Notes Computer Vision

Basil R. Yap 2018 January

1 Week 1

Gaussian Filter: $G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$ Edge Detection:

• Prewitt Operator: [[1,1,1]]

• Sobel operator: [[1,2,1]]

2 Week 2

histogram equalization: increase contrast

- 1. compute cdf at k (normalized)
- 2. multiply by L-1 (L, number of levels; 256), then floor
- 3. this is new intensity

KNN Distances:

- 1. L2 Distance (Euclidean distance): $\sqrt{\sum (I_1 I_2)^2}$
- 2. L1 Distance (Manhattan distance): $\sum |I_1 I_2|$

L1 is diamond shaped, L2 is circular

KNN computationally expensive and unable to differentiate position and intensity shift.

3 Week 3

for given image len x width:

- input $x = D \times 1$ vector (flatten image)
- weight $W = k \times D$ array
- bias $b = k \times 1$ vector

• score $s = k \times 1$ vector

$$s = Wx + b$$

$$s = Wx$$
 where $W=[W,b]$, $x=[x,1]$

- $x=(D+1) \times 1 \text{ vector}$
- \bullet W=k x (D+1) array
- \bullet s=k x 1 vector

Softmax classifier probability of class m can be calculated with $softmax(f) = \frac{e^{fm}}{\sum_{j=1}^{K} e^{f_j}}$ cross-entropy loss for ith training sample: $L_i = -\log \frac{e^{fyi}}{\sum_{j=1}^{K} e^{f_i}}$ assumption of cnn:

- locality of pixel dependencies
- $\bullet\,$ stationary of image statistics
- translation invariance
- $\bullet\,$ same filter for whole image