

ESTIMATING THE AVERAGE SIZE OF FIBER/MATRIX INTERFACE CRACKS IN UD AND CROSS-PLY LAMINATES

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

7th ECCOMAS Thematic Conference on the Mechanical Response of Composites

Outline

TRANSVERSE CRACKS INITIATION IN FRPC

Micromechanics of Initiation: Transverse Tensile Loading

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of [0, 90]_S, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Micromechanics of Initiation: Transverse Tensile Loading

Stage 1: isolated debonds

Micromechanics of Initiation: Transverse Tensile Loading

Stage 2: consecutive debonds

Micromechanics of Initiation: Transverse Tensile Loading

Stage 3: kinking

Micromechanics of Initiation: Transverse Tensile Loading

Stage 4: coalescence

Objective of the Study

Can we talk about a ply-thickness effect for the fiber-matrix interface crack?

Stage 1: isolated debonds

Stage 2: consecutive debonds

Geometry Representative Volume Elements Assumptions Solution

Geometry

Representative Volume Elements

 $n \times k$ – free

$$n \times k - m \cdot t_{90^{\circ}}$$

Representative Volume Elements

 $n \times k - symm$

 $n \times k$ – asymm

Assumptions

$$R_f = 1 \ [\mu m] \quad L = \frac{R_f}{2} \sqrt{\frac{\pi}{V_f}}$$

- Linear elastic, homogeneous materials
- Concentric Cylinders Assembly with Self-Consistent Shear Model for UD
- Plane strain
- Frictionless contact interaction
- Symmetric w.r.t. x-axis
- Coupling of x-displacements on left and right side (repeating unit cell)
- \rightarrow Applied uniaxial tensile strain $\bar{\varepsilon}_{x} = 1\%$
- → $V_f = 60\%$

Material	<i>V_f</i> [%]	E_L [GPa]	E_T [GPa]	μ_{LT} [GPa]	$ u_{LT}\left[- ight]$	$ u_{TT}\left[- ight]$
Glass fiber Epoxy	-	70.0 3.5	70.0 3.5	29.2 1.25	0.2 0.4	0.2 0.4
UD	60.0	43.442	13.714	4.315	0.273	0.465

Solution

$$\begin{split} &\frac{\partial^{2}\varepsilon_{xx}}{\partial z^{2}}+\frac{\partial^{2}\varepsilon_{zz}}{\partial x^{2}}=\frac{\partial^{2}\gamma_{zx}}{\partial x\partial z} & \text{for } 0^{\circ} \leq \alpha \leq \Delta\theta, \Delta\theta \neq 0^{\circ}: \\ &\frac{\partial z}{\partial z} & (\overrightarrow{U}_{m}\left(R_{f},\alpha\right)-\overrightarrow{U}_{f}\left(R_{f},\alpha\right))\cdot\overrightarrow{n}_{\alpha} \geq 0 \\ &\varepsilon_{y}=\gamma_{xy}=\gamma_{yz}=0 & \text{for } \Delta\theta \leq \alpha \leq 180^{\circ}: \\ &\frac{\partial\sigma_{xx}}{\partial x}+\frac{\partial\tau_{zx}}{\partial z}=0 & \overrightarrow{U}_{m}\left(R_{f},\alpha\right)-\overrightarrow{U}_{f}\left(R_{f},\alpha\right)=0 \\ &\frac{\partial\tau_{zx}}{\partial x}+\frac{\partial\sigma_{zz}}{\partial z}=0 & \tau_{ij}=E_{ijkl}\varepsilon_{kl} \\ &\frac{\partial\sigma_{xy}}{\partial z}=\nu\left(\sigma_{yx}+\sigma_{zz}\right) & +BC \end{split}$$

 $\forall \Delta \theta \neq 0^{\circ}$

oscillating singularity

$$\sigma \sim r^{-\frac{1}{2}} \sin(\varepsilon \log r), \quad V_f \to 0$$

$$\varepsilon = \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta} \right)$$

$$\beta = \frac{\mu_2 (\kappa_1 - 1) - \mu_1 (\kappa_2 - 1)}{\mu_2 (\kappa_1 + 1) + \mu_4 (\kappa_2 + 1)}$$

→ receding contact

$$\Rightarrow \quad \frac{G(R_{f,2})}{G(R_{f,1})} = \frac{R_{f,2}}{R_{f,1}}, \frac{G(\bar{\varepsilon}_{x,2})}{G(\bar{\varepsilon}_{x,1})} = \frac{\bar{\varepsilon}_{x,2}^2}{\bar{\varepsilon}_{x,1}^2}$$

→ FEM + LEFM (VCCT)

regular mesh of quadrilaterals at the crack tip:

-
$$AR \sim 1$$
, $\delta = 0.05^{\circ}$ $\forall \Delta \theta$

→ 2nd order shape functions

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ $\sigma_{
m LHS}$ $\sigma_{
m vM}$ $\sigma_{
m I}$ Observations & Conclusions

 σ_{rr} vs $\tau_{r\theta}$ σ_{IHS} σ_{vM} σ_{I} Observations & Conclusions

$\sigma_{\rm rr}$ vs $\tau_{\rm r heta}$: radial stress vs tangential shear at the interface

Transverse Cracks Initiation in FRPC Modeling **Debond Initiation** Debond Propagation Conclusions σ_{rr} **vs** $\tau_{r\theta}$ σ_{IHS} σ_{vM} σ_{I} Observations & Conclusions

$\sigma_{\rm rr}$ vs $\tau_{\rm r heta}$: radial stress vs tangential shear at the interface

Observations & Conclusions

σ_{LHS} : local hydrostatic stress at the interface

 σ_{rr} vs $\tau_{r\theta}$ σ_{IHS} σ_{vM} σ_{I} Observations & Conclusions

σ_{LHS} : local hydrostatic stress at the interface

Debond Initiation Debond Propagation Transverse Cracks Initiation in FRPC Modeling Conclusions

Observations & Conclusions

σ_{vM} : von Mises stress at the interface

Observations & Conclusions

σ_{vM} : von Mises stress at the interface

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ σ_{IHS} σ_{VM} σ_{I} Observations & Conclusions

$\sigma_{\rm I}$: maximum principal stress at the interface

 $\sigma_{
m rr}$ vs $au_{
m r heta}$ σ_{IHS} σ_{vM} σ_{I} Observations & Conclusions

σ_l : maximum principal stress at the interface

 σ_{rr} vs τ_{rA} σ_{IHS} σ_{vM} σ_{I} Observations & Conclusions

Observations & Conclusions

- For all stresses analyzed, no significant difference is present between the different RUCs for $\psi < 10^{\circ}$:
- \rightarrow for all stresses analyzed, no difference can be observed by increasing k when $k \geq 3$;
- ⇒ for all stresses analyzed, no difference can be observed between $1 \times k$ free and $1 \times k 1 \cdot t_{00^\circ}$ for k > 3;
- → σ_{rr}, σ_{LHS,2D}, σ_{LHS,3D}, σ_{νM,2D}, σ_{LMPS,2D} and σ_{LMPS,3D} all reach their peak value at 0° and 180° and decrease to 99% the peak value between 2° and 8°, to 95% the peak value between 6° and 12° and to 90% the peak value between 8° and 15° from the occurrence of the maximum.

It seems reasonable to conclude that...

...a stress-based criterion would predict, irrespectively of the specific criterion chosen, the onset of an interface crack at 0° or 180° with an initial size at least comprised in the range $2^{\circ} - 8^{\circ}$ (1% margin) and likely in the range $6^{\circ} - 12^{\circ}$ (5% margin).

stimation of G_{lc} Estimation of $\Delta heta_{max}$ Observations & Conclusion

Estimation of G_{lc} Estimation of $\Delta \theta_{max}$ Observations & Conclusions

Estimation of G_{lc}

$$G_{lc} = \left. rac{G_c}{1 + an^2\left(\left(1 - \lambda
ight)\Psi_G
ight)} \right|_{G_c = G_{TOT}\left(\Delta heta_0
ight)}, \quad \Psi_G = an^{-1}\left(\sqrt{rac{G_{ll}}{G_l}}
ight) \right|_{\Delta l}$$

$$\Psi_G = tan^{-1} \left(\sqrt{\frac{G_{II}}{G_I}} \right) \bigg|_{\Delta\theta_I}$$

Estimation of $\Delta \theta_{max}$ Observations & Conclusions

Estimation of $\Delta \theta_{max}$

$$\Delta heta_{max} \in (30^\circ - 105^\circ)$$

Conclusions

$$\Delta \theta_{max} \in (30^{\circ} - 50^{\circ})$$

20 40 60 80 100 120 140

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Estimation of G_{lc} Estimation of $\Delta \theta_{max}$ Observations & Conclusions

Estimation of $\Delta \theta_{max}$

 $21 \times 3 - 1 \cdot t_{900}$

Conclusions

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation **Debond Propagation**Estimation of G_{lc} **Estimation of** $\Delta\theta_{max}$ **Observations & Conclusions**

Estimation of $\Delta \theta_{max}$

21 × 21 – free

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

Conclusions

$$\Delta \theta_{max} \in (40^{\circ} - 60^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Conclusions

Estimation of G_{lc} Estimation of $\Delta \theta_{max}$ Observations & Conclusions

Estimation of $\Delta \theta_{max}$

$$\Delta \theta_{max} \in (80^{\circ} - 110^{\circ})$$

$21 \times 21 - asymm$ $-G_{TOT}$ 18 16

$$\Delta \theta_{max} \in (55^{\circ} - 115^{\circ})$$

$$G_{TOT}\left(\Delta heta
ight) > G_{c} = G_{lc}\left(1 + an^{2}\left(\left(1 - \lambda
ight)\Psi_{G}
ight)
ight), \quad \Psi_{G} = \left. an^{-1}\left(\sqrt{rac{G_{ll}}{G_{l}}}
ight)
ight|_{\Delta heta}$$

Transverse Cracks Initiation in FRPC Modeling Debond Initiation Debond Propagation Conclusions Estimation of G_{lc} Estimation of $\Delta\theta_{max}$ Observations & Conclusions

Observations & Conclusions

- → The effect of the presence of the 0° layer is to reduce the maximum size of debonds;
- → however, the estimated debond size is the same for n × k − free and n × k − 1 · t_{90°} for k > 3:
- → the presence of a debond on the neighboring fiber in the vertical direction (21 × 1 − coupling and 21 × 1 − asymm) favors instead the growth of larger debonds;
- → the largest size is achieved when debonds are on opposite sides of consecutive fibers.

Estimated debond size range in cross-ply ($n \times k - 1 \cdot t_{90^{\circ}}$)

 $40^{\circ} - 60^{\circ}$

Measured debond size range in cross-ply (Correa et al., Compos. Sci. Technol. 155 (213-220), 2018)

 $21.4^{\circ} - 89.2^{\circ}$, average 49.3° , standard deviation of 11.7° 63% of measurements in $40^{\circ} - 60^{\circ}$ range

Transverse Cracks Initiation in FRPC Modeling Debond Initiation

Debond Propagation

Conclusions

Conclusions

Transverse Cracks Initiation in FRPC Modeli

Debond Initiation

Debond Propagation

Conclusions

Conclusions

- A stress criterion for initiation would likely predict, irrespectively of which criterion from those proposed in the literature is chosen, the onset of a debond at 0° or 180° with a semi-aperture Δθ₀ in the range 2° – 12°, corresponding to a margin of 5% on the satisfaction of the criterion.
- → Assuming that debond propagation occurs unstably immediately after debond onset at the same level of global applied strain \(\bar{\varepsilon}_x\), it is possible to evaluate the parameter \(G_{lc}\) in the expression of the critical ERR and with it to estimate the range of expected maximum debond size.
- → The prediction for a cross-ply laminate (models $n \times k 1 \cdot t_{90^{\circ}}$, $k \ge 3$) agrees well with the debond size distribution in $\begin{bmatrix} 0_3^{\circ}, 90_3^{\circ} \end{bmatrix}_{S}$ estimated in *Correa et al., Compos. Sci. Technol.* 155 (213-220), 2018 through microscopic observations.

Conclusions

ransverse Cracks Initiation in FRPC Modeli

Debond Initiation

Debond Propagation

Thank you for listening today!

