No interaction with anyone but the instructor is allowed. No notes are allowed. For each question, provide the R code needed to complete the stated task.

- 1. Display the first few rows of the KidsFeet data frame (assume that this has been previously loaded).
- 2. Display the names of the variables from the data frame.
- 3. Calculate (not count by hand!) the number of cases in the data frame. For your reference, here is a sample of the data:

	name	birthmonth	birthyear	length	width	sex	biggerfoot	domhand
1	David	5	88	24.40	8.40	В	L	R
2	Lars	10	87	25.40	8.80	В	L	L
3	Zach	12	87	24.50	9.70	В	R	R
4	Josh	1	88	25.20	9.80	В	L	R
5	Lang	2	88	25.10	8.90	В	L	R
6	Scotty	3	88	25.70	9.70	В	R	R

- 4. Calculate the mean foot length of all kids.
- 5. Calculate the standard deviation of foot length for all kids.
- 6. Calculate the mean foot width stratified by sex.
- 7. Create a new variable, called aspectRatio, in the KidsFeet data frame that is defined as the ratio of the length to the width of each kid's foot.
- 8. Create a new variable in a data frame called Measures that converts the values of inches (stored in a vector called inches) to centimeters (recall that there are 2.54 centimeters in each inch) stored in a new variable cm. Store the result in a data frame called NewMeasures.
- 9. Make a box-and-whisker plot of the kids' foot lengths, broken down by sex.

10. Make this plot:

- 11. Calculate (not count by hand!) the number of kids by sex.
- 12. Calculate (not count by hand!) the number of kids by sex and dominant hand simultaneously.