UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

ESCUELA DE ESTUDIOS GENERALES ÁREA DE INGENIERÍA

Álgebra y Geometría Analítica

Tema: Teorema fundamental del algebra. Numero de ceros de un polinomio. Teorema de factorización única. Multiplicidad de un cero en un polinomio.

Semestre 2022-I

GUÍA DE PRÁCTICA Nº6

I) Encontrar el número de raíces racionales de los siguientes polinomios.

1.
$$P(x) = 4x^4 - x^2$$

2.
$$P(x) = 6x^4 + 11x^2 - 2$$

3.
$$P(x) = 2x^3 - x + 1$$

4.
$$P(x) = x^5 + 23x^4 - 12x^3 - 12$$

II) Encontrar el número de raíces reales de los siguientes polinomios.

5.
$$P(x) = 4x^4 - x^2$$

6.
$$P(x) = 6x^4 + 11x^2 - 2$$

7.
$$P(x) = 2x^3 - x + 1$$

8.
$$P(x) = x^5 + 23x^4 - 12x^3 - 12$$

9.
$$P(x) = x^6 - 4x^4 - x^2 + 4$$

9.
$$P(x) = x^6 - 4x^4 - x^2 + 4$$
 10. $P(x) = x^6 + 6x^4 + 11x^2 + 6$

11.
$$P(x) = x^7 - 5x^5 + 3x^3 - x + x^4$$

11.
$$P(x) = x^7 - 5x^5 + 3x^3 - x + 1$$
 12. $P(x) = 36x^6 + 36x^5 + 23x^4 - 13x^3 - 12x^2 + x$

III) Factorizar en € [x]

13.
$$P(x) = x^4 + x^3 - 3x^2 - 4x - 1$$
; 14. $P(x) = x^3 + x^2 - x - 1$;

14
$$P(x) = x^3 + x^2 - x - 1$$

15
$$P(x) = x^5 + x^4 - x^3 - 2x - 1$$

15.
$$P(x) = x^5 + x^4 - x^3 - 2x - 1$$
; 16. $P(x) = 3x^4 + 2x^3 + x^2 + 2x - 2$;

17.
$$P(x) = x^6 - 7x^4 + 8x^3 - 7x + 7$$
; 18. $P(x) = 3x^6 - 7x^3 + 3x^2 - 7$;

18
$$P(x) = 3x^6 - 7x^3 + 3x^2 - 7$$

19.
$$P(x) = x^5 - 2x^4 + x^3 + 7x^2 - 12x + 10$$
; 20. $P(x) = 3x^4 - 6x^3 + 5x^2 + 2x - 2$;

20.
$$P(x) = 3x^4 - 6x^3 + 5x^2 + 2x - 2$$
;

IV) Separar las raíces múltiples de los polinomios:

21)
$$x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4$$
 ; 22) $x^5 - 10x^3 - 20x^2 - 15x - 4$;

22)
$$x^5 - 10x^3 - 20x^2 - 15x - 4$$
:

23)
$$x^6 - 15x^4 + 8x^3 + 51x^2 - 72x + 27$$
; 24) $x^5 - 6x^4 + 16x^3 - 24x^2 + 20x - 8$

24)
$$x^5 - 6x^4 + 16x^3 - 24x^2 + 20x - 8$$