

Intro to Risk Prediction Using Logistic Regression Modelling

Potentially helpful resources

Script (and dataset) to accompany these slides

https://bit.ly/2TV6z9c.

Click "Clone or Download" to download a zip file. Note: won't work in Internet Explorer.

IDRE data analysis examples (see logistic regression!):

https://stats.idre.ucla.edu/other/dae/

Interpreting odds ratios in logistic regression:

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/

An Introduction to Statistical Learning

Widely recommended textbook. Chapter 4 on logistic regression. http://faculty.marshall.usc.edu/gareth-james/ISL/

Feature Engineering and Selection (chapter on performance metrics)

https://bookdown.org/max/FES/measuring-performance.html

Outline

Risk prediction: definition and examples

Our task for today

Why logistic regression

How does it work?

Interpreting outputs

Performance measures

Quick demo of how it works in R

Risk

The possibility of something bad happening

- Cambridge English Dictionary

Risk Prediction

(or % chance)

(?)

Predicting the probability of something (bad) happening

based on one or more known factors

Uses of risk prediction

GP practice pop.

Uses of risk prediction

Local authority popn.

Our task – Assist Trust X

Reduce LoS for Mental Health

Predict stay > 60 days

We have been given a dataset:

Predictors

Response (or outcome)

	id	sex	age	diag	 long_stay
	1	F	72	dement	1
Ť	2	M	22	neurosis	0
	• • •	• • •	• • •	• • •	• • •
	250	F	40	mood	\ 0

Binary

Explanatory models

We wish to quantify the relationship between predictors and response

Association vs. Causation

Causal inference methods

Remit of statistics

Predictive Models

Optimise prediction accuracy

(often at the expense of interpretability)

Now largely the realm of Machine Learning

Train and Test data

Train and Test data

Before modelling: Know your data

Tabulate/ visualise response and predictor distributions and relationships

May influence the class of model you use.

(long_stay) (long_stay)

(number of patients) 97 104

What do we want from a model?

binary/ qualitative

Predict the risk (probability) of long stay ______ based on patient characteristics

It's a "classification" problem

Which model class?

Random forest Support vector machine Neural network Linear discriminant analysis Logistic regression Gradient boosting machine

Why logistic regression?

- 1. Well established (many books written*)
- 2. Remains powerful and easy to execute
- 3. Interpretable

^{*} Some are even accessible (see resources on slide 2)

How does logisitic regression work?

age vs. height for young children

Given age, predict height (Build a statistical model)

Predictor Response

The linear model

Prompted by a different question:

Given age, predict height

Given age, what is the probability that a child is > 1m tall?

we must change our response variable:

Probability
height > 1m

2 age (years)

Will a linear model do?

Another strategy:

$$y = a + b * x$$

$$= a + b * age$$

$$p = \frac{1}{1 + e^{-(a+b*age)}}$$

$$log\left(\frac{p}{1-p}\right) = a + b * age$$

$$p = \frac{1}{1 + e^{-(a+b*age)}}$$

Logit function
$$\log\left(\frac{p}{1-p}\right) = a + b * age$$

$$odds$$

a and b in metres

$$height = 0.3 + 0.2 * age$$

$$log\left(\frac{p}{1-p}\right) = a + b * age$$

$$height = a + b * age$$

$$log\left(\frac{p}{1-p}\right) = a + b * age$$

$$a \text{ and } b$$

$$"log \text{ odds"}$$

Summary of maths

Binary outcome -> model p(outcome)

Linear model won't do!

Logit transformation:

$$\log\left(\frac{p}{1-p}\right) = a + b * age$$

a, b ... coefficients will be log odds

Building our model

Let's return to our MH question and dataset...

Our task – Help Trust X

Reduce Mental Health LoS

Predict stay > 60 days?

Model formula

long_stay ~ age + sex + diag

Model formula

```
long_stay ~ age + sex + diag
```

Response

Predictors

Build model on "training" data

```
Pseudo code (see script (pg. 2) for true code)
   model(
formula → long_stay ~ age + sex + diag,
           type = "logistic regression",
          data = training_sample
          ) -> our model
```


Explanatory models

summary(our_model)

Coefficient	Estimate	Std.err	z-value	Pr(> z)
(Intercept)	-5.19	2.45	-2.12	0.034
age	0.16	0.05	3.17	0.001
sex_m	0.18	0.82	0.22	0.824
diag_mood	-5.85	1.25	-4.68	< 0.001
diag_neurosis	-25.10	_	-0.01	0.991

Dummy variables

Coefficient	Estimate
(Intercept)	-5.19
age	0.16
sex_m	0.18
diag_mood	-5.85
diag_neurosis	-25.10

Dummy variable

For categorical variable with 2 levels

From original dataset:

id sex 1 F 2 M 3 F

Transformed to dummy variable:

Dummy variable

For categorical variable with 3 levels

From original Dummy Dummy for dataset: for mood neurosis

id	diag
1	mood
2	neurosis
3	dementia

diag_neuros
0
1
0

Dummy variable

For categorical variable with 3 levels

From original dataset:

id	diag
1	mood
2	neurosis
3	dementia

diag_mood
1
0
0

Coefficient	Estimate	Std.err	z-value	Pr(> z)
(Intercept)	-5.19	2.45	-2.12	0.034
age	0.16	0.05	3.17	0.001
gender_m	0.18	0.82	0.22	0.824
diag_mood	-5.85	1.25	-4.68	< 0.001
diag_neurosis	-25.10	_	-0.01	0.991

Coefficient	Estimate	Std.err	z-value	Pr(> z)
(Intercept)	-5.19	2.45	-2.12	0.034
age	0.16	0.05	3.17	0.001
gender_m	0.18	0.82	0.22	0.824
diag_mood	-5.85	1.25	-4.68	< 0.001
diag_neurosis	-25.10	_	-0.01	0.991

Coefficient estimates are log odds

Coefficient	Estimate	Std.err	z-value	Pr(> z)
(Intercept)	-5.19	2.45	-2.12	0.034
age	0.16	0.05	3.17	0.001
gender_m	0.18	0.82	0.22	0.824
diag_mood	-5.85	1.25	-4.68	< 0.001
diag_neurosis	-25.10	_	-0.01	0.991

Coefficient estimates are log odds

exp(...) to get the odds (ratios)

Coefficient	exp(estimate)	Std.err	z-value	Pr(> z)
(Intercept)	0.005	2.45	-2.12	0.034
age	1.17	0.05	3.17	0.001
gender_m	1.20	0.82	0.22	0.824
diag_mood	0.002	1.25	-4.68	< 0.001
diag_neurosis	< 0.001	_	-0.01	0.991

odds (ratios)

Coefficients as odds (ratios)

For continuous variables (e.g. age)

```
\rightarrow exp(0.16) = 1.17
long stay ~ ... + 0.16*age + ...
```

We can say that for a one unit (year) increase in age the <u>odds</u> of a long stay increase:

by a factor of 1.17or by 17%

Holding all other variables constant!

Coefficients as odds (ratios)

For categorical variables (e.g. gender)

```
exp(0.18) = 1.20
long_stay ~ ... + 0.18*gender_m +...
```

We can say that males are 1.2 times more likely to have a long stay than the reference level (females). Holding all other

Known as odds ratios variables

constant!

Coefficients as odds (ratios)

For diagnosis

```
exp(-5.85) = 0.002
long_stay ~ ... -5.85*diag_mood +...
```

We can say that those admitted with mood affective disorders are 500 times less likely to have a long stay than the reference

It's possible to change the reference level

level (dementia).

Known as odds ratios

Holding all other variables constant!

Test data set:

id		long_stay
81	• • •	1
82	• • •	0
83	• • •	1

predict(our_model, data = test_set)

id		long_stay	
81	• • •	1	Test data set:
82	• • •	0	
83	• • •	1	

predict(our_model, data = test_set)

id		long_stay	.prob
81	• • •	1	0.61
82	• • •	0	0.45
83	• • •	1	0.47

Model will give us probabilities of stau > 60 days

predict(our_model, data = test_set)

id		long_stay	.prob	predicted
81	• • •	1	0.61	1 -
82	• • •	0	0.45	0
83	• • •	1	0.47	0

By default, we use a threshold probability of 0.5

- everything ≥ 0.5 is predicted as long stay

So, how might we report model performance to Trust X?

(long_stay) Observed

0	1	
24	25	

The confusion matrix

Related performance metrics

Accuracy

The proportion of correctly predicted observations

Observed

Predicted	0	1
0	20	7
1	4	18

Correctly classified: 20 + 18 = 38 = 0.78 Total observations: 49

Caution

Accuracy can be misleading (esp. with class imbalance)

Observed

0	1
24	2

Model predicts all zeros:

Correctly classified: $\frac{24}{26} = 0.92$ Total observations: $\frac{26}{26}$

Sensitivity

The proportion of long stay patients correctly predicted in the long stay group

How sensitive is our model to any long stay "signal" in the data?

Sensitivity

The proportion of long stay patients correctly predicted in the long stay group

Observed

Predicted	0	1
0	20	7
1	4	18

Correctly classified as long_stay: 18

Total number of long_stays:

 $\frac{18}{}$ = 0.72

25

Specificity

The proportion of short stay patients correctly predicted in the short stay group

How well does our model avoid mis-classifying short stay patients as long stays?

Specificity

The proportion of short stay patients correctly predicted in the short stay group

Predicted	0	1
0	20	7
1	4	18

Correctly classified as short_stay: \
Total number of short_stays:

Adjusting Sensitivity/Specificity

id		long_stay	.prob	predicted
81	• • •	1	0.61	1
82	• • •	0	0.45	0
83	• • •	1	0.47	0

By default, a probability threshold ≥ 0.5 is used to predict a long stay

Adjusting Sensitivity/Specificity

Correctly classified as long_stay: 2

Total number of long_stays: 2

id		long_stay	.prob	predicted
81	• • •	1	0.61	1
82	• • •	0	0.45	1
83	• • •	1	0.47	₁ 1

But if we lower the threshold to 0.4...

we can increase our model sensitivity

Adjusting Sensitivity/Specificity

Correctly classified as short_stay: 0

Total number of short_stays: 1

id		long_stay	.prob	predicted
81	• • •	1	0.61	1
82	• • •	0	0.45	1
83	• • •	1	0.47	1

But if we lower the threshold to 0.4...

we can increase our model sensitivity

(this is often at the cost of specificity)

Sensitivity / Specificity

Whether this trade-off is worthwhile depends on context.

(Receiver operating characteristics)

Considers <u>all thresholds</u> and tracks changes in sensitivity and specificity

- 1. Determine most appropriate threshold
- 2. Assessment without having to determine best threshold

The ROC curve

long_stay	.prob	predicted
1	0.61	1
0	0.45	1
1	0.47	1

- 1. Observe how a particular threshold changes predictions
 - 2. from predictions -> sensitivity/specificity metrics
 - 3. Plot metrics on ROC plot

The ROC curve

The ROC curve

A model that does no better than chance

Area under ROC curve

We can summarise curve in one metric

Our Report to Trust X

Accuracy, Sensitivity / Specificity....

but also specific examples:

Female, 36 years old, Mood (affective) disorder

Observed LoS: 41 days

Model probability of long stay: 0.4% [0, 2]

This work is licensed as

Creative Commons

Attribution-ShareAlike 4.0

International

To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/

End