Exercise 1 (due on October 12)

The solutions to the following problems are to be submitted.

Problem 1.1. (Semisimplification of the reduction is well-defined) Let L be a finite extension of \mathbb{Q}_{ℓ} with ring of integers \mathcal{O}_L , uniformizer ϖ_L , and residual field k_L . Let Γ be a compact topological group, and let $\rho: \Gamma \to \mathrm{GL}_n(L) = \mathrm{GL}(V)$ be a representation. So there exists an \mathcal{O}_L -lattice Λ that is stable under Γ-action, and define $\bar{\rho}_{\Lambda}$ to be the representation given by the Γ-action on $\Lambda/\varpi_L\Lambda$.

- (1) Show that the semisimplification of $\bar{\rho}_{\Lambda}$ does not depend on the choice of the Γ -stable \mathcal{O}_L -lattice Λ . (Hint: consider two such lattices Λ and Λ' ; first reduce to the case when $\varpi_L \cdot \Lambda \subseteq \Lambda' \subseteq \Lambda$.)
- (2) When $\bar{\rho}^{ss}$ is irreducible, show that for every two Γ -stable lattices Λ_1 and Λ_2 , $\Lambda_1 = \varpi_L^n \cdot \Lambda_2$ for some $n \in \mathbb{Z}$.

Problem 1.2. (\mathbb{Z}_p -extensions of local fields and global fields) For a field k, let $k^{p\text{-ab}}$ denote its maximal pro-p-abelian extension, i.e. the union of all abelian Galois extensions of k whose Galois groups are pro-p-groups. Under the Galois theory, this corresponds to the maximal pro-p quotient of G_k^{ab} . Then $G_k^{p\text{-ab}} := \operatorname{Gal}(k^{p\text{-ab}}/k)$ is a \mathbb{Z}_p -module, and we write $r_{p\text{-ab}}(k)$ for its rank over \mathbb{Z}_p (possibly infinite), or equivalently $r_{p\text{-ab}}(k) = \dim_{\mathbb{Q}_p} G_k^{p\text{-ab}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Answer the following questions on the computation of $r_{p\text{-ab}}$ for different fields.

- (1) If k = K is a finite extension of \mathbb{Q}_p , show that $r_{p\text{-ab}} = [K : \mathbb{Q}_p] + 1$.
- (2) If $k = \mathbb{F}_q((t))$ is a function field, with q a power of p, show that $r_{p\text{-ab}} = \infty$. (Hint: the structure of $\mathbb{F}_q((t))^{\times}$ is discussed in, for example, Neukirch, Algebraic Number Theory, Page 140, Proposition II.5.7 (ii).)
 - <u>Remark:</u> Philosophically, one can understand this difference as: in the function field case, all fields look like $\mathbb{F}_{q'}((t'))$ for some uniformizer t'. So there is no "base field" like \mathbb{Q}_p . Because of this, we can always make $\mathbb{F}_q((t))$ an as large as possible extension of another $\mathbb{F}_{q'}((t'))$. So $r_{p\text{-ab}}(\mathbb{F}_q((t)))$ is infinite.
- (3) If k = F a global number field, then Dirichlet unit theorem says that the rank of the unit group rank $(\mathcal{O}_F^{\times}) = r_1 + r_2 1$, where r_1 and r_2 are number of real embeddings and number of pairs of complex embeddings. Show that

$$r_{ab}(F) \ge [F:\mathbb{Q}] - (r_1 + r_2 - 1) = r_2 + 1.$$

<u>Remark:</u> It is conjectured that this is an equality, so-called the Leopoldt Conjecture. This is known when F/\mathbb{Q} is an abelian extension, but open in general.

Problem 1.3. (Restriction of a Galois representation) Let F be a number field and let $\bar{\rho}: G_F \to \mathrm{GL}_n(\overline{\mathbb{F}}_p)$ be a continuous residual Galois representation. Let S be a finite set of places of F at which $\bar{\rho}$ is unramified. Show that there exists a finite <u>solvable</u> Galois extension E over F such that

- (1) letting $\bar{\rho}|_{G_E}$ denote the restriction of $\bar{\rho}$ to G_E , then $\operatorname{Im}(\bar{\rho}) = \operatorname{Im}(\bar{\rho}|_{G_E})$,
- (2) $\bar{\rho}|_{G_E}$ is everywhere unramified, and
- (3) every $v \in S$ splits completely in E/F.

Problem 1.4. (Compatibility of corestriction map and Shapiro's lemma under cup product) Let G be a finite group and H a subgroup. Let A and B be two finite H-modules and C a finite G-module. Assume that we are given a natural H-module homomorphism

$$\psi:A\otimes B\to C,$$

i.e. $\psi(ha \otimes hb) = h\psi(a \otimes b)$ for $h \in H$, $a \in A$, and $b \in B$.

(1) Show that ψ induces a natural well-defined G-module homomorphism

$$\tilde{\psi}: \operatorname{Ind}_H^G A \otimes \operatorname{Ind}_H^G B \to C$$

given by, for $f_A \in \operatorname{Ind}_H^G A$, $f_B \in \operatorname{Ind}_H^G B$:

$$\tilde{\psi}(f_A \otimes f_B) := \sum_{g \in H \setminus G} g^{-1} \psi(f_A(g) \otimes f_B(g)).$$

(Here $\operatorname{Ind}_H^G A := \{f: G \to V; \mid f(hg) = h(f(g)) \text{ for } h \in H, g \in G\}$ is the standard induced representation; G acts on it by $(g \star f)(x) := f(xg^{-1})$ for $g, x \in G$.)

(2) Show that, for any $i, j \geq 0$, the following diagram of cup products commutes:

(Hint: use dimension shifting to reduce to i=j=0, and then make an explicit computation.)

Additional problems.

(No credit. No need to hand in.)

Problem 1.5. (Lattices in a representation by example) Let $\ell \geq 3$ be a prime number Let Γ be a compact topological group. Let $\chi_1, \chi_2 : \Gamma \to \mathbb{Z}_{\ell}^{\times}$ be two continuous characters, whose reductions modulo ℓ are different. Let $\rho : \Gamma \to \operatorname{GL}_2(\mathbb{Q}_{\ell}) = \operatorname{GL}(V)$ be an *irreducible* representation.

(1) Prove (by abstract nonsense) that for every $g \in \Gamma$, $\text{Tr}(\rho(g)) \in \mathbb{Z}_{\ell}$, and that the associated semisimple residual Galois representation $\bar{\rho}^{\text{ss}} \cong \bar{\chi}_1 \oplus \bar{\chi}_2$ if and only if, for every $g \in \Gamma$,

$$\operatorname{Tr}(\rho(g)) \equiv \chi_1(g) + \chi_2(g) \mod \ell.$$

(2) Assume the equivalent conditions in (1) hold. Show that there exists a lattice Λ_1 admitting a basis for which the associated residual Galois representation $\bar{\rho}_{\Lambda_1}$ takes the form of

$$\bar{\rho}_{\Lambda_1}(g) = \begin{pmatrix} \bar{\chi}_1(g) & \bar{b}(g) \\ 0 & \bar{\chi}_2(g) \end{pmatrix}$$

for some nonzero map $\bar{b}:\Gamma\to\mathbb{F}_p$. Show that such Λ_1 is unique up scalar. (This is not hard; but I believe that such an argument first appeared in Ribet's famous converse to Herbrand theorem, in K. Ribet, A modular construction of unramified p-extensions of $\mathbb{Q}(\mu_p)$, Invent. Math. 34 (1976), 151–162.

(3) We may reverse the role of $\bar{\chi}_1$ and $\bar{\chi}_2$ in (2) to get a lattice Λ_2 (canonical up to a unique scalar), so that $\bar{\rho}_{\Lambda_2}$ is a non-trivial extension of $\bar{\chi}_1$ by $\bar{\chi}_2$. By possibly rescaling Λ_2 , we may assume that $\Lambda_1 \subseteq \Lambda_2 \subseteq \ell^{-n}\Lambda_1$, with subquotients for each inclusion is isomorphic to \mathbb{Z}_{ℓ}/ℓ^n . This n can be viewed as an invariant that describes how similar this ρ is to a direct sum of two characters. Show that there exists two characters $\chi_i^{(n)}: \Gamma \to (\mathbb{Z}_{\ell}/\ell^n\mathbb{Z}_{\ell})^{\times}$ with i = 1, 2, such that for every $g \in \Gamma$,

$$Tr(\rho(g)) \equiv \chi_1^{(n)}(g) + \chi_2^{(n)}(g) \mod \ell^n.$$

(4) Assume $\ell \geq 3$ and that Γ contains an element \mathbf{c} of order 2 (e.g. a complex conjugation in $G_{\mathbb{Q}}$) for which $\bar{\chi}_1(\mathbf{c}) = 1$ and $\bar{\chi}_2(\mathbf{c}) = -1$. Prove that the converse to (3) holds, namely, if there exists characters $\chi_1, \chi_2 : \Gamma \to \mathbb{Z}_{\ell}^{\times}$ such that

$$\chi_1(\mathbf{c}) = 1$$
, $\chi_2(\mathbf{c}) = -1$, and $\operatorname{Tr}(\rho(g)) \equiv \chi_1(g) + \chi_2(g) \bmod \ell^m$,

then the invariant n from (3) satisfies $n \geq m$.

(I do not know if (4) holds without the additional assumption on the existence of the element \mathbf{c} .)

<u>Remark:</u> In the aforementioned paper of Ribet, he considered the representation ρ associated to a cuspidal eigenform that is congruent to an Eisenstein series modulo p.

Problem 1.6. (Extensions of groups)

(1) If H is a normal subgroup of a finite group G and H is abelian, show that the quotient group $\Gamma := G/H$ acts naturally on H by conjugation, i.e. for $\gamma \in \Gamma$, pick a lift $\tilde{\gamma}$ of γ in G, then we let γ acts on H by

$$\gamma \star h := \tilde{\gamma} h \tilde{\gamma}^{-1}.$$

Show that this action is well-defined.

(In this situation, we call G an extension of Γ by H.)

(2) Given a finite group Γ acting on a finite abelian group H, then the set of isomorphism classes of extensions of Γ by H can be identified with $H^2(\Gamma, H)$. The identification is given as follows: for G an extension of Γ by H as in (1), for each $\gamma \in \Gamma$, we fix a lift $g(\gamma) \in G$, and set

$$f_{\gamma,\gamma'} := g(\gamma) \cdot g(\gamma') \cdot g(\gamma\gamma')^{-1} \in H.$$

Show that this defines a 2-cocycle in $Z^2(\Gamma, H)$, and a different choice of $g(\gamma)$ amounts to chancing the above 2-cocycle by a 2-coboundary.

Show that G is a semi-direct product $H \rtimes \Gamma$ if and only if the corresponding class of G in $H^2(\Gamma, H)$ is trivial.

Problem 1.7. (Ramification filtration for Lubin–Tate tower) This is a slight generalization of the cyclotomic case we did in class. Let K be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O}_K , uniformizer ϖ and residue field $k_K = \mathbb{F}_q$. Consider the Lubin–Tate formal group \mathcal{F}_{ϖ} associated to the polynomial $f(x) = x^q - \varpi_K$. Then adjoining the ϖ^{∞} -torsion of the formal group defines a tower of extension $K_n = K(\pi_n)$ with π_n a generator of $\mathcal{F}_{\varpi}[\varpi^n]$, i.e. $\pi_1 \in K^{\mathrm{alg}}$ is a nonzero root of f(x) = 0 and $f(\pi_i) = \pi_{i-1}$ for $i \geq 2$. Set $K_{\infty} := \bigcup_{n \geq 1} K_n$. Write $K_n^{\mathrm{unr}} := K_n K^{\mathrm{unr}}$ for $n \geq 1$. Then under the Artin map, we have a canonical isomorphism

$$\operatorname{Art}_K : \mathcal{O}_K^{\times}/(1+\varpi^n\mathcal{O}_K)^{\times} \cong \operatorname{Gal}(K_n^{\operatorname{unr}}/K^{\operatorname{unr}}), \quad \text{and} \quad \operatorname{Art}_K : \mathcal{O}_K^{\times} \cong \operatorname{Gal}(K_{\infty}^{\operatorname{unr}}/K^{\operatorname{unr}})$$

For each K_n/K , compute the lower numbering ramification filtration and the upper numbering ones, and check that when $m \geq n$,

$$\operatorname{Gal}(K_m/K)^v \operatorname{Gal}(K_m/K_n) / \operatorname{Gal}(K_m/K_n) = \operatorname{Gal}(K_n/K)^v$$
, for every $v > 0$.

Show that when taking the inverse limit, we get when v > 0

$$\operatorname{Gal}(K_{\infty}^{\operatorname{unr}}/K^{\operatorname{unr}})^{v} \cong (1 + \varpi^{\lceil v \rceil} \mathcal{O}_{K})^{\times}.$$

Problem 1.8. Decide whether there exists an abelian extension of $K = \mathbb{Q}(\sqrt{3})$ of degree 3, ramified only at the primes of \mathcal{O}_K above 5.

<u>Remark:</u> This is just a very explicit example. It is important to be able to apply abstract heavy theory to a concrete example.