Summary of Analysis

Changjae Lee

June 30, 2024

Contents

Ι	Al	ostract Meausre and Integration				
1	Systems of Sets					
	1.1	Nets and Filters				
	1.2	Topology				
	1.3	σ -Algebras				
	1.4	π -System and λ -System				
2	Measures					
	2.1	Abstract Measures				
	2.2	Borel Measures				
	2.3	Outer Measures				
	2.4	Complete Measures				
3	Abstract Integration					
	3.1	Measurable Functions				
	3.2	Integration of Nonnegative Functions				
	3.3	Integration of Complex Functions				
	3.4	Product Measures				
4	Signed Measure and Differentiation					
	4.1	Signed Measures				
	4.2	Complex Measures				
	4.3	Differentiation on Euclidean Space				
		Rounded Variations				

iv CONTENTS

Part I Abstract Meausre and Integration

Systems of Sets

- 1.1 Nets and Filters
- 1.2 Topology
- 1.3 σ -Algebras

Definition 1. Consider a collection $\mathcal{M} \subset \mathcal{P}X$ s.t.

- $X \in \mathcal{M}$
- $E \in \mathcal{M} \Rightarrow X \setminus E \in \mathcal{M}$
- $(E_{\alpha})_{\alpha \in I} \in \mathcal{M} \Rightarrow \bigcup_{\alpha \in I} E_{\alpha} \in \Sigma$

 \mathcal{M} is called an **algebra** on X if I is finite, and \mathcal{M} is called σ -algebra on X if I is countably infinite.

1.4 π -System and λ -System

Definition 2. A λ -system is a collection $L \subset \mathcal{P}X$ s.t.

- 1. $X \in L$
- $2. \ x \subseteq y \in L \Rightarrow y \setminus x \in L$
- 3. $(x_n)_1^{\infty}$ and $x_n \subseteq x_{n+1} \Rightarrow \bigcup_{n=1}^{\infty} x_n \in L$

Measures

2.1 Abstract Measures

Definition 3. A *measure* on X is a function $\mu : \mathcal{M} \to [0, \infty]$ s.t.

- $\mu(\varnothing) = 0$
- $(E_j)_1^{\infty}$ disjoint sets of $\mathcal{M} \Rightarrow \mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$

2.2 Borel Measures

2.3 Outer Measures

Definition 4. An *outer measure* on a nonempty set X is a function μ^* : $\mathcal{P}X \to [0,\infty]$ s.t.

- $\bullet \ \mu^*(\varnothing) = 0$
- $A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$
- $\mu^*(\bigcup_{j=1}^{\infty} A_j) \le \sum_{1}^{\infty} \mu^*(A_j)$

2.4 Complete Measures

Abstract Integration

- 3.1 Measurable Functions
- 3.2 Integration of Nonnegative Functions
- 3.3 Integration of Complex Functions
- 3.4 Product Measures

Signed Measure and Differentiation

- 4.1 Signed Measures
- 4.2 Complex Measures
- 4.3 Differentiation on Euclidean Space
- 4.4 Bounded Variations

References

Index

 $\lambda\text{-system, 3}$ algebra, 3 $\sigma\text{-algebra, 3}$

measure, 5 outer measure, 5