Week 7 Exercises

The questions below are due on Sunday October 22, 2017; 11:00:00 PM.

You are not logged in.

If you are a current student, please Log In (https://introml.mit.edu/fall17/exercises/ex07?loginaction=login) for full access to this page.

- Videos
 - Week 7, Lecture 1 (https://introml.mit.edu/lecture_videos/lec_week7_part1.mp4)
 - Week 7, Lecture 2 (https://introml.mit.edu/lecture_videos/lec_week7_part2.mp4)
- Class Notes for Week 7 (https://introml.mit.edu/__STATIC__/fall17/exercises/ex07/Wk7_notes.pdf)
- Required Exercises

1) PREDICT WITH STEPS

Consider the following data set:

We will be looking at the behavior of the following simple network:

1 of 4 7/30/2018, 4:14 PM

Assume each unit has the step activation function

$$f(z) = egin{cases} 1 & ext{if } z > 0 \ 0 & ext{otherwise} \end{cases}$$

Let the weights in the first layer be be: $w_{0,1}=-0.5$, $w_{1,1}=1$, $w_{2,1}=0$ $w_{0,2}=1.5$, $w_{1,2}=-1$, $w_{2,2}=0$

1. Enter a matrix where each column represents the outputs of the hidden units $(f(z_1))$ and $f(z_2)$ for each of the input vectors in x.

2. Pick weights for the second layer v_0, v_1, v_2 so that the desired outputs are predicted correctly.

Enter a Python list of 3 numbers
$$[v_0, v_1, v_2]$$
 $[-1., 1., 1.]$

2) LEARN

Assume a single linear unit with two inputs, x_1 and x_2 . The output of the unit is z where

$$z = v_1 x_1 + v_2 x_2 + v_0$$

2 of 4 7/30/2018, 4:14 PM

Assume the initial weights are $v_0=1, v_1=1, v_2=1$, and the learning rate is 0.5 (not usually a good idea, but okay for now).

The current training example is $x^{(i)} = [1, 2]^T$, $y^{(i)} = -1$.

1. What is the output value z, given this input and the current weights?

2. What will the values of weights v_0, v_1, v_2 be after one step of stochastic gradient descent using SVM loss with $\lambda=0$?

Enter a Python list of 3 numbers
$$[v_0, v_1, v_2]$$
 $[0.5, 0.5, 0.1]$

3. What would the output value z be, for this same input x, with these new weights?

```
Enter a number

1
```

4. What would happen to the v_i if we did another SGD update, for that same point, with learning rate 0.5, as before?

Enter a Python list of 3 numbers
$$[v_0, v_1, v_2]$$
 $[\ 0., \ 0., \ -1.]$

5. Now what would the output be?

3 of 4 7/30/2018, 4:14 PM

Enter a number	
-2	
	,

6. What if we do one more update, for that same point?

Enter a Python list of 3 numbers
$$[v_0, v_1, v_2]$$
 $[-2.5, -2.5, -3.]$

4 of 4