

Constitutively Active Receptors

Figure 1 (Page 1 of 15)

CLASS A GROUP II						
AIAB_human	α_{1B} -adrenergic alpha 1B-AR	TMDI	63 FAIVGN _A ILVIL	IP / COS-7	(Scheer, Fanelli et al. 1997)	
		junction between TMDIII and IC2	142 CAIS _A DRYIGV			
AIAB_human	α_{1B} -adrenergic alpha 1B-AR	junction between TMDIII and IC2	143 CAIS _K DRYIGV	IP / COS-7	(Scheer, Costa et al. 2000)	
AIAB_human	α_{1B} -adrenergic alpha 1B-AR	TMIII	128 AVDVLCCTASI _F	IP / COS-1	(Perez, Hwa et al. 1996)	
		carboxyl end of IC3	293 REKKAA _E AKTLGI	IP arachidonic acid release		
		TMV	204 EEP _V YALFSSLG	IP / COS-1	(Hwa, Gaivin et al. 1997)	
AIAB_human	α_{1B} -adrenergic	C-terminal IC3	293 SREKKAA _X KT X=19 different substitutions	PI / COS-7	(Kjelsberg, Coteccia et al. 1992)	
AIAB_human	α_{1B} -adrenergic	C-terminus IC3	288 KFSREKKAA _K AKTLGI K H L	PI hydrolysis / rat fibroblast	(Allen, Lefkowitz et al. 1991)	
A2AA_human	α_2 C10-adrenergic alpha-2AAR	C-terminal IC3 loop	373 (348?) EK _X RTFV _F LAV X=F, A, C, E, K	adenylyl cyclase inhibition / HEK293	(Ren, Kurose et al. 1993)	
ACM1_human	muscarinic Hm1	C-terminal IC3 loop junction	360 SLV _A REKKAAARTLS	PI / HEK(U293)	(Högger, Shockley et al. 1995)	
ACM2-human	muscarinic acetylcholine M1 muscarinic acetylcholine M2	junction of IC3 and TMVI	390 KKV _A RTTIL _A 1-4 A inserted	IP production, inhibition of cAMP production / COS-7	(Liu, Blin et al. 1996)	

Figure 1 (Page 2 of 15)

CLASS A GROUP II					
ACM3_rat	m3 muscarinic (rat) muscarinic acetylcholine M3	TMVI	507 TWPYNTIMVLVNT S	IP / COS-7	(Blüml, Mutschler et al. 1994)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	N-terminus to TMII TMVI	chimera composed of m2 1-69 m5 77-445 m2 391-466	β-gal / NIH 3T3	(Burstein, Spalding et al. 1996)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	TMVI	451 AIIIA EIIIW TPYNTI MVLVST M L H C V S F T	β-gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1998)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	junction of TMVI and EC3	465 YNIMVLVSTFCDKCV X=V,F,R,K,+more	β-gal; radioligand binding / NIH-3T3	(Spalding, Burstein et al. 1997)
B1AR_human	β ₁ -adrenergic	C-terminus	389 RKAFFQGLLCCA R	adenylyl cyclase; agonist binding / CHW	(Mason, Moore et al. 1999)
B2AR_human	β ₂ -adrenergic beta-2AR	C-terminal IC3 loop	266 272 FCLKEHKALKTGLI SR K A	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO	(Samama, Cotecchia et al. 1993); (Lefkowitz, Cotecchia et al. 1993)
DADR_human	dopamine D1A	carboxyl terminal IC3	264 SFKMSF K RETKVILKT I K 288 from D1B receptor APDTSTIKKETKVILKT	adenylyl cyclase; cAMP accumulation / HEK293	(Charpentier, Jarvie et al. 1996)
DADR_human	dopamine D1	TMVI	286 FVCCWNL P FFIL A	CAMP accumulation / COS-7	(Cho, Taylor et al. 1996)
HH2R_rat	histamine H ₂	IC2	115 FMISLD Y CAV N, A	cAMP production / HEK-293	(Alewijnse, Timmerman et al. 2000)

Figure 1 (Page 3 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP III					
QPSD_human	opsin rhodopsin	TMII	90 D 11.3 GCNLE <u>G</u> FFAT	transducin; phosphorylation by rhodopsin kinase / COS	(Rim and Oprian 1995)
		TMIII	292 296 MTI <u>A</u> FFAK <u>S</u> A <u>A</u> TY E G, E, M		
		TMVII	²⁹² Ala neutral a.a converted to carboxylate and competes with ¹¹³ Glu for salt bridge with ²⁹⁶ Lys		
OPSD_human	opsin rhodopsin	TMIII	134 VV <u>L</u> A <u>E</u> RYVVV I, Q, S	transducin; radioligand binding / COS	(Acharya and Karnik 1996)
QPSD_human	opsin rhodopsin	TM6	257 RMV <u>I</u> IVIA <u>F</u> L Y, N	transducin, GTP γ S uptake / COS	(Han, Smith et al. 1998)
		plus TM3	<i>plus</i> G113Q		
OPSD_human	opsin rhodopsin	TMVII	296 PAFFAK <u>S</u> A <u>A</u> TY G X=E, M natural 1 mutants + 10 different a.a. substitutions	transducin; radioligand binding / COS	(Govardhan and Oprian 1994); (Cohen, Yang et al. 1993)
		IC2	134 VV <u>L</u> A <u>E</u> RYVVV Q	disrupts critical salt bridge between ²⁹⁶ Lys(TMVII) and ¹¹³ Glu(TMIII)	(Cohen, Yang et al. 1993)

Figure 1 (Page 4 of 15)

TRFR_mouse	thyrotropin-releasing hormone TRH-R	carboxyl tail	335 FRKLCNCRK STOP	⁴⁵ Ca ²⁺ efflux, [Ca ²⁺] Xenopus oocytes; IP formation / AR120 <i>stably transfected</i>	(Matus-Leibovitch, Nusseznveig et al. 1995)

Figure 1 (Page 5 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP IV					(Marie, Koch et al. 1999)
BRB2_human	bradykinin B ₂ B2 bradykinin BK-2	TMIII TMVI	113 AIISSM ₁₂ LYSSSI A 256 LLFIIIC ₁₂ WLPFQI F	IP production / COS-7	

Figure 1 (Page 6 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP V AG2R_rat	AT _{1A}	TMIII	111 A ASVSPNLYASV disrupts 111Asn(TMIII)- 227Tyr(TMVII) interaction	phospholipase C; IP production / COS-7	Groblewski, Maigret et al. 1997
AG2R_rat	AT _{1A}	C-terminus of TM7 other multiple mutations	305 LFIGFLGKKEK Q	IP production / HEK- 293; intracellular Ca ²⁺ mobilization / CHO	Parnot, Bardin et al. 2000
FMLR_human	Type-1A angiotensin II formylmethionylleucylphenylal anine (MLPR)	IC1	51 LVIVW A GERMTH T TISYLNKAVA L V VWTA F EAKRTINAIWFNLAVA (K above conflicts with SWISS-PROT database)	PI production; phospholipase C stimulation / COS-7	Amatruqa, Draga- Graonic et al. 1995
IL8B_human	interleukin-8 receptor B CXCR-2 chemokine	IC2	138 ACISV D RYLAIYH V	IP production; Ca ²⁺ mobilization and actin polymerization / NIH 3T3	Burger, Burger et al. 1999
LSHR_human	luteinizing hormone (LH)	IC3	564. MATNK D TKIAKK G	cAMP production / HEK293	Kudo, Osuga et al. 1996
LSHR_human	luteinizing hormone (LH)	TMVI	578 ILLIFT D FTCMA G	cAMP production / COS-7	(Shenker, Laue et al. 1993)
LSHR_human	luteinizing hormone (LH)	TM6	571 KIAKKM A ILLIFT D FTCM I I	cAMP production / COS-7	Kosugi, Van Dop et al. 1995
LSHR_rat	luteinizing hormone / human chorionic gonadotropin (LH/hCG)	TMVI	556 ILLIFT D FTCMA G, Y	cAMP production / HEK 293T	Bradbury, Kawate et al. 1997; Bradbury and Menon 1999
OPRD_mouse	delta opioid receptor	TM3	128 KVLSID Y YNM F A, K, H	adenylyl cyclase inhibition / COS-7	(Cavalli, Babey et al. 1999)
OXYR_human	oxytocin	IC2	137 LMSLDRC L AIC A	IP production / COS-7	(Fanelli, Barbier et al. 1999)

Figure 1 (Page 7 of 15)

PAFR_human	platelet-activating factor (PAF)	C-terminus of IC3	231 EVKRRALWWVCTVLAV R	IP production / CQS-7	(Parent, Le Gouill et al. 1996)
PAFR_human	platelet-activating factor (PAF)	TMIII	100 CLFFINTYCSV A	arachidonate release, IP production, adenylyl cyclase inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E ₃ , EP3III EP3IV	C-terminal tail	360 FCQE EF GN FCQMRKRRRLREQEEFFGN ↑truncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PE23_mouse	prostaglandin E ₃ EP3	carboxyl-terminal tail	336 KILLRKFCQ I RDTT MMNHL (3 α) (3 β) ↑truncated	inhibition of adenylyl cyclase / CHO, stably expressed	(Hasegawa, Negishi et al. 1996)
THRR_human	thrombin	EC2 loop	259 CHDV L NET L EGYYAYY DLKD KDF I	⁴⁵ Ca ²⁺ efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanovicz, Wang et al. 1996)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	EC1 EC2	486 YYNH A IDWQTG F, M 568 YAKV S ICLPM D T	inositol phosphate- diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII TMVII	509 ASELS V Y T LTV A 672 YPLNS C ANPFL Y	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMV	597 VA F V I Y C CHV L	cAMP formation / COS-7 cells	(Esapa, Duprez et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMVII	677 CANPFLYAIFT V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	IC3	613 VRNPOYNPGD K DTKIAK 621 deletion	cAMP formation / COS-7	(Wonerow, Schoneberg et al. 1998)

Figure 1 (Page 8 of 15)

Figure 1 (Page 9 of 15)

TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	IC3 / TMVI	623 KPTKIAKRM AVLIF TDDFICM V I	cAMP activation / CQS-7	(Paschke, Tonacchera et al. 1994)
V2R_human	vasopressin V2	IC2	136 LAMTLLDRHRAI A	cAMP formation / CQS-7	(Morin, Cotte et al. 1998)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS B GROUP I CALR_human hCTR-2	human calcitonin hCTR-1 hCTR-2	wild type (native) protein		adenylyl cyclase cAMP production / COS-1	(Cohen, Thaw et al. 1997)
CLASS B GROUP II PTRR_human	parathyroid hormone PTH / PTH-related peptide	junction of IC1 and TMII	223 TRNYIHMHLFL R, K	cAMP accumulation / COS-7	(Schipani, Jensen et al. 1997)
		junction of IC3 and TMVI	410 KLLKSTTLVLMPC, others		
CLASS B GROUP III GIPR_human	glucose-dependent insulinootropic peptide (GIP-R)	TMVI	340 VFAPVTEEQAR P	cAMP production / L293	(Tseng and Lin 1997)
GLR_rat	glucagon	junction of IC loop 1 and TMII	178 TRNYI ¹⁷⁸ GNLFA R	cAMP accumulation / COS-7	(Hjorth, Orskov et al. 1998)
		IC end of TMVI	352 RLARSTTLIP A		
VIPR_human	vasoactive intestinal peptide 1 (VIP)	junction of IC loop 1 and TMII	178 RNYIHMHLFI R	cAMP production / COS-7 or CHO	(Gaudin, Maoret et al. 1998)
		junction of IC loop 3 and TMVI	343 LARSTTLIP X= K, P	functional integrity of the N-terminal EC domain	(Gaudin, Rouyer-Fessard et al. 1998)

Figure 1 (Page 10 of 15)

Figure 1 (Page 11 of 15)

Figure 1 (Page 12 of 15)

Bibliography

Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." *J Biol Chem* **271**(41): 25406-11.

Alewijse, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." *Mol Pharmacol* **57**(5): 890-898.

Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity." *Proc Natl Acad Sci U S A* **88**(24): 11354-8.

Amatruda, T. T., 3rd, S. Dragas-Grauic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins." *J Biol Chem* **270**(47): 28010-3.

Büuml, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors." *J Biol Chem* **269**(29): 18870-6.

Boone, C., N. G. Davis, et al. (1993). "Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype." *Proc Natl Acad Sci U S A* **90**(21): 9921-5.

Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface." *J Biol Chem* **272**(9): 5921-6.

Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized." *Biochemistry* **38**(27): 8703-12.

Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor." *J Immunol* **163**(4): 2017-22.

Burstein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains." *Biochem Pharmacol* **51**(4): 539-44.

Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor." *Neuroscience* **93**(3): 1025-31.

Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties." *J Biol Chem* **271**(45): 28071-6.

Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." *Mol Pharmacol* **50**(5): 1338-45.

Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." *Endocrinology* **138**(4): 1400-5.

Cohen, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." *Biochemistry* **32**(23): 6111-5.

Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." *Biochemistry* **32**(23): 6111-5.

Dube, P. A., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the alpha 1-factor receptor." *J Biol Chem* **275**(34): 26492-9.

Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune dominant hyperthyroidism." *Nat Genet* **7**(3): 396-401.

Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs." *J Pharmacol Exp Ther* **286**(1): 85-90.

Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." *Thyroid* **9**(10): 1005-10.

Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." *Mol Pharmacol* **56**(1): 214-25.

Gaudin, P., J. J. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors." *J Biol Chem* **273**(9): 4990-6.

Gaudin, P., C. Ronyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." *Ann NY Acad Sci* **865**: 382-5.

Figure 1 (Page 13 of 15)

Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." *J Biol Chem* **269**(9): 6524-7.

Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." *J Biol Chem* **272**(3): 1822-6.

Han, M., S. Q. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." *Biochemistry* **37**(22): 8253-61.

Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." *J Biol Chem* **271**(4): 1857-60.

Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." *J Neurochem* **69**(3): 1138-44.

Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." *Mol Endocrinol* **12**(1): 78-86.

Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors." *J Biol Chem* **270**(13): 7405-10.

Hwa, J., R. Qaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." *Biochemistry* **36**(3): 633-9.

Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." *J Biol Chem* **272**(12): 7846-54.

Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala116-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY C G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." *J Biol Chem* **275**(38): 29547-55.

Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin E receptor EP3 isoforms." *British J Pharmacol* **121**: 317-23.

Kielsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation." *J Biol Chem* **267**(3): 1430-3.

Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." *Proc Natl Acad Sci U S A* **93**(13): 6764-9.

Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." *Hum Mol Genet* **4**(2): 183-8.

Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop." *J Biol Chem* **271**(37): 22470-8.

Leffkowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." *Trends Pharmacol Sci* **14**(8): 303-7.

Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis." *J Biol Chem* **271**(1): 6172-8.

Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." *Mol Pharmacol* **55**(1): 102-101.

Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor." *J Biol Chem* **274**(18): 12670-4.

Matus-Leibovitch, N., D. R. Nussenzeig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and ARt20 cells." *J Biol Chem* **270**(3): 1041-7.

Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasoressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." *FEBS Lett* **441**(3): 470-5.

Nanevitz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signaling." *J Biol Chem* **271**(2): 702-6.

Olesnicki, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus." *Embo J* **18**(10): 2756-63.

Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor." *J Biol Chem* **271**(14): 7949-55.

Figure 1 (Page 14 of 15)

Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyrotropin receptor." *Mol Endocrinol* 9(6): 725-33.

Parnot, C., S. Bardin, et al. (2000). "Systematic identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades." *Mol Endocrinol* 14(6): 7615-20.

Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA library with an original pharmacological bioassay." *Proc Natl Acad Sci U S A* 91(13): 7615-9.

Pauwels, P. J., A. Goube, et al. (1999). "Activation of constitutive 5-hydroxytryptamine 1B receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." *Biochem J* 343 Pt 2: 435-42.

Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." *Mol Pharmacol* 49(1): 112-22.

Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." *J Biol Chem* 268(22): 16483-7.

Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." *Biochemistry* 34(37): 11938-45.

Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." *Cell* 72(6): 827-34.

Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." *Thyroid* 9(1): 13-7.

Santama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." *Journal of Biological Chemistry* 268(7): 4625-36.

Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." *Mol Pharmacol* 57(2): 219-31.

Scheer, A., F. Fanelli, et al. (1997). "The activation process of the alpha 1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." *Proc Natl Acad Sci U S A* 94(3): 808-13.

Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodyplasia." *Mol Endocrinol* 11(7): 851-8.

Shenker, A., L. Lue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]." *Nature* 365(6447): 652-4.

Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." *Biochemistry* 39(23): 6898-909.

Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." *J Biol Chem* 273(34): 21563-8.

Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6." *Biochemistry* 36(33): 10109-16.

Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." *Biochem Biophys Res Commun* 232(1): 96-100.

Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." *J Biol Chem* 273(14): 7900-5.

Figure 1 (Page 15 of 15)

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

Figure 2

Light Emission Induced by the WT CCK-BR vs. a Constitutively Active Mutant

Figure 3

A Point Mutation Confers Constitutive Activity to the Rat μ Opiod Receptor

Figure 4

Forskolin Stimulated HEK293 Cells Transfected With pcDNA1 and a CRE-luc Construct

Figure 5

The Rat μ Opioid Receptor Signals Through G_oi

Figure 6

A Point Mutation Confers Constitutive Activity to the Rat μ Opioid Receptor

Figure 7

Target Residues Within Class I GPCRs

Figure 8

TMD III Asn (-14 from DRY) is a Target for Mutation Induced Constitutive Activity

mu opioid
bradykinin B2
angiotensin II AT1A

Figure 9

The 'DRY' Motif is a Target for Mutation Induced Constitutive Activity

Figure 10

FOURTY-EIGHT EIGHT

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

Figure 11

The -13 Position is a Target for Mutation Induced Constitutive Activity

Figure 12

ork 1 -----MESPIQFRGEPEGTCA~~SAC~~PPN~~SS~~AWFP~~G~~W~~A~~P.. DSN~~G~~SAG~~S~~E~~D~~A~~O~~
 orkr 1 -----MESPIQFRGEPEGTCA~~SAC~~PPN~~SS~~SWF~~P~~W~~A~~J~~S~~.. DSN~~G~~S~~V~~G~~S~~E~~D~~Q~~O~~
 orm 1 MDSSAAPTNAS~~N~~CTDA~~A~~YSSCSP~~A~~SPG~~S~~W~~Y~~.. NL~~S~~HLD~~G~~N~~L~~S~~D~~PC~~G~~PN~~R~~TD~~L~~GG~~P~~DSL
 orm~~r~~ 1 MDSSTGPGNTSDCSDP~~A~~QASC~~S~~PA.. EG~~S~~W~~L~~.. NL~~S~~HVD~~G~~N~~Q~~S~~D~~PC~~G~~LN~~R~~T~~G~~LG~~G~~ND~~S~~L
 ord 1 -----ME~~H~~APSAGAEL.. Q.. PPLF~~N~~ASDAYPSACPSA~~G~~ANASG
 AT1a 1 -----MA~~N~~SSAEDGIK~~R~~I~~O~~
 BK-2 1 -----MFSPWKISMFLSV~~R~~EDSV~~P~~TT~~A~~S~~F~~S~~A~~MLN~~V~~TLQG~~P~~TLNG.. TFA~~Q~~

ork 49 LEPABISPA~~A~~.. P~~S~~M~~I~~T~~A~~Y~~S~~V~~E~~V~~V~~G~~L~~G~~N~~S~~I~~V~~M~~V~~T~~Y~~R~~Y~~T~~K~~M~~K~~T~~A~~T~~N~~I~~Y~~I~~F~~N~~L~~A~~L~~A~~
 orkr 49 LEPABISPA~~A~~.. P~~S~~M~~I~~T~~A~~Y~~S~~V~~E~~V~~V~~G~~L~~G~~N~~S~~I~~V~~M~~V~~T~~Y~~R~~Y~~T~~K~~M~~K~~T~~A~~T~~N~~I~~Y~~I~~F~~N~~L~~A~~L~~A~~
 orm 59 CPPTGS.. P~~S~~M~~V~~T~~A~~T~~T~~Y~~S~~V~~C~~V~~V~~G~~L~~F~~G~~N~~F~~D~~V~~.. V~~I~~Y~~R~~Y~~T~~K~~M~~K~~T~~A~~T~~N~~I~~Y~~I~~F~~N~~L~~A~~L~~A~~
 orm~~r~~ 57 CPQTGS.. P~~S~~M~~V~~T~~A~~T~~T~~Y~~S~~V~~C~~V~~V~~G~~L~~F~~G~~N~~F~~D~~V~~.. V~~I~~Y~~R~~Y~~T~~K~~M~~K~~T~~A~~T~~N~~I~~Y~~I~~F~~N~~L~~A~~L~~A~~
 ord 37 PPGARSASS~~A~~LA~~A~~LA~~A~~LA~~A~~Y~~S~~AVCA~~V~~G~~A~~F~~G~~N~~V~~V~~I~~ME~~G~~I~~V~~Y~~R~~Y~~T~~K~~M~~K~~T~~A~~T~~N~~I~~Y~~I~~F~~N~~L~~A~~L~~A~~
 AT1a 16 DDCPKAGRHSYI~~F~~V~~W~~PTD~~S~~E~~F~~V~~G~~F~~G~~N~~S~~I~~V~~V~~I~~Y~~F~~Y~~M~~K~~O~~K~~T~~V~~A~~S~~V~~E~~L~~N~~L~~A~~L~~D~~L~~
 BK-2 45 SKCPQVEWL~~G~~WL~~N~~T~~I~~Q~~P~~P~~F~~L~~W~~V~~I~~Y~~F~~V~~G~~T~~E~~N~~I~~F~~V~~L~~S~~V~~F~~CL~~H~~K~~S~~S~~C~~T~~V~~A~~E~~Y~~T~~G~~M~~L~~A~~A~~D~~L

ork 107 L~~V~~I~~T~~Y~~T~~P~~F~~Q~~S~~T~~V~~V~~L~~V~~N~~.. SW~~P~~G~~B~~IL~~C~~K~~V~~I~~S~~I~~D~~Y~~Y~~Y~~N~~M~~F~~T~~I~~F~~L~~T~~L~~V~~M~~S~~V~~D~~R~~Y~~I~~A~~V~~CH~~P~~V~~K~~
 orkr 107 L~~V~~I~~T~~Y~~T~~P~~F~~Q~~S~~A~~V~~V~~L~~V~~N~~.. SW~~P~~G~~B~~IL~~C~~K~~V~~I~~S~~I~~D~~Y~~Y~~Y~~N~~M~~F~~T~~I~~F~~L~~T~~L~~V~~M~~S~~V~~D~~R~~Y~~I~~A~~V~~CH~~P~~V~~K~~
 orm 118 P~~A~~N~~S~~T~~I~~P~~F~~Q~~S~~Y~~N~~V~~I~~M~~G~~.. W~~P~~G~~C~~IL~~C~~K~~V~~I~~S~~I~~D~~Y~~Y~~Y~~N~~M~~F~~T~~I~~F~~L~~T~~L~~V~~M~~S~~V~~D~~R~~Y~~I~~A~~V~~CH~~P~~V~~K~~
 orm~~r~~ 116 P~~A~~N~~S~~T~~I~~P~~F~~Q~~S~~Y~~N~~V~~I~~M~~G~~.. W~~P~~G~~C~~IL~~C~~K~~V~~I~~S~~I~~D~~Y~~Y~~Y~~N~~M~~F~~T~~I~~F~~L~~T~~L~~V~~M~~S~~V~~D~~R~~Y~~I~~A~~V~~CH~~P~~V~~K~~
 ord 97 P~~A~~N~~S~~T~~I~~P~~F~~Q~~S~~A~~K~~Y~~I~~M~~E~~.. W~~P~~G~~C~~IL~~C~~K~~V~~I~~S~~I~~D~~Y~~Y~~Y~~N~~M~~F~~T~~I~~F~~L~~T~~L~~V~~M~~S~~V~~D~~R~~Y~~I~~A~~V~~CH~~P~~V~~K~~
 AT1a 76 C~~F~~L~~L~~D~~L~~W~~A~~V~~Y~~T~~A~~M~~E~~Y~~R~~W~~E~~G~~N~~H~~C~~K~~C~~.. A~~S~~A~~S~~V~~I~~E~~N~~V~~A~~S~~M~~L~~L~~I~~C~~I~~S~~D~~R~~Y~~E~~A~~T~~V~~H~~P~~M~~K~~Y~~
 BK-2 105 H~~I~~A~~C~~G~~A~~P~~S~~W~~E~~T~~I~~S~~N~~N~~F~~D~~W~~L~~E~~G~~E~~T~~L~~C~~R~~V~~N~~H~~I~~I~~S~~M~~N~~F~~S~~S~~I~~C~~F~~L~~M~~I~~S~~D~~R~~Y~~E~~A~~L~~V~~I~~K~~T~~M~~S~~

↑ -14 from DRY *

ork 166 ALDFRTPLKAK~~T~~I~~M~~I~~C~~T~~W~~Y~~S~~S~~G~~I~~S~~A~~F~~V~~E~~G~~G~~K~~V~~.. EDVD~~D~~V~~I~~E~~C~~S~~L~~Q~~F~~P~~D~~D~~D~~Y~~S~~W~~D~~
 orkr 166 ALDFRTPLKAK~~T~~I~~M~~I~~C~~T~~W~~Y~~S~~S~~G~~I~~S~~A~~F~~V~~E~~G~~G~~K~~V~~.. EDVD~~D~~V~~I~~E~~C~~S~~L~~Q~~F~~P~~D~~D~~E~~Y~~S~~W~~D~~
 orm 177 ALDFRTPRNAK~~T~~I~~M~~I~~C~~N~~W~~H~~S~~S~~G~~I~~S~~A~~F~~V~~E~~G~~G~~M~~A~~T~~T~~K~~Y~~.. Q.. G~~S~~I~~D~~C~~L~~T~~E~~S~~H~~P~~T~~W.. Y~~W~~
 orm~~r~~ 175 ALDFRTPRNAK~~T~~I~~M~~I~~C~~N~~W~~H~~S~~S~~G~~I~~S~~A~~F~~V~~E~~G~~G~~M~~A~~T~~T~~K~~Y~~.. Q.. G~~S~~I~~D~~C~~L~~T~~E~~S~~H~~P~~T~~W.. Y~~W~~
 ord 156 ALDFRTPAKAK~~T~~I~~M~~I~~C~~T~~W~~Y~~S~~S~~G~~I~~S~~A~~F~~V~~E~~G~~G~~K~~V~~.. D.. G~~A~~V~~V~~M~~O~~F~~S~~P~~S~~W.. E~~W~~
 AT1a 136 SRLRR~~T~~M~~V~~A~~K~~W~~T~~Q~~I~~.. W~~M~~A~~G~~L~~A~~S~~P~~A~~V~~H~~R~~N~~V~~.. Y~~F~~I~~E~~N~~T~~V~~O~~A~~F~~H~~Y~~E~~S~~R~~N~~. STLP
 BK-2 165 MGRMRGVRW~~A~~K~~Y~~S~~V~~I~~W~~G~~C~~L~~L~~S~~S~~P~~W~~F~~R~~T~~M~~K~~E~~S~~D~~E~~G~~H~~N~~V~~T~~A~~C~~V~~I~~S~~Y~~P~~S~~.. LI~~W~~

ork 224 D~~F~~W~~K~~I~~C~~V~~E~~L~~A~~F~~A~~P~~V~~.. D~~V~~C~~V~~T~~E~~L~~M~~L~~D~~L~~R~~I~~K~~S~~V~~R~~I~~.. L~~S~~G~~S~~E~~K~~D~~R~~N~~L~~R~~R~~I~~T~~R~~M~~V~~L~~V~~V~~A~~V~~
 orkr 224 D~~F~~W~~K~~I~~C~~V~~E~~L~~A~~F~~A~~P~~V~~.. D~~V~~C~~V~~T~~E~~L~~M~~L~~D~~L~~R~~I~~K~~S~~V~~R~~I~~.. L~~S~~G~~S~~E~~K~~D~~R~~N~~L~~R~~R~~I~~T~~K~~I~~V~~L~~V~~V~~A~~V~~
 orm 232 N~~L~~K~~I~~C~~V~~E~~L~~A~~F~~A~~P~~V~~V~~.. D~~V~~C~~V~~T~~E~~L~~M~~L~~D~~L~~R~~I~~K~~S~~V~~R~~I~~.. L~~S~~G~~S~~E~~K~~D~~R~~N~~L~~R~~R~~I~~T~~R~~M~~V~~L~~V~~V~~A~~V~~
 orm~~r~~ 230 N~~L~~K~~I~~C~~V~~E~~L~~A~~F~~A~~P~~V~~V~~.. D~~V~~C~~V~~T~~E~~L~~M~~L~~D~~L~~R~~I~~K~~S~~V~~R~~I~~.. L~~S~~G~~S~~E~~K~~D~~R~~N~~L~~R~~R~~I~~T~~R~~M~~V~~L~~V~~V~~A~~V~~
 ord 211 T~~V~~T~~K~~I~~C~~V~~E~~L~~A~~F~~A~~P~~V~~.. D~~V~~C~~V~~T~~E~~L~~M~~L~~D~~L~~R~~I~~K~~S~~V~~R~~I~~.. L~~S~~G~~S~~E~~K~~D~~R~~S~~L~~R~~R~~I~~T~~R~~M~~V~~L~~V~~V~~G~~A~~
 AT1a 193 I~~G~~E~~G~~E~~T~~K~~N~~I~~C~~L~~G~~F~~P~~I~~M~~L~~T~~S~~V~~T~~I~~.. W~~K~~A~~K~~K~~A~~Y~~E~~I~~Q~~K~~N~~K~~P~~R~~N~~D~~D~~.. I~~F~~R~~E~~I~~M~~A~~L~~V~~L~~F~~F~~
 BK-2 222 V~~F~~T~~N~~M~~L~~N~~V~~G~~E~~F~~S~~P.. L~~S~~V~~I~~T~~F~~C~~I~~M~~Q~~H~~Q~~V~~L~~R~~N~~N~~E~~M~~Q~~K~~P~~K~~E~~I~~Q~~T~~E~~. R~~R~~A~~T~~V~~L~~V~~V~~V~~L~~E~~F~~

ork 284 L~~V~~C~~V~~T~~P~~I~~H~~I~~D~~Y~~E~~A~~G~~S.. T.. S~~H~~S~~T~~A~~A~~L~~S~~S~~M~~S~~Y~~E~~C~~I~~A~~L~~G~~Y~~T~~N~~S~~S~~L~~N~~P~~V~~L~~Y~~A~~F~~E~~D~~E~~N~~F~~
 orkr 284 D~~V~~C~~V~~T~~P~~I~~H~~I~~D~~Y~~E~~A~~G~~S.. T.. S~~H~~S~~T~~A~~A~~L~~S~~S~~M~~S~~Y~~E~~C~~I~~A~~L~~G~~Y~~T~~N~~S~~S~~L~~N~~P~~V~~L~~Y~~A~~F~~E~~D~~E~~N~~F~~
 orm 292 I~~V~~C~~V~~T~~P~~I~~H~~I~~D~~Y~~E~~A~~G~~S.. T.. E~~H~~I~~F~~Q~~T~~V~~S~~H~~E~~F~~C~~I~~A~~L~~G~~Y~~T~~N~~S~~S~~C~~L~~P~~V~~L~~Y~~A~~F~~E~~D~~E~~N~~F~~
 orm~~r~~ 290 I~~V~~C~~V~~T~~P~~I~~H~~I~~D~~Y~~E~~A~~G~~S.. T.. E~~H~~I~~F~~Q~~T~~V~~S~~H~~E~~F~~C~~I~~A~~L~~G~~Y~~T~~N~~S~~S~~C~~L~~P~~V~~L~~Y~~A~~F~~E~~D~~E~~N~~F~~
 ord 271 L~~V~~C~~V~~W~~A~~P~~H~~I~~H~~V~~T~~L~~V~~D~~D~~.. R~~R~~D~~P~~L~~V~~V~~A~~A~~L~~H~~L~~C~~A~~L~~G~~Y~~A~~N~~S~~S~~L~~N~~P~~V~~L~~Y~~A~~F~~E~~D~~E~~N~~F~~
 AT1a 250 F~~F~~S~~W~~V~~E~~H~~Q~~I~~T~~F~~D~~V~~H~~Q~~I~~G~~V~~I~~H~~D~~C~~K~~I~~.. S~~D~~I~~W~~D~~T~~A~~M~~P~~I~~H~~O~~D~~V~~F~~N~~N~~C~~M~~P~~L~~F~~Y~~G~~F~~G~~K~~K~~
 BK-2 280 H~~I~~C~~W~~L~~P~~F~~Q~~I~~S~~T~~F~~L~~T~~L~~H~~R~~J~~G~~I~~S~~C~~Q~~D~~E~~R~~I~~I~~D~~V~~I~~T~~Q~~I~~A~~S~~F~~W~~V~~S~~N~~S~~C~~A~~P~~L~~V~~V~~I~~V~~G~~K~~R~~F~~

ork 338 K~~R~~C~~E~~R~~I~~F~~C~~F~~P~~I~~H~~K~~M~~R~~V~~E~~R~~S~~I~~R~~M~~R.. M~~T~~V~~O~~D.. P~~A~~Y~~I~~R~~D~~I~~D~~G~~M~~N~~K~~P~~V~~-----
 orkr 338 K~~R~~C~~E~~R~~I~~F~~C~~F~~P~~I~~H~~K~~M~~R~~V~~E~~R~~S~~I~~R~~M~~R.. M~~T~~V~~O~~D.. P~~A~~S~~M~~R~~D~~V~~G~~G~~M~~N~~K~~P~~V~~-----
 orm 346 K~~R~~C~~E~~R~~I~~F~~C~~I~~P~~T~~S~~S~~T~~H~~E~~Q~~O~~N~~S~~I~~H~~R~~E~~R~~O~~N~~T~~. R~~H~~H~~S~~T~~A~~N~~T~~D~~R~~T~~N~~H~~Q~~E~~N~~L~~E~~A~~E~~T~~A~~P~~L~~
 orm~~r~~ 344 K~~R~~C~~E~~R~~I~~F~~C~~I~~P~~T~~S~~S~~T~~H~~E~~Q~~O~~N~~S~~I~~H~~R~~E~~R~~O~~N~~T~~. R~~H~~H~~S~~T~~A~~N~~T~~D~~R~~T~~N~~H~~Q~~E~~N~~L~~E~~A~~E~~T~~A~~P~~L~~
 ord 326 K~~R~~C~~E~~R~~I~~O~~L~~R~~K~~P~~C~~G~~P~~D~~P~~S~~S~~F~~G~~R~~A~~R~~E~~A~~T~~R~~E~~R~~V~~T~~A~~C~~T~~P~~S~~D~~G~~P~~G~~G~~A~~A~~A~~-----
 AT1a 310 K~~K~~Y~~E~~L~~Q~~L~~L~~K~~Y~~U~~P~~P~~K~~A~~K~~S~~H~~S.. S~~L~~S~~T~~K~~M~~.. S~~T~~L~~S~~Y~~R~~P~~S~~D~~N~~M~~S~~S~~A~~K~~P~~A~~S~~C~~F~~E~~V~~
 BK-2 340 E~~R~~K~~S~~W~~E~~V~~Y~~Q~~G~~V~~C~~O~~G~~G~~C~~R~~S~~E~~P~~I~~Q~~M~~E~~N~~S~~.. G~~T~~L.. R~~T~~S~~I~~S~~V~~E~~R~~Q~~I~~H~~K~~L~~Q~~D~~W~~A~~G~~S~~R~~

Figure 13

mORmouse 1 MDSSAGEGNISDCSDPLA.PASCSPA...PGSWDNLSEHDGMO SDPCGPNRTRIGGSHSLC

mORrat 1 MDSSITGPGNTSDCSDPLA.QASCSPA...PGSWDNLSEHDGMO SDPCGPNRTRIGGSHSLC

mORbovin 1 MDSCAVIPDNASNCIDPFTHPSSCSPAPSPSSWANSHIDCGLSDPCGPNRTRIGGSDSLC

mORhuman 1 MDSSAIPDNASNCIDPFSPSSMCSPVSPSPSSWANSHIDCGLSDPCGPNRTRIGGSDSLC

mORpig 1 MDSSAIPDNASNCIDPFSPSSMCSPVSPSPSSWANSHIDCGLSDPCGPNRTRIGGSDSLC

mORws 1 METIS...GNI SDFLYPLS....NPVMS....NISVILCRNFSNSTSFLNMNGSSRDSTD

AT1a 1 -----MALNSSAEDGKRIQDDC

BK-2 1 -----MFSPWKISMFISVREDSVPTTASFADMLNVTLOQETLNG.TFAQSKC

mORmouse 58 PQTGSPSMVTAITIMALYSIVCVVGLFGNELVMVIVRYTKMKTATNIYIENLALADALA

mORrat 58 PQTGSPSMVTAITIMALYSIVCVVGLFGNELVMVIVRYTKMKTATNIYIENLALADALA

mORbovin 61 PTAAGSPSMVTAITIMALYSIVCVVGLFGNELVMVIVRYTKMKTATNIYIENLALADALA

mORhuman 60 PPTGSPSMVTAITIMALYSIVCVVGLFGNELVMVIVRYTKMKTATNIYIENLALADALA

mORpig 61 PPTGSPSMVTAITIMALYSIVCVVGLFGNELVMVIVRYTKMKTATNIYIENLALADALA

mORws 48 EQDKIP...VITAIIDITLTLYSIVCVVGLGVNVLVMVIVRYTKMKTATNIYIENLALADALA

AT1a 19 EKAGRHSYIIFVM...IPTLYSIIIFVVGIFGNSLWVIVIYFYMKIKIVASVETUNLALADLCF

BK-2 48 PQVEWLGWNTI.QPPFLWVIFVCATLENIFVLSVFCHKSSQIVAEIY...GNI AADIL

mORmouse 118 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

mORrat 118 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

mORbovin 121 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

mORhuman 120 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

mORpig 121 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

mORws 107 TSTLPLFQSVMYLM...TWPFGNLCKIVISIDYINMFTSIFTLCMSVDRYIAVCHPVKAL

AT1a 78 LLTLPPLWAVYTAMEYRNPPCNHCKIASASVTENIVASVFLITOLSEDRYIATVHPMKR

BK-2 107 ACGLPLPEWAITISNNFDLILPGETILCRWNTIISMNLYSSICFLMIVSEDRYIATVRLMSMG

mORmouse 177 DFRTPRVAKIAIVCNWILSSAIGLPVMFMATTKYRO.....GSIDCILTFSHPTWYWE

mORrat 177 DFRTPRVAKIAIVCNWILSSAIGLPVMFMATTKYRO.....GSIDCILTFSHPTWYWE

mORbovin 180 DLRTPRVAKIDNGCNWILSSAIGLPVMFMATTKYRO.....GSIDCILTFSHPTWYWE

mORhuman 179 DFRTPRVAKIDNGCNWILSSAIGLPVMFMATTKYRO.....GSIDCILTFSHPTWYWE

mORpig 180 DFRTPRVAKIDNGCNWILSSAIGLPVMFMATTKYR.....GSIDCALTFSHPTWYWE

mORws 166 DFRTPRVAKIAIVCNWILSSAIGLPVMFASITIENQNSPLQVSNFDCILIFPHPPWYWE

AT1a 138 LRRKMLVAKVTCIIIWVAGLASLPAVHRNV.....YFIENTNITVCAFHYESRNSTLP

BK-2 167 RMRGVRWAKLYSLVWGCILLIISSEPMIVFRIMK...EYSDEGHNVTACVILSYPS..LINE

mORmouse 230 NLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

mORrat 230 NLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

mORbovin 233 NLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

mORhuman 232 NLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

mORpig 233 NLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

mORws 226 TLLKICVLFIAFIMPVLIITVCYGLMILRLKSVRMLSGSKEKDRLRRIITRMVLVVVAVF

AT1a 193 IGLGTTKNIILGFEPFLILTSYTHIWKAIKAYEIQKNKPRND...IERTITMVLVLF

BK-2 222 VFTNMLIINVVGFLCP.LSVITFCIMQHMQVLRNNENQKFKEIOTE.RRATVVLVVLILF

mORmouse 290 IVCATPIHIVVILKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF

mORrat 290 IVCATPIHIVVILKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF

mORbovin 293 IVCATPIHIVVILKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF

mORhuman 292 IVCATPIHIVVILKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF

mORpig 293 IVCATPIHIVVILKALITI.....PETTFQTVSWHFCIALGYTNCLNPVLYAFLDENF

mORws 286 IVCATPIHIVVILKALITI.....PNSLFQTVSWHFCIALGYTNCLNPVLYAFLDENF

AT1a 250 FFSWMPHQIISTFDVLIQFGVIHDCKIISDIVDTAMPITICLVEFANCLNPLFYGFLGKF

BK-2 280 IVCATPIHIVVILKALITI.....IICWLFQIISTFDLHRIGLSSCQDERIIDVITQIASFMAYSNSCLNPVLYVIVGKRF

mORmouse 344 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

mORrat 344 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

mORbovin 347 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

mORhuman 346 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

mORpig 347 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

mORws 340 KRCFREFC...IPTSSMIEQNSARIRONTRHPSANTVDRTNQLENLEAETAPLP

AT1a 310 KRYFLQLLKYIIPPKAKSHS...SLSTKMTLSYRPSDNSSSAKPKASCSEVE---

BK-2 340 RKKSWEVYQGVQKGGCRSBPIQMENSMGLT..RISISVEROIEKLODWAGSRQ---

Figure 14

Figure 15

An Intracellular Point Mutation Results in Loss of Ligand-Induced Function

Figure 16

Figure 17