CSPB3202 Artificial Intelligence

Reasoning with Uncertainty

Probability Review

Why we need probability

Why we need probability

Probabilistic Reasoning

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Probability

Random Variables

 A random variable is some aspect of the world about which we (may) have uncertainty

```
R = Is it raining?
T = Is it hot or cold?
D = How long will it take to drive to work?
L = Where is the ghost?
```

- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

P(T)	
Т	Р
hot	0.5
cold	0.5

Weather:

P(W)

W	Р	
sun	0.6	
rain	0.1	
Snow	0.39	
meteor	0,0 (

Probability Distributions

Unobserved random variables have distributions

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

• Must have:
$$P(W=rain)=0.1$$
 and
$$\forall x \ P(X=x)\geq 0 \qquad \qquad \sum_x P(X=x)=1$$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or outcome):

$$X_1, X_2, \dots X_n$$
 $P(X_i = \emptyset, X_2 = \emptyset)$

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$
 $\rightarrow P(x_1, x_2, \dots x_n)$

• Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р	
hot	sun	0.4 /	
hot	rain	0.1	
cold	sun	0.2 /	
cold	rain	0.3	

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

P(+,S)

Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

• P(+x, +y)? 0,2

• P(-y OR +x) ?

P(X,Y)

X	Υ	Р
/ +X	+y	0.2
' +X	-y /	0.3
-X	+y	0.4
-X	-y ,	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	SUM	2.0
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$P(X_1$	$= x_1) =$	$\sum P(X_1)$	$= x_1, X$	$x_2 = x_2)$
		x_2		

Quiz: Marginal Distributions

X	Υ	Р
+x	(+y	0.2
+x	-y	2.3
-X	(+ y)	0.4
-X	-y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+X	0.5
-X	0.5

P(Y)

Υ	Р
+y	20
- y	0.4

Conditional Probabilities

A simple relation between joint and conditional probabilities

• In fact, this is taken as the *definition* of a conditional probability

P(T,W)

rain

	,	
Т	W	F
Kot	sun	/0
hot	rain	0
cold	sun	(6.

cold

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

X	Υ	Р
+χ	+y	0.2
+x	-y	0.3
	1 +X7	0.4
L-x	1	6.1

•
$$P(+x) | +y)? \frac{0.2}{0.2 + 0.4} = \frac{1}{3}$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

Т	W	Р
tiot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

P(W|T=c)

W	Р
sun	0.4
rain	0.6

Normalization Trick

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

Τ	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

P(W	T	=	c)
-----	---	---	----

W	Р
sun	0.4
rain	0.6

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities evidence

P(c, W)W cold 0.2 sun cold 0.3 rain

NORMALIZE the selection (make it sum to one)

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

	X	Y	Р
	+x	+y	0.2
\bigvee	/ +x	-y	0.3
	-X	+y	0.4
\	-X	- y	0.1

SELECT the joint probabilities matching the evidence

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:

 - Hidden variables:

eneral case:

• Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ • Query* variable: Q• Hidden variables: $H_1 \dots H_r$ All variables

- Step 1: Select the ' entries consistent with the evidence
- -3 0.05 0.25 0 0.07 0.2 0.01

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration

• P(W)?

$$P(W)$$
? $P(W)$? $P(W)$? $P(W)$? $P(W)$? $P(W)$? $P(W)$ $P(W)$

• P(W | winter, hot)?
$$\frac{2}{5 | \text{Wih}} = \frac{2}{5 |$$

6	_			
S	Т	W	Р	
summer	hot	sun	0.30	
summer	hot	rain	0.05	
summer	cold	sun	0.10	
summer	cold	rain	0.05	
winter	hot	sun	0.10	5
winter	hot	rain	0.05	
winter	cold	sun	0.15	
winter	cold	rain	0.20	

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

P(D|W)

Ρ(D, vv)
D	W	

D(D M)

D	W	Р
wet	z 0.% sun	
dry	SUR	
wet	rain	
dry	rain	

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x,y) = P(x,y) \cdot P(y)$$

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i \in \mathcal{P}} P(x_i|x_1 \dots x_{i-1})$$

Why is this always true?

$$P(X_1, X_2, X_3)$$

$$= P(X_1) \cdot P(X_2, X_3)(X_1)$$

$$P(X_2, X_3 \mid X_1)$$

$$P(X_2 \mid X_1) \cdot P(X_3 \mid X_2, X_1)$$

$$= P(X_1) \cdot P(X_2 \mid X_1) \cdot P(X_3 \mid X_1, X_2)$$

Bayes Rule

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
- In the running for most important AI equation!

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$
 Example givens
$$P(+s|+m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \underbrace{\frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)}}_{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \underbrace{\frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}}_{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

• Given:

0.8

P(D|W)

I	D	W	Р	
I	wet	sun	0.1	
	dry	sun	0.9	Xos
Ī	wet	rain	0.7	
	dry	rain /	0.3	x02

• What is
$$P(W \mid dry)$$
?
$$P(W = S \mid dry) = P(dry \mid Sun) \cdot P(Sun)$$
• $P(W = r \mid dry) = P(dry \mid rain) \cdot P(rain)$
• $P(W = r \mid dry) = P(dry \mid rain) \cdot P(rain)$
• $P(W = r \mid dry) = P(dry \mid rain) \cdot P(rain)$
• $P(dry) = 0.78$

Inference with Bayes' Rule

Example: Breast Cancer Diagnosis from Mammogram Screening

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y) \checkmark$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form: $\forall x, y : P(x|y) = P(x)$

• We write: $X \! \perp \! \! \perp \! \! Y$

- Empirical joint distributions: at best "close" to independent
- What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

P_1	(T,	W
_ T	ι - ,	,,

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

N fair, independent coin flips:

$$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \hline \end{array} \right.$$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \perp Y Z$$

if and only if:
$$\forall x,y,z: P(x,y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke ,
 - Alarm •

FILAIS

Conditional Independence and the Chain Rule

• Chain rule:

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) ...$$

• Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

• With assumption of conditional independence:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain})$$

• Bayes'nets / graphical models help us express conditional independence assumptions