VALIDACIÓN DE FUGA ISO 10648-2

R016 - C002

R016: estanqueidad **C3** (ISO 17873), equivalente a **C2** en ISO 10648-2 (HLR = 2.5 * 10⁻³)

- Presión inicial **C002** = **101235 Pa**
- Presión inicial **R016** = **101235 250** = **100985 Pa**
- Concentración de O2 inicial R016 = 0%
- Temperatura inicial **R016** = **290.95 K**
- Fuga representada con un *flowpath* de **longitud = 0.5m** y **coef. Pérdida = 1.0**
- Volumen **R016** = **2856.885 m3**
- Tiempo de simulación = **1e+07** segundos.

	Presión (Pa) Tras simulación	Temperatura (K) Tras simulación	O2 (Kg) Tras simulación	Oxygen method
Con fuga 1mm2 Dh = 0.001128379167	101207.85	291.2085	1.0410706	No se cumple la condición p1 – p0 < 50
Con fuga 0.1mm2 Dh = 0.00035682482323	100992.3	290.95844	0.034169126	HLR = 1.743577e-11 < 0.025 (C3)
Con fuga 1 µm² Dh = 0.0001128379167	100985.05	290.95001	0.00034704452	HLR = 1.798638e-15 < 0.025 (C3)

OXYGEN METHOD

- 1. Se comprueba la condición |t1 t0| < 3°C Se comprueba la condición |p1 p0| < 50 Pa
- 2. Si se cumplen:
 - 2.1. Conversión de O2 (Kg) a moles
 - 2.2. Cálculo del volumen molar
 - 2.3. Cálculo del hourly leak rate (HLR)
 - 2.4. Se comprueba la condición HLR < HLR' de la clase correpondiente