

Calcul Scientifique

Projet de Calcul Scientifique

Élèves :

THEVENET Louis
SABLAYROLLES Guillaume

1.

1.1.

Matrix dimension	Matrix type	Exec. time for eig (s)	Exec. time for power_v11, (s)
200×200	Type 1	9.000e-02	1.510e+00
400×400	Type 1	4.000e-02	1.831e+01
600×600	Type 1	6.000e-02	6.021e+01
200×200	Type 2	3.000e-02	3.000e-02
400×400	Type 2	4.000e-02	4.000e-02
600×600	Type 2	7.000e-02	1.700e-01
200×200	Type 3	1.000e-02	5.000e-02
400×400	Type 3	3.000e-02	5.200e-01
600×600	Type 3	7.000e-02	1.270e+00
200×200	Type 4	2.000e-02	1.670e + 00
400×400	Type 4	3.000e-02	2.094e+01
600×600	Type 4	6.000e-02	5.456e + 01

Table 1: Execution time for different sizes and types of matrices

We can see that the power_v11 algorithm is generally slower than the eigen function especially for the type 2 and 4 matrices.

1.2.

```
nb_it = 1;
norme = norm(beta*v - z, 2)/norm(beta,2);

while(norme > eps && nb_it < maxit)
    beta_old = beta;
    v = z/norm(z, 2);
    z = A*v;
    beta = (v'*z)/(v'*v);
    norme = abs(beta-beta_old)/abs(beta_old);
    nb_it = nb_it + 1;
end</pre>
```

Listing 1: Inner loop of the new algorithm

Matrix dimension	Matrix type	Exec. time for $power_v11$, (s)	Exec. time for $power_v12$, (s)	
200×200	Type 1	1.960e+00	3.200e-01	
400×400	Type 1	1.888e+01	2.660e+00	
600×600	Type 1	5.031e+01	7.070e+00	
200×200	Type 2	1.000e-02	1.000e-02	
400×400	Type 2	7.000e-02	1.000e-02	
600×600	Type 2	1.800e-01	4.000e-02	
200×200	Type 3	3.000e-02	1.000e-02	
400×400	Type 3	6.100e-01	1.100e-01	
600×600	Type 3	1.270e+00	2.600e-01	

200×200	Type 4	1.530e+00	2.900e-01
400×400	Type 4	2.113e+01	3.060e+00
600×600	Type 4	5.914 + e01	6.480e+00

We can see that the power_v12 algorithm is globally faster than the power_v11.

1.3.

The main drawback of the deflated power method is the numerous matrix-vector products required to compute the eigenvectors as well as the fact that each iteration compute only one eigenvalue which can be slow if a lot of eigenvalues are desired.

1.4.

If we apply Algorithm 1 to m vectors, there is no reason for the columns of V to converge to a base. Each vector will converge toward a different projection of the dominant eigenvalue.

1.5.

In Algorithm 2, the matrix H is a smaller matrix, with dimension $n \times m$, therefore, even for larger matrices A, computing the spectral decomposition of H will not be computionally expensive.

1.6.

1.7.

- 1: function Subspace iter v1 (Raleigh-Ritz Projection)
- 2: **Input**: $A \in \mathbb{R}^{n \times n}$, ε , MaxIter, PercentTrace
- 3: Output : $n_{\rm ev}$ dominant eigenvectors $V_{\rm out}$ and the corresponding eigenvalues $\Lambda_{\rm out}$
- 4: Generate an initial set of m orthonormal vectors $V \in \mathbb{R}^{n \times m}$; k = 0; PercentReached = 0
- 5: **repeat until** Percent Reached > Percent Trace $\lor n_{\text{ev}} = m \lor k > \text{MaxIter}$
- 6: $k \leftarrow k+1$
- 7: Compute Y such that $Y = A \cdot V$
- 8: $V \leftarrow$ orthonormalisation of the columns of Y
- 9: Rayleigh-Ritz projection applied on matrix A and orthonormal vectors V
- 10: Convergence analysis step: save eigenpairs that converged and update PercentReached

1.8.

1.9.

1.10.

Matrix dimension	Matrix type	Flops for subspace iter0	Flops for subspace iter1	Flops for subspace_iter2	$p(A^p)$
200×200	Type 1	2309	263	132	2
200×200	Type 1	2309	263	88	3
200×200	Type 1	2309	263	53	5
200×200	Type 1	2309	263	27	10

When increasing the valu of p to compute A^p in subspace_iter2, the number of flops to compute the results is: Flops(iter2) $\simeq \frac{\text{Flops}(\text{iter2})}{p}$.

2.

2.1.

* 10⁴

4.5

4

3.5

3

* X

2.5

4

* X

2

0 10 20 30 40 50 60 70 80 90

Figure 5: $subspace_iter2$ method