

Profesores: Graeme Candlish, J. R. Villanueva

Semestre I 2023

Métodos Matemáticos para la Física II (LFIS 311)

Licenciatura en Física

Nombre:	RUT:				
Prueba 1: P1:	P2:	P3:	P4:	NF:	

1. (a) La teoría de Planck para osciladores cuantizados lleva a una energía media

$$\langle \epsilon \rangle = \frac{\sum_{n=1}^{\infty} n \epsilon_0 \exp(-n \epsilon_0 / kT)}{\sum_{n=0}^{\infty} \exp(-n \epsilon_0 / kT)}$$

donde ϵ_0 es una energía fija. Identifique el numerador y el denominador como una expansión binomial y muestre que la razón es

$$\langle \epsilon \rangle = \frac{\epsilon_0}{\exp(\epsilon_0/kT) - 1}.$$

- (b) Muestre que la energía media $\langle \epsilon \rangle$ se reduce a kT, el resultado clásico, para $kT \gg \epsilon_0$.
- 2. Una descripción de las partículas de spin 1 usa las matrices

$$M_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad M_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad M_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Muestre que

(a) $[M_x, M_y] = iM_z$, etcétera (permutación cíclica de índices). Usando el símbolo de Levi-Cevita, podemos escribir

$$[M_i, M_j] = i \sum_k \varepsilon_{ijk} M_k.$$

- (b) $M^2 \equiv M_x^2 + M_y^2 + M_z^2 = 2 \mathbf{1}_3$, donde $\mathbf{1}_3$ es la matriz unidad 3×3 .
- (c) $[M^2, M_i] = 0$, $[M_z, L^+] = L^+$, $[L^+, L^-] = 2M_z$, donde $L^+ \equiv M_x + iM_y$, y $L^- \equiv M_x - iM_y$.
- 3. El campo eléctrico \vec{E} satisface $\vec{E} = -\vec{\nabla}\varphi$ y $\vec{\nabla}\cdot\vec{E} = \rho/\epsilon_0$. Se puede suponer que el potencial escalar φ tiende a cero para r grande al menos tán rápido como r^{-1} . Muestre que, para una integración sobre todo el espacio:

$$\int \rho \varphi d\tau = \epsilon_0 \int E^2 d\tau$$

•

- 4. Para la transformación $u=x+y,\ v=x/y,$ con $x\geq 0,\ y>0,$ encuentre el jacobiano $\partial(x,y)/\partial(u,v)$
 - (a) Por computación directa.
 - (b) Primero calculando J^{-1} .