Jan/Mac 2007 Intake Paper 1 (FM1) [Examination date: 27 March 2008]

1.
$$2^{n} \cdot 3^{n+2} + 2 \cdot 5^{2n+1}$$
 is divisible by 19 for all positive integers n .

2. $\frac{1}{2(r+1)} - \frac{1}{2(r+3)}$; $\frac{5}{5} - \frac{1}{n+2} - \frac{1}{n+3}$

3. $25u^3 - 111u^2 + 154u - 73 = 0$

4. $\frac{8}{105}$

5. $Ae^{-2x} + Be^{-3x} - \frac{1}{2}\cos x + \frac{5}{2}\sin x$

6. $\pm \sqrt{2} \pm i\sqrt{2}$; $(\sqrt{2} - 1)\pm i\sqrt{2}$ $5 - 2\sqrt{2}$, $-(\sqrt{2} + 1)\pm i\sqrt{2}$ $5 + 2\sqrt{2}$

a) $24x - 7y - 13z = 79$; (b) $7x - 9y + 6z = -35$;

7. (c) $\mathbf{r} = \begin{bmatrix} 0 \\ -\frac{19}{159} \\ -\frac{159}{159} \\ -\frac{9.56}{159} \end{bmatrix} + \lambda \begin{bmatrix} 159 \\ 235 \\ 167 \end{bmatrix}$ OR $\mathbf{r} = \begin{bmatrix} \frac{218}{235} \\ 0 \\ -\frac{1393}{235} \\ 167 \end{bmatrix}$ OR $\mathbf{r} = \begin{bmatrix} \frac{956}{167} \\ 1393 \\ 167 \\ 167 \end{bmatrix}$

a) $(0, -1), (-0.62, 0)$ and $(1.62, 0)$

b) $y = 2$

c) Minimum $(0, -1)$ and Maximum $(-2, 5)$

9. $\frac{6}{5}\pi a^2 \cdot \frac{15}{256}\pi a$

10. $\begin{bmatrix} y & \frac{7}{4} & \frac{15}{2} & \frac{1}{2} &$