Mathematical Logic Part Three

The Aristotelian Forms

"All As are Bs"

"Some As are Bs"

$$\forall x. (A(x) \rightarrow B(x))$$

 $\exists x. (A(x) \land B(x))$

"No As are Bs"

"Some As aren't Bs"

$$\forall x. (A(x) \rightarrow \neg B(x))$$

 $\exists x. (A(x) \land \neg B(x))$

It is worth committing these patterns to memory. We'll be using them throughout the day and they form the backbone of many first-order logic translations.

The Art of Translation

Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means "everybody loves someone else."

How many of the following first-order logic statements are correct translations of "everyone loves someone else?"

```
∀p. (Person(p) →
∃q. (Person(q) ∧
Loves(p, q)
)
```

```
\forall p. (Person(p) \land \exists q. (Person(q) \land p \neq q \land Loves(p, q)
```

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \rightarrow Loves(p, q)
```

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(p, q)
```

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **0**, **1**, **2**, **3**, or **4**.

Everybody loves someone else

Every person loves some other person

Every person p loves some other person

Every person p loves some other person

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\forall p. (Person(p) \rightarrow p loves some other person
```

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\forall p. (Person(p) \rightarrow p loves some other person
```

```
\forall p. (Person(p) \rightarrow there is some other person that p loves
```

```
\forall p. (Person(p) \rightarrow there is a person other than p that p loves
```

```
\forall p. (Person(p) \rightarrow there is a person q, other than p, where p loves q
```

```
∀p. (Person(p) →
  there is a person q, other than p, where
    p loves q
```

```
∀p. (Person(p) →
there is a person q, other than p, where
p loves q
```

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land p loves q)
```

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)
)
```

Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means "there is a person that everyone else loves."

There is a person p where everyone else loves p

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

∃p. (Person(p) ∧ everyone else loves p

)

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

```
∃p. (Person(p) ∧ everyone else loves p
```

```
\exists p. (Person(p) \land every other person q loves p)
```

```
\exists p. (Person(p) \land every person q, other than p, loves p)
```

 $\exists p. (Person(p) \land every person q, other than p, loves p)$

)

"All As are Bs"

 $\forall x. \ (A(x) \to B(x))$

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow q loves p)
```

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow q loves p)
```

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p))
```

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

 $\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)))$

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

 $\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)))$

For every person,

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$\forall p. \ (Person(p) \rightarrow \exists q. \ (Person(q) \land p \neq q \land Loves(p, q)))$$
For every person,
there is some person

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

```
\forall p. \ (Person(p) \rightarrow \exists q. \ (Person(q) \land p \neq q \land Loves(p, q)))
For every person,
there is some person
who isn't them
```

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p)))$

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. \ (Person(p) \land \forall q. \ (Person(q) \land p \neq q \rightarrow Loves(q, p)))$

There is some person

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

who everyone

 $\exists p. \ (Person(p) \land \forall q. \ (Person(q) \land p \neq q \rightarrow Loves(q, p)))$ There is some person

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. \ (Person(p) \land \forall q. \ (Person(q) \land p \neq q \rightarrow Loves(q, p)))$ There is some person $\qquad \qquad \text{who everyone}$ $\qquad \qquad \text{who isn't them}$

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

For Comparison

```
\forall p. \ (Person(p) \rightarrow \exists q. \ (Person(q) \land p \neq q \land Loves(p, q))) For every person, there is some person who isn't them that they love.
```


Everyone Loves Someone Else

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

Everyone Loves Someone Else *and*There is Someone Everyone Else Loves

 $\exists p. \; (Person(p) \; \land \; \forall q. \; (Person(q) \; \land \; p \neq q \rightarrow Loves(q, \, p)))$ There is some person who everyone who isn't them

loves.

Quantifier Ordering

The statement

$$\forall x. \exists y. P(x, y)$$

means "for any choice of x, there's some choice of y where P(x, y) is true."

• The choice of *y* can be different every time and can depend on *x*.

Quantifier Ordering

The statement

$$\exists x. \ \forall y. \ P(x, y)$$

means "there is some x where for any choice of y, we get that P(x, y) is true."

• Since the inner part has to work for any choice of *y*, this places a lot of constraints on what *x* can be.

Order matters when mixing existential and universal quantifiers!

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, **C**, or **D**.

Back to CS103!

Set Translations

Using the predicates

- Set(S), which states that S is a set, and
- $-x \in y$, which states that x is an element of y,

write a sentence in first-order logic that means "the empty set exists."

Using the predicates

- Set(S), which states that S is a set, and
- $-x \in y$, which states that x is an element of y,

write a sentence in first-order logic that means "the empty set exists."

First-order logic doesn't have set operators or symbols "built in." If we only have the predicates given above, how might we describe this?

How many of the following first-order logic statements are correct translations of "the empty set exists"?

```
\exists S. (Set(S) \land \neg \exists x. \ x \in S)
```

$$\exists S. (Set(S) \land \exists x. x \notin S)$$

```
\exists S. (Set(S) \land \neg \forall x. \ x \in S)
```

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **0**, **1**, **2**, **3**, or **4**.

The empty set exists.

There is some set S that is empty.

```
\exists S. (Set(S) \land S is empty.)
```

```
\exists S. (Set(S) \land there are no elements in S)
```

```
\exists S. (Set(S) \land \neg there is an element in S)
```

```
\exists S. (Set(S) \land \neg there is an element x in S)
```

```
\exists S. (Set(S) \land \neg \exists x. \ x \in S)
```

 $\exists S. (Set(S) \land \neg \exists x. x \in S)$

```
\exists S. (Set(S) \land \neg \exists x. x \in S)
\exists S. (Set(S) \land there are no elements in S)
```

```
\exists S. (Set(S) \land \neg \exists x. x \in S)
\exists S. (Set(S) \land every object does not belong to S)
```

```
\exists S. (Set(S) \land \neg \exists x. x \in S)
\exists S. (Set(S) \land every object x does not belong to S)
```

```
\exists S. (Set(S) \land \neg \exists x. x \in S)
\exists S. (Set(S) \land \forall x. x \notin S)
```

 $\exists S. (Set(S) \land \neg \exists x. x \in S)$

 $\exists S. (Set(S) \land \forall x. x \notin S)$

 $\exists S. (Set(S) \land \neg \exists x. x \in S)$

 $\exists S. (Set(S) \land \forall x. x \notin S)$

Both of these translations are correct. Just like in propositional logic, there are many different equivalent ways of expressing the same statement in first-order logic.

Mechanics: Negating Statements

Which of the following is the negation of the statement $\forall x. \exists y. Loves(x, y)$?

- A. $\forall x. \ \forall y. \ \neg Loves(x, y)$
- B. $\forall x. \exists y. \neg Loves(x, y)$
- C. $\exists x. \ \forall y. \ \neg Loves(x, y)$
- $D. \quad \exists x. \ \exists y. \ \neg Loves(x, y)$
- E. None of these.
- F. Two or more of these.

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, **C**, **D**, **E**, or **F**.

$\forall x$.	P	(\mathbf{x})
V / .		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

TATA on in this tone?	Mhon in this follow?
When is this true?	When is this false?

For any choice of x , $P(x)$	For some choice of x , $\neg P(x)$		
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$		
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$		
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$		

		(-,)
$\forall x$.	P	X
V / L •		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

	When is t	this true?	When i	s this	false?
--	-----------	------------	--------	--------	--------

	For any choice of x , $P(x)$	For some choice of x , $\neg P(x)$
	For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
	For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
)	For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.		(-,)
∇X	P	Y
V /\ .		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is this true? When is this false?

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.	(
$\nabla \mathbf{Y}$	
V / .	

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fal	se?
		U	U _ U _ U _ U					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$	(\mathbf{x})
\mathbf{V}	

 $\exists x. P(x)$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is	this	true?	When	is	this	fa]	lse?
		U _ U _ U .					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.		(-,)
∇X	P	X
V /\		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fal	se?
		U	U _ U _ U _ U					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

\ /		
$\forall x$.	P	X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is	this	true?	When	is	this	fa]	lse?
		U _ U _ U .					

	For any choice of x , $P(x)$	$\exists x. \neg P(x)$
I	For some choice of x , $P(x)$	$\forall x. \neg P(x)$
	For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
I	For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall \mathbf{v}$	D	
$\forall x$.	Γ	X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is	this	true?	When	is	this	fa]	lse?
		U _ U _ U .					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.	()
ΔV	
$\mathbf{v} \wedge \mathbf{v}$	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

	When is this	s true?	When	is	this	fal	se?
--	--------------	---------	------	----	------	-----	-----

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

\ /		
$\forall x$.	P	X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fal	se?
		U	U _ U _ U _ U					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

When is this true? When is this false?

\ /		
$\forall x$.	U	1
VX		
		(^ - /

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

When is this true? When is this false?

\ /		
$\forall x$.	U	1 /
VX		
		(' こ /

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

$\forall x$.	D	
VA.	<i>_</i>	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

When	is	this	true?	When	is	this	fal	se?
		U	U _ U _ U _ U					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

Negating First-Order Statements

Use the equivalences

$$\neg \forall x. A \equiv \exists x. \neg A$$
$$\neg \exists x. A \equiv \forall x. \neg A$$

to negate quantifiers.

- Mechanically:
 - Push the negation across the quantifier.
 - Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Taking a Negation

("There's someone who doesn't love anyone.")

```
\forall x. \exists y. Loves(x, y)
("Everyone loves someone.")
\neg \forall x. \exists y. Loves(x, y)
\exists x. \neg \exists y. Loves(x, y)
\exists x. \forall y. \neg Loves(x, y)
```

Two Useful Equivalences

 The following equivalences are useful when negating statements in first-order logic:

$$\neg (p \land q) \equiv p \rightarrow \neg q$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

- These identities are useful when negating statements involving quantifiers.
 - A is used in existentially-quantified statements.
 - \rightarrow is used in universally-quantified statements.
- When pushing negations across quantifiers, we strongly recommend using the above equivalences to keep \rightarrow with \forall and \land with \exists .

Negating Quantifiers

• What is the negation of the following statement, which says "there is a cute puppy"?

$$\exists x. (Puppy(x) \land Cute(x))$$

• We can obtain it as follows:

```
\neg \exists x. (Puppy(x) \land Cute(x))
\forall x. \neg (Puppy(x) \land Cute(x))
\forall x. (Puppy(x) \rightarrow \neg Cute(x))
```

- This says "no puppy is cute."
- Do you see why this is the negation of the original statement from both an intuitive and formal perspective?

 $\exists S. (Set(S) \land \forall x. \neg (x \in S))$ ("There is a set with no elements.")

$$\neg \exists S. (Set(S) \land \forall x. \neg (x \in S))$$

 $\forall S. \neg (Set(S) \land \forall x. \neg (x \in S))$
 $\forall S. (Set(S) \rightarrow \neg \forall x. \neg (x \in S))$
 $\forall S. (Set(S) \rightarrow \exists x. \neg \neg (x \in S))$
 $\forall S. (Set(S) \rightarrow \exists x. x \in S)$

("Every set contains at least one element.")

These two statements are *not* negations of one another. Can you explain why?

 $\exists S. (Set(S) \land \forall x. \neg (x \in S))$ ("There is a set that doesn't contain anything")

 $\forall S. (Set(S) \land \exists x. (x \in S))$ ("Everything is a set that contains something")

Remember: ∀ usually goes with →, not ∧

Restricted Quantifiers

Quantifying Over Sets

The notation

$$\forall x \in S. P(x)$$

means "for any element x of set S, P(x) holds." (It's vacuously true if S is empty.)

The notation

$$\exists x \in S. P(x)$$

means "there is an element x of set S where P(x) holds." (It's false if S is empty.)

Quantifying Over Sets

The syntax

$$\forall x \in S. \ \phi$$

 $\exists x \in S. \ \phi$

is allowed for quantifying over sets.

- In CS103, feel free to use these restricted quantifiers, but please do not use variants of this syntax.
- For example, don't do things like this:

$$\triangle$$
 $\forall x \text{ with } P(x). \ Q(x)$ \triangle \triangle $\forall y \text{ such that } P(y) \land Q(y). \ R(y). \triangle \triangle $\exists P(x). \ Q(x)$$

Expressing Uniqueness

Using the predicate

- Level(l), which states that l is a level,

write a sentence in first-order logic that means "there is only one level."

A fun diversion:

http://www.onemorelevel.com/game/there is only one level

There is only one level.


```
∃l. (Level(l) ∧ nothing besides I is a level.
)
```

```
∃l. (Level(l) ∧
any thing x that isn't I isn't a level
)
```

```
\exists l. (Level(l) \land \forall x. (x \neq l \rightarrow x isn't a level)
```

```
∃l. (Level(l) ∧ \forall x. (x \neq l \rightarrow \neg Level(x))
```

```
\exists l. (Level(l) \land \\ \forall x. (x \neq l \rightarrow \neg Level(x)))
```

```
\exists l. (Level(l) \land \forall x. (Level(x) \rightarrow x = l))
```

Expressing Uniqueness

- To express the idea that there is exactly one object with some property, we write that
 - there exists at least one object with that property, and that
 - there are no other objects with that property.
- You sometimes see a special "uniqueness quantifier" used to express this:

$\exists !x. P(x)$

• For the purposes of CS103, please do not use this quantifier. We want to give you more practice using the regular \forall and \exists quantifiers.

Using the predicates

- Set(S), which states that S is a set, and
- $-x \in y$, which states that x is an element of y,

write a sentence in first-order logic that means "two sets are equal if and only if they contain the same elements."


```
∀S. (Set(S) →
    ∀T. (Set(T) →
        S and T are equal if and only if they have the same elements.
    )
)
```

```
\forall S. \ (Set(S) \rightarrow \\ \forall T. \ (Set(T) \rightarrow \\ (S = T \ \textit{if and only if they have the same elements.})
```

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow (S = T \leftrightarrow they have the same elements.)
```

```
\forall S. \ (Set(S) \rightarrow \\ \forall T. \ (Set(T) \rightarrow \\ (S = T \leftrightarrow S \ and \ T \ have \ the \ same \ elements.)
```

```
\forall S. \ (Set(S) \rightarrow \ \forall T. \ (Set(T) \rightarrow \ (S = T \leftrightarrow every \ element \ of \ S \ is \ an \ element \ of \ T \ and \ vice-versa)
)
```

```
\forall S. \ (Set(S) \rightarrow \\ \forall T. \ (Set(T) \rightarrow \\ (S = T \leftrightarrow x \text{ is an element of S if and only if x is an element of T})
)
```

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T)))
```

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T)))
```

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T)))
```

You sometimes see the universal quantifier pair with the ↔ connective. This is especially common when talking about sets because two sets are equal when they have precisely the same elements.

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T)))
```

Next Time

Binary Relations

How do we model connections between objects?

Equivalence Relations

 How do we model the idea that objects can be grouped into clusters?

• First-Order Definitions

Where does first-order logic come into all of this?

Proofs with Definitions

How does first-order logic interact with proofs?