Initialize critic networks Q_{θ_1} , Q_{θ_2} , and actor network π_{ϕ} with random parameters θ_1 , θ_2 , ϕ Initialize target networks $\theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi$

Algorithm 1 TD3

end for

Initialize replay buffer \mathcal{B} for t = 1 to T do

Select action with exploration noise
$$a \sim \pi_{\phi}(s) + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s' Store transition tuple (s, a, r, s') in \mathcal{B}

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}

Sample mini-batch of
$$N$$
 transitions (s, a, r, s') from $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon$, $\epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$
 $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$

Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$

if $t \bmod d$ then Update ϕ by the deterministic policy gradient:

if
$$t \mod d$$
 then

Update ϕ by the deterministic policy gradient:

$$\nabla_{\phi} J(\phi) = N^{-1} \sum_{\alpha} \nabla_{\alpha} Q_{\theta_{1}}(s, \alpha)|_{a=\pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$$
Update target networks:

Update target networks:

$$\nabla_{\phi} J(\phi) = N^{-1} \sum_{a} \nabla_{a} Q_{\theta_{1}}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$$
Update target networks:
$$\theta' \leftarrow \tau \theta_{s} + (1 - \tau)\theta'$$

 $\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$

 $\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$

end if