DS 7 : un corrigé

Partie I : à la frontière des séries convergentes

1°)

 \diamond La série dont le terme général est identiquement nul est dans S_0 , S_C et S_{AC} , donc ces trois ensembles sont tous non vides. Pour montrer que ce sont des sous-espaces vectoriels de S, il suffit ainsi d'établir qu'ils sont stables par combinaison linéaire.

Soit
$$u = \sum u_n \in S$$
, $v = \sum v_n \in S$ et $\alpha \in \mathbb{C}$

Soit $u = \sum u_n \in S$, $v = \sum v_n \in S$ et $\alpha \in \mathbb{C}$. Si $u, v \in S_0$, alors $\alpha u_n + v_n \underset{n \to +\infty}{\longrightarrow} 0$, donc $\alpha u + v \in S_0$.

Si $u, v \in S_C$, alors d'après le cours, $\alpha u + v$ est une série convergente (il suffit de passer aux sommes partielles), donc $\alpha u + v \in S_C$.

Si $u, v \in S_{AC}$, on a, pour tout $n \in \mathbb{N}$, $|\alpha u_n + v_n| \leq |\alpha| |u_n| + |v_n|$, or $\sum (|\alpha| |u_n| + |v_n|)$ est convergente, donc d'après le cours sur les séries à termes positifs, $\alpha u + v \in S_{AC}$. En conclusion, S_0 , S_C et S_{AC} sont des sous-espaces vectoriels de S.

 \diamond $\sum n!$ est dans S sans être dans S_0 , donc S_0 est un sous-espace vectoriel strictement inclus dans S.

D'après le cours, si $\sum u_n \in S_C$, alors $u_n \xrightarrow[n \to +\infty]{} 0$, donc $\sum u_n \in S_0$. Ainsi, $S_C \subset S_0$.

De plus, toujours d'après le cours, $\sum_{r>1} \frac{1}{n}$ est dans S_0 sans être dans S_C , donc S_C est

un sous-espace vectoriel strictement inclus dans S_0 .

D'après le cours, $S_{AC} \subset S_C$.

Pour tout $n \in \mathbb{N}^*$, posons $u_n = \frac{(-1)^n}{n}$. Alors $\sum_{n \ge 1} u_n$ n'est pas absolument convergente.

Cependant la suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ est décroissante et tend vers 0, donc d'après le théorème spécial des séries alternées, $\sum u_n$ est un élément de S_C . Ainsi, S_{AC} est un sous-espace vectoriel strictement inclus dans S_C .

2°)

 \diamond Supposons que $u = \sum_{n \ge 1} \frac{1}{n^3}$. Posons $\alpha_n = n$ pour tout $n \in \mathbb{N}$. Alors la suite (α_n) est

bien une suite croissante de réels positifs ou nuls qui tend vers $+\infty$.

De plus
$$\sum \alpha_n u_n = \sum_{n\geq 1} \frac{1}{n^2}$$
 est bien convergente.

- \diamond Supposons maintenant que $u = \sum_{n \geq 1} \frac{1}{n^2}$. Posons $\alpha_n = \sqrt{n}$ pour tout $n \in \mathbb{N}$. Alors la suite (α_n) est bien une suite croissante de réels positifs ou nuls qui tend vers $+\infty$. De plus $\sum \alpha_n u_n = \sum_{n \geq 1} \frac{1}{n^{\frac{3}{2}}}$ est bien convergente, d'après le cours, car $\frac{3}{2} > 1$.
- ♦ Supposons enfin que $u = \sum_{n\geq 2} \frac{1}{n \ln^2 n}$. Posons $\alpha_0 = \alpha_1 = 0$ et $\alpha_n = \sqrt{\ln n}$ pour tout $n \in \mathbb{N} \setminus \{0,1\}$. Alors la suite (α_n) est bien une suite croissante de réels positifs ou nuls qui tend vers +∞. De plus $\sum \alpha_n u_n = \sum_{n\geq 2} \frac{1}{n \ln^{\frac{3}{2}} n}$ est bien convergente. En effet,

l'application $t \longmapsto \frac{1}{t \ln^{\frac{3}{2}} t}$, définie sur $[2, +\infty[$, est continue, positive et décroissante, donc d'après le théorème de comparaison entre séries et intégrales, la série

$$\sum \alpha_n u_n = \sum_{n \ge 2} \frac{1}{n \ln^{\frac{3}{2}} n} \text{ a même nature que la suite } \left(\int_2^n \frac{dt}{t \ln^{\frac{3}{2}} t} \right)_{n \ge 2},$$
or
$$\int_2^n \frac{dt}{t \ln^{\frac{3}{2}} t} = \int_2^n \frac{d(\ln t)}{\ln^{\frac{3}{2}} t} = \left[-2 \ln^{-\frac{1}{2}} t \right]_{2}^n \underset{n \to +\infty}{\longrightarrow} 2 \ln^{-\frac{1}{2}} (2).$$

3°) La suite (R_n) est définie si et seulement si $\sum u_n \in S_C$, ce que nous supposerons. Lorsqu'il existe $N \in \mathbb{N}$ tel que pour tout n > N, $u_n = 0$, c'est-à-dire lorsque u_n est nul à partir d'un certain rang, alors, pour n > N, $R_n = R_{n-1} = 0$, donc α_n n'est pas défini.

Réciproquement, supposons que pour tout $N \in \mathbb{N}$, il existe $n_N > N$ tel que $u_{n_N} > 0$. Alors, pour tout $N \in \mathbb{N}$, $R_N \ge u_{n_N} > 0$ et $R_{-1} \ge u_{n_0} > 0$, donc la suite $(\alpha_n)_{n \in \mathbb{N}}$ est définie.

En conclusion, la condition demandée est que $\sum u_n$ converge mais que (u_n) ne soit pas une suite presque nulle.

Dans ce cas, pour tout $n \in \mathbb{N} \cup \{-1\}$, $R_{n-1} - R_n = u_n \ge 0$, donc la suite $(R_n)_{n \in \mathbb{N} \cup \{-1\}}$ est décroissante. On en déduit que la suite $(\alpha_n)_{n \in \mathbb{N}}$ est croissante.

De plus,
$$R_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^n u_k \xrightarrow[n \to +\infty]{+\infty} \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^{+\infty} u_k = 0$$
, donc $\alpha_n \xrightarrow[n \to +\infty]{+\infty} + \infty$.

4°) Supposons d'abord que u_n est nul à partir d'un certain rang. Pour tout $n \in \mathbb{N}$, posons $\alpha_n = n$. Alors (α_n) est une suite croissante de réels positifs ou nuls qui tend vers $+\infty$. De plus $\sum \alpha_n u_n$ est convergente car son terme général est nul à partir d'un certain rang.

Supposons maintenant que la suite (u_n) n'est pas nulle à partir d'un certain rang. On peut alors poser $\alpha_n = \frac{1}{\sqrt{R_n} + \sqrt{R_{n-1}}}$ et d'après la question précédente, c'est une suite croissante de réels positifs ou nuls qui tend vers $+\infty$. Il reste à montrer que $\sum \alpha_n u_n$ converge.

Soit
$$n \in \mathbb{N}$$
. $\alpha_n u_n = \frac{u_n}{\sqrt{R_n} + \sqrt{R_{n-1}}} = \frac{u_n(\sqrt{R_n} - \sqrt{R_{n-1}})}{R_n - R_{n-1}}$, or $R_n - R_{n-1} = -u_n$ (même

lorsque n=0), donc $\alpha_n u_n = -\sqrt{R_n} + \sqrt{R_{n-1}}$. Ainsi $\sum \alpha_n u_n$ est une série télescopique : pour $N \in \mathbb{N}$, $\sum_{n=0}^{\infty} \alpha_n u_n = -\sqrt{R_N} + \sqrt{R_{-1}} \underset{N \to +\infty}{\longrightarrow} \sqrt{R_{-1}}$, ce qu'il fallait démontrer.

- \diamond Supposons que $u = \sum_{n \ge 1} \frac{1}{\sqrt{n}}$. Posons $\alpha_0 = 2$ et $\alpha_n = \frac{1}{\sqrt{n}}$ pour tout $n \in \mathbb{N}^*$. Alors la suite (α_n) est bien une suite décroissante de réels strictement positifs qui tend vers 0. De plus $\sum \alpha_n u_n = \sum_{n=1}^{\infty} \frac{1}{n}$ est bien divergente.
- \diamond Supposons maintenant que $u = \sum_{n \ge 1} \frac{1}{n}$. Posons $\alpha_0 = \frac{1}{\ln 2} + 2$, $\alpha_1 = \frac{1}{\ln 2} + 1$ et $\alpha_n = \frac{1}{\ln n}$ pour tout $n \in \mathbb{N} \setminus \{0,1\}$. Alors la suite (α_n) est bien une suite décroissante

de réels strictement positifs qui tend vers 0. De plus $\sum_{n \geq 2} \alpha_n u_n = \sum_{n \geq 2} \frac{1}{n \ln n}$ est bien

divergente. En effet, l'application $t \mapsto \frac{1}{t \ln t}$, définie sur $[2, +\infty[$, est continue, positive et décroissante, donc d'après le théorème de comparaison entre séries et intégrales, la série $\sum \alpha_n u_n$ a même nature que la suite $\left(\int_2^n \frac{dt}{t \ln t}\right)_{n\geq 2}$

or
$$\int_2^n \frac{dt}{t \ln t} = \int_2^n \frac{d(\ln t)}{\ln t} = [\ln(\ln t)]_{2}^n \underset{n \to +\infty}{\longrightarrow} +\infty.$$

 \Rightarrow Supposons enfin que $u = \sum_{n \ge 2} \frac{1}{n\sqrt{\ln n}}$. Posons $\alpha_0 = \frac{1}{\sqrt{\ln 2}} + 2$, $\alpha_1 = \frac{1}{\sqrt{\ln 2}} + 1$

et $\alpha_n = \frac{1}{\sqrt{\ln n}}$ pour tout $n \in \mathbb{N} \setminus \{0, 1\}$. Alors la suite (α_n) est bien une suite décroissante de réels strictement positifs qui tend vers 0. De plus $\sum_{n\geq 2} \alpha_n u_n$ étant encore égale à

 $\sum_{n \geq 0} \frac{1}{n \ln n}$, elle est bien divergente.

6°) $\sum u_n$ diverge, donc la suite (u_n) est non nulle : il existe $p \in \mathbb{N}$ tel que $u_p > 0$. Alors, pour tout $n \geq p$, $U_n \geq u_p > 0$, donc on peut définir la suite $(\alpha_n)_{n \in \mathbb{N}}$ de la façon suivante:

lorsque $n \geq p, \ \alpha_n = \frac{1}{\sqrt{U_n} + \sqrt{U_{n-1}}}$ et lorsque $n < p, \ \alpha_n = \alpha_p$. Ainsi, pour tout $n \in \mathbb{N}, \ \alpha_n > 0$.

De plus, pour tout $n \in \mathbb{N}$, $U_n - U_{n-1} = u_n \ge 0$, donc $(U_n)_{n \in \mathbb{N} \cup \{-1\}}$ est croissante puis $(\alpha_n)_{n\in\mathbb{N}}$ est décroissante.

 $\sum u_n$ est une série divergente de réels positifs, donc d'après le cours, $U_n \xrightarrow[n \to +\infty]{} +\infty$. On en déduit que $\alpha_n \xrightarrow[n \to +\infty]{} 0$.

Soit $n \in \mathbb{N}$. $\alpha_n u_n = \sqrt{U_n} - \sqrt{U_{n-1}}$, donc $\sum_{k=0}^n \alpha_k u_k = \sqrt{U_n} - \sqrt{U_{-1}} = \sqrt{U_n} \underset{n \to +\infty}{\longrightarrow} +\infty$. Ainsi, $\sum \alpha_n u_n$ diverge.

Partie II : Normes sur S_{AC} .

- 7°) Supposons que la suite (α_n) est majorée et soit $\sum u_n$ une série à termes réels positifs ou nuls et convergente. Alors $\alpha_n = O(1)$, donc $\alpha_n u_n = O(u_n)$, or $\sum u_n$ converge et pour tout $n \in \mathbb{N}$, $u_n \geq 0$, donc d'après le cours, $\sum \alpha_n u_n$ est convergente.
- 8°) Lorsque $u = \sum u_n \in S_{AC}$, la série $\sum |u_n|$ est à termes positifs ou nuls et est convergente, donc d'après la question précédente, $\sum \alpha_n |u_n|$ est aussi convergente. Ainsi $\sum \alpha_n u_n$ est absolument convergente, ce qui prouve que N_{α} est bien définie en tant qu'application de S_{AC} dans \mathbb{R}_+ .
- \diamond Supposons d'abord qu'il existe $p \in \mathbb{N}$ tel que $\alpha_p = 0$. Considérons la série $u = \sum u_n$ définie par $u_n = \delta_{n,p}$ pour tout $n \in \mathbb{N}$. Alors $N_{\alpha}(u) = 0$ et $u \neq 0$, donc N_{α} n'est pas une norme.
- \diamond Supposons que α est à valeurs dans \mathbb{R}_+^* . Il reste à montrer que N_{α} est une norme.
 - N_{α} est bien à valeurs dans \mathbb{R}_{+} .
 - Soit $u = \sum u_n \in S_{AC}$ telle que $N_{\alpha}(u) = 0$. Soit $p \in \mathbb{N}$.

Alors
$$0 \le \alpha_p |u_p| \le \sum_{k=0}^{+\infty} \alpha_k |u_k| = N_{\alpha}(u) = 0$$
, donc $\alpha_p |u_p| = 0$, or $\alpha_p \ne 0$, donc

- $u_p = 0$, pour tout $p \in \mathbb{N}$. Ceci montre que $N_{\alpha}(u) = 0 \Longrightarrow u = 0$.
- Soit $u = \sum u_n \in S_{AC}$ et $\lambda \in \mathbb{C}$. Par linéarité des séries convergentes,

$$N_{\alpha}(\lambda u) = \sum_{k=0}^{+\infty} \alpha_k |\lambda u_k| = |\lambda| N_{\alpha}(u).$$

- Soit $u = \sum_{n=0}^{k=0} u_n \in S_{AC}$ et $v = \sum_{n=0}^{k=0} v_n \in S_{AC}$.
 - Pour tout $k \in \mathbb{N}$, $\alpha_k |u_k + v_k| \le \alpha_k |u_k| + \alpha_k |v_k|$, donc en sommant dans le cadre de séries convergentes, on obtient que $N_{\alpha}(u+v) \le N_{\alpha}(u) + N_{\alpha}(v)$.
- 9°) Les suites α et β sont à valeurs dans \mathbb{R}_+^* et elles sont majorées par 1, donc les applications N_{α} et N_{β} sont bien définies et ce sont des normes. Supposons qu'elles sont équivalentes. Pour tout $p \in \mathbb{N}$, notons $u_p = \sum \delta_{n,p}$. Ainsi (u_p) est une suite d'éléments de S_{AC} . De plus $N_{\alpha}(u_p) = \alpha_p = \frac{1}{2^p}$ et $N_{\beta}(u_p) = \frac{1}{p!}$. D'après les croissances comparées, 2^p
- $\frac{2^p}{p!} \xrightarrow[p \to +\infty]{} 0$, donc la suite $2^p u_p$ tend vers 0 pour la norme N_β . Cependant, $N_\alpha(2^p u_p) = 1$, donc la suite $2^p u_p$ ne tend pas vers 0 pour la norme N_α . Ceci prouve que ces deux normes ne sont pas équivalentes.

 10°

 \diamond Supposons que N_{α} et N_{β} sont équivalentes. Alors il existe $C, D \in \mathbb{R}_+$ tels que, pour tout $u \in S_{AC}$, $N_{\alpha}(u) \leq CN_{\beta}(u)$ et $N_{\beta}(u) \leq DN_{\alpha}(u)$. En particulier, lorsque

 $u = \sum \delta_{n,p}$, où $p \in \mathbb{N}$, on obtient $\alpha_p \leq C\beta_p$ et $\beta_p \leq D\alpha_p$, donc lorsque n tend vers l'infini, $a_n = O(b_n)$ et $b_n = O(a_n)$.

 \diamond Réciproquement, supposons que $a_n = O(b_n)$ et $b_n = O(a_n)$. Alors d'après le cours, il existe $N, N' \in \mathbb{N}$ et $C', D' \in \mathbb{R}_+$ tels que, pour tout $n \geq N$, $\alpha_n \leq C'\beta_n$ et $\beta_n \leq D'\alpha_n$. Posons $C = \max\left(C', \max_{0 \leq k < N} \frac{\alpha_k}{\beta_k}\right)$. Alors, pour tout $n \in \mathbb{N}$, $\alpha_n \leq C\beta_n$. De même, il existe $D \in \mathbb{R}_+$ tel que, pour tout $n \in \mathbb{N}$, $\beta_n \leq D\alpha_n$. Soit $u = \sum u_n \in S_{AC}$. Alors $N_{\alpha}(u) = \sum_{k=0}^{+\infty} \alpha_k |u_k| \leq \sum_{k=0}^{+\infty} C\beta_k |u_k| = CN_{\beta}(u)$ et de même,

Soit
$$u = \sum u_n \in S_{AC}$$
. Alors $N_{\alpha}(u) = \sum_{k=0}^{+\infty} \alpha_k |u_k| \le \sum_{k=0}^{+\infty} C\beta_k |u_k| = CN_{\beta}(u)$ et de même,

 $N_{\beta}(u) \leq DN_{\alpha}(u)$, donc les deux normes sont équivalentes.

11°

- \diamond D'après le cours, l'application φ est une forme linéaire, donc elle est continue si et seulement si il existe $k \in \mathbb{R}_+$ tel que, pour tout $u \in S_{AC}$, $|\varphi(u)| \leq kN_{\alpha}(u)$.
- \diamond Supposons que $\alpha_n = 1$ pour tout $n \in \mathbb{N}$. Alors, pour tout $u = \sum u_n \in S_{AC}$, d'après le cours, $|\varphi(u)| \leq \sum_{k=0}^{+\infty} |u_k| = N_{\alpha}(u)$, donc φ est continue.
- \diamond Supposons maintenant que pour tout $n \in \mathbb{N}$, $\alpha_n = \frac{1}{2^n}$. Supposons que φ est continue. Alors il existe $k \in \mathbb{R}_+$ tel que, pour tout $u \in S_{AC}$, $|\varphi(u)| \leq kN_{\alpha}(u)$.

Soit $p \in \mathbb{N}$. Avec $u = \sum \delta_{n,p}$, l'inégalité précédente devient : $1 \leq k \frac{1}{2^p}$. En faisant tendre p vers $+\infty$, on obtient $1 \le 0$, ce qui est faux.

 \diamond Supposons que φ est continue.

Il existe $k \in \mathbb{R}_+$ tel que, pour tout $u \in S_{AC}$, $|\varphi(u)| \leq kN_{\alpha}(u)$.

Soit $p \in \mathbb{N}$. Avec $u = \sum \delta_{n,p}$, l'inégalité précédente devient : $1 \le k\alpha_p$, donc $1 = O(\alpha_n)$.

Réciproquement, supposons que $1 = O(\alpha_n)$. De même que lors de la question précédente, on en déduit qu'il existe $k \in \mathbb{R}_+$ tel que, pour tout $p \in \mathbb{N}$, $1 \leq k\alpha_p$.

Soit
$$u = \sum u_n \in S_{AC}$$
. Alors $|\varphi(u)| \le \sum_{p=0}^{+\infty} |u_p| \le \sum_{p=0}^{+\infty} k\alpha_p |u_p| = kN_{\alpha}(u)$,

donc φ est continue.

En conclusion, φ est continue avec N_{α} si et seulement si $1 = O(\alpha_n)$.

12°)

 \diamond Posons $\varphi(0) = 0$. Ainsi $\alpha_{\varphi(0)} = \alpha_0 \ge 0$.

La suite $(\alpha_n)_{n\geq 1}$ n'est pas majorée, donc il existe $\varphi(1)\geq 1$ tel que $\alpha_{\varphi(1)}\geq 1$.

Soit $n \in \mathbb{N}^*$. Supposons construits $\varphi(0), \ldots, \varphi(n)$ des entiers

tels que $\varphi(0) < \varphi(1) < \cdots < \varphi(n)$ et pour tout $k \in \{0, \dots, n\}, \ \alpha_{\varphi(k)} \ge k$.

La suite $(\alpha_p)_{p>\varphi(n)}$ n'est pas majorée, donc il existe un entier $\varphi(n+1)$

tel que $\varphi(n+1) > \varphi(n)$ et $\alpha_{\varphi(n+1)} \ge n+1$.

On construit ainsi par récurrence une application φ de \mathbb{N} dans \mathbb{N} , strictement croissante, telle que pour tout $n \in \mathbb{N}$, $\alpha_{\varphi(n)} \geq n$.

 \diamond Pour montrer la réciproque de la question 7, il suffit de construire une série $\sum u_n$ de réels positifs ou nuls qui est convergente et telle que $\sum \alpha_n u_n$ diverge.

On définit la suite (u_n) en convenant que :

pour tout $k \in \mathbb{N}^*$, $u_{\varphi(k)} = \frac{1}{k^2}$ et pour tout $n \in \mathbb{N} \setminus \varphi(\mathbb{N}^*)$, $u_n = 0$.

 φ étant strictement croissante de \mathbb{N} dans \mathbb{N} , on montre par récurrence que, pour tout $k \in \mathbb{N}$, $\varphi(k) \geq k$.

Soit $N \in \mathbb{N}^*$. Alors $\sum_{k=0}^{N} u_k \leq \sum_{k=0}^{\varphi(N)} u_k = \sum_{k=1}^{N} \frac{1}{k^2} \leq \frac{\pi^2}{6}$, donc la suite des sommes partielles

de la série $\sum u_n$ est majorée. C'est une série à termes positifs, donc d'après le cours, $\sum u_n$ est convergente.

De plus,
$$\sum_{k=0}^{\varphi(N)} \alpha_k u_k = \sum_{k=1}^N \alpha_{\varphi(k)} \frac{1}{k^2} \ge \sum_{k=1}^N \frac{1}{k} \underset{N \to +\infty}{\longrightarrow} +\infty$$
, car $\sum_{n \ge 1} \frac{1}{n}$ est divergente. Ainsi,

d'après le principe des gendarmes, $\sum_{k=0}^{\varphi(N)} \alpha_k u_k \xrightarrow[N \to +\infty]{} +\infty$, ce qui prouve que $\sum \alpha_n u_n$ est

une série divergente. En effet, la suite de ses sommes partielles diverge car c'est le cas de l'une de ses suites extraites.

Partie III : séries absolument convergentes d'ordre p.

13°)

 \diamond Soit $u = \sum u_n \in S_{AC}$. On a déjà vu en question 3 que $R_n \xrightarrow[n \to +\infty]{} 0$, donc $\sum R_n \in S_0$, ce qui prouve que ψ est correctement définie.

Soit $v = \sum v_n \in S_{AC}$ et $\alpha \in \mathbb{C}$.

D'après le cours, pour tout
$$n \in \mathbb{N}$$
, $\sum_{k=n+1}^{\infty} (\alpha u_k + v_k) = \alpha \sum_{k=n+1}^{+\infty} u_k + \sum_{k=n+1}^{+\infty} v_k$,

donc
$$\psi(\alpha u + v) = \psi(\sum (\alpha u_n + v_n)) = \sum \left(\sum_{k=n+1}^{\infty} (\alpha u_k + v_k)\right) = \alpha \psi(u) + \psi(v).$$

Ainsi, ψ est une application linéaire de S_{AC} dans S_0 . ϕ $\psi(\sum \delta_{n,0}) = 0$ et $\sum \delta_{n,0} \neq 0$, donc ψ n'est pas injective.

$$\Rightarrow \text{ Pour tout } n \in \mathbb{N}, \text{ posons } r_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}.$$

la suite $(\frac{1}{k})_{k\in\mathbb{N}^*}$ est décroissante et tend vers 0, donc d'après le théorème spécial des séries alternées, r_n est correctement défini et $r_n \xrightarrow[n \to +\infty]{} 0$. Ainsi, $\sum r_n \in S_0$.

Supposons que $\sum r_n$ possède un antécédent par ψ , que l'on notera $\sum u_n$. Pour tout $n \in \mathbb{N}^*$, $u_n = r_{n-1} - r_n = \frac{(-1)^n}{n}$, donc la série $\sum_{n \ge 1} \frac{(-1)^n}{n} \in S_{AC}$, ce qui est faux. Ainsi,

 $\sum r_n$ ne possède pas d'antécédent par ψ ce qui prouve que ψ n'est pas surjective.

 $14^{\circ})$

- \diamond D'après l'énoncé, $E_0 = S_{AC}$ et pour tout $p \geq 1$, $E_p = \psi^{-1}(E_{p-1})$, or ψ est linéaire, donc par récurrence sur p, on en déduit que E_p est un sous-espace vectoriel de S_{AC} pour tout $p \in \mathbb{N}$.
- \diamond Soit $q \in \mathbb{N}$. $\psi(c_q) = \sum R_n$, où pour tout $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} \delta_{k,q}$.

Lorsque $n \ge q$, $R_n = 0$ et lorsque n < q, $R_n = 1$, donc $\psi(c_q) = \sum_{n=0}^{q-1} c_r$.

 \diamond Soit $p \in \mathbb{N}$. Notons R(p) l'assertion : pour tout $q \in \mathbb{N}$, $c_q \in E_p$. On a clairement R(0).

Supposons R(p-1) avec $p \ge 1$. Soit $q \in \mathbb{N}$. E_{p-1} étant stable par combinaison linéaire,

d'après
$$R(p-1)$$
, $\psi(c_q) = \sum_{r=0}^{q-1} c_r \in E_{p-1}$, donc $c_q \in E_p$. Ceci prouve $R(p)$.

Pour montrer que E_p est de dimension infinie, il suffit donc de montrer que la famille $(c_q)_{q\in\mathbb{N}}$ est libre : soit (α_q) une famille presque nulle de complexes telle que $\sum_{q\in\mathbb{N}} \alpha_q c_q = 0$.

Soit $n \in \mathbb{N}$. Alors le n-ième terme de la série est nul. Ainsi, $0 = \sum_{q \in \mathbb{N}} \alpha_q \delta_{q,n} = \alpha_n$. Cela conclut.

- \diamond Ce qui précéde montre que $(c_q)_{q\in\mathbb{N}}$ est une famille d'éléments de E_{∞} . Elle est libre, donc E_{∞} est aussi de dimension infinie.
- 15°) D'après le cours, $\sum aq^n$ est absolument convergente. De plus, pour tout $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} aq^k = a\frac{q^{n+1}}{1-q}$, donc $\psi(u) = \frac{q}{1-q}u$. Par récurence sur p, on en déduit que $u \in E_p$ pour tout $p \in \mathbb{N}$. Ainsi, u est absolument convergente d'ordre infini.
- **16°)** Lorque $u = \sum u_n \in E_p$, convenons de noter $\psi^p(u) = \sum u_{n,p}$.

Soit $p \in \mathbb{N}$. Notons R(p) l'assertion suivante : Lorsque $u = \sum_{n=1}^{\infty} u_n$ et $v = \sum_{n=1}^{\infty} v_n$ sont deux séries dans \mathbb{R}_+ , si $u = \sum_{n=1}^{\infty} u_n \in E_p$ et si $u_n \sim v_n$, alors $v_n \in E_p$ et $u_{n,p} \sim v_{n,p}$. De plus, pour tout $n \in \mathbb{N}$, $u_{n,p}$ et $v_{n,p}$ sont dans \mathbb{R}_+ .

Pour p=0, si $u\in E_0=S_{AC}$ et si $u_n\sim v_n$, on sait d'après le cours sur les séries à termes positifs que $v\in S_{AC}=E_0$. De plus $u_{n,0}=u_n\sim v_n=v_{n,0}$. Ceci démontre R(0). Soit $p\in\mathbb{N}$. Supposons R(p). Soit $u=\sum u_n$ et $v=\sum v_n$ deux séries dans \mathbb{R}_+ telles que $u=\sum u_n\in E_{p+1}$ et $u_n\sim v_n$. Alors $u\in E_p$, donc d'après R(p), $v_n\in E_p$ et $u_{n,p}$ $\underset{n\to+\infty}{\sim} v_{n,p}$ avec $u_{n,p},v_{n,p}\in\mathbb{R}_+$.

 $u \in E_p$, donc $\sum_{n} u_{n,p}$ est convergent et $u_{n,p} \sim v_{n,p}$ donc $\sum_{n} v_{n,p}$ converge également. Alors, d'après le théorème de sommation des équivalents,

$$u_{n,p+1} = \sum_{k=n+1}^{+\infty} u_{k,p} \sim \sum_{k=n+1}^{+\infty} v_{k,p} = v_{n,p+1}.$$

De plus, $u_{n,p+1}$ et $v_{n,p+1}$ sont clairement dans \mathbb{R}_+ .

Enfin, $u \in E_{p+1}$, donc $\sum u_{n,p+1}$ converge, donc $\sum v_{n,p+1}$ converge, ce qui prouve que $v \in E_{p+1}$. On en déduit bien R(p+1).

D'après le principe de récurrence, la question est bien démontrée.

17°) Reprenons les notations de la question 14.

Pour tout $n \in \mathbb{N}^*$, $N(\frac{1}{n}c_n) = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, donc $\frac{1}{n}c_n \xrightarrow[n \to +\infty]{} 0$.

Cependant $N\left(\psi_p\left(\frac{1}{n}c_n\right)\right) = N\left(\frac{1}{n}\sum_{k=0}^{n-1}c_k\right) = 1$, donc $\psi_p\left(\frac{1}{n}c_n\right)$ ne tend pas vers $\psi_p(0) = 0$

au sens de la norme N. Ceci prouve que ψ_p n'est pas continue avec la norme N.

 18°)

$$\diamond$$
 Soit $n \in \mathbb{N}$. Posons $U = \sum_{n=0}^{+\infty} u_n$.

$$\sum_{k=0}^{n} R_k = \sum_{k=0}^{n} \left(U - \sum_{h=0}^{k} u_h \right) = (n+1)U - \sum_{0 \le h \le k \le n} u_h = (n+1)U - \sum_{h=0}^{n} \sum_{k=h}^{n} u_h,$$

donc
$$\sum_{k=0}^{n} R_k = (n+1)U - \sum_{h=0}^{n} (n-h+1)u_h = (n+1)R_n + \sum_{k=0}^{n} ku_k$$
.

 \diamond On suppose que u est absolument convergente d'ordre 1. Ainsi, $\sum R_n$ est une série convergente de réels positifs.

Or
$$\sum_{k=0}^{n} ku_k = -(n+1)R_n + \sum_{k=0}^{n} R_k \le \sum_{k=0}^{n} R_k \le \sum_{k=0}^{+\infty} R_k$$
 et $\sum nu_n$ est une série de réels

positifs, donc d'après le cours, $\sum nu_n$ est convergente.

Les restes de Cauchy de $\sum nu_n$ convergent donc vers $0: \sum_{n\to+\infty} iu_i \xrightarrow[n\to+\infty]{} 0.$

Or
$$0 \le nR_n = \sum_{i=n+1}^{+\infty} nu_i \le \sum_{i=n+1}^{+\infty} iu_i$$
, donc d'après le principe des gendarmes, $nR_n \xrightarrow[n \to +\infty]{} 0$.

19°) On va montrer que la réciproque est fausse en construisant une série $\sum u_n$ de

réels positifs telle que
$$nR_n \underset{n \to +\infty}{\longrightarrow} 0$$
 mais telle que $\sum R_n$ diverge.
Posons $u_n = \frac{1}{(n-1)\ln(n-1)} - \frac{1}{n\ln n}$ lorsque $n \ge 3$ et $u_0 = u_1 = u_2 = 0$.

La série télescopique $\sum u_n$ converge car la suite $\left(\frac{1}{n \ln n}\right)_{n\geq 3}$ converge et $u_n \in \mathbb{R}_+$ pour

tout $n \in \mathbb{N}$. De plus, pour $n \geq 2$, $R_n = \frac{1}{n \ln n}$, donc $nR_n \underset{n \to +\infty}{\longrightarrow} 0$, mais (cf question 5)

la série $\sum R_n = \sum_{n>2} \frac{1}{n \ln n}$ diverge.