TRABAJO PRÁCTICO Nº 7

UNIDAD TEMÁTICA nº 5 Teoría de la Estimación. Estimación puntual. Propiedades de los estimadores puntuales.

SUBTEMA. Propiedad de insesgamiento. Propiedad de eficiencia. La eficiencia relativa.

EJERCICIOS: Cálculo de estimadores puntuales insesgados para los parámetros de una población. Cálculo de la eficiencia absoluta y relativa de estimadores puntuales.

1.- De una máquina enlatadora de arvejas un supervisor toma una muestra al azar de 10 latas, observando los siguientes pesos en gramos.

796	790	798	801	797	796	803	802	804	802

- a) Con estos datos, calcular las estimaciones puntuales de los siguientes parámetros.
 - 1. Peso promedio de todas las latas de arvejas.
 - 2.- Variabilidad cuadrática promedio de las latas.
 - 3- Desviación estándar de los pesos de las latas.
 - 4.- Proporción de latas que pesan más de 800 gramos.
- b) Indicar para qué parámetros poblacionales se hallaron estimaciones insesgadas en el inciso a).
- **2.-** De una población que sigue una distribución normal de media μ y varianza σ^2 , se extrae una muestra aleatoria de n observaciones (X_1, X_2, X_n)
- a.- Verifique que la media muestral es un estimador insesgado de µ
- b.- Determine la varianza de la media muestral
- c.- Conociendo que $E(x) = \mu$, verificar si $E(x)^2$ es un estimador insesgado de μ^2 .
- **3.** Sea X_1 y X_2 una muestra aleatoria de dos observaciones de una población de media μ y varianza σ^2 . Considerar dos posibles estimadores puntuales de μ :

$$X_a = 1/3 X_1 + 2/3 X_2$$
 $X_b = \frac{1}{4} X_1 + \frac{3}{4} X_2$

- a.- Verificar cuál de estos estimadores:
 - 1.- Es insesgado para estimar a µ
 - 2.- Tiene la menor varianza
- b.- Hallar la eficiencia relativa de X a con respecto a X b

SUBTEMA: Función de distribución conjunta. Método de máxima verosimilitud

EJERCICIOS: Cálculo de estimadores máximo verosímiles.

4.- El número de partículas radioactivas que pasan por un contador en un milisegundo sigue una distribución de Poisson con parámetro desconocido λ . Para estimar λ se toma una muestra al azar de tamaño 5 conteos, que son los siguientes:

0	3	4	5	1

- a.- Presentar la función de verosimilitud.
- b.- Calcular el estimador máximo verosímil para λ.
- **5.** En un experimento binomial se observan 5 éxitos en n ensayos. Obtener el estimador máximo verosímil del parámetro p.
- **6.-** X es una variable aleatoria que sigue una distribución normal de media μ y varianza σ^2 desconocidas. Utilizando una muestra aleatoria de X, compuesta por las observaciones (X₁, X₂,....X_n), hallar los estimadores máximo verosímiles de la media y la varianza.