

32K x 8 Reprogrammable Registered PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
 - 30-ns address set-up
 - 15-ns clock to output
- Low power
 - 660 mW (commercial)
 - -715 mW (military)
- Programmable address latch enable input

- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered output registers
- EPROM technology, 100% programmable
- Slim 300-mil, 28-pin plastic or hermetic DIP
- 5V $\pm 10\%$ V_{CC}, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs

• Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C277 is a high-performance 32K word by 8-bit CMOS PROMs. It is packaged in the slim 28-pin 300-mil package. The ceramic package may be equipped with an erasure window; when exposed to UV light, the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide algorithms.

Selection Guides

		7C277-30	7C277-40	7C277-50
Minimum Address Set-Up Time (ns)	30	40	50	
Maximum Clock to Output (ns)		15	20	25
Maximum Operating	Com'l	120	120	120
Current (mA)	Mil		130	130

Functional Description (continued)

The CY7C277 offers the advantages of low power, superior performance, and high programming yield. The EPROM cell requires only 12.5V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

On the 7C277, the outputs are pipelined through a master-slave register. On the rising edge of CP, data is loaded into the 8-bit edge

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

triggered output register. The $\overline{E/E_S}$ input provides a programmable bit to select between asynchronous and synchronous operation. The default condition is asynchronous. When the asynchronous mode is selected, the $\overline{E/E_S}$ pin operates as an asynchronous output enable. If the synchronous mode is selected, the $\overline{E/E_S}$ pin is sampled on the rising edge of CP to enable and disable the outputs. The 7C277 also provides a programmable bit to enable the Address Latch input. If this bit is not programmed, the device will ignore the ALE pin and the address will enter the device asynchronously. If the ALE function is selected, the address enters the PROM while the ALE pin is active, and is captured when ALE is deasserted. The user may define the polarity of the ALE signal, with the default being active HIGH.

UV Erasure	Wsec/cm ²
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. >2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0° C to $+70^{\circ}$ C	5V ±10%
Industrial ^[1]	-40°C to +85°C	5V ±10%
Military ^[2]	−55°C to +125°C	5V ±10%

				7C27	7C277-30		7C277-40, 50	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -2.0$	mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 m/s	A		0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical I for All Inputs	Guaranteed Input Logical HIGH Voltage for All Inputs			2.0	V_{CC}	V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
I_{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$			+10	-10	+10	μΑ
V_{CD}	Input Clamp Diode Voltage				Note 4			
I_{OZ}	Output Leakage Current	$0 \le V_{OUT} \le V_{CC}$, Output Disabled ^[5]		-40	+40	-40	+40	μΑ
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = 0.0$	$V_{[6]}$	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$V_{CC} = Max., \overline{CS} \ge V_{IH}$ $I_{OUT} = 0 \text{ mA}$	Commercial		120		120	mA
		IOUT – O IIIA	Military				130	
V_{PP}	Programming Supply Voltage	•		12	13	12	13	V
I_{PP}	Programming Supply Current				50		50	mA
V_{IHP}	Input HIGH Programming Voltage			3.0		3.0		V
$V_{\rm ILP}$	Input LOW Programming Voltage				0.4		0.4	V

Notes:

- Contact a Cypress representative for industrial temperature range specifications.
- 2. \hat{T}_A is the "instant on" case temperature.
- 3. See the last page of this specification for Group A subgroup testing information.
- See "Introduction to CMOS PROMs" in this Book for general information on testing.
- For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
- For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $ $V_{CC} = 5.0\text{V}$	10	pF
C _{OUT}	Output Capacitance	v CC = 2.0 v	10	pF

AC Test Loads and Waveforms^[4]

CY7C277 Switching Characteristics Over the Operating Range^[3, 4]

		7C27	7-30	7C277-40		7C277-50		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{AL}	Address Set-Up to ALE Inactive	5		10		10		ns
t _{LA}	Address Hold from ALE Inactive	10		10		15		ns
t _{LL}	ALE Pulse Width	10		10		15		ns
t _{SA}	Address Set-Up to Clock HIGH	30		40		50		ns
t _{HA}	Address Hold from Clock HIGH	0		0		0		ns
t _{SES}	E _S Set-Up to Clock HIGH	12		15		15		ns
t _{HES}	E _S Hold from Clock HIGH	5		10		10		ns
$t_{\rm CO}$	Clock HIGH to Output Valid		15		20		25	ns
t _{PWC}	Clock Pulse Width	15		20		20		ns
$t_{\rm LZC}^{[7]}$	Output Valid from Clock HIGH		15		20		30	ns
$t_{ m HZC}$	Output High Z from Clock HIGH		15		20		30	ns
$t_{\rm LZE}^{[8]}$	Output Valid from E LOW		15		20		30	ns
t _{HZE} ^[8]	Output High Z from E HIGH		15		20		30	ns

Notes: 7. Applies only when the synchronous (\overline{E}_S) function is used.

^{8.} Applies only when the asynchronous (\overline{E}) function is used.

Architecture Configuration Bits

Architecture Bit	Architecture Verify D ₇ - D ₀		Function
ALE	D_1	0 = DEFAULT	Input Transparent
		1 = PGMED	Input Latched
ALEP	D_2	0 = DEFAULT	ALE = Active HIGH
		1 = PGMED	ALE = Active LOW
$\overline{E}/\overline{E}_{S}$	D_0	0 = DEFAULT	Asynchronous Output Enable $(\overline{\overline{E}})$
		1 = PGMED	Synchronous Output Enable $(\overline{\mathbb{E}}_{S})$

Bit Map

Programmer Address (Hex.)	RAM Data
0000	Data
•	•
•	•
7FFF 8000	Data Control Byte

 $\begin{array}{cccc} Architecture \ Byte \ (8000) \\ D_7 & D_0 \\ C_7 \ C_6 \ C_5 \ C_4 \ C_3 \ C_2 \ C_1 \ C_0 \end{array}$

Timing Diagram (Input Latched)[9]

Timing Diagram (Input Transparent)

Note: 9. ALE is shown with positive polarity.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please

see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

			Pin Function $^{[10]}$				
	Read or Output Disable	$A_{14} - A_0$	$\overline{\mathrm{E}},\overline{\mathrm{E}}_{\mathrm{S}}$	СР	ALE	$O_7 - O_0$	
Mode	Other	$A_{14} - A_0$	VFY	PGM	V_{PP}	$D_7 - D_0$	
Read		$A_{14} - A_0$	V_{IL}	V_{IH}	$V_{ m IL}$	$O_7 - O_0$	
Output	Disable	$A_{14} - A_0$	$V_{ m IH}$	X	X	High Z	
Progran	n	$A_{14} - A_0$	V_{IHP}	$V_{\rm ILP}$	V_{PP}	$D_7 - D_0$	
Progran	m Verify	$A_{14} - A_0$	$V_{\rm ILP}$	V _{IHP} /V _{ILP}	V_{PP}	$O_7 - O_0$	
Prograr	n Inhibit	$A_{14} - A_0$	V_{IHP}	V_{IHP}	V_{PP}	High Z	
Blank (Check	$A_{14} - A_0$	$V_{\rm ILP}$	V _{IHP} /V _{ILP}	V_{PP}	$O_7 - O_0$	

Note: 10. X = "don't care" but not to exceed $V_{CC} \pm 5\%$.

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

C277-12

Ordering Information [11]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C277-30JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-30PC	P21	28-Lead (300-Mil) Molded DIP	1
	CY7C277-30WC	W22	28-Lead (300-Mil) Windowed CerDIP	1
40	CY7C277-40JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-40PC	P21	28-Lead (300-Mil) Molded DIP	1
	CY7C277-40WC	W22	28-Lead (300-Mil) Windowed CerDIP	1
	CY7C277-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C277-40KMB	K74	28-Lead Rectangular Cerpack	1
	CY7C277-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	1
	CY7C277-40QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	1
	CY7C277-40TMB	T74	28-Lead Windowed Cerpack	1
	CY7C277-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP	1
50	CY7C277-50JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-50PC	P21	28-Lead (300-Mil) Molded DIP	1
	CY7C277-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	1
	CY7C277-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C277-50KMB	K74	28-Lead Rectangular Cerpack	1
	CY7C277-50LMB	L55	32-Pin Rectangular Leadless Chip Carrier	1
	CY7C277-50QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	1
	CY7C277-50TMB	T74	28-Lead Windowed Cerpack	1
	CY7C277-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	1, 2, 3
$V_{ m OL}$	1, 2, 3
$V_{ m IH}$	1, 2, 3
$V_{ m IL}$	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t_{SA}	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
t_{CO}	7, 8, 9, 10, 11

Document #: 38-00085-E

Note:
11. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

Package Diagrams

28-Lead (300-Mil) CerDIP D22 MIL-STD-1835 D-15 Config. A

32-Lead Plastic Leaded Chip Carrier J65

28-Lead Rectangular Cerpack K74 MIL-STD-1835 F-11 Config. A

32-Pin Rectangular Leadless Chip Carrier L55 MIL-STD-1835 C-12

Package Diagrams (continued)

28-Lead (300-Mil) Molded DIP P21

32-Pin Windowed Rectangular Leadless Chip Carrier Q55 $_{\rm MIL-STD-1835~C-12}$

Package Diagrams (continued)

28-Lead Windowed Cerpack T74

28-Lead (300-Mil) Windowed CerDIP W22 MIL-STD-1835 D-15 Config. A

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.