

# BSQ-JN-P8 type eight-way load cell acquisition module instructions for use

## 1. Products

The BSQ-JN-P8 eight-way load cell acquisition module can be connected to eight Wheatstone bridge load cells, and the output of the load cells can be connected to the BSQ-JN-P8. The analog differential signals such as ±5mV±10mV are converted into digital quantities and then uploaded via RS485. It supports the standard Modbus RTU protocol and can be used with other devices that follow the Modbus RTU protocol . ♠

## 2. Product Overview

BSQ-JN-P8 type acquisition module mainly consists of power supply circuit, analog input sampling and conditioning circuit, RS485 transceiver circuit and MCU. It adopts high-performance full-speed USB type FLASH microcontroller as the control unit, 24bit analog-to-digital converter for data conversion, stable resolution up to 23 bits, over-voltage and over-current protection functions and anti-interference functions to avoid the influence of industrial field signals on the communication interface of the module and make the communication (data transmission) stable and reliable. The product has high communication efficiency, and the time interval of 8-channel packet transmission can be as low as 5ms under the condition of 9600bit/s baud rate.

Main technical specifications

- 1) System Parameters
- ➤ Power supply voltage: 8~30VDC, power supply anti-reverse protection
- ➤ Power consumption: 1W
- ➤ Operating temperature: -25°C~85°C, industrial grade chip
- ➤ Relative humidity: 5%~95% non-condensing
- 2) Analog input parameters
  - > Input channels: eight differential signals
  - ightharpoonup Input impedance: greater than  $20 M\Omega$
  - ➤ Normal input range: differential signals within ±12MV
  - ADC effective resolution: 19bit, bipolar
- 3) Communication Interface
  - Physical interface: RS485 half-duplex communication port
  - ➤ Communication protocol: Modbus RTU protocol
  - **>** Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 selectable
  - ▶ Data format: 1 start bit, 8 data bits, no parity bits, 1 or 2 stop bits

## 3. Panel terminals and pull switches



## 3.1 Terminal Description

## 1) Power and communication terminals

|   | Defin<br>ition | Description                                          |  |  |  |
|---|----------------|------------------------------------------------------|--|--|--|
| 1 | V+             | Input power supply voltage 8 to 30VDC, such as 24VDC |  |  |  |
| 2 | GND            | Power supply negative terminal                       |  |  |  |
| 3 | A              | RS485 Data+                                          |  |  |  |
| 4 | В              | RS485 Data-                                          |  |  |  |

## 2) Eight-way sensor terminals 1#: channel 1; 2#: channel 2; ... 8# : Channel 8

|   | Defin<br>ition | Description                          |
|---|----------------|--------------------------------------|
| 1 | E+             | 5 V sensor excitation power supply + |
| 2 | E-             | 5 V sensor excitation power supply-  |

## 3.2 Dipswitch to set module address and communication baud rate

1) Node address (ADDR: factory default node address is 1)

|    | S4  | S5  | S6  | S7  | S8  |
|----|-----|-----|-----|-----|-----|
| 0  | OFF | OFF | OFF | OFF | OFF |
| 1  | OFF | OFF | OFF | OFF | ON  |
| 2  | OFF | OFF | OFF | ON  | OFF |
| 3  | OFF | OFF | OFF | ON  | ON  |
| 4  | OFF | OFF | ON  | OFF | OFF |
| 5  | OFF | OFF | ON  | OFF | ON  |
| 6  | OFF | OFF | ON  | ON  | OFF |
| 7  | OFF | OFF | ON  | ON  | ON  |
| 8  | OFF | ON  | OFF | OFF | OFF |
| 9  | OFF | ON  | OFF | OFF | ON  |
| 10 | OFF | ON  | OFF | ON  | OFF |
| 11 | OFF | ON  | OFF | ON  | ON  |
| 12 | OFF | ON  | ON  | OFF | OFF |
| 13 | OFF | ON  | ON  | OFF | ON  |
| 14 | OFF | ON  | ON  | ON  | OFF |
| 15 | OFF | ON  | ON  | ON  | ON  |
| 16 | ON  | OFF | OFF | OFF | OFF |
| 17 | ON  | OFF | OFF | OFF | ON  |
| 18 | ON  | OFF | OFF | ON  | OFF |
| 19 | ON  | OFF | OFF | ON  | ON  |
| 20 | ON  | OFF | ON  | OFF | OFF |
| 21 | ON  | OFF | ON  | OFF | ON  |
| 22 | ON  | OFF | ON  | ON  | OFF |
| 23 | ON  | OFF | ON  | ON  | ON  |
| 24 | ON  | ON  | OFF | OFF | OFF |
| 25 | ON  | ON  | OFF | OFF | ON  |
| 26 | ON  | ON  | OFF | ON  | OFF |
| 27 | ON  | ON  | OFF | ON  | ON  |

| 28 | ON | ON | ON | OFF | OFF |
|----|----|----|----|-----|-----|
| 29 | ON | ON | ON | OFF | ON  |
| 30 | ON | ON | ON | ON  | OFF |
| 31 | ON | ON | ON | ON  | ON  |

2) Baud rate (BAUD: factory default baud rate of 9600,n,8,1, that is, 9600bps, no parity, 8 bits of data, 1 stop bit)

| Baud rate | S1  | S2  | S3  |
|-----------|-----|-----|-----|
| 1200bps   | OFF | OFF | OFF |
| 2400bps   | OFF | OFF | ON  |
| 4800bps   | OFF | ON  | OFF |
| 9600bps   | OFF | ON  | ON  |
| 19200bps  | ON  | OFF | OFF |
| 38400bps  | ON  | OFF | ON  |
| 57600bps  | ON  | ON  | OFF |
| 115200bps | ON  | ON  | ON  |

### 3) Status indicator and USB port

|     | Working Status                            | Description     |  |
|-----|-------------------------------------------|-----------------|--|
| PWR | Red                                       | Power indicator |  |
|     | always                                    |                 |  |
|     | on                                        |                 |  |
| ST  | Blue light Blinks at equal intervals when |                 |  |
|     |                                           | l               |  |

## 4. Communication module parameters

All analog input channels and related parameters in the module are mapped to specific Modbus components, which can be read and written to operate the module to perform various functions.

#### 4.1 Module communication parameters

The node address and baud rate of this acquisition module are automatically configured at power-on after being set by dip switches, and no software configuration is required.

#### 4.2 Analog input measured value reading (function code: 0x03)

The module has 8 analog input channels, which are mapped to different input registers, and the analog input measurement values can be obtained by reading the input registers. The module provides two data formats for reading and writing, including addresses 0-299 for floating point (four-byte) reading and writing, and addresses 300-999 for long integer (four-byte) reading and writing. (Note: 0x10 means hexadecimal, 10 means decimal, the size of the two values are different, the decimal number of 0x10 is 16)

## 4.2.1 Eight analog channels measured values are read by floating point number (read command: 0x03)

1 Parameter table for reading measured values of analog channels by floating point numbers

| Addr | Modbus  | Parameter    | Data     | Rea   | Description    |
|------|---------|--------------|----------|-------|----------------|
| ess  | address | Name         | Type     | ding  |                |
|      |         |              |          | and   |                |
|      |         |              |          | writi |                |
|      |         |              |          | ng    |                |
| 200  | 40201   | 1st measured | Floating | R     | Floating point |
|      |         | value        | point    |       | measurement    |
|      |         |              |          |       | values         |
| 202  | 40203   | 2nd measured | Floating | R     | Floating point |
|      |         | value        | point    |       | measurement    |
|      |         |              |          |       | values         |
| 204  | 40205   | 3rd measured | Floating | R     | Floating point |
|      |         | value        | point    |       | measurement    |
|      |         |              |          |       | values         |
| 206  | 40207   | 4th measured | Floating | R     | Floating point |

|     |       | value              | point          |   | measurement<br>values                   |
|-----|-------|--------------------|----------------|---|-----------------------------------------|
| 208 | 40209 | 5th measured value | Floating point | R | Floating point<br>measurement<br>values |
| 210 | 40211 | 6th measured value | Floating point | R | Floating point<br>measurement<br>values |
| 212 | 40213 | 7th measured value | Floating point | R | Floating point<br>measurement<br>values |
| 214 | 40215 | 8th measured value | Floating point | R | Floating point<br>measurement<br>values |

- 2 Example of reading the measured value of an analog channel by floating point number (module address assumed to be 1)
- (1) Read the 1st channel floating point measurement value (corresponding to the starting address of 200, i.e. 0x00c8)
  - Command from the host computer

| Module  | Functio | Start   | Low      | Register    | Low register | CRC      | CRC      |
|---------|---------|---------|----------|-------------|--------------|----------|----------|
| Address | n Code  | address | starting | points high | points       | Checksum | checksum |
|         |         | high    | address  |             |              | High     | low      |
| 0x01    | 0x03    | 0x00    | 0xc8     | 0x00        | 0x02         | 0x45     | 0xf5     |

■ This module uploads data

| Module  | Functio | High data | Low data | 1st channel measured value 4- | CRC      | CRC      |
|---------|---------|-----------|----------|-------------------------------|----------|----------|
| Address | n Code  | length    | length   | byte floating point           | Checksum | checksum |

(2) Reads 8 channels of floating point measurements at once

Command from the host computer

| Module<br>Address          | Functio<br>n Code | Start<br>Address    | Low<br>starting    | Register points high                                  | Low register points | CRC<br>Checksum | CRC checksum    |  |
|----------------------------|-------------------|---------------------|--------------------|-------------------------------------------------------|---------------------|-----------------|-----------------|--|
| ■ This module uploads data |                   |                     |                    |                                                       |                     |                 |                 |  |
| Module<br>Address          | Functio<br>n Code | High data<br>length | Low data<br>length | 8 channels of floating point measurements in 32 bytes |                     | CRC<br>Checksum | CRC<br>checksum |  |

Note: The floating point measurement value of a single channel or all 8 channels can be read by the corresponding instruction, just change the first address of the register address and the number of register points in the issued instruction, such as reading the floating point measurement value of the second channel, the first address of the register should be 202 and the number of register points should be 2, and so on.

4.2.2 Eight analog channels measured values are read by signed long integer numbers (read command: 0x03)

Note: When reading by long integer numbers, this module does not set the decimal point setting function, please add the specific decimal point position according to the full calibration value, such as when the sensor force is  $20 \, \mathrm{kg}$ , the calibrated measurement value output is 20000, then fix the decimal point in the thousands place, that is, 20.000, similarly, if the actual calibrated measurement value is 2000, then please fix the decimal point in the hundreds place, and 20.00

1 Parameter table for reading measured values of analog channels by long integer numbers

| analite table for reading measured values of analog charmers by long integer numbers |         |              |         |       |              |  |  |
|--------------------------------------------------------------------------------------|---------|--------------|---------|-------|--------------|--|--|
| Addr                                                                                 | Modbus  | Parameter    | Data    | Rea   | Description  |  |  |
| ess                                                                                  | address | Name         | Type    | ding  |              |  |  |
|                                                                                      |         |              |         | and   |              |  |  |
|                                                                                      |         |              |         | writi |              |  |  |
|                                                                                      |         |              |         | ng    |              |  |  |
| 500                                                                                  | 40501   | 1st measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 502                                                                                  | 40503   | 2nd measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 504                                                                                  | 40505   | 3rd measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 506                                                                                  | 40507   | 4th measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 508                                                                                  | 40509   | 5th measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 510                                                                                  | 40511   | 6th measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              |         |       | values       |  |  |
| 512                                                                                  | 40513   | 7th measured | Long    | R     | Long integer |  |  |
|                                                                                      |         | value        | Integer |       | measurement  |  |  |
|                                                                                      |         |              | _       |       | values       |  |  |

| 514 | 40515 | 8th measured | Long    | R | Long integer |
|-----|-------|--------------|---------|---|--------------|
|     |       | value        | Integer |   | measurement  |
|     |       |              |         |   | values       |

- 2 Example of reading the measured value of an analog channel by long integer number (module address assumed to be 1)
- (1) Read the measured value of the 1st channel long integer (corresponding to the starting address of 500 i.e. 0x01f4)

Command from the host computer

| Module<br>Address          | Functio<br>n Code | Start<br>Address    |                    |  | Low register points                                                    | CRC<br>Checksum | CRC<br>checksum |  |  |  |  |
|----------------------------|-------------------|---------------------|--------------------|--|------------------------------------------------------------------------|-----------------|-----------------|--|--|--|--|
| ■ This module uploads data |                   |                     |                    |  |                                                                        |                 |                 |  |  |  |  |
| Module<br>Address          | Functio<br>n Code | High data<br>length | Low data<br>length |  | Measured value for channel 1 4- byte long integer number  CRC Checksum |                 |                 |  |  |  |  |

## (2) Reads 8 channels of long integer measurements at once

|      | ■ Command from the host computer |         |           |          |              |                   |          |          |  |  |  |  |  |
|------|----------------------------------|---------|-----------|----------|--------------|-------------------|----------|----------|--|--|--|--|--|
| Mo   | odule                            | Functio | Start     | Low      | Register     | Low register      | CRC      | CRC      |  |  |  |  |  |
| Add  | dress                            | n Code  | Address   | starting | points high  | points            | Checksum | checksum |  |  |  |  |  |
|      | ■ This module uploads data       |         |           |          |              |                   |          |          |  |  |  |  |  |
|      | odule                            | Functio | High data | Low data |              | of long integer   | CRC      | CRC      |  |  |  |  |  |
| ^ ~! | dress                            | n Code  | length    | length   | magguramante | totaling 32 bytes | Checksum | checksum |  |  |  |  |  |

Note: The long integer measurement value of a single channel or all 8 channels can be read by the corresponding instruction, just change the first address of the register address and the number of register points in the issued instruction, such as reading the long integer measurement value of the second channel, the first address of the register should be 502 and the number of register points is 2, and so on.

#### 4.3 Zero calibration (function code: 0x05)

This module provides 8-channel overall zero calibration function and single-channel calibration function. When using the overall zero calibration, it is necessary to ensure that the 8 sensors and this module are properly connected and kept empty, and when using the single-channel calibration, the corresponding single channel is connected to the sensors and the sensors of that channel are kept empty. At the same time, the corresponding zero calibration operation should be performed before the full calibration. The reset code for Modbus function code 0x05 is 0x0000 and the reset code is 0xff00.

Zero calibration parameter table

| Zero calibration parameter table |                |            |                                                   |  |  |  |  |  |  |  |  |
|----------------------------------|----------------|------------|---------------------------------------------------|--|--|--|--|--|--|--|--|
| Address                          | Reset          | Reset      | Des                                               |  |  |  |  |  |  |  |  |
|                                  | (0xff00)       | (0x0000)   | cripti                                            |  |  |  |  |  |  |  |  |
|                                  |                |            | on                                                |  |  |  |  |  |  |  |  |
| 00(0x00)                         | First circuit  | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        | invalid    |                                                   |  |  |  |  |  |  |  |  |
| 01(0x01)                         | Second         | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | circuit        | invalid    |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        |            | This address is set to complete the way           |  |  |  |  |  |  |  |  |
| 02(0x02)                         | Third circuit  | Zeroing is | This address is set to complete the zero          |  |  |  |  |  |  |  |  |
|                                  | zeroing        | invalid    | calibration operation of the zero setting machine |  |  |  |  |  |  |  |  |
| 03(0x03)                         | Fourth         | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | circuit zero   | invalid    |                                                   |  |  |  |  |  |  |  |  |
|                                  | setting        |            |                                                   |  |  |  |  |  |  |  |  |
| 04(0x04)                         | Fifth circuit  | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        | invalid    |                                                   |  |  |  |  |  |  |  |  |
| 05(0x05)                         | Sixth circuit  | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        | invalid    |                                                   |  |  |  |  |  |  |  |  |
| 06(0x06)                         | Seventh        | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | circuit        | invalid    |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        |            |                                                   |  |  |  |  |  |  |  |  |
| 07(0x07)                         | Eighth circuit | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | zeroing        | invalid    |                                                   |  |  |  |  |  |  |  |  |
| 08(0x08)                         | Zero on all    | Zeroing is |                                                   |  |  |  |  |  |  |  |  |
|                                  | roads          | invalid    |                                                   |  |  |  |  |  |  |  |  |

Example, the third channel will be zero calibration operation (corresponding address is 0x02, set code is 0xff00, other similar)

Command from the host computer Module **Functio** Address Address Reset code Reset code CRC CRC **Address** n Code High Low high low Checksum checksum This module uploads data Module **Functio Address** Address Reset code Reset code CRC CRC **Address** n Code High Low high low Checksum checksum

## 4.4 Full calibration (function code: 0x10)

This module can realize the full calibration of each analog channel through the command. Before the full calibration of a channel, the zero calibration of the channel must be performed first. The data in the full calibration data frame format is unsigned long integer data. In order to improve the calibration accuracy, when the long integer data in the data field is 100000, the full calibration factor is 1.00000, if the long integer data in the data field

is 10000, the full calibration factor is 0.10000, and so on.

Full-scale calibration parameter table

| Address    | Parameter<br>Name                | Range of values (meaning: calibration factor) | Data<br>Type    | Des<br>cripti<br>on |
|------------|----------------------------------|-----------------------------------------------|-----------------|---------------------|
| 800(0x320) | First full calibration           | 10~999999 (0.00010~9.99999)                   | Long<br>Integer |                     |
| 801(0x321) | Second full calibration          | 10~999999 (0.00010~9.99999)                   | Long<br>Integer | See calibration     |
| 802(0x322) | Third way full calibration       | 10~999999 (0.00010~9.99999)                   | Long<br>Integer | step 4.4.1          |
| 803(0x323) | Fourth circuit full calibration  | 10~999999 (0.00010~9.99999)                   | Long<br>Integer | and examples 4.4.2  |
| 804(0x324) | Fifth way full calibration       | 10~999999 (0.00010~9.99999)                   | Long<br>Integer |                     |
| 805(0x325) | Sixth circuit full calibration   | 10~999999 (0.00010~9.99999)                   | Long<br>Integer |                     |
| 806(0x326) | Seventh circuit full calibration | 10~999999 (0.00010~9.99999)                   | Long<br>Integer |                     |
| 807(0x327) | Eighth circuit full calibration  | 10~999999 (0.00010~9.99999)                   | Long<br>Integer |                     |

#### 4.4.1 Full Calibration Procedure

Take a channel calibration as an example to illustrate the steps of full scale calibration

- > Step 1: First perform a zero calibration for the channel, see 4.3 for zero calibration instructions;
- > Step 2: Apply a standard load to the sensor of the channel, wait for the data to stabilize, and then read the measured value of the long integer number of the channel, the long integer number

The reading of the measured values is described in 4.2.2;

- > If the measured value of the long integer number read for this channel does not match the actual load □, Calibration factor correction value of the long integer number read for this channel does not match the actual load □,
- Write the calibration coefficient correction value to the corresponding address of the corresponding channel according to the full-scale calibration parameter table to complete the full-scale calibration.

#### 4.4.2 Full calibration example

The following is an example of the full calibration method for channel 3 with module address 1.

> Step 1: Leave the channel 3 sensor unloaded and the host computer sends a zero calibration command

| Module  | Functio | Address | Address | Reset code | Reset code | CRC      | CRC      |
|---------|---------|---------|---------|------------|------------|----------|----------|
| Address | n Code  | High    | Low     | high       | low        | Checksum | checksum |

After successful zero calibration of module channel 3, the above command is returned. After the zero calibration is completed, apply a fixed load to the sensor of this channel, the fixed load is assumed to be 100kg, the desired output is 10000 i.e. 100.00kg, wait for the value to stabilize and then execute step 2;

> Step 2: Read the measured value of channel 3 long integer, and the upper computer issues a read

| Module  | Functio | Start   | Low      | Register    | Low register | CRC      | CRC      |
|---------|---------|---------|----------|-------------|--------------|----------|----------|
| Address | n Code  | Address | starting | points high | points       | Checksum | checksum |

If the data returned by the module is 15000, i.e. 150.00kg, which does not match the expected value of 100.00kg, the calibration correction value is calculated according to equation (1) as

 $10000 \div 15000 \approx 0.66667$ , according to the full calibration parameter table, the calibration correction factor is 66667 (0x1046b), and the correction value is written into the register corresponding to address 802 (0x322), i.e., step 3 is executed;

Step 3: Write the correction factor 666670x1046B) to address 802(0x322)

| Mod<br>ule<br>Addr<br>ess | Fun<br>ctio<br>n<br>Co<br>de | Regist<br>er start<br>addres<br>s high | Regist<br>er start<br>addres<br>s low | Regi<br>ster<br>poin<br>ts<br>high | Low<br>regi<br>ster<br>poin<br>ts | Num<br>ber<br>of<br>byt<br>es | coef | ficient co<br>ur-byte u | (calibrati<br>rrection v<br>nsigned l<br>eger<br>Byte1 | /alue) | CRC Cali bra ted hig h | CRC<br>School<br>low test |
|---------------------------|------------------------------|----------------------------------------|---------------------------------------|------------------------------------|-----------------------------------|-------------------------------|------|-------------------------|--------------------------------------------------------|--------|------------------------|---------------------------|
| 0x01                      | 0x10                         | 0x03                                   | 0x22                                  | 0x00                               | 0x02                              | 0x04                          | 0x00 | 0x01                    | 0x04                                                   | 0x6b   | 0x76                   | 0x71                      |

The full calibration completion module returns the above command.