Introduction To AI (SENG 463 - Game Programming)

Dr.Çağatay ÜNDEĞER

Research and Innovation Director SimBT Inc.

e-mail:

cagatay.undeger@simbt.com.tr cagatay@undeger.com

Outline

- Description of Al
- Behavior and Agent Types
- Properties of Environments
- Problem Solving
- Well-Known Search Strategies

- Introduction to Al Architectures
- Entities, Attributes and Relations
- Tasks, Actions, States and Events

Artificial Intelligence in Games

- Artificial intelligence (AI) in games deals with creating synthetic characters (agents, animats, bots) with realistic behaviors.
- These are autonomous creatures with an artificial body situated in a virtual world.
- Job of Al developers
 - Give them unique skills and capabilities so that they can interact with their environment intelligently and realistically.

^{*} Animats stand for artificial animals, robots or virtual simulations.

^{*} Bots stand for a computer program that runs automatically or robots.

Description of Al

- Definitions are divided into 2 broad categories:
 - Success in terms of human performance,
 - Ideal concept of intelligence, which is called Rationality.
- A system is said to be rational:
 - If it does the right thing,
 - If it is capable of planning and executing the right task at the right time.

Intelligent Agents

- Anything that can be viewed as:
 - Perceiving its environment through sensors and acting on that environment through effectors.

Agent Program

- In each step (cycle / iteration / frame):
 - Gets the percepts from the environment,
 - [Builds a percept sequence in memory],
 - Maps this percept sequence to actions.

 How we do the mapping from percepts to actions determines the success of our agent program.

Percepts to Actions

For instance, a 35¹⁰⁰ entry table for playing chess

- a compile-time code
- a run-time script with fixed commands
- a run-time script with extendable commands that call compile-time code

Behavior Types

- Reactive behaviors:
 - A simple decision is taken immediately depending on the developing situation (lying down when someone is shooting at you,...).
- Deliberative behaviors:
 - A complex decision is taken in a longer time by reasoning deeply (evaluation, planning, conflict resolution,...).
- Learning behaviors:
 - Learning how to act by observation, try and error.

Agent Types

- Reactive agents:
 - Simple reflex agents
 - Reflex agents with internal state
- Deliberative agents:
 - Goal-based agents
 - Utility-based agents

Simple Reflect Agents

- In each step:
 - Gets a set of percepts (current state)
 Learn "what the world I sense now is like"
 - Performs rule matching on current state
 - Takes decision without memorizing the past
 Answer "what action I should do now" by using conditionaction rules
 - Performs the selected action/s
 Change the environment

Simple Reflect Agents

- Rules of a traffic simulation may look like:
 - If distance between me and car in front of me is large then
 - Accelerate
 - If distance between me and car in front of me is normal then
 - Keep state
 - If distance between me and car in front of me is small then
 - Decelerate
 - If distance between me and car in front of me is large and car in front of me breaks then
 - Keep state
 - If distance between me and car in front of me is normal and car in front of me breaks then
 - Break

_

Simple Reflect Agents

Reflect Agents with Int. State

- In each step:
 - Gets a set of percepts (current state)
 Learn "what the world I sense now is like"
 - Integrates past state to current state to get an enriched current state (internal state)
 - Keep track of the world and estimate "what the world is like now"
 - Performs rule matching on current state
 - Takes decision
 - Answer "what action I should do now" by using condition-action rules
 - Performs the selected action/s
 Change the environment

Reflect Agents with Int. State

- Knowing the current state of the environment will not always enough to decide correctly.
- You may also be given a goal to achieve.
- It may not be easy or even possible to reach that goal by just reactive decisions.

- For instance, you will not be able to go to a specified adress in a city by just doing simple reactive bahaviors.
- Since you may enter a dead-lock situation.

Planning towards a desired state (goal) may be inevitable.

- In each step:
 - Gets a set of percepts (current state)
 Learn "what the world I sense now is like"
 - Integrates past state to current state to get an enriched current state (internal state)
 Keep track of the world and estimate "what the world is like now"
 - Examines actions and their possible outcomes
 Answer of "what the world will be like in the future if I do A,B,C,..."
 - Selects the action which may achieve the goal Answer of "which action->state will make me closer to my goal"
 - Performs the selected action/s
 Change the environment

Utility-based Agents

- Goals are not enough to generate a high-quality behavior.
- There are many action sequences that will take you to the goal state.
- But some will give better utility than others:
 - A more safer, more shorter, more reliable, more cheaper....
- A general performance measure for computing utility is required to decide among alternatives.

Utility-based Agents

- In each step:
 - Gets a set of percepts (current state)
 Learn "what the world I sense now is like"
 - Integrates past state to current state to get an enriched current state (internal state)
 - Keep track of the world and estimate "what the world is like now"
 - Examines actions and their possible outcomes
 Answer of "what the world will be like in the future if I do A,B,C,..."
 - Selects the action which may achieve the goal and maximize the utility
 - Answer of "which action->state will lead me to my goal with higher utility"
 - Performs the selected action/s
 Change the environment

Utility-based Agents

- Accessible:
 - Sensors gives complete state of the environment (e.g. chess).
- Inaccessible:
 - Sensors gives a partial state of the environment.

- Deterministic:
 - If the next state is determined by just current state and actions of agents.
- Non-deterministic:
 - If there is uncertainty, and
 - Next state is not determined by only current state and actions of agents.

- Episodic:
 - The environment is divided into episodes.
 - Next episode is started when current one is completed.
- Non-episodic:
 - The environment is defined as a large single set.

Static:

 If environment can not change while agent is deliberating and acting.

Dynamic:

 If environment can change while agent is deliberating and acting.

Discrete:

 If there are a limited number of distinct, clearly defined percepts and actions (chess).

Continuous:

 If there are infinite number of percepts and/or actions (velocity, position, ...).

Problem Solving

- Al algorithms deal with "states" and sets of states called "state spaces".
- A state is one of the feasible steps towards a solution for a problem and its problem solver.
- So solution to a problem is a sequential and/or parallel collection of the problem states.

A solution

Problem Solving Strategies

- The problem solver applies an operator to a state to get the next state for performing a search.
- Called "state space approach"

4-Puzzle Problem

- a 4 cell board
- 3 cells filled
- 1 cell blank
- Initial: a random distribution of cells and blank
- Final: a fixed location of cells and blank

4-Puzzle Problem

- 4 operators (actions):
 - Blank-up
 - Blank-down
 - Blank-left
 - Blank-right

1	3
2	

initial state

final (goal) state

4-Puzzle Problem

Common Search Strategies

- Generate and Test
- Heuristic Search
- Hill-Climbing

Generate and Test

- From a known starting state (root)
 - Generation of state space
- Continues expanding the reasoning space
 - Until goal node (terminal state) is reached
- In case there are muliple paths leading to goal state,
 - The path having the smallest cost from the root is preferred

Heuristic Search

- From a known starting state (root)
 - Generation of state space
- Continues expanding the reasoning space
 - Until goal node (terminal state) is reached
- One or more heuristic functions are used to determine the better candidate states among legal states.
- Heuristics are used in order to see the measure of fittness
- Difficult task:

Heuristics are selected intuitively.

Hill-Climbing

- From a known or random starting state
 - Measure / estimate the total cost from current to goal state
- If there exists a neigbor state having lower cost
 - Move to that state
 - Until goal node (terminal state) is reached
- If trapped at a hilllock or local extrema
 - Select a random starting state and restart

An Al Architecture

- A complete system architecture (Al engine)
 - That defines mechanizm of a perceptreasoning-action cycle
 - For modeling autonomous entity behaviors

An Example Al Architecture

Entities

- Any kind of objects within an environment
 - Trees
 - Bushes
 - Rocks
 - Cars
 - Tanks
 - Bridges
 - Human beings
 - Animals
 - Houses

—

Attributes

- Any kind of parameters describing properties of an entity
 - Tank
 - Type
 - Coordinate
 - Orientation
 - Velocity
 - Damage
 - Gun 1
 - Loaded
 - Number of munitions left
 - Gun 2
 - Loaded
 - Number of munitions left

Relations

- Any link between two entities, groups of entities or types of entities defining a fact
 - Ahmet is father of veli
 - Suzan is mother of veli
 - Mustafa, Kenan and Oya are friends
 - Iraq forces is an opponent of US forces
 -
 - X may have a relation with Y
 - Strike is an eagle
 - Eagle is a bird
 - Bird is an animal

Tasks

- Any piece of work,
 - Which has been undertaken or attempted
 - By someone
 - To reach a desired goal
 - Playing backgammon
 - Doing a project
 - Going to school
 - Performing surveillance
 - Managing an accident
 - Defending a town
 - Attacking a town

Sub-Tasks

 Smaller pieces of work to be done in order to perform and complete a task

Sub Tasks of Going To School Task

- Remembering the location of school
- Planing an initial path to school
- Going to school through the path
 - Replanning a path to school if required
- Entering the school
- Planing an initial path to the classroom
- Going to the classroom through the path
 - Replanning a path to classroom if required
- Entering the classroom

Actions

- A primitive (may be un-interruptable) work to be done in order to perform a task
 - Do a chess move
 - Do a forward step
 - Change direction
 - Hang up a phone
 - Send a fax
 - Say a statement to someone
 - Talk to someone
 - Engage a target
 - Fire a target
 - Throw a bomb
 - Give an order

States

- A position in time.
- A specific situation/case/condition
 - Among a set of all possible situations a system may be in.
- Standing, Walking, Defending, Attacking
- Usually actions cause state transitions.

Events

Something that happens in time.

 An action, occurrence or a condition that causes a state transition

- Thus in addition to our actions,
 - An external or internal event may cause a state transition.

Events

Events States Sleeping Clock rang Getting dress **Dressing completed** Going to school School reached and Going to classroom Door open