We assume all linear spaces are over the field $\mathbb F$. Recall that, for a linear space V, the following two statements are equivalent:

- 1. V is finitely spanned, i.e., $V=\overline{S}$ for a finite subset S of V. Note: $\overline{\emptyset}=0$ --- the linear space consisting zero vectors only.
- 2. V is linearly equivalent to \mathbb{F}^n for an integer $n \geq 0$.

A linear space is said to be finite-dimensional (f.d.) if any of the two statements above is true. If that is the case, the dimension of V, denoted by $\dim V$, is defined to be n in the second statement above. It is clear that $\dim V$ is the number of vectors in a minimal spanning set for V and has been shown previously to be well-defined by using matrix techniques.

By definition, the rank of the linear map $f \colon V \to W$, denoted by r(f), is defined to be $\dim \operatorname{im} f$.

- 1. Let V_1 and V_2 be subspaces of V. Subspaces V_1 and V_2 are said to be linearly independent in the <u>weak sense</u> if there is only one way to write $0 = v_1 + v_2$ with $v_i \in V_i$: 0 = 0 + 0. If this happens, the sum $V_1 + V_2$ is rewritten as $V_1 \oplus V_2$ and is called the direct sum of V_1 and V_2 .
 - (a) Show that, if V_1 and V_2 are finite dimensional, then $V_1 + V_2$ is finite-dimensional; moreover, $\dim(V_1 + V_2) \leq \dim V_1 + \dim V_2$. In other words, the dimension function dim is a sub-additive function.

Hint: If $V_i = \overline{S}_i$ (we can chose S_i to be minimal), then $V_1 + V_2 = \overline{S_1 \cup S_2}$.

- (b) Continuing the discussion in part (a). Show that the equality sign holds \iff the sum is a direct sum.
- 2. Consider an exact sequence

$$0 \to V_1 \stackrel{i_1}{\to} V \stackrel{j_2}{\to} V_2 \to 0$$

for which V_2 is assumed to have a minimal spanning set. Show that

- (a) $j_2 i_1 = 0$ and $V_1 \cong \text{im } i_1$.
- (b) j_2 has a right inverse. Let us fix a right inverse i_2 . Since $j_2i_2=1$ (i.e., 1_{V_2}), i_2 is injective, so $V_2\cong \operatorname{im} i_2$.
- (c) $V = \operatorname{im} i_1 \oplus \operatorname{im} i_2$. I.e. any v in V can be uniquely split into the sum of two, one is of the form $i_1(v_1)$ and the other is of the form $i_2(v_2)$.
- (d) the splitting in part (c) defines two maps, one is from V to V_1 and is denoted by j_1 , and the other is j_2 : $V \to V_2$. In other words, if $v = i_1(v_1) + i_2(v_2)$, then $j_1(v) = v_1$ and $j_2(v) = v_2$.
- (e) j_1 is linear and the sequence

$$0 \leftarrow V_1 \stackrel{j_1}{\leftarrow} V \stackrel{i_2}{\leftarrow} V_2 \leftarrow 0,$$

is exact.

- (f) $j_k i_l = \delta_{kl}$, and $i_1 j_1 + i_2 j_2 = 1$ (i.e., 1_V).
- (g) both V_1 and V_2 are finite-dimensional $\iff V$ is finite-dimensional. In case V is finite dimensional, we have $\dim V = \dim V_1 + \dim V_2$, thus $\dim V_i \leq \dim V$.
- (h) Assume that V is finite-dimensional and V_1 is a subspace of V, then dim $V_1 \le \dim V$ and the equality sign holds $\iff V_1 = V$.
- (i) for any finite-dimensional linear space, none of its subspaces or quotient spaces has a bigger dimension. In other words, taking subspace or quotient space cannot increase dimension.
- 3. Let V be a linear space and $f: V \to W$ be a linear map between finite dimensional linear spaces.
 - (a) Prove the rank-nullity theorem : $\dim V = \dim \ker f + \dim \operatorname{im} f$. Hint: $0 \to \ker f \to V \to \operatorname{im} f \to 0$ is exact.
 - (b) By the universal property for the quotient map $V \to \text{coim} f := V/\text{ker } f$, we get a unique linear map f': $\text{coim} f \to \text{im} f$. Show that, f' is a linear equivalence. Thus $r(f) = \dim \text{coim} f$ as well.
 - (c) The sequences $0 \to \ker f \to V \to \operatorname{coim} f \to 0$ and $0 \to \operatorname{im} f \to W \to \operatorname{coker} f \to 0$ are all exact.
- 4. Let A be an $m \times n$ -matrix, then the multiplication by A defines a linear map $f \colon \mathbb{F}^n \to \mathbb{F}^m$. The rank of A, denoted by r(A), is defined to be the rank of the linear map f. Note that $\operatorname{im} f = \operatorname{Col} A$ --- the span of columns of A.
 - (a) Show that the rank of a matrix is unchanged under both row operations and column operations.
 - Hint: row operations do not change null space and column operations do not change column space.
 - (b) Show that $r(A+B) \le r(A) + r(B)$ provided that the matrix addition is defined here.
 - (c) Show that $r(AB) \leq r(A)$ and $r(AB) \leq r(B)$ provided that the matrix multiplication is defined here.
 - (d) let A be a square matrix of order n. Show that $r(A^n) = r(A^{n+1})$.