## Riemann Surfaces

Based on lectures by Notes taken by yehelip

Winter 2025

These notes are not endorsed by the lecturers. I have revised them outside lectures to incorporate supplementary explanations, clarifications, and material for fun. While I have strived for accuracy, any errors or misinterpretations are most likely mine.

Contents Riemann Surfaces

## Contents

1 Introduction 3

1 Introduction Riemann Surfaces

## 1 Introduction

**Definition 1.1** (Riemann surface). A Riemann surface is a 1-dimensional complex manifold.

**Definition 1.2** (Riemann surface). A Riemann surface is a topological space X together with open subsets  $\{U_k\}_{k\in I}$  of X with  $\bigcup_{k\in I} U_k = X$  together with maps  $f_i \colon U_i \to \mathbb{C}$  such that

- (1) Each  $f_i$  is a homeomorphism onto its image.
- (2) If  $U_i \cap U_j \neq \emptyset$  then  $f_i \circ f_j^{-1} \colon f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$  are biholomorphic.

**Remark 1.1.** A function  $f: \mathbb{C} \to \mathbb{C}$  is holomorphic at p if  $f'(p) = \lim_{z \to p} \frac{f(z) - f(p)}{z - p}$  exists.

**Definition 1.3** (Biholomorphism). A function  $f: \mathbb{C} \to \mathbb{C}$  is called biholomorphic if it has an inverse and both f and f' are holomorphic.

**Definition 1.4** (Atlas). The  $\{(U_i, f_i)\}_{i \in I}$  are called an atlas of the Riemann surface.

**Definition 1.5** (Chart). Each individual  $(U_i, f_i)$  is called a chart of the Riemann surface.

**Example 1.1.** Let  $U \subset \mathbb{C}$ . Then U can take an atlas with one chart which is the identity map.

**Example 1.2** (Riemann sphere). Let  $X = \{(z,t) \in \mathbb{C} \times \mathbb{R} : |z|^2 + t^2 = \mathbb{R}\}$ . We identify  $\mathbb{C}$  with the xy plane. Denote N and S the north and south poles of the sphere accordingly. We define  $\pi_N \colon \mathbb{C} \to S$  such that  $\pi_N$  sends each point (z,t) on the sphere to its stereographic projection from N onto the plane (point  $\xi$ ) as can be seen in the figure below:



We can similarly define  $\pi_S$  and verify that the images of the projections are  $X \setminus \{N\}$  and  $X \setminus \{S\}$  accordingly.

Now X is a Riemann surface with an atlas consisting of  $\pi_S \colon X \setminus \{S\} \to \mathbb{C}$  and  $\pi_N \colon X \setminus \{N\} \to \mathbb{C}$ . We denote the Riemann sphere as  $\hat{\mathbb{C}}$ .

**Definition 1.6** (Biholomorphism of Riemann surfaces). Let  $(X, (U_i, f_i)), (Y, (W_i, g_i))$  be two Riemann surfaces. A biholomorphism between them is a homeomorphism  $X \xrightarrow{\phi} Y$  such that  $g_i \circ \phi \circ f_i^{-1}$  are biholomorphisms on their domains of definition.

A main problem in Riemann surfaces was classifying certain types of Riemann surfaces up to biholomorphisms.

**Theorem 1.1.** (Riemann mapping theorem). Any two proper open simply connected subsets of  $\mathbb{C}$  are biholomorphic.

1 Introduction Riemann Surfaces

A generalization of the Riemann mapping theorem is the uniformization theorem proved by Kobe in 1907.

**Theorem 1.2.** (Uniformization theorem). Any simply connected Riemann surface is bi-holomorphic to one of the following:

- (1) C
- (2) Ĉ
- (3)  $\mathbb{H} = \{ z \in \mathbb{C} \colon \operatorname{Im}(z) > 0 \}$

We will give a proof for this theorem in the end of the class.

A natural question that arises is what about non simply connected Riemann surfaces?

**Theorem 1.3.** (Uniformization theorem, part II). Any connected Riemann surface is biholomorphic either to  $\hat{\mathbb{C}}$  or to a quotient of  $\mathbb{C}$  or  $\mathbb{H}$  by a properly discontinuous torsion-free subgroup of biholomorphisms.

**Remark 1.2.** Biholomorphisms of  $U = \mathbb{C}$  or  $\mathbb{H}$  (or any subset of  $\mathbb{C}$ ) forms a group under composition. We denote that group by Bih(U).

**Definition 1.7** (Properly discontinuous group). A countable subgroup of Bih(U) is said to be properly discontinuous if for all compact  $K \subseteq U$ , the set  $\{g \in G : gK \cap K \neq \emptyset\}$  is finite.

**Definition 1.8** (Torsion-free group).  $G \subseteq Bih(U)$  is torsion-free if gp = p for some  $p \in U$  implies g is the identity.

**Remark 1.3.** Notice that multiplication in gp is the group action of g on the set U. That us gp = g(p).

We can know define the quotient space U/G where  $p \sim q$  if there exists  $g \in G$  such that gp = q.

Introduce a topology on U/G which is the coarsest topology such that the canonical projections  $U \to U/G$  are continuous.

Under the assumptions that G is properly discontinuous and torsion-free, U/G is a Riemann surface with the following charts. By assumptions on G, we can find for any  $p \in U$  a neighbourhood W of  $p \in U$  such that  $\pi \colon U \to U/G$  is a homeomorphism onto its image when restricted to W.

So, restrictions of  $\pi$  to these neighbourhoods W give an atlas.