

Ţ <u>Help</u>

sandipan_dey ~

Next >

<u>Syllabus</u> laff routines **Community Discussion** <u>Outline</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

★ Course / Week 8: More on Matrix Inversion / 8.3 (Almost) Never, Ever Invert a Matrix

(1)

8.3.1 Solving Ax = b

☐ Bookmark this page

< Previous

■ Calculator

Week 8 due Nov 26, 2023 15:12 IST

8.3.1 Solving Ax = b via LU Factorization

Around minute 1:30 there a few problems...

 $\overline{Lz=e_j}$ should be Lz=b.

 $Ux_j=z$ should be Ux=z.

 $b=A^{-1}x$ should be $x=A^{-1}b$.

(This video was made during a busy time last spring...)

Thanks to "bzeckel" for pointing this out.

Summary

- Usually, you don't invert a matrix!
- ▶ If someone talks about inverting a matrix, be suspicious!
- Some people use the term "inverting a matrix" interchangeably with "solving Ax = b".
- ▶ These comments may not apply for small matrices.
- ▶ There is also an issue with numerical stability.

Video

▲ Download video file

Transcripts

Reading Assignment

0 points possible (ungraded)
Read Unit 8.3.1 of the notes. [LINK]

~

Submit

Answers are displayed within the problem

Discussion

Topic: Week 8 / 8.3.1

Hide Discussion

Add a Post

Show	all posts 💙 by recent activity	ty 🗸
	Question Hi! I just took an algorithm course last semester, and the algorithm analysis here is a bit different from what I learned in the algorithm course. Fr	2
	nverting flops Why does inverting matrix A cost 2n^3? flops?	2

Homework 8.3.1.1

1/1 point (graded)

Let $A \in \mathbb{R}^{n \times n}$ and $x, b \in \mathbb{R}^n$. What is the cost of solving Ax = b via LU factorization (assuming there is nothing special about A)? You may ignore the need for pivoting.

 \bigcirc approximately $rac{2}{3}n^4+2n^2$ flops

 \bigcirc approximately $2n^3+2n^2$ flops

 $igoreal{igoreal}$ approximately $rac{2}{3}n^3+2n^2$ flops

/

LU factorization requires approximately $rac{2}{3}n^3$ flops and the two triangular solves require approximately n^2 flops each, for a total cost of

$$rac{2}{3}n^3+2n^2 ext{ flops}.$$

_			٠.
Su	n	m	18
่อน	u		11

Answers are displayed within the problem

Homework 8.3.1.2

1/1 point (graded)

Let $A\in\mathbb{R}^{n imes n}$ and $x,b\in\mathbb{R}^n$. What is the cost of solving Ax=b if you first invert matrix A and than compute $oldsymbol{x} = oldsymbol{A}^{-1} oldsymbol{b}$? (Assume there is nothing special about $oldsymbol{A}$ and ignore the need for pivoting.)

approximately $rac{2}{3}n^4+2n^2$ flops

approximately $rac{2}{3}n^3$ flops

Inverting the matrix requires approximately $2n^3$ flops and the matrix-vector multiplication approximately $2n^2$ flops, for a total cost of, approximately,

$$2n^3 + 2n^2$$
 flops.

Submit

Previous

Next >

© All Rights Reserved

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code **Privacy Policy Accessibility Policy**

⊞ Calculator

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>