Multi-parametric Models

Lin Zhang

Department of Biostatistics School of Public Health University of Minnesota

Previously

- Last week, we discussed the basics of Bayesian inference in the simple, single parameter setting
 - Deriving the posterior
 - Summarizing the posterior
 - Impact of the prior distribution
- Extending to the multi-parameter setting is simple, in principle, but does involve some additional steps

Deriving the posterior

- Consider a model with two parameters, $\theta = (\theta_1, \theta_2)$, both unknown.
- Deriving the posterior in the multi-parameter setting is no different to the single parameter setting:

$$p(\theta_1, \theta_2 | \mathbf{y}) \propto f(\mathbf{y} | \theta_1, \theta_2) \pi(\theta_1, \theta_2)$$

- Now we must specify a joint prior for the two parameters.
- However, we often have little data about either parameter, let alone the covariance between the two parameters!
- Two easy ways of specifying a joint prior:
 - Assume independence a priori:

$$\pi(\theta_1, \theta_2) = \pi(\theta_1)\pi(\theta_2)$$

Assume a hierarchical prior:

$$\pi(\theta_1, \theta_2) = \pi(\theta_1 | \theta_2) \pi(\theta_2)$$

Summarizing a multi-parameter posterior

- We have our joint posterior ... now what?
- We are typically interested in one or a subset of parameters, while the other parameters are nuisance parameters that still must be interested.
 - i.e. We are typically interested in the mean but must estimate the variance for inference
- Moving forward, assume:
 - $-\theta_1$ is our parameter of interest
 - θ_2 is a nuisance parameter

Marginal posterior for parameter of interest

 Inference on the parameter of interest is based on its marginal posterior:

$$p(\theta_1|\mathbf{y}) = \int p(\theta_1, \theta_2|\mathbf{y}) d\theta_2$$

= $\int p(\theta_1|\theta_2, \mathbf{y}) p(\theta_2|\mathbf{y}) d\theta_2$

- The marginal posterior $p(\theta_1|\mathbf{y})$ is a mixture of the conditional posterior weighted by the marginal posterior density of θ_2 .
 - \Rightarrow The marginal posterior averages the conditional posterior over all possible value of θ_2
- We often do not need to explicitly integrate out θ_2 but approximate the marginal posteriors numerically!

Illustration via the normal distribution

- We investigate the posterior of a normal-distributed dataset in the following scenarios:
 - Unknown mean, and known variance
 - Unknown mean, and unknown variance
- **Likelihood:** Let $y_1, y_2, ..., y_n$ be iid normal random variables with mean μ and variance σ^2 . The resulting likelihood is

$$f(\mathbf{y}|\mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}$$

When σ^2 is known

- In this case, we are only required to place a prior on μ .
- Consider a "non-informative", flat prior:

$$\pi(\mu) = 1$$

This is an example of an improper pior.

• We know that $\bar{\mathbf{y}}$ is the sufficient statistic for μ . Recall that

$$p(\theta|\mathbf{y}) \propto g(T(x)|\theta) \cdot \pi(\theta)$$

ullet Therefore, the posterior of μ can be derived by

$$\begin{split} \rho(\mu|\mathbf{y},\sigma^2) & \propto & g(\overline{\mathbf{y}}|\mu,\sigma^2) \cdot \pi(\mu) \\ & = & \mathcal{N}(\overline{\mathbf{y}}|\mu,\sigma^2/2) \cdot 1 \propto \exp\left\{-\frac{1}{2\sigma^2/n}(\mu-\overline{\mathbf{y}})^2\right\} \end{split}$$

- That is, the posterior for μ with a flat prior is $N(\bar{\mathbf{y}}, \sigma^2/n)$.
 - ⇒ Same as what we would expect in a frequentist analysis!

What if σ^2 is unknown?

- Now we must specify a joint prior for μ and σ^2
- Consider the improper prior:

$$\pi(\mu)=1; \pi(\sigma^2)\propto 1/\sigma^2, \quad {
m or \ equivalently} \quad \pi(\mu,\sigma^2)\propto 1/\sigma^2$$

• The joint prior is uniform in $(\mu, \log \sigma)$.

Deriving the joint posterior

The likelihood can be re-written as

$$f(\mathbf{y}|\mu,\sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2}{2\sigma^2}\right\}$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{(n-1)s^2 + n(\bar{y} - \mu)^2}{2\sigma^2}\right\}$$

where
$$s^2 = \sum_{i=1}^n (y_i - \bar{y})^2 / (n-1)$$
.

- \bar{y} and s^2 are sufficient statistics.
- The joint posterior is therefore

$$p(\mu, \sigma^2 | \mathbf{y}) \propto (\sigma^2)^{-\frac{n}{2}-1} \exp\left\{-\frac{(n-1)s^2 + n(\bar{y} - \mu)^2}{2\sigma^2}\right\}$$

Marginal posterior of μ

- ullet Our goal is to complete inference on μ
- \bullet Therefore, we need the marginal posterior of μ

$$\begin{split} \rho(\mu|\mathbf{y}) &= \int \rho(\mu,\sigma^2|\mathbf{y})d\sigma^2 \\ &\propto \int (\sigma^2)^{-\frac{n}{2}-1} \exp\left\{-\frac{(n-1)s^2+n(\bar{y}-\mu)^2}{2\sigma^2}\right\} d\sigma^2 \\ &= \Gamma(\frac{n}{2}) \left[\frac{(n-1)s^2+n(\bar{y}-\mu)^2}{2}\right]^{-n/2} \\ &\propto \left[1+\frac{n(\mu-\bar{y})^2}{(n-1)s^2}\right]^{-n/2} \end{split}$$

- This implies that $\frac{\mu \bar{y}}{s/\sqrt{n}}$ follows a t-distribution with n-1 degree of freedom.
- ⇒ With the non-informative prior, the infrence results of the Bayesian method are the same as the classical case!

Marginal posterior of μ

- Luckily, we were able to integrate out σ^2 analytically and obtain a closed-form marginal posterior of μ .
- However, we are not always so lucky ...
- An alternative approach is to factorize the joint posterior

$$p(\mu|\mathbf{y}) = \int \underline{p(\mu, \sigma^2|\mathbf{y})} d\sigma^2 = \int \underline{p(\mu|\sigma^2, \mathbf{y})p(\sigma^2|\mathbf{y})} d\sigma^2$$

- This requires two components:
 - $p(\mu|\sigma^2, \mathbf{y})$
 - $-p(\sigma^2|\mathbf{y})$

Marginal posterior of μ

ullet From our previous derivation, we know the conditional posterior of μ

$$\mu | \sigma^2, \mathbf{y} \sim N(\bar{\mathbf{y}}, \sigma^2/n)$$

• To find the marginal posterior of σ^2 , we must complete the integral:

$$p(\sigma^{2}|\mathbf{y}) = \int p(\mu, \sigma^{2}|\mathbf{y}) d\mu$$

$$\propto \int (\sigma^{2})^{-\frac{n}{2}-1} \exp\left\{-\frac{(n-1)s^{2} + n(\bar{y} - \mu)^{2}}{2\sigma^{2}}\right\} d\mu$$

$$= (\sigma^{2})^{-\frac{n}{2}-1} \exp\left\{-\frac{(n-1)s^{2}}{2\sigma^{2}}\right\} (2\pi\sigma^{2}/n)^{\frac{1}{2}}$$

$$\propto (\sigma^{2})^{-(1+\frac{n-1}{2})} \exp\left\{-\frac{(n-1)s^{2}}{2\sigma^{2}}\right\}$$

Therefore, $\sigma^2 | \mathbf{y} \sim Inv - Gamma(\frac{n-1}{2}, \frac{(n-1)s^2}{2})$.

• This result, again, parallels the classical inference:

$$\Rightarrow$$
 $(n-1)s^2/\sigma^2$ follows a chi-square distribution!

Sampling-based approximation of the posterior

ullet We can obtain the marginal posterior of μ by analytically deriving

$$p(\mu|\mathbf{y}) = \int p(\mu|\sigma^2, \mathbf{y})p(\sigma^2|\mathbf{y})d\sigma^2,$$

but we rarely need to work with this. Instead, we can use a simpler sampling based mechanism to approximate the posterior distribution.

- The sampling based mechanism is conducted as follows:
 For each i = 1,..., M,
 - 1. draw $\sigma_{(i)}^2 \sim p(\sigma^2|\mathbf{y}) = IG\left(\frac{n-1}{2}, \frac{(n-1)s^2}{2}\right)$
 - 2. draw $\mu_{(i)} \sim p(\mu|\sigma^2, \mathbf{y}) = N(\bar{\mathbf{y}}, \sigma_{(i)}^2/n)$.
- The resulting paired samples $\left(\mu_{(i)}, \sigma_{(i)}^2\right)_{i=1}^M$ are precisely from the $p(\mu, \sigma^2|\mathbf{y})$.
- The distribution of $\left(\mu_{(i)}\right)_{i=1}^M$ approximates the $p(\mu|\mathbf{y})$; and the distribution of $\left(\sigma_{(i)}^2\right)_{i=1}^M$ approximates $p(\sigma^2|\mathbf{y})$

Prediction using the sampling algorithm

• To predict a "future" observation y^* , we need the posterior predictive distribution, $p(y^*|\mathbf{y})$.

$$p(y^*|\mathbf{y}) = \int p(y^*|\mu, \sigma^2)p(\mu, \sigma^2|\mathbf{y})d\mu d\sigma^2.$$

• Luckily, the integral is analytically tractable, and the posterior predictive $p(y^*|\mathbf{y})$ is again a t distribution

$$\frac{y^* - \bar{y}}{s\sqrt{1 + 1/n}} \sim t_{n-1}$$

- Yet another way: sampling-based approximation
 - 1. draw $\left(\mu_{(i)}, \sigma_{(i)}^2\right)_{i=1}^M$ from the joint posterior $p(\mu, \sigma^2|\mathbf{y})$ as discussed above
 - 2. draw $y_{(i)}^*$ from $N(y^*|\mu_{(i)},\sigma_{(i)}^2)$ for each $i=1,\ldots,M$

The resulting samples $\left(y_{(i)}^*\right)_{i=1}^M$ represents the posterior predictive distribution.

Implications

- \bullet Estimating the nuisance parameter σ^2 changes the posterior distribution of μ
- \bullet The marginal posterior of μ will have heavier tails than when the variance is known
- The marginal posterior of μ can be considered as mixture of normals (conditioning on σ^2), and thus can be approximated numerically by sequential sampling
- This is another example of when the Bayesian analysis will result in similar inference to a standard frequentist analysis using non-informative priors.

An Example

- Design: A randomized clinical trial was conducted to evaluate the impact of nicotine reduction on cigarette use and dependence (Donny et al., NEJM, 2015)
 - Participants randomized to one of seven conditions
 - Primary endpoint was total cigarettes smoked per day (CPD) at week 6
 - We will focus on estimation of CPD in lowest nicotine content group
 - CPD approximately follows a normal distribution
- Data: For a total of n = 109 participants in the lowest nicotine group, we obtain the sufficient statistics for their CPD at week 6:

$$\bar{y} = 15.4$$
; $s = 7.6$

When variance is known

- First, let's assume that the variance is known and equal to 7.6².
- In this case, the posterior distribution of the mean is

$$\mu | \mathbf{y} \sim N \left(15.4, \frac{7.6}{\sqrt{109}} = 0.73 \right)$$

- Summarizing the posterior:
 - Posterior mean, median, and mode: 15.4
 - 95% credible interval: (13.97, 16.83)

When variance is unknown

- Now, assume the variance is unknown and $s^2 = 7.6^2$ is an estimate of the variance.
- In this case $\frac{\mu \bar{y}}{s/\sqrt{n}} = \frac{\mu 15.4}{7.6/\sqrt{109}}$ follows a t-distribution with n-1=108 degrees of freedom, which has the following summaries:
 - Posterior mean, median, and mode: 0
 - Posterior variance: $\frac{n-1}{n-3} = 1.02$
 - -95% credible interval: (-1.98, 1.98)
- Summaries for μ can be found via transformation:
 - Posterior mean, median, and mode: 15.4
 - 95% credible interval: (13.95, 16.85)

Comparison

- Point estimates are the same: 15.4
- Credible intervals are slightly wider when variance is unknown

ullet As we known, the difference between a t-distribution and a normal distribution with df = 108 is minimal; the difference would be more with a smaller sample size.

Lab Excercise

- Use the sampling-based approach to approximate the posterior distribution, setting M=1000
- ullet Plot the approximate marginal posterior of μ
- \bullet Obtain the point estimate and 95% credible interval of μ from the approximate posteriors
- Compare to the values obtained analytically
- What if increasing M = 10,000?
- Obtain a 95% prediction interval for a new observation y^* .

