

-	Welcome	ts	the	world	J	mothematic.

Today's session is independent of previous sessions.

- Decimal Number System
- binary number system

 binary to decimel

 Decimel to Binary

 abs, min, max, sum

 Range
- - 2) Log Junction.

$$9 6 + 70 + 800 + 3000$$

$$\frac{11}{11} \left(\frac{1100}{1100} \right)_{2} \Rightarrow 0 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3}$$

$$\Rightarrow 0 + 0 + 4 + 8 \Rightarrow 12$$

Quiz:
$$1111 \\ 11 \times 2^{\circ} \qquad \Rightarrow \qquad 1$$

$$1 \times 2^{1} \qquad \Rightarrow \qquad 2$$

$$1 \times 2^{2} \qquad \Rightarrow \qquad 4$$

$$1 \times 2^{2} \qquad \Rightarrow \qquad 5$$

* Decimel to Binary:

 $7) \frac{11001}{11001} =) 1 \times 2^{0} + 0 \times 2^{1} + 0 \times 2^{1} + 1 \times 2^{3}$ $+ 1 \times 2^{4}$ 7) 1 + 0 + 0 + 8 + 16 9) 25

Duiz 26 → (Binary)2

Duiz ° y = 12345 °/0 10

10 √ 12345 1234

10 √ 12345 1234

Sum all numbers from
$$1 - 100$$
.

Gouss's

 $S = 1 + 2 + 3 + \cdots + 99 + 100$
 $S = 100 + 99 + 99 + 101$
 $1 + 101 + 101 + 101 + 101 + 101$
 $1 + 101 + 101 + 101 + 101 + 101$
 $1 + 101 + 101 + 101$
 $1 + 101 + 101 + 101$
 $1 + 101 + 101 + 101$
 $1 + 101 + 101 + 101$
 $1 + 101 + 101 + 101$
 $1 + 101 + 101$
 $1 + 101 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 + 101$
 $1 +$

>> Range: i) [1, 10] => Both ends includes ii) [1, 10) s) 1 included but 10 is excluded iii) (1,10) =) Both are excluded ii) [start, end) range [1,10] >> 1,2,3,4,5,6,7,8,9 > 2) start, end) >> start, end-1 python works for this range Szecket

=) n ·/. 2 ==0 (even)											
else i											
odd.											
ii) find last digit of 8592											
10 18592 859											
<u>8 </u>											
50											
92											
So 2 > run.											
2 men.											
n · /· 10 >> lost digit											

Challenge: Given a number n. How many times you divide it sy 2 to reach 1. (Integer dis.)

 $\frac{1}{2} \xrightarrow{1/2} \frac{1}{2} \xrightarrow{1/2} \xrightarrow{1/2} \frac{1}{2} \xrightarrow{1/2} \xrightarrow$

A geme of power of 2

2⁴ => 16

2³ => 8

2) logasithmic function:

 $\Rightarrow 10(2) = y = 5 = x$

 $= 2 \qquad \Rightarrow \qquad b^{\dagger} = x$

7) 2 2 2) 4

x = 4

$$\frac{1}{2} \int_{0}^{2} d^{2} d^{2} = 0 \qquad \text{so } 2^{\circ} = 1$$

27
$$\log_{2}^{2}$$
 = 1 27 $2^{2} = 3$
27 \log_{2}^{4} = 2 5) $2^{2} = 3$
27 \log_{2}^{8} = 3 7) $2^{3} = 3$
28 $2^{3} = 3$
29 $2^{4} = 3$

$$7) \quad |054 \quad 7) \quad |0$$

$$1054 \quad \frac{1/2}{2} \quad 527 \quad \frac{1/2}{2} \quad 263 \quad \frac{1/2}{2} \quad |31 \quad \frac{1/2}{2} \quad 65$$

$$112 \quad 263 \quad 46 \quad 86 \quad \frac{1/2}{2} \quad |66 \quad 32$$

Recap! Decimal, Binary abs, sum, min, max 2) import meth. e= 2.71 dir (meth) $\log (x)$ 2) $\log e^{(x)}$ =) $\ln \log (x)$ 2) $\log 2(x)$

カ	import	moth		
• • • • • • • • • • • • • • • • • • • •	(VIII)OJ (77(45(1)		