

Московский Государственный Технический Университет имени Н.Э. Баумана Факультет Информатика и системы управления

Кафедра ИУ-5 «Системы обработки информации и управления»

Отчёт по рубежному контролю № 1

По дисциплине

«Методы Машинного Обучения»

Выполнил студент Гун Шэншо Группа ИУ5И-22М

Номер варианта: 18

Номер задачи №1:18

Для набора данных проведите масштабирование данных для одного (произвольного) числового признака на основе Z-оценки.

Задача 1

```
🕟 #Загрузка и предобработка данных
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns
    from sklearn.datasets import fetch_california_housing
    from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import RobustScaler
    from sklearn.preprocessing import MaxAbsScaler
[2] housing = fetch_california_housing()
    data = pd.DataFrame(housing.data,
                                         columns=housing.feature_names)
    data['Y'] = housing.target
    data.shape
     (20640, 9)
[3] data.head()
        MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
     0 8.3252
                   41.0 6.984127
                                  1.023810
                                                 322.0 2.555556
                                                                    37.88 -122.23 4.526
     1 8.3014
                   21.0 6.238137
                                   0.971880
                                                2401.0 2.109842
                                                                    37.86 -122.22 3.585
                                               496.0 2.802260 37.85 -122.24 3.521
     2 7.2574
                   52.0 8.288136 1.073446
     3 5.6431
                   52.0 5.817352
                                  1.073059
                                                 558.0 2.547945 37.85 -122.25 3.413
                                               565.0 2.181467 37.85 -122.25 3.422
     4 3.8462
                   52.0 6.281853
                                  1.081081
```


Масштабирование данных на основе Z-оценки

```
# Обучаем StandardScaler На всей выборке и масштабируем csl1 = StandardScaler()
data_csl1_scaled_temp = csl1.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_csl1_scaled = arr_to_df(data_csl1_scaled_temp)
data_csl1_scaled
```

₽		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
	0	2.344766	0.982143	0.628559	-0.153758	-0.974429	-0.049597	1.052548	-1.327835
	1	2.332238	-0.607019	0.327041	-0.263336	0.861439	-0.092512	1.043185	-1.322844
	2	1.782699	1.856182	1.155620	-0.049016	-0.820777	-0.025843	1.038503	-1.332827
	3	0.932968	1.856182	0.156966	-0.049833	-0.766028	-0.050329	1.038503	-1.337818
	4	-0.012881	1.856182	0.344711	-0.032906	-0.759847	-0.085616	1.038503	-1.337818
	20635	-1.216128	-0.289187	-0.155023	0.077354	-0.512592	-0.049110	1.801647	-0.758826
	20636	-0.691593	-0.845393	0.276881	0.462365	-0.944405	0.005021	1.806329	-0.818722
	20637	-1.142593	-0.924851	-0.090318	0.049414	-0.369537	-0.071735	1.778237	-0.823713
	20638	-1.054583	-0.845393	-0.040211	0.158778	-0.604429	-0.091225	1.778237	-0.873626
	20639	-0.780129	-1.004309	-0.070443	0.138403	-0.033977	-0.043682	1.750146	-0.833696
	20640 ro	ws × 8 colur	nns						

data_csl1_scaled.describe()

Гэ

MedInc AveRooms AveBedrms Population Ave0ccup Latitude Longitude HouseAge count 2.064000e+04 2.064 6.609700e-17 -1.060306e-16 -1.101617e-17 3.442552e-18 -1.079584e-15 -8.526513e-15 mean 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 std -1.774299e+00 -2.196180e+00 -1.852319e+00 -1.610768e+00 -1.256123e+00 -2.290000e-01 -1.447568e+00 -2.385992e+00 min 25% -6.881186e-01 -8.453931e-01 -3.994496e-01 -1.911716e-01 -5.638089e-01 -6.171062e-02 -7.967887e-01 -1.113209e+00 -1.767951e-01 2.864572e-02 -8.078489e-02 -1.010650e-01 -2.291318e-01 -2.431585e-02 -6.422871e-01 5.389137e-01 50% 4.593063e-01 6.643103e-01 2.519615e-01 6.015869e-03 2.644949e-01 2.037453e-02 9.729566e-01 7.784964e-01 75% 5.858286e+00 1.856182e+00 5.516324e+01 6.957171e+01 3.025033e+01 1.194191e+02 2.958068e+00 2.625280e+00

```
[] # Построение плотности распределения def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # Первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # Второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()

draw_kde(['MedInc', 'HouseAge', 'AveRooms'], data, data_csl1_scaled, 'ДО МАСШТАБИРОВАНИЯ', 'ПОСЛЕ МАСШТАБИР

draw_kde(['MedInc', 'HouseAge', 'AveRooms'], data, data_csl1_scaled, 'ДО МАСШТАБИРОВАНИЯ', 'ПОСЛЕ МАСШТАБИР
```


[] # Обучаем StandardScaler На обучающей выборке

И Масштабируем обучающую и тестовую выборки

cs12 = StandardScaler()

cs12.fit(X_train)

data_cs12_scaled_train_temp = cs12.transform(X_train)

data_cs12_scaled_test_temp = cs12.transform(X_test)

формируем DataFrame на основе массива

data_cs12_scaled_train = arr_to_df(data_cs12_scaled_train_temp)

data_cs12_scaled_test = arr_to_df(data_cs12_scaled_test_temp)

data_cs12_scaled_train.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04
mean	-1.663183e-16	5.239134e-17	1.912768e-16	2.119321e-16	2.280691e-17	1.183377e-18	3.050962e-16	-1.818528e-15
std	1.000030e+00	1 000030e+00	1.000030e+00	1 000030e+00	1.000030e+00	1 000030e+00	1.000030e+00	1.000030e+00

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
cour	nt 1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04	1.651200e+04
mea	n -1.663183e-16	5.239134e-17	1.912768e-16	2.119321e-16	2.280691e-17	1.183377e-18	3.050962e-16	-1.818528e-15
std	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00	1.000030e+00
mir	-1.784934e+00	-2.193326e+00	-1.758064e+00	-1.510898e+00	-1.265666e+00	-2.022041e-01	-1.446964e+00	-2.354008e+00
259	6 -6.894428e-01	-8.425832e-01	-3.830692e-01	-1.840409e-01	-5.688744e-01	-5.757397e-02	-7.965259e-01	-1.113670e+00
50 9	6 -1.753078e-01	3.142707e-02	-8.210226e-02	-1.001681e-01	-2.324925e-01	-2.427528e-02	-6.421054e-01	5.401142e-01
75 9	4.619818e-01	6.670709e-01	2.359401e-01	-4.655013e-05	2.649611e-01	1.542318e-02	9.722905e-01	7.792156e-01
ma	5.880939e+00	1.858903e+00	5.221361e+01	6.500353e+01	3.048505e+01	1.069443e+02	2.956360e+00	2.622289e+00

[] data_cs12_scaled_test.describe()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	Longitude
count	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000	4128.000000
mean	-0.014481	0.013911	-0.023175	-0.028812	0.000977	-0.010484	-0.000777	0.011417
std	1.021662	0.999880	0.692871	0.604269	1.038310	0.100045	0.997493	0.989980
min	-1.784934	-2.113871	-1.521001	-1.428741	-1.258546	-0.207179	-1.437605	-2.378915
25%	-0.712242	-0.842583	-0.381876	-0.186036	-0.564647	-0.056193	-0.791846	-1.058876
50%	-0.198860	0.031427	-0.076683	-0.101062	-0.220479	-0.021970	-0.642105	0.530152
75 %	0.451514	0.667071	0.224293	-0.000800	0.271190	0.019040	0.976970	0.784197
max	5.880939	1.858903	17.369108	18.082473	24.152526	4.165286	2.914245	2.502738

[] # распределения для обучающей и тестовой выборки немного отличаются draw_kde(['MedInc', 'HouseAge', 'AveRooms'], data_cs12_scaled_train, data_cs12_scaled_test, 'Обучающая', 'тестовая')

Номер задачи №2: 38

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectKBest для 10 лучших признаков, и метод, основанный на взаимной информации.

Дополнительные требования по группам:

Для студентов групп ИУ5-22M, ИУ5И-22M - для произвольной колонки данных построить гистограмму.

Дополнительное

0.0

```
fig. ax = plt.subplots(figsize=(10,10))
sns.distplot(data['Longitude'])

(ipython-input-25-578afb7a46a4):2: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://sist.github.com/mwaskom/de44147ed2974457ad8372750bbe5751

sns.distplot(data['Longitude'])
(Axes: xlabel='Longitude', ylabel='Density')
```

-122

-120

Longitude

-118

-114

-116