

ROBT206 - Microcontrollers with Lab

Lectures 2-3 – Number Systems

11-16 January, 2018

Number Systems – Representation

- Positive radix, positional number systems
- ightharpoonup A number with *radix* r is represented by a string of digits:

$$A_{n-1}A_{n-2}...A_{1}A_{0}.A_{-1}A_{-2}...A_{-m+1}A_{-m}$$

- in which $0 \le A_i \le r$ and is the radix point.
- ▶ The string of digits represents the power series:

(Number)r =
$$\left(\sum_{i=0}^{i=n-1} A_i \cdot r^i\right) + \left(\sum_{j=-m}^{j=-1} A_j \cdot r^j\right)$$

(Integer Portion) + (Fraction Portion)

Number Systems – Examples

		G	eneral	Decimal	Binary
Radix (Base)		r		10	2
Digits		0 =	=> r - 1	0 => 9	0 => 1
	0		r ⁰	1	1
	1		\mathbf{r}^1	10	2
	2		r ²	100	4
	3		r ³	1000	8
Powers of	4		r ⁴	10,000	16
Radix	5		r ⁵	100,000	32
	-1		r ⁻¹	0.1	0.5
	-2		r -2	0.01	0.25
	-3		r -3	0.001	0.125
	-4		r ⁻⁴	0.0001	0.0625
	-5		r -5	0.00001	0.03125

Commonly Occurring Bases

Name	Radix	Digits
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Numbers in Different Bases

Good idea to memorize!

Decimal	Binary	Octal	Hexadecimal
(Base 10)	(Base 2)	(Base 8)	(Base 16)
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	0E
15	01111	17	0F
16	10000	20	10

Converting Binary to Decimal

- To convert to decimal, use decimal arithmetic to form Σ (digit \times respective power of 2).
- example: 1011.1 = (1011.1)₂

Convert 110102 to N₁₀:

Converting Octal to Decimal

• 8 digits = $\{0,1,2,3,4,5,6,7\}$

example: (2365.2)₈

Converting Hexadecimal to Decimal

• 16 digits = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

example: (26BA) [alternate notation for hex: 0x26BA]

Why Important: More concise than binary, but related (a power of 2)

Hexadecimal (or hex) is often used for addressing

Conversion Between Bases

To convert from one base to another:

- I) Convert the Integer Part
- 2) Convert the Fraction Part
- 3) Join the two results with a radix point

Conversion Details

- To Convert the Integral Part:
 - Repeatedly <u>divide</u> the number by the new radix and save the remainders.
 - The digits for the new radix are the remainders in reverse order of their computation.
 - If the new radix is > 10, then convert all remainders > 10 to digits A, B, ...
- ▶ To Convert the Fractional Part:
 - * Repeatedly <u>multiply</u> the fraction by the new radix and save the integer digits that result.
 - The digits for the new radix are the integer digits in order of their computation.
 - ❖ If the new radix is > 10, then convert all integers > 10 to digits A, B, ...

Example: Convert 46.6875₁₀ To Base 2

Convert 46 to Base 2

▶ Convert 0.6875 to Base 2:

Join the results together with the radix point:

Checking the Conversion

- To convert back, sum the digits times their respective powers of r.
- From the prior conversion of 46.6875₁₀

$$101110_{2} = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$$

$$= 32 + 8 + 4 + 2$$

$$= 46$$

$$0.1011_{2} = 1/2 + 1/8 + 1/16$$

$$= 0.5000 + 0.1250 + 0.0625$$

$$= 0.6875$$

Octal (Hexadecimal) to Binary and Back

Octal (Hexadecimal) to Binary:

Restate the octal (hexadecimal) as three (four) binary digits starting at the radix point and going both ways.

Binary to Octal (Hexadecimal):

- Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part.
- Convert each group of three bits to an octal (hexadecimal) digit.

Octal to Hexadecimal via Binary

- Convert octal to binary.
- Use groups of <u>four bits</u> and convert as above to hexadecimal digits.
- Example: Octal to Binary to Hexadecimal

6 3 5 . I 7 7 8

Base Conversion - Positive Powers of 2

Useful for Base Conversion

Exponent	Valu	е
0		
		2
2		4
3		8
4		6
5	3	32
6	6	4
7	12	28
8	25	56
9	5	12
10	102	24

	·
E xponent	V alue
11	2,048
12	4,096
13	8,192
14	16,384
15	32,768
16	65,536
17	131,072
18	262,144
19	524,288
20	1,048,576
21	2,097,152

Computer from Digital Perspective

- Information: just sequences of binary (0's and 1's)
 - True = 1, False = 0
- Numbers: converted into binary form when "viewed" by computer
 - e.g., 19 = 10011 (16 (1) + 8 (0) + 4 (0) + 2 (1) + 1 (1)) in binary
- Characters: assigned a specific numerical value (ASCII standard)
 - e.g., 'A' = 65 = 1000001, 'a' = 97 = 1100001
- Text is a sequence of characters:
 - "Hi there" = 72, 105, 32, 116, 104, 101, 114, 101 = 1001000, 1101001, ...

Terminology: Bit, Byte, Word

bit = a binary digit

e.g., 1 or 0

byte = 8 bits

e.g., 01100100

word = a group of bits that is architecture dependent

(the number of bits that an architecture can process at once)

a 16-bit word = 2 bytes e.g., 1001110111000101

a 32-bit word = 4 bytes e.g., 10011101110001011110111000101

OBSERVATION: computers have bounds on how much input they can handle at once → limits on the sizes of numbers they can deal with

Terminology: MSB, LSB

- Bit at the left is highest order, or most significant bit (MSB)
- Bit at the right is lowest order, or least significant bit (LSB)

Common reference notation for k-bit value: bk-1bk-2bk-3...b1b0

Single Bit Binary Addition with Carry

Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C):

Carry in (Z) of 0:

Carry in (Z) of 1:

Multiple Bit Binary Addition

Extending this to two multiple bit examples:

Carries

Sum

Note: The $\underline{0}$ is the default Carry-In to the least significant bit.

Single Bit Binary Subtraction with Borrow

- Given two binary digits (X,Y), a borrow in (Z) we get the following difference (S) and borrow (B):
- Borrow in (Z) of 0: z

▶ Borrow in (Z) of I: z

0

Multiple Bit Binary Subtraction

Extending this to two multiple bit examples:

Borrows

10110 10110 - 10010 - 10011

Difference

Binary Multiplication

The binary multiplication table is simple:

$$0 * 0 = 0 \mid 1 * 0 = 0 \mid 0 * 1 = 0 \mid 1 * 1 = 1$$

Extending multiplication to multiple digits:

Multiplicand	1011
Multiplier	<u>x 101</u>
Partial Products	1011
	0000 -
	1011

Product

Binary Numbers and Binary Coding

Flexibility of representation

Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.

Information Types

Numeric

- Must represent range of data needed
- Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
- Tight relation to binary numbers

Non-numeric

- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- ▶ Given n binary digits (called <u>bits</u>), a <u>binary code</u> is a mapping from a set of <u>represented elements</u> to a subset of the 2ⁿ binary numbers.
- binary code for the seven colors of the rainbow
- Code 100 is not used

Color	Binary Number
Red	000
Orange	001
Yellow	010
Green	011
Blue	101
Indigo	110
Violet	111

Number of Bits Required

Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships:

$$2^n \ge M > 2^{(n-1)}$$

 $x = \log_2 M$ where x, called the *ceiling function*, is the integer greater than or equal to n.

Example: How many bits are required to represent <u>decimal</u> <u>digits</u> with a binary code?

Number of Elements Represented

- Given n digits in radix r, there are r^n distinct elements that can be represented.
- ▶ But, you can represent m elements, $m < r^n$
- Examples:
 - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $\triangleright 13_{10} = 1101_2$ (This is conversion)
- ► 13 \Leftrightarrow 0001|0011 (This is coding)

Alphanumeric codes – ASCII character codes

- American Standard Code for Information Interchange
- This code is a popular code used to represent information sent as character-based data. It uses 7-bits to represent:
 - > 94 Graphic printing characters.
 - > 34 Non-printing characters
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)
- Other non-printing characters are used for record marking and flow control (e.g., STX and ETX start and end text areas).

ASCII Properties

ASCII has some interesting properties:

Digits 0 to 9 span Hexadecimal values 30 to 39.

Upper case A - Z span 41 to 5A.

Lower case a - z span 61 to 7A.

 Lower to upper case translation (and vice versa) occurs by flipping bit 6.

Binary Coded Decimal (BCD)

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

$$(185)_{10} =$$
= $(0001\ 1000\ 0101)_{BCD}$

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $\mathbf{13}_{10} = \mathbf{1101}_2$ (This is <u>conversion</u>)
- ▶ 13 ⇔ 0001 | 0011 (This is <u>coding</u>)

BCD Arithmetic

Given a BCD code, we use binary arithmetic to add the digits:

MORETHAN 9, so must be represented by two digits!

To correct the digit, subtract 10 by adding 6

GRAY CODE - Decimal

Decimal	BCD	Gray
0	0000	0000
	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

Optical Shaft Encoder

- Does this special Gray code property have any value?
- An Example: Optical Shaft Encoder

- (a) Binary Code for Positions 0 through 7
- (b) Gray Code for Positions 0 through 7

Shaft Encoder (Continued)

How does the shaft encoder work?

For the binary code, what codes may be produced if the shaft position lies between codes for 3 and 4 (011 and 100)?

Is this a problem?

Shaft Encoder (Continued)

- For the Gray code, what codes may be produced if the shaft position lies between codes for 3 and 4 (010 and 110)?
- ls this a problem?
- Does the Gray code function correctly for these borderline shaft positions for all cases encountered in octal counting?

Any Questions?

