Contents

1	Basisregels differentieren												2	
2	Differentiaalquotient/analytisch differentieren													2
	2.1		e:											
		2.1.1	Aanpak:						• •	•	•	٠	•	2
3														2

1 Basisregels differentieren

- Met differentieren pak je de afgeleide van een functie, de helling. Hiermee kunnen veranderingen van de functie t.o.v de variabelen beredeneerd worden
- De afgeleide van een functie die constant is, is altijd 0:

$$-f(x) = 27, f'(x) = 0$$

• Voor *n*-de graads vergelijkingen geldt de volgende regel:

$$- f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$

• Dit geldt ook voor gebroken vormen:

$$- f(x) = \frac{1}{x} = x^{-1} \Rightarrow f'(x) = -1x^{-2} = \frac{-1}{x^2}$$

• En voor wortels:

$$-\sqrt{x} = x^{\frac{1}{2}} \Rightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{\sqrt{2}}$$

2 Differentiaalquotient/analytisch differentieren

2.1 Notatie:

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

2.1.1 Aanpak:

- 1: Vul in
- 2: Bepaal differentiaalquotient $\frac{\Delta y}{\Delta x}$
- 3: Bepaal differentiequotient $y'(x)\frac{dy}{dx}$
- 1. Voorbeeld:
- 2. TODO

3