(L) 1000 | Arkusz egzaminacyjny nr 2

! Informacje dla uczniów

- Arkusz, który otrzymasz na egzaminie, może mieć nieco inną formę niż zaprezentowany poniżej.
- Zawsze dokładnie czytaj instrukcję załączoną do arkusza egzaminacyjnego i postępuj zgodnie z nią.
- Pamiętaj, że rozwiązania zadań zamkniętych nie są oceniane. Liczy się tylko wybrana przez ciebie odpowiedź.
- W zadaniach otwartych trzeba zapisać całe rozwiązanie w wyznaczonym na to miejscu.
- Rozwiązując zadania, kontroluj czas. Na egzaminie będziesz mieć 1 godzinę i 40 minut.

Zadanie 1. (0-1)

Jurek zaprojektował flagę Szarogrodu. Jest to biały kwadrat z czterema przystającymi szarymi prostokątami rozmieszczonymi tak, jak na rysunku. Szerokość każdego prostokąta stanowi $\frac{1}{5}$ długości boku flagi.

Jaka część flagi jest szara? Wybierz właściwą odpowiedź spośród podanych.

A. 0,4

B. 0,32

C. 0,3

D. 0,25

Zadanie 2. (0-1)

Majsterkowicz Henryk miał cztery patyczki o długościach: 14 cm, 8 cm, 5 cm i 4 cm. Z trzech z nich zbudował trójkątną ramkę, w której patyczki stykały się końcami.

Jaki obwód miała ta ramka? Wybierz właściwą odpowiedź spośród podanych.

A. 17 cm

B. 23 cm

C. 26 cm

D. 27 cm

ARKUSZ EGZAMINACYJNY NR 2

Zadanie 3. (0-1)

Wczoraj Wojtek przeszedł trasę od swojego domu do domu Jurka w czasie 40 min. Zmierzył długość tej trasy na planie i otrzymał wynik 4,8 cm. Dziś chce odwiedzić Asię. Trasa, jaką ma zamiar pokonać, ma na tym samym planie długość 6 cm.

Ile czasu zajmie Wojtkowi jej pokonanie, jeśli przyjmiemy, że będzie szedł w takim samym tempie, w jakim wędrował wczoraj? Wybierz właściwą odpowiedź spośród podanych.

A. 48 min

B. 50 min

C. 1 h

D. 1,2 h

Zadanie 4. (0-1)

W folderze zawierającym zdjęcia z ubiegłorocznych wakacji pani Katarzyny znajduje się 351 zdjęć. Wśród nich jest 36 zdjęć z Karpacza i 140 zdjęć z Pojezierza Suwalskiego.

Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.

Zdjęcia z Karpacza stanowią około A / B wszystkich zdjęć w folderze.

A. 36%

B. 10%

Zdjęcia z Pojezierza Suwalskiego stanowią około C / D wszystkich zdjęć w folderze.

C. 14%

D. 40%

Zadanie 5. (0-1)

Dane jest wyrażenie (n - 10)(n - 100)(n - 1000).

Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.

Wartość tego wyrażenia dla n = 5 jest **A** / **B**.

A. ujemna

B. dodatnia

Wartość tego wyrażenia dla n = 50 jest C / **D** niż dla n = 500.

C. mniejsza

D. większa

Zadanie 6. (0-1)

Dodatnią liczbę x zmniejszono o połowę, a otrzymany wynik powiększono o połowę.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

W wyniku opisanych działań otrzymano liczbę o wartości równej

- **A.** 0,75x
- **B.** *x*

- **C.** 1,25x
- **D.** 1,5*x*

Zadanie 7. (0-1)

Dane są cztery wyrażenia:

$$w_1 = \sqrt{\frac{1}{4}} + \sqrt{\frac{1}{4}},$$

$$w_1 = \sqrt{\frac{1}{4}} + \sqrt{\frac{1}{4}}, \qquad w_2 = \sqrt{\frac{1}{9}} + \sqrt{\frac{1}{9}} + \sqrt{\frac{1}{9}}, \qquad w_3 = \sqrt{\frac{25}{9}} + \sqrt{\frac{25}{9}}, \qquad w_4 = \sqrt{\frac{25}{4}} - \sqrt{\frac{9}{4}}.$$

$$w_3 = \sqrt{\frac{25}{9}} + \sqrt{\frac{25}{9}}$$

$$w_4 = \sqrt{\frac{25}{4}} - \sqrt{\frac{9}{4}}$$

Jedno z nich ma inną wartość niż trzy pozostałe.

Wybierz właściwą odpowiedź spośród podanych.

Tym wyrażeniem jest

- $\mathbf{A}. w_1$
- $\mathbf{B}. w_2$
- $\mathbf{C}. w_3$
- $\mathbf{D}. w_4$

Zadanie 8. (0–1)

W układzie współrzędnych zaznaczono siedem punktów (patrz rysunek).

Ile spośród tych punktów ma współrzędne, których iloczyn jest równy 12? Wybierz właściwą odpowiedź spośród podanych.

- **A.** 5
- **B.** 4
- **C**. 3
- **D.** 2

Zadanie 9. (0-1)

W pewnym roku 13 lutego przypadał w piątek, a 13 marca – w sobotę.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo ${\bf F}$ – jeśli jest falszywe.

Ten rok był przestępny.	P	F
13 kwietnia tego roku przypadał w niedzielę.	P	F

Zadanie 10. (0-1)

Na wykresie przedstawiono wyniki pomiaru poziomu wody w rzece Ósemce między godziną 12:00 a 24:00. Alarm powodziowy ogłasza się wtedy, gdy poziom wody przekracza 3 m.

Poziom wody w rzece Ósemce

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

O godzinie 17:00 poziom wody był o 30 cm niższy od alarmowego.	P	F
Poziom wody najbliższy stanowi alarmowemu zanotowano o godzinie 21:	00. P	F

Zadanie 11. (0-1)

Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.

Od godziny 7:20 rano do północy upływa A / B minut.

A. 900

B. 1000

Jeśli od południa minęło 3000 sekund, to zegar wskazuje godzinę C / D.

C. 12:50

D. 15:00

Zadanie 12. (0-1)

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo ${\rm F}$ – jeśli jest fałszywe.

Wartość potęgi 10 ⁶ jest liczbą sześciocyfrową.	P	F
Liczba równa wartości potęgi 10 ³ ma dwa razy więcej cyfr niż liczba równa wartości potęgi 5 ³ .	P	F

Zadanie 13. (0-1)

Do każdej ściany sześcianu przyklejono taki sam sześcian i otrzymano bryłę przedstawioną na rysunku.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

Objętość otrzymanej bryły jest sześć razy większa od objętości sześcianu.			
Pole powierzchni całkowitej otrzymanej bryły jest pięć razy większe od pola powierzchni sześcianu.	P	F	

Zadanie 14. (0-1)

Pudełko zawiera kulki zielone i czerwone. Prawdopodobieństwo wylosowania kulki zielonej jest równe $\frac{1}{2}$.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo ${\bf F}$ – jeśli jest falszywe.

W pudełku jest dwa razy więcej kulek czerwonych niż zielonych.			
Po dołożeniu do tego pojemnika jednej kulki zielonej i jednej czerwonej prawdopodobieństwo wylosowania zielonej nie zmieni się.	P	F	

Zadanie 15. (0-1)

Czy odwrotność liczby 0,99 jest większa od 1? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

Т	T Tak,		A.	0.99 - 1 < 1
	Nie,	ponieważ B.	В.	$\left \frac{100}{99} > 1 \right $
N			C.	-0.99 < 1

Zadanie 16. (0-1)

Z narożnika kwadratowej kartki o obwodzie 60 cm wycięto kwadrat o obwodzie 20 cm (patrz rysunek).

Czy obwód pozostałej części dużego kwadratu jest równy 60 cm? Wybierz odpowiedź T albo N i jej uzasadnienie spośród A, B albo C.

Т	T Tak,		A.	różnica obwodów obu kwadratów jest równa 40 cm.
	Turi,	ponieważ	В.	bok małego kwadratu jest równy 5 cm, a obwód pozostałej części to 60 cm – 2 · 5 cm + 2 · 5 cm.
N	Nie,		C.	pole zmniejszyło się o 25 cm².

Zadanie 17. (0-2)

Do zestawu liczb: 10, 7, 8, 12, 11 i 9 dopisano jedną liczbę naturalną jednocyfrową i dwie liczby naturalne dwucyfrowe. Czy średnia arytmetyczna powiększonego zestawu może być mniejsza od 10? Czy może być większa od 30? Odpowiedź uzasadnij.

Zadanie 18. (0-2)

Na rysunku przedstawiono parę prostych równoległych a i b przeciętych prostymi AE i CD.

Uzasadnij, że miara kąta α jest równa sumie miar kątów β i γ .

Zadanie 19. (0-2)

Na rysunku przedstawiono trójkąt prostokątny ABC i podano długości niektórych jego boków.

Wyznacz x. Zapisz obliczenia.

Zadanie 20. (0-3)

"Mieszanka uczniowska" składa się z orzechów włoskich, orzechów nerkowca i rodzynek, zmieszanych w proporcji 2:5:3. W tabeli przedstawiono wartość kaloryczną poszczególnych jej składników.

Produkt	Wartość kaloryczna 100 g produktu w kilokaloriach		
Orzechy włoskie	650		
Orzechy nerkowca	560		
Rodzynki	300		

Wojtek kupił 120 g mieszanki. Ile kilokalorii zawiera zakupiona przez niego porcja? Zapisz obliczenia.

Zadanie 21. (0-3)

Meczowi drużyny Kruków z drużyną Puchaczy kibicowało 180 osób, przy czym $\frac{4}{9}$ kibiców stanowiły dziewczęta. Puchaczom kibicowało 10% dziewcząt. Ile procent wszystkich kibiców stanowiły dziewczęta kibicujące Krukom? Zapisz obliczenia.

Zadanie 22. (0-4)

Obwód podstawy ostrosłupa prawidłowego czworokątnego jest równy obwodowi jego ściany bocznej. Suma długości wszystkich krawędzi tej bryły jest równa 1 m. Ustal, czy przekątna podstawy jest dłuższa od krawędzi bocznej. Zapisz obliczenia.

