Luds- Übungszettel 3

3.1:

Henning Lehmann Darya Nemtsava Paul Piecha

i) f_λ ist bijektiv fù, alle λ ∈ IR \ {O}.
 für λ=0 ist f_λ weder injektiv noch surjektiv.

ii) h ist surjektiv.

6) $f: N_0 \to \mathbb{Z} \text{ mit } f(x) = \begin{cases} x/Z, & \text{falls } 21x \text{ und} \\ -(x+1)/2, & \text{falls } 21x. \end{cases}$

f ist surjektiv, du jedes $z \in \mathbb{Z}$ im Image von f enthalten ist: das Urbild einer Zahl $z \in \mathbb{Z}$ unter f ist $z \in \mathbb{Z}$, falls $z \in \mathbb{Z}$, und $-z \cdot z - 1$, falls $z \in \mathbb{Z}$.

fist injektiv, da für jedes ne INo eine einzigartige Abbildung erzengt wird:
wie in obenstehender Erklärung zur Surjektivität von f gezeigt, stammt jeder
Wert der Abbildung von einem anderen ursprünglichen Wert. Zudem ist f
für alle ne INo definiert.

Da f sowohl surjektiv als and injektiv ist, ist f bijektiv.

Eine Relation R: A -> B ist genan dann eine Abbildung, wenn:

dom (R) = preim (R) (=> va ∈ A: =16 ∈ B: a Rb)

Somit gilt M = dom(g) = preim(g) und N = dom(f) = preim(f). Da zusätzlich im(g) $\in N$, gilt: im(g) $\in preim(f)$.

Mit anderen Worten: für jeden Wert $m \in M$ hat g eine Zuordnung auf ein $n \in N$, für welches zusätzlich eine Zuordnung durch f auf ein $p \in P$ enstiert. Somit gibt es keinen Wert $m \in M$, der durch $f \circ g$ nicht abgebildet werden kann. Somit gilt: dom $(f \circ g) = preim(f \circ g)$, wodurch $f \circ g$ eine Abbildung ist.

b)
Bedingung: fist bijektiv.

Zu zeigen: f ist bijektiv =) $\exists f^{-1}$ (Bedingung ist hinreichend), und $\exists f^{-1} =$) f ist bijektiv (Bedingung ist notwendig).

