

FIRST SEMESTER 2024-2025

Course Handout Part II

Date:01-08-2024

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No	CS / EEE / ECE / INSTR F215				
Course Title	Digital Design				
Instructor in charge	Prof. Ponnalagu RN				
Instructors for Lectures	Prof. Ponnalagu RN, Prof. Joyjit Mukherjee, Prof. BVVSN Prabhakar Rao,				
Tutorial Instructors	Prof. Ponnalagu RN, Prof. Joyjit Mukherjee, Prof. Niranjan raj,				
	Prof. Pritesh Kumar Yadav, Prof. Soumya J, Prof. BVVSN Prabhakar Rao,				
Practical Instructors	Faculty: Prof. Ponnalagu, Prof. Syed Ershad Ahmed, Prof. Joyjit Mukherjee,				
	Prof. Niranjan Raj, Prof. Neha Tak				
	Research Scholars:				
	Shubham Deepak Yadav, Amgith G.S, Sohel Siraj, Nongthombam Joychandra				
	Singh, Gowtham Polumati, Mou Sarkar, Sajith P M, Vanmathi S, K S Vaishnavi				
	Isha Basumatary, Kandi Mounica, Abbidi Shivani Reddy, Baishali Paul, Nandini				
	Ashok Kumar Trivedi, Shaik Sultan, Pavar Sai Kumar				

Scope and Objective of the Course:

The objective of the course is to impart knowledge to students on the basic concepts of digital logic and the tools, methods and procedures used for designing digital logic circuits for various applications. The course also provides laboratory practice using simulation tools, digital ICs and trainer kits to simulate and implement various operations of digital electronics.

Textbooks:

T1: M. Morris Mano and Michael D. Ciletti "Digital Design", Pearson, 6th Edition, 2018.

Reference books

R1. Neal S. Widmer, Gregory L. Moss & Ronald J. Tocci, "Digital Systems Principles and Applications" Pearson, 12th Edition, 2018.

R2. Charles H. Roth, Jr. and Larry L. Kinney "Fundamentals of Logic Design" Cengage Learning 7th Edition, 2013.

R3: Donald D. Givone, "Digital Principles and Design" TMH, 2003

Course Plan:

Lectu	Learning objectives	Topics to be covered	Chapter in the
re No.		-	Textbook

	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1	To learn the basic concepts of digital Systems and digital ICs.	Course Overview. Advantages and disadvantages of digital systems, Evolution of digital technology, terminologies used in digital systems.	T1:1.1 T1:2.9
2	To understand the different number systems and codes used in digital logic systems	Binary, decimal, Octal, Hexadecimal number system and binary codes, Binary arithmetic	T1:1.2-1.7
3-4	To understand the Boolean algebra and logic gates used in digital logic systems	Binary Logic, Boolean functions, Canonical forms, logic gates, Boolean laws, theorems and Postulates	T1 : 1.9, 2.1-2.8
5-7	To simplify Boolean functions using K-map method	Karnaugh map method (3, 4 and 5 variables) for simplifying SOP and POS expressions, K-map with don't care terms	T1 : 3.1- 3.6
8-9	To simplify Boolean functions using K-map method using QM method	Quine Mc Cluskey (QM) Method	Class notes
10-11	To realize Boolean functions using logic gates	Multi-level and Multi-output Circuits, NAND and NOR realization of Boolean functions	T1: 3.7 R2: 7.1-7.7
12-15	To understand the Combinational Logic circuits and Arithmetic circuits in digital logic systems	Analysis and Design of combinational logic circuits, Adders, Subtractors, Multipliers,	T1 : 4.1 – 4.7
16-18	To study about the medium scale integrated digital logic componenets	Comparators, Decoders, Encoders, Multiplexers, Demultiplexers	T1: 4.8 - 4.11
19-22	To understand the concept of Sequential logic circuits	Latches, Flip-Flops and Characteristic tables and characteristic Equations	T1 : 5.1 - 5.4
23-26	To analyze and design clocked Sequential Circuits	Analysis of clocked sequential circuits, state diagram and reduction, Design of clocked sequential circuits	T1: 5.5, 5.7 & 5.8
27-31	To study about the registers and counters in digital logic systems	Shift registers, Synchronous and Asynchronous counters, Clock skew and Clock Jitter	T1 : 6.1 - 6.5
32-33	To understand the basic concept of memory in digital logic systems	Introduction, Random-Access Memory, Memory decoding, Read-Only Memory,	T1 :7.1 - 7.5

34-36	To understand	d the	Programmable logic array, Programmable	T1 :7.7 - 7.8
	working and design of		array logic, Introduction to FPGA	
	programmable logic			
	devices			
37-38	To design	state	Algorithmic State Machines (ASM)	T1: 8.4
	machines			
39-40	To study	and	RTL, DTL, TTL, ECL and CMOS Gates,	T1 :10.1 -
	implement digital		Implementation of Simple CMOS circuits	10.7
	integrated circuits			

List of Lab Experiments

- Exp. 1 Introduction to digital trainer kit and Verilog HDL
- **Exp. 2** Implementation and Simulation of Boolean Functions using Logic Gates and Verilog Gate Level Modeling
- Exp. 3 Parity Generator and Code Converter using Verilog Data Flow Modeling and Implementation on FPGA Board
- Exp. 4 Implementation of Adders and Subtractor on the digital trainer kit
- Exp. 5 Verilog: Instantiation and Implementation of Adders on FPGA kit
- **Exp. 6** Implementation of BCD to 7-Segment Decoder on digital trainer kit and BCD Adder using Verilog Data Flow Modeling
- Exp. 7 Implementation of Decoders, Demultiplexers, and Multiplexers on digital trainer kit
- Exp. 8 Implementation of Comparators and Arithmetic Logic Units on digital trainer kit
- **Exp. 9** Implementation & Simulation of Latches and Flip-Flops on digital trainer kit and Verilog Gate Level Modeling
- **Exp. 10** Implementation & Simulation of Counters on digital trainer kit and Verilog Data Flow Modeling
- Exp. 11 Implementation of Shift Registers on digital trainer kit

Evaluation Scheme:

Component	Duration	Weightage (%)	Marks allotted	Date & Time	Nature of Component
Quizzes	-	10 %	20	To be announced	Closed Book
Mid Semester Examination	90 minutes	30 %	60		Closed Book
Regular Lab	During lab hours	10 %	20	Regular Lab classes	Open Book
Final Lab Examination	-	10 %	20	To be announced	Open Book
Comprehensive Examination	180 minutes	40 %	80	4.12.2024 (AN)	Closed Book
Total		100 %	200		

Chamber Consultation Hour: To be announced in the class.

Notices: All notices concerning the course will be displayed in the CMS

Make-up Policy:

- 1. No make-up will be given for the quizzes and laboratory exam
- 2. For the mid-semester and end-semester examinations, make-up will be given ONLY in cases of sickness (hospitalization) or urgency for going out of station. In such a case, the student must produce sufficient proof or must have taken the prior permission from the IC of the course.
- 3. Make-up for the regular laboratory classes will be allowed only for genuine reasons and in such cases prior permission from the respective lab section instructor needs to be obtained.

Academic Honesty and Integrity Policy: Academic honesty and integrity need to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Prof. Ponnalagu RN

INSTRUCTOR-IN-CHARGE

