

Today's agenda In No. of Jactobs In Prime numbers In Sum of N natural no.s In John & Ceik In Synt	Today's agenda
b Prime numbers b Sum of N natural no.s b Blook & Ceik b Sgri	hao. of factors
by Sum of N natural no.s by Bloom & Ceir by Sgnt Algore	Le Poime numbers
h blook & ceir In Sgnt Algorep	ls Sum of N natural no-s
AlgoPrep	b blook & ceil
AlgoPrep	L Sqxt
& AlgoPrep	
AlgoPrep	
AlgoPrep	
AlgoPrep	
Algorrep	
	-//\\\ Algorean

Q) Court no of Jactors Liver a number N, Point	the count of Jactors.
$N = 24 \rightarrow (1234)$ $N = 36 \rightarrow (1234)$	6 8 12 243 -> 8 6 9 12 18 363 -> 9
N = 36	Jack -> 1 Sec = 108 iterations
Brute Jorce P S V main C) (Scanner son: new Scanner (); ind n: SchnedInt();	No. of iteration = N N= 10 ⁹ iteration
tehesion int Count = 0; count Lors (int i=1; i<=n; i+)	1 Lx 108 iteration = 1 Sec
$ij (n' \cdot i) = = 0) $ $Cound ++:$	1 iteration: 1 sec
3	109 iteration: 108 x 109
S.o.p (court);	= lo sec
' 3	

2 optimal Soin

1108timize

	N:21	4		N:3	36
		N/1	Court	7	N/i Countre
1	<	24	42	1 <	36 2
2	4	12	+2	2 <	18 4
3	4	8	+2 i <= //	3 <	12 6
4	<	66	42 i2 4N	4 4	9 8
6	>	4	i <-/N	6 = :	6 41~9
8	7	3		9	4
12	7	2		12	2
24	7			18	2
				26	

int Count = 03

| Jor (int i= 1; i <) (
| | | (nt i = = 0) (
| Count = count + 2;
| 3

S.O.p (count);


```
S v main () {
         Scanne son: new Scanne (...);
             ind n = SchonerdInd();
                 int Count = 0;
              for (ind i=1; idic=n; it+) (
                      il (ny.i) ==0) {
                        if (1== Vi) { Count : Count +1; }
                              else { Count = count +2;}
                    S.O.p (count);
       10 18 ; terations = 109 ; terations
1×108 iteration = 1 Sec
   1 iteration: 108
 109 iteration: _ x 109
```

= losec


```
a) Poime numbers
         Griven a number N, Check if the number is a Prime
   ho.
       1. Neither Prime nos composite.
        Poine numbers => if the only factors are I and
                                      no. itself.
                  Count of Jackors == 2
        S v main () {
         Scanne son: new Scanne (...);
             ind n = Sch-nerdInf();
                 int Count = 0;
             for (ind i= 1; inie=n; i+) (
                     if (ny.i ==0) {
                      if (i== Vi) { Count : Count + 1; }
                             else { Count = Count +2;}
              if (count = = 2) { S.O.p ("Poime No."); ]
                     elle ( S.O.p ("No+ Prime"); 3
```


auiz1? Sum of all the numbers from 1 to 10.

Quiz 2: Sum of all numbers from 1 to 2000.

a) Sum of first N natural numbers.

-> Gauss C4th class)

23 : Loo1 # 1000

S: 1001 # 1000 : 1001000 : 500500

11 Sum of first N naturals now

25 = (N+1) *N => 5 : N+(N+1)

auiz3: Sum of 131 N whole numbers.
jiz8+ 5 whole novs → 0 1 2 3 4
first ~ whole no.s > \$+1+2++N-1
Sum of 1st Al whole nos = = Sum of first N-1 natural nors.
$\frac{N*(N+1)}{2} \rightarrow \frac{(N-1)*(N-1+1)}{2} \Rightarrow \frac{(N-1)^{N}}{2}$
2 2 2
<u>Algorrep</u>

Fig. 1.4 \rightarrow 7

8.9 \rightarrow 8

100.01 \rightarrow 100

20.99 \rightarrow 20

2 \rightarrow 3

math. floor (num);

Ceil (num) -> just greater or equal integer

math. ceil (num);

AlgoPrep

a) Given N, return floor (squt(N))

en:
$$N:60 \rightarrow 7... \rightarrow 7$$

$$N:31 \rightarrow 5... \rightarrow 5$$

$$N:29 \rightarrow 5... \rightarrow 5$$

$$N:16 \rightarrow 4.0 \rightarrow 4$$

62 336 72 -> 49 82 -> 64

Gabo of Herston > F


```
N=49
S v main () {
  Scanner son: new Scanner ( .. - );
                                        " ny.1:50
                                                       MI
     ind n: SchonerdInt();
                                                       49
        int count = 0;
                                             X
      | | (n/1 = = 0) {
                                             X
               if (i== Vi) { count : count+1;}
                                        4 x
                  else { Count = count +2;}
                                        5 x
         S.O.p (court);
```