Predição de Energia Solar com Machine Learning e IoT

Aluno: Guttardo Néri Pereira Orientador: Ricardo Santos Ferreira

Universidade Federal de Viçosa

17 de Outubro de 2018

Contextualizando

• Coletar dados de sensores e utilizar machine learning para predizer a geração de energia de uma placa solar

Contextualizando

Bom, hoje o projeto já se estendeu para mais outros objetivos...

Sumário

- Mudanças no projeto
- Placa de sensores do DEL
- Andamento do processo de leitura
- Próximos passos

Nova arquiterura

Placa de sensores do DEL

Sensores

- 3 LDRS
- 1 Piranômetro, para medir a radiação
- 1 ACS712, para medir a corrente na placa fotovoltaica
- 1 sensor de tensão
- 1 DHT, para temperatura ambiente
- 1 termopar, para temperatura na placa fotovoltaica

Andamento da leitura

- Os sensores já estão ao ar livre
- Ainda não estão junto com a placa, disponibilidade para a montagem é a partir do dia 25/10
- Dados já serão usados na aprendizagem, pelo comportamento ser equivalente, mas não com a mesma precisão do que já estando do lado da placa fotovoltaica

Cronograma

Atividade	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Definição do Tema	•	•								
Preparação de Material	•	•	•	•	•					
Estudo em Machine Learning			•	•	•	•	•			
Plataforma WEB			•	•						
Raspberry e Sync					•	•	•			
Integrar Placa							•	•		
Mapeamento dos LDRs							•	•	•	
Leitura dos Sensores							•	•	•	
Aplicação dos Métodos								•	•	
Resultados									•	•
Conclusão									•	•

Referências

- VOYANT, C. Machine learning methods for solar radiation forecasting: A review. **Elsevier Renewable Energy**, v. 105, p. 569-582, 2017
- MELLIT, A. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. **Elsevier Solar Energy**, v. 85, p. 2856-2870, 2011
- AKARSLAN, E.; HOCAOGLU, F. O. A novel adaptive approach for hourly solar radiation forecasting. **Elsevier Renewable Energy**, v. 87, p. 628-633, 2016

DÚVIDAS? SUGESTÕES?

Site do Projeto: https://github.com/Guttardo/guttardoTCC