4 Lecture 4

4.1 Operations on linear transformations

Definition 4.1 (Composition of linear transformations). Let $T: V \to W$ and $S: W \to U$ be linear transformations. The **composition** ST (or $S \circ T$) of T and S is defined as

$$(ST)(x) = S(T(x)).$$

One can also check that $ST: V \to U$ is a linear transformation.

Proposition 4.2. Let R, S, T be linear transformations. Whenever the composition in each item is defined, we have

- (i) R(ST) = (RS)T
- (ii) R(S+T) = RS + RT
- (iii) (R+S)T = RT + ST
- (iv) For $a \in F$, a(ST) = (aS)T = S(aT)
- (iv) $T \circ id_V = T$, $id_W \circ T = T$

Proof. One can directly verify these properties following the definition.

Remark 4.3. We note that in general $ST \neq TS$ since as maps $T: V \to W$ and $S: W \to U$ one can only be composed in the order ST but not in the order of TS. Even when V = W = U, we do have examples of $T, S: V \to V$ such that $ST \neq TS$. $T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

П

and
$$S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then $ST = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $TS = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

4.2 Invertibility and rank-nullity theorem

Definition 4.4. Let $T: V \to W$ be a linear transformation.

T is **injective** (one-to-one) if T(x) = T(y) implies x = y.

T is surjective (onto) if for any $y \in W$ there is $x \in V$ such that T(x) = y

T is **invertible** (**nonsingular**) if it is both injective and surjective. An invertible T is called an **isomorphism** between V and W.

V and W are **isomorphic** if there exists an isomorphism between them. We denote V and W are isomorphic by $V \cong W$.

Definition 4.5. The kernel (null space) of T is

$$\ker T = \{ x \in V : T(x) = 0 \}.$$

The **nullity** of T is null $T = \dim \ker T$.

The **image** (range) of T is

$$im T = \{T(x) : x \in V\}.$$

The rank of T is rank $T = \dim \operatorname{im} T$.

Lemma 4.6. Let $T: V \to W$ be a linear transformation. Then $\ker T$ is a subspace of V and $\operatorname{im} T$ is a subspace of W.

Proof. Since $T(0_V) = 0_W$, $0_V \in \ker T$. Let $x, y \in \ker T$, $c \in F$. Then T(x + y) = T(x) + T(y) = 0 + 0 = 0 and T(cx) = cT(x) = 0. Thus $x + y \in \ker T$, $cx \in \ker T$.

Since $T(0_V) = 0_W$, $0_W \in \operatorname{im} T$. Let $u, v \in \operatorname{im} T$. Then there exist $x, y \in V$ such that T(x) = u and T(y) = v. We have $u + v = T(x) + T(y) = T(x + y) \in \operatorname{im} T$ and $cu = cT(x) = T(cx) \in \operatorname{im} T$.

Proposition 4.7. We have the following characterization of injectivity and surjectivity of a linear transformation T.

- (i) T is injective if and only if $\ker T = \{0\}$.
- (ii) T is surjective if and only if im T = W.

Proof. (i) Since T is injective and T(0) = 0, we have ker $T = \{0\}$.

Suppose T(x) = T(y). Then by linearity of T, T(x - y) = T(x) - T(y) = 0. Thus $x - y \in \ker T = \{0\}$. Hence x = y.

(ii) This is just the definition of surjective.

Example 4.8. $T: F^n \to F^m, T(x_1, \ldots, x_n)^t = (x_1, \ldots, x_r, 0, \ldots, 0)^t$ for some $0 \le r \le \min(m, n)$. We have $\ker T = \{(0, \cdots, 0, x_{r+1}, \ldots, x_n)^t : x_i \in F, r+1 \le i \le n\}$ and $\operatorname{im} T = \{(x_1, \ldots, x_r, 0, \ldots, 0)^t : x_i \in F, 1 \le i \le r\}$. We have $\operatorname{null} T = n - r$ and $\operatorname{rank} T = r$. T is injective if r = n. T is surjective if r = m.

Proposition 4.9. The following are equivalent:

- (i) $T: V \to W$ is invertible.
- (ii) There is $S: W \to V$ linear such that $ST = id_V$ and $TS = id_W$.
- (iii) T maps a basis into a basis.

If any of the above items is satisfied, then the linear transformation S in (ii) is unique.

Proof. (i) \Longrightarrow (ii) Since T is both injective and surjective, we can define S(y) to be the unique x such that T(x) = y. It follows from definition that $ST = \mathrm{id}_V$ and $TS = \mathrm{id}_W$.

We now show that S is linear. In T(x+y) = T(x) + T(y), we take x = S(u) and y = S(v). Then we have T(S(u) + S(v)) = TS(u) + T(S(v)) = u + v. Composing S on both sides from the left, we get S(u) + S(v) = S(u+v) Similarly we have T(cS(u)) = cTS(u) = cu and composing S on both sides, we have S(cu) = cS(u).

(ii) \Longrightarrow (iii) Let v_1, \ldots, v_n be a basis of V. We show that $T(v_1), \ldots, T(v_n)$ is a basis of W. To show that $T(v_1), \ldots, T(v_n)$ is linearly independent, let $a_1T(v_1)+\cdots+a_nT(v_n)=0$. We compose S on both sides and use the linearity of S and $ST=\mathrm{id}_V$, we have $S(a_1T(v_1)+\cdots+a_nT(v_n))=a_1v_1+\cdots+a_nv_n=0=0$. Since v_1,\ldots,v_n is a basis, we have $a_1=\cdots=a_n=0$.

Let $y \in W$. Since $S(y) \in V$, there exist $a_1, \ldots, a_n \in F$ such that $S(y) = a_1v_1 + \cdots + a_nv_n$. Then $y = TS(y) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n)$. Thus $W = \operatorname{span}(T(v_1), \ldots, T(v_n))$.

(iii) \Longrightarrow (i) To show that T is injective suppose T(x) = 0. We write $x = a_1v_1 + \cdots + a_nv_n$. Then by linearity, $a_1T(v_1) + \cdots + a_nT(v_n) = T(x) = 0$. Since $T(v_1), \ldots, T(v_n)$ is a basis, $a_1 = \cdots = a_n = 0$. To show that T is surjective, let $y \in W$. Since $T(v_1), \ldots, T(v_n)$ is a basis of W, $y = a_1T(v_1) + \cdots + a_nT(v_n) = T(a_1v_1 + \cdots + a_nv_n) \in \operatorname{im} T$.

To show uniqueness of S, we assume S_1, S_2 are two maps satisfying (ii). We consider the composition S_1TS_2 . On one hand, $(S_1T)S_2 = \mathrm{id}_V S_2 = S_2$. On the other hand $S_1(TS_2) = S_1\mathrm{id}_W = S_1$. Thus $S_1 = S_2$.

Definition 4.10. The linear transformation S in (ii) is called the **inverse** of T and is denoted by T^{-1} .

Corollary 4.11. If $V \cong W$, then dim $V = \dim W$.

Proof. If $V \cong W$, then there is an isomorphism $T: V \to W$. By Proposition 4.9 (iii), T maps a basis into a basis and hence $\dim V = \dim W$.

Lemma 4.12. If $T; V \to W$ and $S: W \to U$ are both invertible, then ST is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.

Proof. We have $(ST)(T^{-1}S^{-1}) = S(TT^{-1})S^{-1} = SS^{-1} = \mathrm{id}_U$ and $(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T = T^{-1}T = \mathrm{id}_V$. The conclusion follows from Proposition 4.9.

Theorem 4.13 (First isomorphism theorem). Let $T: V \to W$ be a linear transformation. We define $\bar{T}: V/\ker T \to \operatorname{im} T$ to be $\bar{T}(x+\ker T) = T(x)$. Then \bar{T} is a well-defined linear transformation and is an isomorphism.

Proof. We first show that \bar{T} is well-defined. For any $x' \in x + \ker T$, we have $x - x' \in \ker T$. Then T(x) = T(x') + T(x - x') = T(x').

T is linear follows from the linearity of T.

If $\overline{T}(x + \ker T) = T(x) = 0$ then $x \in \ker T$. Thus $x + \ker T = 0 + \ker T$. This shows \overline{T} is injective.

For any $y \in \operatorname{im} T$, there exists $x \in V$ such that T(x) = y. Thus $\overline{T}(x + \ker T) = y$. This shows that \overline{T} is surjective. Hence \overline{T} is an isomorphism.

Corollary 4.14 (Rank-nullity theorem). Let $T:V\to W$ be a linear transformation. Then

$$\dim V = \operatorname{null} T + \operatorname{rank} T$$
.

Proof. By Theorem 4.13, $\bar{T}: V/\ker T \to \operatorname{im} T$ is an isomorphism. By we have $\dim(V/\ker T) = \dim \operatorname{im} T$. By Theorem 3.16, we have $\dim V - \dim \ker T = \dim(V/\ker T) = \dim \operatorname{im} T$. \square

Corollary 4.15 (Underdetermined system of linear equations). Let $T: V \to W$ be a linear transformation and dim $W < \dim V$. Then there is $0 \neq x \in V$ such that T(x) = 0.

Proof.
$$\operatorname{null} T = \dim V - \operatorname{rank} T \ge \dim V - \dim W > 0.$$

Corollary 4.16. Let V, W be finite dimensional vector spaces such that $\dim V = \dim W$ and $T: V \to W$ be a linear transformation. Then the following are equivalent:

- (i) T is an isomorphism.
- (ii) T injective.
- (iii) T surjective.
- (iv) There is $S: W \to V$ such that $ST = id_V$.
- (v) There is $S: W \to V$ such that $TS = id_W$.

Proof. (i) \Longrightarrow (ii): This follows directly from definition.

- (ii) \Longrightarrow (iii): By (ii) and Lemma 4.7, we have null T=0. By Corollary 4.14, we have rank $T=\dim V=\dim W$. By Lemma 2.17, im T=V.
- (iii) \Longrightarrow (i): By (iii) we have rank $T = \dim W = \dim V$. By Corollary 4.14, we have null T = 0 and hence $\ker T = \{0\}$. Thus T is an isomorphism.
 - (i) \Longrightarrow (iv) and (i) \Longrightarrow (v): This follows from Proposition 4.9.
 - (iv) \Longrightarrow (ii): Let $x \in \ker T$. Then x = ST(x) = S(0) = 0. Thus $\ker T = \{0\}$.
 - $(v) \Longrightarrow (iii)$: Let $y \in W$. Then $y = TS(y) = T(S(y)) \in \operatorname{im} T$. Thus $\operatorname{im} T = W$. \square

Remark 4.17. The infinite dimensional version of (ii) and (iii) in this Corollary is called Fredholm alternative. It is useful in solving PDEs cf. [1, Chapter 8].

4.3 Basis, coordinates and matrix representation

In Lecture 2, we saw that a finite dimensional vector space is built up by a basis. In this section, we will see that given a basis on a vector space, a linear transformation reduces to a matrix.

Lemma 4.18 (Basis and coordinates). Let v_1, \ldots, v_n be a basis of V. Then for every $v \in V$, there exists unique $x_1, \ldots, x_n \in F$ such that $v = x_1v_1 + \cdots + x_nv_n$.

Proof. Since v_1, \ldots, v_n spans V, there exist $x_1, \ldots, x_n \in F$ such that $x = x_1v_1 + \cdots + x_nv_n$. To show uniqueness we assume that $x = y_1v_1 + \cdots + y_nv_n$. Then we have $(x_1 - y_1)v_1 + \cdots + (x_n - y_n)v_n = 0$. Since v_1, \ldots, v_n is linearly independent, $x_1 - y_1 = \cdots = x_n - y_n = 0$. Thus $x_i = y_i$ for all $1 \le i \le n$.

Definition 4.19. Let $\beta = (v_1, \ldots, v_n)$ be a basis of V. We say that $(x_1, \ldots, x_n)^t$ is the **coordinates** of v under the basis and we write $[v]_{\beta}$ for $(x_1, \ldots, x_n)^t$.

Theorem 4.20. Let V be a n-dimensional vector space over F. We define the map $\phi_{\beta}: V \to F^n$ by $\phi_{\beta}(v) = [v]_{\beta}$. Then ϕ_{β} is a linear isomorphism and $\phi_{\beta}^{-1}(x_1, \ldots, x_n)^t = x_1v_1 + \cdots + x_nv_n$.

Proof. We first show that ϕ_{β} is linear. Let $\phi_{\beta}(v) = (x_1, \dots, x_n)^t$ and $\phi_{\beta}(w) = (y_1, \dots, y_n)^t$. Then $v+w = (x_1+y_1)v_1+\dots+(x_n+y_n)v_n$ and hence $\phi_{\beta}(v+w) = (x_1+y_1,\dots,x_n+y_n)^t = \phi_{\beta}(v) + \phi_{\beta}(w)$. Moreover, $cv = cx_1v_1 + \dots + cx_nv_n$ then $\phi_{\beta}(cv) = c\phi_{\beta}(v)$.

Next we show that ϕ_{β} is injective. If $\phi_{\beta}(v) = \phi_{\beta}(w) = (x_1, \dots, x_n)^t$, then $v = x_1v_1 + \dots + x_nv_n = w$. Hence ϕ_{β} is injective.

Finally we show that ϕ_{β} is surjective. For any $(x_1, \ldots, x_n)^t \in F^n$ we take $v = x_1v_1 + \cdots + x_nv_n$. Then $\phi_{\beta}(x) = (x_1, \ldots, x_n)^t$.

Thus ϕ_{β} is an isomorphism and $V \cong F^n$.

Since $\phi_{\beta}(v) = (x_1, \dots, x_n)^t$ implies that $v = x_1v_1 + \dots + x_nv_n$, we see that $\phi_{\beta}^{-1}(x_1, \dots, x_n)^t = x_1v_1 + \dots + x_nv_n$.

Lemma 4.21. Let $T: V \to W$ be a linear transformations and v_1, \ldots, v_n be a basis of V. Then T is uniquely determined by its values at $T(v_1), \ldots, T(v_n)$.

Proof. Let
$$v \in V$$
. Since v_1, \ldots, v_n is a basis of V , we have $v = x_1v_1 + \cdots + x_nv_n$. Then $T(v) = T(x_1v_1 + \cdots + x_nv_n) = x_1T(v_1) + \cdots + x_nT(v_n)$.

Theorem 4.22. Let $T: V \to W$ be a linear transformation. Let $\beta = (v_1, \ldots, v_n)$ be a basis of V and $\gamma = (w_1, \ldots, w_m)$ be a basis of W. Then there exists a unique matrix $A \in M_{m \times n}(F)$ such that for any $x \in F^n$,

$$\phi_{\gamma} T \phi_{\beta}^{-1}(x) = Ax,$$

where $\phi_{\beta}: V \to F^n$ and $\phi_{\gamma}: W \to F^m$ are the coordinates isomorphisms.

The j-th column of A is given by the coordinates of $T(v_j)$ under the basis γ . That is $A = ([T(v_1)]_{\gamma}, \dots, [T(v_n)]_{\gamma}).$

Proof. Since (w_1, \ldots, w_m) is a basis, for each j there exist scalars a_{1j}, \ldots, a_{mj} such that

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i. \tag{1}$$

Now for any $x = (x_1, \ldots, x_n)^t \in F^n$,

$$T\phi_{\beta}^{-1}(x) = T(x_1v_1 + \dots + x_nv_n) = \sum_{j=1}^n x_j T(v_j)$$
$$= \sum_{j=1}^n x_j \sum_{i=1}^m a_{ij}w_i = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j\right)w_i.$$

Thus

$$\phi_{\gamma} T \phi_{\beta}^{-1}(x) = \begin{pmatrix} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \end{pmatrix} = Ax.$$

We note that by (1), the j-th column of A is given by the coordinates of $T(v_j)$ under the basis γ . This finishes the proof.

Definition 4.23. The matrix A is called the matrix representation of T under the bases β of V and γ of W and is denoted by $[T]_{\beta}^{\gamma}$.

Corollary 4.24. $\mathcal{L}(V,W) \cong M_{m \times n}(F)$. In particular, dim $\mathcal{L}(V,W) = (\dim V)(\dim W)$

Example 4.25 (The zero matrix). For the zero map $0: V \to W$, its matrix representation is the **zero matrix** under any basis $\beta \gamma$ is $[0]^{\gamma}_{\beta} = 0_{m \times n}$.

Example 4.26 (The identity matrix). For the identity map id: $V \to V$, its matrix

Example 4.26 (The identity matrix $[\mathrm{id}]_{\beta}^{\beta} = I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = (\delta_{ij})$ where

 $n = \dim V$ and we used the **Kronecker delta** symbol $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

Example 4.27 (Diagonal matrix). If $T(v_i) = \lambda_i v_i$ for all i, then

$$[T]_{\beta}^{\beta} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Example 4.28. Let $T: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ Tf = f' and $\beta = (1, x, ..., x^n)$ be the standard basis. To compute $[T]_{\beta}^{\beta}$, we find $T(x^k) = kx^{k-1}$. Thus $[T(x^k)]_{\beta} = (0, ..., 0, k, 0, ..., 0)^t$ where the k is at the (k-1)-th position. Then

$$[T]_{\beta}^{\beta} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & n \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

References

[1] Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. Berlin: springer; 1977.