```
In [1]:
import pandas as pd
import os
os.getcwd()
Out[1]:
'C:\\Users\\Mahima Sharu'
In [2]:
os.listdir(os.getcwd())
Out[2]:
['.anaconda',
 '.android',
 '.AndroidStudio3.2',
 '.bash_history',
 '.conda',
 '.condarc'
 '.config',
 '.gitconfig',
 '.idlerc',
 '.ipynb_checkpoints',
 '.ipython',
 '.jupyter',
 '.matplotlib',
 '.node repl history',
 '.packettracer',
 '.PyCharmCE2019.1',
 '.VirtualBox',
 '.vscode',
 '3 - 1st and 2nd.ipynb',
 '3 - 3rd.ipynb',
 '3 - 4th.ipynb',
 '3D Objects',
 '4th - 1st.ipynb',
 'Amazon Reviews_ Unlocked Mobile Phones _ Kaggle.csv',
 'Amazon Reviews_ Unlocked Mobile Phones _ Kaggle_files',
 'AppData',
 'Application Data',
 'assignment 1.1.ipynb',
 'assignment 1.3.txt',
 'assignment1.4.ipynb',
 'Cisco Packet Tracer 7.2',
 'Contacts',
 'Cookies',
 'debug.log',
 'Desktop',
 'Documents',
 'Downloads',
 'electric motor temperature.ipynb',
 'Favorites',
 'file.txt',
 'Git-workshop',
 'Hotel booking demand _ Kaggle.csv',
 'Hotel booking demand _ Kaggle_files',
 'HP',
 'index.htmly',
 'input.txt',
 'IntelGraphicsProfiles',
 'iris.csv',
 'KCLT.csv',
 'Links',
 'Local Settings',
 'MicrosoftEdgeBackups',
 'Music',
 'My Documents',
 'NetHood',
 'NTUSER.DAT',
 'ntuser.dat.LOG1'.
```

```
..............
'ntuser.dat.LOG2',
'NTUSER.DAT{43757b42-e0ed-11e9-986f-e08e1ad91340}.TM.blf',
'NTUSER.DAT{43757b42-e0ed-11e9-986f-e08e1ad91340}.TMContainer00000000000000000001.regtrans-ms',
'NTUSER.DAT{43757b42-e0ed-11e9-986f-e08e1ad91340}.TMContainer000000000000000000000.regtrans-ms',
'ntuser.ini',
'OneDrive',
'Oracle',
'Pictures',
'pmsm_temperature_data.csv',
'PrintHood',
'PycharmProjects',
'Recent',
'Saved Games',
'ScStore',
'Searches',
'SendTo',
'Sentiment Analysis on Movie Reviews \_ Kaggle.csv',
'Sentiment Analysis on Movie Reviews _ Kaggletest.csv',
'Sentiment Analysis on Movie Reviews _ Kaggletest_files',
'Sentiment Analysis on Movie Reviews _ Kaggletrain.csv',
'Sentiment Analysis on Movie Reviews _ Kaggletrain_files',
'Sentiment Analysis on Movie Reviews _ Kaggle_files',
'Start Menu',
'Templates',
'Untitled.ipynb',
'Untitled1.ipynb',
'Untitled10.ipynb',
'Untitled11.ipynb',
'Untitled12.ipynb',
'Untitled2.ipynb',
'Untitled3.ipynb',
'Untitled4.ipynb',
'Untitled5.ipynb',
'Untitled6.ipynb',
'Untitled7.ipynb',
'Untitled8.ipynb',
'Untitled9.ipynb',
'Videos',
'VirtualBox VMs',
'wekafiles',
'_split.csv']
```

In [9]:

```
#Load File
df=pd.read_csv('C:\\Users\\Mahima Sharu\\pmsm_temperature_data.csv')
```

Out[9]:

	ambient	coolant	u_d	u_q	motor_speed	torque	i_d	i_q	pm	stator_yoke	stator_tooth	statoı
0	0.752143	- 1.118446	0.327935	1.297858	-1.222428	0.250182	1.029572	0.245860	2.522071	-1.831422	-2.066143	
1	0.771263	1.117021	0.329665	1.297686	-1.222429	0.249133	1.029509	0.245832	2.522418	-1.830969	-2.064859	
2	0.782892	- 1.116681	0.332771	1.301822	-1.222428	0.249431	1.029448	0.245818	2.522673	-1.830400	-2.064073	
3	0.780935	- 1.116764	0.333700	1.301852	-1.222430	0.248636	1.032845	0.246955	2.521639	-1.830333	-2.063137	
4	0.774043	1.116775	0.335206	1.303118	-1.222429	0.248701	1.031807	0.246610	2.521900	-1.830498	-2.062795	
998065	0.047497	0.341638	0.331475	- 1.246114	-1.222428	0.255640	1.029142	0.245722	0.429853	1.018568	0.836084	
998066	0.048839	0.320022	0.331701	1.250655	-1.222437	0.255640	1.029148	0.245736	0.429751	1.013417	0.834438	
998067	0.042350	0.307415	0.330946	1.246852	-1.222430	0.255640	1.029191	0.245701	0.429439	1.002906	0.833936	
998068	0.039433	0.302082	0.330987	1.249505	-1.222432	0.255640	1.029147	0.245727	0.429558	0.999157	0.830504	
998069	-	0.312666	0.330830		-1.222431		1.029141		0.429166	0.987163	0.828046	

```
i_d 0.245722
i_d i_q
                              1.246591 0.255640
u_q motor_speed torque
                                                                            pm stator_yoke stator_tooth stator
998070 rows × 13 columns
In [4]:
from sklearn.preprocessing import Imputer
from sklearn.model_selection import KFold
                                                       #Provides train/test indices to split data in
train/test sets
from sklearn import linear model
from sklearn.metrics import make_scorer
from sklearn import svm
                                  #Support Vector Machine are a set of supervised learning methods
# linear algebra
import numpy as np
# data processing, CSV file I/O (e.g. pd.read csv)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
                            #Visualizing dataset structure that can be used to make visualizations
with multiple plots
from sklearn.linear_model import LinearRegression
from sklearn import neighbors
from math import sqrt
4
```

In [10]:

```
import statsmodels.api as sm
                                                                                                                                                   #provides classes and functions for the estimation of many
 different statistical models
 #Defining dependent and independent variable
X = df['i d']
X=sm.add constant(X)
y = df['motor_speed']
                                                                                                             #Leastsquare Minimization using Ordinary Least Square value along the
lm=sm.OLS(y,X)
 x and v axes
model=lm.fit()
                                                                                                                   #Data Fitting
model.summary()
\verb|C:\Pr| programData\Anaconda3\lib\site-packages\numpy\core\from numeric.py: 2389: Future Warning: Method . | ProgramData\Anaconda3\lib\site-packages\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\numpy\core\num
ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
     return ptp(axis=axis, out=out, **kwargs)
```

Out[10]:

OLS Regression Results

Dep. Variable:	motor_speed	R-squared:		ed:	0.523
Model:	OLS	Adj. R-squared:		ed:	0.523
Method:	Least Squares		F-statist	tic: 1	1.093e+06
Date:	Fri, 03 Apr 2020	Prob (F- statistic):			0.00
Time:	12:17:00	Log-	Likelihoo	od: -1.0	0484e+06
No. Observations:	998070		Α	IC: 2	2.097e+06
Df Residuals:	998068		В	IC: 2	2.097e+06
Df Model:	1				
Covariance Type:	nonrobust				
6 4 .		Ds 101	FO 005	0.0751	
coef sto	lerr t	P> t	[0.025	0.975]	
const -0.0020 0	.001 -2.826	0.005	-0.003	-0.001	
i_d -0.7245 0	.001 -1045.267	0.000	-0.726	-0.723	

Omnibus:	7561.278	Durbin-Watson:	0.003
Prob(Omnibus):	0.000	Jarque-Bera (JB):	5931.452
Skew:	-0.109	Prob(JB):	0.00
Kurtosis:	2.691	Cond. No.	1.01

```
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [11]:
model.params
Out[11]:
const -0.001957
i_d -0.724531
dtype: float64
In [12]:
print("f_pvalue:", "%.4f" % model.f_pvalue)
f_pvalue: 0.0000
In [13]:
#mean square value
model.mse model
Out[13]:
522878.40071765514
In [14]:
model.rsquared
Out[14]:
0.5226043734324983
In [15]:
model.rsquared adj
Out[15]:
0.522603895112758
In [16]:
#Predicted values
model.fittedvalues[0:5]
Out[16]:
0 -0.747914
1 -0.747869
   -0.747824
  -0.750285
```

4 -0.749534 dtype: float64

```
#Real values
y[0:5]

Out[17]:
0 -1.222428
1 -1.222429
2 -1.222428
3 -1.222430
```

In [18]:

4 -1.222429

```
#Model equation
print("Motor speed = " +
    str("%.3f" % model.params[0]) + ' + i_d' + "*" +
    str("%.3f" % model.params[1]))
```

Motor speed = $-0.002 + i_d*-0.725$

Name: motor_speed, dtype: float64

In [19]:

In [20]:

```
from sklearn.metrics import r2_score, mean_squared_error
mse=mean_squared_error(y, model.fittedvalues)
rmse=np.sqrt(mse)
rmse
```

Out[20]:

0.6917872418443057

In [21]:

Out[21]:

0	Real_values	Predicted_values	-0.474514 error
1	-1.222429	-0.747869	-0.474561
2	-1.222428	-0.747824	-0.474604
3	-1.222430	-0.750285	-0.472145
4	-1.222429	-0.749534	-0.472895

In [22]:

```
#Easiest way to learn residual model.resid[0:10]
```

Out[22]:

```
0 -0.474514

1 -0.474561

2 -0.474604

3 -0.472145

4 -0.472895

5 -0.473457

6 -0.473848

7 -0.474130

8 -0.474315

9 -0.474471

dtype: float64
```

In [23]:

```
plt.plot(model.resid);
```


In [24]:

In [25]:

```
from sklearn.model_selection import train_test_split,cross_val_score,cross_val_predict

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_state=42)

training=df.copy()
```

In [26]:

```
lm=sm.OLS(y_train, X_train)
model=lm.fit()
#All coefficients are significant for the model by looking at the p-value. ( P>|t| )
model.summary()
```

Out[26]:

OLS Regression Results

Dep. Variabl	e: motor	_speed	R-squared (uncentered):		0.928		
Mode	el:	OLS		Adj. R-squared (uncentered):			
Metho	: Least Squares			8.582e+05			
Dat	Fri, 03 Apr 2020		Prob (F-statistic):			0.00	
Time	e: 12	: 12:35:22		Log-Likelihood:			
No. Observation	s: 7	798456			AIC:	1.666e+05	
Df Residual	s: 7	798444			BIC:	1.668e+05	
Df Mode	el:	12					
Covariance Type	e: noi	nrobust					
	coef	std err	t	P> t	[0.025	0.975]	
ambient	-0.0503	0.000	-131.429	0.000	-0.051	-0.050	
coolant	0.4091	0.002	218.100	0.000	0.405	0.413	
u_d	-0.1657	0.001	-254.611	0.000	-0.167	-0.164	
u_q	0.5394	0.000	1469.606	0.000	0.539	0.540	
torque	-0.3411	0.005	-70.287	0.000	-0.351	-0.332	
i_d	-0.6580	0.001	-1268.145	0.000	-0.659	-0.657	
i_q	0.1352	0.005	29.630	0.000	0.126	0.144	
pm	0.1061	0.001	170.646	0.000	0.105	0.107	
stator_yoke	-1.6278	0.006	-282.304	0.000	-1.639	-1.617	
stator_tooth	2.3219	0.008	304.592	0.000	2.307	2.337	
stator_winding	-1.1714	0.004	-310.271	0.000	-1.179	-1.164	
profile_id	-1.117e-05	5.6e-06	-1.995	0.046	-2.22e-05	-1.96e-07	
Omnibus:	43472.517	7 Durbin-Watson		2.000			
Prob(Omnibus):	0.000	J	arque-Bera (JB):	169112.669			
Skew:	-0.111		Prob(JB):		0.00		
Kurtosis:	5.244		Cond. No.	1.82	e+03		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.82e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [27]:

```
#Root Mean Squared Error for Train
rmsel=np.sqrt(mean_squared_error(y_train,model.predict(X_train)))
rmsel
```

Out[27]:

0.2685809987166384

In [28]:

```
#Root Mean Squared Error for Test
rmse2=np.sqrt(mean_squared_error(y_test,model.predict(X_test)))
rmse2
```

Out[28]:

0.26823759191828583

```
In [29]:
```

```
#Model Tuning for Multiple Linear Regression
model = LinearRegression().fit(X_train,y_train)
cross_val_scorel=cross_val_score(model, X_train, y_train, cv=10, scoring='r2').mean() #verified
score value for train model
print('Verified R2 value for Training model: ' + str(cross_val_score1))

cross_val_score2=cross_val_score(model, X_test, y_test, cv=10, scoring='r2').mean() #verified score
value for test model
print('Verified R2 value for Testing Model: ' + str(cross_val_score2))
```

Verified R2 value for Training model: 0.9280570425519296 Verified R2 value for Testing Model: 0.9281973950061891

In [30]:

Verified RMSE value for Training model: 0.2685584755640468 Verified RMSE value for Testing Model: 0.26822947422677207

In [31]:

```
#Visualizing for Multiple Linear Regression y values
import seaborn as sns
ax1 = sns.distplot(y_train, hist=False, color="r", label="Actual Value")
sns.distplot(y_test, hist=False, color="b", label="Fitted Values", ax=ax1);
```


In [33]:

```
#*******************************
Regression*************************
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

pca=PCA()
X_reduced_train=pca.fit_transform(scale(X_train))
```

In [34]:

 $\verb|explained_variance_ratio=np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4)* 100)[0:20]|$

```
In [35]:
```

```
plt.bar(x=range(1, len(explained_variance_ratio)+1), height=explained_variance_ratio)
plt.ylabel('percentange of explained variance')
plt.xlabel('principal component')
plt.title('bar plot')
plt.show()
# 7 component is enough for model.
```


In [36]:

```
lm=LinearRegression()
pcr_model=lm.fit(X_reduced_train,y_train)
print('Intercept: ' + str(pcr_model.intercept_))
print('Coefficients: ' + str(pcr_model.coef_))
```

In [37]:

```
#Prediction
y_pred=pcr_model.predict(X_reduced_train)
np.sqrt(mean_squared_error(y_train,y_pred))
```

Out[37]:

0.268553922694838

In [38]:

```
df['motor_speed'].mean()
```

Out[38]:

-0.006335507987812318

In [39]:

```
#R squared r2_score(y_train,y_pred)
```

Out[39]:

0.9280615197697045

In [40]:

```
# Prediction For testing error
pca2=PCA()
X_reduced_test=pca2.fit_transform(scale(X_test))
```

```
pcr_model2=lm.fit(X_test,y_test)

y_pred=pcr_model2.predict(X_reduced_test)

print('RMSE for test model : ' +str(np.sqrt(mean_squared_error(y_test,y_pred))))
```

RMSE for test model : 1.657960891802902

In [41]:

In [44]:

In [43]:

```
plt.plot(RMSE)
plt.xlabel('# of Components')
plt.ylabel('RMSE')
plt.title('PCR Model Tuning for Motor_Speed Prediction');
```


In [45]:

```
\#\#10 component is good for the model because RMSE value is the smallest for this component number. \#\#That's why there is no need to tune the model.
```

In [6]:

```
#************************

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn_preprocessing_import_PolynomialFeatures
```

```
from sklearn.metrics import r2_score, mean_squared_error import pandas as pd
```

In [7]:

```
df=pd.read_csv('C:\\Users\\Mahima Sharu\\pmsm_temperature_data.csv')
X=df.drop("motor_speed", axis=1)
y=df["motor_speed"]
from sklearn.model_selection import train_test_split,cross_val_score,cross_val_predict
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_state=42)
training=df.copy()

quad = PolynomialFeatures (degree = 2)
x_quad = quad.fit_transform(X_train)

X_train,X_test,y_train,y_test = train_test_split(x_quad,y_train, random_state = 0)
plr = LinearRegression().fit(X_train,y_train)

Y_train_pred = plr.predict(X_train)
Y_test_pred = plr.predict(X_test)
print('Polynomial Linear Regression:' ,plr.score(X_test,y_test))
```

Polynomial Linear Regression: 0.9952573854207651

In [10]:

```
#Plotting Residual in Linear Regression
import matplotlib.pyplot as plt
from sklearn import linear model, metrics
#Create linear regression object
reg=linear model.LinearRegression()
#train the model using the train data sets
reg.fit(X train,y_train)
#regression coefficients
print("Coefficients: \n", reg.coef)
#Variance score
print("Variance score: {}".format(reg.score(X test,y test)))
plt.style.use('fivethirtyeight')
#plotting residual errors in training data
plt.scatter(reg.predict(X train), reg.predict(X train)-y train,
            color="green", s=10, label="train data")
#plotting residual errors in test data
plt.scatter(reg.predict(X_test), reg.predict(X_test)-y_test,
           color="blue", s=10, label="test data")
#plot line for zero residual error
plt.hlines(y=0,xmin=-2, xmax=2, linewidth=2)
#plot legend
plt.legend(loc='upper right')
#plot title
plt.title("residual error")
plt.show()
```

${\tt Coefficients:}$

```
[-1.19652298e-12 -1.94751304e-03 8.86767668e-02 -1.51002720e-01 8.46456963e-01 -4.33513690e-01 -4.11436417e-01 2.67644301e-01 1.87790064e-02 -1.25988463e-01 -1.71853359e-01 2.54897914e-01 7.40823232e-04 -4.34110557e-03 -3.24485408e-02 1.34249919e-02 -1.05690117e-04 1.67560244e-01 8.52062538e-03 -1.56724820e-01 -1.89292501e-03 5.46155535e-02 -9.53354640e-03 -1.36632243e-02 2.28461480e-05 6.35750499e-02 -1.63781265e-01 -5.32017845e-02
```

```
-9.07557261e-01 -5.67804823e-02 7.42197288e-01 1.03560119e-01
-4.73717311e-01 3.83839811e-01 -4.06039694e-02 -6.25699752e-04
1.38771773e-01 3.68937154e-02 -8.83271855e-01 2.50808967e-02
1.04897761e+00 -3.74045176e-02 6.23406019e-01 -6.54857489e-01
1.79516489e-01 -1.55441855e-03 -4.59404937e-05 -3.55526844e-01
-3.64804458e-01 2.34531508e-01 -3.94524138e-03 2.36891662e-01
-2.88885594e-01 1.08053335e-01 -3.56503666e-04 7.56339301e-01
7.49643580e-01 -3.33692091e+00 -3.06318572e-01 4.23305718e+00
-5.39802183e+00 2.10899507e+00 -3.84090475e-03 3.82247855e-01
-6.62559679e-01 -3.21686761e-02 2.04955803e-01 -2.70200980e-01
1.16040888e-01 -3.21988930e-04 2.61534726e+00 2.63818883e-01
-3.58802305e+00 4.68164431e+00 -1.89010204e+00 2.42748089e-03
8.90538096e-03 -3.41181602e-01 3.53620032e-01 -1.06780573e-01
2.51351405e-04 8.80366838e-01 -1.46367360e+00 2.09986581e-01
 6.14259740e-04 5.86532523e-01 -1.59061514e-01 3.16715435e-03
 9.53273810e-03 -3.66373716e-03 -5.86982787e-06]
```

Variance score: 0.9952573854207651

In []: