Part IV: Proofs (15 points each; 60 points)

a) Let A be an $n \times n$ matrix. Prove that

$$AB = BA$$
 for all B iff $A = \alpha I_n$

where I_n is the $n \times n$ identity matrix and $\alpha \in \mathbb{R}$.

As always with "if and only if" statements there are two directions to do

If case (\Longrightarrow): This is the harder direction. We must somehow show that A has a certain form. First let's show that A is diagonal. Let a_{ij} be the entries of A and suppose that $a_{ij} \neq 0$ for some $i \neq j$. Let B be the matrix $b_{ii} = b$ and $b_{jj} = b'$ and $b_{lm} = 0$ for all other l and m. Then

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = b_{jj} A_{ij} = b a_{ij}$$

$$(BA)_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj} = b_{ii} a_{ij} = b' a_{ij}$$

So $(BA)_{ij} \neq (AB)_{ij}$. So $AB \neq BA$.

This shows that $A = \operatorname{diag}(a_{11}, \ldots, a_{nn})$. Suppose $a_{ii} \neq a_{jj}$ let B be a matrix with a single 1 in the ij position, then $(AB)_{ij} = a_{ii}b_{ij} = a_{ii}$ and $(BA)_{ij} = b_{ij}a_{jj} = a_{jj}$ so $AB \neq BA$.

Only if case (\Leftarrow): This is trivial $(\alpha I)B = \alpha(IB) = \alpha B = (BI)\alpha = B(\alpha I)$.

b) **Prove:** For an invertible $n \times n$ matrix. Show that A^{-1} is symmetric if A is symmetric.

This is a simple computation:

$$(A^{-1})^T A = (A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$$

Since $(A^{-1})^T A = I$ we know that $A^{-1} = (A^{-1})^T$.

c) **Prove:** If V = U + W, then

$$U\cap W=\{\mathbf{0}\}$$

 \iff every $v \in V$ can be written uniquely as v = u + w for some $u \in U$ and $v \in V$

$$\iff (\forall \boldsymbol{v} \in V)(\forall \boldsymbol{u}, \boldsymbol{u}' \in U)(\forall \boldsymbol{w}, \boldsymbol{w}' \in W)(\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{w} = \boldsymbol{u}' + \boldsymbol{w}' \implies \boldsymbol{u} = \boldsymbol{u}' \text{ and } \boldsymbol{w} = \boldsymbol{w}')$$

Remark: $V = U \oplus W$ is defined as V = U + W and $U \cap W = \{0\}$. This result means that $V = U \oplus W$ iff every $\mathbf{v} \in V$ is uniquely decomposed as $\mathbf{v} = \mathbf{u} + \mathbf{w}$ where $\mathbf{u} \in U$ and $\mathbf{w} \in W$. For this reason, this is often taken as the definition of $V = U \oplus W$.

d) **Prove:** Suppose $\mathbb{R}^n = U \oplus W$ and A and B are matrices so that

•
$$\operatorname{rng}(A) = U$$
, $A^2 = A$, and $\boldsymbol{x} - A\boldsymbol{x} \in W$ for all $\boldsymbol{x} \in \mathbb{R}^n$,

• $\operatorname{rng}(B) = U$, $B^2 = B$, and $\boldsymbol{x} - B\boldsymbol{x} \in W$ for all $\boldsymbol{x} \in \mathbb{R}^n$.

Show that A = B.

You know that for all \mathbf{x} , $\mathbf{x} = \mathbf{x}_U + \mathbf{x}_W$ for unique $\mathbf{x}_U \in U$ and $\mathbf{x}_W \in W$. Since $\mathbf{x} = A\mathbf{x} + (\mathbf{x} - A\mathbf{x})$ we know that $A\mathbf{x} = \mathbf{x}_U$ and $\mathbf{x} - A\mathbf{x} = \mathbf{x}_W$. Similarly for B so that $B\mathbf{x} = \mathbf{x}_U = A\mathbf{x}$ for all \mathbf{x} .

Now we need to see that if for all \boldsymbol{x} , $A\boldsymbol{x}=B\boldsymbol{x}$, then A=B. It is clear that for all \boldsymbol{x} , $(A-B)\boldsymbol{x}=\boldsymbol{0}$.

It suffices to show that if for all x, Cx = 0, then C = 0. This is easy, $Ce_i = c_{\cdot i} = 0$, where $c_{\cdot i}$ is the ith column of C. Clearly if ll columns of C are the 0 column vector, then C = 0.