Problem sheet on Asymptotic Analysis

COL106 (Data Structures), Semester I, 2018-19, IIT Delhi

Amitabha Bagchi Department of CS&E, IIT Delhi

August 15, 2018

Exercises marked with a * are not important from the exam point of view. All exercises are taken from or based on something in Goodrich and Tamassia's book.

Exercise 1. Let d(n), e(n), f(n) and g(n) be functions mapping non-negative integers to non-negative reals. Prove that

- 1. If d(n) is O(f(n)) then ad(n) is O(f(n)) for any constant a > 0.
- 2. If d(n) is O(f(n)) and e(n) is O(g(n)) then d(n) + e(n) is O(f(n) + g(n)).
- 3. If d(n) is O(f(n)) and e(n) is O(g(n)) then d(n)e(n) is O(f(n)g(n)).
- 4. If d(n) is O(f(n)) and f(n) is O(g(n)) then d(n) is O(g(n)).

To give you an idea of how solutions to these problems are to be written, here is the solution to part 1 of Exercise 1.

Soln 1.1. Since d(n) is O(f(n)), there exists real c>0 and integer $n_0>0$ such that

$$d(n) \le cf(n) \tag{1}$$

for all $n > n_0$.

Given any constant a > 0, multiplying (1) on both sides with a gives us that

$$ad(n) \leq acf(n),$$

for all $n \geq n_0$.

Hence if we set c' = ac and $n'_0 = n_0$ then we have found a c' and n'_0 such that for all $n \ge n'_0$, $ad(n) \le c' f(n)$. Hence proved.

Exercise 2. By finding the appropriate c, n_0 in each case, show that

- 1. If $f(n) = \sum_{i=0}^{d} a_i n^i$, $a_d > 0$ is a polynomial of degree d then f(n) is $O(n^d)$.
- 2. n^x is $O(a^n)$ for any constant x (i.e. x does not change with n) and any a > 1.
- 3. $\log n^x$ is $O(\log n)$ for any constant x > 0.
- 4. $(\log n)^x$ is $O(n^y)$ for any constants x, y > 0.

Exercise 3 (*). In Goodrich and Tamassia's book it says that f(n) is o(g(n)) if for every c > 0 and some $n_0 > 0$ $f(n) \le c(g(n))$ for all $n > n_0$.

- 1. In class we defined this slightly differently: we said f(n) is o(g(n)) if for every c > 0 and every $n_0 > 0$, there is an $n > n_0$ such that $f(n) \le c(g(n))$ for all $n > n_0$. Is this equivalent to the definition given in the book?
- 2. Prove that f(n) is o(g(n)) (as defined in the book) if and only if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0,$$

provided the limit exists.

Exercise 4. Order the following functions according to O notation, i.e., if f(n) is O(g(n)) then f(n) should come before g(n). Also underline groups of functions that are θ of each other.

- 1. $6n \log n$; 2^{100} ; $\log \log n$; $\log^2 n$; $2^{\log n}$.
- 2. $4^n; n^3; n^2 \log n; 4^{\log n}; \sqrt{\log n}$.

Exercise 5. Suppose you have an $n \times n$ 2-dimensional array A such that each row of the matrix consists of some number of 0s followed by some number of 1s. Describe a method for finding the row with the maximum number of 1s in it. What is the running time of your method? Is it $o(n^2)$? Is it possible to do this in $o(n^2)$ time? Is it possible to do it in o(n) time?