# 2 Challenge

Monday, August 15, 2022 10:08 PM

Myroslava Sánchez Andrade A01730712 | 14/08/2022

### 2 Hypothesis testing - comparing the mean of 2 groups

Run a t-test to compare whether the average monthly return of AAPL is greater than the average monthly returns of MSFT

```
import matplotlib.pyplot as plt
import pandas_datareader as pdr
import numpy as np

H0 : mean(r_AAPL) > mean(r_MSFT) ==> H0: mean(r_AAPL) - mean(r_MSFT) = 0
Ha: mean(r_AAPL) < mean(r_MSFT) ==> Ha: mean(r_AAPL) - mean(r_MSFT) != 0

VARIABLE OF STUDY = DIFFERENCE OF BOTH MEAN RETURNS
dif = mean(r_AAPL) - mean(r_MSFT)
H0: dif = 0
Ha: dif != 0
```

### AAPL

```
# Collecting the real data from returns of AAPL from July 2019 until July 2022 monthly (60 months)
AAPL = pdr.get_data_yahoo("AAPL", start = "2017-07-01", end = "2022-05-31", interval = "m")
AAPL.tail()
```

|            | High       | Low        | Open       | Close      | Volume       | Adj Close  |
|------------|------------|------------|------------|------------|--------------|------------|
| Date       |            |            |            |            |              |            |
| 2022-02-01 | 176.649994 | 152.000000 | 174.009995 | 165.119995 | 1.627516e+09 | 164.439545 |
| 2022-03-01 | 179.610001 | 150.100006 | 164.699997 | 174.610001 | 2.180800e+09 | 174.111984 |
| 2022-04-01 | 178.490005 | 155.380005 | 174.029999 | 157.649994 | 1.687796e+09 | 157.200348 |
| 2022-05-01 | 166.479996 | 132.610001 | 156.710007 | 148.839996 | 2.401040e+09 | 148.415482 |
| 2022-06-01 | 151.740005 | 129.039993 | 149.899994 | 136.720001 | 1.749100e+09 | 136.530350 |

```
# Calculating the monthly cc returns
AAPL["r"] = (np.log(AAPL["Adj Close"]) - np.log(AAPL["Adj Close"].shift(1)))
# Plotting the cc returns
plt.hist(AAPL['r'], bins=15)
plt.show()
```



```
# We calculate the mean of the cc returns
AAPL_mean = AAPL['r'].mean()
AAPL_mean
```

#### 0.022998402961812832

```
# We calculate the std of the group
AAPL_std = AAPL['r'].std() / np.sqrt(AAPL["r"].count())
AAPL_std
```

#### 0.011317974045594498

## **MSFT**

```
# Collecting the real data from returns of MSFT from July 2019 until July 2022 monthly
MSFT = pdr.get_data_yahoo("MSFT", start = "2017-07-01", end = "2022-05-31", interval = "m")
MSFT.tail()
```

|            | High       | Low        | Open       | Close      | Volume      | Adj Close  |
|------------|------------|------------|------------|------------|-------------|------------|
| Date       |            |            |            |            |             |            |
| 2022-02-01 | 315.119995 | 271.519989 | 310.410004 | 298.790009 | 697050600.0 | 297.480591 |
| 2022-03-01 | 315.950012 | 270.000000 | 296.399994 | 308.309998 | 734334200.0 | 307.593567 |
| 2022-04-01 | 315.109985 | 270.000000 | 309.369995 | 277.519989 | 627343400.0 | 276.875122 |
| 2022-05-01 | 290.880005 | 246.440002 | 277.709991 | 271.869995 | 742902000.0 | 271.238251 |
| 2022-06-01 | 277.690002 | 241.509995 | 275.200012 | 256.829987 | 621372300.0 | 256.829987 |

```
# Calculating the monthly cc returns
MSFT["r"] = np.log(MSFT["Adj Close"]) - np.log(MSFT["Adj Close"].shift(1))
# Plotting the cc returns
plt.hist(MSFT["r"], bins = 15)
plt.show()
```



```
# Calculating the mean of the cc returns
MSFT_mean = MSFT["r"].mean()
MSFT_mean
```

0.02250024490874485

```
# Calculating the standard deviation of the cc returns
MSFT_std = MSFT["r"].std() / np.sqrt(MSFT["r"].count())
MSFT_std
```

0.007412906320414428

## Calculating the t-statistic

 $t = ((mean(r\_AAPL) - mean(r\_MSFT) - 0) / se => Remember that the standard error is the standard deviation of the variable of study.$ 

Then:  $t = ((mean(r\_AAPL) - mean(r\_MSFT) - 0) / SD(mean(r\_APPL) - mean(r\_MSFT)) = > The standard deviation can be calculated with the squared root of the variance of this difference$ 

Then:  $t = ((mean(r\_AAPL) - mean(r\_MSFT) - 0) / sqrt((1/N)(Var(r\_AAPL) + Var(r\_MSFT))))$ 

```
# Calculating the t-statisitc
t = (AAPL_mean - MSFT_mean -0) / np.sqrt((1 / MSFT["r"].count()) * (AAPL_std**2 + MSFT_std**2))
t
```

0.28282057658575654

SINCE THE RESULT OF THE T-STATISTIC IS THAT THE DIFFERENCE BETWEEN THE TOW MEANS IS 0.28 STANDARD DEVIATIONS, WE CANNOT DETERMINE THAT NEITHER OF THE HYPOTHESIS ARE CONFIRMED.