ASSIGNMENT-1

<u>Q1</u>

- 1. Star
- 2. Bus
- 3. Mesh

BUILDING BUILDING

<u>Q2</u>

3 LANs, because 3 switches are connected to the 3 routers. Switches create LANs. R1 is the first hop

Q3

Half-Duplex mode allows data to flow in both directions Services provide information is response to a request Lower the jitter, higher the effectiveness of a system

<u>Q4</u>

Network

Transport

Network

Data Link

Presentation

Session

Transport

Physical

Presentation

<u>Q5</u>

Frame X	S MAC	D MAC	S IP	D IP	S PORT	D PORT
	E	А	24	20	50000	80

Frame Y	S MAC	D MAC	S IP	D IP	S PORT	D PORT
	Н	G	92	24	25	50000

ASSIGNMENT-2

Q1

Bandwidth, B = $1200-150 = 1050 \text{ MHz} = 1050 \text{ x } 10^6 \text{ Hz}$

 $SNR_{dB} = 28$ SNR = 630.95

Shannon, C = B $log_2(1+SNR)$ => C = 9.76 x 10⁹ bps

 $9.76 \times 10^9 \times 0.25 = 2 \text{ B log}_2\text{L}$ => L = $2^{1.161}$ = 2.23 ~ 4

Maximum theoretical bitrate is 9.76 x 10⁹ bps and 4 signal levels are needed

<u>Q2</u>

Transmission Delay = $(4400 \times 8)/(18 \times 10^6)$ Propagation Delay = $(4800 \times 1000)/(2.6 \times 10^8)$ Queueing Delay = $5\times10^{-6} + 2\times10^{-12} + 3\times10^{-9} + 3\times10^{-9}$ Processing Delay = $2\times10^{-12} + 4\times10^{-12} + 6\times10^{-6} + 5\times10^{-6}$ Total Delay = Add all

Q3

<u>Q4</u>

Original bit stream - 10000001011
Divide it into 3 bit block
100 000 001 011
Substitute with corresponding 4 bit block from the table
0111 1110 1101 1001

This is the new bit stream - 0111111011011001

