Face Recognition A Deep Learning Approach

Lihi Shiloh Tal Perl

Outline

- Classical face recognition
- Modern face recognition
- DeepFace
- FaceNet
- Comparison
- Discussion

What about Cat recognition?

Articles

- DeepFace: Closing the Gap to Human-Level Performance in Face Verification
 - Link https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
- FaceNet: A Unified Embedding for Face Recognition and Clustering
 - Link https://arxiv.org/pdf/1503.03832v3.pdf

The Face Recognition Problem

- Matrix of pixels
- 512x512=262144
- Need to find a face
- Compare to a database
- Curse of dimensionality

512

Face recognition pipeline (Classical)

Detection and Alignment

Recognition

Face recognition pipeline (Classical)

- Features → handpicked
- Works well on small datasets
- Fails on illumination variations and facial expressions
- Fails on large datasets

Recognition

Face patterns lie on a complex nonlinear and non-convex manifold in the high-dimensional space.

Ok... So how can we solve this nonlinear, nonconvex problem?

Modern Face Recognition

- More Data attained by crawling more faces!
- Google / Facebook etc.
- Stronger Hardware → More powerful statistical models
- Neural networks / Deep Learning

The Network will find the features itself...

Lets dive into 2 examples

DeepFace (2014)

FaceNet (2015)

DeepFace (Taigman and Wolf 2014)

DeepFace (Taigman and Wolf 2014)

- 2D/3D face modeling and alignment using affine transformations
- 9 layer deep neural network
- 120 million parameters

DeepFace - Alignment (Frontalization)

- Fiducial points (face landmarks)
- 2D and 3D affine transformations
- Frontal face view

Detection

- Input: 3D aligned 3 channel (RGB) face image 152x152 pixels
- 9 layer deep neural network architecture
- Performs soft max for minimizing cross entropy loss
- Uses SGD, Dropout, ReLU
- Outputs k-Class prediction

Representation

Architecture

Detection

Layer 1-3: Intuition

- Convolution layers extract low-level features (e.g. simple edges and texture)
- ReLU after each conv. layer
- Max-pooling: make convolution network more robust to local translations.

Deep Learning

Layer 4-6: Intuition

- Apply filters to different locations on the map
- Similar to a conv. layer but spatially dependent

- Layer F7 is fully connected and generates 4096d vector
- Sparse representation of face descriptor
- 75% of outputs are zero

Detection

- Layer F8 is fully connected and generates 4030d vector
- Acts as K class SVM

Detection

DeepFace - Representation

- F8 calculates probability with softmax $p_k = \exp(o_k) / \sum_h \exp(o_h)$
- Cross-entropy loss function: $L = -\sum_{k} \log(p_k)$
- Computed using SGD and performs backpropagation

Deep Learning

Detection

DeepFace – Training

- Trained on SFC 4M faces (4030 identities, 800-1200 images per person)
- We will focus on Labeled Faces in the Wild (LFW) evaluation
- Used SGD with momentum of 0.9
- Learning rate 0.01 with manual decreasing, final rate was 0.0001
- Random weight initializing
- 15 epochs of training
- 3 days total on a GPU-based engine

DeepFace – results

- DF was evaluated on LFW (Labeled Faces in the Wild) dataset
 - 13233 images collected from the web
 - 1680 identities.
- 0.9735±0.0025 accuracy

Figure 3. The ROC curves on the *LFW* dataset. Best viewed in color.

DeepFace – results

- Experimented with different derivatives of deep architecture
- Single the network we discussed
- Ensemble a combination of 3 networks with different inputs
 - Final K class computer by:

$$K_{\text{combined}} = K_{\text{single}} + K_{\text{gradient}} + K_{\text{align2d}}$$

$$K(x,y) = -\|x - y\|_2$$

D E ! 1	0.0500 1.0.0000	
DeepFace-single	0.9592 ± 0.0029	unsupervised
DeepFace-single	0.9700 ± 0.0028	restricted
DeepFace-ensemble	0.9715 ± 0.0027	restricted
DeepFace-ensemble	0.9735 ± 0.0025	unrestricted
Human, cropped	0.9753	

DeepFace – deeper is better

- Experimented with different depths of networks
- Removed C3, L4, L5
- Compared error rate to number of classes K

Network	Error
DF-1.5K	7.00%
DF-3.3K	7.22%
DF-4.4 K	8.74%

Network	Error
DF-10%	20.7%
DF-20%	15.1%
DF-50%	10.9%

Network	Error
DF-sub1	11.2%
DF-sub2	12.6%
DF-sub3	13.5%

DeepFace – Summary

- Close to human accuracy
- 120M parameters
- Proves that going deeper brings better results
- Computation efficiency 0.33 second per face image @2.2GHz CPU
- Invariant to pose, illumination, expression and image quality
- Our work is done...

FaceNet (Schroff and Philbin 2015)

FaceNet (Schroff and Philbin 2015)

- Deep CNN (22 layers)
- Works on pure data
- Embedding (State-Of-The-Art face recognition using only 128 features per face -> efficient!)
- Triplet images for training and loss function
- Uses SGD, Dropout, ReLU

FaceNet – Deep Learning

Figure 5. Network Architectures. This plot shows the complete ROC for the four different models on our personal photos test set from section 4.2. The sharp drop at 10E-4 FAR can be explained by noise in the groundtruth labels. The models in order of performance are: NN2: 224×224 input Inception based model; NN1: Zeiler&Fergus based network with 1×1 convolutions; NNS1: small Inception style model with only 220M FLOPS; NNS2: tiny Inception model with only 20M FLOPS.

Deep

Figure 4. **FLOPS** vs. Accuracy trade-off. Shown is the trade-off between FLOPS and accuracy for a wide range of different model sizes and architectures. Highlighted are the four models that we focus on in our experiments.

Learning

Normalization

Representation

Triplet Loss

FaceNet – Deep Learning

- 22 layers:
 - ✓11 convolutions
 - ✓ 3 normalizations
 - ✓ 4 max-pooling
 - √1 concatenation
 - √ 3 fully-connected
- 140 million parameters

layer	size-in	size-out	kernel	param	FLPS
conv1	$220\times220\times3$	$110\times110\times64$	$7 \times 7 \times 3, 2$	9K	115M
pool1	$110 \times 110 \times 64$	$55 \times 55 \times 64$	$3\times3\times64, 2$	0	
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0	
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K	13M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3\times3\times64,1$	111K	335M
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0	
pool2	$55 \times 55 \times 192$	$28 \times 28 \times 192$	$3\times3\times192, 2$	0	
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K	29M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3\times3\times192,1$	664K	521M
pool3	$28 \times 28 \times 384$	$14 \times 14 \times 384$	$3\times3\times384, 2$	0	
conv4a	$14 \times 14 \times 384$	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K	29M
conv4	$14 \times 14 \times 384$	$14 \times 14 \times 256$	$3\times3\times384, 1$	885K	173M
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv6	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0	
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$	100	0	
fc1	$7 \times 7 \times 256$	$1\times32\times128$	maxout p=2	103M	103M
fc2	$1\times32\times128$	$1\times32\times128$	maxout p=2	34M	34M
fc7128	$1\times32\times128$	$1\times1\times128$	-	524K	0.5M
L2	$1\times1\times128$	$1\times1\times128$		0	
total				140M	1.6B

Deep Learning

Normalization

Triplet Loss

FaceNet - Normalization

Visualizing and understanding convolutional networks M. D. Zeiler and R. Fergus CoRR, abs/1311.2901, 2013. 2, 3, 4, 6

Normalization

Representation

Triplet Loss

FaceNet – Representation

- Objective is to minimize L2 distance between same face representations
- Embedding concept:

Transform an image to a low dimensional feature space (128 d)

Concept known for Natural Language Processing (NLP)

0.0000091791972716
0.0000091791972716
0.0000047203139
0.0005045203139
0.0005045203199
0.0005045203199
0.0005045203199
0.0005045203199
0.00076200091999
0.00076200091999
0.00076200091999
0.00076200091999
0.00076200091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.0007620091999
0.00076200999
0.00076200999
0.00076200999
0.00076200999
0.00076200999
0.00076200999

6/13/2009 0.00004441864
6/13/2009 0.00004441864
6/13/2009 0.00004441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.0000441864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/13/2009 0.000044864
6/1

FaceNet – Triplet Loss

• Train model with triplets of roughly aligned matching / non-matching

face patches

T – set of all poss

• Loss function:

$$L = \sum_{i=1}^{N} \left\| f\left(x_{i}^{a}\right) - f\left(x_{i}^{l}\right) \right\|$$

• Constraint : $||f(x)||_2 = 1$

$$\forall (x_i^a, x_i^p, x_i^n) \in T, f(x) \in \mathbb{R}^d$$

Detection

Deep Learning

Normalization

Representation

Triplet Loss

FaceNet - Triplet Selection

- Crucial to ensure fast convergence
- Select triplets that violet the triplet constraint:

$$\left\| f\left(x_{i}^{a}\right) - f\left(x_{i}^{p}\right) \right\|_{2}^{2} + \alpha < \left\| f\left(x_{i}^{a}\right) - f\left(x_{i}^{n}\right) \right\|_{2}^{2}$$

$\forall (x_i^a, x_i^p, x_i^n) \in \mathbf{T}$

Offline

Generate triplets every n steps, using the most recent network checkpoint and computing argmin/argmax on a subset of the data

Online

Selecting hard positive/negative examplers from a mini-batch

Deep Learning

Normalization

Representation

Triplet Loss

FaceNet – Online Triplet Selection

- Compute $\arg\max_{x_i^p} \left\| f\left(x_i^a\right) f\left(x_i^p\right) \right\|_2^2$, $\arg\min_{x_i^n} \left\| f\left(x_i^a\right) f\left(x_i^n\right) \right\|_2^2$
- Better: Choose all anchor-positive pairs in a mini-batch while selecting only hard-negatives
- To avoid local minima they chose negative semi-hard examplers that satisfy

$$\left\| f\left(x_{i}^{a}\right) - f\left(x_{i}^{p}\right) \right\|_{2}^{2} < \left\| f\left(x_{i}^{a}\right) - f\left(x_{i}^{n}\right) \right\|_{2}^{2}$$

Triplet Loss

Negative Anchor Positive Negative Positive

FaceNet - Classification

- Clustering: K-means or other clustering algorithms
- LFW (Labeled Faces in the Wild) dataset: 13233 images collected from the web, 1680 identities.
- Results: 0.9887±0.15 accuracy

with face alignment 0.9963±0.09 (DeepFace: 0.9735±0.0025 accuracy)

Deep

Learning

FaceNet – LFW Classification

Deep Learning

FaceNet – Some more information

jpeg q	val-rate
10	67.3%
20	81.4%
30	83.9%
50	85.5%
70	86.1%
90	86.5%

#pixels	val-rate
1,600	37.8%
6,400	79.5%
14,400	84.5%
25,600	85.7%
65,536	86.4%

Table 4. **Image Quality.** The table on the left shows the effect on the validation rate at 10E-3 precision with varying JPEG quality. The one on the right shows how the image size in pixels effects the validation rate at 10E-3 precision. This experiment was done with NN1 on the first split of our test hold-out dataset.

#dims	VAL
64	$86.8\% \pm 1.7$
128	$87.9\% \pm 1.9$
256	$87.7\% \pm 1.9$
512	$85.6\% \pm 2.0$

Table 5. Embedding Dimensionality. This Table compares the effect of the embedding dimensionality of our model NN1 on our hold-out set from section 4.1. In addition to the VAL at 10E-3 we also show the standard error of the mean computed across five splits.

Detection

FaceNet – Summary

- Important new concepts: Triplet loss and Embeddings
- 140M parameters
- Proves that going deeper brings better results for the face recognition problem
- Computation efficiency ~0.73 second per face image (1.6B FLOPS)
 @2.2GHZ CPU
- Invariant to pose, illumination, expression and image quality
- Is our work done?

Comparison

DeepFace	FaceNet
Multi-class probability	Embedding
9 layers	22 layers
120M parameters	140M parameters
0.33 sec per image @2.2GHZ CPU	~0.73 sec per image @2.2GHZ CPU
2D/3D alignment	Crop and scaling
Cross-Entropy Loss	Triplet loss
0.9735±0.0025	0.9963±0.09

Labeled Faces in the Wild

DeepFace-ensemble ⁴¹	0.9735 ± 0.0025
Convinet-KBM42	0.9252 ± 0.0038
POOF-gradhist ⁴⁴	0.9313 ± 0.0040
POOF-HOG ⁴⁴	0.9280 ± 0.0047
FR+FCN ⁴⁵	0.9645 ± 0.0025
DeepID ⁴⁶	0.9745 ± 0.0026
GaussianFace ⁴⁷	0.9852 ± 0.0066
DeepID2 ⁴⁸	0.9915 ± 0.0013
TCIT ⁵³	0.9333 ± 0.0124
DeepID2+ ⁵⁵	0.9947 ± 0.0012
betaface.com ⁵⁶	0.9808 ± 0.0016
DeepID3 ⁵⁷	0.9953 ± 0.0010
insky.so ⁵⁹	0.9551 ± 0.0013
Uni-Ubi ⁶⁰	0.9900 ± 0.0032
FaceNet ⁶²	0.9963 ± 0.0009
Tencent-BestImage ⁶³	0.9965 ± 0.0025
Baidu ⁶⁴	0.9977 ± 0.0006
AuthenMetric ⁶⁵	0.9977 ± 0.0009
MMDFR ⁶⁷	0.9902 ± 0.0019
CW-DNA-1 ⁷⁰	0.9950 ± 0.0022
Faceall ⁷¹	0.9940 ± 0.0010
JustMeTalk ⁷²	0.9887 ± 0.0016
Facevisa ⁷⁴	0.9955 ± 0.0014
pose+shape+expression augmentation ⁷⁵	0.9807 ± 0.0060
ColorReco ⁷⁶	0.9940 ± 0.0022
Asaphus ⁷⁷	0.9815 ± 0.0039
Daream ⁷⁸	0.9968 ± 0.0009
Dahua-FaceImage ⁸⁰	0.9978 ± 0.0007
Easen Electron ⁸¹	0.9968 ± 0.0009
Skytop Gaia ⁸²	0.9630 ± 0.0023

Discussion

- Different representations (1-hot vs. feature vector)
- NN depth importance
- Computational complexity vs. classification performance (trade-off)

Results shown here are updated with the articles
 Better results have already been shown

Thank you!