Indexing

Part 2

Tree indexes

- If index doesn't fit in memory:
 - Divide the index structure into blocks,
 - Organize these blocks similarly building a tree structure.
- Tree indexes:
 - B Trees
 - B+ Trees
 - Simple prefix B+ Trees
 - **—** ...

B+ Trees

- B-tree is one of the most important data structures in computer science.
- What does B stand for? (Not binary!)
- B-tree is a multiway search tree.
- Several versions of B-trees have been proposed, but only B+ Trees have been used with large files.
- A B+tree is a B-tree in which data records are in leaf nodes, and faster sequential access is possible.

entries entries

(sequence set)

CENG 351 File Structures

Formal definition of B+ Tree Properties

- Properties of a B+ Tree of order d:
 - All internal nodes (except root) have at least d keys and at most 2d keys.
 - Root can have at least 1 key and at most 2d keys.
 - An internal node with n keys has n+1 children
 - The root has at least 2 children unless it's a leaf.
 - All leaves are on the same level (balanced tree).

Data entries

(sequence set)

B+ tree: Internal/root node structure

Each P_i is a pointer to a child node; each K_i is a search key value # of search key values = n, # of pointers = n+1

In a B+ Tree of order d:

- All internal nodes (except root) have at least d keys and at most 2d keys ($d \le n \le 2d$).
- Root can have at least 1 key and at most 2d keys. $(1 \le n \le 2d)$.
- An internal node with **n** keys has **n+1** children.
- The root has at least 2 children unless it's a leaf.

B+ tree: Internal/root node structure

Each P_i is a pointer to a child node; each K_i is a search key value # of search key values = n, # of pointers = n+1

- Requirements:
- $\blacksquare K_1 < K_2 < \ldots < K_n$
- For any search key value K in the subtree pointed by Pi, If $P_i = P_0$, we require $K < K_1$

If
$$P_i = P_n$$
, $K_n \le K$

If
$$P_i = P_1, ..., P_{n-1}, K_i \le K \le K_{i+1}$$

entries

(sequence set)

B+ tree: leaf node structure

- Pointer L points to the left neighbor; R points to the right neighbor (doubly linked list)
- $K_1 < K_2 < ... < K_n$
- $d \le n \le 2d$ (d is the order of this B+ tree)
- We will use K_i* for the pair <K_i, r_i> and omit L and R for simplicity
- All leaves are on the same level (balanced tree).

Example: B+ tree with order of 1

• Each node must hold at least 1 entry, and at most 2 entries

Example: Search in a B+ tree order 2

- Search: how to find the records with a given search key value?
 - Begin at root, and use key comparisons to go to leaf
- Examples: search for 5^* , 16^* , all data entries $\ge 24^*$...
 - The last one is a range search, we need to do the sequential scan, starting from the first leaf containing a value >= 24.

How to Insert a Data Entry into a B+ Tree?

• Let's look at several examples first.

Leaf nodes:

$$d \le n \le 2d$$

$$2 \le n \le 4$$

Leaf node overflows!!!

Leaf nodes:

$$d \le n \le 2d$$

$$2 \le n \le 4$$

Leaf node overflows!!!

When a <u>leaf node</u> overflows:

1) Split the node First d entries stay in old node, move rest of entries to new node

Leaf node overflows!!!

When a <u>leaf node</u> overflows:

1) Split the node First d entries stay in old node, move rest of entries to new node

One new child (leaf node) generated; must add **one more pointer** to its parent, thus **one more key value** as well.

Leaf node overflows!!!

When a <u>leaf node</u> overflows:

- 1) Split the node First **d** entries stay, move rest to new node
- 2) We need a pointer to the new block for the search: **COPY UP** the *middle key* as the search key. Also, add pointer to the new block

Leaf node overflows!!!

When a <u>leaf node</u> overflows:

- 1) Split the node First **d** entries stay, move rest to new node
- 2) **COPY UP** the *middle key* as the search key. Also, add pointer to the new block

Inserting 8* (cont.)

d = 2

 Copy up the middle value (leaf split)

Inserting 8*(cont.)

 $\mathbf{d} = 2$

Non-leaf node overflows!!!

When a non-leaf node overflows:

1) Split the node

First **d** keys (and d+1 pointers) stay in old node)

Last **d** keys (and d+1 pointers) move to new node 2) **PUSH UP** middle key (17) and (pointers to the blocks)!

5

13

Insertion into B+ tree (cont.)

- Understand difference between copy-up and push-up
- Observe how min number of entries (d) is guaranteed in both leaf and index node splits.

Recall: Root can have at least 1 key and at most 2d keys.

Note that 17 is pushed up and only **appears once** in the index. (Contrast this with a leaf split.)

Example B+ Tree After Inserting 8*

Notice that root was split, leading to increase in height.

B+ trees grow **bottom-up** dynamically!

Inserting a Data Entry into a B+ Tree: Summary

- Find correct leaf L.
- Put data entry onto *L*.
 - If L has enough space, done!
 - Else, must <u>split</u> L (into L and a new node L2)
 - Redistribute entries evenly, put middle key in L2
 - **copy up** middle key.
 - Insert index entry pointing to L2 into parent of L.
- This can happen recursively
 - To split index node, redistribute entries evenly, but <u>push</u>
 <u>up</u> middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets <u>wider</u> or <u>one level taller at top.</u>

Deleting a Data Entry from a B+ Tree

• Examine examples first ...

Leaf nodes:

$$d \le n \le 2d$$

$$2 \le n \le 4$$

Leaf nodes:

$$d \le n \le 2d$$

$$2 \le n \le 4$$

Leaf node underflows!

When a <u>leaf node</u> underflows:

Two options (try in order):

- 1- Redistribute among sibling nodes evenly, and if this is not possible,
- 2- Merge nodes

Redistribute for leaf nodes:

A **sibling** of a node is the node that is <u>adjacent</u> (immediate to left or right) to it, and has the <u>same parent</u>

Redistribute for leaf nodes:

A **sibling** of a node is the node that is <u>adjacent</u> (immediate to left or right) to it, and has the <u>same parent</u>

Sibling & has > d entries!

Redistribute for leaf nodes:

A **sibling** of a node is the node that is <u>adjacent</u> (immediate to left or right) to it, and has the <u>same parent</u>

Sibling & has > d entries!

Redistribute for leaf nodes:

A **sibling** of a node is the node that is <u>adjacent</u> (immediate to left or right) to it, and has the <u>same parent</u>

1) Redistribute among siblings

Redistribute for leaf nodes:

A **sibling** of a node is the node that is <u>adjacent</u> (immediate to left or right) to it, and has the <u>same parent</u>

Sibling & has > d entries!

- 1) Redistribute among siblings
- 2) COPY-UP (Update) the middle key as the search key

Deleting 19* and 20* (cont.)

- Notice how 27 is *copied up*.
- But can we move it up?
- Now we want to delete 24
- Underflow again!

When a <u>leaf node</u> underflows:

Two options (try in order):

- 1- Redistribute among sibling nodes evenly, and if this is not possible,
- 2- Merge nodes

Option (2): Merge <u>leaf nodes</u> Step 1: Merge leaf nodes

Option (2): Merge <u>leaf nodes</u>

Step 1: Merge leaf nodes

Step 2: Remove the search key entry and pointer to the discarded node

Is it good like this?

Option (2): Merge <u>leaf node</u>s

Step 1: Merge leaf nodes

Step 2: Remove the search key entry and pointer to the discarded node

When a non-leaf node underflows:

Two options (try in order):

- 1- Redistribute among sibling nodes evenly evenly, and if this is not possible,
- 2- Merge nodes

Option (1) Not Applicable here!

When a non-leaf node underflows:

Two options (try in order):

- 1- Redistribute among sibling nodes evenly evenly, and if this is not possible,
- 2- Merge nodes

Option (2): Merge non-leaf nodes

Merge:

- Entries in first non-leaf node (together with pointers),
- PULL DOWN the splitting search key,
- followed by the entries in the second non-leaf node (together with pointers)

Merge:

- Entries in first non-leaf node (together with pointers),
- PULL DOWN the splitting search key,
- followed by the entries in the second non-leaf node (together with pointers)

Deleting a Data Entry from a B+ Tree: Summary

- Start at root, find leaf L where entry belongs.
- Remove the entry.
 - If L is at least half-full, done!
 - If L has only **d-1** entries,
 - Try to re-distribute, borrowing from *sibling* (adjacent node with same parent as L).
 - If re-distribution fails, <u>merge</u> L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- Merge could propagate to root, decreasing height.

Non-leaf Node Redistribution

When a <u>non-leaf node</u> underflows:

Two options (try in order):

- 1- Redistribute among nodes evenly, and if this is not possible,
- 2- Merge nodes

We have already seen an example for the second case.

How about the first case!

Example of Non-leaf Re-distribution

- Tree is shown below *during deletion* of 24*. (What could be a possible initial tree?)
- In contrast to previous example, can re-distribute entry from left child of root to right child.

Re-distribution

- Intuitively, entries are re-distributed by `pushing through' the splitting entry in the parent node.
- Consider all search keys together

After Re-distribution

Primary vs Secondary Index

- Note: We were assuming the data items were in sorted order
 - This is called *primary/clustered B+tree* index
- *Secondary B+tree* index:
 - Built on an attribute that the file is not sorted on.
- Can have many different indexes on the same file.

A Secondary B+-Tree index

A file organized as (or, has) a **Primary B+-Tree** index on *ssn*

A file organized as (or, has) a **Primary B+-Tree** index on *ssn*

The same file also has a **Secondary B+-Tree** index on *name*

Cost for searching a value in B+ tree

• Assumptions:

- Each interior node is a disk block
- Each leaf node is also a disk block and data entries (K*) are of the form
 key, ptr>. There are D data entries.
- Let F be the average number of pointers in a node (for internal nodes, it is called *fanout*, i.e., avg. number of children)
- Observe: Let H be the height of the B+ tree: we need to read H+1 nodes (blocks) to reach a data entry in a leaf node
- How do we find H?
 - Level 1 = 1 page = F^0 page
 - Level 2 = F pages = F^1 pages
 - Level $3 = F * F pages = F^2 pages$
 - Level $H+1 = \dots = F^H$ pages (i.e., leaf nodes)
 - F pointers \rightarrow F-1 keys, so there must be D/(F-1) leaf nodes

- D/(F-1) = F^H. That is, H =
$$\log_F(\frac{D}{F-1})$$

B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 66%.
 - average fanout = 133 (i.e, # of pointers in internal node)
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes
- Suppose there are 1,000,000,000 data entries.
 - $-H = log_{133}(10000000000132) < 4$
 - The cost is reading H+1 = 5 pages

Cost Computation: Another Example

Leaves would store the actual records

- A primary B+ tree index on key field giftID.
- 2.500.000 gift records, each record: 400 bytes.
- giftID: 12 bytes, address pointer: 4 bytes
- A bucket can hold 500 records
 - So we have larger leaf nodes (called buckets), as we store actual records
 - No claim for interior nodes, assume each is a block!
- B+ tree will have a fill factor of 50% [min occupancy]
- B (block size): 1600
- s: 10 ms, r: 5 ms, btt: 1 ms.

a) No of index nodes and their total size

We need to find i) fanout of the nodes, and ii) no of leaves.

i) fanout: Assume, n keys (n+1) ptrs can fit to an index node:

 $n \times 12 + (n+1) \times 4 = 1600 \text{ bytes} \rightarrow 16n = 1596 / 16 \rightarrow n = 99$

So at most 99 keys in a node (2d=99, d (tree order) is floor(99/2))

Tree fill factor 50%; max 99 keys x 50% = 49 keys

fanout: 49 + 1 = 50 ptrs per node

ii) no of leaves:

500 rec/leaf * fill factor (50%) = 250 recs/leaf 2.5M records / 250 = 10000 leaf nodes (i.e., buckets)

a) No of index nodes and their total size

- Tree height = $\log_{50} 10000 = 3$
- So, there are H+1 = 4 levels

Level 4: 10000 leaf nodes (data buckets)

Level 3: ceil (10000 / 50 ptrs) = 200 nodes

Level 2: ceil (200/50) = 4 nodes

Level 1: ceil (4/50) = 1 node (root)

Index nodes: 1 + 4 + 200 = 205

Total Size: 205 x 1600 bytes

b) Time cost of reading an arbitrary record

- Three has H=3, so 4 levels
- At the first 3 levels, we fetch index nodes:
- $3 \times (s + r + btt) = 3 \times (10 + 5 + 1) = 48 \text{ ms}$
- At the fourth level we fetch the leaf node (data bucket)
 - But how many blocks is a data bucket?
 - -(500 recs x 400 bytes/rec) / 1600 = 125 blocks
 - So, cost s + r+ 125 x btt = 10+ 5+ 125 x 1 = 140 ms
- Total cost: 48 + 140 = 188 ms

c) Cost of reading all records in sorted manner

- Reach to leftmost leaf node, as before:
- at the first 3 levels, we fetch index nodes:
- $3 \times (s + r + btt) = 3 \times (10 + 5 + 1) = 48 \text{ ms}$
- Read all the leaf nodes (using doubly linked list pointers)
 - -10000 (s + r + 125 x btt)
- Think: What if this is a secondary B+ tree and we store <key, ptr> pairs at leaf nodes (data buckets)?

Terminology

- **Blocking Factor:** the number of records which can fit in a leaf node.
- Fan-out: the average number of children of an internal node.
- A B+tree index can be used either as a primary index or a secondary index.
 - Primary index: determines the way the records are actually stored
 - Secondary index: the records in the file are not grouped in blocks according to keys of secondary indexes

Bulk Loading of a B+ Tree

- If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very slow.
- Bulk Loading can be done much more efficiently.
 - Initialization: Sort all data entries, insert pointer to first (leaf) page in a new (root) page

Bulk Loading (Contd.)

 Index entries for leaf pages always entered into rightmost index page just

above leaf level.

When this fills up, it splits. (Split may go up right-most path to the root.)

 Much faster than repeated inserts, especially when one considers locking!

Database Management Systems 3ed,

Data entry pages not yet in B+ tree 6* 23*31* Root 20 10 Data entry pages not yet in B+ tree

12 13 20 22 23 31 35 36 38 41

Root

Summary

- Tree-structured indexes are ideal for rangesearches, also good for equality searches.
- B+ tree is a dynamic structure.
 - Inserts/deletes leave tree height-balanced; High fanout (**F**) means depth rarely more than 3 or 4.
 - Almost always better than maintaining a sorted file.
 - Typically, 67% occupancy on average.
 - If data entries are data records, splits can change rids!
- Most widely used index in database management systems because of its versatility. One of the most optimized components of a DBMS.

More...

- Hash-based Indexes
 - Static Hashing
 - Extendible Hashing
 - Linear Hashing
- Grid-files
- R-Trees
- etc...
- A nice animation site for B+ trees:

https://www.cs.usfca.edu/~galles/visualization/BP1 usTree.html