

SOT-23 Encapsulate Adjustable Reference Source

TL432 Adjustable Accurate Reference Source

DEVICE DESCRIPSION

The TL432 is a three-terminal Shunt Voltage Reference providing a highly accurance 1.24V. The TL432 thermal stability and wide operating current, makes is sritable for all variety of applications that are looking for a low cost solution with high performance.

SOT-23 1. REFERENCE 2. CATHODE 3. ANODE Cathode (K) Anode (A)

FEATURES

- Low dynamic output impedance
- The effective temperature compensation in the working range of full temperature
- Low output noise voltage
- Fast on -state response
- Sink current capability of 0.1mA to100mA

APPLICATION

- Shunt Regulator
- High-Current Shunt Regulator
- Precision Current Limiter

ABSOLUTE MAXIMUM RATINGS (Operating temperature rangeapplies unless otherwise specified)

Parameter	Symbol	Value	Units
Cathode Voltage	V _{KA}	18	V
Cathode Current Range (continuous)	I _{KA}	100	mA
Reference Input Current Range	I _{ref}	6	μΑ
Power Dissipation	P _D	350	mW
Thermal Resistance from Junction to Ambient	R _{θJA}	357	°C/W
Operating Temperature	T _{opr}	0~+70	°C
Junction Temperature	TJ	150	$^{\circ}$
Storage Temperature	T _{stg}	-65~+150	$^{\circ}$

SHIKE MAKE CONSCIOUS PRODUCT

ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Reference input voltage (Fig 1)	V_{ref}	V _{KA} =V _{REF} , I _{KA} =10mA	1.2214		1.2586	V
Deviation of reference voltage over full temperature range (Fig 1)	$\triangle V_{\text{ref(DEV)}}$	$V_{KA} = V_{REF}, I_{KA} = 10 \text{mA}$ $0^{\circ}\text{C} \leq T_a \leq 70^{\circ}\text{C}$			16	mV
Ratio of change in reference input voltage to the change in cathode voltage (Fig 2)	$\triangle V_{ref} / \triangle V_{KA}$	I_{KA} =10mA, $\triangle V_{KA}$ =1.25V~15V			2.4	mV/V
Deviation of reference input current over full temperature range (Fig 2)	$\triangle I_{ref}/\triangle T$	I_{KA} =10mA, R_1 =10k Ω , R_2 = ∞ , 0°C \leq T $_a$ \leq 70°C			0.6	μA
Minimum cathode current for regulation (Fig 1)	I _{KA(min)}	V _{KA} =V _{REF}			0.1	mA
Off-state cathode current(Fig 3)	l _{off}	V _{KA} =15V,V _{REF} =0			0.5	μΑ
Dynamic impedance	Z _{KA}	V _{KA} =V _{REF,} I _{KA} =0.1 ~20mA, f≤1.0kHz			0.5	Ω

CLASSIFICATION OF Vref

Rank	1%	1.5%	
Range	1.2276~1.2524	1.2214~1.2586	

SHIKE MAKE CONSCIOUS PRODUCT
CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE

Typical Characteristics

Test Circuit for $V_{KA} = V_{ref}$

SHIKE MAKE CONSCIOUS PRODUCT

Test Circuit for $V_{KA} = V_{ref}(1+R1/R2) + R1*I_{ref}$

Test Circuit for I_{ref}

Test Circuit for Ioff

SHIKE MAKE CONSCIOUS PRODUCT

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT-23

SHIKE MAKE CONSCIOUS PRODUCT

