1. ročník bc. informatika doc. RNDr. Jiří Fiala, Ph.D.

Obsah

1	Def	inice	3
	1.1	Determ	ninanty
		1.1.1	Definujte permutaci
		1.1.2	Definujte znaménko permutace
		1.1.3	Definujte determinant
		1.1.4	Definujte adjungovanou matici
		1.1.5	Definujte Laplaceovu matici
	1.2		Dmy
	1.2	1.2.1	Definujte polynom nad tělesem
		1.2.1	Definujte kořen polynomu a jeho násobnost
		1.2.2 $1.2.3$	Definujte algebraicky uzavřené těleso
		1.2.3 $1.2.4$	Definujte Vandermondovu matici
	1.0		v ·
	1.3		ú čísla a vlastní vektory
		1.3.1	Definujte vlastní číslo a vlastní vektor lineárního zobrazení
		1.3.2	Definujte vlastní číslo a vlastní vektor matice
		1.3.3	Definujte charakteristický polynom
		1.3.4	Definujte algebraickou násobnost vlastního čísla
		1.3.5	Definujte geometrickou násobnost vlastního čísla
	1.4	Diagor	nalizace
		1.4.1	Definujte podobné matice
		1.4.2	Definujte diagonalizovatelnou matici
		1.4.3	Definujte Jordanův blok
		1.4.4	Definujte Jordanův normální tvar matice
		1.4.5	Definujte zobecněný vlastní vektor
		1.4.6	Definujte hermitovskou matici
		1.4.7	Definujte unitární matici
	1.5		ní součin
	1.0	1.5.1	Definujte skalární součin pro vektorové prostory nad komplexními čísly
		1.5.2	Definujte normu spojenou se skalárním součinem
		1.5.2 $1.5.3$	Definujte kolmé vektory
		1.5.3 $1.5.4$	
		-	· ·
		1.5.5	Definujte Fourierovy koeficienty
		1.5.6	Definujte kolmou projekci
		1.5.7	Definujte izometrii
		1.5.8	Definujte ortogonální doplněk
		1.5.9	Definujte Gramovu matici
	1.6		vně definitní matice
		1.6.1	Definujte pozitivně definitní matici
		1.6.2	Definujte Choleského rozklad
	1.7	Kvadr	atické a bilineární formy
		1.7.1	Definujte bilineární formu
		1.7.2	Definujte kvadratickou formu
		1.7.3	Definujte matici bilineární formy vzhledem k bázi
		1.7.4	Definujte analytické vyjádření formy
		1.7.5	Definujte signaturu formy
		1.1.0	Definition is successful to the successful to th
2	Vět	\mathbf{v}	7
	2.1		ninanty
		2.1.1	Uvedte a dokažte větu o linearitě determinantu
		2.1.1 $2.1.2$	Vyslovte a dokažte větu o determinantu součinu dvou matic
		2.1.2 $2.1.3$	v
		2.1.4	Uveďte a dokažte Cramerovo pravidlo (řešení systémů s determinanty)
		2.1.5	Vyslovte a dokažte větu o adjungované matici
	0.0	2.1.6	Vyslovte a dokažte větu o počtu koster grafu
	2.2		omy
		2.2.1	Vyslovte a dokažte malou Fermatovu větu

		2.2.2	Vyslovte a dokažte větu o Vandermondově matici	9
		2.2.3	Uveďte a dokažte správnost Lagrangeovy interpolace.	9
	2.3	Vlastr	ní čísla a vlastní vektory	10
		2.3.1	Vyslovte a dokažte větu o podprostoru vlastních vektorů	10
		2.3.2	Vyslovte a dokažte větu o lineární nezávislosti vlastních vektorů	10
		2.3.3	Vyslovte a dokažte větu o kořenech charakteristického polynomu	10
		2.3.4	Uvedte a dokažte Cayley-Hamiltonovu větu	10
	2.4	Diagon	nalizace	11
		2.4.1	Uveďte a dokažte nezbytnou a postačující podmínku, kdy je matice diagonalizovatelná. .	11
		2.4.2	Vyslovte a dokažte větu o diagonalizaci speciálních komplexních matic.	11
	2.5	Skalár	ní součin	12
		2.5.1	Uveďte a dokažte Cauchy-Schwarzovu nerovnost	12
		2.5.2	Uveďte a dokažte trojúhelníkovou nerovnost.	12
		2.5.3	Vyslovte a dokažte větu o Fourierových koeficientech.	12
		2.5.4	Uveďte a dokažte správnost Gram-Schmidtovy ortonormalizace (včetně lemmatu, pokud jej	
			potřebujete)	12
		2.5.5	Vyslovte a dokažte větu o izometrii a normě	13
		2.5.6	Vyslovte a dokažte větu o izometrii a vlastnostech její matice	13
		2.5.7	Vyslovte a dokažte větu o ortogonálním doplňku	14
		2.5.8	Vyslovte a dokažte větu o skalárním součinu dvou vektorů a Gramově matici	14
	2.6		vně definitní matice	14
		2.6.1	Vyslovte a dokažte větu o třech ekvivalentních podmínkách pro pozitivně definitní matice	14
		2.6.2	Vyslovte a dokažte větu o rekurentní podmínce pro pozitivně definitní matice	15
		2.6.3	Vyslovte a dokažte větu o pozitivně definitních maticích a determinantech.	15
	0.7	2.6.4	Uveďte a dokažte správnost algoritmu pro výpočet Choleského rozkladu	15
	2.7		atické a bilineární formy	16
		2.7.1	Vyslovte a dokažte větu o diagonalizovatelnosti matic forem.	16
	20	2.7.2	Uveďte a dokažte Sylvesterův zákon setrvačnosti — o diagonalizaci kvadratických forem	16
	2.8	•	Nee	17
		2.8.1	Vyslovte a dokažte větu o počtu přímek svírajících stejný úhel	17
3	Pře	hled		18
-	3.1		ní součin	18
			Přehledově sepište, co víte o skalárním součinu a související normě	

1 Definice

1.1 Determinanty

1.1.1 Definujte permutaci.

Permutace na množině [n] je bijektivní zobrazení $p:[n] \to [n]$. $[n] = \{1, ..., n\}$

1.1.2 Definujte znaménko permutace.

Znaménko permutace p je číslo $sgn(p) = (-1)^{\# \text{inverzí v } p}$. Můžeme zapsat také: $(p \in S_n)$ a skládá se z k-cyklů, potom $sgn(p) = (-1)^{n-k}$.

1.1.3 Definujte determinant.

Determinant matice $A \in \mathbb{K}^{n \times n}$ je dán výrazem:

$$\det(A) = \sum_{p \in S_n} sgn(p) \prod_{i=1}^n a_{i,p(i)}$$

1.1.4 Definujte adjungovanou matici.

Pro matici $A \in \mathbb{K}^{n \times n}$ je adjungovaná matice definována vztahem

$$adj(A)_{j,i} = (-1)^{i+j} \det(A^{i,j})$$

Dále pro regulární matici $A \in \mathbb{K}^{n \times n}$ platí vztah $A^{-1} = \frac{1}{\det(A)} adj(A)$

1.1.5 Definujte Laplaceovu matici.

Laplaceova matice grafu G na $V_G = \{v_i, ..., v_n\}$ je $L_G \in \mathbb{R}^{n \times n}$, t.ž

$$(L_G)_{i,j} = \begin{cases} \deg(v_i) & \text{pro } i = j \\ -1 & \text{pokud } i \neq j \text{ a } (v_i, v_j) \in E_G \\ 0 & \text{jinak} \end{cases}$$

1.2 Polynomy

1.2.1 Definujte polynom nad tělesem.

Polynom stupně n v proměnné x nad tělesem \mathbb{K} je výraz

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

kde $a_n \neq 0$ a $a_n, \ldots, a_0 \in \mathbb{K}$. Píšeme jako $p \in \mathbb{K}(x)$.

1.2.2 Definujte kořen polynomu a jeho násobnost.

Kořen polynomu $p \in \mathbb{K}(x)$ je $r \in \mathbb{K}$ t.ž. p(r) = 0. Násobnost kořene r z $p \in \mathbb{K}(x)$ je největší $k \in \mathbb{Z}^+$, t.ž. $(x-r)^k$ dělí p.

1.2.3 Definujte algebraicky uzavřené těleso.

Těleso \mathbb{K} je algebraicky uzavřené těleso, pokud každý polynom $p \in \mathbb{K}(x)$ stupně alespoň jedna má alespoň jeden kořen.

1.2.4 Definujte Vandermondovu matici.

 $Vandermondova\ matice\ V_{n+1}(x_0,\ldots,x_n)$ je matice mající v každém řádku členy po sobě jdoucí geometrické posloupnosti. Prvek na *i*-tém řádku a *j*-tém sloupci lze vyjádřit jako x_i^j .

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

1.3 Vlastní čísla a vlastní vektory

1.3.1 Definujte vlastní číslo a vlastní vektor lineárního zobrazení.

Nechť V je vektorový prostor nad \mathbb{K} a f je lineární zobrazení $f:V\to V$, potom vlastní číslo zobrazení f je jakékoli $\lambda\in\mathbb{K}$, pro které existuje vektor $u\in V\setminus 0$, t.ž.: $f(u)=\lambda u$.

Nechť λ je vlastní číslo, potom jemu odpovídající vlastní vektor je libovolný vektor $u \in V$, t.ž.: $f(u) = \lambda u$.

1.3.2 Definujte vlastní číslo a vlastní vektor matice.

Jestliže V má konečnou dimenzi n, pak f může být reprezentováno maticí $A = [f]_{XX} \in \mathbb{K}^{n \times n}$ vzhledem k nějaké bázi X prostoru V. Vlastní číslo matice je potom $\lambda \in \mathbb{K}$ a vlastní vektor matice $x \in \mathbb{K}^n$, oba splňující $Ax = \lambda x$.

1.3.3 Definujte charakteristický polynom.

Charakteristický polynom matice $A \in \mathbb{K}^{n \times n}$ je $p_A(t) = \det(A - tI_n)$.

1.3.4 Definujte algebraickou násobnost vlastního čísla.

Algebraická násobnost vlastního čísla λ je násobnost λ jako kořene charakteristického polynomu $p_A(\lambda)$.

1.3.5 Definujte geometrickou násobnost vlastního čísla.

Geometrická násobnost vlastního čísla λ je dimenze (pod)prostoru jeho vlastních vektorů.

1.4 Diagonalizace

1.4.1 Definujte podobné matice.

Matice $A, B \in \mathbb{K}^{n \times n}$ jsou si podobné, pokud existuje regulární matice R, t.ž.: $A = R^{-1}BR$.

1.4.2 Definujte diagonalizovatelnou matici.

Matice podobná diagonální matici je diagonalizovatelná. (A je podobná diagonální \iff prostor K^n má bázi z vlastních vektorů A).

1.4.3 Definujte Jordanův blok.

Jordanův blok je čtvercová matice ve tvaru:

$$J_{\lambda} = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix}$$

1.4.4 Definujte Jordanův normální tvar matice.

Jodrdanův normální tvar je každá čtvercová komplexní matice A podobná matici J, tedy matice ve tvaru:

$$J = \begin{pmatrix} J_{\lambda_1} & & \\ & \ddots & \\ & & J_{\lambda_k} \end{pmatrix}$$

kde každý Jordanův blok J_{λ_i} odpovídá vlastnímu číslu λ_i matice A

1.4.5 Definujte zobecněný vlastní vektor.

Zobecněný vlastní vektor matice A k vlastnímu číslu λ je lib. vektor x splňují $(A - \lambda I)^i x = 0$ pro nějaké $i \in \mathbb{N}$.

1.4.6 Definujte hermitovskou matici.

Matice A je hermitovská, pokud $A = A^H$. $(A^H \in \mathbb{C}^{m \times n} \text{ je Hermitovská transpozice matice } A \in \mathbb{C}^{n \times m}, \text{ kde } (A^H)_{i,j} = \overline{a_{j,i}}).$

1.4.7 Definujte unitární matici.

Matice A je unitární, pokud $A^{-1} = A^{H}$.

1.5 Skalární součin

1.5.1 Definujte skalární součin pro vektorové prostory nad komplexními čísly.

Skalární součin na vektorovém prostoru V nad $\mathbb C$ je zobrazení, které přiřadí každé dvojici vektorů $u,v\in V$ skalár $\langle u\mid v\rangle\in\mathbb C$ tak, že jsou splněny následující axiomy:

- $\forall u \in V : \langle u \mid u \rangle \in \mathbb{R}_0^+$
- $\forall u \in V : \langle u \mid u \rangle = 0 \iff u = 0$
- $\forall u, v \in V : \langle v \mid u \rangle = \overline{\langle u \mid v \rangle}$
- $\forall u, v, w \in V : \langle u + v \mid w \rangle = \langle u \mid w \rangle + \langle v \mid w \rangle$
- $\forall u \in V, \forall a \in C : \langle au \mid v \rangle = a \langle u \mid v \rangle$

1.5.2 Definujte normu spojenou se skalárním součinem.

Nechť V je prosor se skalárním součinem nad \mathbb{C} nebo \mathbb{R} , pak norma odvozená ze skalárního součinu je zobrazení $V \to \mathbb{R}$ přiřazující vektoru u jeho normu $||u|| = \sqrt{\langle u \mid u \rangle}$.

1.5.3 Definujte kolmé vektory.

Vektory u, v z prostoru se skalárním součinem jsou $kolm\acute{e}$, pokud $\langle u \mid v \rangle = 0$. Kolmé vektory značíme $u \perp v$.

1.5.4 Definujte ortonormální bázi.

Báze $Z = \{v_1, ..., v_n\}$ prostoru V se skalárním součinem je ortonormální, pokud $v_i \perp v_j$ pro každé $i \neq j$ a $||v_i|| = 1$ pro každý vektor $v_i \in Z$.

1.5.5 Definujte Fourierovy koeficienty.

Nechť $Z = \{v_1, ..., v_n\}$ je ortonormální báze prostoru V. Pro každé $u \in V$ platí: $u = \langle u|v_1\rangle v_1 + ... + \langle u|v_n\rangle v_n$. Koeficienty $\langle u|v_i\rangle$ se potom nazývají Fourierovy koeficienty.

1.5.6 Definujte kolmou projekci.

Nechť W je prostor se skalárním součinem a V je jeho podprostor s ortonormální bází $Z=(v_1,...,v_n)$. Potom zobrazení $p_Z:W\to V$ definované jako $p_Z(u)=\sum_{i=1}^n\langle u|v_i\rangle v_i$ je ortogonální projekce W na V.

1.5.7 Definujte izometrii.

Lineární zobrazení f mezi prostory V a W je izometrie, pokud zachovává skalární součin, neboli:

$$\langle u|w\rangle = \langle f(u)|f(w)\rangle$$

1.5.8 Definujte ortogonální doplněk.

Ortogonální doplněk podmnožiny V prostoru se skalárním součinem W je $V^{\perp} = \{u \in W, \forall v \in V : u \perp v\}$

1.5.9 Definujte Gramovu matici.

Nechť V je prostor se skalárním součinem a bazí $X = (v_1, \dots, v_n)$, potom *Gramova matice* A definována vztahem $a_{i,j} = \langle v_i | v_j \rangle$ splňuje:

$$\forall u,w \in V: \langle u|w\rangle = [w]_X^H A^T[u]_X$$

5

1.6 Pozitivně definitní matice

1.6.1 Definujte pozitivně definitní matici.

Pokud hermitovská matice A řádu n vyhovuje $\forall x \in \mathbb{C}^n \setminus 0 : x^H Ax > 0$, pak je matice pozitivně definitní.

1.6.2 Definujte Choleského rozklad.

Pro každou pozitivně definitní matici A existuje $unik\acute{a}tn\acute{i}$ horní trojúhelníková matice U s kladnou diagonálou, t.ž.: $A = U^H U$. Matice U se nazývá $Cholesk\acute{e}ho$ rozklad.

1.7 Kvadratické a bilineární formy

1.7.1 Definujte bilineární formu.

Nechť V je vektorový prostor nad tělesem $\mathbb K$ a nechť zobrazení $f:V\times V\to \mathbb K$ splňuje:

- $\forall u, v \in V, \forall a \in \mathbb{K} : f(au, v) = f(u, av) = af(u, v)$
- $\forall u, v, w \in V : f(u+v, w) = f(u, w) = f(v, w)$
- $\forall u, v, w \in V : f(u, v + w) = f(u, v) = f(u, w)$

potom f je bilineární forma na V.

1.7.2 Definujte kvadratickou formu.

Zobrazení $g:V\to\mathbb{K}$ se nazývá kvadratická forma, pokud existuje bilineární forma f, t.ž.: $\forall u\in V: g(u)=f(u,u)$.

1.7.3 Definujte matici bilineární formy vzhledem k bázi

Nechť V je vektorový prostor nad tělesem \mathbb{K} s bazí $X=(v_1,\ldots,v_n)$. Matice bilineární formy f vzhledem k bázi X je matice B definována vztahem $b_{i,j}=f(v_i,f_j)$.

1.7.4 Definujte analytické vyjádření formy

Analytické vyjádření bilineární formy f nad \mathbb{K}^n s maticí B je homogenní polynom

$$f((x_1, \dots, x_n)^T, (y_1, \dots, y_n)^T) = \sum_{i=1}^n \sum_{j=1}^n b_{i,j} x_i y_j$$

1.7.5 Definujte signaturu formy.

Nechť reálná kvadratická forma g má diagonální matici B obsahující pouze 1, -1, 0, potom signatura formy g je trojice (#1, #-1, #0), počítáno na diagonále matice B.

2 Věty

2.1 Determinanty

2.1.1 Uvedte a dokažte větu o linearitě determinantu.

Věta: Determinant matice je *lineárně závislý* na každém jejím řádku i sloupci. Tedy vzhledem ke sčítání řádků a násobení řádku skalárem.

Proof. Důkaz pro násobek skalárem:

$$\begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ t \cdot a_{i,1} & t \cdot a_{i,2} & \dots & t \cdot a_{i,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{vmatrix} = \sum_{p \in S_n} sgn(p) \left(\prod_{i=1}^n a_{i,p(i)} \cdot t \right)$$

$$= t \cdot \sum_{p \in S_n} sgn(p) \prod_{i=1}^n a_{i,p(i)} = t \cdot \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{vmatrix}$$

Proof. Důkaz pro součet:

Pokud matice A,B,C splňují

$$a_{k,j} = \begin{cases} b_{i,j} + c_{i,j} & \text{pokud } k = i \\ b_{k,j} + c_{k,j} & \text{pokud } k \neq i \end{cases}$$

potom:

$$\begin{split} \det(A) &= \sum_{p \in S_n} sgn(p) \prod_{k=1}^n a_{k,p(k)} = \sum_{p \in S_n} a_{i,p(i)} \cdot sgn(p) \prod_{k \in \{1,...,n\} \backslash i}^n a_{k,p(k)} = \\ &= \sum_{p \in S_n} \left(b_{i,j} + c_{i,j} \right) \cdot sgn(p) \prod_{k \in \{1,...,n\} \backslash i}^n a_{k,p(k)} = \\ &= \sum_{p \in S_n} b_{i,p(i)} \cdot sgn(p) \prod_{k \in \{1,...,n\} \backslash i}^n b_{k,p(k)} + \sum_{p \in S_n} c_{i,p(i)} \cdot sgn(p) \prod_{k \in \{1,...,n\} \backslash i}^n c_{k,p(k)} = \\ &= \sum_{p \in S_n} sgn(p) \prod_{k=1}^n b_{k,p(k)} + \sum_{p \in S_n} sgn(p) \prod_{k=1}^n c_{k,p(k)} = \det(B) + \det(C) \end{split}$$

2.1.2 Vyslovte a dokažte větu o determinantu součinu dvou matic.

Věta: Pro libovolné $A, B \in \mathbb{K}^{n \times n} : \det(AB) = \det(A) \cdot \det(B)$.

Proof. BÚNO A i B jsou regulární, jinak bychom dostali 0 = 0.

Součiny s elementárními maticemi E zachovávají determinant $\det(EB) = \det(E) \cdot \det(B)$, protože:

- pro přičtení i-tého řádku k j-tému: det(E) = 1
- pro vynásobení *i*-tého řádku t: det(E) = t.

Rozložíme regulární A na elementární matice $A = E_1, ..., E_k$.

$$\det(AB) = \det(E_1, ...E_k B) = \det(E_1) \cdot \det(E_2, ..., E_k B) =$$

$$= \det(E_1) \cdot ... \cdot \det(E_k) \cdot \det(B) = \det(E_1 ...E_k) \cdot \det(B) =$$

$$= \det(A) \cdot \det(B)$$

2.1.3 Vyslovte a dokažte větu o Laplaceově rozvoji determinantu.

Věta: Nechť $A^{i,j}$ je podmatice získaná z A odstaněním i-tého řádku a j-tého sloupce, potom pro libovolné $A \in \mathbb{K}^{n \times n}$ a jakékoli $i \in \{1, ..., n\}$ platí, že:

$$\det(A) = \sum_{j=1}^{n} a_{i,j} (-1)^{i+j} \det(A^{i,j})$$

Proof. Vyjádříme i-tý řádek jako lineární kombinaci vektorů kanonické báze (transponované do řádků) a použijeme linearitu:

$$(a_{i,1}, a_{i,2}, ..., a_{i,n}) = a_{i,1}(e^1)^T + a_{i,2}(e^2)^T + ... + a_{i,n}(e^n)^T$$

$$\begin{vmatrix} ... & ... & ... & ... \\ a_{i,1} & a_{i,2} & ... & a_{i,n} \\ ... & ... & ... & ... \end{vmatrix} = a_{i,1} \begin{vmatrix} ... & ... & ... & ... \\ ... & ... & ... & ... \end{vmatrix} + a_{i,2} \begin{vmatrix} ... & ... & ... & ... \\ 0 & 1 & ... & 0 \\ ... & ... & ... & ... \end{vmatrix} + ... + a_{i,n} \begin{vmatrix} ... & ... & ... & ... \\ 0 & 0 & ... & 1 \\ ... & ... & ... & ... \end{vmatrix}$$

j-tý člen:

$$\begin{vmatrix} \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots \\ - & (e^{j})^{T} & - \\ - & (e^{j})^{T} & - \\ \dots & \dots & \dots \end{vmatrix} = (-1)^{i+1} \begin{vmatrix} - & (e^{j})^{T} & - \\ \dots & \dots & \dots \\ - & \dots & \dots \end{vmatrix} = (-1)^{i+j} \frac{1}{0} \frac{0^{T}}{A^{i,j}} =$$

$$= (-1)^{i+j} \det(A^{i,j})$$

2.1.4 Uveďte a dokažte Cramerovo pravidlo (řešení systémů s determinanty).

Věta: Nechť $A \in \mathbb{K}^{n \times n}$ je regulární matice. Pro jakékoli $b \in \mathbb{K}^n$ řešení x soustavy Ax = B splňuje:

$$x_i = \frac{1}{\det(A)} \det(A_{i \to b})$$

kde $A_{i \to b}$ získáme z Anahrazením i-téhosloupce vektorem b.

Proof. Uvažme matici $I_{i\to x}$ získanou z I_n nahrazením $i\text{-}\mathsf{t\'eho}$ sloupce vektorem x.

Potom
$$A \cdot I_{i \to x} = A_{i \to b}$$
, tedy: $\det(A) \cdot \det(I_{i \to x}) = \det(A_{i \to b})$, proto $x_i = \det(I_{i \to x}) = \frac{1}{\det(A)} \det(A_{i \to b})$.

2.1.5 Vyslovte a dokažte větu o adjungované matici.

Věta: Pro regulární matici $A \in \mathbb{K}^{n \times n} : A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$.

Proof.

Laplaceovým rozvojem $\det(A): \begin{cases} \operatorname{pro}\ i=j \quad (i-\operatorname{tý}\ \operatorname{\check{r}} \operatorname{\check{a}} \operatorname{dek}\ \operatorname{z}\ A) \cdot (i-\operatorname{\mathsf{tý}}\ \operatorname{sloupec}\ \operatorname{z}\ \operatorname{adj}(A)) = \det(A) \\ \operatorname{\mathsf{pro}}\ i\neq j \quad (j-\operatorname{\mathsf{tý}}\ \operatorname{\check{r}} \operatorname{\check{a}} \operatorname{dek}\ \operatorname{z}\ A) \cdot (i-\operatorname{\mathsf{tý}}\ \operatorname{\mathsf{sloupec}}\ \operatorname{z}\ \operatorname{\mathsf{adj}}(A)) = \det(A') = 0 \end{cases}, \ \operatorname{\mathsf{kde}}\ A'$ se získá z A nahrazením i-tého řádku za j-tý. Dostáváme tedy:

$$A \cdot \operatorname{adj}(A) = \det(A) \cdot I_n \implies A \cdot \left(\frac{1}{\det(A)} \cdot \operatorname{adj}(A)\right) = I_n \implies A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

2.1.6 Vyslovte a dokažte větu o počtu koster grafu.

Věta: Každý multigraf G s $|V_G| \ge 2$ splňuje $\mathcal{K}(G) = \det(L_G^{1,1})$. Neboli: Každý graf G na alespoň dvou vrcholech má $\det(L_G^{1,1})$ koster.

Proof. BÚNO je graf G souvislý. Indukcí podle $m = |E_G|$.

Základ indukce: pro m=1 má G jen dva vrcholy a $\mathcal{K}(G)=1=\deg(v_2)=(L_G)_{2,2}=\det(L_G^{1,1})$.

Indukční krok: Zvolme lib. $e \in E_G$, BÚNO $e = (v_1, v_2)$ a označme $A = (L_G)_{1,1}$, $B = (L_{G-e})_{1,1}$, $C = (L_{G\circ e})_{1,1}$. C je podmatice L_G odpovídající $v_3, ..., v_n$, tedy $C = A^{1,1} = B^{1,1}$. Z IP víme: $\mathcal{K}(G-e) = \det(B)$ a $\mathcal{K}(G\circ e) = \det(C)$. Matice A a B jsou shodné krom $b_{1,1} = a_{1,1} - 1$, protože vypuštěním e klesne stupeň v_2 o jedna. První sloupec A vyjádříme jako součet prvního sloupce B a vektoru e_1 ze standardní báze.

Linearitou $\det(A)$ podél tohoto rozkladu prvního sloupce záskáme $\det(A) = \det(B) + \det(C)$. Nyní dokončíme:

$$\mathcal{K}(G) = \mathcal{K}(G - e) + \mathcal{K}(G \circ e) = \det((L_{G - e})_{1,1}) + \det((L_{G \circ e})_{1,1}) = \det((L_{G})_{1,1})$$

2.2 Polynomy

2.2.1 Vyslovte a dokažte malou Fermatovu větu.

Věta: Nechť $a \in \{1, ..., p-1\}$ a p je prvočíslo, potom platí: $a^{p-1} \equiv 1 \mod p$.

Proof. Pro každé a definujeme zobrazení $f_a:[p-1]\to[p-1]$ předpisem $f_a(x)=ax\mod p$. Ukážeme, že f_a je prosté: Kdyby nebylo, $(\exists b,c,b\neq c):f_a(b)=f_a(c)\implies 0\equiv ab-ac\implies a(b-c)\equiv 0$. Ale víme, že $a\neq 0$ a $b\neq c$, takže jde o **spor**.

 f_a je prosté \Longrightarrow je na \Longrightarrow je bijekcí na [p-1], proto platí:

$$\prod_{x=1}^{p-1} x = \prod_{x=1}^{p-1} f_a(x) = \prod_{x=1}^{p-1} ax = a^{p-1} \prod_{x=1}^{p-1} x \implies a^{p-1} = 1$$

2.2.2 Vyslovte a dokažte větu o Vandermondově matici.

Věta: Vandermondova matice $V_{n+1}(x_0,\ldots,x_n)$ je regulární $\iff x_0,\ldots,x_n$ jsou různá.

Proof. Odečteme první řádek z matice V_{n+1} od ostatních, vytkneme $x_i - x_0$ z i-tého řádku pro každé i = 1, ..., n. V prvním sloupci je n nul, takže můžeme rozvést:

$$\det V_{n+1} = \prod_{i=1}^{n} (x_i - x_0) \cdot \begin{vmatrix} 1 & x_1 + x_0 & x_1^2 + x_1 x_0 + x_0^2 & \dots & x_1^{n-1} + x_1^{n-2} x_0 + \dots + x_0^{n-1} \\ 1 & x_2 + x_0 & x_2^2 + x_2 x_0 + x_0^2 & \dots & x_2^{n-1} + x_2^{n-2} x_0 + \dots + x_0^{n-1} \\ \vdots & \vdots & \dots & \ddots & \vdots \\ 1 & x_n + x_0 & x_n^2 + x_n x_0 + x_0^2 & \dots & x_n^{n-1} + x_n^{n-2} x_0 + \dots + x_0^{n-1} \end{vmatrix}$$

Nyní odzadu od každého sloupce odečteme x_0 -násobek předchozího, čímž eliminujeme všechny sčítance obsahující x_0 a získáme rekurentní vztah, který lze snadno rozvést:

$$\det(V_{n+1}(x_0,...,x_n)) = \left(\prod_{i=1}^n (x_i - x_0)\right) \cdot \det(V_n(x_1,...,x_n)) = \prod_{i < j} (x_j - x_i)$$

2.2.3 Uvedte a dokažte správnost Lagrangeovy interpolace.

Popis: Způsob interpolace polynomu $p \in \mathbb{K}(x)$ stupně n skrz n+1 bodů (x_i, y_i) pro $i=1, \ldots, n+1$.

Proof. 1. Nejprve určíme n+1 pomocných polynomů stupně n

$$p_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{i \neq i} (x_i - x_j)} = \frac{(x - x_1) \dots (x - x_{i-1}) \cdot (x - x_{i+1} \dots (x - x_{n+1}))}{(x_i - x_1) \dots (x_i - x_{i-1}) \cdot (x_i - x_{i+1} \dots (x_i - x_{n+1}))}$$

Můžeme si všimnout, že pro $i \neq j$ je $p_i(x_i) = 1$ a $p_i(x_j) = 0$.

2. Nyní sestavíme p(x) jako lineární kombinaci $p(x) = \sum_{i=1}^{n+1} y_i p_i(x)$. Potom platí $p(x_i) = y_i p_i(x_i) = y_i$, protože ve všech ostatních sčítancích je $p_i(x_i) = 0$.

Vlastní čísla a vlastní vektory 2.3

Vyslovte a dokažte větu o podprostoru vlastních vektorů.

Vlastní vektory odpovídající stejnému vlastnímu číslu tvoří podprostor.

Proof. Uvažme vlastní číslo λ lineárního zobrazení $f: V \to V$ a množinu $U = \{u \in V: f(u) = \lambda u\}$. Pro jakékoli $u, v \in U$ a $a \in \mathbb{K}$ dostaneme:

- $f(au) = af(u) = a\lambda u = \lambda(au)$
- $f(u+v) = f(u) + f(v) = \lambda u + \lambda v = \lambda (u+v)$.

Proto je U uzavřená na sčítání a na skalární násobky, t.j. U je podprostor V.

Vyslovte a dokažte větu o lineární nezávislosti vlastních vektorů. 2.3.2

Věta: Nechť $f:V\to V$ je lineární zobrazení a $\lambda_1,\ldots,\lambda_k$ jsou různá vlastní čísla f a u_1,\ldots,u_k odpovídající netriviální vlastní vektory. Potom u_1, \ldots, u_k jsou lineárně nezávislé.

Proof. Předpokládejme pro spor, že k je nejmenší číslo, pro které $\exists \lambda_1, \dots, \lambda_k$ a u_1, \dots, u_k odporující větě, t.j. existují $a_1, \dots, a_k \in \mathbb{K} \setminus 0$, t.ž.: $\sum_{i=1}^{\kappa} a_i u_i = 0$.

0 lze vyjádřit dvěma způsoby:

$$0 = \begin{cases} \lambda_k 0 = \lambda_k \sum_{i=1}^k a_i u_i = \sum_{i=1}^k \lambda_k a_i u_i \\ f(0) = f\left(\sum_{i=1}^k a_i u_i\right) = \sum_{i=1}^k a_i f(u_i) = \sum_{i=1}^k \lambda_i a_i u_i \end{cases}$$

Z toho dostáváme vztah: $0 = 0 - 0 = \sum_{i=1}^k \lambda_i a_i u_i - \sum_{i=1}^k \lambda_k a_i u_i = \sum_{i=1}^{k-1} (\lambda_i - \lambda_k) a_i u_i$ A protože $\lambda_i \neq \lambda_k$, dostaneme $(\lambda_i - \lambda_k) a_i \neq 0$. Jenže u_1, \dots, u_{k-1} jsou LZ, což je spor s minimalitou k.

Vyslovte a dokažte větu o kořenech charakteristického polynomu. 2.3.3

Číslo $\lambda \in \mathbb{K}$ je vlastním číslem matice $A \in \mathbb{K}^{n \times n} \iff \lambda$ je kořenem charakteristického polynomu $p_A(t)$. Proof.

$$\lambda$$
 je vlastní číslo $A \iff \exists x \in \mathbb{K}^n \setminus 0 : Ax = \lambda x \iff$

$$\iff \exists x \in \mathbb{K}^n \setminus 0 : 0 = Ax = \lambda x = Ax - \lambda I_n x = (A - \lambda I_n)x \iff$$

$$\iff \text{matice } A - \lambda I_n \text{ je singulární} \iff$$

$$\iff 0 = \det(A - \lambda I_n) = p_A(\lambda)$$

Uvedte a dokažte Cayley-Hamiltonovu větu.

Věta: Pro matici $A \in \mathbb{K}^{n \times n}$ a její charakteristický polynom $p_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_2 t^2 + a_1 t + a_0$ platí, že: $p_A(A) = (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_2 A^2 + a_1 A + a_0 I_n = 0_n$, kde 0_n značí nulovou čtvercovou matici

Proof. Použijeme větu, že $M \cdot \operatorname{adj} M = (\det M) \cdot I_n$ pro $M = A - tI_n$. Složky $\operatorname{adj} (A - tI_n)$ jsou determinanty podmatic, tj. polynomy v t stupně nejvýše n-1. Můžeme je rozepsat:

$$\operatorname{adj}(A - tI_n) = t^{n-1}B_{n-1} + \dots + tB_1 + B_0 \text{ pro } B_{n-1}, \dots, B_0 \in \mathbb{K}^{n \times n}$$

Nyní máme:

$$(A - tI_n)(t^{n-1}B_{n-1} + \dots + tB_1 + B_0) = p_A(t)I_n = (-1)^n t^n I_n + a_{n-1}t^{n-1}I_n + \dots + a_2t^2 I_n + a_1tI_n + a_0I_n$$

• koeficient u $t^n : -B_{n-1} = (-1)^n I_n \cdot A^n$ zleva

- koeficienty u $t^i: AB_i B_{i-1} = a_i I_n \cdot A^i$ zleva
- koeficient u $t^0: AB_0 = a_0I_n$ ponecháme a vše sečteme

Levá strana:
$$-A^n B_{n-1} + A^{n-1} (AB_{n-1} - B_{n-2}) + \dots + A(AB_1 - B_0) + AB_0 = 0_n$$
.
Pravá strana: $(-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_2 A^2 + a_1 A + a_0 I_n = p_A(A)$.

2.4 Diagonalizace

Uvedte a dokažte nezbytnou a postačující podmínku, kdy je matice diagonalizovatelná.

Matice $A \in \mathbb{K}^{n \times n}$ je podobná diagonální matici \iff prostor \mathbb{K}^n má bázi z vlastních vektorů A.

Proof. AR = RD s diagonální maticí D, pokud pro každé i platí, že existuje vektor x (i-tý sloupec R), t.ž.: $Ax = \lambda x = d_{i,i}x.$

$$A = RDR^{-1} \iff AR = RD \iff R^{-1}AR = D$$

Vyslovte a dokažte větu o diagonalizaci speciálních komplexních matic. 2.4.2

Každá hermitovská matice A má všechna vlastní čísla reálná. Navíc existuje unitární matice R, t.ž.: $R^{-1}AR$ je diagonální.

 ${\it Proof.}$ Indukcí podle n. Věta platí pron=1. Označme $A_n=A.$

V tělese \mathbb{C} má matice A_n vlastní číslo λ s vlastním vektorem x. Zvýšíme x faktorem $\frac{1}{\sqrt{x^H x}}$, abychom dostali xsplňující $x^H x = 1$.

Doplníme x na unitární matici P_n . $P_n^H A_n P_n \text{ je hermitovská } (P_n^H A_n P_n)^H = P_n^H A_n^H (P_n^H)^H = P_n^H A_n P_n.$ Protože $A_n x = \lambda x$, matice $A_n P_n$ má λx jako první sloupec. Protože P_n je unitární, první sloupec $P_n^H A_n P_n$ je:

$$P_n^H A_n x = P_n^H (A_n x) = P_n^H (\lambda x) = \lambda P_n^H x = \lambda (1, 0, \dots, 0)^T = (\lambda, 0, \dots, 0)^T$$

 $P_n^H A_n P_n$ je hermitovská $\implies \lambda \in \mathbb{R}$ a zbytek prvního řádku je 0^T . Proto $P_n^H A_n P_n = \boxed{\begin{array}{c} \lambda & 0^T \\ \hline 0 & A_{n-1} \end{array}}$, kde A_{n-1}

je hermitovská. Podle indukčního předpokladu $R_{n-1}^{-1}A_{n-1}R_{n-1}=D_{n-1}$ pro nějakou unitární matici R_{n-1} a

diagonální matici D_{n-1} . Položíme $R_n=P_n\cdot \cfrac{1 \quad 0^T}{0 \quad R_{n-1}}$, součiny unitárních matic jsou unitární. Nyní:

$$R_n^{-1} A_n R_n = R_n^H A_n R_n = \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1}^H \end{bmatrix} \cdot P_n^H A_n P_n \cdot \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1} \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1}^H \end{bmatrix} \cdot \begin{bmatrix} \lambda & 0^T \\ 0 & A_{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1} \end{bmatrix} = \begin{bmatrix} \lambda & 0^T \\ 0 & D_{n-1} \end{bmatrix} =$$

$$= D_n$$

2.5 Skalární součin

2.5.1 Uveďte a dokažte Cauchy-Schwarzovu nerovnost.

Věta: Pro skalární součin libovolných dvou vektorů u a v ve vektorovém prostoru nad $\mathbb C$ platí:

$$|\langle u \mid v \rangle| \le \sqrt{\langle u \mid u \rangle \cdot \langle v \mid v \rangle} = ||u|| \cdot ||v||$$

Proof. Pro u=0 nebo v=0 dostaneme $0 \le 0$. *Platí*.

Pro jakékoli $a \in \mathbb{C}$ platí, že $||u + av||^2 \ge 0$, ale také:

$$||u + av||^2 = \langle u + av \mid u + av \rangle = \langle u \mid u \rangle + a \langle v \mid u \rangle + \overline{a} \langle u \mid v \rangle + a \overline{a} \langle v \mid v \rangle$$

Pro vzájemné odečtení posledních dvou členů zvolíme $a = -\frac{\langle u|v\rangle}{\langle v|v\rangle}$. Dostaneme:

$$0 \le \langle u \mid u \rangle - \frac{\langle u \mid v \rangle}{\langle v \mid v \rangle} \cdot \langle v \mid u \rangle$$
$$\langle u \mid v \rangle \cdot \langle v \mid u \rangle \le \langle u \mid u \rangle \cdot \langle v \mid v \rangle$$
$$|\langle u \mid v \rangle|^2 \le ||u||^2 \cdot ||v||^2$$
$$|\langle u \mid v \rangle| \le ||u|| \cdot ||v||$$

2.5.2 Uveďte a dokažte trojúhelníkovou nerovnost.

Věta: Každá norma odvozená ze skalárního součinu splňuje trojúhelníkovou nerovnost: $||u+v|| \le ||u|| + ||v||$.

$$\begin{aligned} ||u+v|| &= \sqrt{\langle u+v \mid u+v \rangle} = \sqrt{\langle u \mid u \rangle + \langle v \mid u \rangle + \langle u \mid v \rangle + \langle v \mid v \rangle} \leq \sqrt{||u||^2 + 2|\langle u \mid v \rangle| + ||v||^2} \\ ||u+v|| &\leq \sqrt{||u||^2 + 2 \cdot ||u|| \cdot ||v|| + ||v||^2} = ||u|| + ||v|| \\ ||u+v|| &\leq ||u|| + ||v|| \end{aligned}$$

2.5.3 Vyslovte a dokažte větu o Fourierových koeficientech.

Věta: Nechť $Z = \{v_1, ..., v_n\}$ je ortonormální báze prostoru V. Pro každé $u \in V$ platí: $u = \langle u|v_1\rangle v_1 + ... + \langle u|v_n\rangle v_n$. Potom $\langle u|v_n\rangle$ jsou Fourierovy koeficienty.

Proof.

$$u = \sum_{i=1}^{n} a_i v_i \implies \langle u | v_j \rangle = \left\langle \sum_{i=1}^{n} a_i v_i \mid v_j \right\rangle = \sum_{i=1}^{n} a_i \langle v_i | v_j \rangle = a_j$$

2.5.4 Uveďte a dokažte správnost Gram-Schmidtovy ortonormalizace (včetně lemmatu, pokud jej potřebujete).

Algoritmus: převede lib. bázi (u_1, \ldots, u_n) prostoru V se skalárním součinem na ortonormální bázi (v_1, \ldots, v_n) :

for
$$i = 1, \ldots, n$$
 do:

1.
$$w_i = u_i - \sum_{j=1}^{i-1} \langle u_i | v_j \rangle v_j$$

2.
$$v_i = \frac{1}{||w_i||} w_i$$

end

П

Správnost:

- Díky 1. a předchozímu lemmatu: $\forall i, j; j < i : w_i \perp v_j$, odtud $v_i \perp v_j$ pro $j \neq i$.
- Díky 2.: $||v_i|| = \left| \left| \frac{1}{||w_i||} w_i \right| \right| = \frac{||w_i||}{||w_i||} = 1$.
- Díky lemmatu o výměně: $\mathcal{L}(v_1,\ldots,v_{i-1},u_i)=\mathcal{L}(v_1,\ldots,v_{i-1},w_i)=\mathcal{L}(v_1,\ldots,v_i)$.

Lemma: Nechť p_Z je ortogonální projekce W na V, potom $\forall v_i \in Z : u - p_Z(u) \perp v_i$.

Proof. #1

$$\langle u - p_Z(u) \mid v_i \rangle = \left\langle u - \sum_{j=1}^n \langle u \mid v_j \rangle v_j \mid v_i \right\rangle = \langle u | v_i \rangle - \sum_{j=1}^n \langle u | v_j \rangle \langle v_j | v_i \rangle = \langle u | v_i \rangle - \langle u | v_i \rangle = 0$$

Lemma: Nechť Y generuje vektorový prostor V nad \mathbb{K} . Jestliže pro vektor $u \in V$ exisutjí $v_1, \ldots, v_n \in Y$ a $a_1,\ldots,a_n\in\mathbb{K},$ t.ž.: $u=\sum a_iv_i,$ kde $a_i\neq 0$ pro nějaké i, potom $\mathcal{L}((Y\setminus v_i)\cup u)=V.$

Proof. #2

$$u=a_1v_1+\cdots+a_iv_i+\ldots a_nv_n \implies v_i=\frac{1}{a_i}\left(u-\sum_{j\neq i}a_jv_j\right)$$
. Jakékoli $w\in V$ můžeme zapsat jako lineární

kombinaci prvků z Y. Vyskytuje-li se v_i v této kombinaci, dosadíme za v_i výraz výše. Tím získáme w jako lineární kombinaci prvků z $(Y \setminus v_i) \cup u$.

V konečném případě, je-li
$$Y = \{v_1, \dots, v_n\}$$
 a $w = \sum_{j=1}^n b_j v_j$, dostaneme jmenovitě $w = \frac{b_i}{a_i} u + \sum_{j \neq i} \left(b_j - \frac{a_j b_i}{a_i} \right) v_j$. \square

Vyslovte a dokažte větu o izometrii a normě. 2.5.5

Lineární zobrazení mezi prostory V a W je izometrie, právě když zachovává související normu, tj.:

$$||u|| = ||f(u)||$$

Proof. Protože norma závisí na skalárním součinu, máme \implies . Pro \Leftarrow porovnejme:

$$||u + aw||^2 = ||u||^2 + a\langle w|u\rangle + \overline{a}\langle u|w\rangle + a\overline{a}||w||^2$$
$$||f(u + aw)||^2 = ||f(u)||^2 + a\langle f(w)|f(u)\rangle + \overline{a}\langle f(u)|f(w)\rangle + a\overline{a}||f(w)||^2$$

- pro a = 1 máme: $\langle w|u \rangle + \langle u|w \rangle = \langle f(w)|f(u) \rangle + \langle f(u)|f(w) \rangle$
- pro a = i mámě: $\langle w|u \rangle \langle u|w \rangle = \langle f(w)|f(u) \rangle \langle f(u)|f(w) \rangle$

$$\implies \langle u|w\rangle = \langle f(u)|f(w)\rangle$$

Vyslovte a dokažte větu o izometrii a vlastnostech její matice.

Věta: Nechť V a W jsou prostory se skalárním součinem konečné dimenze a X, Y jsou jejich ortonormální báze. Lineární zobrazení $f: V \to W$ je bijektivní izometrie $\iff [f]_{XY}$ je unitární.

Proof. Lineární bijekce implikuje stejné dimenze a naopak.

Protože X je ortonormální: $\langle u|w\rangle = [w]_X^H[u]_X$

Protože Y je ortonormální: $\langle f(u)|f(w)\rangle=[f(w)]_Y^H[f(u)]_Y=[w]_X^H[f]_{XY}^H[f]_{XY}[u]_X$ Maticová rovnost $x^Ty=x^TAy$ platí pro všechny vhodné vektory x a y pouze v případě, je-li A jednotková matice. V našem případě je f izometrie, pokud $\forall u,w:[w]_X^H[u]_X=[w]_X^H[f]_{XY}^H[f]_{XY}[u]_X$, což platí právě když $[f]_{XY}^H[f]_{XY}=I$, neboli je-li $[f]_{XY}$ unitární.

2.5.7 Vyslovte a dokažte větu o ortogonálním doplňku.

 \mathbf{V} ěta: Pro konečně generovaný prostor W se skalárním součinem a podprostor V platí:

$$(V^{\perp})^{\perp} = V \text{ a } \dim V + \dim V^{\perp} = \dim W$$

Proof. Zvolíme nějakou ortonormální bázi X prostoru V a doplníme ji na ortonormální bázi Z prostoru W. Označme $Y = Z \setminus X$, $X = (x_1, \ldots, x_k)$, $Y = (y_1, \ldots, y_l)$. Každé $u \in \mathcal{L}(X) = V$ je kolmé ke každému $v \in \mathcal{L}(Y)$:

$$\langle u|v\rangle = \left\langle \sum_{i=1}^{k} a_i x_i \middle| \sum_{j=1}^{l} b_j y_j \right\rangle = \sum_{i=1}^{k} \sum_{j=1}^{l} a_i \overline{b_j} \langle x_i | y_j \rangle = 0$$

protože Zje ortonormální báze. Proto $\mathcal{L}(Y)\subseteq V^{\perp}.$

Nyní vezměme $w \in V^{\perp}$ a uvažme $[w]_Z$. Protože Z je ortonormální, koeficienty w vzhledem kZ jsou Fourierovy koeficienty dané skalárním součinem w s prvky báze Z.

Protože
$$w \in V^{\perp}$$
, máme $\forall x_i \in X : \langle w | x_i \rangle = 0$, tedy: $w \in \mathcal{L}(Y)$, t.j. $V^{\perp} \subseteq \mathcal{L}(Y)$ a tedy $V^{\perp} = \mathcal{L}(Y)$.
Nyní: $\dim V + \dim V^{\perp} = |X| + |Y| = |Z| = \dim W$ a také $(V^{\perp})^{\perp} = \mathcal{L}(Z \setminus Y) = \mathcal{L}(X) = V$.

2.5.8 Vyslovte a dokažte větu o skalárním součinu dvou vektorů a Gramově matici.

Věta: Nechť V je prostor se skalárním součinem a bazí $X = (v_1, \ldots, v_n)$. Potom *Gramova matice* A definována $a_{i,j} = \langle v_i | v_j \rangle$ splňuje $\forall u, w \in V : \langle u | w \rangle = [w]_X^H A^T [u]_X$. (*Pokud* X *je ortonormální báze, pak* $A = I_n$).

Proof. Označme
$$[u]_X = (b_1, \ldots, b_n)^T$$
, $[w]_X = (c_1, \ldots, c_n)^T$, t.j. $u = \sum_{i=1}^n b_i v_i$ a $w = \sum_{j=1}^n c_j v_j$. Dostáváme:

$$\langle u|w\rangle = \left\langle \sum_{i=1}^n b_i v_i \middle| \sum_{j=1}^n c_j v_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n b_i \overline{c_j} \langle v_i | v_j \rangle = [w]_X^H A^T [u]_X$$

2.6 Pozitivně definitní matice

2.6.1 Vyslovte a dokažte větu o třech ekvivalentních podmínkách pro pozitivně definitní matice.

Věta: Pro hermitovskou matici A jsou následující podmínky ekvivalentní:

- 1. A je pozitivně definitivní
- 2. A má všechna vlastní čásla kladná
- 3. Existuje regulární matice U, t.ž.: $A = U^H U$.

Proof.

 $1 \implies 2$: Protože A je hermitovská, má vlastní čísla reálná. Nechť x je netriviální vlastní vektor odpovídající vlastnímu číslu λ , potom $0 < x^H A x = \lambda x^H x = \lambda \langle x | x \rangle$. Z $\langle x | x \rangle > 0$ máme $\lambda > 0$.

 $2 \implies 3$: Protože A je hermitovská, existují unitární R a diagonální D, t.ž.: $A = R^H DR$. Vezměme diagonální \tilde{D} : $\tilde{d}_{ii} = \sqrt{d_{ii}}$ a $U = \tilde{D}R$. Nyní $U^H U = (\tilde{D}R)^H \tilde{D}R = R^H \tilde{D}^H \tilde{D}R = R^H DR = A$. U je regulární, protože unitární i diagonální matice jsou regulární.

 $3 \implies 1$: Pokud $x \in \mathbb{C}^n \setminus 0$, pak $Ux \neq 0$, protože U je regulární. Nyní: $x^HAx = x^HU^HUx = (Ux)^HUx = \langle Ux|Ux \rangle > 0$. \Box

2.6.2 Vyslovte a dokažte větu o rekurentní podmínce pro pozitivně definitní matice.

Věta: Bloková matice $A = \begin{bmatrix} \alpha & a^H \\ \hline a & \tilde{A} \end{bmatrix}$ je pozitivně definitní $\iff \alpha > 0$ a matice $\tilde{A} - \frac{1}{\alpha}aa^H$ je pozitivně definitní.

Proof.

Gaussova eliminace prvního sloupce A odpovídá součinu

Následně dostáváme:

$$\frac{1}{-\frac{1}{\alpha}a} \frac{0^H}{I} \cdot \frac{\alpha}{a} \frac{a^H}{\tilde{A}} \cdot \frac{1}{0} \frac{-\frac{1}{\alpha}a^H}{I} = \frac{\alpha}{0} \frac{0^H}{\tilde{A} - \frac{1}{\alpha}aa^H}$$

Matice elementárních úprav je regulární, a tak A je pozitivně definitní \iff výsledná bloková matice je pozitivně definitní, což nastává \iff má oba nenulové bloky pozitivně definitní.

2.6.3 Vyslovte a dokažte větu o pozitivně definitních maticích a determinantech.

Věta: Hermitovská matice A řádu n je pozitivně definitní \iff matice A_1, \ldots, A_n mají kladné determinanty, kde A_i se sestává z prvních i řádků a sloupců A

Proof. Použijeme Gaussovu eliminace $A \sim A'$ pro test, zda je A pozitivně definitní. Nechť $\alpha_1, \ldots, \alpha_n$ jsou prvky na diagonále výsledné trojúhelníkové matice A'. Protože jsme eliminovali řádky shora dolů, máme det $A = \det A' = \prod_{j \leq i} \alpha_j = \det A_{i-1}\alpha_i$. A je pozitivně definitní $\iff \alpha_1, \ldots, \alpha_n > 0 \iff \det A_1, \ldots, \det A_n > 0$

2.6.4 Uveďte a dokažte správnost algoritmu pro výpočet Choleského rozkladu.

Algoritmus: Pro každou pozitivně definitní matici A existuje unikátní trojúhelníková matice U s kladnou diagonálou, t.ž.: $A = U^H U$. Matice U se nazývá Choleského rozklad.

Input: Hermitovská matice A

Output: Choleského rozklad U, pokud je A pozitivně definitní

for $i=1,\ldots,n$ do:

$$u_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} \overline{u_{ki}} u_{ki}}$$

if $u_{ii} \notin \mathbb{R}^+$ then STOP (A není pozitivně definitní)

for $j = i + 1, \ldots, n$ do:

$$u_{ij} = \frac{1}{u_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} \overline{u_{ki}} u_{kj} \right)$$

end

end

Správnost: Předpokládejme, že algoritmus selže * během *i*-té iterace, tj. $\alpha \leq u^H u$. Máme $\tilde{A} = \tilde{U}^H \tilde{U}$ a $a = \tilde{U}^H u$.

$$U \begin{bmatrix} i \\ \widetilde{U} & u \\ 0 & * \end{bmatrix}$$

$$U^{H} \underbrace{\widetilde{U}^{H} \quad 0 \quad \widetilde{A} \quad a}_{i} \quad A$$

Nechť
$$x^T = \begin{bmatrix} \tilde{x}^T & 1 & 0 \dots 0 \end{bmatrix}$$
, kde $\tilde{x} = -\tilde{U}^{-1}u$.

Nyní
$$x^H A x =$$

$$= \tilde{x}^H \tilde{A} \tilde{x} + \tilde{x}^H a + a^H \tilde{x} + \alpha =$$

$$= (-\tilde{U}^{-1} u)^H (\tilde{U}^H \tilde{U}) (-\tilde{U}^{-1} u) + (-\tilde{U}^{-1} u)^H (\tilde{U}^H u) + (\tilde{U}^H u)^H (-\tilde{U}^{-1} u) + \alpha =$$

$$= u^H u - u^H u - u^H u + \alpha = \alpha - u^H u \le 0$$

Proto A není pozitivně definitní

Kvadratické a bilineární formy 2.7

2.7.1Vyslovte a dokažte větu o diagonalizovatelnosti matic forem.

Věta: Pokud je q kvadratická forma vektorového prostoru V konečné dimenze n nad tělesem \mathbb{K} jiné Charakteristiky než 2, pak má forma g diagonální matici B vzhledem k vhodné bázi X.

Věta: Pro jakoukoli symetrickou matici $A \in \mathbb{K}^{n \times n}$ s char $(\mathbb{K}) \neq 2$ existuje regulární matice R, t.ž.: $R^T A R$ je diagonální.

Proof. Indukcí podle n

Označme
$$A = A_n = \begin{bmatrix} \alpha & a^T \\ a & \tilde{A} \end{bmatrix}$$
.

(a) Když $\alpha \neq 0$, volíme $P_n = \begin{bmatrix} 1 & -\frac{1}{\alpha}a^T \\ 0 & I_{n-1} \end{bmatrix}$, pak:

$$P_n^T A_n P_n = \begin{bmatrix} 1 & 0^T \\ -\frac{1}{\alpha}a & I_{n-1} \end{bmatrix} \cdot \begin{bmatrix} \alpha & a^T \\ a & \tilde{A} \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{1}{\alpha}a^T \\ 0 & I_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha & a^T \\ 0 & -\frac{1}{\alpha}aa^T + \tilde{A} \end{bmatrix} = \begin{bmatrix} \alpha & 0^T \\ 0 & A_{n-1} \end{bmatrix}$$

kde $A_{n-1} = \tilde{A} - \frac{1}{\alpha} a a^T$ je symetrická.

Dle indukčního předpokladu existuje R_{n-1} pro A_{n-1} . Zvolíme $R_n = P_n \cdot \begin{vmatrix} 1 & 0^T \\ 0 & R_{n-1} \end{vmatrix}$, pak:

$$R_n^T A_n R_n = \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1}^T \end{bmatrix} \cdot P_n^T A_n P_n \cdot \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha & 0^T \\ 0 & R_{n-1}^T A_{n-1} R_{n-1} \end{bmatrix}$$

 $R_n^T A_n R_n$ je tedy diagonální.

(b) Pokud $\alpha=0$, ale $a\neq 0$, pak $a_{i,1}\neq 0$ pro nějaké i. Použijeme elementární matici E pro přičtení i-tého sloupce k prvnímu. Vezmeme $\tilde{A} = E^T A E$ namísto A. Protože $\alpha' = 2a_{i,1} \neq 0$, můžeme postupovat jako (a).

2.7.2Uvedte a dokažte Sylvesterův zákon setrvačnosti — o diagonalizaci kvadratických forem.

Každá kvadratická forma na konečně generovaném reálném vektorovém prostoru má vzhledem k vhodné bázi diagonální matici pouze s 1, -1,0. Všechny takové diagonální matice odpovídající téže formě mají stejný počet 1 a stejný počet -1.

Proof.

1. **Existence:** Nechť B je maticí formy vzhledem k nějaké bázi Y. Reálné symetrické matice lze diagonalizovat,

neboli
$$B = R^T D R$$
 pro regulární R . Rozložíme $D = S^T D' S$, kde $d_{i,i}$

$$\begin{cases} = 0 & d'_{ii} = 0.s_{ii} = 1 \\ > 0 & d'_{ii} = 1.s_{ii} = \sqrt{d_{ii}} \\ < 0 & d'_{ii} = -1.s_{ii} = \sqrt{-d_{ii}} \end{cases}$$

Nyní je SR regulární a $B = (SR)^T D'SR$. Zvolíme bázi X tak, že souřadnice vektorů X vzheldem k Y jsou sloupce SR, tzn. $[id]_{XY}=SR$ a také $[id]_{YX}=(SR)^{-1}$. Nyní $[id]_{YX}^TB[id]_{YX}=((SR)^{-1})^T(SR)^TD'SR(SR)^{-1}=D'$ je hledaná diagonální matice formy.

2. **Jednoznačnost počtu** 1, -1,0: Nechť $X=(u_1,\ldots,u_n),\,Y=(v_1,\ldots,v_n)$ jsou dvě báze, t.ž.: odporující matice B a B' formy g jsou diagonální s 1, -1,0 uspořádanými tak, že nejdříve jsou 1, potom -1 a 0 jsou poslední. Protože součiny s regulárními maticemi $[id]_{XY}$ nemění hodnost:

$$\#0$$
 v $B = n - \text{rank } B = n - \text{rank } B' = \#0$ v B'

Nechť r = #1 v B, s = #1 v B'. Pokud r > s, pak uvažme podprostory $\mathcal{L}(u_1, \ldots, u_r)$ a $\mathcal{L}(v_{s+1}, \ldots, v_n)$. Součet jejich dimenzí r + n - s přesahuje n, mají tedy netriviální průnik.

(Používáme pozorování dim $U + \dim V = \dim(U \cap V) + \dim(\mathcal{L}(U \cup V))$)

— Levá strana je ostře větší než n, $\dim(\mathcal{L}(U \cup V)) \leq \dim \mathbb{R}^n = n \implies \dim(U \cap V) \geq 1$.

$$\begin{array}{c|cccc} X & \mathbb{R}^n & \dim = n & Y \\ \hline \bullet \ u_1 & \mathcal{L}(u_1, \dots, u_r) & \bullet \ v_1 \\ & \dim = r & \bullet \ v_s \\ \hline \bullet \ u_r & \bullet 0 & \dim \geq 1 & \bullet w \\ \bullet \ u_{r+1} & \mathcal{L}(v_{s+1}, \dots, v_n) \\ \bullet \ u_n & \dim = n-s & \bullet \ v_n \\ \hline \end{array}$$

Zvolme $w \in (\mathcal{L}(u_1,\ldots,u_r) \cap \mathcal{L}(v_{s+1},\ldots,v_n)) \setminus 0$, tedy $[w]_X = (x_1,\ldots,x_r,0,\ldots,0)^T$, $[w]_Y = (0,\ldots,0,y_{s+1},\ldots,y_n)^T$. Nyní $g(w) = [w]_X^T B[w]_X = x_1^2 + \cdots + x_r^2 > 0$, ale $g(w) = [w]_Y^T B'[w]_Y = -y_{s+1}^2 - \cdots - y_{\text{rank } B'}^2 \leq 0$, což je spor. Dostáváme $r \gg s$, symetricky též $s \gg r$ a proto r = s.

2.8 Aplikace

2.8.1 Vyslovte a dokažte větu o počtu přímek svírajících stejný úhel.

Věta: V \mathbb{R}^d může být nejvýše $\binom{d+1}{2}$ přímek svírat stejný úhel.

Proof. Předpokládejme, že existuje n takových přímek. Zvolíme vektory jednotkové délky v_1, \ldots, v_n z každé přímky po jednom.

Dostaneme
$$\langle v_i \mid v_j \rangle = \begin{cases} 1 & \text{pro } i = j \\ \cos \varphi & \text{jinak} \end{cases}$$

Ukážeme, že matice $v_1v_1^T, v_2v_2^T, \dots, v_nv_n^T \in \mathbb{R}^{d \times d}$ jsou lineárně nezávislé. Pak $n \leq {d+1 \choose 2}$, protože dimenze prostoru symetrických matic z $\mathbb{R}^{d \times d}$ je ${d+1 \choose 2}$.

Předpokládejme, že $\sum_{i=1}^{n} a_i v_i v_i^T = 0$ (matice $d \times d$ plná nul). Pro každé $j \in \{1, \dots, n\}$:

$$0 = v_j^T 0 v_j = v_j^T \left(\sum_{i=1}^n a_i v_i v_i^T \right) v_j = \sum_{i=1}^n a_i v_j^T v_i v_i^T v_j = \sum_{i=1}^n a_i \langle v_i \mid v_j \rangle^2 = a_j + \cos^2 \varphi \sum_{i \neq j} a_i$$

Tyto podmínky na a_1, \ldots, a_n zapsané jako soustava rovnic:

$$\begin{pmatrix} 1 & \cos^2 \varphi & \dots & \cos^2 \varphi \\ \cos^2 \varphi & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \cos^2 \varphi \\ \cos^2 \varphi & \dots & \cos^2 \varphi & 1 \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Matice této soustavy je regulární, proto $a_1 = \cdots = a_n = 0$. Tudíž $v_1 v_1^T, v_2 v_2^T, \dots, v_n v_n^T$ jsou lineárně nezávislé. \square

3 Přehled

(U přehledových otázek Uveďte definice, tvrzení, věty, příklady a souvislosti. Důkazy u přehledových otázek nejsou vyžadovány.)

3.1 Skalární součin

3.1.1 Přehledově sepište, co víte o skalárním součinu a související normě.

- o **Definice:** Standardní skalární součin na \mathbb{C}^n : $\langle u \mid v \rangle = \sum_{i=1}^n u_i \overline{v_i} = v^H u$. Kde index H je Herminovská transpozice daná vztahem $A_{i,j}^H = \overline{a_{j,i}}$.
- o **Definice:** Skalární součin (1.5.1)
- o Definice: Norma (1.5.2)
- o Věta: Cauchy-Schwarzovu nerovnost (2.5.1)
- o Věta: Trojúhelníková nerovnost (2.5.2)
- \circ Věta: Nerovnost mezi aritmetickým a kvadratickým průměrem: Pro libovolný vektor $u \in \mathbb{R}^n$ platí:

$$\frac{1}{n}\sum_{i=1}^{n}u_{i}\leq\sqrt{\frac{1}{n}\sum_{i=1}^{n}u_{i}^{2}}$$

Proof. Zvolíme $v = (1, 1, ..., 1)^T$ a použijeme Cauchy-Schwarzovu nerovnost pro standardní skalární součin:

$$\sum_{i=1}^n u_i = \langle u \mid v \rangle \le |\langle u \mid v \rangle| \le ||u|| \cdot ||v|| = \sqrt{\sum_{i=1}^n u_i^2} \cdot \sqrt{n}$$

- Vlastnosti:
 - *Úhel \varphi mezi vektory u a v* je dán výrazem $\cos \varphi = \frac{\langle u|v \rangle}{||u||\cdot||v||}$,