Re-expressing RBF

Author

July 1, 2015

Proof. Hypothesis with movable centers:

$$f(x) = \sum_{k} c_k e^{-\|x - w_k\|^2}$$

let $\tilde{x}_k = ||x - w_k|| \ge 0$. Thus, notice:

$$e^{-\tilde{x}_k^2} \approx \tilde{t}(\tilde{x}_k) = max(0, 1 - \tilde{x}_k)$$

Hence:

$$f(x) = \sum_{k} c_k e^{-\tilde{x}_k^2} \approx \sum_{k} c_k \tilde{t}(\tilde{x})$$

Notice the following two relations:

$$\tilde{x}_k^2 = ||x - w_k||^2 = 2(1 - \langle x, w_k \rangle)$$

and:

$$\tilde{t}(x) = |\tilde{x}_k - 1|_+ - |\tilde{x}_k|_+ + 1$$

where $|z|_{+} = max(0, z)$. Hence:

$$f(x) \approx \sum_{k} c_k \tilde{t}(\tilde{x}) = \sum_{k} c_k (|\tilde{x}_k - 1|_+ - |\tilde{x}_k|_+ + 1)$$

Notice $\tilde{x} \ge 0 \implies |\tilde{x}|_+ = \tilde{x}$

$$f(x) \approx \sum_{k} c_k \tilde{t}(\tilde{x}) = \sum_{k} c_k |\tilde{x}_k - 1|_+ - \sum_{k} c_k \tilde{x}_k + \sum_{k} c_k$$

Lets analyze

$$\sum_{k} c_k |\tilde{x}_k - 1|_+ \tag{1}$$

in more detail:

Notice
$$|\tilde{x}_k - 1|_+ = |\sqrt{2}\sqrt{1 - \langle x, w_k \rangle} - 1|_+ = \sqrt{2}|\sqrt{1 - \langle x, w_k \rangle} - \frac{\sqrt{2}}{2}|_+$$

Let $\langle x, w_k \rangle = \cos(\theta_k)$ where $\theta_k = \angle(x, w_k)$ is the angle between x and w_k (normalized) vectors.

Hence we have:

$$|\tilde{x}_k - 1|_+ = \sqrt{2}|\sqrt{1 - \cos(\theta_k)} - \frac{\sqrt{2}}{2}|_+$$

Notice that the above function $|\sqrt{1-\cos(\theta_k)}-\frac{\sqrt{2}}{2}|_+$ is periodic. So we can get its Fourier approximation:

$$|\sqrt{1 - \cos(\theta_k)} - \frac{\sqrt{2}}{2}|_{+} \approx a_0 + \sum_{n} a_n \cos(n\theta_k)$$
 (2)

Now lets try to express the above in terms of only inner products $\langle x, w_k \rangle$ (or equivalently, as a function of $cos(\theta_k)$). It can be shown that:

$$cos(n\theta_k) = \frac{1}{2} \left(\left(cos(\theta_k) + \sqrt{cos^2(\theta_k) - 1} \right)^n + \left(cos(\theta_k) - \sqrt{cos^2(\theta_k) - 1} \right)^n \right)$$

Hence, makes Fourier approximation (2) become:

$$|\sqrt{1-\cos(\theta_k)} - \frac{\sqrt{2}}{2}|_{+} \approx \sum_{n} a_n \frac{1}{2} \left(\left(\langle x, w_k \rangle + \sqrt{\langle x, w_k \rangle^2 - 1} \right)^n + \left(\langle x, w_k \rangle - \sqrt{\langle x, w_k \rangle^2 - 1} \right)^n \right)$$

this makes the final equation (1) look as follows:

$$f(x) \approx \sum_{k} c_k |\tilde{x}_k - 1|_+ \approx \sum_{n,k} c_k a_n \frac{1}{2} \left(\left(\langle x, w_k \rangle + \sqrt{\langle x, w_k \rangle^2 - 1} \right)^n + \left(\langle x, w_k \rangle - \sqrt{\langle x, w_k \rangle^2 - 1} \right)^n \right)$$