Solució al problema 12 I

- a) Trobar x^* t.q. $\|Ax b\|_2$ és el mínim possible, és equivalent a trobar l'element de $\operatorname{Im}(A)$ més proper a b. Definint, $E = \mathbb{R}^m$, $E^* = \operatorname{Im}(A) \subset E$, volem trobar l'element de E^* més proper a $b \in E$.
- b) Necessitem una base de E^* . Notem que $E^* = \operatorname{Im}(A)$ si $A = [a_1 a_2 \dots a_n]$ llavors $E^* = \langle a_1, a_2, \dots, a_n \rangle$ i els vectors són linealment independents perquè rangA = n. Per tant, les equacions normals són

$$\sum_{i=1}^{n} \langle a_i, a_j \rangle x_j = \langle a_i, b \rangle, \quad i = 1, \dots, n.$$

Solució al problema 12 II

- c) Obviament, $A^T A = (\langle a_i, a_j \rangle)_{i,j} i A^T b = (\langle a_i, b \rangle)_i$.
- d) Si rang(A) < n, aleshores $\{a_1, \ldots, a_n\}$ no és una base de E^* i no podem aplicar l'apartat b).

Escollim un subconjunt de a_1, \ldots, a_n que tingui vectors linealment independents i formin una base de Im(A). Aleshores apliquem el mateix procediment.

Encara que $\exists !\ b^* \in E^*$, com que l'aplicació lineal donat per A no és injectiva, existeixen molts x^* t.q. $Ax^* = b^*$.