CSF 432: Intro to Network and System Security Week 03 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

IPv4 and IPv6 Addressing

2

IPv4 and IPv6 Addressing

The IP address of a device

- ☑IP Address, e.g., 192.168.1.165
- ☑Subnet mask, e.g., 255.255.255.0
 - ☑ Used by the local workstation to determine what subnet it's on
 - ☑ The subnet mask isn't (usually) transmitted across the network
- You'll ask for the subnet mask all the time
 - What's the subnet mask of this network?

IPv4 and IPv6 Addressing

The secret behind the IP address

- ☑ The IP address isn't really a single address.
- Man IP address is a combination of a network ID and a host ID
 - The subnet mask determines what part of the IP address is the network and which part is the host
 - ☑ The subnet mask is just as important as your IP address!
- ☑ The best way to see this work is in binary
 - ☑ This is the (very easy) math part

.

IPv4 and IPv6 Addressing IPv4 addresses - Internet Protocol version 4 OSI Layer 3 address Since one byte is 8 bits, the maximum decimal value for each byte is 255 192 168 1 131 11000000 10101000 00000001 10000011 8 bits = 1 byte = 1 octet 32 bits = 4 bytes

Configuring IPv6

Dual-stack routing

- ☑ Dual-stack IPv4 and IPv6

 - ☑ Interfaces will be assigned multiple address types
- IPv4
 - ☑ Configured with IPv4 addresses

 - ☑ Uses IPv4 dynamic routing protocols
- IPv6
 - ☑ Configured with IPv6 addresses

 - ☑ Uses IPv6 dynamic routing protocols

Configuring IPv6

Tunneling IPv6

- - ☑ Send IPv6 over an existing IPv4 network
 - ☑ Creates an IPv6 based on the IPv4 address
 - Requires relay routers -
 - □ IP protocol 41 a transition technology
- ☑ No support for NAT
- **✓** 4-in-6
 - ☑ Tunnel IPv4 traffic on an IPv6 network

10

Configuring IPv6

Teredo/Miredo

- ▼Tunnel IPv6 through NATed IPv4
 - ☑ End-to-end IPv6 through an IPv4 network
 - ☑ No special IPv6 router needed
 - □ Temporary use
 - ☑ We'll have IPv6 native networks soon
- Miredo Open-source Teredo for Linux,
- ☑ BSD Unix, and Mac OS X

Configuring IPv6

NDP (Neighbor Discovery Protocol)

- ✓ No broadcasts!
 - ☑ Operates using multicast over ICMPv6
- ☑ Neighbor MAC Discovery
 - ☑ Replaces the IPv4 ARP
- ☑SLAAC (Stateless Address Autoconfiguration)
 - Automatically configure an IP address without a DHCP server
- ☑DAD (Duplicate Address Detection)
 - ☑ No duplicate IPs!
- - ☑ Router Solicitation (RS) and Router Advertisement (RA)

11

Configuring IPv6

Finding Router

- ☑ICMPv6 adds the Neighbor Discovery Protocol
- ☑ Routers also send unsolicited RA messages
- ☑ Transfers IPv6 address information, prefix value, and prefix length, etc.
 - ☑ Sent as a multicast
- ☑ Neighbor Advertisement (NA)

Configuring IPv6

Howdy Neighbor

- There's no ARP in IPv6
 - ✓ So how do you find out the MAC address of a device?
- ✓ Neighbor Solicitation (NS)
 - ☑ Sent as a multicast
- ☑ Neighbor Advertisement (NA)

Prioritizing Traffic

Prioritizing Traffic

Managing Network Traffic

- - ☑ Desktop, laptop, VoIP phone, mobile devices
- Many different applications
- ☑ Different apps have different network requirements
 - ☑ Voice is real-time
 - ☑ Recorded streaming video has a buffer
 - ☑ Database application is interactive
- ☑ Some applications are "more important" than others
 - ☑ Voice traffic needs to have priority over YouTube

Prioritizing Traffic

Packet shaping

- ☑ Packet shaping, traffic shaping
- ☑ Set important applications to have higher priorities than other apps

QoS (Quality of Service)

- - ☑ Voice over IP traffic has priority over web-browsing
 - ☑ Prioritize by maximum bandwidth, traffic rate, VLAN, etc.
- ☑ Quality of Service
 - Describes the process of controlling traffic flows

Prioritizing Traffic

Managing QoS

- ☑ CoS (Class of Service)
 - ☑ OSI Layer 2
 - ☑ Ethernet frame header in an 802.1q trunk
 - Usually applied in the intranet (not from an ISP)
- ☑ Differentiated Services (DiffServ)
 - ☑ OSI Layer 3
 - ☑ QoS bits are enabled in the IPv4 header
 - ☑ Bits are set external to the application
 - Routers and switches have to play along
- ☑ DSCP (Differentiated Services Code Point)
 - ☑ DS (Differentiated Services) field in the IP header

17

Network Address Translation (NAT)

IP address range	Number of addresses	Classful description	Largest CIDR block (subnet mask)	Host ID size
10.0.0.0 – 10.255.255.255	16,777,216	single class A	10.0.0.0/8 (255.0.0.0)	24 bits
172.16.0.0 – 172.31.255.255	1,048,576	16 contiguous class Bs	172.16.0.0/12 (255.240.0.0)	20 bits
192.168.0.0 – 192.168.255.255	65,536	256 contiguous class Cs	192.168.0.0/16 (255.255.0.0)	16 bits

Network Address Translation (NAT)

NAT (Network Address Translation)

- ☑ It is estimated that there are over 20 billion devices connected to the Internet (and growing)
 - ☑ IPv4 supports around 4.29 billion addresses
- - ☑ Network Address Translation
- This isn't the only use of NAT
 - NAT is handy in many situations

IP address range	Number of addresses	Classful description	Largest CIDR block (subnet mask)	Host ID size
10.0.0.0 – 10.255.255.255	16,777,216	single class A	10.0.0.0/8 (255.0.0.0)	24 bits
172.16.0.0 - 172.31.255.255	1,048,576	16 contiguous class Bs	172.16.0.0/12 (255.240.0.0)	20 bits
192.168.0.0 - 192.168.255.255	65,536	256 contiguous class Cs	192.168.0.0/16 (255.255.0.0)	16 bits
				20

19

Network Address Translation (NAT)

Port Forwarding

- - ☑ Does not have to be the same port number
- Malso called Destination NAT or Static NAT
 - Destination address is translated from a public IP to a private IP
 - ☑ Does not expire or timeout

IP address range	Number of addresses	Classful description	Largest CIDR block (subnet mask)	Host ID size
10.0.0.0 - 10.255.255.255	16,777,216	single class A	10.0.0.0/8 (255.0.0.0)	24 bits
172.16.0.0 – 172.31.255.255	1,048,576	16 contiguous class Bs	172.16.0.0/12 (255.240.0.0)	20 bits
192.168.0.0 – 192.168.255.255	65,536	256 contiguous class Cs	192.168.0.0/16 (255.255.0.0)	16 bits

Access Control Lists

2

Access Control Lists

Packet filtering

- ☑Used to allow or deny traffic
- ☑ Defined on the ingress or egress of an interface
 - ☑ Incoming or outgoing
- ACLs can evaluate on certain criteria
 - ☑ Source IP, Destination IP, TCP port numbers, UDP port numbers, ICMP
- ☑ Deny or permit

Access Control Lists

Firewall rules

- - - □ Source IP, Destination IP, port number, time of day, application, etc.
- - ☑ Usually top-to-bottom
- ☑ Can be very general or very specific
- ☑ Implicit deny
 - - □ Even if you didn't put one

24

Circuit Switching and Packet Switching

Circuit Switching and Packet Switching

Circuit switching

- ☑ Circuit is established between endpoints before data passes
 - ☑ Like a phone call
- ✓ Nobody else can use the circuit when it's idle
 - ☑ Inefficient use of resources
- ☑ Connection is always there
 - ☑ It's mine. You can't use it.
- - You'd better use it, you paid for it.

- ✓ POTS (plain old telephone service)
- PSTN (public switched telephone network)
- **I**T1 / E1 / T3 / E3
 - Create a circuit between two sites
- **ISDN**
 - Use a phone number to call another ISDN modem

25

Circuit Switching and Packet Switching

Packet switching

- ☑ Data is grouped into packets
 - ☑ Voice, data, video, etc.
 - ☑ Like a network
- - How much money would you like to spend?

- SONET, ATM
- **Ø**DSL

MPLS

- ☑ Satellite
- **Wireless**

Software Defined Networking

Software Defined Networking

SDN (Software Defined Networking)

- ✓ Networking devices have two functional planes of operation
 - Control plane
 - ☑ Data plane
- ☑ Directly programmable
 - ☑ Configuration is different than forwarding
- - ☑ Changes can be made dynamically
- ☑ Centrally managed Global view, single pane of glass
- ☑ Programmatically configured
 - ☑ Orchestration No human intervention
- ☑ Open standards / vendor neutral
 - A standard interface to the network

CSF 432: Intro to Network and System Security

Week 03 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Software Defined Networking

Distributed switching

- ☑ Remove the physical segmentation
 - A virtual network distributed across all physical platforms
- - ✓ Servers will always connect to the right VLAN

