Extending the Naturals

1.1 Rational Numbers

Definition 1.1. The rational numbers is the set of numbers of the form $\frac{p}{q}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$.

Rational numbers are the first number system that provides a nice comprehensive structure. Multiplication, division, addition, and subtraction are all closed operations making it a strong number system.

Theorem 1.1 (Rational Root Theorem). Let $c_0, c_1, \ldots, c_n \in \mathbb{Z}$. If r solves $c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 = 0$ and $r = \frac{p}{q}$ where p and q are coprime

$$p|c_0, q|c_n$$

Proof. Let r be a rational solution to the polynomial equation $c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 = 0$. Since $r \in \mathbb{Q}$, $r = \frac{p}{q}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Then

$$c_{n} \left(\frac{p}{q}\right)^{n} + c_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + c_{1} \left(\frac{p}{q}\right) + c_{0} = 0$$

$$c_{n} p^{n} + c_{n-1} q p^{n-1} + \dots + c_{1} q^{n-1} p + c_{0} q^{n} = 0$$

$$-c_{n} p^{n} - c_{n-1} q p^{n-1} - \dots - c_{1} q^{n-1} p = c_{0} q^{n}$$

$$-p \left[c_{n} p^{n-1} - c_{n-1} q p^{n-2} - \dots - c_{1} q^{n-1}\right] = c_{0} q^{n}$$

Therefore $p|c_0q^n$. Since p and q are coprime, p must divide c_0 . By solving for c_np^n instead, it follows that q divides c_n .

While rationals are quite nice, there are many equations that have solutions that cannot be represented by a rational number.

Example 1.1 ($\sqrt{2}$). Consider the equation $x^2 - 2$. Its solutions by the Rational Root Theorem must be an integer. However no integer satisfies the equation and therefore there is no rational root for $x^2 - 2$.

1.2 Algebraic Numbers

Definition 1.2 (Algebraic Number). A number is called algebraic if it is the root of an integer coeffecient polynomial. That is, it is a solution to

$$c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0 = 0$$

where $c_i \in \mathbb{Z}$, $c_i \neq 0$ and $n \geq 1$.

Many numbers that are used day to day are algebraic. It follows clearly that all integers

are algebraic and all rationals are algebraic. Other numbers such as the $\sqrt{2}$ are algebraic. Even the number $\sqrt{2} + \sqrt[3]{5}$ is algebraic. However, there are infinitely many other numbers that are not algebraic such as π and e.

Real Numbers

As seen above, both the rationals and algebraic numbers can be very useful but fail to encapsulate important types of numbers. That is, both $\mathbb Q$ and the algebraic numbers have gaps in them, that is the irrationals for $\mathbb Q$ and transcendtals for algebraic numbers.

1.2.1 Ordering Structure

Definition 1.3 (Ordered Field). We say a field with a relation $(\mathbb{F}, +, \cdot, \leq)$ is an ordered field if it satisfies the following properties:

- 1. $p \leq q$ or $q \leq p$ for all $p, q \in \mathbb{F}$
- 2. $p \le q$ and $q \le p \implies p = q$
- 3. $p \le q$ and $q \le r \implies p \le r$
- 4. $p \le q \implies p + r \le q + r$
- 5. $p \leq q \implies pr \leq qr \text{ for all } r \in \mathbb{F} \geq 0$

Certain properties are derivable from the properties and ordering of \mathbb{R} .

Theorem 1.2 (Properties of \mathbb{R}). For all $p, q, r \in \mathbb{R}$

- $\textbf{1.} \ \ p+r=q+r \implies p=q$
- **2.** $p \cdot 0 = 0 = 0 \cdot p$
- 3. (-p)q = -(pq)
- $4. \ (-p)(-q) = pq$
- 5. $pr = qr \implies p = q \text{ if } r \neq 0$
- 6. $pq = 0 \implies p = 0 \text{ or } q = 0$