

MECHANICAL-PROPERTY DATA Ti-6Al-4V ALLOY,

POWDER METALLURGY PRODUCT

Issued by

Air Force Wright Aeronautical Laboratory Materials Laboratory Wright-Patterson Air Force Base, Ohio

// May 1981

Prepared by

BATTELLE Columbus Laboratories Columbus, Ohio 43201

F33615-80-C-5168

DISTRIBUTION STATEMENT A Approved for public release: Distribution Unlimited

S

This data sheet was prepared by Battelle's Columbus Laboratories under Contract No. F33615-80-C-5168, under the direction of the Air Force Wright Aeronautical Laboratories, Materials Laboratory, by Mr. Neal Ontko, MLSA, Technical Monitor.

Notices

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any potential invention that may be in any way related thereto.

Approved for public release; distribution unlimited.

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

Ti-6A1-4V Alloy (CHIP)

Material Description

This Ti-6A1-4V alloy, a powder metallurgy product from Dynamet Technology, was received as sixty 5/8'' diameter x 5" bars, seven $0.125'' \times 2'' \times 12''$ strips, and nine $3/4'' \times 3'' \times 3''$ blanks.

The chemical composition of this lot is as follows:

Chemical Composition	Percent Weight			
Aluminum	5.70			
Vanadium	4.22			
Carbon	0.024			
Hydrogen	0.0013			
Nickel	0.0112			
0xygen	0.19			
Others	0.043			
Titanium	Ralance.			

Processing and Heat Treating

The Ti-6Al-4V alloy was received in the "CHIP"ed condition. "CHIP" (Cold Hot Isostatically Pressed) processing means the material was cold isostatically pressed at 60,000 psi (413.7 MPa), vacuum sintered at 2250 F (1505 K) for 3 hours and furnace cooled, and hot isostatically pressed at 15,000 psi (103.4 MPa) at 1650 F (1172 K) to achieve the desired density and mechanical properties.

Results of this evaluation show slightly lower strength values than for the wrought annealed material. The tensile and compression results were slightly lower while the bearing and shear results were slightly higher.

A

Ti-6Al-4V
Condition: CHIP (a)

	Temperature, F (K)						
Properties	RT	(RT)	400	(477)	800	(700)	
Tension							
TUS, ksi (MPa)	127.4	(878.4)	96.0	(661.9)	76.6	(528.2	
TYS, ksi (MPa)	115.8			(573.7)			
RA, percent	12.2	•• -• -• •		(16.1)		(26.7	
e, percent in 1 in. (25.4 mm)				(7.0)		(10.8	
E, 10 ³ ksi (GPa)	16.9	(116.5)	15.7	(108.3)	13.6	(93.8	
Compression							
CYS, ksi (MPa)	123.8	(853.6)	83.3	(574.4)	61.0	(420.6	
$\mathrm{E_{c}}$, 10^3 ksi (GPa)	15.9		15.0			(91.0	
Shear							
SUS, ksi (MPa)	88.8	(612.3)	71.3	(491.5)	55.3	(381.4	
Bearing							
e/D = 1.5							
BUS, ksi (MPa)	212.6	(1465.7)	154.6	(1065.8)	151.1	(1041.8	
BYS, ksi (MPa)	209.7	(1446.1)	142.8	(984.3)	120.6	(83″.4	
e/D = 2.0							
BUS, ksi (MPa)	262.0	(1806.0)	195.4	(1347.6)	192.6	(1328.3	
BYS, ksi (MPa)		(1669.0)		(1196.1)		(970.3	
Fracture Toughness							
K _{IC} , ksiv in. (MPa·m ^{1/2})	36.7	(b) (40.4)	NA (c)		NA		
Axial Fatigue							
Unnotched, R = 0.1							
10^3 cycles, ksi (MPa)	124	(854)	NA		73	(503)	
10 ⁵ cycles, ksi (MPa)	64 45(d)						
10 ⁷ cycles, ksi (MPa)	45 ^(a)	(310)			48 35 (d)	(241)	
Notched, $K_{r} = 3.0$, $R = 0.1$							
10 ³ cycles, ksi (MPa)	(e)		NA		62 ^(d)	(427)	
10^5 cycles, ksi (MPa)	34	(234)			25	(172)	
10 ⁷ cycles, ksi (MPa)	19	(131)			15	(103)	

Ti-6Al-4V (Continued)

_					
Properties	RT	(RT) 400	(477)	800	(700)
Creep					
0.2% plastic deformation, 100 hr, ksi (MPa)	NA	NA		47.5	(327.5)
0.2% plastic deformation, 1000 1000 hr, ksi (MPa)	NA	NA		34.0	(234.4)
Stress Rupture					
Rupture, 100 hr, ksi (MPa) Rupture, 1000 hr, ksi (MPa)	NA NA	NA NA		50.0 42.1	(344.7) (290.3)
Stress Corrosion (f)					

 $K_{ISCC} - 15 \text{ ksi}\sqrt{\text{in.}} (16.5 \text{ MPa·m}^{1/2})$

Coefficient of Thermal Expansion

6.0 x 10^{-6} in./in./F (70 - 800 F) [10.8 x 10^{-6} m/(m·k) (295 - 700 K)]

Density

 $0.159 \text{ lb./in.}^3 (4.41 \text{ g/cm}^3)$

- (b) $K_{\overline{IC}}$ is valid as per ASTM E399.
- (c) NA, not applicable.
- (d) Estimated.
- (e) Insufficient tests to estimate.
- (f) This value is an approximate determination of $K_{\rm ISCC}$ at 10^{-8} in./sec. (25.4 x 10^{-8} mm/sec.). The increasing K tests lasted an average of 3 days and were conducted at 75 F (297 K) in 3-1/2% NaCl. Compactension-type specimens were used.

⁽a) Cold isostatically pressed, vacuum sintered and hot isostatically pressed. Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests.

Figure 1. Effect of temperature on the tensile properties of Ti-6A1-4V (CHIP) Alloy.

Figure 2. Effect of temperature on the compressive properties of Ti- 6A1-4V (CHIP) Alloy.

Figure 3. Effect of temperature on the pin shear properties of Ti-6Al-4V (CHIP) Alloy.

Figure 4. Effect of temperature on the bearing properties of Ti-6Al-4V (CHIP) Alloy.

Figure 5. da/dN versus delta K for Ti-6A1-4V (CHIP) Alloy.

Lab Air R = 0.1 Frequency = 20 Hz

Figure 6. Axial load fatigue behavior of unnotched Ti-6Al-4V (CHIP) Alloy.

Figure 7. Axial load fatigue behavior of notched $(k_t = 3.0)$ Ti-6Al-4V (CHIP) Alloy.

Figure 8. Stress-rupture and plastic deformation curves for Ti-6Al-4V (CHIP) Alloy.

