NLP Homework 2, Part 2

Vahid Kharazi

November 27, 2015

1 Local Alignment

According to wikipedia and course slides, we have to implement Smith-Waterman version of edit distance to solve local alignment problem.

$$\begin{split} &H(i,0) = 0, \ 0 \leq i \leq m \\ &H(0,j) = 0, \ 0 \leq j \leq n \\ &H(i,j) = \max \left\{ \begin{aligned} &0 \\ &H(i-1,j-1) + s(a_i,b_j) & \text{Match/Mismatch} \\ &\max_{k \geq 1} \{H(i-k,j) + W_k\} & \text{Deletion} \\ &\max_{l \geq 1} \{H(i,j-l) + W_l\} & \text{Insertion} \end{aligned} \right\}, \ 1 \leq i \leq m, 1 \leq j \leq n \end{split}$$

Where:

- a, b = Strings over the Alphabet Σ
- m = length(a)
- n = length(b)
- ullet s(a,b) is a similarity function on the alphabet
- ullet H(i,j) is the maximum Similarity-Score between a suffix of a[1...i] and a suffix of b[1...j]
- ullet W_i is the gap-scoring scheme

Test: There is an example in wikipedia to compute edit distance between ACACACTA and AGCACACA:

Similar to wikipedia example, this is my result for same:

(ve	env) v	ahid@	khara	zi:~/	dev/r	nlp/1	two\$	pytho	on two.py
	0	0	0	0	0	0	0	. 0	0
	0	2	1	2	1	2	1	1	2
	0	1	1	1	1	1	1	Θ	1
	0	1	3	2	3	2	3	2	2
	0	2	2	5	4	5	4	4	4
	0	1	4	4	7	6	7	6	6
	0	2	3	6	6	9	8	8	8
	0	1	4	5	8	8	11	10	10
	0	2	3	6	7	10	10	10	12
0	0	0	0	0	0		0	0	0
0	D	L	D	L	D	l	L	L	D
0	Т	D	Т	D	Т	[)	DTL	T
0	Т	D	L	D	L	[)	L	L
0	D	Т	D	L	D		L	L	DL
0	Т	D	Т	D	L	[)	L	L
0	D	Т	D	Т	D		L	L	DL
0	Т	D	Т	D	Т	[L	L
0	D	Т	D	T	D	1	Γ	D	D
oreak									
0	0	0	0	0	0		0	0	0
0		L	D	L	D		L	L	D
0		D	Ţ	D	Ţ	[DTL	T
0	Ţ		L	D	L	[L	L
0	D	Ţ	<u> </u>	L	D		L	L	DL
0	Ţ	D	Ţ	<u> </u>	L)	L	L
0	D	Ţ	D	Ţ		_ I	L	L	DL
0	Ţ	D	T	D	T			1	L
D T D T D T D ,									
['A', 'C', 'A', 'C', 'A', 'C', 'T', 'A']									
[, 1-,,,,,, 'd', ']									
<i>F</i>	٠,,	U',	L', '	Α',	· ,	Α',		, A.	1

The first matrix is H, Second matrix is T(T = Top, L = Left, D = Diag). Finally you can find the path of minimum edit distance: