Nom: CASTELLETT

Prénom : ALESSIO

Classe: I/2

Date: 21.11.2011

Ý

Problème nº 1 (architecture générale)

a) Dessinez et décrivez succinctement l'architecture Von Neumann:

4.4

b) Pour une organisation de la mémoire est en « **little-endian** », représentez (en hexadécimal pour les entiers et en caractère ascii pour les strings) dans le tableau ci-dessous les variables suivantes :

'\'	Adresse: 0xa0000100	variable : var1	taille/type : .asciz	valeur : "bonjour"	~ V
				Donjour	1 4501
R	0xa000010d	var2	.byte 🖇	252 ₁₀	-DOM MITCU
0	0xa0000110	var3	.long 32	67832b ₁₆	-> 0/0 MFCV
1.	0xa0000116	var4	.short 16	4068	-> Ch 106 J -> Ch 777 777 TC
0/	0xa000010a	var5	.byte 🖔	-4 ₁₀	-POL FAFFFC
011					

15	8 7	0	
0	B	0xa0000100 <	- 16 but
5	N	0xa0000102	
U	0	/ 0xa0000104	
Ø	R	0xa0000106	
17	0	0xa0000108	
OXTET	Ox PFFC	0xa000010a 🗲	•
#c		0xa000010c	
		0xa000010e	
0x 00 33	Ox 67 26	0xa0000110 <	
0x26 0	Ox 83 67	0xa0000112	
		/ 0xa0000114	
0x 01	OK 06 /	0xa0000116 <	_
		0xa0000118	

Problème nº 2 (architecture interne)

a) Citez ou dessinez les composants principaux de la structure interne des processeurs ARM :

- BARREL / SHIFTER

_ MAU

ALU

1 - BANK REGISTER

IR/DECODE

COMPTLOR LOGIC

AR/W (REGISTER)

- Adder (REGISTER + INVERTER)

b) Décrivez (avec un graphique ou une figure) le principe de fonctionnement des processeurs ARM:

Le processeur ARM MASSACLA MASSACLA MASSACLA MATERIA Fot in modalité "load & Store"

On peut dure qual traite les dans depus le regystre de la memoire Paux chaque quotion nécessite d'ent erager avec des données das la mem. on charge are boad e en renet are STR (STORE)

Gac/I-2/11.2011

Ecole d'ingénieurs et d'architectes de Fribourg Hochschule für Technik und Architektur Freiburg

Microprocesseurs 1 & 2: Travail écrit no 1.

Problème n° 3 (traitement numérique des nombres)

a) Prévoyez l'état des flags Z, C, N et V ainsi que le résultat contenu dans le registre R0 (en décimal) suite à l'exécution des instructions assembleur suivantes :

Remarque: toutes les opérations sont faites avec des registres de 8 bits au lieu de 32 bits

$$Z=1$$
 C= 1 N=0 V=0 R0(signé)= -9 R0(non signé) = 247

b) Représentez en hexadécimal sur 32 bits (simple précision) les valeurs réelles suivantes et donner le développement :

(pour rappel : exposant est codé sur 8 bits avec un biais de 127)

a)
$$45 - 5 |0110|$$
 $13873 - 5 000 11 ? 0,375 = 0/1$
 $-5 |0110|,00011 .2^{\circ} = 1,0110|,00011 .2^{\circ}$
 $E = 127 + 5 = 132 - 5 |000|,000$
 $S = 0$

Problème nº 4 (Mode d'adressage)

Pour le code assembleur et la représentation de la mémoire (little-endian / 8-bits) et l'état des registres du processeur ci-dessous, donnez le résultat des opérations (état des registres, état de la mémoire):

0x43 0x83 0x97
0x83
007
UX97
0x25
0xd7
0x25
0x73
0xc2
0xaa
0x89
0x00
0xc0
OxŦ6
OXFT
_

	Registres (avant)				
R0	0xa000'0100				
R1	0x0000'1022				
R2	0x0000'0400				
R3	0xff00'ff00				
R4	0xa000'1000				
R5	0x0000'0001				
R6	0x0000'0004				
R7	0xffff'8ff6				
R8	0xa000'1008				
R9	0x0000'0100				
R10	0x0000'0000				
R11	0xa000'0100				
R12	0x0000'0010				

0. 0xa000'4400: backup: .long 102,105,106,107,110,111,112

1. add

r0,r1,r2,ls1 #4

20 = 21 + lsl (RZ)

2. ldrb

r3, [r4,r6]

RA => OxODOOPAORZ

R3 = Beyt. e volum à dobrero R4 + R6 -0 0x25 Stook la robur de Et a l'adress R4 de 12

3. strh

r7, [r4, #12]!

ut het i jan 14 = 14/12

r1, [r8], r12, lsl #4 1) chap la volund a l'adres RB dons R1 2) Portatore R8 + PANEL ISL [R12]

Ox a GOB 1008 0x 3000 0100

0 x a ooc 1108

5. ldr

r9, =backup

r9!, {r2,r5-r7,r10-r12}

Problème nº 5 (Programmation en assembleur) Coder en langage assembleur ARM l'algorithme suivant : #define MAX 200
char str[] = "un message avec des chiffres 123458"; char msg[MAX]; long digits=0; short len=0; void main() { int i = 0; int j=0; do { char c = str[i++];if ((c >= '0') && (c <= '9')) { digits++; c = '*'; msq[j++] = c;len++; } while ((c != 0) && (len < MAX));</pre> msq[MAX-1] = 0;---en assembleur-----MAX = 200.asciz "un message avec des chiffres 123458" .space MAX digits: .long 0 .short 0 main: { loh 21, mag loh Re [26]; Roch 23 # 0 1/1 = 0

Marin contr2 643, cmp R3, #9: