USN						
USIN			i			
	1					

[23BSMA11]

FIRST SEMESTER B.Tech EXAMINATION, JANUARY - 2024 CALCULUS AND MATRIX ALGEBRA

Time: 3 Hours

Maximum Marks: 100

Instructions:

i. Missing data may be suitably assumed.

ANSWER ALL QUESTIONS

		PART - A	05 × 02=10			
1.	а.	Evaluate $\int_0^{\pi/2} \sin^7 x \cos^5 x dx$.	L-2	C01	02	
	b.	Calculate total differential du for the function $u = x^3 + xy^2 + x^2y + y^3$.	L-2	C02	02	
	c.	Find $\operatorname{Curl} \vec{v}$, where $\vec{v} = yz\hat{\imath} + 3xz\hat{\jmath} + z\hat{k}$.	L-2	C01	02	
***************************************	d.	Identify the eigen values of matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$	L-2	C01	02	
	e.	Solve the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$	L-2	C03	02	
		PART - B	06 × 05=3			
2.	a.	Evaluate $\int_0^\pi \frac{1-\cos\theta}{1+\cos\theta} \sin^2\theta \ d\theta$	L-3	C01	05	
		OR				
	b.	Evaluate $\int_0^{\pi} x \sin^7 x dx$	L-3	C01	05	
3.	a.	Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$, where $u = f(x - y, y - z, z - x)$.	L-3	CO2	05	
		OR			 	
	b.	If $z = e^{ax+by}f(ax-by)$ then prove that $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$	L-3	CO2	05	
4.	a.	A particle moves along a curve whose parametric equations are	L-3	C06	05	
		$x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time. Find the				
		velocity and acceleration at any time t and also their magnitudes at $t=0$.				
		OR ,		· · · · · · · · · · · · · · · · · · ·		
*/*********************	b.	Show that the vector point function	L-3	C06	05	
		$\vec{F} = (3x^2 - 2yz)^{\hat{i}} + (3y^2 - 2zx)^{\hat{j}} + (3z^2 - 2xy)^{\hat{k}}$ is irrotational.				
	1					
5.	а.	Solve the system of equations by Gauss-Seidel method	L-3	C01	05	
		10x + y + z = 12, x + 10y + z = 12, and x + y + 10z = 12				
		OR				
					14.3	

İ	b.	Find rank of the following matrix by reducing it to the row echelon	L-3	CO1	05	
		form.			***************************************	
		$\begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 2 & -1 \end{bmatrix}$	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
		$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$				
6.	a.	$d^4y + d^3y + d^2y + d^3y + 26$	L-3	C05	05	
		Solve the differential equation $4\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} - 23\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 36y =$				
		0				
		OR ·				
	b.	Solve the differential equation $(D^2 - 5D + 6)y = \sin 3x$	L-3	CO5	05	
7.	a.	Write the MATLAB code to find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ where	L-3	CO1	05	
		$f(x,y) = x^3 + 3xy - 15x^2 - 15y^2 + 72x - 4y$				
	* *****	OR				
	b.	List out at least three Vector Built-in Functions in MATLAB and also	L-3	CO1	05	
		explain its functionalities.				
		PART - C	0	6 × 10	< 10=6 0	
8.	а.	Using Beta Gamma function show that	L-3	C04	10	
		$\int_0^\infty x e^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$		***		
		OR				
	b.	Prove that $\int_0^{\pi/2} \sqrt{\sin\theta} \ d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin\theta}} \ d\theta = \pi$.	L-3	CO4	10	
9.	a.	Temperature T at any point (x, y, z) in the space is given by	L-3	C06	10	
		$T = 400xyz^2$. Find the highest temperature at the surface of unit				
			**************************************	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
		sphere $x^2 + y^2 + z^2 = 1$.				
****		OR				
	b.	Investigate the extreme value of the function	L-3	C06	10	
		f(x,y,z) = cosx cosy cosz, where x,y,z are the angles of the				
		triangle.		i i		
				1		
10.	а.	Find unit tangent and unit normal vectors to the curve	L-3	C06	10	
10.	a.	Find unit tangent and unit normal vectors to the curve $\vec{r}(t) = \cos 2t \hat{i} + \sin 2t \hat{j} + t \hat{k} \text{ at } x = \frac{1}{\sqrt{2}}.$	L-3	C06	10	
10.	a.		L-3	C06	10	
10.	a.	$\vec{r}(t) = \cos 2t \hat{i} + \sin 2t \hat{j} + t \hat{k} \text{ at } x = \frac{1}{\sqrt{2}}.$	L-3	C06	10	
10.	a.	$\vec{r}(t) = \cos 2t \hat{i} + \sin 2t \hat{j} + t \hat{k} \text{ at } x = \frac{1}{\sqrt{2}}.$	L-3	C06	10	

:	b.	Prove that the vector point function	L-3	C06	10
*	Yesterna transaction as	$\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2y^2z + xy)\hat{k}$ is a			
		conservative force field. Find its scalar potential Ø such that			
		$\nabla \emptyset = \overset{ ightharpoonup}{F}.$			
					-
11.	a.	Investigate the values of λ and μ such that the system of	L-3	CO3	10
		equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ will	L-3	003	10
		have			
		i. Unique solution			
	***	ii. Infinite Solution			
		iii. No solution.			
		OR			
	b.	Find Eigen values and the corresponding Eigen vectors of the	L-3	C03	10
		matrix			
		$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$			
		[3 1 1]	,		
12			<u> </u>	1	
12.	a.	Solve $X' = \begin{bmatrix} -5 & 1 \\ 4 & -2 \end{bmatrix} X$ by diagonalization and hence discuss the	L-3	CO3	10
		stability of the system	*		
	***************************************	OR .			
	b.	Solve the differential equation $(D^2 - 4D + 1)y = e^{2x} \sin 2x$	L-3	CO5	10
13.	a.	Explain the significance of MATLAB also discuss its advantage and	L-3	CO1	10
		disadvantage.			
		Write the MATLAB code to evaluate the integral $\int_0^{\pi} (siny - 5y^3) dy$		1	
		OR			
	b.	Write the MATLAB code to create the matrix A and perform	L-3	CO3	10
:		following operations for $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 2 & 1 & -1 \end{bmatrix}$	111111111111111111111111111111111111111		
1		$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \end{bmatrix}$		***************************************	
		i. Determinant of A			1
		ii. Rank of A	-	-	#
		iii. Size of matrix A	***************************************	***************************************	
		iv. Characteristic polynomial of the square matrix A			
		V. Eigen values of A			4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8