# ISTA 116: Statistical Foundations for the Information Age

Multivariate Categorical Data

14 September 2011

ISTA 116: Statistical Foundations for the Information Age

#### Reminders/Announcements

- Web Quiz 3 (up now) due Friday. Download the quiz from Content, and then submit your answers via Quizzes.
  - Reminder: You should not be using R for web quizzes
  - Please make your first attempt without using reference material
- Web Quiz 4 (up soon) due next Wednesday
- Lab 3 (up soon) due a week from Friday
- Please keep track of the Announcements page on d2l; we will sometimes tell you about useful references there.

#### Outline

- 1 Bi- and Multivariate Data
- 2 Bivariate Categorical Data
  - Joint and Marginal Frequencies
  - Joint and Marginal Proportions
     Joint and Marginal Distributions
  - Conditional Proportions and Distributions
  - Association
- 3 Visualizing Bivariate Categorical Data
  - Stacked and Grouped Bar Plots
- 4 Multivariate Categorical Data

ISTA 116: Statistical Foundations for the Information Age
Outline

#### Quiz 1

■ What can we say about this distribution?



#### ISTA 116: Statistical Foundations for the Information Age

# Quiz 1

■ The distribution for those who actually took the quiz:



ISTA 116: Statistical Foundations for the Information Age
Bi- and Multivariate Data

# Multiple Univariate vs. One Multivariate

■ What's the difference between this...

| Person | Sex |
|--------|-----|
| 1      | М   |
| 2      | F   |
| 3      | F   |
| 4      | М   |
| 5      | F   |
| 6      | F   |
| 7      | М   |
| 8      | М   |

| Person | Height (in.) |
|--------|--------------|
| Α      | 64           |
| В      | 74           |
| С      | 72           |
| D      | 68           |
| Е      | 61           |
| F      | 70           |
| G      | 68           |
| Н      | 69           |

#### Some Latin

- Recall: if a data set has one variable, we say that it is univariate
- Two variables: bivariate
- More than two: multivariate
- Verzani covers bivariate data in Ch. 3 and multivariate in Ch. 4. We'll cover them together, since the types of the variables makes a bigger difference in what you can do than the number.

ISTA 116: Statistical Foundations for the Information Age

Bi- and Multivariate Data

# Multiple Univariate vs. One Multivariate

and this?

| Sex | Height (in.) |
|-----|--------------|
| М   | 74           |
| F   | 64           |
| F   | 61           |
| M   | 68           |
| F   | 70           |
| F   | 69           |
| M   | 72           |
| М   | 68           |

ISTA 116: Statistical Foundations for the Information Age

☐ Bi- and Multivariate Dat

# Multiple Univariate vs. One Multivariate

- When we observe more than one characteristic from the same person, we can look at the relationship between the variables.
  - Are males taller than females on average?
  - Are males more variable than females?
- With two isolated variables, and no correspondence between the values, there's no way to examine relationships.

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

## **Contingency Tables**

- Recall: with a univariate categorical data set, we summarized by *counting* the observations in each category
- With more than one variable, we do the same thing, but we keep track of *combinations*.
- With two variables, we can store the counts in a two-dimensional grid called a **contingency table**

ISTA 116: Statistical Foundations for the Information Age

☐Bi- and Multivariate Dat

#### Three Cases

- The kinds of relationships we can identify depend on the types of variables we have
- Three Cases:
  - All categorical variables
  - A mix of categorical and numeric
  - All numeric

ISTA 116: Statistical Foundations for the Information Age

# A Simple Contingency Table

| Computer |
|----------|
| PC       |
| Mac      |
| PC       |
| PC       |
| PC       |
| Mac      |
| Mac      |
| PC       |
|          |

|                   |     |   | Computer |     |
|-------------------|-----|---|----------|-----|
|                   |     |   | PC       | Mac |
| $\Longrightarrow$ | Sex | М | 3        | 1   |
|                   | Sex | F | 2        | 2   |

└─ Joint and Marginal Frequencies

#### Joint Frequencies

- With one categorical variable, we had a **frequency table**: the entries represent how many times (how frequently) each category appears in the data
- With two or more variables, we can count how often two categories (say, male and PC) appear together (jointly).
- The counts of the combinations are called **joint** frequencies.





ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Frequencies

#### Marginal Frequencies

■ We start with joint frequencies:

|     |   | Computer |     |
|-----|---|----------|-----|
|     |   | PC       | Mac |
| Sex | М | 3        | 1   |
| Sex | F | 2        | 2   |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Frequencies

# Marginal Frequencies

- We may be interested in how often one category appears, regardless of what it's combined with.
- To find the total number of females (say), sum across the row.
- We could write the sum in the "margin" of the contingency table.
- This sum is called the **marginal frequency** for females (say).

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Frequencies

#### Marginal Frequencies

■ and compute the marginal frequencies for sex:

|     |   | Con | puter |          |
|-----|---|-----|-------|----------|
|     |   | PC  | Mac   | Marginal |
| Say | М | 3   | 1     | 4        |
| Sex | F | 2   | 2     | 4        |

# Marginal Frequencies

We can also compute the marginal frequencies for Computer:

|     |          | Computer |     |          |
|-----|----------|----------|-----|----------|
|     |          | PC       | Mac | Marginal |
| Sex | М        | 3        | 1   | 4        |
|     | F        | 2        | 2   | 4        |
|     | Marginal | 5        | 3   |          |

Notice that we can start with a set of marginal frequencies, and "marginalize" in the other direction to get the total number of observations (=n)

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└─ Joint and Marginal Frequencies

#### Marginal Frequencies

For example:

$$\begin{aligned} & \operatorname{Freq}(Sex = M) \\ &= \sum_{y} \operatorname{Freq}(Sex = M \text{ and } Computer = y) \end{aligned}$$

$$\begin{aligned} & \operatorname{Freq}(\operatorname{Computer} = \operatorname{PC}) \\ &= \sum_{x} \operatorname{Freq}(\operatorname{Sex} = x \text{ and } \operatorname{Computer} = \operatorname{PC}) \end{aligned}$$

ISTA 116: Statistical Foundations for the Information Age

—Bivariate Categorical Data

└ Joint and Marginal Frequencies

## Marginal Frequencies

- lacktriangleright Call our two variables X and Y, and let x and y represent particular values they can take on.
- If we use  $Freq(\cdot)$  to represent the frequency of whatever we put inside the parentheses, then we have:

$$\begin{aligned} &\operatorname{Freq}(X=x) &=& \sum_{y} \operatorname{Freq}(X=x \text{ and } Y=y) \\ &\operatorname{Freq}(Y=y) &=& \sum_{x} \operatorname{Freq}(X=x \text{ and } Y=y) \\ &\sum_{x} \operatorname{Freq}(X=x) &=& \sum_{y} \operatorname{Freq}(Y=y) = n \end{aligned}$$

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

L Joint and Marginal Proportions

# Joint and Marginal Proportions

- With univariate categorical data, we computed relative frequencies for each category: the proportion of the time that category appeared.
- We can do the same thing for the frequencies in a contingency table, simply by dividing each frequency by the grand total.
- When applied to joint frequencies, we get **joint proportions**; when applied to marginal frequencies, we get **marginal proportions**

# Joint and Marginal Proportions

■ Starting with the frequencies...

|     |          | Computer |     |          |
|-----|----------|----------|-----|----------|
|     |          | PC       | Mac | Marginal |
| Sex | М        | 3        | 1   | 4        |
|     | F        | 2        | 2   | 4        |
|     | Marginal | 5        | 3   | n = 8    |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Proportions

# Joint and Marginal Proportions

■ The result is a table of joint and marginal proportions.

|     |          | Com   |       |          |
|-----|----------|-------|-------|----------|
|     |          | PC    | Mac   | Marginal |
| Sex | М        | 0.375 | 0.125 | 0.500    |
| Sex | F        | 0.250 | 0.250 | 0.500    |
|     | Marginal | 0.625 | 0.375 | 1.000    |

■ Notice that the joints still sum to the marginals, and all the joints, as well as any particular set of marginals, sum to 1.000.

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Proportions

# Joint and Marginal Proportions

■ Divide each frequency by n (here n = 8):

|     |          | Computer |     |          |
|-----|----------|----------|-----|----------|
|     |          | PC       | Mac | Marginal |
| Sav | М        | 3/n      | 1/n | 4/n      |
| Sex | F        | 2/n      | 2/n | 4/n      |
|     | Marginal | 5/n      | 3/n | n/n      |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└─ Joint and Marginal Proportions

## Joint and Marginal Proportions

■ If we define  $Prop(\cdot)$  to be the proportion of whatever is inside, then using our previous notation:

$$\mathsf{Prop}(\cdot) = \frac{1}{n}\mathsf{Freq}(\cdot)$$

# Joint and Marginal Proportions

■ In particular:

$$\begin{split} \operatorname{Prop}(X = x, Y = y) &= \frac{1}{n}\operatorname{Freq}(X = x, Y = y) \\ \operatorname{Prop}(X = x) &= \frac{1}{n}\operatorname{Freq}(X = x) \\ &= \frac{1}{n}\sum_{y}\operatorname{Freq}(X = x, Y = y) \\ &= \sum_{y}\frac{1}{n}\operatorname{Freq}(X = x, Y = y) \\ &= \sum_{y}\operatorname{Prop}(X = x, Y = y) \end{split}$$

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

└ Joint and Marginal Proportions

# Joint and Marginal Distributions

- Each color represents a different distribution.
  - Lavender: Joint distribution of Sex and Computer
  - Pink: Marginal distribution of Sex
  - Lime Green: Marginal distribution of Computer

|     |          | Com   |       |          |
|-----|----------|-------|-------|----------|
|     |          | PC    | Mac   | Marginal |
| Sex | М        | 0.375 | 0.125 | 0.500    |
|     | F        | 0.250 | 0.250 | 0.500    |
|     | Marginal | 0.625 | 0.375 | 1.000    |

■ Notice that each distribution sums to 1.

STA 116: Statistical Foundations for the Information Age

-Bivariate Categorical Data

└ Joint and Marginal Proportions

## Joint and Marginal Distributions

- If we take the set of all the joint proportions, we define a **joint distribution** over the variables.
- Similarly, each set of marginal proportions defines a marginal distribution for that variable.

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

#### **Conditional Proportions**

- Both joint and marginal proportions represent proportions of the *whole data set*.
- Sometimes, however, we want to ask about proportions within a *subset* of the data
  - Example: What proportion of males use a PC?
  - What proportion of Mac users are female?
- We can use these values to make interesting comparisons
  - Are women more likely than men to buy a Mac?
  - Are urban residents more likely to get lung cancer than rural or suburban residents?
  - Other examples?

# Conditional Proportions

- Quantities like "what proportion of males use a PC?" are called conditional proportions: we "condition" on being male (i.e., restrict attention to males) before calculating the proportion.
- We write the above as  $\mathsf{Prop}_{Sex=M}(Computer = PC)$ , which we can read as "the conditional proportion of PC users, given that  $\mathsf{Sex} = \mathsf{M}$ " (later we will connect this to probability: "What's the probability someone will buy a PC, given that they are male?").

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

# Conditioning on Sex

■ But instead of dividing by n, we divide by the joints by the corresponding marginal for Sex.

|     |          | Com | puter |          |
|-----|----------|-----|-------|----------|
|     |          | PC  | Mac   | Marginal |
| Sex | М        | 3/4 | 1/4   | 4/4      |
|     | F        | 2/4 | 2/4   | 4/4      |
|     | Marginal | 5/8 | 3/8   | 8/8      |

■ The lime green does not represent conditional proportions: it is the same marginal (unconditional) distribution from before.

STA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

# Conditioning on Sex

■ Again, we start with the frequencies...

|     |          | Com    | puter |          |
|-----|----------|--------|-------|----------|
|     |          | PC Mac |       | Marginal |
| Sex | М        | 3      | 1     | 4        |
|     | F        | 2      | 2     | 4        |
|     | Marginal | 5      | 3     | 8        |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

# Conditioning on Sex

■ The resulting conditional proportions make up *two different* conditional distributions: one for each sex.

|     |          | Com   | outer |          |
|-----|----------|-------|-------|----------|
|     |          | PC    | Mac   | Marginal |
| Sex | М        | 0.75  | 0.25  | 1.00     |
| Sex | F        | 0.50  | 0.50  | 1.00     |
|     | Marginal | 0.625 | 0.375 | 1.00     |

■ Notice that, as before, each distribution sums to one (but now each row is its own distribution: we consider males and females separately).

└─Bivariate Categorical Data

Conditional Proportions and Distributions

# Conditioning on Computer

- Suppose instead we want to know "what proportion of Mac users are female?". Now we are conditioning on Computer: restrict attention to Mac users.
- Begin with frequencies as before, but group based on Computer:

|     |          | Com | puter |          |
|-----|----------|-----|-------|----------|
|     |          | PC  | Mac   | Marginal |
| Sex | М        | 3   | 1     | 4        |
| Sex | F        | 2   | 2     | 4        |
|     | Marginal | 5   | 3     | 8        |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

#### Conditioning on Computer

■ Again we get two different conditional distributions: one for each computer.

|     |          | Com  | puter |          |
|-----|----------|------|-------|----------|
|     |          | PC   | Mac   | Marginal |
| Sex | М        | 0.60 | 0.33  | 0.50     |
|     | F        | 0.40 | 0.67  | 0.50     |
|     | Marginal | 1.00 | 1.00  | 1.00     |

■ Notice that the rows do *not* form distributions: the marginal distribution of sex is a *weighted average* of the conditional distributions (what are the weights?)

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

Conditional Proportions and Distributions

## Conditioning on Computer

■ Divide each frequency by the total *for that computer*.

|     |          | Com | puter |          |
|-----|----------|-----|-------|----------|
|     |          | PC  | Mac   | Marginal |
| Sex | М        | 3/5 | 1/3   | 4/8      |
| Sex | F        | 2/5 | 2/3   | 4/8      |
|     | Marginal | 5/5 | 3/3   | 8/8      |

ISTA 116: Statistical Foundations for the Information Age

☐Bivariate Categorical Data

Conditional Proportions and Distributions

## **Conditional Proportions**

- We calculate conditional proportions from frequencies in the obvious way: restrict attention to ("condition on") a particular category, and divide the frequency by the total in that category.
- In our notation:

$$\begin{array}{lcl} \mathsf{Prop}_{X=x}(\,Y=y) & = & \dfrac{1}{n_{X=x}}\mathsf{Freq}_{X=x}(\,Y=y) \\ \\ & = & \dfrac{\mathsf{Freq}(X=x,\,Y=y)}{\mathsf{Freq}(X=x)} \end{array}$$

# Debt Ceiling Vote



Figure: Display of House votes by party on the recent debt-ceiling deal

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

## Association

- If two variables are unrelated to each other, the conditional distributions for one variable should be similar across levels of the conditioning variable.
- For example, we would probably not expect a relationship between, say, the last digit of someone's phone number, and their marital status
  - Similar percentages of "4"s are married as of "6"s.
  - That is, the *conditional distributions* of marital status given phone digit are the same.
- When this does not happen, two variables are **associated**.

ISTA 116: Statistical Foundations for the Information Age  $$\square$$  Bivariate Categorical Data

Conditional Proportions and Distributions

#### Exercise

■ Compute the distribution of votes, both unconditionally and conditioned on party.

|       |          | Vote |     |         |          |
|-------|----------|------|-----|---------|----------|
|       |          | Yea  | Nay | No Vote | Marginal |
| Dorty | GOP      | 171  | 59  | 10      |          |
| Party | Dem      | 68   | 77  | 48      |          |
|       | Marginal |      |     |         |          |

ISTA 116: Statistical Foundations for the Information Age

Bivariate Categorical Data

#### Parallel Categories

One form of association can occur when the two variables have the same levels (set of values).

|        |          | C     | Child   |          |
|--------|----------|-------|---------|----------|
|        |          | Buck. | Unbuck. | Marginal |
| Parent | Buck.    | 56    | 8       | 64       |
| Parent | Unbuck.  | 2     | 16      | 18       |
|        | Marginal | 58    | 24      | 82       |

 Notice that children of unbuckled parents tend to be buckled; similarly, children of unbuckled parents tend to be unbuckled.

# Parallel Categories

■ This is even clearer if we condition on parent's status and compute proportions.

|        |          | С      |         |          |
|--------|----------|--------|---------|----------|
|        |          | Buck.  | Unbuck. | Marginal |
| Parent | Buck.    | 0.875  | 0.125   | 1.000    |
|        | Unbuck.  | 0.1111 | 0.8889  | 1.000    |
|        | Marginal | 0.7073 | 0.2927  | 1.000    |

- The cells where the two variables have the same value are called the **main diagonal** of the contingency table.
- Large numbers on the main diagonal show an association.



Here the bars represent joint frequencies



Figure: Parent and Child Seatbelt Status

ISTA 116: Statistical Foundations for the Information Age

Visualizing Bivariate Categorical Data

# Visualizing Bivariate Categorical Data

- Various contingency tables can tell us all we want to know, but as with univariate data, it's often easier to have a picture.
- Can always show conditional distributions with pie charts, but direct comparison is easier with stacked or grouped bar plots.



To compare the two parent groups, condition on parent status:



Figure: Parent and Child Seatbelt Status

ISTA 116: Statistical Foundations for the Information Age

Visualizing Bivariate Categorical Data

Stacked and Grouped Bar Plots

# Stacked and Grouped Bar Plots

When conditioning (and without too many levels) we can also stack (sort of like "linear pie charts")



Figure: Parent and Child Seatbelt Status

ISTA 116: Statistical Foundations for the Information Age

Visualizing Bivariate Categorical Data

Stacked and Grouped Bar Plots

#### Vietnam War Opinions

#### January 1971 Gallup Poll

"A proposal has been made in Congress to require the U.S. government to bring home all U.S. troops before the end of this year. Would you like to have your congressman vote for or against this proposal?"

ISTA 116: Statistical Foundations for the Information Age

Usualizing Bivariate Categorical Data

Stacked and Grouped Bar Plots

# Stacked and Grouped Bar Plots

Occasionally we may condition on the "color", rather than the group, to compare distributions across colors.



Figure: Grades on an Exam, Conditioned on Previous Grade

ISTA 116: Statistical Foundations for the Information Age

Visualizing Bivariate Categorical Data

Stacked and Grouped Bar Plots

Vietnam War Opinions

Conditional distributions of opinion about Vietnam withdrawal, given education level, based on a January 1971 Gallup poll.

|         |          | Edu   | Education Level |         |          |
|---------|----------|-------|-----------------|---------|----------|
|         |          | Grade | High            | College | Marginal |
| Oninion | "Dove"   |       |                 |         | 0.73     |
| Opinion | "Hawk"   |       |                 |         | 0.27     |
|         | Marginal | 1.00  | 1.00            | 1.00    |          |

# Vietnam War Opinions

# From an October 2001 article in *The Economist* entitled "Treason of the Intellectuals?"

"Back in Vietnam days, the anti-war movement spread from the intelligentsia into the rest of the population, eventually paralysing the country's will to fight."

Source http://www.economist.com/node/806289





Figure: Opinions about Vietnam Withdrawal, Conditioned on Education Level

ISTA 116: Statistical Foundations for the Information Age

Visualizing Bivariate Categorical Data

Stacked and Grouped Bar Plots

## Vietnam War Opinions

#### ■ The actual results:

|         |          | Edu   | Education Level |         |          |  |
|---------|----------|-------|-----------------|---------|----------|--|
|         |          | Grade | High            | College | Marginal |  |
| Opinion | "Dove"   | 0.80  | 0.75            | 0.60    | 0.73     |  |
| Opinion | "Hawk"   | 0.20  | 0.25            | 0.40    | 0.27     |  |
|         | Marginal | 1.00  | 1.00            | 1.00    |          |  |

ISTA 116: Statistical Foundations for the Information Age

Multivariate Categorical Data

#### More Than Two Variables

- With more than two categorical variables, the ideas are the same; things are just a bit more complicated.
- Can't draw contingency tables in 3D very easily, so we have a separate table for each level of the third variable.
- Think of a "cube" that we slice into layers.

# Example: Race and the Death Penalty

■ Example: Florida homocide cases

| Victim=White | Death Penalty |     |  |
|--------------|---------------|-----|--|
|              | Yes           | No  |  |
| Defendant    |               |     |  |
| White        | 19            | 132 |  |
| Black        | 11            | 52  |  |

| Victim=Black | Death | Penalty |
|--------------|-------|---------|
|              | Yes   | No      |
| Defendant    |       |         |
| White        | 0     | 9       |
| Black        | 6     | 97      |

ISTA 116: Statistical Foundations for the Information Age

Multivariate Categorical Data

## Example: Race and the Death Penalty

Conditioning on Defendant's race, the rate of death penalty is similar between races (slightly higher for white defendants):



Figure: Proportions of Death Sentences Conditioned on Defendant's Race

# Example: Race and the Death Penalty

Now, "marginalizing" (summing) over one variable gives us back a  $2 \times 2$  table:

|           | Death Penalty |     |
|-----------|---------------|-----|
|           | Yes           | No  |
| Defendant |               |     |
| White     | 19            | 141 |
| Black     | 17            | 149 |



■ However, notice what happens when we condition on *both* defendant's and victim's race (i.e., on all combinations):



Figure: Proportions of Death Sentences Conditioned on Both Victim's and Defendant's Race

# Example: Race and the Death Penalty

■ What's happening?

| Victim=White | Death Penalty |     |
|--------------|---------------|-----|
|              | Yes           | No  |
| Defendant    |               |     |
| White        | 19            | 132 |
| Black        | 11            | 52  |

| Victim=Black | Death | Penalty |
|--------------|-------|---------|
|              | Yes   | No      |
| Defendant    |       |         |
| White        | 0     | 9       |
| Black        | 6     | 97      |

Example: Race and the Death Penalty

■ What's happening?

ISTA 116: Statistical Foundations for the Information Age



■ The DP is applied more often for white victims; and most homocides involve same-race individuals.

ISTA 116: Statistical Foundations for the Information Age

Multivariate Categorical Data

# Example: Race and the Death Penalty

■ What's happening?

| DP = Yes | Defendant |       |
|----------|-----------|-------|
|          | White     | Black |
| Victim   |           |       |
| White    | 19        | 11    |
| Black    | 0         | 6     |

| DP = No | Defendant |       |
|---------|-----------|-------|
|         | White     | Black |
| Victim  |           |       |
| White   | 132       | 52    |
| Black   | 9         | 97    |

ISTA 116: Statistical Foundations for the Information Age

Multivariate Categorical Data

# Simpson's "Paradox"

■ This phenomenon, of a (marginal) association changing direction when conditioning on a third variable, is called **Simpson's Paradox**.