EE325 Module 5 (Unofficial)

These slides are screenshots of the lectures Viewers use it at your own risk

Topics in Module 5

I

- Sequences of Events and the Borel-Cantelli Lemma
- Sequences of random variables and convergence concepts.
- Weak law of large numbers
- Strong law of large numbers
- Central limit theorem
- Reiteration: these are just outlines; you are expected to take notes during the lecture and read from the text book. There could also be typographical in these errors notes.

Sequences of Events

- Let E_n be sequence of events.
 - Toss a coin n times. E_n is the indicator variable of there being at least one heads in the n tosses.
 - Toss a coin n times. En is the indicator variable that all the tosses yield heads.
 - Keep tossing a coin; E_n is the event that there is at least one heads from the first n tosses.
- Consider the following events

$$\begin{array}{rcl}
A_n & = & \bigcup_{k \geq n}^{\infty} E_k \\
\widehat{A} & = \limsup_{n \to \infty} E_n & := & \bigcap_{n=1}^{\infty} \bigcup_{k \geq n}^{\infty} E_k
\end{array}$$

- A_n occurs if any of E_n, E_{n+1}, \ldots occur.
- A occurs if for all n, E_k occurs at least once for $k \ge n$.
- If A occurs, we say that E_n occurs infinitely often or i.o.

Borel-Cantelli Lemma

Theorem

Let $p_n = Pr(E_n)$ for $n = 1, 2, \dots$ Suppose

$$\sum_{n=1}^{\infty}p_n<\infty.$$

Then with probability 1, A does not occur,

If the probabilities p_n are summable then

- With probability 1, E_n does not occur infinitely often.
- With probability 1, only a finitely many of E_1, E_2, \ldots will occur.

Theorem

Let $p_n = Pr(E_n)$ for n = 1, 2, ... Suppose that the E_n are independent and

$$\sum_{n=1}^{\infty} p_n = \infty.$$

Then with probability 1, A occurs

Continuity of Probability

Theorem

Let $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$, i.e., E_n is an inreasing sequence of events. Let $A = \bigcup_{k=1}^{\infty} E_k = \lim_{n \to \infty} E_n$.

$$\Pr\left(\lim_{n\to\infty}E_n\right)=\lim_{n\to\infty}\Pr(E_n)$$
.

Proof Let $A_k = E_k \overline{E}_{k-1} = E_k \setminus E_{k-1}$ and $A_0 = \phi$. Clearly $\bigcup_{k=1}^n A_k = E_n$

$$\Pr\left(\bigcup_{k=1}^{\infty} E_k\right) = \Pr\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \Pr(A_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \Pr(A_k)$$
$$= \lim_{n \to \infty} \Pr\left(\bigcup_{k=1}^{n} A_k\right) = \lim_{n \to \infty} \Pr(E_k)$$

Theorem

Let $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$, i.e., E_n is an inreasing sequence of events. Let $A = \bigcap_{k=1}^{\infty} E_k = \lim_{n \to \infty} E_n$.

$$\Pr\left(\lim_{n\to\infty}E_n\right)=\lim_{n\to\infty}\Pr(E_n)$$
.

DAG

Borel-Cantelli Lemma

Consider the following events

$$A_n = \bigcup_{k \geq n}^{\infty} E_k$$
 $A = \limsup_{n \to \infty} E_n := \bigcap_{n=1}^{\infty} \bigcup_{k \geq n}^{\infty} E_k$

- A_n occurs if any of E_n, E_{n+1},... occur.
- A occurs if for all n, E_k occurs at least once for $k \ge n$.
- If A occurs, we say that E_n occurs infinitely often or i.o.

Lemma

Let $p_n = Pr(E_n)$ for $n = 1, 2, \ldots$

- If $\sum_{n=1}^{\infty} p_n < \infty$, then E_n occurs infinitely often with probability 0.
- If E_n are independent and $\sum_{n=1}^{\infty} p_n = \infty$, then E_n occurs infinitely often with probability 1.

Proof of First Borel-Cantelli Lemma

$$\Pr\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_{k}\right) = \Pr\left(\bigcap_{n=1}^{\infty}A_{n}\right)$$

$$= \lim_{n\to\infty}\Pr(A_{n})$$

$$= \lim_{n\to\infty}\Pr\left(\bigcup_{k=n}^{\infty}E_{k}\right) I$$

$$\leq \lim_{n\to\infty}\sum_{k=n}^{\infty}p_{k}$$

Proof of Second Borel-Cantelli Lemma

$$\begin{array}{lcl} \Pr\biggl(\bigcap_{k=n}^\infty \overline{E}_k\biggr) &=& \prod_{k=n}^\infty (1-p_k) \\ \log\biggl(\prod_{k=n}^\infty (1-p_k)\biggr) &=& \sum_{k=n}^\infty \log(1-p_k) \, \leq \, -\sum_{k=n}^\infty p_k \, = \, -\infty \\ \Pr\biggl(\bigcap_{k=n}^\infty \overline{E}_k\biggr) &\leq & e^{-\sum_{k=n}^\infty p_k} \end{array}$$

$$\Pr\left(\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\overline{E}_{k}\right) \leq \sum_{n=1}^{\infty}\Pr\left(\bigcap_{k=n}^{\infty}E_{k}\right)$$

$$\leq \sum_{n=1}^{\infty}e^{-\sum_{k=n}^{\infty}p_{k}}\leq \infty$$

 $\Longrightarrow \overline{E}_n$ does not occur infinitely often. Hence E_n occurs infinitely often.

Sequences of Random Variables and Convergence

- Sequence of random variables X_n is a sequence of maps from the sample space Ω with elements ω to the reals.
- For every $\omega \in \Omega$ there is a sequence $X_n(\omega)$.
- Let X be another random variable, i.e., we also have X(ω).
- We want to define $X_n \to X$ for problems like
 - What happens to the sample mean and sample variance with increasing number of samples.
 - When different sources of random disturbances get added to a signal, is there a way to characterise the net disturbance.
- Recall sequences and convergence: The sequence x_n → x if for every
 ε > 0, there exists an N(ε) such that for all n > N(ε), |x_n x| < ε. ,
 informally, x_n gets arbitrarily close to x and stays close.

Convergence concepts

• Convergence everywhere or pointwise convergence: For every $\omega \in \Omega$

$$X_n(\omega) \to X(\omega)$$

 Almost sure convergence or convergence almost everywhere. The following event has probability 1

$$\{\omega: X_n(\omega) \to X(\omega)\}$$

Mean square convergence

$$\mathsf{E}\!\left(\left(\mathsf{X}_n-\mathsf{X}\right)^2\right)\to 0.$$

Convergence in probability: For ε > 0,

$$\Pr(\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}) \to 0$$

Convergence in distribution

$$F_{X_n}(x) \to F_X(x)$$

Convergence of Random Sequences: Implications

Theorem

- $\bullet \ \mathsf{X}_n \ \stackrel{\mathrm{a.s.}}{\longrightarrow} \ \mathsf{X} \ \Longrightarrow \ \mathsf{X}_n \ \stackrel{\mathrm{p}}{\longrightarrow} \ \mathsf{X}$
- $\bullet \ X_{\mathbb{P}^n}^{\intercal} \stackrel{m.s.}{\longrightarrow} \ X \implies X_n \ \stackrel{p}{\longrightarrow} \ X$
- If $X_n \stackrel{d}{\longrightarrow} X$ and X is a constant c, then $X_n \stackrel{p}{\longrightarrow} c$

Limit Theorems

- X_n is a sequence of i.i.d. random variables with mean μ and variance σ^2 .
- S_n is the sample sum, i.e.,

$$S_n = \sum_{i=1}^n X_n$$

and S_n/n is the sample mean.

• Interested in the behaviour of S_n/n .

Theorem

- Weak Law of Large Numbers: $\frac{S_n}{n} \xrightarrow{p} \mu$
- Strong Law of Large Numbers: $\frac{S_n}{n} \xrightarrow{a.s.} \mu$

Limit Theorems

• S_n has mean $n\mu$ and variance $n\sigma^2$.

0

$$Z_n := \frac{S_n - n\mu}{\sqrt{n}\sigma}$$

has zero mean and unit variance.

Central Limit Theorem.

Ι