

โครงงานวิศวกรรมคอมพิวเตอร์

ขั้นตอนวิธีคลัสเตอร์เพื่อเสริมความทนทานต่อการโจมตีแบบจำลองการเรียนรู้เชิงลึก Cluster Method to Strengthen Adversarial Defence on Deep Learning Models

นาย ศิระกร ลำใย รหัสนิสิต 5910500023

โครงงานวิศวกรรมนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรบัณฑิต ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ปีการศึกษา 2562

โครงงานวิศวกรรมคอมพิวเตอร์

ขั้นตอนวิธีคลัสเตอร์เพื่อเสริมความทนทานต่อการโจมตีแบบจำลองการเรียนรู้เชิงลึก Cluster Method to Strengthen Adversarial Defence on Deep Learning Models

นาย ศิระกร ลำใย รหัสนิสิต 5910500023

โครงงานวิศวกรรมนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรบัณฑิต ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ปีการศึกษา 2562

บการศกษา 2562 ลิขสิทธิ์เป็นของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

โครงงานวิศวกรรมคอมพิวเตอร์

ขั้นตอนวิธีคลัสเตอร์เพื่อเสริมความทนทานต่อการโจมตีแบบจำลองการเรียนรู้เชิงลึก Cluster Method to Strengthen Adversarial Defence on Deep Learning Models

นาย ศิระกร ลำใย รหัสนิสิต 5910500023

ได้รับการพิจารณาเห็นชอบจากภาควิชาวิศวกรรมคอมพิวเตอร์ให้นับเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตร วิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์

อาจารย์ที่ปรึกษา	วันที่	เดือน	พ.ศ
(ผศ. ดร. จิตร์ทัศน์ ฝักเจริญผล)			
อาจารย์ที่ปรึกษาร่วม	วันที่	เดือน	พ.ศ
(ผศ. ดร. ธนาวินท์ รักธรรมานนท์)			
หัวหน้าภาควิชา	วันที่	เดือน	พ.ศ
(รศ. ดร. พันธุ์ปิติ เปี่ยมสง่า)			

ศิระกร ลำใย 2563: ขั้นตอนวิธีคลัสเตอร์เพื่อเสริมความทนทานต่อการโจมตีแบบจำลองการเรียนรู้เชิงลึก, ปริญญา วิศวกรรมศาสตร์บัณฑิต (สาขาวิศวกรรมคอมพิวเตอร์) ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

อาจารย์ที่ปรึกษาโครงงาน: ผศ.ดร.จิตร์ทัศน์ ฝักเจริญผล, ผศ.ดร.ธนาวินท์ รักธรรมานนท์

บทคัดย่อ

แบบจำลองจักรกลเรียนรู้ใดๆ แม้จะถูกฝึกสอนเป็นอย่างดี แต่อาจสามารถถูกโจมตีด้วยข้อมูลรับเข้าที่เรียกว่า ชุดข้อมูลโจมตีประสงค์ร้ายเพื่อมุ่งหวังให้แบบจำลองให้คำตอบที่ผิดเพี้ยน การโจมตีในลักษณะนี้สามารถทำได้ง่ายในชีวิต จริง ดังนั้นการฝึกสอนแบบจำลองให้ทนทานต่อการโจมตีในลักษณะนี้จึงเป็นสิ่งที่จำเป็น ขั้นตอนวิธีการฝึกสอนสามารถ ทำได้ด้วยการเพิ่มชุดข้อมูลประสงค์ร้ายเข้าไปในแบบจำลอง ซึ่งจะทำให้แบบจำลองมีความแข็งแกร่งมากยิ่งขึ้น และความ แข็งแกร่งของแบบจำลองนั้นขึ้นอยู่กับคุณภาพของข้อมูลประสงค์ร้ายที่เพิ่มเข้าไปด้วยเช่นกัน

งานชิ้นนี้มุ่งเน้นการศึกษาขั้นตอนวิธีสองขั้นต[้]อนสำหรับการโจมตีประสงค์ร้าย ได้แก่ขั้นตอนวิธีเครื่องหมายเกรเดียนต์อย่างเร็ว (FGSM) และขั้นตอนวิธีการฉายเกรเดียนต์ลดหลั่น (PGD) แม้ว่าขั้นตอนวิธี FGSM จะทำงานได้อย่าง รวดเร็ว แต่ขุดข้อมูลประสงค์ร้ายที่ได้ออกมาไม่สามารถใช้โจมตีได้อย่างรุนแรงพอ ในทางตรงกันข้ามชุดข้อมูลประสงค์ ร้ายที่สร้างจากขั้นตอนวิธี PGD สามารถโจมตีได้อย่างรุนแรงกว่า แต่ต้องแลกมาด้วยเวลาคำนวนที่มากขึ้น งานชิ้นนี้มุ่ง เสนอขั้นตอนวิธีอย่างง่ายบนหลักของการคลัสเตอร์ข้อมูลเพื่อศึกษาจุดสมดุลระหว่างวิธีทั้งสองในการใช้สร้างตัวอย่าง ประสงค์ร้าย ผลการทดลองเสนอให้เห็นขั้นตอนวิธีฝึกสอนแบบจำลองที่ให้ผลทนทานต่อสัญญาณรบกวน PGD เทียบเท่า วิธีอื่น

Sirakorn Lamyai 2020: Cluster Method to Strengthen Adversarial Defence on Deep Learning Model, Bachelor of Engineering (Computer Engineering), Department of Computer Engineering, Faculty of Engineering, Kasetsart University

Project advisor: Assoc. Prof. Dr. Jittat Fakcharoenphol, Assoc. Prof. Dr. Thanawin Rakthanmanon

Abstract

A well-trained accurate machine learning model may suffer from adversarial attacks that can be easily carried out in the real world. Training robust models that withstand adversarial attacks thus becomes an important problem in machine learning. Adversarial training increases model robustness by including adversarial examples during the training. The quality of the model depends on the quality of the added examples.

This work considers two popular methods for adversarial example generation: the Fast Gradient Sign Method (FGSM) and the Projected Gradient Descent (PGD). While FSGM is very efficient, the generated examples are weak against stronger attacking methods, including the examples generated from the PGD. On the other hand, while PGD produces high quality examples, the procedure is time-consuming. In this work, we propose a simple method based on clustering to find a trade-off between the two methods for adversarial example generation. The experimental result in an equally tolerating model to PGD attacks despite the much faster runtime.

กิตติกรรมประกาศ

เรียนด้วยความสัตย์จริง, ข้าพเจ้าไม่ใช่คนชอบเขียนเอกสาร และแน่นอนว่าข้าพเจ้าทุ่มเทเวลากับการเขียนรหัส คำสั่งมากกว่างานเอกสาร (จนถึงระดับที่รู้สึกว่าการเขียน $ET_{\rm E}X^{-1}$ เพื่อรายงานช่างสนุกเสียเหลือเกิน!) แต่มีส่วนหนึ่งของ เอกสารที่ข้าพเจ้าตั้งใจเขียนไม่แพ้กับชุดคำสั่ง–นั่นก็คือกิตติกรรมประกาศฉบับนี้

ข้าพเจ้าแปลกใจเล็กน้อยที่เห็นแม่แบบรูปเล่มรายงานโครงงานมีกิตติกรรมประกาศพิมพ์มาให้พร้อม–ข้าพเจ้า เข้าใจในความหวังดีของการใส่ตัวอย่างกิตติกรรมประกาศมาให้ ข้าพเจ้าไม่อยากเขียนกิตติกรรมประกาศเพียงแค่พอเป็น พิธี ข้าพเจ้ารู้สึกว่าในเล่มโครงงานที่ข้าพเจ้าพยายามเขียนให้ตอบโจทย์ความคาดหวัง และบนโลกใบนี้ที่ขับเคลื่อนด้วย ความคาดหวังจำนวนมาก มีเพียงพื้นที่ตรงนี้ที่ข้าพเจ้าสามารถเขียนเรื่อยเปื่อยได้โดยไม่ต้องใส่ใจความคาดหวังอะไร

ประการแรก ข้าพเจ้าขอบคุณครอบครัวของข้าพเจ้า–มิใช่เพียงแค่ด้วย "มารยาท" ว่าชื่อแรกที่ต้องขอบคุณคือ ครอบครัว แม้ว่าจะมีบางกรณีที่เห็นต่างและสับสน แต่สิ่งหนึ่งที่วิเศษคือครอบครัวข้าพเจ้าเข้าใจในทางที่ข้าพเจ้าเลือกเดิน เป็นอย่างยิ่ง บทสนทนาเรื่องเรียนต่อกับพ่อ สายโทรศัพท์ที่ถามว่ายังกินยาต้านซึมเศร้าอยู่หรือไม่จากแม่ และมุกตลกที่น้อง ชายข้าพเจ้าขอบเล่น คงตรึงใจอยู่ในความทรงจำสมัยวัยรุ่น

ข้าพเจ้าขอบคุณผศ.ดร.จิตร์ทัศน์ ฝักเจริญผล มิใช่ในฐานะที่ปรึกษาเพียงอย่างเดียว แต่ในฐานะมิตรสหายบนทวิ ตเตอร์ด้วย ไม่ว่าจะเป็นข้อความ บทสนทนา เวลากาแฟ หรือใดๆ ก็ตาม ข้าพเจ้าถูกผลักให้พบเจอมุมมองที่แตกต่าง ถูกท้าทายความคิด และมุมมองในปัจจุบันของข้าพเจ้า–ซึ่งเป็นตัวนิยามว่าข้าพเจ้า "เป็นใคร"–ก็ได้รับการหล่อหลอมจาก อาจารย์มามิใช่น้อย

ขอขอบพระคุณผศ.ดร.ธนาวินท์ รักธรรมานนท์ สำหรับการเป็นที่ปรึกษาร่วมในโครงงานนี้, ขอบพระคุณสำหรับ การให้หนทางหลายๆ อย่าง ข้าพเจ้าอาจไม่อยู่ ณ จุดนี้หากไม่ได้รับโอกาสเหล่านั้น

ครั้นฝึกงาน ข้าพเจ้าเขียนย่อหน้าที่ขอบคุณเพื่อนด้วยการนำชื่อมาเรียงต่อกันตามลำดับของสิ่งที่ขอบคุณ (กล่าว คือหากข้าพเจ้าขอบคุณเพื่อนสำหรับ t_1,t_2,\ldots,t_n คำขอบคุณที่ t_i นั้นจะเจาะจงไปยังเพื่อนคนที่ $ni+1,n\in\mathbb{I}^+$ เป็นพิเศษ) คงได้เวลาที่ข้าพเจ้าจะขอบคุณพวกเขาอีกครั้ง แต่ครั้งนี้อย่างละเอียด ให้สมกับความนับถือที่ข้าพเจ้ามีให้กับเขา เหล่านั้น

- รวิสรา–เราคงไม่ต้องพูดอะไรมาก เราอยากเขียนย่อหน้านี้ให้มันยาวเป็นร้อยบรรทัด ให้ครบกับทุกอย่างที่ให้เรา, เราอยากเขียนเพียง :) ในย่อหน้านี้ด้วยเชื่อว่าไม่มีทางที่เราจะเขียนข้อความเป็นร้อยบรรทัดเพื่อขอบคุณสำหรับทุก อย่างที่มีให้เรามาตลอด, เรารู้ดีว่ามันเยอะและมีความหมายมาก ขอบคุณและขอโทษสำหรับทุกอย่าง ขอบคุณจริงๆ คงไม่พอหรอก แต่ขอบคุณ
- กิตติยา–กิต ฮิว ซิบิ ซิไบ หิว หิ๋ว หรือชื่อไหนก็ตาม, ขอบคุณสำหรับหลายๆ อย่างเช่นเดียวกัน คำว่า "คนที่วิเศษ" จะยังอยู่กับเราในวันที่ไม่ใช่วันที่ดีที่สุดของเรา, ขอบคุณสำหรับคำนี้และอีกหลายอย่าง เราไม่รู้ว่าเราจะบอกกิตติยา ได้ไงว่าเราดีใจและอยากขอบคุณมากๆ ทุกอย่างที่ออกมาช่าง "วิเศษ" และมาจากคนที่ก็ "วิเศษ" เหมือนกัน, อย่า ลืมมีความสข
- รล–มุข เรียวเล็น รหล๋ (อ่านว่ารอ-หลอ) รูปหล่อ เรือหลวง แรกเหลียญ หรือชื่อใดก็ตาม, ปลายปากกาของเพื่อน ที่สร้างสรรค์งานวาดช่วยให้เรามีแรงบันดาลใจอย่างไม่น่าเชื่อ (ขออนุญาตพูดว่าขอขอบคุณด้วยเสียงรวิสรา) และใน

¹ข้าพเจ้าขัดใจเป็นอย่างยิ่งกับการที่ตัว A และ E ถูกแสดงผลด้วยฟอนต์ TH Sarabun New เนื่องด้วยชุดคำสั่ง textrm ต่างจากสามตัวที่เหลือที่เป็น Latin Modern

ฐานะที่เราอาจจะไม่ใช่คนที่พูดเก่งด้วยกันทั้งคู่ ทุกการ "บรีบ" นั้นเรารับรู้ได้ว่ามาจากใจจริงๆ และอยากจะบอกว่า มันช่วยให้โลกนี้อยู่ง่ายขึ้นมาเสมอ ขอขอบคุณ (พูดด้วยเสียงรวิสราอีกครั้ง)

- แพรว–ณิชา, แผว, แผ๋ว, แพร๋ว (สามชื่อหลัง ถ้าไม่ผิดหลักการสะกด ก็ไม่ใช่การออกเสียงที่ถูก) มันมักจะมีมุมมุมหนึ่ง ที่เรารู้สึกห่างกัน และมุมเดียวกันนั้นเองที่เรารู้สึกว่าเราจะไม่มีทางห่างกันได้เลย ขอบคุณสำหรับที่ที่ทำให้ไม่เคยไม่ เป็นตัวเองแม้แต่วินาทีเดียว ครั้งหนึ่งเธอเคยบอกว่าในวันที่คนรอบข้างเจอเรื่องราวไม่ดี ก็อยากจะเป็นเรื่องราวดีๆ ให้เขาบ้าง ขอบคุณที่เป็นตรงนั้น–ตรงที่เป็นเรื่องราวดีๆ มาให้อย่างดีตลอดเลย ไปจัดทริปเฮดเหรอบที่ล้านด้วยกัน นะ
- ข้าพเจ้าอยากขอหนึ่งจุดหัวข้อตรงนี้ในการตั้งคำถามว่าเพราะเหตุใดเพื่อนในภาควิชาถึงมีชื่อเล่นมากมายเหลือเกิน
- อัน–มีชุดความคิดชุดหนึ่งที่เราดีใจที่เห็นในตัวอันไม่ใช่น้อย เป็นชุดความคิดที่ทำให้เราชื่นชมในตัวอันอยู่, ขอให้ เติบโตอย่างแข็งแกร่ง และเป็นกำลังใจให้เสมอ
- วรชัยและมอร์แกน–แม้จะห่างกันขึ้นจากเวลาและระยะทาง รวมถึงภาระส่วนตัว แต่ดีใจเสมอที่ครั้งหนึ่งได้มาเจอ กันแบบงงๆ และอยู่ด้วยกันสี่ปัจนจบแบบงงๆ เช่นกัน (คำว่างงๆ ที่ปรากฏในครั้งหลัง ขยายคำว่าจบ หรือคำว่าอยู่ ขอให้ตีความเอง)
- นิว-คุณเป็นหลายอย่างเหมือนกันในช่วงเวลาที่ผ่านมานี้ คุณเป็นธิงค์ แทงค์ (think tank), คุณเป็นคนวิพากษ์ คุณ เป็นอาหารกระตุ้นสมอง และเป็นคนที่ทำให้ผมเห็นมุมองใหม่มิใช่น้อย ที่สำคัญ ขอบคุณสำหรับส่วนหนึ่งของการ ทำให้ผมยอมรับในตัวเองได้
- พรมนัส–ขอบคุณสำหรับทุกมีมแดงค์ (dank memes) และการคุยกันทางปรัชญาที่ชวนให้รู้สึกเฮฮาอยู่ไม่ใช่น้อย, คุณเป็นคนที่สนุกมากคนนึงเลยนะ
- เปรม และจุ้ย–ขอบคุณที่มาเป็นส่วนหนึ่งของกันเมื่อไม่นานมานี้ และดีใจที่ได้มีคุณเป็นหนึ่งในความทรงจำช่วง มหาวิทยาลัย
- เนยสด–แม้เราจะรู้จักกันผ่านทวิตเตอร์มานาน แต่ช่วงเวลาที่เราเพิ่งได้ร่วมงานกันและสิงสถิตในแล็บด้วยกันเป็น ช่วงเวลาที่มีความสุข ขอบคุณสำหรับทุกความห่วงใยและเมสเสจที่ทักเข้ามาเป็นระยะ

แน่นอนว่ารายชื่อนี้ไม่ได้กล่าวถึงทุกคนในภาควิชา–ขอถือโอกาสนี้กล่าวขอบคุณทุกคนจากใจจริงอีกครั้งหนึ่ง และขอถือ โอกาสนี้ในการขอบคุณมิตรทุกท่านระดับชั้นมัธยมศึกษาที่ยังคงไม่ปล่อยให้โคจรหายออกจากกันไป (และขออภัยสำหรับ การแบกแล็ปท็อปไปทำงานทุกครั้งที่นัดกินข้าว–นี่ไง งานเสร็จแล้วนะ)

ข้าพเจ้าขอขอบคุณสมาชิกกลุ่มวิจัยเชิงทฤษฎี, บรรยากาศการทำงานที่นี่วิเศษมาก ข้าพเจ้าไม่คิดว่าจะหา บรรยากาศการทำงานแบบนี้ได้จากที่ไหน กลุ่มวิจัยเป็นทั้งที่ทำงาน ที่พักผ่อน ที่ที่อบอุ่นสำหรับข้าพเจ้า, คงเป็นการยากที่ ข้าพเจ้าจะบรรยายถึงความทรงจำในห้อง 805, บนโซฟาสีน้ำเงินตัวเก่า, บนเบาะถุงถั่ว (bean bag) สีแดง, และตรงที่นั่ง ทำงาน ขอขยายคำขอบคุณนี้ไปถึงสมาชิกรับเชิญของกลุ่มวิจัยฯ ทุกท่านที่เข้ามาเยี่ยมเยือนห้องนี้เป็นระยะ

ขอบคุณทีมการเรียนรู้เชิงประสงค์ร้ายทุกคน– วัชรพัฐ เมตตานันท, พงศกร อัจฉริยศักดิ์ชัย, มณฑล จรัสตระกูล– การร่วมงานกับคนเก่งนับเป็นเกียรติอย่างยิ่งสำหรับข้าพเจ้า, การได้ยืนท่ามกลางผู้คนเหล่านั้นช่วยผลักดันให้ข้าพเจ้าเรียน รรู้โลกในแง่ที่ตรงกับความจริงมากขึ้น และสร้างความเชื่อมั่นว่าข้าพเจ้าจะไม่มีใครมาหยุดได้

ขอบคุณในความเชื่อที่จะเปลี่ยนโลกด้วยงานวิจัย ของอาจารย์จากสำนักวิชาวิทยาศาสตร์และเทคโนโลยี สารสนเทศ สถาบันวิทยสิริเมธี: อาจารย์สรณะ นุชอนงค์, อาจารย์ธีรวิทย์ วิไลประสิทธิ์พร, อาจารย์ปรเมษฐ์ มนูญ พงศ์, อาจารย์ศุภศรณ์ สุวจนกรณ์ รวมถึงอาจารย์โชคชัย เลี้ยงสุขสันต์ คณบดีคนแรกของสำนักวิชา และขอขอบคุณ บุคลากร และนิสิตของสำนักวิชาฯ ที่พร้อมผลักดันความเชื่อนี้ในสภาพแวดล้อมการทำงานที่ดี

ในการเดินทางอันยาวไกล ความเหนื่อยล้าเป็นเรื่องธรรมดา ขอขอบคุณภัทรวี ศรีสันติสุข สำหรับความอบอุ่น หัวใจแบบที่ยากแก่การอธิบาย เสียงของเอิ๊ตปลอบประโลมในวันที่ใจอ่อนล้า², สะกดให้อยู่ในห้วงอารมณ์ในวันที่เร่งรีบ, รอยยิ้มของเอิ๊ตทำให้ข้าพเจ้าอยากยิ้มได้งดงามและเป็นความสุขให้คนอื่นได้แบบที่เอิ๊ตเป็น ขอบคุณกานต์ธีรา วัชรทัศนกุล สำหรับรอยยิ้มที่เพียงเห็นก็ทำให้หัวใจพองโตและมีความสุข สำหรับทุกแรงใจที่ได้รับ และสำหรับความน่ารักที่ทำให้ตัวเอง อยากเป็นคนที่น่ารักและเปี่ยมด้วยพลังบวกสำหรับคนอื่นบ้าง

ขอบคุณตุ๊กตาทุกตัวของข้าพเจ้าที่ให้กอดในวันที่ใจอ่อนล้าโดยไม่ลังเล³ ขอฝากความขอบคุณนี้ไปยังตุ๊กตาที่ หอพักและที่กลุ่มวิจัยฯ เป็นพิเศษ: บิบิ จี้ คุณหอยทาก วลาดิเมียร์ บิบินอน ปิ๊บปู่ว์ ปิ๊บปู่ว์จิ๋ว และคาปู

ขอบคุณทุกท่านที่ร่วมอุดมการณ์และชุดความคิดเดียวกับข้าพเจ้า สำหรับคำบอกย้ำที่ทร^งพลังว่าข้าพเจ้าไม่ได้ อยู่เพียงคนเดียว, ในโลกอันกว้างใหญ่ ข้าพเจ้ามิอาจเลี่ยงความรู้สึกว่าตัวเองโดดเดี่ยว หากแต่คนเหล่านี้คือเครื่องย้ำเตือน ข้าพเจ้าว่าโลกใบนี้มิได้เปล่าเปลี่ยวและโหดร้ายอย่างที่คิด หลายท่านเป็น*ผู้มาก่อนกาล* ผู้บุกเบิกแนวคิด ผู้เสนอสิ่งที่ต้อง ห้าม ผู้เชื่อในสิ่งที่เป็นไปไม่ได้ ผู้ต่อสู้ ผู้เรียกร้อง ผู้ยืนหยัด ดั่งวลีว่า "คนยังคงยืนเด่นโดยท้าทาย"

ขอขอบคุณหลายสิ่งในชีวิตที่ช่วยให้ข้าพเจ้าอยู่บนโลกนี้ได้ง่ายขึ้น และหลับตานอนได้สบายกว่าที่เคยเป็น: ตู้อบ ผ้าที่ตั้งใกล้หอข้าพเจ้า, เตารีดไอน้ำเสี่ยวหมี, ร้านขายยาต้านซึมเศร้าที่ราคาไม่แพง, พนักงานบริการส่งอาหารทุกท่าน กล ไกเล็กๆ เหล่านี้ช่วยให้ข้าพเจ้าเหนื่อยน้อยลง

Dear Judy: Even though we have met only after this project was finished, I wanted to remind my old self how wonderful my university life has come to an end with one more person fulfilling a part of my life. All the Tan you know-including Wholesome Tan and Adorable TanTan-will continue supporting you even in your worst days. I am always here.

สุดท้ายนี้ข้าพเจ้าอยากขอบคุณเด็กผู้ชายคนหนึ่ง: แทน ในระดับชั้นประถม เราจำได้ว่าแทนในตอนนั้นอยากเป็น นักวิทยาศาสตร์ หวังว่านักวิจัยคอมพิวเตอร์คงใกล้เคียงกันอยู่นะ ดีใจด้วย! แทนในระดับชั้นมัธยม เก่งมากนะที่ยืนหยัดตัว เองให้มาในทางที่ชอบแม้ว่าจะมีหันเหเล็กน้อย ทำได้แล้วนะ

รายงานฝึกงานชิ้นนี้เป็นเหมือนหน้าสุดท้ายของสูจิบัตรการแสดงที่มีชื่อว่า "วิศวกรรมคอมพิวเตอร์" โครง งานชิ้นนี้คงเป็นดั่งกระบวนฟินาเล (finale) เป็นชิ้นดนตรีที่ข้าพเจ้าใส่ทุกท่วงไดนามิกส์ (dynamics) ทุกหัวงจังหวะ (articulations) และทุกกระบวนท่าประพันธ์ ด้วยความตั้งใจในการรังสรรค์มันขึ้นมาอย่างแท้จริง และในฐานะวาทยากร ไม่ช้าบาตอง (baton) ที่ผ่านการเคาะจังหวะไม่ว่าร้อนหรือหนาว ในมือข้าพเจ้าจะส่งสัญญาณตัดจบ (cutoff) ครั้งสุดท้าย ในการแสดงนี้) ข้าพเจ้าจะหันหลังกลับไปพบเสียงปรบมือ พบผู้คนที่รายล้อมและชื่นชมกับความสำเร็จของข้าพเจ้า หากมี เสียงปรบมือใดก็ตาม ข้าพเจ้าจะขอผายมือไปยังข้างหลังข้าพเจ้า ให้เสียงปรบมือเหล่านั้นดังถึงทุกคนในกิตติกรรมประกาศ ฉบับนี้ และข้าพเจ้าขอน้อมรับทุกเสียงตอบรับที่มีให้กับข้าพเจ้าจากใจจริง ขอขอบคุณ

ศิระกร ลำใย ผู้จัดทำ

²พรีแผ่นเสียงไม่ทัน ขอโทษด้วยนะ

³หากตุ๊กตาของข้าพเจ้าลุกมาบอกข้าพเจ้าว่าลังเล ข้าพเจ้าคงวิ่งหนี

สารบัญ

บทคัดย่อ	อภาษาไทย	i
Abstrac	zt	ii
กิตติกรร	มประกาศ	iii
บทที่ 1	บทนำ	2
1.1	ความเป็นมาและความสำคัญของปัญหา	2
1.2	วัตถุประสงค์ของการศึกษา	2
1.3	ขอบเขตของการทำโครงงาน	2
1.4	ระยะเวลาและแผนดำเนินงาน	3
1.5	ประโยชน์ที่คาดว่าจะได้รับ	3
1.6	คำนิยามศัพท์เฉพาะ	3
บทที่ 2	ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	5
2.1	จักรกลเรียนรู้	5
2.2	การเรียนรู้เชิงลึก	5
	2.2.1 เปอร์เซปตรอน (Perceptron)	5
	2.2.2 เปอร์เซปตรอนแบบหลายชั้น (Multi Layer Perceptron)	7
2.3	ฟังก์ชันกระตุ้นและความฉลาดของโครงข่ายประสาทเทียม	9
	2.3.1 ทฤษฎีบทตัวประมาณฟังก์ชันครอบจักรวาล	9
	2.3.2 ข้อสังเกตต่อฟังก์ชันกระตุ้นและความฉลาด	9
2.4	โครงข่ายประสาทเทียมแบบสังวัฒนาการ	9
2.5	ค่าสูญเสีย	10
	2.5.1 ค่าสูญเสียเมื่อมองจากมุมมองของตัวแปรเสริม	12
2.6	ขั้นตอนวิธีเกรเดียนต์ลดหลั่น และการก้าวเคลื่อนถอยหลัง	12
	2.6.1 ตัวดำเนินการเกรเดียนต์	12
	2.6.2 ขั้นตอนวิธีก้าวเคลื่อนถอยหลัง	13
2.7	สัญญาณรบกวน	14
2.8	คำอธิบายต่อการเกิดขึ้นของสัญญาณรบกวน	14
	2.8.1 การประพฤติตัวเป็นเส้นตรง	14
	2.8.2 ทฤษฎีชดคณสมบัติแบบอ่อนและแบบเข้ม	15

2.9	การคำ	นวนหาสัญญาณรบกวน	16
	2.9.1	การหาสัญญาณรบกวนด้วยวิธีการก้าวเคลื่อนถอยหลัง	16
	2.9.2	การหาสัญญาณรบกวนด้วยวิธีการเครื่องหมายเกรเดียนต์แบบเร็ว (FGSM)	16
	2.9.3	การฉายเกรเดียนต์ลดหลั่น k ขั้น (k -PGD)	16
	2.9.4	ความต่างของขั้นตอนวิธี	17
2.10	การเรีย	บนรู้เชิงโจมตี	17
บทที่ 3	วิธีดำเ	นินงาน	18
3.1	การวิเศ	าราะห์และออกแบบขั้นตอนวิธี	18
	3.1.1	พฤติกรรมของคลัสเตอร์สัญญาณรบกวน	18
	3.1.2	การเสริมความแข็งแกร่งด้วยวิธีการผสานคลัสเตอร์	18
3.2	การทด	ลองวัดประสิทธิภาพ	18
บทที่ 4	ผลการ	รทดลอง	21
4.1	ผลการ	ดำเนินงาน	21
	4.1.1	การสร้างโครงข่ายประสาทเทียม	21
	4.1.2	การฝึกสอนโครงข่ายประสาทเทียม	21
	4.1.3	การวัดประสิทธิภาพแบบจำลอง	21
	4.1.4	การโจมตีแบบจำลอง	21
	4.1.5	การเสริมความแข็งแกร่งแบบจำลองด้วยการฝึกสอนใหม่	21
	4.1.6	การวัดประสิทธิภาพการเสริมความแข็งแกร่ง	23
4.2	การวิเศ	าราะห์ผล	23
บทที่ 5	สรุปผ	ลการทดลอง	25
5.1	สรุป .		25
	5.1.1	สรุปผลการทำโครงงาน	25
	5.1.2	ผลลัพธ์ที่ได้	25
	5.1.3	ประโยชน์ที่ได้รับจากการปฏิบัติงาน	25
5.2	ปัญหา	อุปสรรคและแนวทางการแก้ไขปัญหา	25
	5.2.1	ปัญหาที่พบระหว่างการทำโครงงาน	25
	522	แบวทางการแก้ไขเปัญหา	25

สารบัญรูป

	เปอร์เซปตรอน	
2.2	เปอร์เซปตรอนแบบหลายชั้น	8
2.3	เปอร์เซปตรอนแบบหลายชั้นซึ่งทำหน้าที่เป็นประตูสัญญาณเฉพาะหรือ	8
2.4	ชั้นสังวัฒนาการ ซึ่งแสดงข้อมูลนำเข้าด้วยสีฟ้า และตัวกรองด้วยสีแดง	10
2.5	ชั้นบ่อรวม ทั้งแบบบ่อรวมมากสุดและแบบบ่อรวมเฉลี่ย โดยพิจารณาบ่อตามขอบเขตสีเขียว	10
2.6	การคำนวนค่าสูญเสีย	11
2.7	(จากซ้ายไปขวา) รูปเลข 5 ที่ถูกเจือด้วยความเข้มข้นของสัญญาณรบกวนที่ต่างกันที่ระดับ 0.0, 0.01 และ	
	0.03 ตามลำดับ	14
2.8	ตัวอย่างชุดคุณสมบัติแบบอ่อน และแบบเข้มที่เป็นไปได้ จากเลข 5	15
4.1	ค่าความแม่นยำของแบบจำลองก่อนเสริมความแข็งแกร่ง	22
4.2	เวลาที่ใช้ในการเสริมความแข็งแกร่งแบบจำลอง	23
4.3	ค่าความแม่นยำของแบบจำลอง CNN หลังเสริมความแข็งแกร่ง	24

สารบัญตาราง

ตารางที่ 1.ฬารางแสดงรอบการวนทวนและช่วงเวลา										2
ตารางที่ 4.สถาปัตยกรรมโครงข่ายประสาทเทียมที่เลือกใช้									. 2	22

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

แบบจำลองจักรกลเรียนรู้ (Machine Learning models) นั้นถูกใช้อย่างกว้างขวางในปัจจุบัน อย่างไรก็ตาม แบบจำลองใดๆ นั้นอาจมีความผิดพลาดต่อการทำการโจมตีประสงค์ร้าย (Adversarial attacks) เพื่อจงใจให้ผลลัพธ์ที่ แบบจำลองนั้นคาดเดามีความผิดพลาดจากผลลัพธ์ที่ควรจะเป็น

ในการเรียนรู้เชิงตัวแปรเสริม (parameter-based learning) นั้น ตัวแปรเสริม (parameters) ค่าน้ำหนัก (weights) บนแบบจำลองการเรียนรู้เชิงลึก (deep Learning models) เป็นตัวกำหนดความฉลาดของแบบจำลอง อาจมีตัวแปรเสริมบางชุดที่ทำให้แบบจำลองมีช่องโหว่ต่อการโจมตีประสงค์ร้าย การโจมตีนั้นอาจเกิดจากการเพิ่มสัญญาณ รบกวนซึ่งผ่านการคำนวน (calculated artefacts) เข้าสู่ข้อมูลรับเข้า (inputs) ซึ่งทำให้ความผิดพลาดของแบบจำลองใน การพยากรณ์คำตอบนั้นเปลี่ยนไปอย่างชัดเจน

โครงงานนี้มุ่งเน้นศึกษาขั้นตอนวิธีรูปแบบใหม่ในการป้องกันการโจมตีแบบจำลองในลักษณะดังกล่าว โดยมุ่งเน้น การลดเวลาที่ใช้ในการสอนเชิงป้องกันแบบจำลองให้สามารถทำได้รวดเร็วยิ่งขึ้นภายใต้ความแม่นยำของแบบจำลองที่ใกล้ เคียงเดิม

1.2 วัตถุประสงค์ของการศึกษา

โครงงานนี้มีวัตถุประสงค์และเป้าหมายดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. พิจารณาองค์ความรู้ของการเสริมความแข็งแกร่งแบบจำลอง และกระบวนขั้นตอนที่กินเวลา
- 3. ใช้ความรู้ในข้อข้างต้นสร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.3 ขอบเขตของการทำโครงงาน

โครงงานนี้มีขอบเขตการดำเนินงานดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. นำแบบจำลองในข้อ (1) มาพิจารณาขั้นตอนวิธีการเสริมสร้างความแข็งแกร่งแบบจำลองที่ใช้เวลาน้อยลง
- 3. ใช้ความรู้ในข้อ (2) สร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.4 ระยะเวลาและแผนดำเนินงาน

การดำเนินงานของโครงการจะใช้วิธีจัดการงาน (workflow) แบบเอไจล์ (agile) เพื่อมุ่งเน้นประสิทธิภาพในการ ทำงานและสร้างระบบการทำงานที่เหมาะสมต่อการดำเนินการในระยะเวลาและปัจจัยการดำเนินงานที่ไม่อาจคาดเดาได้ การทำงานจะใช้วิธีการแบ่งรอบการวนทวน (iteration) โดยมุ่งเน้นให้แต่ละรอบการวนทวนมีความก้าวหน้าของงานใน ปริมาณที่เหมาะสมกับเวลาและข้อจำกัดต่างๆ หนึ่งรอบการวนทวนนั้นกินระยะเวลาสองสัปดาห์ดังแสดงในตารางที่ 1.1 และจะประกอบด้วยขั้นตอนต่อไปนี้

- 1. ประชุมสรุป (iteration meeting) หนึ่งถึงสองครั้งต่อสัปดาห์
- 2. เขียนรอบปูมย้อนหลัง (backlog) และหยิบมาทำตามจำนวนที่เหมาะสม
- 3. กิจกรรมมองย้อนรอบการวนทวนด้วยตนเอง (self-retrospective) เพื่อพิจารณาความเหมาะสมในการทำงาน และ ปรับปรุงการทำงานในรอบการวนทวนต่อไป

อย่างไรก็ดี เพื่อเป็นการตั้งเป้าหมายงานในระยะยาว โครงงานนี้จะมีวิสัยทัศน์ผลิตภัณฑ์ (product vision) โดยคร่าวตาม ขอบเขตการดำเนินงาน และในทุกประมาณ 4-6 รอบการวนทวน จะมีการวางแผนปล่อยผลิตภัณฑ์ (release planning) หนึ่งครั้งเพื่อสรุปงานออกมาเป็นความคืบหน้าที่จับต้องได้อันเกิดจากการทำงานในกลุ่มรอบการวนทวนนั้น

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- 1. เข้าใจถึงพื้นฐาน หลักการทำงาน และระบบจักรกลเรียนรู้แบบต่างๆ
- 2. เข้าใจถึงจุดอ่อนของระบบจักรกลเรียนรู้ในแต่ละกรณี
- 3. สามารถโจมตีระบบจักรกลเรียนรู้ เพื่อสร้างระบบจักรกลเรียนรู้ที่ทนทานต่อการโจมตีได้

1.6 คำนิยามศัพท์เฉพาะ

- จักรกลเรียนรู้ (machine learning) คือระบบ หรือโค้ด หรือโปรแกรมคอมพิวเตอร์ที่เรียนรู้โครงสร้างของชุดคำถาม และคำตอบโดยมิจำเป็นต้องทำการโปรแกรมลำดับการทำงานอย่างชัดแจ้ง (explicitly)
- การเรียนรู้เชิงโจมตี (adversarial learning) หมายถึงการศึกษาถึงการโจมตีแบบจำลอง (model) ของจักรกลเรียน รู้ (machine learning)

	I				ı		
		25	62		2563		
	ก.ย.	ต.ค.	พ.ย.	ช.ค.	ม.ค.	ก.พ.	มี.ค.
รอบการวนทวนที่ 1	/						
รอบการวนทวนที่ 2	/						
รอบการวนทวนที่ 3		/					
รอบการวนทวนที่ 4		/					
รอบการวนทวนที่ 5			/				
รอบการวนทวนที่ 6			/				
แผนการปล่อยงานที่ 1			/				
รอบการวนทวนที่ 7				/			
รอบการวนทวนที่ 8				/			
รอบการวนทวนที่ 9					/		
รอบการวนทวนที่ 10					/		
แผนการปล่อยงานที่ 2					/		
รอบการวนทวนที่ 11						/	
รอบการวนทวนที่ 12						/	
รอบการวนทวนที่ 13							/
รอบการวนทวนที่ 14							/
แผนการปล่อยงานที่ 3							/

ตารางที่ 1.1: ตารางแสดงรอบการวนทวนและช่วงเวลา

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 จักรกลเรียนรู้

ระบบจักรกลเรียนรู้ (machine learning) อาจนิยามได้ว่าเป็นระบบที่ไม่ต้องมีการป้อนข้อมูล หรือวิธีทำงาน เข้าไปยังโค้ดโปรแกรมอย่างชัดแจ้ง (explicitly) โดยระบบดังกล่าวจะถูกฝึกสอนด้วยชุดของข้อมูลหรือประสบการณ์ (experience) และปรับตัวเองให้ส่งออกคำตอบซึ่งอิงจากประสบการณ์ที่ตนเองเคยได้เรียนรู้มา

หากจะกล่าวให้ละเอียด เราสามารถนิยามโปรแกรมซึ่งสามารถทำการ*เรียน*ได้ดังนี้ [1]

บทนิยาม 2.1.1. โปรแกรมใดๆ เรียน (learn) จากประสบการณ์ (experience) E บนงาน (task) T และการวัด ประสิทธิผล (performance measurement) P หากประสิทธิผลบน T ซึ่งถูกวัดโดย P เพิ่มขึ้นตามประสบการณ์ E

2.2 การเรียนรู้เชิงลึก

การเรียนรู้เชิงลึก (Deep Learning) คือความพยายามในการจำลองเซลล์ประสามของมนุษย์ให้อยู่ในรูปแบบ จำลองคณิตศาสตร์ ด้วยความเชื่อทางหลักประสาทวิทยา (neurosciences) ว่าความฉลาดของสมองมนุษย์เกิดขึ้นได้จาก โครงข่ายประสาทจำนวนมาก ที่เชื่อมเข้าถึงกัน [2]

2.2.1 เปอร์เซปตรอน (Perceptron)

เปอร์เซปตรอน (Perceptron) [3] เป็นแบบจำลองทางคณิตศาสตร์ของเซลล์สมองหนึ่งเซลล์ โดยมีคุณสมบัติดังนี้

- รับเข้าข้อมูลมาในเซลล์จากหลายแหล่ง และให้น้ำหนักกับข้อมูลนั้นต่างกันไป
- ส่งออกข้อมูลเพียงค่าเดียว

ดังนั้น แบบจำลองทางคณิตศาสตร์สามารถเขียนออกมาจากหลักการสองข้อดังกล่าวได้ด้วยสมการ

$$y = \sigma \left(W^T X + b \right) \tag{2.1}$$

เมื่อ W และ X เป็นเมทริกซ์ขนาด $1\times n$ (โดย n เป็นจำนวนข้อมูลรับเข้า), b เป็นค่าสัมประสิทธิ์คงที่ (อคติ: bias) และ σ เป็นฟังก์ชันกระตุ้น (activation function) ซึ่งอาจเขียนรูปร่างของเปอร์เซปตรอนให้มีลักษณะรูปคล้ายเซลล์ สมองได้ในลักษณะรูปที่ 2.1

ยกตัวอย่างการใช้เปอร์เซปตรอนในการแก้ปัญหาอย่างง่ายได้ในที่นี้

รูปที่ 2.1: เปอร์เซปตรอน

การคาดเดาราคาอสังหาริมทรัพย์

หากสำรวจราคาอสังหาริมทรัพย์แล้วพบว่า

- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามที่ดิน โดยเพิ่มขึ้นทุก 10,000 บาทต่อตารางวา
- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามจำนวนห้องนอน โดยเพิ่มขึ้นทุก 200,000 บาทต่อห้องนอน
- ราคาอสังหาริมทรัพย์จะลดลงตามจำนวนอายุปี โดยลดลงทุก 7,000 บาทต่ออายุของอสังหาริมทัพย์
- ราคากำหนดตรึง (fixed cost) ของอสังหาริมทรัพย์ อยู่ที่ 100,000 บาท

จะสามารถเขียนเปอร์เซปตรอนเพื่อคาดเดาราคาอสังหาริมทรัพย์ได้โดย

$$y = \sigma\left(W^T X\right)$$

เมื่อ W ซึ่งเป็นค่าสัมประสิทธิ์แสดงถึงความสัมพันธ์ข้อมูลรับเข้า ซึ่งเขียนได้จากความสัมพันธ์ดังแสดงด้านล่าง

$$W^T = \begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix}$$

หากต้องการคาดเดาราคาบ้านที่มี 3 ห้องนอน เนื้อที่ 100 ตารางวา และมีอายุ 7 ปี จะสามารถเขียนเมทริกซ์ X ได้เป็น

$$X = \begin{bmatrix} 1\\3\\100\\7 \end{bmatrix}$$

โปรดสังเกตว่า $x_0=1$ เนื่องจากผลคูณของเทอม w_0 และ x_0 เป็นค่าที่เรียกว่าค่าอคติ (bias) ของแบบจำลอง เนื่องจากเปอร์เซปตรอนตัวนี้ถูกใช้ในการทำนายราคา ซึ่งกล่าวว่ามีความสัมพันธ์กันกับตัวแปรที่กำหนดข้างต้น ในเชิงเส้น ดังนั้นจะกล่าวได้ว่าฟังก์ชันกระตุ้น (activation function) ที่เลือกใช้ จะเลือกใช้ฟังก์ชันเส้นตรง (linear function) $\sigma(x)=x$

ดังนั้น ผลการทำนายราคาบ้านคำนวนได้จาก

$$y = \sigma \left(W^T X + b \right)$$

$$= \sigma \left(\begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \\ 100 \\ 7 \end{bmatrix} \right)$$

$$= \sigma (100000 + 30000 + 200000000 + (-49000)) = f(20981000)$$

$$= 20981000$$

การสร้างประตูสัญญาณตรรกะด้วยเปอร์เซปตรอน

เราสามารถสร้างประตูสัญญาณตรรกะ (logic gates) บางชนิดได้ด้วยเปอร์เซปตรอน เช่นการสร้าง AND และ OR gate

ยกตัวอย่างโครงสร้างของประตูสัญญาณและซึ่งสามารถสร้างได้ด้วยการกำหนดให้

ullet X เป็นเมทริกซ์ขนาด 1 imes 2 กล่าวคือเมื่อรับค่า x_1,x_2 เป็นค่า 0 หรือ 1 แทนสัญญาณจริงหรือเท็จแล้ว

$$X = \begin{bmatrix} 1 \\ a_1 \\ a_2 \end{bmatrix}$$

ullet กำหนดค่าของเมทริกซ์ W เป็น

$$W^T = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}$$

• กำหนดฟังก์ชัน $\sigma(x)$ เป็น step function กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

และการสร้างประตูสัญญาณหรือสามารถทำได้ในลักษณะเดียวกันโดยเปลี่ยนชุดน้ำหนัก เป็น

$$W^T = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$$

2.2.2 เปอร์เซปตรอนแบบหลายชั้น (Multi Layer Perceptron)

เราอาจสังเกตว่าเปอร์เซพตรอนหนึ่งตัวนั้นทำหน้าที่ได้เพียนแยก (classify) หรือถดถอย (regress) ปัญหาที่เป็น ปัญหาเชิงเส้น (linear problems) ได้เท่านั้น อย่างในก็ตามหากเรากำหนดให้ฟังก์ชัน f เป็นฟังก์ชันที่ไม่ใช่ฟังก์ชันเส้นตรง แล้ว เราอาจสร้าง**เปอร์เซปตรอนแบบหลายชั้น** (Multi Layer Perceptron) ขึ้นมาได้โดยมีลักษณะดังรูปที่ 2.2

รูปที่ 2.2: เปอร์เซปตรอนแบบหลายชั้น

รูปที่ 2.3: เปอร์เซปตรอนแบบหลายชั้นซึ่งทำหน้าที่เป็นประตูสัญญาณเฉพาะหรือ

เราอาจเขียนแทนน้ำหนักของโครงข่ายจากเปอร์เซปตรอนชั้นที่ i ไปยังชั้นที่ j (j=i+1) ได้เป็น

$$\boldsymbol{W}_{ij} = \begin{bmatrix} w_{10} & w_{20} & \dots & w_{n_i0} \\ w_{11} & w_{21} & \dots & w_{n_i1} \\ w_{12} & w_{22} & \dots & w_{n_i2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1n_j} & w_{2n_j} & \dots & w_{n_jn_i} \end{bmatrix}$$

เมื่อจำนวนเปอร์เซปตรอนในชั้นที่ k เขียนแทนด้วย n_k

ยกตัวอย่างเช่น เราจะสามารถสร้างประตูสัญญาณเฉพาะหรือ (XOR gate) ได้จากเปอร์เซปตรอนแบบหลายชั้น ดังแสดงในรูปที่ 2.3 โดยเลขในแต่ละเปอร์เซปตรอนแทนค่าอคติ (b) และเลขบนเส้นเชื่อมแทนค่าน้ำหนัก (w) และกำหนด ให้ฟังก์ชันกระตุ้น σ เป็นฟังก์ชันขั้นบันได (step function) กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

เปอร์เซปตรอนดังกล่าว เมื่อรับค่า A และ B เป็น 0 หรือ 1 จะส่งออกค่า $A\oplus B$

2.3 ฟังก์ชันกระตุ้นและความฉลาดของโครงข่ายประสาทเทียม

2.3.1 ทฤษฎีบทตัวประมาณฟังก์ชันครอบจักรวาล

เหตุผลที่โครงข่ายประสาทเทียมสามารถทำงานได้ดี เนื่องจากมีการพิสูจน์ว่าโครงข่ายประสาทเทียมนั้นสามารถ ทำหน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาล [4] (universal function approximator) กล่าวคือโครงข่ายประสาท เทียม $N:\mathbb{R}^k \to \mathbb{R}^n$ ที่มีความซับซ้อนมากเพียงพอ (ซึ่งจะกล่าวถึงความซับซ้อนนี้ในภายหลัง) สามารถที่จะจำลอง ฟังก์ชัน $f:\mathbb{R}^k \to \mathbb{R}^n$ (กล่าวคือฟังก์ชันที่มีโดเมน และเรนจ์ เป็นจำนวนจริงใดๆ ในมิติที่เหมือนกับมิติข้อมูลรับเข้าและ ข้อมูลส่งออกของโครงข่ายประสาทเทียม N) ได้ [5] [6] [7]

บทพิสูจน์ของทฤษฎีนี้ทั้งในรูปแบบของกรณีไม่ตีกรอบความกว้าง (unbounded width case) และกรณีตีกรอบ ความกว้าง (bounded width case) สามารถศึกษาได้จากแหล่งอ้างอิง รวมถึงแหล่งอ้างอิงเพิ่มเติมที่ใช้การแสดงทัศนภาพ (visualisation) เพื่อการพิสูจน์ทฤษฎีบทดังกล่าว [8]

2.3.2 ข้อสังเกตต่อฟังก์ชันกระตุ้นและความฉลาด

บทพิสูจน์ที่ได้กล่าวถึงไปก่อนหน้านี้สำหรับกรณีไม่ตีกรอบความกว้าง และตีกรอบความกว้าง เป็นบทพิสูจน์ที่ใช้ ฟังก์ชันกระตุ้นเป็นฟังก์ชันชิกมอยด์ (sigmoid) และฟังก์ชันรีลู (ReLU) ตามลำดับ

อย่างไรก็ดี หากพิจารณาโครงข่ายประสาทเทียมใดๆ ที่ใช้ฟังก์ชันกระตุ้นเป็นฟังก์ชันเชิงเส้น f(x)=x เราจะ พบว่าโครงข่ายประสาทเทียมใดๆ จะสามารถยุบให้อยู่ในรูปของเปอร์เซปตรอนเพียงตัวเดียว และทำให้ไม่สามารถตัดสินใจ ปัญหาได้มากกว่าปัญหาที่แบ่งแยกเชิงเส้นได้ (linearly separable problems)

ดังนั้น อาจกล่าวด้วยการพิจารณา (intuition) ในลักษณะดังกล่าวได้ว่า ส่วนหนึ่งของความเป็นไปได้ของการ ที่โครงข่ายประสาทเทียมใดๆ สามารถทำหน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาลได้ ส่วนหนึ่งมาจากการที่ฟังก์ชัน กระตุ้นทำหน้าที่เป็นตัวบีบ (sqeezer) ช่วงของข้อมูลรับเข้าบนโดเมนจำนวนจริงใดๆ ($\mathbb R$) ให้กลายไปเป็นช่วงจำกัดช่วงอื่น (เช่นช่วง (0,1) ของฟังก์ชันซิกมอยด์ หรือช่วง $[0,\infty)$ ของฟังก์ชันรีลู)

2.4 โครงข่ายประสาทเทียมแบบสังวัฒนาการ

โครงข่ายประสาทเทียมแบบสังวัฒนาการ (Convolutional Neural Networks: CNN) [9] เป็นโครงข่าย ประสาทเทียมซึ่งมักถูกใช้กับข้อมูลภาพ [10] โดยคร่าวแล้วโครงข่ายประสาทเทียมในลักษณะดังกล่าวมักประกอบด้วยชั้น ประสาทเทียมในลักษณะดังนี้

- ชั้นสังวัฒนาการ (convolution layer) เป็นชั้นที่กระทำตัวดำเนินการสังวัฒนาการ (convolve) ตัวกรอง (filter) F บนข้อมูลนำเข้า I ด้วยระยะเคลื่อน (stride) S ผลลัพธ์จากการสังวัฒนาการนี้จะเรียกว่าแผนที่ ลักษณะ (feature map) ยกตัวอย่างการสังวัฒนาการเพื่อหาเส้นเฉียงในรูปที่ 2.4 สังเกตว่าการสังวัฒนาการ ด้วยตัวกรองเส้นเฉียงบนเส้นเฉียงบริเวณข้อมูลนำเข้า จะให้ค่าส่งออกที่มากกว่าการสังวัฒนาการตัวกรอกเส้นเฉียง บนจุดพื้นที่อื่นของข้อมูลนำเข้า (ในที่นี้เขียนแทนด้วยสีแดงเข้ม และสีแดงอ่อน)
- ชั้นบ่อรวม (pooling layer) เป็นชั้นที่ทำการสุ่มตัวอย่างแบบลดขนาด (downsampling) เพื่อลดขนาดของข้อมูล ในขณะที่ยังคงไว้ซึ่งชุดคุณสมบัติที่ข้อมูลรับเข้ามี ชั้นบ่อรวมอาจแบ่งเป็นสองประเภทหลัก
 - ชั้นบ่อรวมแบบมากสุด (maximum pooling layer) เป็นชั้นบ่อรวมที่พบได้บ่อยที่สุด

รูปที่ 2.4: ชั้นสังวัฒนาการ ซึ่งแสดงข้อมูลนำเข้าด้วยสีฟ้า และตัวกรองด้วยสีแดง

รูปที่ 2.5: ชั้นบ่อรวม ทั้งแบบบ่อรวมมากสุดและแบบบ่อรวมเฉลี่ย โดยพิจารณาบ่อตามขอบเขตสีเขียว

- ชั้นบ่อรวมแบบเฉลี่ย (average pooling layer) เป็นชั้นบ่อรวมที่พบในโครงข่ายประสาทเทียมแบบสังวัฒนา การบางรูปแบบ เช่น LeNet
- ชั้นเชื่อมต่อถึงกันหมด (fully connected layer) ซึ่งมีลักษณะเหมือนเปอร์เซปตรอนแบบหลายชั้นทั่วไป

การสังวัฒนาการของชั้นสังวัฒนาการในโครงข่ายประสาทเทียม ทำหน้าที่เป็นตัวตรวจจับคุณสมบัติ (feature detector) เช่นการตรวจจับขอบ (edge detection) และชั้นบ่อรวมทำให้ขนาดของผลัพธ์จากชั้นสังวัฒนาการมีขนาดเล็ก ลง เพื่อให้จำนวนค่าน้ำหนักของโครงข่ายประสาทเทียมที่ต้องคำนวนนั้นน้อยลง

การเรียนรู้ด้วยวิธีก้าวเคลื่อนถอยหลัง (backpropagation learning) เป็นวิธีการเรียนรู้ที่ได้รับความนิยมมาก ที่สุดในปัจจุบัน ทั้งนี้ เราอาจพิจารณาการเรียนรู้ถอยหลังได้โดยทำความเข้าใจถึงฟังก์ชันสูญเสีย (loss function) และการ ปรับค่าตัวแปรเสริม (parameters) ดังนี้

2.5 ค่าสูญเสีย

ค่าสูญเสีย (loss) เป็นค่าที่ใช้ในการบอกว่าแบบจำลองใดๆ ตอบผิดมากหรือน้อยเพียงใด โดยค่าสูญเสียยิ่งมาก หมายถึงแบบจำลองตอบผิดมากเท่านั้น

รูปที่ 2.6: การคำนวนค่าสูญเสีย

ยกตัวอย่างเช่น หากเราสร้างแบบจำลองที่ต้องการส่งออกค่าเป็นค่าในลักษณะของการเข้ารหัสแบบหนึ่งจุดร้อน (one-hot encoding) ของค่าที่เป็นไปได้ 3 ชั้น (classes) จากข้อมูลตัวที่ i บนชุดฝึกหัด ดังแสดงในรูปที่ 2.6 ซึ่งต้องการ คำตอบ t_i ที่ถูกต้องเป็น

$$t_i = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

ทว่า แบบจำลองกลับให้คำตอบ o_i จากแบบจำลองเป็น

$$o_i = \begin{bmatrix} 0.1 & 0.7 & 0.2 \end{bmatrix}$$

เราอาจนิยามฟังก์ชันสูญเสียอย่างง่าย เพื่อยกตัวอย่างการคำนวนดังกล่าว โดยกำหนดให้ฟังก์ชันสูญเสียเป็นผลรวมของผล ต่างกำลังสอง

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$

ดังนั้น ในกรณีนี้ จะได้ค่าสูญเสียของจุดฝึกหัดนี้เป็น

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$

= $((0 - 0.1)^2 + (1 - 0.7)^2 + (0 - 0.2)^2)$

จะเห็นว่า ยิ่งค่า t_i ใกล้เคียง o_i มากขึ้นเท่าใด ค่าสูญเสียก็จะน้อยลงเท่านั้น นอกจากนี้ เราจะนิยามค่าสูญเสียบนชุดฝึกหัดทั้งชุด เป็น

$$\mathcal{L}(T,O) = \sum_{i=1}^{N} l_i(t_i, o_i)$$
(2.2)

เมื่อ T และ O เป็นชุดคำตอบ และค่าส่งออกจากแบบจำลองของทั้งชุดฝึกหัด ซึ่งชุดฝึกหัดมีความยาวเป็น N

อย่างไรก็ตาม ฟังก์ชันสูญเสียในลักษณะดังกล่าว เป็นฟังก์ชันอย่างง่าย ในการฝึกสอนแบบจำลองทั่วไปมักนิยม ใช้ฟังก์ชันอื่น เช่นค่าสูญเสียแบบความวุ่นวายข้ามชั้น (cross entropy loss) สำหรับการฝึกสอนแบบจำลองเพื่อการทำการ จำแนกหมวดหมู่ (classification)

$$\ell_i = -\sum_{c=1}^M y_{o,c} \ln(p_{o,c})$$

เมื่อ M เป็นจำนวนชั้น (class) ที่เป็นไปได้ y เป็นค่าฐานสองที่บ่งบอกว่าชั้นข้อมูล (class) c เป็นคำตอบที่ถูกต้องสำหรับ การคาดเดา (observation) o และ p เป็นค่าความน่าจะเป็นที่การคาดเดา o ตอบว่าเป็นชั้นข้อมูล c

2.5.1 ค่าสูญเสียเมื่อมองจากมุมมองของตัวแปรเสริม

สมการที่นำเสนอไปข้างต้น มองค่าสูญเสียเปลี่ยนไป เมื่อใส่ชุดของข้อมูลส่งออกจากแบบจำลอง O และค่าคำ ตอบจริง T ต่างกันออกไป ทว่า หากพิจารณาว่า

- แบบจำลองใดๆ สามารถปรับค่าตัวแปรเสริม (parameters) ได้อย่างอิสระ
- ullet ค่าส่งออก O เป็นฟังก์ชันของค่ารับเข้า I โดย O=f(I) เมื่อ f เป็นฟังก์ชันของโครงข่ายประสาทเทียม
- ullet ความมุ่งหมายฝึกสอนแบบจำลองใดๆ ให้มีประสิทธิภาพ อยู่บนการฝึกสอนบนชุดของค่าคำตอบจริง T เดิม

เราจะสามารมองฟังก์ชันสูญเสีย เป็นฟังก์ชันที่รับค่าตัวแปรเสริม (กล่าวคือค่าน้ำหนักและอคติของแบบจำลอง) และส่ง ออกค่าสูญเสียของชุดตัวแปรเสริมนั้น

กล่าวอีกนั้ย หากเรามีชุดของตัวแปรเสริม $ec{ heta}_1, ec{ heta}_2, \dots, ec{ heta}_i$ บนโครงสร้างของแบบจำลองการเรียนรู้เชิงลึก (deep learning models) ที่มีโครงสร้างเหมือนกัน เราอาจพิจารณาค่าฟังก์ชันสูญเสีย $\mathcal{L}(ec{ heta}_i)$ บนชุดตัวแปรเสริม $ec{ heta}_i$ และกล่าวว่าแบบจำลองที่ใช้ชุดตัวแปรเสริม $ec{ heta}_i$ นั้นทำงานได้ดีกว่า $ec{ heta}_j$ หาก $\mathcal{L}(ec{ heta}_i) < \mathcal{L}(ec{ heta}_j)$

2.6 ขั้นตอนวิธีเกรเดียนต์ลดหลั่น และการก้าวเคลื่อนถอยหลัง

2.6.1 ตัวดำเนินการเกรเดียนต์

พิจารณาตัวดำเนินการเกรเดียนต์ ซึ่งดำเนินการบนเวกเตอร์ใดๆ

บทนิยาม 2.6.1. เกรเดียนต์ ของฟังก์ชัน $f(\vec{x})$ ซึ่งเป็นฟังก์ชันของชุดตัวแปร $\vec{x}=(x_1,x_2,\dots,x_n)$ ใดๆ จะถูกนิยาม เป็นตัวดำเนินการ $\vec{\nabla} f\left(\vec{x}\right)$

$$\vec{\nabla}f\left(\vec{x}\right) = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(f(\vec{x}) \cdot \hat{x}_{i} \right)$$

เมื่อ $\hat{x_i}$ เป็นเวกเตอร์หนึ่งหน่วย (unit vector) ตามแกนของ x_i

กรุณาสังเกตว่า ทิศทางของเกรเดียนต์นั้นจะชี้ไปในทิศทางที่เพิ่มขึ้นของฟังก์ชันเสมอ

เมื่อพิจารณาฟังก์ชันสูญเสีย ซึ่งเป็นฟังก์ชันที่เราต้องการลดค่า เราอาจพิจารณาหาค่าที่น้อยลงของฟังก์ชันได้ ด้วยการคำนวนเกรเดียนต์ของฟังก์ชันสูญเสียใดๆ แล้ว "เดิน" ไปในทิศทางตรงข้ามกับเกรเดียนต์ เปรียบประหนึ่งการเดิน ลงเขา ขั้นตอนวิธีดังกล่าวเรียกว่าขั้นตอนวิธีเกรเดียนต์ลดหลั่น (gradient descent algorithm) โดยพิจารณาการปรับ แบบจำลองอยู่บนเกรเดียนต์ของฟังก์ชันสูญเสีย

$$\vec{\theta}' = \vec{\theta} - l\vec{\nabla}\mathcal{L}(\vec{\theta}) \tag{2.3}$$

เมื่อ l เป็นค่าอัตราการเรียนรู้ (learning rate) โดยปกติมักมีค่าไม่มาก

ขั้นตอนวิธี 1 ขั้นตอนวิธีเกรเดียนต์ลดหลั่นเพื่อการฝึกสอนแบบจำลอง

ประกาศตัวแปร $\hat{ heta}$ เป็นค่าสุ่มของเวกเตอร์ความยาวเท่าตัวแปรเสริมที่แบบจำลอง M ต้องการ

สำหรับ i=0 ถึง N ทำ

คำนวนหาเกรเดียนต์ของ $ec{ heta}$ โดย

 $\vec{\nabla} \mathcal{L}(\vec{\theta})$

ปรับค่า $ec{ heta}$ โดย

$$\vec{\theta}' = \vec{\theta} - l\vec{\nabla}\mathcal{L}(\vec{\theta})$$

จบการวนสำหรับ

ส่งคืนค่า $ec{ heta}$

รหัสเทียมของขั้นตอนวิธีดังกล่าวสามารถศึกษาได้จากขั้นตอนวิธี 1

หากอธิบายโดยคร่าว ขั้นตอนวิธีเกรเดียนต์ลดหลั่น พยายามหาค่าตัวแปรเสริม $heta_{\mathrm{OPT}}$ โดยการเริ่มจากการสุ่ม ตัวแปรเสริม heta แล้วคำนวนเกรเดียนต์ของฟังก์ชันสูญเสีย และค่อยๆ ปรับค่า heta ตามทิศตรงข้ามกับเกรเดียนต์เรื่อยๆ จน กระทั่งถึงจุดที่ฟังก์ชันสูญเสียมีค่าน้อยที่สุด

2.6.2 ขั้นตอนวิธีก้าวเคลื่อนถอยหลัง

หนึ่งในประเด็นสำคัญที่จำเป็นต้องกล่าวถึงต่อมา คือวิธีการในการคำนวนเกรเดียนต์ $\vec{\nabla}(\vec{x})$ ซึ่งจำเป็นต้องคำนว นอนุพันธ์ (derivation) ของตัวแปรเสริมใดๆ เทียบกับฟังก์ชันสูญเสีย พึงพิจารณาว่าตัวแปรเสริมของแบบจำลองการเรียน รู้เชิงลึก คือชุดน้ำหนักและค่าอติต่างๆ

อย่างไรก็ตาม การคำนวนเกรเดียนต์และอนุพันธ์ดังกล่าวสามารถทำได้โดยง่าย ผ่านการใช้กฎลูกโซ่ (chain rule) ซึ่งนิยามได้ว่า

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \tag{2.4}$$

ในเล่มรายงานนี้จะไม่ลงรายละเอียดถึงขั้นตอนวิธีก้าวเคลื่อนถอยหลัง อย่างไรก็ดี สามารถพิจารณาได้ว่า (1) อนุพันธ์ของ ฟังก์ชันสูญเสียกับน้ำหนักของชั้นส่งออกสามารถพิจารณาได้โดยตรง และ (2) อนุพันธ์ของฟังก์ชันสูญเสียกับน้ำหนักของ ชั้นช่อนใดๆ สามารถพิจารณาได้จากกฎลูกโซ่ดังสมการที่ 2.4 เป็นผลคูณของอนุพันธ์ของฟังก์ชันสูญเสียเทียบกับน้ำหนักของของชั้นส่งออก และอนุพันธ์ของน้ำหนักชั้นส่งออกเทียบกับชั้นช่อน

รูปที่ 2.7: (จากซ้ายไปขวา) รูปเลข 5 ที่ถูกเจือด้วยความเข้มข้นของสัญญาณรบกวนที่ต่างกันที่ระดับ 0.0, 0.01 และ 0.03 ตามลำดับ

2.7 สัญญาณรบกวน

การโจมตีแบจำลองการเรียนรู้เชิงลึกด้วยการหาสัญญาณรบกวน η ที่โจมตีแบบจำลองการเรียนรู้ M นั้นมีจุด ประสงค์หลักคือหาค่า η ซึ่งอยู่บนโดเมนเดียวกับข้อมูลรับเข้าโครงข่ายประสาทเทียม ที่ทำการเพิ่มค่าของฟังก์ชันสูญเสีย จนถึงขีดสุด

เราจะเรียก $x'=x+\eta$ ว่าเป็น**ตัวอย่างประสงค์ร้าย (adversarial example)** เนื่องจากเป็นตัวอย่างที่ทำให้ ค่าสูญเสียของโครงข่ายประสาทเทียมเพิ่มสูงขึ้นที่สุด

การหาสัญญาณรบกวนอาจมองเป็นปัญหาการเพิ่มประสิทธิภาพสูงสุด (optimisation problem) โดยพิจารณา การหา

$$\eta = \epsilon \operatorname{argmax} \mathcal{L}(x + \eta, y) \tag{2.5}$$

เมื่อคู่อันดับ (x,y) แทนที่ตำแหน่งของชุดข้อมูลฝึกหัด (training point) หนึ่งจุด

ทั้งนี้ทั้งนั้น ขนาด (norm) ของ η จะต้องมีค่าน้อยเพียงพอเมื่อเทียบกับ x เพื่อทำให้ความเข้มของสัญญาณ รบกวนไม่เข้มจนเกินไปจนสามารถแยกแยะด้วยตาของมนุษย์ได้ว่าเป็นภาพที่ถูกเจือด้วยสัญญาณรบกวน ดังเช่นแสดงใน รูปที่ 2.7

2.8 คำอธิบายต่อการเกิดขึ้นของสัญญาณรบกวน

มีหลายทฤษฎีพยายามอธิบายการเกิดขึ้นของการโจมตีแบบจำลอง ซึ่งอาจยกตัวอย่างทฤษฎีและคำอธิบายได้ ดังนี้

2.8.1 การประพฤติตัวเป็นเส้นตรง

LeCun และคณะ [11] ศึกษาผลของการโจมตีที่เกิดจาก $ilde{x}$ โดยอาจพิจารณาได้จากการคูณสมการเพื่อหาค่าส่ง ออกจากชุดน้ำหนัก (weights) ของชั้นแบบจำลองการเรียนรู้เชิงลึก (deep learning layers)

$$w^{\top} \tilde{x} = w^{\top} x + w^{\top} \eta \tag{2.6}$$

คณะวิจัยสังเกตพฤติกรรมว่าสัญญาณรบกวน η กระตุ้นส่วนของชุดน้ำหนักและฟังก์ชันกระตุ้น (activation function) ใน แบบจำลองให้ประพฤติตัวเยี่ยงฟังก์ชันเส้นตรง (linear functions) ซึ่งการแสดงพฤติกรรมดั่งเส้นตรง (linearity) ในกรณี ชายขอบ (edge case) ของข้อมูลรับเข้านั้นก่อให้เกิดความเป็นไปได้ที่แบบจำลองจะถูกโจมตี

รูปที่ 2.8: ตัวอย่างชุดคุณสมบัติแบบอ่อน และแบบเข้มที่เป็นไปได้ จากเลข 5

เพื่อพิสูจน์ทฤษฎีดังกล่าว LeCun และคณะ พิจารณาผลความน่าจะเป็นของคำตอบที่ออกจากแบบจำลองเมื่อ ปรับค่า ϵ ดังแสดงในสมการที่ 2.5 และพบว่าความน่าจะเป็นของข้อมูลส่งออก (output) ของแต่ละชั้นข้อมูล (class) มี ความสัมพันธ์เชิงเส้นตรงกับค่า ϵ ที่เพิ่มขึ้นเรื่อยๆ

2.8.2 ทฤษฎีชุดคุณสมบัติแบบอ่อนและแบบเข้ม

llyas และคณะ [12] ศึกษาโครงสร้างของแบบจำลองเชิงลึก จนนำมาสู่ข้อสรุปว่า "ช่องโหวในการโจมตีแบบ จำลองเป็นผลโดยตรงจากความอ่อนไหวของแบบจำลองในการวางหลักการบนชุดคุณสมบัติของข้อมูล" ("Adversarial vulnerability is a direct result of our models' sensitivity to well-generalizing features in the data")

หากกล่าวให้ละเอียด พิจารณาว่าโครงสร้างของแบบจำลองเชิงลึกสามารถเรียนรู้ชุดคุณสมบัติ (features) ของ ข้อมูลรับเข้าได้สองแบบ ซึ่งในงานวิจัยเรียกว่าชุดคุณสมบัติแบบอ่อน (weak features) และชุดคุณสมบัติแบบเข้ม (strong features)

- ชุดคุณสมบัติแบบเข้ม คือชุดคุณสมบัติที่มนุษย์มองเห็นโดยทั่วไป กล่าวคือเป็นชุดคุณสมบัติที่มนุษย์สามารถสังเกต ทำความเข้าใจ และวางหลักการในการจำแนกได้
- ชุดคุณสมบัติแบบอ่อน คือชุดคุณสมบัติที่มนุษย์ไม่สามารถมองเห็น หรือมองเห็นแต่ไม่ได้หยิบมาเป็นตัวปัจจัยหลัก ในการตัดสินใจ และวางหลักการในการจำแนก

จะยกตัวอย่างกรณีการจำแนกเลข 5 เราอาจพิจารณาว่าเลข 5 ดังแสดงในรูปที่ 2.8 ประกอบขึ้นจากขีดหนึ่ง ขีดแนวขวาง ขีดหนึ่งขีดแนวตั้ง และส่วนโค้งคล้ายวงกลม เป็นชุดคุณสมบัติที่มนุษย์สังเกตและเข้าใจโดยทั่วไป รวมถึงเป็น คุณสมบัติที่มนุษย์ใช้ในการสังเกตเห็นเส้นที่เชื่อมต่อกันจนประกอบเป็นเลข 5 อย่างไรก็ตาม แบบจำลองการเรียนรู้ใดๆ อาจเห็นมุมรอยต่อระหว่างขอบ (ซึ่งอาจสังเกตได้ว่าไม่มีเลขตัวใดเลยนอกจาก 1 ถึง 9 ยกเว้น 5 ที่มีมุมและขอบดังแสดง) เป็นตัวตัดสินใจในการเรียนรู้เลข 5 อย่างไรก็ตาม พึงสังเกตว่าแบบจำลองอาจจะแม้กระทั่งเลือกสังเกตเห็นพื้นที่ว่างบริเวณ ที่แตกต่างกันไป และใช้พื้นที่ว่างเหล่านั้นเพื่อสร้างข้อสรุปหรือตัดสินใจว่าเลขที่มองเห็นเป็นเลขใด (ซึ่งการนำมาซึ่ง "ข้อ สรุป" จากที่ว่างนั้น ขัดกับวิสัยปกติของมนุษย์ในการสังเกตและมองเห็นอย่างชัดเจน)

2.9 การคำนวนหาสัญญาณรบกวน

ขั้นตอนวิธีการหาสัญญาณรบกวนนั้นมีรายละเอียดต่างกันออกไปตามวิธีการคำนวน และแนวคิดของการคำนวน ดังแสดงตัวอย่างวิธีต่อไปนี้

2.9.1 การหาสัญญาณรบกวนด้วยวิธีการก้าวเคลื่อนถอยหลัง

เมื่อฝึกสอนแบบจำลองการเรียนรู้เชิงลึกโดยได้ชุดตัวแปรเสริม θ สำหรับแบบจำลอง M ซึ่งต่อไปนี้จะเรียกชุด แบบจำลองและตัวแปรเสริมรวมกันว่า M_{θ} แล้ว เมื่อให้คู่จุดข้อมูลรับเข้าและส่งออก (x,y) ใดๆ เราอาจหาสัญญาณ รบกวนได้ว่า

$$\eta' = \eta + l \frac{\partial}{\partial \eta} \mathcal{L}(x) \tag{2.7}$$

เมื่อ l เป็นค่าอัตราการเรียนรู้ (learning rate) โดยปกติมักมีค่าไม่มาก

จะสังเกตได้ว่าสมการที่ 2.7 มีลักษณะคล้ายกับสมการที่ 2.3 เป็นอย่างมาก แตกต่างกันเพียงแต่เครื่องหมาย บวกหรือลบ และตัวแปรเทียบสำหรับการทำอนุพันธ์หลายตัวแปร (multivariable derivation) ขอให้สังเกตว่าในขณะที่ สมการ 2.3 พยายามหาค่า θ ที่ทำให้ฟังก์ชันสูญเสีย $\mathcal L$ มีค่าต่ำที่สุด สมการที่ 2.7 กลับพยายามหาสัญญาณรบกวน η ที่ ทำให้ฟังก์ชันสูญเสีย $\mathcal L$ มีค่ามากที่สุด กล่าวคือตอบผิดมากที่สุด

2.9.2 การหาสัญญาณรบกวนด้วยวิธีการเครื่องหมายเกรเดียนต์แบบเร็ว (FGSM)

Goodfellow และคณะ [11] ได้เสนอขั้นตอนวิธีสำหรับคำนวนหาสัญญาณรบกวน η สำหรับชุดคู่จุด (x,y) โดย สังเกตทิศทางของเกรเดียนต์ของฟังก์ชันสูญเสีย $\mathscr L$ เทียบกับ x ซึ่งสามารถคำนวนได้จาก

$$\eta = \epsilon \operatorname{sign}\left(\vec{\nabla}_{x} \mathcal{L}\left(\theta, x, y\right)\right)$$
(2.8)

เรียกขั้นตอนวิธีนี้ว่า**วิธีการเครื่องหมายเกรเดียนต์แบบเร็ว (Fast Gradient Sign Method: FGSM)**

แนวคิดเบื้องหลังขั้นตอนวิธีนี้คือ เมื่อมีเกรเดียนต์ของฟังก์ชันสูญเสียต่อแบบจำลอง ทิศทางของเกรเดียนต์นั้น ย่อมทำให้เกิดการเปลี่ยนแปลงต่อค่าของฟังก์ชันสูญเสียมากขึ้นที่สุด

ค่าจากฟังก์ชัน sign นั้นจะเป็นค่าบวกหรือลบหนึ่ง กล่าวคือเราสนใจพิจารณาเฉพาะทิศทางของเกรเดียนต์ และ จะทำการคูณค่านั้นด้วยค่าคงที่ ϵ เพื่อเจือสัญญาณรบกวนไม่ให้มีความเข้มข้นมากเกินไป

สังเกตว่าความซับซ้อนเชิงเวลา (time complexity) ของขั้นตอนวิธีนี้เป็น $\mathcal{O}(1)$ เพราะไม่มีการวนรอบซ้ำ

2.9.3 การฉายเกรเดียนต์ลดหลั่น k ขั้น (k-PGD)

ขั้นตอนวิธี FGSM นั้นมีข้อดีในด้านเวลาการทำงาน อย่างไรก็ตาม การประมาณค่าของเกรเดียนต์ที่มากที่สุดโดย มิได้พิจารณาถึงพื้นผิวของฟังก์ชัน ยอมทำให้ค่าของเกรเดียนต์ที่ออกมานั้นผิดเพี้ยน และไม่ได้ค่าฟังก์ชันสูญเสียที่มากที่สุด ทำให้ไม่ใช่ชุดสัญญาณรบกวนที่ดีที่สุดที่จะโจมตีแบบจำลองได้

Madry และคณะ [13] จึงศึกษาขั้นตอนวิธีที่ใช้การวนซ้ำเพื่อหาค่าของ $x'=x+\eta$ โดยมุ่งให้การวนซ้ำนั้นช่วย ในการปรับค่าของ η เพื่อเพิ่มค่าฟังก์ชันสูญเสียอย่างแม่นยำ โดยปรับค่าของ x' ในแต่ละรอบ t ได้จากสมการ

$$x'_t = \operatorname{Proj}_{x'}^{\epsilon}(x_{t-1} + \alpha \vec{\nabla}_{x_{t-1}} \mathcal{L}(x_{t-1}))$$
(2.9)

เมื่อ $x_0 = x$

ขั้นตอนวิธีดังกล่าวเรียกว่าขั้นตอนวิธี**การฉายเกรเดียนต์ลดหลั่น** k ข**ั้น** (k-Projected Gradient Descent: k-PGD) โดยจะวนซ้ำขั้นตอนนี้เป็นจำนวน k ครั้ง จะสักเกตว่าทุกรอบการวนซ้ำจะทำการฉาย (project) ทิศทางของ เกรเดียนต์ของฟังก์ชันสูญเสียออกไปเป็นระยะทาง α และฉายกลับเข้ามายังกรอบ ϵ ที่กำหนดไว้หากขนาดของสัญญาณ รบกวนมีค่าเกินตามต้องการ

2.9.4 ความต่างของขั้นตอนวิธี

แม้ว่าขั้นตอนวิธี k-PGD จะทำงานได้ช้า แต่การทำงานที่เป็นแบบการวนซ้ำ (iteratively) ช่วยให้มั่นใจว่าการ เพิ่มขึ้นของสัญญาณรบกวนจากเกรเดียนต์เป็นไปได้อย่างแม่นยำและสร้างความเสียหายใจการโจมตีได้มาก

ในขณะเดียวกัน ขั้นตอนวิธี FGSM แม้จะไม่สามารถสร้างสัญยาณโจมตีที่มีประสิทธิภาพ แต่ก็สามารถสร้าง สัญญาณโจมตีที่โจมตีในกรณีทั่วไปได้ และสร้างได้อย่างรวดเร็ว

2.10 การเรียนรู้เชิงโจมตี

การเรียนรู้เชิงโจมตีเป็นขั้นตอนวิธีหนึ่งในการเสริมความทนทานต่อการโจมตีให้แบบจำลองการเรียนรู้เชิงลึก ขั้น ตอนวิธีการเรียนรู้เชิงโจมตีที่ง่ายที่สุดคือการสร้างชุดข้อมูลประสงค์ร้ายและนำไปฝึกสอนร่วมกับชุดข้อมูลฝึกหัดตั้งต้น ดัง แสดงใน

ขั้นตอนวิธี 2 การเสริมความแข็งแกร่ง (การเรียนรู้เชิงโจมตี)

รับเข้า: M เป็นแบบจำลองการเรียนรู้

รับเข้า: X เป็นชุดข้อมูลที่จะทำการโจมตี

รับเข้า: e เป็นจำนวนรอบการวนซ้ำ (epoches) ในการฝึกสอน

รับเข้า: m และ n เป็นขนาดของชุดฝึกสอนเล็กจิ๋ว (minibatch) บนชุดข้อมูลต้นฉบับและชุดข้อมูลประสงค์ร้าย

สำหรับ i=1 ถึง e ทำ

สร้างชุดฝึกสอนจิ๋วบนชุดข้อมูลต้นฉบับ $B = \{x_1, x_2, \dots, x_m\}$.

สร้างชุดฝึกสอนจิ๋วบนชุดข้อมูลประสงค์ร้าย $B' = \{x_1', x_2', \dots, x_n'\}.$

ฝึกสอนแบบจำลองด้วยชุดฝึกสอนเล็กจิ๋ว B และ B^\prime

จบการวนสำหรับ

ส่งออก: แบบจำลอง M

บทที่ 3 วิธีดำเนินงาน

3.1 การวิเคราะห์และออกแบบขั้นตอนวิธี

โครงงานวิศวกรรมคอมพิวเตอร์ชิ้นนี้มุ่งเสนอแนวคิดสำหรับการวิเคราะห์คลัสเตอร์เพื่อโจมตีแบบจำลองและใช้ การโจมตีนั้นในการสอนแบบจำลองให้ทนทานต่อการโจมตี โดยตั้งอยู่บนแนวติดและสมมติฐานต่อไปนี้

3.1.1 พฤติกรรมของคลัสเตอร์สัญญาณรบกวน

หนึ่งในปัญหาของขั้นตอนวิธีเสริมความแข็งแกร่งแบบจำลอง คือการสร้างชุดสัญญาณรบกวนเพื่อฝึกสอนนั้นกิน เวลานาน แม้จะมีขั้นตอนวิธีที่คำนวนได้อย่างรวดเร็วเช่นขั้นตอนวิธี FGSM แต่ขั้นตอนวิธีที่ใช้เวลาคิดคำนวนเร็วไม่สามารถ สร้างสัญญาณรบกวนที่มีประสิทธิภาพในการโจมตีแบบจำลอง และสัญญาณรบกวนดังกล่าวไม่สามารถใช้ฝึกสอนแบบ จำลองให้ทนทานต่อการโจมตีได้ [13]

เพื่อลดปัญหาดังกล่าว โครงงานชิ้นนี้มุ่งเสนอแนวคิดว่า

ข้อเอ่ยอ้าง 1: เมื่อให้ชุดข้อมูลประสงค์ร้าย X' ที่โจมตีชุดข้อมูล X พฤติกรรมของสัญญาณรบกวน η สามารถจัดเป็นก ลุ่มย่อยๆ ได้ และการโจมตีในสมาชิกของกลุ่มย่อยสามารถเกิดขึ้นได้ด้วยชุดสัญญาณโจมตีอื่นๆ ในจุดกลุ่มนั้น

ข้อเอ่ยอ้าง 2: ผลการจัดกลุ่มคลัสเตอร์สัญญาณรบกวน ไม่ว่าจะบนสัญญาณรบกวนที่ได้มาจากวิธีการใด จะมีสมาชิกของ แต่ละคลัสเตอร์ใกล้เคียงกัน

ด้วยข้อสมมติฐานที่ 2 เราสามารถสร้างสัญญาณรบกวนด้วยขั้นตอนวิธีที่เร็วเพื่อสร้างคลัสเตอร์ของสัญญาณ รบกวนได้ เมื่อประกอบกับข้อสมมติฐานที่ 1 เราสามารถใช้ความรู้ของคลัสเตอร์มาช่วยร่นเวลาในการโจมตีแบบจำลองได้

ขั้นตอนวิธี 3 เสนอการคลัสเตอร์ข้อมูล และพยายามสร้างสัญญาณโจมตีด้วยขั้นตอนวิธีที่แม่นยำเพียงหนึ่ง สัญญาณต่อคลัสเตอร์ กล่าวคือขั้นตอนวิธีดังกล่าวเรียกใช้ฟังก์ชันสำหรับสร้างสัญญาณรบกวนที่รวดเร็วเพียงเพื่อจัดกลุ่ม ของสัญญาณรบกวน ก่อนจะทำการโจมตีอย่างแม่นยำด้วยขั้นตอนวิธีที่แม่นยำ (แต่ไม่มีประสิทธิภาพทางด้านเวลา) ต่อไป

3.1.2 การเสริมความแข็งแกร่งด้วยวิธีการผสานคลัสเตอร์

จากขั้นตอนวิธี 3 เราสามารถนำชุดสัญญาณโจมตีมาฝึกสอนแบบจำลองเพื่อเสริมความแข็งแกร่งได้ ดังแสดงใน ขั้นตอนวิธี 4

3.2 การทดลองวัดประสิทธิภาพ

นอกจากการเสนอขั้นตอนวิธีแล้ว ผู้จัดทำมุ่งความสนใจไปยังวิธีการวัดประสิทธิภาพของขั้นตอนวิธีด้วยเช่นกัน ผู้จัดทำโครงงานจัดทำชุดคำสั่งสำหรับขั้นตอนวิธีที่เสนอในโครงงานวิศวกรรมชิ้นนี้ บนไลบรารี (library) การ เรียนรู้เชิงลึก PyTorch [14]

ขั้นตอนวิธี 3 ขั้นตอนวิธีสร้างสัญญาณรบกวนจากคลัสเตอร์

รับเข้า: M เป็นแบบจำลองการเรียนรู้

รับเข้า: X เป็นชุดข้อมูลที่จะทำการโจมตี

รับเข้า: k เป็นจำนวนคลัสเตอร์

รับเข้า: f_s เป็นฟังก์ชันสร้างสัญญาณรบกวนที่รวดเร็ว

รับเข้า: f_e เป็นฟังก์ชันสร้างสัญญาณรบกวนที่มีประสิทธิภาพ

สร้างชุดสัญญาณรบกวน P_s ที่โจมตีแบบจำลอง M บนชุดข้อมูล X ด้วยขั้นตอนวิธี f_s

วิเคราะห์คลัสเตอร์ด้วยขั้นตอนวิธี k-มีนส์ บน P_s ด้วยจำนวนคลัสเตอร์ k คลัสเตอร์

สำหรับ ทุกคลัสเตอร์ $c_i \in C$ ทำ

สร้างสัญญาณรบกวน p_i ที่มีความสามารถโจมตีทุกจุด c_i บนแบบจำลอง M ด้วยขั้นตอนวิธี f_e เก็บสัญญาณรบกวน p_i และเซต C_i ซึ่งมีสมาชิก c_i ทุกตัวในคลัสเตอร์ C

จบการวนสำหรับ

ส่งออก: ค่า p_i และ c_i สำหรับทุก i=1 ถึง k

ขั้นตอนวิธี 4 การเสริมความแข็งแกร่งด้วยวิธีการผสานคลัสเตอร์

รับเข้า: M เป็นแบบจำลองการเรียนรู้

รับเข้า: X เป็นชุดข้อมูลที่จะทำการโจมตี

รับเข้า: e เป็นจำนวนรอบการวนซ้ำ (epoches) ในการฝึกสอน

รับเข้า: m และ n เป็นขนาดของชุดฝึกสอนเล็กจิ๋ว (minibatch) บนชุดข้อมูลต้นฉบับและชุดข้อมูลประสงค์ร้าย

รับเข้า: w และ w' เป็นน้ำหนักของชุดฝึกสอนเล็กจิ๋ว (minibatch) บนชุดข้อมูลต้นฉบับและชุดข้อมูลประสงค์ร้าย สร้างสัญญาณรบกวนจากคลัสเตอร์ ที่โจมตีข้อมูล X บนแบบจำลอง M โดยใช้ขั้นตอนวิธี 3.

สำหรับ i=1 ถึง e ทำ

สร้างชุดฝึกสอนจิ๋วบนชุดข้อมูลต้นฉบับ $B=\{x_1,x_2,\ldots,x_m\}$.

สร้างชุดฝึกสอนจิ๋วบนชุดข้อมูลประสงค์ร้าย $B' = \{x_1', x_2', \dots, x_n'\}$.

ฝึกสอนแบบจำลองแบบถ่วงน้ำหนัก โดยให้น้ำหนัก w บน B และ w^\prime บน B^\prime .

จบการวนสำหรับ

ส่งออก: แบบจำลอง M

ชุดคำสั่งทั้งหมดสามารถเข้าถึงออนไลน์ได้ผ่านระบบควบคุมเวอร์ซัน (Software Version Control) GitHub ผ่านทาง https://github.com/srakrnxKU/adversarial-project/

บทที่ 4

ผลการทดลอง

4.1 ผลการดำเนินงาน

4.1.1 การสร้างโครงข่ายประสาทเทียม

ผู้จัดทำสร้างโครงข่ายประสาทเทียมเพื่อฝึกสอนบนชุดข้อมูล MNIST [15] บนโครงข่ายประสาทเทียมดังแสดงใน ตารางที่ 4.1

4.1.2 การฝึกสอนโครงข่ายประสาทเทียม

โครงข่ายประสาทเทียมถูกฝึกสอนด้วยจำนวนรอบ (epoches) e=10 ในแต่ละรอบการฝึกสอนแบ่งชุดข้อมูล ฝึกสอนออกเป็นชุดฝึกสอนเล็กจิ๋ว (minibatch) ขนาด m=64 จุดข้อมูลต่อหนึ่งชุดเล็กจิ๋ว การปรับค่าน้ำหนักทำด้วยขั้น ตอนวิธีหาค่าดีที่สุดแบบ Adam [16]

4.1.3 การวัดประสิทธิภาพแบบจำลอง

แบบจำลองก่อนพยายามเสริมความแข็งแกร่งถูกวัดประสิทธิภาพด้วยชุดทดสอบดังแสดงในรูปที่ 4.1

4.1.4 การโจมตีแบบจำลอง

ต่อมา แบบจำลองจากหัวข้อข้างต้นถูกนำมาโจมตีด้วยวิธีการ FGSM และ PGD โดยใช้ความเข้มสัญญาณรบกวน $\epsilon=0.2$ ผลการโจมตีนั้นดังแสดงในรูปที่ 4.1

ในที่นี้ เนื่องจากแบบจำลอง FCNN ไม่ทนทานต่อการโจมตี จึงเลือกแบบจำลองดังกล่าวเพียงแบบจำลองเดียวมา ดำเนินการทดลองต่อ

4.1.5 การเสริมความแข็งแกร่งแบบจำลองด้วยการฝึกสอนใหม่

เมื่อวัดผลการโจมตีแบบจำลองได้แล้ว ผู้จัดทำทดลองเสริมความแข็งแกร่งแบบจำลองด้วยวิธีการมาตรฐาน (ขั้น ตอนวิธีที่ 2) เทียบกับขั้นตอนวิธีที่โครงงานวิศวกรรมคอมพิวเตอร์นี้เสนอ (ขั้นตอนวิธีที่ 4) โดยทำการฝึกสอนใหม่จำนวน e=10 รอบ ขนาดชุดฝึกสอนเล็กจิ๋วสำหรับชุดข้อมูลต้นฉบับและชุดข้อมูลประสงค์ร้ายเท่ากับ m=64 และ $m^\prime=32$ ตามลำดับ น้ำหนักที่ถ่วงสำหรับชุดข้อมูลต้นฉบับและชุดข้อมูลประสงค์ร้ายเท่ากับ w=1 และ $w^\prime=2$ ตามลำดับ

ชนิดโครงข่าย	ชั้นในโครงข่าย
โครงข่ายประสาทเทียมเชื่อมทั่ว	ชั้นเชื่อมทั่ว (784, 128)
	ชั้นเชื่อมทั่ว (128, 64)
	ชั้นเชื่อมทั่ว (64, 10)
โครงข่ายประสาทเทียมลังวัฒนาการ	ชั้นสังวัฒนาการ 2 มิติ (รับเข้า=1, ส่งออก=8, ขนาด=3)
	ชั้นบ่อรวม 2 มิติ(ขนาด=2, ระยะเลื่อน=2)
	ชั้นสังวัฒนาการ 2 มิติ (รับเข้า=8, ส่งออก=16, size=5)
	ชั้นเชื่อมทั่ว (256, 120)
	ชั้นเชื่อมทั่ว (120, 84)
	ชั้นเชื่อมทั่ว (84, 10)

ตารางที่ 4.1: สถาปัตยกรรมโครงข่ายประสาทเทียมที่เลือกใช้

รูปที่ 4.1: ค่าความแม่นยำของแบบจำลองก่อนเสริมความแข็งแกร่ง

รูปที่ 4.2: เวลาที่ใช้ในการเสริมความแข็งแกร่งแบบจำลอง

4.1.6 การวัดประสิทธิภาพการเสริมความแข็งแกร่ง

เราวัดประสิทธิภาพของการเสริมความแข็งแกร่งโดยอิงจากปัจจัยเวลาที่ใช้ในการฝึกสอนแบบจำลองใหม่ และ ความแม่นยำของแบบจำลอง รูปที่ 4.2 และ 4.3 แสดงให้เห็นถึงเวลาที่ใช้ในการฝึกสอนทั้งหมด และความแม่นยำหลังจาก การฝึกสอน

4.2 การวิเคราะห์ผล

แม้ว่าขั้นตอนวิธีที่เสนอจะไม่สามารถสร้างให้แบบจำลองทนทานต่อการโจมตีแบบ FGSM ได้ แต่แบบจำลองที่ ผ่านการเสริมความแข็งแกร่งนั้นทนทานต่อการโจมตีแบบ PGD มากขึ้นเทียบเท่าวิธีอื่น ในระบะเวลาเสริมความแข็งแกร่ง ที่น้อยลงประมาณ 3 เท่าตัว

ความแม่นยำของแบบจำลอง FCNN หลังเสริมความแข็งแกร่ง

รูปที่ 4.3: ค่าความแม่นยำของแบบจำลอง CNN หลังเสริมความแข็งแกร่ง

บทที่ 5 สรุปผลการทดลอง

5.1 สรุป

5.1.1 สรุปผลการทำโครงงาน

ผลการศึกษาเบื้องต้นพบว่าผลการเสริมความแข็งแกร่งแบบจำลองนั้นเป็นที่น่าพอใจในการป้องกันการโจมตี ด้วยขั้นตอนวิธี PGD อย่างไรก็ตามเป็นที่น่าประหลาดใจว่าแบบจำลองยังคงไม่ทนทานต่อการโจมตีด้วยขั้นตอนวิธี FGSM เทียบเท่าขั้นตอนวิธีเสริมความแข็งแกร่งอื่น

ทั้งนี้ ขั้นตอนวิธีที่เสนอตอบโจทย์การลดเวลาฝึกสอนแบบจำลองเพื่อเพิ่มความแข็งแกร่งเป็นอย่างดี

5.1.2 ผลลัพธ์ที่ได้

ได้ขั้นตอนวิธีสำหรับฝึกสอนแบบจำลองเพื่อเพิ่มความแข็งแกร่งแบบร่นเวลา

5.1.3 ประโยชน์ที่ได้รับจากการปฏิบัติงาน

เป็นการศึกษาขั้นต้นของการป้องกันแบบจำลองจากการเรียนรู้เชิงประสงค์ร้าย ซึ่งจะนำไปต่อยอดเป็นงานวิจัย ต่อไป

5.2 ปัญหาอุปสรรคและแนวทางการแก้ไขปัญหา

5.2.1 ปัญหาที่พบระหว่างการทำโครงงาน

- ข้อจำกัดทางด้านทรัพยากรการคำนวน
- ข้อจำกัดทางด้านการทดลองซ้ำได้ และการปรับค่าการทดลองซ้ำ
- ข้อจำกัดทางด้านความแปรปรวนทางอารมณ์

5.2.2 แนวทางการแก้ไขปัญหา

- ใช้เงินแก้ปัญหา กล่าวคือเช่าระบบเครือข่ายกลุ่มเมฆสำหรับการฝึกสอนแบบจำลอง
- ปรับกระบวนรหัส (refactor) ให้สามารถทดลองหลายแบบได้อย่างยืดหยุ่น
- พบจิตแพทย์ และทานยา

บรรณานุกรม

- [1] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
- [2] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [3] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain.," *Psychological Review*, vol. 65, no. 6, p. 386–408, 1958.
- [4] K. Hornik, "Approximation capabilities of multilayer feedforward networks," *Neural Networks*, vol. 4, no. 2, p. 251–257, 1991.
- [5] G. Cybenko, "Approximation by superpositions of a sigmoidal function," *Mathematics of Control, Signals, and Systems*, vol. 2, pp. 303–314, Dec. 1989.
- [6] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," *Neural Networks*, vol. 6, pp. 861–867, Jan. 1993.
- [7] A. Kratsios, "Universal approximation theorems," 2019.
- [8] M. A. Nielsen, "Neural networks and deep learning," Jan 1970.
- [9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in *Proceedings of the IEEE*, vol. 86, pp. 2278–2324, 1998.
- [10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in *Proceedings of the 25th International Conference on Neural Information Processing Systems Volume 1*, NIPS'12, (USA), pp. 1097–1105, Curran Associates Inc., 2012.
- [11] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," 2014.
- [12] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, "Adversarial examples are not bugs, they are features," 2019.
- [13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards deep learning models resistant to adversarial attacks," 2017.
- [14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," in *Advances in Neural Information Processing Systems 32* (H. Wallach, H. Larochelle,

- A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.
- [15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proceedings of the IEEE*, vol. 86, pp. 2278–2324, Nov 1998.
- [16] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2014.