↔ Lycée de Dindéfélo ↔			A.S. : 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 21/02/2025	
	Td Ln E	хро	

Partie A

Soit $g(x) = 2x \ln(-x) + x + 1$.

- 1 Déterminer l'ensemble de définition D_g de g
- 2 Calculer les limites aux bornes de D_g .
- 3 Étudier les variations de g.
- 4 Calculer g(-1) puis en déduire le signe de g(x).

Partie B

On considère la fonction f définie par :

$$f(x) = \begin{cases} x^2 \ln(-x) + x + 1 & \text{si } x < 0 \\ x \ln(x)^2 + x + 1 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \end{cases}$$

On note (C_f) sa courbe représentative dans un repère orthonormé.

- 1 Justifier que f est définie sur \mathbb{R} .
- 2 Étudier la continuité et la dérivabilité de f en 0. Interprétez graphiquement les résultats.
- 3 Donner le domaine de dérivabilité de f puis montrer que

$$f'(x) = \begin{cases} g(x) & \text{si } x < 0\\ (1 + \ln x)^2 & \text{si } x > 0 \end{cases}$$

- f 4 Calculer les limites de f aux bornes de son domaine de définition.
- 5 Étudier les branches infinies de (C_f) .
- **6** Dresser le tableau de variations de f.
- 7 Montrer que dans $]-\infty;-1[$, l'équation f(x)=1 admet une unique solution α puis vérifier que $-1,8<\alpha<-1,7.$
- 8 Construire (C_f) (unité 2 cm) (on précisera la tangente au point d'abscisse e^{-1} et on placera le point d'abscisse 1).

Soit h la restriction de f à $I =]0; +\infty[$.

- 1 Montrer que h admet une bijection réciproque h^{-1} définie sur un intervalle J à préciser.
- 2 Étudier la dérivabilité de h^{-1} sur J.
- 3 a Calculer h(1).
 - **b** Calculer $(h^{-1})'(2)$.
- 4 Construire la courbe de h^{-1} .

Exercice 5

Partie A

Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = -x + 1 - 2 \ln x$

- \bigcirc Étudier les variations de g puis dresser son tableau de variations.
- 2 Calculer g(1). En déduire le signe de g(x) sur $[0; +\infty[$.

Partie B

Soit f la fonction définie par $f(x)=\frac{x+\ln x}{x^2}$ et (C) sa courbe représentative dans un repère (O,\vec{i},\vec{j}) .

- 1 Déterminer le domaine de définition de f.
- 2 a Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - **b** Calculer $\lim_{x\to +\infty} f(x)$. Interpréter graphiquement le résultat.
- 3 a Montrer que pour tout $x \in]0; +\infty[, f'(x) = \frac{g(x)}{x^2}]$
 - b Dresser le tableau de variations de f.
 - C Montrer que l'équation f(x) = 0 admet dans $]0; +\infty[$ une unique solution β et que $\beta \in]0, 56; 0, 57[$.
- 4 Construire (C).

Partie C

Soit h la fonction définie sur $]0; +\infty[$ par $h(x)=\frac{1}{x}$ et (Γ) sa courbe.

- 1 Étudier les positions relatives de (C) et (Γ) .
- 2 Construire dans le même repère (Γ) .
- 3 Soit I_{λ} l'aire en unité d'aires de la partie du plan délimitée par les courbes (C), (Γ) et les droites d'équations x=1 et $x=\lambda$ où λ est un nombre réel strictement supérieur à 1.
 - a Montrer que $I_{\lambda} = 1 \frac{1}{\lambda}(1 + \ln \lambda)$.
 - **b** Déterminer $\lim_{\lambda \to +\infty} I_{\lambda}$.

Soit
$$f(x) = \frac{\ln x}{1 + x^2}$$

Partie A

Soit $g(x) = 1 + x^2 - 2x^2 \ln x$.

- 1 Déterminer D_g et montrer que si 0 < x < 1 alors $g(x) \ge 1$.
- 2 Montrer que g est strictement décroissante sur $[1; +\infty[$.
- 3 Calculer g(1) et g(2). Montrer qu'il existe un unique réel α strictement positif tel que $g(\alpha) = 0$. Donner un encadrement de α à 10^{-1} près.
- 4 Donner le signe de g(x) sur $]0; +\infty[$.

Partie B

- 1 a Calculer f'(x) et étudier les variations de f.
 - **b** Montrer que $f(\alpha) = \frac{1}{2\alpha^2}$.
 - c Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- 2 Donner une équation de la tangente (T) à (C_f) au point d'abscisse 1.
- 3 Donner le tableau de variations de f puis tracer (C_f) .

Exercice 7

Partie A

On considère dans $]0; +\infty[$ la fonction g donnée par : $g(x) = x \ln(x) - 1$.

- 1 Dresser le tableau des variations de g.
- **2** Montrer que l'équation g(x) = 0 admet une solution unique α sur $]0; +\infty[$.
 - **b** Montrer que $1,76 < \alpha < 1,77$.
 - **c** En déduire le signe de g(x) suivant les valeurs de x.

Partie B

On considère la fonction f de $\mathbb R$ vers $\mathbb R$ définie par : $f(x)=\frac{1+x}{1+\ln(x)}.$

- 1 Justifie que $D_f =]0; +\infty[\setminus \left\{\frac{1}{e}\right\}.$
- 2 Calcule les limites de f aux bornes de D_f .
- 3 Étudie les branches infinies à (C_f) .

- 4 Démontre que $\forall x \in D_f, f'(x) = \frac{g(x)}{x(1 + \ln(x))^2}$.
 - **b** Donne le signe de f'(x) suivant les valeurs de x.
 - \mathbf{c} En déduire le sens de variation de f et dresser son tableau de variation.
- 5 Démontre que $f(\alpha) = \alpha$.
- **6** Trace la courbe (C_f) et son asymptote. (On prendra $\alpha = 1,76$)

Partie A

Soit $g(x) = 2x - (x+1)\ln(x+1)$.

- 1 Déterminer le domaine de définition D_g de g.
- 2 Calculer les limites aux bornes de D_g .
- 3 Dresser le tableau de variations de q.
- 4 Montrer que l'équation g(x) = 0 admet deux solutions 0 et α avec $\alpha \in]3, 9; 4[$.
- 5 Donner le signe de g(x) suivant les valeurs de x.

Partie B

Soit f la fonction définie par : $f(x) = \begin{cases} x + \ln(1 + x^2) & \text{si } x \le 0 \\ \frac{\ln(x+1)}{\sqrt{x}} & \text{si } x > 0 \end{cases}$

- 1 Déterminer le domaine de définition D_f de f.
- 2 Calculer les limites aux bornes de D_f .
- 3 Étudier les branches infinies de (C_f) .
- 4 Étudier la continuité puis la dérivabilité de f en 0. Interpréter graphiquement les résultats.
- **5** Montrer que $f(\alpha) = \frac{2\sqrt{\alpha}}{\alpha + 1}$, puis encadrer $f(\alpha)$.
- **6** Montrer que f est dérivable sur $]-\infty;0[$ et $f'(x)=\frac{(x+1)^2}{x^2+1}.$
- 7 Montrer que f est dérivable sur $]0; +\infty[$ et montrer que pour tout x > 0, $f'(x) = \frac{g(x)}{2x(x+1)\sqrt{x}}$.
- 8 Étudier les variations de f.
- 9 Dresser le tableau de variations de f.
- 10 Calculer f(-2).
- 11 Tracer (C_f) .

Soit h la restriction de f sur $]-\infty;0]$.

- Montrer que h réalise une bijection de $]-\infty;0]$ vers un intervalle J à préciser.
- Étudier la dérivabilité de h^{-1} .
- 3 Déterminer $(h^{-1})'(\ln 5 2)$.
- Tracer $(C_{h^{-1}})$.

Exercice 9

Partie A

On considère la fonction : $u:[0;+\infty[\longrightarrow \mathbb{R}$

$$u:[0;+\infty[$$
 \longrightarrow \mathbb{R}

$$x \longmapsto \ln \left| \frac{x+1}{x-1} \right| - \frac{2x}{x^2 - 1}$$

- 1 Déterminer l'ensemble de définition de u, calculer u(0) et $\lim_{x \to +\infty} u(x)$.
- Étudier les variations de u, dresser son tableau de variations. (il n'est pas nécessaire de calculer la limite de u en 1).
- 3 Déduire des résultats précédents que :
 - a $\forall x \in [0; 1[, u(x) > 0.$
 - b $\forall x \in]1; +\infty[, u(x) < 0.$

Partie B

Soit g la fonction définie par :

$$g:[0;+\infty[$$
 \longrightarrow \mathbb{R}

$$x \longmapsto x \ln \left| \frac{x+1}{x-1} \right| - 1$$

- Déterminer D_g le domaine de définition de g, puis étudier la limite de g en 1.
- a Vérifier que $\frac{x+1}{x-1} = 1 + \frac{2}{x-1}$.
 - **b** Montrer que $\lim_{x\to+\infty} \frac{x-1}{2} \ln \left(1 + \frac{2}{x-1}\right) = 1$.
 - En déduire que $\lim_{x\to +\infty} g(x)=1$. Interpréter graphiquement ce résultat.
 - d Dresser le tableau de variations de q
 - Montrer qu'il existe un réel unique $\alpha \in]0;1[$ tel que $g(\alpha)=0$. Donner un encadrement de d'ordre 1
- Tracer la courbe (C_g) de g dans le plan rapporté à un repère orthonormé (unité : 2cm).

Soit la fonction définie par : $f(x) = (x^2 - 1) \ln \left(\sqrt{\frac{x+1}{1-x}} \right)$

- 1 Montrer que f est dérivable sur [0; 1] et que f'(x) = g(x) pour tout $x \in [0; 1]$.
- 2 Déterminer l'aire du domaine plan limité par la courbe (C_g) ; l'axe des abscisses ; l'axe des ordonnées et la droite d'équation $x = \alpha$.

Exercice 10

Partie A

Soit la fonction g définie par $g(x) = \frac{1}{x} - 2 - \ln x$.

- 1 Étudier les variations de g.
- 2 Montrer que l'équation g(x) = 0 admet une unique solution $\alpha \in]0; +\infty[$. Vérifier que

$$0, 6 < \alpha < 0, 7.$$

3 En déduire le signe de g(x).

Partie B

Soit f la fonction définie par : $f(x) = \begin{cases} (1-x)(1+\ln x) & \text{si } x \geq 1 \\ (1-x)\ln(1-x) & \text{si } x < 1 \end{cases}$

- 1 Déterminer l'ensemble de définition D_f de f.
- 2 Étudier la continuité de f en 1.
- 3 Étudier la dérivabilité de f en 1.
- 4 Déterminer les limites de f aux bornes de D_f .
- $\mathbf{5}$ Étudier les branches infinies de f.
- $\mathbf{6}$ Dresser le tableau de variations de f.
- 7 Tracer C_f dans un repère orthonormé, unité : 2cm.
- 8 Soit h la restriction de f sur $[1; +\infty[$.
 - a Montrer que h admet une bijection réciproque h^{-1} dont on précisera l'ensemble de définition et les variations.
 - b Résoudre $h^{-1}(x) = e$ puis calculer $(h^{-1})'(2 - 2e)$.
 - c Tracer la courbe de h^{-1} dans le même repère.

On considère la fonction définie sur \mathbb{R} par $f(x) = x \left(1 + e^{2-x}\right)$.

On note (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$, unité 2cm.

- 1 Soit h la fonction définie sur \mathbb{R} par $h(x) = 1 + (1-x)e^{2-x}$
 - a Étudier les variations de h (on ne déterminera pas les limites aux bornes de D_h).
 - b En déduire le signe de h(x) sur \mathbb{R} .
- 2 a Étudier les limites de f en $+\infty$ et en $-\infty$.
 - b Préciser la nature de la branche infinie de f en $-\infty$.
 - c Calculer $\lim_{x\to +\infty} [f(x)-x]$, puis interpréter le résultat obtenu.
 - **d** Préciser la position de (C_f) par rapport à la droite d'équation $(\Delta): y = x$.
- 3 a Dresser le tableau de variations de f.
 - **b** Montrer que f admet une bijection réciproque notée f^{-1} définie sur \mathbb{R} .
 - c f^{-1} est-elle dérivable en 4?
 - d Étudier la position (C_f) par rapport à sa tangente au point d'abscisse 2.
 - e Construire (C_f) (on tracera la tangente à (C_f) au point d'abscisse 2).
 - f Construire $(C_{f^{-1}})$ dans le repère précédent.

Exercice 13

Soit f la fonction définie par $f(x) = \begin{cases} (2x-1)e^{\frac{1}{x}}, & \text{si } x < 0 \\ x\ln(x+1), & \text{si } x \geq 0 \end{cases}$

Partie A

- 1 Déterminer le domaine de définition D_f de f.
- 2 Calculer les limites de f aux bornes de D_f .
- 3 Montrer que la droite (D) d'équation y = 2x + 1 est asymptote à (C_f) en $-\infty$.
- 4 Étudier la branche infinie de (C_f) en $+\infty$. La continuité et la dérivabilité de f en 0. Interpréter graphiquement ce résultat.

Partie B

- 1 Montrer que f est deux fois dérivable sur $]0; +\infty[$.
- 2 Calculer f'(x) et f''(x) sur $]0; +\infty[$.
- 3 Étudier les variations de f'(x) puis en déduire le signe de f'(x) sur $]0; +\infty[$.
- 4 Calculer f'(x) pour tout x < 0. En déduire le signe de f'(x).
- $\mathbf{5}$ Dresser le tableau de variations de f.

Soit g la restriction de f sur $I =]-\infty; 0[$.

- 1 Montrer que g réalise une bijection de I vers un intervalle J à préciser.
- 2 Soit g^{-1} la bijection réciproque de g. Calculer g(-1) puis $(g^{-1})'\left(-\frac{3}{e}\right)$.
- 3 Construire (C_f) et (C_g) dans un même repère.

Exercice 14

Soit f la fonction définie par :

$$f(x) = \begin{cases} e^{-x}(1 + \ln x) - e^{-1}, & \text{si } x \ge 1\\ (1 - x)e^{-\frac{1}{1 - x}}, & \text{si } x < 1 \end{cases}$$

- 1 Vérifier que f est définie sur \mathbb{R} puis calculer les limites de f aux bornes de D_f .
- 2 Étudier la continuité de f en 1.
- 3 Montrer que pour tout $x \in]1; +\infty[, \frac{f(x)-f(1)}{x-1} = e^{-x} \left(\frac{1-e^{x-1}}{x-1} + \frac{\ln x}{x-1} \right).$
 - b Étudier la dérivabilité de f en 1. Interpréter graphiquement le résultat.
- 4 Soit la fonction g définie par : $g(x) = -\ln x + \frac{1}{x} 1$
 - a Dresser le tableau de variations de g.
 - **b** Calculer g(1) et préciser le signe de g(x).
 - c Calculer la dérivée de f sur chaque intervalle où elle est dérivable.
 - **d** Étudier le signe de f'(x) et donner le tableau de variations de f.
- 5 a Donner la nature de la branche infinie de f en $+\infty$.
 - **b** Montrer que la droite (D): y = -x est une asymptote oblique à (C_f) en $-\infty$.
 - **c** Étudier la position de (C_f) par rapport à (D) sur $]-\infty;1[$.
- 6 Construire (C_f) .
- 7 Soit h la restriction de f sur] $-\infty$; 1[.
 - a Montrer que h réalise une bijection de $]-\infty;1[$ vers un intervalle J à préciser.
 - **b** Calculer h(0). h^{-1} est-elle dérivable en e^{-1} ? Si oui, calculer $(h^{-1})'(e^{-1})$.
 - Tracer $(C_{h^{-1}})$ dans le même repère.

Partie A

On considère la fonction g définie par $g(x) = (x+1)^2 e^{-x} - 2$.

- 1 Dresser le tableau de variations de g.
- 2 a Montrer que l'équation g(x)=0 admet une solution unique α dans \mathbb{R} , puis vérifier que $\alpha \in]-2;-1[$.
 - **b** Donner le signe de g(x) dans \mathbb{R} .
- 3 Montrer que $\alpha = -1 \sqrt{2}e^{\frac{\alpha}{2}}$
- 4 Tracer la courbe (C_g) de g dans un repère orthonormé $(O; \vec{i}, \vec{j})$, d'unité 2cm.

Partie B

Soit la fonction f définie par $f(x)=-1-\sqrt{2}e^{\frac{x}{2}}$ si $x\in I=[-2;-1].$

- 1 Étudier les variations de f sur I.
- 2 En déduire que si $x \in I$, alors $f(x) \le -1$.
- 3 Montrer que si $x \in I$, alors $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$
- 4 Montrer que $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$ pour tout $x \in I$.
- **5** Soit la suite (u_n) définie par $u_0 = -2$, $u_{n+1} = f(u_n)$
 - a Montrer que pour tout $n \in \mathbb{N}$, $u_n \in I$.
 - **b** Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \le \frac{1}{2}|u_n \alpha|$
 - $\text{Montrer que pour tout } n \in \mathbb{N}, \, |u_n \alpha| \leq \left(\frac{1}{2}\right)^n |u_0 \alpha|$
 - d En déduire que la suite (u_n) est convergente et préciser sa limite.
 - e Donner une valeur approchée de α à 10^{-3} près.

Exercice 16

On considère la fonction f définie par :

$$f(x) = \begin{cases} x + 1 + \frac{3e^x}{e^x + 2\ln(x+1)} & \text{si } x \le 0\\ x + 2 + \frac{x}{x+1} & \text{si } x > 0 \end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ d'unité graphique 1cm.

- 1 Etablir que f est définie sur \mathbb{R} .
- 2 a Etudier la continuité de f en 0.
 - b Pour x<0, montrer que $\frac{f(x)-2}{x-0}=1+\frac{2(e^x-1)}{x}\times\frac{1}{e^x}$ En déduire que $\lim_{x\to 0^-}\frac{f(x)-f(0)}{x-0}$.

- c Conclure sur la dérivabilité de f en 0 et interpréter les résultats.
- En utilisant les variations de la h définie par h(x) = -x, montrer que $x < (x+1)^2$ pour x > 0. En déduire que $\ln(x+1) < (x+1)^2$ pour x > 0.
 - **b** Calculer f'(x) pour x > 0 et utiliser 3.a pour déterminer son signe.
 - c Calculer f'(x) pour x < 0 et donner son signe.
- 4 a Calculer les limites de f aux bornes de son domaine de définition D_f .
 - **b** Calculer $\lim_{x \to -\infty} [f(x) (x+1)]$ et interpréter graphiquement le résultat.
 - Calculer $\lim_{x \to +\infty} [f(x) (x+2)]$ et interpréter graphiquement le résultat.
 - d Etudier le signe de f(x) (x+1) pour x < 0, montrer que f(x) (x+2) > 0 pour x > 0 et interpréter graphiquement les résultats.
- 5 Déterminer les coordonnées du point A de la courbe où la tangente est parallèle à l'asymptote pour x > 0.
- **6** Etablir que f est une bijection de \mathbb{R} sur un intervalle J à préciser.
- 7 Représenter graphiquement les courbes de f et de f^{-1} dans un même repère.
- 8 Calculer $\int_{-\ln 3}^{0} (f(x) (x+1)) dx$.
- 9 Interpréter graphiquement le résultat précédent en terme d'aire.

Partie A

On considère la fonction g définie par $g(x) = \ln x + 1 - e^{-x}$.

- 1 Etudier les variations de g.
- **2** Montrer que l'équation g(x) = 0 admet une solution unique α telle que $0, 6 < \alpha < 0, 7$.
- 3 En déduire le signe de g(x).

Partie B

On considère la fonction f définie par

$$f(x) = \begin{cases} x \ln x + e^{-x} & \text{si } x > 0\\ \frac{e^{\frac{1}{2}x}}{|x^2 - 1|} & \text{si } x \le 0 \end{cases}$$

- 1 Justifier que $D_f = \mathbb{R} \setminus \{-1\}$.
- 2 Ecrire f(x) sans valeur absolue.
- 3 Etudier la continuité et la dérivabilité de f en 0. On pourra montrer que si $x \in]-1;0[$,

$$\frac{f(x) - f(0)}{x - 0} = \frac{-\frac{1}{2} \left(\frac{e^{\frac{1}{2}x} - 1}{\frac{1}{2}x}\right) - x}{x^2 - 1}$$

- 4 Déterminer les limites de f aux bornes de D_f puis étudier les branches infinies.
- $\mathbf{5}$ Dresser le tableau de variations de f.
- **6** Montrer que $f(\alpha) = (\alpha + 1) \ln \alpha + 1$.
- 7 Soit h la restriction de f à $]\alpha; +\infty[$
 - a Montrer que h admet une bijection réciproque h^{-1} définie sur un intervalle J à préciser.
 - **b** h^{-1} est-elle dérivable sur J ? Justifier.
 - Calculer h(1) puis $(h^{-1})'\left(\frac{1}{e}\right)$.
- 8 Tracer C_f et $C_{h^{-1}}$ dans le même repère d'unité 2cm.
- 9 Soit $\lambda > 1$ et $\mathcal{A}(\lambda)$ l'aire en cm^2 du domaine limité par C_h , l'axe des abscisses et les droites d'équations x = 1 et $x = \lambda$. Calculer $\mathcal{A}(\lambda)$ et sa limite en $+\infty$.

Partie A

Soit f la fonction définie sur \mathbb{R} par $f(x) = x - e^{2x-2}$.

- 1 Déterminer la limite de f en $-\infty$.
- 2 Vérifier que pour tout réel x non nul, $f(x) = x \left[1 2e^{-2} \left(\frac{e^{2x}}{2x} \right) \right]$. En déduire la limite de f en $+\infty$.
- 3 Dresser le tableau de variations de f.
- 4 Montrer que la droite (D): y = x est asymptote à C_f en $-\infty$. Étudier la position relative de C_f par rapport à (D).
- 5 Étudier la branche infinie de C_f en $+\infty$.
- 6 Déterminer une équation de la tangente (T) au point d'abscisse 1.
- 7 Montrer que l'équation f(x)=0 admet une solution unique $\alpha\in I=]0;\frac{1}{2}[$. Donner une valeur approchée de α à 10^{-1} près.
- 8 Tracer C_f , (D) et (T).

Partie B

On définit la suite (u_n) définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = e^{2u_n - 2} \end{cases}$

- 1 Soit g la fonction définie sur \mathbb{R} par $g(x)=e^{2x-2}$. Démontrer que l'équation f(x)=0 est équivalente à g(x)=x. En déduire $g(\alpha)$.
- 2 Démontrer que pour tout $x \in I$, $|g'(x)| \le \frac{2}{e}$.
- **3** Démontrer que pour tout $x \in I$, $g(x) \in I$.

- 4 a En utilisant l'inégalité des accroissements finis, démontrer que pour tout $n \in \mathbb{N}, |u_{n+1} \alpha| \le \frac{2}{e}|u_n \alpha|$
 - **b** En déduire que $|u_n \alpha| \le \left(\frac{2}{e}\right)^n$.
 - c Montrer que (u_n) converge vers un réel à déterminer.
 - **d** Déterminer le plus petit entier naturel n tel que $|u_n \alpha| < 10^{-5}$.

Partie B

Soit la fonction h définie par $h(x) = 1 - (x^2 - 2x + 2)e^{-x}$.

- \bigcirc Dresser le tableau de variations de h.
- **2** a Démontrer que l'équation h(x) = 0 admet une unique solution $\alpha \in]0,1[$.
- **2** Donner une valeur approchée de α à 10^{-1} près.
- 3 En déduire le signe de h(x).

Partie B

Soit la fonction f définie par $f(x)=\begin{cases} 1+\frac{1}{e^{\frac{1}{x}}} & \text{si } x<0\\ x-1+(x^2+2)e^{-x} \end{cases}$ si $x\geq 0$

- 1 Justifier que f est définie sur \mathbb{R} .
- 2 Etudier la continuité et la dérivabilité de f en 0. Interpréter les résultats.
- 3 Etudier les branches infinies de C_f .
- 4 Dresser le tableau de variations de f.
- 5 Montrer que $f(\alpha) = \alpha(1 + 2e^{-\alpha})$.
- 6 Tracer C_f dans un repère orthonormé d'unité 2cm.

Partie C

Soit g la restriction de f à $]-\infty,-1[$.

- 1 Prouver l'existence de g^{-1} . Etudier la dérivabilité de g^{-1} .
- **2** Résoudre $g^{-1}(x) = 2$, puis calculer

$$(g^{-1})'\left(\frac{2-e^{-\frac{1}{2}}}{2}\right).$$

3 Tracer la courbe de g^{-1} dans le même repère.