ADND assignments

General information

Topics and Group creation

- X topics
- max 3 persons / topic
- join to a project using Xoyondo

Expected:

- Deep literature search before jumping into coding
- Planning and pipeline proposal with time estimation
- Shared codebase (GitHub) and documentation (README, research diary) per group
- List of contributions within the research diary (1 slide / person / week)
- Baseline model reproduction, evaluation
- Further contributions, e.g. adding extra modality to the network, trying out different training techniques with proper ablation study, determining the added value

Grading:

Individual grading based on the topics, and supervisors. Example:

1. Literature search and pipeline planning

Weight: 20%

Create slides → max 2 weeks (deadline oct.05), upload it to your topic's canvas

discussion

2. Experiments

Weight: 70%

3. Results, producing a finished and coherent project

Weight: 10%

Supervisor: Ádám Fodor

T1: Personality

image source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8999746

Task

- Big Five (OCEAN) personality trait estimation
- o Regression, Binary classification

Difficulties

- hard to find open-sourced codebases with reproducible results
- unbalanced target distribution
- o regression-to-the-mean problem
- a function, which returns the average GT value (~0.52) can reach a high (1-MAE) score: 0.88
- SOTA models are reaching ~0.92 (1-MAE)
- recent works are exploiting biases in the database: background, attractiveness, gender, age

• Baseline model:

- MulT: https://github.com/yaohungt/Multimodal-Transformer
- SSE-FT: https://github.com/shamanez/Self-Supervised-Embedding-Fusion-Transformer

Dataset

First Impression V2 (https://chalearnlap.cvc.uab.cat/dataset/24/description)

Papers

- 2019: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8999746
- o **2021**:
 - https://openaccess.thecvf.com/content/WACV2021W/HBU/papers/Jacques_Person_Perception_Biases_Exposed_Revisiting
- Vision + Language: https://ieeexplore.ieee.org/stamp/stamp.jsp?
 tp=&arnumber=8424834
- o Survey: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8769905
- o ChaLearn: https://link.springer.com/content/pdf/10.1007/978-3-319-49409-8-32.pdf

T2: Emotion

Task

- Emotion estimation
- Classification

Difficulties

- mmsdk features hard (or unfeasible) to reproduce (e.g. iMotion's FACET is a paid software)
- you can use the mmsdk feature set to reproduce published results from a paper or try out a given software from GitHub
- for the assignment, you must use a different feature set, which makes the results reproducible or adaptable to other datasets as well

Baseline model:

- MulT: https://github.com/yaohungt/Multimodal-Transformer
- SSE-FT: https://github.com/shamanez/Self-Supervised-Embedding-Fusion-Transformer

Dataset

- MOSEI (<u>http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset</u>)
- MELD (<u>https://affective-meld.github.io</u>)
- CREMA-D (https://github.com/CheyneyComputerScience/CREMA-D)

Papers

- MOSEI introduction: https://aclanthology.org/P18-1208.pdf
- MELD introduction: https://arxiv.org/pdf/1810.02508.pdf
- CREMA-D introduction:
 - https://www.researchgate.net/publication/272081518_CREMA-D_Crowd-sourced_emotional_multimodal_actors_dataset
- Emotion datasets for general literature search: https://superkogito.github.io/SER-datasets/
- Survey: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9637545

T3: Sentiment

Task

- Sentiment estimation
- Regression

Difficulties

- mmsdk features hard (or unfeasible) to reproduce (e.g. iMotion's FACET is a paid software)
- you can use the mmsdk feature set to reproduce published results from a paper or try out a given software from GitHub
- o for the assignment, you must use a different feature set, which makes the results reproducible or adaptable to other datasets as well

Baseline model:

- MulT: https://github.com/yaohungt/Multimodal-Transformer
- SSE-FT: https://github.com/shamanez/Self-Supervised-Embedding-Fusion-Transformer

Dataset

- MOSEI (http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset)
- MOSI (<u>http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset</u>)

Papers

- MOSEI introduction: https://aclanthology.org/P18-1208.pdf
- Survey: https://reader.elsevier.com/reader/sd/pii/S1566253521001299?
 token=2E18DC80AD157E87B9BF8054FE9C601EF25CA6433A2F4B2C984E6D53
 65CA864AB4D17FFEBAB6FB299380AEwest-1&originCreation=20220318131032

T4: Multilingual

Task

- Multilingual Text Analysis
- o NLP, Classification
- Multimodal experiments on multilingual subsets
- semantic text similarity
- multilingual sentiment analysis

Baseline models:

- S-BERT https://arxiv.org/pdf/1908.10084.pdf
- XLM-RoBERTa http://ceur-ws.org/Vol-2826/T4-13.pdf

Difficulties

- experimenting with different modalities
- multilingual cross-dataset evaluations
- unique tasks and datasets

Dataset

- o UDIVA: https://arxiv.org/pdf/2012.14259.pdf
- + 10 multilingual datasets

T5: Conversation

- Task
 - Emotion recognition in conversations
 - Classification
- Difficulties
 - The research field is heavily using text for conversation analysis (RECOON)
 Integrating other modalities (visual and speech) can be difficult due to the lack of data/annotations in variety
- Baseline model:
 - EmoBERTa: https://github.com/tae898/erc
- Dataset
 - RECOON: https://github.com/declare-lab/RECCON
 - o MELD: https://arxiv.org/pdf/1810.02508.pdf
 - o IEMOCAP: https://github.com/tae898/erc
- Papers
 - Multiple methods and codebase: https://github.com/declare-lab/conv-emotion
 - Method and Code: https://github.com/tae898/erc
 - Method and Code: https://github.com/declare-lab/convemotion/tree/master/emotion-cause-extraction

Supervisor: Áron Fóthi

T6: Tracking

- Task
 - Tracking birds in a cage with bounding box
- Difficulties
 - Search available labeled datasets
 - Annotate videos
- Database
 - Unlabeled videos
- Papers
 - https://arxiv.org/pdf/1903.05625.pdf

T7: Video instance segmentation - Indoor

- Task
 - Furniture segmentation in an indoor environment and on Rats
- Difficulties
 - o Synthetize Dataset for training
 - Train Mask2Former algorithm
 - o Combine RGB features with Depth
- Database
 - SUN RGB-D
 - Rats
- Papers
 - https://github.com/facebookresearch/Mask2Former

T8: Video instance segmentation - Rats

- Task
 - Rat tracking with segmentation
 - Using ClusterRCNN with scribble annotation
- Difficulties
 - Extend VGG VIA with scribble annotation
 - Train ClusterRCNN with scribbles
- Database
 - Rats
- Papers
 - https://link.springer.com/chapter/10.1007/978-3-030-63830-6_37

T9: 3D hand object mesh estimation

- Task
 - o Detect objects in hand
- Difficulties
 - o Generate scenes with objects and hands
 - Train ACFM https://github.com/fkokkinos/acfm_video_3d_reconstruction
- Database
 - o Generated annotated
- Papers
 - o https://arxiv.org/abs/2201.08555