# Περιγραφική Στατιστική II (Descriptive Statistics)

• Οργάνωση και Γραφική αναπαράσταση στατιστικών δεδομένων

- Οπτικοποίηση των δεδομένων
- Αριθμητικά περιγραφικά μέτρα

#### Φυλλογράμματα (stem-leaf notes)

- Διατηρεί την ατομικότητα των παρατηρήσεων (που «χάνεται» με τα ιστογράμματα).
- Κάθε παρατήρηση χωρίζεται σε **2 μέρη**:
  - το **στέλεχος** ή **οδηγός** (**stem**) και
  - το φύλλο (*leaf*)
- Υπάρχουν εναλλακτικοί τρόποι διαχωρισμού των δεδομένων, ορίζοντας τον οδηγό και το φύλλο ανάλογα με τον τύπο τους

## Βήματα κατασκευής φυλλογραμμάτων

- Επιλέγουμε πρώτα τα στελέχη (ή οδηγούντα ψηφία) και τα φύλλα
- Διατάσσουμε τα στελέχη κατά αύξουσα
- iii. Τοποθετούμε τα (διαφορετικά) φύλλα στην ίδια γραμμή των αντίστοιχων στελεχών
- iv. Ελέγχουμε εάν έχουν καταγραφεί όλα τα φύλλα (αριθμός τους ίσος με το συνολικό πλήθος παρατηρήσεων)

## Παράδειγμα

#### Σύνολο δεδομένων

**X**={136, 111, 120, 105, 113, 116, 99, 110, 125, 139, 122, 96}

- στέλεχος (stem) τις δεκάδες
- φύλλο (*leaf*) τις μονάδες

| Stem (δεκάδες) | Leaf (μονάδες) |
|----------------|----------------|
| 9              | 6 9            |
| 10             | 5              |
| 11             | 0 1 3 6        |
| 12             | 0 2 5          |
| 13             | 6 9            |

## 2. Αριθμητικά περιγραφικά μέτρα

- Έχουμε στη διάθεσή μας ένα σύνολο δεδομένων (δείγμα).
- Εκτελούμε **υπολογισμούς πάνω στα δεδομένα**, εξάγοντας χρήσιμες ποσότητες οι οποίες:
  - χαρακτηρίζουν μονοσήμαντα το δείγμα, και
  - παρέχουν τάσεις και ροπές των δεδομένων
- Αποτελούν (*συνήθως*) τα **στατιστικά στοιχεία** του διαθέσιμου δείγματος

## Αριθμητικά περιγραφικά μέτρα

## [A]. Μέτρα θέσης ή κεντρικής τάσης (central tendency)

- Περιγράφουν την θέση της κατανομής ή του κέντρου των δεδομένων.
- Δημοφιλέστερα μέτρα τάσης είναι:
  - η μέση τιμή,
  - **η κορυφή** και
  - η διάμεσος

## Ο δειγματικός μέσος (mean)

• Είναι ο (γνωστός) **μέσος όρος των διαθέσιμων** παρατηρήσεων

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

#### Κορυφή ή επικρατούσα τιμή (mode)

 είναι η επικρατέστερη τιμή του δείγματος, δηλ. αυτή με την μέγιστη συχνότητα εμφάνισης.

#### Διάμεσος (median)

- είναι η τιμή δ που χωρίζει το δείγμα σε 2 ίσα μέρη, ώστε ο αριθμός των παρατηρήσεων που είναι ≤ δ να είναι ίσος (50%) με τον αριθμό των δεδομένων που είναι ≥ δ.
- Έτσι, αν διατάσουμε τις *n* παρατηρήσεις του δείγματος:

τότε 
$$\delta = \begin{cases} x_{(r)} & \alpha v \quad n = 2r - 1 \\ \frac{x_{(r)} + x_{(r+1)}}{2} & \alpha v \quad n = 2r \end{cases}$$
 
$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n-1)} \le x_{(n)}$$

• <u>Παρατήρηση</u>: Αν η κατανομή είναι συμμετρική, τότε ο μέσος, η κορυφή και η διάμεσος συμπίπτουν (όπως π.χ. στην κανονική κατανομή).

#### Ποσοστημόρια (quantiles): μέτρο σχετικής θέσης

- Γενίκευση της διαμέσου (a=50%)
- Το **α-οστό ποσοστημόριο** είναι η τιμή για την οποία το *a%* των τιμών είναι **μικρότερο** και το (100 a)% είναι **μεγαλύτερο** από την τιμή αυτή.
- Για **a = {1, 2, ..., 99}** έχουμε **εκατοστημόρια** (**quantiles**).
- Για **a** = {10, 20, ..., 90} έχουμε **δεκατημόρια**
- Για a = {25, 50, 75} έχουμε τεταρτημόρια (quartiles)

a=25:  $Q_1$  πρώτο τεταρτημόριο

a=75:  $Q_3$  τρίτο τεταρτημόριο

**a=50**: **Q**<sub>2</sub> δεύτερο τεταρτημόριο (δηλ. η διάμεσος).

### Θηκογράμματα (box plots)



 Τρόπος παρουσίασης των κυριότερων χαρακτηριστικών μιας κατανομής μέσω ενός γραφήματος

#### Βήματα κατασκευής boxplot

- 1. Αρχικά βρίσκουμε τα δύο τεταρτημόρια Q1, Q3 και τη διάμεσο δ (δηλ. το Q<sub>2</sub>).
- 2. Κατασκευάζουμε ένα *ορθογώνιο* με κάτω πλευρά το *Q1* και πάνω
- $Q_{3} + 1.5(Q_{3} Q_{1})$   $Q_{3} = \delta = Q_{2}$   $Q_{1} = Q_{1} 1.5(Q_{3} Q_{1})$ 
  - πλευρά το **Q3**. Η διάμεσος παριστάνεται ως ευθύγραμμο τμήμα μέσα στο ορθογώνιο παράλληλο με τις βάσεις.
- 3. Φέρουμε διακεκομμένες κάθετες γραμμές από τα μέσα των βάσεων του ορθογωνίου μέχρι τις **οριακές τιμές** που προκύπτουν.

Q3 + 1.5(Q2-Q1) : άνω οριακή

Q3 - 1.5(Q2-Q1) : κάτω οριακή

#### Βήματα κατασκευής boxplot

- 1. Αρχικά βρίσκουμε τα δύο τεταρτημόρια **Q1**, **Q3** και τη διάμεσο  $\delta$  (δηλ. το  $Q_2$ ).
- 2. Κατασκευάζουμε ένα ορθογώνιο με κάτω πλευρά το Q1 και πάνω
  - $Q_1 1.5(Q_3 Q_1)$ πλευρά το Q3. Η διάμεσος παριστάνεται ως ευθύγραμμο τμήμα μέσα στο ορθογώνιο παράλληλο με τις βάσεις.

200

150

 $Q_3 + 1.5(Q_3 - Q_1)$ 

- 3. Φέρουμε διακεκομμένες γραμμές από τα μέσα των βάσεων του ορθογωνίου μέχρι τις οριακές τιμές που προκύπτουν.
- Κάθε σημείο που πέφτει έξω από το εύρος των δύο οριακών τιμών λέγεται ακραία τιμή (outlier) και παριστάνεται με ένα ιδιαίτερο σύμβολο (π.χ. \*)

#### Πλεονεκτήματα των θηκογραμμάτων

- Τα θηκογράμματα μας δίνουν το διάστημα τιμών του 50% των συχνότερων παρατηρήσεων μεταξύ του 1ου και 3ου τεταρτημορίου (Q1, Q3)
- Οι επεκτεινόμενες γραμμές και η θέση της διαμέσου μας δίνουν ένα βαθμό συμμετρικότητας της κατανομής
- Δυνατότητα μελέτης των ακραίων τιμών και πιθανώς του βαθμού επίδρασής τους



#### Μέτρα διασποράς

Εκφράζουν αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής τάσης

- Εύρος (range) τιμών ή κύμανση = max{ x<sub>i</sub>} min{ x<sub>i</sub>}
  - εύκολο στον υπολογισμό, αλλά μικρής αξιοπιστίας (ακραίες τιμές)
- Ενδοτεταρτημοριακή απόκλιση (interquartile range) =  $Q_3 Q_1$ 
  - Μετράει το άπλωμα του 50% των μεσαίων (συχνότερων) τιμών των παρατηρήσεων.
  - Μεγάλες τιμές αυτής της στατιστικής υποδεικνύει μεταβλητότητας.
    υψηλό επίπεδο
  - Μικρές τιμές (διάστημα) σημαίνει μεγάλη συγκέντρωση τιμών και άρα μικρότερη διασπορά τιμών.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 $MD = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$ 

Μέση απόκλιση (mean deviation)

Ο αριθμητικός μέσος των αποκλίσεων των τιμών από το μέσον τους

• Δειγματική διασπορά ή διακύμανση (*variance*)

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

#### Παρατήρηση:

στον παρονομαστή έχουμε *n-1* (και **όχι** *n*) για καλύτερη εκτίμηση του (αμερόληπτος εκτιμητής)

• Δειγματική τυπική απόκλιση (standard deviation)  $S = \sqrt{\frac{\displaystyle\sum_{i=1}^{i=1}(x_i-\overline{x})^2}{n-1}}$ 

## [ Γ ]. Μέτρα σχετικής μεταβλητότητας

Συντελεστής μεταβλητότητας (coefficient of variation)

$$v = \frac{s}{\bar{x}} = \frac{\text{τυπική απόκλιση}}{\text{δειγματικός μέσος}} (\times 100\%)$$

- Μέτρο σχετικής μεταβλητότητας τιμών.
- Χρησιμοποιείται για συγκρίσεις ανάμεσα σε δείγματα που είτε εκφράζονται σε διαφορετικές μονάδες μέτρησης, είτε έχουν διαφορετικές μέσες τιμές.
- Δεχόμαστε ότι δύο δείγματα θα είναι **ομογενή** αν ο συντελεστής μεταβλητότητας τους διαφέρει **το πολύ 10%.**
- Μειονέκτημα όταν ο μέσος πλησιάζει στο μηδέν (τότε **δεν** πρέπει να χρησιμοποιείται) Αγχανικών Η/Υ & Πληροφορικής Δ18

#### Συνδιακύμανση (covariance):

• μέτρο κατευθυντικότητας δύο μεταβλητών

Sample covariance = 
$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = \frac{1}{n-1} \left[ \sum_{i=1}^{n} x_i y_i - \frac{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n} \right]$$

#### Συντελεστής συσχέτισης (correlation coefficient):

• μέτρο γραμμικότητας μεταξύ των δύο μεταβλητών



## [Δ]. Μέτρα ασυμμετρίας



**Συμμετρική κατανομή** Η κορυφή ( $M_o$ ), ο μέσος και η διάμεσος συμπίπτουν



**Θετική συμμετρία** Οι περισσότερες παρατηρήσεις είναι δεξιά της κορυφής ( $M_0$ ).



**Αρνητική συμμετρία** Οι περισσότερες παρατηρήσεις είναι αριστερά της κορυφής ( $M_0$ ).

• Συντελεστής ασυμμετρίας Pearson

$$Y_1 = \frac{\overline{x} - M_0}{s}$$
  $Y_2 = \frac{3(\overline{x} - \delta)}{s}$ 

Αν Υ=0 => συμμετρία

Αν Υ<0 => αρνητική συμμετρία

Αν Υ>0 => θετική συμμετρία

## [Ε]. Μετασχηματισμοί δεδομένων

**Z-score** 
$$z = \frac{x - \overline{x}}{s}$$

- Έχουμε τον μετασχηματισμό:  $x_i o z_i = \frac{x_i x}{s}$
- Μετασχηματισμός κανονικότητας των δεδομένων
- Ισχύει ότι  $x_i = \overline{x} + sz_i$
- √ Δηλαδή, το **z**<sub>i</sub> εκφράζει τον **αριθμό των τυπικών αποκλίσεων** που το *x*<sub>i</sub> διαφέρει από το μέσον του

#### Παράδειγμα

Ο αριθμός των ελαττωματικών μπαταριών που βρέθηκαν σε 72 σωρούς παραγωγής των 500 μπαταριών ήταν

| 3  | 7  | 24 | 6  | 9  | 7  | 1  | 19 |
|----|----|----|----|----|----|----|----|
| 9  | 0  | 6  | 15 | 4  | 5  | 7  | 11 |
| 5  | 11 | 1  | 13 | 2  | 4  | 3  | 3  |
| 17 | 2  | 14 | 4  | 22 | 3  | 10 | 12 |
| 26 | 7  | 8  | 11 | 1  | 10 | 21 | 7  |
| 2  | 20 | 9  | 2  | 0  | 1  | 20 | 9  |
| 13 | 18 | 5  | 14 | 12 | 3  | 8  | 1  |
| 1  | 5  | 2  | 17 | 15 | 13 | 3  | 16 |
| 4  | 12 | 4  | 6  | 3  | 8  | 22 | 5  |

- (α) να παραστούν σε μορφή φυλλογραφήματος
- (β) να υπολογιστούν: (i) ο δειγματικός μέσος, (ii) η διάμεσος, (iii) η κορυφή, (iv) η διασπορά, (v) ο συντελεστής μεταβλητότητας.
- (γ) να κατασκευαστεί το θηκόγραμμα
- (δ) να κατασκευαστούν το ιστόγραμμα σχετικών συχνοτήτων.

#### Λύση

(α) φυλλογράφημα (stem-leaf notes)

| stem | leaf                                          |  |  |  |  |
|------|-----------------------------------------------|--|--|--|--|
| 0    | 001111112222333333344444555556667777788889999 |  |  |  |  |
| 1    | 00111222333 445567789                         |  |  |  |  |
| 2    | 0012246                                       |  |  |  |  |

(β) δειγματικός μέσος: 8 65

διάμεσος = 7

κορυφή = 3

δειγματική διακύμανση = 43.61

συντελεστής μεταβλητότητας = s/μ = τυπική απόκλιση / μέσος = 0.763

#### (γ) θηκόγραμμα ( boxplot(x) )



#### (δ) Ιστόγραμμα σχετικών συχνοτήτων ( *με 10 ή 20 bins*)



