Matplotlib: python plotting

Informatics 1 for Biomedical Engineers Tutor Session 7

KTI, Knowledge Technologies Institute

27. November 2016

▶ http://kti.tugraz.at/

Today's Topics

- 1. What is matplotlib
- 2. Drawing lines
- 3. Plotting charts using numpy arrays
- 4. Basic plotting commands
 - Standard plot
 - Histogram
 - Pie Chart, Bar Chart
 - Scatter Plots

Student Goals

- Be able to create simple plots
- Understanding matplotlib examples (online) and adapting them ¹
- Knowing where to look up to be able to beautify your plots

¹http://matplotlib.org/examples/

What is matplotlib?

- A plotting library for Python
- External library
 - Doesn't come with Python's Standard Library
 - But: Included in Anaconda, SciPy
- Open Source

Why matplotlib?

"matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc. with just a few lines of code."

— http://matplotlib.org

Why matplotlib?


```
plt.annotate(
'THE_DAY_I_REALIZED\nI_COULD_COOK..',
xy=(70, 1),
arrowprops=dict(arrowstyle='->'),
xytext=(15, -10) )
```

"matplotlib tries to make easy things easy and hard things possible. You can generate plots. histograms, power spectra, bar charts, errorcharts, scatterplots, etc. with just a few lines of code."

- http://matplotlib.org

Drawing our first line


```
import matplotlib.pyplot as plt

y_axis = [1,2,3,4]

plt.plot(y_axis)

plt.ylabel('some_numbers')

plt.xlabel('x_values')

plt.show()
```


Drawing our first line

- If a single list of array is given to plot(), matplot automatically generates the x values for you (starting at 0.0)
- providing both axes:

```
1 plt.plot(
2 [1, 2, 3, 4],
3 [1, 4, 9, 16])
```


Controlling line properties

plt.plot(x, y,
 marker='o', linestyle='',
 color='red')

- different ways to control line properties
 - keyword args
 - setter methods
 - format strings
 - setp() command

Controlling line properties

plt.plot(x, y,
marker='o', linestyle='',
color='red')

- different ways to control line properties
 - keyword args
 - setter methods
 - format strings
 - setp() command

Some Line Properties

character	description
label	a label for auto legend
linestyle	solid, dashed, datted,
marker	marker style (e.g. point '.', circle 'o')
color	red, blue, etc.
alpha	float (0.0 transparent through 1.0 opaque)
linewidth	float value in points
	·

... and many more, see doc: $\ensuremath{\mathbb{Z}}^2$

 $^{^2 \}verb|http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D|$

Zooming in and out - axis()

xlim() and ylim() get or set the axis limits

```
plt.plot(
    [1,2,3,4,5],
    [1,4,9,16,20], marker='o', ..)
plt.xlim(0, 6)
plt.ylim(0, 50)
```


Using numpy arrays

```
# evenly sampled np array from 0 to 2PI, 0.1 intervals
     t = np.arange(0., 2 * np.pi, 0.1)
3
4
     # plot sine and cosine
5
     plt.plot(t, np.sin(t), color='red', linestyle='dashed', label='sine')
6
7
     plt.plot(t, np.cos(t), color='blue', linestvle='', marker='s', label='cosin
8
     # plt.hlines(y, xmin, xmax, ...): Plot horizontal lines at each y from
     # xmin to xmax.
10
     plt.hlines(0, 0, 2*np.pi, color='green')
11
12
     plt.axis([0, 2*np.pi, -1, +1])
13
     plt.legend()
14
     plt.show()
```

27 November 2016

Using numpy arrays

27. November 2016

Labelling our plots

- Use the label keyword
- Call plt.legend() to uncover the label box

```
plt.plot(..., label='sine')
plt.plot(..., label='cosine')
plt.hlines(..., label='hline')
plt.legend()
```


Plotting a Histogram - plt.hist()

```
import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
   x = mu + sigma * np.random.randn(10000)

plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)
plt.show()
```


Adding text to our Histogram

```
import numpy as np
     import matplotlib.pyplot as plt
     mu, sigma = 100, 15
     x = mu + sigma * np.random.randn(10000)
6
7
     plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)
8
9
     #Adding text to our histogram:
10
     plt.title('Histogram_of,IQ')
11
     plt.text(60, .025, r'$\mu=100,\_\sigma=15$')
12
     plt.xlabel('Smarts')
13
     plt.vlabel('Probability')
14
15
     plt.show()
```


Adding text to our Histogram

Gallery: A few more examples

Pie Chart - plt.pie()

Bar Chart - plt.bar()

http://matplotlib.org/examples/api/barchart_demo.html

Gallery: A few more examples

http://matplotlib.org/examples/shapes and collections/scatter_demo.html

Surface 3D - plt.plot_surface()

http://matplotlib.org/examples/mplot3d/surface3d_demo.html

Complex Example - Plotting a retirement fund

- Look back at the task of unit 5: Calculate a retirement fund
- Someone already solved the task and wrote her solution into the source file retirement_model.py
- We want to use the functions calc_savings() and calc_retirement_account() and plot their returned values.

```
# importing the functions:
from retirement_model import calc_savings, calc_retirement_account
help(calc_savings) #or calc_savings?
```


Student Task

Task: Plot historical stock prices of the ATX

- Go to Google Finance and search for ATX
- Plot the prices in column Close.
- Bonus: Add a fill_between plot between each day's High and Low Price

³https://goo.gl/acl8nh