Laboratory Work #04

DIGITAL SIGNAL PROCESSING (DSP)

Instructor: **Zhiliang Liu**

Updated: 5/20/2019

- 1. Design a Butterworth bandpass IIR filter. The desired specifications of the digital filter are as follow: normalized passband edges as $\omega_{p1} = 0.45\pi$ and $\omega_{p2} = 0.65\pi$, normalized stopband edges at $\omega_{s1} = 0.3\pi$ and $\omega_{s2} = 0.75\pi$, passband ripple of 1dB, and a minimum stopband attenuation of 40dB. Plot the gain and phase responses using MATLAB.
- 2. Using the M-file fir1, design a linear-phase FIR bandpass filter with the following specifications: stopband edges at 0.6π and 0.8π , passband edges at 0.65π and 0.75π , maximum passband attenuation of 0.2 dB, and minimum stopband attenuation of 42 dB. Using each of the following windows for the design: Hamming, Hann and Kaiser. Show the impulse response coefficients, and plot the gain response of the designed filters for each case.