Actuadores

Z C2.1 Reto en clase

Actuadores Neumatico e Hidraulicos, y sus tipos

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema actuadores y a los videos observados sobre el mismo tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.1_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
| blog
 | | C2.1 x.md
 | C2.2 x.md
 | C2.3_x.md
 | img
 docs
```


Desarrollo

Listado de preguntas:

1. Basándose en el video actuadores en Robótica, realice un cuadro sinóptico sobre la clasificación de los actuadores.

Cuadro Sinóptico

1. De acuerdo con el video descripcion de los actuadores industriales realice una matriz comparativa indicando clasificacion, subclasificacion, principio de funcionamiento, ventajas y desventajas.

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Hidráulico	Lineal	Convierten la energía líquidos en trabajo mecánico lineal	Admite potencias elevadas	Al trabajar con altas potencias requiere mucho mantenimiento
Hidráulico	Rotativo	Convierten la energía líquidos en trabajo mecánico, rotativo	Admite potencias elevadas	Al trabajar con altas potencias requiere mucho mantenimiento
Neumático	Lineal	Convierten la energía del aire comprimido en trabajo mecánico lineal	Trabajan a alta velocidad	Es muy ruidoso, Obtener el aire comprimido es costoso
Neumático	Rotativo	Convierten la energía del aire comprimido en trabajo mecánico rotativo	Trabajan a alta velocidad	Es muy ruidoso, Obtener el aire comprimido es costoso

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuador Eléctrico	Motor de corriente continua	Usa corriente continua que potencia un campo magnético para generar un torque	Amplio rango de potencias, Control de velocidad preciso, Es reversible	Requiere de mayor mantenimiento, Mayor tamaño por unidad de potencia
Actuador Eléctrico	Motor de corriente alterna asíncrono	Usa 3 corrientes alternas desfasadas para potenciar un campo magnético que también generan un torque sobre el eje	Coste bajo, Robusto, Puede controlarse por contactores sencillos	La velocidad es depende de la carga, El coste del variador incrementa el coste del motor
Actuador Eléctrico	Motor de corriente alterna síncrono	Es impulsado por corriente alterna y donde la rotación generada por el campo magnético es sincronizada con la frecuencia de corriente de alimentación	Mantiene una velocidad independiente a la de la carga, Permite variar el factor de potencia mejorando el consumo	Alto costo, Requiere de mayor mantenimiento, Necesita un sistema auxiliar para arrancar hasta alcanzar la velocidad de sincronismo
Actuador Eléctrico	Motor de paso a paso	Es un motor impulsado por corriente continua que se genera un campo magnético que mueve el eje, tienen la capacidad de girar de poco a poco (paso a paso)	Permite bajas velocidades, Alta precisión	Potencia limitada
Actuador Eléctrico	Servomotor eléctrico	Controla la posición del eje en un momento dado, está diseñado para moverse cierta cantidad de grados	Posicionamiento preciso, Apto para el control de máquinas	Necesita un circuito de control interno para funcionar, Potencia limitada, Rango de giro limitado
Actuador Eléctrico	Electroválvulas	Se usa para controlar líquidos y gases, control neumático, control hidráulico utilizando una bobina solenoide a la que se le aplica energía para controlar el flujo.	Consume poca energía	Baja velocidad

Clasificación	Subclasificación	Principio de funcionamiento	Ventajas	Desventajas
Actuador Eléctrico	Contactores y Relés	Elementos de potencia que transmiten energía a los elementos de consumo	Forma parte de la logia de control	No admiten potencias elevadas

^{1.} De acuerdo con el video Neumática Industrial, explique como trabaja un sistema Neumático?

¿Cómo trabaja un sistema Neumático?

Un sistema neumático necesita de un compresor de aire para absorver aire y reducir su volumen y asi aumentar la presion del mismo.

El suministro de aire pasa a la siguiente etapa que es el fitro regualador lubricador el cual se encargar de eliminar impurezas en en aire asi como de secarlo y regular la presion, despues entra a la válvula de control direccional la cual es controlada por un PLC el cual se encarga de alternar por donde saldra el aire.

Finalmente el aire comprimido se envia a un actuador el cual utilizará la presión del aire.

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

