Basics on Finite Element Method (FEM)

Laboratori de Càlcul Numèric (LaCàN)

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya (Barcelona)

http://www-lacan.upc.es

AYA CERTAIN A STATE OF THE STAT

Weighted residuals: strong form → weak form

Model problem

$$-\nabla \cdot (\mathbf{A}\nabla u) = f \quad \text{en } \Omega$$

$$u = u_d \quad \text{en } \Gamma_d$$

$$(\mathbf{A}\nabla u) \cdot \boldsymbol{n} = g_n \quad \text{en } \Gamma_n$$

with

$$\partial\Omega = \Gamma_d \cup \Gamma_n$$

STEP 1. Multiply by a test function v such that v=0 en Γ_d

$$-\int_{\Omega} v \, \nabla \cdot (\mathbf{A} \nabla u) \, d\Omega = \int_{\Omega} v f \, d\Omega$$

STEP 2. Integration by parts

$$-\int_{\Omega} v \, \nabla \cdot (\mathbf{A} \nabla u) \, d\Omega = \int_{\Omega} v f \, d\Omega$$

"Integration by parts" formula in several dimensions:

$$\int_{\Omega} g \boldsymbol{\nabla} \cdot \boldsymbol{f} \, d\Omega = -\int_{\Omega} \boldsymbol{\nabla} g \cdot \boldsymbol{f} \, d\Omega + \int_{\partial\Omega} g \boldsymbol{f} \cdot \boldsymbol{n} \, d\Gamma \quad (\clubsuit)$$

$$\int_{\Omega} \nabla v \cdot (\mathbf{A} \nabla u) \ d\Omega - \int_{\partial \Omega} v \ (\mathbf{A} \nabla u) \cdot \boldsymbol{n} \ d\Gamma = \int_{\Omega} v f \ d\Omega$$

STEP 3. Apply boundary conditions (Neumann BC and v=0 in Γ_d)

$$\int_{\Omega} \nabla v \cdot (\mathbf{A} \nabla u) \ d\Omega = \int_{\Omega} v f \ d\Omega + \int_{\Gamma_n} v g_n \ d\Gamma$$

Weak form

• "Find $u \in H^1(\Omega)$ such that $u=u_d$ in Γ_d and

$$a(v, u) = l(v)$$

for all $v \in H^1(\Omega)$ such that v=0 en Γ_d ", with

 $a(v,u) = \int_{\Omega} \nabla v \cdot (\mathbf{A} \nabla u) \ d\Omega$ Symmetric & coercive

$$l(v) = \int_{\Omega} v f \ d\Omega + \int_{\Gamma_n} v g_n \ d\Gamma$$

 The equivalence between strong form and weak form can be easily proved.

Piece-wise (element-by-element) polynomial approximation

In the FEM the solution is approximated with a piece-wise polynomial basis

$$u(x) \simeq u^h(x) = \sum_i u_i N_i(x)$$

- Advantages:
 - compact suport (local basis) ⇒ sparse matrices
 - easy computation of integrals
 - physical meaning of coefficients u_i

Prescribed values

 The coefficients corresponding to values known by boundary conditions are set to the prescrived value

$$u^{h}(x) = \sum_{j \notin \mathcal{B}} u_{j} N_{j}(x) + \sum_{i \in \mathcal{B}} u_{d}(x_{i}) N_{i}(x)$$

$$\psi(x)$$

- $u^h(x)$ satisfies (with interpolation error) the Dirichlet boundary condition $u=u_d$ on Γ_d
- $N_i(x)=0$ on Γ_d for $i \notin B$ (condition for test function v)
- Other techniques: Lagrange multipliers, penalty method, Nitsche method...

Discretization of the weak form

Imposing the weak form for $v=N_i(x)$ with $i \notin B$, and replacing the approximation $u^h(x)$

$$a(N_i, \sum_j u_j N_j + \psi) = l(N_i)$$

$$\sum_{j} a(N_i, N_j) \ u_j = l(N_i) - a(N_i, \psi)$$

Linear system of equations

$$Ku = f$$

$$K_{ij} = a(N_i, N_j) = \int_{\Omega} \nabla N_i \cdot (\mathbf{A} \nabla N_j) \ d\Omega$$

$$f_i = l(N_i) - a(N_i, \psi) = \int_{\Omega} N_i f \ d\Omega + \int_{\Gamma_n} v g_n \ d\Gamma - a(N_i, \psi)$$

1D example (with C⁰ linear approximation)

$$-u'' = f \text{ para } x \in [a, b]$$

$$u(a) = u(b) = 0$$

$$\int_a^b v'u' \, dx = \int_a^b vf \, dx$$

Approximation:

$$u(x) \simeq u^h(x) = \sum_{j=1}^5 u_j N_j(x)$$

Replacing the approximation and v=N_i for i=1...5

$$\int_{a}^{b} N_{i}' \left(\sum_{j=1}^{5} u_{j} N_{j}' \right) dx = \int_{a}^{b} N_{i} f dx \quad i = 1, \dots, 5$$

or, equivalently,

$$\sum_{i=1}^{5} \left(\int_{a}^{b} N_{i}' N_{j}' \, dx \right) u_{j} = \int_{a}^{b} N_{i} f \, dx \quad i = 1, \dots, 5$$

Linear system 5×5 : $\mathbf{Ku} = \mathbf{f}$

$$K_{ij} = \int_a^b N_i' N_j' dx, \quad f_i = \int_a^b N_i f dx$$

The matrix of the system is **tridiagonal** (sparse in general, with few non-null coefficients)

$$K_{ij} = \int_a^b N_i' N_j' dx = 0 \text{ para } |i - j| > 1$$

$$\mathbf{K} = \begin{pmatrix} \left(\frac{1}{h_1} + \frac{1}{h_2}\right) & -\frac{1}{h_2} \\ -\frac{1}{h_2} & \left(\frac{1}{h_2} + \frac{1}{h_3}\right) & -\frac{1}{h_3} \\ -\frac{1}{h_3} & \left(\frac{1}{h_3} + \frac{1}{h_4}\right) & -\frac{1}{h_4} \\ -\frac{1}{h_4} & \left(\frac{1}{h_4} + \frac{1}{h_5}\right) & -\frac{1}{h_5} \\ -\frac{1}{h_5} & \left(\frac{1}{h_5} + \frac{1}{h_6}\right) \end{pmatrix}$$

Symmetric and diagonally dominant matrix:

The matrix is symmetric and positive definite

- If the bilinear form $a(\cdot,\cdot)$ is symmetric and coercive, the matrix is symmetric and positive definite.
- The coefficient (i,j) of the matrix is non-null only if nodes i and j belong to the same elements: sparse matrices

Computation of integrals: numerical quadrature in each element

We want to compute integrals as

$$K_{ij} = a(N_i, N_j) = \int_{\Omega} \nabla N_i \cdot (\mathbf{A} \nabla N_j) \ d\Omega$$

with element-by-element piece-wise polynomial functions.

$$K_{ij} = \sum_{e} \int_{\Omega_e} \nabla N_i \cdot (\mathbf{A} \nabla N_j) \ d\Omega = \dots$$

Gauss quadrature in each element.

Elemental matrices

Assembly of elemental matrices and vectors

$$\mathbf{K} = igwedge_e \mathbf{K}^e, \quad \mathbf{f} = igwedge_e \mathbf{f}^e$$

The elemental matrix \mathbf{K}^{e} has all the non-null integrals in the element Ω_{e}

$$K^e_{(i)(j)} = \int_{\Omega_e} \nabla N_{(i)} \cdot (\mathbf{A} \nabla N_{(j)}) \; d\Omega \qquad \begin{subarray}{l} (i) = 1, \dots, \mathrm{nnode} \\ (j) = 1, \dots, \mathrm{nnode} \end{subarray}$$

where (•) denotes the local numbering and nnode is the number of nodes in the element. The connectivity matrix gives the equivalence between local numbering and global numbering.

Example

Mesh geometry definition

$$\mathbf{T} = \begin{bmatrix} 1 & 2 & 5 & 4 \\ 2 & 3 & 6 & 5 \\ 4 & 5 & 8 & 7 \\ 5 & 6 & 9 & 8 \end{bmatrix}$$

(connectivity matrix)

	0	0
	0,5	0
	1	0
	0	$0,\!5$
$\mathbf{X} =$	0,5	$0,\!5$
	1	$0,\!5$
	0	1
	0,5	1
	1	1

Computation of the elemental matrix

$$K^e_{(i)(j)} = \int_{\Omega_e} \nabla N_{(i)} \cdot (\mathbf{A} \nabla N_{(j)}) \ d\Omega \qquad \begin{subarray}{l} (i) = 1, \dots, \mathtt{nnode} \\ (j) = 1, \dots, \mathtt{nnode} \end{subarray}$$

Shape functions

$$N_i(x)=?$$

Numerical quadrature

Reference element

Q1 element

$$N_2(\xi,\eta) = -\frac{1}{4}(\xi+1)(\eta-1)$$

$$N_3(\xi, \eta) = \frac{1}{4}(\xi + 1)(\eta + 1)$$

$$N_4(\xi,\eta) = -\frac{1}{4}(\xi-1)(\eta+1)$$

Triangles:

- P1: linear, {1, x, y}
- P2: quadratic, {1, x, y, xy, x², y²}

•

Tetrahedra {1, x, y, z}

Hexahedra {1, x, y, z, xy, xz, yz, xyz}

