Solutions of Assignment 9

Theory of Computation, Fall 2022

(a)

$$A_w = \{"w" : D \text{ accepts } w\} \tag{1}$$

i.e.

$$A_w = L(D) (2)$$

(b)

Yes.

(c)

Proof:

For every regular language R, we can construct a DFA $D=(K,\Sigma,\delta,s,F)$ that accepts it.

Construct a Turing machine M that decides R as follows.

$$M = \text{ on input } w:$$

$$1. \text{ run } D \text{ on } w$$

$$2. \text{ if } D \text{ accepts } w$$

$$3. \text{ accept } "w"$$

$$4. \text{ else}$$

$$5. \text{ reject } "w"$$

$$(3)$$

Therefore, every regular language is decided by some Turing machine, hence every regular language is recursive.

Suppose Turing machine M_E decides E_{DFA} .

To give the reduction from SB_{EDA} to E_{DFA} , we construct a Turing machine M that decides SB_{DFA} as follows.

$$M = \text{ on input } "D_1""D_2":$$

$$1. \text{ construct a DFA } D^- \text{ with } L(D^-) = L(D_1) \backslash L(D_2)$$

$$2. \text{ run } M_E \text{ on } "D^{-"}$$

$$3. \text{ output the result}$$

$$(4)$$

The reduction is $f("D_1''"D_2'') = "D^{-"}$ where $L(D^-) = L(D_1) \setminus L(D_2) = L(D_1) \cap \overline{L(D_2)}$.

*Q*3

Suppose Turing machine M_{EQ} decides EQ_{DFA} .

To give the reduction from A_L to EQ_{DFA} , we construct a Turing machine M that decides A_L as follows.

$$M = \text{ on input } "D":$$

$$1. \text{ construct a DFA } D_0 \text{ with } L(D_0) = L$$

$$2. \text{ run } M_{EQ} \text{ on } "D""D_0"$$

$$3. \text{ output the result}$$

$$(5)$$

The reduction is $f("D") = "D""D_0"$ where $L(D_0) = L$.

Q4

 SB_{DFA} and A_L are also recursive.

(a)

A is also recursively enumerable.

Proof:

Since B is recursively enumerable, there is a Turing machine M_B semidecides B, that is, M_B halts on every string $y \in B$ and loops on every string $y' \in \Sigma_B^* \backslash B$.

Construct a M_A based on M_B using reduction f.

Since $x \in A$ if and only if $f(x) \in B$, M_A halts on every string $x \in A$ and loops on every string $x' \in \Sigma_A^* \setminus A$, that is, M_A semidecides A.

Therefore, *A* is also recursively enumerable.

(b)

B is also NOT recursive.

Proof:

Assume that B is recursive, then there is a Turing machine M_B decides B, that is, M_B accepts every string $y \in B$ and rejects every string $y' \in \Sigma_B^* \backslash B$.

Construct a M_A based on M_B using reduction f.

Since $x \in A$ if and only if $f(x) \in B$, M_A accepts every string $x \in A$ and rejects on every string $x' \in \Sigma_A^* \setminus A$, that is, M_A decides A.

However, *A* is NOT recursive, which means there is NO Turing machine decides *A*, leading to contradiction.

Therefore, the assumption fails, that is, *B* is also NOT recursive.

Q6

Proof:

- Lemma 1: Σ^* is countable.
- Lemma 2: A subset of a countable set is countable.
- Corollary: A subset of Σ^* is countable.
- Lemma 3: Every language is a subset of Σ^* .
- Conclusion: Every language is countable.

Proof:

- Lemma 1: The set of all Turing machines is countable.
- Lemma 2: Every Turing machine decides at most 1 language.
- Corollary: The set of all recursive languages is countable.
- Lemma 3: The power set of $\{1\}^*$ is uncountable.
- Conclusion: There is an undecidable subset of $\{1\}^*$.

Grading

100 pts. in total

- Q1. 22 pts. = (a) 5 pts. + (b) 2 pts. + (c) 15 pts.
- Q2. 12 pts.
- Q3. 12 pts.
- Q4. 4 pts.
- Q5. 30 pts. = (a) 15 pts. + (b) 15 pts.
- Q6. 10 pts.
- Q7. 10 pts.