Chapitre IX : Étude de deux fonctions de référence

I - Fonction carrée

- Synthèse sur la fonction carrée
- La fonction carrée est le fonction définie sur \mathbb{R} par $f(x) = x^2$.
- Sa courbe représentative est une parabole.
- Pour tout réel $x, x^2 \ge 0$. La courbe représentative est alors située au-dessus de l'axe des abscisses.
- Pour tout réel x, $(-x)^2 = x^2$ donc la fonction carrée est paire. Sa courbe représentative admet ainsi l'axe des ordonnées pour axe de symétrie.
- La fonction carrée est strictement décroissante sur $]-\infty$; 0] et strictement croissante sur $[0; +\infty[$.

x	$-\infty$	0	$+\infty$
f		_ ₀ /	

Conséquence des variations de la fonction carrée :

- La fonction carrée étant strictement décroissante sur $]-\infty$; 0], pour tous réels a et b négatifs, si a < b alors $a^2 > b^2$ (l'application de la fonction **change** l'ordre).
- La fonction carrée étant strictement croissante sur $[0; +\infty[$, pour tous réels a et b négatifs, si a < b alors $a^2 < b^2$ (l'application de la fonction **conserve** l'ordre).
- Si a et b sont de signe contraire, on ne peut pas comparer leurs carrés si ce n'est en les calculant.

Exemple: Comparer les nombres suivants sans calculatrice.

•
$$1,325^2$$
 et $1,874^2$

•
$$(-2,7)^2$$
 et $(-2,978)$ • π^2 et $3,1^2$

•
$$\pi^2$$
 et $3,1^2$

•
$$\left(-\frac{2}{3}\right)$$
 et $(-0.6)^2$

Solution : On peut s'aider de la courbe : on positionne les nombres proposés correctement sur l'axe des abscisses et on compare alors facilement les images de ces nombres par la fonction carrée.

- 1,325 et 1,874 sont deux réels positifs avec 1,325 < 1,874, ainsi 1,325 2 < 1,874 2 car la fonction carrée est strictement croissante sur $[0; +\infty[$.
- \bullet -2.7 et -2.978 sont deux réels négatifs avec -2.7>-2.978, ainsi $(-2.7)^2<(-2.978)^2$ car la fonction carrée est strictement décroissante sur $]-\infty$; 0]
- \bullet π et 3,1 sont deux réels positifs avec $\pi>3,1,$ ainsi $\pi^2>1,874^2$ car la fonction carrée est strictement croissante sur $[0; +\infty[$.
- $-\frac{2}{3}$ et -0.6 sont deux réels négatifs avec $-\frac{2}{3} < -0.6$, ainsi $\left(-\frac{2}{3}\right) < (-0.6)^2$ car la fonction carrée est strictement décroissante sur $]-\infty$; 0].

b) Identités remarquables

Propriété : Pour tous réels a et b, chaque ligne du tableau suivant décrit une égalité :

Forme factorisée	Forme développée
$(a+b)^2$	$a^2 + 2ab + b^2$
$(a-b)^2$ $(a+b)(a-b)$	$a^2 - 2ab + b^2 a^2 - b^2$

On considère le carré ABCD ci-contre dont l'aire vaut $(a + b)^2$.

Il a été décomposer en 2 carrés et 2 rectangles.

Un premier carré a pour aire a^2 , l'autre b^2 .

Les deux rectangles ont la même aire ab.

Ceci nous permet d'écrire l'égalité $(a+b)^2 = a^2 + 2ab + b^2$.

La deuxième égalité est obtenue à partir de la première en remplaçant b par -b $((-b)^2$ étant égal à b^2).

Exemple: Développer les expressions suivantes: $(y-11)^2$; $(2x+3)^2$.

$$\overline{\bullet} (y-11)^2 = y^2 - 2 \times y \times 11 + 11^2 = y^2 - 22y + 121.$$

•
$$(2x+3)^2 = (2x)^2 + 2 \times 2x \times 3 + 3^2 = 4x^2 + 12x + 9$$
.

c) Équations et inéquations

<u>Théorème</u>: Soit a un nombre réel. L'équation $x^2 = a$ admet :

- une unique solution réelle, 0 si a = 0;
- deux solutions réelles distinctes, \sqrt{a} et $-\sqrt{a}$ si a > 0;
- aucune solution réelle si a < 0.

Remarque : La conjecture du nombre de solutions de ce type d'équation peut être effectuée à l'aide de la parabole représentant la fonction carrée.

Démonstration :

- si a=0, l'équation devient $x^2=0$ qui admet une seule solution : x=0
- $-\sin a>0$, l'équation $x^2=a$ devient $x^2-a=0$ c'est-à-dire $x^2-(\sqrt{a})^2=0$ et ainsi $(x-\sqrt{a})\,(x+\sqrt{a})=0$ d'où $x-\sqrt{a}=0$ ou $x+\sqrt{a}=0$ ce qui donne $x=\sqrt{a}$ ou $x=-\sqrt{a}$ Donc les solutions de l'équation $x^2=a$ sont bien, dans ce cas, \sqrt{a} et $-\sqrt{a}$
- si a < 0, comme $x^2 \ge 0$ pour tout réel x, l'équation $x^2 = a$ n'admet pas de solution.

Exemple : Résoudre dans \mathbb{R} l'équation $3x^2 - 2 = -1$.

$$3x^2 - 2 = -1 \iff 3x^2 = 1 \iff x^2 = \frac{1}{3}.$$

Comme
$$\frac{1}{3} > 0$$
, les solutions de l'équation sont $\sqrt{\frac{1}{3}}$ et $-\sqrt{\frac{1}{3}}$.

La résolution de toute inéquation de la forme $x^2 < a$ ou $x^2 > a$ (avec a réel peut s'effectuer à l'aide de la résolution de l'équation $x^2 = a$ et de la courbe représentant la fonction carrée.

Ainsi si a > 0, l'ensemble des solutions réelles de $x^2 < a$ est $]-\sqrt{a}$; $\sqrt{a}[$ et l'ensemble des solutions de $x^2 > a$ est $]-\infty$; $-\sqrt{a}[\cup]\sqrt{a}$; $-\infty[$.

Exemple : Résoudre les inéquations $x^2 < 5$ et $x^2 \ge 9$.

En s'aidant de la courbe représentative de la fonction carrée, on conclut que :

- $x^2 < 5 \text{ sur }] -\sqrt{5}; \sqrt{5}[;$
- $x^2 \geqslant 9 \text{ sur }]-\infty; -3[\cup]3; +\infty[$

