segundo parcial de MA1116 ; 31 de octubre de 2003. SO L U C I O N E S DEL EXAMEN TIPO A

1.-(8 ptos.) Halle la distancia entre el punto A(2, 1, -2) y la recta, r, representada por :

$$\begin{cases} x = 3z - 2 \\ y = 2z - 1 \end{cases}$$

Hay <u>muchas</u> maneras para resolver este ejercicio; exponemos a continuación dos de ellas. **Solución #1 del ejercicio 1.(tipo A)** Se halla un vector \mathbf{u} =(l, m, n) = (3, 2, 1), paralelo a la recta r:

Se observa que si A' es un punto de la recta r, tal que el vector **A'A** sea perpendicular a r, entonces la longitud del segmento A'A (es decir : el módulo del vector **A'A**) es la distancia buscada.

Una manera de hallar A' es:

i) hallar primero el plano, α , que pasa por A y es perpendicular a la recta r (y por lo tanto es perpendicular al vector **u**):

$$\alpha: 3(x-x_A)+2(y-y_A)+1.(z-z_A)=0; 3x+2y+z-6=0;$$

ii) intersecar el plano α con la recta $r:A'=\alpha\cap r$; las coordenadas de A' se obtienen

entonces resolviendo el sistema
$$\begin{cases} x = 3z - 2 \\ y = 2z - 1 \\ 3x + 2y + z - 6 = 0 \end{cases} \Rightarrow A'(1,1,1);$$

Por lo tanto la distancia pedida es $\overline{A'A} = |(x_A - x_{A'}, y_A - y_{A'}, z_A - z_{A'})| = |(1, 0, -3)| = \sqrt{10}$.

Otra manera de hallar A', es considerar el vector **PA**, siendo P(3z-2, 2z-1, z) un punto genérico de r y observar que el punto P coincide con A' si y sólo si el vector **PA** es perpendicular a **u**:

$$\mathbf{PA} \perp \mathbf{u} \Leftrightarrow \mathbf{PA.u} = 0 \Leftrightarrow (x_A - x_P, y_A - y_P, z_A - z_P).(3, 2, 1) = 0$$
; se obtiene : $(2 - (3z - 2)).3 + (1 - (2z - 1)).2 + (-2 - z).1 = 0$, $-14z + 14 = 0$, $z = 1$ por lo cual $A' = P(3z - 2, 2z - 1, z)$ con $z = 1 \Rightarrow A'(1, 1, 1)$.

Solución #2 del ejercicio 1.(tipo A)

Siendo (como en la solución #1) el pto. A' tal que $AA' \perp u$, observemos que si P_o es cualquier punto de la recta r, por ejemplo $P_o(-2,-1,0)$, entonces el vector P_oA' es igual al vector $w=\text{proy}_uP_oA=\text{proyección}$ del vector P_oA sobre el vector u; además $(P_oA-w)=A'A$, de manera que el módulo del vector (P_oA-w) es igual a la distancia pedida.

Por lo tanto tenemos :
$$\mathbf{w} = \frac{(\mathbf{P_0 A.u}) \mathbf{u}}{|\mathbf{u}|^2} = \frac{(4, 2, -2).(3, 2, 1)}{|\mathbf{u}|^2} \mathbf{u} = \frac{14}{14} \mathbf{u} = \mathbf{u}$$
;
 $\mathbf{d} = |\mathbf{P_0 A.w}| = |(4, 2, -2) - (3, 2, 1)| = |(1, 0, -3)| = \sqrt{10}$.

- **2.-** (7 ptos.) . Dado el espacio vectorial $R^4 = \{ (x_1, x_2, x_3, x_4) | x_i \in R \}$, sean $\mathbf{v_1} = (2, 1, 0, 3), \ \mathbf{v_2} = (-1, 1, 1, 1)), \ W = gen(\{\mathbf{v_1}, \mathbf{v_2}\})$.
- **2a**) Diga, justificando, si el vector $\mathbf{w} = (1, 1, 2, 5)$ pertenece a W;
- **2b**) Demuestre que $\{v_1, v_2\}$ es una base para W ;
- **2c**) Halle todos los vectores, $\mathbf{u} \in W$, tales que el producto escalar \mathbf{u} $\cdot (1,0,1,0)$ sea igual a 4.

Solución del ejercicio 2.(tipo A)

2a) $\mathbf{w} = (1, 1, 2, 5) \in \text{gen}(\{\mathbf{v_1}, \mathbf{v_2}\})$ si y sólo si existen números $\mathbf{x_1}, \mathbf{x_2}$, tales que sea :

$$(1, 1, 2, 5) = x_1 v_1 + x_2 v_2 = x_1(2, 1, 0, 3) + x_2(-1, 1, 1, 1) =$$

$$= (2 \ x_1 - x_2, \ x_1 + x_2, \ x_2, 3 \ x_1 + x_2) , \text{ es decir, si y sólo si el siguiente sistema es consistente} \\ \begin{cases} 2 \ x_1 - x_2 = 1 \\ x_1 + x_2 = 1 \\ x_2 = 2 \end{cases} ; \text{ procediendo con el método de Gauss-Jordan, tenemos :}$$

$$\begin{bmatrix} 2 & -1 & | & 1 \\ 1 & 1 & | & 1 \\ 0 & 1 & | & 2 \\ 3 & 1 & | & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & | & 3 \\ 1 & 0 & | & -1 \\ 0 & 1 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & | & 5 \\ 1 & 0 & | & -1 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 5 \\ 0 & 0 & | & 6 \end{bmatrix} \Rightarrow \text{el sistema es inconsistente.}$$

Por lo tanto el vector **no** pertenece al subespacio W.

2b) Ya que por el enunciado del problema se sabe que v_1 , v_2 generan W, bastará demostrar que los dos vectores son <u>linealmente independientes</u>.

Tenemos que verificar que si cierta combinación lineal $x_1v_1+x_2v_2$ es el vector nulo,

entonces necesariamente $x_1=x_2=0$. En efecto tenemos:

algoritmo de Gauss-Jordan, obtenemos :
$$\begin{bmatrix} 2 - 1 & | & 0 \\ 1 & 1 & | & 0 \\ 0 & 1 & | & 0 \\ 3 & 1 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
 lo cual pone en evidencia

que se tiene solución <u>única</u> (es decir, siendo el sistema homogéneo: $(x_1,x_2)=(0,0)$.

Nota : también, en una forma más sencilla (sin embargo correcta), se podía observar que considerando la tercera componente de los vectores involucrados (o la tercera ecuación del sistema) resultaba de inmediato x_2 =0 y luego de la primera componente : $2x_1$ - 0 = 0 \Rightarrow x_1 = 0.

2c). El genérico vector, $\mathbf{u} \in \text{gen}(\{\mathbf{v_1}, \mathbf{v_2}\})$ es $\mathbf{u} = \mathbf{x_1} \mathbf{v_1} + \mathbf{x_2} \mathbf{v_2}$ y poniendo la condición que $\mathbf{u} \cdot (1, 0, 1, 0) = 4$, se obtiene :

$$(x_1\mathbf{v_1} + x_2\mathbf{v_2}) \cdot (1, 0, 1, 0) = x_1\mathbf{v_1} \cdot (1, 0, 1, 0) + x_2\mathbf{v_2} \cdot (1, 0, 1, 0) =$$

= $x_1(2, 1, 0, 3) \cdot (1, 0, 1, 0) + x_2(-1, 1, 1, 1) \cdot (1, 0, 1, 0) = 2x_1 + 0 = 4 \Rightarrow x_1 = 2$.

Así que resulta que $(x_1v_1+x_2v_2)$.(1, 0, 1, 0) = 4 si y sólo si $x_1=2$ (con cualquier valor que tenga x_2); de esto sigue que el subconjunto, H, de W, formado por los vectores de W cuyo producto escalar por el vector (1, 0, 1, 0) es =4 es:

$$H = \{2\mathbf{v_1} + \mathbf{x_2}\mathbf{v_2} \mid \mathbf{x_2} \in \mathbf{R}\} = \{(4, 2, 0, 6) + \mathbf{a}(-1, 1, 1, 1) \mid \mathbf{a} \in \mathbf{R}\} = \{(4-\mathbf{a}, 2+\mathbf{a}, \mathbf{a}, 6+\mathbf{a}) \mid \mathbf{a} \in \mathbf{R}\}.$$

2

3.- (9 ptos.). Dada la matriz
$$H = \begin{bmatrix} 1 & 1 & 2 & 1 & -1 \\ 2 & 0 & 1 & 0 & 1 \\ 1 & -1 & -1 & -1 & 2 \\ 0 & 2 & 3 & 2 & -3 \end{bmatrix}$$

- 3a) halle una base para el espacio de filas, R_H, de H;
- **3b**) halle una base para el espacio de columnas, C_H, de H;
- 3c) halle una base para el espacio nulo, N_H, de H;
- 3d) halle rango y nulidad de H.

Solución del ejercicio 3.(tipo A)

Actuando sobre la matriz H con el algoritmo de Gauss-Jordan, tenemos :

El conjunto de todas las soluciones del sistema homogéneo HX=0 está representado por :

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}, \text{ siendo a, b, c números reales arbitrarios y siendo}$$

$$\mathbf{u} = \begin{bmatrix} -1/2 \\ -3/2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -1/2 \\ 3/2 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

3a) Sabemos que las operaciones elementales de fila no alteran el espacio de filas

[es decir : si dos matrices A, B son equivalentes por filas, entonces tienen el mismo espacio de filas : R_A=R_B] ;

Entonces R_H se genera con las dos filas no nulas de la matriz H^* ; como además se verifica facilmente que las filas no nulas de una matriz escalonada son linealmente independientes, resulta que una base para R_H es : $\{(1, 0, \frac{1}{2}, 0, \frac{1}{2}), (0, 1, \frac{3}{2}, 1, -\frac{3}{2})\}$;

3

De esto sigue también que $\rho(H)=2$;

3b) Recordando que el espacio de filas y el espacio de columnas de una misma matriz tienen la misma dimensión, de 2a) sigue que dim(C_H)=2.

También conocemos que en un espacio vectorial, V, de dimensión n, n vectores linealmente independientes forman una base.

Por lo tanto, si consideramos las primeras dos columnas de la matriz H, tenemos dos vectores linealmente independientes de un espacio vectorial de dimensión 2 que forman entonces una base para C_H .

Observación : si no se quieren usar los argumentos anteriores, se puede proceder también en la manera siguiente : escalonar, mediante operaciones elementales de fila, la matriz transpuesta, H^t, y considerar las dos filas no nulas de la matriz escalonada.

3c) Los tres vectores $u,\,v,\,w$ hallados en la resolución del sistema homogéneo HX=0 , generan el espacio nulo, N_H ; es casi inmediato verificar que estos tres vectores son linealmente independientes y por lo tanto forman una base para N_H ;

3d)
$$\rho(H) = \dim(C_H) = 2$$
; $\nu(H) = \dim(N_H) = 3$.

Observe que sumando el rango y la nulidad de la matriz H se obtiene el número de columnas de la misma.

- **4.-** Para cada una de las siguientes afirmaciones, diga, justificando, si es cierta o falsa :
- **4a**) (2 ptos.) El subconjunto $W = \{A = \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix} \in M_{2,3} \mid b = a + 2c \}$ del espacio vectorial de las matrices reales de tamaño 2x3, es un subespacio de $M_{2,3}$;
- **4b**) (4 ptos.) Si $\{v_1,v_2,v_3\}$ es un conjunto linealmente independiente de vectores de un espacio vectorial, V, y si v es un vector de V tal que $v \notin \text{gen}(\{v_1,v_2,v_3\})$, entonces el conjunto $\{v,v_1,v_2,v_3\}$ es linealmente independiente.

Solución del ejercicio 4.(tipo A)

- **4a).** La afirmación es <u>cierta</u>. Para justificar la respuesta tenemos que poner en evidencia que : i) $W \neq \emptyset$,
 - ii) A, B \in W \Rightarrow A+B \in W (cierre de W respecto a la suma),
 - iii) $A \in W$, $k \in R \Rightarrow kA \in W$ (cierre respecto a la multiplicación por escalares).
- i) Por ejemplo : $A = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 0 & 0 \end{bmatrix} \in W \Rightarrow W \neq \emptyset$ (también se puede observar que la matriz nula cumple con la definición de W);

ii)
$$A = \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} e, f, g \\ h & 0 & 0 \end{bmatrix} \Rightarrow A + B = \begin{bmatrix} a+e, b+f, c+g \\ d+h, & 0 & 0 \end{bmatrix}$,

si $A \in W$ entonces b=a+2c, si $B \in W$ entonces f=e+2g,

luego (b+f) = (a+2c)+(e+2g)= (a+e)+2(c+g) así que la matriz A+B también cumple con la definición de W; por lo tanto se cumple el cierre de W respecto a la suma;

iii)Si $A = \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix} \in W$, $k \in R$ entonces b = a + 2c luego para la matriz $kA = \begin{bmatrix} ka & kb & kc \\ kd & 0 & 0 \end{bmatrix}$ se cumple que kb = k(a + 2c) = ka + 2(kc) de lo cual sigue $kA \in W$; por lo tanto se cumple también el cierre respecto a la multiplicación por escalares.

4b). La afirmación es <u>cierta</u>. Tenemos que poner en evidencia que si $k_0v + k_1v_1 + k_2v_2 + k_3v_3$ es igual al vector nulo, entonces, por consiguiente :

$$k_0 = k_1 = k_2 = k_3 = 0$$
.

Sea: (*)
$$k_0 \mathbf{v} + k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 = \mathbf{o} = \text{vector nulo.}$$

Observemos primero que debe ser $k_0=0$, ya que si fuese $k_0\neq 0$ podríamos escribir :

 $\mathbf{v} = (-\frac{k_1}{k_0})\mathbf{v}_1 + (-\frac{k_2}{k_0})\mathbf{v}_2 + (-\frac{k_3}{k_0})\mathbf{v}_3 \text{ lo cual indicar\'ia que } \mathbf{v} \in \text{gen}(\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}) \text{ contradiciendo la hipótesis.}$

Si $k_0=0$, la igualdad (*) se escribe : $k_1\mathbf{v}_1+k_2\mathbf{v}_2+k_3\mathbf{v}_3=\mathbf{o}$ y como $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ son linealmentre independientes, sigue que (además de ser $k_0=0$) $k_1=k_2=k_3=0$.

SOLUCIONES DEL EXAMENTIPOB

1.-TIPO B(8 ptos.) Halle la distancia entre el punto A(1, 2, -2) y la recta, r, representada por : $\begin{cases} x = 2z - 1 \\ y = 3z - 2 \end{cases}$

El enunciado de esta pregunta se obtiene intercambiando \underline{x} con \underline{y} en la pregunta 1 del tipo A.

El procedimiento para la resolución es el mismo que para el tipo A.

- **2.- TIPO B** (7 ptos.) . Dado el espacio vectorial $R^4 = \{ (x_1, x_2, x_3, x_4) | x_i \in R \}$, sean $\mathbf{v_1} = (2, 1, 0, 3), \ \mathbf{v_2} = (1, -1, 1, 1)), \ W = gen(\{\mathbf{v_1}, \ \mathbf{v_2}\})$.
- **2a**) Diga, justificando, si el vector $\mathbf{w} = (1, 1, 2, 5)$ pertenece a W;
- **2b**) Demuestre que $\{v_1, v_2\}$ es una base para W;
- 2c) Halle todos los vectores, $\mathbf{u} \in W$, tales que el producto escalar $\mathbf{u}.(1,0,$ -1,0) sea igual a 4.

El enunciado de esta pregunta se obtiene reemplazando en la pregunta 2 del tipo A el vector $\mathbf{v_2}$ =(-1, 1, 1, 1) con el vector $\mathbf{v_2}$ =(1, -1, 1, 1)

El procedimiento para la resolución de las partes **2a**) y **2b**) es el mismo que para el tipo A.

Para la parte **2c**) se tiene :

2c). **TIPO B.** El genérico vector, $\mathbf{u} \in \text{gen}(\{\mathbf{v_1}, \mathbf{v_2}\})$ es $\mathbf{u} = \mathbf{x_1} \mathbf{v_1} + \mathbf{x_2} \mathbf{v_2}$ y poniendo la condición que $\mathbf{u} \cdot (1, 0, 1, 0) = 4$, se obtiene :

$$(x_1\mathbf{v_1} + x_2\mathbf{v_2}) \cdot (1, 0, 1, 0) = x_1\mathbf{v_1} \cdot (1, 0, 1, 0) + x_2\mathbf{v_2} \cdot (1, 0, 1, 0) =$$

= $x_1(2, 1, 0, 3) \cdot (1, 0, 1, 0) + x_2(1, -1, 1, 1) \cdot (1, 0, 1, 0) = 2 x_1 + 0 = 4 \Rightarrow x_1 = 2$.

Así que resulta que $(x_1v_1+x_2v_2)$.(1,0,1,0)=4 si y sólo si $x_1=2$ (con cualquier valor que tenga x_2); de esto sigue que el subconjunto, H, de W, formado por los vectores de W cuyo producto escalar por el vector (1,0,1,0) es =4 es:

$$H = \{2\mathbf{v_1} + \mathbf{x_2}\mathbf{v_2} \mid \mathbf{x_2} \in \mathbf{R}\} = \{(4, 2, 0, 6) + \mathbf{a}(1, -1, 1, 1) \mid \mathbf{a} \in \mathbf{R}\} = \{(4 + \mathbf{a}, 2 - \mathbf{a}, \mathbf{a}, 6 + \mathbf{a}) \mid \mathbf{a} \in \mathbf{R}\}.$$

3.- (9 ptos.). Dada la matriz
$$H = \begin{bmatrix} 1 & 1 & -1 & 1 & 2 \\ 2 & 0 & 1 & 0 & 1 \\ 1 & -1 & 2 & -1 & -1 \\ 0 & 2 & -3 & 2 & 3 \end{bmatrix}$$
,

- **3a**) halle una base para el espacio de filas, R_H, de H;
- **3b**) halle una base para el espacio de columnas, C_H, de H;
- **3c**) halle una base para el espacio nulo, N_H, de H;
- **3d**) halle rango y nulidad de H.

El enunciado de esta pregunta se obtiene permutando la columnas de la matriz H en la pregunta 3 del tipo A.

El procedimiento para la resolución es el mismo que para el tipo A.

- **4.-TIPO B.** Para cada una de las siguientes afirmaciones, diga, justificando, si es cierta o falsa :
- **4a)TIPO B** (2 ptos.) El subconjunto $W = \{A = \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix} \in M_{2,3} | b = 2a + c \}$ del espacio vectorial de las matrices reales de tamaño 2x3, es un subespacio de $M_{2,3}$;

El enunciado de esta pregunta se obtiene reemplazando la fórmula b= a+2c en la pregunta 1 del tipo A , por la fórmula b=2a+c

El procedimiento para la resolución es el mismo que para el tipo A.

4b) **TIPO B** (4 ptos.) Si $\{v_1, v_2, v_3\}$ es un conjunto linealmente independiente de vectores de un espacio vectorial, V, y si v es un vector de V tal que $v \notin \text{gen}(\{v_1, v_2, v_3\})$, entonces el conjunto $\{v, v_1, v_2, v_3\}$ es linealmente independiente.

Esta pregunta es igual a la 4b del tipo A.