

/ Feature Selection

Is the process where you (automatically or manually) select those features which contribute most to your prediction variable.

Feature Selection

/ You need to understand the problem and develop an intuition about those features you will need to solve your problem and remove unnecessary features.

What features will I need to predict Y??

Correlation with target variable

/ Correlation with the target variable is a great tool. And a great place to start. You can plot correlation in one line:

Correlation with target variable

/ Even better is to show the absolute values of the correlation.

/ You need to be careful with correlation because:

- 1. This is Pearson Correlation, and is only for numerical variables.
- Correlation only shows that the feature is important alone. But it could be that somes features are bad on their own, but good together.
- Correlation is not causation.

Always look for Causation. Correlation is misleading.

/ Besides Correlation, it exits other methods of Feature Importance:

- Feature importance of some models (XGBoost, LightGBM).
- Permutation Feature importance.

Advanced Methods of Feature Selection

Reference:

- Sklearn Feat. Sel. Documentation
- machinelearningmastery.com
- Boruta-py

- Variance Threshold
- Univariate feature selection
 - Mutual information
- LASSO
- Wrapper: Su usa un classificador
 - MultiObjectiveEvolutionarySearch:
 Mejor para muchas generaciones.
 10000 Evals
 - PSO: Particule Search optimization
 - RFE: Recursive Feature Elimination
 - SelectKBest
- Filters:
 - InfoGAIN: Cantidad de información
 - Correlation Feature Selection

Variance Threshold

/ It removes features with low variance (below some threshold).

zero-variance features == features that have the same value in all rows

Types of correlation according variables

/ There are many types of correlation:

- Numerical + Numerical
 - Pearson's correlation coefficient (linear). f regression()
 - Spearman's rank coefficient (nonlinear).
- Numerical + Categorical
 - ANOVA correlation coefficient (linear). f classif()
 - Kendall's rank coefficient (nonlinear).
- Categorical + Categorical
 - Chi-Squared test (contingency tables). chi2()
 - Mutual Information. mutual info regression()

/ Q&A

What are your doubts?

