{\partial y_i} + \sum_{n=1}^{N} \sum_{\mu_1 \le \dots \le \mu_n} (-1)^n \frac{d^n}{dx_{\mu_1} \dots dx_{\mu_n}} \left(\frac{\partial F}{\partial y_i^{(1)_{\mu_1}} \dots \partial y_i^{(1)_{\mu_n}}} \right) = 0$$
 (8)

Note that μ_m is an arbitrary reference to any x_m . Hence x_{μ_1} may be equal to x_{μ_2} even though $x_1 \neq x_2$. For 3 independent variables x_1 , x_2 and x_3 , and n = 2, we have that

$$\sum_{\mu_1 \le \dots \le \mu_2} dx_{\mu_1} dx_{\mu_2} = dx_{\mu_1}^2 + dx_{\mu_1} dx_{\mu_2} + dx_{\mu_1} dx_{\mu_3} + dx_{\mu_2}^2 + dx_{\mu_2} dx_{\mu_3} + dx_{\mu_3}^2$$

For the sample example, but with n = 1, we have

$$\sum_{\mu_1 \le \dots \le \mu_1} dx_{\mu_1} dx_{\mu_1} = dx_{\mu_1}^2 + dx_{\mu_2}^2 + dx_{\mu_3}^2$$

1.6 Constraints

We will frequently want to find the stationary point of δJ subject to certain constraints.

1.6.1 Integral constraints

The simplest constraints are integral constraints

$$K = \int_{x_1}^{x_2} G(x, y, y^{(1)}, y^{(2)}, \dots) dx$$
 (9)

where K is a constant and G is a functional.

To incorporate this into our Euler-Lagrange equations, we define F_c as follows

$$F_c = F + \lambda G$$

and work with F_c in the same way we would with F, subject to the constraints being satisfied. e.g. (8) becomes

$$\frac{\partial F_c}{\partial y_i} + \sum_{n=1}^N \sum_{\mu_1 \leq \dots \leq \mu_n} (-1)^n \frac{d^n}{dx_{\mu_1} \dots dx_{\mu_n}} \left(\frac{\partial F_c}{\partial y_i^{(1)_{\mu_1}} \dots \partial y_i^{(1)_{\mu_n}}} \right) = 0$$

and our solutions must also satisfy (9).

Given multiple functionals G_m in integral constraints, F_c is given by

$$F_c = F + \sum_m \lambda_m G_m$$

and solutions to the Euler-Lagrange equations must satisfy the constraints.

1.6.2 Holonomic constraints

Equivalence constraints not involving derivatives of functions that can be expressed without an integral are referred to as holonomic constraints. They take the form

$$K = G(x, y) \tag{10}$$

where G and K are defined as in the previous section. We now define F_c as

$$F_c = F + \int_{x_1}^{x_2} \lambda(x)G(x,y)dx \tag{11}$$

where $\lambda(x)$ is a Lagrange multiplier. Take note that our Lagrange multiplier is now dependent on our independent variables. Given F_c , we proceed in the same manner as for integral constraints.

1.6.3 Non-holonomic constraints

Non-holonomic constraints are equivalence constraints that involve derivatives of functions. They are not covered.

1.7 Examples

1.7.1 Lagrangian mechanics

1.8 Variable end points

test

References

- [1] R. E. Hunt, Chapter 1 variational methods, 2002.
- [2] R.S. Schechter, *The variational method in engineering*, McGraw-Hill chemical engineering series, McGraw-Hill, 1967.
- [3] Michael Stone and Paul Goldbart, Mathematics for physics: A guided tour for graduate students, Cambridge University Press, United States, 2009.
- 2 Function spaces
- 3 Linear ordinary differential equations
- 4 Linear differential operators
- 5 Green functions