

Yelp Pitch Deck

Team: Katrin Maliatski, Kaylyn Nguyen, Mahnoor Shahid, Rimsa Shrestha, Jenna Woo, & Christina Zhu

Business Problem

Problem

Local businesses on Yelp struggle to interpret large volumes of unstructured customer reviews

Context

Although they have access to extensive user-generated data, small business owners often lack the tools needed to extract actionable insights

Business Impact

As a result, they miss valuable opportunities to improve products and enhance customer satisfaction, which ultimately harms customer retention, brand reputation, and revenue

Proposed Business Solution Approach

Objective: Enable local businesses to optimize their Yelp presence by using sentiment analysis to improve customer retention and operational decisions

Key Recommendations:

	Review Quality Optimization	Predictive Customer Targeting	Geographic Expansion Insights
Business Question	What keywords + tones drive higher ratings?	Who is most likely to revisit or engage again?	Where should we open a new location?
Action	Guide owners on using sentiment analysis on reviews	Use model predictions to segment and retarget high-likelihood users	Cluster review/check-in data to identify high-interest, low-competition areas
Outcome	Increase in star ratings by ~0.2–0.5 on average	Improved retention and re-engagement rates	15–25% performance boost via strategic location placement

Proposed Data Science Solution Approach

Goal: Use machine learning and NLP to perform sentiment analysis and deliver actionable insights for businesses on Yelp

Approach:

- **Problem:** Binary sentiment classification of customer reviews
- Data: Yelp Open Dataset (review text, star ratings converted to sentiment labels)
- **Users:** Local business owners, Yelp platform analysts
- **Target:** Binary sentiment classification of customer reviews
- Features: Text vectorization with Bag of Words, TF-IDF, and n-Grams
- **Algorithms:** Logistic Regression, Support Vector Machine, Random Forest
- Evaluation Metrics: Accuracy, Precision, Recall, F1 Score, ROC AUC
- **Deployment:** Model integration into customer insight dashboards

Data Science Process Model

Business Understanding: Yelp's role as a connector between users and local businesses

Data Understanding: Explore Yelp dataset to assess review patterns and user behavior

Data Collection: Gather review data with ratings

Data Preprocessing: Cleanse, label sentiment (positive/negative)

Feature Engineering: Vectorize text with three techniques (Bag of Words, TF-IDF, and n-Grams)

Modeling: Use Logistic Regression, Support Vector Machine, Random Forest to train and tune classifiers

with GridSearchCV

Evaluation: Cross-validate model accuracy and business relevance of insights

Deployment & Monitoring: Set up real-time sentiment scoring

Sentiment Analysis Model

Text classification used to determine positive/negative sentiment to scale analysis of large text datasets, real-time insights

Top Performer of 9 Models: n-Gram + Logistic Regression

Accuracy: 94%Precision: 94%

Recall: 94%

• F1 Score: 94%

ROC AUC: 98%

- Best combination of accuracy, interpretability, and performance
- Excellent at minimizing false negatives
 - Ensures few unhappy customers are missed
- Keeps false positives low
 - Avoids wasting resources on happy customers
- Ideal for early-stage sentiment monitoring and business decision-making

Data Science Process Model Implementation

Phase 1

Data collection and initial model development
(Months 1-2)

Phase 2

Pilot testing with 50 coffee shops in Bay Area (Month 3)

Phase 3

Iteration & testing with 50 other small businesses in Bay Area (Month 4)

Phase 4

Dashboard development and API integration (Months 5-6)

Phase 5

Full deployment and monitoring system (Month 7)

Phase 6

Expand to 1000+ businesses across multiple categories (Months 8-12)

Expected Impact & Next Steps

Expected impact:

- Increase in average Yelp star ratings by guiding review response strategy
- 15-25% boost in local visibility through targeted geographic insights
- Improved customer retention by identifying and rewarding likely return users

Next steps:

- Finalize model selection based on performance evaluation
- Package recommendations into business-friendly deliverables (e.g., dashboards)
- Prepare demo use case for a sample business category (e.g., coffee shops)

Thank you!

