MOwNiT - Interpolacja cz3

1. Sprzęt

System operacyjny:

- Manjaro linux 22.0.4

Język:

- Python 3.10, numpy 1.24, matplotlib 3.7.1, jupyter

Procesor:

- AMD Ryzen 7 4700U

2. Treść zadania

Dla funkcji:

$$f(x) = \sin(2x) * \sin(2x^2/\pi), x \in (-2\pi, \pi)$$

Dla funkcji f(x) zadanej w zadaniu dotyczącym interpolacji wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Podobnie jak poprzednio określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych.

Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interesujące przypadki.

Opisać dokładnie przyjęte warunki brzegowe.

3. Wyprowadzenie wzorów i warunki brzegowe

Drugi stopień:

Postać ogólna funkcji sklejanej drugiego stopnia:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 dla i\epsilon < 1, n - 1 >, n - liczba węzłów$$

Warunki, które $s_n(x)$ musi spełniać aby była funkcją sklejaną 2 stopnia:

1)
$$s_i(x_i) = y_i \text{ dla } i\epsilon < 1, n-1 >$$
2) $s'_i(x_{i+1}) = s'_{i+1}(x_{i+1}) \text{ dla } i\epsilon < 1, n-2 >$
3) $s_i(x_{i+1}) = s_{i+1}(x_{i+1}) \text{ dla } i\epsilon < 1, n-2 >$

Wówczas:

1)
$$s_i(x_i) = a_i + b_i(x_i - x_i) + c_i(x_i - x_i)^2 = a_i = y_i$$

2) $s'_i(x) = b_i + 2c_i(x - x_i)$
 $b_i + 2c_i(x_{i+1} - x_i) = b_{i+1} + 2c_{i+1}(x_{i+1} - x_{i+1})$
 $c_i = \frac{b_{i+1} - b_i}{2(x_i - x_i)}$

3)
$$a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = a_{i+1} + b_{i+1}(x_{i+1} - x_{i+1}) + c_{i+1}(x_{i+1} - x_{i+1})^2$$

Podstawiając z 1) i 2)
$$y_i + b_i(x_{i+1} - x_i) + \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}(x_{i+1} - x_i)^2 = y_{i+1}$$

$$b_{i+1} + b_i = \frac{2y_{i+1} - 2y_i}{x_{i+1} - x_i}$$

Niech

1.
$$\sigma_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$$

Wówczas:

$$b_i + b_{i-1} = 2\sigma_i$$

Zatem otrzymujemy n-1 równań:

$$b_i + b_{i-1} = 2\sigma_i, i\epsilon < 2, n-1 >$$

Układ ma n-1 niewiadomych i n-2 równań zatem w obliczenia niewiadomych przyjąć będzie należało warunki brzegowe.

a. Clamped boundary

Warunek:
$$s'_1(x_1) = f'_1(x_1)$$
 w przypadku zadanej funkcji $f'_1(x_1) = 0$
$$s'_1(x_1) = b_1 + 2c_1(x_1 - x_1) = b_1 = 0$$

Dzięki zastosowaniu tego warunku brzegowego otrzymujemy następujący układ n-1 równań:

$$\begin{aligned} b_1 &= 0 \\ b_1 + b_2 &= 2\sigma_2 \\ & \cdots \\ b_{n-1} + b_{n-2} &= 2\sigma_{n-1} \end{aligned}$$

b. Natural quadratic

Warunek:
$$s''_1(x_1) = 0$$

 $s''_1(x_1) = 2c_1 = 0$
 $\frac{b_2 - b_1}{2(x_2 - x_1)} = c_1 = 0$
 $b_2 - b_1 = 0 \Rightarrow b_2 = b_1$

Wówczas otrzymujemy następujący układ n-1 równań:

$$\begin{aligned} \boldsymbol{b}_1 &= \boldsymbol{b}_2 \\ 2\boldsymbol{b}_2 &= & 2\boldsymbol{\sigma}_2 \\ & \cdots \\ \boldsymbol{b}_{n-1} + \boldsymbol{b}_{n-2} &= & 2\boldsymbol{\sigma}_{n-1} \end{aligned}$$

Trzeci stopień

Postać ogólna funkcji sklejanej trzeciego stopnia:

$$s_i(x)=a_i+b_i(x-x_i)+c_i(x-x_i)^2+d_i(x-x_i)^3$$
 dla $i\epsilon<1,n-1>,n-liczba$ węzłów Warunki, które $s_n(x)$ musi spełniać aby była funkcją sklejaną 3 stopnia:

1.
$$s_i(x_i) = y_i$$

2. $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$
3. $s'_i(x_{i+1}) = s'_{i+1}(x_{i+1})$
4. $s''_i(x_{i+1}) = s''_{i+1}(x_{i+1})$

Ponieważ $s_i(x)$ jest sześcienna to $s''_i(x)$ jest liniowa na przedziale $[x_{i'}, x_{i+1}]$. Wprowadzam oznaczenie $h_i = x_{i+1} - x_i$ wówczas można zapisać ze wzory na funkcję liniową:

$$s''_{i}(x) = s''_{i}(x_{i}) \frac{x_{i+1} - x}{h_{i}} + s''_{i}(x_{i+1}) \frac{x - x_{i}}{h_{i}}$$

Następnie całkując dwukrotnie otrzymam:

$$s_{i}(x) = \frac{s_{i}(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{s_{i}(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + C(x - x_{i}) + D(x_{i+1} - x),$$

C i D - stałe całkowania, które możemy policzyć z warunków interpolacji:

$$s_{i}(x) = \frac{s_{i}(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{s_{i}(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + (\frac{y_{i+1}}{h_{i}} - \frac{s_{i}(x_{i+1})h_{i}}{6})(x - x_{i}) + (\frac{y_{i}}{h_{i}} - \frac{s_{i}(x_{i})h_{i}}{6})(x_{i+1} - x)$$

W powyższym wzorze niewiadomą jest $s''_i(x_i)$, aby je obliczyć można użyć warunku ciągłości pierwszej pochodnej. Różniczkuje otrzymując:

$$s'_{i}(x_{i}) = -\frac{h_{i}}{3}s''_{i}(x_{i}) - \frac{h_{i}}{6}s''_{i}(x_{i+1}) - \frac{y_{i}}{h_{i}} + \frac{y_{i+1}}{h_{i}}$$

Dla większej przejrzystości wprowadze:

$$\sigma_i = \frac{1}{6}s''(x_i) i \Delta_i = \frac{y_{i+1} - y_i}{h_i}$$

Podstawiając je do wyników różniczkowania:

$$s'_{i}(x_{i}) = \Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$

Natomiast z drugiej strony:

$$s'_{i-1}(x_i) = \Delta_{i-1} - h_{i-1}(2\sigma_i + \sigma_{i-1})$$

Korzystając z warunku ciągłości: $s'_{i-1}(x_i) = s'_i(x_i)$:

$$\begin{split} \Delta_{i-1} - h_{i-1} (2\sigma_i + \sigma_{i-1}) &= \Delta_i - h_i (\sigma_{i+1} + 2\sigma_i) \\ h_{i-1} \sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i \sigma_{i+1} &= \Delta_i - \Delta_{i-1} \text{ dla i = 2,3, ..., n-1,} \end{split}$$

ponieważ niewiadomych jest konieczne będzie określenie 2 warunków brzegowych

a. cubic function

Niech:

 $C_{_1}(x)$ - funkcja sześcienna przechodząca przez pierwsze 4 punkty

 $\mathcal{C}_n(x)$ - funkcja sześcienna funkcja sześcienna przez ostatnie 4 punkty

Stad

$$s'''(x_1) = C'''(x_1) i s'''(x_n) = C'''_n$$

Określone wyżej stałe mogą być wyznaczone bez znajomości $C_1(x)$ i $C_n(x)$:

$$\Delta_{i}^{(1)} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} \qquad \Delta_{i}^{(2)} = \frac{\Delta_{i+1}^{(1)} - \Delta_{i}^{(1)}}{x_{i+2} - x_{i}} \qquad \Delta_{i}^{(3)} = \frac{\Delta_{i+1}^{(2)} - \Delta_{i}^{(2)}}{x_{i+3} - x_{i}}$$

Różniczkując wzór na s''(x) na przedziale $[x_{i'} \ x_{i+1}]$ otrzymuję:

$$S'''(x_1) = C'''_1(x_1) = 6\Delta_1^{(3)}$$

$$S'''(x_n) = C'''_n(x_n) = 6\Delta_{n-3}^{(3)}$$

Po przekształceniu otrzymujemy brakujące równania:

$$-\ h_{_{1}}\sigma_{_{1}}+\ h_{_{1}}\sigma_{_{2}}=\ h_{_{1}}^{^{2}}\Delta_{_{1}}^{^{(3)}} \qquad \qquad h_{_{n-1}}\sigma_{_{n-1}}+\ h_{_{n-1}}\sigma_{_{n}}=-\ h_{_{n-1}}^{^{2}}\Delta_{_{n-3}}^{^{(3)}}$$

Ostatecznie wynikiem jest następujący układ równań:

$$\begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{bmatrix}$$

b. Natural spline (free boundary)

$$s''(x_1) = s''(x_n) = 0$$

Korzystając z $\sigma_i = \frac{1}{6} s''(x_i)$ i uwzględniając warunek otrzymam:

$$s''(x_1) = s''_1(x_1) = 0 \Leftrightarrow \sigma_1 = 0$$

$$s''(x_n) = s''(x_n) = 0 \Leftrightarrow \sigma_n = 0$$

Uzyskując układ równań n niewiadomych postaci:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

4. Wykonanie ćwiczenia

Interpolacja została wykonana dla liczby węzłów: 5, 7, 10, 15, 20, 25, 30, 35, 50, 70, 80. Liczba punktów dla których liczone były wartości to 1000.

Interpolacja kwadratowa

Liczba węzłów	Natural błąd maksymalny	Natural błąd kwadratowy	Clamped błąd kwadratowy	Clamped błąd kwadratowy
5	1.231E+00	1.763E-02	1.327E+00	1.862E-02
7	9.494E-01	1.422E-02	9.494E-01	1.422E-02
10	2.385E+00	3.881E-02	2.597E+00	4.288E-02
15	3.262E+00	5.008E-02	3.487E+00	5.488E-02
20	1.669E+00	2.341E-02	1.799E+00	2.609E-02
25	1.814E+00	3.747E-02	1.831E+00	3.787E-02
30	1.788E+00	3.553E-02	1.874E+00	3.754E-02
35	5.129E-01	5.987E-03	6.211E-01	8.456E-03
50	1.357E-01	2.003E-03	7.299E-02	4.877E-04
70	7.027E-02	1.386E-03	1.404E-02	1.059E-04
80	5.449E-02	1.124E-03	8.516E-03	6.276E-05
Minimum	5.449E-02	1.124E-03	8.516E-03	6.276E-05
Maksimum	3.262E+00	5.008E-02	3.487E+00	5.488E-02

Tabela 1. Przedstawia błędy interpolacji kwadratowej

Jak widać w tabeli 1 najgorsze rezultaty dla obu warunków brzegowych uzyskano dla 15 węzłów w obu metrykach, natomiast najlepsze rezultaty dla 80 węzłów również jest to wynik niezależny od metyki jednak dla clamped boundary wynik najlepszy jest dokładniejszy o rzędy wielkości w najlepszym przypadku, a w najgorszym jest on nieznacznie gorszy od natural bounadry.

Najgorszy rezultat dla interpolacji kwadratowej

Wykres 1. Przedstawia najgorszy wynik interpolacji funkcjami kwadratowymi dla natural boundary i 15 węzłów.

Wykres 2. Przedstawia najgorszy wynik interpolacji funkcjami kwadratowymi dla clamped boundary i 15 węzłów.

Wykresy 1 i 2 pokazują powód takiej niedokładności mianowicie kwadratowa interpolacja wpada w oscylacje, która uniemożliwia dobre przybliżenie funkcji. W tym przypadku rodzaj warunku brzegowego nie zmienia wiele, różnicę można zauważyć przy lewym kończy przedziału gdzie granica naturalna sprawia, że funkcja przybliżona jest liniowa.

Najlepszy rezultat dla interpolacji kwadratowej

Wykres 3. Przedstawia wynik najlepszy interpolacji funkcjami kwadratowymi dla natural boundary i 80 węzłów.

Wykres 4. Przedstawia najlepszy wynik interpolacji funkcjami kwadratowymi dla clamped boundary i 80 węzłów.

Wykresy 3 i 4 przedstawiają najlepsze efekty interpolacji kwadratowej, które zostały otrzymane dla 80 węzłów. Pokazuje to odporność tej metody interpolacji na zakłócenia arytmetyczne, które były widoczne w interpolacji Hermite'a. Dodatkowo o ile dla clamped boundary oscylacje zniknęły przy 50 węzłach tak dla natural boundary nadal są one widoczne skąd bierze się zauważona wcześniej w tabeli 1 różnica w dokładności.

Liczba węzłów	Natural błąd maksymalny	Natural błąd kwadratowy	Cubic błąd kwadratowy	Cubic błąd kwadratowy
5	1.121E+00	1.591E-02	1.212E+01	1.769E-01
7	9.494E-01	1.422E-02	5.998E+00	6.590E-02
10	1.813E+00	1.763E-02	1.320E+00	1.707E-02
15	1.275E+00	1.209E-02	1.631E+00	1.379E-02
20	9.769E-01	9.258E-03	1.274E+00	1.062E-02
25	6.739E-01	6.028E-03	6.756E-01	6.139E-03
30	1.638E-01	1.514E-03	2.746E-01	1.823E-03
35	1.974E-01	1.446E-03	3.014E-01	1.754E-03
50	9.530E-02	3.954E-04	1.078E-01	4.244E-04
70	3.903E-02	1.247E-04	2.853E-02	8.921E-05
80	2.809E-02	8.258E-05	1.658E-02	4.788E-05
Minimum	2.809E-02	8.258E-05	1.658E-02	4.788E-05
Maksimum	1.813E+00	1.763E-02	1.212E+01	1.769E-01

Tabela 2. Przedstawia błędy interpolacji sześciennej

W interpolacji sześciennej najlepsze wyniki uzyskano dla 80 węzłów dla obu rodzajów warunków brzegowych natomiast najgorszy wynik uzyskano dla 10 węzłów dla natural boundary i dla 5 węzłów w przypadku cubic boundary.

Co ciekawe porównując tabele 1 i 2 zauważymy, że natural boundary interpolacji kwadratowej wypadło najgorzej tak clamped jest lepsze w obu metrykach od cubic boundary w interpolacji sześciennej i ma o rząd wielkości mniejszy błąd maksymalny niż natural boundary przy porównywalnym błędzie średniokwadratowym.

Najgorszy rezultat interpolacji sześciennej

Wykres 5. Przedstawia najgorszy wynik interpolacji sześciennej dla 10 węzłów i natural boundary.

Wykres 6. Przedstawia najgorszy wynik interpolacji sześciennej dla 5 węzłów i cubic boundary.

Na wykresie 5 widać, że błędy spowodowane są nie tyle przez samą metodę co są związane ze specyfiką funkcji zadanej, funkcja ta charakteryzuje się dość duża oscylacją co w połączeniu z rozmieszczeniem punktów w lub blisko ekstremów spowodowało duże błędy interpolacji. Natomiast dla Cubic boundary winna jest już metoda, która ma po prostu za mało danych.

Najlepszy rezultat interpolacji sześciennej

Wykres 7. Przedstawia najlpeszy wynik interpolacji sześciennej dla 80 węzłów i natural boundary.

Wykres 8. Przedstawia najlepszy wynik interpolacji sześciennej dla 80 węzłów i cubic boundary.

Dla obu warunków brzegowych funkcja jest przybliżona w dobry sposób, nie widać oscylacji dla żadnego z warunków brzegowych jak miało to miejsce w przypadku interpolacji kwadratowej.

Ogólne porównanie metod interpolacji

Zagadnienie Lagrange'a							
Postać Lagrange'a							
Równoodległe, błąd maksymalny	Równoodległe, błąd kwadratowy	Czebyszew, błąd maksymalny	Czebyszew, błąd kwadratowy				
9.49E-01	1.42E-02	1.84E-06	2.04E-08				
Postać Newtona							
9.49E-01	1.42E-02	1.38E-01	3.90E-04				
Zagadnienie Hermite'a postać Newtona							
9.49E-01	1.42E-02	3.39E-03	3.06E-05				
Interpolacja kwadratowa							
Natural błąd maksymalny	Natural błąd kwadratowy	Clamped błąd kwadratowy	Clamped błąd kwadratowy				
5.45E-02 (1.357E-01)	1.12E-03 (2.003E-03)	8.52E-03 (7.299E-02)	6.28E-05 (4.877E-04)				
Interpolacja sześcienna							
Natural błąd maksymalny	Natural błąd kwadratowy	Cubic błąd kwadratowy	Cubic błąd kwadratowy				
2.81E-02 (9.530E-02)	8.26E-05 (3.954E-04)	1.66E-02 (1.078E-01)	4.79E-05 (4.244E-04)				

Tabela 3. Przedstawia zestawienie minimalnych błędów dla badanych do tej pory metod interpolacji.

Najmniejszy błąd maksymalny osiągnięto w zagadnieniu Lagrange'a używając postaci Lagrange'a. Jest to wynik o 3 i 4 rzędy wielkości lepszy niż najlepsze wyniki w tej samej metryce dla interpolacji kwadratowej i sześciennej. W metryce błędu średniokwadratowego postać Lagrange'a osiągnęła 3-4 rzędy wielkości lepszą dokładność od pozostałych metod. Należy pamiętać o tym, że najlepsze wyniki osiągnięto dla 80 węzłów dla interpolacji kwadratowej i sześciennej jednak biorąc pod uwagę wyniki dla 50 węzłów (w tabeli wyniki w nawiasach) to są one porównywalne z wynikami pozostałych metod.

Wnioski:

- Najelpsze wyniki uzskano dla interpolacji kwadratowej i korzystając z clamped boundary.
- Najgorsze wyniki uzyskano dla tego samego rodzaju interpolacji lecz dla natural boundary.
- Wybór warunków brzegowych ma wyraźne odbicie w dokładności interpolacji.
- Interpolacja sześcienna mimo tego, że w może okazać się mniej dokładna jest bardziej uniwersalna ze względu na brak podatności na oscylacje
- Metody interpolacji kwadratowej i sześciennej nie są podatne na efekt Rungego
- Metody opisane tutaj dają wyniki porównywalne do metod opisanych we wcześniejszych laboratoriach z wyjątkiem postaci Lagrange'a w zagadnieniu Lagrange'a, która jest wyraźnie dokładniejsza
- Dokładność interpolacji kwadratowej i sześciennej rośnie wraz ze wzrostem liczby wezłów