Dodos la funciones J, g: A -> B y un punto a & A, la derivada de la función producto f.g en a cendrá dodo, si la lubiera, por:

(fg)(v) = f(v) g(v) + g'(v)f(v)

Aunque sobenos que f es derivoble en α , no sobre mos si y lo es (solo sobenos que g es continua)

Pos definición, $f \cdot g : A \rightarrow R$ es derivoble en $\alpha \in A$ si el lim $\frac{(f(\alpha + \alpha) - (fg)(\alpha)}{\alpha}$ existe.

Como $\int (\alpha) = 0$ entonies: $\lim_{h\to 0} \frac{\int (\alpha+h)g(\alpha+h) - \int (\alpha)g(\alpha)}{h} = \lim_{h\to 0} \left[\frac{\int (\alpha+h) - \int (\alpha)}{h}\right]g(\alpha+h) = \frac{\int (\alpha+h)g(\alpha+h) - \int (\alpha)g(\alpha)}{h}$

= $\int (c) g(c)$ = $\int (c) g(c)$ (omo $\int en denivolete, f(c) existe, y como <math>g$ es continue, en or g(c) existe. Por tonto $\int g$ or denivolete en or g($\int g'(c) = \int (c) g(c)$.