Stochastic Cellular Automata Theory For Pedestrian Simulation

Case Studies - HS/2021

Dheeraj, Peddinti

Motivation

Motivation

Cellular Automata: What and why?

Cellular Automata: What and why?

5

Cellular Automata: What and why?

- Discrete State
- Evolution based on local rules
- Easy to implement deterministic and stochastic rules
- Lacks long-range interactions

CA vs DE

- Discrete State
- Evolution based on local rules
- Easy to implement deterministic and stochastic rules
- Lacks long-range interactions
- Continuous models
- Evolution based on non-linear governing equations
- Adding stochastic elements is difficult
- Use of fields to model long-range forces

Model - Neighborhood

Figure: Pedestrian, their neighborhood and associated matrix of preferred direction (M_{ij}).

Model – Update Rule

Transition Probability (P_{ij})

Local Interactions

Floor Field

Preference Matrix (M_{ij}) Occupancy of neighbors (n_{ij})

Static Source (S_{ij})

Dynamic Source (D_{ij})

Initialized**

Depends on the current state

Initialized (according to the geometry of the problem)

Derived from the history of the state

$$p_{ij} = N M_{ij} D_{ij} S_{ij} (1 - n_{ij}).$$

Occupancy Matrix

 Encoding presence of other pedestrians in the neighborhood to avoid collisions

Static Floor Field

• Encoding the presence of either attractive or repulsive elements in the geometry (e.g.: emergency exits)

Dynamic Floor Field

- Encoding temporal history of pedestrian movement into spatial variations
- Coupled with the state of the system

Final Update Algorithm

What did they achieve?

- Highly parallelizable → faster than real-time simulation
- Model (~)independent from the complexity of behaviour
- Use of Monte Carlo simulations for statistical description of problems
- Accurate representation of realistic behaviour

Some results

Some results

Units- Update steps	Hall A	Hall B
Mean Time to Evacuate	560	363
Variance	85	24

Interested in further reading??

Check these out!

- Lenia
 - <u>Lenia Mathematical Life Forms</u>
 - <u>Lenia Biology of Artificial Life</u>
- Wolfram Physics Project
 - Introductory Blog
 - Project Website