CSC165H1: Problem Set 3 Sample Solutions

Due November 15, 2017 before 10pm

Note: solutions are incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

1. [12 marks] extend some results...

Definition 1 (sequence a_n , S). Let $a: \mathbb{N} \to \mathbb{Z}$. Denote $a(n) = a_n$, and a is identified with the sequence a_0, a_1, a_2, \ldots . Let $S = \{f \mid f: \mathbb{N} \to \mathbb{Z}\}$ be the set of integer sequences.

(a) [3 marks] Use induction on n to prove that if m is some non-zero integer, and $a, b \in S$ are arbitrary integer sequences, and n is an arbitrary natural number greater than 0, then

$$(orall k \in \mathbb{N}, k \leq n \Rightarrow a_k \equiv b_k \pmod m) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \pmod m$$

Hint: You may assume 2.18(c) from the course notes as a starting point.

Solution

Claim:

$$egin{aligned} orall a,b \in \mathcal{S}, orall m \in \mathbb{Z}, orall n \in \mathbb{N}, \ (m
eq 0 \land [orall k \in \mathbb{N}, k \leq n \Rightarrow a_k \equiv b_k \pmod m]) \ \Rightarrow \prod_{k=0}^n a_k \equiv \prod_{k=0}^n b_k \pmod m \end{aligned}$$

Proof (induction on n**):** Let $a, b \in S$ be arbitrary integer sequences, let m be an arbitrary integer, and let k be an arbitrary natural number. Assume $m \neq 0$. Define P(n):

$$P(n): (orall k \in \mathbb{N}, k \leq n \Rightarrow a_k \equiv b_k \pmod m) \Rightarrow \prod_{k=0}^n a_k \equiv \prod_{k=0}^n b_k \pmod m$$

Base cases: $a_0 \equiv b_0 \pmod m$ is the same as $\prod_{k=0}^0 a_k = \prod_{k=0}^0 b_k \pmod m$, since this is a unary product, so P(0) is true.* $a_0 \equiv b_0 \wedge a_1 \equiv b_1 \pmod m$ implies $a_0a_1 \equiv b_0b_1 \pmod m$ by Exercise 2.18(c) in the course notes, so P(1) is true.

Inductive step: Let $n \in \mathbb{N}$ and assume P(n) is true, that is if $\forall k \in \mathbb{N}, k \leq n \Rightarrow a_k \equiv b_k \pmod m$ then $\prod_{k=0}^n a_k \equiv \prod_{k=0}^n b_k \pmod m$. I will show that P(n+1) follows.

Assume $\forall k \in \mathbb{N}, k \leq n+1 \Rightarrow a_k \equiv b_k \pmod{m}$. Then,

$$\prod_{k=0}^{n+1} a_k = [\prod_{k=0}^n a_k] imes a_{k+1} \equiv [\prod_{k=0}^n b_k] imes b_{k+1} \pmod m$$
 (by IH and 2.18(c))
$$\equiv \prod_{k=0}^{n+1} b_k \pmod m$$

(b) [3 marks] Use induction on n to prove that if $d \in \mathbb{N}$, d > 1, and b is an integer sequence with $b_m > 0$ for all natural numbers m, and n is an arbitrary natural number, then

$$(orall i \in \mathbb{N}, i \leq n \Rightarrow \gcd(d,b_i) = 1) \Rightarrow d
mid \prod_{i=0}^{i=n} b_i$$

Hint: You may assume 2(g) from problem set 2 as a starting point.

Solution

Claim:

$$orall d \in \mathbb{N}, orall b \in \mathcal{S}, orall n \in \mathbb{N}, \, (d > 1 \wedge [orall i \in \mathbb{N}, i \leq n \Rightarrow \gcd(d,b_i) = 1])d
mid \prod_{i=0}^n b_i$$

Proof (induction on n**)**: Let $d \in \mathbb{N}$, $b \in \mathcal{S}$ Assume d > 1 Define P(n):

$$P(n): [orall i \in \mathbb{N}, i \leq n \Rightarrow \gcd(d,b_i) = 1] \Rightarrow d
mid \prod_{i=0}^n b_i$$

Base cases: Since d > 1, if $gcd(d, b_0) = 1 < d$ means that $d \nmid b_0$, so P(0) holds. If $gcd(d, b_0) = 1 = gcd(d, b_1)$, then the contrapositive of 2(g) from problem set 2 implies that $d \nmid b_0 b_1$, so P(1) holds.

Inductive step: Let $n \in \mathbb{N}$ and assume P(n), that is:

$$P(n): ig[orall i \in \mathbb{N}, i \leq n \Rightarrow \gcd(d,b_i) = 1 ig] \Rightarrow d
mid \prod_{i=0}^n b_i$$

I will show that P(n+1) follows. Assume $\forall i \in \mathbb{N}, i \leq n+1 \Rightarrow \gcd(d,b_i)=1.$

Then,

(By IH and
$$\gcd(d,b_{n+1})=1)$$
 $d
mid \prod_{i=0}^n b_i \wedge d
mid b_{n+1} \Rightarrow d
mid [\prod_{i=0}^n b_i] imes b_{n+1}$ by $2(g)$ $=\prod_{i=0}^{n+1} b_i$

(c) [3 marks] Consider the sums

$$\frac{1}{2+1} + \frac{1}{2 \times 2} = \frac{14}{24} > \frac{13}{24}$$
 $\frac{1}{3+1} + \frac{1}{3+2} + \frac{1}{2 \times 3} = \frac{37}{60} > \frac{13}{24}$

Use induction to prove that for all natural numbers n, if n > 1 then:

$$\sum_{j=n+1}^{j=2n} \frac{1}{j} > \frac{13}{24}$$

^{*}Base case 0 is feasible, and sufficient provided the inductive step is done appropriately

^{*}The requirement that $b_m > 0$ is implicit in $gcd(d, b_i) = 1$ when d > 1.

Solution

Claim:

$$orall n \in \mathbb{N}, n > 1 \Rightarrow \sum_{j=n+1}^{j=2n} rac{1}{j} > rac{13}{24}$$

Proof (induction on n): Define P(n):

$$n>1\Rightarrow\sum_{j=n+1}^{j=2n}rac{1}{j}>rac{13}{24}$$

Base case: P(2) was verified in the presentation of this question, above.

Inductive step: Let $n \in \mathbb{N}$. Assume n > 1 and P(n). I will show that P(n+1) follows. Then,

$$\sum_{j=(n+1)+1}^{2(n+1)} \frac{1}{j} = \left[\sum_{j=n+1}^{j=2n} \frac{1}{j} \right] + \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$> \frac{13}{24} + \left[\frac{(2n+2) + (2n+1) - 2(2n+1)}{2(n+1)(2n+1)} \right] \quad \text{(by IH)}$$

$$= \frac{13}{24} + \left[\frac{1}{2(n+1)(2n+1)} \right] > \frac{13}{24} \quad \left(\frac{1}{2(n+1)(2n+1)} > 0 \right)$$

(d) [3 marks] Define integer sequence $c \in S$ by

$$c_n = \begin{cases} 0, & \text{if } n = 0 \\ c_{n-1} + 3n^2 - 3n + 1, & \text{if } n > 0 \end{cases}$$

Use induction on n to prove that for all $n \in \mathbb{N}$, $c_n = n^3$.

Solution

Claim:

$$\forall n \in \mathbb{N}, c_n = n^3$$

Proof (induction on n**):** Let $n \in \mathbb{N}$. Define P(n):

$$P(n):c_n=n^3$$

Base case: By the definition $c_0 = 0 = 0^3$, so P(0) holds.

Inductive step: Let $n \in \mathbb{N}$ and assume P(n), that is $c_n = n^3$. I will show that P(n+1) follows. From the definition:

$$c_{n+1} = c_n + 3(n+1)^2 - 3(n+1) + 1$$

= $n^3 + 3(n^2 + 2n + 1) - 3n - 3 + 1$ (by IH)
= $n^3 + 3n^2 + 6n - 3n + 3 - 3 + 1 = n^3 + 3n^2 + 3n + 1 = (n+1)^3$

2. [8 marks] Counting subsets

(a) [3 marks]

Definition 2 $\binom{n}{k}$). Let $n, k \in \mathbb{N}$, $k \leq n$, and S be a set with |S| = n. Then $\binom{n}{k}$ denotes the number of subsets S of size k.

Use induction on n to prove

$$orall n, k \in \mathbb{N}, k \leq n \Rightarrow inom{n}{k} = rac{n!}{k!(n-k)!}$$

Hint: Notice that no induction is required when k=0 or k=n, and look for a connection between $\binom{n+1}{k}$ and both $\binom{n}{k}$ and $\binom{n}{k-1}$. This approach requires you to introduce k after n. Anti-Hint: You may not use results from combinatorics such as the Binomial Theorem, since they are, essentially, what you are proving.

Solution

Claim:

$$orall k, n \in \mathbb{N}, k \leq n \Rightarrow inom{n}{k} = rac{n!}{k!(n-k)!}$$

Proof (induction on n): Define P(n)

$$P(n): orall k \in \mathbb{N}, k \leq n \Rightarrow inom{n}{k} = rac{n!}{k!(n-k)!}$$

Base cases: There is exactly one way of choosing a subset of size 0 (the empty set) from any set, and in particular sets of size 0 or 1. There is exactly one way of choosing a subset of size n from a set of size n, and in particular the set of size 1. This means that

$$\frac{0!}{0!(0-0)!} = 1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1!}{0!(1-0)!} = \frac{1!}{1!(1-1)!}$$

This verifies P(0) and P(1). (Recall that 0! = 1! = 1).

Induction step: Let $n \in \mathbb{N}$. Assume n > 0 and also assume P(n). I will show that P(n + 1) follows.

Assume $k \in \mathbb{N}$ and $k \leq n$. Let S be an arbitrary set with |S| = n + 1.

Case $k = 0 \lor k = n + 1$: If k = 0 or k = n + 1 the result is immediate, since there is exactly one way to choose a subset of size 0 or a subset of size n + 1 from S, and

$$egin{pmatrix} n+1 \ 0 \end{pmatrix} = rac{(n+1)!}{0!(n+1-0)!} = 1 = rac{(n+1)!}{(n+1-0)!0!}$$

Case $0 < k \land k < n+1$: Since S has at least 2 elements, let $x \in S$ be a particular element of S. The k-subsets of S that do not include x are also k-subsets of $S \setminus \{x\}$. Since $|S \setminus \{x\}| = n$ and $0 < k \le n$, by the IH we know that there are $\binom{n}{k} = n!/(k!(n-k)!)$ such subsets.

The k-subsets of S that do contain x are formed by the union of $\{x\}$ with each of the (k-1)-subsets of $S\setminus \{x\}$. Since $0\leq k-1< n+1$, by the IH we know that there are $\binom{n}{k-1}=n!/((k-1)!(n-k+1)!)$ such subsets.

Altogether this makes

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$
 (by IH)
$$= \frac{(n-k+1)n!}{k!(n-k+1)!} + \frac{k \times n!}{k!(n-k+1)!}$$

$$= \frac{(n+1)n! + (k-k)n!}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!}$$

Definition 3 (S_n) . Let $n \in \mathbb{N}$. Define $S_n = \{1, 2, \ldots, n\}$

Definition 4 (DTP_n) . Let $n \in \mathbb{N}$. Define the set of disjoint two-set partitions of S_n as follows:

$$DTP_n = \{\{A, B\} \mid A, B \subseteq S_n \text{ and } A \cup B = S_n \text{ and } A \cap B = \emptyset\}$$

Notice that $DTP_0 = \{\{\emptyset, \emptyset\}\}\$ and $DTP_1 = \{\{\{1\}, \emptyset\}\}\$.

(b) [2 marks] Write out all the elements of DTP_2 and DTP_3 explicitly.

Sample solution: The set of disjoint two-set partitions of $S_2 = \{1, 2\}$ is:

$$\{\{\{1,2\},\emptyset\},\{\{1\},\{2\}\}\}\}$$

The set of disjoint two-set partitions of $S_3 = \{1, 2, 3\}$ is:

$$\{\{\{1,2,3\},\emptyset\},\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\},\{\{3\},\{1,2\}\}\}\}$$

(c) [3 marks] Find a closed-form expression for $|DTP_n|$ in terms of n. Use induction on n to prove your formula correct.

Sample solution: The closed form also provides the predicate to be proved:

$$P(n):|DTP_n|=egin{cases} 1 & ext{if } n=0 \ 2^{n-1} & ext{if } n>0 \end{cases}$$

:Claim: $\forall n \in \mathbb{N}, P(n)$.

Proof (induction on n):

Base cases: There is exactly one 2-set partition of S_0 , the empty set, which verifies P(0). There is also exactly one 2-set partition of S_1 , the partition formed by its pair of subsets, which verifies P(1)

Inductive step: Let $n \in \mathbb{N}$. Assume n > 0 and assume P(n). I will show that P(n+1) follows.

Let $\{A, B\}$ be an arbitary 2-set partition of S_{n+1} where $1 \in A$, and note that $n+1 \neq 1$. I construct a correspondence between pairs of 2-set partitions of S_{n+1} and single 2-set partitions of S_n . There are two cases to consider:

Case $n+1 \in A$: Let $A' = A \setminus \{n+1\}$, $B' = B \cup \{n+1\}$, that is, move element n+1 from one set to the other. Then the 2-set partitions $\{A, B\} \neq \{A', B'\}$ since $C = \{1, n+1\} \subseteq A$, but $C \subseteq A'$ and $C \subseteq B'$.

Case $n+1 \in B$: Let $A' = A \cup \{n+1\}$, $B' = B \setminus \{n+1\}$, that is, move element n+1 from one set to the other. Then the 2-set partitions $\{A, B\} \neq \{A', B'\}$, since $C = \{1, n+1\} \subseteq A'$, but $C \subseteq A$ and $C \subseteq B$.

Removing element n+1 from both partitions we have $\{A' \setminus \{x\}, B' \setminus \{x\}\} = \{A \setminus \{x\}, B \setminus \{x\}\},$ a 2-set partition of S_n . Hence, each 2-set partition of S_n corresponds to two 2-set partitions of S_{n+1} , so by the IH there are:

$$|DTP_{n+1}| = 2 \times |DTP_n| = 2 \times 2^{n-1} = 2^n$$

3. [11 marks] asymptotics

(a) [3 marks] Use the definition of big-Theta from the course notes to prove Theorem 5.8.

Solution

Claim:

$$orall f: \mathbb{N} \mapsto \mathbb{R}^+, [\exists n_0 \in \mathbb{R}^+, orall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \geq 1] \Rightarrow \lfloor f \rfloor \in \Theta(f) \wedge \lceil f \rceil \in \Theta(f)$$

For $x \in \mathbb{R}$, I use the following characterizations of |x| and [x] in the proof below:

$$|x-1| < |x| < x$$
 $|x| < x + 1$

Proof: Let f be an arbitrary function from $\mathbb N$ to $\mathbb R^+$. Assume $\exists n_0 \in \mathbb R^+, \forall n \in \mathbb N, n \geq n_0 \Rightarrow f(n) \geq 1$. Let n_0 be such a value. Let $c_1 = 1, c_2 = 1/2, c_3 = 2, c_4 = 1$. Let $n \in \mathbb N$ and assume $n \geq n_0$. Then

$$egin{array}{c|cccc} egin{array}{c|ccccc} f(n) & \leq & 1 imes f(n) = c_1 f(n) & ext{(definition of floor)} \\ f(n) \geq & 1 \Rightarrow ig f(n) ig \geq & 1 \\ 2 ig f(n) ig | = ig f(n) ig | + ig f(n) ig | \geq & f(n) \\ & 2 ig f(n) ig | \geq & f(n) \\ & b ig f(n) ig | \geq & \frac{1}{2} f(n) = c_2 f(n) \\ & b ig f(n) ig | \geq & 1 imes f(n) = c_4 f(n) \\ & f(n) ig | \leq & 1 imes f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) ig | \leq & f(n) = c_3 f(n) \\ & f(n) & f(n) & f(n) = c_3 f(n) \\ & f(n) & f(n) & f(n) = c_3 f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) & f(n) & f(n) \\ & f(n) & f(n) \\$$

(b) [3 marks] Use the definition of big-Oh from the course notes to prove that for all $a,b\in\mathbb{R}^+$

$$(b > a \land a > 1) \Rightarrow b^n \notin O(a^n)$$

You may not use limits or other techniques of calculus.

Solution

Claim: I use the negation of $b \in \mathcal{O}(a)$:

$$\forall a,b \in \mathbb{R}^+, [b>a \land a>1] \Rightarrow \forall c,n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \geq n_0 \land b^n > ca^n$$

Proof: Let $a, b \in \mathbb{R}^+$. Assume a > 1 and b > a. Let c, n_0 be arbitrary positive real numbers. Let $n = 1 + \max(n_0, \lg c/(\lg b - \lg a))$. Then $n \ge n_0$ and

$$n > rac{\lg c}{\lg b - \lg a}$$
 $n(\lg b - \lg a) > \lg c \pmod{monotonicity of \lg and $b > a > 1}$ $\left(rac{b}{a}
ight)^n > c$ $b^n > ca^n$$

(c) [5 marks] Read over function xgcd, which calculates the extended gcd(n, m), below:

```
def xgcd(n, m):
    s1, s0, t1, t0, r1, r0 = 0, 1, 1, 0, m, n
    while r1 != 0:
        quotient = r0 // r1
        r0, r1 = r1, r0 - quotient * r1
        s0, s1 = s1, s0 - quotient * s1
        t0, t1 = t1, t0 - quotient * t1
    return (r0, s0, t0)
```

Let the input size be $n \in \mathbb{N}$. Assume that the loop body, lines 4-7, is 1 "step". Prove that the runtime of xgcd, $RT_{xgcd} \in O(\lg n)$. Hint: Can you show that every two iterations of the loop reduces r0 by at least half?

Solution

Define $r0_i$ as the value of r0 at the end (line 7) of the *i*th iteration, and $r1_i$ as the value of r1 at the end (line 7) of the *i*th iteration, and q_i as the value of quotient at the end of the *i*th iteration.

Claim #1: If r_{0i} , $r_{1i} \in \mathbb{N}$, $r_{0i} \geq r_{1i}$ and there is an iteration i+2 of the list then:

- $r0_{i+2}, r1_{i+2} \in \mathbb{N}$
- $r0_{i+2} \ge r1_{i+2}$
- $r0_i > 2 \times r0_{i+2}$

Proof of Claim #1: Let $r0_i, r1_i \in \mathbb{N}$. Assume $r0_i \geq r1_i$ and that there are iterations i+1 and i+2. Since iteration i+1 occurs, $r1_i \neq 0$, so by the Quotient-Remainder Theorem and lines 4 and 5:

$$r0_i = q_{i+1}r1_i + r1_{i+1} \wedge r1_i > r1_{i+1} \wedge r1_{i+1} > 0$$

Also, by line 5, $r0_{i+1} = r1_i$ and $r1_{i+1}$ (being the remainder) is strictly smaller than $r0_{i+1}$. Since iteration i + 2 occurs, by the Quotient-Remainder Theorem and lines 4 and 5:

$$r0_{i+1} = q_{i+2}r1_{i+1} + r1_{i+2} \wedge r1_{i+1} > r1_{i+2} \wedge r1_{i+2} > 0$$

Again, by line 5, $r0_{i+2} = r1_{i+1}$ and $r1_{i+2}$ (being the remainder) is strictly smaller than $r0_{i+2}$, so

- $r0_{i+2}, r1_{i+2} \in \mathbb{N}$, by the Quotient-Remainder Theorem
- $r0_{i+2} > r1_{i+2}$, since the latter is the remainder
- $r0_i \ge 2 \times r0_{i+2}$, by considering two cases:

Case $r0_i \ge 2r1_i$: Then $r0_i \ge 2r1_{i+1}$, since the latter is the remainder. But $r0_{i+2} = r1_{i+1}$, by line 5, so $r0_i \ge 2r0_{i+2}$.

Case $r0_i < 2r1_i$: This can be rewritten as $r0_i/2 < r1_i$, and since $r0_i \ge r1_i$ we know that $q_{i+1} > 0$, so

$$egin{array}{r} r0_i &=& q_{i+1}r1_i + r1_{i+1} \ r0_i - q_{i+1}r1_i &=& r1_{i+1} \ rac{r0_i}{2} = r0_i - rac{r0_i}{2} > r0_i - q_{i+1}r1_i &=& r1_{i+1} \end{array}$$

But $r0_{i+2} = r1_{i+1}$, by line 5, so $r0_i \ge 2r0_{i+2}$.

Claim #2: If $r0_i$, $r1_i \in \mathbb{N}$, $r0_i < r1_i$ and there is an iteration i+3 of the list then:

- $r0_{i+3}, r1_{i+3} \in \mathbb{N}$
- $r0_{i+3} \ge r1_{i+3}$
- $r0_i > 2 \times r0_{i+3}$

In this case line 4 sets $q_{i+1} = 0$, so line 5 sets $r0_{i+1} = r1_i$, and $r1_{i+1} = r0_i$, and now $r0_{i+1}$ and $r1_{i+1}$ satisfy the assumptions for Claim #1, so the conclusions follow substituting i+1 for i.

Claim #3: $\forall n, m \in \mathbb{N}, \exists c \in \mathbb{R}^+, n > 1 \Rightarrow RT(\operatorname{xgcd}(n)) \leq c \lg(n)$

Proof: Let $n, m \in \mathbb{N}$ and assume n > 1. By line 2 we know that the initial values of r0 = n and r1 = m. By Claim #1 and Claim #2 we know that the maximum number of iterations, i of the loop that may occur before r0 = 1 is no more than when

$$egin{array}{lll} \left\lfloor n imes \left(rac{1}{2}
ight)^{i/3}
ight
floor &=&1 \ n imes \left(rac{1}{2}
ight)^{i/3} &\geq&1 \ \ \lg(n) + rac{i}{3}(0 - \lg(2)) &\geq&0 \ \ \lg(n) - rac{i}{3} &\geq&0 \ \ 3\lg(n) &\geq&i \end{array}$$

Once r0 = 1, by Claim #1 there are at most 2 iterations before r1 = 0 and the loop terminates. Thus $RT(\operatorname{xgcd}(n)) \leq 3 \lg(n) + 2 \leq 5 \lg(n)$, provided $n \geq 2$.