

planetmath.org

Math for the people, by the people.

every bounded sequence has limit along an ultrafilter

 ${\bf Canonical\ name} \quad {\bf Every Bounded Sequence Has Limit Along An Ultrafilter}$

Date of creation 2013-03-22 15:32:26 Last modified on 2013-03-22 15:32:26 Owner kompik (10588) Last modified by kompik (10588)

Numerical id 4

Author kompik (10588)

Entry type Theorem
Classification msc 40A05
Classification msc 03E99
Related topic Ultrafilter

Theorem 1. Let \mathcal{F} be an ultrafilter on \mathbb{N} and (x_n) be a real bounded sequence. Then \mathcal{F} - $\lim x_n$ exists.

Proof. Let (x_n) be a bounded sequence. Choose a_0 and b_0 such that $a_0 \le x_n \le b_0$. Put $c_0 := \frac{a_0 + b_0}{2}$. Then precisely one of the sets $\{n \in \mathbb{N}; x_n \in \langle a_0, c_0 \rangle\}$, $\{n \in \mathbb{N}; x_n \in \langle c_0, b_0 \rangle\}$ belongs to the filter \mathcal{F} . (Their union is \mathbb{N} and the filter \mathcal{F} is an ultrafilter.) We choose $\langle a_1, b_1 \rangle$ as that subinterval from $\langle a_0, c_0 \rangle$ and $\langle c_0, b_0 \rangle$ for which $C := \{n \in \mathbb{N}; x_n \in \langle a_1, b_1 \rangle\}$ belongs to \mathcal{F} .

Now we again bisect the interval $\langle a_1, b_1 \rangle$ by putting $c_1 = \frac{a_1 + b_1}{2}$. Denote $A := \{n \in \mathbb{N}; x_n \in \langle a_1, c_1 \rangle\}$, $B := \{n \in \mathbb{N}; x_n \in \langle c_1, b_1 \rangle\}$. It holds $B \cup A \cup (\mathbb{N} \setminus C) = \mathbb{N}$. By the alternative characterization of ultrafilters we get that one of these sets is in \mathcal{F} . The set $\mathbb{N} \setminus C$ doesn't belong to \mathcal{F} , therefore it must be one of the sets A and B. We choose the corresponding interval for $\langle a_2, b_2 \rangle$.

By induction we obtain the monotonous sequences (a_n) , (b_n) with the same limit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n := L$ such that for any $n\in\mathbb{N}$ it holds $\{n\in\mathbb{N}; x_n\in\langle a_1,b_1\rangle\}\in\mathcal{F}$.

We claim that \mathcal{F} - $\lim x_n = L$. Indeed, for any $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $\langle a_n, b_n \rangle \subseteq (L - \varepsilon, L + \varepsilon)$, thus $\{n \in \mathbb{N}; x_n \in \langle a_n, b_n \rangle\} \subseteq A(\varepsilon)$. The set $\{n \in \mathbb{N}; x_n \in \langle a_1, b_1 \rangle\}$ belongs to \mathcal{F} , hence $A(\varepsilon) \in \mathcal{F}$ as well.

Note that, if we modify the definition of \mathcal{F} -limit in a such way that we admit the values $\pm \infty$, then every sequence has \mathcal{F} -limit along an ultrafilter \mathcal{F} . (The limit is $+\infty$ if for each neighborhood V of infinity, the set $\{n \in \mathbb{N}; x_n \in V\}$ belongs to \mathcal{F} . Similarly for $-\infty$.)

References

- [1] M. A. Alekseev, L. Yu. Glebsky, and E. I. Gordon, *On approximations of groups, group actions and Hopf algebras*, Journal of Mathematical Sciences **107** (2001), no. 5, 4305–4332.
- [2] B. Balcar and P. Štěpánek, *Teorie množin*, Academia, Praha, 1986 (Czech).
- [3] K. Hrbacek and T. Jech, *Introduction to set theory*, Marcel Dekker, New York, 1999.