## Matrix Fejďż"r-Riesz theorem with gaps

Aljaďż" Zalar

Konstanz, 29 May 2015



R - the ring of complex polynomials  $\mathbb{C}[x]$   $(x^* = \overline{x} = x)$  or complex Laurent polynomials  $\mathbb{C}[z, \frac{1}{z}]$   $(z^* = \overline{z} = \frac{1}{z})$ 

$$M_n(R)$$
 - matrix polynomials  $(F^* = \overline{F}^T)$ 

 $H_n(R)$  - hermitian matrix polynomials

 $\sum M_n(R)^2$  - SOHS matrix polynomials, i.e. finite sums of the form  $\sum A_i^*A_i$ , where  $A_i \in M_n(R)$ 

## Matrix Fejďż"r-Riesz theorem

### Theorem (Fejér-Riesz theorem on $\mathbb T)$

Let

$$A(z) = \sum_{m=-N}^{N} A_m z^m \in M_n \left( \mathbb{C} \left[ z, \frac{1}{z} \right] \right)$$

be a  $n \times n$  matrix Laurent polynomial, such that A(z) is positive semidefinite for every  $z \in \mathbb{T} := \{z \in \mathbb{C} \colon |z| = 1\}$ . Then there exists a matrix polynomial  $B(z) = \sum_{m=0}^N B_m z^m \in M_n(\mathbb{C}[z])$ , such that

$$A(z) = B(z)^*B(z).$$

# Matrix Fejďż"r-Riesz theorem

### Theorem (Fejér-Riesz theorem on $\mathbb R)$

Let

$$F(x) = \sum_{m=0}^{2N} F_m x^m \in M_n(\mathbb{C}[x])$$

be a  $n \times n$  matrix polynomial, such that F(x) is positive semidefinite for every  $x \in \mathbb{R}$ . Then there exists a matrix polynomial  $G(x) = \sum_{m=0}^{N} G_m x^m \in M_n(\mathbb{C}[x])$ , such that

$$F(x) = G(x)^* G(x).$$

### Main problem

#### Problem

- Characterize univariate matrix Laurent polynomials, which are positive semidefinite on a union of points and arcs in  $\mathbb{T}$ .
- ② Characterize univariate matrix polynomials, which are positive semidefinite on a union of points and intervals (not necessarily bounded) in  $\mathbb{R}$ .

A basic closed semialgebraic set  $K_S \subseteq \mathbb{R}$  associated to a finite subset

$$S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[x]$$

is given by

$$K := K_S = \{x \in \mathbb{R} : g_j(x) \ge 0, j = 1, \dots, s\}.$$

We define the *n*-th matrix preordering  $T_S^n$  by

$$T_{\mathcal{S}}^n := \{\sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e \colon \sigma_e \in \sum M_n(\mathbb{C}[x])^2 \text{ for all } e \in \{0,1\}^s\},$$

where  $e=(e_1,\ldots,e_s)$  and  $g^e$  stands for  $g_1^{e_1}\cdots g_s^{e_s}$ .

Let  $\operatorname{Pos}_{\geq 0}^n(K_S)$  be the set of all  $n \times n$  hermitian matrix polynomials, which are positive semidefinite on  $K_S$ .

Matrix preordering  $T_S^n$  is saturated if  $T_S^n = Pos_{\geq 0}^n(K_S)$ .

Saturated matrix preordering  $T_S^n$  is boundedly saturated, if every  $F \in \mathsf{Pos}^n_{\succeq 0}(K_S)$  is of the form  $\sum_{e \in \{0,1\}^s} \sigma_e \underline{g}^e$ , where

$$\deg(\sigma_e \underline{g}^e) \leq \deg(F)$$

holds for every  $e \in \{0,1\}^s$ .

Let  $K \subseteq \mathbb{R}$  be a basic closed semialgebraic set.

A set  $S = \{g_1, \dots, g_s\} \subset \mathbb{R}[x]$  is the *natural description* of K, if it satisfies the following conditions:

- (a) If K has the least element a, then  $x a \in S$ .
- (b) If K has the greatest element a, then  $a x \in S$ .
- (c) For every  $a \neq b \in K$ , if  $(a, b) \cap K = \emptyset$ , then  $(x a)(x b) \in S$ .
- (d) These are the only elements of S.

Let  $K = \bigcup_{j=1}^m [x_j, y_j] \subseteq \mathbb{R}$  be a basic compact semialgebraic set.

A set  $S = \{g_1, \dots, g_s\} \subset \mathbb{R}[x]$  with  $K = K_S$  is the *saturated description* of K, if it satisfies the following conditions:

- (a) For every left endpoint  $x_j$  there exists  $k \in \{1, ..., s\}$ , such that  $g_k(x_j) = 0$  and  $g'_k(x_j) > 0$ .
- (b) For every right endpoint  $y_j$  there exists  $k \in \{1, ..., s\}$ , such that  $g_k(y_j) = 0$  and  $g'_k(y_j) < 0$ .

### Known results - scalar case

• (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering  $T_S^1$  is (even boundedly) saturated.

### Known results - scalar case

- (Kuhlmann, Marshall, 2002) If S is the natural description of K, then the preordering  $T_S^1$  is (even boundedly) saturated.
  - K not compact:  $T_S^1$  is saturated if and only if S contains each of the polynomials in the natural description of K up to scaling by positive constants.
  - K compact (Scheiderer, 2003):  $T_S^1$  is saturated if and only if S is saturated description of K.

### Known results - matrix case

• (Gohberg, Krein, 1958) For  $K = \mathbb{R}$ ,  $T_{\emptyset}^{n}$  is boundedly saturated for every  $n \in \mathbb{N}$ .

### Known results - matrix case

- (Gohberg, Krein, 1958) For  $K = \mathbb{R}$ ,  $T_{\emptyset}^{n}$  is boundedly saturated for every  $n \in \mathbb{N}$ .
- ② (Dette, Studden, 2002) For  $K = K_{\{x,1-x\}} = [0,1]$ ,  $T^n_{\{x,1-x\}}$  is boundedly saturated for every  $n \in \mathbb{N}$ .

### Known results - matrix case

- (Gohberg, Krein, 1958) For  $K = \mathbb{R}$ ,  $T_{\emptyset}^{n}$  is boundedly saturated for every  $n \in \mathbb{N}$ .
- ② (Dette, Studden, 2002) For  $K = K_{\{x,1-x\}} = [0,1]$ ,  $T^n_{\{x,1-x\}}$  is boundedly saturated for every  $n \in \mathbb{N}$ .
- ③ (Schmďż″dgen, Savchuk, 2012) For  $K = K_{\{x\}} = [0, \infty)$ ,  $T_{\{x\}}^n$  is boundedly saturated for every  $n \in \mathbb{N}$ .

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

### New results

### Theorem (Compact Nichtnegativstellensatz)

Let K be compact. The n-th matrix preordering  $T_S^n$  is saturated for every  $n \in \mathbb{N}$  if and only if S is a saturated description of K.

### Proposition

Suppose K is a non-empty basic closed semialgebraic set in  $\mathbb R$  and S a saturated description of K. Then for every  $F \in Pos_{\succeq 0}^n(K)$  and every  $w \in \mathbb C \setminus \{0\}$  there exists  $h \in \mathbb R[x]$ , such that  $h(w) \neq 0$  and  $h^2F \in T_S^n$ .

### Proposition

Suppose K is a non-empty basic closed semialgebraic set in  $\mathbb R$  and S a saturated description of K. Then for every  $F \in Pos^n_{\succeq 0}(K)$  and every  $w \in \mathbb C \setminus \{0\}$  there exists  $h \in \mathbb R[x]$ , such that  $h(w) \neq 0$  and  $h^2F \in T^n_S$ .

#### Proof of Proposition.

The proof is by induction of the size of matrix polynomials n. We write  $F(x) = p(x)^m G(x)$ , where

$$p(x) = \begin{cases} x - w, & w \in \mathbb{R} \\ (x - w)(x - \overline{w}), & w \notin \mathbb{R} \end{cases}, m \in \mathbb{N}_0, G(w) \neq 0.$$

### Proof of Proposition.

Writing 
$$G = \begin{bmatrix} a & \beta \\ \beta^* & C \end{bmatrix} \in M_n(\mathbb{C}[x])$$
, where  $a = a^* \in \mathbb{R}[x]$ ,  $\beta \in M_{1,n-1}(\mathbb{C}[x])$  and  $C \in H_{n-1}(\mathbb{C}[x])$  it holds

(i) 
$$a^4 \cdot G = \begin{bmatrix} a^* & 0 \\ \beta^* & a^*I_{n-1} \end{bmatrix} \begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} \begin{bmatrix} a & \beta \\ 0 & aI_{n-1} \end{bmatrix}$$

(ii) 
$$\begin{bmatrix} a^3 & 0 \\ 0 & a(aC - \beta^*\beta) \end{bmatrix} = \begin{bmatrix} a^* & 0 \\ -\beta^* & a^*I_{n-1} \end{bmatrix} \cdot G \cdot \begin{bmatrix} a & -\beta \\ 0 & aI_{n-1} \end{bmatrix}.$$

### Proof of Proposition.

Therefore

$$a^4F = \begin{bmatrix} a & 0 \\ \beta^* & aI_{n-1} \end{bmatrix} \begin{bmatrix} d & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} a & \beta \\ 0 & aI_{n-1} \end{bmatrix},$$

where  $d=p^ma^3\in\mathbb{R}[x],\ D=p^m\left(a\mathcal{C}-eta^*eta
ight)\in H_{n-1}\left(\mathbb{C}\left[x
ight]
ight).$  and

$$\left[\begin{array}{cc} d & 0 \\ 0 & D \end{array}\right] \ = \ \left[\begin{array}{cc} a & 0 \\ -\beta^* & a I_{n-1} \end{array}\right] F \left[\begin{array}{cc} a & -\beta \\ 0 & a I_{n-1} \end{array}\right].$$

By the induction hypothesis, there exists appropriate  $h_1 \in \mathbb{R}[x]$ , such that  $h_1^2D \in T_S^{n-1}$  and by  $h_1^2d \in T_S^1$ , it follows that  $(a^2h_1)^2F \in T_S^n$ .

To conclude the proof we need the following:

### Proposition (Scheiderer, 2006)

Suppose R is a commutative ring with 1 and  $\mathbb{Q} \subseteq R$ . Let  $\Phi: R \to C(K, \mathbb{R})$  be a ring homomorphism, where K is a topological space which is compact and Hausdorff. Suppose  $\Phi(R)$  separates points in K. Suppose  $f_1, \ldots, f_k \in R$  are such that  $\Phi(f_j) \geq 0$ ,  $j = 1, \ldots, k$  and  $(f_1, \ldots, f_k) = (1)$ . Then there exist  $s_1, \ldots, s_k \in R$  such that  $s_1 f_1 + \ldots + s_k f_k = 1$  and such that each  $\Phi(s_j)$  is strictly positive.

The ideal

$$I := \left(h^2 \colon h \in \mathbb{R}[x], h^2 F \in T_S^n\right)$$

is  $\mathbb{R}[x]$ . Therefore there exist  $s_1, \ldots, s_k \in \mathsf{Pos}^1_{\succ 0}(K)$  and  $h_1, \ldots, h_k \in I$ , such that

$$\sum_{j=1}^k s_j h_j^2 = 1.$$

Hence,  $\sum_{j=1}^{k} s_j h_j^2 F = F \in T_S^n$ , which concludes the proof.

#### Example

The matrix polynomial  $F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$  is positive semidefinite on  $K := [-1,0] \cup [1,\infty)$ , but  $F \notin T_S^2$ , where S is the natural description of K.

### Example

The matrix polynomial  $F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$  is positive semidefinite on  $K := [-1,0] \cup [1,\infty)$ , but  $F \notin T_S^2$ , where S is the natural description of K.

#### Proof.

All the principal minors of F, i.e. x + 2,  $x^2 - 2x + 3$  and  $det(F) = x^3 - x$  are non-negative on K.

### Example

The matrix polynomial  $F(x) := \begin{bmatrix} x+2 & \sqrt{6} \\ \sqrt{6} & x^2-2x+3 \end{bmatrix}$  is positive semidefinite on  $K := [-1,0] \cup [1,\infty)$ , but  $F \notin T_5^2$ , where S is the natural description of K.

#### Proof.

All the principal minors of F, i.e. x+2,  $x^2-2x+3$  and  $\det(F)=x^3-x$  are non-negative on K. Suppose

$$F(x) = \sigma_0 + \sigma_1(x+1) + \sigma_2x(x-1) + \sigma_3(x+1)x(x-1), \quad (*)$$

where  $\sigma_i \in \sum M_2(\mathbb{C}[x])^2$ .

#### Proof.

After comparing degrees of both sides we conclude that  $\sigma_3=0$ ,  $\deg(\sigma_0)\leq 2$ ,  $\deg(\sigma_1)=0$ ,  $\deg(\sigma_2)=0$  and observing the monomial  $x^2$  on both sides, it follows that  $\sigma_2=\begin{bmatrix}0&0\\0&c\end{bmatrix}$  for some  $c\in[0,1]$ .

#### Proof.

After comparing degrees of both sides we conclude that  $\sigma_3=0$ ,  $\deg(\sigma_0)\leq 2$ ,  $\deg(\sigma_1)=0$ ,  $\deg(\sigma_2)=0$  and observing the monomial  $x^2$  on both sides, it follows that  $\sigma_2=\begin{bmatrix}0&0\\0&c\end{bmatrix}$  for some  $c\in[0,1]$ . (\*) is equivalent to  $F(x)-\sigma_2x(x-1)=\sigma_0+\sigma_1(x+1)$ .

#### Proof.

After comparing degrees of both sides we conclude that  $\sigma_3=0$ ,  $\deg(\sigma_0)\leq 2$ ,  $\deg(\sigma_1)=0$ ,  $\deg(\sigma_2)=0$  and observing the monomial  $x^2$  on both sides, it follows that  $\sigma_2=\begin{bmatrix}0&0\\0&c\end{bmatrix}$  for some  $c\in[0,1]$ . (\*) is equivalent to  $F(x)-\sigma_2x(x-1)=\sigma_0+\sigma_1(x+1)$ . The right-hand side is positive semidefinite on  $[-1,\infty)$ .

#### Proof.

After comparing degrees of both sides we conclude that  $\sigma_3=0$ ,  $\deg(\sigma_0)\leq 2$ ,  $\deg(\sigma_1)=0$ ,  $\deg(\sigma_2)=0$  and observing the monomial  $x^2$  on both sides, it follows that  $\sigma_2=\begin{bmatrix}0&0\\0&c\end{bmatrix}$  for some  $c\in[0,1]$ . (\*) is equivalent to  $F(x)-\sigma_2x(x-1)=\sigma_0+\sigma_1(x+1)$ . The right-hand side is positive semidefinite on  $[-1,\infty)$ . But the determinant of the left-hand side is

$$q(x) := -(-1+x)x(-1+2c+(-1+c)x).$$

Since  $q \not\equiv 0$  and q cannot have double zeroes at x = 0 and x = 1, it is not non-negative on  $[-1, \infty)$ . Contradiction.

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

# Classification of non-compact sets K

Let K be a non-compact closed semialgebraic set with a natural description S. The classification of sets K according to  $T_S^n$  being saturated is the following:

# Classification of non-compact sets K

| К                                            | $T_S^n$ sat. |
|----------------------------------------------|--------------|
| an unbounded interval                        | Yes          |
| a union of an unbounded interval and         | conj.: Yes   |
| an isolated point                            |              |
| a union of an unbounded interval and         | No           |
| m isolated points with $m \ge 2$             |              |
| a union of two unbounded intervals           | Yes          |
| a union of two unbounded intervals and       | conj.: Yes   |
| an isolated point                            |              |
| a union of two unbounded intervals and       | No           |
| $m$ isolated points with $m \ge 2$           |              |
| includes a bounded and an unbounded interval | No           |

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

# Classification of compact sets K

Let K be a compact closed semialgebraic set with a natural description S. The classification of sets K according to  $T_S^n$  being boundedly saturated is the following:

# Classification of compact sets K

| K                                    | $T_S^n$ sat. | $T_S^n$ bsat. |
|--------------------------------------|--------------|---------------|
| a union of at most three points      | Yes          | Yes           |
| a union of $m$ points with $m \ge 4$ | Yes          | No            |
| a bounded interval                   | Yes          | Yes           |
| a union of a bounded interval        | Yes          | conj.: Yes    |
| and an isolated point                |              |               |
| a union of a bounded interval and    | Yes          | No            |
| $m$ isolated points with $m \ge 2$   | 165          | INO           |
| a compact set containing             | Yes          | No            |
| at least two intervals               |              |               |

# Non-compact Nichtnegativstellensatz

### Theorem (Non-compact Nichtnegativstellensatz)

Suppose K is an unbounded basic closed semialgebraic set in  $\mathbb{R}$  and S a saturated description of K. Then, for a hermitian  $F \in M_n(\mathbb{C}[x])$ , the following are equivalent:

- $\bullet F \in Pos^n_{\succeq 0}(K).$
- $(1+x^2)^k F \in T_S^n \text{ for some } k \in \mathbb{N} \cup \{0\}.$

Compact Nichtnegativstellensatz Counterexample for non-compact case Classification of closed semialgebraic sets Non-compact Nichtnegativstellensatz

Thank you for your attention!