The Gudhi library: Simplification of Simplicial Complexes Gudhi workshop

David Salinas

November 4, 2014

- ► Goal : represent and simplify huge simplicial complexes
- Problem: in some cases, the number of simplices may be too large for full representation

- ▶ Goal : represent and simplify huge simplicial complexes
- Problem: in some cases, the number of simplices may be too large for full representation
- ► *Implicit* representation of simplices

Plan

- ► Skeleton-blocker data-structure [SoCG11, IJCGTA12 Attali Lieutier Salinas]
- Experiments
 - ► Memory size
 - ► Simplification time

Storing implicitly the set of simplices

- Compact representation for Flag complexes (can be represented only with a graph)
- ▶ What about other complexes?

 ${\sf Flag-complex} = {\sf every} \ {\sf clique} \ {\sf is} \ {\sf a} \ {\sf simplex}$

Storing implicitly the set of simplices

- Compact representation for Flag complexes (can be represented only with a graph)
- ▶ What about other complexes?

Flag-complex nearly everywhere

Storing implicitly the set of simplices

- Compact representation for Flag complexes (can be represented only with a graph)
- ▶ What about other complexes?

Flag-complex nearly everywhere but here

Skeleton-blockers data-structure

Definition of the data-structure

Skeleton-blockers data-structure

Definition of the data-structure

- $Sk^{(1)}(K) = \{ab, ac, ad, bc, bd, dc, df, ec, fc, fe\}$
- Blockers(K)={bcd, cdf}

Skeleton-blockers data-structure [ALS 11]

- ▶ Blockers(K) = { $\sigma \subset P \mid \sigma \notin K$ and $\forall \tau \subsetneq \sigma, \tau \in K$ }
- ▶ The pair $[Sk^{(1)}(K), Blockers(K)]$ is sufficient to encode entirely K

- ▶ How many blockers in a simplicial complex?
- None for flag complexes such as the Rips complex
- ▶ How many in Delaunay, Tangential Delaunay, Cech complexes?
- ► How many in random 3-spheres? (3-dimensional manifold embedded in \mathbb{R}^4)

- ▶ How many blockers in a simplicial complex?
- ▶ None for flag complexes such as the Rips complex
- ▶ How many in Delaunay, Tangential Delaunay, Cech complexes?
- ► How many in random 3-spheres? (3-dimensional manifold embedded in R⁴)

Random 2-sphere with 200 points

- ▶ How many blockers in a simplicial complex?
- ▶ None for flag complexes such as the Rips complex
- ▶ How many in Delaunay, Tangential Delaunay, Cech complexes?
- ► How many in random 3-spheres? (3-dimensional manifold embedded in R⁴)

Popable blockers

▶ Removing a blocker in the data-structure may change the homotopy type

changes homotopy type preserves homotopy type

▶ Removing a popable blocker does not change the homotopy type

- ▶ How many blockers in a simplicial complex?
- ► How many <u>non popable</u> blockers in random 3-spheres? (3-dimensional manifold embedded in R⁴)

- ▶ How many blockers in a simplicial complex?
- ► How many <u>non popable</u> blockers in random 3-spheres? (3-dimensional manifold embedded in \mathbb{R}^4)

Edge contractions Definition

To simplify a complex, perform iterative topology-preserving edge contraction :

Rips complex ($\approx 70.10^6$ simplices)

6000 contractions

6700 contractions

6787 contractions (\approx 100 simplices)

- ► Contracting an edge = identify two vertices in the complex
- ▶ May change the homotopy type if link condition does not hold

Edge contractions

To simplify a complex, perform iterative topology-preserving edge contraction :

Rips complex ($\approx 70.10^6$ simplices)

6000 contractions

6700 contractions

6787 contractions (\approx 100 simplices)

- ► Contracting an edge = identify two vertices in the complex
- May change the homotopy type if link condition does not hold

 $ab\mapsto c$ preserves the homotopy type

 $ab\mapsto c$ changes the homotopy type

► Link condition iff no blocker through the edge

Edge contraction implementation efficiency

How much time to reduce a sphere?

- ▶ Draw a random sphere in \mathbb{R}^3 with *n* points
- ▶ How much time to simplify to a tetrahedron with edge contraction?

Edge contraction implementation efficiency

How much time to reduce a sphere?

- ► CGAL : Surface mesh simplification package (Polyhedron_3)
- $\triangleright \approx 65\%$ times faster

Skeleton-blockers data-structure

Implementation

- ▶ Template based, user can provide its vertices / edges classes
- ► Constructor from graph/blockers / list simplices / top faces
- ▶ STL iterators for vertices / edges / blockers / simplices
- ▶ Edge contraction, collapse, ...

Simplex iteration

Edge contraction implementation Genericity

- Policy-based design (adapted from CGAL Surface Mesh Simplification package)
- ▶ The user can provide it own cost, placement, validity and visitor policies
- Genericity: simplification of urban mesh (submitted to CGF)

Input mesh

Mesh simplified with SB package and specific policies

Homology computation

Time for a demo

Conclusion

On a practical point of view:

- Very sparse representation
- ▶ Generic and efficient simplification

On a theoretical point of view:

- ▶ How many blockers and non popable blockers in a manifold?
- ► Persistence?