

DIU EIL – UE 5 Arbre

Nicolas Pronost

Définition d'un arbre

- Un arbre est une structure de donnée hiérarchique, composé de nœuds et de relations de précédence entre ces nœuds __ listes sont se quentiels
- Chaque nœud possède
 - 0, 1, 2, ..., n successeur(s)
 - un et un seul prédécesseur (sauf la racine qui en a aucun)
- Un nœud ne peut pas être à la fois prédécesseur et successeur d'un autre nœud
- Un arbre est donc une structure récursive, un successeur d'un nœud étant lui-même un arbre

Vocabulaire

- La racine est le nœud sans prédécesseur (point d'accès au contenu de l'arbre entier)
- Une feuille est un nœud sans successeur
- Une branche est la suite des nœuds liant la racine à une feuille
- Un fils est un successeur d'un nœud
- Le père est le prédécesseur d'un nœud
- Le degré d'un nœud est le nombre de fils de ce nœud
- La profondeur d'un nœud est le nombre de prédécesseur entre ce nœud et la racine
- La hauteur d'un arbre est la profondeur maximale de tous les nœuds

Exemple

- Racine (arbre) = Z
- Feuilles (arbre) = $\{L(S(C)B(G))\}$
- Branche (s) = {sFAz}
- Fils (A) = {F C B}
- Père (F) = A
- Degré ((A)) = 3
- Profondeur ((c)) = 2
- Hauteur (arbre) = 3

· Par liste d'adjacence tous les nouds de l'oubre

Liste chaînel

a pour ne're

• Par tableau 2D

ıaı	Cabica	\sim \prime	
2.0	hou	Yil	5

	А	В	C	Е	F	G	_	L	S	Z
Α	0	1	1	0	1	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0	0	0
Е	0	0	0	0	0	1	1	0	0	0
F	0	0	0	0	0	0	0	1	1	0
G	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	0	0	0
L	0	0	0	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0	0	0	0
Z	1	0	0	1	0	0	0	0	0	0

Le nœud de la ligne a comme fils le nœud de la colonne

Représentaten par matrice d'adjaunce d'un suphe aiente (matrice non suprietrique)

- Comparaison entre liste d'adjacence et tableau 2D

 Espace mémoire
 Dans tous les cas, la liste prend en mémoire deux fois le nombre de totalisant
 - Dans tous les cas, le tableau prend en mémoire : $O(n^2)$
 - Rechercher toutes les relations père-fils
 - Dans tous les cas, il faut parcourir tous les liens de la liste pour trouver toutes les relations : O(n)
 - Dans tous les cas, il faut parcourir tout le tableau pour trouver toutes les relations : $O(n^2)$

- Comparaison entre liste d'adjacence et tableau 2D
 - Supprimer une feuille (pus de fils)
 - Il faut trouver la feuille à supprimer et mettre à jour la liste
 - recherche de la feuille à supprimer et de son père en O(n) + suppression de la feuille dans la liste d'adjacence en O(1) = O(n) + O(1) = O(n)
 - Il faut trouver et supprimer la ligne et la colonne (même indice) de la feuille à supprimer et recopier les lignes/colonnes suivantes
 - recherche de la feuille à supprimer en O(n) + suppression avec recopie en $O(n^2)$ dans le pire des cas (première ligne/colonne à supprimer)
 - $O(n) + O(n^2) = O(n^2)$

- Comparaison entre liste d'adjacence et tableau 2D
 - Ajouter un fils à un nœud donné
 - Il faut ajouter une nouvelle cellule à la liste des nœuds et une nouvelle cellule à la liste du nœud donné
 - ajout de la nouvelle cellule en tête de liste en O(1)
 - ajout de la nouvelle cellule en tête de liste des fils du nœud donné en 0(1)
 - O(1) + O(1) = O(1)
 - Il faut ajouter une ligne et une colonne au tableau, mettre les éléments à 0 sauf pour le père qui est à 1
 - ajout d'une ligne et d'une colonne à 0 en $O(n^2)$ avec un tableau statique (en O(n) amorti avec un tableau dynamique) reconier tout bout
 - mettre à 1 le père en O(1)
 - $O(n^2) + O(1) = O(n^2)$

Lydons un meilleur op avec untableaur dynamique, coût en O(n)

Au final l'implamentation uvez listes d'adjacences a une milleure complenté que celle uvec le tableur à deux dimension.

Arbre binaire

- Un arbre binaire est un arbre qui a au plus 2 fils (i.e. 0, 1 ou 2)
 - Le degré maximal d'un nœud est 2
- On appelle fils gauche (ou sous arbre gauche ou sag) le premier successeur

- On appelle fils droit (ou sous arbre droit ou sad) le deuxième successeur
 - Fils droit (O) = R

Arbre binaire

 Un arbre binaire peut être dégénéré ou équilibré ou aucun des deux

Fonctionnalités de Arbre (binaire)

• Constructeur Arbre() Postconditions: l'arbre est initialement vide • Destructeur ~Arbre() · Postconditions : libération de la mémoire utilisée, l'arbre est vide • Procédure vider () • Postcondition : l'arbre ne contient plus aucun élément • Fonction estVide () : booléen • Résultat : retourne vrai si l'arbre est vide, faux sinon Procédure afficher () • Postcondition : l'arbre est affiché à l'écran • Procédure insererElement (e) · Postcondition : si e n'existe pas déjà dans l'arbre, alors un nouveau noeud contenant e est inséré, si e existe déjà dans l'arbre, alors l'arbre est inchangé • Procédure supprimerElement (e) • Postcondition : l'élément e est recherché et supprimé de l'arbre, sans effet si le noeud n'est pas présent, les propriétés de l'arbre sont conservées • Fonction hauteurArbre () : entier • Résultat : la hauteur de l'arbre (longueur de sa plus longue branche), ou -1 s'il est vide Fonction rechercherElement(e): (booléen, Arbre) • Résultat : un tuple indiquant si l'élément e est dans l'arbre et le noeud-arbre de l'élément (None si absent)

Mise en œuvre d'un arbre en Python

- Un arbre vide est représenté par l'attribut info à None
- Les attributs fg et fd sont des arbres donc tous les nœuds sont des arbres, une feuille a deux attributs fg et fd à None

```
class Arbre :
    def __init__(self,info=None,fg=None,fd=None) :
        self.info = info
        self.fg = fg
        self.fd = fd
# ...
```

```
a1 = Arbre()  # arbre vide
a2 = Arbre(2)  # arbre avec un nœud (la racine)
```

Parcours d'un arbre

- On a plusieurs façons de visiter tous les nœuds d'un arbre, donnant des ordres de visite différents à quel moment est
- Parcours en profondeur
 - Parcours en ordre (infixe) : fils gauche, nœud, fils droit
 - Parcours en pré-ordre (préfixe) : nœud, fils gauche, fils droit
 - Parcours en post-ordre (postfixe) : fils gauche, fils droit, nœud
- Parcours en largeur
 - Parcours niveau après niveau (i.e. profondeur par profondeur)

Parcours d'un arbre

- Parcours en ordre (infixe): 425136
- Parcours en pré-ordre (préfixe) : 1 2 4 5 3 6
- Parcours en post-ordre (postfixe) : 4 5 2 6 3 1 \swarrow
- Parcours en largeur: 123456

antraite en dernier ce qu'en a vu en premier

Les parcours en profondeur s'écrivent très facilement avec

une procédure récursive

```
on a cho si qu' un
noeud exciste oi son champ
def afficherParcoursInfixe(self):
    if self.info:
        if self.fg : self.fg.afficherParcoursInfixe()
        print(self.info, end=' ') # on traite le noeud
        if self.fd : self.fd.afficherParcoursInfixe()
   > Ainsi en ne seul pas faire le paraux
infine d'un arbre vide. On pourrait
```

 Que faut-il modifier à l'algorithme précédent pour effectuer un parcours préfixe et un parcours post-fixe?

 Ces algorithmes peuvent également être écrits de manière itérative en utilisant une pile ou une file

- Le parcours en largeur visite les nœuds par profondeur (en partant de la racine)
- Le plus facile est d'utiliser une file pour stocker les nœuds à visiter Algarithme difficule à êune de maniche

Exemple de parcours en largeur

Arbre binaire de recherche Arbre binaire de recherche

- Un arbre binaire de recherche (ABR) est une structure permettant de ranger des informations ordonnées
- C'est un arbre binaire où pour tout nœud n de l'arbre, les nœuds du fils gauche de n sont plus petits que n et les nœuds du fils droit sont plus grands que n
 - « SAG < nœud < SAD »
- Les procédures d'insertion et de suppression doivent faire respecter cette règle
 - Il faut donc trouver la bonne place où ajouter un nœud
 - On peut donc avoir besoin de réorganiser l'arbre après suppression d'un nœud \(\frac{1}{2} \)

Insertion d'un élément dans un ABR

Depuis l'arbre

Insertion d'un élément dans un ABR

- On insère toujours dans une feuille de l'arbre, on recherche juste la bonne place
- Deux arbres « identiques » (i.e. avec les mêmes éléments)
 mais dont l'ordre d'insertion des éléments est différent
 donne deux arbres différents
 - Insertion dans l'ordre 2 1 3

Insertion dans l'ordre 1 2 3

Insertion d'un élément dans un ABR

```
def insererElement(self, e):
                                            Cas d'insertion dans
un aibre met
        if not self.info:
            # le sous arbre est vide
            self.info = e
        else:
            if e < self.info:</pre>
                if self.fq: #le sous arbre existe déjà, on continue
                    self.fq.insererElement(e)
                else: # le sous arbre n'existe pas, on le créer
                    self.fq = Arbre(e)
            if e > self.info:
                if self.fd :
                    self.fd.insererElement(e)
                else:
                    self.fd = Arbre(e)
             rien à faire si égal, déjà présent, arrêt de pa récorsion
a = Arbre()
a.insererElement(2)
                         # ajout d'un noeud valant 2 à la racine
a.insererElement(3)
                         # ajout d'un noeud valant 3 en fd de la racine
```

Recherche d'un élément dans un ABR

```
(trouve, noeud) = a.rechercherElement(3)
```

- Il y a quatre cas à distinguer
 - le nœud à supprimer n'est pas dans l'arbre
 - le nœud à supprimer est une feuille
 - le nœud à supprimer a un seul fils
 - le nœud à supprimer a deux fils

de déféculté

- Le nœud à supprimer n'est pas dans l'arbre
- > Rien à faire

3 your la discussion en vage 8

- Le nœud à supprimer est une feuille
- > On supprime la feuille et on met à jour le père
 - suppression du nœud 4

- Le nœud à supprimer a un seul fils
- ➤ Il suffit de court-circuiter le nœud à supprimer (i.e. le père pointe sur le fils non nul)
 - suppression du nœud 3

- Le nœud à supprimer a deux fils
- ➤ Pour conserver la propriété d'un ABR, il faut remplacer le nœud par son plus proche successeur ou plus proche prédécesseur
 - Plus proche successeur = le nœud le plus à gauche du sous arbre droit

• Plus proche prédécesseur = le nœud le plus à droite du sous arbre gauche

• Plus proche successeur de 5 = 6

• Plus proche prédécesseur de 5 = 3

1 3 6 8 1 3 6 8

• Suppression du nœud 4 par remplacement avec le plus proche successeur (i.e. 6)

proch pede asser

on prend Cosous Felse Land eiler: et en le met onne et ple eller endre suot

• Suppression du nœud 6 par remplacement avec le plus proche prédécesseur (i.e. 4)

Déséquilibre d'un ABR

- Les ajouts et suppressions peuvent rendre un arbre déséquilibré, jusqu'à dégénéré
- Pour pouvoir faire des recherches efficaces (en $O(\log n)$) d'éléments il faut rééquilibré l'arbre
 - à chaque ajout/suppression ou moins souvent

