Predicting Insurance Costs: Analysis and Insights

SDS Mini-Datathon Team

National University of Singapore

October 20, 2025

Problem Framing & Objective

- **Challenge**: Predict medical insurance charges using demographic and lifestyle data
- Goal: Build accurate regression models and identify key cost drivers
- Importance: Fair pricing, risk assessment, healthcare insights
- Dataset: 1,338 records with age, sex, BMI, children, smoker, region, charges

Exploratory Data Analysis

- Data quality: No missing values, clean dataset
- Key statistics: Charges range \$1,122–\$63,771 (mean \$13,270)
- Distribution: Right-skewed charges, normal BMI/age

Exploratory Data Analysis (Cont.)

Figure: Correlation Matrix

- Strong correlations: smoker (+0.79), age (+0.30), BMI (+0.20)
- Regional variations in charges

Regression & Modeling Approach

- Baseline Models:
 - Linear Regression: Interpretable, assumes linearity
 - Decision Tree: Handles non-linearities, prone to overfitting
- Advanced Model:
 - Random Forest: Ensemble of trees, robust and accurate
 - Hyperparameter tuning with GridSearchCV
- Evaluation: R², RMSE, MAE; Cross-validation for stability

Key Findings & Visualizations

Model	R ²	RMSE	MAE
Linear Regression	0.78	5,794	4,128
Decision Tree	0.72	6,636	3,028
Random Forest	0.86	4,603	2,550

Table: Model Performance Comparison

- Random Forest best performer (R²=0.86)
- ullet Cross-validation confirms stability (CV R2: 0.825 \pm 0.085)

Feature Impact Analysis

Figure: SHAP Summary Plot

• Top factors: Smoking (+20k+), Age (+200/year), BMI (+500/unit)

Fairness Analysis

Figure: Charges by Smoking Status

• Gender gap: Males \$1,387 higher (minimal)

8/11

Practical Recommendations

• For Insurers:

- Use Random Forest for premium calculation
- Target wellness programs for smokers/high BMI

Policy Implications:

- Fair pricing based on verifiable risks
- Monitor regional healthcare access disparities

• Future Work:

- Collect longitudinal data, medical history
- Implement advanced models (neural networks)

Difficulties Faced & Solutions

• Dataset Limitations:

- Small size (1,338 records) limits generalizability
- Missing features: medical history, genetics, lifestyle details
- Static data: no temporal health changes

Technical Challenges:

- SHAP library version conflicts: Resolved by using compatible API
- Model overfitting: Addressed with cross-validation and tuning
- Interpretability: Enhanced with SHAP beyond standard methods

Solutions:

- Feature engineering for better segmentation
- Rigorous validation and error analysis
- Innovative explainability techniques

Conclusion

- Successfully predicted 86% of insurance cost variance
- Smoking is the dominant factor, followed by age and BMI
- Models are fair and practical for real-world use
- Future: Larger datasets and advanced AI for better accuracy

Thank you for your attention!