2 задача

Кущук Денис

March 2020

Для начала нужно найти р методом макс правдоподобия. Понятно, что распределение это Бернулли, выиграл - 1, не выиграл - 0 (случ. величина такие значения принимает). Из 5 месяцев видно, что 40 раз выпал не выигрыш и 5 раз выпал выигрыш. Составляем уравнение $(1-p)^{40} \times p^5$. Находим максимум, для этого логарифмируем и приравниваем производную к нулю, получаем $_{m}=1/9$. Тут задача такая, всего 1000 испытаний, 100 из них удачные. Нужно проверить нулевую гипотезу, что реальное $p=p_m$, против альтернативы, что не равняется. Статистика будет - сумма значений случ величины, то есть количество удачных испытаний. Эта сумма при истинности нулевой гипотезы распределена как $Bin(n, p_m)$. При больших n с помощью ЦПТ это распредление приближено к нормальному с параметрами (np, npq). То есть $N = (X - np)/\sqrt{npq}$ стремится к стандартному нормальному. При подстановке вместо X (напомню, это сумма случайных величин) число успешных испытаний в определенной выборке (нам нужно проверить гипотезу, что эта выборка удовлетворяет распределению Бернулли с параметром p_m , и вывести критерий отклонения), мы получаем какое то число N. Смотрим на таблицу p_{value} для нормального распределения. Получаем определенное p_{value} . Далее сравниваем p_{value} vs alfa (уровень значимости) отвергаем гипотезу в том случае, если $p_{value} < alfa$.

В нашем случае при подставновке числа 100 получаем N = 1.12 и $p_{value} = 0.26$. Это число больше alfa следовательно гипотезу не отвергаем

В ноутбуке использую точную функцию binomtest для опредления $p_{value}.$