Contents

1	General Guidance	2
2	Specific words and terms	3
3	Math and notation	5
4	Other LATEX specific items	6

1 General Guidance

```
Tables, Figures and Captions (see Sec. 4 for formatting prop-
erly in LATEX).
     In Eq. (13), (14), and (16)
     In Fig. 4(a)
     In Ref. 5
Dates and numbers
     02 February 2016 (no commas)
     four or fewer numbers closed up:
          1200
          24.0032~\mathrm{cm}
     Five or more digits, spaces instead of commas:
          12\,\,000
          24.077 89 \text{ cm}
     one through ten
      11,12 and above
     2x2 matrix (numerals)
     0.03 and 106.0 (no "naked" decimal points
     6 V (number before units are always numerals)
      1D, 2D, 3D
Punctuation
     en-dash: Paris-London train, (1950-), University of
      Wisconsin-Madison
     serial commas (a, b, and c)
     hyphenate multi-word modifiers: macro-time
      parenthesis:
          inserted into another sentence, no period (such as
          this).
          isolated, period inside. (Such as this.)
          pairs surrounded letters in innumerated list (a) and
     possessives: Smith and Green's theory
     plurals:
          1950s
          x's, K's
```

quotation marks after commas and periods, before colons and semi-colons

in general, place "e.g." and "i.e." in parenthesis, not commas and include a comma after (e.g., like this).

Abbreviations

Plural add 's: LCAO's

2	Specific words and terms	J	
\mathbf{A}		K	
	α particle	${f L}$	
	ad hoc		Laplacian
	à la		l.h.s.
	anti-compounds closed (antilogarithm)		lifetime
В		\mathbf{M}	
	burnup (n)		Maxwell(ian)
\mathbf{C}			midpoint
C	Cartesian		modeling
	collision-flux estimator		multigroup
	cross-section (n)		multivarient
	cross term	N	
			non-compound closed:
D			nonelastic
	delta-tracking		nonradioactive
	Doppler		but proper noun, symbol, numeral: non-Fermi
	downscatter		12-fold
\mathbf{E}		О	
	eigenfunction	P	
	eigenvalue	1	path length
\mathbf{F}			paon tengon
	Fourier transform/analysis/spectra	Q	
\mathbf{G}		R	11
	Gauss-Seidel (adj)		radioactive
			ray tracing
Н	1.16		r.h.s.
	half-compound hyphenated:		runtime
	half-life halfway	\mathbf{S}	
	nanway		setup
Ι			self-compound hyphenated:
	indexes (to book)		self-shielded (adj)
	indices (to variable)		semiempirical
	in situ		semi-infinite

T track length track-length estimator U upscatter uranium V W waveheight wavelength X ray (n) x-ray (adj)

 \mathbf{Y} \mathbf{Z}

3 Math and notation

Cross-sections

macroscopic: $\tilde{\sigma}$

microscopic: σ

Matrices

Bold capital letters, A.

Use brackets (bmatrix) for normal matrix, pipes (vmatrix) for determinants, and double pipes (Vmatrix) for a matrix norm.

Vectors

Topped with an arrow, $\vec{\phi}$. Vector superscripts must be shifted slightly using $\ensuremath{\mbox{vec}{\phi}}^{\hbar}_{\hbar}$. For comparison:

 $\label{eq:condition} $\operatorname{\phi}^{\ell} : \vec{x}^\ell \\ \operatorname{\phi}^{\ell} : \vec{x}^\ell \\$

Use hats to denote unit vectors, $\hat{\Omega}$.

In general, if a vector is made up of other vectors, use a capital letter for the larger vector, and lowercase for the smaller vectors.

$$ec{\Phi} = egin{bmatrix} ec{\phi_0} \ ec{\phi_1} \end{bmatrix}$$

4 Other LATEX specific items

Package settings

Always hide boxes from hyperref package:

\usepackage[hidelinks]{hyperref}

Programming language names

For the C++ programming language use:

 $\label{localize} $$\operatorname{Cpp}[1][]_{\text{Colinebreak}[4]\hspace}-.05em}\right]^{1}[]_{\text{Colinebreak}[4]} $$$

References and citations

For equations, use the amsmath \eqref{label} function.

$$E = mc^2 (1)$$

This correctly formats Eq. ~\eqref{eq:relativity} as Eq. (1).

Use Sec. ~\ref{sec:latex} for sections, which correctly formats as Sec. 4.

For figures, use Fig. ~\ref{fig:image}, which correctly formats as Fig. 1.

For subfigures, include the packages and commands:

```
\usepackage{caption, subcaption}
\renewcommand\thesubfigure{(\alph{subfigure})}
\captionsetup[sub]{labelformat=simple}
```

and reference the subfigure itself, which will format correctly as Fig. 1(a). See documentation for these packages if needed.

Figure 1: Subfigure with parts (a) and (b).

Spacing

For abbreviations use .\ or .~ if a tie is needed (titles or other words that should not be separated).

Normal e.g. this example; seen in Fig. 1 Proper e.g. this example; seen in Fig. 1

Note: the bibliography handles this correctly already.

Specify interspace spacing, \@. if a capital letter ends a sentence:

Normal The code is called BART. As you can see. Proper The code is called BART. As you can see.