

(B) BUNDESREPUBLIK

DEUTSCHLAND

Offenlegungsschrift

® DE 196 14 217 A 1

6) Int. Cl.6: H 02 K 5/04

H 02 K 1/17 // H02K 23/56

DEUTSCHES

PATENTAMT

Aktenzeichen:

196 14 217.2

Anmeldetag:

10. 4.88

Offenlegungstag:

16. 10. 97

(7) Anmelder:

Interelectric AG, Sachsein, CH

(74) Vertreter:

Grünecker, Kinkeldey, Stockmair & Schwanhäusser, Anwaitssozietät, 80538 München

② Erfinder:

Neumann, Frank, Emmenbrücke, CH; Steffan, Joachim, Giswil, CH; Mayer, Jürgen, Sachseln, CH

66 Entgegenhaltungen:

DE-AS 12 83 347 DE 43 21 027 A1 DE-GM 19 10 597 CH 5 76 717

Prüfungsantrag gem. § 44 PatG ist gestellt

- (B) Elektromotor
- Die Erfindung betrifft einen Elektromotor mit einem Stator mit einem innenliegenden Permanentmagneten und einer diesen unter Bildung eines Ringluftspalts umgebenden, rohrförmigen Rückschlußhülse, die in ihrer axialen und radialen Lage durch eine Kunststoffumspritzung relativ zum Permanentmagneten gehalten und mit diesem verbunden ist. Durch die Erfindung soll die Anbringung und Positionlerung der beiden Bauteile aneinander verbessert werden. Dies geschieht dadurch, daß die Kunststoffumspritzung bis etwa an den Außenumfang der Rückschlußhülse reicht und daß an einem Endbereich der Rückschlußhülse axial verlaufende Aussparungen mit Jeweils mindestens zwei in Richtung des Hülseninneren aufeinander zulaufenden Kanten angeordnet sind, an denen die Kunststoffumspritzung an der Rückschlußhülse verankert ist.

Beschreibung

Die vorliegende Erfindung betrifft Elektromotoren mit einem Stator mit einem innenliegenden Permanentmagneten und einer diesen unter Bildung eines Ringluftspaltes umgebenden, rohrförmigen Rückschlußhülse, die in ihrer axialen und radialen Lage durch eine Kunststoffumspritzung relativ zum Permanentmagneten gehalten und mit diesem verbunden ist.

nem Permanentmagneten und einem eisenlosen Rotor bekannt. Im Stand der Technik erfolgt die Verbindung der Rückschlußhülse mit dem Permanentmagneten dadurch, daß die Rückschlußhülse durch Drehen hergestellt und mit entsprechenden Ringnuten oder -stegen 15 versehen wird, die von dem Kunststoff umspritzt werden können. Hierzu wird der noch nicht magnetisierte Permanentmagnetrohling und die Rückschlußhülse in einer Spritzgußform positioniert und anschließend die Verbindung durch die entsprechend gewünschte Spritz- 20 gußumspritzung hergestellt. Eine derartige Positionierung und Verankerung dieser beiden Bauteile zueinander hat sich im großen und ganzen bewährt. Jedoch ist man bestrebt, kostengünstigere Wege der Verbindungstechnik zu beschreiten.

Es ist daher die Aufgabe der vorliegenden Erfindung, einen Gleichstromelektromotor der eingangs genannten Art bereitzustellen, der eine verfahrenstechnisch einfachere Positionier- und Verankerungsmöglichkeit mit entsprechend ausreichender Stabilität bietet.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst,daß die Kunststoffumspritzung bis etwa an den Au-Benumfang der Rückschlußhülse reicht und daß an einem Endbereich der Rückschlußhülse axial umlaufende Aussparungen mit jeweils mindestens zwei in Richtung 35 des Hülseninneren aufeinander zulaufende Kanten angeordnet sind, an denen die Kunststoffumspritzung an der Rückschlußhülse verankert ist. Diese Anordnung bietet den Vorteil, daß nunmehr an der Innenseite der Rückschlußhülse keine Einrichtungen zur Verankerung 40 mehr vorgesehen sein müssen. Die Ausformung der Aussparung mit den entsprechend nach innen auseinanderzulaufenden Kanten sorgt nunmehr für eine ausreichende Verankerung des Kunststoffes an der Rückschlußhülse. Hierbei kommt zugute, daß die Kunststoff- 45 masse beim Abkühlen einer Schrumpfung unterliegt und somit eine Art Verkeilung in den Aussparungen stattfindet, die zu einer extrem formgenauen und stabilen Verankerungen führt.

Als besonders günstige Ausführungsvariante hat sich 50 herausgestellt, wenn die Rückschlußhülse durch einen Stanz- und anschließenden Rollvorgang aus einem Blechmaterial mit einer Naht als Fügestelle hergestellt ist. Dieses hat zum einen den Vorteil, daß ein derartiges Verfahren sehr einfach durchzuführen und äußerst ko- 55 stengünstig ist. Des weiteren müssen bei dem flachen Ausgangsblech lediglich Aussparungen mit geraden Kanten herausgestanzt werden, da die entsprechenden Kanten durch den Rollvorgang automatisch die gewünschte aufeinanderzulaufende Anordnung erhalten. 60 Hierdurch können einfache Stanzwerkzeuge eingesetzt werden, ohne daß ein großer Aufwand zur Formgestaltung der Aussparungen betrieben werden muß. Die bislang praktizierte Herstellung der Rückschlußhülse als Drehteil erfordert einen erheblichen Materialaufwand 65 sowie den Einsatz hochwertiger Präzisionsmaschinen. Die Ausführung gemäß dieser Variante erfordert lediglich einfache Stanz- und Rollmaschinen, ohne daß derar-

tige Materialverluste wie beim Drehen anfallen. Um die Verankerung der Kunststoffumspritzung nochmals zu verbessern, können die Aussparungen auch

in Längsrichtung der Rückschlußhülse mindestens zwei 5 aufeinanderzulaufende Kanten aufweisen. Auch hier macht sich der Schrumpfungsprozeß des Kunststoffes wieder positiv bemerkbar, indem eine Verkeilung auch

in Längsrichtung der Hülse erfolgt.

In diesem Zusammenhang kann in besonders vorteil-Solche Motoren sind als Gleichstrommotoren mit ei- 10 hafter Weise die Aussparung schwalbenschwanzförmig ausgebildet sein, wodurch die axiale und radiale Verkeilung der Kunststoffumspritzung mit einer Aussparungsform optimal erreicht ist.

Als besonders stabile Variante hat sich auch herausgestellt, wenn die Naht in Längsrichtung der Rückschlußhülse verläuft und durch nach Art eines Puzzles ineinandergreifende Seitenkanten des Blechmaterials gebildet ist. Diese Art der Verbindung ist sehr stabil und erfordert keine Wärmebehandlung in Form von Schweißen oder Löten, die zu Gefügeänderungen der Rückschlußhülse führen könnten. Darüber hinaus kann eine derartige Naht sehr leicht Wärmedehnungen auffangen, die im Betrieb auftreten.

Damit eine günstige Positionierung der Rückschlußhülse in der Spritzgußform relativ zum Permanentmagneten erfolgt, kann die Rückschlußhülse eine Codieraussparung zum Ausrichten des zur Längsnaht gehörigen Rückschlußhülsendurchmessers im wesentlichen in die magnetische Vorzugsachse des Permanentmagne-30 ten des Stators aufweisen. Hierdurch nimmt die Längsnaht möglichst wenig Einfluß auf das Magnetfeld des Permanentmagneten, da sie über einem Pol bzw. an einer Stelle angeordnet ist, an der sich der magnetische Fluß in der Rückschlußhülse symmetrisch teilt.

Eine weitere vorteilhafte Ausführungsform sieht vor, daß die Umspritzung am Endbereich der Rückschlußhülse in Form einer Scheibe ausgebildet ist, die in Fluchtung mit den Aussparungen von außen zugängliche Rasthinterschneidungen zum Einrasten von Rastelementen zusätzlicher Bauteile aufweist, wobei im wesentliche radiale Zugriffsöffnungen im Bereich der Aussparung einen Zugriff auf die Rasthinterschneidung zum Lösen von einrastbaren Bauteilen gewähren. Eine derartige lösbare Anordnung weiterer Bauteile hat den entscheidenden Vorteil, daß in Modulbauweise an einem einzigen Grundkörper die verschiedenen Bauteilanbauten erfolgen können. Es kann z. B. ohne weiteres ein Bürstendeckel oder ein Encoder oder Positionsmelder usw. angebracht werden. Dies kann entsprechend bei der Fertigungsmontage oder im späteren Austausch gemäß Kundenwunsch erfolgen.

Günstigerweise kann die Scheibe noch eine Zentriereinrichtung für anzubringende Bauteile aufweisen, wodurch ein Spiel in den Rasteinrichtungen ausgeglichen und ein lagerichtiges Positionieren der anzubringenden

Bauteile erfolgt.

Insbesondere bei der Herstellung der Rückschlußhülse durch einen Rollformvorgang sind Grenzen bezüglich der verwendbaren Werkstoffdicken gesetzt. Gemäß einer Ausführungsform wird das Eisenvolumen durch eine in die Rückschlußhülse zum Erhöhen der Rückschlußwirkung im wesentlichen paßgenau eingesetzte Zusatzhülse vergrößert. Die Hülse wird üblicherweise eingepreßt und kann darüber hinaus einen Längsschlitz aufweisen, dessen zugehöriger Zusatzhülsendurchmesser im wesentlichen mit dem Rückschlußhülsendurchmesser DH zusammenfällt.

Im folgenden wird eine Ausführungsform der vorlie-

genden Erfindung anhand einer Zeichnung näher erläu-

Fig. 1 eine Schnittdarstellung durch einen Stator eines Gleichstromelektromotors gemäß der vorliegenden Erfindung,

Fig. 2 eine Seitenansicht des Stators aus Fig. 1,

Fig. 3 die Rückschlußhülse aus Fig. 1 in perspektivischer Darstellung,

Fig. 4 eine schematisierte Draufsicht auf die Rückschlußhülse aus Fig. 3,

Fig. 5 eine Seitenansicht eines Ausschnittes des Endbereiches mit den Aussparungen der Hülse aus Fig. 4,

Fig. 6 ein vergrößerter Halbschnitt des Stators mit Rotorwelle und angefügtem Bauteil und

Fig. 7 eine verkleinerte Seitenansicht von rechts des 15 angefügten Bauteils aus Fig. 6.

Der in Fig. 1 dargestellte Stator 1 besteht im wesentlichen aus einem ringförmigen Permanentmagneten 2 mit einer magnetischen Vorzugsachse 2', einer diesen umgebenden rohrförmigen Rückschlußhülse 3 und einer 20 diese beiden zueinander positionierenden und miteinander verbindenden Kunststoffumspritzung 4.

Zwischen dem Permanentmagneten 2 und der Rückschlußhülse 3 ist ein Luftspalt 5 gebildet, in dem eine nicht dargestellte eisenlose Läuferwicklung positioniert 25

Die Kunststoffumspritzung 4 weist an dem einen Endbereich 6 der Rückschlußhülse 3 die Form einer Scheibe auf, in der ein Lagersitz 7 und mehrere Gewindebohrungen 9 sowie noch weiter unten näher beschriebene Ein- 30 richtungen angeordnet sind. Die Kunststoffumspritzung 4 erstreckt sich weiter in die Bohrung des Permanentmagneten 2 hinein und formt am gegenüberliegenden Ende 9 des Permanentmagneten einen weiteren Lagermanentmagneten 2. Durch diese Form wir durch die Kunststoffumspritzung 4 ein sicherer Halt des Permanentmagnetes 2 relativ zur Rückschlußhülse 3 gewähr-

Wie insbesondere unter zur Hilfenahme der Fig. 3 zu 40 erkennen ist, erfolgt die Verankerung der Kunststoffumspritzung 4 an der Rückschlußhülse 3 über mehrere am Endbereich 6 angeordnete, schwalbenschwanzförmige Aussparungen 12. Dabei bildet die kurze Seite der schwalbenschwanzförmigen Aussparung 12 die Öffnung 45 nach außen, so daß die Kunststoffumspritzung 4 in Längsrichtung der Hülse 3 verankert ist. Des weiteren weist die Rückschlußhülse 3 eine Längsnaht 13 mit einem zugehörigen Hülsendurchmesser DH derart auf, daß die beiden diese bildenden Stirnseiten 14, 15 nach Art eines Puzzles ineinandergreifen. Hierdurch wird sowohl eine axiale als auch eine tangentiale Verschiebung der Stirnseiten 14, 15 verhindert. An dem den Aussparungen 12 gegenüberliegenden Endbereich 16 der Rückschlußhülse 3 befindet sich eine Codieraussparung 55 17, die zur genauen Positionierung der Hülse 3 relativ zum Permanentmagneten 2 innerhalb einer Spritzgußform dient.

In der Scheibe der Kunststoffumspritzung 4 sind darüber hinaus vier von außen zugängliche, taschenförmige Rastöffnungen 18 angeordnet, die zur Bildung einer Rasthinterschneidung 18' mit radial sich in die Aussparung 12 erstreckenden Zugriffsöffnungen 19 in Verbindung stehen. Insbesonder in Fig. 6 ist zu erkennen, wie ein zusätzliches Bauteil 20, z. B. ein Bürstendeckel oder 65 ein Encoder oder ein Positionsgeber usw., mittels geeigneter Rasteinrichtungen 21 in den Rastöffnungen 18 befestigt werden kann. Die hakenförmigen Rastelemente

21 sind in Aussparungen 22 des Bauteils 20 federnd angeordnet, so daß sie beim Aufstecken auf die Kunststoffumspritzung 4 von der Schräge 23 nach unten gedrückt werden, bis sie in die Zugriffsöffnung 19 hinter 5 die Rasthinterschneidung 18' einrasten können.

Des weiteren ist an der Kunststoffumspritzung 4 ein Zentrieransatz 24 zum Zentrieren der anzubringenden Bauteile 20 vorgesehen, der in entsprechende Zentrieraufnahmen 25 an den Bauteilen 20 eingreift.

In der Fig. 6 sind ferner schematisch ein innerhalb der Lageraufnahme 7 angeordnetes Lager 26, ein Sicherungsring 27 und eine Dichtung 28, sowie eine durch sămtliche Bauteile hindurchgeführte Motorwelle 29

Im folgenden wird die Wirkungs- und Funktionsweise des oben beschriebenen Ausführungsbeispieles näher erläutert.

Die Rückschlußhülse 3 wird bei dem hier gezeigten Ausführungsbeispiel aus einem Blechmaterial durch einen Stanz- und Rollvorgang hergestellt. Hierzu wird das flache Blech entsprechend gestanzt, so daß die Aussparungen 12 sowie die entsprechenden Stirnseiten 14, 15 und die Codieraussparung 17 ausgeformt sind.

Durch die Schwalbenschwanzform weisen die Aussparungen 12 jeweils eine Kante 30 und 31 auf, die in Längsrichtung aufeinanderzulaufen. Die Kanten 32 und 33 der Aussparungen 12 verlaufen bei dem noch nicht rollgeformten Blechmaterial parallel zueinander. Durch den Rollvorgang in die Rohrform, unter Zusammenfügen der Stirnseiten 14, 15 zur Bildung der Längsnaht 13, entstehen durch den Walzvorgang unterschiedliche Längenänderungen des Materials in radialer Richtung, so daß die vorher parallelen Kanten 32,33 nunmehr zum Inneren der Rückschlußhülse 3 hin ebenfalls aufeinansitz 10 innerhalb einer Bohrungserweiterung 11 im Per- 35 der zulaufen. Dies ist insbesondere anhand der Fig. 5 verdeutlicht. Die Kanten 32, 33 bilden somit einen Winkel ø, der im wesentlichen von dem Rollradius der Rückschlußhülse 3 abhängt, so daß für das innerhalb der Aussparungen 12 angeordnete Material der Kunststoffumspritzung 4 auch in radialer Richtung eine Hinterschneidung gebildet ist.

> Nach dem Rollvorgang werden die Rückschlußhülse 3 und der noch nicht magnetisierte Permanentmagnetrohling 2 in eine Spritzgußform eingebracht und insbesondere mittels der Codieraussparung 17 zueinander positioniert, so daß die Längsnaht 13 über einen späteren magnetischen Pol des Permanentmagneten 2 angeordnet ist. In der Spritzgußform wird nunmehr der Kunststoff zur Bildung der Kunststoffumspritzung 4 eingespritzt und aushärten gelassen. Durch die Schrumpfung der warmen Kunststoffmasse werden die Materialanteile, die in den Aussparungen 12 angeordnet sind fest in diesen verkeilt, da die Kanten 30, 31, 32 und 33 jeweils entgegen der Schrumpfungsrichtung geneigt sind. Auch der Permanentmagnet 2 wird durch die entsprechende Formgebung der Kunststoffumspritzung 4 durch den Schrumpfungsprozeß gegenüber dieser verspannt.

> Anschließend erfolgt die Magnetisierung des Permanentmagneten 2, wobei die Codieraussparung 17 zur entsprechenden Ausrichtung des Stators 1 dient.

> Es sei nochmals angemerkt, daß die Ausgestaltung der Kunststoffumspritzung 4 darüber hinaus noch die platzsparende Möglichkeit bietet zusätzliche Bauteile 20 mit Hilfe des Zentrieransatzes 24 und der Zentrieraufnahme 25 positionsgenau am Stator lösbar anzuordnen. Soll z. B. ein einmal an dem Stator 1 befestigtes Bauteil 20 wieder entfernt werden, so wird ein geeigne

15

tes Werkzeug in die Zugriffsöffnung 19 eingeführt, bis die Rastelemente 21 außer Eingriff mit den Rasthinterschneidungen 18 sind. Anschließend kann das Bauteil 20 abgezogen und gegebenenfalls durch ein neues ersetzt werden. Hier besteht demnach die Möglichkeit, derartige Anbauten unmittelbar an die Rückschlußhülse 3 anzuordnen. Darüber hinaus können auch die Gewindebohrungen 8 zur Befestigung zusätzlicher Bauteile die-

In der obigen Beschreibung enthaltene Angaben zu 10 einer der offenbarten Ausführungsformen gelten, soweit sinnvoll und in sinnvoller Übertragung, jeweils auch für andere Ausführungsformen. Insbesondere liegt in diesen Angaben keine Einschränkung.

Patentansprüche

1. Elektromotor mit einem Stator (1) mit einem innenliegenden Permanentmagneten (2) und einer diesen unter Bildung eines Ringluftspalts (5) umgebenden, rohrförmigen Rückschlußhülse (3), die in ihrer axialen und radialen Lage durch eine Kunststoffumspritzung (4) relativ zum Permanentmagneten (2) gehalten und mit diesem verbunden ist, dadurch gekennzeichnet, daß die Kunststoffumspritzung bis etwa an den Außenumfang der Rückschlußhülse reicht und daß an einem Endbereich (6) der Rückschlußhülse (3) Aussparungen (12) mit jeweils mindestens zwei in Richtung des Hülseninneren aufeinanderzulaufenden Kanten (32, 33) angeordnet sind, an denen die Kunststoffumspritzung (4) an der Rückschlußhülse (3) verankert ist.

2. Elektromotor nach Anspruch 1, dadurch gekennzeichnet, daß die Rückschlußhülse (3) durch einen Stanz- und anschließenden Rollvorgang aus einem 35 Blechmaterial mit einer Naht (13) als Fügestelle

hergestellt ist.

3. Elektromotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Aussparung (12) auch in Längsrichtung der Rückschlußhülse (3) mindestens zwei aufeinanderzulaufende Kanten (30, 31) aufweisen.

4. Elektromotor nach Anspruch 3, dadurch gekennzeichnet, daß die Aussparung (12) schwalben-

schwanzförmig ausgebildet sind.

5. Elektromotor nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Naht (13) in Längsrichtung der Rückschlußhülse (3) verläuft und durch nach Art eines Puzzles ineinandergreifende Seitenkanten (14, 15) des Blechmaterials ge- 50 bildet ist.

6. Elektromotor nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Rückschlußhülse (3) eine Codieraussparung (17) zum Ausrichten des zur Längsnaht (13) gehörigen Rückschlußhülsendurchmessers (DH) im wesentlichen in die magnetische Verzugsachse (2') des Permanentmagneten

(2) des Stators (1) aufweist.

7. Elektromotor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kunststoffumspritzung am Endbereich der Rückschlußhülse (3) in Form einer Scheibe ausgebildet ist, die in Fluchtung mit den Aussparungen (12) nach außen zugängliche Rasthinterschneidungen (18') zum lösbaren Einrasten von Rastelementen (21) zusätzlicher 55 Bauteile (20) aufweist, wobei die im wesentlichen radiale Zugriffsöffnung (19) im Bereich der Aussparung (12) einen Zugriff auf die Rasthinterschnei-

dung (18') zum Lösen von einrastbaren Bauteilen (20) gewähren.

8. Élektromotor nach Anspruch 7, dadurch gekennzeichnet, daß die Scheibe eine Zentriereinrichtung (24) für anzubringende Bauteile (20) aufweist.

- 9. Elektromotor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in die Rückschlußhülse (3) zum Erhöhen der Rückschlußwirkung eine Zusatzhülse im wesentlichen paßgenau eingesetzt ist
- 10. Elektromotor nach Anspruch 9, dadurch gekennzeichnet, daß die Zusatzhülse einen Längsschlitz aufweist, dessen zugehöriger Zusatzhülsendurchmesser im wesentlichen mit dem Rückschlußhülsendurchmesser (DH) zusammenfällt.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

• •

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag:

FIG.3

Nummer: Int. Cl.⁸:

Offenlegungstag:

DE 196 14 217 A1 H 02 K 5/04

H 02 K 5/04 16. Oktober 1997

FIG.5

Nummer: Int. Cl.⁶:

Offenlegungstag:

FIG.6

Nummer: int. Cl.⁸: Offenlegungstag:

FIG.7