

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية المتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: تكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (08 نقاط)

I- ليكن البوليمير الذي صيغته من الشكل:

$$\begin{array}{c|c} & O & O \\ & & \\$$

- حيث: (M_1) و (M_2) مونوميرين مكونين لهذا البوليمير

1) يمكن الحصول على المونومير (M_1) انطلاقا من البروبان-2 ول (propan-2-ol) وفق سلسلة التفاعلات الآتية :

1) propan-2-ol
$$\frac{\text{Cu}}{300 \, ^{\circ}\text{C}}$$
 A + H₂

2) A
$$\xrightarrow{\text{Zn / HCl}}$$
 B + H₂O

3) B +
$$Cl_2$$
 \longrightarrow C + HCl

4)
$$\left\langle \begin{array}{c} + 2C \\ \end{array} \right\rangle$$
 + 2C $\left\langle \begin{array}{c} AlCl_3 \\ \end{array} \right\rangle$ D (para) + 2 HCl

5) D
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4}$$
 $M_1 + 4\text{CO}_2 + 6\text{H}_2\text{O}$

.(M_1) , (D) , (C) , (B) , (A) للمركبات: الصيغ نصف المفصلة للمركبات: أ) جد الصيغ

ب) استنتج الصيغة نصف المفصلة للمونومير (M2).

ج) اكتب معادلة تحضير المركب (C) انطلاقا من البروبان-2 ول مباشرة .

يمكن للتفاعل رقم (3) أن يعطي مركبا آخرا (C') أقل استقرارا ، نجري على المركب (C') سلسلة التفاعلات الآتية:

7) E +
$$CO_2 \longrightarrow F$$

8) F +
$$H_2O$$
 \longrightarrow I + $MgCl(OH)$

- جد الصيغ نصف المفصلة للمركبات: (C') ، (C') ، (E) ، (C')
- II نفاعل 3 مول من المركب (I) السابق مع الغليسرول فيتشكل ثلاثي الغليسريد.
 - 1) اكتب معادلة التفاعل الحادث.
 - 2) ما نوع ثلاثي الغليسريد الناتج و اذكر اسمه ؟
 - 3) اكتب معادلة تفاعل تصبن ثلاثي الغليسريد الناتج.
 - لتصبن النظرية (I_s) التصبن النظرية (I_s) الماتج. (4 الماتخ الغليسريد الناتج. يعطى:

H = 1 g/mol \cdot C = 12 g/mol \cdot O = 16 g/mol \cdot K = 39 g/mol

التمرين الثاني: (06 نقاط)

I- لديك الأحماض الأمينية الآتية:

Gly	Lys	Phe	Asp	الأحماض الأمينية
H	(CH ₂) ₄ NH ₂	CH ₂	СН ₂ СООН	السلسلة الجانبية ا R

- 1) اكتب الصيغ نصف المفصلة لهذه الأحماض الأمينية .
- بيّن الصورتين L ، D للحمض الأميني Phe بيّن الصورتين L ، D للحمض الأميني (2

يعطى:

$$pKa_2 = 9,13$$
 $\rho Ka_1 = 1,83$

pH = 6 للهجرة الكهربائية عند Asp · Lys · Gly نخضع مزيج من ثلاثة أحماض أمينية: - وضع مواقع الأحماض الأمينية على شريط الهجرة الكهربائية مع التعليل.

$$pH_{i\;(Asp)}=2,77$$
 ، $pH_{i\;(Lys)}=9,74$ ، $pH_{i\;(Gly)}=6$: يعطى

II- للكشف عن مكونات مزيج من الأحماض الأمينية في العينة (M) نستخدم أحماض أمينية شاهدة ، الوثيقة التي في الأسفل تمثل التحليل الكروماتوغرافي للعينة (M).

المطلوب:

- 1) حدّد الأحماض الأمينية المكونة للعينة (M).
- 2) ما دور النينهيدرين في التحليل الكروماتوغرافي؟
- . (M) احسب معامل السريان $R_{\rm f}$ للأحماض الأمينية المكونة للعينة (3

وثيقة التحليل الكروماتوغرافي

2017 الشعبة: تقني رياضي / بكالوريا استثنائية الطرائق) / الشعبة: تقني رياضي الكنولوجيا (هندسة الطرائق)

التمرين الثالث: (06 نقاط)

مسعر حراري اديباتيكي سعته الحرارية ($C_{cal}=130,8~J/K$) كتلة الماء بداخله $m_{eau}=400~g$ عند درجة الحرارة . $T_i=20^{\circ}C$

يتم حرق كتلة g 2,25 من ايثيل أمين غازي (C_2H_5 - NH_2) داخل هذا المسعر وعند التوازن تصبح درجة الحرارة النهائية $T_f = 68,2^{\circ}C$ ، فإذا علمت أن معادلة تفاعل الاحتراق هي:

$$C_2H_5$$
-NH_{2 (g)} + $\frac{15}{4}$ O_{2 (g)} \longrightarrow 2 $CO_{2 (g)}$ + $\frac{7}{2}$ H₂O_(ℓ) + $\frac{1}{2}$ N_{2 (g)}

المطلوب:

- (1 ماهي كمية الحرارة (Q_1) التي أكتسبتها الجملة (مسعر + ماء) (
 - (Q_2) استنتج كمية الحرارة (Q_2) الناتجة عن الاحتراق.

يعطى:

$$c_{eau} = 4,185 \text{ J.g}^{-1}.K^{-1}$$
 السعة الحرارية الكتلية للماء

$$C=12\ g/mol$$
 , $H=1\ g/mol$, $N=14\ g/mol$

- ΔH_{comb}^0 احسب أنطالبي تفاعل الاحتراق (ΔH_{comb}^0
- $\Delta H_{\rm f}^0({
 m C}_2{
 m H}_5{
 m NH}_{2({
 m g})})$ احسب أنطالبي تشكيل إيثيل أمين الغازي (4

$$\Delta H_{\rm f}^0({\rm CO}_{2({\rm g})})$$
 = -393 kJ/mol :يعطى $\Delta H_{\rm f}^0({\rm H_2O}_{(\ell)})$ = -286 kJ/mol

5) حدّد قيمة طاقة تشكل الرابطة (N-H) في جزيء إيثيل أمين الغازي باستعمال مخطط التشكل.

$$\Delta H_{\text{sub}}^0(C_{(s)}) = 717 \text{ kJ/mol}$$
 عطی:

H–H الرابطة		N≡N	C-H	C-C	C-N
ΔH_{diss}^{0} (kJ/mol)	436	945	413	348	292

- 6) إذا كان المسعر مصنوع من الألمنيوم.
- $C_{Al} = 24,35 \text{ J.mol}^{-1}.K^{-1}$ ما هي كتلة هذا المسعر إذا علمت أن السعة الحرارية المولية للألمونيوم هي: Al = 27 g/mol وأنّ: Al = 27 g/mol

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (08 نقاط)

(I

- C_3H_6O عطي مركب (B) تعطي مركب H_2SO_4 و Hg^{2+} و H_2SO_4 في وجود شوارد الزئبق H_2SO_4 و H_3 المركبين (B) عصيغ نصف المفصلة للمركبين (B) . (A)
 - H_2SO_4 يرجع المركب (C) بوجود (C)، نزع الماء من المركب (C) بوجود (D) بوجود (D) يرجع المركب (D) يعطي المركب (D) .
 - جد الصيغ نصف المفصلة للمركبين (C)، (C)،
 - 3) نجري على المركب (D) سلسلة التفاعلات الكيميائية الآتية:

1)
$$+ D \xrightarrow{H_2SO_4} = E$$

2) $E + HNO_3 \xrightarrow{H_2SO_4} = F + H_2O$

3) $F \xrightarrow{Fe/HCl} = G + 2H_2O$

4) $G + Cl_2 \xrightarrow{uv} = H + HCl$

5) H

6) I +
$$CO_2$$
 + H_2O + H_2N CH_3 CH_3 CH_3 (J)

- (I)، (H) ، (G)، (F) ، (E) جد الصيغ نصف المفصلة للمركبات –
- 4) بلمرة المركب (J) تعطى البوليمير (K) ، اكتب الصيغة العامة للبوليمير (K) .

2017 الشعبة: تقني رياضي / بكالوريا استثنائية الطرائق) / الشعبة: تقني رياضي المتثنائية الطرائق)

pKa _R	pKa ₂	pKa ₁	السلسلة الجانبية	الحمض الأميني
			 R	-
///	9,60	2,34	-н	ظلیسین Gly
8,18	10,28	1,96	CH ₂ SH	سيستئي <i>ن</i> Cys

- 1) صنف الأحماض الأمينية الثلاث السابقة .
- 2) مثل المماكبات الضوئية D و L لسيستئين Cys .
 - 3) احسب pHi للبرولين(Pro) علما أن:

$$pKa_1 = 1.99$$
 , $pKa_2 = 10.60$

التمرين الثاني: (06 نقاط)

I) من أجل تقدير أنطالبي التفاعل الآتي:

$${
m MgO}_{(s)} + 2({
m H}_3{
m O}^+, {
m Cl}^-)_{(aq)} \longrightarrow ({
m Mg}^{2+}, 2{
m Cl}^-)_{(aq)} + 3{
m H}_2{
m O}_{(\ell)} \ \Delta {
m H}_1^\circ = ?$$
 ${
m HCl}$ نصع في مسعر حراري أديباتيكي سعته الحرارية ${
m V}_1 = 100 {
m mL} \ ({
m C} = 100 {
m J/K}) \ {
m id} \ {
m C}_1 = 1,5 {
m g}$ نضيف له كتلة ${
m C}_1 = 1,5 {
m g}$ رحيزه ${
m C}_1 = 1,5 {
m g}$ درجة حرارة المسعر ومحتواه ${
m C}_1 = 1,5 {
m g}$ نضيف له كتلة ${
m C}_1 = 1,5 {
m g}$ درجة الحرارة إلى ${
m C}_1 = 1,5 {
m g}$ و كتلة المحلول ${
m C}_1 = 1,5 {
m g}$ و كتلة المحلول ${
m C}_1 = 1,5 {
m g}$ و كتلة المحلول ${
m C}_1 = 1,5 {
m g}$

- 1) احسب كمية حرارة التفاعل .Q
- ΔH_1° استنتج أنطالبي التفاعل (2

يعطى:

$$M_{Mg} = 24.3g/mol$$
, $M_{O} = 16g/mol$, $\rho_{H_{2}O} = 1 g/mL$

3) أوجد أنطالبي التفاعل الآتي:

$$Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)} \quad \Delta H_f^{\circ}(MgO_{(s)})$$

علما أن:

$$\begin{split} Mg_{(s)} + 2(H_3O^+, Cl^-)_{(aq)} &\longrightarrow (Mg^{2+}, 2Cl^-)_{(aq)} + H_{2(g)} + 2H_2O_{(\ell)} \\ H_{2(g)} + \frac{1}{2}O_{2(g)} &\longrightarrow H_2O_{(g)} \\ \end{pmatrix} \Delta H_3^{\circ} = -242 \text{ kJ.mol}^{-1} \\ H_2O_{(g)} &\longrightarrow H_2O_{(\ell)} \\ \end{split}$$

II) يتعرض 0,5mol من غاز النيون Ne (نعتبره غاز مثالي) لتحولات عكوسة فينتقل من:

- الحالة (1) إلى الحالة (2) عند ضغط ثابت (التحول a

- ثم من الحالة (2) إلى الحالة (3) عند حجم ثابت (التحول b

	1	a →2—	<u>b</u> →3
	الحالة (1)	الحالة (2)	الحالة (3)
(Pa) الضغط	$P_1 = 10^5$	$P_2 = ?$	$P_3 = 2 \times 10^5$
(L) الحجم	$V_1 = 12$	$V_2 = 18$	$V_3 = ?$
(K) درجة الحرارة	$T_1 = ?$	$T_2 = 433$	$T_3 = 866$

- 1) أكمل الجدول أعلاه.
- 2) احسب العمل W و كمية الحرارة Q:
 - للتحوّل a.
 - للتحوّل b.

$$R=8,314~J.mol^{-1}.K^{-1}$$
 , $C_p=20,78~J.mol^{-1}.K^{-1}$, $C_p-C_V=R$ علما أن:

التمرين الثالث: (06 نقاط)

يتفكك مركب اليوريا $(H_2N)_2$ CO بوجود وسيط مناسب وفق التفاعل الآتى:

$$(H_2N)_2CO \longrightarrow NH_4^+ + O = C = N^-$$

من أجل دراسة حركية التفاعل السابق نعتبر:

$$\mathbf{C}_{0} = \left[\left(\mathbf{H}_{2} \mathbf{N} \right)_{2} \mathbf{CO} \right]_{0}$$
$$\mathbf{x} = \left[\mathbf{N} \mathbf{H}_{4}^{+} \right]_{t}$$
$$\mathbf{C}_{t} = \mathbf{C}_{0} - \mathbf{x}$$

: النتائج الأتية [$(H_2N)_2 CO]_0 = 2,35 \ mol/L$ سجلت النتائج الأتية النطلاقا من التركيز الابتدائي

t (min)	0	3	6	9	15	20
x (mol/L)	0	0,27	0,44	0,68	0 ,99	1,24
$\frac{C_0}{C}$						
$C_{\rm t}$						
$\ln\left(\frac{C_0}{C_t}\right)$						

- 1) أكمل الجدول أعلاه.
- $\ln\left(\frac{C_0}{C_t}\right) = f(t)$. ارسم المنحنى البياني (2
- 3) استنتج بيانيا أن التفاعل من الرتبة الأولى .
 - $t_{\frac{1}{2}}$ احسب زمن نصف التفاعل (4
- . بیانیا و حسابیا t=25 min عند (C_t) جد الترکیز (C_t)

مة	العلاه	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
<u>3,75</u>		التمرين الأول: (08 نقاط) -۱ -1 أ- إيجاد الصيغ نصف المفصلة للمركبات: M ₁ ، D ، C ، B ، A
	0,5x5	A: CH ₃ -C'—CH ₃ B: CH ₃ -CH ₂ -CH ₃ C: CH ₃ -CH—CH ₃ Cl D: CH ₃ -CH—CH ₃ CH ₃ CH ₃ -CH—CH ₃
		M_1 : HO-C- \sim
	0,5	$\mathbf{M_2}$: $\mathbf{H_2N}$ — $\mathbf{NH_2}$. $\mathbf{H_2N}$. $\mathbf{H_2C}$. H_2
S	0,75	CH_3 - CH - CH_3 + $SOCl_2$ \longrightarrow CH_3 - CH - CH_3 + SO_2 + HCl Cl Cl $SOCl_2$ بدل PCl_5 ملاحظة: يمكن استخدام PCl_5 بدل PCl_5

صفحة 1 من 7

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

2		. I ، F ، E ، C': ليجاد الصيغ نصف المفصلة للمركبات: 'I ، F ، E ، C': CH ₃ -CH ₂ -CH ₂ -Cl
	0,5×4	F: CH ₃ -CH ₂ -CH ₂ -C-OMgCl I: CH ₃ -CH ₂ -CH ₂ -C-OH
0.5	0,5	-II . ثابة معادلة التفاعل الحادث.
<u>0,5</u>	0,25	2 - نوع ثلاثي الغليسريد الناتج هو: ثلاثي غليسريد متجانس
	0,25	اسمه: ثلاثي بوتيرين.
<u>0,5</u>		3 - كتابة معادلة تفاعل تصبن ثلاثي الغليسريد الناتج:
<u>0,75</u>	0, 5	$CH_{2}-O-C_{0}-C_{3}H_{7}$ $CH_{2}-O-C_{0}-C_{3}H_{7}$ $CH_{2}-OH$
	0,25	$M_{TG} = 302 g/mol$
		$1 \text{ mol (TG)} \rightarrow 3 \text{ mol (KOH)}$
	0,25	$302 \text{ g} \rightarrow 3 \times 56 \times 10^3 \text{ mg}$ $1 \text{ g} \rightarrow I_{\text{s}}$
	0,25	$I_{s} = \frac{3 \times 56}{302} \times 10^{3} = 556,29$

صفحة 2 من 7

3as.ency-education.com

1			التمرين الثاني: (06 نقاط) I- 1- كتابة الصيغ نصف المفصلة للأحماض الأمينية.
	0,25×4	Asp: H ₂ N—CH—COC CH ₂ COOH	DH Lys: H ₂ N—CH—COOH (CH ₂) ₄ NH ₂
		Phe: H ₂ N-CH-COO	H Gly: H ₂ N—CH—COOH
<u>1,5</u>		соон	Phe الصورتان D و L للحمض الأميني −2 COOH
	0, 5×2	H ₂ N—H	H——NH ₂ CH ₂
	C	L	D Phe :للحمض الأميني pHi للحمض الأميني
S	0,25×2		$= \frac{pka_1 + pka_2}{2}$ $= \frac{1,83 + 9,13}{2} = 5,48$
		1 1	2

صفحة 3 من 7

<u>1,5</u>		3- أ- مواقع الأحماض الأمينية على شريط الهجرة الكهربائية:
		pH = 6
	0,25×3	- Lys Gly Asp +
	0,25×3	ب- التعليل: $pH_i < pH$: Asp : أيون سالب (أنيون) يهجر نحو القطب الموجب $pH_i < pH$: Asp
	0,23^3	A^{+} : $pH_i = pH$: Gly : أيون متعادل كهربائيا فلا يهاجر $PH_i = pH$: $pH_i > pH$: Lys : $pH_i > pH$: Lys
<u>0,5</u>	0.25.2	II- 1- الأحماض الأمينية المكونة للعينة (M) هي: Lys , Asp
0,25	0,25×2	2- دور النينهيدرين في التحليل الكروماتوغرافي هو: إظهار مواقع الأحماض الأمينية
	0,25	على شكل بقع ذات لون بنفسجي.
1,25		ي معامل السريان $ ho_{ m f}$ للأحماض الأمينية المكونة للعينة $ ho_{ m f}$ من خلال وثيقة -3
		التحليل الكروماتوغرافي:
	0,25	$R_f = \frac{l}{d}$
	0,5	$R_{f(Asp)} = \frac{7,3}{10} = 0,73$
S	0,5	$R_{f(Lys)} = \frac{2,4}{10} = 0,24$

صفحة 4 من 7

<u>1,75</u>		التمرين الثالث: (06 نقاط) (Q_1) التي أكتسبتها الجملة (مسعر + ماء):
1,75		(Q_1) التي احتسبته الجملة (مسعر ۱ ماء).
	0,5	$Q_{1} = (m_{H_{2}O} \times c_{e} + C_{cal}) \times \Delta T$
	0,25	$Q_1 = (400 \times 4,18 + 130,8) \times (341,2 - 293)$
	0,25	${ m Q_1} = 86991,\!36~{ m J}$ ب- استنتاج كمية الحرارة $({ m Q_2})$ الناتجة عن تفاعل الاحتراق:
	0, 5	$\sum Q_i = 0 \Longrightarrow Q_1 + Q_2 = 0$ لدينا مسعر (نظام معزول)
	0,25	Q ₂ =-Q ₁ =-86991,36 J
<u>1,5</u>	0,5	نطالبي تفاعل الاحتراق (ΔH^0_{comb}): $\Delta H^0_{comb} = \frac{Q_2}{n}$
		حیث: n عدد مولات إیثیل أمین
	0,25	$\mathbf{M}_{(C_2H_5NH_2)} = (12 \times 2) + (7 \times 1) + 14 = 45 \text{ g/mol}$
	0,25	$\mathbf{n}_{_{(C_2H_5NH_2)}} = \frac{\mathbf{m}_{_{(C_2H_5NH_2)}}}{\mathbf{M}_{_{(C_2H_5NH_2)}}} = \frac{2,25}{45} = 0,05 \text{ mol}$
	0,5	$\Delta H_{\text{comb}}^0 = \frac{-86991,36}{0,05} = -1739827,2 \text{ J/mol}$
		$\Delta H_{comb}^0 = -1739,83 \text{ kJ/mol}$
S		

0.75		
0,75		$\Delta ext{H}^0_{ m f}(ext{C}_2 ext{H}_5 ext{NH}_{2(ext{g})})$ حساب أنطالبي تشكيل إيثيل أمين الغازي بتطبيق قانون هيس
	0,25	$\Delta H_{comb}^0 = \sum \Delta H_f^0 (produits) - \sum \Delta H_f^0 (réactifs)$
	0,25	$\Delta H_{comb}^{0} = 2\Delta H_{f}^{0}(CO_{2(g)}) + \frac{7}{2}\Delta H_{f}^{0}(H_{2}O_{(l)}) + \frac{1}{2}\Delta H_{f}^{0}(N_{2(g)}) - \Delta H_{f}^{0}(C_{2}H_{5}NH_{2(g)}) - \frac{15}{4}\Delta H_{f}^{0}(O_{2(g)})$
		$\Delta H_{f}^{0}(C_{2}H_{5}NH_{2(g)}) = 2\Delta H_{f}^{0}(CO_{2(g)}) + \frac{7}{2}\Delta H_{f}^{0}(H_{2}O_{(l)}) - \Delta H_{comb}^{0}$
	0,25	$\Delta H_{f}^{0}(C_{2}H_{5}NH_{2(g)}) = 2(-393) + \frac{7}{2}(-286) - (-1739,83) = -47,17 \text{ kJ.mol}^{-1}$
<u>1,25</u>		: الغازي ($\mathrm{C_2H_5NH_2}$) الغازي ($\mathrm{N-H}$) الغازي -4
	0,5	$ 2C_{(s)} + 7/2 H_{2(g)} + 1/2 N_{2(g)} \xrightarrow{\Delta H_{f}} C_{2}H_{5}NH_{2(g)} $ $ 2\Delta H_{sub}^{0}(C_{s}) $
	0,25	$\Delta H_{f}^{0}(C_{2}H_{5}NH_{2(g)}) = 2 \Delta H_{Sub}^{0}(C_{s}) + \frac{7}{2}\Delta H_{d}^{0}(H-H) + \frac{1}{2}\Delta H_{d}^{0}(N \equiv N)$
		- $5\Delta H_d^0(C-H)$ - $\Delta H_d^0(C-C)$ - $\Delta H_d^0(C-N)$ - $2\Delta H_d^0(N-H)$
	4	$-47,17 = 2(717) + \frac{7}{2}(436) + \frac{1}{2}(945) - 5(413) - 348 - 292 - 2\Delta H_d^0(N-H)$
	0,25	$\Delta H_d^0(N-H) = \frac{727.5 + 47.17}{2} = 387.335 \text{ kJ.mol}^{-1}$
	0,25	$\Delta H_{\rm f}^0({\rm N-H}) = -387,335 \text{ kJ.mol}^{-1}$
S		

		5- حساب كتلة المسعر المصنوع من مادة (Al)
0,75	0,25	$ m n_{Al} = rac{C_{cal}}{c_{Al}}$: ومنه $ m C_{cal} = n_{Al} c_{Al}$ ادينا: $ m C = n \ c$
		التطبيق العددي:
	0,25	$n_{Al} = \frac{130,8}{24,35} = 5,37 \text{ mol}$
	0,25	$n_{Al} = \frac{m_{cal}}{M_{Al}} \Rightarrow m_{cal} = n_{Al} \times M_{Al} = 5,37 \times 27 = 145,03 \text{ g}$

الإجابة النموذجية لموضوع امتحان بكالوريا الدورة الإستثنائية : 2017

المدة:04 سا و30د

العلامة								
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)						
0,5		التمرين الأول (8 نقاط): (I (I) (1) الصيغ نصف المفصلة للمركبين (A) و (B) :						
0,5	0,25x2	(A) H ₃ C-C==CH (B) H ₃ C-C+CH ₃ : D ، C الصيغ نصف المفصلة للمركبين (2						
	0,25x2	(C) H_3C — CH_3 (D) H_3C — CH = CH_2						
<u>2,5</u>		3) استنتاج الصيغ نصف المفصلة للمركبات I، H، G ، F،E :						
	0,5x5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
0,75	0,75	: (K) الصيغة العامة للبوليمير (4)						

العلامة		/ **\					
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)					
0,75	0,25 0,25 0,25	H) تصنيف الأحماض الأمينية السابقة : (1) تصنيف الأحماض الأمينية السابقة : Gly : حمض أميني خطي بسيط Cys : حمض أميني خطي كبريتي Pro : حمض أميني حلقي غير عطري					
1	0,5x2	: Cys المماكبات الضوئية D و L لسيستئين (2 COOH COOH + * + + + C—NH ₂ H ₂ N—C—H CH ₂ CH					
<u>0,5</u> <u>1,5</u>	0.5	D					
	0,75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	0,75	$+ \frac{1}{3}N - CH - COOH$ $: pH = 12 \implies -$ $H_2N - CH - C - NH - CH - C - N - COO - CH_2 - COO - CH_2 - COO - COO - CH_2 - COO - COO - CH_2 - COO - CH_2 - COO $					

تابع الإجابة النموذجية لموضوع امتحان بكالوريا الدورة الإستثنائية: 2017

العلامة		/ *1**ti ~ * * * * * * * * * * * * * * * * * *
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الثاني (6 نقاط) : (I
1	0.25	Q_{r} : Q_{r} التفاعل Q_{r} : Q_{r} عمية حرارة التفاعل $\sum Q=Q_{sol}+Q_{r}+Q_{cal}=0$
		$Q_{\text{sol}} = m_{\text{sol}} \cdot c \cdot (T_f - T_1)$
	0.25	$Q_{\text{sol}} = \prod_{\text{sol}} C \cdot (T_f - T_1)$ $Q_{\text{cal}} = C_{\text{cal}} \cdot (T_f - T_1)$
	0.25	
		$\sum_{r} Q = Q_{r} + m_{sol} \cdot c \cdot (T_{f} - T_{1}) + C_{cal} \cdot (T_{f} - T_{1}) = 0$
	0.25	$Q_{r} = -(m_{sol} \cdot c + C_{cal}) \cdot (T_{f} - T_{I})$
	0.25	$Q_r = -(100 \times 4,185+100) \times (308,5-298)$
		$Q_r = -5444,25 J$
1	0.25	: ΔH_1° استنتاج (2 $M_{\rm MgO} = 24.3 + 16 = 40.3 \ {\rm g.mol^{-1}}$
	0,25	$n_{MgO} = \frac{m_{MgO}}{M_{MgO}} = \frac{1.5}{40.3} = 3,72 \times 10^{-2} \text{ mol}$
	•	
	0.25	$\Delta H_1^{\circ} = \frac{Q_r}{n_{MgO}} = \frac{-5444,25 \times 10^{-3}}{3,72 \times 10^{-2}}$
	0,25	$\Delta H_1^{\circ} = -146,35 \text{ kJ.mol}^{-1}$
<u>1,5</u>		
1,5		3) قيمة أنطالبي التفاعل التالي :
		$Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)} \Delta H_f^{\circ}(MgO_{(s)})$
		باستعمال التفاعلات الوسطية:

تابع الإجابة النموذجية لموضوع امتحان بكالوريا الدورة الإستثنائية: 2017

العلامة		/ *1 ** ***							
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)							
	0.25	$-1\times \left(\mathrm{MgO}_{(\mathrm{s})} + 2(\mathrm{H}_3\mathrm{O}^+, \mathrm{Cl}^-)_{(\mathrm{aq})} \longrightarrow (\mathrm{Mg}^{2+}, 2\mathrm{Cl}^-)_{(\mathrm{aq})} + 3\mathrm{H}_2\mathrm{O}_{(\ell)} \qquad \Delta\mathrm{H}_1^\circ\right)$							
	0.25	$1 \times \left(Mg_{(s)} + 2(H_3O^+, Cl^-)_{(aq)} \longrightarrow (Mg^{2+}, 2Cl^-)_{(aq)} + H_{2(g)} + 2H_2O_{(\ell)} \Delta H_2^{\circ} \right)$							
	0.25	$1 \times \left(H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(g)} \Delta H_3^{\circ} \right)$							
	0.25	$1 \times \left(H_2 O_{(g)} \longrightarrow H_2 O_{(\ell)} \qquad \Delta H_4^{\circ} \right)$							
		$\frac{1}{\mathrm{Mg}_{(s)} + \frac{1}{2}\mathrm{O}_{2(g)} \longrightarrow \mathrm{MgO}_{(s)} \Delta \mathrm{H}_{f}^{\circ}(\mathrm{MgO}_{(s)})}$							
	0.25	$Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)} \Delta H_{f} (MgO_{(s)})$ $\Delta H_{f} (MgO_{(s)}) = -\Delta H_{1}^{\circ} + \Delta H_{2}^{\circ} + \Delta H_{3}^{\circ} + \Delta H_{4}^{\circ}$							
		$\Delta H_{f}^{(MgO_{(s)})} = -\Delta H_{1} + \Delta H_{2} + \Delta H_{3} + \Delta H_{4}$ $\Delta H_{f}^{\circ}(MgO_{(s)}) = -(-146,35) + (-461,95) + (-242) + (-44)$							
	0.25	$\Delta H_{f}^{\circ}(MgO_{(s)}) = -601,6 \text{ kJ.mol}^{-1}$							
0.75		(II							
<u>0,75</u>		(1) إكمال الجدول :							
	0.25	$T_1 = \frac{P_1 V_1}{nR} = \frac{10^5 \times 12 \times 10^{-3}}{0.5 \times 8,314} = 288,66 \text{ K} \text{20} \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \Rightarrow T_1 = \frac{T_2 \cdot V_1}{V_2} = \frac{433 \times 12}{18} = 288,66 \text{ K}$							
	0.25	$P_2 = P_1 = 10^5 \text{ Pa}$							
	0.25	$V_3 = V_2 = 18 L$							
		الحالة (3) الحالة (2) الحالة (1)							
		(Pa) $P_1 = 10^5$ $P_2 = 10^5$ $P_3 = 2 \times 10^5$							
		$V_1 = 12$ $V_2 = 18$ $V_3 = 18$							
		$T_1 = 288,66$ $T_2 = 433$ $T_3 = 866$ $T_3 = 866$							
<u>1,75</u>	4	2) حساب العمل و كمية الحرارة للتحولين a و b :							
		- التحول a : 1 P=Cte 2							
	0.25	$1 \xrightarrow{P=\text{Cte}} 2$							
	0.25	$Q_{1\to 2} = \text{n.C}_{\text{p.}}(T_2 - T_1)$							
	0.25	$Q_{1\to 2} = 0.5 \times 20.78 \times (433 - 288, 66) = 1499,7 \text{ J}$							
	0.25	$W_{1\to 2} = -P_2.(V_2 - V_1)$ $W_1 = 10^5 \times (18 - 12) \times 10^{-3} $ 600 J							
		$W_{1\to 2} = -10^5 \times (18-12) \times 10^{-3} = -600 \text{ J}$							

العلامة			/ *1***1	- • • • • • • • • • • • • • • • • • • •	7 1 201	1		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)						
	0.25 0.25 0.25	: b $U_{2\rightarrow 3}$ $U_{2\rightarrow 3} = nC_V(T_3 - T_2)$ $U_{2\rightarrow 3} = nC_V(T_3 - T_2)$ $U_{2\rightarrow 3} = 0.5 \times 12,466 \times (866 - 433) = 2698,889 \text{ J}$ $U_{2\rightarrow 3} = 0$						
<u>1.5</u>		ين الثالث (6 نقاط): ع مركب اليوريا بوجود وسيط مناسب وفق التفاعل الآتي : $ (H_2N)_2 CO \longrightarrow NH_4^+ + O = C = N^- $ (1) إكمال الجدول :						يتفكك مركب 1) إكم
200		t(min)	0	3	6	9	15	20
	1,5	$\frac{x(\text{mol/L})}{\frac{C_0}{C_t}}$	1	0,27 1,130	1,230	0,68 1,407	1,728	2,117
		$\ln\!\left(\frac{\mathrm{C_0}}{\mathrm{C_t}}\right)$	0	0,122	0,207	0,342	0,547	0,750
1		$\ln\left(\frac{C_0}{C_t}\right)$			$\ln\left(\frac{C_0}{C_t}\right) =$	ياني: f(t)=	المنحنى الب	2) رسم
	01	0,8 0,7 0,6 0,5 0,4 0,3 0,2	10	15	20 t (min)	25 30		

تابع الإجابة النموذجية لموضوع امتحان بكالوريا الدورة الإستثنائية: 2017

العلامة		(0						
مجزأة مجموع		عناصر الإجابة (الموضوع الثاني)						
0.5		3) استنتاج أن التفاعل من الرتبة الأولى:						
	0.5	بما أن المنحنى $\ln\!\left(rac{ ext{C}_0}{ ext{C}_{_t}} ight) = \ln\!\left(rac{ ext{C}_0}{ ext{C}_{_t}} ight) = f(t)$ عبارة عن خط مستقيم يمر من المبدأ فإنّ التفاعل من						
<u>1.5</u>		الرتبة الأولى . 4) حساب زمن نصف التفاعل _{1/2} :						
	0.5	$t_{\frac{1}{2}} = \frac{0.69}{k}$						
	0.5	$k=tg(\alpha)=\frac{0.750}{20}=0.0375 \text{ min}^{-1}$						
	0.5	$t_{\frac{1}{2}} = \frac{0.69}{k} = \frac{0.69}{0.0375} = 18.4 \text{ min}$						
<u>1.5</u>		: $t=25 \mathrm{min}$ عند ((C_t) عند ((5)						
		- بيانيا : بالإسقاط على المنحنى نستنتج : 						
	0.25	$\ln \frac{C_0}{C_t} = 0.93$ $C_t = C_0 e^{-0.93}$						
	0.25 0.25	$C_t = 2,35.e^{-0.93} = 0,927 \text{ mol.L}^{-1}$						
	0.23	- حسابيا :						
	0.25	$\operatorname{Ln} \frac{C_0}{C_t} = k \times t \Longrightarrow C_t = C_0 e^{-kt}$						
	0.25 0.25	$C_t = 2,35e^{-0,0375 \times 25}$ $C_t = 0,92 \text{ mol.L}^{-1}$						