CprE 381 HW1 Sean Gordon

1. ISAs

a. -----

i. CISC

ii. RISC

iii. RISC

iv. RISC

v. dCISC

vi. RISC

b. -----Where would we find this information?--

i. Micro

ii. ISA

iii. ISA

iv. ISA

v. ISA, ABI

vi. ISA

vii. ISA

viii. Micro

ix. Micro

x. Micro, ABI

xi. ISA

xii. Micro, ABI

2. MIPS

a. SGI Indigo, using MIPS R3000

Sony PlayStation, also using MIPS R3000

NEC Cenju-4, using MIPS R10000

Tesla Model S, using MIPS I-class CPU

b. Mips, due to its three operand instructions, has many alternatives to $\ensuremath{\mathsf{mov}}$

Li \$1, \$2

Add \$1, \$2, \$0

Sub \$1, \$2, \$0

c. This program uses xors to swap the values in the two registers

CprE 381 HW1 Sean Gordon

```
d.
# Start program
addi $s0, $zero, 0
                        # s0 is a
 addi $s1, $zero, 3
                        # s1 is b
                        # s2 is c
 addi $s2, $zero, 4
 addi $s3, $zero, 9
                        # s3 is d
sll $t0, $s1, 1
                        #Shift b left by 1 bits, effectively multiplying it by 2
srl $t1, $s2, 2
                        #Shift c right by 2 bits, effectively dividing it by 4
 and $t2, $s3, 7
                        #And last three bits of d, effectively modding it by 8
#Add all parts together
add $s0, $t0, $t1
add $s0, $s0, $t2
 addi $a0, $s0, 0
                        #Load a into reg $a0 to be printed
li $v0, 1
                        #Set next syscall to print
syscall
# Exit program
li $v0, 10
                        #Set next syscall to exit
 syscall
```

3. MARS

- a. Mars simulates the ISA and the microarchitecture
- b. With specified inputs, returned output

i. 5, 6, 7, 8: 26ii. 5, 6, 7, 9: 27iii. 4, 6, 7, 8: 25

This program adds together all inputs and outputs the result.