# Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

# PROTOKOL O MĚŘENÍ

Název úlohy

Číslo úlohy

# Nastavení pracovního bodu tranzistorového zesilocače

202 - 3R

Zadání

- **1.** Pro jednostupňový tranzistorový zesilovač v zapojení SE ve třídě A vypočítejte hodnoty rezistorů, máte-li zadány parametry:  $\mathbf{U}_{cc} = \mathbf{12} \ \mathbf{V}, \ \mathbf{I}_{C} = \mathbf{20} \ \mathbf{mA}, \ \mathbf{úbytek} \ \mathbf{napětí}$   $\mathbf{na} \ \mathbf{R}_{E} = \mathbf{0,2} \ \mathbf{V}, \ \mathbf{h}_{21E} = \mathbf{322}.$
- **2.** Na zesilovači nastavte vypočítané hodnoty rezistorů. Po připojení napájecího napětí ověřte za je pracovní bod zesilovače nastaven skutečně ve třídě A.

#### S pomocí generátoru a osciloskopu proveď te následující měření:

- **3.** Zjistěte maximální rozkmit vstupního sinusového signálu U<sub>VSTMAX</sub> o frekvenci f = 1 kHz, při kterém se obě půlvlny výstupního signálu přenesou ještě bez pozorovatelného zkreslení. Měření provádějte s připojeným C<sub>E</sub>.
- **4.** Spočítejte napěťové zesílení zesilovače  $A_U$  pro vstupní sinusový signál o frekvenci f=1 kHz. Měření provedte s připojeným  $C_E$ .
- **5.** Spočítejte napěťové zesílení zesilovače  $A_U$  dle předchozího bodu, ale s tím rozdílem, že  $C_E$  bude odpojený. Vysvětlete rozdíl v naměřených hodnotách.
- **6.** Zjistěte šířku pásma zesilovače pro pokles napětí o 3 dB.

| Poř. č. Příjmení a    | Příjmení a jméno<br>Horčička Askold |            |                                                                   | Třída<br><b>3.B</b> | Skupina<br><b>1.</b>                                                      | Školní rok<br>202  | 1/22     |
|-----------------------|-------------------------------------|------------|-------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------|--------------------|----------|
| Datum měření 5.4.2022 | Datum odevzdár                      | ú          | Počet listů  5                                                    | příprava            | Klasi<br>měření                                                           | fikace<br>protokol | obhajoba |
| Sch<br>Tal            |                                     | Sch<br>Tab | oretický úvod<br>néma<br>pulka použitých přístrojů<br>stup měření |                     | Tabulky naměřených a vypočtených hodnot<br>Vzor výpočtu<br>Grafy<br>Závěr |                    |          |

## 1. Teoretický úvod

Používáme zesilovač s tranzistorem v zapojení se společným emitorem (SE), což je nejčastější zapojení. Nastavené pracovního bodu realizujeme odporovým děličem složený z odporů  $R_1$  a  $R_2$ . Pracovní bod nastavujeme tak, aby byl zesilovač ve třídě A neboli v lineární části charakteristiky, což znamená že by měl mít malé zkreslení ale i velmi malou účinnost, také ve třídě a zesilujeme obě půlylny sinusového signálu a fázi posouváme o 180°.

# 2. Schéma zapojení



Schéma č. 1: Tranzistorový zesilovač SE

# 3. Výpočet rezistorů

Napájecí napětí  $\rightarrow U_{cc}=12\,V$  Kolektorový proud  $\rightarrow I_{C}=20\,mA$ Úbytek napětí na  $R_{E} \rightarrow U_{RE}=0.2\,V$  Proudový zesilovací činitel  $\rightarrow h_{21E}=322$ 

$$\mathbf{R}_{C} \rightarrow U_{RC} = \frac{U_{CC}}{2} = \frac{12}{2} = 6V \rightarrow R_{C} = \frac{U_{RC}}{I_{C}} = \frac{6}{0.02} = 300 \,\Omega$$

$$\mathbf{R}_{E} \rightarrow I_{C} = I_{E} + I_{B} \simeq I_{E} \rightarrow R_{E} = \frac{U_{RE}}{I_{E}} = \frac{U_{RE}}{I_{C}} = \frac{0.2}{0.02} = 10 \,\Omega$$

$$\mathbf{R}_{2} \rightarrow I_{B} = \frac{I_{C}}{h_{21E}} = \frac{20}{322} = 0.0621 \, mA \qquad I_{D} = 10 * I_{B} = 10 * 0.0621 = 0.621 \, mA$$

$$U_{R2} = U_{BE} + U_{RE} = 0.65 + 0.2 = 0.85 \, V \qquad R_{2} = \frac{U_{R2}}{I_{D}} = \frac{0.85}{621 * 10^{-6}} \simeq 1369 \,\Omega$$

$$\mathbf{R}_{1} \rightarrow R_{1} = \frac{U_{CC} - U_{R2}}{I_{D} + I_{R}} = \frac{12 - 0.85}{621 * 10^{-6} + 621 * 10^{-7}} \simeq 16323 \,\Omega$$

# 4. Tabulka použitých přístrojů

| Označení<br>v zapojení                                                                     | Přístroj                                              | Тур  | Inventární číslo  | Poznámka                                                            |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|------|-------------------|---------------------------------------------------------------------|--|
| G                                                                                          | Generátor                                             | -    | Stůl → 19 0042/03 | -                                                                   |  |
| OSC                                                                                        | Osciloskop                                            | -    | Stůl → 19 0042/03 | -                                                                   |  |
| V                                                                                          | Voltmetr                                              | MY74 | 19-0045/05        | $3 \frac{1}{2}$ ; 2 mV-20 V,<br>$\delta = \pm 0,5\%$<br>rdg + 2 dig |  |
| R <sub>1</sub>                                                                             | Odporová dekáda                                       | P33  | 19-0047/12        | -                                                                   |  |
| R <sub>c</sub>                                                                             | Odporová dekáda                                       | P33  | 19-1370/07        | -                                                                   |  |
| R <sub>2</sub> , R <sub>E</sub> , T,<br>C <sub>E</sub> , C <sub>V1</sub> , C <sub>V2</sub> | Přípravek pro měření<br>tranzistorového<br>zesilovače | -    | -                 | -                                                                   |  |

Tabulka č. 1: Použité přístroje

# 5. Postup měření

#### I. Natavení pracovního bodu tranzistorového zesilovače

- **a)** Vypočítáme hodnoty rezistorů
- **b)** Sestavili jsme zapojení podle schématu č. 1 a nastavili jsme požadované hodnoty odporových dekád.
- **c)** Ověřujeme, zda je zesilovač doopravdy ve třídě A, popřípadě donastavíme odporovou dekádu R<sub>1</sub>.

#### II. Maximální rozkmit vstupního napětí U<sub>VSTMAX</sub>

- a) Nastavujeme generátor na frekvenci 1 kHz
- **b)** Nastavujeme osciloskop
- **c)** Postupně zvyšujeme U<sub>PP</sub>, dokud nezpozorujeme nepatrné zkreslení
- **d)** Zjišťujeme hodnotu napětí

#### III. Napěťové zesílení $A_U$ pro zapojení s $C_E$ a i bez $C_E$

- **a)** Nastavíme  $U_{PP} = 20 \text{ mV}$  na generátoru
- **b)** Zjišťujeme hodnotu napětí pro zapojení s  $C_{\scriptscriptstyle E}$
- **c)** Spočítáme A<sub>U</sub>
- **d)** Zopakujeme pro zapojení bez C<sub>E</sub>

#### IV. Šířka přenosového pásma s napěťovým útlumem 3 dB pro zapojení s $C_E$ a i bez $C_E$

- **a)** Při  $U_{PP} = 20 \text{ mV zjišťujeme zesílené napětí se zapojeným <math>C_E$
- **b)** Vypočítáme pokles o 3 dB ze zesíleného napětí
- **c)** Zvyšujeme frekvenci generátoru do bodu, kdy je zesílené napětí rovno vypočtené hodnotě z bodu b
- **d)** Opakujeme bod c ale frekvenci snižujeme
- **e)** Zopakujeme pro zapojení bez C<sub>E</sub>

# 6. Vzory výpočtů

I. Výpočet šířky přenosového pásma pro  $f_H = 68 \text{ kHz}$ ,  $f_D = 245 \text{ Hz}$ 

$$B = f_H - f_D = 68000 - 245 = 67755 Hz$$

II. Výpočet napěťového zesílení  $A_U$  pro  $U_1$  = 20 mV,  $U_2$  = 2.7 V

$$A_U = \frac{U_2}{U_1} = \frac{2.7}{0.02} = 135$$

III. Výpočet napěťového zisku při  $A_U = 135$ 

$$a_U = 20 * log A_U = 20 * log 135 = 42.6 dB$$

# 7. Naměřené a vypočtené hodnoty

| Označení rezistoru | R <sub>VYPOČTENÝ</sub> [Ω] | $R_{SKUTE\check{CN\acute{Y}}}\left[\Omega ight]$ |  |
|--------------------|----------------------------|--------------------------------------------------|--|
| R <sub>E</sub>     | 10                         | 10                                               |  |
| R <sub>c</sub>     | 300                        | 300                                              |  |
| $R_1$              | 1 369                      | 1200                                             |  |
| R <sub>2</sub>     | 16 323                     | 15 130                                           |  |

Tabulka č. 2: Hodnoty rezistorů

| f [kHz] | U <sub>VSTMAX</sub> [mV <sub>PP</sub> ] |  |
|---------|-----------------------------------------|--|
| 1       | 40                                      |  |

Tabulka č. 3: Maximální rozkmit vstupního napětí Uvstmax

| Druh zapojení      | <b>A</b> <sub>U</sub> [-] | a∪ [dB] |
|--------------------|---------------------------|---------|
| S C <sub>E</sub>   | 135                       | 42.6    |
| Bez C <sub>E</sub> | 24.5                      | 27.7    |

Tabulka č. 4: Napěťové zesílení

| Druh zapojení      | f <sub>D</sub> [Hz] | f <sub>H</sub> [Hz] | B [Hz]  |
|--------------------|---------------------|---------------------|---------|
| S C <sub>E</sub>   | 245                 | 68 000              | 67 755  |
| Bez C <sub>E</sub> | 38                  | 290 000             | 289 962 |

Tabulka č. 5: Šířka pásma

# 8. Závěr

Zhodnocení U<sub>VSTMAX</sub>, rezistorů a zapojení s C<sub>E</sub> a bez C<sub>E</sub>

- I. U<sub>VSTMAX</sub> → je maximální rozkmit vstupního napětí, byl okolo 40 mV<sub>PP</sub>, nad tuhle hodnotu už byla pozorovatelná mírná deformace, zkreslení. Pokud jsme se dostali nad okolo 90 mV<sub>PP</sub> tak už byl signál dokonce limitován, nejdříve zdola a po nastavení ještě vyššího napětí i shora. Píšu okolo, jelikož jsme to nemohli určit úplně přesně, odhadovali jsme to při zobrazení na osciloskopu.
- **II.** Skutečné hodnoty odporů → nenastavili jsme přesně vypočítané hodnoty odporů, upravili jsme hodnoty tak, abychom měli na výstupu 6V
- **III.** S  $C_E$  vs bez  $C_E \rightarrow$  bez připojeného  $C_E$  jsme získali přes 4x širší přenosové pásma, můžeme také pozorovat že bez  $C_E$  je napěťové zesílení  $A_U$  výrazně menší při stejných hodnotách vstupního napětí