8.GBI-Tutorium von Tutorium Nr 31

Richard Feistenauer

19.Dezember 2014

Inhaltsverzeichnis

- Wiederholung
- 2 Algorithmen in Graphen
 - Repräsentation von Graphen
 - Wegematrix
 - Erreichbarkeitsrelationen
 - Algorithmus von Warshall

Letztes Übungsblatt

- Augabe 6.1: i=j muss nicht unbedingt da sein
- ullet \rightarrow ist nicht das selbe wie \Rightarrow
- bei Beweisen ein wenig auf Formale Sprache achten.

Adjazenzlisten

Sei G = (V, E) ein Graph, $x \in V$ ein Knoten. Die Adjazenzliste des Knotens x ist eine Liste $L_x \in V^{(*)}$, die alle Knoten y enthält, für die $(x, y) \in E$ (gerichteter Graph) bzw. $\{x, y\} \in E$ (ungerichteter Graph):

Example

$$G = (\{1, 2, 3\}, \{(1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)\})$$

Darstellung mit Adjazenzliste:

$$L_1 = (2, 3)$$

$$L_2 = (2)$$

$$L_3 = (1, 2, 3)$$

Adjazenzmatrix

Sei G = (V, E) ein gerichteter Graph und n := |V|. Eine Matrix A $\in \{0,1\}^{n\times n}$ heißt Adjazenzmatrix von G, wenn gilt:

$$\forall i,j \in V : A_{ij} = egin{cases} 1, & \mathsf{falls} \ (\mathsf{i},\mathsf{j}) \in \mathsf{E} \ 0 & \mathsf{sonst} \end{cases}$$

Example

$$G = (\{1, 2, 3\}, \{(1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3) \})$$

Darstellung als Adjazenzmatrix:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Vergleich von Adjazenzliste und -matrix

Adjazenzliste

- Die Frage "Welche Knoten sind zu x adjazent?" kann schnell beantwortet werden.
- Spart bei geringer Kantenanzahl Speicherplatz.

Adjazenzmatrix

- Die Frage "Existiert eine Kante zwischen x und y?" kann schnell beantwortet werden.
- Benötigt für feste Knotenanzahl immer gleich viel Speicher.

Zu Adjazenzmatrizen

Woran erkennt man eine Schlinge?

Welche Eigenschaften hat die Adjazenzmatrix eines ungerichteten Graphen?

Welchen Graphen stellt folgende Matrix dar?

Zu Adjazenzmatrizen

Woran erkennt man eine Schlinge?

ightarrow 1 auf der Diagonalen.

Welche Eigenschaften hat die Adjazenzmatrix eines ungerichteten Graphen?

Welchen Graphen stellt folgende Matrix dar?

Zu Adjazenzmatrizen

Woran erkennt man eine Schlinge?

ightarrow 1 auf der Diagonalen.

Welche Eigenschaften hat die Adjazenzmatrix eines ungerichteten Graphen?

→ Sie ist achsensymetrisch zur Hauptdiagonalen.

Welchen Graphen stellt folgende Matrix dar?

Aufgabe

Gegeben sei der Graph G = (V, E) mit

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{(1, 2), (1, 3), (3, 1), (3, 4), (3, 6), (4, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 5)\}$$

Gib die Adjazenzlisten und die Adjazenzmatrix an.

Zeichne den Graphen.

Aufgabe

Zeichne den Graphen mit der folgenden Adjazenzmatrix.

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Definition: Wegematrix

Sei G = (V, E) ein gerichteter Graph und n := |V|. Eine Matrix A $\in \{0,1\}^{n\times n}$ heißt Wegematrix von G, wenn gilt:

$$orall i, j \in V: W_{ij} = egin{cases} 1, & ext{falls es einen Pfad von i nach j gibt} \ 0 & ext{sonst} \end{cases}$$

Example

Bestimme die Wegematrix.

Zum Nachdenken

Wie sieht die Wegematrix aus, wenn die Adjazenzmatrix

ist?

Zum Nachdenken

Wie sieht die Wegematrix aus, wenn die Adjazenzmatrix

ist?

Wann ist allgemein W=A?

Zum Nachdenken

Wie sieht die Wegematrix aus, wenn die Adjazenzmatrix

ist?

Wann ist allgemein W=A?

Lösung: Wenn eine Kantenrelation E transitiv und reflexiv ist (E^*

$$= E)$$

Erreichbarkeitsrelationen

Definition: Erreichbarkeitsrelationen

Sei G = (V, E) ein Graph. Die reflexiv-transitive Hülle der Kantenrelationen E nennt man Erreichbarkeitsrelation E^* .

$$E^* = \bigcup_{k=0}^{\infty} E^k$$

Definition: Wegematrix

Sei G = (V, E) ein gerichteter Graph und n := |V|. Eine Matrix W $\in \{0,1\}^{n\times n}$ heißt Wegematrix von G, wenn gilt:

$$\forall i, j \in V : W_{ij} = \begin{cases} 1, & \mathsf{falls}\; (\mathsf{i}, \mathsf{j}) \in E^* \\ 0 & \mathsf{sonst} \end{cases}$$

Matrixmultiplikation

Die Wegematrix lässt sich über die Matrixmultiplikation errechnen.

Definition: Matritzenprodukt

Seien A eine $(I \times n)$ -Matrix und B eine $(n \times m)$ -Matrix.

Dann heißt die $(I \times m)$ -Matrix C mit:

$$C_{ij} = \sum_{k=0}^{n-1} A_{ik} \cdot B_{kj}$$

das Produkt der Matritzen A und B.

Man schreibt $C = A \cdot B$

Potenzen der Adjazenzmatrix

Aufgabe

Sei A die Adjazenzmatrix des Graphen $G=(V,\,E)$. Berechne die Wegematrix W mit Hilfe der Matrixmultiplikation.

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = A^{1}$$

Lösung

Lösung

$$A^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A^{2} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 3 & 2 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} A^{3} = \begin{pmatrix} 1 & 5 & 2 & 2 \\ 0 & 3 & 0 & 2 \\ 1 & 7 & 3 & 3 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

$$\sum_{k=0}^{n-1} A^k = \begin{pmatrix} 3 & 8 & 4 & 3 \\ 0 & 7 & 0 & 4 \\ 4 & 11 & 7 & 4 \\ 0 & 4 & 0 & 3 \end{pmatrix}$$

$$W = sgn(\sum_{k=0}^{n-1} A^k) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Algorithmus zum Berechnen von E*

Code

```
\label{eq:weights} \begin{split} W &\leftarrow 0 \\ \text{for } i \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ M &\leftarrow \text{Id} \\ \text{for } j \leftarrow 1 \text{ to } i \text{ do} \\ M &\leftarrow M \cdot A \\ \text{od} \\ W &\leftarrow W + M \\ \text{od} \\ W &\leftarrow \text{sgn}(W) \end{split}
```

Berechnungszeit

Dieser Code benötigt ungefähr n^5 Arithmetische Operationen (AO) zum berechnen der Wegematrix

Algorithmus von Warshall

```
for i \leftarrow 0 to n - 1 do
     for j \leftarrow 0 to n - 1 do
          W_{ij} \leftarrow \begin{cases} 1, & \text{falls i} = j \\ A_{ii} & \text{falls i} \neq j \end{cases}
     od
od
for k \leftarrow 0 to n - 1 do
     for i \leftarrow 0 to n - 1 do
           for i \leftarrow 0 to n - 1 do
                W_{ii} \leftarrow max(W_{ii}, min(W_{ik}, W_{ki}))
           od
     od
od
```

Algorithmus von Warshall

Beispiel

$$R_{0} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} R_{1} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} R_{2} = \begin{pmatrix} 1 & 1 & 0 & \mathbf{1} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$R_{3} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} R_{4} = \begin{pmatrix} 1 & 1 & \mathbf{1} & 1 \\ \mathbf{1} & 1 & \mathbf{1} & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Algorithmus von Warshall

Aufgabe

Gib zu folgenden Graphen jeweils die Adjazenzmatrix an und bestimme die reflexiv-transitive Hülle mit Hilfe des Warshall-Algorithmus. Kennzeiche bei jedem Schritt des Algorithmus die Veränderungen.

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Repräsentation von Graphe Wegematrix Erreichbarkeitsrelationen Algorithmus von Warshall

Ende

Fragen?

Unnützes Wissen

In der Schweiz gibt es bei manchen Geschirrspülmaschinen extra ein Käsefondue- und Racletteprogramm.