QUI070 - Métodos	Pontuação ↓		
Data: 14/04/2025	Questões: 3	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	1	
2	2	
3	2	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas e materiais de consulta com essa folha anexa.
- 1. (1 ponto) O diastereoisômero $\bf A$ do 1-cloro-2-isopropil-4-metilcicloexano reage com etóxido de sódio (NaOEt) em etanol (EtOH) sob aquecimento, fornecendo os produtos $\bf B$ e $\bf C$.

A reação a partir de **A** gerou um espectro no infravermelho com as seguintes bandas ($\tilde{\nu}$, cm⁻¹): 3033, 3021, 2972, 2920, 2865, 1647, 1466, 1387 e 815. Qual é o produto majoritário da reação? Esse resultado condiz com o esperado para a reação?

Resposta:

As bandas acusam a presença dos seguintes grupos funcionais:

- 1. 3033 e 3021: $\nu(C-H, sp^2)$;
- 2. 2972, 2920, 2865: $\nu(C-H, sp^3)$;
- 3. 1647: $\nu(C=C)$;
- 4. 1466: $\delta(CH_2)$;
- 5. 1387: $\delta(CH_3)$;

6. 815: $\rho({\rm CH},\,sp^2)$ - Ligação C=C trisubstituída.

Sendo assim, o produto ${\bf B}$ é o majoritário. Isso condiz com o esperado para a reação, pois, ao se analisar a conformação cadeira, tem-se

Logo, como a base é forte e pequena, o produto de Zaitsev - viz., o alceno mais substituído, \mathbf{B} - será favorecido no equilíbrio.

2. (2 pontos) Considere as transformações do 3,3-dimetilbut-1-eno abaixo.

- (a) Justifique a obtenção de $\bf A$ na presença de acetato de mercúrio(II) (Hg(OAc)₂) e boroidreto de sódio (NaBH₄) e de $\bf C$ na presença de H₂SO₄ diluído. As técnicas de espectroscopia na região do UV-Vis ou IV seriam adequadas para diferenciar essas reações e seus produtos?
- (b) Por que o trióxido de cromo (CrO₃) em meio ácido é capaz de reagir apenas com o composto A? Quais as principais mudanças entre os espectros de IV de A e B que seriam esperadas para comprovar que a reação ocorreu?

Resposta:

Na letra **a**, o produto **A** é obtido na presença de acetato de mercúrio(II) e boroidreto de sódio pois a hidratação do alceno, nesse caso, respeita a regiosseletividade Markovnikov e não prova rearranjos, já que passa pela formação do intermediário cíclico mercurínio. O produto **C** é formado na presença de ácido diluído pois o alceno dá origem a um carbocátion

secundário que prontamente realiza um rearranjo Wagner-Meerwein, dando origem a um mais carbocátion terciário que, então, é atacado pela molécula de água. Por se tratarem de isômeros de posição, as espectroscopias no UV-Vis e IV não seriam adequadas para diferenciálos, pois são indicadas apenas para a verificação de estruturas conjugadas e presença de grupos funcionais, respectivamente.

Na letra \mathbf{b} , o CrO₃ não consegue reagir com o álcool terciário \mathbf{C} pois esse não possui átomos de hidrogênios α ao álcool para promover a eliminação.

3. (2 pontos) A p-nitroanilina (\mathbf{D}) não pode ser obtida diretamente da anilina. Para tal, deve-se promover a acetilação da anilina utilizando anidrido acético (Ac_2O), produzindo a acetanilida (\mathbf{A}), que é subsequentemente nitrada e o derivado desejado (\mathbf{B}) é hidrolisado para gerar \mathbf{D} .

(a) A reação de nitração da acetanilida (**A**) produz, teoricamente, dois regioisômeros majoritários, a p-nitroacetanilida (**B**) e a o-nitroacetanilida (**C**). O espectro no IV obtido para o produto **minoritário** é mostrado na **Figura 1**. Os valores principais das bandas ($\tilde{\nu}/\text{cm}^{-1}$) e suas respectivas transmitâncias (T/%) são mostradas na **Tabela 1**.

Figura 1: Espectro no IV do produto minoritário da reação de nitração de A.

Tabela 1: Principais bandas $(\tilde{\nu}/\text{cm}^{-1})$ e suas respectivas transmitâncias (T/%) do espectro no infravermelho do produto minoritário da reação de nitração de **A**.

$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%	$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%	$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%	$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%
3371	46	1510	31	1148	59	750	35
2925	7	1457	42	1084	83	706	66
2854	21	1376	47	1041	71	661	69
1701	24	1343	23	1004	80	651	69
1610	48	1274	50	859	71	595	82
1586	45	1234	56	795	71	526	75
1540	67	1162	67	789	77		

Com base nos dados fornecidos, qual o produto majoritário de nitração? Esse resultado condiz com o esperado para a reação?

(b) A hidrólise de **B** gerou **D**, cujo espectro no IV é mostrado na **Figura 2**. Os valores principais das bandas e suas respectivas transmitâncias são mostradas na **Tabela 2**.

Figura 2: Espectro no IV da mistura reacional proveniente da reação de hidrólise de B.

Tabela 2: Principais bandas $(\tilde{\nu}/\text{cm}^{-1})$ e suas respectivas transmitâncias (T/%) do espectro no infravermelho da mistura reacional proveniente da reação de hidrólise de **B**.

$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%								
3484	29	2408	84	1445	49	1116	21	700	58
3365	12	1633	14	1396	77	1001	84	692	84
3244	47	1603	25	1338	23	960	85	634	50
3223	46	1589	31	1328	15	843	38	573	77
2960	86	1505	52	1313	4	800	81	536	66
2901	84	1482	29	1184	55	795	81	490	58
2708	84	1471	20	1134	79	766	47	484	79

Considerando os dados, quais as principais mudanças entre os espectros no IV do reagente e do produto da reação que seriam capazes de comprovar que a hidrólise ocorreu com sucesso?

Resposta:

Na letra **a**, observa-se que o espectro no IV do produto minoritário da reação de nitração apresentou as bandas de $(i) \nu(N-H)$ em 3371, $(ii) \nu(C-H)$, aromático) em 2925, $(iii) \nu(C-H)$, sp^3) em 2854, $(iv) \nu(C=O)$ de amida conjugada no nitrogênio em 1701, $(v) \nu(C=C)$ de

aromático em 1610, 1586, 1540 e 1457, (vi) $\nu_{\rm as}({\rm NO_2})$ em 1510 e $\nu_{\rm s}({\rm NO_2})$ em 1343, e (v) $\rho({\rm C-H, aromático})$ em 750. Essa bandas mostram a formação das funções aromática, nitro e amida. A banda em 750 cm⁻¹ sugere que os substituintes amido e nitro estão *orto* um em relação ao outro no produto **minoritário**, sendo o **C**. Logo, o produto majoritário é o **B**, cujos substituintes estão na posição relativa *para*.

Esse resultado condiz com o esperado, já que o nitrogênio do grupo amido é um substituinte orto/para-diretor por conta do caráter doador por conjugação do átomo de nitrogênio $(n_N \to \pi_{C=C}^*)$, aumentando a densidade eletrônica do anel e diminuindo a energia do complexo σ formado na substituição eletrofílica aromática com o nitrônio.

Na letra **b**, a principal mudança seria a ausência da banda relativa ao $\nu(C=O)$ do grupo amida no espectro de **D**, na região de 1700 cm⁻¹. Além disso, a hidrólise do grupo amido resulta na presença do par característico de bandas relativas ao ν_{as} e ν_{s} do grupo NH₂ em 3484 cm⁻¹ e 3365 cm⁻¹, respectivamente.