18.404/6.840 Lecture 9

Last time:

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\rm TM}}$ is T-unrecognizable
- The Reducibility Method, preview

Today:

- The Reducibility Method for proving undecidability and T-unrecognizability.
- General reducibility
- Mapping reducibility

Posted: Problem Set 2 solutions and Problem Set 3. *TAs are available to answer questions during chat-breaks!*

The Reducibility Method

If we know that some problem (say $A_{\rm TM}$) is undecidable, we can use that to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Recall Theorem: $HALT_{\rm TM}$ is undecidable Proof by contradiction, showing that $A_{\rm TM}$ is reducible to $HALT_{\rm TM}$:

Assume that $HALT_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $HALT_{TM}$.

Construct TM S deciding A_{TM} .

 $S = \text{"On input } \langle M, w \rangle$

- 1. Use R to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*. If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

Reducibility – Concept

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that $A_{\rm NFA}$ is reducible to $A_{\rm DFA}$.

Example 3: From Pset 2, *PUSHER* is reducible to $E_{\rm CFG}$. (Idea- Convert push states to accept states.)

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

this is the form we will use

Check-in 9.1

Is Biology reducible to Physics?

- (a) Yes, all aspects of the physical world may be explained in terms of Physics, at least in principle.
- (b) No, some things in the world, maybe life, the brain, or consciousness, are beyond the realm pf Physics.
- (c) I'm on the fence on this question!

$E_{\rm TM}$ is undecidable

Let $E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: $E_{\rm TM}$ is undecidable

Proof by contradiction. Show that $A_{\rm TM}$ is reducible to $E_{\rm TM}$.

Assume that $E_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $E_{\rm TM}$.

Construct TM S deciding A_{TM} .

$$S =$$
"On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run *M* on *w*
 - 3. Accept if M accepts."
- 2. Use R to test whether $L(M_w) = \emptyset$
- 3. If YES [so *M* rejects *w*] then *reject*. If NO [so *M* accepts *w*] then *accept*.

 M_w works like M except that it always rejects strings x where $x \neq w$.

So
$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

Mapping Reducibility

Defn: Function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM Fwhere F on input w halts with f(w) on its tape, for all strings w.

Defn: A is mapping-reducible to B $(A \leq_m B)$ if there is a computable function f where $w \in A$ iff $f(w) \in B$.

Example: $A_{\text{TM}} \leq_{\text{m}} E_{\text{TM}}$

The computable reduction function f is $f(\langle M, w \rangle) = \langle M_w \rangle$

Because $\langle M, w \rangle \in A_{\text{TM}}$ iff $\langle M_w \rangle \in E_{\text{TM}}$ (M accepts w iff $L(\langle M_w \rangle) \neq \emptyset$) Recall TM $M_w =$ "On input x

- 1. If $x \neq w$, reject.
- 2. else run *M* on *w*
- 3. *Accept* if *M* accepts."

Mapping Reductions - properties

Theorem: If $A \leq_{\mathrm{m}} B$ and B is decidable then so is A

Proof: Say TM R decides B.

Construct TM *S* deciding *A*:

$$S =$$
 "On input w

- 1. Compute f(w)
- 2. Run R on f(w) to test if $f(w) \in B$
- 3. If R halts then output same result."

Corollary: If $A \leq_{\mathrm{m}} B$ and A is undecidable then so is B

Theorem: If $A \leq_{\mathrm{m}} B$ and B is T-recognizable then so is A

Proof: Same as above.

Corollary: If $A \leq_{\mathrm{m}} B$ and A is T-unrecognizable then so is B

Check-in 9.2

Suppose $A \leq_{\mathrm{m}} B$.

What can we conclude?

Check all that apply.

- (a) $B \leq_{\mathrm{m}} A$
- (b) $\overline{A} \leq_{\mathbf{m}} \overline{B}$
- (c) None of the above

Mapping vs General Reducibility

Mapping Reducibility of A to B: Translate A-questions to B-questions.

- A special type of reducibility
- Useful to prove T-unrecognizability

(General) Reducibility of A to B: Use B solver to solve A.

- May be conceptually simpler
- Useful to prove undecidability

Noteworthy difference:

- A is reducible to \overline{A}
- \overline{A} may not be mapping reducible to \overline{A} . For example $\overline{A}_{TM} \not \leq_{\operatorname{m}} A_{TM}$

Check-in 9.3

We showed that if $A \leq_{\mathrm{m}} B$ and B is T-recognizable then so is A.

Is the same true if we use general reducibility instead of mapping reducibility?

- (a) Yes
- (b) No

Reducibility – Templates

To prove *B* is undecidable:

- Show undecidable A is reducible to B. (often A is $A_{\rm TM}$)
- Template: Assume TM R decides B.

 Construct TM S deciding A. Contradiction.

To prove *B* is T-unrecognizable:

- Show T-unrecognizable A is mapping reducible to B. (often A is A_{TM})
- Template: give reduction function f.

$E_{\rm TM}$ is T-unrecognizable

Recall $E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is T-unrecognizable

Proof: Show $A_{\text{TM}} \leq_{\text{m}} E_{\text{TM}}$

Reduction function: $f(\langle M, w \rangle) = \langle M_w \rangle$ Recall TM $M_w =$ "On input x

Explanation: $\langle M, w \rangle \in A_{\text{TM}}$ iff $\langle M_w \rangle \in E_{\text{TM}}$

M rejects w iff $L(\langle M_w \rangle) = \emptyset$

- 1. If $x \neq w$, reject.
- 2. else run *M* on *w*
- 3. *Accept* if *M* accepts."

$\overline{EQ_{\mathrm{TM}}}$ and $\overline{EQ_{\mathrm{TM}}}$ are T-unrecognizable

$$EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: Both EQ_{TM} and $\overline{EQ_{\mathrm{TM}}}$ are T-unrecognizable

Proof: (1)
$$A_{\text{TM}} \leq_{\text{m}} \frac{EQ_{\text{TM}}}{EQ_{\text{TM}}}$$
 (2) $A_{\text{TM}} \leq_{\text{m}} \frac{EQ_{\text{TM}}}{EQ_{\text{TM}}}$

For any $w \mid \text{let } T_w = \text{"On input } x$ $T_w \text{ acts on all inputs the way } M \text{ acts on } w.$

- 1. Ignore x.
- 2. Simulate M on w."
- (1) Here we give f which maps $A_{\rm TM}$ problems (of the form $\langle M, w \rangle$) to $EQ_{\rm TM}$ problems (of the form $\langle T_1, T_2 \rangle$).

$$f(\langle M, w \rangle) = \langle T_w, T_{\text{reject}} \rangle$$
 T_{reject} is a TM that always rejects.

(2) Similarly $f(\langle M, w \rangle) = \langle T_w, T_{\text{accept}} \rangle$ T_{accept} always accepts.

Reducibility terminology

Why do we use the term "reduce"?

When we reduce A to B, we show how to solve A by using B and conclude that A is no harder than B. (suggests the $\leq_{\rm m}$ notation)

Possibility 1: We bring A's difficulty down to B's difficulty.

Possibility 2: We bring B's difficulty up to A's difficulty.

Quick review of today

- 1. Introduced The Reducibility Method to prove undecidability and T-unrecognizability.
- 2. Defined mapping reducibility as a type of reducibility.
- 3. $E_{\rm TM}$ is undecidable.
- 4. $E_{\rm TM}$ is T-unrecognizable.
- 5. EQ_{TM} and $\overline{EQ_{\mathrm{TM}}}$ are T-unrecognizable.