Why Do We Need "Money" in *Mechanism Design*?

Wei Huang Dec. 03, 2010

Why Mechanism Design?

- MD: Algorithmic Game Theory
- Having an Engineering Perspective

Where is MD from? (1)

- Utility
 - Utility Theory (Expected Utility Maximization Theorem)

Numbers Players' Preferences Outcomes

John von Neumann

Where is MD from? (2)

- Intelligence and Common Knowledge
 - CK: An Important Implication of Intelligence:
 - "Everyone knows it"
 - "Everyone knows that everyone knows it"
 - •••
 - "Everyone knows that ... that every one knows it"

Robert Aumann (Nobel Prize 2005)

Roger Myerson (Nobel Prize 2007)

What is MD?

- Concerns:
 - HOW to implement system-wide solutions
 - Multiple self-interested agents
- Socially Desirable Outcome
- Without the Mechanism?

Social Choices

- A Term from Political Sciences
- Formal Definition:
 - □ Given a set of agents N={1,2,...,n}, and their preferences sets: Θ 1, Θ 2, ..., Θ n and a set of outcomes X, a social choice function (SCF) is a mapping: F: Θ 1 × Θ 2 × ... × Θ n → X that assigns each possible preference profile (Θ 1, Θ 2, ... Θ n) a collective choice from the set of alternatives.

John C. Harsanyi Nobel Prize 1994

Majority?

- Paradox of Voting
 - A social choice cannot be taken simply by the natural system of taking a majority vote.

Marquis de Condorcet

Then, How to Design a Voting Mechanism?

Mechanism Design Environment

Incentive Compatible Mechanism

- Incentive Compatibility (IC)
 - Individual Preferences == Reported Preferences
- Strategic Manipulation

Leonid Hurwicz Nobel Prize 2007

Dictatorship

- who assumes sole and absolute control over all people
- Voter **i** is a dictator if, $\theta i \equiv x$, (or defined by utility)
 - One person can ignore all other voters, and make the outcome exactly as he himself expects!

Gibbard-Satterthwaite Theorem

- Suppose that:
 - |x| > 3
 - 2. Rational Preference Relation on X, (eg. ordinal)
 - Completeness: for agent i, either x1>x2 or x2>x1
 - Transitivity: for agent i, if x1>x2, x2>x3, then x1>x3
 - 3. SCF (function F) is an "onto" function
- Then: the mechanism is IC iff. is a Dictatorship

Allan Gibbard

No Hope?

- G-S Theorem: Procrustean's bed
- How to be Theseus :
 - From the conditions of G-S Theorem :
 - 1. Let |x| < 3
 - · 2. Let preference not be linear
 - 3. Let SCF not be surjective

Example:

- Use Money
 - Linear Preferences → Quasilinear Preferences

Possible Ways

To Design No-Money Involved Mechanisms