Computational Vision

Lecture 1.2: Human Vision

Edge Detection and Filtering

Hamid Dehghani

Office: CS 241

Aims

- Human Vision: Colour!
- Intensity Images
- Edge Detection
 - Convolution
- Noise Reduction

Visible Light

 Humans perceive electromagnetic radiation with wavelengths 380-760nm (1 nm = 10^{-9} m)

- $f = c/\lambda$
 - *f = frequency (Hz)*
 - λ = wavelength (m)
 - $c = speed of light (2.998x10^8 ms^{-1})$
- E = hf
 - E = Energy(J)
 - $h = Plank's constant (6.623x10^{34} Js)$

Colour

- Objects selectively absorb some wavelengths (colours) and reflect others
- Human retinas contain three different kinds of cones to provide very elaborate form of vision
 - Gives ability to distinguish different forms of same objects
 - Fruits
 - Camouflage

Colour mixing

- Many forms of colour vision proposed
 - Until recently some hard to disapprove
- 1802: Proposed that the eye has three different types of receptors, each sensitive to a single hue (Young, a British physicist)
 - By the fact that any colour can be produced by appropriate mixing of the three primary colours.
- This became known as Trichromatic (threecolour) theory.

Trichromatic Coding

 Retina contains approximately equal numbers of red and green cones, but only 8% are blue cones

Trichromatic Coding

Explains

- How we discriminate wavelengths 2nm in difference
- How we can match a mixture of wavelengths to a single colour
- Some types of colour blindness
- Does not account for colour blending:
 - Some colour blend while others don't!
 - One can imaging Bluish-green or Yellowish-green, But NOT Greenishred or Bluish-yellow!

Colour mixing

- Many forms of colour vision proposed
 - Until recently some hard to disapprove
- 1930s: Hering (German Physiologist) suggested colour may be represented in visual system as 'opponent colours'
- Yellow, Blue, Red and Green Primary colours
 - Trichromatic theory cannot explain why yellow is a primary colour

Opponent Process Coding

- Yellow, Blue, Red and Green Primary colours
 - Trichromatic theory cannot explain why yellow is a primary colour
 - Also some colours blend and others do not!
 - Bluish green, yellowish green, orange (red and yellow), purple (red and blue) OK
 - Reddish green?? Bluish Yellow??
 - Opposite to each other

Opponent Process Coding

- Neurons respond to pairs of primary colours
 - Red-Green & Yellow-Blue
- Some respond in centre-surround fashion
- Response characteristics determined by appropriate ganglion cells connections

Opponent Process Coding

Intensity Images

- An intensity image is a data matrix, whose values represent intensities within some range.
- represented as a single matrix, with each element of the matrix corresponding to one image pixel
- In matlab: To display an intensity image, use the imagesc ("image scale") function

Indexed Images

- An indexed image consists of a data matrix, X, and a colormap matrix, map.
- map is an m-by-3 array of class double containing floatingpoint values in the range [0, 1].
- Each row of map specifies the red, green, and blue components of a single color.

Intensity gradients

• The image is a function mapping coordinates to intensity f(x,y)

```
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```


Intensity gradients

- The image is a function mapping coordinates to intensity f(x,y)
- The gradient of the intensity is a vector $\vec{\wp}$

$$\vec{G}[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{df}{dx} \\ \frac{df}{dy} \end{bmatrix}$$

• We can think of the gradient as having $an^{x}x$ and a y component

$$M(\vec{G}) = \sqrt{G_x^2 + G_y^2}$$

magnitude

$$\alpha(x, y) = \tan^{-1} \left(\frac{G_y}{G_x} \right)$$
direction

Approximating the gradient

Our image is discrete with pixels indexed by i and j

We want to estimated in the same place

Approximating the gradient

So we use a 2x2 mask instead

 For each mask of weights you multiply the corresponding pixel by the weight and sum over all pixels

Other edge detectors

Roberts

$$G_{x} \begin{array}{|c|c|c|} \hline 1 & 0 \\ \hline 0 & -1 \\ \hline \end{array}$$

$$G_{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Sobel

$$G_x$$
 $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

$$G_y$$
 $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Approximating the gradient

Sobel

Convolution

- Convolution is the computation of weighted sums of image pixels.
- For each pixel [i,j] in the image, the value h[i,j] is calculated by translating the mask to pixel [i,j] and taking the weighted sum of pixels in neighbourhood

What do these filters do

- Steps:
 - Take image
 - Convolve mask with image for each direction
 - Calculate derivatives Gx and Gy
 - Calculate magnitude = $M(\vec{G}) = \sqrt{G_x^2 + G_y^2}$

Original

Filtering

- We could detect edges by calculating the intensity change (gradient) across the image
- We could implement this using the idea of filtering

-1	0	1
-2	0	2
-1	0	1

0	1	1	3	4	5
0	0	2	3	3	4
0	0	4	6	3	5
0	0	0	4	4	3
0	0	0	თ	5	2
0	0	0	0	5	5
0	0	0	0	4	3

Linear filtering: the algorithm

for i=2:image_height-1
$$\mathbf{A}_{out}(\mathbf{i},\mathbf{j}) = \sum_{y=-1}^{1} \sum_{x=-1}^{1} \mathbf{A}_{in}(i+y,j+x) \mathbf{M}(y+2,x+2)$$
 end

end

x+2

y+2

j+x

3

5

4

5

5

3

0 i+v

3 2

NB We count from the upper left, and in MATLAB we start at 1

0	0	0	3	5
0	0	0	0	5
0	0	0	0	4

i

Linear Filtering: the algorithm

```
for i=2:image_height-1 \mathbf{A}_{out}(\mathbf{i},\mathbf{j}) = \sum_{y=-1}^{1} \sum_{x=-1}^{1} \mathbf{A}_{in}(i+y,j+x) \mathbf{M}(y+2,x+2) end \mathbf{x}+2 \qquad \qquad \mathbf{j}+\mathbf{x}
```

	-1	0	1	
y+2	-2	0	2	
	-1	0	1	

i+y

0	1	1	3	4	5
0	0	2	3	3	4
0	0	4	6	3	5
0	0	0	4	4	3
0	0	0	3	5	2
0	0	0	0	5	5
0	0	0	0	4	3

j=5				
9	14	4	3	
10	16	3	-2	
4	17	12	-4	
0	10	19	2	
0	3	19	12	

i=3

Noise

- It turns out we will need to remove noise
- There are many noise filters
- We can implement most of them using the idea of convolution again
- e.g. Mean filter

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
<u>1</u> 9	<u>1</u> 9	<u>1</u> 9

Noise filtering

 We can use convolution to remove noise as we mentioned, e.g. mean filter

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

- This is a linear filter
- The most widely used is Gaussian filtering

0	.01	.02	.01	0
.01	.06	.11	.06	.01
.02	.11	.16	.11	.02
.01	.06	.11	.06	.01
0	.01	.02	.01	0

Effect of mean filtering

Original

3x3 filter

5x5 filter

 $Abs(G_x)$

Horizontal Sobel operator

 $\mathsf{Abs}(\mathsf{G}_{\mathsf{x}})$

Threshold=30

Effect of Gaussian filtering

Original

5x5 filter

Horizontal Sobel Operator Abs(G_x)

Threshold = 30

Sequenced filters

We can replace a 2D Gaussian filter with 2, 1D Gaussian filters in sequence

0.003	.0133	.0219	.0133	0.003
.0133	.0596	.0983	.0596	.0133
.0219	.0983	.1621	.0983	.0219
.0133	.0596	.0983	.0596	.0133
0.003	.0133	.0219	.0133	0.003

.0545	.2442	.4026	.2442	.0545
-------	-------	-------	-------	-------

- 157 Jeviature verults is too many edge points

- Better approach - points that only have local

mascing is gashiert & edge points

il peak is 157 desirative x zeo cossing is

2nd desirative.

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y}$$

$$\frac{\partial^{2}f}{\partial x^{2}} = \frac{\partial G_{\infty}}{\partial x^{2}}$$

$$= \frac{\partial (f[i,j+1]-f(i,j)]}{\partial x^{2}}$$

$$= \frac{\partial f[i,j+1]}{\partial x^{2}} - \frac{\partial f[i,j]}{\partial x^{2}}$$

$$= (f[i,j+2]-f[i,j+1])-(f[i,j+1]-f[i,j])$$

$$= f[i,j+2]-2f[i,j+1]+\{f[i,j]\}$$
but centred et $[i,j+1]$, to $rgclas[j]$ with $[j-1]$

but certified at
$$[i,j+1]$$
, to $rgclas[j]wiN[j-1]$

$$\frac{\partial^2 f}{\partial x^2} = f[i,j+1] - 2f[i,j] + f[i,j-1]$$

$$\frac{\partial^2 f}{\partial y^2} = f[i+1,j] - 2f[i,j] + f[i-1,j]$$

$\sqrt{2} \simeq$	0	1	0
1	1	-4	1
	0	l	0

Highly Directed Work

- Laplacian of Gaussian
- Gaussian (Canny) edge detection

Labs/Tutorial

See Group Number assignment on Canvas