

BOXSOGA PATENT

Attorney Docket No. SALK1510-3

___ NEW PATENT APPLICATION
X CONTINUATION-IN-PART

ASSISTANT COMMISSIONER FOR PATENTS Box Patent Application Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the new patent application of

Inventors: Ronald M. Evans, J. Don Chen and Peter Ordentlich

For: A FAMILY OF TRANSCRIPTIONAL CO-REPRESSORS THAT INTERACT WITH NUCLEAR HORMONE RECEPTORS AND USES THEREFOR

This is a request for filing a continuation-in-part under 35 U.S.C. 111(A) and 37 C.F.R. 1.53(b), of U.S. Application Serial No. 08/522,726, filed September 1, 1995, now pending.

Enclosed are:

- X 75 pages of the Specification, which includes 7 pages of the claims and 1 page of the Abstract;
- X 12 sheets of drawing(s) ___ Formal; X Informal;
- X A Declaration (unexecuted);
- X 67-Page Sequence Listing;
- X computer readable disk containing Sequence Listing; and
- X Statement Under 37 C.F.R. §§1.821(f) and (g).

FULL NAME OF FIRST INVENTOR	LAST NAME: EVANS	FIRST NAME: RONALD	MIDDLE NAME: M.			
CITIZENSHIP	STATE OR FOREIGN COUNTRY: US					
POST OFFICE ADDRESS	POST OFFICE ADDRESS: 1471 Cottontail Lane	CITY AND STATE: La Jolla, California	ZIP CODE: 92037			
FULL NAME OF SECOND INVENTOR	LAST NAME: CHEN	FIRST NAME: J.	MIDDLE NAME: DON			
CITIZENSHIP	STATE OR FOREIGN COUNTRY: Taiwan					
POST OFFICE ADDRESS	POST OFFICE ADDRESS: 7548 Charmant Drive, #1416	CITY AND STATE: San Diego, California	ZIP CODE: 92126			

In re Application of: Evans et al.

Application No.: Unassigned Filed: March 10, 2000

Page 2

PATENT Attorney Docket No.: SALK1510-3

FULL NAME OF SECOND INVENTOR	<i>LAST NAME:</i> ORDENTLICH	FIRST NAME: PETER.	MIDDLE NAME:	
CITIZENSHIP	STATE OR FOREIGN COUNTRY:			
POST OFFICE ADDRESS	POST OFFICE ADDRESS:	CITY AND STATE:	ZIP CODE:	

The filing fee has been calculated as shown below:

For	Number Filed		Number Extra		Rate			Fee		
					Small Entity	Other Entity		Sm Ent		Other Entity
Total Claims		11		X	\$ 9	\$18	=	\$	0	\$.00
Independent Claims		11		X	\$39	\$78	=	\$	0	\$.00
Multiple Dependent Claims Presented: Yes _X No					\$130	\$260				\$.00
			BASIC I	FEE	\$345	\$690		\$	0	\$.00
					Т	OTAL FEE		\$	0	\$.00

X The payment of the filing fee is to be deferred until the Declaration is filed. Do not charge our deposit account.

Respectfully submitted,

Date: March 10, 2000

Stephen E. Reiter

Attorney for Applicants Registration No. 31,192

Telephone: (858) 677-1409 Facsimile: (858) 677-1465

GRAY CARY WARE & FREIDENRICH LLP 4365 Executive Drive, Suite 1600 San Diego, CA 92121-2189

CERTIFICATE OF MAILING BY "EXPRESS MAIL"
"EXPRESS MAIL LABEL NUMBEREL476992837US
DATE OF DEPOSIT March 10, 2000
I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE UNDER 37 CFR 1 10 ON THE DATE INDICATED ABOVE AND IS ADDRESSED TO THE ASSISTANT COMMISSIONER OF PATENTS, BOX PATENT APPLICATION, WASHINGTON, D C. 20231
LYNN MORKUNAS
(TYPED OR PRINTED NAME OF PERSON MAILING PAPER)
La forler as
(SIGNATURE OF PERSON MAILING PAPER OR FEE)

APPLICATION

For

UNITED STATES LETTERS PATENT

on

A FAMILY OF TRANSCRIPTIONAL CO-REPRESSORS THAT INTERACT WITH NUCLEAR HORMONE RECEPTORS AND USES THEREFOR

by

Ronald M. Evans, J. Don Chen and Peter Ordentlich

Sheets of Drawings: Twelve (12)

Docket No.: SALK 1510-3

Attorneys

Gray Cary Ware & Freidenrich LLP 4365 Executive Drive, Suite 1600 San Diego, California 92121-2189

A Family of Transcriptional Co-repressors that Interact with Nuclear Hormone Receptors and Uses Therefor

5

10

RELATED APPLICATIONS

This application is a continuation-in-part application of pending United States application Serial No. 08/522,726, filed September 1, 1995 and is related to United States application Serial No. _______, filed on even date herewith, each of which is incorporated herein in its entirety by reference.

FIELD OF THE INVENTION

The present invention relates to intracellular receptors, methods for the modulation thereof, and methods for the identification of novel ligands therefor. In a particular aspect, the present invention relates to methods for the identification of compounds which function as ligands (or ligand precursors) for intracellular receptors. In another aspect, the present invention relates to novel chimeric constructs and uses therefor.

20

25

BACKGROUND OF THE INVENTION

A central problem in eukaryotic molecular biology continues to be the elucidation of molecules and mechanisms that mediate specific gene regulation. As part of the scientific attack on this problem, a great deal of work has been done in efforts to identify ligands (i.e., exogenous inducers) which are capable of mediating specific gene regulation. Additional work has been done in efforts to identify other molecules involved in specific gene regulation.

Although much remains to be learned about the specifics of gene regulation, it is known that ligands modulate gene transcription by acting in concert with intracellular components, including intracellular receptors and discrete DNA sequences known as hormone response elements (HREs).

The identification of compounds that directly or indirectly interact with intracellular receptors, and thereby affect transcription of hormone-responsive genes, would be of significant value, e.g., for therapeutic applications.

10

15

5

Transcriptional silencing mediated by nuclear receptors plays an important role in development, cell differentiation, and is directly linked to the oncogenic activity of v-erbA. The mechanism underlying this effect is unknown but is one key to understanding the molecular basis of hormone action. Accordingly, the identification of components involved in transcriptional silencing would represent a great advance in current understanding of mechanisms that mediate specific gene regulation.

Other information helpful in the understanding and practice of the present invention can be found in commonly assigned United States Patent Nos. 5,071,773, 4,981,784, 5,260,432, and 5,091,513, all of which are hereby incorporated herein by reference in their entirety.

BRIEF DESCRIPTION OF THE INVENTION

25

30

The present invention overcomes many problems in the art by providing a family of receptor interacting co-repressors, referred to herein as "SMRT co-repressor", i.e., a silencing mediator (co-repressor) for retinoic acid receptor (RAR) and thyroid hormone receptor (TR). *In vivo*, members of the SMRT family of co-repressors function as potent co-repressors. A GAL4 DNA binding domain (DBD) fusion with a SMRT co-repressor behaves as a frank repressor of a GAL4-dependent reporter.

10

20

Together, these observations identify a novel family of cofactors that is believed to represent an important mediator of hormone action.

Accordingly, the present invention provides isolated silencing mediators of retinoic acid and thyroid hormone receptors, and isoforms or peptide portions thereof (SMRT co-repressors), that modulate transcriptional potential of members of the nuclear receptor superfamily. Such SMRT co-repressors comprise a repression domain having less than about 83% identity with a Sin3A interaction domain of N-CoR (amino acids 255 to 312 of SEQ ID NO: 11); less than about 57% identity with repression domain 1 of N-CoR (amino acids 1 to 312 of SEQ ID NO: 11); less than about 66% identity with a SANT domain of N-CoR (amino acids 312 to 668 of SEQ ID NO: 11) and/or; less than about 30% identity with repression domain 2 of N-CoR (amino acids 736 to 1031 of SEQ ID NO: 11).

In accordance with yet another embodiment of the present invention, there are provided isolated peptides comprising at least a portion of the invention SMRT co-repressor six contiguous amino acids of an amino acid sequence selected from the group consisting of:

amino acids 1 to 1030 of SEQ ID NO: 5;
amino acids 1 to 1029 of SEQ ID NO: 7;
amino acids 1 to 809 of SEQ ID NO: 9;
and conservative variations thereof,
provided the peptide is not identical to a sequence of SEQ ID NO: 11.

In addition, there are provided isolated antibodies that bind specifically to invention isolated peptides. There are also provided chimeric molecules comprising invention isolated peptides and at least a second molecule. Also provided are complexes comprising an invention SMRT co-repressor and a member of the superfamily of nuclear receptors and isolated antibodies that bind to such complexes.

Accordingly, the present invention provides isolated polynucleotides encoding members of the newly described family of silencing mediators of retinoic acid and thyroid hormone receptor or an isoform or peptide portion thereof (SMRT co-repressor), or an isolated polynucleotide complementary thereto. In addition, there are provided vectors comprising invention polynucleotides, as well as host cells containing invention polynucleotides.

In additional embodiments of the present invention, there are provided methods for identifying agents that modulate the repressor potential of a SMRT corepressor.

In another embodiment according to the present invention, there are provided methods for identifying an agent that modulates a function of an invention SMRT co-repressor.

15

10

5

In another embodiment according to the present invention, there are provided methods of modulating the transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor) in a cell.

In another embodiment according to the present invention, there are provided methods of identifying a molecule that interacts specifically with a SMRT co-repressor.

BRIEF DESCRIPTION OF THE FIGURES

25

Figure 1 shows the quantitation by phosphoimager of a dose-dependent dissociation of SMRT from RAR or TR by all-*trans* retinoic acid (atRA) or thyroid hormone (triiodothyronine or T3).

Figure 2 presents amino acid (aa) sequences of SMRT (Genbank accession number XXXXX). The aa sequence presented in parentheses (i.e., residues

25

30

1330-1376) is an alternatively spliced insert which is not present in the original two-hybrid clone (C-SMRT, aa 981 to C-terminal end). The proline-rich N-terminal domain (aa 1-160) and the glutamine-rich region (aa 1061-1132), as well as the ERDR and SG regions, are also indicated. The C-terminal region of SMRT (aa 1201 to C-terminal end) shows 48% aa identity to RIP13 (Seol et al., *Molecular Endocrinology* 9:72-85 (1995)). The rest of the sequence of RIP13 shows 22% aa identity to SMRT (aa 819-1200).

Figure 3 illustrates mediation of the silencing effect of hRAR α and hTR β by SMRT in vivo.

Figure 3(A) illustrates that v-erbA reverses the silencing effect of GAL-RAR (GAL4 DBD-hRARa 156-462) while SMRT restores the silencing effect.

Figure 3(B) illustrates that the RAR403 truncation mutant reverses the silencing effect of GAL-TR (GAL4 DBD-hTRβ 173-456) while SMRT restores the silencing effect.

Figure 3(C) illustrates that v-erbA and full length SMRT or C-SMRT 20 have no effect on GAL-VP16 activity.

Figure 3(D) illustrates that a GAL4 DBD fusion of full length SMRT represses the thymidine kinase basal promoter activity containing four GAL4 binding sites. The fold of repression was calculated by dividing the normalized luciferase activity transfected with the GAL4 DBD alone by those transfected with indicated amount of GAL DBD fusion constructs.

Figure 4 provides an alignment of the human SMRT (SEQ ID NO: 5) and mouse SMRTα (SEQ ID NO: 7) amino acid sequences. Proteins were aligned using the CLUSTAL alignment program. Underlined sequence of mouse SMRTα corresponds to the amino acid sequences that are deleted in mouse SMRTβ. The

15

25

30

arrow indicates the start point of the previously described human SMRT co-repressor (sSMRT).

Figures 5A and 5B provide alignments of the human SMRT and human N-CoR co-repressors.

Figure 6A is a graph showing the results of transactivation experiments using transcripts encoding a detectable reporter and either wild type EcR (Ecr wt), a repression-Defective EcR allele Ecraa^{483T} (EcRA483T) or vp16 activation domain fused to Ultraspiracle (vp16-USP).

Figure 6B is a graph showing the results of transactivation experiments using CMV promoter-driven expression vectors. Wild-type EcR or EcR A483T was cotransfected with vp16-USP and Gal4-c-SMRT (aa 981 to C terminus) (Chen and Evans, *Nature* 377:454-457, (1995)) into CV-1 cells to examine its effect on the interaction with vertebrate corepressor. All cells were also cotransfected with a TK-luciferase reporter construct, pMH100-TK-Luc, containing four copies of the yeast Gal4-responsive element.

Figure 6C shows alignment of EcR, rTR, hRAR, and rRev-erbA receptor sequences and the secondary structure in the LBD signature motif region. Conserved residues are marked in dark. The mutation 483 (AT) is marked at the top of the corresponding residue.

Figure 7 is a graph showing β-galactosidase activity in a yeast two-hybrid screen with pAS-EcR as bait. pAS-EcR is a fusion gene with the region corresponding to aa 223-878 of EcRB1 fused C-terminally to the Gal4-DBD of the pAS1-CYH2 construct (Durfee et al., *Genes Dev* 7:555-569 (1993)); other Gal4-DBD-based nuclear receptor constructs used in this yeast two-hybrid assay include: USP (aa 50-508), hRAR (aa 186-462) and hTR (aa 121-410) (Schulman et al., *Proc. Natl. Acad. Sci. USA*, 92:8288-8292, (1995)), and SMRT (Chen and Evans, (1995), *supra*).

 β -galactosidase activities were quantified by liquid assay for yeast cells treated either without ligand or with 3 μ M of corresponding hormone. All-trans retinoic acid (ATRA) is a ligand of RAR; 3,3',5-triiodothyroacetic acid (T3) is a ligand of TR. RAR, retinoic acid receptor; TR, thyroid hormone receptor.

5

Figure 8A shows the complete amino acid sequence of the SMRTER protein (SEQ ID NO: 12). The underlined regions represent the residues also conserved in SMRT and N-CoR. The gray box indicates the sequences of the E52 clone.

10

Figure 8B is a schematic structural diagram of SMRTER, SMRT, and N-CoR showing the conserved SNOR, SANT, GST, ITS, D/ER repeat, and LSD motifs with their designated patterns positioned in their relative regions in each protein.

15

Figure 9. Sequence Comparison of SMRTER, SMRT, N-CoR, and Other Related Proteins. The SANT domains of various proteins are listed. Percent identities/similarities compared to SMRTER are shown on the right. Two potential helices are predicted in the N-terminal half of the SANT domain. Black boxes indicate identical sequences; gray boxes, similar or partially identical sequences.

20

25

Figure 10 is a schematic representation showing functional domains in SMRTER. Numbers on the left represent the regions in SMRTER used to generate the Gal4-DBD fusion genes. Black stippled bars indicate the locations of EcRinteracting domains; gray stippled bars indicate repression domains. Plus signs indicate that a positive interaction between SMRTER and the EcR complex and repression of basal activity by Gal4-SMRTER is significant. ERID = ecdysone receptor-interacting domain; SMRD = SMRTER repressor domain.

30

Figure 11A is a graph showing the interaction of ERID1 AND ERID2 with the EcR complex. Figure 11B is a graph showing the results of competition

between ERID1, ERID2 and c-SMRT for binding to EcR. Figure 11C is a graph showing that EcR A483T disrupts the interaction with ERID1 and ERID2.

Figure 12A shows the results of mapping three repression domains. To examine repressive activity, transcriptional activity of each Gal4-SMRTER fusion was compared to the basal activity of Gal4-DBD on reporter. Only repression with value approximately 5-fold or over is considered positive (+).

Figure 12B is a schematic representation of mapping the SMRTER-interacting domain in mSin3A and dSin3A. Yeast two-hybrid assays were used to assess the interaction between each Gal4-DBD-based fusion gene of each SMRD and the ACT-based fusion genes of mSin3A and dSin3A. The numbers indicate the region in either mSin3A or in dSin3A used to generate the ACT fusion genes. Constructs of mSin3A were described previously in Nagy et al., *Cell* 89:373-380, (1997).

15

20

10

Figure 12C shows an alignment of SMRD3 of SMRTER and an mSin3-interacting domain of N-CoR. Conserved residues are boxed in gray. An asterisk indicates the region where the mutation (Gly) was generated. Minus signs indicate that the interaction between SMRD3 and Sin3A was not detectable in the yeast two-hybrid assays. Repression was measured by comparing the transcriptional activity of Gal4-SMRD3 M2 or Gal4-SMRD3 M3 to that of wild-type Gal4-SMRD3 using transfection experiments as described above.

DETAILED DESCRIPTION OF THE INVENTION

25

30

In accordance with the present invention, there is provided a family of isolated SMRT co-repressors, and isoforms and peptide portions thereof, that modulate transcriptional potential of members of the nuclear receptor superfamily. Exemplary members of this family are co-repressors having substantially the same sequence as residues 1-1329 plus 1376-1495, as set forth in SEQ ID NO:1, optionally further

10

15

20

comprising the amino acid residues set forth in SEQ ID NO:2 (i. e., residues 1330-1375 of SEQ ID NO:1).

In another embodiment according to the present invention, the invention SMRT co-repressor comprises a repression domain having less than about 83% identity with a Sin3A interaction domain of N-CoR (as amino acids 255 to 312 of SEQ ID NO: 11); less than about 57% identity with repression domain 1 of N-CoR (amino acids 1 to 312 of SEQ ID NO: 11); less than about 66% identity with a SANT domain of N-CoR (amino acids 312 to 668 of SEQ ID NO: 11 and/or; less than about 30% identity with repression domain 2 of N-CoR (amino acids 736 to 1031 of SEQ ID NO: 11). Such an encoded SMRT co-repressor or peptide portion thereof is further characterized in that it can modulate transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor).

The invention SMRT co-repressors are additionally exemplified by a full length human SMRT co-repressor, (amino acids 1 to 2517 of SEQ ID NO: 5); and by two mouse SMRT isoforms, including a longer SMRT isoform designated mouse SMRT α , which has an amino acid sequence set forth as amino acids 1 to 2473 of SEQ ID NO: 7; and a shorter SMRT isoform designated mouse SMRT β (amino acids 1 to 2253 of SEQ ID NO: 9). As compared to the mouse SMRT α isoform (SEQ ID NO: 7), the mouse SMRT β isoform (SEQ ID NO: 9) has a deletion corresponding to amino acids 36 to 254 of SEQ ID NO: 7.

A peptide portion of a SMRT co-repressor is exemplified herein by
amino acids 1 to 1031 of SEQ ID NO: 5; amino acids 1 to 1031 of SEQ ID NO: 7;
and amino acids 1 to 813 of SEQ ID NO: 9, which includes the entire amino terminal
domain of a SMRT co-repressor. Additional peptide portions of a SMRT corepressor are exemplified by amino acids 1 to 303 of SEQ ID NO: 7; amino acids 845
to 986 of SEQ ID NO: 7; amino acids 427 to 663 of SEQ ID NO: 7; amino acids 845
to 1055 of SEQ ID NO: 7; amino acids 736 to 1031 of SEQ ID NO: 7; and amino
acids 1 to 85 of SEQ ID NO: 9, which are sub-domains of the amino terminal domain

of mouse SMRTα that have nuclear receptor repressor potential, as well as by the corresponding peptide portions of human SMRT and corresponding peptide portions of mouse SMRTβ, which can modulate the transcriptional potential of a nuclear receptor, particularly a nuclear receptor that is in the form of a dimer, for example, a thyroid hormone receptor homodimer, a retinoic acid receptor homodimer, a retinoid X receptor homodimer, a thyroid hormone receptor-retinoid X receptor heterodimer, or a retinoic acid receptor-retinoid X receptor heterodimer. In addition, the invention relates to isolated peptides that contain at least six contiguous amino acids of an amino acid sequence set forth as amino acids 1 to 1030 of SEQ ID NO: 5; amino acids 1 to 1029 of SEQ ID NO: 5; or amino acids 1 to 809 of SEQ ID NO: 9, provided the SMRT peptide is not identical to a sequence of N-CoR (SEQ ID NO: 11).

Invention co-repressor can be an invertebrate SMRT co-repressor, such as the Drosophilia SMRTER co-repressor having an amino acid sequence as set forth in SEQ ID NO: 12, or conservative variations thereof.

Additional exemplary co-repressors are those containing one or both of the receptor interacting domains (ERID1 and ERID2) identified in the Drosophilia co-repressor. For example, co-repressors containing such receptor interacting domains can be selected from the following segments of the Drosophilia SMRTER co-repressor (SEQ. ID 12):

amino acids 1698-1924 of SEQ. ID NO:12, amino acids 2951-3038 of SEQ. ID NO:12, amino acids 1698-2063 of SEQ. ID NO:12, amino acids 2094-3040 of SEQ. ID NO:12, amino acids 2929-3181 of SEQ. ID NO:12, amino acids 542-950 of SEQ. ID NO:12, amino acids 2094-3181 of SEQ ID NO:12, amino acids 2929-3040 of SEQ ID NO:12, and

25

5

10

15

30

thereof.

amino acids 2951-3038 of SEQ ID NO:12, and conservative variations thereof.

Additional exemplary co-repressors are those containing one or more of three autonomous repressor domains termed SMRD1, SMRD2, and SMRD3 identified in the SMRTER co-repressor. For example, invention co-repressors can contain the following autonomous repressor domains derived from Drosophilia SMRTER co-repressor (SEQ. ID 12):

amino acids 542-950 of SEQ. ID NO:12 amino acids 1698-1924 of SEQ ID NO:12, amino acids 2951-3038 of SEQ. ID NO:12, and conservative variations

Conservative variations of the above-described SMRT co-repressors

are also contemplated to be within the scope of the present invention. Moreover,
proteins, polypeptides and peptides having at least 80% sequence identity with any of
the SMRT co-repressors described herein are also contemplated to be within the scope
of the invention.

In another embodiment according to the present invention, there are provided chimeric molecules comprising invention isolated peptides and at least a second molecule. For example, the second molecule in invention chimeric molecule can be a polynucleotide or a polypeptide. In one embodiment, the chimeric molecule is a fusion polypeptide comprising a SMRT co-repressor operably linked to a DNA binding domain of a transcription factor.

In another embodiment according to the present invention, there are provided isolated antibodies that bind specifically to invention isolated peptides. In one embodiment, an antibody of the invention binds specifically to an epitope of a SMRT co-repressor. Such an antibody is characterized, in part, in that it does not substantially crossreact with an N-CoR polypeptide. In another embodiment, an

antibody of the invention binds specifically to a complex, which includes a SMRT corepressor or peptide portion thereof of the invention, a nuclear receptor and, optionally, a DNA regulatory element that is specifically bound by the nuclear receptor. Such an antibody is characterized, in part, in that it does not substantially crossreact with the nuclear receptor, either alone or bound to the DNA regulatory element. An antibody of the invention can be a monoclonal antibody, or can be one of a plurality of polyclonal antibodies, which essentially is a mixed population of monoclonal antibodies. The invention also relates to a cell line, which produces the monoclonal antibody of the invention.

10

5

Such antibodies can be employed for a variety of purposes, e.g., for studying tissue localization of invention SMRT co-repressor, the structure of functional domains, the purification of receptors, as well as in diagnostic applications, therapeutic applications, and the like. Preferably, for therapeutic applications, the antibodies employed will be monoclonal antibodies.

15

20

The above-described antibodies can be prepared employing standard techniques, as are well known to those of skill in the art, using the invention SMRT corepressor or portions thereof as antigens for antibody production. Both anti-peptide and anti-fusion protein antibodies can be used [see, for example, Bahouth et al. (1991) Trends Pharmacol Sci. vol. 12:338-343; Current Protocols in Molecular Biology (Ausubel et al., eds.) John Wiley and Sons, New York (1989). Factors to consider in selecting portions of invention SMRT co-repressor for use as immunogen (as either a synthetic peptide or a recombinantly produced bacterial fusion protein) include antigenicity, accessibility (i.e., where the selected portion is derived from, e.g., the ligand binding domain, DNA binding domain, dimerization domain, and the like), uniqueness of the particular portion selected (relative to known receptors and co-repressors therefor), and the like.

30

25

In another embodiment according to the present invention, there are provided complexes comprising an invention SMRT co-repressor and a member of

the nuclear receptor superfamily and isolated antibodies that bind to such complexes. The nuclear receptor can be in the form of a monomer or dimer, for example, a thyroid hormone receptor homodimer, a retinoic acid receptor homodimer, a retinoid X receptor homodimer, a thyroid hormone receptor-retinoid X receptor heterodimer, a retinoic acid receptor-retinoid X receptor heterodimer, a ecdysone receptor-Ultraspiracle receptor heterodimer, and the like. Optionally or alternatively, the complex can include a DNA regulatory element, bound specifically by a DNA binding domain of the nuclear receptor.

The above-described complexes optionally further comprise a response element for the member of the nuclear receptor superfamily. Such response elements are well known in the art. Thus, for example, RAR response elements are composed of at least one direct repeat of two or more half sites separated by a spacer of five nucleotides. The spacer nucleotides can independently be selected from any one of A, C, G or T.

Each half site of response elements contemplated for use in the practice of the invention comprises the sequence

-RGBNNM-,

wherein

R is selected from A or G;
B is selected from G, C, or T;
each N is independently selected from A, T, C, or G; and
M is selected from A or C;

with the proviso that at least 4 nucleotides of said -RGBNNM- sequence are identical with the nucleotides at corresponding positions of the sequence -AGGTCA-. Response elements employed in the practice of the present invention can optionally be preceded by N_x, wherein x falls in the range of 0 up to 5.

Similarly, TR response elements can be composed of the same half site repeats, with a spacer of four nucleotides. Alternatively, palindromic constructs as have been described in the art are also functional as TR response elements.

20

25

30

10

15

20

25

30

The above-described SMRT co-repressor/dimeric receptor complexes can be dissociated by contacting the complex with a ligand for the member of the nuclear receptor superfamily.

As employed herein, the term "ligand (or ligand precursor) for a member of the nuclear receptor superfamily" (i.e., intracellular receptor) refers to a substance or compound which, in its unmodified form (or after conversion to its "active" form), inside a cell, binds to receptor protein, thereby creating a ligand/receptor complex, which in turn can activate an appropriate hormone response element. A ligand therefore is a compound which acts to modulate gene transcription for a gene maintained under the control of a hormone response element, and includes compounds such as hormones, growth substances, non-hormone compounds that modulate growth, and the like. Ligands include steroid or steroid-like hormone, retinoids, thyroid hormones, pharmaceutically active compounds, and the like. Individual ligands may have the ability to bind to multiple receptors.

Accordingly, as employed herein, "putative ligand" (also referred to as "test compound") refers to compounds such as steroid or steroid-like hormones, pharmaceutically active compounds, and the like, that are suspected to have the ability to bind to the receptor of interest, and to modulate transcription of genes maintained under the control of response elements recognized by such receptor.

In another embodiment according to the present invention, there are provided polynucleotides encoding members of the above-described family of silencing mediators of retinoic acid and thyroid hormone receptor, or an isoform or peptide portion thereof (SMRT co-repressors), or an isolated polynucleotide complementary thereto.

Invention polynucleotides include those encoding a SMRT corepressor comprises a repression domain having

- a) less than about 83% identity with a Sin3A interaction domain of N-CoR set forth as amino acids 255 to 312 of SEQ ID NO: 11;
- b) less than about 57% identity with repression domain 1 of N-CoR set forth as amino acids 1 to 312 of SEQ ID NO: 11;
- c) less than about 66% identity with a SANT domain of N-CoR set forth as amino acids 312 to 668 of SEQ ID NO: 11; or
- d) less than about 30% identity with repression domain 2 of N-CoR set forth as amino acids 736 to 1031 of SEQ ID NO: 11.

In addition, an invention polynucleotide can encode a mouse SMRTβ isoform having an amino acid sequence as set forth in SEQ ID NO: 9 or conservative variations thereof, or a polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 8.

Further examples of invention polynucleotides are those comprising a nucleotide sequence selected from the group consisting of:

nucleotides 1 to 3094 of SEQ ID NO: 4; nucleotides 1 to 3718 of SEQ ID NO: 6; nucleotides 1 to 2801 of SEQ ID NO: 8; nucleotides 1 to 8388 of SEQ ID NO: 6; nucleotides 1 to 7465 of SEQ ID NO: 8; and nucleotides 1 to 8561 of SEQ ID NO: 4.

The invention polynucleotides further comprise those encoding a human SMRT co-repressor having an amino acid sequence as set forth in SEQ ID NO: 5, for example, a nucleotide sequence as set forth in SEQ ID NO: 4; by a polynucleotide encoding a mouse SMRTα isoform having an amino acid sequence as set forth in SEQ ID NO: 7, for example, a nucleotide sequence as set forth in SEQ ID NO: 6; and by a polynucleotide encoding a mouse SMRTβ isoform having an amino acid sequence as set forth in SEQ ID NO: 9, for example, a nucleotide sequence as set forth in SEQ ID NO: 8. A polynucleotide of the invention is further exemplified by

20

15

5

30

polynucleotides encoding peptide portions of a SMRT co-repressor such as a polynucleotide containing nucleotides 1 to 3094 of SEQ ID NO: 4; nucleotides 1 to 3718 of SEQ ID NO: 7; or nucleotides 1 to 2801 of SEQ ID NO: 8, which can repress the transcriptional activity of nuclear receptor, particularly a nuclear receptor that is in the form of dimer.

Additional invention polynucleotides include those encoding a full length insect SMRTER co-repressor having an amino acid sequence as set forth in SEQ ID NO: 12, or conservative variations thereof.

10

15

20

5

Additional exemplary invention polynucleotides are those encoding one or both of the receptor interacting domains (ERID1 and ERID2) identified in invention co-repressors. For example, polynucleotides encoding such receptor interacting domains can be selected from those encoding the following segments of the Drosophilia SMRTER co-repressor (SEQ. ID 12):

amino acids 1698-1924 of SEQ. ID NO:12, amino acids 2951-3038 of SEQ. ID NO:12, amino acids 1698-2063 of SEQ. ID NO:12, amino acids 2094-3040 of SEQ. ID NO:12, amino acids 2929-3181 of SEQ. ID NO:12, amino acids 542-950 of SEQ. ID NO:12, amino acids 2094-3181 of SEQ ID NO:12, amino acids 2929-3040 of SEQ ID NO:12, amino acids 2929-3040 of SEQ ID NO:12, and amino acids 2951-3038 of SEQ ID NO:12,

and conservative variations thereof.

25

Additional exemplary invention polynucleotides are those encoding one or more of three autonomous repressor domains termed SMRD1, SMRD2, and SMRD3 identified in the invention co-repressors. For example, polynucleotides encoding such autonomous repressor domains can be selected from those encoding

the following segments of the Drosophilia SMRTER co-repressor (SEQ. ID 12):

amino acids 542-950 of SEQ. ID NO:12 amino acids 1698-1924 of SEQ ID NO:12, amino acids 2951-3038 of SEQ. ID NO:12, and conservative variations

thereof.

5

A polynucleotide that has at least 80% sequence identity or that hybridizes, (preferably under high stringency conditions) with any one of the above-described polynucleotides is also contemplated to be within the scope of this invention.

10

A polynucleotide of the invention can be operably linked to a second nucleotide sequence and, therefore, can encode a fusion polypeptide, for example, a SMRT co-repressor, or peptide portion thereof, operably linked to a DNA binding domain of a transcription factor.

15

20

Additional examples of invention isolated oligonucleotides, are those which generally are at least about 15 nucleotides in length and can hybridize specifically to the polynucleotide of the invention, but not to a polynucleotide encoding an N-CoR polypeptide (SEQ ID NO: 11). An oligonucleotide of the invention can be useful as a probe, or as a primer for a PCR procedure, or can encode a peptide containing at least five contiguous amino acids of a SMRT co-repressor. In one embodiment, an oligonucleotide of the invention encodes at least five contiguous amino acids of a sequence such as that shown as amino acids 720 to 745 of SEQ ID NO: 5; or amino acids 716 to 742 of SEQ ID NO: 7; or amino acids 497 to 523 of SEQ ID NO: 9. In another embodiment, an oligonucleotide of the invention can hybridize specifically to a polynucleotide encoding human SMRT (SEQ ID NO: 5) or mouse SMRTα (SEQ ID NO: 7), and, optionally, to a polynucleotide encoding mouse SMRTβ (SEQ ID NO: 9).

30

25

The phrase "substantially the same" as used herein in reference to a nucleotide sequence of DNA, a ribonucleotide sequence of RNA, or an amino acid

sequence of protein, means sequences that have slight and non-consequential sequence variations from the actual sequences disclosed herein. Species that are substantially the same are considered to be equivalent to the disclosed sequences and as such are within the scope of the appended claims. In this regard, "slight and non-consequential sequence variations" means that sequences substantially the same as the DNA, RNA, or proteins disclosed and claimed herein are functionally equivalent to the sequences disclosed and claimed herein. Functionally equivalent sequences will function in substantially the same manner to produce substantially the same compositions as the nucleic acid and amino acid compositions disclosed and claimed herein. In particular, functionally equivalent DNAs encode proteins that are the same as those disclosed herein or that have conservative amino acid variations, such as substitution of a non-polar residue for another non-polar residue or a charged residue for a similarly charged residue. These changes include those recognized by those of skill in the art as those that do not substantially alter the tertiary structure of the protein.

In another embodiment according to the present invention, there are provided vectors comprising an invention polynucleotide, and host cells containing invention polynucleotides. The invention vector can be an expression vector, including, for example, a viral vector, and the polynucleotide, or a vector containing the polynucleotide, can be contained in a host cell. In one embodiment, the polynucleotide of the invention is operably linked to a tissue specific DNA regulatory element. In another embodiment, a SMRT co-repressor or peptide portion thereof encoded by the polynucleotide is expressed in a host cell.

In another embodiment according to the present invention, there are provided methods for identifying an agent that modulates the repressor potential of a SMRT co-repressor. In this embodiment, the invention method comprises contacting a host cell with an agent, and detecting a change in the level of expression of a first expressible nucleotide sequence in response to the agent, thereby identifying an agent that modulates the repressor potential of a SMRT co-repressor. In such a method, the host cell is characterized, in part, in that it contains a first expressible nucleotide

sequence operably linked to a first DNA regulatory element, and expresses a fusion polypeptide composed of an invention SMRT co-repressor, or peptide portion thereof, and a DNA binding domain of a first transcription factor that can specifically bind the first DNA regulatory element. Binding of the DNA binding domain of the first transcription factor to the first DNA regulatory element results in expression of the first expressible nucleotide sequence in the host cell.

In another embodiment according to the present invention, there are provided methods for identifying an agent that modulates a function of an invention SMRT co-repressor. In this embodiment, the invention method comprises contacting an invention SMRT co-repressor, a member of the nuclear receptor superfamily, and an agent, and detecting an altered activity of the SMRT co-repressor in the presence of the agent as compared to the absence of the agent, thereby identifying an agent that modulates a function of the SMRT co-repressor.

15

20

25

30

10

5

A method of the invention can be performed, for example, by contacting a host cell with an agent, and detecting a change in the level of expression of a first expressible nucleotide sequence in response to the agent, thereby identifying an agent that modulates the repressor potential of a SMRT co-repressor. In such a method, the host cell is characterized, in part, in that it contains a first expressible nucleotide sequence operably linked to a first DNA regulatory element, and expresses a fusion polypeptide composed of a SMRT co-repressor or peptide portion thereof of the invention, and a DNA binding domain of a first transcription factor, which can specifically bind the first DNA regulatory element; binding of the DNA binding domain of the first transcription factor to the first DNA regulatory element results in expression of the first expressible nucleotide sequence in the host cell. The first expressible nucleotide sequence can be an endogenous gene, which is normally present in the host cell, or can be a sequence that has been introduced into the host cell, either transiently or stably, using methods of recombinant DNA technology. In one embodiment, the first DNA binding domain is a GAL4 DNA binding domain and the first DNA regulatory element is a GAL4 DNA regulatory element that is operably

linked to an expressible nucleotide sequence, for example, a reporter gene, and is introduced into the host cell.

Thus, the invention method can identify an agent that increases or decreases the repressor potential of the SMRT co-repressor, or of an agent that increases or decreases the function of the SMRT co-repressor. The agent can directly interact with the SMRT co-repressor or peptide portion thereof, thereby modulating the repressor potential or function of the SMRT co-repressor, or can interact with a cellular molecule that, in turn, can alter the repressor potential or function of a SMRT co-repressor, thereby increasing or decreasing the repressor potential of the SMRT co-repressor.

The host cell can optionally contain a second expressible nucleotide sequence operably linked to a second DNA regulatory element, and can express a second fusion polypeptide, which is composed of an N-CoR polypeptide, or a repressor domain thereof, and a DNA binding domain of a second transcription factor, which can specifically bind the second DNA regulatory element. By comparing the level of expression of the first expressible nucleotide sequence and the second expressible nucleotide sequence in the host cell upon contacting the host cell with the agent, an agent that independently or coordinately modulates SMRT and N-CoR repressor activity. For example, detecting a change in the level of expression of the first expressible nucleotide sequence, but not in the level of expression of the second expressible nucleotide sequence, due to contacting the host cell with the agent identifies an agent that modulates the repressor potential of a SMRT co-repressor, but not of an N-CoR polypeptide can be identified.

In practicing a method of the invention, the SMRT co-repressor, or peptide portion thereof, can be, for example, an amino acid sequence such as amino acids 1 to 1031 of SEQ ID NO: 5; amino acids 1 to 1031 of SEQ ID NO: 7; or amino acids 1 to 813 of SEQ ID NO: 9. The agent can be, for example, an antibody or antigen binding fragment thereof, a peptide, or a small organic molecule.

In another embodiment according to the present invention, there are provided methods of modulating the transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor) in a cell, the method comprising introducing an invention isolated polynucleotide into the cell, whereby the polynucleotide or an expression product of the polynucleotide alters the level of a SMRT co-repressor in the cell, thereby modulating the transcriptional potential of the nuclear receptor.

In another embodiment according to the present invention, there are provided methods of modulating the transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor) in a cell, the method comprising introducing an invention isolated polynucleotide into the cell, whereby the polynucleotide or an expression product of the polynucleotide alters the level of a SMRT co-repressor in the cell, thereby modulating the transcriptional potential of the nuclear receptor.

In performing a method of the invention, an agent that alters an interaction of the SMRT co-repressor, or peptide portion thereof, with the nuclear receptor can be identified using a binding assay, such as an electrophoretic mobility shift assay wherein the level of expression of an expressible nucleotide sequence. Such a method can also identify an agent that alters the ability of the invention SMRT co-repressor, or peptide portion thereof, to interact specifically with the nuclear receptor, but does not alter the level of expression of the expressible nucleotide sequence; or an agent that alters the level of expression of the expressible nucleotide sequence, but does not alter interaction of the SMRT co-repressor or peptide portion thereof with the nuclear receptor; or an agent that alters an interaction of the SMRT co-repressor, or peptide portion thereof, with the nuclear receptor and alters the level of expression of the expressible nucleotide sequence. The agent can, but need not be, a ligand for the nuclear receptor, and the method can be performed in a cell or in a reaction mixture *in vitro*.

Alternatively, an invention polynucleotide can be introduced into the cell, whereby the polynucleotide, or an expression product of the polynucleotide, alters the level of a SMRT co-repressor in the cell, thereby modulating the transcriptional potential of the nuclear receptor. The polynucleotide can encode an invention SMRT co-repressor or peptide, portion thereof, which can be expressed in the cell, thereby increasing the level of a SMRT co-repressor, or peptide portion thereof, in the cell. The polynucleotide also can be an antisense polynucleotide, that decreases the level of a SMRT co-repressor in the cell.

10

15

20

5

In another embodiment according to the present invention, there are provided methods of identifying a molecule that interacts specifically with a SMRT co-repressor. In this embodiment, invention methods comprise contacting the molecule with an invention SMRT co-repressor and detecting specific binding of the molecule to the SMRT co-repressor, thereby identifying a molecule that interacts specifically with a SMRT co-repressor.

The molecule can be any molecule that interacts specifically with a SMRT co-repressor, including, for example, a small organic molecule such as a drug, a peptide, a nucleic acid molecule, and the like. In one embodiment, the molecule is a cellular factor, for example, a cellular protein that modulates the ability of a SMRT co-repressor to repress transcriptional activity of a nuclear receptor. In another embodiment, the method further involves isolating the molecule that interacts specifically with the SMRT co-repressor or peptide portion thereof.

25

30

In accordance with yet another aspect of the present invention, there are provided methods to block the repressing effect of invention SMRT co-repressors, said method comprising administering an effective amount of an antibody as described herein. Alternatively, a silencing domain of a nuclear receptor can be employed. Those of skill in the art can readily determine suitable methods for administering said antibodies, and suitable quantities for administration, which will vary depending on

10

30

numerous factors, such as the indication being treated, the condition of the subject, and the like.

In accordance with another aspect of the present invention, there is provided a method to repress (or silence) the activity of a member of the nuclear receptor superfamily containing a silencing domain that represses basal level promoter activity of target genes, said method comprising contacting said member of the nuclear receptor superfamily with a sufficient quantity of an invention SMRT co-repressor so as to repress the activity of said member. Members of the nuclear receptor superfamily contemplated for repression in accordance with this aspect of the present invention include, for example, thyroid hormone receptor, retinoic acid receptor, vitamin D receptor, peroxisome proliferator activated receptor, and the like.

In accordance with yet another aspect of the present invention, there is

provided a method to identify compounds which relieve the repression of nuclear
receptor activity caused by an invention SMRT co-repressor, said method comprising
comparing the size of the SMRT co-repressor/dimeric receptor complex (i.e., complexes
comprising the invention SMRT co-repressor and a homodimeric or heterodimeric
member of the nuclear receptor superfamily) upon exposure to test compound, relative to
the size of said complex in the absence of test compound. An observed size
corresponding to intact complex is indicative of an inactive compound, while an
observed size that reflects dissociation of the complex is indicative of a compound that
disrupts the complex, thereby relieving the repression caused thereby. Optionally, the
complex employed in this assay further comprises a response element for said member
of the nuclear receptor superfamily.

The size of the above-described complex can readily be determined employing various techniques available in the art. For example, electrophoretic mobility shift assays (EMSA) can be employed (wherein receptor alone or receptor-SMRT corepressor complex is bound to target DNA and the relative mobility thereof determined).

Those of skill in the art can readily identify other methodology which can be employed to determine the size of the complex as a result of exposure to putative ligand.

In accordance with a still further aspect of the present invention, there is provided a method to identify compounds which relieve the repression of nuclear receptor activity caused by an invention SMRT co-repressor, without substantially activating said receptor, said method comprising:

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex comprising:

a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer, or retinoic acid receptor-retinoid X receptor heterodimer,

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a reporter gene, and optionally, invention SMRT co-repressor, and

wherein said second expression system comprises a complex comprising:

a homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes,

the same response element-reporter combination as employed in said first expression system, and

25

15

20

10

15

20

25

30

optionally, invention SMRT co-repressor, and thereafter selecting those compounds which provide:

a higher reporter signal upon exposure of said compound to said first expression system, relative to reporter signal in the absence of said compound, and

substantially the same reporter signal upon exposure of said compound to said second expression system, relative to reporter signal in the absence of said compound,

wherein said selected compounds are capable of relieving the repression of nuclear receptor activity caused by a SMRT co-repressor having a structure and function characteristic of an invention SMRT co-suppressor but substantially lacking the ability to activate nuclear receptor activity.

The addition of invention SMRT co-repressor is optional in the above-described assay because it is present endogenously in most host cells employed for such assays. It is preferred, to ensure the presence of a fairly constant amount of SMRT co-repressor, and to ensure that SMRT co-repressor is not a limiting reagent, that SMRT co-repressor be supplied exogenously to the above-described assays.

Mutant receptors contemplated for use in the practice of the present invention are conveniently produced by expression plasmids, introduced into the host cell by transfection. Mutant receptors contemplated for use herein include RAR403 homodimers, RAR403-containing heterodimers, TR160 homodimers, TR160-containing heterodimers, and the like.

Reporter constructs contemplated for use in the practice of the present invention comprise:

- (a) a promoter that is operable in the host cell,
- (b) a hormone response element, and

(c) a DNA segment encoding a reporter protein,
wherein the reporter protein-encoding DNA segment is
operatively linked to the promoter for transcription of the DNA
segment, and

wherein the hormone response element is operatively linked to the promoter for activation thereof.

Hormone response elements contemplated for use in the practice of the present invention are well known in the art, as has been noted previously.

10

15

30

5

Exemplary reporter genes include chloramphenicol transferase (CAT), luciferase (LUC), beta-galactosidase (β -gal), and the like. Exemplary promoters include the simian virus (SV) promoter or modified form thereof (e.g., SV), the thymidine kinase (TK) promoter, the mammary tumor virus (MTV) promoter or modified form thereof (e.g., Δ MTV), and the like [see, for example, Mangelsdorf et al., in Nature 345:224-229 (1990), Mangelsdorf et al., in Cell 66:555-561 (1991), and Berger et al., in J. Steroid Biochem. Molec. Biol. 41:733-738 (1992).

As used herein in the phrase "operative response element" or

"operatively linked" the word "operative" means that the respective DNA sequences
(represented by the terms "GAL4 response element" and "reporter gene") are
operational, i.e., work for their intended purposes; such that after the two segments are
linked, upon appropriate activation by a ligand-receptor complex, the reporter gene will
be expressed as the result of the fact that the "GAL4 response element" was "turned on"
or otherwise activated.

In practicing the above-described functional bioassay, the expression plasmid and the reporter plasmid are co-transfected into suitable host cells. The transfected host cells are then cultured in the presence and absence of a test compound to determine if the test compound is able to produce activation of the promoter operatively linked to the response element of the reporter plasmid. Thereafter, the transfected and

10

15

20

30

cultured host cells are monitored for induction (i.e., the presence) of the product of the reporter gene sequence.

Any cell line can be used as a suitable "host" for the functional bioassay contemplated for use in the practice of the present invention. Thus, cells contemplated for use in the practice of the present invention include transformed cells, non-transformed cells, neoplastic cells, primary cultures of different cell types, and the like. Exemplary cells which can be employed in the practice of the present invention include Schneider cells, CV-1 cells, HuTu80 cells, F9 cells, NTERA2 cells, NB4 cells, HL-60 cells, 293 cells, Hela cells, yeast cells, and the like. Preferred host cells for use in the functional bioassay system are COS cells and CV-1 cells. COS-1 (referred to as COS) cells are monkey kidney cells that express SV40 T antigen (Tag); while CV-1 cells do not express SV40 Tag. The presence of Tag in the COS-1 derivative lines allows the introduced expression plasmid to replicate and provides a relative increase in the amount of receptor produced during the assay period. CV-1 cells are presently preferred because they are particularly convenient for gene transfer studies and provide a sensitive and well-described host cell system.

The above-described cells (or fractions thereof) are maintained under physiological conditions when contacted with physiologically active compound. "Physiological conditions" are readily understood by those of skill in the art to comprise an isotonic, aqueous nutrient medium at a temperature of about 37°C.

In accordance with yet another aspect of the present invention, there is provided a method to identify compounds which activate nuclear receptor activity, but substantially lack the ability to relieve the repression caused by an invention SMRT corepressor, said method comprising:

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex

30

comprising: a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor 5 homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer, or retinoic acid receptor-retinoid X receptor heterodimer, a response element for said member of the nuclear receptor superfamily, wherein said response element is 10 operatively linked to a reporter, and optionally, invention SMRT co-repressor, and wherein said second expression system comprises a complex comprising: 15 a homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes, 20 the same response element-reporter combination as employed in said first expression system, and optionally, invention SMRT co-repressor, and thereafter selecting those compounds which provide: 25 a higher reporter signal upon exposure of said compound to said second expression system, relative to reporter signal in the absence of compound, and substantially the same reporter signal upon exposure of said compound to said first expression system, relative to reporter signal in

the absence of said compound,

wherein said selected compounds are capable of activating nuclear receptor activity, but substantially lacking the ability to relieve the repression caused by a SMRT co-repressor having a structure and function characteristic of, an invention SMRT co-repressor for retinoic acid and thyroid receptors.

5

In accordance with a still further aspect of the present invention, there is provided a method to identify compounds which relieve the repression of nuclear receptor activity caused by an invention SMRT co-repressor, and activate said receptor, said method comprising:

10

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex comprising:

15

a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer, or retinoic acid receptor-retinoid X receptor heterodimer,

20

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a reporter, and optionally, invention SMRT co-repressor, and

25

wherein said second expression system comprises a complex comprising:

30

a homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes,

the same response element-reporter combination as employed in said first expression system, and optionally, invention SMRT co-repressor, and thereafter

5	selecting those compounds which provide:
	increased reporter signal upon exposure of said compound to said
	second expression system, relative to reporter signal in the absence of
	said compound, and
	substantially increased reporter signal upon exposure of said
10	compound to said first expression system, relative to reporter signal in
	the absence of said compound,
	wherein said selected compounds are capable of relieving the repression
	of nuclear receptor activity caused by a SMRT co-repressor having a structure and
15	function characteristic of the silencing mediator for retinoic acid and thyroid receptors,
	and activating said receptor.
	In accordance with still another embodiment of the present invention,
	there are provided modified forms of the above-described SMRT co-repressor,
20	including:
	full length silencing mediator for retinoic acid and thyroid receptors plus
	GAL4 DNA binding domain,
	full length silencing mediator for retinoic acid and thyroid receptors plus
	GAL4 activation domain,
25	full length silencing mediator for retinoic acid and thyroid receptors plus
	glutathione S-transferase (GST) tag,
	and the like.

The above-described modified forms of invention SMRT co-repressor can be used in a variety of ways, e.g., in the assays described herein.

An especially preferred modified SMRT co-repressor of the invention comprises full length silencing mediator for retinoic acid and thyroid receptors plus GAL4 activation domain.

5	In accordance with a still further embodiment of the present invention,
	there is provided a method to identify compounds which disrupt the ability of an
	invention SMRT co-repressor to complex with nuclear receptors, without substantially
	activating said receptor, said method comprising:

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex comprising:

a modified SMRT co-repressor as described above, a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer or retinoic acid receptor-retinoid X receptor heterodimer, and

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a reporter, and

wherein said second expression system comprises a complex comprising:

said modified SMRT co-repressor,

a homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost

25

15

20

its ability to repress basal level promoter activity of target genes, and

the same response element-reporter combination as employed in said first expression system, and thereafter

5

selecting those compounds which provide:

a lower reporter signal upon exposure of said compound to said first expression system, relative to reporter signal in the absence of said compound, and

10

25

30

substantially the same reporter signal upon exposure of said compound to said second expression system, relative to reporter signal in the absence of said compound,

wherein said selected compounds are capable of disrupting the ability of

a SMRT co-repressor having a structure and function characteristic of the silencing
mediator for retinoic acid and thyroid receptors to complex with nuclear receptors,
without substantially activating said receptor.

Mutant receptors contemplated for use in this embodiment of the present invention include RAR403 homodimers, RAR403-containing heterodimers, TR160 homodimers, TR160-containing heterodimers, and the like.

Suitable host cells for use in this embodiment of the present invention include mammalian cells as well as yeast cells. Yeast cells are presently preferred because they introduce no background since SMRT (i.e., silencing mediator (SMRT corepressor) for retinoic acid receptor (RAR) and thyroid hormone receptor (TR)) is not endogenous to yeast.

In accordance with yet another embodiment of the present invention, there is provided a method to identify compounds which activate nuclear receptor activity, but substantially lack the ability to disrupt a complex comprising a nuclear receptor and an invention SMRT co-repressor, said method comprising:

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex comprising:

a modified SMRT co-repressor as described above, a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer or retinoic acid receptor-retinoid X receptor heterodimer, and

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a reporter, and

wherein said second expression system comprises:

said modified SMRT co-repressor,

a homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes, and

the same response element-reporter combination as employed in said first expression system, and thereafter

10

15

20

15

20

25

selecting those compounds which provide:

a higher reporter signal upon exposure of said compound to said second expression system, relative to reporter signal in the absence of compound, and

substantially the same reporter signal upon exposure of said compound to said first expression system, relative to reporter signal in the absence of compound,

wherein said selected compounds are capable of activating nuclear receptor activity, but substantially lack the ability to disrupt the complex of an invention SMRT co-repressor.

Suitable host cells for use in this embodiment of the present invention include mammalian cells as well as yeast cells. Yeast cells are presently preferred because they introduce no background since SMRT is not endogenous to yeast.

In accordance with a still further embodiment of the present invention, there is provided a method to identify compounds which activate a nuclear receptor, and disrupt the ability of an invention SMRT co-repressor to complex with said receptor, said method comprising:

comparing the reporter signal produced by two different expression systems in the absence and presence of test compound,

wherein said first expression system comprises a complex comprising:

a modified SMRT co-repressor as described above, a homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer or retinoic acid receptor-retinoid X receptor heterodimer, and

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a reporter, and

5 wherein said second expression system comprises a complex comprising:

said modified SMRT co-repressor,

the same homodimeric or heterodimeric member of the nuclear receptor superfamily as employed in said first expression system, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes, and

the same response element-reporter combination as employed in said first expression system, and thereafter

selecting those compounds which provide:

a reduction in reporter signal upon exposure of compound to said first expression system, relative to reporter signal in the absence of said compound, and

increased reporter signal upon exposure of compound to said second expression system, relative to reporter signal in the absence of said compound,

wherein said selected compounds are capable of activating a nuclear receptor and disrupting a complex comprising nuclear receptor and a SMRT corepressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors.

Suitable host cells for use in this embodiment of the present invention include mammalian cells as well as yeast cells. Yeast cells are presently preferred because they introduce no background since SMRT is not endogenous to yeast.

15

10

20

25

In accordance with yet another aspect of the present invention, there is provided a method to identify compounds which activate a nuclear receptor and/or disrupt the ability of an invention SMRT co-repressor to complex with said receptor, said method comprising:

comparing the reporter signals produced by a combination expression system in the absence and presence of test compound,

wherein said combination expression system comprises:

a first homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X receptor heterodimer, retinoic acid receptor homodimer, or retinoic acid receptor-retinoid X receptor heterodimer,

a second homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first homodimer or heterodimer, wherein said member is mutated such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes (i.e., provides basal level expression),

> wherein either said first homodimer (or heterodimer) or said second homodimer (or heterodimer) is operatively linked to a GAL4 DNA binding domain,

a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a first reporter,

a GAL4 response element, wherein said response element is operatively linked to a second reporter, and

10

5

15

20

25

optionally a SMRT co-repressor of nuclear receptor activity, said SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors, and thereafter

5

identifying as capable of relieving the repression of nuclear receptor activity caused by a SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors, but substantially lacking the ability to activate nuclear receptor activity those compounds which provide:

10

a higher reporter signal from the reporter responsive to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound, and

15

substantially the same reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of said compound, or

20

identifying as capable of activating nuclear receptor activity, but substantially lacking the ability to relieve the repression caused by a SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors those compounds which provide:

> a higher reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of compound, and

25

substantially the same reporter signal from the reporter responsive to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound, or

30

identifying as capable of relieving the repression of nuclear receptor activity caused by a SMRT co-repressor having a structure and function characteristic of

10

15

the silencing mediator for retinoic acid and thyroid receptors, and activating said receptor those compounds which provide:

a higher reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of said compound, and a greater increase in reporter signal from the reporter responsive

to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound.

Thus, the change in expression level of the two different reporters introduced in a single transfection can be monitored simultaneously. Based on the results of this single transfection, one can readily identify the mode of interaction of test compound with the receptor/SMRT complex.

Exemplary GAL4 response elements are those containing the palindromic 17-mer:

5'-CGGAGGACTGTCCTCCG-3' (SEQ ID NO:3),

- such as, for example, 17MX, as described by Webster et al., in *Cell* **52**:169-178 (1988), as well as derivatives thereof. Additional examples of suitable response elements include those described by Hollenberg and Evans in *Cell* **55**:899-906 (1988); or Webster et al. in *Cell* **54**:199-207 (1988).
- In accordance with still another embodiment of the present invention, there is provided a method to identify compounds which activate a nuclear receptor and/or disrupt the ability of an invention SMRT co-repressor to complex with said receptor, said method comprising:
- comparing the reporter signals produced by a combination expression system in the absence and presence of test compound,

wherein said combination expression system comprises: a modified SMRT co-repressor as described above, a first homodimeric or heterodimeric member of the nuclear receptor superfamily selected from thyroid hormone receptor homodimer, thyroid hormone receptor-retinoid X 5 receptor heterodimer, retinoic acid receptor homodimer, or retinoic acid receptor-retinoid X receptor heterodimer, a second homodimeric or heterodimeric form of the same member of the nuclear receptor superfamily as employed in said first homodimer or heterodimer, wherein said member is mutated 10 such that it retains hormone dependent activation activity but has lost its ability to repress basal level promoter activity of target genes, wherein either said first homodimer (or heterodimer) or said second homodimer (or heterodimer) 15 is operatively linked to a GAL4 DNA binding domain, a response element for said member of the nuclear receptor superfamily, wherein said response element is operatively linked to a first reporter, 20 a GAL4 response element, wherein said response element is operatively linked to a second reporter, and thereafter identifying as capable of disrupting the ability of a SMRT co-repressor 25

identifying as capable of disrupting the ability of a SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors to complex with a nuclear receptor, without substantially activating nuclear receptor, those compounds which provide:

a lower reporter signal from the reporter responsive to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound, and substantially the same reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of said compound, or

5

identifying as capable of activating nuclear receptor activity, but substantially lacking the ability to disrupt a complex comprising a nuclear receptor and a SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors, those compounds which provide:

10

a higher reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of compound, and

15

substantially the same reporter signal from the reporter responsive to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound, or

20

identifying as capable of disrupting a complex comprising a nuclear receptor and a SMRT co-repressor having a structure and function characteristic of the silencing mediator for retinoic acid and thyroid receptors, and activating said receptor those compounds which provide:

25

a reduction in reporter signal from the reporter responsive to the first member upon exposure of said compound to said first member, relative to reporter signal in the absence of said compound, and

increased reporter signal from the reporter responsive to the second member upon exposure of said compound to said second member, relative to reporter signal in the absence of said compound.

30

In accordance with a still further aspect of the present invention, there is provided a method to identify compounds which relieve the repression of nuclear

receptor activity caused by an invention SMRT co-repressor, said method comprising determining the effect of adding test compound to an expression system comprising:

a modified member of the nuclear receptor superfamily, wherein said
modified member contains an activation domain which renders said receptor
constitutively active,

a fusion protein comprising the receptor interaction domain of SMRT operatively linked to the GAL4 DNA binding domain, and

a GAL4 response element operatively linked to a reporter.

10

15

20

25

30

Prior to addition of an effective ligand for the member of the nuclear receptor superfamily employed herein, the association of the modified member and the fusion protein will be effective to bind the GAL4 response element and activate transcription of the reporter. The presence of an effective ligand is indicated by a reduction of reporter signal upon exposure to ligand, which disrupts the interaction of the modified member and fusion protein.

Activation domains contemplated for use in the practice of the present invention are well known in the art and can readily be identified by the artisan. Examples include the GAL4 activation domain, BP64, and the like.

To summarize, a novel family of nuclear receptor SMRT co-repressor which mediates the transcriptional silencing of RAR and TR has been identified. This discovery is of great interest because transcriptional silencing has been shown to play an important role in development, cell differentiation and the oncogenic activity of v-erbA (Baniahmad et al., *EMBO J.* 11:1015-1023 (1992)); Gandrillon et al., *Cell* 49:687-697 (1989)); Zenke et al., *Cell* 61:1035-1049 (1990); Barlow et al., *EMBO J.* 13:4241-4250 (1994); Levine and Manley, *Cell* 59:405-408 (1989); Baniahmad et al., *Proc. Natl. Acad. Sci. USA* 89:10633-10637 (1992b); and Saitou et al., *Nature* 374:159-162 (1995)). In fact, v-erbA mutants that harbor the Pro160->Arg change in the TR neither repress basal

transcription nor are capable of oncogenic transformation (Damm and Evans, (1993), supra).

The function of SMRT as a silencing mediator (co-repressor) of RAR and TR is analogous to mSin3 in the Mad-Max-Sin3 ternary complex (Schreiber-Agus et al., Cell 80:777-786 (1995); and Ayer et al., Cell 80:767-776 (1995)). Because GAL-SMRT functions as a potent repressor when bound to DNA, it is reasonable to speculate that the function of the unliganded receptors is to bring with them SMRT to the template via protein-protein interaction. Thus, the repressor function is intrinsic to SMRT as opposed to the TR or RAR itself (Baniahmad et al., Proc. Natl. Acad. Sci. USA 10 90:8832-8836 (1993); and Fondell et al., Genes Dev 7:1400-1410 (1993)). It is demonstrated herein that the ligand triggers a dissociation of SMRT from the receptor, which would lead to an initial step in the activation process. This would be followed (or be coincident) with an induced conformational change in the carboxy-terminal transactivation domain (c, also called AF2), allowing association with co-activators 15 on the transcription machinery (Douarin et al., EMBO J. 14:2020-2033 (1995); Halachmi et al., Science 264:1455-1458 (1994); Lee et al., Nature 374:91-94 (1995); and Cavailles et al., Proc. Natl. Acad. Sci. USA 91:10009-10013 (1994)). Thus, as has previously been suggested (Damm and Evans, (1993), supra), the ligand dependent activation of TR would represent two separable processes including relief of repression 20 and net activation. The isolation of SMRT now provides a basis for dissecting the molecular basis of trans-repression.

The invention will now be described in greater detail by reference to the following non-limiting examples.

Example 1 Isolation of SMRT

Using a GAL4 DBD-RXR fusion protein (see, for example, USSN 30 08/177,740, incorporated by reference herein in its entirety) as a bait in a yeast

two-hybrid screening system (Durfee et al., (1993), *supra*), several cDNA clones encoding receptor interacting proteins were isolated. One of these proteins, SMRT, interacts strongly with unliganded RAR and TR but only weakly with RXR or other receptors in yeast. This protein was selected for further characterization.

5

Example 2 Far-western blotting procedure

Total bacteria extracts expressing GST fusions of hRARα (aa 156-462)

or hRXRα LBD (aa 228-462) and control extracts expressing GST alone or GST-PML fusion protein were subjected to SDS/PAGE and electroblotted onto nitrocellulose in transfer buffer (25 mM Tris, pH 8.3/ 192 mM glycine/ 0.01% SDS). After denaturation/renaturation from 6 M to 0.187 M guanidine hydrochloride in HB buffer (25 mM HEPES, pH 7.7/25 mM NaCl/5 mM MgCl₂/1 mM DTT) filters were saturated at 4°C in blocking buffer (5% milk, then 1% milk in HB buffer plus 0.05% NP40). *In vitro* translated ³⁵S-labeled proteins were diluted into H buffer (20 mM Hepes, pH 7.7/75 mM KCl/0.1 mM EDTA/2.5 mM MgCl₂/0.05% NP40/ 1% milk/1 mM DTT) and the filters were hybridized overnight at 4°C with (1 μM) or without ligand. After three washes with H buffer, filters were dried and exposed for autoradiography or quantitated by phosphoimager.

GST-SMRT is a GST fusion of the C-SMRT encoded by the yeast two hybrid clone. GST-SMRT has been purified, but contains several degradation products.

25

For yeast two-hybrid screening, a construct expressing the GAL4 DBD-hRXRα LBD (aa 198-462) fusion protein was used to screen a human lymphocyte cDNA library as described (Durfee et al., (1993), *supra*). Full length SMRT cDNA was isolated from a human HeLa cDNA library (Clontech) using the two-hybrid insert as a probe.

Using the above-described far-western blotting procedure, ³⁵S-labeled SMRT preferentially complexes with bacterial extracts expressing the RAR, marginally associates with RXR and shows no association with control extracts. In contrast, ³⁵S-PPAR selectively associates with its heterodimeric partner, RXR, but not with RAR. In a similar assay, ³⁵S-labeled RAR or TR interacts strongly with SMRT and their heterodimeric partner, RXR, but not with degraded GST products, while ³⁵S-RXR interacts only weakly with SMRT. Binding of ligand to RAR or TR reduces their interactions with SMRT but not with RXR, while binding of ligand to RXR has only slight effect. Figure 1 shows the quantitation of a dose-dependent dissociation of SMRT from RAR or TR by all-*trans* retinoic acid (atRA) or thyroid hormone (triiodothyronine or T3), demonstrating that the amount of ligand required for 50% dissociation in both cases are close to the kds for both ligands (Munoz et al. *EMBO J.* 7:155-159 (1988); Sap et al., *Nature* 340:242-244 (1989); and Yang et al., *Proc. Natl. Acad. Sci. USA* 88:3559-3563 (1991)).

15

10

5

Full length SMRT encodes a polypeptide of 1495 amino acids rich in proline and serine residues (see Figure 2 and SEQ ID NO:1). Genbank database comparison reveals similarity of the C-terminal domain of SMRT to a partial cDNA encoding another receptor interacting protein, RIP13 (Seol et al., (1995), *supra*), whose role in receptor signaling is unknown. Within this region, there can be identified several potential heptad repeats which might mediate protein-protein interaction with the "a-helical sandwich" structure (Bourguet et al., *Nature* 375:377-382 (1995)) of the ligand binding domain (LBD) of receptors.

25

30

20

Example 3 Characterization of SMRT

Unlike other nuclear receptors, unliganded RAR and TR possess a strong silencing domain which represses basal level promoter activity of their target genes (Damm et al., *Nature* **339**:593-597 (1989); Brent et al., *New Biol.* **1**:329-336 (1989); Baniahmad et al., *Cell* **61**:505-514 (1990); and Baniahmad et al., *EMBO J.*

11:1015-1023 (1992)). The preferential interaction of SMRT with RAR and TR in the absence of hormone suggests that SMRT may play a role in mediating the transcriptional silencing effect of the receptor.

To further investigate the involvement of SMRT in silencing, the interaction of SMRT with mutant receptors which display distinct silencing and/or transactivation activities was tested as follows. ³⁵S-methionine labeled receptors were used as probes to hybridize immobilized GST-SMRT in the presence (10 μM) or absence of all-*trans* retinoic acid (atRA). The total bacteria extract expressing

10 GST-RXR was included as a control.

When quantitated by phosphoimager, RAR403 shows a 4-fold better interaction with SMRT than wild type RAR. Both full length RAR or a deletion mutant expressing only the ligand binding domain (LBD, referred to as $\Delta\Delta$ R) associate with SMRT; this association is blocked by ligand.

These results confirm that the LBD alone is sufficient in the interaction. The carboxy-terminal deletion mutant RAR403 is a potent dominant negative repressor of basal level promoter activity of RAR target genes (Damm et al., *Proc. Natl. Acad. Sci. USA* 90:2989-2993 (1993); Tsai and Collins, *Proc. Natl. Acad. Sci. USA* 90:7153-7157 (1993); and Tsai et al., *Genes Dev* 6:2258-2269 (1992)). As might be predicted from the above studies, RAR403 and its amino terminal deletion derivative, R403, interact strongly with SMRT in either the presence or absence of ligand, consistent with SMRT mediating the repressor activity of this mutant.

25

15

20

Example 4 Interaction of SMRT with TR Mutants

The interaction of SMRT with two different classes of TR mutants was analyzed next. The first mutant employed is the naturally occurring oncogene, v-erbA, which has strong silencing ability but no transactivation activity (Sap et al., (1989),

supra; Sap et al., Nature 324:635-640 (1986); Weinberger et al., Nature 318:670-672 (1985); and Weinberger et al., Nature 324:641-646 (1986)). The second mutant employed is a single amino acid change (Pro 160 -> Arg) of the rTRa (TR160) which has previously been shown to lose its capacity in basal level repression but retains hormone dependent transactivation (Thompson et al., Science 237:1610-1614 (1987); and Damm and Evans, Proc. Natl. Acad. Sci. USA 90:10668-10672 (1993)). If SMRT is involved in silencing, it would be expected that SMRT should interact with the v-erbA, but show little or no association with the silencing-defective TR160 mutant.

Interaction of the oncogenic v-erbA and rTR α R160 mutant (TR160) with GST-SMRT was determined in a far-western assay as described above (see Example 2). When quantitated by phosphoimager, the v-erbA shows an 18-fold better interaction with SMRT than hTR β , and the TR160 mutant shows a 10-fold lower signal than the rTR α .

15

10

5

As one might expect, v-erbA interacts strongly with SMRT both in presence or absence of ligand. In contrast, full length TR160 mutant or LBD of TR160 ($\Delta\Delta$ TR160) does not interact significantly with SMRT when compared to the wild type receptor.

20

These data demonstrate that SMRT plays an important role in mediating transcriptional silencing effects of both RAR and TR. These data also suggest that the release of SMRT from receptors could be a prerequisite step in ligand-dependent transactivation by nuclear receptors.

25

Example 5 Formation of ternary complexes containing SMRT

RAR and TR form heterodimers with RXR, resulting in a complex with 30 high DNA binding ability (Bugge et al., *EMBO J.* 11:1409-1418 (1992); Yu et al., *Cell* 67:1251-1266 (1991); and Kliewer et al., *Nature* 355:446-449 (1992)). Since SMRT

10

25

interacts with RAR and TR, tests were conducted to determine whether SMRT can also interact with the receptor-DNA complex. Thus, the interaction of SMRT with RXR-RAR heterodimer on a DR5 element (i.e., an AGGTCA direct repeat spaced by five nucleotides) was determined in a gel retardation assay, which is carried out as follows. *In vitro* translated receptor or unprogrammed reticulocyte lysate (URL) was incubated with 1 µg of poly dIdC on ice for 15 minutes in a total volume of 20 µl containing 75 mM KCl, 7.5% glycerol, 20 mM Hepes (pH 7.5), 2 mM DTT and 0.1% NP-40, with or without ligand (in the range of about 10-100 nM employed). A ³²P labeled, double stranded oligonucleotide probe was added into the binding reaction (10,000 cpm per reaction), and the reaction was further incubated for 20 minutes at room temperature. The protein-DNA complex was separated on a 5% native polyacrylamide gel at 150 volts.

SMRT is seen to form a ternary complex with the RXR-RAR heterodimer on a DNA response element in the gel retardation assay. Addition of ligand releases SMRT from this complex in a dose-dependent manner.

Similarly, SMRT is seen to form a ternary complex with the RXR-TR heterodimer on a TR response element; addition of T3 disrupts the formation of this complex.

These data demonstrate that SMRT can be recruited to DNA response elements via protein-protein interaction with RAR or TR in the absence of hormone. Binding of hormone disrupts receptor-SMRT interaction and releases SMRT from the receptor-DNA complex.

Example 6

Transient transfection assay

30 CV-1 cells were plated in 24 well plates at a density of 50,000 cells per well. Expression plasmids were transfected into cells by lipofection using DOTAP. In

each transfection, 5 ng of GAL-RAR and 15 ng of v-erbA or SMRT were used together with 150 ng of reporter construct containing 4 copies of GAL4 binding sites in front of a minimal thymidine kinase promoter and a CMX- β -gal construct as an internal control. The relative luciferase activity was calculated by normalizing to the β -gal activity.

5

20

25

Example 7 Reversal of transcriptional silencing

Recently, it has been shown that over expression of RAR or TR could reverse the transcriptional silencing effect of the GAL4 DBD fusion of TR (GAL-TR) or RAR (GAL-RAR) (Baniahmad et al., *Mol Cell Biol* 15:76-86 (1995); and Casanova et al., *Mol Cell Biol* 14:5756-5765 (1994)), presumably by competition for a limiting amount of a SMRT co-repressor. A similar effect is observed herein when over expression of v-erbA or RAR403 mutants are shown to reverse the silencing effect of GAL-RAR and GAL-TR on the basal activity of a luciferase reporter (see Figure 3A and 3B).

In principle, over expression of SMRT should restore repressor activity when co-expressed with v-erbA or RAR403 competitors. Indeed, results presented in Figure 3C show that both the full length and the C-terminal domain of SMRT (C-SMRT) can titrate out v-erbA or RAR403 competitor activity and re-endow GAL-RAR and GAL-TR with silencing activity. In contrast, neither v-erbA nor SMRT show any effect on the transactivation activity of GAL-VP16 fusion. Thus, SMRT is able to block the titration effect of v-erbA and RAR403 and functionally replaces the putative SMRT co-repressor in this system.

Example 8 Direct recruitment of SMRT to a heterologous promoter

30 If SMRT is the mediator of transcription silencing of TR and RAR by interaction with template-bound unliganded receptors, then direct recruitment of SMRT

10

15

20

25

30

to a heterologous promoter should result in repression of basal level activity. This was tested by fusing full length SMRT to the GAL4 DBD (GAL-SMRT). The effect of the resulting fusion protein on the activity of the thymidine kinase promoter containing four GAL4 binding sites was analyzed. Figure 3D shows that GAL-SMRT, like GAL-TR, can silence basal promoter activity in a dose-dependent manner. In contrast, GAL-RXR shows no repression.

These data suggest that SMRT, when recruited to a promoter by direct DNA binding or via association with an unliganded receptor, functions as a potent transcriptional repressor.

Example 9

Cloning Of Human And Mouse SMRT co-repressors

This example describes the cloning of a full length human silencing mediator of retinoic acid and thyroid hormone receptor (SMRT co-repressor) and of two mouse SMRT isoforms, m-SMRT α and m-SMRT β .

An examination of the previously described human SMRT co-repressor revealed that the first eight amino acids and upstream sequences were derived from a portion of ribonucleoprotein K sequence. Accordingly, a mouse spleen cDNA lambda ZAP II library (Stratagene; La Jolla CA) was screened at low stringency with a probe corresponding to approximately the 5' 1,000 base pairs (bp) of the previously identified human SMRT (s-SMRT). A 3.5 kilobase (kb) cDNA fragment was obtained that contained a unique sequence in addition to known s-SMRT sequence. The 5' end of this cDNA, and subsequently obtained clones, was used in successive rounds of screening of the mouse spleen cDNA library and a mouse brain cDNA library (Stratagene) and the full-length SMRTα isoform cDNA (SEQ ID NO: 6) and SMRTα isoform cDNA (SEQ ID NO: 10) were obtained. The mouse SMRT (m-SMRT) 5' sequence then was used at low stringency to screen a human pituitary cDNA library (Stratagene) to obtain the full-length human SMRT (h-SMRT) cDNA (SEQ ID NO: 1). All cDNA clones were

sequenced on both strands using standard methods, and have been deposited with GenBank as Accession No. AF103003 (h-SMRT; SEQ ID NOS: 3 and 5); Accession No. 113001 (m-SMRTα; SEQ ID NOS: 6 and 7); and Accession No. 113002 (m-SMRTβ; SEQ ID NOS: 8 and 9).

By sequentially shifting between the mouse spleen and mouse brain cDNA libraries, several clones containing a potential starting methionine and 5' untranslated region sequences were obtained. The complete polypeptide sequences of m-SMRT (SEQ ID NO: 7) and h-SMRT (SEQ ID NO: 5) are provided. In addition, a splice variant isolated from the mouse brain cDNA library encoded an m-SMRT corepressor containing a deletion of amino acids 36 to 254 of SEQ ID NO: 7 (see SEQ ID NO: 3). The two m-SMRT co-repressors are designated SMRT α (SEQ ID NO: 7) and SMRT β (SEQ ID NO: 9). Based on sequence similarity to N-CoR (see below), this deletion in m-SMRT β removes the majority of the sequence in h-SMRT and m-SMRT α that is homologous to N-CoR repression domain 1 (RD1), including a portion of the Sin3A binding region.

The cloned h-SMRT (SEQ ID NO: 3) encodes a polypeptide that contains an additional 1130 amino acids at the amino terminus as compared to the previously described human SMRT co-repressor. The full length h-SMRT shares 84% identity with m-SMRTα. A comparison of h-SMRT (SEQ ID NO: 5) and N-CoR (SEQ ID NO: 11) revealed that the N-terminal extension of h-SMRT (amino acids 1 to 1030) and N-CoR (amino acids 1 to 1031) share approximately 41% identity, which is somewhat higher that the 36% identity shared between the full length proteins. However, regions within the N-CoR and SMRT N-termini share striking homology (Figures 4A and 4B).

Amino acids 1 to 160 of N-CoR are moderately conserved in h-SMRT (and m-SMRTα), sharing about 36% identity. This region of N-CoR has been reported to interact with Siah2 (Zhang et al., (1998), *supra*) and, similarly, can be involved in an

20

25

interaction of Siah2 with h-SMRT or m-SMRT α . In particular, highly conserved sequences in this region can be the specific Siah2 interaction sites (see Figure 4A).

A 52 amino acid segment from N-CoR (amino acids 255 to 312) mediates an interaction with Sin3A (Heinzel et al., *Nature* **387**:43-48 (1997)), and was presumed to represent the core of the larger RD1 region (Horlein et al., (1995), *supra*). This small interaction domain is highly conserved (about 83% identity) in h-SMRT, and the overall identity shared between SMRT and N-CoR RD1 is about 57%.

Amino acids 312 to 668 of N-CoR also are well conserved (66% identity) in h-SMRT (and m-SMRTα), and two internal blocks of sequences in this region share even greater similarity (see Figure 1B; shaded regions). These blocks are homologous to each other and to part of the SANT domain, which was identified in the yeast chromatin remodeling factor, SWI3, the yeast adapter protein, ADA2, the basal
transcription factor TFIIIB, and other proteins (Aasland et al., *Trends Biochem. Sci.*21:87-88 (1996)), suggesting that these domains share a common and important function. The amino acids of N-CoR RD2 (see Horlein et al., (1995) *supra*) are the least conserved in h-SMRT, sharing about 30% identity.

These results demonstrate that isoforms of SMRT co-repressors are expressed in cells, as exemplified by m-SMRT α and m-SMRT β . In addition, the results demonstrate that the previously undescribed amino terminus of SMRT co-repressors shares regions of substantial homology with N-CoR, and regions of homology are identified that indicate these sequences can mediate previously uncharacterized functions.

Example 10

Expression And Chromosomal Localization Of Smrt Co-Repressors

This example describes the tissue distribution of SMRT RNA and the chromosomal localization of human SMRT.

Total RNA was prepared from adult CB6F1 mouse tissues using TRIZOL reagent (GIBCO/BRL), and poly(A) RNA was purified from total RNA using an OLIGOTEX mRNA Kit (Qiagen, Valencia, CA). RNA was separated on 1.25% agarose/6% formaldehyde gels and transferred to a NYTRAN membrane (Scheicher & Schuell). A 720 bp m-SMRT/PstI fragment was used as a probe. Following hybridization with the SMRT probe, the filters were stripped and hybridized with a murine glyceraldehyde-3-phosphate dehydrogenase cDNA probe to allow normalization for RNA loading.

Chromosomal localization of SMRT was determined by fluorescence in situ hybridization using the 5.3 kb h-SMRT cDNA clone. The probe was labeled by nick-translation with biotin-11-dUTP, then hybridized to normal male human metaphase chromosomes. Chromosomes were counterstained with 4',6-diamidino-2-phenylindole (DAPI). Chromosome identification was carried out by computer inversion of the gray scale DAPI image on a PSI Imaging System (Perceptive Scientific Instruments; League City TX). Chromosome 12 confirmation was carried out using a chromosome 12-specific alpha satellite probe (Vysis; Downers Grove IL).

Previous studies using the short human SMRT co-repressor suggested that SMRT was expressed ubiquitously in various tissues. To confirm this result, expression of the full length m-SMRT was determined by northern blot analysis by using a probe consisting of nucleotides 2760 to 3620 of m-SMRT (SEQ ID NO: 6). The expression pattern was ubiquitous, as previously described, although higher levels were detected in lung, spleen, and brain. Similarly, h-SMRT was expressed ubiquitously as determined using a multiple tissue blot (CLONTECH; Palo Alto CA). It is noteworthy that two isoforms of SMRT were present in the majority of the mouse tissues and likely correspond to the m-SMRTα and m-SMRTβ isoforms.

The chromosomal location of the h-SMRT and N-CoR genes was mapped. The h-SMRT clone hybridized to the q arm of one of the C group

chromosomes. Computer-mediated banding of the DAPI stained chromosomes identified the labeled chromosome as chromosome 12, band q24. The chromosome 12 localization was confirmed by cohybridization of SMRT and a chromosome 12 alpha satellite probe, D12Z3 (Vysis), which labels the pericentromeric region of chromosome 12. The location for the human N-CoR gene was determined through a mapped human bacterial artificial chromosome clone, hCIT529I10, which is 158 kb of genomic N-CoR and resides on chromosome 11p11.2. The SMRT and N-CoR chromosomal locations can be accessed through GENEMAP98 from the Human Genome Project at http://www.ncbi.nlm.nih.gov/genemap.

10

5

These results demonstrate that the full length SMRT co-repressors and the SMRT co-repressors are expressed in various tissues. The results also demonstrate that the human SMRT gene is located on chromosome 12.

15

Example 11 Functional Characterization Of SMRT Amino Terminus Domains

This example demonstrates that various domains of the SMRT amino terminus can repress nuclear receptor transcriptional activity.

Experiments were performed using the plasmids pCMX-GAL4 DBD and pMH100-TK-luc (Nagy et al., (1997), *supra*). Standard PCR amplifications were used to generate GAL4 fusion constructs. All constructs were verified by double-stranded sequencing to confirm identity and reading frame.

Monkey CV-1 cells were grown in DMEM supplemented with 10% resin-charcoal stripped fetal bovine serum (FBS), 50 units/ml of penicillin G, and 50 μ g/ml of streptomycin sulfate at 37°C in 7% CO₂. V-1 cells (60-70% confluence, 48-well plate) were cotransfected with 16 ng of pCMX-GAL4, 100 ng of pMH100-TK-luc, and 100 ng of pCMX- β galactosidase in 200 μ l of DMEM containing 10% super-

30

10

15

30

stripped fetal calf serum (FCS) by the N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium methylsulfate (DOTAP)-mediated procedure (Nagy et al., (1997), supra). The amount of DNA in each transfection was kept constant by addition of pCMX. After 24 hr, the medium was replaced; cells were harvested and assayed for luciferase activity 36 to 48 hr after transfection. Luciferase activity was normalized by the level of β -galactosidase activity. Each transfection was performed in triplicate and repeated at least three times.

Based on the high degree of identity between regions of the SMRT amino terminus and the corresponding N-CoR region, the ability of regions in the SMRT amino terminus to act in transcriptional repression was examined. A nested series of nucleotide sequences encoding portions of the SMRT amino terminus fused to the GAL4 DNA binding domain (GAL-DBD) was prepared in mammalian expression vectors (Figure 5A). The constructs were cotransfected with a GAL4-TK-luciferase reporter plasmid to determine the regulatory properties of the GAL4-SMRT fusions. Repression was determined relative to the basal activity of the reporter in the presence of the GAL-DBD alone.

The entire SMRT amino terminus region (GAL4-SMRT(1-1031))

demonstrated the greatest amount of repression (approximately 38-fold), and virtually extinguished reporter activity. In comparison, GAL4-SMRT (1-303), which is equivalent to N-CoR RD1, demonstrated 6-fold repression; and GAL4-SMRT (736-1031), which is equivalent to N-CoR RD2, demonstrated about 2.6-fold repression. Surprisingly, the highly conserved SANT domain conferred a significant amount of repression (about 3.3-fold).

A smaller region (amino acids 845 to 986) within the RD2 homology region shows a higher level of sequence conservation as compared to the entire RD2 region. Deletion constructs were generated to determine whether this minimal region was sufficient for the repression activity of RD2. Deletion of flanking amino acids 736 to 845 or of amino acids 987 to 1055 did not affect the level of repression, demonstrating

that the repressor function of RD2 is contained within a 141 amino acid core sequence of RD2.

Based on sequence similarity to N-CoR, the deletion of amino acids 36 to 254 in the m-SMRT β isoform removes the majority of RD1, including a portion of the Sin3A binding region. The effect of this deletion on SMRT function was examined by cotransfection experiments comparing repression by SMRT α to SMRT β . These experiments revealed that SMRT β has substantially less repressor activity than SMRT α . A construct containing the entire amino terminus of m-SMRT β (amino acids 1 to 813) repressed activity about 2.6 fold, as compared to m-SMRT α amino acids 1 to 1031, which repressed activity about 38.1-fold. In addition, a GAL4 construct containing m-SMRT amino acids 1 to 83 repressed activity only about 1.4-fold. These results indicate that alternative splicing can add further diversity to expand the function of SMRT gene products.

15

25

30

10

5

Example 12 Yeast Two-Hybrid Screen and Assays

To investigate whether repression by EcR in CV-1 cells is mediated by its association with a vertebrate corepressor and whether such an interaction, if it does occur, is impaired by the A483T mutation, a mammalian two-hybrid assay with Gal4-c-SMRT was conducted.

A yeast two-hybrid screen (Fields and Song, *Nature*, **340**:245-246, (1989)) was performed by transforming approximately 2 X 10⁶ Y190 yeast cells with a pAS-EcR construct and a Drosophila (0-8 hr) embryonic c-DNA two-hybrid library (Yu et al., *Nature*, **385**:552-555, (1997)). Transformants were selected onto DO-Leu-Trp-His plates containing 40 mM 3-aminotriazole (Sigma) for 3-4 days. Surviving yeast colonies were picked as primary positives and restreaked on selection plates to isolate single clones. Activation domain plasmids were rescued from the selected positive transformants for further analysis. Each clone was evaluated by testing its

potential interaction with several other nuclear receptors using the yeast two-hybrid assays. E52 was isolated and further pursued based on this selection criterion. Quantitative liquid assay of β -galactosidase was performed on positive clones 16 hr after treating the yeast cells with no ligand, or with 3 μ M ligand.

5

pAS-EcR is a fusion gene with the region corresponding to amino acids 223-878 of EcRB1 fused C-terminally to the Gal4-DBD of the pAS1-CYH2 construct (Durfee et al., (1993), *supra*); other Gal4-DBD-based nuclear receptor constructs used in this yeast two-hybrid assay include: USP (amino acids 50-508), hRAR (amino acids 186-462) and hTR (amino acids 121-410) (Schulman et al., (1995), *supra*), and SMRT (Chen and Evans, (1995), *supra*). β-galactosidase activities were quantified by liquid assay for yeast cells treated either without ligand or with 3 μM of corresponding hormone. All-trans retinoic acid (ATRA) is a ligand of RAR; 3,3',5-triiodothyroacetic acid (T3) is a ligand of TR.

15

10

Similar yeast two-hybrid assays were also used to examine the interaction between SMRTER and mSin3A and dSin3A.

Example 12 Cloning SMRTER

20

25

30

To isolate full-length SMRTER cDNA, a XhoI insert fragment isolated from the E52 clone was used to screen male and female Tudor c-DNA libraries (gift of Tulle Hazelrigg). This initial screen resulted in isolating three overlapping c-DNA clones covering the region of amino acid 2094 to the C terminus of SMRTER Additional regions were obtained from three consecutive library screens using two cosmid clones isolated from the Tamkun genomic library (gift of John Tamkun). Sequences of these overlapping c-DNA and genomic clones were assembled to obtain a conceptual open reading frame of SMRTER 3446 amino acids in length (SEQ ID NO:12; Figure 8A). The translational initiation codon was designated based on the sequences that match the consensus Kozak codons and is preceded by three in-frame

consecutive stop codons in the upstream region. Both strands of the sequences of the c-DNA clones were determined using an ABI prism Big Dye® terminator cycle sequencing ready reaction kit (PE Biosystems) and ABI 377 instrument.

5

Example 14 Plasmids

CMV promoter-driven expression plasmids of EcR, USP, RXR,

10 c-SMRT, β-galactosidase, and pMH100-TK-luc reporter, and yeast plasmids of RAR,

TR, and SMRT have been described previously (Yao et al., (1992), *supra*, Yao et al.,

(1993), *supra*; Chen and Evans, (1995), *supra*; Schulman et al., (1995), *supra*; Chen

et al., *Proc. Natl. Acad. Sci. USA* 93:7567-7571, (1996); Nagy et al., (1997), *supra*).

hsp27EcR-TK-Luc, a reporter with six copies of the hsp27EcRE, is a gift of Barry

15 Forman. CMV vector-driven EcR A483T and Gal4-SMRD3 mutations were

generated using the Transformer® site-directed mutagenesis kit (Clontech) with

proper selection primers and the mutagenic primers that correspond to the missense

mutation (A483T) of EcR and to the designated mutations, M2 and M3, in the

SMRD3 domain, respectively. Other plasmids were constructed with standard

20 techniques, including various enzyme digestions or PCR amplification.

Example 15 Cell Culture and Transfection

25 CV-1 cells were grown in Dulbecco's modified Eagles medium at 37°C in 5% CO₂. The media were supplemented with 10% AG1-X8 resin charcoal double-stripped calf bovine serum, 50 U/ml penicillin G, and 50 µg/ml streptomycin sulfate. Approximately 20 hr after CV-1 cells (10⁵ cells) were plated in 48-well cell culture clusters (Costar), cells were transiently transfected with plasmids using DOTAP according to the instructions of the manufacturer (Boehringer Mannheim). The amount of CMV promoter-driven expression vectors, β-galactosidase gene

expression vector, CMX-lacZ, and reporter, pMH100-TK-luc or hsp27EcRE-TK-Luc, were in the range of 100-200 ng, 500 ng, and 400 ng, respectively, for six wells of each 48-well clusters in each transfection experiments. At least 4 hr after transfection, each medium was replaced with medium either without ligand, or with 1 µM of MurA. Cells were harvested and assayed approximately 48 hr after transfection. All experiments were performed in triplicate and repeated with similar results.

CV-1 cells were transfected with wild-type EcR or EcR A483T, along with vp16-USP and a reporter, hsp27EcRE-TK-Luc, which contains six copies of the hsp27EcRE fused to the thymidine kinase (TK) promoter-luciferase reporter. VP16-USP fusion contains the region of USP (amino acids 50-508) fused C-terminally to the VP16 domain. Muristerone A (MurA) is a potent ecdysone agonist (Christopherson et al., *Proc. Natl. Acad. Sci. USA,* 89:6314-6318, (1992)). In all experiments, cells were also cotransfected with CMV-lacZ, which is used to normalize the luciferase activity. As shown in Figure 6A, the ability to dimerize with USP is reflected in reporter activity without treatment with hormone (open bar), and the ability to respond to hormone is reflected in reporter activity when cells were treated with 1 μM Muristerone A (closed bar).

20

5

CMV promoter-driven expression vector including wild-type EcR or EcR A483T was cotransfected with VP16-USP and Gal4-c-SMRT (amino acids 981 to C terminus) (Chen and Evans, (1995), *supra*) into CV-1 cells to examine its effect on the interaction with vertebrate corepressor. All cells were also cotransfected with a TK-luciferase reporter construct, pMH100-TK-Luc, containing four copies of the yeast Gal4-responsive element. EcR A483T corresponds to a single amino acid change (alanine—threonine) at the 483 site of EcR (Bender et al., (1997), *supra*). The results of this experiment (Figure 6B) show that EcR A483T disrupts the interaction with SMRT.

Example 16 In Vitro Interacting Assays

Glutathione S-transferase fusion proteins, including GST-X, GST-ERID1 (amino acids 1698-2063 of SEQ ID NO:1), and GST-ERID2 (amino acids 2951-3038 of SEQ ID NO:1), were expressed in E. coli DH5 cells, and extracts were affinity purified by binding to glutathione Sepharose 4B beads. Bound proteins used as affinity matrices in pull-down experiments were first equilibrated with the binding buffer (20 mM HEPES [pH 7.9], 150 mM NaCl, 1 mM EDTA, 4 mM MgCl2, 1 mM DTT, 0.06% NP40, 10% Glycerol, 0.25 mM PMSF, 1 mg BSA). For pull-down assays using GST-ERID1 (amino acids 1698-2063 of SEQ ID NO:1) and GST-ERID2 (amino acids 2951-3038 of SEQ ID NO:1), additional hsp27EcRE (0.05 µg/ml) was added to the binding buffer. In this experiment, 30 µl of 50% GST-protein beads slurry, containing approximately 1 µg of proteins, were incubated with 10 µl of 35Smethionine-labeled proteins in 300 μl of the binding buffer (with or without 3 μM of MurA as indicated) for 30 min at room temperature. After the incubation, beads were washed three times with the binding buffer (with or without ligand) and resuspended in SDS-PAGE sample buffer before loading. After electrophoresis, bound radiolabeled proteins were visualized by autoradiography. 35S-methionine-labeled EcR, USP were generated in a coupled transcription-translation system, TNT (Promega), using CMX-EcR (T7) and CMX-uspK (T7) constructs as templates, respectively.

Example 17 Immunohistochemistry and Immunofluorescence

25

30

20

5

10

15

Antibodies against SMRTER were raised in rabbits immunized with bacterially expressed glutathione S-transferase fusion proteins corresponding to the region (amino acids 2477-2648 of SEQ ID NO:1) of SMRTER. Specific antibodies were purified by affinity chromatography through antigen-linked columns and used at 1:200 dilution for tissue staining. Tissues for whole-mount staining were dissected at the wandering third instar stage of the Canton-S strain larvae and fixed (4%

10

20

25

30

formaldehyde in 1? PBS, 50 mM EGTA) for at least 30 min. Preincubation, secondary antibodies, washes, and peroxidase reactions are described in the protocol of the Elite ABC (Rabbit IgG) kit (Vector). For the pilot experiments, partially purified IgG from preimmunization serum was used. For polytene chromosome staining, salivary glands were dissected according to the method described in Zink et al., *EMBO J.*, **10**:153-162, (1991).

Chromosome spreads were costained with affinity-purified anti-SMRTER (1:100) polyclonal antibody and with anti-USP monoclonal antibody (ABIII/AD5; gift of F. Kafatos, 1:100 dilution). SMRTER was detected with Texas red-conjugated donkey anti-rabbit secondary antibody (1:100 dilution), and USP was detected with FITC-conjugated donkey anti-mouse secondary antibody (1:100 dilution) (Jackson ImmunoResearch Labs).

15 <u>Example 18</u> ER Interacts Genetically with DSinA

In keeping with the evidence that dSin3A is a component in EcR regulatory pathway, an experiment was conducted to examine whether dSin3A interacts genetically with EcR using several previously characterized Drosophila EcR and dSin3A mutants (Bender et al., (1997), *supra*; Neufeld et al., (1998), *supra*). In the experiment, in which female dSin3AK07401 were crossed with male EcRE261st using techniques known in the art (see Table 1 below), only approximately 14% of the scored EcRE261st/dSin3AK07401 progenies survived, a percent that is significantly lower than the expected 33.3%. This suggests that a large portion of the EcRE261st/dSin3AK07401 flies either die prior to eclosion or fail to eclose. Additionally, surviving EcRE261st/dSin3AK07401 escapers showed delayed development and wing defects, in which wings are held horizontally at 45°-90° angle from the body axis. These results suggest that dSin3A shares an overlapping regulatory pathway with EcR.

In a reverse genetic cross, in which female EcRE261st were crossed with male dSin3AK07401, none of the EcRE261st/dSin3AK07401 flies survived to adulthood. These results suggest that EcRE261st/dSin3AK07401 results in a genetically sensitized background. When the maternally deposited EcR in embryos descended from female EcRE261st/SM6b was cut in half, the lethality for EcRE261st/dSin3AK07401 was further increased. These results reveal that, in addition to its previously known zygotic function, EcR also contributes maternally to Drosophila development.

10 <u>Table 1</u>

Table 1. EcR Interacts Genetically with DSin3A		
		EcR ^{E261st} /DSin3A ^{KO7401}
Cross		Surviving Rate (%)
DSin3A ^{KO7401} /CyO	φ	
×		14 (n = 141)
EcR ^{261st} /SM6b	8	
EcR ^{261st} /SM6b	9	
×		0 (n = 144)
DSin3A ^{KO7401} /CyO	3	P261at va27/

A similar wing held-out phenotype is also observed in EcR^{E261st}/DSin3A^{xe374}, Df(2R)nap11/DSin3A^{KO7401}, and Df(2R)nap11/Dsin2A^{xe374}. EcR^{E261st} and Df(2R)nap11 are both described in Figure 6. Dsin2A^{KO7401} is an allele with a P element insertion within the 5' intron of Sin3A. DSin3A^{xe374} is an X ray-generated allele (Neufeld et al., (1998)). n=the number of surviving flies scored. Note that CyO/SM6b is lethal.

EcRA483T flies showed developmental abnormalities in wings and tergites.

A similar phenotype, although with a lower penetration rate, has been also observed in EcRA483T/Df(2R)20B and in EcRA483T/Df(2R)nap11. Df(2)20B and Df(2)nap11 are both deficiencies in which EcR is deleted (Bender et al., (1997), supra). Sequence alignment of EcR with the vertebrate TR, RAR, and v-erbA, an oncogenic TR variant, revealed that alanine 483 is located within a highly conserved 23-amino acid (aa) loop region connecting helices 3 and 4, termed the LBD signature

10

15

motif (Wurtz et al., *Nat. Struct. Biol.*, 3:206, (1996)) (see Figure 6C). Based on structural studies of vertebrate nuclear receptors (for review, see Moras and Gronemeyer, (1998), *supra*), this alanine residue appears to be on the exposed surface, consistent with it being a potential corepressor binding site for nuclear receptors.

These in vivo studies indicate that EcRA483T is a semilethal allele (Bender et al., (1997), *supra*). When EcRA483T is in trans with EcRE261st, an allele that removes both the DBD and LBD domains of EcR, animals are primarily lethal (>95%). The few surviving EcRA483T/EcRE261st flies, however, display significant delays in development, blistered wings, and defective tergites, indicating that EcR is involved in the development of these tissues. The ability of EcR to bind a vertebrate corepressor and the loss of this property in EcR A483T suggests that the defects observed in EcRA483T flies may result from the disruption of its interaction with an as yet unidentified Drosophila corepressor.

Example 19 Isolation of an EcR-Interacting Factor

The CMV promoter-driven expression vector including wild-type EcR or EcR A483T, was cotransfected with vp16-USP and Gal4-c-SMRT (amino acids 981 to C terminus) (Chen and Evans, (1995), *supra*) into CV-1 cells to examine its effect on the interaction of the invertebrate SMRTER with vertebrate corepressor. All cells were also cotransfected with a TK-luciferase reporter construct, pMH100-TK-Luc, containing four copies of the yeast Gal4-responsive element. EcR A483T corresponds to a single amino acid change (alanine→threonine) at the 483 site of EcR (Bender et al., (1997), *supra*). Although EcR readily interacted with SMRT in both mammalian and yeast cells (Figure 6B; Figure 7), repeated low-stringency hybridization screens failed to identify a Drosophila homolog of SMRT. No

20

Example 20

<u>Isolation and Characterization of an</u> EcR-Interacting Clone - Yeast Two-hybrid screen

To pursue the isolation of an EcR corepressor, a yeast two hybrid interaction screen was performed of a Drosophila embryonic cDNA library using pAS-EcR as bait. E52 was isolated as one of the complementary positive clones from a yeast two-hybrid screen with pAS-EcR as bait, as described in Example 12.

10 <u>Example 21</u>

Characterization of a Repression-Defective EcR Allele, EcRA483T

(A) CV-1 cells were transfected with wild-type EcR or EcR A483T, along with vp16-USP and a reporter, hsp27EcRE-TK-Luc, which contains six copies of the hsp27EcRE fused to the thymidine kinase (TK) promoter-luciferase reporter. In all experiments, cells were also cotransfected with CMV-lacZ, which is used to normalize the luciferase activity. The ability to dimerize with USP was reflected in reporter activity without treatment with hormone (open bar), and the ability to respond to hormone was reflected in reporter activity when cells were treated with 1 μM Muristerone A (closed bar). vp16-USP fusion contains the region of USP (amino acids 50-508) fused C-terminally to the vp16 domain. Muristerone A (MurA) is a potent ecdysone agonist (Christopherson et al., (1992), *supra*). In these tests EcR A483T was selectively defective in repression.

or EcR A483T was cotransfected with vp16-USP and Gal4-c-SMRT (amino acids 981 to C terminus) (Chen and Evans, (1995), *supra*) into CV-1 cells to examine its effect on the interaction with vertebrate corepressor. All cells were also cotransfected with a TK-luciferase reporter construct, pMH100-TK-Luc, containing four copies of the yeast Gal4-responsive element. EcR A483T corresponds to a single amino acid change (alanine threonine) at the 483 site of EcR (Bender et al., (1997), *supra*). The

10

15

20

results of this test show that EcR A483T disrupts the interaction with SMRT.

(C) Sequence alignment of EcR with the vertebrate TR, RAR, and verbA, an oncogenic TR variant, reveals that the alanine 483 of the EcRA4831T mutant is located within a highly conserved 23-amino acid (aa) loop region connecting helices 3 and 4, termed the LBD signature motif (Wurtz et al., (1996), supra) (Figure 6C). Based on structural studies of vertebrate nuclear receptors (for review, see Moras and Gronemeyer, (1998), supra), this alanine residue appears to be on the exposed surface, consistent with it being a potential corepressor binding site for nuclear receptors.

In vivo studies indicated that EcRA483T is a semilethal allele (Bender et al., (1997), *supra*). When EcRA483T is in trans with EcRE261st, an allele that removes both the DBD and LBD domains of EcR, animals are primarily lethal (>95%). The few surviving EcRA483T/EcRE261st flies, however, display significant delays in development, blistered wings, and defective tergites, indicating that EcR is involved in the development of these tissues. The ability of EcR to bind a vertebrate corepressor and the loss of this property in EcR A483T suggested to us that the defects observed in EcRA483T flies may result from the disruption of its interaction with an as yet unidentified Drosophila corepressor.

Example 22 Isolation of an EcR-Interacting Factor

Although EcR readily interacts with SMRT in both mammalian and yeast cells (Figure 6B; Figure 7), repeated low-stringency hybridization screens failed to identify a Drosophila homolog of SMRT. Given that no SMRT/N-CoR homolog is found in C. elegans, it was believed that either a SMRT/N-CoR-like corepressor is not conserved in invertebrates or, alternatively, invertebrate corepressors may diverge significantly from their vertebrate counterparts. To pursue the isolation of an EcR corepressor, a yeast interaction screen of a Drosophila embryonic cDNA library using

10

15

20

25

30

EcR as bait was conducted as described in Example 19. This screen resulted in the isolation of a clone, E52, whose protein product interacts with EcR as well as with the vertebrate RAR and TR, but notably not with USP (Figure 7). Unlike the interaction between E52 and RAR, which can be dissociated by all-trans retinoic acid, the interaction between E52 and EcR, or the interaction between SMRT and EcR, is not dissociated by Muristerone A (MurA). This result suggests that other factors essential for the dissociation of E52 from EcR, such as USP, are missing in yeast (see below).

Example 23

Isolation and Characterization of an EcR-Interacting Clone

E52 was isolated as one of the complementary positive clones from a yeast two-hybrid screen. Isolation of overlapping cDNA and genomic clones led to the identification of a full-length sequence encoding a large protein of 3446 amino acids (Figure 8A). This protein contains several unusually long stretches of Gln, Ala, Gly, and Ser repeats. Comparative analysis reveals it to be a novel protein with limited regions of clear homology with the vertebrate nuclear receptor corepressors SMRT and N-CoR (Chen and Evans, (1995), *supra*; Hörlein et al., (1995), *supra*; Ordentlich et al., (1999), *supra*; Park et al., (1999), *supra*). This protein SMRTER, SMRT-related ecdysone receptor-interacting factor, was shown by Northern blot analysis to encode large transcripts (>12 kb) expressed broadly throughout the embryonic stage and three larvae stages, as well as in adult Drosophila flies.

Example 24

Molecular and Biochemical Analysis for ERID1 and ERID2

Interaction with the EcR complex was evaluated based on transient transfection with the Gal4-SMRTER fusion genes. USP, EcR-vp16 (VP16 transactivating domain was fused C-terminally to the end of the EcRB1 isoform), and the reporter, pMH100-TK-Luc.

10

15

20

25

In vitro pull down assays (Example 12) were conducted to determine whether EcR interacts with ERID1 and ERID2. In vitro translated 35S-methionine-labeled EcRB1 alone, or a mixture of 35S-methionine-labeled EcRB1 and unlabeled USP, or 35S-methionine-labeled USP alone, were incubated with GST, GST-ERID1 (amino acids 1698-2063 of SEQ ID NO:1), or GST-ERID2 (amino acids of SEQ ID NO:1). GST-ERID1 and GST-ERID2, but not GST alone, pull down labeled EcR, whereas little interaction is found between USP and any of the three GST proteins. In addition, the pull-down complex was disrupted by the addition of 3μM MurA when USP is present. These in vitro results establish that SMRTER and EcR may interact directly.

Further in vitro tests were conducted to determine ERID1, ERID2, and c-SMRT compete with each other to bind EcR. Gal4-ERID1 (amino acids 1698-2063 of SEQ ID NO:1) or Gal4-ERID2 (amino acids 2929-3181 of SEQ ID NO:1), along with EcR-vp16 and USP, were transfected in CV-1 cells as described above. In this competition experiment, additional ERID1, ERID2, and c-SMRT (Chen et al., (1996), supra) were cotransfected into cells. ERID1 (1698-2063) and ERID2 ((amino acids 2929-3038 of SEQ ID NO:1) were tagged with the nuclear targeting signal (MAPKKKRKV) (SEQ ID NO:3) to ensure that these proteins were localized in nuclei. As shown in Figure 11C, interaction between each Gal4-ERID fusion and EcR-vp16:USP was significantly decreased by both ERIDs and by c-SMRT. Interestingly, a more prominent effect was observed in experiments when Gal4-ERID1 (amino acids 1698-2063 of SEQ ID NO:1) was challenged by ERID2, and, conversely, a more efficient competition was achieved by ERID1 to Gal4-ERID2 (amino acids 2094-3181 of SEQ ID NO:1). Together, these results suggest that ERID1, ERID2, and c-SMRT may bind similar or overlapping surface(s) in EcR.

Example 25 SMRTER Colocalizes with the EcR on Polytene Chromosomes

SMRTER antibodies were prepared as described in Example 12 to examine its cytological and chromosomal localization patterns of SMRTER.

Consistent with its action as a corepressor of EcR, SMRTER was localized to nuclei of salivary glands and of fat bodies, as well as to nuclei of eye, wing, and leg imaginal discs isolated from the third instar larvae.

10

15

20

25

30

5

Next association of SMRTER with the EcR:USP complex on chromosomes was examined. The USP staining pattern was used as an index for EcRs presence on chromosomes. Since USP and EcR colocalized with each other on polytene chromosomes (Yao et al., (1993), *supra*), chromosomal spreads prepared from the salivary glands of wandering third instar larvae (prior to pupariation) were subjected to simultaneous immunological staining with antibodies against SMRTER and USP. SMRTER was detected with antibody conjugated with Texas red, USP with FITC.

To visualize the band, interband, and puffing patterns of the polytene chromosomes, the chromosomes were counterstained with DAPI to show the banding regions while leaving the interbands and puffs unstained or lightly stained. Indirect immunofluorescence staining revealed that SMRTER is a chromosome-bound protein and colocalizes with USP (FITC) at a majority of chromosomal sites; whereas in a pilot experiment, no such staining patterns were detected using the preimmunization serum. The strongest SMRTER staining was primarily associated with the boundary between band and interband regions as well as within the interband regions of chromosomes counterstained with DAPI. This result confirms that, as an EcR-associating factor, SMRTER is recruited by the EcR:USP heterodimers to their specific target chromosomal loci.

SMRTER staining can still be detected in puffed regions, such as the 2B puff. Since the polytene chromosomes consist of a parallel arrangement of several hundred to two thousand copies of the euchromatic portions of the chromosomes, an individual binding protein like SMRTER may be cycling on and off, resulting in a steady state of signals detected in the broader chromatin regions. Whether or not SMRTER levels actually change prior to or after the peak of ecdysone pulses remains to be established.

While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.

10

That which is claimed is:

- 1. An isolated polynucleotide encoding a member of a family of silencing mediators of retinoic acid receptor and thyroid hormone receptor, or an isoform or peptide portion thereof (SMRT co-repressor), or an isolated polynucleotide complementary thereto.
- 2. The polynucleotide of claim 1, which modulates transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor).
- 3. The polynucleotide of claim 2, wherein the SMRT co-repressor comprises a repression domain having
 - a) less than about 83% identity with a Sin3A interaction domain of N-CoR set forth as amino acids 255 to 312 of SEQ ID NO: 11;
 - b) less than about 57% identity with repression domain 1 of N-CoR set forth as amino acids 1 to 312 of SEQ ID NO: 11;
 - c) less than about 66% identity with a SANT domain of N-CoR set forth as amino acids 312 to 668 of SEQ ID NO: 11; or
 - d) less than about 30% identity with repression domain 2 of N-CoR set forth as amino acids 736 to 1031 of SEQ ID NO: 11, and polynucleotides that hybridize thereto under stringent conditions.
- 4. The polynucleotide of claim 1, wherein the SMRT co-repressor is a human SMRT co-repressor having an amino acid sequence as set forth in SEQ ID NO: 5 or conservative variations thereof.
- 5. A polynucleotide which hybridizes under stringent conditions with a polynucleotide according to claim 2.

- 6. A polynucleotide that has at least 80% sequence identity with a polynucleotide according to claim 2.
- 7. The polynucleotide of claim 4, which has a nucleotide sequence as set forth in SEQ ID NO: 4, and conservative variations thereof.
- 8. The polynucleotide of claim 1, wherein the SMRT co-repressor is a mouse SMRT α isoform.
- 9. The polynucleotide of claim 6, having an amino acid sequence as set forth in SEQ ID NO: 7 or conservative variations thereof.
- 10. The polynucleotide of claim 4, which has a nucleotide sequence as set forth in SEQ ID NO: 6.
- 11. The polynucleotide of claim 1, wherein the SMRT co-repressor is a mouse SMRT β isoform.
- 12. The polynucleotide of claim 11, having an amino acid sequence as set forth in SEQ ID NO: 9 or conservative variations thereof.
- 13. The polynucleotide of claim 11, which has a nucleotide sequence as set forth in SEQ ID NO: 8.

14. The polynucleotide of claim 1, comprising a nucleotide sequence selected from the group consisting of:

nucleotides 1 to 3094 of SEQ ID NO: 4; nucleotides 1 to 3718 of SEQ ID NO: 6; and nucleotides 1 to 2801 of SEQ ID NO: 8.

15. A polynucleotide that under stringent conditions with a polynucleotide according to claim 14, provided that the polynucleotide does not contain a sequence identical to SEQ ID NO: 11.

- 16. A polynucleotide that has at least 80% sequence identity with a polynucleotide according to claim 14, provided that the polynucleotide does not contain a sequence identical to SEQ ID NO: 11.
- 17. A polynucleotide of claim 1, comprising a nucleotide sequence selected from the group consisting of:

nucleotides 1 to 8388 of SEQ ID NO: 6; and nucleotides 1 to 7465 of SEQ ID NO: 8.

- 18. The polynucleotide of claim 1, comprising nucleotides 1 to 8561 of SEQ ID NO: 4.
- 19. The polynucleotide of claim 1, which is operably linked to a second nucleotide sequence.

- 20. The polynucleotide of claim 19, which encodes a fusion polypeptide comprising the SMRT co-repressor operably linked to a DNA binding domain of a transcription factor.
 - 21. A vector comprising the polynucleotide of claim 1.
 - 22. A host cell containing the polynucleotide of claim 1.
- 23. An isolated oligonucleotide, comprising at least 15 nucleotides that can hybridize specifically to the polynucleotide of claim 1, but not to a polynucleotide encoding SEQ ID NO: 11 or to a polynucleotide encoding an amino acid sequence consisting of amino acids 1031 to 2517 of SEQ ID NO: 5.
- 24. The oligonucleotide of claim 23, wherein the polynucleotide encodes at least five contiguous amino acids of a sequence selected from the group consisting of:

amino acids 720 to 745 of SEQ ID NO: 5; amino acids 716 to 742 of SEQ ID NO: 7; and amino acids 497 to 523 of SEQ ID NO: 9.

25. The oligonucleotide of claim 23, which can hybridize specifically to a polynucleotide encoding SEQ ID NO: 5 or SEQ ID NO: 7, but not to a polynucleotide encoding SEQ ID NO: 9.

hormone receptor, or isoform or peptide portion thereof (SMRT co-repressor),

26. An isolated silencing mediator of retinoic acid and thyroid

	wherein the co-repressor modulates transcriptional potential of a member of the
	nuclear receptor superfamily (nuclear receptor).
5	
	27. An isolated co-repressor comprising a repression domain having
	a) less than about 83% identity with a Sin3A interaction
	domain of N-CoR set forth as amino acids 255 to 312 of SEQ ID NO: 11;
	b) less than about 57% identity with repression domain 1 of
10	N-CoR set forth as amino acids 1 to 312 of SEQ ID NO: 11;
	c) less than about 66% identity with a SANT domain of
	N-CoR set forth as amino acids 312 to 668 of SEQ ID NO: 11; or
	d) less than about 30% identity with repression domain 2 of
	N-CoR set forth as amino acids 736 to 1031 of SEQ ID NO: 11.
15	
	28. An isolated peptide, comprising at least six contiguous amino
	acids of an amino acid sequence selected from the group consisting of:
	amino acids 1 to 1030 of SEQ ID NO: 5;
	amino acids 1 to 1029 of SEQ ID NO: 7;
20	amino acids 1 to 809 of SEQ ID NO: 9;
	and conservative variations thereof,
	provided the peptide is not identical to a sequence of SEQ ID NO: 11.
	29. An isolated antibody that binds specifically to the peptide of claim
	28.

30. A cell line, which produces the antibody of claim 29.

26 and at least a second molecule.

31. A chimeric molecule, comprising the SMRT co-repressor of claim

10

15

20

25

- 32. A complex, comprising a SMRT co-repressor of claim 26 and a member of the nuclear receptor superfamily (nuclear receptor).
- 33. The complex of claim 32, wherein the nuclear receptor is in the form of a dimer.
- 34. A method for identifying an agent that modulates the repressor potential of a SMRT co-repressor, the method comprising:
 - a) contacting a host cell with an agent,
 wherein the host cell contains a first expressible nucleotide
 sequence operably linked to a first DNA regulatory element, and
 expresses a fusion polypeptide comprising a SMRT corepressor of claim 26, and a DNA binding domain of a first transcription
 factor, which can specifically bind the first DNA regulatory element,

and wherein binding of the DNA binding domain of the first transcription factor to the first DNA regulatory element results in expression of the first expressible nucleotide sequence; and

- b) detecting a change in the level of expression of the first expressible nucleotide sequence due to contacting the host cell with the agent, thereby identifying an agent that modulates the repressor potential of a SMRT co-repressor.
- 35. A method for identifying an agent that modulates a function of a SMRT co-repressor, the method comprising:
 - a) contacting a SMRT co-repressor of claim 26, a member of the nuclear receptor superfamily (nuclear receptor), and

an agent; and

b) detecting an altered activity of the SMRT co-repressor in the presence of the agent as compared to the absence of the agent, thereby identifying an agent that modulates a function of the SMRT co-repressor.

- 36. A method of modulating the transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor) in a cell, the method comprising introducing a polynucleotide of claim 1 into the cell, whereby the polynucleotide or an expression product of the polynucleotide alters the level of a SMRT co-repressor in the cell, thereby modulating the transcriptional potential of the nuclear receptor.
- 37. A method of identifying a molecule that interacts specifically with a SMRT co-repressor, the method comprising:
- a) contacting the molecule with the SMRT co-repressor of claim 26; and
 - b) detecting specific binding of the molecule to the SMRT corepressor, thereby identifying a molecule that interacts specifically with a SMRT co-repressor.

ABSTRACT OF THE INVENTION

The present invention relates to isolated polynucleotides encoding a family of silencing mediators of retinoic acid and thyroid hormone receptor (SMRT) isoforms, including vertebrate and invertebrate isoforms thereof. For example, a full length human SMRT co-repressor, two isoforms of a mouse SMRT-- a longer form, mouse SMRT α , and a shorter form, mouse SMRT β , and an isoform of an insect (Drosophilia), SMRTER -- as well as peptide portions of the SMRT co-repressors that can modulate transcriptional potential of a member of the nuclear receptor superfamily (nuclear receptor); to oligonucleotides that can hybridize specifically to such a polynucleotide; to vectors and to host cells containing such polynucleotides. The invention also relates to polypeptide SMRT co-repressors encoded by such invention SMRT polynucleotides, and to peptide portions thereof that can modulate transcriptional potential of a nuclear receptor; including peptide portions of a SMRT co-repressor that are not present in an N-CoR polypeptide. In addition, the invention relates to chimeric molecules and to complexes containing a SMRT co-repressor or peptide portion thereof, to antibodies that specifically bind such compositions, and to methods for identifying an agent that modulates the repressor potential of a SMRT corepressor. The invention also provides methods for identifying an agent that modulates a function of a SMRT co-repressor; for modulating the transcriptional potential of a nuclear receptor in a cell using the compositions of the invention; and for identifying a molecule that interacts specifically with a SMRT co-repressor.

FIGURE 1

1	MEAWDAHPDKEAFAAEAQKLPGDPPCWTSGLPFPVPPREVIKASPHAPDP
51	SAFSYABBGHBLBLGLHDTARÐVLÐRÐÐTISNÐÐÐLISSAKHÐSVLERQI
101	GAISQGMSVQLHVØYSEHAKAØVØØVTMGLØLØMDØKKLAØFSGVKQEQL
151	SPRGQAGPPESLGVPTAQEASVLRGTALGSVPGGSITKGIPSTRVPSDSA
201	ITYRGSITHGTPADVLYKGTITRIIGEDSPSRLDRGREDSLPKGHVIYEG
251	KKGHVLSYEGGMSVTQCSKEDGRSSSGPPHETAAPKRTYDMMEGRVGRAI
301	SSASIEGLMGRAIPPERHSPHHLKEQHHIRGSITQGIPRSYVEAQEDYLR
351	REAKLLKREGTPPPPPPSRDLTEAYKTQALGPLKLKPAHEGLVATVKEAG
401	RSIHEIPREELRHTPELPLAPRPLKEGSITQGTPLKYDTGASTTGSKKHD
451	VRSLIGSPGRTFPPVHPLDVMADARALERACYEESLKSRPGTASSSGGSI
501	ARGAPVIVPELGKPRQSPLTYEDHGAPFAGHLPRGSPVTMREPTPRLQEG
551	SLSSSKASQDRKLTSTPREIAKSPHSTVPEHHPHPISPYEHLLRGVSGVD
601	LYRSHIPLAFDPTSIPRGIPLDAAAAYYLPRHLAPNPTYPHLYPPYLIRG
651	YPDTAALENRQTIINDYITSQQMHHNTATAMAQRADMLRGLSPRESSLAL
701	NYAAGPRGIIDLSQVPHLPVLVPPTPGTPATAMDRLAYLPTAPQPFSSRH
751	SSSPLSPGGPTHLTKPTTTSSS <u>ERERDRDRERDRDREREK</u> SILTSTTTVE
801	HAPIWRPGTEQ <u>SSGSSGSSGGGGSSS</u> RPASHSHAHQHSPISPRTQDALQ
851	QRPSVLHNTGMKGIITAVEPSKPTVLRSTSTSSPVRPAATFPPATHCPLG
901	GTLDGVYPTLMEPVLLPKEAPRVARPERPRADTGHAFLAKPPARSGLEPA
951	SSPSKGSEPRPLVPPVSGHATIARTPAKNLAPHHASPDPPAPPASASDPH
1001	REKTQSKPFSIQELELRSLGYHGSSYSPEGVEPVSPVSSPSLTHDKGLPK
1051	HLEELDKSHLEGELRPKQPGPVKLGGEAAHLPHLRPLPES@PSSSPLL@T
1101	APGVKGHQRVVTLAQHISEVITQDYTRHHFQQLSAPLPAPLYSFPGASCP
1151	VLDLRRPPSDLYLPPPDHGAPARGSPHSEGGKRSPEPNKTSVLGGGEDGI
1201	EPVSPPEGMTEPGHSRSAVYPLLYRDGEQTEPSRMGSKSPGNTSQPPAFF
1251	SKITESNSAMVKSKKQEINKKLNTHNRNEPEYNISQPGTEIFNMPAITGT
1301	GLMTYRSQAVQEHASTNMGLEAIIRKALMGKYDQW.EESPPLSANAFNPL
	`
1350	NASASLPAAMPITAADGRSDHTLTSP.GGGGKAKVSGRPSSRKAKSPAPG
1399	LASGDRPPSVSSVHSEGDCNRRTPLTNRVWEDRPSSAGSTPFPYNPLI
	MRI.OAG/MASPPPPG[]PAGSGP[]AGPHHAWDEEPKPL[]CSQYET[]
1 4 4 7	- MRICOGGMMASPPPPGGPAGSGMG. AGPMMAWULLERRELLCSVILIU

FIGURE 3

	resofandarmeascheologiceshintte. Erdenstanteren soleresteren erskateren soleres erskate erren er Resofandarmen bestadiskreigingsteringssen met bestadiskreigten for er	ter analyzariserahariahan alimerakan engensyeris-seri -labahar literokaterinteriteri Ta manturkan elekatorokan balan ara emartara barbahar barbahar elekatikat elekatik elekatikan bat	ኮ ঘ্রক্তা ক্ষরিক
01 01	eterpteliptikgulaurukurlangkeristerkonerprofilipkoneliparakuraukurlangu.	194 ettermineret(a.)rid (reglan) fartehellenfelreretentourfunkstnigerieg ich 193 elemminermert(a.)rid (reglanerete) her britzherereentourfunkstnigeriegelich	n 53487 to 53487
n Ot	$ \begin{array}{l} RESEMBLEDABLEDBERGEDIANES SERVER INTERCEDEN NAMERICAN NEUR PROPERTY (TALLES PARCHES AND THE SERVER TO THE SERVER SERVER TO THE SERVER SERVE$	ance des juntes ma archapara de el centra presenta al concentra al consentation de la consentation de concentra de la concentra de la consentation de concentra de concentra de la consentation de concentra de conce	1 1227 20 207
O£ OÈ	ftogerennenferferranderfettegreigerigen en greienbarenenten integeren gant en kommen er en en en en en en en e Righerenbenenterferranderfettegreigen en greienbaren en e	iski (kreit-tehnspentreg) sydspeliplende illet pei felflama. Murcafetnelipet behedal 152 (kreit-tehnspentreg) endelende illenderlandet bele basaltigelisitskeder betedal	7~5950° 7~5950°
ÇE ÇE	doctrophentation and annual sequences of the control and the control of the cont	old selected successive description of the control experience of the control of t	2018/817 2018/817
81 81	0000000 - Arge critic descriptions state the second se	176 Outschiftsterenen en enchaften der en	
φį 4?	patragen errenden satur karten marten koratok kalandar oratok oratok oratok oratok karten karten karten karten Arten errenden satur eta errenden karten koratok oratok errenden errenden errenden karten karten karten karten	Politika eri ilikika ettetahan politika erikultuluka pikika pikito. Antiparatuk erik Politik	, 34. ***
32 34	attellagiten 1996 - Fliel Bretibly Chalderlei eldertibrozis-by Celoli kaleyazistenderenezi Vecimirka esti 1996/balleityn - Gidrarhaforsto meradichervestrelerenezistenekalereneziste	alch stratterleterterleterterleter eterterer zurer deutsche eterterterter beschendere deutsche deutsch	n-sept
	erationistati-erationalizatedaapo mendeletaabe saatoraet mastipeaeda-directaeralia. Linevietaediabet-erationistellikeresel-erateresel-erateresel-erateresa describionalizater erationalia.	odderskihaliariyater sinaltwarterjood oo deelastika oo	5-15PT
93 93	PARTHER THAN THAN THAN THE PRODUCT OF THE PRODUCT OF THE PRODUCT OF THE PRODUCT OF THE PARTHER O	n a normalification de la company de la composite de la compositatio de la compositation della compositation della compositation de la compositation della compositation	15-2545~
	negrici de de l'estre en l'electre en l'estre de l'estre de l'estre de l'estre de l'estre de l'estre de l'estr De l'estre de l'estre en l'electre de l'estre de l'estre de l'estre de l'estre de l'estre de l'estre de l'estr	aceurche sedecatribe de la leur de servente de la leur de leur de le leur de leur de leur de le le leur de leur de le leur de leur de le leur de le leur de le leur de leur de leur de le leur de leur d	# 4997 # 4997
	noliteralph - Infill Serving incres and a statemental material and a statement in the contract of the contract	19). Caram temperaturk dialakterserilikarikerasikan da seleket belicestelak kenderik kari (ki 19). Karam temperatur kenduluk belikerilikan da seleketak belicestelak kenderi temperatur.	
	idetaleranemanemosi telpemardanemanolistoa-lutlitelereterimetelikentadehalisto)	The section of the se	nosser nosser

FIGURE 4

FIGURE 5

LBD-signature Motif

FIGURE 7

DECLARATION FOR PATENT APPLICATION

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship is as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **A FAMILY OF TRANSCRIPTIONAL CO-REPRESSORS THAT INTERACT WITH NUCLEAR HORMONE RECEPTORS AND USES THEREFOR**, which is a C-I-P of 08/522,726, filed on September 1, 1995, the specification of which

X	is attached hereto. (SALK1510-3)	
<u>X</u>	was filed on March 10, 2000, as U.S. Application Serial No.	
	, and was amended on,	if
applic	able (the "Application").	

I hereby authorize and request insertion of the application serial number of the Application when officially known.

I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability of the subject matter of the Application as defined in Title 37, Code of Federal Regulations ("C.F.R."), § 1.56.

With respect to the Application, I hereby claim the benefit under 35 U.S.C. Section 119(e) of any United States provisional application(s) listed below:

(Application Serial No.)	(Filing Date)
(Application Serial No.)	(Filing Date)
(Application Serial No.)	(Filing Date)

With respect to the Application, I hereby claim the benefit under 35 U.S.C. Section 120 of any United States application(s), or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of the application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability of the subject matter of the Application as defined in Title 37, C.F.R., Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of the Application:

08/522,726 (Application Serial No.)		
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of first inventor: Ronald M. Evans
Inventor's signature:
Date:
Residence: <u>La Jolla, California</u>
Citizenship: USA
Post Office Address: 1471 Cottontail Lane La Jolla, California 92037
Full name of second inventor:
Inventor's signature:
Date:
Residence: San Diego, California
Citizenship: Taiwan
Post Office Address: 7548 Charmant Drive, #1416 San Diego, California 92126
Full name of third inventor: Peter Ordentlich
Inventor's signature:
Date:
Residence:
Citizenship:
Post Office Address:

SNOR motif COURTE: 513 ALCORA 117 ALCO

FIGURE 9

LSD motif

SHOTER: 3430 DS SPLUL MIX V SA DS D - SD SHOTE 2501 P POPL C S OF SELS D SE K-Cor: 2436 DS A DL S A DY STEELS D SEDIO

FIGURE 10

FIGURE 11

12 C.

SEQUENCE LISTING

<110> Evans, Ronald M. Chen, J. Don

<120> A FAMILY OF TRANSCRIPTIONAL CO-REPRESSORS THAT INTERACT WITH NUCLEAR HORMONE RECEPTORS AND USES THEREFOR

<130> SALK1510-3

<150> 09/337,384

<151> 1999-06-21

<150> 08/522,726

<151> 1995-09-01

<160> 11

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1495

<212> PRT

<213> Homo sapiens

<400> 1

Met Glu Ala Trp Asp Ala His Pro Asp Lys Glu Ala Phe Ala Ala Glu 1 5 10 15

Ala Gln Lys Leu Pro Gly Asp Pro Pro Cys Trp Thr Ser Gly Leu Pro
20 25 30

Phe Pro Val Pro Pro Arg Glu Val Ile Lys Ala Ser Pro His Ala Pro 35 40 45

Asp Pro Ser Ala Phe Ser Tyr Ala Pro Pro Gly His Pro Leu Pro Leu 50 55 60

Gly Leu His Asp Thr Ala Arg Pro Val Leu Pro Arg Pro Pro Thr Ile 65 70 75 80

Ser Asn Pro Pro Pro Leu Ile Ser Ser Ala Lys His Pro Ser Val Leu 85 90 95

Glu Arg Gln Ile Gly Ala Ile Ser Gln Gly Met Ser Val Gln Leu His

100 105 110

Val Pro Tyr Ser Glu His Ala Lys Ala Pro Val Gly Pro Val Thr Met
115 120 125

Gly Leu Pro Leu Pro Met Asp Pro Lys Lys Leu Ala Pro Phe Ser Gly
130 135 140

Val Lys Gln Glu Gln Leu Ser Pro Arg Gly Gln Ala Gly Pro Pro Glu

145 150 155 160 Ser Leu Gly Val Pro Thr Ala Gln Glu Ala Ser Val Leu Arg Gly Thr

165 170 175 Ala Leu Gly Ser Val Pro Gly Gly Ser Ile Thr Lys Gly Ile Pro Ser

180 185 190
Thr Arg Val Pro Ser Asp Ser Ala Ile Thr Tyr Arg Gly Ser Ile Thr

195 200 205 His Gly Thr Pro Ala Asp Val Leu Tyr Lys Gly Thr Ile Thr Arg Ile

His Gly Thr Pro Ala Asp Val Leu Tyr Lys Gly Thr Ile Thr Arg Ile
210 220

Ile Gly Glu Asp Ser Pro Ser Arg Leu Asp Arg Gly Arg Glu Asp Ser 225 230 235 240

Leu Pro Lys Gly His Val Ile Tyr Glu Gly Lys Lys Gly His Val Leu 245 250 255 Ser Tyr Glu Gly Gly Met Ser Val Thr Gln Cys Ser Lys Glu Asp Gly 265 Arg Ser Ser Ser Gly Pro Pro His Glu Thr Ala Ala Pro Lys Arg Thr 280 Tyr Asp Met Met Glu Gly Arg Val Gly Arg Ala Ile Ser Ser Ala Ser 295 Ile Glu Gly Leu Met Gly Arg Ala Ile Pro Pro Glu Arg His Ser Pro 310 315 His His Leu Lys Glu Gln His His Ile Arg Gly Ser Ile Thr Gln Gly 330 Ile Pro Arg Ser Tyr Val Glu Ala Gln Glu Asp Tyr Leu Arg Arg Glu 345 Ala Lys Leu Leu Lys Arg Glu Gly Thr Pro Pro Pro Pro Pro Pro Ser 360 Arg Asp Leu Thr Glu Ala Tyr Lys Thr Gln Ala Leu Gly Pro Leu Lys 380 375 Leu Lys Pro Ala His Glu Gly Leu Val Ala Thr Val Lys Glu Ala Gly 390 395 Arq Ser Ile His Glu Ile Pro Arg Glu Glu Leu Arg His Thr Pro Glu 410 Leu Pro Leu Ala Pro Arg Pro Leu Lys Glu Gly Ser Ile Thr Gln Gly 425 Thr Pro Leu Lys Tyr Asp Thr Gly Ala Ser Thr Thr Gly Ser Lys 440 His Asp Val Arg Ser Leu Ile Gly Ser Pro Gly Arg Thr Phe Pro Pro 455 Val His Pro Leu Asp Val Met Ala Asp Ala Arg Ala Leu Glu Arg Ala 470 475 Cys Tyr Glu Glu Ser Leu Lys Ser Arg Pro Gly Thr Ala Ser Ser Ser 490 485 Gly Gly Ser Ile Ala Arg Gly Ala Pro Val Ile Val Pro Glu Leu Gly 505 500 Lys Pro Arg Gln Ser Pro Leu Thr Tyr Glu Asp His Gly Ala Pro Phe 520 Ala Gly His Leu Pro Arg Gly Ser Pro Val Thr Met Arg Glu Pro Thr 535 Pro Arg Leu Gln Glu Gly Ser Leu Ser Ser Lys Ala Ser Gln Asp 550 555 Arg Lys Leu Thr Ser Thr Pro Arg Glu Ile Ala Lys Ser Pro His Ser 570 565 Thr Val Pro Glu His His Pro His Pro Ile Ser Pro Tyr Glu His Leu 585 580 Leu Arg Gly Val Ser Gly Val Asp Leu Tyr Arg Ser His Ile Pro Leu 600 Ala Phe Asp Pro Thr Ser Ile Pro Arg Gly Ile Pro Leu Asp Ala Ala 615 620 Ala Ala Tyr Tyr Leu Pro Arg His Leu Ala Pro Asn Pro Thr Tyr Pro 630 635 His Leu Tyr Pro Pro Tyr Leu Ile Arg Gly Tyr Pro Asp Thr Ala Ala 645 650 Leu Glu Asn Arg Gln Thr Ile Ile Asn Asp Tyr Ile Thr Ser Gln Gln 665 Met His His Asn Thr Ala Thr Ala Met Ala Gln Arg Ala Asp Met Leu 680 685 Arg Gly Leu Ser Pro Arg Glu Ser Ser Leu Ala Leu Asn Tyr Ala Ala 695 700 Gly Pro Arg Gly Ile Ile Asp Leu Ser Gln Val Pro His Leu Pro Val 715 710 Leu Val Pro Pro Thr Pro Gly Thr Pro Ala Thr Ala Met Asp Arg Leu 725 730

Ala Tyr Leu Pro Thr Ala Pro Gln Pro Phe Ser Ser Arg His Ser Ser 740 745 Ser Pro Leu Ser Pro Gly Gly Pro Thr His Leu Thr Lys Pro Thr Thr 760 Thr Ser Ser Ser Glu Arg Glu Arg Asp Arg Asp Arg Glu Arg Asp Arg 775 780 Asp Arg Glu Arg Glu Lys Ser Ile Leu Thr Ser Thr Thr Thr Val Glu 795 His Ala Pro Ile Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly Ser Ser 810 Gly Ser Ser Gly Gly Gly Gly Ser Ser Ser Arg Pro Ala Ser His 820 825 Ser His Ala His Gln His Ser Pro Ile Ser Pro Arg Thr Gln Asp Ala 840 Leu Gln Gln Arg Pro Ser Val Leu His Asn Thr Gly Met Lys Gly Ile 855 860 Ile Thr Ala Val Glu Pro Ser Lys Pro Thr Val Leu Arg Ser Thr Ser 875 870 Thr Ser Ser Pro Val Arg Pro Ala Ala Thr Phe Pro Pro Ala Thr His 885 890 Cys Pro Leu Gly Gly Thr Leu Asp Gly Val Tyr Pro Thr Leu Met Glu 905 900 Pro Val Leu Leu Pro Lys Glu Ala Pro Arg Val Ala Arg Pro Glu Arg 920 925 Pro Arg Ala Asp Thr Gly His Ala Phe Leu Ala Lys Pro Pro Ala Arg 935 940 Ser Gly Leu Glu Pro Ala Ser Ser Pro Ser Lys Gly Ser Glu Pro Arg 950 955 Pro Leu Val Pro Pro Val Ser Gly His Ala Thr Ile Ala Arg Thr Pro 970 Ala Lys Asn Leu Ala Pro His His Ala Ser Pro Asp Pro Pro Ala Pro 985 Pro Ala Ser Ala Ser Asp Pro His Arg Glu Lys Thr Gln Ser Lys Pro 1000 Phe Ser Ile Gln Glu Leu Glu Leu Arg Ser Leu Gly Tyr His Gly Ser 1015 1020 Ser Tyr Ser Pro Glu Gly Val Glu Pro Val Ser Pro Val Ser Ser Pro 1030 1035 Ser Leu Thr His Asp Lys Gly Leu Pro Lys His Leu Glu Glu Leu Asp 1045 1050 Lys Ser His Leu Glu Gly Glu Leu Arg Pro Lys Gln Pro Gly Pro Val 1060 1065 Lys Leu Gly Gly Glu Ala Ala His Leu Pro His Leu Arg Pro Leu Pro 1080 1075 Glu Ser Gln Pro Ser Ser Pro Leu Leu Gln Thr Ala Pro Gly Val 1095 1100 Lys Gly His Gln Arg Val Val Thr Leu Ala Gln His Ile Ser Glu Val 1110 1115 Ile Thr Gln Asp Tyr Thr Arg His His Pro Gln Gln Leu Ser Ala Pro 1130 1125 Leu Pro Ala Pro Leu Tyr Ser Phe Pro Gly Ala Ser Cys Pro Val Leu 1145 1150 1140 Asp Leu Arg Arg Pro Pro Ser Asp Leu Tyr Leu Pro Pro Pro Asp His 1155 1160 1165 Gly Ala Pro Ala Arg Gly Ser Pro His Ser Glu Gly Gly Lys Arg Ser 1175 1180 Pro Glu Pro Asn Lys Thr Ser Val Leu Gly Gly Glu Asp Gly Ile 1195 1185 1190 Glu Pro Val Ser Pro Pro Glu Gly Met Thr Glu Pro Gly His Ser Arg 1205 1210

```
Ser Ala Val Tyr Pro Leu Leu Tyr Arg Asp Gly Glu Gln Thr Glu Pro
          1220
                           1225
Ser Arg Met Gly Ser Lys Ser Pro Gly Asn Thr Ser Gln Pro Pro Ala
                       1240
Phe Phe Ser Lys Leu Thr Glu Ser Asn Ser Ala Met Val Lys Ser Lys
                    1255
                                     1260
Lys Gln Glu Ile Asn Lys Lys Leu Asn Thr His Asn Arg Asn Glu Pro
                1270
                                  1275
Glu Tyr Asn Ile Ser Gln Pro Gly Thr Glu Ile Phe Asn Met Pro Ala
                              1290
             1285
Ile Thr Gly Thr Gly Leu Met Thr Tyr Arg Ser Gln Ala Val Gln Glu
                1305
          1300
His Ala Ser Thr Asn Met Gly Leu Glu Ala Ile Ile Arg Lys Ala Leu
      1315 1320
                              1325
Met Gly Lys Tyr Asp Gln Trp Glu Glu Ser Pro Pro Leu Ser Ala Asn
   1330 1335 1340
Ala Phe Asn Pro Leu Asn Ala Ser Ala Ser Leu Pro Ala Ala Met Pro
       1350 1355
Ile Thr Ala Ala Asp Gly Arg Ser Asp His Thr Leu Thr Ser Pro Gly
            1365 1370
Gly Gly Gly Lys Ala Lys Val Ser Gly Arg Pro Ser Ser Arg Lys Ala
                1385 1390
         1380
Lys Ser Pro Ala Pro Gly Leu Ala Ser Gly Asp Arg Pro Pro Ser Val
     1395 1400 1405
Ser Ser Val His Ser Glu Gly Asp Cys Asn Arg Arg Thr Pro Leu Thr
                   1415
Asn Arg Val Trp Glu Asp Arg Pro Ser Ser Ala Gly Ser Thr Pro Phe
                1430
                                 1435
Pro Tyr Asn Pro Leu Ile Met Arg Leu Gln Ala Gly Tyr Met Ala Ser
            1445
                             1450
Pro Pro Pro Gly Leu Pro Ala Gly Ser Gly Pro Leu Ala Gly Pro
         1460 1465 1470
His His Ala Trp Asp Glu Glu Pro Lys Pro Leu Leu Cys Ser Gln Tyr
                      1480
Glu Thr Leu Ser Asp Ser Glu
  1490
<210> 2
<211> 46
<212> PRT
<213> Homo sapiens
<400> 2
Gly Lys Tyr Asp Gln Trp Glu Glu Ser Pro Pro Leu Ser Ala Asn Ala
                              1.0
Phe Asn Pro Leu Asn Ala Ser Ala Ser Leu Pro Ala Ala Met Pro Ile
         20
                           25
Thr Ala Ala Asp Gly Arg Ser Asp His Thr Leu Thr Ser Pro
                       40
<210> 3
<211> 17
<212> DNA
<213> Homo sapiens
<400> 3
cggaggactg tcctccg
```

<212> DNA <213> Homo sapiens														
<220> <221> CDS <222> (2)(7555)														
<pre><400> 4 c atg tcg ggc tcc aca cag ctt gtg gca cag acg tgg agg gcc act gag Met Ser Gly Ser Thr Gln Leu Val Ala Gln Thr Trp Arg Ala Thr Glu</pre>														
ccc cgc tac ccg ccc cac agc ctt tcc tac cca gtg cag atc gcc cgg Pro Arg Tyr Pro Pro His Ser Leu Ser Tyr Pro Val Gln Ile Ala Arg 20 25 30	97													
acg cac acg gac gtc ggg ctc ctg gag tac cag cac cac tcc cgc gac Thr His Thr Asp Val Gly Leu Leu Glu Tyr Gln His His Ser Arg Asp 35 40 45	145													
tat gcc tcc cac ctg tcg ccg ggc tcc atc atc cag ccc cag cgg cgg Tyr Ala Ser His Leu Ser Pro Gly Ser Ile Ile Gln Pro Gln Arg Arg 50 55 60	193													
agg ccc tcc ctg ctg tct gag ttc cag ccc ggg aat gaa cgg tcc cag Arg Pro Ser Leu Leu Ser Glu Phe Gln Pro Gly Asn Glu Arg Ser Gln 65 70 75 80	241													
gag ctc cac ctg cgg cca gag tcc cac tca tac ctg ccc gag ctg ggg Glu Leu His Leu Arg Pro Glu Ser His Ser Tyr Leu Pro Glu Leu Gly 85 90 95	289													
aag tca gag atg gag ttc att gaa agc aag cgc cct cgg cta gag ctg Lys Ser Glu Met Glu Phe Ile Glu Ser Lys Arg Pro Arg Leu Glu Leu 100 105 110	337													
ctg cct gac ccc ctg ctg cga ccg tca ccc ctg ctg gcc acg ggc cag Leu Pro Asp Pro Leu Leu Arg Pro Ser Pro Leu Leu Ala Thr Gly Gln 115 120 125	385													
cct gcg gga tct gaa gac ctc acc aag gac cgt agc ctg acg ggc aag Pro Ala Gly Ser Glu Asp Leu Thr Lys Asp Arg Ser Leu Thr Gly Lys 130 135 140	433													
ctg gaa ccg gtg tct ccc ccc agc ccc ccg cac act gac cct gag ctg Leu Glu Pro Val Ser Pro Pro Ser Pro Pro His Thr Asp Pro Glu Leu 145 150 155 160	481													
gag ctg gtg ccg cca cgg ctg tcc aag gag gag ctg atc cag aac atg Glu Leu Val Pro Pro Arg Leu Ser Lys Glu Glu Leu Ile Gln Asn Met 165 170 175	529													
gac cgc gtg gac cga gag atc acc atg gta gag cag cag atc tct aag Asp Arg Val Asp Arg Glu Ile Thr Met Val Glu Gln Gln Ile Ser Lys 180 185 190	577													
ctg aag aag aag cag caa cag ctg gag gag gat gcc aag ccg ccc Leu Lys Lys Lys Gln Gln Gln Leu Glu Glu Glu Ala Ala Lys Pro Pro 195 200 205	625													

										6						
						tca Ser 215										673
						tac Tyr										721
						ggc Gly										769
tac Tyr	aac Asn	cag Gln	ccc Pro 260	tcc Ser	gac Asp	acc Thr	cgg Arg	cag Gln 265	tat Tyr	cat His	gag Glu	aac Asn	atc Ile 270	aaa Lys	ata Ile	817
aac Asn	cag Gln	gcg Ala 275	atg Met	cgg Arg	aag Lys	aag Lys	cta Leu 280	atc Ile	ttg Leu	tac Tyr	ttc Phe	aag Lys 285	agg Arg	agg Arg	aat Asn	865
cac His	gct Ala 290	cgg Arg	aaa Lys	caa Gln	tgg Trp	aag Lys 295	cag Gln	aag Lys	ttc Phe	tgc Cys	cag Gln 300	cgc Arg	tat Tyr	gac Asp	cag Gln	913
ctc Leu 305	atg Met	gag Glu	gcc Ala	ttg Leu	gaa Glu 310	aaa Lys	aag Lys	gtg Val	gag Glu	cgc Arg 315	atc Ile	gaa Glu	aac Asn	aac Asn	ccg Pro 320	961
						agc Ser										1009
ttc Phe	cct Pro	gag Glu	atc Ile 340	cgc Arg	aag Lys	cag Gln	cgc Arg	gag Glu 345	ctg Leu	cag Gln	gag Glu	cgc Arg	atg Met 350	cag Gln	agc Ser	1057
agg Arg	gtg Val	ggc Gly 355	cag Gln	cgg Arg	ggc Gly	agt Ser	ggg Gly 360	ctg Leu	tcc Ser	atg Met	tcg Ser	gcc Ala 365	gcc Ala	cgc Arg	agc Ser	1105
gag Glu	cac His 370	gag Glu	gtg Val	tca Ser	gag Glu	atc Ile 375	atc Ile	gat Asp	ggc Gly	ctc Leu	tca Ser 380	gag Glu	cag Gln	gag Glu	aac Asn	1153
ctg Leu 385	gag Glu	aag Lys	cag Gln	atg Met	cgc Arg 390	cag Gln	ctg Leu	gcc Ala	gtg Val	atc Ile 395	ccg Pro	ccc Pro	atg Met	ctg Leu	tac Tyr 400	1201
gac Asp	gct Ala	gac Asp	cag Gln	cag Gln 405	cgc Arg	atc Ile	aag Lys	ttc Phe	atc Ile 410	aac Asn	atg Met	aac Asn	gly aaa	ctt Leu 415	atg Met	1249
gcc Ala	gac Asp	ccc Pro	atg Met 420	aag Lys	gtg Val	tac Tyr	aaa Lys	gac Asp 425	cgc Arg	cag Gln	gtc Val	atg Met	aac Asn 430	atg Met	tgg Trp	1297
agt Ser	gag Glu	cag Gln 435	gag Glu	aag Lys	gag Glu	acc Thr	ttc Phe 440	cgg Arg	gag Glu	aag Lys	ttc Phe	atg Met 445	cag Gln	cat His	ccc Pro	1345

						gca Ala 455										1393
						tac Tyr										1441
						tat Tyr										1489
						cag Gln										1537
						gag Glu										1585
						aag Lys 535										1633
						gac Asp										1681
						aaa Lys										1729
aga Arg	cgc Arg	aaa Lys	ggc Gly 580	cgc Arg	atc Ile	acc Thr	cgc Arg	tca Ser 585	atg Met	gct Ala	aat Asn	gag Glu	gcc Ala 590	aac Asn	agc Ser	1777
						cag Gln										1825
ctg Leu	aat Asn 610	gag Glu	agt Ser	tct Ser	cgc Arg	tgg Trp 615	aca Thr	gaa Glu	gaa Glu	gaa Glu	atg Met 620	gaa Glu	aca Thr	gcc Ala	aag Lys	1873
aaa Lys 625	ggt Gly	ctc Leu	ctg Leu	gaa Glu	cac His 630	ggc Gly	cgc Arg	aac Asn	tgg Trp	tcg Ser 635	gcc Ala	atc Ile	gcc Ala	cgg Arg	atg Met 640	1921
gtg Val	ggc Gly	tcc Ser	aag Lys	act Thr 645	gtg Val	tcg Ser	cag Gln	tgt Cys	aag Lys 650	aac Asn	ttc Phe	tac Tyr	ttc Phe	aac Asn 655	tac Tyr	1969
aag Lys	aag Lys	agg Arg	cag Gln 660	aac Asn	ctc Leu	gat Asp	gag Glu	atc Ile 665	ttg Leu	cag Gln	cag Gln	cac His	aag Lys 670	ctg Leu	aag Lys	2017
atg Met	gag Glu	aag Lys 675	gag Glu	agg Arg	aac Asn	gcg Ala	cgg Arg 680	agg Arg	aag Lys	aag Lys	aag Lys	aaa Lys 685	gcg Ala	ccg Pro	gcg Ala	2065

										ð							
gcg Ala	gcc Ala 690	agc Ser	gag Glu	gag Glu	gct Ala	gca Ala 695	ttc Phe	ccg Pro	ccc Pro	gtg Val	gtg Val 700	gag Glu	gat Asp	gag Glu	gag Glu		2113
atg Met 705	gag Glu	gcg Ala	tcg Ser	ggc Gly	gtg Val 710	agc Ser	gga Gly	aat Asn	gag Glu	gag Glu 715	gag Glu	atg Met	gtg Val	gag Glu	gag Glu 720		2161
gct Ala	gaa Glu	gcc Ala	tta Leu	cat His 725	gcc Ala	tct Ser	Gly ggg	aat Asn	gag Glu 730	gtg Val	ccc Pro	aga Arg	G1A aaa	gaa Glu 735	tgc Cys	*	2209
agt Ser	ggc Gly	cca Pro	gcc Ala 740	act Thr	gtc Val	aac Asn	aac Asn	agc Ser 745	tca Ser	gac Asp	acc Thr	gag Glu	agc Ser 750	atc Ile	ccc Pro		2257
tct Ser	cct Pro	cac His 755	act Thr	gag Glu	gcc Ala	gcc Ala	aag Lys 760	gac Asp	aca Thr	ggg ggg	cag Gln	aat Asn 765	g1y 999	ccc Pro	aag Lys		2305
ccc Pro	cca Pro 770	gcc Ala	acc Thr	ctg Leu	ggc Gly	gcc Ala 775	gac Asp	gl ^à aaa	cca Pro	ccc Pro	cca Pro 780	ggc Gly	cca Pro	ccc Pro	acc Thr		2353
cca Pro 785	cca Pro	cgg Arg	agg Arg	aca Thr	tcc Ser 790	cgg Arg	gcc Ala	ccc Pro	att Ile	gag Glu 795	ccc Pro	acc Thr	ccg Pro	gcc Ala	tct Ser 800		2401
gaa Glu	gcc Ala	acc Thr	gga Gly	gcc Ala 805	cct Pro	acg Thr	ccc Pro	cca Pro	cca Pro 810	gca Ala	ccc Pro	cca Pro	tcg Ser	ccc Pro 815	tct Ser		2449
gca Ala	cct Pro	cct Pro	cct Pro 820	gtg Val	gtc Val	ccc Pro	aag Lys	gag Glu 825	gag Glu	aag Lys	gag Glu	gag Glu	gag Glu 830	acc Thr	gca Ala		2497
gca Ala	gcg Ala	ccc Pro 835	cca Pro	gtg Val	gag Glu	gag Glu	999 Gly 840	gag Glu	gag Glu	cag Gln	aag Lys	ccc Pro 845	ccc Pro	gcg Ala	gct Ala		2545
gag Glu	gag Glu 850	ctg Leu	gca Ala	gtg Val	gac Asp	aca Thr 855	Gly aaa	aag Lys	gcc Ala	gag Glu	gag Glu 860	ccc Pro	gtc Val	aag Lys	agc Ser		2593
gag Glu 865	tgc Cys	acg Thr	gag Glu	gaa Glu	gcc Ala 870	gag Glu	gag Glu	Gly 999	ccg Pro	gcc Ala 875	aag Lys	ggc	aag Lys	gac Asp	gcg Ala 880		2641
gag Glu	gcc Ala	gct Ala	gag Glu	gcc Ala 885	acg Thr	gcc Ala	gag Glu	gly aaa	gcg Ala 890	Leu	aag Lys	gca Ala	gag Glu	aag Lys 895	aag Lys		2689
gag Glu	ggc	Gly 999	agc Ser 900	ggc Gly	agg Arg	gcc Ala	acc Thr	act Thr 905	gcc Ala	aag Lys	agc Ser	tcg Ser	ggc Gly 910	Ala	ccc Pro		2737
cag Gln	gac Asp	agc Ser 915	Asp	tcc Ser	agt Ser	gct Ala	acc Thr 920	Cys	agt Ser	gca Ala	gac Asp	gag Glu 925	۷al	gat Asp	gag Glu		2785

										9						
gcc Ala	gag Glu 930	ggc Gly	ggc Gly	gac Asp	aag Lys	aac Asn 935	cgg Arg	ctg Leu	ctg Leu	tcc Ser	cca Pro 940	agg Arg	ccc Pro	agc Ser	ctc Leu	2833
ctc Leu 945	acc Thr	ccg Pro	act Thr	ggc Gly	gac Asp 950	ccc Pro	cgg Arg	gcc Ala	aat Asn	gcc Ala 955	tca Ser	ccc Pro	cag Gln	aag Lys	cca Pro 960	2881
ctg Leu	gac Asp	ctg Leu	aag Lys	cag Gln 965	ctg Leu	aag Lys	cag Gln	cga Arg	gcg Ala 970	gct Ala	gcc Ala	atc Ile	ccc Pro	ccc Pro 975	atc Ile	2929
cag Gln	gtc Val	acc Thr	aaa Lys 980	gtc Val	cat His	gag Glu	ccc Pro	ccc Pro 985	cgg Arg	gag Glu	gac Asp	gca Ala	gct Ala 990	ccc Pro	acc Thr	2977
aag Lys	cca Pro	gct Ala 999	Pro	cca Pro	gcc Ala	cca Pro	ccg Pro 1000	Pro	ccg Pro	caa Gln	aac Asn	ctg Leu 1009	Gln	ccg Pro	gag Glu	3025
agc Ser	gac Asp 1010	Ala	cct Pro	cag Gln	cag Gln	cct Pro 1015	Gly	agc Ser	agc Ser	ccc Pro	cgg Arg 1020	Gly	aag Lys	agc Ser	agg Arg	3073
agc Ser 102	ccg Pro	gca Ala	ccc Pro	ccc Pro	gcc Ala 1030	Asp	aag Lys	gag Glu	gcc Ala	ttc Phe 1035	Ala	gcc Ala	gag Glu	gcc Ala	cag Gln 1040	3121
aag Lys	ctg Leu	cct Pro	gly ggg	gac Asp 104	Pro	cct Pro	tgc Cys	tgg Trp	act Thr 105	Ser	ggc Gly	ctg Leu	ccc Pro	ttc Phe 105	Pro	3169
gtg Val	ccc Pro	ccc Pro	cgt Arg 106	Glu	gtg Val	atc Ile	aag Lys	gcc Ala 106!	Ser	ccg Pro	cat His	gcc Ala	ccg Pro 107	Asp	ccc Pro	3217
tca Ser	gcc Ala	ttc Phe 107	Ser	tac Tyr	gct Ala	cca Pro	cct Pro 108	Gly	cac His	cca Pro	ctg Leu	ccc Pro 108	Leu	ggc Gly	ctc Leu	3265
cat His	gac Asp 109	Thr	gcc Ala	cgg Arg	ccc Pro	gtc Val 109	Leu	ccg Pro	cgc Arg	cca Pro	ccc Pro 110	Thr	atc Ile	tcc Ser	aac Asn	3313
ccg Pro 110	cct Pro 5	ccc Pro	ctc Leu	atc Ile	tcc Ser 111	Ser	gcc Ala	aag Lys	cac His	ccc Pro 111	Ser	gtc Val	ctc Leu	gag Glu	agg Arg 1120	3361
caa Gln	ata Ile	ggt Gly	gcc Ala	atc Ile 112	Ser	caa Gln	gga Gly	atg Met	tcg Ser 113	Val	cag Gln	ctc Leu	cac His	gtc Val 113	Pro	3409
tac Tyr	tca Ser	gag Glu	cat His 114	Ala	aag Lys	gcc Ala	ccg Pro	gtg Val 114	Gly	cct Pro	gtc Val	acc Thr	atg Met 115	Gly	ctg Leu	3457
ccc Pro	ctg Leu	ccc Pro 115	Met	gac Asp	ccc Pro	aaa Lys	aag Lys 116	Leu	gca Ala	ccc Pro	ttc Phe	agc Ser 116	Gly	gtg Val	aag Lys	3505

									1	· U						
		Gln					Gly				cca Pro 1180	Pro				3553
999 Gly 1185	Val	ccc Pro	aca Thr	gcc Ala	cag Gln 1190	Glu	gcg Ala	tcc Ser	gtg Val	ctg Leu 1195	aga Arg	Gly 999	aca Thr	gct Ala	ctg Leu 1200	3601
ggc Gly	tca Ser	gtt Val	ccg Pro	ggc Gly 1205	Gly	agc Ser	atc Ile	acc Thr	aaa Lys 1210	Gly	att Ile	ccc Pro	agc Ser	aca Thr 1215	Arg	3649
gtg Val	ccc Pro	tcg Ser	gac Asp 1220	Ser	gcc Ala	atc Ile	aca Thr	tac Tyr 1225	Arg	ggc Gly	tcc Ser	atc Ile	acc Thr 1230	His	ggc Gly	3697
acg Thr	cca Pro	gct Ala 1235	Asp	gtc Val	ctg Leu	tac Tyr	aag Lys 1240	Gly	acc Thr	atc Ile	acc Thr	agg Arg 1245	Ile	atc Ile	ggc Gly	3745
		Ser					Asp				gag Glu 1260	Asp				3793
aag Lys 1265	Gly	cac His	gtc Val	atc Ile	tac Tyr 1270	Glu	ggc Gly	aag Lys	aag Lys	ggc Gly 1275	cac His	gtc Val	ttg Leu	tcc Ser	tat Tyr 1280	3841
gag Glu	ggt Gly	ggc Gly	atg Met	tct Ser 1285	Val	acc Thr	cag Gln	tgc Cys	tcc Ser 1290	Lys	gag Glu	gac Asp	ggc Gly	aga Arg 129!	Ser	3889
agc Ser	tca Ser	gga Gly	ccc Pro 1300	Pro	cat His	gag Glu	acg Thr	gcc Ala 130	Ala	ccc Pro	aag Lys	cgc Arg	acc Thr 131	Tyr	gac Asp	3937
atg Met	atg Met	gag Glu 131!	Gly	cgc Arg	gtg Val	ggc Gly	aga Arg 132	Ala	atc Ile	tcc Ser	tca Ser	gcc Ala 132	Ser	atc Ile	gaa Glu	3985
ggt Gly	ctc Leu 133	Met	ggc Gly	cgt Arg	gcc Ala	atc Ile 133	Pro	ccg Pro	gag Glu	cga Arg	cac His 134	Ser	ccc Pro	cac His	cac His	4033
ctc Leu 134	Lys	gag Glu	cag Gln	cac His	cac His 135	Ile	cgc Arg	gly	tcc Ser	atc Ile 135	aca Thr 5	caa Gln	ggg Gly	atc Ile	cct Pro 1360	4081
cgg Arg	tcc Ser	tac Tyr	gtg Val	gag Glu 136	Ala	cag Gln	gag Glu	gac Asp	tac Tyr 137	Leu	cgt Arg	cgg Arg	gag Glu	gcc Ala 137	Lys	4129
ctc Leu	cta Leu	aag Lys	cgg Arg 138	Glu	ggc Gly	acg Thr	cct Pro	ccg Pro 138	Pro	cca Pro	ccg Pro	ccc Pro	tca Ser 139	Arg	gac Asp	4177
ctg Leu	acc Thr	gag Glu 139	Ala	tac Tyr	aag Lys	acg Thr	cag Gln 140	Ala	ctg Leu	ggc	ccc Pro	ctg Leu 140	Lys	ctg Leu	aag Lys	4225

									1	1						
ccg Pro	gcc Ala 1410	His	gag Glu	ggc Gly	ctg Leu	gtg Val 1415	Ala	acg Thr	gtg Val	aag Lys	gag Glu 1420	Ala	ggc Gly	cgc Arg	tcc Ser	4273
atc Ile 1425	cat His	gag Glu	atc Ile	ccg Pro	cgc Arg 1430	Glu	gag Glu	ctg Leu	cgg Arg	cac His 1435	Thr	ccc Pro	gag Glu	ctg Leu	ccc Pro 1440	4321
ctg Leu	gcc Ala	ccg Pro	cgg Arg	ccg Pro 1445	Leu	aag Lys	gag Glu	ggc Gly	tcc Ser 1450	Ile	acg Thr	cag Gln	ggc Gly	acc Thr 1455	Pro	4369
ctc Leu	aag Lys	tac Tyr	gac Asp 1460	Thr	ggc Gly	gcg Ala	tcc Ser	acc Thr 1465	Thr	ggc Gly	tcc Ser	aaa Lys	aag Lys 1470	His	gac Asp	4417
gta Val	cgc Arg	tcc Ser 1475	Leu	atc Ile	ggc Gly	agc Ser	ccc Pro 1480	Gly	cgg Arg	acg Thr	ttc Phe	cca Pro 1485	Pro	gtg Val	cac His	4465
ccg Pro	ctg Leu 1490	Asp	gtg Val	atg Met	gcc Ala	gac Asp 1495	Ala	cgg Arg	gca Ala	ctg Leu	gaa Glu 1500	Arg	gcc Ala	tgc Cys	tac Tyr	4513
gag Glu 1509	gag Glu 5	agc Ser	ctg Leu	aag Lys	agc Ser 1510	Arg	cca Pro	ggg gly	acc Thr	gcc Ala 1515	Ser	agc Ser	tcg Ser	gly ggg	ggc Gly 1520	4561
tcc Ser	att Ile	gcg Ala	cgc Arg	ggc Gly 1525	Ala	ccg Pro	gtc Val	att Ile	gtg Val 1530	Pro	gag Glu	ctg Leu	ggt Gly	aag Lys 153!	Pro	4609
cgg Arg	cag Gln	agc Ser	ccc Pro 1540	Leu	acc Thr	tat Tyr	gag Glu	gac Asp 1545	His	gly ggg	gca Ala	ccc Pro	ttt Phe 155	Ala	ggc Gly	4657
cac His	ctc Leu	cca Pro 155!	Arg	ggt Gly	tcg Ser	ccc Pro	gtg Val 1560	Thr	atg Met	cgg Arg	gag Glu	ccc Pro 156	Thr	ccg Pro	cgc Arg	4705
ctg Leu	cag Gln 1570	Glu	ggc Gly	agc Ser	ctt Leu	tcg Ser 157	Ser	agc Ser	aag Lys	gca Ala	tcc Ser 1580	Gln	gac Asp	cga Arg	aag Lys	4753
ctg Leu 158	Thr	tcg Ser	acg Thr	cct Pro	cgt Arg 159	Glu	atc Ile	gcc Ala	aag Lys	tcc Ser 159	Pro	cac His	agc Ser	acc Thr	gtg Val 1600	4801
ccc Pro	gag Glu	cac His	cac His	cca Pro 160	His	ccc Pro	atc Ile	tcg Ser	ccc Pro 161	Tyr	gag Glu	cac His	ctg Leu	ctt Leu 161	Arg	4849
ggc Gly	gtg Val	agt Ser	ggc Gly 162	Val	gac Asp	ctg Leu	tat Tyr	cgc Arg 162	Ser	cac His	atc Ile	ccc Pro	ctg Leu 163	Ala	ttc Phe	4897
gac Asp	ccc Pro	acc Thr 163	Ser	ata Ile	ccc Pro	cgc Arg	ggc Gly 164	Ile	cct Pro	ctg Leu	gac Asp	gca Ala 164	Ala	gct Ala	gcc Ala	4945

tac tac ctg ccc cga cac ctg gcc ccc aac ccc acc tac ccg cac ctg Tyr Tyr Leu Pro Arg His Leu Ala Pro Asn Pro Thr Tyr Pro His Leu 1650 1655 1660	4993
tac cca ccc tac ctc atc cgc ggc tac ccc gac acg gcg gcg ctg gag Tyr Pro Pro Tyr Leu Ile Arg Gly Tyr Pro Asp Thr Ala Ala Leu Glu 1665 1670 1675 1680	5041
aac cgg cag acc atc atc aat gac tac atc acc tcg cag cag atg cac Asn Arg Gln Thr Ile Ile Asn Asp Tyr Ile Thr Ser Gln Gln Met His 1685 1690 1695	5089
cac aac acg gcc acc gcc atg gcc cag cga gct gat atg ctg agg ggc His Asn Thr Ala Thr Ala Met Ala Gln Arg Ala Asp Met Leu Arg Gly 1700 1705 1710	5137
ctc tcg ccc cgc gag tcc tcg ctg gca ctc aac tac gct gcg ggt ccc Leu Ser Pro Arg Glu Ser Ser Leu Ala Leu Asn Tyr Ala Ala Gly Pro 1715 1720 1725	5185
cga ggc atc atc gac ctg tcc caa gtg cca cac ctg cct gtg ctc gtg Arg Gly Ile Ile Asp Leu Ser Gln Val Pro His Leu Pro Val Leu Val 1730 1735 1740	5233
ccc ccg aca cca ggc acc cca gcc acc gcc atg gac cgc ctt gcc tacPro Pro Thr Pro Gly Thr Pro Ala Thr Ala Met Asp Arg Leu Ala Tyr174517501760	5281
ctc ccc acc gcg ccc cag ccc ttc agc agc cgc cac agc agc tcc cca Leu Pro Thr Ala Pro Gln Pro Phe Ser Ser Arg His Ser Ser Ser Pro 1765 1770 1775	5329
ctc tcc cca gga ggt cca aca cac ttg aca aaa cca acc acc acg tcc Leu Ser Pro Gly Gly Pro Thr His Leu Thr Lys Pro Thr Thr Ser 1780 1785 1790	5377
tcg tcc gag cgg gag cga gac cgg gat cga gag cgg gac cgg gat cgg Ser Ser Glu Arg Glu Arg Asp Arg Asp Arg Glu Arg Asp Arg Asp Arg 1795 1800 1805	5425
gag cgg gaa aag tcc atc ctc acg tcc acc acg acg gtg gag cac gca Glu Arg Glu Lys Ser Ile Leu Thr Ser Thr Thr Thr Val Glu His Ala 1810 1815 1820	5473
ccc atc tgg aga cct ggt aca gag cag agc agc ggc agc agc ggc agc Pro Ile Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly Ser Ser Gly Ser 1825 1830 1835 1840	5521
agc ggc ggg ggt ggg ggc agc agc agc ccc gcc tcc cac tcc cat Ser Gly Gly Gly Gly Ser Ser Ser Arg Pro Ala Ser His Ser His 1845 1850 1855	5569
gcc cac cag cac tcg ccc atc tcc cct cgg acc cag gat gcc ctc cag Ala His Gln His Ser Pro Ile Ser Pro Arg Thr Gln Asp Ala Leu Gln 1860 1865 1870	5617
cag aga ccc agt gtg ctt cac aac aca ggc atg aag ggt atc atc acc Gln Arg Pro Ser Val Leu His Asn Thr Gly Met Lys Gly Ile Ile Thr 1875 1880 1885	5665

									1							
		Glu					Thr				tcc Ser 1900	Thr				5713
tca Ser 1905	Pro	gtt Val	cgc Arg	cca Pro	gct Ala 1910	Ala	aca Thr	ttc Phe	cca Pro	cct Pro 1915	gcc Ala	acc Thr	cac His	tgc Cys	cca Pro 1920	5761
ctg Leu	ggc Gly	ggc Gly	acc Thr	ctc Leu 1925	Asp	ggg ggg	gtc Val	tac Tyr	cct Pro 1930	Thr	ctc Leu	atg Met	gag Glu	ccc Pro 1935	Val	5809
ttg Leu	ctg Leu	ccc Pro	aag Lys 1940	Glu	gcc Ala	ccc Pro	cgg Arg	gtc Val 1945	Ala	cgg Arg	cca Pro	gag Glu	cgg Arg 1950	Pro	cga Arg	5857
gca Ala	gac Asp	acc Thr 1955	Gly	cat His	gcc Ala	ttc Phe	ctc Leu 1960	Ala	aag Lys	ccc Pro	cca Pro	gcc Ala 1965	Arg	tcc Ser	gl ^à aaa	5905
ctg Leu	gag Glu 1970	Pro	gcc Ala	tcc Ser	tcc Ser	ccc Pro 1975	Ser	aag Lys	ggc Gly	tcg Ser	gag Glu 1980	Pro	cgg Arg	ccc Pro	cta Leu	5953
gtg Val 1985	Pro	cct Pro	gtc Val	tct Ser	ggc Gly 1990	His	gcc Ala	acc Thr	atc Ile	gcc Ala 1995	cgc Arg	acc Thr	cct Pro	gcg Ala	aag Lys 2000	6001
					His					Pro	ccg Pro				Ala	6049
tcg Ser	gcc Ala	tcg Ser	gac Asp 2020	Pro	cac His	cgg Arg	gaa Glu	aag Lys 2029	Thr	caa Gln	agt Ser	aaa Lys	ccc Pro 2030	Phe	tcc Ser	6097
atc Ile	cag Gln	gaa Glu 2035	Leu	gaa Glu	ctc Leu	cgt Arg	tct Ser 2040	Leu	ggt Gly	tac Tyr	cac His	ggc Gly 204!	Ser	agc Ser	tac Tyr	6145
agc Ser	ccc Pro 2050	Glu	gly aaa	gtg Val	gag Glu	ccc Pro 205	Val	agc Ser	cct Pro	gtg Val	agc Ser 2060	Ser	ccc Pro	agt Ser	ctg Leu	6193
acc Thr 206!	His	gac Asp	aag Lys	gly ggg	ctc Leu 2070	Pro	aag Lys	cac His	ctg Leu	gaa Glu 207!	gag Glu 5	ctc Leu	gac Asp	aag Lys	agc Ser 2080	6241
cac His	ctg Leu	gag Glu	Gly ggg	gag Glu 208	Leu	cgg Arg	ccc Pro	aag Lys	cag Gln 209	Pro	ggc Gly	ccc Pro	gtg Val	aag Lys 209	Leu	6289
gly ggc	gly aaa	gag Glu	gcc Ala 210	Ala	cac His	ctc Leu	cca Pro	cac His 210	Leu	cgg Arg	ccg Pro	ctg Leu	cct Pro 211	Glu	agc Ser	6337
cag Gln	ccc Pro	tcg Ser 211	Ser	agc Ser	ccg Pro	ctg Leu	ctc Leu 212	Gln	acc Thr	gcc Ala	cca Pro	999 Gly 212	Val	aaa Lys	ggt Gly	6385

cac cag cgg gtg gtc His Gln Arg Val Val 2130	acc ctg gcc ca Thr Leu Ala Gl 2135	g cac atc agt g n His Ile Ser G 2140	ag gtc atc aca lu Val Ile Thr	6433
cag gac tac acc cgg Gln Asp Tyr Thr Arg 2145				6481
gcc ccc ctc tac tcc Ala Pro Leu Tyr Ser 216	Phe Pro Gly Al	c agc tgc ccc g a Ser Cys Pro V 2170	tc ctg gac ctc Val Leu Asp Leu 2175	6529
cgc cgc cca ccc agt Arg Arg Pro Pro Ser 2180		u Pro Pro Pro <i>P</i>		6577
ccg gcc cgt ggc tcc Pro Ala Arg Gly Ser 2195		u Gly Gly Lys <i>P</i>		6625
cca aac aag acg tcg Pro Asn Lys Thr Ser 2210				6673
gtg tcc cca ccg gag Val Ser Pro Pro Glu 2225	ggc atg acg ga Gly Met Thr Gl 2230	g cca ggg cac t u Pro Gly His £ 2235	cc cgg agt gct Ser Arg Ser Ala 2240	6721
gtg tac ccg ctg ctg Val Tyr Pro Leu Leu 224	Tyr Arg Asp Gl			6769
atg ggc tcc aag tct Met Gly Ser Lys Ser 2260		r Ser Gln Pro I		6817
agc aag ctg acc gag Ser Lys Leu Thr Glu 2275		a Met Val Lys S		6865
gag atc aac aag aag Glu Ile Asn Lys Lys 2290				6913
aat atc agc cag cct Asn Ile Ser Gln Pro 2305	ggg acg gag at Gly Thr Glu Il 2310	c ttc aat atg o e Phe Asn Met I 2315	ecc gcc atc acc Pro Ala Ile Thr 2320	6961
gga aca ggc ctt atg Gly Thr Gly Leu Met 232	Thr Tyr Arg Se			7009
agc acc aac atg ggg Ser Thr Asn Met Gly 2340	Leu Glu Ala Il	a att aga aag g e Ile Arg Lys <i>1</i> 45	gca ctc atg ggt Ala Leu Met Gly 2350	7057
aaa tat gac cag tgg Lys Tyr Asp Gln Trp 2355	g gaa gag tcc cc Glu Glu Ser Pr 2360	o Pro Leu Ser I	gcc aat gct ttt Ala Asn Ala Phe 2365	7105

<210> 5 <211> 2517 <212> PRT <213> Homo sapiens

Met Ser Gly Ser Thr Gln Leu Val Ala Gln Thr Trp Arq Ala Thr Glu Pro Arg Tyr Pro Pro His Ser Leu Ser Tyr Pro Val Gln Ile Ala Arg Thr His Thr Asp Val Gly Leu Leu Glu Tyr Gln His His Ser Arg Asp 40 Tyr Ala Ser His Leu Ser Pro Gly Ser Ile Ile Gln Pro Gln Arg Arg 55 Arg Pro Ser Leu Leu Ser Glu Phe Gln Pro Gly Asn Glu Arg Ser Gln 70 Glu Leu His Leu Arg Pro Glu Ser His Ser Tyr Leu Pro Glu Leu Gly 90 85 Lys Ser Glu Met Glu Phe Ile Glu Ser Lys Arg Pro Arg Leu Glu Leu 105 Leu Pro Asp Pro Leu Leu Arg Pro Ser Pro Leu Leu Ala Thr Gly Gln 120 125 Pro Ala Gly Ser Glu Asp Leu Thr Lys Asp Arg Ser Leu Thr Gly Lys 135 Leu Glu Pro Val Ser Pro Pro Ser Pro Pro His Thr Asp Pro Glu Leu 155 Glu Leu Val Pro Pro Arg Leu Ser Lys Glu Glu Leu Ile Gln Asn Met 170 Asp Arg Val Asp Arg Glu Ile Thr Met Val Glu Gln Gln Ile Ser Lys 185 Leu Lys Lys Gln Gln Gln Leu Glu Glu Glu Ala Ala Lys Pro Pro 200 Glu Pro Glu Lys Pro Val Ser Pro Pro Pro Ile Glu Ser Lys His Arg 215 Ser Leu Val Gln Ile Ile Tyr Asp Glu Asn Arg Lys Lys Ala Glu Ala 230 235 Ala His Arg Ile Leu Glu Gly Leu Gly Pro Gln Val Glu Leu Pro Leu 250 245 Tyr Asn Gln Pro Ser Asp Thr Arg Gln Tyr His Glu Asn Ile Lys Ile 265 Asn Gln Ala Met Arg Lys Lys Leu Ile Leu Tyr Phe Lys Arg Arg Asn 280 His Ala Arg Lys Gln Trp Lys Gln Lys Phe Cys Gln Arg Tyr Asp Gln 295 Leu Met Glu Ala Leu Glu Lys Lys Val Glu Arg Ile Glu Asn Asn Pro 315 310 Arg Arg Arg Ala Lys Glu Ser Lys Val Arg Glu Tyr Tyr Glu Lys Gln 330 325 Phe Pro Glu Ile Arg Lys Gln Arg Glu Leu Gln Glu Arg Met Gln Ser 345 Arg Val Gly Gln Arg Gly Ser Gly Leu Ser Met Ser Ala Ala Arg Ser 360 Glu His Glu Val Ser Glu Ile Ile Asp Gly Leu Ser Glu Gln Glu Asn 380 375 Leu Glu Lys Gln Met Arg Gln Leu Ala Val Ile Pro Pro Met Leu Tyr 390 395 Asp Ala Asp Gln Gln Arg Ile Lys Phe Ile Asn Met Asn Gly Leu Met 405 410 Ala Asp Pro Met Lys Val Tyr Lys Asp Arg Gln Val Met Asn Met Trp 425 Ser Glu Gln Glu Lys Glu Thr Phe Arg Glu Lys Phe Met Gln His Pro 440

Lys Asn Phe Gly Leu Ile Ala Ser Phe Leu Glu Arg Lys Thr Val Ala 460 Glu Cys Val Leu Tyr Tyr Leu Thr Lys Lys Asn Glu Asn Tyr Lys 475 Ser Leu Val Arg Arg Ser Tyr Arg Arg Gly Lys Ser Gln Gln 490 505 Pro Arg Ser Ser Gln Glu Glu Lys Asp Glu Lys Glu Lys Glu Lys Glu 520 Ala Glu Lys Glu Glu Glu Lys Pro Glu Val Glu Asn Asp Lys Glu Asp 540 535 Leu Leu Lys Glu Lys Thr Asp Asp Thr Ser Gly Glu Asp Asn Asp Glu 555 550 Lys Glu Ala Val Ala Ser Lys Gly Arg Lys Thr Ala Asn Ser Gln Gly 570 565 Arg Arg Lys Gly Arg Ile Thr Arg Ser Met Ala Asn Glu Ala Asn Ser 585 Glu Glu Ala Ile Thr Pro Gln Gln Ser Ala Glu Leu Ala Ser Met Glu 600 Leu Asn Glu Ser Ser Arg Trp Thr Glu Glu Glu Met Glu Thr Ala Lys 615 620 Lys Gly Leu Leu Glu His Gly Arg Asn Trp Ser Ala Ile Ala Arg Met 635 630 Val Gly Ser Lys Thr Val Ser Gln Cys Lys Asn Phe Tyr Phe Asn Tyr 645 650 Lys Lys Arg Gln Asn Leu Asp Glu Ile Leu Gln Gln His Lys Leu Lys 665 660 Met Glu Lys Glu Arg Asn Ala Arg Arg Lys Lys Lys Ala Pro Ala 680 Ala Ala Ser Glu Glu Ala Ala Phe Pro Pro Val Val Glu Asp Glu Glu 695 Met Glu Ala Ser Gly Val Ser Gly Asn Glu Glu Glu Met Val Glu Glu 710 715 Ala Glu Ala Leu His Ala Ser Gly Asn Glu Val Pro Arg Gly Glu Cys 730 725 Ser Gly Pro Ala Thr Val Asn Asn Ser Ser Asp Thr Glu Ser Ile Pro 745 740 Ser Pro His Thr Glu Ala Ala Lys Asp Thr Gly Gln Asn Gly Pro Lys 760 Pro Pro Ala Thr Leu Gly Ala Asp Gly Pro Pro Pro Gly Pro Pro Thr 780 775 Pro Pro Arg Arg Thr Ser Arg Ala Pro Ile Glu Pro Thr Pro Ala Ser 795 790 Glu Ala Thr Gly Ala Pro Thr Pro Pro Pro Ala Pro Pro Ser Pro Ser 805 810 Ala Pro Pro Pro Val Val Pro Lys Glu Glu Lys Glu Glu Glu Thr Ala 820 825 Ala Ala Pro Pro Val Glu Glu Gly Glu Glu Gln Lys Pro Pro Ala Ala 840 Glu Glu Leu Ala Val Asp Thr Gly Lys Ala Glu Glu Pro Val Lys Ser 855 860 Glu Cys Thr Glu Glu Ala Glu Glu Gly Pro Ala Lys Gly Lys Asp Ala 870 875 Glu Ala Ala Glu Ala Thr Ala Glu Gly Ala Leu Lys Ala Glu Lys Lys 885 890 Glu Gly Gly Ser Gly Arg Ala Thr Thr Ala Lys Ser Ser Gly Ala Pro 905 91.0 Gln Asp Ser Asp Ser Ser Ala Thr Cys Ser Ala Asp Glu Val Asp Glu 920

```
Ala Glu Gly Gly Asp Lys Asn Arg Leu Leu Ser Pro Arg Pro Ser Leu
                     935
                                      940
Leu Thr Pro Thr Gly Asp Pro Arg Ala Asn Ala Ser Pro Gln Lys Pro
                 950
                                   955
Leu Asp Leu Lys Gln Leu Lys Gln Arg Ala Ala Ala Ile Pro Pro Ile
Gln Val Thr Lys Val His Glu Pro Pro Arg Glu Asp Ala Ala Pro Thr
                            985
Lys Pro Ala Pro Pro Ala Pro Pro Pro Gln Asn Leu Gln Pro Glu
                        1000
Ser Asp Ala Pro Gln Gln Pro Gly Ser Ser Pro Arg Gly Lys Ser Arg
                    1015
                                      1020
Ser Pro Ala Pro Pro Ala Asp Lys Glu Ala Phe Ala Ala Glu Ala Gln
                1030
                                  1035
Lys Leu Pro Gly Asp Pro Pro Cys Trp Thr Ser Gly Leu Pro Phe Pro
            1045
                              1050
Val Pro Pro Arg Glu Val Ile Lys Ala Ser Pro His Ala Pro Asp Pro
         1060
                 1065
Ser Ala Phe Ser Tyr Ala Pro Pro Gly His Pro Leu Pro Leu Gly Leu
              1080 1085
His Asp Thr Ala Arg Pro Val Leu Pro Arg Pro Pro Thr Ile Ser Asn
                    1095
                           1100
Pro Pro Pro Leu Ile Ser Ser Ala Lys His Pro Ser Val Leu Glu Arg
                1110
                                  1115
Gln Ile Gly Ala Ile Ser Gln Gly Met Ser Val Gln Leu His Val Pro
             1125
                               1130
Tyr Ser Glu His Ala Lys Ala Pro Val Gly Pro Val Thr Met Gly Leu
         1140
                           1145
Pro Leu Pro Met Asp Pro Lys Lys Leu Ala Pro Phe Ser Gly Val Lys
      1155 1160
Gln Glu Gln Leu Ser Pro Arg Gly Gln Ala Gly Pro Pro Glu Ser Leu
                    1175
                                     1180
Gly Val Pro Thr Ala Gln Glu Ala Ser Val Leu Arg Gly Thr Ala Leu
                1190
                                  1195
Gly Ser Val Pro Gly Gly Ser Ile Thr Lys Gly Ile Pro Ser Thr Arg
             1205
                              1210
Val Pro Ser Asp Ser Ala Ile Thr Tyr Arg Gly Ser Ile Thr His Gly
                           1225
         1220
Thr Pro Ala Asp Val Leu Tyr Lys Gly Thr Ile Thr Arg Ile Ile Gly
            1240
                                         1245
Glu Asp Ser Pro Ser Arg Leu Asp Arg Gly Arg Glu Asp Ser Leu Pro
                    1255
                                      1260
Lys Gly His Val Ile Tyr Glu Gly Lys Lys Gly His Val Leu Ser Tyr
      1270
                                  1275
Glu Gly Gly Met Ser Val Thr Gln Cys Ser Lys Glu Asp Gly Arg Ser
                              1290
             1285
Ser Ser Gly Pro Pro His Glu Thr Ala Ala Pro Lys Arg Thr Tyr Asp
          1300
                           1305
                                             1310
Met Met Glu Gly Arg Val Gly Arg Ala Ile Ser Ser Ala Ser Ile Glu
                        1320
                                1325
Gly Leu Met Gly Arg Ala Ile Pro Pro Glu Arg His Ser Pro His His
           1335
                                      1340
Leu Lys Glu Gln His His Ile Arg Gly Ser Ile Thr Gln Gly Ile Pro
                 1350
                       1355
Arg Ser Tyr Val Glu Ala Gln Glu Asp Tyr Leu Arg Arg Glu Ala Lys
             1365
                              1370
Leu Leu Lys Arg Glu Gly Thr Pro Pro Pro Pro Pro Pro Ser Arg Asp
         1380
                           1385
                                             1390
Leu Thr Glu Ala Tyr Lys Thr Gln Ala Leu Gly Pro Leu Lys Leu Lys .
                        1400
```

Pro Ala His Glu Gly Leu Val Ala Thr Val Lys Glu Ala Gly Arg Ser 1415 Ile His Glu Ile Pro Arg Glu Glu Leu Arg His Thr Pro Glu Leu Pro 1430 1435 Leu Ala Pro Arg Pro Leu Lys Glu Gly Ser Ile Thr Gln Gly Thr Pro 1450 1445 Leu Lys Tyr Asp Thr Gly Ala Ser Thr Thr Gly Ser Lys Lys His Asp 1465 Val Arg Ser Leu Ile Gly Ser Pro Gly Arg Thr Phe Pro Pro Val His 1485 1480 Pro Leu Asp Val Met Ala Asp Ala Arg Ala Leu Glu Arg Ala Cys Tyr 1495 1500 Glu Glu Ser Leu Lys Ser Arg Pro Gly Thr Ala Ser Ser Ser Gly Gly 1510 1515 Ser Ile Ala Arg Gly Ala Pro Val Ile Val Pro Glu Leu Gly Lys Pro 1530 1535 Arg Gln Ser Pro Leu Thr Tyr Glu Asp His Gly Ala Pro Phe Ala Gly 1545 His Leu Pro Arg Gly Ser Pro Val Thr Met Arg Glu Pro Thr Pro Arg 1560 Leu Gln Glu Gly Ser Leu Ser Ser Lys Ala Ser Gln Asp Arg Lys 1580 1575 Leu Thr Ser Thr Pro Arg Glu Ile Ala Lys Ser Pro His Ser Thr Val 1590 1595 Pro Glu His His Pro His Pro Ile Ser Pro Tyr Glu His Leu Leu Arg 1610 1605 Gly Val Ser Gly Val Asp Leu Tyr Arg Ser His Ile Pro Leu Ala Phe 1620 1625 Asp Pro Thr Ser Ile Pro Arg Gly Ile Pro Leu Asp Ala Ala Ala 1645 1640 1635 Tyr Tyr Leu Pro Arg His Leu Ala Pro Asn Pro Thr Tyr Pro His Leu 1660 1655 Tyr Pro Pro Tyr Leu Ile Arg Gly Tyr Pro Asp Thr Ala Ala Leu Glu 1670 1675 Asn Arg Gln Thr Ile Ile Asn Asp Tyr Ile Thr Ser Gln Gln Met His 1690 1685 His Asn Thr Ala Thr Ala Met Ala Gln Arg Ala Asp Met Leu Arg Gly 1705 1700 Leu Ser Pro Arg Glu Ser Ser Leu Ala Leu Asn Tyr Ala Ala Gly Pro 1715 1720 1725 Arg Gly Ile Ile Asp Leu Ser Gln Val Pro His Leu Pro Val Leu Val 1740 1735 Pro Pro Thr Pro Gly Thr Pro Ala Thr Ala Met Asp Arg Leu Ala Tyr 1750 1755 Leu Pro Thr Ala Pro Gln Pro Phe Ser Ser Arg His Ser Ser Ser Pro 1770 1765 Leu Ser Pro Gly Gly Pro Thr His Leu Thr Lys Pro Thr Thr Thr Ser 1790 1780 1785 Ser Ser Glu Arg Glu Arg Asp Arg Asp Arg Glu Arg Asp Arg Asp 1795 1800 1805 Glu Arg Glu Lys Ser Ile Leu Thr Ser Thr Thr Thr Val Glu His Ala 1815 1820 Pro Ile Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly Ser Ser Gly Ser 1830 1835 Ser Gly Gly Gly Gly Ser Ser Ser Arg Pro Ala Ser His Ser His 1850 1855 1845 Ala His Gln His Ser Pro Ile Ser Pro Arg Thr Gln Asp Ala Leu Gln 1860 1865 1870 Gln Arg Pro Ser Val Leu His Asn Thr Gly Met Lys Gly Ile Ile Thr 1885

1880

1875

Ala Val Glu Pro Ser Lys Pro Thr Val Leu Arg Ser Thr Ser Thr Ser 1900 1895 Ser Pro Val Arg Pro Ala Ala Thr Phe Pro Pro Ala Thr His Cys Pro 1915 1910 Leu Gly Gly Thr Leu Asp Gly Val Tyr Pro Thr Leu Met Glu Pro Val 1925 1930 Leu Leu Pro Lys Glu Ala Pro Arg Val Ala Arg Pro Glu Arg Pro Arg 1945 1940 Ala Asp Thr Gly His Ala Phe Leu Ala Lys Pro Pro Ala Arg Ser Gly 1960 1965 Leu Glu Pro Ala Ser Ser Pro Ser Lys Gly Ser Glu Pro Arg Pro Leu 1980 1975 Val Pro Pro Val Ser Gly His Ala Thr Ile Ala Arg Thr Pro Ala Lys 1995 1990 Asn Leu Ala Pro His His Ala Ser Pro Asp Pro Pro Ala Pro Pro Ala 2005 2010 Ser Ala Ser Asp Pro His Arg Glu Lys Thr Gln Ser Lys Pro Phe Ser 2025 2030 Ile Gln Glu Leu Glu Leu Arg Ser Leu Gly Tyr His Gly Ser Ser Tyr 2035 2040 2045 Ser Pro Glu Gly Val Glu Pro Val Ser Pro Val Ser Ser Pro Ser Leu 2055 2060 Thr His Asp Lys Gly Leu Pro Lys His Leu Glu Glu Leu Asp Lys Ser 2070 2075 2080 His Leu Glu Gly Glu Leu Arg Pro Lys Gln Pro Gly Pro Val Lys Leu 2090 2095 2085 Gly Gly Glu Ala Ala His Leu Pro His Leu Arg Pro Leu Pro Glu Ser 2100 2105 Gln Pro Ser Ser Pro Leu Leu Gln Thr Ala Pro Gly Val Lys Gly 2115 2120 His Gln Arg Val Val Thr Leu Ala Gln His Ile Ser Glu Val Ile Thr 2135 2140 Gln Asp Tyr Thr Arg His His Pro Gln Gln Leu Ser Ala Pro Leu Pro 2150 2155 Ala Pro Leu Tyr Ser Phe Pro Gly Ala Ser Cys Pro Val Leu Asp Leu 2165 2170 Arg Arg Pro Pro Ser Asp Leu Tyr Leu Pro Pro Pro Asp His Gly Ala 2180 2185 Pro Ala Arg Gly Ser Pro His Ser Glu Gly Gly Lys Arg Ser Pro Glu 2200 2195 Pro Asn Lys Thr Ser Val Leu Gly Gly Glu Asp Gly Ile Glu Pro 2215 2220 Val Ser Pro Pro Glu Gly Met Thr Glu Pro Gly His Ser Arg Ser Ala 2230 2235 Val Tyr Pro Leu Leu Tyr Arg Asp Gly Glu Gln Thr Glu Pro Ser Arg 2250 2245 Met Gly Ser Lys Ser Pro Gly Asn Thr Ser Gln Pro Pro Ala Phe Phe 2260 2265 Ser Lys Leu Thr Glu Ser Asn Ser Ala Met Val Lys Ser Lys Lys Gln 2275 2280 Glu Ile Asn Lys Lys Leu Asn Thr His Asn Arg Asn Glu Pro Glu Tyr 2300 2290 2295 Asn Ile Ser Gln Pro Gly Thr Glu Ile Phe Asn Met Pro Ala Ile Thr 2310 2315 Gly Thr Gly Leu Met Thr Tyr Arg Ser Gln Ala Val Gln Glu His Ala 2325 2330 Ser Thr Asn Met Gly Leu Glu Ala Ile Ile Arg Lys Ala Leu Met Gly 2340 2345 Lys Tyr Asp Gln Trp Glu Glu Ser Pro Pro Leu Ser Ala Asn Ala Phe 2365 2355 2360

```
Asn Pro Leu Asn Ala Ser Ala Ser Leu Pro Ala Ala Met Pro Ile Thr
                        2375
Ala Ala Asp Gly Arg Ser Asp His Thr Leu Thr Ser Pro Gly Gly Gly
                    2390
                                        2395
Gly Lys Ala Lys Val Ser Gly Arg Pro Ser Ser Arg Lys Ala Lys Ser
                2405
                                    2410
Pro Ala Pro Gly Leu Ala Ser Gly Asp Arg Pro Pro Ser Val Ser Ser
                                2425
                                                     2430
            2420
Val His Ser Glu Gly Asp Cys Asn Arg Arg Thr Pro Leu Thr Asn Arg
                            2440
                                                 2445
        2435
Val Trp Glu Asp Arg Pro Ser Ser Ala Gly Ser Thr Pro Phe Pro Tyr
                                            2460
                        2455
Asn Pro Leu Ile Met Arg Leu Gln Ala Gly Val Met Ala Ser Pro Pro
                    2470
                                        2475
Pro Pro Gly Leu Pro Ala Gly Ser Gly Pro Leu Ala Gly Pro His His
                                    2490
                2485
Ala Trp Asp Glu Glu Pro Lys Pro Leu Leu Cys Ser Gln Tyr Glu Thr
            2500
                                2505
Leu Ser Asp Ser Glu
        2515
<210> 6
<211> 8388
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (626)...(8047)
<221> misc_feature
<222> (1)...(8388)
<223> n = A,T,C or G
<400> 6
cttaaaaaaa aaacccttac ttgtggttaa aggaaaagaa ataaagactt aggaaaaatg
taattttcca gggggtacct acacccaaga catatggttc tcaagaggna ctcagcatat
                                                                      120
cactttgatt ccagagaagc tacaaaagtc attaccaaac tccaggctgg aaagcagtgc
                                                                      180
tcatactaaa tatttaaaca tttaaagacc tgattaagag acatcaaagg ctttatacca
                                                                      240
ggggcacacc aacagagaca ggctttttca aggataattt atgtctgccc attgtcttct
                                                                      300
ggcttaggag acatagaggg aaacatcacc taggaaaacc agtaaccaat gtgtaccatc
                                                                      360
caggagttat tctatgacaa aaccaaaagt tttgttcttg tgtacttctc tgtgcaccat
                                                                      420
ctttctatat ctatttagaa aacaaaacaa attttggtaa cacgcttgtg tataaagagc
                                                                      480
aggacagcgg tgtcacagat caacctagaa agtaattatt taacgagtaa atgactcata
                                                                      540
taggacaagg caagctgtga ctttcaacct gttctgtctc gtgccgaatt cggcacgagc
                                                                      600
caaagcctac ctggacccta ccacc atg tca gga tcc aca cag cct gtg gca
                                                                      652
                            Met Ser Gly Ser Thr Gln Pro Val Ala
                                                                      700
caq aca tgg cgg get get gag ccc cgc tac cca ccc cat ggc atc tcc
Gln Thr Trp Arg Ala Ala Glu Pro Arg Tyr Pro Pro His Gly Ile Ser
 10
                     15
tac ccg gtg cag ata gcc cgg tcc cac acg gac gtg ggg ctg ctt gag
                                                                      748
Tyr Pro Val Gln Ile Ala Arg Ser His Thr Asp Val Gly Leu Leu Glu
                 30
                                                                      796
tac caa cac cac ccc cgt gac tac acc tca cac ctg tca ccc ggt tcc
Tyr Gln His His Pro Arg Asp Tyr Thr Ser His Leu Ser Pro Gly Ser
             45
                                 50
```

											ctg Leu					844
											cgc Arg 85					892
											gaa Glu					940
											ctg Leu					988
											gaa Glu					1036
											tca Ser					1084
											tct Ser 165					1132
											cgt Arg					1180
											cag Gln					1228
											cct Pro					1276
		_		_		_	_	_	_	_	atc Ile			_		1324
											cta Leu 245					1372
											tct Ser					1420
											cgg Arg					1468
ttg Leu	tac Tyr	ttt Phe	aag Lys 285	cgg Arg	agg Arg	aac Asn	cac His	gcg Ala 290	cgc Arg	aag Lys	cag Gln	tgg Trp	gaa Glu 295	cag Gln	cgc Arg	1516

						cag Gln										1564
	_					ccg Pro 320	_			_	_		_	_		1612
						cag Gln										1660
						agc Ser										1708
						agt Ser										1756
ggc Gly	ttg Leu	tct Ser 380	gag Glu	cag Gln	gag Glu	aac Asn	ctg Leu 385	gag Glu	aag Lys	cag Gln	atg Met	cgc Arg 390	cag Gln	ctg Leu	gcc Ala	1804
						tac Tyr 400										1852
						atg Met										1900
						tgg Trp										1948
						cct Pro										1996
						gct Ala										2044
_	_		_			aag Lys 480	-	_				_				2092
cgt Arg 490	ggc Gly	aag Lys	agc Ser	cag Gln	cag Gln 495	cag Gln	cag Gln	cag Gln	cag Gln	caa Gln 500	caa Gln	cag Gln	cag Gln	cag Gln	cag Gln 505	2140
						agc Ser										2188
gag Glu	aag Lys	gag Glu	gcc Ala 525	gac Asp	aag Lys	gag Glu	gaa Glu	gag Glu 530	aag Lys	cag Gln	gat Asp	gcg Ala	gag Glu 535	aac Asn	gag Glu	2236

_	_	-		_	_		_		-	_	act Thr			2	2284
											cgc Arg 565			2	2332
_			-								tcc Ser			2	2380
_						_			_		agt Ser		 _	 2	2428
	_		_			_		_			gag Glu	_	 _	 2	2476
											aac Asn			2	2524
											tgt Cys 645			2	2572
											atc Ile			2	2620
											agg Arg			2	2668
											cca Pro			2	2716
											aat Asn			2	2764
											aat Asn 725			2	2812
											aac Asn			2	2860
	_	-			_	_			_	_	aag Lys	_		2	2908
											acc Thr			2	2956

													tcc Ser			3004
													cac His			3052
													cgg Arg			3100
													agg Arg			3148
aga Arg	tcg Ser	atg Met	tgg Trp 845	gaa Glu	aag Lys	cca Pro	gag Glu	gag Glu 850	ccc Pro	gag Glu	gcc Ala	tct Ser	gag Glu 855	gag Glu	ccc Pro	3196
													gaa Glu			3244
_	_		_	_				_		_			tct Ser			3292
cca Pro 890	ctt Leu	aag Lys	gtg Val	gag Glu	gag Glu 895	gct Ala	ggt Gly	agc Ser	aag Lys	gca Ala 900	gct Ala	gtg Val	acc Thr	aag Lys	ggt Gly 905	3340
													acc Thr			3388
													agg Arg 935			3436
													cgg Arg			3484
													cag Gln			3532
													ccc Pro			3580
					Pro					Pro			cca Pro		Thr	3628
cag Gln	cac His	cta Leu	cag Gln 100	Pro	gag Glu	ggt Gly	gac Asp	gtg Val 101	Ser	cag Gln	cag Gln	tcg Ser	gga Gly 101	Gly	agt Ser	3676

cca cgt ggc aag tcc cgc agc cca gtg cct cct gcc gag aaa gag gca Pro Arg Gly Lys Ser Arg Ser Pro Val Pro Pro Ala Glu Lys Glu Ala 1020 1025 1030	3724
gag aaa ccc gca ttc ttt ccg gct ttc cca act gag ggc cca aag cta Glu Lys Pro Ala Phe Phe Pro Ala Phe Pro Thr Glu Gly Pro Lys Leu 1035 1040 1045	3772
ccg act gag ccc cca cgc tgg tca tcg ggc ctg ccc ttc ccc atc cctPro Thr Glu Pro Pro Arg Trp Ser Ser Gly Leu Pro Phe Pro Ile Pro1050105510601065	3820
cca cgg gag gtg atc aag act tcc cca cac gcc gct gac ccc tct gcc Pro Arg Glu Val Ile Lys Thr Ser Pro His Ala Ala Asp Pro Ser Ala 1070 1075 1080	3868
ttc tcc tac aca ccc ccc ggt cac ccg ctg cct ctg ggc ctc cac gat Phe Ser Tyr Thr Pro Pro Gly His Pro Leu Pro Leu Gly Leu His Asp 1085 1090 1095	3916
agt gcc cgg ccc gtc ctg cca cgt ccc ccc atc tct aac ccc cca ccc Ser Ala Arg Pro Val Leu Pro Arg Pro Pro Ile Ser Asn Pro Pro Pro 1100 1105 1110	3964
ctc atc tcc tct gcc aag cat ccc ggc gta ctt gag agg cag ctg ggt Leu Ile Ser Ser Ala Lys His Pro Gly Val Leu Glu Arg Gln Leu Gly 1115 1120 1125	4012
gcc atc tcc cag cag ggg atg tca gtc cag ctt cgt gtg cct cac tca Ala Ile Ser Gln Gln Gly Met Ser Val Gln Leu Arg Val Pro His Ser 1130 1135 1140 1145	4060
gag cat gcc aag gcc ccc atg ggc cct ctc acc atg ggg ctg ccc ctt Glu His Ala Lys Ala Pro Met Gly Pro Leu Thr Met Gly Leu Pro Leu 1150 1155 1160	4108
gcc gtg gac cct aag aag ctg ggg aca gca ctg ggc tcc gcc acc agt Ala Val Asp Pro Lys Lys Leu Gly Thr Ala Leu Gly Ser Ala Thr Ser 1165 1170 1175	4156
gga agc atc acc aag ggc ctc ccc agt acc cgg gct gca gac ggc ccc Gly Ser Ile Thr Lys Gly Leu Pro Ser Thr Arg Ala Ala Asp Gly Pro 1180 1185 1190	4204
agc tac aga ggc tct atc acc cac ggc acg ccc gca gac gtc ctc tac Ser Tyr Arg Gly Ser Ile Thr His Gly Thr Pro Ala Asp Val Leu Tyr 1195 1200 1205	4252
aag ggt acc atc agc agg atc gtc ggt gag gac agc cca agt cgc ctt Lys Gly Thr Ile Ser Arg Ile Val Gly Glu Asp Ser Pro Ser Arg Leu 1210 1225	4300
gac cgg gca cga gag gac acc ctg ccc aag ggc cat gtc atc tat gag Asp Arg Ala Arg Glu Asp Thr Leu Pro Lys Gly His Val Ile Tyr Glu 1230 1235 1240	4348
ggc aag aaa ggc cac gtc cta tcc tat gaa ggt ggt atg tcc gtg tca Gly Lys Lys Gly His Val Leu Ser Tyr Glu Gly Gly Met Ser Val Ser 1245 1250 1255	4396

cag tgc tct aag gag gat gga agg agc agc tcg ggc cca ccc cat gag Gln Cys Ser Lys Glu Asp Gly Arg Ser Ser Ser Gly Pro Pro His Glu 1260 1265 1270	4444
act gcc gcc cct aaa cgc acc tat gac atg atg gag ggc cgt gta ggc Thr Ala Ala Pro Lys Arg Thr Tyr Asp Met Met Glu Gly Arg Val Gly 1275 1280 1285	4492
agg act gtc acc tca gcc agc ata gag gga ctc atg ggc cgc gcc atc Arg Thr Val Thr Ser Ala Ser Ile Glu Gly Leu Met Gly Arg Ala Ile 1290 1295 1300 1305	4540
cct gag cag cac agc ccc cac ctc aag gag cag cat cac atc cga ggc Pro Glu Gln His Ser Pro His Leu Lys Glu Gln His His Ile Arg Gly 1310 1315 1320	4588
tcc atc acg caa ggc atc ccg agg tcc tat gtg gag gcg cag gag gac Ser Ile Thr Gln Gly Ile Pro Arg Ser Tyr Val Glu Ala Gln Glu Asp 1325 1330 1335	4636
tac tta cgg cgg gag gcc aag ctc ttg aag cga gaa ggg aca cca cca Tyr Leu Arg Arg Glu Ala Lys Leu Leu Lys Arg Glu Gly Thr Pro Pro 1340 1345 1350	4684
ccc cca cca cct cgg gac ctg act gag acc tac aag ccc cgg ccc Pro Pro Pro Pro Pro Arg Asp Leu Thr Glu Thr Tyr Lys Pro Arg Pro 1355 1360 1365	4732
ctg gac cct ctg ggt ccc ctg aag ctg aag ccg act cac gag ggt gtg Leu Asp Pro Leu Gly Pro Leu Lys Leu Lys Pro Thr His Glu Gly Val 1370 1375 1380 1385	4780
gta gca act gtg aag gag gcg ggc cgc tct atc cat gag atc ccg aga Val Ala Thr Val Lys Glu Ala Gly Arg Ser Ile His Glu Ile Pro Arg 1390 1395 1400	4828
gag gag ctg cgc cgc aca cct gag cta ccc ctg gca cca cgg cct ctg Glu Glu Leu Arg Arg Thr Pro Glu Leu Pro Leu Ala Pro Arg Pro Leu 1405 1410 1415	4876
aag gag ggt tcc atc acc cag ggc acc cca ctc aag tac gac tct ggg Lys Glu Gly Ser Ile Thr Gln Gly Thr Pro Leu Lys Tyr Asp Ser Gly 1420 1425 1430	4924
gca ccc tcc act ggc acc aag aaa cac gac gtg cgc tcc atc atc ggc Ala Pro Ser Thr Gly Thr Lys Lys His Asp Val Arg Ser Ile Ile Gly 1435 1440 1445	4972
agc ccc ggc cgg cct ttc cct gcc ctg cac ccg ctg gac ata atg gct Ser Pro Gly Arg Pro Phe Pro Ala Leu His Pro Leu Asp Ile Met Ala 1450 1455 1460 1465	5020
gac gcc cgg gca ctg gag cgt gcc tgc tat gaa gag agt ctg aag agc Asp Ala Arg Ala Leu Glu Arg Ala Cys Tyr Glu Glu Ser Leu Lys Ser 1470 1475 1480	5068
cgg tca ggg acc agc agt ggt gca ggg ggc tcc atc aca cgt ggg gct Arg Ser Gly Thr Ser Ser Gly Ala Gly Gly Ser Ile Thr Arg Gly Ala 1485 1490 1495	5116

			Val					Lys			caa Gln		Pro			5164
tac Tyr	gaa Glu 1515	Asp	cac His	gly aaa	gca Ala	ccc Pro 1520	Phe	acc Thr	agt Ser	cac His	ctg Leu 1525	Pro	cgt Arg	ggc Gly	tcc Ser	5212
	Val					Pro					cag Gln)					5260
					Ser					Leu	aca Thr				Arg	5308
				Ser					Val		gag Glu			Pro		5356
			Pro					Leu			gtg Val		Gly			5404
ctg Leu	tac Tyr 1595	Arg	ggt Gly	cac His	atc Ile	cca Pro 1600	Leu	gcc Ala	ttt Phe	gac Asp	ccc Pro 1605	Thr	tcc Ser	ata Ile	ccc Pro	5452
cga Arg 1610	${\tt Gly}$	atc Ile	cct Pro	ctg Leu	gaa Glu 1615	Ala	gca Ala	gcc Ala	gca Ala	gcc Ala 1620	tac Tyr)	tac Tyr	ctg Leu	ccc Pro	cgg Arg 1625	5500
					Pro					Leu	tac Tyr				Leu	5548
				Pro					Leu		aac Asn			Thr		5596
atc Ile	aat Asn	gac Asp 1660	Tyr	atc Ile	acc Thr	tcg Ser	cag Gln 166	Gln	atg Met	cac His	cac His	aac Asn 1670	Ala	gcc Ala	tcc Ser	5644
		Ala					Met				ctg Leu 1685	Ser				5692
	Ser					Tyr					aga Arg O					5740
					His					Val	cca Pro				Gly	5788
acc Thr	cct Pro	gcc Ala	acc Thr 172	Ala	atc Ile	gac Asp ~	cgc Arg	ctt Leu 173	Ala	tac Tyr	ctc Leu	ccc Pro	act Thr 173	Ala	ccc Pro	5836

cca ccc ttc agc a Pro Pro Phe Ser 8 1740					Pro Gly	
ccc act cac cta of Pro Thr His Leu A 1755		Thr Ala				
cgg gaa cgt gag o Arg Glu Arg Glu A 1770				Leu Thr		
aca gtg gag cat of Thr Val Glu His i						Ser
ggg gct ggg ggc a Gly Ala Gly Gly 8 1805			Ser His			
ccc atc tcc ccc o Pro Ile Ser Pro I 1820					Pro Ser	
ctg cac aac acg a Leu His Asn Thr a 1835		Gly Val				
acg ccc acg gtc of Thr Pro Thr Val 1 1850				Ser Thr		
gtc cgc cca gct o						Gly
ggc acc ctt gaa of Gly Thr Leu Glu of 1885	Gly Val Tyr	cct acc Pro Thr 1890	Leu Met	gag ccc Glu Pro	gtc ctg Val Leu 1895	tta 6316 Leu
ccc aag gag acc Pro Lys Glu Thr 1900					Arg Val	
gct ggc cat gcc Ala Gly His Ala 1915		Lys Pro				
tca ccc agc aag Ser Pro Ser Lys 1930				Ala Pro		
agc cac aca gcc Ser His Thr Ala						His
cat gcc agt ccg His Ala Ser Pro 1965	Asp Pro Pro	gcg ccc Ala Pro 1970	Thr Ser	gcc tca Ala Ser	gat ctg Asp Leu 1975	cac 6556 His

cga gaa aag act ca Arg Glu Lys Thr Gl: 1980		Phe Ser Ile G		
cgt tct ctg ggt ta Arg Ser Leu Gly Ty 1995	c cac agt gga r His Ser Gly 2000	Ala Gly Tyr S	gc ccc gat ggg er Pro Asp Gly 005	gtg 6652 Val
gag ccc atc agc cc Glu Pro Ile Ser Pro 2010	g gtg agc tcc o Val Ser Ser 2015	ccc agc ctg a Pro Ser Leu T 2020	cc cac gac aag hr His Asp Lys	ggg 6700 Gly 2025
ctc tcc aaa cct ct Leu Ser Lys Pro Le 20	u Glu Glu Leu	gag aag agc c Glu Lys Ser H 2035	ac ttg gaa ggg Iis Leu Glu Gly 204	Glu
ctg cgg cac aag ca Leu Arg His Lys Gl 2045	g cca ggc ccc n Pro Gly Pro	atg aag ctc a Met Lys Leu S 2050	igc gcg gag gct Ser Ala Glu Ala 2055	gcc 6796 Ala
cat ctc cca cat ct His Leu Pro His Le 2060	g cgg cca ctg u Arg Pro Leu 206	Pro Glu Ser G	eag ccc tca tcc ln Pro Ser Ser 2070	agc 6844 Ser
cca ctc ctc cag ac Pro Leu Leu Gln Th 2075		Ile Lys Gly H		
acc ctg gct cag ca Thr Leu Ala Gln Hi 2090				
cac cac ccg cag ca His His Pro Gln Gl 21	n Leu Ser Gly	ccc ctt ccc g Pro Leu Pro A 2115	gcc cct ctc tac Ala Pro Leu Tyn 212	Ser
ttt ccc gga gcc ag Phe Pro Gly Ala Se 2125	c tgc cct gtc r Cys Pro Val	ctg gat ctt c Leu Asp Leu A 2130	ege ege eea eee Arg Arg Pro Pro 2135	agt 7036 Ser
gac ctc tac ctc cc Asp Leu Tyr Leu Pr 2140	a ccc ccc gac o Pro Pro Asp 214	His Gly Thr E	cca gcc cgg gga Pro Ala Arg Gly 2150	a tcc 7084 7 Ser
ccc cac agt gaa gg Pro His Ser Glu Gl 2155		Ser Pro Glu F		
gtc ctg ggc agc ag Val Leu Gly Ser Se 2170	c gag gat gcc r Glu Asp Ala 2175	att gag cct g Ile Glu Pro V 2180	gtg tcc cca cca Val Ser Pro Pro	a gag 7180 o Glu 2185
ggc atg act gag co Gly Met Thr Glu Pr 21	a gga cat gct o Gly His Ala 90	cgg agc act of Arg Ser Thr A	gcg tac cca ctg Ala Tyr Pro Let 220	ı Leu
tat cga gac ggg ga Tyr Arg Asp Gly Gl 2205	a cag ggc gag u Gln Gly Glu	ccc agg atg o Pro Arg Met 0 2210	ggt cta gag tc Gly Leu Glu Se 2215	c cca 7276 c Pro

ggc aac acc agc cag ccg cca acc ttc ttc agt aag ctg act gag agc Gly Asn Thr Ser Gln Pro Pro Thr Phe Phe Ser Lys Leu Thr Glu Ser 2220 2225 2230	7324
aac tcc gcc atg gtg aag tcg aag aag cag gag atc aac aag aaa ctc Asn Ser Ala Met Val Lys Ser Lys Lys Gln Glu Ile Asn Lys Lys Leu 2235 2240 2245	7372
aac acc cac aac cgg aac gag cca gaa tac aat att ggc cag cct gggAsn Thr His Asn Arg Asn Glu Pro Glu Tyr Asn Ile Gly Gln Pro Gly2250225522602265	7420
acg gaa atc ttc aac atg ccc gcc atc act gga gca ggc ctt atg acc Thr Glu Ile Phe Asn Met Pro Ala Ile Thr Gly Ala Gly Leu Met Thr 2270 2275 2280	7468
tgt aga agc cag gcg gtg caa gaa cac gcc agc acc aac atg ggg cta Cys Arg Ser Gln Ala Val Gln Glu His Ala Ser Thr Asn Met Gly Leu 2285 2290 2295	7516
gag gcc att att aga aag gca ctc atg ggt aaa tat gat cag tgg gaa Glu Ala Ile Ile Arg Lys Ala Leu Met Gly Lys Tyr Asp Gln Trp Glu 2300 2305 2310	7564
gag ccc ccg ccg ctc ggc gcc aat gct ttt aac cct ctg aat gcc agc Glu Pro Pro Pro Leu Gly Ala Asn Ala Phe Asn Pro Leu Asn Ala Ser 2315 2320 2325	7612
gcc agt ctg ccc gct gct gct atg ccc ata acc act gct gac gga cgg Ala Ser Leu Pro Ala Ala Ala Met Pro Ile Thr Thr Ala Asp Gly Arg 2330 2345	7660
agt gac cac gca ctc acc tcg cca ggt gga ggt ggg aaa gcc aag gtc Ser Asp His Ala Leu Thr Ser Pro Gly Gly Gly Gly Lys Ala Lys Val 2350 2355 2360	7708
tct ggc aga cct agc agc cga aaa gcc aag tcg cca gca cca ggc cta Ser Gly Arg Pro Ser Ser Arg Lys Ala Lys Ser Pro Ala Pro Gly Leu 2365 2370 2375	7756
gcg tcc gga gac cga ccc cct tct gtc tcc tca gta cac tca gag ggg Ala Ser Gly Asp Arg Pro Pro Ser Val Ser Ser Val His Ser Glu Gly 2380 2385 2390	7804
gac tgc aat cgc cga aca cca ctc acc aac cgt gtg tgg gag gac cgg Asp Cys Asn Arg Arg Thr Pro Leu Thr Asn Arg Val Trp Glu Asp Arg 2395 2400 2405	7852
ccc tca tct gca ggg tcc acg cca ttc ccc tac aac cct ttg att atgPro Ser Ser Ala Gly Ser Thr Pro Phe Pro Tyr Asn Pro Leu Ile Met2410241524202425	7900
agg cta cag gca ggt gtc atg gcc tcc ccg ccc cca cct ggc ctt gcg Arg Leu Gln Ala Gly Val Met Ala Ser Pro Pro Pro Pro Gly Leu Ala 2430 2435 2440	7948
gca ggc agc ggg ccc cta gct ggt ccc cac cac gcc tgg gat gag gag Ala Gly Ser Gly Pro Leu Ala Gly Pro His His Ala Trp Asp Glu Glu 2445 2450 2455	7996

ccc aag cca ctg ctg tgt tca cag tat gag aca ctc tcg gac agc g Pro Lys Pro Leu Leu Cys Ser Gln Tyr Glu Thr Leu Ser Asp Ser G 2460 2465 2470										
tga ccacggattg ggggggagcg gtgccaggtc ccgcacaagg cagaagcagc *	8097									
ccagcatgga gcagacagct gctgactccc gagactgagg aaggagcccc tgagtc tgcgcgtcca tccgtncgtc gtncactcat ctgtccatcc agagctggca ttctgc ctaaagcctt aactaagact tccaccccgg gctggccctg cgcagtgacc ttacac gggattgttt accttggtgc tcganaaggg ggagtggaca ggaaggggag ggacaa ggccangagg ggggggaca ancaattcgt gtgtcaagtc gcactcntgc t	ectgt 8217 etcag 8277									
<210> 7 <211> 2473 <212> PRT <213> Mus musculus										
<400> 7										
Met Ser Gly Ser Thr Gln Pro Val Ala Gln Thr Trp Arg Ala Ala G	·lu									
Pro Arg Tyr Pro Pro His Gly Ile Ser Tyr Pro Val Gln Ile Ala A	rg									
Ser His Thr Asp Val Gly Leu Leu Glu Tyr Gln His His Pro Arg A	sp									
Tyr Thr Ser His Leu Ser Pro Gly Ser Ile Ile Gln Pro Gln Arg A	rg									
Arg Pro Ser Leu Leu Ser Glu Phe Gln Pro Gly Ser Glu Arg Ser G	iln 30									
Glu Leu His Leu Arg Pro Glu Ser Arg Thr Phe Leu Pro Glu Leu G 85 90 95										
Lys Pro Asp Ile Glu Phe Thr Glu Ser Lys Arg Pro Arg Leu Glu L	ieu									
Leu Pro Asp Thr Leu Leu Arg Pro Ser Pro Leu Leu Ala Thr Gly G	;ln									
Pro Ser Gly Ser Glu Asp Leu Thr Lys Asp Arg Ser Leu Ala Gly L	ıys									
Leu Glu Pro Val Ser Pro Pro Ser Pro Pro His Ala Asp Pro Glu L										
Glu Leu Ala Pro Ser Arg Leu Ser Lys Glu Glu Leu Ile Gln Asn M	160 Net									
165 170 175 Asp Arg Val Asp Arg Glu Ile Thr Met Val Glu Gln Gln Ile Ser L	ys									
180 185 190										
Leu Lys Lys Gln Gln Gln Leu Glu Glu Glu Ala Ala Lys Pro P 195 200 205										
Glu Pro Glu Lys Pro Val Ser Pro Pro Pro Ile Glu Ser Lys His A 210 215 220										
Ser Leu Val Gln Ile Ile Tyr Asp Glu Asn Arg Lys Lys Ala Glu A										
	240									
Ala His Arg Ile Leu Glu Gly Leu Gly Pro Gln Val Glu Leu Pro L 245 250 255										
Tyr Asn Gln Pro Ser Asp Thr Arg Gln Tyr His Glu Asn Ile Lys I 260 265 270										
Asn Gln Ala Met Arg Lys Lys Leu Ile Leu Tyr Phe Lys Arg Arg A 275 280 285	sn.									
His Ala Arg Lys Gln Trp Glu Gln Arg Phe Cys Gln Arg Tyr Asp G 290 295 300	ln									
Leu Met Glu Ala Trp Glu Lys Lys Val Glu Arg Ile Glu Asn Asn F	ro,									

310 315 305 Arg Arg Arg Ala Lys Glu Ser Lys Val Arg Glu Tyr Tyr Glu Lys Gln 325 330 Phe Pro Glu Ile Arq Lys Gln Arq Glu Leu Gln Glu Arg Met Gln Ser 345 Arg Val Gly Gln Arg Gly Ser Gly Leu Ser Met Ser Ala Ala Arg Ser Glu His Glu Val Ser Glu Ile Ile Asp Gly Leu Ser Glu Gln Glu Asn 375 380 Leu Glu Lys Gln Met Arg Gln Leu Ala Val Ile Pro Pro Met Leu Tyr 390 395 Asp Ala Asp Gln Gln Arg Ile Lys Phe Ile Asn Met Asn Gly Leu Met 405 410 Asp Asp Pro Met Lys Val Tyr Lys Asp Arg Gln Val Thr Asn Met Trp 420 425 Ser Glu Gln Glu Arg Asp Thr Phe Arg Glu Lys Phe Met Gln His Pro 440 Lys Asn Phe Gly Leu Ile Ala Ser Phe Leu Glu Arg Lys Thr Val Ala 455 Glu Cys Val Leu Tyr Tyr Tyr Leu Thr Lys Lys Asn Glu Asn Tyr Lys 470 475 Ser Leu Val Arg Arg Ser Tyr Arg Arg Gly Lys Ser Gln Gln 490 Gln Gln Gln Gln Gln Gln Gln Gln Gln Het Ala Arg Ser Ser 505 Gln Glu Glu Lys Glu Glu Lys Glu Lys Glu Lys Glu Ala Asp Lys Glu 520 Glu Glu Lys Gln Asp Ala Glu Asn Glu Lys Glu Glu Leu Ser Lys Glu 535 Lys Thr Asp Asp Thr Ser Gly Glu Asp Asn His Glu Lys Glu Ala Val 550 Ala Ser Lys Gly Arg Lys Thr Ala Asn Ser Gln Gly Arg Arg Lys Gly 565 570 Arg Ile Thr Arg Ser Met Ala Asn Glu Ala Asn His Glu Glu Thr Ala 585 Thr Pro Gln Gln Ser Ser Glu Leu Ala Ser Met Glu Met Asn Glu Ser 600 Ser Arg Trp Thr Glu Glu Glu Met Glu Thr Ala Lys Lys Gly Leu Leu 615 Glu His Gly Arg Asn Trp Ser Ala Ile Ala Arg Met Val Gly Ser Lys 635 630 Thr Val Ser Gln Cys Lys Asn Phe Tyr Phe Asn Tyr Lys Lys Arg Gln 650 645 Asn Leu Asp Glu Ile Leu Gln Gln His Lys Leu Lys Met Glu Lys Glu 660 665 Arg Asn Ala Arg Arg Lys Lys Lys Thr Pro Ala Ala Ala Ser Glu 680 Glu Thr Ala Phe Pro Pro Ala Ala Glu Asp Glu Glu Met Glu Ala Ser 695 700 Gly Ala Ser Ala Asn Glu Glu Glu Leu Ala Glu Glu Ala Glu Ala Ser 710 715 Gln Ala Ser Gly Asn Glu Val Pro Arg Val Gly Glu Cys Ser Gly Pro 725 730 Ala Ala Val Asn Asn Ser Ser Asp Thr Glu Ser Val Pro Ser Pro Arg 740 745 Ser Glu Ala Met Lys Asp Thr Gly Pro Lys Pro Thr Gly Thr Glu Ala 760 765 Leu Pro Ala Ala Thr Gln Pro Pro Val Pro Pro Pro Glu Glu Pro Ala 775 780 Val Ala Pro Ala Glu Pro Ser Pro Val Pro Asp Ala Ser Gly Pro Pro

795 790 Ser Pro Glu Pro Ser His His Leu Pro His Pro Arg Leu Leu Trp Thr 805 810 Arg Met Asn Lys Lys Pro Arg Leu Leu Gln Leu Pro Arg Gln Arg Met 825 Pro Arg Ser Arg Ser Leu Arg Pro Arg Arg Ser Met Trp Glu Lys Pro Glu Glu Pro Glu Ala Ser Glu Glu Pro Pro Glu Ser Val Lys Ser Asp 855 His Lys Glu Glu Thr Glu Glu Glu Pro Glu Asp Lys Ala Lys Gly Thr 870 875 Glu Ala Ile Glu Thr Val Ser Glu Ala Pro Leu Lys Val Glu Glu Ala 890 885 Gly Ser Lys Ala Ala Val Thr Lys Gly Ser Ser Ser Gly Ala Thr Gln 905 900 Asp Ser Asp Phe Ser Ala Thr Cys Ser Ala Asp Glu Val Asp Glu Pro 920 Glu Gly Gly Asp Lys Gly Arg Leu Leu Ser Pro Arg Pro Ser Leu Leu 935 940 Thr Pro Ala Gly Asp Pro Arg Ala Ser Thr Ser Pro Gln Lys Pro Leu 955 950 Asp Leu Lys Gln Leu Lys Gln Arg Ala Ala Ile Pro Pro Ile Gln 970 Val Thr Lys Val His Glu Pro Pro Arg Glu Asp Thr Val Pro Pro Lys 985 990 Pro Val Pro Pro Val Pro Pro Pro Thr Gln His Leu Gln Pro Glu Gly 1000 1005 Asp Val Ser Gln Gln Ser Gly Gly Ser Pro Arg Gly Lys Ser Arg Ser 1015 1020 Pro Val Pro Pro Ala Glu Lys Glu Ala Glu Lys Pro Ala Phe Pro 1030 1035 1040 Ala Phe Pro Thr Glu Gly Pro Lys Leu Pro Thr Glu Pro Pro Arg Trp 1045 1050 1055 Ser Ser Gly Leu Pro Phe Pro Ile Pro Pro Arg Glu Val Ile Lys Thr 1060 1065 Ser Pro His Ala Ala Asp Pro Ser Ala Phe Ser Tyr Thr Pro Pro Gly 1075 1080 1085 His Pro Leu Pro Leu Gly Leu His Asp Ser Ala Arg Pro Val Leu Pro 1090 1095 1100 Arg Pro Pro Ile Ser Asn Pro Pro Pro Leu Ile Ser Ser Ala Lys His 1105 1110 1115 1120 Pro Gly Val Leu Glu Arg Gln Leu Gly Ala Ile Ser Gln Gln Gly Met 1125 1130 Ser Val Gln Leu Arg Val Pro His Ser Glu His Ala Lys Ala Pro Met 1140 1145 Gly Pro Leu Thr Met Gly Leu Pro Leu Ala Val Asp Pro Lys Lys Leu 1155 1160 1165 Gly Thr Ala Leu Gly Ser Ala Thr Ser Gly Ser Ile Thr Lys Gly Leu 1170 1175 1180 Pro Ser Thr Arg Ala Ala Asp Gly Pro Ser Tyr Arg Gly Ser Ile Thr 1190 1195 His Gly Thr Pro Ala Asp Val Leu Tyr Lys Gly Thr Ile Ser Arg Ile 1205 1210 Val Gly Glu Asp Ser Pro Ser Arg Leu Asp Arg Ala Arg Glu Asp Thr 1220 1225 1230 Leu Pro Lys Gly His Val Ile Tyr Glu Gly Lys Lys Gly His Val Leu 1235 1240 1245 Ser Tyr Glu Gly Gly Met Ser Val Ser Gln Cys Ser Lys Glu Asp Gly 1260 1255 Arg Ser Ser Ser Gly Pro Pro His Glu Thr Ala Ala Pro Lys Arg Thr

1270 1275 Tyr Asp Met Met Glu Gly Arg Val Gly Arg Thr Val Thr Ser Ala Ser 1290 1295 1285 Ile Glu Gly Leu Met Gly Arg Ala Ile Pro Glu Gln His Ser Pro His 1305 1300 Leu Lys Glu Gln His His Ile Arg Gly Ser Ile Thr Gln Gly Ile Pro 1315 1320 1325 Arg Ser Tyr Val Glu Ala Gln Glu Asp Tyr Leu Arg Arg Glu Ala Lys 1335 1340 Leu Leu Lys Arg Glu Gly Thr Pro Pro Pro Pro Pro Pro Pro Arg Asp 1345 1350 1355 Leu Thr Glu Thr Tyr Lys Pro Arg Pro Leu Asp Pro Leu Gly Pro Leu 1365 1370 1375 Lys Leu Lys Pro Thr His Glu Gly Val Val Ala Thr Val Lys Glu Ala 1380 1385 1390 Gly Arg Ser Ile His Glu Ile Pro Arg Glu Glu Leu Arg Arg Thr Pro 1395 1400 1405 Glu Leu Pro Leu Ala Pro Arg Pro Leu Lys Glu Gly Ser Ile Thr Gln 1415 1420 Gly Thr Pro Leu Lys Tyr Asp Ser Gly Ala Pro Ser Thr Gly Thr Lys 1430 1435 1440 Lys His Asp Val Arg Ser Ile Ile Gly Ser Pro Gly Arg Pro Phe Pro 1445 1450 1455 Ala Leu His Pro Leu Asp Ile Met Ala Asp Ala Arg Ala Leu Glu Arg 1460 1465 1470 Ala Cys Tyr Glu Glu Ser Leu Lys Ser Arg Ser Gly Thr Ser Ser Gly 1475 1480 1485 Ala Gly Gly Ser Ile Thr Arg Gly Ala Pro Val Val Val Pro Glu Leu 1490 1495 1500 Gly Lys Pro Arg Gln Ser Pro Leu Thr Tyr Glu Asp His Gly Ala Pro 1510 1515 Phe Thr Ser His Leu Pro Arg Gly Ser Pro Val Thr Thr Arg Glu Pro 1525 1530 1535 Thr Pro Arg Leu Gln Glu Gly Ser Leu Leu Ser Ser Lys Ala Ser Gln 1540 1545 1550 Asp Arg Lys Leu Thr Ser Thr Pro Arg Glu Ile Ala Lys Ser Pro His 1555 1560 1565 Ser Thr Val Pro Glu His His Pro His Pro Ile Ser Pro Tyr Glu His 1570 1575 1580 Leu Leu Arg Gly Val Thr Gly Val Asp Leu Tyr Arg Gly His Ile Pro 1585 1590 1595 Leu Ala Phe Asp Pro Thr Ser Ile Pro Arg Gly Ile Pro Leu Glu Ala 1605 1610 Ala Ala Ala Tyr Tyr Leu Pro Arg His Leu Ala Pro Ser Pro Thr 1620 1625 1630 Tyr Pro His Leu Tyr Pro Pro Tyr Leu Ile Arg Gly Tyr Pro Asp Thr 1635 1640 1645 Ala Ala Leu Glu Asn Arg Gln Thr Ile Ile Asn Asp Tyr Ile Thr Ser 1650 1655 1660 Gln Gln Met His His Asn Ala Ala Ser Ala Met Ala Gln Arg Ala Asp 1665 1670 1675 Met Leu Arg Gly Leu Ser Pro Arg Glu Ser Ser Leu Ala Leu Asn Tyr 1685 1690 1695 Ala Ala Gly Pro Arg Gly Ile Ile Asp Leu Ser Gln Val Pro His Leu 1700 1705 1710 Pro Val Leu Val Pro Pro Thr Pro Gly Thr Pro Ala Thr Ala Ile Asp 1715 1720 1725 Arq Leu Ala Tyr Leu Pro Thr Ala Pro Pro Pro Phe Ser Ser Arg His 1740 1735 Ser Ser Pro Leu Ser Pro Gly Gly Pro Thr His Leu Ala Lys Pro

36	
1745 1750 1755	1760
Thr Ala Thr Ser Ser Ser Glu Arg Glu Arg Glu Arg Glu Arg Glu 1765 1770 177	
Asp Lys Ser Ile Leu Thr Ser Thr Thr Thr Val Glu His Ala Pro 1780 1785 1790	Ile
Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly Ala Gly Gly Ser Ser 1795 1800 1805	Arg
Pro Ala Ser His Thr His Gln His Ser Pro Ile Ser Pro Arg Thr 1810 1815 1820	Gln
Asp Ala Leu Gln Gln Arg Pro Ser Val Leu His Asn Thr Ser Met 1825 1830 1835	Lys 1840
Gly Val Val Thr Ser Val Glu Pro Gly Thr Pro Thr Val Leu Arg 1845 1850 185	
Ala Arg Ser Thr Ser Thr Ser Ser Pro Val Arg Pro Ala Ala Thr 1860 1865 1870	Phe
Pro Pro Ala Thr His Cys Pro Leu Gly Gly Thr Leu Glu Gly Val 1875 1880 1885	Tyr
Pro Thr Leu Met Glu Pro Val Leu Leu Pro Lys Glu Thr Ser Arg 1890 1895 1900	Val
Ala Arg Pro Glu Arg Ala Arg Val Asp Ala Gly His Ala Phe Leu 1905 1910 1915	Thr 1920
Lys Pro Pro Gly Arg Glu Pro Ala Ser Ser Pro Ser Lys Ser Ser 1925 1930 193	
Pro Arg Ser Leu Ala Pro Pro Ser Ser Ser His Thr Ala Ile Ala 1940 1945 1950	
Thr Pro Ala Lys Asn Leu Ala Pro His His Ala Ser Pro Asp Pro 1955 1960 1965	Pro
Ala Pro Thr Ser Ala Ser Asp Leu His Arg Glu Lys Thr Gln Ser 1970 1975 1980	Lys
Pro Phe Ser Ile Gln Glu Leu Glu Leu Arg Ser Leu Gly Tyr His 1985 1990 1995	2000
Gly Ala Gly Tyr Ser Pro Asp Gly Val Glu Pro Ile Ser Pro Val 2005 2010 201	.5
Ser Pro Ser Leu Thr His Asp Lys Gly Leu Ser Lys Pro Leu Glu 2020 2025 2030	
Leu Glu Lys Ser His Leu Glu Gly Glu Leu Arg His Lys Gln Pro 2035 2040 2045	
Pro Met Lys Leu Ser Ala Glu Ala Ala His Leu Pro His Leu Arg 2050 2055 2060	Pro
Leu Pro Glu Ser Gln Pro Ser Ser Pro Leu Leu Gln Thr Ala 2065 2070 2075	2080
Gly Ile Lys Gly His Gln Arg Val Val Thr Leu Ala Gln His Ile 2085 2090 209	5
Glu Val Ile Thr Gln Asp Tyr Thr Arg His His Pro Gln Gln Leu 2100 2105 2110	
Gly Pro Leu Pro Ala Pro Leu Tyr Ser Phe Pro Gly Ala Ser Cys 2115 2120 2125	
Val Leu Asp Leu Arg Arg Pro Pro Ser Asp Leu Tyr Leu Pro Pro 2130 2135 2140	
Asp His Gly Thr Pro Ala Arg Gly Ser Pro His Ser Glu Gly Gly 2145 2150 2155	2160
Arg Ser Pro Glu Pro Ser Lys Thr Ser Val Leu Gly Ser Ser Glu 2165 2170 217	'5
Ala Ile Glu Pro Val Ser Pro Pro Glu Gly Met Thr Glu Pro Gly 2180 2185 2190	
Ala Arg Ser Thr Ala Tyr Pro Leu Leu Tyr Arg Asp Gly Glu Glr 2195 2200 2205	
Glu Pro Arg Met Gly Leu Glu Ser Pro Gly Asn Thr Ser Gln Pro 2210 2215 2220	
Thr Phe Phe Ser Lys Leu Thr Glu Ser Asn Ser Ala Met Val Lys	Ser

2225	2230	2235	2240
Lys Lys Gln Glu Ile 224!		Asn Thr His Asn 2250	Arg Asn Glu 2255
Pro Glu Tyr Asn Ile 2260	Gly Gln Pro Gly 226		Asn Met Pro 2270
Ala Ile Thr Gly Ala 2275	Gly Leu Met Thr 2280	Cys Arg Ser Gln 2285	Ala Val Gln
Glu His Ala Ser Thr 2290	2295	2300	
Leu Met Gly Lys Tyr 2305	Asp Gln Trp Glu 2310	Glu Pro Pro Pro 2315	Leu Gly Ala 2320
Asn Ala Phe Asn Pro	Leu Asn Ala Ser		
Met Pro Ile Thr Thr 2340	Ala Asp Gly Arg 234		Leu Thr Ser 2350
Pro Gly Gly Gly Gly 2355			Ser Ser Arg
Lys Ala Lys Ser Pro	Ala Pro Gly Leu	Ala Ser Gly Asp	
2370 Ser Val Ser Ser Val	2375 His Ser Glu Gly	2380 Asp Cys Asn Arg	_
2385 Leu Thr Asn Arg Val	2390 Trp Glu Asp Arg	2395 Pro Ser Ser Ala	2400 Glv Ser Thr
240	5	2410	2415
Pro Phe Pro Tyr Asn 2420	242	5	2430
Ala Ser Pro Pro Pro 2435	Pro Gly Leu Ala 2440	Ala Gly Ser Gly 2445	
Gly Pro His His Ala 2450	Trp Asp Glu Glu 2455	Pro Lys Pro Leu 2460	Leu Cys Ser
Gln Tyr Glu Thr Leu 2465			
<210> 8			
<211> 7465			
<212> DNA <213> Mus musculus			
<220>			
<221> CDS <222> (363)(7124)		
<221> misc_feature			
<222> (1) (7465) <223> n = A,T,C or	G		
<400> 8			
ggcacgaggg cagcgcag ccatgcgcgc cccgcagc			
gaccgcaggc tctcagcc	cg gacccgccgc at	cctcgagc ccgatcgg	cg ccgtagcccg 180
gcgccagcgc ccggtgcc ctggtggaag ttcgtggc	ac ctgtgacgag gt	cacctgcc agcagatg	ac cgagaccagc 300
ccttagtcct aggtgtgg cc atg tca gga tcc			
Met Ser Gly Ser	Thr Gln Pro Val	Ala Gln Thr Trp A	JJ J J
_			
gag ccc cgc tac cca Glu Pro Arg Tyr Pro	ccc cat ggc atc Pro His Gly Ile	Ser Tyr Pro Val	cag ata gcc 455 Gln Ile Ala
20		25	30

									-	00						
			_		_			_	_		_		cgc Arg 45	_		503
	_						_	_	_		_	_	ctg Leu		_	551
		_								_		_	cag Gln			599
													aag Lys			647
_					_	_			_	_		_	aag Lys			695
													cgg Arg 125			743
													glà aaa			791
													att Ile			839
_			_			_		_	_	_	_	_	ctg Leu			887
													aag Lys			935
													aag Lys 205			983
													ttc Phe			1031
													tca Ser			1079
													ctg Leu			1127
aag Lys	aat Asn	gaa Glu	aat Asn	tac Tyr 260	aag Lys	agc Ser	ttg Leu	gtg Val	agg Arg 265	cgg Arg	agc Ser	tat Tyr	cgg Arg	cgc Arg 270	cgt Arg	1175

				-	,,			
		cag Gln						1223
		agc Ser						1271
		gag Glu						1319
		gag Glu 325						1367
		gtg Val						1415
		ggc Gly						1463
		gcc Ala						1511
		agt Ser						1559
		ctg Leu 405						1607
		aag Lys						1655
		cag Gln						1703
		gag Glu						1751
		gag Glu						1799
		tca Ser 485						1847
		tca Ser						1895

								łU					
									agc Ser				1943
									gac Asp				1991
									cag Gln 555				2039
									ccc Pro				2087
-	_	_							cat His				2135
			_		 _		_		ccc Pro	 _		_	2183
		_	_	 _		_	_	-	ctg Leu	 _		_	2231
									tct Ser 635				2279
									gag Glu				2327
									gtg Val				2375
									gtg Val				2423
									gcc Ala				2471
									ggc Gly 715				2519
			_		_	_		_	ccc Pro	 _	_		2567
									aag Lys				2615

									4	41						
_					gtc Val		_	-							_	2663
	_			_	cca Pro	_							_	_		2711
	_				gac Asp			_	_	_			_		_	2759
			_	_	cca Pro 805											2807
	_			_	gct Ala							_		_		2855
			_		tca Ser	_		_								2903
			_		tcc Ser			_	_	_			_			2951
					cac His											2999
		_	_		cgt Arg 885										_	3047
		_	_		ccc Pro		_				_	_		_		3095
	_	_		_	tca Ser	_	_		_							3143
					ggc Gly											3191
_		_	_	_	Gly 999		_	_								3239
		_			ccc Pro 965	_			_	_	_					3287
					cac His											3335

acc atc agc agg atc gtc ggt gag gac agc cca agt cgc ctt gac cgg Thr Ile Ser Arg Ile Val Gly Glu Asp Ser Pro Ser Arg Leu Asp Arg 995 1000 1005	3383
gca cga gag gac acc ctg ccc aag ggc cat gtc atc tat gag ggc aag Ala Arg Glu Asp Thr Leu Pro Lys Gly His Val Ile Tyr Glu Gly Lys 1010 1015 1020	3431
aaa ggc cac gtc cta tcc tat gaa ggt ggt atg tcc gtg tca cag tgc Lys Gly His Val Leu Ser Tyr Glu Gly Gly Met Ser Val Ser Gln Cys 1025 1030 1035	3479
tct aag gag gat gga agg agc agc tcg ggc cca ccc cat gag act gcc Ser Lys Glu Asp Gly Arg Ser Ser Ser Gly Pro Pro His Glu Thr Ala 1040 1045 1050 1055	3527
gcc cct aaa cgc acc tat gac atg atg gag ggc cgt gta ggc agg act Ala Pro Lys Arg Thr Tyr Asp Met Met Glu Gly Arg Val Gly Arg Thr 1060 1065 1070	3575
gtc acc tca gcc agc ata gag gga ctc atg ggc cgc gcc atc cct gag Val Thr Ser Ala Ser Ile Glu Gly Leu Met Gly Arg Ala Ile Pro Glu 1075 1080 1085	3623
cag cac agc ccc cac ctc aag gag cag cat cac atc cga ggc tcc atc Gln His Ser Pro His Leu Lys Glu Gln His His Ile Arg Gly Ser Ile 1090 1095 1100	3671
acg caa ggc atc ccg agg tcc tat gtg gag gcg cag gag gac tac tta Thr Gln Gly Ile Pro Arg Ser Tyr Val Glu Ala Gln Glu Asp Tyr Leu 1105 1110 1115	3719
cgg cgg gag gcc aag ctc ttg aag cga gaa ggg aca cca ccc cca Arg Arg Glu Ala Lys Leu Leu Lys Arg Glu Gly Thr Pro Pro Pro 1120 1125 1130 1135	3767
cca cca cct cgg gac ctg act gag acc tac aag ccc cgg ccc ctg gac Pro Pro Pro Arg Asp Leu Thr Glu Thr Tyr Lys Pro Arg Pro Leu Asp 1140 1145 1150	3815
cct ctg ggt ccc ctg aag ctg aag ccg act cac gag ggt gtg gta gca Pro Leu Gly Pro Leu Lys Leu Lys Pro Thr His Glu Gly Val Val Ala 1155 1160 1165	3863
act gtg aag gag gcg ggc cgc tct atc cat gag atc ccg aga gag gag Thr Val Lys Glu Ala Gly Arg Ser Ile His Glu Ile Pro Arg Glu Glu 1170 1175 1180	3911
ctg cgc cgc aca cct gag cta ccc ctg gca cca cgg cct ctg aag gag Leu Arg Arg Thr Pro Glu Leu Pro Leu Ala Pro Arg Pro Leu Lys Glu 1185 1190 1195	3959
ggt tcc atc acc cag ggc acc cca ctc aag tac gac tct ggg gca ccc Gly Ser Ile Thr Gln Gly Thr Pro Leu Lys Tyr Asp Ser Gly Ala Pro 1200 1205 1210 1215	4007
tcc act ggc acc aag aaa cac gac gtg cgc tcc atc atc ggc agc ccc Ser Thr Gly Thr Lys Lys His Asp Val Arg Ser Ile Ile Gly Ser Pro 1220 1225 1230	4055

								4	13						
ggc cgg Gly Arg			Pro					Leu					Asp		4103
cgg gca Arg Ala		Glu					Glu					Ser			4151
ggg acc Gly Thi 126	Ser					Gly					Gly				4199
gtc gtg Val Val 1280					Lys					Pro					4247
gac cac Asp His				Phe					Pro					Val	4295
acc acc			Pro	_				Gln					Leu		4343
agc aag Ser Lys		Ser					Leu					Arg			4391
gcc aag Ala Lys 134	s Ser	cca Pro	cac His	agc Ser	act Thr 1350	Val	ccc Pro	gag Glu	cac His	cac His 1355	Pro	cac His	ccc Pro	atc Ile	4439
tcc ccc Ser Pro 1360					Leu					Gly					4487
cgt ggt Arg Gly				Leu					Thr					Gly	4535
atc cct Ile Pro	ctg Leu	gaa Glu 139!	Ala	gca Ala	gcc Ala	gca Ala	gcc Ala 1400	Tyr	tac Tyr	ctg Leu	ccc Pro	cgg Arg 1409	His	ttg Leu	4583
gcc ccc Ala Pro		Pro					Leu					Leu			4631
ggc tac Gly Tyr 142	r Pro					Leu					Thr				4679
gac tac Asp Ty: 1440					Gln					Ala					4727
gcc caq Ala Gli				Met					Ser					Ser	4775

			44		
ctg gcc ctc aat Leu Äla Leu Asn 1479	Tyr Ala Ala				
caa gtg cca cac Gln Val Pro His 1490				o Gly Thr Pro	
gcc acc gcc atc Ala Thr Ala Ile 1505		Ala Tyr L			
ttc agc agc cgc Phe Ser Ser Arg 1520					
cac cta gct aaa His Leu Ala Lys		Thr Ser Se			
cgt gag cgg gaa Arg Glu Arg Glu 1559	Arg Asp Lys	tcc atc c Ser Ile L 1560	tc acg tct ac eu Thr Ser Th	c act aca gtg r Thr Thr Val 1565	5063
gag cat gca ccc Glu His Ala Pro 1570			hr Glu Gln Se		
ggg ggc agc agc Gly Gly Ser Ser 1585	cgc ccc gcc Arg Pro Ala 159	Ser His T	cc cac cag ca hr His Gln Hi 1595	c tcg ccc atc s Ser Pro Ile	5159
tcc ccc cgg acc Ser Pro Arg Thr 1600	cag gac gcc Gln Asp Ala 1605	ttg cag c Leu Gln G	ag agg ccc ag ln Arg Pro Se 1610	t gtg ctg cac r Val Leu His 161	
aac acg agc atg Asn Thr Ser Met	aag ggc gtg Lys Gly Val 1620	Val Thr S	cc gtg gaa co er Val Glu Pr .625	c ggc acg ccc o Gly Thr Pro 1630	5255
acg gtc ctg agg Thr Val Leu Arg 163	Trp Ala Arg	tcc acc t Ser Thr S 1640	cc acc tct to er Thr Ser Se	g cct gtc cgc r Pro Val Arg 1645	5303 T
cca gct gcc aca Pro Ala Ala Thr 1650			is Cys Pro Le		
ctt gaa ggg gtc Leu Glu Gly Val 1665		Leu Met G			
gag acc tct cgg Glu Thr Ser Arg 1680					7
cat gcc ttt ctt His Ala Phe Leu		Pro Gly A			

			45		
agc aag agc tcc Ser Lys Ser Ser 171	Glu Pro Arg				5543
aca gcc atc gcc Thr Ala Ile Ala 1730				His His Ala	5591
agt ccg gac ccg Ser Pro Asp Pro 1745		Thr Ser Al			5639
aag act caa agt Lys Thr Gln Ser 1760					5687
ctg ggt tac cac Leu Gly Tyr His		Gly Tyr Se			5735
atc agc ccg gtg Ile Ser Pro Val 179	Ser Ser Pro				5783
aaa cct ctg gaa Lys Pro Leu Glu 1810				y Glu Leu Arg	5831
cac aag cag cca His Lys Gln Pro 1825		Lys Leu Se			5879
cca cat ctg cgg Pro His Leu Arg 1840					5927
ctc cag act gcc Leu Gln Thr Ala		Lys Gly Hi			5975
gct cag cac atc Ala Gln His Ile 187	Ser Glu Val				6023
ccg cag cag ctc Pro Gln Gln Leu 1890				r Ser Phe Pro	6071
gga gcc agc tgc Gly Ala Ser Cys 1905		Asp Leu Ar			6119
tac ctc cca ccc Tyr Leu Pro Pro 1920					6167
agt gaa ggg ggc Ser Glu Gly Gly	aaa agg tcc Lys Arg Ser 1940	Pro Glu Pi	cc agc aaa aca ro Ser Lys Th: 945	a tcg gtc ctg r Ser Val Leu 1950	6215

		40		
	gat gcc att gag Asp Ala Ile Gli 5			Gly Met
	cat gct cgg ago His Ala Arg Sen 197	r Thr Ala Tyr		
	ggc gag ccc agg Gly Glu Pro Arg 1990			
	cca acc ttc ttc Pro Thr Phe Phe 2005		ı Thr Glu Ser	
	tcg aag aag cag Ser Lys Lys Glr 2020			
	gag cca gaa tao Glu Pro Glu Tyi 5			Thr Glu
	ccc gcc atc act Pro Ala Ile Th 205	Gly Ala Gly		
	caa gaa cac gco Gln Glu His Ala 2070			
	gca ctc atg ggt Ala Leu Met Gly 2085		Gln Trp Glu	
	gcc aat gct ttt Ala Asn Ala Phe 2100			
ctg ccc gct gct Leu Pro Ala Ala 211	gct atg ccc ata Ala Met Pro Ile 5	a acc act gct Thr Thr Ala 2120	gac gga cgg Asp Gly Arg 212	Ser Asp
	tcg cca ggt gga Ser Pro Gly Gly 213	dly Gly Lys		
	cga aaa gcc aag Arg Lys Ala Lys 2150			-
	cct tct gtc tcc Pro Ser Val Ser 2165		Ser Glu Gly	
	cca ctc acc aac Pro Leu Thr Asn 2180			

									-	+/						
				Thr					Asn					agg Arg 5		6983
			Val					Pro					Ala	gca Ala		7031
		Pro					His					Glu		ccc Pro		7079
	Leu				cag Gln 2245	Tyr				_	Āsp	_		tga *		7124
gcag tccg aact acct gggg <210 <211 <212	gacaggtncgcaaggggggggggggggggggggggggggg	get get get get get tege tege tege tege	getga gtnea cecac cegar ancaa	actor actor ccco naago attor	cc ga at ct gg gg	agact cgtco ctggo gagto	tgagg catco cccto ggaca	g aag c aga g cga a gga	ggago agcto cagto aaggo	cccc ggca gacc ggag	tgag ttct ttac ggac	gtete geet cacte	gcc tgt cag	tgcgo ctaaa gggal	catgga cgtcca agcctt ttgttt angagg	7184 7244 7304 7364 7424 7465
		, D	, DCu	Lub												
<400 Met		Gly	Ser	Thr 5	Gln	Pro	Val	Ala	Gln 10	Thr	Trp	Arg	Ala	Ala 15	Glu	
	Arg	Tyr	Pro 20	-	His	Gly	Ile	Ser 25		Pro	Val	Gln	Ile 30	Ala	Arg	
Ser	His	Thr 35	Pro	Leu	Tyr	Asn	Gln 40		Ser	Asp	Thr	Arg 45	Gln	Tyr	His	
Glu	Asn 50	Ile	Lys	Ile	Asn	Gln 55	Ala	Met	Arg	Lys	Lys 60	Leu	Ile	Leu	Tyr	
Phe 65		Arg	Arg	Asn	His 70		Arg	Lys	Gln	Trp 75		Gln	Arg	Phe	Cys 80	
	Arg	Tyr	Asp	Gln 85		Met	Glu	Ala	Trp 90		Lys	Lys	Val	Glu 95		
Ile	Glu	Asn	Asn 100		Arg	Arg	Arg	Ala 105		Glu	Ser	Lys	Val 110	Arg	Glu	
Tyr	Tyr	Glu 115		Gln	Phe	Pro	Glu 120		Arg	Lys	Gln	Arg 125		Leu	Gln	
Glu	Arg 130		Gln	Ser	Arg	Val 135		Gln	Arg	Gly	Ser 140		Leu	Ser	Met	
Ser 145	Ala	Ala	Arg	Ser	Glu 150	His	Glu	Val	Ser	Glu 155	Ile	Ile	Asp	Gly	Leu 160	
	Glu	Gln	Glu			Glu	Lys	Gln			Gln	Leu	Ala	Val		
Pro	Pro	Met	Leu 180	165 Tyr	Asp	Ala	Asp	Gln 185	170 Gln	Arg	Ile	Lys	Phe	175 Ile	Asn	
Met	Asn	Gly 195		Met	Asp	Asp	Pro 200		Lys	Val	Tyr	-		Arg	Gln	
Val	Thr 210		Met	Trp	Ser			Glu	Arg	Asp		205 Phe	Arg	Glu	Lys	
Phe		Gln	His	Pro	Lys	215 Asn	Phe	Gly	Leu	Ile	220 Ala	Ser	Phe	Leu	Glu	
225	T	mh	₹7~ ⁷	7A 7 -	230	C	77-7	T 0	(T)	235	П	т о	mp	T	240	
Ara	LVS	ınr	val	AIA	(+ 111	UVS	val	uell	IVY	TVY	IVY	ueu	nnr	Lvs	LVS	

Arg Lys Thr Val Ala Glu Cys Val Leu Tyr Tyr Tyr Leu Thr Lys Lys

245 250 Asn Glu Asn Tyr Lys Ser Leu Val Arg Arg Ser Tyr Arg Arg Arg Gly 260 265 Met Ala Arg Ser Ser Gln Glu Glu Lys Glu Lys Glu Lys Glu Lys 300 Glu Ala Asp Lys Glu Glu Glu Lys Gln Asp Ala Glu Asn Glu Lys Glu 310 315 Glu Leu Ser Lys Glu Lys Thr Asp Asp Thr Ser Gly Glu Asp Asn Asp 330 Glu Lys Glu Ala Val Ala Ser Lys Gly Arg Lys Thr Ala Asn Ser Gln 345 Gly Arg Arg Lys Gly Arg Ile Thr Arg Ser Met Ala Asn Glu Ala Asn 360 His Glu Glu Thr Ala Thr Pro Gln Gln Ser Ser Glu Leu Ala Ser Met 375 380 Glu Met Asn Glu Ser Ser Arg Trp Thr Glu Glu Glu Met Glu Thr Ala 390 395 Lys Lys Gly Leu Leu Glu His Gly Arg Asn Trp Ser Ala Ile Ala Arg 405 410 Met Val Gly Ser Lys Thr Val Ser Gln Cys Lys Asn Phe Tyr Phe Asn 420 425 Tyr Lys Lys Arg Gln Asn Leu Asp Glu Ile Leu Gln Gln His Lys Leu 440 Lys Met Glu Lys Glu Arg Asn Ala Arg Arg Lys Lys Lys Thr Pro 455 Ala Ala Ser Glu Glu Thr Ala Phe Pro Pro Ala Ala Glu Asp Glu 470 475 Glu Met Glu Ala Ser Gly Ala Ser Ala Asn Glu Glu Glu Leu Ala Glu 490 Glu Ala Glu Ala Ser Gln Ala Ser Gly Asn Glu Val Pro Arg Val Gly 505 Glu Cys Ser Gly Pro Ala Ala Val Asn Asn Ser Ser Asp Thr Glu Ser 520 Val Pro Ser Pro Arg Ser Glu Ala Thr Lys Asp Thr Gly Pro Lys Pro 535 Thr Gly Thr Glu Ala Leu Pro Ala Ala Thr Gln Pro Pro Val Pro Pro 550 555 Pro Glu Glu Pro Ala Val Ala Pro Ala Glu Pro Ser Pro Val Pro Asp 570 Ala Ser Gly Pro Pro Ser Pro Glu Pro Ser His His Leu Pro His Pro 585 Arg Leu Leu Trp Thr Arg Met Asn Lys Lys Pro Arg Leu Leu Gln Leu 600 Pro Arg Gln Arg Met Pro Arg Ser Arg Ser Leu Arg Pro Arg Arg Ser 615 620 Met Trp Glu Lys Pro Glu Glu Pro Glu Ala Ser Glu Lys Pro Pro Lys 630 635 Ser Val Lys Ser Asp His Lys Lys Glu Thr Glu Glu Glu Pro Glu Asp 645 650 Lys Ala Lys Gly Thr Glu Ala Ile Glu Thr Val Ser Glu Ala Pro Leu 665 Lys Val Glu Lys Ala Gly Ser Lys Ala Ala Val Thr Lys Gly Ser Ser 680 685 Ser Gly Ala Thr Gln Asp Ser Asp Ser Ser Ala Thr Cys Ser Ala Asp 695 700 Glu Val Asp Glu Pro Glu Gly Gly Asp Lys Gly Arg Leu Leu Ser Pro 710 715 Arg Pro Ser Leu Leu Thr Pro Ala Gly Asp Pro Arg Ala Ser Thr Ser

725 730 Pro Gln Lys Pro Leu Asp Leu Lys Gln Leu Lys Gln Arg Ala Ala 740 745 Ile Pro Pro Ile Val Thr Lys Val His Glu Pro Pro Arg Glu Asp Thr 760 Val Pro Pro Lys Pro Val Pro Pro Val Pro Pro Pro Thr Gln His Leu 775 Gln Pro Glu Gly Asp Val Ser Gln Gln Ser Gly Gly Ser Pro Arg Gly 795 790 Lys Ser Arg Ser Pro Val Pro Pro Ala Glu Lys Glu Ala Glu Lys Pro 810 Ala Phe Pro Ala Phe Pro Thr Glu Gly Pro Lys Leu Pro Thr Glu 825 820 Pro Pro Arg Trp Ser Ser Gly Leu Pro Phe Pro Ile Pro Pro Arg Glu 840 Val Ile Lys Thr Ser Pro His Ala Ala Asp Pro Ser Ala Phe Ser Tyr 855 860 Thr Pro Pro Gly His Pro Leu Pro Leu Gly Leu His Asp Ser Ala Arg 870 875 Pro Val Leu Pro Arg Pro Pro Ile Ser Asn Pro Pro Pro Leu Ile Ser 885 890 Ser Ala Lys His Pro Gly Val Leu Glu Arg Gln Leu Gly Ala Ile Ser 900 905 Gln Gln Gly Met Ser Val Gln Leu Arg Val Pro His Ser Glu His Ala 920 Lys Ala Pro Met Gly Pro Leu Thr Met Gly Leu Pro Leu Ala Val Asp 935 Pro Lys Lys Leu Gly Thr Ala Leu Gly Ser Ala Thr Ser Gly Ser Ile 950 955 Thr Lys Gly Leu Pro Ser Thr Arg Ala Ala Asp Gly Pro Ser Tyr Arg 965 970 Gly Ser Ile Thr His Gly Thr Pro Ala Asp Val Leu Tyr Lys Gly Thr 985 Ile Ser Arg Ile Val Gly Glu Asp Ser Pro Ser Arg Leu Asp Arg Ala 1000 1005 Arg Glu Asp Thr Leu Pro Lys Gly His Val Ile Tyr Glu Gly Lys Lys 1010 1015 1020 Gly His Val Leu Ser Tyr Glu Gly Gly Met Ser Val Ser Gln Cys Ser 1030 1035 Lys Glu Asp Gly Arg Ser Ser Ser Gly Pro Pro His Glu Thr Ala Ala 1045 1050 1055 Pro Lys Arg Thr Tyr Asp Met Met Glu Gly Arg Val Gly Arg Thr Val 1060 1065 Thr Ser Ala Ser Ile Glu Gly Leu Met Gly Arg Ala Ile Pro Glu Gln 1080 1085 His Ser Pro His Leu Lys Glu Gln His His Ile Arg Gly Ser Ile Thr 1090 1095 1100 Gln Gly Ile Pro Arg Ser Tyr Val Glu Ala Gln Glu Asp Tyr Leu Arg 1110 1115 1120 Arg Glu Ala Lys Leu Leu Lys Arg Glu Gly Thr Pro Pro Pro Pro 1130 1135 1125 Pro Pro Arg Asp Leu Thr Glu Thr Tyr Lys Pro Arg Pro Leu Asp Pro 1140 1145 1150 Leu Gly Pro Leu Lys Leu Lys Pro Thr His Glu Gly Val Val Ala Thr 1155 1160 1165 Val Lys Glu Ala Gly Arg Ser Ile His Glu Ile Pro Arg Glu Glu Leu 1170 1175 1180 Arg Arg Thr Pro Glu Leu Pro Leu Ala Pro Arg Pro Leu Lys Glu Gly 1190 1195 Ser Ile Thr Gln Gly Thr Pro Leu Lys Tyr Asp Ser Gly Ala Pro Ser

1205 1210 Thr Gly Thr Lys Lys His Asp Val Arg Ser Ile Ile Gly Ser Pro Gly 1220 1225 Arg Pro Phe Pro Ala Leu His Pro Leu Asp Ile Met Ala Asp Ala Arg 1235 1240 1245 Ala Leu Glu Arg Ala Cys Tyr Glu Glu Ser Leu Lys Ser Arg Ser Gly 1250 1255 1260 Thr Ser Ser Gly Ala Gly Gly Ser Ile Thr Arg Gly Ala Pro Val Val 1270 1275 Val Pro Glu Leu Gly Lys Pro Arg Gln Ser Pro Leu Thr Tyr Glu Asp 1285 1290 1295 His Gly Ala Pro Phe Thr Ser His Leu Pro Arg Gly Ser Pro Val Thr 1305 1310 1300 Thr Arg Glu Pro Thr Pro Arg Leu Gln Glu Gly Ser Leu Leu Ser Ser 1315 1320 1325 Lys Ala Ser Gln Asp Arg Lys Leu Thr Ser Thr Pro Arg Glu Ile Ala 1335 1340 Lys Ser Pro His Ser Thr Val Pro Glu His His Pro His Pro Ile Ser 1350 1355 1360 Pro Tyr Glu His Leu Leu Arg Gly Val Thr Gly Val Asp Leu Tyr Arg 1365 1370 1375 Gly His Ile Pro Leu Ala Phe Asp Pro Thr Ser Ile Pro Arg Gly Ile 1380 1385 1390 Pro Leu Glu Ala Ala Ala Ala Tyr Tyr Leu Pro Arg His Leu Ala 1395 1400 1405 Pro Ser Pro Thr Tyr Pro His Leu Tyr Pro Pro Tyr Leu Ile Arg Gly 1410 1415 1420 Tyr Pro Asp Thr Ala Ala Leu Glu Asn Arg Gln Thr Ile Ile Asn Asp 1430 1435 Tyr Ile Thr Ser Gln Gln Met His His Asn Ala Ala Ser Ala Met Ala 1450 Gln Arg Ala Asp Met Leu Arg Gly Leu Ser Pro Arg Glu Ser Ser Leu 1460 1465 Ala Leu Asn Tyr Ala Ala Gly Pro Arg Gly Ile Ile Asp Leu Ser Gln 1475 1480 Val Pro His Leu Pro Val Leu Val Pro Pro Thr Pro Gly Thr Pro Ala 1495 1500 Thr Ala Ile Asp Arg Leu Ala Tyr Leu Pro Thr Ala Pro Pro Pro Phe 1510 1515 Ser Ser Arg His Ser Ser Ser Pro Leu Ser Pro Gly Gly Pro Thr His 1525 1530 Leu Ala Lys Pro Thr Ala Thr Ser Ser Ser Glu Arg Glu Arg 1540 1545 Glu Arg Glu Arg Asp Lys Ser Ile Leu Thr Ser Thr Thr Thr Val Glu 1555 1560 1565 His Ala Pro Ile Trp Arg Pro Gly Thr Glu Gln Ser Ser Gly Ala Gly 1575 1580 Gly Ser Ser Arg Pro Ala Ser His Thr His Gln His Ser Pro Ile Ser 1590 1595 1600 Pro Arg Thr Gln Asp Ala Leu Gln Gln Arg Pro Ser Val Leu His Asn 1605 1610 1615 Thr Ser Met Lys Gly Val Val Thr Ser Val Glu Pro Gly Thr Pro Thr 1620 1625 1630 Val Leu Arg Trp Ala Arg Ser Thr Ser Thr Ser Ser Pro Val Arg Pro 1640 1645 1635 Ala Ala Thr Phe Pro Pro Ala Thr His Cys Pro Leu Gly Gly Thr Leu 1650 1655 1660 Glu Gly Val Tyr Pro Thr Leu Met Glu Pro Val Leu Leu Pro Lys Glu 1670 1675 Thr Ser Arg Val Ala Arg Pro Glu Arg Ala Arg Val Asp Ala Gly His

1685 1690 Ala Phe Leu Thr Lys Pro Pro Gly Arg Glu Pro Ala Ser Ser Pro Ser 1700 1705 1710 Lys Ser Ser Glu Pro Arg Ser Leu Ala Pro Pro Ser Ser Ser His Thr 1715 1720 1725 Ala Ile Ala Arg Thr Pro Ala Lys Asn Leu Ala Pro His His Ala Ser 1735 1740 Pro Asp Pro Pro Ala Pro Thr Ser Ala Ser Asp Leu His Arg Glu Lys 1750 1755 Thr Gln Ser Lys Pro Phe Ser Ile Gln Glu Leu Glu Leu Arg Ser Leu 1765 1770 1775 Gly Tyr His Ser Gly Ala Gly Tyr Ser Pro Asp Gly Val Glu Pro Ile 1780 1785 1790 Ser Pro Val Ser Ser Pro Ser Leu Thr His Asp Lys Gly Leu Ser Lys 1795 1800 1805 Pro Leu Glu Glu Leu Glu Lys Ser His Leu Glu Gly Glu Leu Arg His 1815 1820 Lys Gln Pro Gly Pro Met Lys Leu Ser Ala Glu Ala Ala His Leu Pro 1830 1835 1840 His Leu Arg Pro Leu Pro Glu Ser Gln Pro Ser Ser Pro Leu Leu 1845 1850 1855 Gln Thr Ala Pro Gly Ile Lys Gly His Gln Arg Val Val Thr Leu Ala 1865 1870 Gln His Ile Ser Glu Val Ile Thr Gln Asp Tyr Thr Arg His His Pro 1875 1880 1885 Gln Gln Leu Ser Gly Pro Leu Pro Ala Pro Leu Tyr Ser Phe Pro Gly 1890 1895 1900 Ala Ser Cys Pro Val Leu Asp Leu Arg Arg Pro Pro Ser Asp Leu Tyr 1910 1915 1920 Leu Pro Pro Pro Asp His Gly Thr Pro Ala Arg Gly Ser Pro His Ser 1925 1930 1935 Glu Gly Gly Lys Arg Ser Pro Glu Pro Ser Lys Thr Ser Val Leu Gly 1940 1945 Ser Ser Glu Asp Ala Ile Glu Pro Val Ser Pro Pro Glu Gly Met Thr 1955 1960 1965 Glu Pro Gly His Ala Arg Ser Thr Ala Tyr Pro Leu Leu Tyr Arg Asp 1970 1975 1980 Gly Glu Gln Gly Glu Pro Arg Met Gly Leu Glu Ser Pro Gly Asn Thr 1990 1995 Ser Gln Pro Pro Thr Phe Phe Ser Lys Leu Thr Glu Ser Asn Ser Ala 2005 2010 Met Val Lys Ser Lys Lys Gln Glu Ile Asn Lys Lys Leu Asn Thr His 2025 Asn Arg Asn Glu Pro Glu Tyr Asn Ile Gly Gln Pro Gly Thr Glu Ile 2035 2040 2045 Phe Asn Met Pro Ala Ile Thr Gly Ala Gly Leu Met Thr Cys Arg Ser 2055 2060 Gln Ala Val Gln Glu His Ala Ser Thr Asn Met Gly Leu Glu Ala Ile 2070 2075 Ile Arg Lys Ala Leu Met Gly Lys Tyr Asp Gln Trp Glu Glu Pro Pro 2085 2090 Pro Leu Gly Ala Asn Ala Phe Asn Pro Leu Asn Ala Ser Ala Ser Leu 2100 2105 Pro Ala Ala Ala Met Pro Ile Thr Thr Ala Asp Gly Arg Ser Asp His 2115 2120 2125 Ala Leu Thr Ser Pro Gly Gly Gly Lys Ala Lys Val Ser Gly Arg 2135 2140 Pro Ser Ser Arg Lys Ala Lys Ser Pro Ala Pro Gly Leu Ala Ser Gly 2150 2155 Asp Arg Pro Pro Ser Val Ser Ser Val His Ser Glu Gly Asp Cys Asn

			52		
	2165		2170		2175
Arg Arg Thr Pr 21	o Leu Thr A: 80	n Arg Val 218!		Asp Arg Pro 219	
Ala Gly Ser Th	r Pro Phe P	o Tyr Asn 2200	Pro Leu	Ile Met Arg 2205	Leu Gln
Ala Gly Val Me 2210		o Pro Pro	Pro Gly	Leu Ala Ala 2220	Gly Ser
Gly Pro Leu Al 2225	a Gly Pro H: 2230	s His Ala	Trp Asp	Glu Glu Pro	Lys Pro 2240
Leu Leu Cys Se		lu Thr Leu		_	2210
<210> 10 <211> 7940 <212> DNA <213> Homo sap	iens				
<220> <221> CDS <222> (241)	(7563)				
<400> 10 ccaagatggc ggc	caaggtg gcga	agcagc ago	ccgcggcg	gcggcggcgg (ctggagtgag 60
cgtccgactc gcc					
agaaacatga ttg					
atg tca agt tc Met Ser Ser Se	r Gly Tyr Pı		Gln Gly		Thr Glu
1	5		10		15
caa agt cgt ta Gln Ser Arg Ty 2	r Pro Pro Hi				
cgc cac cag ca Arg His Gln Gl 35		_	_	_	
gaa gtg agt ca Glu Val Ser Gl 50	n Ala Ser Gl				
ctt cga agg cg		•	_		_
Leu Arg Arg Ar 65	g Pro Ser Le 70	u Leu Ser	Glu Phe 75	His Pro Gly	Ser Asp 80
agg cct caa ga Arg Pro Gln Gl					
tcc cca gtg ga Ser Pro Val As	_				J J
10		105		110	
cag gtt tct ga Gln Val Ser As 115					
tta gtg cac cc Leu Val His Pr					

	gat Asp		-						_	_						720
	ggg Gly															768
	aag Lys															816
_	aaa Lys	_	_	_	_						_				_	864
	gaa Glu 210	_		_	_							-				912
	cct Pro				-			_	_		_					960
_	gag Glu					_	_	_	-					_		1008
	ggc Gly			_	_	_		_			_			_		1056
	gtg Val															1104
	att Ile 290															1152
caa Gln 305	aaa Lys	atc Ile	tgc Cys	cag Gln	cgt Arg 310	tat Tyr	gat Asp	cag Gln	ctc Leu	atg Met 315	gag Glu	gca Ala	tgg Trp	gag Glu	aaa Lys 320	1200
	gtg Val															1248
	aca Thr		_				_	_			_		_			1296
_	gaa Glu	_		_	_		_	_	_		-			_		1344
	tca Ser	_			_		_						_			1392

gat ggg ctc tct gag cag gag aat aat gag aaa caa atg cgg cag ctc

Asp Gly Leu Ser Glu Gln Glu Asn Asn Glu Lys Gln Met Arg Gln Leu

tct gtg att cca cct atg atg ttt gat gca gaa caa aga cga gtc aag

Ser Val Ile Pro Pro Met Met Phe Asp Ala Glu Gln Arg Arg Val Lys

				_	aat Asn			_		_		_					1536
	_		_		atg Met		_			_		_	_	_			1584
	_	_	_		atc Ile	-									_		1632
2 2300 mg. 2 2000 mg. 2 2000 mg.		_			aag Lys	_	_		_	_	_	_					1680
The day was the fact that the	_				gag Glu 485				_		_	_					1728
the the the training of training of the training of the training of the training of tr		_	_		aga Arg		_			_	_				-	_	1776
		_	_	_	aaa Lys	_		_		_	_			_			1824
	_	_	_	_	aaa Lys	_	_		_		_	_			_		1872
		_			aag Lys	_	_	_	_		_			_	_	_	1920
				_	gag Glu 565		_					_	_		_		1968
	_	_		_	cgt Arg	_							_			_	2016
	_	_	_	_	agt Ser	_	_	_	_		_		_				2064

cca cct ctg cca ccg cca cca gaa ccc att tct aca gag cct gtg gag

Pro Pro Leu Pro Pro Pro Pro Glu Pro Ile Ser Thr Glu Pro Val Glu

		_	tgg Trp		_	_										2160
			ggt Gly													2208
	_	_	gct Ala 660		_										_	2256
			gac Asp													2304
aaa Lys	cct Pro 690	cgt Arg	gaa Glu	gag Glu	cga Arg	gat Asp 695	gtg Val	tct Ser	caa Gln	tgt Cys	gaa Glu 700	agt Ser	gtc Val	gct Ala	tcc Ser	2352
			gct Ala													2400
			gaa Glu													2448
			aat Asn 740													2496
ctt Leu	gag Glu	ccc Pro 755	acc Thr	acg Thr	gaa Glu	act Thr	gca Ala 760	ccc Pro	agt Ser	aca Thr	tct Ser	ccc Pro 765	tcc Ser	tta Leu	gca Ala	2544
			aca Thr													2592
			atc Ile												cag Gln 800	2640
			agt Ser													2688
			gac Asp 820													2736
			gtt Val													2784
gcc Ala	agt Ser	gag Glu	aag Lys	gtg Val	gaa Glu	cct Pro	aga Arg	gat Asp	gaa Glu	gat Asp	ttg Leu	gtg Val	gta Val	gct Ala	cag Gln	2832

	ata Ile		_								_		_		_	2880
	acg Thr															2928
	atg Met			_	_		-			_						2976
	ata Ile		_			_						_	_	~		3024
	ctt Leu 930										_	_		_		3072
	tgt Cys															3120
	cga Arg															3168
	cag Gln															3216
	tgt Cys		Thr		_	_		Asn	_			_	Val		_	3264
	gct Ala 1010	Pro			_		Thr				_	Gly	_			3312
_	aca Thr		_			Arg		_			Leu		_			3360
	acc Thr				Ser					Phe					Ser	3408
	tca Ser	_		Thr					Leu					Gln	_	3456
	tac Tyr		Gln	_			_	Pro		_			Ile			3504
	ctg Leu				_	_		_			_		_			3552

	Lys					Ser					aac Asn					3600
					Ala					Val	gtc Val				Ala	3648
				Glu					Arg		act Thr			Ser		3696
att Ile	tca Ser	gtg Val 1155	Glu	agc Ser	att Ile	cca Pro	tcc Ser 1160	Leu	cgg Arg	ggc Gly	tct Ser	atc Ile 1165	Thr	cag Gln	ggc Gly	3744
		Āla					Gly				gag Glu 1180	Ala				3792
	Ser					Pro					agt Ser					3840
					Ser					Ile	tat Tyr				Ser	3888
				Ser					Lys		gcc Ala			Gly		3936
			Arg					Ile			aag Lys		Ser			3984
tca Ser	gtg Val 1250	Glu	gga Gly	aat Asn	ata Ile	aag Lys 125!	Gln	Gly ggg	atg Met	tca Ser	atg Met 1260	Arg	gag Glu	tct Ser	cct Pro	4032
	Ser					Gly					gca Ala 5					4080
agt Ser	cct Pro	cat His	tct Ser	gac Asp 128	Leu	aaa Lys	gaa Glu	agg Arg	act Thr 129	Val	ttg Leu	tct Ser	ggc Gly	tcc Ser 129	Ile	4128
atg Met	cag Gln	gly 999	aca Thr 130	Pro	aga Arg	gca Ala	aca Thr	act Thr 130	Glu	agc Ser	ttt Phe	gaa Glu	gat Asp 131	Gly	ctt Leu	4176
aaa Lys	tat Tyr	ccc Pro 131	Lys	caa Gln	att Ile	aaa Lys	agg Arg 132	Glu	agt Ser	cct Pro	ccc Pro	ata Ile 132	Arg	gca Ala	ttt Phe	4224
gaa Glu	ggt Gly	gcc Ala	att Ile	acc Thr	aaa Lys	gga Gly	aaa Lys	cca Pro	tat Tyr	gat Asp	ggc Gly	atc Ile	acc Thr	acc Thr	atc Ile	4272

aaa gaa atg ggg cgt tcc att cat gag att cca agg caa gat att tta Lys Glu Met Gly Arg Ser Ile His Glu Ile Pro Arg Gln Asp Ile Leu 1345 1350 1355 1360	4320
act cag gaa agt cgg aaa act cca gaa gtg gtc cag agc aca cgg ccg Thr Gln Glu Ser Arg Lys Thr Pro Glu Val Val Gln Ser Thr Arg Pro 1365 1370 1375	4368
ata att gag ggt tcc att tcc cag ggc aca cca ata aag ttt gac aac Ile Ile Glu Gly Ser Ile Ser Gln Gly Thr Pro Ile Lys Phe Asp Asn 1380 1385 1390	4416
aac tca ggt caa tct gcc atc aaa cac aat gtc aaa tcc tta atc acg Asn Ser Gly Gln Ser Ala Ile Lys His Asn Val Lys Ser Leu Ile Thr 1395 1400 1405	4464
ggg cct agc aaa cta tcc cgt gga atg cct ccg ctg gaa att gtg cca Gly Pro Ser Lys Leu Ser Arg Gly Met Pro Pro Leu Glu Ile Val Pro 1410 1415 1420	4512
gag aac ata aaa gtg gta gaa cgg gga aaa tat gag gat gtg aaa gca Glu Asn Ile Lys Val Val Glu Arg Gly Lys Tyr Glu Asp Val Lys Ala 1425 1430 1435 1440	4560
ggc gag acc gtg cgt tcc cgg cac acg tca gtg gta agc tct ggc ccc Gly Glu Thr Val Arg Ser Arg His Thr Ser Val Val Ser Ser Gly Pro 1445 1450 1455	4608
tcc gtt ctt agg tcc aca ctg cat gaa gct ccc aaa gca caa ctg agc Ser Val Leu Arg Ser Thr Leu His Glu Ala Pro Lys Ala Gln Leu Ser 1460 1465 1470	4656
cct ggg att tat gat gac acc agt gca cgg agg acc cct gtg agt tat Pro Gly Ile Tyr Asp Asp Thr Ser Ala Arg Arg Thr Pro Val Ser Tyr 1475 1480 1485	4704
caa aac acc atg tcc aga ggc tca ccc atg atg aac aga act tct gat Gln Asn Thr Met Ser Arg Gly Ser Pro Met Met Asn Arg Thr Ser Asp 1490 1495 1500	4752
gtt aca att cct cct aac aag tct acc aat cat gaa agg aaa tcg aca Val Thr Ile Pro Pro Asn Lys Ser Thr Asn His Glu Arg Lys Ser Thr 1505 1510 1515 1520	4800
ctg acc cct acc cag agg gaa agt atc cca gcg aag tct cca gtg cct Leu Thr Pro Thr Gln Arg Glu Ser Ile Pro Ala Lys Ser Pro Val Pro 1525 1530 1535	4848
ggg gtg gac cct gtc gtg agc cac agt ccg ttt gat ccc cat cac aga Gly Val Asp Pro Val Val Ser His Ser Pro Phe Asp Pro His His Arg 1540 1545 1550	4896
ggc agc act gca ggc gag gtt tat tgg agc cac ctg ccc acg caa ttg Gly Ser Thr Ala Gly Glu Val Tyr Trp Ser His Leu Pro Thr Gln Leu 1555 1560 1565	4944
gat cca gcc atg cct ttt cac agg gct ttg gat cct gca gcg gct gct Asp Pro Ala Met Pro Phe His Arg Ala Leu Asp Pro Ala Ala Ala Ala	4992

tac ctg ttt cag aga cag ctt tca cca act cca ggt tac cca agt cag Tyr Leu Phe Gln Arg Gln Leu Ser Pro Thr Pro Gly Tyr Pro Ser Gln 1585 1590 1595 1600	5040
tat cag ctt tac gca atg gag aac aca aga cag aca atc tta aat gat Tyr Gln Leu Tyr Ala Met Glu Asn Thr Arg Gln Thr Ile Leu Asn Asp 1605 1610 1615	5088
tac att acc tca caa cag atg caa gtg aac ttg cgt cca gat gtg gcc Tyr Ile Thr Ser Gln Gln Met Gln Val Asn Leu Arg Pro Asp Val Ala 1620 1625 1630	5136
aga gga ctc tcc cca aga gag cag cca ctg ggt ctc cca tac cca gca Arg Gly Leu Ser Pro Arg Glu Gln Pro Leu Gly Leu Pro Tyr Pro Ala 1635 1640 1645	5184
acg aga gga atc att gac ctg acc aat atg cct cca aca att tta gtg Thr Arg Gly Ile Ile Asp Leu Thr Asn Met Pro Pro Thr Ile Leu Val 1650 1655 1660	5232
cct cat cca ggg gga aca agc act cct ccc atg gac aga atc act tat Pro His Pro Gly Gly Thr Ser Thr Pro Pro Met Asp Arg Ile Thr Tyr 1665 1670 1675 1680	5280
att cct ggt aca cag att act ttc cct ccc agg ccg tac aac tct gct Ile Pro Gly Thr Gln Ile Thr Phe Pro Pro Arg Pro Tyr Asn Ser Ala 1685 1690 1695	5328
tcc atg tct cca gga cac cca aca cac ctt gca gct gct gca agt gct Ser Met Ser Pro Gly His Pro Thr His Leu Ala Ala Ala Ala Ser Ala 1700 1705 1710	5376
gag agg gaa cgg gag cgg gag aag gag cgg gag cgg gaa cgg Glu Arg Glu Arg Glu Arg Glu Lys Glu Arg Glu Arg Glu Arg 1715 1720 1725	5424
att gct gca gct tcc tcc gac ctc tac ctg cgg cca ggc tca gaa cag Ile Ala Ala Ser Ser Asp Leu Tyr Leu Arg Pro Gly Ser Glu Gln 1730 1735 1740	5472
cct ggc cga cct ggc agt cat gga tat gtt cgc tcc cct tcc cct tca Pro Gly Arg Pro Gly Ser His Gly Tyr Val Arg Ser Pro Ser Pro Ser 1745 1750 1755 1760	5520
gta aga act cag gag acc atg ttg caa cag aga ccc agt gtt ttc caa Val Arg Thr Gln Glu Thr Met Leu Gln Gln Arg Pro Ser Val Phe Gln 1765 1770 1775	5568
gga acc aat gga acc agt gta atc aca cct ttg gat cca act gct cag Gly Thr Asn Gly Thr Ser Val Ile Thr Pro Leu Asp Pro Thr Ala Gln 1780 1785 1790	5616
cta cga atc atg cca ctg cct gct ggg ggc cct tca ata agc caa ggc Leu Arg Ile Met Pro Leu Pro Ala Gly Gly Pro Ser Ile Ser Gln Gly 1795 1800 1805	5664
ctg cca gcc tcc cgt tac aac act gct gcg gat gcc ctg gct gct ctt Leu Pro Ala Ser Arg Tyr Asn Thr Ala Ala Asp Ala Leu Ala Ala Leu	5712

gtg gat gct gca gct tct gca ccc cag atg gat gtg tcc aaa Val Asp Ala Ala Ala Ser Ala Pro Gln Met Asp Val Ser Lys 1825 1830 1835	
gag agt aag cat gaa gct gcc agg tta gaa gaa aat ttg aga Glu Ser Lys His Glu Ala Ala Arg Leu Glu Glu Asn Leu Arg 1845 1850	
tca gca gca gtt agt gaa cag cag cag cta gag cag aaa acc Ser Ala Ala Val Ser Glu Gln Gln Gln Leu Glu Gln Lys Thr 1860 1865 1870	Leu Glu
gtg gag aag aga tot gtt cag tgt tta tac act tot toa gcc Val Glu Lys Arg Ser Val Gln Cys Leu Tyr Thr Ser Ser Ala 1875 1880 1885	ttt cca 5904 Phe Pro
agt ggc aag ccc cag cct cat tct tca gta gtt tat tct gag Ser Gly Lys Pro Gln Pro His Ser Ser Val Val Tyr Ser Glu 1890 1895 1900	
aaa gat aaa ggg cct cct cca aaa tcc aga tat gag gaa gag Lys Asp Lys Gly Pro Pro Pro Lys Ser Arg Tyr Glu Glu Glu 1905 1910 1915	
acc aga ggg aag act acc att act gca gct aac ttc ata gac Thr Arg Gly Lys Thr Thr Ile Thr Ala Ala Asn Phe Ile Asp 1925 1930	
atc acc cgg caa att gcc tcg gac aag gat gcg agg gaa cgt Ile Thr Arg Gln Ile Ala Ser Asp Lys Asp Ala Arg Glu Arg 1940 1945 1950	Gly Ser
caa agt tca gac tct tct agt agc tta tct tct cac agg tat Gln Ser Ser Asp Ser Ser Ser Ser Leu Ser Ser His Arg Tyr 1955 1960 1965	
cct agc gat gct att gag gtg ata agt cct gcc agc tca cct Pro Ser Asp Ala Ile Glu Val Ile Ser Pro Ala Ser Ser Pro 1970 1975 1980	
ccc cag gag aaa ctg cag acc tat cag cca gag gtt gtt aag Pro Gln Glu Lys Leu Gln Thr Tyr Gln Pro Glu Val Val Lys 1985 1990 1995	
caa gcg gaa aat gat cct acc aga caa tat gaa gga cca tta Gln Ala Glu Asn Asp Pro Thr Arg Gln Tyr Glu Gly Pro Leu 2005 2010	cat cac 6288 His His 2015
tat cga cca cag cag gaa tca cca tct ccc caa caa cag ctg Tyr Arg Pro Gln Gln Glu Ser Pro Ser Pro Gln Gln Gln Leu 2020 2025 2030	Pro Pro
tct tca cag gca gag gga atg ggg caa gtg ccc agg acc cat Ser Ser Gln Ala Glu Gly Met Gly Gln Val Pro Arg Thr His 2035 2040 2045	cgg ctg 6384 Arg Leu
atc aca ctt gct gat cac atc tgt caa att atc aca caa gat Ile Thr Leu Ala Asp His Ile Cys Gln Ile Ile Thr Gln Asp	ttt gct 6432 Phe Ala

aga aat caa gtt tcc tcg cag act ccc cag cag cct cct act tct aca Arg Asn Gln Val Ser Ser Gln Thr Pro Gln Gln Pro Pro Thr Ser Thr 2065 2070 2075 2080	6480
ttc cag aac tca cct tct gct ttg gta tct aca cct gtg agg act aaa Phe Gln Asn Ser Pro Ser Ala Leu Val Ser Thr Pro Val Arg Thr Lys 2085 2090 2095	6528
aca tca aac cgt tac agc cca gaa tcc cag gct cag tct gtc cat cat Thr Ser Asn Arg Tyr Ser Pro Glu Ser Gln Ala Gln Ser Val His His 2100 2105 2110	6576
caa aga cca ggt tca agg gtc tct cca gaa aat ctt gtg gac aaa tcc Gln Arg Pro Gly Ser Arg Val Ser Pro Glu Asn Leu Val Asp Lys Ser 2115 2120 2125	6624
agg gga agt agg cct gga aaa tcc cca gag agg agt cac gtc tct tcc Arg Gly Ser Arg Pro Gly Lys Ser Pro Glu Arg Ser His Val Ser Ser 2130 2135 2140	6672
gag ccc tac gag ccc atc tcc cca ccc cag gtt ccg gtt gtg cat gag Glu Pro Tyr Glu Pro Ile Ser Pro Pro Gln Val Pro Val Val His Glu 2145 2150 2155 2160	6720
aaa cag gac agc ttg ctg ctc ttg tct cag agg ggc gca gag cct gca Lys Gln Asp Ser Leu Leu Leu Ser Gln Arg Gly Ala Glu Pro Ala 2165 2170 2175	6768
gag cag agg aat gat gcc cgc tca cca ggg agt ata agc tac ttg cct Glu Gln Arg Asn Asp Ala Arg Ser Pro Gly Ser Ile Ser Tyr Leu Pro 2180 2185 2190	6816
tca ttc ttc acc aag ctt gaa aat aca tca ccc atg gtt aaa tca aag Ser Phe Phe Thr Lys Leu Glu Asn Thr Ser Pro Met Val Lys Ser Lys 2195 2200 2205	6864
aag cag gag att ttt cgt aag ttg aac tcc tct ggt gga ggt gac tct Lys Gln Glu Ile Phe Arg Lys Leu Asn Ser Ser Gly Gly Asp Ser 2210 2215 2220	6912
gat atg gca gct gct cag cca gga act gag atc ttt aat ctg cca gca Asp Met Ala Ala Ala Gln Pro Gly Thr Glu Ile Phe Asn Leu Pro Ala 2225 2230 2235 2240	6960
gtt act acg tca ggc tca gtt agc tct aga ggc cat tct ttt gct gat Val Thr Thr Ser Gly Ser Val Ser Ser Arg Gly His Ser Phe Ala Asp 2245 2250 2255	7008
cct gcc agt aat ctt ggg ctg gaa gac att atc agg aag gct ctc atg Pro Ala Ser Asn Leu Gly Leu Glu Asp Ile Ile Arg Lys Ala Leu Met 2260 2265 2270	7056
gga agc ttt gat gac aaa gtt gag gat cat gga gtt gtc atg tcc cag Gly Ser Phe Asp Asp Lys Val Glu Asp His Gly Val Val Met Ser Gln 2275 2280 2285	7104
cct atg gga gta gtg cct ggt act gcc aac acc tca gtt gtg acc agt Pro Met Gly Val Val Pro Gly Thr Ala Asn Thr Ser Val Val Thr Ser	7152

ggt gag aca cga aga gag gaa ggg gac cca tca cct cat tca gga gga Gly Glu Thr Arg Arg Glu Glu Gly Asp Pro Ser Pro His Ser Gly Gly 2305 2310 2315 2320	7200
gtt tgc aaa cca aag ctg atc agc aag tca aac agc agg aaa tct aag Val Cys Lys Pro Lys Leu Ile Ser Lys Ser Asn Ser Arg Lys Ser Lys 2325 2330 2335	7248
tct cct ata cct ggg caa ggc tac tta gga acg gaa cgg ccc tct tca Ser Pro Ile Pro Gly Gln Gly Tyr Leu Gly Thr Glu Arg Pro Ser Ser 2340 2345 2350	7296
gtc tcc tct gta cat tca gaa ggg gat tac cat agg cag acg cca ggg Val Ser Ser Val His Ser Glu Gly Asp Tyr His Arg Gln Thr Pro Gly 2355 2360 2365	7344
tgg gcc tgg gaa gac agg ccc tct tca aca ggc tca act cag ttt cct Trp Ala Trp Glu Asp Arg Pro Ser Ser Thr Gly Ser Thr Gln Phe Pro 2370 2375 2380	7392
tat aac cct ctg act atg cgg atg ctc agc agt act cca cca aca ccg Tyr Asn Pro Leu Thr Met Arg Met Leu Ser Ser Thr Pro Pro Thr Pro 2385 2390 2395 2400	7440
att gca tgt gct ccc tct gcg gtg aac caa gca gct cct cac caa cag Ile Ala Cys Ala Pro Ser Ala Val Asn Gln Ala Ala Pro His Gln Gln 2405 2410 2415	7488
aac agg atc tgg gag cga gag cct gcc cca ctg ctc tca gca cag tac Asn Arg Ile Trp Glu Arg Glu Pro Ala Pro Leu Leu Ser Ala Gln Tyr 2420 2425 2430	7536
gag acc ctg tcg gat agt gat gac tga actgcacaaa gtgaggggaa Glu Thr Leu Ser Asp Ser Asp Asp * 2435 2440	7583
cagggtgcag gagagggatc tctagttttt gtggtttaat ttttagtagc aggtcaaaaa cctgccctcc tgtgacttat tccctgagac ttttcaggag agccagccca cagatgatga	7643 7703
agaaatgatg gaagttcatt tggagagtca aatgggaaaa aaacaaacaa aaaactgcct	7763 7823
ttgatacagg caattcagtg gactataata atagtggagg gttgagatgt agagttttta aaaagtgaac agttgctgtt cttacatctg taaagaaaac cataatgtct ttaaatcact	7883
cttctgtaaa tagatgacct ttttgcagtg taaaaaaaaa aaaaaaaaa aaaaaaa	7940
<210> 11 <211> 2440	
<212> PRT (<213> Homo sapiens	
<400> 11	
Met Ser Ser Gly Tyr Pro Pro Asn Gln Gly Ala Phe Ser Thr Glu 1 5 10 15	
Gln Ser Arg Tyr Pro Pro His Ser Val Gln Tyr Thr Phe Pro Asn Thr	
Arg His Gln Glu Phe Ala Val Pro Asp Tyr Arg Ser Ser His Leu 35 40 45	
Glu Val Ser Gln Ala Ser Gln Leu Leu Gln Gln Gln Gln Gln Gln	
50 55 60 Leu Arg Arg Pro Ser Leu Leu Ser Glu Phe His Pro Gly Ser Asp	

75 70 65 Arg Pro Gln Glu Arg Arg Thr Ser Tyr Glu Pro Phe His Pro Gly Pro 90 85 Ser Pro Val Asp His Asp Ser Leu Glu Ser Lys Arg Pro Arg Leu Glu 105 100 Gln Val Ser Asp Ser His Phe Gln Arg Val Ser Ala Ala Val Leu Pro 120 Leu Val His Pro Leu Pro Glu Gly Leu Arg Ala Ser Ala Asp Ala Lys 140 135 Lys Asp Pro Ala Phe Gly Gly Lys His Glu Ala Pro Ser Ser Pro Ile 155 150 Ser Gly Gln Pro Cys Gly Asp Asp Gln Asn Ala Ser Pro Ser Lys Leu 170 Ser Lys Glu Glu Leu Ile Gln Ser Met Asp Arg Val Asp Arg Glu Ile 185 Ala Lys Val Glu Gln Gln Ile Leu Lys Leu Lys Lys Lys Gln Gln Gln 200 205 Leu Glu Glu Glu Ala Ala Lys Pro Pro Glu Pro Glu Lys Pro Val Ser 215 Pro Pro Pro Val Glu Gln Lys His Arg Ser Ile Val Gln Ile Ile Tyr 230 235 Asp Glu Asn Arg Lys Lys Ala Glu Glu Ala His Lys Ile Phe Glu Gly 245 Leu Gly Pro Lys Val Glu Leu Pro Leu Tyr Asn Gln Pro Ser Asp Thr 265 260 Lys Val Tyr His Glu Asn Ile Lys Thr Asn Gln Val Met Arg Lys Lys 280 275 Leu Ile Leu Phe Phe Lys Arg Arg Asn His Ala Arg Lys Gln Arg Glu 295 Gln Lys Ile Cys Gln Arg Tyr Asp Gln Leu Met Glu Ala Trp Glu Lys 315 310 Lys Val Asp Arg Ile Glu Asn Asn Pro Arg Arg Lys Ala Lys Glu Ser 330 325 Lys Thr Arg Glu Tyr Tyr Glu Lys Gln Phe Pro Glu Ile Arg Lys Gln 345 340 Arg Glu Gln Gln Glu Arg Phe Gln Arg Val Gly Gln Arg Gly Ala Gly 360 Leu Ser Ala Thr Ile Ala Arg Ser Glu His Glu Ile Ser Glu Ile Ile 380 375 Asp Gly Leu Ser Glu Gln Glu Asn Asn Glu Lys Gln Met Arg Gln Leu 395 390 Ser Val Ile Pro Pro Met Met Phe Asp Ala Glu Gln Arg Arg Val Lys 410 405 Phe Ile Asn Met Asn Gly Leu Met Glu Asp Pro Met Lys Val Tyr Lys 425 420 Asp Arg Gln Phe Met Asn Val Trp Thr Asp His Glu Lys Glu Ile Phe 440 435 Lys Asp Lys Phe Ile Gln His Pro Lys Asn Phe Gly Leu Ile Ala Ser 455 460 Tyr Leu Glu Arg Lys Ser Val Pro Asp Cys Val Leu Tyr Tyr Tyr Leu 475 470 Thr Lys Lys Asn Glu Asn Tyr Lys Ala Leu Val Arg Arg Asn Tyr Gly 490 485 Lys Arg Arg Gly Arg Asn Gln Gln Ile Ala Arg Pro Ser Gln Glu Glu 505 500 Lys Val Glu Glu Lys Glu Glu Asp Lys Ala Glu Lys Thr Glu Lys Lys 525 520 Glu Glu Glu Lys Lys Asp Glu Glu Glu Lys Asp Glu Lys Glu Asp Ser 540 535 Lys Glu Asn Thr Lys Glu Lys Asp Lys Ile Asp Gly Thr Ala Glu Glu

555 545 550 Thr Glu Glu Arg Glu Gln Ala Thr Pro Arg Gly Arg Lys Thr Ala Asn 570 565 Ser Gln Gly Arg Arg Lys Gly Arg Ile Thr Arg Ser Met Thr Asn Glu 585 580 Ala Ala Ala Ala Ser Ala Ala Ala Ala Ala Ala Thr Glu Glu Pro Pro 600 Pro Pro Leu Pro Pro Pro Glu Pro Ile Ser Thr Glu Pro Val Glu 615 Thr Ser Arg Trp Thr Glu Glu Glu Met Glu Val Ala Lys Lys Gly Leu 635 630 Val Glu His Gly Arg Asn Trp Ala Ala Ile Ala Lys Met Val Gly Thr 650 645 Lys Ser Glu Ala Gln Cys Lys Asn Phe Tyr Phe Asn Tyr Lys Arg Arg 665 His Asn Leu Asp Asn Leu Leu Gln Gln His Lys Gln Lys Thr Ser Arg 680 Lys Pro Arg Glu Glu Arg Asp Val Ser Gln Cys Glu Ser Val Ala Ser 700 695 Thr Val Ser Ala Gln Glu Asp Glu Asp Ile Glu Ala Ser Asn Glu Glu 710 715 Glu Asn Pro Glu Asp Ser Glu Val Glu Ala Val Lys Pro Ser Glu Asp 730 725 Ser Pro Glu Asn Ala Thr Ser Arg Gly Asn Thr Glu Pro Ala Val Glu 740 745 Leu Glu Pro Thr Thr Glu Thr Ala Pro Ser Thr Ser Pro Ser Leu Ala 765 760 755 Val Pro Ser Thr Lys Pro Ala Glu Asp Glu Ser Val Glu Thr Gln Val 775 Asn Asp Ser Ile Ser Ala Glu Thr Ala Glu Gln Met Asp Val Asp Gln 795 790 Gln Glu His Ser Ala Glu Glu Gly Ser Val Cys Asp Pro Pro Pro Ala 810 805 Thr Lys Ala Asp Ser Val Asp Val Glu Val Arg Val Pro Glu Asn His 825 820 Ala Ser Lys Val Glu Gly Asp Asn Thr Lys Glu Arg Asp Leu Asp Arg 840 Ala Ser Glu Lys Val Glu Pro Arg Asp Glu Asp Leu Val Val Ala Gln 855 Gln Ile Asn Ala Gln Arg Pro Glu Pro Gln Ser Asp Asn Asp Ser Ser 875 870 Ala Thr Cys Ser Ala Asp Glu Asp Val Asp Gly Glu Pro Glu Arg Gln 890 885 Arg Met Phe Pro Met Asp Ser Lys Pro Ser Leu Leu Asn Pro Thr Gly 905 900 Ser Ile Leu Val Ser Ser Pro Leu Lys Pro Asn Pro Leu Asp Leu Pro 920 Gln Leu Gln His Arg Ala Ala Val Ile Pro Pro Met Val Ser Cys Thr 935 940 Pro Cys Asn Ile Pro Ile Gly Thr Pro Val Ser Gly Tyr Ala Leu Tyr 955 950 Gln Arg His Ile Lys Ala Met His Glu Ser Ala Leu Leu Glu Glu Gln 970 965 Arg Gln Arg Gln Glu Gln Ile Asp Leu Glu Cys Arg Ser Ser Thr Ser 985 980 Pro Cys Gly Thr Ser Lys Ser Pro Asn Arg Glu Trp Glu Val Leu Gln 1005 1000 Pro Ala Pro His Gln Leu Ile Thr Asn Leu Pro Glu Gly Val Arg Leu 1020 1015 Pro Thr Thr Arg Pro Thr Arg Pro Pro Pro Leu Ile Pro Ser Ser

1025	1030			1035		1040
Lys Thr Thr V	al Ala Ser (1045		1050			1055
Ile Ser Gln G	ly Thr Pro (060		1065		1070)
Ser Tyr Thr G		1080			1085	
Gly Leu Pro A		1095		1100)	
Ile Lys Gln G	1110			1115		1120
Gly Leu Leu V	1125		1130)		1135
Gly Ala Ile G	140		1145		1150)
Ile Ser Val G		1160			1165	
Thr Pro Ala I		1175		118	0	
Gly Ser Ile S	1190			1195		1200
Arg Glu Glu A	1205		1210)		1215
Gly His Ile I	220		1225		123	U
Arg Ser Pro A		1240)		1245	
Ser Val Glu (1255		126	0	
Val Ser Ala H 1265	1270)		1275		1280
Ser Pro His S	1285		129	0		1295
Met Gln Gly 5	1300		1305		131	U
Lys Tyr Pro 1		1320)		1325	
Glu Gly Ala 1		1335		134	.0	
Lys Glu Met (1350)		1355		1360
Thr Gln Glu	1365		137	0		13/5
Ile Ile Glu	1380		1385		139	0
Asn Ser Gly 1395		1400	0		1405	
Gly Pro Ser 1410		1415		142	20	
Glu Asn Ile 1425	143	0		1435		1440
Gly Glu Thr	1445		145	0		1455
Ser Val Leu	1460		1465		147	70
Pro Gly Ile 1475		148	0		1485	
Gln Asn Thr 1490		1495		15	00	
Val Thr Ile	Pro Pro Asn	Lys Ser	Thr Asr	n His Gl	u Arg Lys	s ser Illi

1505	1510		1515		1520
1505 Leu Thr Pro Thr	Gln Ara Gl	n Ser Ile l		Ser Pro V	
	1525		1530	Ţ	.535
Gly Val Asp Pro	Val Val Se	er His Ser 1 1545	Pro Phe Asp	Pro His E 1550	lis Arg
Gly Ser Thr Ala		al Tyr Trp : 1560	Ser His Leu	Pro Thr 0	ln Leu
Asp Pro Ala Met			Leu Asp Pro 158	Ala Ala A	Ala Ala
Tyr Leu Phe Gln	Arg Gln Le	eu Ser Pro	Thr Pro Gly 1595	Tyr Pro S	Ser Gln 1600
Tyr Gln Leu Tyr	Ala Met G	lu Asn Thr	Arg Gln Thr 1610	Ile Leu A	Asn Asp 1615
Tyr Ile Thr Ser 162	Gln Gln Me	et Gln Val 1625	Asn Leu Arg	Pro Asp V 1630	/al Ala
Arg Gly Leu Ser	Pro Arg G			Pro Tyr 1	Pro Ala
Thr Arg Gly Ile	: Ile Asp Le	eu Thr Asn	Met Pro Pro	Thr Ile	Leu Val
1650	16	655	166	0	
Pro His Pro Gly		er Thr Pro	Pro Met Asp	Arg Ile '	Thr Tyr 1680
1665 Ile Pro Gly Thr	1670	hr Dhe Dro	1675 Pro Arg Pro	Tvr Asn	
lie Pro Gly Inc	1685	m Pmc 110	1690		1695
Ser Met Ser Pro	Gly His P	ro Thr His	Leu Ala Ala	Ala Ala	Ser Ala
170	0.0	1705		1710	
Glu Arg Glu Arg 1715		1720		1725	
Ile Ala Ala Ala			Leu Arg Pro	o Gly Ser	Glu Gln
1730 Pro Gly Arg Pro	l Cly Car H	735 He Gly Tyr			Pro Ser
1745	1750		1755		1760
Val Arg Thr Gli	1765		1770		1775
Gly Thr Asn Gly	3.0	1785	5	1790	
Leu Arg Ile Met		1800		1802	
Leu Pro Ala Se			Ala Asp Ala	a Leu Ala	Ala Leu
1810 Val Asp Ala Ala	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.815	18:		Thr Lvs
Val Asp Ala Ala	1830 a Ala	ara Pro Gin	1835	1 331 -72	1840
Glu Ser Lys Hi	s Glu Ala A 1845	Ala Arg Leu	Glu Glu As: 1850	n Leu Arg	Ser Arg 1855
Ser Ala Ala Va	l Ser Glu G	Gln Gln Gln 186	Leu Glu Gl	n Lys Thr 1870	Leu Glu
18 Val Glu Lys Ar	g Ser Val G	ln Cys Leu	Tyr Thr Se		
1875		1880		1885	
Ser Gly Lys Pr 1890	1	L895	19	00	
Lys Asp Lys Gl	1910		1915		1920
Thr Arg Gly Ly	s Thr Thr 1	Ile Thr Ala	Ala Asn Ph 1930	e Ile Asp	Val Ile 1935
Ile Thr Arg Gl	n Ile Ala S 40	Ser Asp Lys 194	Asp Ala Ar	g Glu Arg 1950	Gly Ser
Gln Ser Ser As	p Ser Ser S			s Arg Tyr	Glu Thr
1955		1960		1965	
Pro Ser Asp Al 1970	:	1975	19	80	
Pro Gln Glu Ly	s Leu Gln '	Thr Tyr Gln	Pro Glu Va	l Val Lys	Ala Asn

								ϵ	57					
1985				1990)			`	1995	5				2000
Gln Ala	Glu	Asn	Asp 2009		Thr	Arg		Tyr 2010		Gly	Pro	Leu	His 2019	
Tyr Arg	Pro	Gln 2020		Glu	Ser	Pro	Ser 2025		Gln	Gln	Gln	Leu 2030		Pro
Ser Ser	Gln 2035	Ala		Gly		Gly 2040		Val	Pro	Arg	Thr 2045		Arg	Leu
Ile Thr		Ala	Asp	His		Cys		Ile	Ile	Thr 2060		Asp	Phe	Ala
Arg Asn 2065	Gln	Val	Ser	Ser 2070		Thr	Pro	Gln	Gln 2075		Pro	Thr	Ser	Thr 2080
Phe Gln	Asn	Ser	Pro 2085		Ala	Leu	Val	Ser 2090		Pro	Val	Arg	Thr 2099	_
Thr Ser	Asn	Arg 2100	_	Ser	Pro	Glu	Ser 2105		Ala	Gln	Ser	Val 2110		His
Gln Arg	2115	5		_		2120)				2125	5		
Arg Gly 2130		Arg	Pro	Gly	Lys 2139		Pro	Glu	Arg	Ser 2140		Val	Ser	Ser
Glu Pro 2145	Tyr	Glu	Pro	Ile 2150		Pro	Pro	Gln	Val 2155		Val	Val	His	Glu 2160
Lys Gln			2165	5				2170)				2179	5
Glu Gln	_	2180)		_		2185	5				2190)	
Ser Phe	2195	5	_			2200)				2205	5		
Lys Gln 2210)			_	2215	5				2220)			
Asp Met 2225				2230)	_			2235	5				2240
Val Thr			2245	5				2250)				2255	5
Pro Ala		2260)				2265	5				2270)	
Gly Ser	2275	5				2280)				2285	5		
Pro Met 2290) _				2295	5				2300)			
Gly Glu 2305				2310)				2315	5				2320
Val Cys			2325	5				2330)				2335	5
Ser Pro		2340)				2345	5				2350)	
Val Ser	2355	5				2360)				2365	5		
Trp Ala) "				2375	5				2380)			
Tyr Asn 2385				2390)				2395	5				2400
Ile Ala	-		2405	5				2410)				2415	5
Asn Arg		2420)				A1a 2425		ьeu	ьeu	ser	A1a 2430		Tyr
Glu Thr	ьец 2435		Авр	261	Asp	Asp 2440)							