《数据结构》上机报告

<u>2018</u>年<u>11</u>月<u>6</u>日

姓名:张天然 当	学号 : 17512	37 班级:	计 2	得分:
----------	-------------------	--------	-----	-----

试验题目	二叉树		
实验目的	理解二叉树的逻辑结构和存储结构,熟练掌握二叉树的相关操作。		
	二叉树是 n(n>=0)个结点的有限集合,它或为空树,或是由一个称之为根的结点		
问题描述	加上两棵分别称为左子树和右子树的互不相交的二叉树组成。对二叉树的操作主要		
	有:建立一棵二叉树;遍历二叉树;求二叉树的深度、结点数等。		
基本要求	1、定义二叉链表类型,实现二叉树的基本操作:建立、先中后序遍历、层次遍历及		
	输出。		
	2、求二叉树的深度、总结点数、叶子结点数、二叉树的复制等。		
	3、用非递归完成二叉树的中序遍历。		
选作要求	无		
	struct BiTNode		
数据结构设计	{		
	T data;		
	BiTNode *lchild, *rchild;}		
	private:		
	BiTNode <t> *root;</t>		
功能(函 数)说明	BiTree(); //构造函数		
	bool IsEmpty(); //判断是否为空		
	void CreateBiTree(T space, T fin); //建立二叉树		
	void ClearBiTree(BiTNode <t>* root); //清空二叉树</t>		
	void display1(); // 先序输出		
	void display2(); //中序输出 void display3(); //后序输出		
	void PreOrderTraverse(BiTNode <t> *temp); //先序遍历</t>		
	void InOrderTraverse(BiTNode <t>*temp); //中序遍历</t>		
	void PostOrderTraverse(BiTNode <t> *temp); //后序遍历</t>		
	void LevelOrderTraversal(BiTNode <t>* root); //层序遍历</t>		
	int Count(BiTNode <t>* root); //求结点数</t>		
	int Depth(BiTNode <t>* root); //求深度</t>		
	int Leave(BiTNode <t>* root); //求叶子结点数</t>		
	void mainpp(); //输出菜单		
界面设计	以 c++为开发语言,在 Visual Studio 2017 编译器上实现。		
和使用说	以 C++ 为开友语言,在 Visual Studio 2017 编译器工头现。 界面上显示执行简单测试程序后的结果。		
明	N HYTH H/ L M L M L M M L M M L M M M L M M M M		
调试分析			
44 K-171 (1)			

```
8-1
abc##d##ef###
abcdef
cbdafe
cdbfea
abecdf
请按任意键继续...
8-2
abc##d##ef###
3
6
3
e
请按任意键继续. . .
8-3
```

```
abc##d##ef###
push a
push b
push c
pop
pop
push d
pop
d
pop
push e
push f
pop
pop
请按任意键继续...
总结:
```

二叉树的建立、遍历以及求结点数、深度、叶子结点数的过程中运用了大量的递归, 编写程序时十分容易出错,同时调试也有困难。

重要算法:

Q. DeQueue (cur);

cur->1child = NULL;

cur->lchild = new BiTNode<T>(x, NULL, NULL);

cin >> x;
if (x == fin)
 return;
if (x == space)

else {

void CreateBiTree(T space, T fin) //建立二叉树

心得体会