ME 3000 Design of Mechanical Elements Midterm #2 Formulas and Tables

Prof. Shad Roundy Spring 2024

Conversion from MPa to ksi: 1 ksi = 6.89 MPa Conversion from mm to inch: 1 mm = 0.04 inch

Maximum stress from different loading conditions

Axial: $\sigma = F/A$

Bending:

- Transverse shear
 - o circular cross-section $\tau_{max} = 4V/3A$
 - o rectangular cross-section: $\tau_{max} = 3V/2A$
- Normal bending stress: $\sigma_{max} = My/I$ (where *I* is the area moment of inertia. See "Properties of Sections" below.

Torque: $\tau_{max} = Tr/I_p$ (where I_p (or J_p) is the polar moment of inertia. See "Properties of Sections" below.)

Design for static strength

Principal stresses (plane stress): σ_A , $\sigma_B = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

Maximum shear stress (plane stress): $\tau_A, \tau_B = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

Von Mises (or equivalent) stress (tri-axial): $\sigma_{eq} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}{2}}$

Von Mises (or equivalent) stress (plane stress): $\sigma_{eq} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2}$

Von Mises (or equivalent) stress (plane stress – principal stresses): $\sigma_{eq} = \sqrt{\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2}$

Static failure criteria for ductile materials (assumes $\sigma_A > \sigma_B$)

	Maximum Shear Stress	Distortion Energy (Von Mises)
$\sigma_A \ge \sigma_B \ge 0$	$n = \frac{S_y}{\sigma_A}$	$n = \frac{S_{y}}{\sigma_{eq}}$
$\sigma_A \geq 0 \geq \sigma_B$	$n = \frac{S_{y}}{\sigma_{A} - \sigma_{B}}$	$n = \frac{S_y}{\sigma_{eq}}$
$0 \ge \sigma_A \ge \sigma_B$	$n = -\frac{S_y}{\sigma_B}$	$n = \frac{S_{y}}{\sigma_{eq}}$

 $(\sigma_{A,B}$: principal stresses, σ_{eq} : Von Mises stress, S_{v} : yield strength)

Static failure criteria for brittle materials (assumes $\sigma_A > \sigma_B$)

	Failure Theory				
	Maximum Normal Stress (MNS)	Brittle Coulomb- Mohr (BCM)	Modified-Mohr (MM)		
$\sigma_A \geq \sigma_B \geq 0$	$n = \frac{S_{ut}}{\sigma_A}$	$n = \frac{S_{ut}}{\sigma_A}$	$n = \frac{S_{ut}}{\sigma_A}$		
$\sigma_A \ge 0 \ge \sigma_B$	$n = \min\left[\frac{S_{ut}}{\sigma_A}, -\frac{S_{uc}}{\sigma_B}\right]$	$\frac{1}{n} = \frac{\sigma_A}{S_{ut}} - \frac{\sigma_B}{S_{uc}}$	If $ \sigma_B < \sigma_A $, $n = \frac{S_{ut}}{\sigma_A}$ If $ \sigma_B > \sigma_A $ $\frac{1}{n} = \frac{(S_{uc} - S_{ut})\sigma_A}{S_{uc}S_{ut}} - \frac{\sigma_B}{S_{uc}}$		
$0 \ge \sigma_A \ge \sigma_B$	$n = -\frac{S_{uc}}{\sigma_B}$	$n = -\frac{S_{uc}}{\sigma_B}$	$n = -\frac{S_{uc}}{\sigma_B}$		

 $(\sigma_{A,B}$: principal stresses, S_{ut} : ultimate tensile strength, S_{uc} : ultimate compressive strength)

Design for fatigue strength

Fatigue life for $10^3 < N < 10^6$

$$S_f(N) = aN^b$$

$$a = \frac{(fS_{ut})^2}{S_e}$$

$$b = -\frac{1}{3}\log\left(\frac{fS_{ut}}{S_e}\right)$$

Fatigue strength fraction, f

Endurance limit:

$$S'_e = 0.5S_{ut}$$
 when $S_{ut} < 1400 MPa$
 $S'_e = 700MPa$ when $S_{ut} > 1400 MPa$

Endurance limit modifying factors (Marin factors)

$$S_e = k_a k_b k_c k_d k_e k_m S_e'$$

-
$$k_a = aS_{ut}^b$$

	Factor a		Exponent b	
Surface Finish	S _{ut} , kpsi S _{ut} , MPa			
Ground	1.34	1.58	-0.085	
Machined or cold-drawn	2.70	4.51	-0.265	
Hot-rolled	14.4	57.7	-0.718	
As-forged	39.9	272.	-0.995	

$$- \quad k_b = \begin{cases} 0.879d^{-0.107} & 0.11 \leq d \leq 2 & [inch] \\ 0.91d^{-0.157} & 2 \leq d \leq 10 & [inch] \\ 1.24d^{-0.107} & 2.79 \leq d \leq 51 & [mm] \\ 1.51d^{-0.157} & 51 \leq d \leq 254 & [mm] \end{cases} \quad \text{for bending and torsion loading}$$

 $k_b = 1$ for axial loading

 $d_{eq} = 0.808\sqrt{bh}$ for rectangular cross-section with b = width and h = height $d_{eq} = 0.37d$ for non-rotating shaft with circular cross-section of diameter d

$$- \quad k_c = \begin{cases} 1 & \text{bending or combined loading} \\ 0.85 & \text{axial loading} \\ 0.59 & \text{torsional loading} \end{cases}$$

$$- k_d = \frac{S_{ut,T}}{S_{ut,RT}}$$

Temperature, °C	S _T /S _{RT}	Temperature, °F	S _T /S _{RT}
20	1.000	70	1.000
50	1.010	100	1.008
100	1.020	200	1.020
150	1.025	300	1.024
200	1.020	400	1.018
250	1.000	500	0.995
300	0.975	600	0.963
350	0.943	700	0.927
400	0.900	800	0.872
450	0.843	900	0.797
500	0.768	1000	0.698
550	0.672	• 1100	0.567
600	0.549		

- $k_e = 1 - 0.08z$ where z is from the standard normal distribution

Fatigue failure criteria for fluctuating stress

- Soderberg: $\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{n}$
- Mod-Goodman: $\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$
- Gerber: $\frac{n\sigma_a}{S_e} + \left(\frac{n\sigma_m}{S_{ut}}\right)^2 = 1$
- ASME-elliptic: $\left(\frac{n\sigma_a}{S_e}\right)^2 + \left(\frac{n\sigma_m}{S_v}\right)^2 = 1$

Calculating fatigue strength $(S_f(N))$ or number of cycles (N) for fluctuating stresses for $10^3 < N < 10^6$ Use equivalent fully reversed stress (σ_{rev}) for fluctuating stress

- Mod-Goodman: $\sigma_{rev} = \frac{\sigma_a}{1 \frac{\sigma_m}{S_{NL}}}$
- Gerber: $\sigma_{rev} = \frac{\sigma_a}{1 \left(\frac{\sigma_m}{S_{ut}}\right)^2}$

Von Mises stresses (alternating and midrange) for combined loading in fluctuating stress case

$$\sigma_{a}' = \left\{ \left[K_{f_{bending}} \sigma_{a_{bending}} + K_{f_{axial}} \frac{\sigma_{a_{axial}}}{0.85} \right]^{2} + 3 \left[K_{f_{s_{torsion}}} \tau_{a_{torsion}} \right]^{2} \right\}^{\frac{1}{2}}$$

$$\sigma_{m}' = \left\{ \left[K_{f_{bending}} \sigma_{m_{bending}} + K_{f_{axial}} \sigma_{m_{axial}} \right]^{2} + 3 \left[K_{f_{s_{torsion}}} \tau_{m_{torsion}} \right]^{2} \right\}^{\frac{1}{2}}$$

Fatigue stress concentration factor (K_f)

$$K_f = 1 + q(K_t - 1)$$

 $K_{fs} = 1 + q(K_{ts} - 1)$

 K_t : stress concentration factor

q: notch radius

Notch sensitivity for bending or axial load

Notch radius r, mm (1.4 GPa) (1.0)(0.7)0.8 Notch sensitivity q Steels Alum. alloy 0.2 0.02 0.04 0.08 0.12 0.14 0.16 0.06 Notch radius r, in

Notch sensitivity for torsional load

Table A-15

Charts of Theoretical Stress-Concentration Factors K_t^*

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.

Figure A-15-2

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12$.

Figure A-15-3

Notched rectangular bar in tension or simple compression. $\sigma_0 = F/A$, where A = dt and t is the thickness.

Table A-15

Charts of Theoretical Stress-Concentration Factors K_t^* (Continued)

Figure A-15-7

Round shaft with shoulder fillet in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4$.

Figure A-15-8

Round shaft with shoulder fillet in torsion. $\tau_0 = Tc/J$, where c = d/2 and $J = \pi d^4/32$.

Figure A-15-9

Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where c = d/2 and $I = \pi d^4/64$.

Part 1 Properties of Sections

A = area

G = location of centroid

 $I_x = \int y^2 dA = \text{second moment of area about } x \text{ axis}$

 $I_y = \int x^2 dA = \text{second moment of area about } y \text{ axis}$

 $I_{xy} = \int xy \, dA = \text{mixed moment of area about } x \text{ and } y \text{ axes}$

$$J_G = \int r^2 dA = \int (x^2 + y^2) dA = I_x + I_y$$

= second polar moment of area about axis through G

 $k_x^2 = I_x/A$ = squared radius of gyration about x axis

Rectangle

$$A = bh$$
 $I_x = \frac{bh^3}{12}$ $I_y = \frac{b^3h}{12}$ $I_{xy} = 0$

Circle

$$A = \frac{\pi D^2}{4}$$
 $I_x = I_y = \frac{\pi D^4}{64}$ $I_{xy} = 0$ $J_G = \frac{\pi D^4}{32}$

Hollow circle

$$A = \frac{\pi}{4}(D^2 - d^2)$$
 $I_x = I_y = \frac{\pi}{64}(D^4 - d^4)$ $I_{xy} = 0$ $J_G = \frac{\pi}{32}(D^4 - d^4)$