## Linear Algebra

Version: 1.0. September 10, 2023 Ramasamy Kandasamy

# 1. Matrices and Gaussian Eliminations

## 1.1. Geometry of linear equations

Matrix representation: Ax = b

- Row picture: Lines in a  $(\mathbb{R}^2)$  or planes  $(\mathbb{R}^3)$ .
- Column picture: b is linear combination of the columns of A. ∴
   b is in the column space of A.

Singular case: No solution or infinite solution.

### 1.2. Gaussian Elimination

- Apply row operations and row exchange to convert the system of linear equations to triangular form.
- Use back substitution to solve the system.

Row operations preserve the null space and rowspace of A, but this normally alters the eigenvalues.

### Gaussian elimination in matrix form

- Each row operation on A can be represented as a matrix multiplication on A. If a triangular form U is obtained by three row operations on A, each of them can be represented by matrices, say G, F and E.

  Then,  $G \times F \times E \times A = U$ .
- The product of G, F and E would be a lower triangular matrix
   (L). The matrix A can be written as PA = LU. L can be found by keeping track of the row operations. P is a permutation matrix.
- *LU* can also be written as *LDU* by splitting *U* to *DU*. *D* is a diagonal matrix containing the pivot elements.

## 1.3. Matrix multiplication

## 5 ways to multiply matrices

Given,  $A \times B = C$ 

- Standard.
- Each column of C is a linear combination of columns of A.  $\begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix}$ , where  $b_i$ s are columns of B.
- Each row of C is a linear combination of rows of B.

$$\begin{bmatrix} a_1 B \\ \vdots \\ a_n B \end{bmatrix}$$
, where  $a_i$ s are rows of  $A$ .

•  $\sum_{i=1}^{n} [ca_i] \times [rb_i]$ 

Where,  $ca_i$  and  $rb_i$  are *i*-th column and row of A and B, respectively.

• Multiplying Blocks of matrix. Eg:

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \times \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix}$$

 $\ddot{A}_i, B_i$  and  $C_1$  are blocks of the matrices A, B and C. The blocks are treated as a single entity and multiplied like a normal matrix. Eg:  $C_1 = A_1B_1 + A_2B_3$ 

Last approach would be useful for proving matrix theorems by inductions.

### **Properties**

- Associative: (AB)C = A(BC).
- Distributive: A(B+C) = AB + AC; (B+C)D = BD + CD.
- **NOT** commutative: Usually  $EF \neq FE$ .
- $AB = 0 \implies A = 0 (or)B = 0$ .
- $AC = AD \implies C = D$
- Let A, B, C be  $n \times n$  matrices. Then:
- If rank(A) = n and AB = AC, then B = C.
- If rank(A) = n, then  $AB = 0 \implies B = 0$ . If AB = 0 but  $A \neq 0$  and  $B \neq 0$ , then rank(A) < n and rank(B) < n.

## 1.4. Inverse and Transpose of a Matrix

If the system of equations is non-singular, then it could be solved by using inverse of A.

- $A^{-1}$  is inverse of  $A \Leftrightarrow A^{-1}A = A^{-1}A = I$ .
- If  $A^{-1}$  exist, then A is invertible or non-singular matrix.

## Properties

- A square matrix is singular or not invertible if:
  - Its determinant is 0.
  - Dimension(Column Space) < Matrix dimension. Proof (by contradiction):  $\exists x \neq 0, \ni Ax = 0$ . Assuming  $A^{-1}$  exists  $\Rightarrow A^{-1}Ax = A^{-1}0 \Rightarrow x = 0$ .
- If A is invertible, then the one and only solution to Ax = b is  $x = A^{-1}b$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(AB)^T = B^T A^T$
- $(A^{-1})^T = (A^T)^{-1}$
- For any rectangular matrix R,  $RR^T$  and  $R^TR$  is symmetric.
- A symmetric matrix could be decomposed to  $LDL^T$ .

## Finding inverse by Gauss-Jordan elimination

Start with augmented matrix. Achieve upper triangular matrix on the left part and then identity matrix by row operations:

$$[A|I] \longrightarrow [U|X] \longrightarrow [I|A^{-1}]$$

## 2. Vector Spaces

## 2.1. Vector spaces and subspaces

**Vector space** Set of vectors with vector addition and scalar multiplication, satisfying the following properties.

- Associativity of vector addition.
- Commutativity of vector addition.
- Identity element of vector addition.
- Inverse elements of vector addition.
- Compatibility of scalar multiplication with field multiplication. i.e.,  $a(b\mathbf{v}) = ab(\mathbf{v})$
- Identity element of scalar multiplication.
- Distributivity of scalar multiplication w.r.t. vector addition. i.e.,  $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- Distributivity of scalar addition w.r.t. vector multiplication. i.e.  $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

If S and P are two vector spaces,  $S \cup P$  need not be a vector space, but  $S \cap P$  is a vector space.

**Subspace**  $Q \subseteq P$  is a subspace of P, if it satisfies the following property in addition to all the properties of a vector space.

- $\mathbf{a} \in Q$  and  $\mathbf{b} \in Q \implies \mathbf{a} + \mathbf{b} \in Q$ .
- $\mathbf{a} \in Q \implies c\mathbf{a} \in Q$  for all scalar c.

## **2.2.** Solving Ax = b[Revisited]

Augmented matrix  $[A|b] \to \text{Row}$  operation leading to echelon form. **Pivot elements** First non-zero element in a row with a column of zeroes below it.

**Rank** = number of pivot elements.

**Free columns** = Columns without pivot elements.

**Null space:** of a matrix A, is the set of all x that satisfies Ax = 0. **General solution:**  $x = x_p + x_n$ , where  $x_n$  is a vector from the nullspace of A.

The existence and number of solutions depends on the rank of A and that of the augmented matrix [A|b].

# 2.3. Linear independence, basis and dimension

**Linear independence:** A set of vectors  $v_1, v_2, \cdots, v_k$  are said to be linearly independent iff

 $c_1v_1 + c_2v_2 + \dots + c_kv_k \Rightarrow c_1 = c_2 = \dots = c_k$ .

Columns of A are linearly independent iff  $N(A) = \{0\}$ 

Spanning a vector space:  $W = \{w_1, w_2, \cdots, w_k\}$  is said to span a vector space V, if for all  $v \in V$ ,,  $\exists c_1, c_2, \cdots, c_k \in \mathbb{R}$  such that  $v = c_1w_1 + c_2w_2 + \cdots + c_kw_k$ 

**Basis:** Basis of a vector space is a set of vectors with the following two properties.

- The vectors in the set are linearly independent.
- They span the vector space.

**Dimension of a vector space:** Number of basis vectors.

## 2.4. Four fundamental subspaces

For a matrix A of dimensions  $m \times n$  and rank r.

• Column space of A, C(A): Smallest subspace containing the columns of A.  $C(A) \subseteq \mathbb{R}^m$ .

Dimension of C(A) is r.

• Row space of A, R(A): Smallest subspace containing the rows of A.

 $R(A) \subseteq \mathbb{R}^n$ . Dimension of R(A) is r.

- Null space of A, N(A): Set of all x such that Ax = 0. N(A) ⊆ ℝ<sup>n</sup>. Dimension of N(A) is n − r.
- Null space of  $A^T$ ,  $N(A^T)$ : Set of all x such that  $A^Tx=0$ .  $N(A^T)\subseteq \mathbb{R}^m$ . Dimension of  $N(A^T)$  is m-r.

### Relationship between the subspaces:

- $C(A) \perp N(A^T)$  and  $C(A) \cup N(A^T) = \mathbb{R}^m$ .
- $R(A) \perp N(A)$  and  $R(A) \cup N(A) = \mathbb{R}^n$ .

## 2.5. Linear Transformation

**Linear Transformation:** A transformation T that converts a vector u to v(=T(x)), is a linear transformation if it satisfies the following properties.

- T(0) = 0.
- T(u+v) = T(u) + T(v)
- T(au) = aT(u)

### Important notes:

- Every matrix multiplication to a vector is a linear transformation.
- $\bullet\,$  Every linear transformation can be represented by a matrix multiplication.
- $\bullet~$  NOTE: The transformation matrix need not be a square matrix.
- If Ax / T(x) is known for all the basis of the vector space, then it is known for all the vectors in vector space.

## Examples of linear transformation:

Scaling, Rotation, Reflection, Projection, Differentiation and Integration.

## 3. Orthogonality

## 3.1. Orthogonal vectors and subspaces

Orthogonal vectors: x and y are orthogonal iff  $x^Ty = 0$ . Length of a vector:  $||x|| = x^Tx$ . If a set of vectors  $v_1, v_2, \dots, v_k$  of non-zero length are mutually perpendicular, then those vectors are linearly independent.

#### **Proof:**

Assume they are not linearly independent.  $\therefore$  there exist non-zero constants  $c_1, c_2, \cdots, c_k$  such that,

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$
  

$$\therefore v_1^T(c_1v_1 + c_2v_2 + \dots + c_kv_k) = 0$$
  

$$\Rightarrow c_1 = 0, \text{ a contradiction.}$$

**Orthogonal subspaces:** Two subspaces V and W are said to be orthogonal if  $\forall v \in V$  and  $\forall w \in W \ v \perp w$ .

### Fundamental theorem of linear algebra part-I:

Row space is orthogonal to nullspace (in  $\mathbb{R}^n$ ) and column space if orthogonal to the left nullspace (in  $\mathbb{R}^m$ ).

#### Proof-1:

If x is in N(A), Ax = 0. This implies Product of every row in A to x is 0. Therefore  $x \perp$  rowspace of A.

#### Proof-2:

Let 
$$x \in N(A) \Longrightarrow Ax = 0$$
 and,  
 $y \in \text{Rowspace}(A) \Longrightarrow \exists z \ni y = A^T z$ .  
 $y^T x = (A^T z)^T x = z^T A x = z^T \mathbf{0} = \mathbf{0}$ .  $\Longrightarrow x \perp y$ .

#### I think:

If V and W are subspaces of dimensions p and q in  $\mathbb{R}^n$  and if p+q>n then, V cannot be orthogonal to W.

**Orthogonal complement:** Given a subspace V in  $\mathbb{R}^n$ , the space of all vectors orthogonal to V is called orthogonal complement of V. It is denoted by  $V^{\perp}$ .

### Fundamental theorem of linear algebra part-II:

Null space is orthogonal complement of row-space in  $\mathbb{R}^n$ . Left null space is orthogonal complement of column-space in  $\mathbb{R}^m$ .

## A deeper meaning of matrix multiplication

The matrix multiplication Ax transforms the rowspace component of x ( $x_r$ ) to column-space of A and the nullspace component of x ( $x_n$ ) to 0

Here  $x = x_r + x_n$ .

The real action is between rowspace and column space.

**Theorem:** From rowspace to column space A is invertible. Every b in the column space comes from one exactly one  $x_r$  in the rowspace.

## 3.2. Cosines and Projections onto lines

Cosine The cosine of the angle between any two non-zero vectors is defined as follows:

$$cos\theta = \frac{a^Tb}{\|a\|\|b\|}$$

Law of cosines

$$||b - a||^2 = ||a||^2 + ||b||^2 - 2||a|| ||b|| \cos\theta$$

Schwarz inequality

$$||a^Tb|| \le ||a|| ||b||, \because \cos\theta \le 1$$

## Projection onto a line (1D subspace)



p is projection of b on a. p = xa for some x.

$$e = b - p$$
 and  $e \perp a$ ,  
 $\therefore a^{T}(b - xa) = 0$   
 $xa^{T}a = a^{T}b$   
 $\implies x = \frac{a^{T}b}{a^{T}a}$ 

$$p = a \frac{a^T b}{a^T a}$$

This can be written as,

$$p = \frac{aa^T}{a^Ta}b = Pb$$
, where  $P = \frac{aa^T}{a^Ta}$  is the projection matrix of  $a$ .

Properties of P

- C(P) = line through a.
- Rank(P) = 1.
- P is symmetric:  $P = P^T$
- $P^2 = P$

## Projection onto a higher dimension subspace

Finding projection of b on A

Let p be the projection of b on subspace spanned by columns of A, then there exists  $\hat{x}$  such that  $A\hat{x} = p$  $b - p \perp A \implies A^{T}(b - A\hat{x}) = 0$ 

$$0 - p \perp A \Longrightarrow A^{T}(b - 1)$$

$$\therefore \hat{x} = (A^{T}A)^{-1}A^{T}b$$

$$\therefore p = A(A^{T}A)^{-1}A^{T}b$$

Here the projection matrix  $P = A(A^T A)^{-1} A^T$ If A is invertible then P = I

 $A^T A$  has the same null space of A i.e.,  $A^T A$  is invertible if columns of A are independent.

Least squares problem Solve: Ax = b

• Normal equations:  $A^T A \hat{x} = A^T b$ 

• Best estimate:  $\hat{x} = (A^T A)^{-1} A^T b$ 

• Projection:  $p = A\hat{x} = A(A^TA)^{-1}A^Tb$ 

• b = p + e

• p is in C(A)

• e is in  $N(A^T)$ 

• If b is in C(A),  $p = A(A^T A)^{-1} A^T b = A(A^T A)^{-1} A^T A x = A x = b$ 

• If b is in  $N(A^T)$ ,  $p = A(A^TA)^{-1}A^Tb = A(A^TA)^{-1}0 = 0$ 

• If A is invertible,  $p = A(A^T A)^{-1} A^T b = b$ 

• (I think)  $||e||^2 = ||b-p||^2$  is the squared error.

## 3.3. Orthogonal basis and Gram-Schmidt

**Orthogonal basis:** A set of bases,  $q_1, q_2, \dots, q_k$ , is said to be orthogonal bases, if for all  $i \neq j$   $q_i T q_j = 0$ .

**Orthonormal basis:** Orthonormal bases,  $q_1, q_2, \dots, q_k$ , satisfies the following property:

$$q_i^T q_j = \begin{cases} 1 & \text{if } i = j. \\ 0 & \text{otherwise} \end{cases}$$

### **Gram-Schmidt** process

• Eg: A case with two bases a and b: a' = a  $b' = b - \frac{aa^T}{a^Ta}b, \text{ here, } b' = e \text{ and } b = p + e$ 

• Eg: Case with three bases a, b and c. a' = a

$$a' = a$$

$$b' = b - \frac{aa^T}{a^Ta}b$$

$$c' = c - \frac{aa^T}{a^Ta}c - \frac{bb^T}{b^Tb}c$$

From c subtract projection of c on a and projection of c on b.

## 4. Determinants

## 4.1. Properties of determinants

Three most basic properties of determinants

1.  $\det I = 1$ .

2. Determinant changes sign when two rows are exchanged.

3. Determinant depend linearly on the first row. Eg:

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

### Derivative properties of determinants

4.  $| cA | = c^n | A |$ .

5. If two rows of A are equal, then det A = 0 Follows from rule 2.

 Adding a multiple of one row to another does not alter the value of the matrix.
 Follows from rule 3 and rule 4.

7. If A has a row of 0s, then det A = 0. Follows form rule 4 and rule 5.

8. If A is triangular,  $det A = \prod d_i$ . Proof: Convert A to an equivalent diagonal determinant by row operation. Now apply rule 3 and finally rule 1.

9. If A is singular, then det A=0. If A is invertible, then  $det A\neq 0$ . Proof:

If A is singular, elimination leads to zero row,  $\therefore det A = 0$ If A is invertible, elimination leads to non-zero pivots.  $det A = \prod \text{pivots} \neq 0.$ 

10.  $det(AB) = det(A) \times det(B)$ Proof:

From a diagonal matrix D, det(DB) = det(D)det(B)A can be converted to a diagonal matrix D by row operations. Using the exact same row operation as above AB can be converted to DBFor another proof see book.

11.  $det(A^T) = det(A)$ . Proof: PA = LDU and det(PA) = det(LDU)  $det(A^TP^T) = det(U^TD^TL^T) = det(LDU) = det(PA)$  $det(P^T) = det(P) : det(A^T) = det(A)$ .

## 4.2. Formulae for determinant

## Based on LDU decomposition

If A is invertible PA = LDU.  $det(A) = \pm det(L)det(D)det(U) = \pm (product of pivots)$ 

## Using linearity of determinants

Eg:  $2 \times 2$  case.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = ad - bc$$

## Expansion in cofactors

The determinant of A is any row i times its cofactors

That is,  $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$ Where,  $C_{ij} = (-1)^{i+j}det(M_{ij})$ 

### Proof:

Split the  $n \times n$  matrix to sum of  $n \times n$  matrices by linearity property of deteterminants. Each of the constituent matrices can be converted to LDU form.

### **Block matrices**

 $\bullet \ \det \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} = \det(A)\det(D) = \det \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ 

• If A is invertible  $\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(A)\det(D - CA^{-1}B)$ 

• If blocks are square matrices of the same size. And AC=CA.  $det\begin{bmatrix}A&B\\C&D\end{bmatrix}=det(AD-CB)$ 

• If blocks are square matrices of same size and if A=D and B=C. Here A and B need not commute.  $\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A-B)\det(A+B)$ 

## 4.3. Application of determinants

Definition 4.1 (Adjugate Matrix):

Transpose of cofactor matrix:  $adj(A) = C^T$ . NOTE:  $|adj(A)| = |A|^{n-1}$ .

## Computation of $A^{-1}$

$$A^{-1} = \frac{C^T}{\det(A)} = \frac{adj(A)}{\det(A)}$$

C is cofactor matrix.

**Proof:** 

$$A^{-1} = \frac{C^T}{\det(A)} \implies \det(A)I = AC^T$$

Now the diagonal of  $AC^T$  will be det(A). To complete the proof we just need to show that the off-diagonal elements are all 0. Each off-diagonal element is represented as:

 $a_{i1}C_{j1} + a_{i2}C_{j2} + \cdots + a_{in}C_{jn}$ where  $i \neq j$ 

This is equal to the determinant of modified A where the j'th row is replaced by a copy of i'th row times  $\pm 1$ . This determinant = 0

### Cramer's rule; Solution to Ax = b

$$x_j = \frac{\det(B_j)}{\det A}$$

Where,  $B_j$  is A with it's j'th column replaced by b.

**Proof:** 
$$x = A^{-1}b = \frac{1}{\det(A)}C^Tb$$

### Volume of a box

det(A) represents the volume of a box(higher dimensional parellelogram) whose edges are represented by the row vectors of A (or the column vectors of A, I think).

## 5. Eigen values and eigen vectors

## 5.1. Introduction

Solve:  $Ax = \lambda x$ 

This give:  $(A - \lambda I)x = 0$ 

For a non-zero solution x must lie in the nullspace of  $A - \lambda I$ .

Therefore  $det(A - \lambda I) = 0$ 

This equation gives rise to a n dimensional polynomial equation in

 $\lambda$ (Characteristic equation). Solving this gives eigen values.

Eigen vectors corresponding to each Eigen value form a vector space.

Algebraic multiplicity  $(M_{\lambda})$ : Order of the eigenvalue in the characteristic equation.

Geometric multiplicity  $(m_{\lambda})$ : Dimension of the eigenspace corresponding to the eigenvalue  $\lambda$ .

 $m_{\lambda} \leq M_{\lambda}$ 

### Theorem:

- $\sum \lambda_i = tr(A)$
- $\prod \lambda_i = det(A)$
- For a triangular matrix the Eigen values are along the diagonal.
- If  $Ax = \lambda x$ , then  $A^k x = \lambda^k x$ .

## 5.2. Diagonalization

If a  $n \times n$  matrix A has n independent eigen vectors then, it can be written as follows:

$$A = S\Lambda S^{-1}$$

where, each column of S is one of the eigenvectors of  $A(e_i)$ 

$$S = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \dots & \vdots \end{bmatrix}$$

and  $\bar{\Lambda}$  is a diagonal matrix with corresponding eigen values in the diagonal.

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

#### Proof:

$$AS = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix} = S\Lambda$$
  
$$\implies A = S\Lambda S^{-1}$$

### Corollary: Powers of A $A^n = S\Lambda^n S^{-1}$

### ${\bf Caley\text{-} Hamilton's\ theorem.}$

#### Theorem 5.1:

A satisfies it's own characteristic equation.

Proof. Substitute  $A = S\Lambda S^{-1}$  in  $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ .  $\square$ 

## 5.3. Difference equations and powers $A^k$

### Difference equations

$$u_{k+1} = Au_k$$

In some sense difference equations are analogous to differential equations.

## Examples

### Fibonacci numbers

$$\begin{split} F_{k+2} &= F_{k+1} + F_k \\ \text{Let, } u_k &= \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} \text{then, difference representation of Fibonacci sequence would be:} \end{split}$$

$$u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = Au_k$$

The solution to this difference equation,  $u_{k+1} = Au_k$  is

$$u_k = A^k u_0$$

If A can be diagonalized then  $u_k = S\Lambda^k S^{-1}u_0$ .

### Markov matrices

Markov matrix is similar to the above examples along with the following two properties:

- 1. Each column of Markov matrix adds to 1.
- 2. The numbers outside and inside can never become negative.

 $u_{k+1} = Au_k$  and the solution is  $u_k = A^k u_0$ 

If A can be diagonalized, then  $u_k = S\Lambda^k S^{-1}u_0$ . Steady state $(u_\infty)$ :  $Au_\infty = u_\infty$ .

Properties of a Markov matrix A:

- 1.  $\lambda_1 = 1$  is an eigenvalue of A.
- 2. Its eigenvector  $x_1$  is nonnegative and  $Ax_1 = x_1$ .
- 3. The other eigenvalues satisfy  $|\lambda_1| < 1$ .
- 4. If A or any power of a A has all positive entries, these other  $|\lambda_i|$  are below 1.
- 5. The solution  $A^ku_0$  approaches a multiple of  $x_1$  which is the steady state  $u_{\infty}$ .

### Stability of $u_{k+1} = Au_k$

The difference equation  $u_{k+1} = Au_k$  is:

- stable if all eigenvalues satisfy  $|\lambda_i| < 1$ .
- neutrally stable if some  $|\lambda_i| = 1$  and all other  $|\lambda_i| < 1$ .
- unstable if at least one  $|\lambda_i| > 1$ .

## 5.4. Differential equations and $e^{At}$

## System of differential equations

Matrices are useful to solve a system of differential equations. Eg:

$$\frac{du_1}{dt} = a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n$$

$$\frac{du_2}{dt} = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n$$

$$\vdots$$

$$\frac{du_n}{dt} = a_{n1}u_1 + a_{n2}u_2 + \dots + a_{nn}u_n$$

This system in matrix notation is  $\frac{du}{dt} = Au$ , where

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Solution:

$$u(t) = e^{At}u(0)$$

### Is the above solution valid if A is not diagonalizable.

*Proof:* If A is diagonalizable then let  $v = S^{-1}u$ , where S is the eigenvector matrix of A. Using eigenvector matrix the system of linear equations is decoupled.

$$\therefore S \frac{dv}{dt} = ASv$$

$$\implies \frac{dv}{dt} = S^{-1}ASv = \Lambda v$$

$$v(t) = e^{\Lambda t}v(0)$$

$$u(t) = Se^{\Lambda t}S^{-1}u(0) = e^{At}u(0)$$

where  $e^{At}$  is the exponential of the matrix A.

### Matrix exponential

Matrix exponential is defined as follows:

$$e^{At} = I + At + \frac{(At)^2}{2} + \dots + \frac{(At)^n}{dt} + \dots$$

This series always converges and has the following properties:

- $(e^{As})(e^{At}) = e^{A(s+t)}$
- $(e^{At})(e^{-At}) = I$
- $\frac{d}{dt}(e^{At}) = Ae^{At}$
- If A can be diagonalized,  $A = S\Lambda S^{-1}$ , then du/dt = Au has the solution  $u(t) = e^{At}u(0)$ .
- $e^{At}$  is never singular. Proof 1: If  $\lambda$  is an eigenvalue of A, then  $e^{\lambda t}$  is the corresponding eigenvalue of  $e^{At}$ , which is never 0. Proof 2:  $det(e^{At}) = e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t} = e^{trace(At)} \neq 0$ .

## Stability of differential equations

Behaviour of u(t) as  $t \to \infty$ : The differential equation du/dt = Au is:

- stable: and  $e^{At} \to 0$  whenever, all  $Re(\lambda_i) < 0$ .
- neutrally stable: when all  $Re(\lambda_i) < 0$  and  $Re(\lambda_1) = 0$ .
- unstable: and  $e^{At}$  is unbounded if any eigenvalue has  $Re(\lambda_i) > 0$ .

These results are true even if A is not diagonalizable.

## 5.5. Complex matrices

Length of a vector:  $||x|| = |x_1| + |x_2| + \cdots + |x_n|$ 

## Hermitian (and symmetric) matrices

Conjugate transpose:  $\overline{A}^T = A^H$  (Read as A Hermitian) has entries  $(A^H)_{ij} = \overline{A_{ji}}$ 

**Hermitian matrices:** A is Hermitian iff  $A^H = A$ .

**Theorem:** If  $A = A^H$  then  $\forall x, x^H Ax$  is real.

Proof:  $(x^H A x)^H = x^H A^H x = x^H A x$ .

**Theorem:** If  $A = A^H$  then all the eignevalues are real. Proof:  $x^H A x = \lambda x^H x$ . LHS is real and  $x^H x$  is real, therefore  $\lambda$  is real. Theorem: Eigenvectors of Hermitian matrices that come from two

different eigenvalues are orthogonal.

Proof:

Let,  $Ax = \lambda x$  and  $Ay = \mu y$   $\lambda x^H y = (Ax)^H y = x^H Ay = x^H \mu y \implies x^H y = 0, \because \lambda \neq \mu$  Orthonormal matrices:  $QQ^T = I$ .

Theorem (Spectral theorem): A real symmetric matrix can be factored into  $A = Q\Lambda Q^T$ . Its orthonormal eigenvectors are in the columns of Q.

### Unitary matrices

$$U^H U = I$$

Multiplication by U has no effect on inner products, angles and lengths.

### Property 1:

- $(Ux)^T(Uy) = x^TU^TUy = x^Ty$
- $||Ux||^2 = x^H U^H U x = x^H x = ||x||^2$

### Property 2:

For every eigenvalue( $\lambda$ ) of U,  $|\lambda| = 1$ 

#### Property 3:

Eigen vectors corresponding different eigenvalues are orthogonal.

Let,  $Ux = \lambda x$  and  $Uy = \mu y$ .  $x^H y = (Ux)^H (Uy) = (\lambda x)^H (\mu y) = \overline{\lambda} \mu x^H y$ By property-2  $\overline{\lambda}\lambda = 1, \therefore \overline{\lambda}\mu \neq 1$   $\Longrightarrow x^H y = 0.$ 

If A is Hermitian then K = iA is skew-Hermitian.

**Theorem:** Eigenvalues of K are purely imaginary.

### Fourier matrix

### THE FOLLOWING IS INCOMPLETE

$$F_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{bmatrix}$$

## 5.6. Similarity transformation

**Definition:** A and B are similar if  $\exists M \ni B = M^{-1}AM$ . Going from one to another is known as similarity transformations. In the case where M = S,  $M^{-1}AM$  becomes the diagonal matrix  $\Lambda$ . This is the best case scenario. But other M's are also useful. Usually M is chosen such that,  $M^{-1}AM$  is easier to work with than A.

**Theorem:** Suppose  $B = M^{-1}AM$ , then A and B have the same

Proof: 
$$Ax = \lambda x \implies B(M^{-1}x) = \lambda(M^{-1}x)$$

 $M^{-1}x$  is the eigenvector of B corresponding to  $\lambda$ .

### Change of Basis = Similarity transformation

Every linear transformation is represented by a matrix. Similar matrices represent the same transformation T with respect to different

$$\begin{array}{lll} [T]_{\mathrm{V \ to \ V}} &= [I]_{\mathrm{v \ to \ V}} & [T]_{\mathrm{V \ to \ v}} & [I]_{\mathrm{V \ to \ v}} \\ B &= M^{-1} & A & M \end{array}$$

### Triangular forms with unitary M

#### Shcur's lemma:

There is a unitary matrix M = U such that  $U^{-1}AU = T$  is triangular. The eigenvalues of A appear along the diagonal of this similar matrix

### Diagonalizing Hermitian matrices

### Theorem:

If  $A=A^H$  This triangular form T, is a diagonal matrix. Proof:  $(U^{-1}AU)^H=U^HA^H(U^{-1})^H=U^{-1}AU\implies T=T^H$ .

### Spectral theorem:

Every real symmetric matrix can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary matrix U:

$$\begin{array}{lll} \text{(real)} & Q^{-1}AQ = \Lambda & \text{or} & A = Q\Lambda Q^T \\ \text{(complex)} & U^{-1}AU = \Lambda & \text{or} & A = U\Lambda U^H \\ \end{array}$$

#### Normal matrices

The matrix N is normal if it commutes with  $N^H$ :  $NN^H = N^H N$ .

#### Theorem:

A triangular matrix T that is normal must be diagonal Proof:

Tip: Use induction and multiplication by blocks.

For details see: https://math.stackexchange.com/a/2538528/633346

#### Theorem:

 $T = U^{-1}AU$  is diagonal if and only if A is a normal matrix. Proof:

$$TT^H = U^{-1}AUU^HA^HU = U^{-1}AA^HU = U^{-1}A^HAU = U^HA^HUU^{-1}AU = T^HT \implies T$$
 is diagonal.

### Jordan form

**Theorem:** If A has s independednt eigenvectors, it is similar to a matrix with s blocks.

Jordan form 
$$J = M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix}$$

Each Jordan block is a triangular matrix that has only a single eigenvalue  $(\lambda_i)$  along the diagonal corresponding to only one eigenvector. For each missing eigenvector there will be a 1 just above the diagonal.

$$\text{Jordan block } J_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \lambda_i & \cdot & \\ & & \cdot & 1 \\ & & & \lambda_i \end{bmatrix}$$

## Positive definite matrices

### Definition:

A  $n \times n$  symmetric matrix A is positive-definite if  $\forall x \neq 0 \in \mathbb{R}^n$  $x^T Ax > 0.$ 

Test for positive definiteness Each of the following test is a necessary and sufficient condition for a matrix to be positive definite.

- 1.  $x^T Ax > 0$  for all nonzero vectors x. Definition.
- 2. All eigenvalues of A satisfy  $\lambda_i > 0$ . Proof:  $x^T A x = \lambda x^T x = \lambda ||x||^2$ Converse: Every  $\forall y > 0 \in \mathbb{R}^n$ ,  $y = a_1 x_1 + \cdots + a_n x_n$ Ay =  $a_1\lambda_1 + \dots + a_n\lambda_1$   $y^T Ay = a_1^2\lambda_1 + \dots + a_n^2\lambda_n > 0$
- 3. All the upper left submatrices  $A_k$  have positive determinants. Clue:  $x^T A x = \begin{bmatrix} x_k^T & 0 \end{bmatrix} \begin{bmatrix} A_k & * \\ * & * \end{bmatrix} \begin{bmatrix} x_k \\ 0 \end{bmatrix} = x_k^T A_k x_k$
- 4. All the pivots (without row exchanges) satisfy  $d_k > 0$ . Proof: Incomplete

### Theorem: Another test for positive definiteness

The symmetric matrix A is positive definite if and only if:  $\exists R \text{ with independent columns } \ni A = R^T R.$ 

### Positive semidefinite Matrices

The tests for semidefinite matrices will relax to allow zeros. Definition:

 $\forall x \ x^T A x > 0$ 

Test for positive semi definiteness

- $\forall x \neq 0 \ x^T A x > 0$ .
- All eigenvalues satisfy  $\lambda_i > 0$ .
- No principal submatrices of A have negative determinants.
- No pivots are negative.
- $\exists R$ , possibly with dependent columns such that  $A = R^T R$ .

## 6.1. Singular value decomposition

Any  $m \times n$  matrix A can be decomposed in to:

$$A = U\Sigma V^T$$

 $\Sigma$ : Diagonal matrix,  $m \times n$ . This diagonal matrix has eignevalues form

The positive entries  $\sigma_1, \sigma_2, \cdots, \sigma_s$ , form the first r diagonal elements of  $\Sigma$ . These elements are called **singular values**. The remainder of entries in  $\Sigma$  is 0.

U: Orthogonal matrix,  $m \times m$ .

The columns of U are the eigenvectors of  $A^TA$ . V: Orthogonal

matrix,  $n \times n$ .

The columns of V are the eigenvectors of  $AA^T$ .

### Remark 1

For positive definite matrices,  $\Sigma$  is  $\Lambda$  and  $U\Sigma V^T$  is identical to  $Q\Lambda Q^T$ .

### Remark 2

 ${\cal U}$  and  ${\cal V}$  give orthonormal bases for all four fundamental subspaces.

columns of U: column space of Acolumns of U: **left nullspace** of Alast first columns of V: row space of Alast columns of V: **nullspace** of An-r

### Remark 3

$$Av_i = \sigma_i u_i$$
 or  $AV = U\Sigma$ 

Eigenvectors of  $AA^T$  and  $A^TA$  goes into columns of U and V.  $AA^T = (U\Sigma V^T)(V\Sigma^T U^T) = U\Sigma \Sigma^T U^T$ , and,  $A^TA = V\Sigma^T \Sigma V^T$ .

## 7. Matrix Factorizations

## LU factorizability

$$A = LU$$

### Requirements:

An invertible matrix A is LU factorizable, if the determinant of all its principal minors are > 0. Or if A has rank k, A is LU factorizable, if all its first k principal minors are > 0.

### Procedure:

Do Gaussian elimination without row exchanges.

### LDU:

Pivots in U are divided out into D to have 1s in the diagonal of U.

### PLU factorization

$$PA = LU$$

Always exists.

### Procedure:

Do Gaussian elimination.

If A is invertible, then L are U are invertible. P is always invertible and  $P^{-1} = P^T$ .