Thesis

John Gilheany 2017-09-13

Contents

1 Opening Comments								
2	Introduction							
3	Literature Review 3.1 High Returns from Low Risk By Pim van Vliet and Jan De Koning	9 10 11 12 13 14						
4	Data Collection and Summary Statistics4.1EUSA and USMV Data Compilation4.2EUSA and USMV Data Cleaning4.3EUSA and USMV Data Overview4.4EUSA and USMV Data Check	17 17 17 19 21						
5	Data Analysis5.1 Sector Weights5.2 EUSA Constituent Trailing Volatilities5.3 EUSA Constituent Trailing Betas5.4 EUSA Constituent Price to Book Ratios	27 27 34 35 36						
6	Model 6.1 Model 1: Entire Data Set 6.2 Model 2: Monthly 6.3 Model 3: Panel Regression	39 40 41 41						
7	Conclusion 7.1 Model 1: Entire Data Set 7.2 Model 2: Monthly 7.3 Model 3: Panel Regression	43 43 43						
8	Discussion	45						
9	Bibliography	47						

4 CONTENTS

Opening Comments

I would like to thank David Kane and Michael Parzen for their contribution and help on my thesis. This would not have been possible without their assistance.

Introduction

I would like to start by introducing the main index this thesis will be focusing on, USMV. The MSCI Minimum Volatility Index (USMV) is intended to have a lower beta, lower volatility, lower cap bias, and contain more stocks with less risk than its parent index. It is rebalanced twice a year, on the last trading days of May and November. The index typically has around 180 constituents, with an average of 20 new additions and 14 deletions every 6 months when rebalancing occurs. Over the last five, years, the number of additions has ranged from 12 to 25, while the deletions have been between 10 and 19. Changes to the index are usually announced nine trading days before they are set to take place.

Using the Barra Open Optimizer, USMV creates a minimum variance portfolio of low risk stocks, as a subset from its parent index, EUSA. Using this estimated security covariance matrix, the MSCI Minimum Volatility Index is the product of the lowest absolute volatility, considering the constraints. Moreover, these additions are simply a relabeling of existing stocks in the parent index, and do not include new additions to the parent index. The low-risk stocks chosen to be in USMV are determined by a set of constraints, like maintaining a certain sector or country weight relative to the parent index.

There are many specific constraints to this index. The first is that an individual stock cannot exceed 1.5% or 20 times the weight of the stock in the parent index. The minimum weight of a security in the index is also capped at 0.05%. USMV also aims to keep the weight of specific countries within a 5% range of the weight in the parent index, or 3 times the weight of the country in the parent index. Sector weights of USMV also cannot deviate more than 5% from the sector weights in the parent index. One way turnover of the index is also maxed at 10%. Thus, taking into account these constraints, the Barra Open Optimizer creates the lowest absolute volatility portfolio possible.

Literature Review

3.1 High Returns from Low Risk By Pim van Vliet and Jan De Koning

One of the most widely believed tenants of finance is the concept that with more risk comes more reward. However, looking at historical market returns, this does not appear to be the case. Over an 86-year period from 1929, low volatility stocks outperformed high volatility stocks by a factor of 18. If both portfolios started off with the same \$100, the low volatility portfolio end value would be \$395,000, while the high volatility portfolio would be worth just \$21,000. Low risk stocks returned 10.2% annually whereas the high risk stocks returned just 6.4% annually. This difference of 3.8% is striking, and presents an anomaly in the field of finance.

This begs the question of how a portfolio of lower volatility stocks can outperform higher volatility stocks over a long period of time. The primary way this occurs is that the low volatility portfolio loses less during times of financial stress. For example, in 1932 following the Great Depression, it was observed that the high volatility portfolio shrunk from \$100 in value to \$5 in value, while the low volatility portfolio shrunk from \$100 to \$30. Since the low volatility portfolio is able to lose less money, it is able to grow capital more effectively than the high volatility portfolio. In this example, the annualized volatility of the low risk portfolio was 13%, and the annualized volatility of the high risk portfolio was around 2.5 times that, at 36%. In addition to being more risky, the high volatility portfolio was outperformed by 18 times.

Thus, it seems very counterintuitive that fund managers and investors would not only invest in low risk stocks. Part of understanding this comes from interpreting what risk is defined as in the financial community. Risk is not necessarily defined as losing money, as it may be for an individual, but instead underperforming a benchmark. Volatility is also an important concept to understand. Volatility is an important measure of financial risk, as it comes from the price fluctuations of a stock or investment. Volatility is also one of the best indicators of bankruptcy. Taking some risk does pay off, as the relationship between risk and return starts off slightly positive before leveling off and becoming negative. Many researchers focus on short-term periods when analyzing stock returns instead of longer term for a couple of reasons. The first reason many focus on "single period returns", which in most academic studies is just a one month period, is because this takes away the significance of compounding. The longer the investment period, the more risk one takes in hurting long term returns through compounding. By not fully including the magic "return upon return" effect of compounding, a high-risk portfolio in this book performs more than 6% better per year. For example, if in month a portfolio worth \$100 drops 50% to \$50, then the next month increases 50% to \$75, the investment return is dependent on how one divides the time period. Looking at it on a monthly basis, even though the portfolio lost \$25, the net return would be -50% +50%, or 0%. Looking at it on a long term basis, the net return was -25%.

David Blitz, the head of quantitative equity research at Robeco, discusses this different perspective as

somewhat due to the need to benchmark the performance of an investment manager. This is a concept known as "relative" risk. In the examples above, everything has been in respect to absolute risk - that is how much money is being gained or lost due to overall stock movements, with regard to the starting amount of money invested. Volatility, in itself, captures these changes in the price of a stock, and is an absolute risk measurement. Many institutional investors do not look at risk on an absolute level, as a retiree or mom and pop investor may, but instead look at the risk of a portfolio with respect to market or some other widely accepted benchmark. For these investors, the risk is not as much about losing money, rather is more about lagging the market or their peers. Investing is very much a relative game. If a portfolio drops 20% while the market drops 40%, this is seen as a much better outcome than if a portfolio goes up 20% while the market goes up 40%. Thus, a portfolio that moves closely with the market has a very low relative risk. This risk can be calculated as volatility by looking at the relative price movements, instead of the absolute price movements.

Investment professionals focus on relative risk for a number of reasons, one of which is the fact that they are not managing their own money. They need to prove to their bosses and clients that they are above average in their job. If a particular benchmark cannot be beaten by these investors, clients may ask why pay for them to manage their money when they could put it in a low-fee or no-fee mutual fund. This is one of the reasons that institutional investors need to compare their performance to some benchmark. Thus, the focus for investors is return and relative risk. Adding low risk stocks to the portfolio causes relative risk to increase a lot, making it an unappealing investment because low absolute risk inherently causes high relative risk. A low risk portfolio only makes sense if absolute risk is what one cares about. Thus, for those investors who don't care about relative risk and just absolute risk, low risk stocks are a great investing opportunity.

In addition to the reasons mentioned, there are several additional reasons why some investors are not attracted to low-risk stocks. Eric Falkenstein, a renowned author in the low volatility investing realm, wrote that "envy is at the root of the investment paradox." Some investors don't recognize the significance of compounding returns. Others do, but are unable to utilize the paradox due to relative risk and career pressures. Analysts who choose big winners are more likely to get recognized than those who pick safer stocks with lower upside potential, and funds that pick the right high risk stocks also see more reward in an increase in AUM. Moreover, some people do not invest in low risk stocks because they have less appeal of high risk stocks, where they think they can make money easily and quickly. These high risk stocks are more "sexy" and have a "lottery ticket" element that attracts investors with the appeal of a big payday.

3.2 Betting Against Correlation: Testing Theories of the Low-Risk Effect

A recurring phenomena in finance, is the observation of the "low-risk effect." This is the idea that lower risk or lower volatility stocks, tend to have higher alpha than higher risk or higher volatility stocks. In trying to understand the reason this anomaly occurs, are two possible explanations. The first looks at at whether this is caused by leverage constraints, meaning measurement using systematic risk. The second focuses on the behavioral effects, or idiosyncratic risks. One of the main issues with prior research, is that a lot of the low-risk factors are correlated and interrelated, making it hard to isolate certain factors or effects. In this paper, the global data was used, with a couple new factors meant to control for existing factors.

Previous studies, like one by Adrian, Etula, and Muir in 2014, showed a link between return to the BAB (Betting Against Beta) factor and financial intermediary leverage. Many of these factors, though, including BAB, generally exhibit the "low-risk effect" and are thus very hard to differentiate between. Thus, this paper decided to do just that, by breaking down BAB into two other factors: betting against correlation (BAC) and betting against volatility (BAV). BAC is accomplished through longing stocks with low correlation to the market, and shorting those with high correlation to the market, while trying to match the volatilities of both the long and short portfolios. BAV is achieved in a similar manner, except instead of longing and shorting correlation, volatility is used, and correlation is kept constant.

To address the behavioral explanation, the paper looks at some prior factors from studies done by Ang,

Hodrick, Xing, and Zhang in 2006 and 2009. The first study found stocks with low idiosyncratic volatility (IVOL) have a greater risk-adjusted return, while the second found that a low maximum return (LMAX), a measure of idiosyncratic skewness, is associated with greater risk-adjusted returns. This paper kept the focus on LMAX and IVOL, but added another factor, scaled MAX (SMAX), which longs stocks with a low MAX return divided by ex ante volatility, and then shorts stocks with a high MAX return divided by ex ante volatility. This focuses on the lottery demand, holding volatility relatively constant and only focusing on the distribution of the returns. Margin debt held by investors, and investor sentiment were also noted.

In the paper, 58,415 stocks from the MSCI World Index, from 24 countries between January 1926 and December 2015 were covered. BAB and BAC ended up being very successful in controlling for the other factors that could influence the "low-risk effect." For all stocks, the BAC factor produced a significant six-factor alpha that was nearly independent of the other low-risk factors studied. In terms of explaining the behavioral side with factors, SMAX was the only truly great, resilient measure used. The rest generally had higher turnover, and were consequently very susceptible to microstructure noise. SMAX attained positive risk-adjusted returns in the U.S. but negative risk-adjusted returns globally, which was seen with some other idiosyncratic risk factors. The paper showed that systematic low-risk factor generally tended to outperform behavioral risk factors, especially when considering turnover and time period length. All in all, the low-risk effect was believed to be driven by multiple factor effects, meaning both leverage constraints and the demand for lottery could play a role in effecting this. However, leverage constraint effects were a bit stronger, especially internationally.

3.3 Price Response to Factor Index Additions and Deletions

Some of the driving fundamental assumptions of finance is the flat demand curve for stocks, where risk is the main driver and each stock has a perfect substitute. However, this concept has been questioned for the past few years, with literature picking up on stocks with show supply shocks and checking how this affects their price. The literature has shown several instances where large block sales of stock has negatively affected its price. This was often due to information contamination, which is new, significant information about the company in the market. This information often reflects fundamental changes in the company, and if is is negative, will understandably trigger block sales. Thus, the price change is less due to the supply shock, and moreso due to the fundamental change in the company's value (like a scandal or earnings report).

However, interesting patterns that have not yet been fully explained have been observed regarding S&P 500 company addition and deletions. When companies are added or removed from the index, it is purely mechanical, and usually not due to some drastic fundamental change in the company. Assuming the market is efficient, the demand for stocks should not change due to being added or removed from an index, but several studies have shown that it does. Harris and Gurel (1986), Shleifer (1986), Beneish and Whaley (1996), Chen, Noronha, and Singal (2004) all show how new additions to the S&P come with higher than normal returns for that company. Though they agree on the price movement, the studies tend to have a hard time agreeing on the reason for this price movement. Some possible explanations include compensation for providing liquidity, better monitoring for investors when a company is added to a reputable and large index, and higher analyst coverage leading to more information and analysis available on the company. One primary concern is whether or not index reshuffling is an information-free event - that is, whether a company being added or removed adds information to the market about the company.

In this paper, the authors look at factor index rebalancing for an information-free event. Factor indices are part of a parent index of many other stocks, and are constructed in a mechanical way that is publically available and usually based on ranking stocks off a particular ratio of characteristic. Looking at the MSCI Minimum Volatility index, stocks returns were recorded for the stocks that had been added/dropped. It was found that the cumulative return from announcement to the effective day was 1.07% for stocks added with a significant t-statistic of 7.16, with 62% of the stocks exhibiting a positive cumulative abnormal return. Of the 1.07% increase, 0.63% of it was gained the following day, indicating that a large part of the increase is from an increase in demand from index funds. 0.31% of the return is lost five days after the rebalancing, but generally the price tends to stabilize afterwards after ten days. Thus, 68% of the price increase is permanent,

while the other 32% is temporary and lost after a few days. This can be due to a number of reasons including a liquidity premium charged by the stock's owner or arbitrage activity. Average trading volume was also significantly more for stocks that were recently added to the index. Between the announcement and actual day of adding the stock, the average trading volume was 30% higher than normal, with a significant t-statistic of 3.81. Moreover, there is a 74% increase in volume for the day prior to the actual adding of the security. A very similar phenomena occurs with stocks set to be dropped from the MSCI Minimum Volatility Index. From the announcement of a stock being dropped to the day before it is actually deleted from the index, the total cumulative abnormal return is -0.91%, and -0.57% of this comes the day right before. After the stocks are deleted, 64% of them have a negative return the following day, and only 0.49% of the -0.91% is regained after three weeks. Trading volume also spikes 46% on the day prior to removal from the index. After three weeks, it returns back to within 1% of the normal trading volume.

These findings imply that once a security is added to a factor index, the demand curve shifts to the right, moving the equilibrium. The trading volume change is likely due to index funds buying or selling massive amounts of the stocks that will be added or removed. Moreover, it was found that the amount of the return is also directly related to the weighting of the volume of stocks entering or leaving the factor index. All in all, these findings suggest an index arbitrage opportunity if the index additions or deletions can be predicted.

3.4 Benchmarks as Limits to Arbitrage: Understanding the Low-Volatility Anomaly

Low-beta and low-volatility stocks have outperformed high-beta, high-volatility stocks from 1968-2008, combining great returns with low downturns. This can be explained by behavioral models of security prices. First is the idea that investors have a preference for "lotteries" and a bias of overconfidence creates a higher demand for higher-volatility securities. Second is the idea that this arbitrage opportunity is very limited, as the need to benchmark creates a greater demand for higher risk stocks, while discouraging investments in low-beta, low-volatility stocks. Several other papers have tried to explain this seemingly misunderstood phenomena, including Karceski in 2002, where is was noted that an extrapolation bias could cause mutual fund managers to care more about overperforming in a bull market, than underperforming in a bear market. This understandably, increases the market's appetite for risky stocks with high reward potential. This paper focuses on the distortions caused specifically by benchmarking.

In the paper, the authors used 41 years of CRSP data, ranging from January 1968 – December 2008. Using the top 1,000 stocks by market cap, the five year trailing volatilities were calculated and returns were tracked. A dollar investment from 1968 made its way to \$59.55, or \$10.12 in real terms when accounting for inflation. On the other hand, the highest volatility portfolio went from a dollar in value to 58 cents during the period, with a real value of just around 10 cents when considering inflation. When using beta as a measure for risk, the finding was very similar. In the lowest-beta portfolio, a dollar grew to \$60.46 in nominal value, or \$10.28 in real value after inflation. The highest-beta portfolio grew from a dollar to \$3.77 in nominal terms, or \$0.64 in real terms after inflation. This held true for large cap companies, but the discrepancy was even higher for smaller cap companies. Generally, the low-risk portfolios also grew much more steadily and constant, without many drawdowns. To add on to this as well, the portfolio values did not include transaction costs. The high-risk portfolios cost more to rebalance on a monthly level, as was done in the paper, than the low-risk portfolios, indicating this anomaly is more pronounced that initially reported. These findings are not novel, but this paper attempts to explain them in a new way. Many theories add evidence for disproving the Capital Asset Pricing Model (CAPM), and even suggest that beta may not be the correct measure of risk. Other models relating risk and return, however, have had difficulty gaining acceptance and widespread usage in the finance industry.

One theory explored in detail is an investor's irrational preference for high-volatility stocks. First, many investors have a natural preference for lotteries, even though there is a general aversion towards loss. If a stock has a positive skew, that is a larger probability of a large positive payoff than probability of a small payoff, investors typically are very interested. Though skew is not the same as volatility, in their paper in

2010, Boyer, Mitton, and Vorkink make a strong case for how expected skewness is a proxy for volatility. Another idea is representativeness, or that Bayes' rule and probability theory are often not natural to people. One example of this is, selectively looking at a few speculative investments that have turned out to be massive successes, without considering the numerous failures. Overconfidence has also been tied to a preference for volatile stocks; optimists are generally more aggressive than pessimists.

The need for benchmarking, especially among institutional investors, is also believed to heavily play into the anomaly. In fact, from the period when institutional investors managed 30% of all money to 60%, the anomaly intensified. This still begs the question as to why institutional investors do not buy more low-volatility stocks, and the answer has to do with benchmarking. The typical fund manager is judged for his/her "information ratio" (IR) which is the expected return difference between the manager and the expected return of the S&P 500, divided by the volatility of this return difference (tracking error). The goal of the investment manager is to maximize this information ratio, best as possible, through picking stocks. In 2009, Sensoy showed that over 61% of U.S. mutual fund managers are benchmarked against the S&P 500, while over 94% are benchmarked to some U.S. index benchmark. Moreover, SEC rules require mutual funds to compare their performance to some benchmark. This intuitively makes sense, as it allows investors to assess the skill and ability of managers in an unbiased way, and also allows fund managers a chance to differentiate themselves.

Investment managers without leverage will try to find mispriced stocks with a beta very close to market risk (beta of 1), overweighting positive-alpha stocks while underweighting negative-alpha stocks. When comparing the Sharpe ratio of large cap stocks for a low-volatility portfolio, it was quite high at 0.38. However, IR was a very low 0.08, showing this would be very tough for a fund manager to invest in. While Beta and volatility are undoubtedly very correlated, the study showed that beta is more related to the anomaly than volatility, especially with large cap stocks, which is what most fund managers disproportionately focus their invests in. Both volatility and beta play a significant role in this anomaly in smaller cap stocks. Looking at the period from 1968-2008, the top value strategy portfolios had an IR of 0.51, and top momentum strategy portfolios had an IR of 0.64. This is extremely high compared to the IR of low-volatility stocks in this period, which ranged from 0.08 to 0.17.

Overall, irrational investor preference for lotteries and high volatility stocks, as well as investment managers' focus on benchmarks and IR flatten or even invert the relationship between risk and return as we know it. This has been shown by the study, and prior observations that the anomaly intensified with the increase in AUM of fund managers in the U.S. These reasons appear perennial, so the anomaly will likely not be going away anytime soon. One other factor to this is compounding of the low-volatility portfolio. Since it suffers fewer drawdowns, this means the portfolio is able to experience more stable and upward growth.

3.5 Betting Against Beta

In this paper, a real-world resembling model is created with leverage and margin constraints in 55,600 stocks from 20 global stock, bond, credit, and futures markets. Some agents in this model cannot use any leverage, and some have limited margin constraints, much like many investors and fund managers.

Many mutual funds, pension funds, and individual investors are constrained by the amount of leverage they can take on, such that instead of investing in a portfolio yielding the highest Sharpe Ratio, they are forced to overweight portfolios with higher risk stocks. This suggests fund managers hold high-beta stocks to a lower risk adjusted return standard than low-beta stocks, which would require leverage. Thus, if one cannot leverage or has significant leverage constraints, then this agent will overweight riskier securities. The model was able to empirically show this in the equities, bonds, and futures markets. This was done by sorting portfolios by betas, and realizing alphas and sharpe ratios declining with increases in portfolio beta.

Moreover, if one can leverage without constraint, then they would underweight high-beta assets and overweight low-beta assets. Betting against beta (BAB) factors help explain this better. A BAB factor is a portfolio longing low-beta securities (leveraged to a beta of 1), shorting high-beta assets (deleveraged to a beta of 1). Hence, a BAB factor is market neutral. The model in the paper predicts that this portfolio will have a positive return, that increases with the spread in the betas and tightness of leverage constraints. Thus,

longing low-beta and shorting high-beta yields significant, and positive risk-adjusted returns. This was observed in the model by looking at U.S., developing, and international equity markets and observing that the BAB factor yielded a Sharpe ratio that was double its value effect, and 40% greater than momentum. The BAB factor had very high risk adjusted returns, and during four twenty-year periods between 1926 and 2012, produced significant positive returns. This generally held across other asset classes, including credit and treasury bond markets.

When a leverage constraint is met or surpassed, and the agent needs to deleverage, the BAB factor portfolio experiences negative returns, but its expected future returns increase. This was once again shown with a time series with spreads of various funding constraints.

Another central idea of the model was that increased funding liquidity risk compresses betas toward one. This was proven by looking at the volatility of funding constraints as funding liquidity risk, and the end result was that the dispersion of betas when funding liquidity risk is high, was much lower than when funding liquidity risk is low.

Finally, the model showed that investors that are more constrained are forced to overweight riskier securities, while investors without such constraints can overweight lower-risk securities. Studying a number of stock portfolios from constrained investors, most fund managers and individual investors' portfolios have a beta greater than one. On the flip side, many PE firms that perform an LBO get firms with a beta below one, and apply leverage. Great investor Warren Buffett even bets against beta, as many of his investments are leveraged, low-beta stocks.

3.6 The Low-Risk Anomaly: A Decomposition into Micro and Macro Effects

The low beta anomaly can be broken up into micro and macro effects. The micro effects include picking low beta stocks, while the macro effects are picking low beta countries or industries. In this paper, the micro effects were recorded by creating long-short portfolios of stocks, holding constant country and industry risk. The macro effects were observed through long-short portfolios of various countries and industries, holding stock level risk constant. Studying a number of stocks within 29 industries and 31 different developed countries, the macro and micro effects were observed, and both together were shown to play an important role in the low risk anomaly.

Micro selection of stocks, that is constructing a low risk portfolio of stocks, holding country and industry constant, showed that risk could be significantly decreased without a significant decrease in return. Macro selection, especially with regards to the country chosen, causes greater returns with small differences in risk. These findings have pretty significant implications, as this indicates that people seeking arbitrage opportunities through mispricing of industry or sector ETFs may not be as feasible or profitable as one may think. There is more of an opportunity exploiting the micro effects of individual stock selection.

It was found that using industry beta to predict future stock betas was possible, but not as effective as just using historical stock betas. However, industry beta information without stock information does improve risk-adjusted returns, just not as to the same level as with stock information. The paper also goes into detail trying to isolate pure industry effects and pure stock effects. Pure industry effects are the average differences between high and low beta industries, while holding constant stock risk. Pure stock risk is the opposite of that, calculating the average difference between high bet and low beta stocks, keeping industry risk constant. In the end, finding low-risk portfolios using selection of low risk stocks keeping industry constant was around four times more effective than using industries and keeping stock risk constant. Using the historical betas of both together, however, has more predictive power than either one alone.

Next, looking at 31 developed countries including Canada, France, Germany, Japan, and Singapore, the paper worked to decompose the low risk anomaly into country and stock specific effects. Similar to the industry findings, country beta was able to predict stock betas to a certain extent, but not as well as historical stock betas were. Looking only at country betas yielded around half the risk reduction and two-thirds the

risk adjusted return improvement, as compared to stock betas. This study implies that predicting risk of individual stocks is in itself very hard when only given data on country or industry risk, but when given all the data can have much more predictive power.

Data Collection and Summary Statistics

4.1 EUSA and USMV Data Compilation

Data was downloaded from www.ishares.com for EUSA (iShares MSCI USA Equal Weighted ETF) and USMV (iShares Edge MSCI Min Vol USA ETF), from Oct 31, 2011 to December 31, 2016. iShares are a type of ETF managed by BlackRock, and www.ishares.com contains the month end data for the two ETFs of interest in this dissertation. The data sets included information for the constituents of each ETF for a period in time, and some other characteristics of them, including: ticker, company name, asset class, weight of the stock relative to the entire index, price per share, number of shares, market value of the position, notional value of the position, sector, sedol number, isin number, exchange that the stock is listed on, and the month end date for the data. On the website, iShares had data for the positions and constituents of each ETF, for the last trading day of every month. Thus, an R function was created, one for each ETF, that would combine each month end data set into one aggregated one. Thus, each month end data set was individually downloaded, then aggregated to create the data sets "usa" and "minvol". These were stored in the data-raw folder, for safekeeping.

4.2 EUSA and USMV Data Cleaning

I began the data cleaning process by removing cash and cash related assets, since this is not important for our purposes. After having a quick overview of the data, there were many issues with each respective data set that needed to be fixed before the analysis could begin. As USMV is a subset of EUSA, the issues were very similar, and those that existed in USMV, generally existed in USMV as well. The issues could be broke down into 3 main types.

4.2.1 Non-US Exchanges

First, looking at unique exchanges of the data on R, it was seen that there were many foreign exchanges like the Swiss Exchange and the Mexican Exchange, which did not make sense, given the ETF constituents are supposed to be listed on US-based exchanges. These could be broke up into two more groups: companies that were incorretly listed overseas and are actually listed on US exchanges, and companies that also are actually listed on US exchanges but instead had their overseas exchange tickers listed.

The first type of error was from companies that were listed on either the NYSE and NASDAQ, but were curiously listed on an foreign exchange instead, but had their US ticker used. One example was BAC, Bank of America, which is listed on the NYSE, but was listed on the Swiss Stock Exchange in the data set. The price for BAC in the data set corresponded to the price of BAC in the NYSE, although it was listed on the Swiss Exchange. Moreover, I checked to see if BAC corresponded to Bank of America on the Swiss Exchange, and it did not. Thus, after several checks, I was able to conclude that BAC in the data set was incorrectly listed on the Swiss Exchange, and should have been listed on the NYSE instead. Since the ticker would still be able to be read into WRDS, these cases were left as is.

The next type of error was from companies listed on foreign exchanges that are listed on a US exchange as well, but their non-US ticker used. One example of this was Aflac, Inc. which was listed by its ticker "8686" on the Tokyo stock exchange. This was immediately a red flag due to the numbers in the ticker. This numeric ticker corresponded to Aflac, Inc. on the Tokyo exchange, but when checking the recorded price of the stock for corresponding dates, it matched up with the Aflac, Inc. stock on the NYSE, with ticker "AFL". Thus, when this happened, each company was treated on a case by case basis. In this case, since the stock price corresponded to AFL, the ticker name was changed from "8686" to "AFL". This would ensure the data could be properly read in from WRDS.

Overall, even with these numerous errors, it was a good sign because it implied that the data was generally correct (no internationally listed companies), but just recorded incorrectly. Thus, after making these changes, it was safe to assume the data was for the most part accurate.

4.2.2 Unrecognized Tickers

Another general type of error was when the ticker was not read into WRDS, causing all the prices for that ticker and company to be NA. This was evaluated, once again, on a case by case basis, by observing which tickers WRDS did not recognize, and looking at the company name to understand why. Sometimes, the issue was very obvious. One example of a clear discrepancy was when the ticker had an asterisk at the end of it. After careful digging, the asterisk did not seem to mean anything, and it is unclear why some tickers contained it. One example was "AAPL*". This caused issues for reading the data in from WRDS, because that ticker was not read in as "AAPL" due to the asterisk.

Another example of the ticker not being read in properly was when it contained numbers. Alflac was an example that was mentioned previously, but another one that applied here was "AG4" which was the ticker for Allergan Since NYSE and NASDAQ tickers do not contain numbers, this was a clear red flag. After some research, it appeared AG4 is the ticker for Allergan on the Deutsche Boerse AG Stock Exchange. However, the prices corresponded to Allergan's on the NYSE. Thus, this change in ticker was made. Overall, though each category is unique, there has been a lot of overlap, and often times correcting one type of error would fix other errors too. For example here, many tickers that include numbers will not be read in, and this is usually because the ticker corresponds with the same company but on a foreign exchange.

4.2.3 Price Discrepancies

The general methodology to make sure a change in ticker was appropriate was to check the price of the stock at a specific date, in the usa data set, and then comparing it to the new ticker I was going to assign it. If the price matched, the change was made. If the price did not match up and was very different, then I looked to see if a stock-split might be the cause of this. If there was no evidence of a stock-split, then the stock further analyzed to see what the issue was. In addition to looking and when prices did not match up with tickers and companies for certain dates, monthly returns were calculated for each stock during the times they were in the index, and any abnormal returns (magnitude greater than 30%) were look at manually. One example of this was Netflix's stock 7:1 stock split in 2015. The monthly data showed a price of 656.94 on 2015-05-29 to a price of 114.31 on 2015-07-31, just one month later. This amounts to recorded loss of 82.5%. Since this surpassed the threshold set, it was look at in more detail. After some research, it was shown there was in

fact a 7:1 stock split, so the price of the stock on 2015-07-31 was adjusted to 800.17, and the appropriate calculations were done. Thus in this case, the ticker was left alone, but just the price was adjusted.

Tickers that could not be determined were removed. In the end, the ticker named "1015736" and Orchard Supply Hardware Stores were removed from the data set. These together accounted for less than 0.2% of the data from one month-end date.

4.3 EUSA and USMV Data Overview

To get a sense of the EUSA data, summary statistics are shown below:

```
ticker
                                            name
                                                               asset.class
    CB
##
               101
                     3M CO
                                                   63
                                                        Cash
            :
                     ABBOTT LABORATORIES
                                                                      :38598
    AGN
                67
                                                   63
                                                        Equity
##
    NLSN
                64
                     ACCENTURE PLC
                                                   63
                                                        Money Market:
                63
                     ACTIVISION BLIZZARD INC:
                                                   63
##
    AAP
                63
                                                   63
##
                     ADOBE SYSTEM INC
                     ADVANCE AUTO PARTS INC :
##
    AAPL
                63
##
    (Other):38177
                      (Other)
                                               :38220
                           price
##
        weight
                                             shares
                                                             market.value
##
            :0.0000
                      Min.
                              : 0.56
                                         Min.
                                                       0
                                                            Min.
                                                                    :2.000e+03
##
    1st Qu.:0.0536
                       1st Qu.: 35.07
                                                     798
                                                            1st Qu.:5.289e+07
                                         1st Qu.:
                      Median: 55.09
##
    Median :0.1208
                                         Median:
                                                    1546
                                                            Median: 8.282e+07
##
    Mean
            :0.1629
                      Mean
                              : 71.91
                                         Mean
                                                    3365
                                                            Mean
                                                                   :1.610e+08
##
    3rd Qu.:0.1636
                       3rd Qu.: 83.52
                                         3rd Qu.:
                                                    3181
                                                            3rd Qu.:1.410e+08
##
    Max.
            :4.6773
                      Max.
                              :953.00
                                         Max.
                                                 :133289
                                                            Max.
                                                                   :6.804e+09
##
                       NA's
                              :46
##
    notional.value
                                                               sedol
                                               sector
                  40.5
                          Financials
                                                  :6825
                                                           2000019:
                                                                       63
               54595.6
                                                           2002305:
##
    1st Qu.:
                          Consumer Discretionary:6595
                                                                       63
##
    Median:
               74215.6
                          Information Technology:5487
                                                           2005973:
                                                                       63
               89651.9
##
    Mean
                          Industrials
                                                           2008154:
                                                                       63
                                                  :4687
    3rd Qu.: 116297.5
                          Health Care
                                                           2011602:
                                                  :4067
                                                                       63
##
    Max.
            :2106050.4
                          Energy
                                                  :3208
                                                           2018175:
                                                                       63
##
    NA's
            :22878
                          (Other)
                                                  :7729
                                                           (Other):38220
##
               isin
##
    AN8068571086:
                     63
##
    BMG0450A1053:
                     63
##
    BMG0692U1099:
                     63
##
    BMG169621056:
                     63
##
    BMG3223R1088:
                     63
##
    BMG491BT1088:
                     63
##
    (Other)
                 :38220
##
                                                      exchange
##
    New York Stock Exchange Inc.
                                                           :27499
##
    NASDAQ
                                                           : 9238
##
    Boerse Berlin
                                                              427
    Deutsche Boerse Ag
                                                              394
    Bolsa Mexicana De Valores (Mexican Stock Exchange):
##
                                                              266
##
    (Other)
                                                              658
##
    NA's
                                                              116
##
         date
##
    Min.
            :2011-10-31
```

```
## 1st Qu::2013-02-28
## Median::2014-06-30
## Mean::2014-06-12
## 3rd Qu::2015-09-30
## Max::2016-12-30
```

To get a sense of the USMV data, summary statistics are shown below:

```
##
       ticker
                                            name
                                                           asset.class
   CB
          : 81
                  ABBOTT LABORATORIES
                                                                :
##
                                              :
                                                      Cash
                                                 63
                                                                 :9229
##
   ABT
          : 63
                  ALTRIA GROUP INC
                                                 63
                                                      Equity
##
   ACGL
         : 63
                 ARCH CAPITAL GROUP LTD
                                                 63
                                                     Money Market: 0
##
  ADP
                 AT&T INC
          :
             63
##
  AMT
          : 63
                 AUTOMATIC DATA PROCESSING INC:
                  AUTOZONE INC
##
   AZO
          : 63
##
   (Other):8833
                  (Other)
                                              :8851
##
       weight
                                                       market.value
                       price
                                        shares
                    Min. : 0.56
##
   Min. :0.0002
                                  \mathtt{Min.} :
                                                      Min. :
                                                                   1138
                    1st Qu.: 48.52
                                                      1st Qu.: 5109636
##
   1st Qu.:0.2790
                                  1st Qu.:
                                               60888
##
  Median :0.6016
                    Median: 71.52 Median: 233116
                                                      Median: 18493183
##
   Mean :0.6810
                    Mean : 93.10
                                    Mean
                                          :
                                              462436
                                                      Mean
                                                            : 30802130
                    3rd Qu.:100.79
##
   3rd Qu.:1.0191
                                    3rd Qu.: 567713
                                                      3rd Qu.: 39743039
##
   Max. :2.8287
                           :953.00
                                    Max. :15574666
                                                      Max.
                                                             :240885300
                    Max.
##
                    NA's
                           :6
##
   notional.value
                                         sector
                                                       sedol
##
   Min. : 22212
                      Health Care
                                                    2002305:
                                                             63
                                            :1631
   1st Qu.: 19047994
##
                      Financials
                                            :1548
                                                    2005973:
                                                             63
  Median : 39501565
                       Information Technology:1482
                                                    2065308:
                      Consumer Staples
##
   Mean : 52545119
                                         :1222
                                                    2065955:
                                                             63
##
   3rd Qu.: 70790821
                       Consumer Discretionary: 1053
                                                    2073390:
                                                    2077905:
##
   Max.
          :240885300
                      Utilities
                                           : 616
          :5026
                       (Other)
##
   NA's
                                            :1677
                                                    (Other):8851
##
             isin
                                              exchange
##
  BMG0450A1053: 63
                       New York Stock Exchange Inc.:7010
##
  BMG3223R1088: 63
                       NASDAQ
## BMG7496G1033: 63
                       Deutsche Boerse Ag
                                                  : 58
## US00206R1023:
                       Spot Regulated Market - Bvb: 58
                  63
##
  US0028241000:
                  63
                       Boerse Berlin
                                                  : 32
##
  US02209S1033:
                  63
                       (Other)
                                                  : 164
   (Other)
##
               :8851
                       NA's
                                                  : 17
##
        date
##
          :2011-10-31
  \mathtt{Min}.
   1st Qu.:2013-04-30
## Median :2014-09-30
## Mean :2014-08-13
## 3rd Qu.:2015-11-30
## Max. :2016-12-30
##
```

4.4 EUSA and USMV Data Check

4.4.1 Weights

Thus, after cleaning all the data, I wanted to check how accurate the data set actually was. First, the total monthly weights for EUSA and USMV were plotted over time. Since cash and a few tickers were removed, it was not expected for the ticker weights to add up to 1 each month, but something very close to 1 was expected. The monthly change in weights for EUSA is shown below.

```
##
         date
                               weight
##
    Min.
           :2011-10-31
                                  : 99.54
                          Min.
    1st Qu.:2013-02-14
                          1st Qu.: 99.73
##
    Median :2014-05-30
                          Median: 99.80
##
           :2014-05-30
                                  : 99.79
##
    Mean
                          Mean
##
    3rd Qu.:2015-09-15
                          3rd Qu.: 99.84
##
    Max.
           :2016-12-30
                          Max.
                                  :100.21
```

Sum of EUSA Weights

As we can see in the scatterplor above for EUSA, the weights are very close to 100%, generally within 0.2%. The minimum weight is 99.54%, while the largest weight is 100.21%. The mean weight is 99.79%. The monthly change in weights for USMV is shown below.

```
##
         date
                              weight
##
            :2011-10-31
                                  :99.58
    Min.
                          Min.
    1st Qu.:2013-02-14
                          1st Qu.:99.72
##
##
    Median :2014-05-30
                          Median :99.76
##
    Mean
            :2014-05-30
                          Mean
                                  :99.76
    3rd Qu.:2015-09-15
                          3rd Qu.:99.81
##
##
    Max.
            :2016-12-30
                          Max.
                                  :99.99
```


As we can see in the scatterplor above, the weights for USMV are very close to 100%, and no value exceeds 100%. The minimum weight is 99.58%, while the largest weight is 99.99%. The mean weight is 99.76%. Overall, these look pretty solid and imply the data is trustable.

4.4.2 Comparing actual ETF returns to constructed ETF returns for EUSA and USMV

Before taking the data as accurate, though, some checks were done first. This was accomplished by comparing the weighted returns of the constructed index we had for our data (looking at each constituent's monthly return, multiplied by its weight), and comparing it to the actual ETF return. Thus, we wanted to check how our weighted returns compared to the ETF returns for both EUSA and USMV. Though we did not expect it to be perfectly correlated, we wanted to aim for at least a 98% or higher correlation between the weighted returns we calculated, and the ETF returns, on a monthly basis. The results for EUSA are shown below.

EUSA returns vs. EUSA constructed weighted returns

As we can see, the returns seem pretty consistent and have a correlation greater than 0.98.

Shown below is the data for USMV.

USMV returns vs. USMV constructed weighted returns

[,1] ## Delt.1.arithmetic 0.9906848

The correlation is 0.99, which is also very good.

4.4.3 Change in 5 largest holdings by average weight for EUSA and USMV

The next thing we want to see is how the top 5 largest holdings, by average weight, in each index have changed in weighting over time. For EUSA, the 5 largest holdings were AAPL, XOM, MSFT, GE, and JNJ. Their change in weights are shown below.

Change in Weights of Top 5 EUSA Holdings

Shown above, for EUSA, we have some very interesting findings. The weights of the 5 companies are all very high, then suddenly all spike. Verifying this in the data, showed that for all 5 companies, holdings dropped significantly between 2015-07-31 and 2015-08-31. The reason for this is not entirely clear, but the general ETF started performing poorly around this time too. In July of 2015 the price per share was 45.20, then it dropped to 42.60 the following month, and dropped again to 40.50 in August 2015. Perhaps these large companies were doing poorly, and MSCI decided to try underweighting them.

For USMV, the 5 largest holdings were VZ, T, ADP, JNJ, and MCD. Their change in weights are shown below. As we can see below, with the exception of Verizon, the holdings generally remain between 1 and 1.6 percent of the overall portfolio.

Change in Weights of Top 5 USMV Holdings

Data Analysis

5.1Sector Weights

First, sector weights were calculated over time for both EUSA and USMV. Plots were made by sector and displayed to compare the relative weights of EUSA and USMV.

Sector Weight Summary Statistics:

Consumer Discretionary: 64

```
data(usa_percent)
## Warning in data(usa_percent): data set 'usa_percent' not found
data(minvol_percent)
## Warning in data(minvol_percent): data set 'minvol_percent' not found
## Summary statistics of EUSA sector weights
head(usa_percent)
##
                 sector_name sector_count total
                                                    percent
                                                                  date
## 1 Cash and/or Derivatives
                                      2
                                            631 0.003169572 2017-01-05
## 2 Consumer Discretionary
                                      106
                                            631 0.167987322 2017-01-05
## 3
           Consumer Staples
                                      43
                                            631 0.068145800 2017-01-05
## 4
                                       44
                                            631 0.069730586 2017-01-05
                      Energy
## 5
                  Financials
                                       84
                                            631 0.133122029 2017-01-05
## 6
                 Health Care
                                       71
                                            631 0.112519810 2017-01-05
tail(usa_percent)
##
                  sector_name sector_count total
                                                                   date
                                                     percent
## 827 Information Technology
                                        79
                                             585 0.135042735 2011-10-31
                                        33
## 828
                    Materials
                                             585 0.056410256 2011-10-31
## 829
                  Real Estate
                                        0
                                             585 0.000000000 2011-10-31
## 830
               S-T Securities
                                        1
                                             585 0.001709402 2011-10-31
## 831
           Telecommunications
                                        12
                                             585 0.020512821 2011-10-31
## 832
                    Utilities
                                        35
                                             585 0.059829060 2011-10-31
summary(usa_percent)
##
                     sector_name
                                  sector_count
                                                        total
  Cash and/or Derivatives: 64
```

Class : character

Length:832

Class : character

Length:832

```
Consumer Staples
                         : 64
                                Mode :character
                                                Mode :character
  Energy
##
                         : 64
  Financials
                         : 64
##
  Health Care
##
                         : 64
##
   (Other)
                         :448
##
      percent
                         date
   Min. :0.00000 Min. :2011-10-31
   1st Qu.:0.01426 1st Qu.:2013-02-21
##
##
  Median :0.06820 Median :2014-06-14
  Mean :0.07692 Mean :2014-06-14
##
   3rd Qu.:0.12236
                    3rd Qu.:2015-10-07
##
   Max. :0.19293
                    Max. :2017-01-05
##
## Summary statistics of USMV sector weights
head(minvol_percent)
##
                sector_name sector_count total
                                                percent
                                                             date
                               2
## 1 Cash and/or Derivatives
                                         186 0.01075269 2017-01-05
## 2 Consumer Discretionary
                                    18 186 0.09677419 2017-01-05
## 3
           Consumer Staples
                                   24 186 0.12903226 2017-01-05
                                     4 186 0.02150538 2017-01-05
## 4
                    Energy
## 5
                Financials
                                     21
                                        186 0.11290323 2017-01-05
                                         186 0.17741935 2017-01-05
## 6
                Health Care
                                     33
tail(minvol_percent)
                 sector_name sector_count total
                                                  percent
                                          127 0.149606299 2011-10-31
## 827 Information Technology 19
                  Materials
                                          127 0.031496063 2011-10-31
## 828
## 829
                Real Estate
                                      0 127 0.000000000 2011-10-31
## 830
              S-T Securities
                                      1
                                          127 0.007874016 2011-10-31
## 831
          Telecommunications
                                     7
                                          127 0.055118110 2011-10-31
## 832
                  Utilities
                               9 127 0.070866142 2011-10-31
summary(minvol_percent)
##
                    sector_name sector_count
                                                     total
  Cash and/or Derivatives: 64
                                Length:832
                                                  Length:832
## Consumer Discretionary: 64
                                Class : character
                                                  Class : character
## Consumer Staples
                    : 64
                               Mode :character Mode :character
## Energy
                         : 64
  Financials
                         : 64
  Health Care
                         : 64
##
   (Other)
##
                         :448
##
                         date
      percent
##
  Min.
         :0.00000 Min. :2011-10-31
##
   1st Qu.:0.02235
                   1st Qu.:2013-02-21
## Median :0.06349 Median :2014-06-14
## Mean :0.07692 Mean :2014-06-14
##
  3rd Qu.:0.13043 3rd Qu.:2015-10-07
##
   Max.
         :0.22222
                    Max. :2017-01-05
##
```

Sector Weights for EUSA and USMV:

5.1. SECTOR WEIGHTS 29

EUSA and USMV Energy Sector Weights

Time EUSA and USMV Financial Sector Weights

Time EUSA and USMV Consumer Discretionary Sector Weights

5.1. SECTOR WEIGHTS 31

Time EUSA and USMV Industrials Sector Weights

EUSA and USMV Information Technology Sector Weights

EUSA and USMV Materials Sector Weights

5.1. SECTOR WEIGHTS 33

EUSA and USMV Utilities Sector Weights

Time EUSA and USMV Telecommunications Sector Weights

5.2 EUSA Constituent Trailing Volatilities

Data was collected from the past 10 years of the EUSA index. The data was collected from 12/31/2006 to 12/30/2016, was collected from WRDS for the 908 historical constituents of the USA Equal Weight (EUSA) index, of which USMV is derived. Each tickers' 252-day (annual) trailing volatility was calculated and a month end spagetti plot was produced.

```
##
           Date Ticker Volatility
## 1 2008-01-31
                     Α
                          2.289449
## 2 2008-02-29
                         2.357208
## 3 2008-03-31
                         2.660299
                     Α
## 4 2008-04-30
                     Α
                         3.017754
## 5 2008-05-30
                         3.028868
                     Α
## 6 2008-06-30
                     Α
                         2.921781
```

```
##
               Date Ticker Volatility
## 82257 2016-07-29
                       ZTS
                              2.718338
                       ZTS
## 82258 2016-08-31
                              3.150629
## 82259 2016-09-30
                       ZTS
                              3.363564
## 82260 2016-10-31
                       ZTS
                              3.372530
## 82261 2016-11-30
                       ZTS
                              3.436391
## 82262 2016-12-30
                       ZTS
                              3.664053
```

```
##
           Date
                           Ticker
                                         Volatility
##
   2014-09-30: 774
                       GE
                              :
                                432
                                              : 0.0492
                                       Min.
   2014-10-31:
                774
                       LSI
                                 246
                                       1st Qu.: 2.4407
   2014-11-28:
                774
                                       Median: 4.3057
##
                       UA
                                 234
##
   2014-12-31:
                773
                       CBS
                                 228
                                       Mean
                                              :
                                                6.9432
##
   2014-06-30: 771
                       LEN
                                 228
                                       3rd Qu.: 7.4648
   2014-07-31: 771
                      MKC
                                 228
                                       Max.
                                              :325.1242
             :77625
   (Other)
                       (Other):80666
##
```


Date

5.3 EUSA Constituent Trailing Betas

Data was collected from the past 10 years of the EUSA index. The data was collected from 12/31/2006 to 12/30/2016, was collected from WRDS for the 908 historical constituents of the USA Equal Weight (EUSA) index, of which USMV is derived. Each tickers' 252-day (annual) trailing beta was calculated and a month end spagetti plot was produced.

```
##
             date ticker
                                beta
## 1
              <NA>
                     <NA>
                                  NA
## 271 2008-01-31
                        A 0.9538067
  291 2008-02-29
                        A 0.9473060
   311 2008-03-31
                          0.9376670
##
   333 2008-04-30
                        A 0.9588268
  354 2008-05-30
                        A 0.9680630
##
##
                 date ticker
                                   beta
## 879817 2016-07-29
                         ZTS 1.0224673
## 902806 2016-08-31
                         ZTS 1.0302957
## 923805 2016-09-30
                         ZTS 0.9779760
## 944802 2016-10-31
                         ZTS 0.9830767
   965801 2016-11-30
                         ZTS 0.9220281
   986798 2016-12-30
##
                         ZTS 0.9549808
##
         date
                             ticker
                                                    beta
##
           :2007-04-30
                          Length: 78532
                                                      :-23.3438
    Min.
                                               Min.
    1st Qu.:2010-04-30
                          Class : character
                                               1st Qu.: 0.8204
```

```
Median :2012-07-31
##
                           Mode
                                :character
                                               Median:
                                                          1.0523
    Mean
##
            :2012-07-21
                                               Mean
                                                          1.0993
    3rd Qu.:2014-10-31
##
                                               3rd Qu.:
                                                          1.3295
            :2016-12-30
                                                       : 20.3256
##
    Max.
                                               Max.
##
    NA's
            :1
                                               NA's
                                                       :1
```


5.4 EUSA Constituent Price to Book Ratios

Data was collected from the past 10 years of the EUSA index. The data was collected from 12/31/2006 to 12/30/2016, was collected from WRDS for the 908 historical constituents of the USA Equal Weight (EUSA) index, of which USMV is derived. Each tickers' Price to Book ratio was calculated in two ways, to ensure accuracy.

##		gvkey	Date	Year	Ticker	Total	_Assets	BV_per	_share		
##	1	126554	2007-10-31	2007	A	7.	554e+09	8	3.7405		
##	2	126554	2008-10-31	2008	A	7.	437e+09	•	7.3114		
##	3	126554	2009-10-31	2009	A	7.	612e+09	•	7.2397		
##	4	126554	2010-10-31	2010	A	9.	696e+09	9	9.3256		
##	5	126554	2011-10-31	2011	Α	9.	057e+09	1:	2.4371		
##	6	126554	2011-10-31	2011	Α	9.	049e+09		NA		
##		Shares	_Outstanding	g Tota	al_Liab	ilitie	s Marke	t_Value	Share	_Price	Book_Value
##	1		37000000)	4.	320e+0	9 1363	4500000		36.85	3233985000
##	2		350000000)	4.	878e+0	9 776	6500000		22.19	2558990000
##	3		346148000)	5.	106e+0	9 856	3701500		24.74	2506007676
##	4		346144000)	6.	460e+0	9 1204	5811200		34.80	3228000486
##	5		346382000)	4.	741e+0	9 1284	0380700		37.07	4307987572

```
## 6
                                        NA 12840380700
                                                                  NA
                                                                              NA
                     NA
##
         PBR.1
                  PBR2
## 1 4.216006 4.216006
## 2 3.034986 3.034986
## 3 3.417269 3.417269
## 4 3.731663 3.731663
## 5 2.980598 2.980598
## 6
           NA
         gvkey
                     Date Year Ticker Total_Assets BV_per_share
## 17182 13721 2014-12-31 2014
                                   ZTS
                                          6.607e+09
                                                           2.6151
## 17183 13721 2014-12-31 2014
                                   ZTS
                                          6.588e+09
                                                               NA
## 17184 13721 2015-12-31 2015
                                   ZTS
                                          7.913e+09
                                                           2.1472
## 17185 13721 2015-12-31 2015
                                   ZTS
                                                               NA
                                          7.913e+09
## 17186 13721 2016-12-31 2016
                                   ZTS
                                          7.649e+09
                                                           3.0171
## 17187 13721 2016-12-31 2016
                                   ZTS
                                          7.649e+09
         Shares_Outstanding Total_Liabilities Market_Value Share_Price
## 17182
                  501328000
                                     5.270e+09
                                                21572143800
                                                                    43.03
## 17183
                                            NA
                                                 21572143800
                                                                       NA
                          NA
## 17184
                  497400000
                                     6.822e+09
                                                23835408000
                                                                   47.92
## 17185
                         NA
                                            NA
                                                23835408000
                                                                      NA
## 17186
                  492855000
                                     6.150e+09
                                                26382528200
                                                                   53.53
## 17187
                         NA
                                            NΑ
                                                26382528200
                                                                      NA
##
         Book_Value
                         PBR1
                                  PBR2
## 17182 1311022853 16.45444 16.45444
## 17183
                 NA
                          NA
## 17184 1068017280 22.31744 22.31744
## 17185
                 NA
                          NA
## 17186 1486992820 17.74220 17.74220
  17187
                 NA
                          NA
                                    NA
##
        gvkey
                              Date
                                              Year
                                                            Ticker
          : 1045
                      2013-12-31:1283
                                               :2006
                                                        ACGL
                                                                    33
##
    Min.
                                        Min.
    1st Qu.: 7146
##
                      2012-12-31:1277
                                        1st Qu.:2009
                                                        AET
                                                                    33
    Median: 14824
                      2014-12-31:1275
                                        Median:2011
                                                        AFL
                                                                    33
          : 50895
                      2011-12-31:1265
                                        Mean
                                               :2011
                                                                    33
##
    Mean
                                                        AIZ
##
    3rd Qu.: 65556
                      2015-12-31:1253
                                        3rd Qu.:2014
                                                        AMG
                                                                    33
##
    Max.
          :294524
                                                :2016
                                                        ANTM
                     2010-12-31:1222
                                        Max.
##
                      (Other)
                               :9612
                                        NA's
                                               :33
                                                        (Other):16989
##
                         BV_per_share
     Total_Assets
                                            Shares_Outstanding
##
    Min.
           :0.000e+00
                        Min.
                               :-1489600
                                            Min.
                                                    :0.000e+00
                         1st Qu.:
##
    1st Qu.:3.912e+09
                                        8
                                            1st Qu.:1.010e+08
   Median :9.538e+09
                         Median :
                                       15
                                            Median :1.973e+08
##
    Mean
           :4.725e+10
                         Mean
                               :
                                     5311
                                            Mean
                                                    :4.654e+08
##
    3rd Qu.:2.632e+10
                         3rd Qu.:
                                       27
                                            3rd Qu.:4.344e+08
##
    Max.
           :2.573e+12
                         Max.
                                :16297416
                                            Max.
                                                    :2.906e+10
##
   NA's
           :2568
                         NA's
                                :9284
                                            NA's
                                                    :9188
##
    Total_Liabilities
                         Market_Value
                                              Share_Price
##
    Min.
           :0.000e+00
                                :3.545e+06
                         Min.
                                             Min.
                                                   :
                                                         0.027
##
    1st Qu.:2.135e+09
                         1st Qu.:4.445e+09
                                              1st Qu.:
                                                        25.985
  Median :6.310e+09
                        Median :8.851e+09
##
                                             Median :
                                                        43.180
##
    Mean
           :4.451e+10
                         Mean
                                :2.166e+10
                                             Mean
                                                        57.339
##
    3rd Qu.:1.865e+10
                         3rd Qu.:1.942e+10
                                              3rd Qu.: 67.955
           :2.341e+12
                                :6.266e+11
  {\tt Max.}
                        Max.
                                             Max.
                                                     :1466.060
                        NA's
                                             NA's
##
  NA's
           :7785
                                :2764
                                                     :10064
```

##	Book_	_Value	PI	BR1	PBR2		
##	Min.	:-8.615e+10	Min.	:-687.634	Min. :-	687.634	
##	1st Qu	.: 1.313e+09	1st Qu	.: 1.595	1st Qu.:	1.595	
##	Median	: 3.121e+09	Median	: 2.626	Median :	2.626	
##	Mean	: 8.170e+09	Mean	: 4.503	Mean :	4.503	
##	3rd Qu	.: 7.376e+09	3rd Qu	.: 4.416	3rd Qu.:	4.416	
##	Max.	: 2.416e+11	Max.	:1575.000	Max. :1	575.000	
##	NA's	:9284	NA's	:10079	NA's :10	0079	

Model

41946

Once the final data set was created and cleaned, with a number of response variables including trailing beta, trailing vol, and price to book value, and an associated outcome. The outcome measured whether or not a stock was in the Min Vol index or not (1 if in, 0 if not in).

A snippet of the final data set is shown below

```
data(monthly_test1)
## Warning in data(monthly_test1): data set 'monthly_test1' not found
head(monthly_test1)
##
           date ticker
                             beta volatility market_value
                                                              book_value
## 1 2011-10-31
                      A 1.7470544
                                   2.6889262
                                               12840380700
## 2 2011-10-31
                     AA 1.6714985
                                   0.5931733
                                               14093195800
                                                              4242999668
## 3 2011-10-31
                    AAP 0.6591325
                                   1.9473214
                                               26452741700
                                                              5635027373
## 4 2011-10-31
                  AAPL 0.7952383 10.2574289
                                               11034490100
                                                              2460645113
                  AAPL 0.7952383 10.2574289
## 5 2011-10-31
                                               11034490100
                                                              2460645113
## 6 2011-10-31
                    AAZ
                               NA
                                          NA 603253566300 128248880027
##
     price to book weight binary
## 1
                NA 0.0000
                                0
## 2
          3.321517 0.0000
                                0
## 3
          4.694341 0.7986
                                1
## 4
          4.484389 0.0943
## 5
          4.484389 0.0943
                                1
## 6
          4.703773 0.0000
                                0
tail(monthly_test1)
##
               date ticker beta volatility market_value
                                                            book_value
## 41944 2017-01-05
                       YHOO
                                              31459104000 29043582095
## 41945 2017-01-05
                        YUM
                              NA
                                          NA
                                              30681000000
                                                             910980000
## 41946 2017-01-05
                          Z
                              NA
                                          NA
                                              30681000000
                                                             910980000
## 41947 2017-01-05
                       ZAYO
                              NA
                                          NA
                                              30681000000
                                                             910980000
## 41948 2017-01-05
                        ZBH
                              NA
                                          NA
                                              20794993000
                                                            9887908700
                        ZTS
## 41949 2017-01-05
                              NA
                                             23835408000
                                                            1068017280
         price_to_book weight binary
##
## 41944
              1.083169
                             0
                                    0
## 41945
             33.679115
                                    0
```

0

33.679115

0

40 CHAPTER 6. MODEL

```
## 41947
              33.679115
                                      0
                              0
## 41948
               2.103073
                                      0
## 41949
              22.317437
                              0
                                      0
summary(monthly_test1)
                                                                   volatility
##
         date
                                ticker
                                                  beta
                           CB
##
    Min.
            :2011-10-31
                                      292
                                             Min.
                                                     :-23.344
                                                                Min.
                                                                           0.0049
##
    1st Qu.:2013-02-28
                                      190
                                             1st Qu.:
                                                       0.823
                                                                           0.5176
                           ORLY
                                                                1st Qu.:
##
    Median :2014-06-30
                           BEN
                                      151
                                             Median :
                                                        1.034
                                                                Median:
                                                                           0.8980
##
    Mean
            :2014-06-28
                           AAPL
                                      127
                                             Mean
                                                        1.066
                                                                Mean
                                                                           1.7569
##
    3rd Qu.:2015-10-30
                           CBS
                                      127
                                             3rd Qu.:
                                                        1.276
                                                                3rd Qu.:
                                                                           1.5854
##
            :2017-01-05
                                      127
                                                     : 20.326
                                                                        :365.5529
    Max.
                           CVX
                                             Max.
                                                                Max.
##
                           (Other):40935
                                             NA's
                                                     :1924
                                                                NA's
                                                                        :1318
##
                            book_value
     market_value
                                                 price_to_book
##
            :1.927e+09
                                  :-1.324e+10
                                                 Min.
                                                         :-857.154
                          Min.
    1st Qu.:8.196e+09
                          1st Qu.: 2.332e+09
                                                             1.594
##
                                                 1st Qu.:
    Median :1.373e+10
                          Median: 4.897e+09
                                                             2.799
##
                                                 Median:
    Mean
##
            :3.097e+10
                                  : 1.183e+10
                                                             4.239
                          Mean
                                                 Mean
    3rd Qu.:2.803e+10
                          3rd Qu.: 1.048e+10
                                                 3rd Qu.:
                                                             4.952
                                  : 2.339e+11
##
    Max.
            :6.153e+11
                          Max.
                                                 Max.
                                                         :1771.339
##
                          NA's
                                                 NA's
                                                         :3
                                  :3
##
        weight
                       binary
                       0:32050
##
    Min.
            :0.0000
    1st Qu.:0.0000
                       1: 9899
##
##
    Median : 0.0000
##
            :0.1591
    Mean
##
    3rd Qu.:0.0000
##
    Max.
            :2.8287
##
```

Given the data, a logit regression was run on the entire pool of data. Looking at all of the historical data and stock various characteristics, this would model the log odds of a stock being in the minimum volatility index as a combination of the linear predictors mentioned. Several models will be run in a panel, including one by month, and one by the entire pool of data.

6.1 Model 1: Entire Data Set

The first logit model that will be run is for the entire pool of data.

```
# Model 1
logit1 <- glm(binary ~ beta + volatility + price_to_book, data = monthly_test1, family = "binomial")</pre>
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
# Summary of Model 1
summary(logit1)
##
## Call:
   glm(formula = binary ~ beta + volatility + price_to_book, family = "binomial",
##
##
       data = monthly_test1)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                             Max
```

```
## -8.4904 -0.7517 -0.5956 -0.2201
                                       8.4904
##
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                0.8190836 0.0399894 20.482 < 2e-16 ***
                -1.9166654 0.0392233 -48.866 < 2e-16 ***
## beta
## volatility -0.0245431 0.0043103 -5.694 1.24e-08 ***
## price_to_book -0.0003598 0.0002676 -1.344
                                                 0.179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 44495 on 40020 degrees of freedom
##
## Residual deviance: 41256 on 40017 degrees of freedom
     (1928 observations deleted due to missingness)
## AIC: 41264
##
## Number of Fisher Scoring iterations: 6
# Coefficient Interpretation
exp(coef(logit1))
##
     (Intercept)
                         beta
                                 volatility price_to_book
##
      2.2684202
                    0.1470967
                                  0.9757556
                                                0.9996403
# Confidence interval of variable
confint.default(logit1)
##
                        2.5 %
                                     97.5 %
## (Intercept)
                 0.7407057643 0.8974615258
## beta
                -1.9935415532 -1.8397892230
## volatility
                -0.0329911260 -0.0160950568
## price_to_book -0.0008843128  0.0001647063
```

6.2 Model 2: Monthly

6.3 Model 3: Panel Regression

42 CHAPTER 6. MODEL

Conclusion

• Will discuss the different models, and what they each mean, then chose the best one that is most representative of the data that I believe will have the highest predictive power.

7.1 Model 1: Entire Data Set

- Looking at the z-statistics, volatility and beta are statistically significant, while price to book is not, at an alpha level of 0.05.
- For every one unit change in the beta, the log odds of being in the min vol index decrease by 1.92.
- The odds ratio for beta is 0.15.
- For every one unit change in the vol, the log odds of being in the min vol index decrease by 0.025.
- The odds ratio for vol is 0.98.
- For every one unit change in the price to book, the log odds of being in the min vol index decrease by 0.00036
- The odds ratio for beta is 0.99.

7.2 Model 2: Monthly

7.3 Model 3: Panel Regression

Discussion

After comparing all of the models. . . .

Bibliography

Vliet, P. V., & Koning, J. D. (2017). High returns from low risk: a remarkable stock market paradox.

Asness, C. S., Frazzini, A., Gormsen, N. J., & Pedersen, L. H. (2016). Betting Against Correlation: Testing Theories of the Low-Risk Effect.

Huij, J., & Kyosev, G. (2016). Price Response to Factor Index Additions and Deletions.

Baker, M., Bradley, B., & Wurgler, J. (2011). Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1), 40-54.

Frazzini, A., & Pedersen, L. H. (2014). Betting against beta. Journal of Financial Economics, 111(1), 1-25.

Baker, M., Bradley, B., & Taliaferro, R. (2014). The low-risk anomaly: A decomposition into micro and macro effects. Financial Analysts Journal, 70(2), 43-58.