$$A = \left\{ egin{bmatrix} 1 \ 1 \ 0 \ 0 \end{bmatrix}, egin{bmatrix} 1 \ 0 \ 2 \ -1 \end{bmatrix}, egin{bmatrix} 1 \ -1 \ 2 \end{bmatrix}
ight\}$$

and

$$B = \left\{ egin{bmatrix} 2 \ 0 \ -1 \ 2 \end{bmatrix}, egin{bmatrix} 0 \ 1 \ 3 \ -3 \end{bmatrix}, egin{bmatrix} 3 \ 4 \ -2 \end{bmatrix}
ight.$$

for a vector space $oldsymbol{V}$ and vector

- a) Find matrix $P_{A \leftarrow B}$
- b) Find matrix $P_{B\leftarrow A}$

Given the bases

$$A=\left\{egin{bmatrix}1\\2\end{bmatrix},egin{bmatrix}-2\\-3\end{bmatrix}
ight\}$$
 and $B=\left\{egin{bmatrix}2\\1\end{bmatrix},egin{bmatrix}1\\3\end{bmatrix}
ight\}$ for a

vector space $oldsymbol{V}$,

- a) find matrix $P_{A\leftarrow B}$
- b) find matrix $P_{B\leftarrow A}$
- c) show that matrices $P_{A\leftarrow B}$ and

 $P_{B\leftarrow A}$ are inverse of each other.