Formális Nyelvek - 1.

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

A kurzus célja, hogy megismerkedjünk a **formális nyelvek és automaták elméletének**, a **számítástudomány egyik tradícionális ágának** alapjaival.

Irodalom:

- 1. Csima Judit és Friedl Katalin: Nyelvek és automaták, BMGE jegyzet, 2013. (weben elérhető)
- 2. Révész György, Bevezetés a formális nyelvek elméletébe, Tankönyvkiadó, 1977.
- 3. Fülöp Zoltán, Formális nyelvek és szintaktikus elemzésük, Polygon, Szeged, 2004.
- 4. Bach Iván: Formális nyelvek, Typotex, 2001.

Irodalom:

1. György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983.

További irodalom:

- 2. A. Salomaa, Formal Languages, Acedemic Press, 1973.
- 3. K. Krithivasan, Rama, R., Introduction to Formal Languages, Automata Theory and Computation, Pearson, 2009.
- 4. J. E. Hopcroft, Rajeev Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Second Edition. Addison-Wesley, 2001.
- 5. M. Sipser: Introduction to the Theory of Computation, 2nd edition, Thomson Course Technology, 2006.

Tudnivalók

Az előadások alapjául az irodalomjegyzék magyar- és angol nyelvű elemei szolgálnak. Az táblaképek (a diák) segítik a felkészülést és kizárólag tanulási célokra használhatók.

A diák szerzői jogvédelem alatt állnak, mind részben, mind egészben kizárólag az előadó (Csuhaj Varjú Erzsébet) honlapján tehetők publikussá!!!

A kurzus vizsgával zárul, a vizsga során az előadásokon elhangzott anyagot kérem számon. Vizsgázni csak legalább elégséges gyakorlati jegy birtokában lehet. A vizsga előtt három héttel részletes információt adok a számonkérés alapjául szolgáló anyagról és a számonkérés módjáról.

Az előadások látogatása nem kötelező, de erősen ajánlott. A gyakorlatok látogatása kötelező, a lehetséges hiányzások számát a gyakorlatvezetők ismertetni fogják a gyakorlatokon. A gyakorlati jegy megszerzésének feltételeit is a gyakorlatvezetők fogják meghatározni és ismertetni.

Az előadásvázlatokat (a diákat) .pdf file formájában az előadások után felteszem a Neptun-meet-street-be.

Minden kedden 10-12 óra között fogadóórám van a Déli tömb 2.511-es hivatali szobámban, ahol az érdeklődőket szeretettel várom.

Ha bármilyen kérdésük van a tantárggyal kapcsolatban, keressenek meg emailben (csuhaj@inf.elte.hu) vagy a fogadóórán.

Jó tanulást kívánok!

Budapest, 2016. február

Csuhaj Varjú Erzsébet

tanszékvezető egyetemi tanár

A kurzus tartalmának rövid leírása

- 1. Bevezetés, a formális nyelv fogalma: alapvető fogalmak és jelölések,szavak, nyelvek, grammatikák, a grammatikák Chomsky-féle hierarchiája.
- 2. **Műveletek nyelveken:** definíciók, Chomsky-féle nyelvosztályok bizonyos zártsági tulajdonságai.
- 3. Környezetfüggetlen grammatikák és nyelvek: redukált grammatikák, normálformák, levezetési fa. Reguláris grammatikák, reguláris nyelvek, reguláris kifejezések. A generált nyelvek és nyelvosztályok bizonyos fontos tulajdonságai.
- 4. **Környezetfüggő- és mondatszerkezetű grammatikák:** hossz-nemcsökkentő grammatikák, normálformák. A generált nyelvek és nyelvosztályok tulajdonságai. Nyelvosztályok Chomsky-féle hierarchiája.

A kurzus tartalmának rövid leírása - folytatás

- 1. **Automaták és nyelvek:** véges automaták, veremautomaták. Az automaták tulajdonságai, a felismert nyelvosztályok, az automaták és a grammatikák kapcsolatai.
- 2. Lineárisan korlátozott automata, Turing gép.
- 3. **Szintaktikai elemzés:** kapcsolat szintaxis és szemantika között; LL(k) és LR(k) grammatikák.

A formális nyelvek és automaták elmélete - a gyökerek

A nyelv **grammatikájának** fogalma már kb. időszámításunk előtt az IV. században felmerült Indiában (Panini).

Fontosabb lépések:

- Axel Thue, Emil Post, matematika, a XX. század eleje.
- W. Mc Culloch, W. Pitts, 1943, az idegrendszer modellje a véges állapotú gép;
 - S.C. Kleene, 1956, neurális háló a véges automata.
- Noam Chomsky, 1959, matematikai model, az angol nyelv grammatikájának matematikai modellje.
- Programnyelvek, ALGOL 60, 1960

Mivel foglalkozik a formális nyelvek és automaták elmélete?

A formális nyelvek elmélete szimbólumsorozatok halmazaival foglalkozik.

Célja - többek között - véges, tömör leírását adni az ilyen halmazoknak.

Az elmélet módszereket ad formális nyelvek definiálására, a formális elemek nyelvhez való tartozásának eldöntésére, a nyelvi elemek struktúrájának felismerésére és leírására.

A szimbólum fogalmát alapfogalomnak tekintjük, ezért nem definiáljuk.

Milyen tudományágakhoz kapcsolódnak a formális nyelvek és automaták?

- A természetes nyelvek gépi feldolgozása, matematikai modellezése, matematikai nyelvészet,
- programozási nyelvek, fordítóprogramok elmélete,
- kódelmélet,
- képfeldolgozás,

Alapfogalmak és jelölések - I

Szimbólumok véges nemüres halmazát ábécének nevezzük.

Példa:
$$V = \{a, b, c\}$$

Egy V ábécé elemeiből képzett véges sorozatokat V feletti **szavak-nak** vagy **sztringeknek**- más szóval füzéreknek- mondunk. A 0 hosszúságú sorozatot **üres szónak** nevezzük és ε -nal jelöljük.

Példa: Legyen az ábécé $V = \{a, b, c\}$ és akkor aaabbbccc egy szó.

A V ábécé feletti szavak halmazát (beleértve az üres szót is) V^* -gal, a nemüres szavak halmazát V^+ -szal jelöljük.

Alapfogalmak és jelölések - II

Legyen V egy ábécé és legyenek u, v V feletti szavak (azaz, legyen $u, v \in V^*$). Az uv szót az u és v szavak **konkatenáltjának** vagy más szóval összefűzésének nevezzük.

Példa: Legyen az ábécé $V=\{a,b,c\}$, legyenek u=abb és v=cbb szavak. Akkor uv=abbcbb az u és v konkatenáltja.

Megjegyzés: A konkatenáció mint művelet asszociatív, de általában nem kommutatív.

Példa: Legyen u = ab, v = ba, akkor uv = abba és vu = baab.

Alapfogalmak és jelölések - II - folytatás

Legyen V egy ábécé. Megállapíthatjuk, hogy V^* **zárt a konkatenáció műveletére nézve** (azaz, bármely $u,v\in V^*$ esetén $uv\in V^*$ teljesül), továbbá a **konkatenáció egységelemes művelet**, ahol az egységelem ε (azaz, bármely $u\in V^*$ esetén $u\varepsilon\in V^*$ és $\varepsilon u\in V^*$).

Alapfogalmak és jelölések - III

Legyen i nemnegatív egész szám és legyen w a V ábécé feletti szó $(w \in V^*)$.

A w szó i-edik hatványa alatt a w szó i példányának konkatenálját értjük és w^i -vel jelöljük.

Példa: Legyen az ábécé $V=\{a,b,c\}$, és legyen w=abc. Akkor $w^3=abcabcabc$.

Konvenció alapján minden $w \in V^*$ szóra $w^0 = \varepsilon$.

Alapfogalmak és jelölések - IV

Legyen V egy ábécé és legyen w egy V feletti szó (azaz, legyen $w \in V^*$).

A w szó hosszán a w szót alkotó szimbólumok számát értjük (azaz, w mint sorozat hosszát) és |w|-vel jelöljük.

Példa: Legyen az ábécé $V = \{a, b, c\}$ és legyen w = abcccc. Akkor w hossza 6.

Az üres szó hossza - nyilvánvalóan - 0, azaz $|\varepsilon| = 0$.

Alapfogalmak és jelölések - V

Egy V ábécé feletti két u és v szót azonosnak nevezünk, ha mint szimbólumsorozatok egyenlőek (azaz, mint sorozatok elemről-elemre megegyeznek.)

Legyen V ábécé és legyenek u és v szavak V felett. Az u szót a v szó **részszavának** nevezzük, ha v=xuy teljesül valamely x és y V feletti szavakra.

Az u szót a v szó **valódi részszavának** mondjuk, ha $u \neq v$ és $u \neq \varepsilon$.

Példa: Legyen $V=\{a,b,c\}$ ábécé és legyen v=aabbbcc szó. Az u=abbbc szó valódi részszava v-nek.

Alapfogalmak és jelölések - V - folytatás

Legyen V ábécé és legyenek u, v, x, y szavak V felett, továbbá legyen v = xuy. Ha $x = \varepsilon$, akkor u-t a v szó **prefixének** vagy kezdőszeletének, ha $y = \varepsilon$, akkor u-t a v szó **szufixének** vagy utótagjának hívjuk.

Legyen v=aabbbcc szó. Az u=aabbb szó prefixe, a bbbcc szó szufixe v-nek.

Alapfogalmak és jelölések - VI

Legyen u egy V ábécé feletti szó. Az u szó **tükörképe** vagy **fordítottja** alatt azt a szót értjük, amelyet úgy kapunk, hogy u szimbólumait megfordított sorrendben írjuk. Az u szó tükörképét u^{-1} -gyel jelöljük.

Legyen $u = a_1 \dots a_n$, $a_i \in V$, $1 \le i \le n$. Ekkor $u^{-1} = a_n \dots a_1$.

Alapfogalmak és jelölések - VII

Legyen V ábécé és legyen L tetszőleges részhalmaza V^* -nak. Akkor L-et egy V feletti **nyelvnek** nevezzük.

Az **üres nyelv** - amely egyetlen szót sem tartalmaz - jelölése Ø.

Egy V ábécé feletti nyelvet **véges nyelvnek** mondunk, ha véges számú szót tartalmaz, ellenkező esetben **végtelen nyelvről** beszélünk.

Példák nyelvekre

Legyen $V = \{a, b\}$ ábécé.

Akkor $L_1 = \{a, b, \varepsilon\}$ véges nyelv, $L_2 = \{a^i b^i \mid 0 \le i\}$ végtelen nyelv.

Példa L_2 -beli szavakra: ab, aabb, aaabb, ...

Legyen $L_3 = \{uu^{-1} | u \in V^*\}.$

Példa L_3 -beli szavakra: $u = ababb, u^{-1} = bbaba$ és $uu^{-1} = ababbbbaba$.

Nyelvekre vonatkozó műveletek - I

Legyen V egy ábécé és legyenek L_1, L_2 nyelvek V felett $(L_1 \subseteq V^*$ és $L_2 \subseteq V^*)$.

- $L_1 \cup L_2 = \{u \mid u \in L_1 \text{ vagy } u \in L_2\}$ az L_1 és az L_2 nyelv **uniója**;
- $L_1 \cap L_2 = \{u \mid u \in L_1 \text{ és } u \in L_2\}$ az L_1 és az L_2 nyelv **metszete**;
- $L_1 L_2 = \{u \mid u \in L_1 \text{ és } u \notin L_2\}$ az L_1 és az L_2 nyelv **különbsége**.
- Az $L \subseteq V^*$ nyelv **komplementere** a V ábécére vonatkozóan $\overline{L} = V^* L$.

Nyelvekre vonatkozó műveletek - II

Legyen V ábécé és legyenek L_1, L_2 nyelvek V felett $(L_1 \subseteq V^* \text{ és } L_2 \subseteq V^*)$.

- $L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$ az L_1 és az L_2 nyelv konkatenációja;
- Minden L nyelvre fennállnak a következő egyenlőségek: $\emptyset L = L\emptyset = \emptyset \text{ és } \{\varepsilon\} L = L\{\varepsilon\} = L.$
- L^i jelöli az L nyelv i-edik hatványát: $L^0 = \{\varepsilon\}, L^i = L^{i-1}L, i \ge 1.$
- Az L nyelv \bowtie lezártja (Kleene-lezártja) alatt az $L^* = \bigcup_{i \geq 0} L^i$ nyelvet értjük. A megfelelő műveletet lezárásnak vagy *-műveletnek mondjuk.
- Az L^+ nyelv alatt az $L^+ = \bigcup_{i>1} L^i$ nyelvet értjük.

Nyilvánvalóan, ha $\varepsilon \in L$, akkor $L^+ = L^*$.

Nyelvekre vonatkozó műveletek - III

Legyen V egy ábécé és $L \subseteq V^*$.

 $L^{-1} = \{u^{-1} | u \in L\}$ a **tükörképe** (megfordítása) az L nyelvnek.

Tulajdonság:

$$(L^{-1})^{-1} = L$$
 és $(L^{-1})^i = (L^i)^{-1}$, $i \ge 0$.

Nyelvekre vonatkozó leképezések:

Legyen V_1 , V_2 ábécé.

A $h:V_1^*\to V_2^*$ leképezést **homomorfizmusnak** nevezzük, ha h(uv)=h(u)h(v) minden $u,v\in V_1^*$ esetén.

A fenti tulajdonság alapján $h(\varepsilon) = \varepsilon$. (Minden $u \in V_1^*$ -ra $h(u) = h(\varepsilon u) = h(u\varepsilon)$.)

Nyilvánvaló, hogy minden $u = a_1 a_2 \dots a_n$ szóra, ahol $a_i \in V_1, 1 \le i \le n$, fennáll, hogy $h(u) = h(a_1)h(a_2)\dots h(a_n)$.

Nyelvekre vonatkozó leképezések:

Legyen $h: V_1^* \to V_2^*$ homomorfizmus.

A h homomorfizmus ε -mentes, ha $h(u) \neq \varepsilon$ bármely $u \in V_1^*$ szóra, ahol $u \neq \varepsilon$.

Legyen $h:V_1^*\to V_2^*$ homomorfizmus. Az $L\subseteq V_1^*$ nyelv h-homomorf **képén** a

$$h(L) = \{ w \in V_2^* \mid w = h(u), u \in L \}$$

nyelvet értjük.

Nyelvekre vonatkozó leképezések:

A h homomorfizmust **izomorfizmusnak** nevezzük, ha bármely u és v V_1^* -beli szóra teljesül, hogyha h(u) = h(v), akkor u = v.

Egy példa az izomorfizmusra a decimális számok bináris reprezentációja:

$$V_1 = \{0, 1, 2, \dots, 9\}, V_2 = \{0, 1\},$$

 $h(0) = 0000, h(1) = 0001, \dots, h(9) = 1001$