## Лекция 11 Кластеризация

Дубенюк Анна Антоновна anya.dubenyuk@yandex.ru @andu192

#### План

- Кластеризация
  - K-Means
  - DBSCAN
  - Иерархическая кластеризация
  - о Метрики качества

### Обучение с учителем (supervised learning)

- Для каждого объекта известен ответ (класс или число)
- Даны примеры объектов с ответами
- Нужно построить модель, которая будет предсказывать ответы для новых объектов

## Обучение без учителя (unsupervised learning)

- Даны объекты
- Нужно найти в них внутреннюю структуру
- Примеры:
  - Кластеризация
  - Обнаружение аномалий
  - Тематическое моделирование
  - Визуализация
  - Предсказание следующего кадра видео
  - •
- Ближе к обучению в реальной жизни

#### Кластеризация

- Дано: матрица «объекты-признаки» X
- Найти:
  - 1. Множество кластеров Y
  - 2. Алгоритм кластеризации a(x), который приписывает каждый объект к одному из кластеров
- Каждый кластер состоит из похожих объектов
- Объекты из разных кластеров существенно отличаются

#### Отличия

#### Обучение с учителем

- Цель: минимизация функционала ошибки
- Множество ответов известно заранее
- Конкретные способы измерения качества

#### Кластеризация

- Нет строгой постановки
- Множество кластеров неизвестно
- Правильные ответы отсутствуют (в большинстве случаев) нельзя измерить качество

#### Зачем кластеризовать?

- Маркетинг: искать похожих клиентов
- Модерация: проверять только одно сообщение из кластера
- Соц. опросы: выделять группы схожих анкет
- Соц. сети: искать сообщества

• Выявлять типы людей и формировать поведенческие паттерны для каждого типа

#### Важно

- Алгоритм кластеризации не знает, чего вы хотите
- Не стоит ожидать, что при кластеризации текстов вы получите разбиение именно по темам
- Нередко кластеры оказываются неинтерпретируемыми

## Обучение без учителя: кластеризация

#### ШΑГΙ

Анализ данных, в т.ч. транзакционных Way4, ЦОД, кред. фабрика

#### **ШАГІІ**

Выявление паттернов и сегментация клиентов по характеристикам

#### ШАГ III

Формирование продуктовых предложений на базе характеристик клиента

**МЕТОДЫ** алгоритмы кластеризации, визуализация данных большой размерности с использованием LargeVis

#### ЭКОНОМИЧЕСКИЙ ЭФФЕКТ

- ✓ Рост эффективности воронки продаж
- ✓ Рост лояльности клиентов

#### КЛАСТЕРИЗАЦИЯ КЛИЕНТОВ ПО ХАРАКТЕРУ ТРАНЗАКЦИЙ



В ЗАВИСИМОСТИ ОТ КЛАСТЕРА КЛИЕНТА ПРЕДЛОЖИТЬ РЕЛЕВАНТНЫЙ ПРОДУКТ



| Паттерн                                  | Продукт                              |
|------------------------------------------|--------------------------------------|
| 1. Частая конвертация валют              | Мультивалютный счет                  |
| 2. Частые перелеты<br>Аэрофлотом         | Карта «Аэрофлот Бонус»               |
| 3. Частые поездки заграницу              | Страховка для выезжающих<br>за рубеж |
| 4. Переводы в<br>благотворительные фонды | Карта «Подари жизнь»                 |

https://habrahabr.ru/article/318152/

# Виды кластеризации

## Форма кластеров



### Различия в результатах работы



- Задача кластеризации новостей по содержанию.
- Постановка 1: в один кластер должны попадать новости на одну тему



#### Батыршин сыграет вместо Хабарова у «Магнитки» в матче с «Салаватом»

Место в третьей паре защиты «Магнитки» на третью встречу плейофф Кубка Гагарина с «Салаватом Юлаевым» занял защитник Рафаэль Батыршин, сообщает из Уфы корреспондент «Чемпионата» Павел Панышев. Травмированный Ярослав Хабаров выбыл на неопределённый срок. Для форварда Оскара Осалы сезон закончен.



#### Футболисты ЦСКА проиграли «Долгопрудному» в товарищеском матче

Футболисты московского ЦСКА со счетом 2:3 проиграли клубу второго дивизиона "Долгопрудный" в товарищеском матче, который состоялся в Москве на стадионе "Октябрь". У армейцев забитыми мячами отличились Александр Цауня (15-я минута) и Сергей Ткачев (54).

- Задача кластеризации новостей по содержанию.
- Постановка 2: в один кластер должны попадать новости об одном «большом» событии



Скриншот с сайта РИА Новости (ria.ru)

- Задача кластеризации новостей по содержанию.
- Постановка 3: в один кластер должны попадать тексты об одной и той же новости

11:41, 08 ФЕВРАЛЯ 2014

Открытие Олимпиады в Сочи посмотрели несколько миллиардов человек

Олимпиада в Сочи открыта

**Церемония открытия Олимпиады в Сочи. Онлайн-репортаж** 

- Чтобы проверить, выполняются ли требования, нужно делать разметку данных
- Для новостей: показывать асессору пары документов и спрашивать, относятся ли они к одному кластеру

#### Кластеризация как основная задача



#### Кластеризация как вспомогательная задача

Цель: улучшение распознавания

5 5 5

### «Жесткая» и «мягкая» кластеризации

Кластеризация для выделения «тем»







0.2

0.3

#### Типы задач кластеризации

- Форма кластеров, которые нужно выделять
- Плоская или древовидная структура
- Размер кластеров
- Конечная задача или вспомогательная
- Жесткая или мягкая кластеризация

- Дано: выборка  $x_1, \dots, x_\ell$
- Параметр: число кластеров K
- Начало: случайно выбрать K центров кластеров  $c_1$ , ...,  $c_K$
- Повторять по очереди до сходимости:
  - Шаг А: отнести каждый объект к ближайшему центру  $y_i = \arg\min_{j=1,\dots,K} \rho(x_i,c_j)$
  - Шаг Б: переместить центр каждого кластера в центр тяжести

$$c_{j} = \frac{\sum_{i=1}^{\ell} x_{i} [y_{i} = j]}{\sum_{i=1}^{\ell} [y_{i} = j]}$$





#### Выбор числа кластеров

• Качество кластеризации: внутрикластерное расстояние

$$J(C) = \sum_{i=1}^{t} \rho(x_i, c_{y_i})$$

- Зависит от *К*
- Нужно подобрать такое K, после которого качество меняется не слишком сильно

## Выбор числа кластеров



### Выбор числа кластеров





#### Особенности K-Means

- Может работать с большими объёмами данных
- Подходит для кластеров с простой геометрией
- Требует выбора числа кластеров

# Density-based clustering

### Основные, граничные и шумовые точки



### Параметры DBSCAN

- Размер окрестности (eps)
- Минимальное число объектов в окрестности для определения основных точек

#### **DBSCAN**



- 1. Выбрать точку без метки
- 2. Если в окрестности меньше N точек, то пометить как шумовую
- 3. Создать новый кластер, поместить в него текущую точку
- 4. Для всех точек из окрестности S: (a) если точка шумовая, то отнести к данному кластеру, но не использовать для расширения; (б) если точка основная, то отнести к данному кластеру, а её окрестность добавить к S
- 5. Перейти к шагу 1

(b) Core, border, and noise points.

### DBSCAN: результаты работы



## Пример



## Пример



#### Особенности DBSCAN

- Находит кластеры произвольной формы
- Может работать с большими объёмами данных
- Нужно подбирать размер окрестности (eps) и минимальное число объектов в окрестности

# Иерархическая кластеризация

#### Виды иерархической кластеризации

- Аггломеративная на каждой итерации объединяем два меньших кластера в один побольше
- Дивизивная на каждой итерации делим один большой кластер на два поменьше









#### Расстояния между кластерами



















































- 1. Инициализация каждая точка = кластер
- 2. Самые близкие (относительно какой-то метрики) кластеры объединяются
- 3. Повторяем до того момента, когда все точки будут в одном кластере
- 4. Останавливаемся, когда достигаем фиксированного числа кластеров, либо когда расстояние между кластерами больше заданного порога

# **Quality Metrics**

# Quality metrics

#### There are two kinds of quality metrics for clustering:

- Supervised
  - Based on ground truth of object labels
  - Invariant to cluster naming
- Unsupervised
  - Based on intuition about "good" clusters:
    - Objects from the same cluster are similar / close to each other
    - Objects from different clusters are dissimilar / distant from each other

#### Rand Index

Rand Index (RI) is supervised quality metric defined as:

$$RI = \frac{TP + TN}{TP + TN + FP + FN}$$

TP – number of pairs in the same cluster in predictions and the ground truth,

TN – number of pairs from different clusters in predictions and the ground truth,

FP – number of pairs in the same cluster in predictions, but from different clusters in the ground truth,

FN – number of pairs in the same cluster in the ground truth, but from the different clusters in predictions.

## Adjusted Rand Index

Adjusted Rand Index (ARI) is modification of RI:

$$ARI = \frac{RI - RI_{Expected}}{RI_{Max} - RI_{Expected}}$$

ARI has a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clustering is ideal

#### Metrics for classification

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

F1 - score = 
$$\frac{2 * Precision * Recall}{Precision + Recall}$$

► Fowlkes-Mallows Index (FMI) = 
$$\frac{\text{TP}}{\sqrt{(\text{TP+FP})(\text{TP+FN})}}$$

others

#### Silhouette

Silhouette is unsupervised quality metric defined as:

Silhouette = 
$$\frac{1}{N} \sum_{i=1}^{N} \frac{d_i - s_i}{\max\{d_i, s_i\}}$$

 $s_i$  - mean distance between the i-th object and all objects in the same cluster,  $d_i$  - mean distance between the i-th object and all objects in the nearest cluster.

# Example





#### Резюме

- Кластеризация задача без строгой постановки и без строгих критериев качества
- Много разновидностей в подходах
- Методы: K-Means, DBSCAN, иерархическая кластеризация и т.д.