Stefan Reinhold 24.03.2017

Ant Colony Optimization

Beschreibung und Bedienung

In der ACO Anwendung wird auf einer zweidimensionalen Hexagon-Karte, mit der Größe von 50x30 Feldern, eine Pfadsuche mittels dem Ant Colony Optimization Algorithmus realisiert. Anschließend wird einmal ein Pfad mittelst A* Algorithmus unter alleiniger Betrachtung der Pheromonwerte visualisiert.

Der Algorithmus läuft in Echtzeit, wird also pro Frame einmal ausgeführt. Da der Algorithmus parallelisiert implementiert ist ist die CPU dauerhaft mit ~100% ausgelastet.

Wird von einer Ameise ein Pfad gefunden, werden auf diesem Pheromone in einer von der Verwendeten Heuristik abhängigen Höhe abgelegt.

$$p = \frac{O * \frac{1}{T}a}{L}$$

Formal 1: Pheromon Heuristik

In der vorhergehenden Heuristik ist p der abzulegende Pheromonwert. O ist die geschätzte Optimale Weglänge anhand der Manhattan Distance zwischen dem Ameisenhügel und der

nächsten Futterquelle. \overline{T} sind die durchschnittlichen Geländekosten aller besuchten Felder des gefundenen Pfades. a ist ein Faktor um die Gewichtung der Geländekosten zu parametrisieren. L ist die Länge des Gefundenen Pfades.

Somit kann mit dieser Heuristik der kürzeste und auch Kostengünstigste Weg gefunden werden.

In der folgenden Tabelle sind alle Bedienmöglichkeiten aufgelistet.

Input	Funktion
D Key	Anzeige der Difficulty Values
I Key	Anzeige der Indices
P Key	Anzeige der Pheromonwerte
Mausklick	Setzen und Löschen von Futterquellen
O Key	Visualisierung der Pheromonspur

Stefan Reinhold 24.03.2017

Speicher und CPU

Im folgenden Diagramm wird die Anzahl der Ameisen in Relation zur CPU Auslastung und den Memory Verbrauch gesetzt. Als Performance-Indikator werden die FPS verwendet.

