A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

· Reprogrammable machine

· Simulates any other Turing Machine

Universal Turing Machine simulates any Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Input string of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Turing Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L)$$
 $\delta(q_2, b) = (q_3, c, R)$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine $\,M\,$

Tape 1

1 0 1 0 11 0 11 0 10011 0 1 10 111 0 111 0 1100...

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of this language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
                          (Turing Machine 2)
     00100100101111,
     111010011110010101,
     .....}
```

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

```
There is a one to one correspondence of elements of the set to Natural numbers (Positive Integers)
```

(every element of the set is mapped to a number such that no two elements are mapped to same number)

Example: The set of even integers is countable

Even integers: (positive)

Correspondence:

Positive integers:

0, 2, 4, 6, ...

1, 2, 3, 4, ...

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Approach

Nominator 1

Rational numbers:

Correspondence:

Positive integers:

Doesn't work:

we will never count numbers with nominator 2:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1} \qquad \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \cdots$$

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4} \qquad \dots$$

$$\frac{2}{1} \qquad \frac{2}{2} \qquad \frac{2}{3} \qquad \dots$$

3	3	
$\overline{1}$	$\overline{2}$	• • •

$$\frac{4}{1}$$
 ...

1	1	1	1	
1	$\overline{2}$	3	4	•
2	2	2		
<u>1</u>	$\overline{2}$	$\frac{1}{3}$	•	

3	3	
		• • •
1	2	

$$\frac{4}{1}$$
 ...

3	3	
		• • •
1	2	

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \xrightarrow{\frac{1}{2}} \frac{1}{3} \xrightarrow{\frac{1}{4}} \cdots$$

$$\frac{2}{1} \xrightarrow{\frac{2}{2}} \frac{2}{3} \cdots$$

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:

$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{2}{2}$, ...

Correspondence:

Positive Integers:

We proved:

the set of rational numbers is countable
by describing an enumeration procedure
(enumerator)
for the correspondence to natural numbers

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one

and

each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumerator
$$S$$

Enumerator Machine for
$$S$$
 output $S_1, S_2, S_3, ...$ (on tape)

Finite time:
$$t_1, t_2, t_3, \dots$$

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of S to natural numbers

Example: The set of strings $S = \{a,b,c\}^+$ is countable

Approach:

We will describe an enumerator for 5

Naive enumerator:

Produce the strings in lexicographic order:

```
s_1 = a
s_2 = aa
aaa
aaaa
```

Doesn't work:

strings starting with b will never be produced

Better procedure: Proper Order (Canonical Order)

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

$$\begin{vmatrix}
s_1 &= a \\
s_2 &= b \\
\vdots & c
\end{vmatrix}$$

$$\begin{vmatrix}
aa \\
ab \\
ac \\
ba \\
bb \\
cc \\
ca \\
cb \\
cc
\end{vmatrix}$$

$$\begin{vmatrix}
ength 1 \\
ength 2 \\
bc \\
ca \\
cb \\
cc
\end{vmatrix}$$

$$\begin{vmatrix}
aaa \\
aab \\
aac
\end{vmatrix}$$

$$\begin{vmatrix}
ength 3 \\
ength 3
\end{vmatrix}$$

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Uncountable Sets

We will prove that there is a language L' which is not accepted by any Turing machine

Technique:

Turing machines are countable

Languages are uncountable

(there are more languages than Turing Machines)

Definition: A set is uncountable if it is not countable

We will prove that there is a language which is not accepted by any Turing machine

Theorem:

If S is an infinite countable set, then

the powerset 2^S of S is uncountable.

(the powerset 2^S is the set whose elements are all possible sets made from the elements of $\!S$)

Languages accepted by Turing machines: X countable

All possible languages: 2^S uncountable

Therefore:
$$X \neq 2^{S}$$

since
$$X \subseteq 2^S$$
, we have $X \subset 2^S$

Conclusion:

There is a language L' not accepted by any Turing Machine:

$$X \subset 2^S \implies \exists L' \in 2^S \text{ and } L' \notin X$$

(Language L' cannot be described by any algorithm)

Non Turing-Acceptable Languages

