Reinforcement learning and stochastic optimization

Exam (3 hours) No documents are allowed.

Problem 1 A gambler plays bets at n periods. At each period he bets any nonnegative amount up to his present fortune. The gambler wins the bet amount with probability $p \in]0,1[$ and loses it otherwise. The gambler's aim is to maximize the expectation of the logarithm of his final fortune. For x>0, denote by $V_k(x)$ the maximal expected return if the gambler has a present fortune of x and is allowed k ($k=0,\ldots,n$) more bets.

- (i) [2pts] Write the dynamic programming equation for V_k .
- (ii) [3.5pts] For any x > 0 compute $V_n(x)$ and the optimal betting strategy.

Problem 2 Let $H: \mathbb{R}^d \to \mathbb{R}^d$ and $x^* \in \mathbb{R}^d$ be such that $H(x^*) = x^*$. Assume that there exists $\beta \in]0,1[$ such that

$$||H(x) - x^*|| \le \beta ||x - x^*||$$
 for all $x \in \mathbb{R}^d$,

where $\|\cdot\|$ denotes the euclidian norm. In order to approximate x^* , we consider the following stochastic algorithm

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k(H(x_k) + w_k),$$

where $(\gamma_k)_{k\in\mathbb{N}}\subset]0,1[$ is a deterministic sequence and $(w_k)_{k\in\mathbb{N}}$ is a sequence of random variables taking values in \mathbb{R}^d . Let $\mathcal{F}_0=\{x_0\}$ and, for $k\geq 1$, let us set $\mathcal{F}_k=\{x_0,\ldots,x_k,\ldots,w_0,\ldots,w_{k-1}\}$. We assume that

$$\diamond \quad \mathbb{E}(w_k|\mathcal{F}_k) = 0 \quad \text{for all } k \in \mathbb{N}.$$

$$\diamond \quad \mathbb{E}\left(\|w_k\|^2 \,|\, \mathcal{F}_k\right) \le A + B\|x_k - x^*\|^2,$$

for some positive constants A and B.

(i) [2pts] Show that

$$\langle H(x) - x, x - x^* \rangle \le -(1 - \beta) \|x - x^*\|^2$$
 for all $x \in \mathbb{R}^d$,

where, for $y, z \in \mathbb{R}^d$, $\langle y, z \rangle$ denotes the usual scalar product in \mathbb{R}^d .

(ii) [3.5pts] Show that if

$$\left(\sum_{k=0}^{\infty} \gamma_k = \infty\right) \wedge \left(\sum_{k=0}^{\infty} \gamma_k^2 < \infty\right).$$

then, almost surely, $x_k \xrightarrow[k \to \infty]{} x^*$

Problem 3 Let $n \in \mathbb{N}^*$, $\mathcal{X} = \{1, ..., n\}$, and A be a finite set. Let $\{p(j|i, a) \mid i, j \in \mathcal{X}, a \in A\}$ be a *controlled Markov kernel in* \mathcal{X} , i.e.

$$p(j|i,a) \geq 0 \quad \text{for all } i,\, j \in \mathcal{X},\, a \in A, \quad \sum_{j \in \mathcal{X}} p(j|i,a) = 1 \quad \text{for all } i \in \mathcal{X},\, a \in A.$$

Let $\gamma \in]0,1[$, and let $r \colon \mathcal{X} \times A \to \mathbb{R}$ be bounded. Consider the discounted infinite horizon Markov decision problem

$$V_i^* = \sup_{\pi \colon \mathcal{X} \to A} \mathbb{E} \left(\sum_{k=0}^{\infty} \gamma^k r \left(X_k^{i,\pi}, \pi \left(X_k^{i,\pi} \right) \right) \right) \quad \text{for all } i \in \mathcal{X},$$

where $X_k^{i,\pi}$ $(k \in \mathbb{N})$ is the Markov chain, taking values in \mathcal{X} , starting at i and with probability transitions given by

$$\mathbb{P}(X_{k+1}^{i,\pi} = i_{k+1} \,|\, X_k^{i,\pi} = i_k) = p(i_{k+1}|i_k,\pi(i_k)) \quad \text{for all } k \in \mathbb{N},\, i_k,\, i_{k+1} \in \mathcal{X}.$$

Now, define $\widetilde{\mathcal{X}}=\{0,1,\ldots,n\}$ and, for all $i,j\in\widetilde{\mathcal{X}}$ and $a\in A$, set

$$\widetilde{p}(j|i,a) = egin{cases} \gamma p(j|i,a) & \text{if } i,j \in \mathcal{X}, \\ 1-\gamma & \text{if } i \in \mathcal{X}, \ j=0, \\ 1 & \text{if } i=j=0, \\ 0 & \text{otherwise}. \end{cases}$$

1. [2pts] Show that $\{\widetilde{p}(j|i,a) \mid i, j \in \widetilde{\mathcal{X}}, a \in A\}$ is a controlled Markov kernel in $\widetilde{\mathcal{X}}$.

Given a policy $\widetilde{\pi} \colon \widetilde{\mathcal{X}} \to A$ in $\widetilde{\mathcal{X}}$ and $i \in \widetilde{\mathcal{X}}$, define $\widetilde{X}_k^{i,\widetilde{\pi}}$ $(k \in \mathbb{N})$ as the Markov chain, with values in $\widetilde{\mathcal{X}}$, starting at i and with probability transitions given by

$$\mathbb{P}(\widetilde{X}_{k+1}^{i,\widetilde{\pi}}=i_{k+1}\,|\,\widetilde{X}_{k}^{i,\widetilde{\pi}}=i_{k})=\widetilde{p}(i_{k+1}|i_{k},\widetilde{\pi}(i_{k}))\quad\text{for all }k\in\mathbb{N},\,i_{k},\,i_{k+1}\in\widetilde{\mathcal{X}}$$

and set

$$\tau^{i,\widetilde{\pi}} = \inf\{k \in \mathbb{N} \mid \widetilde{X}_k^{i,\widetilde{\pi}} = 0\}$$

2. [2pts] Show that, for every $i \in \widetilde{\mathcal{X}}$ and $\widetilde{\pi} \colon \widetilde{\mathcal{X}} \to A$, we have $\tau^{i,\widetilde{\pi}} < +\infty$ almost surely.

Consider the following undiscounted infinite horizon Markov decision problem

$$\widetilde{V}_{i}^{*} = \max_{\widetilde{\pi} : \widetilde{\mathcal{X}} \to A} \mathbb{E}\left(\sum_{k=0}^{\tau^{i,\widetilde{\pi}} - 1} r\left(\widetilde{X}_{k}^{i,\widetilde{\pi}}, \widetilde{\pi}\left(\widetilde{X}_{k}^{i,\widetilde{\pi}}\right)\right)\right) \quad \text{for all } i \in \mathcal{X},$$

$$\widetilde{V}_{0}^{*} = 0.$$
(1)

3. [3pts] Show that, for every $i \in \mathcal{X}$, we have $V_i^* = \widetilde{V}_i^*$. Does there exist an optimal policy for both problems?

The previous result shows that this modification of a discounted Markov decision problem to an undiscounted one with terminal state preserves the value function.

4. [2pts] Let $\lambda \in [0,1]$ and $i \in \mathcal{X}$. Use the previous idea to provide a $TD(\lambda)$ method to approximate

$$V_i^{\pi} = \mathbb{E}\left(\sum_{k=0}^{\infty} \gamma^k r\left(X_k^{i,\pi}, \pi\left(X_k^{i,\pi}\right)\right)\right)$$

for a given policy π .¹

 $^{^{1}}$ A different $TD(\lambda)$ method can be constructed by working directly with the discounted problem. It can be shown that the latter has smaller variance at the price of having to observe infinite trajectories.