Cours de Courbes Elliptiques

Ecrit par Marion Candau

 ${\bf Enseignant: M. Karim\ Belabas}$

Master 1 Cryptologie et Sécurité Informatique Université Bordeaux 1

2009 - 2010

Table des matières

1	Introduction	2				
	1.1 Dissymétrie	2				
2	Courbes Elliptiques	5				
	2.1 Définitions	5				
3	Comptage de points	11				
	3.1 Comptage de points général	11				
	3.2 Algorithme de Schoof en $(\log q)^{O(1)}$	13				
4	Primalité et factorisation					
	4.1 Primalité	19				
	4.2 Factorisation					
5	Applications en cryptographie à clé publique	25				
	5.1 Le schéma d'El Gamal	25				
	5.2 Couplages	26				
	5.3 Réalisation de couplages sur E/\mathbb{F}_q une courbe elliptique	28				
6	Premier complément : $E(\mathbb{F}_q) = (\mathbb{Z}/n_1\mathbb{Z})P_1 \oplus (\mathbb{Z}/n_2\mathbb{Z})P_2$					
7 Deuxime complément : Retour sur $Cl(D)$ et sur U^2-DV^2 =						
	D < 0	33				

Introduction

Soit G un groupe cyclique engendré par g d'ordre n c'est-à-dire $g^n = g^0$. Il existe un isomorphisme de groupe entre G et $\mathbb{Z}/n\mathbb{Z}$ défini par :

$$(G, \times) \longrightarrow (\mathbb{Z}/n\mathbb{Z}, +)$$

$$g^k \longmapsto k$$

1.1 Dissymétrie

La fonction $k \longmapsto g^k$ se calcule en $O(\log k)$ dans G.

$$k = \sum_{i=0}^{l} \epsilon_i \times 2^i \text{ avec } \epsilon_i \in \{0, 1\}$$
$$g^k = \prod_{i=0}^{l} \left(g^{2^i}\right)^{\epsilon_i} = \prod_{i=0, \epsilon_i = 1}^{l} g^{2^i}$$

Etant donné $h \in G$, on veut $k \in \mathbb{Z}/n\mathbb{Z}$ tel que $h = g^k$. On a donc un problème de logarithme discret.

$$0 \leqslant k < n, m$$
 paramètre $\simeq \sqrt{n}$ $k = k_1 \times m + k_0$, avec $0 \leqslant k_0 < m$ et $0 \leqslant k_1 \leqslant \frac{k}{m} \leqslant \frac{n}{m}$ $g^{k_1 \times m + k_0} = h \iff (g^m)^{k_1} = h \times g^{-k_0}$ On a :

$$L_1 = \{h \times g^{-k_0} : 0 \leqslant k_0 < m\}$$
$$L_2 = \{(g^m)^{k_1} : 0 \leqslant k_1 < \frac{n}{m}\}$$

Algorithme 1 Algorithme "générique" (méthode de Shanks : pas de bébé, pas de géant)

- 1. Construire L_1
- 2. Trier L_1
- 3. Successivement chercher g^0, g^m, g^{2m}, \dots dans L_1
- 4. Si $k_1 \ge 0$ est le plus petit indice tel que $(g^m)^k \in L_1$, on pose $k = k_0 + k_1 \times m$.

Coût: m multiplications dans $G \Longrightarrow L_1$ et g^m

+au plus $\frac{n}{m}$ multiplications + recherche + tri

La valeur de m qui minimise $m + \frac{n}{m}$ est $\lfloor \sqrt{n} \rfloor$. Dans un modèle ou la multiplication et la comparaison d'éléments de G coûtent 1, le coût total est en $O(\sqrt{n} \log n)$.

Algorithme 2 Algorithme "générique" (Pohlig-Helmann)

Soit G cyclique d'ordre n, g d'ordre n, p|n:n=pq

 $g^k = h \Longrightarrow (g^p)^k = h^p, g^p \text{ est d'ordre } \frac{n}{p} = q.$

 $\implies k \in \mathbb{Z}/q\mathbb{Z}$ en résolvant un problème de logarithme discret de taille q :

 $k = k_0 + k_1 \times q$ où k_0 est connu.

 $g^{k_0} \times (g^q)^{k_1} = h \Rightarrow (g^q)^{k_1} = h \times g^{-k_0}$

 \Longrightarrow problème de logarithme discret de taille p.

Définition

$$\tilde{O}(f) = O(f) \times (\log f)^{O(1)}$$

Corollaire

Un logarithme discret de taille n se calcule en $\tilde{O}(\sqrt{p})$ ou p est le plus grand diviseur premier de n.

Conséquence : on veut n premier ou premier en petit cofacteur :

$$n = \underset{premier}{p} \times \underset{\leqslant 10}{c}$$

Remarque : Si l est premier tel que $p=2\times l+1$ soit premier, on a : $\#F_p^*=2l$

Théorème de Shoup

Cette complexité est optimale dans le modèle du groupe générique.

On choisit
$$\mathcal{B} = \{l \leqslant B : l \text{ premier}\}\ (B = o(p^{\epsilon}), \forall \epsilon > 0, B \text{ petit}).$$
On recherche des relations dans F_p^* de la forme :
$$g^x \equiv \prod_{l \in \mathcal{B}} l^{e_l(x)} \mod p \text{ avec } e_l(x) \in \mathbb{N}, x \in \mathbb{N}$$

$$x \equiv \sum_{l \in \mathcal{B}} e_l(x) \log l \mod p - 1$$

$$\implies \log l, l \in \mathcal{B}$$
On cherche x tel que $h \times g^x = \prod_{l \in \mathcal{B}} l^{e_l(x)} \mod p$

$$\implies \log h = \sum_{l \in \mathcal{B}} e_l(x) \log l - x$$

Corollaire

On sait résoudre le problème du logarithme discret dans F_q^* en temps $L_{\frac{1}{2}}(\log p)^{O(1)}=o(p^\epsilon)\ \forall \epsilon>0$

Conjecture

On peut remplacer par $L_{\frac{1}{3}}(\log p)^{O(1)}$.

Courbes Elliptiques

2.1 Définitions

Soit K un corps $(K = \mathbb{R}, \mathbb{F}_q)$.

On appelle $K^n = K \times ... \times K$ l'espace affine de dimension n sur K.

$$K^n = \{(x_1, \dots, x_n), x_i \in K\}.$$

On appelle $(K^{n+1}\setminus\{(0,\ldots,0)\})/\sim: x\sim y\Leftrightarrow \exists \lambda\in K^*, x=\lambda y$ l'espace projectif de dimension n sur K.

Notation On note $(x_0: x_1: \ldots: x_n)$ la classe de $(x_0, x_1, \ldots, x_n) \in K^{n+1} \setminus \{(0, \ldots, 0)\}$. L'espace affine est noté $\mathbb{A}^n(K)$. L'espace projectif sera noté $\mathbb{P}^n(K)$.

Remarque

Tous les points (1:0), $\{(x:1), x \in K\}$ sont différents dans $\mathbb{P}^1(K)$. Plus généralement, considérons dans $\mathbb{P}^n(K)$, $(x_0:\ldots:x_n)\in\mathbb{P}^n(K)$

- Si $x_n = 0$, $(x_0 : \ldots : x_n) \longleftrightarrow \mathbb{P}^{n-1}(K)$ points à l'infini.
- Si $x_n \neq 0$, $(x_0 : \ldots : x_n) = \left(\frac{x_0}{x_n} : \frac{x_1}{x_n} : \ldots : \frac{x_{n-1}}{x_n} : 1\right) \longleftrightarrow \mathbb{A}^n(K)$ points finis

D'ou:

$$\mathbb{P}^n(K) = U^n \coprod U^{n-1} \coprod \dots \coprod U^0$$

avec $U^i = \{(x_0: \ldots: x_{i-1}: 1: 0: \ldots: 0), x_0, \ldots, x_{i-1} \in K\}$ U^i peut s'interpréter comme $K^i = \mathbb{A}^i(K)$

Définition

On appelle courbe plane sur K, une équation du type C: C(x, y, z) = 0 ou

C est un polynome homogène de K[x,y,z] c'est-à-dire

$$C(X, Y, Z) = \sum_{i,j,k} \lambda_{i,j,k} X^i Y^j Z^k$$

Notation

 $\mathcal{C}(K)=\{(x:y:z)\in\mathbb{P}^2(K) \text{ tel que } C(x,y,z)=0\}$ sont les points de la courbe.

Remarque

$$\forall (x, y, z) \in K, C(\lambda x, \lambda y, \lambda z) = \lambda^{cste} \times C(x, y, z)$$

Définition

Soit \mathcal{C} une courbe plane définie par $C(x,y,z) \in K[X,Y,Z]$ avec $L \supseteq K$. $(x:y:z) \in \mathcal{C}(L) \subseteq \mathbb{P}^2(L)$ est non-singulier (ou régulier) si :

$$\begin{pmatrix} \frac{\partial C}{\partial X} \\ \frac{\partial C}{\partial Y} \\ \frac{\partial C}{\partial Z} \end{pmatrix} \times (x, y, z) \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Définition

Soit $\mathcal{E}: (YZ^2+a_1XYZ+a_3YZ^2)-(X^3+a_2X^2Z+a_4XZ^2+a_6Z^3)$ avec $(a_1,a_2,a_3,a_4,a_6)\in K$.

 \mathcal{E} est une cubique plane projective sur un corps K.

Remarque

$$\mathcal{E}(K) \neq 0$$
 et $(0:1:0) \in \mathcal{E}(K)$ c'est le seul point à l'infini de $\mathcal{E}(K)$

Définition

Soit $\bar{K} \supset K$ une cloture algébrique de K. \mathcal{E} est dite singulière si tous les points de $\mathcal{E}(\bar{K})$ sont non-singuliers. Une cubique comme ci-dessus est appelée courbe elliptique.

Cas particulier (important)

La forme courte de Weierstass est définie par : $a_1 = a_2 = a_3 = 0$. La courbe a donc l'équation suivante :

$$\mathcal{E}: Y^2Z = X^3 + aXZ^2 + bZ^3$$

 \mathcal{E} est non singulière \iff le polynome cubique $X^3 + aX + b$ n'a pas de racine double $\iff -4a^3 + 27b^2 \neq 0$

Remarque

Si $car(K) \neq 2,3$, toute courbe elliptique se ramène à une équation de Weierstrass (par un changement de variable simple).

Définition + théorème

On pose $0 = (0:1:0) \in \mathcal{E}(K)$.

Si $P = (x : y : 1) \in \mathcal{E}(K)$, on pose $\ominus P = (x : -a_1x - a_3 - y : 1) \in \mathcal{E}(K)$.

Soient
$$P_1 = (x_1 : y_1 : 1)$$
 et $P_2 = (x_2 : y_2 : 1) \in \mathcal{E}(K), P_1 \neq \ominus P_2$.
Soit $m = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{si } P_1 \neq P_2 \\ \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} & \text{sinon.} \end{cases}$

$$P3 = \begin{cases} x_3 = -x_1 - x_2 - a_2 + m(m + a_1) \\ y_3 = -y_1 - a_3 - a_1 x_3 + m(x_1 - x_3) \end{cases}$$

On pose $P_1 \oplus P_2 = P_3 = (x_3 : y_3 : 1) \in \mathcal{E}(K)$. $(\mathcal{E}(K), \oplus)$ est un groupe abélien, de neutre 0 et d'inverse donné par $P \longmapsto \ominus P$.

Notation

Pour $n \in \mathbb{Z}$, $P \in \mathcal{E}(K)$, on pose :

$$[n]P = \begin{cases} P \oplus P \oplus P \oplus \dots \oplus P & \text{si } n > 0 \\ 0 & \text{si } n = 0 \\ [-n](\ominus P) & \text{si } n < 0 \end{cases}$$

C'est la multiplication scalaire sur \mathcal{E} .

Théorème : borne de Hasse

$$\left| \# \mathcal{E}(\mathbb{F}_q) - (q+1) \right| \leqslant 2\sqrt{q} \Longrightarrow \left| \# \mathcal{E}(\mathbb{F}_q^k) - (q^k+1) \right| \leqslant 2q^{\frac{k}{2}}$$

Fig. 2.1 – Dessin si $K = \mathbb{R}$ de la partie affine de la courbe $y^2 = x^2 + ax + b$

 $\#\mathcal{E}(\mathbb{F}_q)=q^k+1-\alpha^k-\beta^k$ où α,β sont les racines complexes d'une équation $X^2 - sX + q = 0$ tel que $|\alpha| = |\beta| = \sqrt{q}$ et $\alpha + \beta = s$ et $\alpha\beta = q$.

Problèmes

- Divisions : couteux sur un processeur dédié

 - \rightarrow coordonnées projectives : $(x:y:z)=(\frac{x}{z}:\frac{y}{z}:1)$ \rightarrow formules polynomiales pour $(x_3,y_3,z_3)=P_3=P_1\oplus P_2$ en termes de $(x_1 : y_1 : z_1) = P_1$ et $(x_2 : y_2 : z_2) = P_2$ plus rapide que la loi de groupe sur la forme de Weierstrass.
- Side Channel Attacks (SCA) / Attaques par canaux cachés \rightarrow Attaques physiques \Longrightarrow Formules unifiées : on rajoute des opérations fictives dans les deux sous-opérations atomiques — indistinguables.

Courbes d'Edwards

 $C(K): x^2 + y^2 = c^2(1 + dx^2y^2), c, d \in K, car(K) \neq 2$ Soient $P_1 = (x_1, y_1)$ et $P_2 = (x_2, y_2)$. On a :

$$P_3 = P_1 \oplus P_2 = \left(\frac{x_1 y_2 + x_2 y_1}{c(1 + dx_1 x_2 y_1 y_2)}, \frac{y_1 y_2 - x_1 x_2}{c(1 - dx_1 x_2 y_1 y_2)}\right) \in \mathcal{C}(K)$$

En général, c et d sont petits.

Théorème

 \oplus est une loi de groupe sur $\mathcal{C}(K)$ de neutre (0,c) et d'inverse $\ominus(x,y)=(-x,y).$

Remarque

(0,-c) est d'ordre 2, (-c,0) est d'ordre 4.

Théorème

Soit $e = 1 - dc^4$ avec d non carré et $e \neq 0$, et

$$E: \frac{1}{e}Y^2 = X^3 + \left(\frac{4}{e} - 2\right)X^2 + X$$

Pour i = 1, 2, 3 on définit Q_i de la façon suivante :

$$Q_i = 0 \text{ si } (x_i, y_i) = (0, c)$$

$$Q_i = (0,0) \text{ si } (x_i, y_i) = (0, -c)$$

$$\circ Q_i = \left(\frac{c+y_i}{c-y_i}, \frac{2c(c+y_i)}{(c-y_i)x_i}\right) \text{ si } x_i \neq 0 \Rightarrow y_i \neq c$$

Alors $Q_i \in E(K)$ et $Q_3 = Q_1 + Q_2$.

Addition efficace

$$(X^2 + Y^2)Z^2 - c^2(Z^4 + dX^2Y^2)$$

$$(X:Y:Z) \longmapsto \left(\frac{X}{Z}, \frac{Y}{Z}\right) \text{ sur la courbe affine avec } Z \neq 0$$

$$(X_1:Y_1:Z_1) \oplus (X_2:Y_2:Z_2) = (X_3:Y_3:Z_3)$$

1.
$$A \leftarrow Z_1 Z_2$$

 $B \leftarrow A^2$

$$B \leftarrow A^2$$

$$C \leftarrow X_1 X_2$$

$$D \leftarrow Y_1 Y_2$$

$$E \leftarrow dCD$$

$$F \leftarrow B - E$$

$$G \leftarrow B + E$$

2.
$$X_3 \leftarrow AF((X_1 + Y_1)(X_2 + Y_2) - C - D)$$

$$Y_3 \leftarrow AG(D-C)$$

$$Z_3 \leftarrow cFG$$

Coût total: 10 multiplications + 1 mise au carré + 1 multiplication par c + 1 multiplication par d + 7 additions

Espace

$$(R_1,R_2,R_3) \to P_1$$
 et $(R_4,R_5,R_6) \to P_2$: 2 registres pour calculer $P_1 \leftarrow P_1 \oplus P_2$

On a environ : mise au carré $\approx 0,7$ multiplications, multiplications par c \approx multiplications par d \approx additions.

2 cas particuliers

- 1. $Z_1 = 1$
- 2. Doublement $P_1=P_2$ 3 multiplications + 4 mises au carré + 3 multiplications par c + 6 additions

Comptage de points

On cherche calculer le cardinal de $E(\mathbb{F}_q)$. Le but est de garantir que $\#E(\mathbb{F}_q)$ n'est pas friable, idéalement est premier $(\#E(\mathbb{F}_q) = \underset{\leqslant 4}{c} \times \underset{premier}{l})$.

Remarque

Si E est associée à une courbe d'Edwards, $4|\#E(\mathbb{F}_q)$.

Si $E: Y^2 = X^3 + aX + b$ telle que $X^3 + aX + b$ a une racine dans \mathbb{F}_q alors $2 | \# E(\mathbb{F}_q)$.

Si $E: Y^2 = X^3 + aX + b$ telle que $X^3 + aX + b$ a 3 racines dans \mathbb{F}_q alors $4 | \#E(\mathbb{F}_q)$.

Deux approches

- 1. E/\mathbb{F}_q étant donnés, calculer $\#E(\mathbb{F}_q)$.
- 2. Et ant donnés m
 tel que $|m-(q+1)|<2\sqrt{q},$ construire E/\mathbb{F}_q tel que
 $\#E(\mathbb{F}_q)=m$

3.1 Comptage de points général

On a : car $\mathbb{F}_q \neq 2, 3, E : Y^2 = X^3 + aX + b$.

Définition : Symbole de Legendre

Dans $\mathbb{Z}/p\mathbb{Z}$, $p \neq 2$, il existe x tel que :

$$x^{\frac{p-1}{2}} = \begin{cases} 1 & \iff x \text{ est un carr\'e dans } \mathbb{F}_p^* \\ 0 & \iff x = 0 \\ -1 & \iff x \text{ n'est pas un carr\'e} \end{cases}$$

On définit le symbole de Legendre :

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \iff x \text{ est un carr\'e dans } \mathbb{F}_p^* \\ 0 & \iff x = 0 \\ -1 & \iff x \text{ n'est pas un carr\'e} \end{cases} \Rightarrow \left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \mod p$$

Mthode "naïve"

$$\#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} \#\{y \in \mathbb{F}_q, y^2 = x^3 + ax + b\}$$

Cas particulier

q premier, q=p.

$$#E(\mathbb{F}_q) = p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + ax + b}{p} \right)$$

Cas général

x est un carré si et seulement si $x^{\frac{q-1}{2}}=1\Leftrightarrow x^{(p^{e-1}+\ldots+1)\left(\frac{p-1}{2}\right)}=1\Leftrightarrow x^{p^{e-1}+\ldots+1}=y\in\mathbb{F}_p.$

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{(x^3 + ax + b)^{p^{e-1} + \dots + 1}}{p} \right)$$

L'algorithme "naïf" est en $\tilde{O}(q)$.

L'algorithme de Shanks-Mestre est en $\tilde{O}(q^{\frac{1}{4}})$. Il utilise :

- la borne de Hasse : $|\#E(\mathbb{F}_q) (q+1)| < 2\sqrt{q}$.
- S'il existe P d'ordre o dans $E(\mathbb{F}_q)$ alors $o|\#E(\mathbb{F}_q)$

 \implies si $o \geqslant 4\sqrt{q}$ alors $\#E(\mathbb{F}_q)$ est déterminé.

Théorème de Mestre

Soient $E/\mathbb{F}_q: y^2=x^3+ax+b$ et $E'/\mathbb{F}_q: y^2g=x^3+ax+b$ avec $g \notin (\mathbb{F}_q)^2$ (tordue quadratique de E)

- $\#E(\mathbb{F}_q) + \#E'(\mathbb{F}_q) = 2(q+1)$
- Si $q \geqslant 229$, il existe $P \in E(\mathbb{F}_q) \cup E'(\mathbb{F}_q)$ dont l'ordre vérifie $o > 4\sqrt{q}$

Soit $P \in E(\mathbb{F}_q)$, on tire $x \in \mathbb{F}_q$, si $x^3 + ax + b \in \mathbb{F}_q^2$, on calcule y. On veut calculer l'ordre de P. Mais on va faire mieux, on va calculer un multiple x de l'ordre de P tel que $|x - (q+1)| < 2\sqrt{q}$ (un tel multiple existe, par exemple, $\#E(\mathbb{F}_q)$).

$$\exists x \text{ tel que } [q+1-x]P = 0 \ (*), \ x = x_0 + mx_1, \ 0 \leqslant x_0 < m \text{ et } |x_1| < \frac{2\sqrt{q}}{m} + 1$$

On choisit m tel que $m^2 \simeq 4\sqrt{q} \Rightarrow m = \lfloor 2q^{\frac{1}{4}} \rfloor$.

$$(*) \Leftrightarrow [q+1-x_0]P = [x_1]([m]P)$$

On détermine $x_0, x_1 = O(q^{\frac{1}{4}})$ tel que (*) vrai.

Algorithme 4

Entrées: $P \in E(\mathbb{F}_q)$ Sorties: ordre de P

1. $m \leftarrow |2q^{\frac{1}{4}}|$

2. On énumère $L = \{ [q+1-x_0]P, 0 \le x_0 < m \}$

3. $Q \leftarrow [m]P$

Pour tout x_1 tel que $|x_1| < \frac{2\sqrt{q}}{m} + 1$, vérifier si $[x_1]Q$ est dans L. 4. $r \leftarrow q + 1 - (x_0 + mx_1)$ est un multiple de l'ordre de P. On factorise r et

on calcule l'ordre exact.

Algorithme 5 Algorithme générique de calcul de l'ordre de P

 $\prod_{i=1, p_i \ premier}^{\omega} p_i^{e_i} \text{ tel que } g^r = 1$ Entrées: $g \in G, r =$

Sorties: ordre de g

1: **pour** $i = 1 \grave{a} \omega$ **faire**

 $g_i \leftarrow g^{\frac{r}{p_i^{e_i}}}$ est d'ordre divisant $p_i^{e_i}$.

Soit f_i l'entier minimal tel que $g_i^{p_i^{f_i}} = 1, f_i < e_i$

4: fin pour

5: Renvoyer $o = \prod p_i^{f_i}$

Algorithme de Schoof en $(\log q)^{O(1)}$ 3.2

Théorème Soit E/\mathbb{F}_q . Si $\#E(\mathbb{F}_q) = q+1-a_q \ (a_q \in \mathbb{Z}, |a_q| \leqslant 2\sqrt{q})$ alors l'opérateur de Frobenius

$$\phi: E(\bar{\mathbb{F}_a}) \longrightarrow E(\bar{\mathbb{F}_a})$$

$$(x:y:z)\longmapsto (x^q:y^q:z^q)$$

vérifie l'équation : $\phi^2 - [a_q]\phi + q = 0$ c'est-à-dire :

$$\forall P \in E(\bar{\mathbb{F}}_q), \phi(\phi(P)) \ominus [a_q]\phi(P) \oplus [q]P = 0 \ (*)$$

Remarque

 ϕ est bien définie! Si(x:y:z) vérifient une équation polynmiale dans $\mathbb{F}_q[X,Y,Z]$ alors $(x^q:y^q:z^q)$ vérifient la même équation $C(x^q,y^q,z^q)=C(x,y,z)^q=0$.

Ide de Schoof

- Calculer $a_q \mod l$ pour un grand nombre de petits premiers l tel que $\prod l_i > 4\sqrt{q} \ (\Rightarrow a_q \in \mathbb{Z}).$
- Soit $E[l] = \{ P \in E(\bar{\mathbb{F}}_q) \text{ tel que } [l]P = 0 \}$

On choisit P d'ordre l premier dans E[l] et on applique (*). $\phi(P)$ et $\phi^2(P)$ sont aussi d'ordre l.

On cherche $0 \le \alpha_l < l$ tel que $[\alpha_l]\phi(P) = \phi^2(P) \oplus [q]P$ en O(l) additions alors $a_q \equiv \alpha_l \mod l$

-
$$\sum_{l_i \text{ premier}, l_i < x}^{\text{dioff } l_i} \ln l_i \sim x > 0,98x \text{ pour } x > 10^6$$

$$\Rightarrow \sum_{l_i < x}^{\text{lin}} \ln l_i > \ln(4\sqrt{q}) \Rightarrow x \asymp \log \sqrt{q}$$

Définition : polynomes de n-division

Soit E/K, $car(K) \neq 2$.

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

On pose:

$$b_2 = a_1^2 + 4a_2$$

$$b_4 = 2a_4 + a_1a_3$$

$$b_6 = a_3^2 + 4a_6$$

$$b_8 = a_1^2a_6 - a_1a_3a_4 + 4a_2a_6 + a_2a_3^2 - a_4^2$$

Pour la forme courte $y^2 = x^3 + a_4x + a_6$ on a :

$$b_2 = 0$$

$$b_4 = 2a_4$$

$$b_6 = 4a_6$$

$$b_8 = -a_4^2$$

Ensuite on pose:

$$f_0(x) = 0$$
$$f_1(x) = 1$$

$$f_2(x)=1$$

$$f_3(x)=3x^4+b_2x^3+3b_4x^2+3b_6x+b_8$$

$$f_4(x)=2x^6+b_2x^5+5b_4x^4+10b_6x^3+10b_8x^2+(b_2b_8-b_4b_6)x+(b_4b_8-b_6^3)$$
 On pose : $g(x)=4x^3+b_2x^2+2b_4x+b_6$ Pour $n\geqslant 2$, on définit :

our
$$n \geqslant 2$$
, on definit.

$$f_{2n} = f_n (f_{n+2} f_{n-1}^2 - f_{n-2} f_{n+1}^2)$$

$$f_{2n+1} = \begin{cases} g f_{n+2} f_n^3 - f_{n-1} f_{n+1}^3 & \text{si n pair} \\ f_{n+2} f_n^3 - g^2 f_{n-1} f_{n+1}^3 & \text{si n impair} \end{cases}$$

Théorème

Si
$$P = (x, y) \in E[\bar{K}] \setminus E[2]$$
 alors $P \in E[n]$ si et seulement si $f_n(x) = 0$.

Corollaire

Pour trouver $P=(x,y)\in E[l]$ d'ordre l premier, il suffit de résoudre $f_l(x)=0$.

Problème : degré $f_n \approx n^2$. La solution est Schoof Elkies-Atkin (SEA).

Mthode duale

Connaissant $\#E(\mathbb{F}_q)$ trouver q et E.

1. Soit q puissance d'un premier tel que

$$|q+1-m| \leqslant 2\sqrt{q}$$

$$\Leftrightarrow -2\sqrt{q} \leqslant q+1-m \leqslant 2\sqrt{q}$$

$$\Leftrightarrow (\sqrt{q}+1)^2 \geqslant \sqrt{m} \geqslant (\sqrt{q}-1)^2$$

$$\Leftrightarrow -1 \leqslant \sqrt{m} - \sqrt{q} \leqslant 1$$

Problème : il n'est pas certain qu'un tel $q=p^n$, p premier, existe.

- 2. Théorème Si $|m-(q+1)| < 2\sqrt{q}$, il existe E/\mathbb{F}_q , $\#E(\mathbb{F}_q) = m$ (on sait même dire combien de telles E existent).
- 3. Construction de E/\mathbb{F}_q , $\#E(\mathbb{F}_q)=m$ Théorie de la multiplication complexe (CM) $\mathbb{C}\longrightarrow \mathbb{F}_q$

(a) Pour
$$\tau \in h = \{\tau \in \mathbb{C}, Im(\tau) > 0\}$$
, on pose

$$q = e^{2i\pi\tau} = e^{2i\pi Re(\tau)} \times e^{-2\pi Im(\tau)}$$
module 1 $\times e^{-2\pi Im(\tau)}$

On pose:

$$j(\tau) = 1728 \times \frac{g_2^3}{g_2^3 - 27g_3^2}$$

ou:

$$g_2(\tau) = 1 + 240 \times \sum_{n \ge 1} \frac{n^3 q^n}{1 - q^n} \in \mathbb{C}$$

$$g_3(\tau) = 1 + 504 \times \sum_{n \geqslant 1} \frac{n^5 q^n}{1 - q^n} \in \mathbb{C}$$

(b) Courbes elliptiques sur C

 $E/\mathbb{C} = \mathbb{C}/\Lambda$ ou $\Lambda = \mathbb{Z} + \tau \mathbb{Z} = \{a + b\tau, (a, b) \in \mathbb{Z}^2\}$. C'est un groupe additif, quotient de $(\mathbb{C}, +)$.

$$\phi: \mathbb{C}/\Lambda \longrightarrow E[\mathbb{C}]$$

$$z \longmapsto \left\{ \begin{array}{ll} (p(z):p'(z):1) & \text{si } z \notin \Lambda \\ (0:1:0) & \text{si } z \in \Lambda \end{array} \right.$$

 $E[\mathbb{C}]=\{(x:y:z)\in\mathbb{P}^2(\mathbb{C}) \text{ vérifient une équation du type } y^2z=4x^3-G_2xz^2-G_3z^3\}$

Théorème : ϕ est un morphisme $(\mathbb{C}/\Lambda, +) \to (E(\mathbb{C}), \oplus)$.

(c) On peut définir

$$J(E_{\tau}) = 1728 \times \frac{G_2^3}{G_2^3 - G_3^2} = j(\tau)$$

Soit $j \in K$ corps (car $K \neq 2,3$), on veut trouver E/K sous forme courte de Weierstrass tel que J(E) = j.

$$- si j = 0, y^2 = x^3 - 1$$

$$- \sin j = 1728, \ y^2 = x^3 - x$$

- si
$$j \neq 1728$$
 et $j \neq 0$, $y^2 = x^3 + 3cx + 2c$ ou $c = \frac{j}{1728 - j}$
 $\implies J(E) = j$

(d) Groupes de classes : soit
$$D < 0$$
, $D \in \mathbb{Z}$ fixé, on considère $Cl(D) = \{(a, b, c) \in \mathbb{Z}^3 \text{ tel que } b^2 - 4ac = D \text{ et } |b| \leqslant a \leqslant c, b \geqslant 0$

 $Cl(D) = \{(a, b, c) \in \mathbb{Z}^3 \text{ tel que } b^2 - 4ac = D \text{ et } |b| \leqslant a \leqslant c, b \geqslant 0 \}$ si a = |b| ou $a = c\}$

On a :
$$4ac - b^2 = |D| \geqslant 3a^2 \Rightarrow |a| \leqslant \sqrt{\frac{|D|}{3}} \Rightarrow Cl(D)$$
 est fini.

Théorème : $\#Cl(D) = \tilde{O}(|D|^{\frac{1}{2}})$

Algorithme 6 Algorithme d'énumération de Cl(D)

- 1: **pour** $a = 1 \grave{a} \sqrt{\frac{|D|}{3}}$ **faire**
- 3:
- **pour** b = 0àa tel que $b = D \mod 2$ **faire** $c \longleftarrow \frac{b^2 D}{4a}$ Si $c \notin \mathbb{Z}$ ou c < a, on stoppe cette itération et on passe au suivant. 4:
- Afficher (a, b, c)5:
- Si $b \neq a \neq c$ et $b \neq 0$, afficher (a, -b, c)6:
- fin pour 7:
- 8: fin pour

(e) Soit
$$H(X) = \prod_{a,b,c \in Cl(D)} \left(X - j \left(\frac{-b + \sqrt{D}}{2a} \right) \right)$$
.

En fait, $H(X) \in \mathbb{Z}(X)$, il est facilement calculable.

Soit p premier > 3 tel que l'équation (*) $U^2 - DV^2 = 4p$ ait des solutions entires $(U, V) \in \mathbb{Z}^2$. Alors $\bar{H}(X) \in \mathbb{F}_p[X]$ est scindé.

Soit $j \in \mathbb{F}_p$ une racine de \bar{H} et E/\mathbb{F}_p une courbe elliptique telle que J(E) = j. Alors $\#E(\mathbb{F}_p) = p + 1 - U$ pour un U solution de (*).

Soit p premier, $D < 0 \rightarrow Cl(D)$ avec $\#Cl(D) \approx \sqrt{|D|}$.

1. Hypothèse : $U^2 - DV^2 = 4p, U, V \in \mathbb{Z}(*)$. Remarque : si D < -4, il y a au plus deux U solutions (opposés).

2.
$$H(X) = \prod_{(a,b,*) \in Cl(D)} \left(X - j \left(\frac{-b + \sqrt{D}}{2a} \right) \right) \in \mathbb{Z}[X]$$

- 3. \bar{H} est scindé sur $\mathbb{F}_p: \bar{H}(X) = \prod_{i=1}^{dH} (X \bar{j}).$
- 4. Soit E/\mathbb{F}_p tel que $j(E)=\bar{j}$ une racine de \bar{H} . Alors $\#E(\mathbb{F}_p)=p+1-U$ où U est solution de (*).

Rappel

Si $E: y^2 = x^3 + ax + b$ a p+1-U points sur \mathbb{F}_p alors sa tordue quadratique $\tilde{E}: gy^2 = x^3 + ax + b \text{ a } p + 1 + U \text{ points sur } \mathbb{F}_p \text{ avec } g \notin (\mathbb{F}_p)^2.$

Application

Soit m fixé, p le premier le plus proche de m.

1. On suppose que $|m - (p+1)| < 2\sqrt{p}$ et U = p+1-m.

- 2. On écrit $4p-U^2$ sous la forme ΔV^2 ou Δ est sans facteur carré et on suppose Δ petit. Par exemple, $\Delta<10^6,\,D=-\Delta$
- 3. On calcule H puis une racine \bar{j} de \bar{H} mod p. Puis on écrit E/\mathbb{F}_p tel que $j(E) = \bar{j}$. On a alors $\#E(\mathbb{F}_p) = p + 1 \pm U$.

Remarque : racines de H/\mathbb{F}_p ? avec $p \neq 2$

- Travailler avec $\mathbb{F}_p[X]/(H) \simeq \mathbb{F}_p^{dH}$
- Trouver un diviseur de zéro, \bar{Q} dans $\mathbb{F}_p[X]/(H)$, le PGCD(Q, H) donne un facteur strict de H.
- Si $\bar{R} \in \mathbb{F}_p[X]/(H)$, alors $\bar{R}^{\frac{p-1}{2}} 1$ est un diviseur de zéro presque tout le temps.

Remarque : comment résoudre $X^2 - DY^2 = 4p$?

avec D < 0, p premier, $p \neq 2$, $p \nmid \Delta$, $x, y \in \mathbb{Z}$, $\Delta = |D|$.

Remarque : $|y| \leqslant \sqrt{\frac{4p}{\Delta}}$.

- 1. On factorise X^2-D dans $\mathbb{F}_p[X]$. Il y a une erreur si X^2-D est irréductible.
 - Sinon : soit 0 < b < p un représentant entier d'une racine. Si $b \neq D \mod 2, \, b \leftarrow p b \Rightarrow b^2 \equiv D \mod 4p$
- 2. Soit $c \leftarrow \frac{b^2 D}{4p} \in \mathbb{Z} \Longrightarrow (p, b, c)$ vérifie les conditions pour appartenir Cl(D) sauf la condition $|b| \leqslant a \leqslant c$.
- 3. Algorithme de type Euclide (Cornacchia)

Primalité et factorisation

4.1 Primalité

Théorème 1

Soit N>1 un entier. Si on connait $g\in (\mathbb{Z}/n\mathbb{Z})^*$ tel que $\forall l$ premier divisant N-1 :

$$g^{N-1} = 1$$

$$PGCD\left(g^{\frac{N-1}{l}}, N\right) = 1$$

Alors N est premier.

Théorème 2

Soit N > 1 un entier, l premier divisant N-1 tels que $v_l(N-1) = e$ (c'est-à-dire que $\exists k$ tel que $N-1 = l^e \times k$). Si on connait $g \in (\mathbb{Z}/n\mathbb{Z})^*$ tel que :

$$g^{N-1} = 1$$

$$PGCD\left(g^{\frac{N-1}{l}}, N\right) = 1$$

Alors tout diviseur d de N vérifie $d \equiv 1 \mod l^e$.

Corollaire

Si N-1=FU ou les diviseurs premiers de F sont connus et $F\geqslant \sqrt{n}$, et si pour tout l premier avec l|F, il existe g(l) vérifiant le théorème 2 alors N est premier.

Théorème

Soit N > 1 un entier premier 6. Soient $E/(\mathbb{Z}/n\mathbb{Z})$, $P \in E(\mathbb{Z}/n\mathbb{Z})$, m > 0 un entier tel qu'il existe l|m premier assez grand, $l > \left(N^{\frac{1}{4}} + 1\right)^2$, et

$$[m]P = 0$$

$$\left[\frac{m}{l}\right]P = (x:y:z) \text{ avec } PGCD(z,N) = 1$$

Alors N est premier.

Définition

Soient PGCD(N,6) = 1, N pas nécessairement premier. On définit $\mathbb{P}^2(\mathbb{Z}/n\mathbb{Z}) = \{(x,y,z) \in (\mathbb{Z}/n\mathbb{Z})^3, PGCD(x,y,z,N) = 1\}/\sim$ avec $\sim: (x,y,z) \sim (x',y',z') \Leftrightarrow \exists \lambda \in (\mathbb{Z}/n\mathbb{Z})^*$ tel que $(x,y,z) = \lambda(x',y',z')$ Une "courbe elliptique" $/(\mathbb{Z}/n\mathbb{Z})$ est une équation de la forme :

(*)
$$Y^2 = X^3 + aX + b$$
, $a, b \in (\mathbb{Z}/n\mathbb{Z})$, $PGCD(4a^3 + 27b^2, N) = 1$

 $E(\mathbb{Z}/n\mathbb{Z}) = \{(x, y, z) \in \mathbb{P}^2(\mathbb{Z}/n\mathbb{Z}) \text{ v\'erifiant l\'equation } (*)\}$

On munit $E(\mathbb{Z}/n\mathbb{Z})$ d'une loi interne \oplus en reprenant les formules algébriques sur un corps. $P \oplus Q$ est bien défini ds que les dénominateurs $(\neq 0)$ apparaissant dans les formules sont inversibles.

Remarque

Si un dénominateur non inversible $d \neq 0$ apparait alors PGCD(d, N) est un diviseur strict de N.

Remarque

Si p|n est premier et E_p est la courbe elliptique sur \mathbb{F}_p donne par (*), on a une projection canonique :

$$\Pi : E(\mathbb{Z}/n\mathbb{Z}) \longrightarrow E_p(\mathbb{F}_p)$$

 $(x, y, z) \longmapsto (x : y : z)$

et $\Pi(P \oplus Q) = \Pi(P) \oplus \Pi(Q)$ à condition que $P \oplus Q$ soit calculable.

Définition : Certificat de primalité pour N

- \star une sentinelle triviale si N < 10.
- ★ $(N, E(\mathbb{Z}/n\mathbb{Z}), n, q, \text{ certificat pour q})$ avec $q|m, N > q > \left(N^{\frac{1}{4}} + 1\right)^2, [m]P = 0, \left[\frac{m}{q}\right]P = (x, y, z)$ et PGCD(z, N) = 1.C'est efficace si $q \simeq \sqrt{N}$ (en tout cas $q < \frac{N}{2}$).

Algorithme 7 Production d'un certificat

- 1: On tire $a,b \in \mathbb{Z}/n\mathbb{Z}$ uniformément au hasard tel que $4a^3 + 27b^2 \neq 0 \mod N$.
 - On a $E(\mathbb{Z}/n\mathbb{Z})$ "courbe elliptique" : $Y^2Z = X^3 + aXZ^2 + bZ^3$
- 2: On calcule $m = \#E(\mathbb{Z}/n\mathbb{Z})$ en utilisant l'algorithme de Schoof. Si N est bien premier, c'est bon, sinon il y aura une erreur plus tard.
- 3: On essaye de factoriser m, on espre avoir m=fq où f friable et q pseudopremier de Rabin-Miller tel que $q>\left(N^{\frac{1}{4}}+1\right)^2$. Si ce n'est pas le cas on repart au 1.
- 4: On tire P au hasard dans $E(\mathbb{Z}/n\mathbb{Z}): (x:y:1)$ tel que $y^2=x^3+ax+b$. On itre cette tape tant que P ne vérifie pas [m]P=0 et $\left[\frac{m}{q}\right]P=(x,y,z)$ avec PGCD(z,N)=1.

Algorithme ECPP (Elliptic Curve Primality Proving)

Rappels

Soient N premier, D < -4, $D = 0, 1 \mod 4$, $U, V \in \mathbb{Z}$ tels que $U^2 - DV^2 = 4N$.

Alors on sait écrire une courbe $E/(\mathbb{Z}/n\mathbb{Z})$ telle que $\#E(\mathbb{Z}/n\mathbb{Z}) = N+1-U$. Coût de l'ordre de $|D| \Rightarrow$ penser à D le plus petit possible!

Algorithme 8 Algorithme ECPP

- 1: Pour D = -7 ou D = -8 $(D < 0, D \equiv 0, 1 \mod 4)$ s'il existe (U, V) tels que $U^2 - DV^2 = 4N$ et si l'un des $m_u = N + 1 - U$ vérifie les hypothèses du théorème, aller en 2.
- 2: On calcule Cl(D), $H_D = \prod_{\substack{(a,b,*) \in Cl(D)}} \left(X j\left(\frac{-b + \sqrt{D}}{2a}\right)\right) \in \mathbb{Z}[X]$.
- 3: On calcule une racine \bar{j} de $\bar{H_D} \mod N$ et on écrit E_j de cardinal $N+1\pm U$.
- 4: On détermine si $\#E(\mathbb{Z}/n\mathbb{Z}) = N + 1 U$ ou N + 1 + U (on tire $P \in E(\mathbb{Z}/n\mathbb{Z})$ et on vérifie $[m_u]P = 0$).
 - Si $\#E_j(\mathbb{Z}/n\mathbb{Z}) = N + 1 + U$, on remplace E_j par sa tordue quadratique.
- 5: On tire $P \in E(\mathbb{Z}/n\mathbb{Z})$ et on vérifie les conditions (**) du théorème.
- 6: On démontre récursivement la primalité de $q|m_u$.

Complexit conjecturale:

Elle est en $\tilde{O}(\log N)^5$. Si on utilise FAST ECPP la complexité est de $\tilde{O}(\log N)^4$.

Complment sur ECPP

Théorème

Soient $E/(\mathbb{Z}/n\mathbb{Z})$ une courbe, $P \in E(\mathbb{Z}/n\mathbb{Z})$ un point sur cette courbe, $n \in \mathbb{N}$.

$$\circ$$
 $[m]P = O_E, \left\lceil \frac{m}{q} \right\rceil P = (x : y : z), \text{ avec } PGCD(z, N) = 1$

$$\circ q|m, \text{ q premier}, q \geqslant \left(N^{\frac{1}{4}} + 1\right)^2$$

 \Rightarrow N premier.

Théorème

Soient $E/(\mathbb{Z}/n\mathbb{Z})$ une courbe, $P \in E(\mathbb{Z}/n\mathbb{Z})$ un point sur cette courbe, $n \in \mathbb{N}$, m = FU, $F = \prod q_i^{e_i}$, q_i premiers différents.

$$\circ [m]P = O_E, \left[\frac{m}{q_i}\right]P = (x_i : y_i : z_i), \text{ avec } PGCD(z_i, N) = 1, \forall i$$
$$\circ F \geqslant \left(N^{\frac{1}{4}} + 1\right)^2$$

 \Rightarrow N premier.

4.2 Factorisation

Motivation

Si q|n, q premier et q-1 est B-friable $(l^e|q-1, l$ premier $\Rightarrow l^e \leqslant B)$, $a \in (\mathbb{Z}/q\mathbb{Z})^*$ qui a q éléments donc l'ordre de a dans $(\mathbb{Z}/q\mathbb{Z})^*$ est B-friable. D'où ordre de a $|ppcm(2, 3, 4, \ldots, B) \Longrightarrow b \equiv 1 \mod q \Longrightarrow q|PGCD(b-1, N)$

Motivation

Si q|N, q premier et $\#E_q(\mathbb{F}_q)$ est B-friable, $a\in E_q(\mathbb{F}_q)$ $\#E_q(\mathbb{F}_q)$ est B-friable $\Rightarrow b=[ppcm(2,3,4,\ldots,B)]\times a=0$ dans $E_q(\mathbb{F}_q)$. Si $b\mod r\neq 0$ pour r un diviseur premier de N, le calcul de b n'est pas mené à bien.

Algorithme 9 Algorithme (p-1) de Pollard

Entrées: N entier, B paramètre de "friabilité"

Sorties: Un facteur de N ou "Echec"

- 1: Calculer tous les $p \leq B$, p premiers.
- 2: Tirer $a \in \mathbb{Z}/n\mathbb{Z}$, tel que PGCD(a, N) = 1; $b \leftarrow a$
- 3: On calcule $a^{ppcm(2,3,4,\dots,B)}$ comme suit :
- 4: pour $p \leqslant B$ faire
- 5: calcule k maximal tel que $p^k \leqslant B$
- 6: $b \leftarrow b^{p^k}$
- 7: fin pour
- 8: $d \leftarrow PGCD(b-1, N)$
- 9: si $d \neq 1, N$ alors
- 10: **retourner** d
- 11: sinon
- 12: **retourner** "Echec"
- 13: **finsi**

Théorème

$$ln(ppcm(2,3,4,\ldots,B)) \sim B$$

hypothèses

Si q|N, q premier et $\#E_q(\mathbb{F}_q)$ est B_1 -friable,à la possible exception d'un diviseur premier $B_1 < l \leq B_2$.

Théorème de Lenstra

Sous une conjecture raisonnable en théorie analytique des nombres, cet algorithme découvre un facteur premier de N en utilisant un nombre moyen d'opérations dans les courbes elliptiques sur $\mathbb{Z}/n\mathbb{Z}$:

$$L_{\frac{1}{2}}(p)^{\frac{1}{\sqrt{2}}+O(1)}$$

où p est le plus petit diviseur premier de N.

Ici :
$$L_{\frac{1}{2}}(p) = e^{\sqrt{\ln(p)\ln(\ln(p))}}$$

Algorithme 10 Algorithme de Lenstra

Entrées: N entier, B paramètre de "friabilité"

Sorties: Un facteur de N ou "Echec"

- 1: Calculer tous les $p \leq B$, p premiers.
- 2: Tirer $E/(\mathbb{Z}/n\mathbb{Z})$, $a \in E(\mathbb{Z}/n\mathbb{Z})$
- 3: $b \leftarrow [ppcm(2, 3, 4, \dots, B)] \times a$
- 4: si le calcul est mené à bien alors
- 5: **retourner** Echec
- 6: sinon
- 7: exhiber un diviseur de zéro dans $\mathbb{Z}/n\mathbb{Z}$, noté z, et
- 8: **retourner** PGCD(z, N)
- 9: finsi

Algorithme 11 Algorithme de Lenstra, phase $B_1 + B_2$

Entrées: N entier, B_1, B_2 paramtres de "friabilité"

Sorties: Un facteur de N ou "Echec"

- 1: Calculer tous les $p \leq B$, p premiers.
- 2: Tirer $E/(\mathbb{Z}/n\mathbb{Z})$, $a \in E(\mathbb{Z}/n\mathbb{Z})$
- 3: $b \leftarrow [ppcm(2, 3, 4, ..., B)] \times a$ (sous la nouvelle hypothèse $\exists B_1 < l \leq B_2$ tel que [l]b = 0 sur $E_q(\mathbb{F}_q)$).
- 4: Calculer les [l]b où l premier dans $[B_1, B_2]$ [l']b = [l]b + [l' l]b avec [l' l]b prealcul

Applications en cryptographie à clé publique

5.1 Le schéma d'El Gamal

Soit (G, \oplus) un groupe fini d'ordre l (l essentiellement premier, grand). Soit $\mathcal{M} =$ espace des messages en clair $\xrightarrow{\varphi}$ G inversible (étant donnés $g \in G, g = \varphi(m)$, on sait trouver m).

Algorithme 12 Algorithme de chiffrement El Gamal

Entrées: $m \in \mathcal{M}$, (G, \oplus) , $P \in G$, $P_A \in G = [a]P$ avec a clé privée connue de A.

Sorties: Un chiffr (Q, c).

- 1: Tirer $k \in \mathbb{Z}/l\mathbb{Z}$ uniformément au hasard.
- 2: $Q \leftarrow [k]P$;
- 3: $c \leftarrow [k]P_A \oplus \varphi(m)$

Algorithme 13 Algorithme de déchiffrement El Gamal

Entrées: (Q, c), a clé privée, $\overline{(G, \oplus, P)}$

Sorties: m

1: $m \leftarrow \varphi^{-1}(c \ominus [a]Q)$

Signature

Fonction de hachage cryptographique $h: G \to \mathbb{Z}/l\mathbb{Z}$.

Algorithme 14 Algorithme de signature El Gamal

Entrées: $m \in \mathcal{M}$, $a \in \mathbb{Z}/l\mathbb{Z}$ clé privée de A, (G, \oplus, P) .

Sorties: signature (Q, s).

- 1: Tirer $k \in \mathbb{Z}/l\mathbb{Z}$ uniformément au hasard avec PGCD(k, l) = 1.
- 2: $Q \leftarrow [k]P$;
- 3: $s \leftarrow k^{-1}(h(m) ah(Q)) \text{ dans } \mathbb{Z}/l\mathbb{Z}$

Vrification de la signature On a (Q, s), $m \in \mathcal{M}$, P_A clé publique, (G, \oplus, P) et h.

$$[h(Q)]P_A \oplus [s]Q = [h(Q)]P_A \oplus [h(m) - ah(Q)]P = [h(m)]P$$

 $\varphi: M \to E(\mathbb{F}_p)$?

 $m \mapsto (m, y)$

 $E: y^2 = x^3 + ax + b$

Si (m, y) ne vérifie pas l'équation?

On fixe $N(\simeq 2^{10})$ et on choisit un point d'abscisse $x = Nm + x_0, x_0 \in \{0, \ldots, N-1\}$, tel que $0 \leqslant x < p$.

5.2 Couplages

Soient (G, \oplus) , (G', \oplus') , (H, \boxplus) et $e: G \times G' \to H$ telle que :

- 1. e bilinaire e([a]P, [b]Q) = [ab]e(P, Q)
- 2. Pour tout $P' \in G'$, $e(P_1, P') = e(P_2, P') \Leftrightarrow P_1 = P_2$

Un tel ensemble de données est appelé un système de logarithme discret avec couplage.

Algorithme 15 Algorithme du point de vue de A

Entrées: $G, G', H, e, P \in G, P' \in G'$

Sorties: $K \in H$ partage entre A,B,C

- 1: $a \in \mathbb{Z}$
- 2: $(P_A, P_A') \leftarrow ([a]P, [a]P')$, publis.
- 3: On reoit (P_B, P_B') , (P_C, P_C')
- 4: $K \leftarrow [a]e(P_B, P'_C) = [abc]e(P, P')$

Application 1 : Diffie Hellman tripartite

les logarithmes discrets dans G, G' et H sont difficiles. Hypothèse:

Application 2 : crypto ID-based, fonde sur l'identit

- Chaque individu a un $ID \in \mathbb{N}$ unique, public.
- Une autorité de confiance publie :

$$G = G', H, e, P \in G, [\alpha]P = P_{AC}$$

Algorithme 16 Chiffrement

Entrées: G = G', H, e, $P \in G$, P_{AC} , ID du destinataire, $m \in \mathcal{M}$

Sorties: (R,c)

- 1: Tirer $r \in \mathbb{N}$ au hasard
- 2: $R \leftarrow [r]P$;
- 3: $Q \leftarrow h_1(ID) \in G \text{ avec } h_1 : \{0,1\}^* \to G$
- 4: $s \leftarrow e(P_{AC}, Q)$;
- 5: $c \leftarrow m \text{ XOR } h_2([r]s) \text{ avec } h_2 = H \rightarrow \mathcal{M}$

Génération d'une clé publique par l'autorité de certification pour A destinataire

- 1. $Q \leftarrow h_1(ID)$
- 2. $[\alpha]Q = A_{ID} \in G$ transmis A.

Algorithme 17 Déchiffrement

Entrées: G = G', H, e, $P \in G$, P_{AC} , A_{ID} clé privée, (R, c)

Sorties: m

1:
$$T \leftarrow e(R, A_{ID}) = [\alpha]e(R, Q) = [\alpha r]e(P, Q) = [r]e(P_{AC}, Q) = [r]s$$

2: $m = c \text{ XOR } h_2(T)$;

Application 3: attaque sur le logarithme discret

Soit $Q = [x]_G P$ un problème de logarithme discret dans G. Soit $R \in G'$. On a:

$$e(Q,R) = e([x]P,R) = [x]_H e(P,R)$$

qui est un problème de logarithme discret dans $H \Rightarrow x \mod$ (ordre de e(P,R) qui divise l'ordre de P).

5.3 Réalisation de couplages sur E/\mathbb{F}_q une courbe elliptique

On fixe n tel que PGCD(n,q) = 1 $n | \#E(\mathbb{F}_q)$

Soit k le plus petit entier > 0 tel que $q^k = 1 \mod n$ $(k = \text{ordre de q dans } (\mathbb{Z}/n\mathbb{Z})^*)$

On suppose que $E(\mathbb{F}_q)$ contient un point d'ordre n.

Il existe un couplage

$$e: E(\mathbb{F}_q)[n] \times E(\mathbb{F}_q^k/nE(\mathbb{F}_q^k)) \to (\mathbb{F}_q^k)^*/((\mathbb{F}_q^k)^*)^n$$

avec $E(\mathbb{F}_q)[n] = \{ p \in E(\mathbb{F}_q), [n]P = 0 \}$

Ordre de grandeur de k

71410 40 614114041 40 11							
		Sécurité	moyenne	sécurité forte (taille de			
		(taille de clé)		clé)			
RSA et	El Gamal sur	1024 bits		2048 bits			
\mathbb{F}_q^*							
El Gan	nal sur E	160 bits		200 bits			

Supposons n premier $\approx 2^{160}$, $q \approx n$. Il faut $q^k \gtrsim 2^{1024} \Rightarrow k \geqslant 6$ ou 7. Pour la sécurité forte, même raisonnement et $k \geqslant 10$.

Remarque

$$\#E(\mathbb{F}_q) = q + 1 - t, |t| \leq 2\sqrt{q}, \text{ divisible par } n.$$

$$q^k = 1 \mod n$$

$$q = t - 1 \mod n$$

Très restrictif \Rightarrow k "grand". L'algorithme est incorrect si $T=0_E$ au cours de la boucle principale. Si n est premier et P d'ordre n, le problème ne se pose pas.

Conclusion : $O(\log n)$ opérations dans \mathbb{F}_q^* .

Définition

k= ordre de q dans $(\mathbb{Z}/n\mathbb{Z})^*$ est appelé "degré de plongement". Comment réaliser E/\mathbb{F}_q tel que k soit "petit"?

1. Construction 1 : courbes super singulières E/\mathbb{F}_q est super singulière si $\#E(\mathbb{F}_q)=q+1-t$ avec $t=0 \mod p$ et $p=car(\mathbb{F}_q)$.

Algorithme 18 Algorithme de Miller de calcul de e(P,Q)

```
Entrées: n = (n_{a-1}, ..., n_0) avec n_{a-1} = 1, n_i \in \{0, 1\}
      P = (x_1, y_1) \in E(\mathbb{F}_q)[n]
      Q = (x_2, y_2) \in E(\mathbb{F}_q^*)
Sorties: e(P,Q) \in (\mathbb{F}_q^k)^* (tu par n)
 1: T \leftarrow P; f_1 \leftarrow 1; f_2 \leftarrow 1;
  2: pour i = a - 2, ..., 0 faire
         T \leftarrow [2]T
         \lambda \leftarrow \text{la pente de la tangente E en T où } T = (x_3, y_3)
         f_1 \leftarrow f_1^2(y_2 - \lambda(x_2 - x_3) - y_3)
         f_2 \leftarrow f_2^2(x_2 + x_3 + x_1 - \lambda^2)
         \mathbf{si} \ n_i = 1 \ \mathbf{alors}
  7:
             T \leftarrow T \oplus P
  8:
             \lambda \leftarrow pente de la droite joignant T et P
 9:
             f_1 \leftarrow f_1^2(y_2 - \lambda(x_2 - x_3) - y_3)
             f_2 \leftarrow f_2^2(x_2 + x_3 + x_1 - \lambda^2)
         finsi
12:
13: fin pour
14: retourner \left(\frac{f_1}{f_2}\right)^{\frac{q^k-1}{n}}
```

Théorème

 E/\mathbb{F}_q est super singulière $\Rightarrow k \leqslant \begin{cases} 2 & \text{si } p \geqslant 5 \\ 4 & \text{si } p = 2 \\ 6 & \text{si } p = 3 \end{cases}$ atteintes \Rightarrow construction utile si $q = 3^*$.

2. Construction 2 : Courbes ordinaires (non super singulières) \Rightarrow multiplication complexe

$$\#E(\mathbb{F}_q) = q + 1 - t = 0 \mod n$$

 $q^k = 1 \mod n, \ q^i \neq 1 \mod n, \ 0 < i < k \ (*)$

Définition

Soit $d \geqslant 1$ un entier on pose :

$$\Phi_d(X) = \prod \left(X - e^{\frac{2i\Pi}{d} \times k} \right)$$

avec PGCD(k, d) = 1. Proprits: $-\Phi_d(X) \in \mathbb{Z}[X]$

$$-X^n-1=\prod_{d\mid n}\Phi_d(X)$$

 $-X^{n} - 1 = \prod_{d|n} \Phi_{d}(X)$ $q^{k} - 1 = 0 \mod n \Leftrightarrow \prod_{d|k} \Phi_{d}(q) = 0 \mod n$

Si n est premier, on déduit de (*) que $\Phi_k(q) = 0 \mod n$. On veut $\Phi_k(t-1) = 0 \mod n.$

 $\widetilde{\mathrm{CM}}$: pour construire E/\mathbb{F}_q tel que $\#E(\mathbb{F}_q)=q+1-t \Longleftrightarrow$ résoudre $t^2 - \delta V^2 = 4q (**)$ avec $\delta < 0$ et $(t, V) \in \mathbb{Z}^2 + \text{Calcul de } H_D$: il faut δ petit. V et δ sont fixés si t l'est.

$$q = cn + t - 1$$

$$\Phi_k(t-1) = c'n$$

avec $c, c' \in \mathbb{Z}$.

L'équation (**) devient :

$$\delta V^2 = (t-2)^2 - 4\frac{c}{c'}\Phi_k(t-1)$$

pour k=6, c'est une équation quadratique en t qu'on sait résoudre si $V^2\delta$, c, c' sont fixés.

Premier complément:

$$E(\mathbb{F}_q) = (\mathbb{Z}/n_1\mathbb{Z})P_1 \oplus (\mathbb{Z}/n_2\mathbb{Z})P_2$$

c'est-à-dire tout $P \in E(\mathbb{F}_q)$ s'écrit de façon unique :

$$P = [\lambda_1]P_1 \oplus [\lambda_2]P_2$$

avec $\lambda_i \in (\mathbb{Z}/n_i\mathbb{Z})$ et P_i est d'ordre n_i .

Remarque

Si P est d'ordre n et $\bar{\lambda} \in (\mathbb{Z}/n\mathbb{Z})$, $[\bar{\lambda}]P = [\lambda]P$ est bien défini.

Proprit

On peut supposer que:

Remarque

 $\#E(\mathbb{F}_q) = n_1 \times n_2$. Donc si $\#E(\mathbb{F}_q) = af^2$ où a est sans facteur carré alors $n_2|PGCD(f,q-1)$.

Remarque

 n_1 est l'exposant du groupe $E(\mathbb{F}_q)$ c'est-à-dire n_1 est le plus petit entier n > 0 tel que [n]P = 0, $\forall P \in E(\mathbb{F}_q)$.

Remarque

Si G est un groupe abélien fini et si $Q, R \in G$, alors il existe S d'ordre $PPCM(\operatorname{ordre}(Q), \operatorname{ordre}(R))$ et on peut construire S simplement. $expo(G) = PPCM\{\operatorname{ordre}(Q) : Q \in G\}$

Lemme

Si PGCD(ordre(Q), ordre(R)) = 1 alors Q + R est d'ordre $\text{ordre}(R) \times \text{ordre}(Q)$.

Théorème

Si a, b deux entiers alors on a :

$$PPCM(a, b) = a'b'$$

avec:

- -a'|a
- -b'|b
- -PGCD(a',b') = 1

Si a = o(Q), b = o(R) (o est l'ordre), alors :

$$S = \left(\frac{a}{a'}\right)Q + \left(\frac{b}{b'}\right)R$$

Algorithme 19 Algorithme

Entrées: Equation de E, $\#E(\mathbb{F}_q) = af^2$, a sans facteur carré.

Sorties: n_1, n_2, P_1, P_2

- 1: $n_1 \leftarrow 1$; $P_1 \leftarrow 0$;
- 2: répéter
- 3: tirer $P \in E(\mathbb{F}_q)$ et calculer o(P)
- 4: remplacer $n_1 \leftarrow PPCM(n_1, o(P)), P_1 \leftarrow$ un point d'ordre n_1 .
- 5: **jusqu'à** $n_2 = \frac{\#E(\mathbb{F}_q)}{n_1}$ ne divise pas PGCD(f, q-1)
- 6: { on veut trouver $P_2 \in E(\mathbb{F}_q)$ tel que ordre $(\bar{P}_2) = n_2$ dans $\#E(\mathbb{F}_q)/(P_1)$ }
- 7: On tire $P \in \#E(\mathbb{F}_q)$ et si $\operatorname{ordre}(\bar{P})$ dans $\#E(\mathbb{F}_q)/(P_1) = n_2$, on pose $P_2 \leftarrow P$ et on renvoie $(n_1, n_2), (P_1, P_2)$. Sinon on revient au 1).

Deuxime complément : Retour sur Cl(D) et sur $U^2 - DV^2 = 4p$, D < 0

 $(a,b,c) \Leftrightarrow ax^2 + bxy + cy^2 = q(x,y)$ et $disc(q) = b^2 - 4ac.$ Si :

$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in Sl_2(\mathbb{Z})$$

on a $\delta\alpha-\beta\gamma=1,$ on pose $(M\centerdot q)$ la forme quadratique $q(\alpha x+\beta y,\gamma x+\delta y)$ et on a :

$$disc(M \mathrel{\square} q) = disc(q)$$

Donc on a un action du groupe $Sl_2(\mathbb{Z})$ sur $\{q = ax^2 + bxy + cy^2, disc(q) = D\}/Sl_2(\mathbb{Z})$. C'est un ensemble fini.