Integrating Tracking and Beam-Matter Interaction for Medical Beam Lines

Dresden ENLITE 09

Lucas Clemente

FZD, Dresden

April 3rd 2009

GPT

- "A 3D code for accelerator and beamline design"
- Developed for 12 years (in C)
- Sophisticated tracking algorithm
- Good space-charge and multiple particle tracing
- Big repository of elements accessible

How does it work?

- 5th order Runge-Kutta algorithm
- Stepwise tracking of *multiple* particles through user-defined fields
- User interference possible using "custom elements"
- User may specify field components (\vec{E}, \vec{B})
- No random but reproducable trajectories of real particles

A Problem

Little to no particle matter interaction possible

How does it work?

- 5th order Runge-Kutta algorithm
- Stepwise tracking of *multiple* particles through user-defined fields
- User interference possible using "custom elements"
- User may specify field components (\vec{E}, \vec{B})
- No random but reproducable trajectories of real particles

A Problem

Little to no particle matter interaction possible

GEANT4

GEometry ANd Tracking 4

- Toolkit for the simulation of particle-matter interactions
- Developed for 15 years at CERN (C++)
- Advanced geometry system
- Proofed correct in many experiments

GEANT4

How does it work?

- Monte-Carlo algorithm
- Stepwise tracking of *single* particles through user-defined geometries
- User can overload nearly any class or supply his own (Open-source)
- Random particle trajectories, statistical simulation of Monte-Carlo particles

Some Problems

- Only single-particle simulations possible (no space charge, ...)
- Modest electromagnetic fields

GEANT4

How does it work?

- Monte-Carlo algorithm
- Stepwise tracking of single particles through user-defined geometries
- User can overload nearly any class or supply his own (Open-source)
- Random particle trajectories, statistical simulation of Monte-Carlo particles

Some Problems

- Only single-particle simulations possible (no space charge, ...)
- Modest electromagnetic fields

Challenges of a beamline modelling software

Medical beamlines

- Compact proton / ion sources require a compact beamline
- Scaling of beamlines not possible
- Radiation protection!

State of the art

There is no code combining advanced tracking and particle-matter interactions!

Challenges of a beamline modelling software

Medical beamlines

- Compact proton / ion sources require a compact beamline
- Scaling of beamlines not possible
- Radiation protection!

State of the art

There is no code combining advanced tracking and particle-matter interactions!

What is Flint?

FZD Laser Interactor and Tracker

A simulation software fundamentally combining GPT and GEANT4

Features

- Tracking massive amounts of particles through complex geometries
- All of GPT's space charge algorithms
- Full GEANT4 capabilities in particle-matter interaction
- All geometry elements and fields of GPT and GEANT4
- Customizability
- High-Speed due to parallelization using OpenMP

What is Flint?

FZD Laser Interactor and Tracker

A simulation software fundamentally combining GPT and GEANT4

Features

- Tracking massive amounts of particles through complex geometries
- All of GPT's space charge algorithms
- Full GEANT4 capabilities in particle-matter interaction
- All geometry elements and fields of GPT and GEANT4
- Customizability
- High-Speed due to parallelization using OpenMP

A simple calculation using GPT...

Figure: Electron beam ($\gamma = 100$) passing through two quadrupoles ($G = 3.9, -3.25 \frac{T}{m}$)

... and Flint

Figure: Electron beam ($\gamma=100$) passing through two quadrupoles ($G=3.9,-3.25\,\frac{T}{m}$) and two pinholes ($Cu,\,dz=2\,cm$)

How is it built?

- Problem: GPT only limited extendable
 - ⇒ Custom field elements
- GPT is C, GEANT4 is C++
- Solution: Link a GEANT4 based library
- Other used libraries:
 - xerces for XML-configuration
 - CLHEP
 - OpenMP (included in gcc4)

What is flint?

Flint consists of a GEANT4 based library to be linked into GPT, a GPT custom element and a bunch of tools for modelling, run and analysis.

How is it built?

- Problem: GPT only limited extendable
 - ⇒ Custom field elements
- GPT is C, GEANT4 is C++
- Solution: Link a GEANT4 based library
- Other used libraries:
 - xerces for XML-configuration
 - CLHEP
 - OpenMP (included in gcc4)

What is flint?

Flint consists of a GEANT4 based library to be linked into GPT, a GPT custom element and a bunch of tools for modelling, run and analysis.

```
The element "G4Virtual" Include GEANT4 just by typing
```

```
G4Virtual("WCS", "I");
```

Program flow

- Calculate normal GPT step
- After each successful step do for each particle:
 - Check for intersection with a GEANT4 solid (pre and post step point)
 - Use GEANT4 for recalculation of the step
 - Inject the results of GEANT4 into GPT
 - Output the particle's data (e.g. trajectories, dose)

The element "G4Virtual"

```
Include GEANT4 just by typing
G4Virtual("WCS", "I");
```

Program flow

- Calculate normal GPT step
- After each successful step do for each particle:
 - Check for intersection with a GEANT4 solid (pre and post step point)
 - Use GEANT4 for recalculation of the step
 - Inject the results of GEANT4 into GPT
 - Output the particle's data (e.g. trajectories, dose)

- Use GPT to track the step
- ② Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocitiesCalculate the rotation of momentum
 - between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- ② Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

- Use GPT to track the step
- ② Recalculate the step using GEANT4
 - Start at pre-GPT-point
 - Track in direction of post-GPT point
 - Stop when time exceeds the GPT time
- Inject the results of GEANT4 into GPT
 - Take the new position and velocities
 - Calculate the rotation of momentum between pre-GEANT4 and post-GEANT4
 - Rotate the post-GPT momentum accordingly

Secondaries

Secondary particles

- GEANT4 produces all kind of secondaries
- GPT can only handle massive and charged particles

The solution

- Massive and charged particles are injected into GPT
- Massless or chargeless particles are tracked and outputted solely by GEANT4

Secondaries

Secondary particles

- GEANT4 produces all kind of secondaries
- GPT can only handle massive and charged particles

The solution

- Massive and charged particles are injected into GPT
- Massless or chargeless particles are tracked and outputted solely by GEANT4

Input

Only one input file (XML) consisting of:

- GDML part (Geometry Description Markup Language, supported naturally by GEANT4)
- GPT part (In general GPT ini file)
- Some additional tags controlling Flint

```
Example: Configuring particles used in GEANT
<particles>
    <particle name="gamma" />
    <particle name="e-" />
    <particle name="proton" />
</particles>
```

Input

Only one input file (XML) consisting of:

- GDML part (Geometry Description Markup Language, supported naturally by GEANT4)
- GPT part (In general GPT ini file)
- Some additional tags controlling Flint

Example: Configuring particles used in GEANT4

```
<particles>
  <particle name="gamma" />
  <particle name="e-" />
  <particle name="proton" />
</particles>
```

```
Example: A pinhole
<tube name="pinhole" z="20.0" rmin="10.0" rmax="100.0" />
<volume name="pinhole">
  <materialref ref="Cu" />
  <solidref ref="pinhole" />
</volume>
<position name="ph" z="1400.0" />
<physvol>
  <volumeref ref="pinhole" />
  <positionref ref="ph" />
</physvol>
```



```
Example: Two quadrupoles
```

```
<gpt>
  radius = 6e-3;
  setparticles("beam", 100, me, qe, 0.0);
  setrxydist("beam", "u", radius/2, radius);
  setphidist("beam", "u", 0, 2*pi);
  setGdist("beam", "u", 100, 0);
  quadrupole("wcs", "z", 0.2, 0.1, 3.90);
  quadrupole("wcs", "z", 0.5, 0.2, -3.25);
  G4Virtual("wcs", "i"):
  tout(0.4e-9.0.05e-9):
</gpt>
```

Output

Current outputs availible

- GPT outputs (e.g. Divergence, Emittance, Standard deviations, ...)
- Trajectories (seperated by particle type, massless only here) as ASCII
- Dose and energy deposition in the geometry as ASCII

```
Configuration of outputs
```

Output

Current outputs availible

- GPT outputs (e.g. Divergence, Emittance, Standard deviations, ...)
- Trajectories (seperated by particle type, massless only here) as ASCII
- Dose and energy deposition in the geometry as ASCII

Configuration of outputs

Optimization

Parallization of the GEANT4 part

- Single particles are independant
- GEANT4 and output distributed over several threads using OpenMP (previous versions also MPI)
- Configurable with environment variables

Other optimizations

There are additional optimizations, e.g. for output, particle exchange, ...

Optimization

Parallization of the GEANT4 part

- Single particles are independant
- GEANT4 and output distributed over several threads using OpenMP (previous versions also MPI)
- Configurable with environment variables

Other optimizations

There are additional optimizations, e.g. for output, particle exchange, ...

The quadrupole example

- Basically the same world as in a GPT example: Two quadrupoles $(G=3.9,-3.25\,\frac{T}{m})$ focus a beam of electrons $(\gamma=100)$
- Empty space filled with weak interacting gas (H₂), two pinholes (Cu)
- Possibility to test the stepping algorithm

The result Flint and GPT both focus at z = 1.3 m

The quadrupole example

- Basically the same world as in a GPT example: Two quadrupoles $(G=3.9,-3.25\,\frac{T}{m})$ focus a beam of electrons $(\gamma=100)$
- Empty space filled with weak interacting gas (H_2) , two pinholes (Cu)
- Possibility to test the stepping algorithm

The result

Flint and GPT both focus at z = 1.3 m

Emittance calculation

- Electron-beam with a Gaussian space-distribution with $\sigma=0.3$ mm, $\varepsilon_0=1$ mm mrad, divergence of 190 μ rad, $\gamma=440$
- Emittance after a thin $(d=(1,4,15)~\mu\mathrm{m})$ aluminium foil is compared to GEANT4

The result

Both, Flint and GEANT4, produce the same change in emittance (for 15 μ m AI): $\varepsilon_0=81$ mm mrad.

Figure: Phase space

Emittance calculation

- Electron-beam with a Gaussian space-distribution with $\sigma=0.3$ mm, $\varepsilon_0=1$ mm mrad, divergence of 190 μ rad, $\gamma=440$
- Emittance after a thin $(d=(1,4,15)~\mu{\rm m})$ aluminium foil is compared to GEANT4

The result

Both, Flint and GEANT4, produce the same change in emittance (for 15 μ m AI): $\varepsilon_0 = 81$ mm mrad.

Figure: Phase space

Designing a sample beamline

- Beam: electrons ($\gamma=100$) and protons ($\gamma=5$)
- A pinhole (Cu)
- A separating magnetic field (B = 2 T)
- Protons collide into a beam dump (Pb)

Figure: Also produced: α , e^+ , neutrons

Outlook

Software impropvements

- Some minor and major optimizations
- More configurability through XML (perhaps replace GPT ini file)

Major improvements

- Use GEANT4's proposed step length in GPT
- More output options (e.g. detailed interaction information)
- Use another format than ASCII for output (speedup)
- More testing (e.g. tracking ions, fission processes, complex space charge effects)

Outlook

Software impropvements

- Some minor and major optimizations
- More configurability through XML (perhaps replace GPT ini file)

Major improvements

- Use GEANT4's proposed step length in GPT
- More output options (e.g. detailed interaction information)
- Use another format than ASCII for output (speedup)
- More testing (e.g. tracking ions, fission processes, complex space charge effects)

