Trig Final (Solution v24)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 12 meters. The angle measure is 1.8 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 6.667 meters.

Question 2

Consider angles $\frac{-11\pi}{3}$ and $\frac{13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-11\pi}{3}\right)$ and $\sin\left(\frac{13\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(-11\pi/3)$

Find $sin(13\pi/4)$

$$\cos(-11\pi/3) = \frac{1}{2}$$

$$\sin(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\sin(\theta) = \frac{-63}{65}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 63^{2} = 65^{2}$$

$$A = \sqrt{65^{2} - 63^{2}}$$

$$A = 16$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{16}{65}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -4.24 meters, an amplitude of 6.41 meters, and a frequency of 2.33 Hz. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 6.41\sin(2\pi 2.33t) - 4.24$$

or

$$y = 6.41\sin(4.66\pi t) - 4.24$$

or

$$y = 6.41\sin(14.64t) - 4.24$$