Application No. 09/864,756 Docket No. 1999U019D1.US Reply to Office Action Dated May 20, 2003

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 30. (Previously Amended) A method to prepare a metal compound comprising reacting a neutral ligand with a compound represented by the formula MⁿX_n where M is a group 3-14 metal, n is the oxidation state of M, and X is an anionic group in a non-coordinating or weakly coordinating solvent, at about 20 to about 100 °C, then treating the mixture with an excess of an alkylating agent, then recovering the metal complex.
- 31. (Original) The method of claim 30 wherein the solvent has a boiling point above 60 °C.
- 32. (Original) The method of claim 30 wherein the solvent is ether, toluene, xylene, benzene, methylene chloride and/or hexane.
- 33. (Previously Amended) The method of claim 30 wherein the neutral ligand is represented by the formula:

$$R^{3}$$
 L R^{2} R^{7} R^{6}

where Y is a group 15 element,

Page 2 of 5

Application No. 09/864,756 Docket No. 1999U019D1.US Reply to Office Action Dated May 20, 2003

Z is a group 15 element,

L is a group 15 or 16 element,

R¹ and R² are independently a C₁ to C₂₀ hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, or phosphorus,

R1 and R2 may be interconnected to each other,

R³ is absent, hydrogen, a group 14 atom containing group, a halogen, or a heteroatom containing group,

R⁴ and R⁵ are independently an aryl group, a substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, or a multiple ring system,

R⁶ and R⁷ are independently absent, hydrogen, halogen, a heteroatom, a hydrocarbyl group, or a heteroatom containing group.

- 34. (Once Amended) A method to prepare a metal adduct comprising reacting a neutral ligand with a compound represented by the formula MⁿX_n where M is Zr or Hf, n is the oxidation state of M, X is a halogen in a non-coordinating or weakly coordinating solvent, at 20°C or more, then recovering the metal adduct.
- 35. (Previously Amended) The method of claim 34, wherein the neutral ligand is represented by the formula:

$$R^{3}$$
 L R^{1} L R^{2} R^{2} R^{7}

where Y is a group 15 element, Z is a group 15 lement,

Page 3 of 5

Application No. 09/864,756 Docket No. 1999U019D1.US Reply to Office Action Dated May 20, 2003

L is a group 15 or 16 element,

 R^1 and R^2 are independently a C_1 to C_{20} hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, or phosphorus,

R1 and R2 may be interconnected to each other,

R³ is absent, hydrogen, a group 14 atom containing group, a halogen, or a heteroatom containing group,

R⁴ and R⁵ are independently an aryl group, a substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, or a multiple ring system,

R⁶ and R⁷ are independently absent, hydrogen, halogen, a heteroatom, a hydrocarbyl group, or a heteroatom containing group

36. (Previously Amended) A reaction product of a neutral ligand reacted with a compound represented by the formula MⁿX_n where M is Zr or Hf, n is the oxidation state of M, X is an anionic leaving group, in a non-coordinating or weakly coordinating solvent at about 20 to about 100 °C.

37-52 (Cancelled)