UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY

Radek Janoštík (radek.janostik
01@upol.cz) $\,$

KMI/NLO – Neklasické logiky

	Abstrakt	
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.	Abstrakt ápisků a poznámek z přednášek předmětu KMI/NLO. Př	éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-

Obsah

1.	Před	dnáška 1 - jemný úvod	1
	1.1.	Formální logika	1
	1.2.	Odlišnosti logik	1

Seznam obrázků

Seznam tabulek

1. Přednáška 1 - jemný úvod

1.1. Formální logika

- studium vyplývání \to formalizuje výroky, výrazy přirozeného jazyka \to formule. Definuje se, že formule je/není důsledkem jiných formulí.

1.2. Odlišnosti logik

1. Co vše popisuje jazyk - tj. co jsme schopni vyjádřit pomocí formulí.

Př.:

(a) Výroková logika - zabývá se výroky - neformálně výraz, o kterém se uvažuje, že je pravdivý či ne.

Atomická formule - nemůže se dělit na podvýrazy pomocí spojek. Nahrazují je výrokové symboly

Složitější formule - 1)Výrokový symbol je formule.

- 2) Je-li φ formule, pak i $\neg \varphi$ je formule.
- 3) Jsou-li φ, ψ formule, pak i $\varphi \Rightarrow \psi$ je formule.
- (b) Predikátová logika zabývá se (mj.) strukturou výroků

$$(\forall x)(\forall y)(x \leq y \Rightarrow f(x) \leq f(y))$$
 - formule jazyka, kde $R = \{\leq\}, F = \{f\}$

(c) Modální logiky - formalizují modality - "muset", "moci" . . .

Modální výroková - □ ...musí, ⋄ ...může.

Formule: Je-li φ formule, pak i $\Box \varphi$ a $\diamond \varphi$ jsou formule.

Paradox Arnošta Večerky: "Když mám 10 korun, koupím si čokoládu.": $\varphi \Rightarrow \psi$

"Když mám 10 korun, koupím si bonbon.": $\varphi \Rightarrow \chi$

$$T = \{\varphi \Rightarrow \psi, \varphi \Rightarrow \chi\} \ T \vdash \varphi \Rightarrow (\psi \land \chi)$$

Modální logika dodá "může". $T=\{\varphi\Rightarrow \diamond\psi, \varphi\Rightarrow \diamond\chi\}$ $T\vdash\varphi\Rightarrow (\diamond\psi\wedge \diamond\chi)$. Pozor: $T\not\vdash\varphi\Rightarrow \diamond(\psi\wedge\chi)$

- 2. Tím, jak zavádí vyplývání
 - (a) Sémantické navrhneme interpretaci formulí.

VL: zavedeme ohodnocení:
$$e: V \to \{0,1\} ||\varphi||_e \dots$$

PL:
$$\langle R, F, \sigma \rangle \to \mathbb{M} = \langle M, R^M, F^M \rangle ||\varphi||_{M,v} \dots T \models \varphi$$

mod. VL:
$$\Box \varphi, \diamond \varphi$$
 - Kripkeho struktura - $\mathbb{K} = \langle W, r, e \rangle$

$$r \subseteq W \times W \ \langle w_1, w_2 \rangle \in r \dots w_2$$
 je dosažitelný z w_1

$$e:W\times V\to\{0,1\}$$

$$||\Box \varphi||_{\mathbb{K},w} = 1$$
 pokud pro každý $w' \in W$ platí: pokud $\langle w, w' \rangle \in r$ pak $||\varphi||_{\mathbb{K},w'} = 1$ $||\diamond \varphi||_{\mathbb{K},w} = 1 \dots$ existuje \dots

(b) Syntaktické