Exercise 13.4. List all zero-divisors of \mathbb{Z}_{20} . Can you see a relationship between the zero-divisors of \mathbb{Z}_{20} and the units of \mathbb{Z}_{20} ?

Solution. By definition zero-divisor, we wish to find all $a_{\neq 0} \in R = \mathbb{Z}_{20}$ such that $\exists b_{\neq 0} \in R$ where $ab \equiv 0 \pmod{20}$. That is, we wish to find all $a_{\neq 0} \in R$ such that ab = 20n for some $n \in \mathbb{Z}$ where $b_{\neq 0} \in R$. We can rewrite this as

$$ab = 20n \implies \frac{ab}{20} = n.$$

Suppose a is coprime to 20. Then by definition coprime, a and 20 share no common factors. So $2 \nmid a$ and $5 \nmid a$ which implies $2p + 5q \nmid a \forall p, q \in \mathbb{Z}$. That is, a is not divisible by any linear combination of 2 and 5 with integer coefficients, and consequently by any divisor (nor by any multiple) of 20. We know a is an integer, so

$$n = \frac{ab}{20} = a \cdot \frac{b}{20} \in \mathbb{Z} \iff \frac{b}{20} \in \mathbb{Z}.$$

Then $b \equiv 0 \pmod{20}$, but $b \not\equiv 0$ by definition $b \iff$. Thus a must not be coprime to 20.

Suppose a is not coprime to 20. Then by definition coprime, a shares at least one common factor with 20. Let this factor be p. Then a = pq and 20 = pr for some $q, r \in \mathbb{Z}_{20}$. Suppose b = r. Then,

$$ab = 20n \iff pqr = prn \iff r = n.$$

We know $r \in \mathbb{Z}$, so all numbers not coprime to 20 in \mathbb{Z}_{20} are zero-divisors.

So we have that a coprime to $20 \implies a$ not zero-divisor and a not coprime to $20 \implies a$ is zero-divisor. That is, $a \in \mathbb{Z}_{20}$ is a zero divisor $\iff a$ is not coprime to 20. Thus the set of all zero divisors of \mathbb{Z}_{20} is $\{2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18\}$.

The set of zero-divisors of \mathbb{Z}_{20} and the set of units of \mathbb{Z}_{20} are disjoint and form a partition of \mathbb{Z}_{20} .

Exercise 13.24. Find a zero-divisor in $\mathbb{Z}_5[i] = \{a + bi \mid a, b \in \mathbb{Z}_5\}.$

Solution. Let $R = \mathbb{Z}_5[i]$. By definition zero-divisor, $r_{\neq 0} \in R$ is a zero-divisor of R if there exists some $s_{\neq 0} \in R$ such that $rs \equiv 0 \pmod{5}$. Consider the elements r = 2 + i and $\overline{r} = 2 - i$. Notice

$$rs = (2+i)(2-i) = 4-2i+2i+1 = 5+0i \equiv 0 \pmod{5}.$$

Thus r is a zero-divisor of $\mathbb{Z}_5[i]$.

Exercise 13.30. Let d be a positive integer. Prove that $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ is a field.

Solution. Viewed as an element of \mathbb{R} , the multiplicative inverse of any element of the form $a+b\sqrt{d}$ is $1/(a+b\sqrt{d})$. To verify that $\mathbb{Q}[\sqrt{d}]$ is a field, we must show $1/(a+b\sqrt{d})$ can be written in the form $\alpha+\beta\sqrt{d}$. Observe that

$$\frac{1}{a+b\sqrt{d}} = \frac{1}{a+b\sqrt{d}} \cdot \frac{a-b\sqrt{d}}{a-b\sqrt{d}} = \frac{a-b\sqrt{d}}{a^2-ab\sqrt{d}+ab\sqrt{d}-b^2d} = \frac{a}{a^2-b^2d} - \frac{b}{a^2-b^2d}\sqrt{d}.$$

Thus $\mathbb{Q}[\sqrt{d}]$ is a field.

Exercise 13.31. Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab = 1 implies ba = 1.

Solution. We have that $a_{\neq 0}, b_{\neq 0} \in R \implies ab \neq 0$. Suppose ab = 1. Then

$$ab = 1$$

$$aba = a$$

$$aba - a = 0$$

$$a(ba - 1) = 0$$

Notice that a is nonzero, so ba - 1 = 0 and thus ba = 1.

Exercise 13.32. Let $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10. Prove that R is a field.

Solution. By definition field, we need only verify each nonzero element of R has a multiplicative inverse. The nonzero elements of R are $\{2, 4, 6, 8\}$. By Exercise 12.2, we know the unity of R is 6. Thus, we must find some $b \in R$ for each $a \in \mathbb{R}$ such that ab = 6. Then, we can see that

$$2 \cdot 8 = 16 \equiv 6 \pmod{10},$$
 $4 \cdot 4 = 16 \equiv 6 \pmod{10},$ $6 \cdot 6 = 36 \equiv 6 \pmod{10},$ $8 \cdot 2 = 16 \equiv 6 \pmod{10}.$

Thus R is a field.

Exercise 13.42. Construct a multiplication table for $\mathbb{Z}_2[i]$, the ring of Gaussian integers modulo 2. Is this ring a field? Is it an integral domain?

Solution. We know $\mathbb{Z}_2[i] = \{a + bi \mid a, b \in \mathbb{Z}_2\} = \{0, i, 1, 1 + i\}$

Then the multiplication table is

	0	i	1	1+i
0	0	0	0	0
i	0	1 i	i	1+i
1	0	i	1	1+i
1+i	0	1+i	1+i	0

Since $(1+i)^2 = 0$, it is a zero-divisor of $\mathbb{Z}_2[i]$ by definition zero-divisor. Thus $\mathbb{Z}_2[i]$ is not an integral domain by definition integral domain. Thus $\mathbb{Z}_2[i]$ is not a field by definition field.

Exercise 13.43. The nonzero elements of $\mathbb{Z}_3[i]$ form an abelian group of order 8 under multiplication. Is it isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$?

Solution. We know

$$\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\} = \{0, i, 2i, 1, 1 + i, 1 + 2i, 2, 2 + i, 2 + 2i\},\$$

so let $G = \{i, 2i, 1, 1+i, 1+2i, 2, 2+i, 2+2i\}$. By thm, a group isomorphism must preserve the order of elements of the group. Thus we can test the orders of the elements of G to find an isomorphism. Consider the element $\alpha = 1+i$. Notice, $(1+i)^2 = 2i \equiv -i \pmod 3$, so $(1+i)^4 = -1$ and $|\alpha|$ has order 8. By thm, the order of an element of an external direct product is the LCM of the orders of the elements. Then $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ and $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ can not have any elements of order 8, but \mathbb{Z}_8 can. Thus the set of nonzero elements of $\mathbb{Z}_3[i]$ is isomorphic to \mathbb{Z}_8 .

Note (Notation). I will use \leq to denote subring and \triangleleft for ideal.

Exercise 14.4. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

Solution. Consider the set $R = \{(x, x) \mid x \in \mathbb{Z}\}$. Notice

$$(\alpha, \alpha) - (\beta, \beta) = (\alpha - \beta, \alpha - \beta) \in R \tag{1}$$

$$(\alpha, \alpha) \cdot (\beta, \beta) = (\alpha\beta, \alpha\beta) \in R, \tag{2}$$

so $R \leq \mathbb{Z} \oplus \mathbb{Z}$ by the subring test. Consider the elements $a = (\alpha, \alpha) \in R$ and $r = (\beta, \gamma) \in \mathbb{Z} \oplus \mathbb{Z}$ such that $\beta \neq \gamma$. Then,

$$ar = (\alpha, \alpha) \cdot (\beta, \gamma) = (\alpha\beta, \alpha\gamma).$$

We know $\beta \neq \gamma$, so $\alpha\beta \neq \alpha\gamma$. Then $(\alpha\beta, \alpha\gamma) \notin R$ whence $R \not\preceq \mathbb{Z} \oplus \mathbb{Z}$ by the ideal test.

Exercise 14.6. Find all maximal ideals in

a. \mathbb{Z}_8 **b.** \mathbb{Z}_{10}

c. \mathbb{Z}_{12}

d. \mathbb{Z}_n

Solution. a. \mathbb{Z}_8

The proper ideals of \mathbb{Z}_8 are $\langle 0 \rangle = \{0\}$, $\langle 2 \rangle = \{0, 2, 4, 6\}$, and $\langle 4 \rangle = \{0, 4\}$. Since $\langle 0 \rangle \subset \langle 4 \rangle \subset \langle 2 \rangle \subset \mathbb{Z}_8$, $\langle 2 \rangle$ is the only maximal ideal of \mathbb{Z}_8 .

b. \mathbb{Z}_{10}

The proper ideals of \mathbb{Z}_{10} are $\langle 0 \rangle = \{0\}$, $\langle 2 \rangle = \{0, 2, 4, 6, 8\}$, and $\langle 5 \rangle = \{0, 5\}$. Since $\langle 0 \rangle \subset \langle 5 \rangle$, $\langle 2 \rangle \subset \mathbb{Z}_{10}$, $\langle 2 \rangle$ and $\langle 5 \rangle$ are the only maximal ideals of \mathbb{Z}_{10} .

c. Z₁₅

The proper ideals of \mathbb{Z}_{12} are $\langle 0 \rangle = \{0\}$, $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$, $\langle 3 \rangle = \{0, 3, 6, 9\}$, $\langle 4 \rangle = \{0, 4, 8\}$, and $\langle 6 \rangle = \{0, 6\}$. Notice $\langle 0 \rangle \subset \langle 4 \rangle \subset \langle 2 \rangle \subset \mathbb{Z}_{12}$ and $\langle 0 \rangle \subset \langle 6 \rangle \subset \langle 3 \rangle \subset \mathbb{Z}_{12}$. Thus $\langle 2 \rangle$ and $\langle 3 \rangle$ are the only maximal ideals of \mathbb{Z}_{12} .

d. \mathbb{Z}_n

Suppose the prime factorization of n is $n = \prod_{i=1}^m p_i^{k_i}$. I claim¹ the only maximal ideals of \mathbb{Z}_n are $\langle p_1 \rangle, \langle p_2 \rangle, \ldots, \langle p_m \rangle$, the principal ideals generated by the prime factors of n.

Claim 1. First, I claim² that the factor ring $\mathbb{Z}_n / \langle d \rangle$ is isomorphic to $\mathbb{Z}_{n/d}$.

Claim 2. By definition isomorphism, we must show there exists a bijective homomorphism $\phi: \mathbb{Z}_n / \langle d \rangle \to \mathbb{Z}_{n/d}$. Consider the mapping $\phi: \mathbb{Z}_n / \langle d \rangle \to \mathbb{Z}_{n/d}$ such that $\phi(a + \langle d \rangle) = a \mod \frac{n}{d}$. By definition homomorphism, we must show that $\phi(a) + \phi(b) = \phi(a+b)$. Consider the elements $a + \langle d \rangle, b + \langle d \rangle \in \mathbb{Z}_n / \langle d \rangle$. Then

$$\phi(a) + \phi(b) = \left(a \mod \frac{n}{d}\right) + \left(b \mod \frac{n}{d}\right)$$
$$= (a+b) \mod \frac{n}{d}$$
$$= \phi(a+b).$$

Thus ϕ is a homomorphism. To show ϕ is bijective, we must show ϕ is both injective and surjective.

To see that ϕ is surjective, we must ensure every element in $\mathbb{Z}_{n/d}$ is mapped to by some element in $\mathbb{Z}_n / \langle d \rangle$. Consider any $c \in \mathbb{Z}_{n/d}$. Then, let $a \in \mathbb{Z}_n$ such that $a \mod d = a \mod \frac{n}{d} = c$. Then $\phi(a + \langle d \rangle) = a \mod \frac{n}{d} = c$. Thus ϕ is surjective.

To see that ϕ is injective, suppose we have $a + \langle d \rangle, b + \langle d \rangle \in \mathbb{Z}_n / \langle d \rangle$ such that $\phi(a + \langle d \rangle) = \phi(b + \langle d \rangle)$. Then,

$$\phi(a+\langle d\rangle)=\phi(b+\langle d\rangle) \Longleftrightarrow \ a \mod \frac{n}{d}=b \mod \frac{n}{d} \Longleftrightarrow \ a\equiv b \pmod \frac{n}{d} \Longleftrightarrow \ a\equiv b \pmod d$$

We know it is a property of cosets that $aH = bH \iff a \in bH$. Thus,

$$a + \langle d \rangle = b + \langle d \rangle \iff a \in b + \langle d \rangle \iff a = b + dx, \ x \in \mathbb{Z}_n \iff a \equiv b \pmod{d}$$

Thus $\phi(a+\langle d\rangle)=\phi(b+\langle d\rangle) \iff a+\langle d\rangle=b+\langle d\rangle$ implies ϕ is injective, whence ϕ is an isomorphism from $\mathbb{Z}_n/\langle d\rangle$ to $\mathbb{Z}_{n/d}$.

By Example 13.6 and Corollary 13.2.1, the ring $\mathbb{Z}_{n/d} \cong (\mathbb{Z}_n / \langle d \rangle)$ is a field $\iff \frac{n}{d}$ is prime. By Theorem 14.4, the factor ring $\mathbb{Z}_n / \langle d \rangle$ is a field $\iff \langle d \rangle$ is a maximal ideal of \mathbb{Z}_n . Thus, $\langle d \rangle$ is a maximal ideal of $\mathbb{Z}_n \iff \frac{n}{d}$ is prime.

Exercise 14.10. If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b \mid a \in A, b \in B\}$, is an ideal.

Solution. Let A and B be ideals of some ring R. By definition ideal, $ra, ar \in A$ for any $a \in A$, $r \in R$. Similarly $rb, br \in B$ for any $b \in B$, $r \in R$. Consider the element $a+b \in A+B$ and pick any $r \in R$. Then r(a+b) = ra+rb and (a+b)r = ar+br by properties of multiplication. Since $ra \in A$ and $rb \in B$, $ra+rb \in A+B$. Similarly, $ar+br \in A+B$. Thus A+B is an ideal of R by def ideal.

Exercise 14.11. In the ring of integers, find a positive integer a such that

a.
$$\langle a \rangle = \langle 2 \rangle + \langle 3 \rangle$$

b.
$$\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$$

c.
$$\langle a \rangle = \langle m \rangle + \langle n \rangle$$

Solution. **a.** $\langle a \rangle = \langle 2 \rangle + \langle 3 \rangle$

By definition of principal ideal, $\langle 2 \rangle = \{2k \mid k \in \mathbb{Z}\}$ and $\langle 3 \rangle = \{3k \mid k \in \mathbb{Z}\}$. So any element $\gamma \in \langle 2 \rangle + \langle 3 \rangle$ must be of the form $\gamma = 2\alpha + 3\beta$, where $\alpha, \beta \in \mathbb{Z}$. We know 2 and 3 are both prime and are thus relatively prime, so by Bezout's Identity there exist integers s, t such that 2s + 3t = 1. Notice that for any $k \in \mathbb{Z}$,

$$k = k(2s + 3t) = 2ks + 3kt$$

by properties of multiplication. Thus we can generate any integer k by letting $\alpha = ks$ and $\beta = kt$. Thus $\langle 2 \rangle + \langle 3 \rangle = \mathbb{Z} = \langle 1 \rangle$ and $\alpha = 1$.

b. $\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$

By definition of principal ideal, $\langle 6 \rangle = \{6k \mid k \in \mathbb{Z}\}$ and $\langle 8 \rangle = \{8k \mid k \in \mathbb{Z}\}$. So any element $\gamma \in \langle 6 \rangle + \langle 8 \rangle$ must be of the form $\gamma = 6\alpha + 8\beta$, where $\alpha, \beta \in \mathbb{Z}$. Notice that while 6 and 8 are not relatively prime,

$$\gamma = 6\alpha + 8\beta = 2(3\alpha + 4\beta)$$

where $3\alpha+4\beta\in\langle3\rangle+\langle4\rangle$. Let us momentarily switch our attention to finding some b such that $\langle b\rangle=\langle3\rangle+\langle4\rangle$. Since 3 and 4 are relatively prime, we can the same logic as in part a to find that $\langle b\rangle=\langle1\rangle$. Thus, $\langle6\rangle+\langle8\rangle=2\mathbb{Z}=\langle2\rangle$ and a=2.

c. $\langle a \rangle = \langle m \rangle + \langle n \rangle$

By definition of principal ideal, $\langle m \rangle = \{mk \mid k \in \mathbb{Z}\}$ and $\langle n \rangle = \{nk \mid k \in \mathbb{Z}\}$. So any element $\gamma \in \langle m \rangle + \langle n \rangle$ must be of the form $\gamma = m\alpha + a\beta$, where $\alpha, \beta \in \mathbb{Z}$. If m and n relatively prime, then we can follow the proof of part a and we are done. Suppose m and n are not relatively prime. That is, $\gcd(m,n) = d > 1$. So any element $\gamma \in \langle m \rangle + \langle n \rangle$ must be of the form $\gamma = m\alpha + n\beta$. Notice that

$$\gamma = m\alpha + n\beta = d\left(\frac{m}{d}\alpha + \frac{n}{d}\beta\right),\,$$

where $\frac{m}{d}$ and $\frac{n}{d}$ have no common divisors by definition of GCD and are thus coprime. Thus by part a, $\langle \frac{m}{d} \rangle + \langle \frac{n}{d} \rangle = \langle 1 \rangle = \mathbb{Z}$. Thus $\langle m \rangle + \langle n \rangle = d\mathbb{Z} = \langle d \rangle$ and $a = d = \gcd(m, n)$.

Exercise 14.12. If A and B are ideals of a ring, show that the *product* of A and B, $AB = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid a_i \in A, b_i \in B, n \in \mathbb{Z}_{>0}\}$, is an ideal.

Solution. Let A and B be ideals of some ring R. To show $AB = \{\sum_{i=1}^n a_i b_i \mid a_i \in A, b_i \in B, n \in \mathbb{Z}_{>0}\}$ is an ideal of R, we use the ideal test. Suppose we have some $x, y \in AB$. By def AB,

$$x = \sum_{i=1}^{n} a_i b_i$$
 $y = \sum_{j=1}^{m} a'_j b'_j$,

where $a_i, a'_j \in A$ and $b_i, b'_j \in B$. Since x and y are arbitrary, let n < m. Then,

$$x - y = \sum_{i=1}^{n} a_i b_i - \sum_{j=1}^{m} a'_j b'_j$$

$$= a_1 b_1 + a_2 b_2 + \dots + a_n b_n - a'_1 b'_1 - a'_2 b'_2 - \dots - a_m b_m$$

$$= (a_1 b_1 - a'_1 b'_1) + (a_2 b_2 - a'_2 b'_2) + \dots + (a_n b_n - a_n b_n) - a'_{n+1} b'_{n+1} - \dots - a'_m b'_m$$

$$= \sum_{i=1}^{n} (a_i + a'_i)(b_i - b'_i) - \sum_{j=n+1}^{m} a'_j b'_j.$$

Since A and B are ideals, they are closed under addition/subtraction and we can write $a_i + a_i' = a_i'' \in A$ and $b_i - b_i' = b_i'' \in B$. Then,

$$x - y = \sum_{i=1}^{n} a_i'' b_i'' - \sum_{j=n+1}^{m} a_j' b_j'$$
$$= \sum_{i=1}^{n} a_i'' b_i'' + \sum_{j=n+1}^{m} (-a_j') b_j' \in AB.$$

Thus AB is closed under subtraction. Let $x \in AB$ and $r \in R$. By definition,

$$x = \sum_{i=1}^{n} a_i b_i,$$

where $a_i \in A$ and $b_i \in B$. Since A and B are ideals, $ra_i = \overline{a_i} \in A$ and $b_i r = \overline{b_i} \in B$ for all $r \in R$ by definition ideal. Then,

$$rx = r\left(\sum_{i=1}^{n} a_i b_i\right) = \sum_{i=1}^{n} ra_i b_i = \sum_{i=1}^{n} \overline{a_i} b_i \in AB$$
$$xr = \left(\sum_{i=1}^{n} a_i b_i\right) r = \sum_{i=1}^{n} a_i b_i r = \sum_{i=1}^{n} a_i \overline{b_i} \in AB.$$

So $rx, xr \in AB$ for every $x \in AB$ and every $r \in R$. Thus AB is an ideal of R by the ideal test.

Exercise 14.13. Find a positive integer a such that

- **a.** $\langle a \rangle = \langle 3 \rangle \langle 4 \rangle$
- **b.** $\langle a \rangle = \langle 6 \rangle \langle 8 \rangle$
- **c.** $\langle a \rangle = \langle m \rangle \langle n \rangle$

Solution. **a.** $\langle a \rangle = \langle 3 \rangle \langle 4 \rangle$

Elements of $\langle 3 \rangle \langle 4 \rangle$ are of the form

$$\sum_{i=1}^{n} 3\alpha_{i} 4\beta_{i} = \sum_{i=1}^{n} 12\alpha_{i} \beta_{i} = 12 \sum_{i=1}^{n} \alpha_{i} \beta_{i} = 12s \in \langle 12 \rangle,$$

where $\alpha_i, \beta_i \in \mathbb{Z}$ and $s = \sum_{i=1}^n \alpha_i \beta_i$. So, $\langle 3 \rangle \langle 4 \rangle \subseteq \langle 12 \rangle$. Also since $12 \in \langle 3 \rangle \langle 4 \rangle$, we have that $\langle 12 \rangle \subseteq \langle 3 \rangle \langle 4 \rangle$. Thus $\langle 3 \rangle \langle 4 \rangle = \langle 12 \rangle$ and a = 12.

b. $\langle a \rangle = \langle 6 \rangle \langle 8 \rangle$ Elements of $\langle 6 \rangle \langle 8 \rangle$ are of the form

$$\sum_{i=1}^{n} 6\alpha_{i} 8\beta_{i} = \sum_{i=1}^{n} 48\alpha_{i} \beta_{i} = 48 \sum_{i=1}^{n} \alpha_{i} \beta_{i} = 48s \in \langle 48 \rangle,$$

where $\alpha_i, \beta_i \in \mathbb{Z}$ and $s = \sum_{i=1}^n \alpha_i \beta_i$. So, $\langle 6 \rangle \langle 8 \rangle \subseteq \langle 48 \rangle$. Also since $48 \in \langle 6 \rangle \langle 8 \rangle$, we have that $\langle 48 \rangle \subseteq \langle 6 \rangle \langle 8 \rangle$. Thus $\langle 6 \rangle \langle 8 \rangle = \langle 48 \rangle$ and a = 48.

c. $\langle a \rangle = \langle m \rangle \langle n \rangle$ Elements of $\langle m \rangle \langle n \rangle$ are of the form

$$\sum_{i=1}^{n} m\alpha_{i}n\beta_{i} = \sum_{i=1}^{n} mn\alpha_{i}\beta_{i} = mn\sum_{i=1}^{n} \alpha_{i}\beta_{i} = mns \in \langle mn \rangle,$$

where $\alpha_i, \beta_i \in \mathbb{Z}$ and $s = \sum_{i=1}^n \alpha_i \beta_i$. So, $\langle m \rangle \langle n \rangle \subseteq \langle mn \rangle$. Also since $mn \in \langle m \rangle \langle n \rangle$, we have that $\langle mn \rangle \subseteq \langle m \rangle \langle n \rangle$. Thus $\langle m \rangle \langle n \rangle = \langle mn \rangle$ and a = mn.

Exercise 14.14. Let A and B be ideals of a ring. Prove that $AB \subseteq A \cap B$.

Solution. Let A and B be ideals of a ring R. Let $x \in AB$. By definition of AB, we can write

$$x = \sum_{i=1}^{n} a_i b_i,$$

where $a_i \in A$ and $b_i \in B$. We wish to show $x \in A$ and $x \in B$. Since A and B are ideals of B, $a \in A$ and likewise for B. Then each term a_ib_i can be written a_ir or a_ir or a_ir where a_ir or a_ir and a_ir ideal, a_ir idea