

Sequence Processing

Moritz Wolter

September 25, 2022

Uni Bonn

Overview

Recurrent neural networks

Applications

Motivation

- Thus far we have never integrated information over time.
- We want the ability to create internal memory.
- Consider the sentence: I live in Paris. I speak ...
- ... French.
- Clearly it is likely for someone in Paris to speak French.
- Memory should help networks taking Paris into account when deciding what language is spoken.

Recurrent neural networks

Elman-recurrent neural networks

A simple solution is to add a state to the network and feed this state recurrently back into the network [EIm90],

$$\overline{\mathbf{h}_t} = \mathbf{W}_h \mathbf{h}_t + \mathbf{W}_x \mathbf{x}_t + \mathbf{b}, \tag{1}$$

$$\mathbf{h}_{t+1} = f(\overline{\mathbf{h}_t}). \tag{2}$$

Elman-recurrent neural networks

Unrolling in Time

Figure: The rolled (left) cell can be unrolled (right) by considering all inputs it saw during the current gradient computation iteration.

Stability of recurrent connections

For an intuition. Consider a linear network without activations or inputs.

$$\mathbf{h}_{t+1} = \mathbf{W}_h \mathbf{h}_t \tag{3}$$

The evolution of the h-sequence is guided by it's largest eigenvalue. If an eigenvalue larger than one exists. The state explodes. If all eigenvalues are smaller than one the state vanishes [GBC16].

Long Short Term Memory (LSTM)

 $[\mathsf{Gre}{+}16]$

Long Short Term Memory (LSTM)

[Gre+16]

Gated recurrent units

Orthogonal networks

Summary

Applications

Language Processing

Speech Processing

Time-series forecasting

Conclusion

Literature

References

- [Elm90] Jeffrey L Elman. "Finding structure in time." In: Cognitive science 14.2 (1990), pp. 179–211.
- [GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
- [Gre+16] Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
 Bas R Steunebrink, and Jürgen Schmidhuber. "LSTM:
 A search space odyssey." In: IEEE transactions on
 neural networks and learning systems 28.10 (2016),
 pp. 2222–2232.