ОГЛАВЛЕНИЕ

1.	Ma	трицы	
	1.1.	Определения и примеры	
	1.2.	Линейные операции на множестве матриц	
		1.2.1. Сложение	
		1.2.2. Умножение на число	
		1.2.3. Линейное пространство матриц	
	1.3.	Умножение матриц	
		1.3.1. Алгебра матриц	
	1.4.	Транспонирование матрицы	
	1.5.	Элементарные преобразования	
2.	Опр	ределитель матрицы	
	2.1.	Перестановки	
	2.2.	Определение определителя квадратной матрицы	
	2.3.	Определители малых порядков	
	2.4.	Определитель верхней треугольной матрицы	
	2.5.	Лемма о знаке члена определителя	
3.	Свойства определителя		
	3.1.	Простейшие свойства	
	3.2.	Вычисление определителя матрицы с помощью приведения	
		ее к верхней треугольной матрице	
	3.3.	Определитель блочно-треугольной матрицы	
	3.4.	Миноры и алгебраические дополнения	
	3.5.	Разложение определителя по строке (столбцу)	
	3.6.	Определитель произведения матриц	
4.	Обр	ратная матрица	
	4.1.	Обратная матрица	
	4.2.	Матричные уравнения	
5.	Системы линейных алгебраических уравнений (СЛАУ)		
	5.1.	Основные определения	
	5.2.	Матричная запись СЛАУ	
	5.3.	СЛАУ с квадратной невырожденной матрицей	
		5.3.1. Решение СЛАУ с помощью обратной матрицы	

6.	Спи	сок литературы	65
	5.6.	Нахождение обратной матрицы методом элементарных преобразований	62
		Метод Гаусса решения и исследования произвольных СЛАУ	54
	5.4.	Эквивалентность СЛАУ	53
		5.3.2. Решение СЛАУ методом Крамера	52

1. МАТРИЦЫ

1.1. Определения и примеры

Определение 1.1. $Mampuyeŭ\ A$ размера $m \times n$ называется прямоугольная таблица, состоящая из m строк и n столбцов, заполненная числами, называемыми элементами матрицы. Элемент матрицы A, стоящий в i-ой строке и j-ом столбце, обозначается буквой с двумя индексами a_{ij} , или $\{A\}_{ij}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $a_{ij} \in \mathbb{R} \ (\mathbb{R} - \text{множество действительных чисел}), \quad i = \overline{1, m}, \quad j = \overline{1, n}$ $A = (a_{ij}) \in \mathbb{R}^{m \times n} \ (\mathbb{R}^{m \times n} - \text{множество матриц размера } m \times n \,, \quad a_{ij} \in \mathbb{R}).$ Например,

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 0 & 4 & 5 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$${A}_{12} = a_{12} = -3, {A}_{23} = a_{23} = 5$$

Матрица размера $1 \times n$ называется строкой

$$A = (a_{11}, a_{12}, \dots, a_{1n}) = (a_1, a_2, \dots, a_n) \in \mathbb{R}^{1 \times n} = \mathbb{R}^n,$$

матрица размера $m \times 1$ называется столбцом

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \in \mathbb{R}^{m \times 1} = \mathbb{R}^m$$

Матрицу $A \in \mathbb{R}^{m \times n}$ можно рассматривать как совокупность строк

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}, \quad A_i = (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbb{R}^{1 \times n} = \mathbb{R}^n, \quad i = \overline{1, m}$$

или как совокупность столбцов

$$A = (A^1, A^2, \dots, A^n), \quad A^j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} \in \mathbb{R}^{m \times 1} = \mathbb{R}^m, \quad j = \overline{1, n}$$

Матрица $A \in \mathbb{R}^{n \times n}$ размера $n \times n$ называется $\kappa вадратной$ матрицей $nopя d\kappa a \ n.$

Квадратная матрица имеет две диагонали: главная диагональ идет из левого верхнего угла в правый нижний, побочная диагональ — из левого нижнего в правый верхний.

Элементы a_{ii} , стоящие на главной диагонали, называются ∂u агональными.

Квадратная матрица называется ∂u агональной, если все ее элементы вне главной диагонали, равны нулю, она обозначается $diag(a_{11}, a_{22}, \dots, a_{nn})$.

Квадратная матрица называется *верхней треугольной*, если все ее элементы, стоящие ниже главной диагонали, равны нулю, и *нижней треугольной*, если все ее элементы, стоящие выше главной диагонали равны нулю.

Например,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = diag(1,2,3)$$
— диагональная матрица,

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
 — верхняя треугольная матрица.

Определение 1.2. Две матрицы A и B называются pавными, если они одинакового размера и их соответствующие элементы совпадают.

1.2. Линейные операции на множестве матриц

1.2.1. Сложение

Определение 1.3. Суммой матриц $A=(a_{ij})\in\mathbb{R}^{m\times n}$ и $B=(b_{ij})\in\mathbb{R}^{m\times n}$ называется матрица $C=(c_{ij})\in\mathbb{R}^{m\times n}$, такая что

$$c_{ij} = a_{ij} + b_{ij}, \qquad i = \overline{1, m}; \qquad j = \overline{1, n}$$

$$C = A + B$$

Пример 1.1.

$$A = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 3 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \quad B = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$
$$A + B = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 3 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 4 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

1.2.2. Умножение на число

Определение 1.4. Произведением матрицы $A=(a_{ij})\in\mathbb{R}^{m\times n}$ на число $\alpha\in\mathbb{R}$ называется матрица $D=(d_{ij})\in\mathbb{R}^{m\times n}$ такая, что

$$d_{ij} = \alpha a_{ij}$$
 $i = \overline{1, m}, \quad j = \overline{1, n}.$

Пример 1.2.

$$A = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 3 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \qquad (-1)A = \begin{pmatrix} 0 & -1 & 2 \\ -2 & -3 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

1.2.3. Линейное пространство матриц

Теорема 1.1. Операции сложения и умножения на число на множестве $\mathbf{V} = \mathbb{R}^{m \times n}$ обладают следущими свойствами:

$$1)A + B = B + A$$
 $\forall A, B \in \mathbf{V}$ (коммутативность сложения),

$$(2)(A+B)+C=A+(B+C) \ \forall A,B,C \in \mathbf{V}$$
 (ассоциативность сложения),

$$3)\exists \overline{\mathbf{O}} \in \mathbf{V} : A + \overline{\mathbf{O}} = \overline{\mathbf{O}} + A = A \quad \forall A \in \mathbf{V}$$

(существование нейтрального элемента),

$$A \ni A \in \mathbf{V} \exists (-A) : A + (-A) = (-A) + A = \overline{\mathbf{O}}$$

(существование противоположного элемента),

$$5)1 \cdot A = A \quad \forall A \in \mathbf{V}, 1 \in \mathbb{R}$$

$$6)(\alpha\beta)A = \alpha(\beta A) \qquad \forall A \in \mathbf{V}, \quad \forall \alpha, \beta \in \mathbb{R},$$

$$7)\alpha(A+B) = \alpha A + \alpha B \quad \forall A, B \in \mathbf{V}, \quad \forall \alpha \in \mathbb{R},$$

8)
$$(\alpha + \beta)A = \alpha A + \beta A$$
, $\forall A \in \mathbf{V}$, $\forall \alpha, \beta \in \mathbb{R}$,

(свойства 7), 8) называются свойствами дистрибутивности),

◄ Свойства 1,2,5,6,7,8 выполняются на множестве матриц $\mathbf{V} = \mathbb{R}^{m \times n}$ в силу того, что аналогичные свойства верны для множества действительных чисел \mathbb{R} , а операции сложения и умножения на число для матриц определены поэлементно.

Свойство 3 выполняется, т.к. роль нейтрального элемента в $\mathbb{R}^{m \times n}$ выполняет нулевая матрица $\mathbf{O} \in \mathbb{R}^{m \times n}$, все элементы которой равны нулю.

Свойство 4 выполняется, т.к. если $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, то $(-A) = (-a_{ij}) \in \mathbb{R}^{m \times n}$. \blacktriangleright

Определение 1.5. Любое множество V с введенными на нем операциями сложения ($\forall A, B \in V \Rightarrow A + B \in V$) и умножения на число ($\forall A \in V, \forall \alpha \in \mathbb{R} \Rightarrow \alpha A \in V$), обладающими свойствами 1)-8), называется линейным пространством над \mathbb{R} .

Операции сложения и умножения на число называются линейными операциями. Свойства 1)-8) называются аксиомами линейного пространства.

Линейное пространство — основной объект изучения линейной алгебры.

Теорема 1.1 утверждает, что $\mathbf{V} = \mathbb{R}^{m \times n}$ является примером линейного пространства. (\mathbb{R} , \mathbb{R}^n также являются линейными пространствами.)

Определение 1.6. В любом линейном пространстве можно определить линейную комбинацию его элементов $A_1, A_2, ... A_k \in \mathbf{V}$ с коэффициентами $\alpha_1, \alpha_2, ... \alpha_k \in \mathbb{R}$

$$\alpha_1 A_1 + \alpha_2 A_2 + \ldots + \alpha_k A_k = \sum_{i=1}^k \alpha_i A_i \in \mathbf{V}.$$

Пример 1.3.

$$A_1, A_2, A_3 \in \mathbb{R}^{2 \times 2} \quad A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$$
$$2A_1 - A_2 - 3A_3 = 2A_1 + (-1)A_2 + (-3)A_3 = \begin{pmatrix} 2 & -1 \\ -4 & -6 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

Пример 1.4.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -3 & -2 & -1 \\ -5 & -6 & -7 \end{pmatrix}$$

В матрице A третья строка является линейной комбинацией первых двух $A_3 = -2A_1 + A_2, \quad A_1, A_2, A_3 \in \mathbb{R}^3.$

1.3. Умножение матриц

Определение 1.7. Определим сначала произведение строки $A \in \mathbb{R}^{1 \times k}$ на столбец $B \in \mathbb{R}^{k \times 1}$ (число элементов в строке A равно числу элементов в столбце B).

$$AB = (a_1, a_2, \dots, a_k) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix} = a_1b_1 + a_2b_2 + \dots + a_kb_k = \sum_{\ell=1}^k a_\ell b_\ell \in \mathbb{R}.$$

Определение 1.8. Произведением матрицы $A \in \mathbb{R}^{m \times k}$ на матрицу $B \in \mathbb{R}^{k \times n}$ называется матрица $C \in \mathbb{R}^{m \times n}$

$$C = AB = \begin{pmatrix} A_1B^1 & A_1B^2 & \dots & A_1B^n \\ A_2B^1 & A_2B^2 & \dots & A_2B^n \\ \dots & \dots & \ddots & \dots \\ A_mB^1 & A_mB^2 & \dots & A_mB^n \end{pmatrix} \qquad \begin{matrix} A_i - i \text{-} \text{я строка матрицы } A, \\ B^j - j \text{-} \text{й столбец матрицы } B. \end{matrix}$$

 $\{C\}_{ij}=c_{ij}=A_iB^j=\sum_{\ell=1}^na_{i\ell}b_{\ell j}. \qquad i=\overline{1,m},\ j=\overline{1,n}$ Заметим, что проиведение матриц определено только тогда, когда

их размеры согласованы, а именно число столбцов первого сомножителя равно числу строк второго сомножителя.

Пример 1.5. Пусть
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, \quad B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 2},$$
 тогда $AB = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} =$

$$= \begin{pmatrix} 2 \cdot 1 + 1 \cdot 0 + 0 \cdot 2 & 2 \cdot 2 + 1 \cdot 1 + 0 \cdot 0 \\ 3 \cdot 1 + 1 \cdot 0 + 2 \cdot 2 & 3 \cdot 2 + 1 \cdot 1 + 2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 7 & 7 \end{pmatrix},$$

$$BA = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 3 & 4 \\ 3 & 1 & 2 \\ 4 & 2 & 0 \end{pmatrix}$$

Пример 1.6.
$$A = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \quad B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$AB = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 5 & 2 \\ 0 & 2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}, BA$$
 не существует.

Пример 1.7.
$$A = (0,1,2) \in \mathbb{R}^{1 \times 3}, \qquad B = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{R}^{3 \times 1}$$

$$AB = (0,1,2) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 1 \in \mathbb{R} = \mathbb{R}^{1 \times 1},$$

$$BA = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} (0,1,2) = \begin{pmatrix} 0 & 1 & 2 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
 Пример 1.8. $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

Примеры показывают, что умножение матриц не обладает свойством коммутативности, т.е., вообще говоря, $AB \neq BA$.

 $BA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Определение 1.9. Квадратная матрица называется $e\partial$ иничной (обозначение E), если на ее главной диагонали стоят единицы, а все остальные элементы равны 0.

$$\{E\}_{ij}=\delta_{ij}=\left\{egin{array}{ll} 1 & i=j \\ 0 & i
eq j \end{array}\right.$$
 $\left(\delta_{ij} ext{ называется символом Кронекера}
ight).$

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Например,

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \qquad E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

Матрица E выполняет роль нейтрального элемента ("единицы") относительно умножения.

Если $A \in \mathbb{R}^{m \times n}$, $E \in \mathbb{R}^{n \times n}$, то AE =

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = A,$$

аналогично, если $A \in \mathbb{R}^{m \times n}$, $E \in \mathbb{R}^{m \times m}$, то EA = A.

Теорема 1.2. Операция умножения матриц обладает свойствами:

1)
$$(AB)C = A(BC)$$
 (ассоциативность),

2)
$$(\alpha A)B = \alpha(AB)$$
, $A(\alpha B) = \alpha(AB)$ $\forall \alpha \in \mathbb{R}$,

3)
$$A(B+C) = AB + AC$$
, $(B+C)A = BA + CA$,

$$4)AE = A, \qquad EA = A$$

для любых матриц A, B, C, E, размеры которых таковы, что левые части равенств имеют смысл.

1)Докажем, что умножение матриц ассоциативно.

$$(AB)C$$
 определено $\Longrightarrow A \in \mathbb{R}^{k \times \ell}, \ B \in \mathbb{R}^{\ell \times m}, \ C \in \mathbb{R}^{m \times n} \Longrightarrow$

A(BC) также определено, причем, $(AB)C \in \mathbb{R}^{k \times n}$ и $A(BC) \in \mathbb{R}^{k \times n}$, т.е. матрицы (AB)C и A(BC) одного размера.

Покажем, что соответствующие элементы этих двух матриц совпадают

$$\{(AB)C\}_{ij} = \left(\sum_{p=1}^{m} \{AB\}_{ip} \{C\}_{pj}\right) = \sum_{p=1}^{m} \left(\sum_{r=1}^{\ell} a_{ir} b_{rp}\right) c_{pj} = \sum_{p=1}^{m} \sum_{r=1}^{\ell} a_{ir} b_{rp} c_{pj}.$$

$$\{A(BC)_{ij} = \left(\sum_{s=1}^{\ell} \{A\}_{is} \{BC\}_{sj}\right) = \sum_{s=1}^{\ell} a_{is} \left(\sum_{t=1}^{m} b_{st} c_{tj}\right) = \sum_{s=1}^{\ell} \sum_{t=1}^{m} a_{is} b_{st} c_{tj} = \sum_{t=1}^{m} \sum_{s=1}^{\ell} a_{is} b_{st} c_{tj} \implies \{(AB)C\}_{ij} = \{A(BC)_{ij} \Longrightarrow (AB)C = A(BC)\}_{ij} = \{A(BC)_{ij} \Longrightarrow (AB)C \}_{ij} = \{A(BC)_{ij}$$

Остальные свойства непосредственно следуют из определения умножения матриц.

Докажем, например, 2) $(\alpha A)B = \alpha(AB)$.

если
$$A \in \mathbb{R}^{m \times k}$$
, $B \in \mathbb{R}^{k \times n} \Longrightarrow (\alpha A)B$, $\alpha(AB) \in \mathbb{R}^{m \times n}$

$$\{(\alpha A)B\}_{ij} = \sum_{\ell=1}^{k} (\alpha a_{i\ell})b_{\ell j} = \alpha \sum_{\ell=1}^{k} a_{i\ell}b_{\ell j} = \{\alpha(AB)\}_{ij}$$
$$\Longrightarrow (\alpha A)B = \alpha(AB)$$

1.3.1. Алгебра матриц

На множестве квадратных матриц n-го порядка $\mathbb{R}^{n\times n}$ определены операции сложения и умножения на число, обладающие свойствами 1)-8) теоремы 1.1, и операция умножения матриц, обладающая свойствами 1)-4) теоремы 1.2. Это означает, что множество $\mathbb{R}^{n\times n}$ с этими операциями является accoquamuehoŭ алгеброй c единицей.

В $\mathbb{R}^{n \times n}$ можно определить возведение матрицы в степень с натуральным показателем и нулевую степень. Пусть $A \in \mathbb{R}^{n \times n}, k \in \mathbb{N}$ (N-множество натуральных чисел), положим $A^k = \underbrace{A \cdot A \cdots A}_{k \text{ раз}}$ и $A^0 = E$.

В $\mathbb{R}^{n\times n}$ можно определить также многочлен от матрицы. Пусть $f(t)=a_0t^m+a_1t^{m-1}+\ldots+a_{m-1}t+a_m=a_0t^m+a_1t^{m-1}+\ldots+a_{m-1}t+a_mt^0$ многочлен от переменной t с коэффициентами $a_i\in\mathbb{R},\ i=\overline{1,m}.$ Для $A\in\mathbb{R}^{n\times n}$, положим $f(A)=a_0A^m+a_1A^{m-1}+\ldots+a_{m-1}A+a_mE\in\mathbb{R}^{n\times n}$

Пример 1.9.
$$f(t) = 2t^2 - 3t + 5$$
, $A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$.

$$f(A) = 2A^{2} - 3A + 5E =$$

$$= 2\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} - 3\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$= 2 \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} - 3 \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} + 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & -8 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 6 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 0 & 4 \end{pmatrix}$$

1.4. Транспонирование матрицы

Определение 1.10. Транспонированием матрицы $A \in \mathbb{R}^{m \times n}$ называется построение матрицы $A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$, в i-ый столбец которой записываются по порядку элементы i-ой строки матрицы $A, \forall i = \overline{1, m}$, (при этом в j-ой строке матрицы A^{T} оказываются записанными по порядку элементы j-го столбца матрицы $A \ \forall j = \overline{1, n}$).

Матрица $A^{\mathrm{\scriptscriptstyle T}}$ называется mpансnoнupoванной для матрицы A.

Если
$$A=(a_{ij})\in\mathbb{R}^{m\times n}$$
, то $A^{^{\mathrm{T}}}=(a_{ij}^{^{\mathrm{T}}})\in\mathbb{R}^{n\times m}$ и $a_{ij}^{^{\mathrm{T}}}=a_{ji}\quad \forall i=\overline{1,m},\quad \forall j=\overline{1,n}\,.$

Например,

1)
$$(a_1, a_2, \dots, a_n)^{\mathrm{T}} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}^{\mathrm{T}} = (a_1, a_2, \dots, a_n),$$
2) $\begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 2 & 3 \\ -1 & 0 \\ 0 & 1 \end{pmatrix},$

$$\begin{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 2 & 3 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

Заметим, что транспонированная матрица $A^{\mathrm{\scriptscriptstyle T}}$ будет того же размера, что и данная A, в том и только в том случае, если A – квадратная матрица.

Определение 1.11. Квадратная матрица A называется cummempu-ueckoŭ, если она не изменяется при транспонировании, т.е. $A^{\mathsf{T}} = A$.

Например,

$$\left(\begin{array}{cc} 1 & 3 \\ 3 & -2 \end{array}\right)^{\mathrm{T}} = \left(\begin{array}{cc} 1 & 3 \\ 3 & -2 \end{array}\right)$$

Определение 1.12. Квадратная матрица A называется кососимметрической, если при транспонировании все ее элементы меняют знак, т.е. $A^{\mathrm{T}} = -A$.

Например,

$$\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix}$$

Теорема 1.3. Операция транспонирования обладает следующими свойствами:

$$(A^{\mathrm{T}})^{\mathrm{T}} = A \qquad \forall A \in \mathbb{R}^{m \times n},$$

$$2)(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}} \qquad \forall A, B \in \mathbb{R}^{m \times n},$$

$$(\lambda A)^{\mathrm{T}} = \lambda A^{\mathrm{T}} \qquad \forall A \in \mathbb{R}^{m \times n}, \forall \lambda \in \mathbb{R},$$

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} \qquad \forall A \in \mathbb{R}^{m \times k}, \quad \forall B \in \mathbb{R}^{k \times n}$$

◄ Свойство 1) прямо следует из определения транспонирования.

Свойства 2),3) означают, что транспонирование сохраняет линейные операции на множестве $\mathbb{R}^{m \times n}$. Эти свойства также непосредственно следуют из определения.

Докажем свойство 4). Пусть $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n} \Rightarrow AB \in \mathbb{R}^{m \times n} \Rightarrow (AB)^{\mathrm{\tiny T}} \in \mathbb{R}^{n \times m}$

$$B^{\mathrm{T}} \in \mathbb{R}^{n \times k}, \quad A^{\mathrm{T}} \in \mathbb{R}^{k \times m} \Rightarrow B^{\mathrm{T}} A^{\mathrm{T}}$$
 определено и $B^{\mathrm{T}} A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$

Таким образом, матрицы $(AB)^{\mathsf{T}}$ и $B^{\mathsf{T}}A^{\mathsf{T}}$ одного размера.

Докажем, что их соответствующие элементы совпадают.

$$\{(AB)^{\mathsf{\scriptscriptstyle T}}\}_{ij} = \{AB\}_{ji} = \sum_{\ell=1}^k a_{j\ell} b_{\ell i} = \sum_{\ell=1}^k a_{\ell j}^{\mathsf{\scriptscriptstyle T}} b_{i\ell}^{\mathsf{\scriptscriptstyle T}} = \sum_{\ell=1}^k b_{i\ell}^{\mathsf{\scriptscriptstyle T}} a_{\ell j}^{\mathsf{\scriptscriptstyle T}} = \{B^{\mathsf{\scriptscriptstyle T}} A^{\mathsf{\scriptscriptstyle T}}\}_{ij}$$

1.5. Элементарные преобразования

Определение 1.13. Элементарными преобразованиями строк матрицы называются преобразования следующих трех типов:

I) перестановка двух строк

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_j \\ \vdots \\ A_m \end{pmatrix} \xrightarrow{A_i \leftrightarrow A_j} \begin{pmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_i \\ \vdots \\ A_m \end{pmatrix},$$

II) умножение строки на число, отличное от нуля,

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_m \end{pmatrix} \xrightarrow{\alpha A_i} \begin{pmatrix} A_1 \\ \vdots \\ \alpha A_i \\ \vdots \\ A_m \end{pmatrix},$$

III) прибавление к одной строке матрицы другой ее строки, умноженной на некоторое число,

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_j \\ \vdots \\ A_m \end{pmatrix} \xrightarrow{\alpha A_i + A_j} \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ \alpha A_i + A_j \\ \vdots \\ A_m \end{pmatrix}.$$

Аналогично определяются элементарные преобразования столбцов матрицы.

Определение 1.14. *Ведущим элементом строки* называется ее первый по счету ненулевой элемент.

Матрицей ступенчатого вида называется матрица

$$\begin{pmatrix}
0 & \dots & 0 & a_{1j_1} & \dots & \dots & \dots & \dots \\
0 & \dots & \dots & 0 & a_{1j_2} & \dots & \dots & \dots \\
\dots & \dots \\
0 & \dots & \dots
\end{pmatrix},$$

в которой $a_{1j_1}, a_{2j_2} \dots a_{rj_r}$ — ведущие элементы; $j_1 < j_2 < \dots < j_r$; все элементы, находящиеся левее и ниже ступенчатой линии, огибающей ведущие элементы, равны нулю.

Например:

$$\left(\begin{array}{ccccccccccc}
0 & 0 & 5 & 2 & -3 & 0 \\
0 & 0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

Теорема 1.4. Любую матрицу с помощью элементарных преобразований строк можно привести к ступенчатому виду.

 \blacktriangleleft Опишем алгоритм приведения матрицы $A \in \mathbb{R}^{m \times n}$ к ступенчатому виду.

Шаг.1 Построение ступени.

Если матрица нулевая, то ее можно считать ступенчатой.

Если матрица ненулевая, то найдем в ней первый по счету ненулевой столбец A^{j_1} и в нем ненулевой элемент.

Если этот элемент находится не в первой строке, то поменяем местами его строку с первой. Тогда ведущим элементом первой строки будет $a_{1j_1} \neq 0$.

Прибавим к каждой строке, начиная со второй, первую строку, умноженную на такое число, чтобы все элементы столбца A^{j_1} под ведущим элементом первой строки a_{1j_1} стали нулевыми

$$-\frac{a_{ij_1}}{a_{1j_1}}A_1 + A_i, \qquad i = \overline{2, m}.$$

Таким образом мы построим первую ступень и получим матрицу вида

$$\begin{pmatrix}
0 & \dots & 0 & a_{1j_1} & \dots & \dots \\
0 & 0 & 0 & 0 & & \\
\dots & \dots & \dots & \dots & \tilde{A} & \\
0 & 0 & 0 & 0 & & &
\end{pmatrix}$$

Шаг.2 Применяя тот же алгоритм к матрице \tilde{A} , построим вторую ступень. (Элементарные преобразования матрицы \tilde{A} можно считать также элементарными преобразованиями строк большой матрицы, стоящих ниже первой строки, т.к. нулевые элементы этих строк, расположенные в первых j_1 столбцах, при элементарных преобразованиях не изменяются).

Продолжая описанный процесс, мы получим матрицу ступенчатого вида (нам потребуется совершить не более m шагов). \blacktriangleright

Пример 1.10.

Замечание. Как видно из доказательства теоремы, для приведения матрицы к ступенчатому виду достаточно использовать элементарные преобразования лишь первого и третьего типов, однако преобразования второго типа также бывают полезны.

Следствие. Любую квадратную матрицу с помощью элементарных преобразований строк можно привести к верхней треугольной матрице.

2. ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ

Чтобы ввести понятие определителя квадратной матрицы, нам потребуются сведения о перестановках из n элементов.

2.1. Перестановки

Определение 2.1. Перестановкой из n элементов $(j_1, j_2 ..., j_n)$ называется расположение чисел 1, 2, ..., n в определенном порядке.

$$j_k \in \{1, 2, \dots, n\},$$
 $j_k \neq j_\ell$ при $k \neq \ell$

Например, $\alpha_1 = (1, 2, 3)$, $\alpha_2 = (2, 1, 3)$ — перестановки из 3-х элементов **Утверждение 2.1.** Число всевозможных перестановок из n элементов равно $n! = 1 \cdot 2 \cdot 3 \cdots n$ (читается «n факториал»).

◄ Первый элемент перестановки j_1 может принимать любое значение из $1, 2, \ldots, n$, т.е. для j_1 имеется n возможностей. Элемент j_2 при выбранном j_1 может принять любое из оставшихся значений, т.е. для выбора j_2 имеется (n-1) воможность, а для выбора пары элементов j_1, j_2 существует n(n-1) вариантов. Продолжая рассуждать таким образом, мы получим, что число различных вариантов для перестановки (j_1, j_2, \ldots, j_n) равно $n(n-1)(n-2)\cdots 2\cdot 1=n!$. ▶

Пример 2.1. Найдем все перестановки из 3-х элементов (их 3! = 6 штук)

$$(1, 2, 3), (2, 1, 3), (3, 1, 2),$$

 $(1, 3, 2), (2, 3, 1), (3, 2, 1).$

Определение 2.2. Говорят, что два числа в перестановке образуют *инверсию*, если большее из них стоит левее меньшего: $j_k > j_\ell$, $k < \ell$.

Например, в перестановке (3,1,2) пары чисел 3,1 и 3,2 образуют инверсии.

Общее число инверсий в перестановке $\alpha = (j_1, j_2, \dots, j_n)$ обозначается

$$[\alpha] = [j_1, j_2, \dots, j_n]$$

Перестановка называется *четной*, если число инверсий в ней четно, и *нечетной* в противном случае.

Чтобы найти общее число инверсий, можно для каждого члена перестановки подсчитать количество чисел, стоящих правее него, но меньших его.

Пример 2.2. $\alpha = (2, 1, 5, 3, 4)$

$$[\alpha] = [2,1,5,3,4] = 1+0+2+0+0=3 \Longrightarrow \alpha$$
 –нечетная перестановка

Определение 2.3. *Транспозицией* называется обмен местами 2-х элементов перестановки.

Например, пусть

$$\alpha = (2, 1, 5, 3, 4), \quad \beta = (2, 1, 4, 3, 5).$$

Перестановка β получена из перестановки α транспозицией элементов 5 и 4.

Утверждение 2.2. При любой транспозиции элементов перестановки, четность перестановки изменяется (т.е. полученная перестановка имеет другую четность).

4

1)Докажем, что четность перестановки изменяется при транспозиции соседних элементов.

Пусть перестановка β получена из перестановки α транспозицией соседних элементов j_k, j_{k+1} .

$$\alpha = (j_1, ..., j_k, j_{k+1}, ..., j_n)$$

 $\beta = (j_1, ..., j_{k+1}, j_k, ..., j_n)$

Если $j_k > j_{k+1}$, то в α эти числа образовывали инверсию, а в β нет, следовательно,

$$[\beta] = [\alpha] - 1.$$

Если $j_k < j_{k+1}$, то $[\beta] = [\alpha] + 1$.

- $[\alpha],\,[\beta]$ отличаются на 1, следовательно, перестановки α и β имеют разную четность.
- 2) Рассмотрим в перестановке транспозицию элементов, между которыми находится ℓ элементов.

$$\alpha = (j_1, \dots, j_k, j_{k+1}, \dots, j_{k+\ell}, j_{k+\ell+1}, \dots, j_n)$$

$$\beta = (j_1, \dots, j_{k+\ell+1}, j_{k+1}, \dots, j_{k+\ell}, j_k, \dots, j_n)$$

Транспозицию элементов j_k , $j_{k+\ell+1}$ можно осуществить с помощью транспозиций соседних элементов: сначала переставим j_k с $j_{k+1}, \ldots, j_{k+\ell}, j_{k+\ell+1}$ (нам потребуется $(\ell+1)$ транспозиция), а затем переставим $j_{k+\ell+1}$ с $j_{k+\ell}, \ldots, j_{k+1}$ (нам потребуется ℓ транспозиций). Таким образом, мы осуществим транспозицию j_k и $j_{k+\ell+1}$ с помощью $(2\ell+1)$ транспозиций соседних элементов, каждая из которых изменяет четность перестановки. Следовательно, четность перестановки изменится нечетное число раз $(2\ell+1)$, т.е. изменится. \blacktriangleright

Утверждение 2.3. При $n \geqslant 2$ количество четных перестановок из n элементов равно количеству нечетных.

Составим два списка "Ч" и "Н". В список "Ч" занесем все четные перестановки, а в список "Н" все нечетные. Пусть количество перестановок в списке "Ч" равно ℓ , а списке "Н" — m. Осуществим в каждой перестановке списка "Ч" транспозицию первых двух элементов, тогда получим ℓ нечетных перестановок, которые должны содержаться в списке "Н", следовательно, $\ell \leq m$. Аналогично можно доказать, что $m \leq \ell$.

Следовательно, $\ell=m$. \blacktriangleright

Пример 2.3. Рассмотрим перестановки из 3-х элементов

$$[1,2,3] = 0 + 0 + 0 = 0 [1,3,2] = 0 + 1 + 0 = 1 [2,1,3] = 1 + 0 + 0 = 1$$

$$[2,3,1] = 1 + 1 + 0 = 2 [3,1,2] = 2 + 0 + 0 = 2 [3,2,1] = 2 + 1 + 0 = 3$$

$$"H"$$

$$(1,2,3) (1,3,2) (2,3,1) (2,1,3) (3,1,2) (3,2,1)$$

2.2. Определение определителя квадратной матрицы

Определение 2.4. Пусть
$$A=\left(\begin{array}{ccc}a_{11}&\ldots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\ldots&a_{nn}\end{array}\right)\in\mathbb{R}^{n\times n}$$
 квадратная

матрица *n*-го порядка. Ее *определителем* называется число, обозначаемое

$$\det A = |A| = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix},$$

которое находится следующим образом

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} a_{2j_2} \cdots a_{nj_n}.$$

Суммирование ведется по всевозможным перестановкам (j_1, j_2, \dots, j_n) из n элементов.

Правая часть формулы называется разложением определителя n-го порядка. Она представляет собой алгебраическую сумму произведений элементов определителя, взятых по одному из каждой строки и каждого столбца. Такие произведения называются *членами определителя*. Каждый член определителя, в котором сомножители расположены в порядке возрастания первых индексов, входит в сумму со знаком, определяемом выражением $(-1)^{[j_1,j_2,...,j_n]}$, (говорят просто «входит со знаком $(-1)^{[j_1,j_2,...,j_n]}$ »), где $(j_1,j_2,...,j_n)$ — перестановка вторых индексов.

Порядком определителя называется порядок его матрицы.

Пример 2.4. Произведение $a_{21}a_{32}a_{53}a_{35}a_{44}$ не является членом определителя 5-го порядка, т.к. 2 его сомножителя взяты из одной (третьей) строки.

Пример 2.5. Произведение $a_{21}a_{32}a_{53}a_{15}a_{44}$ является членом определителя 5-го порядка, т.к. все его сомножители взяты из разных строк и разных столбцов.

Чтобы узнать, с каким знаком входит это произведениев определитель, упорядочим его сомножители в порядке возрастания строк

$$a_{21}a_{32}a_{53}a_{15}a_{44} = a_{15}a_{21}a_{32}a_{44}a_{53}$$
.

Такое произведение входит в разложение определителя со знаком «минус», т.к. $(-1)^{[5,1,2,4,3]}=(-1)^{4+0+0+1+0}=(-1)^5=-1$.

2.3. Определители малых порядков

Выведем из общего определения правила вычисления определителей малых порядков

Правило 1.
$$n=1$$
 $\det(a_{11})=a_{11}$.
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \sum_{(j_1,j_2)} (-1)^{[j_1,j_2]} a_{1j_1} a_{2j_2}.$$

Имеются 2 перестановки двух элементов: (1,2) и (2,1). Следовательно,

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = (-1)^{[1,2]} a_{11} a_{22} + (-1)^{[2,1]} a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21}$$

В определитель 2-го порядка со знаком «плюс» входит произведение элементов, стоящих на главной диагонали, и со знаком «минус» — произведение элементов, стоящих на побочной диагонали.

Пример 2.6.

$$\begin{vmatrix} -1 & 2 \\ -3 & 4 \end{vmatrix} = (-1)4 - (-3)(2) = -4 + 6 = 2$$

Пример 2.7.

$$\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} = \cos^2 \alpha + \sin^2 \alpha = 1.$$

Правило 3.n = 3 (Правило Саррюса)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum_{(j_1, j_2, j_3)} (-1)^{[j_1, j_2, j_3]} a_{1j_1} a_{2j_2} a_{3j_3} =$$

$$= (-1)^{[1, 2, 3]} a_{11} a_{22} a_{33} + (-1)^{[2, 3, 1]} a_{12} a_{23} a_{31} + (-1)^{[3, 1, 2]} a_{13} a_{21} a_{32} +$$

$$+ (-1)^{[3, 2, 1]} a_{13} a_{22} a_{31} + (-1)^{[1, 3, 2]} a_{11} a_{23} a_{32} + (-1)^{[2, 1, 3]} a_{12} a_{21} a_{33} =$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}.$$

В определитель 3-го порядка со знаком «плюс» входят произведения элементов, стоящих на главной диагонали и в вершинах 2-х треугольников, имеющих сторону, параллельную главной диагонали, со знаком «минус»— произведения элементов, стоящих на побочной диагонали и в вершинах 2-х треугольников, имеющих сторону, параллельную побочной диагонали.

Пример 2.8.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 4 \cdot 8 \cdot 3 - 7 \cdot 5 \cdot 3 - 8 \cdot 6 \cdot 1 - 4 \cdot 2 \cdot 9 = 0.$$

Пример 2.9.

$$\begin{vmatrix} 1 & 1 & 1 \\ \sin \alpha & \sin \beta & \sin \gamma \\ \cos \alpha & \cos \beta & \cos \gamma \end{vmatrix} = \sin \beta \cos \gamma + \sin \gamma \cos \alpha + \sin \alpha \cos \beta -$$
$$-\cos \alpha \sin \beta - \sin \alpha \cos \gamma - \cos \beta \sin \gamma = \sin(\beta - \gamma) + \sin(\gamma - \alpha) + \sin(\alpha - \beta).$$

$$-\cos\alpha\sin\beta - \sin\alpha\cos\gamma - \cos\beta\sin\gamma = \sin(\beta - \gamma) + \sin(\gamma - \alpha) + \sin(\alpha - \beta).$$

Число членов определителя n! очень быстро растет с ростом n. Для определителей порядков выше 3-го вычисление их по определению становится затруднительным, а для больших n практически невозможным. Такие определители удается вычислять, пользуясь свойствами определителей, которые будут рассмотрены ниже.

2.4. Определитель верхней треугольной матрицы

Утверждение 2.4. Определитель верхней треугольной матрицы равен произведению ее элементов, стоящих на главной диагонали.

$$\begin{vmatrix} a_{11} & a_{12} & \dots & & & & \\ 0 & a_{22} & \dots & & \dots & & \\ 0 & 0 & \dots & & & & \\ 0 & 0 & \dots & a_{n-1} & a_{n-1} & \\ 0 & 0 & \dots & 0 & a_{nn} \end{vmatrix} = a_{11} a_{22} \cdots a_{nn} = \prod_{i=1}^{n} a_{ii}.$$

 \blacktriangleleft Член определителя верхней треугольной матрицы $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$ может быть отличен от нуля, только если

$$j_n = n$$
, $j_{n-1} = n - 1$, ..., $j_1 = 1$.

(Выбирая элемент из каждой строки, начиная с последней, мы не должны брать элементы, заведомо равные нулю, и элементы тех столбцов, которые были выбраны ранее.) Следовательно,

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \dots & \dots \\ 0 & 0 & \dots & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & \dots & 0 & a_{nn} \end{vmatrix} = (-1)^{[1,2,\dots n]} a_{11} a_{22} \cdots a_{nn} = a_{11} a_{22} \cdots a_{nn}$$

2.5. Лемма о знаке члена определителя

Лемма 2.1. Произведение $a_{i_1k_1} \cdots a_{i_nk_n}$ является членом определителя n-го порядка со знаком $(-1)^{[i_1,\dots,i_n]+[k_1,\dots,k_n]}$, где (i_1,\dots,i_n) -перестановка первых индексов, (k_1,\dots,k_n) - перестановка вторых индексов элементов, входящих в произведение.

◀ Упорядочим сомножители в произведении так, чтобы первые индексы шли по возрастанию.

Поменяем местами элемент, взятый из первой строки, с элементом, стоящим в произведении на первом месте. При этом произойдут одновременно транспозиции в перестановках (i_1, i_2, \ldots, i_n) и (k_1, k_2, \ldots, k_n) . Четность каждой перестановки при этом изменится, а четность суммы числа инверсий в двух перестановках останется прежней.

После этого элемент, взятый из второй строки, поменяем местами с элементом, стоящим на втором месте в произведении, и т.д. При всех преобразованиях четность суммы числа инверсий в перестановках первых и вторых индексов будет оставаться неизменной.

В результате получится произведение вида $a_{1j_1}...a_{nj_n}$, которое, по определению, входит в определитель со знаком $(-1)^{[j_1,j_2,...j_n]}$, но

$$(-1)^{[j_1,j_2,\dots j_n]} = (-1)^{[1,2,\dots n]+[j_1,j_2,\dots j_n]} = (-1)^{[i_1,i_2,\dots i_n]+[k_1,k_2,\dots k_n]},$$

т.к. четность $[1,2,\ldots n]+[j_1,j_2,\ldots j_n]$ такая же, как четность $[i_1,i_2,\ldots i_n]+[k_1,k_2,\ldots k_n]$. \blacktriangleright

Пример 2.10. (сравните с примером 2.5)

Произведение $a_{21}a_{32}a_{53}a_{15}a_{44}$ входит в разложение определителя 5-го порядка со знаком

$$(-1)^{[2,3,5,1,4]+[1,2,3,5,4]} = (-1)^{(1+1+2+0+0)+(0+0+0+0+1)} = (-1)^5 = -1.$$

3. СВОЙСТВА ОПРЕДЕЛИТЕЛЯ

3.1. Простейшие свойства

Свойство 1. Определитель матрицы не изменятся при ее транспонировании

$$\det A = \det A^{\mathrm{T}}$$

В разложение определителей $\det A$ и $\det A^{ \mathrm{\scriptscriptstyle T} }$ входят одни и те же члены

$$a_{i_1\,k_1}a_{i_2\,k_2}\cdots a_{i_n\,k_n}$$

с одним и тем же знаком $(-1)^{[i_1,...,i_n]+[k_1,...,k_n]}$, как следует из леммы. \blacktriangleright

Следствие. Все свойства определителя, которые будут сформулированы для строк, верны и для столбцов.

Свойство 2. Если в определителе поменять местами две строки, то определитель изменит знак

$$\det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix} = -\det \begin{pmatrix} A_1 \\ \vdots \\ A_\ell \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix}$$

Пусть $\det A = \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix}$, a $\det B = \det \begin{pmatrix} B_1 \\ \vdots \\ B_k \\ \vdots \\ B_\ell \\ \vdots \\ B_n \end{pmatrix} = \det \begin{pmatrix} A_1 \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix}$.

В определители $\det A$ и $\det B$ входят одни и те же члены. Произведение $a_{1j_1}\cdots a_{kj_k}\cdots a_{\ell j_\ell}\cdots a_{nj_n}$ входит в $\det A$ со знаком $(-1)^{[j_1,\dots,j_k,\dots,j_\ell,\dots,j_n]}$, а в $\det B$ то же произведение $a_{1j_1}\cdots a_{kj_k}\cdots a_{\ell j_\ell}\cdots a_{nj_n}=b_{1j_1}\cdots b_{\ell j_k}\cdots b_{kj_\ell}\cdots b_{nj_n}$ входит со знаком $(-1)^{[1,\dots,\ell,\dots,k,\dots,n]+[j_1,\dots,j_k,\dots,j_\ell,\dots,n]}=(-1)^{1+[j_1,\dots,j_k,\dots,j_\ell,\dots,n]}$. Следовательно, каждый член определителя $\det B$ отличается от соответствующего члена определителя $\det A$ знаком. \blacktriangleright

Замечание. Свойство 2 означает, что при элементарном преобразовании I-го типа (перестановка строк), определитель матрицы изменяет знак.

Следствие. Если в определителе имеются 2 одинаковых строки, то он равен нулю.

$$\det A = -\det A \Longrightarrow \det A = 0.$$

Свойство 3. При умножении одной из строк определителя на число определитель умножается на это число.

$$\det \begin{pmatrix} A_1 \\ \vdots \\ \lambda A_k \\ \vdots \\ A_n \end{pmatrix} = \lambda \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix}$$

$$\det \begin{pmatrix} A_1 \\ \vdots \\ \lambda A_k \\ \vdots \\ A_n \end{pmatrix} = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \cdots \lambda a_{kj_k} \cdots a_{nj_n} = \lambda \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix}$$

Следствие. Если в определителе одна из строк нулевая, то он равен нулю.

Замечание. Свойство 3 означает, что при элементарном преобразовании строк матрицы II-го типа (умножение строки на $\lambda \neq 0$), определитель умножается на λ .

Свойство 4. Если одна из строк определителя A_k представлена в виде суммы двух строк, $A_k = B_k + C_k$, то определитель равен сумме двух определителей, в первом из которых на месте k-ой строки стоит строка B_k , во втором – C_k , а все остальные строки совпадают со строками первоначального определителя.

$$\det \begin{pmatrix} A_1 \\ \vdots \\ B_k + C_k \\ \vdots \\ A_n \end{pmatrix} = \det \begin{pmatrix} A_1 \\ \vdots \\ B_k \\ \vdots \\ A_n \end{pmatrix} + \det \begin{pmatrix} A_1 \\ \vdots \\ C_k \\ \vdots \\ A_n \end{pmatrix}$$

 $\det\begin{pmatrix} A_1 \\ \vdots \\ B_k + C_k \\ \vdots \\ A_n \end{pmatrix} = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots (b_{kj_k} + c_{kj_k}) \dots a_{nj_n} = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots b_{kj_k} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots b_{kj_k} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j_n]} a_{1j_1} \dots a_{nj_n} + \sum_{(j_1, j_2, \dots, j_n)} (-1)^{[j_1, j_2, \dots, j$

$$+\sum_{(j_1,j_2,\ldots,j_n)} (-1)^{[j_1,j_2,\ldots,j_n]} a_{1j_1} \ldots c_{kj_k} \ldots a_{nj_n} = \det \begin{pmatrix} A_1 \\ \vdots \\ B_k \\ \vdots \\ A_n \end{pmatrix} + \det \begin{pmatrix} A_1 \\ \vdots \\ C_k \\ \vdots \\ A_n \end{pmatrix}$$

Замечание. Свойства 3 и 4 означают, что $\det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix}$, рассматри-

ваемый как функция n аргументов — строк, является линейной функцией по каждому аргументу, т.е. полилинейной функцией строк.

Свойство 5. Если одна из строк определителя является линейной комбинацией других его строк, то определитель равен нулю.

$$A_i = \sum_{k=1, k \neq i}^n \lambda_k A_k \Longrightarrow \det A = 0$$

 $\det A = \det \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_n \end{pmatrix} = \det \begin{pmatrix} A_1 \\ \vdots \\ \sum_{k=1, k \neq i}^n \lambda_k A_k \\ \vdots \\ A_n \end{pmatrix} = \sum_{k=1, k \neq i}^n \lambda_k \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix} = 0,$

т.к. в каждом из суммируемых определителей $\det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix}$ строка A_k

встречается дважды (на месте i и k). \blacktriangleright

Замечание. Условие свойства 5 является не только достаточным, но и необходимым для равенства определителя нулю. (Это факт будет доказан в другом разделе курса.)

Свойство 6. Если к одной из строк определителя прибавить другую, умноженную на какое-либо число, определитель не изменится.

$$\det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix} = \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ \lambda A_k + A_\ell \\ \vdots \\ A_n \end{pmatrix}$$

$$\det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ \lambda A_k + A_\ell \\ \vdots \\ A_n \end{pmatrix} = \lambda \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_n \end{pmatrix} + \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix} = \det \begin{pmatrix} A_1 \\ \vdots \\ A_k \\ \vdots \\ A_\ell \\ \vdots \\ A_n \end{pmatrix}$$

Замечание. Свойство 6 означает, что при элементарных преобразованиях строк III-го типа определитель матрицы сохраняется.

3.2. Вычисление определителя матрицы с помощью приведения ее к верхней треугольной матрице.

Утверждение 3.1. С помощью элементарных преобразований строк квадратную матрицу можно привести к верхней треугольной, сохраняя определитель неизменным.

Матрицу можно привести к верхней треугольной, используя элементарные преобразования I и III типа. При преобразованиях I-го типа определитель умножается на (-1). Это можно компенсировать с помощью элементарного преобразования II типа, умножив какую-либо строку определителя на (-1). При элементарных преобразованиях III типа определитель не изменяется. ▶

Определитель матрицы любого порядка можно вычислить, приводя ее к верхней треугольной матрице с помощью элементарных преобразований.

Пример 3.1.

$$\det A = \begin{vmatrix} 3 & -2 & 1 & 2 \\ 2 & 1 & -1 & 2 \\ -1 & 1 & -2 & -1 \\ -2 & 1 & 2 & 1 \end{vmatrix} = \{A_1 \leftrightarrow A_3\} = - \begin{vmatrix} -1 & 1 & -2 & -1 \\ 2 & 1 & -1 & 2 \\ 3 & -2 & 1 & 2 \\ -2 & 1 & 2 & 1 \end{vmatrix} =$$

$$\begin{cases}
2A_1 + A_2 \\
3A_1 + A_3 \\
2A_1 + A_4
\end{cases} = -\begin{vmatrix}
-1 & 1 & -2 & -1 \\
0 & 3 & -5 & 0 \\
0 & 1 & -5 & -1 \\
0 & -1 & 6 & 3
\end{vmatrix} = \{A_4 \leftrightarrow A_2\} = \begin{vmatrix}
-1 & 1 & -2 & -1 \\
0 & -1 & 6 & 3 \\
0 & 1 & -5 & -1 \\
0 & 3 & -5 & 0
\end{vmatrix} =$$

$$= \left\{ \begin{vmatrix}
A_2 + A_3 \\
3A_2 + A_4
\end{vmatrix} \right\} = \begin{vmatrix}
-1 & 1 & -2 & -1 \\
0 & -1 & 6 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 13 & 9
\end{vmatrix} =$$

$$= \{-13A_3 + A_4\} = \begin{vmatrix}
-1 & 1 & -2 & -1 \\
0 & -1 & 6 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & -17
\end{vmatrix} = (-1)(-1) \cdot 1(-17) = -17.$$

Пример 3.2.

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & \dots & n & n+1 \\ -1 & 0 & 3 & 4 & 5 & \dots & n & n+1 \\ -1 & -2 & 0 & 4 & 5 & \dots & n & n+1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & -4 & -5 & \dots & -n & 0 \end{vmatrix} = \begin{cases} A_1 + A_i \\ i = 2, 3, \dots, n+1 \end{cases} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & \dots & n & n+1 \\ 0 & 2 & 6 & 8 & 10 & \dots & 2n & 2n+2 \\ 0 & 0 & 3 & 8 & 10 & \dots & 2n & 2n+2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & n+1 \end{vmatrix} = 1 \cdot 2 \cdots n \cdot (n+1) = (n+1)!$$

3.3. Определитель блочно-треугольной матрицы.

Определение 3.1. Матрица, разбитая горизонтальными и вертикальными линиями на клетки, каждая из которых тоже является матрицей, называется блочной матрицей. Например,

$$\begin{pmatrix} 2 & -1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ \hline 0 & 1 & -3 & 1 & 0 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix},$$

где

$$A = \begin{pmatrix} 2 & -1 \\ 0 & 5 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 3},$$

$$C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \qquad D = \begin{pmatrix} -3 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 3}.$$

Лемма 3.1. (об определителе верхней блочно-треугольной матрицы)

Пусть $A \in \mathbb{R}^{k \times k}$, $C \in \mathbb{R}^{k \times \ell}$, $O \in \mathbb{R}^{\ell \times k}$, $B \in \mathbb{R}^{\ell \times \ell}$, тогда

$$\det\left(\begin{array}{c|c}A & C\\\hline O & B\end{array}\right) = \det A \det B.$$

$$= a'_{11}a'_{22}\dots a'_{kk}b'_{11}b'_{22}\dots b'_{\ell\ell} = \det A' \det B' = \det A \det B.$$

Следствие.

$$\det\left(\begin{array}{c|c}A & O\\\hline C & B\end{array}\right) = \det A \det B.$$

 $\det\left(\frac{A\mid O}{C\mid B}\right) = \det\left(\frac{A\mid O}{C\mid B}\right)^{\mathsf{T}} = \det\left(\frac{A^{\mathsf{T}}\mid C^{\mathsf{T}}}{O\mid B^{\mathsf{T}}}\right) =$ $= \det A^{\mathsf{T}} \det B^{\mathsf{T}} = \det A \det B.$

Пример 3.3.

$$\begin{vmatrix} 1 & 2 & 1 & -1 \\ 3 & 4 & -1 & -1 \\ \hline 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} = (4-6)(40-42) = 4$$

3.4. Миноры и алгебраические дополнения.

Пусть

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} - \text{ определитель порядка } n.$$

Определение 3.2. Минором M_{ij} , дополнительным к элементу a_{ij} определителя n-го порядка $\det A$ (или просто минором элемента a_{ij}), называется определитель порядка n-1, который получается из определителя $\det A$ вычеркиванием строки A_i и столбца A^j , на пересечении которых стоит элемент a_{ij} .

$$M_{ij} = \begin{bmatrix} a_{11} & a_{12} & \dots & \not a_{1j} & \dots & a_{1n} \\ \dots & \dots & \dots & \not \dots & \dots \\ a_{i-11} & a_{i-12} & \dots & \not a_{i-1j} & \dots & a_{i-1n} \\ \hline \not a_{i1} & \not a_{i2} & \not \dots & \not a_{ij} & \not \dots & \not a_{in} \\ \hline a_{i+11} & a_{i+12} & \dots & \not a_{i+1j} & \dots & a_{i+1n} \\ \dots & \dots & \dots & \not \dots & \dots \\ a_{n1} & a_{n2} & \dots & \not a_{nj} & \dots & a_{nn} \end{bmatrix}$$

Определение 3.3. Алгебраическим дополнением A_{ij} к элементу a_{ij} называется число, равное $(-1)^{i+j}M_{ij}$.

Таким образом, алгебраическое дополнение A_{ij} – это минор M_{ij} с правильно выбранным знаком: «плюс», если i+j – четное число и «минус», если i+j – нечетное число. Знаки $(-1)^{i+j}$ для элементов матрицы a_{ij} чередуются в шахматном порядке в соответствии со схемой:

$$\begin{pmatrix} + & - & + & - & \dots & \dots \\ - & + & - & + & \dots & \dots \\ + & - & + & - & \dots & \dots \\ - & + & - & + & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Пример 3.4. Рассмотрим $\det A = \begin{vmatrix} 3 & -2 & 1 \\ 0 & 4 & 1 \\ 2 & -1 & 3 \end{vmatrix}$, тогда

$$M_{12} = \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = -2, \qquad M_{22} = \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} = 7$$

$$A_{12} = (-1)^{1+2} M_{12} = -M_{12} = -(-2) = 2,$$
 $A_{22} = (-1)^{2+2} M_{22} = M_{22} = 7.$

3.5. Разложение определителя по строке (столбцу)

Теорема 3.1. (о разложении определителя по строке) Определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$

1)Пусть в первой строке определителя все элементы, кроме, быть может, a_{11} , равны нулю. Тогда

$$\begin{vmatrix} a_{11} & 0 & \dots & 0 \\ \hline a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11} M_{11} = a_{11} A_{11}$$

2) Пусть в произвольной i-ой строке определителя все элементы, кроме, быть может, a_{ij} , равны нулю. Поставим j-й столбец на место первого, последовательно меняя местами его с каждым из предыдущих столбцов (при этом определитель (j-1) раз изменит знак, т.е. умножится на $(-1)^{j-1}$). Затем аналогичным способом поставим i-ю строку определителя на место первой (при этом определитель (i-1) раз изменит знак, т.е. умножится на $(-1)^{i-1}$). Полученный определитель будет иметь вид, рассмотренный в пункте 1).

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{ij} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = (-1)^{j-1} \begin{vmatrix} a_{1j} & a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{nj} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{nj} & a_{n1} & \dots & a_{nn} \end{vmatrix} =$$

$$= (-1)^{i-1} (-1)^{j-1} \begin{vmatrix} a_{ij} & 0 & \dots & 0 \\ a_{1j} & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nj} & a_{n1} & \dots & a_{nn} \end{vmatrix} = (-1)^{i+j-2} a_{ij} M_{ij} = a_{ij} (-1)^{i+j} M_{ij} = a_{ij} A_{ij}$$

$$= a_{ij} A_{ij}$$

3) Рассмотрим в произвольном определителе i-ю строку как сумму n строк, в каждой из которых все элементы, кроме, может быть, одного, равны нулю.

$$A_i = (a_{i1}, a_{i2}, \dots, a_{in}) = (a_{i1}, 0, 0, \dots, 0) + (0, a_{i2}, 0, \dots, 0) + \dots + (0, 0, \dots, a_{in})$$

Тогда, согласно свойству 4 определителя, $\det A$ равен сумме n определителей, каждый из которых имеет вид, рассмотренный в пункте 2).

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ 0 & a_{i2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{i=1}^{n} a_{ij}A_{ij}$$

Вспомнив, что все свойства определителя для строк верны и для столбцов, получаем следующую теорему.

Теорема 3.2. (о разложении определителя по столбцу)

Определитель равен сумме произведений элементов какого-либо столбца на их алгебраические дополнения.

$$\begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a_{2j} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}.$$

Пример 3.5. Вычислим

$$\Delta = \begin{vmatrix} 2 & -3 & -1 & 1 \\ 3 & 2 & 1 & 4 \\ 2 & 1 & 0 & -1 \\ 1 & 2 & 3 & 4 \end{vmatrix}$$

Разложим Δ по первой строке.

$$\Delta \stackrel{\longrightarrow}{=} 2 \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & 3 & 4 \end{vmatrix} - (-3) \begin{vmatrix} 3 & 1 & 4 \\ 2 & 0 & -1 \\ 1 & 3 & 4 \end{vmatrix} + (-1) \begin{vmatrix} 3 & 2 & 4 \\ 2 & 1 & -1 \\ 1 & 2 & 4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & 3 \end{vmatrix}$$

Чтобы вычислить Δ надо вычислить 4 определителя 3-го порядка.

Разложим Δ по третьему столбцу

$$\Delta \stackrel{A^3\downarrow}{=} (-1) \begin{vmatrix} 3 & 2 & 4 \\ 2 & 1 & -1 \\ 1 & 2 & 4 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 & 1 \\ 2 & 1 & -1 \\ 1 & 2 & 4 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -3 & 1 \\ 3 & 2 & 4 \\ 1 & 2 & 4 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & -3 & 1 \\ 3 & 2 & 4 \\ 2 & 1 & -1 \end{vmatrix}$$

В этом случае для получения ответа придется вычислить 3 определителя 3-го порядка.

Заметим, что «выгоднее» раскладывать определитель по тому ряду (строке или столбцу), в котором есть нулевые элементы, поэтому перед разложением определителя можно получить нули в строке или столбце с помощью элементарных преобразований.

$$\Delta = \begin{vmatrix} 2 & -3 & -1 & 1 \\ 3 & 2 & 1 & 4 \\ 1 & 2 & 0 & -1 \\ 1 & 2 & 3 & 4 \end{vmatrix} = \begin{cases} A_2 + A_1 \\ -3A_2 + A_4 \end{cases} = \begin{vmatrix} 5 & -1 & 0 & 5 \\ 3 & 2 & 1 & 4 \\ 2 & 1 & 0 & -1 \\ -8 & -4 & 0 & -8 \end{vmatrix} \stackrel{A^3 \downarrow}{=} =$$

$$= -1 \begin{vmatrix} 5 & -1 & 5 \\ 2 & 1 & -1 \\ -8 & -4 & -8 \end{vmatrix} =$$

$$= -(-4) \begin{vmatrix} 5 & -1 & 5 \\ 2 & 1 & -1 \\ 2 & 1 & 2 \end{vmatrix} = \begin{cases} A_1 + A_2 \\ A_1 + A_3 \end{cases} = 4 \begin{vmatrix} 5 & -1 & 5 \\ 7 & 0 & 4 \\ 7 & 0 & 7 \end{vmatrix} \stackrel{A^2 \downarrow}{=} =$$

$$= 4(-1)(-1) \begin{vmatrix} 7 & 4 \\ 7 & 7 \end{vmatrix} = 4(49 - 28) = 84.$$

Пример 3.6.

Мы получили $peкуpeнmнoe\ coomнowehue$, выражающее определитель n-го порядка через определители того же типа меньшего порядка.

$$\Delta_n = 2\Delta_{n-1} - \Delta_{n-2} \quad \forall n \geqslant 3$$

$$\Delta_n - \Delta_{n-1} = \Delta_{n-1} - \Delta_{n-2} \quad \forall n \geqslant 3$$

Последнее соотношение означает, что последовательность $\{\Delta_n\}$ является арифметической прогрессией. Следовательно,

$$\Delta_n = \Delta_1 + d(n-1) \quad \forall n \in \mathbb{N}$$

$$\Delta_1 = 2, \quad \Delta_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 4 - 1 = 3, \quad d = \Delta_2 - \Delta_1 = 3 - 2 = 1$$

$$\Delta_n = \Delta_1 + d(n-1) = 2 + 1(n-1) = n + 1$$

Пример 3.7. При изучении многих математических дисциплин будет встречаться *определитель* Вандермонда.

$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ \dots & \dots & \dots & \dots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \begin{cases} -x_1 A_{i-1} + A_i \\ i = n, n-1, \dots, 2 \end{cases} =$$

(вычтем из каждой строки определителя, начиная с последней, предыдущую, умноженную на x_1)

$$= \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \dots & x_n - x_1 \\ 0 & x_2^2 - x_2 x_1 & x_3^2 - x_3 x_1 & \dots & x_n^2 - x_n x_1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & x_2^{n-1} - x_2^{n-2} x_1 & x_3^{n-1} - x_3^{n-2} x_1 & \dots & x_n^{n-1} - x_n^{n-2} x_1 \end{vmatrix}^{A^1 \downarrow} =$$

$$= \begin{vmatrix} x_2 - x_1 & x_3 - x_1 & \dots & x_n - x_1 \\ x_2(x_2 - x_1) & x_3(x_3 - x_1) & \dots & x_n(x_n - x_1) \\ \dots & \dots & \dots & \dots \\ x_2^{n-2}(x_2 - x_1) & x_3^{n-2}(x_3 - x_1) & \dots & x_n^{n-2}(x_n - x_1) \end{vmatrix} =$$

$$= (x_2 - x_1)(x_3 - x_1) \dots (x_n - x_1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_2 & x_3 & \dots & x_n \\ x_2^2 & x_3^2 & \dots & x_n^2 \\ \dots & \dots & \dots & \dots \\ x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \end{vmatrix} =$$

$$= \prod_{1 \le i \le i \le n} (x_i - x_1)V(x_2, \dots, x_n) = \prod_{i = 2}^n (x_i - x_1) \prod_{i = 3}^n (x_i - x_2)V(x_3, \dots, x_n) = \dots =$$

$$= \prod_{1 \le i \le i \le n} (x_i - x_j).$$

В частности, например,

$$V(x_1, x_2, x_3) = \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

Следствие.

$$V(x_1, x_2, \dots, x_n) \neq 0 \Leftrightarrow x_i \neq x_j$$
 при $i \neq j$

Теорема 3.3. (о «фальшивом» разложении определителя по **строке**). Сумма произведений элементов какой-либо строки определителя на алгебраические дополнения к соответствующим элементам другой

строки равна нулю.

$$\sum_{j=1}^{n} a_{ij} A_{kj} = 0 \quad \text{при } i \neq k$$

 \blacksquare Рассмотрим матрицу C, у которой все строки, кроме k-ой равны соответствующим строкам матрицы A, а k-я строка равна i-ой строке матрицы A, т.е.

$$C = \begin{pmatrix} C_1 \\ \vdots \\ C_i \\ \vdots \\ C_k \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_i \\ \vdots \\ A_n \end{pmatrix}$$

Заметим, что алгебраические дополнения C_{kj} и A_{kj} элементов k-ой строки у матриц C и A совпадают.

 $\det C = 0$, т.к. в нем имеются одинаковые строки $(C_i = C_k = A_i)$. С другой стороны, раскладывая $\det C$ по k-ой строке, получаем

$$\det C = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} c_{kj} C_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}$$

Следовательно, $\sum_{j=1}^{n} a_{ij} A_{kj} = 0$ при $i \neq k$.

Конечно, имеется и

Теорема 3.4. (о «фальшивом» разложении определителя по **столбцу**). Сумма произведений элементов какого-либо столбца определителя на алгебраические дополнения к соответствующим элементам другого столбца равна нулю.

$$\sum_{i=1}^{n} a_{ij} A_{ik} = 0 \quad \text{при } j \neq k$$

3.6. Определитель произведения матриц.

Теорема 3.5. (Об определителе произведения квадратных матриц) Определитель произведения квадратных матриц равен произведению их определителей, т.е. если $A \in \mathbb{R}^{n \times n}$ и $B \in \mathbb{R}^{n \times n}$, то

$$\det(AB) = \det A \det B.$$

◀ Рассмотрим блочную матрицу

$$C = \left(\begin{array}{c|ccccc} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ \hline -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & b_{n1} & b_{n2} & \dots & b_{nn} \end{array}\right)$$

Преобразуем матрицу C с помощью элементарных преобразований строк III типа, сохраняющих определитель. К первой строке матрице C_1 прибавим $a_{11}C_{n+1} + a_{12}C_{n+2} + \ldots + a_{1n}C_{n+n}$, тогда первая строка примет вид

$$(0,0,\ldots,0,a_{11}b_{11}+a_{12}b_{21}+\ldots+a_{1n}b_{n1},\ldots,a_{11}b_{1n}+a_{12}b_{2n}+\ldots+a_{1n}b_{nn}) =$$

$$=(0,0,\ldots,0,\sum_{j=1}^{n}a_{1j}b_{j1},\ldots,\sum_{j=1}^{n}a_{1j}b_{jn})=(0,0,\ldots,0,A_{1}B^{1},\ldots,A_{1}B^{n}).$$

Затем ко второй строке матрицы C_2 прибавим $a_{21}C_{n+1} + a_{22}C_{n+2} + \ldots + a_{2n}C_{n+n}$, тогда вторая строка станет равной $(0,0,\ldots,0,A_2B^1,\ldots,A_2B^n)$.

Аналогично преобразуем строки C_3, \ldots, C_n . В результате этих преобразований на месте матрицы A получится нулевая матрица, а на месте нулевой матрицы матрица AB. Таким образом,

$$\det C = \det \left(\begin{array}{c|c} A & O \\ \hline -E & B \end{array} \right) = \det \left(\begin{array}{c|c} O & AB \\ \hline -E & B \end{array} \right) = \begin{Bmatrix} C^k \leftrightarrow C^{n+k} \\ k = 1, \dots, n \end{Bmatrix} =$$

$$= (-1)^n \det\left(\frac{AB \mid O}{B \mid -E}\right) = (-1)^n \det(AB) \det(-E) =$$

$$= (-1)^n \det(AB)(-1)^n = (-1)^{2n} \det(AB) = \det(AB)$$

С другой строны,

$$\det C = \det \left(\begin{array}{c|c} A & O \\ \hline -E & B \end{array} \right) = \det A \det B.$$

Следовательно,

$$\det AB = \det A \det B.$$

4. ОБРАТНАЯ МАТРИЦА

4.1. Обратная матрица

Определение 4.1. Матрица B называется обратной κ матрице A, если

$$AB = BA = E$$

Матрица A, для которой существует обратная матрица B, называется обратимой.

Из определения следует, что обратимой может быть только квадратная матрица, причем A, B –квадратные матрицы одного порядка.

Однако, не всякая квадратная матрица обратима. Например, нулевая матрица O обратной не имеет, т.к. $OB = BO = O \quad \forall B$.

Утверждение 4.1. Если обратная матрица к матрице A существует, то она единственна.

■ Пусть B_1 и B_2 – обратные матрицы для A, т.е. $\begin{cases} AB_1 = B_1A = E \\ AB_2 = B_2A = E \end{cases}$ Пользуясь свойством ассоциативности операции умножения, получим:

$$B_1AB_2 = (B_1A)B_2 = EB_2 = B_2$$

 $B_1AB_2 = B_1(AB_2) = B_1E = B_1$ $\Longrightarrow B_1 = B_2$

Далее обратную матрицу к матрице A будем обозначать A^{-1} . Из утверждения 4.1 следует, что под этим обозначением имеется в виду одна конкретная матрица.

Определение 4.2. Квадратная матрица называется вырожденной, если ее определитель равен нулю $(\det A = 0)$, в противном случае матрица A называется невырожденной.

Утверждение 4.2. Если матрица A обратима, то она невырождена, т.е.

$$\exists A^{-1} \Longrightarrow \det A \neq 0.$$

$$AA^{-1} = E \Longrightarrow \det(AA^{-1}) = \det E \Longrightarrow$$

 $\Longrightarrow \det A \det A^{-1} = 1 \Longrightarrow \det A \neq 0.$

Определение 4.3. Присоединенной матрицей к квадратной матрице $A=(a_{i\,j}),$ называется матрица

$$\widehat{A} = (A_{ij})^{\mathrm{T}} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$

где A_{ij} – алгебраическое дополнение к элементу a_{ij} .

Утверждение 4.3. Если матрица A невырождена, то она имеет обратную матрицу $(\det A \neq 0 \Rightarrow \exists A^{-1})$ и

$$A^{-1} = \frac{1}{\det A} \widehat{A}.$$

◀ Проверим, что $A\frac{1}{\det A}\widehat{A} = E$. Действительно,

$$A\frac{1}{\det A}\widehat{A} = \frac{1}{\det A} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} =$$

$$= \frac{1}{\det A} \begin{pmatrix} \sum_{j=1}^{n} a_{1j} A_{1j} & \sum_{j=1}^{n} a_{1j} A_{2j} & \dots & \sum_{j=1}^{n} a_{1j} A_{nj} \\ \sum_{j=1}^{n} a_{2j} A_{1j} & \sum_{j=1}^{n} a_{2j} A_{2j} & \dots & \sum_{j=1}^{n} a_{2j} A_{nj} \\ \dots & \dots & \dots \\ \sum_{j=1}^{n} a_{nj} A_{1j} & \sum_{j=1}^{n} a_{nj} A_{2j} & \dots & \sum_{j=1}^{n} a_{nj} A_{nj} \end{pmatrix} =$$

$$= \frac{1}{\det A} \begin{pmatrix} \det A & 0 & \dots & 0 \\ 0 & \det A & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \det A \end{pmatrix} = E$$

 $\left\{A\widehat{A}\right\}_{ik}=\det A$ при i=k по теореме о разложении определителя по строке и $\left\{A\widehat{A}\right\}_{ik}=0$ при $i\neq k$ по теореме о «фальшивом» разложении определителя по строке.

Аналогично, $\frac{1}{\det A} \widehat{A} A = E$, т.к. $\left\{ \widehat{A} A \right\}_{ik} = \det A$ при i = k по теореме о разложении определителя по столбцу и $\left\{ \widehat{A} A \right\}_{ik} = 0$ при $i \neq k$ по теореме о «фальшивом» разложении определителя по столбцу.

Следовательно,

$$\frac{1}{\det A}\widehat{A} = A^{-1}.$$

Объединив утверждения 4.2 и 4.3, получим необходимое и достаточное условие, т.е. *критерий*, обратимости матрицы (существования обратной матрицы).

Теорема 4.1. Критерий обратимости матрицы

Квадратная матрица обратима тогда и только тогда, когда она невырождена.

$$\exists A^{-1} \iff \det A \neq 0$$

Пример 4.1.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{cases} -A_2 + A_3 \\ -A_1 + A_2 \end{cases} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{vmatrix} = 0,$$

Матрица A вырождена и, следовательно, обратной не имеет.

Пример 4.2.
$$A = \begin{pmatrix} -1 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\det A = \begin{vmatrix} -1 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = \{ -A_3 + A_1 \} = \begin{vmatrix} -2 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} \xrightarrow{A^2 \downarrow} -1 \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix} =$$

$$= (-2 - 4) = -6 \neq 0 \Longrightarrow \exists A^{-1} \text{ if } A^{-1} = \frac{1}{\det A} \widehat{A} = \frac{1}{\det A} (A_{ij})^{\mathrm{T}}$$

$$A_{11} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1 \qquad A_{12} = -\begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1 \qquad A_{13} = \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = 2$$

$$A_{21} = -\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2 \qquad A_{22} = \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} = -2 \qquad A_{23} = -\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = 2$$

$$A_{31} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \qquad A_{32} = -\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} = 5 \qquad A_{33} = \begin{vmatrix} -1 & 1 \\ 2 & 0 \end{vmatrix} = -2$$

$$A^{-1} = \frac{1}{6} \begin{pmatrix} -1 & 1 & 2 \\ 2 & -2 & 2 \\ 1 & 5 & -2 \end{pmatrix}^{\mathrm{T}} = \frac{1}{6} \begin{pmatrix} -1 & 2 & 1 \\ 1 & -2 & 5 \\ 2 & 2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{-1}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{-1}{3} & \frac{5}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{-1}{3} \end{pmatrix}$$

Сделаем проверку.

$$AA^{-1} = \begin{pmatrix} -1 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \frac{1}{6} \begin{pmatrix} -1 & 2 & 1 \\ 1 & -2 & 5 \\ 2 & 2 & -2 \end{pmatrix} =$$

$$-\frac{1}{6} \begin{pmatrix} 1+1+4 & -2-2+4 & -1+5-4 \\ -2+2 & 4+2 & 2-2 \\ -1+1 & 2-2 & 1+5 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = E$$

Замечание. Если A и B— квадратные матрицы и AB = E, то $B = A^{-1}$. (Если AB = E, то $\det A \neq 0$ и по теореме $4.1 \; \exists A^{-1}$. Тогда $AB = E \Longrightarrow A^{-1}AB = A^{-1}E \Longrightarrow EB = A^{-1} \Longrightarrow B = A^{-1}$).

Аналогично, если BA = E, то $B = A^{-1}$.

Поэтому, чтобы убедиться, что матрица B является обратной к A, достаточно проверить выполнение одного из условий: либо AB=E, либо BA=E.

Пример 4.3. Если $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – невырожденная матрица 2-го порядка,

то
$$\widehat{A} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 и $A^{-1} = \frac{1}{\det A} \widehat{A} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Легко запомнить, что для матрицы второго порядка присоединенную матрицу $\widehat{A} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ можно получить из матрицы $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, переставив элементы на главной диагонали и поменяв знаки элементов на побочной диагонали.

Например,

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = \frac{1}{4-6} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

Теорема 4.2. (Свойства обратной матрицы.) Если A и B квадратные невырожденные матрицы, то

1)
$$\det A^{-1} = (\det A)^{-1}$$

2)
$$(A^{-1})^{-1} = A$$

3)
$$(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$$

4)
$$(AB)^{-1} = B^{-1}A^{-1}$$
.

 $\blacktriangleleft \det A \neq 0 \Longrightarrow \exists A^{-1}, \det B \neq 0 \Longrightarrow \exists B^{-1}.$

1)
$$\det(AA^{-1}) = \det E \Longrightarrow \det A \det A^{-1} = 1 \Longrightarrow \det A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$$

2)
$$A^{-1}A = E \Longrightarrow A = (A^{-1})^{-1}$$

3)
$$A^{\mathrm{T}}(A^{-1})^{\mathrm{T}} = (A^{-1}A)^{\mathrm{T}} = E^{\mathrm{T}} = E \Longrightarrow (A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$$

4)
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E \Longrightarrow$$

 $\implies (AB)^{-1} = B^{-1}A^{-1}$

4.2. Матричные уравнения

Матричными уравнениями называются уравнения, в которых коэффициентами и неизвестными являются матрицы.

Например, AX+B=C, где A,B,C- известные матрицы, X- неизвестная матрица.

Pешением матричного уравнения называется матрица X, которая при подстановке в уравнение обращает его в тождество.

Теорема 4.3. Если A — квадратная невырожденная матрица, $A \in \mathbb{R}^{n \times n}$, а $B \in \mathbb{R}^{n \times k}$, то уравнение

$$AX = B \quad (*),$$

имеет единственное решение $X = A^{-1}B$.

- $\blacktriangleleft \det A \neq 0 \Longrightarrow \exists A^{-1} \in \mathbb{R}^{n \times n}.$
- 1) При подстановке $X = A^{-1}B \in \mathbb{R}^{n \times k}$ в уравнение (*), получается тождество .

$$A(A^{-1}B) = (AA^{-1})B = EB = B.$$

Следовательно, $X = A^{-1}B$ является решением (*).

2) Пусть X — решение (*), тогда AX = B — тождество. Умножим его слева на A^{-1} , тогда

$$A^{-1}AX = A^{-1}B$$

$$EX = A^{-1}B$$

$$X = A^{-1}B.$$

Аналогично доказывается

Теорема 4.4. Если A — квадратная невырожденная матрица, $A \in \mathbb{R}^{n \times n}$, а $B \in \mathbb{R}^{k \times n}$, то уравнение XA = B имеет единственное решение $X = BA^{-1}$.

Пример 4.4.

$$\left(\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right) X = \left(\begin{array}{cc} 0 & 1 & 2 \\ 1 & -1 & 3 \end{array}\right)$$

 $\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 5 \neq 0 \Longrightarrow \exists$ единственное решение X.

$$X = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

$$X = \frac{1}{5} \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

$$X = \frac{1}{5} \begin{pmatrix} 1 & 2 & 9 \\ 1 & -3 & -1 \end{pmatrix} \qquad X = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & \frac{9}{5} \\ \frac{1}{5} & -\frac{3}{5} & -\frac{1}{5} \end{pmatrix}$$

Сделаем проверку.

$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 1 & 2 & 9 \\ 1 & -3 & -1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 0 & 5 & 10 \\ 5 & -5 & 15 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

При подстановке X в уравнение получили тождество.

5. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ)

5.1. Основные определения

Определение 5.1. *Системой линейных алгебраических уравнений* (СЛАУ) с п неизвестными называется система уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m, \end{cases}$$

где

 $a_{ij}\in\mathbb{R}$ –коэффициенты системы, $b_i\in\mathbb{R}$ –свободные члены, $x_j\in\mathbb{R}$ –неизвестные, $i=\overline{1,m},\ j=\overline{1,n}.$

Определение 5.2. Решением СЛАУ называется упорядоченный набор чисел $(x_1, x_2, ..., x_n)^{\mathrm{T}} \in \mathbb{R}^n$, при подстановке которых в уравнения системы, все уравнения обращаются в тождества.

 $Peшить \ CЛАУ$ означает найти все ее решения или доказать, что решений нет.

Определение 5.3. СЛАУ называется *совместной*, если она имеет хотя бы одно решение, и *несовместной*, если она не имеет решений.

Определение 5.4. СЛАУ называется *определенной*, если она имеет единственное решение, и *неопределенной*, если она имеет более одного решения.

5.2. Матричная запись СЛАУ

Введем матрицу системы
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$
, эле-

ментами которой являются коэффициенты при неизвестных,

столбец свободных членов
$$B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$$

и столбец неизвестных
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n.$$

Тогда систему можно записать в матричном виде

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},$$

т.е. в виде матричного уравнения

$$AX = B$$
.

Пример 5.1.

$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ x_2 + 3x_3 = 0 \end{cases} (*)$$

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$(*) \Longleftrightarrow AX = B \Longleftrightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

5.3. СЛАУ с квадратной невырожденной матрицей

Рассмотрим

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}, \det A \neq 0, B \in \mathbb{R}^{n}, X \in \mathbb{R}^{n}, AX = B.$$

5.3.1. Решение СЛАУ с помощью обратной матрицы

Теорема 5.1. Если матрица A системы квадратная и невырожденная, то система имеет единственное решение $X = A^{-1}B$.

■ В матричном виде система представляет собой матричное уравнение AX = B с квадратной невырожденной матрицей A. По теореме 4.3 это уравнение имеет единственное решение $X = A^{-1}B$. ▶

Пример 5.2.

$$\begin{cases} x_1 + 2x_2 &= 0 \\ 2x_1 - x_2 &= 5 \end{cases} A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \quad B = \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\det A = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \Longrightarrow \exists \text{ единственное решение } X = A^{-1}B$$
$$X = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \quad X = -\frac{1}{5} \begin{pmatrix} -1 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \end{pmatrix},$$
$$X = -\frac{1}{5} \begin{pmatrix} -10 \\ 5 \end{pmatrix} \Longleftrightarrow X = \begin{pmatrix} 2 \\ -1 \end{pmatrix} = (2, -1)^T.$$

Сделаем проверку:

$$\begin{cases} 2+2(-1) = 0 \\ 2 \cdot 2 - (-1) = 5 \end{cases}.$$

5.3.2. Решение СЛАУ методом Крамера

Обозначим

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \quad \Delta_j = \begin{vmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_2 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{vmatrix},$$

 Δ_j — определитель, который получается из Δ заменой j-столбца A^j на столбец свободных членов B.

Теорема 5.2. Если матрица системы квадратная и невырожденная, то система имеет единственное решение $X = (x_1, x_2, ..., x_n)^{\mathrm{T}}$, которое может быть найдено по формулам

$$x_j = \frac{\Delta_j}{\Delta}, \ j = \overline{1, n}$$

Эти формулы называются формулами Крамера.

◀ Из теоремы 5.1 мы знаем, что система имеет единственное решение

$$X = A^{-1}B$$
, r.e.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \sum_{i=1}^n A_{i1}b_i \\ \sum_{i=1}^n A_{i2}b_i \\ \vdots \\ \sum_{i=1}^n A_{in}b_i \end{pmatrix}$$

Заметим, что $\sum_{i=1}^{n} A_{ij}b_{i}$ является разложением определителя

$$\Delta_j = \begin{vmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_2 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{vmatrix}$$

по j-ому столбцу, в котором находятся свободные члены.

Следовательно,

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} \Delta_1 \\ \Delta_2 \\ \vdots \\ \Delta_n \end{pmatrix}, \quad \text{r.e.} \quad x_j = \frac{\Delta_j}{\Delta}.$$

Пример 5.3.

$$\begin{cases} x_1 + 2x_2 &= 0 \\ 2x_1 - x_2 &= 5 \end{cases} \quad \Delta = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \neq 0 \Longrightarrow$$

$$\Longrightarrow \exists \text{ единственное решение } X = (x_1, x_2)^{\mathrm{T}}$$

$$\Delta_1 = \begin{vmatrix} 0 & 2 \\ 5 & -1 \end{vmatrix} = -10 \qquad \Delta_2 = \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix} = 5$$

$$\begin{cases} x_1 = \frac{\Delta_1}{\Delta} = \frac{-10}{-5} = 2 \\ x_2 = \frac{\Delta_2}{\Delta} = \frac{5}{5} = -1 \end{cases} \qquad X = \begin{pmatrix} 2 \\ -1 \end{pmatrix} = (2, -1)^{\mathrm{T}}$$

Заметим, что рассмотренные методы решения СЛАУ (с помощью обратной матрицы и метод Крамера) применимы только в случае систем с квадратной невырожденной матрицей. Кроме того, они требуют очень большого количества вычислений. Поэтому при больших n эти методы имеют, в основном, теоретическое значение.

5.4. Эквивалентность СЛАУ

Пусть

$$A_1X = B_1, \quad A_1 \in \mathbb{R}^{m \times n}, \quad X \in \mathbb{R}^n, \quad B_1 \in \mathbb{R}^m$$
 (1)

И

$$A_2X = B_2, \quad A_2 \in \mathbb{R}^{k \times n}, \quad X \in \mathbb{R}^n, \quad B_2 \in \mathbb{R}^k$$
 (2)

две системы линейных алгебраических уравнений с n неизвестными.

Определение 5.5. Две СЛАУ (1) и (2) называются эквивалентными, если множества их решений совпадают, т.е. любое решение системы (1) является решением системы (2) и наоборот.

Определение 5.6. Элементарными преобразованиями уравнений системы называются преобразования следующих трех типов:

- I) перестановка двух уравнений;
- II) умножение одного из уравнений системы на число, отличное от нуля;
- III) прибавление к одному из уравнений другого, умноженного на число.

Замечание. Для каждого элементарного преобразования уравнений системы существует обратное элементарное преобразование того же типа.

Теорема 5.3. С помощью элементарных преобразований уравнений системы получается эквивалентная система.

◆ Пусть СЛАУ (2) получена с помощью элементарных преобразований СЛАУ (1).

Подставим любое решение СЛАУ (1) в уравнения этой системы. Все уравнения обратятся в тождества. Проделаем над этими тождествами элементарные преобразования, приводящие СЛАУ (1) к СЛАУ (2). Очевидно, при этом все тождества останутся тождествами. Следовательно, любое решение СЛАУ (1) будет решением СЛАУ (2).

С другой стороны, СЛАУ (1) может быть получена из СЛАУ (2) с помощью обратных элементарных преобразований.

Следовательно, как доказано выше, любое решение СЛАУ (2) является решением СЛАУ (1). ▶

5.5. Метод Гаусса решения и исследования произвольных СЛАУ

С помощью метода Гаусса любую систему линейных алгебраических уравнений можно решить или доказать, что она несовместна.

Метод Гаусса состоит в том, что с помощью элементарных преобразований СЛАУ приводится к эквивалентной системе простого вида, все решения которой либо легко находятся, либо ясно, что она решений не имеет.

Определение 5.7. Расширенной матрицей СЛАУ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m, \end{cases}$$

называется матрица

$$(A|B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}.$$

По такой матрице можно однозначно восстановить СЛАУ.

Элементарным преобразованиям уравнений системы соответствуют элементарные преобразования строк ее расширенной матрицы.

Теорема 5.3 означает, что элементарные преобразования строк расширенной матрицы приводят к расширенной матрице эквивалентной системы.

Любую матрицу (A|B) с помощью элементарных преобразований можно привести к ступенчатому виду (A'|B'). Обозначим число ненулевых строк в матрице A' через r, а в матрице (A'|B') через \widetilde{r} .

Замечание. Числа r и \widetilde{r} являются рангами матриц A и (A|B). (С понятием ранга матрицы мы познакомимся в другом разделе курса.)

Ясно, что
$$\begin{cases} r \leqslant n \\ \widetilde{r} = r \\ \widetilde{r} = r + 1 \end{cases}$$

Рассмотрим следующие три случая.

Случай 1.

$$\widetilde{r} = r + 1$$

$$(A'|B') = \begin{pmatrix} 0 & \dots & a'_{1j_1} & \dots & \dots & \dots & \dots & b'_1 \\ 0 & \dots & 0 & \dots & a'_{2j_2} & \dots & \dots & \dots & b'_2 \\ \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & a'_{rj_r} & \dots & b'_r \\ 0 & \dots & b'_{r+1} \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 &$$

где $a'_{1j_1}, a'_{2j_2}, \dots, a'_{rj_r}, b'_{r+1}$ —ведущие элементы.

Восстановим по этой матрице систему уравнений. Уравнение, соответствующее r+1 строке, имеет вид

$$0x_1 + 0x_2 + \ldots + 0x_n = b'_{r+1}, \qquad b'_{r+1} \neq 0.$$

Оно, очевидно, не имеет решений. Следовательно, СЛАУ несовместна.

Пример 5.4.

$$\begin{cases} x_1 - x_2 = 1 \\ x_1 + 3x_3 = 0 \\ 3x_1 - 2x_2 + 3x_3 = 3 \end{cases}$$

$$D = (A|B) = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & 3 & 0 \\ 3 & -2 & 3 & 3 \end{pmatrix} \xrightarrow{\stackrel{-D_1 + D_2}{-3D_1 + D_2}} \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 3 & -1 \\ 0 & 1 & 3 & 0 \end{pmatrix} \xrightarrow{\stackrel{-D_2 + D_3}{-D_2 + D_3}}$$

$$\longrightarrow \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (A'|B')$$

 $r=2\,,\quad \widetilde{r}=3\Longrightarrow$ система несовместна. (Уравнение $0x_1+0x_2+0x_3=1$ не имеет решений).

Случай 2.

$$\widetilde{r} = r = n$$

$$(A'|B') = \begin{pmatrix} a'_{11} & \dots & \dots & \dots & b'_{1} \\ 0 & a'_{22} & \dots & \dots & b'_{2} \\ 0 & 0 & \dots & \dots & b'_{2} \\ 0 & 0 & \dots & \dots & a'_{nn} & b'_{n} \\ 0 & 0 & \dots & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 0 & 0 \end{pmatrix},$$

где a'_{ii} ведущие элементы, $i = \overline{1, n}$, $a'_{11} a'_{22} \dots a'_{nn} \neq 0$. Отбрасывая нулевые строки, восстановим систему.

$$\begin{cases} a'_{11}x_1 + a'_{12}x_2 + \dots + a'_{1n}x_n &= b'_1 \\ a'_{22}x_2 + \dots + a'_{2n}x_n &= b'_2 \\ \dots & \dots \\ a'_{nn}x_n &= b'_n \end{cases}$$

Это система с квадратной невырожденной (верхней треугольной) матрицей. Следовательно, она имеет единственное решение $x=(x_1,x_2,\ldots,x_n)^{\mathrm{\tiny T}}$.

Найдем его: из последнего уравнения однозначно определяется x_n , подставляя его в предпоследнее уравнение, однозначно определяем x_{n-1} и т.д; наконец, подставляя найденные значения $x_n, x_{n-1}, \ldots, x_2$ в первое уравнение, находим x_1 .

Пример 5.5.

$$\begin{cases} x_1 - x_2 - x_3 &= 0 \\ 2x_1 + x_3 &= 4 \\ -x_1 + 3x_2 + 2x_3 &= 0 \end{cases}$$

$$D = (A|B) = \begin{pmatrix} 1 & -1 & -1 & 0 \\ 2 & 0 & 1 & 4 \\ -1 & 3 & 2 & 0 \end{pmatrix} \xrightarrow{\stackrel{-2D_1 + D_2}{D_1 + D_3}}$$

$$\longrightarrow \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 2 & 1 & 0 \end{pmatrix} \xrightarrow{\stackrel{-D_2 + D_3}{\longrightarrow}} \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & -2 & -4 \end{pmatrix}$$

Восстановим систему

$$\begin{cases} x_{1} - x_{2} - x_{3} &= 0 \\ 2x_{2} + 3x_{3} &= 4 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= \frac{-4}{-2} \\ x_{2} &= \frac{1}{2}(4 - 3x_{3}) \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{2} &= \frac{4 - 6}{2} \\ x_{1} &= x_{2} + x_{3} \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{2} &= \frac{4 - 6}{2} \\ x_{1} &= x_{2} + x_{3} \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{1} &= x_{2} + x_{3} \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{1} &= x_{2} + x_{3} \end{cases} \Leftrightarrow \begin{cases} x_{1} &= 1 \\ x_{2} &= -1 \\ x_{1} &= -1 + 2 \end{cases} \Leftrightarrow \begin{cases} x_{1} &= 1 \\ x_{2} &= -1 \\ x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{1} &= 1 \\ x_{2} &= -1 \end{cases} \Leftrightarrow \begin{cases} x_{2} &= -1 \\ x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{1} &= 1 \\ x_{2} &= -1 \end{cases} \Leftrightarrow \begin{cases} x_{2} &= -1 \\ x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{2} &= -1 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \\ x_{2} &= -1 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \Leftrightarrow \begin{cases} x_{3} &= 2 \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

Сделаем проверку:

$$\begin{cases} 1+1-2 &= 0 \\ 2+ & 2 &= 4 \\ -1-3+4 &= 0 \end{cases}$$

Верхнюю треугольную невырожденную матрицу можно с помощью элементарных преобразований строк привести к единичной матрице. Для этого нужно действовать аналогично приведению к ступенчатому виду, но начиная с последней строки и правого столбца. (К каждой строке выше последней прибавить последнюю строку с таким коэффициентом,

чтобы все элементы последнего столбца над последней строкой стали нулевыми, затем аналогичным образом сделать нулевыми элементы предпоследнего столбца над предпоследней строкой и т.д.) На месте треугольной матрицы получится диагональная матрица $diag(a'_{11}, a'_{22}, \ldots, a'_{nn})$. Умножая каждую строку A'_i на $\frac{1}{a'_{ii}}$, мы получим единичную матрицу E. Описанный процесс получения из треугольной невырожденной матрицы единичной матрицы называется обратным ходом метода Гаусса. Если мы распространим элементарные преобразования этого процесса на строки расширенной матрицы (A'|B'), то получим матрицу

$$(E|B'') = \begin{pmatrix} 1 & 0 & \dots & 0 & b_1'' \\ 0 & 1 & \dots & 0 & b_2'' \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & b_n'' \end{pmatrix}.$$

Система, восстановленная по этой матрице,

$$\begin{cases} x_1 = b_1'' \\ x_2 = b_2'' \\ \dots & \dots \\ x_n = b_n'' \end{cases}$$

имеет, очевидно, единственное решение $X = B'' = (b_1'', b_2'', \dots, b_n'')^{\mathrm{T}}$.

Пример 5.6. Применим обратный ход метода Гаусса к матрице примера $5.5\ D = (A'|B')$

$$D = \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & -2 & -4 \end{pmatrix} \xrightarrow{-\frac{1}{2}D_2} \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{\stackrel{-3D_3+D_2}{D_3+D_1}} \begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{pmatrix} \rightarrow$$

$$\frac{1}{2} \xrightarrow{D_2} \begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{D_2 + D_1} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \qquad \begin{cases} x_1 = 1 \\ x_2 = -1 \\ x_3 = 2 \end{cases}$$

$$X = (1, -1, 2)^{\mathrm{T}}$$

Случай 3.

$$\widetilde{r} = r < n$$

$$(A'|B') = \begin{pmatrix} 0 & \dots & a'_{1j_1} & \dots & \dots & \dots & \dots & b'_1 \\ 0 & \dots & \dots & 0 & a'_{2j_2} & \dots & \dots & \dots & b'_2 \\ \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 & a'_{rj_r} & \dots & b'_r \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots \\ 0$$

где $a'_{1j_1}, a'_{2j_2}, \dots, a'_{rj_r}$ — ведущие элементы. Назовем неизвестные $x_{j_1}, x_{j_2}, \dots, x_{j_r}$ главными(базисными), а остальные неизвестные – ceofodными.

Восстанавливая систему, отбросим нулевые строки и перенесем в каждом уравнении члены со свободными неизвестными в правую часть. Придадим свободным неизвестным произвольные значения $C_1, C_2, \ldots, C_{n-r}$. Тогда относительно главных неизвестных мы получим систему с верхней треугольной невырожденной матрицей. Решая ее как в предыдущем случае, найдем значения главных неизвестных, однозначно ваыраженных через значения свободных.

Записав в столбец X значения всех неизвестных, получим общее pewenue системы, зависящее от C_1, C_2, \dots, C_{n-r} и являющееся решением при любом выборе C_1, C_2, \dots, C_{n-r} . Любое частное решение системы получается из общего решения при выборе конкретных значений $C_1, C_2, \ldots, C_{n-r}$.

Заметим, что в случае r < n система неопределенная и имеет бесконечное множество решений.

Пример 5.7.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + x_5 = 1 \\ -x_1 + 2x_2 - 2x_3 + 2x_4 - 2x_5 = 0 \\ 2x_1 - 4x_2 + x_3 - x_4 = -1 \end{cases}$$

$$D = (A|B) = \begin{pmatrix} 1 & -2 & 1 & -1 & 1 & 1 \\ -1 & 2 & -2 & 2 & -2 & 0 \\ 2 & -4 & 1 & -1 & 0 & -1 \end{pmatrix} \xrightarrow{D_1 + D_2 \\ -2D_1 + D_3 \\ \longrightarrow$$

$$\longrightarrow \begin{pmatrix}
1 & -2 & 1 & -1 & 1 & 1 \\
0 & 0 & -1 & 1 & -1 & 1 \\
0 & 0 & -1 & 1 & -2 & -2
\end{pmatrix} \xrightarrow{-D_2 + D_3}$$

$$\longrightarrow \begin{pmatrix}
1 & -2 & 1 & -1 & 1 & 1 \\
0 & 0 & -1 & 1 & -1 & 1 \\
0 & 0 & 0 & -1 & -1
\end{pmatrix} = (A'|B') \qquad n = 5$$

$$r < n$$

 x_1, x_3, x_5 -главные неизвестные, x_2, x_4 -свободные неизвестные

Восстановим систему

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + x_5 = 1 \\ - x_3 + x_4 - x_5 = 1 \\ - x_5 = -1 \end{cases}$$

Перенесем члены со свободными неизвестными в правую часть уравнений.

$$\begin{cases} x_1 + x_3 + x_5 = 1 + 2x_2 + x_4 \\ - x_3 - x_5 = 1 - x_4 \\ - x_5 = -1 \end{cases}$$

Придадим свободным неизвестным произвольные значения

$$\left\{ \begin{array}{l} x_2 = C_1 \\ x_4 = C_2 \end{array} \right., \qquad \text{тогда}$$

$$\begin{cases} x_1 + x_3 + x_5 = 1 + 2C_1 + C_2 \\ -x_3 - x_5 = 1 - C_2 \\ -x_5 = -1 \end{cases} \begin{cases} x_5 = 1 \\ -x_3 = 1 - C_2 + x_5 \\ x_1 = 1 + 2C_1 + C_2 - x_3 - x_5 \end{cases}$$

$$\begin{cases} x_5 = 1 \\ -x_3 = 1 - C_2 + 1 \\ x_1 = 1 + 2C_1 + C_2 + 2 - C_2 + 1 \end{cases} \begin{cases} x_1 = 2 + C_1 \\ x_3 = -2 + C_2 \end{cases} X = \begin{pmatrix} 2 - 2C_1 \\ C_1 \\ -2 + C_2 \\ C_2 \\ 1 \end{pmatrix}$$

Можно, применяя обратный ход метода Гаусса, привести верхнюю треугольную невырожденную матрицу, состоящую из элементов ненулевых строк ступенчатой матрицы (A'|B') и ее столбцов, в которых

стоят ведущие элементы, к единичной матрице. Если при восстановлении системы перенести члены со свободными неизвестными направо, то главные неизвестные будут явно выражены через свободные. Придавая свободным неизвестным произвольные значения $C_1, C_2, \ldots, C_{n-r}$, можно найти главные неизвестные и общее решение системы.

Пример 5.8. Применим обратный ход метода Гаусса к ступенчатой матрице

D = (A'|B') примера 5.7

$$D = \begin{pmatrix} 1 & -2 & 1 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix} \xrightarrow{1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix} \xrightarrow{D_3 + D_2} \xrightarrow{D_3 + D_1}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{D_2 + D_1} \xrightarrow{D_2 + D_1} \xrightarrow{D_2 + D_1} \xrightarrow{D_2 + D_2} \xrightarrow{D_3} \begin{pmatrix} 1 & -2 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Восстановим систему, перенося свободные неизвестные в правую часть уравнений:

$$\begin{cases} x_1 = 2 + 2x_2 \\ x_3 = -2 + x_4 \\ x_5 = 1 \end{cases}$$

Придадим свободным неизвестным произвольные значения $\left\{ egin{array}{ll} x_2 = C_1 \\ x_4 = C_2 \end{array} \right.$ и

выпишем общее решение
$$X = \begin{pmatrix} 2 + 2C_1 \\ C_1 \\ -2 + C_2 \\ C_2 \\ 1 \end{pmatrix}$$

5.6. Нахождение обратной матрицы методом элементарных преобразований

Утверждение 5.1.Квадратную матрицу A можно с помощью элементарных преобразований строк привести к единичной матрице E тогда и только тогда, когда матрица A невырождена.

■ Заметим, что при элементарных преобразованиях строк матрицы ее определитель либо не изменяется, либо умножается на число, отличное от нуля. Поэтому в результате элементарных преобразований невырожденной матрицы получается невырожденная матрица.

Следовательно, квадратную невырожденную матрицу можно с помощью прямого хода метода Гаусса привести к верхней треугольной невырожденной матрице, а ее с помощью обратного хода метода Гаусса к единичной.

С другой стороны, если квадратная матрица A с помощью элементарных преобразований приводится к E, то матрица A невырождена, т.к. A может быть получена из E обратными элементарными преобразованиями. \blacktriangleright

Обратная матрица к матрице $A \in \mathbb{R}^{n \times n}$ является решением матричного уравнения

(*)
$$AX = E, E \in \mathbb{R}^{n \times n}, X \in \mathbb{R}^{n \times n}$$

(Если $\det A = 0$, уравнение (*) решений не имеет, если $\det A \neq 0$, (*) имеет единственное решение).

Представим квадратные матрицы X, E как совокупности столбцов: $X = (X^1, X^2, \dots, X^n)$ и $E = (E^1, E^2, \dots, E^n)$.

Уравнение (*) равносильно системе n матричных уравнений

$$\{AX^j = E^j \quad (j) \quad j = \overline{1, n}$$

Каждое из уравнений (j) представляет собой матричную запись СЛАУ с расширенной матрицей $(A|E^j)$. Если $\det A \neq 0$, то каждую матрицу $(A|E^j)$ с помощью элементарных преобразований строк можно привести к виду $(E|B^j)$ и решением (j) будет столбец $X^j = B^j$, а решением уравнения (*) матрица $X = (X^1, X^2, \dots, X^n) = (B^1, B^2, \dots, B^n) = B$, т.е. $A^{-1} = B$.

Таким образом, если элементарные преобразования, приводящие A к E, производить над строками матрицы

$$(A|E) = (A|E^1 E^2 \dots E^n),$$

то в результате получится матрица

$$(E|B^1B^2...B^n) = (E|B)$$
 in $B = A^{-1}$.

$$\det A \neq 0 \Longrightarrow (A|E) \longrightarrow (E|A^{-1})$$

Если $\det A = 0$, то привести A к E невозможно (при приведении к ступенчатому виду получится нулевая строка).

Пример 5.9.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & 2 \\ 1 & 3 & -2 \end{pmatrix} \qquad A^{-1} = ?$$

$$C = (A|E) = \begin{pmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 1 & -2 & 2 & 0 & 1 & 0 \\ 1 & 3 & -2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_1 \leftrightarrow C_2} \begin{pmatrix} 1 & -2 & 2 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 \\ 1 & 3 & -2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\stackrel{-2C_1 + C_2}{-C_1 + C_3}}$$

$$\longrightarrow \begin{pmatrix} 1 & -2 & 2 & 0 & 1 & 0 \\ 0 & 5 & -4 & 1 & -2 & 0 \\ 0 & 5 & -4 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{-C_2 + C_3} \begin{pmatrix} 1 & -2 & 2 & 0 & 1 & 0 \\ 0 & 5 & -4 & 1 & -2 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{pmatrix} = (A'|B')$$

$$\det A' = 0 \Longrightarrow \det A = 0 \Longrightarrow \not\exists A^{-1}$$

Пример 5.10.

$$A = \begin{pmatrix} 2 & -2 & 1 \\ -3 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \qquad A^{-1} = ?$$

$$C = (A|E) = \begin{pmatrix} 2 & -2 & 1 & 1 & 0 & 0 \\ -3 & 1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_1 \leftrightarrow C_3} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ -3 & 1 & 0 & 0 & 1 & 0 \\ 2 & -2 & 1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{3C_1 + C_2 \\ -2C_1 + C_3}$$

$$\longrightarrow \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 7 & 3 & 0 & 1 & 3 \\ 0 & -6 & -1 & 1 & 0 & -2 \end{pmatrix} \xrightarrow{C_3 + C_2} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 & 1 \\ 0 & -6 & -1 & 1 & 0 & -2 \end{pmatrix} \xrightarrow{6C_2 + C_3}$$

$$\longrightarrow \left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 11 & 7 & 6 & 4 \end{array}\right) \xrightarrow{\frac{1}{11}C_3} \left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 0 & 0 & \frac{11}{11} \\ 0 & 1 & 2 & \frac{11}{11} & \frac{11}{11} & \frac{11}{11} \\ 0 & 0 & 1 & \frac{7}{11} & \frac{6}{11} & \frac{4}{11} \end{array}\right) \xrightarrow{-2C_3 + C_2 \\ \xrightarrow{-C_3 + C_1}}$$

$$\longrightarrow \begin{pmatrix} 1 & 2 & 0 & -\frac{7}{11} & -\frac{6}{11} & \frac{7}{11} \\ 0 & 1 & 0 & -\frac{3}{11} & -\frac{1}{11} & \frac{3}{11} \\ 0 & 0 & 1 & \frac{7}{11} & \frac{6}{11} & \frac{4}{11} \end{pmatrix} \xrightarrow{-2C_2+C_1} \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{11} & -\frac{4}{11} & \frac{1}{11} \\ 0 & 1 & 0 & -\frac{3}{11} & -\frac{1}{11} & \frac{3}{11} \\ 0 & 0 & 1 & \frac{7}{11} & \frac{6}{11} & \frac{4}{11} \end{pmatrix} \Longrightarrow$$

$$\Longrightarrow A^{-1} = \frac{1}{11} \begin{pmatrix} -1 & -4 & 1 \\ -3 & -1 & 3 \\ 7 & 6 & 4 \end{pmatrix}$$

Проверка

$$AA^{-1} = \frac{1}{11} \begin{pmatrix} 2 & -2 & 1 \\ -3 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -4 & 1 \\ -3 & -1 & 3 \\ 7 & 6 & 4 \end{pmatrix} =$$

$$= \begin{pmatrix} -2+6+7 & -8+2+6 & 2-6+4 \\ 3-3 & 12-1 & -3+3 \\ -1-6+7 & -4-2+6 & 1+6+4 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix} = E$$

6. СПИСОК ЛИТЕРАТУРЫ

- 1. Винберг Э. Б. Курс алгебры. -М.: МЦИМО, 2013.-592с.
- 2. Головина Л. И. Линейная алгебра и некоторые её приложения. М.: Наука, Главная редакция физико-математической литературы, 1985. 392c.
- 3. Ильин В.А., Ким Г.Д. Линейная алгебра и аналитическая геометрия М.: ТК Велби, Изд-во Проспект, 2007.—400с.