

CLAIMS

What is claimed is:

- 1 1. A method, comprising:
 - 2 applying an adhesive gel material to at least a portion of a first side of a
 - 3 semiconductor wafer having first and second sides;
 - 4 positioning the semiconductor wafer on to a platform with the first side
 - 5 facing the platform and with the adhesive gel material between the first side and
 - 6 the platform to allow the adhesive gel material to hold the semiconductor wafer to
 - 7 the platform;
 - 8 grinding the second side of the semiconductor wafer; and
 - 9 allowing the adhesive gel material to release the semiconductor wafer
- 10 from the platform.
- 1 2. The method of claim 1 wherein allowing the adhesive gel material to hold
- 2 the semiconductor wafer to the platform comprises using an adhesive property of
- 3 the adhesive gel material to hold the semiconductor wafer to the platform.
- 1 3. The method of claim 2, wherein the platform includes a vacuum, and
- 2 wherein using the adhesive property to hold the semiconductor wafer to the
- 3 platform includes holding the semiconductor wafer in position using the adhesive
- 4 gel material with the vacuum substantially turned off.
- 1 4. The method of claim 2 wherein using the adhesive property to hold the
- 2 semiconductor wafer to the platform includes providing substantial surface
- 3 contact between the adhesive gel material and the first side of the wafer.

1 5. The method of claim 1, wherein allowing the adhesive gel material to
2 release the semiconductor wafer from the platform includes applying a vacuum to
3 the gel material to substantially pull the adhesive gel material off the first side of
4 the semiconductor wafer.

1 6. The method of claim 1 wherein applying the adhesive gel material to at
2 least a portion of the first side of the semiconductor wafer includes applying the
3 adhesive gel material to an upper surface of an un-diced semiconductor wafer.

1 7. The method of claim 6, further comprising after grinding the second side of
2 the semiconductor wafer, which comprises a lower surface of the semiconductor
3 wafer:

4 washing the semiconductor wafer;
5 mounting the semiconductor wafer; and
6 dicing the semiconductor wafer.

1 8. The method of claim 1, wherein applying the adhesive gel material to the
2 first side of the semiconductor wafer includes applying the adhesive gel material
3 to an upper surface of at least a partially-diced semiconductor wafer.

1 9. The method of claim 8, further comprising after grinding the second side of
2 the semiconductor wafer, which comprises a lower surface of the semiconductor
3 wafer, mounting the semiconductor wafer that has had its lower surface grinded.

1 10. The method of claim 1, wherein applying the adhesive gel material to the
2 first side of the semiconductor wafer includes applying the adhesive gel material
3 to an upper surface of a flip chip bump wafer or non-bump wafer

1 11. The method of claim 1 wherein applying the adhesive gel material
2 includes applying a gel material including semi-solid particles.

1 12. The method of claim 11 wherein allowing the adhesive gel material to
2 release the semiconductor wafer from the platform includes applying a vacuum to
3 draw the membrane away from the first side of the semiconductor wafer

1 13. The method of claim 1 wherein applying the adhesive gel material to the
2 first side of the semiconductor wafer includes applying the adhesive gel material
3 to an upper surface of a semiconductor wafer having surface structures.

1 14. The method of claim 13 wherein the surface structures include bumps.

1 15. The method of claim 13 wherein the surface structures include electronic
2 circuitry.

1 16. A method, comprising:

2 applying a gel material to a first side of a semiconductor wafer, having first
3 and second sides, to provide substantial surface contact between the gel
4 material and surface structures on the first side;

5 placing the wafer on a vacuum chuck with the gel material between the
6 wafer and the vacuum chuck;

7 grinding the second side while using the gel material to hold the wafer
8 against the vacuum chuck; and

9 removing the wafer from the vacuum chuck by reducing surface contact
10 between the gel material and the surface structures.

1 17. The method of claim 16, wherein applying the gel material to the first side
2 of the semiconductor wafer includes applying the gel material to a surface of at
3 least one of a flip-chip bump wafer and a non-bump wafer.

1 18. The method of claim 16 wherein the surface structures comprise
2 electronic circuitry.

1 19. The method of claim 16 wherein the surface structures comprise bumps.

1 20. The method of claim 16 wherein reducing surface contact between the gel
2 material and the surface structures includes activating the vacuum chuck.

1 21. The method of claim 16 wherein the gel material includes semi-solid
2 particles.

1 22. The method of claim 16 wherein applying the gel material to the first side
2 of the wafer includes applying a semi-solid material to an upper surface of the
3 wafer, the semi-solid material capable to prevent substantial collapse of a gel
4 membrane of the gel material into the vacuum chuck.

1 23. The method of claim 16, further comprising after removing the wafer from
2 the vacuum chuck:

- 3 washing the wafer;
- 4 mounting the wafer; and
- 5 dicing the wafer.

- 1 24. The method of claim 16, further comprising dicing the wafer before
- 2 applying the gel material to the first side of the wafer.

- 1 25. The method of claim 24 wherein the wafer is diced to a depth deeper than
- 2 a final desired depth of the wafer.

- 1 26. The method of claim 16, further comprising using a vacuum transfer
- 2 device to transfer the wafer from the vacuum chuck onto a surface for mounting.

- 1 27. The method of claim 16 wherein grinding the second side of the wafer
- 2 while using the gel material to hold the wafer against the vacuum chuck includes
- 3 absorbing at least some of a grinding force applied to the second side of the
- 4 wafer.

- 1 28. A material, comprising:
 - 2 an adhesive gel material;
 - 3 semi-solid particles within the adhesive gel material; and
 - 4 wherein the adhesive gel material forms a membrane surface to hold a
 - 5 first side of a semiconductor wafer to a surface of a vacuum chuck during wafer
 - 6 grinding of a second side of the semiconductor wafer.

- 1 29. The material of claim 28 wherein the semi-solid particles within the
- 2 adhesive gel material form a structure to substantially prevent the membrane
- 3 surface from collapsing to the surface of the vacuum chuck when the vacuum
- 4 chuck is activated.

1 30. The material of claim 28 wherein the semi-solid particles within the
2 adhesive gel material includes organic particles.