Lecture 8 EE 421 / C\$ 425 Digital System Design

Spring 2023
Shahid Masud

Topics

- State Diagrams
- Introduction to State Machines
- Moore State Machine and Mealy State Machine
- State Tables Description of State Machines
- Design Example of a State Machine (Vending Machine)
- Sequential State Machine Circuit Design
- One Hot Encoding and ASMD

Practice Questions from Past Papers

Check folders:

SSE → EE 421

and

 $CS \rightarrow CMPE 424$

and

CS → CS 424

Site Contents

23

State Diagram of D Flipflop

Internal **Next State (Q)** Input (D) 1/1 States 0 (D) 0 1/1 1 (D) 1 **DFF** 0/0 0/0 Input to System **Output of System**

Internal

States

State Diagram of T Flipflop

Input (T)	Next State (Q)
0	Q
1	Q'

Linking State Table with State Diagram

Complete State Description Including Inputs, Present State, Outputs and Next State

Q (t)	Q (1	t +1)	Z (Output)		
	Input X=0 Input X=1		Input X=0	Input X=1	
Α	АВ		0	0	
В	С	СВ		0	
С	Α	D	0	0	
D	С	С	0	0	

Types of State Machines

- Mealy Machine
 - Output depends upon Internal State plus External Inputs
 - Output can change at any time and not necessarily after a Clocked event

- Moore Machine
 - Output depends upon External Inputs and Current Internal State
 - Output is Synchronized with the Change in Internal States

Mealy State Machine Block Diagram

State Machine Block Diagrams - Comparison

Side by side

State Machine Based Synchronous Design

- Understand the Problem desired sequence based on inputs and present state
- Develop abstract representation of FSM A state diagram or a state table that shows all possible states and transitions
- Perform state minimization to achieve efficient implementation
- Perform state assignment
- Choose appropriate flipflop for storage elements (eg. D flipflops)
- Use K-maps to determine characteristic equations for Next State
- After K-maps based minimization; draw complete logic circuit using combinational and sequential elements

Example of a State Machine Based Design – Coke Vending Machine

- Machine dispenses a can of coke for Rs. 15/-
- You can provide coins of either Rs. 5/- or Rs. 10/-
- The Machine does not provide any change back
- The Machine is 'Reset' after the can has been dispensed

Block Diagram of Vending Machine Example

Is Input Directly Connected to Output Logic?

Question: Which type is this? Moore or Mealy??

Elaborate State Machine in text description

- Enumerate all possible inputs and outputs
- Objective: Insert sufficient coins to release a can of Coke
- Either Insert R5 + R5 + R5 in sequence
- OR Insert R5 + R10 in sequence
- OR Insert R10 + R5 in sequence
- OR Insert R10 + R10 in sequence
- OR Insert R5 + R5 + R10 in sequence

13

Make a State Diagram Representation of State Machine (Moore Machine)

Simplifying the State Machine

Identify Similar States (same present state and next state)

State Minimization by Observation

- Reset brings to State S0
- State S1 represents R5 received so far, one possible path
- State S2 represents R10 received so far, two possible paths;
- State S3 represents R15 received so far, three possible paths
- S4, S5, S6, S7 have identical behaviour so they can be Combined into one state

State Transition Table Describing Vending Machine

Q1	Q0	Present State	Inputs		Next State	Output OPEN	
			R10	R5			
		S0; R0			S0; R0		
					S1; R5		
					S2; R10		
		S1; R5			S1; R5		
					S2; R10		
					S3; R15		
					Not Allowed	Х	
		S2; R10			S2; R10		
					S3; R15		
					S3; R20		
					Not Allowed	Х	
		S3; R15			S3; R15		
					S3; R15		
					S3; R15		
		Digital Sy	stem Design Lecture 8 F	fall 2023 1	Not Allowed	Х	

State Mapping to Flipflops

- In the reduced State Diagram, there are 4 states
- We can distinctly represent these states using two Flipflops

Assign states as follows:

				D1 Q1 States
States	Code	Q1	Q0	FF1
S0	00	0	0	
S1	01	0	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
S2	10	1	0	NEW
S3	11	1	1	States

Present State to Next State Table using DFF

Present State		In	puts	Next S	Output OPEN	
Q1	Q0	<mark>R10</mark>	R5	D1	D0	
				0	0 (S0)	
	1 (S1)				1 (S1)	
					0 (S2)	
					1 (S3)	
				X	X	Х
	0 (S2)				0 (S2)	
					1 (S3)	
					1 (S3)	
				X	X	Х
	1 (S3)				1 (S3)	
					1 (S3)	
					1 (S3)	
			Digital System Desig	n Lecture 8 Fall 2023	Х	Х

Characteristic Equation for D0 using K-Map

Characteristic Equation for D1 using K-Map

$$D1 = Q1 + R10 + (R5.Q0)$$

Characteristic Equation for OPEN using K-Map

OPEN = Q1Q0

Vending Machine Circuit using DFF

Moore State Machine for Vending Machine

Some Comparison Moore vs Mealy

- Mealy machine requires fewer states to reach output in comparison with Moore machine
- Mealy machine is more susceptible to glitches
- Explicit output values are shown in Mealy machine associated with each transition
- Output changes after state is changed in Moore machine
- Output in Moore machine depends upon state only; inputs can steer the output towards a particular state that affects output
- Output depends upon present state and the present value at the input; thus, output can change immediately with the change in input, independent of synchronous clock.

One Hot Encoding – one FF for each state

Presen	nt State			Inp	Inputs		Next State			Output OPEN
Q3	Q2	Q1	Q0	R10	R5	D3	D2	D1	D0	Y
				1	1	Х				
				1	1	Х	Χ	Х	X	
				1	1	Х				

D3 is directly the Output and Its State

The Design Becomes Simpler

Less Combinational Logic – At the Expense of Extra DFF
Digital System Design Lecture 8 Fall 2023

Algorithmic State Machine Description - ASMD

27