Online 기반 Random forest 알고리즘

20510082 전우진 20510083 한재웅

CONTENTS

기 데이터 **O 2**Ale to the second of the second of

03 평가

데이터

Rotating Hyperplane dataset 사용

• Gradual concept drift가 일어나는 parameter를 조절해서 만든 가상의 데이터셋

DataSet	차원	observation	output class	proportion (1:0)	K
1	10	10,000	2	5027:4974	2
2	10	10,000	2	5017:4983	5

K: corresponding weight가 drift 될 차원의 수

attr0	attr1	attr2	attr3	attr4	attr5	attr6	attr7	attr8	attr9	output
0.031337	0.566490	0.389565	0.424643	0.853130	0.552442	0.651868	0.258164	0.688760	0.107980	0
0.736709	0.976751	0.666018	0.330315	0.348992	0.613775	0.391591	0.028845	0.892445	0.944336	1
0.296464	0.774811	0.681787	0.736286	0.571683	0.931030	0.614503	0.485105	0.686068	0.191413	1
0.268038	0.232699	0.930201	0.947699	0.412382	0.653455	0.348090	0.999704	0.025922	0.882774	1
0.773298	0.265773	0.995941	0.149586	0.017813	0.429112	0.201519	0.308675	0.655395	0.300896	0
		***								***
0.862055	0.338475	0.970367	0.089220	0.134278	0.788218	0.437395	0.328031	0.657321	0.422218	1
0.066373	0.756530	0.936229	0.227335	0.613399	0.691645	0.265779	0.062472	0.490900	0.806306	0
0.712069	0.269874	0.687450	0.413940	0.034405	0.019472	0.281914	0.306431	0.308301	0.049732	0
0.794370	0.246686	0.239883	0.208131	0.816414	0.764663	0.135609	0.381933	0.625414	0.030935	1
0.338349	0.427789	0.121447	0.828973	0.023751	0.457726	0.415431	0.275512	0.544775	0.817484	0
rows × 11	columns									

	attr0	attr1	attr2	attr3	attr4	attr5	attr6	attr7	attr8	attr9	output
0	0.588680	0.994291	0.692638	0.492426	0.244472	0.737020	0.681701	0.181916	0.655073	0.162986	1
1	0.761392	0.987276	0.767314	0.125468	0.705822	0.962866	0.418334	0.347568	0.443218	0.939095	1
2	0.200499	0.346797	0.198434	0.832916	0.743052	0.334474	0.796501	0.002093	0.295237	0.445850	0
3	0.726625	0.936809	0.103744	0.516967	0.683031	0.333098	0.635495	0.848070	0.263577	0.174056	(
4	0.587769	0.010560	0.716553	0.826589	0.896887	0.118905	0.405279	0.530525	0.430691	0.991987	H ₂
***	***	***	***	***	***	***	***	***	***	***	**
9995	0.400476	0.366739	0.014778	0.392485	0.512218	0.202046	0.437779	0.768193	0.615782	0.721150	1
9996	0.249982	0.820053	0.564774	0.271589	0.657724	0.731979	0.811500	0.463711	0.914278	0.713895	
9997	0.409096	0.228425	0.607483	0.325246	0.756762	0.052312	0.497422	0.154382	0.170557	0.614689	
9998	0.060611	0.570429	0.590032	0.569474	0.304741	0.760363	0.253692	0.347916	0.809181	0.304610	•
9999	0.661866	0.413878	0.764754	0.308570	0.732954	0.866010	0.442453	0.882727	0.309690	0.342325	(

Hyperplane 3 Hyperplane 6

2. 실핟

설계

- Online random forest algorithm
 - ▶ 데이터셋을 training과 testing dataset으로 분리
 - ▶ Incremental Tree Building을 통해 adaptive learning이 될 수 있도록 적용시킴
 - ✔ RF Classifier에는 online learning method를 지원하지 않음
 - ✔ Parmeter 중 하나인 warm_start를 True로 둠으로써 최대한 비슷한 효과를 가져오도록 함
 - Online Bootstrap Aggregation을 통해 무작위 표본을 추출하고 training dataset을 훈련시키고 testing dataset을 통해 정확도 및
 오류율을 추정함
 - ▶ Tree discarding을 통해 정확도가 높게 나타나는 구간을 확인하는 앙상블 구조조정의 형태를 최종적으로 거치게 됨

2. 실험

결과

- Hyperplane 3 (N: 10000, 1000개씩 분할 및 n_estimator +10)
 - 정확도 84.58%
 - Gradual concept drift가 일어나는 변수에 대한 Feature importance가 높다는 것을 확인함

2. 실험

결과

- Hyperplane 6 (N: 10000, 1000개씩 분할 및 n_estimator +10)
 - 정확도 85.22%
 - Gradual concept drift가 일어나는 변수에 대한 Feature importance가 높다는 것을 확인함

3. 평가

결과

- Concept Drift data를 사용한 해당 논문에서의 결과에서 나타난 gradual concept drift를 확인함
- 해당 논문에서 concept drift가 일어난 변수들의 움직임과 feature importance에서 중요한 변수로 나타난 것과 일치함
 - ➤ Hyperplane 3: 변수 1, 2
 - > Hyperplane 6: 변수 1, 2, 3, 4, 5
- 1000개씩 training을 시키면서 n_estimator의 개수를 조금씩 증가시키면서 정확도가 개선되는 모습을 확인함

평가 방법

- Hyperplane 3 Accuracy: 84.58%
- Hyperplane 6 Accuracy: 85.22%

한계점

- 기존에 계획했던 online 학습방식의 random forest의 구현을 하지 못함
- 논문에서 online random forest의 특징 중 하나로 주장했던 tree discarding을 적용하지 못함
- Online random forest 적합한 데이터를 찾기 어려워서 다양한 데이터에 적용시키지 못함

Thank you