COMP9444 Neural Networks and Deep Learning 2b. PyTorch

Typical Structure of a PyTorch Progam

```
# create neural network according to model specification
net = MyModel().to(device) # CPU or GPU
train_loader = torch.utils.data.DataLoader(...)
test_loader = torch.utils.data.DataLoader(...)
# choose between SGD, Adam or other optimizer
optimizer = torch.optim.SGD(net.parameters,...)
for epoch in range(1, epochs):
    train(params, net, device, train_loader, optimizer)
    if epoch % 10 == 0:
       test(params, net, device, test_loader)
```

Defining a Model

```
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        # define structure of the network here
    def forward(self, input):
        # apply network and return output
```

Defining a Custom Model

```
Consider the function (x, y) \mapsto Ax \log(y) + By^2
import torch.nn as nn
class MyModel(nn.Module):
   def __init__(self):
       super(MyModel, self).__init__()
       self.A = nn.Parameter(torch.randn((1),requires_grad=True))
       self.B = nn.Parameter(torch.randn((1),requires_grad=True))
   def forward(self, input):
       output = self.A * input[:,0] * torch.log(input[:,1]) \
                + self.B * input[:,1] * input[:,1]
       return output
```

Building a Net from Individual Components

```
class MyModel(torch.nn.Module):
   def __init__(self):
       super(MyModel, self).__init__()
       self.in_to_hid = torch.nn.Linear(2,2)
       self.hid_to_out = torch.nn.Linear(2,1)
   def forward(self, input):
       hid_sum = self.in_to_hid(input)
       hidden = torch.tanh(hid sum)
       out_sum = self.hid_to_out(hidden)
       output = torch.sigmoid(out_sum)
       return output
```

Defining a Sequential Network

```
class MyModel(torch.nn.Module):
   def __init__(self, num_input, num_hid, num_out):
       super(MyModel, self).__init__()
       self.main = nn.Sequential(
           nn.Linear(num_input, num_hid),
           nn.Tanh(),
           nn.Linear(num_hid, num_out),
           nn.Sigmoid()
   def forward(self, input):
       output = self.main(input)
       return output
```

COMP9444 20T3 PyTorch 6

Sequential Components

Network Layers: nn.Linear()

nn.Conv2d()

Intermediate Operators: nn.Dropout()

nn.BatchNorm()

Activation Functions: nn.Tanh()

nn.Sigmoid()

nn.ReLU()

Declaring Data Explicitly

```
import torch.utils.data
input = torch.Tensor([[0,0],[0,1],[1,0],[1,1]])
target = torch.Tensor([[0],[1],[1],[0]])

xdata = torch.utils.data.TensorDataset(input,target)
train_loader = torch.utils.data.DataLoader(xdata,batch_size=4)
```

Note:

- 1. data are presented in the form of a tensor (multi-dimensional matrix)
- 2. for feedforward networks, data is presented "batch first" in the sense that the first dimension (dim=0) of the tensor indexes the items within a batch
- 3. for LSTM's, the batch index will be the second dimension (dim=1)

Loading Data from a .csv File

```
import pandas as pd
df = pd.read_csv("sonar.all-data.csv")
df = df.replace('R',0)
df = df.replace('M',1)
data = torch.tensor(df.values,dtype=torch.float32)
num_input = data.shape[1] - 1
input = data[:,0:num_input]
target = data[:,num_input:num_input+1]
dataset = torch.utils.data.TensorDataset(input,target)
```

Custom Datasets

```
from data import ImageFolder

dataset = ImageFolder(folder, transform)

import torchvision.datasets as dsets

mnistset = dsets.MNIST(...)

cifarset = dsets.CIFAR10(...)

celebset = dsets.CelebA(...)
```

Choosing an Optimizer

SGD stands for "Stochastic Gradient Descent"

Adam = Adaptive Momentum (good for deep networks)

Training

```
def train(args, net, device, train_loader, optimizer):
   for batch_idx, (data,target) in enumerate(train_loader):
      optimizer.zero_grad()  # zero the gradients
      output = net(data)  # apply network
      loss = ...  # compute loss function
      loss.backward()  # update gradients
      optimizer.step()  # update weights
```

Loss Functions

```
import torch.nn.functional as F

loss = torch.sum((output-target)*(output-target))

loss = F.nll_loss(output, target)

loss = F.binary_cross_entropy(output, target)

loss = F.softmax(output, dim=1)

loss = F.log_softmax(output, dim=1)
```

Note that softmax and log_softmax use dim=1, to normalize over the outputs within a single item. One common mistake is to use dim=0, which would instead normalize over the items in a batch.

Testing

```
def test(args, model, device, test_loader):
    with torch.no_grad(): # suppress updating of gradients
        net.eval() # toggle batch norm, dropout
        test_loss = 0
        for data, target in test_loader:
            output = model(data)
            test_loss += ...
    print(test_loss)
    net.train() # toggle batch norm, dropout back again
```

Computational Graphs

PyTorch automatically builds a computational graph, enabling it to backpropagate derivatives.

Every Parameter includes .data and .grad components, for example:

- A.data
- A.grad

optimizer.zero_grad() sets all .grad components to zero.

loss.backward() updates the .grad component of all Parameters by backpropagating gradients through the computational graph.

optimizer.step() updates the .data components.

Controlling the Computational Graph

If we need to block the gradients from being backpropagated through a certain variable (or expression) A, we can exclude it from the computational graph by using:

A.detach()

By default, loss.backward() discards the computational graph after computing the gradients.

If needed, we can force it to keep the computational graph by calling:

loss.backward(retain_graph=True)