ANOVA and pair-wise comparisons

REEU

2024 Cohort

Discussion points for today

- -What does ANOVA stand for?
- -Why do we use ANOVA?
- -How do we form a hypothesis?
- -How do we test a hypothesis?
- -How do we structure an ANOVA?
- -What are the assumptions of an ANOVA?
- -Almost there! One more step: How do we compare means?
- -How do we interpret the results?

-What does ANOVA stand for?

ANalysis

Of

VAriance

Between

Within

-Why do we conduct ANOVAs?

Willim

Answer the question: Do the <u>means</u> of more than two groups differ *significantly*?

Which groups are more likely different?

-How do we form a hypothesis?

 H_0 : $\mu_1 = \mu_2 = \mu_3$ H_1 : μ_i / μ_j for at least one pair of i and j.

H means hypothesis
₀ means null (or no difference)
μ means average

-How do we form a hypothesis?

 H_0 : $\mu_1 = \mu_2 = \mu_3$ H_1 : μ_i / μ_j for at least one pair of i and j.

H means hypothesis
₀ means null (or no difference)
μ means average

Questions: How many groups in this example? How many groups in your research project?

-How do we test a hypothesis?

Think back to its name...

Within

-How do we test a hypothesis?

The answer is in the name...

Statistic =

Variance between treatments

Variance within treatments

-How do we test a hypothesis?

The answer is in the name...

Statistic =

Variance between treatments

Variance within treatments

How does our calculated statistic compare to the critical value for our given sample size and number of groups with a particular confidence level?

The larger the statistic, the more evidence for differences between groups

-How do we structure an ANOVA?

Clue, we have seen this function before. It is the basis for most of our statistics.

-How do we structure an ANOVA?

Correct, like a linear regression! But with categories rather than continuous variables as the independent variable

$$y_{ik} = \mu + \alpha_k + \varepsilon_{ik}$$
 $\mu = \text{grand mean}$ $\alpha_k = \text{an effect of treatment for group } k$ $\varepsilon_{ik} = \text{a person } i\text{'s residual within group } k$

Calculation of Sum of Squares: Now we do ANOVA by hand

Group (X)	Score (Y)				
1	15				
1	16				
1	14				
1	13				
1	12				
2	26				
2	25				
2	23				
2	20				
2	21				
3	10				
3	9				
3	9				
3	6				
3	6				

Nah, just joking!

Calculation of Sum of Squares: But if we did ANOVA by hand

Group (X)	Score (Y)	Ϋ́	Ÿ _k - Ÿ	Υ - Ψ̄ _k	Y ²	$ar{m{\gamma}}^2$	(Y _k - Y) ²	(Y - \bar{Y}_k) ²
1	15	15	14-15	'15-14	225	225	1	1
1	16	15	14-15	'16-14	256	225	1	4
1	14	15	14-15	'14-14	196	225	1	0
1	13	15	14-15	¹ 3-14	169	225	1	1
1	12	15	14-15	'12-14	144	225	1	4
2	26	15	23-15	26-23	676	225	64	9
2	25	15	23-15	25-23	625	225	64	4
2	23	15	23-15	23-23	529	225	64	0
2	20	15	23-15	20-23	400	225	64	9
2	21	15	23-15	21-23	441	225	64	4
3	10	15	'8-1 5	'10-8	100	225	49	4
3	9	15	'8-15	'9-8	81	225	49	1
3	9	15	'8-15	'9-8	81	225	49	1
3	6	15	['] 8-15	·6-8	36	225	49	4
3	6	15	⁶ 8-15	·6-8	36	225	49	4

R output

R code

```
Im.APA_primary <- Im(APA~ Genotype_ID, data = subset(roots_proc,
Root_type = "Primary")
```

anova(Im.APA_primary)

Is it a good model? Or do we need to transform data?

Is it a good model? Or do we need to transform data?

Normality: The population(s) from which the samples are drawn is normally distributed.

Test with residual histogram and PP or QQ plot.

In R: hist(model)

Is it a good model? Or do we need to transform data?

Normality: The population(s) from which the samples are drawn is normally distributed.

Test with residual histogram and PP or QQ plot.

In R: hist(residuals(model))

Homogeneity: The variance of the groups is assumed to be equal

Examine with residual vs. the predicted values plot

In R: plot(model)

Is it a good model? Or do we need to transform data?

Normality: The population(s) from which the samples are drawn is normally distributed.

Test with residual histogram and PP or QQ plot.

In R: hist(residuals(model)

Homogeneity: The variance of the groups is assumed to be equal

Examine with residual vs. the predicted values plot

In R: plot(model)

Independence of observations: The measurements are independent and random

Growth series: We would need to use repeated measures ANOVA

-Let us evaluate the model

Is it a good model? Or do we need to transform data?

R code

```
Im.APA_primary <- Im(APA~ Genotype_ID, data = subset(roots_proc,
Root_type == "Primary")
```

plot(lm.APA_primary)

hist(residuals(lm.APA_primary))

R code with transformation

```
Im.APA_primary <- Im(log(APA)~ Genotype_ID, data =</pre>
subset(roots proc, Root_type == "Primary")
plot(lm.APA_primary)
hist(residuals(lm.APA primary))
anova(lm.APA primary)
```

Interpretation: What is a "significant" difference?

First, look at p-value

- ... p-value tells us about probability based on your data [means & deviation]
- ... of getting a value more extreme than dataset if null hypothesis were true

Second, select a significance level

- ... typically 0.05 (by convention)
- ... indicating that an extreme outcome is unlikely under null hypothesis

Third, accept or reject null hypothesis

- ... example "p-value <0.05, and so reject null hypothesis"
- ... also confident that the means will differ 95% of the time

-Almost there! One more step:

How do we compare means?

- ANOVA results only tells us whether there is a significant mean difference
- But the test does not tell us where the difference is
- And so, we need to explore all pair-wise comparisons of means

Within

R code with transformation

```
Im.APA primary <- Im(log(APA)~ Genotype_ID, data =</pre>
subset(roots proc, Root type == "Primary")
plot(lm.APA_primary)
hist(Im.APA primary)
anova(lm.APA_primary)
cld(summary(glht(lm.APA_primary, mcp(Genotype_ID = "Tukey")),
test=adjusted("bonferroni")), level=0.05, decreasing = TRUE)
```