Condensed Type Theory

by Johan Commelin

j/w Reid Barton

Menu

- Motivation
- Recap of type theory
- Condensed axioms
- ► Models
- Directed univalence
- ► Future ideas

Motivation: CAS for topology

There is plenty software to compute with \mathbb{R} , and work with "real" topology/analysis.

Motivation: CAS for topology

- ► There is plenty software to compute with ℝ, and work with "real" topology/analysis.
- If you squint a bit, then (cubical) HoTT can be viewed as CAS for homotopy theory.

Motivation: CAS for topology

- ► There is plenty software to compute with ℝ, and work with "real" topology/analysis.
- ▶ If you squint a bit, then (cubical) HoTT can be viewed as CAS for homotopy theory.
- Our project provides some steps towards a CAS for general topology.

► To give a functor, you give the action on objects.

- ▶ To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.

- ► To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.
- But computers have no soul!

- ▶ To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.
- But computers have no soul!
- Directed type theory wants to make a theory where:

- ► To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.
- But computers have no soul!
- Directed type theory wants to make a theory where:
 - Every object is some sort of category.

- ► To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.
- But computers have no soul!
- Directed type theory wants to make a theory where:
 - Every object is some sort of category.
 - Every function is automatically functorial (with correct variance).

- ► To give a functor, you give the action on objects.
- ► Every soul can infer the action on morphisms.
- But computers have no soul!
- Directed type theory wants to make a theory where:
 - Every object is some sort of category.
 - Every function is automatically functorial (with correct variance).
- Condensed type theory provides some results of this flavour.

Clausen–Scholze provide a "liquid analytic ring structure" on R.

- Clausen–Scholze provide a "liquid analytic ring structure" on R.
- ► The proof does not really fit in a human brain (according to Scholze).

- Clausen–Scholze provide a "liquid analytic ring structure" on R.
- ➤ The proof does not really fit in a human brain (according to Scholze).
- ► The Liquid Tensor Experiment verified the proof.

- Clausen–Scholze provide a "liquid analytic ring structure" on R.
- ► The proof does not really fit in a human brain (according to Scholze).
- ► The Liquid Tensor Experiment verified the proof.
- Reid Barton and I have thought about how to reorganize the proof, to require less human RAM.

- Clausen–Scholze provide a "liquid analytic ring structure" on R.
- ➤ The proof does not really fit in a human brain (according to Scholze).
- ► The Liquid Tensor Experiment verified the proof.
- Reid Barton and I have thought about how to reorganize the proof, to require less human RAM.
- Condensed type theory rolled out of that, but might not be the final answer.

Type theory: examples

- Some programming languages use type theory.
- ► It helps programmers write correct code.

Type theory: examples

- Some programming languages use type theory.
- ▶ It helps programmers write correct code.
- Examples of types: String and Int.
- ► Functions between types:

```
String.length : String \rightarrow Int.
```

Type theory: examples

- Some programming languages use type theory.
- ▶ It helps programmers write correct code.
- Examples of types: String and Int.
- ► Functions between types: String.length : String → Int.
- ► Compiler error: String.length 3 is nonsense.

Type theory: informal

- ► In set theory, everything is a set.
- ▶ In type theory, we have *types* and *terms*.
- Every term has a unique type.

Type theory: informal

- ► In set theory, everything is a set.
- ▶ In type theory, we have *types* and *terms*.
- ► Every term has a unique type.
- **Examples of types:** \mathbb{Z} and \mathbb{R} and $\mathbb{R} \to \mathbb{R}$.

Type theory: informal

- ▶ In set theory, everything is a set.
- ▶ In type theory, we have *types* and *terms*.
- ► Every term has a unique type.
- ightharpoonup Examples of types: \mathbb{Z} and \mathbb{R} and $\mathbb{R} \to \mathbb{R}$.
- **Examples** of terms: 0 and π and $x \mapsto (x^2 + 1)/2$.

Type theory	Set theory	Logic
Туре А	Set A	Proposition A

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a:A	Element $a \in A$	Proof a of A

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a: A	Element $a \in A$	Proof a of A
$\mathtt{f} \;:\; \mathtt{A} \;\to\; \mathtt{B}$	$f:A\to B$	$f:A \implies B$

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a: A	Element $a \in A$	Proof a of A
$\mathtt{f} \;:\; \mathtt{A} \to \mathtt{B}$	$f:A\to B$	$f:A \implies B$
$A \times B$	$A \times B$	$A \wedge B$

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a:A	Element $a \in A$	Proof a of A
$\mathtt{f} \;:\; \mathtt{A} \;\to\; \mathtt{B}$	$f:A\to B$	$f:A \implies B$
$A \times B$	$A \times B$	$A \wedge B$
П а:А, В а	$\prod_{a\in A}B(a)$	$\forall a \in A, B(a)$

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a:A	Element $a \in A$	Proof a of A
$\mathtt{f} \;:\; \mathtt{A} \;\to\; \mathtt{B}$	$f:A\to B$	$f:A \implies B$
$A \times B$	$A \times B$	$A \wedge B$
П а:А, В а	$\prod_{a\in A}B(a)$	$\forall a \in A, B(a)$
Σ a:A, B a	$\bigsqcup_{a\in A} B(a)$	$\exists a \in A, B(a)$

Type theory	Set theory	Logic
Туре А	Set A	Proposition A
Term a:A	Element $a \in A$	Proof a of A
$\mathtt{f} \;:\; \mathtt{A} \;\to\; \mathtt{B}$	$f:A\to B$	$f:A \implies B$
$A \times B$	$A \times B$	$A \wedge B$
П а:А, В а	$\prod_{a\in A}B(a)$	$\forall a \in A, B(a)$
Σ a:A, B a	$\bigsqcup_{a\in A} B(a)$	$\exists a \in A, B(a)$
Type	Set	Prop = {propositions}

Type theory: more examples

N is the type of natural numbers. Typically defined as "inductive type" or postulated with the Peano axioms.

Type theory: more examples

- N is the type of natural numbers. Typically defined as "inductive type" or postulated with the Peano axioms.
- ► If X is a type, and P : X → Prop is a predicate, then {x : X | P x} is the *subtype* of terms of X satisfying P. Typically implemented as a Sigma type.

Type theory: more examples

- ▶ N is the type of natural numbers. Typically defined as "inductive type" or postulated with the Peano axioms.
- If X is a type, and P : X → Prop is a predicate, then
 {x : X | P x} is the *subtype* of terms of X satisfying P.
 Typically implemented as a Sigma type.
- ▶ Fin n, for n : N, is the subtype {i : N | i < n}.</p>
 It is the "canonical" type with n terms.

Condensed axioms: two subuniverses

We postulate two predicates on types.

Condensed axioms: two subuniverses

- ► We postulate two predicates on types.
- lacktriangled CHaus : Type ightarrow Prop and ODisc : Type ightarrow Prop.

Condensed axioms: two subuniverses

- We postulate two predicates on types.
- lacktriangled CHaus : Type ightarrow Prop and ODisc : Type ightarrow Prop.
- We abuse notation and define subuniverses corresponding to these predicates:

```
CHaus := {A : Type | CHaus A}
ODisc := {A : Type | ODisc A}
```

Condensed axioms: "semantics"

Informally speaking, we think of every type as a topological space. Or, maybe as a condensed set.

Condensed axioms: "semantics"

- Informally speaking, we think of every type as a topological space. Or, maybe as a condensed set.
- ▶ A : CHaus means that A is a compact Hausdorff space, and
- ▶ A : ODisc means that A is a discrete space.

Condensed axioms: "semantics"

- Informally speaking, we think of every type as a topological space. Or, maybe as a condensed set.
- ▶ A : CHaus means that A is a compact Hausdorff space, and
- ▶ A : ODisc means that A is a discrete space.
- ► The next slides present axioms on how these subuniverses interact.

The subuniverses CHaus and ODisc are closed under:

The subuniverses CHaus and ODisc are closed under:

finite products, finite disjoint unions,

The subuniverses CHaus and ODisc are closed under:

- finite products, finite disjoint unions,
- quotients, formation of equalizers,

The subuniverses CHaus and ODisc are closed under:

- finite products, finite disjoint unions,
- quotients, formation of equalizers,
- isomorphisms,

The subuniverses CHaus and ODisc are closed under:

- finite products, finite disjoint unions,
- quotients, formation of equalizers,
- isomorphisms,
- formation of Sigma types:

```
if A : CHaus and B : A \rightarrow CHaus, then CHaus (\Sigma a, B a).
```

And similarly for ODisc.

We postulate mild versions of the axiom of choice.

We postulate mild versions of the axiom of choice.

▶ If X : Type and Y : CHaus, and if f : $X \rightarrow Y$ is surjective,

We postulate mild versions of the axiom of choice.

▶ If X : Type and Y : CHaus, and if f : X → Y is surjective, then there exists a type Y' : CHaus,

We postulate mild versions of the axiom of choice.

▶ If X : Type and Y : CHaus, and if f : $X \to Y$ is surjective, then there exists a type Y' : CHaus, a surjective function g : $Y' \to Y$,

We postulate mild versions of the axiom of choice.

If X : Type and Y : CHaus, and if f : X → Y is surjective, then there exists a type Y' : CHaus, a surjective function g : Y' → Y, and a "section" s : Y' → X such that f ∘ s = g.

We postulate mild versions of the axiom of choice.

If X : Type and Y : CHaus, and if f : X → Y is surjective, then there exists a type Y' : CHaus, a surjective function g : Y' → Y, and a "section" s : Y' → X such that f ∘ s = g.

We postulate mild versions of the axiom of choice.

If X : Type and Y : CHaus, and if f : X → Y is surjective, then there exists a type Y' : CHaus, a surjective function g : Y' → Y, and a "section" s : Y' → X such that f ∘ s = g.

▶ The same statement holds for ODisc instead of CHaus.

Condensed axioms: Pi

We postulate "Tychonoff's theorem" and its dual.

Condensed axioms: Pi

We postulate "Tychonoff's theorem" and its dual.

▶ If I : ODisc and X : I \rightarrow CHaus, then CHaus (Π i, X i).

Condensed axioms: Pi

We postulate "Tychonoff's theorem" and its dual.

- If I : ODisc and X : I \rightarrow CHaus, then CHaus (Π i, X i).
- If I : CHaus and X : I → ODisc, then ODisc (∏ i, X i).

Condensed axioms: factorization

► Let X : CHaus and Y : ODisc.

Condensed axioms: factorization

► Let X : CHaus and Y : ODisc.

Any function
$$f: X \to Y$$
 factors as
$$X \to Fin \ n \to Y,$$
 for some $n: \mathbb{N}.$

► Slogan: "compact in discrete is finite"

Condensed axioms: Scott continuity

Let I, Y : ODisc and X : I \rightarrow CHaus. Let f : (Π i, X i) \rightarrow Y.

Condensed axioms: Scott continuity

▶ Let I, Y : ODisc and X : I \rightarrow CHaus.

Let $f : (\Pi i, X i) \rightarrow Y$.

Then f factors through a finite product of X i.

Condensed axioms: Nat

Last but not least:

Condensed axioms: Nat

Last but not least:

We postulate ODisc \mathbb{N} .

Models: condensed sets

Almost Theorem (Barton–C). The internal type theory of the topos of condensed sets satisfies the condensed axioms.

We are almost done with the proof.

Provides a consistency check.

Models: computability

We are on the lookout for a computable model.

This would give CAS-like features to the type theory.

```
The subtype OProp := {P : Prop | ODisc P} behaves like a directed interval.
```

The subtype OProp := {P : Prop | ODisc P} behaves like a directed interval.

For X Y: ODisc, we define a type of directed paths Path(X, Y):

```
The subtype OProp := {P : Prop | ODisc P} behaves like a directed interval.
```

```
For X Y : ODisc, we define a type of directed paths Path(X, Y):  \{f : OProp \rightarrow ODisc \mid f(\bot) = X \land f(\top) = Y\}
```

The subtype OProp := {P : Prop | ODisc P} behaves like a directed interval.

For X Y : ODisc, we define a type of directed paths Path(X, Y): $\{f: OProp \rightarrow ODisc \mid f(\bot) = X \land f(\top) = Y\}$

Theorem (Barton–C). There is a natural equivalence $Path(X, Y) \cong (X \rightarrow Y)$.

The subtype OProp := {P : Prop | ODisc P} behaves like a directed interval.

For X Y : ODisc, we define a type of directed paths Path(X, Y): $\{f : OProp \rightarrow ODisc \mid f(\bot) = X \land f(\top) = Y\}$

Theorem (Barton–C). There is a natural equivalence $Path(X, Y) \cong (X \rightarrow Y).$

Formal proof in Lean.

▶ OProp is like Sierpinski space S:

- ▶ OProp is like Sierpinski space S:
 - \perp is the "closed point" and \top is the "generic point",

- ▶ OProp is like Sierpinski space S:
 - \perp is the "closed point" and \top is the "generic point",
 - $\perp \rightarrow \top$ is the "generalization order".

- ▶ OProp is like Sierpinski space S:
 - \perp is the "closed point" and \top is the "generic point",
 - $\perp \rightarrow \top$ is the "generalization order".
- F : Path(X, Y) is like a fibration over S with special fiber X and generic fiber Y.

Directed univalence: what is going on?

- ▶ OProp is like Sierpinski space S:
 - \perp is the "closed point" and \top is the "generic point",
 - $\perp \rightarrow \top$ is the "generalization order".
- ► F : Path(X, Y) is like a fibration over S with special fiber X and generic fiber Y.
- Picture on next slide.

Directed univalence: picture

Directed univalence: picture

The fibration is a "local homeomorphism", so we get a map from the special fiber to the (nearby) generic fiber.

In our axiomatic framework, we define

```
\mathbb{N}\infty := \{x : \mathbb{N} \to \text{Bool} \mid \text{monotone } x\}.
```

In our axiomatic framework, we define $\mathbb{N}\infty := \{x : \mathbb{N} \to \mathsf{Bool} \mid \mathsf{monotone} \ x\}.$

And a phiniteness predicate phi : $\mathbb{N}\infty \to \mathbb{O}$ Prop, given by phi(x) = \exists i, x(i) = \top .

In our axiomatic framework, we define $\mathbb{N}\infty := \{x : \mathbb{N} \to \mathsf{Bool} \mid \mathsf{monotone} \ x\}.$

And a phiniteness predicate phi : $\mathbb{N}\infty \to \mathbb{O}$ Prop, given by phi(x) = \exists i, x(i) = \top .

 $ightharpoonup \mathbb{N}\infty$ is CHaus, so we can use axioms.

In our axiomatic framework, we define $\mathbb{N}\infty := \{x : \mathbb{N} \to \mathsf{Bool} \mid \mathsf{monotone} \ x\}.$

And a phiniteness predicate phi : $\mathbb{N}\infty \to \mathbb{O}$ Prop, given by phi(x) = \exists i, x(i) = \top .

- $ightharpoonup \mathbb{N}\infty$ is CHaus, so we can use axioms.
- phi has a "sufficiently dense" image.

In our axiomatic framework, we define $\mathbb{N}\infty := \{x : \mathbb{N} \to \mathsf{Bool} \mid \mathsf{monotone} \ x\}.$

And a phiniteness predicate phi : $\mathbb{N}\infty \to \mathbb{O}Prop$, given by phi(x) = \exists i, x(i) = \top .

- $ightharpoonup \mathbb{N}\infty$ is CHaus, so we can use axioms.
- ▶ phi has a "sufficiently dense" image.

This allows us to make the preceding picture precise. " \square "

Theorem (Barton–C). Every function $F: \mathtt{ODisc} \to \mathtt{ODisc}$ extends uniquely to a functor.

Theorem (Barton–C). Every function $F: \mathtt{ODisc} \to \mathtt{ODisc}$ extends uniquely to a functor.

"Proof". Let $f : X \rightarrow Y$ be a function, with X, Y : ODisc.

Theorem (Barton–C). Every function $F: \mathtt{ODisc} \to \mathtt{ODisc}$ extends uniquely to a functor.

"Proof". Let $f: X \to Y$ be a function, with X, Y: ODisc. By directed univalence, f corresponds to a directed path $p: OProp \to ODisc.$

Theorem (Barton–C). Every function $F: \mathtt{ODisc} \to \mathtt{ODisc}$ extends uniquely to a functor.

"Proof". Let $f: X \to Y$ be a function, with X, Y: ODisc. By directed univalence, f corresponds to a directed path $p: OProp \to ODisc.$ Postcomposing with F gives a path between F(X) and F(Y).

Theorem (Barton–C). Every function $F: \mathtt{ODisc} \to \mathtt{ODisc}$ extends uniquely to a functor.

"Proof". Let $f: X \to Y$ be a function, with X, Y: ODisc. By directed univalence, f corresponds to a directed path $p: OProp \to ODisc.$ Postcomposing with F gives a path between F(X) and F(Y). Which corresponds to a function $F(f): F(X) \to F(Y)$.

Let Et(K) be the category of sheaves on a compact Hausdorff space K.

Let Et(K) be the category of sheaves on a compact Hausdorff space K. Denote by $Et^{\cong}(K)$ the groupoid core.

Let Et(K) be the category of sheaves on a compact Hausdorff space K. Denote by $Et^{\cong}(K)$ the groupoid core.

Then Et^{\cong} is a stack of groupoids over CHaus, and Et is a stack of categories over CHaus.

Let Et(K) be the category of sheaves on a compact Hausdorff space K. Denote by $Et^{\cong}(K)$ the groupoid core.

Then Et[≅] is a stack of groupoids over CHaus, and Et is a stack of categories over CHaus.

Every functor of stacks $Et^{\cong} \to Et^{\cong}$ extends uniquely to a functor of stacks $Et \to Et$.

Future ideas

Find a computable model of the axioms.

Future ideas

- ► Find a computable model of the axioms.
- Explore the consequences of directed univalence.

Future ideas

- ► Find a computable model of the axioms.
- ► Explore the consequences of directed univalence.
- ▶ Work out the proof of LTE in condensed type theory.