Logistic Regression

Andy Grogan-Kaylor

2 Jun 2020

Key Concepts and Commands

• Fitting a Curve to 2 Possible Values

- Linear models, probit and logit
- y x1 x2 ... $\leftarrow \rightarrow F(y) = \beta_0 + \beta x_1 + \beta x_2...$
- regress y x1 x2 OLS; Linear Model
- logit y x1 x2 Logistic Regression
- probit y x1 x2 Probit Regression
- glm ...

Limited Dependent Variables

- Categorical Dependent Variable
- Binary Dependent Variable
- Limited Dependent Variable

General Social Survey

```
. use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Data/GSS_panel > 2010w123_R6 - stata.dta", clear
```

. codebook happy_3 // what does this variable look like?

happy_3 happy_3: GENERAL HAPPINESS

type: numeric (byte)

label: HAPPY_3

range: [1,3]
unique values: 3
unique mv codes: 3 units: 1 missing .: 0/2,044 missing .*: 742/2,044

tabulation: Freq. Numeric Label 1 VERY HAPPY 391 2 PRETTY HAPPY 758

3 NOT TOO HAPPY
.d DK 153 1

740 .i IAP .n NA 1

Data Management

recode happy_3 (1/2 = 1)(3=0), generate(happy_3_D) (911 differences between happy_3 and happy_3_D)

. tabulate happy_3 happy_3_D // double check

happy_3:	RECODE of (happy_3:		
GENERAL	HAPPINESS)		
HAPPINESS	0	1	Total
VERY HAPPY	0	391	391
PRETTY HAPPY	0	758	758
NOT TOO HAPPY	153	0	153
Total	153	1,149	1,302

- . generate coninc_3_10K = coninc_3 / 10000 (820 missing values generated)
- . label variable coninc_3_10K "Income 10K Chunks"
- . keep happy_3 happy_3_D coninc_3 coninc_3_10K // keep only some variables
- . save GSSsmall.dta, replace file GSSsmall.dta saved

Visualize

- . twoway scatter happy_3_D coninc_3, scheme(burd) jitter(5)
- . graph export happiness-income.png, width(500) replace (file happiness-income.png written in PNG format)

Linear Probability Model

. regress happy_3_D coninc_3_10K

Source	SS	df	MS	Number of o		1,223
Model	2.26477699	1	2.26477699	F(1, 1221) Prob > F	=	22.87 0.0000
Residual	120.937185	1,221	.099047654		=	0.0184
Total	123.201962	1,222	.100819936	Adj R-squar Root MSE	ed =	0.0176 .31472
happy_3_D	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]

Figure 1: Happiness and Income

coninc_3_10K	.0096934	.0020272	4.78	0.000	.0057163	.0136705
_cons	.8368664	.0137133	61.03	0.000	.8099622	.8637706

Normal and Cumulative Normal Distribution

```
. clear all
. set obs 100 // 100 observations
number of observations (_N) was 0, now 100
. generate z = runiform(-5, 5) // randomly distributed z scores
. generate mynormaldensities = normalden(z) // normal densities
. generate myprobabilities = normal(z) // cumulative normal probabilities
. twoway scatter mynormaldensities myprobabilities z, scheme(michigan)
. graph export normal.png, width(500) replace
(file normal.png written in PNG format)
```

The Probit Model

```
. use GSSsmall.dta, clear
( )
. probit happy_3_D coninc_3_10K
Iteration 0: log likelihood = -433.05123
Iteration 1: log likelihood = -419.92819
```


Figure 2: Standard and Cumulative Normal Curves

```
Iteration 2:
               log \ likelihood = -419.73499
Iteration 3:
               log likelihood = -419.73484
               log\ likelihood = -419.73484
Iteration 4:
Probit regression
                                                                             1,223
                                                  Number of obs
                                                  LR chi2(1)
                                                                             26.63
                                                  Prob > chi2
                                                                            0.0000
Log likelihood = -419.73484
                                                  Pseudo R2
                                                                            0.0308
                             Std. Err.
                                                             [95% Conf. Interval]
  happy_3_D
                     Coef.
                                             z
                                                  P>|z|
coninc_3_10K
                  .0643046
                               .013517
                                           4.76
                                                  0.000
                                                             .0378119
                                                                          .0907974
       _cons
                  .9244086
                             .0721521
                                          12.81
                                                  0.000
                                                             .7829931
                                                                          1.065824
```

The Logistic Distribution

. clear all

```
. set obs 100 // 100 observations number of observations (_N) was 0, now 100
```

- . generate z = runiform(-5, 5) // randomly distributed z scores
- . generate mylogisticdensities = logisticden(z) // logistic densities
- . generate mylogistic probabilities = logistic(z) // cumulative logistic probabilities
- . twoway scatter mylogisticdensities mylogisticprobabilities z, scheme(michigan)
- . graph export logistic.png, width(500) replace
 (file logistic.png written in PNG format)

Figure 3: Standard and Cumulative Logistic Curves

The Logit (Logistic) Model

```
. use GSSsmall.dta, clear ( )
. logit happy_3_D coninc_3_10K
Iteration 0: log likelihood = -433.05123
               \log likelihood = -420.07608
Iteration 1:
               log likelihood = -419.28644
Iteration 2:
               log\ likelihood = -419.28513
Iteration 3:
               \log likelihood = -419.28513
Iteration 4:
Logistic regression
                                                                            1,223
                                                  Number of obs
                                                  LR chi2(1)
                                                                            27.53
                                                  Prob > chi2
                                                                           0.0000
Log likelihood = -419.28513
                                                  Pseudo R2
                                                                           0.0318
  happy_3_D
                    Coef.
                             Std. Err.
                                                  P>|z|
                                                            [95% Conf. Interval]
                                          4.58
                                                  0.000
                                                            .0768437
                                                                          .191822
coninc_3_10K
                  .1343328
                             .0293318
       _cons
                 1.484066
                             .1381599
                                         10.74
                                                  0.000
                                                            1.213277
                                                                         1.754854
```

Comparison of LPM, Probit and Logistic Coefficients

NB: Negative vs. positive β .

- . quietly probit happy_3_D coninc_3_10K $\,$
- . est store myprobit
- . quietly logit happy_3_D coninc_3_10K
- . est store mylogit

. est table myprobit mylogit

Variable	myprobit	mylogit
coninc_3_10K	.06430462	.13433285
_cons	.92440858	1.4840659

Logistic Model (2)

Derivation of logistic model from linear probability model. Using instructor notes

$$\ln\left(\frac{P(y)}{1 - P(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

Interpretation of Odds Ratios (Robert Mare)

indicates that an increase in x is associated with a decrease in y.

$$1 < OR < \infty$$

indicates that an increase in x is associated with an increase in y.

A Poem About Logistic Regression

Complete Determination

See handout

Rare Events

- Statistical power
- Complete determination

Predicted Probabilities

Discussion

The General Linear Model

Interaction Terms

See interactive demo, or example script.

https://agrogan 1. github. io/multilevel/logistic-interactions/logistic-interactions. html