$$\begin{aligned} k &\geq 1, b > 1, d \geq 0, w \geq 0 \\ T(n) &= k \cdot T(n/b) + O(n^d) \\ &= \begin{cases} O(n^d) & \text{if } k < b^d \\ O(n^d \log n) & \text{if } k = b^d \\ O(n^{\log_b k}) & \text{if } k > b^d \end{cases}. \\ T(n) &= kT(n/b) + O(n^d \log^w n) \\ \begin{cases} O(n^d \log^w n) & \text{if } k < b^d \\ O(n^d \log^{w+1} n) & \text{if } k = b^d \\ O(n^{\log_b k}) & \text{if } k > b^d \end{cases}$$

D&C: Int multi

· Let's stare at this identity again:

$$xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)$$

= $ac \cdot 10^n + (ad + bc) \cdot 10^{n/2} + bd$

- · Think:
 - Could we write ad + bc in terms of $ac(t_1)$, $bd(t_3)$,
 - and something else that only uses one multiplication (not two)? ad + bc = (a+b)(c+d) - ac - bd

D&C: Closest Pair(nlogn)

Sorted by x | Sorted by y

ClosestPair $(P_1, ..., P_n, P_1', ..., P_n')$: $// n \ge 3$ pts in the plane if $n \le 3$ then return min dist among P_1 , P_2 , P_3 // base case $(L, \mathbb{R}) \leftarrow \text{partition points by } P_{n/2}$ // split by median x-coordinate $\delta_1 \leftarrow \mathbf{ClosestPair}(L \text{ (sorted by x)}, L \text{ (sorted by y)})$ // min dist on left $\delta_2 \leftarrow \text{ClosestPair}(R \text{ (sorted by x)}, R \text{ (sorted by y)})$ // min dist on right $\delta_3 \leftarrow \min \text{ distance in } \delta \text{-strip}$ // details in notes return min $\{\delta_1, \delta_2, \delta_3\}$

DP: Runtime = Size of table * time to fill every entry

DP: Task selection(nlogn if sorted time)

Ji is the last interval that doesn't overlap with Jn

"Optimal Task Value" i.e. the value of the optimal solution

DP: Longest Incresing subseq(n^2)

Define CLIS(S[1..N]) to be the longest of the increasing subsequences of S[1..N] that contain S[N].

Define L(i) to be the length of CLIS(S[1..i])

Then, we have:

$$L(i) = 1 + \max\{L(j) : 0 < j < i \text{ and } S[j] < S[i]\}$$

DP: LCS(MN)

- **<u>Def</u>**: LCS(i, j) = length of a LCS of X[1..i] and Y[1..j].
 - i = 0 means X is the empty string
 - j = 0 means Y is the empty string
- Goal: return LCS(m, n)

$$\bullet \text{ We have: } \mathit{LCS}(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 1 + \mathit{LCS}(i-1,j-1) & \text{if } X[i] = Y[j] \\ \max \left\{ \substack{\mathit{LCS}(i-1,j), \\ \mathit{LCS}(i,j-1)} \right\} & \text{if } X[i] \neq Y[j] \end{cases}$$

DP:0-1(nW)

The recurrence:

$$Knapsack(\lbrace t_1, \ldots, t_n \rbrace, W) = \max \begin{cases} Knapsack(\lbrace t_1, \ldots, t_{n-1} \rbrace, W) \\ v_n + Knapsack(\lbrace t_1, \ldots, t_{n-1} \rbrace, W - w_n) \end{cases}$$

The base cases:

- $Knapsack(\emptyset, W') = 0$ for all W'
- $Knapsack(\{t_1, ..., t_i\}, 0) = 0$ for all i

DP:Longest Pallindromic substring

$$PAL(i,j) = \begin{cases} X[i] = X[j] & j \le i+1 \\ X[i] = X[j] \text{ and } PAL(i+1,j-1) & j > i+1 \end{cases}$$

GraphDP: Singlesource Shortest path(BF)

Definition

- $dist^{(i)}(s,t) =$ "i-hop distance from s to t" shortest length of an $s \to t$ path using exactly i edges, or ∞ if there's no such path
- $dist^{(\leq i)}(s,t)$ = "at-most-i-hop distance from s to t" shortest length of an $s \to t$ path using at most i edges

Lemma:

In n-node graph without neg-length cycles,

$$dist^{(\leq n-1)}(s,t) = dist(s,t)$$

 $-dist^{(i)}(s,v) \leftarrow \min dist^{(i-1)}(s,u) + \ell(u,v)$

GraphDP: All pair BF

$$dist^{(\leq i)}(s,t) = \min dist^{(\leq i/2)}(s,x) + dist^{(\leq i/2)}(x,t)$$

GraphDP: Floyd

Definition

 $dist^{[i]}(s,t)$ is the "middle-restricted distance:" Shortest length of an $s \rightarrow t$ path that only uses $\{v_1, ..., v_i\}$ as intermediate vertices (but s, t can be anything)

OPT doesn't have
$$\operatorname{Jn}$$
 (lose it!) $\operatorname{OTV}(\operatorname{J_1},...,\operatorname{Jn}) = \operatorname{OTV}(\operatorname{J_1},...,\operatorname{J_{n-1}})$ $\operatorname{dist}^{[k]}(s,t) = \min \begin{cases} \operatorname{dist}^{[k-1]}(s,t) \\ \operatorname{dist}^{[k-1]}(s,v_k) + \operatorname{dist}^{[k-1]}(v_k,t) \end{cases}$

- Bellman-Ford (naïve method):
 - $\frac{-O(mn^2) \text{ time}}{\left| \left| \left| \left| \right| \right| \right|^2}$

- Bellman-Ford (with path-doubling):
 - $-O(n^3 \log n)$ time

- Floyd-Warshall (next):
 - $-O(n^3)$ time

Definition 34 (Tree #1) An undirected graph G is a *tree* if it is connected and acyclic (i.e., has no cycle).

A graph is *connected* if for any two vertices there is a path between them. A cycle is a nonempty sequence of adjacent edges that starts and ends at the same vertex.

Definition 35 (Tree #2) An undirected graph G is a tree if it is *minimally connected*, i.e., if it is connected, and removing any single edge causes it to become disconnected.

Definition 36 (Tree #3) An undirected graph G is a tree if it is maximally acyclic, i.e., if it has no cycle, and adding any single edge causes it to have a cycle.

