Eine Woche, ein Beispiel 6.19 idempotent algebras

This document want to discuss some basic contents of the course "https://people.mpim-bonn.mpg.de/scholze/Complex.pdf", Lecture 5. For me I've never noticed about this special structure before. Hope that you enjoy this small magic.

Q: Find all (reduced)
$$Z$$
-algebra A s.t. $A \otimes_{\mathbb{Z}} A \cong A$ as a Z -alg iso.

is a pushout.

Let
$$\phi: B \to A$$
 be a ring homomorphism. $I \triangleleft B$ S multiplicative set $9.2.A.$ (Adding an extra variable) $A \otimes_B B[t] \cong A[t]$ $9.2.B$ (Quotient) $A \otimes_B B/I \cong A/\phi(I)$ $A \otimes_B S^{-1}B \cong [\phi(S)]^{-1}A$

Definition and some cases

Def. Let $R \in Ring$. $A \subseteq R - Alg$ is called idempotent R - algebra if $A \boxtimes_R A \cong A$ induced by $A \cong R \boxtimes_R A \longrightarrow A \boxtimes_R A$ as an R - alg iso.

Ex. Verify that $\mathbb{Z}[\frac{1}{6}]$, \mathbb{F}_p , \mathbb{Q} are idempotent \mathbb{Z} -algebras. Is \mathbb{F}_p^2 idempotent? Is $\mathbb{Z}/p^2\mathbb{Z}$ idempotent? Is \mathbb{Z}_p idempotent?

A new topology on Spec A

Def. (Constructable topology) $X \subseteq Spec A$ is called constructable closed if $\exists f: Spec B \rightarrow Spec A$ Imf = X

Ex. Find all constructable closed subset of Spec \mathbb{Z} Ex. Find all constructable closed subset of Spec $\mathbb{C}[X]$ Ex. $\{Zariski\ closed/open\ subset \} \subseteq \{constructable\ closed\ set \}$

Central result I want to prove

Fact. [Condensed, Lec 5 Ex 2] Suppose R∈ CRing is Noetherian. Then

f(reduced) idem R-algs f(reduced) idem R-algs f(reduced) f(reduced) idem R-algs f(reduced) f(redu

Ex. Verify this for Spec Z.

Ex. Verify that $\mathbb{C}[x]/(x-a)$, $\mathbb{C}(x)$, $\mathbb{C}[[x]]$, $\mathbb{C}[x, \frac{1}{x}]$, $\mathbb{O}(D)$, $\mathbb{O}(\bar{D})$ are idem $\mathbb{C}[x]$ -algs. What constructable dosed subset do they correspond?

C((X)) is not C[X] -idem algs $O(D) = \begin{cases} \sum_{i=0}^{+\infty} a_i T^i \mid a_i r^i \to 0 \quad \forall r < 1 \end{cases} \subseteq C[[X]]$ $O(\overline{D}) = \begin{cases} \sum_{i=0}^{+\infty} a_i T^i \mid a_i r^i \to 0 \end{cases} \quad \exists \in C[[X]]$

Lem. A. A' are idem R-algs. Then # Morr-alg (A, A') < 1.

Cor. Sidem R-algs } is a poset.

Fact. This order is compatible with constructable topology (Only consider reduced algs. R is Noetherian.)

Ex.