Autoencoder

Masoud Pourreza

Pourreza.masoud@gmail.com

2018

Step one: Feature!

Cat vs Dog

Easy?

cheetah vs leopard

Feature Engineering

- Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data.
- Feature engineering turn your inputs into things the algorithm can understand.

• At the end of the day, some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used.

Feature Engineering (cont'd)

Handheld Feature Extraction

Deep Feature Extraction

Unsupervised feature learning

- The unsupervised feature learning approach learns higher-level representation of the unlabeled data features by detecting patterns using various algorithms
- It is a self-taught learning framework developed to transfer knowledge from unlabeled data, which is much easier to obtain, to be used as preprocessing step to enhance the supervised inductive models.

Applications of AE

• Dimensionality reduction

• Information Retrieval

Denoising

Simple Autoencoder

Encode-Decode

Encode \hat{x}_2 \widehat{X}_3 $h_{W,b}(x)$ \widehat{x}_4 \hat{x}_5 Layer L₂ Layer L₃ Layer L₁

Decode

AE_Aim

Multilayer AE

Hyper parameters

- Code size: number of nodes in the middle layer. Smaller size results in more compression.
- Number of layers: the Autoencoder can be as deep as we like.
- Number of nodes per layer: stacked structure
- Loss function: we either use *mean squared error (mse)*

Loss functions

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Binary Cross entropy= $-(y \log(p) + (1-y) \log(1-p))$

Reconstruction

Denoising Autoencoder

Output example

Keras

AE representation

Number of neurons=100

Sparse Autoencoder

Sparsity Loss Function

$$J_{ ext{sparse}}(W,b) = J(W,b) + eta \sum_{j=1}^{s_2} ext{KL}(
ho||\hat{
ho}_j),$$

$$ext{KL}(
ho||\hat{
ho}_j) =
ho \log rac{
ho}{\hat{
ho}_j} + (1-
ho) \log rac{1-
ho}{1-\hat{
ho}_j}$$

Kullback-Leibler (KL) divergence

Convolutional AE

Deconvolution and unpooling

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations of the 16 different filters (on the left)

Deconvolution and unpooling (cont'd)

Adversarial AE

Encoder histogram

Encoder Distribution

Adversarial AE (cont'd)

Adversarial AE (cont'd)

Other videos

• https://www.aparat.com/partdpai

