Operating Systems Design 19. Protection

Paul Krzyzanowski pxk@cs.rutgers.edu

Protection & Security

Security

- Prevention of unauthorized access to a system
 - Malicious or accidental access
 - "access" may be:
 - user login, a process accessing things it shouldn't, physical access
 - The access operations may be reading, destruction, or alteration

Protection

- The mechanism that provides and enforces controlled access of resources to processes
- A protection mechanism enforces security policies

Principle of Least Privilege

- At each abstraction layer, every element (user, process, function) should be able to access only the resources necessary to perform its task
- Even if an element is compromised, the scope of damage is limited
- Consider:
 - Violation: a compromised print daemon allows one to add users
 - Violation: a process can write a file even though there is no need to
 - Violation: admin privileges set by default for any user account
 - Good: Private member functions & Local variables in functions limit scope
- Least privilege is often difficult to define & enforce

Privilege Separation

- Divide a program into multiple parts: high & low privilege components
- Example on POSIX systems
 - Each process has a <u>real</u> and <u>effective</u> user ID
 - Privileges are evaluated based on the effective user ID
 - Normally, uid == euid
 - An executable file may be tagged with a setuid bit
 - chmod +sx filename
 - When run, uid = user's ID; euid = file owner's ID
 - Separating a program
 - Run a setuid program
 - Create a communication link to self (pipe, socket, shared memory)
 - fork
 - One process will call <u>seteuid(getuid())</u> to lower its privilege

Security Goals

Authentication

Ensure that users, machines, programs, and resources are properly identified

Confidentiality

Prevent unauthorized access to data

Integrity

 Verify that data has not been compromised: deleted, modified, added

Availability

Ensure that the system is accessible

The Operating System

The OS provides processes with access to resources

Resource	OS component
Processor(s)	Process scheduler
Memory	Memory Management + MMU
Peripheral devices	Device drivers & buffer cache
Logical persistent data	File systems
Communication networks	Sockets

- Resource access attempts go through the OS
- OS decides whether access should be granted
 - Rules that guide the decision = policy

Domains of protection

- Processes interact with objects
 - Objects:
 - hardware (CPU, memory, I/O devices) software: files, semaphores, messages, signals

- A process should be allowed to access only objects that it is authorized to access
 - A process operates in a protection domain
 - Protection domain defines the objects the process may access and how it may access them

Modeling Protection: Access Matrix

Rows: domains

Columns: objects

Each entry represents an access right of a domain on an object

objects

domains of protection

	F_{o}	F ₁	Printer
D_{0}	read	read-write	print
D_1	read-write- execute	read	
D_2	read- execute		
D_3		read	print
D_4			print

Access Matrix: Domain Transfers

Switching from one domain to another is a configurable policy

objects

domains of protection

	F _o	F ₁	Printer	D_0	D_1	D_2	D_3	D_4
D_0	read	read- write	print	-	switch	switch		
D_1	read- write- execute	read			_			
D_2	read- execute				switch	_		
D_3		read	print					
D_4			print					

Access Matrix: Additional operations

- Copy: allow delegation of rights
 - Copy a specific access right on an object from one domain to another
 - Rights may specify either a copy or a transfer of rights

	_
ij	
ч	
	$\mathbf{\mathcal{Q}}$
	1١
e	$oldsymbol{ ilde{oldsymbol{ ilde{oldsymbol{ ilde{oldsymbol{oldsymbol{ ilde{oldsymbol{oldsymbol{oldsymbol{ ilde{oldsymbol{oldsymbol{ ilde{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ ilde{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}$
	\sim
	_
J	
	-
	7)
4	
	10
	•••
	7
	\sim

	F _o	F ₁	Printer	D_0	D_1	D_2	D_3	D_4	
D_0	read	read- write	print	_	switch			ess exec	
D_1	read- write- execute	read* -					F ₁ to dor		
D_2	read- execute				swtich	_			
D_3		read	print						
D_4			print						

Access Matrix: Additional operations

domains of protectior

- Owner: allow new rights to be added or removed
 - An object may be identified as being owned by the domain
 - Owner can add and remove any right in any column of the object

objects

	F ₀	F ₁	Printer	D_0	D_1	D_2	D_3	D_4					
D_0	read owner	read-	print	_	switch	sw E.g	., a proc	ess exe	cuting				
D_1	read- write- execute	read*				in <i>I</i> righ	D _o can gi nt on F _o t	ve a readonaice the exe	d n D ₃				
D_2	read- execute				swtich	righ	right from D ₁						
D_3		read	print										
D_4			print										

© 2012 Paul Krzyzanowski 4/20/12 11

Access Matrix: Additional operations

- Control: change entries in a row
 - If access(i, j) includes a control right, then a process executing in Domain i can change access rights for Domain j

objects

 D_0 D_2 F_o F_1 Printer D_1 D_3 D_4 switch swtich D_{o} read readprint write owner D_1 readread* control writeexecute E.g., a process executing D_2 readswtich in D_1 can modify any execute rights in domain D₄ D_3 read print D_{4} print

domains of protection

Implementing an access matrix

- A single table is usually impractical
 - Big size: # domains (users) × # objects (files)
 - Objects may come and go frequently

- Access Control List
 - Associate a column of the table with each object

Implementing an access matrix

Access Control List

Associate a column of the table with each object

				objects									
on		F ₀	F ₁	Printer	D_0	D_1	D_2	D_3	D_4				
otecti	D_0	read owner	read- write	рппе		., .	ACI						
domains of protection	D_1	read- write- execute	read*			-							
omair	D_2	read- execute				swtich	_						
ρ	D_3		read	print									
	D_4			print									

Example: Limited ACLs in POSIX systems

- Problem: an ACL takes up a varying amount of space (possibly a lot!)
 - Won't fit in an inode
- UNIX Compromise:
 - A file defines access rights for three domains: the owner, the group, and everyone else
 - Permissions
 - Read, write, execute, directory search
 - Set user ID on execution
 - Set group ID on execution
 - Default permissions set by the umask system call
 - chown system call changes the object's owner
 - chmod system call changes the object's permissions

Example: Full ACLs in POSIX systems

- What if we really want an ACL?
- Extended attributes: stored outside of the inode
- Enumerated list of permissions on users and groups
 - Operations on all objects:
 - delete, readattr, writeattr, readextattr, writeextattr, readsecurity, writesecurity, chown
 - Operations on directories
 - list, search, add_file, add_subdirectory, delete_child
 - Operations on files
 - read, write, append, execute
 - Inheritance controls

Implementing an access matrix

Capability List

Associate a row of the table with each domain

objects

u		F_0	F ₁	Printer	D_0	D_1	D_2	D_3	D_4		
of protection	D_0	read owner	read- write	print	_	switch	swtich				
s of pro	<i>D</i> ₁	read- write- execute	read*			_					
domains	D_2	read- execute				swtich	_				
dε	D_3		read	print							
	D_4			print			Capability list for domain D ₁				

Capability Lists

- List of objects together with the operations allowed on the objects
- Each item in the list is a capability: the operations allowed on a specific object
- A process presents the capability along with a request
 - Possessing the capability means that access is allowed
- A process cannot modify its capability list

Access Control Models: MAC vs. DAC

DAC: Discretionary Access Control

- A subject (domain) can pass information onto any other subject
- In some cases, access rights may be transferred
- Most systems use this

MAC: Mandatory Access Control

- Policy is centrally controlled
- Users cannot override the policy

Multi-level Access Control

- Typical MAC implementations use a Multi-Level Secure (MLS) access model
- Bell-LaPadula model
 - Identifies the ability to access and communicate data
 - Objects are classified into a hierarchy of sensitivity levels
 - Unclassified, Confidential, Secret, Top Secret
 - Users are assigned a clearance
 - "No read up; no write down"
 - Cannot read from a higher clearance level
 - Cannot write to a lower clearance level
- Works well for government information
- Does not translate well to civilian life

Confidential cannot read Secret
Confidential cannot write Unclassified

Authentication

Authentication

- Establish & verify identity
 - Then decide whether to allow access to resources
- Example: login

Password Authentication Protocol (PAP)

- Reusable passwords
- Server keeps a database of username:password mappings
- Prompt client/user for a login name & password
- To authenticate, use the login name as a key to look up the corresponding password in a database (file) to authenticate

```
if (supplied_password == retrieved_password)
    then user is authenticated
```

PAP: Reusable passwords

One problem: what if the password file isn't sufficiently protected and an intruder gets hold of it, he gets all the passwords!

Enhancement:

Store a hash of the password in a file

- given a file, you don't get the passwords
- have to resort to a dictionary or brute-force attack
- Unix approach
 - Password encrypted with 3DES hashes; then MD5 hashes; now SHA512 hashes
 - Salt used to guard against dictionary attacks

Authentication

Three factors:

- something you have key, card
 - can be stolen
- something you know passwords
 - can be guessed, shared, stolen
- something you are biometrics
 - costly, can be copied (sometimes)

Authentication

factors may be combined

- ATM machine: 2-factor authentication
 - ATM card something you have
 - PIN something you know

Identification vs. Authentication

Identification:

- Who are you?
- User name, account number, ...

Authentication:

- Prove it!
- Password, PIN, encrypt nonce, ...

Versus Authorization

Authorization defines access control

Once we know a user's identity:

- Allow/disallow request
- Operating system enforces system access based on user's credentials
 - Network services usually run in another context
 - Network server may not know of the user
 - Application takes responsibility
- May contact an authorization server
 - Trusted third party that will grant credentials
 - Kerberos ticket granting service
 - RADIUS (centralized authentication/authorization)

Three (Four?) A's of Security

- Authentication
 - Validate an identity or a message
- Authorization (Access Control)
 - Enforce policy
- Accounting

Auditing

Accounting

If security has been compromised

- ... what happened?
- ... who did it?
- ... how did they do it?

Log transactions

- Logins
- Commands
- Database operations
- Who looks at audits?

Log to remote systems

Minimize chances for intruders to delete logs

Auditing

Go through software source code and search for security holes

- Need access to source
 - Some operating systems > 50 million lines!
- Experienced staff + time
- E.g., OpenBSD

Complex systems will have more bugs

And will be harder to audit

The End