MA 69204 Statistical Software Lab

Assignment No. 3

Rejection Method for Generating Random Variables

Continuous Case: Suppose we have a method for simulating a random variable having density function g(y). We can use this to simulate from a continuous distribution having density f(x).

Step 1: Simulate Y having density g and simulate a random number U.

Step 2: If
$$U \le \frac{f(Y)}{cg(Y)}$$
, set $X = Y$. Otherwise return to Step 1.

Then X has density f.

Exercise 1: To generate a random variable having beta density

$$f(x) = 20x(1-x)^3$$
, $0 < x < 1$.

Step1: Generate random numbers $\boldsymbol{U_1}$ and $\boldsymbol{U_2}$.

Step 2: If
$$U_2 \le \frac{256}{27} U_1 (1 - U_1)^3$$
, stop and set $X = U_1$. Otherwise return to Step 1.

Exercise 2: Generating a standard normal variable.

Step 1: Generate Y_1 , and exponential random variable with rate 1.

Step 2: Generate Y_2 , and exponential random variable with rate 1.

Step 3: If
$$Y_2 > \frac{1}{2}(Y_1 - 1)^2$$
, set $Y = Y_2 - \frac{1}{2}(Y_1 - 1)^2$ and go to Step 4. Else go to Step 1

Step 4: Generate a uniform random number $U \sim U[0, 1]$ and set

$$Z = \begin{cases} Y_1, & \text{if } U \leq 0.5 \\ -Y_1 & \text{if } U > 0.5 \end{cases}.$$

The random variables Z and Y generated by the above are independent with Z being standard normal and Y exponential with rate 1.

Generate 1000 random variates using each algorithm and apply Chi-square test for goodness of fit in each case. For calculating probabilities related to beta and normal distributions in applying goodness of fit test, use numerical integration (Simpson's one-third rule etc.). Compare this generation of normal variable with the algorithms in Experiment No. 1 in terms of computational times.

Discrete Case: Suppose we have a method for simulating a random variable having probability mass function $\{q_j, j \geq 0\}$. We can use this to simulate from a discrete distribution having probability mass function density $\{p_j, j \geq 0\}$.

Step 1: Simulate Y having density q_i and simulate a random number U.

Step 2: If $U \le \frac{p_Y}{cq_Y}$, set X = Y. Otherwise return to Step 1.

Then X has density p_i .

Exercise 3: To generate a random variable X that takes one of the values 1, 2, ..., 10 with respective probabilities 0.11,012,0.09,0.08,0.12,0.10,0.09,0.09,0.10,0.10.

Step 1: Generate a random number U_1 and set $Y = [10U_1] + 1$.

Step 2: Generate a second random number U_2 .

Step3: If $U_2 \le \frac{p_Y}{.12}$, set X = Y and stop. Otherwise return to Step 1.