DATA315 Assignment 3

${\rm Rin~Meng~51940633}$

March 16, 2025

1. (a) source("nickel.R")
 acf(nickel, lag.max = 10,
 main = "ACF of Electroless Nickel Concentrations")

ACF of Electroless Nickel Concentrations

The ACF plot seems to follow an MA(1) process, as significant correlation at lag 1 followed by immediate drop to near zero.

(b) data(lynx)
 acf(lynx, lag.max = 10, main = "ACF of Lynx Trapping Data")

ACF of Lynx Trapping Data

So far, there are no models that fit, because the plot shows a cyclic pattern between predator and prey populations.

(c) source("Globaltemps.R")
 temps <- ts(temps, start = 1880, end = 2016)
 acf(temps, lag.max = 10,
 main = "ACF of Global Average Temperatures")</pre>

ACF of Global Average Temperatures

The ACF plot seems to follow an AR(1) process, as significant correlation at lag 1 followed by gradual decay.

(d) data("EuStockMarkets")

```
dax <- EuStockMarkets[, 1]

# 260 trading days per year
dax_ts <- ts(dax, start = c(1991, 1), frequency = 260)

# Time series plot
plot(dax_ts,
main = "DAX Stock Index Time Series",
ylab = "Index Value", xlab = "Year",
col = "blue", type = "l")

# ACF plot
acf(dax_ts, main = "ACF of DAX Stock Index")

# Take the natural log
log_dax <- log(dax_ts)
# Compute first differences (log returns)
diff_log_dax <- diff(log_dax)
acf(diff_log_dax, main = "ACF of Log Returns of DAX")</pre>
```

DAX Stock Index Time Series

ACF of DAX Stock Index

Log Differences of DAX Index (Log Returns)

Some observations for the DAX stock index time series plot; visually, we can see that there is a general upward trend with some fluctuations. The ACF plot shows that there is a significant correlation at lag 1, followed by a gradual, slow decay, which means that it may be following other process we have not covered yet. The log returns plot shows that the data revolves around 0, which is a good sign for stationarity.

2. (a) Given that the MA(1) process is defined as

$$X_t = \mu_t + \epsilon_t + \theta \epsilon_{t-1}$$

How we have to test whether the MA parameter is equal to 0.

```
# Print the model summary
   summary(ma1_model)
   Call:
   arima(x = nickel, order = c(0, 0, 1))
   Coefficients:
                 ma1 intercept
            0.2260
                        4.6223
          0.1099
                      0.0277
   s.e.
   sigma<sup>2</sup> estimated as 0.03857:
   \log likelihood = 15.63, aic = -25.26
   # Extract MA(1) coefficient and its standard error
   theta_hat <- ma1_model$coef["ma1"]</pre>
   se_theta <- sqrt(ma1_model$var.coef["ma1", "ma1"])</pre>
   # Compute t-statistic
   t_value <- theta_hat / se_theta
   # Compute p-value (two-tailed test)
   p_value <- 2 * (1 - pnorm(abs(t_value)))</pre>
   # Print results
   t_value
        ma1
   2.05681
   p_value
        ma1
   0.03970446
   The fitted model is X_t = 4.6223 + \epsilon_t + 0.2260\epsilon_{t-1}. Since the p-value is less
   than 0.05, we reject the null hypothesis that the MA parameter is equal to 0.
(b) The portmanteau test checks whether the residuals from our fitted MA(1)
   model behave like white noise, meaning they are uncorrelated. We can use the
   Box-Ljung test to check this.
   # Perform the Box-Ljung test
   Box.test(ma1_model$residuals, lag = 10, type = "Ljung-Box")
   library(forecast)
   checkresiduals(ma1_model)
   Ljung-Box test
   data: Residuals from ARIMA(0,0,1) with non-zero mean
   Q* = 2.5221, df = 5, p-value =
   0.7732
```

Model df: 1. Total lags used: 6

Since the p-value is greater than 0.05, we fail to reject the null hypothesis that the residuals are uncorrelated.

(c) If the 75th value is missing, we can forecast it using the fitted MA(1) model.

$$X_{75} = 4.6223 + \epsilon_{75} + 0.2260\epsilon_{74}$$

Now we can extract the last residuals

Extract last residual
epsilon_74 <- residuals(ma1_model)[74]</pre>

Compute forecast

 $X_75_hat <- 4.6223 + (0.2260 * epsilon_74)$

X_75_hat

[1] 4.545646

The forecasted value for X_{75} is 4.545646. The standard deviation of the forecast is given by

$$\sigma_{\text{forecast}} = \sqrt{\hat{\sigma}^2} \sqrt{1 + \theta^2}$$

From the model, we have

$$\hat{\sigma}^2 = 0.03857$$

$$\theta = 0.2260$$

So we can calculate the standard deviation of the forecast.

$$\sigma_{\text{forecast}} = \sqrt{0.03857}\sqrt{1 + 0.2260^2} = 0.2013455$$

The error in terms of standard deviations is given by

$$Z = \frac{X_{75} - X_{75}^{\text{forecast}}}{\sigma_{\text{forecast}}} = \frac{4.3 - 4.545646}{0.2013455} = -1.220022$$

Since |Z| < 2, the forecast is within the 95% confidence interval.

(d) First we fit an AR(1) model to the data.

Print model summary
summary(ar1_model)

Call:

$$arima(x = nickel, order = c(1, 0, 0))$$

Coefficients:

sigma^2 estimated as 0.03845:

$$log\ likelihood = 15.74$$
, $aic = -25.47$

Then we forecast for the 2nd and 3rd values after the end of the series.

Forecast 2 steps ahead
ar1_forecast <- predict(ar1_model, n.ahead = 3)</pre>

Print forecasted values

ar1_forecast\$pred

Time Series:

Start = c(26, 1)

End = c(26, 3)

Frequency = 3

[1] 4.545956 4.604083 4.617820

Now we check if the residuals are white noise.

Perform Ljung-Box test on AR(1) residuals
Box.test(ar1_model\$residuals, lag = 10, type = "Ljung-Box")

Box-Ljung test

data: ar1_model\$residuals

X-squared = 7.1631, df = 10, p-value = 0.71

Since the p-value is greater than 0.05, we fail to reject the null hypothesis that the residuals are white noise.

3. The given time series model is

$$y_t = \mu + \phi(y_{t-1} - \mu) + \varepsilon_t$$

The exepected value of y_t is

$$E(y_t) = \mu + \phi(E(y_{t-1}) - \mu)$$
$$= \mu + \phi(\mu - \mu) = \mu$$

 μ can be estimated by the sample mean:

$$\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y_t$$

for the given data $\{3.2, 3.2, 2.2, 2.3, 1.8, 1.3, 2.2, 2.7\}$

$$\hat{\mu} = \frac{1}{8}(3.2 + 3.2 + 2.2 + 2.3 + 1.8 + 1.3 + 2.2 + 2.7) = 2.3625$$

$$\hat{\mu} = 2.3625$$

Now, we will estimate ϕ . The autocovariance at lag 1 is given by

$$\gamma_1 = E[(y_t - \mu)(y_{t-1} - \mu)]$$

which can be estimated by

$$\hat{\gamma}_1 = \frac{1}{n} \sum_{t=2}^n (y_t - \hat{\mu})(y_{t-1} - \hat{\mu})$$

similarly, the vairance its

$$\gamma_0 = E[(y_t - \mu)^2]$$

which can be estimated by

$$\hat{\gamma}_0 = \frac{1}{n-1} \sum_{t=1}^{n} (y_t - \hat{\mu})^2$$

Sine for this process, the autocorrelation at lag 1 is given by we can estimate ϕ by

$$\hat{\phi} = \frac{\hat{\gamma}_1}{\hat{\gamma}_0}$$

Computing the estimates for γ_1 and γ_0 :

$$\hat{\gamma}_0 = \frac{1}{8} \sum_{t=1}^{8} (y_t - 2.3625)^2 = 0.3773438$$

$$\hat{\gamma}_1 = \frac{1}{8} \sum_{t=2}^{8} (y_t - 2.3625)(y_{t-1} - 2.3625) = 0.189442$$

So the estimate for ϕ is

$$\hat{\phi} = \frac{0.189442}{0.3773438} = 0.502$$

Now we can estimate σ by

$$\hat{\sigma}^2 = \hat{\gamma}_0 (1 - \hat{\phi}^2) = 0.282$$

$$\hat{\sigma} = \sqrt{0.282} = 0.531$$

- 4. To be done
- 5. Given the TS

$$x_t = 0.5x_{t-1}$$

for t = 1, 2, ..., n and $x_0 = 0$.

(a) x_1 and x_2 can be found by,

$$x_1 = 0.5x_0 = 0.5(0) = 0$$

$$x_2 = 0.5x_1 = 0.5(0) = 0$$

(b) A formula for x_t in terms of t is

$$x_t = 0$$

(c) The $\lim_{t\to\infty} x_t$ is

$$\lim_{t \to \infty} x_t = 0$$

(d) Repeating (a), (b), and (c) for where $x_0 = 1$.

$$x_1 = 0.5x_0 = 0.5(1) = 0.5$$

 $x_2 = 0.5x_1 = 0.5(0.5) = 0.25$

$$\lim_{t \to \infty} x_t = 0$$

because of geometric sequence convergence.

6. Given that $x_0 = 10$ and

$$x_t = 0.8x_{t-1}$$

for $t = 1, 2, 3, \dots, n$.

(a) x_1, x_2, x_3, x_4 can be found,

$$x_1 = 0.8x_0 = 0.8(10) = 8$$

 $x_2 = 0.8x_1 = 0.8(8) = 6.4$
 $x_3 = 0.8x_2 = 0.8(6.4) = 5.12$
 $x_4 = 0.8x_3 = 0.8(5.12) = 4.096$

(b) A formula for x_t in terms of t is

$$x_t = 10(0.8)^t$$

(c) The $\lim_{t\to\infty} x_t$ is

$$\lim_{t \to \infty} x_t = 0$$

(d) Sketching the plot of x_t vs. x_{t-1} for $t = 1, 2, 3, \dots, 10$

```
# Initial value
x0 <- 10</pre>
```

```
# Part (a): Compute the sequence xt = 0.8 * xt-1
t_values <- 0:10
x_values <- numeric(length(t_values))
x_values[1] <- x0

for (t in 2:length(t_values)) {
    x_values[t] <- 0.8 * x_values[t-1]
}

# Extract x_t and x_{t-1}
x_t <- x_values[-1] # Remove x0
x_t_minus_1 <- x_values[-length(x_values)] # Remove last value

# Plot x_t vs. x_{t-1}
plot(x_t_minus_1, x_t, type="b", col="blue", pch=16,
xlab="x_{t-1}", ylab="x_t", main="x_t vs. x_{t-1}")</pre>
```

Plot of x_t vs x_{t-1}

(e) Sketching the plot of x_t vs. x_{t-2} for $t = 2, 3, 4, \dots, 10$

Part (e): Plot x_t vs. x_{t-2}
x_t_minus_2 <- x_values[-c(length(x_values),
length(x_values)-1)] # Remove last two
x_t_2 <- x_values[-c(1,2)] # Remove first two</pre>

Plot of x_t vs x_{t-2}

(f) Repeating (a), (b), (c), (d), and (e) for

$$x_t = 0.8x_{t-1} + z_t$$

where z_t, \ldots, z_n take on the values

$$\{-1.2, 0.2, -1.0, 0.5, 1.7, -0.5, -2.1, 1.0, 0.8, -0.1\}$$

i. x_1, x_2, x_3, x_4 can be found,

$$x_1 = 0.8x_0 + z_1 = 0.8(10) - 1.2 = 8 - 1.2 = 6.8$$

$$x_2 = 0.8x_1 + z_2 = 0.8(6.8) + 0.2 = 5.44 + 0.2 = 5.64$$

$$x_3 = 0.8x_2 + z_3 = 0.8(5.64) - 1.0 = 4.512 - 1.0 = 3.512$$

$$x_4 = 0.8x_3 + z_4 = 0.8(3.512) + 0.5 = 2.8096 + 0.5 = 3.3096$$

ii. A formula for x_t in terms of t is

$$x_t = 10(0.8)^t + \sum_{i=1}^t z_i$$

iii. The $\lim_{t\to\infty} x_t$ is

$$\lim_{t \to \infty} x_t = 0$$

iv. Sketching the plot of x_t vs. x_{t-1} for $t = 1, 2, 3, \dots, 10$

```
# Part (f): Compute the noisy sequence xt = 0.8 * xt-1 + zt
z_{values} \leftarrow c(-1.2, 0.2, -1.0, 0.5, 1.7,
-0.5, -2.1, 1.0, 0.8, -0.1)
x_values_noise <- numeric(length(t_values))</pre>
x_values_noise[1] <- x0</pre>
for (t in 2:length(t_values)) {
x_values_noise[t] <- 0.8 * x_values_noise[t-1]</pre>
+ z_values[t-1]
}
# Extract x_t and x_{t-1} for noisy data
x_t_noise <- x_values_noise[-1]</pre>
x_t_minus_1_noise <- x_values_noise[-length(x_values_noise)]</pre>
plot(x_t_minus_1_noise, x_t_noise, type="b",
col="green", pch=16,
xlab="x_{t-1}", ylab="x_t",
main="x_t vs. x_{t-1} with noise")
```

x_t vs. x_{t-1} with noise


```
v. Sketching the plot of x_t vs. x_{t-2} for t=2,3,4,\ldots,10 # Part (e) with noise: x_t vs. x_{t-2} x_t_minus_2_noise <- x_values_noise[-c(length(x_values_noise), length(x_values_noise)-1)] x_t_2_noise <- x_values_noise[-c(1,2)]
```

plot(x_t_minus_2_noise, x_t_2_noise, type="b",
col="purple", pch=16,
xlab="x_{t-2}", ylab="x_t",
main="x_t vs. x_{t-2} with noise")

x_t vs. x_{t-2} with noise

7. Given that $x_0 = 2$ and $x_1 = 1$ for

$$x_t = 0.8x_{t-1} - 0.7x_{t-2}$$

for $t = 2, 3, 4, \dots, n$

(a) x_2, x_3, x_4 can be found,

$$x_2 = 0.8x_1 - 0.7x_0 = 0.8(1) - 0.7(2) = 0.8 - 1.4 = -0.6$$

$$x_3 = 0.8x_2 - 0.7x_1 = 0.8(-0.6) - 0.7(1) = -0.48 - 0.7 = -1.18$$

$$x_4 = 0.8x_3 - 0.7x_2 = 0.8(-1.18) - 0.7(-0.6) = -0.944 - (-0.42) = -0.524$$

(b) The sketched plot of x_t vs. x_{t-1} is for t = 2, 3, ..., 10 is shown below.

(c) The sketched plot of x_t vs. x_{t-2} is for $t=2,3,\ldots,10$ is shown below.

(d) Repeat (a), (b), and (c) for

$$x_t = 0.8x_{t-1} - 0.7x_{t-2} + z_t$$

where z_2, \ldots, z_{11} take on the values

$$\{-1.2, 0.2, -1.0, 0.5, 1.7, -0.5, -2.1, 1.0, 0.8, -0.1\}$$

i. x_2, x_3, x_4 can be found,

$$x_2 = 0.8x_1 - 0.7x_0 + z_2 = 0.8(1) - 0.7(2) + 0.2 = 0.8 - 1.4 + 0.2 = -0.4$$

$$x_3 = 0.8x_2 - 0.7x_1 + z_3$$

$$= 0.8(-0.4) - 0.7(1) - 1.0 = -0.32 - 0.7 - 1.0 = -2.02$$

$$x_4 = 0.8x_3 - 0.7x_2 + z_4$$

$$= 0.8(-2.02) - 0.7(-0.4) + 0.5 = -1.616 - 0.28 + 0.5 = -1.396$$

ii. The sketched plot of x_t vs. x_{t-1} is for $t = 2, 3, \dots, 10$ is shown below.

x_t vs. x_{t-1} with noise

iii. The sketched plot of x_t vs. x_{t-2} is for t = 2, 3, ..., 10 is shown below.

x_t vs. x_{t-2} with noise

8. The given TS

$$x_t = 0.8x_{t-1} + z_t$$

 $z_t \sim N(0, 1) \text{ and } x_0 = 0.$

(a) The distribution of x_1 its

$$x_1 = 0.8x_0 + z_1 = 0.8(0) + z_1 = z_1$$

 $E[x_1] = 0$
 $Var[x_1] = 1$

Since $z_1 \sim N(0, 1), x_1 \sim N(0, 1).$

(b) The distribution of x_2 is

$$x_2=0.8x_1+z_2=0.8z_1+z_2$$

$$E[x_2]=0$$

$$Var[x_2]=Var(0.8x_1)+Var(z_2)=0.8^2(1)+1=1.64$$
 Since $z_1,z_2\sim N(0,1),\; x_2\sim N(0,1.64).$

(c) The distribution of x_3 is

$$\begin{split} x_3 &= 0.8x_2 + z_3 = 0.8(0.8z_1 + z_2) + z_3 \\ &= 0.64z_1 + 0.8z_2 + z_3 \\ &E[x_3] = 0 \\ &Var[x_3] = Var(0.8z_2) + Var(z_3) = 0.8^2(1.64) + 1 = 2.0496 \end{split}$$
 Since $z_1, z_2, z_3 \sim N(0, 1), \; x_3 \sim N(0, 2.0496).$

(d) If x_2 takes the value 3, the point prediction for x_3 is

$$E[x_3|x_2=3] = 0.64(0) + 0.8(3) = 2.4$$

(e) The distribution of the prediction error its

$$Error = x_3 - E[x_3|x_2]$$

Since $x_3 = 0.8x_2 + z_3$ and $E[x_3|x_2] = 0.8x_2$,

$$Error = (0.8x_2 + z_3) - 0.8x_2 = z_3$$

then it must be true that

Error
$$\sim N(0,1)$$