| Vanis Manth                                                                                                 | Data                                                                                                    |                                                                   |                                                                        |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| Year: Month:                                                                                                | Date:                                                                                                   |                                                                   | Sa Su Mo Tu We Th                                                      |
| 1)a) n,[n] * n,[                                                                                            | Ks-00                                                                                                   | k=-3                                                              | n-k<br>) u[n-k]                                                        |
| $u[n-k] = \begin{cases} 1, \\ 0, \end{cases}$                                                               | n-k<0                                                                                                   | , n>K                                                             |                                                                        |
| -> m,[n] * m2[n]                                                                                            | $ \begin{array}{c}                                     $                                                | $n < -3$ $-3 < n < 3 = \begin{cases} 0 \\ -3 < n < 3 \end{cases}$ | $\frac{n+3}{-(\frac{1}{2})}$ $\frac{3}{3}$ $\frac{3}{4}$ $\frac{3}{4}$ |
|                                                                                                             | $ \begin{array}{c c} 2 & n-k \\ \hline  & \begin{pmatrix} \bot \\ 2 \end{pmatrix} \\ k=-3 \end{array} $ | 3 × n (\frac{1}{2}                                                | )- (1/2) n+3,3 <n< td=""></n<>                                         |
| 1) b) $n_1[n) + n_2[n] = \sum_{k=1}^{\infty} \alpha_1[n-k] \alpha_2[k] = \sum_{k=1}^{\infty} \alpha_1[n-k]$ |                                                                                                         |                                                                   |                                                                        |
| $= \frac{9}{\left(\frac{1}{3}\right)^{n-k}} \left(u \leq n\right)$                                          | -k] _u[n-k-7]),                                                                                         | x=0<br>(n-k)-u[n-k-7                                              | ) = { 1 , n=6 < k < n                                                  |
| K=0                                                                                                         |                                                                                                         |                                                                   | (0, 0.W.                                                               |
| $\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^{-k},$                                                        |                                                                                                         | $\frac{3-(\frac{1}{3})^{2}}{2}$ , 0                               | < n< 6                                                                 |
| $\begin{cases} \sum_{k=n-l}^{n-k} \\ k = n-l \end{cases}$                                                   |                                                                                                         | $\frac{3-(\frac{1}{3})^{6}}{2}$ , by                              |                                                                        |
| $ \begin{array}{c c}  & 1 & 1 \\  & \frac{1}{3} & 1 \\  & \frac{1}{3} & 1 \end{array} $ MBHRO               | , 10 < n < 16                                                                                           | $\left(\frac{1}{3}\right) - \left(\frac{1}{3}\right)$             | 10(n<16                                                                |
|                                                                                                             |                                                                                                         |                                                                   |                                                                        |

Year: Month: Date:

25-27 m, 15-2/ m, 12/ dt mi(t) \* malt) = 25-27 e dt, 0 < t-2 < 3 2t.27 > m, (t) + m, (t). 25-6 (n,15-7)d=+2 (n,15-7)dz 21-27 2t-2T e u(2-t+2)dz 0 MEHR

-6-5-4-3-2-101234

Year:

Month:

Date:



3) a) het) 
$$\neq k \delta(t) \Rightarrow memorgless \times$$

It (0, h(t)  $\neq 0 \Rightarrow causal \times$ 

$$\int e^{-2t\delta t} | dt = \int e^{-2t} | dt = e^{-2t} | -e^{-2t} | e^{-2t} | e^{-2t}$$

| h[n] = 2 x 1 = 4 => Stable /

Year:

Month:

Date:





Sabject:

Year:

Month:

Date:

Sa Su Mo Tu We Th

مفرس م نت

5) b) e uici \* [ Sioj + Sioj] = e uici + (e uici) \* Sio)

- e u(t) - e u(t) + e δ(t) = δ(t) = σ (σ)

SICIUENI - UEN-1] « SEN] -, - EN POSTO

sid e \*ult-1) - get-tat + S(t) -, i-i p v/se

6)a) S(t) > (c+1)+((c-1)=; s(t)-u(t+1)-u(t-1)

b) b) SEN] = hEn] \*uEn]

= \( \frac{k}{4} \) \( \lambda \frac{k}{4} \) \( \lambda \frac{k}{4} \) \( \lambda \frac{e}{4} \) \( \lambda \frac{k}{4} \

 $\begin{cases}
\emptyset, & n < -1 \\
\sum_{k=1}^{n} \left(\frac{e}{u}\right)^{k}, & n > -1
\end{cases}$   $\begin{cases}
\frac{u}{u-e} \left[1 - \left(\frac{e}{u}\right)^{n}\right], & n > -1
\end{cases}$ 

$$\begin{cases}
\int \tau e d\tau, \quad t < 0 \\
\int \tau e d\tau, \quad t < 0
\end{cases}$$

$$\begin{cases}
\tau e d\tau, \quad t > 0
\end{cases}$$

$$\begin{cases}
\tau e d\tau, \quad t > 0
\end{cases}$$

$$= \begin{cases} \left[ \tau e^{\tau} - \int e^{\tau} d\tau \right] & , 5 < 0 \end{cases}$$

$$\left|\left[\tau e^{-t} - \int_{0}^{\tau} d\tau\right]\right| + \left[-\tau e^{-t} + \int_{0}^{\tau} d\tau\right]_{0}^{\tau}, t \geqslant 0$$