

Allgemeine Hinweise

- Sie können die Aufgaben gerne in der Gruppe zusammen lösen. Jedoch muss jeder seine eigenen Aufgaben abgeben.
- Betrugsversuche werden geahndet.
- Deadline ist Deadline Zu späte Einreichungen können nicht angenommen werden.
- Achten Sie darauf, dass ihre Lösungen lesbar sind.
- \bullet Die Bewertung für das jeweilige Praktikum wird in % erfolgen.
- Ihre Endnote für das Praktikum berechnet sich aus dem Mittelwert aller ihrer Abgaben.
- Jokerregelung: Die schlechteste Abgabe wird nicht mitberechnet.

Abgabe

- Die Lösungen müssen handschriftlich sein. Hierbei ist es egal, ob Sie direkt digital schreiben oder Papierlösungen einscannen.
- Die Lösungen sind in elektronischer Form unter https://procomp.cs.hs-rm.de/subato/abzugeben. Achten Sie darauf in der richtigen Gruppe abzugeben.
- Fügen Sie dieses Deckblatt (ausgefüllt) zu ihrer Abgabe hinzu.
- Die Abgabedatei muss als eine **pdf**-Datei gespeichert werden. Andere Formate werden nicht akzeptiert.
- Abgabetermin ist **09.05.2021 22:00 Uhr (UTC+2)**.

Name:					
Matrikelnummer:					
Studiengang: AI	AI dual	ITS	ITS dual		

Benotung

Frage	1	2	3	4	5	6	7	Gesamt
Punkte	18	14	2	2	12	11	0	59
Erreicht								

Lsg Vorschlag DB Ü
03 Maximilian Maag

Die Inhalted des PDF-Formulars sind leider beim Import in die Lösung verloren gegangen..

Maximilian Maag, Matnr: 1246281, Aldual

Aufgabe 1

a)

$$R = \begin{array}{c|c|c} a & b & c \\ \hline 3 & 5 & 7 \\ \hline 3 & 5 & 7 \\ \hline \end{array}$$

b)

Der Inhalt der Frage ist nicht bestimmbar, da die Relation R kein Attribut 'd'

c)

$$R = \frac{\begin{array}{c|c|c} a & b & c \\ \hline 1 & 2 & 3 \end{array}}$$

d)

$$R = \{\}$$

e)

$$\begin{array}{c|c|c} a & b & c \\ \hline 1 & 2 & 3 \\ \hline 3 & 5 & 7 \\ \hline \end{array}$$

f)

$$\pi_{a\to b}(S) = \frac{\frac{a}{8}}{5} \pi_a(R) = \frac{\frac{a}{1}}{3}$$

$$1 \qquad 3$$

$$\delta(S.a \cup R.a) = 5$$

$$1$$

 $\mathbf{g})$

R.a	R.b	R.c	S.b	S.c	S.d
1	2	3	8	8	9
1	2	3	5	7	9
1	2	3	1	2	3
3	5	7	8	8	9
3	5	7	5	7	9
3	5	7	1	2	3
3	5	7	8	8	9
3	5	7	5	7	9
3	5	7	1	2	3

h)

$$E = \begin{array}{c|c|c|c|c} R.a & R.b & R.c & S.d \\ \hline 3 & 5 & 7 & 9 \\ \hline \end{array}$$

i)

Aufgabe 2

a)

$$\max(m) = m$$
$$\min(m) = 0$$

b)

$$\begin{aligned} \min &= 1 \\ \max &= m \end{aligned}$$

c)

$$\max = m, \min = m$$

d)

$$\max = m, \min = m$$

```
e)
min(m,n) = 1
\max(\mathbf{m},\mathbf{n}) = m^n
f)
\min(m,\!n)=0
\max(m,n) = m+n
\mathbf{g}
\min(m,n) = 0
\max(m,n) = R * c S
Aufgabe 3
\delta_C(\mathbf{R} \times \mathbf{S})
Aufgabe 4
\rho_b(\pi_a(S))
Aufgabe 5
a)
\pi_{did}(\sigma_{gs=femal}(Drachen))
b)
\pi_{did,name}(\sigma_{gj>1900}(Drachen))
c)
\pi_{did}(\sigma_{Mutter}) = 200REMutter < 300REMutter} = 200REMutter < 300REMutter} = 200REMutter} < 300REMutter}
d)
/\!\!\!\pi_{did}(\sigma_{Mutter}) = 200REMutter < = 300REMutter > = 200REMutter < = 30(Drachen))
```

e)

 $\sigma_{name=SteffenOREArt=3}(Drachen)$

Aufgabe 6

a)

$$E = \begin{bmatrix} namen \\ \hline Anna \\ Steffen \\ Markus \\ Max \end{bmatrix}$$

b)

	Mutter
	26
	8
	7
E =	24
	29
	14
	21
	19
	30

c)

$$E = \begin{bmatrix} Vater \\ \hline 10 \\ 5 \\ 14 \\ 4 \\ 18 \\ 14 \\ 26 \\ 30 \\ 12 \\ 29 \\ 11 \end{bmatrix}$$

d)

	alpha	beta	gamma
:	Ines	20	76
	Anja	10	249
	Anna	28	113
	Dennis	8	90
Dragon =	Steffen	36	387
	Kevin	28	376
	Steffen	52	134
	Markus	60	147
	Alexander	24	221
	Max	58	290
•	Marco	22	134

e)

	name	mutter	vater
	Ines	26	10
	Anja	14	5
	Anna	8	14
	Dennis	7	4
Drachen1 =	Steffen	24	18
	Kevin	29	14
	Steffen	14	26
	Markus	19	30
	Alexander	21	12
	Max	19	29
	Marco	30	11

Aufgabe 7

$$\begin{split} \mathbf{R} &\cap \mathbf{S} = \pi_{alleAttributevonR}(R \bowtie S) \\ \mathbf{R} &\cdot \mathbf{S} = \mathbf{R} \bowtie \mathbf{S} \end{split}$$