# Densities, Ultrasonic Velocities, Viscosities, and Electrical Conductivities of Aqueous Solutions of Mg(OAc)<sub>2</sub> and Mg(NO<sub>3</sub>)<sub>2</sub>

Abdul Wahab,† Sekh Mahiuddin,\*,† Glenn Hefter,‡ and Werner Kunz§

Material Science Division, Regional Research Laboratory, Jorhat 785 006, Assam, India, Department of Chemistry, Murdoch University, Murdoch, Western Australia 6150, Australia, and Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany

The ultrasonic velocities, densities, viscosities, and electrical conductivities of aqueous solutions of magnesium nitrate and magnesium acetate have been measured as functions of concentration (0.0145  $\leq$   $m/\text{mol} \cdot \text{kg}^{-1} \leq$  6.545) and temperature 273.15  $\leq$   $T/\text{K} \leq$  323.15. The results are in reasonable agreement with literature data where comparisons are possible. The viscosity and electrical conductivity data are consistent with greater ion association in Mg(OAc)<sub>2</sub> solutions.

## Introduction

The behavior of electrolyte solutions is important in many areas of solution chemistry<sup>1</sup> as well as in living cells,<sup>2</sup> seawater,<sup>3</sup> and soils.<sup>4–6</sup> Industrial applications generally involve moderate to very high salt concentrations,<sup>7</sup> so reliable data on physicochemical properties over wide concentration and temperature ranges are desirable.

Densities,  $^{8-10}$  viscosities,  $^{9,10}$  and conductivities  $^{11-13}$  of Mg-(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq) available in the literature are quite old and are limited with respect to temperature and concentration ranges. For example, the International Critical Tables of 1921,  $^{11}$  to the best of our knowledge, is the only readily available source of conductivity data for Mg(OAc)<sub>2</sub>(aq); while satisfactory values up to  $\sim 5.5$  mol·kg<sup>-1</sup> exist at 298.15 K, there are large incremental gaps. For Mg(NO<sub>3</sub>)<sub>2</sub>(aq), the available literature data<sup>12,13</sup> differ by up to 34 %. No viscosity data appear to have been published for Mg(OAc)<sub>2</sub>(aq), and there have been few reported measurements of speed of sound data for the solutions of either salt.  $^{8,14}$ 

Accordingly, this paper presents a systematic study of the ultrasonic velocities, densities, viscosities, and electrical conductivities of the aqueous solutions of Mg(NO<sub>3</sub>)<sub>2</sub> and Mg(OAc)<sub>2</sub> as functions of concentration and temperature over wide ranges. A detailed interpretation of these results along with molecular dynamics simulations and Raman spectra have been presented elsewhere, <sup>15</sup> so discussion here is deliberately limited.

### **Experimental Section**

Mg(OAc)<sub>2</sub>·4H<sub>2</sub>O (>99 %, SRL, India) and Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (>99 %, SD Fine Chemicals, India) were recrystallized twice from double-distilled water and then dried and dehydrated in a vacuum desiccator over P<sub>2</sub>O<sub>5</sub> for 2 weeks with replacement of desiccant in between. All solutions were prepared using double-



**Figure 1.** Density isotherms of  $Mg(OAc)_2(aq)$  and  $Mg(NO_3)_2(aq)$  as a function of concentration at 298.15 K:  $\bigcirc$  and  $\square$  present results;  $\triangle$ , ref 8;  $\nabla$ , ref 9; and \*, ref 10.

distilled water and by successive dilution by volume of stock solutions. Concentrations were checked by complexometric titration against EDTA<sup>16</sup> and are accurate to within  $\pm$  0.3 %.

Ultrasonic velocities (u) were determined using a variable path ultrasonic interferometer, M-83 (Mittal Enterprises, India) at 3 MHz. Densities ( $\rho$ ) of all solutions were measured with a single-stem graduated pycnometer of capacity  $\sim$  9 cm<sup>3</sup>. Viscosities ( $\eta$ ) were obtained with a Schott-Geräte AVS 310 unit equipped with an Ubbelohde viscometer. Electrical conductivities ( $\kappa$ ) were measured using platinised platinum electrodes at a field frequency of 1 kHz with a Precision Component Analyser 6440A (Wayne Kerr, U.K.) employing a four-terminal connection. The cell constant of 1.237 cm<sup>-1</sup>, with negligible temperature coefficient, was determined by using a 0.1 mol·kg<sup>-1</sup> aqueous KCl solution at different temperatures. The uncertainties in the ultrasonic velocities, densities, viscosities, and conductivities were estimated to be  $\pm$  0.01 %,  $\pm$  0.01 %,  $\pm$  0.5 %, and  $\pm$  0.4 % respectively.

Values of u,  $\rho$ ,  $\eta$ , and  $\kappa$  for solutions of both salts were measured at temperatures from (273.15 to 323.15) K and concentrations over the range  $0.0145 \le m/\text{mol} \cdot \text{kg}^{-1} \le 6.545$ .

<sup>\*</sup> Corresponding author. E-mail: mahirrljt@yahoo.com.

<sup>†</sup> Regional Research Laboratory.

<sup>&</sup>lt;sup>‡</sup> Murdoch University.

<sup>§</sup> Universität Regensburg.

Table 1. Densities of Aqueous Solutions of Magnesium Acetate and Magnesium Nitrate as Functions of Concentration and Temperature

| Table 1         | ρ ρ                                        | T Aqu           | eous Solu<br>ρ                             | T               | ρ                                          | T                 | e and Ma                                   | T                                 | $\rho$                                     | T              | ρ ρ                                        | T              | n and Ter                                  | T               | ρ                                          |
|-----------------|--------------------------------------------|-----------------|--------------------------------------------|-----------------|--------------------------------------------|-------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|----------------|--------------------------------------------|----------------|--------------------------------------------|-----------------|--------------------------------------------|
| K               | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K               | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K               | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K                 | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K                                 | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K              | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K              | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ | K               | $\frac{\rho}{\text{kg}\cdot\text{m}^{-3}}$ |
| IX              | rg-III                                     | V               | rg-III                                     | V               | rg-III                                     | V                 |                                            |                                   | rg.III                                     | V              | rg-III                                     | V              | rg.III                                     | V               | vg,III                                     |
| 0.0414          | mol•kg <sup>−1</sup>                       | 0.0831          | mol•kg <sup>−1</sup>                       | 0.1671          | mol•kg <sup>−1</sup>                       | 0.4247            | Mg(O/<br>mol•kg <sup>−1</sup>              | Ac) <sub>2</sub> (aq)<br>0.6460 i | mol•kg <sup>−1</sup>                       | 0.8751 1       | mol•kg <sup>−1</sup>                       | 1.106 r        | nol•kg <sup>−1</sup>                       | 1.327 n         | nol•kg <sup>-1</sup>                       |
| 323.15          | 990.94                                     | 324.10          | 993.76                                     | 322.30          | 1000.8                                     | 324.25            | 1018.8                                     | 323.75                            | 1034.3                                     | 323.95         | 1048.7                                     | 323.05         | 1064.8                                     | 323.05          | 1077.2                                     |
| 320.85          | 991.94                                     | 319.40          | 995.82                                     | 320.00          | 1001.7                                     | 322.15            | 1019.9                                     | 321.40                            | 1035.4                                     | 319.35         | 1050.8                                     | 320.95         | 1065.8                                     | 318.60          | 1079.4                                     |
| 318.50          | 992.99                                     | 316.95          | 996.85                                     | 315.20          | 1003.8                                     | 317.10            | 1021.9                                     | 319.15                            | 1036.5                                     | 314.30         | 1052.9                                     | 316.05         | 1068.0                                     | 313.45          | 1081.7                                     |
| 316.25          | 994.01                                     | 314.35          | 997.91                                     | 312.55          | 1004.8                                     | 314.65            | 1022.9                                     | 316.70                            | 1037.6                                     | 311.65         | 1054.0                                     | 313.50         | 1069.1                                     | 310.60          | 1082.8                                     |
| 313.35          | 995.14                                     | 311.85          | 998.98                                     | 309.70          | 1006.0                                     | 312.10            | 1024.0                                     | 314.25                            | 1038.6                                     | 308.75         | 1055.2                                     | 310.70         | 1070.3                                     | 307.75          | 1084.0                                     |
| 310.85          | 996.10                                     | 308.90          | 1000.0                                     | 306.90          | 1007.0                                     | 309.25            | 1025.2                                     | 311.35                            | 1039.6                                     | 305.95         | 1056.2                                     | 308.10         | 1071.4                                     | 304.70          | 1085.2                                     |
| 307.65          | 997.17                                     | 305.95          | 1001.0                                     | 303.30          | 1008.0                                     | 306.30            | 1026.1                                     | 308.65                            | 1040.7                                     | 302.55         | 1057.4                                     | 304.95         | 1072.5                                     | 301.35          | 1086.4                                     |
| 304.45          | 998.24                                     | 302.50          | 1002.0                                     | 299.60          | 1009.1                                     | 302.75            | 1027.2                                     | 305.65                            | 1041.8                                     | 298.95         | 1058.5                                     | 301.70         | 1073.7                                     |                 |                                            |
| 300.85          | 999.30                                     | 298.75          | 1003.1                                     | 295.40          | 1010.2                                     | 299.15            | 1028.4                                     | 302.25                            | 1043.0                                     | 295.15         | 1059.6                                     | 298.05         | 1074.8                                     |                 |                                            |
| 1.354 r         | nol•kg <sup>−1</sup>                       | 1.608 r         | nol•kg <sup>−1</sup>                       | 1.866 r         | nol•kg <sup>−1</sup>                       | 295.15<br>2.134 r | 1029.4<br>nol•kg <sup>-1</sup>             | 298.85<br>2.411 r                 | 1044.0<br>nol•kg <sup>-1</sup>             | 2.622 n        | nol•kg <sup>−1</sup>                       | 3.043 r        | nol•kg <sup>−1</sup>                       | 3.437 n         | nol•kg <sup>-1</sup>                       |
| 323.65          | 1078.3                                     | 324.05          | 1093.3                                     | 322.85          | 1107.1                                     | 323.95            | 1120.5                                     | 323.05                            | 1135.8                                     | 323.50         | 1143.8                                     | 322.15         | 1162.9                                     | 323.75          | 1181.9                                     |
| 319.10          | 1080.6                                     | 319.50          | 1095.5                                     | 318.20          | 1109.3                                     | 319.50            | 1122.8                                     | 318.60                            | 1138.3                                     | 319.25         | 1146.1                                     | 319.95         | 1164.1                                     | 319.65          | 1184.4                                     |
| 314.05          | 1082.8                                     | 317.15          | 1096.6                                     | 315.85          | 1110.4                                     | 317.30            | 1124.1                                     | 314.10                            | 1140.6                                     | 317.05         | 1147.3                                     | 315.65         | 1166.4                                     | 315.25          | 1186.9                                     |
| 311.40          | 1083.9                                     | 314.70          | 1097.8                                     | 313.45          | 1111.6                                     | 314.75            | 1125.2                                     | 309.10                            | 1142.9                                     | 314.85         | 1148.5                                     | 313.50         | 1167.6                                     | 313.15          | 1188.0                                     |
| 308.65          | 1085.0                                     | 312.15          | 1099.0                                     | 308.05          | 1114.0                                     | 312.45            | 1126.3                                     | 303.75                            | 1145.4                                     | 312.55         | 1149.7                                     | 311.25         | 1168.8                                     | 310.85          | 1189.2                                     |
| 305.85          | 1086.1                                     | 309.60          | 1100.1                                     | 305.50          | 1115.1                                     | 309.80            | 1127.4                                     | 301.00                            | 1146.5                                     | 309.95         | 1151.0                                     | 308.75         | 1170.1                                     | 308.70          | 1190.5                                     |
| 302.70          | 1087.4                                     | 306.55          | 1101.3                                     | 302.40          | 1116.3                                     | 307.25            | 1128.6                                     | 297.95                            | 1147.7                                     | 307.50         | 1152.1                                     | 306.40         | 1171.3                                     | 306.40          | 1191.7                                     |
| 299.65          | 1088.4                                     | 303.65          | 1102.5                                     | 299.30          | 1117.5                                     | 304.55            | 1129.8                                     | 294.90                            | 1149.0                                     | 304.80         | 1153.3                                     | 303.75         | 1172.5                                     | 303.90          | 1193.1                                     |
| 296.00          | 1089.6                                     | 300.60          | 1103.6                                     | 296.10          | 1118.6                                     | 301.55            | 1131.1                                     |                                   |                                            | 302.05         | 1154.6                                     | 301.05         | 1173.8                                     | 301.50          | 1194.2                                     |
|                 |                                            |                 |                                            |                 |                                            | 298.70            | 1132.2                                     |                                   |                                            | 299.20         | 1155.8                                     | 298.30         | 1175.0                                     | 298.80          | 1195.5                                     |
| 3.819 r         | nol∙kg <sup>−1</sup>                       | 4.547 r         | nol∙kg <sup>−1</sup>                       |                 | nol∙kg <sup>−1</sup>                       | 5.732 r           | nol∙kg <sup>−1</sup>                       | 6.187 r                           | nol∙kg <sup>−1</sup>                       |                | nol∙kg <sup>−1</sup>                       |                |                                            |                 |                                            |
| 325.75          | 1192.2                                     | 323.75          | 1217.1                                     | 324.25          | 1235.2                                     | 324.55            | 1250.4                                     | 328.55                            | 1259.8                                     | 325.25         | 1269.9                                     |                |                                            |                 |                                            |
| 321.70          | 1194.7                                     | 319.95          | 1219.5                                     | 322.45          | 1236.5                                     | 320.85            | 1253.0                                     | 325.15                            | 1262.4                                     | 323.45         | 1271.3                                     |                |                                            |                 |                                            |
| 317.70          | 1197.2                                     | 318.00          | 1220.8                                     | 318.85          | 1239.0                                     | 317.30            | 1255.6                                     | 321.55                            | 1265.1                                     | 321.80         | 1272.5                                     |                |                                            |                 |                                            |
| 315.55          | 1198.5                                     | 314.00          | 1223.4                                     | 315.00          | 1241.7                                     | 313.55            | 1258.3                                     | 317.90                            | 1267.7                                     | 319.95         | 1273.9                                     |                |                                            |                 |                                            |
| 313.45          | 1199.8                                     | 311.90          | 1224.6                                     | 310.95          | 1244.3                                     | 309.70            | 1260.8                                     | 316.05                            | 1269.0                                     | 318.25         | 1275.3                                     |                |                                            |                 |                                            |
| 311.20          | 1201.0                                     | 309.70          | 1225.9                                     | 308.85          | 1245.6                                     | 305.85            | 1263.4                                     | 314.25                            | 1270.4                                     | 316.35         | 1276.6                                     |                |                                            |                 |                                            |
| 308.95          | 1202.2                                     | 307.60          | 1227.3                                     | 306.65          | 1247.0                                     | 303.75            | 1264.8                                     | 312.30                            | 1271.8                                     | 314.50         | 1278.1                                     |                |                                            |                 |                                            |
| 306.75          | 1203.4                                     | 305.35          | 1228.6                                     | 304.60          | 1248.3                                     | 301.75            | 1266.0                                     | 310.45                            | 1273.1                                     | 312.70         | 1279.4                                     |                |                                            |                 |                                            |
| 304.40          | 1204.7                                     | 302.95          | 1229.9                                     | 302.40          | 1249.6                                     | 299.55            | 1267.4                                     | 308.45                            | 1274.5                                     | 310.80         | 1280.7                                     |                |                                            |                 |                                            |
| 302.05          | 1205.9                                     |                 |                                            |                 |                                            |                   |                                            |                                   |                                            |                |                                            |                |                                            |                 |                                            |
|                 |                                            |                 |                                            |                 |                                            |                   |                                            | $O_3$ <sub>2</sub> (aq)           |                                            |                |                                            |                |                                            |                 |                                            |
|                 | mol•kg <sup>-1</sup>                       |                 | mol•kg <sup>−1</sup>                       |                 | mol•kg <sup>−1</sup>                       |                   | mol•kg <sup>−1</sup>                       |                                   | mol•kg <sup>-1</sup>                       |                | mol•kg <sup>−1</sup>                       |                | mol•kg <sup>−1</sup>                       |                 | nol•kg⁻¹                                   |
| 322.1           | 989.61                                     | 321.95          | 993.94                                     | 322.75          | 1013.6                                     | 320.9             | 1023.3                                     | 321.25                            | 1047.4                                     | 323.4          | 1049.0                                     | 318.4          | 1077.9                                     | 323.95          | 1084.0                                     |
| 319.95          | 990.65                                     | 319.55          | 994.98                                     | 320.65          | 1014.7                                     | 315.95            | 1025.4                                     | 318.9                             | 1048.4                                     | 319.05         | 1051.1                                     | 316.1          | 1079.0                                     | 321.75          | 1085.2                                     |
| 315.0           | 992.80                                     | 317.15          | 995.93                                     | 317.85          | 1016.9                                     | 313.7             | 1026.4                                     | 314.45                            | 1050.6                                     | 316.75         | 1052.2                                     | 313.8          | 1080.2                                     | 317.5           | 1087.3                                     |
| 312.45          | 993.76                                     | 314.7           | 996.94<br>997.99                           | 313.45          | 1017.9                                     | 308.55            | 1028.5                                     | 309.5                             | 1052.8                                     | 314.45         | 1053.3                                     | 311.55         | 1081.3                                     | 315.25          | 1088.5                                     |
| 309.5<br>306.45 | 994.82<br>995.89                           | 312.25<br>309.6 | 999.02                                     | 310.8<br>307.95 | 1019.0<br>1020.1                           | 305.85<br>302.55  | 1029.6<br>1030.8                           | 306.65<br>303.85                  | 1054.0<br>1055.1                           | 312.1<br>309.5 | 1054.3<br>1055.5                           | 309.0<br>306.5 | 1082.4<br>1083.6                           | 310.7<br>308.35 | 1090.8<br>1091.9                           |
| 303.05          | 996.95                                     | 303.25          | 1001.1                                     | 305.0           | 1020.1                                     | 299.6             | 1030.8                                     | 300.95                            | 1055.1                                     | 307.05         | 1055.5                                     | 303.9          | 1083.0                                     | 305.8           | 1091.9                                     |
| 299.15          | 998.05                                     | 299.35          | 1001.1                                     | 301.6           | 1021.1                                     | 295.75            | 1031.8                                     | 297.65                            | 1050.2                                     | 304.15         | 1050.0                                     | 300.9          | 1085.9                                     | 300.5           | 1095.4                                     |
| 277.13          | 770.03                                     | 277.33          | 1002.2                                     | 301.0           | 1022.3                                     | 273.13            | 1032.7                                     | 271.03                            | 1037.4                                     | 304.13         | 1037.7                                     | 318.4          | 1077.9                                     | 300.3           | 1075.4                                     |
| 1.262 n         | nol•kg <sup>−1</sup>                       | 1.525 r         | nol•kg <sup>−1</sup>                       | 1.694 r         | nol•kg <sup>−1</sup>                       | 1.827 n           | nol•kg <sup>−1</sup>                       | 2.131 r                           | nol•kg <sup>−1</sup>                       | 2.493 n        | nol•kg <sup>−1</sup>                       |                | nol•kg <sup>−1</sup>                       | 2.793 n         | nol•kg <sup>-1</sup>                       |
| 323.75          | 1107.8                                     | 323.5           | 1130.6                                     | 324.95          | 1144.5                                     | 324.25            | 1157.4                                     | 323.95                            | 1182.5                                     | 321.6          | 1211.3                                     | 322.35         | 1219.2                                     | 322.25          | 1234.5                                     |
| 319.55          | 1110.2                                     | 319.35          | 1132.8                                     | 320.85          | 1146.9                                     | 320.3             | 1159.7                                     | 319.9                             | 1184.8                                     | 317.35         | 1213.8                                     | 318.35         | 1221.6                                     | 320.25          | 1235.8                                     |
| 317.5           | 1111.2                                     | 317.25          | 1134.0                                     | 318.7           | 1148.1                                     | 318.15            | 1160.9                                     | 317.75                            | 1186.0                                     | 313.5          | 1216.4                                     | 314.25         | 1224.2                                     | 316.1           | 1238.2                                     |
| 315.25          | 1112.4                                     | 315.05          | 1135.2                                     | 314.5           | 1150.4                                     | 316.15            | 1162.1                                     | 313.6                             | 1188.5                                     | 309.3          | 1218.8                                     | 309.9          | 1226.7                                     | 314.1           | 1239.5                                     |
| 313.1           | 1113.5                                     | 312.95          | 1136.3                                     | 312.15          | 1151.6                                     | 311.75            | 1164.7                                     | 311.25                            | 1189.9                                     | 305.05         | 1221.3                                     | 307.6          | 1228.1                                     | 312.15          | 1240.8                                     |
| 310.95          | 1114.7                                     | 308.4           | 1138.7                                     | 310.1           | 1152.8                                     | 309.65            | 1165.8                                     | 309.25                            | 1191.0                                     | 302.55         | 1222.7                                     | 305.35         | 1229.4                                     | 307.8           | 1243.4                                     |
| 308.45          | 1116.0                                     | 305.95          | 1139.9                                     | 307.9           | 1154.0                                     | 307.25            | 1167.0                                     | 304.55                            | 1193.6                                     | 300.35         | 1223.9                                     | 303.1          | 1230.7                                     | 305.5           | 1244.7                                     |
| 303.55          | 1118.2                                     | 303.5           | 1141.2                                     | 305.3           | 1155.3                                     | 305.0             | 1168.3                                     | 302.25                            | 1194.8                                     | 298.1          | 1225.2                                     | 300.75         | 1232.0                                     | 303.1           | 1246.1                                     |
|                 | 1119.4                                     | 301.1           | 1142.4                                     | 303.1           | 1156.4                                     | 302.6             | 1169.5                                     | 299.75                            | 1196.1                                     |                |                                            | 4.000          |                                            |                 | 1247.4                                     |
|                 | nol·kg <sup>-1</sup>                       |                 | nol•kg <sup>−1</sup>                       |                 | nol•kg <sup>−1</sup>                       |                   | nol·kg <sup>-1</sup>                       |                                   | nol·kg <sup>-1</sup>                       |                | nol·kg <sup>-1</sup>                       |                | nol·kg <sup>-1</sup>                       |                 | nol·kg <sup>-1</sup>                       |
| 321.35          | 1257.2                                     | 323.6           | 1256.7                                     | 323.55          | 1265.4                                     | 317.15            | 1287.7                                     | 322.45                            | 1297.7                                     | 323.5          | 1300.1                                     | 322.45         | 1318.2                                     | 322.75          | 1318.5                                     |
| 317.25          | 1259.7                                     | 319.45          | 1259.2                                     | 319.5           | 1268.1                                     | 315.1             | 1288.9                                     | 318.25                            | 1300.4                                     | 319.35         | 1302.8                                     | 320.3          | 1319.5                                     | 318.15          | 1321.2                                     |
| 313.15          | 1262.3                                     | 317.55          | 1260.5                                     | 315.3           | 1270.8                                     | 311.0             | 1291.7                                     | 314.15                            | 1303.0                                     | 317.35         | 1304.1                                     | 316.25         | 1322.3                                     | 313.8           | 1324.0                                     |
| 310.9           | 1263.8                                     | 313.25          | 1263.3                                     | 311.05          | 1273.3                                     | 306.65            | 1294.4                                     | 309.95                            | 1305.7                                     | 315.15         | 1305.4                                     | 311.9          | 1325.0                                     | 309.4           | 1326.7                                     |
| 308.85          | 1265.0                                     | 311.2           | 1264.5                                     | 306.8           | 1276.0                                     | 304.35            | 1295.8                                     | 307.7                             | 1307.2                                     | 311.0          | 1308.1                                     | 307.45         | 1327.9                                     | 305.2           | 1329.4                                     |
| 306.5           | 1266.4                                     | 308.95          | 1265.8                                     | 302.25          | 1278.7                                     | 302.1             | 1297.2                                     | 305.55                            | 1308.4                                     | 308.75         | 1309.6                                     | 305.25         | 1329.3                                     | 300.85          | 1332.2                                     |
| 304.25          | 1267.7                                     | 306.7           | 1267.2                                     | 300.1           | 1280.0                                     | 299.8             | 1298.5                                     | 303.3                             | 1309.8                                     | 306.7          | 1310.9                                     | 302.95         | 1330.8                                     | 298.5           | 1333.6                                     |
| 302.1           | 1269.1                                     | 304.55          | 1268.5                                     | 297.9           | 1281.3                                     | 297.5             | 1299.9                                     |                                   | 1311.3                                     |                | 1312.3                                     | 300.75         | 1332.1                                     |                 |                                            |
|                 | nol•kg <sup>-1</sup>                       |                 | nol·kg <sup>-1</sup>                       |                 | nol•kg <sup>-1</sup>                       |                   | nol•kg <sup>-1</sup>                       |                                   | nol•kg <sup>-1</sup>                       |                | nol•kg <sup>-1</sup>                       |                | nol•kg <sup>-1</sup>                       |                 |                                            |
| 321.8           | 1335.1                                     |                 | 1341.3                                     | 321.9           | 1363.5                                     | 322.2             | 1370.0                                     | 322.8                             | 1375.7                                     | 324.45         | 1385.4                                     | 325.25         | 1393.7                                     |                 |                                            |
| 317.55          | 1337.9                                     | 318.8           | 1344.0                                     | 319.9           | 1364.8                                     | 317.95            | 1372.7                                     | 318.5                             | 1378.6                                     | 320.2          | 1388.4                                     | 323.15         | 1395.1                                     |                 |                                            |
| 313.25          | 1340.7                                     | 314.5           | 1346.8                                     | 315.6           | 1367.6                                     | 313.7             | 1375.5                                     | 316.35                            | 1380.1                                     | 315.8          | 1391.1                                     | 320.9          | 1396.6                                     |                 |                                            |
| 308.85          | 1343.6                                     | 312.4           | 1348.2                                     | 311.25          | 1370.6                                     | 311.45            | 1377.1                                     | 312.0                             | 1382.9                                     | 311.35         | 1394.0                                     | 318.8          | 1398.1                                     |                 |                                            |
| 304.55          | 1346.2                                     | 310.15          | 1349.7                                     | 309.05          | 1371.9                                     | 309.35            | 1378.4                                     | 309.75                            | 1384.3                                     | 306.7          | 1397.0                                     | 316.45         | 1399.6                                     |                 |                                            |
| 302.4           | 1347.6                                     | 308.1           | 1351.0                                     | 306.75          | 1373.4                                     | 307.05            | 1379.9                                     | 307.65                            | 1385.7                                     | 302.95         | 1399.9                                     | 314.15         | 1401.1                                     |                 |                                            |
| 300.3           | 1349.0                                     | 303.5           | 1353.9                                     | 304.55          | 1374.9                                     | 304.8             | 1381.4                                     | 303.15                            | 1388.7                                     | 300.5          | 1401.4                                     | 311.95         | 1402.5                                     |                 |                                            |
| 297.85          | 1350.5                                     | 301.25          | 1355.4                                     | 302.3           | 1376.3                                     | 302.6             | 1382.9                                     | 301.0                             | 1390.1                                     | 298.2          | 1402.9                                     | 308.7          | 1404.1                                     |                 |                                            |
|                 |                                            |                 |                                            | 299.95          | 1377.8                                     | 300.15            | 1384.4                                     |                                   |                                            | 296.0          | 1404.4                                     |                |                                            |                 |                                            |
|                 |                                            |                 |                                            |                 |                                            |                   |                                            |                                   |                                            |                |                                            |                |                                            |                 |                                            |

Table 2. Ultrasonic Velocities of Aqueous Solutions of Magnesium Acetate and Magnesium Nitrate as Functions of Concentration and Temperature

| Temper           | rature                     |                                           |                            |                            |                                                 |                            |                            |                            |
|------------------|----------------------------|-------------------------------------------|----------------------------|----------------------------|-------------------------------------------------|----------------------------|----------------------------|----------------------------|
| T/K              |                            |                                           |                            | u/m·                       | $^{1}$ s <sup>-1</sup>                          |                            |                            |                            |
|                  |                            |                                           |                            | Mg(OAc) <sub>2</sub> (a    |                                                 |                            |                            |                            |
|                  |                            | $0.0831 \text{ mol} \cdot \text{kg}^{-1}$ |                            |                            | $0.6460 \; \mathrm{mol} \cdot \mathrm{kg}^{-1}$ |                            | 1.106 mol•kg <sup>-1</sup> | 1.354 mol·kg <sup>-1</sup> |
| 273.15           |                            | 1421.7                                    | 1435.8                     | 1486.1                     | 1523.6                                          | 1563.5                     | 1599.6                     | 1633.9                     |
|                  | 1433.9                     | 1443.6                                    | 1458.6                     | 1504.5                     | 1539.4                                          | 1571.6                     | 1611.8                     | 1644.1                     |
| 283.15           |                            | 1464.2                                    | 1477.0                     | 1522.7                     | 1553.8                                          | 1584.2                     | 1622.1                     | 1651.4                     |
|                  | 1471.7                     | 1481.5                                    | 1494.1                     | 1535.1                     | 1566.5                                          | 1601.1                     | 1631.4                     | 1659.4                     |
| 293.15           | 1501.7                     | 1497.5<br>1510.4                          | 1508.3<br>1520.6           | 1545.4<br>1556.9           | 1577.8<br>1587.3                                | 1609.8                     | 1639.8<br>1645.9           | 1665.7<br>1671.1           |
|                  | 1513.4                     | 1510.4                                    | 1532.2                     | 1567.4                     | 1595.7                                          | 1616.2<br>1625.4           | 1651.6                     | 1671.1                     |
| 308.15           |                            | 1530.3                                    | 1541.4                     | 1575.1                     | 1601.9                                          | 1631.2                     | 1655.9                     | 1677.9                     |
| 313.15           |                            | 1539.0                                    | 1547.7                     | 1582.3                     | 1607.4                                          | 1635.6                     | 1659.1                     | 1679.3                     |
| 318.15           |                            | 1546.0                                    | 1552.2                     | 1587.9                     | 1613.4                                          | 1638.1                     | 1661.5                     | 1683.6                     |
| 323.15           |                            | 1549.2                                    | 1557.7                     | 1591.1                     | 1615.2                                          | 1637.7                     | 1662.2                     | 1683.9                     |
|                  | 1.608 mol·kg <sup>-1</sup> | 1.866 mol·kg <sup>-1</sup>                | 2.134 mol·kg <sup>-1</sup> | 2.411 mol·kg <sup>-1</sup> | 2.622 mol·kg <sup>-1</sup>                      | 3.043 mol·kg <sup>-1</sup> | 3.437 mol·kg <sup>-1</sup> | 3.819 mol·kg <sup>-1</sup> |
| 273.15           | 1670.3                     | 1705.9                                    | 1742.2                     | 1777.1                     | 1797.1                                          | 1840.9                     | 1885.2                     | 1910.1                     |
| 278.15           |                            | 1713.0                                    | 1746.8                     | 1780.1                     | 1799.2                                          | 1839.8                     | 1881.6                     | 1903.6                     |
| 283.15           |                            | 1718.2                                    | 1750.4                     | 1781.4                     | 1799.1                                          | 1838.2                     | 1877.4                     | 1897.9                     |
|                  | 1692.8                     | 1722.3                                    | 1752.7                     | 1782.9                     | 1799.1                                          | 1835.6                     | 1872.2                     | 1891.9                     |
| 293.15           |                            | 1725.6                                    | 1754.5                     | 1782.6                     | 1798.8                                          | 1832.8                     | 1866.8                     | 1884.3                     |
| 298.15           |                            | 1727.7                                    | 1754.6                     | 1781.9                     | 1797.3                                          | 1829.5                     | 1861.2                     | 1878.0                     |
|                  | 1703.0<br>1705.0           | 1728.9<br>1728.9                          | 1755.5<br>1754.2           | 1781.3<br>1782.5           | 1795.2<br>1791.3                                | 1824.8<br>1819.5           | 1855.5<br>1847.8           | 1870.5<br>1862.6           |
| 313.15           |                            | 1728.4                                    | 1752.5                     | 1778.6                     | 1791.3                                          | 1815.0                     | 1840.3                     | 1854.1                     |
| 318.15           |                            | 1727.8                                    | 1749.8                     | 1773.8                     | 1782.8                                          | 1808.1                     | 1832.0                     | 1846.6                     |
|                  | 1703.7                     | 1727.8                                    | 1745.5                     | 1767.3                     | 1778.6                                          | 1800.3                     | 1825.0                     | 1837.4                     |
| 525.15           | 4.547 mol·kg <sup>-1</sup> | 5.165 mol·kg <sup>-1</sup>                | 5.732 mol·kg <sup>-1</sup> | 1707.5                     | 1770.0                                          | 1000.5                     | 1023.0                     | 1037.1                     |
| 273.15           |                            |                                           |                            |                            |                                                 |                            |                            |                            |
| 278.15           | 1945.3                     |                                           |                            |                            |                                                 |                            |                            |                            |
| 283.15           | 1936.1                     | 1964.1                                    |                            |                            |                                                 |                            |                            |                            |
| 288.15           | 1927.4                     | 1953.3                                    |                            |                            |                                                 |                            |                            |                            |
| 293.15           | 1917.4                     | 1940.8                                    | 1954.7                     |                            |                                                 |                            |                            |                            |
| 298.15           |                            | 1929.7                                    | 1940.2                     |                            |                                                 |                            |                            |                            |
| 303.15           |                            | 1919.0                                    | 1926.8                     |                            |                                                 |                            |                            |                            |
|                  | 1888.8                     | 1908.0                                    | 1914.4                     |                            |                                                 |                            |                            |                            |
|                  | 1878.9                     | 1896.0                                    | 1920.2                     |                            |                                                 |                            |                            |                            |
| 318.15           |                            | 1882.7                                    | 1888.5                     |                            |                                                 |                            |                            |                            |
| 323.13           | 1857.2                     | 1871.0                                    | 1874.6                     |                            |                                                 |                            |                            |                            |
|                  | 0.0445 11 -1               | 0.0520 11 -1                              | 0.0404 11 -1               | $Mg(NO_3)_2(a)$            |                                                 | 0.0000 11 -1               | 0.0000 11 -1               | 1000 11 -1                 |
| 072.15           |                            | 0.0528 mol·kg <sup>-1</sup>               |                            |                            | 0.6173 mol·kg <sup>-1</sup>                     |                            |                            |                            |
| 273.15           |                            | 1415.6                                    | 1430.4                     | 1443.0                     | 1469.3                                          | 1498.6                     | 1510.3                     | 1538.0                     |
|                  | 1434.8<br>1449.2           | 1438.7<br>1458.5                          | 1451.6<br>1470.7           | 1456.8<br>1475.6           | 1486.9<br>1503.7                                | 1514.8<br>1529.0           | 1524.8<br>1538.8           | 1551.3<br>1563.1           |
|                  | 1471.7                     | 1477.1                                    | 1470.7                     | 1473.6                     | 1517.8                                          | 1541.2                     | 1550.4                     | 1573.8                     |
|                  | 1484.3                     | 1486.7                                    | 1501.9                     | 1507.0                     | 1530.1                                          | 1553.1                     | 1561.5                     | 1582.5                     |
| 298.15           |                            | 1500.5                                    | 1514.9                     | 1519.0                     | 1540.9                                          | 1563.0                     | 1570.8                     | 1590.0                     |
| 303.15           |                            | 1511.9                                    | 1526.5                     | 1529.9                     | 1550.7                                          | 1571.2                     | 1578.7                     | 1596.4                     |
| 308.15           |                            | 1522.6                                    | 1536.2                     | 1539.2                     | 1559.2                                          | 1578.7                     | 1585.6                     | 1602.4                     |
| 313.15           |                            | 1531.9                                    | 1544.5                     | 1546.0                     | 1566.4                                          | 1584.7                     | 1591.3                     | 1607.1                     |
| 318.15           | 1540.2                     | 1541.4                                    | 1554.4                     | 1552.3                     | 1572.0                                          | 1590.0                     | 1596.3                     | 1612.6                     |
| 323.15           | 1545.7                     | 1548.0                                    | 1559.2                     | 1563.6                     | 1576.6                                          | 1593.9                     | 1600.3                     | 1614.9                     |
|                  | 1.525 mol·kg <sup>-1</sup> | 1.827 mol·kg <sup>-1</sup>                | 2.131 mol·kg <sup>-1</sup> | 2.493 mol·kg <sup>-1</sup> | 2.793 mol·kg <sup>-1</sup>                      | 3.118 mol·kg <sup>-1</sup> | 3.170 mol·kg <sup>-1</sup> | 3.501 mol·kg <sup>-1</sup> |
| 273.15           |                            | 1600.5                                    | 1632.0                     | 1664.6                     | 1693.2                                          | 1721.2                     | 1730.6                     | 1752.4                     |
| 278.15           |                            | 1610.1                                    | 1639.7                     | 1670.1                     | 1696.9                                          | 1723.7                     | 1733.0                     | 1753.7                     |
| 283.15           |                            | 1617.9                                    | 1645.2                     | 1675.2                     | 1700.3                                          | 1725.7                     | 1734.2                     | 1754.9                     |
| 288.15           |                            | 1625.4                                    | 1650.6                     | 1677.8                     | 1703.5                                          | 1727.3                     | 1735.3                     | 1755.4                     |
| 293.15           | 1604.4                     | 1631.9<br>1637.3                          | 1656.3<br>1660.5           | 1682.1<br>1685.3           | 1705.3<br>1706.5                                | 1728.1<br>1728.8           | 1736.5<br>1736.6           | 1755.4<br>1754.6           |
| 303.15           |                            | 1641.0                                    | 1663.8                     | 1686.8                     | 1708.1                                          | 1728.8                     | 1736.9                     | 1754.6                     |
|                  | 1621.7                     | 1644.8                                    | 1666.7                     | 1688.0                     | 1708.1                                          | 1729.1                     | 1735.9                     | 1752.2                     |
|                  | 1625.9                     | 1647.8                                    | 1667.8                     | 1688.9                     | 1709.0                                          | 1728.1                     | 1733.9                     | 1751.2                     |
| 318.15           |                            | 1650.5                                    | 1668.7                     | 1689.3                     | 1708.7                                          | 1727.2                     | 1733.9                     | 1748.8                     |
|                  | 1631.4                     | 1651.2                                    | 1667.3                     | 1689.2                     | 1707.5                                          | 1725.2                     | 1731.8                     | 1744.0                     |
|                  | 3.757 mol·kg <sup>-1</sup> | 4.051 mol•kg <sup>-1</sup>                | 4.285 mol•kg <sup>-1</sup> | 4.403 mol•kg <sup>-1</sup> | 4.883 mol•kg <sup>-1</sup>                      | 5.134 mol·kg <sup>-1</sup> |                            |                            |
| 273.15           | 1771.9                     | 1791.3                                    | 1808.5                     | 1820.2                     | 2                                               | 2                          |                            |                            |
|                  | 1772.4                     | 1791.4                                    | 1807.3                     | 1815.4                     |                                                 |                            |                            |                            |
| 283.15           |                            | 1790.4                                    | 1806.3                     | 1813.5                     | 1847.2                                          |                            |                            |                            |
|                  | 1771.3                     | 1789.6                                    | 1804.5                     | 1810.8                     | 1842.3                                          |                            |                            |                            |
| 293.15           |                            | 1787.5                                    | 1802.4                     | 1809.3                     | 1838.8                                          | 1055                       |                            |                            |
|                  | 1774.2                     | 1786.2                                    | 1800.3                     | 1806.6                     | 1831.8                                          | 1855.2                     |                            |                            |
|                  | 1772.5                     | 1783.6                                    | 1797.4                     | 1804.5                     | 1830.6                                          | 1842.9                     |                            |                            |
|                  | 1770.5                     | 1781.1                                    | 1794.4                     | 1800.6                     | 1826.2                                          | 1838.4                     |                            |                            |
| 313.15<br>318.15 |                            | 1778.4<br>1776.0                          | 1791.3<br>1787.8           | 1797.9<br>1794.4           | 1823.1<br>1818.4                                | 1834.3<br>1832.8           |                            |                            |
| 323.15           |                            | 1770.9                                    | 1783.2                     | 1794.4                     | 1811.5                                          | 1828.2                     |                            |                            |
| J4J.1J           | 1/30./                     | 1//0.7                                    | 1/03.4                     | 1/07.3                     | 1011.3                                          | 1020.2                     |                            |                            |

Table 3. Viscosities of Aqueous Solutions of Magnesium Acetate and Magnesium Nitrate as Functions of Concentration and Temperature

| T/K                                                                          |                                           |                                     | ). // -                           | η/mPa·s                                                |                             |                                          |               |
|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------------------------|-----------------------------|------------------------------------------|---------------|
|                                                                              | 0.0414 mol·kg <sup>-1</sup>               | 0.0831 mol·kg <sup>-1</sup>         | Mg<br>0.1671 mol·kg <sup>-1</sup> | (OAc) <sub>2</sub> (aq)<br>0.4247 mol·kg <sup>-1</sup> | 0.6460 mol•kg <sup>-1</sup> | 0.8751 mol·kg <sup>-1</sup>              | 1.106 mol·kg  |
| 273.15                                                                       | 1.895                                     | 1.974                               | 2.142                             | 2.763                                                  | 3.520                       | 4.302                                    | 5.537         |
| 278.15                                                                       | 1.603                                     | 1.663                               | 1.805                             | 2.301                                                  | 2.887                       | 3.533                                    | 4.511         |
| 283.15                                                                       | 1.374                                     | 1.423                               | 1.540                             | 1.954                                                  | 2.444                       | 2.956                                    | 3.725         |
| 88.15                                                                        | 1.196                                     | 1.238                               | 1.335                             | 1.677                                                  | 2.072                       | 2.499                                    | 3.138         |
| 93.15                                                                        | 1.052                                     | 1.089                               | 1.170                             | 1.461                                                  | 1.788                       | 2.150                                    | 2.678         |
| 298.15                                                                       | 0.9322                                    | 0.9640                              | 1.034                             | 1.286                                                  | 1.566                       | 1.873                                    | 2.310         |
|                                                                              |                                           |                                     |                                   |                                                        |                             |                                          |               |
| 303.15                                                                       | 0.8350                                    | 0.8624                              | 0.9234                            | 1.141                                                  | 1.383                       | 1.640                                    | 2.014         |
| 808.15                                                                       | 0.7529                                    | 0.7775                              | 0.8306                            | 1.021                                                  | 1.231                       | 1.450                                    | 1.774         |
| 313.15                                                                       | 0.6835                                    | 0.7037                              | 0.7523                            | 0.9195                                                 | 1.105                       | 1.294                                    | 1.573         |
| 18.15                                                                        | 0.6244                                    | 0.6418                              | 0.6857                            | 0.8341                                                 | 0.9967                      | 1.163                                    | 1.405         |
| 323.15                                                                       | 0.5741                                    | 0.5893                              | 0.6282                            | 0.7596                                                 | 0.9059                      | 1.052                                    | 1.271         |
|                                                                              | 1.354 mol·kg <sup>-1</sup>                | 1.608 mol·kg <sup>-1</sup>          | 1.866 mol•kg <sup>-1</sup>        | 2.134 mol·kg <sup>-1</sup>                             | 2.411 mol·kg <sup>-1</sup>  | $2.622 \text{ mol} \cdot \text{kg}^{-1}$ | 3.043 mol·kg  |
| 273.15                                                                       | 7.125                                     | 9.270                               | 12.12                             | 16.35                                                  | 23.36                       | 28.17                                    | 45.46         |
| 278.15                                                                       | 5.709                                     | 7.376                               | 9.522                             | 12.57                                                  | 17.59                       | 21.20                                    | 33.22         |
| 283.15                                                                       | 4.687                                     | 5.959                               | 7.615                             | 9.905                                                  | 13.67                       | 16.25                                    | 24.92         |
| 288.15                                                                       | 3.895                                     | 4.919                               | 6.192                             | 8.005                                                  | 10.80                       | 12.79                                    | 19.07         |
| 293.15                                                                       | 3.294                                     | 4.125                               | 5.143                             | 6.573                                                  | 8.745                       | 10.25                                    | 14.98         |
| 298.15                                                                       | 2.821                                     | 3.504                               | 4.320                             | 5.472                                                  | 7.183                       | 8.354                                    | 12.02         |
| 303.15                                                                       | 2.446                                     | 3.011                               | 3.688                             | 4.619                                                  | 6.056                       | 6.928                                    | 9.798         |
|                                                                              |                                           |                                     |                                   |                                                        |                             |                                          |               |
| 308.15                                                                       | 2.139                                     | 2.631                               | 3.181                             | 3.943                                                  | 5.121                       | 5.819                                    | 8.110         |
| 313.15                                                                       | 1.887                                     | 2.304                               | 2.771                             | 3.404                                                  | 4.373                       | 4.948                                    | 6.797         |
| 318.15                                                                       | 1.679                                     | 2.027                               | 2.437                             | 2.967                                                  | 3.777                       | 4.254                                    | 5.774         |
| 323.15                                                                       | 1.503                                     | 1.804                               | 2.166                             | 2.610                                                  | 3.295                       | 3.695                                    | 4.961         |
| 772 15                                                                       | 3.437 mol·kg <sup>-1</sup>                | 4.001 mol·kg <sup>-1</sup><br>167.7 | 4.563 mol·kg <sup>-1</sup>        | 4.929 mol•kg <sup>-1</sup>                             | 5.410 mol·kg <sup>-1</sup>  | 5.732 mol·kg <sup>-1</sup>               | 6.187 mol•kg  |
| 273.15                                                                       | 85.35                                     |                                     | 374.7                             |                                                        |                             |                                          |               |
| 278.15                                                                       | 59.47                                     | 110.6                               | 234.4                             | 200.4                                                  |                             |                                          |               |
| 283.15                                                                       | 43.12                                     | 77.03                               | 153.7                             | 208.4                                                  |                             |                                          |               |
| 288.15                                                                       | 31.95                                     | 55.77                               | 105.5                             | 140.3                                                  |                             |                                          |               |
| 293.15                                                                       | 24.40                                     | 41.34                               | 75.04                             | 97.76                                                  |                             |                                          |               |
| 298.15                                                                       | 19.05                                     | 31.38                               | 55.00                             | 70.36                                                  | 141.2                       |                                          |               |
| 303.15                                                                       | 15.20                                     | 24.27                               | 41.02                             | 51.77                                                  | 99.40                       | 135.8                                    |               |
| 308.15                                                                       | 12.30                                     | 19.17                               | 31.43                             | 39.25                                                  | 72.56                       | 96.97                                    | 175.6         |
| 313.15                                                                       | 10.13                                     | 15.43                               | 24.53                             | 30.41                                                  | 54.06                       | 71.46                                    | 120.0         |
| 318.15                                                                       | 8.453                                     | 12.63                               | 19.60                             | 24.03                                                  | 41.38                       | 53.77                                    | 87.61         |
| 323.15                                                                       | 7.136                                     | 10.52                               | 15.97                             | 19.29                                                  | 32.16                       | 41.44                                    | 65.72         |
|                                                                              |                                           |                                     | Ms                                | $g(NO_3)_2(aq)$                                        |                             |                                          |               |
|                                                                              | 0.0145 mol·kg <sup>-1</sup>               | 0.0528 mol·kg <sup>-1</sup>         | 0.2491 mol·kg <sup>-1</sup>       | 0.5931 mol·kg <sup>-1</sup>                            | 0.9898 mol·kg <sup>-1</sup> | 1.262 mol·kg <sup>-1</sup>               | 1.827 mol·kg- |
| 273.15                                                                       | 1.852                                     | 1.874                               | 1.958                             | 2.122                                                  | 2.391                       | 2.659                                    | 3.232         |
| 278.15                                                                       | 1.556                                     | 1.580                               | 1.654                             | 1.805                                                  | 2.047                       | 2.268                                    | 2.765         |
| 283.15                                                                       | 1.339                                     | 1.357                               | 1.429                             | 1.564                                                  | 1.775                       | 1.971                                    | 2.400         |
| 288.15                                                                       | 1.164                                     | 1.180                               | 1.244                             | 1.367                                                  | 1.554                       | 1.727                                    | 2.098         |
|                                                                              |                                           |                                     |                                   |                                                        |                             |                                          |               |
| 293.15                                                                       | 1.021                                     | 1.038                               | 1.092                             | 1.209                                                  | 1.378                       | 1.530                                    | 1.859         |
| 298.15                                                                       | 0.9075                                    | 0.9227                              | 0.9713                            | 1.079                                                  | 1.232                       | 1.366                                    | 1.662         |
| 303.15                                                                       | 0.8115                                    | 0.8250                              | 0.8716                            | 0.9679                                                 | 1.112                       | 1.228                                    | 1.493         |
| 308.15                                                                       | 0.7364                                    | 0.7450                              | 0.7877                            | 0.8757                                                 | 1.005                       | 1.110                                    | 1.342         |
| 313.15                                                                       | 0.6666                                    | 0.6778                              | 0.7155                            | 0.7972                                                 | 0.9130                      | 1.008                                    | 1.305         |
| 318.15                                                                       | 0.6082                                    | 0.6200                              | 0.6550                            | 0.7284                                                 | 0.8367                      | 0.9225                                   | 1.117         |
| 323.15                                                                       | 0.5591                                    | 0.5708                              | 0.6023                            | 0.6703                                                 | 0.7676                      | 0.8482                                   | 1.028         |
|                                                                              | 2.131 mol·kg <sup>-1</sup>                | 2.584 mol·kg <sup>-1</sup>          | 3.096 mol·kg <sup>-1</sup>        | 3.329 mol·kg <sup>-1</sup>                             | 3.704 mol·kg <sup>-1</sup>  | 4.039 mol·kg <sup>-1</sup>               | 4.403 mol·kg- |
| 273.15                                                                       | 3.587                                     | 4.348                               | 5.355                             | 5.964                                                  | 6.966                       | 8.210                                    | 9.677         |
| 278.15                                                                       | 3.062                                     | 3.696                               | 4.538                             | 5.056                                                  | 5.857                       | 6.897                                    | 8.051         |
| 283.15                                                                       | 2.663                                     | 3.207                               | 3.946                             | 4.336                                                  | 5.020                       | 5.864                                    | 6.845         |
|                                                                              |                                           |                                     |                                   |                                                        |                             |                                          |               |
| 288.15                                                                       | 2.330                                     | 2.821                               | 3.408                             | 3.754                                                  | 4.345                       | 5.051                                    | 6.038         |
| 293.15                                                                       | 2.064                                     | 2.471                               | 3.002                             | 3.308                                                  | 3.807                       | 4.432                                    | 5.111         |
| 298.15                                                                       | 1.842                                     | 2.206                               | 2.665                             | 2.921                                                  | 3.367                       | 3.889                                    | 4.493         |
| 303.15                                                                       | 1.654                                     | 1.969                               | 2.380                             | 2.611                                                  | 2.998                       | 3.462                                    | 3.977         |
| 308.15                                                                       | 1.498                                     | 1.777                               | 2.146                             | 2.343                                                  | 2.692                       | 3.089                                    | 3.555         |
| 313.15                                                                       | 1.364                                     | 1.616                               | 1.947                             | 2.128                                                  | 2.435                       | 2.798                                    | 3.199         |
| 318.15                                                                       | 1.245                                     | 1.473                               | 1.772                             | 1.935                                                  | 2.216                       | 2.545                                    | 2.895         |
| 323.15                                                                       | 1.145                                     | 1.353                               | 1.629                             | 1.772                                                  | 2.028                       | 2.319                                    | 2.641         |
|                                                                              | 4.728 mol·kg <sup>-1</sup>                | 4.970 mol•kg <sup>-1</sup>          | 5.282 mol·kg <sup>-1</sup>        |                                                        |                             | =                                        |               |
| 273.15                                                                       | 11.85                                     |                                     |                                   |                                                        |                             |                                          |               |
|                                                                              | 9.740                                     |                                     |                                   |                                                        |                             |                                          |               |
| 278 15                                                                       | 8.233                                     |                                     |                                   |                                                        |                             |                                          |               |
|                                                                              |                                           | 7.798                               |                                   |                                                        |                             |                                          |               |
| 283.15                                                                       |                                           |                                     |                                   |                                                        |                             |                                          |               |
| 283.15<br>288.15                                                             | 7.067                                     |                                     |                                   |                                                        |                             |                                          |               |
| 283.15<br>288.15<br>293.15                                                   | 7.067<br>6.098                            | 6.799                               |                                   |                                                        |                             |                                          |               |
| 283.15<br>288.15<br>293.15<br>298.15                                         | 7.067                                     |                                     | 7.034                             |                                                        |                             |                                          |               |
| 283.15<br>288.15<br>293.15<br>298.15                                         | 7.067<br>6.098                            | 6.799                               | 7.034<br>6.141                    |                                                        |                             |                                          |               |
| 283.15<br>288.15<br>293.15<br>298.15<br>303.15                               | 7.067<br>6.098<br>5.349                   | 6.799<br>5.933                      |                                   |                                                        |                             |                                          |               |
| 278.15<br>283.15<br>288.15<br>293.15<br>298.15<br>303.15<br>308.15<br>313.15 | 7.067<br>6.098<br>5.349<br>4.730<br>4.262 | 6.799<br>5.933<br>5.225<br>4.654    | 6.141<br>5.506                    |                                                        |                             |                                          |               |
| 283.15<br>288.15<br>293.15<br>298.15<br>303.15                               | 7.067<br>6.098<br>5.349<br>4.730          | 6.799<br>5.933<br>5.225             | 6.141                             |                                                        |                             |                                          |               |

Table 4. Least-Squares Fitted Values of the Parameters of Equation 2 for Mg(OAc)2(aq) and Mg(NO3)2(aq) Systems

| T/K    | ln a₀<br>mPa•s       | $b_0$ mPa·s·kg·mol $^{-1}$ | $^{c_0}$ mPa•s•kg <sup>2</sup> •mol <sup>-2</sup> | SD in $\ln \eta$ |
|--------|----------------------|----------------------------|---------------------------------------------------|------------------|
|        |                      | Mg(OAc) <sub>2</sub> (aq)  |                                                   |                  |
| 273.15 | $0.6167 \pm 0.0189$  | $0.9121 \pm 0.0283$        | $0.0534 \pm 0.0084$                               | 0.0333           |
| 298.15 | $-0.1013 \pm 0.0151$ | $0.8178 \pm 0.0160$        | $0.0157 \pm 0.0033$                               | 0.0296           |
| 323.15 | $-0.5541 \pm 0.0206$ | $0.6747 \pm 0.0169$        | $0.0133 \pm 0.0026$                               | 0.0436           |
|        |                      | $Mg(NO_3)_2(aq)$           |                                                   |                  |
| 273.15 | $0.6060 \pm 0.0063$  | $0.2553 \pm 0.0069$        | $0.0289 \pm 0.0015$                               | 0.0113           |
| 298.15 | $-0.0984 \pm 0.0063$ | $0.2962 \pm 0.0061$        | $0.0166 \pm 0.0011$                               | 0.0116           |
| 323.15 | $-0.5810 \pm 0.0056$ | $0.3099 \pm 0.0054$        | $0.0109 \pm 0.0010$                               | 0.0103           |

Schott-Geräte CT 1450 or Julabo F32 HP thermostats were used to control solution temperatures to  $\pm$  0.02 K.

### **Results and Discussion**

**Densities.** The measured densities  $(\rho)$  of the aqueous solutions of Mg(OAc)2 and Mg(NO3)2 (Table 1) were found to vary linearly with temperature at a fixed concentration. The density isotherms for both salts at 298.15 K are depicted in Figure 1 and agree to within  $\pm$  0.4 % with literature data<sup>8-10</sup> for both systems.

Ultrasonic Velocities. The experimental ultrasonic velocities (u) in Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq) are given as functions of temperature and concentration in Table 2. Where comparison was possible, at 298.15 K, the data were comparable to within  $\pm$  0.2 % with literature values.<sup>8,14</sup> Plots of  $(u - u_0)/m$  versus  $m^{1/2}$  at 298.15 K (not shown), where  $u_0$  is the ultrasonic velocity in pure water, exhibit a maximum at  $\sim$ 0.3 and  $\sim$ 2.0 mol kg<sup>-1</sup> for Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq), respectively, similar to those observed for other inorganic salt solutions. 18,19 Such maxima are due to the transition from free hydrated ions to solvent-shared ion pairs or the formation of ion clusters. 15,18

Isentropic compressibilities,  $\kappa_s = (u^2 \rho)^{-1}$  of Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq) derived from the sound velocities and solution densities are plotted against concentration at 298.15 K in Figure 2. An empirical equation 19,20

$$\kappa_{\rm s} = a_1 + b_1 m + c_1 m^{1.5} + d_1 m^2 + e_1 m^{2.5} + f_1 m^3$$
 (1)

was used to describe the  $\kappa_s$  isotherms, where  $a_1$ ,  $b_1$ ,  $c_1$ ,  $d_1$ ,  $e_1$ , and  $f_1$  are temperature-dependent parameters, and m is the concentration in mol·kg-1. The numerical values of these parameters are reported elsewhere.<sup>15</sup>



Figure 2. Present results for the isentropic compressibilities of aqueous solutions of Mg(OAc)<sub>2</sub> (open triangles) and Mg(NO<sub>3</sub>)<sub>2</sub> (open circles) as a function of concentration at 298.15 K. Solid curves are calculated from eq 1. Literature data: ∇, ref 8; ●, ref 14.

The isentropic compressibility of Mg(OAc)2(aq) at any given concentration up to ~4.6 mol⋅kg<sup>-1</sup> is lower than that of Mg-(NO<sub>3</sub>)<sub>2</sub>(aq) (Figure 2). As discussed elsewhere, <sup>15</sup> this implies that OAc<sup>-</sup> is more efficient in influencing the water molecules in its immediate vicinity than NO<sub>3</sub><sup>-</sup>. At higher concentrations,  $> 4.5 \text{ mol} \cdot \text{kg}^{-1}$ , the  $\kappa_s$  isotherm of Mg(NO<sub>3</sub>)<sub>2</sub>(aq) crosses over that of Mg(OAc)<sub>2</sub>(aq), suggesting a strong ion pair formation resulting in more rigid structure with lesser compressibility in the former.

*Viscosity.* The measured viscosities  $(\eta)$  of aqueous solutions of Mg(OAc)<sub>2</sub> and Mg(NO<sub>3</sub>)<sub>2</sub> at different concentrations and temperatures are given in Table 3; isotherms are depicted in Figure 3. The present viscosities for Mg(NO<sub>3</sub>)<sub>2</sub>(aq) at 298.15 K are comparable to within  $\pm$  5 % with literature values.<sup>9,10</sup> For Mg(OAc)<sub>2</sub>(aq), no previous viscosity data to the best of



Figure 3. Variation of viscosity with concentration for aqueous solutions of Mg(OAc)<sub>2</sub> (open symbols) and Mg(NO<sub>3</sub>)<sub>2</sub> (solid symbols) at 298.15 K; ∇, ref 9; ♦, ref 10.



Figure 4. Variation of the present electrical conductivities with concentration for aqueous solutions of Mg(OAc)<sub>2</sub> (open triangles) and Mg(NO<sub>3</sub>)<sub>2</sub> (solid diamonds) at 298.15 K. Literature data: ∇, ref 11; ×, ref 12; ○, ref 13.

Table 5. Electrical Conductivities of Aqueous Solutions of Magnesium Acetate and Magnesium Nitrate as Functions of Concentration and Temperature

| Temper | rature                     |                                           |                                          |                                           |                                           |                                          |                                           |                            |
|--------|----------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------|
| T/K    |                            |                                           |                                          | κ/S•1                                     | $n^{-1}$                                  |                                          |                                           |                            |
|        |                            |                                           |                                          | Mg(OAc) <sub>2</sub> (a                   |                                           |                                          |                                           |                            |
|        |                            |                                           |                                          | 0.4247 mol·kg <sup>-1</sup>               |                                           |                                          | 1.106 mol·kg <sup>-1</sup>                | 1.354 mol·kg <sup>-1</sup> |
|        | 0.2574                     | 0.4452                                    | 0.7388                                   | 1.306                                     | 1.531                                     | 1.615                                    | 1.590                                     | 1.496                      |
|        | 0.3011                     | 0.5225                                    | 0.8632                                   | 1.532                                     | 1.810                                     | 1.914                                    | 1.899                                     | 1.801                      |
|        | 0.3482                     | 0.6030                                    | 0.9947                                   | 1.776                                     | 2.100                                     | 2.233                                    | 2.237                                     | 2.135                      |
|        | 0.3968                     | 0.6870                                    | 1.134                                    | 2.028                                     | 2.411                                     | 2.573                                    | 2.584                                     | 2.493                      |
|        | 0.4473                     | 0.7717                                    | 1.276                                    | 2.288                                     | 2.727                                     | 2.922                                    | 2.951                                     | 2.862                      |
|        | 0.5001                     | 0.8612                                    | 1.422                                    | 2.556                                     | 3.054                                     | 3.281                                    | 3.331                                     | 3.248                      |
|        | 0.5540                     | 0.9531                                    | 1.574                                    | 2.828                                     | 3.384                                     | 3.648                                    | 3.722                                     | 3.644                      |
|        | 0.6094                     | 1.047                                     | 1.727                                    | 3.103                                     | 3.724                                     | 4.025                                    | 4.114                                     | 4.050                      |
|        | 0.6656                     | 1.142                                     | 1.881                                    | 3.378                                     | 4.064                                     | 4.405                                    | 4.516                                     | 4.463                      |
|        | 0.7221                     | 1.235                                     | 2.036                                    | 3.652                                     | 4.406                                     | 4.779                                    | 4.919                                     | 4.887                      |
| 323.15 | 0.7785                     | 1.332                                     | 2.192                                    | 3.924                                     | 4.748                                     | 5.155                                    | 5.318                                     | 5.305                      |
|        | 1.608 mol•kg <sup>-1</sup> | 1.866 mol·kg <sup>-1</sup>                | $2.134 \text{ mol} \cdot \text{kg}^{-1}$ | 2.411 mol·kg <sup>-1</sup>                | $2.622 \text{ mol} \cdot \text{kg}^{-1}$  | $3.043 \text{ mol} \cdot \text{kg}^{-1}$ | $3.437 \text{ mol} \cdot \text{kg}^{-1}$  | 3.819 mol•kg <sup>-1</sup> |
| 273.15 |                            | 1.206                                     | 1.039                                    | 0.8363                                    | 0.7557                                    | 0.5375                                   | 0.3812                                    | 0.2662                     |
| 278.15 |                            | 1.485                                     | 1.293                                    | 1.053                                     | 0.9618                                    | 0.7035                                   | 0.5088                                    | 0.3637                     |
| 283.15 |                            | 1.787                                     | 1.582                                    | 1.306                                     | 1.200                                     | 0.8967                                   | 0.6629                                    | 0.4832                     |
| 288.15 |                            | 2.122                                     | 1.893                                    | 1.576                                     | 1.523                                     | 1.115                                    | 0.8466                                    | 0.6244                     |
| 293.15 | 2.710                      | 2.470                                     | 2.224                                    | 1.876                                     | 1.826                                     | 1.360                                    | 1.049                                     | 0.7878                     |
| 298.15 | 3.093                      | 2.836                                     | 2.579                                    | 2.199                                     | 2.061                                     | 1.630                                    | 1.262                                     | 0.9737                     |
| 303.15 | 3.493                      | 3.214                                     | 2.948                                    | 2.540                                     | 2.388                                     | 1.922                                    | 1.504                                     | 1.180                      |
| 308.15 | 3.900                      | 3.615                                     | 3.328                                    | 2.899                                     | 2.734                                     | 2.233                                    | 1.770                                     | 1.407                      |
| 313.15 | 4.315                      | 4.026                                     | 3.723                                    | 3.272                                     | 3.092                                     | 2.559                                    | 2.052                                     | 1.653                      |
| 318.15 |                            | 4.444                                     | 4.120                                    | 3.653                                     | 3.460                                     | 2.896                                    | 2.347                                     | 1.911                      |
| 323.15 |                            | 4.827                                     | 4.528                                    | 4.053                                     | 3.834                                     | 3.234                                    | 2.651                                     | 2.182                      |
|        | 4.547 mol·kg <sup>-1</sup> | 5.165 mol·kg <sup>-1</sup>                | 5.732 mol·kg <sup>-1</sup>               | 6.187 mol·kg <sup>-1</sup>                | 6.545 mol·kg <sup>-1</sup>                |                                          |                                           |                            |
| 273.15 | 0.1317                     | 0.0601                                    | 8                                        |                                           | 8                                         |                                          |                                           |                            |
|        | 0.1881                     | 0.0925                                    |                                          |                                           |                                           |                                          |                                           |                            |
|        | 0.2639                     | 0.1364                                    |                                          |                                           |                                           |                                          |                                           |                            |
|        | 0.3547                     | 0.1930                                    | 0.1089                                   |                                           |                                           |                                          |                                           |                            |
|        | 0.4634                     | 0.2648                                    | 0.1547                                   |                                           |                                           |                                          |                                           |                            |
|        | 0.5891                     | 0.3528                                    | 0.2126                                   |                                           |                                           |                                          |                                           |                            |
|        | 0.7353                     | 0.4571                                    | 0.2822                                   | 0.1846                                    |                                           |                                          |                                           |                            |
|        | 0.9039                     | 0.5801                                    | 0.3672                                   | 0.2472                                    |                                           |                                          |                                           |                            |
| 313.15 |                            | 0.7180                                    | 0.4677                                   | 0.3223                                    |                                           |                                          |                                           |                            |
| 318.15 |                            | 0.8715                                    | 0.5803                                   | 0.4094                                    |                                           |                                          |                                           |                            |
|        |                            |                                           |                                          |                                           | 0.4031                                    |                                          |                                           |                            |
| 323.15 | 1.303                      | 1.036                                     | 0.7088                                   | 0.5105                                    | 0.4051                                    |                                          |                                           |                            |
|        |                            |                                           |                                          | $Mg(NO_3)_2(a$                            |                                           |                                          |                                           |                            |
|        |                            | $0.0528 \text{ mol} \cdot \text{kg}^{-1}$ | 0.2491 mol·kg <sup>-1</sup>              | $0.3405 \text{ mol} \cdot \text{kg}^{-1}$ | $0.6173 \text{ mol} \cdot \text{kg}^{-1}$ | 0.8960 mol·kg <sup>-1</sup>              | $0.9898 \text{ mol} \cdot \text{kg}^{-1}$ | 1.262 mol·kg <sup>-1</sup> |
| 273.15 | 0.1698                     | 0.5571                                    | 2.109                                    | 2.731                                     | 4.159                                     | 5.437                                    | 5.788                                     | 6.413                      |
| 278.15 | 0.1954                     | 0.6397                                    | 2.405                                    | 3.109                                     | 4.721                                     | 6.150                                    | 6.542                                     | 7.238                      |
| 283.15 | 0.2216                     | 0.7260                                    | 2.713                                    | 3.498                                     | 5.298                                     | 6.884                                    | 7.321                                     | 8.096                      |
| 288.15 | 0.2491                     | 0.8146                                    | 3.028                                    | 3.897                                     | 5.907                                     | 7.641                                    | 8.115                                     | 8.964                      |
| 293.15 | 0.2779                     | 0.9062                                    | 3.358                                    | 4.285                                     | 6.500                                     | 8.421                                    | 8.942                                     | 9.864                      |
| 298.15 | 0.3078                     | 1.001                                     | 3.700                                    | 4.710                                     | 7.134                                     | 9.221                                    | 9.783                                     | 10.78                      |
| 303.15 | 0.3386                     | 1.098                                     | 4.045                                    | 5.140                                     | 7.765                                     | 10.02                                    | 10.63                                     | 11.70                      |
| 308.15 | 0.3699                     | 1.197                                     | 4.391                                    | 5.576                                     | 8.409                                     | 10.82                                    | 11.49                                     | 12.63                      |
|        | 0.4019                     | 1.297                                     | 4.748                                    | 6.017                                     | 9.056                                     | 11.66                                    | 12.36                                     | 14.55                      |
|        | 0.4343                     | 1.398                                     | 5.102                                    | 6.463                                     | 9.702                                     | 12.46                                    | 13.21                                     | 14.47                      |
|        | 0.4666                     | 1.496                                     | 5.448                                    | 6.915                                     | 10.33                                     | 13.25                                    | 14.04                                     | 15.45                      |
|        | 1.525 mol·kg <sup>-1</sup> | 1.694mol•kg <sup>-1</sup>                 | 1.827 mol·kg <sup>-1</sup>               | 2.131 mol·kg <sup>-1</sup>                | 2.493 mol·kg <sup>-1</sup>                | 2.793 mol·kg <sup>-1</sup>               | 3.118 mol·kg <sup>-1</sup>                |                            |
| 273.15 |                            | 7.195                                     | 7.549                                    | 7.734                                     | 7.767                                     | 7.599                                    | 7.280                                     | 7.242                      |
| 278.15 |                            | 8.126                                     | 8.434                                    | 8.733                                     | 8.794                                     | 8.625                                    | 8.293                                     | 8.257                      |
| 283.15 |                            | 9.085                                     | 9.438                                    | 9.762                                     | 9.852                                     | 9.681                                    | 9.339                                     | 9.301                      |
| 288.15 |                            | 10.07                                     | 10.46                                    | 10.81                                     | 10.95                                     | 10.78                                    | 10.41                                     | 10.40                      |
| 293.15 |                            | 11.07                                     | 11.49                                    | 11.89                                     | 12.06                                     | 11.90                                    | 11.51                                     | 11.53                      |
| 298.15 |                            | 12.14                                     | 12.55                                    | 12.99                                     | 13.19                                     | 13.04                                    | 12.66                                     | 12.67                      |
| 303.15 |                            | 13.13                                     | 13.64                                    | 14.10                                     | 14.34                                     | 14.34                                    | 13.80                                     | 13.84                      |
| 308.15 |                            | 14.17                                     | 14.69                                    | 15.22                                     | 15.49                                     | 15.34                                    | 14.94                                     | 14.99                      |
| 313.15 |                            | 15.21                                     | 15.76                                    | 16.33                                     | 16.62                                     | 16.49                                    | 16.09                                     | 16.17                      |
| 318.15 |                            | 16.29                                     |                                          | 17.44                                     | 17.78                                     | 17.64                                    | 17.24                                     |                            |
|        |                            | 16.29<br>17.61                            | 16.83<br>17.89                           | 18.58                                     | 18.88                                     | 17.64                                    | 18.36                                     | 17.33<br>18.44             |
| 323.15 | 3.501 mol·kg <sup>-1</sup> | 3.757 mol·kg <sup>-1</sup>                | 4.051 mol·kg <sup>-1</sup>               | 4.285 mol·kg <sup>-1</sup>                | 4.403 mol·kg <sup>-1</sup>                | 4.883 mol·kg <sup>-1</sup>               | 5.134 mol·kg <sup>-1</sup>                |                            |
| 272 15 |                            | -                                         | _                                        |                                           | _                                         |                                          | J.13+ morkg 1                             | 5.352 mol·kg <sup>-1</sup> |
| 273.15 |                            | 6.435                                     | 6.131                                    | 5.576                                     | 5.399                                     | 4.737                                    |                                           |                            |
| 278.15 |                            | 7.386                                     | 7.054                                    | 6.443                                     | 6.222                                     | 5.524                                    |                                           |                            |
| 283.15 |                            | 8.372                                     | 8.026                                    | 7.347                                     | 7.093                                     | 6.358                                    | 6.621                                     |                            |
| 288.15 |                            | 9.382                                     | 9.028                                    | 8.290                                     | 8.001                                     | 7.225                                    | 6.621                                     |                            |
| 293.15 |                            | 10.44                                     | 10.06                                    | 9.277                                     | 8.933                                     | 8.133                                    | 7.482                                     | = 0=0                      |
| 298.15 |                            | 11.52                                     | 11.13                                    | 10.28                                     | 9.898                                     | 9.066                                    | 8.376                                     | 7.970                      |
| 303.15 |                            | 12.61                                     | 12.20                                    | 11.30                                     | 10.87                                     | 10.02                                    | 9.283                                     | 8.848                      |
| 308.15 |                            | 13.70                                     | 13.27                                    | 12.33                                     | 11.87                                     | 10.99                                    | 10.20                                     | 9.740                      |
| 313.15 |                            | 14.81                                     | 14.37                                    | 13.37                                     | 12.87                                     | 11.98                                    | 11.13                                     | 10.65                      |
| 318.15 |                            | 15.90                                     | 15.45                                    | 14.43                                     | 13.87                                     | 12.99                                    | 12.07                                     | 11.57                      |
| 323.15 |                            | 16.97                                     | 16.50                                    | 15.47                                     | 15.07                                     | 13.91                                    | 12.99                                     | 12.47                      |
|        |                            |                                           |                                          |                                           |                                           |                                          |                                           |                            |

Table 6. Least-Squares Fitted Values of the Parameters of Equation 3 for Mg(OAc)2(aq) and Mg(NO3)2(aq) at Different Temperatures

| T/K             | $\kappa_{\rm max}/{ m S} \cdot { m m}^{-1}$ | $\mu/\mathrm{mol}\cdot\mathrm{kg}^{-1}$ | а                 | $10^{-3}b/\mathrm{kg}^2\cdot\mathrm{mol}^{-2}$ | SD in κ |  |  |  |  |  |
|-----------------|---------------------------------------------|-----------------------------------------|-------------------|------------------------------------------------|---------|--|--|--|--|--|
| $Mg(OAc)_2(aq)$ |                                             |                                         |                   |                                                |         |  |  |  |  |  |
| 273.15          | $1.616 \pm 0.004$                           | $0.935 \pm 0.005$                       | $0.832 \pm 0.010$ | $-0.048 \pm 0.004$                             | 0.009   |  |  |  |  |  |
| 298.15          | $3.344 \pm 0.009$                           | $1.078 \pm 0.006$                       | $0.811 \pm 0.011$ | $-0.025 \pm 0.003$                             | 0.021   |  |  |  |  |  |
| 323.15          | $5.351 \pm 0.012$                           | $1.199 \pm 0.006$                       | $0.786 \pm 0.009$ | $-0.012 \pm 0.002$                             | 0.029   |  |  |  |  |  |
|                 |                                             | Mg(N                                    | $IO_3)_2(aq)$     |                                                |         |  |  |  |  |  |
| 273.15          | $7.730 \pm 0.025$                           | $2.347 \pm 0.015$                       | $0.857 \pm 0.025$ | $-0.032 \pm 0.025$                             | 0.066   |  |  |  |  |  |
| 298.15          | $13.10 \pm 0.040$                           | $2.454 \pm 0.017$                       | $0.840 \pm 0.022$ | $-0.021 \pm 0.002$                             | 0.112   |  |  |  |  |  |
| 323.15          | $18.84 \pm 0.05$                            | $2.513 \pm 0.015$                       | $0.835 \pm 0.017$ | $-0.014 \pm 0.002$                             | 0.130   |  |  |  |  |  |

our knowledge have been reported in wide concentration and temperature ranges.

Horvath<sup>21</sup> has reviewed the available theoretical and empirical equations for describing viscosity isotherms of electrolyte solutions. A semiempirical equation

$$\eta = a_0 \exp(b_0 m + c_0 m^2) \tag{2}$$

where  $a_0$ ,  $b_0$ , and  $c_0$  are adjustable temperature-dependent parameters has been shown to be useful over wide concentration ranges, 10,21-23

It is apparent from Table 4 and Figure 3 that eq 2 adequately fits the viscosity data of Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq). The value of  $a_0$  corresponds to the viscosity at infinite dilution but is  $\sim 1.0$  to 5.0 % higher than that of pure water at the corresponding temperature due to the extrapolation from higher concentrations. The noteworthy point is the higher value ( $\sim$ 2 to 4 times) of  $b_0$  for Mg(OAc)<sub>2</sub>(aq) compared with Mg(NO<sub>3</sub>)<sub>2</sub>-(aq) over the temperature range studied. This probably reflects the higher ion-solvent interactions in the former. It has been shown<sup>22</sup> that the product of  $a_0$  and  $b_0$  yields the Jones-Dole viscosity B-coefficient. For Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq), the present results give 0.74 and 0.28, respectively, at 298.15 K, which are roughly comparable ( $\sim$ 18 % deviation) with the reported values.<sup>24</sup> In Mg(OAc)<sub>2</sub>(aq),  $b_0$  decreases with increasing temperature. This trend is the reverse in Mg(NO<sub>3</sub>)<sub>2</sub>(aq), again reflecting, most probably, the difference in ion associations or ion clusters formation in the two aqueous systems.<sup>15</sup>

Electrical Conductivity. The measured values of the electrical conductivity ( $\kappa$ ) of Mg(OAc)<sub>2</sub>(aq) and Mg(NO<sub>3</sub>)<sub>2</sub>(aq) are tabulated in Table 5. The present values are  $\sim$ 3 to 6  $\%^{11}$  and  $\sim$ 16 %, <sup>12,13</sup> respectively, lower or higher than the literature values at 298.15 K. The sources of these discrepancies are not known. The present results employing four-terminal connections and a higher quality bridge should be more reliable.

Theoretical and empirical expressions for describing electrical conductivities over wide concentration ranges are limited. 7,13,25 The Casteel—Amis equation<sup>26,27</sup>

$$\kappa = \kappa_{\text{max}} (m/\mu)^a \exp[b(m-\mu)^2 - a(m-\mu)/\mu]$$
 (3)

where  $\mu$  is the concentration corresponding to the maximum conductivity  $\kappa_{\text{max}}$  at a given temperature, a and b are empirical parameters, and m is concentration in mol·kg $^{-1}$  has been widely used. The least-squares fitted values of the parameters of eq 3 are summarized in Table 6.

From Figure 4, it is apparent that the variations of the conductivity isotherms with concentration for the two systems are quite different. The lower  $\kappa$  for Mg(OAc)<sub>2</sub>(aq) reflects the greater association of Mg2+ with OAc- than with NO3- as discussed elsewhere.15

#### Acknowledgment

A.W. and S.M. are grateful to the Director, Regional Research Laboratory, Jorhat, India, for interest in this work.

#### **Literature Cited**

- (1) Marcus, Y. Ion Solvation; John Wiley & Sons: Chichester, U.K., 1985.
- Lippard, S. J. Bioinorganic chemistry: a maturing frontier. Science **1993**, 261, 699-700.
- Lide, D. R., Ed. Handbook of Chemistry and Physics, 76th ed.; CRC Press: Boca Raton, FL, 1995; p XIV-11.
- (4) Berthelin, J. Microbial process occurring in hydromorphic soils of temperate region. Effect of pedogenesis. Pedol., Gand 1982, 32, 313-
- (5) Semmler, J.; Irish, D. E.; Oseki, T. Vibrational spectra studies of solutions at elevated temperature and pressure. 12. Magnesium acetate. Geochim. Cosmochim. Acta 1990, 54, 947-953.
- (6) Oum, K. W.; Lakin, M. J.; Dehaan, D. O.; Brauers, T.; Finlayson-Pitts, B. J. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998, 279, 74-76.
- (7) Smedley, S. I. Interpretation of Ionic Conductivity in Liquids; Plenum: New York, 1980.
- (8) Emara, M. M.; Farid, N. A. Thermodynamic molar properties of aqueous solutions of Ca and Mg salts using sound velocity measurements. J. Indian Chem. Soc. 1981, 58, 474-478.
- Doan, T. H.; Sangster, J. Viscosities of concentrated aqueous solutions of some 1:1, 2:1, and 3:1 nitrates at 25 °C. J. Chem. Eng. Data 1981, 26, 141-144.
- (10) Mahiuddin, S.; Ismail, K. Temperature and concentration dependence of viscosity of Mg(NO<sub>3</sub>)<sub>2</sub>-H<sub>2</sub>O systems. Can. J. Chem. 1982, 60, 2883 - 2888.
- (11) Washburn, E. W., Ed. International Critical Tables of Numerical Data, Physics, Chemistry and Technology; McGraw-Hill: New York, 1928; Vol. VI, p 254.
- (12) Washburn, E. W., Ed. International Critical Tables of Numerical Data. Physics, Chemistry and Technology; McGraw-Hill: New York, 1928; Vol. VI, p 238.
- (13) Mahiuddin, S.; Ismail, K. Study of the concentration dependence of the conductance of aqueous electrolytes. J. Phys. Chem. 1984, 88, 1027 - 1031
- (14) Behrends, R.; Miecznik, P.; Kaatze, U. Ion-complex formation in aqueous solutions of calcium nitrate. Acoustical absorption spectrometry study. J. Phys. Chem. A 2002, 106, 6039-6043.
- Wahab, A.; Mahiuddin, S.; Hefter, G.; Kunz, W.; Minofer, B.; Jungwirth, P. Ultrasonic velocities, densities, viscosities, electrical conductivities, raman spectra, and molecular dynamics simulations of aqueous solutions of Mg(OAc)2 and Mg(NO3)2: Hofmeister effect and ion pair formation. J. Phys. Chem. B 2005, 109, 24108-24120.
- (16) Vogel, A. I. Textbook of Quantitative Inorganic Analysis, 4th ed.; ELBS; Longman: U.K., 1985; p 316.
- Wu, Y. C.; Koch, W. F.; Pratt, K. W. Proposed new electrolytic conductivity primary standard for KCl solutions. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 191-201.
- (18) Millero, F. J.; Marino, F.; Vinokurova, F. Transition in speed of sound in concentrated electrolyte solutions. J. Phys. Chem. 1985, 89, 1062-
- (19) Rohman, N.; Wahab, A.; Mahiuddin, S. Isentropic compressibility, shear relaxation time, and Raman spectra of aqueous calcium nitrate and cadmium nitrate solutions. J. Solution Chem. 2005, 34, 77-94.
- (20) Millero, F. J.; Ricco, J.; Schreiber, D. R. PVT properties of concentrated aqueous electrolytes. II. Compressibilities and apparent molar compressibilities of aqueous NaCl, Na<sub>2</sub>SO<sub>4</sub>, MgCl<sub>2</sub>, and MgSO<sub>4</sub> from dilute solution to saturation and from 0 to 50 °C. J. Solution Chem. 1982, 11, 671-686.
- (21) Horvath, A. L. Handbook of Aqueous Electrolyte Solutions; Ellis Horwood: Chichester, 1985.

- (22) Mahiuddin, S.; Ismail, K. Concentration dependence of the viscosity of aqueous electrolytes. A probe into higher concentration. *J. Phys. Chem.* **1983**, *87*, 5241–5244.
- (23) Hefter, G.; May, P. M.; Sipos, P.; Stanley, A. Viscosity of concentrated electrolyte solutions. *J. Mol. Liq.* 2003, 103/104, 261.
  (24) Jenkins, H. D. B.; Marcus, Y. Viscosity *B*-coefficients of ions in solution. *Chem. Rev.* 1995, 95, 2695–2724.
- (25) Barthel, J.; Neuder, R. Electrolyte Data Collection. Part I: Conductivities, Tranference Numbers and Limiting Ionic Conductivities; DECHEMA: Frankfurt am Main, 1992.
- (26) Casteel, J. F.; Amis, E. S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system. J. Chem. Eng. Data 1972, 17, 55-59.

(27) Ding, M. S. Casteel-Amis equation: its extension from univariate to multivariate and its use as a two-parameter function. J. Chem. Eng. Data 2004, 49, 1469-1475 and references therein.

Received for review March 8, 2006. Accepted June 3, 2006. A.W. appreciates the Council of Scientific and Industrial Research, New Delhi, India, for the award of senior research fellowship.

JE060107N