The Possible Hull of Imprecise Points

Jeff Sember William Evans

University of British Columbia

August, 2011

A number of islands

Each island contains a sensor

Sensors detect intrusions

Sensors detect intrusions

If precise location of each sensor is not known...

...where can a boat safely approach the islands?

• Given a planar set of points $S = \{s_1, \dots, s_n\}$

- Given a planar set of points $S = \{s_1, \dots, s_n\}$
- Each point s; not known precisely

- Given a planar set of points $S = \{s_1, \dots, s_n\}$
- Each point si not known precisely
- ...but known to lie within a region of uncertainty $R_i \in \mathcal{R}$

- Given a planar set of points $S = \{s_1, \dots, s_n\}$
- Each point s; not known precisely
- ...but known to lie within a region of uncertainty $R_i \in \mathcal{R}$
- What parts of plane might lie within convex hull CH(S)?

- Given a planar set of points $S = \{s_1, \dots, s_n\}$
- Each point s; not known precisely
- ...but known to lie within a region of uncertainty $R_i \in \mathcal{R}$
- What parts of plane might lie within convex hull CH(S)?
- This is $PH(\mathcal{R})$, the possible hull of \mathcal{R}

The possible hull is the union of (infinitely many) feasible convex hulls:

$$PH(\mathcal{R}) = \bigcup_{\{s_1 \in R_1, \dots, s_n \in R_n\}} CH(\{s_1, \dots, s_n\})$$

Possible hull of convex uncertain regions...

...is simply the hull of the regions: $PH(\mathcal{R}) = CH(\mathcal{R})$ [Nagai et al., 2000]

This is not true for nonconvex uncertain regions

In some areas, boat can safely approach closer to islands

Lemma 1

Possible hull of a single region is equal to the region

Lemma 2

Possible hull of pair of regions is union of line segments

Lemma 4

Possible hull of regions obtained recursively by partitioning regions into two sets, constructing possible hull of each set, and constructing possible hulls

Lemma 5

Possible hull of (≥ 2) regions is simply connected (no holes)

Theorem 7

The possible hull of any two or more connected uncertain regions is star-shaped

Possible hull of point and polygonal chain

Each step is either expansion or interior step

Expansion step: next chain edge lies outside of hull

Construct triangle for next chain edge

Case (i): hull lies within triangle

Case (i): hull lies within triangle

Case (ii): hull edge exits through side of triangle

Delete edges interior to triangle

Case (iii): hull edge exits through top of triangle

Delete edges interior to triangle

Next iteration will be interior step

Interior step: advance along chain until one of two events

Case (i): end of chain reached; stop

Case (ii): Chain emerges from hull

Next iteration is expansion step

Lemma 10

The exit edge is the same as the entrance edge, if that edge is not incident with s; otherwise, it lies on one of the two edges incident with s.

Lemma 10

The exit edge is the same as the entrance edge, if that edge is not incident with s; otherwise, it lies on one of the two edges incident with s.

Each chain edge need be tested for crossing at most two hull edges

Lemma 10

The exit edge is the same as the entrance edge, if that edge is not incident with s; otherwise, it lies on one of the two edges incident with s.

- Each chain edge need be tested for crossing at most two hull edges
- interior step runs in time linear in number of edges of chain processed

• Each step takes O(1) time; running time of algorithm is bounded by vertices processed

- Each step takes O(1) time; running time of algorithm is bounded by vertices processed
- These include vertices of chain, plus any vertices added to (dynamic) hull

- Each step takes O(1) time; running time of algorithm is bounded by vertices processed
- These include vertices of chain, plus any vertices added to (dynamic) hull
- Chain has O(n) vertices

- Each step takes O(1) time; running time of algorithm is bounded by vertices processed
- These include vertices of chain, plus any vertices added to (dynamic) hull
- Chain has O(n) vertices
- At most three vertices added to hull by addition of chain edge triangle

- Each step takes O(1) time; running time of algorithm is bounded by vertices processed
- These include vertices of chain, plus any vertices added to (dynamic) hull
- Chain has O(n) vertices
- At most three vertices added to hull by addition of chain edge triangle

Theorem 11

Algorithm runs in linear time

Start with two polygons

Construct convex hull of each

Construct convex hull of pair

Identify pockets

Two additional steps: Hull Contraction and Hull Expansion

Hull Contraction

Hull Expansion: walk boundary ccw from any convex hull vertex

Construct line tangent to opposite polygon

Expand by filling in pockets encountered

Expand by filling in pockets encountered

Possible hull

• Convex hull of each polygon: O(n) time [Melkman, '87]

- Convex hull of each polygon: O(n) time [Melkman, '87]
- Convex hull of hulls: O(n) time, using rotating calipers [Toussaint, '83]

- Convex hull of each polygon: O(n) time [Melkman, '87]
- Convex hull of hulls: O(n) time, using rotating calipers [Toussaint, '83]
- Hull contraction: O(n) time, using point / polygon algorithm

Expansion step:

Adds only reflex vertices

Expansion step:

- Adds only reflex vertices
- Each can be charged to a distinct convex vertex

Expansion step:

- Adds only reflex vertices
- Each can be charged to a distinct convex vertex
- Contraction step ensures tangents have monotonically increasing angles

Expansion step:

- Adds only reflex vertices
- Each can be charged to a distinct convex vertex
- Contraction step ensures tangents have monotonically increasing angles
- $\bullet \implies$ amortized O(n) cost for constructing tangents

Theorem 12

Possible hull of pair of polygons can be constructed in linear time.

If contraction step omitted, monotonicity doesn't hold

• Lemma 4 implies set of k polygons can be processed recursively

Lemma 4 implies set of k polygons can be processed recursively

Theorem 13

Possible hull of k polygons with n total vertices can be constructed in $O(n \log k)$ time.

• Worst-case optimal (consider k small triangles in convex position)

- Worst-case optimal (consider k small triangles in convex position)
- Not output sensitive

Thank You!

Applet available at: www.cs.ubc.ca/~jpsember

