FLOORVERSE: A Universe of Floor Plan Possibilities

Revolutionizing the way residential designs are created using AI and Quantum Computing.

GROUP 286

TEAM MEMBERS

ANSH PRAKASH 21BCE11618

ESTHER GEORGE SAM 21BCE10815

SNIGDHA PANDEY 21BCE11425

MUNISH THAKUR 21BCE10485

NAVEEN KUMAR SINGH 21BCE11527

SUPERVISOR: DR. MANORMA CHOUHAN

INTRODUCTION

- FLOORVERSE automates floorplan generation using a Conditional Variational Autoencoder (CVAE).
- Learns spatial relationships from a dataset of floorplan images to generate efficient layouts based on user-defined criteria.
- Reduces manual intervention while adhering to architectural standards.

MOTIVATION

- Traditional architectural design is labor-intensive.
- By leveraging machine learning, FLOORVERSE automates floorplan generation, learning spatial relationships.
- Creates realistic, functional layouts based on user-defined criteria.

OBJECTIVE

- To enable easy customization of designs for users without architectural expertise.
- Provide a user-friendly interface for exploring different design styles.
- Reduce dependency on manual architectural planning.
- Lower architectural costs by minimizing professional intervention.
- Ensure efficient space utilization with adaptive algorithms.

LITERATURE REVIEW

The existing research in Al-powered floorplan generation focuses on various methodologies, including deep learning (GANs, RNNs, CNNs, and Transformers), generative models (VAE, diffusion models), and optimization techniques (genetic algorithms). Key findings include:

Graph & Neural Network-Based Approaches

- Graph-based methods (Graph2Plan, GraphRNN) effectively capture spatial relationships and constraints for realistic floorplan generation.
- Graph Neural Networks (GNNs) improve room classification accuracy (~81%).

Deep Learning & Generative Models

- GANs and diffusion models generate high-quality, diverse layouts (e.g., Space Layouts & GANs, HouseDiffusion).
- Sequential models (RNNs, CVAE) generate structured layouts but need improvements in accuracy.

ROADMAP

Phase 1: Conceptualization & Requirements Gathering

- Conduct a comprehensive literature review on existing floorplan generation methods.
- Analyze the market to identify gaps in current architectural design tools.
- Define clear project objectives:
 - Automate floorplan generation.
 - Create a user-friendly platform for non-professionals.
- Establish system requirements:
 - Identify necessary data sources.
 - Specify hardware and software needs.
 - Define key performance metrics for evaluation.

Phase 2: System Design & Prototyping

- System Design ; scalable system integrating a Conditional Variational Autoencoder (CVAE).
- User Interface (UI) Development ; Intuitive ,Clean, & Responsive design.
- Backend Prototyping ; Handle user requests in real-time.

Phase 3: Model Development & Training

- CVAE Model Implementation:
 - Build the encoder, reparameterization, and decoder components.
 - o Integrate the model into the project's codebase.
- Data Preprocessing Pipeline:
 - Develop the RPlanDataset class for handling input images.
 - Perform image resizing, normalization, and feature scaling.
 - Process 80,788 images from the RPlan dataset.
- Training & Optimization:
 - Train the model using binary cross-entropy and KL divergence loss functions.
 - Optimize parameters to improve generation accuracy.
 - Monitor validation performance to ensure generalization.
- Evaluation & Testing:
 - Develop evaluation scripts to compare original, reconstructed, and generated floorplans.
 - Visualize results to assess model output quality.
 - o Compute efficiency metrics to measure accuracy, speed, and usability.

PROJECT TIMELINE

Project Inception & Research

1

- Automated floorplan generation identified as the primary objective.
- Comprehensive literature review on design tools,

User Interface Design

2

- Developed a responsive landing page.
- Added interactive elements for a userfriendly design experience.

Model Research

3

- Explored GNNs and quantum-powered Al for floorplan generation.
- Opted for a CVAE for efficient, constraint-based layout generation.

Model Development & Training

4

- Utilized the RPlan dataset (80,788 images) for broad coverage.
- Trained the CVAE with binary crossentropy and KL divergence

Next Steps

5

- Investigate hybrid approaches (CVAE + GNNs/quantum methods) for further optimization.
- Enhance scalability, transitioning to cloud-based solutions

PROJECT WORKFLOW

- Data Acquisition & Preprocessing
- Model Architecture & Initialization: Implementation of a Conditional Variational Autoencoder (CVAE)
- Training & Optimization
- Visualization & Evaluation

DATASET

- RPLAN Datset
- Publicly available dataset.
- containing 80,788 residential floor plan images.
- used for architectural design automation.

The FLOORVERSE platform integrates front-end development and machine learning to generate customized residential floorplans.

Front-End Development

- A landing page (index.html) built with HTML, CSS, and JavaScript offers a responsive and intuitive interface.
- Users can configure unit selection, total area, and room configurations to explore floorplan generation.

Machine Learning Component: CVAE Model

- A Conditional Variational Autoencoder (CVAE) processes grayscale floorplan images and user-defined condition features to generate floorplans.
- Encoder: Uses convolutional layers for image features and a multi-layer perceptron for condition data, transforming them into a latent space.
- Decoder: Uses transposed convolutions to reconstruct floorplans based on user input.
- The model is trained with a loss function combining binary crossentropy (for accuracy) and KL divergence (for regularization).

Key Features of CVAE

- 1. Robust Loss Function: Ensures realistic and coherent floorplans.
- 2. Data Normalization: Uses MinMaxScaler for condition features and preprocesses images in RPlanDataset.
- 3. Flexible Generation: A generate method enables diverse floorplan creation.
- 4. Scalability: The model integrates with a Flask backend (app.py) for real-time generation.

METHODOLOGY

TEST CASES

TestCase	Result/Observation	Screenshot
Landing Page:	Displays the main panel where users can set key parameters.	C Non-Plan Connector If Units If None If None
Generated Floor Plan & Metrics:	Shows the system's output after users click "Generate Floor Plan." A grayscale floor plan is produced alongside a bar chart illustrating key space efficiency metrics.	# Committee of the comm
Detailed Efficiency Analysis:	Offers a closer look at the generated floor plan and its associated efficiency metrics, including space utilization, room ratio, and flow score	Generated Floor Plan

VISUALIZATIONS

Latent Space Visualization

RESULTS

- Epochs: 50
- Batch size: 32
- Model:
 - Training Loss 8651.1139
 - Validation Loss 8677.2230

OUTCOME

- Design an advanced automated architectural design system that utilizes a Conditional Variational Autoencoder (CVAE)
- Generates customizable floorplans.
- personalized home planning accessible to Makes professionals.

FUTURE WORK

- Hybrid Model Integration
- Scalability and Performance Optimization
- Dataset Expansion and Augmentation
- Enhanced User Interaction

REFERENCES

- 1.Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Haozhang, Hui Huang (2020). Graph2Plan: Learning Floorplan Generation from Layout Graphs. In ACM Transactions on Graphics.
- 2. Divya Sharma, Nitin Gupta, Chiranjoy Chattopadhyay, Sameep Mehta (2017). DANIEL: A Deep Architecture for Automatic Analysis and Retrieval of Building Floor Plans.
- 3. Wen Ming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, Ligang Liu (2019). Data driven Interior Plan Generation for Residential Buildings.
- 4. Sheraz Ahmed, Andreas Dengel, Marcus Liwicki, Markus Weber (2011). Improved Automatic Analysis of Architectural Floor Plans.
- 5. Johannes Bayer, Syed Saqib Bukhari, Andreas Dengel (2017). Floor Plan Generation and Auto Completion Based on Recurrent Neural Networks.

- 6. Hyunjung Kim, Seongyong Kim, Kiyun Yu (2021). Automatic Extraction of Indoor Spatial Information from Floor Plan Image: A Patch-Based Deep Learning Methodology.
- 7. Hyunjung Kim (2021). Evaluation of Deep Learning-Based Automatic Floor Plan Analysis Technology: An AHP-Based Assessment.
- 8. Hanan Tanasra, Tamar Rott Shaham, Tomer Michaeli, Guy Austern, Shany Barath (2023). Automation in Interior Space Planning: Utilizing Conditional Generative Adversarial Network Models to Create Furniture Layouts.
- 9. Adam Fitriawijaya, Taysheng Jeng (2024). Integrating Multimodal Generative AI and Blockchain for Enhancing Generative Design in the Early Phase of Architectural Design Process.
- 10. Mitali Chavan, Nidhi Menon, Ritika Kumar, Shivani Rana(2017) Floor Layout Planning Using Artificial Intelligence Technique.
- 11. Chaillou, S. Space Layouts & GANs. Artificial Intelligence and Architecture. 2020.
- 12. Exploring the Power of Generative Adversarial Networks https://www.presidio.com/exploring-the-power-of-generative-adversarial-networks-gans[]with-azure/

- 13. Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, Jure Leskovec ,2018. GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.
- 14. Balraj Vaidya, Padmakar Pimpale, Guruprasad Khartadkar; Generative Floor Plan Design Using Deep Learning: An Al-Powered Approach.
- 15. Hun Lim, Automatic Generation of Al-powered Architectural Floor Plans using Grid Data
 16. Mohammad Amin Shabani, Sepidehsadat Hosseini, Yasutaka Furukawa, HouseDiffusion:
 Vector Floorplan Generation via a Diffusion Model With Discrete and Continuous Denoising37
 17. Mohamed R. Ibrahim, Josef Musil, and Irene Gallou, Generating floorplans for various building functionalities via latent diffusion model
- 18. Chaillou, S., & Spacemaker, A. D. S. (2020). Space Layouts & GANs
- 19. Junming Chen, Zichun Shao, and BinHu, Generating Interior Design from Text: A New Diffusion Model-Based Method for Efficient Creative Design.
- 20. Xiao Hu, Hao Zheng, Dayi Lai, Performance Prediction of Al-generated Architectural Layout Design: Using Daylight Performance of Residential Floorplans as an Example

- 21. Azizi, V., Usman, M., Zhou, H., Faloutsos, P., & Kapadia, M.. (2020). Graph-Based
- Generative Representation Learning of Semantically and Behaviorally Augmented Floorplans.
- 22. Paudel, A., Dhakal, R., & Bhattarai, S.. (2021). Room Classification on Floor Plan Graphs using Graph Neural Networks.
- 23. Carta, S. (2021). Self-Organizing Floor Plans. Harvard Data Science Review.
- 24. Li, C., Zhang, T., Du, X., Zhang, Y., & Xie, H.. (2024). Generative AI models for different steps in architectural design: A literature review. Frontiers of Architectural Research.
- 25. Leng, S., Zhou, Y., Dupty, M. H., Lee, W. S., Joyce, S. C., & Lu, J. W. Z. (2023).
- Tell2Design: A Dataset for Language-Guided Floor Plan Generation.
- 26. RPLAN Dataset. Residential floorplans dataset for training machine learning models.

THANK YOU!!

