ÔN TẬP KIỂM TRA GIỮA KỲ I

Đề 5

Câu 1: Cho hàm số y = f(x) có bảng biến thiên:

Mệnh đề nào sau đây sai?

- **A.** Hàm số đồng biến trên mỗi khoảng $(-\infty; -2)$ và $(2, +\infty)$
- **B.** Hàm số đồng biến trên mỗi khoảng $(-\infty; -1)$ và $(1; +\infty)$.
- C. Hàm số nghịch biến trên mỗi khoảng (-1;0) và (0;1).
- **D.** Hàm số nghịch biến trên mỗi khoảng $(-\infty; -2)$ và $(2; +\infty)$

Câu 2: Cho hàm số y = f(x) xác định trên \mathbb{R} và

có đồ thị như hình vẽ bên. Mệnh đề nào sau đầy đúng?

- A. Hàm số đồng biến trên khoảng $(-\infty, +\infty)$.
- C. Hàm số đồng biến trên khoảng (-1;1).
- **D.** Hàm số nghịch biến trên khoảng $(-\infty; +\infty)$.

- **Câu 3:** Cho hàm số f(x) có đạo hàm $f'(x) = (x+1)(x-1)^2(x+3)^3$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là
 - **A.** 1.

- **B.** 2.
- **C.** 3.
- **D.** 4.

Câu 4. Cho hàm số f(x) có bảng biện thiên như sau:

Hàm số đã cho đạt cực đại tại

- **A.** x = -3.
- **B.** x = -1.
- **C.** x = 0.
- **D.** x = 1.
- **Câu 5:** Cho hàm số y = f(x) có bảng biến thiên như sau. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1;1]. Tính M m.

A. -3.

- **B.** -1.
- **C.** 1.

D. −7.

Câu 6: Đồ thị hàm số $y = \frac{x + 2020}{x^2 - 9}$ có bao nhiều đường tiệm cận đứng?

Câu 7: Biết rằng đường thẳng y = -2x + 2 cắt đồ thị hàm số $y = x^3 + x + 2$ tại điểm duy nhất, kí hiệu y_0 là tung độ điểm đó. Tìm y_0

- **A.** $y_0 = 4$.
- **B.** $y_0 = 0$.
- **D.** $y_0 = -1$

Câu 8: Cho vecto $\vec{v} = (5,3)$ và đường thẳng d: x-2y+3=0 Ảnh của đường thẳng d qua phép tịnh tiến theo \vec{v} có phương trình là

- **A.** x-2y-4=0. **B.** x-2y+4=0
- C. x + 2y + 4 = 0.
- **D.** x-2y+3 = 0

Câu 9: Vật thể nào trong các yật thể sau không phải là khối đa diện?

Hình 2

A. Hình 3

- B. Hình 1
- C. Hình 2
- D. Hình

Câu 10: Cho hình chóp s. ABCD có đáy ABCD là hình vuông có đường chéo $AC = a\sqrt{2}$, cạnh bên SA vuông góc với mặt phẳng đáy và $SA = a\sqrt{2}$. Tính thể tích v của khối chóp S.ABCD.

- **A.** $V = \frac{a^3 \sqrt{2}}{3}$. **B.** $V = \frac{a^3 \sqrt{2}}{4}$.
- **C.** $V = a^3 \sqrt{2}$. **D.** $V = \frac{a^3 \sqrt{2}}{6}$.

Câu 11: Cho hàm số y = f(x) có bảng biến

Tìm khẳng định sai trong các khẳng định sau:

- **A.** Hàm số đồng biến trên khoảng $(0,\sqrt{3})$.
- **B.** Hàm số nghịch biến trên khoảng $(\sqrt{3}; +\infty)$
- C. Hàm số đồng biến trên khoảng $(-\infty; -\sqrt{3})$.
- **D.** Hàm số nghịch biến trên khoảng $(0; \sqrt{3})$.

Câu 12: Cho hàm số y = f(x) có đồ thị như hình vẽ Tìm mệnh đề đúng trong các mệnh đề sau:

- A. Hàm số đồng biến trên khoảng (4;+∞).
- B. Hàm số nghịch biến trên khoảng (~∞;0).
- C. Hàm số đồng biến trên khoảng (0;4).
- D. Hàm số nghịch biếp trên khoảng (4; +

Câu 13: Hàm số $y = \frac{1}{3}x^3 - x^2 - 3x + 2020$ nghịch biến trên khoảng nào được cho dưới đây?

B.
$$(-\infty; -3)$$
 và $(1; +\infty)$.

C.
$$(-3/1)$$
.

D.
$$(-\infty;-1)$$
 và $(3;+\infty)$.

Cân 14: Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó?

A.
$$y = \frac{x^2 - 1}{1}$$

B.
$$y = \frac{-x+2}{x+2}$$

$$y = -x^6 - 20x^4 + 1$$
. D. $y = \tan x$

Câu 15: Hàm số $y = x^3 + 3x^2 + 1$ đạt cực tiểu tại điểm nào?

A.
$$x = -2$$

B.
$$x = 2$$
.

C.
$$x = 0$$

D.
$$x = 3$$
.

Câu 16: Cho hàm số y = f(x) có bảng biến thiên như sau

x	-∞		-2		2		+∞
y'		+	0	-	0	+	
у	-∞ ⁻		3 ~		\ 0 -		→ +∞

Tìm giá trị cực đại y_{CD} và giá trị cực tiểu y_{CT} của hàm số đã cho.

A.
$$y_{CD} = 3$$
 và $y_{CT} = 0$.

B.
$$y_{CD} = 2 \text{ và } y_{CT} = 0$$
.

C.
$$y_{CD} = -2 \text{ và } y_{CT} = 2$$
.

D.
$$y_{CD} = 3$$
 và $y_{CT} = -2$.

Câu 17: Tìm tất cả các giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 + mx^2 + (m+6)x + m$ có cực đại và cực tiểu

A.
$$-2 < m < 3$$
.

A.
$$-2 < m < 3$$
. **B.** $\begin{bmatrix} m < -2 \\ m > 3 \end{bmatrix}$.

C.
$$\begin{bmatrix} m \le -2 \\ m \ge 3 \end{bmatrix}$$
. D. $-2 \le m \le 3$.

D.
$$-2 \le m \le 3$$

Câu 18: Cho hàm số y = f(x) và có bảng biến thiên trên [-5;7) như sau:

Mệnh đề nào sau đây là đúng?

A. $\min_{x \in S^2} f(x) = 2$ và hàm số không đạt giá trị lớn nhất trên [-5;7).

B.
$$\max_{[-5,7)} f(x) = 6$$
 và $\min_{[-5,7)} f(x) = 2$.

C.
$$\max_{[-5,7)} f(x) = 9$$
 và $\min_{[-5,7)} f(x) = 2$

D.
$$\max_{[-5,7)} f(x) = 9$$
 và $\min_{[-5,7)} f(x) = 6$.

Câu 19: Cho hàm số $y \neq f(x)$ có đồ thị trên

[-1;2] như hình vẽ Tìm Min(2f(x))

$$\mathbf{R} = \sum_{i=1}^{n} (2 \mathcal{L}(i)) = 2i = 5$$

C.
$$Min(2f(x)-3) = -13$$
.

D.
$$\min_{[-1/3]} (2f(x) - 3) = -16$$

Câu 20: Cho hàm số $y = \frac{2x-3}{x^2-2x-5}$ (C). Số đường tiệm cận của (C) là?

A. 3.

- **C.** 1.
- **D.** 4.

Câu 21: Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-1\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Hỏi mệnh đề nào dưới đây sai?

- **A.** Đồ thị hàm số có tiệm cận ngang là y = -1.
- **B.** Hàm số đạt cực trị tại điểm x = 2.
- C. Hàm số không có đạo hàm tại điểm x = -1.
- **D.** Đồ thị hàm số có tiệm cận đứng là x = -1.
- Câu 22: Đồ thị dưới đây là đồ thị của 1 trong 4 đồ thị của hàm số ở các phương án A, B, C, D dưới đây. Hãy chọn phương án đúng.

B.
$$y = \frac{2-x}{x+1}$$
.

C.
$$y = \frac{2-x}{x-1}$$
.

- **Câu 23:** Đường thẳng (a): y = -2x+1 cắt đồ thị hàm số $(H): y = \frac{x-8}{x-2}$ tại hai điểm $A(x_1; y_1)$ và $B(x_2; y_2)$. Khi đờ tổng $T = x_1 + x_2 + y_1^2 + y_2^2$ bằng
 - $\mathbf{A.} \ T = \mathbf{0}$
- **B.** T = 44.
- **C.** T = -14.
- **D.** T = 36.
- **Câu 24:** Gọi S là tập hợp các giá trị nguyên của tham số m thuộc đoạn [-1;10] để đồ thị của hàm số $y = x^3 mx^2 + (2m+1)x m 2$ cắt trục hoành tại ba điểm phân biệt có hoành độ dương. Khi đó tổng tất cả các phần tử của S bằng **A.** 34. **B.** 54. **C.** 27. **D.** 3.
- **Câu 25:** Cho hình chốp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC và N là trọng tâm của tam giác ABC. Khẳng định nào dưới đây là đúng?
 - **A.** CD // SB.
- **B.** MN //(SAB).
- \mathbb{C} . MN // SB.
- **D.** SB//(AMN).
- **Câu 26:** Cho hình chóp đều S.ABCD có $AB = a\sqrt{2}$, $SA = \frac{a\sqrt{15}}{2}$. Gọi M là trung điểm của CD. Tính góc giữa đường thẳng SI và (SAC)?
 - **A.** 90°.
- **B.** 60°.
- **C.** 45°.
- **D.** 30°.
- Câu 27: Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 3.

B. 6.

C. 2.

D. 4.

Câu 28: Cho hình hộp chữ nhật. Người ta nối trung điểm các cánh của một hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giớc ở các góc của hình hộp như hình vẽ sau.

Hình còn lại là một đa diện có số mặt và số cạnh là:

B. 12 mặt, 24 cạnh.

C. 12 mặt, 20 cạnh.

D. 14 măt, 48 canh.

A. $V = 3a^3$

B. $V = \frac{\sqrt{3}a^3}{3}$

C. $V = a^3$

 $V = \frac{a^3}{3}$

Câu 30: Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại A, AB = a, BC = 2a. Hình chiếu vuông góc của B' trên mặt phẳng (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC; CC' hợp với mặt phẳng (A'B'C') một bằng 60° . Thể tích của khôi lăng trụ ABC.A'B'C' tính theo a bằng:

A. $\frac{3a^3\sqrt{3}}{2}$.

 $\mathbf{B} \cdot \frac{3a^3\sqrt{3}}{4}$

C. $\frac{3a^3}{2}$

D. $\frac{3a^3\sqrt{2}}{4}$.

Câu 31: Có bao nhiều giá trị nguyên âm của tham số m để hàm số $y = \frac{3}{4}x^4 - \frac{9}{2}x^2 + (2m+15)x - 3m+1$

đồng biến trên khoảng (0;+∞

A. 2.

B. 3

C. 5.

D. 4.

Câu 32: Cho hàm số f(x) xác định trên \mathbb{R} và có đạo hàm f'(x) thỏa mãn $f'(x) = (1-x)(x+2)(2-\sin x) + \frac{2019}{2}$. Hàm số y = f(3-2x) + 2019x + 2020 nghịch biến trên khoảng nào?

A. (-3;2).

B. (1; 2).

 $\mathbb{C}. (2; +\infty).$

D. $(3; +\infty)$

Câu 33: Hàm số y = f(x) có đạo hàm và liên tục trên R, đạt cực trị tại x = 0; x = 4; x = -4. Hỏi hàm số $y = f(x^2 - 4x)$ có bao nhiều điểm cực trị? **A.** 3. **B.** 4. **C.** 5. **D.** 6.

Câu 34. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3 - m$, với m là tham số. Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Giá trị thực m < 1 để

ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng

A.
$$m = \frac{5}{17}$$

B.
$$m = \frac{2}{17}$$
.

A.
$$m = \frac{5}{17}$$
. **B.** $m = \frac{2}{17}$. **C.** $m = \frac{3}{17}$. **D.** $m = \frac{4}{17}$

D.
$$m = \frac{4}{17}$$

Câu 35: Cho đồ thị hàm số bậc ba y = f'(x) như hình vẽ

Hàm số y = f(x) đạt giá trị lớn nhất trên [1;3] tại x_0 .

Hãy tính giá trị của $A = x_0^2 + 4x_0 - 2$

Câu 36: Cho hàm số $y \models f(x)$ liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Gọi M, mlần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = f(\sqrt{4-x^2})$.

A. -2.

B. 1.

D. 3.

Câu 37: Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số $y = \frac{2x-1}{\left(4mx^2 - 2x + 1\right)\left(4x^2 + 4mx + 1\right)}$ có đúng một đường tiệm cận là tập hợp con của tập hợp nào sau đây?

 $A. \varnothing.$

B.
$$\left(-1; \frac{1}{6}\right) \cup \left(\frac{1}{5}; 1\right)$$
. **C.** $\left(\frac{1}{5}; 1\right)$. **D.** $\left(-1; \frac{1}{2}\right)$

C.
$$\left(\frac{1}{5};1\right)$$

$$\mathbf{D} \cdot \left(-1; \frac{1}{2}\right)$$

Câu 38: Cho hàm số $y = \frac{x+1}{mx^2 - 2x - 3}$. Tìm tất cả các giá trị của m để đồ thị hàm số có ba đường tiệm cận.

- A. $\begin{cases} m \neq 0 \\ m \neq -1 \\ m < \frac{1}{3} \end{cases}$ B. $\begin{cases} m \neq 0 \\ m \neq 1 \\ m > -\frac{1}{3} \end{cases}$ C. $\begin{cases} m \neq 1 \\ m > -\frac{1}{3} \end{cases}$ D. $\begin{cases} m \neq 0 \\ m < \frac{1}{5} \end{cases}$
- **Câu 39.** Cho hàm số $y = \log_a x \ (0 < a \ne 1)$, có đồ thị (C) như hình vẽ. Biết (C') là đồ thị của hàm số y = f(x) như hình vẽ 1. Và đồ thị (C') thỏa điều kiện như hình vẽ 2.

Hình .

Hình 2

Giá trị $f(\log_a 2019)$ $(m,n) \in \mathbb{N}$, (m,n) = 1. Giá trị m + 2n bằng

2019

C. 2020.

D. 2020.

Câu 40: Gọi A, B, C (với $x_A < x_B < x_C$) lần lượt là giao điểm của đồ thị hai hàm số $f(x) = x - 2x_1^2 + 2x + 2$ và $g(x) = x^2 + 3x - 1$. Độ dài đường phân giác trong kẻ từ B của △ABC là

A. $\sqrt{6}\sqrt{5}$ 14.

B. $6\sqrt{5} - 14$.

C. $\sqrt{260-116\sqrt{5}}$.

D. $260-116\sqrt{5}$.

Câu 41: Cho hàm số f(x) liên tục trên \mathbb{R} có đồ thị y = f(x) như hình vẽ bên. Phương trình f(f(x)) = -2 có tất cả bao nhiều nghiệm dương phân biệt.

A. 3.

B. 4.

C. 6.

D. 7.

Câu 42. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 10 cm, $\widehat{BAD} = 60^{\circ}$. Các điểm M,N trên các cạnh SA,SB sao cho $\frac{SM}{SA} = \frac{SN}{SB} = \frac{2}{5}$. Mặt phẳng (P) qua MN và song song với BC. Tính diện tích thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (P)

A. $10\sqrt{3}$.

B. 8√3.

 $C. 6\sqrt{2}$

 $10\sqrt{2}$.

Câu 43. Cho khối chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc và SA = 7a, SB = 8b, SC = 9c. Gọi M là trung điểm cạnh AB, N thuộc đoạn thẳng BC sao cho BN = 2NC, I là giao điểm của CM và AN. Thể tích khối chóp S.ACI là:

A. $42a^3$.

B. $28a^3$.

21*a*³

D. $14a^3$.

Câu 44. Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật với AB = 4, AD = 7. Hai mặt bên (ABB'A') và (ADD'A') cùng tạo với đáy một góc 45° , cạnh bên AA' = 2. Tính thể tích khối lăng trụ ABC.A'B'C'.

A. $\frac{56\sqrt{3}}{3}$

B. $\frac{50\sqrt{2}}{3}$

C. $\frac{28\sqrt{3}}{3}$.

D. $\frac{28\sqrt{2}}{3}$.

Câu 45. Cho Cho hình lăng trụ tam giác ABC.A'B'C' có thể tích là V và có độ dài cạnh bên AA' = 6. Trên các cạnh A'A, B'B, C'C lần lượt lấy các điểm A_1, B_1, C_1 sao cho $A_1A = 2$, $B_1B = x$, $C_1C = y$ với x, y là các số dương thoả màn xy = 12. Biết rằng thể tích khối đa diện $ABC.A_1B_1C_1$ bằng $\frac{1}{2}V$. Giá trị của $(x-y)^{2020}$ bằng

A. 1.

B. 3.

C. 4

D. 5.

Câu 46. Cho hàm số y=f(x) có đạo hàm trên $\mathbb R$, hàm số y=f'(x) liên tục trên $\mathbb R$ và có bảng xét dấu như sau

х	$-\infty$		а		b		С		$+\infty$
f'(x)		_	0	_	0	+	0	_	

trong đó a, b,c là các số nguyên cho trước. Số giá trị nguyên của tham số m để hàm số $y = g(x) = f(x^3 - 3x^2 + 3x + m)$ đồng biến trên khoảng (1; 2)?

A. c-b-2.

B. c-b-1.

 \mathbf{C} . c-b.

D. c-b+1.

Câu 47: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} .

Biết hàm số y = f'(x) có đồ thị như hình vẽ bên dưới.

Tìm số điểm cực trị của hàm số $g(x) = f(x^2) - \frac{2}{3}|x|$

- **A.** 3.
- **B.** 4.
- **C.** 6.
- **D.** 5.

Câu 48: Cho hàm số y = f(x) liên tục trên \mathbb{R} va có đồ thị như hình

Có bao nhiều giá trị nguyên âm của tham số m để phương trình

 $(m+\sqrt{m^2+2m+2}+1)$ $f^2(x)+\sqrt{f^4(x)+1}$ = 1 có 6 nghiệm phân biệt.

- **A.** 5.
- **B.** 8.
- **C.** 3.
- **D.** 4.

Câu 49: Cho hình lăng trụ tam giác ABC.A'B'C' có đáy là hình thoi cạnh a Biết $\widehat{A'BA} = 90^{\circ}; \widehat{CA'C'} = 90^{\circ}; ((A'AD), (ABB'A')) = \alpha \quad \text{và} \quad \tan \alpha = \sqrt{2}$. Khoảng cách giữa hai đường thẳng A'B và AC là

- **A.** $\frac{\sqrt{39}}{13}a$
- **B.** $\frac{2\sqrt{13}}{13}a$
- C. $\frac{2\sqrt{7}}{7}a$ D. $\frac{2\sqrt{51}}{17}a$

Câu 50: Cho hình lăng trụ ${}^{ABC.A'B'C'}$ có thể tích bằng 3 . Gọi D, E, M, N lần lượt là trung điểm của các cạnh AB , BC , BB , CC và G là trọng tâm của ${}^{\Delta ABC}$. Đường thẳng ${}^{A'G}$ cắt mặt phẳng ${}^{(AMN)}$ tại I . Tính thể tích tỉ số thể tích giữa các khối chóp ${}^{I.BDGE}$ và ${}^{A.BCNM}$.

A. $\frac{1}{12}$.

B. $\frac{1}{3}$.

 $\frac{\mathbf{C.}}{6}$.

D. $\frac{1}{8}$.

ÔN TẬP KIỂM TRA GIỮA KỲ I

Đề 6

[**Mức độ 2**] Đồ thị của hàm số $y = \frac{1-8x}{x+2}$ có các đường tiệm cận đừng và tiệm cận Câu 1. ngang lần lượt là

A.
$$x = -2$$
 và $y = -8$. **B.** $x = -2$ và $y = 1$.

B.
$$x = -2$$
 và $y = 1$

C.
$$x = -2 \text{ và } y = 8$$

C.
$$x = -2$$
 và $y = 8$. D. $x = 2$ và $y = -8$.

[**Mức độ 2**] Cho hàm số $y = \frac{2x-1}{x+2}$ có đồ thị là (C). Tiếp tuyến của (C) tại điểm có Câu 2. hoành độ x = -3 có phương trình là

A.
$$y = 5x + 22$$
.

B.
$$v = 5x + 8$$

C.
$$y = -5x - 8$$
.

D.
$$y = -5x - 22$$

[**Mức độ 1**] Cho hàm số y = f(x) xác định trên nửa khoảng Câu 3. và có bảng biến thiên dưới đây:

Khẳng định nào sau đây đúng?

- A. Hàm số có giá trị lớn nhất bằng $\frac{1}{3}$.
- **B.** Hàm số có giá trị nhỏ nhất bằng $\frac{3}{2}$.
- C. Hàm số có giá trị nhỏ nhất bằng 0.
- **D.** Hàm số có giá trị nhỏ nhất bằng $\frac{2}{7}$.

[**Mức độ 2**] Cho hàm số y = f(x) có đồ thị Câu 4. là (C) như hình vẽ sau:

> Số nghiệm của phương trình f(x)+1=0là

A. 1.

B. 2.

C. 3.

D. 0.

A.
$$y = \frac{2x-2}{x+3}$$

B. C.
$$y = 2x^3 + 3x^2 - x + 5$$
.

[**Mức độ 1**] Cho hàm số $y = (x-3)(x^2+2020)$ có đồ thị (C). Mệnh đề nào dưới Câu 6. đây đúng?

A. (C) không cắt trục hoành.

B. (C) cắt trục hoành tại 3 điểm phân biệt

C. (C) cất trục hoành tại hai điểm phân biệt.

D. (C) cắt trục hoành tại một điểm

hình hôp Cho chữ nhât ABCD.A'B'C'D'có Câu AB = a, $AD = a\sqrt{3}$, $AA' = a\sqrt{5}$. Thể tích khối hộp đã cho tính theo a là

- **B.** $\frac{a^3\sqrt{15}}{2}$. **C.** $a^3\sqrt{5}$. **D.** $a^3\sqrt{3}$.
- [**Mức độ 1**] Cho hàm số $f(x) = -x^4 + 2x^2 + 5$. Giá trị cực đại và cực tiểu của hàm Câu 8. số lần lượt bằng

A. 6 và -1.

- **B.** 1 và 0.
- **C.** 1 và -1.
- **D.** 6 và 5.
- [**Mức độ 2**] Tập nghiệm của phương trình $\cot(2x-30^{\circ}) = \sqrt{3}$ là Câu 9.

A. $S = \left\{ 45^0 + k90^0 \middle| k \in \mathbb{Z} \right\}$.

B. $S = \{30^0 + k90^0 | k \in \mathbb{Z}\}$.

C. $S = \{60^0 + k90^0 | k \in \mathbb{Z} \}$.

D. $S = \{90^0 + k90^0 | k \in \mathbb{Z} \}$.

Câu 10. [Mức độ 2] Trong mặt phẳng tọa độ Oxy, cho điểm A(-2;3), B(4;1) và $T_{\vec{v}}(A) = B$ khi đó toạ độ của vecto \vec{v} là

- **A.** $\vec{v} = (6; -2)$. **B.** $\vec{v} = (-8; 3)$.
- C. $\vec{v} = (2;4)$. D. $\vec{v} = (-6;2)$.

Câu 11. [**Mức độ 2**] Số nghiệm của phương trình $\cos x - 1 = 0$ trên nửa khoảng $[0; 6\pi)$ là

- B. 2.
- C. 4.
- **D.** 3.

Câu 12. [**Mức độ 2**] Giá trị lớn nhất của hàm số $y = 1 - 2\sin x$ là

A. 0.

- **B.** 3.
- **C.** -1.
- **D.** 4.

Câu 13. [**Mức độ 1**] Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới:

х	-∞	0 :	2	+∞
f'(x)	-	-	+	
f(x)	0	+∞	-2	+∞

Mênh đề nào sau đây là sai?

- A. Trên khoảng $(2; +\infty)$ hàm số đồng biến.
- B. Hàm số nghịch biến trên khoảng (,0).
- C. Hàm số đồng biến trên khoảng $(-2; +\infty)$
- D. Hàm số nghịch biến trên khoảng (0,2).

A.
$$y = -x^3 + 3x + 2$$
. **B.** $y = x^4 - 2x^2 + 5$.

C.
$$y = \frac{x-1}{x+3}$$
.

D.
$$y = x^3 - 3x + 2$$
.

- **Câu 15.** [**Mức độ 2**] Cho hàm số y = f(x) có đạo hàm $f'(x) = -\sqrt{x+3}$. Trên [0;1] hàm số đạt giá trị nhỏ nhất tại điểm
 - **A.** $x = -\sqrt{3}$.
- **B.** x = -2. **C.** x = 1.
- **D.** x = 0.

Câu 16. [Mức độ 1] Hình đa diện sau đây có bao nhiều mặt?

A. 4.

- **B.** 5.
- **C.** 6.

D. 3.

Câu 17. [**Mức độ 1**] Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

Mệnh đề nào sau đây đúng?

- A. Hàm số đã cho không có cực trị
- B. Hàm số đã cho có ba điểm cực trị.
- C. Hàm số đã cho có một điểm cực đại và có một điểm cực tiểu.
- D. Hàm số đã cho có một điểm cực tiểu và không có điểm cực đại.

Câu 18. [Mức độ 1] Cho hàm số $y = ax^4 + bx^2 + c$ có bảng biến thiên như hình vẽ sau

Khẳng định nào sau đây **đúng**?

A. a < 0; b > 0; c > 0.

B. a > 0; b < 0; c < 0.

C. a > 0; b > 0; c > 0.

D. a < 0; b > 0; c < 0.

Câu 19. [**Mức độ 1**] Hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm $y = f'(x) = -3x^2 + 6x - 3$. Giá trị lớn nhất của hàm số trên [0,3] là

A. f(0).

B. f(1).

C. f(2). **D.** f(3).

Câu 20. [Mức độ 1] Trong các khối đa diện đều sau đây khối đa diện nào loại {3;4}

A. Tứ diện đều.

B. Khối lập phương.

B. C. Khối 20 mặt đều.

D. Khối bát diên đều.

Câu 21. [**Mức độ 2**] Cho khối lăng trụ tam giác đều ABC.A'B'C', biết AB = a, $AB' = a\sqrt{7}$. Thể tích V của khối lặng tru là

A. $V = \frac{3a^3\sqrt{2}}{4}$. **B.** $V = \frac{a^3\sqrt{3}}{4}$ **C.** $V = \frac{3a^3\sqrt{3}}{4}$ **D.** $V = \frac{a^3\sqrt{3}}{3}$

Câu 22. [Mức độ 2] Cho hình chóp SABC có đây ABC là tam giác vuông tại B, AB=a, $AC = a\sqrt{5}$, $SA \perp (ABC)$ và $SA = a\sqrt{3}$. Thể tích khối chóp SABC bằng

A. $V = \frac{a^3 \sqrt{3}}{2}$.

Câu 23. [**Mức độ 2**] Cho hàm số $y = \frac{2x+1}{x+1}$ có đồ thị (C) và đường thẳng d: y = x+m. Tập

giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A,B là

B. $m \in (1; 5)$.

D. $m \in (-\infty; 1) \cup (5; +\infty)$.

[**Mức độ 2**] Cho hàm số $y = \frac{x+10}{\sqrt{100-x^2}}$ có đồ thị (C). Tổng số đường tiệm cận của đồ thị (C) là

A. 0.

B. 1.

C. 2

D. 3.

Câu 25. [Mức độ 2] Cho hình lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60° , cạnh AB = 2a. Thể tích V của khối lăng trụ ABC.A'B'C' bằng

A. $6a^3$.

B. $2a^3$.

C. $3a^3\sqrt{3}$. **D.** $a^3\sqrt{3}$.

Câu 26. [Mức độ 3] Số giá trị nguyên của tham số m trong khoảng (-2020; 2021) để hàm số

$$y = \frac{3\sin x - 1}{2\sin x + m}$$
 nghịch biến trên khoảng $\left(0; \frac{\pi}{6}\right)$ là

- **A.** 2021.
- **B.** 2022.
- C. 2020.
- **D.** 2019.
- **Câu 27.** [**Mức độ 3**] Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng xét dấu đạo hàm f'(x) như hình vẽ dưới đây:

Biết rằng f(0) = f(3) = 2, hãy tìm tất cả các giá trị của tham số m sao cho bất phương trình $f(x) + x^2 - 3 + m \ge 0$ nghiệm đúng với mọi $x \in [0,3]$.

- **A.** $m \ge 11$.
- B. $m \ge -1$
- C. $m \leq -1$.
- **D** *m* ≤11.

Câu 28. [**Mức độ 3**] Cho đồ thị hàm số $y = \frac{x+1}{x-1}$ như sau:

Khi đó đồ thị hàm số $v = \frac{|x+y|}{|x|}$ là hình vẽ nào trong các hình sau?

- A. HÌNH 1.
- **B.** HÌNH 2.
- **C.** HÌNH 3.
- **D.** HÌNH 4.

II. TỰ LUẬN (20 phút)

Bài 1. Cho hàm số $y = x^4 - (3m - 1)x^2 + 2m + 1$ (*), với m là tham số. Trang 17

- a) Lập bảng biến thiên của hàm số (*) khi m=1.
- b) Tìm tất cả các giá trị của tham số m để đồ thị hàm số (*) có ba điểm cực trị A,B,C lập thành một

tam giác có đường tròn ngoại tiếp đi qua điểm D(7;3).

Bài 2. Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh $a\sqrt{5}$, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng $\left(SBC\right)$ bằng $\frac{a\sqrt{10}}{3}$. Tính thể tích V của khối chóp đã cho.

