Heart Disease Prediction

using Analytics

By Shisir Gurung, Trupal Prajapati, Vaibhavi Shastri, Rithi Veronica

Background

1

695,000

1 in every 5 Deaths

Death every 33 seconds

\$240B

The Question

Can We Predict Heart Disease Based on Biomarkers? ST segment depression Blood Pressure Thallasemia Max heart ST segment depression Chest pain

Data Description

Data source:

https://www.kaggle.com/code/desalegngeb/heart-disease-predictions

13 biomarkers

4242 Data points

TARGET:Does the person have heart disease?
(Yes/No)

Data Exploration

Disease: No Disease

54.1%: 45.9%

Numerical variables summary (post renaming)

	age	rest_bp	cholesterol	maximum_heart_rate	ST_depression	total_blood_vessels
count	303.00	303.00	303.00	303.00	303.00	303.00
mean	54.37	131.62	246.26	149.65	1.04	0.73
std	9.08	17.54	51.83	22.91	1.16	1.02
min	29.00	94.00	126.00	71.00	0.00	0.00
25%	47.50	120.00	211.00	133.50	0.00	0.00
50%	55.00	130.00	240.00	153.00	0.80	0.00
75%	61.00	140.00	274.50	166.00	1.60	1.00
max	77.00	200.00	564.00	202.00	6.20	4.00

Data Exploration

Gender and Target Distribution

Age and Resting Blood Pressure with Target

Data Exploration

Thalassemia and Target Distribution

Summary of approaches

Multi-classification model:

- Support Vector Machines
 - Imbalanced Data
 - Future prospect not good with computational expense and scalability issues
- Random Forest
 - Finding the right hyperparameter tuning difficult
 - Computationally intensive, effect on future prospects
 - Interpretability issues
- Gradient Boosting
 - o Parameter tuning, scalability issues wrt computational requirements
- Logistic Regression
 - Perfect fit for binary output
 - Less computation required

Review of Approaches

Support Vector Machines:

88%

Accuracy (kernel, c) (linear, 0.5)

Random Forest:

(estimators 100, 9 feats)

Gradient Boosting:

85.2% 86.88%

learning_rate: 0.01

estimators: 50 max_depth: 5

Review of Approaches

Feature Selections

Support Vector Machines	Random Forest	Gradient Boosting
1. Sex	1. Thal	1. Total_blood_vessels
2. Thal	2. Total_blood_vessels	2. Chest_pain_type
3. Chest_pain_type	3. Chest_pain_type	3. Thal
4. Total_blood_vessels	4. Maximum_heart_rate	4. ST_depression
5.Exercise_Induced_Angina	5. ST_depression	5. Age

Summary of the Final Approach

Logistic Regression

- Simplicity: Interpretability
- Binary Classification: Target variable binary
- Linearity Assumption: Biomarkers mostly linear
- Less Prone to Overfitting
- Low computation and memory requirements

88.5%

Accuracy

Review of the Final Approach

Logistic regression equation

y = (0.010 * age) + (-1.221 * sex) + (0.783 * chest_pain_type) + (-0.012 * rest_bp) + (-0.002 * cholesterol) + (-0.001 * fbs) + (0.546 * restecg) + (0.028 * maximum_heart_rate) + (-0.843 * exercise_induced_angina) + (-0.689 * ST_depression) + (0.633 * slope) + (-0.753 * total_blood_vessels) + (-1.023 * thal) + (0.030)

The Final Approach: Logistic Regression

- 1. Easy to implement
- 2. Easy to Interpret
- 3. Economical usage of Computation and Time

Conclusions

Out of SVM, Random Forest, Gradient Booting, Logistic Regression, LR performed best.

Prominent Features: Thal (Thalassemia), Chest_pain_type, Total_blood_vessels

Finally Logistic Regression performed the best with regards to speed, efficiency, accuracy and interpretability.

Implications

- 1. Fast: Doctors and provide diagnostics/prediction fast
- 2. Easy to train on less data, so adapts well to new data/scenario
- 3. Good with limited resources: Applicable in more hospitals (medium to large)

References

CDC (2024) Heart Disease Facts. Available from:

https://www.cdc.gov/heartdisease/facts.htm

Dattani, S., Samborska, V., Ritchie, H., Roser, M (2023) *Cardiovascular Disease*. Available from: https://ourworldindata.org/cardiovascular-diseases

Ritchey MD, Wall HK, George MG, Wright JS (2020) *US trends in premature heart disease mortality over the past 50 years*. Trends Cardiovasc Med. 2020. 30(6):364-374