TÁBUAS DE MORTALIDADE - INTRODUÇÕES TEÓRICAS

Nota da Editora: Com o intuito de contribuirmos para o aprimoramento técnico do ramo, estamos introduzindo aspectos teóricos da formulação das tábuas, através de tradução do Capítulo XXVIII do "Manual de Matemáticas Financeiras" de Justin H. Moore, publicação da "Union Tipográfica Editorial Hispano - Americana", edição de 1946, "Traducción castellana del Ing. Teodoro Ortiz R.".

Tábuas de Mortalidade

A população da terra pode estimar-se hoje (1929) em aproximadamente 2 bilhões de pessoas. A falta de um censo recente da China e de outras regiões densamente povoadas e sem informes exatos sobre outras várias regiões pouco conhecidas como o Vale do Amazonas, torna evidente que a cifra anterior somente pode ser aproximada. Mas, contudo, uma coisa é certa, a saber, que todas e cada uma dessas pessoas tem que morrer. Para os infortúnios que a vida trás consigo não há outro remédio senão aqueles que podem aportar nossos recursos espirituais; mas, para a pobreza que pode armazenar os que dependem de nós, para as perdas materiais que podem por em perigo um lar, para os riscos que podem fazer perigar uma empresa, se descobriu, afortunadamente, um baluarte defensivo. O princípio fundamental que serve de base aos seguros de todas as classes é que é conveniente distribuir entre muitos as perdas de uns poucos. Se bem que seja certo que mais tarde ou mais cedo morrerão todos os habitantes de um país de um momento determinado, somente uma percentagem relativamente pequena dos mesmos morrerão efetivamente num ano. Ninguém pode dizer em que ano morrerá. "Os seguros de vida em suas numerosas formas cumprem a função de permitir aos indivíduos de salvaguardar-se contra essas desgraças, fazendo com que as perdas dos menos afortunados as paguem as contribuições dos muitos que estão expostos ao mesmo risco." (Huebuer, ss. "Life Insurance," p. 1, 1923 D'Appleton & Co., New York.)

Problemas Práticos Relacionados com as Probabilidades de Vida

Nos assuntos de cada dia se apresentam amiúde situações nas quais importa saber calcular as probabilidades da vida humana. Os testamenteiros, os administradores, os fideicomissários, assim como os advogados e juízes têm comumente que enfrentar-se com problemas que implicam em questões tais como o valor atual de uma soma que se espera receber no futuro, a duração provável de alguma renda vitalícia, o valor de um conjunto de bens de raízes ou da renda produzida por um fideicomisso, as probabilidades matemáticas de que uma pessoa determinada viva até alcançar certa idade ou sobreviva a alguma outra pessoa, ou as probabilidades conjuntas de vida de duas ou mais pessoas. Na realidade, as tábuas de seguros de vida te<mark>m uma</mark> importância considerável em relação a muitas classes de direitos da propriedade. Assim, por exemplo, muitas sociedades anônimas estabeleceram sistemas de pensão bem intencionadas mas baseados em princípios atuariais pouco sólidos, sendo esta a causa da derrocada destes sistemas com consequentes resultados desastrosos para todos os interessados. O estudo minucioso de mais de 400 sistemas de pensões estabelecidos nos Estados Unidos por diversas sociedades anônimas mostra de forma conclusiva, que poder-se-ia ter economizado milhões de dólares, assim como uma quantidade incalculável de boa vontade, se os dirigentes de muitas destas sociedades tivessem conhecido melhor os princípios mais elementares das probabilidades de vida, estudados nestes capítulos e nos que se seguem. Os fideicomissários e em particular os bancos de depósitos não poderão cumprir bem seus deveres se ignoram esses princípios. É, pois, evidente a importância das probabilidades de vida do ponto de vista jurídico. Por exemplo, nos casos de morte por acidente devido a negligência, a indenização só se pode fixar com equidade tendo em conta a probabilidade de vida do falecido e avaliando de acordo com ela a perda que representam seus ganhos prováveis.

Base dos seguros de vida

Os fundos com os quais se pode pagar compensações pelas perdas materiais causadas pela morte, se tem que obter dos vivos. Ninguém pode dizer, evidentemente, com exatidão quem vai morrer em determinado ano. Todos estamos expostos a esse perigo. Estudando as estatísticas de mortalidade de um grupo numeroso de pessoas é possível estimar com grande aproximação o número dos que morreriam provavelmente num dado ano. Assim, o risco de morrer a que estão sujeitas todas as pessoas pode ser avaliado, assim como de se calcular o valor que deva pagar para comprar proteção, que cubra os que dele dependem contra as perdas que sofreriam se morresse. Esses pagamentos a troco da proteção contra o risco de morte recebem o nome de prêmios de seguros. Se estes prêmios se baseassem em puras conjeturas, haveria poucas probabilidades de se fixar com alguma aproximação a quantidade de dinheiro que deveria pagar como conceito de prêmio a pessoa assegurada. São muitas as mutualidades e as organizações privadas de seguros que acabaram mal e se viram obrigadas a dissolver-se, com perdas importantes para os sobreviventes, simplesmente porque os prêmios não tinham sido calculados sobre uma sólida base matemática. A única maneira de se calcular o número de pessoas que morreriam em determinado ano é basearmos nossos cálculos em dados estatísticos exatos do passado.

Construção das tábuas de mortalidade

Uma tábua de mortalidade se baseia em dados de nascimentos e mortes e nas idades ao morrer. A utilidade destes dados depende de que as estatísticas sejam exatas, representativas, comparáveis e adequadas. Quando a informação concernente a estas estatísticas de vida se dispõe em forma de tabela se obtém o que se chama uma tábua de mortalidade e dela se pode deduzir, por meio da teoria das probabilidades, a probabilidade de vida ou morte de uma pessoa.

A compilação de estatísticas e a construção de tábuas de mortalidades para uso nos seguros de vida datam da mais remota antiguidade.

A tábua de mortalidade mais antiga que se tem conhecimento é a compilada por Ulpiano, prefeito pretoriano de Roma, do ano 364 A.C.. Foi elaborada com o fim de determinar valores adequados de anualidades sobre vidas. A primeira tábua de mortalidade calculada sobre uma base científica e matemática foi publicada pelo astrônomo Halley em 1693. Hoje a tábua mais usada nos Estados Unidos é a "American Experience Table of Mortality" (Nota: levar em conta a data de publicação do livro - 1946), publicada em 1868 por Shepparce Homans, atuário na época da Mutual Life Insurance Company, de New York, deduzida da experiência da companhia e ajustada consultando a "Actuariales Table", (Tábua de Atuários) inglesa que apareceu 25 anos antes.

Descrição da "American Experience Table"

O que na realidade fazem as tábuas de mortalidade baseadas na experiência norteamericana é seguir passo a passo as vidas de 100.000 (cem mil) pessoas, desde a idade de 10 anos até que ocorra a morte da última delas. Cada ano morre um certo número dessas 100.000 pessoas, variando o número de um ano para outro, e a "matéria-prima" da tábua consiste em: a) o número de pessoas observadas, isto é, 100.000; e b) o número delas que morre cada ano até que, finalmente tenha falecido a última. Se bem que a tábua não tenha sido construída desta maneira, já que não teria sido nem prático e nem conveniente seguir as vidas de 100.000 pessoas durante oito ou dez décadas, foi construída de maneira que seu efeito fosse o mesmo, isto é, estudando durante um ano grupos de pessoas de diversas idades e anotando quantas delas em cada grupo morrem no ano. Embora a "American Experience Table" se use bastante nos Estados Unidos, não se ajusta tanto à realidade como há sessenta anos. Desde então as pessoas aprenderam a importância do saneamento das povoações e das casas; a embriaguez é menos comum, o trabalho diário é menos cansativo e em consequência dessas mudanças a vida humana se ampliou. Parece provável que a ciência possa conseguir ampliar ainda mais a vida humana no futuro. Mas, ainda que antiquada e inexata no que se refere à provável duração da vida humana hoje em dia, as companhias de seguros continuam usando a "American Experience Table". Isto as beneficia, já que o número de pessoas que morre hoje nas idades mais baixas é menor do que antes. Em consequência, o risco assumido por uma companhia de seguros de vida ao contratar uma apólice não é tão grande como indica a tábua, e que equivale a dizer que os prêmios pagos são algo mais elevados do que o necessário para os dias de hoje. Contudo, do ponto de vista do detentor da apólice não há nenhuma razão para que ele se queixe, já que a maior parte das companhias são mútuas e os segurados recebem agora dividendos anuais maiores. Todos devem sentirse satisfeitos da indestrutível força financeira que resultou da acumulação de grandes superávites, que têm permitido às companhias fazerem frente a perdas tais como as causadas pelas epidemias e pelas guerras.

Observações sobre a forma de expressar a idade de uma pessoa

A primeira vista ninguém imaginaria que se poderia produzir alguma confusão no que se diz respeito à maneira de se expor a idade de uma pessoa. Mas, na realidade, a confusão é possível devido ao método comumente empregado para designar os aniversários. Em rigor, uma criança no seu primeiro natalício tem 0 (zero) anos, já que acaba de vir ao mundo. No seu segundo natalício tem um ano, e assim sucessivamente durante o resto de sua vida. Mas, na linguagem popular não é esta a maneira como se descrevem estas questões. Quase sempre o número ordinal que designa o natalício de uma pessoa em vida é o mesmo que o número cardinal que designa o número de anos que essa pessoa tenha vivido. Assim, na linguagem corrente, dizemos que João tem 21 anos no seu 21º natalício, se bem que na realidade, quando tem 21 anos é na data do seu 22º natalício.

É sumamente importante que nas páginas seguintes o leitor tenha presente como devem se expressar as idades e que se recorde sempre dos seguintes pontos:

a) quando dizemos que uma pessoa tem X de anos, queremos dizer que viveu exatamente X anos, isto é, que nasceu há X anos. Assim, se dizemos que uma pessoa tem 45 anos, isto quer dizer que nasceu fazem exatamente 45 anos;

TÁBUAS DE MORTALIDADE

- b) quando dizemos que uma pessoa está no seu Xº ano, queremos dizer que está viva durante o período de doze meses ao começo do qual tinha exatamente X-1 anos e ao final do qual tem exatamente X anos. Assim, dizemos que um garoto se encontra no seu 15º anos, queremos dizer que algo maior do que 14 anos e algo menor de 16 anos:
- c) se se mencionar um natalício dar-se-á a ele um número ordinal que é uma unidade maior que o número de anos que esta pessoa tenha sobrevivido nesta data.

Forma e Disposição da Tábua

Os dados publicados por Sheppard Homans estão dispostos em colunas, como se pode ver na mostra que reproduzimos (nas páginas seguintes aparece a Tábua completa).

Explicaremos agora o significado dos símbolos que figuram na parte superior de cada coluna.

Explicação

Na coluna (1) aparecem as idades sucessivas, ano por ano, desde os 10 aos 95 anos. Esta é a "coluna de idade" e contém a idade das 100.000 pessoas ou seus sobreviventes.

Em termos gerais, é costume referir-se à idade pela letra X, isto é, considerando-se como uma idade qualquer; assim, quando falarmos de uma pessoa de idade X, queremos dizer uma pessoa de qualquer idade compreendida na coluna de "idade" da "American Experience Table". Na sequência, nos referimos frequentemente a esta coluna como a "coluna X".

Na coluna (2) aparece o número de pessoas que vivem no começo do ano designado na mesma linha na coluna (1). Vemos assim que a tábua começa com 100.000 pessoas vivas na idade de 10 anos. Doze meses mais tarde, à idade de onze anos, somente terão sobrevivido 99.251 pessoas. Isto quer dizer que durante este intervalo morreram 749.

Disposição da Tábua de Mortalidade Baseada na Experiência Norte-Americana

(1) X	(2) lx	(3) dx	(4) qx	(5) px
Idade	Número de pessoas vivas no começo do ano designado	Número de pessoas que morrem durante o ano designado	Probabilidade anual de morrer	Probabilidade anual de viver
10	100.000	749	0,007490	0,992510
11	99.251	746	0,007516	0,992484
12	98.505	743	0,007543	0,992457

O Símbolo lx

Para maior conveniência e brevidade se usou a letra l para designar dados na coluna de pessoas "vivas". Ainda, para maior comodidade se juntou à letra l pequenos subíndices para designar os dados específicos nesta coluna. Assim, l 10 indica o número de pessoas vivas na idade de 10 anos, l 35 indica o número das que vivem na idade de 35 anos; l 95 o número das que vivem aos 95 anos. Posto que x pode aplicar-se a qualquer idade, lx aplicar-se-á a qualquer dado na coluna de pessoas "vivas"; chamaremos, pois, esta coluna de "coluna l x".

Na coluna (3) aparece o número de pessoas que morrem num período de doze meses, que começa na idade indicada na mesma linha na coluna (1). À frente do 10 da coluna de "idade" se encontra, na coluna de "número de pessoas que morrem", o número 749. Isto quer dizer que, das 100.000 pessoas iniciais houve 749 que morreram entre os 10 e os 11 anos. Da mesma maneira, à frente do 11 da coluna de "idade" aparece na coluna (3) a cifra 746, que é o número de pessoas que morreram entre os 11 e 12 anos. Estes dados formam todos parte da "matéria-prima" usada e se obterão dos dados originais apurados. Para facilitar a memorização dos símbolos se designa pela letra d o número de pessoas que morrem num dado ano.

O Símbolo dx

Da mesma maneira que na coluna lx, adicionam-se subíndices à d, os quais indicam a idade que representa. Assim, d 10 indica o número de pessoas que morrem entre os 10 e 11 anos. Analogamente, d 35 indica o número de pessoas que morrem entre os 35 e 36 anos; e dx o número de pessoas que morrem entre as idades de x e x+1. Posto que, x pode representar qualquer ano, dx representa um dado qualquer na coluna de "número de pessoas que morrem". Razão pela qual é frequente se designar esta coluna como a "coluna dx" e quando falamos do número de pessoas que morrem num ano qualquer basta o símbolo dx a menos que se indique qual seja o ano em questão.

A coluna (4) é a de "probabilidade anual de morrer". Os números desta coluna são, em forma decimal, a probabilidade de que uma pessoa de idade determinada morra durante o transcurso dos doze meses seguintes.

Tábua de Mortalidade Baseada na Experiência Norte-Americana "Americam Experience Table"

Idade X	Número de pessoas vivas lx	Número de mortos dx	Probabilidade anual de morrer qx	Probabilidade anual de viver px	Probabilidade completa de vida ex
10	100,000	749	0.007 490	0.992 510	48.72
11	99,251	746	0.007 516	0.992 484	48.08
12	98,505	743	0.007 543	0.992 457	47.45
13	97,762	740	0.007 569	0.992 431	46.80
14	97,022	737	0.007 596	0.992 404	46.16
15	96,285	735	0.007 634	0.992 366	45.50
16	95,550	732	0.007 661	0.992 339	44.85
17	94,818	729	0.007 688	0.992 312	44.19
18	94,089	727	0.007 727	0.992 273	43.53
19	93,362	725	0.007 765	0.992 235	42.87
20	92,637	723	0.007 805	0.992 195	42.20
21	91,914	722	0.007 855	0.992 145	41.53
22	91,192	721	0.007 906	0.992 094	40.85
23	90,471	720	0.007 958	0.992 042	40.17
24	89,751	719	0.008 011	0.991 989	39.49
25	89,032	718	0.008 065	0.991 935	38.81
26	88,314	718	0.008 130	0.991 870	38.12
27	87,596	718	0.008 197	0.991 803	37.43
28	86,878	718	0.008 264	0.991 736	36.73
29	86,160	719	0.008 345	0.991 655	36.03
30	85,441	720	0.008 427	0.991 573	35.33
31	84,721	721	0.008 510	0.991 490	34.63
32	84,000	723	0.008 607	0.991 393	33.92
33	83,277	726	0.008 718	0.991 282	33.21
34	82,551	729	0.008 831	0.991 169	32.50
35	81,822	732	0.008 946	0.991 054	31.78
36	81,090	737	0.009 089	0.990 911	31.07
37	80,353	742	0.009 234	0.990 766	30.35
38	79,611	749	0.009 408	0.990 592	29.62
39	78,862	756	0.009 586	0.990 414	28.90
40	78,106	765	0.009 794	0.990 206	28.18
41	77,341	774	0.010 008	0.989 992	27.45
42	76,567	785	0.010 252	0.989 748	26.72
43	75,782	797	0.010 517	0.989 483	26.00
44	74,985	812	0.010 829	0.989 171	25.27
45	74,173	828	0.011 163	0.988 837	24.54
46	73,345	848	0.011 562	0.988 438	23.81
47	72,497	870	0.012 000	0.988 000	23.08
48	71,627	896	0.012 509	0.987 491	22.36
49	70,731	927	0.013 106	0.986 894	21.63
50	69,804	962	0.013 781	0.986 219	20.91
51	68,842	1,001	0.014 541	0.985 459	20.20
52	67,841	1,044	0.015 389	0.984 611	19.49
53	66,797	1,091	0.016 333	0.983 667	18.79
54	65,706	1,143	0.017 396	0.982 604	18.09
55	64,563	1,199	0.018 571	0.981 429	17.40
56	63,364	1,260	0.019 885	0.980 115	16.72
57	62,104	1,325	0.021 335	0.978 665	16.05
58	60,779	1,394	0.022 936	0.977 064	15.39
59	59,385	1,468	0.024 720	0,975 280	14.74

Idade	Número de	Número de	Probabilidade	Probabilidade	Probabilidade
X	pessoas vivas	mortos	anual de morrer	anual de viver	completa de vida
Λ	lx	dx	qx	px	ex
		-	1	r	-
60	57,917	1,546	0,026 693	0.973 307	14.10
61	56,371	1,628	0,028 880	0.971 120	13.47
62	54,743	1,713	0,031 292	0.968 708	12.86
63	53,030	1,800	0,033 943	0.966 057	12.26
64	51,230	1,889	0.036 873	0.963 127	11.67
	40.241	1.000	0.040.420	0.050.071	11.10
65	49,341	1,980	0,040 129	0.959 871	11.10
66	47,361	2,070	0,043 707	0.956 293	10.54
67	45,291	2,158	0.047 647	0.952 353	10.00
68	43,133	2,243	0,052 002	0,947 998	9.47
69	40.890	2,321	0,056 762	0.943 238	8.97
70	38,569	2,391	0,061 993	0.938 007	8.48
71	36,178	2,448	0.067 665	0.932 335	8.00
72	33,730	2,487	0.073 733	0.926 267	7.55
73	31,243	2,505	0.080 178	0.919 822	7.11
74	28,738	2,503	0,087 028	0,912 972	6.68
/	20,730	2,301	0,087 028	0,912 972	0.00
75	26,237	2,476	0.094 371	0.905 629	6.27
76	23,761	2,431	0,102 311	0,897 689	5.88
77	21,220	2,369	0.111 064	0.888 936	5.49
78	18,961	2,291	0,120 827	0,870 173	5.11
79	16,670	2,196	0,131 734	0.868 266	4.74
00	14 474	2.001	0.144.466	0.055.524	4.20
80	14,474	2,091	0.144 466	0.855 534	4.39
81	12,383	1,964	0,158 605	0,841 395	4.05
82	10,419	1,816	0,174 297	0,825 703	3.71
83	8,603	1,648	0,191 561	0.808 439	3.39
84	6,955	1,470	0.211 359	0.788 641	3.08
85	5,485	1,292	0.235 552	0.764 448	2.77
86	4,193	1,114	0,265 681	0.734 319	2.47
87	3,079	933	0.303 020	0.696 980	2.18
88	2,146	744	0.346 692	0,653 308	1.91
89	1,402	555	9.395 863	0.604 137	1.66
	ĺ ,				
90	847	385	0.454 545	0.545 455	1.42
91	462	246	0.532 466	0.467 534	1.19
92	216	137	0.634 259	0.365 741	0.98
93	79	58	0.734 177	0.265 823	0.80
94	21	18	0.857 142	0.142 857	0.64
95	3	3	1.000 000	0.000 000	0.50
		l			

Essas probabilidades se derivam do conceito elementar da teoria das probabilidades exposto anteriormente; mais adiante estudaremos em detalhe a forma de obter estes números. Por conseguinte, a probabilidade de que uma pessoa de 10 anos morra antes de chegar aos 11 seria 0,007490. De uma maneira análoga, à frente de 11 encontramos na coluna (4) a cifra 0,007516 e esta indica a probabilidade de que uma pessoa de 11 anos morra durante o ano seguinte.

Recordando que no capítulo anterior usamos a letra p para indicar a probabilidade de que ocorreria um acontecimento na forma desejada, enquanto que usamos q para designar a probabilidade de que ocorra o acontecimento noutra forma distinta da desejada.

O Símbolo qx

Posto que, em geral, a morte de uma pessoa é algo que não se deseja, podemos expressar pela letra q a probabilidade de que uma pessoa venha a morrer. Quando a q se junta um subíndice, significa a probabilidade de que morra dentro dos doze meses seguintes uma pessoa de idade indicada pelo subíndice. Assim, q 10 representa a probabilidade de que uma pessoa de 10 anos morra antes de chegar aos 11 anos. Da mesma maneira q 35 representa a probabilidade de que uma pessoa de 35 anos morra antes de chegar aos 36. Analogamente, qx representa a probabilidade de que uma pessoa de idade x morra antes de chegar a idade x + 1. Razão pela qual a coluna (4) de "probabilidade anual de morrer" se conhece com o nome de coluna q x, e q x designa um dado qualquer desta coluna. O símbolo composto q x denota a probabilidade de que uma pessoa destas x morra antes de alcançar a idade x + 1.

Na coluna (5) os dados indicam na forma decimal a probabilidade de que uma pessoa de uma idade determinada viva durante o ano que segue imediatamente a essa idade. Assim, a probabilidade de que uma pessoa de 10 anos sobreviva até chegar aos 11 se encontra, na coluna (5), que é 0,992510, à frente de 35 na coluna "x" ou de "idade", encontramos na coluna (5) a cifra 0,991054, que indica em forma decimal a probabilidade de que uma pessoa de 35 anos alcance a idade de 36 anos.

O Símbolo px

Posto que a probabilidade de que ocorra um acontecimento na forma desejada se designa, segundo sabemos, pela letra p e o fato de que uma pessoa viva é um acontecimento que se deseja, designaremos pela letra p a probabilidade de que uma pessoa viva. Quando tem subíndice, representa a probabilidade de que uma pessoa que tenha a idade indicada pelo mesmo viva mais um ano. Assim, p 10 representa a probabilidade de que uma pessoa de 10 anos de idade viva até chegar aos 11 anos, probabilidade que identificamos na tábua de 0,992510. Da mesma maneira, p 35 = 0,991954. Em geral px indica a probabilidade de que uma pessoa de idade x viva até chegar a idade x + 1 anos; por conseguinte, px é um símbolo que denota qualquer dado na 5a. coluna, e esta coluna recebe o nome de coluna px. O símbolo composto px denota a probabilidade de que uma pessoa de idade x viva até chegar a idade x + 1.

Ainda, cada um dos valores da coluna (5) é a diferença entre a unidade e o valor correspondente da coluna (4). Bastará um momento de reflexão para compreender que somando a probabilidade de viver e a probabilidade de morrer obter-se-á a unidade, isto é, uma seguridade, já que as duas eventualidades esgotam todas as possibilidades lógicas do caso.

Em resumo, todo o conteúdo da tábua se deriva matematicamente das "matériasprimas" expostas nas duas primeiras colunas. Se fornece as colunas adicionais porque facilitam muito os outros cálculos posteriores, segundo explicaremos a seguir.

Resumo dos Símbolos

Para maior comodidade resumimos na sequência os símbolos que acabamos de explicar:

- x indica qualquer idade incluída na tábua de mortalidade.
- lx indica o número de pessoas que chegam a idade x.
- dx indica o número de pessoas que morrem entre as idades x e x + 1.
- px indica a probabilidade de que uma pessoa de idade x viva um ano mais.
- qx indica a probabilidade de que uma pessoa de idade x morra dentro de um ano.

Perguntas a responder com a Tábua de Mortalidade baseada na experiência norteamericana.

De 100.000 pessoas que vivam à idade de 10 anos:

- 1) Quantas chegariam à idade de 42 anos? (Resposta: 76.567).
- 2) Quantas pessoas de 35 anos de idade morreriam antes de chegar aos 36 anos? (Resposta: 732)
- Qual é a probabilidade de que C.F.Baker, de 52 anos de idade, morra antes de completas os 53? (Resposta: 0,015389)
- 4) Qual é a probabilidade de que R.L.Thayer, de 28 anos de idade, viva um ano mais? (Resposta: 0,991736)
- 5) Determinem 1 56 e 1 28 (Resposta: 63,364 e 86,878)
- 6) Determinem d 37 e d 88 (Resposta: 742 e 744)
- 7) Determinem q 63 e q 48 (Resposta: 0,033943 e 0,012509)
- 8) Determinem p 37 e p 79 (Resposta: 0,990766 e 0,868266)
- 9) Qual o valor de lx para x = 50? (Resposta: 69,804)
- 10) Para qual valor de x é lx = 74,173? (Resposta: 45 anos)

11) A que idade a probabilidade de viver, pela primeira vez, é menor que a probabilidade de morrer?

(Resposta: 91 anos)

Comentários adicionais sobre a Tábua de Mortalidade baseada na experiência norte-americana

Segundo temos dito a "matéria-prima" da tábua consiste: primeiro, das 100.000 pessoas vivas à idade de 10 anos, ou segundo a notação adotada, 1 10; e segundo, do número de pessoas que morrem cada ano, isto é, todos os dados da coluna dx. Todos os demais números da tabela se derivam destes dados.

O primeiro registro da coluna (2) na qual figura o número de pessoas que vivem a "idade x" (isto é, a coluna lx) é l 10 = 100.000.

O número dessas pessoas que viverão à idade de 11 anos, será evidentemente 100.000 menos o número das que morrerão no intervalo anual, tal como se registra na coluna dx, na qual encontramos d 10 = 749. Por consequência, 1 11 = 100.000 - 749, isto é 1 11 = 99.251. De maneira análoga para acharmos 1 12, isto é o número de pessoas que viverão à idade de 12 anos, subtraímos d 11, número de pessoas que viverão no ano que precede aos 12 anos, de 1 11 número das que vivem a idade de 11 anos, e achamos: 1 12 = 99.251 - 746 = 98.505. Vamos agora obter uma fórmula geral.

Se escrevermos agora com símbolos os dois exemplos que acabamos, obtemos, no primeiro caso $1\ 11=1\ 10$ - $d\ 10$; e no segundo, $1\ 12=1\ 11$ - $d\ 11$. É fácil ver que todos os dados da coluna $1\ x$ podem derivar-se desta forma. Designando, como anteriormente, por $1\ x$ o número dos vivos de uma idade qualquer (x), e por $d\ x$ o número dos que morrem durante o ano seguinte, o número dos que viverão um ano depois, a idade de x+1 anos será $1\ x+1$ e pode-se expressar como segue:

(189)
$$lx + 1 = lx - dx$$

Os registros da coluna (3) se obtiveram todos partindo dos dados originais. Se se deseja, se pode expressar dx (número dos que morrem entre as idades de x e x + 1) em função do número de pessoas vivas a idade x ao final do mesmo ano, isto é, a idade x + 1.

Se à idade de dez anos viviam 100.000 pessoas e aos 11 unicamente viviam 99.251, é evidente que a diferença, isto é, 749 pessoas morrerão entre os 10 e os 11 anos.

Posto que 100.000 é 1 10 e 909.251, 1 11 podemos expressar d 10, número dos que morrerão durante o intervalo anual, como segue:

 $d\ 10 = 1\ 10 - 1\ 11$

Se considerarmos dx como o número de pessoas que morreriam entre os anos x e x + 1, podemos expressar dx como segue:

(190)
$$dx = lx - lx + 1$$

Isto é evidente, não só por comparação com o exemplo, imediatamente anterior, mas também pela fórmula (189), já que transpondo nesta última dx e lx + 1,obtemos a fórmula (190). Esta é uma relação fundamental que é preciso recordar durante este capítulo e os seguintes.

Da tábua de mortalidade se deduz que o número total de pessoas vivas a uma idade qualquer x, é igual ao número das que morrerão daí para frente, enquanto ficam algumas sobreviventes. Em outras palavras, se lx é o número de pessoas vivas de idade x, estas terão que estar mortas na época em que se alcança o final (isto é o limite) da tábua. Assim, pois, utilizando os símbolos:

$$1x = dx + dx + 1 + dx + 2 + \dots + d94 + d95$$

(limite da tábua)

Posto que esta relação é aplicável a outras tábuas de mortalidade distintas, baseada na experiência norte-americana, que poderiam ter outros limites, se costuma indicar a idade final de qualquer tábua de mortalidade pela última letra do alfabeto grego, isto é, (ômega).

Assim:

(191)
$$lx = dx + dx1 + dx2 + 2 + \dots + d_{(w)}$$

Esta relação se presta também a sua comprobação matemática.

Posto que dx = lx - lx + 1 e dx + 1 = lx + 1 - lx + 2, etc, podemos escrever:

(191)
$$lx = (lx - lx + 1) + (lx + 1 - lx + 2) + (lx + 2 - lx + 3) + \dots + (l94 - l95) + (l95 - l96).$$

Suprimindo os parênteses é fácil ver que todos os termos do segundo membro se anulam, salvo lx e 195, e posto que 196 é igual a zero, ao menos no que respeita a tábua baseada na experiência norte-americana, a identidade completa.

Dos dados expostos nas páginas que antecedem se pode deduzir ainda outra relação.

O número de pessoas que morrem entre as idades de 60 e 64 anos é igual a d60 + d61 + d62 + d63. Se expressamos os d em função de l (veja-se fórmula 190), obtemos:

Eliminando os parênteses, desaparecem 161, 162 e 163 de modo que o número de pessoas que morrem entre os 60 e 64 anos é igual a:

$$160 - 164 = d60 + d61 + d62 + d63$$

É de senso comum que o resultado obtido, deduzindo o número de pessoas vivas à idade de 64 anos do número de pessoas que viviam aos 60 anos, deve ser igual à soma dos falecimentos durante as idades 60, 61, 62 e 63 anos.

Analogamente, o número de pessoas que morrerão entre os x e x + n anos é igual a lx - lx + n e a relação é:

(192)
$$lx - lx + n = dx + dx + 1 + dx + 2 + \dots + dx + n - 1$$

Na coluna (4), na qual se registra a "probabilidade anual de morrer" (conhecida também por coluna qx), se obtém os diversos registros da mesma aplicando a regra fundamental da teoria das probabilidades exposta anteriormente. Esta regra é a seguinte:

A probabilidade de que um acontecimento ocorra de certa forma desejada se expressa pela razão do número de maneiras em que esta forma possa ocorrer e o número total de maneiras possíveis em que o acontecimento possa ocorrer.

A probabilidade de que uma pessoa de 10 anos morra antes de alcançar a idade de 11 anos, pode-se considerar a partir deste ponto de vista: entre os 10 e 11 anos morrem 749 pessoas. Mas, na idade de 10 anos havia 100.000 pessoas vivas; de modo que, enquanto a morte ocorreu em 749 casos, entre os 10 e 11 anos, os casos de vida ou morte foram 100.000.

A probabilidade de morrer é, pois, a razão de 749 para 100.000, isto é, $\frac{749}{100.000} = 0,007490$. Posto que 749 é d 10 e 100.000 = 1 10, podemos dizer que

$$q_{10} = \frac{d_{10}}{l_{10}}$$

Analogamente, posto que l 11 = 99.251 e d 11 = 746, q 11 (isto é, a probabilidade de que uma pessoa de 11 anos morra antes de chegar aos 12 anos) é igual a

$$\frac{746}{99.251} = 0,007516.$$

Por conseguinte, em termos gerais se pode dizer que a probabilidade de que uma pessoa de idade x morra antes de alcançar a idade x+1 pode ser expressa pela seguinte equação:

(193)
$$qx = \frac{dx}{lx}$$

Posto que, segundo a fórmula (190), dx = lx - lx + 1, podemos escrever a fórmula (193) anterior como segue:

$$qx = \frac{-lx - lx + 1}{lx}$$

Na coluna (5) que dá a "probabilidade anual de viver" (conhecida também por coluna px) se aplica de novo a teoria de probabilidade. A probabilidade de que uma pessoa de 10 anos de idade viva até alcançar a idade de 11 anos é igual a razão do número dos que chegam aos 11 anos pelo número total de pessoas de 10 anos de idade. Aos 10 anos havia 100.000 pessoas vivas, de modo que a probabilidade de que uma pessoa de 10

anos chegue a viver no ano seguinte é $P_{10} = \frac{99.251}{100.000} = 0,992510$, posto que

$$100.000 = l_{10} e 99,252 = l_{11}$$
, podemos dizer que $P_{10} = \frac{1}{1_{10}}$.

Em termos gerais, a probabilidade de que uma pessoa de idade x alcance a idade x+1 é igual à razão do número de pessoas vivas a idade x+1 pelo número de pessoas vivas à idade x, isto é,

$$px = \frac{lx + 1}{lx}$$

Soma das probabilidades de viver e morrer

Posto que uma pessoa tem que viver ou morrer durante um ano dado, e não é possível que faça ambas as coisas, a soma destas duas probabilidades que se excluem mutuamente deve ser igual a 1. Façamos algumas provas para ver se a tábua confirma esta afirmação.

A probabilidade de viver um ano, à idade de 11 anos, é igual a 0,992484, enquanto que a probabilidade de morrer durante o ano é igual a 0,007516. É fácil ver que a soma destes dois números é 1. Posto que 0,992484 = p 10 e 0,007516 = q 10, podemos dizer que p 10 + q 10 = 1. É fácil ver na tábua que a soma de um dado qualquer da coluna px e do correspondente dado da coluna qx é igual a 1. Logo, podemos expressar esta relação constante em termos gerais como segue:

$$(196) px + qx = 1$$

Desta equação se derivam por transposição as seguintes:

(197)
$$px = 1 - qx$$

(198)
$$qx = 1 - px$$

Vamos efetuar uma demonstração teórica para (196).

Se px =
$$\frac{lx + 1}{lx}$$
 e qx = $\frac{lx - lx + 1}{lx}$

Temos então:

$$px + qx = \frac{lx + 1}{lx} + \frac{lx - lx + 1}{lx}$$

Logo:
$$px + qx = \frac{lx + 1 + lx - lx + 1}{lx}$$

$$Logo: px + qx = \frac{lx}{lx}$$

e portanto px + qx = 1

Probabilidades de vida e morte para períodos maiores que um ano

Às vezes é necessário determinar a probabilidade de que uma pessoa viva ou morra durante períodos maiores que um ano. Neste caso se dá uma forma ligeiramente distinta para as fórmulas para px e qx que temos dado anteriormente. Será necessário também modificar estes símbolos posto que px e qx usar-se-ão e se usam para indicar a probabilidade de que pessoas que agora tem x anos vivam ou morram durante o próximo ano.

Símbolos

A probabilidade de uma pessoa que agora tenha x anos viva durante os dois seguintes se representa pelo símbolo 2 px. A probabilidade de viver durante os próximos três anos se designa pelo símbolo 3 px. O símbolo geral para a probabilidade de uma pessoa que agora tenha x anos viva durante os próximos n anos é n px.

A probabilidade de uma pessoa que agora tenha x morra antes de um ano é qx. Quando se apresenta um caso que implica a probabilidade de morrer antes de mais de um ano de idade x, se usa o símbolo Q. Assim, a probabilidade de morrer antes de dois anos depois de alcançar a idade x é \mid 2 Qx. Deve observar-se que se põe uma barra vertical antes do subíndice 2. Mais adiante veremos a razão para fazê-lo. Analogamente, a probabilidade de uma pessoa de idade x morra antes de chegar a idade x + 3 é \mid 3 Qx.

Chegamos assim aos seguintes símbolos convencionais: n px representa a probabilidade de uma pessoa de idade x viva n anos, e, por conseguinte, esteja viva na idade x + n.

 \mid n Qx representa a probabilidade de uma pessoa de idade x morra antes de n anos, e, portanto esteja morta à idade x + n.

Com estes símbolos adequados temos agora que encontrar a maneira de calcular a probabilidade de uma pessoa de idade x viva ou morra dentro de n anos.

Consideremos o caso de Malcolm Stewart, de 45 anos de idade. Qual é a probabilidade de que viva 3 anos mais e chegue portanto aos 48?

A probabilidade de que o Sr. Stewart viva 3 anos pode ser expressa pelo símbolo 3 p 45, já que neste caso x=45 e n=3. Na tábua de mortalidade baseada na experiência norteamericana vemos que o número de pessoas vivas a idade de 45 anos, isto ϵ , 145 ϵ igual a 74.173, analogamente, 148, número de pessoas vivas a idade de 48 anos ϵ igual a 71.627. Da mesma maneira que para acharmos a probabilidade de viver um ano, aplicamos de novo a regra fundamental de probabilidade dada anteriormente. Posto que havia 74.173 pessoas que poderiam ou não sobreviver, a probabilidade de sobreviver 3 p 45 pode ser expressa pela razão das últimas às primeiras, isto ϵ ,

$$3 p 45 = \frac{148}{145}$$

Logo: 3 P 45 =
$$\frac{71.627}{74.173}$$
 = 0,965675

Assim, a probabilidade de que o Sr. Stewart, que tem 45 anos, viva 3 anos mais é 0,965675, isto é, aproximadamente 97 probabilidades em 100.

Vemos, pois, que a probabilidade de que uma pessoa de 45 anos viva 3 anos mais pode-se encontrar dividindo o número de pessoas que vivem à idade 45 + 3 anos, isto é, 48 anos, pelo número das pessoas vivas a idade de 45 anos.

Se a idade fosse x em lugar de 45 e se o problema fosse encontrar a probabilidade de viver n anos em lugar de 3, a probabilidade de que a pessoa de x anos viveria n anos mais se encontraria dividindo o número de pessoas que viveu na idade x + n pelo número de pessoas vivas na idade x + n é |x + n| e o de pessoas vivas de idade x + n (x + n) e o de pessoas vivas de idade x + n) e o de pessoas vivas de idade x + n) e o de pessoas vivas de idade x + n) e o de pessoas vivas de idade x + n0 e o de pessoas

(199)
$$npx = \frac{lx + n}{lx}$$

Esta fórmula é muito fácil de se aplicar já que só se procede uma divisão.

Outra maneira de deduzir a fórmula (199)

Para fazer mais completa esta exposição daremos outra maneira de deduzir a fórmula anterior. Consideremos de novo o caso do Sr. Stewart, de 45 anos de idade. Qual é a probabilidade de que viva até os 48 anos?

A probabilidade de que viva um ano mais e alcance a idade de 46 anos está expressa pelo símbolo p 45 e se acha na tábua que é igual 0,988837. Tendo alcançado a idade de 46 anos, a probabilidade de que viva um ano mais e chegar aos 47 está expressa pelo símbolo p 46 que vemos na tábua é igual a 0,988438. Se chegar aos 47 anos, a probabilidade de que viva um ano mais e chegue aos 48 está expressa por p 47 = 0,988000.

De acordo com teoria anteriormente apresentada, vale a seguinte proposição:

A probabilidade de que ocorram dois ou mais acontecimentos independentes é igual ao produto das probabilidades separadas de que ocorra cada acontecimento.

Desde que nenhuma das três ocorrências examinadas se excluem mutuamente, podemos encontrar a probabilidade de que o Sr. Stewart viva mais três anos, multiplicando umas pelas outras as probabilidades separadas de que viva um ano nas idades de 45, 46 e 47 anos. Utilizando os símbolos adotados podemos escrever:

$$3 p 45 = p 45 x p 46 x p 47$$

E substituindo os valores de p achados na tábua de mortalidade baseada na experiência norte-americana.

$$3 p 45 = 0.988837 \times 0.988438 \times 0.988000$$

isto é,
$$3 p 45 = 0.965675$$

Se bem este método forneça o mesmo resultado que obtivemos por meio de uma divisão, é fácil de se constatar que à medida que cresce o número de anos de sobrevivência da pessoa é maior o número de multiplicações que devem ser feitas.

Vimos antes que

$$3 p 45 = p 45 x p 46 x p 47$$

Segundo a fórmula (195)

$$p 45 = \frac{146}{145}$$
; $p 46 = \frac{147}{146}$ e $p 47 = \frac{148}{147}$

Logo:

$$3 p 45 = \frac{146}{145} \times \frac{147}{146} \times \frac{148}{147}$$

e simplificando temos:

$$3 p 45 = \frac{146}{145} \times \frac{147}{146} \times \frac{148}{147}$$

logo: 3 p 45 =
$$\frac{148}{145}$$

Esta é a mesma fórmula que usamos ao examinar o caso de uma pessoa que viveria mais de um ano como uma ocorrência separada, e portanto, como uma probabilidade simples.

Em termos gerais este argumento é como segue:

$$n px = px . px + 1 . px + 2 x px + n-2 . px + n-1$$

ou seja

$$n px = \frac{\overline{x+1}}{lx} x \frac{\overline{x+2}}{\overline{x+1}} x \frac{\overline{x+3}}{\overline{x+2}} x \dots x \frac{\overline{x+n-1}}{\overline{x+n-2}} x \frac{lx+n}{\overline{x+n-1}}$$

logo:

$$n px = \frac{lx + n}{lx}$$

Probabilidades de morte para períodos maiores que um ano

A probabilidade de uma pessoa de idade x não sobreviva a seu x+n-1 ano e, como consequência, morra antes de alcançar a idade x+n se expressa por meio do símbolo $\mid n$ Qx

(**Nota do Autor:** Quiçá o leitor se pergunte porque este último símbolo tem uma pequena barra vertical à esquerda, ao invés de se escrever simplesmente n Qx, da mesma maneira que n px. A razão para tal é que existe outro símbolo muito parecido, isto é, n | qx que os atuários convencionaram indique uma classe distinta de probabilidade).

A probabilidade de morte que acabamos de mencionar é igual à razão do número de pessoas que morrem entre as idades x e x + n e o número de pessoas vivas de idade x. Segundo a fórmula (192) o número de pessoas que morrem entre as idades x e x + n é igual a (1x - 1x + 1x); portanto, segundo a lei fundamental de probabilidades.

(200)
$$| n QX = \frac{lx - lx + n}{lx}$$

ou

(201)
$$| n Qx = 1 - n px$$

A fórmula (200) | n Qx = $\frac{|x - lx + n|}{lx}$ pode-se deduzi-la também de outra maneira

menos direta usando a relação fundamental p + q = 1.

Qualquer que seja o período de tempo que se considere, é certo que a pessoa em questão viverá ou morrerá durante o mesmo. Portanto, a probabilidade de uma pessoa de idade x morra antes de n anos (e portanto que não alcance a idade x+n) seria igual a 1 menos a probabilidade de que viva n anos depois de alcançar a idade x. Se designarmos aquela probabilidade por \mid n Qx, análogo ao símbolo n px para a probabilidade de viver, podemos ver que:

$$| n Qx = 1 - n px$$

Para se determinar | n Qx sem determinar n px pode-se deduzir uma fórmula como segue:

se n px =
$$\frac{lx + n}{lx}$$
 substituindo em (201)

se obtém:
$$| n Qx = 1 - \frac{lx + n}{lx}$$

Posto que: $\frac{1x}{1x} = 1$, esta equação pode ser

escrita | n Qx =
$$\frac{lx}{lx}$$
 - $\frac{lx + n}{lx}$

ou o que é o mesmo:

$$| n Qx = \frac{|x - 1x + n|}{|x|}$$

Aplicaremos agora essas duas novas fórmulas (200 e 201) ao problema de Malcolm Stewart estudado anteriormente.

Exemplo 1 - Qual é a probabilidade de que o Sr. Stewart morra antes de transcorridos 3 anos depois de completados os 45?

SOLUÇÃO 1

Neste caso $De (201) \mid n Qx = 1 - n px$

x = 45 Substituindo as quantidades conhecidas temos:

n = 3 | 3 Q45 = 1 - 3 p45

n Qx = incógnita

como 3 p45 já calculamos e é: 0,965675

SOLUÇÃO 2

Pode-se chegar diretamente a esta mesma solução sem se ter em conta a probabilidade de viver.

$$(200) \mid n Qx = \frac{lx - lx + n}{lx}$$

$$x = 45$$

Substituindo as quantidades conhecidas temos:

$$n = 3$$

 $| 3 \text{ Q45} = \frac{145 - 145 + 3}{145} = \frac{145 - 148}{145}$ n Qx = incógnita

Substituindo-se os valores de 1 45 e 1 48 encontrados na tábua de mortalidade baseada na experiência norte-americana, temos:

$$| 3 \text{ Q45} = \frac{74.173 - 71.627}{74.173} = \frac{2.546}{74.173} = 0.034325$$

Probabilidade de morrer num dado ano futuro

A probabilidade de que uma pessoa de idade x morra antes de um ano depois de alcançar a idade x + n se expressa pelo símbolo n|qx (Não se deve confundir este símbolo In Qx que significa a probabilidade de que uma pessoa de idade x morra antes de chegar à idade x + n).

Como regra do sistema de símbolos que explicamos, o número de pessoas que morreu durante o ano x + n se indica pela expressão dx + n

Na idade x há lx pessoas vivas.

Mas a probabilidade de que uma pessoa de idade x morra num ano dado qualquer, está evidentemente expressa pela razão do número de pessoas que morrem neste ano e o número de pessoas vivas na idade x. Portanto:

$$(202) n \mid qx = \frac{dx + n}{lx}$$

Já vimos que dx = lx - lx + 1. Se em lugar de x tivermos algum ano particular designado por x + n, e substituimos na fórmula o valor de x por este ano particular, teremos:

$$dx + n = lx + n - lx + n + 1$$

E a fórmula (202) pode ser escrita:

$$n \mid qx = \frac{lx + n - lx + n + 1}{lx}$$

é o mesmo que:

$$n \mid qx = \frac{lx + n}{lx} - \frac{lx + n + 1}{lx}$$

Como já vimos,
$$\frac{lx + n}{lx} = n px e como$$

analogamente
$$\frac{lx + n + 1}{lx} = n + 1$$
, px,

temos que:

(203)
$$n \mid qx = n px - n + 1 px$$

Exemplo 2 - Estudemos agora a probabilidade de que Malcolm Stewart, de 45 anos de idade, morra um ano depois de haver completado os 48.

$$(202) n \mid qx = \frac{dx + n}{lx}$$

Neste caso Substituindo as quantidades conhecidas temos:

$$x = 45$$

 $n = 3$
 $n \mid qx = incógnita$
 $3 q 45 = \frac{d 45 + 3}{145} = \frac{896}{74.173} = 0,012080$

Finalmente, para achar a forma mais geral possível da fórmula que acabamos de estudar, examinemos o seguinte caso:

É indubitável que a probabilidade de uma pessoa de idade x morra entre as idades x + n e x + n + k é igual ao número de falecimentos desde a idade x + n até a idade x + n + k dividido pelo número de pessoas vivas na idade x.

Posto que, entre as idades x + n e x + n + k morrerão lx + n - lx + n + k a probabilidade de morrer entre as idades (x + n) e (x + n + k) é

$$\frac{lx + n - lx + n + k}{lx}$$

Símbolo:

Para expressar por meio de uma fórmula a relação que acabamos de estudar é preciso imaginar primeiro um símbolo como segue:

 $n \mid k \mid Qx = probabilidade de uma pessoa de idade x morra entre as idades x + n e x + n + k$

Com este símbolo podemos escrever agora a seguinte fórmula:

(204)
$$n \mid k \ Qx = \frac{lx + n - lx + n + k}{lx}$$

Fórmula que nos dá a probabilidade de que <mark>uma p</mark>essoa de idade x morra entre as idades x + n e x + n + k

Os exemplos que se seguem servirão para aclarar a forma de aplicar as últimas fórmulas que acabamos de estudar.

Exemplo 3 - Qual é a probabilidade de Francisco Chester, de 50 anos de idade, chegue a completar os 51 anos?

Neste caso: A probabilidade de que uma pessoa de idade x

x = 50 alcance a idade x + 1 é px. px = incógnita Portanto: p50 = 0,986219

Exemplo 4 - Qual é a probabilidade de Francisco Chester, de 50 anos de idade, morra antes de completar os 51 anos?

Neste caso: A probabilidade de uma pessoa de idade x não

x = 50 alcance a idade de x + 1 é qx

qx = incógnita Portanto: q50 = 0.013781

Exemplo 5 - Qual é a probabilidade de Francisco Chester, de 50 anos de idade, viva até alcançar a idade de 75 anos?

Neste caso: A probabilidade de que uma pessoa de idade x = 50 alcance a idade x + n é n px assim mesmo,

n = 25n px = incógnita (199) n px = $\frac{lx + n}{lx}$

e substituindo os valores temos:

 $25 \text{ p} 50 = \frac{175}{150} = \frac{26.237}{69.804} = 0.375867$

Exemplo 6 - Qual é a probabilidade de que Francisco Chester de 50 anos de idade, morra antes de chegar aos 75 anos?

Neste caso A probabilidade de uma pessoa de idade x não

x = 50 alcance a idade x + n e n Qx n = 25

| n Qx = incógnita (200) $| n Qx = \frac{lx - lx + n}{lx}$

Substituindo as quantidades conhecidas temos:

$$|25 \text{ Q}50| = \frac{150 - 175}{150} = \frac{69.804 - 26.237}{69.804} = 0.624133$$

Exemplo 7 - Qual é a probabilidade de que Francisco Chester, de 50 anos de idade, morra entre os 75 e os 76 anos?

Neste caso A probabilidade de uma pessoa de idade x morra

x = 50 entre as idades x + n e x + n + 1 e n qx

n = 25 n | qx = incógnita (202) n | qx = $\frac{dx + n}{dx}$ Substituindo as quantidades conhecidas

$$25 \mid q50 = \frac{d75}{150} = \frac{2.476}{69.804} = 0,035471$$

Exemplo 8 - Qual é a probabilidade de que Francisco Chester, de 50 anos de idade, morra entre os 60 e o 75 anos?

Neste caso A probabilidade de que uma pessoa de idade
$$x$$
 $x = 50$ morra entre as idades $x + n e x + (n + k) \in n/k Qx$ $n = 10$ $k = 15$ (204) $n \mid k Qx = \frac{lx + n - lx + n + k}{lx}$ lx

Substituindo as quantidades conhecidas:

$$10 \mid 15 \text{ Q50} = \frac{160 - 175}{150} = \frac{57.917 - 26.237}{69.804} = \frac{31.680}{69.804} = 0,453842$$

Lei das Médias

(.....)

Podemos anunciar a lei das médias como segue:

Se se calculou antecipada e matematicamente a probabilidade de que ocorra um certo acontecimento, o número efetivo de vezes que o acontecimento ocorrerá na prática aproximar-se-á tanto mais do número calculado quanto maior seja o número de ensaios feitos.

Quanto maior for este número, tanto maior será o acerto entre o resultado obtido mediante o cálculo de probabilidades e o obtido na prática.

Probabilidade de vida

Ao empregar a frase "probabilidade de vida" é importante recordar que estas palavras significam simplesmente a média de vida que subsiste as pessoas de uma idade determinada. Assim, se diz a Henrique Higgins, de 39 anos de idade que tem uma probabilidade de vida de 28,9 anos, não é por este fato que deva pensar que não poderá celebrar o 69 aniversário de seu natalício. Pode morrer amanhã ou pode viver até os cem anos. Sua probabilidade de vida é idêntica a das demais pessoais de 39 anos de idade, isto é, o número médio de anos que pessoas de sua idade sobreviveriam.

Probabilidade abreviada de vida

É evidente que de lx pessoas vivas à idade x, lx + 1 vivem um ano mais cada uma, lx + 2 vivem outro ano mais, e assim sucessivamente, até o limite da tábua. O número total de anos vividos seria pois lx + 1 + lx + 2 + lx + 3 + + 1_(w).

Assim, na idade de 90 anos há 847 pessoas vivas. Dessas 847 pessoas, lq, isto é, 462 vivem 1 ano mais, 216 vivem outro ano mais, 79 vivem até chegar aos 93 anos, 21 alcançam os 94 anos, e 3 vivem até os 95 anos. O número total que as 847 pessoas viveram é pois igual a $l_{91} + l_{92} + l_{93} + l_{94} + l_{95} = 462 + 216 + 79 + 21 + 3 = 781$. O número médio de anos que cada pessoa viveu é, evidentemente, igual a 781, que é o número total de anos vividos, dividido por 847 que é o número de pessoas que estavam vivas aos 90 anos.

O símbolo para a probabilidade de vida de uma pessoa cuja idade é exatamente x é ex e neste caso particular:

$$e_{90} = \frac{191 + 192 + 193 + 194 + 195}{190}$$

$$e_{90} = \frac{462 + 216 + 79 + 21 + 3}{847} = \frac{781}{847} = 0,92$$

Utilizando os símbolos gerais:

(205)
$$e_{x} = \frac{1x + 1 + 1x + 2 + \dots + 1_{(w)}}{1x}$$

Não obstante este resultado não seja inteiramente satisfatório porque supõe que as pessoas que se consideram morreriam no começo de cada ano, por esta razão se designa com o nome de "probabilidade abreviada de vida".

Probabilidade completa de vida

Se, como é mais lógico, supomos que os falecimentos estejam uniformemente distribuídos durante todo o ano, o que tenderá a ocorrer mais seguramente, podemos supor então que, em média, cada pessoa morra até a metade do ano designado. Isto adicionará meio ano à média de vida de cada pessoa.

O resultado assim obtido recebe o nome de "probabilidade completa de vida" e se designa pelo símbolo eº, . Portanto:

(206)
$$e_x^0 = \frac{1}{2} + ex$$

Duração mais provável de vida

A "duração mais provável da vida" pode encontrar-se numa tábua de mortalidade observando qual é a idade à qual ocorrem o maior número de falecimentos.

Na tábua baseada na experiência norte-americana é a idade compreendida entre os 73 e os 74 anos. Outras tábuas de mortalidade dão cifras algo diferentes. Observar-se-á que a "duração mais provável da vida" não coincide com a "probabilidade completa de vida". Assim, na idade de 40 anos, a duração mais provável de vida é de 33 a 34 anos, no entanto a probabilidade completa de vida é 28, 18 anos. No caso de crianças recémnascidas, que como é natural não se incluem na maioria das tábuas de mortalidade, a duração mais provável da vida pode ser inferior a um ano.

Vida Provável

Esta frase, derivada do francês (vie probable) se usa para indicar o número de anos que uma pessoa tem de probabilidade de viver. Representa a diferença entre a idade que tenha alcançado e a idade na qual o número de pessoas vivas, segundo a tábua de mortalidade, a essa idade, se reduzirá em 50 por cento. Assim, na idade de 40 anos, segundo a tábua baseada na experiência norte-americana, a vida provável está compreendida entre 29 e 30 anos; na idade de 10 anos, entre 54 e 55 anos e na idade de 75 anos é de 5.5 anos.

Resumo dos Símbolos

(...) Damos a seguir o resumo dos símbolos mais importantes:

lx = número de pessoas vivas na idade x

dx = número de pessoas de idade x que morrem

px = probabilidade de que uma pessoa de idade x viva um ano mais e alcance a idade x + 1

qx = probabilidade de que uma pessoa morra depois de completar x anos e antes de alcançar a idade x + 1

Resumo de fórmulas

(189) lx + 1 = lx - dx	Fórmula para o número de pessoas vivas
	na idade $x + 1$

(190)
$$dx = lx - lx + 1$$
 Fórmula para o número de pessoas que morrem na idade x

(191)
$$1x = dx + dx + 1 + dx + 2 + ... + d_{(w)}$$
 Fórmula para o número de pessoas vivas na idade x

(192)
$$lx - lx + n = dx + dx + 1 + ... +$$
 Fórmula para o número de pessoas que $dx + n - 1$ Fórmula para o número de pessoas que morrem entre os x e os $x + n$ anos

$$(193) qx = \frac{dx}{lx}$$

(194)
$$qx = \frac{lx - lx + 1}{lx}$$

$$(195) px = \frac{lx + 1}{lx}$$

$$(196) px + qx = 1$$

$$(197) gx = 1 - gx$$

$$(198) qx = 1 - px$$

$$(199) n px = \frac{lx + n}{lx}$$

(200)
$$| n Qx = \frac{lx - lx + n}{lx}$$

$$(201) \mid n Qx = 1 - n px$$

$$(202) \ n \mid qx = \frac{dx + n}{lx}$$

(203)
$$n \mid qx = npx - n + 1 px$$

(204) n | k Qx =
$$\frac{1x + n - 1x + n + k}{1x}$$

(205)
$$ex = \frac{lx + 1 + lx + 2 + ... + 1_{(w)}}{lx}$$

(206)
$$e^{\circ}x = \frac{1}{2} + ex$$

Fórmulas para a probabilidade de que uma pessoa de idade x morra antes de um ano.

Fórmula para a probabilidade de que uma pessoa de idade x sobreviva até a idade x+1

Fórmulas que expressam relações entre as possibilidades de viver e de morrer antes de 1 ano

Fórmula para a probabilidade de que uma pessoa que tenha agora x anos sobreviva durante os n próximos anos, até alcançar a idade x + n

Fórmulas para a probabilidade de que uma pessoa que tenha agora x anos morra antes que possa alcançar a idade x + n

Fórmula para a probabilidade de que uma pessoa que tenha agora x anos morra durante o ano depois de alcançar a idade x+n

Fórmula para a probabilidade de que uma pessoa que tenha agora x anos morra entre as idades x + n e x + n + k

Fórmula para a probabilidade abreviada de vida

Fórmula para a probabilidade completa de vida

TÁBUA DE MORTALIDADE COMPLEMENTAÇÕES TEÓRICAS

Com relação às Tábuas de Mortalidade P.M. 1960 - 1964 e P.F. 1960 - 1964 Yvonne Lambert-Faívre em seu livro "Droit des Assurances" - Troisième édition - Dalloz, publicado em 1979 explica o seguinte:

"As Tábuas de Mortalidade são os instrumentos estatísticos que permitem determinar a probabilidade que tem um indivíduo de tal idade de estar ainda vivo a tal época: elas fornecem uma probabilidade estatística de sobrevida ou de morte.

Sua elaboração remonta ao século XVIII como resultado das tontinas, e seu aperfeiçoamento ocorre no século XIX.

Atualmente, as Tábuas de Mortalidade são estabelecidas a cada cinco anos pelo Instituto Nacional de Estatísticas. Elas se baseiam sobre a amostra da população (P) mas sabe-se que a mortalidade masculina e a feminina são diferentes, de maneira que é necessário distinguir as Tábuas da População Masculina (P.M.) e as Tábuas da População Feminina (P.F.) nas quais a probabilidade de sobreviver a uma época dada é superior. Estas Tábuas de Mortalidade são ajustadas segundo a lei dita de Makeham (M.K.M).

De acordo com o artigo A. 335.1, as tarifas de seguro sobre a vida são calculadas a partir das seguintes tábuas:

- a Tábua de Mortalidade P.M. 1960 1964 para os seguros em caso de morte.
- a Tábua de Mortalidade P.F. 1960 1964 para os seguros no caso de vida e de rendas vitalícias.

Com efeito a Tábua P.M. registra uma mortalidade mais rápida que a da Tábua P.F. e a experiência dos seguradores demonstra que os segurados que subscrevem um seguro em caso de morte tem efetivamente uma mortalidade superior àquela dos segurados que se preservam e se sentem em boa saúde e subscrevem uma apólice em caso de vida ou uma renda vitalícia. A diferença das Tábuas de referência tem, por conseguinte, em conta esta constatação."

A constatação da diferença se faz recente no trabalho das tábuas espanholas - PEM (População masculina espanhola) - 1982 e PEF (População feminina espanhola) - 1982.

Assim explica o professor Giuseppe Ottaviani em seu livro: "Riassunto delle lezioni de Matematica Attuariale".

Para efetuar o cálculo dos prêmios se deve fixar as várias bases técnicas na Tábua de Mortalidade.

A forma do seguro se pode dividir em dois grupos: aquele no caso de vida e aquele no caso de morte.

Entrando no primeiro grupo, este se constitui naquele em que o segurador tem interesse de estipular o contrato somente se o segurado se encontra em boa condição de saúde, isto é, só se ele entende que a mortalidade do segurado resultará não superior àquela da tábua que foi utilizada para a determinação do prêmio; portanto se há uma seleção, feita pelo próprio segurado, no momento da estipulação do contrato, para o qual a mortalidade deste segurado

é menor que aquela da média da categoria (empregados, operários, etc.) à qual pertence dito segurado. Entrando no segundo grupo que é formado pelo interesse do segurador de estipular o contrato somente se o segurado se encontra em condição de saúde, portanto, o segurador se previne mediante um exame médico do segurado, aceitando somente aqueles contratos nos quais o exame médico tenha parecer favorável. Portanto, também neste caso há, na proposta do contrato, uma seleção dos segurados subordinada ao exame médico.

O efeito desta seleção se atenua com o passar dos anos do contrato no caso de vida ou de seguro em caso de morte, e é diverso diante das várias formas de seguros."

No entendimento do exposto, o critério seletivo do risco se faz, primeiro pela declaração de saúde, quando o segurado declara seu estado e por vezes o entendimento está baseado no pleno exercício de suas atividades enquanto que o segundo critério observa a exigência do exame médico, sendo a forma comumente adotada nos seguros de Vida Individual.

Tábua Selecionada

Retornemos à Tábua de Mortalidade baseada na experiência norte-americana adotada pelo professor Justin H. Moore. Uma pessoa de 30 anos tem, pela tábua, uma probabilidade anual de morrer q 30 = 0,008427. É evidente que as pessoas que ingressarem no seguro com 30 anos apresentarão uma probabilidade de morrer inferior àquelas de 30 anos que entraram a 1 ou mais anos e assim sucessivamente; desta forma o conjunto destas pessoas que ingressaram com a mesma idade, no tempo do contrato, apresentaram a mesma probabilidade de morte desde que não ocorram outras alterações no período.

É evidente portanto que a probabilidade de morte de uma pessoa assegurada, face ao seu contrato, dependa não só de sua idade mas também do tempo de duração do contrato, que vamos designar por t.

Vamos designar por xo a idade de ingresso da pessoa no contrato e ao fim do tempo t; a probabilidade de morte vamos designar por

$$q[xo] + t$$

A Tábua de Mortalidade é selecionada quando leva em conta as duas variáveis, isto é, a idade no instante t = o, do ingresso no seguro, e xo é o tempo de vigência do contrato.

A tábua fornece a probabilidade de morte nos anos sucessivos

$$q [xo], q [xo] + 1, q [xo] + 2 ...$$

Tábua Reduzida

A tábua selecionada em geral é interrompida após 5 ou 10 anos e quando a vigência supera aqueles períodos a probabilidade de morte se faz na dependência somente da idade do segurado.

A tábua assim obtida é uma tábua reduzida.

Tábua Agregada

Se a tábua está baseada na probabilidade de morte, deduzida do grupo e independe da vigência a tábua é dita agregada.

$$qa, qa + 1 ... qx, qx + 1 ...$$

Contemporaneidade

Uma coletividade pode ser observada por sua contemporaneidade e sua evolução pode ser observada com base na variável x e a partir de uma idade "a".

Na organização das observações alguns fatos devem ser considerados, quais sejam:

- 1. A contemporaneidade se inicia numa idade "a" qualquer, portanto a partir de x = a.
- 2. Há uma homogeneidade característica da coletividade, por exemplo: sexo, estado civil, nacionalidade, atribuições funcionais etc.
- 3. Há um padrão na forma do contrato de seguro. A coletividade está amparada pelos mesmos riscos.
- 4. É possível o ingresso de novos componentes, observadas as características anteriores, portanto num intervalo de idade de n até n + dn se pode conhecer o número de pessoas que ingressaram no seguro.
- 5. De forma similar a 4 há também saídas do grupo:
 - 5.1 por morte e
 - 5.2 por outras razões.

Vamos usar a seguinte nomenclatura:

$$ix = \int_{-X}^{X} \frac{x+1}{i(n) dn}$$
 (1)

onde, ix é o número de indivíduos que ingressa, na coletividade entre as idades de x e x + 1.

$$dx = \int_{-x}^{x} \frac{x+1}{d(n) dn}$$
 (2)

onde dx é o número de mortes para a idade x entre as idades x e x + 1 e, vx é o número de saídas no período, representada por

$$vx = \int_{-\infty}^{\infty} \frac{x+1}{v(n) dn}$$
 (3)

Vamos indicar por Lx o número de contemporâneos na idade x, isto é, o número de indivíduos que compõe a coletividade de idade x. O símbolo L é usado para se distinguir de lx usado nas tábuas biométricas.

Na coletividade, podemos dizer que:

$$L x = Lx-1 + ix-1 - dx-1 - vx - 1$$
 (4)

Portanto Lx se obtém do número de indivíduos contemporâneos da idade x - 1, adicionado aos indivíduos que ingressam no período entre as idades x - 1 e x, subtraída das mortes e outras saídas por causas diversas.

Por recorrência de (4) se pode escrever Lx a partir da idade inicial a e por conseguinte da coletividade La

$$Lx = La + \sum_{j=a}^{x-1} (ij - dj - \sqrt{j})$$
 (5)

É evidente que se i (n) e v(n) iguais a zero, Lx = lx

Os indivíduos que ingressam na coletividade i(n)dn, no período entre n e n + dn e compreendido entre o ano x e x + 1, devem indicar um número médio de mortes antes de completarem x + 1 anos, que podemos escrever

$$x + 1 - n^q n^{i (n) dn}$$

Integrando-se no intervalo de x a x+1 obtém-se o número médio de mortes dos que entram na coletividade à idade x e após esta idade

$$\begin{array}{c|c}
 x + 1 \\
 | x + 1 - n^q n^{i(n) dn} \\
 x
 \end{array}$$
(6)

Da mesma forma os que saem, em consequência de outras ocorrências, têm uma média de morte que podemos escrever como segue:

$$\begin{array}{c}
 x + 1 \\
 | x + 1 - n^q | n^{v(n) dn} \\
 x
 \end{array}$$
(7)

Recordando:

$$Lx = Lx + 1 + ix - 1 - dx - 1 - vx = 1$$
ou
$$Lx = La + \sum_{j=a}^{x+1} (ij - dj - vj)$$

Podemos dizer que o número de mortes para a contemporaneidade Lx é igual ao número médio com base na probabilidade da idade x, Lx.qx, acrescido do número de mortes obtido pela média decorrente dos ingressos ix e deduzida da média dos excluídos por outras razões. Assim podemos escrever:

$$Lx \cdot qx + \begin{cases} x+1 \\ |x+1-n^{q} n^{i(n) dn} - \\ x \end{cases} \begin{cases} x+1 \\ |x+1-n^{q} n^{v(n) dn} \end{cases}$$
(8)

A equação (8) pode ser reescrita

$$dx = Lx \ qx + \int_{x}^{x+1} [i(n) - v(n)] |x+1 - n^{q} n^{dn}$$
 (9)

Podemos usar do seguinte artifício para abreviarmos(9)

Seja: Q (n, x + 1) =
$$\frac{|x + 1 - n^q n|}{qx}$$

temos então:

$$dx = qx \left[Lx + \int_{-x}^{x+1} \frac{x+1}{x} (n) - v(n) \right] Q(n, x+1) dn \quad (10)$$

Dividindo-se (10) por qx

temos
$$\frac{dx}{dx} = Lx + \begin{cases} x + 1 \\ i(n) - v(n) \end{bmatrix} Q(n, x + 1) dn \end{cases}$$

onde $\frac{dx}{dx}$ usa-se notar por Ex

Temos então

$$Ex = Lx + \begin{cases} x + 1 \\ [i(n) - v(n)] Q(n, x + 1) dn \end{cases}$$
 (12)

$$qx = \frac{dx}{Ex}$$
 (13)

As fórmulas (10) e (13) representam a forma da equação fundamental para se determinar a probabilidade de morte qx de um indivíduo entre as idades x e x + 1 com base na observação estatística da coletividade contemporânea observada.

Na prática o que se tem em observação são os seguintes fatos:

- uma coletividade contemporânea sob as condições da contemporaneidade, exposta anteriormente.
- 2) dx fornece o número de morte, observado na coletividade entre as idades $x \in x + 1$, efetivas no intervalo.
 - 3) a fórmula $qx = \frac{dx}{Ex}$ fornece a frequência de morte e,
- 4) finalmente, Ex representa o número de contemporâneos expostos ao risco de morte entre as idades x e x + 1.

O valor de Ex é decorrente de Lx que é observado estatisticamente na prática; contudo as equações só se tornam aplicáveis desde que se formem hipóteses sobre qx e | x +1 - n qn

O Professor Ottaviani em suas lições introduz os métodos da escola inglesa, cujo raciocínio vamos acompanhar.

O primeiro método analisado é o método das vigências exatas.

Com base na função Q (n, x + 1), recordando:

$$Q(n, x + 1) = \frac{|x + 1 - n \, qn|}{qx}$$

os seguintes valores são assumidos; quando n = x, 1, e quando n = x + 1, zero

E então,

$$O(n, x + 1) = x + 1 - n$$

e temos:

$$Ex = Lx + \begin{cases} x+1 \\ [i(n) - v(n)](x+1-n) dn \end{cases}$$
 (14)

e a frequência de morte será

$$qx = \frac{dx}{Lx + \int_{-x}^{x+1} [i(n) - v(n)](x + 1 - n) dn}$$

Segundo o professor a equação (15) é estatisticamente determinável, aproximando a integral mediante o artifício de se dividir (x, x + 1) em n partes iguais, por exemplo 12; determinando a diferença entre o número dos ingressos e o número de cancelamentos por outras causas que se verifica em cada uma daquelas partes, e multiplicando dita diferença pela fração do ano corrente para chegar à idade x + 1.

O algarismo proposto com base nas operações estatísticas compreenderia o seguinte processo:

Divisão do intervalo

doze partes e operando em cada parte a diferença ij - vj e multiplicando-se a diferença pelo prazo a decorrer até x + 1 e a integral se constitui na organização de competência anual

$$\int \sum_{j=1}^{11} (ij - \underline{v}j) \frac{(12 - j)}{12}$$

Ex obtido pela fórmula (14) significa a exposição ao risco no intervalo de idades entre x e x + 1, ou seja, o método de Ackland de vigência exata.

Segundo o professor Ottaviani o processo conduz a uma taxa instantânea de mortalidade "un" decrescente no intervalo x a x + 1, onde

$$un = \frac{qx}{1 - qx (x + 1 - n)}$$

E esta hipótese é contrária à realidade para as idades superiores a 25 anos, mas segundo ele não carrega erros apreciáveis.

Método da idade (ou vigência) média

O professor parte da fórmula

$$Ex = Lx + \int_{x}^{x+1} [i (n) - v (n)] (x + 1 - n) dn$$
 (16)

e considera uniforme as distribuições dos ingressos i e das saídas v no intervalo x, x + 1 o que supõe i(n) e v (n) constantes e portanto, i(n) = ix e v (n) = vx, o que nos permite reescrever (16):

Ex = Lx +
$$\int_{x}^{x+1} (i x - v x) (x + 1 - n) dn$$

ou seja

Ex = Lx + (ix - vx)
$$\int_{x}^{x+1} (x+1-n) dn$$
 (17)

o que pode ser resolvido e

$$Ex = Lx + 1/2 (i x - v x)$$
 (18)

a frequência

$$qx = \frac{dx}{Lx + \frac{1}{2}(i x - v x)}$$
 (19)

É evidente que os dados são estatisticamente apurados.

Método de idade ou vigência mais próxima

Explica o professor Ottaviani que neste método se considera em correspondência a cada idade x o número \overline{i} x de indivíduos que ingressam na coletividade, assim como os que saem por causa diversa \overline{v} x, entre a idade x \overline{v} \overline{v}

Assim, atribui a qualquer indivíduo de ter a idade precisa x, ou seja, a inteira mais próxima, ficando eliminada a movimentação entre x e x + 1, supondo-se que os eventos só ocorrem às idades x ou x + 1.

Pode-se escrever que

$$Ex = Ex - 1 - dx - 1 + i x - v x$$
 (20)

Se considerarmos a idade inicial da contemporaneidade a, temos que

$$Ea = \overline{la} - \overline{va}$$

Podemos reescrever (20) de forma geral:

$$Ex = \sum_{j=0}^{x-1} (\overline{ij} - \overline{vj} - dj) + \overline{ix} - \overline{vx}$$

$$j = a$$
(21)

e, a frequência será

$$qx = \frac{dx}{Ex}$$
 (22)

Nota final: Com base nesta metodologia o professor organiza métodos para a formação de tábuas, cujo detalhamento pode ser obtido em seus trabalhos.

Tábua de Mortalidade Baseada na Experiência Norte-Americana "Americam Experience Table"

Idade X	Número de pessoas vivas lx	Número de mortos dx	Probabilidade anual de morrer qx	Probabilidade anual de viver px	Probabilidade completa de vida ex
10	100,000	749	0.007 490	0.992 510	48.72
11	99,251	746	0.007 516	0.992 484	48.08
12	98,505	743	0.007 543	0.992 457	47.45
13	97,762	740	0.007 569	0.992 431	46.80
14	97,022	737	0.007 596	0.992 404	46.16
15	96,285	735	0.007 634	0.992 366	45.50
16	95,550	732	0.007 661	0.992 339	44.85
17	94,818	729	0.007 688	0.992 312	44.19
18	94,089	727	0.007 727	0.992 273	43.53
19	93,362	725	0.007 765	0.992 235	42.87
20	92,637	723	0.007 805	0.992 195	42.20
21	91,914	722	0.007 855	0.992 145	41.53
22	91,192	721	0.007 906	0.992 094	40.85
23	90,471	720	0.007 958	0.992 042	40.17
24	89,751	719	0.008 011	0.991 989	39.49
25	89,032	718	0.008 065	0.991 935	38.81
26	88,314	718	0.008 130	0.991 870	38.12
27	87,596	718	0.008 197	0.991 803	37.43
28	86,878	718	0.008 264	0.991 736	36.73
29	86,160	719	0.008 345	0.991 655	36.03
30	85,441	720	0.008 427	0.991 573	35.33
31	84,721	721	0.008 510	0.991 490	34.63
32	84,000	723	0.008 607	0.991 393	33.92
33	83,277	726	0.008 718	0.991 282	33.21
34	82,551	729	0.008 831	0.991 169	32.50
35	81,822	732	0.008 946	0.991 054	31.78
36	81,090	737	0.009 089	0.990 911	31.07
37	80,353	742	0.009 234	0.990 766	30.35
38	79,611	749	0.009 408	0.990 592	29.62
39	78,862	756	0.009 586	0.990 414	28.90
40	78,106	765	0.009 794	0.990 206	28.18
41	77,341	774	0.010 008	0.989 992	27.45
42	76,567	785	0.010 252	0.989 748	26.72
43	75,782	797	0.010 517	0.989 483	26.00
44	74,985	812	0.010 829	0.989 171	25.27
45	74,173	828	0.011 163	0.988 837	24.54
46	73,345	848	0.011 562	0.988 438	23.81
47	72,497	870	0.012 000	0.988 000	23.08
48	71,627	896	0.012 509	0.987 491	22.36
49	70,731	927	0.013 106	0.986 894	21.63
50	69,804	962	0.013 781	0.986 219	20.91
51	68,842	1,001	0.014 541	0.985 459	20.20
52	67,841	1,044	0.015 389	0.984 611	19.49
53	66,797	1,091	0.016 333	0.983 667	18.79
54	65,706	1,143	0.017 396	0.982 604	18.09
55	64,563	1,199	0.018 571	0.981 429	17.40
56	63,364	1,260	0.019 885	0.980 115	16.72
57	62,104	1,325	0.021 335	0.978 665	16.05
58	60,779	1,394	0.022 936	0.977 064	15.39
59	59,385	1,468	0.024 720	0,975 280	14.74

TÁBUAS DE MORTALIDADE

Idade X	Número de pessoas vivas lx	Número de mortos dx	Probabilidade anual de morrer qx	Probabilidade anual de viver px	Probabilidade completa de vida ex
60	57,917	1,546	0,026 693	0.973 307	14.10
61	56,371	1,628	0,028 880	0.971 120	13.47
62	54,743	1,713	0,031 292	0.968 708	12.86
63	53,030	1,800	0,033 943	0.966 057	12.26
64	51,230	1,889	0.036 873	0.963 127	11.67
65	49,341	1,980	0,040 129	0.959 871	11.10
66	47,361	2,070	0,043 707	0.956 293	10.54
67	45,291	2,158	0.047 647	0.952 353	10.00
68	43,133	2,243	0,052 002	0,947 998	9.47
69	40.890	2,321	0,056 762	0.943 238	8.97
70	38,569	2,391	0.061 993	0.938 007	8.48
71	36,178	2,448	0.067 665	0.932 335	8.00
72	33,730	2,487	0.073 733	0.926 267	7.55
73	31,243	2,505	0.080 178	0.919 822	7.11
74	28,738	2,503	0.087 028	0.912 972	6.68
/ -	20,730	2,301	0,007 020	0,512 572	0.00
75	26,237	2,476	0.094 371	0.905 629	6.27
76	23,761	2,431	0,102 311	0,897 689	5.88
77	21,220	2,369	0.111 064	0.888 936	5.49
78	18,961	2,291	0,120 827	0,870 173	5.11
79	16,670	2,196	0,131 734	0.868 266	4.74
80	14,474	2,091	0.144 466	0.855 534	4.39
81	12,383	1,964	0,158 605	0,841 395	4.05
82	10,419	1,816	0,174 297	0,825 703	3.71
83	8,603	1,648	0.191 561	0.808 439	3.39
84	6,955	1,470	0.211 359	0.788 641	3.08
85	5,485	1,292	0.235 552	0.764 448	2.77
86	4,193	1,114	0,265 681	0.734 319	2.47
87	3,079	933	0.303 020	0.696 980	2.18
88	2,146	744	0.346 692	0,653 308	1.91
89	1,402	555	9.395 863	0.604 137	1.66
90	847	385	0.454 545	0.545 455	1.42
90	84 / 462	385 246	0.434 545 0.532 466	0.545 455	1.42
91	216	137	0.634 259	0.365 741	0.98
92	79				
93		58	0.734 177	0.265 823	0.80
	21	18	0.857 142	0.142 857	0.64
95	3	3	1.000 000	0.000 000	0.50

TÁBUAS DE MORTALIDADE						
Х	AT - 49 (MALE)	GKM 70 (MALE)	CSO 80 (MALE)	ALLG 72 (MALE)	X	
0	_	_	_	28.0000	0	
1	1.5800	_	1.0700	1.5500	1	
2	.0870	_	.9900	1.0000	2	
3	.7150	_	.9800	.8000	3	
4	.6270	_	.9500	.8000	4	
5 6	.5660	_	.9000	.7300	5	
7	.5260 .5000	_	.8600 .8000	.6500 .6100	6 7	
8	.4870		.7600	.5600	8	
9	.4820	_	.7400	.5100	9	
10	.4830	_	.7300	.4700	10	
11	.4920	_	.7700	.4400	11	
12	.5020	_	.8500	.4400	12	
13	.5120	_	.9900	.4800	13	
14	.5240	_	1.1500	.5800	14	
15	.5370	1.1950	1.3300	.7900	15	
16	.5510	1.2100	1.5100	1.1400	16	
17	.5670	1.2250	1.6700	1.6100	17	
18 19	.5840 .6030	1.2400 1.2550	1.7800 1.8600	1.9900 2.0300	18 19	
20	.6240	1.2330	1.9000	2.0000	20	
$\begin{vmatrix} 20 \\ 21 \end{vmatrix}$.6480	1.2850	1.9000	1.9300	21	
22	.6740	1.3000	1.8900	1.8400	22	
23	.7020	1.3150	1.8600	1.7400	23	
24	.7330	1.3300	1.8200	1.6600	24	
25	.7680	1.3450	1.7700	1.6100	25	
26	.8060	1.3600	1.7300	1.5800	26	
27	.8490	1.3750	1.7100	1.5900	27	
28	.8960	1.3900	1.7000	1.6100	28	
29 30	.9470 1.0040	1.4050 1.4240	1.7100 1.7300	1.6500 1.7000	29 30	
31	1.0670	1.4240	1.7800	1.7500	31	
32	1.1360	1.5320	1.8300	1.8000	32	
33	1.2130	1.6030	1.9100	1.8700	22	
34	1.2970	1.6870	2.0000	1.9700	34	
35	1.3910	1.7900	2.1100	2.1000	35	
36	1.4940	1.9110	2.2400	2.2700	36	
37	1.6070	2.0520	2.4000	2.4600	37	
38	1.7330	2.2170	2.5800	2.6900	38	
39	1.8720	2.4070	2.7900	2.9400	39	
40 41	2.0250 2.2200	2.6240	3.0200 3.2900	3.2000	40 41	
41 42	2.2200	2.8710 3.1500	3.2900	3.4700 3.7500	41	
43	2.8040	3.4640	3.8700	4.0600	43	
44	3.1870	3.8130	4.1900	4.3900	44	
45	3.6250	4.2020	4.5500	4.7500	45	
46	4.1160	4.6310	4.9200	5.1800	46	
47	4.6570	5.1030	5.3200	5.7000	47	
48	5.2460	5.6200	5.7400	6.3000	48	
49	5.8800	6.1850	6.2100	6.9800	49	
50	6.5570	6.8020	6.7100	7.7100	50	
51 52	7.2770 8.0380	7.4720 8.2100	7.3000 7.9600	8.4400 9.2000	51 52	
52	8.0380	9.0220	8.7100	10.0200	52	
33	0.0400	7.0220	0.7100	10.0200		

	TÁBU	JAS DE MO	RTALIDADE	,	
X	AT - 49 (MALE)	GKM 70 (MALE)	CSO 80 (MALE)	ALLG 72 (MALE)	X
54	9.6820	9.9150	9.5600	10.9500	54
55	10.5650	10.8760	10.4700	12.0600	55
56 57	11.4910 12.4600	11.9760 13.1630	11.4600 12.4900	13.3600 14.8500	56 57
58	13.4760	14.4680	13.5900	16.5300	58
59	14.5420	15.9020	14.7700	18.3900	59
60	15.6620	17.4780	16.0800	20.4400	60
61	16.8690	19.2090	17.5400	22.7400	61
62	18.1990	21.1120	19.1900	25.2900	62
63	19.6660	23.2010	21.0600	28.1100	63
64	21.2830	25.4950	23.1400	31.2100	64
65	23.0660	28.0130	25.4200	34.5900	65
66	25.0300	30.7760	27.8500	38.2600	66
67	27.1930	33.8070	30.4400	42.2300	67
68	29.5770	37.1310	33.1900	46.4900	68
69	32.2020	40.7750	36.1700	51.0600	69
70	35.0920	44.7680 49.1410	39.5100 43.3000	55.9200 61.0600	70
71 72	38.2720 41.7710	53.9280	43.3000	66.4700	71 72
73	45.6200	59.1640	52.6400	72.1200	73
74	49.8520	64.8900	58.1900	78.0000	74
75	54.5010	71.1460	64.1900	84.1500	75
76	59.6090	77.9760	70.5300	90.6600	76
77	65.2160	85.4270	77.1200	97.6400	77
78	71.3680	93.5490	83.9000	105.2600	78
79	78.1130	102.3920	91.0500	113.6400	79
80	85.5030	112.0120	98.8400	122.8600	80
81	93.5930	122.4640	107.4800	132.9700	81
82	102.4430	133.8060	117.2500	143.9600	82
83	112.1130	146.0990	128.2600	155.6900	83
84	122.6690	159.4020	140.2500	168.0300	84
85	134.1780	173.7750	152.9500	180.9500	85
86	146.7090	189.2780	166.0900	194.5400	86
87	160.3330	205.9700	179.5500	209.0200	87
88 89	175.1240	223.9060	193.2700	224.6800	88
90	191.1510 208.4850	243.1390 263.7140	207.2900 221.7700	241.6700 259.7000	89 90
91	208.4830	285.6740	236.9800	279.0600	91
91	247.3320	309.0490	253.4500	299.8100	92
93	268.9600	333.8630	272.1100	322.0100	93
94	292.1180	360.1270	295.9000	345.7000	94
95	316.8340	387.8400	329.9600	370.9200	95
96	343.1220	416.9860	384.5500	397.6800	96
97	370.9730	447.5350	480.2000	425.9800	97
98	400.3520	479.4380	657.9800	455.7800	98
99	431.1990	512.6300	1000.0000	487.0300	99
100	463.4150	547.0290		519.6200	100
101	496.8700	582.5330	_	——————————————————————————————————————	101
102	531.3890	619.0260	+		102
103	566.7570	656.3730	+		103
104	602.7140	694.4270	_		104
105	638.9560	733.0280		_	105
106	675.1430 710.8980	772.0050		_	106
107 108	745.8220				107 108
108	1000.0000	_			108
109	1000.0000				109

De acordo com a Circular SUSEP nº 19, de 23 de agosto de 1989, as seguintes Tábuas Biométricas serão adotadas no seguro de Vida Individual:

Seguros por falecimento: CSO-58 (MALE) e CSO-80 (MALE) em outras Tábuas aceitas pelo IBA.

Seguros por Sobrevivência: AT-49 (MALE), AT-55 (MALE), AT-83 (MALE) ou outras Tábuas aceitas pelo IBA.

Taxa de Juros: 6% a.a. ou sua equivalência mensal.

	CSO-58	CSO-80	AT-49	AT-55	AT-83
X	qx	qx	qx	qx	qx
0	0.007080	0.004180	0.004040	-	-
1	0.001760	0.001070	0.001580	_	-
2	0.001520	0.000990	0.000887	-	-
3	0.001460	0.000980	0.000715	-	-
4	0.001400	0.000950	0.000627	-	-
5	0.001350	0.000900	0.000566	0.000370	0.000380
6	0.001300	0.000860	0.000526	0.000380	0.000350
7	0.001260	0.000800	0.000500	0.000390	0.000330
8	0.001230	0.000760	0.000487	0.000400	0.000350
9	0.001210	0.000740	0.000482	0.000410	0.000370
10	0.001210	0.000730	0.000483	0.000420	0.000380
11	0.001230	0.000770	0.000492	0.000430	0.000390
12	0.001260	0.000850	0.000502	0.000441	0.000410
13	0.001320	0.000990	0.000512	0.000452	0.000420
14	0.001390	0.001150	0.000524	0.000463	0.000430
15	0.001460	0.001330	0.000537	0.000475	0.000440
16	0.001540	0.001510	0.000551	0.000488	0.000450
17	0.001620	0.001670	0.000567	0.000502	0.000460
18	0.001690	0.001780	0.000584	0.000517	0.000470
19	0.001740	0.001860	0.000603	0.000534	0.000490
20	0.001790	0.001900	0.000624	0.000553	0.000510
21	0.001830	0.001910	0.000648	0.000574	0.000530
22	0.001860	0.001890	0.000674	0.000597	0.000550
23	0.001890	0.001860	0.000702	0.000622	0.000570
24	0.001910	0.001820	0.000733	0.000649	0.000600
25	0.001930	0.001770	0.000768	0.000679	0.000620

	CSO-58	CSO-80	AT-49	AT-55	AT-83
X	qx	qx	qx	qx	qx
26	0.001960	0.001730	0.000806	0.000712	0.000650
27	0.001990	0.001710	0.000849	0.000749	0.000680
28	0.002030	0.001710	0.000896	0.000791	0.000700
29	0.002030	0.001700	0.000947	0.000731	0.000730
30	0.002030	0.001710	0.001004	0.000893	0.000760
30	0.002130	0.001730	0.001004	0.000893	0.000700
31	0.002190	0.001780	0.001067	0.000953	0.000790
32	0.002250	0.001830	0.001136	0.001020	0.000810
33	0.002320	0.001910	0.001213	0.001095	0.000840
34	0.002400	0.002000	0.001297	0.001179	0.000880
35	0.002510	0.002110	0.001391	0.001273	0.000920
	0.002010	0.002110	0.001251	0.001270	0.000320
36	0.002640	0.002240	0.001494	0.001378	0.000970
37	0.002800	0.002400	0.001607	0.001495	0.001030
38	0.003010	0.002580	0.001733	0.001624	0.001110
39	0.003250	0.002790	0.001872	0.001767	0.001220
40	0.003530	0.003020	0.002025	0.001925	0.001340
41	0.003840	0.003290	0.002220	0.002099	0.001490
42	0.004170	0.003560	0.002481	0.002290	0.001670
43	0.004530	0.003870	0.002804	0.002499	0.001890
44	0.004920	0.004190	0.003187	0.002727	0.002130
45	0.005350	0.004550	0.003625	0.002975	0.002400
46	0.005830	0.004920	0.004116	0.003244	0.002690
47	0.006360	0.005320	0.004657	0.003535	0.003010
48	0.006950	0.005740	0.005246	0.003849	0.003340
49	0.007600	0.006210	0.005880	0.004187	0.003690
50	0.008320	0.006710	0.006557	0.004550	0.004060
51	0.009110	0.007300	0.007277	0.004943	0.004430
52	0.009960	0.007960	0.008038	0.005378	0.004810
53	0.010890	0.008710	0.008840	0.005868	0.005200
54	0.011900	0.009560	0.009682	0.006428	0.005590
55	0.013000	0.010470	0.010565	0.007073	0.005990
56	0.014210	0.011460	0.011491	0.007818	0.006410
57	0.015540	0.012490	0.012460	0.008678	0.006840
58	0.017000	0.013590	0.013476	0.009666	0.007290
59	0.018590	0.014770	0.014542	0.010782	0.007780
60	0.020340	0.016080	0.015662	0.012027	0.008340
61	0.022240	0.017540	0.016869	0.013401	0.008980
62	0.024310	0.019190	0.018199	0.014901	0.009740
63	0.026570	0.021060	0.019666	0.016526	0.010630
64	0.029040	0.023140	0.021283	0.018286	0.011660
65	0.031750	0.025420	0.023066	0.020192	0.012850
		•			

	CSO-58	CCO 90	AT-49	AT 55	AT 92
		CSO-80		AT-55	AT-83
Х	qx	qx	qx	qx	qx
66	0.034740	0.027850	0.025030	0.022256	0.014200
67	0.034740	0.027830	0.023030	0.022230	0.014200
68	0.038040	0.033190	0.027193	0.024491	0.013720
69	0.041080	0.035190	0.032202	0.020911	0.017410
70	0.049790	0.039510	0.035092	0.029331	0.021370
/0	0.049790	0.039310	0.033092	0.032307	0.021370
71	0.054150	0.043300	0.038272	0.035436	0.023650
72	0.058650	0.047650	0.041771	0.038756	0.026130
73	0.063260	0.052640	0.045620	0.042346	0.028840
74	0.068120	0.058190	0.049852	0.046226	0.031790
75	0.073370	0.064190	0.054501	0.050417	0.035050
76	0.079180	0.070530	0.059609	0.054941	0.038630
77	0.085700	0.077120	0.065216	0.059821	0.042590
78	0.093060	0.083900	0.071368	0.065081	0.046950
79	0.101190	0.091050	0.078113	0.070747	0.051760
80	0.109980	0.098840	0.085503	0.076847	0.057030
81	0.119350	0.107480	0.093593	0.083411	0.062790
82	0.129170	0.117250	0.102443	0.090471	0.069080
83	0.139380	0.128260	0.112113	0.098061	0.075910
84	0.150010	0.140250	0.122669	0.106217	0.083230
85	0.161140	0.152950	0.134178	0.114977	0.090990
86	0.172820	0.166090	0.146709	0.124380	0.099120
87	0.185130	0.179550	0.160333	0.134466	0.107580
88	0.198250	0.193270	0.175124	0.145274	0.116320
89	0.212460	0.207290	0.191151	0.156841	0.125390
90	0.228140	0.221770	0.208485	0.169202	0.134890
0.1	0.245770	0.226000	0.227102	0.102200	0.144070
91 92	0.245770 0.265930	0.236980 0.253450	0.227192 0.247332	0.182389 0.196431	0.144870 0.155430
92	0.289300	0.233430	0.247332	0.196431	0.155430
93		0.272110	0.208900		
95	0.316660 0.351240	0.293900	0.292118	0.227186 0.243947	0.178540 0.191210
93	0.331240	0.329900	0.510854	0.243947	0.191210
96	0.400560	0.384550	0.343122	0.261659	0.204720
97	0.488420	0.480200	0.370973	0.280342	0.204720
98	0.668150	0.657980	0.400352	0.300015	0.234740
99	1.000000	1.000000	0.431199	0.320696	0.251890
100	-	-	0.463415	0.342402	0.270910
100			0.403413	0.542402	3.270510
101	_	_	0.496870	0.365150	0.292110
102	_	_	0.531389	0.388956	0.315830
103	_	_	0.566757	0.413836	0.342380
104	_	_	0.602714	0.439806	0.372090
105	_	_	0.638956	0.466881	0.405280
			0.020700	00001	005200

	CSO-58	CSO-80	AT-49	AT-55	AT-83
Х	qx	qx	qx	qx	qx
106	-	-	0.675143	0.495076	0.442280
107	-	-	0.710898	0.524406	0.483410
108	-	-	0.745822	0.554886	0.528990
109	-	-	1.000000	0.587554	0.579350
110	-	-	-	0.624586	0.634810
111	-	-	-	0.670361	0.695700
112	_	-	-	0.733619	0.762340
113	-	-	-	0.831839	0.835060
114	-	-	-	1.000000	0.914170
115	_	_	-	_	1.000000

		T	ÁBUA DE I	MORTAL	IDADE - C	SO-58 M	ALE		
Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.08 1.76 1.52 1.46 1.40 1.35 1.30 1.26 1.23 1.21 1.21 1.23 1.26 1.32 1.39 1.46 1.54 1.62	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.83 1.86 1.89 1.91 1.93 1.96 1.99 2.03 2.08 2.13 2.19 2.25 2.32 2.40 2.51 2.64 2.80 3.01 3.25	42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	4.17 4.53 4.92 5.35 5.83 6.36 6.95 7.60 8.32 9.11 9.96 10.89 11.90 13.00 14.21 15.54 17.00 18.59 20.34	63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	26.57 29.04 31.75 34.74 38.04 41.68 45.61 49.79 54.15 58.65 63.26 68.12 73.37 79.18 85.70 93.06 101.19 109.98 119.35	84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	150.01 161.14 172.82 185.13 198.25 212.46 228.14 245.77 265.93 289.30 316.66 351.24 400.56 488.42 668.15 1.000.00
18 19 20	1.69 1.74 1.79	40 41	3.25 3.53 3.84	61 62	20.34 22.24 24.31	81 82 83	119.35 129.17 139.38		

			TÁBUA I	DE MOR	ΓALIDADE	- CSG-60)		
Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x
0	8,32	21	2,14	42	4,75	63	28,66	84	157,51
1	2,07	22	2,18	43	5,18	64	31,31	85	169,20
2	1,79	23	2,21	44	5,64	65	34,00	86	181,46
3	1,72	24	2,24	45	6,15	66	37,00	87	194,39
4	1,65	25	2,26	46	6,70	67	40,32	88	208,16
5	1,59	26	2,28	47	7,31	68	44,01	89	223,08
6	1,53	27	2,30	48	7,98	69	48,03	90	239,55
7	1,48	28	2,33	49	8,72	70	52,33	91	258,06
8	1,45	29	2,36	50	9,52	71	56,86	92	279,23
9	1,42	30	2,40	51	10,40	72	61,58	93	303,76
10	1,42	31	2,45	52	11,37	73	66,42	94	332,49
11	1,45	32	2,51	53	12,44	74	71,53	95	368,80
12	1,48	33	2,60	54	13,61	75	77,04	96	420,59
13	1,55	34	2,71	55	14,88	76	83,14	97	512,84
14	1,63	35	2,85	56	16,24	77	89,98	98	701,56
15	1,72	36	3,02	57	17,70	78	97,71	99	1.000,00
16	1,81	37	3,21	58	19,24	79	106,25		
17	1,90	38	3,45	59	20,87	80	115,48		_
18	1,99	39	3,72	60	22,62	81	125,32		_ /
19	2,03	40	4,02	61	24,51	82	135,63	_	_/
20	2,09	41	4,37	62	26,60	83	146,35		

TABLE DE MORTALITÉ P.M. 1960-1964 MKH lx = nombre de vivants à l'âge x dx = nombre de décès entre l'âge x et l'âge x + 1

	ux = 1	ionibre de deces entre	r age x et	1 age X 1 1	
x	1x	dx	Х	lx	х
0	1 000 000	24 280	54	835 348	10 512
1	975 720	2 220	55	824 836	11 310
	973 500	1 100	56	813 526	12 158
2 3 4	972 400	750	57	801 368	13 054
4	971 650	610	58	788 314	14 000
5	971 040	530	59	774 314	14 992
5 6	970 510	470	60	759 322	16 029
7	970 040	440	61	743 293	17 110
7 8	969 600	410	62	726 183	18 227
9	969 190	290	63	707 956	19 377
10	968 800	380	64	688 579	20 552
11	968 420	379	65	668 027	21 741
12	968 041	390	66	646 286	22 934
13	967 651	430	67	623 352	24 119
14	967 221	510	68	599 233	25 278
15	966 711	649	69	573 955	26 393
16	966 062	800	70	547 562	27 446
17	965 262	970	71	520 116	28 412
18	964 292	1 110	72	491 704	29 279
19	963 182	1 221	73	462 435	29 989
20	961 961	1 299	74	432 446	30 547
21	960 662	1 370	75	401 899	30 914
22	959 292	1 420	76	370 985	31 067
23	957 872	1 470	77	339 918	30 980
24	956 402	1 490	78	308 938	30 633
25	954 912	1 530	79	278 305	30 013
26	953 382	1 560	80	248 292	29 110
27	951 822	1 580	81	219 182	27 923
28	950 242	1 606	82	191 259	26 464
29	948 636	1 646	83	164 795	24 752
30	946 990	1 729	84	140 043	22 820
31	945 261	1 853	85	117 223	20 710
32	943 408	1 989	86	96 513	18 473
33	941 419	2 136	87	78 040	16 171
34	939 283	2 297	88	61 869	13 867
35	936 986	2 471	89	48 002	11 628
36	934 515	2 662	90	36 374	9 513
37	931 853	2 868	91	26 861	7 576
38	928 985	3 093	92	19 285	5 859
39	925 892	3 336	93	13 426	4 389
40	922 556	3 601	94	9 037	3 174
41	918 955	3 888	95	5 863	2 209
42	915 067	4 199	96	3 654	1 475
43	910 868	4 536	97	2 179	941
44	906 332	4 901	98	1 238	570
45	901 431	5 295	99	668	328
46	896 136	5 720	100	340	177
47	890 416	6 182	101	163	90
48	884 234	6 677	102	73	43
49	877 557	7 210	103	30	19
50	870 347	7 783	104	11	7
51	862 564	8 398	105	4	3
52	854 166	9 057	106	1	1
53	845 109	9 761			
	l				

^{1.} R.G.A.T., 1970, p. 224. Code des Assurances, annexé à L'article A. 335.1.

TABLE DE MORTALITÉ P.M. 1960-1964 MKH lx = nombre de vivants à l'âge x

lx = nombre de vivants à l'âge xdx = nombre de décès entre l'âge x et l'âge x + 1

X	1x	dx	х	1x	Х
0	1 000 000	18 490	54	909 956	5 353
1	981 510	1 990	55	904 603	5 847
2	979 520	909	56	898 756	6 389
3 4	978 611	610	57	892 367	6 983
4	978 001	480	58	885 384	7 632
5	977 521	400	59	877 752	8 340
6	977 121	340	60	869 412	9 110
7	976 781	200	61	860 302	9 949
8	976 481	271	62	850 353	10 856
9	976 210	249	63	839 497	11 838
10	975 961	241	64	827 659	12 896
11	975 720	240	65	814 763	14 031
12	975 480	249	66	800 732	15 245
13	975 231	270	67	785 487	16 538
14	974 961	310	68	768 949	17 906
15	974 651	360	69	751 043	19 347
16	974 291	410	70	731 696	20 853
17	973 881	471	71	710 843	22 414
18	973 410	520	72	688 429	24 018
19	972 890	570	73	664 411	25 647
20 21	972 320 971 720	600	74 75	638 764 611 483	27 281 28 891
21 22	971 720 971 101	619 650	76	582 592	30 449
23	970 451	681	77	552 143	31 915
23	969 770	718	78	520 228	33 251
25	969 052	757	79	486 977	34 407
26	968 295	799	80	452 570	35 339
27	967 496	843	81	417 231	35 992
28	966 365	892	82	381 239	36 318
29	965 761	941	83	233 921	36 268
30	964 820	995	84	308 653	35 805
31	963 825	1 039	85	272 848	34 897
32	962 786	1 088	86	237 951	33 533
33	961 698	1 143	87	204 418	31 717
34	960 555	1 205	88	172 701	29 478
35	959 350	1 271	89	143 223	26 869
36	958 079	1 346	90	116 354	23 965
37	956 733	1 430	91	92 389	20 870
38	955 303	1 520	92	71 519	17 695
39	953 783	1 624	93	53 824	14 566
40	952 159	1 735	94	39 258	11 604
41	950 424	1 861	95	27 654	8 911
42	948 563	1 999	96	18 743	6 573
43	946 564	2 152	97	12 170	4 636
44	944 412	2 321	98	7 534	3 110
45 46	942 091 939 582	2 509 2 715	99 100	4 424 2 450	1 974 1 179
46	939 582 936 867	2 715	100	1 271	658
48	930 867	3 195	101	613	340
48	933 923 930 727	3 195 3 474	102	273	162
50	930 727 927 253	3 781	103	111	70
51	927 233 923 472	4 120	105	41	28
52	919 352	4 493	106	13	13
53	914 859	4 903	100	13	13
		. , , ,			

^{1.} R.G.A.T., 1970, p. 225 Code des Assurances, annexé à L'article A. 335.1.

		Tábua	SGB-71		
Idade	Taxa de Mortalidade	Prêmio Puro Anual por 1000	Idade	Taxa de Mortalidade	Prêmio Puro Anual por 1000
Até 14	1,295	1,295	58	22,173	22,173
15	1,488	1,488	59	24,089	24,089
16	1,694	1,694	60	26,128	26,128
17	1,859	1,859	61	28,402	28,402
18	1,918	1,918	62	30,908	30,908
19	1,925	1,925	63	33,640	33,640
20	1,932	1,932	64	36,577	36,577
21	1,939	1,939	65	39,799	39,799
22	1,946	1,946	66	43,445	43,445
23	1,946	1,946	67	47,491	47,491
24	1,949	1,949	68	51,963	51,963
25	1,953	1,953	69	56,855	56,855
26	1,972	1,972	70	62,084	62,084
27	1,978	1,978	71	68,386	68,386
28	2,022	2,022	72	75,048	75,048
29	2,041	2,041	73	82,003	82,003
30	2,099	2,099	74	89,417	89,417
31	2,157	2,157	75	97,453	97,453
32	2,226	2,226	76	107,087	107,087
33	2,333	2,333	77	117,963	117,963
34	2,489	2,489	78	130,283	130,283
35	2,662	2,662	79	144,029	144,029
36	2,876	2,876	80	159,043	159,043
37	3,118	3,118	81	176,815	176,815
38	3,417	3,417	82	195,857	195,857
39	3,761	3,761	83	216,109	216,109
40	4,134	4,134	84	237,657	237,657
41	4,566	4,566	85	260,620	260,620
42	5,050	5,050	86	301,064	301,064
43	5,565	5,565	87	345,335	345,335
44	6,124	6,124	88	393,903	393,903
45	6,734	6,734	89	447,646	447,646
46	7,443	7,443	90	507,730	507,730
47	8,146	8,146	91	543,067	543,067
48	8,951	8,951	92	583,391	583,391
49	9,811	9,811	93	630,071	630,071
50	10,763	10,763	94	684,645	684,645
51	11,803	11,803	95	753,865	753,865
52	12,948	12,948	96	757,326	757,326
53	14,195	14,195	97	798,937	798,937
54	15,557	15,557	98	886,325	886,325
55	17,024	17,024	99	969,804	969,804
56	18,633	18,633	100	1000,000	1000,000
57	20,358	20,358			
1	l '	· /	100	1000,000	1000,000

		T	ÁBUA DE I	MORTAL	IDADE - C	SO-58 M	ALE		
Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x	Idade	C.S.O. 1958 1000 q _x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	7.08 1.76 1.52 1.46 1.40 1.35 1.30 1.26 1.23 1.21 1.21 1.23 1.26 1.32 1.39 1.46 1.54 1.62	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.83 1.86 1.89 1.91 1.93 1.96 1.99 2.03 2.08 2.13 2.19 2.25 2.32 2.40 2.51 2.64 2.80 3.01 3.25	42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	4.17 4.53 4.92 5.35 5.83 6.36 6.95 7.60 8.32 9.11 9.96 10.89 11.90 13.00 14.21 15.54 17.00 18.59 20.34	63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81	26.57 29.04 31.75 34.74 38.04 41.68 45.61 49.79 54.15 58.65 63.26 68.12 73.37 79.18 85.70 93.06 101.19 109.98 119.35	84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	150.01 161.14 172.82 185.13 198.25 212.46 228.14 245.77 265.93 289.30 316.66 351.24 400.56 488.42 668.15 1.000.00
19 20	1.74 1.79	40 41	3.53 3.84	61 62	22.24 24.31	82 83	129.17 139.38		

			TÁBUA I	DE MOR	ΓALIDADE	- CSG-60)		
Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x	Idade	1000 q _x
0	8,32	21	2,14	42	4,75	63	28,66	84	157,51
1	2,07	22	2,18	43	5,18	64	31,31	85	169,20
2	1,79	23	2,21	44	5,64	65	34,00	86	181,46
3	1,72	24	2,24	45	6,15	66	37,00	87	194,39
4	1,65	25	2,26	46	6,70	67	40,32	88	208,16
5	1,59	26	2,28	47	7,31	68	44,01	89	223,08
6	1,53	27	2,30	48	7,98	69	48,03	90	239,55
7	1,48	28	2,33	49	8,72	70	52,33	91	258,06
8	1,45	29	2,36	50	9,52	71	56,86	92	279,23
9	1,42	30	2,40	51	10,40	72	61,58	93	303,76
10	1,42	31	2,45	52	11,37	73	66,42	94	332,49
11	1,45	32	2,51	53	12,44	74	71,53	95	368,80
12	1,48	33	2,60	54	13,61	75	77,04	96	420,59
13	1,55	34	2,71	55	14,88	76	83,14	97	512,84
14	1,63	35	2,85	56	16,24	77	89,98	98	701,56
15	1,72	36	3,02	57	17,70	78	97,71	99	1.000,00
16	1,81	37	3,21	58	19,24	79	106,25		
17	1,90	38	3,45	59	20,87	80	115,48		_
18	1,99	39	3,72	60	22,62	81	125,32		_ /
19	2,03	40	4,02	61	24,51	82	135,63	_	_/
20	2,09	41	4,37	62	26,60	83	146,35		

Tablas de Mortalidad de	La Población	Española	1982
Tabla	PEM - 82		

FUNCIONES BIOMÉTRICAS \mathbf{X} qx px dx 1x ex 0 0.0129640 0.9870360 12 964,000 1 000 000,000 72,80 0,9989890 997,893 72,75 1 0.0010110 987 036,000 2 0.0007040 0,9992960 694,171 986 038,107 71.82 3 541,939 70,87 0,0005500 0,9994599 985 343,936 4 0,0004440 0,9995560 437,252 984 801,997 69,91 5 0.0003770 0.9996230 371,106 984 364,745 68,94 6 983 993,639 67,97 0.0003400 0,9996600 334,558 7 318,706 0.0003240 0,9996760 983 659,081 66,99 8 0,9996800 314,669 983 340,375 66,01 0,0003200 9 0,0003190 0,9996810 313,585 983 025,706 65,03 10 64,05 0,0003110 0,9996890 305,623 982 712,121 982 406,498 11 0,0002920 0,9997080 286,863 63,07 12 0.0003000 0,9997000 294,636 982 119,635 62.09 13 0,0003440 0,9996560 337,748 981 824,999 61,11 14 0,0004170 0,9995830 409,280 981 487,251 60,13 0,9994900 15 0,0005100 500,350 981 077,971 59,16 16 0,0006170 0,9993830 605,016 980 577,621 58,19 57,22 17 0,0007310 0,9992690 716,360 979 972,605 979 256,245 18 0,0008430 0,9991570 825,513 56,26 19 0,0009470 0,9990530 926,574 978 430,732 55,31 20 1 010,739 977 504,158 54,36 0,0010340 0,9989660 21 0,0010980 0,9989020 1 072,190 976 493,419 53,42 22 0,0011310 0,9988690 1 103,201 975 421,229 52,48 23 1 097,082 51,53 0,0011260 0,9988740 974 318,028 24 0.0010900 963 220,946 50,59 0,9989100 1 060,611 25 0,0010620 0,9989380 1 032,434 972 160,135 49,65 26 0.0010450 0.9989550 1 014,828 971 127,701 48,70 27 0,0010390 0,9989610 1 007,947 970 112,873 47,75 28 0,0010450 0,9989550 1 012,715 969 104,926 46,80 29 968 092,211 45,85 0,0010630 0,9989370 1 029,082 0,9989070 30 0,0010930 1 057,000 967 063,129 44.89 31 0.0011270 0,9988630 1 098,349 966 006,129 43,94 32 0.0011940 0,9988060 1 152,100 964 907,780 42,99 33 0,0012650 0,9987350 1 219,151 963 755,680 42,04 34 0,0013510 0,9986490 1 300,387 962 536,529 41,10 35 0.0014520 0.9985480 1 395,715 961 236,142 40,15 36 0.0015700 0,9984300 1 506,949 959 840,427 39,21 37 0,0017050 0,9982950 1 633,959 958 333,478 38,27 38 1 778,504 37,33 0,0018590 956 699,519 0,9981410 39 0,0020310 0,9979690 1 939,445 954 921,015 36,40

40	0,0022240	0,9977760	2 119,431	952 981,570	35,48
41	0,0024390	0,9975610	2 319,153	950 862,139	34,55
42	0,0026770	0,9973230	2 539,250	948 542,986	33,64
43	0,0029400	0,9970600	2 781,251	946 003,736	32,73
44	0,0022400	0,9967710	3 045,665	943 222,485	31,82
77	0,0032270	0,7707710	3 043,003	743 222,403	31,62
45	0,0035470	0,9964530	3 334,807	940 176,820	30,92
46	0,0038960	0,9961040	3 649,936	936 842,013	30,03
47	0,0042770	0,9957230	3 991,263	933 192,077	29,15
48	0,0046950	0,9953050	4 362,598	929 200,814	28,27
49	0,0051510	0,9948490	4 763,842	924 838,216	27,40
72	0,0031310	0,2240420	7 705,042	724 030,210	27,40
50	0,0056500	0,9943500	5 198,420	920 074,374	26,54
51	0,0061940	0,9938060	5 666,742	914 875,954	25,69
52	0,0067880	0,9932120	6 171,712	909 209,212	24,84
53	0,0073270	0,9925630	6 715,890	903 037,500	24,01
54	0,0081340	0,9918550	7 300,540	896 321,610	23,19
54	0,0001540	0,7710550	7 300,540	0,00 321,010	23,17
55	0,0089190	0,9910810	7 929,179	889 021,070	22,37
56	0,0097630	0,9902370	8 602,100	881 091,891	21,57
57	0.0106870	0,9893130	9 324,298	872 489,791	20,78
58	0,0116970	0,9883030	10 096,447	863 165,493	20,00
59	0,0128020	0,9871980	10 920,990	853 069,046	19,23
37	0,0120020	0,5071500	10)20,>>0	055 005,040	17,23
60	0,0140120	0,9859880	11 800,179	842 148,056	18,47
61	0,0153390	0,9846610	12 736,706	830 347,877	17,73
62	0,0167940	0,9832060	13 730,962	817 611,171	16,99
63	0,0183920	0,9816080	14 784,965	803 880,209	16,28
64	0,0201470	0,9798530	15 897,902	789 095,244	15,57
0.	0,0201170	0,7770550	15 057,502	707073,211	15,57
65	0,0220780	0,9779220	17 070,651	773 197,342	14,88
66	0,0242030	0,9757970	18 300,534	756 126,691	14,21
67	0,0265450	0,9734550	19 585,595	737 826,257	13,55
68	0,0291270	0,9708730	20 920,193	718 240,562	12,90
69	0,0319770	0,9680230	22 298,213	697 320,369	12,27
0,	0,0215770	0,5000250	,	05,7 520,505	12,27
70	0,0351240	0,9648760	23 709,478	675 022,156	11,66
71	0,0386040	0,9613960	25 143,275	651 312,678	11,07
72	0.0424520	0.0575480	26 582,143	626 169,403	10,49
73	0,0467120	0,9532880	28 007,920	599 587,260	9,94
74	0,0514290	0,9485710	29 395,754	571 579,340	9,40
, ·	0,051 1250	0,5 105710	2, 3,3,73	371 377,310	,,,,
75	0,0566540	0,9433460	30 716,869	542 183,586	8,88
76	0,0624440	0,9375560	31 938,028	511 466,717	8,39
77	0.0688610	0,9311390	33 020,825	479 528,689	7,91
78	0,0759720	0,9249280	33 922,095	446 507,864	7,46
79	0,0838500	0,9161500	34 595,317	412 585,769	7,03
,,	3,0050500	5,2101200	31333,317	112 303,707	,,05
80	0,0925750	0,9074250	34 992,466	377 990,452	6,63
81	0,1014160	0,8985840	34 785,484	342 997,986	6,25
82	0,1100720	0,8899280	33 925,567	308 212,502	5,90
83	0,1192750	0,8807250	32 715,574	274 286,935	5,57
84	0,1297560	0,8702440	31 345,334	241 571,361	5,26
5-	3,1277300	0,0702770	31 3 13,334	211 371,301	3,20

85	0,1422460	0,8577540	29 903,811	210 226,027	4,97
86	0,1551280	0,8448720	27 973,025	180 322,216	4,71
87	0,1664890	0,8335110	25 364,464	152 349,191	4,48
88	0,1766220	0,8233780	22 428,296	126 984,727	4,28
89	0,1858180	0,8141820	19 428,467	104 556,431	4,09
90	0,1943700	0,8056300	16 546,322	85 127,964	3,91
91	0,2025690	0,7974310	13 892,515	68 581,642	3,73
92	0,2107080	0,7892910	11 523,437	54 689,127	3,55
93	0,2190770	0,7809230	9 456,610	43 165,690	3,36
94	0,2279710	0,7720290	7 684,693	33 709,080	3,16
95	0,2376790	0,7623210	6 185,450	26 024,387	2,95
96	0,2519940	0,7480060	4 999,293	19 838,937	2,71
97	0,2745130	0,7254870	4 073,675	14 839,644	2,46
98	0,3052360	0,6947640	3 286,161	10 765,969	2,20
99	0,3441620	0,6558380	2 574,266	7 479,808	1,95
100	0,3912920	0,6087080	1 919,499	4 905,542	1,71
101	0,4466260	0,5533740	1 333,644	2 986,043	1,49
102	0,5101640	0,4898360	842,994	1652,399	1,28
103	0,5819060	0,4180940	470,998	809,405	1,10
104	0,6618510	0,3381490	223,975	338,407	0,94
105	0,7500000	0,2500000	85,824	114,432	0,79
106	0,8463530	0,1536470	24,212	28,608	0,65
107	0,9509090	0,0490910	4,396	4,396	0,50

Tablas de Mortalidad de l	La Población Española 1	982
Tabla 1	PEM - 82	

FUNCIONES BIOMÉTRICAS \mathbf{X} qx px dx 1x ex 0 0.0101400 0.9898600 10 140,000 1 000 000,000 79,00 78,80 1 0.0008390 0.9991610 830,493 989 860,000 2 0.0005050 0,9994950 499,460 989 029,507 77,87 3 988 530,047 76,91 0,0003690 0,9996310 364,768 4 0,0002920 0,9997080 288,544 988 165,279 75,94 5 0.0002560 0,9997440 252,896 987 876,735 74,96 6 239,005 987 623,839 0.0002420 0,9997580 73,98 7 0.0002330 0,9997670 230,061 987 384,834 72,99 8 0,9997860 211,251 987 154,773 72,01 0,0002140 9 0,0001990 0,9998010 196,402 986 943,522 71,03 10 70,04 0,0001950 0,9998050 192,416 986 747,120 197,311 986 554,704 69,05 11 0,0002000 0,9998000 12 0.0002110 0,9997890 208,121 986 357,393 68,07 13 0.0002280 0,9997720 224,842 986 149,272 67,08 14 0,0002500 0,9997500 246,481 985 924,430 66,10 15 0,0002740 0,9997260 270,076 985 677,949 65,11 16 0,0002990 0,9997010 294,637 985 407,873 64,13 985 113,236 17 0,0003240 0,9996760 319,177 63,15 18 0,0003470 0.9996530 341,724 984 794,059 62,17 19 0,9996340 984 452,335 61,19 0,0003660 360,310 20 374,939 984 092,025 60,21 0,0003810 0,9996190 21 0,0003890 0,9996110 382,666 983 717,086 59,24 22 58,26 0,0003890 0,9996110 382,517 983 334,420 23 982 951,903 57,28 0,0003870 0,9996130 380,402 24 382,220 982 571,501 56,30 0.0003890 0,9996110 25 0,0003950 0,9996050 387,965 982 189,281 55,33 26 0.0004050 0.9995950 397,630 981 801,316 54,35 27 0,0004200 0,9995800 412,190 981 403,686 53,37 28 0,0004390 0,9995610 430,655 980 991,496 52,39 29 980 560,841 0,0004620 0,9995380 453,019 51,41 30 0,0004900 0,9995100 480,253 980 107,822 50,44 31 0.0005230 0,9994770 512,345 979 627,569 49,46 0,0005610 32 0,9994390 549,284 979 115,224 48,49 33 0,0006040 0,9993960 591,054 979 565,940 47,52 34 0,9993470 977 974,886 46,54 0,0006530 638,618 35 0.0007070 0.9992930 690,977 977 336,268 45,57 36 0.0007680 0.9992320 750,064 976 645,291 44,61 37 0,0008340 0,9991660 813,897 975 895,227 43,64 38 0,9990930 884,399 975 081,330 42,68 0,0009070 39 0,0009880 0,9990120 962,507 974 196,931 41,71

40 0,0010760 0,9988249 1 047,200 973 234,424 40,75 41 0,0012770 0,9988280 1 139,403 972 187,224 39,80 42 0,0013920 0,9986080 1 349,972 969 807,793 37,89 43 0,0015160 0,9984840 1 468,182 968 457,821 36,05 45 0,0016520 0,9983480 1 597,467 966 989,639 36,00 47 0,0018000 0,998380 1 890,690 963 654,466 34,12 48 0,0023300 0,9978620 2 256,251 961 763,776 33,19 49 0,0023300 0,9974590 2 432,935 957 471,406 31,33 51 0,002710 0,9974590 2 432,935 957 471,406 31,33 52 0,0030404 0,9967060 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9963920 3 414,527 946 376,736 27,						
41 0.0011720 0.9988280 1 139,403 972 187,224 39,80 42 0.0012770 0.9987230 1 240,028 971 047,821 38,84 43 0.0013920 0.998680 1 349,972 968 807,793 37,89 44 0.0015160 0.9983480 1 597,467 966 989,639 36,00 45 0.0016000 0.9989380 1 890,690 963 554,466 34,12 47 0.0019620 0.998380 1 890,690 963 654,466 34,12 48 0.0021380 0.9976700 2 236,119 959 707,525 32,26 50 0.0025410 0.9974590 2 432,935 957 471,406 313,19 51 0.002710 0.9974590 2 464,412 955 038,471 30,41 52 0.0030240 0.9969760 2 880,034 952 382,059 29,49 53 0.0033020 0.9966980 3 135,289 949 512,025 28,58 54 0.003400 0.9994801 3 720,299 942 962,209 26,7	40	0.0010760	0.0080240	1 047 200	973 234 424	40.75
42 0.0012770 0.9987230 1 240.028 971 047,821 38,84 43 0.0013920 0.9986080 1 349,972 969 807,793 37,89 44 0.0015160 0.9984840 1 468,182 968 457,821 36,95 45 0.0016520 0.9982000 1 737,706 965 392,172 35,06 47 0.001800 0.9982000 1 737,706 965 392,172 35,06 47 0.001620 0.9989380 1 890,690 963 654,466 34,12 48 0.0023300 0.9976700 2 236,119 959 707,525 32,26 50 0.0025410 0.9974590 2 432,935 957 471,406 31,33 51 0.0027710 0.9972290 2 646,412 955 038,471 30,41 52 0.0030240 0.9966760 2 880,034 952 382,059 29,49 53 0.0036080 0.996680 3 135,289 949 512,025 28,58 54 0.0036080 0.9960540 3 720,929 942 962,209 26,7			· · · · · · · · · · · · · · · · · · ·		· ·	
43 0.0013920 0.9986080 1 349,972 968 457,821 37,89 44 0.0016520 0.9983480 1 468,182 968 457,821 36,95 45 0.0018000 0.9982000 1 737,706 965 392,172 35,06 47 0.0019620 0.998380 1 890,690 963 654,466 34,12 48 0.0021380 0.9976700 2 236,119 959 707,525 32,26 50 0.0025410 0.9974590 2 432,935 957 471,406 31,31 51 0.0027100 0.9974590 2 464,612 955 038,471 30,41 52 0.0030240 0.9969760 2 880,034 952 382,059 29,49 53 0.0033020 0.9966980 3 135,289 949 512,025 28,58 54 0.0036080 0.9963920 3 414,527 946 376,736 27,67 55 0.0039460 0.996840 3 720,929 942 962,209 26,77 56 0.004320 0.9948050 4 427,160 935 183,758 24,9			,			
44 0,0015160 0,9984840 1 468,182 968 457,821 36,95 45 0,0016520 0,9983480 1 597,467 966 989,639 36,00 46 0,0019620 0,998380 1 890,690 963 654,466 34,12 48 0,0021380 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0030240 0,99669760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,003460 0,9960540 3 720,929 942 962,209 26,77 55 0,0047340 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9956800 4 057,522 939 241,280 25,88 58 0,0051950 0,9948050 4 835,281 930 756,588 24		,	,			
45 0,0016520 0,9983480 1 597,467 966 989,639 36,00 460 0,0018000 0,9982000 1 737,706 965 392,172 35,06 47 0,0019620 0,998380 1 890,690 963 654,466 34,12 48 0,0021380 0,997620 2 056,251 961 763,776 33,19 49 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9963920 3 414,527 946 376,736 27,67 55 0,0039460 0,9969540 3 720,929 942 962,209 26,77 0,0047340 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9956800 4 4057,522 939 241,280 25,88 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0074540 0,9930760 6 334,447 914 853,642 21,50 62 0,0074540 0,9930760 6 334,447 914 853,642 21,50 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,988810 15 088,862 828 93,987 14,19 71 0,0204950 0,9785959 16 681,027 81 307,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 77 0,0439430 0,9662300 24 851,052 735 891,374 10,64 77 0,0439430 0,9662300 24 851,052 735 891,374 10,64 77 0,0439430 0,9662300 24 851,052 735 891,374 10,64 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 80,0502800 0,9497200 32 864,812 653 635,882 8,79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0061720 0,9338280 38 710,152 584 992,929 7,70 820,00338300 0,964570 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
46 0,0018000 0,9982000 1 737,706 965 392,172 35,06 47 0,0019620 0,9989380 1 890,690 963 654,466 34,12 48 0,0021380 0,9978620 2 056,251 961 763,776 33,19 49 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,003240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 942 962,209 26,77 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,004740 0,9956800 4 427,160 935 183,758 24,		0,0013100	0,9904040	1 400,162	900 437,021	30,93
46 0,0018000 0,9982000 1 737,706 965 392,172 35,06 47 0,0019620 0,9989380 1 890,690 963 654,466 34,12 48 0,0021380 0,9978620 2 056,251 961 763,776 33,19 49 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,003240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 942 962,209 26,77 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,004740 0,9956800 4 427,160 935 183,758 24,	45	0.0016520	0.9983480	1 597.467	966 989,639	36.00
47 0,0019620 0,9989380 1 890,690 963 654,466 34,12 48 0,0021380 0,9978620 2 056,251 961 763,776 33,19 49 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9963920 3 414,527 946 376,736 27,67 55 0,003460 0,9960840 3 720,929 942 962,209 26,77 56 0,0043200 0,9952660 4 457,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9937190 5 782,516 920 636,158 22			· ·		· · · · · · · · · · · · · · · · · · ·	
48 0,0021380 0,9976700 2 236,119 959 707,525 32,26 50 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9976700 2 432,935 957 471,406 31,33 51 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 942 962,209 26,77 55 0,0039460 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069440 0,9930760 6 334,447 914 853,642 2			· · · · · · · · · · · · · · · · · · ·	· /	· · · · · · · · · · · · · · · · · · ·	
49 0,0023300 0,9976700 2 236,119 959 707,525 32,26 50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0033020 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 942 962,209 26,77 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9958600 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,005640 0,9937190 5 782,516 920 636,158 22,36 61 0,006240 0,9930760 6 334,447 914 853,642 21,					· ·	
50 0,0025410 0,9974590 2 432,935 957 471,406 31,33 51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 946 376,736 27,67 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9937190 5 782,516 920 636,158 22,36 61 0,0062810 0,9937190 5 782,516 920 636,158 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 2			· ·		· ·	
51 0,0027710 0,9972290 2 646,412 955 038,471 30,41 52 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9915440 7 623,706 901 573,566 19,80 63 0,0084560 0,9915440 7 623,706 901 573,566 1		.,	-,			, -
52 0,0030240 0,9969760 2 880,034 952 382,059 29,49 53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9963920 3 414,527 946 376,736 27,67 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9937190 5 782,516 920 636,158 22,36 61 0,0062810 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0015870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 <td< td=""><td>50</td><td>0,0025410</td><td>0,9974590</td><td>2 432,935</td><td>957 471,406</td><td>31,33</td></td<>	50	0,0025410	0,9974590	2 432,935	957 471,406	31,33
53 0,0033020 0,9966980 3 135,289 949 512,025 28,58 54 0,0036080 0,9963920 3 414,527 946 376,736 27,67 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942020 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,993550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0015780 0,9884130 10 154,291 876 352,075 1	51	0,0027710	0,9972290	2 646,412	955 038,471	30,41
54 0,0036080 0,9963920 3 414,527 946 376,736 27,67 55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9885010 10 154,291 876 352,075	52	0,0030240	0,9969760	2 880,034	952 382,059	29,49
55 0,0039460 0,9960540 3 720,929 942 962,209 26,77 56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,98854130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 <t< td=""><td>53</td><td>0,0033020</td><td>0,9966980</td><td>3 135,289</td><td>949 512,025</td><td>28,58</td></t<>	53	0,0033020	0,9966980	3 135,289	949 512,025	28,58
56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9915440 7 623,706 901 573,566 19,80 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0161990 0,9818010 13 649,990 841 643,977 <td< td=""><td>54</td><td>0,0036080</td><td>0,9963920</td><td>3 414,527</td><td>946 376,736</td><td>27,67</td></td<>	54	0,0036080	0,9963920	3 414,527	946 376,736	27,67
56 0,0043200 0,9956800 4 057,522 939 241,280 25,88 57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9915440 7 623,706 901 573,566 19,80 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0161990 0,9818010 13 649,990 841 643,977 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
57 0,0047340 0,9952660 4 427,160 935 183,758 24,99 58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9858101 13 649,990 841 643,977 <t< td=""><td></td><td>,</td><td>· ·</td><td></td><td>,</td><td></td></t<>		,	· ·		,	
58 0,0051950 0,9948050 4 835,281 930 756,598 24,10 59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9885900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 <		- ,	- ,		,	- /
59 0,0057080 0,9942920 5 285,159 925 921,317 23,23 60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125		· · · · · · · · · · · · · · · · · · ·	· ·		· ·	
60 0,0062810 0,9937190 5 782,516 920 636,158 22,36 61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678	59	0,0057080	0,9942920	5 285,159	925 921,317	23,23
61 0,0069240 0,9930760 6 334,447 914 853,642 21,50 62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678	60	0.0062010	0.0027100	5 702 516	020 (2(150	22.26
62 0,0076450 0,9923550 6 945,629 908 519,195 20,64 63 0,0084560 0,9915440 7 623,706 901 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121			- /			
63 0,0084560 0,9915440 7 623,706 801 573,566 19,80 64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9662300 24 851,052 735 891,374 10,64 76 0,0334810 0,9662300 24 851,052 735 891,374					· ·	
64 0,0093730 0,9906270 8 378,992 893 949,860 18,96 65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374		,			,	
65 0,0104100 0,9895900 9 218,793 885 570,868 18,14 66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9560570 30 042,897 683 678,779			· · · · · · · · · · · · · · · · · · ·		· ·	
66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779	64	0,0093730	0,9906270	8 378,992	893 949,860	18,96
66 0,0115870 0,9884130 10 154,291 876 352,075 17,32 67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779	65	0.0104100	0.0805000	0 218 703	885 570 868	18 14
67 0,0129260 0,9870740 11 196,473 866 197,784 16,52 68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882			· · · · · · · · · · · · · · · · · · ·			
68 0,0144530 0,9855470 12 357,334 855 001,311 15,73 69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070		· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
69 0,0161990 0,9838010 13 649,990 841 643,977 14,95 70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· /	· ·	
70 0,0181990 0,9818010 15 088,862 828 993,987 14,19 71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777		,	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000	0)	0,0101770	0,7030010	13 047,770	041 043,777	14,73
71 0,0204950 0,9795959 16 681,027 813 907,125 13,44 72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000	70	0.0181990	0.9818010	15 088,862	828 993,987	14.19
72 0,0231370 0,9768630 18 445,420 797 226,098 12,71 73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990		,	· ·	· · · · · · · · · · · · · · · · · · ·	,	
73 0,0261480 0,9738520 20 363,557 778 780,678 12,00 74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32						· ·
74 0,0297010 0,9702990 22 525,747 758 417,121 11,31 75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32		,	· · · · · · · · · · · · · · · · · · ·			
75 0,0337700 0,9662300 24 851,052 735 891,374 10,64 76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32						
76 0,0384810 0,9615190 27 361,543 711 040,322 10,00 77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32		,	,		· ·	
77 0,0439430 0,9560570 30 042,897 683 678,779 9,38 78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32	75	0,0337700	0,9662300	24 851,052	735 891,374	10,64
78 0,0502800 0,9497200 32 864,812 653 635,882 8,79 79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32	76	0,0384810	0,9615190	27 361,543	711 040,322	10,00
79 0,0576350 0,9423650 35 778,141 620 771,070 8,23 80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32	77	0,0439430	0,9560570	30 042,897	683 678,779	9,38
80 0,0661720 0,9338280 38 710,152 584 992,929 7,70 81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32	78	0,0502800	0,9497200	32 864,812	653 635,882	8,79
81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32	79	0,0576350	0,9423650	35 778,141	620 771,070	8,23
81 0,0746990 0,9253010 40 806,777 546 282,777 7,21 82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32						
82 0,0831830 0,9168170 42 047,010 505 476,000 6,75 83 0,0935430 0,9064570 43 350,538 463 428,990 6,32		· · · · · · · · · · · · · · · · · · ·				
83 0,0935430 0,9064570 43 350,538 463 428,990 6,32				·		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
84 0,1054630 0,8945370 44 302,734 420 078,452 5,92		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	,	
	84	0,1054630	0,8945370	44 302,734	420 078,452	5,92

85	0,1173340	0,8826660	44 091,268	575 775,718	5,55
86	0,1291390	0,8708610	42 833,398	331 684,450	5,23
87	0,1408610	0,8591390	40 687,848	288 851,052	4,93
88	0,1524840	0,8475160	37 840,918	248 163,204	4,65
89	0,1639900	0,8360100	34 490,752	210 322,286	4,40
	.,	-,		, , , , , , , , , , , , , , , , , , , ,	, -
90	0,1753630	0,8246370	30 834,345	175 831,534	4,17
91	0,1865860	0,8134140	27 054,446	144 997,189	3,95
92	0,1976420	0,8023580	23 310,440	117 942,743	3,74
93	0,2085140	0,7914860	19 732,160	94 632,303	3,53
94	0,2191850	0,7808150	16 416,988	74 900,143	3,33
95	0,2296390	0,7703610	13 430,013	58 483,155	3,13
96	0,2425120	0,7574880	10 925,928	45 053,142	2,91
97	0,2604540	0,7395460	8 888,569	34 127,214	2,68
98	0,2834640	0,7165360	7 154,247	25 238,645	2,45
99	0,3115420	0,6884580	5 634,050	18 084,398	2,23
100	0,3446880	0,6553120	4 291,486	12 450,348	2,01
101	0,3829030	0,6170970	3 124,053	8 158,862	1,80
102	0,4261860	0,5738140	2 145,765	5 034,809	1,60
103	0,4745370	0,5254630	1 370,958	2 889,044	1,42
104	0,5279560	0,4720440	801,483	1 518,086	1,26
105	0,5864440	0,4135560	420,248	716,603	1,11
106	0,6500000	0,3500000	192,631	196,355	0,97
107	0,7186240	0,2813760	74,539	103,724	0,85
108	0,7923170	0,2076830	23,124	29,185	0,73
109	0,8710770	0,1289230	5,280	6,061	0,63
110	0,9549070	0,0450930	0,781	0,781	0,40
		*			
	1				

De acordo com a Circular SUSEP nº 19, de 23 de agosto de 1989, as seguintes Tábuas Biométricas serão adotadas no seguro de Vida Individual:

Seguros por falecimento: CSO-58 (MALE) e CSO-80 (MALE) em outras Tábuas aceitas pelo IBA.

Seguros por Sobrevivência: AT-49 (MALE), AT-55 (MALE), AT-83 (MALE) ou outras Tábuas aceitas pelo IBA.

Taxa de Juros: 6% a.a. ou sua equivalência mensal.

	CSO-58	CSO-80	AT-49	AT-55	AT-83
X	qx	qx	qx	qx	qx
0	0.007080	0.004180	0.004040	-	-
1	0.001760	0.001070	0.001580	-	-
2	0.001520	0.000990	0.000887	-	-
3	0.001460	0.000980	0.000715	-	-
4	0.001400	0.000950	0.000627	-	-
5	0.001350	0.000900	0.000566	0.000370	0.000380
	0.001200	0.00000	0.000536	0.000200	0.000250
6	0.001300	0.000860	0.000526	0.000380	0.000350
7	0.001260	0.000800	0.000500	0.000390	0.000330
8	0.001230	0.000760	0.000487	0.000400	0.000350
9	0.001210	0.000740	0.000482	0.000410	0.000370
10	0.001210	0.000730	0.000483	0.000420	0.000380
11	0.001230	0.000770	0.000492	0.000430	0.000390
12	0.001260	0.000850	0.000502	0.000441	0.000410
13	0.001320	0.000990	0.000512	0.000452	0.000420
14	0.001390	0.001150	0.000524	0.000463	0.000430
15	0.001460	0.001330	0.000537	0.000475	0.000440
16	0.001540	0.001510	0.000551	0.000488	0.000450
17	0.001620	0.001670	0.000567	0.000502	0.000460
18	0.001690	0.001780	0.000584	0.000517	0.000470
19	0.001740	0.001860	0.000603	0.000534	0.000490
20	0.001790	0.001900	0.000624	0.000553	0.000510
21	0.001830	0.001910	0.000648	0.000574	0.000530
22	0.001860	0.001890	0.000674	0.000597	0.000550
23	0.001890	0.001860	0.000702	0.000622	0.000570
24	0.001910	0.001820	0.000733	0.000649	0.000600
25	0.001930	0.001770	0.000768	0.000679	0.000620

		GGG 00	157.10		1 TO 0 0
	CSO-58	CSO-80	AT-49	AT-55	AT-83
X	qx	qx	qx	qx	qx
26	0.001960	0.001730	0.000806	0.000712	0.000650
27	0.001990	0.001710	0.000849	0.000749	0.000680
28	0.002030	0.001700	0.000896	0.000791	0.000700
29	0.002080	0.001710	0.000947	0.000839	0.000730
30	0.002130	0.001730	0.001004	0.000893	0.000760
31	0.002190	0.001780	0.001067	0.000953	0.000790
32	0.002250	0.001830	0.001136	0.001020	0.000810
33	0.002320	0.001910	0.001213	0.001095	0.000840
34	0.002400	0.002000	0.001297	0.001179	0.000880
35	0.002510	0.002110	0.001391	0.001273	0.000920
36	0.002640	0.002240	0.001494	0.001378	0.000970
37	0.002800	0.002400	0.001607	0.001495	0.001030
38	0.003010	0.002580	0.001733	0.001624	0.001110
39	0.003250	0.002790	0.001872	0.001767	0.001220
40	0.003530	0.003020	0.002025	0.001925	0.001340
41	0.003840	0.003290	0.002220	0.002099	0.001490
42	0.004170	0.003560	0.002481	0.002290	0.001670
43	0.004530	0.003870	0.002804	0.002499	0.001890
44	0.004920	0.004190	0.003187	0.002727	0.002130
45	0.005350	0.004550	0.003625	0.002975	0.002400
			0.0000		
46	0.005830	0.004920	0.004116	0.003244	0.002690
47	0.006360	0.005320	0.004657	0.003535	0.003010
48	0.006950	0.005740	0.005246	0.003849	0.003340
49	0.007600	0.006210	0.005880	0.004187	0.003690
50	0.008320	0.006710	0.006557	0.004550	0.004060
		0.000,00			
51	0.009110	0.007300	0.007277	0.004943	0.004430
52	0.009960	0.007960	0.008038	0.005378	0.004810
53	0.010890	0.008710	0.008840	0.005868	0.005200
54	0.011900	0.009560	0.009682	0.006428	0.005590
55	0.013000	0.010470	0.010565	0.007073	0.005990
	0.013000	0.010470	0.010505	0.007073	0.003770
56	0.014210	0.011460	0.011491	0.007818	0.006410
57	0.014210	0.011400	0.012460	0.007618	0.006840
58	0.013340	0.012490	0.012400	0.009666	0.007290
59	0.017000	0.013390	0.013470	0.009000	0.007290
60	0.018390	0.014770	0.014342	0.010782	0.007780
	0.020340	0.010000	0.013002	0.012027	0.008540
61	0.022240	0.017540	0.016869	0.013401	0.008980
62	0.022240	0.017340	0.010809	0.013401	0.008980
63	0.024310	0.019190	0.018199	0.014901	0.009740
	0.026370		0.019666		
64 65	0.029040	0.023140 0.025420	0.021283	0.018286 0.020192	0.011660 0.012850
03	0.031/30	0.023420	0.023000	0.020192	0.012830

	CSO-58	CSO-80	AT-49	AT-55	AT-83
X	qx	qx	qx	qx	qx
	q.r.	4.1	4.1	4.1	4
66	0.034740	0.027850	0.025030	0.022256	0.014200
67	0.038040	0.030440	0.027193	0.024491	0.014200
68	0.041680	0.033190	0.029577	0.026911	0.017410
69	0.045610	0.036170	0.032202	0.029531	0.017410
70	0.049790	0.039510	0.035092	0.032367	0.021370
/0	0.047770	0.037310	0.033072	0.032307	0.021370
71	0.054150	0.043300	0.038272	0.035436	0.023650
72	0.058650	0.047650	0.041771	0.038756	0.026130
73	0.063260	0.052640	0.045620	0.042346	0.028840
74	0.068120	0.058190	0.049852	0.046226	0.031790
75	0.073370	0.064190	0.054501	0.050417	0.035050
76	0.079180	0.070530	0.059609	0.054941	0.038630
77	0.085700	0.077120	0.065216	0.059821	0.042590
78	0.093060	0.083900	0.071368	0.065081	0.046950
79	0.101190	0.091050	0.078113	0.070747	0.051760
80	0.109980	0.098840	0.085503	0.076847	0.057030
81	0.119350	0.107480	0.093593	0.083411	0.062790
82	0.129170	0.117250	0.102443	0.090471	0.069080
83	0.139380	0.128260	0.112113	0.098061	0.075910
84	0.150010	0.140250	0.122669	0.106217	0.083230
85	0.161140	0.152950	0.134178	0.114977	0.090990
86	0.172820	0.166090	0.146709	0.124380	0.099120
87	0.185130	0.179550	0.160333	0.134466	0.107580
88	0.198250	0.193270	0.175124	0.145274	0.116320
89	0.212460	0.207290	0.191151	0.156841	0.125390
90	0.228140	0.221770	0.208485	0.169202	0.134890
91	0.245770	0.236980	0.227192	0.182389	0.144870
92	0.265930	0.253450	0.247332	0.196431	0.155430
93	0.289300	0.272110	0.268960	0.211355	0.166630
94	0.316660	0.295900	0.292118	0.227186	0.178540
95	0.351240	0.329960	0.316834	0.243947	0.191210
96	0.400560	0.384550	0.343122	0.261659	0.204720
97	0.488420	0.480200	0.370973	0.280342	0.219120
98	0.668150	0.657980	0.400352	0.300015	0.234740
99	1.000000	1.000000	0.431199	0.320696	0.251890
100	-	-	0.463415	0.342402	0.270910
101	_	_	0.496870	0.365150	0.292110
101	_	_	0.531389	0.388956	0.315830
102			0.566757	0.388930	0.342380
103	_	_	0.602714	0.439806	0.372090
105	_	_	0.638956	0.466881	0.405280
			0.050750	0.400001	0.403200

	CSO-58	CSO-80	AT-49	AT-55	AT-83
x	qx	qx	qx	qx	qx
106			0.6751.40	0.405056	0.442200
106	-	-	0.675143	0.495076	0.442280
107	-	-	0.710898	0.524406	0.483410
108	-	-	0.745822	0.554886	0.528990
109	-	-	1.000000	0.587554	0.579350
110	-	-	-	0.624586	0.634810
111	-	-	-	0.670361	0.695700
112	-	-	-	0.733619	0.762340
113	-	-	-	0.831839	0.835060
114	_	_	-	1.000000	0.914170
115	_	_	-	_	1.000000

		Gam 83			
X	lx	px	qx	dx	ex
0	1.000.000	1,000000	0,000000	0	75,93
1	1.000.000	1,000000	0,000000	0	74,93
2	1.000.000	1,000000	0,000000	0	73,93
3	1.000.000	1,000000	0,000000	0	72,93
4	1.000.000	1,000000	0,000000	0	71,93
5	1.000.000	0,999620	0,000380	380	70,93
6	999.620	0,999647	0,000353	353	69,95
7	999.267	0,999664	0,000336	336	68,98
8	998.931	0,999674	0,000326	326	68,00
9	998.605	0,999676	0,000324	324	67,02
10	998.281	0,999675	0,000325	324	66,05
11	997.957	0,999668	0,000332	331	65,07
12	997.626	0,999662	0,000338	337	64,09
13	997.289	0,999656	0,000344	343	63,11
14	996.946	0,999648	0,000352	351	62,13
15	996.595	0,999639	0,000361	360	61,15
16	996.235	0,999631	0,000369	368	60,18
17	995.867	0,999618	0,000382	380	59,20
18	995.487	0,999608	0,000392	390	58,22
19	995.097	0,999595	0,000405	403	57,24
20	994.694	0,999581	0,000419	417	56,27
21	994.277	0,999566	0,000434	432	55,29
22	993.845	0,999547	0,000453	450	54,32
23	993.395	0,999529	0,000471	468	53,34
24	992.927	0,999507	0,000493	490	52,37
25	992.437	0,999485	0,000515	511	51,39
26	991.926	0,999459	0,000541	537	50,42
27	991.389	0,999429	0,000571	566	49,44
28	990.823	0,999398	0,000602	596	48,47
29	990.227	0,999364	0,000636	630	47,50
30	989.597	0,999326	0,000674	667	46,53
31	988.930	0,999283	0,000717	709	45,56
32	988.221	0,999237	0,000763	754	44,60
33	987.467	0,999185	0,000815	805	43,63
34	986.662	0,999128	0,000872	860	42,67
35	985.802	0,999045	0,000955	941	41,70
36	984.861	0,998992	0,001008	993	40,74
37	983.868	0,998927	0,001073	1056	39,78
38	982.812	0,998846	0,001154	1134	38,83
39	981.678	0,998747	0,001253	1230	37,87
40	980.448	0,998625	0,001375	1348	36,92
41	979.100	0,998478	0,001522	1490	35,97
42	977.610	0,998303	0,001697	1659	35,03
43	975.951	0,998094	0,001906	1860	34,08
44	974.091	0,997853	0,002147	2091	33,15
45	972.000	0,997574	0,002426	2358	32,22

		Gam 83			
X	lx	px	qx	dx	ex
46	969.642	0,997255	0,002745	2662	31,30
47	966.980	0,996901	0,003099	2997	30,39
48	963.983	0,996512	0,003488	3362	29,48
49	960.621	0,996097	0,003903	3749	28,58
50	956.872	0,995657	0,004343	4156	27,70
51	952.716	0,995196	0,004804	4577	26,82
52	948.139	0,994717	0,005283	5009	25,95
53	943.130	0,994222	0,005778	5449	25,08
54	937.681	0,993711	0,006289	5897	24,23
55	931.784	0,993188	0,006812	6347	23,38
56	925.437	0,992647	0,007353	6805	22,54
57	918.632	0,992068	0,007932	7287	21,71
58	911.345	0,991424	0,008576	7816	20,88
59	903.529	0,990684	0,009316	8417	20,06
60	895.112	0,989826	0,010174	9107	19,25
61	886.005	0,988817	0,011183	9908	18,45
62	876.097	0,987630	0,012370	10837	17,66
63	865.260	0,986232	0,013768	11913	16,88
64	853.347	0,984591	0,015409	13149	16,12
65	840.198	0,982676	0,017324	14556	15,37
66	825.642	0,980469	0,019531	16126	14,64
67	809.516	0,977995	0,022005	17813	13,93
68	791.703	0,975301	0,024699	19554	13,24
69	772.149	0,972426	0,027574	21291	12,58
70	750.858	0,969411	0,030589	22968	11,94
71	727.890	0,966272	0,033728	24550	11,31
72	703.340	0,962923	0,037077	26078	10,71
73	677.262	0,959243	0,040757	27603	10,12
74	649.659	0,955124	0,044876	29154	9,55
75	620.505	0,950448	0,049552	30747	9,00
76	589.758	0,945123	0,054877	32364	8,47
77	557.394	0,939158	0,060842	33913	7,96
78	523.481	0,932580	0,067420	35293	7,48
79	488.188	0,925418	0,074582	36410	7,02
80	451.778	0,917699	0,082301	37182	6,58
81	414.596	0,909464	0,090536	37536	6,17
82	377.060	0,900756	0,099244	37421	5,79
83	339.639	0,891638	0,108362	36804	5,42
84	302.835	0,882170	0,117830	35683	5,08
85	267.152	0,872406	0,127594	34087	4,76
86	233.065	0,862034	0,137966	32155	4,46
87	200.910	0,851252	0,148748	29885	4,17
88	171.025	0,839924	0,160076	27377	3,90
89	143.648	0,827934	0,172066	24717	3,64
90	118.931	0,815212	0,184788	21977	3,40
91	96.954	0,801989	0,198011	19198	3,17

Gam 83								
x	lx	px	qx	dx	ex			
92	77.756	0,788376	0,211624	16455	2,9:			
93	61.301	0,774441	0,225559	13827	2,74			
94	47.474	0,757867	0,242133	11495	2,5			
95	35.979	0,739904	0,260096	9358	2,3			
96	26.621	0,723977	0,276023	7348	2,1			
97	19.273	0,706688	0,293312	5653	2,0			
98	13.620	0,688032	0,311968	4249	1,8			
99	9.371	0,667592	0,332408	3115	1,7			
100	6.256	0,645301	0,354699	2219	1,5			
101	4.037	0,621006	0,378994	1530	1,3			
102	2.507	0,594336	0,405664	1017	1,2			
103	1.490	0,563087	0,436913	651	1,0			
104	839	0,525626	0,474374	398	0,9			
105	441	0,478458	0,521542	230	0,7			
106	211	0,421801	0,578199	122	0,6			
107	89	0,348315	0,651685	58	0,4			
108	31	0,258065	0,741935	23	0,2			
109	8	0,125000	0,875000	7	0,1			
110	1	0,000000	1,000000	1	0,0			

CIRCULAR SUSEP Nº 402/2010 - ANEXO: TÁBUAS BIOMÉTRICAS

	Sobrevivência Masculina	Sobrevivência Feminina	Mortalidade Masculina	Mortalidade Feminina
	BR-EMSsb-v.2010-m	BR-EMSsb-v.2010-f	BR-EMSmt-v.2010-m	BR-EMSmt-v.2010-f
Idade	qx	qx	qx	qx
0	0,00200	0,00038	0,00274	0,00128
1	0,00069	0,00038	0,00095	0,00046
2	0,00035	0,00020	0,00048	0,00025
3	0,00022	0,00013	0,00030	0,00016
4	0,00016	0,00010	0,00022	0,00012
5	0,00013	0,00008	0,00018	0,00010
6	0,00012	0,00007	0,00016	0,00009
7	0,00011	0,00007	0,00015	0,00009
8	0,00011	0,00008	0,00015	0,00009
9	0,00012	0,00009	0,00016	0,00011
10	0,00013	0,00012	0,00018	0,00014
11	0,00015	0,00015	0,00021	0,00018
12	0,00019	0,00018	0,00026	0,00022
13	0,00024	0,00022	0,00033	0,00026
14	0,00031	0,00025	0,00042	0,00030
15	0,00039	0,00027	0,00053	0,00033
16	0,00048	0,00029	0,00065	0,00035
17	0,00057	0,00030	0,00078	0,00037
18	0,00066	0,00031	0,00090	0,00037
19	0,00074	0,00030	0,00101	0,00037
20	0,00080	0,00030	0,00110	0,00037
21	0,00085	0,00030	0,00117	0,00036
22	0,00089	0,00029	0,00122	0,00036
23	0,00092	0,00029	0,00125	0,00035
24	0,00093	0,00029	0,00127	0,00035
25	0,00093	0,00029	0,00127	0,00035
26	0,00093	0,00029	0,00127	0,00036
27	0,00092	0,00030	0,00126	0,00037
28	0,00092	0,00032	0,00126	0,00039
29	0,00091	0,00033	0,00125	0,00041
30	0,00092	0,00035	0,00126	0,00044
31	0,00093	0,00037	0,00127	0,00047
32	0,00094	0,00040	0,00129	0,00050
33	0,00099	0,00042	0,00135	0,00054
34	0,00103	0,00045	0,00142	0,00057
35	0,00109	0,00047	0,00149	0,00062
36	0,00115	0,00051	0,00157	0,00066
37	0,00121	0,00054	0,00166	0,00071
38	0,00128	0,00058	0,00176	0,00076
39	0,00136	0,00062	0,00186	0,00082
40	0,00144	0,00066	0,00198	0,00088
41	0,00153	0,00071	0,00211	0,00095
42	0,00164	0,00077	0,00225	0,00103
43	0,00175	0,00083	0,00240	0,00111
44	0,00187	0,00089	0,00256	0,00120
45	0,00200	0,00096	0,00275	0,00130
46	0,00215	0,00104	0,00295	0,00140
47	0,00231	0,00112	0,00317	0,00152
48	0,00249	0,00121	0,00341	0,00164
49	0,00268	0,00131	0,00367	0,00178
50	0,00290	0,00142	0,00396	0,00193
51	0,00313	0,00155	0,00427	0,00209
52	0,00339	0,00169	0,00462	0,00228
53	0,00367	0,00185	0,00499	0,00248
54	0,00398	0,00203	0,00541	0,00270
55	0,00431	0,00223	0,00586	0,00294
56 57	0,00468	0,00245	0,00635	0,00321
3/	0,00509	0,00271	0,00690	0,00351

58	0.00554	0.00299	0,00749	0,00384
59	0.00603	0,00330	0,00814	0,00420
60	0,00656	0,00365	0,00886	0,00459
61	0,00715	0,00403	0,00964	0,00501
62	0,00780	0,00445	0,01049	0,00548
63	0,00851	0,00491	0.01143	0,00599
64	0,00929	0,00541	0,01246	0,00654
65	0,01014	0,00593	0,01358	0,00714
66	0,01107	0,00648	0,01481	0,00778
67	0,01210	0,00710	0,01616	0,00850
68	0,01323	0,00775	0,01763	0,00927
69	0,01446	0,00843	0,01925	0,01009
70	0,01581	0,00919	0,02102	0,01100
71	0,01730	0,01006	0,02295	0,01202
72	0,01893	0,01102	0,02508	0,01312
73	0,02072	0,01204	0,02740	0,01430
74	0,02268	0,01313	0,02994	0,01558
75	0,02483	0,01433	0,03273	0,01699
76	0,02719	0,01566	0,03578	0,01856
77	0,02977	0,01714	0,03912	0,02030
78	0,03261	0,01876	0,04278	0,02221
79	0,03573	0,02055	0,04679	0,02431
80	0,03914	0,02264	0,05118	0,02674
81	0,04289	0,02516	0,05598	0,02962
82	0,04700	0,02817	0,06125	0,03307
83	0,05150	0,03176	0,06701	0,03711
84	0,05645	0,03577	0,07332	0,04185
85	0,06187	0,04042	0,08024	0,04749
86	0,06782	0,04582	0,08781	0,05413
87 88	0,07434 0,08150	0,05219 0,05928	0,09609 0,10517	0,06170 0,07040
89	0,08130	0,05928	0,10517	0,08096
90	0,08933	0,07651	0.12600	0.09310
91	0,10741	0,08727	0,13792	0,10647
92	0,11777	0,09906	0,15098	0,12110
93	0,12913	0,11227	0,16528	0,13857
94	0,14160	0,12800	0,18093	0,15795
95	0,15527	0,14641	0,19808	0,17998
96	0,17027	0,16835	0,21686	0,20594
97	0,18672	0,18672	0,23742	0,23015
98	0,20477	0,20477	0,25994	0,25194
99	0,22457	0,22457	0,28460	0,27912
100	0,24628	0,24628	0,31161	0,31072
101	0,27010	0,27010	0,34118	0,34118
102	0,29622	0,29622	0,37357	0,37357
103	0,32488	0,32488	0,40904	0,40904
104	0,35632	0,35632	0,44788	0,44788
105	0,39080	0,39080	0,49042	0,49042
106	0,42862	0,42862	0,53700	0,53700
107	0,47011	0,47011	0,58801	0,58801
108	0,51562	0,51562	0,64387	0,64387
109 110	0,56553	0,56553	0,70505	0,70505
110	0,62029 0,68035	0,62029 0,68035	0,77204 0,84540	0,77204 0,84540
111	0,74623	0,74623	0,84340	0,92575
113	0,81849	0,81849	1,00000	1,00000
114	0,89776	0,89776	1,00000	1,00000
115	0,98471	0,98471		
116	1,00000	1,00000		
_	/	/		

BR-EMSsb-v.2010-m: Experiência do Mercado Segurador Brasileiro (BR-EMS) - sobrevivência, versão 2010, masculino BR-EMSsb-v.2010-f: Experiência do Mercado Segurador Brasileiro (BR-EMS) - sobrevivência, versão 2010, feminino BR-EMSmt-v.2010-m: Experiência do Mercado Segurador Brasileiro (BR-EMS) - morte, versão 2010, masculino