Subspace Models for Acoustic Unit Discovery

Lucas Ondel, Bolaji Yusuf

Brno University of Technology, Faculty of Information Technology
Božetěchova 1/2. 612 66 Brno - Královo Pole
{iondel,xyusuf00}@fit.vutbr.cz

Table of Contents

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches
Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMM

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMM

- Acoustic Unit Discovery
 - Definition of the task
- State-of-the-art
 - Major approaches

 Evaluations
- Subspace Models For AUD
 - Motivations
 Subspace HMM
 Hierarchical Subspace HMM
- Conclusion

Definition of the task

- Audio recordings without labels
- Inventory of phone-like units (we call them "acoustic units")
- Segmentation and labelling

Learning like a baby

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMN

Documenting endangered languages

- Language diversity is diminishing world wide
 - Speech technologies are only available for a few languages
 - Majority of languages are not written: main-stream ASR is not applicable
- an accurate AUD system could:
 - help linguists to document languages
 - serve as a front-end of speech-technologies for non-written languages
- 2022-2032: The decade of Indigenous Languages
 UNESCO webste

Computational model human learning

- The learning cognitive process of humans remains largely unknown:
 - the brain is very complex
 - "sensory learning" happens at a very early age, when the infants cannot communicate verbally
- Reverse engineering approach ("E. Dupoux. 2018")
 - let's build model to learn speech in an unsupervised fashion
 - analyse it and derive the learning principle
 - pave the way to a more realistic artificial intelligence

Another type of machine learning

- The "always more data" approach raises concerns:
 - social/ethical problems: monopoly of ML technologies by LARGE data owner
 - ecological issues: more data implies more energy consumption
- AUD research implies data efficient models

Figure: Energy consumption of training deep learning models. Source: Strubell *et al*, 2019

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMN

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art
Major approaches

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMM

Brief history

- heuristic-based model: $\sim 1990 2005$
- non-parametric Bayesian-based models: $\sim 2005-2020$
- neural network-based models: $\sim 2015 2020$

Neural network-based models

- VAE-HMM: Variational AutoEncoder with HMM/GMM prior over the latent space.
- Visually guided neural network: replace textual transcription by images
- VQ-VAE: AutoEncoder with discretized bottleneck

Non-parametric Bayesian-based models

- Non-parametric model for word segmentation Link1 Link2
- Dirichlet-Process HMM (2012)
- Dirichlet-Process HMM (Variational Bayes inference) (2016)

Dirichlet-Process HMM baseline

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches
Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMM

p1	p2	р3	
au1	au2	au2	

- Clustering:
 - Normalized Mutual Information: $200 \frac{Ml(X,Y)}{H(X)+H(Y)}\%$
 - Measures the statistical relation between the discovered units and the ground truth transcription
 - 100 % \rightarrow one-to-one mapping between AU and phones
 - ullet 0 % ightarrow AUs are completely uninformative
- Segmentation:
 - F-score: harmonic mean of segmentation precision and recall
 - + 20 ms tolerance allowed

Experiments

- Data:
 - Mboshi (Congo Brazzaville) 3-4 hours
 - Yoruba (West Africa Nigeria) 10 hours
 - English (TIMIT) 4 hours
- Features:
 - traditional features: MFCCs + Δ + ΔΔ

Results

- Adapted version of "Chorowski et al., 2019"
- Dirichlet Process HMM (VB inference)

Corpus	System	NMI	F-Score	# units
English	VQ-VAE	29.73	38.59	100
English	HMM	35.47	63.03	95
Mboshi	VQ-VAE 64	26.85	20.22	100
Mboshi	HMM	36.47	47.93	94
Yoruba	VQ-VAE 64	29.36	7.74	100
Yoruba	HMM	36.71	28.47	95

Table: Comparison of the HMM vs the VQ-VAE baseline

Example

- VQ-WAV2VEC "A. Baevski et al., 2020" trained on 960h of LibriSpeech (unsupervised)
- Dirichlet Process HMM (VB inference)

Corpus	System	NMI	F-Score	# units
English	VQ-WAV2VEC (Gumbel)	35.20	26.84	12008
English	VQ-WAV2VEC (K-mean)	34.06	25.64	20057
English	HMM	35.47	63.03	95

Table: Comparison of the HMM vs the VQ-VAE baseline

Example

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations
Subspace HMM
Hierarchical Subspace HMM

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations

Subspace HMM Hierarchical Subspace HMM

Motivations

- Infants do not learn from scratch (Kuhl et al, 1992 Disk):
 - They have some innate sensitivity to human languages
 - With time, they become specialized to their native language
- Hypothesis/Design choice:
 - This innate sensitivity guide infants to learn the structure of speech
 - The AUD system should adapt and become language specific
- Proposal: we will use Bayesian Subspace Model techniques to implement these properties:
 - Subspace Hidden Markov Model (SHMM)
 - Hierarchical Subspace Hidden Markov Model (HSHMM)

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

IVIOTIVATIONS

Subspace HMM

Hierarchical Subspace HMM

Learning an acoustic unit

$$p(\eta|\mathbf{X}) = \frac{p(\mathbf{X}|\eta)p(\eta)}{p(\mathbf{X})}$$
(1)

Phonetic Subspace

Prior over the the AU's parameters

• We want to design an educated prior over the AU's parameters : $p(\eta)$

$$\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (2)

$$\eta = f(\mathbf{Wh} + \mathbf{b}) \tag{3}$$

Inference I - Supervised learning

- We estimate the subspace parameters W, b on annotated corpora
- Model is trained by optimizing the Evidence Lower-BOund (ELBO):

$$\begin{split} \mathcal{L} &= \langle \text{ln}\, \mathcal{D}(\mathbf{X}, |\mathbf{z}, \mathbf{W}, \mathbf{b}, \mathbf{h}_{1:7}) \rangle_{q} \\ &- D_{\text{KL}}(q(\mathbf{z})||\mathcal{D}(\mathbf{z})) \\ &- D_{\text{KL}}(q(\mathbf{W})q(\mathbf{b}))||\mathcal{D}(\mathbf{W})\mathcal{D}(\mathbf{b})) \\ &- D_{\text{KL}}(q(\mathbf{h}_{1:7})||\mathcal{D}(\mathbf{h}_{1:7})) \end{split}$$

- The training follows an Expectation-Maximization-like training:
 - E-step: Baum-Welch algorithm to estimate states' occupancy
 - M-step: No closed form solution, using re-parameterization trick.

Inference II - Unsupervised learning (AUD)

- The subspace parameters W, b are fixed, we just learn the embeddings h on the target language
- Model is trained by optimizing the Evidence Lower-BOund (ELBO):

$$\begin{split} \mathcal{L} &= \langle \ln \mathcal{D}(\mathbf{X}, |\mathbf{z}, \mathbf{W}, \mathbf{b}, \mathbf{h}_{1:T}) \rangle_{\mathbf{q}} \\ &- D_{\mathsf{KL}}(\mathbf{q}(\mathbf{z})) || \mathcal{D}(\mathbf{z})) \\ &- D_{\mathsf{KL}}(\mathbf{q}(\mathbf{h}_{1:T}) || \mathcal{D}(\mathbf{h}_{1:T})) \end{split}$$

- The training follows an Expectation-Maximization-like training:
 - E-step: Baum-Welch algorithm to estimate states' occupancy
 - M-step: No closed form solution, using re-parameterization trick.

Illustration

Experiments

- Data:
 - Source languages (transcribed)
 - French, German, Polish, Spanish from Globalphone
 - 3-4 hours subsets of each language's training data
 - Target languages (untranscribed)
 - Mboshi (Congo Brazzaville) 3-4 hours
 - Yoruba (West Africa Nigeria) 10 hours
 - English (TIMIT) 4 hours
- Features:
 - traditional features: MFCCs + Δ + ΔΔ

Corpus	System	Training	NMI	F-Score	
English	HMM	no	1.74	0.20	
English	SHMM	no	20.83	58.94	
Mboshi	HMM	no	1.65	0.02	
Mboshi	SHMM	no	21.0	39.28	
Yoruba	HMM	no	4.43	1.26	
Yoruba	SHMM	no	26.1	27.45	

Table: Comparison of the HMM vs the SHMM before training

Corpus	System	Training	NMI	F-Score
English	HMM	no	1.74	0.20
English	HMM	yes	35.47	63.03
English	SHMM	no	20.83	58.94
English	SHMM	yes	39.66	75.92
Mboshi	HMM	no	1.65	0.02
Mboshi	HMM	yes	36.47	47.93
Mboshi	SHMM	no	21.0	39.28
Mboshi	SHMM	yes	38.42	57.26
Yoruba	HMM	no	4.43	1.26
Yoruba	HMM	yes	35.27	28.83
Yoruba	SHMM	no	26.1	27.45
Yoruba	SHMM	yes	37.56	36.64

Table: Comparison of the HMM vs the SHMM before training

Outline

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations
Subspace HMM
Hierarchical Subspace HMM

Conclusion

- We assume the subspace is known and fixed during AUD
- Subspace is the same for all the target languages

Prior over the subspace

 We want to design an educated prior over all possible subspace: p(W,b)

$$\alpha \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (4)

$$\mathbf{W} = \sum_{i=1}^{Q} \alpha_i \mathbf{M}_i \tag{5}$$

$$\mathbf{b} = \sum_{i=1}^{Q} \alpha_i \mathbf{m}_i \tag{6}$$

$$\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (7)

$$\eta = f(\mathbf{Wh} + \mathbf{b}) \tag{8}$$

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1, \alpha_2 \end{bmatrix}^{\top}$$
 (9)
$$\mathbf{W} = \alpha_1 \mathbf{M}_1 + \alpha_2 \mathbf{M}_2$$
 (10)

Inference I - Supervised learning

- We estimate the "hyper-subspace" parameters $\mathbf{M}, \mathbf{m}, \alpha$ on annotated corpora
- Model is trained by optimizing the Evidence Lower-BOund (ELBO):

$$\begin{split} \mathcal{L} &= \langle \ln p(\mathbf{X}, |\mathbf{z}, \mathbf{M}_{1:\mathcal{Q}}, \mathbf{m}_{1:\mathcal{Q}}, \mathbf{h}_{1:T}, \boldsymbol{\alpha}) \rangle_{q} \\ &- D_{\mathsf{KL}}(q(\mathbf{z})||p(\mathbf{z})) \\ &- D_{\mathsf{KL}}(q(\mathbf{M}_{1:\mathcal{Q}})q(\mathbf{m}_{1:\mathcal{Q}})||p(\mathbf{M}_{1:\mathcal{Q}})p(\mathbf{m}_{1:\mathcal{Q}})) \\ &- D_{\mathsf{KL}}(q(\mathbf{h}_{1:T})||p(\mathbf{h}_{1:T})) \\ &- D_{\mathsf{KL}}(q(\boldsymbol{\alpha})||p(\boldsymbol{\alpha})) \end{split}$$

- The training follows an Expectation-Maximization-like training:
 - E-step: Baum-Welch algorithm to estimate states' occupancy
 - M-step: No closed form solution, using re-parameterization trick.

Inference II - Unsupervised learning (AUD)

- The "hyper-subspace" parameters \mathbf{M} , \mathbf{m} are fixed, we just learn the embeddings \mathbf{h} and α on the target language
- Model is trained by optimizing the Evidence Lower-BOund (ELBO):

$$\begin{split} \mathcal{L} &= \langle \text{ln}\, p(\mathbf{X}, |\mathbf{z}, \mathbf{M}_{1:\mathcal{Q}}, \mathbf{m}_{1:\mathcal{Q}}, \mathbf{h}_{1:\mathcal{I}}, \alpha) \rangle_{q} \\ &- D_{\text{KL}}(q(\mathbf{z})||p(\mathbf{z})) \\ &- D_{\text{KL}}(q(\mathbf{h}_{1:\mathcal{I}})||p(\mathbf{h}_{1:\mathcal{I}})) \\ &- D_{\text{KL}}(q(\alpha)||p(\alpha)) \end{split}$$

- The training follows an Expectation-Maximization-like training:
 - E-step: Baum-Welch algorithm to estimate states' occupancy
 - M-step: No closed form solution, using re-parameterization trick.

Illustration

Experiments

- Data:
 - Source languages (transcribed)
 - French, German, Polish, Spanish from Globalphone
 - 3-4 hours subsets of each language's training data
 - Target languages (untranscribed)
 - Mboshi (Congo Brazzaville) 3-4 hours
 - Yoruba (West Africa Nigeria) 10 hours
 - English (TIMIT) 4 hours
- Features:
 - traditional features: MFCCs + Δ + ΔΔ

Corpus	System	NMI	F-Score
English	HMM	35.47	63.03
English	SHMM	39.66	75.92
Ü			
Mboshi	HMM	36.47	47.93
Mboshi	SHMM	38.42	57.26
Yoruba	HMM	35.27	28.83
Yoruba	SHMM	37.56	36.64

Table: Comparison of the HMM, SHMM and HSHMM

Corpus	System	NMI	F-Score
English	HMM	35.47	63.03
English	SHMM	39.66	75.92
English	SHMM (2)	37.46	72.19
Mboshi	HMM	36.47	47.93
Mboshi	SHMM	38.42	57.26
Mboshi	SHMM (2)	35.50	51.28
Yoruba	HMM	35.27	28.83
Yoruba	SHMM	37.56	36.64
Yoruba	SHMM (2)	35.72	31.34

Table: Comparison of the HMM, SHMM and HSHMM

SHMM (2): the subspace is retrained on the target language.

Corpus	System	NMI	F-Score
English	HMM	35.47	63.03
English	SHMM	39.66	75.92
English	SHMM (2)	37.46	72.19
English	HSHMM	40.56	78.32
Mboshi	HMM	36.47	47.93
Mboshi	SHMM	38.42	57.26
Mboshi	SHMM (2)	35.50	51.28
Mboshi	HSHMM	41.17	60.82
Yoruba	HMM	35.27	28.83
Yoruba	SHMM	37.56	36.64
Yoruba	SHMM (2)	35.72	31.34
Yoruba	HSHMM	37.88	38.44

Table: Comparison of the HMM, SHMM and HSHMM

SHMM (2): the subspace is retrained on the target language.

Some statistics

Example

Outline

Acoustic Unit Discovery

Definition of the task Applications

State-of-the-art

Major approaches

Evaluations

Subspace Models For AUD

Motivations Subspace HMM Hierarchical Subspace HMM

Conclusion

Summary

- We have proposed two new models for the task of Acoustic Unit Discovery:
 - Subspace Hidden Markov Model
- Hierarchical Subspace Hidden Markov Model
- These models are inspired by how infants learn to speak
- They show strong improvement in terms of clustering and segmentation quality
- The concept of (hierarchical) subspace and can be extended to a large class of models
- To reproduce our experiments: https://github.com/beer-asr

Future Challenges

- AUD is not a solved problem!
- Model suffers from high variability of speech
- Two major problems:
 - Acoustic modeling: going beyond HMM
 - Language modeling: discovery words
- Towards the first system to learn speech as humans...

References I

Lucas Ondel, Hari Krishna Vydana, Lukáš Burget, and Jan Černocký (2019). "Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery". In: Proc. Interspeech 2019, pp. 261–265. URL:

http://dx.doi.org/10.21437/Interspeech.2019-2224.

Lucas Ondel, Pierre Godard, Laurent Besacier, Elin Larsen, Mark Hasegawa-Johnson, Odette Scharenborg, Emmanuel Dupoux, Lukáš Burget, Francois Yvon, and Sanjeev Khudanpur (2018). "Bayesian Models for Unit Discovery on a Very Low Resource Language". In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5939–5943. URL:

https://ieeexplore.ieee.org/document/8461545

References II

Lucas Ondel, Lukaš Burget, Santosh Kesiraju, and Jan Černocký (2017). "Bayesian phonotactic language model for acoustic unit discovery". In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5750–5754. URL: https://www.fit.vut.cz/research/publication/11472/.en.

Lucas Ondel, Lukáš Burget and Jan Černocký (2016).

"Variational inference for acoustic unit discovery". In:

Procedia Computer Science 81, pp. 80–86. URL:

https://www.sciencedirect.com/science/article/pii/S1877050916300473.

Thank you for your attention.