CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

Lecture 18 – Policy and value iteration

Lawrence Saul
Department of Computer Science and Engineering
University of California, San Diego

Fall 2020

Outline

- Review and demos
- Policy improvement
- Policy iteration
- **4** Value iteration

Markov decision processes

- MDP = $\{S, A, P(s'|s, a), R(s)\}$
- A policy $\pi: \mathcal{S} \to \mathcal{A}$ maps states to actions
- State and action value functions

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s \right]$$

$$Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s, a_{0} = a \right]$$

Optimality

There exists at least one policy π^* such that $V^{\pi^*}(s) \geq V^{\pi}(s)$ for all policies π and states s.

Policy evaluation

• How to compute the state value function?

$$V^{\pi}(s) = \mathrm{E}^{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s\right]$$

Bellman equation:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) V^{\pi}(s')$$

Solve linear system:

$$\begin{bmatrix} R \\ \end{bmatrix} = \begin{bmatrix} I - \gamma P^{\pi} \\ \end{bmatrix} \begin{bmatrix} V^{\pi} \\ \end{bmatrix}$$

$$\begin{array}{ccc} n \times 1 & n \times n & n \times 1 \\ \text{vector} & \text{matrix} & \text{vector} \end{array}$$

Policy improvement

• Greedy policy:

$$\pi'(s) = \underset{a}{\operatorname{argmax}} Q^{\pi}(s, a)$$

Theorem:

$$V^{\pi'}(s) \geq V^{\pi}(s)$$
 for all states $s \in \mathcal{S}$

Intuition:

If it's better to choose action a in state s before following π , then it's always better to make this choice.

Proof: later today.

Policy iteration

• How to compute π^* ?

$$\pi_0 \stackrel{\text{evaluate}}{\longrightarrow} V^{\pi_0}(s) \stackrel{\text{improve}}{\longrightarrow} \pi_1 \stackrel{\text{evaluate}}{\longrightarrow} \cdots$$

This process is guaranteed to terminate. But does it converge to an optimal policy?

Theorem:

If
$$\pi'(s) = \arg\max_a Q^{\pi}(s, a)$$
 and $V^{\pi'}(s) = V^{\pi}(s)$ for all $s \in \mathcal{S}$, then $V^{\pi}(s) = V^{*}(s)$ for all $s \in \mathcal{S}$.

Proof: later today.

Demo — policy iteration

How to exit the maze with high probability?

${\cal S}$	location in maze
${\cal A}$	$\{\uparrow,\leftarrow,\downarrow, ightarrow\}$
P(s' s,a)	move with some probability in direction of arrow
R(s)	+1 (exit), -1 (dragon), 0 (otherwise)
γ	0.99 (close to one)

Demo — no uncertainty

Agent moves **deterministically** in the direction of the action.

Converges in 14 iterations.

Demo — low uncertainty

Agent moves with **low probability** in unintended direction.

Converges in 3 iterations.

Demo — high uncertainty

Agent moves with high probability in unintended direction.

Converges in 3 iterations.

Outline

- Review
- Policy improvement
- Policy iteration
- Value iteration

Policy improvement theorem

Theorem

The greedy policy $\pi'(s) = \arg \max_a Q^{\pi}(s, a)$ improves everywhere on the policy π from which it was derived:

$$V^{\pi'}(s) \, \geq \, V^{\pi}(s)$$
 for all states $\, s \in \mathcal{S} \,$

Intuition

If it's better to choose action a in state s before following π , then it's always better to make this choice.

Proof idea

We'll prove a key inequality for *one-step deviations* from π , then we'll extend this inequality by an iterative argument.

Proof — 1. Deriving the inequality

Comparing value functions:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\leq \max_{a} Q^{\pi}(s, a)$$

$$= Q^{\pi}(s, \pi'(s))$$

$$= R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) V^{\pi}(s')$$

Combining these steps:

$$V^{\pi}(s) \leq R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) V^{\pi}(s')$$

Intuition:

It is better to take one step under π' , then revert to π , than to always follow π .

Proof — 2. Leveraging the inequality

One-step inequality:

$$V^{\pi}(s) \leq R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) V^{\pi}(s')$$

What happens if we plug this inequality into itself? Then we obtain ...

• Two-step inequality:

$$V^{\pi}(s) \leq R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) \left[R(s') + \gamma \sum_{s''} P(s''|s', \pi'(s')) V^{\pi}(s'') \right]$$

Intuition:

It is better to take **two** steps under π' , then revert to π , than to always follow π .

Proof — 3. Taking the limit

• Two-step inequality:

$$V^{\pi}(s) \leq R(s) + \frac{\gamma}{s} \sum_{s'} P(s'|s, \pi'(s)) \left[R(s') + \frac{\gamma}{s} \sum_{s''} P(s''|s', \pi'(s')) V^{\pi}(s'') \right]$$

• Apply the inequality t times:

It is better to take t steps under π' , then revert to π , than to always follow π . Last term is of order $O(\gamma^t)$.

• Take the limit $t \to \infty$:

It is better to follow π' (always) than to follow π (always). Conclude that $V^{\pi}(s) \leq V^{\pi'}(s)$ for all states $s \in \mathcal{S}$.

Outline

- Review
- Policy improvement
- Policy iteration
- Value iteration

Policy iteration

• How to compute π^* ?

$$\pi_0 \stackrel{ ext{evaluate}}{\longrightarrow} V^{\pi_0}(s) \stackrel{ ext{improve}}{\longrightarrow} \pi_1 \stackrel{ ext{evaluate}}{\longrightarrow} \cdots$$

This process is guaranteed to terminate. But does it converge to an optimal policy?

Theorem

If
$$\pi'(s) = \arg\max_a Q^{\pi}(s, a)$$
 and $V^{\pi'}(s) = V^{\pi}(s)$ for all $s \in \mathcal{S}$, then $V^{\pi}(s) = V^{*}(s)$ for all $s \in \mathcal{S}$.

Proof idea

Prove a key equality/inequality for terminal/non-terminal policies; iterate t times, then compare the limits as $t \to \infty$.

Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to π' .

$$V^{\pi'}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) V^{\pi'}(s')$$
 Bellman equation $V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi'(s)) V^{\pi}(s')$ at convergence

Now exploit that π' is greedy with respect to π ...

Bellman optimality equation

$$V^{\pi}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

These equations are nonlinear due to the max operation. There are n equations for n unknowns (where s = 1, 2, ..., n).

Proof — 2. Inequality

• Let $\tilde{\pi}$ be any policy of the MDP:

$$V^{\tilde{\pi}}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \tilde{\pi}(s)) V^{\tilde{\pi}}(s')$$
 Bellman equation
$$V^{\tilde{\pi}}(s) \leq R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{\tilde{\pi}}(s')$$
 greedy

Compare to Bellman optimality equation (BOE):

$$V^{\pi}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)) V^{\pi}(s')$$

• Understanding the difference:

The inequality holds for any policy $\tilde{\pi}$ of the MDP. The **BOE** only holds for a solution π from policy iteration.

Proof — 3. Taking the limit

• Iterating the inequality:

$$V^{\tilde{\pi}}(s) \leq R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{\tilde{\pi}}(s')$$

$$\leq R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) \left[R(s') + \gamma \max_{a'} \sum_{s''} P(s''|s', a') V^{\tilde{\pi}}(s'') \right]$$

Iterating the BOE:

$$V^{\pi}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{\pi}(s')$$

$$= R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) \left[R(s') + \gamma \max_{a'} \sum_{s''} P(s''|s', a') V^{\pi}(s'') \right]$$

• Iterating t times:

Both right sides agree up to term of order γ^t . Taking the limit $t \to \infty$, we find $V^{\tilde{\pi}}(s) \leq V^{\pi}(s)$ for all $s \in \mathcal{S}$.

Since $\tilde{\pi}$ is arbitrary, we conclude that π is optimal .

Policy iteration in practice

Pros and cons

- [+] Policy iteration converges quickly in practice.
- [-] But each iteration costs $O(n^2)$ for policy evaluation.

Speedups for policy evaluation

HW 9.5 describes a fast iterative approximation. Sparse matrices $P(s'|s, \pi(s))$ may simplify policy evaluation.

Outline

- Review
- Policy improvement
- Policy iteration
- **Value iteration**

Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the combinatorially large space of policies in the MDP.

Is there another way?

Given an MDP = $\{S, A, P(s'|s, a), R(s), \gamma\}$, recall how its optimal policies and value functions are connected:

$$\pi^*(s) = \operatorname{argmax}_{a} \left[Q^*(s, a) \right]$$

$$= \operatorname{argmax}_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) V^*(s') \right]$$

So if we can directly compute the optimal value function $V^*(s)$, then we can use it to derive an optimal policy π^* .

Bellman optimality equation

Derivation:

$$V^*(s) = \max_{a} \left[Q^*(s, a) \right]$$
$$= \max_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) V^*(s') \right]$$

Solution?

Suppose we know the parameters $\{R(s), P(s'|s, a), \gamma\}$. Then the above gives us n equations for n unknowns:

$$V^*(s) = \max_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) V^*(s') \right]$$

But how to solve these **nonlinear** equations for $V^*(s)$?

Value iteration

Idea in a nutshell

Replace the equality sign in the Bellman optimality equation by an assignment operation:

$$V^*(s) = \max_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) \ V^*(s') \right]$$
 BOE
$$V_{\text{new}}(s) \longleftarrow \max_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) \ V_{\text{old}}(s') \right]$$
 algorithm

Why this might work

The value function $V^*(s)$ is a *fixed point* of this iteration. But does this iteration always converge to a valid solution?

Algorithm for value iteration

- **1** Initialize: $V_o(s) = 0$ for all $s \in S$.
- 2 Iterate until convergence:

$$V_{k+1}(s) = \max_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s,a) V_k(s') \right]$$
 for all $s \in \mathcal{S}$.

Solve for optimal policy:

$$Q_k(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) V_k(s'),$$

 $\pi^*(s) = \lim_{k \to \infty} \underset{a}{\text{argmax}} Q_k(s, a).$

Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the **combinatorial** space of policies. VI searches through the **continuous** space of value functions.

Convergence:

PI converges in a finite number of steps. VI converges asymptotically (in the limit).

Next lecture:

Proof of convergence for value iteration. More demos, effect of discount factor, etc.

Final exam update

Basic information:

- It will be a take-home, open-book exam.
- It is designed to take about one afternoon.
- Okay to check (but not do) work in Python, R, Matlab, Mathematica, etc.
- No collaboration is allowed.
- Questions will be broken down into simpler parts (like HW).
- Roughly speaking: $\frac{2}{3}$ straightforward, $\frac{1}{3}$ novel (but familiar).
- Solutions will be collected via Gradescope.
- For MS students in CSE: the final is the comprehensive exam.

Tentative plans (to be confirmed):

- Sun Dec 5 @ noon to Mon Dec 6 @ noon (PST)
- 10-12 questions with parts of varying difficulty
- 100 points total