Sample of the 1st short IQC test

(This is just a trial test.)

- 1. Show that XYX = -Y.
- 2. What quantum state will be at the output of the following quantum circuit?

$$|0\rangle \xrightarrow{Z} \xrightarrow{H} \xrightarrow{X} \xrightarrow{H} ?$$

- 3. How many T^{\dagger} gates are needed to change the 1-qubit state $|+\rangle$ into the state $|i_{-}\rangle$?
- 4. Create a matrix representation of a projector created from state $|+\rangle$. Then apply such a projector on a general one-qubit state $\alpha|0\rangle + \beta|0\rangle$
- 5. Draw a Bloch sphere and the resulting states of two following quantum circuits with the angles specified. Don't forget to describe the axis.

$$|0\rangle$$
 — $R_z(\pi)$ — $R_x(-\pi/2)$ —

$$|0\rangle$$
 — H — $R_y(\pi/4)$ —

6. Starting from the 1-qubit state $|0\rangle$, can you create the following state using the gate set $\{H, Z, S, T\}$? If yes, show how. If no, explain why.

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + e^{i\frac{\pi}{2}} |1\rangle \Big)$$

7. In the case of a measurement of the following quantum state, with what probability will state $|1\rangle$ be detected?

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + e^{-i\frac{\pi}{4}} |1\rangle \Big)$$