Nominal deterministic Muller automata

Vincenzo Ciancia, Matteo Sammartino

Abstract. We define a class of stream languages, and the corresponding automata, that operate on infinite alphabets. The automata used for recognition are a generalisation of deterministic Muller automata to the case of infinite alphabets. Closure under complement, union and intersection is retained from the classical case.

1 Introduction

2 Background

Notation. As a matter of notation, for X, Y sets, we let $f: X \to Y$ be a total function from X to Y, $f: X \to Y$ be a total injective function and $f: X \to Y$ a partial function. Given a (partial) injective function f, we write $f^{-1}: Y \to X$ for the partial inverse function $\{(y,x) \mid f(x)=y\}$. We let $f|_{X'}$, with $X' \subseteq X$, be the domain restriction of f to X'.

Todo 1 Introduce nominal sets and the notation Orb(X) for the set of orbits of X.

3 Nominal regular ω -languages

Traditionally, automata can be deterministic or non-deterministic. In order to extend previous results on closure under complementation and decidability, one needs to work with deterministic structures; therefore, in this paper, we introduce directly the deterministic structures.

Definition 1. A nominal deterministic Muller automaton (nDMA) is a tuple $(Q, \longrightarrow, q_0, A)$ where:

- Q is an orbit-finite nominal set of states;
- $-q_0 \in Q$ is the initial state;
- $-A \subseteq \mathcal{P}(Orb(Q))$ is a set of sets of orbits, intended to be used as an accepting condition in the style of Muller automata.
- $-\longrightarrow is \ the \ transition \ relation, \ made \ up \ of \ triples \ q_1 \stackrel{l}{\longrightarrow} q_2, \ having \ source \ q_1, \ target \ q_2, \ label \ l \in \mathcal{N};$
- the transition relation is deterministic, that is, for each $q \in Q$ and label $l \in \mathcal{N}$ there is exactly one transition with source q and label l.

4 Finite automata

Definition 2. An history-dependent deterministic Muller automaton (hDMA) is a tuple $(Q, |-|, q_0, \rho_0, \longrightarrow, \mathcal{A})$ where:

- Q is a finite set of states;
- for $q \in Q$, |q| is a finite set of local names (or registers) of state q;
- $-q_0 \in Q$ is the initial state;
- $\rho_0: |q_0| \to \mathcal{N}$ is the initial assignment;
- $-\mathcal{A}\subseteq\mathcal{P}(Q)$ is the accepting condition, in the style of Muller automata;
- $-\longrightarrow is$ the transition relation, made up of quadruples $q_1 \xrightarrow{l} q_2$, having source q_1 , target q_2 , label $l \in |q_1| \uplus \{\star\}$, and history $\sigma: |q_2| \rightarrowtail |q_1| \uplus \{l\}$;
- the transition relation is deterministic in the following sense: for each $q_1 \in Q$, there is exactly one transition with source q_1 and label \star , and exactly one transition with source q_1 and label x for each $x \in |q_1|$.

In the following we fix a HDMA $A = (Q, |-|, q_0, \rho_0, \longrightarrow, \mathcal{A})$. Acceptance of an word $\alpha \in \mathcal{N}^{\omega}$ is defined in terms of the *configuration graph* of A.

Definition 3. The set C of configurations of A consists of the pairs (q, ρ) such that $q \in Q$ and $\rho : |q| \to \mathcal{N}$.

Definition 4. The configuration graph of A is a transition relation over triples $(q_1, \rho_1) \stackrel{a}{\longrightarrow} (q_2, \rho_2)$ where the source and destination are configurations, and $a \in \mathcal{N}$. There is one such transition if and only if there is a transition $q_1 \stackrel{l}{\longrightarrow} q_2$ in A and either of the following happens:

$$-l \in |q_1|, \ \rho_1(l) = a, \ and \ \rho_2 = \rho_1 \circ \sigma; \\ -l = \star, \ a \notin \Im(\rho_1), \ \rho_2 = (\rho_1 \circ \sigma)[a/_{\sigma^{-1}(\star)}].$$

The definition deserves some explanation. Fix a configuration (q_1, ρ_1) . Say that name $a \in \mathcal{N}$ is assigned to the register $i \in |q_1|$ if $\rho_1(i) = a$. When a is not assigned to any register, it is fresh for a given configuration. Then the transition $q_1 \stackrel{l}{\longrightarrow} q_2$, under the assignment ρ_1 , consumes a symbol as follows: either $l \in |q_1|$ and a is the name assigned to register l, or l is \star and a is fresh. The destination assignment ρ_2 is defined using σ as a binding between local registers of q_2 and local registers of q_1 , therefore composing σ with ρ_1 and eventually associating a freshly received name, whenever \star is in the image of σ .

We write $(q_1, \rho_1) \stackrel{v}{\Longrightarrow} (q_2, \rho_2)$ for the path in the configuration graph that spells v. Notice that, being A deterministic, there can only be one such path. Given a sequence P of transitions in A, we write $(q_1, \rho_1) \stackrel{v}{\Longrightarrow}_P (q_2, \rho_2)$ whenever $(q_1, \rho_1) \stackrel{v}{\Longrightarrow} (q_2, \rho_2)$ and such path is yielded by P.

Now we analyze properties of *loops*, i.e. sequences of transitions whose initial and final state coincide. Consider a loop $L := p_0 \xrightarrow[\sigma_0]{l_0} p_1 \xrightarrow[\sigma_1]{l_1} \dots \xrightarrow[\sigma_{n-1}]{l_{n-1}} p_0$ in A. Let \underline{i} denote $i \mod n$. Let $\widehat{\sigma}_i \colon |p_{i+1}| \rightharpoonup |p_i|$ be the partial functions given by

$$\widehat{\sigma}_i := \sigma_i \setminus \{(x, y) \in \sigma_i \mid y = \star\} \qquad (i = 1, \dots, n)$$

Intuitively, these are the maps between local names induced by σ_i ignoring allocations. Let $\widehat{\sigma}$: $|p_0| \rightharpoonup |p_0|$ be their composition $\widehat{\sigma}_0 \circ \widehat{\sigma}_1 \cdots \circ \widehat{\sigma}_n$. We define the set I as the greatest subset of $dom(\widehat{\sigma})$ such that

$$\widehat{\sigma}(I) = I$$
 ,

i.e. I contains those names that are just permuted along the loop. We denote by T all the other names, namely

$$T:=|p_0|\setminus I$$
.

The following lemma says that names stored in T are eventually forgotten.

Lemma 1. Given any $x \in T$, let $\{x_j\}_{j \in J_x}$ be the smallest sequence that satisfies the following conditions

$$x_0 = x \qquad x_{i+1} = \sigma_{\underline{i}}^{-1}(x_i)$$

where $i+1 \in J_x$ only if $\sigma_i^{-1}(x_i)$ is defined. Then J_x has finite cardinality.

Proof. First of all, observe that this sequence is such that $x_{kn} \neq x_{k'n}$, for all $k, k' \geq 0$ such that $k \neq k'$. In fact, suppose there are $x_{kn} = x_{k'n}$, with k < k'. Then we should have $x_{kn-1} = x_{k'n-1}$, because σ_n is injective. In general, $x_{kn-l} = x_{k'n-l}$, for $0 \leq l \leq kn$, therefore $x = x_0 = x_{(k'-k)n}$, which implies $x \in I$, against the hypothesis $x \in T$.

Now, suppose that $J_x = \mathbb{N}$. Then we would have an infinite subsequence $\{x_{kn}\}_{k\in\mathbb{N}}$ of pairwise distinct names that belong to $|p_0|$, but $|q_0|$ is finite, a contradiction.

Lemma 2. Given a path, there is always a word that follows that path.

Lemma 3. Given any $\rho: |p_0| \to \mathcal{N}$:

1. there is $\theta \geq 1$ such that, for all v_1, \ldots, v_{θ} such that

$$(p_0, \rho) \xrightarrow{v_1}_L (p_0, \rho_1) \xrightarrow{v_2}_L \dots \xrightarrow{v_{\theta}}_L (p_0, \rho_{\theta})$$

we have $\rho_{\theta}|_{I} = \rho|_{I}$;

2. there is $\epsilon \geq 1$ such that, for all $\gamma \geq \epsilon$, there are v_1, \ldots, v_{γ} such that

$$(p_0, \rho) \xrightarrow{v_1}_L (p_0, \rho_1) \xrightarrow{v_2}_L \dots \xrightarrow{v_{\gamma}}_L (p_0, \rho_{\gamma});$$

and $\rho_0(T) \cap \rho_{\gamma}(T) = \emptyset$. Fix: $\rho_0(|p_0|) \cap \rho_{\gamma}(T) = \emptyset$.

3. there is ζ such that, for any $\rho': |p_0| \to \mathcal{N}$ with $\rho(T) \cap \rho'(T) = \emptyset$, there are v_1, \ldots, v_{ζ} such that

$$(p_0, \rho) \xrightarrow{v_1}_L (p_0, \rho_1) \xrightarrow{v_2}_L \dots \xrightarrow{v_{\zeta}}_L (p_0, \rho_{\zeta})$$

and $\rho_{\zeta}|_{T} = \rho'|_{T}$.

Caratterizzare I anche come l'insieme dei registri che prima o poi vengono mappati su loro stessi?

Proof.

- 1. Notice that $\widehat{\sigma}|_{I}$ is a permutation, so by Langrange's theorem there is θ such that $\widehat{\sigma}|_{I}^{\theta} = id_{I}$. The claim follows from $\rho_{\theta}|_{I} = \rho|_{I} \circ \widehat{\sigma}|_{I}^{\theta} = \rho|_{I}$.
- 2. Let \mathcal{J} be

$$\mathcal{J} := \max\{|J_x| \mid x \in T\} + 1.$$

This gives the number of transitions it takes to forget all the names stored in T. Let ϵ be $\lceil \frac{\mathcal{I}}{n} \rceil$. For any $\gamma \geq \epsilon$, we can choose v_1, \ldots, v_{γ} as any γ -tuple of words that are recognized by the loop and such that, whenever $l_j = \star$, then $(v_i)_j$ is different from $\rho(|p_0|)$ and all the previous symbols in v_1, \ldots, v_i , for all $i = 1, \ldots, \gamma$ and $j = 1, \ldots, n$. The final assignment ρ_{γ} clearly satisfies the statement: none of the names in $\rho_{\gamma}(T)$ come from old names in $\rho(T)$, as they are all forgotten and replaced by fresh ones.

3. For each name $x \in T$ define a tuple (x, i, j) where i is the index of the transition where x is allocated and j is the number of loop traversals needed to allocate it, i.e. j is the smallest integer such that there are x_{jn}, \ldots, x_1 defined as follows

$$x_{jn} = x$$
 $\sigma_{k+1}(x_{k+1}) = x_k$ $\sigma_i(x_1) = \star$

Let X be the set of such tuples and let $\zeta := \max\{j \mid (x, i, j) \in X\}$. Then we can construct v_1, \ldots, v_{ζ} as follows

$$(v_k)_i := \begin{cases} y \text{ fresh} & l_i = \star \land i \notin \pi_2(X) \\ \rho'(x) & (x, i, \zeta - k + 1)^1 \in X \\ \rho(l_0) & l_0 \neq \star \\ \rho_{k-1}(l_i) & i > 0, l_i \neq \star \end{cases}$$

Lemma 4. Given a transition

$$(p_1, \rho_1) \stackrel{a}{\longrightarrow} (p_2, \rho_2)$$

we have $\rho_2(|p_2|) \subseteq \rho(|p_1|) \cup \{a\}.$

where by y fresh we mean different from elements of $\rho(|p_0|) \cup \rho'(|p_0|)$ and previous symbols in v_1, \ldots, v_k . The second case is allowed by $\rho(T) \cap \rho'(T) = \emptyset$ and lemma 4. Then ρ_{ζ} satisfies the statement by construction.

Dire meglio!

Proposition 1. For any $\hat{\rho}: |p_0| \to \mathcal{N}$ there are v_1, \ldots, v_n such that

$$(p_0, \hat{\rho}) \xrightarrow{v_1}_L (p_0, \hat{\rho}_1) \xrightarrow{v_2}_L \cdots \xrightarrow{v_n}_L (p_0, \hat{\rho})$$
.

Proof. We can take any path of the form

$$(p_0, \hat{\rho}) \xrightarrow{v_1}_L (p_0, \hat{\rho}_1) \xrightarrow{v_2}_L \cdots \xrightarrow{v_{\gamma}}_L (p_0, \hat{\rho}_{\gamma}) \xrightarrow{v_{\gamma+1}}_L \cdots \xrightarrow{v_{\gamma+\zeta}}_L (p_0, \hat{\rho}_{\gamma+\zeta})$$

where the subpath from $(p_0, \hat{\rho})$ to $(p_0, \hat{\rho}_{\gamma})$ is given by 2 of lemma 3 and the remaining subpath is given by 3 of the same lemma, with $\rho = \hat{\rho}_{\gamma}$ and $\rho' = \hat{\rho}$. The only constraint about γ is that there should be a positive integer λ such that $\gamma + \zeta = \lambda \theta$, where θ is given by 1 of lemma 3. Thanks to the lemma we have $\hat{\rho}_{\gamma+\zeta}|_T = \rho|_T$ and $\hat{\rho}_{\gamma+\zeta}|_I = \rho|_I$ which, together with $I \cup T = |p_0|$, imply $\hat{\rho}_{\gamma+\zeta} = \hat{\rho}$.

Theorem 1. Every non-empty language \mathcal{L} recognized by a HDMA A has an ultimately periodic fragment.

Proof. Take any string α recognized by A and let $I = Inf(q_0, \alpha)$. A run for α in the configuration graph must begin with

Spiegare meglio perchè "must"?

$$(q_0, \rho_0) \stackrel{u}{\Longrightarrow} (q_1, \rho_1) \stackrel{v}{\Longrightarrow}_P (q_1, \rho_2)$$

where $q_1 \in I$ and $(q_1, \rho_1) \stackrel{v}{\Longrightarrow}_P (q_2, \rho_2)$ is a path, induced by some sequence of transitions P in A, that goes through all the states in I. Since P is a loop, we can replace the second path with a new one given by proposition 1

$$(q_0, \rho_0) \xrightarrow{u} (q_1, \rho_1) \xrightarrow{v_1}_P \cdots \xrightarrow{v_n}_P (q_1, \rho_1)$$
.

This subpath can be traversed any number of times, so we have $u(v_1 \dots v_n)^{\omega} \in \mathcal{L}$.

- 5 Boolean operations
- 6 Ultimately-periodic determinacy
- 7 Nominal regularity of looping fragments
- 8 Decidability

Todo 2 Quick introduction to [1].

References

1. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Coalgebraic Methods in Computer Science. Volume 7399 of LNCS. Springer (2012) 90–108