Investigation of the Electrification of Pyrocumulus Clouds

Timothy Lang

Kendell Laroche

Bryan Baum

Monte Bateman

Douglas Mach

1. Background and Motivation

2. 2013-2014 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Background

Typical Pyrocumulus Lightning Flash

(Lang et al. 2014)

Hewlett Fire flash detected by Colorado Lightning Mapping Array (COLMA)

- Intracloud (not CG)
- High-altitude (~10 km MSL)
- Shallow (~2 km deep)
- Duration << 1 s
- Small! L ~ 5-7 km
- Positive charge overlaying negative ("normal" polarity)
- Numerous precursor VHF sources starting ~30 s prior to flash

- Below LCL High Z_{DR} /low ρ_{HV} indicating mostly smoke
- Above LCL increasing ρ_{HV} and decreasing Z_{DR} condensation/freezing?
- Mid-level cloud bookending plume Low Z_{DR} /high ρ_{HV} relatively clean
- Near and above -40 °C altitude ZDR -1 to +1 dB, ρ_{HV} ~0.6 or more
- Lightning occurred in this inferred ice/ash mixture

- What about non-lightning-producing plumes?
- Many examples during DC3!
- Only smoke signature evident in polarimetric data
- No growth above -40 °C

Motivation

- The lightning and microphysical structures observed in Colorado during 2012 are very unusual for thunderstorms. Are these observations seen in PyroCu elsewhere?
- The NEXRAD radar network was recently upgraded to dual-pol. Can we document the internal microphysical structures of PyroCu elsewhere?
- The 2012 PyroCu produced no NLDN-detected flashes. The NLDN was upgraded after 2012; can it now observe at least some PyroCu lightning?
- GOES-R will be launched soon and will feature the Geostationary Lightning Mapper (GLM) instrument. Can we expect GLM to provide useful information about PyroCu lightning?

1. Background and Motivation

2.2013-2014 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Carpenter 1

GOES Visible and Shortwave IR 4-5 July 2013 (~2200-0200 UTC) (Source: pyrocb.ssec.wisc.edu)

Las Vegas polarimetric NEXRAD 0.5° sweep 0020 UTC, 5 July 2013 NLDN IC @ 00:23:20 UTC, $I_{pk}=+4.5$ kA NLDN IC @ 00:25:16 UTC, $I_{pk}=+7.6$ kA

(deg)

20

9 36.4 36.3 (a) Reflectivity (dBZ)

-115.8-115.7-115.6-115.5-115.4-115.3

Longitude (deg)

KESX20130705_002033_V06 0.48 deg elevation 91.7574 km range to Fire 2.7727702 km MSL @ Fire

(deg)

9 36.4 36.3 (b) ZDR (dB)

-115.8-115.7-115.6-115.5-115.4-115.3

Longitude (deg)

KESX20130705_002033_V06

5.09 deg elevation

91.7574 km range to Fire

10.147301 km MSL @ Fire $T \sim -36$ °C

Similar results for other 2013 incidents – West Fork (CO), Rim (CA), Silver (NM), Yarnell Hill (AZ)

Carpenter 1

Las Vegas polarimetric NEXRAD 5.1° sweep 0020 UTC, 5 July 2013

NLDN IC @ 00:23:20 UTC, $I_{pk} = +4.5 \text{ kA}$

NLDN IC @ 00:25:16 UTC, $I_{pk} = +7.6 \text{ kA}$

KRIW 26-07-2013 KRIW 27-07-2013

Hardluck Fire (Wyoming)

 Pyrocumulus development and lightning during 26-27 July 2013

KRIW 2013-07-27 00:03:23 UTC

Low Elevation Scan

East West distance from radar (km)

Higher Elevation

East West distance from radar (km)

- Z_H : 15 to ~40 dBZ
- Z_{DR} : 0.5 to -0.5 dB
- ρ_{HV} : 0.7-1.0 (unitless)
- Indicates ice particles
- Pyrocumulus echo-top height: ~8.0 km
- 18 NLDN lightning flashes in 151 minutes

East West distance from radar (km)

East West distance from radar (km)

Null Case

Radar Values in Black Forest Smoke Plume

- Z_H : 0 to ~30 dBZ
- Z_{DR}: 1-5 dB
- ρ_{HV} : 0.7 or less
- Indicates <u>smoke</u> <u>particles</u>
- Plume echo-top height: ~5.0 km
- No NLDN lightning

Hardluck Fire 26-27 July 2013

Simple particle identification

- Ice vs. Smoke
- Ice development leads occurrence of lightning

Table 1. List of radar parameter values used for determining if the radar was detection ice or smoke (from Lang et al. 2014)

	Parameter	Parameter Minimum Value	Parameter Maximum Value
Ice	Reflectivity (dBZ)	>= 20	< 70
	ZDR (dB)	>= -1	<= 1
	ρΗV	>= 0.7	<= 1.0
Smoke	Reflectivity (dBZ)	>= 0	< 30
	ZDR (dB)	> 1	<= 5
	ρΗV	>= 0	< 0.7

1. Background and Motivation

2.2013-2014 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Geostationary Lightning Mapper Proxy Data

Motivation

- Many of these PyroCu flashes are small, low-current ICs
- Will GLM be able to provide information about them?

Method

- GLM proxy data were created using algorithms developed at MSFC (Bateman 2013)
- Algorithms based on statistical comparison of LMA and Lightning Imaging Sensor (LIS) observations of same lightning
- Proxy optical events clustered into proxy flashes
- Applied to Lang et al. (2014) LMA-mapped PyroCu lightning dataset

Hewlett Fire Lightning

5/16 1948-2005 UTC

- LMA = 20 Flashes (10+ sources)
- GLM Proxy = 21 Flashes

Magenta Stars

GLM Proxy Flashes

Black Contours 1 m s⁻¹ updraft

GLM Proxy Statistics

(Min, Median, Max)

Footprint (km²)

98.2, 294.4, 786.5

Events per Flash

1, 3.0, 15

1. Background and Motivation

2.2013-2014 Pyrocumulus Lightning Cases

3. Geostationary Lightning Mapper (GLM) Proxy Data

Summary and Conclusions

- Ten additional case PyroCu studies (lightning and non-lightning) examined
- The novel 2012 pyrocumulus lightning observations described in Lang et al. (2014) were not an exception!
 - Vertical growth of cloud leads to development of precipitation-sized ice signature in polarimetric radar data, distinctive from smoke signature
 - Modest to high Z_H, noisy but near-0 Z_{DR}, improved correlation
 - Presence of ice associated with occurrence of lightning
 - No ice signature, no lightning!
 - Higher-sensitivity NLDN detects at least some of the weak ICs
 - GLM appears capable of detecting even the small ICs
 - Pyrocumulus development and lightning associated with significant fire growth

Dual-Pol NEXRAD + GOES-R/GLM + Upgraded NLDN = Nationwide Pyrocumulus Electrification Observing Network