Problem Set 1 Due Wednesday, Sep. 13

1. Prove the following Lemma stated in class.

Lemma 1. If \succeq is complete and transitive, then

- (a) \succ is transitive;
- (b) \sim is transitive;
- (c) $x \succ y$ and $y \succsim z \Rightarrow x \succ z$; and
- (d) $x \succeq y$ and $y \succ z \Rightarrow x \succ z$.
- 2. Let \succeq be a rational preference relation. Show that if $x \in A \subseteq B$ and $x \in C^*(B, \succeq)$, then $x \in C^*(A, \succeq)$. Is this implication true if \succeq is not rational?
- 3. Suppose that a choice structure $\langle \mathfrak{B}, C \rangle$ satisfies WARP. Consider two binary relations, $\succ^{\#}$ and \succ^{**} , defined as follows:
 - $x \succ^{\#} y \Leftrightarrow \text{there is some } B \in \mathfrak{B} \text{ such that } x, y \in B, x \in C(B), \text{ and } y \notin C(B);$
 - $x \succ^{**} y \Leftrightarrow x \succsim^{*} y$ but not $y \succsim^{*} x$, where \succsim^{*} is the standard revealed preference relation defined in MWG and page 13 of slide set 1.

Show that:

- (a) $\succ^{\#}$ and \succ^{**} are the same binary relation: $x \succ^{\#} y \Leftrightarrow x \succsim^{**} y$ for all $x, y \in X$.
- (b) If \mathfrak{B} includes all three-element subsets of X, then $\succ^{\#}$ is transitive.
- 4. Consider a choice structure $\langle \mathfrak{B}, C \rangle$ for which \mathfrak{B} contains all size 2 subsets of X. Show that $\langle \mathfrak{B}, C \rangle$ satisfies WARP if and only if the following two properties suggested by Amartya Sen are satisfied:
 - (a) If $x \in B \subseteq A$ and $x \in C(A)$, then $x \in C(B)$.
 - (b) If $y \in B \subseteq A$ and $y \in C(A)$, then $C(B) \subseteq C(A)$.