CS5760: Cryptanalysis of DES and DES-like Iterated Cryptosystems

Gautam Singh

Indian Institute of Technology Hyderabad

February 3, 2025

- Introduction
- 2 Probability Analysis of S Boxes
- Characteristic
- 4 Signal to Noise Ratio
- Structures
- 6 Differential Cryptanalysis of DES Variants

DES Reduced to Four Rounds DES Reduced to Six Rounds

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.

Figure 1: F function of DES.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.
- S boxes are nonlinear. Probability analysis performed between input and output XOR.

Figure 1: *F* function of DES.

1 Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the i^{th} S box, and Si'_O is the output XOR $(1 \le i \le 8)$.

Probability Analysis of S Boxes

- **1** Suppose $Si'_{l} = Si_{l} \oplus Si^{*}_{l}$ is the input XOR to the i^{th} S box, and Si'_{O} is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_{l} \rightarrow Si'_{O}$.
 - 64-by-16 joint probability mass function.

Probability Analysis of S Boxes

- **1** Suppose $Si'_{l} = Si_{l} \oplus Si^{*}_{l}$ is the input XOR to the i^{th} S box, and Si'_{O} is the output XOR (1 < i < 8).
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_{l}, Si'_{O}) equals the number of 6-bit key blocks Si_{K} for which $Si'_{l} \rightarrow Si'_{O}$.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - ullet pprox pprox entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{l} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.

Probability Analysis of S Boxes

- Suppose $Si'_{l} = Si_{l} \oplus Si'_{l}$ is the input XOR to the i^{th} S box, and Si'_{O} is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_1, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_1 \rightarrow Si'_O$.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - \approx 80% entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{I} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.
- 4 i^{th} S box contributes probability p_i for $Si'_i \rightarrow Si'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^{n} P_i$.

Gautam Singh (IITH)

- ① Suppose $Si'_{l} = Si_{l} \oplus Si^{*}_{l}$ is the input XOR to the i^{th} S box, and Si'_{O} is the output XOR (1 < i < 8).
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_{l}, Si'_{O}) equals the number of 6-bit key blocks Si_{K} for which $Si'_i \rightarrow Si'_{O}$.
 - 64-by-16 joint probability mass function.
- 3 This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - $\approx 80\%$ entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{I} and Si'_{O} , we can narrow down Si_{K} to a few possibilities.
- 4 i^{th} S box contributes probability p_i for $Si'_I \to Si'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^{n} P_i$.

Desirable for cryptanalysis: high P with large n.

Characteristic

Formalizes notion of high-probability plaintext XORs.

Definition 1 (Characteristic)

An *n-round chracteristic* is a tuple $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ where $\Omega_P = (L', R')$ and $\Omega_T = (l', r')$ are m bit numbers, $\Omega_\Lambda = (\Lambda_1, \ldots, \Lambda_n)$, $\Lambda_i = (\lambda_l^i, \lambda_O^i)$ and $\lambda_l^i, \lambda_O^i, L', R', l', r'$ are $\frac{m}{2}$ bit numbers and m is the block size of the cryptosystem satisfying

$$\lambda_I^1 = R' \tag{1}$$

$$\lambda_I^2 = L' \oplus \lambda_O^1 \tag{2}$$

$$\lambda_I^n = r' \tag{3}$$

$$\lambda_I^{n-1} = I' \oplus \lambda_O^n \tag{4}$$

$$\forall \ 1 < i < n, \ \lambda_O^i = \lambda_I^{i-1} \oplus \lambda_I^{i+1} \tag{5}$$

Gautam Singh (IITH)

Characteristic

Definition 2 (Right Pair)

A right pair with respect to an n-round characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ and an independent key K is a pair for which $P' = \Omega_P$ and for each round i of the first n rounds of the encryption of the pair using K the input XOR of the i^{th} round equals λ_i^i and the output XOR of the F function equals λ_{Ω}^{i} . Pairs that do not satisfy these conditions are called *wrong pairs*.

Characteristic

Definition 2 (Right Pair)

A right pair with respect to an n-round characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ and an independent key K is a pair for which $P' = \Omega_P$ and for each round i of the first n rounds of the encryption of the pair using K the input XOR of the i^{th} round equals λ_I^i and the output XOR of the F function equals λ_O^i . Pairs that do not satisfy these conditions are called *wrong pairs*.

Definition 3 (Probability of a Round of a Characteristic)

Round i of an n-round characteristic Ω has probability p_i^{Ω} if $\lambda_I^i \to \lambda_O^i$ with probability p_i^{Ω} by the F function.

Probability of a Characteristic

Definition 4 (Probability of a Characteristic)

An *n*-round characteristic Ω has probability p^{Ω} given by

$$p^{\Omega} = \prod_{i=1}^{n} p_{i}^{\Omega} \tag{6}$$

Definition 4 (Probability of a Characteristic)

An *n*-round characteristic Ω has probability p^{Ω} given by

$$p^{\Omega} = \prod_{i=1}^{n} p_i^{\Omega} \tag{6}$$

Theorem 5 (Probability of a Characteristic and Right Pairs)

The formally defined probability of a characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ is the probability that any fixed plaintext pair satisfying $P' = \Omega_P$ is a right pair when random independent keys are used.

Gautam Singh (IITH)

Figure 2: Example of a two-round characteristic with probability $\frac{14}{64}$.

1 Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .

Signal to Noise Ratio

- 1 Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).

- Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.

- **1** Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.
- The key with the largest count is likely the actual key.

Signal to Noise Ratio

- **1** Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.
- The key with the largest count is likely the actual key.

Definition 6 (Signal-to-Noise Ratio)

The ratio between the number of right pairs and the average count of incorrect subkeys in a counting scheme is called the *signal to noise ratio of the counting scheme* and is denoted by S/N.

Computing the SNR

Consider the variables shown in Table 1.

Variable	Definition
р	Probability of the characteristic
m	Number of created pairs
α	Average count per analyzed pair
β	Fraction of analyzed pairs
k	Number of key bits counted on

Table 1: Table of variables to compute the SNR.

Computing the SNR

Consider the variables shown in Table 1.

Variable	Definition
р	Probability of the characteristic
m	Number of created pairs
α	Average count per analyzed pair
β	Fraction of analyzed pairs
k	Number of key bits counted on

Table 1: Table of variables to compute the SNR.

Then,

$$S/N = \frac{m \cdot p}{\frac{m \cdot \beta \cdot \alpha}{2^k}} = \frac{2^k \cdot p}{\alpha \cdot \beta} \tag{7}$$

Structures

Many attacks on DES use more than one characteristic.

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

Structures

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

Definition 7 (Quartet and Octet)

A quartet is a structure of four ciphertexts that simultaneously contains two ciphertext pairs of one characteristic and two ciphertext pairs of a second characteristic. An octet is a structure of eight ciphertexts that simultaneously contains four ciphertext pairs of each of three characteristics.

As an example, $(P, P \oplus \Omega_P^1, P \oplus \Omega_P^2, P \oplus \Omega_P^1 \oplus \Omega_P^2)$ is a quartet.

Structures

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

Definition 7 (Quartet and Octet)

A *quartet* is a structure of four ciphertexts that simultaneously contains two ciphertext pairs of one characteristic and two ciphertext pairs of a second characteristic. An *octet* is a structure of eight ciphertexts that simultaneously contains four ciphertext pairs of each of three characteristics.

- **3** As an example, $(P, P \oplus \Omega_P^1, P \oplus \Omega_P^2, P \oplus \Omega_P^1 \oplus \Omega_P^2)$ is a quartet.
- 4 Quartets save $\frac{1}{2}$ of the data and octets save $\frac{2}{3}$ of the data.

DES Reduced to Four Rounds

① Use two one-round characteristics, as shown in Figure 3.

- ① Use two one-round characteristics, as shown in Figure 3.
- Ø Both characteristics have probability 1.

Figure 3: Characteristics used for cryptanalysis of DES reduced to four rounds.

Gautam Singh (IITH)

DES Reduced to Four Rounds

- ① Use two one-round characteristics, as shown in Figure 3.
- Ø Both characteristics have probability 1.
- Example of a 3R-attack. There are three extra rounds after the characteristic is applied.

Figure 3: Characteristics used for cryptanalysis of DES reduced to four rounds.

DES Reduced to Four Rounds

Figure 4: DES reduced to four rounds.

4□▶4∰▶4불▶4불▶ 불 ∽9<</p>

Gautam Singh (IITH) Cryptanalysis of DES February 3, 2025

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

Figure 4: DES reduced to four rounds.

Gautam Singh (IITH)

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.

Figure 4: DES reduced to four rounds.

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.

Figure 4: DES reduced to four rounds.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.
 - 28 bits of B' are zero and hence we can find 28 bits of D'.

Figure 4: DES reduced to four rounds.

1 Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.
 - 28 bits of B' are zero and hence we can find 28 bits of D'.
 - We already know d' = r'. So, we employ a counting approach to get K4.

Figure 4: DES reduced to four rounds.

40.49.45.45. 5 200

DES Reduced to Four Rounds

DES Reduced to Four Rounds

1 To get Si_{Kd} for $2 \le i \le 8$, we verify (9).

$$S(S_{Ed} \oplus S_{Kd}) \oplus S(S_{Ed}^* \oplus S_{Kd}) = S_{Od}'$$
(9)

- **2** Only *one* plaintext pair is needed since characteristic probability is 1.
- 3 We recover $7 \times 6 = 42$ key bits of K4, which correspond to 42 bits of the master key.
- 4 Exhaustively search the other 14 key bits to get the entire master key.
- **6** We have used the key schedule to our advantage here? What if all the keys were independent?

• We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.

Gautam Singh (IITH)

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.

Gautam Singh (IITH)

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.

Gautam Singh (IITH)

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.
- § Since $a' = A' = 0_x$, all keys are equally likely. Other characteristics Ω^3 and Ω^4 are chosen such that
 - $S'_{Fa} \neq 0_x$ for all S boxes for both characteristics.
 - For every S box, the S'_{Fa} values differ between the characteristics.
 - Similar counting methods used to get K1 and K2.

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- ② We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.
- § Since $a' = A' = 0_x$, all keys are equally likely. Other characteristics Ω^3 and Ω^4 are chosen such that
 - $S'_{Ea} \neq 0_x$ for all S boxes for both characteristics.
 - For every S box, the S'_{Ea} values differ between the characteristics.
 - Similar counting methods used to get K1 and K2.
- 4 16 chosen plaintexts are needed for this attack.
 - 8 pairs of Ω^1 and Ω^2 each.
 - 4 pairs of Ω^3 and Ω^4 each.

To reduce the data needed, two octets are used.

Gautam Singh (IITH) Cryptanalysis of DES Eghruary 3 2025

DES Reduced to Six Rounds

1 Two three-round characteristics used, each with probability $\frac{1}{16}$.

Figure 5: Characteristics used for cryptanalysis of DES reduced to 6 rounds.

20 € 4 € 6 4 € 6 4 ∰ 6 4 ± 6

rtam Singh(IITH) Cryptanalysis of DES February 3, 2025

DES Reduced to Six Rounds

- 1 Two three-round characteristics used, each with probability $\frac{1}{16}$.
- We have,

$$e' = c' \oplus D' = F' \oplus I' \implies F' = c' \oplus D' \oplus I' \tag{10}$$

Figure 5: Characteristics used for cryptanalysis of DES reduced to 6 rounds.

tam Singh (IITH) Cryptanalysis of DES February 3, 2

- In the fourth round,
 - with Ω¹, S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.

- In the fourth round,
 - with Ω¹, S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- Combining both characteristics, 42 key bits of K6 can be found.

- In the fourth round,
 - with Ω¹, S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- \bigcirc Combining both characteristics, 42 key bits of K6 can be found.
- **6** Counting on more bits gives high S/N at the cost of exponentially more memory.

- In the fourth round,
 - with Ω¹, S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- 2 Combining both characteristics, 42 key bits of K6 can be found.
- **6** Counting on more bits gives high S/N at the cost of exponentially more memory.
- ① Due to higher S/N, fewer plaintext pairs are analyzed. This is exploited to get a faster counting algorithm.

Used to reduce memory when few plaintexts are used to count on more subkey bits.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- ② Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- ② Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- ② Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).
- Goal is to find the largest clique such that the bitwise AND of all masks in the subgraph induced by that clique is nonzero.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).
- Goal is to find the largest clique such that the bitwise AND of all masks in the subgraph induced by that clique is nonzero.
- **6** Apply this method for both Ω^1 and Ω^2 , ensuring that the suggested keys at S2, S5 and S6 match. Otherwise, use more data.

Completing the Cryptanalysis

- 42 key bits have been found, thus exhaustive search can be performed on the remaining 14 bits.
- To speed up the search, we can find the remaining 6 key bits of K6 using Figure 6. Count using checks on S2, S3 and S8 of the fifth round.
 - Remaining 8 bits can be exhaustively searched.
 - Wrong pairs should be discarded by checking if they satisfy the characteristic and expected value of E'
 - This will leave us with $\frac{1}{16}$ of the pairs, which boosts S/N greatly.

Into S box number	e bits S_{Ee}	Key bits S_{Ke}
S2	++3+++	+ 3 + 3 3 3
S 3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	++++3+	+ . + . ++
S 7	3+++++	+++.++
28	+ + 3 + + +	****

Figure 6: Dependence of K5 on bits of K6. '3' indicates dependence on $S3_{Kf}$, '.' indicates bits unused in K6 and '+' indicates dependence on known key bits of K6.

Data Requirements

The first phase has

$$S/N = \frac{2^{30} \cdot \frac{1}{16}}{4^5} = 2^{16}. \tag{11}$$

Only 7-8 pairs are needed for each characteristic. Since each characteristic has probability $\frac{1}{16}$, we require about 120 pairs of plaintexts.

2 The second phase has

$$S/N = \frac{2^6 \cdot 1}{4} = 16. \tag{12}$$

Though S/N is lesser, we can use the 7-8 right pairs from the first part.

3 We can reduce the data required by using quartets. In total, about 240 ciphertexts are needed.

Gautam Singh (IITH) Cryptanalysis of DES