Unit 2 Problem Solutions

- 2.1 See FLD p. 731 for solution.
- **2.2 (a)** In both cases, if X = 0, the transmission is 0, and if X = 1, the transmission is 1.

2.2 (b) In both cases, if X = 0, the transmission is YZ, and if X = 1, the transmission is 1.

2.4 (a)
$$F = [(A \cdot 1) + (A \cdot 1)] + E + BCD = A + E + BCD$$

2.5 (a)
$$(A + B) (C + B) (D' + B) (ACD' + E)$$

= $(AC + B) (D' + B) (ACD' + E)$ By Dist. Law
= $(ACD' + B) (ACD' + E)$ By Dist. Law
= $ACD' + BE$ By Dist. Law

2.6 (a)
$$AB + C'D' = (AB + C')(AB + D')$$

= $(A + C')(B + C')(A + D')(B + D')$

2.6 (c)
$$A'BC + EF + DEF' = A'BC + E(F + DF')$$

= $A'BC + E(F + D) = (A'BC + E)(A'BC + F + D)$
= $(A' + E)(B + E)(C + E)(A' + F + D)$
 $(B + F + D)(C + F + D)$

2.6 (e)
$$ACD' + C'D' + A'C = D' (AC + C') + A'C$$

= $D' (A + C') + A'C$ By Elimination Theorem
= $(D' + A'C) (A + C' + A'C)$
= $(D' + A') (D' + C) (A + C' + A')$

By Distributive Law and Elimination Theorem = (A' + D')(C + D')

2.7 (a)
$$(\underline{A+B+C}+D)(\underline{A+B+C}+E)(\underline{A+B+C}+F)$$

= $\underline{A+B+C}+DEF$

Apply second Distributive Law twice

$$E = A_{\overline{B}}$$

2.8 (a)
$$[(AB)' + C'D]' = AB(C'D)' = AB(C + D')$$

= $ABC + ABD'$

2.8 (c)
$$((A + B') C)' (A + B) (C + A)'$$

= $(A'B + C') (A + B)C'A' = (A'B + C')A'BC'$
= $A'BC'$

2.9 (a)
$$F = [(A+B)' + (A+(A+B)')'] (A+(A+B)')'$$

= $(A+(A+B)')'$
By Elimination Theorem with
 $X=(A+(A+B)')' = A'(A+B) = A'B$

2.4 (b)
$$Y = (AB' + (AB + B)) B + A = (AB' + B) B + A$$

= $(A + B) B + A = AB + B + A = A + B$

2.5 (b)
$$(A' + B + C') (A' + C' + D) (B' + D')$$

= $(A' + C' + BD) (B' + D')$
{By Distributive Law with $X = A' + C'$ }
= $A'B' + B'C' + B'BD + A'D' + C'D' + BDD'$
= $A'B' + A'D' + C'B' + C'D'$

2.6 (b)
$$WX + WY'X + ZYX = X(W + WY' + ZY)$$

= $X(W + ZY)$ {By Absorption}
= $X(W + Z) (W + Y)$

2.6 (d)
$$XYZ + W'Z + XQ'Z = Z(XY + W' + XQ')$$

= $Z[W' + X(Y + Q')]$
= $Z(W' + X)(W' + Y + Q')$ By Distributive Law

2.6 (f)
$$A + BC + DE$$

= $(A + BC + D)(A + BC + E)$
= $(A + B + D)(A + C + D)(A + B + E)(A + C + E)$

2.7 (b)
$$W\underline{XYZ} + V\underline{XYZ} + U\underline{XYZ} = \underline{XYZ}(W + V + U)$$

By first Distributive Law

2.8 (b)
$$[A + B (C' + D)]' = A'(B(C' + D))'$$
$$= A'(B' + (C' + D)') = A'(B' + CD')$$
$$= A'B' + A'CD'$$

2.9 (b)
$$G = \{[(R + S + T)' PT(R + S)']' T\}'$$

= $(R + S + T)' PT(R + S)' + T'$
= $T' + (R'S'T') P(R'S')T = T' + PR'S'T'T = T'$

Unit 2 Solutions

$$= \bigvee_{X' = Y} = \bigvee_{Y = Z}$$

2.11 (a)
$$(A' + B' + C)(A' + B' + C)' = 0$$
 By Complementarity Law

2.11 (c)
$$AB + (C' + D)(AB)' = AB + C' + D$$

By Elimination Theorem

2.11 (e)
$$[AB' + (C + D)' + E'F](C + D)$$

= $AB'(C + D) + E'F(C + D)$ Distributive Law

2.12 (a)
$$(X + Y'Z) + (X + Y'Z)' = 1$$
 By Complementarity Law

2.12 (c)
$$(V'W + UX)'(UX + Y + Z + V'W) = (V'W + UX)'(Y + Z)$$
 By Elimination Theorem

2.12 (e)
$$(W' + X)(Y + Z') + (W' + X)'(Y + Z')$$

= $(Y + Z')$ By Uniting Theorem

2.13 (a)
$$F_1 = A'A + B + (B + B) = 0 + B + B = B$$

2.13 (c)
$$F_3 = [(AB + C)'D][(AB + C) + D]$$

= $(AB + C)'D(AB + C) + (AB + C)'D$
= $(AB + C)'D$ By Absorption

2.14 (a)
$$ACF(B + E + D)$$

2.15 (a)
$$f' = \{[A + (BCD)'][(AD)' + B(C' + A)]\}'$$

 $= [A + (BCD)']' + [(AD)' + B(C' + A)]'$
 $= A'(BCD)'' + (AD)''[B(C' + A)]'$
 $= A'BCD + AD[B' + (C' + A)']$
 $= A'BCD + AD[B' + C''A']$
 $= A'BCD + AD[B' + CA']$

2.16 (a)
$$f^{D} = [A + (BCD)'][(AD)' + B(C' + A)]^{D}$$

= $[A (B + C + D)'] + [(A + D)'(B + C'A)]$

2.17 (a)
$$f = [(A' + B)C] + [A(B + C')]$$

= $A'C + B'C + AB + AC'$
= $A'C + B'C + AB + AC' + BC$
= $A'C + C + AB + AC' = C + AB + A = C + A$

2.17 (c)
$$f = (A' + B' + A)(A + C)(A' + B' + C' + B)$$

 $(B + C + C') = (A + C)$

2.10 (d)

2.11 (b)
$$AB(C' + D) + B(C' + D) = B(C' + D)$$
 By Absorption

2.11 (d)
$$(A'BF + CD')(A'BF + CEG) = A'BF + CD'EG$$

By Distributive Law

2.11 (f)
$$A'(B+C)(D'E+F)' + (D'E+F)$$

= $A'(B+C) + D'E + F$ By Elimination

2.12 (b)
$$[W + X'(Y + Z)][W' + X'(Y + Z)] = X'(Y + Z)$$

By Uniting Theorem

2.12 (d)
$$(UV' + W'X)(UV' + W'X + Y'Z) = UV' + W'X$$

By Absorption Theorem

2.12 (f)
$$(V' + U + W)[(W + X) + Y + UZ'] + [(W + X) + UZ' + Y] = (W + X) + UZ' + Y$$
 By Absorption

2.13 (b)
$$F_2 = A'A' + AB' = A' + AB' = A' + B'$$

2.13 (d)
$$Z = [(A + B)C]' + (A + B)CD = [(A + B)C]' + D$$

By Elimination with $X = [(A + B) C]'$
 $= A'B' + C' + D'$

2.14 (b)
$$W + Y + Z + VUX$$

2.15(b)
$$f' = [AB'C + (A' + B + D)(ABD' + B')]'$$

 $= (AB'C)'[(A' + B + D)(ABD' + B']'$
 $= (A' + B'' + C')[(A' + B + D)' + (ABD')'B'']$
 $= (A' + B + C')[A''B'D' + (A' + B' + D'')B]$
 $= (A' + B + C')[AB'D' + (A' + B' + D)B]$

2.16 (b)
$$f^{D} = [AB'C + (A' + B + D)(ABD' + B')]^{D}$$

= $(A + B' + C)[A'BD + (A + B + D')B')$

2.17 (b)
$$f = A'C + B'C + AB + AC' = A + C$$

2.18 (a) product term, sum-of-products, product-of-sums)

Unit 2 Solutions

2.19

- 2.18 (b) sum-of-products
- 2.18 (d) sum term, sum-of-products, product-of-sums

2.20 (c)
$$F = D[(A' + B')C + AC']$$

= $D(A' + B' + AC')(C + AC')$
= $D(A' + B' + C')(C + A)$

2.22 (a)
$$A'B' + A'CD + A'DE'$$

= $A'(B' + CD + DE')$
= $A'[B' + D(C + E')]$
= $A'(B' + D)(B' + C + E')$

2.22 (b)
$$H'I' + JK$$

= $(H'I' + J)(H'I' + K)$
= $(H' + J)(I' + J)(H' + K)(I' + K)$

2.22 (c)
$$A'BC + AB'C + CD'$$

= $C(A'B + AB' + D')$
= $C[(A + B)(A' + B') + D']$
= $C(A + B + D')(A' + B' + D')$

2.23 (a)
$$W + U'YV = (W + U')(W + Y)(W + V)$$

2.23 (c)
$$A'B'C + B'CD' + B'E' = B'(A'C + CD' + E')$$

= $B'[E' + C(A' + D')]$
= $B'(E' + C)(E' + A' + D')$

- **2.18** (c) none apply
- 2.18 (e) product-of-sums

2.20 (a)
$$F = D[(A' + B')C + AC']$$

2.20 (b)
$$F = D[(A' + B')C + AC']$$

= $A'CD + B'CD + AC'D$

2.22 (d)
$$A'B' + (CD' + E) = A'B' + (C + E)(D' + E)$$

= $(A'B' + C + E)(A'B' + D' + E)$
= $(A' + C + E)(B' + C + E)$
 $(A' + D' + E)(B' + D' + E)$

2.22 (e)
$$A'B'C + B'CD' + EF' = A'B'C + B'CD' + EF'$$

= $B'C (A' + D') + EF'$
= $(B'C + EF')(A' + D' + EF')$
= $(B' + E)(B' + F')(C + E)(C + F')$
 $(A' + D' + E)(A' + D' + F')$

2.22 (f)
$$WX'Y + W'X' + W'Y' = X'(WY + W') + W'Y'$$

= $X'(W' + Y) + W'Y'$
= $(X' + W')(X' + Y')(W' + Y + W')(W' + Y + Y')$
= $(X' + W')(X' + Y')(W' + Y)$

2.23 (b)
$$TW + UY' + V$$

= $(T+U+Z)(T+Y'+V)(W+U+V)(W+Y'+V)$

2.23 (d)
$$ABC + ADE' + ABF' = A(BC + DE' + BF')$$

= $A[DE' + B(C + F')]$
= $A(DE' + B)(DE' + C + F')$
= $A(B + D)(B + E')(C + F' + D)(C + F' + E')$

Unit 2 Solutions

2.29

2.24 (a)
$$[(XY')' + (X' + Y)'Z] = X' + Y + (X' + Y)'Z$$

= $X' + Y' + Z$ By Elimination Theorem with $X = (X' + Y)$

2.24 (c)
$$[(A' + B')' + (A'B'C)' + C'D]'$$
$$= (A' + B')A'B'C(C + D') = A'B'C$$

2.25 (a)
$$F(P, Q, R, S)' = [(R' + PQ)S]' = R(P' + Q') + S'$$

= $RP' + RO' + S'$

2.25 (c)
$$F(A, B, C, D)' = [A' + B' + ACD]'$$

= $[A' + B' + CD]' = AB(C' + D')$

2.26 (a)
$$F = [(A' + B)'B]'C + B = [A' + B + B']C + B$$

= $C + B$

2.26 (c)
$$H = [W'X'(Y' + Z')]' = W + X + YZ$$

2.28 (a)
$$F = ABC + A'BC + AB'C + ABC'$$

 $= BC + AB'C + ABC'$ (By Uniting Theorem)
 $= C(B + AB') + ABC' = C(A + B) + ABC'$
(By Elimination Theorem)
 $= AC + BC + ABC' = AC + B(C + AC')$
 $= AC + B(A + C) = AC + AB + BC$

2.24 (b)
$$(X + (Y'(Z + W)')')' = X'Y'(Z + W)' = X'Y'Z'W'$$

2.24 (d)
$$(A + B)CD + (A + B)' = CD + (A + B)'$$

{By Elimination Theorem with $X = (A + B)'$ }
 $= CD + A'B'$

2.25 (b)
$$F(W, X, Y, Z)' = [X + YZ(W + X')]'$$

= $[X + X'YZ + WYZ]'$
= $[X + YZ + WYZ]' = [X + YZ]'$
= $X'Y' + X'Z'$

2.26 (b)
$$G = [(AB)'(B+C)]'C = (AB+B'C')C = ABC$$

2.27
$$F = (\underline{V + X} + W) (\underline{V + X} + Y) (V + Z)$$

= $(V + X + WY)(V + Z) = V + Z (X + WY)$
By Distributive Law with $X = V$

2.28 (b) Beginning with the answer to (a):

$$F = A (B + C) + BC$$

Alternate solutions:

$$F = AB + C(A + B)$$

$$F = AC + B(A + C)$$

2.29 (b)

(a)	XYZ	<i>X</i> + <i>Y</i>	X'+Z	(X+Y)	XZ	X'Y	XZ+X'Y
				(X'+Z)			
	0 0 0	0	1	0	0	0	0
	0 0 1	0	1	0	0	0	0
	0 1 0	1	1	1	0	1	1
	0 1 1	1	1	1	0	1	1
	100	1	0	0	0	0	0
	101	1	1	1	1	0	1
	110	1	0	0	0	0	0
	111	1	1	1	1	0	1

	XYZ	<i>X</i> + <i>Y</i>	<i>Y</i> + <i>Z</i>	X'+Z	(X+Y) (Y+Z) (X'+Z)	(X+Y) (X'+Z)
	0 0 0	0	0	1	0	0
	0 0 1	0	1	1	0	0
	010	1	1	1	1	1
	0 1 1	1	1	1	1	1
	100	1	0	0	0	0
	1 0 1	1	1	1	1	1
•	1 1 0	1	1	0	0	0
	1 1 1	1	1	1	1	1

Full file at https://testbankuniv.eu/Fundamentals-of-Logic-Design-7th-Edition-Roth-Solutions-Manual

Unit 2 Solutions

2-29 (c)

XYZ	XY	YZ	X'Z	XY+YZ+X'Z	XY+X'Z
0 0 0	0	0	0	0	0
0 0 1	0	0	1	1	1
010	0	0	0	0	0
0 1 1	0	1	1	1	1
100	0	0	0	0	0
1 0 1	0	0	0	0	0
110	1	0	0	1	1
111	1	1	0	1	1

2.29 (d)

d	$)_{ABC}$	A+C	AB+C'	(A+C)	AB	AC'	AB
				(AB+C')			+AC'
	0 0 0	0	1	0	0	0	0
	0 0 1	1	0	0	0	0	0
	0 1 0	0	1	0	0	0	0
	0 1 1	1	0	0	0	0	0
·	100	1	1	1	0	1	1
	1 0 1	1	0	0	0	0	0
	1 1 0	1	1	1	1	1	1
•	1 1 1	1	1	1	1	0	1

2.29 (e)

WXYZ	W'XY	WZ	W'XY+WZ	W'+Z	W+XY	(W'+Z)(W+XY)
0 0 0 0	0	0	0	1	0	0
0 0 0 1	0	0	0	1	0	0
0 0 1 0	0	0	0	1	0	0
0 0 1 1	0	0	0	1	0	0
0100	0	0	0	1	0	0
0 1 0 1	0	0	0	1	0	0
0 1 1 0	1	0	1	1	1	1
0 1 1 1	1	0	1	1	1	1
1000	0	0	0	0	1	0
1 0 0 1	0	1	1	1	1	1
1010	0	0	0	0	1	0
1011	0	1	1	1	1	1
1 1 0 0	0	0	0	0	1	0
1 1 0 1	0	1	1	1	1	1
1110	0	0	0	0	1	0
1111	0	1	1	1	1	1

2.30

= (X+Y'+X')(X+Y'+Y)(X+Y'+Z')(Z+X')(Z+Y)(Z+Z')

= (1+Y)(X+1)(X+Y+Z')(Z+X')(Z+Y)(1)

= (1)(1)(X+Y'+Z')(Z+X')(Z+Y)(1)= (X+Y'+Z')(Z+X')(Z+Y)

G = (X + Y' + Z')(X' + Z)(Y + Z)

(from the circuit)

(Distributive Law)

(Distributive Law)

(Complementation Laws)

(Operations with 0 and 1)

(Operations with 0 and 1)

(from the circuit)

