COMPLEMENTOS DE MATEMÁTICA I MATEMÁTICA DISCRETA

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

2024

ARBOLES

DEFINICIÓN

Un árbol es un grafo conexo sin ciclos. Notamos T = (V, E). Cuando cada componente de un grafo es un árbol, se llama bosque.

Un árbol es recubridor de un grafo G si es un subgrafo acíclico conexo (árbol) que contiene todos los vértices de G.

ARBOLES

DEFINICIÓN

Un árbol es un grafo conexo sin ciclos. Notamos T = (V, E). Cuando cada componente de un grafo es un árbol, se llama bosque.

Un árbol es recubridor de un grafo G si es un subgrafo acíclico conexo (árbol) que contiene todos los vértices de G. Similar para los bosques recubridores.

Más ejemplos:

P_n

Más ejemplos:

- P_n K_{1,n}

Más ejemplos:

- \bullet P_n
- K_{1,n}

Todo árbol es bipartito. Vale la vuelta?

En un árbol T = (V, E) existe un único camino entre cualquier par de vértices distintos.

PROOF.

Pizarra

En un árbol T = (V, E) existe un único camino entre cualquier par de vértices distintos

PROOF.

Pizarra

TEOREMA

Dado G = (V, E) un grafo no dirigido. G es conexo si y sólo si tiene un árbol recubridor.

COMPLEMENTOS DE MATEMÁTICA I MATEMÁTI

PROOF.

Hojitas

En cualquier árbol T = (V, E), |V| = |E| + 1.

PROOF.

Hojitas

En cualquier árbol T = (V, E), |V| = |E| + 1.

PROOF.

Hojitas

TEOREMA

En cualquier árbol, si $|V| \ge 2$ hay al menos dos vértices pendientes.

PROOF.

Hojitas