Quiz 15

- 1. Suppose $L_1 \subseteq \Sigma^*$ and $h: \Sigma^* \to \Delta^*$ is a homomorphism. Let $L_2 = h(L_1)$. Which of the following statements is necessarily true, given that context-free languages are closed under homomorphic images?
 - (A) L_1 and L_2 are both context-free languages.
 - (B) Either L_1 and L_2 are both context-free languages or neither one of them is.
 - (C) If L_2 is a context-free language then L_1 is a context-free language.
 - (D) If L_2 is not a context-free language then L_1 is not a context-free language.

Correct answer is (D).

- 2. Consider the following "proof" that context-free languages are closed under inverse homomorphic images. Suppose L_1 is a context-free language, h is a homomorphism, and $L_2 = h^{-1}(L_1)$. Suppose, for contradiction, that L_2 is not context-free. Then $h(L_2) = L_1$ is not context-free because context-free languages are closed under homomorphic images. This contradicts our assumption that L_1 is context-free. Pick the strongest statement that describes why this proof is incorrect.
 - (A) The proof is incorrect because $h(L_2)$ need not be equal to L_1 .
 - (B) The proof is incorrect because closure under homomorphic images does not mean that if L_2 is not context-free then $h(L_2)$ is not context-free.
 - (C) The proof is incorrect because non context free languages may not be closed under homomorphic images.
 - (D) All of the options are correct.

Correct answer is (D).

- 3. Consider the following proof that context-free languages are closed under homomorphic images. Observe that every regular language is also context-free since an NFA is a special PDA that never pushes or pops from its stack. We proved that regular languages are closed under homomorphic images. Hence, context-free languages must also be closed under homomorphic images. Which of the following statements is true?
 - (A) The proof is correct.
 - (B) The proof is incorrect because closure of regular languages under homomorphic images does not imply closure of context-free languages under homomorphic images.
 - (C) The proof is incorrect because there are regular languages that are not context-free.
 - (D) The proof is incorrect because regular languages are not closed under homomorphic images.

Correct answer is (B).

- 4. Context-free languages are not closed under intersection. This means that
 - (A) If L_1, L_2 are non-context-free languages then $L_1 \cap L_2$ is not context-free.
 - (B) If $L_1 \cap L_2$ is context-free then L_1 and L_2 are context-free languages.
 - (C) There are context-free languages L_1 and L_2 such that $L_1 \cap L_2$ is not context-free.
 - (D) If $L_1 \cap L_2$ is not context-free then either L_1 or L_2 is not context-free.

Correct answer is (C).

- 5. Let $G_1 = (\{S_1, A\}, \{a, b\}, \{S_1 \to aA, A \to bA \mid \epsilon\}, S_1)$ and $G_2 = (\{S_2, A\}, \{a, b\}, \{S_2 \to bA, A \to aA \mid \epsilon\}, S_2)$. Construct grammar G to describe $\mathbf{L}(G_1) \cup \mathbf{L}(G_2)$ by adding a new start symbol and rules from S that go to either S_1 or S_2 . More precisely, $G = (\{S, S_1, S_2, A\}, \{a, b\}, \{S \to S_1 \mid S_2, S_1 \to bA, S_2 \to aA, A \to bA \mid aA \mid \epsilon\}, S)$. Which of the following is the *strongest* statement that is true?
 - (A) $L(G) = L(G_1) \cup L(G_2)$.
 - (B) $\mathbf{L}(G) \neq \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$ and this shows that context-free languages are not closed under \cup .
 - (C) $\mathbf{L}(G) \neq \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$ and this shows that our proof establishing the closure of context-free languages under \cup is incorrect.
 - (D) $\mathbf{L}(G) \neq \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$.

Correct answer is (D).