M 328K: Lecture 4

Katherine Ho

September 5, 2024

1

1. If a|c and b|c, must ab|c?

False: a = b = c = 2, 2|2, 2|2 but $4 \nmid 2$

2. If a|bc and $a \nmid b$, must a|c?

False: a = 4, b = c = 2

But...Proposition: Let $a, b, c \in \mathbb{Z}$

1. If a|c, b|c and gcd(a, b) = 1, then ab|c.

Proof. By Bezout, there exist integers x, y s.t. ax + by = 1. Then, acx + bcy = c. By definition, there exist $r, s \in \mathbb{Z}$ s.t. c = ar = bs. Thus,

$$a(bs)x + b(ar)y = c$$
$$ab(sx + ry) = c$$

So, ab|c.

2. If a|bc, and gcd(a,b) = 1, then a|c. (Euclid's Lemma)

Proof. Again, there exist $x, y \in \mathbb{Z}$ s.t. ax + by = 1. Then acx + bcy = c. Since a|bc, we have bc = ar for some $r \in \mathbb{Z}$. Hence

$$acx + ary = c$$
$$a(cx + ry) = c$$

So, a|c as desired.

2 Prime Numbers

Definition 2.1. A prime p is an integer greater than 1 that is only divisible by 1 and p.

Theorem 2.1 (Euclid's Lemma). If p is prime and p|ab $(a, b \in \mathbb{Z})$, then p|a or p|b (or both).

Proof. Suppose $p \nmid a$. Since p is prime, this implies that gcd(p, a) = 1. Then by Euclid's Lemma, we have p|b.

Corollary 2.1.1. If p is prime and $p|(a_1a_2...a_n)$ then $p|a_k$ for some $k, 1 \le k \le n$.

Proof by Induction. Base case (n = 1). Tautology *(If A then A)

Inductive step: Assume that for some $n \ge 1$, if p divides the product of any collection of n integers $a_1 \dots a_n$, then $p|c_k$ for some k.

Suppose $p|a_1a_2...a_na_{n+1}$. By Euclid's Lemma, $p|a_1a_2...a_n$ OR $p|a_n+1$.

In the latter case, we are done.

Hence assume now that $p|a_1a_2...a_n$. By IH, $p|a_k$ for some $k, 1 \le k \le n$ as desired.

Corollary 2.1.2. If p, q_1, q_2, q_n are primes, and $p|q_1q_2...q_n$, then $p = q_k$ for some k.

Proof. By the previous result, $p|q_k$ for some k. Since q_k is prime and p>1, we have $p=q_k$.

Theorem 2.2 (Fundamental Theorem of Arithmetic, FTA). Every integer n > 1 can be expressed as a product of primes. Moreover, this expression is unique up to reordering the factors.

Proof by Induction on n. Base case (n = 2).

Induction step: Assume that any integer (> 1) less than or equal to n satisfies FTA. Now consider n + 1.

If n+1 is prime, we are done. Otherwise, assume n+1=ab for some 1 < a, b < n+1. By IH, a and b can be expressed as a product of primes, hence so can n+1. This proves the existence statement.

For uniqueness, take the same IH. Suppose that we can express n+1 as

$$n+1 = p_1 p_2 \dots p_r = q_1 q_2 \dots q_s$$

where p_r, q_s are prime. Without loss of generality, assume

$$p_1 \le p_2 \le \cdots \le p_r$$
, and $q_1 \le q_2 \le \cdots \le q_s$

Note $p_1|q_1q_2\ldots q_s$, so $p_1=q_i$ for some i. By the same argument, $q_1=p_j$ for some j. Since $p_1\leq p_j$ and $q_1\leq q_2$, this implies $p_1=q_1$. By cancelling, we have $p_2\ldots p_r=q_2\ldots q_s$. Since $p_2\ldots p_r=q_1\ldots q_s\leq n$, we can apply IH to conclude that r=s and $p_i=q_i$ for all i.

Theorem 2.3. There exist infinitely many primes.

Proof (Euclid). Assume that $p_1 \dots p_n$ is a list of n primes. Consider the integer $N = p_1 \dots p_n + 1$. Note that no p_i can divide N, otherwise

$$p_i|(N-p_1\dots p_n)$$

$$p_i|1$$

$$nooooo$$

But N is divisible by some prime p with $p \neq p_1, \ldots, p_n$. Thus, there are infinitely many primes.