电子科技大学 2022-2023 学年第 1 学期期末考试 A 卷

考试科目: _概率论与数理统计 ____考试形式: _闭卷 ___考试日期: _____年 ___月 ___日

本试卷由 三 部分构成, 共 4 页。考试时长: 150 分钟

成绩构成比例:平时成绩 30 %,期末成绩 70 %

说明:可使用非存储功能的简易计算器

- 一、选择题(共16分,共8题,每小题2分)
- 1. 设 A, B, C 为三事件,则 $\overline{(A \cup C)B} = ($).
- (A) ABC; (B) $(\overline{A}\overline{C}) \cup \overline{B}$; (C) $(\overline{A} \cup \overline{B}) \cup C$; (D) $(\overline{A} \cup \overline{C}) \cup \overline{B}$.
- 2.设X与Y是任意两个连续型随机变量,它们的概率密度分别为 $f_1(x)$ 和 $f_2(x)$,则()
 - (A) $f_1(x) + f_2(x)$ 必为某一随机变量的概率密度;
 - (B) $\frac{1}{2}(f_1(x) + f_2(x))$ 必为某一随机变量的概率密度;
 - (C) $f_1(x) f_2(x)$ 必为某一随机变量的概率密度;
- (D) $f_1(x)f_2(x)$ 必为某一随机变量的概率密度.
- 3.设随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y相互独立的充分必要条件为
- (A) E(X) = E(Y);
- (B) $E(X^2) (E(X))^2 = E(Y^2) (E(Y))^2$;
- (C) $E(X^2) = E(Y^2)$;
- (D) $E(X^2)+(E(X))^2 = E(Y^2)+(E(Y))^2$.
- 4.设随机变量 X_1, X_2, \cdots, X_n 相互独立, $S_n = X_1 + X_2 + \cdots + X_n$,则根据列维-林德伯格中心极限定理,
- 当n充分大时,若要 S_n 近似服从正态分布,只要 X_1, X_2, \dots, X_n 满足条件()
- (A) 有相同的数学期望;

(B) 有相同的方差;

(C) 服从同一指数分布;

- (D) 服从同一离散型分布.
- 5. 设随机变量 X 与 Y 都服从标准正态分布,则()
- (A) *X* + *Y* 服从正态分布:

(B) $X^2 + Y^2$ 服从 χ^2 分布;

- (C) X^2 和 Y^2 都服从 χ^2 分布;
- (D) X^2/Y^2 服从 F 分布.

6.矩估计必然是 (). (A)总体矩的函数;	(B) 样本矩的函数;
(C) 无偏估计;	(D) 最大似然估计.
7.设总体 $X\sim N(\mu,\sigma^2)$,其中 σ^2 已知,则总体均值 μ 的置信区间长度 l 与置信度 $l-\alpha$ 的关系是	
(A) 当 $1-lpha$ 缩小时, l 缩短; (C) 当 $1-lpha$ 缩小时, l 不变;	(B) 当 $1-\alpha$ 缩小时, I 增大; (D) 以上说法都不变.
8.总体均值 μ 置信度为 95% 的置信区间为 $(\hat{ heta}_1,\hat{ heta}_2)$,其含义是()	
(A) 总体均值 μ 的真值以 95% 的概率落入区间 $(\hat{\theta}_1, \hat{\theta}_2)$;	
(B) 样本均值 \overline{X} 以 95%的概率落入区间 $(\hat{\theta}_1, \hat{\theta}_2)$;	
(C) 区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 含总体均值 μ 的真值的概率为 95%;	
(D) 区间 $(\hat{ heta}_1,\hat{ heta}_2)$ 含样本均值 \overline{X} 的概率为 95%.	
二、填空题(共24分,共8题,每小题3分)	
1.已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = 0$, $P(AC) = P(BC) = \frac{1}{8}$, 则事件 A , B , C 全不发生的概	
率为	
2.设随机变量 X 在 $(1,6)$ 上服从均匀分布,则方程 $y^2 + Xy + 1 = 0$ 有实根的概率为	
3.设随机变量 X 服从 $(0,2)$ 上的均匀分布,则随机变量 $Y = X^2$ 在 $(0,4)$ 内的概率密度 $f_Y(y) =$	
·	
4. 设随机变量 X 表示 10 次独立重复射击时命中目标的次数, 若每次命中目标的概率为 0.4, 则 X^2	
的数学期望 $E(X^2) =$.	
5.设随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} 2 & \text{if } X \\ & \text{otherwise} \end{cases}$	$\frac{21}{4}x^2y$, $x^2 < y < 1$, $\Re f_{Y X}(y \mid x) = 0$

6.设总体 $X\sim N(\mu,\sigma^2)$,其中 μ 未知, σ^2 已知.又设 X_1,X_2,X_3 是来自总体 X 的一个样本,作样本

承观

函数如下: ① $\frac{1}{2}X_1 + \frac{2}{3}X_2 - \frac{1}{6}X_3$; ② $\frac{1}{3}(X_2 + 2\mu)$; ③ X_3 ; ④ $\sum_{i=1}^3 \frac{X_i^2}{\sigma^2}$; ⑤ $\min\{X_1, X_2, X_3\}$. 这些函数

7.设 X_1,X_2,\cdots,X_n 是来自总体 $N(\mu,\sigma^2)$ 的一个样本, μ 未知,则参数 σ^2 的置信水平为 0.95 的置

信区间是

8.设y与x间的关系为 $\begin{cases} y = ax + b + \varepsilon, \\ \varepsilon \sim N(\mu, \sigma^2), \end{cases} (x_i, y_i), i = 1, 2, \cdots, n \ \pounds(x, y) \ \pounds n \ \text{组观测值,则回归系数的}$

三、计算题(10分)

有朋自远方来,他乘火车、轮船、汽车、飞机来的概率分别为 0.3, 0.2, 0.1, 0.4, 如果他乘火车、轮船、汽车来的话,迟到的概率分别为 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{12}$, 而乘飞机则不会迟到,求(1)他迟到的概率;(2)他迟到了,他乘火车来的概率为多少?

四、计算题(15分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & 其他. \end{cases}$$

- (1) 计算 $P(X > \frac{1}{2} | Y > 0)$;
- (2) 求X与Y的边缘概率密度;
- (3) 求Z = X + Y的概率密度.

平死

五、计算题(10分)

某药厂生产的某种药品,据说对某疾病的治愈率为 80%.现为了检验其治愈率,任意抽取 100 个此种病患进行临床试验,如果有多于 75 人治愈,则此药通过检验.试在以下两种情况下,分别计算此药通过检验的可能性.(1)此药的实际治愈率为 80%;(2)此药的实际治愈率为 70%. 注: Φ(1.25) = 0.8944; Φ(1.09) = 0.8621.

六、计算题(10分)

设总体 X 的密度函数为

$$f(x) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}}, -\infty < x < \infty,$$

 X_1, X_2, \cdots, X_n 是来自 X 的简单随机样本,试求 θ 的极大似然估计量 $\hat{\theta}$,并判断 $\hat{\theta}$ 是否是 θ 的 无偏估计.

七、 计算题 (15分)

设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 从总体中抽取容量为 36 的一个样本,样本均值和样本方差值分别为 $\overline{x}=3.5, s^2=4$.

- (1) 已知 σ^2 =1,求 μ 的置信度为0.95的置信区间;
- (2) σ^2 未知,求 μ 的置信度为 0.95 的置信区间;
- (3) 当 σ^2 =8时,如果以 $(\overline{X}-1,\overline{X}+1)$ 作为 μ 的置信区间,求置信度.

注: $u_{0.025} = 1.96$; $t_{0.025}(35) = 2.0301$; $t_{0.025}(36) = 2.0281$; $\Phi(2.121) = 0.983$