Dones Fernande - Emanuel grupa 143

I patis verbriale

Definiție:

Fix K en wy wometatie (K=1R, Q, C, Zn an p prim). Un K- matin vectorial este o multime nevida Ø + V impreuna en dona operatii:

+ : V * V -> V " +" (odun area):

.: K * V -> V " (inmultirea):

> -> 2. 2 ostfel in int ZEK $x \in V$

1. (V,+) este grup abelian

4 a E K 2. a(x+y) = a.x + a.y Y ziyeV

3. (a+b) x = ax+bx Y a, LEK 4 z e V

h. (a.b). x = a.(b.x) Y a, b & K YXEV

5. 1. 2 = 2, 4 2 E V

Exemple

1. multimea vectorilor din plan 2. Mm, n (K) - K-matin vectorial un operatiile

uzuale 3. K[x] - poli noame in nedeterminata X un wefinenti

in world K 4. K-wy womentation, Km = harrage, and, and, a e K, ti=1, m

<u>Jubspatii</u> vectoriale:

Definitie:

O submultime merida a umui spatin vectorial in V vectorial V se numesti subspatin vectorial in V da va pentru W împreuna un restrictiile operatiilor de pe V la W obtinem un K-matrix vectorial.

- C=> V x, y EW x+y EW V a EK n; V x EW a. x EW
- (=) Haibek, Hziyew a.z.+byew

Exemple: V un K-matin vectorial

- 1. 40,5, V sunt supspatii vectoriale in V
- 2. Pentru nEN fixat, R=1 f E M[x] I grad f 5 m3 U105 este un subspatie vectorial in M[x]
- 3. } (a le) la, l. c Enz f este subspatin vectorial
 in M2 (12)
- u. \ (x) \in \bar{12} | 52 + 2y = 0 \ est subspation
 vectorial in \bar{12}
- 5. Fie A E Mm, m (17).

 Notam Ker (A) = 4 x E 17 1 A x = 0 } solutile

 sistemului omogen au matricea sistemului = A.

 Atami Ker (A) este subspatin vectorial in 17 n

Fie K worn on V un K-matin vectorial O multime ScV se mineste sistem de generatori (SG) pentru V dava V = (S) = { \sum ai. v; | new, v; e S, a; ek, i=1, n}

Spinnen ia hv., vz. ..., vn b c V formeoja un sistem lini ar independent (SLI) de vectori data Vanazimian EK un [ai.v. = 0, avem la a, = a, = ... = a, = 0

· Definitie:

Je numeste baja a maturlui vectorial V o familie de vectori B care indeplineste

- 1. B este liniar molependenta (SZI)
- 2. B este sistem de generatori pentru matrial V (SG)

· Observati :

- 1. Dava B= } u,, uz, ..., um's est baja in V, aturni orice vector $z \in V$ re write in mod unic 2 = a, · u, + a2 · u2 + ... + an · un
- 2. Dimensiumea lui V este numarul de elemente dintro logo - lui V.
- in Kn: 121, ez. ..., en 3 s.n. baja camonica a lui Kn 3/9

Iratin Afin

Definite

Fie o multime amorfà A, nevidà, un elemente numite pun ete iar V un matin vectorial peste un corp comutation K.

Does aplication $f: A \times A$ are urm. proprietati: 1. f(A+B) + f(B,C) = f(A,C)

2. F un punet 0 din A a.i. lo & o bijertie atumi tripletul (A, V, l) re numeste matrin afin, ion l're numeste shu dura afinà.

Tureno

Fie tripletul (A,U, l).

Dava (A, V, P) este matin afin, atumi ori lar an fi o submultime din A, aplication PB: A -> V este o bijertie

Exemplu

Planul ni matuil enclidian munt matii afine pesti matuili vectoriale ale vectori lor liber assirati

<u>Jubpatii</u> afine

· Definitie

Fie A = (x, x', \$) un matin afin reste K.

O submultime y c x se numeste

matin of in al lini x do ca y = 0 row

y + 0 ri erista un subspatin vectorial V

al lini x a.i. $\Phi(V \times V) \subset y^2$ zi tripletul

(y, V, $\Phi/V \times V$) este matin afin.

Aplication limitare

· Definitie

Fie V ni W dona K- matii vectoriale:

O functie f: V -> W s.n. oplicate liniara daca:

1. f(x+y) = f(x) + f(y) + x, y & V

2. f(d.x) = d. f(x) Yzev y dek

Dava, in plus, f este bijectiva, munem ca f este i zomorfim liniar vi va V vi W runt matii vectoriale i zomorfe.

· O brewati

Dim 1 si 2 aven la f:V->W aphilate limitarà

(=> f(a+by) = a f(x) + b · f(y) & a, b & K

4 2 1 y & V

1. Pentru V m vectorial, fundia identica (v: V-) V este aplication limitara 2. Pentru V, W matii vectoriale, morfimul mul f: V -> W, 2 -> Ow est aplicate liniaro

3. Fie A & Um, m (K), function $f: K^m \rightarrow K^m$ $\mathcal{U}_{m,i}(K)$ $\mathcal{U}_{m,i}(K)$ $\mathcal{U}_{m,i}(K)$

u -) A. v ish aglicate limi and

Endown sime

· Definite

Fie U m V K-matii vectoriale

Aplication f: U-> V re numeste morfisme de matir vectoriale dans respecta condition de lunioni tate:

Dava U= V atumi f re numestre endomorfism al lui V

Subspatii avoiate unei oplicatii liniare

Fie f: V-> W aplicatie limitarà, definim

1. mucheul lui f:

Ker f = 4 x & V | f(x) = 0, y & V

2. maginea lui f $Jmf = 4 f(x) | x \in V S \subseteq W$

$$[f]_{B_{V},B_{W}} = \begin{cases} d_{11} & d_{12} & \dots & d_{1n} \\ d_{21} & d_{22} & d_{2n} \\ \dots & \dots & \dots \\ d_{m_{1}} & d_{m_{2}} & \dots & d_{m_{n}} \end{cases} \in \mathcal{M}_{m_{1},n}(K)$$

$$[f(v_{n})]_{B_{W}} = [f(v_{n})]_{B_{W}}$$

I Limbarea bozer

Fie f: U-) W aplicate liniara, dim U=n < 00

Bu, Bu' loge in V

Bw. Bw' baze in W

Bu T) B'w

Fi wev, [f[w]] Bw = [f] Bu, Bw [w] Bv

· Proprietati :

1. Ker & subspatin vectorial in V

2. { injectiva (=> Ker f = 10v) (=> dim (Ker f) = 0

3. Im f subspatin verlorial in w

4. f my (=> Jmf = W

Jevrema Rang - Defeit

dim V = dim Ker f + dim Jung

Oles :

f: V-) V endonorfism, atumi
f inj (=) f surj (=) f bij

Matricea unei oplicatio limiare

Fix V, W mali vectoriale, din V= n, din w= m

Bv = 4 v., v., ..., vn y loga in v

Bw = 4 w., wz., ..., wm y logo in w

ri f: V-) w o aplicate briaro

 $\forall v_j$, colcular wordon atele lui $f(v_j)$ in βw_j be purem pe colourele matrice: $\forall j = 1$ in $f(v_j) = \sum_{j=1}^m \alpha_{ij} \cdot w_i$, $\forall j = 1$, $m \in \mathbb{R}$

Bibliografie

- 1. Curs Geometrie: A.M. Teleman
- 2. Curs Algebra: D. Stamate
- 3. Seminar Geometrie ni Algebra: A. Halanay