2019 年工科高代pro max重制版

一. 选择题 (每题 2 分	分,共 24 分)				
1. 若 3 阶方阵 <i>A</i> = (α ₁	α_2 α_3)的行列式 $ A $ =	1,则 $ 2\alpha_1 \alpha_2 \alpha_3 - 5\alpha_1 $ =	: ().		
(A) -3	(B) 8	(C) 3	(D) 2		
2. 设 A、B 是 n 阶可证	逆方阵 $(n>1)$, A^* 、	B^* 为其伴随矩阵,则	下列运算正确的是 ().	
$(\mathbf{A}) \ (AB)^* = A^*B^*$	(B) $ -A = - A $	(C) $(A^*)^{-1} = (A^{-1})^*$	$\mathbf{(D)} \ (kB)^* = k^n B^*$		
3. 若 A 、 B 是两个不同的 n 阶方阵,且 A 与 B 相似,则 A 、 B 之间不同的是 ().					
(A) 特征值	(B) 行列式值	(C) 秩	(D) 特征向量		
4. 若 $A \setminus B$ 为 n 阶实对称阵,则 A 与 B 合同的充要条件是 ().					
(A) A 与 B 有相同的特征值		(B) A 与 B 有相	(B) A 与 B 有相同的秩		
(C) $A 与 B$ 有相同的正、负惯性指数 (D) $A 与 B$ 有相同的行列式值					
5.	其中 <i>B、C</i> 为方阵, <i>0</i>	为零矩阵,若 A 可逆,	则 ().		
(A) 只有 B 可逆	(B) 只有 C 可逆	(C) <i>B、C</i> 可逆性	·不定 (D) <i>B</i> 与 <i>C</i> 都	可逆	
6. 下列变换 σ 是线性	变换的是 ().				
(A) 在R ³ 中, $\sigma[(x_1, x_2, x_3)^T] = (x_1 - x_3, x_2^2, x_3)^T$					
(B) 在R ³ 中,σ[($[x_1, x_2, x_3]^T] = (x_1 + x_2, x_1)^T$	$-x_2,2x_3)^T$			
(C) 在R ³ 中,σ[($[x_1, x_2, x_3]^T] = (x_1 + 1, x_2,$	$(x_3)^T$			
(D) 在R ^{n×n} 中, A	为给定的 n 阶非零方	阵, $\forall X \in \mathbb{R}^{n \times n}$, $\sigma[X]$	A = AX + A		
7. 设 <i>A</i> 为 <i>m</i> × <i>n</i> 阶矩图		=0},则维数dim(W)	+R(A) = ().		
(A) <i>n</i>	(B) <i>m</i>	(C) <i>n</i> -1	(D) <i>m</i> -1		
8. 设 A 为 n 阶正交矩阵,下列说法 不正确 的是 ().					
$(\mathbf{A}) A^{-1} = A^T$		(B) A 的列向量经	组是单位正交的向量组		
(C) A ⁻¹ = A*(伴随矩阵)		(D) A = −1 或 1	(D) <i>A</i> = −1 或 1		

9. 设 M_n 是所有 n 阶矩阵在矩阵的加法和数乘运算下构成的线性空间,下列集合中能构成 M_n 子空间的是().				
(A) 所有 n 阶可逆矩阵的全体 (B) 所有 n 阶对称矩阵的全体				
(C) 所有 n 阶正定矩阵的全体 (D) 所有 n 阶正交矩阵的全体				
10. 设 $A \neq m \times n$ 阶矩阵, $B \neq n \times m$ 阶矩阵,则().				
(A) 当 $m > n$ 时,必有行列式 $ AB = 0$ (B) 当 $m > n$ 时,必有行列式 $ AB \neq 0$				
(C) 当 $m < n$ 时,必有行列式 $ AB = 0$ (D) 当 $m < n$ 时,必有行列式 $ AB \neq 0$				
11. A为任意 阶实矩阵,下列说法 正确 的是 ().				
(A) A^TA 不一定能相似于对角阵 (B) A^TA 是正交矩阵				
(C) $A^T A 与 A A^T$ 有相同的迹 (D) $A^T A$ 是正定矩阵				
12. 设 $A \neq n$ 阶方阵, $\alpha \neq n$ 维列向量,若秩 $R\begin{pmatrix} A & \alpha \\ \alpha^T & O \end{pmatrix} = R(A)$,则线性方程组 ().				
(A) $Ax = \alpha$ 必有无穷多解 (B) $Ax = \alpha$ 必有唯一解				
(C) $\begin{pmatrix} A & \alpha \\ \alpha^T & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ 只有零解 (D) $\begin{pmatrix} A & \alpha \\ \alpha^T & O \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ 必有非零解				
二. 填空题 (每题 2 分, 共 12 分)				
$1. \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}^n = \underline{\hspace{1cm}}$				
2. 若 3 阶方阵 A 有两个特征值 0 和 1 , $A+I$ 的秩为 2 ,其中 I 为单位阵,则行列式				
$ A^2 + I = \underline{\hspace{1cm}}$				
3. 已知 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, I 为 2 阶单位阵,矩阵 B 满足 $BA = B + 2I$,则 $B = \underline{\hspace{1cm}}$				

4. 已知向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量组 $\beta_1=\alpha_1-\alpha_3$, $\beta_2=\alpha_1+2\alpha_2+\alpha_3$, $\beta_3=t\alpha_1+\alpha_2-\alpha_3$ 线

性相关,则 *t* = ______

5.
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2^2 & 2^3 \\ 3 & 3^2 & 3^3 \\ \vdots & \vdots & \vdots \\ n & n^2 & n^3 & n^n \end{vmatrix}$$

6. 设 3 阶方阵 A 有特征值 2, 2, 1 且**不可相似**于对角阵,则其若当标准形为

三. 判断题 (每题 1 分, 共 11 分) (正确的在括号内打"√", 错误的在括号内打"X")

- 1. 任意线性变换都可以把线性空间的一组基映射为一组基.()
- **2.** 若 V_1, V_2 是 n 维线性空间中的两个 m 维子空间(0 < m < n),则 $V_1 = V_2$.()
- **3.** 若 A 是正交矩阵,则 $A^{-1}A^*$ 不一定是正交矩阵.(
- 4. 任何两个维数相等的欧氏空间都是同构的.()
- **5.** 若矩阵 C 与 D 有相同的秩,则 C 经过初等变换可以得到 D.(
- **6.** 若 A 与 B 相似, f(x) 是非零多项式,则 f(A) 与 f(B) 相似. ()
- 7. 若 A 与 B 合同,A 是正定矩阵,则 B 也是正定矩阵. ()
- **8.** 若 α_1 , α_2 , α_3 中任意两个向量线性无关,则 α_1 , α_2 , α_3 一定线性无关. ()
- **9.** 设 $A \setminus B \setminus C$ 是三个 4 阶方阵,其中行列式 $|C| \neq 0$,且满足ACB = O, 为零矩阵,则秩 R(A) + R(B) + R(C)可能为 9. ()
- 10. 若矩阵 $A \neq O$, $B \neq O$, 则 $AB \neq O$. ()
- 11. 若 n 元线性方程组 $A_{m\times n}$ x=0 只有零解,则 $A_{m\times n}$ x=b 必有唯一解. ()

四. 计算下列各题 (每题 6 分, 共 18 分)

- 1. 设四维向量空间 \mathbf{R}^4 中由 $\alpha_1=\begin{pmatrix}1\\1\\1\\0\end{pmatrix}$, $\alpha_2=\begin{pmatrix}1\\0\\2\\1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}1\\2\\3\\2\end{pmatrix}$ 生成的空间为W ,
- (1) 求W的维数与一组基; (2) 求W的一组标准正交基.

2. 设 A 为 n 阶可逆矩阵, α , β 均为 n 维列向量. 记分块矩阵

$$P = \begin{pmatrix} \mathbf{I} & O \\ -\alpha^T A^* & |A| \end{pmatrix}, \quad Q = \begin{pmatrix} A & \beta \\ \alpha^T & 1 \end{pmatrix},$$

其中 I 为 n 阶单位阵, A^* 为 A 的伴随矩阵.

(1) 计算并化简 PQ 为分块上三角阵; (2) 求行列式 |Q|.

3. 设 3 阶实对称阵的各行元素之和均为 2,向量 $\alpha_1 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ 是线性方程组 Ax = 0

的两个解向量. (1) 求 A 的特征值与特征向量; (2) 求 $(A-I)^{10}$.

五. 求解下列题目 (每题 9 分, 共 27 分)

1. 由所有二阶方阵在矩阵的加法和数乘运算下构成的线性空间中,设

$$A_1 = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 1 & -1 \\ 3 & 7 \end{pmatrix},$$

 W_1 是由 A_1,A_2 生成的子空间, W_2 是由 B_1,B_2 生成的子空间.

(1) 求 $W_1 \cap W_2$ 的维数与一组基; (2) 求 $W_1 + W_2$ 的维数与一组基.

2. 设数域 F 上的三维线性空间 V,定义在 V 上的线性变换 σ 对基底 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 的作用如下:

$$\sigma(\varepsilon_1) = 2\varepsilon_1 + \varepsilon_2 + \varepsilon_3,$$

$$\sigma(\varepsilon_2) = 2\varepsilon_2,$$

$$\sigma(\varepsilon_3) = -\varepsilon_2 + \varepsilon_3.$$

- (1) 求线性变换 σ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵A;
- (2) 判断 A 可否对角化;若可以对角化,试求出相应的可逆矩阵 P 使得 $P^{-1}AP$ 为对角阵;
- (3) 求 V的一组基,使得 σ 在这组基下的矩阵为对角阵.

- **3.** 已知二次型 $f(x_1, x_2, x_3) = 4x_1^2 + (2 + \frac{a}{2})x_2^2 + (2 + \frac{a}{2})x_3^2 + (4 a)x_2x_3$.
- (1) 求此二次型的矩阵及它的秩;
- (2) 当此二次型的秩为 2 时,求正交变换 x=Qy,把 $f(x_1,x_2,x_3)$ 化成标准形,并写出此标准形;
- (3) 说明此二次型是否为正定二次型.

六. 证明题 (每题 4 分, 共 8 分)

1. 设 A 为 n 阶 实 反 对 称 阵, 求 证: 对 任 何 n 维 列 向 量 x, 均 有 $x^T A x = 0$, 且 A + I 可 逆.

2. 设实的 3 维单位列向量 α 与 β 正交,令 $A = \alpha \beta^T + \beta \alpha^T$,求证: 1 和 0 是 A 的特征值.