

+243/1/56+

## QCM THLR 4

|                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nom                                  | n et prénom, lisibles : Identifiant (de haut en bas) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .NE                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sieurs<br>plus r<br>pas pe<br>incorr | Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cas t que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir ples réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'es cossible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; le rectes pénalisent; les blanches et réponses multiples valent 0. |
|                                      | J'ai lu les instructions et mon sujet est complet: les $2$ entêtes sont $+243/1/xx+\cdots+243/2/xx+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.2                                  | L'ensemble des mots du petit Robert (édition 1975) est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      | <ul> <li>□ non reconnaissable par un automate fini déterministe</li> <li>□ non reconnaissable par un automate fini nondéterministe</li> <li>□ ne peut être représenté par une expression rationnelle</li> <li>☑ rationnel</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |
| Q.3                                  | Le langage $\{0^n1^n \mid \forall n \in \mathbb{N}\}$ est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | ☐ fini ☐ rationnel ☑ non reconnaissable par automate fini ☐ vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q.4                                  | Un automate fini qui a des transitions spontanées                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      | ] n'accepte pas $arepsilon$ $oxed{oxed}$ n'est pas déterministe $oxed{oxed}$ est déterministe $oxed{oxed}$ accepte $arepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.6                                  | Un langage quelconque  ] peut avoir une intersection non vide avec son complémentaire  ] est toujours inclus ( $\subseteq$ ) dans un langage rationnel  ] peut n'être inclus dans aucun langage dénoté par une expression rationnelle  ] n'est pas nécessairement dénombrable  Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, a, b, a, c, a, c, a, b, a, c, c,$                                                                               |
|                                      | $\square$ n $n(n+1)$ $\square$ $n(n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | $\square$ Il n'existe pas. $\square$ $n+1$ $\square$ $\frac{n(n+1)}{2}$ $\square$ $2^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q.7                                  | Si un automate de $n$ états accepte $a^n$ , alors il accepte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q.8                                  | Si un automate de $n$ états accepte $a^n$ , alors il accepte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Q.8                                  | Si un automate de $n$ états accepte $a^n$ , alors il accepte $a^p(a^q)^* \text{ avec } p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \leq n \qquad \qquad a^n a^m \text{ avec } m \in \mathbb{N}^* \qquad \qquad (a^n)^m \text{ avec } m \in \mathbb{N}^*$ $a^{n+1}$ Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, c,$                                                                                                                                                                                |









A' = DRE(T(13))

A" = 22 (7(01)

= DD(T (DD)(70

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 $\square$   $Det(T(Det(T(Det(\mathcal{A})))))$ 

- $\Box$   $T(Det(T(Det(T(\mathscr{A})))))$  $\Box$   $T(Det(T(Det(\mathcal{A}))))$
- $\square$   $Det(T(Det(T(\mathscr{A}))))$

Fin de l'épreuve.

2/2

2/2