ME 165 Basic Mechanical Engineering

Lecture 04

Rigid Bodies – Equivalent System of Forces

Sadia Tasnim

Lecturer

Department of Mechanical Engineering, BUET

REDUCTION OF A SYSTEM OF FORCES TO ONE FORCE AND ONE COUPLE

5/20/2025

Particle Equilibrium

$$\overline{F_R} = \sum \overline{F} = 0$$

Rigid Body Equilibrium

$$\overline{F_R} = \sum \overline{F} = 0$$

$$\overline{M_{R,O}} = \sum \overline{M_{F,O}} + \sum \overline{M} = 0$$

Conditions for Rigid Body Equilibrium

$$\overline{F_R} = \sum \overline{F} = 0$$

$$\overline{M_{R,O}} = \sum \overline{M_{F,O}} + \sum \overline{M} = 0$$

2-D Problems:

$$\sum F_{x} = 0 \qquad \sum F_{x} = 0 \qquad \sum M_{A} = 0$$

$$\sum F_{y} = 0 \qquad \text{or} \qquad \sum M_{A} = 0 \qquad \text{or} \qquad \sum M_{B} = 0$$

$$\sum M_{A} = 0 \qquad \sum M_{C} = 0$$

3-D Problems:

$$\sum F_{x} = 0 \qquad \sum M_{A} = 0$$

$$\sum F_{y} = 0 \quad \text{and} \quad \sum M_{B} = 0$$

$$\sum F_{z} = 0 \qquad \sum M_{C} = 0$$

Equilibrium of Rigid Bodies in 2-D

Reactions at Supports and Connections for 2-D Structure

