C2HLSC

Leveraging LLMs to refactor C code into **HLS-compatible C**

Luca Collini, Andrew Hennessee, Ramesh Karri, Siddharth Garg

Profile application

Construct DFG

Model latency
$$|f_{\text{top}} + \max(f_A + f_C, f_B + f_A)|$$

DSE to map kernels to hardware

Can LLMs replace system architects?

Profile application

Construct DFG

Model latency
$$f_{\text{top}} + \max(f_A + f_C, f_B + f_A)$$

DSE to map kernels to hardware

Overview of proposed flow

Single Kernel Optimization

Full System Composition

Single kernel optimization via pragma insertion

(C2HLSC, TODAES)

Design points for DSE

Fig. 4: Solutions for AES sub-kernels for each model.

DSE of optimized kernels

HLS Agent System Prompt

You are an HLS Optimization Agent tasked with optimizing a C application accelerated using High-Level Synthesis.

Your goal is to find the best combination of function options that minimize latency while keeping the total constraint as close as possible to a target value.

At every iteration, you have four options: <options>

Only reply with one of the four options following the format provided.

Thank you!

