Package 'BART.sp'

September 27, 2020

```
Title Spatially Adjusted Bayesian Additive Regression Trees
Version 0.0.0.8999
Author Tianyu Zhang [aut, cre],
     Howard H. Chang [aut],
      Robert McCulloch [aut],
     Rodney Sparapani [aut],
     Robert Gramacy [aut],
     Charles Spanbauer [aut],
     Matthew Pratola [aut],
     Martyn Plummer [ctb],
     Nicky Best [ctb],
     Kate Cowles [ctb]
Maintainer Tianyu Zhang <tianyu.zhang.18@gmail.com>
Description
      A spatially adjusted Bayesian Additive Regression Trees (BART) model that adds a spatial
     residual with Matern correlation to the model and fits spatial data better.
URL https://github.com/Tianyu00/BART.sp/
BugReports https://github.com/Tianyu00/BART.sp/issues/
License GPL-3
Imports Rcpp (>= 1.0.4.6),
     Matrix (>= 1.2-18),
     assertthat (>= 0.2.1),
     dplyr (>= 1.0.2),
      fastDummies (>= 1.6.2),
     fields (>= 11.4)
LinkingTo Rcpp, RcppArmadillo, BH
RoxygenNote 7.1.1
Encoding UTF-8
Suggests knitr (>= 1.29),
     rmarkdown (>= 2.3),
     ggplot2 (>= 3.3.2),
     matrixStats (>= 0.56.0),
     BART (>= 2.7),
     reshape2 (>= 1.4.4)
```

Type Package

predict.wbart_sp

```
VignetteBuilder knitr
NeedsCompilation yes
Depends R (>= 2.10)
```

R topics documented:

```
      pm25
      2

      predict.wbart_sp
      2

      wbart_sp
      3

      Index
      8

      pm25
      PM2.5 values in Southern US
```

Description

This data set contains the pm2.5 values in Southern US for the year 2010 and multiple variates.

Format

A data frame of 5000 rows * 16 columns.

References

Hu X, Waller LA, Lyapustin A, Wang Y, Al-Hamdan MZ, Crosson WL, Estes Jr MG, Estes SM, Quattrochi DA, Puttaswamy SJ, Liu Y. Estimating ground-level PM2. 5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sensing of Environment. 2014 Jan 1;140:220-32

predict.wbart_sp

Predicting new observations with a previously fitted wbart_sp model

Description

This function is used to predict outcomes of new observations with a previously fitted model with type wbart_sp.

Usage

```
## $3 method for class 'wbart_sp'
predict(
   object,
   newdata,
   newloc,
   draw_from_total_distribution,
   block = 1,
   seed = 88,
   ...
)
```

Arguments

object An object of type wbart_sp (fitted from wbart_sp function).

newdata A data frame of covariates to predict for.

newloc A data frame of location information of the obervations in newdata. It should

have 2 columns (names should be exactly the same as those of the coordinates_train

when fitting the model).

draw_from_total_distribution

Whether sampling from the total distribution when doing prediction on newdata.

If so, it would be slower but utilize all the location information.

block If draw_from_total_distribution=FALSE, how many locations should be drawn

at the same time.

seed Setting the seed for reproducibility.

Value

The return is a list containing these components:

fhat. test a matrix of drawings of f corresponding to newdata. Each row corresponds to a draw of the spatial random effect and each column corresponds to a row of newdata

yhat.test a matrix of final predictions (sum of fhat.test and what.test) corresponding to newdata. Each row corresponds to a draw of the spatial random effect and each column corresponds to a row of newdata

what. test a matrix of drawings of spatial random effect corresponding to newdata. Each row corresponds to a draw of the spatial random effect and each column corresponds to a row of newdata.

unique_test_locations A data frame of unique test locations in newdata (order not necessary the same as in newdata).

Description

wbart_sp is a Bayesian "sum-of-trees" model designed for spatial data. It is built upon the original BART model (see ...) with an extra spatial random effect.

For a numeric continuous outcome y, we have $y = f(x) + e_s + e$, where e_s is the spatial random effect and $e N(0, sigma^2)$. See ...

Usage

```
wbart_sp(
  x_train,
  y_train,
  coordinates_train,
  coordinates_system,
  x_test = matrix(0, 0, 0, 0),
  coordinates_test = NULL,
  sparse = FALSE,
  theta = 0,
```

```
omega = 1,
 a = 0.5,
 b = 1,
 rho = NULL,
  augment = FALSE,
 xinfo = matrix(0, 0, 0),
 usequants = FALSE,
 cont = FALSE,
 rm.const = TRUE,
 sigest = NA,
 sigdf = 3,
 sigquant = 0.9,
 k = 2,
 power = 2,
 base = 0.95,
 sigmaf = NA,
 lambda = NA,
  fmean = mean(y_train),
 w = rep(1, length(y_train)),
 ntree = 200L,
 numcut = 100L,
 ndpost = 1000L,
 nskip = 100L,
 keepevery = 1L,
 nkeeptrain = ndpost,
 nkeeptest = ndpost,
 nkeeptestmean = ndpost,
 nkeeptreedraws = ndpost,
 printevery = 100L,
  transposed = FALSE,
 logrange_select_sd = 0.3,
  logsmoothness_select_sd = 0.3,
  sigma2_prior_a = 10,
  sigma2_prior_b = 1,
  tau2_prior_a = 1,
  tau2\_prior\_b = 1,
 logrange_init = 0,
 logsmoothness_init = 0,
  tau2_init = 1,
 logrange_prior_mean = 1,
 logrange_prior_sd = 0.5,
 logsmoothness_prior_mean = 0,
  logsmoothness_prior_sd = 0.5,
 mc.cores = 2,
 draw_from_total_distribution = TRUE,
 block = 50,
  seed = 88
)
```

Arguments

x_train

Explanatory variables for training (in sample) data. Must be a data frame, with rows corresponding to observations and columns to variables. If a variable is a factor in a data frame, it is replaced with dummies. Note that q dummies are created if q>2 and one dummy is created if q=2, where q is the number of levels of the factor. Location information can be either in x_train or not but must be in coordinates_train.

y_train

Continuous dependent variable for training (in sample) data. Must be a vector whose length equals to the number of rows in x_t .

coordinates train

The location information of observations in x_train. Must be a dataframe of 2 columns and the same number of rows as x_train. If latitude and longitude are provided as location information, the 2 columns of coordinates_train must be named exactly 'lon' and 'lat' (order matter) and the argument coordinates set as 'lonlat'. If locations information on the ground are provided, the 2 columns must be named exactly 'x' and 'y' (order matters) and argument coordinates set as 'ground'. The distane between locations is calculated accordingly (see coordinates_system).

x_test

Explanatory variables for test (out of sample) data. Should have same structure as x_train (Must be a data frame, with rows corresponding to observations and columns to variables). If provided, must also provide coordinates_test.

coordinates_test

The location information of observations in x_test. Should have same structure as coordinates_train. It must be of the same kind of coordinate system as coordinates_train and named exactly the same as coordinates_train (order matters).

logrange_select_sd

Spatial residual sampling parameter. logRange select SD in mcmc. (see ...)

logsmoothness_select_sd

Spatial residual sampling parameter. logSmoothness select SD in mcmc. (see ...)

sigma2_prior_a Prior paramter for the random noise *e*. (see ...)

sigma2_prior_b Prior paramter for the random noise *e*. (see ...)

tau2_prior_a Prior paramter for the matern correlation function tau2 (see ...)

tau2_prior_b Prior paramter for the matern correlation function tau2 (see ...)

logrange_init Initial value for logrange in mcmc.

logsmoothness_init

Initial value for logsmoothness in mcmc.

tau2_init Initial value for tau2 in mcmc.

logrange_prior_mean

Prior paramter for the matern correlation function logrange mean (see ...)

logrange_prior_sd

Prior paramter for the matern correlation function logrange sd (see ...)

logsmoothness_prior_mean

Prior paramter for the matern correlation function logsmoothness mean (see ...)

logsmoothness_prior_sd

Prior paramter for the matern correlation function logsmoothness sd (see ...)

mc Whether fitting the model in parallel. (which usually improves the model per-

formance but requires multiple cores.) Please also set the number of threads in

argument mc.cores.

mc.cores How many threads to use if fitting the model in parallel. If mc=FALSE, this

argument does not matter. If mc=TRUE, how many threads to use.

draw_from_total_distribution

If draw from total distribution or ? distribution in the prediction. If no x_test, does not matter. Usually it would be slower but perserving and utilizing all the

location information in the testing dataset to set draw_from_total_distribution=TRUE

instead of FALSE.

block The spatial random effect of how many locations to predict at one time if draw_from_total_distrib

If draw_from_total_distribution=FALSE, block is not used.

coordiantes_system

What the coordinates_train are. Must be either 'lonlat' or 'ground'. If coordinates_train is the longitude and latitude information, coordinates_train should be 'lonlat' and the distance is calculated using grand circle distance with unit km. If coordinates_train is the location information on the ground, coordinates_train should be 'ground' and the distance is calculated using Euclidean distance.

Details

wbart_sp is the only function (besides S3 method predict.wbart_sp) provided by this package.

wbart_sp implements the spatially adjusted Bayesian Additive Regression Trees (in single thread or multiple threads). S3 method predict.wbart_sp implements the prediction of a model of class wbart_sp.

The detailed information about the model please see: paper/github ...

Value

wbart_sp returns an object of type wbart_sp which is a list. It has the following components:

fhat.train A matrix with ndpost rows and $\operatorname{nrow}(\mathbf{x}_{\operatorname{train}})$ columns. Each row corresponds to a draw f^* from the posterior of f and each column corresponds to a row of $\mathbf{x}_{\operatorname{train}}$. The (i,j) value is $f^*(x)$ for the i^{th} kept draw of f and the j^{th} row of $\mathbf{x}_{\operatorname{train}}$. Burn-in is dropped. NOTICE: this is the not final prediction value, yhat.train is.

fhat.test Same as fhat.train but now the x's are the rows of the test data.

yhat.train A matrix with ndpost rows and $nrow(x_train)$ columns. Each row corresponds to the final prediction (sum of a draw from f(x) and a draw of the spatial random effect) and each column corresponds to a row of x_train .

yhat. test Same as yhat. train but now the x's are the rows of the test data.

what.train A matrix with ndpost rows and $nrow(x_{train})$ columns. Each row corresponds to a draw of the spatial random effect and each column corresponds to a row of x_{train} .

what.test Same as what.train but now the x's are the rows of the test data.

sigma post burn in draws of sigma, length = ndpost.

 $sigma_all\ A$ data frame of burn in draws and post burn in draws of sigma, dim = (nskip + nd-post/mc.cores) * (mc.cores). Can be used to inspect convergence.

tau2 post burn in draws of sigma, length = ndpost.

logrange post burn in draws of logrange, length = ndpost.

logsmoothness post burn in draws of logsmoothness, length = ndpost.

nskip nskip

ndpost ndpost

mu mean of y_train

varcount a matrix with ndpost rows and nrow(x_train) columns. Each row is for a draw. For each variable (corresponding to the columns), the total count of the number of times that variable is used in a tree decision rule (over all trees) is given.

varprob a matrix with ndpost rows and nrow(x_train) columns. Each row is for a draw. For each variable (corresponding to the columns), the probability (frequency / total frequency) that variable is used in a tree decision rule (over all trees) is given.

signst The rough error standard deviation (σ) used in the prior.

coordinates_system Coordinates parameters for coordinates_train.

unique_train_lcations Unique locations in the training data.

unique_w sampled spatial random effects according for unique_train_locations.

proc.time processing time

References

Chipman, H., George, E., and McCulloch R. (2010) Bayesian Additive Regression Trees. *The Annals of Applied Statistics*, **4,1**, 266-298 <doi:10.1214/09-AOAS285>.

Chipman, H., George, E., and McCulloch R. (2006) Bayesian Ensemble Learning. Advances in Neural Information Processing Systems 19, Scholkopf, Platt and Hoffman, Eds., MIT Press, Cambridge, MA, 265-272.

Friedman, J.H. (1991) Multivariate adaptive regression splines. *The Annals of Statistics*, **19**, 1–67.

Linero, A.R. (2018) Bayesian regression trees for high dimensional prediction and variable selection. *JASA*, **113**, 626–36.

Index

```
* datasets
     pm25, 2

pm25, 2

predict.wbart_sp, 2

wbart_sp, 3
```