北京师范大学 $2021 \sim 2022$ 学年第二学期入班考试试卷 (A & b)

课程名称:	数分研讨课I		_ 任课老师姓名:			
卷面总分:	<u>100</u> 分	考试时长: _1	.00_分钟	考试类别:	闭卷 🛭 开	卷□ 其他□
院(系):_		专业	:		年级:	
姓名:		学号	:			
题号	_		三	四	五.	总分
得分						
阅卷老师((签字):		_			

- 一. 设数列 $\{a_n\}$ 满足关系式 $a_{n+1} = a_n + \frac{n}{a_n}, \ a_1 > 0$. 证明 $\lim_{n \to \infty} n(a_n n)$ 存在.
- 二. 设 $\{a_n\}$ 是递增数列, $a_1 > 1$. 证明级数 $\sum_{n=1}^{\infty} \frac{a_{n+1} a_n}{a_n \ln a_{n+1}}$ 收敛的充要条件是 $\{a_n\}$ 有界.又问级数通项分母中的 a_n 是否可以换成 a_{n+1} ?
- 三. 设 f 在 $[0, +\infty)$ 连续有界. 证明任给 T > 0, 存在 $x_n \to +\infty (n \to +\infty)$ 使得 $\lim_{n \to +\infty} (f(x_n + T) f(x_n)) = 0.$
- 四. 设 a > 1, 函数 $f: (0, +\infty) \to (0, +\infty)$ 可微, 求证: 存在趋于无穷的正数列 $\{x_n\}$ 使得 $f'(x_n) < f(ax_n), n = 1, 2, \cdots$.
- 五. 设 f(x) 在 \mathbb{R} 上有二阶导函数, f(x), f'(x), f''(x) 均大于零, 假设存在正数 a, b, 使得 $f''(x) \le af(x) + bf'(x)$ 对于一切 $x \in \mathbb{R}$ 成立.
 - (1) $\Re \mathbb{H}$: $\lim_{x \to -\infty} f'(x) = 0$;
 - (2) 求证: 存在常数 c 使得 $f'(x) \leq cf(x)$;
 - (3) 求使上面不等式成立的最小常数 c.