

CIÊNCIA DA COMPUTAÇÃO

CIRCUITOS DIGITAIS I (6878)

Trabalho: Projeto de circuito combinacional - Parte II

Data: 17/01/2020

Professor: Nardênio Almeida Martins

Discentes

R.A.	Nome
112679	Guilherme Panobianco Ferrari
115735	Sergio Alvarez da Silva Junior

SUMÁRIO

1. Introdução e Objetivos	3
1.1) Introdução	3
1.2) Objetivos de Experiência	3
2. Fundamentação Teórica	3
2.1) Componentes Utilizados	3
2.1.1) Relógio Digital	3
2.1.2) Memória semicondutora de 3 bits	3
2.2) Descrição dos Componentes Utilizados	4
3. Procedimentos Executados	10
3.1) Relógio Digital	10
3.1.1) Descrição do funcionamento do circuito	10
3.1.2) Apresentando o circuito MOD-10	11
3.1.3) Apresentando o circuito MOD-6	13
3.2) Memória semicondutora de 3 bits	14
3.2.1) Descrição do funcionamento do circuito	14
3.2.2) Apresentando o circuito	14
3.2.3) Procedimentos executados	15
4. Conclusão	19
5. Referências Bibliográficas	20

1. Introdução e Objetivos

1.1) Introdução

Neste relatório será apresentado o desenvolvimento de um relógio digital, o qual permite a contagem de 0 a 59 segundos, e uma memória semicondutora de 3 bits, tal como o processo de desenvolvimento e as operações dos respectivos circuitos.

1.2) Objetivos da experiência

O relatório tem como objetivo compreender e simular o funcionamento de um relógio digital e de uma memória semicondutora de 3 bits.

2. Fundamentação teórica

2.1) Componentes Utilizados

2.1.1) Relógio Digital

- 2 Chaves Lógicas
- 1 Portas 3-in-AND
- 5 Portas 2-in-AND
- 1 Pulser
- 2 Hex display
- 7 Flip Flops JK

2.1.2) Memória semicondutora de 3 bits

- 7 Chaves Lógicas
- 2 Portas Not
- 6 Flip Flops D
- 12 Portas 2-in-AND
- 1 Portas 3-in-AND
- 4 Portas 3-in-OR
- 9 Displays Lógicos

2.2) Descrição dos componentes utilizados

• Chaves lógicas: Permite a escolha do nível de entrada, podendo variar entre 0 (sem corrente) e 1 (com corrente). Imagem de uma chave lógica na figura 1.

Figura 1. Chave lógica com valor 0.

Porta AND: Porta com duas ou mais entradas, retorna 1 somente quando todas as suas entradas receberem nível lógico igual a 1. Em Álgebra de Boole, pode ser representada como S = A . B. Leia-se A e B. Seu comportamento é descrito pela tabela 1 e figura 2.

Entrada A	Entrada B	Saída
0	0	0
0	1	0
1	0	0
1	1	1

Tabela 1. Tabela-Verdade da porta AND.

Figura 2. Porta AND.

• **Porta NAND:** Porta com duas ou mais entradas, sua saída é 0 somente quando todas suas entradas forem iguais a 1. Em Álgebra de Boole, pode ser

representado como $S = \overline{A.B}$. Leia-se A e B barrado. Seu comportamento é descrito na tabela verdade da tabela 2 e figura 3.

Entrada A	Entrada B	Saída
0	0	1
0	1	1
1	0	1
1	1	0

Tabela 2. Tabela-verdade porta NAND.

Figura 3. Porta NAND.

• **Display lógico:** É um diodo emissor de luz, utilizado no circuito para verificar quando a saída é igual a 1 (acende) ou 0 (apaga).

Figura 4. Display lógico(apagado).

• **Porta NOT:** Inverte o nível lógico da corrente, como exemplificado na tabela verdade da tabela 3 e figura 5.

Entrada A	Saída
0	1
1	0

Tabela 3. Tabela-Verdade do NOT.

Figura 5. Porta NOT (inversor).

Em Álgebra de Boole, pode ser representado como $S = \overline{A}$. Leia-se A barra ou A barrado.

• **Display hex:** Display capaz de mostrar dígitos hexadecimais de 0 a F, para fazer isso, o display conta com 4 entradas sendo, o bit mais significativo deve ser ligada na entrada 4 e o menos significativo na 1, como pode ser visto na figura 7.

Figura 6. Display hexadecimal circuit maker.

 Porta OR: Porta com duas ou mais entradas, sua saída é 1 quando ao menos uma das entradas é igual a 1. Pode ser escrita em álgebra de Boole como A + B. Leia-se A ou B.

O comportamento da porta OR é indicado pela tabela 4.

Entrada A	Entrada B	Saída
0	0	0
0	1	1
1	0	1
1	1	1

Tabela 4. Tabela-Verdade da porta OR.

Figura 7. Porta OR.

• **Pulser:** É um circuito eletrônico que produz ondas quadrática, alternando entre valores lógicos de 0 e 1, foi utilizado como clock nos circuitos do relógio e da memória.

Figura 8. Pulser.

• Flip-Flop JK: O flip-flop JK foi criado para resolver o problema do flip-flop SR, o qual tinha o estado S=1,R=1 inválido, as entradas preset e clear independem do clock e de dados. O preset faz Q ir para1, e o clear faz ir para 0. O comportamento do Flip-flop é indicado pela tabela 5.

J	K	Q (Próximo)	Ação
0	0	Q (Anterior)	Hold
0	1	0	Reset
1	0	1	Set
1	1	\overline{Q} (Anterior)	Toggle

Tabela 5. Tabela verdade do Flip-flop JK

Figura 9. Flip-flop JK.

• Flip Flop D: Quando o clock comuta, o flip-fllop guarda o dado da entrada D, o valor "guardado" torna-se a saída Q. O funcionamento é como um Flip-flop JK, porém as entradas J e K sempre são diferentes.

Figura 10. Flip-flop D.

D	Qf
0	0

Tabela 6. Tabela verdade Flip-flop tipo

3. Procedimentos executados

- 3.1) Relógio Digital
 - 3.1.1) Descrição funcionamento do circuito
 - O circuito é composto por duas partes, um módulo 6 síncrono, que faz a contagem de 0 até 5, quando chega em 5, a entrada R (reset) do flip-flop é ativada e ele volta para o 0, repetindo o procedimento. O outro é um de módulo 10 síncrono, que faz a contagem de 0 até 9 de modo síncrono, quando chega em 9, a entrada R (reset) do flip-flop é ativada, ele volta para 0 e ativa o Flip-flop do circuito de módulo 6, servindo como um "pulser".

Na figura 11 está o diagrama circuito completo.

Figura 11. Relógio digital.

3.1.2) Apresentando o circuito MOD-10

O circuito de módulo 10 síncrono utiliza 4 Flip-flop, 1 Pulser, 2 portas 2-IN-AND, 1 porta 2-IN-NAND, 1 porta 3-IN-AND, 1 switch lógico e um display hex. Este circuito faz a contagem de 0 até 9 de modo síncrono, o Pulser tem a função de enviar valores 1 e 0 para os Flip-flop, quando chega em 9, a porta R (reset) do Flip-flop é ativada pela porta 2-IN-NAND, ele volta para 0 e envia valor 1 para o Clock do Flip-flop do circuito de módulo 6, servindo como um "pulser" para o outro circuito, depois todo o procedimento é repetido.

Na figura 12 está o diagrama do circuito e na tabela 7 está a tabela verdade.

Figura 12. Contador módulo 10.

E	ntrada	s Atua	is	Е	ntradas	Futura	ıs	Q3			2	Q1		Q0	
Q3	Q2	Q1	Q0	QF3	QF2	QF1	QF0	J0	K0	J1	K1	J2	K2	Ј3	К3
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
1	0	0	1	0	0	0	0	X	1	0	X	0	X	X	1
0	0	0	0			_	_						_	_	_

Tabela 7. Tabela verdade do circuito módulo 10.

3.1.3) Apresentando o circuito MOD-6

• O circuito de módulo 6 síncrono utiliza 3 Flip-flop, 2 portas 2-in-AND, 1 switch lógico e 1 display hex. Este circuito faz a contagem de 0 até 5 de modo síncrono, quando chega em 5, a porta R (reset) do Flip-flop é ativada e ele volta para o 0, repetindo o procedimento.

Figura 13.Contador mod 6.

Enti	adas At	uais	Entr	adas Fu	turas	Q	2	Q1		Q0	
Q2	Q1	Q0	Qf2	QF1	QF0	J2 K2		J1	K1	J0	K0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	0	0	0	X	1	0	X	X	1

Tabela 8. Tabela verdade do circuito módulo 6.

3.2) Memória Semicondutora de 3 bits

3.2.1) Descrição funcionamento do circuito

 A memória semicondutora de 3 bits é um dispositivo eletrônico capaz de armazenar palavras de 3 bits, ele é composto por um decodificador de endereços, unidade de armazenamento (flip flops D), buffer ou chave de três estados.

3.2.2) Apresentando o circuito

• O circuito possui sete linhas de entradas e três de saída. Três são entradas de dados, uma é para selecionar o endereço (palavra 1 e palavra 2) e três são para controle: CS para Chip Select (selecionar chip), RD para alternar entre ler e escrever e OE para Output Enable (habilitar saída). As três saídas são representadas pelos LEDs na saída de dados. E também possui um display lógico em cada saída dos Flip-Flops, para verificar se está guardando dos bits inseridos na entrada de dados antes de fazer a leitura.

Na figura 14 está o diagrama do circuito completo.

Figura 14. Memória Semicondutora de 3 bits.

3.2.3) Procedimentos executados

- Para selecionar um bloco de memória (Palavra 1 ou palavra 2), o controlador CS deve estar com nível lógico 1. O controlador que irá selecionar o bloco de memória, se estiver desligado (valor lógico 0) a palavra 1 será selecionada. De maneira análoga, se estiver ligado (valor lógico 1) a palavra 2 será selecionada. Para decidir se irá escrever neste bloco de memória, o controlador RD deve estar desligado, e caso queira ler, o RD deve estar ligado, junto com CS ligado, para selecionar o chip. Caso CS esteja desligado, não haverá leitura nem escrita, pois nenhum Chip será selecionado.
- Como exemplo, vamos escrever e ler os seguintes dados: 111, 101, 010 e 000.
- Como visto anteriormente, para escrever, vamos deixar CS ligado, RD e OE desligados, e o controlador de bloco de memória desligado para selecionar a Palavra 1, e nas entradas de dados vamos selecionar 111.

Veja na figura 15, como ficou o circuito, note que as linhas vermelhas é onde há energia passando:

Figura 15.

- Note na figura 15 que os displays lógicos dos Flip-Flops ativaram, conforme a entrada de dados, no bloco de dados da palavra 1, que foi selecionada pelo Controlador.
- Agora, vamos ler a entrada que acabamos de passar para o bloco de memória.
 Para isso, vamos habilitar os controladores RD e OE e observar a saída de dados.

As figura 16, 17, 18 19 mostra o circuito com as saídas 111, 101, 010 e 000 respectivamente.

Figura 16. Saídas 111.

Figura 17. Saídas 101.

Figura 18. Saídas 010.

Figura 19. Saídas 000.

4. Conclusão

Os objetivos deste trabalho foi a construção de um relógio digital de segundos e uma memória semicondutora de 3 bits, usando os conhecimentos adquiridos na sala de aula e por meio de pesquisas bibliográficas.

Conclui-se que a pesquisa realizada para a este trabalho ampliou nossos conhecimentos tanto na eletrônica como também as suas aplicações práticas no cotidiano e no campo da informática.

Assim, os objetivos desse projeto foram atingidos - o desenvolvimento de um relógio digital de segundos e o desenvolvimento de uma memória semicondutora de 3 bits, bem como seus respectivos funcionamentos.

5. Referências

TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L. Sistemas Digitais: **Princípios e Aplicações**. 10. ed. [S. l.]: Pearson Universidades, 2007.

VAHID, Frank. **Sistemas Digitais:** Projeto, Otimização e Hdls. 1. ed. [*S. l.*]: Bookman, 2008.

CAPUANO, F. G.; IDOETA, I. V. **Elementos de Eletrônica Digital.** 40. ed. [*S. l.*]: Editora Érica, 2006.

FLOYD, Thomas. **Sistemas Digitais: Fundamentos e Aplicações.** 9. ed. [S. l.]: Bookman, 2007.

Andrew S. Tanenbaum. **Organização Estruturada de Computadores.** Editora Pearson Universidades; Edição 6, 2013.