UNIT 8: Infectious disease

1 Introduction

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - How do they find each other?

Disease agents

- Poll: Name an infectious agent that causes disease in humans.
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies

*

Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways

*

- **Eukaryotic** pathogens are nucleated cells who are more closely related to you than they are to bacteria

*

Microparasites

- For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - Infectious individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

2 Rate of spread

 \bullet Poll: For many diseases, especially new diseases, we can *observe* and *estimate* r.

*

• Poll: Want to know what factors contribute to that, and how it relates to \mathcal{R} .

_

Basic reproductive number

- People in the disease field love to talk specifically about \mathcal{R}_0
- But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of \mathcal{R} before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever
- Often easier to talk simply about \mathcal{R} .

Example: the West African Ebola epidemic

3 Single-epidemic model

- \bullet Susceptible \to Infectious \to Recovered
- ullet We also use N to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - People get better independently
 - People get infected by infectious people

Conceptual modeling

• Poll: What happens in the long term if we introduce an infectious individual?

Interpreting

• Why might there not be an epidemic?

• Why doesn't everyone get infected?

Quantities

State variables

• S, I, R, N: [people] or [people/ha]

Parameters

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- Infectious people recover at per capita rate γ (units [1/time])
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

Simulating the model

Basic reproductive number

• Poll: What unitless parameter can you make from the model above?

_ *

Basic reproductive number implications

• Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?

• What happens early in the epidemic if $\mathcal{R}_0 < 1$?

Effective reproductive number

• The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

 \bullet Is the disease increasing or decreasing?

_

_
• Why doesn't everyone get infected?
_
_
3.1 Epidemic size
• In this model, the epidemic always burns out
 No source of new susceptibles
• Epidemic size is determined by:
_
_
*
*
Overshoot
• Why does more susceptibles at the beginning mean fewer susceptibles at the end?
_
_
_
-
-
Ebola example
• In Contember the UC CDC mediated "agreemy og" 15 million Ebels aggg in Liber

Eb

- In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- ullet In fact, their model predicted many more cases than that by April
- \bullet What happened?

What limits epidemics?

• Poll: What limits epidemics in our simple models?

• Poll: What else limits epidemics in real life?

_

4 Recurrent epidemic models

• Poll: If epidemics tend to burn out, why do we often see repeated epidemics?

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

Closing the circle

4.1 Dynamics

${\bf Equilibrium}$

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - One case per case

 Number of susceptibles at equilibrium determined by the number required to keep infection in balance
$* S/N = 1/\mathcal{R}_0$
• What does this remind you of?
• Number of infectious individuals determined by number required to keep susceptibles in balance.
• As susceptibles go up, what happens?
 Per capita replenishment goes down
 Infections required goes down
Reciprocal control
\bullet What happens to equilibrium if we protect susceptibles (move them to R class)?
_
_
_
_
• What else could happen?
_
_
*
Reciprocal control

Recip

• Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - Tend to oscillate
 - Oscillations tend to be damped
 - * System reaches an **endemic** equilibrium disease persists

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?

_

Persistent oscillations

• Poll: If oscillations tend to be damped in simple models, why do they persist in real life?

*

.

_

5 Reproductive numbers and risk

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Examples

• Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria

5.0

- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

Threshold for elimination

• What proportion of the population should be vaccinated to eliminate a disease?

_

Examples:

- Polio has an \mathcal{R}_0 of about 5.
- Poll: What proportion of the population should be vaccinated to eliminate polio?

_

• Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?

_

• If gonorrhea has an \mathcal{R}_0 of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?

_

Persistence of infectious disease

- Why have infectious diseases persisted?
 - The pathogens evolve
 - Human populations are **heterogeneous**
 - * People differ in: nutrition, exposure, access to care
 - Information and misinformation
 - * Vaccine scares, trust in health care in general

Heterogeneity and persistence

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - * Cases per case is high
 - * Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access