

Outline

Introduction

Description of the Standard Model

Environmental Influences

Advanced model: Environment simulation

Simulation results and analysis

Summary

Introduction

Figure 1: Diagram of our work [khoury13] [seeley95].

Description of the Standard Model

It consists of four differential equations:

- Change of brood number
- Change of hive bee number
- Change of forager bee number
- Change of food

Description of the Standard Model

Let's look into one equation: Change of brood number

$$\frac{dB}{dt} = LS(H, f) - \phi B \tag{1}$$

- ullet L is the laying rate of the queen
- S is the survival rate
- *H* is the amount of hive bees
- f is the amount of food
- $\bullet \hspace{0.1in} \phi$ is the adult bee emerging factor

Environmental Influences

Figure 2: The laying rate of the bee queen plotted over a year.

Environmental Influences

Comparison between the environment dependent equation and the standard one:

- \bullet static equation: $\frac{dB}{dt} = LS(H,f) \phi B$
- ullet dynamic equation: $rac{dB}{dt} = L_t S(H,f) \phi B$
- \longrightarrow small changes in the formulae have significant effects (cf. Discussion).

Advanced model: Environment simulation

Model overview

Figure 3: Honey bee social dynamics and environmental influences covered by our advanced model.

Agents: Assigning jobs

Figure 4: Assigning jobs to unemployed bees. Scouts and foragers are possible.

Foragers' distribution across flower patches

- Bees will focus on newly reported and then on the most profitable food sources
- Driving factors for evaluating a patch (p < q):
 - 1. Patch quality (b_w)
 - 2. Distance from the hive (d_w)
 - 3. Patch size (A_w)
- Relative evaluation based on what other foraging sources are available

Agents: Scout bees

Figure 5: Scouting behaviour until a flower patch is found or the maximum distance is reached.

The path a scout bee walks is recorded in a vector of x and y coordinates:

$$\begin{pmatrix} x_0 & x_1 & \dots & x_n \\ y_0 & y_1 & \dots & y_n \end{pmatrix}$$

Figure 6: Example of a random walk executed by a scout bee.

Agents: Forager bees

Figure 7: Foraging behaviour.

Path optimization

- Bees are able to orientate themselves in the environment with sun positioning [seeley95]
- Every second way point is skipped
- Starting- and endpoints are preserved
- \bullet Triangle inequality $\Rightarrow L^2$ norm of the distance can only become smaller

$$\begin{pmatrix} x_0 & x_1 & x_2 & x_3 & x_4 & \dots & x_{n-3} & x_{n-2} & x_{n-1} & x_n \\ y_0 & y_1 & y_2 & y_3 & y_4 & \dots & y_{n-3} & y_{n-2} & y_{n-1} & y_n \end{pmatrix}$$

$$\implies_{optimization} \begin{pmatrix} x_0 & x_2 & x_4 & \dots & x_{n-4} & x_{n-2} & x_n \\ y_0 & y_2 & y_4 & \dots & y_{n-4} & y_{n-2} & y_n \end{pmatrix}$$

Path optimization

Figure 8: Example of path optimization used to short cut the path to flower patches.

Agents: Returning to the hive

Figure 9: Forager bee, returning from foraging.

Agent based model: recorded sample clips

- Day 158, recorded sample with scouts displayed
- Day 158, recorded sample without scouts displayed
- Two different runs, not the same flower patches are being selected

Simulation results and analysis

- Evolution of the model
- Missing flower season comparison
- Critical points in the fall season

Evolution of the model

Daily simulation

Missing flower season comparison

- Eliminate non critical seasons
- Study effects of missing season
- Observe the hives compensation measures

Spring

Summer

Critical points in the fall season

Death criteria:

- Less than 1000 bees at day 400
- Less than 20 kg of stored food at day 400

Overview

Stored food variation before fall

Peak value influence

Delay influence around breaking point

Summary

- Standard Model after D.S. Khoury.
- Advanced Model: Environment simulation
- Autumnal shift is indifferent
- Hive is rather stable
- Model restrictions

