

HatcherNotes

ru6by

October 21, 2025

Chapter 1

Fundamental Group of Circle

1.1 Homotopy Definitions

In this section we provide all the definition , lemmas and theorems regarding homotopies. At the end we provide the definition of Fundamental Group of Topological Space and proof that it has a group structure.

Definition 1 (Homotopy of maps). Let X,Y be topological spaces. We say that maps $f,g:X\to Y$ are homotopic $(f\simeq g)$ iff there exists a continuous map $H:X\times I\to Y$ such that for any $x\in X$

$$H(x,0) = f(x)$$
 and $H(x,1) = g(x)$

.

Definition 2 (Path). A path between points $x, y \in X$ is a continuous function $\gamma: I \to X$ such that

$$\gamma(0) = x$$
 and $\gamma(1) = y$

Definition 3 (Loop). def:path

A loop is a path where x = y

Definition 4 (Homotopy of Paths). def:path, def:homotopy

We say that two paths γ_1, γ_2 ($\gamma_1 \simeq_p \gamma_2$) from x to y are homotopic iff there exists homotopy map $H: I \times I \to X$ such that H is homotopy of γ_1, γ_2 and for all $t \in I$ function $H(\cdot, t)$ is a path from x to y.

Lemma 5 (All paths from x to y in \mathbb{R}^n are Homotopic). $def:path_homotopy$ Any two paths γ_1, γ_2 from x to y in \mathbb{R}^n are homotopic.

Theorem 6 (Homotopy is equivalence relation). *def:homotopy* $Relation \simeq is \ an \ equivalence \ relation.$

Theorem 7 (Homotopy of paths is equivalence relation). $thm:homotopy_equiv, def: path_homotopy$

Relation \simeq_p of paths is an equivalence relation.

Definition 8 (Composition of paths). def:path

Given to paths γ_1, γ_2 we definte $\gamma_1 \cdot \gamma_2$ by the formula:

$$\gamma_1 \cdot \gamma_2(t) = \begin{cases} \gamma_1(2s), & \text{if } t \le \frac{1}{2}, \\ \gamma_2(1-2s), & \text{if } t \ge \frac{1}{2} \end{cases}$$

Definition 9 (Inverse of paths). def:path

Given to paths γ we definte $\bar{\gamma}$ (inverse of γ) by the formula:

$$\bar{\gamma}(t) = \gamma(1-t)$$

Lemma 10 (Composition of paths is a path). def:path,def:pathcomposition Composition of paths is a path (The map given by ?? is continues)

Lemma 11 (Inverse of paths is a path). def:path,def:pathinverse Inverse of path is a path (The map given by ?? is continues)

 $\textbf{Lemma 12} \ (\textbf{Composition of paths depend on homotopy class}). \ \textit{def:path, def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition, def:path_composition}, \textit{def:path_composition, def:path_composition}, \textit{def:path_composition}, \textit{def:path_composition}, \textit{def:path_composition}, \textit{def:path_com$

If $f_0 \simeq_p f_1$ and $g_0 \simeq_p g_1$ then $f_0 \cdot g_0 \simeq_p ath f_1 \cdot g_1$

Lemma 13 (Inverse of paths depend on homotopy class). def:path, $def:path_inverse$, $def:path_homotopy$, $thm:path_homotopy_equiv$

If f_0, f_1 are to homotopic paths then \bar{f}_0, \bar{f}_1 are also homotopic.

Theorem 14 (Homotopy of loops is equvialence relation). $thm:path_homotopy_equiv, def: path_homotopy$

Relation \simeq_l of loops is an equivalence relation. (We use \simeq to simplify notation)

Lemma 15 (Composition of loops is a loop). def:loop, $lem:path_comp_path$ Composition of loops is a loop.

Lemma 16 (Inverse of loop is a loop). def:loop,def:path_inverse_path Inverse of loop is a loop (The map given by ?? is continues)

Lemma 17 (Composition of loops depend on homotopy class). $lem:loop_comp_loop, lem: path_comp_homoclass, thm: <math>loop_homotopy_equiv$

If $f_0 \simeq_p f_1$ and $g_0 \simeq_p g_1$ then $f_0 \cdot g_0 \simeq_p f_1 \cdot g_1$

Lemma 18 (Inverse of loops depend on homotopy class). $lem:loop_inverse_loop, lem: path_inverse_homoclass, thm: <math>loop_homotopy_equiv$

If f_0, f_1 are to homotopic loops then f_0, f_1 are also homotopic.

Definition 19 (Fundamental Group). lem:loop_comp_homoclass, lem: loop_inverse_homoclass We definite the fundamental group of $(\pi_1(X, x_0), \cdot)$ as the set of equvialence classes of relation \simeq with the operation \cdot - composition of loops **Lemma 20** (Composition is associative). def: fundamental_g roup The operation \cdot is associative.

Lemma 21 (Composition has natural element). $def:fundamental_group$ There is an neutral element of \cdot , which is $[const_{x_0}]_{\simeq}$

Lemma 22 (Composition has inverse). def:fundamental_group For every element of $\pi_1(X, x_0)$ there exists an inverse such that: $[f] \cdot [g] = [const_{x_0}]$

Theorem 23 (Fundamental Group is a Group). $lem:loop_comp_inv, lem:loop_comp_neutral, lem: <math>loop_comp_assoc$

The fundamental group is a group

Theorem 24 (Fundamental Group of \mathbb{R}^n). $thm:fundamental_group_is_group, lem: <math>Rn_path_equiv_lemma$

The fundamental group of \mathbb{R}^n is trivial

1.2 Fundamental Group properties

Definition 25 (β_h map). def:fundamental_g roup Given a path h from x_0 to x_1 we definie a map $\beta_h: \pi_1(X,x_0) \to \pi_1(X,x_1)$ as

$$\beta_h([\gamma]) = [h \cdot \gamma \cdot \bar{h}]$$

Lemma 26 (β_h map is well definied). $def:beta_{hm}ap$ $Map \ \beta_h$ is well definied.

Lemma 27 (β_h map is isomorphism of groups). $def:beta_{hm}ap$ $Map \beta_h$ is an isomorphism.

Lemma 28 (Fundamental Group doesn't depend on base point). $lem:beta_{hm}ap_iso$ For path connected space fundamental groups based on x_0, x_1 are isomorphic.