First Implementation of QuickPay (2009-2012)

Mar 01, 2021

1 Delays over Time

2 Notation

- Project i, Year-Quarter t
- X_i denotes project level controls: initial duration, initial budget, number of offers received
- $\mu_t, \theta_{firm}, \lambda_{task}$: Year-Quarter, Firm, and Product/Service code Fixed effects
- All continuous variables are winsorized at the 5% level

$$Treat_i = \begin{cases} 1, & \text{if project } i \text{ is a small business} \\ 0, & \text{otherwise} \end{cases}$$

$$Post_t = \begin{cases} 1, & \text{if year-quarter } t > \text{ April 27, 2011} \\ 0, & \text{otherwise} \end{cases}$$

3 Parallel Trends Test

Let Time denote q-th quarter since the beginning of time horizon. For $Post_t = 0$, we run the following regression:

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 (Treat_i \times Time) + \beta_2 X_i + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

The coefficient of interest is β_1 . If this is significant, we would find evidence of a linear time trend before quickpay implementation – violating the parallel trends assumption.

Table 1: Linear Time Trend Before QuickPay

	Dependent variable:
	$Delay_{it}$ (in days)
$Treat_i$	-1.10
	(2.98)
$Treat_i \times Time$	-0.01
	(0.49)
Fixed effects	Firm, Task, and Year-Quarter
Controls	Budget, Duration, Bids
Observations	74,677
\mathbb{R}^2	0.14
Adjusted R ²	0.03
Note:	*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter. SEs are robust and clustered at the project level. Observations are for quarters before quickpay.

4 Baseline Regressions

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \epsilon_{it}$$

$$Delay_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t)$$

$$+ X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 2: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
$\overline{Treat_i}$	-6.19***	-3.58**	-3.09*
	(0.50)	(1.55)	(1.59)
$Post_t$	13.04***		
	(0.52)		
$Treat_i \times Post_t$	3.35***	6.88***	6.83***
	(0.73)	(0.91)	(0.92)
Constant	33.00***		
	(0.36)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Task Fixed Effects	No	No	Yes
Duration, Budget, Bids	No	Yes	Yes
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes
Observations	173,900	155,638	155,638
\mathbb{R}^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.05	0.05

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

5 Contract Financing

$$CF_i = \begin{cases} 1, & \text{if project } i \text{ receives contract financing} \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{aligned} Delay_{it} = & \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) \\ + & \beta_3 CF_i + \beta_4 (CF_i \times Post_t) + \beta_5 (Treat_i \times Post_t \times CF_i) \\ + & X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{aligned}$$

Table 3: Effect of Contract Financing: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
$\overline{Treat_i}$	-6.12***	-3.37**	-2.89^*
	(0.50)	(1.55)	(1.59)
$Post_t$	13.00***		
	(0.57)		
$Treat_i \times Post_t$	1.53**	5.89***	5.90***
	(0.78)	(1.00)	(1.01)
CF_i	-3.97***	-4.68***	-4.76^{***}
	(0.61)		(0.82)
$Post_t \times CF_i$	0.72	-0.20	-0.37
	(1.13)	(1.31)	(1.32)
$Post_t \times CF_i \times Treat_i$	9.24***	3.94**	3.70**
	(1.38)	(1.65)	(1.67)
Constant	33.64***		
	(0.38)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Task Fixed Effects	No	No	Yes
Duration, Budget, Bids	No	Yes	Yes
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes
Observations	173,900	155,638	155,638
R^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.05	0.05

*p<0.1; **p<0.05; ***p<0.01 Each observation is a project-quarter.

SEs are robust and clustered at the project level.

6 Receives Financial Aid

 $Financial Aid = \begin{cases} 1, & \text{if firm receives grants or is a c8A participant} \\ 0, & \text{otherwise} \end{cases}$

$$\begin{aligned} Delay_{it} = & \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \beta_3 Financial Aid \\ & + & \beta_4 (Financial Aid \times Post_t) + \beta_5 (Treat_i \times Post_t \times Financial Aid) \\ & + & X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{aligned}$$

Table 4: Effect of Grants or C8A Participant: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
$Treat_i$	-6.96***	-3.15**	-2.63^{*}
		(1.55)	(1.59)
$Post_t$	12.89***		
	(0.53)		
$Treat_i \times Post_t$	3.43***	5.65***	5.57***
	(0.77)	(0.98)	(0.99)
Financial Aid	5.72***	1.36	0.45
	(0.70)	(1.39)	(1.42)
$Post_t \times FinancialAid$	1.94	4.06*	3.93*
	(1.61)	(2.10)	(2.12)
$Post_t \times FinancialAid \times Treat_i$	-1.80	2.51	2.75
	(1.73)	(2.46)	(2.50)
Constant	32.42***		
	(0.37)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Task Fixed Effects	No	No	Yes
Duration, Budget, Bids	No	Yes	Yes
$Post_t \times \text{(Duration, Budget, Bids)}$	No	Yes	Yes
Observations	173,900	$155,\!638$	155,638
\mathbb{R}^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.05	0.05

*p<0.1; **p<0.05; ***p<0.01 Each observation is a project-quarter.

SEs are robust and clustered at the project level.

7 Receives Contracts and Financial Aid

$$CFA = \begin{cases} 1, & \text{if firm receives "contracts and grants"} \\ \text{or grants or is a c8A participant} \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{split} Delay_{it} = & \quad \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \beta_3 CFA \\ & \quad + \quad \quad \beta_4 (CFA \times Post_t) + \beta_5 (Treat_i \times Post_t \times CFA) \\ & \quad + \quad \quad X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it} \end{split}$$

Table 5: Effect of Contracts, Grants, or C8A Participant: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
$Treat_i$	-6.68***	-3.19**	-2.71^*
	(0.51)		(1.59)
$Post_t$	12.17***		
	(0.55)		
$Treat_i \times Post_t$	4.19***	5.71***	5.84***
	(0.79)	(1.02)	(1.03)
CFA	4.90***	-5.44***	-5.92^{***}
	(0.62)	(1.78)	(1.80)
$Post_t \times CFA$	3.91***	5.00***	5.83***
	(1.21)	(1.60)	(1.64)
$Post_t \times CFA \times Treat_i$	-4.04***	2.60	1.61
	(1.38)	(2.12)	(2.16)
Constant	32.18***		
	(0.37)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Task Fixed Effects	No	No	Yes
Duration, Budget, Bids	No	Yes	Yes
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes
Observations	173,900	155,638	155,638
R^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.05	0.05

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

8 Firm share of small projects

For project i of firm f in quarter t, define $\rho_f = \sum_{t \in FY2010, i \in S} \text{FAO}_{ift} / Sales_f^{FY2010}.$

Define $\alpha_f = rank(\rho_f)/N$ where $rank(\rho_f)$ is the rank statistic of ρ_f and N = number of firms. For example, $rank(\rho_f) = 1$ if $\rho_f = \min(\rho_1, \rho_2, \dots, \rho_N)$.

Put simply, α_f is a firm's rank order based on the fraction of revenue it earned from small government projects in FY 2010.

Hypothesis: Firms that relied more on the government experienced greater delays on their projects after QuickPay was implemented.

$$Delay_{it} = \beta_0 + \beta_1 \alpha_f + \beta_2 Post_t + \beta_3 (\alpha_f \times Post_t) + \epsilon_{it}$$

$$Delay_{it} = \beta_0 + \beta_1(\alpha_f \times Post_t) + \beta_2 X_i + \beta_3(X_i \times Post_t) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 6: Effect of Treatment Intensity: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
α_f	-0.85		
	(1.07)		
$Post_t$	13.54***		
	(1.13)		
$\alpha_f \times Post_t$	6.49***	7.39***	7.46***
,	(1.62)	(2.00)	(2.04)
Constant	27.74***		
	(0.75)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Task Fixed Effects	No	No	Yes
Duration, Budget, Bids	No	Yes	Yes
$Post_t \times (Duration, Budget, Bids)$	No	Yes	Yes
Observations	71,753	63,216	63,216
\mathbb{R}^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.04	0.04

*p<0.1; **p<0.05; ***p<0.01 Each observation is a project-quarter.

SEs are robust and clustered at the project level.

Terciles of Alpha 9

Define $\alpha_f^{(k)} = \text{k-th tercile of } \alpha_f$.

Table 7: Effect of Treatment Intensity: Quickpay 2009-2011

	$Delay_{it}$ (in days)		
	(1)	(2)	(3)
$\alpha_f^{(2)}$	-1.21		
J	(0.97)		
$\chi_f^{(3)}$	-1.07		
x f	(0.85)		
$Post_t$	14.68***		
	(0.93)		
$\alpha_f^{(2)} \times Post_t$	3.09**	5.75***	6.00***
<i>y</i> × 1 3500		(1.88)	(1.93)
$u_t^{(3)} \times Post_t$	5.24***	4.79***	4.79***
-j	(1.29)	(1.61)	(1.65)
Constant	27.93***		
	(0.62)		
Year-Quarter Fixed Effects	No	Yes	Yes
Firm Fixed Effects	No	Yes	Yes
Cask Fixed Effects	No	No	Yes
Ouration, Budget, Bids	No	Yes	Yes
$Post_t \times (Duration, Budget, Bids)$	No	Yes	Yes
Observations	71,753	63,216	63,216
\mathbb{R}^2	0.01	0.11	0.12
Adjusted R ²	0.01	0.04	0.04

 $\label{eq:polynomial} \begin{array}{c} ^*p{<}0.1; \ ^{**}p{<}0.05; \ ^{***}p{<}0.01 \\ \text{Each observation is a project-quarter.} \\ \text{SEs are robust and clustered at the project level.} \end{array}$

Treatment Intensity **10**

Define $\theta_i = Treat_i \times \alpha_f$