where $\mathbb{Z}/2\mathbb{Z}$ is viewed as a \mathbb{Z} -modules, but (1,0) and (0,1) are not linearly independent, since

$$2(1,0) + 2(0,1) = (0,0).$$

A useful fact is that every module is a quotient of some free module. Indeed, if M is an A-module, pick any spanning set I for M (such a set exists, for example, I=M), and consider the unique homomorphism $\varphi \colon A^{(I)} \to M$ extending the identity function from I to itself. Then we have an isomorphism $A^{(I)}/\mathrm{Ker}(\varphi) \approx M$.

In particular, if M is finitely generated, we can pick I to be a finite set of generators, in which case we get an isomorphism $A^n/\mathrm{Ker}(\varphi) \approx M$, for some natural number n. A finitely generated module is sometimes called a module of *finite type*.

The case n=1 is of particular interest. A module M is said to be cyclic if it is generated by a single element. In this case M=Ax, for some $x\in M$. We have the linear map $m_x\colon A\to M$ given by $a\mapsto ax$ for every $a\in A$, and it is obviously surjective since M=Ax. Since the kernel $\mathfrak{a}=\mathrm{Ker}\,(m_x)$ of m_x is an ideal in A, we get an isomorphism $A/\mathfrak{a}\approx Ax$. Conversely, for any ideal \mathfrak{a} of A, if $M=A/\mathfrak{a}$, we see that M is generated by the image x of 1 in M, so M is a cyclic module.

The ideal $\mathfrak{a} = \operatorname{Ker}(m_x)$ is the set of all $a \in A$ such that ax = 0. This is called the *annihilator* of x, and it is the special case of the following more general situation.

Definition 35.5. If M is any A-module, for any subset S of M, the set of all $a \in A$ such that ax = 0 for all $x \in S$ is called the *annihilator* of S, and it is denoted by Ann(S). If $S = \{x\}$, we write Ann(x) instead of $Ann(\{x\})$. A nonzero element $x \in M$ is called a *torsion element* iff $Ann(x) \neq (0)$. The set consisting of all torsion elements in M and 0 is denoted by M_{tor} .

It is immediately verified that Ann(S) is an ideal of A, and by definition,

$$M_{\text{tor}} = \{ x \in M \mid (\exists a \in A, \ a \neq 0) (ax = 0) \}.$$

If a ring has zero divisors, then the set of all torsion elements in an A-module M may not be a submodule of M. For example, if $M = A = \mathbb{Z}/6\mathbb{Z}$, then $M_{\text{tor}} = \{2, 3, 4\}$, but 3 + 4 = 1 is not a torsion element. Also, a free module may not be torsion-free because there may be torsion elements, as the example of $\mathbb{Z}/6\mathbb{Z}$ as a free module over itself shows.

However, if A is an integral domain, then a free module is torsion-free and M_{tor} is a submodule of M. (Recall that an integral domain is commutative).

Proposition 35.3. If A is an integral domain, then for any A-module M, the set M_{tor} of torsion elements in M is a submodule of M.

Proof. If $x, y \in M$ are torsion elements $(x, y \neq 0)$, then there exist some nonzero elements $a, b \in A$ such that ax = 0 and by = 0. Since A is an integral domain, $ab \neq 0$, and then for all $\lambda, \mu \in A$, we have

$$ab(\lambda x + \mu y) = b\lambda ax + a\mu by = 0.$$