## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

#### Ασκηση 1

(α) Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

#### Απάντηση:

- Για να υπολογίσουμε τη στοχαστική μέση τιμή της διαδικασίας, αρκεί να υπολογίσουμε τον θεωρητικό μέσο όρο της τυχαίας μεταβλητής A(θ) για το δοσμένο διάστημα [-1/2, 1/2], ο οποίος είναι 0.
- (β) Χρησιμοποιώντας τη συνάρτηση  $rand(\cdot)$  της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

#### Απάντηση:

- Για μικρό αριθμό υλοποιήσεων (π.χ. K = 1 ή 10), η στοχαστική μέση τιμή είναι ασταθής και εμφανίζει μεγάλη διακύμανση.
- Καθώς αυξάνεται ο αριθμός των υλοποιήσεων (π.χ. K = 100 ή 1000), η στοχαστική μέση τιμή αρχίζει να σταθεροποιείται και να πλησιάζει τη θεωρητική στοχαστική μέση τιμή της διαδικασίας (μηδέν στην προκειμένη περίπτωση).
- Αυτό επαληθεύει τον "Νόμο των Μεγάλων Αριθμών", όπου η αριθμητική μέση τιμή των ανεξάρτητων και ομοίως κατανεμημένων τυχαίων μεταβλητών συγκλίνει στη θεωρητική στοχαστική μέση τιμή τους όσο αυξάνεται ο αριθμός των δειγμάτων.

# Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|



## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

Ακολουθεί αναπαράσταση της στοχαστικής μέσης τιμής και σε εικόνες. Για Κ=1000 παρατηρείται επικράτηση της τιμής 0 (χρώμα μπλε) στην εικόνα.



## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

(γ) Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Τι παρατηρείτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;



Σύγκλιση αυτοσυσχέτισης στη συνάρτηση δ.



Σύγκλιση αυτοσυσχέτισης στη συνάρτηση δ σε μορφή εικόνων.

## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

- Καθώς αυξάνεται ο αριθμός των υλοποιήσεων της διαδικασίας (Κ),
   η εκτιμώμενη αυτοσυσχέτιση θα συγκλίνει προς την πραγματική αυτοσυσχέτιση της διαδικασίας.
- Η αυτοσυσχέτιση αναπαρίσταται στις εικόνες ως ένα κεντρικό χρωματισμένο τετράγωνο, υποδηλώνοντας ισχυρή συσχέτιση της διαδικασίας με τον εαυτό της και ασθενή προς μηδενική συσχέτιση με τις χρονικές μετατοπίσεις της (προσεγγίζει την συνάρτηση δ).

(δ) Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

#### Απάντηση:

Μια διαδικασία είναι "λευκή" όταν η αυτοσυσχέτιση είναι μηδενική για όλες τις μη μηδενικές χρονικές καθυστερήσεις, δείχνοντας έλλειψη συσχέτισης μεταξύ των δειγμάτων της διαδικασίας εκτός από την αυτοσυσχέτιση σε μηδενική καθυστέρηση. Επιπλέον, η στοχαστική μέση τιμή μιας λευκής διαδικασίας είναι 0. Προηγουμένως αποδείχτηκε ότι η εν λόγω διαδικασία έχει στοχαστική μέση τιμή 0 και η αυτοσυσχέτισή της εκτιμήθηκε πως τείνει σημαντικά στη συνάρτηση δ. Επομένως, μπορεί όντως να θεωρηθεί μια λευκή διαδικασία.

## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

(ε) Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

#### Απάντηση:

Η πυκνότητα φάσματος μπορεί να υπολογιστεί χρησιμοποιώντας τον μετασχηματισμό Fourier της αυτοσυσχέτισης. Η ποιότητα της εκτίμησης της πυκνότητας φάσματος εξαρτάται από τον αριθμό των υλοποιήσεων της διαδικασίας (Κ). Καθώς αυξάνεται ο αριθμός των υλοποιήσεων, η εκτίμηση προσεγγίζει πιο κοντά στην ιδανική πυκνότητα φάσματος.



# Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

#### Ασκηση 2

| (  | (a) | Υπολογίστε την | στοχαστική | μέση | τιμή | της | διαδικασία | ς. |
|----|-----|----------------|------------|------|------|-----|------------|----|
| ١, | ,   |                | /\         |      |      |     |            | Э. |

## Απάντηση:

(β) Χρησιμοποιώντας τη συνάρτηση  $randn(\cdot)$  της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

#### Απάντηση:



- (γ) Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Τι παρατηρείτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;
- (δ) Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

#### Απάντηση:

(ε) Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

|                  | Απαντήσεις στο                                                         | τέταρτο σε    | ετ εργαστηρια    | κών ασκήσε       | ωv             |
|------------------|------------------------------------------------------------------------|---------------|------------------|------------------|----------------|
| Ον/μο:           | Χαράλαμπος<br>Αναστασίου                                               | AM:           | 1093316          | Έτος:            | 30             |
| Απάντι           | լση:                                                                   |               |                  |                  |                |
| Ασκηση 3         |                                                                        |               |                  |                  |                |
|                  | ιήστε αποδοτικά τον<br>ακολουθία. Εκτιμή                               | •             |                  | •                | •              |
| Απάντι           | լση:                                                                   |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
| (β) Χρησιμοπο    | ιώντας την εικόνα π                                                    | ου αποκαλύψ   | ατε, επιβεβαιώσι | τε το Κεντρικό Ο | θριακό Θεώρημο |
| Απάντη           | <b>ι</b> ση:                                                           |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
| <u> Ασκηση 4</u> |                                                                        |               |                  |                  |                |
| δημιουργήστε μ   | ιδικασία περιγράφει η<br>ιερικές υλοποιήσεις τ<br>ωνούν με τα θεωρητικ | ης. Υπολογίσι | ε τα φασματικά χ |                  |                |
| Απάντι           | լση:                                                                   |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |
|                  |                                                                        |               |                  |                  |                |

# Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

| Ον/μο:                   | Αναστασίου                                                     | AM:                 | 1093316           | Έτος:            | 30               |
|--------------------------|----------------------------------------------------------------|---------------------|-------------------|------------------|------------------|
| (β) Ποιά η λειτοι        | υργία του Συστήμα                                              | τος Λεύκανσης; Ι    | Καταγράψτε την α  | πάντησή σας.     |                  |
| Απάντη                   | ση:                                                            |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
| (γ) Η πηγή του σ<br>σας. | ήματος της Σχέσης                                              | ; (1) είναι ντετερμ | ινιστική ή στοχασ | τική; Δικαιολογή | στε την απάντησή |
| Χρησιμοποιώντο           | του σήματος είνο<br>ας τη συνάρτηση<br>ας απαντήσεις σα<br>ας. | rand(·), δημιο      | υργείστε υλοποιι  | ήσεις της και    | προσπαθήστε να   |
| Απάντη                   | ση:                                                            |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |
|                          |                                                                |                     |                   |                  |                  |

(ε) Εκφράστε την έξοδο του FIR φίλτρου Wiener μήκους Μ συναρτήσει των συντελεστών της κρουστικής του απόκρισης και του χρωματισμένου θορύβου.

#### Απάντηση:

(στ) Σχεδιάστε το βέλτιστο FIR φίλτρο Wiener μήκους 2 και υπολογίστε το μέσο τετραγωνικό σφάλμα.

# Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

## Απάντηση:

**(ζ)** Επαναλάβετε την Ερώτηση 5 για φίλτρα μήκους 3, 4, 5, 6, υπολογίστε τα αντίστοιχα μέσα τετραγωνικά σφάλματα. Τι παρατηρείτε;

| M = 3 | M =4 | M = 5 | $\mathbf{M} = 6$ |
|-------|------|-------|------------------|
|       |      |       |                  |
|       |      |       |                  |
|       |      |       |                  |
|       |      |       |                  |

## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

## ПАРАРТНМА

# Κώδικας Άσκησης 1

```
clear;clc;close all
%% ΕΡΩΤΗΜΑ β)
% Parameters
K = 10;
n = [-2000:4000]';
% Generating random amplitudes
A = rand(1,K) - 1/2;
% Generating the signal
x = A \cdot ((n > 0) - (n - 1999 > 0));
% Plotting the signal
figure; plot(n,x);
% Calculate the stochastic mean at each time step
stochastic_mean = mean(x, 2);
% Plotting the stochastic mean
figure;
plot(n, stochastic mean);
title('Stochastic Mean of the Process');
xlabel('Time (n)');
ylabel('Stochastic Mean');
% Plotting the stochastic mean as an image
figure; imagesc(n,n,stochastic mean); colorbar;
```

## Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

| Ον/μο: | Χαράλαμπος<br>Αναστασίου | AM: | 1093316 | Έτος: | 30 |
|--------|--------------------------|-----|---------|-------|----|
|--------|--------------------------|-----|---------|-------|----|

```
% ΕΡΩΤΗΜΑ \gamma)
% Computing the autocorrelation matrix
Acor = x*x'/K;
% Calculate the mean autocorrelation at each time step
mean_autocorr = mean(Acor, 2);
% Plotting the mean autocorrelation
figure;
plot(n, mean_autocorr);
title('Mean Autocorrelation of the Process');
xlabel('Lag');
ylabel('Autocorrelation');
% Plotting the autocorrelation matrix as an image
figure; imagesc(n,n,Acor); colorbar;
% ΕΡΩΤΗΜΑ ε)
% Computing the spectral density
Sd = 20*log10(fftshift(abs(fft2(Acor))));
% Plotting the spectral density as an image
figure; imagesc(Sd);
```