Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

March 5, 2024

Contents

1		2
2	统计决策理论	2
3	马尔可夫决策过程	3

1 简介

- 机器学习的主要任务: 生成、预测、决策. 生成: $X_1, \dots, X_n \sim F$, 推断分析 F, 无监督学习, GAN, GPT, \dots 预测: 数据对 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}), X^{(i)} \in \mathbb{R}^d$ 输入变量, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, 归因, 有监督学习. 决策: 强化学习, Agent←action, state, reward \to 环境.
- 求解问题的途径: 参数/非参数, 频率 (MLE)/贝叶斯.
- 误差模型:有监督: $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, 回归: $Y \in \mathbb{R}$; 分类: $Y \in \{0, 1\}(\{-1, 1\}, \{1, \dots, M\}, \{0, 1\}^M)$; X 随机, Random design(生成模型), $Y = g(X) + \varepsilon \stackrel{\text{or}}{=} g(X, Z), Y^{(i)} = g(X^{(i)}, Z^{(i)})$; X 固定 X = x, Fixed design(判别模型), $Y^{(i)} = g(x^{(i)}, Z^{(i)})$. 无监督: X = g(Z)(因子模型: $X = AZ + \varepsilon, Z \in \mathcal{N}(0, 1), \varepsilon \sim \mathcal{N}(0, \Sigma)$).

2 统计决策理论

- Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L} : \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta : \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta : \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathbb{E}_{a} \mathcal{L}(\theta, A|X) = \iint \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.
- Example [参数估计]: $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta a\|_2^2 \stackrel{\text{or}}{=} \|\theta a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x) (KL).$ $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a).$ Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) \phi(\theta) (\phi a)^T \nabla \phi(a).$
- Example [Testing]: $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta,a) = I\{a=1,\theta \in \Omega_0\} + I\{a=0,\theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta,\delta) = \mathbb{P}_{\theta}(A=1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A=0)1_{\theta \in \Omega_1}$.
- A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.
- The maximum risk $\bar{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta) = \int \mathcal{L}(\theta, \delta) d\mathbb{P}(x, \theta)$ ($\Lambda(\theta)$ is a prior). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.
- If risk functions for all decision rules are continuous in θ , if δ is Bayesian for Λ and has finite integrated risk $r(\Lambda, \delta) < \infty$, and if the support of Λ is the whole state space Ω , then δ is admissible.
- $p(\theta|x) = \frac{p_{\theta}(x)\lambda(\theta)}{\int p_{\theta}(x)\lambda(\theta)d\theta} := \frac{p_{\theta}(x)\lambda(\theta)}{m(x)}$. Define the posterior risk of δ : $r(\delta|X=x) = \int \mathcal{L}(\theta,\delta(x))d\mathbb{P}(\theta|x)$. The Bayes risk $r(\Lambda,\delta)$ satisfies that $r(\Lambda,\delta) = \int r(\delta|x)dM(x)$. Let $\hat{\delta}(x)$ be the value of δ that minimizes $r(\delta|x)$. Then $\hat{\delta}$ is the Bayes rule.
- Application to supervised learning. Case 1: Regression. $(X,Y) \in \mathcal{X} \times \mathcal{Y}, f: \mathcal{X} \to \mathcal{Y}, \mathscr{A} = \Omega = \mathcal{Y}, \mathcal{D} = \mathcal{X}, \delta = f, \mathcal{L}(Y, f(X)) = \|Y f(X)\|_p^p, p \ge 1$, risk $R_f = \iint \mathcal{L}(y, f(x)) d\mathbb{P}(x, y) = \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))|X]$. When p = 2, $r(f|X = x) = \int \mathcal{L}(y, f(x)) d\mathbb{P}(y|x) = \int |y f(x)|^2 d\mathbb{P}(y|x)$. 回归函数 $g(x) := \int y d\mathbb{P}(y|x) \Rightarrow R_f = \mathbb{E}|Y f(X)|^2 = \mathbb{E}|Y g(X) + g(X) f(X)|^2 = \mathbb{E}|Y g(X)|^2 + \mathbb{E}|g(X) f(X)|^2 \ge \mathbb{E}|Y g(X)|^2$.
- Case 2: Pattern classification. $Y \in \{0,1\}, p_0 = P(Y=0), p_1 = \mathbb{P}(Y=1) = 1 p_0, \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{P}(Y \neq f(X)).$ The Bayesian rule (predictor) is given by $f(x) = 1\{\mathbb{P}(Y=1|X=x) \geq \frac{\mathcal{L}(1,0) \mathcal{L}(0,0)}{\mathcal{L}(0,1) \mathcal{L}(1,1)}\mathbb{P}(Y=0|X=x)\}.$ (Proof: $\mathbb{E}[\mathcal{L}(Y,f(X))|X=x] = \begin{cases} \mathbb{E}[\mathcal{L}(Y,0)|X=x] = \mathcal{L}(0,0)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,0)\mathbb{P}(Y=1|X=x) \\ \mathbb{E}[\mathcal{L}(Y,1)|X=x] = \mathcal{L}(0,1)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,1)\mathbb{P}(Y=1|X=x) \end{cases}, \quad \forall \text{ \mathbb{X} \mathbb
- 连续化: $\mathbb{P}(Y = 1 | X = x) = \mathbb{E}(Y | X = x) := g(x)(回 \square), f(x) = 1\{g(x) \geq \frac{1}{2}\}.$ Then $0 \leq \mathbb{P}(\hat{f}(X) \neq Y) \mathbb{P}(f(X) \neq Y) \leq 2 \int_{\mathcal{X}} |\hat{g}(x) g(x)| \mu(\mathrm{d}x) \leq 2 (\int_{\mathcal{X}} |\hat{g}(x) g(x)|^2 \mu(\mathrm{d}x))^{\frac{1}{2}}.$

- 回到 Case 2. $f(x) = 1\{\frac{p(x|y=1)}{p(x|y=0)} \ge \frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))}\}$, 这与似然比检验 (LRT) 相同: Likelihood $L(X) := \frac{p(X|Y=1)}{p(X|Y=0)}$, 形式为 $f(x) = 1\{L(x) \ge \eta\}$.
- Confusion table:

$$egin{array}{c|ccc} Y=0 & Y=1 \\ \hat{Y}=0 & {
m true\ negative} & {
m false\ negative} \\ \hat{Y}=1 & {
m false\ positive} & {
m true\ positive} \\ \end{array}$$

Ture Positive Rate: TPR = $\mathbb{P}(\hat{Y} = 1|Y = 1)$; False Negative Rate: FNR = 1 - TPR, type II error; False Positive Rate: FPR = $\mathbb{P}(\hat{Y} = 1|Y = 0)$, type I error; True Negative Rate: TNR = 1 - FPR. Precision: $\mathbb{P}(Y = 1|\hat{Y} = 1) = \frac{p_1 \text{TPR}}{p_0 \text{FPR} + p_1 \text{TPR}}$. F_1 -score: F_1 is the harmonic mean of precision and recall, which can be written as $F_1 = \frac{2\text{TPR}}{1 + \text{TPR} + \frac{p_0}{p_0 \text{FPR}}}$.

- Optimization: maximize TPR subject to FPR $\leq \alpha, \alpha \in [0,1]$. Randomized rule: Q return 1 with probability Q(x) and 0 with probability 1 Q(x). Maximize $\mathbb{E}[Q(x)|Y = 1]$ subject to $\mathbb{E}[Q(x)|Y = 0] \leq \alpha$. Suppose the likelihood functions p(x|y) are continuous. Then the optimal predictor is a deterministic LRT (N-P lemma). (Proof: Let η be the threshold for an LRT such that the predictor $Q_{\eta}(x) = 1\{\alpha(x) \geq \eta\}$ has FPR $= \alpha$. Such an LRT exists because likelihood are continuous. Let β denote the TPR of Q_{η} . Prove that Q_{η} is optimal for risk minimization problem corresponding to the loss functions $\mathcal{L}(0,1) = \eta \frac{p_1}{p_0}, \mathcal{L}(1,0) = 1, \mathcal{L}(1,1) = \mathcal{L}(0,0) = 0$ since $\frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))} = \frac{p_0\mathcal{L}(0,1)}{p_1\mathcal{L}(1,0)} = \eta$. Under these loss functions, the risk of Bayes predictor for Q is $\mathcal{R}_Q = p_0 \text{FPR}(Q)\mathcal{L}(0,1) + p_1(1-\text{TPR}(Q))\mathcal{L}(1,0) = p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q))$. Now let Q be any other rule with $\text{FPR}(Q) \leq \alpha, \mathcal{R}_{Q_{\eta}} = p_1\eta\alpha + p_1(1-\beta) \leq p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q)) \leq p_1\eta\alpha + p_1(1-\text{TPR}(Q)) \Rightarrow \text{TPR}(Q) \leq \beta$
- ROC (Receiver operating character) curve: y-axis is TPR and x-axis is FPR. Proposition: (1) The points (0,0) and (1,1) are on the ROC curve; (2) The ROC must lie above the main diagnal; (3) The ROC curve is concave. (Proof: (2): Fix $\alpha \in (0,1)$ and consider a randomized rate TPR = FPR = α , $Q(x) \equiv \alpha$; (3): Consider two rules (FPR(η_1), TPR(η_1)) and (FPR(η_2), TPR(η_2)). If we flip a biased coin and use the first rule with probability t and use the second rule with probability 1-t. Then this yields a randomized rule with (FPR, TPR) = $(tFPR(\eta_1) + (1-t)FPR(\eta_2), tTPR(\eta_1) + (1-t)FPR(\eta_2))$. Fixing FPR $\leq tFPR(\eta_1) + (1-t)FPR(\eta_2)$, TPR $\geq tTPR(\eta_1) + (1-t)TPR(\eta_2)$.

3 马尔可夫决策过程

- Markov Decision Processes (MDPs): Five elements: decision epoches, states, actions, transition probabilities and rewards. (1) Decision epoches: Let T denote the set of decision epoches, discrete: {1,2,···, N}; continuous: [0, N]; N < / = ∞: finite or infinite. (2) State and action sets: decision epoch t ∈ T, the system occupies a state S_t ∈ S, the decision maker a ∈ A. (3) Reward and transition probabilities: t, in state s, choose action a, (i) the decision maker receives a reward r_t(s, a), (ii) the system state at the next decision epoch is determined by the probability distribion p_t(·|s_t, a).
- Decision rules: Prescribe a procedure for action selection in each state at a specified decision epoch. Four cases: (1) Markovian and Deterministic: $\delta_t : \mathcal{S} \to \mathcal{A}$; (2) M and Randomized: $\delta_t : \mathcal{S} \to \Delta(\mathcal{A})(q_{\delta_t(s)}(a))$; (3) History-dependent and D: $h_t = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t) = (h_{t-1}, a_{t-1}, s_t), \mathcal{H}_1 = \mathcal{S}, \mathcal{H}_2 = \mathcal{S} \times \mathcal{A} \times \mathcal{S}, \dots, \delta_t : \mathcal{H}_t \to \mathcal{A}$; (4) HR: $\delta_t : \mathcal{H}_t \times \Delta(\mathcal{A})$. A policy $\pi = (\delta_1, \delta_2, \dots, \delta_{N-1})$ is stationary if $\delta_1 = \delta_2 = \dots = \delta$ for $t \in T$.
- Let $\pi = (\delta_1, \dots, \delta_{N-1})$ in HR and $R_t := r_t(X_t, Y_t)$ denote the random reward, $R_N := r_N(X_N)$, $R := (R_1, \dots, R_N)$. The expected total reward $U_N^{\pi}(s) := \mathbb{E}^{\pi} \{\sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) | X_1 = s \}$. Assume $|r_t(s, a)| \leq M < \infty$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Optimal policy: $U_N^{\pi^*}(s) \geq U_N^{\pi}(s)$, $s \in \mathcal{S}$. ε -optimal policy: $U_N^{\pi^*}(s) + \varepsilon > U_N^{\pi}(s)$, $s \in \mathcal{S}$. The value of the MDP: $U_N^{*}(s) = \sup_{\pi \in \mathcal{D}^{\text{HR}}} U_N^{\pi}(s)$, $s \in \mathcal{S}$.

马尔可夫决策过程

- Finite-Horizon Policy Evaluation: $V_t^{\pi}(h_t) = \mathbb{E}^{\pi} \{ \sum_{k=t}^{N-1} r_k(X_k, Y_k) + r_N(X_N) | h_t \}, V_N^{\pi}(h_N) = r_N(s), \pi \in \mathcal{D}^{\text{HD}}$. 由重 期望公式, $V_t^{\pi}(h_t) = r_t(s_t, \delta_t(h_t)) + \mathbb{E}_{h_t}^{\pi} V_{t+1}^{\pi}(h_t, \delta_t(h_t), X_{t+1}) = r_t(s_t, \delta_t(h_t)) + \sum_{j \in S} V_{t+1}^{\pi}(h_t, \delta_t(h_t), j) \mathbb{P}(j|s_t, \delta_t(h_t)).$ Consider randomness (i.e. $\pi \in \mathcal{D}^{\text{HR}}$): $V_t^{\pi}(h_t) = \sum_{a \in \mathcal{A}} q_{\delta_t(h_t)}(a) \{ r_t(s_t, a) + \sum_{j \in S} V_{t+1}^{\pi}(h_t, a, j) \mathbb{P}(j|s_t, a) \}$. Computational complexity: let $K = |\mathcal{S}|, L = |\mathcal{A}|$, at decision epoch $t, K^{t+1}L^t$ histories, $K^2 \sum_{i=0}^{N-1} (KL)^i$ multiplications. If $\pi \in \mathcal{D}^{\text{MD}}$, $V_t^{\pi}(s_t) = r_t(s_t, \delta_t(s_t)) + \sum_{j \in S} V_{t+1}^{\pi}(j) \mathbb{P}(j|s_t, \delta_t(s_t))$, only $(N-1)K^2$ multiplications. On the other hand, given π , this yields a valid and accurate calculation method for $U_N^{\pi}(s)$.
- The Bellman Equations: Let $V_t^*(h_t) = \sup_{\pi \in \mathcal{D}^{HR}} V_t^{\pi}(h_t)$. The optimality equations: $V_t(h_t) = \sup_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in S} V_{t+1}(h_t, a, j) \mathbb{P}_t(j|s_t, a)\}$ for $t = 1, 2, \cdots, N 1$ and $h_t = (h_{t-1}, a_{t-1}, s_t) \in \mathcal{H}_t$. For $t = N, V_N(h_N) = r_N(s_N)$. Suppose V_t is a solution and V_N satisfies $V_N(h_N) = r_N(s_N)$. Then $V_t(h_t) = V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t$, $t = 1, \cdots, N$ and $V_1(s_1) = V_1^*(s_1) = U_N^*(s_1)$ for all $s_1 \in \mathcal{S}$. (Proof: Two parts. First prove $V_n(h_n) \geq V_n^*(h_n)$ for all $h_n \in \mathcal{H}_n$. By induction: $N: V_N(h_N) = r_N(s_N) = V_N^*(h_N)$ for all h_t, π . Now assume that $V_t(h_t) \geq V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t$ for $t = n + 1, \cdots, N$. Let $\pi' = (\delta'_1, \cdots, \delta'_{N-1})$ be an arbitrary policy in \mathcal{D}^{HR} . For t = n, the Bellman equations $V_n(h_n) = \sup_{a \in \mathcal{A}} \{r_n(s_t, a_t) + \sum_{j \in \mathcal{S}} \mathbb{P}(j|s_n, a)V_{n+1}(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \lim_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\}$ be the function of $\mathbb{P}_n(s_n, a)$ and $\mathbb{P}_n(s_n, a)$ and \mathbb{P}
- Let $V_t^*, t = 1, \dots, N$ be solutions of Bellman Equations. Then (a) For each $t = 1, \dots, N, V_t^*(h_t)$ depends on h_t only through s_t ; (b) For any $\varepsilon > 0$, there exists an ε -optimal policy which is D and M; (c) Max can be achieved, it is optimal, which is MD. (Proof: (a): By induction, $V_N^*(h_N) = V_N^*(h_{N-1}, a_{N-1}, s) = r_N(s)$ for all $h_{N-1} \in \mathcal{H}_{N-1}$. Assume (a) is valid for $t = n + 1, \dots, N$. Then $V_n^*(h_n) = \sup_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_t(j|s_t, a)V_{t+1}^*(j)\} = V_n^*(s_t)$.)
- Backward Indcution (Dynamic Programming) Algorithm: 1. Set t = N and $V_N^*(s_N) = r_N(s_N)$ for all $s_N \in \mathcal{S}$; 2. Substitute t 1 for t and compute $V_t^*(s_t)$ for each $s_t \in \mathcal{S}$: $V_t^*(s_t) = \max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_t(j|s_t, a)V_{t+1}^*(s_t)\}$, set $\mathcal{A}_{s_t} = \arg\max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} \mathbb{P}_t(j|s_t, a)V_{t+1}^*(s_t)\}$; 3. If t = 1, stop. Otherwise return to Step 2.
- Other remarks: (1) At time t, specialized S_t and A_s , special structure for r_t and \mathbb{P}_t ; (2) $K = |\mathcal{S}|$ and $L = |\mathcal{A}|$, at eact t, only $(N-1)LK^2$ multiplications, ease computation and storage cost (because there are $(L^K)^{N-1}$ DM policies).