≫ OBJET	ducação de qualidade nº
Nome:	uo
Disciplina: Química Professor : \(\)	<u>furi</u>
Data://24 Ano: 1 <u>º A</u>	<u>NO</u>
Bimestre: 4º TIPO DE PROVA: menso	estou ciente da minha nota
	Assinatura do aluno

1- Diferencie Ionização e Dissociação:

2- O quadro a seguir apresenta novidades de três substâncias designadas genericamente por A, B e C.

	Condução de corrente elétrica			Ponto	Ponto
Subs- tância	no estado sólido	no estado líquido	em solução aquosa	de fusão e (°C)	de ebulição (°C)
A	não	não	insolúvel em água	80,2	217,9
В	sim	sim	insolúvel em água	1260	1900
С	não	sim	sim	712	1412

As substâncias A, B e C podem ser, respectivamente:

- a) dióxido de enxofre, sulfeto de cálcio e metano.
- b) benzeno, cloreto de sódio e ferro metálico.
- c) sulfato de alumínio, cobre metálico e hexano.
- d) alumínio, tetracloreto de carbono e nitrato de sódio.
- e) naftaleno, manganês metálico e cloreto de magnésio.
- 3- No circuito elétrico abaixo, dois eletrodos E1 e E2 conectados a uma lâmpada podem ser mergulhados em diferentes soluções.

Supondo que a distância entre os eletrodos e a porção mergulhada sejam sempre as mesmas, compare o brilho da lâmpada, quando se usam as seguintes soluções:

- b) sacarose (C₁₂H₂₂O₁₁): 0,1 mol/L
- c) cloreto de potássio (KCl) 0,1 mol/L; \cong 100% dissociado.

4- Foram dissolvidas nove moléculas de certo ácido HX em quantidade suficiente de água, mas apenas seis moléculas do ácido utilizado ionizaram-se. Qual é o valor aproximado do grau de ionização desse ácido?
a) 47 %
b) 57 %

5- Determine a ordem crescente de acidez dos seguintes compostos:

```
II. H<sub>4</sub>SiO<sub>4</sub>
III. HMnO<sub>4</sub>
IV. H<sub>2</sub>SO<sub>4</sub>

a) II > IV > III > I
b) III > IV > I > II
c) II < I < IV < III
d) I < II < III < IV
e) IV < II < I < III
```

c) 67 % d) 70 % e) 80 %

I. HNO₂

6- Têm-se os três ácidos e os valores da tabela, que foram obtidos dissolvendo-se em água à temperatura constante:

	Proporção entre			
	Número de moléculas dissolvidas	Número de moléculas (não ionizadas)		
H ₂ S	100	99		
H_2SO_4	3	1		
HNO_3	10	2		

- a) Calcule o grau de ionização para cada ácido e coloque-os em ordem crescente de sua força de ionização.
- b) Equacione a ionização do HNO3 em água.
- 7- Quando se adiciona cal hidratada (hidróxido de cálcio) a uma solução aquosa de sulfato de alumínio (substância coagulante usada para floculação no tratamento de água), o cálcio se une ao fosfato, e o alumínio se liga ao hidróxido, dando origem a um precipitado branco. Escreva a equação que representa essa reação de dupla troca. (Ca²+, OH-, Al³+, SO₄²+)

8- Equacione as reações de dupla troca que ocorrem (se ocorrer) entre os compostos abaixo:

a)
$$H_3PO_4 + Na_2S$$

b) NaNO3 +
$$H_2SO_4$$

9- BaCl₂ + Na₂CrO₄ \rightarrow A + B

Na equação, a fórmula e o nome do precipitado são:

- a) NaCl e cloreto de sódio
- b) Ba₂CrO₄ e dicromato de bário
- c) BaCrO₄ e cromato de bário
- d) BaCl₂ e cloreto de bário
- e) CrCl₃ e cloreto de cromo III.
- 10- Considere as seguintes reações não balanceadas entre um sal e uma base:
- 1. $Na_3PO_4 + Mg(OH)_2 \rightarrow ---- + NaOH$
- 2. FeCl₃ + KOH → -----+ KCl

Os produtos A e B resultantes dessas equações são, respectivamente:

- a) Sal pouco solúvel, base pouco solúvel.
- b) Sal pouco solúvel, ácido volátil.
- c) Base pouco solúvel, sal pouco solúvel.
- d) Base pouco solúvel, ácido volátil.
- e) Ácido volátil, base pouco solúvel.