Binary Values and Number Systems

CPSC 1050 - Chapter 2

Objectives

- Distinguish among categories of numbers
- Describe positional notation
- Convert numbers in other bases to base 10
- Convert decimal numbers to numbers in other bases
- Describe the relationship between bases 2, 8, and 16
- Explain the importance of bases that are powers of 2

Introduction

"There are only 10 kinds of people in the world –

Those who understand binary numbers

and those who don't!"

Numbers

- Natural Numbers
 - Zero and any number obtained by repeatedly adding one to it
 - o 0, 100, 485858
- Negative Numbers
 - A value less than 0, with a sign
 - o -38, -1, -85775, ...
- Integers
 - A natural number or a negative number
- Rational Numbers
 - An integer or quotient of two integers
 - o 33, -443, 1, 0, -1, 3/5, -22/56, ...
- Real Numbers
 - o 1, 2.45, -0.546, ...

Number Systems

We are going to learn how to write this table!

decimal	binary	octal	hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Base of a Number System

- The base of a number specifies the number of digits used in the system and the value of digit positions
- The digits in any base always begin with 0 and continue through one less than the base
 - Base 2 has 2 digits: 0 and 1
 - Base 8 has 8 digits: 0 to 7
 - Base 10 has 10 digits: 0 to 9
- For example
 - 567 can be a number in base 8 or higher but not in a base lower than 8
 - 123 can be a number in base 4 and higher but not in a base lower than 4
- What bases can these numbers be in?
 - o 122, 198, 178, 0110

Bases Higher than 10

- For bases higher than 10, we need symbols to represent digits that correspond to the decimal values 10 and beyond
 - We use letters as digits
- Base 16 (Hexadecimal) has 16 digits
 - o 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- What are Base 12 digits? Base 14?

Positional Notation

- Numbers are written using positional notation
- The value is represented as a polynomial in the base of the number system

A polynomial is a sum of two or more algebraic terms, each of which consists of a constant multiplied by one or more variables raised to a nonnegative integral power

The formula is:

$$d_n * R^{n-1} + d_{n-1} * R^{n-2} + ... + d_2 * R + d_1$$

- o d_i is the digit at the ith position in the number
- n is the number of digits in the number
- R is the base of the number

Positional Notation

For example, 642 in base 10 positional notation is:

$$6 \times 10^{2} = 6 \times 100 = 600$$

$$+ 4 \times 10^{1} = 4 \times 10 = 40$$

$$+ 2 \times 10^{0} = 2 \times 1 = 2$$

$$= 642_{10}$$

The power indicates the position of the digit

Positional notation formula converts a number in any base to decimal (base 10)

Octal / Hex to Decimal

What if 642₈ is in base 8 (Octal)?

$$6 \times 8^{2} = 6 \times 64 = 384$$
 $+ 4 \times 8^{1} = 4 \times 8 = 32$
 $+ 2 \times 8^{0} = 2 \times 1 = 2$
 $= 418_{10}$

What if 642₁₆ is in base 16 (Hexadecimal)?

$$6 \times 16^{2} = 6 \times 256 = 1536$$
 $+ 4 \times 16^{1} = 4 \times 16 = 64$
 $+ 2 \times 16^{0} = 2 \times 1 = 2$
 $= 1602_{10}$

Binary to Decimal

The decimal equivalent of the binary number 1101010₂

$$1 \times 2^{6} = 1 \times 64 = 64$$
 $+ 1 \times 2^{5} = 1 \times 32 = 32$
 $+ 0 \times 2^{4} = 0 \times 16 = 0$
 $+ 1 \times 2^{3} = 1 \times 8 = 8$
 $+ 0 \times 2^{2} = 0 \times 4 = 0$
 $+ 1 \times 2^{1} = 1 \times 2 = 2$
 $+ 0 \times 2^{0} = 0 \times 1 = 0$
 $= 106_{10}$

 So we use the positional notation formula to convert from any base to decimal (base 10)

Checkpoint

- $1010011_2 = (?)_{10}$
- BAD₁₆ = $(?)_{10}$
- $265_8 = (?)_{10}$
- $847_{12} = (?)_{10}$
- $A49_{16} = (?)_{10}$

Decimal to other Bases

- Algorithm for converting number in base 10 to other bases
 - While (the quotient is not zero)
 - Divide the decimal number by the new base
 - Make the remainder the next digit to the left in the answer
 - Replace the original decimal number with the quotient

Decimal to Binary

The binary equivalent of 23₁₀

Write in reverse order

Answer is : 10111₂

Stop dividing when quotient is zero!

Decimal to Octal

The octal equivalent of 1988₁₀

```
248 31 3 0
8 1988 8 248 8 31 8 3
16 24 24 0
38 08 7 3 (first)
32 8
68 0
64
4 (last position)
```

Answer is: 3704₈

Decimal to Hexadecimal

The Hexadecimal equivalent of 3567₁₀

Answer is: DEF₁₆

Checkpoint

- $100_{10} = (?)_2$
- $100_{10} = (?)_8$
- $100_{10} = (?)_{16}$

Binary to Decimal Conversion Shortcut!

Binary to decimal

$$\circ$$
 101101₂ = 32 + 0 + 8 + 4 + 0 + 1 = 45₁₀

Powers of 2	32	16	8	4	2	1
Binary	1	0	1	1	0	1
Multiplication	32	0	8	4	0	1

$$0101111101_2 = 256 + 64 + 32 + 16 + 8 + 4 + 1 = 381_{10}$$

Powers of 2	256	128	64	32	16	8	4	2	1
Binary	1	0	1	1	1	1	1	0	1
Multiplication	256	0	64	32	16	8	4	0	1

Decimal to Binary Conversion Shortcut!

Decimal to binary

Powers of 2	64	32	16	8	4	2	1
Quotient	1	0	0	1	1	1	1
Remainder	79-64=15	-	-	15-8=7	7-4=3	3-2=1	2-1=1

Powers of 2	512	256	128	64	32	16	8	4	2	1
Quotient	1	1	0	1	1	1	1	1	0	1
Remainder	381	125	_	61	29	13	5	1	_	0

Binary to Octal Shortcut!

- There is an easier way to convert among powers of 2
- Mark groups of three digits from right
- Convert each group to octal

The reverse works the same (octal to binary)

o Example:
$$742_8 \longrightarrow 7 \quad 4 \quad 2$$

 $111 \quad 100 \quad 010$
 $742_8 \text{ is } 111100010_2$

Octal	0	1	2	3	4	5	6	7
Binary	000	001	010	011	100	101	110	111

Binary to Hexadecimal Shortcut!

- Mark groups of four digits from right
- Convert each group to hexadecimal

$$10101011_{2} \longrightarrow 1010 \quad 1011$$
A
B
 10101011_{2} is AB₁₆

 The reverse works the same (hexadecimal to binary)

$$\circ \quad \text{Example: 75C}_{16} \longrightarrow 7 \qquad 5 \qquad C$$

$$\underbrace{0111\ 0101\ 1100}_{}$$

75C₁₆ is 011101011100₂

binary	hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Checkpoint

- $111010011_2 = (?)_8$
- $1010111011110111_2 = (?)_{16}$
- BAD₁₆ = $(?)_2$
- $265_8 = (?)_{16}$
- $847_{10} = (?)_{16}$
- $783_{10} = (?)_2$

Binary Addition

- Remember that there are only 2 digits in binary, 0 and 1
- 1 + 1 is 0 with a carry
- Addition:

```
\begin{array}{c}
1011111 \\
1010111_{2} \\
+1001011_{2} \\
10100010_{2}
\end{array}

Carry Values
```

Binary Subtraction

- Apply the concept of borrowing to base 2
- Subtraction:

```
\begin{array}{c}
12 \\
202 \\
1010111_{2} \\
-111011_{2} \\
0011100_{2}
\end{array}
```

Octal Addition

- Remember that there are only 8 digits in Octal
- Addition:

Octal Subtraction

- Apply the concept of borrowing to base 8
- The column borrowed from is reduced by 1
- The amount of the borrow (8) is added to the next column
- Subtraction:

```
10 11
6 2 3 14
7 3 4 6<sub>8</sub>
- 2 4 5 7<sub>8</sub>
4 6 6 7<sub>8</sub>
```

Hexadecimal Addition

- There are only 16 digits in hexadecimal
- Addition:

1 1 1 Carry Values

5 A B
$$3_{16}$$
+ F C 79_{16}
1 5 7 2 C_{16}

$$\circ$$
 7 + B = 7 + 11 = 18 = 16 + 2

16 is carried to the next bit as 1

$$\circ$$
 1 + A + C = 1 + 10 + 12 = 23 = 16 + 7

Hexadecimal Subtraction

- Apply the concept of borrowing to base 16
- The column borrowed from is reduced by 1
- The amount of the borrow (16) is added to the next column
- Subtraction:

```
21 20
2 5 4 18
3 6 5 2<sub>16</sub>
- 1 C 9 8<sub>16</sub>
1 9 B A<sub>16</sub>
```

Checkpoint

- $11001010_2 + 1111100_2 = ?$
- $11000111_2 111111_2 = ?$
- $346_8 + 127_8 = ?$
- $6543_8 354_8 = ?$
- $764A_{16} + BCD_{16} = ?$
- $876D_{16} 89C_{16} = ?$

Summary

- Numbers are written using positional notation
 - The number is equal to the sum of the products of each digit by its place value
 - The place values are powers of the base of the number system
- Arithmetic can be performed on numbers in any base represented in positional notation
- Base 2, base 8, and base 16 are all powers of 2
 - Provides a quick way to convert between numbers in these bases
- Computer hardware is designed using numbers in base 2

Additional Resources

To Read!

- Number Systems: Naturals, Integers, Rationals, Irrationals, Reals, and
 Beyond Varsity Tutors
- <u>Computer Number Systems</u> tutorialspoint
- Number Systems: An Introduction to Binary, Hexadecimal, and More –
 tutsplus
 This is a good one!
- To Watch!
 - Introduction to number systems and binary Khan Academy
- To Practice!
 - The Number Base Calculator Cleave Books