Beyond Shared Vocabulary: Increasing Representational Word Similarities across Languages for Multilingual Machine Translation

Di Wu, Christof Monz Language Technology Lab, Univeristy of Amsterdam

Introduction

- 1. Shared vocabulary is common practice:
 - a. Multilingual Translation, mBert, LLama, GPT, ...
- 2. Shared vocabulary is good:
 - a. Simple design, easy to scale
 - **b. Word overlap** encourge knowledge transfer, when they refer to similar meanings across languages
- 3. But has limitations:
 - a. When languages use different writing system, there is little word overlap and knowledge transfer suffers.
 - b. Even if language use similar writing systems, shared tokens may have completely different meanings.

4. What we do:

- a. Mine priors of word equivalence based on word alignments, then model them into a graph.
- Inject such priors into embedding table via graph networks, thereby enhancing knowledge transfer.

Experiments

- 1. IWSLT14: 8 English-centric language pairs, the size of each is range from 89K to 169K
- 2. EC30: 30 language pairs, 5 different writing systems, High (5M), Medium (1M), Low (100K)
- 3. Results in short:
 - a. High-level consistent improvement: 1) for all of the language direction, and 2) as graph networks goes deeper.
 - b. Zero-shot: Also, get improved.
 - c. Ablation: Tying new embeddings with the decoder's projection matters

Results on IWSLT14 & Ablation

Model	DE	ES	FA	AR	HE	NL	PL	IT	EN→X	X→EN	AVG
Baseline (Lin et al., 2021)	28.1	35.2	16.9	20.9	29.0	30.9	16.4	29.2	-	-	25.8
LASS (Lin et al., 2021)	29.8	37.3	17.9	22.9	30.9	33.0	17.9	30.9	-	-	27.6
Our Baseline	28.5	36.0	17.4	20.2	27.9	31.5	17.6	29.7	24.4	27.8	26.1
Weighted Sum	29.2	36.7	18.1	20.9	28.5	32.2	18.2	30.5	24.8	28.7	26.8
GraphMerge-1hop	30.2	37.5	19.0	21.7	30.0	33.4	18.8	31.3	25.4	30.0	27.7
GraphMerge-2hop	30.4	37.9	19.0	21.9	30.0	33.7	19.2	31.6	25.5	30.5	28.0
GraphMerge-3hop	30.7	38.2	19.9	22.3	30.1	34.0	19.4	32.2	25.4	31.3	28.4
3-hop Gain	+2.2	+2.2	+2.5	+2.1	+2.2	+2.5	+1.8	+2.5	+1.0	+3.5	+2.3

Settings	$EN\rightarrow X$	$X\rightarrow EN$	AVG
Baseline	24.4	27.8	26.1
1-hop	25.4	30.0	27.7
1-hop w/o Tie	25.4	28.7	27.0
2-hop	25.5	30.5	28.0
2-hop w/o Tie	25.1	29.6	27.4
3-hop	25.4	31.3	28.4
3-hop w/o Tie	25.3	29.4	27.4
2-hop	25.5	30.5	28.0
$eflomal \rightarrow FastAlign$	25.4	30.1	27.8
$intersect \rightarrow gdfa$	25.2	29.9	27.6

Results on EC30: English-centric & Zero-shot

Model	High		Medium		Low		ALL		
Model	EN→X	X→EN	EN→X	X→EN	EN→X	X→EN	EN→X	X→EN	AVG
Baseline (TransBig)	28.7	31.3	31.0	31.4	20.0	25.6	26.5	29.4	28.0
GraphMerge-1hop	29.5	32.0	31.7	31.8	20.6	27.0	27.3	30.3	28.8
GraphMerge-2hop	29.7	32.2	32.0	32.0	20.9	27.4	27.6	30.5	29.1
GraphMerge-3hop	29.4	31.8	32.0	31.9	21.0	27.4	27.5	30.4	29.0
2-hop Gain	+1.0	+0.9	+1.0	+0.6	+0.9	+1.8	+1.1	+1.1	+1.1

Analysis: Performance & Word Similarity

- 1. Settings:
 - a. Using MUSE (bilingual dictionary) as ground truth:
 - b. Estimation similarities between equivalent words in MUSE
- 2. High-level Consistence:
 - a. Deeper Graph -> Better Crosslinguality
 - b. Better Crosslinguality -> Higher BLEU
 - c. Works for all of the language pairs
- 3. Beyond English-Centric Word Similarity:
 - a. Consistently works as well
 - b. Transfer beyond English-centric language pairs, even though only English-centric data are leveraged.

English-Centric Cross-lingual Word Similarity

Model	EN↔	DE	EN↔.	NL	EN↔.	AR	EN↔	HE
Model	Similarity	BLEU	Similarity	BLEU	Similarity	BLEU	Similarity	BLEU
Baseline	0.24	28.5	0.25	31.5	0.23	20.2	0.23	27.9
GraphMerge-1hop	0.35	30.2	0.37	33.4	0.32	21.7	0.32	30.0
GraphMerge-2hop	0.42	30.4	0.44	33.7	0.38	21.9	0.38	30.0
GraphMerge-3hop	0.46	30.7	0.48	34.0	0.41	22.4	0.41	30.1
Model	EN↔	ES	EN↔FA EN↔PI		PL	L EN↔IT		
Model	Similarity	BLEU	Similarity	BLEU	Similarity	BLEU	Similarity	BLEU
Baseline	0.25	36.0	0.22	17.4	0.24	17.6	0.27	29.7
GraphMerge-1hop	0.38	37.5	0.31	19.0	0.35	18.8	0.40	31.3
GraphMerge-2hop	0.45	37.9	0.37	19.0	0.43	19.2	0.48	31.6
GraphMerge-3hop	0.49	38.2	0.40	19.9	0.47	19.4	0.52	32.2

Beyond English-Centric Cross-lingual Word Similarity

Model	DE↔NL	DE↔AR	$DE \leftrightarrow HE$	$NL\leftrightarrow AR$	$NL \leftrightarrow HE$	$AR \leftrightarrow HE$
Baseline	0.29	0.23	0.25	0.24	0.26	0.29
GraphMerge-1hop	0.36	0.28	0.30	0.30	0.31	0.33
GraphMerge-2hop	0.42	0.32	0.34	0.35	0.35	0.37
GraphMerge-3hop	0.47	0.36	0.38	0.39	0.39	0.41

Analysis: Speed & Memory

1. Extra Latency:

- a. Limited
- b. Consistant when vocabulary is fixed
- 2. Extra Params and Memory:
 - a. Sparse, so they are "nothing"
- 3. Easy to scale:
 - a. Works for BIG model
 - b. Works for BIG vocalbuary

Model	WPS	Times
Transformer (30K)	201,378	1.00
GraphMerge-1hop	192,367	1.04
GraphMerge-2hop	188,851	1.06
Transformer-Big (128K)	69,702	1.00
GraphMerge-1hop	43,416	1.61
GraphMerge-2hop	33,912	2.05
Model	Params	Times
Model Transformer (30K)	Params 62.3M	1.00
Transformer (30K)	62.3M	1.00
Transformer (30K) GraphMerge-1hop	62.3M 63.3M	1.00 1.01
Transformer (30K) GraphMerge-1hop GraphMerge-2hop	62.3M 63.3M 64.4M	1.00 1.01 1.02

Conclusion

- 1. Broadly Speaking:
 - a. Mine meaning-equivalent priors and inject into embeddling table.
- 2. Goodness:
 - a. A framework to reparameteriz embedding table for better multilinguality, resulting in significant transfer improvements.
 - b. Leading to consistent improvements in MNMT.
 - c. Remain Practical as well:
 - i. Through multi-hop mechanism, the pivot language bridge the way of knowledge transfer amony non-English-centric pairs.
 - ii. A negligible number of additional parameters and computational cost.
 - Identical inference cost via storing the re-parameterized embeddings for online systems.