Introduction to Pathway Commons

Augustin Luna 21 January, 2016

Research Fellow
Department of Biostatistics and Computational Biology
Dana-Farber Cancer Institute

Topics to be Covered

- Overview of BioPAX and Pathway Commons
- Accessing Pathway Commons (PC) using paxtoolsr
 - Searching PC
 - Visualizing PC Data
 - Overlaying Experimental Data on PC Networks
 - Getting Network Statistics
 - Gene Set Enrichment with PC
 - ID Mapping

What is Pathway Commons?

- Website: http://www.pathwaycommons.org/
- An aggregation of public pathway database information
- Provides data in multiple formats
 - Biological Pathway Exchange (BioPAX) Format
 - Simple Interaction Format (SIF)
 - Gene sets as Gene Matrix Transposed (GMT) Format
- Provides infrastructure for searching the aggregated pathway data

Biological Pathway Exchange (BioPAX) Format

- BioPAX: http://biopax.org/
- Community-wide effort to represent biological pathways
 - Pathways are collections of interactions that biologists have found useful to group together for organizational, historic, biophysical or other reasons
- Types
 - Metabolic pathways
 - Signaling pathways
 - Protein-protein interactions
 - Gene regulatory pathways
- Advanced tutorial on BioPAX
 - https://github.com/cannin/biopaxTutorial

Pathway Commons Homepage

Pathway Commons Visualizer

Pathway Commons Datasets

Database	Interaction Count		
Reactome	11924		
NCI PID	16017		
PhosphoSitePlus	13642		
HumanCyc	7024		
HPRD	40618		
PantherDB	5282		
DIP	7102		
BioGRID	244843		

Database	Interaction Count
InAct	98347
BIND	35566
TRANSFAC	261624
mirTarBase	51214
DrugBank	19159
Recon X	10910
CTD	313174
KEGG	4472

Simple Interaction Format (SIF)

- An edgelist with interaction type: 3 columns
 - PARTICIPANT_A, INTERACTION_TYPE, PARTICPANT_B
- Expected representation for many network analyses
- Extracted using graph queries that detect biologically interesting interaction patterns in Pathway Commons data
 - Complexes, metabolic, modification, control interactions
 - Generates binary interactions and integrates them across databases

SIF Interaction Types

- Complete list of interaction types in Google Docs
- Examples of conversions from BioPAX to SIF

Gene Set (GMT) Format

Gene Set	Description	Gene 1	Gene 2	Gene 3	•••
KEGG_GLYCOLYSIS_GLUCONEOGENESIS	KEGG	GCK	PGK2	PGK1	•••
REACTOME_SIGNALING_BY_EGFR_IN_CANCER	Reactome	AKT3	ADAM10	SPRY1	•••

What is paxtoolsr?

- Website and Tutorial (Vignette):
 - https://bioconductor.org/packages/release/bioc/html/paxtoolsr.html
- Publication:
 - http://www.ncbi.nlm.nih.gov/pubmed/26685306
- Read and write
 - Biological Pathway Exchange (BioPAX)
 - Binary Simple Interaction Format (SIF)
 - Extended SIF: Includes additional information about SIF network
 - Gene Set (GMT)
 - Systems Biology Graphical Notation Markup Language (SBGN-ML)
- Search and summarize local BioPAX files
- Search Pathway Commons

Enrichment Analysis with Pathway Commons and CellMiner

• Example on conducting an enrichment analysis on CellMiner cell line data using gene sets from Pathway Commons

```
# Load libraries
library(paxtoolsr); library(rcellminer)
# Load data
geneSets <- downloadPc2("Pathway Commons.7.Reactome.GSEA.hgnc.gmt.gz")</pre>
mutData <- getAllFeatureData(rcellminerData::molData)[["mut"]]
hiMutGenes <- head(sort(rowSums(mutData), decreasing=TRUE), 25)
# Initialize variable
pvals <- NULL
for(set in geneSets) {
  #set <- hiMutGenes
  sampleSize <- length(hiMutGenes) # size drawn</pre>
  hitInSample <- length(which(hiMutGenes %in% set)) # black drawn
  hitInPop <- length(which(rownames(mutData) %in% set)) # all black</pre>
  failInPop <- nrow(mutData)-hitInPop # number of red
  # Calculate over-enrichment for current gene set
  pval <- phyper(hitInSample-1, hitInPop, failInPop, sampleSize, lower.tail= FALSE)</pre>
  # Add current result
  pvals <- c(pvals, pval)</pre>
# Adjust p-values
pvals <- p.adjust(pvals, method="fdr")</pre>
length(pvals[pvals < 0.05])
```

Getting Help

- BioPAX Google Group
 - http://groups.google.com/group/biopax
- Biostars
 - https://www.biostars.org
- Online Contact Form
 - http://www.pathwaycommons.org/pc/get_feedback.do