Statistical Inference I

Prof. Chin-Tsang Chiang

Lecture Notes 6

October 25, 2015

Scribe: Wei-Chang Lee, Chi-Ning Chou

0.1 Identical distribution

Definition 1 (i.d.d.) Let X and Y be random variables defined on the probability space $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$ respectively. Then X and Y are said to be identically distributed if and only if

$$P_1(X \in B) = P_2(Y \in B) \ \forall B \in \mathcal{B}$$

Remark 1 X and Y are said to be identically distributed with notation $X \stackrel{d}{=} Y$ noticed that it does not mean X=Y.

Property 1 X and Y are identically distributed $\Leftrightarrow F_X(t) = F_Y(t) \ \forall t \ where \ F_1(t) \ and \ F_2(t)$ are the corresponding distribution functions of X and Y.

Proof:

 \Rightarrow The equality follows straightly from i.d.d. and is true for all t since $(-\infty, t] \in \mathcal{B}$.

$$F_X(t) = P(\{\omega : X(\omega) \le t\}) = P_1(X^{-1}((-\infty, t])) = P_2(Y^{-1}((-\infty, t])) = F_Y(t)$$

 \Leftarrow Let $S = \{(a,b] : P(X \in (a,b]) = P_2(Y \in (a,b])\} \ \forall a,b \in \mathcal{R} \ \text{and} \ \xi = \{B : P_1(X \in B) = P_2(Y \in B) \ \forall B \in \mathcal{B}\}$. We want to show $s = \xi$ to extend agreed on intervals to agreed on all sets. This is true because $B = \sigma(S)$.

0.2 Density and mass function

Definition 2 (Continuous random variable) A random variable X is continuous if $F_X(x)$ is a continuous function and discrete if $F_X(x)$ is a step function of X.

Definition 3 (p.m.f) The probability mass function of a discrete random variable X is defined as

$$f_X(x) = P(\{w : X(w) = x\}) = P(X = x) \ \forall X$$

Definition 4 (p.d.f) The probability density function of a continuous random variable X is a function $f_X(x)$ satisfying

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

And $f_X(x) = \frac{dF_X(x)}{dx}$ almost everywhere.

Property 2 A function $f_X(x)$ is a p.d.f(p.m.f) of a random variable X iff

(a) $f_X(x) \ge 0$ for all x.

(b)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
 or $\sum_{X} f(x)dx = 1$.

Proof:

⇒: $F_X(x)$ is a non-decreasing function so $f_X(x) \ge 0 \ \forall x$ and $\lim_{x\to\infty} F_X(x) = 1 = \int_{-\infty}^{\infty} f_X(t) dt$. \Leftarrow : Define $F_X(x) = \int_{-\infty}^x f_X(u) du$ and the property of distribution can be verified with (a)(b).

Intuition (Changed to p.d.f)

In fact, every non-negative function with a finite positive integral (sum) can be turned into a p.d.f/p.m.f. If h(x) is an non-negative function that is positive on a set A and

$$\int_{x \in A} h(x) dx = K < \infty$$

with positive integral then the function $f_X(x) = h(x)/K$ is a p.d.f of a random variable X taking values in A.

Density functions are not always exist for continuous random variable. But if the distribution function is absolutely continuous, density function exists.

Remark 2 [Absolutely Continuous] A real-valued function f(x) is absolutely continuous on [a,b] if $\forall \epsilon > 0 \; \exists \; \delta \; s.t.$ non-overlapping intervals $(Y_i, X_i) \in [a, b]$ for all

$$\sum_{i} |Y_i - X_i| < \delta$$

implies

$$\sum_{i} |f(Y_i) - f(X_i)| < \epsilon$$

Theorem 1 $P(X = x) = F(x) - F(x^{-})$, where $F(x^{-}) = \lim_{y \uparrow x} F(y)$.

Proof: Since $P(X = x) = F(X \le x) - F(X < x)$ and notice that $y \downarrow x$ then $\{X \le y\} \downarrow \{X \le x\}$ and $y \uparrow x$ then $\{X \le y\} \uparrow \{X < x\}$, we have

$$P(X = x) = F(x) - F(x^{-})$$

The question arises when considering the physical meaning of f(x), is f(x) a probability measure? Go back to the definition of differentiation, we have

$$F'(x) = \lim_{\Delta \to 0} \frac{F(x + \frac{\Delta}{2}) - F(x - \frac{\Delta}{2})}{\Delta} = \frac{P((x - \frac{\Delta}{2}, x + \frac{\Delta}{2}))}{\Delta} = \frac{Probability}{Interval}$$

f(x) is not usually probability measure, it is of intensity/density sense.

0.3 Quantative Description of Poisson Random Variable

Q: Please quantitatively describe the Poisson random variable.

- It's a **counting process**. That is, N(t) that counts the number of appearances before time t.
- (Boundary condition) N(0) = 0
- (Stationary) $\forall t_1 < t_2, N(t_2) N(t_1) \sim N(t_2 t_1)$
- (Independence) $\forall t_1 < t_2 < t_3 < t_4, \ N(t_4) N(t_3) \sim N(t_2) N(t_1)$
- $\bullet \ (\textbf{Fixed frequency}) \ \lim_{\Delta \to 0^+} \frac{Pr[N(\Delta) N(0) = 1]}{\Delta} = \lambda, \ \text{and} \ \lim_{\Delta \to 0^+} \frac{Pr[N(\Delta) N(0) > 1]}{\Delta} = 0$
- (Density function) $f_{\lambda}(t,k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!} \mathbf{1}_{\{k=0,1,2,\ldots\}}$