Linear Gaussian Markov Model with Stochastic volatility

Alexandre Humeau

October 4, 2014

1 The model

1.1 Why adding stochastic volatility

Replication tentative of the swaption smile for pricing of more complex interest-rate derivatives

1.2 Main equations

Let f(t,T) be the instantaneous forward rate between t and T, we assume without loss of any generality under the risk neutral measure \mathbb{Q} (depending on the currency)

$$df(t,T) = \mu_f(t,T)dt + \sigma_f(t,T) \cdot (\sqrt{v}dW_t)$$
(1)

where \cdot represents the scalar product and v is a stochastic volatility process that we will define later in the document.

Remark 1.1. When dealing with multi-currency frameworks, I will write a separate document as it depends highly on the model put on the FX.

Remark 1.2. The number of factors N in the rate model is equal to the dimensionality of the considered vectors $v = (v_1, \ldots, v_N), \ \sigma_f = (\sigma_{f,1}, \ldots, \sigma_{f,N})$

Proposition 1.1 (Heath-Jarrow-Morton 1992). The absence of arbitrage imples that the drift term μ_f is equal to

$$\mu_f(t,T) = \sum_{i=1}^{N} v_i(t)\sigma_{f,i}(t,T) \int_t^T \sigma_{f,i}(t,u)du$$
 (2)

Remark 1.3. For a general specification of $\sigma_{f,i}(t,T)$, the dynamics of the forward rate curve will be path-dependent, which significantly complicates derivatives pricing and the application of standard econometric techniques

Proposition 1.2 (Ritchken-Sankarasubramanian). If the volatility vector of functions can be factored as

$$\sigma_{f,i}(t,T) = \mathcal{P}_n(T-t)e^{-\int_t^T \lambda_u du}$$
(3)

with a regular function $u \mapsto \lambda_u$, and $\tau \mapsto \mathcal{P}(\tau)$ a polynomial function of the variable, then the Heath-Jarrow-Morton model is markovian.

Proof. Check if all the conditions are reunited, and check the regularity of the function

Remark 1.4. For simplicity in the calibration, we will set the degree of the polynomial to be 1 and we are left with the following formula,

$$\sigma_{f,i}(t,T) = (\alpha_{1,i} + \alpha_{2,i}(T-t)) e^{-\lambda_i(T-t)}$$
(4)

we can also consider a term-structure of coefficients and have the follozing formula

$$\sigma_{f,i}(t,T) = \alpha_{1,i}(t)e^{-\lambda_i(T-t)} \tag{5}$$

2 Stochastic volatility models

2.1 Log-normal stochastic volatility

2.2 Heston-like stochastic volatility

2.2.1 Main equations

Let us assume that under the risk-neutral domestic probability measure, the domestic short rate evolves with the following dynamics

$$dr_{t} = \lambda(\theta - r_{t})dt + \sigma\sqrt{v_{t}}dW_{t}^{r}$$

$$dv_{t} = a(b - v_{t})dt + \sigma_{v}\sqrt{v_{t}}dW_{t}^{v}$$

$$d\langle W^{r}, W^{v}\rangle_{t} = \rho dt$$
(6)

As $f(t,t) = r_t$ we will be able to derive the dynamic of the domestic instantaneous forward rate under the risk neutral measure.

2.2.2 PDE Approach

Let us derive the price of a zero-coupon bond of maturity T denoted at time t by B(t,T) We have

$$B(t,T) = \mathbb{E}\left[e^{-\int_t^T r_s \mathrm{d}s} \middle| \mathcal{F}_t\right]$$

As we are in an affine model, we can look for an exponentially affine function of the state variables r_t and x_t

$$B(t,T) = e^{\alpha_T(t) + \beta_T(t)r_t + \gamma_T(t)v_t} = f(t, r_t, v_t)$$
(7)

with the following boundary conditions

$$\alpha_T(T) = 0$$

$$\beta_T(T) = 0$$

$$\gamma_T(T) = 0$$
(8)

Proposition 2.1. The function f satisfies the following 2-dimensional PDE

$$\frac{\partial f}{\partial t} + \lambda(\theta - r)\frac{\partial f}{\partial r} + \frac{1}{2}\sigma^2 v \frac{\partial^2 f}{\partial r^2} + a(b - v)\frac{\partial f}{\partial v} + \frac{1}{2}\sigma_v^2 v \frac{\partial^2 f}{\partial v} + \rho\sigma\sigma_v v \frac{\partial^2 f}{\partial r\partial v} = rf \tag{9}$$

Proof. Portfolio replication

Some more calculations will be now helpful to derive ODEs on α , β and γ

$$\begin{split} &\frac{\partial f}{\partial t}(t,r,v) = \left[\alpha_T'(t) + \beta_T'(t)r + \gamma_T'(t)v\right] f(t,r,v) \\ &\frac{\partial f}{\partial r}(t,r,v) = \beta_T(t) f(t,r,v) \\ &\frac{\partial f}{\partial v}(t,r,v) = \gamma_T(t) f(t,r,v) \\ &\frac{\partial^2 f}{\partial r^2}(t,r,v) = \beta_T^2(t) f(t,r,v) \\ &\frac{\partial^2 f}{\partial v^2}(t,r,v) = \gamma_T^2(t) f(t,r,v) \\ &\frac{\partial^2 f}{\partial v \partial r}(t,r,v) = \gamma_T(t) \beta_T(t) f(t,r,v) \end{split}$$

We are left with the following ODEs

$$\begin{split} &\alpha_T'(t) + \lambda\theta\beta_T(t) + ab\gamma_T(t) = 0\\ &\beta_T'(t) - \lambda\beta_T(t) = 1\\ &\gamma_T'(t) + \frac{1}{2}\sigma^2\beta_T^2(t) - a\gamma_T(t) + \frac{1}{2}\sigma_v^2\gamma_T^2(t) + \rho\sigma\sigma_v\gamma_T(t)\beta_T(t) = 0 \end{split}$$

It yields

$$\beta_T(t) = \frac{1 - e^{-\lambda(T - t)}}{\lambda} \tag{10}$$

Remark 2.1. This expression can easily extended to term-structure of mean-reversion λ_t , in this case the function β_T is equal to

$$\beta_T(t) = \int_t^T e^{-\int_t^s \lambda_u du} ds \tag{11}$$

Let us now solve the Ricatti equation that solves the function γ_T

References

[1] A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives, published by the Oxford University Press on behalf of The Society for Financial Studies