Internet Programming & Protocols Lecture 27 Review Info on take-home final 3

www.cs.utk.edu/~dunigan/ipp/

Plan of attack

- Network overview
- BSD sockets and UDP
- TCP
 - Socket programming
 - Reliable streams
 - Header and states
 - Flow control and bandwidth-delay
 - Measuring performance
 - Historical evolution (Tahoe ... SACK)
 - Congestion control
- Network simulation (ns)
- TCP accelerants
- TCP implementations
- TCP over wireless, satellite, ...

IPP Lecture 27 - 3

The lectures

LECTURES

- 1 overview, class mechanics, networks 101
- 2 Ethernet, IP, ARP
- 3 IP routing, tcpdump/ethereal ICMP ping/traceroute
- 4 UDP, BSD sockets, client/servers
- 6 TCP socket programming
- 7 reliable streams, TCP header
- 8 TCP states, flow control, bandwidth-delay
- 9 performance tools
- 10 nagle, delayed ACKs, timers, RTT estimation, TCP slow-start
- 11 TCP congestion control, TCP Tahoe
- 12 TCP Reno, NewReno, SACK, FACK 13 other network programming paradigms,

LECTURES

- 14 Models and measurement
- 15 emulation and simulation
- 17 S-TCP, HSTCP BI-TCP
- 18 Bandwidth estimation, auto-tuning
- 20 AQM, RED, ECN. XCP
- 21 Parallel streams, rate based, UDP
- 22 slow links, asymmetric channels 23 satellites
- 24 Wireless, mobile, ad hoc
- 25 Kernel implementation
- instrumentation, zero copy 27 review

IPP Lecture 27 - 4

The text

- 2. TCP/IP fundamentals
- 3. Measuring performance (tools)
- 4. Network simulation
- 5. TCP modeling
- 6. Wireless nets
- 7. Mobile nets
- 8. Optical nets
- 9. Satellite nets
- 10. Asymmetric nets 11. TCP flavors and ns
- 13. TCP implementation

Appendices: M/M/1 Queues, FreeBSD, Auto-tuning

IPP Lecture 27 - 5

The readings

- Hobbes' Internet history
- CACM '86 Ethernet: Distributed Packet Switching for Local Computer Networks
 RFC 791 | IP
- RFC 768 UDP
- Design philosophy of the DARPA Internet Protocols '88
- RFC 793 TCP
- RFC 1323 window scale, timestamps, PAWS
- Jacobson Congestion Avoidance and Control 1988
- Floyd Simulation-based comparisons of Tahoe, Reno, NewReno, and SACK TCP
- RFC 2581 TCP congestion control
 On the Effective Evaluation of TCP
- bi-tcp
- TCP Vegas: New techniques for congestion detection and avoidance
- effects of parallel TCP sockets
- Faster TCP
- delay-tolerant networking
- An Analysis of TCP Processing Overhead '89 The Transmission Control Protocol

IPP Lecture 27 - 6

The assignments 1. Hello, Internet 2. Tcpdump/ethereal 3. UDP 4. Reliable UDP 5. TCP client/server 6. Brain food 7. Hello ns 8. ns chapter 11 9. ns RTT and RED 10. NewReno with UDP

IPP Lecture 27 - 7

IPP Lecture 27 - 8

- Network tools

Programming TCP • Reliable stream of bytes (readn()) • socket(), bind(), connect(), listen(), accept(), read(), write() Error returns - Can get various timeouts (connect failure, retransmit) - Connection reset · Socket options - SO KEEPALIVE - kernel sends probes on idle socket, early notification of - SO_REUSEADDR - TCP close() can linger awhile, this allows you to restart your server with same port - TCP_NODELAY disable Nagle - TCP_DEBUG (BSD) and TCP_INFO (linux) - SO_SNDBUF SO_RCVBUF . Send and receive buffer sizes Size to bandwidth-delay product IPP Lecture 27 - 11

Modeling TCP

- Congestion control (AIMD)
- Slow-start

- Double cwnd each RTT cwnd ← cwnd+1
- To reach window size of N segments, takes log₂(N)
- Congestion avoidance
 - Increase cwnd by one each RTT
- Each ACK cwnd \leftarrow cwnd + 1/cwnd Inverse sqrt(p) $\frac{MSS\sqrt{3}/2}{RTT\sqrt{p}}$
- Sensitive to MSS and RTT (speed of light)
- Scalable, fair, friendly, stable

Theory, experiment, simulation

- Live internet tests
 - See results in ultimate environment
 - Real TCP stacks/OS, traffic
 - Vary time and host/paths
 - Worry about impact?
- Test beds
 - Controlled traffic, but real OS
 - Usually LAN based, no queuing
 - Repeatable
 - Not very good for cross-traffic

Emulators

- Same as testbed
- Plus control delay, loss, data rates,
- dup's, out-of-order
- Easy to reconfigure Need tools to probe and measure

• Simulations

- Easily reconfigured
 - Complex topology
 - Vary TCP flavor
- Repeatable
- Detailed feedback/instrumentation
- Add delay, loss, cross-traffic, queues
- Randomness for confidence
- Investigate "new" networks/protocols
- cheap
- Can be slow
- Not real TCP

IPP Lecture 27 - 14

Experimental/simulation measurements

Things to consider for both test beds and simulations

- · Learn about good experimental design
 - Adequate tests and confidence intervals
 - Random start times, re-order experiments
 - Anecdotal (illustrate a point) vs prove a point
 - Steady-state, test duration
- · Selecting and configuring your flavor of TCP
 - Tahoe, Reno, Newreno, SACK, FACK ..
 - Window sizes, RTT, timer tick resolution, delayed ACK, Nagle
 - Knowing what your OS is doing: timestamps, window-scaling, Linux
 - Router queue sizes and management (droptail, RED, WFQ, ECN)
- · Selecting competing traffic
 - Bottleneck links
 - Realistic traffic? (bursty, Pareto)
 - Traffic on the reverse path

IPP Lecture 27 - 15

Things that slow us down ...

Physical layer

- Loose connectors
- RF interference
- Collisions
- Slow media or me
- Speed of light
- Backhoe

Link layer - Half/full duplex mismatch

- CRC errors - ARQ (retry)
- Exponential backoff
- Packet reordering
- NIC queues (txquelen) Device (NIC) Driver software
- interrupts

Encapsulation overhead just handling all the layering extra bits in headers

Network layer Fragmentation

- Long routes
- Slow links
- Congestion
- queue overflows (drops) AQM
- Synchronous routing updates?
- Packet reordering (route/Juniper) - Software implementations/bugs
- Firewalls/encryption
- Block ports, ICMP
- Examine/modify packets

IPP Lecture 27 - 16

Things that slow us down ... UDP

- Transport layer (UDP)
 - Some UDP applications (streaming) do not backoff under heavy network load, hurting the other transport protocol (TCP) not "TCP-friendly"
 - RealPlayer audio: 10 pkts/sec (rate-based) 70 kbs
 - 100 users, 7 mbs → 70% of 10mbs ethernet · Star Wars mpeg streaming video 400 kbs
 - DNS lookups can slow a network application
- Hackers use UDP to flood the network (denial of service) · Sending a packet to a remote host
 - 1. ARP for local DNS server (IP address in /etc/resolv.conf) 2. Send DNS query to local DNS (this could take a while)
 - 3. ARP for subnet router
 - 4. Send one or more packets to remote via subnet router and then out into the Internet ..

IPP Lecture 27 - 17

Things that slow us down ... TCP

SNDBUF limits

u

- RCVBUF limits
- NIC speed or bottleneck link speed
- · Slow-start, delayed ACK, Nagle
- · Packet loss and congestion
 - TCP recovery variants (Tahoe to Westwood)
- Queue management Packet reordering
- Slow ACK path (asymmetric net)
- TCP implementation
- · Application "protocol"
- · Recovery rate sensitive to RTT (speed of light) and MSS

IPP Lecture 27 - 18

IPP Lecture 27 - 20

TCPW

BI-TCP

TCP 'n it Read about it Program it Model it Simulate it Measure it Diagnose it Implement it Accelerate it Cuss it Understand it?

finale

- Final in ~dunigan/ipp05/final.pdf
 Take home

 - Open book/notesDue Sunday dec 11 6 pm
- Powerpoint lecture slides in ~dunigan/ipp05/lecsppt.zip

Amen! Hallelujah!

Uľ

IPP Lecture 27 - 31