# Machine Learning

July 2018

# What is machine learning?

#### Algorithms autonomously learning from data.

Given data, an algorithm tunes its **parameters** to match the data, understand how it works, and make predictions for what will occur in the future.





### Everyone uses machine learning

"Machine learning drives our algorithms for demand forecasting, product search ranking, product and deals recommendations, merchandising placements, fraud detection, translations, and much more."

Jeff Bezos, founder of Amazon











### What is the basic machine learning process?



### What is a model?

A model is a **formal** (mathematical) procedure describing the relationships between variables.

Most data have one main **criterion** or variable of interest, and several **features**.

| id | sex | age | fam_history | smoking | disease |
|----|-----|-----|-------------|---------|---------|
| 1  | m   | 45  | No          | FALSE   | 0       |
| 2  | m   | 43  | Yes         | FALSE   | 1       |
| 3  | f   | 40  | Yes         | FALSE   | 1       |
| 4  | m   | 51  | Yes         | FALSE   | 1       |
| 5  | m   | 44  | No          | TRUE    | 0       |

#### **Decision Tree**



Weighted Additive (Regression)

### What is model training?

Model **training** (aka, fitting) is the process of matching a model's **parameters** to a specific dataset.

Q: What are the parameters in the two models on the right?

| id | sex | age | fam_history | smoking | disease |
|----|-----|-----|-------------|---------|---------|
| 1  | m   | 45  | No          | FALSE   | 0       |
| 2  | m   | 43  | Yes         | FALSE   | 1       |
| 3  | f   | 40  | Yes         | FALSE   | 1       |
| 4  | m   | 51  | Yes         | FALSE   | 1       |
| 5  | m   | 44  | No          | TRUE    | 0       |

#### **Decision Tree**



Weighted Additive (Regression)

# Fit your own linear model!



# Fit your own linear model!



# Fit your own linear model!



### Why do we separate training from prediction?

Just because a model can **fit past data** well, does necessarily mean that it will **predict new data well**.

Anyone can come up with a model of past data (e.g.; stock performance, lottery winnings).

Predicting what you can't see in the future is much more difficult.







# "Can you come up with a model that will perfectly match past data but is worthless in predicting future data?"

#### Past **Training** Data

| id | sex | age | fam_history | smoking | disease |
|----|-----|-----|-------------|---------|---------|
| 1  | m   | 45  | No          | FALSE   | 0       |
| 2  | m   | 43  | Yes         | FALSE   | 1       |
| 3  | f   | 40  | Yes         | FALSE   | 1       |
| 4  | m   | 51  | Yes         | FALSE   | 1       |
| 5  | m   | 44  | No          | TRUE    | 0       |

#### Future **Test** Data

| id | sex | age | fam_history | smoking | disease |
|----|-----|-----|-------------|---------|---------|
| 91 | m   | 51  | Yes         | TRUE    | ?       |
| 92 | f   | 47  | No          | TRUE    | ?       |
| 93 | m   | 39  | No          | TRUE    | ?       |
| 94 | f   | 51  | Yes         | TRUE    | ?       |
| 95 | f   | 50  | Yes         | FALSE   | ?       |

## Two types of prediction tasks

#### **Classification Task**



Is that a pedestrian?



What kind of consumer is this?



Heart attack?



#### **Regression Task**



What will the price of bitcoin be in a year?



What will the orange yield be? How expensive will this project be?





### What machine learning algorithms are there?

There are thousands of machine learning algorithms from many different fields.

Wikipedia lists 57 categories of machine learning algorithms:



#### Algorithims we focus on

We will focus on 3 algorithms that apply to most ML tasks:

| Algorithm         | Complexity      |
|-------------------|-----------------|
| Decision<br>Trees | Low             |
| Regression        | Low /<br>Medium |
| Random<br>Forests | High            |

### How do you fit and evaluate ML models in R?

ML models work the same way you fit standard statistical models. Install the package, load, and find the main fitting functions.

```
# Install the glmnet package
install.packages("glmnet")

# Load glmnet
library(glmnet)

# Look at help menu
?glmnet
```

Note: Some functions will use the standard FUN(formula, data) arguments, but others (like glmnet()) require other arguments, like x, y (numeric matrices).



### Regression

In regression, the criterion is modeled as the **sum of predictors times weights** , .

#### Loan example

For instance, one could model the risk of defaulting on a loan as:

Training a model means finding values of that 'best' match the training data.



#### Regression with glm()

The glm() function in the base stats package performs standard regression

### **Decision Trees**

In decision trees, the criterion is modeled as a sequence of logical YES or NO questions.

#### Loan example



#### Decision trees with rpart

This codes runs decision trees with functions from the rpart-package.

### Random Forest

In Random Forest, the criterion is models as the aggregate prediction of a large number of decision trees each based on different features.

#### Loan example



#### Random Forests with randomforest

#### Tuning parameters

| Parameter | Description                                     |
|-----------|-------------------------------------------------|
| ntree     | Number of trees in forest                       |
| mtry      | Number of variables randomly selected at splits |

### Exploring ML objects

Just like objects from statistical functions, objects from machine learning functions are **lists** that you can explore using **generic functions**:

| Function             | Description                                   |  |
|----------------------|-----------------------------------------------|--|
| summary()            | Overview of the most important information    |  |
| names()              | See all named elements you can access with \$ |  |
| plot()               | Visualise the object (sometimes)              |  |
| <pre>predict()</pre> | Predict new data based on the ML model        |  |

```
# Create a regression object
 baselers_glm <- glm(income ~ age + height + children,</pre>
                     data = baselers)
# Look at summary results
summary(baselers_glm)
 # [...]
# Look at all named outputs
names(baselers_glm)
    [1] "coefficients"
                             "residuals"
                                                 "fitted.values"
                             "ar"
   [6] "rank"
                                                 "family"
## [11] "aic"
                             "null.deviance"
                                                 "iter"
                             "df.null"
                                                 "y"
## [16] "df.residual"
                                                                      '' f
## [21] "model"
                             "na.action"
                                                 "call"
## [26] "data"
                             "offset"
                                                 "control"
## [31] "xlevels"
# Access specific outputs
baselers_glm$coefficients
                                           children
## (Intercept)
                                 height
                       age
       574.740
                   149.302
                                 1.720
                                              7.727
```

# Predict new data with predict()

All machine learning objects will allow you to **predict the criterion of new data** using predict().

Compare the predicted values to the true criterion values of newdata to see how well your model did.

| argument | description                                                                 |
|----------|-----------------------------------------------------------------------------|
| object   | A machine learning / statistical object created from glm(), randomforest(), |
| newdata  | A dataframe of new data                                                     |

Predict values from zurichers data frame:

| , | id | age | children | height | income |
|---|----|-----|----------|--------|--------|
|   | 1  | 65  | 0        | 1.66   | 7500   |
|   | 2  | 75  | 3        | 1.96   | 5400   |
|   | 3  | 35  | 1        | 1.76   | 8400   |
|   | 4  | 54  | 0        | 1.73   | 9500   |
|   | 5  | 65  | 2        | 1.59   | 3700   |

```
## 1 2 3 4 5
## 10282 11799 5811 8640 10298
```

## Practical

Link to practical