

Statistics

What is a good estimator?

Name teacher

Learning Objective

After this class you can:

- Create estimators for parameters of a distribution, including the mean and the variance.
- Compare the quality of estimators using the concepts of unbiasedness, efficiency, and mean squared error.

Book: Chapters 19 and 20

Probability

Statistics

Before this class (week 3.6 lesson 2):

Watch prelecture 'Unbiased estimators'

Book: Section 19.1, 19.2, 19.3

Programme

Test statistics

Tail probabilities

Significance level

Practice

Relation to confidence intervals

You draw three balls from a bowl with balls numbered 1 through N. Every number has equal probability p = 1/N. What is the expectation of the average?

A)
$$\frac{1}{2}$$
 N

B)
$$\frac{1}{2}(N+1)$$

D)
$$\frac{3}{2}(N+1)$$

You draw three balls from a bowl with balls numbered 1 through N. Every number has equal probability p = 1/N. What is an unbiased estimator for N?

A)
$$2\bar{X}_{3}$$

B)
$$2\bar{X}_3 - 1$$

C)
$$2\bar{X}_3 + 1$$

D)
$$3\bar{X}_3$$

Sampling Distribution

Definition:

Let $T = h(X_1, X_2, ..., X_n)$ be an estimator based on a random sample $X_1, X_2, ..., X_n$. The probability distribution of T is called the <u>sampling distribution</u> of T.

Exercises

Suppose $\chi_i \sim U(-\theta, \theta)$ are independently uniformly distributed according to some unknown parameter θ .

- a. Show that $T = \frac{3}{n}(X_1^2 + X_2^2 + \cdots + X_n^2)$ is an unbiased estimator for θ^2 .
- b. Is \sqrt{T} an unbiased estimator for θ ? If not, does it have positive or negative bias?

Suppose you have a coin which has unknown probability p of turning up heads. You record how long it takes before you get the first heads. Thus we have independent random variables $X_i \sim Geo(p)$. Note that the expectation of \bar{X}_n equals 1/p.

- a. Show that $T=1/\bar{X}_n$ is a biased estimator for p and determine the sign of the bias.
- b. Show that $S = \frac{\text{number of } X_i \leq 3}{n}$ is an unbiased estimator of the probability of getting a heads within 3 throws.

Unbiased estimators for mean and variance

Theorem:

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with finite expectation μ and variance σ^2 .

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

are unbiased estimators of μ and σ^2 .

Exercise

Suppose that the random variables X_i have identical expectation μ , though not necessarily identical distribution.

- a. Is $S = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ an unbiased estimator for μ ?
- b. Under what conditions on the a_i is

$$T = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

an unbiased estimator for μ ?

Efficiency and mean squared error

Definition:

Let T_1 and T_2 be two *unbiased* estimators for the same parameter. If

$$Var(T_2) < Var(T_1)$$

we say that T_2 is more <u>efficient</u> than T_1 .

Definition:

Let T be an estimators for the parameter θ . The <u>mean</u> <u>squared error</u> of T equals

$$MSE(T) = E[(T - \theta)^2].$$

Number of German tanks in World War 2

The serial number X_i of the i'th captured tank is modeled as a random drawing from $\{1, 2, ..., N\}$ with uniform distribution.

Two unbiased estimators for N are

$$T_1 = 2\bar{X}_n - 1$$
 $T_2 = \frac{n+1}{n} \max X_i - 1$

Number of German tanks in World War 2

The serial number X_i of the i'th captured tank is modeled as a random drawing from $\{1, 2, ..., N\}$ with uniform distribution.

Two unbiased estimators for N are

$$T_{1} = 2\bar{X}_{n} - 1$$

$$0.002$$

$$Var(T_{1}) = \frac{(N+1)(N-n)}{3n}$$

$$T_2 = \frac{n+1}{n} \max X_i - 1$$

$$0.006$$

$$0.002$$

$$Var(T_2) = \frac{(N+1)(N-n)}{(n+2)n}$$

Downtime on a network server

The number of packets arriving at a server in one minute is modeled as $X_i \sim \text{Pois}(\mu)$. Two estimators for $P(X_i = 0) = e^{-\mu}$ are $S = \frac{\text{number of } X_i = 0}{n}$ and $T = e^{-\bar{X}_n}$.

Downtime on a network server

The number of packets arriving at a server in one minute is modeled as $X_i \sim \text{Pois}(\mu)$. Two estimators for $P(X_i = 0) = e^{-\mu}$ are

$$S = \frac{\text{number of } X_i = 0}{n}$$
0.3

0.2

0.1

0.2

0.2

0.3

0.4

Downtime on a network server

The number of packets arriving at a server in one minute is modeled as $X_i \sim \text{Pois}(\mu)$. Two estimators for $P(X_i = 0) = e^{-\mu}$ are

Exercises

Given a random sample X_1, X_2, \ldots, X_{2n} from a distribution with finite variance σ^2 . Let \bar{X}_n denote the average of the first n measurements, and \bar{X}_{2n} the average of all measurements.

- a. What is the relative efficiency $Var(\bar{X}_n)/Var(\bar{X}_{2n})$?
- b. Is \bar{X}_n or \bar{X}_{2n} more efficient?

Let X_1 and X_2 be two independent random variables with identical mean μ and variances σ_1^2 and σ_2^2 . Recall $T = aX_1 + (1-a)X_2$ is an unbiased estimator for μ . For which value of a is this estimator most efficient?

Given estimators S and T for θ with

$$E[S] = \theta$$
, $Var(S) = 30$, $E[T] = \theta + 5$, $Var(T) = 6$.

Which estimator would you prefer and why?

For next class (week 3.7 lesson 1):

Complete MyStatlab assignments and book exercises 19.3, 19.6, 20.3, 20.6, 20.5, 20.9

Watch prelecture 'Maximum likelihood principle'

Book: Section: 21.1 and 21.2

After this class you can:

- Apply the Maximum Likelihood Principle in various settings
- Derive the Maximum Likelihood Estimate for model parameters
- Set up a linear regression model and estimates its parameters

