Introducción

Ricardo Pérez López

IES Doñana, curso 2019/2020

- 1. Conceptos básicos
- 2. Evolución histórica
- 3. Resolución de problemas mediante programación
- 4. Paradigmas de programación
- 5. Lenguajes de programación
- 6. Traductores
- 7. Entornos integrados de desarrollo

1. Conceptos básicos

- 1.1 Informática
- 1.2 Ordenador
- 1.3 Algoritmo
- 1.4 Programa
- 1.5 Lenguaje de programación

1.1. Informática

1.1. Informática

Definición:

Informática:

La ciencia que estudia los sistemas de tratamiento automático de la información, también llamados **sistemas informáticos**.

- Estos sistemas están formados por:
 - elementos físicos (hardware)
 - elementos lógicos (software) y
 - elementos humanos (profesionales y usuarios).
- ▶ El hardware, a su vez, está formado por componentes:
 - Ordenadores
 - Soportes de almacenamiento
 - Redes de comunicaciones
 - · ...

Procesamiento automático

 El procesamiento automático de la información siempre tiene el mismo esquema de funcionamiento:

- El objetivo del procesamiento automático de la información es convertir los datos de entrada en datos de salida mediante un hardware que ejecuta las instrucciones definidas por un software (programas).
- Los programas gobiernan el funcionamiento del hardware, indicándole qué tiene que hacer y cómo.
- La **Programación** es la ciencia y el arte de diseñar dichos programas.

1.2. Ordenador

Definición

Ordenador:

Un ordenador es una máquina que procesa información automáticamente de acuerdo con un programa almacenado.

- 1. Es una máquina.
- 2. Su función es procesar información.
- 3. El procesamiento se realiza de forma automática.
- 4. El procesamiento se realiza siguiendo un programa (software).
- Este programa está almacenado en una memoria interna del mismo ordenador (arquitectura de Von Neumann).

Elementos funcionales

- Un ordenador consta de tres componentes principales:
 - 1. Unidad central de proceso (CPU) o procesador
 - Unidad aritmético-lógica (ALU)
 - Unidad de control (UC)
 - 2. Memoria
 - Memoria principal o central
 - Memoria de acceso aleatorio (RAM)
 - Memoria de sólo lectura (ROM)
 - Memoria secundaria o externa
 - 3. Dispositivos de E/S
 - Dispositivos de entrada
 - Dispositivos de salida

Unidad central de proceso (CPU) o procesador

► Unidad aritmético-lógica (ALU):

Realiza los cálculos y el procesamiento numérico y lógico.

Unidad de control (UC):

Ejecuta de las instrucciones enviando las señales a las distintas unidades funcionales involucradas.

Memoria

▶ Memoria principal o central:

Almacena los datos y los programas que los manipulan.

Ambos (datos y programas) deben estar en la memoria principal para que la CPU pueda acceder a ellos.

Dos tipos:

Memoria de acceso aleatorio (RAM):

Su contenido se borra al apagar el ordenador.

Memoria de sólo lectura (ROM):

Información permanente (ni se borra ni se puede cambiar).

Contiene la información esencial (datos y software) para que el ordenador pueda arrancar.

▶ Memoria secundaria o externa:

La información no se pierde al apagar el ordenador.

Más lenta que la memoria principal, pero de mucha más capacidad.

Dispositivos de E/S

Dispositivos de entrada:

Introducen datos en el ordenador (ejemplos: teclado, ratón, escáner...)

Dispositivos de salida:

Vuelcan datos fuera del ordenador (ejemplos: pantalla, impresora...)

▶ Dispositivos de entrada/salida:

Actúan simultáneamente como dispositivos de entrada y de salida (ejemplos: pantalla táctil, adaptador de red...)

- Los dispositivos que acceden a soportes de almacenamiento masivo (las memorias secundarias) también se pueden considerar dispositivos de E/S:
 - Los soportes de sólo lectura se leen con dispositivos de entrada (ejemplo: discos ópticos).
 - Los soportes de lectura/escritura operan como dispositivos de entrada/salida (ejemplos: discos duros, pendrives, tarjetas SD...).

Figura 1: Esquema básico de un ordenador

- El programa se carga de la memoria secundaria a la memoria principal.
- Una vez allí, la CPU va extrayendo las instrucciones que forman el programa y las va ejecutando paso a paso, en un bucle continuo que se denomina ciclo de instrucción.
- Durante la ejecución del programa, la CPU recogerá los datos de entrada desde los dispositivos de entrada y los almacenará en la memoria principal, para que las instrucciones puedan operar con ellos.
- Al finalizar el programa, los datos de salida se volcarán hacia los dispositivos de salida.

Ciclo de instrucción

- En la arquitectura Von Neumann, los programas se almacenan en la memoria principal junto con los datos (por eso también se denomina «arquitectura de programa almacenado»).
- Una vez que el programa está cargado en memoria, la CPU repite siempre los mismos pasos:
 - 1. (Fetch) Busca la siguiente instrucción en la memoria principal.
 - 2. (**Decode**) Decodifica la instrucción (identifica qué instrucción es y se prepara para su ejecución).
 - (Execute) Ejecuta la instrucción (envía las señales de control necesarias a las distintas unidades funcionales).

1.2. Ordenador

Figura 2: Ciclo de instrucción

Representación de información

Codificación interna Sistema binario

Codificación externa ASCII

Unicode

1.3. Algoritmo

1. Conceptos básicos

1.3. Algoritmo

Definición

Algoritmo:

Un algoritmo es un método para resolver un problema.

- Está formado por una secuencia de pasos o instrucciones que se deben seguir (o ejecutar) para resolver el problema.
- La palabra «algoritmo» proviene de **Mohammed Al-Khowârizmi**, matemático persa que vivió durante el siglo IX y reconocido por definir una serie de reglas paso a paso para sumar, restar, multiplicar y dividir números decimales.
- Euclides, el gran matemático griego (del siglo IV a. C.) que inventó un método para encontrar el máximo común divisor de dos números, se considera con Al-Khowârizmi el otro gran padre de la Algorítmica (la ciencia que estudia los algoritmos).

▶ El estudio de los algoritmos es importante porque la resolución de un problema exige el diseño de un algoritmo que lo resuelva.

Figura 3: Resolución de un problema

Características

- Un algoritmo debe ser:
 - **Preciso**: debe indicar el orden de ejecución de cada paso.
 - Definido: si se sigue un algoritmo dos veces, se debe obtener el mismo resultado cada vez.
 - Finito: debe terminar en algún momento, es decir, debe tener un número finito de pasos.

Ordinograma

Pseudocódigo

1.4. Programa

1.5. Lenguaje de programación

2. Evolución histórica

- 2.1 Culturas de la programación
- 2.2 Ingeniería del software

2.1. Culturas de la programación

2.2. Ingeniería del software

3. Resolución de problemas mediante programación

- 3.1 Análisis del problema
- 3.2 Especificación
- 3.3 Diseño del algoritmo
- 3.4 Codificación del algoritmo en forma de programa

3.1. Análisis del problema

3.2. Especificación

3.3. Diseño del algoritmo

3.4. Codificación del algoritmo en forma de programa

4. Paradigmas de programación

- 4.1 Imperativo
- 4.2 Declarativo

4.1. Imperativo

4.2. Declarativo

5. Lenguajes de programación

- 5.1 Definición
- 5.2 Evolución histórica
- 5.3 Clasificación

5.1. Definición

³⁷/50

Notación EBNF

5.2. Evolución histórica

5.3. Clasificación

6. Traductores

- 6.1 Compiladores
- 6.2 Intérpretes

6.1. Compiladores

6.2. Intérpretes

7. Entornos integrados de desarrollo

- 7.1 Terminal
- 7.2 Editores de texto

7.1. Terminal

7.2. Editores de texto

Instalación

Configuración

Extensiones

8. Bibliografía

8. Bibliografía

Joyanes Aguilar, Luis. 2008. Fundamentos de Programación. Aravaca: McGraw-Hill Interamericana de España.