What is claimed is:

1. A compound of formula I or a pharmaceutically acceptable salt thereof:

$$R^{F1} \bigvee_{\substack{N \\ R^{F2}}} X \bigvee_{\substack{N \\ R^1}} R^2$$

Ī

5

10

15

20

25

30

wherein

 R^{F1} and R^{F2} are independently C_{1-6} alkyl substituted by one or more groups selected from -F, -Cl, -Br, -NO₂, -CN, -OH, -CHO, -C(=O)-R' and -OR', wherein R' is a C_{1-3} alkyl;

Z is selected from O= and S=;

 $R^1 \text{ is selected from } C_{1-10} \text{alkyl, } C_{2-10} \text{alkenyl, } C_{2-10} \text{alkynyl, } R^3 R^4 N - C_{1-6} \text{alkyl, } R^3 O - C_{1-6} \text{alkyl, } R^3 C(=O)N(-R^4) - C_{1-6} \text{alkyl, } R^3 R^4 NS(=O)_2 - C_{1-6} \text{alkyl, } R^3 CS(=O)_2 N(-R^4) - C_{1-6} \text{alkyl, } R^3 R^4 NS(=O)_2 N(R^5) - C_{1-6} \text{alkyl, } C_{6-10} \text{aryl-} C_{1-6} \text{alkyl, } C_{6-10} \text{aryl-} C_{1-6} \text{alkyl, } C_{6-10} \text{aryl-} C_{1-6} \text{alkyl, } C_{3-10} \text{cycloalkyl-} C_{1-6} \text{alkyl, } C_{4-8} \text{cycloalkenyl-} C_{1-6} \text{alkyl, } C_{3-6} \text{heterocyclyl-} C_{1-6} \text{alkyl, } R^3 R^4 N - R^3 O - R^3 C(=O)N(-R^4) - R^3 R^4 NS(=O)_2 - R^3 CS(=O)_2 N(-R^4) - R^3 R^4 NC(=O)N(-R^5) - R^3 R^4 NS(=O)_2 N(R^5) - C_{6-10} \text{aryl, } C_{6-10} \text{aryl-} C(=O) - C_{1-6} \text{alkyl, } C_{3-6} \text{heterocyclyl-} C(=O) - C_{1-6} \text{alkyl, } C_{3-10} \text{cycloalkyl-} C_{1-6} \text{alkyl, } C_{1-10} \text{hydrocarbylamino, } C_{6-10} \text{aryl-} C(=O) - C_{1-6} \text{alkyl, } C_{3-6} \text{heterocyclyl-} C(=O) - C_{1-6} \text{alkyl, } C_{3-6} \text{heterocyclyl-} C(=O) - C_{1-6} \text{alkyl, } C_{3-10} \text{cycloalkyl, } C_{4-8} \text{cycloalkenyl, } C_{3-6} \text{heterocyclyl-} C(=O) - \text{used in defining } R^1 \text{ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and } R^3 R^4 N - ;$

R² is selected from the group consisting of C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₆heterocycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, R³R⁴N-, C₃₋₅heteroaryl, C₆₋₁₀aryl and C₃₋₆heterocycloalkyl, wherein said C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₆heterocycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, C₃₋₅heteroaryl, C₆₋₁₀aryl or C₃₋₆heterocycloalkyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R³R⁴N-; and

O

 R^3 and R^4 and are independently selected from -H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and a divalent C_{1-6} group that together with another divalent C_{1-6} group selected from R^3 and R^4 forms a portion of a ring.

2. A compound as claimed in claim 1, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCH₂, -CHFCH₂F, -CF₂CH₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, -CF₃, -CH₂CCl₃, -CH₂CHCl₂, -CH₂CBr₃, -CH₂CHBr₂, -CH₂NO₂, -CH₂CH₂NO₂, -CH₂CN, -CH₂CH₂CN, and -CH₂CH₂OCH₃;

10 Z is O=;

5

15

20

25

30

 R^1 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, R^3R^4N - C_{1-4} alkyl, R^3O - C_{1-4} alkyl, $R^3C(=O)N(-R^4)$ - C_{1-4} alkyl, phenyl- C_{1-4} alkyl, phenyl-C(=O)- C_{1-4} alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-4} alkyl, C_{3-6} heterocyclyl and C_{3-6} heterocyclyl-C(=O)-; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, phenyl- C_{1-4} alkyl, phenyl-C(=O)- C_{1-4} alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{3-6} heterocyclyl-C(=O)- $C_{$

R² is selected from the group consisting of C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl, C₃₋₅heteroaryl, R³R⁴N-, phenyl and C₃₋₆heterocycloalkyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl, C₃₋₅heteroaryl, phenyl or C₃₋₆heterocycloalkyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R³R⁴N-; and R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

3. A compound as claimed claim 1, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCH₂, -CF₂CH₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, and -CF₃;

Z is O=;

5

10

15

20

25

30

R¹ is selected from C₁₋₆alkyl, C₂₋₆alkenyl, R³R⁴N-, R³R⁴N-C₁₋₄alkyl, R³O-C₁₋₄alkyl, R³C(=O)N(-R⁴)-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, phenyl-C(=O)-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl and C₃₋₆heterocyclyl-C(=O)-; wherein said C₁₋₆alkyl, C₂₋₆alkenyl, R³R⁴N-C₁₋₄alkyl, R³O-C₁₋₄alkyl, R³C(=O)N(-R⁴)-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl-C(=O)- used in defining R¹ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R³R⁴N-:

 R^2 is selected from the group consisting of $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, R^3R^4N -, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocycloalkyl, $C_{3\text{-}5}$ heteroaryl, and phenyl wherein said $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocycloalkyl, $C_{3\text{-}5}$ heteroaryl, and phenyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N -; and

R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

4. A compound as claimed in claim 1, wherein R^{F1} and R^{F2} are -CH₂CF₃;

Z is O=;

R¹ is selected from cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl, ethyl, propyl, adamantyl, adamantylmethyl, allyl, isopentyl, benzyl, methoxyethyl, tetrahydropyranylmethyl, tetrahydrofuranylmethyl, cyclohexyloxy, cyclohexylamino, dimethylaminoethyl, 4-pyridylmethyl, 2-pyridylmethyl, 1-pyrrolylethyl, 1-morpholinoethyl, 4,4-difluorocyclohexylmethyl, cyclohexylmethyl, 2-pyrrolidylmethyl, N-methyl-2-piperidylmethyl, 3-thienylmethyl, (2-nitrothiophene-5-yl)-methyl, (1-methyl-1H-imidazole-2-yl)methyl, (5-(acetoxymethyl)-2-furyl)methyl), (2,3-dihydro-1H-isoindole-1-yl)methyl, and 5-(2-methylthiazolyl); and

R² is selected from t-butyl, n-butyl, 2-methyl-2-butyl, cyclohexyl, cyclohexylmethyl, n-pentyl, isopentyl, trifluoromethyl, 1,1-difluoroethyl, N-piperidyl, dimethylamino, phenyl, pyridyl, tetrahydrofuranyl, tetrahydropyranyl, 2-methoxy-2-propyl, and N-morpholinyl.

15

25

- 5. A compound selected from 2-tert-Butyl-1-(cyclohexylmethyl)-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide and pharmaceutically acceptable salts thereof.
- 5 6. A compound according to any one of claims 1-5 for use as a medicament.
 - 7. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the therapy of pain.
- 10 8. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of anxiety disorders.
 - 9. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of cancer, multiple sclerosis, Parkinson's disease, Huntington's chorea, Alzheimer's disease, gastrointestinal disorders and cardiavascular disorders...
 - 10. A pharmaceutical composition comprising a compound according to any one of claims 1-5 and a pharmaceutically acceptable carrier.
- 20 11. A method for the therapy of pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to any one of claims 1-5.
 - 12. A method for preparing a compound of formula I,

$$\begin{array}{c|c}
R^{F1} & Z \\
N & R^{F2}
\end{array}$$

$$\begin{array}{c|c}
N & R^2 \\
R^1
\end{array}$$

Ī

comprising the step of reacting a compound of formula II,

5

25

П

with a compound of R²C(=O)-X to form the compound of formula I, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCH₂F, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, and -CF₃;

Z is selected from O= and S=;

X is selected from -Cl, -Br, -I, -OH, -OCH₃, and -OCH₂CH₃;

R¹ is selected from C₁₋₆alkyl, C₂₋₆alkenyl, R³R⁴N-C₁₋₄alkyl, R³O-C₁₋₄alkyl,

R³C(=O)N(-R⁴)-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, phenyl-C(=O)-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl and C₃₋₆heterocyclyl-C(=O)-; wherein said C₁₋₆alkyl, C₂₋₆alkenyl, R³R⁴N-C₁₋₄alkyl, R³O-C₁₋₄alkyl, R³C(=O)N(-R⁴)-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, phenyl, C₃₋₁₀cycloalkyl, C₃₋₆heterocyclyl-C(=O)-used in defining R¹ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and R³R⁴N-:

R² is selected from the group consisting of C₁₋₆alkyl, C₃₋₆cycloalkyl, R³R⁴N-,

C₃₋₆cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl, C₃₋₅heteroaryl, and phenyl wherein said C₁₋₆alkyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl,

C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl, C₃₋₅heteroaryl, and phenyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and amino; and

R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.