ECE380 Digital Logic

Introduction to Logic Circuits:

Design Examples

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 5-1

Design examples

- Logic circuits provide a solution to a problem
- Some may be complex and difficult to design
- Regardless of the complexity, the same basic design issues must be addressed
 - 1. Specify the desired behavior of the circuit
 - 2. Synthesize and implement the circuit
 - 3. Test and verify the circuit

Electrical & Computer Engineering

Three-way light control

- Assume a room has three doors and a switch by each door controls a single light in the room.
 - Let x, y, and z denote the state of the switches
 - Assume the light is off if all switches are open
 - Closing any switch turns the light on. Closing another switch will have to turn the light off.
 - Light is on if any one switch is closed and off if two (or no) switches are closed.
 - Light is on if all three switches are closed

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 5-3

Three-way light control

Х	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$f(x,y,z)=m_1+m_2+m_4+m_7$$

 $f(x,y,z)=x'y'z+x'yz'+xy'z'+xyz$

This is the simplest sum-of-products form.

Electrical & Computer Engineering

Multiplexer circuit

- In computer systems it is often necessary to choose data from exactly one of a number of sources
 - Design a circuit that has an output (f) that is exactly the same as one of two data inputs (x,y) based on the value of a control input (s)
 - If s=0 then f=x
 - If s=1 then f=y
 - The function f is really a function of three variables (s,x,y)
 - Describe the function in a three variable truth table

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 5-5

Multiplexer circuit

S	Х	У	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
1			

 $f(s,x,y)=m_2+m_3+m_5+m_7$ f(s,x,y)=s'xy'+s'xy+sx'y+sxy f(s,x,y)=s'x(y'+y)+sy(x'+x)f(s,x,y)=s'x+sy

convenient to put control signal on left

Electrical & Computer Engineering

Multiplexer circuit

s	$f(s,x_1,x_2)$
0	<i>X</i> ₁
1	<i>X</i> ₂

Graphical symbol

Compact truth table

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 5-7

Car safety alarm

- Design a car safety alarm considering four inputs
 - Door closed (D)
 - Key in (K)
 - Seat pressure (S)
 - Seat belt closed (B)
- The alarm (A) should sound if
 - The key is in and the door is not closed, or
 - The door is closed and the key is in and the driver is in the seat and the seat belt is not closed

Electrical & Computer Engineering

Adder circuit

- Design a circuit that adds two input bits together (x,y) and produces two output bits (s and c)
 - S: sum bit
 - x=0, y=0 => s=0
 - x=0, y=1 => s=1
 - x=1, y=0 => s=1
 - x=1, y=1 => s=0
 - C: carry bit
 - x=0, y=0 => c=0
 - x=0, y=1 => c=0
 - x=1, y=0 => c=0
 - x=1, y=1 => c=1

Electrical & Computer Engineering

Majority circuit

- Design a circuit with three inputs (x,y,z)
 whose output (f) is 1 only if a majority of the
 inputs are 1
 - Construct a truth table
 - Write a standard sum-of-products expression for f
 - Draw a circuit diagram for the sum-of-products expression
 - Minimize the function using algebraic manipulation
 - During your minimization you can use any Boolean theorem, but leave the result in sum-of-products form (generate a minimum sum-of-products expression)
 - Draw the minimized circuit

Electrical & Computer Engineering