Randomized Estimation

of Spectral Densities

February 6, 2024

Fabio Matti

Introduction

Theoretical analysis

Algorithmic improvements

Numerical results

This document is provably reproducible.

- > hosted at https://github.com/FMatti/Rand-SD
- > built on 2024-02-05 at 18:44:29 UTC from ca391a8

▶ Spectral density ϕ of symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$

(1)
$$\phi(t) = \frac{1}{n} \sum_{i=1}^{n} \delta(t - \lambda_i)$$

ightharpoonup Smooth spectral density ϕ_{σ}

(2)
$$\phi_{\sigma}(t) = \sum_{i=1}^{n} g_{\sigma}(t - \lambda_{i})$$

► Smoothing kernel g_{σ}

(3)
$$g_{\sigma}(s) = \frac{1}{n\sqrt{2\pi\sigma^2}}e^{-\frac{s^2}{2\sigma^2}}$$

Chebyshev expansion

► Conversion to trace estimation

(4)
$$\phi_{\sigma}(t) = \text{Tr}(g_{\sigma}(tI_n - A))$$

Chebyshev expansion of matrix function

(5)
$$g_{\sigma}^{(m)}(t\mathbf{I}_{n}-\mathbf{A})=\sum_{l=0}^{m}\mu_{l}(t)T_{l}(\mathbf{A})$$

► Expanded spectral density

(6)
$$\phi_{\sigma}^{(m)}(t) = \text{Tr}(g_{\sigma}^{(m)}(t\mathbf{I}_{n} - \mathbf{A}))$$

► Delta-Gauss-Chebyshev (DGC)

(7)
$$\widetilde{\varphi}_{\sigma}^{(m)}(t) = \mathsf{H}_{n_{\Psi}}(g_{\sigma}^{(m)}(t\mathbf{I}_{n} - \mathbf{A}))$$

► Nyström-Chebyshev (NC)

(8)
$$\widehat{\boldsymbol{\varphi}}_{\sigma}^{(m)}(\mathbf{t}) = \text{Tr}(\widehat{\boldsymbol{g}}_{\sigma}^{(m)}(\mathbf{t}\mathbf{I}_{n} - \mathbf{A}))$$

► Nyström-Chebyshev++ (NC++)

$$\begin{split} \check{\varphi}_{\sigma}^{(m)}(t) &= \widehat{\varphi}_{\sigma}^{(m)}(t) + \widetilde{\varphi}_{\sigma}^{(m)}(t) \\ (9) &\qquad - H_{n_{\Psi}}(\widehat{g}_{\sigma}^{(m)}(t\mathbf{I}_{n} - \boldsymbol{A})) \end{split}$$

Theoretical analysis

Theorem: Error of Delta-Gauss-Chebyshev method

 $\widetilde{\varphi}_{\sigma}^{(m)}(t)$ with DGC method on symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$ with spectrum in [-1,1] and Gaussian smoothing kernel g_{σ} . With high probability

$$(10) \qquad \|\varphi_{\sigma} - \widetilde{\varphi}_{\sigma}^{(m)}\|_{1} \leqslant \underbrace{\frac{\sqrt{2}}{\sigma^{2}}(1+\sigma)^{-m}\left(2 + c_{\Psi}\frac{1}{\sqrt{nn_{\Psi}}}\right)}_{\text{interpolation error and bias}} + \underbrace{c_{\Psi}\frac{1}{\sqrt{n_{\Psi}}}}_{\text{trace estimation}}$$

for some constant $c_{\Psi} \geqslant 0$.

▶ Even for "good" Chebyshev expansion, only $O(\varepsilon^{-2})$ approximation

► Numerical rank

$$(11) \hspace{1cm} r_{\epsilon,\cdot}(g_{\sigma}(t\mathbf{I}_{n}-\boldsymbol{A}))\leqslant \#\{i:|t-\lambda_{i}|< C_{\epsilon,\cdot}(\sigma)\}$$

► Constant (e.g. for nuclear norm $\|\cdot\|_*$)

(12)
$$C_{\varepsilon,*}(\sigma) = \sigma \sqrt{-2\log(\sqrt{2\pi n}\sigma\varepsilon)}$$

- Most results for Nyström approximation only valid for PSD matrices
- ► Problem: Chebyshev expansion $g_{\sigma}^{(m)}$ may be negative
- ► Solution: Expand shifted kernel

(13)
$$g_{\sigma} = g_{\sigma} + \rho$$

which is non-negative for large enough ρ

Theorem: Error of Nyström-Chebyshev method with shift

 $\widehat{\underline{\varphi}}_{\sigma}^{(m)}(t)$ with NC method on symmetric $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ with spectrum in [-1,1] and shifted Gaussian smoothing kernel $\underline{g}_{\sigma} = g_{\sigma} + \rho$. If ρ large enough and $n_{\Omega} \gg r_{\epsilon,*}(g_{\sigma}(t\mathbf{I}_n - \boldsymbol{A}))$ for all t, then with high probability

(14)
$$\|\underline{\varphi}_{\sigma} - \underline{\widehat{\varphi}}_{\sigma}^{(m)}\|_{1} \lessapprox \underbrace{\frac{2\sqrt{2}}{\sigma^{2}}(1+\sigma)^{-m}}_{\text{interpolation error}} + \underbrace{4n(\epsilon + 2\rho n)}_{\text{biased approximation error}}$$

▶ Significant approximation error because g_{σ} has a heavy tail

Theorem: Error of Nyström-Chebyshev++ method with shift

 $\underline{\check{\Phi}}_{\sigma}^{(m)}(t)$ with NC++ method on symmetric $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ with spectrum in [-1,1] and shifted Gaussian smoothing kernel $\underline{g}_{\sigma} = g_{\sigma} + \rho$. If ρ large enough and $n_{\Psi} = n_{\Omega} = \mathfrak{O}(\epsilon^{-1})$, then with high probability

$$(15) \qquad \|\underline{\varphi}_{\sigma} - \underline{\check{\varphi}}_{\sigma}^{(m)}\|_{1} \leqslant \underbrace{(1+\epsilon)\frac{2\sqrt{2}}{\sigma^{2}}(1+\sigma)^{-m}}_{\text{interpolation error}} + \underbrace{\epsilon(1+2n\rho)}_{\text{approximation error}}$$

Algorithmic improvements

► Expansion $f^{(m)}(s) = \sum_{l=0}^{m} \mu_l T_l(s)$ with discrete cosine transform (DCT)

$$(16) \ \left\{ \mathsf{f}(\mathsf{cos}(\pi i/\mathfrak{m})) \right\}_{i=0}^{\mathfrak{m}} \overset{\mathsf{DCT}}{\longleftrightarrow} \{\mu_l\}_{l=0}^{\mathfrak{m}}$$

- ► In the NC method we need to know $(g_{\sigma}(t\mathbf{I}_n \mathbf{A}))^2$, e.g., with
 - $(g_{\sigma}^2)^{(m)}(tI_n A)$ (interpolation)
 - $(g_{\sigma}^{(m)}(tI_n A))^2$ (squaring)

- ▶ Problem: If $g_{\sigma}^{(m)}(t\mathbf{I}_n \mathbf{A}) \approx \mathbf{0}$, then $(\mathbf{\Omega}^{\top} g_{\sigma}^{(m)}(t\mathbf{I}_n \mathbf{A})\mathbf{\Omega})^{\dagger}$ bad idea
- ▶ Solution: If $\frac{1}{n_0} \operatorname{Tr}(\mathbf{\Omega}^\top g_{\sigma}^{(m)}(t\mathbf{I}_n \mathbf{A})\mathbf{\Omega}) < \kappa \text{ directly set } \widehat{\varphi}_{\sigma}^{(m)}(t) = \mathbf{0}$

Numerical results

Three-dimensional finite difference discretization [Lin, 2017] $Au(x) = -\Delta u(x) + V(x)u(x)$

Periodic Gaussian wells

 $\alpha \exp(-\frac{\|\mathbf{x}\|_2^2}{2\beta^2})$ (18)2 - Fix $n_{\Omega} + n_{\Psi}$, vary m

Fix m, vary $n_{\Omega} + n_{\Psi}$

► Lorentzian smoothing kernel ⇒ Haydock method [Lin et al., 2016]

$$g_{\sigma}(s) = \frac{1}{\pi} \frac{\sigma}{s^2 + \sigma^2}$$

Fix $n_{\Omega} + n_{\Psi}$, vary m

Fix m, vary $n_{\Omega} + n_{\Psi}$

Conclusion 20

Main contributions

- Developed a unified family of algorithms
- ► Introduced multiple improvements over [Lin, 2017]
- Derived error bounds for all methods

Outlook

- Make theoretical analysis without shift
- ► Find alternative to interpolation

► He, H., Kressner, D., Lam, H. L., and Matti, F. (2024).

Parameter dependent Nystrom++ with application in spectral density function theory.

In preparation.

Lin, L. (2017). Randomized estimation of spectral densities of large matrices made accurate.

Numerische Mathematik, 136:183–213.

► Lin, L., Saad, Y., and Yang, C. (2016). Approximating spectral densities of large matrices. SIAM Review, 58(1):34–65.

- ▶ Meyer, R. A., Musco, C., Musco, C., and Woodruff, D. P. (2021). Hutch++: Optimal stochastic trace estimation. arXiv.
- ► Trefethen, L. N. (2008). Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50(1):67–87.

Additional slides

Lemma: Chebyshev expansion (based on [Trefethen, 2008])

 $A \in \mathbb{R}^{n \times n}$ symmetric with spectrum in [-1, 1]. Then

(20)
$$\|\phi_{\sigma} - \phi_{\sigma}^{(m)}\|_{1} \leqslant \frac{C_{1}}{\sigma^{2}} (1 + C_{2}\sigma)^{-m}.$$

Lemma: Parameter-dependent Girard-Hutchinson [He et al., 2024]

 $B(t) \in \mathbb{R}^{n \times n}$ symmetric and continuous in $t \in [\mathfrak{a},\mathfrak{b}]$. With high probability

(21)
$$\int_{a}^{b} |\text{Tr}(B(t)) - H_{n_{\Psi}}(B(t))| dt \leqslant c_{\Psi} \frac{1}{\sqrt{n_{\Psi}}} \int_{a}^{b} ||B(t)||_{F} dt.$$

Theorem: Error of Delta-Gauss-Chebyshev method

Let $\widetilde{\varphi}_{\sigma}^{(m)}(t)$ be computed with the DGC method on a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with its spectrum contained in [-1,1] using a Gaussian smoothing kernel g_{σ} with smoothing parameter $\sigma > 0$, degree of expansion $m \in \mathbb{N}$, and number of Hutchinson's queries $n_{\Psi} \in \mathbb{N}$. For $\delta \in (0,e^{-1})$ it holds with probability $\geqslant 1-\delta$, that

$$(22) \qquad \|\phi_{\sigma} - \widetilde{\phi}_{\sigma}^{(m)}\|_{1} \leqslant \frac{\sqrt{2}}{\sigma^{2}} (1 + \sigma)^{-m} \left(2 + c_{\Psi} \frac{\log(1/\delta)}{\sqrt{nn_{\Psi}}}\right) + c_{\Psi} \frac{\log(1/\delta)}{\sqrt{n_{\Psi}}}$$

for $c_{\Psi} \geqslant 24e$.

► Parameter-dependent Nyström approximation

(23)
$$\widehat{f}(\mathbf{A}, t) = (f(\mathbf{A}, t)\Omega)(\Omega^{\top} f(\mathbf{A}, t)\Omega)^{\dagger} (f(\mathbf{A}, t)\Omega)^{\top}$$

Theorem: Parameter-dependent Nyström [He et al., 2024]

 $f(\pmb{A},t)$ function of symmetric $\pmb{A} \in \mathbb{R}^{n \times n}$ which continuously depends on $t \in [\mathfrak{a},\mathfrak{b}]$. Standard Gaussian $\pmb{\Omega} \in \mathbb{R}^{n \times n_\Omega}$ with $\mathfrak{n}_\Omega > r+3$. With high probability

(24)
$$\int_{a}^{b} |\operatorname{Tr}(f(\mathbf{A}, t)) - \operatorname{Tr}(\widehat{f}(\mathbf{A}, t))| dt < c(1 + r) \int_{a}^{b} \sum_{i=r+1}^{n} \sigma_{i}(t) dt$$

where $\sigma_i(t)$ are the (ordered) eigenvalues of f(A, t) at t.

Theorem: Error of Nyström-Chebyshev method with shift

Let $\widehat{\underline{\varphi}}_{\sigma}^{(m)}$ be computed with the NC method on a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with its spectrum contained in [-1,1] using a shifted Gaussian smoothing kernel $\underline{g}_{\sigma} = g_{\sigma} + \rho$ with smoothing parameter $\sigma > 0$, degree of expansion $m \in \mathbb{N}$, and sketch size $n_{\Omega} = r + p$ for some numbers $r \geqslant 2$, $p \geqslant 4$. If shift $\rho \geqslant \frac{\sqrt{2}}{n\sigma^2}(1+\sigma)^{-m}$ and $r \geqslant r_{\epsilon,*}(g_{\sigma}(t\mathbf{I}_n - \mathbf{A}))$ for all $t \in [-1,1]$, then for all $\gamma \geqslant 1$, the inequality

$$(25) \qquad \|\underline{\varphi}_{\sigma} - \underline{\widehat{\varphi}}_{\sigma}^{(\mathfrak{m})}\|_{1} \leqslant 2\gamma^{2}(1+r)(2\epsilon + 4\rho(\mathfrak{n}-r)) + \frac{2\sqrt{2}}{\sigma^{2}}(1+\sigma)^{-\mathfrak{m}}$$

holds with probability $\geq 1 - \gamma^{-p}$.

► Goal: prove $O(\varepsilon^{-1})$ result for Nyström-Chebyshev++ method

Lemma: Parameter-dependent Nyström 2.0 [He et al., 2024]

 $B(t) \in \mathbb{R}^{n \times n}$ symmetric positive semi-definite (PSD) and continuous in $t \in [a,b]$. With high probability

(26)
$$\int_a^b \|B(t) - \widehat{B}(t)\|_F dt \leqslant c_\Omega \frac{1}{\sqrt{n_\Omega}} \int_a^b \text{Tr}(B(t)) dt.$$

▶ Parameter-dependent result for [Meyer et al., 2021]

(27)
$$\operatorname{Tr}^{++}(\mathbf{B}(\mathsf{t})) = \operatorname{Tr}(\widehat{\mathbf{B}}(\mathsf{t})) + \mathsf{H}_{\mathsf{n}_{\Psi}}(\Delta(\mathsf{t}))$$

Theorem: Parmeter-dependent trace estimation

 $B(t) \in \mathbb{R}^{n \times n}$ is symmetric PSD and continuous in $t \in [\mathfrak{a},\mathfrak{b}]$, and (28)

$$\operatorname{Tr}(B(t)) = \operatorname{Tr}(\widehat{B}(t)) + \operatorname{Tr}(\Delta(t)) \text{ and } \int_{a}^{b} \|\Delta(t)\|_{F} dt \leqslant c_{\Omega} \frac{1}{\sqrt{n_{\Omega}}} \int_{a}^{b} \operatorname{Tr}(B(t)) dt.$$

With high probability

$$(29) \qquad \int_a^b |\operatorname{Tr}^{++}(B(t)) - \operatorname{Tr}(B(t))| \mathrm{d}t \leqslant c \frac{1}{\sqrt{n_\Psi n_\Omega}} \int_a^b \operatorname{Tr}(B(t)) \mathrm{d}t.$$

Theorem: Error of Nyström-Chebyshev++ method with shift

Let $\underline{\check{\Phi}}_{\sigma}^{(m)}$ be computed with the NC++ method on a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with its spectrum contained in [-1,1] using a shifted Gaussian smoothing kernel $\underline{g}_{\sigma} = g_{\sigma} + \rho$ and with the parameters smoothing parameter $\sigma > 0$, degree of expansion $m \in \mathbb{N}$, and number of Hutchinson's queries $n_{\Psi} + n_{\Omega} = \mathcal{O}(\log(1/\delta)/\epsilon)$ with even $n_{\Omega} \geqslant 8\log(1/\delta)$. If $\rho \geqslant \frac{\sqrt{2}}{n\sigma^2}(1+\sigma)^{-m}$, then for $\delta \in (0,e^{-1})$ with probability $\geqslant 1-\delta$

(30)
$$\|\underline{\phi}_{\sigma} - \underline{\check{\phi}}_{\sigma}^{(m)}\|_{1} \leqslant (1+\varepsilon)\frac{2\sqrt{2}}{\sigma^{2}}(1+\sigma)^{-m} + \varepsilon(1+2n\rho).$$

- ▶ Problem: Values just slightly outside range of g_{σ} are filtered out
- Solution: Add tolerance η to range $[0, (1 + \eta)/n\sqrt{2\pi\sigma^2}]$

