| Enrolment | Number: |  |
|-----------|---------|--|
|-----------|---------|--|

## P P SAVANI UNIVERSITY P P SAVANI SCHOOL OF ENGINEERING

5<sup>th</sup> Semester of B Tech Examination (2<sup>nd</sup> Internal Exam) Subject: Design & Analysis of Algorithms (SEIT3032) Branch: CE/IT

[Date: 01/10/2019, Tuesday]

and why.

Q-6 (b)

[Time: 02.00 P.M. to 03.00 P.M.]

[Total Marks: 30]

(02)

## Instructions:

- Figures to the right indicate full marks.
- Use of scientific calculator is allowed.
- Draw neat and clean drawings & Assume suitable data if necessary.

Define NP-Hard and NP-Completeness.

| Q.1     | Find optimal solution to the knapsack problem by dynamic programming instance n=6,                                                                                | (05) |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Q.2     | Capacity=15, $(p1p6) = (10,5,15,7,6,18)$ , $(w1w6) = (2,3,5,7,1,4)$<br>Write the backtracking algorithm for the sum of subsets problem using the state space tree | (05) |
| Q.3     | state the principle of optimality. Solve multi stage graph using dynamic programming.                                                                             | (05) |
| Q.4     | Design Native string matching algorithm with example. What is the time complexity of the                                                                          | (05) |
| Q.5     | algorithm?  Device backtracking algorithm to find solution to the 4-queens problem and represent the                                                              | (05) |
| Q.5     | solution space in state space tree.                                                                                                                               | (03) |
| Q.6 (a) | "The class of NP is the class of problems that can never be solved in polynomial time".  True/False                                                               | (00) |
|         | If the statement is true, explain why it is true. If it is false, explain what the correct answer is                                                              |      |

