Design and Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models

Aleksei Udovenko

SnT, University of Luxembourg

April 9, 2019 PhD Defense

Symmetric-key Cryptography

Symmetric-key Cryptography

ensures that the message is:

- secret (confidentiality)
- unmodified (integrity)
- from the correct person (authenticity)

```
(confidentiality)
(integrity)
(authenticity)
```

(confidentiality)
(integrity)
(authenticity)

Authenticated
Encryption

(confidentiality)
(integrity)
(authenticity)

Authenticated
Encryption

The main goal of symmetric-key cryptography!

How does it work?

Construction 1:

Block Cipher + Mode of Operation

Block Cipher

An Algorithm E_k :

- *n*-bit message *m*
- κ-bit key k
- *n*-bit ciphertext *c*
- E_k is invertible

Example: Advanced Encryption Standard

AES Algorithm:

- 128-bit message m
- 128/192/256-bit key *k*
- 128-bit ciphertext c
- designed in 1998
 by V. Rijmen and J. Daemen

Mode of Operation

Example: COLM Mode of Operation One of CAESAR competition winners (2019)

Construction 2: Sponge Structure

(Duplexed) Sponge Structure

f: keyless invertible function (permutation)

Plan

- Introduction
- Thesis Overview
 - Design of Symmetric-key Algorithms
 - Structural and Decomposition Cryptanalysis
 - Nonlinear Invariant Cryptanalysis
 - White-box Cryptography
- White-box Cryptography

Lightweight Cryptography:

Cryptography for resource-constrained devices (Internet of Things)

Sparx: a *lightweight* block cipher based on a new design strategy

Sparkle, Esch and Schwaemm: cryptographic permutations, hash functions and authenticated encryption

Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl, and Alex Biryukov.

Design Strategies for ARX with Provable Bounds: Sparx and LAX.

In Advances in Cryptology - ASIACRYPT 2016, pages 484–513.

https://www.cryptolux.org/index.php/SPARX.

Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang.

Schwaemm and Esch: Lightweight Authenticated Encryption and Hashing using the Sparkle Permutation Family, 2019.

https://www.cryptolux.org/index.php/Sparkle.

How to make sure that an encryption scheme is secure?

How to make sure that an encryption scheme is secure?

Security Proofs and Cryptanalysis!

Security Proofs: Modes and Structures

Security Proofs: Modes and Structures

secure **if** the permutation f is secure (random)

Cryptanalysis:

an attempt to invalidate security claims of a cryptosystem by developing an attack

Cryptanalysis:

an attempt to invalidate security claims of a cryptosystem by developing an attack

- a large variety of methods: differential, linear, integral, ...
- attacks on simplified versions
- analysis of components

Distinguishing structures and recovering components

Structural and Decomposition Cryptanalysis \boldsymbol{x}

X	E(x)
0	182
1	210
2	78
3	251
4	97
252	112
253	19
254	224
255	74

Feistel Networks

Feistel Networks

X	E(x)
0	182
1	210
2	78
3	251
4	97
252	112
253	19
254	224
255	74

Feistel Networks

GOST S-Box

X	E(x)	
0	182	
1	210	
2	78	
3	251	
4	97	
252	112	
253	19	
254	224	
255	74	

Feistel Networks

GOST S-Box

Léo Perrin and Aleksei Udovenko.

Algebraic Insights into the Secret Feistel Network.

In Fast Software Encryption - FSE 2016, pages 378-398.

Léo Perrin, Aleksei Udovenko, and Alex Biryukov.

Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem.

In Advances in Cryptology - CRYPTO 2016, pages 93-122.

Alex Biryukov, Léo Perrin, and Aleksei Udovenko.

Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1.

In Advances in Cryptology - EUROCRYPT 2016, pages 372–402.

Léo Perrin and Aleksei Udovenko.
Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog.

IACR Trans. Symmetric Cryptol., 2016(2):99–124.

Analysis of the NORX Authenticated Encryption

Theoretical study of linear layers preserving degree-d invariants

- Alex Biryukov, Aleksei Udovenko, and Vesselin Velichkov. Analysis of the NORX Core Permutation. Cryptology ePrint Archive, Report 2017/034, 2017. https://eprint.iacr.org/2017/034.
 - Christof Beierle, Alex Biryukov, and Aleksei Udovenko.
 On Degree-d Zero-Sum Sets of Full Rank.
 Cryptology ePrint Archive, Report 2018/1194, 2018.
 https://eprint.iacr.org/2018/1194.

Plan

- Introduction
- 2 Thesis Overview
- White-box Cryptography
 - Introduction
 - Attack Methods
 - Countermeasures

White-box Cryptography

Alex Biryukov and Aleksei Udovenko.

Attacks and Countermeasures for White-box Designs.

In Advances in Cryptology - ASIACRYPT 2018 II, pages 373–402.

White-box model

White-box model

- implementation is fully available to an adversary
- secret key should be unextractable
- extra: one-wayness, incompressibility, traitor traceability, ...

White-box model

- implementation is fully available to an adversary
- secret key should be unextractable
- extra: one-wayness, incompressibility, traitor traceability, ...

 The most challenging direction (this work): white-box implementations of existing symmetric primitives, e.g. the AES block cipher

Example: Secure White-box

Example: Secure White-box

X	E(x)	
0000000000000000	9333dd078833edd3	
0000000000000001	7072b89243c84359	
00000000000000002	7838040f2b7f9af6	
0000000000000003	0b502e4231f42da3	
0000000000000004	c39ea8c9434252aa	
ffffffffffffb	8f1a82bc7af09497	
ffffffffffffc	9aaf33009a8e9a2f	
ffffffffffffdd	5cd335922f9f0236	
ffffffffffffe	39d0e8b9a0eded09	
fffffffffffffff	daf2ced4ab8fc658	

Example: Secure White-box

X	E(x)	
0000000000000000	9333dd078833edd3	
00000000000000001	7072b89243c84359	
00000000000000002	7838040f2b7f9af6	
0000000000000003	0b502e4231f42da3	
0000000000000004	c39ea8c9434252aa	
ffffffffffffb	8f1a82bc7af09497	
ffffffffffffc	9aaf33009a8e9a2f	
fffffffffffffd	5cd335922f9f0236	
fffffffffffffe	39d0e8b9a0eded09	
fffffffffffffff	daf2ced4ab8fc658	

Impractical! 128 exbibytes for a 64-bit cipher!

White-box: Industry vs Academia

White-box: Industry vs Academia

- WB has many applications
- strong need for efficient WB
- industry does WB: hidden designs

White-box: Industry vs Academia

- WB has many applications
- strong need for efficient WB
- industry does WB: hidden designs

- theory: approaches using iO/FE, currently impractical
- practical WB-AES: few attempts (2002-2017), all broken
- powerful DCA attack (CHES 2016)

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically
- Side-channel protection: masking schemes

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically
- Side-channel protection: masking schemes

this work:

Can we apply the masking protection for white-box impl.?

General Setting

- Boolean circuits
- obfuscated reference implementation

General Setting

- Boolean circuits
- obfuscated reference implementation
- predictable values: computations from ref. impl., e.g.

$$s = Bit_1(SBox(pt_1 \oplus k_1))$$

General Setting

- Boolean circuits
- obfuscated reference implementation
- predictable values: computations from ref. impl., e.g.

$$s = Bit_1(SBox(pt_1 \oplus k_1))$$

• masking: $\exists v_1, \dots, v_t$ nodes (shares), $f : \mathbb{F}_2^t \to \mathbb{F}_2$ s.t. for any encryption

$$f(v_1,\ldots,v_t)=s$$

Masking Schemes

- **Example** Boolean masking: linear decoder $f = \bigoplus_i v_i$
- Example FHE: complex non-linear decoder f

Masking Schemes

- **Example** Boolean masking: linear decoder $f = \bigoplus_i v_i$
- Example FHE: complex non-linear decoder f
- Aim for efficient schemes: relatively small t (number of shares)

Masking Schemes

- **Example** Boolean masking: linear decoder $f = \bigoplus_i v_i$
- Example FHE: complex non-linear decoder f
- Aim for efficient schemes: relatively small t (number of shares)

⇒ can be secure only if the locations of the shares in the circuit are unknown!

this work: exploring this possibility

Plan

- Introduction
- 2 Thesis Overview
- White-box Cryptography
 - Introduction
 - Attack Methods
 - Countermeasures

(Generalized) Differential Computation Analysis (DCA)

(Generalized) Differential Computation Analysis (DCA)

(Generalized) Differential Computation Analysis (DCA)

- consider Boolean masking (linear decoder)
- matching with a predictable value s: a basic linear algebra problem:

$$M \times z = s$$
, $M = [v_1 \mid \dots \mid v_n]$

- consider Boolean masking (linear decoder)
- matching with a predictable value s: a basic linear algebra problem:

$$M \times \mathbf{z} = \mathbf{s}, \quad M = [\mathbf{v}_1 \mid \ldots \mid \mathbf{v}_n]$$

- v_i is the vector of values computed in a node i of the circuit
- z is the vector indicating locations of shares among nodes of the circuit

- consider Boolean masking (linear decoder)
- matching with a predictable value s: a basic linear algebra problem:

$$M \times \mathbf{z} = \mathbf{s}, \quad M = [\mathbf{v}_1 \mid \ldots \mid \mathbf{v}_n]$$

- v_i is the vector of values computed in a node i of the circuit
- z is the vector indicating locations of shares among nodes of the circuit

higher number of shares does not prevent the attack...

- consider Boolean masking (linear decoder)
- matching with a predictable value s: a basic linear algebra problem:

$$M \times \mathbf{z} = \mathbf{s}, \quad M = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n]$$

- v_i is the vector of values computed in a node i of the circuit
- z is the vector indicating locations of shares among nodes of the circuit

higher number of shares does not prevent the attack...

Plan

- Introduction
- 2 Thesis Overview
- White-box Cryptography
 - Introduction
 - Attack Methods
 - Countermeasures

Algebraic Security (1/3)

Security Model:

- random bits allowed
 - as in classic masking
 - model unpredictability
 - in WB impl. as pseudorandom

Algebraic Security (1/3)

Security Model:

- random bits allowed
 - ► as in classic masking
 - model unpredictability
 - in WB impl. as pseudorandom
- **Quadeo Solution** Goal: any $f \in span\{v_i\}$ is unpredictable

Algebraic Security (1/3)

Security Model:

- random bits allowed
 - as in classic masking
 - model unpredictability
 - in WB impl. as pseudorandom
- **2** Goal: any $f \in span\{v_i\}$ is unpredictable
- isolated from obfuscation problems

Algebraic Security (2/3)

Adversary:

chooses plaintext/key pairs

Algebraic Security (2/3)

Adversary:

- chooses plaintext/key pairs
- ② chooses $f \in span\{v_i\}$

Algebraic Security (2/3)

Adversary:

- chooses plaintext/key pairs
- ② chooses $f \in span\{v_i\}$
- tries to predict values of this function (i.e. before random bits are sampled)

Algebraic Security (3/3)

Proposition

Let
$$F = \{f(x, \cdot, \cdot) \mid f(x, r_e, r_c) \in span\{v_i\}, \ x \in \mathbb{F}_2^N\}.$$

Let
$$e = -\log_2(1/2 + \max_{f \in F} bias(f))$$
.

Then for any adversary ${\mathcal A}$ choosing Q inputs

$$\mathsf{Adv}[\mathcal{A}] \leq \min(2^{Q-|r_c|}, 2^{-\boldsymbol{e}Q}).$$

Algebraic Security (3/3)

Proposition

Let
$$F = \{f(x, \cdot, \cdot) \mid f(x, r_e, r_c) \in span\{v_i\}, \ x \in \mathbb{F}_2^N\}.$$

Let
$$e = -\log_2(1/2 + \max_{f \in F} bias(f))$$
.

Then for any adversary ${\mathcal A}$ choosing ${\mathcal Q}$ inputs

$$\mathsf{Adv}[\mathcal{A}] \leq \min(2^{Q-|r_c|}, 2^{-eQ}).$$

Corollary

Let k be a positive integer. Then for any adversary A

$$\mathsf{Adv}[\mathcal{A}] \leq 2^{-k} \text{ if } e > 0 \text{ and } |r_c| \geq k \cdot (1 + \frac{1}{e}).$$

Algebraic Security (3/3)

Proposition

Let
$$F = \{f(x, \cdot, \cdot) \mid f(x, r_e, r_c) \in span\{v_i\}, \ x \in \mathbb{F}_2^N\}.$$

Let
$$e = -\log_2(1/2 + \max_{f \in F} bias(f))$$
.

Then for any adversary ${\mathcal A}$ choosing Q inputs

$$\mathsf{Adv}[\mathcal{A}] \leq \min(2^{Q-|r_c|}, 2^{-eQ}).$$

Corollary

Let k be a positive integer. Then for any adversary \mathcal{A}

$$\mathsf{Adv}[\mathcal{A}] \leq 2^{-k} \text{ if } e > 0 \text{ and } |r_c| \geq k \cdot (1 + \frac{1}{e}).$$

Information-theoretic security!

Minimalist Quadratic Masking Scheme

Masking scheme

- quadratic decoder:
 - $(a,b,c)\mapsto ab\oplus c$
- set of gadgets
- provably secure composition

```
function EvalXOR((a, b, c), (d, e, f), (r_2, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      x \leftarrow a \oplus d
      v \leftarrow b \oplus e
      z \leftarrow c \oplus f \oplus ae \oplus bd
      return (x, y, z)
function EvalAND((a, b, c), (d, e, f), (r_a, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      m_2 \leftarrow bf \oplus r_c e
      m_d \leftarrow ce \oplus r_f b
      x \leftarrow ae \oplus re
     v \leftarrow bd \oplus r_c
      z \leftarrow am_2 \oplus dm_d \oplus r_c r_f \oplus cf
      return (x, y, z)
function Refresh((a, b, c), (r_a, r_b, r_c))
      m_a \leftarrow r_a \cdot (b \oplus r_c)
     m_b \leftarrow r_b \cdot (a \oplus r_c)
      r_c \leftarrow m_a \oplus m_b \oplus (r_a \oplus r_c)(r_b \oplus r_c) \oplus r_c
      a \leftarrow a \oplus r_2
      b \leftarrow b \oplus r_b
      c \leftarrow c \oplus r_c
      return (a, b, c)
```

Minimalist Quadratic Masking Scheme

Security

- algorithm to verify that bias $\neq 1/2$
- \bigcirc max. degree on r: 4

```
function EvalXOR((a, b, c), (d, e, f), (r_2, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      x \leftarrow a \oplus d
      v \leftarrow b \oplus e
      z \leftarrow c \oplus f \oplus ae \oplus bd
      return (x, y, z)
function EvalAND((a, b, c), (d, e, f), (r_a, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      m_2 \leftarrow bf \oplus r_c e
      m_d \leftarrow ce \oplus r_f b
      x \leftarrow ae \oplus re
     v \leftarrow bd \oplus r_c
      z \leftarrow am_2 \oplus dm_d \oplus r_c r_f \oplus cf
      return (x, y, z)
function Refresh((a, b, c), (r_a, r_b, r_c))
      m_a \leftarrow r_a \cdot (b \oplus r_c)
     m_b \leftarrow r_b \cdot (a \oplus r_c)
      r_c \leftarrow m_a \oplus m_b \oplus (r_a \oplus r_c)(r_b \oplus r_c) \oplus r_c
      a \leftarrow a \oplus r_2
      b \leftarrow b \oplus r_b
      c \leftarrow c \oplus r_c
      return (a, b, c)
```

Minimalist Quadratic Masking Scheme

Security

- algorithm to verify that bias $\neq 1/2$
- 2 max. degree on r: 4

$$\Rightarrow$$
 bias $\leq 7/16$

for 80-bit security we need $|r_c| \ge 940$

```
function EvalXOR((a, b, c), (d, e, f), (r_2, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      x \leftarrow a \oplus d
      v \leftarrow b \oplus e
      z \leftarrow c \oplus f \oplus ae \oplus bd
      return (x, y, z)
function EvalAND((a, b, c), (d, e, f), (r_a, r_b, r_c), (r_d, r_e, r_f))
      (a, b, c) \leftarrow \mathsf{Refresh}((a, b, c), (r_a, r_b, r_c))
      (d, e, f) \leftarrow \mathsf{Refresh}((d, e, f), (r_d, r_e, r_f))
      m_2 \leftarrow bf \oplus r_c e
      m_d \leftarrow ce \oplus r_f b
      x \leftarrow ae \oplus re
      v \leftarrow bd \oplus r_c
      z \leftarrow am_2 \oplus dm_d \oplus r_c r_f \oplus cf
      return (x, y, z)
function Refresh((a, b, c), (r_a, r_b, r_c))
      m_a \leftarrow r_a \cdot (b \oplus r_c)
      m_b \leftarrow r_b \cdot (a \oplus r_c)
      r_c \leftarrow m_a \oplus m_b \oplus (r_a \oplus r_c)(r_b \oplus r_c) \oplus r_c
      a \leftarrow a \oplus r_2
      b \leftarrow b \oplus r_b
      c \leftarrow c \oplus r_c
      return (a, b, c)
```

Proof-of-concept masked AES-128

- MQMS + 1-st order Boolean masking
- ② $31,783 \rightarrow 2,588,743$ gates expansion (x81)
- 16 Mb code / 1 Kb RAM / 0.05s per block on a laptop
- (unoptimized)

github.com/cryptolu/whitebox

Conclusions

- \bullet new attack methods \Rightarrow new constraints on a white-box impl.
- new results on provable security for white-box model
- new links with side-channel research

Design and Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models

Aleksei Udovenko aleksei.udovenko@uni.lu

- Design of Symmetric-key Algorithms
- Structural and Decomposition Cryptanalysis
- Nonlinear Invariant Cryptanalysis
- White-box Cryptography

