

SoftHier Progress Update

Chi Zhang chizhang@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

SoftHier: Parameterizable NoC-Based Scalable System

- Features
 - Two separate NoC bus
 - DATA NoC: wide link, transfer bulk data
 - SYNC NoC: narrow link, cluster synchronization
 - Infinite Instruction memory
 - Ignore I\$ fetch overhead
- Fully Parameterizable
 - Configure file and push button
 - #Cores, RedMule config
 - L1 (TCDM) size & BW
 - #Clusters (#row, #col)
 - #HBM channels and placement
 - NoC link BW
- SW stack ready

Design Space Exploration of RedMule

- Goal: We Want to Know
 - What is **optimal MatMul problem size** (M-N-K)to reach the best efficiency of RedMule in a Cluster: the **Optimal Efficiency Point**
 - When Matrix too small -> low RedMule utilization
 - When Matrix too large -> we introduce large and redundant TCDM space
 - We are seeking for best MACs/SRAM in a CLuster
 - What is the BW needed for RedMule at Optimal Efficiency Point
- Design Space Exploration Constraints
 - RedMule CE array constraint: L = H * Pipe, CE Pipe=4
- Key Metric
 - Efficiency Metric:
 - $\frac{Effective\ FLOP/Cycle}{TCDM\ Occupied\ Area} = \frac{RedMule\ Utilization\ *2*\#CEs}{Elem\ Size\ *2*(MN+NK+MK)}$

Find Optimal GEMM Size(M-N-K) for RedMule (@ saturated BW)

- GEMM Dimension
 - $M \in [8, 16, 32, 64, 128, 256, 512]$
 - $N \in [8, 16, 32, 64, 128, 256, 512]$
 - $K \in [8, 16, 32, 64, 128, 256, 512]$
- RedMule Config
 - CE array = 128x32
 - TCDM BW = 1024 Elem/Cycle
 - Element = FP16
- Run GEMM on One Cluster with One RedMule
- Collect Data
 - Efficiency Metric:
 - $\frac{Effective\ FLOP/Cycle}{TCDM\ Occupied\ Area} = \frac{RedMule\ Utilization\ *2\ *\#CEs}{Elem\ Size\ *2\ *(MN+NK+MK)}$

Find Optimal GEMM Size (M-N-K) for RedMule (@ saturated BW)

At RedMule Constraints: CE array constraint: L = H * Pipe

To use RedMule at best efficiency (Optimal Efficiency Point) $M = N = K = \sqrt{CE \ array * CE \ Pipeline} = L$

Find Optimal GEMM Size (M-N-K) for RedMule (@ saturated BW)

At RedMule Constraints: CE array constraint: L = H * Pipe

To use RedMule at best efficiency (Optimal Efficiency Point)

 $M = N = K = \sqrt{CE \ array * CE \ Pipeline} = L$

TCDM Bandwidth Requirement

- RedMule Utilization Heatmap
 - GEMM Size vs RedMule CE array
 - Vary TCDM BW
 - We're satisfied at > 69% uti

 $BW \ge 4\sqrt{CE \ array * CE \ Pipeline} = 4L$

For Large GEMM: Enable Cluster-to-Cluster Comm or Not?

PU

- No Cluster-to-Cluster Comm.
 - Each clusters take care of different output tiles (384x384).
 - iDMA transfers input matrix tile + weight matrix tile from HBM
 - No inter-cluster tile reuses

For Large GEMM: Enable Cluster-to-Cluster Comm or Not?

PU

- Leverage Cluster-to-Cluster Comm.
 - Reuse tiles, reduce HBM accesses, save BW limitation
 - Need "smart" tile mapping and scheduling

I ₁₀ I ₁₁ I ₁₂ I ₁₃
$I_{20} \mid I_{21} \mid I_{22} \mid I_{23} \mid$
I ₃₀ I ₃₁ I ₃₂ I ₃₃

000	O ₀₁	O ₀₂	O ₀₃
) ₁₀	O ₁₁	O ₁₂	O ₁₃
) ₂₀	O ₂₁	O ₂₂	O ₂₃
)30	O ₃₁	O ₃₂	O ₃₃

Example Solution for GEMM: Step1 Distribute Tiles to Clusters

- Load All (16 Input tiles, 16 weight tiles) from HBM
- Cluster contain different tiles from each other

I ₀₃	Cluster ₀₀	Cluster ₀₁	Cluster ₀₂	Cluster ₀₃
V ₂₃	Cluster ₁₀	Cluster ₁₁	Cluster ₁₂	Cluster ₁₃
W ₁₃	Cluster ₂₀	Cluster ₂₁	Cluster ₂₂	Cluster ₂₃
W ₀₃	Cluster ₃₀	Cluster ₃₁	Cluster ₃₂	Cluster ₃₃

Example Solution for GEMM: Step1 Distribute Tiles to Clusters &

- Load All (16 Input tiles, 16 weight tiles) from HBM
- Cluster contain different tiles from each other

Example Solution for GEMM: Step2 Inter-Cluster Tile Exchanging

Example Solution for GEMM: Step2 Inter-Cluster Tile Exchanging

Example Solution for GEMM: Step2 Inter-Cluster Tile Exchanging

Experiment Setup: Enable Cluster-to-Cluster Comm or Not?

- RedMule
 - Each Cluster has One RedMule
 - RedMule CE array 128x32 (8TFLOPs @1GHz)
 - TCDM BW = 1024 GB/s
- HBM
 - Place HBM on left side
 - Each HBM CTRL mange 4 HBM2E channel
 - 256Byte address interleaving
 - Each HBM CTRL provide Max.BW = 205 GB/s
- NoC
 - Mesh 4x4
 - NoC link width = 2048 bits
 - Link BW = 256GB/s

Experiment Result: Enable Cluster-to-Cluster Comm or Not?

- Benchmark GEMM
 - 16384 x16384 x16384
 - GEMM Elem Size = FP16
 - RedMule 128x32
- Varying Cluster TCDM Size
 - Tiling strategy: Max possible tile fit in TCDM

• Tile dimension
$$M = N = K = \sqrt{\frac{TCDM\ Area}{5*Elem_Size}}$$

- Results
 - No inter-cluster comm
 - HBM BW limited
 - Need 4x more TCDM size to saturate compute power
 - Enable inter-cluster comm
 - Reduce HBM traffic, better area/power efficiency

Enable Cluster-to-Cluster Comm is Scalable

- Benchmark GEMM
 - 16384 x16384 x16384
 - GEMM Elem Size = FP16
 - RedMule 128x32
- Scale-out SoftHier System
 - 4x4 Clusters + 16 HBM2E channels
 - 8x8 Clusters + 32 HBM2E channels
 - 16x16 Clusters + 64 HBM2E channels
 - 2048 TFLOPS @FP16
 - 3.2 TB/s HBM BW

Further Discussion ...

PU

- New Questions Comes Out
 - @ RedMule optimal efficiency point
 - RedMule in cluster reaches 70% comp uti
 - But end-to-end the system shows 44% uti
 - Why? How can we optimize this?
 - Tile mapping and inter-cluster scheduling scheme
 - Is there any more schemes for large GEMM
 - How can we also leverage inter-cluster comm for MHA?
 - Inter-cluster comm vs multi-broadcasting

SoftHier Progress Update

Thomas Benz tbenz@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

iDMA

- Various contributions and bugfixes merged in iDMA
 - O Detailed tracer will soon be enabled in Snitch (port to GVSoC pending)
 - O Release early next week
- Transposition engine implemented by student overhauled
 - O Support for packed SIMD types is still ongoing effort
 - O Update in Snitch is ongoing

SoftHier Progress Update

Luca Colagrande colluca@iis.ee.ethz.ch

PULP PlatformOpen Source Hardware, the way it should be!

youtube.com/pulp_platform

Snitch cluster

- A lot of maintenance work:
 - Merged PRs: <u>#165</u>, <u>#163</u>, <u>#161</u>
 - WIP PRs: <u>#115</u>, <u>#71</u>, <u>#158</u>
 - Implemented MHA and MLP layers for Snitch/Occamy [Link]
 - O Work on streamlining data generation functions and scripts, to reuse base layer functions (e.g. GEMM, Layernorm) in composite layers (e.g. MHA, MLP)
 - O Set up a proper Python package infrastructure to cross-reference these functions
 - WIP on full encoder block