Vision-Language Joint Debiasing with Modality Alignment

FYP CA Presentation

- Single-stream:
 - UNITER, ViLT, etc.
- Dual-stream:
 - CLIP, ALIGN, ALBEF, BLIP, etc.

- Single-stream:
 - UNITER, ViLT, etc.
- Dual-stream:
 - CLIP, ALIGN, ALBEF, BLIP, etc.

- Single-stream:
 - UNITER, ViLT, etc.
- Dual-stream:
 - CLIP, ALIGN, ALBEF, BLIP, etc.

- Single-stream:
 - UNITER, ViLT, etc.
- Dual-stream:
 - CLIP, ALIGN, ALBEF, BLIP, etc.
- Vision-Language (V-L) tasks

- Understanding: Image-text retrieval, Visual Question Answering, etc.
- Generation: Image captioning, text-to-image (Stable Diffusion), etc.

- Learning spurious correlations in images/texts during training
- Associates certain concepts with groups with specific attributes (race, gender, age, etc.)
- Manifest in V-L tasks
 - Understanding:
 - Image-text retrieval, etc.
 - Generation:
 - Text-to-image (Stable Diffusion, etc.)

- Learning spurious correlations in images/texts during training
- Associates certain concepts with groups with specific attributes (race, gender, age, etc.)
- Manifest in V-L tasks
 - Understanding:
 - Image-text retrieval, etc.
 - Generation:
 - Text-to-image (Stable Diffusion, etc.)

Figure 3: Effect of debiasing CLIP ViT-B/16 by ranked images with concept of "smart" from the FairFace validation set, labeled with male and female.

- Learning spurious correlations in images/texts during training
- Associates certain concepts with groups with specific attributes (race, gender, age, etc.)
- Manifest in V-L tasks
 - Understanding:
 - Image-text retrieval, etc.
 - Generation:
 - Text-to-image (Stable Diffusion, etc.)

Figure 3: Effect of debiasing CLIP ViT-B/16 by ranked images with concept of "smart" from the FairFace validation set, labeled with male and female.

- Profound social impact
 - Biased decision making
 - Unfair allocation
 - Biased generated content
 - Reinforce existing social biases

Figure 3: Effect of debiasing CLIP ViT-B/16 by ranked images with concept of "smart" from the FairFace validation set, labeled with male and female.

Research Problem

VL-PTM debiasing

- Mitigate social biases in the pre-trained CLIP model, making it more fair
- Maintain a balance between fairness and V-L performance.

- Bias measurement:
 - Concepts (jobs, qualities, ...)
 - Protected attributes (gender/race/age...)
 - Bias: model associate concepts with protected attributes

- Retrieval-based bias metrics
 - Concept: text prompt
 - Protected attributes: images
 - Text prompt as a query, the CLIP retrieves k images based on text-image similarities
 - The retrieved k images have different attributes (gender/age/race...)

- Retrieval-based bias metrics
 - Distribution of the protected attributes in the k images retrieved

- Retrieval-based bias metrics
 - Distribution of the protected attributes in the k images retrieved
 - Ideally, proportion of an attribute in retrieved images = proportion of an attribute in the original pool of images
 - Demographic parity: the retrieval based on matching is independent of the protected attributes of the image

Measurement of Social Bias in CLIP

- Retrieval-based bias metrics
 - Bias measured by comparing the new distribution of the protected attributes among the k retrieved images with the original distribution of the protected attributes among all images
 - Metric 1: Max Skew

$$MaxSkew_@k(au_T) = \max_{A_i \in \mathcal{A}} Skew_{A_i}@k(au_T)$$
 (Skew_A@k(\au_T) = ln $\frac{p_{ au_T,T,A}}{p_{d,T,A}}$)

Metric 2: Normalized Discounted Cumulative KL-Divergence (NDKL)

$$NDKL(\tau_T) = \frac{1}{Z} \sum_{i=1}^{|\tau_y|} \frac{1}{\log_2(i+1)} d_{KL}(D_{\tau_T^i}||D_T)$$

- Fairness datasets
 - FairFace, UTKFace, FACET
 - Labels: Race, gender, age, etc.

(a) FairFace

(b) UTKFace

CLIP Debiasing Approaches

- Training-free: Embedding vector manipulation
- Training-required: Fair module fine-tuning

- Debias both image and text embeddings
- Determine the features in the image embedding vectors that contain the most bias information
- Remove those image features from the image embedding vector
- Remove the corresponding text features from the text embedding vector

- Debias both image and text embeddings
- Determine the features in the image embedding vectors that contain the most bias information
- Remove those image features from the image embedding vector
- Remove the corresponding text features from the text embedding vector

- Debias both image and text embeddings
- Determine the features in the image embedding vectors that contain the most bias information
- Remove those image features from the image embedding vector
- Remove the corresponding text features from the text embedding vector

- Debias both image and text embeddings
- Determine the features in the image embedding vectors that contain the most bias information
- Remove those image features from the image embedding vector
- Remove the corresponding text features from the text embedding vector

Embedding Vector Manipulation - Bias Projection

- Debias text embedding only
- Generate biased text prompt embeddings that contain bias information
- Use orthogonal projection to produce debiased text embedding invariant to biased prompts

Embedding Vector Manipulation - Bias Projection

- Debias text embedding only
- Generate biased text prompt embeddings that contain bias information
- Use orthogonal projection to produce debiased text embedding invariant to biased prompts

Embedding Vector Manipulation - Bias Projection

- Debias text embedding only
- Generate biased text prompt embeddings that contain bias information
- Use orthogonal projection to produce debiased text embedding invariant to biased prompts

Fair Module Fine-Tuning

- Add trainable fair modules and fine-tune them
 - Learnable text prompt tokens
 - Learnable module attached after image encoder
- Training objectives: adversarial loss, etc. To mitigate bias and keep model performance.

Fair Module Fine-Tuning

- Add trainable fair modules and fine-tune them
 - Learnable text prompt tokens
 - Learnable module attached after image encoder
- Training objectives: adversarial loss, etc. To mitigate bias and keep model performance.

Fair Module Fine-Tuning

- Add trainable fair modules and fine-tune them
 - Learnable text prompt tokens
 - Learnable module attached after image encoder
- Training objectives: adversarial loss, etc. To mitigate bias and keep model performance.

Debiasing Coverage of Existing Techniques

- Debias text encoder only
 - Fair module (learnable text prompts) fine-tuning
 - Bias projection
- Debias image encoder only
 - Fair module (image debiasing module) fine-tuning
- Debias both image and text encoders
 - Feature clipping

Limitations of Existing Methods

- Lack of modality alignment when debiasing image/text encoders
 - Incomplete removal of text and image biases
 - Harms V-L alignment in the original CLIP model
 - Debias text encoder only
 - · Fair module (learnable text prompts) fine-tuning
 - Bias projection
 - Debias image encoder only
 - Fair module (image debiasing module) fine-tuning
 - Debias both image and text encoders
 - Feature clipping

Aim

- Unified framework for joint image and text debiasing with modality alignment
 - Study the image and text bias in CLIP
 - Remove bias from both image and text embeddings concurrently

Study of Gender Bias in CLIP - Exp 1

- Use t-SNE to visualise the biased text/image embeddings of CLIP
- Qualitatively evaluate the bias distributions

A photo of a female teacher

A photo of a male teacher

A photo of a female farmer

A photo of a male farmer

Study of Gender Bias in CLIP - Exp 1

t-SNE visualisation

- Top left: text embeddings
- Bottom right: image embeddings
- Different bias distribution; more bias in the image embeddings

Study of Gender Bias in CLIP - Exp 2

- Estimate alignment of image and text bias subspaces
 - Following the analysis in DeAR to disentangle bias information from the original image/text embedding
 - $E_i(I) = \overline{\phi}_i(I) + \phi_i(I)$ (neutral + bias)
 - $E_t(T) = \overline{\phi}_t(T) + \phi_t(T)$
 - $\phi_i(I)$ and $\phi_t(T)$ lie in the image and text bias subspaces respectively

\

Study of Gender Bias in CLIP - Exp 2

Estimate alignment of image and text bias subspaces

- Sample: image-text of opposite gender but same concept
- (Male farmer, female farmer) = $((I_m, T_m), (I_f, T_f))$

•
$$E_i(I_m) = \overline{\phi}_i(I_m) + \phi_i(I_m)$$
 - (1)

•
$$E_i(I_f) = \overline{\phi}_i(I_f) + \phi_i(I_f)$$
 - (2)

A photo of a male teacher

A photo of a female teacher

- (1) (2): $E_i(I_m) E_i(I_f) = \phi_i(I_m) \phi_i(I_f)$ (difference in image bias for opposite genders)
- Similarly, $E_t(T_m) E_t(T_f) = \phi_t(T_m) \phi_t(T_f)$ (difference in text bias for opposite genders)
- To check alignment of text and image subspaces, we can check whether $\phi_i(I_m) \phi_i(I_f)$ and $\phi_t(T_m) \phi_t(T_f)$ align with each other across different samples of $((I_m, T_m), (I_f, T_f))$

Study of Gender Bias in CLIP - Exp 2

- Estimate alignment of image and text bias subspaces
 - Compare the cosine similarity between $\phi_i(I_m) \phi_i(I_f)$ and $\phi_t(T_m) \phi_t(T_f)$ for each sample
 - Each sample: a set of $((I_m, T_m), (I_f, T_f))$ that share the same concept (e.g. "farmer")
 - ~3k samples are used
 - Results: varied and low similarities across samples; there is no evidence that two bias subspaces are aligned.

A photo of a female teacher

A photo of a male teacher

Study of Gender Bias in CLIP - Exp 3

- Bias from Cross-Modal Interaction
 - Test 1: Image concept matched to text concepts
 - Test 2: Text concept matched to image concepts
 - Stage 1: Test 1 and Test 2
 - Stage 2: Test 1 and Test 2 with gender information

Study of Gender Bias in CLIP - Exp 3

Matching an image to text prompts

Matching a text to image prompts

Study of Gender Bias in CLIP - Exp 3

Matching an image to text prompts

Matching a text to image prompts

Study of Gender Bias in CLIP - Exp 3

Matching an image to text prompts

 $\times 416$

Correct matching rate: 52.6%

Matching a text to image prompts

 $\times 416$

Correct matching rate: 49.5%

Study of Gender Bias in CLIP - Exp 3

Study of Gender Bias in CLIP - Exp 3

Study of Gender Bias in CLIP - Exp 3

- Bias from Cross-Modal Interaction
 - More gender association leads to lower correct matching rate of a text to image prompts
 - Gender bias in certain images, closer to the text prompt with gender information
 - More significant bias in image embeddings

Study of Gender Bias in CLIP

Summary

- Image biases seem to be more significant (based on Exp 1 and 3)
- Image and text biases may manifest differently, as there is no evidence showing that their bias subspaces are aligned (Exp 2)

Ideas (not finalised)

- Bias subspaces alignment
 - Learnable module to transform image bias subspace to text bias subspace (or the other way)
- Joint V-L debiasing
 - Debias text embeddings/image embeddings
 - The other modality will be debiased at the same time
- Currently on gender, later extend to race/age...

Evaluation Metrics

- Fairness
 - Retrieval-based metrics
 - Fairness in generative models: images generated by Stable Diffusion with our debiased CLIP text encoder
- V-L task performance
 - Zero-shot classification
 - Zero-shot retrieval

Evaluation Metrics

- Fairness
 - Retrieval-based metrics
 - Fairness in generative models: images generated by Stable Diffusion with our debiased CLIP text encoder
- V-L task performance
 - Zero-shot classification
 - Zero-shot retrieval

Evaluation Metrics

- Fairness
 - Retrieval-based metrics
 - Fairness in generative models: images generated by Stable Diffusion with our debiased CLIP text encoder
- V-L task performance
 - Zero-shot classification
 - Zero-shot retrieval

Thank you for listening!