Politecnico di Bari

Analisi Matematica – modulo A – Corso C

A.A. 2022/2023 Prova parziale 7 giugno 2023 Traccia A
Possibile svolgimento

1) (a) Siano $z_1 = 2 + i$ e $z_2 = 1 - i$. Calcolare il quoziente $z = \frac{z_1}{z_2}$ in forma cartesiana e scrivere, poi, il risultato in forma esponenziale.

Svolgimento: Per calcolare il quoziente $z = \frac{z_1}{z_2}$ in forma cartesiana, moltiplichiamo il numeratore e il denominatore per il coniugato di z_2 , cioè 1 + i. In questo modo, otteniamo:

$$z = \frac{z_1}{z_2} = \frac{(2+i)(1+i)}{(1-i)(1+i)} = \frac{2+2i+i-1}{1-i^2} = \frac{1+3i}{2}$$

Per scrivere il risultato in forma esponenziale, cioè

$$z = \frac{1+3i}{2} = |z| e^{i \arg(z)},$$

dove |z| è il modulo di z e arg(z) è un argomento di z, calcoliamo prima il modulo:

$$|z| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \frac{\sqrt{10}}{2}.$$

L'argomento è invece dato da:

$$\arg(z) = \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) = \arctan\left(\frac{3}{1}\right) = \arctan(3)$$

Quindi, la forma esponenziale di z è:

$$z = \frac{\sqrt{10}}{2}e^{i\arctan(3)}$$

(b) Si consideri la funzione $f(x) = \log(x) + \sin(x)$. Determinare il dominio. Determinare la sua la sua monotonia sull'intervallo $[7\pi/2, 9\pi/2]$. Determinare infine l'immagine di f, motivando la risposta.

Svolgimento: Poiché la funzione $h(x) = \sin x$ è definita su \mathbb{R} , il dominio f è uguale al dominio $g(x) = \log(x)$, ossia $(0, +\infty)$.

f è la somma di g e h. La funzione g è strett. crescente su tutto il suo dominio $(0, +\infty)$, mentre la funzione h è periodica e alterna intervalli di crescita e decrescita. In particolare, la funzione h è strett. crescente nell'intervallo $[7\pi/2, 9\pi/2]$. Quindi possiamo concludere che la loro somma f è strett. crescente nell'intervallo $[7\pi/2, 9\pi/2]$.

Calcolando i limiti

$$\lim_{x \to 0^+} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) \ge \lim_{x \to +\infty} -1 + \log x = +\infty$$

poiché f è continua su $(0, +\infty)$ e quindi la sua immagine dovrà essere un intervallo, possiamo concludere che $\text{Im}(f) = (-\infty, +\infty)$.

2) Studiare il dominio, gli asintoti e gli eventuali punti di minimo e massimo locale della funzione

$$f(x) = \frac{e^x}{x^2 - 1}.$$

Dire se f ha punti di estremo globale, motivando la risposta.

Svolgimento:

- 1. Il dominio di f è dato dall'insieme $\mathbb{R} \setminus \{-1, 1\}$, in quanto il denominatore si annulla solo per $x = \pm 1$ e l'esponenziale è definito per ogni x.
- 2. Per studiare gli asintoti, calcoliamo i limiti di f per $x \to \pm \infty$ e per $x \to \pm 1$:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x}{x^2 - 1} = +\infty,$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{x^2 - 1} = 0,$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{e^x}{x^2 - 1} = +\infty,$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{e^x}{x^2 - 1} = -\infty,$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{e^x}{x^2 - 1} = -\infty,$$

$$\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{e^x}{x^2 - 1} = +\infty.$$

Quindi f ha un asintoto orizzontale di equazione y=0 per $x\to -\infty$, e non ha asintoto orizzontale per $x\to +\infty$. Inoltre, f ha due asintoti verticali di equazione $x=\pm 1$. Entrambe le rette sono asintoti verticali sia a dx che a sx.

Vediamo, infine, se f ha asintoto obliquo per $x \to \infty$. Poiché

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x}{x(x^2 - 1)} = +\infty,$$

non c'è asintoto obliquo.

3. Per studiare i punti di minimo e massimo locale, calcoliamo la derivata prima di f:

$$f'(x) = \frac{e^x(x^2 - 1) - 2xe^x}{(x^2 - 1)^2} = \frac{e^x(x^2 - 2x - 1)}{(x^2 - 1)^2}.$$

La derivata prima si annulla solo per $x=1\pm\sqrt{2}$ che sono quindi due punti stazionari. Per determinare la natura di questi punti, osserviamo che il segno della derivata prima dipende solo dal segno di x^2-2x-1 che è positivo per $x<1-\sqrt{2}$ o $x>1+\sqrt{2}$. Quindi f è strett. crescente sugli intervalli $(-\infty,-1), (-1,1-\sqrt{2})$ e $(1+\sqrt{2},+\infty)$ e strett. decrescente su $(1-\sqrt{2},1)$ e su $(1,1+\sqrt{2})$. Quindi il punto $x_1=1-\sqrt{2}$ è un punto di massimo locale forte e il punto $x_2=1+\sqrt{2}$ è un punto di minimo locale forte.

- 4. Per studiare i punti di minimo e massimo globale, osserviamo che il limite di f per $x \to +\infty$ è $+\infty$, quindi la funzione non ha massimo globale. Analogamente, poiché $\lim_{x\to 1^-} f(x) = -\infty$, f non ha neanche minimo globale.
- 3) Sia $f(x) = \frac{x^2 + 1}{x^3 x}$. Calcolare il seguente integrale:

$$\int_{-3}^{-2} f(x) \mathrm{d}x$$

Svolgimento: Per risolvere l'integrale, dobbiamo prima scomporre il denominatore di f(x) in fattori irriducibili:

$$x^{3} - x = x(x^{2} - 1) = x(x - 1)(x + 1)$$

Poi, dobbiamo usare il metodo della scomposizione in fratti semplici per scrivere f(x) come somma di tre termini:

$$f(x) = \frac{x^2 + 1}{x^3 - x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}$$

Sommando al secondo membro e uguagliando i numeratori otteniamo:

$$x^{2} + 1 = A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1)$$

Poiché vogliamo che l'uguaglianza qui sopra sia soddisfatta per ogni $x \in \mathbb{R}$, ¹ lo deve essere in particolare per $x = \pm 0, \pm 1$. Sostituendo questi valori di x in entrambi i membri otteniamo:

$$per x = 0$$

$$1 = -A;$$

¹Anche se i denominatori si annullano per $x = 0, \pm 1$, e quindi i numeratori devono essere uguali solo per ogni $x \in \mathbb{R} \setminus \{0, \pm 1\}$, essendo essi polinomi è chiaro che, per continuità, assumuno lo stesso valore anche in $x = 0, \pm 1$

per
$$x = 1$$

$$2 = 2B$$

$$per x = -1$$

$$2 = 2C$$

Da cui $A=-1,\,B=1,\,C=1.$ Quindi, possiamo scrivere:

$$f(x) = -\frac{1}{x} + \frac{1}{x-1} + \frac{1}{x+1}$$

Ora, possiamo calcolare l'integrale di f(x) tra -3 e -2 usando le proprietà degli integrali e le primitive delle funzioni razionali:

$$\int_{-3}^{-2} f(x) dx = \int_{-3}^{-2} \left(-\frac{1}{x} + \frac{1}{x-1} + \frac{1}{x+1} \right) dx$$

$$= -\int_{-3}^{-2} \frac{1}{x} dx + \int_{-3}^{-2} \frac{1}{x-1} dx + \int_{-3}^{-2} \frac{1}{x+1} dx$$

$$= -\left[\log|x| \right]_{-3}^{-2} + \left[\log|x-1| \right]_{-3}^{-2} + \left[\log|x+1| \right]_{-3}^{-2}$$

$$= -4 \log 2 + 2 \log 3$$

4) Enunciare la formula di Taylor con il resto di Peano per una funzione di una variabile. La formula di Taylor per una funzione di una variabile f(x), derivabile n volte in un punto a, è la seguente:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

dove $R_n(x)$ è il resto di ordine n, avente quindi la proprietà

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = 0.$$

Sulla base della formula di MacLaurin della funzione $f(x) = \sin x$, scrivere quella di ordine 6 per la funzione $g(x) = \sin(x^2/2)$.

La formula di MacLaurin è un caso particolare della formula di Taylor, dove a=0. Quindi, per la funzione $f(x)=\sin x$, abbiamo:

$$f(x) = \sin x = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

Ovvero

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + R_n(x)$$

Per trovare la formula di MacLaurin di ordine 6 per la funzione $g(x) = \sin(x^2/2)$, possiamo usare il cambio di variabile $y = x^2/2$. Allora, abbiamo:

$$g(x) = f(x^2/2) = x^2/2 - \frac{(x^2/2)^3}{3!} + R_6(x)$$

ovvero

$$g(x) = f(x^2/2) = \frac{x^2}{2} - \frac{x^6}{48} + R_6(x).$$