Лабораторная работа № 6. « Работа с системой компьютерной верстки $T_E X$ »

Студент группы Р3123 Иванов Артемий Антонович 21 декабря 2021

Puc. 14.

нику BCD. Тогда исходный треугольник ABC окажется разрезанным на $k^2 + l^2 = {
m n}$ равных треугольников

10класс

- 1. Простейший пример $6\cdot 1, 6\cdot 2, 6\cdot 3$. В общем виде рассмотрите прогрессию A, 2A, ..., (2n-1)A, где $A=1\cdot 2\cdot 3\cdot \ldots \cdot (2n-1)$.
- 2. Меняя местами число 1 с другими числами, мы можем продвинуть 1 к числу 2. Далее можно двойными шагами (сначала перемещается число 2, затем число 1) придвинуть пару 1, 2 к числу 3. Теперь тройку 1, 2,3 можно тройными шагами придвинуть к числу 4. И так далее. В итоге придем к естественному (монотонному) упорядочению данных чисел (по часовой стрелке или против часовой стрелки).
- 3. Обозначим через K, M, P, T (рис. 14) основания высот, опущенных из точки C на прямые AB, AE, DE и BD соответственно. Ясно, что лучи СК и СР лежат между лучами СТ и СМ и четырехугольник КМРТ является выпуклым. Поэтому, в силу теоремы о вписанном угле, для доказательства утверждения задачи достаточно показать, что $\angle TKM + \angle MPT = 180^\circ$. Пусть $\alpha = \angle DBC$, $\beta = \angle EAC$. Очевидно, $\angle DCT = \alpha$ (напомним, что $CT \perp DB$) и $\angle MCE = \beta$. Четыре точки C, T, K, В лежат на одной окружности, поскольку углы $\angle CTB$

60	59	52	51	44	43	16	15
61	58	53	50	45	42	17	14
62	57	54	49	46	41	18	13
63	56	55	48	47	40	19	12
64	35	36	37	38	39	20	11
33	34	29	28	25	24	21	10
32	31	30	27	26	23	22	9
1	2	3	4	5	6	7	8

Puc. 15.

Puc. 16

к $\angle CKB$ прямые. Поэтому $\angle TKC = \angle TBC = \alpha$ (эти углы равны как опирающиеся на одну и ту же дугу). Аналогично, $\angle CKM = \angle CAM = \beta$ (точки C, M, K, A лежат на одной окружности), $\angle DPT = \angle DCT = \alpha$ (точки C, P, T, D лежат на одной окружности), $\angle EPM = \angle ECM = \beta$ (точки E, M, P, C лежат на одной окружности). Следовательно, $\angle TKM + \angle TPM = (\alpha + \beta) + (180^{\circ} - \alpha - \beta) = 180^{\circ}$. Отсюда следует требуемое утверждение.

4. Из неравенства между средним арифметическим и средним геометрическим каждое их отношений $\frac{a}{1+a^2}$, $\frac{b}{1+b^2}$, $\frac{c}{1+c^2}$, не превосходит 1/2. Отсюда следует левое неравенство. Докажем правое неравенство. Пусть $\mathbf{x}{=}1+\mathbf{a},\ \mathbf{y}{=}1+\mathbf{b},\ \mathbf{z}{=}1+\mathbf{c}$. Тогда $x+y+z\leq 6$. Поделив это неравенство на \mathbf{x} , \mathbf{y} , \mathbf{z} и сложив получающиеся при этом три неравенства, получим неравенство

$$(1+\frac{y}{x}+\frac{z}{x})+(\frac{x}{y}+1+\frac{z}{y})+(\frac{x}{z}+\frac{y}{z}+1)\leq 6(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}),$$

откуда и следует требуемое неравенство, так как

$$\frac{x}{y} + \frac{y}{x} \le 2, \frac{y}{z} + \frac{z}{y} \le 2, \frac{z}{x} + \frac{x}{z} \le 2$$

- 5. Указание: рассмотрите график функции y=f(x), где $f(x)=(x^2-1)(x^2-10)$. При c=0 уравнение f(x)=0 имеет только три целых корня (-1, 0 и 1). При $c\neq 0$ уравнение f(x)=c вне отрезка [-1;1] имеет не более трех корней, а на отрезку [-1;1] целых корней не имеет.
- 6. а) Не может. Для того чтобы вернуться на поле a1, нужно сделать четное число ходов по горизонтали и четное число ходов по вертикали, т. е. общее число ходов должно быть четным. Число посещений всех полей шахматной доски по условию задачи равно 1+2+3+...+64=2080 и является четным. В начальный момент ладья уже находится на поле a1 (есть одно посещение). Следовательно, остается осуществить 2079 посещений и сделать это надо за четное число ходов, что, очевидно, невозможно