EE2302 Foundations of Information and Data Engineering

Assignment 6 (Solution)

1.

87	37		
1	0	87	а
0	1	37	b
1	-2	13	c = a - 2b
-2	5	11	d = b - 2c = -2a + 5b
3	-7	2	e = c - d = 3a - 7b
-17	40	1	f = d - 5e = -17a + 40b

$$x = (3)(87)(-17) + (5)(37)(40) = 2963$$
.

2.

$$M_1 = 12 \times 13 = 156$$
, $\alpha_1 \equiv 156^{-1} \pmod{7} = 4$ (steps of finding inverses are omitted.) $M_2 = 7 \times 13 = 91$, $\alpha_2 \equiv 91^{-1} \pmod{12} = 7$ $M_3 = 7 \times 12 = 84$, $\alpha_3 \equiv 84^{-1} \pmod{13} = 11$ $M = 7 \times 12 \times 13 = 1092$ $x = 5(156)(4) + 2(91)(7) + 8(84)(11) \pmod{1092} = 866$

3.

- a) HELLO = "8 5 12 12 15"
- b) $E(H) = 8^3 \mod 55 = 17$, $E(E) = 5^3 \mod 55 = 15$,
 - $E(L) = 3 \mod 55 = 13$, $E(L) = 12^3 \mod 55 = 23$,
 - $E(0) = 15^3 \mod 55 = 20.$

The encrypted message is "QOWWT".

c) N = 55. Factorize it, so p = 11 and q = 5. $\phi(N) = (p-1)(q-1) = 40$ Since $3d \equiv 1 \mod 40$, we can obtain d = 27. (steps omitted.)

Decrypt the ciphertext as follows:

$$8^{27} \mod 55 = 2$$
,

$$5^{27} \mod 55 = 25$$
,

$$15^{27} \mod 55 = 5$$
.

The message is "BYE".