Diseño de una placa FPGA libre

Eladio Delgado Mingorance

25 de Abril de 2017 Facultad de Ciencias

Agenda:

- 1. Qué es una FPGA
- 2. Por qué las FPGAs libres
- 3. Nacimiento de la IceZUM Alhambra
- 4. La electrónica digital al alcance de todos
- 5. Diseño de la IceZUM Alhambra

1. Qué es una FPGA

Field Programmable Gate Array

Podemos reconfigurar las conexiones entre sus elementos lógicos para formar cualquier circuito digital

2. Por qué las FPGAs libres (I)

Enfoque tradicional de las FPGAs:

- Reservadas para aplicaciones avanzadas
- Herramientas de desarrollo propietarias
- El flujo de trabajo demanda muchos recursos
- Entornos de desarrollo HW / SW de coste elevado

2. Por qué las FPGAs libres (II)

Cliffod Wolf hace ingeniería inversa de una Lattice iCE40

FPGAS Libres:

- Todo el flujo de trabajo es Open Source
- Herramientas SW multiplataforma libres (y ligeras)
- La comunidad puede evolucionar las herramientas HW y SW
- Proyecto Icestorm (mayo 2015): Primera Toolchain
 Verilog Bitstream sólo con herramientas libres

3. Nacimiento de la IceZUM Alhambra

- Al poco tiempo de conocerse el proyecto Icestorm se agota la iCEstick
- iCEstick + bqZUM → IceZUM
- Sebastián Gallardo sugirió IceZUM Alhambra

https://github.com/FPGAwars/icezum/wiki

4. La electrónica digital al alcance de todos

- Icestudio (Jesús Arroyo): Herramienta libre multiplataforma para programación visual (también Verilog)
- Herramientas HW de bajo coste
- Utilizable desde infantil (Circuit Scramble) hasta investigación (RISC-V, riscv.org)
- Nuevas aplicaciones:
 - Empiezan a sustituir a microcontroladores en tareas sencillas
 - Recuperar máquinas como el Z80 o la CPU del Apolo 11

5. Diseño de la IceZUM Alhambra (I)

Fases del diseño:

- Concepto y planificación del diseño
- Diseño digital
- Diseño analógico (simulación)
- Diseño del PCB

Verificación del diseño:

- Fabricación de prototipos
- Verificación

5. Diseño de la IceZUM Alhambra (II)

Concepto y planificación del diseño:

- Funcionalidad vs espacio en PCB
- Coste de fabricación (tamaño de componentes vs componentes a dos caras, pitch mínimo, tamaño mínimo de pasivos)
- Entorno de uso del dispositivo: protecciones, especificaciones, etc.

5. Diseño de la IceZUM Alhambra (III)

Diseño digital:

- Conexiones a nivel lógico
- GPIO, LEDs, switches
- Diseño de referencia

Diseño analógico:

- Alimentación, E/S analógica
- EMC, protecciones
- Gestión térmica

Simulación

(LTspice)

5. Diseño de la IceZUM Alhambra (IV)

Diseño del PCB:

Stack up, tipos de via y grosor del cobre

- Clase de fabricación (ancho/espacio, taladro, corona)
- Corriente en pistas vs temperatura
- Gestión de la temperatura
- Aspectos EMC
- Auto-interferencias

5. Diseño de la IceZUM Alhambra (V)

Verificación del diseño: Costoso en tiempo y medios pero necesario para asegurar la calidad del diseño

5. Diseño de la IceZUM Alhambra (VI)

5. Diseño de la IceZUM Alhambra (VII)

Ejemplo de medida: Hot plug-in con polaridad inversa

IceZUM Alhambra:

https://github.com/FPGAwars/icezum/wiki

Fuentes versión 1.0 (KiCad):

https://github.com/FPGAwars/icezum/tree/master/src-kicad

Fuentes versión 1.1 (Altium):

https://github.com/FPGAwars/icezum/tree/v1.1-altium/

Simulación con LTspice (Linear Technology):

http://www.linear.com/designtools/software/#LTspice

¡Gracias!