Prácticos - Repartido 1

miércoles, 14 de diciembre de 2016

EJERCICIO 1 AMPICANO

Sea St= (305 (21 (Ot + D)) do note:

- · R & \$ sun independientes
- · f es una prewencia pija
- · 0 ~ 0[0,1]

Esto es convectir de polares a cortesiones

- · R ~ Ragleigh en f(r)=re-r/2, xr>0
- -> blostoor que Jt, Jt ~ N

1 Análisis

El objetivo es mostror que St se distribye mormal.

Tenemos el tiz que tenemos que calculor la deus: dod conjunta de (XI) a partir de la densistad conjunta de (RIP)

Nota. Dec: mi X = 7 sen(2T(ft+q)) J= 9.cos(21 (ft+ p))

Othizer relación: $\chi^2 + y^2 = R^2$ pora calcular la deusided conjunta
de (X, X) a portir de la deusided
compunta de (R, ϕ)

Pero como están en distintos sistemas hay que transpormor uno en el otro. Esta transformación hay que ajustarla mediante el Jacobieno.

Se parte de la densidor en (R, ϕ) y querenos hallor la densidor en (X, y) mediente la tronspormanti

Nota: Recordor que Jacob and dx dg = det d(x,g) dodr

- 2) la culanos la deusidad conjunta en (R, 0):
 - · fa(s) = (e 1/2, 570

enfonces tens of V[0,21]

- · fo(d): como ft es constante y pr v[0,1] entonces pr v[0,21]
- y como la densidad de ma Imporme es justin entances fp(0) = 3T
 - Como $\mathcal{R}_{\mathcal{R}} \Theta$ for independentes enfonces: $f_{\mathcal{R},\Theta}(r,\Theta) = f_{\mathcal{R}}(r)$. $f_{\Theta}(\Theta) = \frac{re^{-r/2}}{2T}$

$$f_{R,\Theta}(r,\Theta) = f_{R}(r) \cdot f_{\Theta}(\Theta) = \frac{re^{-r/2}}{2T}$$

3) Calcula mos el Jacobieno para la transpormación depimida:

3) Calcula mos el Jacobieno para la transpormación depenida: $|J| = (sen \theta) (-r. sen \theta) - (r. cos \theta) (cos \theta) = -r(sen \theta + cos^2 \theta) = |-r| \Rightarrow |J| = r$ 4) Aplica nos la transpormación a las deus dades conjuntas: $f_{X,Y}(X,Y) = \frac{ce^{-c^2/2}}{2\pi} \cdot \frac{1}{c} = \frac{1}{2\pi} \cdot e^{-c^2/2}$ J como == x2+ g2 = fx,5 (x, y) = 1/2T e - (x+yc) Les fonción de densided defenida es la fonción de densided conjunta de dos sorvables aleatornas independientes, cada una condistribución $\mathcal{N}(0,1)$ por lo que 3 tiene densided morginal: $f_{\mathcal{I}}(y) = f_{2\mathcal{I}} \cdot e\left(-\frac{g^2}{2}\right) \quad \mathcal{N}_{0}$ $f_{3}(y) = f_{277} \cdot e(-\frac{1}{2}) \quad \text{Nota:}$ $f_{3}(y) = f_{277} \cdot e(-\frac{1}{2}) \quad \text{Nota:}$ EJERCICIO 2 See St=le+Et+Et-1 donné: · Et es un roido blonco => media=0 Sea St 1 50 Si EKX = u EXi - Encontrar Var (3) 1) Sustituinos Je en Je -> Je= 1 Z e+E; + E; -s = e+ E; + E; -s = e+E; + E; -s 2) Colcularos Jar (3+) = Jar (4+ 1 \subsetence \in \in \(\ext{\(1 \)} \) Jar (St) = Jar (u) + Jar (To Ei & Ei + Ei ...) $\Rightarrow \operatorname{Jor}(\S_{\epsilon}) = \operatorname{Jor}\left(\frac{1}{N}\sum_{i=0}^{\infty} \mathcal{E}_{i} + \mathcal{E}_{i-1}\right) = \frac{1}{N^{2}} \operatorname{Jor}\left(\sum_{i=0}^{\infty} \mathcal{E}_{i} + \mathcal{E}_{i-1}\right)$ $\Rightarrow \operatorname{Joc}(\overline{J}_{\ell}) = \frac{1}{\sqrt{2}} \cdot \operatorname{Joc}\left(\sum_{i=0}^{n-1} \mathcal{E}_{i} + \sum_{i=0}^{n-1} \mathcal{E}_{i-1}\right) \qquad \operatorname{Nota}(\overline{J}_{\ell}) = \mathcal{E}_{i} = \mathcal{E}_{i} + \cdots + \mathcal{E}_{n-1},$

$$\Rightarrow \operatorname{Jac}(J_t) = \frac{1}{n^2} \cdot \operatorname{Jac}(\xi_1 + \xi_2) \times (\xi_1 + \xi_2)$$

$$\Rightarrow \operatorname{Jac}(J_t) = \frac{1}{n^2} \cdot \operatorname{Jac}(\xi_1 + \xi_2) \times (\xi_1 + \xi_2) \times (\xi_1 + \xi_2)$$

$$\Rightarrow \operatorname{Jac}(J_t) = \frac{1}{n^2} \cdot \operatorname{Jac}(\xi_1 + \xi_2) \times (\xi_1 + \xi_2) \times (\xi_2) \times (\xi_2) \times (\xi_1 + \xi_2) \times (\xi_2) \times (\xi_2) \times (\xi_1 + \xi_2) \times (\xi_2) \times (\xi_2)$$

$$\sqrt{... \sqrt{g}} = \frac{4n-2}{n^{2}} \sigma^{2}$$

EJERCICIO 3

Sea St=-3+4Et+8Et-1-Et-2

· Encontra ponción de autocorrelación de Se

2) Colwianos
$$Z(0) = \sigma_x^2 = Var(J_t)$$

3) Calcularnos las autocovacionzas.

•
$$T=1 \Rightarrow \mathcal{F}(1) = \int_{X} (J_{t}, J_{t-1}) = \mathcal{E}[(J_{t}+3)(J_{t-1}+3)]$$

5ust: hygendo por J_{t} , $J_{t-1} \Rightarrow \mathcal{E}[(-3+4\varepsilon_{t}+8\varepsilon_{t-1}-\varepsilon_{t-2}+3)(-3+4\varepsilon_{t-1}+8\varepsilon_{t-2}-\varepsilon_{t-3}+3)$
 $\therefore \mathcal{E}[(4\varepsilon_{t}+8\varepsilon_{t-1}-\varepsilon_{t-2})(4\varepsilon_{t-1}+8\varepsilon_{t-2}-\varepsilon_{t-3})$

Como estamos asumiendo que Ez es un vido blaveo, entorces

Entonces de la expresion anterior quedan solo los términos.

$$= \lambda \, \mathcal{Z}(1) = \bar{\mathcal{E}} \left(8 \mathcal{E}_{t-1} - \mathcal{E}_{t-1} - \mathcal{E}_{t-2} - 8 \mathcal{E}_{t-2} \right) = 32 \, \underline{\bar{\mathcal{E}} \left(\mathcal{E}_{t-1}^{z} \right)} - 8 \underline{\bar{\mathcal{E}} \left(\mathcal{E}_{t-2}^{z} \right)} = 24 \, 8^{z}$$

· Para T7,3 quedan tooles en O. · Función de autocosos:en7e : $Z(T)/Z(T) = \begin{cases} 818^2 \text{ s: } T=0 \\ 248^2 \text{ s: } T=1 \\ -48^2 \text{ s: } T=2 \\ 0 \text{ s: } T7,3 \end{cases}$

