"代数-1"期中考试试题

2021年11月03日 (共 2 页)

1. (12分) 设 $A \in M_4(\mathbb{R})$ 的伴随矩阵 A^* 如下:

$$A^* = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ -2 & -4 & 2 & 0 \\ 0 & -2 & 0 & 2 \end{array}\right).$$

求 A^{-1} 和 A.

2. (12分) 设 V 是数域 $\mathbb F$ 上的 4 维向量空间, 并且 V 上一个线性算子 ϕ 在 V 的基 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 下的矩阵为

$$A = \left(\begin{array}{rrrr} 1 & 0 & -2 & 1 \\ 1 & 2 & -3 & 3 \\ -2 & -2 & 5 & -4 \\ 1 & 4 & -4 & 5 \end{array}\right).$$

分别求 $\operatorname{Ker} \phi$ 与 $\operatorname{Im} \phi$ 的一个基.

3. (12分) 设 A, B 是 n 阶方阵. 证明:

$$rank(A) + rank(B) - n \le rank(AB)$$
.

4. (15分)设

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 0 & 4 & 0 \\ 0 & -2 & 2 \end{pmatrix} \in M_3(\mathbb{R}).$$

求可逆矩阵 $P \in M_3(\mathbb{R})$ 使得 $P^{-1}AP$ 是对角矩阵.

5. (12分) 设 U, V, W, Z 都是域 \mathbb{F} 上的有限维线性空间, 并且 f, g, ψ 是线性变换:

$$f: U \longrightarrow V, \ g: W \longrightarrow Z, \ \psi: U \longrightarrow Z.$$

假设 $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(\psi)$, $\operatorname{Im}(\psi) \subseteq \operatorname{Im}(g)$. 证明: 存在线性变换 $\varphi: V \to W$ 使得

$$\psi = g\varphi f$$
.

- 6. (12分) 设 A 是一个 n 阶复方阵. 假设 A 可逆并且存在一个正整数 s 使得 A^s 是可对角化的. 证明: A 也是可对角化的.
- 7. (15分) 设 ϕ 是数域 $\mathbb F$ 上 n 维向量空间 V 上的一个线性算子. 对于 $0 \neq \alpha \in V$, 令

$$\mathbb{F}[\phi]\alpha = \{ f(\phi)(\alpha) \mid f(x) \in \mathbb{F}[x] \},\$$

并且定义 $m_{\alpha}(x)$ 是次数最小的首一多项式满足 $m_{\alpha}(\phi)(\alpha) = 0$. 证明:

- (1) dim $\mathbb{F}[\phi]\alpha = \deg m_{\alpha}(x)$.
- (2) 若 $\{\beta_1, ..., \beta_n\}$ 是 V 的一个基, 则 $m_{\phi}(x)$ 是 $m_{\beta_1}(x), ..., m_{\beta_n}(x)$ 的最小公倍式, 这里 $m_{\phi}(x)$ 是 ϕ 的极小多项式.
- (3) 若非零向量 $\alpha_1, \alpha_2 \in V$ 满足 $m_{\alpha_1}(x)$ 与 $m_{\alpha_2}(x)$ 互素, 则

$$m_{\alpha_1+\alpha_2}(x) = m_{\alpha_1}(x)m_{\alpha_2}(x), \quad \mathbb{F}[\phi](\alpha_1+\alpha_2) = \mathbb{F}[\phi]\alpha_1 \oplus \mathbb{F}[\phi]\alpha_2.$$

8. (10分) 设 $A, B \in M_n(\mathbb{R})$. 假设存在可逆矩阵 $P \in M_n(\mathbb{C})$ 使得 $B = P^{-1}AP$. 证明: 存在可逆矩阵 $Q \in M_n(\mathbb{R})$ 使得 $B = Q^{-1}AQ$.