Econometrics January 28, 2023

Topic 3: Moving the Goalposts Approach

by Sai Zhang

Key points:

•

Disclaimer: These notes are written by Sai Zhang (email me or check my Github page). The main references for this topic are Armstrong et al. (2020); Armstrong and Kolesár (2018), I thank Prof. Armstrong for his valuable advice.

3.1 Finite Sample Bias-Variance Tradeoffs

3.1.1 **Setup**

Consider the fixed design regression model

$$y_i = w_i \beta(z_i) + h(z_i) + \epsilon_i \tag{3.1}$$

where

- w_i, z_i are treated as **fixed**
- ϵ_i is independent, with $\mathbb{E}\left[\epsilon_i\right] = 0$, $\mathbb{E}\left[\epsilon_i^2\right] = \sigma_i^2$
- observation: $\left\{ \left(y_i, w_i, z_i' \right)' \right\}_{i=1}^n$

one example is the case where w_i is **binary**, then

$$\beta(z) = f(1, z) - f(0, z)$$

which is just the ATE conditional on z under the unconfoundedness assumption. This includes the RD design, where z_i is the running variable and w_i is the treatment assignment.

Now, consider for the weighted average treatment effect

$$L_{\mu}\left[\beta(\cdot)\right] = \int \beta(z) \mathrm{d}\mu(z)$$

where $\int \mu(z) = 1$ is a **signed** measure (weight, allowing **negative** weights), construct a linear estimator

$$\hat{L}_a = \sum_{i=1}^n a_i y_i$$

where the estimation weights a_i can depend on $\{z_i, w_i, \sigma_i^2\}_{i=1}^n$, but **not** on y_i . Together, the bias of \hat{L}_a for $L_{\mu}\left[\beta(\cdot)\right]$, given the regression function $\beta(\cdot)$, $h(\cdot)$, is

$$\mathbb{E}_{\beta(\cdot),h(\cdot)}\left[\hat{L}_a\right] - L_{\mu}\left[\beta(\cdot)\right] = \sum_{i=1}^n a_i \left[w_i\beta(z_i) + h(z_i)\right] - \int \beta(z) \mathrm{d}\mu(z)$$

and its variance, given the regression function $\beta(\cdot)$, $h(\cdot)$, is just

$$\operatorname{Var}_{\beta(\cdot),h(\cdot)}\left[\hat{L}_{a}\right] = \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$$

To bound the bias, assume $h(\cdot)$ is known to belong in a class of functions \mathcal{H} , then two approaches can be adopted, for the regularity of $\beta(\cdot)$ and the choice of $\mu(\cdot)$:

1 arbitrary $\beta(\cdot)$, optimizing weights μ by *moving the goalposts*, s.t. $L_{\mu}\left[\beta(\cdot)\right]$ is easy to estimate (Crump et al., 2006; Imbens and Wager, 2019) which gives the worst-case bias

$$\inf_{\mu} \sup_{\beta(\cdot),h(\cdot)} \left| \sum_{i=1}^{n} a_i \left[w_i \beta(z_i) + h(z_i) \right] - \int \beta(z) d\mu(z) \right| \qquad \text{s.t. } h(\cdot) \in \mathcal{H}, \int d\mu(z) = 1 \qquad (3.2)$$

2 assume constant treatment effects, i.e., $\beta(z) = \beta$, $\forall z$, which means that $L_{\mu} \left[\beta(\cdot) \right] = \beta$ regardless of μ (Armstrong et al., 2020), and the worst-case bias is

$$\sup_{\beta,h(\cdot)} \left| \sum_{i=1}^{n} a_i \left[w_i \beta + h(z_i) \right] - \beta \right| \qquad \text{s.t. } h(\cdot) \in \mathcal{H}$$
 (3.3)

And, the two approaches can be linked as such:

• If $\sum_{i=1}^{n} a_i w_i = 1$, 3.2 and 3.3 are both equal to

$$\sup_{h(\cdot)} \left| \sum_{i=1}^{n} a_i h(z_i) \right| \text{ s.t. } h(\cdot) \in \mathcal{H}$$
 (3.4)

- 3.2 automatically equals 3.4
- 3.3 is optimized (w.r.t. μ) by setting μ to place weight $a_i w_i$ on observation i, i.e., $\mu(\mathcal{Z}) = \sum_{i:z_i \in \mathcal{Z}} a_i w_i$, which implies $\sum_{i=1}^n a_i w_i \beta(z_i) \int \beta(z) d\mu(z) = 0$, hence the equality.
- Otherwise, 3.2 and 3.3 are both infinite:
 - 3.3 can be made arbitrarily large by choosing large enough β
 - 3.2 can be made arbitrarily large by making $\beta(\cdot)$ constant (as in 3.3) and large enough

3.1.2 Moving-the-goalpost Approach

3.1.3 Constant-treatment-effect Approach

Armstrong et al. (2020) adopt this approach, focusing on the case where $h(\cdot)$ is a high dimensional linear function, and the penalty function is an l_p norm of the coefficients.

Basic setting: Homoskedastic Gaussian errors

First, consider

$$Y = w\beta + Z\gamma + \epsilon \tag{3.5}$$

where

- $\beta \in \mathbb{R}$ is the constant treatment effect to be estimated
- $\gamma \in \Gamma$ is the control coefficients, subject to the restriction (i.e., the function class \mathcal{H})

$$\Gamma = \Gamma(C) = \left\{ \gamma \in \mathcal{G} : \text{Pen}(\gamma) \le C \right\}$$
(3.6)

where $Pen(\cdot)$ is a seminorm¹ on some linear subspace \mathcal{G} of \mathbb{R}^k .

- $w = (w_1, \dots, w_n)' \in \mathbb{R}^n$ and $Z = (z_1', \dots, z_n')' \in \mathbb{R}^{n \times k}$ are defined as before
- $\epsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ is assumed **normal and homoskedastic**, with σ^2 known

For estimation, the goal is to construct estimators and CIs for β :

• estimator $\hat{\beta}$: consider the worst-case performance over the parameter space $\mathbb{R} \times \Gamma$ under the **MSE** criterion

$$R_{MSE}\left(\hat{\beta};\Gamma\right) = \sup_{\beta \in \mathbb{R}, \gamma \in \Gamma} \mathbb{E}_{\beta,\gamma}\left[\left(\hat{\beta} - \beta\right)^{2}\right]$$

• for CIs, we have 2 requirements:

A **coverage**: A $100 \cdot (1 - \alpha)\%$ CI with half-length $\hat{\chi} = \hat{\chi}(Y, X)$ is an interval $\{\hat{\beta} \pm \hat{\chi}\}$ s.t.

$$\inf_{\beta \in \mathbb{R}, \gamma \in \Gamma} P_{\beta, \gamma} \left(\beta \in \left\{ \hat{\beta} \pm \hat{\chi} \right\} \right) \ge 1 - \alpha$$

B <u>length</u>: the exepcted length of a CI $\mathbb{E}_{\beta,\gamma}$ [2 $\hat{\chi}$] should be as short as possible notice that length-optimized CIs are **not** necessarily centered at an MSE-centered $\hat{\beta}$.

Linear estimators and CIs

Again, consider estimators that are **linear** in the outcomes Y, $\hat{\beta} = a'Y$, where a is the n-vector weights. In the vector form, the worst-case bias (as 3.3) is

$$\overline{\operatorname{bias}}_{\Gamma}(\hat{\beta}) = \sup_{\beta \in \mathbb{R}, \gamma \in \Gamma} a'(w\beta + Z\gamma) - \beta \tag{3.7}$$

and the variance, under the assumption of homoskedasticity, is

$$\operatorname{Var}\left(\hat{\beta}\right) = \sigma^2 a' a$$

Then the MSE is

$$R_{MSE}\left(\hat{\beta};\Gamma\right) = \sup_{\beta \in \mathbb{R}, \gamma \in \Gamma} \mathbb{E}_{\beta,\gamma}\left[\left(\hat{\beta} - \beta\right)^{2}\right] = \overline{\operatorname{bias}}_{\Gamma}\left(\hat{\beta}\right)^{2} + \operatorname{Var}\left(\hat{\beta}\right)$$

The t-statistic is

$$\frac{\hat{\beta} - \beta}{\sqrt{\operatorname{Var}(\hat{\beta})}} \sim \mathcal{N}(b, 1), |b| \leq \frac{\overline{\operatorname{bias}}_{\Gamma}(\hat{\beta})}{\sqrt{\operatorname{Var}(\hat{\beta})}}$$

and a two-sided CI can then be formed as

$$\hat{\beta} \pm \chi$$
, where $\chi = \sqrt{\operatorname{Var}(\hat{\beta})} \cdot \operatorname{cv}_{\alpha} \left(\frac{\overline{\operatorname{bias}}_{\Gamma}(\hat{\beta})}{\sqrt{\operatorname{Var}(\hat{\beta})}} \right)$ (3.8)

and the $\text{cv}_{\alpha}(B)$ denotes the $1 - \alpha$ quantile of a $|\mathcal{N}(B, 1)|$. This is a **fixed-length confidence interval** (FLCI), with a fixed length of 2χ . It depends on X and σ^2 , but not on Y or $(\beta, \gamma)'$.

¹Seminorm satisfies **triangle inequality** Pen $(\gamma + \tilde{\gamma}) \le \text{Pen}(\gamma)$ and **homogeneity** Pen $(c\gamma) = |c| \text{Pen}(\gamma)$, $\forall c$, but **NOT** necessarily positive definite (Pen(γ) = 0 does not imply γ = 0). Essentially, any convex set Γ that is symmetric satisfies this definition.

Optimal weights

We have two optimization goals

- minimizing MSE: $R_{MSE}\left(\hat{\beta};\Gamma\right) = \overline{\mathrm{bias}}_{\Gamma}\left(\hat{\beta}\right)^{2} + \mathrm{Var}\left(\hat{\beta}\right)$
- minimizing CI length: $\chi = \sqrt{\operatorname{Var}\left(\hat{\beta}\right)} \cdot \operatorname{cv}_{\alpha}\left(\overline{\operatorname{bias}}_{\Gamma}\left(\hat{\beta}\right) / \sqrt{\operatorname{Var}\left(\hat{\beta}\right)}\right)$

They both increasing in $Var(\hat{\beta})$ and $\overline{bias}_{\Gamma}(\hat{\beta})$, hence to find the optimal weights, it suffices to minimize variance subject to a bound B on worst-case bias, which can be written as:

$$\min_{a \in \mathbb{R}} a'a \text{ s.t. } \sup_{\beta \in \mathbb{R}, \gamma \in \Gamma} a' \left(w\beta + Z\gamma \right) - \beta \le B$$
(3.9)

The optimal weight is then given by:

Theorem 3.1.1: Optimal Weight

Let π_{λ}^* be a solution to^a

$$\min_{\pi} ||w - Z\pi||_2^2 \text{ s.t. } Pen(\pi) \le t_{\lambda}$$
 (3.10)

and suppose that $||w - Z\pi||_2 > 0$, Pen(·) is continuous, then the optimal weight solving 3.9 is

$$a_{\lambda}^{*} = \frac{w - Z\pi_{\lambda}^{*}}{\left(w - Z\pi_{\lambda}^{*}\right)'w}$$

with the bound

$$B = \frac{C}{t_{\lambda}} \cdot \frac{\left(w - Z\pi_{\lambda}^{*}\right)' Z\pi_{\lambda}^{*}}{\left(w - Z\pi_{\lambda}^{*}\right)' w}$$

Consequently, we have

estimator

$$\hat{\beta}_{\lambda} = a_{\lambda}^{*} Y = \frac{\left(w - Z \pi_{\lambda}^{*}\right)' Y}{\left(w - Z \pi_{\lambda}^{*}\right)' w}$$

· worst-case bias

$$\overline{\mathrm{bias}}_{\Gamma}\left(\hat{\beta}_{\lambda}\right) = C\overline{B}_{\lambda} = \frac{C}{\mathrm{Pen}\left(\pi_{\lambda}^{*}\right)} \frac{\left(w - Z\pi_{\lambda}^{*}\right)' Z\pi_{\lambda}^{*}}{\left(w - Z\pi_{\lambda}^{*}\right)' w}$$

variance of estimator

$$V_{\lambda} = \frac{\sigma^2 \|w - Z\pi_{\lambda}^*\|_2^2}{\left[\left(w - Z\pi_{\lambda}^*\right)'w\right]^2}$$

This result follows by applying Donoho (1994), Low (1995) and Armstrong and Kolesár (2018), rewriting 3.9

^aThis regression can be referred to as a regularized propensity score regression (but w_i need not be binary) with penalty $Pen(\pi)$

as a convex optimization problem.

A Proofs

A.1 Proof of Theorem 3.1.1

Following Armstrong and Kolesár (2018, Equation (25)), the modulus of continuity is given by

$$\omega(\delta) = \sup_{\beta, \gamma} 2\beta$$
 s.t. $\|w\beta + Z\gamma\|_2 \le \frac{\delta}{2}$, $\operatorname{Pen}(\gamma) \le C$

Introducing a substitution (rescaling γ by β) $\pi = -\frac{\gamma}{\beta}$, get

$$\omega(\delta) = \sup_{\beta, \pi} 2\beta \qquad \text{s.t. } \beta \|w - Z\pi\|_2 \le \frac{\delta}{2}, \qquad \beta \text{Pen}(\pi) \le C \qquad (3.11)$$

recall the optimization problem in Theorem 3.1.1:

$$\min_{\pi} ||w - Z\pi||_2^2 \text{ s.t. } \operatorname{Pen}(\pi) \le t_{\lambda}$$

We can relate the two problems via the following logic: we want to make $||w - Z\pi||_2$ and Pen(π) small so that large values of β satisfy the constraint of 3.11. Formally:

Lemma A.1

- If $\exists \pi \in \mathcal{G}$ s.t. $w = Z\pi$ and $Pen(\pi) = 0$, then $w(\delta) = \infty, \forall \delta \geq 0$
- (automatic)

- Otherwise:
- (i) $\forall \delta > 0$, the problem 3.11 has a solution β_{δ}^{mod} , π_{δ}^{mod} with $\beta_{\delta}^{mod} > 0$. For $t_{\lambda} = \frac{C}{\beta_{\delta}^{mod}} = \frac{2C}{w(\delta)}$, π_{δ}^{mod} is also a solution to the penalized regression (3.10)

$$\min_{\pi} ||w - Z\pi||_2^2 \text{ s.t. } \operatorname{Pen}(\pi) \le t_{\lambda}$$

with optimized objective

$$||w - Z\pi||_2 = \frac{\delta}{2\beta_{\delta}^{mod}} = \frac{\delta}{w(\delta)} > 0$$

(ii) $\forall t_{\lambda} > 0$, the penalized regression above has a solution π_{λ}^{\star} . Setting

$$\beta_{\lambda}^* = \frac{C}{t_{\lambda}}$$

$$\delta_{\lambda} = 2\beta_{\lambda}^* ||w - Z\pi||_2 = \frac{2C}{t_{\lambda}} ||w - Z\pi||_2$$

the pair $\left(\beta_{\lambda}^{*}, \pi_{\lambda}^{*}\right)$ solves the modulus problem 3.11 at $\delta = \delta_{\lambda}$, with optimized objective $w(\delta_{\lambda}) = \frac{2C}{t_{\lambda}}$, as long as $\|w - Z\pi\|_{2} > 0$

Proof of Lemma A.1: we prove the lemma with the following steps:

A the penalized problem 3.10 has a solution:

Let $\mathcal{G}^{(0)}$ denote the linear subspace of vectors $\pi \in \mathcal{G}$ s.t. $Z\pi = 0$, $\text{Pen}(\pi) = 0$; let $\mathcal{G}^{(1)}$ be a subspace s.t. $\mathcal{G} = \mathcal{G}^{(0)} \oplus \mathcal{G}^{(1)}$. Then, we can write $\pi \in \mathcal{G}$ uniquely as $\pi = \pi^{(0)} + \pi^{(1)}$ where $\pi^{(0)} \in \mathcal{G}^{(0)}$, $\pi^{(1)} \in \mathcal{G}^{(1)}$.

Therefore, we have $Z\pi = Z\pi^{(1)}$, and

$$\frac{\text{Pen}(\pi^{(1)}) = \text{Pen}(\pi^{(1)}) - \text{Pen}(-\pi^{(0)}) \le \text{Pen}(\pi)}{\text{Pen}(\pi^{(1)}) = \text{Pen}(\pi^{(1)}) + \text{Pen}(\pi^{(0)}) \ge \text{Pen}(\pi)} \Rightarrow \text{Pen}(\pi^{(1)}) = \text{Pen}(\pi)$$

THen, 3.10 can be written in terms of $\pi^{(1)} \in \mathcal{G}^{(1)}$ only. The level sets of this optimization problem are bounded and closed (by continuity of the seminorm Pen(·)), so it has a solution, which is also the solution to the original problem.

B the modulus problem 3.11 has a solution: for the problem 3.11, feasible values of β are bounded as:

$$\beta \le \frac{\delta}{2} \cdot \frac{1}{\|w - Z\pi\|_2} \qquad \beta \le C \cdot \frac{1}{\text{Pen}(\pi)}$$

i.e., β is bounded by the inverse of the minimum of $\max\{\|w - Z\pi\|_2, \text{Pen}(\pi)\}$ over π , and it is strictly positive. Hence, β , $\tilde{\pi}^{(1)}$ can be restricted to a compact set without changing the optimization problem. C proof of statement (i): Proof by contradiction, if it's not true, then $\exists \tilde{\pi}$ s.t.

$$\operatorname{Pen}(\tilde{\pi}) \leq \frac{C}{\beta_s^{mod}} \equiv t_{\lambda}, \qquad ||w - Z\tilde{\pi}||_2 \leq ||w - Z\pi_{\delta}^{mod}||_2 - \nu$$

then for some η , let $\tilde{\pi}_{\eta} = (1 - \eta)\tilde{\pi}$, we have

$$\begin{split} \|w - Z\tilde{\pi}_{\eta}\|_{2} &= \|w - Z(1 - \eta)\tilde{\pi}\|_{2} \\ &\leq \|w - X\tilde{\pi}\|_{2} + \eta \|Z\tilde{\pi}\|_{2} \\ &\leq \|w - X\pi_{\delta}^{mod}\|_{2} - v + \eta \|Z\tilde{\pi}\|_{2} \\ &\leq \frac{\delta}{2\beta_{\delta}^{mod}} - v + \eta \|Z\tilde{\pi}\|_{2} \end{split}$$

Hence, $\exists \eta$ small enough, s.t.

$$\|w - Z\tilde{\pi}_{\eta}\|_{2} < \frac{\delta}{2\beta_{\delta}^{mod}}, \qquad \qquad \operatorname{Pen}(\tilde{\pi}_{\eta}) \leq (1 - \eta) \frac{C}{\beta_{\delta}^{mod}} < \frac{C}{\beta_{\delta}^{mod}}$$

therefore, by setting $\pi = \tilde{\pi}_{\eta}$, we can allow a strictly bigger β , which is a contradiction.

D proof of statement (ii): This result follows immediately.

Next, use Lemma A.1 to prove Theorem 3.1.1. Following Armstrong and Kolesár (2018), the class of bias-variance optimizing estimators is

$$\frac{\left(w\beta_{\delta}^{mod} + Z\gamma_{\delta}^{mod}\right)'Y}{\left(w\beta_{\delta}^{mod} + Z\gamma_{\delta}^{mod}\right)'w}$$

This is given by the **centrosymmetry** of the smooth function. As stated by Armstrong and Kolesár (2018), the functions that solve the single-class modulus problem can be taken to satisfy $g_{\delta}^* = -f_{\delta}^*$ under centrosymmetry. For the modulus 3.11, rewrite it as

$$w(\delta) = \sup \left\{ 2\beta : \beta \|w - Z\pi\|_2 \le \frac{\delta}{2}, \beta \le \frac{C}{\text{Pen}(\pi)} \right\}$$

since $f^*_\delta = -g^*_{\delta'} \, f^*_{M,\delta}$ is the zero function and $\hat{L}_{\delta,\mathcal{F}}$ is linear:

References

- Timothy B Armstrong and Michal Kolesár. Optimal inference in a class of regression models. *Econometrica*, 86(2):655–683, 2018.
- Timothy B Armstrong, Michal Kolesár, and Soonwoo Kwon. Bias-aware inference in regularized regression models. *arXiv preprint arXiv:*2012.14823, 2020.
- Richard K Crump, V Joseph Hotz, Guido Imbens, and Oscar Mitnik. Moving the goalposts: Addressing limited overlap in the estimation of average treatment effects by changing the estimand, 2006.
- David L Donoho. Statistical estimation and optimal recovery. The Annals of Statistics, 22(1):238–270, 1994.
- Guido Imbens and Stefan Wager. Optimized regression discontinuity designs. *Review of Economics and Statistics*, 101(2):264–278, 2019.
- Mark G Low. Bias-variance tradeoffs in functional estimation problems. *The Annals of Statistics*, 23(3): 824–835, 1995.