Linear Algebra Homework 3

107305008

財管二 孫偉翔

Exercise 6.7

Problem 13

(a) find $[v]_T$

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \end{bmatrix}, \qquad [v]_T = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \end{bmatrix} \sharp$$

find $[w]_T$

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}, \qquad [w]_T = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix} \sharp$$

(b) find $P_{S \leftarrow T}$

$$P_{S \leftarrow T} = [[T_1]_S \ [T_2]_S]$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} c_1 & c_3 \\ c_2 & c_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 & c_3 \\ c_2 & c_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$

$$P_{S \leftarrow T} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \sharp$$

(c) find $[v]_S$, $[w]_S$

$$[v]_S = P_{S \leftarrow T}[v]_T$$

$$= \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -7 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 3 \end{bmatrix} \sharp$$

$$[w]_S = P_{S \leftarrow T}[w]_T$$

$$= \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ -6 \end{bmatrix} \sharp$$

(d) find $[w]_S$ and $[v]_S$

$$\begin{bmatrix} S_1 & S_2 \end{bmatrix} \begin{bmatrix} [v]_S[w]_S \end{bmatrix} = \begin{bmatrix} v & w \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} c_1 & c_3 \\ c_2 & c_4 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 & c_3 \\ c_2 & c_4 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 3 & -6 \end{bmatrix} , [v]_S = \begin{bmatrix} 1 \\ 3 \end{bmatrix} [w]_S = \begin{bmatrix} 5 \\ -6 \end{bmatrix} \sharp$$

(e) find
$$Q_{T \leftarrow S}$$

$$Q_{T \leftarrow S} = [[S_1]_T [S_2]_T]$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} [[S_1]_T[S_2]_T] = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [[S_1]_T[S_2]_T] = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \qquad Q_{T \leftarrow S} = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \sharp$$

(f) find $[v]_T$ and $[w]_T$

$$\begin{aligned} [[v]_T[w]_T] &= Q_{T \leftarrow S}[[v]_S[w]_S] \\ &= \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & -6 \end{bmatrix} \\ &= \begin{bmatrix} -7 & 7 \\ 4 & -1 \end{bmatrix} \qquad [v]_T = \begin{bmatrix} -7 \\ 4 \end{bmatrix} [w]_T = \begin{bmatrix} 7 \\ -1 \end{bmatrix} \sharp \end{aligned}$$

which corresponds to the result in (a)

Problem 15

given bases
$$S = \{t^2+1, t-2, t+3\}, T = \{2t^2+t, t^2+3, t\}$$
 for P_2 $v = 8t^2-4t+6, w = 7t^2-t+9$

(a) find $[v]_T, [w]_T$

$$\begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix} \begin{bmatrix} [v]_T & [w]_T \end{bmatrix} = \begin{bmatrix} v & w \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} [v]_T & [w]_T \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ -4 & -1 \\ 6 & 9 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} [v]_T & [w]_T \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -7 & -3 \end{bmatrix}$$

$$[v]_T = \begin{bmatrix} 3\\2\\-7 \end{bmatrix}, [w]_T = \begin{bmatrix} 2\\3\\-3 \end{bmatrix} \sharp$$
(b)

 $P_{S \leftarrow T} = \begin{bmatrix} [W_1]_S & [W_2]_S & [W_3]_S \end{bmatrix}$

$$M_S P_{S \leftarrow T} = M_T$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix} P_{S \leftarrow T} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} P_{S \leftarrow T} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -0.4 & 0.6 \\ 0 & 0.4 & 0.4 \end{bmatrix}$$

$$\rightarrow P_{S \leftarrow T} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -0.4 & 0.6 \\ 0 & 0.4 & 0.4 \end{bmatrix} \sharp$$

(c)

$$\begin{bmatrix} [v]_S & [w]_S \end{bmatrix} = P_{S \leftarrow T} \begin{bmatrix} [v]_T & [w]_T \end{bmatrix}
\rightarrow \begin{bmatrix} [v]_S & [w]_S \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -0.4 & 0.6 \\ 0 & 0.4 & 0.4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -7 & -3 \end{bmatrix}
= \begin{bmatrix} 8 & 7 \\ -2 & -1 \\ -2 & 0 \end{bmatrix} , [v]_S = \begin{bmatrix} 8 \\ -2 \\ -2 \end{bmatrix} [w]_S = \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix} \sharp$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} [v]_S & [w]_S \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ -4 & -1 \\ 6 & 9 \end{bmatrix}$$

$$\rightarrow [v]_S = \begin{bmatrix} -8\\-2\\-2 \end{bmatrix} [w]_S = \begin{bmatrix} 7\\-1\\0 \end{bmatrix} \sharp$$

(e)

$$M_S Q_{T \leftarrow S} = M_T$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix} Q_{T \leftarrow S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} Q_{T \leftarrow S} = \begin{bmatrix} 1/3 & 1/3 & -0.5 \\ 1/3 & -2/3 & 1 \\ -1/3 & 2/3 & 1.5 \end{bmatrix} \sharp$$

(f)

$$[[v]_T[w]_T] = P_{S \to T}[[v]_S[w]_S]$$

$$\to [[v]_T[w]_T] = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -7 & -3 \end{bmatrix}$$

which corresponds to the result of (a)#

Problem 17

(a)

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} [[v]_T[w]_T] = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [[v]_T[w]_T] = \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$$

$$[v]_T = egin{bmatrix} 1 \ 1 \ 1 \ 0 \end{bmatrix} [w]_T = egin{bmatrix} 2 \ -2 \ 1 \ -1 \end{bmatrix} \sharp$$

(b)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} P_{S \leftarrow T} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} P_{S \leftarrow T} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1/3 & 2/3 & -2/3 & 0 \\ 1/3 & -1/3 & 1/3 & 0 \\ -1/3 & 1/3 & 2/3 & 0 \end{bmatrix}$$

$$P_{S \leftarrow T} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1/3 & 2/3 & -2/3 & 0 \\ 1/3 & -1/3 & 1/3 & 0 \\ -1/3 & 1/3 & 2/3 & 0 \end{bmatrix} \sharp$$

$$\begin{aligned} [[v]_S[w]_S] &= P_{S \leftarrow T} \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \\ 0 & -1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1/3 & 2/3 & -2/3 & 0 \\ 1/3 & -1/3 & 1/3 & 0 \\ -1/3 & 1/3 & 2/3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \\ 0 & -1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ 1/3 & -4/3 \\ 1/3 & 5/3 \\ 2/3 & -2/3 \end{bmatrix} \quad , [v]_S = \begin{bmatrix} 1 \\ 1/3 \\ 1/3 \\ 2/3 \end{bmatrix} [w]_S = \begin{bmatrix} 1 \\ -4/3 \\ 5/3 \\ -2/3 \end{bmatrix} \sharp \end{aligned}$$

(d)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} [[v]_S[w]_S] = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} [[v]_S[w]_S] = \begin{bmatrix} 1 & 1 \\ 1/3 & -4/3 \\ 1/3 & 5/3 \\ 2/3 & -2/3 \end{bmatrix} , [v]_S = \begin{bmatrix} 1 \\ 1/3 \\ 1/3 \\ 2/3 \end{bmatrix} [w]_S = \begin{bmatrix} 1 \\ -4/3 \\ 5/3 \\ -2/3 \end{bmatrix} \sharp$$

(e)

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} Q_{T \leftarrow S} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Q_{T \leftarrow S} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -2 & 0 \end{bmatrix}$$

$$\rightarrow Q_{T \leftarrow S} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -2 & 0 \end{bmatrix} \sharp$$

(f)

$$\begin{aligned} [[v]_T[w]_T] &= \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1/3 & -4/3 \\ 1/3 & 5/3 \\ 2/3 & -2/3 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \\ 0 & -1 \end{bmatrix} \end{aligned}$$

which corresponds to the result in (a)#

Problem 23

$$P_{S \leftarrow T} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$
$$= [[w_1]_S[w_2]_S[w_3]_S$$

thus it follows that

$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} [w_1]_S [w_2]_S [w_3]_S \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$

the set

$$T = \left\{ \begin{bmatrix} 3\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3 \end{bmatrix} \right\} \sharp \tag{1}$$

Problem 26 find S

$$P_{S \leftarrow T} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = [[w_1]_S [w_2]_S]$$

$$S = \{-t+5, t-3\} \,\sharp$$

Theoretical Exercise 6.7

T.1.

Proof. suppose v=w, since S is a basis, there can only exist a unique set of coefficient $\{c_1,c_2...c_n\}$, such that $c_1v_1+c_2v_2+...+c_nv_n=v$, and also, there can only exist a unique set of coefficient $\{b_1,b_2...b_n\}$, such that $b_1v_1+b_2v_2+...+b_nv_n=w$. And since v=w, it follows that, $c_1=b_1,c_2=b_2...,c_n=b_n$, adnd thus, $[v]_S=[w]_S$. On the contrary, suppose $[v]_S=[w]_S$, and thus, the coefficient that form v and w are the same, meaning $c_1v_1+c_2v_2+...+c_nv_n=v=w$, thus, w=v.

As a result, v = w if and only if $[v]_S = [w]_S$

T.3.

Proof. suppose $\{w_1, w_2, \dots, w_k\}$ is a linearly independent set of vectors in V. It follows that $c_1w_1 + c_2w_2 \dots + c_kw_k = \vec{0}$, where only $c_1 = c_2 = \dots = c_k = 0$ satisfies the equation. Changing both sides to base S coordinate vector. It follows that,

$$[c_1w_1 + c_2w_2 \dots + c_kw_k]_S = [\vec{0}]_S$$

$$\to [c_1w_1]_S + [c_2w_2]_S \dots + [c_kw_k]_S = 0_n$$

$$\to c_1[w_1]_S + c_2[w_2]_S \dots + c_k[w_k]_S = 0_n$$

where only $c_1 = c_2 = \ldots = c_k = 0$ satisfies the equation, thus, $[w_1]_S, [w_2]_S, \ldots [w_k]_S$ a is linearly independent set of vectors in \mathbb{R}^n

Proof. Since S is a basis, it follows that

$$[v_1]_S = e_1, [v_2]_S = e_2, \dots, [v_n]_S = e_n$$

Thus,

$$\{[v_1]_S, [v_2]_S \dots [v_n]_S\} = \{e_1, e_2 \dots, e_n\}$$

. Since every vector in \mathbb{R}^n can be spanned by $\{e_1, e_2, \dots, e_n\}$, and the vectors in $\{e_1, e_2, \dots, e_n\}$ are linearly independent. Thus $\{[v_1], [v_2], \dots [v_n]_S\}$ is a basis \mathbb{R}^n .

T.7.

(a)

Proof. since

$$M_S = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

$$M_T = \begin{bmatrix} w_1 & w_2 & \dots & w_n \end{bmatrix}$$

and it is known that,

$$P_{S \leftarrow T} = [[v_1]_S[v_2]_S \dots [v_3]_S] \qquad \text{and that}$$

$$M_S[w_1]_S = w_1$$

thus,

$$M_S[[v_1]_S[v_2]_S \dots [v_3]_S] = M_T$$

 $\to M_S P_{S \leftarrow T} = M_T$

and since M_T and M_S are non-singular, thus it follows that, $P_{S\leftarrow T}=M_S^{-1}M_T\sharp$

(b)

Proof. consider homogeneous system $P_{S \leftarrow T} \vec{x} = \vec{0}$ it means that

$$M_S^{-1} M_T \vec{x} = \vec{0}$$
 by multiplying M_S on both sides $\to M_T \vec{x} = \vec{0}$

and since M_T is non-singular, it follows that the homogeneous system only contains trivial solutions. Thus, $P_{S\leftarrow T}$ is non-singular

(c)

Proof.

$$M_{S} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow M_{S}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ -2 & 1 & 4 \end{bmatrix}$$

$$M_{T} = \begin{bmatrix} 6 & 4 & 5 \\ 3 & -1 & 5 \\ 3 & 3 & 2 \end{bmatrix}$$

$$P_{S \leftarrow T} = M_{S}^{-1} M_{T}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ 1 & 1 & -2 \\ -2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 6 & 4 & 5 \\ 3 & -1 & 5 \\ 3 & 3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

the result holds \sharp