SEMAINE DU 20/09 AU 24/09

1 Cours

Séries numériques

Révisions Nature d'une série. Somme partielle/reste. Divergence grossière. Séries usuelles : Riemann, géométrique, exponentielle. Séries télescopiques ($\sum u_n - u_{n-1}$ converge si et seulement si (u_n) converge). Convergence absolue (implique la convergence). Convergence d'une série par comparaison (inégalité, domination, négligeabilité, équivalence).

Compléments Règle de d'Alembert. Critère spécial des séries alternées (convergence, signe du reste et majoration de la valeur absolue du reste). Comparaison série/intégrale. Si $f: [a, +\infty[\to \mathbb{R}_+ \text{ continue par morceaux et décroissante, alors } \sum_{n=1}^n f(t) dt - f(n)$ converge. Sommation des relations de comparaison.

2 Méthodes à maîtriser

- Utiliser une série télescopique pour déterminer la somme d'une série. Par exemple, dans le cas d'une série $\sum F(n)$ où F est une fraction rationnelle (décomposition en éléments simples).
- Utiliser l'inégalité de Taylor-Lagrange pour déterminer la convergence et la somme d'une série de Taylor.
- Déterminer la nature d'une série par comparaison à une série de nature connue (inégalité, domination, négligeabilité, équivalence).
- Utiliser les séries télescopiques : pour montrer qu'une suite (u_n) converge, il suffit de montrer que $\sum u_n u_{n-1}$ converge et vice versa.
- Encadrer une somme partielle ou un reste à l'aide d'une intégrale.
- Pour obtenir un équivalent du reste R_n ou de la somme partielle S_n d'une série du type $\sum f(n)$, on peut
 - soit encadrer le reste ou la somme partielle à l'aide d'intégrales;
 - soit
 - * déterminer une primitive F de f;
 - * montrer que $f(n) \sim F(n) F(n-1)$;
 - * sommer cette relation d'équivalence (série télescopique);
 - * en déduire $S_n \sim F(n)$ ou $R_n \sim -F(n)$ suivant le cas (divergent/convergent).
- · Pour montrer la convergence/divergence d'une série de termes de signe non constant, on peut
 - montrer la convergence absolue;
 - utiliser le critère spécial des séries alternées;
 - utiliser un DL pour écrire le terme de la série comme somme du terme d'une série alternée et de termes de séries convergentes/divergentes (ex : $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$).

3 Questions de cours

Constante γ d'Euler Montrer qu'il existe un réel γ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

Séries alternées Soit (u_n) une suite décroissante de limite nulle. Montrer que $\sum (-1)^n u_n$ converge.

Séries de Riemann Déterminer un équivalent du reste ou de la somme partielle de $\sum \frac{1}{n^{\alpha}}$ suivant que cette série converge ou diverge.

Banque CCP BCCP 5, 6, 7, 46