SILICON MODELS OF EARLY AUDITION

Thesis by

John Lazzaro

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1990

Submitted August 23, 1989

 $\bigcirc 1990$

John Lazzaro

All rights reserved

Acknowledgments

Thanks to my advisor Carver Mead and committee members Richard Lyon and Mark Konishi for most of the ideas in this dissertation; my role in the project has been the integration of their potentials — very large scale integration! Also thanks to my other collaborators in Chapter 3 of the dissertation, Sylvie Ryckebusch and M. Mahowald. Also thanks to my other committee members, Charles Seitz and Slobodan Cúk, and to my undergraduate advisor, Paul Mueller.

Many other people have contributed to the project in some way. In particular, I thank Tim Allen, Walker Aumann, Al Barr, Mark Bell, Ron Benson, Jerry Burch, Jim Campbell, Chong Chen, Richard DeCarlo, Tobi Delbruck, Helen Derevan, Arlene DesJardins, Steve DeWeerth, Lyn Dupré, Diane Dysland, David Feinstein, I. Fujita, Andy Fyfe, Dave Gillespie, Sherif Gobran, Glenn Gribble, John Harris, Scott Hemphill, Nancy Lee Henderson, John Hopfield, Calvin Jackson, Doug Kerns, John Klemic, Allen Knutson, Rick Koshi, Tor Sverre Lande, John Le Moncheck, Jin Luo, Mary Ann Maher, John Mariano, Vincent Martello, Lars Nielsen, John Platt, Larry Proctor, David Saia, Terrence Sejnowski, Massimo Sivilotte, Don Speck, Jackie Tanaka, John Tanner, Susan Volman, John Wawrzynek, and John Wyatt. Finally, thanks to my mom.

This work was sponsored by the System Development Foundation and the Office of Naval Research. I thank Hewlett-Packard for computing support, and DARPA and MOSIS for chip fabrication.

Abstract

This dissertation describes silicon integrated circuits that model known and proposed physiological structures in the early auditory system. Specifically, it describes silicon models of auditory-nerve response, of auditory localization in the barn owl, and of pitch perception. The integrated circuits model the structure as well as the function of the physiology; all subcircuits in the chips have anatomical correlates. The chips, two of which contain over 100,000 transistors, compute all outputs in real time, using analog, continuous-time processing. In most respects, chip responses approximate physiological or psychophysical response of the modeled biological systems. The dissertation also describes a novel nonlinear-inhibition circuit, which is a key component of two of the silicon models.

Table of Contents

Τ.	Introduction	1
	1.1 Motivation for the Scientist: Why Use Analog VLSI Technology?	1
	1.2 Motivation for the Engineer: Why Model Audition?	3
	1.3 Overview of the Dissertation	4
2.	A Silicon Model of Auditory-Nerve Response	5
	2.1 Neural Architecture of the Cochlea	6
	2.2 Silicon Models of the Cochlea	7
	2.3 Silicon Basilar-Membrane Response	10
	2.4 Tuning Properties of Silicon Auditory-Nerve Fibers	13
	2.5 Timing Properties of Silicon Auditory-Nerve Fibers	19
	2.6 Discussion for the Scientist	26
	2.7 Discussion for the Engineer	28
	Appendix 2A. The Basilar-Membrane Circuit Model	30
	Appendix 2B. Circuit Models of Auditory Transduction	33
3.	Circuit Models of Nonlinear Inhibition	38
	3.1 The Winner-Take-All Circuit	38
	3.2 Time Response of the Winner-Take-All Circuit	45
	3.3 The Local Nonlinear Inhibition Circuit	52
	3.4 Discussion	56
	Appendix 3A. Static Response of the Winner-Take-All Circuit	58
	Appendix 3B. Dynamic Response of the Winner-Take-All Circuit	66
	Appendix 3C. Representation of Multiple Intensity Scales	69
4.	A Silicon Model of Auditory Localization	73
	4.1 The Time-Coding Pathway of the Owl	78

4.2 A Silicon Model of the Time-Coding Pathway	85
4.3 Comparison of Responses	89
4.4 Discussion	96
5. A Silicon Model of Pitch Perception	102
5.1 System Architecture	104
5.2 Chip Responses	109
5.3 Discussion	116
6. Future Research	119
6.1 The Cochlea: Frequency-Specific Automatic Gain Control 1	119
6.2 The Barn Owl: Learning Elevational Space	120
6.3 The Mustache Bat: Active Sonar Processing	121
6.4 Bats and Owls: Sensorimotor Feedback	121
6.5 Human Perception: Modeling Binaural Phenomena	122
6.6 Speech Recognition: The Final Frontier	123
6.7 Conclusions	124
References	125

List of Illustrations

Figure 2.1. Block diagram of silicon auditory-nerve chip	9
Figure 2.2. Silicon basilar-membrane response	12
Figure 2.3. Silicon auditory-nerve click response	15
Figure 2.4. Output of a silicon auditory-nerve fiber	17
Figure 2.5. Silicon auditory-nerve pure tone response I	18
Figure 2.6. Silicon auditory-nerve pure tone response II	20
Figure 2.7. Silicon auditory-nerve pure tone response III	21
Figure 2.8. Silicon auditory-nerve pure tone response IV	23
Figure 2.9. Synchronization properties of silicon auditory-nerve response $$.	24
Figure 2.10. Silicon auditory-nerve response to two tones	25
Figure 2A.1 The second-order section circuit	31
Figure 2B.1 The inner-hair-cell circuit	34
Figure 2B.2 The half-wave current-rectifier circuit	36
Figure 2B.3 The spiral-ganglion-neuron circuit	37
Figure 3.1. Winner-take-all circuit	40
Figure 3.2. Two-channel winner-take-all circuit	41
Figure 3.3. Winner-take-all circuit static response I	43
Figure 3.4. Winner-take-all circuit static response II	44
Figure 3.5. Winner-take-all circuit static response III	46
Figure 3.6. Modified winner-take-all circuit	47
Figure 3.7. Winner-take-all circuit static response IV	48
Figure 3.8. Two-channel winner-take-all AC model	49
Figure 3.9. Winner-take-all circuit dynamic response I	50
Figure 3.10. Winner-take-all circuit dynamic response II	51
Figure 3.11. Explaination of local winner-take-all circuit	53

Figure 3.12. Local winner-take-all circuit	
Figure 3.13. Local winner-take-all circuit response	
Figure 3A.1 Small-signal winner-take-all model	
Figure 3A.2 Winner-take-all crossover response	
Figure 3B.1 Small-signal winner-take-all AC model	
Figure 3C.1 Representing multiple intensity scales explanation I 71	
Figure 3C.2 Representing multiple intensity scales explanation II 72	
Figure 4.1. Neural map of auditory space in the barn owl	
Figure 4.2. Auditory pathway of the barn owl	
Figure 4.3. Binaural time differences in the owl	
Figure 4.4. Recordings from the time-coding pathway 81	
Figure 4.5. The Jeffress model	
Figure 4.6. Anatomical evidence for the Jeffress model 84	
Figure 4.7. Floorplan of the silicon model of the time-coding pathway 86	
Figure 4.8. Input stimulus for the chip	
Figure 4.9. Silicon cochlea response	
Figure 4.10. Silicon axon response	
Figure 4.11. Silicon axon temporal variation	
Figure 4.12. Maps of interaural time difference	
Figure 4.13. Data showing linearity of maps	
Figure 5.1. Block diagram of pitch-perception chip	
Figure 5.2. Delay-line contents for a harmonic signal	
Figure 5.3. Chip data for harmonic stimulus	
Figure 5.4. Chip data for missing-fundamental stimulus	
Figure 5.5. Chip data for sum-of-synchronized-pulses stimulus 114	
Figure 5.6. Chip data for AM-modulated-tones stimulus	
Figure 5.7. Chip data for correlated-noise stimulus	