Università di Pisa

Dipartimento di Informatica

Corso di Laurea Triennale in Informatica

Geolocalizzazione Indoor Basata su Beacon Bluetooth a Bassa Potenza:

Metodi e Modelli del Deep Learning

un progetto realizzato per Consorzio Metis e ASL Toscana

Relatori: Prof. Gianluigi Ferrari Presentata da:

Marco Pampaloni

Sessione Estiva Anno Accademico 2019/2020

Indice

1	Intr	Introduzione					
2	Geo	localizzazione Indoor	2				
	2.1	Introduzione al problema	2				
	2.2	Possibili soluzioni	2				
	2.3	Beacon BLE	2				
	2.4	RSSI e propagazione del segnale	2				
	2.5	Variabilità e rumore di fondo: requisiti di usabilità	2				
	2.6	Installazione dei Beacon e Acquisizione dei Dati	2				
3	Deep Learning						
	3.1	Neurone Artificiale: Perceptron	4				
	3.2	Multi Layer Perceptron	4				
	3.3	Attivazione: ReLU e Funzioni Sigmoidee	4				
	3.4	Apprendimento: Metodo del Gradiente e BackPropagation	4				
	3.5	Reti Neurali Convoluzionali	4				
3.6 Regolarizzazione		Regolarizzazione	4				
		3.6.1 Overfitting e Underfitting	4				
		3.6.2 Regolarizzazione L2	4				
		3.6.3 Dropout	4				
	3.7	Dataset Augmentation e Preprocessing	4				
		3.7.1 Jittering	4				
		3.7.2 Ridimensionamento (Scaling)	4				

		3.7.3	Magnitude Warping	4
		3.7.4	Permutazione di Sottoinsiemi (Subset Shuffling)	4
		3.7.5	Deattivazione Selettiva	4
4	Arcl	hitettui	ra Software	5
	4.1	Tensor	Flow	6
	4.2	Keras		6
	4.3	Google	e Colab	6
	4.4	Weigh	ts & Biases	6
	4.5	Model	lo di Apprendimento	6
		4.5.1	Input del modello	6
		4.5.2	Blocco Convoluzionale	6
		4.5.3	Uso della Bussola e Output Ausiliario	6
		4.5.4	Coefficiente di Memoria Residua e Input Ausiliario	6
		4.5.5	Output del modello	6
	4.6	Addest	tramento del Modello	6
	4.7	Ensem	bling	6
	4.8	Compi	lazione e Deploy del modello	6
5	App	licazio	ne Mobile	7
	5.1	Flutter		7
	5.2	Planin	netrie e Poligoni	7
	5.3	Backer	nd TensorFlow	7
		5.3.1	TensorFlow Lite	7
		5.3.2	Implementazione del Bridge di Comunicazione	7
	5.4	Stabili	zzazione del modello	7
		5.4.1	Utilizzo dell'Accelerometro	7
		5.4.2	Filtro di Kalman	7
6	Con	clusion	ni	8
	6.1	Risulta	ati Sperimentali	8

	6.1.1	Metriche di Errore: MSE, MAE, MaxAE	8
6.2	Lavori	futuri	8
	6.2.1	Input a Lunghezza Variabile	8
	6.2.2	Reti Neurali Residuali	8
	6.2.3	Variational Autoencoder: Generazione di nuovi dati	8
	6.2.4	Transfer Learning	8
	6.2.5	Input Masking e Ricostruzione dei Segnali	8
	6.2.6	Transformers per Problemi di Regressione	8
	6.2.7	Simulatore BLE	8

Introduzione

Geolocalizzazione Indoor

- 2.1 Introduzione al problema
- 2.2 Possibili soluzioni
- 2.3 Beacon BLE
- 2.4 RSSI e propagazione del segnale
- 2.5 Variabilità e rumore di fondo: requisiti di usabilità
- 2.6 Installazione dei Beacon e Acquisizione dei Dati

Deep Learning

- 3.1 Neurone Artificiale: Perceptron
- 3.2 Multi Layer Perceptron
- 3.3 Attivazione: ReLU e Funzioni Sigmoidee
- 3.4 Apprendimento: Metodo del Gradiente e BackPropagation
- 3.5 Reti Neurali Convoluzionali
- 3.6 Regolarizzazione
- 3.6.1 Overfitting e Underfitting
- 3.6.2 Regolarizzazione L2
- 3.6.3 Dropout
- 3.7 Dataset Augmentation e Preprocessing
- 3.7.1 Jittering

Architettura Software

1	1	Ten		"El	O TAT
4.	1	ren	เรีย	$\Gamma\Gamma$	lOW

- 4.2 Keras
- 4.3 Google Colab
- 4.4 Weights & Biases
- 4.5 Modello di Apprendimento
- 4.5.1 Input del modello
- 4.5.2 Blocco Convoluzionale
- 4.5.3 Uso della Bussola e Output Ausiliario
- 4.5.4 Coefficiente di Memoria Residua e Input Ausiliario
- 4.5.5 Output del modello
- 4.6 Addestramento del Modello
- 4.7 Ensembling

Applicazione Mobile

- 5.1 Flutter
- 5.2 Planimetrie e Poligoni
- 5.3 Backend TensorFlow
- 5.3.1 TensorFlow Lite
- 5.3.2 Implementazione del Bridge di Comunicazione
- 5.4 Stabilizzazione del modello
- 5.4.1 Utilizzo dell'Accelerometro
- 5.4.2 Filtro di Kalman

Conclusioni

6.1	Risul	ltati	Sper	imen	tali
	_ 120 052		- P		

- 6.1.1 Metriche di Errore: MSE, MAE, MaxAE
- 6.2 Lavori futuri
- 6.2.1 Input a Lunghezza Variabile
- 6.2.2 Reti Neurali Residuali
- 6.2.3 Variational Autoencoder: Generazione di nuovi dati
- **6.2.4** Transfer Learning
- 6.2.5 Input Masking e Ricostruzione dei Segnali
- 6.2.6 Transformers per Problemi di Regressione
- **6.2.7 Simulatore BLE**

Bibliografia