JOURNAL OF NEIJIANG TEACHERS COLLEGE

# 土法制碱

张大增(化学系)

纯碱用途极广,是轻化工业的重要原料。本文在借用苏尔维法和侯德榜法的纯碱生产原理的前提下,对制碱流程、设备和操作方法都进行了简化。现将八五年来共经过实践的已取得成效的土法制碱介绍如下:

#### 1 制破原理

以盐卤为基点,将食盐制成饱和食盐水,再吸收氨,以得到氨卤。由于是土法制碱,氨水的用量不能过大,否则定会损害工人健康,也会造成环境污染。生产中的CO2和NH,是来源于碳酸氢铵和氨水,使用氨水是作为提高产品和付产品质量的补充手段。 主要反应如下:

NaCl+NH, +H<sub>2</sub>O+ CO<sub>2</sub> 
$$\longrightarrow$$
 NaHCO<sub>3</sub> ↓ +NH<sub>4</sub>Cl  
2NaHCO<sub>3</sub>  $\longrightarrow$  Na<sub>2</sub>CO<sub>2</sub>+CO<sub>2</sub>↑ +H<sub>2</sub>O  
<10°C  
NH<sub>4</sub>Cl+NaCl( 🖾 )  $\longrightarrow$  NH<sub>4</sub>Cl↓+NaCl



在生产过程中每河产品和付产品 后的母液还可以再用于制碱。NH<sub>4</sub>Cl 是较实用 的化肥,能使农 作物 更加 耐旱,特别是蔬果作物。采用这种方 法制碱,能降低成本。

#### 2 生产设备及流程

社队企业的资金一般都紧。因此 减少设施及设备的开支尤有必要,而 设施的市局要尽可能紧凑和利用自然 条件,让盐卤自流入反应锅。为缩小

厂房的给地面积,各池之间依自然坡度,采取半重叠式修建,出料口设在半重叠式外露部份的底部。故设施及设备除四个池,1—3口反应锅外,还要一台容量稍大的离心机,一个较大的干燥箱(碳火加热、减压干燥),一台提升泵、一台减压泵和一些辅助工具。

#### 3 设施的布局

设施的布局应尽可能紧凑,减少不必要的管道,尽可能地利用能源和提高设备的使用率,整个设施分成三阶梯式:(1)(2)(3)池居于最上一级阶梯、而又由华重叠式成小梯级,反应锅,离心机、干燥箱居于第二梯级,并列,各自相距不远,母液池挖在第二级的地平面以下。干燥箱除密封门一面暴露在大气中以外,其他各面均在炉堂中。反应锅设置在

烟道之上,以利用烟道余热加热盐卤。 这样,既能保持生产的连续性又能提高设备的使用率。

## 4 NH、CI的提取

在生产纯碱的过程中分离出的母液还含有相当量的NaHCO。和大量的NH\_Cl。若这时加入NaCl将会有大量的NaHCO。和 NH\_Cl 共同结晶析出势必要降低NH\_Cl的纯度。为解决这一问题,可以在此时加入一定量的NH。约1%,以使较难溶于水的NaHCO。转化为易溶解的Na<sub>2</sub>CO<sub>3</sub>,同时还可使母液降低温度和增加NH。的浓度。故在将NaHCO。分离后的母液先通入NH。后,再进一步降温至10°C以下,加入NaCl粉,使NH\_Cl



析出结晶。之所以这样操作,是基于NaCl溶解度不会随温度的变化而大幅度的改变;NH<sub>4</sub>Cl的溶解度则随着体系温度降低而降低的幅度很大,尤其是在10°C以下,NH<sub>4</sub>Cl的溶解度反比NaCl的溶解度还小。这可从各别溶解度表和图看出:

各别溶解度衰

| $T^{\bullet}C$ | NaCI+H <sub>2</sub> O<br>g/100ml | $NH_4CI + H_2O$ $g/100ml$ |
|----------------|----------------------------------|---------------------------|
| 0              | 35.63                            | 29.4                      |
| 10             | 35.69                            | 33.3                      |
| 15             | 35.76                            | 35.2                      |
| 20             | 35.82                            | 37.2                      |
| 25             | 35.92                            | 39.3                      |
| 30             | 36.04                            | 41.4                      |



我们又从NaCl和NH<sub>4</sub>Cl在同一体系的溶液中 共 同 溶 解度来看,NaCl的溶解度是随着体系温度的降低而增高,NH<sub>4</sub>Cl的溶解度则是降低,且降低的很多。见共同溶解度表和图。

当NH<sub>4</sub>Cl沉淀分离后,由于NH<sup>+</sup>减少,母液中的Na<sup>+</sup> 浓 度 增高,这样 的 母液若补充 NH<sub>3</sub>,使游离氨的浓度也增高,其母液成份就更接近苏尔维法的氨卤成份了。从八五年的实践证明,此法适合社队企业生产纯碱,且质量符合国家标准。

## 5 可行性论证:

- 5.1 纯碱的用途广,需求量大。
- 5.2 生产方法和设备简单,固定资产投入少,生产周期短,资金周转快。

75

## 共同溶解度表

| $T^*C$ | 同体系中的共同溶解度<br>(饱和态下) % |          |
|--------|------------------------|----------|
|        | NaCI                   | $NH_4CI$ |
| 0      | 19.78                  | 10.26    |
| 10     | 18.27                  | 12.45    |
| 15     | 17.72                  | 13.9     |
| 20     | 17.52                  | 14.78    |
| 25     | 16.75                  | 16.13    |
| 50     | 14.26                  | 22.50    |
| 75     | 13.75                  | 28.39    |
| 100    | 10.76                  | 34.00    |



5.3 成本核算: (以八五年物价核算)

NH<sub>4</sub>HCO NaHCO<sub>3</sub> Na<sub>2</sub>CO<sub>3</sub> NaCl NH<sub>4</sub>Cl

1.48吨 1.58吨 1吨 1.1吨 1吨

从理论上计算,每生产一吨Na<sub>2</sub>CO<sub>3</sub>,需要食盐1.1吨、NH<sub>4</sub>HCO<sub>3</sub>1.48吨,同时可生产约一吨NH<sub>4</sub>Cl,产值为:

NH<sub>4</sub>HCO; Na<sub>2</sub>CO<sub>3</sub> NaCl NH<sub>4</sub>Cl 210元/吨 800元/吨 100元/吨 130元/吨

产值应为509元/吨,日产四吨计为2036元;设备投资五 万 元, 以 半 年 计算设备折旧 280元/日;在付出人员工资144元/日(以36人计算),再扣除税率、能源费700元/日;再扣除NaCl和 $NH_{\Lambda}$ Cl在母液中的残留量和损耗500元,纯利也有412元/日

110元/1.1吨

5.4 日产四吨,是以 $\phi$ 1.5m、高二米、容量为3.5m³的反应锅,三班连续生产 而 得的运行数字(八五年生产时每天是4.5吨)。

综上所述,固定资产投入半年即可收四(实际上要不了半年)。故社队企业采用此法生产是可行的。

#### 6 实践

八五年临江纯碱厂用此法生产纯碱,产品经内江五交化站质检所检验,除 $Fe_2O_3$ 略高于国家标准外(但都小于0.04%),其他指标均符合国家标准,而灼烧失量仅有0.14%,总碱量为98.71%

#### 7 生产的关键问题

311元/1.48吨

①反应温度控制在30—34°C之间,②加NH<sub>4</sub>HCO<sub>3</sub>和NaCl粉时要搅拌、缓加,③分离的NaHCO<sub>3</sub>要用温水(30°C)洗涤除盐和NH<sub>4</sub>Cl,④沉淀NH<sub>4</sub>Cl的温度最好控制 在 10°C以下。