Zomato data Analysis

```
In [26]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [186... #Loading the data frame
df= pd.read_csv("Zomato data .csv")
df
```

Out[186...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
•••				•••	•••		
143	Melting Melodies	No	No	3.3/5	0	100	Dining
144	New Indraprasta	No	No	3.3/5	0	150	Dining
145	Anna Kuteera	Yes	No	4.0/5	771	450	Dining
146	Darbar	No	No	3.0/5	98	800	Dining
147	Vijayalakshmi 	Yes	No	3.9/5	47	200	Dining

148 rows × 7 columns

In [188... df.head(5)

Out[188...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet

Data Processing

```
In [191...
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148 entries, 0 to 147
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	name	148 non-null	object
1	online_order	148 non-null	object
2	book_table	148 non-null	object
3	rate	148 non-null	object
4	votes	148 non-null	int64
5	<pre>approx_cost(for two people)</pre>	148 non-null	int64
6	<pre>listed_in(type)</pre>	148 non-null	object

dtypes: int64(2), object(5)
memory usage: 8.2+ KB

In [193... # every column has non - null values which means it does not contain any duplicated

In [195...

df.describe()

Out[195...

votes approx_cost(for two people)

count	148.000000	148.000000
mean	264.810811	418.243243
std	653.676951	223.085098
min	0.000000	100.000000
25%	6.750000	200.000000
50%	43.500000	400.000000
75%	221.750000	600.000000
max	4884.000000	950.000000

Data Cleaning

```
In [198...
          # for our convinence we will try to remove the /5 factor from the rate column
In [200...
          def updatedrate(value):
              value = str(value).split('/') #split helps to split the string by the delemet
                                  #returnig the first index as we needed the first part ex4.1
              value = value[0];
              return float(value)
          df['rate'] = df['rate'].apply(updatedrate)
          print(df.head())
                             name online_order book_table rate votes \
                            Jalsa
                                           Yes
                                                       Yes
                                                             4.1
                                                                    775
                   Spice Elephant
                                                             4.1
                                                                    787
         1
                                           Yes
                                                        No
         2
                  San Churro Cafe
                                           Yes
                                                        No
                                                             3.8
                                                                    918
         3 Addhuri Udupi Bhojana
                                            No
                                                             3.7
                                                                    88
                                                        No
                    Grand Village
                                                             3.8
                                            No
                                                                    166
            approx_cost(for two people) listed_in(type)
         0
                                    800
         1
                                    800
                                                  Buffet
         2
                                    800
                                                  Buffet
         3
                                     300
                                                  Buffet
                                    600
                                                  Buffet
In [202...
          #checking missing values or duplicate values
          df.duplicated()
In [204...
```

```
Out[204...
                   False
           1
                   False
           2
                   False
                   False
            3
                   False
                   . . .
            143
                   False
            144
                   False
            145
                   False
                   False
            146
            147
                   False
           Length: 148, dtype: bool
           df.duplicated().sum()
In [206...
Out[206...
In [208...
           # this means we dont have any duplicated values
```

Analysis

What type of resturant majority of customer order from

most order comes from dinning then second from cafes and third from Buffet

```
In [212... sns.countplot(x=df['listed_in(type)'],hue=df['listed_in(type)'],palette='pastel')
plt.xlabel('Type of Resturant')
Out[212... Text(0.5, 0, 'Type of Resturant')
```


In [241... df.head()

Out[241...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

In [243... # for counting the total votes we need to apply sum in the votes columns and voting #firstly group the restro type then calculate the total votes for each type

In [245... groupdata=df.groupby("listed_in(type)")['votes'].sum()
 result = pd.DataFrame({'votes': groupdata}) # creating a new df named result having
 print(result)

	votes
<pre>listed_in(type)</pre>	
Buffet	3028
Cafes	6434
Dining	20363
other	9367

now we can show the how many votes for each restro type recieved from customer

```
In [248... plt.plot(result,color='green',marker='*', linestyle='--')
    plt.xlabel('Resturant Type')
    plt.ylabel('vote count')
    plt.show()
```



```
In [249... #now we need to see the distributuin of rating for resturant
In [250... plt.hist(x=df['rate'],bins=10)
    plt.title('Rating Distribution')
    plt.show()
```


now lets analyse the average spending of order if ordered online

```
In [284... online_orders = df[df["online_order"] == "Yes"]
    average_spending_online = online_orders["approx_cost(for two people)"].mean()
    print('Average money spend by couple if order online is',average_spending_online)

Average money spend by couple if order online is 510.3448275862069

In [286... offline_orders = df[df["online_order"] == "No"]
    average_spending_offline = online_orders["approx_cost(for two people)"].mean()
    print('Average money spend by couple if order ofline is',average_spending_offline)

Average money spend by couple if order ofline is 510.3448275862069

In [296... sns.countplot(x=df['approx_cost(for two people)'])

Out[296... <Axes: xlabel='approx_cost(for two people)', ylabel='count'>
```


In [298... #count of 300 rupees is most for orders both online and order order considerred

Rating as comparted to online vs offline

Out[306		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
		Addhuri						

No

No

3.7

3.8

88

166

300

600

Buffet

Buffet

```
In [318... plt.figure(figsize=(6,6))
sns.boxplot(x=df['online_order'],y=df['rate'],palette='Set2')
```

3

Udupi

Grand

Village

Bhojana

No

No

In [306...

df.head()

```
C:\Users\KIIT\AppData\Local\Temp\ipykernel_13236\4130098408.py:2: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1
4.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.
sns.boxplot(x=df['online_order'],y=df['rate'],palette='Set2')
```

Out[318... <Axes: xlabel='online order', ylabel='rate'>


```
In [312... #online order has more rating which lies betwen 3.75 to 4

In [320... #offline order has less raring as compareto online ---- avg rating for offline beco
```

now wwe will analysie type of restaurant received more offline orders vs online order

```
In [333... # Creating a pivot table for both Online and Offline orders
combined_pivot = df.pivot_table(
   index='listed_in(type)',
   columns='online_order',
```

```
values='approx_cost(for two people)',
    aggfunc='count'
)

# Plotting the combined heatmap
plt.figure(figsize=(8, 8))
sns.heatmap(combined_pivot, annot=True, cmap="coolwarm", linewidths=.5)
plt.title('Heatmap of Online & Offline Orders by Restaurant Type')
plt.xlabel('Order Type (Online / Offline)')
plt.ylabel('Restaurant Type')
plt.show()
```


In []: