Reformer

эффективный трансформер

Проблемы стандартного трансформера

Некоторые проблемы:

- 1. O(L²) операций на attention-слое.
- 2. Затраты памяти растут линейно с числом слоев (т.к. надо хранить значения на всех слоях).
- 3. Feed forward слой требует очень много памяти.

Решение проблем стандартного трансформера

Решения проблем:

- 1. Используем хэширование с учетом местоположения!
- 2. Используем обратимые слои!
- Разобьем слой на чанки и будем работать независимо в каждом чанке!

Обо всем по порядку

- 1. Хэширование с учетом местоположения
- 2. Обратимые слои
- 3. Разбиение на чанки

Хэширование с учетом местоположения

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Матрица QK[^]T имеет размер (batch_size x L x L). Хотим избавиться от квадрата.

Рассмотрим случай когда Q = K. Как показывает практика это не сильно ухудшает результаты трансформера (!?)

Идея: хорошим приближением будет рассмотреть k ближайших. Как сделать это быстро?

Хэширование с учетом местоположения

Основная идея: функция $h(x): \mathbb{R}^n \to \{1,2,\dots,b\}$, такая что близкие векторы с большой вероятность получают один и тот же хэш, а далекие разный.

В нашей задаче важно первое требование + что каждое значение хэша должно получить примерно равное число векторов.

Используем случайные проеции! Выберем случайную матрицу $R \in \mathbb{R}^{d_k imes b/2}$, тогда

$$h(x) = \arg\max([Rx; -Rx])$$

Хэширование с учетом местоположения (наглядно)

Хэширование с учетом местоположения

Как мы теперь используем эту функцию?

Скажем, что каждый вектор может смотреть только на векторы с таким же хэшэм.

Чтобы избежать ситуации, когда какого-то значения получилось слишком много, дополнительно разобьем на m чанков и разрешим смотреть только на свой и на предыдущий чанк.

Возьмем $m=\frac{2L}{n_{buckets}}$ чтобы вероятность, что какого-то значения будет больше чем размер чанка была крайне мала.

Хэширование с учетом местоположения (наглядно)

Хэширование с учетом местоположения дополнительные идеи

Идея 1:

Чтобы уменьшить вероятность, что близкие векторы получат разные хэши, можно сделать несколько раундов.

$$\mathcal{P}_i = \bigcup_{r=1}^{n_{rounds}} \mathcal{P}_i^{(r)} \qquad \text{where } \mathcal{P}_i^{(r)} = \left\{ j : h^{(r)}(q_i) = h^{(r)}(q_j) \right\}$$

Идея 2:

Все еще можно делать masked-attention. Достаточно переставить строчки и столбики в маске так же как мы переставили наши слова.

Результаты

Память и сложность вычислений

Attention Type	Memory Complexity	Time Complexity
Scaled Dot-Product	$\max(bn_h ld_k, bn_h l^2)$	$\max(bn_h ld_k, bn_h l^2)$
Memory-Efficient	$\max(bn_h ld_k, bn_h l^2)$	$\max(bn_h ld_k, bn_h l^2)$
LSH Attention	$\max(bn_h ld_k, bn_h ln_r (4l/n_c)^2)$	$\max(bn_h ld_k, bn_h n_r l(4l/n_c)^2)$

Точность

Eval Train	Full Attention	LSH-8	LSH-4	LSH-2	LSH-1
Full Attention	100%	94.8%	92.5%	76.9%	52.5%
LSH-4	0.8%	100%	99.9%	99.4%	91.9%
LSH-2	0.8%	100%	99.9%	98.1%	86.8%
LSH-1	0.8%	99.9%	99.6%	94.8%	77.9%

Обо всем по порядку

1. Хэширование с учетом местоположения

2. Обратимые слои

3. Разбиение на чанки

Обратимые слои

Хотим сделать так, чтобы значения каждого слоя можно было восстановить по значениям со следующего слоя.

Общая идея такая: разбиваем ввод и вывод на 2 части. При проходе вперед делаем следующее преобразование.

$$y_1 = x_1 + F(x_2)$$
 $y_2 = x_2 + G(y_1)$

Тогда при проходе назад мы сможем восстановить результат!

$$x_2 = y_2 - G(y_1)$$
 $x_1 = y_1 - F(x_2)$

Обратимые слои (наглядно)

Обратимые слои

В нашем случае

$$Y_1 = X_1 + \operatorname{Attention}(X_2)$$
 $Y_2 = X_2 + \operatorname{FeedForward}(Y_1)$

Эксперименты показывают, что такой трансформер показывает результат не хуже классического, при равном количестве параметров.

В качестве размеров длин х1 и х2 можно взять размерность одного эмбеддинга.

Обо всем по порядку

- 1. Хэширование с учетом местоположения
- 2. Обратимые слои
- 3. Разбиение на чанки

Разбиение на чанки

Так как FeedForward выполняется независимо, можно разбить вычисления на чанки и сэкономить по потреблению памяти.

$$Y_2 = \left[Y_2^{(1)}; \dots; Y_2^{(c)}\right] = \left[X_2^{(1)} + \text{FeedForward}(Y_1^{(1)}); \dots; X_2^{(c)} + \text{FeedForward}(Y_1^{(c)})\right]$$

После всех наших стараний мы получили модель, потребление памяти в которой не зависит ни от глубины сети, ни от размерности представлений в ffслое.

Также во времени выполнения L² поменялось на Lnr.

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff}, bn_h l^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff}, bn_h ln_r c)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

		sacreBLEU	
Model	BLEU	$Uncased^3$	Cased ⁴
Vaswani et al. (2017), base model	27.3		
Vaswani et al. (2017), big	28.4		
Ott et al. (2018), big	29.3		
Reversible Transformer (base, 100K steps)	27.6	27.4	26.9
Reversible Transformer (base, 500K steps, no weight sharing)		27.9	27.4
Reversible Transformer (big, 300K steps, no weight sharing)		28.9	28.4

Оригинальная статья

https://arxiv.org/pdf/2001.04451.pdf

