APPLIED PREDICTIVE ANALYTICS

Group 12

Airline company satisfaction

Wellington Daniel | Devereesh KM | Namratha Velivelli | Mohammed Rizwan

Replacing missing value by regression for arrival time

```
#loading data
rm(list=ls())
resolvrdata <- read_excel("resolvrdata.xlsx")
datarm<-na.omit(resolvrdata)

##93% correlation
l<-lm(datarm$`Arrival Delay in Minutes`~datarm$`Departure Delay in Minutes`)
summary(1)</pre>
```

```
##
## Call:
## lm(formula = datarm$`Arrival Delay in Minutes` ~ datarm$`Departure Delay in Minutes`)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -53.509 -1.975 -0.757 -0.467 236.438
##
## Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
                                     0.7573788 0.0299329 25.3 <2e-16 ***
## (Intercept)
## datarm$`Departure Delay in Minutes` 0.9788417 0.0007361 1329.8 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.05 on 129445 degrees of freedom
## Multiple R-squared: 0.9318, Adjusted R-squared: 0.9318
## F-statistic: 1.768e+06 on 1 and 129445 DF, p-value: < 2.2e-16
```

```
#predicting new values
datapred<-data.frame(Customer_ID=resolvrdata$`Customer ID`[is.na(resolvrdata$`Arrival Delay i
n Minutes`)])
datapred$`Departure Delay in Minutes`<-resolvrdata$`Departure Delay in Minutes`[is.na(resolvr
data$`Arrival Delay in Minutes`)]
datapred$`Arrival Delay in Minutes`<-cbind(rep(1,nrow(datapred)),datapred$`Departure Delay in
Minutes`)%*%1$coefficients

#Updating the old values with the new ones
resolvrdatacheck<-data.frame(resolvrdata)
rownames(resolvrdatacheck) = resolvrdatacheck$Customer.ID
rownames(datapred) = datapred$Customer_ID
resolvrdatacheck[rownames(datapred),c(25)] = datapred$`Arrival Delay in Minutes`

#data is the final data
sum(is.na(resolvrdatacheck))</pre>
```

[1] 48

```
data<-na.omit(resolvrdatacheck)
rm(resolvrdata,datapred,datarm,l,resolvrdatacheck)</pre>
```

Outlier removal

```
#Replacing Arrival time
Arrivaltemp<-data$Arrival.Delay.in.Minutes
Arrivaltemp[Arrivaltemp>0]<-log(Arrivaltemp[Arrivaltemp>0])
m<-mean(Arrivaltemp[Arrivaltemp>0])+3*sqrt(var(Arrivaltemp[Arrivaltemp>0]))
sum(Arrivaltemp>m)
```

```
## [1] 20
```

```
datatemp<-data
datatemp$Arrival.Delay.in.Minutes[log(datatemp$Arrival.Delay.in.Minutes)>6.460957]<-NA
sum(is.na(datatemp))</pre>
```

```
## [1] 20
```

```
datatemp<-na.omit(datatemp)
rm(Arrivaltemp,m)

#Replacing Departure time
mean(log(data$Departure.Delay.in.Minutes)[log(data$Departure.Delay.in.Minutes)>0])+3*sqrt(var
(log(data$Departure.Delay.in.Minutes)[log(data$Departure.Delay.in.Minutes)>0]))
```

```
## [1] 6.490634
```

```
sum(log(data$Departure.Delay.in.Minutes)>6.490634)
```

```
## [1] 20
```

datatemp\$Departure.Delay.in.Minutes[log(datatemp\$Departure.Delay.in.Minutes)>6.490634]<-NA
sum(is.na(datatemp))</pre>

```
## [1] 0
```

```
datatemp<-na.omit(datatemp)

#Replacing Departure time
mean(log(data$Flight.Distance)[log(data$Flight.Distance)>0])-3*sqrt(var(log(data$Flight.Distance)[log(data$Flight.Distance)>0]))
```

```
## [1] 3.95244
```

```
sum(log(data$Flight.Distance)<3.95244)</pre>
```

```
## [1] 11
```

```
datatemp$Flight.Distance[log(datatemp$Flight.Distance)<3.95244]<-NA
sum(is.na(datatemp))</pre>
```

```
## [1] 11
```

```
datatemp<-na.omit(datatemp)

##storage
write.csv(datatemp, "DataFinal.csv")
Data<-datatemp[,c(-1,-6,-26)]
rm(data)</pre>
```

Principal Component Analysis

```
#PCA (to choose number of factors)
prin<-princomp(scale(Data))
plot(prin,type="l",col="orange",main="Principal Components Analysis")
abline(v=7,col="red")</pre>
```

Principal Components Analysis


```
summary(prin)
```

```
## Importance of components:
##
                             Comp.1
                                       Comp.2
                                                  Comp.3
                                                             Comp.4
                                                                         Comp.5
## Standard deviation
                          2.0292779 1.5450845 1.48678279 1.40412311 1.36778088
## Proportion of Variance 0.1790435 0.1037958 0.09611044 0.08572073 0.08134082
## Cumulative Proportion 0.1790435 0.2828393 0.37894979 0.46467052 0.54601135
##
                              Comp.6
                                        Comp.7
                                                   Comp.8
                                                               Comp.9
## Standard deviation
                          1.22482312 1.0158173 1.00322908 0.98026745 0.93125482
## Proportion of Variance 0.06522623 0.0448649 0.04375984 0.04177964 0.03770618
## Cumulative Proportion 0.61123757 0.6561025 0.69986232 0.74164196 0.77934814
##
                             Comp.11
                                        Comp.12
                                                   Comp.13
                                                              Comp.14
## Standard deviation
                          0.90065146 0.83037901 0.70878883 0.69327201 0.67378043
## Proportion of Variance 0.03526867 0.02997977 0.02184285 0.02089695 0.01973842
## Cumulative Proportion 0.81461681 0.84459657 0.86643942 0.88733637 0.90707478
                                        Comp.17
##
                                                   Comp.18
                             Comp.16
                                                              Comp.19
## Standard deviation
                          0.64945530 0.60511230 0.56550522 0.54161174 0.52942270
## Proportion of Variance 0.01833893 0.01592016 0.01390429 0.01275415 0.01218655
## Cumulative Proportion 0.92541372 0.94133388 0.95523816 0.96799232 0.98017886
##
                             Comp.21
                                         Comp.22
                                                     Comp.23
## Standard deviation
                          0.49283059 0.418802248 0.193920834
## Proportion of Variance 0.01056017 0.007625942 0.001635025
## Cumulative Proportion 0.99073903 0.998364975 1.0000000000
```

#Factor Analysis (6 Factors are chosen)

fact<-factanal(scale(Data),6,rotation="varimax")
ftemp<-fact\$loadings
ftemp<-matrix(fact\$loadings,ncol=6)
ftemp<-data.frame(ftemp)
fact</pre>

```
##
## Call:
## factanal(x = scale(Data), factors = 6, rotation = "varimax")
## Uniquenesses:
##
                         GenderMale1
                                                          LoyalCustomer1
##
                                0.998
                                                                   0.458
##
                                  Age
                                              Travel_Personal1Business0
##
                                0.865
                                                                   0.261
##
                      Class_Ecoplus1
                                                         Class_Business2
##
                                0.942
                                                                   0.307
##
                      Flight.Distance
                                                  Inflight.wifi.service
##
                                0.671
                                                                   0.360
                                                 Ease.of.Online.booking
## Departure.Arrival.time.convenient
##
                                                                   0.142
                                                          Food.and.drink
                       Gate.location
##
                                                                   0.394
##
                                0.751
##
                     Online.boarding
                                                            Seat.comfort
##
                                0.564
                                                                   0.362
##
              Inflight.entertainment
                                                        On.board.service
##
                                0.190
                                                                   0.496
##
                    Leg.room.service
                                                        Baggage.handling
##
                                0.736
                                                                   0.410
##
                     Checkin.service
                                                        Inflight.service
##
                                0.893
                                                                   0.338
##
                         Cleanliness
                                             Departure.Delay.in.Minutes
##
                                0.263
                                                                   0.069
##
            Arrival.Delay.in.Minutes
##
                                0.005
##
## Loadings:
                                      Factor1 Factor2 Factor3 Factor4 Factor5
##
## GenderMale1
## LoyalCustomer1
                                                                         0.165
## Age
## Travel_Personal1Business0
                                     -0.100
                                                                        -0.753
## Class Ecoplus1
                                                                        -0.228
## Class Business2
                                                0.169
                                                                        0.799
## Flight.Distance
                                                                        0.493
## Inflight.wifi.service
                                       0.151
                                               0.109
                                                        0.775
## Departure.Arrival.time.convenient
                                                0.108
                                                                        -0.217
                                                        0.507
## Ease.of.Online.booking
                                                        0.918
                                                                        0.126
## Gate.location
                                                        0.497
## Food.and.drink
                                       0.778
## Online.boarding
                                       0.327
                                                        0.398
                                                                        0.350
## Seat.comfort
                                       0.757
                                                                        0.172
## Inflight.entertainment
                                       0.783
                                                0.431
## On.board.service
                                       0.113
                                                0.689
                                                                        0.122
## Leg.room.service
                                                0.465
                                                                        0.182
                                                0.759
## Baggage.handling
## Checkin.service
                                       0.110
                                               0.268
## Inflight.service
                                                0.804
## Cleanliness
                                       0.853
## Departure.Delay.in.Minutes
                                                                0.965
                                                                0.997
## Arrival.Delay.in.Minutes
##
                                      Factor6
## GenderMale1
```

```
## LoyalCustomer1
                                     0.728
## Age
                                     0.320
## Travel_Personal1Business0
                                     0.396
## Class_Ecoplus1
## Class_Business2
                                     0.133
## Flight.Distance
                                     0.277
## Inflight.wifi.service
## Departure.Arrival.time.convenient 0.249
## Ease.of.Online.booking
## Gate.location
## Food.and.drink
## Online.boarding
                                     0.213
## Seat.comfort
                                     0.182
## Inflight.entertainment
## On.board.service
## Leg.room.service
## Baggage.handling
## Checkin.service
                                     0.126
## Inflight.service
## Cleanliness
## Departure.Delay.in.Minutes
## Arrival.Delay.in.Minutes
##
##
                 Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
## SS loadings
                   2.725 2.249 2.121 1.929 1.818 1.065
## Proportion Var
                   0.118 0.098 0.092 0.084
                                                   0.079 0.046
                           0.216
## Cumulative Var
                   0.118
                                   0.308 0.392
                                                   0.471
                                                         0.518
##
## Test of the hypothesis that 6 factors are sufficient.
## The chi square statistic is 80068.75 on 130 degrees of freedom.
## The p-value is 0
```

rm(fact,ftemp,prin,Data)

Exploratory Data Analysis

Finaldata<-datatemp
str(Finaldata)</pre>

```
129809 obs. of 26 variables:
## 'data.frame':
## $ Customer.ID
                                    : num 70172 5047 110028 24026 119299 ...
## $ GenderMale1
                                    : num 1100100010...
## $ LoyalCustomer1
                                    : num 101111100...
## $ Age
                                    : num 13 25 26 25 61 26 52 41 20 24 ...
## $ Travel_Personal1Business0
                                    : num 1000010000...
## $ Class_Eco0
                                    : num 0000010011...
## $ Class_Ecoplus1
                                    : num 1000000000...
                                   : num 0111101100...
## $ Class Business2
## $ Flight.Distance
                                   : num 460 235 1142 562 214 ...
                             : num 3 3 2 2 3 3 4 1 3 4 ...
## $ Inflight.wifi.service
## $ Departure.Arrival.time.convenient: num 4 2 2 5 3 4 3 2 3 5 ...
## $ Ease.of.Online.booking : num 3 3 2 5 3 2 4 2 3 5 ...
                                    : num 1 3 2 5 3 1 4 2 4 4 ...
## $ Gate.location
## $ Food.and.drink
                                   : num 5 1 5 2 4 1 5 4 2 2 ...
## $ Online.boarding
                                    : num 3 3 5 2 5 2 5 3 3 5 ...
## $ Seat.comfort
                                   : num 5 1 5 2 5 1 5 3 3 2 ...
## $ Inflight.entertainment : num 5 1 5 2 3 1 5 1 2 2 ...
                                   : num 4 1 4 2 3 3 5 1 2 3 ...
## $ On.board.service
## $ Leg.room.service
                                   : num 3 5 3 5 4 4 5 2 3 3 ...
## $ Baggage.handling
                                   : num 4343445145...
## $ Checkin.service
                                   : num 4141344443 ...
## $ Inflight.service
                                   : num 5 4 4 4 3 4 5 1 3 5 ...
                                   : num 5 1 5 2 3 1 4 2 2 2 ...
## $ Cleanliness
## $ Departure.Delay.in.Minutes : num 25 1 0 11 0 0 4 0 0 0 ...
## $ Arrival.Delay.in.Minutes : num 18 6 0 9 0 0 0 0 0 0 ...
## $ satisfaction : num 0 0 1 0 1 0 1 0 0 0
## $ satisfaction
                                    : num 0010101000...
## - attr(*, "na.action")= 'omit' Named int [1:11] 8270 15884 24767 69038 73311 87897 88499
90478 106442 107760 ...
## ..- attr(*, "names")= chr [1:11] "29863" "29824" "30125" "30130" ...
#Proportion of satisfied customers
ggplot(Finaldata, aes(x = as.factor(satisfaction))) +
  geom_bar(mapping = aes(x = as.factor(satisfaction), y = stat(prop), group = 1,fill="Red"))
```

Satisfied

ylab("Proportion")+

Not Satisfied

xlab(("

"))


```
#Age effect on Loyalty
ggplot(data = Finaldata, aes(x = Age, fill = as.factor(Finaldata$LoyalCustomer1))) +
  geom_histogram(position = "dodge")+
  ylab("Count")+
  scale_fill_manual(name="Loyalty", values=c("coral","cyan3"), labels=c("Not Loyal", "Loyal"))
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
#Age effect on Satisfaction
ggplot(data = Finaldata, aes(x = Age, fill = as.factor(Finaldata$satisfaction))) +
  geom_histogram(position = "dodge")+
  ylab("Count")+
  scale_fill_manual(name="Satisfaction", values=c("coral","cyan3"), labels=c("Not Satisfied",
"Satisfied"))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
#Effect of Flight Distance on satisfaction
ggplot(data = Finaldata, aes(x =log(Finaldata$Flight.Distance),fill = as.factor(Finaldata$sat
isfaction))) +
   geom_histogram(position = "dodge")+
   ylab("Count")+
   xlab("Log of Flight Distance")+
   scale_fill_manual(name="Satisfaction", values=c("coral","cyan3"), labels=c("Not Satisfied",
"Satisfied"))
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
varnew <- read_excel("varnew.xlsx")</pre>
```

```
## New names:
## * `Type of Travel` -> `Type of Travel...3`
## * `Type of Travel` -> `Type of Travel...7`
```

```
## Warning: Use of `varnew$satisfaction` is discouraged. Use `satisfaction`
## instead.
```

Warning: Use of `varnew\$Class` is discouraged. Use `Class` instead.

HCPC (Francois Husson, Julie Josse, Jerome Pages 2010)

```
varnew[,c(6:9)]<-scale(varnew[,c(6:9)])</pre>
head(varnew)
## Registered S3 method overwritten by 'cli':
##
     method
                from
##
     print.tree tree
## # A tibble: 6 x 9
     `Customer ID` Class `Type of Travel~ `Customer Type` satisfaction Class_No
##
            <dbl> <chr> <chr>
                                           <chr>>
                                                                  <dbl>
                                                                           <dbl>
## 1
             70172 Eco ~ Personal Travel Loyal Customer
                                                                      0
                                                                         -0.0308
## 2
             5047 Busi~ Business travel disloyal Custo~
                                                                          1.01
            110028 Busi~ Business travel Loyal Customer
                                                                          1.01
## 3
## 4
             24026 Busi~ Business travel Loyal Customer
                                                                          1.01
## 5
            119299 Busi~ Business travel Loyal Customer
                                                                          1.01
            111157 Eco
                         Personal Travel Loyal Customer
                                                                      0 -1.07
## 6
## # ... with 3 more variables: `Type of Travel...7` <dbl>, `Flight
       Distance` <dbl>, Age <dbl>
```

PCA (choose eigenvalues>1)

```
#PCA ( choose eigenvalues>1)
p2<-princomp(na.omit(varnew[,c(6:9)]))
p2$loadings</pre>
```

```
##
## Loadings:
##
                      Comp.1 Comp.2 Comp.3 Comp.4
## Class_No
                       0.639
                                            0.763
## Type of Travel...7 0.571
                                    0.606 -0.554
## Flight Distance
                       0.516
                                    -0.789 -0.332
## Age
                             -1.000
##
##
                  Comp.1 Comp.2 Comp.3 Comp.4
## SS loadings
                    1.00
                           1.00
                                  1.00
## Proportion Var
                    0.25
                           0.25
                                  0.25
                                         0.25
## Cumulative Var
                    0.25
                           0.50
                                         1.00
                                  0.75
```

```
plot(p2,type="1")
abline(v=2,col="green")
```



```
summary(p2)
```

```
biplot(p2,cex=0.8)
```



```
p3<-data.frame(p2$scores)
rname<-na.omit(varnew)
rname<-rname$`Customer ID`</pre>
```

Hierarchical Clustering

```
d<-dist(p3[1:10000,])
fitH<-hclust(d,"ward.D2")
plot(fitH)
rect.hclust(fitH,k=4,border = "red")</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

K-means

```
p4<-data.frame(matrix(p2$loadings,nrow=4))
k<-kmeans(p3[,c(1:2)],4)
summary(k)</pre>
```

```
##
                Length Class Mode
                129829 -none- numeric
## cluster
## centers
                     8 -none- numeric
## totss
                     1 -none- numeric
## withinss
                     4 -none- numeric
## tot.withinss
                     1 -none- numeric
## betweenss
                     1 -none- numeric
## size
                     4 -none- numeric
## iter
                     1 -none- numeric
## ifault
                     1 -none- numeric
```

```
p5<-data.frame(matrix(k$centers,nrow=4))
plo<-data.frame(cbind(p3[,c(1:2)],k$cluster))
plot(plo[,1:2],col=plo$k.cluster)</pre>
```



```
finalinsightdata<-data.frame(Customer.ID=rname,k$cluster)
grap<-data.frame(cbind(na.omit(varnew)$satisfaction,k$cluster))
head(grap)</pre>
```

```
## X1 X2

## 1 0 1

## 2 0 4

## 3 1 4

## 4 0 4

## 5 1 3

## 6 0 1
```

Satisfaction by cluster

```
ggplot(grap, aes(x = as.factor(X2), fill = as.factor(X1)))+
  geom_bar(position = "dodge")+
  ylab("Count")+
  xlab("Cluster Number")+
  scale_fill_manual(name="Satisfaction", values=c("coral","aquamarine"), labels=c("Not Satisfied", "Satisfied"))
```


Total fliers by cluster

```
ggplot(grap, aes(x = as.factor(X2))) +
  geom_bar(mapping = aes(x = as.factor(X2), y = stat(prop), group = 1,fill="coral")) +
  ylab("Proportion")+
  xlab(("Cluster Proportion"))
```


Model Fitting

rm(grap,k,p2,p3,p4,p5,plo,varnew,datatemp,d,fitH)

Boruta Variable selection

```
boruta_output <- Boruta(as.factor(satisfaction) ~ ., data=Finaldata[1:2000,], doTrace=2)</pre>
```

1. run of importance source...

2. run of importance source...

3. run of importance source...

4. run of importance source...

5. run of importance source...

6. run of importance source...

7. run of importance source...

```
8. run of importance source...
##
   9. run of importance source...
##
   10. run of importance source...
##
   11. run of importance source...
##
   12. run of importance source...
## After 12 iterations, +10 secs:
   confirmed 22 attributes: Age, Baggage.handling, Checkin.service, Class_Business2, Class_E
co0 and 17 more;
   still have 3 attributes left.
   13. run of importance source...
##
   14. run of importance source...
   15. run of importance source...
##
   16. run of importance source...
##
## After 16 iterations, +14 secs:
   confirmed 2 attributes: Arrival.Delay.in.Minutes, Departure.Delay.in.Minutes;
   still have 1 attribute left.
   17. run of importance source...
   18. run of importance source...
##
   19. run of importance source...
## After 19 iterations, +18 secs:
   confirmed 1 attribute: GenderMale1;
   no more attributes left.
##
```

boruta_signif <- names(boruta_output\$finalDecision[boruta_output\$finalDecision %in% c("Confir med", "Tentative")]) plot(boruta_output, cex.axis=0.7, las=2, xlab="", main="Variable Importance")

Variable Importance

rm(boruta_output,boruta_signif)

Logistic Regression Model

```
##
## Call:
### glm(formula = satisfaction ~ LoyalCustomer1 + Age + Travel_Personal1Business0 +
      Class Eco0 + Class Ecoplus1 + Flight.Distance + Inflight.wifi.service +
##
      Departure.Arrival.time.convenient + Ease.of.Online.booking +
##
      Online.boarding + Seat.comfort + Inflight.entertainment +
      On.board.service + Leg.room.service + Baggage.handling +
##
##
      Checkin.service + Inflight.service + Cleanliness + Departure.Delay.in.Minutes,
##
      data = temp)
##
## Deviance Residuals:
      Min
                10
                     Median
                                  3Q
                                          Max
## -1.14299 -0.20726 -0.00556 0.16534
                                      1.62852
##
## Coefficients:
##
                                  Estimate Std. Error t value Pr(>|t|)
                                 0.4345307 0.0009223 471.159 < 2e-16 ***
## (Intercept)
## LoyalCustomer1
                                ## Age
                                -0.0144105 0.0009931 -14.511 < 2e-16 ***
## Travel_Personal1Business0
                               -0.1778718   0.0013225   -134.493   < 2e-16 ***
                                -0.0639504 0.0013351 -47.900 < 2e-16 ***
## Class Eco0
                               -0.0370856 0.0010469 -35.425 < 2e-16 ***
## Class_Ecoplus1
## Flight.Distance
                               -0.0032500 0.0010334 -3.145 0.00166 **
## Inflight.wifi.service
                                 0.0910466 0.0014412 63.174 < 2e-16 ***
## Departure.Arrival.time.convenient -0.0249938 0.0011366 -21.989 < 2e-16 ***
                               ## Ease.of.Online.booking
## Online.boarding
                                 ## Seat.comfort
                                 0.0096062 0.0014102 6.812 9.68e-12 ***
                                 0.0177250 0.0017034 10.406 < 2e-16 ***
## Inflight.entertainment
                                 0.0452373 0.0012211 37.045 < 2e-16 ***
## On.board.service
                                 0.0429300 0.0010538 40.739 < 2e-16 ***
## Leg.room.service
                                 0.0195647 0.0012712 15.391 < 2e-16 ***
## Baggage.handling
                                 0.0472334 0.0010205 46.282 < 2e-16 ***
## Checkin.service
## Inflight.service
                                ## Cleanliness
                                0.0327078 0.0015189 21.533 < 2e-16 ***
## Departure.Delay.in.Minutes
                               ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1104108)
##
      Null deviance: 31896 on 129808 degrees of freedom
## Residual deviance: 14330 on 129789 degrees of freedom
## AIC: 82364
##
## Number of Fisher Scoring iterations: 2
```

```
plot(1,col="green")
```


glm(satisfaction ~ LoyalCustomer1 + Age + Travel_Personal1Business0 + Class ...

glm(satisfaction ~ LoyalCustomer1 + Age + Travel_Personal1Business0 + Class ...

glm(satisfaction ~ LoyalCustomer1 + Age + Travel_Personal1Business0 + Class ...

#confusion matrix
check<-data.frame(l\$fitted.values,temp\$satisfaction)
a<-matrix(c(sum(check[,1]>0.5&check[,2]==1),sum(check[,1]>0.5&check[,2]==0),sum(check[,1]<0.5
&check[,2]==1),sum(check[,1]<0.5&check[,2]==0)))
matrix(a/(sum(c(sum(check[,1]>0.5&check[,2]==1),sum(check[,1]<0.5&check[,2]==0),sum(check[,1]<0.5&check[,2]==0)),sum(check[,1]<0.5&check[,2]==1)))),ncol=2,byrow=TRUE)</pre>

```
## [,1] [,2]
## [1,] 0.36284079 0.05784653
## [2,] 0.07168994 0.50762274
```

```
rm(l,a,check)
```

Decision Tree

```
tree.satisf = tree(satisfaction~ . , data = Finaldata[,-1])
summary(tree.satisf)
```

```
##
## Regression tree:
## tree(formula = satisfaction ~ ., data = Finaldata[, -1])
## Variables actually used in tree construction:
## [1] "Online.boarding"
                                  "Inflight.wifi.service"
## [3] "Class_Business2"
                                  "Inflight.entertainment"
## [5] "LoyalCustomer1"
                                  "Travel_Personal1Business0"
## [7] "Checkin.service"
## Number of terminal nodes: 13
## Residual mean deviance: 0.06986 = 9067 / 129800
## Distribution of residuals:
      Min. 1st Qu. Median
                                 Mean 3rd Qu.
                                                   Max.
## -0.99560 -0.03852 -0.01672 0.00000 0.07305 0.98330
```

```
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.6)
```



```
#Validation
set.seed(1011)
train = sample(1:nrow(temp), 50000)
tree.satisf = tree(as.factor(satisfaction) ~ . , temp, subset = train)
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.6)
```



```
tree.pred = predict(tree.satisf, temp[-train, ], type = "class")
with(temp[-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction

## tree.pred 0 1

## 0 41508 4418

## 1 3669 30214
```

```
#Pruning for simplicity
cv.satisf = cv.tree(tree.satisf, FUN = prune.misclass)
cv.satisf
```

```
## $size
## [1] 12 11 9 6 5 4 3 2 1
##
## $dev
## [1] 5042 5042 5254 5820 6365 6927 7898 10642 21774
##
## $k
## [1]
            -Inf
                     0.0000
                              111.5000
                                        189.6667
                                                   545.0000
                                                             666.0000
                                                                         867.0000
## [8] 2744.0000 11132.0000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune"
                      "tree.sequence"
```

plot(cv.satisf)

prune.satisf = prune.misclass(tree.satisf, best = 8)
plot(prune.satisf,cex=0.2)
text(prune.satisf,pretty=0,cex=0.6)


```
tree.pred = predict(prune.satisf, temp[-train, ], type = "class")
with(temp[-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction
## tree.pred 0 1
## 0 38721 1900
## 1 6456 32732
```

```
rm(tree.satisf,prune.satisf,cv.satisf,tree.pred,train)
```

Random Forest

```
temp<-Finaldata[,c(-1,-25)]
temp$satisfaction<-as.factor(Finaldata$satisfaction)
set.seed(101)
train = sample(1:nrow(Finaldata),10000)
rf.satisf = randomForest(satisfaction ~ ., data = temp, subset = train,ntree=1000)
rf.satisf</pre>
```

```
##
## Call:
  Type of random forest: classification
##
##
                 Number of trees: 1000
## No. of variables tried at each split: 4
##
##
       OOB estimate of error rate: 5.48%
## Confusion matrix:
     0
         1 class.error
## 0 5400 200 0.03571429
## 1 348 4052 0.07909091
```

Gradient Boosting Machine

```
## Warning: Setting `distribution = "multinomial"` is ill-advised as it is
## currently broken. It exists only for backwards compatibility. Use at your own
## risk.
```

```
predmat = predict(boost.satisf, newdata = Finaldata[,-1][-train, ], n.trees = 1000,type="resp
onse")
labels = colnames(predmat)[apply(predmat, 1, which.max)]
result = data.frame(Finaldata[,-1][-train, ]$satisfaction, labels)
cm = confusionMatrix(as.factor(Finaldata[,-1][-train, ]$satisfaction), as.factor(labels))
print(cm)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
##
           0 65540 2263
           1 3669 48337
##
##
##
                  Accuracy : 0.9505
                    95% CI: (0.9492, 0.9517)
##
##
       No Information Rate: 0.5777
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.8989
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9470
##
               Specificity: 0.9553
##
##
           Pos Pred Value: 0.9666
           Neg Pred Value: 0.9295
##
                Prevalence: 0.5777
##
           Detection Rate: 0.5470
##
      Detection Prevalence: 0.5659
##
         Balanced Accuracy: 0.9511
##
##
          'Positive' Class: 0
##
##
```

rm(labels,result,cm,predmat,train,boost.satisf)

Insights from Data (Decision tree is used for Interpretablity)

```
require(plyr)

## Loading required package: plyr

## Warning: package 'plyr' was built under R version 4.0.2

FData<-join(finalinsightdata,Finaldata,type="inner")

## Joining by: Customer.ID</pre>
```

Cluster 1

```
FDataclust1<-subset(FData,FData$k.cluster==1)

#Decision Tree

set.seed(1011)
train = sample(1:nrow(FDataclust1[,c(-1,-2)]), 5000)
tree.satisf = tree(as.factor(satisfaction) ~ . , FDataclust1[,c(-1,-2)], subset = train)
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.7)</pre>
```



```
tree.pred = predict(tree.satisf, FDataclust1[,c(-1,-2)][-train, ], type = "class")
with(FDataclust1[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction
## tree.pred 0 1
## 0 21611 1240
## 1 398 3669
```

```
#Pruning for simplicity
cv.satisf = cv.tree(tree.satisf, FUN = prune.misclass)
cv.satisf
```

```
## $size
## [1] 9 6 5 4 3 2 1
##
## $dev
## [1] 318 327 388 457 553 696 931
##
## $k
## [1] -Inf
                      77
                             99 141 237
               4
                   50
##
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
```

```
plot(cv.satisf)
```



```
prune.satisf = prune.misclass(tree.satisf, best = 6)
plot(prune.satisf,cex=0.2)
text(prune.satisf,pretty=0,cex=0.6)
```



```
tree.pred = predict(prune.satisf, FDataclust1[,c(-1,-2)][-train, ], type = "class")
with(FDataclust1[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction
## tree.pred 0 1
## 0 21612 1308
## 1 397 3601
```

```
rm(tree.satisf,prune.satisf,cv.satisf,tree.pred,train)
```

Cluster 2

```
FDataclust2<-subset(FData,FData$k.cluster==2)

#Decision Tree

set.seed(1011)
train = sample(1:nrow(FDataclust2[,c(-1,-2)]), 5000)
tree.satisf = tree(as.factor(satisfaction) ~ . , FDataclust2[,c(-1,-2)], subset = train)
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.7)</pre>
```



```
tree.pred = predict(tree.satisf, FDataclust2[,c(-1,-2)][-train, ], type = "class")
with(FDataclust2[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction

## tree.pred 0 1

## 0 23674 1405

## 1 477 4225
```

```
#Pruning for simplicity
cv.satisf = cv.tree(tree.satisf, FUN = prune.misclass)
cv.satisf
```

```
## $size
## [1] 9 6 4 3 2 1
##
## $dev
## [1] 320 330 462 569 869 915
##
## $k
## [1]
             -Inf
                    4.333333 65.000000 107.000000 160.000000 179.000000
##
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
```

plot(cv.satisf)

prune.satisf = prune.misclass(tree.satisf, best = 6)
plot(prune.satisf,cex=0.2)
text(prune.satisf,pretty=0,cex=0.6)


```
tree.pred = predict(prune.satisf, FDataclust2[,c(-1,-2)][-train, ], type = "class")
with(FDataclust2[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction
## tree.pred 0 1
## 0 23674 1483
## 1 477 4147
```

```
rm(tree.satisf,prune.satisf,cv.satisf,tree.pred,train)
```

Cluster 3

```
FDataclust3<-subset(FData,FData$k.cluster==3)

#Decision Tree

set.seed(1011)
train = sample(1:nrow(FDataclust3[,c(-1,-2)]), 5000)
tree.satisf = tree(as.factor(satisfaction) ~ . , FDataclust3[,c(-1,-2)], subset = train)
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.7)</pre>
```



```
tree.pred = predict(tree.satisf, FDataclust3[,c(-1,-2)][-train, ], type = "class") with(FDataclust3[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction

## tree.pred 0 1

## 0 7017 766

## 1 1680 19403
```

```
#Pruning for simplicity
cv.satisf = cv.tree(tree.satisf, FUN = prune.misclass)
cv.satisf
```

```
## $size
## [1] 15 11 10 6 5 4 2 1
##
## $dev
## [1] 412 412 423 601 695 695 867 1522
##
## $k
## [1]
        -Inf
               0.00 17.00 38.75 47.00 50.00 115.50 619.00
##
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                      "tree.sequence"
```

plot(cv.satisf)

prune.satisf = prune.misclass(tree.satisf, best = 6)
plot(prune.satisf,cex=0.2)
text(prune.satisf,pretty=0,cex=0.6)


```
tree.pred = predict(prune.satisf, FDataclust3[,c(-1,-2)][-train, ], type = "class")
with(FDataclust3[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction
## tree.pred 0 1
## 0 6105 581
## 1 2592 19588
```

```
rm(tree.satisf,prune.satisf,cv.satisf,tree.pred,train)
```

Cluster 4

```
FDataclust4<-subset(FData,FData$k.cluster==4)

#Decision Tree

set.seed(1011)
train = sample(1:nrow(FDataclust4[,c(-1,-2)]), 5000)
tree.satisf = tree(as.factor(satisfaction) ~ . , FDataclust4[,c(-1,-2)], subset = train)
plot(tree.satisf)
text(tree.satisf, pretty = 0,cex=0.7)</pre>
```



```
tree.pred = predict(tree.satisf, FDataclust4[,c(-1,-2)][-train, ], type = "class")
with(FDataclust4[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction

## tree.pred 0 1

## 0 5980 748

## 1 1330 16135
```

```
#Pruning for simplicity
cv.satisf = cv.tree(tree.satisf, FUN = prune.misclass)
cv.satisf
```

```
## $size
## [1] 13 10 9 8 7 5 4
##
## $dev
## [1] 381 381 450 450 621
                               646 646 842 1524
##
## $k
## [1] -Inf
                  28
                                50
                                     52 100 682
                       30
                           46
##
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                      "tree.sequence"
```

plot(cv.satisf)


```
prune.satisf = prune.misclass(tree.satisf, best = 6 )
plot(prune.satisf,cex=0.2)
text(prune.satisf,pretty=0,cex=0.6)
```



```
tree.pred = predict(prune.satisf, FDataclust4[,c(-1,-2)][-train, ], type = "class")
with(FDataclust4[,c(-1,-2)][-train, ], table(tree.pred, satisfaction))
```

```
## satisfaction

## tree.pred 0 1

## 0 5620 858

## 1 1690 16025
```

rm(tree.satisf,prune.satisf,cv.satisf,tree.pred,train)

Comparison between clusters

```
#All clusters included
mean(FData$Inflight.wifi.service)
```

```
## [1] 2.728911
```

```
mean(FData$Online.boarding)
```

```
## [1] 3.252678
```

```
mean(FData$Inflight.entertainment)
```

```
## [1] 3.358267
sqrt(var(FData$Inflight.wifi.service))
## [1] 1.329365
sqrt(var(FData$Online.boarding))
## [1] 1.35068
sqrt(var(FData$Inflight.entertainment))
## [1] 1.334072
#Inflight WiFi
mean(FDataclust1$Inflight.wifi.service)
## [1] 2.667617
mean(FDataclust2$Inflight.wifi.service)
## [1] 2.67051
mean(FDataclust3$Inflight.wifi.service)
## [1] 2.803845
mean(FDataclust4$Inflight.wifi.service)
## [1] 2.778577
sqrt(var(FDataclust1$Inflight.wifi.service))
## [1] 1.21894
sqrt(var(FDataclust2$Inflight.wifi.service))
## [1] 1.224135
sqrt(var(FDataclust3$Inflight.wifi.service))
## [1] 1.431645
```

```
sqrt(var(FDataclust4$Inflight.wifi.service))
## [1] 1.431939
#Online Boarding
mean(FDataclust1$Online.boarding)
## [1] 2.83185
mean(FDataclust2$Online.boarding)
## [1] 2.83399
mean(FDataclust3$Online.boarding)
## [1] 3.695063
mean(FDataclust4$Online.boarding)
## [1] 3.698421
sqrt(var(FDataclust1$Online.boarding))
## [1] 1.328309
sqrt(var(FDataclust2$Online.boarding))
## [1] 1.324445
sqrt(var(FDataclust3$Online.boarding))
## [1] 1.227976
sqrt(var(FDataclust4$Online.boarding))
## [1] 1.229837
#In flight Entertainment
mean(FDataclust1$Inflight.entertainment)
## [1] 3.08973
```

```
mean(FDataclust2$Inflight.entertainment)
## [1] 3.105287
mean(FDataclust3$Inflight.entertainment)
## [1] 3.633497
mean(FDataclust4$Inflight.entertainment)
## [1] 3.633988
sqrt(var(FDataclust1$Inflight.entertainment))
## [1] 1.369794
sqrt(var(FDataclust2$Inflight.entertainment))
## [1] 1.366426
sqrt(var(FDataclust3$Inflight.entertainment))
## [1] 1.239144
sqrt(var(FDataclust4$Inflight.entertainment))
## [1] 1.238791
```

Recommendation

```
Recdn<-FData[1:10000,c(-1,-2)]

satisfaction<-c(1:50)
for (i in 1:50)
{
    Recdn$Inflight.wifi.service<-rnorm(nrow(Recdn),i/10,sqrt(var(FData$Inflight.wifi.service)))
    Recdn$Online.boarding<-rnorm(nrow(Recdn),i/10,sqrt(var(FData$Online.boarding)))
    Recdn$Inflight.entertainment<-rnorm(nrow(Recdn),i/10,sqrt(var(FData$Inflight.entertainment)))
    predtree<-predict(rf.satisf,Recdn)
    s<-summary(predtree)
    satisfaction[i]<-s[2]/sum(s)
}
plot(seq(0.1,5,by=0.1),satisfaction,type="l",col="red",main="Satisfaction Rate with increasin
g Convenience",xlab = "Convenience Rating")
    rect(par("usr")[1],par("usr")[3],par("usr")[2],par("usr")[4],col = "light blue")
    points(seq(0.1,5,by=0.1),satisfaction,type="l",col="red")</pre>
```

Satisfaction Rate with increasing Convenience

The End