Aula 16 - Integração Numérica Métodos de Newton-Cotes

Fabricio Murai

Anúncios importantes

- Prova 2
 - Notas no site do curso
 - O Vista de prova até 26/05
- Próxima prova em sala 25/05 (quinta)
 - Dissertativa/aberta
 - Pontos extra para quem terminar a prova em menos que X minutos

Aula passada

- Overfitting e regularização
- Equações normais
- Decomposição QR
 - Regressão Linear usando QR
 - Projeções vetoriais
- Quizz I I
- (Continuação)
 - Como obter matriz Q

Aula de hoje

- Continuação da decomposição QR
 - Como obter matriz Q
 - Como obter matriz R
 - Exemplo
- Quizz I2
- Integração Numérica
 - Regra do Trapézio
 - Regra do ⅓ de Simpson
 - Regra do Trapézio Composta

Decomposição QR

- Na regressão linear, as equações normais dão origem a um sistema do tipo
 Ab=y, onde A=(X'X) é simétrica e definida positiva
- Embora Cholesky seja aplicável, pode ser numericamente instável
- Decomposição QR é frequentemente usada como alternativa

Ideia: Decompor $A_{nxp} = Q_{nxp} R_{pxp}$, onde Q é uma matriz ortogonal e R é triangular superior, com elementos da diagonal não-nulos.

Teorema I: Toda matriz A_{nxp} (n≥p) possui uma fatorização QR.

Teorema 2: Toda matriz de posto p tem uma única fatorização QR reduzida com $r_{ii} > 0$.