Would you like to receive feedback from our execs? (marking your solutions, giving corrections, etc.) Yes/No: _____

Multiple Choice

Highlight the correct answer for each question.

- 1. Find the difference between the largest and smallest real solutions to the equation ||x|-1|-1=0
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4
- **2.** Mathlete is eating pizzas. If Mathlete eats 1/2 of a pizza in each bite, there will be 1/3 of a pizza left over. If Mathlete eats 1/3 of a pizza in each bite, there will be 1/6 of a pizza left over. Find the minimum number of pizzas.
- (A) 1/6
- (B) 5/6
- (C) 1
- (D) 7/6
- (E) 11/6
- **3.** Mr. Beast is giving away lamborghinis. There are three rooms labeled A, B, C. Room A has 3 lamborghinis, room B has 1 lamborghini and 1 box of slime, and room C simply has 4 boxes of slime. You now pick a random room out of the three rooms, and pick a random object from the objects in that room. If you get a box of slime, what is the likelihood that you're in room B?
- (A) 0
- (B) 1/5
- (C) 1/3
- (D) 1/2
- (E) 1
- **4.** Brett Yang and Eddy Chen, after having made a pyramid out of triangular triangles, is now deciding to make a pyramid out of circular triangles (what?). The diagram on the right shows how they plan to connect two circles of radius 1 together. The two circles are in the same plane. The string attaching them, segment *AB*, is tangent to both circles and has length 1. The area of the shaded region is closest to which of the following?

- (A) 0.0430
- (B) 0.0431
- (C) 0.0432
- (D) 0.0433
- (E) 0.0434
- **5.** Find the number of solution pairs (x, y) to the equation $x^2 + 2y^2 = 2xy$, where x and y are real.
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

Word Problems

Either type your solutions or insert images of handwritten solutions. Be sure to show your work!

1. Figs. 1 and 2 to the right made up of identical equilateral triangles. Is it possible to use the rhombus in Fig. 2 to completely cover all triangles in Fig. 1? No overlapping is allowed, and rhombuses are not allowed to stick outside the boundaries of Fig. 1.

2. Dude Perfect is doing pool trick shots. The pool table has width 3 and length 5. Dude Perfect shoots a billiard ball from one corner of the table, in a direction 45° from an adjacent edge (see the figure to the right). After how many bounces will the ball enter a corner pocket? Bonus: What if the width is m and the length is n, where m and n are positive integers?

3. If
$$x + \frac{1}{x} = 1$$
 , find the value of $x^2 + \frac{1}{x^2}$.

Survey

Your responses will not affect your likelihood of being counted for attendance. This is simply to let us execs know how we can improve. :)

- 1. Approximately how much time did you spend on this problem set?
- (A) Less than 15 mins
- (B) 15 to 30 mins
- (C) 30 mins to 1 hour
- (D) 1 to 2 hours
- (E) Over 2 hours
- 2. How difficult did you find this problem set?
- (A) Too easy
- (B) Fairly easy
- (C) Neutral
- (D) Fairly difficult
- (E) Too difficult

Thank you for your feedback!