MÉTODOS NUMÉRICOS Curso 2020–2021

Entregas

Hoja 2. Resolución de sistemas lineales: métodos directos

- 1 a) Sea $A \in \mathcal{M}_n$ una matriz simétrica e inversible que puede factorizarse en la forma A = BC, siendo $B \in \mathcal{M}_n$ real y triangular inferior, $C \in \mathcal{M}_n$ real y triangular superior y verificándose que $\operatorname{diag}(B) = \operatorname{diag}(C)$. Demostrar que $C = B^{\mathrm{T}}$. Deducir que A es simétrica definida positiva.
- b) Sea $A \in \mathcal{M}_n$ una matriz real con todos sus menores principales estrictamente positivos. Demostrar que existen $B \in \mathcal{M}_n$ real y triangular inferior y $C \in \mathcal{M}_n$ real y triangular superior, con $\operatorname{diag}(B) = \operatorname{diag}(C)$, de forma que A = BC.
- **2** Sea $A \in \mathcal{M}_n$ una matriz inversible.
- a) Probar que si $A=L_1U_1=L_2U_2$, con L_1,L_2 triangulares inferiores y U_1,U_2 triangulares superiores, entonces existe una matriz $D\in\mathcal{M}_n$ diagonal e inversible de forma que $L_2=L_1D$ y $U_2=D^{-1}U_1$.
- b) Demostrar un resultado análogo para la factorización de Cholesky, en caso de que A la admita.
- c) Demostrar que si, además, A es simétrica y admite factorización LU, cada fila de U es proporcional a la correspondiente columna de L.
- **3** a) Se considera una matriz $A \in \mathcal{M}_n$ escrita en la forma

$$A = \left(\begin{array}{c|c} A_{n-1} & b \\ \hline a^{\mathrm{T}} & \alpha \end{array}\right)$$

siendo $A_{n-1} \in \mathcal{M}_{n-1}, \ a,b \in \mathbb{R}^{n-1}$ y $\alpha \in \mathbb{R}$. Demostrar que si A_{n-1} es inversible y admite factorización LU

$$A_{n-1} = L_{n-1}U_{n-1}$$

entonces existen $x,y\in\mathbb{R}^{n-1}$ y $\beta\in\mathbb{R}$ tales que

$$A = \left(\begin{array}{c|c} L_{n-1} & \mathbf{0} \\ \hline x^{\mathrm{T}} & 1 \end{array}\right) \left(\begin{array}{c|c} U_{n-1} & y \\ \hline \mathbf{0} & \beta \end{array}\right).$$

b) Demostrar, por inducción sobre la dimensión de la matriz, que si todos los menores principales de la matriz A son no nulos entonces existen L triangular inferior con unos en la diagonal y U triangular superior tales que A=LU.