Protocol

Nicolas Heimann

nicolas.heimann@studium.uni-hamburg.de

Jesse Hinrichsen

jesse.hinrichsen@studium.uni-hamburg.de

Universität Hamburg

07.03. - 12.03.2016

Zusammenfassung

An abstract...

Inhaltsverzeichnis

1	Introcution	2
2	Identifying events	2
3	Statistical analysis of Z^0 decay channels	2
	3.1 Decay width and cross-section	. 2
	3.2 Estimating change of \mathbb{Z}^0 decay width for additional channels	. 2
	3.3 Differential cross-section	. 3
	3.4 Forward-Backward Asymmetry	. 3

1 Introcution

2 Identifying events

Quantities for events:

 $\operatorname{Ctrk}(\operatorname{Sump})$: Energy of charged traces $\operatorname{Ctrk}(\operatorname{N})$: Number of charged traces

Ecal(SumE): Energy in electronic-kalorimeter Hcal(SumE): Energy in hadronic-kalorimeter

Quantities								
Run	Event	Ctrk(Sump)	Ctrk(N)	Ecal(SumE)	Hcal(SumE)			
00	ELECTRONS	AF	AFG	004	00			
00	MUONS	AF	AFG	004	00			
00	TAUS	AF	AFG	004	00			
00	HADRONS	AF	AFG	004	00			

3 Statistical analysis of Z^0 decay channels

3.1 Decay width and cross-section

Using equation (2.12) we calculate following decay width of the Z-boson into fermions and (2.14) for cross-section at peak.

Jeak.				
Decay width for different channels				
Channel	Decay width			
$\Gamma_l = \Gamma_e = \Gamma_\mu = \Gamma \tau$	85.9 MeV			
$\Gamma_{ u}$	165.9 MeV			
$\Gamma_u = \Gamma_c$	301.5 MeV			
$\Gamma_d = \Gamma_s = \Gamma_b$	381.4 MeV			
Γ_Z	2502.7 MeV			
Γ_{hadr}	1747.3 MeV			
Γ_{lept}^{1}	257.8 MeV			
Γ_{neutr}	497.6 MeV			
Partial cross-section at peak				
σ_{lept}	$5.35 \; KeV^{-2}$			
σ_{neutr}	$10.32 \ KeV^{-2}$			
$\sigma_{u,c}$	$18.76~KeV^{-2}$			
$\sigma_{d,s,c}$	$23.73~KeV^{-2}$			

3.2 Estimating change of Z^0 decay width for additional channels

Decay width of Z^0 for additional channels					
Added channel	Z^0 width	relative increase			
Lepton	2.589 GeV	3.5 %			
Neutrino	2.669 GeV	6.6 %			
u-Quark	2.804 GeV	12 %			
d-Quark	2.884 GeV	15.2 %			

3.3 Differential cross-section

Abbildung 1: Differential cross-section on Θ qualitatively. Red: t-channel, violet: s-channel, blue: s-channel + t-channel

For s-channel: $\frac{d\sigma}{d\Omega} \propto 1 + \cos^2\Theta$ (for big Theta) For t-channel: $\frac{d\sigma}{d\Omega} \propto (1 - \cos\Theta)^{-2}$ (for small Theta)

3.4 Forward-Backward Asymmetry

Based on equation (2.18)

Forward-Bckward asymmetry					
$\sqrt{s} / \sin^2(\theta_W)$	0.21	0.23	0.25		
89.225 GeV	0.547	0.321	0.285		
91.225 GeV	0.530	0.407	0.284		
93.225 GeV	0.515	0.480	0.284		

Abbildung 2: Forward-Bckward asymmetry