CIS 510 Assignment 1

Steven Walton

April 29, 2019

Problem 1

Implement the MILP to compute an SSE using Cplex.

Instrcution: the input of your program is two CSV files: param.csv and payoff.csv. The format of the param.csv file is num_of_targets, number_of_defender_resources. In the payoff.csv file each line consists of five numbers: target_id, def_payoff_cov, def_payoff_uncover, att_payoff_cov, att_payoff_unciver. The output of your program is a CSV file named SSE.csv. Each line of the output file is in the format of target_id, def_coverage_probability. A sample of the three files are provided.

Submission must include: (i) source codes; (ii) documentary including description of your program and instructions to run it. Your program will be tested based on different games.

Documentation

Note: This code uses Cplex, which does not work on python 3.7. This code was written with python 3.6.5 and will be assumed that the user is using a similarly compatible python version.

Problem 2

Part 1)

Consider a security game with four targets. The payoffs are given in the following table. In each cell, the first number is the defender's payoff and the second is the attacker's.

	t1	t2	t3	t4
covered	(1,0)	(3,0)	(8,0)	(8,-1)
uncovered	(-1,1)	(0,2)	(0,4)	(-4,4)
variable	W	\mathbf{z}	У	X

For a single resource we can see that there are two options that maximize the defender's utility: t3, t4.

One Resource

If we have one resource then the first step is to solve the following

$$4(1-x) - x = 4(1-y) = 2$$

We can trivially see that the solution is

$$x = \frac{2}{5}$$
$$y = \frac{1}{2}$$

At this point our total resources used is $\frac{9}{10}$ leaving us with $\frac{1}{10}$ resources.

$$4(1-x) - x = 4(1-y) - y = 2(1-z) = 1$$

Solving we get

$$x = \frac{3}{5}$$
$$y = \frac{3}{4}$$
$$z = \frac{1}{2}$$

Unfortunately this does not work : $x + y + z = \frac{37}{20} > 1!$ So we need to do the following

$$4(1-x) - x = 4(1-y)
4 - 5x = 4 - 4y
5x = 4y
y = $\frac{5}{4}x$

$$4(1-x) - x = 2(1-z)
4 - 5x = 2 - 2z
2 - 5x = -2z
z = $\frac{5}{2}x - 1$$$$$

We can now solve the following equation:

$$\sum_{i} c_{i} = 1$$

$$x + y + z = 1$$

$$x + \frac{5}{4}x + \frac{5}{2}x - 1 = 1$$

$$\frac{x}{8}(8 + 10 + 20) = 2$$

$$x = \frac{8}{19}$$

$$x = \frac{8}{19}$$
, $y = \frac{10}{19}$, $z = \frac{1}{19}$

And thus we have a result of

Which we can see that the sum here is 1.

Two Resources

We can cheat a little because of the work we did in the previous example. We know that we only use up one resource once we consider equality across x, y, z. \therefore we can start at that point. We already calculated out that for these to all be equal then we need $\frac{37}{20}$ resources. While this is > 1 it is < 2 and \therefore we need to do equality across all 4 variables. Leveraging our previous work we need to write w in terms of x.

$$4(1-x) - x = 1 - w$$
$$4 - 5x = 1 - w$$
$$w = 5x - 3$$

We will now sum up everything and set the r.h.s. to 2, our number of resources.

$$x + \frac{5}{4}x + \frac{5}{2}x - 1 + 5x - 3 = 2$$
$$39x = 24$$
$$x = \frac{24}{39}$$

Thus we get the result Here we can see that the sum is 2 and we are done.

$$x = \frac{24}{39}$$
, $y = \frac{10}{13}$, $z = \frac{7}{13}$, $w = \frac{1}{13}$

Three Resources

Again we don't have to start over. We can start right here

$$x + \frac{5}{4}x + \frac{5}{2}x - 1 + 5x - 3 = 3$$
$$39x = 28$$
$$x = \frac{28}{39}$$

Checking that the sum is 3 we can verify that we are done.

$$x = \frac{28}{39}$$
, $y = \frac{35}{39}$, $z = \frac{31}{39}$, $w = \frac{23}{39}$

Part 2)

oger has invited Caleb to his party. Roger must choose whether or not to hire a clown. Simultaneously, Caleb must decide whether or not to go the party. Caleb likes Roger but he hates clowns. Calebs payoff from going to the party is 4 if there is

no clown, but 0 if there is a clown there. Calebs payoff from not going to the party is 3 if there is no clown at the party, but 1 if there is a clown at the party. Roger likes clowns (he especially likes Calebs reaction to them but does not like paying for them). Rogers payoff if Caleb comes to the party is 4 if there is no clown, but 8 x if there is a clown (x is the cost of a clown). Rogers payoff if Caleb does not come to the party is 2 if there is no clown, but 3 x if there is a clown there.

- 1. Write down the payoff matrix of this game
- 2. Find any dominated strategies and the Nash Equilibrium of the game (with explanation) when (i) x = 0; (ii) x = 2; (iii) x = 3; (iv) x = 5.

Solution

Let's summarize first:

Action sets:

$$Roger_{action_set} = \{clown, \neg clown\}$$
$$Caleb_{action_set} = \{go, \neg go\}$$

Payoff:

$$Caleb(go|\neg clown) = 4$$

$$Caleb(go|clown) = 0$$

$$Caleb(\neg go|\neg clown) = 3$$

$$Caleb(\neg go|clown) = 1$$

$$Roger(Caleb(go)|\neg clown) = 4$$

$$Roger(Caleb(go)|clown) = 8 - x$$

$$Roger(Caleb(\neg go)|\neg clown) = 2$$

$$Roger(Caleb(\neg go)|clown) = 3 - x$$

Where x is the cost of the clown

We can now easily write the payoff matrix. We order the payoff as (Roger, Caleb)

	go	¬ go
clown	(8-x,0)	(3-x,1)
¬ clown	(4,4)	(2,3)

Now let's let x = 0 and find the Nash Equilibrium If Roger(clown) then Caleb's

	go	¬ go
clown	(8,0)	(3,1)
¬ clown	(4,4)	(2,3)

best decision is to not go, gaining utility of 1. If $Roger(\neg clown)$ then Caleb's best decision is to go, gaining utility of 4. We'll create a small table of expected utilities

	Roger	Caleb	
clown	12	go	4
\neg clown	6	¬ go	4

... Roger should get a clown and Caleb should not go. Roger's strategy dominates because he still gets a clown regardless of Caleb's choice. But Caleb does not have a dominating strategy because he would switch based on Roger's choice.

(ii) Now let's let x = 2 and find the Nash Equilibrium

	go	¬ go
clown	(6,0)	(1,1)
¬ clown	(4,4)	(2,3)

$$\begin{array}{c|cccc} Roger & Caleb \\ \hline clown & 7 & go & 4 \\ \neg clown & 6 & \neg go & 4 \\ \hline \end{array}$$

: the result is the same. There is no longer a dominant strategy for either because they will both switch if they knew what the other was playing. If Caleb(go) then Roger(clown) but if $Caleb(\neg go)$ then $Roger(\neg clown)$

(iii) Now let's let x = 3 and find the Nash Equilibrium

	go	¬ go
clown	(5,0)	(0,1)
¬ clown	(4,4)	(2,3)

$$\begin{array}{c|cccc} Roger & Caleb \\ \hline clown & 5 & go & 4 \\ \neg clown & 6 & \neg go & 4 \\ \end{array}$$

 \therefore Roger shouldn't get a clown and Caleb should go. There are no dominating strategies for the same reason.

(iv) Now let's let x = 5 and find the Nash Equilibrium

	go	¬ go
clown	(3,0)	(-2,1)
¬ clown	(4,4)	(2,3)

	Roger	Caleb	
clown	1	go	4
\neg clown	6	¬ go	4

 \therefore Roger really shouldn't get a clown and Caleb should go. Roger dominates this time with $Roger(\neg clown)$ because he chooses that regardless of Caleb's decision. Caleb's best strategy is still dependent on Roger's.