# Discrete Random Variables and Their Distributions

#### Administrivia

- Reminder: Homework 2 is posted and is due two Friday's from now
- o If you didn't start early last time, please do so this time. Good Milestones:
  - Finish Problems 1-3 this week. More math, some programming.
  - Finish Problems 4-5 next week. Less math, more programming.

## Previously on CSCI 3022

**Def**: a discrete random variable X is a function that maps the elements of the sample space  $\Omega$  to a finite number of values  $a_1, a_2, \ldots, a_n$  or an infinite number of values  $a_1, a_2, \ldots$ 

**Def**: a probability mass function is the map between the random variable's values and the probabilities of those values

$$f(a) = P(X = a)$$

**Def**: a **cumulative distribution function** (CDF) is a function whose value at a point  $\mathbf{a}$  is the cumulative sum of probability masses up until  $\mathbf{a}$ .

$$F(a) = P(X \le a)$$

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

Question: What are the possible values that X can take on?

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

Question: Which elements of the sample space map to which values of X?

|                | 1 | 2 | 3 | 4 | 5 | 6 |
|----------------|---|---|---|---|---|---|
| 1              |   |   | 3 |   |   | 6 |
| $\overline{2}$ | 2 | 2 | 3 | 7 | 5 | 6 |
| 3              | 3 | 3 | 3 | 4 | 5 | 6 |
| $\overline{4}$ | 4 | 4 | 4 | Y | 5 | 6 |
| 5              |   |   | 5 |   | 5 | 0 |
| 6              | 6 | 6 | 6 | 6 | 6 | 6 |

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

Question: What is the PMF of random variable X?

|                | 1 | 2 | 3 | 4 | 5 | 6 |
|----------------|---|---|---|---|---|---|
| 1              | 1 | 2 | 3 | 4 | 5 | 6 |
| $\overline{2}$ | 2 | 2 | 3 | 4 | 5 | 6 |
| 3              | 3 | 3 | 3 | 4 | 5 | 6 |
| $\overline{4}$ | 4 | 4 | 4 | 4 | 5 | 6 |
| 5              | 5 | 5 | 5 | 5 | 5 | 6 |
| 6              | 6 | 6 | 6 | 6 | 6 | 6 |

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

Question: What is the probability that X is an even number?

$$P(even) = P(2) + P(4) + P(6)$$
  
=  $\frac{21}{36} = \frac{7}{12}$ 

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

**Question**: What is the probability that X is 3 or smaller?

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.

Question: What is the complete CDF of X?

| a                 | 1    | 2    | 3    | 4    | 5    | 6     |
|-------------------|------|------|------|------|------|-------|
| f(a)              | 1/36 | 3/36 | 5/36 | 7/36 | 9/36 | 11/36 |
|                   |      |      |      |      |      |       |
| a                 | 1    | 2    | 3    | 4    | 5    | 6     |
| $\overline{F(a)}$ | 1    | 4    | 9    | 70   | 25   | 36    |
|                   | 34   | 36   | 36   | 36   | 31   | 36    |

## Visualizing PMFs and CDFs

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.



## Visualizing PMFs and CDFs

**Example**: Suppose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice.



#### Common Discrete RV Distributions

Discrete random variables can be categorized into different types or classes that each **model** different real-world situations.

#### The Bernouilli Distribution

The Bernouilli distribution is used to model experiments with only two possible outcomes, often referred to as "success" and "failure" and encoded as 1 and 0, respectively

**Def**: A discrete random variable X has a Bernouilli distribution with parameter p, where  $0 \le p \le 1$ , if its probability mass function is given by

$$p_X(1) = p_X(1) = P(X = 1) = p$$
 and  $p_X(0) = P(X = 0) = 1 - p$ 

We denote this distribution by Ber(p)

#### The Bernouilli Distribution

The Bernouilli distribution is used to model experiments with only two possible outcomes, often referred to as "success" and "failure" and encoded as 1 and 0, respectively

**Def**: A discrete random variable X has a Bernouilli distribution with parameter p, where  $0 \le p \le 1$ , if its probability mass function is given by

$$p_X(1) = P(X = 1) = p$$
 and  $p_X(0) = P(X = 0) = 1 - p$ 

We denote this distribution by Ber(p)

Question: Wouldn't it be nice if we could describe the PMF with a single equation?

$$P_{x}(x) = P_{x}(1-P)_{(1-x)}$$

$$P_{X}(0) = P$$

$$P_{X}(0) = 1 - P$$

## Counting Interludes

- We'll come back to the Bernouilli distribution in a minute.
- Believe it or not, counting comes up all over the place in probability, and therefore in data science, computer science, math, physics, etc.
- O Some counting is easy: how many integers are in the interval [0,9]?
- We're interested in counting problems that require more thought: Dan, Chris, Dave, Rhonda, and Tony line up at the coffee stand. How many different orders could they stand in?
- O If there are 10 problems on an exam, and you need to get 7 correct to pass, how many different ways are there to pass?

# Counting Interludes

- We'll talk about two important kinds of counting problems today:
- Counting permutations means counting the number of ways that a set of objects can be ordered or permuted.

**Example**: Dan, Chris, Dave, Rhonda, and Tony line up at the coffee stand. How many different orders could they stand in?

 Counting combinations means counting the number of ways that a set of objects can be combined into subsets

**Example**: If there are 10 problems on an exam, and you need to get 7 correct to pass, how many different ways are there to pass?

#### Permutations abc

#### Questions:

O How many ways are there of ordering 1 object?

O How many ways are there of ordering 2 objects?

O How many ways are there of ordering 3 objects?

The Big Question: What is the formula for the number of ways you can order n objects?



#### Permutations

Question: What if we have n objects, but want to count permutations of only r of them?

**Example**: How many three-character strings can we make if each character is a distinct letter from the English alphabet?

Question: What is the general formula for r-permutations of n objects?

$$P(n,r) = \frac{n!}{(n-r)!} = P_{n,r}$$

Counting combinations means counting the number of ways that a set of objects can be combined into subsets

Key Difference: When counting combinations, order does not matter

**Example**: How many three-character combinations can we make if each character is a distinct

letter from the English alphabet?

PERUS: 
$$\frac{26!}{(26-3)!}$$
Combs: 
$$\frac{n!}{(n-n)!} = C_{n,r} = \binom{n}{r}$$

**Example**: How many three-character **combinations** can we make if each character is a distinct letter from the English alphabet?

Start with the number of 3-permutations of 26 letters:

If order doesn't matter, we're counting combinations multiple times.

There are many different notations for combinations

The number of ways to choose r objects from a set of n can be written as

$$C(n,r)$$
 and  $C_{n,r}$  and  $\binom{n}{r}$ 

**Example**: If there are 10 problems on an exam and you need to answer at least 7 problems correctly to pass, how many different ways are there to pass the test?

$$(\frac{10}{7}) + (\frac{10}{8}) + (\frac{10}{10}) + (\frac{10}{10}) =$$

**Example**: A coin is flipped 10 times. How many possible outcomes have exactly 2 Heads?

**Example**: A coin is flipped 10 times. How many possible outcomes have Heads or fewer?



**Example**: Suppose you show up to a quiz completely unprepared. The quiz has 5 questions, each with 4 multiple choice options. You decide to guess at the answer to each question in a completely random way. What is the probability that you get 3 questions correct?

For 
$$i = 1, 2, ..., 5$$
 let

$$R_i = \left\{ egin{array}{ll} 1 & \mbox{if the $i$th answer is correct} \\ 0 & \mbox{if the $i$th answer is incorrect} \end{array} 
ight.$$

**Question**: What can you say about  $R_i$  ?



**Example**: Suppose you show up to a quiz completely unprepared. The quiz has 5 questions, each with 4 multiple choice options. You decide to guess at the answer to each question in a completely random way. What is the probability that you get 3 questions correct?

The number of correct answers on the quiz is given by the random variable X

$$X = R_1 + R_2 + R_3 + R_4 + R_5$$

**Question**: What values can the random variable X take on?

Question: What is the probability that you get 0 problems correct?

$$P(X=0) = (1-\frac{1}{4})^5 = (\frac{3}{4})^5$$

Question: What is the probability that you get 0 problems correct?

$$P(X = 0) = P(R_1 = 0, R_2 = 0, R_3 = 0, R_4 = 0, R_5 = 0)$$

$$= P(R_1 = 0)P(R_2 = 0)P(R_3 = 0)P(R_4 = 0)P(R_5 = 0)$$

$$= \left(\frac{3}{4}\right)^5$$

Question: What is the probability that you get 1 problem correct?

$$P(x=1) = 5 \cdot (4)(3)^4$$

Question: What is the probability that you get k problems correct?

$$b_{x}(x) = \frac{(u-n)!u!}{x} b_{x}(1-b)_{x-x}$$

$$k=0,1,...,5$$

Question: What is the probability that you get k problems correct?

$$P(X = k) = \binom{n}{k} \left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{n-k}$$

**Def**: A discrete random variable X has a binomial distribution with parameters n and p, where  $n=1,2,\ldots$  and  $0\leq p\leq 1$ , if it's probability mass function is given by

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for  $k = 0, 1, \dots, n$ 

We denote this distribution by Bin(n, p)







What **Assumptions** did we make in going from Ber(p) to Bin(n,p) ?

- Each of the n Bernouilli trials are independent
- O Each Bernouilli trial has the same probability of success, p.

## The Most Boring (but Common) of Them All

What is the distribution of a fair die?

## The Most Boring (but Common) of Them All

What is the distribution of a fair die?

**Def**: A discrete random variable X has a discrete uniform distribution with parameters a, b, and n = b - a + 1 if

$$p_X(k) = rac{1}{n}$$
 for  $k = a, a+1, \ldots, b$ 



#### OK! Let's Go to Work!

Get in groups, get out laptop, and open the Lecture 7 In-Class Notebook

#### Let's:

- See some more examples of computing PMFs and CDFs
- Look at some more examples of the Binomial distribution
- Learn how to sample from the Bernoulli and Binomial distributions in Numpy