LaPIS Diagnostic Test Workbook - Mathematics

Name : Yogarajan N

Class: 7

Section : C

School : AKV Public School

Login ID : AKV185

Yogarajan N's Performance Report

Score: 13/40 Percentage: 32.5%

Yogarajan N's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Mensuration

Topics to be Improved					
Perimeter Perimeter of triangle					
Area of rectangle					

Hi, here in this video you will learn **Perimeter**

Question: 1

Highlight the perimeter in the given image.

A	ne	211	01	n.
\mathbf{H}	เมอ	TU)	e:	

Perimeter is the _____ (outer / inner) boundary of the shape

 $\underline{Question:\ 2}$

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 3 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = ______, and breadth = ______. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 4 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Question: 5 Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth. Answer:

The garden is in shape. Length of garden is and breadth of garden garden area of the shape = The area of garden = x =	
Question: 6 Shade the possible dimension of the door whos	se area is $500 \ m^2$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boxed{25 \ m \ \times \ 20 \ m}$

$\underline{Answer:}$

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

	Topics to be Improved
Arithmetic mean, mode and median	Mean, Median and Mode
Chance of probability	Basis of probability

Hi, here in this video you will learn Mean, Median, Mode

Question: 7

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 8

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is _____ and it is the ____ of a data.

$\underline{Question : \ 9}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean =
Arrange the data in ascending order : Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
<u>Question: 11</u>
Probability of sure events is (greater / smaller) than probability of impossible events.
$\underline{Answer:}$
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved							
Related angles	Complementary angles, Basic of angles						
Types of triangle	Basics of types of triangle (sides)						
Criteria for congruence of triangles Idenfication of criteria of congruence of triangles							
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle						
Faces vertex and edges	Idenfication of faces, edges and vertices						
Transversal angle made by transversal	Basics of Transversal angle						
Right angle triangle and pythagoras property	Basics of Pythagoras property						
Angle sum property of triangle	Angle sum property of triangle						

.....

.....

Hi.	here i	n this	video	VO11	will	learn	Related	Angles
T T T 9	110101	1110	viaco	you	* * * * * * * * * * * * * * * * * * * *	100111	icciaca	7115100

Qu	estion:	13
ωu	estion:	IJ

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 14

Shade the complementary angles.

85°, 95°	45°, 45°	6°, 84°	73°, 107°	36°, 64°	90°, 90°

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ} + 95^{\circ} =$ and this is ______ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is ______ angles. $6^{\circ} + 84^{\circ} =$ and this is ______ angles. $73^{\circ} + 107^{\circ} =$ and this is ______ angles. $36^{\circ} + 64^{\circ} =$ and this is ______ angles. $90^{\circ} + 90^{\circ} =$ ______ and this is ______ angles.

Question:~15	

Find the complement and supplement of 15° and 90°

Answer:

One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

......

Hi, here in this video you will learn **Types of triangle**

Polygon with three sides is called as _____.

Answer:

Question: 16

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called _____.

Draw a diagram of polygon with three sides :

Question:	17

Identify the types of triangles.

.....

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 18

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____.

 Hi , here in this video you will learn $\operatorname{\mathbf{Criteria}}$ of $\operatorname{\mathbf{congruence}}$

Question: 19

Circle the groups that contain congruent images.

.....

Answer:

Two geometrical shapes are said to be congruent if they are ______(identical/non-identical) in shapes and size.

Example: Square and Rectangle are ______ (congruent/not congruent).

$\underline{\textit{Question: 20}}$			
		ngle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the other triangle are equal to the corresponding sides of the	ngle, then two
Answer:			
		(congruent/not congruent) if they are identical in shiangles are SSS, and	apes and size.
		teria - $(2/3/5)$ sides of the triangle aree corresponding sides of the other triangle.	(equal/
		teria - $(2/3/5)$ sides and (one/two) corresponding sides and the included angle of the other transfer.	
		iteria $(2/3/5)$ angles and (one/twal to the corresponding angles and the included side of the	
	SSS	sides and angles are equal	
	SAS	sides and angles are equal	
	ASA	sides and angles are equal	
Question: 21 The triangles LNN		Q are congruent by SAS criteria. Then find the side PR $\frac{L}{55^0}$ $\frac{L}{8 \text{cm}}$ $\frac{L}{N}$ $\frac{F}{Q}$ $\frac{1}{8 \text{cm}}$ R	,
$\underline{Answer:}$			
By SAS congruence The side MN=8 c The common inclu	ce criteria, m in ΔLN uded angle ual to the s	sfy criteria of congruence. $MN = $, and $\angle N = $ M is equal to the side in $\triangle PRQ$ in \triangle LNM and $\triangle PRQ$ are side in $\triangle LNM$.	
Hi, here in thi	s video y	you will learn Related Angles	
Question: 22			

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a $_$ angle .

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

Question: 23

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Find the complementary angles in the given diagram.

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ _____, and its complement angle is _____.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

.....

......

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is _____.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

 Hi , here in this video you will learn $\operatorname{\bf Basics}$ of $\operatorname{\bf 3D}$ $\operatorname{\bf model}$

Question: 28

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

_____ has two end point (line/line segment/ray).

A ______ is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 29	
-	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and	faces in a	cube.	
Cube have	. vertices,	ed	$lges and _{-}$		faces.

Question: 30

How many vertices, edges and faces does dices have?

Answer:
The shape of dice is
Dices have vertices, edges and faces.
Hi, here in this video you will learn Basics of Transversal angle
<u>Question: 31</u>
In given diagram, \angle 1 and \angle 7 are
Answer: A line that intersects two or more lines at distinct points is called a (transversal/Intersecting line).
Angle that lies on different vertices and on the opposite sides of transversal is angles.
Angle that lies on different vertices and on the same sides of transversal is angles Therefore, $\angle 1$ and $\angle 7$ are
Question: 32
Find the transversal, alternate angles and corresponding angles in a given diagram.

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g , \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 33

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Pythagoras property

Question: 34

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is ______ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____

Question: 35

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 36

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = ____

......

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Angle sum property

Question: 37

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 38

Which of the following triangle satisfy the angle sum property.

$\underline{Answer:}$

Angle sum property of triangle: sum of the angles of a triangle is ______ = _____ = _____

In $\triangle PQR$, Sum of the angles =	=	=	
In $\triangle KLM$, Sum of the angles =	. =	. =	_
In $\triangle XYZ$, Sum of the angles =	=	=	
Therefore, the triangles that satisfy the angle sur	n property are $=$ $_{-}$		
Question: 39			
Find the angles of triangle, if their angles are in	the ratio 8:6:4.		
Answer:			
Ratio of angles in the triangle is			
Let's consider the angles of triangle be $8x$, a	nd		
We know sum of the angles of a triangle is			
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of	$x = \underline{\hspace{1cm}}$		
The angles of the triangle are			

Number system

Topics to be Improved		
Introduction to rational numbers	Basics of rational numbers	
Decimals	Multiplication and division of decimals	
Law of Exponents	Law of Exponents	
Fractions	Multiplication of fractions, Division of fraction	
Properties of integers	Associative property	
Exponents	Solving exponents	
Operations on rational numbers	Division of rational numbers	

Hi, here in this video you will learn Basics of rational numbers

Question: 40

The numbers in the diagram represents_

Answer:

The combination of these circles are called _____

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as numbers.
Question: 41
Shade the correct form of rational numbers.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Rational number can be expressed as, where both numerator and denominator are
(integer/ not a integer), denominator is equal to (zero/ one/ any integer other than zero).
Question: 42
Circle the number which is not a rational number. $\frac{-5}{-8} \frac{-3}{2} \frac{12}{-6} \frac{0}{-9} 256 \frac{4}{0}$
Answer:
Rational number can be expressed as, where both numerator and denominator are(integer/ not a integer), denominator is equal to (zero/ one/ any integer
other than zero).
Here, is/are rational number and is/are not a rational number.
Hi, here in this video you will learn Basics of decimals
Question: 43
Shade 0.4 part of the given shape.
Answer: There are boxes.
0.4 can be expressed as in fraction
This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 44
Solve the following.
(i) 0.4×1.2
(1) (11 / 112

(ii) 0.48×1.2

$\underline{Answer:}$

(·) (
(/	0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is
	The number of digits after decimal point in 0.4 is and 1.2 is
	Total digits after decimal point in the product of two numbers is
(Count that digits from the right towards left and place the decimal point, the result is
-	 .
\ /	0.48×1.2 :
	Multiplication of 0.48×1.2 assuming there is no decimal point is
	The number of digits after decimal point in 0.48 is and 1.2 is Fotal digits after decimal point in the product of two numbers is
	Count that digits from the right towards left and place the decimal point, the result is
-	
Ques	tion: 45
One b	ox of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 ates?
Answ	pr•
	ox contains chocolates. The cost of one box is cost of one chocolate = ÷ =
(i) '	Total digits after decimal point in decimal number =
(ii)]	Divide the two numbers assuming there is no decimal point.
	2010
	$\frac{15}{15} = $
` /	Place the decimal point after digits counting from the right in the quotient after division.
Then	the cost of one chocolate is
	ost of 15 chocolates = cost of one chocolate × = x =
Hi, l	nere in this video you will learn Law of exponents
Ques	tion: 46
	equal to
Answ	•
a	

_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In $(x)^0$ base = _____ $Power = \underline{\hspace{1cm}}$ Any number or variable with power zero is equal to _____ Therefore, $(x)^0$ equal to ______. Question: 47 i. $a^m \times a^n = _{---}$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$ Answer: Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted) Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted). Question: 48 Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$ a+n+x bmy 1 ab+mn+xy 0 anx b+m+yAnswer: Any number with power zero is equal to_____(One/Zero). Any number with power one is equal to ______ (same/ different) number. $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$ = ____+ ____+ _____ Hi, here in this video you will learn Multiplication on fractions

Question: 49

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

.....

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2}=\frac{2}{1}+\frac{4}{\square}+\dots=\frac{2}{1}+\frac{4}{\square}+\frac{3}{\square}=\frac{\square}{\square}=9$$

Question: 50

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

......

Answer:

Total number of students = $_$

Fraction of students who are girls = ____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 51

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is _____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \bot$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Properties of integers

Question: 52

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

$\underline{Answer:}$

(i)	The sum of integers is alw Therefore, +	=	_	,	,	
	From the given option	S	atisfies th	e closure proper	ty.	
(ii)	Associative property: Rearranging the parenther Therefore, $(a + b) + c =$ From the given option		 ·			ge the sum.
(iii)	Commutative property: Changing the order of the Therefore, $a + b = $ From the given option	+	`	, ,		
(iv)	Identity property: The su Therefore, a + = From the given option	a	, and the second	•		umber.
	stion: 53		coperty ho	lds true for any Multiplication		
			.1	T		
\underline{Ans}	<u>wer:</u>					
	ommutative property, chang (does not/ does	_		(order/ bracket	s) of the opera	ands
For a	commutative property for a	ive property haddition is	olds true	.		
\overline{Que}	stion: 54					
Are a	additive identity and multip	plicative identi	ity the sar	ne? (Yes or No)		
Ans	wer:					
The !	tity property holds only for Identity property for additi Identity property for multi	ion is	ar	nd additive iden		
Ther	refore, additive identity is $_{-}$	(equal	/ not equ	ual) to multiplic	ative identity.	
Hi,	here in this video you	will learn I	Expone	nts and pow	/er	

<u>Question: 55</u>
Find the exponential form of 1000.
$\underline{Answer:}$
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 56
Find the value of $(-2)^3$.
$\underline{Answer:}$
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 57
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.
$\underline{Answer:}$
Exponential form = $(Base)$ —
(i) Tenth power of 100 : Base = $__$, Power/Exponents = $__$, exponential form = $__$.
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =
Hi, here in this video you will learn Division on fractions
Question: 58 Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 59

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{ } = \boxed{ }$$

.....

......

Question: 60

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 61

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 62

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 63

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Comparing Quantities

	Topics to be Improved						
Profit and loss	Prediction of loss and profit						
Equivalent ratios	Basic of proportion						
Conversion of fraction into percentage	Conversion of fraction into percentage						

into percentage	Conversion of fraction into percentage	
Hi, here in this video you	will learn Profit and Loss	
Question: 64		
Anu bought a book for ₹100 and price of a book is	ad sold it for $\ref{150}$. Here, cost price of a book is	and selling
Answer:		
sold is called price.	r purchase a goods is price and the price at =, selling price of a book =	which goods are
Question: 65		
You bought a bat for ₹50 to pla profit or loss for you?	ay cricket. After one week, you sold that bat for ₹1.	50. Is that a
Answer:		
- · · · · · · · · · · · · · · · · · · ·		
Question: 66		
Janu bought a smart phone for Rs.2500 . Find the selling price	Rs.19,499 and after one week she sold her phone a of the phone.	t a loss of
Answer:		
Cost price of a smart phone =	, loss =	

Hi, here in this video you will learn Basics of proportion

Therefore, selling price = $_$

Question: 67						
If a:b and c:d are equivalent ratio, then it can	be expressed	d as				
Answer:						
A (proportion / ratio) is used to expr Standard form to express proportion is		(one/1	two) e	quival	ent rati	os.
Question: 68						
Find the ratio of shaded part to unshaded par	rt of A and E	3. Are	the tw	o rati	os equiv	valent?
-						
A						
			В			
Answer:						
Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of Ratio of shaded to unshaded parts of A is $\underline{\hspace{1cm}}$ Shaded part of $B = \underline{\hspace{1cm}}$, Unshaded part of $B = \underline{\hspace{1cm}}$. Ratio of shaded to unshaded parts of B is $\underline{\hspace{1cm}}$ Fractional form $= \underline{\hspace{1cm}}$. Fraction form of A $\underline{\hspace{1cm}}$ (equal/ not equal	Fractio	onal fo			<u> </u>	
Question: 69						
If a: b:: c: d is proportion, shade the correct $a = \frac{bc}{d}$ $c = \frac{ad}{b}$ $ad=cd$	et expression					
Answer:						
Two equivalent ratio which are proportion, it of $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (in fraction).						
First and fourth term are called and s In proportion, product of extreme terms is terms. Therefore, $a \times d = $, then $a = $ and $c = $						
Hi, here in this video you will learn percentage	Converti	ing f	racti	on i	nto	

$\underline{Question: 70}$
Complete the box in the given equation.
$5\% = \frac{5}{\Box}$
Answer:
Percentage are the fraction with the denominator
Therefore, 5% can be expressed as
Question: 71
Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$
Answer:
To convert fraction into percentage, the value of (denominator / numerator)should be 100 or (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is
Question: 72
Find the percentage of shaded part of square.
Answer:
The square shape is divided into parts. Number of shaded part of square is
Shaded part of square in fraction is
To Convert into percentage , x 100

Algebra

Topics to be Improved						
Basics of simple equation	Solving of simple equation					
Terms of an expression Identification of terms in an expression						
Addition and subtraction of algebraic expressions	Like terms and Unlike terms					

Hi,	here in	n this	video	you	will	learn	Solving	an	equation
,				J			O		1

Question: 73	

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____. Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.

Question: 74

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

 $7 \square + 3 = -4$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

7× ____+3 = ____

 $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$

 $7 \times$ ____+3 = ____ $7 \times$ ____+3 = ____

Therefore, ______ is the number that can be placed in a box to make the equation correct.

Question: 75

Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$

Answer:

The given expression are ______

The value of x is _____. substituting value of x

$$2x = 2 \times \underline{\qquad} = \underline{\qquad} \qquad 2x - 4 = 2 \times \underline{\qquad}$$

$$x + 3 = \underline{\qquad} = \underline{\qquad} \qquad \frac{1}{2}x$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Terms of an expression

Question: 76

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

.....

......

Question: 77

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

Question: 78

Shade the outline of circle that contains the term of the given expression.

$6m^2$	_	7mn	+	nl
OIII		111010	- 1	100

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

Here, _____, ____ are the terms of the given expression.

Hi, here in this video you will learn **Addition on expression**

Question: 79

Shade the like terms.

Answer:

Given terms are _____

Two or more term have $___$ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 80

Complete the expression $7r^2 + r \square - 2 \square = \underline{\qquad} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (7 + \underline{ } - 2)_{r^2} = \underline{ }$$

......

Question: 81

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram : ______

$\underline{Answer:}$

	Chocolates	Icecream
Sam		
Ram		

(i)	Total chocolates Ram and Sam have :	
	Ram's chocolate + Sam's chocolates = + :	=

(ii)	How many	icecreams San	n have more	e than Ram:			
		icecr	eam -	icecream =	_	=	