```
In [312]:

1 import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Created a dataframe from the insurance.csv file

```
1 df = pd.read_csv("insurance.csv")
In [313]:
           2 df.head()
Out[313]:
                         bmi children smoker
             age
                   sex
                                              region
                                                       charges
              19 female 27.900
                              0 yes southwest 16884.92400
          0
          1 18 male 33.770
                                        no southeast 1725.55230
                  male 33.000
                                3 no southeast 4449.46200
          3 33 male 22.705
                                  0 no northwest 21984.47061
                                  0
          4 32
                  male 28.880
                                        no northwest 3866.85520
```

Data Analysis

- · Columns: Sex, Smoker and Region has object data-type which we have to convert into the categorical format to perform the linear regression.
- We can not perform the mathematical operation on object datatype, so we have to convert this data into the categorical format to get finite list of text values and then we have to perform onehot encoding on that finite list of values to understand the categorical data in form of binary vector.

```
In [314]: 1 df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 1338 entries, 0 to 1337
           Data columns (total 7 columns):
            # Column
                         Non-Null Count Dtype
                -----
            0
                age
                           1338 non-null
                                            int64
                           1338 non-null
                                            object
            1
                sex
                bmi
                           1338 non-null
                                            float64
                children 1338 non-null
                                            int64
                smoker
                           1338 non-null
                                            object
                region
                           1338 non-null
                                            object
                charges
                           1338 non-null
                                            float64
           dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB
           · Converting object data to categorical data
In [315]: 1 df['sex'] = df.sex.astype("category")
             df.smoker = df.smoker.astype("category")
df.region = df.region.astype("category")
           · Checking if is there any NA value in the dataset.
In [316]: 1 df.isnull().values.any()
Out[316]: False
In [317]: 1 df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 1338 entries, 0 to 1337
           Data columns (total 7 columns):
                           Non-Null Count Dtype
           0
                age
                           1338 non-null
                                            int64
                           1338 non-null
           1
                sex
                                            category
                bmi
                           1338 non-null
                                            float64
                children 1338 non-null
                                            int64
                smoker
                           1338 non-null
                                            category
                region
                           1338 non-null
                                            category
               charges
                          1338 non-null
                                            float64
           dtypes: category(3), float64(2), int64(2) memory usage: 46.3 KB
```

Extracting the features and the dependent column

Features are:

- 1. age
- 2. sex
- 3. bmi
- 4. children
- 5. smoker

Dependent value:

charges

```
In [319]:
           1 x = df.iloc[:,:6]
           2 Y = df.iloc[:,-1]
3 print(f"features:\n{x.head(10)}\n\n Charges:\n{Y.head(10)}")
           4 x.shape, Y.shape
          features:
                            bmi children smoker
                                                     region
             age
                     sex
                                             yes southwest
              19
                 female 27.900
                                        0
                    male
                          33.770
                                                  southeast
              28
                    male
                          33.000
                                                  southeast
          3
              33
                    male 22.705
                                        0
                                              no northwest
          4
                    male 28.880
                                              no northwest
              32
                                        0
              31 female 25.740
                                              no southeast
                                        0
                  female 33.440
                                              no southeast
              37 female 27.740
                                               no northwest
          8
              37
                    male 29.830
                                               no northeast
          9
              60 female 25.840
                                              no northwest
           Charges:
               16884.92400
                1725.55230
                4449.46200
               21984,47061
                3866.85520
          4
                3756.62160
                8240.58960
                7281.50560
                6406.41070
              28923.13692
          Name: charges, dtype: float64
Out[319]: ((1338, 6), (1338,))
```

Data Pre-processing

converting categorical data into the binary format with the help of pandas 'get_dummies' method. Here we used drop_first parameter to ensure there is no reference columns so that the remaining columns become linearly independent.

```
1 # help(pd.get_dummies)
            2 encoded_data = pd.get_dummies(x, columns = ['sex', 'smoker', 'region'], drop_first=True)
            3 X = encoded_data
           4 X.head()
Out[320]:
            age bmi children sex_male smoker_yes region_northwest region_southeast region_southwest
           0 19 27.900
                             0
                                      0
                                                               0
                                                                              0
           1 18 33.770
                                                 0
                                                                                             0
                                                                                             0
           2 28 33.000
                                                 0
                                                                                             0
           3 33 22.705
                                                                              0
```

Scaling the data

With use of MinMaxScaler reduce the the parameter value which can help us to calcute large dataset in shorter time, To reduce the time and calculation complexity here we have used scaler method

Spliting the data

Here we have split the data into train and test parts and use random state parameter to shuffle the data identically every time in order to get replicable result. we need to shuffle the data to cover all possible combination of feature values to train our dataset.

```
In [12]:
            1 x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.8, random_state=2)
             2 x_train
Out[12]:
                               bmi children sex_male smoker_yes region_northwest region_southeast region_southwest
                      age
            882 0.065217 0.166129
                                         0.0
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                 0.0
                                                                                                                   0.0
             505 0.413043 0.401264
                                         0.6
                                                   1.0
                                                               0.0
                                                                                 1.0
                                                                                                 0.0
                                                                                                                   0.0
             798 0.869565 0.461125
                                         0.0
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                 0.0
                                                                                                                   1.0
             792 0.086957 0.194243
                                         0.0
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                 0.0
                                                                                                                   0.0
            201 0.652174 0.437719
                                         0.2
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                  1.0
                                                                                                                   0.0
             466 0.913043 0.342750
                                         0.2
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                  0.0
                                                                                                                   1.0
             299 0.652174 0.347592
                                         0.2
                                                   0.0
                                                               0.0
                                                                                 1.0
                                                                                                 0.0
                                                                                                                   0.0
             493 0.934783 0.738230
                                         0.0
                                                   1.0
                                                               0.0
                                                                                0.0
                                                                                                  0.0
                                                                                                                   1.0
             527 0.717391 0.264730
                                         0.2
                                                   0.0
                                                               0.0
                                                                                0.0
                                                                                                  0.0
                                                                                                                   1.0
            1192 0.869565 0.442158
                                                   0.0
                                                                                0.0
                                         0.2
                                                               0.0
                                                                                                 0.0
                                                                                                                   0.0
```

Linear Regression

Preparing model and training our dataset on linear regression

```
model = LinearRegression()
 In [13]:
              2 model.fit(x_train, y_train)
 Out[13]: | LinearRegression
            LinearRegression()
            · Extracting the values of coefficcient and intercept
             model_coefficient = pd.DataFrame(model.coef_, X.columns, columns=['coefficient'])
 In [14]:
              2 model_coefficient
 Out[14]:
                                coefficient
                        age 11556.380547
                        bmi 12371.020279
                    children 2939.626551
                              -37.122401
                   sex_male
                  smoker_yes 23912.345230
             region_northwest -379.189963
             region_southeast -784.484360
             region_southwest -947.238184
 In [15]: 1 model.intercept
 Out[15]: -1925.3412066326182
           train_score = model.score(x_train,y_train)
print(f'train score is: {train_score*100:.2f}%')
In [56]:
          train score is: 75.20%
```

R2 Score is used to evaluate the performance of our linear regression model.

```
In [57]: 1 y_predict = model.predict(x_test)
2 print(f"R2 Score: {r2_score(y_test, y_predict)*100:.2f}%")
```

R2 Score: 74.49%

Difference between the actual and predicted values

	age	bmi	children	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest	actual_charges	predicted_charges	difference
17	0.108696	0.212133	0.0	1.0	0.0	0.0	0.0	0.0	2395.17155	1917.971813	477.199737
1091	0.804348	0.373150	0.0	0.0	0.0	0.0	0.0	0.0	11286.53870	11986.259407	-699.720707
273	0.695652	0.309255	0.2	1.0	0.0	0.0	0.0	0.0	9617.66245	10490.480050	-872.817600
270	0.000000	0.360775	0.2	1.0	0.0	0.0	1.0	0.0	1719.43630	2304.129938	-584.693638
874	0.565217	0.158461	0.6	1.0	0.0	0.0	0.0	0.0	8891.13950	8293.505374	597.634126
790	0.456522	0.695184	0.0	0.0	0.0	0.0	1.0	0.0	5662.22500	11166.052308	-5503.827308
957	0.130435	0.291364	0.2	1.0	0.0	1.0	0.0	0.0	12609.88702	3358.095716	9251.791304
492	0.000000	0.245359	0.0	0.0	0.0	0.0	0.0	0.0	2196.47320	1110.001945	1086.471255
1125	0.978261	0.245359	0.0	0.0	0.0	1.0	0.0	0.0	14254.60820	12035.966865	2218.641335
794	0.456522	0.429379	0.4	0.0	0.0	1.0	0.0	0.0	7209.49180	9458.908911	-2249.417111
575	0.869565	0.301587	0.0	0.0	0.0	1.0	0.0	0.0	12222.89830	11475.438016	747.460284
571	0.000000	0.573850	0.2	0.0	0.0	0.0	1.0	0.0	2219.44510	4977.208233	-2757.7631
235	0.478261	0.168415	0.4	0.0	1.0	0.0	1.0	0.0	19444.26580	29988.805083	-10544.5392
940	0.000000	0.195050	0.0	1.0	0.0	0.0	1.0	0.0	1121.87390	-333.983291	1455.8571
658	0.652174	0.536723	0.2	0.0	0.0	0.0	0.0	0.0	26392.26029	12839.167170	13553.0931
532	0.891304	0.369653	0.4	1.0	0.0	0.0	1.0	0.0	12925.88600	13302.138970	-376.2529
101	0.260870	0.255582	0.0	1.0	0.0	0.0	0.0	0.0	3645.08940	4214.060144	-568.9707
1190	0.282609	0.452381	0.4	0.0	0.0	1.0	0.0	0.0	5327.40025	7733.667019	-2406.2667
142	0.347826	0.251278	0.4	1.0	1.0	0.0	1.0	0.0	18972.49500	29469.422657	-10496.9276
471	0.000000	0.380818	0.0	0.0	0.0	0.0	0.0	0.0	2203.47185	2785.764310	-582.2924

P-value and F-Statistic

P-value for sex_male and region_northeast is too high. It means that deviation from the null hypothesis is not statistically significant, and the null hypothesis is not rejected., While other columns has p-value less than 0.05 and it is typically considered to be statistically significant, in which case the null hypothesis should be rejected.

For southeast and southwest, p-value is near to the 0.05 but less than that so we can consider it as statistically significant.

- F-statistic can be used to understand if the given set of predictor variables are significant in explaining the variance of the dependent variable.
- T-test will tell us if a single variable is statistically significant and an F test will tell us if a group of variables are jointly significant.

Prob(F-statistic): 0.00 means group of features are together rejects the null hypothesis.

```
In [60]: 1    import statsmodels.api as sm
2    x_sm = sm.add_constant(X)
3    sm_model = sm.OLS(endog=Y,exog=x_sm).fit()
4    sm_predictions = sm_model.predict(x_sm)
5    print(f"prediction: {r2_score(Y, sm_predictions)}")
6    sm_model.summary()
```

prediction: 0.7509130345985207

Out[60]:

OLS Regression Results

g							
Dep. Variable:	cha	arges	R-squ	ared:	0.751		
Model:		OLS A	dj. R-squ	ared:	0.749		
Method:	Least Sq	uares	F-stat	tistic:	500.8		
Date:	Thu, 08 Sep	2022 Pro	b (F-stati	istic):	0.00		
Time:	18:	34:02 L o	og-Likelil	nood:	-13548.		
No. Observations:		1338		AIC:	2.711e+04		
Df Residuals:		1329		BIC:	2.716e+04		
Df Model:		8					
Covariance Type:	nonr	obust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-1901.5967	586.973	-3.240	0.001	-3053.091	-750.103	
age	1.182e+04	547.347	21.587	0.000	1.07e+04	1.29e+04	
bmi	1.261e+04	1063.042	11.860	0.000	1.05e+04	1.47e+04	
children	2377.5027	689.020	3.451	0.001	1025.816	3729.189	
sex_male	-131.3144	332.945	-0.394	0.693	-784.470	521.842	
smoker_yes	2.385e+04	413.153	57.723	0.000	2.3e+04	2.47e+04	
region_northwest	-352.9639	476.276	-0.741	0.459	-1287.298	581.370	
region_southeast	-1035.0220	478.692	-2.162	0.031	-1974.097	-95.947	
region_southwest	-960.0510	477.933	-2.009	0.045	-1897.636	-22.466	
• "		11. 18/		0.000			
Prob(Omnibus):	0.000 Jarq	ue-Bera (J	-Bera (JB): 718.887				
Skew:	Skew: 1.211 Prob(JB): 7.86e-157						
Kurtosis:	5.651	Cond. I	No.	9.59			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Experiment

Let's Check the F-statistcs with out dropping the first column of our categorical data.

Here, we can observe that 'sex_female, sex_male' and 'region_southwest, region_southeast, region_northwest, region_northwest, region_northwest have higher p-values which means these are linearly dependent and together these column won't add any value to our dataset for that reason we have used the drop_first parameter in our original code.

Out[61]:

	age	bmi	children	sex_female	sex_male	smoker_no	smoker_yes	region_northeast	region_northwest	region_southeast	region_southwest
C	19	27.900	0	1	0	0	1	0	0	0	1
1	18	33.770	1	0	1	1	0	. 0	0	1	0
2	28	33.000	3	0	1	1	0	0	0	1	0
3	33	22.705	0	0	1	1	0	0	1	0	0
4	32	28.880	0	0	1	1	0	0	1	0	0

```
In [62]:
                1 import statsmodels.api as sm
                2 x_sm = sm.add_constant(X)
3 sm_model = sm.OLS(endog=Y,exog=x_sm).fit()
                4 sm_predictions = sm_model.predict(x_sm)
5 print(f"prediction: {r2_score(Y, sm_predictions)}")
6 sm_model.summary()
```

prediction: 0.7509130345985207

Out[62]: OLS Regression Results

Dep. Variable:	charges	R-squared:	0.751
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	500.8
Date:	Thu, 08 Sep 2022	Prob (F-statistic):	0.00
Time:	18:34:02	Log-Likelihood:	-13548.
No. Observations:	1338	AIC:	2.711e+04
Df Residuals:	1329	BIC:	2.716e+04
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-296.4168	430.507	-0.689	0.491	-1140.964	548.130
age	256.8564	11.899	21.587	0.000	233.514	280.199
bmi	339.1935	28.599	11.860	0.000	283.088	395.298
children	475.5005	137.804	3.451	0.001	205.163	745.838
sex_female	-82.5512	269.226	-0.307	0.759	-610.706	445.604
sex_male	-213.8656	274.976	-0.778	0.437	-753.299	325.568
smoker_no	-1.207e+04	282.338	-42.759	0.000	-1.26e+04	-1.15e+04
smoker_yes	1.178e+04	313.530	37.560	0.000	1.12e+04	1.24e+04
region_northeast	512.9050	300.348	1.708	0.088	-76.303	1102.113
region_northwest	159.9411	301.334	0.531	0.596	-431.201	751.083
region_southeast	-522.1170	330.759	-1.579	0.115	-1170.983	126.749
region_southwest	-447.1459	310.933	-1.438	0.151	-1057.119	162.827

2.088	Durbin-Watson:	300.366	Omnibus:
718.887	Jarque-Bera (JB):	0.000	Prob(Omnibus):
7.86e-157	Prob(JB):	1.211	Skew:
4.55e+17	Cond. No.	5.651	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.7e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.