1

IMPLEMENTACIÓN DE WEIGHTED A*

a) Dentro de una iteración de A* si es que existe un empate, es decir, dados dos nodos n_a y n_b tales que $f(n_a) = f(n_b)$ existen dos posibilidades:

$$g(n_a) > g(n_b) \text{ y } h(n_a) < h(n_b) \tag{1}$$

o que

$$g(n_a) = g(n_b) y h(n_a) = h(n_b)$$
(2)

La primera posibilidad es problemática, debido a que se debe escoger que nodo privilegiar dentro de la OPEN para romper el empate. Sin embargo, de forma intuitiva deberíamos tomar el nodo n_a ya que este posee menor valor de h y con ello, reduce nuestra incertidumbre acerca de los futuros costos desconocidos (Esto porque el valor h nos da cierta directriz de que tan cerca estamos de n_g (nodo objetivo). En síntesis, el escoger el valor h más pequeño privilegia el avanzar en profundidad dentro de las iteraciones en pos de acercarse cada vez mas a la solución. De manera análoga, si escogemos el nodo que posea valor g más bajo, estaremos prefiriendo nodos que se encuentren más cercanos al nodo inicial, y con ello, mas lejos de n_g .

- b) Durante una ejecución de Weighted A* sabemos que existe un estado s* en OPEN tal que:
 - a) s* está en un camino óptimo hacia s_{goal}
 - *b*) se cumple que $g(s*) = \gamma(s_{start}, s*)$

Ahora por definición de la expansión de Weighted A* todo estado s que es extraído de la OPEN satisface que:

$$f(s) = \min_{t \in Open} \{ f(t) \}$$

Luego sea cual sea el estado que extraemos de la *OPEN* luego de haber decidido el desempate siempre se seguirá cumpliendo que:

$$f(s) \le f(s^*)$$

Esto, porque todo elemento de la *OPEN* está acotado por el valor de la función en el nodo objetivo. Luego,

$$f(s) \le g(s^*) + wh(s^*)$$

$$f(s) \le w\left(g\left(s^*\right) + h\left(s^*\right)\right)$$

y ahora usando el lema anunciado al comienzo se tiene que:

$$f(s) \leq w\delta\left(s_{start}, s_{goal}\right)$$

con ello, Weighted A* sigue siendo w – optimo.

c) Para resolver esta pregunta notemos el siguiente ejemplo:

Figura 2: Diagrama de Búsqueda con A* exponencialmente ineficiente

Notemos en el grafo, que cuando A* expanda a A llegará a un empate que preferirá expandir a D y a sus nodos hijos. Luego expandirá a F y así sucesivamente hasta volver a llegar a B. Luego este algoritmo esta actuando como una búsqueda en profundidad regresando a B solo cuando no queden más nodos por revisar. Y como sabemos el algoritmo DFS tiene una complejidad exponencial de la forma $\mathcal{O}(b^d)$ en donde b son las ramificaciones y d la profundidad. Luego en este caso, si utilizamos la regla de desempate al revés estamos generando un algoritmo de busqueda exponencialmente menos eficiente.

d) En la figura 1 se puede notar la diferencia de rendimientos de ambos algoritmos. Cuando implementamos la regla de quiebre de empates, es posible notar que en la mayoría de los problemas - salvo en dos - el algoritmo presenta menos expansiones. Es decir, cuando se implementa la regla de quiebre de empates, mejora sustantivamente la cantidad de expansiones en comparación con Weighted A* sin utilizar la regla de quiebre de empates. En las tablas 1 y 2 respectivamente se muestra el detalle de las soluciones obtenidas por cada problema.

Figura 1: Diferencia de Rendimiento en termino de expansiones weighted A*

Problema	Expansiones	Gen	Solución	Tiempo
1	32470	62702	45	11.434
2	48443	91053	42	166.483
3	66296	129512	42	22.74
4	142928	272445	41	4.92
5	154019	291486	46	5.31
6	179269	335095	47	6.13
7	191088	363345	44	6.54
8	273541	516079	53	93.31
9	330838	629125	46	115.18
10	486106	918183	46	18.17

Tabla Nº1: Resultados algoritmo con quiebre de empates

Problema	Expansiones	Gen	Solución	Tiempo
1	151817	290844	45	48.80
2	170564	320461	42	5.34
3	198327	384013	42	62.53
4	191259	362370	41	58.98
5	620168	1162970	46	19.70
6	440524	829358	47	13.57
7	410133	786993	44	13.07
8	148509	287219	53	5.18
9	301944	575488	46	10.38
10	614465	1177611	46	20.43

Tabla N°2: Resultados algoritmo sin quiebre de empates