Lecture #23: Conversion and Type Inference

Administrivia.

- Due date for Project #2 moved to midnight tonight.
- Midterm mean 20, median 21 (my expectation: 17.5).

Conversion vs. Subtyping

• In Java, this is legal:

```
Object x = "Hello";
```

- Can explain by saying that static type of string literal is a subtype of Object.
- That is, any String is an Object.
- ullet However, Java calls the assignment to x a widening reference conversion.

Integer Conversions

One can also write:

```
int x = 'c';
float y = x;
```

The relationship between char and int, or int and float not generally called subtyping.

- Instead, these are conversions (or coercions), implying there might be some change in value or representation.
- In fact, in case of int to float, can lose information (example?)

Conversions: Implicit vs. Explicit

- With exception of int to float and long to double, Java uses general rule:
 - Widening conversions do not require explicit casts. Narrowing conversions do
- A widening conversion converts a "smaller" type to a "larger" (i.e., one whose values are a superset).
- A narrowing conversion goes in the opposite direction.

Conversion Examples

• Thus,

```
Object x = \dots
String y = \dots
int a = 42;
short b = 17;
x = y; a = b; // {OK}
y = x; b = a; // \{ ERRORS \}
x = (Object) y; // {OK}
a = (int) b; 	 // {OK}
y = (String) x; // {OK, but may cause exception}
b = (short) a;  // { OK, but may lose information}
```

 Possibility of implicit coercion can complicate type-matching rules (see C++).

Typing In the Language ML

Examples from the language ML:

```
fun map f [] = []
   map f (a :: y) = (f a) :: (map f y)
fun reduce f init \Pi = init
   reduce f init (a :: y) = reduce (f init a) y
fun count [] = 0
 | count (_ :: y) = 1 + count y
fun addt \Pi = 0
    addt ((a,_-,c) :: y) = (a+c) :: addt y
```

- Despite lack of explicit types here, this language is statically typed!
- Compiler will reject the calls map 3 [1, 2] and reduce (op +) [] [3, 4, 5].
- Does this by deducing types from their uses.

Type Inference

• In simple case:

compiler deduces that add has type int list → int.

- Uses facts that (a) 0 is an int, (b) [] and a::L are lists (:: is cons),
 (c) + yields int.
- More interesting case:

(_ means "don't care" or "wildcard"). In this case, compiler deduces that count has type α list \rightarrow int.

 \bullet Here, α is a type parameter (we say that count is polymorphic).

Doing Type Inference

Given a definition such as

```
fun add [] = 0
 \mid add (a :: L) = a + add L
```

- First give each named entity here an unbound type parameter as its type: $add:\alpha$, $a:\beta$, $L:\gamma$.
- Now use the type rules of the language to give types to everything and to relate the types:
 - -0: int, []: δ list.
 - Since add is function and applies to int, must be that $\alpha = \iota \to \kappa$, and $\iota = \delta$ list
 - etc.
- Gives us a large set of type equations, which can be solved to give types.
- Solving involves pattern matching, known formally as type unification.

Type Expressions

- For this lecture, a type expression can be
 - A primitive type (int, bool);
 - A type variable (today we'll use ML notation: 'a, 'b, 'c1, etc.);
 - The type constructor T list, where T is a type expression;
 - A function type $D \to C$, where D and C are type expressions.
- Will formulate our problems as systems of type equations between pairs of type expressions.
- Need to find the substitution

Solving Simple Type Equations

- Simple example: solve
 - 'a list = int list
- **Easy**: 'a = int.
- How about this:
 - 'a list = 'b list list; 'b list = int list
- Also easy: 'a = int list; 'b = int.
- On the other hand:
 - 'a list = 'b \rightarrow 'b

is unsolvable: lists are not functions.

- Also, if we require finite solutions, then
 - 'a = 'b list; 'b = 'a list

is unsolvable.

Most General Solutions

Rather trickier:

```
- 'a list= 'b list list
```

• Clearly, there are lots of solutions to this: e.g.,

```
- 'a = int list; 'b = int
  a = (int \rightarrow int) list; b = int \rightarrow int
 etc.
```

- But prefer a most general solution that will be compatible with any possible solution.
- Any substitution for 'a must be some kind of list, and 'b must be the type of element in 'a, but otherwise, no constraints
- Leads to solution

where 'b remains a free type variable.

ullet In general, our solutions look like a bunch of equations ' ${f a}_i = T_i$, where the T_i are type expressions and none of the 'a_i appear in any of the T's.

Finding Most-General Solution by Unification

- To unify two type expressions is to find substitutions for all type variables that make the expressions identical.
- The set of substitutions is called a unifier.
- ullet Represent substitutions by giving each type variable, τ , a binding to some type expression.
- Initially, each variable is unbound.

Unification Algorithm

For any type expression, define

$$\operatorname{binding}(T) = \left\{ \begin{matrix} \operatorname{binding}(T'), & \text{if } T \text{ is a type variable bound to } T' \\ T, & \text{otherwise} \end{matrix} \right.$$

Now proceed recursively:

```
unify (T1,T2):
  T1 = binding(T1); T2 = binding(T2);
  if T1 = T2: return true;
  if T1 is a type variable and does not appear in T2:
    bind T1 to T2; return true
  if T2 is a type variable and does not appear in T1:
    bind T2 to T1; return true
  if T1 and T2 are S1 list and S2 list: return unify (S1,S2)
  if T1 and T2 are D1\rightarrow C1 and D2\rightarrow C2:
     return unify(D1,D2) and unify(C1,C2)
  else: return false
```

• Try to solve

```
- 'b list= 'a list; 'a\rightarrow 'b = 'c;
  'c \rightarrow bool= (bool\rightarrow bool) \rightarrow bool
```

• We unify both sides of each equation (in any order), keeping the bindings from one unification to the next.

'a:

'b:

, c:

Try to solve

```
- 'b list= 'a list; 'a\rightarrow 'b = 'c;
  c \rightarrow bool = (bool \rightarrow bool) \rightarrow bool
```

```
Unify 'b list, 'a list:
'a:
'b:
, c:
```

• Try to solve

```
- 'b list= 'a list; 'a\rightarrow 'b = 'c;
  c \rightarrow bool = (bool \rightarrow bool) \rightarrow bool
```

```
Unify 'b list, 'a list:
'a:
                       Unify 'b, 'a
'b: 'a
, c:
```

• Try to solve

```
- 'b list= 'a list; 'a\rightarrow 'b = 'c;
  c \rightarrow bool = (bool \rightarrow bool) \rightarrow bool
```

```
Unify 'b list, 'a list:
'a:
                           Unify 'b, 'a
                        Unify 'a\rightarrow 'b, 'c
'b: 'a
'c: 'a \rightarrow 'b
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

```
'a: bool Unify 'b list, 'a list: Unify 'b, 'a 'b: 'a Unify 'a\rightarrow 'b, 'c Unify 'c \rightarrow bool, (bool \rightarrow bool) \rightarrow bool Unify 'c, bool \rightarrow bool: 'c: 'a \rightarrow 'b Unify 'a \rightarrow 'b, bool \rightarrow bool: Unify 'a, bool
```

Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

```
'a: bool Unify 'b list, 'a list: Unify 'b, 'a Unify 'a\rightarrow 'b, 'c Unify 'c \rightarrow bool, (bool \rightarrow bool) \rightarrow bool Unify 'c, bool \rightarrow bool: 'c: 'a \rightarrow 'b Unify 'a \rightarrow 'b, bool \rightarrow bool: Unify 'a, bool Unify 'b, bool:
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

• Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
'c → bool= (bool→ bool) → bool
```

Type Rules for a Small Language

 \bullet Each of the 'a, 'a, mentioned is a "fresh" type variable, introduced for each application of the rule.

$$\frac{\mathsf{E}_1 : \mathsf{bool}, \mathsf{E}_2 : \mathsf{'a}, \mathsf{E}_3 : \mathsf{'a}}{\mathsf{if} \; \mathsf{E}_1 \; \mathsf{then} \; \mathsf{E}_2 \; \mathsf{else} \; \mathsf{E}_3 : \mathsf{'a}} \qquad \qquad \frac{\mathsf{E}_1 : \mathsf{'a} \to \mathsf{'b}, \mathsf{E}_2 : \mathsf{'a}}{\mathsf{E}_1 \; \mathsf{E}_2 : \mathsf{'b}}$$

$$\begin{array}{c} \textbf{x1: 'a_1, ..., xn: 'a_n, f: 'a_1 \rightarrow ... \rightarrow 'a_n \rightarrow 'a_0 \vdash E: 'a_0} \\ \textbf{def f x1... xn = E: void} \\ \textbf{f: 'a_1 \rightarrow ... \rightarrow 'a_n \rightarrow 'a_0} \end{array}$$

Alternative Definition

Construct	Type	Conditions
Integer literal	int	
	'a list	
$hd\left(L\right)$	'a	L: 'a list
tl (<i>L</i>)	'a list	L: 'a list
E_1 + E_2	int	E_1 : int, E_2 : int
E_1 :: E_2	'a list	E_1 : 'a, E_2 : 'a list
$E_1 = E_2$	bool	E_1 : 'a, E_2 : 'a
E_1 != E_2	bool	E_1 : 'a, E_2 : 'a
if E_1 then E_2 else E_3	'a	E_1 : bool, E_2 : 'a, E_3 : 'a
$E_1 E_2$	'b	E_1 : 'a $ ightarrow$ 'b, E_2 : 'a
def f x1xn = E		$x1: 'a_1, \ldots, xn: 'a_n E: 'a_0,$
		$ig f \colon 'a_1 o \ldots o 'a_n o 'a_0.$

Using the Type Rules

- Apply these rules to a program to get a bunch of Conditions.
- Whenever two Conditions ascribe a type to the same expression, equate those types.
- Solve the resulting equations.

Aside: Currying

Writing

def sqr
$$x = x*x;$$

means essentially that sqr is defined to have the value $\lambda \times x \times x$.

To get more than one argument, write

$$def f x y = x + y;$$

and f will have the value $\lambda \times \lambda y \times x+y$

- It's type will be int \rightarrow int \rightarrow int (Note: \rightarrow is right associative).
- So, f 2 3 = (f 2) 3 = $(\lambda y. 2 + y)$ (3) = 5
- Zounds! It's the CS61A substitution model!
- This trick of turning multi-argument functions into one-argument functions is called *currying* (after Haskell Curry).

Example

- Let's initially use 'f, 'x, 'L, etc. as the fresh type variables.
- Using the rules then generates equations like this:

```
'f = 'a0 \rightarrow 'a1 \rightarrow 'a2  # def rule

'L = 'a3 list  # = rule, [] rule

'L = 'a4 list  # hd rule,

'x = 'a4  # != rule

'x = 'a0  # call rule

'L = 'a5 list  # tl rule, call rule

'a1 = 'a5 list  # tl rule, call rule
```