Equations of Planes

October 30, 2006

Planes

Planes

• A plane is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector ${\bf n}$ that is orthogonal to the plane.

ullet The vector ${f n}$ is called a **normal vector**.

Planes

- A plane is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector \mathbf{n} that is orthogonal to the plane.
- ullet The vector ${f n}$ is called a **normal vector**.
- If \mathbf{r}_0 is the position vector of P_0 and \mathbf{r} then the **vector equation** of the plane

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

The Scalar equation of a plane

 \bullet The scalar equation of the plane trough $P_0(x_0,y_0,z_0)$ with normal vector $n=\langle a,b,c\rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

The Scalar equation of a plane

 \bullet The scalar equation of the plane trough $P_0(x_0,y_0,z_0)$ with normal vector $n=\langle a,b,c\rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

 \bullet Example: Find an equation of the plane trough the point (2,1,-3) with normal vector ${\bf n}=\langle 3,1,1\rangle$

The linear equation of a plane

• By collecting the terms

$$ax + by + cz + d = 0$$

The linear equation of a plane

• By collecting the terms

$$ax + by + cz + d = 0$$

ullet Example: Find an equation of a plane trough the point (-2,-1,2) which is parallel to the plane -3x+2y+z=7.

The angle between two planes

- Two planes are parallel if their normal vectors are parallel.
- If two planes are not parallel, then they intersect in a straight line and the angle between them is the (acute) angle between their normal vectors.

Examples

1. Find the angle between the planes x-y+z=1 and 2x+y-3=1.

Examples

- 1. Find the angle between the planes x-y+z=1 and 2x+y-3=1.
- 2. Find a equation for the line of intersection L of these two planes

 \bullet Find a equation of a plane containing the three points (-2,2,0) , (-1,3,1) and (-3,-3,2)

- Find a equation of a plane containing the three points (-2,2,0), (-1,3,1) and (-3,-3,2)
- Find an equation of a plane trough the point (0,4,1) which is orthogonal to the line x=1+t, y=2-3t, z=5+2t in which the coefficient of x is 5.

- Find a equation of a plane containing the three points (-2,2,0), (-1,3,1) and (-3,-3,2)
- Find an equation of a plane trough the point (0,4,1) which is orthogonal to the line x=1+t, y=2-3t, z=5+2t in which the coefficient of x is 5.
- \bullet Find an equation of a plane containing the line ${\bf r}=\langle -2,-2,1\rangle+t\langle -4,0,1\rangle$ which is parallel to the plane -2x+2y+z=5