INDEKS KUALITAS UDARA

Untuk menyatakan kondisi kualitas udara di suatu tempat dapat dilakukan dengan indeks kualitas udara.

Indeks kualitas udara dibuat untuk memberikan kemudahan mengetahui kondisi kualitas udara ambien kepada masyarakat dengan informasi yang sederhana, tanpa harus menggunakan satuan-satuan yang mudah dimengerti masyarakat

Untuk menentukan indeks mutu lingkungan, diperlukan dua tahapan mendasar yaitu:

- 1. Perhitungan sub indeks untuk setiap variabel polutan yang ditinjau
- 2. Penggabungan antara sub indeks menjadi suatu indeks gabungan

Seluruh proses, perhitungan sub indeks dan gabungan sub indeks diilustrasikan pada tabel dibawah ini:

Tabel. Perhitungan Indeks Kualitas Udara

Variabel polutan	Sub indeks sebagai fungsi variabel	Agregasi	
Variabel polutan X ₁	$i_1 = f_1 (X_1)$		
Variabel polutan X ₂	$i_2 = f_2(X_2)$		
Variabel polutan X ₃	$i_3 = f_3(X_3)$	$I = g (i_1, i_2,i_n)$	Indeks I
Dst			
Variabel polutan X _n	$i_n = f_n(X_n)$		

Beberapa contoh cara menyatakan kondisi kualitas udara dengan menggunakan beberapa jenis indeks:

1. Indeks Green

Diperkenalkan oleh Green pada tahun 1966. Indeks ini hanya meliputi dua variabel polutan yaitu SO₂ dan koefisien *Haze*. Masing-masing sub indeksnya adalah:

$$SO_2 = I_1 = 84.X^{0,431}$$

 $COH = I_2 = 26,6.X^{0,576}$

Indeks Green dihitung rerata arithmatik dari dua sub indeks sehingga persamaannya menjadi:

$$I=(1/2)(I_1+I_2)$$

I = 25 : Kualitas udara yang diinginkan
 I = 50 : Kualitas udara pada tingkat bahaya
 I = 100 : Kualitas udara sangat ekstrim

2. Indeks Kualitas Udara Nasional (National Air Quality Index, NAQI)

NAQI merupakan gabungan dari, sub indeks lima parameter (CO, SO₂, partikulat, oksidan dan NO₂).

Standar yang dibuat berdasarkan baku mutu standar sekunder yaitu baku mutu yang tidak banyak berkaitan dengan aspek kesehatan rnanusia, melainkan banyak berkaitan dengan kerusakan bahan, dampaknya terhadap tanaman dan binatang, berkurangnya penglihatan, penurunan tingkat ekonomi dan lain sebagainya.

(National Air Quality Index, NAQI)

Indeks ini dapat dituliskan sebagai berikut:

$$\mathsf{NAQI} = \sqrt{|c^2 + |s^2 + |p^2 + |a^2 + |n^2|}$$

Dengan:

Ic = Indeks pencemaran karbon monoksida Is = Indeks pencemaran belerang dioksida

lp = Indeks pencemaran partikulat

Ia = Indeks pencemaran oksida foto kimia In = Indeks pencemaran oksida nitrogen

NAQI > $1 \rightarrow$ menunjukkan ada unsur pencemar yang melebihi baku mutu sekunder NAQI < $1 \rightarrow$ semua memenuhi baku mutu sekunder

INDEKS KARBON MONOKSIDA, Ic

$$lc = \sqrt{\left(\frac{Cc8}{Sc8}\right)^2 + \delta\left(\frac{Cc1}{Sc1}\right)^2}$$

Dengan:

Cc₈ = konsentrasi CO maks. dalam 8 jam pengamatan Sc₈

= baku mutu CO untuk 8 jam pengamatan

Cc₁ = konsentrasi CO maks. dalam 1 jam pengamatan

Sc₁ = baku mutu CO untuk 1 jam pengamatan δ = 1 bila Cc1 > Cs1 dan 0 bila sebaliknya

INDEKS SULFUR DIOKSIDA, IS

$$Is = \sqrt{\frac{Csa}{Ss8}^2 + \delta 1 \left(\frac{Cs24}{Ss24}\right)^2 + \delta 2 \left(\frac{Cs3}{Ss3}\right)^2}$$

Dengan:

Csa = konsentrasi SO₂rerata arithmatik tahunan

Ssa = baku mutu sekunder tahunan rerata

Cs24 = konsentrasi maks. SO₂ dalam 24 jam pengamatan

Ss24 = baku mutu sekunder dalam 24 jam pengamatan Cs3 = konsentrasi maks. SO₂ dalam 3 jam pengamatan Ss3 = baku mutu sekunder dalam 3 jam pengamatan

δ1 = 1 bila Cs24 \ge Ss24 dan 0 bila sebaliknya δ2 = 1 bila Cc3 \ge Ss3 dan 0 bila sebaliknya

INDEKS KARBON PARTIKULAT, IP

$$Ic = \sqrt{\frac{Cpa}{Spa}^2 + \delta \left(\frac{Cp24}{Sp24}\right)^2}$$

Dengan:

Cpa = konsentrasi partikel rerata geometris tahunan Spa = baku mutu partikel sekunder tahunan rerata

Cp24 = konsentrasi partikel maks. dalam 24 jam pengamatan

Sp24 = baku mutu partikel 24 jam

δ = 1 bila Cp24 > Sp24 dan 0 bila sebaliknya

INDEKS NITROGEN DIOKSIDA, IN

Dengan:

Cna = konsentrasi NO₂, rerata arithmatik tahunan

Sna = baku mutu sekunder 1 jam.

INDEK OKSIDAN (FOTOKIMIA), Io

Dengan:

Co1 = konsentrasi maksimum O₃ dalam 1 jam

So1 = baku mutu sekunder 1 jam.

3. Indek Nilai Ekstrim (Extrem Value Index, EVI)

$$EVI = \sqrt{Ec^2 + Es^2 + Ep^2 + Eo^2}$$

Dengan:

Ec = EVI untuk karbon monoksida

Es = EVI untuk sulfur dioksida

Ep = EVI untuk partikulat

Eo = EVI untuk oksidan

a. EVI untuk CO = Ec

Ec =
$$\frac{Ac8}{Sc8}$$
 Ac8 = \sum_{i} oi(Cc8) i

Ac8 = akumulasi dari konsentrasi 8 jam pengamatan yang melebihi baku mutu sekunder

Sc8 = baku mutu sekunder 8 jam pengamatan

 $\sigma i = 1 \text{ bila } Cc8 \ge Sc8 \text{ dan } 0 \text{ bila } Sc8 > (Cc8)i$

b. EVI untuk SO₂ = Es

$$Es = \sqrt{\left(\frac{As24}{Ss24}\right)^2 + \left(\frac{As3}{Ss3}\right)^2}$$

As24 = akumulasi dari konsentrasi 24 jam pengamatan yang melebihi baku mutu udara sekunder, dan dinyatakan dengan :

$$\mathbf{As24} = \sum_{\mathbf{i}} \mathbf{\sigma i} (\mathbf{Cs24}) i$$

Ss3 = baku mutu sekunder 3 jam pengamatan (0,5 ppm atau 1300 μ g/m³) σ i = 1 bila Cs24 \geq Ss3 dan 0 bila Ss3 > (Cs3)i

c. EVI untuk partikulat = Ep

$$Ep = \frac{Ap24}{Sp24} \qquad \qquad Ap24 = \sum_{i} \sigma i (Cp24)i$$

Ap24 = akumulasi dari konsentrasi 24 jam pengamatan yang melebihi baku mutu sekunder

Sp24 = baku mutu sekunder 24 jam pengamatan (150 $\mu g/m^3$)

 σ i = 1 bila Cp24 \geq Sp24 dan 0 bila Sp24 > (Cp24)i

d. EVI untuk oksida fotokimia = Eo

Eo =
$$Ao1$$
 Ao1 = $\sum \sigma i(Co1)i$

Ao1 = akumulasi dari konsentrasi 1 jam pengamatan yang melebihi baku mutu sekunder

So1 = baku mutu sekunder 1 jam pengamatan $(0.08 \text{ ppm atau } 160 \text{ } \mu\text{g/m}^3)$

 σ i = 1 bila Co1 \geq So1 dan 0 bila So1 > (Co1)i

INDEKS STANDAR PENCEMAR UDARA (ISPU) POLLUTION STANDAR INDEX (PSI)

Indeks ini untuk pertama kalinya diperkenalkan oleh kelompok kerja EPA, pada bulan April 1976 oleh Thorn dkk. Enam katagori PSI yaitu baik, aman, berpotensi menurunkan tingkat kesehatan, kurang sehat, tidak sehat dan berbahaya bagi kesehatan. Pada semua versi, nilai indeks PSI = 100 berkaitan dengan NAAQS dan PSI = 500 adalah tingkat ambang bahaya nyata. Nilai 200, 300 dan 400 masingmasing adalah *alert, warning* dan *emergency*.

Di Indonesia konsep indeks ini dijadikan rujukan dan sekarang telah diundangkan Indeks Standar Pencemar Udara (ISPU) oleh Menteri Negara Lingkungan Hidup Nomor KEP-45/MENLH/10/1997.

ISPU merupakan angka tidak bersatuan yang menggambarkan kondisi kualitas udara ambien di suatu lokasi. Penetapan kriteria ISPU didasarkan pada dampaknya terhadap kesehatan manusia, nilai estetika dan makhluk hidup lainnya.

Nilai ISPU ini ditetapkan dengan cara mengubah kadar pencemar udara yang terukur, menjadi suatu angka yang tak berdimensi. Parameter ISPU adalah partikulat berdiameter kurang dari 10 μ m (PM10); karbon monoksida (CO); sulfur dioksida (SO₂); nitrogen dioksida (NO₂) dan ozon (O₃)

Tabel. Perioda Pengukuran Rerata Parameter ISPU:

Parameter	Waktu
Partikulat, PM10	24
Sulfur dioksida, SO ₂	24
Karbon monoksida, CO	8
Ozon, O ₃	1
Nitrogen dioksida, NO ₂	1

Tabel. Angka dan Katagori Indeks Pencemar Udara

Kategori	Rentang	Penjelasan
Baik	0 - 50	Tingkat Kualitas udara yang tidak memberikan efek bagi kesehatan manusia atau hewan dan tidak berpengaruh pada tumbuhan, bangunan maupun nilai estetika
Sedang	51 - 100	Tingkat Kualitas udara yang tidak berpengaruh pada kesehatan manusia atau hewan tetapi berpengaruh pada tumbuhan yang sensitif dan nilai estetika
Tidak sehat	101 - 199	Tingkat Kualitas udara yang bersifat merugikan pada manusia ataupun kelompok hewan yang sensitif atau bisa menimbulkan kerusakan pada tumbuhan dan nilai estetika
Sangat tidak sehat	200 - 299	Tingkat Kualitas udara yang dapat merugikan kesehatan pada sejumlah segmen populasi yang terpapar
Berbahaya	≥ 300 -	Tingkat kualitas udara berbahaya yang secara umum dapat merugikan kesehatan yang serius pada populasi

Tabel. Pengaruh ISPU Untuk Setiap Parameter Pencemar

Katagori	Rentang	СО	NO ₂	O ₃	SO ₂	Partikulat
Baik	0-50	Tidak ada efek	Sedikit berbau	Luka pada beberapa spesies tumbuhan akibat kombinasi dengan SO2 selama 4 jam	Luka pada beberapa spesies tumbuhan akibat kombinasi O3 selama 4 jam	Tidak ada efek
Sedang	51-100	Perubahan kimia darah tapi tidak terdeteksi	Berbau	Luka pada beberapa spesies tumbuhan	Luka pada beberapa spesies tumbuhan	Terjadi penurunan pada jarak pandang
Tidak sehat	101-199	Peningkatan pada gejala kardiovaskular pada perokok yang sakit jantung	Bau dan kehilangan warna, peningkatan reaktivitas pembuluh tenggoro-kan pada penderita asma	Penurunan pada kemampu-an atlit yang berlatih keras	Bau, meningkat- nya kerusakan tanaman	Jarak pandang turun dan terjadi pengotoran debu dimana- mana
Sangat tidak sehat	200-299	Meningkatnya gejala kardiovaskular pada orang bukan perokok yang sakit jantung dan akan tampak beberapa kelemahan yang terlihat secara nyata	Meningkatnya sensitivitas yang berpenyakit asma dan bronchitis	Olah raga ringan mengakibatkan pengaruh pernafasan pada pasien yang berpenyakit paru-paru kronis	Meningkatnya sensitivitas yang berpenyakit asma dan bronchitis	Meningkatnya sensitivitas yang berpenyakit asma dan bronchitis
Berbahaya	300- lebih	Tingkat yang berbahaya bagi semua populasi yang terpapar				

Sumber: Lampiran Keputusan Kepala Bapedal Kep-107/KABAPEDAL/11/1997.

Tabel. Batas ISPU (Satuan SI)

ISPU	24 jam PM 10 (μg/m³)	24 jam SO ₂ (μg/m³)	8 jam CO (μg/m³)	1 jam O3 (μg/m³)	1 jam NO ₂ (μg/m³)
50	50	80	5	120	(2)
100	150	365	10	235	(2)
200	350	800	17	400	1130
300	420	1600	34	800	2260
400	500	2100	46	1000	3000
500	600	2620	57,5	1200	3750

Sumber: Lampiran Keputusan Kepala Bapedal

Kep-107/KABAPEDAL/11/1997.

Catatan:

- 1.
- Data pada 25°C dengan tekanan normal 760 mm Hg Tidak ada indeks yang dapat dilaporkan pada konsentrasi rendah dengan jangka pemaparan yang pendek

Tabel. Standar Nasional Ambien Kualitas Udara

Pencemar	Primer (ppm)	Sekunder (ppm)
Material Partikulat Tahunan (rata-rata geometrik) Maksimum 24 jam	75 260	60 150
Lead (Pb) rata-rata 3 bulan	1,5	idem
Hidrokarbon (HC) Maksimum 3 jam (pkl. 06.00 - 09.00)	0,24	idem
Karbon monoksida (CO) Maksimum 8 jam Maksimum 1 jam	9,0 35	idem idem
Sulfur Oksida (SO ₂) Tahunan (Rata2 Aritmatik) Maksimum 24 jam Maksimum 3 jam	0,03 0,14 -	0,5
Nitrogen Oksida, NO₂ Tahunan (Rata2 Aritmatik)	0,05	idem
Photokimia Oksida, O₃ Maksimum 1 jam	0,12	idem

Metode Perhitungan Indeks Standar Pencemar Udara (ISPU)

- → Konsentrasi ambien dinyatakan dalam (Xx) dalam satuan ppm, mg/m³ dan lainnya
- → Angka nyata Indeks Standar Pencemar Udara dinyatakan dalam (I)
- → Rumus yang digunakan dalam perhitungan adalah:

$$I = \frac{I_A - I_B}{X_A - X_B} (X_X - X_B) + I_B$$

Dengan:

I = ISPU terhitung
IA = ISPU batas atas
IB = ISPU batas bawah
XA = Ambien batas atas
XB = Ambien batas bawah

Xx = Kadar Ambien nyata hasil pengukuran

Contoh perhitungan:

Diketahui konsentrasi udara ambien untuk jenis parameter SO_2 adalah 322 $\mu g/m^3$, kemudian konsentrasi tersebut diubah dalam bentuk angka Indeks Standar Pencemar Udara adalah sebagai berikut:

Dari tabel batas ISPU diperoleh data:

Xx = Kadar Ambien nyata hasil pengukuran = 322 ng/m³, IA = ISPU batas atas = 100 (baris3) IB = ISPU batas bawah = 50 (baris2) IB = Ambien batas atas = 365 (baris3) IB = Ambien batas bawah = 80 (baris2)

Angka-angka tersebut dimasukkan dalam rumus menjadi:

$$I = ((100-50)/(36-80)) \times (322 - 80) + 50 = 92,4$$

Jadi konsentrasi udara ambien $SO_2 = 322 \mu g/m^3$, dirubah menjadi Indeks Standar Pencemar Udara (ISPU) adalah sebesar 92,45 atau dibulatkan menjadi 92.