Advanced Engineering Mathematics Ordinary Differential Equations Notes

Chris Doble

February 2022

Contents

1	Intr	Introduction to Differential Equations														1									
	1.1	Definit	tions	a	nc	łТ	er	m	in	ol	90	gу													1
		1.1.1	1 .																						1
		1.1.2	3 .																						1
		1.1.3	5 .																						1
		1.1.4	7.																						2
		1.1.5	9.																						2
		1.1.6	15																						2
		1.1.7	17																						2
		1.1.8	19																						2
		1.1.9	31																						3
		1.1.10	33																						3
		1.1.11	35																						3
		1.1.12	37																						3
		1.1.13	39																						3

1 Introduction to Differential Equations

1.1 Definitions and Terminology

- 1.1.1 1
- 2, linear
- 1.1.2 3
- 4, linear
- 1.1.3 5
- 2, nonlinear

1.1.4 7

3, linear

1.1.5 9

no; yes

1.1.6 15

The domain of the function is $x \in [-2, \infty)$.

$$y' = 1 + \frac{2}{\sqrt{x+2}}$$

The largest interval of definition of the solution is $x \in (-2, \infty)$.

$$(y-x)y' = y - x + 8$$
$$(x+4\sqrt{x+2}-x)(1+\frac{2}{\sqrt{x+2}}) = x+4\sqrt{x+2}-x+8$$
$$4\sqrt{x+2}+8 = 4\sqrt{x+2}+8$$

1.1.7 17

The domain of the function is $x \in \mathbb{R}, x \neq \pm 2$.

$$y' = \frac{2x}{(4-x^2)^2}$$

The largest intervals of definition of the solution are $(-\infty, -2)$, (-2, 2), and $(2, \infty)$.

$$y' = 2xy^{2}$$

$$\frac{2x}{(4-x^{2})^{2}} = 2x\left(\frac{1}{4-x^{2}}\right)^{2}$$

$$= \frac{2x}{(4-x^{2})^{2}}$$

1.1.8 19

$$ln \frac{2X - 1}{X - 1} = t$$

$$2X - 1 = (X - 1)e^{t}$$

$$(2 - e^{t})X = 1 - e^{t}$$

$$X = \frac{e^{t} - 1}{e^{t} - 2}$$

The solutions intervals of validity are $(\infty, \ln 2)$ and $(\ln 2, \infty)$.

$$\begin{split} \frac{dX}{dt} &= (X-1)(1-2X) \\ \frac{e^t}{e^t-2} - \frac{e^t(e^t-1)}{(e^t-2)^2} &= \left(\frac{e^t-1}{e^t-2}-1\right) \left(1-2\frac{e^t-1}{e^t-2}\right) \\ \frac{e^t(e^t-2) - e^t(e^t-1)}{(e^t-2)^2} &= \left(\frac{e^t-1-e^t+2}{e^t-2}\right) \left(\frac{e^t-2-2e^t+2}{e^t-2}\right) \\ \frac{e^{2t}-2e^t-e^{2t}+e^t}{(e^t-2)^2} &= \left(\frac{1}{e^t-2}\right) \left(\frac{-e^t}{e^t-2}\right) \\ \frac{-e^t}{(e^t-2)^2} &= \frac{-e^t}{(e^t-2)^2} \end{split}$$

1.1.9 31

$$m = -2$$

1.1.10 33

$$m=2 \text{ or } 3$$

1.1.11 35

$$m = -1$$
 or 0

1.1.12 37

$$y = 2$$

1.1.13 39

No constant solutions