Halliday, Resnick, and Walker *Fundamentals of Physics 10e* Problem Answers Volume 1

Chapter 1 Answers

1 (a) 4.00×10^4 km; (b) 5.10×10^8 km ² ;	
(c) $1.08 \times 10^{12} \mathrm{km}^3$	
$2 \qquad 0.18 \text{ points}^2$	
3 (a) $10^9 \mu \text{m}$;	
(b) 10^{-4} ;	
(c) $9.1 \times 10^5 \mu \text{m}$	
4 (a) 1.9 picas;	
(b) 23 points	
5 (a) 160 rods;	
(b) 40 chains	
6 (a) 8.33×10^{-2} , 2.08×10^{-2} , 6.94×10^{-3} , 3.47×10^{-3} ;	
(b) 0.250 , 8.33×10^{-2} , 4.17×10^{-2} ;	
(c) 0.333, 0.167;	
(d) 0.500;	
(e) 14.0 medios;	
(f) 4.86×10^{-2} cahiz;	
(g) $3.24 \times 10^4 \text{ cm}^3$	
7 1.1×10^3 acre-feet	
8 (a) 60.8 W;	
(b) 43.3 Z	
9 $1.9 \times 10^{22} \mathrm{cm}^3$	
10 15°	
11 (a) 1.43;	
(b) 0.864	
12 $3.1 \mu \text{m/s}$	
13 (a) 495 s;	
(b) 141 s;	
(c) 198 s;	
(d) -245 s	
14 (a) 52.6 min;	
(b) 4.9%	
15 $1.21 \times 10^{12} \mu\text{s}$	
16 (a) 3.88×10^8 rotations;	
(b) 1557.806 448 872 75 s;	
$(c) \pm 3 \times 10^{-11} \text{ s}$	
17 C, D, A, B, E; the important criterion is the	
consistency of the daily variation, not its magnitude	;
18 2.1 h	
19 $5.2 \times 10^6 \mathrm{m}$	

20	(a) $2.69 \times 10^5 \mathrm{cm}^3$;
20	(a) 2.03 × 10 cm , (b) 0.77 y
21	$9.0 \times 10^{49} \text{ atoms}$
22	(a) 1.430 m^2 ;
22	(a) 1.430 fit , (b) 72.84 km
23	(a) 1×10^3 kg;
23	(a) 1 × 10 kg, (b) 158 kg/s
24	0.260 kg
25	$1.9 \times 10^5 \mathrm{kg}$
26	(a) 2×10^3 m ³ , 2×10^4 m ³ ;
	(b) 2×10^6 bottles, 2×10^7 bottles;
	(c) 2×10^6 kg, 2×10^7 kg
27	(a) $1.18 \times 10^{-29} \mathrm{m}^3$;
	(b) 0.282 nm
28	1 kilomole
29	$1.75 \times 10^3 \mathrm{kg}$
30	(a) 4.21 s; (b) 23.2 g; (c) 2.89×10^{-2} kg/min; (d) -
	$6.05 \times 10^{-3} \text{kg/min}$
31	1.43 kg/min
32	(a) 1.0 m^3 ;
	(b) $6.0 \times 10^{-4} \mathrm{m}^3$
33	(a) 293 U.S. bushels;
	(b) 3.81×10^3 U.S. bushels
34	403 L
35	(a) 22 pecks;
	(b) 5.5 Imperial bushels;
26	(c) 200 L
36	(a) $0.900, 7.50 \times 10^{-2}, 1.56 \times 10^{-3}, 8.32 \times 10^{-6};$
	(b) $1.00, 8.33 \times 10^{-2}, 1.74 \times 10^{-3}, 9.24 \times 10^{-6};$
	(c) 12.0, 1.00, 2.08×10^{-2} , 1.11×10^{-4} ;
	(d) 576, 48, 1.00, 5.32×10^{-3} ;
	(e) 1.08×10^5 , 9.02×10^3 , 188 , 1.00
27	(f) 1.96 m ³
37	$8 \times 10^2 \text{ km}$
38	(a) 14.5 roods; (b) $1.47 \times 10^4 \mathrm{m}^2$
39	(a) 18.8 gallons;
39	(a) 18.8 ganons, (b) 22.5 gallons
40	6.0×10^{26} atoms
41	0.3 cord
42	(a) 3.0×10^{-26} kg;
72	(a) 5.0×10^{-6} kg, (b) 5×10^{46} molecules
43	3.8 mg/s
44	$1.3 \times 10^9 \mathrm{kg}$
	1.3 ^ 10 kg

(b) 8.6 universe seconds 46 0.020 km³ 47 0.12 AU/min 48 10 u 49 (a) 3.88; (b) 7.65; (c) 156 ken³; (d) 1.19 × 10³ m³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10³ mm, 4.8 × 10³ mm; (c) 2.2 m³, 4.2 m³ 52 ≈ 1 × 10³6 53 (a) 4.9 × 10⁻6 pc; (b) 1.6 × 10⁻5 ly 54 (a) 11.3 m²/L; (b) 1.13 × 10⁴ m⁻¹; (c) 2.17 × 10⁻³ gal/ft²; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		
46 0.020 km³ 47 0.12 AU/min 48 10 u 49 (a) 3.88; (b) 7.65; (c) 156 ken³; (d) 1.19 × 10³ m³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10³ mm, 4.8 × 10³ mm; (c) 2.2 m³, 4.2 m³ 52 ≈ 1 × 10³6 53 (a) 4.9 × 10⁻6 pc; (b) 1.6 × 10⁻5 ly 54 (a) 11.3 m²/L; (b) 1.13 × 10⁴ m⁻¹; (c) 2.17 × 10⁻³ gal/ft²; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	45	
47 0.12 AU/min 48 10 u 49 (a) 3.88; (b) 7.65; (c) 156 ken³; (d) 1.19 × 10³ m³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10³ mm, 4.8 × 10³ mm; (c) 2.2 m³, 4.2 m³ 52 ≈ 1 × 10³6 53 (a) 4.9 × 10⁻6 pc; (b) 1.6 × 10⁻5 ly 54 (a) 11.3 m²/L; (b) 1.13 × 10⁴ m⁻¹; (c) 2.17 × 10⁻³ gal/ft²; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		
48 10 u 49 (a) 3.88; (b) 7.65; (c) 156 ken³; (d) 1.19 × 10³ m³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10³ mm, 4.8 × 10³ mm; (c) 2.2 m³, 4.2 m³ 52 ≈ 1 × 10³6 53 (a) 4.9 × 10⁻6 pc; (b) 1.6 × 10⁻5 ly 54 (a) 11.3 m²/L; (b) 1.13 × 10⁴ m⁻¹; (c) 2.17 × 10⁻³ gal/ft²; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	46	0.020 km^3
49 (a) 3.88; (b) 7.65; (c) 156 ken ³ ; (d) 1.19 × 10 ³ m ³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10 ³ mm, 4.8 × 10 ³ mm; (c) 2.2 m ³ , 4.2 m ³ 52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	47	0.12 AU/min
(b) 7.65; (c) 156 ken³; (d) 1.19 × 10³ m³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10³ mm, 4.8 × 10³ mm; (c) 2.2 m³, 4.2 m³ 52 ≈ 1 × 10³6 53 (a) 4.9 × 10⁻⁶ pc; (b) 1.6 × 10⁻⁶ pc; (b) 1.13 × 10⁴ m⁻¹; (c) 2.17 × 10⁻³ gal/ft²; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	48	10 u
(c) 156 ken ³ ; (d) 1.19 × 10 ³ m ³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10 ³ mm, 4.8 × 10 ³ mm; (c) 2.2 m ³ , 4.2 m ³ 52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	49	(a) 3.88;
(d) 1.19 × 10 ³ m ³ 50 5.95 km 51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10 ³ mm, 4.8 × 10 ³ mm; (c) 2.2 m ³ , 4.2 m ³ 52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		
50		(c) 156 ken ³ ;
51 (a) 3.9 m, 4.8 m; (b) 3.9 × 10 ³ mm, 4.8 × 10 ³ mm; (c) 2.2 m ³ , 4.2 m ³ 52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		(d) $1.19 \times 10^3 \mathrm{m}^3$
(b) 3.9 × 10 ³ mm, 4.8 × 10 ³ mm; (c) 2.2 m ³ , 4.2 m ³ 52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	50	5.95 km
(c) 2.2 m^3 , 4.2 m^3 52 $\approx 1 \times 10^{36}$ 53 (a) $4.9 \times 10^{-6} \text{ pc}$; (b) $1.6 \times 10^{-5} \text{ ly}$ 54 (a) $11.3 \text{ m}^2/\text{L}$; (b) $1.13 \times 10^4 \text{ m}^{-1}$; (c) $2.17 \times 10^{-3} \text{ gal/ft}^2$; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) $0.37 \text{ standard bottle}$; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups , 2 teaspoons; (b) 0.5 quart ; (c) 2 teaspoons;	51	
52 ≈ 1 × 10 ³⁶ 53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		
53 (a) 4.9 × 10 ⁻⁶ pc; (b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		
(b) 1.6 × 10 ⁻⁵ ly 54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	52	$\approx 1 \times 10^{36}$
54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	53	(a) 4.9×10^{-6} pc;
54 (a) 11.3 m ² /L; (b) 1.13 × 10 ⁴ m ⁻¹ ; (c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		(b) 1.6×10^{-5} ly
(c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	54	
(c) 2.17 × 10 ⁻³ gal/ft ² ; (d) number of gallons to cover a square foot 55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		(b) $1.13 \times 10^4 \mathrm{m}^{-1}$;
55 (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) 0.26 L 56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		(c) $2.17 \times 10^{-3} \text{ gal/ft}^2$;
(b) 0.37 standard bottle; (c) 0.26 L 56		(d) number of gallons to cover a square foot
(c) 0.26 L 56	55	(a) 3 nebuchadnezzars, 1 methuselah;
56 4.4 57 10.7 habaneros 58 1.2 m 59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;		(b) 0.37 standard bottle;
57		(c) 0.26 L
58	56	4.4
59 700 to 1500 oysters 60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	57	10.7 habaneros
60 (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart; (c) 2 teaspoons;	58	1.2 m
(b) 0.5 quart;(c) 2 teaspoons;	59	700 to 1500 oysters
(c) 2 teaspoons;	60	(a) 2.5 cups, 2 teaspoons;
		(b) 0.5 quart;
(d) 1 teaspoon		(c) 2 teaspoons;
· / 1		(d) 1 teaspoon

Chapter 2 Answers

1	13 m
2	(a) 1.74 m/s;
	(b) 2.14 m/s
3	(a) +40 km/h;
	(b) 40 km/h
4	48 km/h

	[() 0
5	(a) 0;
	(b) –2 m;
	(c) 0;
	(d) 12 m;
	(e) $+12$ m;
	(f) +7 m/s
6	5.554 s
7	60 km
8	(a) 0.50 m/s; (b) 10 s
9	1.4 m
10	(a) method 1; (b) 5.76×10^{-4}
11	128 km/h
12	(a) 48.0 m; (b) 2.5 m/s; (c) downstream
13	(a) 73 km/h;
	(b) 68 km/h;
	(c) 70 km/h;
	(d) 0
14	5.9 m
15	(a) -6 m/s;
	(b) -x direction;
	(c) 6 m/s;
	(d) decreasing;
	(e) 2 s;
	(f) no
16	(a) 0;
	(b) 4.0 m;
	(c) -0.82 s;
	(d) 0.82 s;
	(f) +20t;
	(g) increase
17	(a) 28.5 cm/s;
	(b) 18.0 cm/s;
	(c) 40.5 cm/s;
	(d) 28.1 cm/s;
	(e) 30.3 cm/s
18	(a) 54 m;
	(b) 18 m/s;
	(c) -12 m/s^2 ;
	(d) 64 m;
	(e) 4.0 s;
	(f) 24 m/s;
	(g) 2.0 s;
	(h) -24 m/s^2 ;
	(i) 18 m/s
19	-20 m/s^2

20	(-) 1 2 -:
20	(a) 1.2 s;
	(b) 0;
	(c) positive;
21	(d) negative
21	(a) 1.10 m/s;
	(b) 6.11 mm/s^2 ;
	(c) 1.47 m/s;
	(d) 6.11 mm/s^2
22	(a) m/s^2 ;
	(b) m/s ³ ;
	(c) 1.0 s;
	(d) 82 m;
	(e) -80 m;
	(f) 0;
	(g) -12 m/s;
	(h) -36 m/s;
	(i) -72 m/s;
	$(j) -6 \text{ m/s}^2;$
	$(k) -18 \text{ m/s}^2;$
	$(1) -30 \text{ m/s}^2$;
	$(m) -42 \text{ m/s}^2$
23	$1.62 \times 10^{15} \mathrm{m/s^2}$
24	(a) $(2.6 \times 10^4)g$; (b) $(1.3 \times 10^2)g$
25	(a) 30 s;
	(b) 300 m
26	(a) 0.100 m
27	(a) +1.6 m/s;
	(b) +18 m/s
28	(a) 5.00 s;
	(b) 61.5 m
29	(a) 10.6 m;
	(b) 41.5 s
30	(a) 2.5 s
31	(a) 3.1×10^6 s;
	(b) 4.6×10^{13} m
32	21 <i>g</i>
33	(a) 3.56 m/s^2 ;
	(b) 8.43 m/s
34	(a) -50 km/h;
	$(b) -2.0 \text{ m/s}^2$
35	0.90 m/s^2
36	(a) 56.6 s;
	(b) 31.8 m/s
37	(a) 4.0 m/s^2 ;
	(b) +x

38	(a) 32.9 m/s;
36	(a) 32.9 H/s, (b) 49.1 s;
	(b) 49.1 s, (c) 11.7 m/s
39	(a) -2.5 m/s^2 ;
39	
	(b) 1;
	(d) 0;
40	(e) 2 (a) either;
40	
41	(b) neither 40 m
42	(a) 15.0 m;
42	(a) 13.0 lii; (b) 94 km/h
43	(a) 0.994 m/s^2
	` '
44	(a) 3.70 m/s;
	(b) 1.74 m/s;
15	(c) 0.154 m
45	(a) 31 m/s;
1.0	(b) 6.4 s
46	(a) 183 m/s;
47	(b) no
47	(a) 29.4 m;
40	(b) 2.45 s
48	(a) 1.54 s;
40	(b) 27.1 m/s
49	(a) 5.4 s;
50	(b) 41 m/s
51	9.6 m/s
31	(a) 20 m;
52	(b) 59 m
52	(a) 0.45 s;
	(b) 38 m/s;
52	(c) 42 m/s
53	4.0 m/s
54	(a) 12.3 m/s
55	(a) 857 m/s^2 ;
56	(b) up 3.0 m/s
57	(a) $1.26 \times 10^3 \text{ m/s}^2$;
50	(b) up
58	(a) 3.41 s;
50	(b) 57 m
59	(a) 89 cm;
60	(b) 22 cm
60	26 m
61	20.4 m

62 (a) 350 ms; (b) 82 ms 63 2.34 m 64 (a) 8.0 m/s ² ; (b) 20 m/s 65 (a) 2.25 m/s; (b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m; (c) 82.3 m
63 2.34 m 64 (a) 8.0 m/s ² ; (b) 20 m/s 65 (a) 2.25 m/s; (b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
64 (a) 8.0 m/s ² ; (b) 20 m/s 65 (a) 2.25 m/s; (b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(b) 20 m/s 65 (a) 2.25 m/s; (b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s²; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
65 (a) 2.25 m/s; (b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s²; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(b) 3.90 m/s 66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s²; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
66 (a) 0.13 m; (b) 0.50 m 67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s²; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
67 0.56 m/s 68 5.0 m/s 69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s²; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
69 100 m 70 15.6 m/s 71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
70
71 (a) 2.00 s; (b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(b) 12 cm; (c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(c) -9.00 cm/s ² ; (d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(d) right; (e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(e) left; (f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
(f) 3.46 s 72 (a) 15.7 m/s; (b) 12.5 m;
72 (a) 15.7 m/s; (b) 12.5 m;
(b) 12.5 m;
(c) 82.3 m
73 (a) 82 m;
(b) 19 m/s
74 1.3 s
75 (a) 0.74 s ;
(b) 6.2 m/s^2
76 (a) D_{23}/v_p ; (b) $t_r + v_p/2a + (D_{12} - d)/v_p$
(a) 3.1 m/s ² ;
(b) 45 m; (c) 13 s
78 yes, 0, 10 m/s
76 yes, 0, 10 m/s 79 17 m/s
80 (a) 5.0 m/s ² ;
(b) 4.0 s;
(c) 6.0 s;
(d) 90 m
81 +47 m/s
82 39 m/s
83 (a) 1.23 cm;
(b) 4 times;
(c) 9 times;
(d) 16 times;
(e) 25 times
84 (a) 25g;
(b) 400 m

0.7	
85	25 km/h
86	(a) 18 m/s;
	(b) 83 m
87	1.2 h
88	(a) 5.00 m/s;
	(b) 1.67 m/s^2 ;
	(c) 7.50 m
89	4 <i>H</i>
90	(a) 15 m;
	(b) 2.0 m/s;
	$(c) -2.0 \text{ m/s}^2;$
	(d) 3.5 m/s;
	(e) 0
91	(a) 3.2 s;
71	(b) 1.3 s
92	(a) 60.6 s;
	(b) 36.3 m/s
93	(a) 8.85 m/s;
	(b) 1.00 m
94	34 m
95	(a) 2.0 m/s^2 ;
	(a) 2.0 m/s; (b) 12 m/s;
	(c) 45 m
96	(a) 38.1 m;
	(a) 36.1 m, (b) 9.02 m/s;
	(c) down;
	(d) 14.5 m/s;
97	(e) up
91	(a) 48.5 m/s;
	(b) 4.95 s;
	(c) 34.3 m/s;
0.0	(d) 3.50 s
98	1.5 s
99	22.0 m/s
100	(a) 17 s;
101	(b) 290 m
101	(a) $v = (v_0^2 + 2gh)^{0.5}$; (b) $t = [(v_0^2 + 2gh)^{0.5} - v_0]/g$;
	(b) $t = [(v_0^2 + 2gh)^{0.5} - v_0]/g;$
	(c) same as (a);
400	(d) $t = [(v_0^2 + 2gh)^{0.5} + v_0]/g$, greater
102	8.4 m
103	414 ms
104	(a) 80 m/s;
	(b) 110 m/s;
	(c) 20 m/s^2
105	90 m

106	(a) 3.0 s;
	(b) 9.0 m
107	0.556 s
108	2.78 m/s^2
109	(a) 0.28 m/s^2 ;
	(b) 0.28 m/s^2
110	94 m
111	(a) 10.2 s;
	(b) 10.0 m
112	3.75 ms
113	(a) 5.44 s;
	(b) 53.3 m/s;
	(c) 5.80 m
114	(a) 9.08 m/s^2 ;
	(b) 0.926 <i>g</i> ;
	(c) 6.12 s;
	(d) $15.3T_r$;
	(e) braking;
	(f) 5.56 m
115	2.3 cm/min
116	217 m/s
117	0.15 m/s
118	(a) 3.5; (b) $(5.0 \text{ m})/v_s$
119	(a) 1.0 cm/s; (b) 1.6 cm/s, 1.1 cm/s, 0; (c) -0.79
	cm/s^2 ; (d) 0, -0.87 cm/s ² , -1.2 cm/s ²

Chapter 3 Answers

1	(a) -2.5 m;
	(b) -6.9 m
2	(a) 13 m;
	(b) 7.5 m
3	(a) 47.2 m;
	(b) 122°
4	(a) 0.349 rad;
	(b) 0.873 rad;
	(c) 1.75 rad;
	(d) 18.9°;
	(e) 120°;
	(f) 441°
5	(a) 156 km;
	(b) 39.8° west of due north
6	(a) 4.28 m;
	(b) 11.7 m

7	(a) parallel;
,	(b) antiparallel;
	(c) perpendicular
8	(b) 3.2 km;
	(c) 41° south of due west
9	(a) $(3.0 \text{ m})\hat{\mathbf{i}} - (2.0 \text{ m})\hat{\mathbf{j}} + (5.0 \text{ m})\hat{\mathbf{k}};$
	(b) $(5.0 \text{ m})\hat{i} - (4.0 \text{ m})\hat{j} - (3.0 \text{ m})\hat{k}$;
	(c) $(-5.0 \text{ m})\hat{i} + (4.0 \text{ m})\hat{j} + (3.0 \text{ m})\hat{k}$
10	(a) 12 m;
	(b) -5.8 m;
	(c) -2.8 m
11	(a) $(-9.0 \text{ m})\hat{\mathbf{i}} + (10 \text{ m})\hat{\mathbf{j}};$
	(b) 13 m;
	(c) 132°
12	(a) 81 km;
	(b) 40° north of due east
13	4.74 km
14	(a) -80 m;
	(b) 110 m;
	(c) 143 m;
	(d) 168°
15	(a) 1.59 m;
	(b) 12.1 m;
	(c) 12.2 m;
1.0	(d) 82.5°
16	(a) $(8.0 \text{ m})\hat{i} + (2.0 \text{ m})\hat{j}$;
	(b) 8.2 m;
	(c) 14°;
	(d) $(2.0 \text{ m})\hat{i} - (6.0 \text{ m})\hat{j}$;
	(e) 6.3 m;
17	(f) –72°
17	(a) 38 m;
	(b) -37.5°; (c) 130 m;
	(c) 130 lii, (d) 1.2°;
	(e) 62 m; (f) 130°
18	(a) 26.6 m;
10	(a) 20.0 iii, (b) -151°
19	5.39 m at 21.8° left of forward
20	(a) 5.0 km;
20	(a) 3.0 km, (b) 4.3° south of due west
	(0) 1.5 South of due west

21	(a) 70.0 am:
21	(a) -70.0 cm;
	(b) 80.0 cm;
	(c) 141 cm;
22	(d) -172°
22	(a) $(1.28 \text{ m})\hat{i} + (6.60 \text{ m})\hat{j}$;
	(b) 6.72 m;
	(c) 79.0°;
22	(d) 1.38 rad
23	3.2
24	2.2 m
25	2.6 km
26	(a) $(-3.18 \text{ m})\hat{i} + (4.72 \text{ m})\hat{j}$;
	(b) 5.69 m;
	(c) +124°
27	(a) $8\hat{i} + 16\hat{j}$;
	(b) $2\hat{i} + 4\hat{j}$
28	(a) 0.84 m;
	(b) 79° south of due east
29	(a) 7.5 cm; (b) 90°; (c) 8.6 cm; (d) 48°
30	(a) 5.0 m;
	(b) -37°;
	(c) 10 m;
	(d) 53°;
	(e) 11 m;
	(f) 27°;
	(g) 11 m;
	(h) 80°;
	(i) 11 m;
	(j) 260°;
	(k) 180°
31	(a) 9.51 m;
	(b) 14.1 m;
	(c) 13.4 m;
	(d) 10.5 m
32	(a) $a\hat{\mathbf{i}} + a\hat{\mathbf{j}} + a\hat{\mathbf{k}}$;
	(b) $-a\hat{i} + a\hat{i} + a\hat{k}$:
	$(c) a\hat{\mathbf{i}} - a\hat{\mathbf{j}} + a\hat{\mathbf{k}};$
	(c) $a\hat{\mathbf{i}} - a\hat{\mathbf{j}} + a\hat{\mathbf{k}};$ (d) $-a\hat{\mathbf{i}} - a\hat{\mathbf{j}} + a\hat{\mathbf{k}};$
	(e) 54.7°;
	(f) $3^{0.5}a$
L	1 * '

22	(a) 12.
33	(a) 12;
	(b) +z;
	(c) 12;
	(d) -z;
	(e) 12;
	(f) + z
34	(a) 2.0k;
	(b) 26;
	(c) 46;
	(d) 5.8
35	(a) -18.8 units;
	(b) 26.9 units, +z direction
36	0
37	(a) -21;
	(b) –9;
	(c) $5\hat{i} - 11\hat{j} - 9\hat{k}$
38	540
39	70.5°
40	(a) 2.81 m^2 ;
	(b) $(1.43 \text{ m}^2)\hat{\mathbf{i}} + (4.86 \text{ m}^2)\hat{\mathbf{j}} - (2.48 \text{ m}^2)\hat{\mathbf{k}};$
	(c) 63.5°
41	22°
42	(a) 31k;
	(b) 8.0;
	(c) 33;
	(d) 1.6
43	(a) 3.00 m;
	(b) 0;
	(c) 3.46 m;
	(d) 2.00 m;
	(e) -5.00 m;
	(f) 8.66 m;
	(g) -6.67;
	(h) 4.33
44	$-3.0\hat{i} - 3.0\hat{j} - 4.0\hat{k}$
45	(a) -83.4;
	(b) $(1.14 \times 10^3)\hat{k}$;
	(c) 1.14×10^3 , θ not defined, $\phi = 0^\circ$;
	(d) 90.0°;
	(e) $-5.14\hat{i} + 6.13\hat{j} + 3.00\hat{k}$;
	(f) 8.54, $\theta = 130^{\circ}$, $\phi = 69.4^{\circ}$
46	(a) 4.2 m;
	(b) 50° north of due east;
	(c) 8.0 m;
	(d) 24° north of due west
·	1 3 7

47	(a) 1409.
4/	(a) 140°;
	(b) 90.0°;
	(c) 99.1°
48	(a) 57°;
	(b) 2.2 m;
	(c) -4.5 m;
	(d) -2.2 m;
	(e) 4.5 m
49	(a) 103 km;
	(b) 60.9° north of due west
50	(a) +x direction;
	(b) +y direction;
	(c) 0;
	(d) 0;
	(e) +z direction;
	(f) –z direction;
	(g) d_1d_2 ;
	(h) d_1d_2 ;
	(i) $d_1d_2/4$;
	(j) +z direction
51	(a) 27.8 m;
	(b) 13.4 m
52	(a) $(9.0 \text{ m})\hat{i} + (6.0 \text{ m})\hat{j} - (7.0 \text{ m})\hat{k};$
	(b) 123°;
	(c) -3.2 m;
	(d) 8.2 m
53	(a) 30;
	(b) 52
54	(a) 0;
	(b)-16;
	(c) -9
55	(a) -2.83 m;
	(b) -2.83 m;
	(c) 5.00 m;
	(d) 0;
	(e) 3.00 m;
	(f) 5.20 m;
	(g) 5.17 m;
	(h) 2.37 m;
	(i) 5.69 m;
	(j) 25° north of due east;
	(k) 5.69 m;
	(1) 25° south of due west
L	1 //

56	(a) $(10.0 \text{ m})\hat{i} + (1.63 \text{ m})\hat{j}$;
	(b) 10.2 m;
	(c) 9.24°
57	4.1
58	(a) 10 m;
	(b) north;
	(c) 7.5 m;
	(d) south
59	(a) $(9.19 \text{ m})\hat{i}' + (7.71 \text{ m})\hat{j}';$
	(b) $(14.0 \text{ m})\hat{i}$ + $(3.41 \text{ m})\hat{j}$
60	$(a) 9\hat{i} + 12\hat{j};$
	(b) $3\hat{i} + 4\hat{j}$
61	(a) $11\hat{i} + 5.0\hat{j} - 7.0\hat{k}$;
01	(b) 120°;
	(c) -4.9;
	(d) 7.3
62	(a) 1.8 m;
02	(b) 69° north of due east
63	(a) 3.0 m ² ;
03	(a) 5.0 m, (b) 52 m ³ ;
61	(c) $(11 \text{ m}^2)\hat{\mathbf{i}} + (9.0 \text{ m}^2)\hat{\mathbf{j}} + (3.0 \text{ m}^2)\hat{\mathbf{k}}$
64	(a) 6.42 m;
	(b) no;
	(c) yes;
	(d) yes;
	(e) a possible answer: $(4.30 \text{ m})\hat{i} + (3.70 \text{ m})\hat{j} + (3.00 \text{ m})\hat{j}$
	m)k;
	(f) 7.96 m
65	(a) $(-40\hat{i} - 20\hat{j} + 25\hat{k})$ m;
	(b) 45 m
66	(a) + y;
	(b) -y;
	(c) 0;
	(d) 0;
	(e) +z;
	(f) -z;
	(g) <i>ab</i>
	(h) <i>ab</i> ;
	(i) ab/d ;
	(j) + z
67	(a) 0;
	(b) 0;
	(c)-1;
	(d) west;
	(e) up;
	(f) west

68	Walpole (where the state prison is located)
69	(a) 168 cm;
09	
70	(b) 32.5°
70	(a) 370 m;
	(b) 36° north of due east;
	(c) 425 m;
	(d) the distance
71	(a) 15 m;
	(b) south;
	(c) 6.0 m;
	(d) north
72	(a) –28 cm;
	(b) –28 cm;
	(c) 50 cm;
	(d) 0;
	(e) 30 cm;
	(f) 52 cm;
	(g) 52 cm;
	(h) 24 cm;
	(i) 57 cm;
	(j) 25° north of east;
	(k) 57 cm;
	(1) 25° south of west
73	(a) 2k; (b) 26; (c) 46; (d) 5.81
74	(a) 2.97 ; (b) $1.51\hat{i} + 2.67\hat{j} - 1.36\hat{k}$; (c) 48.5°
75	(a) up; (b) west; (c) south; (d) 1; (e) 0
76	3.6 m
77	(a) $(1300 \text{ m})\hat{i} + (2200 \text{ m})\hat{j} - (410 \text{ m})\hat{k}$; (b) $2.56 \times$
	10 ³ m
78	36.6
79	8.4

Chapter 4 Answers

1	(a) 6.2 m
2	(a) $(-5.0 \text{ m})\hat{i} + (8.0 \text{ m})\hat{j}$;
	(b) 9.4 m;
	(c) 122°;
	(e) $(8.0 \text{ m})\hat{i} - (8.0 \text{ m})\hat{j}$;
	(f) 11 m;
	(g) –45°
3	$(-2.0 \text{ m})\hat{i} + (6.0 \text{ m})\hat{j} - (10 \text{ m})\hat{k}$

4	(a) 14 cm;
-	(b) -135°;
	(c) 20 cm;
	(d) 90°;
	(d) 90 , (e) 0;
	(f) 0
5	(a) 7.59 km/h;
	(b) 22.5° east of due north
6	(a) $(3.00 \text{ m/s})\hat{i} - (8.00 \text{ m/s}^2)t\hat{j};$
	(a) $(3.00 \text{ m/s})\hat{i}$ (6.00 m/s) \hat{j} ;
	(c) 16.3 m/s;
	(d) –79.4°
7	$(-0.70 \text{ m/s})\hat{i} + (1.4 \text{ m/s})\hat{j} - (0.40 \text{ m/s})\hat{k}$
8	(a) 1.08×10^3 km;
	(b) 26.6° east of due south;
	(c) 480 km/h;
	(d) 26.6° east of due south;
	(e) 644 km/h
9	(a) 0.83 cm/s;
	(b) 0°;
	(c) 0.11 m/s;
	(d) -63°
10	(a) 3.50 m/s;
	(b) -0.125 m/s^2
11	(a) $(6.00 \text{ m})\hat{i} - (106 \text{ m})\hat{j}$;
	(b) $(19.0 \text{ m/s})\hat{\mathbf{i}} - (224 \text{ m/s})\hat{\mathbf{j}};$
	(c) $(24.0 \text{ m/s}^2)\hat{\mathbf{i}} - (336 \text{ m/s}^2)\hat{\mathbf{j}};$
	(d) -85.2°
12	(a) 56.6 m;
	(b) 45° north of due west (NW);
	(c) 1.89 m/s;
	(d) 45° north of due west (NW);
	(e) 0.471 m/s^2 ;
10	(f) 45° north of due east (NE)
13	(a) $(8 \text{ m/s}^2)t\hat{j} + (1 \text{ m/s})\hat{k};$
1.4	(b) $(8 \text{ m/s}^2)\hat{j}$ (a) $(-1.5 \text{ m/s}^2)\hat{i} + (0.50 \text{ m/s}^2)\hat{k}$;
14	(a) (-1.5 m/s) $)$ $)$ $+$ (0.50 m/s) $)$ $)$ $)$ $($ $)$ $)$ $)$ $($ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$
	(c) 162°
15	(a) $(-1.50 \text{ m/s})\hat{j}$;
13	(a) (-1.30 m/s) , (b) $(4.50 \text{ m})\hat{i} - (2.25 \text{ m})\hat{j}$
16	(a) $(-18 \text{ m/s}^2)\hat{i}$;
10	(a) (-18 lil/s)1, (b) 0.75 s;
	(c) never;
	(d) 2.2 s
<u> </u>	(*/ 5

17	(32 m/s)î
18	(a) 15.8 m/s;
10	(a) 13.6 m/s, (b) 42.6°
19	(a) $(72.0 \text{ m})\hat{\mathbf{i}} + (90.7 \text{ m})\hat{\mathbf{j}};$
19	(a) (72.0 m)1 + (90.7 m)J, (b) 49.5°
20	60°
21	(a) 18 cm;
21	(a) 18 cm, (b) 1.9 m
22	(a) 0.495 s;
22	(a) 0.433 s, (b) 3.07 m/s
23	(a) 3.03 s;
23	(a) 5.03 s, (b) 758 m;
	(c) 29.7 m/s
24	25.9 cm
25	43.1 m/s (155 km/h)
26	(a) 16.9 m;
20	(b) 8.21 m;
	(c) 27.6 m;
	(d) 7.26 m;
	(e) 40.2 m;
	(f) 0
27	(a) 10.0 s;
	(b) 897 m
28	(a) 51.8 m;
	(b) 27.4 m/s;
	(c) 67.5 m
29	78.5°
30	5.8 m/s
31	3.35 m
32	(a) 12.0 m;
	(b) 19.2 m/s;
	(c) 4.80 m/s;
22	(d) no
33	(a) 202 m/s;
	(b) 806 m;
	(c) 161 m/s;
34	(d) -171 m/s
35	(a) 21.4 m/s; (b) 24.9 m/s; (c) 16.3% 4.84 cm
36	(a) yes;
30	(a) yes, (b) 20 cm;
	(c) no;
	(d) 86 cm
<u> </u>	(u) 00 cm

	_
37	(a) 1.60 m;
	(b) 6.86 m;
	(c) 2.86 m
38	(a) 95 m;
	(b) 31 m
39	(a) 32.3 m;
	(b) 21.9 m/s;
	(c) 40.4° ;
	(d) below
40	(a) 24.95 m; (b) 25.02 m
41	56.4° error. This should be 55.5°
42	(a) 5.3 m; (b) 7.9 m; (c) 69 m
43	(a) 11 m;
	(b) 23 m;
	(c) 17 m/s;
	(d) 63°
44	(a) 0.205 s;
	(b) 0.205 s;
	(c) 20.5 cm;
	(d) 61.5 cm
45	(a) ramp;
	(b) 5.82 m;
	(c) 31.0°
46	70.7%
47	(a) yes;
	(b) 2.56 m
48	(a) 33.7 m;
	(b) 26.0 m/s;
	(c) 71.1°
49	(a) 31°;
	(b) 63°
50	(a) 20 m/s;
	(b) 36 m/s;
	(c) 74 m
51	(a) 2.3°; (b) 1.1 m; (c) 18°
52	14°
53	(a) 75.0 m;
	(b) 31.9 m/s;
	(c) 66.9°;
	(d) 25.5 m
54	42 m/s
55	the third
56	(a) 7.49 km/s;
	(b) 8.00 m/s^2

	() = 22
57	(a) 7.32 m;
	(b) west;
	(c) north
58	(a) 0.94 m;
	(b) 19 m/s;
	(c) 2.4 km/s^2 ;
	(d) 50 ms
59	(a) 12 s;
	(b) 4.1 m/s^2 ;
	(c) down;
	(d) 4.1 m/s^2 ;
	(e) up
60	(a) 0;
	(b) 0
61	(a) 1.3×10^5 m/s;
01	(a) $1.5 \times 10^{-1} \text{ m/s}^3$, (b) $7.9 \times 10^5 \text{ m/s}^2$;
	(c) increase
62	4.0 m/s^2
63	2.92 m
64	(a) 4.00 m;
<i>C</i> =	(b) 6.00 m
65	$(3.00 \text{ m/s}^2)\hat{\mathbf{i}} + (6.00 \text{ m/s}^2)\hat{\mathbf{j}}$
66	(a) 8.82 m;
	(b) 6.00 m
67	160 m/s ²
68	(a) 5.24 m/s^2 ;
	(b) 3.33 m/s^2
69	(a) 13 m/s^2 ;
	(b) eastward;
	(c) 13 m/s^2 ;
	(d) eastward
70	(a) 5 km/h;
	(b) +x;
	(c) 1 km/h;
	(d) -x
71	1.67
72	130°
73	(a) $(80 \text{ km/h})\hat{i} - (60 \text{ km/h})\hat{j}$;
	(b) 0°;
	(c) answers do not change
74	240 km/h
75	32 m/s
76	(a) 185 km/h;
, 0	(b) 22° south of due west
77	60°
11	UU

	T
78	(a) 24.8 m/s;
	(b) 83.8° north of due east;
	(c) 0.40 m/s^2 ;
	(d) 60.0° north of due east
79	(a) 38 knots;
	(b) 1.5° east of due north;
	(c) 4.2 h;
	(d) 1.5° west of due south
80	(a) 7.2 m/s;
	(b) 16° west of due north;
	(c) 29 s (not 28 s)
81	(a) $(-32 \text{ km/h})\hat{i} - (46 \text{ km/h})\hat{j}$;
	(b) $[(2.5 \text{ km}) - (32 \text{ km/h})t]\hat{i} + [(4.0 \text{ km}) - (46 \text{ km/h})t]\hat{i}$
	$[km/h]t]\hat{j};$
	(c) 0.084 h;
	(d) 2×10^2 m
82	(a) 37° west of due north;
	(b) 62.6 s
83	$(a) -30^{\circ};$
	(b) 69 min;
	(c) 80 min;
	(d) 80 min;
	(e) 0°;
	(f) 60 min
84	(a) 10 m/s;
	(b) 19.6 m/s;
	(c) 40 m;
	(d) 40 m
85	(a) 2.7 km;
	(b) 76° clockwise
86	(a) 1030 m;
	(b) west
87	(a) 44 m;
	(b) 13 m;
	(c) 8.9 m
88	143 km/h
89	(a) 45 m;
	(b) 22 m/s
90	23 ft/s
91	(a) 2.6×10^2 m/s;
	(b) 45 s;
	(c) increase
92	(a) 19 m/s;
	(b) 35 rev/min;
	(c) 1.7 s

93	(a) 63 km;
	(b) 18° south of due east;
	(c) 0.70 km/h;
	(d) 18° south of due east;
	(e) 1.6 km/h;
	(f) 1.2 km/h;
	(g) 33° north of due east
94	(a) A: 10.1 km, 0.556 km;
	B: 12.1 km, 1.51 km;
	C: 14.3 km, 2.68 km;
	D: 16.4 km, 3.99 km;
	E: 18.5 km, 5.53 km;
	(b) the rocks form a curtain that curves upward and
	away from you
95	(a) 1.5;
	(b) (36 m, 54 m)
96	(a) 20.3 m/s;
	(b) 21.7 m/s
97	(a) 62 ms;
	(b) $4.8 \times 10^2 \text{ m/s}$
98	$(-2.69 \text{ m/s})\hat{i} + (-1.80 \text{ m/s})\hat{j}$
99	2.64 m
100	$(-2.1 \text{ m/s}^2)\hat{\mathbf{i}} + (2.8 \text{ m/s}^2)\hat{\mathbf{j}}$
101	(a) 2.5 m;
	(b) 0.82 m;
	(c) 9.8 m/s^2 ;
	$(d) 9.8 \text{ m/s}^2$
102	(a) 6.7×10^6 m/s;
	(b) 1.4×10^{-7} s
103	(a) 6.79 km/h;
	(b) 6.96°
104	7.0 m/s
105	(a) 16 m/s;
	(b) 23°;
	(c) above;
	(d) 27 m/s;
	(e) 57°;
	(f) below
106	(a) $(-7.0 \text{ m})\hat{i} + (12 \text{ m})\hat{j}$;
	(b) xy plane
<u> </u>	\-/\

107	() 4.2 450
107	(a) 4.2 m, 45°;
	(b) 5.5 m, 68°;
	(c) 6.0 m, 90°;
	(d) 4.2 m, 135°;
	(e) 0.85 m/s, 135°;
	(f) 0.94 m/s, 90°;
	(g) 0.94 m/s, 180°;
	(h) 0.30 m/s^2 , 180° ;
	(i) 0.30 m/s^2 , 270°
108	(a) 7.3 km;
	(b) 80 km/h
109	(a) 5.4×10^{-13} m;
	(b) decrease
110	36 s, no
111	(a) 0.034 m/s^2 ;
	(b) 84 min
112	longer by about 1 cm
113	(a) 8.43 m;
	(b) -129°
114	(a) 0, 0; 2.0 m, 1.4 m; 4.0 m, 2.0 m; 6.0 m, 1.4 m;
	8.0 m, 0;
	(b) 2.0 m/s, 1.1 m/s; 2.0 m/s, 0; 2.0 m/s, -1.1 m/s;
	(c) 0 , -0.87 m/s ² ; 0 , -1.2 m/s ² ; 0 , -0.87 m/s ²
115	(a) 2.00 ns;
	(b) 2.00 mm;
	(c) $1.00 \times 10^7 \text{ m/s}$;
	(d) $2.00 \times 10^6 \text{m/s}$
116	(a) 76 m;
	(b) 4.2 s
117	(a) 24 m/s;
	(b) 65°
118	48 s
119	93° from the car's direction of motion
120	(a) 22 m;
4.5.1	(b) 15 s
121	(a) 4.6×10^{12} m;
	(b) 2.4×10^5 s
122	(a) 55.6°;
	(b) 6.85 m;
	(c) 6.78 m/s
123	(a) 6.29°;
	(b) 83.7°

_	
124	(c) 2.10 s;
	(d) 25.7 m;
	(e) 25.7 m;
	(f) 0;
	(g) 1.71 s;
	(h) 13.5 m;
	(i) 4.76 m;
	(j) 12.6 m
125	$3 \times 10^1 \mathrm{m}$
126	(a) 14 m/s;
	(b) 14 m/s;
	(c) -10 m;
	(d) -4.9 m;
	(e) +10 m;
	(f) -4.9 m
127	(a) $(6.0\hat{i} + 4.2\hat{j})$ m/s;
	(b) $(18\hat{i} + 6.3\hat{j})$ m
128	67 km/h
129	(a) 38 ft/s;
	(b) 32 ft/s;
	(c) 9.3 ft
130	(a) from 75° east of due south;
	(b) 30° east of due north. For a second set of
	solutions, substitute west for east in both answers.
131	(a) 11 m;
	(b) 45 m/s
132	(a) $(10\hat{i} + 10\hat{j})$ m/s;
	(b) 8.0 m/s^2 ;
	(c) 2.7 s;
	(d) 2.2 s
133	(a) 5.8 m/s; (b) 17 m; (c) 67°
134	(a) 48 m, west of center; (b) 48 m, west of center
135	(a) 32.4 m; (b) -37.7 m
136	(a) 96.2 m; (b) 4.31 m; (c) 86.5 m, 25.1 m
137	88.6 km/h
138	(a) -30°; (b) 69 min; (c) 80 min; (d) 80 min; (e) 0°;
	(f) 60 min
	1 2 2

Chapter 5 Answers

1	2.9 m/s^2
2	(a) 0;
	(b) $(4.0 \text{ m/s}^2)\hat{\mathbf{j}}$; (c) $(3.0 \text{ m/s}^2)\hat{\mathbf{i}}$
	$(c) (3.0 \text{ m/s}^2)\hat{i}$

3	(a) 1.88 N;
3	(b) 0.684 N:
	(c) $(1.88 \text{ N})\hat{i} + (0.684 \text{ N})\hat{i}$
4	(c) $(1.88 \text{ N})\hat{i} + (0.684 \text{ N})\hat{j}$ $(-2 \text{ N})\hat{i} + (6 \text{ N})\hat{j}$
5	(a) $(0.86 \text{ m/s}^2)\hat{i} - (0.16 \text{ m/s}^2)\hat{j}$;
	(b) 0.88 m/s ² ;
	(c) -11°
6	241 N
7	(a) $(-32.0 \text{ N})\hat{i} - (20.8 \text{ N})\hat{j}$;
	(b) 38.2 N;
8	(c) -147° (-34î - 12ĵ) N
9	(a) 8.37 N; (b) -133°; (c) -125°
10	(-7.98 N)î
11	9.0 m/s^2
12	56°
13	(a) 4.0 kg;
	(b) 1.0 kg;
	(c) 4.0 kg;
	(d) 1.0 kg
14	(a) 2.0 N;
	(b) down
15	(a) 108 N;
	(b) 108 N;
	(c) 108 N
16	(a) 0.26;
	(b) decrease
17	(a) 42 N;
	(b) 72 N;
10	(c) 4.9 m/s^2
18	0.22 m/s
19	$1.2 \times 10^5 \text{ N}$
20	$6.8 \times 10^3 \mathrm{N}$
21	(a) 11.7 N;
	(b) -59.0°
22	(a) 0.90 ^h m/2 (b) 2.25 ^h m/2 (c) 1.27 m/4) (5.56
22	(a) $-9.80\hat{j}$ m/s ² ; (b) $2.35\hat{j}$ m/s ² ; (c) 1.37 s; (d) (-5.56)
	$\times 10^{-3} \text{ N})\hat{j};$
22	(e) $(1.333 \times 10^{-3} \text{ N})\hat{j}$ (a) $(285 \text{ N})\hat{i} + (705 \text{ N})\hat{j};$
23	
	(b) (285 N)î - (115 N)ĵ; (c) 307 N;
	(d) -22.0° ; (e) 3.67 m/s^2 ;
	(f) –22.0°

24	(a) 0;
	(b) (20 N)î;
	$(c) (-20 \text{ N})\hat{i};$
	$(d) (-40 \text{ N})\hat{i};$
	$(e) (-60 \text{ N})\hat{i};$
25	(a) 0.022 m/s^2 ;
	(b) 8.3×10^4 km;
	(c) 1.9×10^3 m/s
26	$3.1 \times 10^2 \mathrm{N}$
27	1.5 mm
28	(a) 5.5 kN;
	(b) 2.7 s;
	(c) 4.0;
	(d) 2.0
29	(a) 494 N;
	(b) up;
	(c) 494 N;
	(d) down
30	$2.1 \times 10^2 \mathrm{N}$
31	(a) 1.18 m;
	(b) 0.674 s;
	(c) 3.50 m/s
32	(a) $(1.70 \text{ N})\hat{i} + (3.06 \text{ N})\hat{j}$;
	(b) $(1.70 \text{ N})\hat{i} + (3.06 \text{ N})\hat{j};$
	(c) $(2.02 \text{ N})\hat{i} + (2.71 \text{ N})\hat{j}$
33	$1.8 \times 10^4 \mathrm{N}$
34	(a) 566 N;
	(b) 1.13 kN
35	(a) 46.7° ; (b) 28.0°
36	(a) 68 N;
	(b) 73 N
37	(a) 0.62 m/s^2 ;
	(b) 0.13 m/s^2 ;
	(c) 2.6 m
38	(a) +68 N;
	(b) +28 N;
	(c) -12 N
39	(a) 2.2×10^{-3} N;
	(b) $3.7 \times 10^{-3} \text{ N}$
40	47.4 N
41	(a) 1.4 m/s^2 ;
	(b) 4.1 m/s
42	(a) 6.8 kN;
	(b) 201°
	1 ` '

12	(a) 1 22 M
43	(a) 1.23 N;
	(b) 2.46 N;
	(c) 3.69 N;
	(d) 4.92 N;
	(e) 6.15 N;
	(f) 0.250 N
44	(a) 7.3 kg;
4.5	(b) 89 N
45	(a) 31.3 kN;
4.5	(b) 24.3 kN
46	16.0 kN
47	$6.4 \times 10^3 \mathrm{N}$
48	176 N
49	(a) 2.18 m/s^2 ;
	(b) 116 N;
	(c) 21.0 m/s^2
50	(a) 36.8 N;
	(b) 19.1 cm
51	(a) 3.6 m/s^2 ;
	(b) 17 N
52	5.1 m/s
53	(a) 0.970 m/s^2 ;
	(b) 11.6 N;
	(c) 34.9 N
54	23 kg
55	(a) 1.1 N
56	(a) 2.50 m/s^2 ;
	(b) 30.0 N
57	(a) 0.735 m/s^2 ;
	(b) down;
	(c) 20.8 N
58	(a) 466 N;
	(b) 527 N;
	(c) 931 N;
	(d) 1.05 kN;
	(e) 931 N;
	(f) 1.05 kN;
	(g) 1.86 kN;
	(h) 2.11 kN
59	(a) 4.9 m/s^2 ;
	(b) 2.0 m/s^2 ;
	(c) up;
	(d) 120 N

60	(a) -5.90×10^{-4}
	m/s^3 ; (b) $5.90 \times 10^{-4} m/s^3$
61	2Ma/(a+g)
62	(a) 12.76 m/s; (b) 12.54 m/s; (c) 1.69%
63	(a) 8.0 m/s;
0.5	$\begin{array}{c} \text{(a) 6.6 Mz s,} \\ \text{(b) } +x \end{array}$
64	(a) 3.1 N;
04	(a) 5.1 TV, (b) 15 N
65	(a) 0.653 m/s^3 ; (b) 0.896 m/s^3 ; (c) 6.50 s
66	18 kN
67	81.7 N
68	334.8 N
69	2.4 N
70	(a) 245 m/s^2 ;
	(b) 20.4 kN
71	16 N
72	$(3 \text{ N})\hat{\mathbf{i}} - (11 \text{ N})\hat{\mathbf{j}} + (4 \text{ N})\hat{\mathbf{k}}$
73	(a) 2.6 N;
	(b) 17°
74	2.2 kg
75	(a) 0;
	(b) 0.83 m/s^2 ;
	(c) 0
76	(b) $F/(m+M)$;
	(c) $FM/(m+M)$;
	(d) $F(m + 2M)/2(m + M)$
77	(a) 0.74 m/s^2 ;
	(b) 7.3 m/s^2
78	4.6 N
79	(a) 11 N;
	(b) 2.2 kg;
	(c) 0;
	(d) 2.2 kg
80	(a) 620 N;
	(b) 580 N
81	195 N
82	(a) $(1.0\hat{i} - 1.3\hat{j}) \text{ m/s}^2$;
	(b) 1.6 m/s^2 ;
	$(c) -50^{\circ}$
83	(a) 4.6 m/s^2 ;
	(b) 2.6 m/s^2
84	(a) $\cos \theta$,
	(b) $(\cos \theta)^{0.5}$
	(b) (cos b)

85	(a) rope breaks'
	(b) 1.6 m/s^2
86	(a) 7.4×10^2 N;
	(b) $2.8 \times 10^2 \mathrm{N}$;
	(c) 0;
	(d) 75 kg
87	(a) 65 N;
	(b) 49 N
88	(a) 3260 N;
	(b) 2.7×10^3 kg;
	(c) 1.2 m/s^2
89	(a) 4.6×10^3 N;
	(b) $5.8 \times 10^3 \text{ N}$
90	(a) $1.2 \times 10^2 \text{ m/s}^2$;
	(b) 12g;
	(c) 1.4×10^8 N;
	(d) 4.2 y
91	(a) $1.8 \times 10^2 \mathrm{N}$;
	(b) $6.4 \times 10^2 \mathrm{N}$
92	10 m/s^2
93	(a) 44 N;
	(b) 78 N;
	(c) 54 N;
	(d) 152 N
94	(a) $(5.0 \text{ m/s})\hat{i} + (4.3 \text{ m/s})\hat{j};$
	(b) $(15 \text{ m})\hat{i} + (6.4 \text{ m})\hat{j}$
95	(a) 4 kg;
	(b) 6.5 m/s^2 ;
0.1	(c) 13 N
96	16 N
97	(a) $(1.0\hat{i} - 2.0\hat{j})$ N;
	(b) 2.2 N;
	(c) -63°;
	(d) 2.2 m/s^2 ;
	(e) -63°

Chapter 6 Answers

1	36 m
2	0.58
3	(a) 2.0×10^2 N; (b) 1.2×10^2 N
	(b) $1.2 \times 10^2 \text{ N}$
4	0.53

	1
5	(a) 6.0 N;
	(b) 3.6 N;
	(c) 3.1 N
6	0.61
7	(a) 1.9×10^2 N;
	(b) 0.56 m/s^2
8	$1.6 \times 10^2 \mathrm{N}$
9	(a) 11 N;
	(b) 0.14 m/s^2
10	(a) 0; (b) 2.17 m/s^2
11	(a) 3.0×10^2 N;
	(b) 1.3 m/s^2
12	$2.8 \times 10^2 \mathrm{N}$
13	(a) 1.3×10^2 N;
	(b) no;
	(c) 1.1×10^2 N;
	(d) 46 N;
	(e) 17 N
14	(b) $3.0 \times 10^7 \text{N}$
15	2°
16	(a) 8.6 N;
	(b) 46 N;
	(c) 39 N
17	(a) $(17 \text{ N})\hat{i}$;
	(b) (20 N)î;
10	(c) (15 N)î
18	(a) 12.1 m/s;
10	(b) 19.4 m/s
19	(a) no; (b) (12 N) ² + (5 O N) ²
20	(b) $(-12 \text{ N})\hat{i} + (5.0 \text{ N})\hat{j}$
20	8.5 N
21	(a) 19°; (b) 3.3 kN
22	18°
23	0.37
24	0.54
25	$1.0 \times 10^2 \mathrm{N}$
26	(a) 147 N;
20	(a) 147 N, (b) same
27	(a) 0;
21	(a) 0, (b) $(-3.9 \text{ m/s}^2)\hat{i}$;
	$(c) (-3.5 \text{ m/s}^2) \hat{1}$
28	3.3 kg
29	(a) 66 N;
	(b) 2.3 m/s^2
L	(0) =.5 1110

30	(a) 74 N;
	(b) $(76 \text{ N})/(\cos \theta + 0.42 \sin \theta)$;
	(c) 23°;
	(d) 70 N
31	(a) 3.5 m/s^2 ;
	(b) 0.21 N
32	60°
33	9.9 s
34	(a) $(-6.1 \text{ m/s}^2)\hat{i}$;
	(b) $(-0.98 \text{ m/s}^2)\hat{i}$
35	$4.9 \times 10^2 \mathrm{N}$
36	3.75
37	(a) 3.2×10^2 km/h;
	(b) 6.5×10^2 km/h;
	(c) no
38	(a) 2×10^4 N;
	(b) 18g
39	2.3
40	(a) 66.0 m/s ; (b) $-2.20 \times 10^2 dC$
41	0.60
42	48 km/h
43	21 m
44	9.7 <i>g</i>
45	(a) light;
	(b) 778 N;
	(c) 223 N;
	(d) 1.11 kN
46	(a) 547 N;
	(b) 9.53°
47	(a) 10 s;
	(b) 4.9×10^2 N;
	(c) $1.1 \times 10^3 \text{ N}$
48	(a) 3.7 kN;
	(b) up;
	(c) 1.3 kN;
40	(d) down
49	$1.37 \times 10^3 \text{ N}$
50	(a) $4.03 \times 10^2 \text{N} \cdot \text{s/m}$;
71	(b) $-1.50 \times 10^3 \text{ N/s}$
51	2.2 km
52	(a) 3.7 kN;
	(b) up;
	(c) 2.3 kN;
	(d) down

53	12°
54	(a) $-(mv^2/r^2) dr$;
	(b) $(2mv/r) dv$;
	$\frac{(c) - (mv^3/\pi r^2) dT}{r^2}$
55	$2.6 \times 10^3 \text{ N}$
56	0.078
57	1.81 m/s
58	(a) 8.0×10^3 N; (b) 6.9×10^3 N; (c) 20 m/s; (d) 1.6
	$\times 10^4$ N; (e) no
59	(a) 8.74 N;
	(b) 37.9 N;
	(c) 6.45 m/s;
	(d) radially inward
60	(a) 1.05 N;
	(b) 3.62 m/s^2 ;
	(c) answers are the same except that the rod is
	under compression
61	(a) 27 N;
_	(b) 3.0 m/s^2
62	118 N
63	(b) 240 N;
- 1	(c) 0.60
64	(a) 210 N;
	(b) 44.0 m/s
65	(a) 69 km/h;
	(b) 139 km/h;
	(c) yes
66	8.8 N
67	$g(\sin\theta - 2^{0.5}\mu_k\cos\theta)$
68	(a) $v_{max} = [Rg(\tan \theta + \mu_s)/(1 - \mu_s \tan \theta)]^{0.5};$
	(c) 149 km/h;
<u></u>	(d) 76.2 km/h
69	3.4 m/s^2
70	(a) 0.40 N;
7.1	(b) 1.9 s
71	(a) 35.3 N;
	(b) 39.7 N;
72	(c) 320 N
72	0.74
73	(a) 7.5 m/s^2 ;
	(b) down; (c) 0.5 m/s^2 :
	(c) 9.5 m/s^2 ;
	(d) down

74	(a) 0.13 N;
/ -	(b) 0.12
75	(a) 3.0×10^5 N;
75	(a) 3.0 × 10 10, (b) 1.2°
76	20°
77	147 m/s
78	(a) 0.58;
70	(a) 0.58, (b) 0.54
79	(a) 13 N;
1)	(a) 13 13, (b) 1.6 m/s^2
80	6.2 kN
81	(a) 275 N;
01	(a) 273 N, (b) 877 N
82	178 km/h
83	(a) 84.2 N;
	(b) 52.8 N;
	(c) 1.87 m/s^2
84	(b) 55°;
	(c) increase;
	(d) 59°
85	3.4%
86	(a) lowest point;
	(b) 8.73 m/s
87	(a) 3.21×10^3 N;
	(b) yes
	old answer:
	$3.75 \times 10^3 \mathrm{N}$
88	9.4 N
89	(a) 222 N;
	(b) 334 N;
	(c) 311 N;
	(d) 311 N;
	(e) c, d
90	(a) 12 N;
	(b) 10 N;
	(c) 26 N;
	(d) 23 N;
	(e) 32 N;
	(f) 23 N;
	(g) d;
	(h) f;
01	(i) a, c, d
91	(a) $v_0^2/(4g\sin\theta)$;
	(b) no

92	(a) 11°;
	(b) 0.19
93	(a) 0.34;
	(b) 0.24
94	(a) 0.37;
	(b) $0.37 < \mu_s < 0.47$
95	(a) $\mu_k mg/(\sin \theta - \mu_k \cos \theta)$;
	(b) $\theta_0 = \tan^{-1} \mu_s$
96	(a) 0.96 m/s;
	(b) 0.021
97	0.18
98	(a) 2.1 m/s^2 ;
	(b) down the plane;
	(c) 3.9 m;
	(d) at rest
99	(a) 56 N;
	(b) 59 N;
	(c) $1.1 \times 10^3 \text{ N}$
100	(a) 0.11 m/s^2 ;
	(b) 0.23 m/s^2 ;
	(c) 0.041;
	(d) 0.029
101	0.76
102	(a) 100 N;
	(b) 245 N;
	(c) 86.6 N;
	(d) 195 N;
	(e) 50.0 N;
	(f) 158 N;
	(g) at rest;
	(h) slides;
102	(i) at rest
103	(a) bottom of circle;
104	(b) 9.5 m/s
104	(a) 6.80 s;
105	(b) 6.76 s
105	0.56

Chapter 7 Answers

1	(a) 2.9×10^7 m/s; (b) 2.1×10^{-13} J
2	$1.8 \times 10^{13} \mathrm{J}$

3	() 5 1014 T
3	(a) $5 \times 10^{14} \text{ J}$;
	(b) 0.1 megaton TNT;
4	(c) 8 bombs
4	(a) 1×10^5 megatons TNT;
	(b) 1×10^7 bombs
5	(a) 2.4 m/s;
	(b) 4.8 m/s
6	7.1 J
7	0.96 J
8	5.0 kJ
9	20 J
10	6.8 J
11	(a) 62.3°;
	(b) 118°
12	(a) 3.00 N;
	(b) 9.00 J
13	(a) 1.7×10^2 N;
	(b) 3.4×10^2 m;
	(c) -5.8×10^4 J;
	(d) 3.4×10^2 N;
	(e) 1.7×10^2 m;
	$(f) -5.8 \times 10^4 \text{ J}$
14	15.3 J
15	(a) 1.50 J;
	(b) increases
16	3.5 m/s
17	(a) 12 kJ;
	(b) -11 kJ;
	(c) 1.1 kJ;
	(d) 5.4 m/s
18	(a) 36 kJ;
	(b) $2.0 \times 10^2 \mathrm{J}$
19	25 J
20	45 N
21	(a) $-3Mgd/4$;
	(b) <i>Mgd</i> ;
	(c) Mgd/4;
22	(d) $(gd/2)^{0.5}$
22	(a) 8.84 kJ;
	(b) 7.84 kJ;
22	(c) 6.84 kJ
23	4.41 J
24	(a) 1.31 J; (b) 0.025 m/s
	(b) 0.935 m/s

25	() 25 0 1 4
25	(a) 25.9 kJ;
2.5	(b) 2.45 N
26	x = -4.9 cm and $x = +4.9 cm$
27	(a) 7.2 J;
	(b) 7.2 J;
	(c) 0;
	(d) -25 J
28	1.25 kJ
29	(a) 0.90 J;
	(b) 2.1 J;
	(c) 0
30	(a) 8.0 N;
	(b) 8.0 N/m
31	(a) 6.6 m/s;
	(b) 4.7 m
32	(a) 16 J;
	(b) 16 J;
	(c) 0;
	(d) –14 J
33	(a) 0.12 m;
	(b) 0.36 J;
	(c) -0.36 J;
	(d) 0.060 m;
	(e) 0.090 J
34	$8.0 \times 10^2 \mathrm{J}$
35	(a) 0;
	(b) 0
36	25 J
37	(a) 42 J;
	(b) 30 J;
	(c) 12 J;
	(d) $6.5 \text{ m/s}, +x \text{ axis};$
	(e) $5.5 \text{ m/s}, +x \text{ axis};$
	(f) $3.5 \text{ m/s}, +x \text{ axis}$
38	(a) 2.3 J;
	(b) 2.6 J
39	4.00 N/m
40	0.21 J
41	$5.3 \times 10^2 \mathrm{J}$
42	+41.7 J
43	(a) 0.83 J;
	(b) 2.5 J;
	(c) 4.2 J;
	(d) 5.0 W

44	(a) 9.0×10^2 J;
	(b) 1.1×10^2 W;
	(c) 2.3×10^2 W
45	$4.9 \times 10^2 \mathrm{W}$
46	$2.7 \times 10^5 \text{ W}$
47	(a) 1.0×10^2 J;
	(b) 8.4 W
48	(a) 0;
	(b) -3.5×10^2 W
49	$7.4 \times 10^2 \mathrm{W}$
50	(a) 28 W;
	(b) $(6 \text{ m/s})\hat{j}$
51	(a) 32.0 J;
	(b) 8.00 W;
	(c) 78.2°
52	(-T/3P) dP
53	(a) 1.20 J;
	(b) 1.10 m/s
54	(a) 12 J;
	(b) 4.0 m;
	(c) 18 J
55	(a) 1.8×10^5 ft·lb;
	(b) 0.55 hp
56	(a) 1.0×10^2 J;
	(b) 67 W;
	(c) 33 W
57	(a) 797 N;
	(b) 0;
	(c) -1.55 kJ;
	(d) 0;
	(e) 1.55 kJ;
	(f) F varies during displacement
58	(a) 590 J;
	(b) 0;
	(c) 0;
	(d) 590 J
59	(a) 11 J;
	(b) –21 J
60	(a) 2.1×10^2 J;
	(b) $2.1 \times 10^2 \text{J}$
61	-6 J
62	(a) 0.29 J;
	(b) -1.8 J;
	(c) 3.5 m/s;
	(d) 23 cm

63	(a) 314 J;
03	(a) 3143 , (b) -155 J;
	(b) -133 J, (c) 0;
	(d) 158 J
64	(a) 1.7 W;
04	
	(b) 0;
65	(c) -1.7 W (a) 98 N;
0.5	
	(b) 4.0 cm;
	(c) 3.9 J;
	(d) -3.9 J
66	$6.67 \times 10^5 \mathrm{J}$
67	(a) 23 mm;
	(b) 45 N
68	1.5 kJ
69	165 kW
70	(a) 6.0 N;
	(b) -2.5 N;
7.1	(c) 15 N
71	-37 J
72	(a) $v_f = (\cos \theta)^{0.5}$, with v_f in meters per second;
	(b) $v_f = (1 + \cos \theta)^{0.5}$;
	(c) $v_f = (1 - \cos \theta)^{0.5}$
73	(a) 13 J;
	(b) 13 J
74	(a) $c = 4$ m;
	(b) $c < 4 m$;
	(c) c > 4 m
75	235 kW
76	(a) 2.7×10^2 N;
	(b) $-4.0 \times 10^2 \text{ J}$;
	(c) 4.0×10^2 J;
	(d) 0;
	(e) 0
77	(a) 6 J;
	(b) 6.0 J
78	(b) $x = 3.00 \text{ m}$;
	(c) 13.5 J;
	(d) $x = 4.50$ m;
	(e) $x = 4.50 \text{ m}$
79	(a) 0.6 J;
	(b) 0;
	(c) -0.6 J
80	0.47 J
81	(a) 3.35 m/s; (b) 22.5 J; (c) 0; (d) 0; (e) 0.200 m

82	4.44 m/s
83	(a) $-5.20 \times 10^{-2} \text{ J}$; (b) -0.160 J
84	(a) 41.7 J; (b) 19.8 W; (c) 79.8°
85	6.63 m/s

Chapter 8 Answers

1	89 N/cm
2	(a) 0;
	(b) 170 kJ;
	(c) 340 kJ;
	(d) 170 kJ;
	(e) 340 kJ;
	(f) increase
3	(a) 167 J;
	(b) -167 J;
	(c) 196 J;
	(d) 29 J;
	(e) 167 J;
	(f) -167 J;
	(g) 296 J;
	(h) 129 J
4	(a) 1.51 J;
	(b) -1.51 J;
	(c) 0;
	(d) -1.51 J;
	(e) 1.51 J;
	(f) 0;
	(g) same
5	(a) 4.31 mJ;
	(b) -4.31 mJ;
	(c) 4.31 mJ;
	(d) -4.31 mJ;
	(e) all increase

	() O 15 I
6	(a) 0.15 J;
	(b) 0.11 J;
	(c) 0.19 J;
	(d) 38 mJ;
	(e) 75 mJ;
	(f) all the same
7	(a) 13.1 J;
	(b) -13.1 J;
	(c) 13.1 J;
	(d) all increase
8	(a) 184 J;
	(b) –184 J;
	(c) -184 J
9	(a) 17.0 m/s;
	(b) 26.5 m/s;
	(c) 33.4 m/s;
	(d) 56.7 m;
	(e) all the same
10	(a) 12.9 m/s;
	(b) 12.9 m/s;
	(c) increase
11	(a) 2.08 m/s;
	(b) 2.08 m/s;
	(c) increase
12	(a) 21.0 m/s;
	(b) 21.0 m/s;
	(c) 21.0 m/s
13	(a) 0.98 J;
	(b) -0.98 J;
	(c) 3.1 N/cm
14	(a) 2.98 m/s;
	(b) 4.21 m/s;
	(c) 2.98 m/s;
	(d) all the same
15	(a) 2.6×10^2 m;
	(b) same;
	(c) decrease
16	(a) 7.2 J;
	(b) -7.2 J;
	(c) 86 cm;
	(d) 26 cm
17	(a) 2.5 N;
	(b) 0.31 N;
	(c) 30 cm

10	(a) 2.20 m/s
18	(a) 2.29 m/s;
10	(b) same
19	(a) 784 N/m;
	(b) 62.7 J;
	(c) 62.7 J;
•	(d) 80.0 cm
20	(a) 5.0 m/s;
	(b) 79°;
	(c) 64 J
21	(a) 8.35 m/s;
	(b) 4.33 m/s;
	(c) 7.45 m/s;
	(d) both decrease
22	(a) 4.4 m;
	(b) same
23	(a) 4.85 m/s;
	(b) 2.42 m/s
24	10 cm
25	$-3.2 \times 10^2 \mathrm{J}$
26	(a) $U = 27 + 12x - 3x^2$;
	(b) 39 J;
	(c) -1.6 m;
	(d) 5.6 m
27	(a) no;
	(b) $9.3 \times 10^2 \text{N}$
28	(a) 2.8 m/s;
	(b) 2.7 m/s
29	(a) 35 cm;
	(b) 1.7 m/s
30	(a) 0.81 m/s;
	(b) 0.21 m;
	(c) 6.3 m/s^2 ;
	(d) up
31	(a) 39.2 J;
	(b) 39.2 J;
	(c) 4.00 m
32	1.0 Mj
33	(a) 2.40 m/s;
	(b) 4.19 m/s
34	9.20 m
35	(a) 39.6 cm;
	(b) 3.64 cm
36	1.25 cm
37	-18 mJ
38	(a) 8.37 m/s; (b) 12.6 m/s; (c) 7.67 m; (d) 1.73 m

20	() 2 1 /
39	(a) 2.1 m/s;
	(b) 10 N;
	(c) +x direction;
	(d) 5.7 m;
	(e) 30 N;
4.0	(f) -x direction
40	(a) $1.12(A/B)^{1/6}$;
	(b) repulsive;
41	(c) attractive
41	(a) -3.7 J;
	(c) 1.3 m;
	(d) 9.1 m;
	(e) 2.2 J;
	(f) 4.0 m; $x^{-x/4}$
	(g) $(4 - x)e^{-x/4}$;
42	(h) 4.0 m
42	(a) $5.6 \times 10^2 \text{ J}$;
	(b) $5.6 \times 10^2 \text{ J}$
43	(a) 5.6 J;
4.4	(b) 3.5 J
44	(a) 105 J;
	(b) 30.6 J;
45	(c) 34.4 J
45	(a) 30.1 J; (b) 30.1 J;
	(c) 0.225
46	
	20 ft·lb
47	0.53 J
48	75 J
49	(a) -2.9 kJ ;
	(b) $3.9 \times 10^2 \text{ J}$;
7 0	(c) 2.1×10^2 N
50	11 kJ
51	(a) 1.5 MJ;
	(b) 0.51 MJ;
	(c) 1.0 MJ;
	(d) 63 m/s
52	(a) 0.292 m;
	(b) 14.2 J
53	(a) 67 J;
	(b) 67 J;
<u> </u>	(c) 46 cm
54	(a) $1.5 \times 10^2 \text{ J}$;
	(b) 5.5 m/s

55	(a) -0.90 J;
	(b) 0.46 J;
	(c) 1.0 m/s
56	0.15
57	1.2 m
58	(a) 13 cm;
30	(b) 2.7 m/s;
	(c) both increase
59	(a) 19.4 m;
	(b) 19.0 m/s
60	4.3 m
61	(a) 1.5×10^{-2} N;
01	(b) $(3.8 \times 10^2)g$
62	3.5 m/s
63	(a) 7.4 m/s;
0.5	(b) 90 cm;
	(c) 2.8 m;
	(d) 15 m
64	H = 30 cm
65	20 cm
66	(a) 94 J;
	(b) 94 J;
	(c) 7.7 m/s
67	(a) 7.0 J;
	(b) 22 J
68	(a) 54 m/s;
	(b) 52 m/s;
	(c) -76 m
69	3.7 J
70	0.72 m
71	4.33 m/s
72	(a) 44 m/s;
	(b) 0.036
73	25 J
74	(a) 6.4 m/s;
	(b) 4.9 m/s;
	(c) same
75	(a) 4.9 m/s;
	(b) 4.5 N;
	(c) 71°;
	(d) same

	·
76	(a) 18 J;
	(b) 0;
	(c) 30 J;
	(d) 0;
	(e) b and d
77	(a) 4.8 N;
	(b) $+x$ direction;
	(c) 1.5 m;
	(d) 13.5 m;
	(e) 3.5 m/s
78	(a) 216 J;
	(b) 1.18 kN;
	(c) 432 J;
	(d) motor also supplies thermal energy to crate and
	belt
79	(a) 24 kJ;
	(b) $4.7 \times 10^2 \text{ N}$
80	17 kW
81	(a) 5.00 J;
	(b) 9.00 J;
	(c) 11.0 J;
	(d) 3.00 J;
	(e) 12.0 J;
	(f) 2.00 J;
	(g) 13.0 J;
	(h) 1.00 J;
	(i) 13.0 J;
	(j) 1.00 J;
	(l) 11.0 J;
	(m) 10.8 m;
	(n) It returns to $x = 0$ and stops.
82	(a) 0.950 m/s;
	(b) 11.0 m
83	(a) 6.0 kJ;
	(b) 6.0×10^2 W;
	(c) 3.0×10^2 W;
	(d) $9.0 \times 10^2 \text{ W}$
84	(a) 31.0 J;
	(b) 5.35 m/s;
	(c) conservative
85	880 MW
86	(a) 13 m/s;
	(b) 11 m/s;
	(c) no, 9.3 m

87	(a) $v_0 = (2gL)^{0.5}$;
07	(a) $v_0 = (2gE)^{-1}$, (b) $5mg$;
	(c) -mgL;
	(d) -2mgL
88	(a) 6.75 J;
	(b) -6.75 J;
	(c) 6.75 J;
	(d) 6.75 J;
	(e) -6.75 J;
	(f) 0.459 m
89	(a) 109 J;
	(b) 60.3 J;
	(c) 68.2 J;
	(d) 41.0 J
90	(a) 2.2 kJ;
	(b) 7.7×10^2 J
91	(a) 2.7 J;
	(b) 1.8 J;
	(c) 0.39 m
92	56 m/s
93	(a) 10 m;
	(b) 49 N;
	(c) 4.1 m;
	(d) 1.2×10^2 N
94	$5.5 \times 10^6 \mathrm{N}$
95	(a) 5.5 m/s;
	(b) 5.4 m;
	(c) same
96	(a) 3.5 kJ;
	(b) 3.5 kJ
97	80 mJ
98	181 W
99	24 W
100	100 m
101	-12 J
102	(a) 7.8 MJ;
	(b) 6.2 bars
103	(a) 8.8 m/s;
	(b) 2.6 kJ;
101	(c) 1.6 kW
104	(a) 19 J;
	(b) 6.4 m/s;
107	(c) 11 J, 6.4 m/s
105	(a) $7.4 \times 10^2 \text{ J}$;
	(b) $2.4 \times 10^2 \text{J}$

106	(a) 12 m/s:
106	(a) 12 m/s;
107	(b) 11 cm
107	15 J
108	(a) 0.2 to 0.3 MJ;
100	(b) same amount
109	(a) 2.35×10^3 J;
	(b) 352 J
110	(a) 2.6 m;
	(b) 1.5 m;
	(c) 26 J;
	(d) 2.1 m/s
111	738 m
112	8580 J
113	(a) -3.8 kJ;
	(b) 31 kN
114	(a) $3.0 \times 10^5 \mathrm{J}$;
	(b) 10 kW;
	(c) 20 kW
115	(a) 300 J;
	(b) 93.8 J;
	(c) 6.38 m
116	(a) 39 kW;
	(b) 39 kW
117	(a) 5.6 J;
	(b) 12 J;
	(c) 13 J
118	69 hp
119	(a) 1.2 J;
	(b) 11 m/s;
	(c) no;
	(d) no
120	(a) -0.80 J;
	(b) -0.80 J;
	(c) +1.1 J
121	(a) 2.1×10^6 kg;
	(b) $(100 + 1.5t)^{0.5}$ m/s;
	(c) $(1.5 \times 10^6)/(100 + 1.5t)^{0.5}$ N;
	(d) 6.7 km
122	(a) 3.7 J;
	(b) 4.3 J;
	(c) 4.3 J
123	54%
124	(a) $U(x) = -Gm_1m_2/x$;
	(b) $Gm_1m_2d/x_1(x_1+d)$
L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

105	1
125	(a) 2.7×10^9 J;
	(b) $2.7 \times 10^9 \mathrm{W}$;
	(c) $$2.4 \times 10^8$
126	(a) 1.4 m/s;
	(b) 1.9 m/s;
	(c) 28°
127	5.4 kJ
128	(a) 9.2 m/s;
	(b) 4.8 m/s
129	$3.1 \times 10^{11} \mathrm{W}$
130	(a) 0.75 J;
	(b) -1.0 J;
	(c) 0.25 J;
	(d) 1.0 J;
	(e) -2.0 J;
	(f) 1.0 J;
	(g) 0.75 J;
	(h) -3.0 J;
	(i) 2.3 J;
	(j) 0 J;
	(k) -4.0 J;
	(1) 4.0 J
131	because your force on the cabbage (as you lower it)
	does work
132	(a) 3.0 mm;
	(b) 1.1 J;
	(d) yes;
	(e) $\approx 40 \text{ J}$;
	(f) no
133	
134	(a) turning point on left, none on right, molecule
	breaks apart;
	(b) turning points on both left and right, molecule
	does not break apart;
	$(c) -1.1 \times 10^{-19} J;$
	(d) $2.1 \times 10^{-19} \mathrm{J}$;
	(e) $\approx 1 \times 10^{-9}$ N on each, directed toward the other;
	(f) $r < 0.2 \text{ nm}$;
	(g) $r > 0.2 \text{ nm}$;
	(h) $r = 0.2 \text{ nm}$
135	(a) 8.6 kJ;
	(b) 8.6×10^2 W;
	(c) 4.3×10^2 W;
	(d) 1.3 kW

136	(a) 0; (b) 4.48 J; (c) 7.40 J; (d) 8.78 J; (e) 8.60 J; (f)
	0.388 m

Chapter 9 Answers

1 (a) -1.50 m; (b) -1.43 m 2 (a) 1.1 m; (b) 1.3 m; (c) toward 3 (a) -6.5 cm; (b) 8.3 cm; (c) 1.4 cm 4 (a) 11 cm; (b) -4.4 cm 5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m) 1 + (4.0 m) 1 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s) 1; (c) (-3.68 m/s ²) 1 15 (a) (2.351 - 1.571) m/s; with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m 18 4.9 kg·m/s		
2 (a) 1.1 m; (b) 1.3 m; (c) toward 3 (a) -6.5 cm; (b) 8.3 cm; (c) 1.4 cm 4 (a) 11 cm; (b) -4.4 cm 5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	1	(a) -1.50 m;
(b) 1.3 m; (c) toward 3		` '
(c) toward 3 (a) -6.5 cm; (b) 8.3 cm; (c) 1.4 cm 4 (a) 11 cm; (b) -4.4 cm 5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	2	
3 (a) -6.5 cm; (b) 8.3 cm; (c) 1.4 cm 4 (a) 11 cm; (b) -4.4 cm 5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		
(b) 8.3 cm; (c) 1.4 cm 4		(c) toward
(c) 1.4 cm 4	3	(a) -6.5 cm;
4 (a) 11 cm; (b) -4.4 cm 5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s ²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s ² ; (b) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		
(b) -4.4 cm 5		(c) 1.4 cm
5 (a) -0.45 cm; (b) -2.0 cm 6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s ²)ĵ 15 (a) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	4	(a) 11 cm;
(b) -2.0 cm (a) 20 cm; (b) 20 cm; (c) 16 cm 7		(b) -4.4 cm
6 (a) 20 cm; (b) 20 cm; (c) 16 cm 7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ) t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	5	(a) -0.45 cm;
(b) 20 cm; (c) 16 cm 7		(b) -2.0 cm
(c) 16 cm 7	6	(a) 20 cm;
7 (a) 0; (b) 3.13 × 10 ⁻¹¹ m 8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		(b) 20 cm;
(b) 3.13 × 10 ⁻¹¹ m 8		(c) 16 cm
8 (a) 6.0 cm; (b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	7	(a) 0;
(b) 6.0 cm; (c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		(b) 3.13×10^{-11} m
(c) descends to lowest point and then ascends to 6.0 cm; (d) 4.2 cm 9	8	(a) 6.0 cm;
to 6.0 cm; (d) 4.2 cm 9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		(b) 6.0 cm;
(d) 4.2 cm 9		(c) descends to lowest point and then ascends
9 (a) 28 cm; (b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		to 6.0 cm;
(b) 2.3 m/s 10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		(d) 4.2 cm
10 (a) 22 m; (b) 9.3 m/s 11 (-4.0 m)î + (4.0 m)ĵ 12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	9	(a) 28 cm;
(b) 9.3 m/s 11		(b) 2.3 m/s
11	10	(a) 22 m;
12 6.2 m 13 53 m 14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		1 /
13 53 m 14 (a) 5.74 m;	11	$(-4.0 \text{ m})\hat{i} + (4.0 \text{ m})\hat{j}$
14 (a) 5.74 m; (b) (10.0 m/s)î; (c) (-3.68 m/s ²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s ² ; (b) (2.35î - 1.57ĵ) <i>t</i> m/s, with <i>t</i> in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	12	6.2 m
(b) (10.0 m/s)î; (c) (-3.68 m/s²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s²; (b) (2.35î - 1.57ĵ)t m/s, with t in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	13	53 m
(c) (-3.68 m/s ²)ĵ 15 (a) (2.35î - 1.57ĵ) m/s ² ; (b) (2.35î - 1.57ĵ) <i>t</i> m/s, with <i>t</i> in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m	14	(a) 5.74 m;
(b) (2.35î - 1.57ĵ) <i>t</i> m/s, with <i>t</i> in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		(b) $(10.0 \text{ m/s})\hat{i}$;
(b) (2.35î - 1.57ĵ) <i>t</i> m/s, with <i>t</i> in seconds; (d) straight, at downward angle 34° 16 58 kg 17 4.2 m		$(c) (-3.68 \text{ m/s}^2)\hat{j}$
(d) straight, at downward angle 34° 16 58 kg 17 4.2 m	15	
16 58 kg 17 4.2 m		(b) $(2.35\hat{i} - 1.57\hat{j})t$ m/s, with t in seconds;
17 4.2 m		(d) straight, at downward angle 34°
1.0	16	58 kg
18 4.9 kg·m/s	17	4.2 m
	18	4.9 kg·m/s

1	
19	(a) $7.5 \times 10^4 \mathrm{J}$;
	(b) $3.8 \times 10^4 \text{ kg} \cdot \text{m/s}$;
	(c) 39° south of due east
20	48°
21	(a) 5.0 kg·m/s;
	(b) 10 kg·m/s
22	(a) 30.0°;
	(b) $(-0.572 \text{ kg·m/s})\hat{j}$
23	$1.0 \times 10^3 \text{ to } 1.2 \times 10^3 \text{ kg·m/s}$
24	(a) 1.1 m;
	(b) $4.8 \times 10^3 \text{ kg·m/s}$
25	(a) 42 N·s;
	(b) 2.1 kN
26	(a) $2.2 \times 10^2 \mathrm{N \cdot s}$; (b) $2.7 \times 10^3 \mathrm{N}$
27	(-) (7 /-)
27	(a) 67 m/s; (b) -x;
	(c) 1.2 kN;
	$\begin{array}{c} \text{(d) -}x \\ \text{(d) -}x \end{array}$
28	(a) 9.1 N·s; (b) 1.8×10^3 N
29	5 N
30	(a) 1.00 N·s;
	(b) 100 N;
21	(c) 20 N
31	(a) $2.39 \times 10^3 \mathrm{N} \cdot \mathrm{s}$; (b) $4.78 \times 10^5 \mathrm{N}$; (c) 1.76
	$\times 10^3 \mathrm{N \cdot s}; \mathrm{(d)} 3.52 \times 10^5 \mathrm{N}$
32	(a) (30 kg.m/s) ⁵ :
	(a) $(30 \text{ kg·m/s})\hat{i}$;
	(b) (38 kg·m/s)î; (c) (6.0 m/s)î
33	
	(a) 5.86 kg·m/s; (b) 59.8°;
	(c) 2.93 kN;
	(d) 59.8°
34	(a) $4.50 \times 10^{-3} \text{ N·s}$;
	(b) 0.529 N·s;
	(c) push
35	$9.9 \times 10^2 \mathrm{N}$
36	(a) 7.17 N·s;
	(b) 16.0 kg·m/s
	(-/

	T
37	(a) 9.0 kg·m/s;
	(b) 3.0 kN;
	(c) 4.5 kN;
	(d) 20 m/s
38	(a) $(1.8 \text{ N} \cdot \text{s})\hat{j}$;
	(b) (-180 N)ĵ
39	3.0 mm/s
40	4.4×10^3 km/h
41	(a) $-(0.15 \text{ m/s})\hat{i}$;
	(b) 0.18 m
42	$mv^2/6$
43	55 cm
44	3.4 kg
45	(a) (1.00î - 0.167ĵ) km/s;
	(b) 3.23 MJ
46	3.5 m/s
47	(a) 14 m/s;
	(b) 45°
48	(a) 20 J;
	(b) 40 J
49	$3.1 \times 10^2 \mathrm{m/s}$
50	(a) 1.81 m/s;
	(b) 4.96 m/s
51	(a) 721 m/s;
	(b) 937 m/s
52	7.3 cm
53	(a) 33%; (b) 23%; (c) decreases
54	2.6 m
55	(a) +2.0 m/s;
	(b) -1.3 J;
	(c) +40 J;
	(d) system got energy from some source,
	such as a small explosion
56	(a) 4.6 m/s;
	(b) 3.9 m/s;
	(c) 7.5 m/s
57	(a) 4.4 m/s;
	(b) 0.80
58	33 cm
59	25 cm
60	(a) 1.9 m/s;
	(b) right;
	(c) yes

61	(a) 99 g;
01	(b) 1.9 m/s;
	(c) 0.93 m/s
62	(a) 100 g;
02	(b) 1.0 m/s
63	(a) 3.00 m/s;
03	(b) 6.00 m/s
64	(a) 2.47 m/s;
	(b) 1.23 m/s
65	(a) 1.2 kg;
0.5	(b) 2.5 m/s
66	(a) 30 cm;
	(b) 3.3 m
	(0) 3.3 11
67	-28 cm
68	(a) 2.22 m;
	(b) 0.556 m
69	(a) 0.21 kg;
	(b) 7.2 m
70	1.0 kg
71	(a) 4.15×10^5 m/s;
	(b) 4.84×10^5 m/s
72	(a) 27°
73	120°
74	(a) $(10 \text{ m/s})\hat{i} + (15 \text{ m/s})\hat{j}$;
	(b) -500 J
75	(a) 433 m/s;
	(b) 250 m/s
76	108 m/s
77	(a) 46 N;
	(b) none
78	(a) 2.7;
	(b) 7.4
79	(a) 1.57×10^6 N;
	(b) 1.35×10^5 kg;
	(c) 2.08 km/s
80	(a) $(-4.0 \times 10^4 \text{ kg·m/s})\hat{i}$;
	(b) due west;
	(c) 0
81	(a) 7290 m/s;
	(b) 8200 m/s;
	(c) $1.271 \times 10^{10} \text{ J}$;
	(d) $1.275 \times 10^{10} \text{ J}$
82	6.0×10^2
02	0.0 × 10

83	(a) 1.92 m;
	(b) 0.640 m
84	(a) stuck-together particles travel along x
	axis;
	(b) one particle along line 2, other along line
	3;
	(c) one particle through region B, other
	through region C, with paths symmetric
	about x axis;
	(d) 3.06 m/s;
	(e) 4.00 m/s, each particle
85	(a) 1.78 m/s;
	(b) less;
	(c) less;
	(d) greater
86	(a) 7.11 m/s;
	(b) greater;
	(c) less;
	(d) less
87	(a) 3.7 m/s;
	(b) 1.3 N·s;
	(c) 1.8×10^2 N
88	41.7 cm/s
89	(a) $(7.4 \times 10^3 \text{ N·s})\hat{i} - (7.4 \times 10^3 \text{ N·s})\hat{j};$
	(b) $(-7.4 \times 10^3 \mathrm{N\cdot s})\hat{i}$;
	(c) 2.3×10^3 N;
	(d) 2.1×10^4 N;
	(e) –45°
90	(a) $1.4 \times 10^{-22} \text{ kg·m/s}$;
	(b) 28°;
	(c) $1.6 \times 10^{-19} \mathrm{J}$
91	+4.4 m/s
92	0.57 m/s
93	$1.18 \times 10^4 \text{ kg}$
94	72 km/h
95	(a) 1.9 m/s;
	(b) -30°;
	(c) elastic
96	(a) 8.0×10^4 N;
	(b) 27 kg/s

97	(a) 6.9 m/s;
	(b) 30°;
	(c) 6.9 m/s;
	(d) -30°;
	(e) 2.0 m/s;
	(f) -180°
98	(a) $(-0.450\hat{i} - 0.450\hat{j} - 1.08\hat{k}) \text{ kg·m/s};$
	(b) $(-0.450\hat{i} - 0.450\hat{j} - 1.08\hat{k}) \text{ N·s};$
	(c) $(0.450\hat{i} + 0.450\hat{j} + 1.08\hat{k}) \text{ N} \cdot \text{s}$
99	(a) 25 mm;
	(b) 26 mm;
	(c) down;
	(d) $1.6 \times 10^{-2} \text{ m/s}^2$
100	(a) 41.0°;
	(b) 4.75 m/s;
	(c) no
101	29 J
102	(a) down;
	(b) 0.50 m/s;
	(c) 0
103	2.2 kg
104	3.0 m
105	5.0 kg
106	(a) 0.54 m/s;
	(b) 0;
107	(c) 1.1 m/s
107	(a) 50 kg/s;
100	(b) $1.6 \times 10^2 \text{ kg/s}$
108	2.5×10^{-3}
109	(a) 4.6×10^3 km;
110	(b) 73%
110	(a) 2.18 kg·m/s;
	(b) 575 N
111	190 m/s
112	(a) 1.0 kg·m/s;
	(b) 2.5×10^2 J;
	(c) 10 N;
	(d) 1.7 kN;
	(e) answer for (c) includes time between
	pellet collisions
113	28.8 N
114	(a) -0.25 m;
	(b) 0

	-
115	(a) 0.745 mm;
	(b) 153°;
	(c) 1.67 mJ
116	(a) 0;
	(b) 0.75 m
117	(a) $(2.67 \text{ m/s})^{\uparrow} + (-3.00 \text{ m/s})^{\uparrow}$;
	(b) 4.01 m/s;
	(c) 48.4°
118	(a) 0.60 cm;
	(b) 4.9 cm;
	(c) 9.0 cm;
	(d) 0
119	(a) -0.50 m;
	(b) -1.8 cm;
	(c) 0.50 m
120	(a) 0;
	(b) 4.0 m/s
121	0.22%
122	1.10 m/s
123	36.5 km/s
124	(a) $(8.25 \text{ kg·m/s})\hat{j};$
	(b) $(8.25 \text{ N} \cdot \text{s})\hat{j}$;
	(c) (-8.25 N·s)ĵ
125	(a) $(-1.00 \times 10^{-19}\hat{i} + 0.67 \times 10^{-19}\hat{j})$ kg·m/s;
	(b) $1.19 \times 10^{-12} \mathrm{J}$
126	(a) 0.800 kg·m/s;
	(b) 0.400 kg·m/s
127	2.2×10^{-3}
128	2.2 m/s

Chapter 10 Answers

1	14 rev
2	(a) 0.105 rad/s;
	(b) $1.75 \times 10^{-3} \text{ rad/s}$;
	(c) $1.45 \times 10^{-4} \text{ rad/s}$
3	(a) 4.0 rad/s; (b) 11.9 rad/s

	() 2 0 1
4	(a) 2.0 rad;
	(b) 0;
	(c) $1.3 \times 10^2 \text{ rad/s}$;
	(d) 32 rad/s^2 ;
	(e) no
5	11 rad/s
6	(a) 4.0 rad/s;
	(b) 28 rad/s;
	(c) 12 rad/s^2 ;
	(d) 6.0 rad/s^2 ;
7	(e) 18 rad/s ²
7	(a) 4.0 m/s;
0	(b) no (a) $1.2t^5 - 1.3t^3 + 2.0$;
8	(a) $1.2t - 1.3t + 2.0$; (b) $0.20t^6 - 0.33t^4 + 2.0t + 1.0$
9	(a) 3.00 s ;
9	(a) 5.00 s, (b) 18.9 rad
10	(a) 2.0 rad/s ² ;
10	(a) 2.0 rad/s;
	(c) 10 rad/s;
	(d) 75 rad
11	(a) 30 s;
111	(a) 50.5 , (b) 1.8×10^3 rad
12	(a) $9.0 \times 10^3 \text{ rev/min}^2$;
12	(a) $5.0 \times 10^{-1} \text{ eV/mm}$, (b) $4.2 \times 10^{2} \text{ rev}$
13	(a) 3.4×10^2 s;
13	(a) 5.4×10^{-3} , (b) -4.5×10^{-3} rad/s ² ;
	(c) 98 s
14	(a) 1.0 rev/s^2 ;
1-7	(a) 1.0 10 // 5 ; (b) 4.8 s;
	(c) 9.6 s;
	(d) 48 rev
15	8.0 s
16	(a) 4.09 s;
	(b) 1.70 s
17	(a) 44 rad;
	(b) 5.5 s;
	(c) 32 s;
	(d) -2.1 s;
	(e) 40 s
18	(a) $-2.3 \times 10^{-9} \text{ rad/s}^2$;
	(b) 2.6×10^3 y;
	(c) 24 ms
	1 \ /

- 10	
19	(a) $2.50 \times 10^{-3} \text{ rad/s}$;
	(b) 20.2 m/s^2 ;
	(c) 0
20	(a) 6.4 cm/s^2 ;
	(b) 2.6 cm/s^2
21	$6.9 \times 10^{-13} \text{rad/s}$
22	(a) 3.0 rad/s;
	(b) 30 m/s;
	(c) 6.0 m/s^2 ;
	(d) 90 m/s^2
23	(a) 20.9 rad/s;
	(b) 12.5 m/s;
	(c) 800 rev/min ² ;
	(d) 600 rev
24	199 hits/s
25	(a) $7.3 \times 10^{-5} \text{ rad/s}$;
	(b) $3.5 \times 10^2 \text{m/s}$;
	(c) 7.3×10^{-5} rad/s;
	(d) 4.6×10^2 m/s
26	(a) -1.1 rev/min^2 ;
	(b) 9.9×10^3 rev;
	$(c) -0.99 \text{ mm/s}^2;$
	$(d) 31 \text{ m/s}^2$
27	(a) 73 cm/s^2 ;
	(b) 0.075;
	(c) 0.11
28	16 s
29	(a) $3.8 \times 10^3 \text{rad/s};$
	(b) 1.9×10^2 m/s
30	(a) 40.2 cm/s^2 ;
	(b) $2.36 \times 10^3 \text{m/s}^2$;
	(c) 83.2 m
31	(a) 40 s;
	(b) 2.0 rad/s ² (a) 1.94 m/s ² ;
32	
	(b) 75.1°
33	$12.3 \text{ kg} \cdot \text{m}^2$
34	(a) 1.5 rad/s^2 ;
	(b) 0.40 J
35	(a) 1.1 kJ;
26	(b) 9.7 kJ
36	2.5 kg
37	$0.097 \text{ kg} \cdot \text{m}^2$
38	(a) 7.1%;
	(b) 64%

39	(a) 49 MJ;
	(b) 1.0×10^2 min
40	(a) $8.352 \times 10^{-3} \text{kg·m}^2$;
	(a) 6.532 × 10 kg m, (b) -0.22%
41	(a) 0.023 kg·m^2 ;
	(a) 0.023 kg iii , (b) 1.1 mJ
42	(a) $1.3 \times 10^3 \text{ g·cm}^2$;
	1 ' '
	(b) $5.5 \times 10^2 \text{ g·cm}^2$;
	(c) $1.9 \times 10^3 \text{ g·cm}^2$;
43	(d) A + B
	$4.7 \times 10^{-4} \mathrm{kg \cdot m^2}$
44	(a) $2.0 \text{ kg} \cdot \text{m}^2$;
	(b) $6.0 \text{ kg} \cdot \text{m}^2$;
	(c) $2.0 \text{ kg} \cdot \text{m}^2$
45	-3.85 N·m
46	12 N·m
47	4.6 N·m
48	(a) 8.4 N·m;
	(b) 17 N·m;
	(c) 0
49	(a) 28.2 rad/s^2 ;
	(b) 338 N·m
50	$1.28 \text{ kg} \cdot \text{m}^2$
51	(a) 6.00 cm/s^2 ;
	(b) 4.87 N;
	(c) 4.54 N;
	(d) 1.20 rad/s^2 ;
	(e) $0.0138 \text{ kg} \cdot \text{m}^2$
52	(a) 9.7 rad/s^2 ;
50	(b) counterclockwise
53	0.140 N
54	(a) 3.0 rad/s ² ; (b) 9.4 rad/s ²
55	$2.51 \times 10^{-4} \text{ kg} \cdot \text{m}^2$
56	$(a) 1.7 \text{ m/s}^2;$
30	(a) 1.7 m/s, (b) 6.9 m/s^2
57	(a) $4.2 \times 10^2 \text{rad/s}^2$;
	(b) $5.0 \times 10^2 \text{rad/s}$
58	(a) 1.4 m/s;
	(b) 1.4 m/s
59	396 N·m

60	(a) 0.63 J;
	(b) 0.15 m
61	(a) -19.8 kJ;
	(b) 1.32 kW
62	(a) 11.2 mJ;
	(b) 33.6 mJ;
	(c) 56.0 mJ;
	(d) $2.80 \times 10^{-5} \text{ J} \cdot \text{s}^2/\text{rad}^2$
63	5.42 m/s
64	(a) 0.15 kg·m^2 ;
	(a) 0.13 kg·lii , (b) 11 rad/s
65	(a) 5.32 m/s^2 ;
	(b) 8.43 m/s^2 ;
	(c) 41.8°
66	1.4 m/s
67	9.82 rad/s
68	(a) 0.689 N·m;
	(b) 3.05 N;
	(c) 9.84 N·m;
	(d) 11.5 N
69	$6.16 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
70	
70	(a) 27.0 rad/s; (b) 13.5 s
	(0) 13.3 \$
71	(a) 31.4 rad/s^2 ;
	(b) 0.754 m/s^2 ;
	(c) 56.1 N;
	(d) 55.1 N
72	(a) -7.66 rad/s^2 ;
	(b) −11.7 N·m;
	(c) 4.59×10^4 J;
	(d) 624 rev;
	(e) $4.59 \times 10^4 \mathrm{J}$
73	(a) 4.81×10^5 N;
	(b) $1.12 \times 10^4 \text{N} \cdot \text{m}$;
	(c) $1.25 \times 10^6 \mathrm{J}$
74	(a) 8.6 s;
	(b) no
75	(a) 2.3 rad/s^2 ; (b) 1.4 rad/s^2
76	1.5×10^3 rad
77	(a) -67 rev/min ² ;
	(b) 8.3 rev
78	6.06 rad/s

79	
80	(a) 5.00 rad/s;
	(a) 5.66 rad/s, (b) 1.67 rad/s ² ;
	(c) 2.50 rad
81	3.1 rad/s
82	$3 \times 10^5 \text{ J}$
83	(a) 1.57 m/s^2 ;
	(b) 4.55 N;
	(c) 4.94 N
84	(a) 5.1 h;
	(b) 8.1 h
85	30 rev
86	146 rad/s
87	$0.054 \text{ kg} \cdot \text{m}^2$
88	(a) 155 kg·m ² ;
	(b) 64.4 kg
89	$1.4 \times 10^2 \mathrm{N\cdot m}$
90	(a) -1.25 rad/s^2 ;
	(b) 250 rad;
	(c) 39.8 rev
91	(a) 10 J;
	(b) 0.27 m
92	(a) 5.5×10^{15} s;
	(b) 26
93	4.6 rad/s^2
94	(a) 3.1×10^2 m/s;
	(b) $3.4 \times 10^2 \text{m/s}$
95	2.6 J
96	25 N
97	(a) $5.92 \times 10^4 \text{ m/s}^2$;
	(b) $4.39 \times 10^4 \text{ s}^{-2}$
98	$1.6 \mathrm{kg \cdot m}^2$
99	(a) $0.791 \text{ kg} \cdot \text{m}^2$;
	(b) $1.79 \times 10^{-2} \mathrm{N\cdot m}$
100	(a) $0.019 \text{ kg} \cdot \text{m}^2$;
	(b) $0.019 \text{ kg} \cdot \text{m}^2$
101	(a) 1.5×10^2 cm/s;
	(b) 15 rad/s;
	(c) 15 rad/s;
	(d) 75 cm/s;
405	(e) 3.0 rad/s
102	(a) 3.3 J;
	(b) 2.9 J

103	(a) 7.0 kg·m ² ; (b) 7.2 m/s;
	(c) 71°
104	(a) $0.20 \text{ kg} \cdot \text{m}^2$;
	(b) 6.3 rad/s
105	(a) 0.32 rad/s;
	(b) 1.0×10^2 km/h
106	5.6 rad/s^2
107	(a) 1.4×10^2 rad;
	(b) 14 s
108	(a) 3.5 rad/s;
	(b) 52 cm/s;
	(c) 26 cm/s

Chapter 11 Answers

	·
1	(a) 0;
	(b) (22 m/s)î;
	$(c) (-22 \text{ m/s})\hat{i};$
	(d) 0;
	(e) $1.5 \times 10^3 \text{ m/s}^2$;
	(f) $1.5 \times 10^3 \text{ m/s}^2$;
	$(g) (22 \text{ m/s})\hat{i};$
	(h) $(44 \text{ m/s})\hat{i}$;
	(i) 0;
	(j) 0;
	(k) $1.5 \times 10^3 \text{ m/s}^2$;
	(1) $1.5 \times 10^3 \text{ m/s}^2$
2	(a) 59.3 rad/s;
	(b) 9.31 rad/s^2 ;
	(c) 70.7 m
3	-3.15 J
4	(a) 8.0°;
	(b) more
5	0.020
6	$7.2 \times 10^{-4} \text{ kg} \cdot \text{m}^2$
7	(a) 63 rad/s;
	(b) 4.0 m
8	(a) 2.0 m;
	(b) 7.3 m/s
9	4.8 m

10	(a) 8.0 J;
	(b) 3.0 m/s;
	(c) 6.9 J;
	(d) 1.8 m/s
11	(a) (-4.0 N)î;
	(b) $0.60 \text{ kg} \cdot \text{m}^2$
12	(a) 37.8 cm;
	(b) $1.96 \times 10^{-2} \mathrm{N}$;
	(c) toward loop's center
13	0.50
14	1.34 m/s
15	(a) $-(0.11 \text{ m})\omega$;
	(b) -2.1 m/s^2 ;
	(c) -47 rad/s^2 ;
	(d) 1.2 s;
	(e) 8.6 m;
	(f) 6.1 m/s
16	0.25
17	(a) 13 cm/s^2 ;
	(b) 4.4 s;
	(c) 55 cm/s;
	(d) 18 mJ;
	(e) 1.4 J;
	(f) 27 rev/s
18	(a) 0.19 m/s^2 ;
	(b) 0.19 m/s^2 ;
	(c) 1.1 kN;
	(d) no;
	(e) same;
1.0	(f) greater
19	(-2.0 N·m)î
20	(a) (24 N·m)ĵ;
	(b) $(-24 \text{ N} \cdot \text{m})\hat{j}$;
	(c) $(12 \text{ N} \cdot \text{m})\hat{j}$;
	(d) (-12 N·m)ĵ
21	(a) $(6.0 \text{ N} \cdot \text{m})\hat{j} + (8.0 \text{ N} \cdot \text{m})\hat{k};$
	(b) (-22 N·m)î
22	-5.00 N
23	(a) $(-1.5 \text{ N} \cdot \text{m})\hat{i} - (4.0 \text{ N} \cdot \text{m})\hat{j} - (1.0 \text{ N} \cdot \text{m})\hat{k};$
	(b) $(-1.5 \text{ N} \cdot \text{m})\hat{i} - (4.0 \text{ N} \cdot \text{m})\hat{j} - (1.0 \text{ N} \cdot \text{m})\hat{k}$
	·

24	(a) $(6.0 \text{ N} \cdot \text{m})\hat{i} - (3.0 \text{ N} \cdot \text{m})\hat{j} - (6.0 \text{ N} \cdot \text{m})\hat{k};$
	(b) $(26 \text{ N} \cdot \text{m})\hat{i} + (3.0 \text{ N} \cdot \text{m})\hat{j} - (18 \text{ N} \cdot \text{m})\hat{k};$
	(c) $(32 \text{ N·m})\hat{i} - (24 \text{ N·m})\hat{k}$;
	(d) 0
25	(a) (50 N·m)k;
	(b) 90°
26	(a) $12 \text{ kg} \cdot \text{m}^2/\text{s}$;
	(b) +z direction;
	(c) 3.0 N·m;
27	(d) +z direction
27	(a) 0; (b) (8 0 N m) 1 (8 0 N m) 1
28	(b) $(8.0 \text{ N·m})\hat{i} + (8.0 \text{ N·m})\hat{k}$
20	(a) $(6.0 \times 10^2 \text{ kg·m}^2/\text{s})\hat{k}$;
29	(b) $(7.2 \times 10^2 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
29	(a) 9.8 kg·m²/s;
30	(b) +z direction (a) $(3.00 \text{ m/s}^2)\hat{\mathbf{i}}$ - $(4.00 \text{ m/s}^2)\hat{\mathbf{j}}$ + $(2.00 \text{ m/s}^2)\hat{\mathbf{k}}$;
30	(a) $(3.00 \text{ m/s})^{1} = (4.00 \text{ m/s})^{1} + (2.00 \text{ m/s})^{2} + (60.0 \text{ m/s})^{2} + (60$
	$kg \cdot m^2/s)\hat{k};$
	$(c) (-8.00 \text{ N} \cdot \text{m})\hat{i} - (26.0 \text{ N} \cdot \text{m})\hat{j} - (40.0 \text{ N} \cdot \text{m})\hat{k};$
	(d) 127°
31	(a) 0;
	(b) $-22.6 \text{ kg} \cdot \text{m}^2/\text{s}$;
	(c) -7.84 N·m;
	(d) -7.84 N·m
32	$(2.0 \text{ N·m}) \hat{\mathbf{i}} + (-4.0 \text{ N·m}) \hat{\mathbf{j}}$
33	(a) $(-1.7 \times 10^2 \text{ kg·m}^2/\text{s})\hat{k}$;
	(b) (+56 N·m)k;
	(c) $(+56 \text{ kg} \cdot \text{m}^2/\text{s}^2)\hat{k}$
34	(a) 0;
	(b) $(-8.0t\hat{k})$ N·m;
	(c) $(-2.0t^{-0.5}\hat{k})$ N·m;
	$(d) (8.0t^{-3}\hat{k}) \text{ N·m}$
35	(a) 48tk N·m;
	(b) increasing
36	1024
37	(a) $4.6 \times 10^{-3} \text{ kg} \cdot \text{m}^2$;
	(b) $1.1 \times 10^{-3} \text{ kg} \cdot \text{m}^2/\text{s}$;
	(c) $3.9 \times 10^{-3} \text{ kg} \cdot \text{m}^2/\text{s}$

20	2
38	(a) $0.53 \text{ kg} \cdot \text{m}^2/\text{s}$;
	(b) 4.2×10^3 rev/min
39	(a) 1.47 N·m;
	(b) 20.4 rad;
	(c) -29.9 J;
	(d) 19.9 W
40	$23 \text{ kg} \cdot \text{m}^2/\text{s}$
41	(a) 1.6 kg·m ² ;
	(b) $4.0 \text{ kg} \cdot \text{m}^2/\text{s}$
42	(a) $24 \text{ kg} \cdot \text{m}^2/\text{s}$;
	(b) $1.5 \text{ kg} \cdot \text{m}^2/\text{s}$
43	(a) 1.5 m;
	(b) 0.93 rad/s;
	(c) 98 J;
	(d) 8.4 rad/s;
	(e) 8.8×10^2 J;
	(f) internal energy of the skaters
44	(a) 4.2 rad/s;
	(b) no, because energy transferred to internal
	energy of cockroach
45	(a) 3.6 rev/s;
	(b) 3.0;
	(c) forces on the bricks from the man
	transferred energy from the man's internal
	energy to kinetic energy
46	3
47	0.17 rad/s
48	0.20
49	(a) 750 rev/min;
	(b) 450 rev/min;
	(c) clockwise
50	$5.0 \times 10^2 \text{ rev}$
51	(a) 267 rev/min;
	(b) 0.667
52	(a) 0.347 rad/s;
	(b) 1.33;
	(c) energy transferred from internal energy of
7.0	cockroach to kinetic energy
53	$1.3 \times 10^3 \text{ m/s}$
54	39.1 J
55	3.4 rad/s
56	$6.46 \text{ kg} \cdot \text{m}^2/\text{s}$
57	(a) 18 rad/s;
	(b) 0.92

58	2.6 rad/s
	2.0 rad/s 11.0 m/s
59 60	
00	(a) $0.24 \text{ kg} \cdot \text{m}^2$;
	(b) 1.8×10^3 m/s
61	1.5 rad/s
62	3.23 rev/s
63	0.070 rad/s
64	1.5
65	(a) 0.148 rad/s;
	(b) 0.0123;
	(c) 181°
66	32°
67	(a) 0.180 m;
	(b) clockwise
68	(a) 0.33 rev/s;
	(b) clockwise
69	0.041 rad/s
70	2.33 m/s
71	(a) 1.6 m/s^2 ;
	(b) 16 rad/s^2 ;
72	(c) (4.0 N)î 1.00
72	
13	(a) 0; (b) 0;
	(c) $-30t^3\hat{k} \text{ kg}\cdot\text{m}^2/\text{s};$ (d) $-90t^2\hat{k} \text{ N}\cdot\text{m};$
	(e) $30t^3\hat{k} \text{ kg} \cdot \text{m}^2/\text{s}$;
	(f) $90t^2\hat{k} \text{ N}\cdot\text{m}$
74	12 s
75	(a) $149 \text{ kg} \cdot \text{m}^2$;
	(b) $158 \text{ kg} \cdot \text{m}^2/\text{s}$;
	(c) 0.744 rad/s
76	0.62 J
77	(a) $6.65 \times 10^{-5} \text{ kg} \cdot \text{m}^2/\text{s}$;
	(b) no;
	(c) 0;
	(d) yes
78	(a) 4.11 m/s^2 ;
	(b) 16.4 rad/s^2 ;
	(c) 2.55 N·m
79	(a) 0.333;
	(b) 0.111
80	$(5.55 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
<u> </u>	

_	
81	(a) 58.8 J;
	(b) 39.2 J
82	(a) $12.2 \text{ kg} \cdot \text{m}^2$;
	(b) $308 \text{ kg} \cdot \text{m}^2/\text{s}$
83	(a) 61.7 J;
	(b) 3.43 m;
	(c) no
84	(a) 0.89 s;
	(b) 9.4 J;
	(c) 1.4 m/s;
	(d) 0.12 J;
	(e) $4.4 \times 10^2 \text{ rad/s}$;
	(f) 9.2 J
85	(a) $mvR/(I+MR^2)$;
	(b) $mvR^2/(I + MR^2)$
86	(a) $mR^2/2$;
	(b) a solid circular cylinder

Chapter 12 Answers

-	() 1.00
1	(a) 1.00 m;
	(b) 2.00 m;
	(c) 0.987 m;
	(d) 1.97 m
2	(a) 2.77 kN;
	(b) 3.89 kN
3	(a) 9.4 N;
	(b) 4.4 N
4	120°
5	7.92 kN
6	(a) 8.4×10^2 N;
	(b) $5.3 \times 10^2 \text{N}$
7	(a) 2.8×10^2 N;
	(b) $8.8 \times 10^2 \mathrm{N}$;
	(c) 71°
8	(a) 2;
	(b) 7
9	74.4 g
10	(a) 49 N;
	(b) 28 N;
	(c) 57 N;
	(d) 29°

1.1	(a) 1 2 l ₂ N ₂
11	(a) 1.2 kN;
	(b) down;
	(c) 1.7 kN;
	(d) up;
	(e) left;
10	(f) right
12	8.3 kN
13	(a) 2.7 kN;
	(b) up;
	(c) 3.6 kN;
1.4	(d) down
14	0.702 m
15	(a) 5.0 N;
	(b) 30 N;
1.5	(c) 1.3 m
16	0.536 m
17	(a) 0.64 m;
1.0	(b) increased
18	457 N
19	8.7 N
20	(a) 6.5×10^2 N; (b) 5.6×10^2 N
21	(a) 6.63 kN;
	(b) 5.74 kN;
	(c) 5.96 kN
22	(a) 3.4×10^2 N;
	(b) 0.88 m;
	(c) increases;
	(d) decreases
23	(a) 192 N;
	(b) 96.1 N;
	(c) 55.5 N
24	1.19
25	13.6 N
26	0.216
27	(a) 1.9 kN;
	(b) up;
	(c) 2.1 kN;
	(d) down
28	(a) 1.50 m;
	(b) 433 N;
	(c) 250 N
29	(a) $(-80 \text{ N})\hat{\mathbf{i}} + (1.3 \times 10^2 \text{ N})\hat{\mathbf{j}};$
	(b) $(80 \text{ N})\hat{\mathbf{i}} + (1.3 \times 10^2 \text{ N})\hat{\mathbf{j}}$
	$(0) (00 \text{ N}) + (1.3 \times 10 \text{ N})$

20	(a) 100 Ni
30	(a) 408 N;
	(b) 245 N;
	(c) right;
	(d) 163 N;
21	(e) up
31	2.20 m
32	(a) 3.9 m/s^2 ;
	(b) 2.0 kN;
	(c) 3.5 kN;
	(d) 0.79 kN;
	(e) 1.4 kN
33	(a) 60.0° ;
	(b) 300 N
34	(a) $Wx/(L \sin \theta)$;
	(b) $Wx/(L \tan \theta)$;
	(c) $W(1 - x/L)$
35	(a) 445 N;
	(b) 0.50;
	(c) 315 N
36	(a) 17 N; (b) 1.7×10^2 N
37	0.34
38	(a) $(-797\hat{i} + 265\hat{j})$ N;
30	(b) $(797\hat{1} + 265\hat{j})$ N;
	(c) $(797\hat{1} + 203\hat{j})$ N;
	(d) (-797î - 265ĵ) N
39	(a) 211 N;
37	(b) 534 N;
	(c) 320 N
40	(a) 30.0°;
40	
	(b) 51.0 kg; (c) 10.2 kg
41	•
41	(a) slides;
	(b) 31°;
	(c) tips;
10	(d) 34°
42	85%
43	(a) $6.5 \times 10^6 \text{N/m}^2$;
	(b) 1.1×10^{-5} m
44	(a) $7.5 \times 10^{10} \text{N/m}^2$;
	(b) $2.9 \times 10^8 \text{N/m}^2$
45	(a) 0.80;
	(b) 0.20;
	(c) 0.25
46	(a) $30 \mu J$; (b) $8.67 \mu J$; (c) $34.2 \mu J$; (d) no; (e)
	yes
•	•

	T
47	(a) $1.4 \times 10^9 \mathrm{N};$
	(b) 75
48	56.0 mJ
49	(a) 866 N;
	(b) 143 N;
	(c) 0.165
50	0.421 g
51	(a) $1.2 \times 10^2 \mathrm{N}$;
	(b) 68 N
52	(a) 1.9×10^{-3} ;
	(b) $1.3 \times 10^7 \text{N/m}^2$;
	(c) $6.9 \times 10^9 \text{N/m}^2$
53	(a) $1.8 \times 10^7 \mathrm{N}$;
	(b) $1.4 \times 10^7 \mathrm{N}$;
	(c) 16
54	3.4 m
55	0.29
56	(a) 500 kg;
	(b) 62.5 kg
57	76 N
58	(a) 196 N;
	(b) 294 N;
	(c) 441 N;
	(d) 49.0 N;
	(e) 0.16 m
59	(a) 8.01 kN;
	(b) 3.65 kN;
	(c) 5.66 kN
60	(a) 50°;
	(b) 0.77mg
61	71.7 N
62	(a) 0.80 mm;
	(b) 2.3 cm
63	(a) $L/2$;
	(b) L/4;
	(c) L/6;
	(d) $L/8$;
	(e) 25L/24
64	(a) 2mg;
	(b) <i>mg</i> ;
	(c) mg;
	(d) $2^{0.5}mg$
65	(a) 88 N;
	(b) $(30\hat{i} + 97\hat{j}) N$ $(-1.5 \times 10^2 N)\hat{i} + (2.6 \times 10^2 N)\hat{j}$
66	$(-1.5 \times 10^2 \mathrm{N})\hat{i} + (2.6 \times 10^2 \mathrm{N})\hat{j}$

67	$2.4 \times 10^9 \text{N/m}^2$
68	(a) 200 N;
	(b) 360 N;
	(c) 0.35
69	60°
70	(a) 1.5 kN;
	(b) 1.9 kN
71	(a) μ < 0.57;
	(b) $\mu > 0.57$
72	(a) 15 N;
	(b) 29 N
73	(a) $(35\hat{i} + 200\hat{j})$ N;
	(b) $(-45\hat{1} + 200\hat{j})$ N;
	(c) 1.9×10^2 N
74	
75	(a) <i>BC</i> , <i>CD</i> , <i>DA</i> ;
	(b) 535 N;
	(c) 757 N
76	(a) 1.16ĵ kN;
	(b) $1.74\hat{j}$ kN
77	(a) 1.38 kN;
	(b) 180 N
78	(a) $(-671\hat{j})$ N;
	(b) $(400\hat{i} + 670\hat{j})$ N
79	(a) $a_1 = L/2$, $a_2 = 5L/8$, $h = 9L/8$;
	(b) $b_1 = 2L/3$, $b_2 = L/2$, $h = 7L/6$
80	44 N
81	L/4
82	3.1 cm
83	(a) 106 N;
	(b) 64.0°
84	(a) 270 N;
	(b) 72 N;
	(c) 19°
85	$1.8 \times 10^2 \mathrm{N}$
86	(a) 42 N;
	(b) 66 N
87	(a) -24.4 N; (b) 1.60 N; (c) -3.75°
88	(a) 3.37 m; (b) 7.18°

Chapter 13 Answers

T-	,
1	1/2
2	(a) 6.9%; (b) $(2.3 \times 10^{-5})\%$
3	19 m
4	2.16
5	0.8 m
6	$(1.18 \times 10^{-14} \mathrm{N})\hat{\mathbf{i}} + (1.18 \times 10^{-14} \mathrm{N})\hat{\mathbf{j}}$
7	-5.00 <i>d</i>
8	(a) 2.13×10^{-8} N;
	(b) 60.6°
9	$2.60 \times 10^5 \text{ km}$
10	(a) 0.716 <i>d</i> ;
	(b) -1.07 <i>d</i>
11	(a) $M=m$;
	(b) 0
12	(a) 0.25 kg;
	(b) 1.0 kg
13	$8.31 \times 10^{-9} \mathrm{N}$
14	(a) -0.20 m;
	(b) -0.35 m
15	(a) -1.88 <i>d</i> ;
	(b) -3.90 <i>d</i> ;
16	(c) $0.489d$ 3.0×10^{-10} N
16	
17	(a) 17 N;
18	(b) 2.4 8.2 µm
19	$2.6 \times 10^6 \text{ m}$
20	-0.30 N
21	$5 \times 10^{24} \mathrm{kg}$
22	
22	(a) $(3.02 \times 10^{43} \text{ kg·m/s}^2)/M_h$;
	(b) decrease;
	(c) 9.82 m/s^2 ; (d) $7.30 \times 10^{-15} \text{ m/s}^2$;
	(d) 7.50 × 10 m/s; (e) no
23	(a) 7.6 m/s^2 ;
4.5	(a) 7.0 m/s, (b) 4.2 m/s^2
24	(a) $G(M_1 + M_2)m/a^2$;
	(a) $G(M_1 + M_2)mu^2$;
	(c) 0
L	\ /

	7
25	(a) $(3.0 \times 10^{-7} \text{ N/kg})m$;
	(b) $(3.3 \times 10^{-7} \text{ N/kg})m$;
	(c) $(6.7 \times 10^{-7} \text{ N/kg·m})mr$
26	(a) $R/3$;
	(b) $3^{0.5}R$
27	(a) 9.83 m/s^2 ;
	(b) 9.84 m/s^2 ;
	(c) 9.79 m/s^2
28	(a) $0.414R$;
	(b) 0.500 <i>R</i>
29	$5.0 \times 10^9 \mathrm{J}$
30	1/2
31	(a) 0.74;
	(b) 3.8 m/s^2 ;
	(c) 5.0 km/s
32	(a) $-4.4 \times 10^{-11} \text{ J}$;
	(b) -2.9×10^{-11} J;
	(c) $2.9 \times 10^{-11} \text{ J}$
33	(a) 0.0451;
	(b) 28.5
34	(a) 2.0×10^9 J;
	(b) $2.5R_s$
35	$-4.82 \times 10^{-13} \mathrm{J}$
36	(a) 22 MJ;
	(b) 69 MJ
37	(a) 0.50 pJ;
	(b) -0.50 pJ
38	(a) -1.7×10^{-8} J;
	(b) $0.56 \times 10^{-8} \text{ J}$
39	(a) 1.7 km/s;
	(b) 2.5×10^5 m;
	(c) 1.4 km/s
40	(a) 1.33;
	(b) 2.00;
4.4	(c) 0
41	(a) 82 km/s;
42	(b) 1.8×10^4 km/s
42	(a) 0.50 kg;
42	(b) 1.5 kg
43	(a) 7.82 km/s;
4.4	(b) 87.5 min
44	0.35 lunar month
45	$6.5 \times 10^{23} \text{ kg}$

46	(a) 5.4×10^4 km/h;
70	(a) 3.4×10^{4} km/h
47	$5 \times 10^{10} \text{ stars}$
48	
	1.87 y
49	(a) 1.9×10^{13} m;
50	(b) 6.4 <i>R</i> _P
50	$3.58 \times 10^4 \text{ km}$
51	(a) 6.64×10^3 km;
	(b) 0.0136
52	(a) 5.01×10^9 m;
	(b) 7.20 solar radii
53	$5.8 \times 10^6 \text{ m}$
54	9
55	
56	(a) 6×10^{16} kg;
	(b) $4 \times 10^3 \text{ kg/m}^3$
57	0.71 y
58	(a) $3.7m_J$;
	(b) $2.5r_E$ (GM/L) ^{0.5}
59	$\left(GM/L\right)^{0.5}$
60	(a) $-6.33 \times 10^9 \mathrm{J}$;
	(b) $-6.33 \times 10^9 \mathrm{J};$
	(c) falling
61	(a) 3.19×10^3 km;
	(b) lifting
62	(a) 1/2;
	(b) 1/2;
	(c) <i>B</i> ;
	(d) $1.1 \times 10^8 \mathrm{J}$
63	(a) 2.8 y;
	(b) 1.0×10^{-4}
64	(a) $8.0 \times 10^8 \mathrm{J}$;
	(b) 36 N
65	(a) $r^{1.5}$;
	(b) r^{-1} ;
	(c) $r^{0.5}$;
	$(d) r^{-0.5}$
66	(a) $4.6 \times 10^5 \mathrm{J}$;
	(b) 2.6×10^2

67	(a) 7.5 km/s;
07	(b) 97 min;
	(c) 4.1×10^2 km;
	(d) 7.7 km/s;
	(e) 93 min;
	(f) 3.2×10^{-3} N;
	(g) no;
	(h) yes
68	(a) 92.3 min; (b) 7.68×10^3 m/s; (c) $5.78 \times$
	$10^{10} \text{ J}; (d) -1.18 \times 10^{11} \text{ J}; (e) -6.02 \times 10^{10} \text{ J};$
	(f) 6.63×10^6 m; (g) 89.5 min; (h) 80 s
69	1.1 s
70	(a) $(1 \times 10^2) M_S$;
, ,	(b) lower
71	$(2 \cdot D^2)^{-3/2}$
, 1	(b) $[2GM(R^{-1} - (R^2 + x^2)^{-1/2})]^{1/2}$
72	(a) $GMmx(x^2 + R^2)^{-1/2}$; (b) $[2GM(R^{-1} - (R^2 + x^2)^{-1/2})]^{1/2}$ (a) $1.3 \times 10^{12} \text{ m/s}^2$;
, –	(b) 1.6×10^6 m/s
73	(a) 1.0×10^3 kg;
	(b) 1.5 km/s
74	(a) $2 \times 10^{-5} \text{ m/s}^2$;
, .	(b) 2 cm/s
75	$3.2 \times 10^{-7} \mathrm{N}$
76	29 pN
77	0.37ĵ μN
78	(a) -1.3×10^{-4} J;
	(b) less;
	(c) positive;
	(d) negative
79	$2\pi r^{1.5}G^{-0.5}(M+m/4)^{-0.5}$
80	(b) 1.9 h
81	(a) $2.2 \times 10^{-7} \text{ rad/s}$;
	(b) 89 km/s
82	$9.2 \times 10^{-5} \text{ rad/s}$
83	(a) 2.15×10^4 s;
	(b) 12.3 km/s;
	(c) 12.0 km/s;
	(d) $2.17 \times 10^{11} \mathrm{J}$;
	(e) $-4.53 \times 10^{11} \mathrm{J}$;
	(f) $-2.35 \times 10^{11} \mathrm{J}$;
	(g) 4.04×10^7 m;
	(h) 1.22×10^3 s;
	(i) elliptical
84	0.031%

85	$2.5 \times 10^4 \text{ km}$
86	(a) $(3.4 \times 10^{-3})g$;
	(b) $(6.1 \times 10^{-4})g$;
	(c) $(1.4 \times 10^{-11})g$
87	(a) 1.4×10^6 m/s;
	(b) $3 \times 10^6 \text{m/s}^2$
88	7.9 km/s
89	(a) 0;
	(b) $1.8 \times 10^{32} \mathrm{J};$
	(c) $1.8 \times 10^{32} \mathrm{J}$;
	(d) 0.99 km/s
90	(a) 1.9×10^7 m;
	(b) $7.6 \times 10^8 \mathrm{J}$;
	(c) 8.6×10^{24} kg
91	(a) Gm^2/R_i ;
	(b) $Gm^2/2R_i$;
	(c) $(Gm/R_i)^{0.5}$; (d) $2(Gm/R_i)^{0.5}$;
	(d) $2(Gm/R_i)^{0.5}$;
	(e) Gm^2/R_i ;
	(f) $(2Gm/R_i)^{0.5}$;
	(g) The center-of-mass frame is an inertial
	frame, and in it the principle of conservation
	of energy may be written as in Chapter 8; the
	reference frame attached to body A is
	noninertial, and the principle cannot be written as in Chapter 8. Answer (d) is
	correct.
92	(a) 38.3 MJ;
)2	(b) 1.03×10^3 km
93	$2.4 \times 10^4 \text{ m/s}$
94	(a) 5.3×10^{-8} J;
, ,	(a) 5.5×10^{-3} , (b) (-6.4×10^{-8}) î N
95	$-0.044\hat{j} \mu N$
96	(a) $(2.8 \times 10^4)g$;
70	(a) (2.6 × 10)g, (b) deadly;
	(c) 714g;
	(d) 1.5 km/s
97	$GM_{\rm E}m/12R_{\rm E}$
98	42.1 min
99	$1.51 \times 10^{-12} \mathrm{N}$
100	$3.07 \times 10^{-7} \text{ N}$
101	$3.4 \times 10^5 \text{ km}$
	5.1 A 10 Km

1	0.074
2	38 kPa
3	$1.1 \times 10^5 \text{ Pa}$
4	18 N
5	$2.9 \times 10^4 \mathrm{N}$
6	(a) 1.9×10^{2} kPa;
0	(a) 1.9 × 10 KPa; (b) 15.9/10.6
7	(b) 26 kN
8	$1.4 \times 10^5 \mathrm{Pa}$
9	(a) 1.0×10^3 torr; (b) 1.7×10^3 torr
10	2.80 m
11	(a) 94 torr; (b) 4.1×10^2 torr; (c) 3.1×10^2
	torr
12	17 cm
13	1.08×10^3 atm
14	$1.90 \times 10^4 \mathrm{Pa}$
15	$-2.6 \times 10^4 \text{Pa}$
16	(a) 0.019 atm; (b) 0.39 atm
17	$7.2 \times 10^5 \text{ N}$
18	2.0
19	$4.69 \times 10^5 \text{ N}$
20	(a) 5.0×10^6 N;
	(b) $5.6 \times 10^6 \mathrm{N}$
21	0.635 J
22	26 torr
23	44 km
24	(a) 1.88×10^9 N;
	(b) $2.20 \times 10^{10} \text{N} \cdot \text{m}$;
	(c) 11.7 m
25	739.26 torr
26	-3.9×10^{-3} atm
27	(a) 7.9 km;
	(b) 16 km
28	(a) fA/a;
	(b) 103 N
29	8.50 kg
30	7.84 cm, down
31	(a) $6.7 \times 10^2 \text{ kg/m}^3$;
22	(b) $7.4 \times 10^2 \text{ kg/m}^3$
32	(a) 37.5 kN;
	(b) 39.6 kN;
	(c) 2.23 kN; (d) 2.18 kN
	(u) 2.10 KIN

33	(a) $2.04 \times 10^{-2} \text{ m}^3$;
	(b) 1.57 kN
34	(a) 35.6 kN;
	(b) 0.330 m ³
35	five
36	1.8 g/cm ³
37	57.3 cm
38	(a) 1.5 g/cm^3 ;
	(b) $2.7 \times 10^{-3} \text{ m}^3$
39	(a) 1.2 kg;
	(b) $1.3 \times 10^3 \text{ kg/m}^3$
40	6.5 mm
41	(a) 0.10; (b) 0.083
42	4.11 kJ
43	(a) 637.8 cm ³ ;
	(b) 5.102 m^3 ;
	(c) $5.102 \times 10^3 \text{ kg}$
44	(a) 1.84 kg:
	(b) 2.01 kg
45	0.126 m^3
46	1.40 m
47	(a) 1.80 m^3 ;
	(b) 4.75 m ³
48	9.7 mm
49	(a) 3.0 m/s; (b) 2.8 m/s
50	3.60 cm
51	8.1 m/s
52	4.0 m
53	66 W
54	(a) 56 L/min;
	(b) 1.0
55	$1.4 \times 10^5 \mathrm{J}$
56	(a) 2;
	(b) 1/2;
	(c) 3.0 cm
57	(a) 1.6×10^{-3} m ³ /s; (b) 0.90 m
58	1.7 MPa
59	(a) 2.5 m/s;
	(a) 2.5 Hz/s, (b) $2.6 \times 10^5 \text{ Pa}$
60	(a) 2.40 m/s;
	(a) 2.46 Hzs, (b) 245 Pa
61	(a) 3.9 m/s;
	(a) 3.5 lb/s, (b) 88 kPa
	(0) 00 Ki u

62	(b) 63.3 m/s
63	$1.1 \times 10^2 \text{ m/s}$
64	(a) 6.4 m^3 ;
	(b) 5.4 m/s;
	(c) $9.8 \times 10^4 \text{ Pa}$
65	(b) $2.0 \times 10^{-2} \text{ m}^3/\text{s}$
66	(a) 4.1 m/s;
	(b) 21 m/s;
	(c) $8.0 \times 10^{-3} \mathrm{m}^3/\mathrm{s}$
67	(a) 74 N;
	(b) $1.5 \times 10^2 \mathrm{m}^3$
68	(b) $1.5 \times 10^2 \text{ m}^3$ (a) 0.25 m^2 ;
	(b) $6.1 \text{ m}^3/\text{s}$
69	(a) $0.0776 \text{ m}^3/\text{s}$;
	(b) 69.8 kg/s
70	-2.50 J
71	(a) 35 cm;
	(b) 30 cm;
	(c) 20 cm
72	7.8 cm/h
73	1.5 g/cm^3
74	0.412 cm
75	$5.11 \times 10^{-7} \text{ kg}$
76	(a) 0.050;
	(b) 0.41;
	(c) no
77	44.2 g
78	9.4%
79	$6.0 \times 10^2 \mathrm{kg/m}^3$
80	(a) 2;
	(b) 3;
0.1	(c) 4/3
81	45.3 cm ³
82	3.82 m/s^2
83	(a) 3.2 m/s;
	(b) $9.2 \times 10^4 \text{ Pa}$;
0.4	(c) 10.3 m (a) 0.13;
84	(a) 0.13; (b) 0.96
85	$1.07 \times 10^3 \mathrm{g}$
86	1.07 × 10 g
87	26.3 m ²
88	(a) 2.23×10^7 Pa; (b) 2.24×10^7 Pa; (c) 1.09
00	
	$\times 10^6$ N; (d) 10.1 N; (e) 8.62 m/s ²

89	(a) 5.66×10^9 N; (b) 25.4 atm
90	$4.34 \times 10^4 \text{Pa}$

Chapter 15 Answers

1	(a) 0.50 s;
	(b) 2.0 Hz;
	(c) 18 cm
2	(a) 10 N;
	(b) $1.2 \times 10^2 \text{ N/m}$
3	37.8 m/s^2
4	(a) 1.29×10^5 N/m;
	(b) 2.68 Hz
5	(a) 1.0 mm;
	(b) 0.75 m/s;
	(c) $5.7 \times 10^2 \text{ m/s}^2$
6	(a) $6.28 \times 10^5 \text{ rad/s}$;
	(b) 1.59 mm
7	(a) 498 Hz;
	(b) greater
8	+1.91 rad (or –4.37 rad)
9	(a) 3.0 m;
	(b) -49 m/s;
	$(c) -2.7 \times 10^2 \mathrm{m/s}^2;$
	(d) 20 rad;
	(e) 1.5 Hz;
	(f) 0.67 s
10	(a) 0.75 s;
	(b) 1.3 Hz;
	(c) 8.4 rad/s
11	39.6 Hz
12	-0.927 rad (or +5.36 rad)

12	(a) 0.500 a.
13	(a) 0.500 s;
	(b) 2.00 Hz;
	(c) 12.6 rad/s;
	(d) 79.0 N/m;
	(e) 4.40 m/s;
1.4	(f) 27.6 N
14	(a) 0.500 m;
	(b) -0.251 m;
	(c) 3.06 m/s
15	(a) 0.18 <i>A</i> ;
	(b) same direction
16	$2\pi/3$ rad
17	(a) 5.58 Hz;
	(b) 0.325 kg;
	(c) 0.400 m
18	2.08 h
19	(a) 25 cm;
	(b) 2.2 Hz
20	1.03 rad (or –5.25 rad)
21	54 Hz
22	4.00 m
23	3.1 cm
24	18.2 Hz
25	(a) 0.525 m;
	(b) 0.686 s
26	23 cm
27	(a) 0.75;
	(b) 0.25;
	(c) $2^{-0.5}x_m$
28	(a) yes;
	(b) 12 cm
29	37 mJ
30	(a) 200 N/m;
	(b) 1.39 kg;
	(c) 1.91 Hz
31	(a) 2.25 Hz;
	(b) 125 J;
	(c) 250 J;
	(d) 86.6 cm
32	$8.3 \times 10^2 \text{ N/m}$
33	(a) 1.1 m/s;
	(b) 3.3 cm
34	2.4 cm

	To a second
35	(a) 3.1 ms;
	(b) 4.0 m/s;
	(c) 0.080 J;
	(d) 80 N;
	(e) 40 N
36	0.333
37	(a) 2.2 Hz;
	(b) 56 cm/s;
	(c) 0.10 kg;
	(d) 20.0 cm
38	12 s
39	(a) 39.5 rad/s;
	(b) 34.2 rad/s;
10	$(c) 124 \text{ rad/s}^2$
40	5.6 cm
41	(a) $0.205 \text{ kg} \cdot \text{m}^2$;
	(b) 47.7 cm;
	(c) 1.50 s
42	(a) 0.499 m;
	(b) 0.940 mJ
43	(a) 1.64 s;
	(b) equal
44	1.83 s
45	8.77 s
46	
47	0.366 s
48	(b) 16 cm;
	(c) circle
49	(a) 0.845 rad;
	(b) 0.0602 rad
50	(a) 0.84 m;
	(b) 0.031 J
51	(a) 0.53 m;
	(b) 2.1 s
52	0.18 s
53	0.0653 s
54	$1.3 \times 10^{-5} \text{ kg·m}^2$
55	(a) 2.26 s;
	(b) increases;
	(c) same
56	(a) 2.00 s;
	(b) 18.5 N·m/rad
57	6.0%
58	0.39
	•

50	(-) 14.2
59	(a) 14.3 s;
60	(b) 5.27
60	(a) 4.9×10^2 N/cm;
	(b) $1.1 \times 10^3 \text{ kg/s}$
61	(a) $F_m/b\omega$;
	(b) F_m/b
62	d and e
63	5.0 cm
64	0.19g
65	(a) $2.8 \times 10^3 \text{ rad/s}$;
	(b) 2.1 m/s;
	(c) 5.7 km/s ²
66	(a) 2.1×10^4 N/m;
	(b) 1.5×10^4 N/m;
	(c) 3.1×10^2 Hz;
	(d) $2.6 \times 10^2 \text{Hz}$
67	(a) 1.1 Hz;
	(b) 5.0 cm
68	(a) 147 N/m;
	(b) 0.733 s
69	7.2 m/s
70	(a) $(r/R)(k/m)^{0.5}$;
	(b) $(k/m)^{0.5}$;
	(c) 0 (no oscillation)
71	(a) 7.90 N/m;
	(b) 1.19 cm;
	(c) 2.00 Hz
72	(a) 0.873 s;
	(b) 6.3 cm
73	(a) 1.3×10^2 N/m;
	(b) 0.62 s;
	(c) 1.6 Hz;
	(d) 5.0 cm;
	(e) 0.51 m/s
74	(a) 0.21 m;
	(b) 1.6 Hz;
	(c) 0.10 m
75	(a) 16.6 cm;
	(b) 1.23%
76	(a) 1.72 ms;
	(b) 11.2 ms
77	(a) 1.2 J;
5 0	(b) 50
78	(a) 11 m/s;
	(b) $1.7 \times 10^3 \text{ m/s}^2$

79	1.53 m
80	65.5%
81	(a) 0.30 m;
	(b) 0.28 s;
	(c) $1.5 \times 10^2 \text{ m/s}^2$;
	(d) 11 J
82	3.5 Hz
83	(a) 1.23 kN/m;
03	(a) 1.23 klylli, (b) 76.0 N
84	(a) 1.6 Hz;
0-	(b) 1.0 m/s;
	(c) 0;
	(d) 10 m/s^2 ;
	(e) ±10 cm;
85	(f) (-10 N/m)x
	1.6 kg (a) 1.6×10^4 m/s ² ;
86	
	(b) 2.5 m/s;
	(c) $7.9 \times 10^3 \text{ m/s}^2$;
97	(d) 2.2 m/s
87	(a) $0.735 \text{ kg} \cdot \text{m}^2$;
	(b) 0.0240 N·m;
	(c) 0.181 rad/s
88	(a) 10 N, up;
	(b) 0.10 m;
	(c) 0.90 s;
	(d) 0.50 J
89	(a) 3.5 m;
	(b) 0.75 s
90	(a) 4.0 s;
	(b) $\pi/2$ rad/s;
	(c) 0.37 cm;
	(d) $(0.37 \text{ cm}) \cos(\pi t/2)$;
	(e) $(-0.58 \text{ cm/s}) \sin(\pi t/2)$;
	(f) 0.58 cm/s;
	(g) 0.91 cm/s^2 ;
	(h) 0;
	(i) 0.58 cm/s
91	(a) 0.35 Hz;
	(b) 0.39 Hz;
	(c) 0 (no oscillation)
92	831.5 mm
93	(a) 245 N/m;
	(b) 0.284 s
94	+1.82 rad (or -4.46 rad)

0.5	2
95	$0.079 \text{ kg} \cdot \text{m}^2$
96	1.58
97	(a) $8.11 \times 10^{-5} \text{ kg} \cdot \text{m}^2$;
	(b) 3.14 rad/s
98	(a) 1.0×10^2 N/m;
	(b) 0.45 s
99	14.0°
100	(a) 62.5 mJ;
	(b) 31.3 mJ
101	(a) 3.2 Hz;
	(b) 0.26 m;
	(c) $x = (0.26 \text{ m}) \cos(20t - \pi/2)$, with t in
	seconds
102	(a) 0.20 m;
	(b) 25;
	(c) 4.0 J;
	(d) 2.1 m/s
103	(a) 0.44 s;
	(b) 0.18 m
104	(a) 0.102 kg/s;
	(b) 0.137 J
105	(a) 0.45 s;
	(b) 0.10 m above and 0.20 m below;
	(c) 0.15 m;
	(d) 2.3 J
106	(a) 0.20 s;
	(b) 0.20 kg;
	(c) -0.20 m;
	(d) $-2.0 \times 10^2 \text{ m/s}^2$;
	(e) 4.0 J
107	$7 \times 10^2 \mathrm{N/m}$
108	2.00 cm
109	0.804 m
110	50 cm
111	(a) 0.30 m;
	(b) 30 m/s^2 ;
	(c) 0;
	(d) 4.4 s
112	(a) 8.3 s;
110	(b) no
113	(a) F/m;
	(b) $2F/mL$;
114	(c) 0
114	(a) 4.03×10^6 N; (b) 1.89×10^4
115	2.54 m

(a) $y_m = 0.008 \text{ m}$, $T = 0.18 \text{ s}$, $\omega = 35 \text{ rad/s}$;
(b) $y_m = 0.07 \text{ m}$, $T = 0.48 \text{ s}$, $\omega = 13 \text{ rad/s}$;
(c) $y_m = 0.03 \text{ m}$, $T = 0.31 \text{ s}$, $\omega = 20 \text{ rad/s}$

Chapter 16 Answers

	1
1	1.1 ms
2	(a) 22 seats/s; (b) 39 seats
3	(a) 3.49 m ⁻¹ ;
	(b) 31.5 m/s
4	30 cm
5	(a) 0.680 s;
	(b) 1.47 Hz;
	(c) 2.06 m/s
6	1.3 cm
7	(a) 64 Hz;
	(b) 1.3 m;
	(c) 4.0 cm;
	$(d) 5.0 \text{ m}^{-1};$
	(e) $4.0 \times 10^2 \text{ s}^{-1}$;
	(f) $\pi/2$ rad;
	(g) minus
8	-0.64 rad or 5.64 rad
9	(a) 3.0 mm;
	(b) 16 m ⁻¹ ;
	(c) $2.4 \times 10^2 \text{ s}^{-1}$;
	(d) minus
10	(a) 6.0 cm;
	(b) 1.0×10^2 cm;
	(c) 2.0 Hz;
	(d) 2.0×10^2 cm/s;
	(e) -x direction;
	(f) 75 cm/s;
	(g) -2.0 cm
11	(a) negative;
	(b) 4.0 cm;
	(c) 0.31 cm ⁻¹ ;
	(d) 0.63 s^{-1} ;
	(e) π rad;
	(f) minus;
	(g) 2.0 cm/s;
	(h) -2.5 cm/s
12	4.24 m/s

13	(a) 11.7 cm;
	(b) π rad
14	(a) 30 m/s;
1 4	(b) 17 g/m
15	(a) 0.12 mm;
	(b) 141 m ⁻¹ ;
	(c) 628 s^{-1} ;
	(d) plus
16	135 N
17	(a) 15 m/s;
	(b) 0.036 N
18	3.2
19	129 m/s
20	$2^{0.5}$
21	2.63 m
22	(a) 0.64 Hz;
	(b) 63 cm;
	(c) 5.0 cm;
	(d) 0.10 cm ⁻¹ ;
	$(e) 4.0 s^{-1};$
	(f) minus;
	(g) 0.064 N
23	(a) 5.0 cm;
	(b) 40 cm;
	(c) 12 m/s;
	(d) 0.033 s;
	(e) 9.4 m/s;
	(f) 16 m^{-1} ;
	(g) $1.9 \times 10^2 \text{ s}^{-1}$;
	(h) 0.93 rad;
24	(i) plus
24	(a) 28.6 m/s; (b) 22.1 m/s;
	(c) 188 g;
	(d) 313 g
25	
26	198 Hz
27	3.2 mm
28	1.75 m/s
29	0.20 m/s
30	0.20 m/s
31	$1.41y_m$
32	(a) 82.8°;
	(b) 1.45 rad;
	(c) 0.230 wavelength

33	(a) 9.0 mm;
	(b) 16 m ⁻¹ ;
	(c) $1.1 \times 10^3 \text{ s}^{-1}$;
	(d) 2.7 rad;
	(e) plus
34	(a) 10 W;
	(b) 20 W;
	(c) 40 W;
	(d) 26 W;
	(e) 0
35	5.0 cm
36	0
37	(a) 3.29 mm;
	(b) 1.55 rad;
	(c) 1.55 rad
38	(a) π rad;
	(b) 3.0 mm;
	(c) 0 rad;
	(d) 13 mm;
	(e) 9.4 mm
39	84°
40	10 cm
41	(a) 82.0 m/s;
	(b) 16.8 m;
	(c) 4.88 Hz
42	(a) $2f_3$;
	(b) λ_3
43	(a) 7.91 Hz;
	(b) 15.8 Hz;
	(c) 23.7 Hz
44	(a) 66.1 m/s;
	(b) 26.4 Hz
45	(a) 105 Hz;
	(b) 158 m/s
46	(a) 4;
	(b) 8;
	(c) none
47	260 Hz
48	(a) 6.36 Hz; (b) 6.36 Hz
49	(a) 144 m/s;
	(b) 60.0 cm;
	(c) 241 Hz
50	(a) +4.0 cm;
	(b) 0;
	(c) 0;
	(d) -0.13 m/s
L	

(b) 3.1 m ⁻¹ ; (c) 3.1 × 10 ² s ⁻¹ ; (d) minus 52	51	(a) 0.50 cm;
(c) 3.1 × 10 ² s ⁻¹ ; (d) minus 52 (a) 4.0 m; (b) 24 m/s; (c) 1.4 kg; (d) 0.11 s 53 (a) 0.25 cm; (b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;	31	
(d) minus 52		
52 (a) 4.0 m; (b) 24 m/s; (c) 1.4 kg; (d) 0.11 s 53 (a) 0.25 cm; (b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		
(b) 24 m/s; (c) 1.4 kg; (d) 0.11 s 53 (a) 0.25 cm; (b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		(a) minus
(c) 1.4 kg; (d) 0.11 s 53 (a) 0.25 cm; (b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;	52	(a) 4.0 m;
(d) 0.11 s 53		(b) 24 m/s;
53 (a) 0.25 cm; (b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		(c) 1.4 kg;
(b) 1.2 × 10 ² cm/s; (c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		(d) 0.11 s
(c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;	53	(a) 0.25 cm;
(c) 3.0 cm; (d) 0 54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		(b) 1.2×10^2 cm/s;
54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		
54 (a) 4.5 mm; (b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		
(b) 16 m ⁻¹ ; (c) 5.2 × 10 ² s ⁻¹ ; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;	54	(a) 4.5 mm;
(c) $5.2 \times 10^2 \text{ s}^{-1}$; (d) minus 55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		
(d) minus 55		
55 0.25 m 56 (a) 0; (b) 0.20 m; (c) 0.40 m; (d) 50 ms;		
(b) 0.20 m; (c) 0.40 m; (d) 50 ms;	55	0.25 m
(c) 0.40 m; (d) 50 ms;	56	(a) 0;
(c) 0.40 m; (d) 50 ms;		(b) 0.20 m;
(e) 8.0 m/s;		(e) 8.0 m/s ;
(f) 2.0 cm;		(f) 2.0 cm;
(g) 0;		(g) 0;
(h) 25 ms;		(h) 25 ms;
(i) 50 ms		
57 (a) 2.00 Hz;	57	(a) 2.00 Hz;
(b) 2.00 m;		(b) 2.00 m;
(c) 4.00 m/s;		(c) 4.00 m/s;
(d) 50.0 cm;		(d) 50.0 cm;
(e) 150 cm;		(e) 150 cm;
(f) 250 cm;		
(g) 0;		
(h) 100 cm;		
(i) 200 cm		
58 (a) 0.846 kg; (b) none	58	(a) 0.846 kg; (b) none
59 (a) 324 Hz;	59	(a) 324 Hz;
(b) eight		
60 0.845 g/m	60	
61 36 N		26 M

62 (a) 2.0 cm; (b) 0.63 cm ⁻¹ ; (c) 2.5 × 10 ³ s ⁻¹ ; (d) minus; (e) 50 m/s; (f) 40 m/s 63 (a) 75 Hz; (b) 13 ms 64 (a) -3.9 cm; (b) 0.15 m; (c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4 75 (a) 300 m/s; (b) no		
(c) 2.5 × 10 ³ s ⁻¹ ; (d) minus; (e) 50 m/s; (f) 40 m/s 63	62	(a) 2.0 cm;
(d) minus; (e) 50 m/s; (f) 40 m/s 63		
(e) 50 m/s; (f) 40 m/s 63		
(f) 40 m/s 63 (a) 75 Hz; (b) 13 ms 64 (a) -3.9 cm; (b) 0.15 m; (c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		
63 (a) 75 Hz; (b) 13 ms 64 (a) -3.9 cm; (b) 0.15 m; (c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		(e) 50 m/s;
(b) 13 ms 64		(f) 40 m/s
64 (a) -3.9 cm; (b) 0.15 m; (c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4	63	(a) 75 Hz;
(b) 0.15 m; (c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65		\ \ /
(c) 0.79 m ⁻¹ ; (d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65	64	
(d) 13 s ⁻¹ ; (e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		(b) 0.15 m;
(e) plus (f) -0.14 m 65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		$(c) 0.79 \text{ m}^{-1};$
(f) -0.14 m 65		
65 (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ±0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		
(b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s 66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) +x 69 (a) 0.83y ₁ ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		† ` ´
(c) $+30 \text{ m/s}$; (d) 31 cm ; (e) 1.2 m/s 66	65	
(d) 31 cm; (e) 1.2 m/s 66		
(e) 1.2 m/s $2.8 \text{ rad or } -3.5 \text{ rad}$ 67 (a) 0.31 m ; (b) 1.64 rad ; (c) 2.2 mm 68 (a) 5.0 cm/s ; (b) $+x$ 69 (a) $0.83y_1$; (b) 37° 70 $2.9 \text{ rad or } -3.4 \text{ rad}$ 71 (a) 3.77 m/s ; (b) 12.3 N ; (c) 0 ; (d) 46.4 W ; (e) 0 ; (f) 0 ; (g) $\pm 0.50 \text{ cm}$ 72 (a) 3.0 mm ; (b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
66 2.8 rad or -3.5 rad 67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) $+x$ 69 (a) 0.83 y_1 ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) \pm 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
67 (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) $+x$ 69 (a) 0.83 y_1 ; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) \pm 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5 × 10 ² s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
(b) 1.64 rad; (c) 2.2 mm 68 (a) 5.0 cm/s; (b) $+x$ 69 (a) $0.83y_1$; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
(c) 2.2 mm 68	67	
68 (a) 5.0 cm/s ; (b) $+x$ 69 (a) $0.83y_1$; (b) 37° 70 $2.9 \text{ rad or } -3.4 \text{ rad}$ 71 (a) 3.77 m/s ; (b) 12.3 N ; (c) 0 ; (d) 46.4 W ; (e) 0 ; (f) 0 ; (g) $\pm 0.50 \text{ cm}$ 72 (a) 3.0 mm ; (b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
(b) $+x$ 69 (a) $0.83y_1$; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s ; (b) 12.3 N ; (c) 0 ; (d) 46.4 W ; (e) 0 ; (f) 0 ; (g) $\pm 0.50 \text{ cm}$ 72 (a) 3.0 mm ; (b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		(c) 2.2 mm
69 (a) $0.83y_1$; (b) 37° 70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$	68	(a) 5.0 cm/s;
(b) 37° 70		(b) +x
70 2.9 rad or -3.4 rad 71 (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$	69	(a) $0.83y_1$;
71 (a) 3.77 m/s ; (b) 12.3 N ; (c) 0 ; (d) 46.4 W ; (e) 0 ; (f) 0 ; (g) $\pm 0.50 \text{ cm}$ 72 (a) 3.0 mm ; (b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		(b) 37°
(b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$	70	2.9 rad or -3.4 rad
(c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$	71	1 ` ′
(d) 46.4 W ; (e) 0; (f) 0; (g) $\pm 0.50 \text{ cm}$ 72 (a) 3.0 mm ; (b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
(e) 0; (f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		(c) 0;
(f) 0; (g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
(g) ± 0.50 cm 72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		
72 (a) 3.0 mm; (b) 31 m ⁻¹ ; (c) 7.5×10^2 s ⁻¹ ; (d) minus 73 1.2 rad 74 (a) $2P_1$; (b) $P_1/4$		(f) 0;
(b) 31 m^{-1} ; (c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73		$(g) \pm 0.50 \text{ cm}$
(c) $7.5 \times 10^2 \text{ s}^{-1}$; (d) minus 73	72	
(d) minus 73		(b) 31 m ⁻¹ ;
73 1.2 rad 74 (a) 2P ₁ ; (b) P ₁ /4		(c) $7.5 \times 10^2 \text{ s}^{-1}$;
74 (a) 2 <i>P</i> ₁ ; (b) <i>P</i> ₁ /4		(d) minus
(b) $P_1/4$		1.2 rad
	74	(a) $2P_1$;
		(b) $P_1/4$
	75	

76	(a) 0.50 m;
	(b) 0;
	(c) 0.25 s;
	(d) 0.50 s
77	(a) $[k \Delta \ell (\ell + \Delta \ell)/m]^{0.5}$
78	(a) 4.3×10^{14} Hz to 7.5×10^{14} Hz;
	(b) $1.0 \text{ m to } 2.0 \times 10^2 \text{ m}$;
	(c) 6.0×10^{16} Hz to 3.0×10^{19} Hz
79	(a) 144 m/s;
	(b) 3.00 m;
	(c) 1.50 m;
	(d) 48.0 Hz;
	(e) 96.0 Hz
80	(a) 880 Hz;
	(b) 1320 Hz
81	(a) 1.00 cm;
	(b) $3.46 \times 10^3 \text{ s}^{-1}$;
	(c) 10.5 m^{-1} ;
	(d) plus
82	(a) 6.7 mm;
	(b) 45°
83	(a) $2\pi y_m/\lambda$;
	(b) no
84	(a) 1.3 m;
	(b) $(2.0 \text{ mm}) \sin[(9.4 \text{ m}^{-1})x] \cos[(3.8 \times 1.0 \text{ mm})]$
0.5	$10^3 \mathrm{s}^{-1})t]$
85	(a) 240 cm;
	(b) 120 cm;
0.5	(c) 80 cm
86	(a) $z(y, t) = (3.0 \text{ mm}) \sin[(60 \text{ cm}^{-1})y -$
	$(31 \text{ s}^{-1})t);$
0.7	(b) 9.4 cm/s
87	(a) 1.33 m/s;
	(b) 1.88 m/s;
	(c) 16.7 m/s^2 ;
0.0	(d) 23.7 m/s^2
88	(a) 8.0 cm;
90	(b) 1.0 cm
89	(a) 0.52 m;
	(b) 40 m/s;
00	(c) 0.40 m
90	(a) 5.0 cm/s;
	(b) 3.2 cm;
	(c) 0.25 Hz

91	(a) 0.16 m;
	(b) 2.4×10^2 N;
	(c) $y(x, t) = (0.16 \text{ m}) \sin[(1.57 \text{ m}^{-1})x]$
	$\sin[(31.4 \text{ s}^{-1})t]$
92	(b) +x;
	(c) interchange their amplitudes;
	(d) $x = \lambda/4 = 6.26$ cm;
	(e) $x = 0$ and $x = \lambda/2 = 12.5$ cm;
	(f) amplitude (4.00 mm) is sum of
	amplitudes of original waves;
	(g) amplitude (1.00 mm) is difference of
	amplitudes of original waves
93	(c) 2.0 m/s;
	(d)-x
94	4.0 cm/s
95	(a) ∞ ; (b)1.0; (c) 4.0%
96	(a) 10.6 W ; (b) 21.2 W ; (c) $8.83 \times 10^{-2} \text{ J}$

Chapter 17 Answers

1	(a) 79 m;
	(b) 41 m;
	(c) 89 m
3	0.144 MPa
3	(a) 2.6 km;
	(b) 2.0×10^2
4	$1.7 \times 10^2 \mathrm{m}$
5	$1.9 \times 10^3 \text{ km}$
6	44 m
7	40.7 m
8	9.00
9	0.23 ms
9	(a) 2.3×10^2 Hz;
	(b) higher
10	(a) $(D \sin \theta)/v$; (b) D/v_w ; (c) 13°
11	(a) 76.2 μm;
	(b) 0.333 mm
12	(a) 1.50 Pa;
	(b) 158 Hz;
	(c) 2.22 m;
	(d) 350 m/s
13	960 Hz

1.4	() ()
14	(a) 6.1 nm;
	(b) 9.2 m ⁻¹ ;
	(c) $3.1 \times 10^3 \text{ s}^{-1}$;
	(d) 5.9 nm;
	(e) 9.8 m ⁻¹ ;
	$(f) 3.1 \times 10^3 \text{ s}^{-1}$
15	(a) 2.3×10^2 Hz;
	(b) higher
16	4.12 rad
17	(a) 143 Hz;
	(b) 3;
	(c) 5;
	(d) 286 Hz;
	(e) 2;
	(f) 3
18	(a) 0.5;
	(b) 1.5
19	(a) 14;
	(b) 14
20	(a) 0;
	(b) 0;
21	(c) 4
21	(a) 343 Hz;
	(b) 3;
	(c) 5;
	(d) 686 Hz;
	(e) 2;
22	(f) 3 17.5 cm
22 23	
23	(a) 0; (b) fully constructive;
	(c) increase;
	(d) 128 m;
	(e) 63.0 m;
	(f) 41.2 m
24	(a) $10 \mu \text{W/m}^2$;
27	(a) 10 μ W/m; (b) 0.10 μ W/m ² ;
	(b) 0.10 μ W/m; (c) 70 nm;
	(d) 7.0 nm
25	36.8 nm
26	(a) 0.080 W/m ² ;
20	(a) 0.080 W/m^2 , (b) 0.013 W/m^2
27	(a) 1.0×10^3 ;
	(a) 1.0 × 10; (b) 32
26	1.26
28	1.20

29	15.0 mW
30	(a) 8.84 nW/m ² ;
	(b) 39.5 dB
31	2 μW
32	(a) 0.26 nm;
	(b) 1.5 nW/m^2
33	0.76 μm
34	(a) 3.2;
	(b) 5.0 dB;
35	(a) $5.97 \times 10^{-5} \text{ W/m}^2$;
	(b) 4.48 nW
36	0.67 m
37	(a) 0.34 nW;
	(b) 0.68 nW;
	(c) 1.4 nW;
	(d) 0.88 nW;
	(e) 0
38	(a) 4;
	(b) 0.125 m;
	(c) 0.375 m
39	(a) 405 m/s;
	(b) 596 N;
	(c) 44.0 cm;
	(d) 37.3 cm
40	(a) 57.2 cm;
	(b) 42.9 cm
41	(a) 833 Hz;
	(b) 0.418 m
42	20 kHz
43	(a) 3;
	(b) 1129 Hz;
4.4	(c) 1506 Hz
44	(a) 86 Hz;
	(b) yes, low frequency;
4.5	(c) higher
45	(a) 2;
46	(b) 1
40	(a) 2; (b) 0;
	(b) 0; (c) 0.40 m;
	(d) 143 Hz
47	12.4 m
4/	14.7 III

10	L () 2 co 11
48	(a) 260 Hz;
	(b) 4;
	(c) 840 Hz;
	(d) 7
49	45.3 N
50	(a) 71.5 Hz;
	(b) 64.8 N
51	2.25 ms
52	387 Hz
53	0.020
54	(a) 10;
	(b) 4
55	(a) 526 Hz;
	(b) 555 Hz
56	4.61 m/s
57	0
58	(a) 1.58 kHz;
	(b) 0.208 m;
	(c) 2.16 kHz;
	(d) 0.152 m
59	(a) 1.022 kHz;
	(b) 1.045 kHz
60	0.195 MHz
61	41 kHz
62	(a) $2v/3$;
	(b) $2v/3$;
	(c) $2v/3$;
	(d) $2v/3$
63	155 Hz
64	0.236
65	(a) 2.0 kHz;
	(b) 2.0 kHz
66	(a) 598 Hz;
	(b) 608 Hz;
	(c) 589 Hz
67	(a) 485.8 Hz;
	(b) 500.0 Hz;
	(c) 486.2 Hz;
	(d) 500.0 Hz
68	$3.3 \times 10^2 \text{ m/s}$
69	(a) 42°;
	(b) 11 s
70	33.0 km
71	1 cm
72	30°
12	JU

73	2.1 m
74	$7.9 \times 10^{10} \text{Pa}$
75	(a) 39.7 μ W/m ² ;
	(b) 171 nm;
5 .	(c) 0.893 Pa
76	(a) 5.0×10^3 ;
	(b) 71;
	(c) 71
77	0.25
78	3.1 m/s
79	(a) 2.10 m;
	(b) 1.47 m
80	0.250
81	(a) 59.7;
	(b) 2.81×10^{-4}
82	(a) 0.30 cm;
	(c) $1.6 \times 10^2 \mathrm{s}^{-1}$;
	(d) 6.0 m/s;
	(e) plus
83	(a) rightward;
	(b) 0.90 m/s;
	(c) less
84	(a) $L(v_m - v)/v_m v$;
	(b) 364 m
85	(a) 11 ms;
	(b) 3.8 m
86	0.33
87	(a) 9.7×10^2 Hz;
	(b) 1.0 kHz;
	(c) 60 Hz, no
88	(a) 2.00;
	(b) 1.41;
	(c) 1.73;
	(d) 1.85
89	(a) 21 nm;
	(b) 35 cm;
	(c) 24 nm;
	(d) 35 cm
90	(a) 572 Hz;
	(b) 1.14 kHz
91	(a) 7.70 Hz;
	(b) 7.70 Hz
92	3
82 83 84 85 86 87 88 89 90 91	(b) 2.81 × 10 ⁻⁴ (a) 0.30 cm; (b) 0.26 cm ⁻¹ ; (c) 1.6 × 10 ² s ⁻¹ ; (d) 6.0 m/s; (e) plus (a) rightward; (b) 0.90 m/s; (c) less (a) L(v _m - v)/v _m v; (b) 364 m (a) 11 ms; (b) 3.8 m 0.33 (a) 9.7 × 10 ² Hz; (b) 1.0 kHz; (c) 60 Hz, no (a) 2.00; (b) 1.41; (c) 1.73; (d) 1.85 (a) 21 nm; (b) 35 cm; (c) 24 nm; (d) 35 cm (a) 572 Hz; (b) 1.14 kHz (a) 7.70 Hz; (b) 7.70 Hz

93	(a) 5.2 kHz;
	(b) 2
94	(a) 3.9×10^2 to 9.2×10^2 GJ;
	(b) $0.63 \text{ to } 1.5 \text{ W/m}^2$;
	(c) 25 to 58 kW/m^2 ;
	(d) surface wave
95	(a) 10 W;
	(b) 0.032 W/m^2 ;
	(c) 99 dB
96	0
97	(a) 0;
	(b) 0.572 m;
	(c) 1.14 m
98	(a) 0.50 m;
	(b) 0.34 m;
	(c) 0.66 m
99	171 m
100	(a) 2;
	(b) 6;
	(c) 10
101	(a) 3.6×10^2 m/s;
	(b) 150 Hz
102	(b) length ²
103	400 Hz
104	(a) 88 mW/m^2 ;
	(b) 0.75
105	(a) 14;
	(b) 12
106	35.8 m/s
107	821 m/s
108	$2[d^{2} + 4(H+h)^{2}]^{0.5} - 2[d^{2} + 4H^{2}]^{0.5}$
109	(a) 39.3 Hz; (b) 118 Hz
110	(a) 467 Hz;
	(b) 494 Hz
111	$4.8 \times 10^2 \mathrm{Hz}$

Chapter 18 Answers

1	1.366
2	(a) 0.06 kPa;
	(b) nitrogen
3	348 K
4	(a) -96°F;
	(a) -96°F; (b) 56.7°C

5	() 2200E
5	(a) 320°F;
6	(b) -12.3°F
6	1375°X
7	-92.1°X
8	11 cm ²
9	2.731 cm
10	1.1 cm
11	49.87 cm ³
12	(a) 9.996 cm;
	(b) 68°C
13	29 cm ³
14	(a) 0.36%;
	(b) 0.18%;
	(c) 0.54%;
	(d) 0.00%;
	(e) $1.8 \times 10^{-5}/\text{C}^{\circ}$
15	360°C
16	(a) -0.69%;
	(b) aluminum
17	0.26 cm^3
18	$23 \times 10^{-6}/\text{C}^{\circ}$
19	0.13 mm
20	0.217 K/s
21	7.5 cm
22	(a) 52 MJ;
	(b) 0°C
23	160 s
24	(a) 523 J/kg·K;
	(b) 26.2 J/mol·K;
	(c) 0.600 mol
25	94.6 L
26	0.25 kg
27	42.7 kJ
28	109 g
29	33 m ²
30	(a) 68 kJ/kg;
	(b) 2.3 kJ/kg·K
31	33 g
32	82 cal
33	3.0 min
34	$4.0 \times 10^2 \text{ J/kg·K}$
35	13.5 C°
	20.0 0

36	(a) 2.03×10^4 cal;
	(b) 1.11×10^3 cal;
	(c) 873°C
37	(a) 5.3°C;
	(b) 0;
	(c) 0°C;
	(d) 60 g
38	(a) 37 W;
	(b) 2.0 kg;
	(c) 0.13 kg
39	742 kJ
40	0.41 kJ/kg·K
41	(a) 0°C;
	(b) 2.5°C
42	8.71 g
43	(a) 1.2×10^2 J;
	(b) 75 J;
	(c) 30 J
44	(a) +;
	(b) +;
	(c) 0;
	(d) +;
	(e) -; (f) -;
	(f) -, (g) -;
	(g) -, (h) -20 J
45	-30 J
46	(a) -200 J;
	(b) -293 J;
	(c) -93 J
47	(a) 6.0 cal;
	(b) -43 cal;
	(c) 40 cal;
	(d) 18 cal;
	(e) 18 cal
48	-5.0 J
49	60 J
50	(a) +8.0 J;
	(b) -9.3 J
51	(a) 1.23 kW;
	(b) 2.28 kW;
50	(c) 1.05 kW
52	(a) 0.13 m;
53	(b) 2.3 km 1.66 kJ/s
	1.00 KJ/S

54	(a) 8×10^2 W;
	(b) $2 \times 10^4 \text{J}$
55	(a) 16 J/s;
	(b) 0.048 g/s
56	0.81 J
57	(a) $1.7 \times 10^4 \text{ W/m}^2$;
	(b) 18 W/m^2
58	(a) 1.4 W;
	(b) 3.3
59	0.50 min
60	(a) 15.8 C°;
	(b) greater than;
	(c) 13.8 C°
61	0.40 cm/h
62	(a) 0.21 W; (b) 65 s
63	-4.2°C
64	(a) 0.16; (b) 84%
65	1.1 m
66	0.68 mg/s
67	10%
68	$6.7 \times 10^{12} \mathrm{J}$
69	(a) 80 J;
	(b) 80 J 35.7 m ³
70	
71	$4.5 \times 10^2 \mathrm{J/kg \cdot K}$
72	766°C
73	0.432 cm^3
74	(a) 2.5×10^2 K;
	(b) 1.5
75	$3.1 \times 10^2 \mathrm{J}$
76	66°C
77	79.5°C
78	(a) 16.7A W; (b) (5.0×10^{-5}) A kg/s; (c) 50
	nm/s
79	23 J
80	33.3 kJ
81	(a) $11p_1V_1$;
	(b) $6 p_1 V_1$
82	(a) 84.3°C;
	(b) 57.6°C
83	$4.83 \times 10^{-2} \text{ cm}^3$
	1

84	(a) $2.3 \times 10^2 \text{J/s}$;
	(b) 15
85	10.5°C
86	0.32 cm^2
87	(a) 90 W;
	(b) 2.3×10^2 W;
	(c) 3.3×10^2 W
88	-157°C
89	(a) 1.87×10^4 ;
	(b) 10.4 h
90	$1.7 \times 10^2 \text{ km}$
91	333 J
92	$2.16 \times 10^{-5} \mathrm{m}^2$
93	8.6 J
94	45.5°C
95	(a) –45 J;
	(b) +45 J
96	(a) $(\alpha_1 L_1 + \alpha_2 L_2)/L$; (b) 39.3 cm; (c) 13.1 cm
97	(a) $(\alpha_1 L_1 + \alpha_2 L_2)/L$; (b) 39.3 cm; (c) 13.1 cm 4.0×10^3 min
98	1.5
99	-6.1 nW
100	2.5 kJ/kg·K
101	1.17 C°
102	660 μm
103	$8.0 \times 10^{-3} \text{ m}^2$
104	7.9×10^{-3}
105	(a) too fast; (b) 0.79 s/h
106	$7.3 \times 10^6 \mathrm{J}$
107	1.9
108	$5.6 \times 10^4 \mathrm{W}$
•	

Chapter 19

1	0.933 kg
2	(a) 0.0127 mol;
	(b) 7.64×10^{21} atoms
3	(a) 0.0388 mol;
	(b) 220°C
4	(a) 106 mol; (b) 0.892 m ³
	(b) 0.892 m^3
5	25 molecules/cm ³
6	1.25 atm

7
8 (a) 5.47 × 10 ⁻⁸ mol; (b) 3.29 × 10 ¹⁶ molecules 9 186 kPa 10 0.2 11 5.60 kJ 12 (a) 12.6 m³; (b) 1.16 m³; (c) 5.10 × 10³ mol 13 (a) 1.5 mol; (b) 1.8 × 10³ K; (c) 6.0 × 10² K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10² cm³ 17 2.0 × 10⁵ Pa 18 9.53 × 10⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10² m/s 22 442 m/s 23 1.9 kPa
(b) 3.29 × 10 ¹⁶ molecules 9
9 186 kPa 10 0.2 11 5.60 kJ 12 (a) 12.6 m³; (b) 1.16 m³; (c) 5.10 × 10³ mol 13 (a) 1.5 mol; (b) 1.8 × 10³ K; (c) 6.0 × 10² K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10² cm³ 17 2.0 × 10⁵ Pa 18 9.53 × 10⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10² m/s 22 442 m/s 23 1.9 kPa
10
11 5.60 kJ 12 (a) 12.6 m³; (b) 1.16 m³; (c) 5.10 × 10³ mol 13 (a) 1.5 mol;
12 (a) 12.6 m ³ ; (b) 1.16 m ³ ; (c) 5.10 × 10 ³ mol 13 (a) 1.5 mol; (b) 1.8 × 10 ³ K; (c) 6.0 × 10 ² K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10 ² cm ³ 17 2.0 × 10 ⁵ Pa 18 9.53 × 10 ⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
13 (a) 1.5 mol; (b) 1.8 × 10 ³ K; (c) 6.0 × 10 ² K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10 ² cm ³ 17 2.0 × 10 ⁵ Pa 18 9.53 × 10 ⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
(b) 1.8 × 10 ³ K; (c) 6.0 × 10 ² K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10 ² cm ³ 17 2.0 × 10 ⁵ Pa 18 9.53 × 10 ⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
(c) 6.0×10^2 K; (d) 5.0 kJ 14 207 J 15 360 K 16 1.0×10^2 cm ³ 17 2.0×10^5 Pa 18 9.53×10^6 m/s 19 (a) 511 m/s; (b) -200° C; (c) 899° C 20 2.50 km/s 21 1.8×10^2 m/s 22 442 m/s 23 1.9 kPa
(d) 5.0 kJ 14 207 J 15 360 K 16 1.0 × 10 ² cm ³ 17 2.0 × 10 ⁵ Pa 18 9.53 × 10 ⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
14 207 J 15 360 K 16 $1.0 \times 10^2 \text{ cm}^3$ 17 $2.0 \times 10^5 \text{ Pa}$ 18 $9.53 \times 10^6 \text{ m/s}$ 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 $1.8 \times 10^2 \text{ m/s}$ 22 442 m/s 23 1.9 kPa
15 360 K 16 $1.0 \times 10^{2} \text{ cm}^{3}$ 17 $2.0 \times 10^{5} \text{ Pa}$ 18 $9.53 \times 10^{6} \text{ m/s}$ 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 $1.8 \times 10^{2} \text{ m/s}$ 22 442 m/s 23 1.9 kPa
16 $1.0 \times 10^{2} \text{ cm}^{3}$ 17 $2.0 \times 10^{5} \text{ Pa}$ 18 $9.53 \times 10^{6} \text{ m/s}$ 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 $1.8 \times 10^{2} \text{ m/s}$ 22 442 m/s 23 1.9 kPa
17
18 9.53 × 10 ⁶ m/s 19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
19 (a) 511 m/s; (b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
(b) -200°C; (c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
(c) 899°C 20 2.50 km/s 21 1.8 × 10 ² m/s 22 442 m/s 23 1.9 kPa
$\begin{array}{cccc} 20 & 2.50 \text{ km/s} \\ 21 & 1.8 \times 10^2 \text{ m/s} \\ 22 & 442 \text{ m/s} \\ 23 & 1.9 \text{ kPa} \end{array}$
21 $1.8 \times 10^2 \text{ m/s}$ 22 442 m/s 23 1.9 kPa
22 442 m/s 23 1.9 kPa
23 1.9 kPa
24 (a) 404 m/g.
24 (a) 494 III/8,
(b) 27.9 g/mol;
$(c) N_2$
25 (a) $5.65 \times 10^{-21} \text{ J}$;
(b) $7.72 \times 10^{-21} \text{ J}$;
(c) 3.40 kJ;
(d) 4.65 kJ
26 $3.3 \times 10^{-20} \mathrm{J}$
27 (a) $6.76 \times 10^{-20} \text{ J}$;
(b) 10.7
28 3.7 GHz
29 (a) 6×10^9 km
30 0.32 nm
31 (a) 3.27×10^{10} molecules/cm ³ ;
(b) 172 m
32 (a) 1.7;
(b) 5.0×10^{-5} cm;
(c) 7.9×10^{-6} cm
33 (a) 6.5 km/s;
(b) 7.1 km/s

2.4	(a) 2.2 am/a.
34	(a) 3.2 cm/s;
	(b) 3.4 cm/s;
25	(c) 4.0 cm/s
35	(a) 420 m/s;
	(b) 458 m/s;
26	(c) yes
36	1.50
37	(a) 0.67;
	(b) 1.2;
	(c) 1.3;
20	(d) 0.33
38	(a) $2.7 \times 10^2 \text{ K}$;
20	(b) $4.9 \times 10^2 \text{ m/s}$
39	(a) 1.0×10^4 K;
	(b) 1.6×10^5 K;
	(c) 4.4×10^2 K;
	(d) 7.0×10^3 K;
	(e) no;
10	(f) yes
40	4.7
41	(a) 7.0 km/s;
	(b) 2.0×10^{-8} cm;
	(c) 3.5×10^{10} collisions/s
42	3.4 kJ
43	(a) 3.49 kJ;
	(b) 2.49 kJ;
	(c) 997 J;
	(d) 1.00 kJ
44	(a) -5.0 kJ;
	(b) 2.0 kJ;
4.5	(c) 5.0 kJ
45	(a) 6.6×10^{-26} kg;
4.5	(b) 40 g/mol
46	(a) +249 J;
	(b) +623 J;
	(c) $+374 \text{ J}$;
4.7	(d) $+3.11 \times 10^{-22} \mathrm{J}$
47	(a) 0;
	(b) +374 J;
	(c) $+374 \text{ J}$;
40	(d) $+3.11 \times 10^{-22} \text{ J}$
48	(a) 15.9 J;
	(b) 34.4 J/mol·K;
	(c) 26.1 J/mol·K

49	15.8 J/mol·K
50	50 J
51	8.0 kJ
52	(a) 0.375 mol;
	(b) 1.09 kJ;
	(c) 0.714
53	(a) 6.98 kJ;
	(b) 4.99 kJ;
	(c) 1.99 kJ;
	(d) 2.99 kJ
54	$1.5 \times 10^3 \text{ N} \cdot \text{m}^{2.2}$
55	(a) 14 atm;
	(b) $6.2 \times 10^2 \text{ K}$
56	(a) 2.46 atm;
	(b) 336 K;
	(c) 0.406 L
57	(a) diatomic;
	(b) 446 K;
	(c) 8.10 mol
58	-87°C
59	-15 J
60	17°C
61	-20 J
62	$-1.33 \times 10^4 \mathrm{J}$
63	(a) 3.74 kJ;
	(b) 3.74 kJ;
	(c) 0;
	(d) 0;
	(e) -1.81 kJ;
	(f) 1.81 kJ;
	(g) -3.22 kJ;
	(h) -1.93 kJ;
	(i) -1.29 kJ;
	(j) 520 J;
	(k) 0; (l) 520 J;
	$(m) 0.0246 \text{ m}^3;$
	(iii) 0.0246 iii , (n) 2.00 atm;
	(a) 2.00 atm , (b) 0.0373 m^3 ;
	(b) 0.0373 iii , (p) 1.00 atm
64	653 J
U-T	000 0

65	(a) monatomic;
03	(a) inolatolitic, (b) $2.7 \times 10^4 \text{ K}$;
	(c) 4.5×10^4 mol;
	(d) 3.4 kJ;
	(e) 3.4×10^2 kJ;
	(f) 0.010
66	1.52 nm
67	(a) 2.00 atm;
	(b) 333 J;
	(c) 0.961 atm;
	(d) 236 J
68	38.8 m
69	349 K
70	5.0 m^3
71	(a) -374 J;
	(b) 0;
	(c) +374 J;
	$(d) +3.11 \times 10^{-22} J$
72	307°C
73	$7.03 \times 10^9 \mathrm{s}^{-1}$
74	(a) 2.5×10^{25} molecules/m ³ ;
	(b) 1.2 kg
75	(a) 900 cal;
	(b) 0;
	(c) 900 cal;
	(d) 450 cal;
	(e) 1200 cal;
	(f) 300 cal;
	(g) 900 cal;
	(h) 450 cal;
	(i) 0;
	(j) –900 cal;
	(k) 900 cal;
	(1) 450 cal
76	(a) -60 J;
	(b) 90 K
77	(a) $3/v_0^3$;
	(b) $0.750v_0$;
	(c) $0.775v_0$
78	(a) 0.33;
	(b) polyatomic (ideal);
	(c) 1.44
79	(a) -2.37 kJ;
	(b) 2.37 kJ
80	9.2×10^{-6}

0.1	(L) 105 L
81	(b) 125 J;
	(c) to
82	(a) 22.4 L
83	(a) 8.0 atm;
	(b) 300 K;
	(c) 4.4 kJ;
	(d) 3.2 atm;
	(e) 120 K;
	(f) 2.9 kJ;
	(g) 4.6 atm;
	(h) 170 K;
	(i) 3.4 kJ
84	(a) 122 K;
	(b) 365 K;
	(c) 0
85	(a) 38 L;
	(b) 71 g
86	(a) $7.72 \times 10^4 \mathrm{J}$;
	(b) $5.46 \times 10^4 \mathrm{J};$
	(c) 5.17 J/mol·K;
	(d) 4.32×10^4 J;
	(e) $8.86 \times 10^4 \mathrm{J}$;
	(f) 8.38 J/mol·K
87	-3.0 J
88	(a) –45 J;
	(b) $1.8 \times 10^2 \text{ K}$
89	22.8 m
90	(a) 1.2×10^4 W; (b) 16 hp
91	-
92	1.40
93	-
94	0.63
95	1.40
96	0.61 m/s
97	4.71

Chapter 20

1	(a) 9.22 kJ; (b) 23.1 J/K;
	(c) 0
2	2.75 mol
3	14.4 J/K
4	$1.86 \times 10^4 \mathrm{J}$

I-	
5	(a) 5.79×10^4 J;
	(b) 173 J/K
6	(a) 14.6 J/K;
	(b) 30.2 J/K
7	(a) 320 K;
	(b) 0;
	(c) +1.72 J/K
8	0.0368 J/K
9	+0.76 J/K
10	$4.5 \times 10^2 \text{ J/kg} \cdot \text{K}$
11	(a) 57.0°C;
	(b) -22.1 J/K;
	(c) +24.9 J/K;
	(d) + 2.8 J/K
12	3.5 mol
13	(a) -710 mJ/K;
	(b) $+710 \text{ mJ/K}$;
	(c) + 723 mJ/K;
	(d) -723 mJ/K;
	(e) $+13 \text{ mJ/K}$;
	(f) 0
14	(a) 3.00;
14	(a) 5.00, (b) 6.00;
	(c) 0;
	(d) 8.64 J/K;
	(e) 0
15	(a) -943 J/K;
13	
	(b) +943 J/K;
1.0	(c) yes
16	+0.64 J/K
17	(a) 0.333;
	(b) 0.215;
	(c) 0.644;
	(d) 1.10;
	(e) 1.10;
	(f) 0;
	(g) 1.10;
	(h) 0;
	(i) -0.889;
	(j) -0.889;
	(k) -1.10;
	(1) -0.889;
	(m) 0;
	(n) 0.889;
	(o) 0

	T
18	(a) 4.5 kJ;
	(b) -5.0 kJ ;
	(c) 9.5 kJ
19	(a) 0.693;
	(b) 4.50;
	(c) 0.693;
	(d) 0;
	(e) 4.50;
	(f) 23.0 J/K;
	(g) -0.693;
	(h) 7.50;
	(i) -0.693;
	(j) 3.00;
	(k) 4.50;
	(1) 23.0 J/K
	(1) 23.0 3/1
20	(a) 1.84 kPa;
	(b) 441 K;
	(c) 3.16 kJ;
	(d) 1.94 J/K
21	-1.18 J/K
22	(a) 66.5°C;
	(b) 14.6 J/K;
	(c) 11.0 J/K;
	(d) -21.2 J/K;
	(e) 4.39 J/K
23	97 K
24	(a) 31%;
21	(b) 16 kJ
25	(a) 266 K;
	(b) 341 K
26	99.999 95%
27	(a) 23.6%;
	(b) $1.49 \times 10^4 \mathrm{J}$
28	
29	(a) 2.27 kJ;
	(b) 14.8 kJ;
	(c) 15.4%;
	(d) 75.0%;
	(e) greater
30	(a) 4.67 kJ/s;
	(b) 4.17 kJ/s
31	(a) 33 kJ;
	(b) 25 kJ;
	(c) 26 kJ;
	(d) 18 kJ
	(u) 10 NJ

22	1.711
32	1.7 kJ
33	(a) 1.47 kJ;
	(b) 554 J;
	(c) 918 J;
	(d) 62.4%
34	(a) monatomic;
	(b) 75%
35	(a) 3.00;
	(b) 1.98;
	(c) 0.660;
	(d) 0.495;
	(e) 0.165;
	(f) 34.0%
36	(a) 0.071 J;
	(b) 0.50 J;
	(c) 2.0 J;
	(d) 5.0 J
37	440 W
38	13 J
39	20 J
40	(a) 49 kJ;
	(b) 7.4 kJ
41	0.25 hp
42	1.08 MJ
43	2.03
44	(a) 167 J;
	(b) 343 J
45	
46	(a) 1.26×10^{14} ;
	(b) 1.13×10^{15} ;
	(c) 11.1%;
	(d) 1.01×10^{29} ;
	(e) 1.27×10^{30} ;
	(f) 8.0%;
	(g) 9.25×10^{58} ;
	(h) 1.61×10^{60} ;
	(i) 5.7%;
	(j) decrease
47	(a) $W = N!/(n_1! n_2! n_3!);$
	(b) $[(N/2)! (N/2)!]/[(N/3)! (N/3)! (N/3)!];$
	(c) 4.2×10^{16}
48	(a) 1;
	(b) 6;
	(c) 0;
	(d) $2.47 \times 10^{-23} \text{ J/K}$
L	1

49	0.141 1/1/2 0
	0.141 J/K·s
50	(a) 6.34 J/K;
	(b) 6.34 J/K;
	(c) 6.34 J/K;
	(d) 6.34 J/K
51	(a) 87 m/s;
	(b) 1.2×10^2 m/s;
	(c) 22 J/K
52	(a) 7.2 kJ;
	(b) $9.6 \times 10^2 \text{ J}$;
	(c) 13%
53	(a) 78%;
	(b) 82 kg/s
54	4.46 J/K
55	(a) 40.9°C;
	(b) -27.1 J/K ;
	(c) 30.3 J/K;
	(d) 3.18 J/K
56	2.65 mJ/K⋅m
57	+3.59 J/K
58	+5.98 J/K
59	$1.18 \times 10^3 \text{ J/K}$
60	13.1%
61	
62	(a) 700 J;
	(b) 0;
	(c) 50 J;
	(d) 700 J;
	(e) 0.226 m^3 ;
	$(f) 0.284 \text{ m}^3;$
	(g) 0;
	(h) -1.25 kJ;
	(i) 0;
	(j) 1.25 kJ
63	(a) 0;
	(b) 0;
	(c) -23.0 J/K ;
	(d) 23.0 J/K
64	(a) 93.8 J;
	(b) 231 J
65	(a) 25.5 kJ;
	(b) 4.73 kJ;
	(c) 18.5%
66	(a) 3.73;
	(b) 710 J
L	\-/ · · · · · ·

67	(a) 1.95 J/K;
	(b) 0.650 J/K;
	(c) 0.217 J/K;
	(d) 0.072 J/K;
	(e) decrease
68	75
69	(a) 4.45 J/K;
	(b) no
70	(a) -44.2 °C;
	(b) -1.69 J/K;
	(c) 2.38 J/K;
	(d) 0.69 J/K
71	(a) 1.26×10^{14} ;
	(b) 4.71×10^{13} ;
	(c) 0.37;
	(d) 1.01×10^{29} ;
	(e) 1.37×10^{28} ;
	(f) 0.14;
	(g) 9.05×10^{58} ;
	(h) 1.64×10^{57} ;
	(i) 0.018;
	(j) decrease
72	25%
73	(a) 42.6 kJ;
	(b) 7.61 kJ
74	-40 K
75	(a) 1;
	(b) 1;
	(c) 3;
	(d) 10;
	(e) $1.5 \times 10^{-23} \text{ J/K}$;
	(f) $3.2 \times 10^{-23} \text{ J/K}$
76	(a) 75 J; (b) 75 J
77	$e = (1 + K)^{-1}$
78	(a) 4.66 kW; (b) 4.16 kW
79	6.7