

A MAN MAN -3 CONST MATINE YOUR MANN -3 CONST MATINE YOUR AND MANNEY

A graph theoretic look at basis

[18.1] <u>Remember</u> When striking off the rows and columns in B, it is better you write them as a sequence using R1 for row one and C1 for column one. For example, for the B in the previous example, the strike of sequence is

 $R_6C_4, R_2C_3, R_3C_5, R_4C_1, R_1C_2.$

Similarly, for the strike off in T you can write

[18.2] <u>Discussion</u> (A bipartite graph for a given set of variables) a) Consider an $m \times n$ BTP. Put vertices a_1, \ldots, a_m on the left and vertices b_1, \ldots, b_n on the right, in a top down manner. The variable x_{ij} can be viewed to stand for the edge from a_i to b_j . In this way, we see a complete bipartite graph $K_{m,n}$.

b) Let S be a set of some highlighted variables. The graph Γ_S of S is the spanning subgraph of the previous graph, where we only show the edges for the variables in S.

Recall that the column corresponding to x_{ij} of the transportation matrix A is $C_{ij} = \left[\frac{e_i}{e_j}\right]$, where e_i has size m and e_j has size n.

[18.3] <u>Lemma</u> Let S be a set of variables. Suppose that Γ_S contains a cycle. Then S is linearly dependent.

Proof. Suppose that Γ_S contains a cycle $[a_{i_1}, b_{j_1}, a_{i_2}, b_{j_2}, \dots, a_{i_k}, b_{j_k}, a_{i_1}]$. The corresponding edges are

$$x_{i_1,j_1}, x_{i_2,j_1}, x_{i_2,j_2}, x_{i_3,j_2}, \ldots, x_{i_k,j_k}, x_{i_1,j_k},$$

in that order. Then we have

$$C_{i_1j_1} - C_{i_2j_1} + C_{i_2j_2} - C_{i_3j_2} + \dots + C_{i_kj_k} - C_{i_1j_k} = \left[\frac{e_{i_1}}{e_{j_1}}\right] - \left[\frac{e_{i_2}}{e_{j_1}}\right] + \left[\frac{e_{i_2}}{e_{j_2}}\right] - \dots - \left[\frac{e_{i_1}}{e_{j_k}}\right] = 0.$$

The alternating signs match perfectly as a cycle must have an even length in a bipartite graph. Thus, S is linearly dependent.

Show that the columns of A corresponding to the set of variables S =[18.4] $\{x_{11}, x_{12}, x_{21}, x_{22}, x_{31}\}\$ is linearly dependent.

Answer. In Γ_S we have a cycle $[a_1, b_1, a_2, b_2, a_1]$. Hence we have $C_{11} - C_{21} + C_{2,2} - C_{1,2} = 0$. So it is linearly dependent.

<u>Lemma</u> Let S be a set of variables and suppose that Γ_S does not have a cycle. Then the columns of A corresponding to the variables in S are linearly independent.

Proof. If $S = \emptyset$, the statement is vacuously true. So, let $S \neq \emptyset$. Then Γ_S must contain a pendant vertex (degree one vertex).¹³ Let that vertex be a_{i_0} . (The other case is also similar.) Suppose that b_{j_0} is adjacent to this vertex. Then x_{i_0,j_0} is the edge. Notice that the corresponding column is $C_{i_0j_0} = \left[\frac{e_{i_0}}{e_{j_0}}\right]$. None of the remaining edges is incident on e_{i_0} and hence their columns will not have e_{i_0} in the upper half. Hence, $C_{i_0j_0}$ is independent of the columns of the remaining edges. (Means $C_{i_0j_0}$ is not in the span of those columns.)

Now consider the set $S' = S \setminus \{x_{i_0j_0}\}$. Then $\Gamma_{S'}$ does not have a cycle as it is a subgraph of Γ_S . Hence the columns of A corresponding to the elements in S' are linearly independent. As $C_{i_0j_0}$ is not in the span of

these columns, we are done by induction.

[18.6]**Theorem** A set S of variables forms a basis iff Γ_S is a tree.

Proof. Follows from the previous two results.

Another way to check if a set S of variables is a basis

Draw the bipartite graph Γ_S . If it is tree then S is a basis. Otherwise not.

Exercise In a 5×6 BTP, is $\{x_{1,2}, x_{1,3}, x_{2,1}, x_{2,3}, x_{3,3}, x_{3,4}, x_{4,5}, x_{5,5}, x_{5,6}, x_{5,1}\}$ a basis? [18.7]

¹³There is a positive degree vertex. Let it be u_1 . As $d(u_1) > 0$, let it be adjacent to u_2 . As $d(u_2) > 1$, there is a vertex u_3 adjacent to u_2 . Continue. Repetition is bound to happen, as the graph is finite. Stop at the first repetition. You have got a cycle.

Computing a basic solution for a given basis

Suppose that we have a basis S. How do I get the bs (basic solution) corresponding to S?

Answer. Suppose that $x_{i,j}$ is the first we strike off in the transportation array T with a line, say a column. Then, put $x_{i,j} = b_j$. (Since $x_{i,j}$ was the only highlighted variable in that column, we see that the value $x_{i,j} = b_j$ is correct.) Modify $a_i = a_i - b_j$. (Notice that for the struck off array T', the set $S' = S \setminus \{x_{i,j}\}$ is a basis. So its value can be determined correctly by induction.) In other words, we go for the next strike off and decide the value of another variable and so on.

[18.8] <u>Example</u> Compute the basic solution of the following BTP for the highlighted basis. Do we have

	\overline{x}_{11}	x_{12}	x_{13}	x_{14}	200]	\overline{x}_{11}	x_{12}	x_{13}	x_{14}	200]
Answer.				x_{24}	250	-				250	250	-
	·.			300	300	$ \rightarrow$				300	300	$\overline{} \rightarrow$
	150	200	250	150		= 	150	200	250	150		=
150	x_{12}	x_{13}	x_{14}	200]	150	200	250	-400	200	<u>"</u>	J
			200	250					250	250	-	
			300	300	$\rightarrow \rightarrow$				300	300	_ .	
150	200	250	150			150	200	250	150		=	

Yes, it is a basic solution which is not feasible.

[18.9] Exercise (Alternate way to compute a basic solution from a basis) How would we compute the bs for a given basis using the tree structure Γ_S of the basis S?

[18.10] <u>Discussion</u> We already know that any arbitrary basis will not give us a bfs. So, we have the following algorithm to find an initial bfs.

General method to find an initial bfs.

- 1) Select any unstruck variable x_{ij} in the transportation table. Put $x_{ij} = \min\{a_i, b_j\}$.
- 2) If $a_i = \min\{a_i, b_j\}$, then strike off row i from the table and modify $b_j = b_j a_i$ else strike off column j from the table and modify $a_i = a_i b_j$.
- 3) If at any stage there is just a column (or row) left, then start striking off the rows (columns).
- 4) If there is any unstruck variable available, then go to 1).

The initial bfs is given by $x_{12} = 30$, $x_{13} = 70$, $x_{21} = 40$, $x_{22} = 20$, $x_{24} = 60$, $x_{34} = 30$, and $x_{35} = 90$.

[18.12] <u>Theorem</u> The previous algorithm gives us a bfs correctly.

Proof. The fact that we are striking off a line before selecting the next variable ensures that we are going to get a basis. The fact that the value of a new variable $x_{l,k}$ is decided by the minimum of the modified availabilities a_l and b_k , ensures that the value of the variable is nonnegative. The nonbasic variables are zero, anyway. So it is a bfs.

<u>Some traditional common rules to find an initial bfs</u> To find an initial bfs the following two methods are commonly used, though none of them are beneficial, in general.

- a) NORTH-WEST RULE Always Select the variable in the north-west (top-left) corner of the unstruck part of the table.
- b)MINIMUM COST RULE Always select the variable with the minimum cost from the unstruck part of the table.

[18.13] Proposition (Values of the variables in a bfs) Values of the basic variables in a bfs can be written as a sum of some $\pm a_i$'s and $\pm b_j$'s, allowing repetition.

Proof. Suppose, $x_{i_1j_1}, \dots, x_{i_sj_s}$ are the basic variables in a bfs, written in the strike off order. We employ induction on the stage number k.

In the first stage of the strike off, if a row was struck off, then $x_{i_1j_1} = a_{i_1}$, otherwise $x_{i_1j_1} = b_{j_1}$. So the statement holds for k = 1.

Assume that the statements hold up to stage k-1. At a stage k, if a row is struck off, then

$$x_{i_k j_k} = a_{i_k} - \sum$$
 already found basic variables in that row.

By induction hypothesis, the values of the already found variables in that row are in the required form. So the value of $x_{i_k j_k}$ has the required form. Argument is similar, if a column is struck off at stage k.

[18.14] Corollary (Nonnegative integer bfs) Suppose that in a BTP, all a_i 's and b_j 's are nonnegative integers. Then in any bfs, the values of the variables are nonnegative integers. In particular, if all a_i and b_j are 1, then the value any variable in that bfs is 0 or 1.

20.75 to 2.02

Proof. As the values of the variables are sums of the $\pm a_i$'s and $\pm b_j$'s, they must be integers. As it is a bfs, they must be nonnegative. For the next question, the value any variable in that bfs is 0 or 1, as the value of a variable (in a bfs) cannot be more than the a_i 's and b_j 's.

The minimality test

[18.15] <u>Discussion</u> Consider a BTP with a bfs w. Let \tilde{A} be the matrix obtained from A by dropping the last row and \tilde{B} be a basis matrix for w (this is a submatrix of \tilde{A}). For minimality, we need to check the nonnegativity of the vector $\bar{c}^t = c^t - c^t_{\tilde{B}} \tilde{B}^{-1} \tilde{A}$.

a) Suppose that we have a vector $\alpha^t = \begin{bmatrix} p_1 & \cdots & p_m & q_1 & \cdots & q_{n-1} \end{bmatrix}$ such that $c^t - \alpha^t \tilde{A} \geq 0$ with basic entries 0. In view of our discussions on lpp, we know that $\alpha^t = c^t_{\tilde{B}} \tilde{B}^{-1}$ and $\overline{c}^t = c^t - \alpha^t \tilde{A}$.

b) Suppose that we have a vector $\beta^t = \begin{bmatrix} u_1 & \cdots & u_m & v_1 & \cdots & v_{n-1} & 0 \end{bmatrix}$ such that $c^t - \beta^t A \ge 0$ with basic entries 0. As the last entry of β is 0, we see that

$$\beta^t = \begin{bmatrix} \alpha^t & 0 \end{bmatrix}$$
 and $\overline{c}^t = c^t - \alpha^t \tilde{A} = c^t - \beta^t A$.