® 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報(A) 平4-17645

Sint. CL. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)1月22日

C 22 C B 22 F C 22 C 38/00 1/00 38/12

304 \mathbf{G}

7047-4K 8015-4K

審査請求 未請求 請求項の数 4 (全5頁)

69発明の名称・

耐摩耗性のすぐれたFe基焼結合金

顧 平2-119550 ②特

願 平2(1990)5月9日 22出

個発 明 圌 寺 考

新潟県新潟市小金町3-1 三菱金属株式会社新潟製作所

内

@発 明 桐ヶ谷 者

清一

埼玉県大宮市北袋町 1-297 三菱金属株式会社中央研究

所内

⑫発 明 者 俊 三

埼玉県大宮市北袋町1-297 三菱金属株式会社中央研究

所内

三菱マテリアル株式会 勿出 顧 人

東京都千代田区大手町1丁目6番1号

籵

弁理士 富田 個代 理 人 和夫 外1名

1. 発明の名称

耐摩耗性のすぐれた Fe 蒸焼結合金

- 2. 特許請求の範囲
- (1) 重量%で、C:0.2~1%、

を含有し、残りがFeと不可避不鈍物からなる組 成を育する合金素地に、

Mo: 35~65%

S1:5~15%

を含有し、残りがFe と不可避不鈍物からなる組 成を有するFe - Mo - Si 系3元系金属間化合 物を、5~80%の割合で均一分散してなる耐摩耗 性のすぐれたFe 基焼結合金。

(2) 重量%で、C:0.2~1%、

を含有し、さらに、

N1:1~5%

を含有し、残りがFe と不可避不純物からなる組 成を有する合金素地に、

Mo: 35~ 65% .

S1:5~15%

を含有し、残りがFeと不可避不鈍物からなる組 成を有するFe-Mo-SI系3元系金属間化合 物を、5~30%の割合で均一分散してなる耐摩耗 性のすぐれたFe 基焼詰合金。

(3) 重量%で、C:8.2~1%、

を含有し、さらに、

P :0.05~0.8%.

を含有し、残りがFeと不可避不純物からなる組 成を有する合金業地に、

Mo: 85~ 65% .

S1:5~15%.

を含有し、残りがFeと不可避不純物からなる組 成を育するFe-Mo-SI系3元系金属間化合 物を、5~30%の割合で均一分散してなる耐摩耗 性のすぐれたFe 芸焼結合金。

(4) 宝量%で、C:0.2~1%、

を含有し、さらに、

N1:1~5%

P :0.05~0.6%.

を含有し、残りがFeと不可避不鈍物からなる根 成を有する合金素地に、

Mo:35~85%, S1:5~15%,

を含有し、残りがFeと不可避不鈍物からなる組成を有するFe・Mo・SI 系 3 元系金属間化合物を、5~30%の割合で均一分散してなる耐摩耗性のすぐれたFe基焼結合金。

3. 発明の詳細な説明

【産業上の利用分野】、

この発明は、すぐれた耐摩耗性を有し、例えば自動車内燃機関のバルブシートやバルブガイド、電気車のパンタグラフすり板、さらにその他各種の増動部材および耐摩部材として用いた場合に、苛酷な条件でもすぐれた性能を長期に亘って発揮するFe 基礎結合金に関するものである。

[従来の技術]

従来、上記の各種部材の製造に、各種のFe 基 焼結合金が用いられている。

また、これら各種のFe 基焼結合金のうち、例えば特公平1-15577号公額に記載される通りの、

C:0.8~1.5%, Ni:1.5~4%.

金は耐摩耗性が十分でないために、この要求に満 足に対応することができないのが現状である。

(課題を解決するための手段)

Mo: 35~60%

そこで、本発明者等は、上述のような観点から、 上記の素地にFe・Mo合金を分散させた組織を 有する従来Fe基焼結合金に比して一段とすぐれ たFe基焼結合金を開発すべく研究を行なった結 果、上記の従来Fe基焼結合金の構成成分である Fe・Mo合金に代って、

Si:5~15%

を含有し、終りがFaと不可避不統物からなる組成を有し、かつマイクロビッカース硬さ(M H v)で 700~1400の高硬度を有するFa・Ma・Si3元系金剛間化合物を、望ましくは20~50㎝の平均粒径にして、5~80%の割合で素地に分散させると、この結果得られたFe 括焼結合金は、上記Fe・Ma・Si3元系金属間化合物の上記案地に対する密着性がきわめて高く、例えば高温燃烧

ガスやアーク発生下の高速曝耗にさらされても、 これの索地からの脱済が答しく抑制されるように Cu: 0.5~2%、 Mo: 2.5~6.5%、 を含有し、残りがFe と不可避不鈍物からなる組成、並びに案地に3~20%のFe - Mo 合金が均一に分散した組織を有するFe 基礎結合金や、特開昭64-15848号公報に記載される、

C:0.5~2%, Ni:3~14%,

Mo: 3 ~ 14%

を含有し、残りがFeと不可避不能物からなる組成を有する合金素地に、

Fe - Mo 合金を3~20%の割合で均一に分散 させたFe 基焼結合金(以上重量%、以下%は重 量%を示す)などが知られている。

[発明が解決しようとする弾逝]

一方、近年、自動市はじめ、磁気取などの高速 化はめざましく、これに伴ない、これらの構造部 材であるパルプシートやパルプガイド、さらに パンタグラフすり板などは、その使用環境が一段 と苛酷さを増し、より一脳の耐摩耗性が要求され るが、これら各種構造部材を構成する上紀の従来 Fe 基焼結合金はじめ、ほとんどのFe 基焼結合

なることから、一般とすぐれた耐摩耗性を示すよ うになるという研究結果を得たのである。

この発明は、上記研究結果にもとづいてなされ たものであって、

C:0.2~1%.

を含有し、さらに必要に応じて、

N1:1~5%、 P:0.05~0.6%、 のうちの1種または2種、

を含有し、残りがFe と不可避不純物からなる組成を有する合金素地に、

Mo: 85~65% S1: 5~15%

を含有し、残りがFe と不可避不能物からなる組成を有するFe - Mo · S! 3元系金属間化合物を、5~30%の割合で均一分散してなる耐摩耗性にすぐれたFe 基礎結合金に特徴を有するものである。

つぎに、この発明のFe基焼結合金において、 上記の通りに数値限定した理由を説明する。

A. 合金素地の成分組成

(a) C

C成分には、素地に固溶して、これの強度および硬さを向上させる作用があるが、その含有量が 0.2%未満では前記作用に所望の効果が得られず、一方その含有量が1%を越えると、靭性が低下するようになることから、その含有量を 0.2~1% と定めた。

(b) N i

N1 成分には、素地に開溶して、これの強度を一段と向上させ、かつ耐食性も向上させる作用があるので、必要に応じて含有されるが、その含有量が1 %未満では前記作用に所望の向上効果が得られず、一方その含有量が5 %を越えても前記作用により一層の向上効果は見られず、経済性を考慮して、その含有量を1~5%と定めた。

(c) P

P成分には、旋結性を向上させ、もって強度向上に寄与する作用があるので、必要に応じて含有されるが、その含有量が0.05%未満では前記作用

C. 金属間化合物の素地に占める割合

その割合が5%未満では所望の耐摩耗性を確保 することができず、一方その割合が30%を越える と相手攻撃性を増すようになることから、その割 合を5~30%と定めた。

(実施例)

つぎに、この発明のFe 基焼結合金を実施例により具体的に説明する。

に所望の効果が得られず、一方その含有量が 0.6 %を越えると脆化傾向が現われるようになることから、その含有量を0.05~0.6%と定めた。

B. 金属間化合物の成分組成

(a) Mo

Mo 成分には、金属間化合物の硬さをMHvで700~1400の高硬度に保持する作用があるが、その含有割合が35%未満では前記の高硬度が得られず、一方その含有割合が85%を越えると、硬くなりすぎて祖手攻撃性を増すようになることから、その含有割合を35~65%と定めた。

(b) Si

SI成分には、金属間化合物の素地に対する密 管性を飛躍的に向上させる作用があり、したがっ てその含有割合が5%未満では前記商者性に所盟 の向上効果が得られず、一方その含有割合が15% を越えると、金属間化合物自体の硬さが低下する ようになることから、その含有割合を5~15%と 定めた。

特開平4-17645(4)

程	81		Æ	合	合 粗		成 (重量)		()			
		Fe-Mo-Si 3元系金属間化合物									理論	
		平 均 成分組成(童量%)		c	Ni	P	Fe	密度比	摩耗深さ
1		粒 径	Mo	Si	Fe +	l						
		(ttm)			不純物						(%)	(##)
	1	48.8	63.5	5.8	残	5	0.2	_		残	87.1	3.6
*	2	41.2	56.4	8.7	残	15	0.7	_	1	残	97.5	3 2
発	3	20.8	36.8	14.3	媄	80	1	-		残	97.4	26
明明	4	28.6	44.8	11.6	蒉	20	0.7	1	-	残	98.2	27
Fe	5	28.6	44.3	11.6	践	20	0.7	2	-	葵	98.7	25
*	6	28.6	44.3	11.6	癸	20	Ø.7 -	5	-	残	98.5	25
焼	7	48.3	63.5	5.3	뚽	10	0.7		0.05	蒉	99.1	29
糖	8	48.3	63.5	5.3	残	10	0.7	_	0.2	幾	99.4	28
合	9	48.3	63.5	5.8	残	10	0.7	_	0.6	媄	99.8	2 6
金	10	20.3	38.8	14.3	残	15	0.7	2	0.05	残	99.2	28
	11	28.6	44.3	11.6	銭	30	0.7	3	0.5	跷	99.9	18
1	12	28.6	44.3	11.6	蒉	30	0.7	4	0.3	残	99.5	20

麦

1

2

第

			5 E	合	A	ı	成	(重)	T)			
	別	Fe-	Mo合会	È							理論	
穫		平均成分組成(重量%)				С	N i	P	Fe	密度比	摩耗深さ	
		粒 逄	Мо	Si	Fe +				-	- •	= ~~	
		(100)			不純物						(%)	(wm)
	1	48.9	65.4		残	5	0.2	-	-	残	97.2	6.9
	2	40.2	60.2	_	残	15	0.7	_	-	残	97.4	61
従	3	21.4	55.2	-	残	30	1	-		残	97.1	58
来	4	30.8	80.3	_	残	20	0.7	1		残	98.3	62
Fe	5	30.8	80.3	-	残	20	0.7	2	- 1	残	98.6	60
*	6	30.8	60.3	-	聂	20	0.7	5	-	残	98.4	60
焼	7	48.9	85.4	-	残	10	0.7	-	0.05	残	99.0	59
秸	8	48.9	85.4	ı	銭	10	0.7	_	0.2	轰	99.4	53
合	9	48.9	85.4	1	残	10	0.7		0.6	幾	99.9	50
金	10	21.4	55.2	1	践	15	0.7	2	0.05	媄	99.1	48
	11	80.8	60.3		残	30	0.7	3	0.5	接	99.8	39
	12	30.8	60.3	1	残	30	0.7	4	0.8	践	99.6	41

1

特開平4-17645(5)

とにより、配合組成と実質的に同一の組成および第1表に示される理論密度比、並びに10mm×10mm×35mmの寸法をもった本発明Fc 基礎結合金1~12をそれぞれ製造した。

この結果得られた本発明および従来Fe 基焼結合金について、回転軸を水平とした外径:40mm×内径:30mm×長さ:15mmのFC 250 製無処理リング (硬さ:H_RC 50) の上方から上記寸法のFe 基焼結合金を水平に当接させ、この状態で上記Fe 基焼結合金に1kgの荷重を垂直にかけ、前記リングを15m/砂の周速で回転させ、30分後の呼耗深さを表面租さ計で測定する摩耗試験を行ない、この測定結果を第1 表に示した。

〔発明の効果〕

第1表に示される結果から、本発明Fe 基焼結合金1~12は、いずれも従来Fe 基焼結合金1~12に比して一段とすぐれた耐摩耗性を示すことが明らかである。

上述のように、この発明のFc基焼結合金は、

素地に対する密著性の著しくすぐれた硬質の FB-Mo-SI 3元系金属間化合物の均一分散 含有によってすぐれた耐摩耗性を示すので、より 一層の耐摩耗性が要求される各種の耐摩構造部材 や摺動部材などとして用いた場合にすぐれた性能 を長期に亘って安定して発揮するなど工業上有用 な特性を有するのである。

出 願 人 : 三菱金属株式会社

代理人: 宮田和夫 外1名

This Page Blank (uspio)