

OUTLINE

O 1. OUR DATASET

"CYBER SECURITY SALARIES" is:

- A dataset with 1247 instances
- Shows cybersecurity Employees' salaries
- Uses 11 attributes of different data types

Source: Kaggle.com

O 1. OUR DATASET

Class label: salary_in_usd

Attributes:

- work_year
- experience_level
- employment_type
- job_title
- salary
- salary_currency

- salary_in_usd
- employee_residence
- remote_ratio
- company_location
- company_size

O2.PROBLEM

O2 PROBLEM Data mining task:

Prediction of the cyber security employees' salary categories (Very Low, Low, , High, Very High) using classification

Grouping and describing employees based on shared characteristics using clustering

02. PROBLEM Goals:

Market segmentation

Identify the main cybersecurity employee groups

Increasing loyalty

Identify trends

Making better decisions

Achieving fairness

03. DATA MINING TECHNIQUES DATA UNDERSATANDING

- No missing values
- Statistical measures show moderate variability
- Graph visualization show positive correlation

O3-DATA MINING TECHNIQUES DATA PREPROCCISSING

Dimensionality Reduction

Removing salary attribute

Removing outliers

From salary_in_usd attribute

Concept hierarchy generation

For company_location, employee_residence attributes into 7 regions

03. DATA MINING TECHNIQUES DATA PREPROCCISSING

Encoding

Of categorical data

Discretization

of salary_in_usd attribute

Normalization

Of remote_ratio and work_year attributes

03. DATA PREPROCCISSING

Feature selection

Remove employment_type attribute

Balancing data

To avoid biased data mining results

03. DATA MINING TECHNIQUES DATA MINING TASKS

Classification

- -Using Gini index, Gain ratio, and information gain
- -Construct a decision tree model, to classify data.
- -Using k-fold Cross-validation for partitioning (k=3,5,10)

Clustering

- -Using k-means to partition data into clusters (k=2,3,4)
- -Using evaluation methods (silhouette, Bcubed precision and recall, WSS)

FINDINGS O4. Classification results

- -Gain ratio with k-fold cross validation k=10 provides best performance among all the decision tree models, duo to its favor of unbalanced splits
- -"Experience Level" is the first splitting attribute, indicating that it is the strongest predictor in reducing uncertainty
- -All methods have similar performance based on evaluation criteria: accuracy, precision, sensitivity and specificity

FINDINGS O4. Clustering results

- k-means clustering with optimal k=2 provides purest clusters with no overlapping, and high intra-cluster similarity with non-sparse clusters
- -Evaluation methods favor k=2, such as BCubed Precision and Recall, Average Silhouette Width and graphs
- -Other K's , k=3,4 have overlapping and reflect high intercluster similarity

04. FINDINGS Solution:

01

Use classification to predict employees' salaries (using 10-fold gain ratio method)

02

Use clustering to group employees based on their similarties (using k-means with 2 clusters)

That way, we solve current problems and achieve employees' satisfaction which will be reflected on their performance!

REFRENCES

[1] J. Han, M. Kamber, and J. Pei, "Data Mining: Concepts and Techniques," 3rd ed., The Morgan Kaufmann Series in Data Management Systems.

[2] Y. Zhao, "R and Data Mining: Examples and Case Studies," 1st ed. Academic Press, 2012. ISBN: 0123969638.

[3] Y. Zhao, "R and Data Mining," RDataMining.com, Available: https://www.rdatamining.com/, Accessed on: November 23, 2023.

[4] M. Hahsler, "discretize {arules}R Documentation: Convert a Continuous Variable into a Categorical Variable," R Project, Available: https://search.r-project.org/CRAN/refmans/arules/html/discretize.html, Accessed on: November 23, 2023.

THANK YOU FOR LISTENING!

ANY QUESTIONS?

Prepared by:

Sarah Alhindi Raneem Alyahya Shahad Bin Makhashen Shoug Alyahya

Supervised by:

T. Hanan Altamimi

