Introduction to dropouts

Overfitting means model performs well while training but fails in case of unknown real world samples

Training Phase

Prediction Phase

Prediction Phase

Prediction Phase

Preventing Overfitting

Early stopping

Regularisation

Data Augmentation

Dropout

Preventing Overfitting

Early stopping

Regularisation

Data Augmentation

Dropout

Dropout

A percentage of neurons will stay off in each training step

Neurons to be dropped out is chosen at random

Dropout creates different computation graph in each step

Dropout

A percentage of neurons will stay off in each training step

Neurons to be dropped out is chosen at random

Dropout creates different computation graph in each step

Dropout

A percentage of neurons will stay off in each training step

Neurons to be dropped out is chosen at random

Dropout creates different computation graph in each step

Neural Networks Architecture

Densely connected network

Neural Networks Architecture

Introducing dropout = 40%

