Bayesian Framework for Geometric Skew Normal Distribution

Peshal Agarwal

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Supervisor: Prof. Debasis Kundu

Outline

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

Plan

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

Introduction

- $N \sim \mathsf{GE}(p)$ and X_1, X_2, \dots, X_N be i.i.d. $N(\mu, \sigma^2)$
- Let $X = \sum_{i=1}^{N} X_i$, then

$$X \sim GSN(\mu, \sigma, p)$$

The pdf takes the following form

$$f(x; \mu, \sigma, p) = \sum_{k=1}^{\infty} \frac{p}{\sigma\sqrt{k}} \phi\left(\frac{x - k\mu}{\sigma\sqrt{k}}\right) (1 - p)^{k-1}$$

ullet However, we would be working with joint distribution of X and N

$$f_{X,N}(x,n) = \frac{1}{\sigma\sqrt{2\pi n}} \exp\left(-\frac{1}{2n\sigma^2}(x-n\mu)^2\right) p(1-p)^{n-1}$$

Prior Assumptions and Posterior

We take the following prior assumptions

$$P(p) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

$$P(\mu) = \frac{1}{\sqrt{2\pi\omega^2}} \exp\left(-\frac{1}{2\omega^2} (\mu - \theta)^2\right)$$

$$P(\sigma^2) = \frac{\delta^{\gamma}}{\Gamma(\gamma)} (\sigma^2)^{(-\gamma - 1)} \exp\left(\frac{-\delta}{\sigma^2}\right)$$

Analysis gives us the following posteriors

$$\Pi(\mu \mid \sigma, \{x_i\}, \{m_i\}) \sim Normal(\hat{\theta}, \hat{\omega}^2)$$

$$\Pi(\sigma^2 \mid \mu, \{x_i\}, \{m_i\}) \sim InvGamma(\gamma + n/2, \delta + K/2)$$

$$\Pi(p \mid \{x_i\}, \{m_i\}) \sim Beta(n + \alpha, \sum_{i=1}^{n} m_i - n + \beta)$$

Plan

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

Algorithm

- We implement the following iterative algorithm to infer the posterior
 - **1** Initialize $\mu^{(0)}, \sigma^{(0)}, p^{(0)}$
 - 2 For t = 0, 1, 2...
 - **1** $m_{i,t} = E(N \mid X = x_i, \mu^{(t)}, \sigma^{(t)}, p^{(t)})$ for each $i \in [n]$
 - 2 $I_{i,t} = E(N^{-1} | X = x_i, \mu^{(t)}, \sigma^{(t)}, p^{(t)})$ for each $i \in [n]$

 - $(\sigma^{(t+1)})^2 \sim InvGamma(\gamma + n/2, \delta + K^t/2)$
 - \odot Repeat for k iterations (burning period)
 - Find mean and confidence interval using future iterations

Plan

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

Data Generation

All the below data analysis is performed under the following setup:

- Hyperparameters are set so that priors are close to uniform. $\alpha = \beta = 1, \ \theta = 0, \ \omega = 100, \gamma = 0.1$ and $\delta = 0.1$
- We always set initial values of parameters as $\mu=$ 1.4, $\sigma=$ 0.8 and p= 0.4
- Buring period k = 1500
- While estimating $\mathbb{E}[N|x,\mu,\sigma,p]$ and $\mathbb{E}[N^{-1}|x,\mu,\sigma,p]$, the infinite sums of both numerator and denominator are approximated by summing just the first 20 terms

Variation with respect to sample size

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 2$	2.08	0.88	0.91	0.10
$\sigma = 1$	1.06	0.89	0.61	0.04
p = 0.5	0.52	0.91	0.28	0.01

Table: Estimation from sampling performed on simulated data with 1,000 samples with each sample having **sample size 100**, replicated 800 times

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 2$	2.15	0.90	1.27	0.19
$\sigma = 1$	1.12	0.90	0.88	0.09
p = 0.5	0.54	0.94	0.38	0.01

Table: Estimation from sampling performed on simulated data with 1,000 samples with each sample having **sample size 50**, replicated 800 times

Here we look at effect of the value of p (keeping sample size fixed to 100)

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 0$	-0.01	0.92	0.49	0.007
$\sigma = 1$	0.98	0.94	0.55	0.01
p = 0.75	0.70	0.95	0.61	0.013

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 0$	0.00	0.96	0.51	0.006
$\sigma = 1$	1.07	0.98	0.66	0.021
p = 0.5	0.59	1	0.59	0.022

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 0$	-0.03	0.93	0.65	0.011
$\sigma = 1$	1.39	0.9	0.88	0.1949
p = 0.25	0.50	0.88	0.53	0.077

We also analyze effect of σ (keeping sample size fixed to 100)

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 0$	-0.01	0.92	0.49	0.007
$\sigma = 1$	0.98	0.94	0.55	0.01
p = 0.75	0.70	0.95	0.61	0.013

Parameter	Avg. Estimates	Cover Fraction	Avg. 95% Length	MSE
$\mu = 0$	-0.03	0.91	2.35	0.197
$\sigma = 5$	4.72	0.89	2.77	0.391
p = 0.75	0.67	0.92	0.62	0.019

We find similar patterns in the ML estimates

Parameter	Avg. MLE	True Value	MSE
μ	0.00	0	0.004
σ	1.17	1	0.043
р	0.35	0.25	0.013

Parameter	Avg. MLE	True Value	MSE
μ	0.00	0	0.005
σ	1.05	1	0.014
р	0.56	0.5	0.012

Parameter	Avg. MLE	True Value	MSE
μ	-0.01	0	0.008
σ	1.00	1	0.007
р	0.78	0.75	0.012

Plan

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

 We study the survival times of guinea pigs injected with different doses of tubercle bacilli. It contains a total of 72 observations. We obtain the following estimates

Parameter	Posterior Mean	MLE Estimates
μ	1.17	1.13
σ^2	0.26	0.35
р	0.58	0.57

Table: Analysis on guinea pig dataset

 The KS test statistics turns out to be 0.09 and the corresponding p-value 0.58.

Figure: Plot of GSN (pdf) and histogram for Guinea pig data

(a) Posterior of $\mu \sim \textit{N}(1.17, 0.002)$ (b) Posterior of

(b) Posterior of $\sigma^2 \sim InvGamma(\alpha = 36.1, \beta = 9.2)$

(c) Posterior of $p \sim Beta(\alpha = 73.0, \beta = 51.9)$

JEE Data

- We also fit GSN to the marks obtained by students in JEE in Physics, Chemistry and Mathematics.
- ullet We find that all the three follow a Gaussain distribution (ppprox 1)
- Thus, we show that GSN also fits nicely, even if the data is not skewed.
- The KS statistcs are 0.04, 0.06 and 0.07 for Physics, Chemistry and Mathematics respectively

Fit to JEE Data

Figure: Plot of GSN (pdf) and histogram for Physics marks

Fit to JEE Data

Figure: Plot of GSN (pdf) and histogram for Chemistry marks

Fit to JEE Data

Figure: Plot of GSN (pdf) and histogram for Mathematics marks

Plan

- Geometric Skew Normal Distribution
- 2 Inference Algorithm
- Simulation
- 4 Real Data
- Conclusion

Conclusion

- Developed a fully Bayesian framework for a skewed distribution
- Obtain a complete distribution over parameters instead of a point estimate
- Validated the robustness for a wide range for values
- Show that it fits well even for non-skewed data
- One can learn hyper-parameters from data for a better fit
- One can also extend this to a multivariate setting

References I

Kundu, D.

Geometric Skew Normal Distribution. *Sankhya*, 72(2):167–189, 2014.

Azzalini, A.

A Class of Distributions Which Includes the Normal Ones. *Scandinavian Journal of Statistics*, 12(2):171–178, 1985.

Bjerkedal, T.

Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli

American Journal of Hygiene, vol. 72, 130-148 1960.

Ghosh, Jayanta K., Delampady, Mohan, Samanta, Tapas An Introduction to Bayesian Analysis. Springer Text in Statistics, 2006.

THANK YOU

