Day 6: Neural Networks Summer STEM: Machine Learning

Nikola Janjušević, Akshaj Kumar Veldanda, Jacky Yuan, Tejaishwarya Gagadam

> Department of Electrical and Computer Engineering NYU Tandon School of Engineering Brooklyn, New York

> > July 15, 2019

Outline

Review

- 1 Review of Week 1

Feature-Target Questions

Review

Regression or Classification?

■ **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.

Feature-Target Questions

Review

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.
 - Classification Problem

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.
 - Classification Problem
 - Class Labels: Positive, Negative, Neutral

Feature-Target Questions

Review

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.
 - Classification Problem
 - Class Labels: Positive, Negative, Neutral
- **Problem 3:** Predict whether an employee's income is over 100k a year or not.

Feature-Target Questions

Review

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.
 - Classification Problem
 - Class Labels: Positive, Negative, Neutral
- **Problem 3:** Predict whether an employee's income is over 100k a year or not.
 - Classification Problem

- **Problem 1:** Categorizing credit card applications into those who have good credit, bad credit and those who fall in the gray area.
 - Classification Problem
 - Class Labels: Good credit, Bad credit, Average credit
- **Problem 2:** Determining the sentiment of customer reviews for a product on Amazon.
 - Classification Problem
 - Class Labels: Positive, Negative, Neutral
- **Problem 3:** Predict whether an employee's income is over 100k a year or not.
 - Classification Problem
 - Class Labels: Over 100k. Under 100k.

Feature-Target Questions

Regression or Classification?

■ **Problem 4:** Estimating change in climate.

- **Problem 4:** Estimating change in climate.
 - Regression Problem

Review

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures

Review

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.

Review

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.
 - Classification Problem

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.
 - Classification Problem
 - Class labels: Normal Speech, Hate Speech

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.
 - Classification Problem
 - Class labels: Normal Speech, Hate Speech
- **Problem 6:** Forecasting the energy demand in a region.

Review

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.
 - Classification Problem
 - Class labels: Normal Speech, Hate Speech
- **Problem 6:** Forecasting the energy demand in a region.
 - Regression Problem

Regression or Classification?

- **Problem 4:** Estimating change in climate.
 - Regression Problem
 - Target Variable: Predicting future temperatures
- **Problem 5:** Identifying hate speech in social media.
 - Classification Problem
 - Class labels: Normal Speech, Hate Speech
- **Problem 6:** Forecasting the energy demand in a region.
 - Regression Problem
 - Target Variable: Predicting the amount of energy needed in the future

Day 6: Neural Networks

Machine Learning Problem Pipeline

- Gather data
- 2 Visualize the data
- 3 Formulate ML problem
 - Regression vs Classification
 - Choose an appropriate cost function
- Design the model and train to find the optimal parameters of the model
 - Prepare a design matrix
 - Perform feature engineering
 - Validate your choice of hyper-parameters using a cross-validation set
- 5 Evaluate the model on a test set
 - If the performance is not satisfactory, go back to step 4

Data

- Always save your data file as an .csv file
 - It is easy to edit in both excel and text file
 - Easy to load the data using Pandas
- Visualize the data
 - To get an rough estimate of how your machine learning model should be
 - Do you have sufficient training and testing data
- Always plot the data before pre-processing

■ Numbers:

Notation

Review

- Numbers:
 - N: total number of samples

Notation

Review

- Numbers:
 - N: total number of samples
 - M: model order, number of features (engineered or not)

Linear vs. Logistic Regression

Review

■ Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes

Review

- Numbers:
 - N: total number of samples
 - M: model order, number of features (engineered or not)
 - K: number of outputs or classes
- Vectors:

Linear vs. Logistic Regression

Review

- Numbers:
 - N: total number of samples
 - M: model order, number of features (engineered or not)
 - K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$

Review

■ Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
 - \blacksquare **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$

Linear vs. Logistic Regression

Review

Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
 - **v**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
 - **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$

Linear vs. Logistic Regression

Review

Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes

Vectors:

- **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
- **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
- **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
- **w**: weight vector for K = 1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$

Review

- Numbers:
 - N: total number of samples
 - M: model order, number of features (engineered or not)
 - K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
 - **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
 - **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
 - **w**: weight vector for K = 1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$
 - **b**: bias vector, $\mathbf{b} = [b_1, b_2, ..., b_K]$

Review

Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
 - **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
 - **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
 - **w**: weight vector for K=1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$
 - **b**: bias vector, $\mathbf{b} = [b_1, b_2, ..., b_K]$
- Matrices:

Review

Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes
- Vectors:
 - **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
 - **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
 - **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
 - **w**: weight vector for K = 1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$
 - **b**: bias vector, $\mathbf{b} = [b_1, b_2, ..., b_K]$
- Matrices:
 - \blacksquare X: (N,M) design matrix

Day 6: Neural Networks

Review

Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes

Vectors:

- **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
- **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
- **g**: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
- **w**: weight vector for K = 1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$
- **b**: bias vector, $\mathbf{b} = [b_1, b_2, ..., b_K]$

Matrices:

- X: (N,M) design matrix
- W: (K,M) weight matrix

Review

Supervised Learning

Туре	Linear Regression	Logistic Regression
Use	Modeling Continuous Data	Classification
Features	Any Numerical Data, $\mathbf{x} = [x_1, x_2,, x_M]^T$	
Targets	Any Numerical Data, y	Class Labels, y
Model	$\hat{\mathbf{y}} = \mathbf{W}\mathbf{x} + \mathbf{b}$	$\hat{\mathbf{y}} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$
Loss Function	Error between ${f y}$ and ${f \hat{y}}$	Cross-Entropy

■ Use loss/error/cost function to find best model-parameters

Problem	Loss Function	Formula
Regression	Squared/L2 Loss	$\sum_i (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$
Binary Classification	Binary Cross- Entropy	$-\sum_i (y_i \ln(\hat{y}_i) + (1-y_i) \ln(1-\hat{y}_i))$
Multi-Class Classification	Cross- Entropy	$-\sum_i\sum_k(y_{ik}\ln(\hat{y}_{ik}))$

Optimization

Review

- Use loss/error/cost function to find best model-parameters
- Non-linear opt. can use arbitrary Loss function

Problem	Loss Function	Formula
Regression	Squared/L2 Loss	$\sum_{i} (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i})^{2}$
Binary Classification	Binary Cross- Entropy	$-\sum_i (y_i \ln(\hat{y}_i) + (1-y_i) \ln(1-\hat{y}_i))$
Multi-Class Classification	Cross- Entropy	$-\sum_i\sum_k(y_{ik}\ln(\hat{y}_{ik}))$

Goodness of Fit

Linear vs. Logistic Regression

Review

■ Evaluate the accuracy of the model

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}$

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} \hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} \hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$

Linear vs. Logistic Regression Goodness of Fit.

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} \hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$
 - Easily interpretable units

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$
 - Easily interpretable units
 - Root Mean Squared Error: $\sqrt{\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}}$

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - Mean Squared Error: $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} \hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$
 - Easily interpretable units
 - Root Mean Squared Error: $\sqrt{\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}}$
 - May represent opt. & easily interpretable units

Review

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - \blacksquare Mean Squared Error: $\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$
 - Easily interpretable units
 - Root Mean Squared Error: $\sqrt{\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}}$
 - May represent opt. & easily interpretable units
 - \blacksquare Classification Accuracy: $\frac{1}{N}\sum_{i}(\mathbf{y}_{i}==\hat{\mathbf{y}}_{i})$

Train, Validation, and Test Sets

- Always split your data into train and test sets to see how well it does against new data
- Train set: set of data to be used for training e.g. model.fit(x_train,y_train)
- Test set: After training is done, evaluate how well it does against unseen data using test set
- Validation set: If tuning hyper-paramters, perform one more split to get a validation set. Use validation set to tune parameters

Train, Validation, and Test Sets

Review

Train and Test Sets (Dealing with Time Series)

- Train and test split is usually done by taking samples at random from the entire data set
- But when using time series to predict future, it is better to select test set to be a continuous chunk at the end of the time series
- Because we want to see how well the model does in predicting the future

Regularization

■ Prevent over-fitting by adding a term to loss function

- Loss Function = Target loss function + λ Regularization
- \blacksquare λ hyper-parameter determine how much to emphasize on regularizing
- Large weights usually lead to over-fitting
- Weight-based regularization is most commonly used
 - L2 (Ridge) Regularization: $\sum_{j=1}^{D} |w_j|^2$
 - \blacksquare L1 (Lasso) Regularization: $\sum_{i=1}^{D} |w_i|$
- First over-estimate the model order you need, then use regularization to prevent over-fitting

Outline

- 2 Neural Network Model

■ Motivation: Feature engineering in the model

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{\mathbf{y}} = \sigma(W\mathbf{z} + b)$

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{\mathbf{y}} = \sigma(W\mathbf{z} + b)$
- So, $\hat{y} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{\mathbf{y}} = \sigma(W\mathbf{z} + b)$
- So, $\hat{\mathbf{v}} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$
- Fact: all linear transforms can be represented as matrix multiplication

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{\mathbf{y}} = \sigma(W\mathbf{z} + b)$
- So, $\hat{\mathbf{v}} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$
- Fact: all linear transforms can be represented as matrix multiplication
- \blacksquare We use non-linear function as f to give us a more expressive model

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(Wx + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{\mathbf{y}} = \sigma(W\mathbf{z} + b)$
- So, $\hat{\mathbf{v}} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$
- Fact: all linear transforms can be represented as matrix multiplication
- \blacksquare We use non-linear function as f to give us a more expressive model
 - Recall polynomial transformations and exponential transformations of the data

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(W\mathbf{x} + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{y} = \sigma(Wz + b)$
- So, $\hat{y} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$
- Fact: all linear transforms can be represented as matrix multiplication
- We use non-linear function as *f* to give us a more expressive model
 - Recall polynomial transformations and exponential transformations of the data
 - These cannot be expressed as matrix multiplication

Extension to Neural Network

 \blacksquare Restrict $f(\mathbf{x})$ to non-linear function applied to all input values

- \blacksquare Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural Network**

Extension to Neural Network

- Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural** Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$

- Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural** Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both $W_1, \mathbf{b}_1 \text{ and } W_2, b_2 2$ model-parameters

- Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural** Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , **b**₁ and W_2 , b_2 2 model-parameters

- \blacksquare Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural** Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , **b**₁ and W_2 , b_2 2 model-parameters
 - $\nabla J = \left[\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_0}, ..., \frac{\partial J}{\partial w_0}\right]^T$
 - Now we're learning the feature engineering

- \blacksquare Restrict $f(\mathbf{x})$ to non-linear function applied to all input values
 - Simplest example of a **Neural** Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , **b**₁ and W_2 , b_2 2 model-parameters
 - $\nabla J = \left[\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_0}, ..., \frac{\partial J}{\partial w_0}\right]^T$
 - Now we're learning the feature engineering
- But why stop here?...

Mathematical Model: Multi-Layer Perceptron

■ Model:

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

Mathematical Model: Multi-Layer Perceptron

■ Model:

$$\mathbf{\hat{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

■ Where, $z_l = f_l(W_l \mathbf{z}_{l-1} + b_l)$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden layers

Mathematical Model: Multi-Layer Perceptron

■ Model:

$$\mathbf{\hat{y}} = \mathit{f_{out}}(W_{out} \mathbf{z}_{\mathit{L}} + \mathit{b_{out}})$$

- Where, $z_l = \overline{f_l(W_l \mathbf{z}_{l-1} + b_l)}$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden layers
- ie. all hidden layers are non-linear activation of linear transform

■ Model:

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

- Where, $z_l = \overline{f_l(W_l \mathbf{z}_{l-1} + b_l)}$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden lavers
- ie. all hidden layers are non-linear activation of linear transform
- f_{out} depends on type of ML problem: (regression: linear, classification: sigmoid/soft-max)

■ Model:

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

- Where, $z_l = f_l(W_l \mathbf{z}_{l-1} + b_l)$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden lavers
- ie. all hidden layers are non-linear activation of linear transform
- f_{out} depends on type of ML problem: (regression: linear, classification: sigmoid/soft-max)
 - Regression: Linear Output

Day 6: Neural Networks

■ Model:

Review

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

- Where, $z_l = f_l(W_l \mathbf{z}_{l-1} + b_l)$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden lavers
- ie. all hidden layers are non-linear activation of linear transform
- f_{out} depends on type of ML problem: (regression: linear, classification: sigmoid/soft-max)
 - Regression: Linear Output
 - Binary Classification: Sigmoid Output

■ Model:

Review

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

- Where, $z_l = f_l(W_l \mathbf{z}_{l-1} + b_l)$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden lavers
- ie. all hidden layers are non-linear activation of linear transform
- f_{out} depends on type of ML problem: (regression: linear, classification: sigmoid/soft-max)
 - Regression: Linear Output
 - Binary Classification: Sigmoid Output
 - Multi-Class Classification: Soft-max Output

■ Input: feature vector, x

- Input: feature vector, x
- Output: target vector, ŷ

- Input: feature vector, x
 - Output: target vector, ŷ
 - linear/logistic regression

- Input: feature vector, x
- Output: target vector, ŷ
 - linear/logistic regression
- Hidden: intermediate vectors, z or a

- Input: feature vector, x
- Output: target vector, ŷ
 - linear/logistic regression
- Hidden: intermediate vectors, z or a
 - feature extraction

■ Input: feature vector, x■ Output: target vector, ŷ■ linear/logistic regression

■ Hidden: intermediate vectors, z or a

feature extraction

■ Sigmoid:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

■ Sigmoid:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$
■ $\sigma(z) \in (0,1)$

- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - $\sigma(z) \in (0,1)$
- Tanh (hyperbolic tangent): $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$

- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - $\sigma(z) \in (0,1)$
- Tanh (hyperbolic tangent): $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - $tanh(z) \in [-1, 1]$

- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - $\sigma(z) \in (0,1)$
- Tanh (hyperbolic tangent): $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - \blacksquare tanh(z) \in [-1, 1]
- ReLu (Rectified Linear Unit): relu(z) = max(0, z)

Review

- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - $\sigma(z) \in (0,1)$
- Tanh (hyperbolic tangent): $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - \blacksquare tanh(z) \in [-1,1]
- ReLu (Rectified Linear Unit): relu(z) = max(0, z)
 - easy to compute, performs well in practice

- The design space for NN is HUGE
- Hyper-parameters so far:

- The design space for NN is HUGE
- Hyper-parameters so far:
 - *L*: # of layers

- Hyper-parameters so far:
 - L: # of layers
 - \blacksquare N_I : # hidden units per layer

- Hyper-parameters so far:
 - L: # of layers
 - \blacksquare N_I : # hidden units per layer
 - f: activation function for each layer

- Hyper-parameters so far:
 - L: # of layers
 - \blacksquare N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size

- Hyper-parameters so far:
 - *L*: # of layers
 - N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate

- Hyper-parameters so far:
 - *L*: # of layers
 - N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate
 - # of epochs

■ The design space for NN is HUGE

- Hyper-parameters so far:
 - *L*: # of layers
 - N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate
 - # of epochs
 - lacksquare λ : weight-regularization constant

Day 6: Neural Networks

- Hyper-parameters so far:
 - *L*: # of layers
 - N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate
 - # of epochs
 - lacksquare λ : weight-regularization constant
 - *J*: cost/loss function

- Hyper-parameters so far:
 - L: # of layers
 - \blacksquare N_L : # hidden units per layer
 - \blacksquare f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate
 - # of epochs
 - \blacksquare λ : weight-regularization constant
 - *J*: cost/loss function
- This can be overwhelming...

■ **Start Small**: 1 or 2 layers

- Start Small: 1 or 2 layers
 - \blacksquare # hidden units \sim 128

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working

- - **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing

- Start Small: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function
 - for all hidden layers

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function
 - for all hidden layers
- Simple MLP Arch:

- Start Small: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function
 - for all hidden layers
- Simple MLP Arch:
 - Pyramid

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function
 - for all hidden layers
- Simple MLP Arch:
 - Pyramid
 - Expand, combine & reduce

Toy Example: Spiral Classification

Human Engineered Feature Transformations:

NN Engineered
Feature Transformations:

Toy Example: Spiral Classification

Human Engineered Feature Transformations:

NN Engineered
Feature Transformations:

Advantages	Disadvantages
Further removed need for domain knowledgeInfinitely expressive	 Less control over behavior of model Computationally expensive (kind of)

Biological Justification

- Example: Steps for Processing Vision
 - 1 Eyes gather light
 - Light intensities converted to shapes
 - Shapes recognized as objects
 - Objects associated with ideas
 - Idea recognized as Akshaj

- Training with Neural Networks

Neural Networks **Training** Intro to Keras Lab: Music Lab: CatNC

Large Scale Machine Learning

- Learning with large data sets
- Algorithms today perform so much better than five years ago due to shear amount of data availability
- "It's not who has the best algorithm that wins. It's who has the most data"
 - So we want to learn from large data sets

Learning with Large Data Sets

- Challenges:
 - Computationally very expensive to compute gradients
 - And each gradient computation performs only one step of update
- In large scale machine learning, we want to come up with computationally reasonable ways to deal with large data sets
 - Batch Gradient Descent
 - Stochastic Gradient Descent
 - Mini-batch Gradient Descent

Digression: Revisiting Learning Rate

Correct learning rate

Review

- Batch Gradient Descent takes all the examples in the training data to compute one step of gradient descent update
- Algorithm: Consider linear regression (N = 100,000,000)

$$\hat{y} = \sum_{i=0}^{N} w_i x_i$$

•
$$Cost, J = \frac{1}{N} \sum_{i=0}^{N} (y_i - \hat{y}_i)^2$$

■ Gradient Descent Update
$$w_{new} = w_{old} - \alpha \frac{dJ}{dw}$$

Review

- SGD takes only one example in the training example to perform one step of gradient descent
 - The algorithm modifies the parameters a little bit to fit just the first example (x_1, y_1)
 - Then again modify the parameters to fit the second training example (x_2, y_2) and so on...
- Algorithm (Let N be the total number of training examples): Repeat {

```
for i = 1, 2...N{
        Cost, J = (y_i - \hat{y}_i)^2
        Gradient Descent Update w_{new} = w_{old} - \alpha \frac{dJ}{dw}
```

Review

Batch Gradient Descent

- **Batch Gradient Descent** uses 'b' training examples to perform one update step
 - 'b' is called batch size
 - Number of iterations = $\frac{N}{h}$
- Algorithm:

```
Repeat {
         i = 0
         for i in range( iterations){
                  Cost, J = \frac{1}{b} \sum_{i=1}^{i+b} (y_i - \hat{y}_i)^2
                  Gradient Descent Update w_{new} = w_{old} - \alpha \frac{dJ}{dw}
                 i = i + b
```

- Introduction to Keras

- Lab: Music Classification

Lab: CatNCat

- 1 Review of Week
- 2 Neural Network Mode
- 3 Training with Neural Network
- 4 Introduction to Kera
- 5 Lab: Music Classification
- 6 (Optional) Lab: Cat vs. Non-Cat

Thank You!

■ Next Class: Convolutional Neural Networks

