

Our Team

Dr. Aany Sofia Lilly ThankamonyPhD in Chemistry
Post doctoral research experience

Katharina Gorrissen
Chemical Engineer
Experience in energy sector

Dr. Ludmila SakiewPhD in Meteorology
Experience in automotive sector

What is Sea Ice?

Sea ice is frozen seawater that floats on the ocean/sea surface

Maximum Arctic sea ice extent in February/March

Minimum extent in September

Why is Sea Ice Important?

It influences our global climate

- Arctic sea ice is an important indicator of global climate change
- Important input parameter for climate models (radiation balance)
- The decline of sea ice can also affect the wildlife (polar bears, polar fox, etc) habitat

Source: the-m-factory.com

Sea Ice in Northern Hemisphere

- Source: National Sea Ice &
 Data Center (NSIDC)
- Measurements of Sea Ice extent depend on the Sea
 Ice concentration
- Since 1978 for the whole
 Northern Hemisphere
- Data for regional seas in
 Arctic ocean since 2006

What does the data tell us?

Northern Hemisphere

Annual Changes of Sea Ice Extent

Difference between total sea ice extent in 1979 and 2022

- Reduction of sea ice extent for all months
- Steep slope for the minimum in september
- No complete recovery of the sea ice extent in winter

Local Changes in Arctic Regions

Comparison of Sea Ice Extent

Dashboard to visualize all regions:

https://sea-ice-extent.herokuapp.com/

Modelling

Prediction

Neural Prophet

SARIMAX

Seasonal Autoregressive Moving Average with Integrating part

Prophet

An additive model with several seasonal and trend components

NeuralProphet

A decomposable model with the components, trend, seasonality, auto-regression, special events, future regressors and lagged regressors

Baseline

Monthly mean as prediction for test data

9

Performance of the Models

Comparison of RMSE (Root-Mean-Squared Error) values

- Highest RMSE for Northern
 Hemisphere data for every model
- Ensemble better than single model

Model vs. Observations

Northern Hemisphere, NeuralProphet

Model vs. Observations

Central Arctic, NeuralProphet

2020 - Siberian heat wave

Model vs. Observations

— Hudson Bay, Prophet

Forecast of Sea Ice for Next 100 Years

Summer sea ice - free szenario in Northern Hemisphere using NeuralProphet

• Ice free summer begins in 2090s

Future Work

Comparing with Antarctic

Visualize actual data and predict future Sea Ice Extent for the Antarctic region to see of there is a similar trend

Improve dashboard

Implementing model in the dashboard to show a short period prediction for the regions

Thank You!

Credits

The data is provided by NSIDC.org

The polar chart was prepared by using https://flourish.studio/

This presentation template created by GoogleSlidesppt.com

Sea of Okhotsk

- Year-dependent deviation
- 2012 highest and2015 lowest extent in winter
- Ice free in summer (July/August to October)

Hudson Bay

- Year-dependent deviation
- Nearly ice free in summer (August to October)
- Plateau in winter (February -March/April)

Central Arctic

- High variation of ice coverage in summer
- Lowest sea ice in september 2020

Baseline models for regions

- Monthly average for the train dataset (until 2018) as annual variation
- RMSE (Sea of Okhotsk): 121600 sqkm
- RMSE (Hudson Bay): 120400 sqkm
- RMSE (Central Arctic): 100200 sqkm

Neural Prophet

What has Changed from Prophet

NeuralProphet has a number of added features with respect to original Prophet. They are as follows.

- Gradient Descent for optimisation via using PyTorch as the backend.
- Modelling autocorrelation of time series using AR-Net
- Modelling lagged regressors using a sepearate Feed-Forward Neural Network.
- Configurable non-linear deep layers of the FFNNs.
- Tuneable to specific forecast horizons (greater than 1).
- Custom losses and metrics.

Regions of Interest

For the analysis of sea ice extent in different regions

- The Multisensor Analyzed Sea
 Ice Extent Data since 2006
- Important 16 Arctic regions
- 11 Central Arctic
- 14 Sea of Okhotsk
- 10 Hudson Bay