

A Typical Disk

- Platter diameter: 1-5 inCylinders: 100 2000
- Platters: 1 20
- Sectors per track: 200 500
- Sector size: 512 50K
- Rotation speed: 1000 15000 rpm
- Overall capacity: 1G 300GB
- Q: 2 platters, 2 surfaces/platter, 500 tracks/surface, 200 sect/track, 1KB/sector. What is the overall capacity?

7

Access Time

Access time =
 (seek time) + (rotational delay) +
 (transfer time)

9

Rotational Delay

- Typical disk:
 - 1000 rpm 15000 rpm
- Q: For 6000 RPM, average rotational delay?

Block I Want

Transfer Rate

6000 RPM, 400 sectors/track, 512B/sector

- Q: How long to read one block?
- Q: What is the transfer rate (bytes/sec)?

(Burst) Transfer Rate

 (Burst) Transfer rate = (RPM / 60) * (sectors/track) * (bytes/sector)

13

Sequential vs. Random I/O

• Q: How long to read 3 sequential blocks?

□ 6000 RPM

□ 200 sectors/track

□ Assume the head is above the first block

14

Sequential vs. Random I/O

• Q: How long to read 3 random blocks?

Important to remember

- Random I/O: VERY expensive
 - Compared to sequential I/O
- Avoid random I/O as much as we can

16

Data Modification

- Byte-level modification not allowed
 - Can be modified by blocks
- Q: How can we modify only a part of a block?

Abstraction by OS

(head, cylinder, sector)

- Sequential blocks

 No need to worry about head, cylinder, sector
- · Access to non-adjacent blocks
 - Random I/O
- Access to adjacent blocks
 - Sequential I/O

Buffers, Buffer pool

- Temporary main-memory "cache" for disk blocks
 - Avoid future read
 - Hide disk latency
 - Most DBMS let users change buffer pool size

19

Reference

- Storage review disk guide
 - http://www.storagereview.com/guide2000/ref/ hdd/index.html

20

Files: Main Problem

• How to store tables into disks?

Spanned vs Unspanned

 Q: 512Byte block. 80Byte tuple. How to store?

22

Spanned vs Unspanned

Unspanned

• Spanned

• Q: Maximum space waste for unspanned?

23

Variable-Length Tuples

• How do we store them?

Reserved Space

Reserve the maximum space for each tuple

• Q: Any problem?

25

Variable-Length Space

- · Pack tuples tightly
- Q: How do we know the end of a record?
- Q: What to do for delete/update?
- Q: How can we "point to" to a tuple?

26

Long Tuples

- ProductReview(pid INT, reviewer VARCHAR(50), date DATE, rating INT, comments VARCHAR(1000))
- Block size 512B
- How should we store it?

28

Long Tuples • Spanning • Splitting tuples Block with short attributes. Block with long attrs. This block may also have fixed-length slots.

Sequential File

 Tuples are ordered by certain attribute(s) (search key)

Elaine	cs	3.7
James	ME	2.8
John	EE	1.8
Peter	EE	3.9
Susan	cs	1.0
Tonv	EE	2.4

- Search key: Name

Sequencing Tuples Initially

- CREATE TABLE T ...;
 INSERT INTO T (SELECT * ... ORDER BY key);
- Future insertions will gradually destroy the order
 - Periodic reordering may be necessary
- Other possibilities discussed later

35

Things to Remember

- Disk
 - Platter, track, cylinder, sector, block
 - Seek time, rotational delay, transfer time
 - Random I/O vs Sequential I/O
- Files
 - Spanned/unspanned tuples
 - Variable-length tuples (slotted page)
 - Long tuples
 - Sequential file and search key
 - Problems with insertion (overflow page)
 - PCTFREE