Прикладные модели оптимизации

Практическая работа № 6

Цель работы:

Сформулировать, формализовать и решить с помощью венгерского метода задачу о назначении размерностью 5×5 как задачу линейного программирования.

Требования к содержанию:

- 1. Развернутая формулировка задачи (описание исходных данных, критерия (критериев) оптимизации).
- 2. Наличие математической модели решаемой задачи как задачи линейного программирования.
- 3. Развернутая интерпретация результата.

Исходные данные:

Показатели эффективности назначения і-го кандидата на ј-ю работу.

13	3	4	12	2	7
	4	4	10	11	7
	9	0	14	10	1
	3	1	11	7	11
	6	10	13	15	11

Кандидат/Работа	1	2	3	4	5
1	3	4	12	2	7
2	4	4	10	11	7
3	9	0	14	10	1
4	3	1	11	7	11
5	6	10	13	15	11

Это матрица эффективности, где строки соответствуют кандидатам (от 1 до 5), а столбцы - работам (также от 1 до 5). Числа в матрице обозначают эффективность назначения і-го кандидата на ј-ю работу.

1. Развернутая формулировка задачи

Задача о назначениях состоит в нахождении такого назначения кандидатов на работы, при котором суммарная эффективность назначений максимальна. Каждый кандидат может быть назначен только на одну работу, и на каждую работу может быть назначен только один кандидат.

Формулировка задачи о назначениях

Задача о назначениях — это тип оптимизационной задачи, где требуется распределить ресурсы (в данном случае кандидатов) по их назначениям (работам) наиболее эффективным образом. В контексте данной задачи, нам необходимо распределить пять кандидатов по пяти различным работам так, чтобы суммарная эффективность всех назначений была максимальной.

Описание исходных данных

Исходные данные представлены в виде матрицы 5x5, где каждый элемент матрицы сіј обозначает эффективность назначения і-го кандидата на ј-ю работу. Цифры в матрице — это количественная оценка эффективности, где более высокое значение указывает на более предпочтительное назначение.

Критерии оптимизации

Главный критерий оптимизации в данной задаче — максимизация суммарной эффективности назначений. Это означает, что мы ищем такую комбинацию назначений кандидатов на работы, при которой сумма значений эффективности для каждого выбранного назначения (по одному

для каждого кандидата и каждой работы) будет наибольшей.

Это условие должно быть соблюдено при следующих ограничениях:

- Каждый кандидат может быть назначен только на одну работу.
- На каждую работу может быть назначен только один кандидат.

Целью работы является не просто найти любое допустимое назначение, а найти оптимальное назначение, которое максимизирует общую эффективность, используя венгерский метод оптимизации.

2. Математическая модель

Для представления задачи о назначениях в виде задачи линейного программирования, используем математическую модель, которая включает в себя целевую функцию и систему ограничений.

Целевая функция

Целевой функцией в нашем случае будет сумма произведений эффективности назначения

сіј и переменных решения хіј, где хіј равно 1, если кандидат і назначен на работу ј, и 0 в противном случае.

Целевая функция выражается как:

$$\max Z = \sum_{i=1}^5 \sum_{j=1}^5 c_{ij} x_{ij}$$

Ограничения

1. Ограничения назначения кандидатов: Каждый кандидат должен быть назначен ровно на одну работу. Это ограничение обеспечивается следующими уравнениями:

$$\sum_{j=1}^{5} x_{ij} = 1, \quad orall i \in \{1, 2, 3, 4, 5\}$$

Здесь хіј - переменная, которая равна 1, если кандидат і назначен на работу ј, иначе 0.

2. Ограничения назначения работ: На каждую работу должен быть назначен ровно один кандидат. Это условие представлено следующими уравнениями:

$$\sum_{i=1}^{5} x_{ij} = 1, \quad orall j \in \{1,2,3,4,5\}$$

3. Двоичность переменных: Переменные хіј могут принимать только значения 0 или 1, что отражает факт назначения или отсутствия назначения:

$$x_{ij} \in \{0,1\}, \quad \forall i,j \in \{1,2,3,4,5\}$$

Эта математическая модель описывает линейную программу, которая должна быть решена для нахождения оптимального набора назначений хіј, максимизирующих целевую функцию Z, удовлетворяя при этом всем ограничениям.

3. Развернутая интерпретация результата

Сначала применим венгерский метод к матрице эффективности, чтобы найти оптимальное решение.

Преобразование для минимизации:

- Найдем максимальное значение в матрице эффективности. В нашей матрице это 15.
- От каждого элемента исходной матрицы отнимем это максимальное значение, преобразовав задачу максимизации в задачу минимизации.

Вычитание минимальных элементов:

- Для каждой строки находим минимальный элемент и вычитаем его из всех элементов этой строки.
- Затем, делаем то же самое для каждого столбца.

Покрытие нулей линиями:

• Используем наименьшее количество горизонтальных и вертикальных линий, чтобы покрыть все нули в матрице.

Дополнительные преобразования:

• Если количество линий меньше 5 (числа работ и кандидатов), то находим минимальный непокрытый элемент и вычитаем его из всех непокрытых элементов. К элементам, которые находятся на пересечении линий, этот элемент прибавляется.

Поиск оптимального назначения:

• В преобразованной матрице ищем нули, по которым можно "пройтись", не выбирая два нуля в одной строке или столбце.

Формирование решения:

• После выбора таких нулей в преобразованной матрице определяем соответствующие назначения в исходной матрице эффективности.

Расчет общей эффективности:

• Суммируем значения эффективности по выбранным назначениям в исходной матрице.

Применяя эти шаги, мы получили следующие конкретные назначения и суммарную эффективность:

- Кандидат 1 на работу 3: эффективность 12.
- Кандидат 2 на работу 4: эффективность 11.
- Кандидат 3 на работу 1: эффективность 9.
- Кандидат 4 на работу 5: эффективность 11.
- Кандидат 5 на работу 2: эффективность 10.

И суммирование этих чисел дает нам общую суммарную эффективность 53.

Матрица назначений будет выглядеть следующим образом:

Кандидат/Работа	1	2	3	4	5
1	0	0	1	0	0
2	0	0	0	1	0
3	1	0	0	0	0
4	0	0	0	0	1
5	0	1	0	0	0

Этот код представляет собой реализацию венгерского метода:

import numpy as np from scipy.optimize import linear_sum_assignment

```
# Задаем матрицу эффективности cost_matrix = np.array([
    [3, 4, 12, 2, 7],
    [4, 4, 10, 11, 7],
    [9, 0, 14, 10, 1],
    [3, 1, 11, 7, 11],
    [6, 10, 13, 15, 11]
])
```

Преобразуем задачу максимизации в задачу минимизации, # так как алгоритм linear_sum_assignment находит минимум cost matrix minimization = cost matrix.max() - cost matrix

Применяем венгерский метод

```
row_ind, col_ind = linear_sum_assignment(cost_matrix_minimization)

# Вычисляем суммарную эффективность для найденного назначения total_efficiency = cost_matrix[row_ind, col_ind].sum()

# Создаем матрицу назначений assignment_matrix = np.zeros_like(cost_matrix) assignment_matrix[row_ind, col_ind] = 1

# Возвращаем результаты row_ind, col_ind, total_efficiency, assignment_matrix.tolist()
```

Вывод программы:

```
(array([0, 1, 2, 3, 4]),
array([2, 3, 0, 4, 1]),
53,
[[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0]])
```

Вывол:

В ходе выполнения данной работы был успешно реализован венгерский метод для оптимизации задачи о назначениях, что позволило максимизировать общую эффективность распределения кандидатов по рабочим местам.