CS420

Introduction to the Theory of Computation

Lecture 5: Polymorphism; constructor injectivity, explosion principle

Tiago Cogumbreiro

Mini-test 1

- You will have 48 hours to solve it
- I will be give you a sample mini-test as a guide
- You will need to upload a PDF of your solution (either print and write, or use a PDF editor)
- Submission via Gradescope

Today we will learn about...

- Type polymorphism (types in parameters)
- Applying (using) theorems
- Rewriting rules with pre-conditions
- Applying theorems with pre-conditions
- Disjoint constructors
- Principle of explosion

Polymorphism

Recall natlist

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

Recall natlist

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

```
Inductive boollist : Type :=
   | bool_nil : boollist
   | bool_cons : bool → boollist → boollist.
```

How to migrate the code that targeted natlist to boollist? What is missing?

Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in C++ templates).

```
Inductive list (X:Type) : Type :=
   nil : list X
 | cons : X \rightarrow list X \rightarrow list X.
```

What is the type of list? How do we print list?

Constructors of a polymorphic list

```
Check list.
yields
list
   : Type → Type
```

What does Type \rightarrow Type mean? What about the following?

```
Search list.
Check list.
Check nil nat.
Check nil 1.
```


How do we encode the list [1; 2]?

How do we encode the list [1; 2]?

```
cons nat 1 (cons nat 2 (nil nat))
```


Implement concatenation

```
Fixpoint app (11 12 : natlist) : natlist :=
  match 11 with
  | nil ⇒ 12
  | h :: t ⇒ h :: (app t 12)
  end.
```

How do we make app polymorphic?

Implement concatenation

```
Fixpoint app (11 12 : natlist) : natlist :=
  match 11 with
  | nil ⇒ 12
  | h :: t ⇒ h :: (app t 12)
  end.
```

How do we make app polymorphic?

```
Fixpoint app (X:Type) (11 12 : list X) : list X :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h  t ⇒ cons X h (app X t 12)
  end.
```

What is the type of app?

Implement concatenation

```
Fixpoint app (11 12 : natlist) : natlist :=
  match 11 with
  | nil ⇒ 12
  | h :: t ⇒ h :: (app t 12)
  end.
```

How do we make app polymorphic?

```
Fixpoint app (X:Type) (11 12 : list X) : list X :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h  t ⇒ cons X h (app X t 12)
  end.
```

What is the type of app? forall X : Type, list $X \rightarrow list X \rightarrow list X$

Type inference (1/2)

Coq infer type information:

```
Fixpoint app X 11 12 :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h t ⇒ cons X h (app X t 12)
  end.

Check app.

Outputs

app
  : forall X : Type, list X → list X → list X
```


Type inference (2/2)

```
Fixpoint app X (11 12:list X) :=
 match 11 with
   nil \rightarrow 12
  | cons _ h t \Rightarrow cons _ h (app _ t 12)
  end.
Check app.
 app
      : forall X : Type, list X \rightarrow list X \rightarrow list X
Let us look at the output of
 Compute cons nat 1 (cons nat 2 (nil nat)).
 Compute cons _ 1 (cons _ 2 (nil _)).
```


Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

```
Fixpoint app {X:Type} (11 12:list X) : list X :=

match 11 with

| nil ⇒ 12

| cons h t ⇒ cons h (app t 12)

end.
```

Alternatively, use Arguments after a definition:

```
Arguments nil {X}. (* braces should surround argument being inferred *)

Arguments cons {_} _ _ . (* you may omit the names of the arguments *)

Arguments app {X} 11 12. (* if the argument has a name, you *must* use the *same* name *)
```


Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Prefix a definition with 1. Example: 1 nat.

Tactics.v

Exercise 1: transitivity over equals

```
Theorem eq_trans : forall (T:Type) (x y z : T),
   x = y \rightarrow y = z \rightarrow x = z.
 Proof.
   intros T x y z eq1 eq2.
   rewrite \rightarrow eq1.
yields
1 subgoal
T: Type
x, y, z : T
eq1: x = y
eq2 : y = z
y = z
```

How do we conclude this proof?

Exercise 1: transitivity over equals

```
Theorem eq_trans : forall (T:Type) (x y z : T),
   x = y \rightarrow y = z \rightarrow x = z.
 Proof.
   intros T x y z eq1 eq2.
   rewrite \rightarrow eq1.
yields
1 subgoal
T: Type
x, y, z : T
eq1: x = y
eq2 : y = z
y = z
```

How do we conclude this proof? Yes, rewrite \rightarrow eq2. reflexivity. works.

Exercise 1: introducing apply

Apply takes an hypothesis/lemma to conclude the goal.

Applying conditional hypothesis

apply uses an hypothesis/theorem of format H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G, then solves goal G, and produces new goals H1, ..., Hn.

```
Theorem eq_trans_2 : forall (T:Type) (x y z: T),

(x = y \rightarrow y = z \rightarrow x = z) \rightarrow (* eq1 *)

x = y \rightarrow (* eq2 *)

y = z \rightarrow (* eq3 *)

x = z.

Proof.

intros T x y z eq1 eq2 eq3.

apply eq1. (* x = y \rightarrow y = z \rightarrow x = z *)
```

(Done in class.)

Rewriting conditional hypothesis

apply uses an hypothesis/theorem of format H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G, then solves goal G, and produces new goals H1, ..., Hn.

```
Theorem eq_trans_3 : forall (T:Type) (x y z: T),
  (x = y → y = z → x = z) → (* eq1 *)
  x = y → (* eq2 *)
  y = z → (* eq3 *)
  x = z.

Proof.
  intros T x y z eq1 eq2 eq3.
  rewrite → eq1. (* x = y → y = z → x = z *)
```

(Done in class.)

Notice that there are 2 conditions in eq1, so we get 3 goals to solve.

Recap

What's the difference between reflexivity, rewrite, and apply?

- 1. reflexivity solves goals that can be simplified as an equality like ?X = ?X
- 2. rewrite \rightarrow H takes an *hypothesis* H of type H1 \rightarrow ... \rightarrow Hn \rightarrow ?X = ?Y, finds any subterm of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,..., Hn. rewrite does not care about what your goal is, just that the goal **must** contain a pattern ? X.
- 3. apply H takes an hypothesis H of type H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G and solves *goal* G; it creates goals H1, ..., Hn.

Apply with/Rewrite with

```
Theorem eq_trans_nat : forall (x y z: nat),
  x = 1 →
  x = y →
  y = z →
  z = 1.
Proof.
  intros x y z eq1 eq2 eq3.
  assert (eq4: x = z). {
   apply eq_trans.
```

outputs

Unable to find an instance for the variable y. We can supply the missing arguments using the keyword with: apply eq_trans with (y:=y).

Can we solve the same theorem but use rewrite instead?

Symmetry

What about this exercise?

```
Theorem eq_trans_nat : forall (x y z: nat),
  x = 1 ->
  x = y ->
  y = z ->
  1 = z.

Proof.
  intros x y z eq1 eq2 eq3.
  assert (eq4: x = z). {
```


Symmetry

What about this exercise?

```
Theorem eq_trans_nat : forall (x y z: nat),
  x = 1 ->
  x = y ->
  y = z ->
  1 = z.

Proof.
  intros x y z eq1 eq2 eq3.
  assert (eq4: x = z). {
```

We can rewrite a goal ?X = ?Y into ?Y = ?X with symmetry.

Apply in example

```
Theorem silly3' : forall (n : nat),
  (beq_nat n 5 = true → beq_nat (S (S n)) 7 = true) →
  true = beq_nat n 5 →
  true = beq_nat (S (S n)) 7.

Proof.
  intros n eq H.
  symmetry in H.
  apply eq in H.
```

(Done in class.)

Targetting hypothesis

- rewrite → H1 in H2
- symmetry in H
- apply H1 in H2

Forward vs backward reasoning

If we have a theorem L: $C1 \rightarrow C2 \rightarrow G$:

- Goal takes last: apply to goal of type G and replaces G by C1 and C2
- Assumption takes first: apply to hypothesis L to an hypothesis H: C1 and rewrites H:C2
 → G

Proof styles:

• Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a goal.

Standard in math textbooks.

• **Backward reasoning**: (apply to goal) manipulate the goal until you reach a state where you can apply the hypothesis. **Idiomatic in Cog.**

Recall our encoding of natural numbers

1. Does the equation S n = 0 hold? Why?

Recall our encoding of natural numbers

- 1. Does the equation S n = 0 hold? Why?

 No the constructors are implicitly disjoint.
- 2. If S n = S m, can we conclude something about the relation between n and m?

Recall our encoding of natural numbers

- 1. Does the equation \$ n = 0 hold? Why?

 No the constructors are implicitly disjoint.

These two principles are available to all inductive definitions! How do we use these two properties in a proof?

Proving that S is injective (1/2)

```
Theorem S_injective : forall (n m : nat),
   S n = S m →
   n = m.
Proof.
intros n m eq1.
inversion eq1.
```

If we run inversion, we get:

```
1 subgoal
n, m : nat
eq1 : S n = S m
H0 : n = m
______(1/1)
m = m
```


Injectivity in constructors

```
Theorem S_injective : forall (n m : nat),
   S n = S m →
   n = m.
Proof.
   intros n m eq1.
   inversion eq1 as [eq2].
```

If you want to name the generated hypothesis you must figure out the destruction pattern and use as [...]. For instance, if we run inversion eq1 as [eq2], we get:

```
1 subgoal
n, m : nat
eq1 : S n = S m
eq2 : n = m
______(1/1)
m = m
```


Disjoint constructors

```
Theorem beq_nat_0_1 : forall n,
  beq_nat 0 n = true → n = 0.
Proof.
intros n eq1.
destruct n.
```

(To do in class.)

Principle of explosion

Ex falso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different constructors. Use inversion eq1 to conclude the proof below.

```
1 subgoal
n : nat
eq1 : false = true
-----(1/1)
S n = 0
```

