What is LLM?

Large Language Model

They are trained on massive text data

They are language models made of <u>neural networks</u>

They can understand human language and generate human language

A large language model is instance of Foundation model

GPT-4, Claude, Gemini, Deepseek

How LLM works?

It works in different steps:

1. Training: LLM's are trained on large text data from Wikipedia, websites, social media posts, research papers, conversations etc.

LLM prhta or seekhta hai.

Imagine a person reading 1000's of new books articles blogs on daily basis. Us insaan ka dimaag language ke patterns seekh leta hai — jaise kis word ke baad kya word aata hai, ya koi sentence kis mood mein likha gaya hai.

LLM bhi isi tarah patterns aur meanings seekhta hai — but much faster aur zyada detail mein.

- 2. Neural networks: Imagine them as brain that is inside LLM, similar to human brain and process same like as human brain.
- 3. Tokenization: As we all know computers only understand numbers. So, when we give any sentence to model it breaks that sentence into different token

For example: I give a sentence "My name is Fariha"

So, the model first breaks it into token or small words like:

"My", "name", "is", "Fariha"

Then assign a number to each token, then give that numbers to neural network.

- 4. Prediction: Model predict the next word based on the words given. It predicts based on the pattern it sees continuously during training. For example: If i ask: "The capital of Pakistan is....."

 The higer chances are that model will give Islamabad, kyun ke usne training mein yeh pattern baar baar dekha hai.
- 5. Embedding: This assigning of numbers to token is embedding.
 Embedding is the process of converting words or tokens into meaningful vectors (numbers) that a model can understand.
 As we know computer can't understand normal words like name, Pakistan etc, they only understand numbers. But simple numbers like 1, 2, 3 for each word don't capture meaning.
 So instead of assigning random numbers, LLMs use embeddings to represent each word as a vector in a multi-dimensional space.
- 6. Positional Encoding: Since LLMs (like transformers) **don't understand the order** of tokens by default, we add **positional encoding** to tell the model Let's say:

"My name is Fariha"

Model needs to know:

- "My" is at position 1
- "name" is at position 2
- and so on...

So we add a **positional vector** to each word's embedding.

What are Transformers?

A **Transformer** is a type of **deep learning model architecture** that is especially designed to **handle language** (text), and sometimes even images, code, and more.

Before transformers, models had problems like:

- Forgetting earlier words
- Being slow in training
- Not understanding long-range context well
 Transformers solved all that by introducing a new idea: Self-Attention

Key Concepts In Transformers:

1. Input: Token + Embedding + Position

- Like before, input text is **tokenized**
- Each token is converted into a vector (embedding)
- Then we add **positional encoding** to know the word's position

2. 2. Self-Attention – "Kis Word ko Kitna Dhyan Dena Hai"

- This is the magic inside Transformers.
- Imagine you're reading this sentence:

"Ali went to the bank to deposit money."

• The word "bank" can mean:

A financial place

A river bank

• To understand the correct meaning, the model **attends to nearby words** — like "deposit" or "money" — and realizes:

"Oh! This is a financial bank."

• Model har lafz ke aas paas ke words ko dekhta hai aur decide karta hai:

"Mujhe kis word par zyada focus karna chahiye?"

This process is called **self-attention**.

3. Multi-Head Attention

- Instead of focusing on just **one kind** of relationship, the transformer uses **multiple heads** to focus on different relationships in parallel.
- Socho 8 log aik sentence ko alag nazar se dekh rahe hain kisi ne grammar pe dhyan diya, kisi ne mood pe, kisi ne context pe. Then sabki analysis combine hoti hai.

4. Feedforward Layers

After self-attention, the outputs are passed through **normal neural layers** to further process and refine the meaning.

5. Stacked Layers

Transformers have **many layers** — each learning deeper and more abstract patterns.

For example:

- First layers learn grammar
- Later layers learn intent or mood
- Final layers make predictions