Problem Definition

- Bank marketing campaign by one of the Portuguese banking institution
- Based on phone calls from 2008 to 2010
- 11162 data sample
- 17 Features
- Objective is to predict whether the client will subscribe to a term deposit or not

Methodology

Tools Used

SN	Tool	Description	Version
1	Programming Language	Python	3.7.3
2	Distribution Platform	Anaconda	1.9.7
3	Environment	Jupyter Notebook	5.7.8

Age, Job (Feature Description and EDA)

Job - Job of client

Marital, Education

Marital – Marital Status of Client

Education – Education type of Client

Default, Balance

Default - whether the client has credit in bank or not?

Balance - balance in bank account

Housing, Loan

Housing - Whether the client has got any housing loan from bank?

Loan - Whether the client has got any personal loan from bank?

Contact, Month

Contact - way of communication

Month – month of communication

Day, duration

Day – day of the month for contact

Duration – duration of last call

Campaign, pdays

Campaign - Number of times this client was contacted during this campaign

Pdays- number of days that passed after the client was last contacted in previous campaign.

Previous, poutcome

Previous - Number of times this client was contacted before this campaign

Poutcome - The outcome of previous marketing campaign

Deposit (target variable)

 Deposit - Whether the clients said yes to subscribe for a term deposit

Correlation With Target Variable

Correlation With Target Variable

SN	Top features with +ve correlation		Top features with -ve correlation	
	Feature	Correlation	Feature	Correlation
1	duration	0.451919	Unknown	-0.230470
2	Success	0.286642	May	-0.170507
3	Cellular	0.223252	Campaign	-0.128081
4	housing	0.203888	blue-collar	-0.100840
5	Pdays	0.151593	married	-0.092157

Preprocessing of Categorical Variables

With two categories

Replace two categories with 0 and 1

With multiple categories

One hot encoding

```
bank['housing'].replace(to_replace='no',
value=1, inplace=True)
bank['housing'].replace(to_replace='yes',
value=0, inplace=True)
```

```
one_hot = pd.get_dummies(bank['month'])
bank = bank.drop('month',axis = 1)
bank = bank.join(one_hot)
bank = bank.drop('dec',axis = 1)
```

Algorithms Used

- K Nearest Neighbours
- Naïve Bayes
- Logistic Regression
- Logistic Regression with polynomial Features
- Support vector machines
- Decision Trees
- Random Forest
- XGBOOST (GBDT)

Best Parameters with gridsearchcv

SN	Algorithm	Best parameters
1	KNN	K=9
2	Naïve Bayes	Does it internally
3	Logistic Regression	'C': 1.623776739188721, 'max_iter': 100, 'penalty': '12', 'solver': 'saga'
4	LR with polynomial Feature degree 2	'C': 1, 'max_iter': 5000, 'penalty': 'l1', 'solver': 'saga'
5	LR with polynomial Feature degree 3	'C': 1, 'penalty': '12'
6	SVM	'C': 1, 'kernel': 'linear'
7	Decision Tree	<pre>'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min samples split': 3</pre>
8	Random Forest	<pre>'bootstrap': False, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 10, 'n_estimators': 2000</pre>
9	XGBOOST	'colsample_bytree': 0.83, 'eta': 0.200000000000000004, 'gamma': 5, 'min_child_weight': 4.0, 'subsample': 0.94

Comparison of Results

SN	Algorithm	Recall	Accuracy	AUC
1	KNN	0.68	0.74	0.83
2	Naïve Bayes	0.53	0.70	0.80
3	Logistic Regression	0.79	0.81	0.89
4	LR with polynomial Feature degree 2	0.83	0.84	0.91
5	LR with polynomial Feature degree 3	0.64	0.83	0.78
6	SVM	0.89	0.82	0.89
7	Decision Tree	0.82	0.81	0.79
8	Random Forest	0.88	0.84	0.92
9	XGBOOST	0.88	0.85	0.92

ROC Curve

Top 10 Important Features

Conclusions

This sums up for the classification task of bank marketing dataset. We find that XGBOOST gives us the best value for accuracy which is 0.85 while SVM gives us the best value for recall which is 0.89. The best AUC score of 0.92 comes from Random Forest as well as XGBOOST. The results of K nearest neighbours and Naïve Bayes are less while rest of the algorithms are giving more or less same result with minor differences.

As per the feature importance of XGBOOST it is clear that bank need to focus more on clients with success in previous campaign. Whether client uses cellular phone or not and the month in which client is being called play a vital role and the strategies of marketing campaign should be decided accordingly.