# LOGARITHMIC FUNCTIONS PRACTICE EXAM

## Math 30-2

| Name: | Date: |
|-------|-------|
|       |       |

## **Multiple Choice & Numerical Response**

Identify the choice that best completes the statement or answers the question.

- 1. The *x*-intercept of  $f(x) = -\frac{1}{3} \ln x$ .
  - A. -1
  - B.  $-\frac{1}{3}$
  - C. 0
  - D. 1
- 2. Predict the end behavior of  $f(x) = 10 \log x$ .
  - A. curve extends from quadrant I to quadrant II
  - B. curve extends from quadrant I to quadrant IV
  - C. curve extends from quadrant IV to quadrant I
  - D. curve extends from quadrant II to quadrant I
- 3. Which function will have the slowest increase in the *y*-values?
  - $A. \ \ y = \frac{1}{2} \ln x$
  - $B. \ y = 9 \ln x$
  - $C. \ \ y = \frac{1}{4} \ln x$
  - D.  $y = 20 \ln x$
- 4. The approximate value of y in the exponential equation  $40 = 10^{y}$ .
  - A. 0.6
  - B. 1.1
  - C. 1.6
  - D. 2.1

A student made the following statements about the graph of the exponential function  $f(x) = \log_b x$ , where b > 1.

- 1. The graph has a vertical asymptote at x = 0
- 2. The graph has a horizontal asymptote at y = 0
- 3. The domain is  $y \ge 0$
- 4. The y-intercept is at 1
- 5. The x-intercept is at 1
- 6. The range is  $y \in R$ .

| Numeric | a Rec  | nonce |
|---------|--------|-------|
|         | allics |       |

The three statements that are **false** for the graph f(x) are numbers \_\_\_\_\_, \_\_\_ and \_\_\_\_. Record your answer in ascending order (smallest to largest)

- 5. Evaluate the logarithmic expression log<sub>11</sub> 1331.
  - A. 0
  - B. 1
  - C. 2
  - D. 3
- 6. Evaluate the logarithmic expression  $\log \left(\frac{1}{4}\right) \frac{1}{256}$ .
  - A. 2
  - B. 3
  - C. 4
  - D. 5
- 7. Which expression is greatest?
  - A.  $log_3 3$
  - B. log<sub>3</sub> 4
  - C. log<sub>3</sub> 5
  - D. log<sub>3</sub> 6

Use the following information to answer the next question



- 8. Match the following graph with its function.
  - A.  $y = -\frac{1}{3} \ln x$
  - $B. \ y = 3 \log x$
  - C.  $y = -\frac{1}{3}(3)^x$
  - D.  $y = 0.3(10)^x$
- 9. Expressed in exponential form,  $-5 = \log_2(\frac{1}{32})$ 
  - A.  $32 = 2^5$
  - B.  $(\frac{1}{32})^{-5} = 2$
  - C.  $2^{-5} = (\frac{1}{32})$
  - D.  $5^{-2} = \frac{1}{32}$
- 10. Which expression is equivalent to  $\ln\left(\frac{8}{5}\right)$ ?
  - A.  $\ln 8 \ln 5$
  - B.  $\ln 5 \ln 8$
  - C. 8 ln 5
  - D. ln 0.625

 $\log_5\left(\frac{100}{4}\right) + \log_5\left(\frac{4}{100}\right)$ 

- 1. Evaluate: A. -4
  - B. 4
  - C. 2
  - D. 0

12. Which value is the best estimate for x in  $7 = 20 \left(\frac{1}{3}\right)^x$ ?

- A. -0.05
- B. 0.05
- C. 0.96
- D. 1.05

13. The equation of the logarithmic function that models a data set is  $y = 43.9 - 8.7 \ln x$ . Determine the value of y when x = 5.5.

- A. y = 23
- B. y = 25
- C. y = 27
- D. y = 29

14. The equation of the logarithmic function that models a data set is  $y = 43.9 - 8.7 \ln x$ . Determine the range of this function.

- A.  $\{y \mid y \in R\}$
- B.  $\{y \mid y > 0, y \in R\}$
- C.  $\{y \mid y < 43.9, y \in R\}$
- D.  $\{y \mid y \ge -8.7, y \in R\}$

Numerical Response 2

A partial graph of  $y = log_a x$  passes through the point (8, 1.5). Correct to the nearest whole number, the value of a is \_\_\_\_\_

#### Use the following information to answer the next question

The following data set involves logarithmic function.

| The following data set involves logaritanine function. |      |      |      |     |     |      |
|--------------------------------------------------------|------|------|------|-----|-----|------|
| x                                                      | 1    | 2    | 3    | 4   | 5   | 6    |
| y                                                      | 32.0 | 19.5 | 12.2 | 7.0 | 3.0 | -0.3 |

15. Determine the equation of the logarithmic regression function for the data.

A. 
$$y = -18 - 32 \ln x$$

B. 
$$y = -18 + 32 \ln x$$

C. 
$$y = 32 + 18 \ln x$$

D. 
$$y = 32 - 18 \ln x$$

Use the following information to answer the next question

The following data set involves logarithmic growth.

| The following data set involves logarithmine growth. |     |     |     |     |     |     |
|------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| X                                                    | 1   | 5   | 10  | 20  | 50  | 100 |
| y                                                    | 0.0 | 0.7 | 1.0 | 1.3 | 1.7 |     |

## Numerical Response 3

To the nearest whole number, the missing value is \_\_\_\_\_

16. What is the sound level of a noise ten times as intense as a conversation at 68 dB? Recall that sound level,  $\beta$ , in decibels, is defined by the equation  $\beta = 10(\log I + 12)$ 

where I is the sound intensity in watts per square metre.

- A. 680 dB
- B. 58 dB
- C. 69 dB
- D. 78 dB

17. Evaluate  $5 \log 100 000 - \log \frac{3}{3000}$ 

- A. 28
- B. 31
- C. 34
- D. 4

18. Which logarithmic expression is **not** equivalent to the others?

- A.  $\frac{\log 5}{\log 3}$ B.  $\log_9 25$ C.  $\frac{\log 25}{2\log 3}$
- D.  $\log_{27} 100$

An 8.5 earthquake compared to an 8.0 earthquake is \_\_\_\_\_\_ times more intense. Round your answer to the nearest hundredth.

## WRITTEN RESPONSE

Please show all work for full marks. Full algebraic solutions are required (no marks for graphing).

- 1. Write each of the following logarithmic equations in exponential form.
- **a.**  $\log(1000) = 3$
- **b.**  $\log_3 9 = 2$
- **c.**  $\log_{b}25 = 6$
- 2. Express log 12 in two different logarithmic forms.

- 3. Use the laws of logarithms (algebraically) to determine the value of each of the following.
  - **a.**  $\log_4 32 + \log_4 2$
  - **b.** log 1200 log 120

**4.** Solve each equation (algebraically). Round answer to three decimals.

$$a. \qquad 30 = \left(\frac{1}{2}\right)^{x+2}$$

b. 
$$75 = 4(2)^x$$

**5.** Describe how to determine the solution of  $3^{(x-2)} = 5^{(x+1)}$  graphically.

**[BONUS]** Determine the solution of  $3^{(x-2)} = 5^{(x+1)}$  algebraically.

**6.** The euphotic zone the upper 200m layer of the oceans. Very little sunlight penetrates deeper than 200, so most plants live in the euphotic zone. As a result, 70% of all photosynthesis on Earth occurs in the euphotic zone of the oceans. The following table gives light penetration data for the location in the Pacific Ocean.

| Depth (m) | Penetration of Sunlight (%) |
|-----------|-----------------------------|
| 0.01      | 100                         |
| 20        | 54.37                       |
| 40        | 29.57                       |
| 60        | 16.08                       |
| 80        | 8.74                        |
| 100       | 4.76                        |

- Determine the equation of the logarithmic regression function that best models the data. Round your values to the nearest hundredth.
- Using your equation, determine the depth with a sunlight penetration of 35%. Express your answer to the nearest tenth of a meter.

• Using your equation, determine the amount of sunlight that penetrates to a depth of 200m at this location. Express your answer to the nearest hundredth of a percent.

#### Mathematics 30-2 Formula Sheet

#### **Relations and Functions**

Graphing Calculator Window Format

$$x$$
:  $[x_{\min}, x_{\max}, x_{\mathrm{scl}}]$ 

$$y: [y_{\min}, y_{\max}, y_{\text{scl}}]$$

Exponents and Logarithms

$$y = a^{x} \leftrightarrow x = \log_{a} y$$
$$\log_{b} c = \frac{\log_{a} c}{\log_{a} b}$$

Laws of Logarithms

$$\log_b(M \cdot N) = \log_b M + \log_b N$$
$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$
$$\log_b(M^n) = n \log_b M$$

Exponential functions

$$y = a \cdot b^x$$

Sinusoidal functions

$$y = a \cdot \sin(bx + c) + d$$

Period = 
$$\frac{2\pi}{b}$$

Quadratic equations

For 
$$ax^2 + bx + c = 0$$
  
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

### **Probability**

$$n! = n(n-1)(n-2)...3 \cdot 2 \cdot 1,$$
  
where  $n \in N$  and  $0! = 1$ 

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$_{n}C_{r} = \begin{pmatrix} n \\ r \end{pmatrix}$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \cap B) = P(A) \cdot P(B \mid A)$$

## **Logical Reasoning**

- A' Complement
- Ø Empty set

- ∪ Union

## Answer Key

- 1. D
- 2. C
- 3. C
- 4. C
- 5. D
- 6. C
- 7. D
- 8. A
- 9. C
- 10. A
- 11. D
- 12. C
- 13. D
- 14. A
- 15. D
- 16. D
- 17. A
- 18. D
- NR 1: 234
- NR 2: 4
- NR 3: 2
- NR 4: 3.16

## Written Response:

1a) 
$$10^3 = 1000$$
 b)  $3^2 = 9$  c)  $b^6 = 25$ 

- 2) Answers may vary.  $\log 2 + \log 6$  and  $\log 24 \log 2$
- 3a) 3 b) 1
- 4a) -6.907 b) 4.229
- 5) -7.45
- 6) a. y=59.87-9.61lnx
- b. 13.3 m
- c. 8.96% visibility