Low concentration

High concentration

Membrane

Diffusion

Facilitated diffusion

VSL[10] 4-10

Active transport

Diffusion distance (µm)	Time required for diffusion		
1	0.5 msec		
10	50 msec		
100	5 sec 8.3 min		
1000 (1 mm)			
10,000 (1 cm)	14 hr		

B&L[5], Table 1-1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Model of mediated (facilitated) transport. The transporter binding site is initially exposed to solute on one side of the membrane. A change in the conformation of the transporter (carrier) protein (possibly induced by the binding of the solute) then exposes the binding site to the other side of the membrane – thus, the substance is transported from one side of the membrane to the other. Such systems can work in only one direction or in both directions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

VSL[10] 4-11

4

Model of a secondary active transport system. The binding of Na⁺ to its' binding site on the transporter protein (left panel) allows binding of a different solute (purple) to its' binding site. Binding of both substances causes a conformational change in the transporter protein (right panel) that exposes both binding sites to the intracellular fluid. Na⁺ has moved down its' concentration gradient; the (other) solute has been moved up it's concentration gradient by means of the energy in the Na⁺ concentration gradient.

A simple model of endocytosis (top panel) and exocytosis (bottom panel.

TABLE 4-2 M	Major Characteristics of Pathways by which Substances Cross Membranes					
	Diffusion		Mediated Transport			
	THROUGH LIPID BILAYER	THROUGH PROTEIN CHANNEL	FACILITATED DIFFUSION	PRIMARY ACTIVE TRANSPORT	SECONDARY ACTIVE TRANSPORT	
Direction of net flux	High to low concentration	High to low concentration	High to low concentration	Low to high concentration	Low to high concentration	
Equilibrium or steady state	$C_o = C_i$	$C_o = C_i^*$	$C_o = C_i$	$C_o \neq C_i$	$C_o \neq C_i$	
Use of integral membrane protein	No	Yes	Yes	Yes	Yes	
Maximal flux at high concentration (saturation)	No	No	Yes	Yes	Yes	
Chemical specificity	No	Yes	Yes	Yes	Yes	
Use of energy	No	No	No	Yes: ATP	Yes:	

Ions:

Na⁺, K⁺, Ca²⁺

Nonpolar:

acids

O2, CO2, fatty

VSL[10]

ion gradient

(often Na⁺)

amino acids,

glucose, some ions

Polar:

and source

Typical molecules

using pathway

Polar:

glucose

Ions:

Na+, K+,

Ca2+, H+

^{*}In the presence of a membrane potential, the intracellular and extracellular ion concentrations will not be equal at equilibrium.

END

Video 3, Module 1