Question 5

(a) There are 16 different 2 by 2 matrices whose entries may consist only of zeroes and ones, for example

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ are two such matrices.

Let S be the set all such matrices. We define a function f on S by the rule

$$f(\mathbf{X}) = thenumber of zeroes in \mathbf{X} where f: S \rightarrow \mathbb{Z} and \mathbf{X} \in S$$
.

- (i) Find a numerical value for both f(A) and f(B).
- (ii) Write down the set of pre-images or ancestors of 1.
- (iii) Write down the range of f.
- (iv) Say whether or not this function is one to one, justifying your answer.
- (v) Say whether or not this function is onto, justifying your answer. [6]
- (b) Say whether or not each of the following functions has an inverse, justifying your answer. In the cases where there is an inverse define it.
 - (i) $f: S \to \mathbb{Z}$ defined in part (a).
 - (ii) $g: \mathbb{R} \to \mathbb{Z}$ defined by g(x) = |x|.
 - (iii) $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = 2x + 5. [4]

Question 6 Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices $v_1, v_2, v_3, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_n, v_1\}, \{v_n, v_n\}, \{v_n, v_n\},$
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1} , and edges from this to each of the original vertices in C_n .
- (a) Draw K_4 , C_4 , and W_4 . $[2\frac{1}{2}]$
- (b) Giving your answer in terms of n, write down an expression for the number of edges in K_n , C_n , and W_n . $[2\frac{1}{2}]$
- (c) (i) Find the number of different paths of length two in each of the graphs in part (a), where a path does not contain the same edge more than once, and a path from v_x to v_y is different from a path from v_y to v_x .
 - (ii) Giving your answer in terms of n, write down an expression for the number of different paths of length two there are in K_n . [5]