RANSOMWARE ATTACKS

COMPUTER NETWORKING

Time: 60 mins

Introduction

In this class, the student/s will learn how to lock the files, encrypt and decrypt the files using the Fernet key.

New Commands Introduced

from cryptography.fernet import Fernet
Directs to the fernet module from cryptography Imports the

Fernet module

• Fernet.generate_key() Generates a key value using the Fernet module

• encryptedKey.write(key) Stores the key value using write method in the

encryptedKey.key file

Fernet(key).encrypt(rawData)
Encrypts the data and locks using encrypted Fernet key

Vocabulary

- The fernet module of the cryptography package has inbuilt functions for the generation of the key, encryption of plaintext into ciphertext, and decryption of ciphertext into plaintext using the encrypt and decrypt methods respectively.
- A **fernet key** is used to encrypt and decrypt fernet tokens.
- Ransomware is the attack performed by installing an application from unprotected sources or clicking on a link which shares a virus.

Learning Objectives

Student/s should be able to:

- Recall the encryption and decryption using the cryptography method.
- **Demonstrate** the generation of Fernet key which can be used to perform a ransomware attack on files.
- Explain how files are encrypted and decrypted using the Fernet key.

Activities

Class Narrative: (3 mins)

• Brief the student/s that sometimes opening a file gives error and can throw a notification to inform on cybersecurity attack.

Concept Introduction Activity: (4 mins)

- Let the student/s observe that the files are locked with an encryption key and a text file is shared to inform and trade for the attack performed.
- Explain how ransomware attacks are performed, different sources of ransomware and its kinds.
- Using the slides, explain that the student/s will learn:
 - to generate an encryption key
 - to encrypt the file data
 - to decrypt the file data

Activity 1: Generate an Encryption Key (16 mins)

Teacher Activity: (8 mins)

- Recall we used cryptography to perform asymmetric encryption and decryption using a public and private key.
- Introduce the Fernet module used in cryptography for encryption and decryption and how fernet key can be generated.
- Demonstrate how to generate the fernet key and store it using the write mode method.

Student Activity: (8 mins)

Guide the student/s to generate an encryption key using the Fernet module.

Activity 2: Encrypt the File Data (10 mins)

- Explain how we will open a file, read its data and encrypt it.
- Explain how we will write the encrypted data to another file.

Student Activity: (10 mins)

Guide the student/s to encrypt the file data using the fernet key.

Activity 3: Decrypt the File Data (12 mins)

- Explain how you can either use a secret password or the encrypted key to unlock the encrypted files.
- Explain how using an encrypted key, we need to decrypt the fernet key to unlock the file and then decrypt the file data.

Student Activity: (6 mins)

• Guide the students to decrypt the file data using the fernet key.

Introduce the Post class project: (2 min)

• Encrypt and decrypt the file data by asking an input form the user.

Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective activities.
- Summarize the overall class learning towards the end of the class.

Additional activities:

- Encourage the student/s to add the functionality to not create a key if a Fernet key is already created such that file can be decrypted without an error.
- Encourage the student/s to encrypt the file only if the file cannot be decrypted with the saved Fernet key.

State the Next Class Objective: (1 min)

In the next class, student/s will learn about the IDOR attacks in cybersecurity.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	RANSOMWARE ATTACKS	https://s3-whjr-curriculum-uploads. whjr.online/de76152a-a094-4bfd-a e74-a766145b7392.html
Explore Activity	RANSOMWARE ATTACKS	https://s3.amazonaws.com/media- p.slid.es/uploads/2071954/images/ 10989645/Slide_4-1.gif
Teacher Activity 1	Generate an Encryption Key	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS-BP
Teacher Reference: Teacher Activity 1 Solution	Generate an Encryption Key	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS

Student Activity 1	Generate an Encryption Key	https://github.com/Tynker-Computer
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-Networks/TNK-M16-C125-SAS-BP
Teacher Reference: Student Activity 1 Solution	Generate an Encryption Key	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS
Teacher Activity 2	Encrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS-BP
Teacher Reference: Teacher Activity 2 Solution	Encrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS
Student Activity 2	Encrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS-BP
Teacher Reference: Student Activity 2 Solution	Encrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS
Teacher Activity 3	Decrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS-BP
Teacher Reference: Teacher Activity 3 Solution	Decrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-TAS
Student Activity 3	Decrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS-BP
Teacher Reference: Student Activity 3 Solution	Decrypt the File Data	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS
Student's Additional Activity 1	Create a Single Fernet Key	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Create a Single Fernet Key	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS
Student's Additional Activity 2	Encrypt the File Once	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Encrypt the File Once	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-SAS
Post Class Project	Perform Crypto-ransomware Attack	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-PCP-BP
Teacher Reference: Post Class Project Solution	Perform Crypto-ransomware Attack	https://github.com/Tynker-Computer -Networks/TNK-M16-C125-PCP