#### CSE 211 (Theory of Computation)

#### Tanjeem Azwad Zaman

Adjunct Lecturer
Department of Computer Science and Engineering
Bangladesh University of Engineering & Technology

Adapted from slides by

Dr. Muhammad Masroor Ali & Dr. Atif Hasan Rahman



- Three areas of theory of computation
  - Automata
  - Computability
  - Complexity
- Linked by the question
  - What are the fundamental capabilities and limitations of computers?

- Automata
  - Automaton a machine made in imitation of a human being
  - DFA, NFA
  - Context-free grammar (CFG), pushdown automata (PDA)
- Computability
  - Decidability
  - What can or cannot be solved
- Complexity
  - Tractability
  - What can or cannot be solved "efficiently"
  - Time complexity: P, NP, NP-complete, NP-hard
  - Space complexity: PSPACE



"Computer science is no more about computers than astronomy is about telescopes."

- Edsger W. Dijkstra

- Computation and computability
  - Building fast vehicles vs can we exceed the speed of light?
  - Building efficient engines vs can we build a perpetual motion machine?

#### Models of Computation

- Finite Automata
  - DFA, NFA
  - Limited amount of memory
  - Applications in compilers, control units of hardware, etc.
- Context-free grammar
  - More expressive than finite automata
  - Applications in compilers, Al and many other areas
- Turing Machine
  - Even more powerful
  - Can simulate a computer!
  - Problems Turing machine cannot solve are beyond theoretical limits of computation



#### Alan Turing

- "father of theoretical computer science and artificial intelligence" - wiki
- Proposed Turing machines
  - A general model of computation
  - Can simulate a computer
- Helped break the Enigma code during WW II
- Proposed the Turing test for AI
  - Distinguishing humans and computers through interrogation



#### Syllabus

- Regular languages
  - Regular expressions
- Finite automata
  - Deterministic finite automata (DFA)
  - Nondeterministic finite automata (NFA)
- Context-free languages
  - Context free grammars (CFG)
  - Pushdown automata (PDA)
- Turing machines
  - Equivalence with a computer
- Decidability
- Complexity
  - Time and space complexity



#### Syllabus

- Regular languages
  - Regular expressions
- Finite automata
  - Deterministic finite automata (DFA)
  - Nondeterministic finite automata (NFA)
- Context-free languages
  - Context free grammars (CFG)
  - Pushdown automata (PDA)
- Turing machines
  - Equivalence with a computer
- Decidability
- Complexity
  - Time and space complexity



#### Syllabus

- Regular languages
  - Regular expressions
- Finite automata
  - Deterministic finite automata (DFA)
  - Nondeterministic finite automata (NFA)
- Context-free languages
  - Context free grammars (CFG)
  - Pushdown automata (PDA)
- Turing machines
  - Equivalence with a computer
- Decidability
- Complexity
  - Time and space complexity



# Regular Languages

- Regular languages
  - Languages recognized by finite automata DFA, NFA
  - Languages described by regular expressions
- Limitations
  - Finite number of states
  - Hence finite amount of memory
- An example of a non-regular language

# Regular Languages

- Regular languages
  - Languages recognized by finite automata DFA, NFA
  - Languages described by regular expressions
- Limitations
  - Finite number of states
  - Hence finite amount of memory
- An example of a non-regular language

• 
$$B = \{0^n 1^n | n \ge 0\}$$

#### Regular Languages

- Regular languages
  - Languages recognized by finite automata DFA, NFA
  - Languages described by regular expressions
- Limitations
  - Finite number of states
  - Hence finite amount of memory
- An example of a non-regular language
  - $B = \{0^n 1^n | n \ge 0\}$

#### Context-Free Languages

- Context-Free Languages
  - Languages described by context-free grammars (CFG)
  - Languages recognized by pushdown automata (PDA)
- Extensively used in compilers (parsers)
- First used in study of human languages

# An Informal Example

- Language of palindromes
- Palindrome
  - A string that reads the same backward and forward
  - 0110, 11011, ε
- Recursive definition for palindromes (over binary alphabet)
  - 0, 1 and  $\epsilon$  are palindromes
  - if w is a palindrome, then 0w0 and 1w1 are palindromes

# An Informal Example

# aibohphobia

- The word used for the fear of palindromes. The word aibohphobia is itself a palindrome
- https://www.urbandictionary.com/define.php? term=aibohphobia

# An Informal Example

- A CFG for palindromes
  - $\bullet$   $P \rightarrow \epsilon$
  - $\bullet$   $P \rightarrow 0$
  - ullet  $P \rightarrow 1$
  - $\bullet$   $P \rightarrow 0P0$
  - P → 1P1

#### Exercise

Design a CFG for the language

$$\{0^n 1^n | n \ge 0\}$$

- €
- 01
- 0011
- 000111
- ...

# CFG for $\{0^{n}1^{n}|n \ge 0\}$

- A CFG for the language  $\{0^n1^n|n \ge 0\}$ 
  - $A \rightarrow \epsilon$
  - $\bullet$   $A \rightarrow 0A1$

#### Logistics

- Email
  - zaman.tanjeemazwad@gmail.com
- Textbook
  - J. E. Hopcroft, R. Motwani, and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation*
- Reference books
  - M. Sipser, Introduction to the Theory of Computation
  - H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation