1. Кинематика материальной точки. Траектория. Путь и перемещение. Скорость и ускорение точки как производные радиус-вектора по времени. Средняя скорость.

- Траектория линия, по которой движется точка.
- Путь длина траектории (скаляр).
- **Перемещение** вектор, соединяющий начальное и конечное положение точки.
- **Скорость** производная радиус-вектора по времени: $v = \frac{dr}{dt}$.
- Ускорение производная скорости по времени: $a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$.
- **Средняя скорость** отношение перемещения ко времени: $v_{cp} = \frac{\Delta r}{\Delta t}$.

2. Нормальное и тангенциальное ускорения. Радиус кривизны траектории.

- Тангенциальное ускорение (a_{τ}) изменение величины скорости: $a_{\tau} = \frac{d \, v}{d \, t}$.
- **Нормальное ускорение** (a_n) изменение направления скорости: $a_n = \frac{v^2}{R}$
- **Радиус кривизны** (R) радиус окружности, аппроксимирующей траекторию: $R = \frac{v^2}{a_n}$.

3. Динамика материальной точки. Закон инерции и инерциальные системы отсчета.

- Закон инерции (І закон Ньютона): тело сохраняет состояние покоя или равномерного прямолинейного движения, если $\Sigma F = 0$.
- **Инерциальные системы отсчёта (ИСО)** системы, где выполняется закон инерции.

4. Второй и третий законы Ньютона. Импульс материальной точки и его изменение.

- II закон Ньютона: $\sum F = m a$.
- III закон Ньютона: $F_{12} = -F_{21}$.
- Импульс: p = m v.
- Изменение импульса: $\Delta p = F \Delta t$.

5. Внешние и внутренние силы. Закон изменения импульса системы. Закон сохранения импульса.

- Внешние силы действуют со стороны внешних тел.
- Внутренние силы действуют между телами системы.
- Закон изменения импульса: $\frac{dP}{dt} = \sum F_{\text{внеш}}$.
- Закон сохранения импульса: если $\sum F_{\text{внеш}} = 0$, то P = const.

6. Центр масс (центр инерции) механической системы и закон его движения.

- Центр масс: $R = \frac{\sum m_i r_i}{\sum m_i}$.
- Закон движения центра масс: $MA = \sum F_{\text{внеш}}$.

7. Силы трения. Силы упругости. Закон всемирного тяготения.

- Сила трения: $F_{\rm rp} = \mu N$.
- Сила упругости: $F_{ynp} = -k x$.
- Закон всемирного тяготения: $F = G \frac{m_1 m_2}{r^2}$.

8. Элементарная работа силы. Работа силы и ее выражение через криволинейный интеграл. Мощность.

- Элементарная работа: $\delta A = F \cdot dr$.
- Работа: $A = \int_{L} F \cdot dr$.

• Мощность: $P = F \cdot v$.

9. Кинетическая энергия и ее связь с работой внешних и внутренних сил.

- Кинетическая энергия: $E_k = \frac{mv^2}{2}$.
- Связь с работой: $\Delta E_k = A$.

10. Потенциальная энергия системы. Закон сохранения механической энергии.

- Потенциальная энергия:
 - о В поле тяжести: $E_p = mgh$.
 - о Упругой деформации: $E_p = \frac{kx^2}{2}$.
- Закон сохранения энергии: $E_{\text{до}} = E_{\text{после}}$.

11. Удар абсолютно упругих и неупругих тел.

- **Абсолютно упругий удар**: сохраняются импульс и кинетическая энергия.
- **Абсолютно неупругий удар**: сохраняется импульс, кинетическая энергия не сохраняется.

12. Кинематика вращательного движения твердого тела. Угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями точек вращающегося тела.

- Угловая скорость: $\omega = \frac{d \phi}{d t}$.
- Угловое ускорение: $\alpha = \frac{d \omega}{d t}$.
- Связь с линейными величинами: $v = \omega R$, $a_{\tau} = \alpha R$, $a_{n} = \omega^{2} R$.

13. Момент импульса. Момент силы. Уравнение моментов. Закон сохранения момента импульса механической системы.

- Момент импульса: $L=r \times p$.
- Момент силы: $M = r \times F$.
- Уравнение моментов: $\frac{dL}{dt} = M$.
- Закон сохранения момента импульса: если M = 0, то L = const.

14. Момент импульса тела относительно неподвижной оси вращения. Момент инерции тела относительно оси. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

- Момент импульса: $L = I \omega$.
- Момент инерции: $I = \sum m_i r_i^2$.
- Уравнение динамики: $M = I \alpha$.

15. Кинетическая энергия вращающегося тела. Момент инерции. Теорема Штейнера. Работа сил, приложенных к вращающемуся телу.

- Кинетическая энергия: $E_k = \frac{I \omega^2}{2}$.
- Теорема Штейнера: $I = I_0 + m d^2$.
- Работа: $A = \int M d\phi$.

16. Неинерциальные системы отсчета. Силы инерции.

- Неинерциальные системы движутся с ускорением.
- **Силы инерции** фиктивные силы, возникающие в неинерциальных системах (центробежная, Кориолиса).

- 17. Уравнение молекулярно-кинетической теории идеальных газов для давления и его сравнение с уравнением Клапейрона-Менделеева. Молекулярно-кинетическое толкование абсолютной температуры.
 - Уравнение МКТ: $P = \frac{2}{3} n(E_k)$.
 - Уравнение Клапейрона-Менделеева: PV = vRT.
 - Абсолютная температура: $(E_k) = \frac{3}{2}kT$.
- 18. Распределение Максвелла по скоростям теплового движения для молекул идеального газа. Экспериментальная проверка закона распределения молекул по скоростям.
 - Распределение Максвелла: $f(v) = 4\pi \left(\frac{m}{2\pi k T}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$.
 - Экспериментальная проверка: опыты Штерна.
- 19. Средняя скорость теплового движения, наиболее вероятная скорость и среднеквадратичная скорость молекулы идеального газа.
 - Средняя скорость: $(v) = \sqrt{\frac{8kT}{\pi m}}$.
 - Наиболее вероятная скорость: $v_{\text{вер}} = \sqrt{\frac{2kT}{m}}$.
 - Среднеквадратичная скорость: $v_{ck} = \sqrt{\frac{3kT}{m}}$.
- 20. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.
 - Число степеней свободы: i=3 (одноатомный газ), i=5 (двухатомный газ).
 - Закон распределения энергии: на каждую степень свободы приходится $\frac{1}{2}kT$.

21. Работа газа при изменении его объема. Количество теплоты. Теплоемкость.

- Работа газа: $A = \int P dV$.
- Количество теплоты: $Q = c m \Delta T$.
- Теплоёмкость: $C = \frac{Q}{\Delta T}$.

22. Первое начало термодинамики. Применение первого начала к изопроцессам в идеальном газе. Адиабатный процесс.

- Первое начало: $\Delta U = Q A$.
- Изопроцессы:
 - о Изотермический: Q = A.
 - о Изохорный: $Q = \Delta U$.
 - о Изобарный: $Q = \Delta U + A$.
- Адиабатный процесс: Q = 0, $\Delta U = -A$.

23. Обратимые и необратимые процессы. Тепловые двигатели. Второе начало термодинамики (формулировки Клаузиуса и Томсона).

- **Обратимые процессы** могут быть проведены в обратном направлении без изменения окружающей среды.
- Необратимые процессы не могут быть полностью обращены.
- Второе начало:
 - о Клаузиус: тепло не может самопроизвольно переходить от холодного тела к горячему.
 - о Томсон: невозможен вечный двигатель второго рода.

24. Цикл Карно и его КПД.

- Цикл Карно состоит из двух изотерм и двух адиабат.
- КПД цикла Карно: $\eta = 1 \frac{T_2}{T_1}$.

25. Реальные газы. Уравнение Ван-дер-Ваальса.

- Уравнение Ван-дер-Ваальса: $\left(P + \frac{a}{V^2}\right)(V b) = v \, RT$.
- Поправки:
 - о a учитывает притяжение молекул.
 - о b учитывает объём молекул.

Эти тезисы помогут быстро повторить основные моменты перед экзаменом. Удачи! ©