Studio dei Radionuclidi prodotti al reattore L.E.N.A. per il progetto ISOLPHARM_EIRA

Leso Aurora 23 Settembre 2021

Outline

- 1 Introduzione ed obiettivi
- 2 Apparato sperimentale
- 3 Spettro del campione
- 4 Correzione di tempo morto
- 5 Stima di tempo di dimezzamento e attività
- 6 Conclusioni ed obiettivi futuri

Introduzione

II progetto ISOLPHARM

- Produzione di radioisotopi ad elevata purezza tramite SPES
- SPES: facility ISOL dedicata allo studio di nuclei esotici e ad applicazioni con fasci radioattivi

L'esperimento ISOLPHARM_EIRA: obiettivi del gruppo di fisica

- caratterizzazione dei detector utilizzati: HPGe e *LaBr*₃
- stima della produzione di ¹¹¹Ag tramite irraggiamento di campioni di palladio naturale e arricchito in TRIGA MARK II

Processo di decadimento

$$^{110}Pd(N,\gamma)$$
 $^{111}Pd \xrightarrow{\beta^{-}}$ ^{111}Ag

Caratterizzazione detector

Detector utilizzati

- HPGe: *High PuritynGermanium Detector*, Myrion Technologies
- *LaBr*₃: Scintillatore al bromuro di lantanio, Saint-Gobain

Sono state utilizzate due sorgenti, ^{241}Am e ^{152}Eu , per calibrare, stimare la risoluzione e trovare la curva di efficienza.

Caratterizzazione detector

- Ben rappresentativo ad alte energie
- Puramente fenomenologico a basse energie per dipendenza da altri fattori non ben descrivibili nella funzione di fit
- Incertezza sistematica dell'attività (±1.7%) dominante rispetto alla componente statistica

Spettro del campione

- In alto, spettro del campione a 10 ore dal termine dell'irraggiamento
- in basso, spettro del campione a 4 giorni dal termine dell'irraggiamento

Correzione di tempo morto

Dead Time

Intervallo di tempo durante il quale l'elettronica di acquisizione non è in grado di processare un nuovo segnale in arrivo, a causa dell'elaborazione del segnale precedente.

È verificata l'indipendenza della correzione dall'energia: essa non risulta però stabile, dato che dipende fortemente da tutti i parametri di acquisizione.

Stima del tempo di dimezzamento

- Calibrazione in energia e suddivisione dello spettro in sotto campioni
- Fit gaussiano del fotopicco di interesse e sottrazione del fondo fittato linearmente
- Fit linearizzato del numero dei conteggi vs tempo dal termine dell'irraggiamento

Proiezione dell'attività al termine dell'irraggiamento

- Stima dell'attività dai valori noti
- Fit esponenziale della curva ottenuta

- $T_{\frac{1}{2}} = 13.16 \pm 0.01_{stat} [h]$
- $A_0 = (0.1806 \pm 0.0001) [mCi]$

^{111m}Pd

- $T_{\frac{1}{2}} = 5.567 \pm 0.008_{stat} [h]$
- $A_0 = (0.1610 \pm 0.0003) [mCi]$

- $T_{\frac{1}{2}} = 7.39 \pm 0.02_{stat}$ [d]
- Inattesa crescita a brevi tempi, dovuta a eventi di non interesse sotto il picco

- $T_{\frac{1}{2}} = 7.451 \pm 0.008_{stat}$ [d]
- Inattesa decrescita a brevi tempi, imputabile alla correzione di tempo morto

^{111}Ag : risultati e commenti

Figure: Confronto dati con simulazioni MCNPX e PHITS per irraggiamento 1h e campione di 100 mg

- La simulazione MCNPX sovrastima la produzione di un fattore ≈ 1.64
- La simulazione PHITS sottostima la produzione.
- Entrambe le simulazioni confermano l'andamento sperimentale

Conclusioni ed obiettivi futuri

Previsione di produzione

Sfruttando la simulazione MCNPX di un campione di massa 100 mg irraggiato per 18 ore si stima una produzione di ^{111}Ag pari a $\approx 1.81 \ [mCi]$ dopo 3 giorni dall'irraggiamento.

Questioni aperte

- Correzione di tempo morto
- Curva di efficienza

Grazie per l'attenzione!