Puissance consommée par un dipôle en régime harmonique

Puissance instantanée consommée par un

Définition

dipôle

On considère un dipôle électrique récepteur fonctionnant en régime harmonique.

Dans le cas général, la tension à ses bornes est notée $e(t)=E_0\cos(\omega t+\psi)$ et le courant qui le traverse est noté $i(t)=I_0\cos(\omega t+\psi+\varphi)$.

La **puissance instantanée** p(t) est définie par le produit de la tension et du courant : p(t) = e(t) imes i(t)

Par conséquent,
$$p(t) = E_0 \cos(\omega t + \psi) \cdot I_0 \cos(\omega t + \psi + \varphi)$$

En utilisant la fomule de trigonométrie $\cos(a)\cdot\cos(b)=rac{1}{2}[\cos(a+b)+\cos(a-b)]$, on obtient :

$$p(t) = rac{E_0 \cdot I_0}{2} [\cos(2\omega t + 2\psi + arphi) + \cos(arphi)]$$

On peut également faire apparaître les valeurs efficaces de tension et de courant :

$$p(t) = E_{eff} \cdot I_{eff} \left[\cos(2\omega t + 2\psi + \varphi) + \cos(\varphi) \right]$$

Puissance moyenne consommée par un dipôle

Définition

La puissance moyenne est définie de la façon suivante sur une période $oldsymbol{T}$:

$$P_{moy} = rac{1}{T} \int_0^T p(t) \, dt$$

En régime harmonique, on a :

$$P_{moy} = rac{1}{T} \int_0^T E_{eff} \cdot I_{eff} \left[\cos(2\omega t + 2\psi + arphi) + \cos(arphi)
ight] \, dt$$

En simplifiant cette expression (le détail du calcul se trouve ici �), on obtient l'expression de la **puissance moyenne** en régime harmonique :

$$P_{moy} = E_{eff} \cdot I_{eff} \cdot \cos(arphi)$$

Le produit $E_{eff}I_{eff}$ représente la **puissance apparente** consommée par le dipôle, ce qui correspond à la puissance maximale disponible.

 $\cos(arphi)$ est appelé facteur de puissance.

Remarque

Pour une résistance R, $P_{moy} = E_{eff} \cdot I_{eff} = R \cdot I_{eff}^2$ car $\cos(\varphi) = 1$ (il n'y a pas de déphasage entre le courant et la tension aux bornes d'une résistance).

Pour un condensateur ou une bobine, $\varphi=\pm\frac{\pi}{2}\Rightarrow\cos(\varphi)=0\Rightarrow P_{moy}=0$, la puissance moyenne consommée est nulle sur une période T.

Stéphanie Parola - HILISIT - Université Montpellier (cc) BY-NC-SA