Conceptual models of cross-immunity, and practical applications

Jonathan Dushoff, McMaster University

Epidemics9, Nov 2023

Conceptual talk with practical goals

- ► How should we incorporate partial immunity into population-level modeling?
- Why does it matter?
- ► How much does it matter?

Model goals

- Theoretical
- Inference
- Forecasting
- Strategic

Models played a prominent role during the COVID-19 pandemic in orienting political decisions on public health interventions. This led to extensive media coverage of modeling outputs, sometimes in the form of intense controversies. The intensity of these debates can at least in part be attributed to confusion on what questions

Read all

Poster sessions

Nov Poster Session 2
29th
17.50 1:30h

17:50 Speaker

Some history

- ► Halloran, Longini and others (1991-93): Leaky and "polarized" vaccines
 - https://pubmed.ncbi.nlm.nih.gov/1899778/
- ► Gog and Swinton (2002): status-based and history-based perspectives
 - https://pubmed.ncbi.nlm.nih.gov/11942531/
- ► Gabriela Gomes (2005): reinfection thresholds
 - ▶ https://pubmed.ncbi.nlm.nih.gov/15967188/

This project

- Dormant in my files for decades
- Jump-started by practical Covid questions from Michael (WZ)
 Li (Public Health Agency of Canada)
- Driven forward by Daniel (Sang Woo) Park
 - With help from Jess Metcalf and Bryan Grenfell
 - https://www.medrxiv.org/content/10.1101/2023. 07.14.23292670

Partial protection

- ► Against which outcome?
 - ► Death or severe disease
 - Clinically attended disease
 - Measurable infection
 - Transmission
 - Immune response

Modeling partial protection

- Biological
 - Leaky vs. polarized
- Dynamical
 - History-based vs. status-based
- ► Link
 - With leaky protection we care what you've seen in the past (history)
 - With polarized protection, we care what your current state is (status)

Modeling partial immunity

Why does it matter?

- Prediction
- ► Parameter estimation
- Planning

Polarized model

- Also known as "all or none":
 - Assumes that a substantial proportion of the population is completely unprotected
- Can be seen as a limit of broad distribution of susceptibilities

Leaky model

- The problem of phantom challenges
- We assume that these challenges happen, are beaten off, and have no effect
- I actively resist the flu, and then succumb to the same challenge next week!
- ► What if we don't do that?

Leaky

Leaky with boosting

Leaky with partial boosting [corrected]

The dynamicist's perspective

- Dynamical systems have shortcuts and dualities
- ▶ If your immunity is leaky, but is reliably boosted by challenges . . .
- ▶ The modeler can "decide" your fate when you recover
 - ► This is a system with equivalent dynamics

Leaky with boosting v. polarized

Boosting proportion — 0 — 0.5 — 1

Boosting proportion — 0 — 0.5 — 1

Boosting proportion — 0 — 0.5 — 1

Transmission reduction

- If all breakthrough infections go through the I_V box, but only transmit a fraction q, dynamics are unchanged
- ► In the deterministic case!

Interacting strains

Interacting strains with boosting

Deterministic coexistence

As long as both strains can invade:

$$R_{\mathrm{inv}}(1/R_{\mathrm{res}} + \varepsilon(1 - 1/R_{\mathrm{res}}) > 1$$

- ▶ Depends only on parameters (not on paradigm) . . .
- but how are they estimated?

Stochastic coexistence

- Leaky dynamics lead to giant epidemics
- ► Lots of overshoot
- Greater likelihood of stochastic extinction
- Probably

Estimating parameters is practically hard

- Cobey presentation
 - Antigenic evolution is extremely complicated
 - Immune responses as well

Estimating parameters from population-level data is intrinsically hard

Individual-level inference depends on paradigm

- ► Co-existence doesn't depend on leaky vs. polarized *once* parameters are known
- ▶ But *effective* cross immunity will differ
- So estimates will depend on immune assumptions
 - Leaky protection matches instantaneous hazard
 - Polarized protection matches cumulative hazard

Incidence-based cross-protection

Hazard-based cross-protection

Skimming the surface

- ► Relationship to serology
- Different outcomes (severe illness)
- ► Immune waning

Thanks

- Organizers and audience
- ▶ Daniel, Mike and other collaborators
- ▶ PHAC, CIHR

Connecticut correctional study

	Delta Predominant Period					Omicron Predominant Period				
Prior Infection, Vaccination,		Facility			Ratio of HR		Facility			Ratio of HR
and Type of Facility Exposure	Infections	Exposures		HR (95% CI)	(Pvalue)	! Infections	Exposures		HR (95% CI)	(Pvalue)
Prior SARS-CoV-2 Infection*	1									
No Exposure No Prior Infection	111	10502				129	7135			
Prior Infection Cellblock Exposure	- 11	6522	-	0.21 (0.11, 0.39)	-	38	6329	-	0.36 (0.25, 0.54)	-
No Prior Infection	199	3436	_			347	3374	_		
Prior Infection Cell Exposure	34	2180		0.32 (0.24, 0.44)	0.216	155	2606	-	0.61 (0.49, 0.75)	0.019
No Prior Infection	41	179 85	-	0.59 (0.30, 1.16)	0.029	73	448 254		0.89 (0.58, 1.35)	0.002
Prior Vaccination	1		_	()		1			()	
No Exposure	1					1				
Unvaccination Vaccinated	92	7883 9141		0.32 (0.21, 0.49)	_	97	5771 7693	-	0.57 (0.42, 0.78)	_
Cellblock Exposure Unvaccination	169	2603				255	2579			
Vaccinated Cell Exposure	64	3013		0.35 (0.26, 0.47)	0.727	247	3401	-	0.69 (0.58, 0.83)	0.313
Unvaccination	36	155	_			48	323			
Vaccinated	17	109		0.74 (0.37, 1.48)	0.033	61	379	_	0.96 (0.64, 1.46)	0.041
Hybrid Immunity ^c No Exposure						-				
No Hybrid Immunity	85	5650				81	3537			
Hybrid Immunity Cellblock Exposure	4			0.05 (0.02, 0.10)	-	22	4095	•	0.24 (0.15, 0.39)	-
No Hybrid Immunity Hybrid Immunity	147	1802 1379		0.10 (0.05, 0.19)	0.203	190	1702 1729		0.41 (0.31, 0.55)	0.053
Cell Exposure No Hybrid Immunity	28	115	_	22 (0.00, 0.10)	5.200	36	237		(0.01, 0.00)	2.000
Hybrid Immunity	4	45	_	0.29 (0.07, 1.12)	0.026	24	168		0.80 (0.46, 1.39)	0.001

Lind et al., Nat Commun, 2023. https://doi.org/10.1038/s41467-023-40750-8

Time scales of challenge

- Challenges a week apart are likely antagonistic
 - Immune boosting, polarized-like dynamics
- Challenges an hour apart are likely synergistic
 - Potentially overwhelming, leaky-like dynamics
- Work on getting lessons from individual-level models

Coronavirus fits

Dose dependence

Immune waning (whiteboard)

Cross immunity (whiteboard)

Michael WZ Li, PHAC