IPEC 2020 PACE Solver Description

Computing Exact Treedepth via Minimal Separators

Zijian Xu, Dejun Mao, Vorapong Suppakitpaisarn

Computing Treedepth via Minimal Separators

Notation

- G: undirected graph
- Δ_G : set of minimal separators of G
- $G \setminus S : G$ separated by S
- $\mathscr{C}(G\backslash S)$: connected components of $G\backslash S$

[Deogun et al. '99]

$$td(G) = \begin{cases} |V| & \text{if } G \text{ is complete} \\ \min_{S \in \Delta_G} \left(|S| + \max_{C \in \mathscr{C}(G \setminus S)} td(G[C]) \right) & \text{otherwise} \end{cases}$$

Bottleneck of Algorithm

The number of minimal separators can be exponential

Left graph has $\Omega(2^{(n-2)/2})$ minimal separators

[Deogun et al. '99]

$$td(G) = \begin{cases} |V| & \text{if } G \text{ is complete} \\ \min_{S \in \Delta_G} \left(|S| + \max_{C \in \mathscr{C}(G \setminus S)} td(G[C]) \right) & \text{otherwise} \end{cases}$$

Bottleneck!

Main Algorithm

Main Algorithm based on Conjecture

$$td(G) = \begin{cases} |V| & \text{if } G \text{ is complete} \\ \min_{S \in \Delta_G^{(tw(G))}} \left(|S| + \max_{C \in \mathscr{C}(G \setminus S)} td(G[C])\right) & \text{otherwise} \end{cases}$$

- $\Delta_G^{(tw(G))}$: set of minimal separators S such that $|S| \leq tw(G)$
- An upper bound of tw(G) is computed by MINDEGREE and MINFILL heuristic in solver

- The conjecture is solved after PACE (see P. 7)
- This algorithms is proved to be inexact

Pruning Techniques

Degeneracy Bound

• Degeneracy (deg) can be computed in linear time and $td \ge tw + 1 \ge deg + 1$

Path-length Bound

• If G contains P_{2^k} , $td \ge k+1$

Pruning by Blocks

- In preprocessing, sample many small subgraphs (blocks) and compute their exact treedepth
- If G contains a block B, $td(G) \ge td(B)$
- Solved almost 20 more public instances

Pruning by Blocks

We combined following partitioning heuristics to recursively decompose input graph

- 1. Select two random vertices p and q. $V_1 = \{v \mid \operatorname{dist}(v, p) < \operatorname{dist}(v, q)\}, \ V_2 = V \setminus V_1$
- 2. Compute small α -vertex separator S [Althoby et al. '20] and obtain $G \ S$
 - α -vertex separator: every component C of $G \setminus S$ has size $|C| \leq \alpha |V(G)|$

10 minutes is spent for preprocessing (partitioning + treedepth computation)

Theoretical Study (After PACE)

On the Size of Minimal Separators for Treedepth Decomposition: https://arxiv.org/abs/2008.09822

Definition

 $S \in \Delta_G$ is an optimal top separator if $td(G) = |S| + td(G \setminus S)$

Conjecture (P. 4) → Wrong!

For all G, there exists an optimal top separator S s.t. $|S| \leq tw$

Theorem 1

For all G, there exists an optimal top separator S s.t. $|S| \leq 2tw$

Theorem 2

For all c < 2, there exists a G s.t. for any optimal top separator S of G, $|S| > c \cdot tw$