

Statistical Machine Learning

Lecture 9 Convolutional neural networks How to train neural networks

Niklas Wahlström

Division of Systems and Control Department of Information Technology Uppsala University

niklas.wahlstrom@it.uu.se www.it.uu.se/katalog/nikwa778

Summary of Lecture 8 (I/III) - Neural network

A neural network is a sequential construction of several generalized linear regression models.

Summary of Lecture 8 (I/III) - Neural network

A neural network is a sequential construction of **several** generalized linear regression models.

 $z = W^{(2)\mathsf{T}}\mathbf{h} + \mathbf{b}^{(2)\mathsf{T}}$

$$\mathbf{h} = \begin{bmatrix} h_1 \\ \vdots \\ h_M \end{bmatrix} \quad \mathbf{b^{(1)}} = \begin{bmatrix} \beta_{01}^{(1)} \dots \beta_{0M}^{(1)} \end{bmatrix} \quad \text{offset vector} \quad \mathbf{b^{(2)}} = \begin{bmatrix} \beta_{0}^{(2)} \end{bmatrix} \\ \mathbf{W}^{(1)} = \begin{bmatrix} \beta_{11}^{(1)} \dots \beta_{1M}^{(1)} \\ \vdots & \vdots \\ \beta_{p1}^{(1)} \dots \beta_{pM}^{(1)} \end{bmatrix} \quad \text{weight matrix} \quad \mathbf{W}^{(2)} = \begin{bmatrix} \beta_{1}^{(2)} \\ \vdots \\ \beta_{M}^{(2)} \end{bmatrix}$$

N. Wahlström, 2019

Summary of Lecture 8 (I/III) - Neural network

A neural network is a **sequential** construction of several generalized linear regression models.

Summary of Lecture 8 (II/III) - classification

For K>2 classes we want to predict the class probability for all K classes $p_k=p(y=k|\mathbf{x})$. We extend the logistic function to the softmax activation function

$$p_k = g_k(z) = \frac{e^{z_k}}{\sum_{l=1}^K e^{z_l}}, \qquad k = 1, \dots, K.$$

Summary of Lecture 8 (III/III)

- Example K=3 classes

Consider an example with three classes K=3.

The network is trained by minimizing the cross-entropy

$$L(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^{K} y_k \log(p_k) = -\log 0.95 = 0.05$$

Cross-entropy is the ML solution. See lecture notes, Sec. 3.2.3.

N. Wahlström, 2019

Guest lectures and content

Guest lectures

- 1. **Tuesday March 5 at 15.15-16.00, Siegbahnsalen** *Peltarion* deep learning for audio applications
- 2. **Monday March 11 at 14.15-15.00, Siegbahnsalen** *Spotify* their use of machine learning

Outline

- 1. **Previous lecture** The neural network model
 - Neural network for regression
 - Neural network for classification
 - Convolutional neural network (we just started)
- 2. This lecture
 - Convolutional neural network
 - How to train a neural network

Convolutional neural networks

Convolutional neural networks (CNN) are a special kind neural networks tailored for problems where the input data has a grid-like structure.

Examples

- Digital images (2D grid of pixels)
- Audio waveform data (1D grid, times series)
- Volumetric data e.g. CT scans (3D grid)

The description here will focus on images.

Data representation of images

Consider a grayscale image of 6×6 pixels.

- Each pixel value represents the color. The value ranges from 0 (total absence, black) to 1 (total presence, white)
- The pixels are the input variables $x_{1,1}, x_{1,2}, \ldots, x_{6,6}$.

Image

Data representation

		•			
0.0	0.0	0.8	0.9	0.6	0.0
0.0	0.9	0.6	0.0	0.8	0.0
0.0	0.0	0.0	0.0	0.9	0.0
0.0	0.0	0.0	0.9	0.6	0.0
0.0	0.0	0.9	0.0	0.0	0.0
0.0	8.0	0.9	0.9	0.9	0.9

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

• **Dense layer**: Each hidden unit is connected with **all pixels**. Each pixel-hidden-unit-pair has its own **unique parameter**.

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

- Dense layer: Each hidden unit is connected with all pixels.
 Each pixel-hidden-unit-pair has its own unique parameter.
- Convolutional layer: Each hidden unit is connected with a region of pixels via a set of parameters, so-called kernel.
 Different hidden units have the same set of parameters.

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

- Dense layer: Each hidden unit is connected with all pixels.
 Each pixel-hidden-unit-pair has its own unique parameter.
- Convolutional layer: Each hidden unit is connected with a region of pixels via a set of parameters, so-called kernel.
 Different hidden units have the same set of parameters.

Conv. layer uses sparse interactions and parameter sharing

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the kernel to every two pixels. We use a **stride** of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the kernel to every two pixels. We use a **stride** of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the kernel to every two pixels. We use a **stride** of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

- ullet One kernel per layer does not give enough flexibility. \Rightarrow
- We use multiple kernels (visualized with different colors).
- Each kernel produces its own set of hidden units a channel.

 $\dim 6 \times 6 \times 1$

 $\dim 6 \times 6 \times 4$

- One kernel per layer does not give enough flexibility. ⇒
- We use multiple kernels (visualized with different colors).
- Each kernel produces its own set of hidden units a channel.

- One kernel per layer does not give enough flexibility. ⇒
- We use **multiple kernels** (visualized with different colors).
- Each kernel produces its own set of hidden units a **channel**.

- ullet One kernel per layer does not give enough flexibility. \Rightarrow
- We use multiple kernels (visualized with different colors).
- Each kernel produces its own set of hidden units a **channel**.

- One kernel per layer does not give enough flexibility. ⇒
- We use multiple kernels (visualized with different colors).
- Each kernel produces its own set of hidden units a channel.

Hidden layers are organized in **tensors** of size (rows \times columns \times channels).

What is a tensor?

A **tensor** is a generalization of scalar, vector and matrix to arbitrary order.

Scalar order 0

$$a = 3$$

Vector order 1

$$\mathbf{b} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$

$$W = \begin{vmatrix} 3 & 2 \\ -2 & 1 \\ -1 & 2 \end{vmatrix}$$

Tensor

any order (here order 3)

$$\mathbf{T}_{:,:,1} =$$

$$\begin{bmatrix} 3 & 2 \\ -2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{T}_{:,:,1} = \begin{vmatrix} 3 & 2 \\ -2 & 1 \\ -1 & 2 \end{vmatrix}, \ \mathbf{T}_{:,:,2} = \begin{vmatrix} -1 & 4 \\ 1 & 2 \\ -5 & 3 \end{vmatrix}$$

Multiple channels (cont.)

- A kernel operates on all channels in a hidden layer.
- ullet Each kernel has the dimension (kernel rows imes kernel colomns \times input channels), here $(3 \times 3 \times 4)$.
- We stack all kernel parameters in a weight tensor with dimensions (kernel rows \times kernel colomns \times input channels \times output channels), here $(3 \times 3 \times 4 \times 6)$

Full CNN architecture

- A full CNN usually consist of multiple convolutional layers (here two) and a few final dense layers (here two).
- If we have a classification problem at hand, we end with a softmax activation function to produce class probabilities.

Here we use 50 hidden units in the last hidden layer and consider a classification problem with K=10 classes.

Why deep?

Example: Image classification

Human interpretation

Input: pixels of an **image** Output: object identity Each hidden layer extracts increasingly abstract features.

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks Computer Vision - ECCV (2014).

Skin cancer – background

One recent result on the use of deep learning in medicine -

Detecting skin cancer (February 2017)
Andre Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. Dermatologist-level

classification of skin cancer with deep neural networks. Nature, 542, 115-118, February, 2017.

Some background figures (from the US) on skin cancer:

- Melanomas represents less than 5% of all skin cancers, but accounts for 75% of all skin-cancer-related deaths.
- Early detection absolutely critical. Estimated 5-year survival rate for melanoma: Over 99% if detected in its earlier stages and 14% is detected in its later stages.

Skin cancer – task

Image copyright Nature (doi:10.1038/nature21056)

Skin cancer – solution (ultrabrief)

In the paper they used the following network architecture

Image copyright Nature doi:10.1038/nature21056)

- Initialize all parameters from a neural network trained on 1.28 million images (transfer learning).
- From this initialization we learn new model parameters using $129\,450$ clinical images (~ 100 times more images than any previous study).
- Use the model to predict class based on unseen data.

Skin cancer – indication of the results

$$\mathsf{sensitivity} = \frac{\mathsf{true} \; \mathsf{positive}}{\mathsf{positive}}$$

$$specificity = \frac{true\ negative}{negative}$$

Image copyright Nature (doi:10.1038/nature21056)

Unconstrained numerical optimization

We train a network by considering the optimization problem

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}), \qquad J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta})$$

- The best possible solution $\hat{\theta}$ is the global minimizer (θ^A)
- The global minimizer is typically very hard to find, and we have to settle for a local minimizer (θ^A , θ^B , θ^C)

Iterative solution - Example 1D

In our search for a local optimizer we...

- ... do an initial guess of θ ...
- ullet ... and update $oldsymbol{ heta}$ iteratively.

Iterative solution (gradient descent) - Example 2D

- 1. Pick a θ_0 2. while(not converged)
 - ullet Update $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t \gamma \mathbf{g}_t, \qquad$ where $\mathbf{g}_t = oldsymbol{
 abla}_{oldsymbol{ heta}} J(oldsymbol{ heta})$
 - Update t := t + 1

We call $\gamma \in \mathbb{R}$ the step length or learning rate. N. Wahlström, 2019

Learning rate

Tuning strategy: If the cost function...

- ...decreases very slowly ⇒ increase the learning rate.
- ...oscillates widely ⇒ reduce the learning rate.

Computational challenge 1 - $\dim(\theta)$ is big

At each optimization step we need to compute the gradient

$$\mathbf{g}_t = \mathbf{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t) = \frac{1}{n} \sum_{i=1}^n \mathbf{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}_t).$$

Computational challenge 1 - $dim(\theta)$ big: A neural network contains a lot of parameters. Computing the gradient is costly.

Solution: A NN is a composition of multiple layers. Hence, each term $\nabla_{\theta} L(\mathbf{x}_i, \mathbf{y}_i, \theta)$ can be computed efficiently by repeatedly applying the chain rule. This is called the **back-propagation** algorithm. Not part of the course.

Computational challenge 2 - n is big

At each optimization step we need to compute the gradient

$$\mathbf{g}_t = \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t) = \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}_t).$$

Computational challenge 2 - n **big**: We typically use a lot of training data n for training the neural netowork. Computing the gradient is costly.

Solution: For each iteration, we only use a small part of the data set to compute the gradient \mathbf{g}_t . This is called the **stochastic** gradient descent.

Stochastic gradient descent

A big data set is often redundant = many data points are similar. Training data

									_^										
\mathbf{x}_1	$egin{array}{c} \mathbf{x}_2 \\ \mathbf{y}_2 \end{array}$	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8	\mathbf{x}_9	\mathbf{x}_{10}	\mathbf{x}_{11}	\mathbf{x}_{12}	\mathbf{x}_{13}	\mathbf{x}_{14}	\mathbf{x}_{15}	\mathbf{x}_{16}	\mathbf{x}_{17}	\mathbf{x}_{18}	\mathbf{x}_{19}	\mathbf{x}_{20}
\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3	\mathbf{y}_4	\mathbf{y}_5	\mathbf{y}_6	\mathbf{y}_7	\mathbf{y}_8	\mathbf{y}_9	\mathbf{y}_{10}	\mathbf{y}_{11}	\mathbf{y}_{12}	\mathbf{y}_{13}	\mathbf{y}_{14}	\mathbf{y}_{15}	\mathbf{y}_{16}	\mathbf{y}_{17}	\mathbf{y}_{18}	${\bf y}_{19}$	\mathbf{y}_{20}

If the training data is big

$$egin{aligned} & oldsymbol{
abla}_{ heta} J(heta) pprox \sum_{i=1}^{rac{n}{2}} oldsymbol{
abla}_{ heta} L(\mathbf{x}_i, \mathbf{y}_i, oldsymbol{ heta}) & ext{and} \ & oldsymbol{
abla}_{ heta} J(oldsymbol{ heta}) pprox \sum_{i=rac{n}{2}+1}^{n} oldsymbol{
abla}_{ heta} L(\mathbf{x}_i, \mathbf{y}_i, oldsymbol{ heta}). \end{aligned}$$

We can do the update with only half the computation cost!

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \gamma \frac{1}{n/2} \sum_{i=1}^{\overline{2}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}_t), \\ \boldsymbol{\theta}_{t+2} &= \boldsymbol{\theta}_{t+1} - \gamma \frac{1}{n/2} \sum_{i=\frac{n}{2}+1}^{n} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}_{t+1}). \end{aligned}$$

Stochastic gradient descent

$$\boldsymbol{\theta}_3 = \boldsymbol{\theta}_2 - \gamma \frac{1}{5} \sum_{i=11}^{15} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}_2)$$

- The extreme version of this strategy is to use only one data point at each training step (called online learning)
- We typically do something in between (not one data point, and not all data). We use a smaller set called mini-batch.
- One pass through the training data is called an epoch.

Stochastic gradient descent

\mathbf{x}_7	$ \mathbf{x}_{10} \mathbf{x}$	$ \mathbf{x}_{20} $	\mathbf{x}_{16}	\mathbf{x}_2	\mathbf{x}_1	\mathbf{x}_{18}	\mathbf{x}_{19}	\mathbf{x}_{12}	\mathbf{x}_6	\mathbf{x}_{11}	\mathbf{x}_{17}	\mathbf{x}_{15}					\mathbf{x}_{13}	
\mathbf{y}_7	$ \mathbf{y}_{10} \mathbf{y}$	$ \mathbf{y}_{20} $	\mathbf{y}_{16}	\mathbf{y}_2	\mathbf{y}_1	\mathbf{y}_{18}	\mathbf{y}_{19}	\mathbf{y}_{12}	\mathbf{y}_6	\mathbf{y}_{11}	\mathbf{y}_{17}	\mathbf{y}_{15}	\mathbf{y}_5	\mathbf{y}_{14}	\mathbf{y}_4	\mathbf{y}_9	\mathbf{y}_{13}	\mathbf{y}_8

Iteration: 3 Epoch: 1

- If we pick the mini-batches in order, they might be unbalanced and not representative for the whole data set.
- Therefore, we pick data points at random from the training data to form a mini-batch.
- One implementation is to randomly reshuffle the data before dividing it into mini-batches.
- After each epoch we do another reshuffling and another pass through the data set.

Mini-batch gradient descent

The full **stochastic gradient descent** algorithm (a.k.a **mini-batch gradient descent**) is as follows

- 1. Initialize θ_0 , set $t \leftarrow 1$, choose batch size n_b and number of epochs E.
- 2. For i = 1 to E
 - (a) Randomly shuffle the training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$.
 - (b) For j=1 to $\frac{n}{n_b}$
 - (i) Approximate the gradient of the loss function using the mini-batch $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=(j-1)n_b+1}^{jn_b}$,

$$\hat{\mathbf{g}}_t = \frac{1}{n_b} \sum_{i=(j-1)n_b+1}^{jn_b} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_i}.$$

- (ii) Do a gradient step $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t \gamma \hat{\mathbf{g}}_t$.
- (iii) Update the iteration index $t \leftarrow t+1$.

At each time we get a stochastic approximation of the true gradient $\hat{\mathbf{g}}_t \approx \frac{1}{n} \sum_{i=1}^n \left. \nabla_{\theta} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_*}$, hence the name.

A few concepts to summarize lecture 9

Convolutional neural network (CNN): A NN with a particular structure tailored for input data with a grid-like structure, like for example images.

Kernel: (a.k.a filter) A set of parameters that is convolved with a hidden layer. Each kernel produces a new channel.

Channel: A set of hidden units produced by the same kernel. Each hidden layer consists of one or more channels.

Stride: A positive integer deciding how many steps to move the kernel during the convolution.

Tensor: A generalization of matrices to arbitrary order.

Gradient descent: An iterative optimization algorithm where we at iteration take a step proportional to the negative gradient.

Learning rate: (a.k.a step length). A scalar tuning parameter deciding the length of each gradient step in gradient descent.

Stochstic gradient descent (SGD): A version of gradient descent where we at each iteration only use a small part of the training data (a mini-batch).

Mini-batch: The group of training data that we use at each iteration in SGD

Batch size: The number of data points in one mini-batch