Домашняя работа к занятию 4

- **1.1** Убедитесь, что уравнение $\cos \frac{x}{y} dx + (1 + \sin \frac{x}{y} \frac{x}{y} \cos \frac{x}{y}) dy = 0$ является уравнением в полных дифференциалах и найдите его общий интеграл.
 - 1.2 Решите уравнение, выделяя интегрируемые комбинации:

$$e^{xy}(xdy + ydx) + \frac{x}{y^3}(ydx - xdy) = 0$$

1.3 Найдите интегрирующий множитель вида $\mu = \mu(x)$ и сведите уравнение $2(x^2y+1)dx+(x^3+xy)dy=0$ к уравнению в полных дифференциалах.

Решите уравнения 2.1 - 2.2, подобрав интегрируемые комбинации.

2.1
$$(2xy dx + x^2 dy)(xy^2 + 1) = (x^2y + 1)(y^2 dx + 2xy dy)$$

- **2.2** $y \cos x(\sin^2 y \, dx + x \sin 2y \, dy) + (\cos x \, dy y \sin x \, dx) = 0$
- **2.3** Решите уравнение $(2xy + 3y \ln^2 y) dx = 2x \ln y dy$, подобрав интегрирующий множитель вида $\mu = x^a y^b$
- **3.1** Решите уравнение $(x\,dy-y\,dx)^2=(dx)^2+(dy)^2$, переходя к полярным координатам.
- **3.2** Покажите, что интегрирующий множитель однородного уравнения $M(x;y)\,dx+N(x;y)\,dy=0$ равен $\frac{1}{xM(x;y)+yN(x;y)}.$
- **3.3** Покажите, что если уравнение M(x;y) dx + N(x;y) dy = 0 является однородным и уравнением в полных дифференциалах одновременно, то его общий интеграл имеет вид $x \cdot M(x;y) dx + y \cdot N(x;y) dy = C$.

Ответы и указания

- **1.1** Общий интеграл $y(1+\sin\frac{x}{y})=C$
- **1.2** Указание: $u=xy,\,v=\frac{x}{y}.$ Ответ: общий интеграл $2e^{xy}+\left(\frac{x}{y}\right)^2=C$
- **1.3** Указание: Умножая на $\mu(x) = \frac{1}{x}$, получаем уравнение в полных дифференциалах $2(xy + \frac{1}{x})dx + (x^2 + y)dy = 0$. При этом теряется решение $x \equiv 0$.

Oтвет: общий интеграл уравнения $2x^2y+y^2+\ln x^4=C$ и $x\equiv 0.$

2.1 Указание: $u = xy^2$, $v = x^2y$.

Ответ: общий интеграл $(xy^2+1)=C(x^2y+1)$, а также $x^2y+1=0$.

2.2 Указание: $u = y \cos x$, $v = x \sin^2 y$.

Oтвет: общий интеграл $x \sin^2 y + \ln |y \cos x| = C$, а также $y \cos x = 0$.

2.3 Указание: домножив дифференциальное уравнение на $\mu = x^a y^b$, запишем условие того, что полученное уравнение является уравнением в полных дифференциалах. После деления на $x^a y^b$ получаем:

$$2(b+1) + 6 \ln y + 3(b+1) \ln^2 y = -2(a+1) \ln y$$

Отсюда $b+1=0, \ -2(a+1)=6.$ Таким образом, $\mu=\frac{1}{x^4y}.$

Oтвет: общий интеграл $x + \ln^2 y = Cx^3$.

3.1 Указание: в полярных координатах уравнение принимает вид $d\varrho = \pm \varrho \sqrt{\varrho^2 - 1} d\varphi$; его общий интеграл $\arcsin \frac{1}{\varrho} = \pm \varphi + C$, а также $\varrho \equiv 1$. Возвращаясь к декартовым координатам, получаем семейство прямых $y \cdot \cos C + x \cdot \sin C = 1$, их огибающая — окружность $x^2 + y^2 = 1$.