第 3 节 a_n 与 S_n 混搭的处理 ($\star\star\star$)

内容提要

设数列 $\{a_n\}$ 的前 n 项和为 S_n ,则 a_n 与 S_n 之间的关系为 $a_n = \begin{cases} S_1, n=1 \\ S_n - S_{n-1}, n \geq 2 \end{cases}$,运用这一关系可以解决很多数列问题.

- 1. 已知 S_n 求 a_n : 若已知数列 $\{a_n\}$ 的前n项和 S_n ,则可直接由上述关系求得 a_n .
- 2. a_n 与 S_n 相互转化: 题干给出一个 a_n 与 S_n 的关系,我们可利用 $a_n = S_n S_{n-1} (n \ge 2)$ 来消去 a_n 或 S_n ,具体消谁由问题的需要来决定. 通常情况下,若让求的是 a_n ,则消 s_n ,若让求的是 s_n ,则消 s_n ,是让求的是 s_n ,则消 s_n 。
- 3. 前 n 项积: 涉及前 n 项积的问题的处理方法与前 n 项和的类似. 设所有项非零的数列 $\{a_n\}$ 的前 n 项积为 P_n ,我们可利用 $a_n = \frac{P_n}{P_{n-1}} (n \ge 2)$ 来消去 a_n 或 P_n .

典型例题

类型 $I: 已知 S_n 求 a_n$

【例 1】已知数列 $\{a_n\}$ 的前 n 项和 $S_n = \frac{3^{n+1}-3}{2} (n \in \mathbb{N}^*)$,求 $\{a_n\}$ 的通项公式.

解: (已知 S_n 求 a_n , 直接代关系式 $a_n = \begin{cases} S_1, n=1 \\ S_n - S_{n-1}, n \geq 2 \end{cases}$ 计算即可,注意务必分 n=1和 $n \geq 2$ 分别计算)

因为
$$S_n = \frac{3^{n+1}-3}{2}$$
,所以 $a_1 = S_1 = \frac{3^2-3}{2} = 3$;

当
$$n \ge 2$$
时, $a_n = S_n - S_{n-1} = \frac{3^{n+1} - 3}{2} - \frac{3^n - 3}{2} = \frac{3^{n+1} - 3^n}{2} = \frac{3 \times 3^n - 3^n}{2} = 3^n$;

又 $a_1 = 3$ 也满足上式,所以 $a_n = 3^n (n \in \mathbb{N}^*)$.

【反思】已知 S_n 求 a_n , 直接代关系式 $a_n = \begin{cases} S_1, n=1 \\ S_n - S_{n-1}, n \geq 2 \end{cases}$ 计算即可.

类型 $II: a_n 与 S_n$ 的相互转化

【例 2】(2022 • 全国甲卷节选)记 S_n 为数列 $\{a_n\}$ 的前n项和,已知 $\frac{2S_n}{n} + n = 2a_n + 1$,证明: $\{a_n\}$ 是等差数列.

证明: (要证的是 $\{a_n\}$ 为等差数列,故考虑消 S_n ,可把 S_n 的系数化为常数,再退n相减)

因为 $\frac{2S_n}{n}+n=2a_n+1$,所以 $2S_n+n^2=2na_n+n$ ①,故当 $n\geq 2$ 时, $2S_{n-1}+(n-1)^2=2(n-1)a_{n-1}+n-1$ ②,

(两式相减即可把 $2S_n-2S_{n-1}$ 化为 $2a_n$,从而消去 S_n)

曲① - ②可得
$$2S_n + n^2 - 2S_{n-1} - (n-1)^2 = 2na_n + n - 2(n-1)a_{n-1} - (n-1)$$
,

所以
$$2a_n + 2n - 1 = 2na_n - 2(n-1)a_{n-1} + 1$$
,整理得: $(n-1)a_n - (n-1)a_{n-1} = n-1$ ③,

因为 $n \ge 2$,所以 $n-1 \ge 1$,故在③中约去n-1可得 $a_n - a_{n-1} = 1$,所以 $\{a_n\}$ 是公差为1的等差数列.

【**反思**】当 S_n 与 a_n 混搭在一个关系式中时,若要证的是与 a_n 有关的结论,则考虑将关系式中 S_n 的系数化为常数,退n相减,由 $S_n-S_{n-1}=a_n$ ($n\geq 2$)消去 S_n .

【例 3】设 S_n 是数列 $\{a_n\}$ 的前n项和,且 $a_1 = -1$, $a_{n+1} = S_n S_{n+1}$,则 $S_n = ____$.

解析: 要求的是 S_n , 故把条件中的 a_{n+1} 换成 $S_{n+1}-S_n$, 因为 $a_{n+1}=S_nS_{n+1}$, 所以 $S_{n+1}-S_n=S_nS_{n+1}$ ①,为了把递推式中 S_nS_{n+1} 分开,两端同除以 S_nS_{n+1} ,严谨考虑,先判断 $\{S_n\}$ 是否各项均不为0,

曲①可得
$$S_{n+1}(1-S_n)=S_n$$
, 所以 $S_2(1-S_1)=S_1$, 又 $S_1=a_1=-1<0$, 所以 $S_2=\frac{S_1}{1-S_1}<0$,

同理,由 $S_2 < 0$ 得 $S_3 = \frac{S_2}{1 - S_2} < 0$,由 $S_3 < 0$ 得 $S_4 = \frac{S_3}{1 - S_3} < 0$,…,所以 $\{S_n\}$ 所有项均为负数,

在
$$S_{n+1} - S_n = S_n S_{n+1}$$
 两端同除以 $S_n S_{n+1}$ 得 $\frac{1}{S_n} - \frac{1}{S_{n+1}} = 1$, 所以 $\frac{1}{S_{n+1}} - \frac{1}{S_n} = -1$,

故
$$\left\{\frac{1}{S_n}\right\}$$
是公差为-1的等差数列,又 $\frac{1}{S_1} = \frac{1}{a_1} = -1$,所以 $\frac{1}{S_n} = -1 + (n-1) \cdot (-1) = -n$,故 $S_n = -\frac{1}{n}$.

答案: $-\frac{1}{n}$

【总结】当 a_n 和 S_n 混搭在一个关系式中时,常用 $a_n = S_n - S_{n-1} (n \ge 2)$ 来处理。若要求的是 a_n ,则退n相减,消去 S_n ;若要求 S_n ,则常用 $a_n = S_n - S_{n-1} (n \ge 2)$ 代换 a_n ,得到数列 $\{S_n\}$ 的递推公式,再作分析。

类型III: 前n 项积的处理

【例 4】已知数列 $\{a_n\}$ 的前 n 项积 $a_1a_2\cdots a_n=n\cdot 2^n$,则 $a_n=$ _____.

解析: 已知数列 $\{a_n\}$ 的前n项积,由内容提要3,可通过退n相除求 a_n ,但 a_1 需单独计算,

因为
$$a_1 a_2 \cdots a_n = n \cdot 2^n$$
,所以 $a_1 = 2$,当 $n \ge 2$ 时,
$$\begin{cases} a_1 a_2 \cdots a_{n-1} a_n = n \cdot 2^n \\ a_1 a_2 \cdots a_{n-1} = (n-1) \cdot 2^{n-1} \end{cases}$$

两式相除得
$$a_n = \frac{n \cdot 2^n}{(n-1) \cdot 2^{n-1}} = \frac{2n}{n-1}$$
,综上所述, $a_n = \begin{cases} 2, n = 1 \\ \frac{2n}{n-1}, n \ge 2 \end{cases}$.

答案:
$$\begin{cases} 2, n = 1 \\ \frac{2n}{n-1}, n \ge 2 \end{cases}$$

【**反思**】已知 $\{a_n\}$ 的前n项积 P_n 求 a_n ,代 $a_n = \begin{cases} P_1, n = 1 \\ \frac{P_n}{P_{n-1}}, n \ge 2 \end{cases}$ 计算即可,方法与已知前n项和 S_n 求 a_n 类似.

【变式】已知正项数列 $\{a_n\}$ 的前n项积为 P_n ,且 $2P_n=a_n^2$,证明 $\{\lg a_n\}$ 为等比数列,并求 a_n .

解: $(P_n \in \{a_n\})$ 的前 n 项积,要证的是与 a_n 有关的结论,故退 n 相除消去 P_n)

因为
$$2P_n = a_n^2$$
,所以当 $n \ge 2$ 时, $2P_{n-1} = a_{n-1}^2$,故 $\frac{2P_n}{2P_{n-1}} = \frac{a_n^2}{a_{n-1}^2}$,即 $\frac{2a_1a_2\cdots a_{n-1}a_n}{2a_1a_2\cdots a_{n-1}} = \frac{a_n^2}{a_{n-1}^2}$,

化简得: $a_n = a_{n-1}^2$, (要证的是 $\{\lg a_n\}$ 为等比数列,故两端取对数)

所以 $\lg a_n = \lg a_{n-1}^2 = 2\lg a_{n-1}$ ①,(还需验证 $\{\lg a_n\}$ 的首项非零,才能证得结论,可在条件中取 n = 1 求 a_1)

由 $2P_n = a_n^2$ 可得 $2P_1 = a_1^2$,又 $P_1 = a_1$,所以 $2a_1 = a_1^2$,结合 $\{a_n\}$ 是正项数列可得 $a_1 = 2$,

所以 $\lg a_1 = \lg 2 \neq 0$,结合式①可得数列 $\{\lg a_n\}$ 所有项都不为 0,故 $\frac{\lg a_n}{\lg a_{n-1}} = 2$,

所以 $\{\lg a_n\}$ 是首项为 $\lg 2$,公比为 2 的等比数列,从而 $\lg a_n = (\lg 2) \cdot 2^{n-1} = \lg 2^{2^{n-1}}$,故 $a_n = 2^{2^{n-1}}$.

【总结】涉及数列 $\{a_n\}$ 的前n项积 P_n 的数列问题,常通过 $a_n = \frac{P_n}{P_{n-1}} (n \ge 2)$ 来消去 a_n 或 P_n ,其处理方法跟涉及通项与前n项和的问题类似.

类型IV: 隐藏的前n项和

【例 5】已知数列 $\{a_n\}$ 的通项公式为 $a_n=n$,若数列 $\{b_n\}$ 满足 $b_1+2b_2+2^2b_3+\cdots+2^{n-1}b_n=\frac{a_n}{2}(n\in \mathbb{N}^*)$,求 $\{b_n\}$ 的前 n 项和 S_n .

解: (所给等式左侧即为数列 $\{2^{n-1}b_n\}$ 的前n项和 T_n , 故本题仍是已知前n项和求通项的问题)

设
$$c_n = 2^{n-1}b_n$$
,数列 $\{c_n\}$ 的前 n 项和为 T_n ,则 $b_1 + 2b_2 + 2^2b_3 + \cdots + 2^{n-1}b_n = \frac{a_n}{2}$ 即为 $T_n = \frac{a_n}{2} = \frac{n}{2}$,

所以
$$c_1 = T_1 = \frac{1}{2}$$
; 当 $n \ge 2$ 时, $c_n = T_n - T_{n-1} = \frac{n}{2} - \frac{n-1}{2} = \frac{1}{2}$; 所以 $\forall n \in \mathbb{N}^*$,都有 $c_n = \frac{1}{2}$,

从而
$$2^{n-1}b_n = \frac{1}{2}$$
,故 $b_n = (\frac{1}{2})^n$,所以 $S_n = \frac{\frac{1}{2}[1-(\frac{1}{2})^n]}{1-\frac{1}{2}} = 1-(\frac{1}{2})^n$.

【变式】已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_1+2a_2+3a_3+\cdots+na_n=n^2a_n(n\in \mathbb{N}^*)$,求 a_n .

解:(条件中字面上虽没有 S_n ,但观察发现 $a_1 + 2a_2 + 3a_3 + \cdots + na_n$ 其实是 $\{na_n\}$ 的前n项和,故可将 na_n 设为 b_n ,转化为 $\{b_n\}$ 的前n项和与其通项的混搭关系来处理)

设 $b_n = na_n$,则 $a_1 + 2a_2 + 3a_3 + \dots + na_n = n^2a_n$ 即为 $b_1 + b_2 + \dots + b_{n-1} + b_n = nb_n$ ①,

(要求 a_n ,可先求 b_n ,故对式①退n相减,消去和式)所以当 $n \ge 2$ 时, $b_1 + b_2 + \dots + b_{n-1} = (n-1)b_{n-1}$ ②,由①-②得: $b_n = nb_n - (n-1)b_{n-1}$,化简得: $b_n = b_{n-1}$,所以 $\{b_n\}$ 为常数列,

又 $a_1 = 1$, 所以 $b_1 = 1 \cdot a_1 = 1$, 从而 $b_n = 1$, 即 $na_n = 1$, 故 $a_n = \frac{1}{n}$.

【总结】遇到例 5 及变式这种由 a_n 衍生的新数列的和式结构,同样可以考虑通过退n 相减,把和式化掉.

强化训练

- 1. (2023 广东广州模拟 ★) 数列 $\{a_n\}$ 的前 n 项和 $S_n = n^2 + n + 1$,则 $\{a_n\}$ 的通项公式 $a_n =$ _____.
- 2. $(2023 \cdot 湖南模拟 \cdot \star \star \star)$ 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $\frac{2}{3}S_n = a_n \frac{2}{3}n 2$.
 - (1) 求证:数列 $\{a_n+1\}$ 是等比数列;
- (2) 若 $b_n = \frac{1}{a_n + 1}$, 数列 $\{b_n\}$ 的前n项和为 T_n , 求证: $T_n < \frac{1}{6}$.
- 3. $(2022 \cdot 新高考 I 卷 \cdot \star \star \star)$ 记 S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_1 = 1$, $\left\{\frac{S_n}{a_n}\right\}$ 是公差为 $\frac{1}{3}$ 的等差数列.
- (1) 求 $\{a_n\}$ 的通项公式;
- 4. (2023・广西桂林模拟・ $\star\star\star$)已知数列 $\{a_n\}$ 的前n项和为 S_n , $a_1=1$, $S_n=a_{n+1}-2^n$.
- (1) 证明:数列 $\left\{\frac{S_n}{2^n}\right\}$ 为等差数列;
- (2) 求 a_n .
- 5. $(2023 \cdot 河北模拟改 \cdot ★★★)数列 {a_n} 的前 n 项和为 S_n,且 <math>\frac{a_1}{2} + \frac{a_2}{4} + \frac{a_3}{8} + \dots + \frac{a_n}{2^n} = 3 \frac{2n+3}{2^n}$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 记 $M = a_2 + a_5 + a_8 + \cdots + a_{59}$, 求M的值.

- 6. (2022 •四川成都七中模拟 •★★★) 已知数列 $\{a_n\}$ 为非零数列,且满足 $(1+\frac{1}{a_1})(1+\frac{1}{a_2})\cdots(1+\frac{1}{a_n})=(\frac{1}{2})^{n(n+1)}$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\left\{\frac{1}{a_n}+n\right\}$ 的前n项和 S_n .
- 7. $(2021 \cdot 全国乙卷 \cdot \star \star \star \star)$ 记 S_n 为数列 $\{a_n\}$ 的前 n 项和, b_n 为数列 $\{S_n\}$ 的前 n 项积,已知 $\frac{2}{S_n} + \frac{1}{b_n} = 2$.
 - (1) 证明:数列 $\{b_n\}$ 为等差数列;
 - (2) 求 $\{a_n\}$ 的通项公式.

《一数•高考数学核心方法》