Lecture 11, Oct. 3

WA2 now due Monday Oct. 17

EA2 due today

11.1 Theorem. Arithmetic Rules for Sequences Let $\{a_n\}$, $\{b_n\}$ be such that $\lim_{n\to\infty} a_n = L$, $\lim_{n\to\infty} b_n = M$. Then

- 1) $\lim_{n\to\infty} ca_n = cL$ for all $c \in \mathbb{R}$
- 2) $\lim_{n\to\infty} a_n + b_n = L + M$
- 3) $\lim_{n\to\infty} a_n b_n = LM$
- 4) $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{L}$ if $L\neq 0$
- 5) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M} \text{ if } M \neq 0$
- 6) $\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{L}$ if $L \ge 0$

Proof.

1) If c=0 then $ca_n=0$ for all n. Hence $\lim_{n\to\infty}ca_n=\lim_{n\to\infty}0=0L=cL$ Suppose $c\neq 0$, Let $\epsilon>0$. We want N so that if $n\geq N$, $|ca_n-cL|<\epsilon\Leftrightarrow |a_n-L|<\frac{\epsilon}{|c|}$

Choose N_0 such that if $n \geq N_0$ we have $|a_n - L| < \frac{\epsilon}{|c|}$

If $n \geq N_0$,

$$|ca_n - cL| \le |a_n - L||c| < \frac{\epsilon}{|c|}|c| = \epsilon$$

2) Consider

$$|(a_n + b_n) - (L + M)| = |a_n - L + b_n - M|$$

 $\leq |a_n - L| + |b_n - M|$

Let $\epsilon > 0$. Choose $N_1 \in \mathbb{N}$ so that

$$n \ge N_1 \to |a_n - L| < \frac{\epsilon}{2}$$

Choose $N_2 \in \mathbb{N}$ so that

$$n \ge N_2 \to |b_n - M| < \frac{\epsilon}{2}$$

Let $N_0 = max\{N_1, N_2\}$. If $n \ge N_0$

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

3) Consider $|a_nb_n - LM|$

$$|a_{n}b_{n} - LM|$$

$$= |a_{n}b_{n} - b_{n}L + b_{n}L - LM|$$

$$= |(a_{n} - L)b_{n} + L(b_{n} - M)|$$

$$\leq |(a_{n} - L)b_{n}| + |L(b_{n} - M)|$$

By 1), we can find N_1 so that if $n \geq N_1$,

$$|L||b_n-M|\leq \frac{\epsilon}{2}$$

Since $\{b_n\}$ is convergent it is bounded. So there exists c>0 so that $|b_n|< c$ Then $|b_n|\,|a_n-L|< c\,|a_n-L|$

Choose N_2 so that if $n \geq N_2$

$$|a_n - L| < \frac{\epsilon}{2c}$$

If $N_0 = max\{N_1, N_2\}$ and $n \ge N_0$ then

$$|a_nb_n - LM| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

4)

$$\left|\frac{1}{a_n} - \frac{1}{L}\right| = \frac{|a_n - L|}{|a_n| |L|}$$

Since $a_n \to L$, $L \neq 0$ we can find $N_1 \in \mathbb{N}$ so that if $n \geq N_1$, then

$$|a_n-L|<\frac{|L|}{2}\to |a_n|\geq \frac{|L|}{2}$$

If $n \geq N_1$ then

$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{|a_n - L|}{|a_n| |L|} \le \frac{|a_n - L|}{\frac{|L|}{2} |L|} = \frac{|a_n - L|}{\frac{|L|^2}{2}}$$

Let $\epsilon > 0$. Choose N_2 so that if $n \geq N_2$

$$\frac{|a_n - L|}{\frac{|L|^2}{2}} < \epsilon$$

Let $N_0 = max\{N_1, N_2\}$ if $n \ge N_0$

$$\left|\frac{1}{a_n} - \frac{1}{L}\right| < \epsilon$$

- 5) Follows from 3 and 4.
- 6) Homework

Note. If $\lim_{n\to\infty} a_n = L$, $\lim_{n\to\infty} n_n = M$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{L}{M} \text{ if } M\neq 0$$

What happens if M = 0?

It depends on a_n .

11.2 Example.
$$a_n = b_n = \frac{1}{n}$$

11.3 Example.
$$a_n = \frac{1}{n}, b_n = \frac{1}{n^2}$$

11.4 Proposition. Assume that $\lim_{n\to\infty}\frac{a_n}{b_n}$ exists and that $\lim_{n\to\infty}b_n=0$ then $\lim_{n\to\infty}a_n=0$.

Proof.

$$a_n = (b_n)(\frac{a_n}{b_n})$$

$$= \lim_{n \to \infty} a_n$$

$$= \lim_{n \to \infty} b_n \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= 0L$$

$$= 0$$

3