Calculation of Pseudo-critical Gas Properties Using Sutton's Correlation

Sutton developed a correlation for estimating for estimating P_{pc} and T_{pc} as functions of gas gravity, γ_g thus:

$$P_{pch} = 756.8 - 131.0\gamma_h - 3.6\gamma_h^2 - - - - - 2.13$$

$$T_{pch} = 169.2 - 349.5\gamma_h - 74.0\gamma_h^2 - - - - - 2.14$$

Where P_{pch} and T_{pch} are the pseudo-critical pressure and pseudo-critical temperature of the hydrocarbon components alone, respectively, and γ_h is the specific gravity of the hydrocarbon alone.

Sutton's Procedure is as follows:

1. Determine γ_h

- A. If the gas mixture contains <12 mol% of CO_2 , < 3% of Nitrogen and no H_2S , then the parameter γ_h is determined thus:
 - i. If gas is dry gas and the separator gas gravity is given, then $\gamma_h = \gamma_g$
 - ii. If gas is wet gas and the well-stream gravity, γ_w is given, then $\gamma_h = \gamma_w$
- B. However, If gas mixture contains >12 mol% of CO_2 , >3% of Nitrogen and any H_2S , then the parameter γ_h is determined thus:

$$\gamma_h = \frac{\gamma_w - 1.1767 y_{H_2S} - 1.5196 y_{CO_2} - 0.9672 y_{N_2} - 0.622 y_{H_2O}}{1 - y_{H_2S} - y_{CO_2} - y_{N_2} - y_{H_2O}} - - - - - 2.15$$

- 2. Determine the pseudo-critical pressure and temperature for the hydrocarbon mixture using equations 2.13 and 2.14
- 3. Determine the pseudo-pressure and pseudo-temperature for the entire mixture (hydrocarbon + non-hydrocarbon) using the following equations: