Programa de teoría

Parte I. Estructuras de Datos.

- 1. Abstracciones y especificaciones.
- 2. Conjuntos y diccionarios.
- 3. Representación de conjuntos mediante árboles.
- 4. Grafos.

Parte II. Algorítmica.

- 1. Análisis de algoritmos.
- 2. Divide y vencerás.
- 3. Algoritmos voraces.
- 4. Programación dinámica.
- 5. Backtracking.
- 6. Ramificación y poda.

PARTE II: ALGORÍTMICA

Tema 4. Programación dinámica.

- 4.1. Método general.
- 4.2. Ejemplos de aplicación.
 - 4.2.1. Problema de la mochila 0/1.
 - 4.2.2. Problema del cambio de monedas.
 - 4.2.3. Problemas para profundizar.
- 4.3. Análisis de tiempos de ejecución.

I'm doing re-...ehm Dynamic Programming

Richard Bellman

 Cuando solución a un problema viene dada por ecuación recurrente, esta se puede aplicar de forma:

- Descendente (como DyV)
- Ascendente (PD...)
- Ejemplo: serie de Fibonaci...

$$F(n) = \begin{cases} 0 & n = 1 \\ 1 & n = 2 \\ F(n-1) + F(n-2) & Si n > 2 \end{cases}$$

¿F(5)?

• F(5), cálculo descendente...

A.E.D.

- F(5), cálculo "ascendente"...
- >> Podemos guardar cada F(x) en posición de tabla T, de forma que F(x) = T(x)
- >> Eso permitiría calcular cada F(x) una sola vez, guardar resultado, y usarlo cuando sea necesario (varias veces)

Cada F(x) va a ÚNICA posición T(x), aunque aparezca varias veces el el árbol... calcular 1 vez, usar n veces...

F(5), cálculo "ascendente"...

F(5), cálculo "ascendente"...

0 1 1

F(5), cálculo "ascendente"...

0 1 1 2

¡¡En realidad el árbol no hace falta!!

Hacer cálculos directamente en tabla, más eficiente

Insistimos... date cuenta de cómo cada F(x), aunque aparezca varias veces en el árbol, va a único T(x)...

A.E.D.

Insistimos... date cuenta de cómo cada F(x), aunque aparezca varias veces en el árbol, va a único T(x)...

15

. . .

A.E.D. Tema 4. Programación dinámica.

. . .

A.E.D. Tema 4. Programación dinámica.

. . .

A.E.D.

Tema 4. Programación dinámica.

. . .

A.E.D. Tema 4. Programación dinámica.

- Base de PD: razonamiento inductivo: resolver problema combinando soluciones para problemas más pequeños.
- Misma idea que en DyV recursivo... pero otra estrategia.
- Similitud: descomposición recursiva del problema.
- Diferencia:
 - DyV: estrategia descendente, aplicar la fórmula recursiva.
 >> Programa recursivo.
 - PD: estrategia ascendente, resolver primero problemas más pequeños, guardando los resultados en una tabla.
 - >> Programa iterativo.

A.E.D.

Ejemplo: Fibonacci.

$$F(n) = \begin{cases} 1 & \text{Si n} \le 2 \\ F(n-1) + F(n-2) & \text{Si n} > 2 \end{cases}$$

DyV:

```
operación Fibonacci (n: entero): entero
si n≤2 devolver 1
sino devolver Fibonacci(n-1) + Fibonacci(n-2)
```

PD:

```
operación Fibonacci (n: entero): entero T[1]:= 1; T[2]:= 1
para i:= 3, ..., n hacer
T[i]:= T[i-1] + T[i-2]
devolver T[n]
```

- Ambos usan misma fórmula recursiva, de forma distinta.
- ¿Cuál es más eficiente?

- Problema: Muchos cálculos están repetidos.
- El tiempo de ejecución es exponencial: Θ(1,62ⁿ)

A.E.D.

Métodos ascendentes vs. descendentes

Métodos descendentes (DyV)

- Empezar con el problema original y descomponer recursivamente en problemas de menor tamaño.
- Problema grande >> descendemos hacia más sencillos.

Métodos ascendentes (PD)

- Resolver primero problemas pequeños (guardando en una tabla). Después combinar para resolver los más grandes.
- Problemas pequeños >> ascendemos hacia más grandes.

Pasos para aplicar PD:

- 1) Obtener descomposición recurrente del problema:
 - Ecuación recurrente.
 - Casos base.
- 2) Definir estrategia de aplicación de recurrencia:
 - Tablas utilizadas por el algoritmo.
 - Orden y forma de rellenarlas.
- 3) Especificar cómo se **recompone la solución** final a partir de los valores de las tablas.
- Punto clave: obtener la descomposición recurrente.
 - >> A veces requiere mucha "creatividad".

Pasos para aplicar PD:

- 1) Obtener descomposición recurrente del problema:
 - >> La "pieza de puzle"

- 2) Definir estrategia de aplicación de recurrencia:
 - Tablas utilizadas por el algoritmo.
 - Orden y forma de rellenarlas.

A.E.D. Tema 4. Programación dinámica.

- 2) Definir estrategia de aplicación de recurrencia:
 - Tablas utilizadas por el algoritmo.
 - Orden y forma de rellenarlas.

A.E.D.
Tema 4. Programación dinámica.

- 2) Definir estrategia de aplicación de recurrencia:
 - >> Por ejemplo en este orden no se podría:

- 2) Definir estrategia de aplicación de recurrencia:
 - Tablas utilizadas por el algoritmo.
 - Orden y forma de rellenarlas.

- 2) Definir estrategia de aplicación de recurrencia:
 - >> Por ejemplo en este orden no se podría:

Pasos para aplicar PD:

3) Especificar cómo se **recompone la solución** final a partir de los valores de las tablas.

Pasos para aplicar PD:

- 1) ...
- 2) ...
- 3) ...
- Punto clave: obtener la descomposición recurrente.
 - >> A veces requiere mucha "creatividad".
- >> IDEAS...

Ideas para encontrar descomposición recurrente:

- –¿Cómo reducir problema a subproblemas más simples?
- –¿Qué parámetros determinan el tamaño del problema?
 (y por tanto cuándo es "más simple")
- –Interpretar problema como proceso de toma de decisiones: detectar cuándo tomo decisiones y qué ocurre al hacerlo
 - Ejemplo: Mochila 0/1. Decisiones: coger/no objeto
 - >> Tras una decisión, quedan menos objetos por decidir

Ejemplo de aplicación de estas ideas:

>> recorrido turístico por Manhattan

Recorrido turístico por Manhattan

Problema:

- Recorrer la isla desde
- esquina superior izquierda a
- esquina inferior derecha.
- Sólo posible moverse hacia abajo (sur) y a la derecha (este).
- Objetivo visitar mayor número de lugares de interés.

A.E.D.

(Manhattan)

- Representación del problema como un **grafo dirigido**.
- Origen (nodo azul) = (0, 0)
- Destino (nodo rojo) = (n, m)
- Peso aristas = nº lugares de interés en el tramo de calle.
- s_{i,j} = nº máximo lugares en camino de origen a nodo (i, j)
- Calcular $\mathbf{s}_{\mathsf{n},\mathsf{m}}$ y su camino.

Tema 4. Programación dinámica.

4.1. Método gen 'al.

A.E.D. Tema 4. Programación dinámica.

La pregunta original es

Manhattan(n,m), así que
para plantear la
recurrencia vamos a ver

las decisiones desde otra

perspectiva...

Empezar por el final...

("salida del laberinto")

¿desde dónde llego al nodo (i,j) en solución óptima?

- (Manhattan)
- Decisiones: en intersección elegir venir desde izq. o arriba.
- Consecuencias de una decisión:

- Añado cierto beneficio (nº lugares en esa calle).
- Una decisión menos por tomar (total n+m decisiones).
- Tamaño del problema:
 - nº decisiones pendientes = verticales + horiz. = i + j
 - Puede venir bien dejarlas por separado: tamaño ≈ (i, j)
- Recurrencia: s_{i, i} es el máximo entre:

$$s_{i-1,j}$$
 + peso arista vertical de $(i-1,j)$ a (i,j) $s_{i,j-1}$ + peso arista horizontal de (i,j)

Casos base: nodos con solución directa:>> primera fila y columna...

M(i,j-1) M(i,j)

A.E.D.

M(i-1,j)

(Manhattan)

4.1. Método general.

A.E.D. Tema 4. Programación dinámica.

(Manhattan)

4.1. Método general.

Rellenar tabla: tras casos base, por columnas, arriba a abajo

A.E.D.

>> Usando este orden tenemos ya calculados los valores de los nodos previos, necesarios para calcular el valor del nodo actual.

También posible por filas.

(Manhattan)

4.1. Método general.

A.E.D.
Tema 4. Programación dinámica.

- Reconstruir la solución:
- >> Dos posibilidades:

(Manhattan)

- Reconstruir esa información a partir de la tabla de valores s_{i.i}.

Tema 4. Programación dinámica.

(Manhattan)

- Reconstruir la solución:
- >> Dos posibilidades:
- Reconstruir esa información a partir de la tabla de valores s_{i,j}.
- Guardar decisiones en 2ª tabla

Generalización a DAGs:

Todo este proceso visto para Manhattan es similar para otros problemas en que también se recorra un DAG (grafo dirigido acíclico).

A.E.D.
Tema 4. Programación dinámica.

- ¿Cómo garantiza un algoritmo PD la solución correcta?
- Una descomposición recurrente es correcta si cumple el Principio de optimalidad de Bellman:

La solución óptima de un problema se obtiene combinando

soluciones óptimas de subproblemas.

 ¿Se cumple para Manhattan?

4.2. Ejemplos de aplicación. 4.2.1. Problema de la mochila 0/1.

(NP-completo clásico)

•Datos del problema:

- n: número de objetos disponibles.
- M: capacidad de la mochila.
- $-p = (p_1, p_2, ..., p_n)$ pesos de los objetos.
- $-\mathbf{b} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ beneficios de los objetos.

·Formulación matemática:

Maximizar $\sum_{i=1..n} x_i b_i$; sujeto a la restricción $\sum_{i=1..n} x_i p_i \le M$, y $x_i \in \{0,1\}$

Aplicamos programación dinámica al problema...

Paso 1)

- ¿Cómo obtener la descomposición recurrente?
- Interpretar el problema como un proceso de toma de decisiones: coger o no coger cada objeto.
- Después de tomar una decisión sobre un objeto, nos queda un problema de menor tamaño (con un objeto menos) = SUBPROBLEMA.
- ¿Coger o no coger un objeto?

Coger n + Resolver(1..n-1)
Resolver(1..n)

No coger n + Resolver(1..n-1)

- ¿Coger o no coger un objeto k?
- → Si Sí se coge: tenemos el beneficio b_k, pero en la mochila queda menos espacio, p_k.
- →Si NO se coge: tenemos el mismo problema pero con un objeto menos por decidir.
- ¿Qué cambia en subproblemas? (respecto original)
 - Número de objetos por decidir.
 - Peso disponible en la mochila.
- Parametrizar problema en función de lo que cambia...
- Ecuación del problema: Mochila(k, m: entero): entero Problema de la mochila 0/1, considerando sólo los k primeros objetos (de los n originales) con capacidad de mochila m. Devuelve el valor de beneficio total.

E.D. 47

- Definición de Mochila(k, m: entero): entero
 - Si NO se coge el objeto k: Mochila(k, m) = Mochila(k - 1, m)
 - Si Sí se coge: Mochila(k, m) = b_k + Mochila(k - 1, m - p_k)
 - Valor óptimo: el que dé mayor beneficio:

```
Mochila(k, m) = \max { Mochila(k - 1, m), (NO)
b<sub>k</sub> + Mochila(k - 1, m - p<sub>k</sub>) } (SÍ)
```

Casos base:

- Si m=0, no se pueden incluir objetos: Mochila(k, 0) = 0
- Si k=0, tampoco se pueden incluir: Mochila(0, m) = 0
- ¿Y si m o k son negativos?

Casos base:

- Si m o k son negativos, el problema es irresoluble:
 Mochila(k, m) = -∞
- Resultado. La siguiente ecuación recurrente obtiene la solución óptima del problema:

- ¿Cómo aplicarla de forma ascendente?
- Usar una tabla para guardar resultados de los subprob.
- Rellenar la tabla: empezando por los casos base, avanzar a tamaños mayores.

A.E.D.

Paso 2) Definición de las tablas y cómo rellenarlas

2.1) Dimensiones y tamaño de la tabla

- Definimos la tabla V, para guardar los resultados de los subproblemas: V[k, m] = Mochila(k, m)
- La solución del problema original es Mochila(n, M).
- Por lo tanto, la tabla debe ser:
 V: array [0..n, 0..M] de entero
- Fila 0 y columna 0: casos base de valor 0.
- Los valores que caen fuera de la tabla son casos base de valor -∞.

A.E.D.

2.2) Forma de rellenar las tablas:

Inicializar los casos base:

$$V[k, 0] := 0; V[0, m] := 0$$

Para todo k desde 1 hasta n

Para todo m desde 1 hasta M, aplicar la ecuación:

$$V[k, m] := max (V[k-1, m], b_k + V[k-1, m-p_k])$$

• El beneficio óptimo es V[n, M]

Ojo: si m-p_k es negativo, entonces es el caso -∞, y el máximo será siempre el otro término.

A.L.D.

Tema 4. Programación dinámica.

• **Ejemplo.** n= 3, **M**= 6, **p**= (2, 3, 4), **b**= (1, 2, 5)

V	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1
2	0	0	1	2	2	3	3
3	0	0	1	2	5	5	6

¿Cuánto es el orden de complejidad del algoritmo?

Tema 4. Programación dinámica.

• Ejemplo. n=3, M=6, p=(2, 3, 4), b=(1, 2, 5)

RESOLUCIÓN:

A.E.D. Tema 4. Programación dinámica.

Dale la vuelta...

A.E.D. Tema 4. Programación dinámica.

Paso 3) Recomponer la solución óptima

- V[n, M] almacena el beneficio óptimo, pero ¿cuáles son los objetos que se cogen en esa solución?
- Obtener la tupla solución (x₁, x₂, ..., x_n) usando V.
- Idea: partiendo de la posición V[n, M], analizar las decisiones que se tomaron para cada objeto k.
 - Si V[k, m] = V[k-1, m], entonces la solución no usa el objeto k → x_k:= 0
 - Si V[k, m]=V[k-1, m-p_k]+ b_k, entonces sí se usa el objeto k
 → x_k:= 1
 - Si se cumplen ambas, entonces podemos usar el objeto k
 o no (existe más de una solución óptima).

• Ejemplo. n=3, M=6, p=(2, 3, 4), b=(1, 2, 5)

Reconstruir solución:

A.E.D. Tema 4. Programación dinámica.

3) Cómo recomponer la solución óptima

Aplicar sobre el ejemplo anterior.

A.E.D.

Código C++

```
#include <iostream>
#include <vector>
#include <algorithm>
#include <climits>
using namespace std;
vector<vector<int>> mochila01_paso2_rellenar_tabla(const vector<int>& P, int M, int n,
   const vector<int>& B) {
  vector<vector<int>> V(n + 1, vector<math><int>(M + 1, 0));
  // date cuenta de que V se inicializa a ceros, por lo que los casos base ya están rellenos
  for (int k = 1; k \le n; ++k) {
     for (int m = 1; m \le M; ++m) {
       int m1 = (m - P[k - 1] >= 0)? B[k - 1] + V[k - 1][m - P[k - 1]]: INT_MIN;
       int m2 = V[k - 1][m];
       V[k][m] = max(m1, m2);
  return V;
                                           A.E.D.
                                                                                     58
```

Código C++

```
pair<int, vector<int>> mochila01_paso3_reconstruir_solucion(const vector<int>& P, int M,
    int n, const vector<int>& B, const vector<vector<int>>& V) {
  int k actual = n;
  int m actual = M;
  vector<int> S(n, 0); // S es inicializado a ceros
  while (k \text{ actual} > 0) {
     int m1 = (m \text{ actual - P[k actual - 1]} >= 0) ? B[k actual - 1] + V[k actual - 1][m actual -
    P[k actual - 1]]: INT MIN;
     int m2 = V[k_actual - 1][m_actual];
     if (m1 != m2) {
       S[k actual - 1] = 1;
        m actual -= P[k actual - 1];
     //else... S ha sido inicializado a ceros
     k actual--;
  return {V[n][M], S};
```

Código C++

```
int main() {
    int n = 3;
    int M = 6;
    vector<int> P = {2, 3, 4};
    vector<int> B = {1, 2, 5};
    vector<vector<int>> V = mochila01_paso2_rellenar_tabla(P, M, n, B);
    pair<int, vector<int>> resultado = mochila01_paso3_reconstruir_solucion(P, M, n, B, V);
    cout << "Valor máximo: " << resultado.first << "\nSelección: ";
    for (int i : resultado.second) {
        cout << i << " ";
    }
    cout << endl;
    return 0;
}</pre>
```

Algunas cuestiones interesantes:

- •¿Cuánto será el tiempo de recomponer la solución?
- •¿Cómo es el tiempo en relación al algoritmo de backtracking y al de ramificación y poda?
- •¿Qué pasa si multiplicamos todos los pesos por 1000?
- •¿Se cumple el principio de optimalidad?
- •En lugar de max se puede usar min, suma...
 - >> Por ejemplo: calcular número de formas de elegir los objetos a meter en la mochila... SUMA

- Problema: Dado un conjunto de n tipos de monedas, cada una con valor c_i, y dada una cantidad P, encontrar el número mínimo de monedas que tenemos que usar para obtener esa cantidad.
- El algoritmo voraz es muy eficiente, pero sólo funciona en un número limitado de casos.

Utilizando programación dinámica:

- 1) Definir el problema en función de problemas más pequeños
- 2) Definir las tablas de subproblemas y la forma de rellenarlas
- 3) Establecer cómo obtener el resultado a partir de las tablas

1) Descomposición recurrente del problema

- Interpretar como un problema de toma de decisiones.
- ¿Coger o no coger una moneda de tipo k?
- → Si se coge: usamos 1 más y tenemos que devolver cantidad c_k menos.
- → Si no se coge: tenemos el mismo problema pero descartando la moneda de tipo k.
- ¿Qué varía en los subproblemas?
 - Tipos de monedas a usar.
 - Cantidad por devolver.
- Ecuación del problema. Cambio(k, q: entero): entero
 Problema del cambio de monedas, considerando sólo los k
 primeros tipos, con cantidad a devolver q. Devuelve el
 número mínimo de monedas necesario.

- Definición de Cambio(k, q: entero): entero
 - Si no se coge ninguna moneda de tipo k:Cambio(k, q) = Cambio(k 1, q)
 - Si se coge 1 moneda de tipo k: Cambio(k, q) = 1 + Cambio(k, q - c_k)
 - Valor óptimo: el que use menos monedas:
 Cambio(k, q) = min { Cambio(k 1, q),
 1 + Cambio(k, q c_k) }

Casos base:

- Si q=0, no usar ninguna moneda: Cambio(k, 0) = 0
- En otro caso, si q<0 ó k≤0, no se puede resolver el problema: Cambio(q, k) = +∞

Ecuación recurrente:

Cambio(k, q) =
$$\begin{cases} 0 & \text{Si } \mathbf{q} = 0 \\ +\infty & \text{Si } \mathbf{q} < 0 \text{ ó } \mathbf{k} \leq 0 \\ \text{min } \{\text{Cambio(k-1, q), 1 + Cambio(k, q-c_k)}\} \end{cases}$$
 Aplicación ascendente mediante tablas

2) Aplicación ascendente mediante tablas

- Matriz D → D[i, j] = Cambio(i, j)
- **D:** array [1..**n**, 0..**P**] **de** entero

```
para i:= 1, ..., n hacer D[i, 0]:= 0
para i:= 1, ..., n hacer
   para j:= 1, ..., P hacer
       D[i, j] := min(D[i-1, j], 1+D[i, j-c_i])
devolver D[n, P]
```

Ojo si cae fuera de la tabla.

• Ejemplo. n= 3, P= 8, c= (1, 4, 6) i

D	0	1	2	3	4	5	6	7	8
1 c ₁ =1	0	1	2	3	4	5	6	7	8
2 c ₂ =4	0	1	2	3	1	2	3	4	2
3 c ₁ =6	0	1	2	3	1	2	1	2	2

- ¿Cuánto es el orden de complejidad del algoritmo?
- ¿Cómo es en comparación con el algoritmo voraz?

i

3) Cómo recomponer la solución a partir de la tabla

- ¿Cómo calcular cuántas monedas de cada tipo deben usarse, es decir, la tupla solución (x₁, x₂, ..., x_n)?
- Analizar las decisiones tomadas en cada celda, empezando en D[n, P].
- ¿Cuál fue el mínimo en cada D[i, j]?
 - D[i 1, j] → No utilizar ninguna moneda más de tipo i.
 - D[i, j C[i]] + 1 → Usar una moneda más de tipo i.
- Implementación:
 - x: array [1..n] de entero
 - → x[i] = número de monedas usadas de tipo i

67

3) Cómo recomponer la solución a partir de la tabla

```
x = (0, 0, ..., 0)
i:= n
j:= P
mientras (i≠0) AND (j≠0) hacer
     si D[i, i] == D[i-1, j] entonces
         i := i - 1
     sino
         x[i] = x[i] + 1
        j:=j-c_i
     finsi
```

finmientras

- ¿Qué pasa si hay varias soluciones óptimas?
- ¿Y si no existe ninguna solución válida?

Variaciones de la mochila:

- ¿De cuántas formas puedo llenar la mochila?
- Llenar completamente la mochila.
- ¿Y si tengo 2 mochilas? ¿O más?
- ¿Y si hay soluciones que empatan?

A.E.D. Tema 4. Programación dinámica.

Con bolsas y a lo loco:

- Concurso: gastar E euros en un día.
- n tiendas en las que hacer las compras
- En cada una puedes gastar cantidad c_i .
- Algoritmo PD que elija el conjunto de tiendas para gastar el máximo sin superar presupuesto E.

>> Parecido a la mochila, pero maximizo el gasto (como si en la mochila intento maximizar los kg usados)

A.E.D. Tema 4. Programación dinámica.

Patatas dinámicas:

- Queremos comprar G kg de patatas. G es un entero.
- Disponemos de n patatas, cada una con un peso p_i .
- Algoritmo PD que elija el conjunto de patatas que pesa al menos G gramos, minimizando exceso de peso.

>> OJO: no puedo resolverlo como hasta ahora, con lo cojo/no lo cojo (inténtalo y mira qué ocurre).

>> Idea... ¿y si la tabla lo que responde es... es posible conseguir conseguir rellenar el peso G?

2 montones lo más equilibrados posible:

- Tenemos n objetos
- Cada uno con un peso p_i
- Objetivo: repartir entre dos montones diferentes lo más equilibrados posible en peso, es decir, minimizar la diferencia de peso total entre ambos montones.
- >> OJO: si lo planteamos como min(lo cojo,no lo cojo), no cumple principio de optimalidad de Bellman.
- Ejemplo: 10 objetos de un kg y 1 objeto de 10 kg
- >> Se puede resolver como patatas dinámicas... tabla responde, ¿es posible conseguir x diferencia de peso?

4.3. Análisis de tiempos de ejecución.

- La programación dinámica se basa en el uso de tablas donde se almacenan los resultados parciales.
- En general, el **tiempo** será de la forma:

Tamaño de la tabla*Tiempo de rellenar cada elemento de la tabla.

- Un aspecto importante es la memoria puede llegar a ocupar la tabla.
- Además, algunos de estos cálculos pueden ser innecesarios.

A.E.D.

4. Programación dinámica.

Conclusiones

- El razonamiento inductivo es una herramienta muy potente en resolución de problemas.
- Aplicable no sólo en problemas de optimización.
- ¿Cómo obtener la fórmula? Interpretar el problema como una serie de toma de decisiones.
- Descomposición recursiva no necesariamente implica implementación recursiva.
- Programación dinámica: almacenar los resultados en una tabla, empezando por los tamaños pequeños y avanzando hacia los más grandes.