Finding Partite Hypergraphs Efficiently

Ferran Espuña Bertomeu

Supervisor: Richard Lang

June 2025

- Hypergraphs
- 2 Turán-Type Problems
- Algorithms
- Future Work

k-Graphs

Definition

A *k-graph* is a pair G = (V, E) where V is a finite set of *vertices* and $E \subseteq \binom{V}{k}$ is a set of *edges*.

Figure: A complete 3-graph on 4 vertices: $K_4^{(3)}$.

Partite *k*-Graphs

Definition

A k-graph G = (V, E) is r-partite if there exists a partition $V = V_1 \cup \cdots \cup V_r$ such that every edge of G intersects every part V_i in at most one vertex. We write $G = (V_1, \ldots, V_r; E)$.

Figure: A complete 3-partite 2-graph: $K^{(3)}(2,2,2)$.

Partite *k*-Graphs

Remark

We may identify E as a subset of $C = \bigcup_{\{i_1,\dots,i_k\} \in \binom{[r]}{k}\}} V_{i_1} \times \dots \times V_{i_k}$. If E = C, we say that G is a *complete r*-partite k-graph.

Figure: A complete 3-partite 3-graph: $K^{(2)}(2,2,2)$.

Turán-Type Problems

Definition

Let G = (V, E) be a k-graph and $n \ge |V|$ an integer.

The *Turán number* ex(G, n) is the maximum number of edges in a k-graph on n vertices that does not contain a copy of G as a subgraph.

Determining $\exp(G, n)$ or estimating it as $n \to \infty$ is known as the *Turán problem* for G.

Theorem

For all k-graphs G there exists a constant $\alpha(G) \in [0,1)$ such that

$$ex(G, n) = (\alpha(G) + o(1)) \cdot \binom{n}{k}$$
 as $n \to \infty$.

Furthermore, $\alpha(G) = 0$ if and only if G is k-partite.

The Kővari–Sós–Turán Theorem

The bound $ex(G, n) = o(n^k)$ can be improved by a lot.

Definition

Let $1 < t_1 \le v_1, \ldots, 1 < t_k \le v_k$ be integers.

The Zarankiewicz number $z(v_1, \ldots, v_k; t_1, \ldots, t_k)$ is the largest integer z for which: There is a k-partite k-graph $H = (V_1, \ldots, V_k, F) |V_i| = v_i$, |F| = z such that for all choices of $W_i \subset V_i$, $|W_i| = t_i$, $W_1 \times \cdots \times W_k \not\subset F$.

Theorem (Kővari–Sós–Turán)

$$z(u, w; s, t) \le (s-1)^{1/t}(w-t+1)u^{1-1/t} + (t-1)u$$

By a probabilistic argument, this implies that $ex(n, K(s, t)) = \mathcal{O}(n^{2-1/t})$.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

• **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

For example, adding the edge $\{U_4, W_3\}$ creates a $K_{3,2}$ on vertices $\{U_1, U_2, U_4\}$ and $\{W_2, W_3\}$.

• **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

This graph has the maximum number of edges (|E|=13) to be $K_{3,2}$ -free.

In the example, there are at least $5\binom{13/5}{2} = 10.4$ stars (there are actually 12)

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- Averaging: By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.

This graph has the maximum number of edges (|E|=13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s - 1 = 3 - 1 = 2 stars. In total, at most $2\binom{4}{2} = 12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- Averaging: By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s,t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s-1=3-1=2 stars. In total, at most $2\binom{4}{2}=12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- Averaging: By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s,t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.

This graph has the maximum number of edges (|E|=13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s - 1 = 3 - 1 = 2 stars. In total, at most $2\binom{4}{2} = 12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- Averaging: By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s,t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

In the example, we conclude that $10.4 \le 12$, which is true. For bigger values of z this would fail, leading to contradiction and therefore upper bounding z.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- Averaging: By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s,t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.
- Conclusion: $u\binom{z/u}{t} \le (s-1)\binom{w}{t}$, from which the theorem follows.

Erdős's Bound for Hypergraphs (1964)

Theorem (Erdős '64)

For integers
$$k \geq 2$$
, $t \geq 2$, $ex(n, K(t, ..., t)) = O(n^{k - \frac{1}{t^{k-1}}})$.

This generalizes the Kővari–Sós–Turán theorem to k-graphs.

It follows from a similar bound on the corresponding generalized Zarankiewicz number, obtained by induction.

Suppose that $H = (V_1, ..., V_k; F)$ is a k-graph with $|W_i| = w$. Let H have z edges and no copy of K(t, ..., t).

We set up a bipartite k-graph H' = (U, W; F') with

$$U = W_1 \times \cdots \times W_{k-1}$$

$$W = W_k$$

$$F' = \{(X, y) \in U \times W \mid X \cup \{y\} \in F\}.$$

Implications of Erdős's Bound

Doing the calculations more carefully, we can show:

Theorem

Let $k \ge 2$ and d > 0. Then there exists a constant $\delta = \delta(k, d) > 0$ such that every k-graph G with n vertices and dm^k edges contains $K(t, \overset{k}{\ldots}, t)$ with

$$t \geq \delta \cdot (\log n)^{1/(k-1)}.$$

Implications of Erdős's Bound

Doing the calculations more carefully, we can show:

Theorem

Let $k \ge 2$ and d > 0. Then there exists a constant $\delta = \delta(k, d) > 0$ such that every k-graph G with n vertices and dm^k edges contains $K(t, \stackrel{k}{\dots}, t)$ with

$$t \geq \delta \cdot (\log n)^{1/(k-1)}$$
.

That is, k-graphs of constant density contain complete balanced k-partite k-subgraphs of **growing** part size.

Implications of Erdős's Bound

Doing the calculations more carefully, we can show:

Theorem

Let $k \ge 2$ and d > 0. Then there exists a constant $\delta = \delta(k, d) > 0$ such that every k-graph G with n vertices and dm^k edges contains $K(t, \stackrel{k}{\dots}, t)$ with

$$t \geq \delta \cdot (\log n)^{1/(k-1)}$$
.

That is, k-graphs of constant density contain complete balanced k-partite k-subgraphs of **growing** part size.

A probabilistic argument shows that this is tight up to the constant $\delta(k, d)$.

The Algorithmic problem

The proofs shown are non-constructive.

The proofs shown are **non-constructive**.

We want to **find** K(t, k, t) in H = (V, E) of constant density $d = m/n^k$.

The proofs shown are **non-constructive**.

We want to find K(t, .k., t) in H = (V, E) of constant density $d = m/n^k$.

Naïve approach: enumerate all k-partite k-subgraphs of H.

The proofs shown are **non-constructive**.

We want to find K(t, ..., t) in H = (V, E) of constant density $d = m/n^k$.

Naïve approach: enumerate all k-partite k-subgraphs of H.

Problem: There are on the order of

$$\binom{n}{t} \ge \binom{n}{\delta(\log n)^{1/(k-1)}}$$

such sets, which is **not** polynomial in n.

The proofs shown are **non-constructive**.

We want to **find** $K(t, \cdot k, t)$ in H = (V, E) of constant density $d = m/n^k$.

Naïve approach: enumerate all k-partite k-subgraphs of H.

Problem: There are on the order of

$$\binom{n}{t} \ge \binom{n}{\delta(\log n)^{1/(k-1)}}$$

such sets, which is **not** polynomial in n.

Can we do it in polynomial time?

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

• Find a bipartite subgraph (U, W; E) of H with many edges.

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

Finding a dense bipartite subgraph.

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

- Finding a dense bipartite subgraph.
- If we are not careful, the search space $\binom{W}{t}$ might still be too large ...

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

- Finding a dense bipartite subgraph.
- If we are not careful, the search space $\binom{W}{t}$ might still be too large ...

Solution: W are the $\mathbf{w} = \lfloor \mathbf{t}/\mathbf{d} \rfloor$ vertices of maximum degree. $U = V \setminus W$.

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

- Finding a dense bipartite subgraph.
- If we are not careful, the search space $\binom{W}{t}$ might still be too large ...

Solution: W are the $\mathbf{w} = \lfloor \mathbf{t}/\mathbf{d} \rfloor$ vertices of maximum degree. $U = V \setminus W$.

Idea: Mimick the proof the Kővari–Sós–Turán theorem:

- Find a bipartite subgraph (U, W; E) of H with many edges.
- For each subset $T \in {W \choose t}$, calculate the common neighborhood. For some T it has size s = t.

Problems:

- Finding a dense bipartite subgraph.
- If we are not careful, the search space $\binom{W}{t}$ might still be too large ...

Solution: W are the $\mathbf{w} = |\mathbf{t}/\mathbf{d}|$ vertices of maximum degree. $U = V \setminus W$.

- w is "just right". If too small, the extra term in the KST bound is too large; if too big, the search space $\binom{W}{t}$ is too large.

We present a polynomial algorithm that finds a K(t, ..., t) in a k-graph H = (V, E) with dn^k edges, where

$$t = \left\lfloor \left(\frac{\log\left(n/2^{(k-1)}\right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

• **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.

$$t = \left\lfloor \left(\frac{\log\left(n/2^{(k-1)}\right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.

$$t = \left\lfloor \left(\frac{\log \left(n/2^{(k-1)} \right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.
 - Find a set W of $\mathbf{w} = |2\mathbf{t}/\mathbf{d}|$ vertices of maximum degree.

$$t = \left\lfloor \left(\frac{\log\left(n/2^{(k-1)}\right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.
 - Find a set W of $\mathbf{w} = |2\mathbf{t}/\mathbf{d}|$ vertices of maximum degree.
 - There are many edges with exactly 1 vertex in W (by averaging).

$$t = \left\lfloor \left(\frac{\log \left(n/2^{(k-1)} \right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.
 - Find a set W of $\mathbf{w} = |2\mathbf{t}/\mathbf{d}|$ vertices of maximum degree.
 - There are many edges with exactly 1 vertex in W (by averaging).
 - By KST, for some $T \subset W$ of size t, the set L_T of (k-1)-sets of $V \setminus W$ forming an edge with all vertices in T has size at least $\mathbf{s} = \mathbf{d}^t \mathbf{n}^{k-1}$.

$$t = \left\lfloor \left(\frac{\log \left(n/2^{(k-1)} \right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.
 - Find a set W of $\mathbf{w} = |2\mathbf{t}/\mathbf{d}|$ vertices of maximum degree.
 - There are many edges with exactly 1 vertex in W (by averaging).
 - By KST, for some $T \subset W$ of size t, the set L_T of (k-1)-sets of $V \setminus W$ forming an edge with all vertices in T has size at least $\mathbf{s} = \mathbf{d}^t \mathbf{n}^{k-1}$.
 - Applying the algorithm to $H' = (V \setminus W, S)$ with $\mathbf{n}' = \mathbf{n} \mathbf{w}, \mathbf{d}' = \mathbf{d}^{\mathbf{t}}$ we get $\mathbf{t}' \geq \mathbf{t}$.

$$t = \left\lfloor \left(\frac{\log \left(n/2^{(k-1)} \right)}{\log(3/d)} \right)^{\frac{1}{k-1}} \right\rfloor$$

- **First (failed) attempt**: Try to find a *k*-partite subgraph of *H* with logarithmically sized parts except one large part.
- Actual solution: Use a recursive approach from the beginning.
 - Find a set W of $\mathbf{w} = |2\mathbf{t}/\mathbf{d}|$ vertices of maximum degree.
 - There are many edges with exactly 1 vertex in W (by averaging).
 - By KST, for some $T \subset W$ of size t, the set L_T of (k-1)-sets of $V \setminus W$ forming an edge with all vertices in T has size at least $\mathbf{s} = \mathbf{d}^t \mathbf{n}^{k-1}$.
 - Applying the algorithm to $H' = (V \setminus W, S)$ with $\mathbf{n}' = \mathbf{n} \mathbf{w}, \mathbf{d}' = \mathbf{d}^{\mathbf{t}}$ we get $\mathbf{t}' \geq \mathbf{t}$.
 - It finds T_1, \ldots, T_{k-1} complete in $H' \implies T_1, \ldots, T_{k-1}, T$ complete in H.

• **Refine the algorithm:** The current analysis is not tight. The algorithm is not yet practical.

- **Refine the algorithm:** The current analysis is not tight. The algorithm is not yet practical.
- **Implement and test:** Evaluate the algorithm on synthetic and real-world hypergraphs.

- **Refine the algorithm:** The current analysis is not tight. The algorithm is not yet practical.
- **Implement and test:** Evaluate the algorithm on synthetic and real-world hypergraphs.
- **Generalize the structures found:** The algorithm finds complete balanced *k*-partite *k*-graphs. Extending it to unbalanced seems feasible.

- **Refine the algorithm:** The current analysis is not tight. The algorithm is not yet practical.
- Implement and test: Evaluate the algorithm on synthetic and real-world hypergraphs.
- **Generalize the structures found:** The algorithm finds complete balanced *k*-partite *k*-graphs. Extending it to unbalanced seems feasible.
- Generalize the blow-ups: The algorithm finds t_n -blowups of a single edge. Obvious way to extend it does not yield optimal t.

- **Refine the algorithm:** The current analysis is not tight. The algorithm is not yet practical.
- Implement and test: Evaluate the algorithm on synthetic and real-world hypergraphs.
- **Generalize the structures found:** The algorithm finds complete balanced *k*-partite *k*-graphs. Extending it to unbalanced seems feasible.
- **Generalize the blow-ups:** The algorithm finds t_n -blowups of a single edge. Obvious way to extend it does not yield optimal t.
- Extremely dense hypergraphs: The algorithm does not yield the best order of t for increasing $d \to 1/k!$.