

Towards ML Methods for Biodiversity: A Novel Wild Bee Dataset and **Evaluations of XAI Methods for ML-Assisted Rare Species Annotations**

XAI Robustness: Monte Carlo Dropout

a = 0.25

Teodor Chiaburu¹, Felix Bießmann^{1, 2} and Frank Haußer¹ ¹⁾Berlin University of Applied Sciences, ²⁾Einstein Center Digital Future

Motivation

When delegated to assist entomologists in classifying insect species. Al systems need to deliver reliable explanations. However, Fine Grained Image Analysis (FGIA) is a challenging task, in particular combined with

Contribution

- 1) dataset of annotated images of wild bees (body parts seaments)
- 2) ResNet achieving 0.78 top-1 and 0.95 top-3 accuracy in classifying 22 species
- 3) an investigation of XAI methods to support biologists in annotation tasks

Sample-wise XAI Evaluation: Pixel Flipping

q = 0.5

g = 0.75

Monte-Carlo Dropout (MCD): activating the Dropout layer during inference produces a (true) class probability distribution instead of a point-estimation.

computed. Quantiles of the maps' distribution offer an idea of the uncertainty of explanations.

New Annotated Dataset for FGIA & XAI

Raw vs. manually segmented (head, thorax, abdomen)

Confusion matrix for the ResNet50 [3] on the test set along with prototypical samples for every wild bee species.

Class-wise XAI Evaluation: Pixel Flipping & MC-Dropout

Averaged Pixel Flipping on 100 MCD inferences for whole classes on the test set according to three quantile maps for three saliency methods each + random flipping [4].

Localisation Metrics for XAI

Metric	XAI Method		
	Gradient	Grad. x Input	Int. Grad.
Pointing Game	0.9463	0.9421	0.9298
Attribution Localisation	0.2984	0.2551	0.3168
Top-K Intersection	0.3320	0.2807	0.3547
Relevance Rank Accuracy	0.3047	0.2587	0.3231
AUC	0.7157	0.6671	0.7297

Evaluation of three XAI methods according to five localisation metrics [2]: 'coarse grained' vs 'fine grained'. The attribution maps were computed on the annotated test set for the ResNet50 w.r.t. the predicted label.

Summary & Outlook

- Evaluation of XAI methods on fine grained tasks is challenging
- Are poorly localized or unfaithful explanations also bad explanations?
- What are optimal XAI metrics given model, dataset and explanation?

- [1] iNaturalist Database: https://www.inaturalist.org/
- [2] Hedstrom et al., Quantus: An explainable AI toolkit for responsible evaluation of neural network
- [3] Horn et al., Benchmarking representation learning for natural world image collections. In CVPR, 2021, [4] Bykov et al., How much can I trust you? - quantifying uncertainties in explaining neural networks, 2020.

