

Figure 2A

pDG2:

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTCTAAATACATTCAAATA TGTATCOGCTCATGAGACAATAACOCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC CGTGTCGCCCTTATTCCCTTTTTTTGCCGCCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGA TOCTGRAGATCAGTTGGGTGCAGGAGTGGGTTACATCGAACTGGATCTCAACAGGGGTAAGATCCTTGAGAGTTTTTGGCC GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA TOGGAGGACOGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATGGTTGGGAACCGGAG CTGAATGAAGOCATAOCAAAOGAOGAGOGTGACAOCAOGATGOCTGTAGCAATGGCAACAAOGTTGGGCAAACTATTAAC GCTCGGCCCTTCCGGCTGGCTGGTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCA CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGGGTCAGGCAACTATGGATGAACGAAATAG ACAGATOGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTG ATTTACCCCGGTTGATAATCAGAAAAGCCCCAAAAACAGGAAGATTGTATAAGCAAATATTTAAATTGTAAACGTTAATA TTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAAATCCCTTAT AAATCAAAAGAATAGCCCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTC CAACCTCAAAGGGCGAAAAACCGTCTATCAGGGGGATGGCCCACTACGTGAACCATCACCCAAATCAAGTTTTTTGGGGT OGAGGTGCCGTAAAGCCACTAAATCGGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCGAACGTGGCGA CCCCCCCCCTTAATGCCCCCCTACAGGCCCCTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAA TCCCTTAACGTGAGTTTTCGTTCCACTGAGGGTCAGACCCGTAGAAAAGATCAAAAGGATCTTCTTGAGATCCTTTTTTT TCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTCTTATCCTGTTACCAGTGGCTGCCAGTGGCGATAAG TOCTGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGTTCGTGCAC ACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCCTGAGCTATGAGAAAGCGCCACGCTTCCCCG AAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGTCCGGAACAGGAGGCGCGCACGAGGCTTCCAGGGGGAAAC GOCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGGC GAGOCTATGGAAAAACGOCAGCAACGOGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTAATGTG AGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATA ACAATTTCACACAGGAAACAGCTATGAOCATGATTAOGOCAAGCTAOGTAATAOGACTCACTAGGOGGOCGGTTTAAAC AAtqtgctcctctttggcttgcttCCGCCGgccaagccagacaagaaccagTTGACGTCAAGCTTCCCGGGACGCGTGCT AGCGGCGCGCGAATTCCTGCAGGATTCGAGGGCCCCTGCAGGTCAATTCTACCGGGTAGGGGAGGCGCTTTTCCCAAGG CAGTCTGGAGCATGCGCTTTAGCAGCCCCGCTGGCACTTGGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTCCACA TOCACCEGTAGOGCCAACCEGCTCCGTTCTTTGGTGGCCCCTTCGCGCCACCTTCTACTCCCCCTAGTCAGGAAGTTC GGCATTCTCGCACGCTTCAAAAGCGCACGTCTGCCGCGCTGTTCTCCTCTTCCTCATCTCCGGGCCTTTCGACCTGCAGC ACTGGGCACAACAGACAATCGGCTGCTCTGATGCCCCCGGTGTTCCGGCTGTCAGGGCAGGGGCCCCGGTTCTTTTTGTC TTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGTTATTGGGCGAAGTGCCGGGGGAGCATCTCC TGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCGATGCGGCGGCTGCATACGCTTGATCCGGCT ACCTGCCCATTOGACCACCAAGCGAAACATOGCATCGAGCGAGCACGTACTCGGATCGAAGCCGGTCTTGTCGATCAGGA TGATCTGGAGGAAGAGCATCAGGGGCTGGGGCCAGGGGAACTGTTGGCCAGGCTCAAGGGGGCATGGCGGAGGGGATG ATCTOGTOGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGT GGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATG GGCTGACCGCTTCCTCGTGCTTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT TCTTCTGAGGGGATCGATCCGTGTAAGTCTGCAGAAATTGATGATCTATTAAACAATAAAGATGTCCACTAAAATGG ANGITTITOCTGTCATACTTTGTTAAGAAGGGTGAGAACAGAGTACCTACATTTTGAATGGAAGGATTGGAGCTACGGGG GTGGGGGTGGGGATTAGATAAATGCCTGCTCTTTACTGAAGGCTCTTTACTATTGCTTTATGATAATGTTTCATAG TTGGATATCATAATTTAAACAAGCAAAACCAAATTAAGGGCCAGCTCATTCCTCCCACTCATGATCTATAGATCTATAGA TCTCTCGTGGGATCATTGTTTTTCTCTTGATTCCCACTTTGTGGTTCTAAGTACTGTGGGTTTCCAAATGTGTCAGTTTCA TAGOCTGAAGAAOGAGATCAGCAGOCTCTGTTOCACATACACTTCATTCTCAGTATTGTTTTGOCAAGTTCTAATTCCAT CAGAAGCTGACTCTAGATCTGGATCCGGCCAGCTAGGCCGTCGACCTCGAGTGATCAGGTACCAAggtcctcgctgtg tccgttGAGCTCgacgacacaggacacgcaaaTTAATTAAGGCCGGCCCTACCTCTAGTCAAGGCCTTAAGTGAGTCG TATTACGGACTGGCCGTGGTTTTTACAACGTGGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACA TOCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCCACCGATCGCCTTCCCAACAGTTGCGCAGCCTGAATGGCG

Fig3A

pDG4: PD-C1.
GITTÄÄTAGTAATCÄÄTTAGGGGGATTAGTTCATAGGGCATATATGGAGTTGGGGTTACATAACTTAGGGTAAATGG CONSTRUCTION OF A CONSTRUCTION CHITCHITIGADI GARLIGATOLAGIA TENEGIANATA CENTROCAGIA CALIBRATA CAL GETT: SECTION STEERING TO ANGICTO ACCUPATION OF THE MISSING THE SET THE SECTION AND ANALYMOUS AND ANGICT TO ANGICT AND ANGICT AND ANGICT THE ACCUPATION OF T CTGRETHOCOGGEGOCHOCHTCHCUTCHCOCHOCHCATGAIGCCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCMAGTOCGCACACTICTTCACACACTICTTCACACACTICTTCACACACTICTTCACACACTICTACACTICTTCACACTICTTCACACTICTAC TTGGGTGCACGAGTGCGTTACATCGAACTGGATCTCAACAGGGGTAAGATGTTGAGAGTTTTGGCGCGGAACAAGGTTC CONTROL CONTRACTOR TANANCE TO CARCOLOGICA CONTROL CONTROL CANADA CONTROL CANADA CONTROL CANADA CONTROL CONTROL CANADA GATALTCAGAAAAGCCCCCAAAACCAGGAAGATTGTATAAGCCAAATACTTAAATTGTAAACGTTAATATTTTGTTAAAATT GETTGENCTCANGNOSATAGTTNCCGGNTANGGGGCDACGGGTGGGGTGAAGGGGGGTTGGTGCNCACAGGGCCAGGTTG GAGGAAGGACCTACAGGAACTGAGATAACTNCAGGGTGAGCTATTAGAAAAGGGCAGGCTTGGGAAAGGGAAAAGGC TTGGT:ATAAAGCCCGCCTTTTTTTT

A	nnealing site		Sequence			Sequence after digestion
	1	5.	tgtgctcctctttggcttgcttccaa	3′	5'	tgtgctcctctttggcttgcttccaa 3
 	 	3'	acacgaggagaaaccgaacgaaggtt	<u>5'</u>	3,	tt 5'
1	2	5"	ctggttcttgtctggcttggcccaa	3'	5'	ctggttcttgtctggcttggcccaa3'
		3'	gaccaagaacagaccgaaccgggtt	5'	3'	tt 5'
1	3	5'	ggtcctcgctctgtgtccgttgaa	3′	5'	ggtcctcgctctgtgtccgttgaa3'
<u> </u>		3'	ccaggagcgagacacaggcaactt	5'	3.	tt5'
1	4	5.	tttgcgtgtcctgtgtcgtcgaa	3 '	5.	
<u></u>		<u> 3·</u>	aaacgcacaggacacagcagctt	5,	3.	tt 5'

Fig 4

Annealing site	Sequence	Sequence after digestion
1	5' AAtgtgctcctctttggcttgcttCCGC 3' 3' Ttacacgaggagaaaccgaacgaagg 5'	5' AA 3' Ttacacgaggagaaaccgaacgaagg 5'
2	5' AActggttcttgtctggcttggcCCGC 3' 3' Ttgaccaagaacagaccgaaccggg 5'	5' AA 3' 3' Ttgaccaagaacagaccgaaccggg 5'
3	5' AAggtectegetetgtgteegttGAGCT 3' 3' Ttecaggagegagacacaggcaac 5'	5' AA 3' Atccaggagcgagacacaggcaac 5'
4	5' AAtttgegtgtcctgtgtcgtcGAGCT 3' 3' Ttaaacgcacaggacacagcagc 5'	5' AA 3' 3' Ttaaacgcacaggacacagcagc 5'

Fig 5

Fig 6

Fig 7

Oligo#	Sequence (5' to 3')							
174	ATGACCGCTCAGGAAACCTGTTGCA							
180	ATAGGCATAGTAGGCCAGCTTGAGG							
454	tgtgctcctctttggcttgcttccAATTAACCCTCACTAAAGGGAACGAAT							
463	ctggttcttgtctggcttggcccaaTGCAACAGGTTTCCTGAGCGGTCAT							
464	ggtcctcgctctgtgtccgttgaaCCTCAAGCTGGCCTACTATGCCTAT							
42	tttgcgtgtcctgtgtcgtcgaaCGACTAATACGACTCACTATAGGGCG							
151	GCCAATGGACTCTTAGTTTTGGAAC							
155	GTTCTGGCAAACAAATTCGGCGCAC							
454	tgtgctcctctttggcttgcttccAATTAACCCTCACTAAAGGGAACGAAT							
465	ctggttcttgtctggcttggcccaaGTTCCAAAACTAAGAGTCCATTGGC							
466	ggtcctcgctctgtgtccgttgaaGTGCGCCGAATTTGTTTGCCAGAAC							
1	GAACCTTGGTGTGCCAAGTTACTTC							
2	GAACTTTGGCTGAACCCCTTGTTCT							
41	. tgtgctcctctttggcttgcgttgaaCGACTAATACGACTCACTATAGGGCG							
38	ctggttcttgtctggcttggcccaaGAAGTAACTTGGCACACCAAGGTTC							
40	ggtcctcgctctgtgtccgttgaAGAACAAGGGGTTCAGCCAAAGTTC							
37	tttgcgtgtcctgtgtcgtcgAATTAACCCTCACTAAAGGGAACGAAT							
540	ATGCCGGATCTCCTACTGCGCC							
546	TGTCATAGTAGACAGCGATGGAACG							
445	GACAAGAACCAGTTGACGTCAAGCTTCCCGGGACGCGTGCTAGCGGCGCGCGC							
667	ctggttcttgtctggcttggcccaaGGCCCAGTAGTAGGAGATCCGGCAT							
668	ggtcctcgctctgtgtccgttgaaCGTTCCATCGCTGTCTACTATGACA							
907	ctggttcttgtctggcttggccaaAAAGCCGACAGCCACGCTCACAAGC							
908	ggtcctcgctctgtgtccgttgaaGCCCAATGCCACAGAGACAGAATGT							
1157	ctggttcttgtctggcttggcccaaGTTGGATCCTCTCCAAGGCCCCATCT							
1158	ggtcctcgctctgtgtccgttgaaCTCCAGTGCCGAGTGTGTGGGGACAG							

Figure 8