if all actions at a given state are the same value, randomly choose an action to proceed.

small world		
-1	-1	
-100	1	

small	world
s0	s1
52	s 3

a0 = up a1 = down a2 = left a3 = right

Step 0: initial Q Table and initialize robot at s0

Q Table				
	a0 a1 a2 a3			
s0	0	0	0	0
s1	0	0	0	0
s2	0	0	0	0
s3	0	0	0	0

At this point, here is what your robot believe is the best policy base on Q Table

	-,		
small world			
<, ^,v or >	<, ^,v or >		
<, ^,v or >	<,^, v or >		

Step 1: Robot takes a step right, going from s0 to s1

 $Q'[0, 3] = (1 - .5) \cdot Q[0, 3] + .5 \cdot (-1 + .9 \cdot Q[1, argmax_a'(Q[1, :])]) = -.5$

Q Table				
	a0	a1	a2	a3
s0	0	0	0	-0.5
s1	0	0	0	0
s2	0	0	0	0
s3	0	0	0	0

At this point, here is what your robot believe is the best policy base on Q Table

•			
small world			
<, ^, or v	<, ^,v or >		
<, ^,v or >	<,^, v or >		

Step 2: Robot takes a step left, going from s1 to s0

 $Q'[1, 2] = (1 - .5) \cdot Q[1, 2] + .5 \cdot (-1 + .9 \cdot Q[0, argmax_a'(Q[0, :])]) = -.5$

Q Table				
	a0	a1	a2	a3
s0	0	0	0	-0.5
s1	0	0	-0.5	0
s2	0	0	0	0
s3	0	0	0	0

At this point, here is what your robot believe is the best policy base on Q Table

small world		
<, ^, or v	^, v or >	
<, ^,v or >	<,^, v or >	

Step 3: Robot takes a step down going from s0 to s2

 $Q'[0, 1] = (1 - .5) \cdot Q[0, 1] + .5 \cdot (-100 + .9 \cdot Q[1, argmax_a; (Q[2, :])]) = -.5$

Q Table				
	a0 a1 a2 a3			
s0	0	-50	0	-0.5
s1	0	0	-0.5	0
s2	0	0	0	0
s3	0	0	0	0

At this point, here is what your robot believe is the best policy base on Q Table

ite ema pom	re emo pomie, mere io mi		
small world			
< or > ^, v or >			
<, ^,v or >	<,^, v or >		

Step 4: Robot takes a step down going from s2 to s3

 $Q'[2, 3] = (1 - .5) \cdot Q[2, 3] + .5 \cdot (1 + .9 \cdot Q[1, argmax_a(Q[3, :])]) = -.5$

_				
	Q Table			
	a0	a1	a2	a3
s0	0	-50	0	-0.5
s1	0	0	-0.5	0
s2	0	0	0	0.5
s3	0	0	0	0

 $\mbox{^{\sc h}}$ red goes to 0 because terminal state has no future action

At this point, here is what your robot believe is the best policy base on Q Table

small world		
< or >	^, v or >	
>	<,^, v or >	

After it reached terminal state, the robot restarts at s0, but the Q Table remains

... Many steps later:

Q Table				
	a0	a1	a2	a3
s0	-32	-80	-35	59
s1	-15	90	-42	-30
s2	-51	-17	-30	90
s3	0	0	0	0

By now, your robot knows to avoid quicksand and moves towards the goal

by How, you	ai TODOL KIIC			
small world				
>	٧			
>	<.^. v or >			

Your Q Table should look something similar to this (the numbers are not accurate, just for demonstration purpose), in which the largest value of a row will represent the action your robots will take.