آموزش کاهش

نویز تصاویر

محمد دهقاني

معرفي

- ۱. مدیر دیتاهاب
- ۲. لیسانس نرم افزار از دانشگاه اصفهان و ارشدIT تربیت مدرس
 - ۳. کارشناس سابق پردازش متن شرکت لایف وب
 - ۴. سابقه همکاری با شرکت های داده پردازی آرون و توانمند
- ۵. سابقه تدریس در مرکز علوم شناختی(IPM) و دانشگاه های شریف، اصفهان، امیرکبیر،
 - شهرکرد، علوم پزشکی تهران و کنفرانس وب پژوهی
 - ۶. دارای بیش از ۳ مقاله ژورنالی
 - ۷. مترجم کتاب یادگیری ماشین
 - ۸. نویسنده کتاب تحلیل عواطف با استفاده از تکنیک های یادگیری ماشین

این دوره مناسب چه افرادی هست؟

- ۱. دانشمندان داده
 - ۲. مهندسین داده
 - ۳. برنامه نویسان

پیش نیازهای یادگیری این دوره

- ۱. آشنایی با پایتون
- ۲. آشنایی با برنامه نویسی شی گرا
 - ۳. آشنایی با شبکه های عصبی

A neuron in our brain

Perceptron

Multi Layer Perceptron

Keras

Keras

1. Define Network

2. Compile Network

3. Fit Network

4. Evaluate Network

5. Make Predictions

Keras

Convolutional Neural Networks

Zero Padding

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

Pooling Layers

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Stride

Flatten Layers

Input_shape

Dense layers require inputs as (batch_size, input_size)

2D convolutional layers need inputs as:

if using channels_last: (batch_size, imageside1, imageside2, channels) if using channels_first: (batch_size, channels, imageside1, imageside2)

1D convolutions and recurrent layers use (batch_size, sequence_length, features)

Conv2D Layers

```
[0, 0, 0, 1, 1]
                               [0, 0, 0, 1, 1]
                               [0, 0, 0, 1, 1]
Conv2D(
                               [0, 0, 0, 1, 1]
 filters,
  kernel_size,
 strides=(1, 1),
                    Input_shape=[samples, rows, columns, channels]
  padding="valid",
                                  [1, 4, 4, 1]
                            model = Sequential()
          model.add(Conv2D(1, (3, 3), input_shape=(4, 4, 1)))
```

Conv1D Layers

```
[0, 0, 0, 1, 1, 0, 0, 0]
                    [1, 8, 1]
             model = Sequential()
model.add(Conv1D(1, 3, input_shape=(8, 1)))
            [0, 1, 0] \cdot [0, 0, 0] = 0
               [0, 0, 1, 1, 0, 0]
```

Input & Output

Dropout

Autoencoder

Sigmoid

Unsampling

given a summary, i.e. the result of the convolution, reconstructing the original input?

We call this "upsampling".

#DONTFORGETUS

آموزش های رایگان بیشتر

> www.data-hub.ir www.youtube.com/channel/datahub1 www.linkedin.com/company/data-hub-ir www.t.me/data hub ir www.github.com/datahub-ir