Nombres réels

I \mathbb{N} et \mathbb{Z}

I.1 Les entiers naturels

Les entiers naturels sont définis par induction structurelle, on a 0, et on a la relation successeur S(n) = n + 1.

On a l'axiome de récurrence : $(P(0) \land (\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)) \Longrightarrow (\forall n \in \mathbb{N}, P(n)))$

Propriété fondamentale de \mathbb{N} : Tout sous ensemble non vide et majoré de \mathbb{N} admet un maximum.

Il en découle que tout sous ensemble non vide de $\mathbb N$ admet un minimum.

La propriété fondamentale de N est équivalente à l'axiome de récurrence.

De plus,
$$\mathbb N$$
 est doté d'une $\left\{egin{array}{l} + \ commutative\ et\ associative\ \times\ commutative\ ,\ associative\ et\ distribuable\ sur\ le\ + \ le\ ,\ le$

I.2 Les entiers relatifs

Pour construire \mathbb{Z} on symétrise tout $n \in \mathbb{N}$.

Les opérations + et \times se prolongent à \mathbb{Z} , ainsi \mathbb{Z} est un **anneau** (+ associative, commutative avec un neutre 0 et il existe -a et une \times associative, distribuable sur + et avec un neutre 1).

On dit aussi que (A, +) est un groupe abélien.

$\Pi \mathbb{O}$

II.1 Construction de $\mathbb Q$

La classe $\overline{(a,b)}$ du couple (a,b) est noté $\frac{a}{b}$ avec $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$.

Les lois définies sur $\mathbb{Z} \times \mathbb{N}^*$ telles que (a,b)+(c,d)=(ad+bc,bd) et $(a,b)\times (c,d)=(ac,bd)$ se prolongent, ainsi on a : $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ et $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$.

Propriétés et lois de \mathbb{Q} :

- + et × commutatives et associatives
- \times distribuable sur le +
- $0 = \frac{0}{1}$ est neutre pour +, et $\frac{a}{b}$ admet un opposé $-\frac{a}{b}$
- $\frac{a}{b} = 0$ si et seulement si a = 0• $1 = \frac{1}{1}$ neutre pour \times , tout $\frac{a}{b} \neq 0$ admet un inverse $\frac{b}{a}$

Ainsi \mathbb{Q} est un **corps**.

Si on a $q=\frac{a}{b}$ et $r=\frac{c}{d}$ (avec $(b,d)\in (\mathbb{N}^*)^2$), alors le signe de ad-bc est indépendant des (a,b,c,d)choisis pour q et r.

Ainsi $q \le r$ si et seulement si $ad - bc \le 0$. La relation \le ainsi définie est un **ordre total** sur \mathbb{Q} .

III \mathbb{R}

III.1 Existence de nombres non rationnels

Soit $(x,y) \in (\mathbb{R}^*)^2$. On dit que x et y sont **incommensurables** si $\frac{x}{y}$ est irrationel.

Si n n'est pas un carré parfait, \sqrt{n} est irrationnelle.

III.2 L'ensemble ordonné $\mathbb R$

On obtient \mathbb{R} en "bouchant" les trous de \mathbb{Q} , on considère $E = \{x \in \mathbb{Q} \mid x^2 \leq 2\}$, ainsi E est borné et n'admet pas de borne supérieure dans \mathbb{Q} . En construisant \mathbb{R} , on comble ces trous en complétant \mathbb{Q} des bornes supérieures de tous les ensembles non vides bornés.

Propriété fondamentale de \mathbb{R} : Tout sous ensemble E non vide et majoré de \mathbb{R} admet une borne supérieure dans \mathbb{R} .

On en déduit que Tous sous ensemble E non vide et majoré de \mathbb{R} admet une borne inférieure dans \mathbb{R} .

III.3 Valeurs absolue et partie positive et négative

On a
$$|x|$$
 la **valeur absolue** de x , définie par $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

Elle est utile notamment pour majorer et minorer A par B et -B. En effet, $-B \le A \le B$ est équivalent à $|A| \le B$.

On note x^+ la **partie positive** de x tel que $x^+ = \max(0, x)$ et on note x^- la **partie négative** de x tel que $x^- = -\min(0, x) = \max(0, -x)$.

Et on a les propriétés suivantes :

- $x^+ \ge 0$ et $x^- \ge 0$
- $x^+ = 0$ ou $x^- = 0$
- $x = x^+ x^-$
- $|x| = x^+ + x^-$

III.4 Rappels sur les opérations et les inégalités

La relation d'ordre sur $\mathbb R$ vérifie :

- C'est une relation d'ordre total
- $\bullet \ \forall (x,y) \in \mathbb{R}^2, x \leq y \Longleftrightarrow x-y \in \mathbb{R}^+$
- $\forall (x,y) \in (\mathbb{R}^+)^2, x+y \geq 0$ avec égalité si x=y=0
- $\forall (x,y) \in (\mathbb{R}^+)^2, xy \geq 0$

On a $x, y \in \mathbb{R}$, ainsi d'après la **règle des signes** on a :

- Si $x \ge 0$ et $y \le 0$ ou $x \le 0$ et $y \ge 0$, alors $xy \le 0$
- Si $x \le 0$ et $y \le 0$ alors $xy \ge 0$

Soit $a, b, c, d \in \mathbb{R}$, alors :

- Si $a \leq b$ et $c \leq d,$ $a+c \leq b+d$ avec égalité a=b et c=d
- Si $a \le b$ alors $-b \le -a$
- Si a < b et c < d, a d < b c
- Si $a \ge 0$ et $c \le d$, alors $ac \le ad$
- Si $a \le 0$ et $c \le d$, alors $ac \ge ad$
- Si $0 < a \le b$ et $0 < c \le d$, alors $0 < ac \le bd$ avec égalité si et seulement si a = b et c = d

• Sinon pour les produits d'inégalités on se ramène à des raisonnements sur la valeur absolue avec ajout des signes ensuite.

Pour obtenir des inégalités on peut :

- Tout passer du même côté
- Procéder par étude de fonctions
- Utiliser une propriété de convexité ou de concavité
- Utiliser les inégalités classiques

Soit $a, b \in \mathbb{R}$, on a :

- $|a+b| \le |a| + |b|$ (inégalité triangulaire)
- $|a+b| \ge ||a| |b||$ (deuxième inégalité triangulaire)

Il en découle que $\|a|-|b\|\leq |a-b|\leq |a|+|b|$ et que $|\sum_{i\in I}a_i|\leq \sum_{i\in I}|a_i|$

On pose $x_1,...,x_n,y_1,...,y_n$, alors d'après l'inégalité de Cauchy-Schwarz on a :

$$|\sum_{i=1}^{n} x_i y_i|^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right)$$

avec égalité si et seulement si les vecteurs $(x_1,...,x_n)$ et $(y_1,...,y_n)$ sont colinéaires.

On admet l'inégalité arithmético-géométrique, ainsi pour tout $X \in (\mathbb{R}^{+*})^n$ on a :

$$\frac{1}{n}(x_1 + \dots + x_n) \le \sqrt[n]{x_1 \dots x_n}$$

III.5 Division euclidienne dans \mathbb{R}

Soit $x, y \in \mathbb{R}$ tel qu'il existe $n \in \mathbb{N}$ tel que x < ny d'après la **propriété d'Archimède**. Elle est reformulable en disant que pour tout y > 0, la suite $(ny)_{n \in \mathbb{N}}$ tend vers $+\infty$ lorsque n tend vers $+\infty$.

Pour tout x > 0 et tout y > 0, il existe un rationnel r tel que 0 < rx < y.

Soit $x,y\in\mathbb{R}^{+*}$, il existe un unique $n\in\mathbb{N}$ tel que $ny\leq x<(n+1)y$. Et il existe un unique $n'\in\mathbb{N}$ tel que $n'x< x\leq (n'+1)y$. Sauf quand $\frac{x}{y}$ est entier, n=n', le résulat se généralise à x négatif.

On a la division euclidienne, ainsi :

- Soit $x \in \mathbb{R}$ et $y \in \mathbb{R}^{+*}$, il existe un unique entier n et un unique réel $r \in [0, y[$ tel que x = ny + r
- Soit $x \in \mathbb{R}$ et $y \in \mathbb{R}^*$, il existe un unique entier n et un unique réel $r \in [0, |y|]$ tel que x = ny + r

III.6 Densité de \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R}

Un sous ensemble E de $\mathbb R$ est **dense** dans $\mathbb R$, si pour tout $(x,y) \in \mathbb R^2$ tel que x < y, il existe $z \in E$ tel que x < z < y.

Les ensembles \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} .

III.7 Partie entière, partie décimale

La **partie entière** d'un réel x, notée $\lfloor x \rfloor$ est le quotient de la division euclidienne de x par 1.

Le reste de cette division est parfois noté $\{x\}$, appellé **partie décimale**.

Soit $x \in \mathbb{R}$,

- $|x| = \max(\{n \in \mathbb{Z} \mid n < x\})$
- $|x| = \min(\{n \in \mathbb{Z} \mid n > x\}) 1$

- |x| est l'unique entier tel que $|x| \le x < |x| + 1$
- |x| est l'unique entier tel que $x-1 < |x| \le x$

On définit parfois aussi la partie entière par excès, notée [x], comme étant le plus petit entier supérieur ou égal à $x : \lceil x \rceil = \min(\{n \in \mathbb{Z} \mid n \ge x\}).$

On a alors $x \in \mathbb{R}$,

- $\begin{array}{l} \bullet \ \lceil x \rceil = \left\{ \begin{smallmatrix} \lfloor x \rfloor + 1 \text{ si } x \notin \mathbb{Z} \\ \lfloor x \rfloor \text{ si } x \in \mathbb{Z} \end{smallmatrix} \right. \\ \bullet \ \lfloor -x \rfloor = -\lceil x \rceil \end{aligned}$

On a les propriétés suivantes pour la partie entière :

- $\forall x, y \in \mathbb{R}, |x| + |y| + 1 \ge |x + y| > |x| + |y|$
- $\forall x, y \in \mathbb{R}^+, |xy| \ge |x||y|$
- $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, |x+n| = |x| + n$

III.8 Représentation décimale

On note $\mathbb D$ l'ensemble des **nombres décimaux**, c'est à dire des réels x tel qu'il existe $n \in \mathbb N$ tel que $10^n x$ est entier.

Étant donné $n \in \mathbb{N}$, on note \mathbb{D}_n l'ensemble des décimaux tel que $10^n x \in \mathbb{Z}$.

Soit $x \in \mathbb{R}$, $n \in \mathbb{N}^*$, il existe un unique élément $y \in D_n$ tel que $y_n \le x < y_n + 10^{-n}$.

- y_n est appellé valeur approchée décimale à la précision 10^{-n} par défaut.
- $y_n + 10^{-n}$ est appellé valeur approchée décimale à la précision 10^{-n} par excès.

Pour tout $n \in \mathbb{N}$, il existe $a_n \in [0, 9]$ tel que $y_n - y_{n-1} = \frac{a_n}{10^n}$.

Soit $x \in \mathbb{R}^+$, il existe pour tout $n \in \mathbb{N}^*$, des entiers $a_n \in [0, 9]$ tel que :

- Il existe $n_0 \in \mathbb{Z}$ tel que $\forall n \leq n_0, a_n = 0$
- $\dot{x} = \sum_{n=-\infty}^{+\infty} a_n 10^{-n} = \sum_{n=n_0}^{0} a_n 10^{-n} + \sum_{n=1}^{+\infty} a_n 10^{-n} = \sum_{n=n_0}^{0} a_n 10^{-n} + \lim_{N \to +\infty} \sum_{n=1}^{N} a_n 10^{-n}$
- Sauf si pour tout $n \in \mathbb{N}^*$, $a_n = 9$, on a alors :

$$\lfloor x \rfloor = \sum_{n=n_0}^{0} a_n 10^{-n} \text{ et } \sum_{n=1}^{N} a_n 10^{-n}$$

Soit $x \in \mathbb{R}^*$, alors :

- Si x n'est pas décimal, alors x admet un unique développement décimal.
- Si x est décimal, x admet deux développements décimaux exactement, l'un terminant uniquement par des 9, l'autre uniquement par des 0.

On appelle **développement décimal propre** de x l'unique développement de x si x n'est pas décimal, ou l'unique développement de x terminant par des 0 si x est décimal. Ainsi, tout réel admet un unique développement décimal propre.

IV Intervalles

IV.1 Description des intervalles

Soit E un sous ensemble de \mathbb{R}^n , on dit que E est **convexe** si et seulement si pour tout couple de points A et B de E, le segment [AB] est entièrement inclus dans E.

Un **intervalle** I de $\mathbb R$ est un sous-ensemble convexe I de $\mathbb R$, c'est à dire tel que :

$$\forall (a,b) \in I^2, \forall x \in \mathbb{R}, a \leq x \leq b \Longrightarrow x \in I$$

Tout intervalle I de $\mathbb R$ est d'une des formes suivantes, pour certaines valeurs réelles a et b:

•
$$[a, b] = \{x \in \mathbb{R}, a \le x \le b\}, a \le b$$

•
$$]a, b[= \{x \in \mathbb{R}, a < x < b\}, a < b]$$

•
$$[a, b] = \{x \in \mathbb{R}, a \le x < b\}, a < b$$

•
$$[a, b] = \{x \in \mathbb{R}, a < x \le b\}, a < b$$

•
$$[a, +\infty[=\{x \in \mathbb{R}, x \ge a\}]$$

•
$$]a, +\infty[=\{x \in \mathbb{R}, x > a\}]$$

•
$$]-\infty,b]=\{x\in\mathbb{R},x\leq b\}$$

•
$$]-\infty, b[=\{x \in \mathbb{R}, x < b\}]$$

•
$$]-\infty,+\infty[=\mathbb{R}$$

• Ø

On dit qu'un intervalle est :

- **ouvert** si il est de forme $]a,b[,]a,+\infty[,]-\infty,b[,\mathbb{R} \text{ et } \emptyset]$
- **fermé** si il est de forme $[a,b], [a,+\infty[,]-\infty,b], \mathbb{R}$ et \emptyset
- **semi-ouvert** si il est de forme [a, b[et]a, b]