Heurističko rešavanje problema minimalnog broja zadovoljivih formula

Aleksa Papić Aleksandar Stefanović

17. septembar 2022.

Sadržaj

2 Opis algoritama 2.1 Kodiranje jedinki 2.2 Ocena kvaliteta jedinki 2.3 Rešavanje grubom silom 2.4 Rešavanje genetskim algoritmom 2.5 Rešavanje memetskim algoritmom	1	$\mathbf{U}\mathbf{vod}$		1
 2.2 Ocena kvaliteta jedinki 2.3 Rešavanje grubom silom 2.4 Rešavanje genetskim algoritmom 	2	Opis al	goritama	2
2.3 Rešavanje grubom silom		2.1 Ko	diranje jedinki	2
2.4 Rešavanje genetskim algoritmom		2.2 Oc	ena kvaliteta jedinki	2
• 0		2.3 Re	śavanje grubom silom	3
2.5 Rešavanje memetskim algoritmom		2.4 Re	śavanje genetskim algoritmom	3
		2.5 Re	śavanje memetskim algoritmom	3

1 Uvod

Problem minimalne zadovoljivosti iskazne formule f (eng. MIN-SAT) je optimizaciona varijanta problema zadovoljivosti (eng. SAT) u kojoj se traži valuacija v takva da je broj klauza formule f tačnih u valuaciji v minimalan. Poznato je da je ovaj problem NP-težak [1].

U ovom radu ćemo posmatrati naredno modifikaciju ovog problema datu u [2]:

Definicija 1.1 (Problem minimalnog broja zadovoljivih formula). Neka je dat par (U,C) gde je U skup iskaznih promenljivih, a C skup iskaznih formula u 3KNF (eng. 3CNF). Rešenje problema minimalnog broja zadovoljivih formula nad (U,C) je valuacija v za promenljive iz skupa U takva da je broj formula iz skupa C zadovoljenih tom valuacijom minimalan.

Iz definicije se može zaključiti da svaka instanca MIN-SAT problema odgovara nekoj instanci problema 1.1 u kojoj je broj klauza svake formule iz C jednak jedan.

Razmotrićemo i uporediti performanse jednog genetskog algoritma i više varijanti memetičkih algoritama za rešavanje problema 1.1.

2 Opis algoritama

U ovom poglavlju ćemo dati opis nekoliko pristupa u rešavanju problema 1.1.

2.1 Kodiranje jedinki

Pre razmatranja konkretnih algoritama, opisaćemo način kodiranja jedinki, tj. način predstavljanja konkretnih valuacija u okviru problema 1.1.

Definicija 2.1 (Kodiranje jedinki). Neka je dat par (U, C) kao u 1.1 i neka je skup promenljivih $U = \{p_1, ..., p_n\}$. Tada je valuacija v nad skupom promenljivih U niz binarnih brojeva $(x_1, ..., x_n) \in \{0, 1\}^n$ takav da x_i odgovara konkretizovanoj vrednosti promenljive p_i .

2.2 Ocena kvaliteta jedinki

Ocenu kvaliteta jedinki u okviru problema 1.1 ćemo zadati preko tzv. fitnes funkcije jedinke.

Definicija 2.2 (Fitnes funkcija). Neka je v neka jedinka, tj. konkretna valuacija (2.1) za par (U,C) definisan kao u problemu 1.1. Fitnes funkcija $fitness: \{0,1\}^n \to (0,1]$ je zadata sa $fitness(v) = \frac{1}{sat(v)+1}$, gde je sat(v) broj iskaznih formula iz C zadovoljenih u valuaciji v.

Iz date definicije se može zaključiti da je jedinka v_1 bolja od jedinke v_2 u kontekstu problema 1.1 ako i samo ako je $fitness(v_1) > fitness(v_2)$.

Broj zadovoljenih formula u valuaciji v se može dobiti kao $sat(v) = \frac{1}{fitness(v)} - 1$, ali se zbog računa u pokretnom zarezu predlaže zaokruživanje na najbliži ceo broj, tj. $sat(v) = round(\frac{1}{fitness(v)} - 1)$.

- 2.3 Rešavanje grubom silom
- 2.4 Rešavanje genetskim algoritmom
- 2.5 Rešavanje memetskim algoritmom

Reference

- [1] Rajeev Kohlit, Ramesh Krishnamurti, Prakash Mirchandani, *The minimum satisfiability problem*. SIAM J. Discrete Math. Vol. 7, No. 2, pp. 275-283, May 1994.
- [2] Viggo Kann, Polynomially bounded minimization problems that are hard to approximate. Nordic Journal of Computing 1(1994), 317–331.