

Fundamental Aerodynamics Boundary Layers (2)

X. Gloerfelt

Laboratoire DynFluid, Arts et Métiers Paris, France xavier.gloerfelt@ensam.eu

https://savoir.ensam.eu/moodle

Statistical description

Turbulent boundary layer equations

Turbulent velocity profile

TBL with pressure gradients

Statistical description

Turbulent boundary layer equations

Turbulent velocity profile

TBL with pressure gradients

Turbulent BL: observations

Statistical description of a turbulent flow

- Choose an averaging operator (ensemble, time, space)
- ▶ Decompose instantaneous quantities in a mean and a fluctuating part (Reynolds decomposition):

▶ Properties of the average operator (1):

$$\begin{aligned} \overline{\varphi'} &= 0\\ \overline{\varphi\psi} &= \overline{\varphi}\,\overline{\psi} + \overline{\varphi'\psi'}\\ \overline{\frac{\partial\varphi}{\partial x}} &= \frac{\partial\overline{\varphi}}{\partial x} \end{aligned}$$

Reynolds equations:

- start from Navier-Stokes (simplifying hypothesis : incompressible flow)
- apply Reynolds decomposition to the velocity and pressure fields
- by applying the average to the NS equations,
 the Reynolds-Averaged NS equations are obtained (RANS)

<u>Remark:</u> for compressible flow, the density also needs to be decomposed; for the other variable, we use a mass-averaged mean, called Favre average.

Reynolds-Averaged Navier-Stokes equations (RANS):

$$\begin{cases} \frac{\partial \overline{u_i}}{\partial x_i} = 0 \\ \frac{\partial \overline{u_i}}{\partial t} + \frac{\partial (\overline{u_i}\overline{u_j})}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x_i} + \frac{1}{\rho} \frac{\partial}{\partial x_j} \left(\mu \frac{\partial u_i}{\partial x_j} - \rho \overline{u_i' u_j'} \right) \end{cases}$$

$$\tau_{ij} = \mu \frac{\partial u_i}{\partial x_j} = \text{ viscous stress tensor}$$

$$\tau_{ij}^R = -\rho \overline{u_i' u_j'} = \text{ turbulent stress tensor}$$

$$= \text{ Reynolds tensor}$$

► System of equations formally identical to NS, but not closed, because of the unknown Reynolds stresses.

Turbulent BL equations: formally identical to laminar BL equations

$$\begin{cases} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_e \frac{du_e}{dx} + \frac{1}{\rho} \frac{\partial \tau}{\partial y} \end{cases}$$
• no-slip condition: $u = v = 0$ to matching with external layer: $u(x, \infty) = u_e(x)$

- ▶ no-slip condition: u = v = 0 for y = 0
- ... The total shear stress is given by:

$$\tau = \tau^{\mathsf{lam}} + \tau^{\mathsf{turb}} = \mu \frac{\partial u}{\partial y} - \rho \overline{u'v'}$$

von Kármán equation remains the same:

$$\frac{C_f}{2} = \frac{d\theta}{dx} + (H+2)\frac{\theta}{u_e}\frac{du_e}{dx}$$

no explicit expression for C_f

Statistical description

Turbulent boundary layer equations

Turbulent velocity profile

TBL with pressure gradients

Turbulent BL equations

- using von Kármán equation (EVK) requires :
 - ▶ an approximate velocity profile (as in the laminar case)
 - \triangleright an approximated law for C_f
- choice of the velocity profile
 - very different from laminar case

Turbulent BL

A turbulent boundary layer is dominated by vortical structures (turbulent eddies)

- average velocity profiles increase much more quickly with the distance to the wall:
 - turbulent friction much higher than laminar friction
 - \hookrightarrow need for flow laminarity control
 - higher "endurance" of turbulent BL to adverse pressure gradients
 - \hookrightarrow delay of flow separation
- ▶ riblets, vortex generators, morfing surfaces, ... may be used to control both laminarity and separation

Turbulent BL: empirical laws

- ► Typical average turbulent velocity profiles in a BL are approximated through a power law
 - fitting of velocity profiles from experimental data:

$$\frac{u}{u_e} = \left(\frac{y}{\delta}\right)^{1/n}$$

- \hookrightarrow typical value for *n* (moderate pressure gradients): n=7
- Friction law :
 - generally given as: $C_f = C_f(Re_\delta)$ or $C_f = C_f(Re_\theta)$

Example Prandtl law based on head losses in cylindrical pipes for fully turbulent flow regime

$$C_f = \frac{0.0464}{Re_s^{1/4}}$$

Turbulent BL

Typical application of EVK for turbulent BL

- consider a power-law velocity profile
 - compute displacement and momentum thicknesses in terms of boundary layer thickness
 - \triangleright compute shape factor H(n)
- lacktriangle consider an empirical friction law of the form $C_f = C_f(Re_{\theta})$
 - ▶ apply EVK = leads to an ordinary differential eq. for $\theta(x)$

$$\frac{d\theta}{dx} + \left[(H(n) + 2) \frac{1}{u_e} \frac{du_e}{dx} \right] \theta = C_f(Re_\theta)$$

▶ solve for $\theta(x)$ and compute $C_f(x)$

Example: using a power law with (n=7) and Prandtl's friction law we get:

$$(C_f)_{\text{turbulent}} = \frac{0.0592}{Re_x^{1/5}}$$

Turbulent BL: skin friction

Comparison of laminar and turbulent skin friction:

$$(C_f)_{\mathsf{laminar}} = \frac{0.664}{Re_{\mathsf{x}}^{1/2}}$$

$$(C_f)_{\text{turbulent}} = \frac{0.0592}{Re_x^{1/5}}$$

Statistical description

Turbulent boundary layer equations

Turbulent velocity profile

TBL with pressure gradients

Turbulent BL: viscous sublayer

Analytical study of velocity profiles in a turbulent BL

momentum equation:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(v\frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\overline{u'v'} \right)$$

in the wall neighborhood: laminar friction dominates all other terms (average velocity and velocity fluctuations $\to 0$ for $y \to 0$

$$\frac{\partial}{\partial y} \left(\nu \frac{\partial u}{\partial y} \right) \approx 0 \quad \text{for} \quad y \to 0 \quad \Leftrightarrow \quad \boxed{u = Cy = \frac{\tau_w}{\mu} y}$$

characteristic velocity scale = friction velocity

$$u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}}$$

Analytical study of velocity profiles in a turbulent BL

relevant non-dimensional variables in the near-wall region:

$$u^+ = \frac{u}{u_\tau} \;, \quad y^+ = \frac{u_\tau y}{\nu}$$

ightharpoonup viscous sub-layer solution valid in the range $y^+ \in [5,10]$

$$u^+ = y^+$$

- outside of the viscous sub-layer, turbulent friction becomes relevant compared to laminar friction, but inertia terms are still small enough to be neglected (small average speeds)
 - lacktriangleright in this region, shear stress approximately constant and equal to au_{w}
 - average velocity remains of the order of friction velocity
 - characteristic length scale is y⁺
 - solution of the form

$$u^+ = f(y^+)$$

Analytical study of velocity profiles in a turbulent BL

- going further from the wall, turbulent friction and inertia terms dominate laminar friction, but the speeds are still lower than the outer one
 - velocity defect of the order of friction velocity
 - characteristic length scale of the order of BL thickness
 - look for a solution of the form

$$\frac{u_e - u}{u_\tau} = g\left(\frac{y}{\delta}\right) = g(\eta)$$

 outside BL the inertia term dominates all other terms and viscous effects may be neglected

Analytical study of velocity profiles in a turbulent BL

- consider an inner and an outer BL region
 - \triangleright characteristic variables in the inner region: u^+, y^+
 - ightharpoonup characteristic variables in the outer region: $(u_e-u)/u\tau,\ \eta$
- lacktriangleright inner solution for $y^+ o 0$ has to match the outer solution for $\eta o 0$

$$u^{+} = f(y^{+}) = \frac{u_{e}}{u_{\tau}} - g(\eta)$$

- ratio of the inner and outer variables :
- matching conditions + derivation + variable separation:

$$f(Re_{\tau}\eta) = \frac{u_e}{u_{\tau}} - g(\eta) \ \Rightarrow \ y^+f'(y^+) = -\eta g'(\eta)$$

which gives

$$y^+f'(y^+) = \text{cste}$$
 and $-\eta g'(\eta) = \text{cste}$

The preceding relations may be integrated analytically:

▶ velocity profile for $y^+ \to \infty$:

law of the wall (universal logarithmic law)

$$u^+ = \frac{1}{\kappa} \ln(y^+) + B$$

- κ = von Kármán constant (≈ 0.40 –0.41)
- ▶ B=intercept (≈ 5.0 –5.2)
- ▶ validity domain $y^+ \in [50, 500]$
- ▶ defect velocity profile in the outer layer for $\eta \to 0$:

defect law

$$\frac{u_{\rm e}-u}{u_{\tau}}=-\frac{1}{\kappa}\ln(\eta)+A$$

- $A \approx 2.35$
- ho validity domain depends on $Re_{ au}$ (and so on Re): typically from $y \approx 0.1\delta$

The velocity profile is completed by:

- ▶ a buffer region in between the viscous and the logarithmic sublayers: e.g. implicit relation between u^+ and y^+ (Spalding's law, 1961)
- ▶ a wake region at the outer border of BL: the wake law accounts for the outer pressure gradient e.g. Coles' law (1952)

$$\left[\qquad u^+ = rac{1}{\kappa} \ln(y^+) + B + rac{\Pi}{\kappa} W(\eta)
ight.$$

with Π the wake parameter and W the wake law. Written in outer variables:

$$\frac{u_{\mathsf{e}} - u}{u_{\tau}} = -\frac{1}{\kappa} \ln(\eta) - \frac{\Pi}{\kappa} W(\eta) + 2\frac{\Pi}{\kappa}$$

Summary of the turbulent velocity profile

Comparison with empirical velocity profiles

- power law profile + EVK (green)
- analytical law: Coles' law (red)

Use of the velocity profile to estimate of skin friction:

• use of the wake law to obtain a relation between Re_{θ} and $\lambda = \sqrt{\frac{2}{C_f}} = \frac{u_e}{u_{\tau}}$, which can be approximated simply by:

$$C_f \approx 0.012 Re_{\theta}^{-1/6}$$

▶ application of EVK for zero pressure gradient BL:

$$C_f(Re_{\theta}) = 2\frac{d\theta}{dx} \quad \Leftrightarrow \quad \frac{d Re_{\theta}}{d Re_x} = 0.006Re_{\theta}^{-1/6}$$

$$\rightarrow \quad \left[C_f \approx \frac{0.0244}{Re_x^{1/7}} \right]$$

Inner functions (1)

There are numerous empirical correlations for u^+ or its gradient du^+/dy^+ . Piecewise solutions have also been proposed (e.g. Thomson, 1965). Five versions of the inner functions are listed below:

► Spalding's law

$$y^{+} = U^{+} + \exp(-\kappa B) \left[\exp(\kappa U^{+}) - 1 - \kappa U^{+} - (\kappa U^{+})^{2} / 2 - (\kappa U^{+})^{3} / 6 \right]$$

Van Driest's law

$$U^{+} = \int_{0}^{y^{+}} \frac{2dy^{+}}{1 + \sqrt{1 + 4\kappa^{2}y^{+2}[1 - \exp(y^{+}/A_{p})]^{2}}} \quad \text{with} \quad A_{p} = 21.36$$

Original Musker's law

$$U^{+} = \int_{0}^{y^{+}} \frac{\kappa + Cy^{+2}}{\kappa + Cy^{+2} + C\kappa y^{+3}} \quad \text{with} \quad C = 0.001093$$

which yields the following closed form after integration:

$$U^+ = 5.424 \tan^{-1} \left\lceil \frac{2y^+ - 8.15}{16.7} \right\rceil + \log_{10} \left\lceil \frac{(y^+ + 10.6)^{9.6}}{(y^{+2} - 8.15y^+ + 86)^2} \right\rceil - 3.52$$

Inner functions (2)

Musker's law adapted by Chauhan et al. (2007,2009)

$$U^{+} = \frac{1}{\kappa} \ln \left(\frac{y^{+} - a}{-a} \right) + \frac{R^{2}}{a(4\alpha - a)} \left[(4\alpha + a) \ln \left(-\frac{a}{R} \frac{\sqrt{(y^{+} - \alpha)^{2} + B^{2}}}{y^{+} - a} \right) + \frac{\alpha}{B} (4\alpha + 5a) \left(\arctan \left(\frac{y^{+} - \alpha}{B} \right) + \arctan \left(\frac{\alpha}{B} \right) \right) \right]$$
(2)

where $\alpha=(-1/\kappa-a)/2$, $B=\sqrt{-2a\alpha-\alpha^2}$ and $R=\sqrt{\alpha^2+B^2}$. The parameter a can be adjusted to a given combination of κ and B. For instance, a=-10.5531 corresponds to the classical values (κ =0.41, B=5). Chauhan et al. chose a=-10.3061 for the couple (κ =0.384, B=4.17), obtained for KTH and IIT experiments at high Reynolds numbers.

Inner functions (3)

▶ Padé law (Monkewitz et al., 2007; Chauhan et al., 2007)

$$\begin{split} \frac{dU^+}{dy^+} &= b_0 \frac{1 + b_1 y^+ + b_2 y^{+2}}{1 + b_1 y^+ + b_2 y^{+2} + \kappa b_0 b_2 y^{+3}} + (1 - b_0) \frac{1 + c_1 y^+ + c_2 y^{+2}}{1 + c_1 y^+ + c_2 y^{+2} + c_3 y^{+3} + c_4 y^{+4} + c_5 y^{+5}} \\ \text{with} \\ b_0 &= \frac{0.01}{1 + c_1 y^+ + c_2 y^{+2} + c_3 y^{+3} + c_4 y^{+4} + c_5 y^{+5}} \\ \end{split}$$

$$c_1 = -0.01$$
, $c_2 = 0.006$, $c_3 = 9.97710^{-4}$, $c_4 = 2.210^{-5}$, $c_5 = 10^{-6}$

which yields after integration:

$$\begin{split} U^+ &= 0.68285472 \ln(y^{+2} + 4.7673096y^+ + 9545.9963) \\ &+ 1.2408249 \arctan(0.010238083y^+ + 0.024404056) \\ &+ 1.2384572 \ln(y^+ + 95.232690) \\ &- 0.50435126 \ln(y^{+2} - 7.8796955y^+ + 78.389178) \\ &+ 4.7413546 \arctan(0.12612158y^+ - 0.49689982) \\ &- 2.77687771 \ln(y^{+2} + 16.209175y^+ + 933.16587) \\ &+ 0.37625729 \arctan(0.033952353y^+ + 0.27516982) \\ &+ 6.5624567 \ln(y^+ + 13.670520) - 5.8178576 \end{split}$$

Inner functions (4)

Wake functions (1)

Different log-wake laws have been proposed. Some classical laws are:

Coles' law (1956)

$$w_C(\eta)=1-\cos(\pi\eta)=2\sin^2\left(rac{\pi}{2}\eta
ight) \quad {
m with} \quad \eta=y/\delta$$
 with $U_{outer}^+=rac{\Pi_C}{\kappa}w_C(\eta)\; ; \quad \left.rac{dU}{dy}
ight|_{y=\delta}=rac{u_ au}{\kappa\delta}
eq 0\; ; \quad w_C(1)=2$

► Granville's law (1976)

$$w_G(\eta) = 1 - \cos(\pi \eta) + \frac{1}{\Pi_G} \eta^2 (1 - \eta)$$

This is the first introduction of a polynomial corrective term to satisfy $\left. \frac{dU}{dy} \right|_{y=x} = 0$.

Lewkowicz' quartic law (1982)

$$w_L(\eta) = w_{\text{quartic}}(\eta) = 2\eta^2 (3 - 2\eta) - \frac{1}{\Pi_L} \eta^2 (1 - \eta) (1 - 2\eta)$$

with $U_{outer}^+ = \frac{\Pi_L}{\kappa} w_L(\eta)$; $\frac{dU}{dy}\Big|_{s=0}^{s=0} = 0$; $w_L(1) = 2$

Wake functions (2)

Different log-wake laws have been proposed. Some classical laws are:

Lewkowicz'cubic law (1982)

There is a cubic version for the corrective term:

$$w_{\text{cubic}}(\eta) = 2\eta^2(3-2\eta) + \frac{1}{\Pi_{\text{cubic}}}\eta^2(1-\eta)$$

exponential law Chauhan et al. (2007)

$$\begin{split} w_{\text{exp}}(\eta) &= \frac{1 - \text{exp}\left[-(1/4)(5 a_2 + 6 a_3 + 7 a_4) \eta^4 + a_2 \eta^5 + a_3 \eta^6 + a_4 \eta^7\right]}{1 - \text{exp}\left[-(a_2 + 2 a_3 + 3 a_4)/4\right]} \\ &\qquad \times \left[2 - \frac{1}{\Pi_{\text{exp}}} \ln(\eta)\right] \end{split}$$

with
$$a_2=132.8410$$
, $a_3=-166.2041$, $a_3=71.9114$, $U_{outer}^+=\frac{\Pi_{\rm exp}}{\kappa}w_{\rm exp}(\eta)$.

Wake functions (3)

- ightharpoonup some variability is obtained for favorable gradient (Π =0.1) but the wake region is very small
- ▶ for adverse cases (e.g. Π =1.9), the wake region is important but all the approximate laws yield similar results

Statistical description

Turbulent boundary layer equations

Turbulent velocity profile

TBL with pressure gradients

Adverse and favorable pressure gradients

- FPG: Favorable pressure gradient $\frac{dp_e}{dx} < 0$
- ► ZPG: Zero pressure gradient $\frac{dp_e}{dx} = 0$
- ► APG: Adverse pressure gradient $\frac{dp_e}{dx} > 0$

TBL with pressure gradients

LES of TBL at M=0.5

Case	α	Δx^+	Δy_w^+	Δy_e^+	Δz^+	$Re_{ heta}$	Re^+	U_e (m/s)	u_{τ} (m/s)
APGs	-11.49°	26.9	0.7	18.8	8.4	3125	688	158	5.30
APGw	-6.05°	32.0	0.8	18.2	9.8	2462	692	165	6.22
ZPG	0°	37.6	1.0	15.6	12.6	1693	608	171	7.26
FPGw	5.66°	44.7	1.1	19.1	13.9	1771	745	199	8.66
FPGs	10.19°	45.1	1.2	18.0	14.2	1618	780	197	8.83

Pressure gradient parameters

Variety of non-dimensional parameters to characterize pressure gradients:

• the Clauser pressure-gradient parameter: $\beta = \frac{\delta^*}{\tau_{vv}} \frac{dp_e}{dx}$

$$\beta = \frac{\delta^*}{\tau_w} \frac{dp_e}{dx}$$

• the acceleration parameter: $K = \frac{\nu}{u_e^2} \frac{du_e}{dx}$

$$K = \frac{\nu}{u_e^2} \frac{du_e}{dx}$$

- the viscous-scaled pressure gradient $\Delta_p = \frac{\nu}{\rho u^3} \frac{dp_e}{dx}$
- the pressure-gradient of Castillo and George: $\Lambda = \frac{\delta}{\rho u_e^2 (d\delta/dx)} \frac{dp_e}{dx}$

The TBL is also characterized by:

- ▶ the shape factor: $H = \frac{\delta^*}{\alpha}$
- the ratio of outer and inner velocities: $S = \frac{u_e}{u} = \sqrt{\frac{2}{C_e}}$
- ▶ the defect shape factor: $G = S\left(1 \frac{1}{H}\right)$

Pressure gradient parameters

Case	δ (mm)	Н	β	$K \times 10^7$	$\Delta_p \times 10^3$	٨	G	S	$C_f \times 10^3$	П
APGs	1.87	1.63	1.41	-3.0	8.0	0.21	11.5	29.8	2.24	1.9
APGw	1.61	1.53	0.44	-1.6	3.0	0.16	9.2	26.5	2.83	1.1
ZPG	1.21	1.46	0	0	0	0	7.4	23.5	3.59	0.6
FPGw	1.24	1.41	-0.18	1.2	-1.6	-0.27	6.7	22.9	3.80	0.2
FPGs	1.27	1.39	-0.28	2.3	-2.6	-0.91	6.2	22.2	4.04	0.1

 $(x-x_{min})/(x_{max}-x_{min})$

Mean velocity profiles

$$U_{ ext{composite}}^{+} = U_{ ext{inner}}^{+} + rac{\Pi}{\kappa} \mathcal{W} \left(rac{y}{\delta}
ight)$$

Musker's law for inner function

$$U_{\text{inner}}^{+} = \frac{1}{\kappa} \ln \left(\frac{y^{+} - a}{-a} \right) + \frac{R^{2}}{a(4\alpha - a)} \left[(4\alpha + a) \ln \left(-\frac{a}{R} \frac{\sqrt{(y^{+} - \alpha)^{2} + B^{2}}}{y^{+} - a} \right) + \frac{\alpha}{B} (4\alpha + 5a) \left(\arctan \left(\frac{y^{+} - \alpha}{B} \right) + \arctan \left(\frac{\alpha}{B} \right) \right) \right]$$

ewlowicz's wake law

$$\mathcal{W}\left(\frac{y}{\delta}\right) = 2\left(\frac{y}{\delta}\right)^2 \left(3 - 2\frac{y}{\delta}\right) - \frac{1}{\Pi}\left(\frac{y}{\delta}\right)^2 \left(1 - \frac{y}{\delta}\right) \left(1 - 2\frac{y}{\delta}\right)$$

Composite velocity profiles

wake parameter Π deduced from defect law

Turbulent intensities

Comparison with APG experiments Nagano et al. (1998) $(\beta=0\oplus,\beta=0.77\oplus,\beta=2.19\oplus,\beta=3.95\odot,\beta=5.32\otimes)$ and FPG experiments of Jones et al. (2001) $(K=2.7\times10^7,x=0.8\text{ m} \vee \&x=2.2\text{ m} \blacktriangle)$