

Spec No.: DS-70-97-0013 Effective Date: 01/26/2016

Revision: H

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

1. DESCRIPTION

1.1 Features

- Current transfer ratio (CTR: MIN. 50% at I_F = 5mA, V_{CE} = 5V)
- High input-output isolation voltage (V_{iso} = 5,000Vrms)
- Response time (tr : TYP. 4μ s at $V_{CE} = 2V$, $I_C = 2mA$, $R_L = 100\Omega$)
- Dual-in-line package :

LTV-816: 1-channel type

LTV-826: 2-channel type

LTV-846: 4-channel type

■ Wide lead spacing package :

LTV-816M: 1-channel type

LTV-826M : 2-channel type

LTV-846M: 4-channel type

Surface mounting package :

LTV-816S: 1-channel type

LTV-826S: 2-channel type

LTV-846S: 4-channel type

Tape and reel packaging :

LTV-816S -TA: 1-channel type

LTV-816S -TA1 : 1-channel type

LTV-816S -TP: 1-channel type

LTV-826S -TA: 2-channel type

LTV-826S -TA1 : 2-channel type

Safety approval

UL 1577

VDE DIN EN60747-5-5 (VDE 0884-5)

CSA CA5A

CQC GB4943.1-2011/ GB8898-2011 (meet Altitude up to 5000m)

Nordic Safety (FIMKO/NEMKO/SEMKO/DEMKO)

BSI

RoHS Compliance

All materials be used in device are followed EU RoHS directive (No.2002/95/EC).

- ESD pass HBM 8000V/MM2000V
- MSL class1

1.2 Applications

- Hybrid substrates that require high density mounting.
- Programmable controllers

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

2. PACKAGE DIMENSIONS

2.1 LTV-816

2.2 LTV-816M

2.3 LTV-816S

Pin No. and Internal

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. Rank shall be or shall not be marked.
- "●" for halogen free option.
- 6. "4"or"V" for VDE option.

Dimensions in millimeters (inches).

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

2.4 LTV-826

Yeor Code *1 Week Code *2 Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 L TV 8 2 6 [] Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 8 7 6 5 Pin No. and Internal connection diagram 9 8 7 6 5 Pin No. and Internal connection diagram 9 8 7 6 5 Pin No. and Internal connection diagram 9 8 7 6 5 Pin No.

2.5 LTV-826M

2.6 LTV-826S

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. Rank shall be or shall not be marked.
- 5. "●" for halogen free option.

Dimensions in millimeters (inches).

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

2.7 LTV-846

2.8 LTV-846M

2.9 LTV-846S

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. Rank shall be or shall not be marked.
- "●" for halogen free option.

Dimensions in millimeters (inches).

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

3. TAPING DIMENSIONS

3.1 LTV-816S-TA

3.2 LTV-816S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.472)

3.3 Quantities Per Reel

Package Type	TA/TA1
Quantities (pcs)	1000

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

3.4 LTV-816S-TP

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P_2	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	8±0.1 (0.472)

3.5 Quantities Per Reel

Package Type	TP
Quantities (pcs)	2000

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

3.6 LTV-826S-TA

3.7 LTV-826S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.47)

3.8 Quantities Per Reel

Package Type	TA/TA1
Quantities (pcs)	1000

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

	Parameter	Symbol	Rating	Unit
	Forward Current	l _F	50	mA
lanut	Reverse Voltage	V_R	6	V
Input	Power Dissipation	Р	70	mW
	Junction Temperature	TJ	125	°C
	Collector - Emitter Voltage	V _{CEO}	80	V
Output	Emitter - Collector Voltage	V _{ECO}	6	V
Output	Collector Current	Ic	50	mA
	Collector Power Dissipation	Pc	150	mW
	Total Power Dissipation	P _{tot}	200	mW
1.	Isolation Voltage	V _{iso}	5000	V_{rms}
	Operating Temperature (LTV-826/846)	T_{opr}	-30 ~ +100	°C
	Operating Temperature (LTV-816)	T_{opr}	-50 ~ +110	°C
	Storage Temperature	T_{stg}	-55 ~ +125	°C
2.	Soldering Temperature	T _{sol}	260	°C

1. AC For 1 Minute, R.H. = 40 ~ 60%

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.

2. For 10 Seconds

Photocoupler LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

Parameter		Symbol	Min.	Тур.	Max.	Unit	Test Condition
	Forward Voltage	V _F	_	1.2	1.4	V	I _F =20mA
Input	Reverse Current	I _R	_	_	10	μА	V _R =4V
	Terminal Capacitance	Ct	_	30	250	pF	V=0, f=1KHz
	Collector Dark Current	I _{CEO}	_	_	100	nA	V _{CE} =20V, I _F =0
Output	Collector-Emitter Breakdown Voltage	BV _{CEO}	80	_	_	V	I _C =0.1mA, I _F =0
	Emitter-Collector Breakdown Voltage	BV _{ECO}	6	_	_	V	I _E =10μΑ, I _F =0
	Collector Current	Ic	2.5	_	30	mA	L 5 A . V 5 V
	Current Transfer Ratio	CTR	50	_	600	%	I _F =5mA, V _{CE} =5V
	Collector-Emitter Saturation Voltage	V _{CE(sat)}	_	0.1	0.2	V	I _F =20mA, I _C =1mA
TRANSFER	Isolation Resistance	R _{iso}	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V, 40 ~ 60% R.H.
CHARACTERISTICS	Floating Capacitance	Cf	_	0.6	1	pF	V=0, f=1MHz
	Cut-off Frequency	f _c	_	80	_	kHz	VCE=5V, IC=2mA RL=100Ω,-3dB
	Response Time (Rise)	tr	_	4	18	μS	V _{CE} =2V, I _C =2mA
	Response Time (Fall)	tf	_	3	18	μS	R_L =100 Ω ,

1. CTR =
$$\frac{I_C}{I_F} \times 100\%$$

Photocoupler LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

5. RANK TABLE OF CURRENT TRANSFER RATIO

	CTR Rank	Min	Max	Condition
	L	50	100	
	А	80	160	
LTV-816	В	130	260	
LI V-010	С	200	400	
	D	300	600	
	L or A or B or C or D	50	600	
	No Bin	50	600	I _F =5mA, V _{CE} =5V, Ta=25°C
LTV-826 LTV-846	В	130	260	IF=SITIA, VCE=SV, Id=2S C
	С	200	400	
	BC	130	400	
	CD	200	600	
	No Bin	50	600	
	BC	130	400	
	CD	200	600	

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

CHARACTERISTICS CURVES

Fig.1 Forword Current vs. Ambient Temperatute 60 **Forward Current - mA** 40 30 20 0 -60 $\rm T_A$ - Ambient Temperature $\,$ - $^{\rm o}\rm C$

vs. Ambient Temperature 160

Fig.2 Collector Power Dissiption

Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

Fig.4 Forward Current vs. Forward Voltage

Fig.5 Normalized CTR vs. Forward Current

Fig.6 Collector Current vs.

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.9 Collector Dark Current vs. Ambient Temperature

Fig.11 Frequency Response

Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig.10 Response Time vs. Load

Test Circuit for Response Time

Test Circuit for Frequency Response

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

7. TEMPERATURE PROFILE OF SOLDERING

7.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t _L)	60 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

7.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

7.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

8. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

8.1 4 PIN

8.2 8 PIN

8.3 16PIN

Note:

Dimensions in millimeters.

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

9. Naming rule

Example: LTV-816S-TA1-A-G, LTV-846S-BC

LTV-816 826 846 (M, S, S-TA, S-TA1, S-TP) Series

10. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.