Latent Outlier Exposure for Anomaly Detection with Contaminated Data

Chen Qiu*1,2, Aodong Li*3, Marius Kloft², Maja Rudolph¹, Stephan Mandt³

Motivation & Problem Setup

Anomaly Detection with Contaminated Training Data.

fraud transaction

- → Common assumption: clean training data.
- → What if the training data contains unnoticed anomalies?

 ∇ Fig. Anomaly score in input space

Normality Anomaly A solution: exploit labels.

△ Incorrect normal region characterization.

△ Supervised learning characterizes boundaries well.

- → However, labels are expensive. Can we have a cheaper way?
- → Contribution: Unsupervised latent outlier exposure (LOE).

Refine

Soft LOE (ours)

Hard LOE (ours)

Problem Setup. Contaminated training data.

 \rightarrow Training sets contain many normal samples and a few anomalies.

Method: Latent Outlier Exposure

Proposed Loss.

$$\mathcal{L}(\theta, \mathbf{y}) = \sum_{i=1}^{N} (1 - y_i) \mathcal{L}_n^{\theta}(\mathbf{x}_i) + y_i \mathcal{L}_a^{\theta}(\mathbf{x}_i)$$

- \rightarrow Label assignments **y** are binary variables to be optimized.
- $\to \mathcal{L}_n^{\theta}(\mathbf{x})$: a normal loss that is designed to be minimized over normal data.
- $\to \mathcal{L}^{\theta}_{a}(\mathbf{x})$: an abnormal loss that is designed to have the opposite effect.
- \rightarrow E.g., for deep SVDD, $\mathcal{L}_n^{\theta}(\mathbf{x}) = ||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$ and $\mathcal{L}_a^{\theta}(\mathbf{x}) = 1/||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$.

Constrained Optimization Problem. Hard LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y} = \left\{ \mathbf{y} \in \{0, 1\}^{N} : \sum_{i=1}^{N} y_i = \alpha N \right\}$

- $\rightarrow \alpha$ is an assumed contamination ratio.
- Block coordinate descent (EM fashion):
 - \triangleright (M-step) Perform SGD on θ given current label assignments **y**;
- \triangleright (E-step) Rank data points by score $\mathcal{L}_n^{\theta}(\mathbf{x}_i) \mathcal{L}_a^{\theta}(\mathbf{x}_i)$ and label top α fraction data points as anomalies.

Model Extension. Soft LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}'} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y}' = \left\{ \mathbf{y} \in \{0, 0.5\}^N : \sum_{i=1}^N y_i = 0.5\alpha N \right\}$

Anomaly Score.

$$S_i^{ ext{test}} = \mathcal{L}_n^{ heta}(\mathbf{x}_i)$$

Experiment Setup & Findings

For various contamination ratio, compare LOE's performance with baselines.

- \rightarrow One vs. the rest.
- → Corruption of training set:
 - \triangleright Mix abnormal samples to have an anomaly ratio of α_0 .

Baselines.

- \rightarrow Blind: ignore anomaly labels and train on all the data.
- → Refine: remove likely anomalies then re-train the model.

Findings. With multiple backbone models (NTL/MHRot/ICL),

- \rightarrow LOE improve over the best baseline by 2.3% AUC on image data.
- \rightarrow LOE significantly improves the detector based on 30 tabular datasets.
- → LOE achieves the-state-of-the-art performance on a video benchmark.

Experiments

Data.

Results.

Table. F1-score on 30 tabular datasets ($lpha=lpha_0=10\%$)

	NIL ICL							
	Blind	Refine	LOE_H (ours)	LOE_S (ours)	Blind	Refine	LOE_H (ours)	LOE_S (ours
abalone	37.9±13.4	55.2±15.9	42.8±26.9	59.3±12.0	50.9±1.5	54.3±2.9	53.4±5.2	51.7±2.4
annthyroid	29.7±3.5	42.7 ± 7.1	47.7 ± 11.4	50.3 ± 4.5	29.1±2.2	38.5 ± 2.1	48.7 ± 7.6	43.0 ± 8.8
arrhythmia	57.6±2.5	59.1 ± 2.1	62.1 ± 2.8	62.7 ± 3.3	53.9 ± 0.7	60.9 ± 2.2	62.4 ± 1.8	63.6 ± 2.1
breastw	84.0±1.8	93.1 ± 0.9	95.6 ± 0.4	95.3 ± 0.4	92.6±1.1	93.4 ± 1.0	96.0 ± 0.6	95.7 ± 0.6
cardio	21.8 ± 4.9	45.2 ± 7.9	73.0 ± 7.9	57.8 ± 5.5	50.2±4.5	56.2 ± 3.4	71.1 ± 3.2	62.2 ± 2.7
ecoli	0.0 ± 0.0	88.9 ± 14.1	$100 {\pm} 0.0$	$100 {\pm} 0.0$	17.8 ± 15.1	46.7 ± 25.7	75.6 ± 4.4	75.6 ± 4.4
forest cover	20.4 ± 4.0	56.2 ± 4.9	61.1 ± 34.9	67.6 ± 30.6	9.2±4.5	8.0 ± 3.6	6.8 ± 3.6	11.1 ± 2.1
glass	11.1±7.0	15.6 ± 5.4	17.8 ± 5.4	20.0 ± 8.3	8.9±4.4	11.1 ± 0.0	11.1 ± 7.0	8.9 ± 8.3
ionosphere	89.0±1.5	91.0 ± 2.0	91.0 ± 1.7	91.3 ± 2.2	86.5±1.1	85.9 ± 2.3	85.7 ± 2.8	88.6 ± 0.6
kdd	95.9±0.0	96.0 ± 1.1	98.1 ± 0.4	98.4 ± 0.1	99.3±0.1	99.4 ± 0.1	99.5 ± 0.0	99.4 ± 0.0
kddrev	98.4±0.1	98.4 ± 0.2	89.1 ± 1.7	98.6 ± 0.0	97.9±0.5	98.4 ± 0.4	98.8 ± 0.1	98.2 ± 0.4
letter	36.4±3.6	44.4 ± 3.1	25.4 ± 10.0	45.6 ± 10.6	43.0±2.5	51.2 ± 3.7	54.4 ± 5.6	47.2 ± 4.9
lympho	53.3±12.5	60.0 ± 8.2	60.0 ± 13.3	73.3 ± 22.6	43.3±8.2	60.0 ± 8.2	80.0 ± 12.5	83.3±10.5
mammogra.	5.5±2.8	2.6 ± 1.7	3.3 ± 1.6	13.5 ± 3.8	8.8±1.9	11.4 ± 1.9	34.0 ± 20.2	42.8 ± 17.0
mnist tabular	78.6 ± 0.5	80.3 ± 1.1	71.8 ± 1.8	76.3 ± 2.1	72.1±1.0	80.7 ± 0.7	86.0 ± 0.4	79.2 ± 0.9
mulcross	45.5±9.6	58.2 ± 3.5	58.2 ± 6.2	50.1 ± 8.9	70.4±13.4	94.4 ± 6.3	$100 {\pm} 0.0$	99.9 ± 0.1
musk	21.0±3.3	98.8 ± 0.4	100 ± 0.0	$100 {\pm} 0.0$	6.2 ± 3.0	100 ± 0.0	$100 {\pm} 0.0$	$100 {\pm} 0.0$
optdigits	0.2 ± 0.3	1.5 ± 0.3	41.7 ± 45.9	59.1 ± 48.2	0.8 ± 0.5	1.3 ± 1.1	1.2 ± 1.0	0.9 ± 0.5
pendigits	5.0 ± 2.5	32.6 ± 10.0	79.4 ± 4.7	81.9 ± 4.3	10.3±4.6	30.1 ± 8.5	80.3 ± 6.1	88.6 ± 2.2
pima	60.3±2.6	61.0 ± 1.9	61.3 ± 2.4	61.0 ± 0.9	58.1±2.9	59.3 ± 1.4	63.0 ± 1.0	60.1 ± 1.4
satellite	73.6 ± 0.4	74.1 ± 0.3	74.8 ± 0.4	74.7 ± 0.1	72.7 ± 1.3	72.7 ± 0.6	73.6 ± 0.2	73.2 ± 0.6
satimage	26.8±1.5	86.8 ± 4.0	90.7 ± 1.1	91.0 ± 0.7	7.3 ± 0.6	85.1 ± 1.4	91.3 ± 1.1	91.5±0.9
seismic	11.9±1.8	11.5 ± 1.0	18.1 ± 0.7	17.1 ± 0.6	14.9 ± 1.4	17.3 ± 2.1	23.6 ± 2.8	24.2 ± 1.4
shuttle	97.0±0.3	97.0 ± 0.2	97.1 ± 0.2	97.0 ± 0.2	96.6±0.2	96.7 ± 0.1	96.9 ± 0.1	97.0 ± 0.2
speech	6.9 ± 1.2	8.2 ± 2.1	43.3 ± 5.6	50.8 ± 2.5	0.3 ± 0.7	1.6 ± 1.0	2.0 ± 0.7	0.7 ± 0.8
thyroid	43.4±5.5	55.1 ± 4.2	82.4 ± 2.7	82.4 ± 2.3	45.8±7.3	71.6 ± 2.4	83.2 ± 2.9	80.9 ± 2.5
vertebral	22.0±4.5	21.3 ± 4.5	22.7 ± 11.0	25.3 ± 4.0	8.9 ± 3.1	8.9 ± 4.2	7.8 ± 4.2	10.0 ± 2.7
vowels	36.0±1.8	50.4 ± 8.8	62.8 ± 9.5	48.4 ± 6.6	42.1±9.0	60.4 ± 7.9	81.6 ± 2.9	74.4 ± 8.0
wbc	25.7±12.3	45.7 ± 15.5	76.2 ± 6.0	69.5 ± 3.8	50.5±5.7	50.5 ± 2.3	61.0 ± 4.7	61.0 ± 1.9
wine	24.0 ± 18.5	66.0 ± 12.0	90.0 ± 0.0	92.0 ± 4.0	4.0±4.9	10.0 ± 8.9	98.0 ± 4.0	100 ± 0.0

Table. UCSD Peds1 video benchmark

Method	Containmation Ratio							
	10%	20%	30%*					
(Tudor Ionescu et al., 2017)	-	-	68.4					
(Liu et al., 2018)	-	-	69.0					
(Del Giorno et al., 2016)	-	-	59.6					
(Sugiyama & Borgwardt, 2013)	55.0	56.0	56.3					
(Pang et al., 2020)	68.0	70.0	71.7					
Blind	85.2±1.0	76.0 ± 2.7	66.6 ± 2.6					
Refine	82.7±1.5	74.9 ± 2.4	69.3 ± 0.7					
LOE_H (ours)	82.3±1.6	59.6 ± 3.8	56.8 ± 9.5					
LOE_S (ours)	86.8±1.2	79.2 ± 1.3	71.5 ± 2.4					
*Default setup in (Pang et al., 2020), corresponding to $\alpha_0 \approx 30\%$.								

5-95.0 93.6 92.7 91.5 10-93.8 94.9 94.7 94.0 15-92.8 93.6 94.8 95.2
 20 - 91.8
 92.4
 93.5
 94.5

assumed contamination ratio Sensitivity study: CIFAR-10