CISC/CMPE 327 Software Quality Assurance

Queen's University, 2020-fall

Lecture #2
Prototyping model

CISC 327 - © 2003-2019 J.R. Cordy, S. Grant, J.S. Bradbury, J. Dunfield, S. Ding

- Problems with Requirements
 - First step in the waterfall is requirements gathering and analysis
 - In practice, this is the most difficult part, and experience with the waterfall indicates that most failures are due to inadequate requirements understanding
 - Users often change requirements as they see what can be done

Prototyping

- The prototyping model attempts to address the requirements difficulty by introducing an iterative, by example requirements stage
- A prototype is a partial implementation of a software system with all external interfaces presented
- Users use the prototype and provide feedback from which real requirements are gradually refined
- Final prototype serves as example of intended system

Prototyping Model

- Extend requirements phase to include a sequence of prototypes
- Improve requirements and design as prototypes refined
- When users and developers are both satisfied, move on to real development

- 1. Requirements Gathering and Analysis
 - Much like waterfall model, but less stringent since prototype will help expose inadequacies
 - Quality control
 - Requirements reviews (inspection)
- 2. Quick Design
 - Make a simple approximate initial design, refine during prototype iteration
 - Quality control
 - Prototype testing

3. Build Prototype

- Quickly hack together an approximate implementation showing salient external features
- Quality control
 - Essentially none

4. Customer Evaluation

- Users validate prototype, report inadequacies
- Quality control
 - Acceptance testing and evaluation (inspection)

- 5. Design Refinement
 - Refine design in response to user feedback from prototype
 - Quality control
 - Design reviews (inspection)
- 6. Full Scale Development
 - Remaining stages of traditional waterfall model

Drawbacks of Prototyping Model

Wasted Work

- Prototypes are normally built using substandard quality controls ("thrown together") to speed the iteration ("quick turnaround")
- Thus they must be discarded after the prototyping phase, even if they solve significant problems

Drawbacks of Prototyping Model

Inadequate or Incomplete Prototypes

- Full prototypes of complex systems can be difficult or impossible to create quickly
- Thus prototypes are often done in parts, which may miss critical requirements at the integration or complete system stage

When to Stop Iterating

 Easy to have users convince you to continue refining beyond the point where requirements and design are sufficient ("creeping excellence")

Evolutionary Development

Prototype Evolution

- Evolutionary prototyping is a method to avoid wasting work and take advantage of "creeping excellence" by smoothly evolving the initial prototype to the final product
- In essence, never leave prototype iteration until implementation is complete

Evolutionary Development

Summary

- Software Process, Part I
 - Software development has four tasks
 - Software development processes differ in how these are interlaced
 - Oldest and most common process is the Waterfall Process
 - Some recent and popular processes are based on Prototyping

Summary

- Today's References
 - Kan, Metrics and Models in Software Quality
 Engineering
 - Ch. 2, Software Development Process Models
 - Sommerville, Software Engineering
 - Ch. 2, Software Processes
- Next time
 - More software process models