Probabilidade Condicional e Independência

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 11 de abril de 2022

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

Exemplo de motivação

- Seja o experimento lançar um dado duas vezes e anotar os dois resultados
- O espaço amostral é dado por $\Omega = \{(i, j) : 1 \le i \le 6, 1 \le j \le 6\}$

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

• Considere o evento:

 $B = \{ a \text{ soma dos valores obtidos nos dois lançamentos \'e } 4 \} \mathbb{P}(B) = ?$

Exemplo de motivação

• Note que B pode ser expresso como:

$$B = \{(1,3)\,; (2,2)\,; (3,1)\}$$

• Portanto, como Ω é equiprovável, e total de resultados possíveis em Ω é 36:

$$\mathbb{P}\left(B\right) = \frac{3}{36} = \frac{1}{12}$$

Exemplo de motivação

- Suponha agora que possuímos a seguinte informação sobre o experimento: o número observado em cada lançamento é menor ou igual a 2.
- Definimos: A = {o número observado em cada lançamento é menor ou igual a 2}. $A = \{(1,1); (1,2); (2,1); (2,2)\}$
- Assumindo que A ocorreu, qual a probabilidade de B ocorrer? $\mathbb{P}(B|A) = \mathbb{P}(B \text{ ocorrer dado que } A \text{ ocorreu}).$
- \bullet Bagora está sendo observado em um espaço diferente de $\Omega,$ está sendo observado em A

- Considerando então que A agora é nosso espaço amostral, e assumindo equiprobabilidade em A:
 {B ocorrer dado que A ocorre} = {(2,2)}.
- Portanto, $\mathbb{P}(B|A) = \frac{1}{4}$.
- Note que: $\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{(1/36)}{(4/36)} = \frac{1}{4}$.
- Portanto, para calcular a probabilidade condicional, basta conhecer a probabilidade dos eventos, e não necessariamente seus espaços amostrais.

Definição:

Dados dois eventos quaisquer A e B, a probabilidade condicional de B dado que A ocorreu é dada por

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \text{ com } \mathbb{P}(A) > 0.$$

É interessante notar que a probabilidade condicional definida realmente é uma probabilidade, uma vez que, satisfaz todos os axiomas de Kolmogorov. Ou seja,

• Axioma 1:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \ge 0 \text{ pois } \mathbb{P}(A \cap B) \ge 0 \text{ e } \mathbb{P}(A) > 0.$$

• Axioma 2:

$$\mathbb{P}(\Omega|A) = \frac{\mathbb{P}(\Omega \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A)}{\mathbb{P}(A)} = 1.$$

• Axioma 3: Sejam B_1, B_2, \ldots, B_n uma sequência de eventos dois a dois excludentes. Usando a propriedade distributiva, temos que

$$\mathbb{P}(\bigcup_{i=1}^{n} B_{i} | A) = \frac{\mathbb{P}[(\bigcup_{i=1}^{n} B_{i}) \cap A]}{\mathbb{P}(A)}$$

$$= \frac{\mathbb{P}[\bigcup_{i=1}^{n} (B_{i} \cap A)]}{\mathbb{P}(A)}$$

$$= \frac{\sum_{i=1}^{n} \mathbb{P}(B_{i} \cap A)}{\mathbb{P}(A)}$$

$$= \sum_{i=1}^{n} \mathbb{P}(B_{i} | A).$$

Propriedades

A probabilidade condicional também satisfaz as seguintes propriedades:

- (i) $\mathbb{P}(B|B) = 1$.
- (ii) $\mathbb{P}(A|B) = \mathbb{P}(A \cap B|B)$.
- (iii) Se $A \supseteq B$, então $\mathbb{P}(A|B) = 1$.
- (iv) $\mathbb{P}(A \cap B|C) = \mathbb{P}(A|B \cap C)\mathbb{P}(B|C)$.

Exemplos

• Exemplo 1: Considere as informações da tabela

	Masculino (Ma)	Feminino (Fe)	Total
Mat. Pura (M)	70	40	110
Mat. Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

Exemplos

•
$$\mathbb{P}(Fe|E) = \frac{20}{30} = \frac{2}{3}$$

• Sabendo:

$$\mathbb{P}(E \cap Fe) = \frac{20}{200}$$

$$\mathbb{P}(E) = \frac{30}{200}$$

$$\Rightarrow \mathbb{P}(Fe|E) = \frac{\mathbb{P}(E \cap Fe)}{\mathbb{P}(E)} = \frac{(20/200)}{(30/200)} = \frac{20}{30} = \frac{2}{3}$$

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

 Uma das mais importantes conseqüências da definição de probabilidade condicional é a seguinte:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(A)$$

ou, equivalentemente,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$$

Isto é, algumas vezes, mencionado como o teorema~(ou~regra)~da~multiplicação de probabilidades.

Para o caso geral temos o seguinte:

Regra geral do produto

Seja A_1, A_2, \ldots, A_n eventos de um espaço amostral Ω . Então

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \\ \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \times \dots \times \mathbb{P}(A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

Demonstração: Utilizar indução finita.

Exemplos

- Exemplo 3: Uma urna contém 2 bolas brancas e 3 vermelhas. Suponha que sorteamos duas bolas ao acaso sem reposição. Considere que B_1V_2 é o evento bola branca na primeira retirada e vermelha na segunda. Para os demais eventos a interpretação é análoga.
 - a primeira retirada tem as seguintes probabilidades: $\mathbb{P}(B_1) = \frac{2}{5} \in \mathbb{P}(V_1) = \frac{3}{5}$
 - a segunda retirada terá probabilidades diferentes, de acordo com o que foi selecionado na primeira, portanto, terá as seguintes probabilidades:

$$\mathbb{P}(B_2|B_1) = \frac{1}{4}, \mathbb{P}(B_2|V_1) = \frac{2}{4}, \mathbb{P}(V_2|B_1) = \frac{3}{4} \in \mathbb{P}(V_2|V_1) = \frac{2}{4}$$

Exemplos

• e as probabilidades conjuntas da primeira e segunda retirada:

$$\mathbb{P}(B_1B_2) = \mathbb{P}(B_1)\,\mathbb{P}(B_2|B_1) = \frac{2}{5} \times \frac{1}{4} = \frac{2}{20}$$

$$\mathbb{P}(B_1V_2) = \mathbb{P}(B_1)\,\mathbb{P}(V_2|B_1) = \frac{2}{5} \times \frac{3}{4} = \frac{6}{20}$$

$$\mathbb{P}(V_1B_2) = \mathbb{P}(V_1)\,\mathbb{P}(B_2|V_1) = \frac{3}{5} \times \frac{2}{4} = \frac{6}{20}$$

$$\mathbb{P}(V_1V_2) = \mathbb{P}(V_1)\,\mathbb{P}(V_2|V_1) = \frac{3}{5} \times \frac{2}{4} = \frac{6}{20}$$

Exemplo 3

• Suponha uma turma com 30 alunos dos quais 5 são mulheres e o restante homens. Quatro alunos saem da sala de aula sucessivamente. Qual a probabilidade de que sejam 2 mulheres e 2 homens, nessa ordem?

Solução: Sejam os eventos

```
M_1 = \{ \text{o primeiro a sair \'e mulher} \}

M_2 = \{ \text{o segundo a sair \'e mulher} \}

H_3 = \{ \text{o terceiro a sair \'e homem} \}

H_4 = \{ \text{o quarto a sair \'e homem} \}
```

Exemplo 3

Portanto, a probabilidade de interesse é dada por:

$$\mathbb{P}(M_1 \cap M_2 \cap H_3 \cap H_4) = \mathbb{P}(M_1)\mathbb{P}(M_2|M_1)\mathbb{P}(H_3|M_1 \cap M_2)
\times \mathbb{P}(H_4|M_1 \cap M_2 \cap H_3)
= \frac{5}{30} \frac{4}{29} \frac{25}{28} \frac{24}{27}
= \frac{100}{5481}.$$

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

Partições

- **Definição**: Dizemos que os eventos B_1, B_2, \ldots, B_n representam uma partição do espaço amostral Ω , quando
 - (a) $B_i \cap B_j = \emptyset$, para todo $i \neq j$.
 - (b) $\bigcup_{i=1}^n B_i = \Omega$.
 - (c) $\mathbb{P}(B_i) > 0$ para todo i.

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

Teorema

Seja B_1, B_2, \ldots, B_n uma partição do espaço amostral Ω e seja A um evento qualquer de Ω . Então

$$\mathbb{P}(A) = \sum_{k=1}^{n} \mathbb{P}(A|B_k)\mathbb{P}(B_k).$$

Exemplo

- Exemplo 4: Considere 5 urnas, cada uma com 6 bolas.
 - duas urnas são do tipo C_1 , que contém 3 bolas brancas (B)
 - duas urnas são do tipo C_2 , que contém 2 bolas brancas (B)
 - uma urna é do tipo C_3 , que contém as 6 bolas brancas (B)
- Escolhemos ao acaso uma urna, e dela retiramos uma bola. Qual a probabilidade da bola sorteada ser branca?

Exemplo

• Pela descrição das urnas, podemos notar que:

$$\mathbb{P}(B|C_1) = \frac{3}{6} = \frac{1}{2}$$

$$\mathbb{P}(B|C_2) = \frac{2}{6} = \frac{1}{3}$$

$$\mathbb{P}(B|C_3) = \frac{6}{6} = 1$$

- Além disso, nota que C_1 , C_2 e C_3 formam uma partição do espaço amostral
- $C_1 \cup C_2 \cup C_3 = \Omega$
- $\mathbb{P}(C_1) = \frac{2}{5}$; $\mathbb{P}(C_2) = \frac{2}{5}$; $\mathbb{P}(C_3) = \frac{1}{5}$.

Exemplo

- Então qual quanto vale $\mathbb{P}(B)$?
- Pelo teorema da probabilidade total

$$\mathbb{P}(B) = \mathbb{P}(B|C_1) \mathbb{P}(C_1) + \mathbb{P}(B|C_2) \mathbb{P}(C_2) + \mathbb{P}(B|C_3) \mathbb{P}(C_3)
= \frac{1}{2} \times \frac{2}{5} + \frac{1}{3} \times \frac{2}{5} + 1 \times \frac{1}{5} = \frac{8}{15}$$

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

- Considere as condições do teorema da probabilidade total. Suponha que agora estamos interessados em avaliar a probabilidade de ocorrência de algum dos eventos B_k que formam a partição.
- Ou seja, será que podemos avaliar a probabilidade de algum B_k sabendo que o evento mais geral A ocorreu?
- Por exemplo, considerando a situação do Exemplo 4, qual a probabilidade da bola ter saído de uma urna do tipo C_3 dado que esta é branca.

<u>Teorema</u>

Seja B_1, B_2, \ldots, B_n uma partição do espaço amostral Ω e seja A uma evento qualquer de Ω . Então

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(B_j)\mathbb{P}(A|B_j)}{\sum_{k=1}^n \mathbb{P}(A|B_k)\mathbb{P}(B_k)} \quad \forall \quad j = 1, \dots, n.$$

Exemplos

- Considerando novamente o Exemplo 4, queremos obter a probabilidade da urna escolhida ter sido do tipo C_3 , dado que a bola sorteada é branca?
- Pelo teorema de Bayes temos que

$$\mathbb{P}(C_3|B) = \frac{\mathbb{P}(B|C_3)\mathbb{P}(C_3)}{\mathbb{P}(B)} = \frac{1 \times (1/5)}{(8/15)} = \frac{3}{8}$$

Exemplo 5

• Em um exame de múltipla escolha há três respostas para cada pergunta e apenas uma delas é correta. Portanto, para cada pergunta, um aluno tem probabilidade 1/3 de escolher a resposta certa se ele está adivinhando e 1 se sabe a resposta. Um estudante sabe 30% das respostas do exame. Se ele deu a resposta correta para uma das perguntas, qual a probabilidade de ter sido adivinhado?

Exemplo 6

- Um canal de comunicação binário envia um dentre dois tipos de sinais, denotados por 0 e 1. Devido ao ruído, um 0 transmitido é algumas vezes recebido como um 1 e um 1 transmitido é algumas vezes recebido como um 0. Para um dado canal, assuma uma probabilidade de 0,94 que um 0 transmitido seja corretamente recebido como 0 e uma probabilidade de 0,91 que um 1 transmitido seja corretamente recebido como um 1. Adicionalmente, assuma uma probabilidade de 0,45 de se transmitir um 0. Se um sinal é enviado, determine:
 - (a) A probabilidade de que um 1 seja recebido.
 - (b) A probabilidade de que um 0 seja recebido.
 - (c) A probabilidade de que um 1 foi transmitido, dado que um 1 foi recebido.
 - (d) A probabilidade de que um 0 foi transmitido, dado que um 0 foi recebido.
 - (e) A probabilidade de um erro.

Sumário

- Probabilidade condicional
 - Regra do produto de probabilidades
- 2 Teorema da probabilidade total e Teorema de Bayes
 - Teorema da probabilidade total
 - Teorema de Bayes
- 3 Independência de Eventos

Exemplo de motivação

- Considere novamente a situação do Exemplo 3. Ou seja uma urna contendo 2 bolas brancas (B) e 3 vermelhas (V). No entanto, suponha agora que as extrações foram feitas **com reposição**. Nesse caso, as retiradas são independentes, ou seja, a primeira retirada não influencia nas possibilidades de resultados da segunda retirada.
 - a primeira retirada tem as seguintes probabilidades: $\mathbb{P}(B) = \frac{2}{\epsilon} \in \mathbb{P}(V) = \frac{3}{\epsilon}$
 - a segunda retirada tem as seguintes probabilidades: $\mathbb{P}(B|B) = \frac{2}{5}, \mathbb{P}(B|V) = \frac{2}{5}, \mathbb{P}(V|B) = \frac{3}{5} \in \mathbb{P}(V|V) = \frac{3}{5}$

Exemplo de motivação

- Note que $\mathbb{P}(B|*) = \mathbb{P}(B)$ e $\mathbb{P}(V|*) = \mathbb{P}(V)$
- Portanto:

$$\begin{split} \mathbb{P}\left(BB\right) &= \mathbb{P}\left(B\right) \mathbb{P}\left(B|B\right) = \mathbb{P}\left(B\right) \mathbb{P}\left(B\right) = \frac{2}{5} \times \frac{2}{5} = \frac{4}{25} \\ \mathbb{P}\left(BV\right) &= \mathbb{P}\left(B\right) \mathbb{P}\left(V|B\right) = \mathbb{P}\left(B\right) \mathbb{P}\left(V\right) = \frac{2}{5} \times \frac{3}{5} = \frac{6}{25} \\ \mathbb{P}\left(VB\right) &= \mathbb{P}\left(V\right) \mathbb{P}\left(B|V\right) = \mathbb{P}\left(V\right) \mathbb{P}\left(B\right) = \frac{3}{5} \times \frac{2}{5} = \frac{9}{25} \\ \mathbb{P}\left(VV\right) &= \mathbb{P}\left(V\right) \mathbb{P}\left(V|V\right) = \mathbb{P}\left(V\right) \mathbb{P}\left(V\right) = \frac{3}{5} \times \frac{3}{5} = \frac{9}{25} \end{split}$$

Definição

Sejam A e B eventos de uma espaço amostral Ω e suponha que $\mathbb{P}(B) > 0$. O evento A é dito ser independente do evento B se:

$$\mathbb{P}(A|B) = \mathbb{P}(A).$$

• É fácil verificar que se A é independente de B então, B também é independente de A. Além disso, decorre da definição que

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B). \tag{1}$$

Dessa forma, os eventos A e B são independentes se, e somente se, (1) ocorre.

Eventos independentes *versus* Eventos mutuamente excludentes

- Sejam A e B eventos de um espaço amostral Ω tais que $\mathbb{P}(A)>0$ e $\mathbb{P}(B)>0$.
 - (a) Mostre que se A e B são independentes, então A e B não podem ser mutuamente excludentes.
 - (b) Mostre que se A e B são mutuamente excludentes, A e B não podem ser independentes.

Solução

- (a) Como A e B são independentes, temos que $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)>0$. Como $\mathbb{P}(A)>0$ e $\mathbb{P}(B)>0$ então, A e B não podem ser mutuamente excludentes.
- (b) Se A e B são mutuamente excludentes e $\mathbb{P}(A) > 0$ e $\mathbb{P}(B) > 0$, então $\mathbb{P}(A \cap B) = 0 \neq \mathbb{P}(A)\mathbb{P}(B)$. Logo, A e B não são independentes.

Em resumo:

- Eventos mutuamente excludentes possuem o maior grau de dependência: a ocorrência de um *impede* a ocorrência do outro.
- Em eventos *condicionados* a ocorrência de um altera a probabilidade de ocorrência do outro.
- Se os eventos são independentes a ocorrência de um não altera a probabilidade de ocorrência do outro.