

GII TDRC TEMA 2: Protocolos y servicios de red (Capa de Red) - Relación de Problemas -

1) Complete la siguiente tabla con los datos de cada **dirección IP y su subred** correspondiente, considerando que son direcciones IPv4:

IP	10.20.210.40	221.34.56.181	9.10.128.12	192.169.23.223	172.17.25.94
Clase					
Pública/					
Privada					
Máscara	255.255.240.0	255.255.255.248	255.255.128.0	255.255.255.192	255.255.255.224
Máscara					
CIDR					
Num. Bits					
para hosts					
Num. IPs					
en la subred					
Num. IPs					
Disponibles					
Dirección de					
Red					
Primera IP					
Disponible					
Última IP					
Disponible					
Dirección de					
Broadcast					

2) Las siguientes direcciones IP pertenecen a interfaces de hosts de una única red desconocida. Averigüe la **dirección red y máscara** que, englobando a todos estos hosts, hacen a dicha red lo más compacta posible.

HOSTS	DIRECCIÓN DE RED/MÁSCARA
192.168.2.6	
192.168.14.20	
192.168.50.32	
192.168.33.0	
10.128.10.10	
10.138.10.10	
10.148.10.10	
10.158.10.10	
156.250.3.4	
156.235.45.3	
156.244.45.2	
80.90.130.100	
80.90.138.100	
80.90.139.100	
80.90.143.100	
193.23.220.145	
193.23.245.145	
193.23.251.145	

- 3) Disponemos de una Red con la topología mostrada en la figura. Usando direcciones **IPv4 de clase C privada**, realice una asignación de direcciones, en la que todas las subredes deben tener la máscara /27 y además ser contiguas:
 - Asigne direcciones de red a todas las redes de la figura.
 - Asigne direcciones IP a todos los interfaces que corresponda.
 - Asigne el default Gateway (puerta de enlace predeterminada) a todos los PCs.
 - Escriba las rutas estáticas en la tabla de enrutamiento del router *RoutC* para poder llegar a todas las redes por el camino más corto. Incluya en cada entrada <red destino> <máscara> <next hop>

4) Una empresa tiene seis departamentos (D1...D6). En cada uno de ellos se necesitan respectivamente 32, 100, 24, 18, 59 y 75 direcciones IP. Sabiendo que tan sólo disponemos del rango público 200.0.0.0/24 y 200.0.1.0/24 (equivalente a 200.0.0.0/23). Defina las **subredes necesarias de tamaño mínimo** para cubrir esa demanda. ¿Sobran o faltan direcciones IP?

Depto.	Dirección de Red	Máscara	Dirección de Broadcast	Cant. Direcs. IP Disponibles
D1 (32)				
D2 (100)				
D3 (24)				
D4 (18)				
D5 (59)				
D6 (75)				
¿Sobran/ Faltan IPs?		·		

- 5) Considerando el reparto de direcciones a las diferentes subredes hecho en el ejercicio anterior, dibuje una posible **topología para la red corporativa** completa, en la que se muestren 2 equipos por cada subred. Utilice tantos switches y routers como estime oportuno, suponiendo que cada uno podrá tener tantos puertos/interfaces como fuese necesario. Asigne direcciones IP a todas las interfaces involucradas.
- 6) Otra compañía tiene nueve departamentos (D01...D09). En cada uno de ellos se necesitan respectivamente 12, 100, 54, 31, 9, 75, 6, 47 y 17 direcciones IP. Sabiendo que sólo disponemos del rango público 200.0.0/24 y 200.0.1.0/24 (equivalente a 200.0.0/23). Defina las **subredes necesarias de tamaño mínimo** para cubrir esa demanda. ¿Sobran o faltan direcciones IP?

Depto.	Dirección de Red	Máscara	Dirección de	Cant. Direcs.
			Broadcast	IP Disponibles
D01 (12)				
D02 (100)				
D03 (54)				
D04 (31)				
D05 (9)				
D06 (75)				
D07 (6)				
D08 (47)				
D09 (17)				
¿Sobran/				
Faltan IPs?				

7) Sobre la topología, defina todas las **direcciones IP** de los interfaces presentes (algunas ya están). Escriba las **máscaras de red** que hacen las subredes lo más compactas posible. Indique las **tablas de enrutamiento** de Snellville y Sioux Falls. Indique las entradas aprendidas si se usase **RIP y OSPF** y cuáles prevalecerían.

- 8) Sobre la topología de red de la figura:
 - a) Asigne **direcciones IP, máscara** y Default Gateway donde se solicite. Use direccionamiento **privado de clase B** para las subredes UNO y DOS y direccionamiento **público de clase C** para la subred GEST. Como máscara considere la que se tiene por defecto en cada clase.

b) Suponiendo que se está ejecutando **RIP** y que éste garantiza conectividad total en toda la red, complete las tablas de enrutamiento de R1 y R2.

	Tabla de Enrutamiento de R1					
	Red destino Máscara Next Hop Coste					
С						
С						
R						

	Tabla de Enrutamiento de R2						
	Red destino Máscara Next Hop Coste						
С							
С							
R	R						

c) Suponga que se está ejecutando NAT dinámico Overload (PAT) en el router R1 y que la dirección INSIDE GLOBAL de la subred UNO coincide con la dirección del interfaz de R1 en la red GEST.

Tabla NAT de R1			
Inside Local (con num. Puerto) Inside Global Puerto			

- 9) Los routers Rx_A y Rx_B de la figura están configurados para ejecutar **NAT dinámico Overload** de manera que las direcciones Inside local en las redes A y B sean transformadas a un único Inside Global que coincide con la IP de su interfaz F0/1 respectivo. Tanto Rx_A como Rx_B saben cómo llegar a las redes A y B mediante **rutas estáticas** con next-hop la IP del F0/1 de siguiente router. Cada router del lado INSIDE, R1, y R2, tiene configurada una ruta por defecto a través del F0/0 de Rx_A y Rx_B respectivamente.
 - a) Asigne direcciones IP y máscaras a todos los interfaces que considere
 - b) ¿Qué ocurriría si R1 hiciera ping a la dirección INSIDE GLOBAL de R2?
 - c) ¿Y si R1 hiciera ping a la dirección INSIDE LOCAL de R2?

10) Identifique los diferentes **campos** (parte de red, tipo de red, parte de subred y parte de hosts) en la siguiente **dirección IPv6**, e indique el tipo de dirección que es:

2FFE:4403:1240::A5E2:2:1900:AA

- 11) Una universidad tiene asignado el rango IPv6 2001:0720:1E10::/48.
 - Se quiere dar un bloque /56 para que cada facultad lo asigne libremente junto con otro bloque de igual tamaño para uso futuro.
 - Dentro de cada facultad hay un solo edificio. Se desea una distribución por plantas dentro de cada edificio, en cada planta se asigna un bloque /60 y otro igual de reserva.
 - Posteriormente, dentro de cada planta se desea poder disponer de tantas subredes como sea posible de tamaño /64..

Con este esquema de direccionamiento:

¿A cuántas facultades se le podría dar servicio?, ¿cuántas plantas máximo podría tener cada edificio?, ¿cuántas redes podría haber por planta?, ¿cuántos equipos podrían ser direccionados en cada subred?

- 12) Un parque tecnológico tiene asignado el rango IPv6 **2055:55:4BB:3400::/56**. Se pretende hacer una asignación de tamaño variable de este rango entre los 5 edificios que componen el parque, según las siguientes necesidades:
 - Edificios 1 y 2: 64 subredes cada uno
 - Edificios 3, 4 y 5: 32 subredes cada uno
 - a) Rellene la siguiente tabla, asignando direcciones de red consecutivas a cada edificio, empezando por el Edificio 1 en adelante.
 - b) En caso de que sobren direcciones escríbalas en la última fila de la tabla.

Edificio	Dirección de red	Máscara
1		
2		
3		
4		
5		
Bloque		
sin		
Asignar		