Bakalárska práca

Spracovanie dát generovaných senzorovou IoT sieťou

Miroslav Hájek

Školiteľ: Ing. Marcel Baláž, PhD.

Oponent: Ing. Vladimír Kunštár

Obsah

- (1) Monitorovanie vibrácií
- (2) Sústava spracovania signálu
 - (a) Algoritmy rozpoznávania špičiek
 - (b) Detektor zmeny frekvenčnej zložky
- (3) Hardvér senzorovej jednotky
- (4) Sieťová komunikácia s IoT zariadením
- (5) Testovanie a výsledky
 - (a) Pamätová a časová efektivita firmvéru
 - (b) Detekčná schopnosť udalostí
- (6) Možné rozšírenia práce

Monitorovanie vibrácií

Motivácia:

- prevádzkový stav strojov
- prevoz krehkých alebo reaktívnych látok

Zákon sily:
$$\vec{a}(t) = \frac{\vec{F}(t)}{m}$$

Veta o vzorkovaní: $f_s > 2 \cdot f_{max}$

Pružina

Časový rad vzoriek: $T = \{(t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)\}$

Sústava spracovania signálu

• Plne konfigurovateľná, viac-vláknová, v posuvných oknách

Algoritmy binárnej klasifikácie špičiek

Detekcia zmeny frekvenčnej zložky

- Prúdový algoritmus v $\mathcal{O}(1)$
 - Parametre:
 - ullet t_{min} min. trvanie
 - t_{Δ} min. medzera

• Udalosť:

- začiatok / koniec
- f frekvenčné vedierko
- t časová pečiatka
- t_d trvanie
- priemerná amplitúda

Hardvér senzorovej jednotky

Sieťová komunikácia cez MQTT


```
MQTT topic: imu/1/events/x
MessagePack správa:
{
    "t": 310,
    "df": 2.0,
    "A": [{
        "i": 2, "t": 305,
        "d": 5, "h": -5.621
    }],
    "Z": []
}
```

Pamäťová efektivita firmvéru

Časová efektivita algoritmov

Časová efektivita sústavy spracovania

Dátové sady

Syntetický časový rad

$$y = y_{max} \cdot \sin(2\pi f \cdot T_s \cdot i)$$

- 1) Trénovacia sada (60 s)
- 2) Grid search pre hľadanie špičiek
- 3) Testovacia sada (20 s)
- 4) Vyhodnotenie metrík klasifikátora (Presnosť, Chybovosť)

Merania vo vozidlách MHD

$$f_s=500~{
m Hz}$$
 $a_{max}=2~{
m g}pprox 19.62~m/s^2$ OpenLog baud: 115 200

Detekcia udalostí v syntetických dátach

Identifikácia špičiek po posuvných oknách

Trvanie významných amplitúd frekvenčných komponentov

Signál:

- $f_s = 476 \, Hz$
- l = 20 s

FFT:

- N = 256,
- Hannovo okno, 50%

Najvyšší zo susedov:

- k = 12
- $\varepsilon = 4$
- $h_{rel} = 32$

Detekcia udalostí:

- $t_{min} = 4$
- $t_{\Delta}=1$

Metriky klasifikácie:

- Presnost': ~85 %
- FPR: do 5%

Detekcia udalostí z reálnej premávky

Max. počet udalostí na efektívny prenos:

• N = 32: do 12%

• N = 1024: do 18%

Detektor:

• Max: 6%

• Priemer: 0,6%

Záznam: L83 4940 Alexyho Svantnerova.csv;

 $f_s = 500 \text{ Hz}, l = 60 \text{ s}, FFT, n = 256, t_{min} = 10, t_{\Delta} = 4;$ Najvyšší zo susedov: $k = 5, \epsilon = 0, h_{rel} = 8$

Potenciálne rozšírenia práce

Optimalizácia sústavy spracovania:

- Vzorkovanie nad prahovú úroveň
- Odhad spektra s DCT-IV, MDCT
- Porovnanie oknových funkcií

Detekcia udalostí:

- Profil známych javov a ich odlíšenie pri notifikáciach
- Adaptívne a autonómne kalibrované hľadanie špičiek
- Priestorová orientácia vibrácií

Dátové sady:

- Zber datasetov z automobilu a metodika ich anotovania
- Skúšanie zariadenia na testovacej lavici

Prínos a zhrnutie

- Parametrizovateľné etapy spracovania signálu z vibrácií
- Implementácia postupu do firmvéru na ESP32
- Konfigurácia a odosielanie meraní cez MQTT a WiFi
- Prúdový algoritmus na detekciu zmeny frekvenčnej zložky
- Overenie na syntetických aj reálnych dátových sadách

Otázky oponenta

1. Prečo ste pri implementácii použili MQTT protokol?

- Publish-subscribe architektúra (Notifikácia o udalostiach)
- Implementácia priamo v SDK pre ESP32
- OASIS otvorený štandard pre IoT

Obr.: https://www.nextech.sk/

Otázky oponenta

2. Aké sú výhody a nevýhody HTTP a MQTT protokolu?

	Výhody	Nevýhody
MQTT	 Publish-subscribe Menšia réžia Väčšia priepustnosť Stav pripojenia 	 Udržiavanie otvoreného TCP spojenia Štruktúra dát cez topics nie obsah
НТТР	 Request-response Široko podporovaný Flexibilita s hlavičkami Ideálny na dokumenty HTTP/3 je nad UDP 	 Nové TCP spojenie na požiadavku (HTTP/1.1) Zabezpečenie s HTTPS Réžia na hlavičky