Impiego di apparati laser all'infrarosso per il telerilevamento dei composti gassosi atmosferici: funzionamento e potenzialità

Fabrizio Cuccoli

CNIT c/o Dipartimento di Elettronica e Telecomunicazioni Università di Firenze

Sommario

Applicazione di apparati laser all'infrarosso (TDL, tunable diode laser) per il telerilevamento della composizione atmosferica.

- > Cenni sull'interazione radiazione materia in atmosfera
 - Definizione dei principali parametri utili nel telerilevamento della composizione atmosferica
 - Equazioni basilari nel telerilevamento laser DAS (Differential absorption spectroscopy)
- > Descrizione e funzionamento della strumentazione a disposizione
 - > Descrizione delle modalità di misura
 - Pregi e difetti
- Campi applicativi, potenzialità e limiti del telerilevamento con sistemi TDL
 - Ricostruzione di campi 2D tramite tecniche di inversione tomografiche
 - > Stima di flussi di emissione

Interazione radiazione materia

Fenomeno di emissione-assorbimento di energia da parte della materia (molecole ed atomi).

livello energetico di eccitazione

livello energetico a riposo

(a) (b)

scattering risonante scattering non risonante assorbimento

Effetti di scattering e di assorbimento sulla propagazione di un'onda e.m.

k(z, v) Coefficiente di attenuazione

[W/m²·Hz]
$$I(z+dz,v) = -I(z,v)k(z,v) \cdot dz$$
(legge di Lambert-Beer - v=1/ λ)

Parametri di interesse nel telerilevamento

$$k(z,\lambda) = k_a(z,\lambda) + k_s(z,\lambda)$$

$$k_a(z,\lambda)$$
 Coefficiente di assorbimento tiene conto della quantità di energia persa per assorbimento

$$k_s(z,\lambda)$$
 Coefficiente di scattering (diffusione) tiene conto della quantità di energia persa per diffusione

Tutti i coefficienti sono funzione della quantità di materia interagente (molecole e atomi) delle condizioni termodinamiche (temperatura e pressione) e delle caratteristiche spettroscopiche.

Equazioni energetiche

Potenza ricevuta $P_r(v) = P_t(v)e^{-\tau(z_t, z_r, v)}$ profondità ottica $\tau(z_1, z_2, v) = \int_{z_1}^{z_2} k(z, v) dz$ Coeff. di attenuazione $k(z, v) \cong k_A(z, v)$

Coeff. di assorbimento

$$k_{A}(z,\nu) = \sum_{i=1}^{N} N_{i}(z) \cdot \sigma_{i}(N_{i}(z), P(z), T(z), \nu)$$

Sezione di assorbimento
$$\sigma_i(z, v) = \sum_{j=1}^{L_i} \sigma_{ij} (N_i(z), P(z), T(z), v_{ij}, S_{ij}, \gamma_{ij}, v)$$

Attenuazione in potenza
$$A(\nu) = \frac{P_t(\nu)}{P_r(\nu)} \Longrightarrow A(\nu) = e^{\tau(z_t, z_r, \nu)}$$

Linea di assorbiemento lorentziana

$$\sigma(v) = \frac{S}{\pi} \frac{\gamma_L}{(v - v_0)^2 + \gamma_L^2}$$

Esempio di coefficiente di assorbimento

Coefficiente di assorbimento $k_A(\lambda)$ di un cm³ di atmosfera terrestre standard. Principali componenti molecolari assorbenti: CO, H₂O CO₂ e N₂O

Valori in percentuale della funzione $T(\nu)$ =1/A(ν) nell'infrarosso relativi alle misure di attenuazione ottenute su un percorso parallelo alla superficie terrestre lungo 1828m e posto al livello del mare

$$\frac{P_t(\nu)}{P_r(\nu)} \propto e^{2\tau(z_t, z_r, \nu)}$$

In caso di attenuazione dominata dall'assorbimento di una singola specie molecolare:

$$\tau(z_t, z_r, v) \cong \sigma_0(v) \overline{N_0} L - \overline{N_0} = \frac{1}{L} \int_{z_t}^{z_r} N_0(z) dz$$

Si definisce concentrazione lineare la quantità:

$$N_0L$$

(unità di misura) [ppm·m] oppure [g/m²]

Rilevazione armonica

$$\begin{split} P_{rx}\left(t\right) &= ke^{-\sigma(\nu(t))\overline{N}L} = \\ &= ke^{-\left[\sigma(\tilde{\nu}) + \sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &= ke^{-\sigma(\tilde{\nu})\overline{N}L'}e^{-\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &= ke^{-\sigma(\tilde{\nu})\overline{N}L'}\left\{1 - \left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + \left\{1 - \left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^2 + \frac{1}{6}\sigma'''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = \\ &- \frac{1}{6}\left[\sigma'(\tilde{\nu})(\nu - \tilde{\nu}) + \frac{1}{2}\sigma''(\tilde{\nu})(\nu - \tilde{\nu})^3\right]}\overline{N}L' + o\left((\nu - \tilde{\nu})^3\right) = o\left((\nu - \tilde{\nu})^3\right) = o\left((\nu - \tilde{\nu})^3\right)$$

$$=ke^{-\sigma(\tilde{v})\bar{N}L'}\left\{\begin{aligned} &1-\left[\sigma'\left(\tilde{v}\right)\left(v-\tilde{v}\right)+\frac{1}{2}\sigma''\left(\tilde{v}\right)\left(v-\tilde{v}\right)^{2}+\frac{1}{6}\sigma'''\left(\tilde{v}\right)\left(v-\tilde{v}\right)^{3}\right]\overline{N}L'+\\ &+\frac{1}{2}\left[\sigma^{2}\left(\tilde{v}\right)\left(v-\tilde{v}\right)^{2}+\sigma'\left(\tilde{v}\right)\sigma''\left(\tilde{v}\right)\left(v-\tilde{v}\right)^{3}\right]\left(\overline{N}L'\right)^{2}+\\ &-\frac{1}{6}\sigma^{3}\left(\tilde{v}\right)\left(v-\tilde{v}\right)^{3}\left(\overline{N}L'\right)^{3} \end{aligned}\right\}+o\left(\left(v-\tilde{v}\right)^{3}\right)=$$

$$\nu - \widetilde{\nu} = \Delta \nu \cos(2\pi f_0 t)$$

$$\begin{cases} 1 - \frac{1}{4}\sigma''(\tilde{v})\Delta v^{2}\overline{N}L' + \frac{1}{4}\sigma'^{2}(\tilde{v})\Delta v^{2}(\overline{N}L')^{2} + \\ -\sigma'(\tilde{v})\Delta v\overline{N}L' - \frac{3}{24}\sigma'''(\tilde{v})\Delta v^{3}\overline{N}L' + \\ + \frac{3}{8}\sigma'(\tilde{v})\sigma''(\tilde{v})\Delta v^{3}(\overline{N}L')^{2} + \\ -\frac{3}{24}\sigma'^{3}(\tilde{v})\Delta v^{3}(\overline{N}L')^{3} \end{cases}$$

$$= ke^{-\sigma(\tilde{v})\tilde{N}L'}$$

$$+ \begin{cases} -\frac{1}{4}\sigma''(\tilde{v})\Delta v^{2}\overline{N}L' + \\ +\frac{1}{4}\sigma'^{2}(\tilde{v})\Delta v^{2}(\overline{N}L')^{2} \end{cases}$$

$$\cos(2\pi f_{0}t) +$$

$$+ c((v - \tilde{v})^{3})$$

$$+ c((v - \tilde{v})^{3})$$

$$-\frac{1}{24}\sigma'''(\tilde{v})\Delta v^{3}\overline{N}L' +$$

$$+ \frac{1}{8}\sigma'(\tilde{v})\sigma''(\tilde{v})\Delta v^{3}(\overline{N}L')^{2} +$$

$$\cos(2\pi 3f_{0}t)$$

$$-\frac{1}{24}\sigma'^{3}(\tilde{v})\Delta v^{3}(\overline{N}L')^{3}$$

Configurazione con retroriflettore

Apparati principali per la misura della concentrazione lineare

- ⇒ Gasfinder: Unità laser ricetrasmittente (Boreal-laser) con TDL all'infrarosso a temperatura ambiente.
 - ➤ Potenza emessa 1-10 mw,
 - larghezza spettrale della riga laser 10⁻¹² m (circa),
 - ➤ divergenza del fascio 2 mrad (circa)
- ⇒ retroriflettore a vertice di cubo
 - > portata in distanza (max 1000 m)

Schema di funzionamento del Gasfinder

Foto GF

Foto GF

Intervallo spettrale di scansione per la misura della CO₂

L'intervallo utilizzato per la misura della CO₂ è centrato in 1580 nm

Modalità di misura

- 1. La lunghezza d'onda della radiazione laser IR emessa dal diodo dipende dall'ampiezza della corrente di alimentazione.
- 2. La corrente di alimentazione ha un andamento a dente di sega al quale è sommato un segnale sinusoidale di portante f_0 .
- 3. L'estensione del dente di sega garantisce la scansione dell'intera riga di assorbimento (ordine di 10^{-10} m) della specie molecolare sotto osservazione.
- 4. La modulazione sinusoidale permette la rivelazione armonica: il comportamento non lineare del mezzo attraversato causa la comparsa di armoniche superiori rispetto alla fondamentale.
- 5. Il circuito di ricezione del gasfinder rileva la seconda armonica ($2f_0$) che risulta anch'essa essere proporzionale alla concentrazione lineare (poiché è proporzionale alla combinazione lineare delle derivate prima e seconda della profondità ottica).
- 6. La radiazione laser viene inviata alternativamente alla cella di riferimento contenente un campione noto di aria (in termini di concentrazione della specie di interesse) e al retroriflettore esterno.

- 7. I dati acquisiti dall'esterno sono messi in correlazione con quelli acquisiti dalla cella campione.
- 8. Tramite minimi quadrati viene calcolato il coefficiente di regressione lineare e il coefficiente di correlazione (cella di riferimento ed esterno) tra i due set di dati
- 9. Il coefficiente di regressione lineare, moltiplicato per la concentrazione nota della cella campione, fornisce la concentrazione lineare lungo il percorso ottico gasfinder-retroriflettore.
- 10. Il coefficiente di correlazione (0-100%) fornisce un indice sulla bontà della misura.

Segnale trasmesso

Freq rampa 357 Hz

Segnale ricevuto (5 m)

Segnale ricevuto con buffer (70 m)

Metodo di misura con cella campione e regressione lineare

Pregi e difetti

- Operazioni di allineamento semplici e veloci (ma limitate ad un solo percorso ottico)
- Tempi di elaborazione trascurabili (1 secondo circa)
- La presenza della cella campione:
 - garantisce alta affidabilità della misura e non necessitano operazioni di calibrazione (auto calibrazione)....
 -ma limita le capacità di misura ad una sola specie
- L'utilizzo della seconda armonica permette di enfatizzare il contributo della specie sotto osservazione rispetto agli altri fenomeni di attenuazione (vapore acqueo).
- Per la misura di più specie sono necessarie lunghezze d'onda diverse quindi è necessario un diodo per ogni specie.

Applicazioni

Monitoraggio urbano Controllo della qualità dell'aria (NO_x CO)

Monitoraggio impianti industriali Controllo di emissioni nocive (HF, H₂S, CO, CH₄)

Monitoraggio aree geotermiche e vulcaniche Controllo di situazioni di rischio (CO₂, H₂S)

Monitoraggio aree adibite a discarica Controllo degli odori (H₂S, CH₄)

Emissioni di CO2 a Pienza (SI)

N_tratta	Lunghezza tratta	Inizio	Fine	Durata	Concentrazione media* di tratta	Concentrazione minima di tratta	Concentrazione massima di tratta	Deviazione standard	N. valori utili	Concentrazione lineare media* di tratta
	[m]	[hh:mm:ss]	[hh:mm:ss]	[sec]	[ppm]	[ppm]	[ppm]	[ppm]		[ppmm]
1	22	10:16:52	10:26:05	553	642	409	2871	399	321	14122
2	23	10:53:22	10:59:51	389	870	406	2297	363	225	20014
3	24	11:04:00	11:20:26	986	633	378	1615	193	568	15187
4	18	11:22:26	11:36:16	830	436	364	970	71	446	7851
5	20	11:40:55	11:47:20	385	383	376	391	3	214	7652

Emissioni di CO2 in discarica (Poppi AR)

Emissioni di CO2 a Bagni di S.Filippo (SI)

Emissioni di CO2 a Bagni di S.Filippo (SI

Tomografia 2D

Emissioni di CO2 a Pozzuoli (NA)

km

Emissioni di CO2 dal letto del torrente Ambra (SI)

Emissioni di CO2 dai Vulcani (Isola di Vulcano)

Emissioni di CO2 dai siti di rifiuti (Case Passerini, Firenze)

Sito web per scaricare documenti:

http://radar.det.unifi.it/radar/accesso.html