Rules of Differentiation

"Civilization advances by extending the number of important operatons which can be performed without thinking about them." --- A.N. Whitehead

Rule name (if any)	f(x)	$\frac{df}{dx}$
	any constant c	0
	x^n	$n x^{n-1}$
	c u(x)	$c \frac{du}{dx}$
The Sum rule	u(x) + v(x)	$\frac{du}{dx} + \frac{dv}{dx}$
The Product rule	u(x) v(x)	$u(x)\frac{dv}{dx} + v(x)\frac{du}{dx}$

The Quotient rule	$\frac{u(x)}{v(x)}$	$\frac{v(x)\frac{du}{dx} - u(x)\frac{dv}{dx}}{\left(v(x)\right)^2}$
The Chain rule	$y\left(u(x) ight)$	$\frac{dy}{du} \frac{du}{dx}$
The Power rule	$(u(x))^n$	$n \left(u(x) \right)^{n-1} \frac{du}{dx}$
	$\sin(x)$	$\cos(x)$
	$\cos(x)$	$-\sin(x)$
	$\tan(x)$	$\sec^2(x)$
	$\cot(x)$	$-\csc^2(x)$
	$\sec(x)$	$\sec(x) \tan(x)$
	$\csc(x)$	$-\csc(x)\cot(x)$

$\ln(x)$	$\frac{1}{x}$
e^x	e^x
$\tan^{-1}(x)$	$\frac{1}{1+x^2}$
$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
$\tanh(x)$	$\operatorname{sech}^2(x)$
$\coth(x)$	$-\mathrm{csch}^2(x)$
$\operatorname{sech}(x)$	$-\mathrm{sech}(x) \tanh(x)$
$\operatorname{csch}(x)$	$-\operatorname{csch}(x) \operatorname{coth}(x)$

Back to the Calculus page | Back to the World Web Math top page

watko@mit.edu
Last modified October 14, 1999