

RMLV3216A Series

32Mb Advanced LPSRAM (2M word × 16bit / 4M word x 8bit)

R10DS0277EJ0100 Rev.1.00 2018.12.26

Description

The RMLV3216A Series is a family of 32-Mbit static RAMs organized 2,097,152-word \times 16-bit, fabricated by Renesas's high-performance Advanced LPSRAM technologies. The RMLV3216A Series has realized higher density, higher performance and low power consumption. The RMLV3216A Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is offered in 48pin TSOP (I), 52pin μ TSOP (II) or 48-ball fine pitch ball grid array.

Features

Single 3V supply: 2.7V to 3.6V
Access time: 55ns (max.)
Current consumption:

— Standby: 0.6μA (typ.)
Common data input and output

Three state outputDirectly TTL compatibleAll inputs and outputs

• Battery backup operation

Part Name Information

Part Name	Access time	Temperature Range	Package
RMLV3216AGSA-5S2			12mm x 20mm 48pin plastic TSOP (I)
RMLV3216AGSD-5S2	55 ns	-40 ~ +85°C	10.79mm × 10.49mm 52pin plastic μTSOP (II)
RMLV3216AGBG-5S2			48-ball FBGA with 0.75mm ball pitch

Pin Arrangement

Pin Description

Pin name	Function
Vcc	Power supply
Vss	Ground
A0 to A20	Address input (word mode)
A-1 to A20	Address input (byte mode)
DQ0 to DQ15	Data input/output
CS1#	Chip select 1
CS2	Chip select 2
OE#	Output enable
WE#	Write enable
LB#	Lower byte select
UB#	Upper byte select
BYTE#	Byte control mode enable
NC	No connection

Block Diagram

Note 1. BYTE# pin supported by only 48pin TSOP (I) and 52pin μTSOP (II) types.

Operation Table

CS1#	CS2	BYTE#	UB#	LB#	WE#	OE#	DQ0~7	DQ8~14	DQ15	Operation
Н	Χ	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	L	Х	Х	X	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	Χ	Н	Н	Н	Х	Х	High-Z	High-Z	High-Z	Stand-by
L	Н	Н	Н	L	L	Х	Din	High-Z	High-Z	Write in lower byte
L	Н	Н	Н	L	Н	L	Dout	High-Z	High-Z	Read in lower byte
L	Н	Н	Н	L	Н	Н	High-Z	High-Z	High-Z	Output disable
L	Н	Н	L	Н	L	Х	High-Z	Din	Din	Write in upper byte
L	Н	Н	L	Η	Н	L	High-Z	Dout	Dout	Read in upper byte
L	Н	Н	L	Н	Н	Н	High-Z	High-Z	High-Z	Output disable
L	Н	Н	L	L	L	Χ	Din	Din	Din	Word write
L	Н	Н	L	L	Н	L	Dout	Dout	Dout	Word read
L	Н	Н	L	L	Н	Н	High-Z	High-Z	High-Z	Output disable
L	Н	L	X	Х	L	X	Din	High-Z	A-1	Byte write
L	Н	Ĺ	Х	X	Н	L	Dout	High-Z	A-1	Byte read
L	Н	Ĺ	Х	X	Н	Н	High-Z	High-Z	A-1	Output disable

Note 2. H: V_{IH} L: V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to V _{SS}	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relative to V _{SS}	V _T	-0.5*4 to V _{CC} +0.3*5	V
Power dissipation	P _T	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to +150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 4. -2.0V for pulse ≤ 30 ns (full width at half maximum)

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	2.7	3.0	3.6	V	
	Vss	0	0	0	V	
Input high voltage	V _{IH}	2.2	_	Vcc+0.3	V	
Input low voltage	VIL	-0.3	_	0.6	V	6
Ambient temperature range	Та	-40	_	+85	°C	

Note 6. -2.0V for pulse ≤ 30 ns (full width at half maximum)

^{3.} BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. 48-ball FBGA type equals BYTE#=H mode.

^{5.} Maximum voltage is +4.6V.

DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions*7	
Input leakage current		-	_	1	μΑ	Vin = Vss	s to Vcc	
Output leakage current	Lo	Ι	_	1	μΑ	$ \begin{split} &CS1\# = V_{IH} \text{ or } CS2 = V_{IL} \text{ or } OE\# = V_{IH} \\ &\text{ or } WE\# = V_{IL} \text{ or } LB\# = UB\# = V_{IH}, \\ &V_{I/O} = V_{SS} \text{ to } V_{CC} \end{split} $		
Average operating current	Icc1	ı	27 ^{*8}	35	mA	Cycle = 55ns, duty =100%, $I_{I/O}$ = 0mA, CS1# = V _{IL} , CS2 = V _{IH} , Others = V _{IH} /V _{IL} Cycle = 1 μ s, duty =100%, $I_{I/O}$ = 0mA, CS1# \leq 0.2V, CS2 \geq V _{CC} -0.2V, V _{IH} \geq V _{CC} -0.2V, V _{IL} \leq 0.2V		
	lcc2	ı	2 ^{*8}	4	mA			
Standby current	I _{SB}	ı	0.1*8	0.3	mΑ	CS2 = V _{IL} , Others = V _{SS} to V _{CC}		
Standby current		_	0.6*8	4	μΑ	~+25°C	Vin = V _{SS} to V _{CC} , (1) CS2 ≤ 0.2V or	
	I _{SB1}	_	1 ^{*9}	6	μА	~+40°C	(1) CS2 ≤ 0.2V or (2) CS1# ≥ Vcc-0.2V, CS2 ≥ Vcc-0.2V or	
	ISB1	_	4 *10	17	μА	~+70°C	(3) LB# = UB# ≥ V _{CC} -0.2V,	
		_	8 ^{*11}	24	μΑ	~+85°C	CS1# ≤ 0.2V, CS2 ≥ V _{CC} -0.2V	
Output high voltage	Vон	2.4	_	ı	٧	I _{OH} = -1m	nA	
Output low voltage	Vol	_	_	0.4	٧	I _{OL} = 2mA	4	

- Note 7. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc 0.2V or BYTE# \leq 0.2V
 - 8. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.
 - 9. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=40°C), and not 100% tested.
 - 10. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=70°C), and not 100% tested.
 - 11. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=85°C), and not 100% tested.

Capacitance

(Ta =25°C, f =1MHz)

						,	. ,
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	_	_	10	pF	Vin =0V	12
Input / output capacitance	C 1/0	_	_	10	pF	V _{I/O} =0V	12

Note 12. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc = $2.7V \sim 3.6V$, Ta = $-40 \sim +85$ °C)

• Input pulse levels:

$$V_{IL} = 0.4V, V_{IH} = 2.4V$$

• Input rise and fall time: 5ns

• Input and output timing reference level: 1.4V

• Output load: See figures (Including scope and jig)

Read Cycle

Parameter	Symbol	Symbol Min.		Unit	Note
Read cycle time	t _{RC}	55		ns	
Address access time	taa	_	55	ns	
Chin calcut acceptions	t _{ACS1}	_	45	ns	
Chip select access time	t _{ACS2}	_	45	ns	
Output enable to output valid	toe	_	22	ns	
Output hold from address change	tон	10	_	ns	
LB#, UB# access time	t _{BA}	_	45	ns	
Object to the substitution law 7	t _{CLZ1}	10	_	ns	13,14
Chip select to output in low-Z	t _{CLZ2}	10	_	ns	13,14
LB#, UB# enable to low-Z	t _{BLZ}	5	_	ns	13,14
Output enable to output in low-Z	toLz	5	_	ns	13,14
Object of the section of the latest T	t _{CHZ1}	0	18	ns	13,14,15
Chip deselect to output in high-Z	t _{CHZ2}	0	18	ns	13,14,15
LB#, UB# disable to high-Z	tвнz	0	18	ns	13,14,15
Output disable to output in high-Z	tонz	0	18	ns	13,14,15

Note 13. This parameter is sampled and not 100% tested.

- At any given temperature and voltage condition, t_{CHZ1} max is less than t_{CLZ1} min, t_{CHZ2} max is less than t_{CLZ2} min, t_{BHZ} max is less than t_{CLZ2} min, and t_{OHZ} max is less than t_{CLZ2} min, for any device.
- 15. t_{CHZ1}, t_{CHZ2}, t_{BHZ} and t_{OHZ} are defined as the time when the DQ pins enter a high-impedance state and are not referred to the DQ levels.

Write Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Write cycle time	twc	55	_	ns	
Address valid to write end	t _{AW}	35	_	ns	
Chip select to write end	tcw	35	_	ns	
Write pulse width	twp	35	_	ns	16
LB#,UB# valid to write end	t _{BW}	35	_	ns	
Address setup time to write start	tas	0	_	ns	
Write recovery time from write end	twR	0	_	ns	
Data to write time overlap	t _{DW}	25	_	ns	
Data hold from write end	t _{DH}	0	_	ns	
Output enable from write end	tow	5	_	ns	17
Output disable to output in high-Z	tонz	0	18	ns	17,18
Write to output in high-Z	twnz	0	18	ns	17,18

Note 16. twp is the interval between write start and write end.

A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active. A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.

A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive.

- 17. This parameter is sampled and not 100% tested.
- 18. t_{OHZ} and t_{WHZ} are defined as the time when the DQ pins enter a high-impedance state and are not referred to the DQ levels.

BYTE# Timing Conditions (BYTE# pin supported by only 48pin TSOP (I) and 52pin μTSOP (II) types)

Parameter	Symbol	Min.	Max.	Unit	Note
Byte setup time	t _{BS}	5	-	ms	
Byte recovery time	t _{BR}	5	-	ms	

BYTE# Timing Waveforms

Timing Waveforms

Read Cycle*19

Note 19. BYTE# pin supported by only 48pin TSOP (I) and 52pin µTSOP (II) types. BYTE# ≥ Vcc - 0.2V (Word mode) or BYTE# ≤ 0.2V (Byte mode)

- 20. t_{CHZ1}, t_{CHZ2}, t_{BHZ} and t_{OHZ} are defined as the time when the DQ pins enter a high-impedance state and are not referred to the DQ levels.
- 21. This parameter is sampled and not 100% tested.
- 22. At any given temperature and voltage condition, t_{CHZ1} max is less than t_{CLZ1} min, t_{CHZ2} max is less than t_{CLZ2} min, t_{CHZ2} max is less than t_{CLZ2} min, t_{CHZ2} max is less than t_{CLZ2} min, for any device.

Write Cycle (1)*23 (WE# CLOCK, OE#="H" while writing)

Note 23. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V (Word mode) or BYTE# \leq 0.2V (Byte mode)

- 24. twp is the interval between write start and write end.
 - A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active.
 - A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.
 - A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive.
- 25. t_{OHZ} and t_{WHZ} are defined as the time when the DQ pins enter a high-impedance state and are not referred to the DQ levels.
- 26. This parameter is sampled and not 100% tested.
- 27. During this period, DQ pins are in the output state so input signals must not be applied to the DQ pins.

Write Cycle (2)*28 (WE# CLOCK, OE# Low Fixed)

Note 28. BYTE# pin supported by only 48pin TSOP (I) and 52pin µTSOP (II) types. BYTE# ≥ Vcc - 0.2V (Word mode) or BYTE# ≤ 0.2V (Byte mode)

- 29. twp is the interval between write start and write end.
 - A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active.
 - A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.
 - A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive.
- 30. t_{WHZ} is defined as the time when the DQ pins enter a high-impedance state and are not referred to the DQ levels.
- 31. This parameter is sampled and not 100% tested.
- 32. During this period, DQ pins are in the output state so input signals must not be applied to the DQ pins.

Write Cycle (3)*33 (CS1#, CS2 CLOCK)

Note 33. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V (Word mode) or BYTE# \leq 0.2V (Byte mode)

34. twp is the interval between write start and write end.

A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active.

A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.

A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive.

Write Cycle (4)*35 (LB#, UB# CLOCK, Word Mode)

Note 35. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V (Word mode)

36. twp is the interval between write start and write end.
A write starts when all of (CS1#), (CS2), (WE#) and (one or both of LB# and UB#) become active.
A write is performed during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#.
A write ends when any of (CS1#), (CS2), (WE#) or (one or both of LB# and UB#) becomes inactive.

Low V_{CC} Data Retention Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions*37,38			
V _{CC} for data retention	V _{DR}	1.5	_	3.6	V	CS2 ≥ (3) LB# =	0.2V or ≥ V _{CC} -0.2V, V _{CC} -0.2V or UB# ≥ V _{CC} -0.2V, ≤ 0.2V, CS2 ≥ V _{CC} -0.2V		
Data retention current	Iccdr	_	0.6* ³⁹	4	μΑ	~+25°C	Vin ≥ 0V		
		-	1* ⁴⁰	6	μΑ	~+40°C	(1) CS2 ≤ 0.2V or (2) CS1# ≥ Vcc-0.2V, CS2 ≥ Vcc-0.2V or		
		_	4* ⁴¹	17	μΑ	~+70°C	(3) LB# = UB# ≥ Vcc-0.2V, CS1# ≤ 0.2V, CS2 ≥ Vcc-0.2V		
		_	8*42	24	μΑ	~+85°C			
Chip deselect time to data retention	tcdr	0	_	_	ns	Saa ratan	0		
Operation recovery time	t _R	5	_	_	ms	See retention waveform.			

Note 37. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

- 38. CS2 controls address buffer, WE# buffer, CS1# buffer, OE# buffer, LB# buffer, UB# buffer and DQ buffer. If CS2 controls data retention mode, Vin levels (address, WE#, CS1#, OE#, LB#, UB#, DQ) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 ≥ V_{CC}-0.2V or CS2 ≤ 0.2V. The other inputs levels (address, WE#, OE#, LB#, UB#, DQ) can be in the high-impedance state.
- 39. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.
- 40. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=40°C), and not 100% tested.
- 41. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=70°C), and not 100% tested.
- 42. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=85°C), and not 100% tested.

Low Vcc Data Retention Timing Waveforms (CS1# controlled)*43

Low Vcc Data Retention Timing Waveforms (CS2 controlled)*43

Low Vcc Data Retention Timing Waveforms (LB#,UB# controlled, Word Mode)*44

Note 43. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

44. BYTE# pin supported by only 48pin TSOP (I) and 52pin μ TSOP (II) types. BYTE# \geq Vcc - 0.2V (Word mode)

Revision History RMLV3216A Series Data Sheet	Revision History	RMLV3216A Series Data Sheet
--	------------------	-----------------------------

		Description	
Rev.	Date	Page	Summary
1.00	2018.12.26	_	First Edition issued

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/