Ejercicio 4:

Ejercicio 4: Descomposiciones

Sea F =
$$\{AC \rightarrow B; C \rightarrow EB; C \rightarrow D; D \rightarrow A\} R = (A, B, C, D)$$

- a) Use el algoritmo para obtener una descomposición en 3FN. Justificar
- b) De una descomposición de R en FNBC. Justificar que cada dependencia funcional utilizada sea testigo y que la descomposición encontrada quedó en FNBC.

b)

Buscamos dependencias testigo:

Tenemos que ver que si A -> B, ver si A+ = R

- AC -> B
 - AC+ = ACBED
- C -> EB
 - C+ = EBADC **V**
- C -> D
 - Lo mismo que el anterior
- D -> A
 - \circ D+ = AD \times

Como D->A no genera a todo R, D->A es testigo.

Descomposición =
$$\{(R - \{A\}), (Testigo)\}$$

Descomposición = $\{(B,C,D), (A,D)\}$

Comprobación de Forma natural de Boyce Codd (caso 2):

B+:

B+ =
$$\emptyset$$

B+ \bigcap (Ri - α)
B+ \bigcap (BCD - B) = \emptyset
B+ \bigcap CD = \emptyset

(aplicamos la misma fórmula para los siguientes)

C+ (superclave):

$$\emptyset$$
 V (BCD) \subset C+

D+:

$$D+ \bigcap BC = \emptyset$$

BD+:

$$BD+ \bigcap C = \emptyset$$

Como c es superclave, CD+ , BC+ y BCD+ cumplen la condición Ø V (Ri - α) \subset C+

 $A+ \bigcap D = \emptyset$

Como $D+ = \{AD\}$, sabemos que D+ deriva a todo el esquema, por lo que es superclave de este y ambos esquemas están en FNBC.

a) Como toda descomposición FNBC está dentro de 3FN, podemos usar el resultado del ejercicio anterior para ver que es válida para este punto también.