## Automating Separation Logic using SMT

Ruzica Piskac Thomas Wies Damien Zufferey

MPI-SWS NYU IST Austria

CAV, July 17 2013, Saint Petersburg

# Motivation: Program with SL Specification

```
procedure concat(a: Node, b: Node) returns (res: Node)
  requires lseg(a, null) * lseg(b, null);
 ensures lseg(res, null):
 if (a == null)
                                      pre / postconditions
   return b;
 Node curr := a;
 while (curr.next != null)
    invariant curr != null * lseg(a, curr) * lseg(curr, null);
   curr := curr.next;
 curr.next := b;
                                     loop invariants
  return a:
```

## Separating Conjunction and Inductive Predicates

```
procedure concat(a: Node, b: Node) returns (res: Node)
 requires lseg(a, null) * lseg(b, null);
 ensures lseg(res, null):
  if (a == null)
   return b;
 Node curr := a;
 while (curr.next != null)
    invariant curr != null * lseg(a, curr) * lseg(curr, null);
    curr := curr.next;
 curr.next := b;
  return a:
                                       curr
```

## Frame Inference

```
procedure concat(a: Node, b: Node) returns (res: Node)
  requires lseg(a, null) * lseg(b, null);
  ensures lseg(res, null);
{
  if (a == null)
    return b;
 Node curr := a;
 while (curr.next != null)
    invariant curr != null * lseg(a, curr) * lseg(curr, null);
    curr := curr.next;
  curr.next := b;
  return a;
```

## Adding Data

```
procedure concat(a: Node, b: Node) returns (res: Node)
  requires lsleg(a, null, x) * uslseg(b, null, x);
  ensures slseg(res. null):
{
  if (a == null)
    return b;
                                                        null
  Node curr := a;
  while (curr.next != null)
    invariant curr != null:
    invariant lslseg(a, curr, curr.data) * lslseg(curr, null, x);
    curr := curr.next;
  curr.next := b:
                                                       nu11
                                         curr
  return a;
```

### Our work

- Reduce a decidable fragment of SL to a decidable FO theory.
- Combining SL with other theories.
- Satisfiability, entailment, frame inference, and abduction problems for SL using SMT solvers.
- Implemented in the GRASShopper tool.

## Decidable SL fragment: SLLB

SLL (separation logic formulas for linked lists) introduced in [Berdine  ${
m et\ al.,\ 2004}$ ].

SLL

$$\Sigma ::= x = y \mid x \neq y \mid x \mapsto y \mid \mathsf{ls}(x,y) \mid \Sigma * \Sigma$$

With extend SLL to SLLB by adding boolean connective on top:

$$H ::= \Sigma \mid \neg H \mid H \wedge H$$

# Semantics of SLLB (1)

$$\Sigma ::= x = y \mid x \neq y \mid x \mapsto y \mid \mathsf{ls}(x,y) \mid H_1 * H_2$$

$$(x, y)$$
 $(x)$ 
 $(x)$ 
 $(y)$ 
footprint =  $\emptyset$ 



# Semantics of SLLB (2)

$$\Sigma ::= x = y \mid x \neq y \mid x \mapsto y \mid ls(x, y) \mid H_1 * H_2$$



important:  $\exists U_1, U_2$ 

# Semantics of SLLB (3)

$$\Sigma ::= x = y \mid x \neq y \mid x \mapsto y \mid \mathsf{ls}(x, y) \mid H_1 * H_2$$



## $\mathsf{SLL}\mathbb{B} \quad o \quad \mathsf{GRASS}$

Translate  $SLL\mathbb{B}$  to a decidable FO theory.

### Requirements:

- easy automation with SMT solvers
- well-behaved under theory combination
- no increase in complexity

#### GRASS: combination of two theories

- structure: functional graph reachability  $(\mathcal{T}_G)$  to encode the shape of the heap (pointers)
- footprint: stratified sets  $(\mathcal{T}_S)$  to encode the part of the heap used by a formula

# GRASS: graph reachability and stratified sets

### graph reachability

$$T ::= x \mid h(T)$$

$$A ::= T = T \mid T \xrightarrow{h \setminus T} T$$

$$R ::= A \mid \neg R \mid R \wedge R \mid R \vee R$$

#### stratified sets

$$S ::= X \mid \emptyset \mid S \setminus S \mid S \cap S \mid S \cup S \mid \{x. R\} \mid x \text{ not below } h \text{ in } R$$

$$B ::= S = S \mid T \in S$$

### top level boolean combination

$$F ::= A \mid B \mid \neg F \mid F \land F \mid F \lor F$$

## $\mathcal{T}_{\mathsf{G}}$ : theory of function graphs

 $t_1 \xrightarrow{h \setminus t_3} t_2$  is true if there exists a path in the graph of h that connects  $t_1$  and  $t_2$  without going through  $t_3$ .



# $\mathsf{SLL}\mathbb{B} \quad o \quad \mathsf{GRASS} \ (1)$

Usual way of translating SL to FO:

- structure:  $\mathcal{T}_{G}$  to encode the shape of the heap (pointers)
- ullet footprint:  $\mathcal{T}_S$  to encode the part of the heap used by a formula

Negation (entailment check, frame)  $\Rightarrow$  more complicated

- structure: uses  $\mathcal{T}_G$  and  $\mathcal{T}_S$  to encode the shape of the heap (pointers) and disjointness
- set definition: uses T<sub>S</sub> for keep track of the sets that will make the footprint

## $SLL\mathbb{B} \rightarrow GRASS$ : interesting cases

$$Tr_X(H) = \text{let } (F, G) = tr_X(H) \text{ in } F \wedge G$$
 $F \text{ is the structure}$ 
 $G \text{ is the set definitions.}$ 

$$tr_{X}(\operatorname{ls}(x,y)) = (x \xrightarrow{h} y, \ X = Btwn(x,y))$$

$$tr_{X}(\Sigma_{1} * \Sigma_{2}) = \operatorname{let} \ Y_{1}, Y_{2} \in \mathcal{X} \text{ fresh}$$

$$\operatorname{and} \ (F_{1}, G_{1}) = tr_{Y_{1}}(\Sigma_{1})$$

$$\operatorname{and} \ (F_{2}, G_{2}) = tr_{Y_{2}}(\Sigma_{2})$$

$$\operatorname{in} \ (F_{1} \wedge F_{2} \wedge Y_{1} \cap Y_{2} = \emptyset, \ X = Y_{1} \cup Y_{2} \wedge G_{1} \wedge G_{2})$$

$$tr_{X}(\neg H) = \operatorname{let} \ (F, G) = tr_{X}(H) \operatorname{in} \ (\neg F, G)$$

# Example: without negation

a non-empty acyclic list segment from x to z

$$x \neq z * x \mapsto y * \mathsf{ls}(y, z)$$

translate to

$$x \neq z \land h(x) = y \land y \xrightarrow{h} z \land Y_2 \cap Y_3 = \emptyset \land Y_4 \cap Y_5 = \emptyset \land X = Y_1 \land Y_1 = Y_2 \cup Y_3 \land Y_2 = \emptyset \land Y_3 = Y_4 \cup Y_5 \land Y_4 = \{x\} \land Y_5 = Btwn(y, z)$$

# Example: with negation

a non-empty acyclic list segment from x to z

$$\neg(x \neq z * x \mapsto y * \mathsf{ls}(y, z))$$

with negation

structure (negated)

$$x = z \lor h(x) \neq y \lor \neg y \xrightarrow{h} z \lor Y_2 \cap Y_3 \neq \emptyset \lor Y_4 \cap Y_5 \neq \emptyset \lor X \neq Y_1$$

set definitions (unchanged)

$$Y_1 \!=\! Y_2 \!\cup\! Y_3 \land Y_2 \!=\! \emptyset \land Y_3 \!=\! Y_4 \!\cup\! Y_5 \land Y_4 \!=\! \{x\} \land Y_5 \!=\! \textit{Btwn}(y,z)$$

# Why is that correct?

Translation: 
$$Tr_X(H) = \text{let } (F,G) = tr_X(H) \text{ in } F \wedge G$$

the auxiliary variables  $Y_i$  (in G) are existentially quantified below negation, the existential quantifiers should become universal

the  $Y_i$  are defined as finite unions of set comprehensions  $\rightarrow$  satisfiable in any given heap interpretation  $\mathcal{A}$ 

Due to the precise semantics of SLLB

ightarrow exists exactly one assignment of the  $Y_i$  that makes G true in  $\mathcal A$ 

$$\exists Y_1, \dots, Y_n. F \land G$$
 and  $\forall Y_1, \dots, Y_n. G \Rightarrow F$  are equivalent.

## Where are we now?

With the SLLB to GRASS translation we can

- Check for satisfiability
- Check entailment (reduces to satisfiability of  $H_1 \wedge \neg H_2$ )

We also have a translation from GRASS to SLLB:

- compute F in  $A \models_{\mathsf{SL}} B * F$  (frame)
- compute F in  $A * F \models_{\mathsf{SL}} B$  (antiframe)

The details are in the paper.

## Combination with other theories and extensions

- ullet The theories  $\mathcal{T}_{\mathsf{G}}$  and  $\mathcal{T}_{\mathsf{S}}$  are stably infinite. (Nelson-Oppen)
- Data: we can add data with constraints (see paper for details).
- More complex data structures, e.g. doubly linked lists, ...

## Experimental results

Implementation: GRASSHOPPER available at https://cs.nyu.edu/wies/software/grasshopper/

| program        | sl |     | dl |     | rec sl |     | sls |            | program      | sl |     | dl |     | rec sl |     | sls |     |
|----------------|----|-----|----|-----|--------|-----|-----|------------|--------------|----|-----|----|-----|--------|-----|-----|-----|
|                | #  | t   | #  | t   | #      | t   | #   | t          | 1            | #  | t   | #  | t   | #      | t   | #   | t   |
| concat         | 4  | 0.1 | 5  | 1.3 | 6      | 0.6 | 5   | 0.2        | insert       | 6  | 0.2 | 5  | 1.5 | 5      | 0.2 | 6   | 0.4 |
| сору           | 4  | 0.2 | 4  | 3.9 | 6      | 0.8 | 7   | 3.5        | reverse      | 4  | 0.1 | 4  | 0.5 | 6      | 0.2 | 4   | 0.2 |
| filter         | 7  | 0.6 | 5  | 1.1 | 8      | 0.4 | 5   | 1.1        | remove       | 8  | 0.2 | 8  | 0.8 | 7      | 0.2 | 7   | 0.5 |
| free           | 5  | 0.1 | 5  | 0.3 | 4      | 0.1 | 5   | 0.1        | traverse     | 4  | 0.1 | 5  | 0.3 | 3      | 0.1 | 4   | 0.2 |
| insertion sort |    |     |    |     |        | 10  | 0.7 | double all |              |    |     |    |     |        | 7   | 2.2 |     |
| merge sort     |    |     |    |     |        |     | 25  | 6.8        | pairwise sum |    |     |    |     |        |     | 10  | 20  |

- sl singly-linked list (loop or recursion)
- dl doubly-linked list
- sls sorted lists

- # number of VCs
- t total time in s.

### Conclusion

- Reduce a decidable fragment of SL to a decidable FO theory.
- Combining SL with other theories.
- Satisfiability, entailment, frame inference, and abduction problems for SL using SMT solvers.
- Implemented in the GRASShopper tool.

## Related work

- Most prominent decidable fragments of SL: linked lists [Berdine et al., 2004], decidable in polynomial time [Cook et al., 2011] (graph-based).
- SL → FO: [Calcagno and Hague, 2005] (no inductive predicate) and [Bobot and Filliâtre, 2012] (not a decidable fragment).
- Alternatives to SL: (implicit) dynamic frames [Kassios, 2011] and region logic [Banerjee et al., 2008, Rosenberg et al., 2012].
- The connection between SL and implicit dynamic frames has been studied in [Parkinson and Summers, 2012].
- SMT-based decision procedures for theories of reachability in graphs [Lahiri and Qadeer, 2008, Wies et al., 2011, Totla and Wies, 2013], decision procedures for theories of stratified sets [Zarba, 2004].



Banerjee, A., Naumann, D. A. and Rosenberg, S. (2008).

Regional Logic for Local Reasoning about Global Invariants. In ECOOP vol. 5142, of LNCS pp. 387–411,.



Berdine, J., Calcagno, C. and O'Hearn, P. (2004).

A Decidable Fragment of Separation Logic. In FSTTCS.



Bobot, F. and Filliâtre, J.-C. (2012).

Separation Predicates: a Taste of Separation Logic in First-Order Logic. In ICFEM.



Calcagno, C. and Hague, M. (2005).

From separation logic to first-order logic. In FoSSaCs'05 pp. 395–409, Springer.



Cook, B., Haase, C., Quaknine, L., Parkinson, M. and Worrell, L. (2011)

Tractable Reasoning in a Fragment of Separation Logic

In CONCUR. Springer



The dimensio france there

Formal Asp. Comput. 23, 267-288,



airi S. K. and Oadoor S. (2009)