Proof Technique	Approach to prove $P \rightarrow Q$	Remarks
Exhaustive Proof	Demonstrate $P \to A$ for all cases	only finite do-
		mains
Direct Proof	Assume P, deduce Q	Standard ap-
		proach
Proof by contraposition	Assume Q' , derive P'	Use if Q'
		seems more
		useful than P .
Proof by contradiction	Assume $P \wedge Q'$, deduce a contradiction	Use this when
		Q says some-
		thing is not
		true

Equivalence Rules

	Expression	Equivalent To	Abbreviation for Rule
	$R \vee S$	$S \vee R$	Commutative -
	$R \wedge S$	$S \wedge R$	comm
	$(R \vee S) \vee Q$	$R \vee (S \vee Q)$	Associative -
,	$(R \wedge S) \wedge Q$	$R \wedge (S \wedge Q)$	ass
5	$(R \vee S)'$	$R' \wedge S'$	De Morgan's Laws -
	$(R \wedge S)'$	$R' \vee S'$	De Morgan
	$R \to S$	$R' \vee S$	Implication - imp
	R	(R')'	Double negation - dn
	$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$	Equivalence - equ

Inference Rules

From	Can Derive	Abbreviation for Rule
$R, R \to S$	S	Modus ponens - mp
$R \to S, S'$	R'	Modus tollens - mt
R, S	$R \wedge S$	Conjunction - con
$R \wedge S$	R, S	Simplification - sim
R	$R \vee S$	Addition - add
$P \to Q, Q \to R$	$P \to R$	Hypothetical syllogism - hs
$P \lor Q, P'$	Q	Disjunctive syllogism - ds
$P \rightarrow Q$	$P' \to Q'$ - Contraposition - cont	
$P' \rightarrow Q'$	P o Q	- Contraposition - cont
P	$P \wedge P$	Self-reference - self
$(P \land Q) \to R$	$P \to (Q \to R)$	Exportation - exp
P, P'	Q	Inconsistency - inc
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$	Distributive - dist
$P \lor (Q \land R)$	$(P \vee Q) \wedge (P \vee R)$	Distributive - dist

Ackermann function

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & \text{for } m>0 \text{ and } n=0\\ A(m-1,A(m,n-1)) & \text{for } m>0 \text{ and } n>0 \end{cases}$$