Prototyping Controlled Mathematical Languages in Jupyter Notebooks

Jan Frederik Schaefer Kai Amann Michael Kohlhase

FAU Erlangen-Nürnberg

ICMS 2020 remotely from Erlangen, Germany

- Using math software requires learning input language
- Wouldn't it be nice to just use English? really hard!
- ightarrow Controlled mathematical languages = CNL for maths
 - Are formal languages for mathematics
 - Have fixed semantics
 - Imitate natural language

"forall x \ int(x) => even(x)"
$$\downarrow \\ \forall x.int(x) \Rightarrow even(X)$$

- Using math software requires learning input language
- Wouldn't it be nice to just use English?

really hard!

- \rightarrow Controlled mathematical languages = CNL for maths

 - Are formal languages for mathematics
 - Have fixed semantics.
 - Imitate natural language

"Every integer is even."
$$\downarrow \\ \forall x. \mathsf{int}(x) \Rightarrow \mathsf{even}(X)$$

- Using math software requires learning input language
- Wouldn't it be nice to just use English? really hard!
- ightarrow Controlled mathematical languages = CNL for maths
 - Are formal languages for mathematics
 - Have fixed semantics
 - Imitate natural language
 - Designing such languages is hard!
 - Tool for prototyping: GLF Grammatical Logical Framework
 - Contribution: Jupyter interface

"Every integer is even."
$$\downarrow \\ \forall x. \mathsf{int}(x) \Rightarrow \mathsf{even}(X)$$

- Using math software requires learning input language
- Wouldn't it be nice to just use English? really hard!
- ightarrow Controlled mathematical languages = CNL for maths
 - Are formal languages for mathematics
 - Have fixed semantics
 - Imitate natural language
 - Designing such languages is hard!
 - Tool for prototyping: GLF Grammatical Logical Framework
 - Contribution: Jupyter interface

"What is the cardinality of the alternating group on 5 symbols?"

compute(cardinality(alternating_group(int_term(5))))

- Using math software requires learning input language
- Wouldn't it be nice to just use English? really hard!
- \rightarrow Controlled mathematical languages = CNL for maths
 - Are formal languages for mathematics
 - Have fixed semantics
 - Imitate natural language
 - Designing such languages is hard!
 - Tool for prototyping: GLF Grammatical Logical Framework
 - Contribution: Jupyter interface

"What is the cardinality of the alternating group on 5 symbols?"

print (AlternatingGroup (5).cardinality())

Grammatical Logical Framework (GLF)

Combine two existing frameworks:

- **GF** (*Grammatical Framework*) for grammar development
- MMT for logic development/semantics construction

GF in Jupyter: Grammar Development

Grammatical Logical Framework (GLF)

Jupyter/GLF

- Run GF and MMT in background
- Identify content using pattern matching
- Tab completion for stub generation

Jupyter/GLF for Larger Projects

- Implement grammar/logic/semantics construction externally
- Use Jupyter notebooks for
 - Experimenting with specific challenges
 - Testing
 - Demos
- Case study: GLForTheL re-implement ForTheL in GLF

"a subset of S is a set T such that every element of T belongs to S" \downarrow $\forall T.T \subseteq S \iff set(T) \land \forall x.x \in T \Rightarrow belongto(x, S)$

Jupyter/GLF For Teaching

- Used in 1-semester course on logic-based language processing
- Homework assignments:
 - Provide partial implementations + explanations
 - Easier to set up
 - Was preferred by most students
- Presentation in Classroom
 - Interactive development with students
 - Easy to share after lecture

Recent Development: GLIF

- We need inference e.g. for ambiguity resolution
- We added ELPI (an extension of λ Prolog) to the pipeline
- Signatures can be generated from MMT
- First experiments with prover generation

```
parse "the ball has a kinetic energy of 12 m N" | construct -e

(ekin ball (quant 12 (milli newton)))
(ekin ball (quant 12 (mult meter newton)))

parse "the ball has a kinetic energy of 12 m N" | construct -e | elpi filter dimChec
ekin ball (quant 12 (mult meter newton))
```

Summary

- We presented a Jupyter kernel for GLF now GLIF
- Kernel distinguishes content types with pattern matching:
 - GF grammar modules
 - MMT content
 - Commands

handled by kernel/passed to GF

Used for: teaching, prototyping, sharing results/demos, . . .

https://github.com/KWARC/GLIF