(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 September 2003 (18.09.2003)

PCT

(10) International Publication Number WO 03/076403 A1

- (51) International Patent Classification⁷: C07D 211/78, 401/12, 407/12, 413/06, 409/12, 409/14, A61K 31/451
- (21) International Application Number: PCT/US03/06570
- (22) International Filing Date: 6 March 2003 (06.03.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 10/091,585
- 7 March 2002 (07.03.2002) US
- (71) Applicant (for all designated States except US): LION BIOSCIENCE AG [DE/DE]; Im Neuenheimer Feld 515-517, 69120 Heidelberg (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KAHL, Jeffrey,
 D. [US/US]; 10502 Jepson Lane, San Diego, CA 92131
 (US). HEBERT, Normand [CA/US]; 335 Via Andalusia,
 Encinitas, CA 92024 (US).
- (74) Agents: TOFFENETTI, Judith, L. et al.; McDermott, Will & Emery, 600 13th Street, N.W., Washington, DC 20005-3096 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI; CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

6403 A

(54) Title: 1,2-DISUBSTITUDED-6-OXO-3-PHENYL-PIPERIDINE-3-CARBOXAMIDES AND COMBINATORIAL LIBRARIES THEREOF

(57) Abstract: The invention relates to combinatorial libraries containing two or more novel piperidine-3-carboxamide derivative compounds, methods of preparing the piperidine-3-carboxamide derivative compounds and piperidine-3-carboxamide derivative compounds bound to a resin.

WO 03/076403 PCT/US03/06570

1,2-DISUBSTITUTED-6-OXO-3-PHENYL-PIPERIDINE-3-CARBOXAMIDES.

AND COMBINATORIAL LIBRARIES THEREOF

FIELD OF THE INVENTION

[0001] The present invention relates generally to the synthesis of compounds comprising piperidine-3-carboxamides. In one embodiment, the invention provides novel 1,2-disubstituted-6-oxo-3-phenyl-piperidine-3-carboxamide derivative compounds as well as novel combinatorial libraries comprised of such compounds.

BACKGROUND INFORMATION

The process of discovering new therapeutically active compounds for a [0002] given indication involves the screening of all compounds from available compound collections. From the compounds tested, one or more structures are selected as a promising lead. A large number of related analogs are then synthesized in order to develop a structure-activity relationship and select one or more optimal compounds. With traditional "one-at-a-time" synthesis and biological testing of analogs, this optimization process is long and labor intensive. Adding significant numbers of new structures to the compound collections used in the initial screening step of the discovery and optimization process cannot be accomplished with traditional "one-at-a-time" synthesis methods, except over a time frame of years or even decades. Faster methods are needed that allow for the preparation of up to thousands of related compounds in a matter of days or a few weeks. This need is particularly evident when it comes to synthesizing more complex compounds, such as piperidine-3-carboxamide derivative compounds.

[0003] Combinatorial approaches have been extended to "organic," or non-peptide, libraries. However, the libraries to date contain compounds of limited

diversity and complexity. A need therefore exists to develop more complex libraries based on medicinal compounds which would need less time and effort in the synthesis and testing required to bring an organic pharmaceutical product to fruition. In short, improved methods for generating therapeutically useful compounds, such as piperidine-3-carboxamide derivatives, are desired.

[0004] Piperidine and carboxamide derivative compounds have been the subject of investigation in a number of different biological areas. For example, piperidine-3-carboxamides have been proposed or used as platelet aggregation inhibitors (Zheng, et al., "Design and synthesis of piperidine-3-carboxamides as human platelet aggregation inhibitor", (1995), Journal of Medicinal Chemistry, vol. 38, No. 1, pp. 180-188) and piperidine derivatives have been proposed as medicaments with rennin inhibiting activity (U.S. Patent No. 6,150,526 issued on November 21, 2000 and U. S. Patent No. 6,051,712 issued on April 18, 2000 both by to Binggeli, et al.)

This invention satisfies the above discussed need and provides related 100051 advantages as well. The present invention overcomes the known limitations to classical serial organic synthesis of piperidine-3-carboxamide derivatives, for example, as well as the shortcomings of combinatorial chemistry related to piperidine-3-carboxamide derivatives. The present invention allows for rapid generation of large diverse libraries of complex piperidine-3-carboxamide derivatives as discrete molecules. The present invention can utilize a readily available pool of building blocks that can be incorporated into the various regions of the molecule. Furthermore, the method of making the present invention allows for the use of building blocks that contain a wide range of diverse functionality. Such building blocks can provide combinatorial libraries that consist of large numbers as well as combinatorial libraries that are extremely diverse with respect to the functionality contained within those libraries. The present invention combines the techniques of solid-phase synthesis of piperidine-3-carboxamide derivatives and the general techniques of synthesis of combinatorial libraries to prepare highly diverse new piperidine-3-carboxamide derivative compounds.

SUMMARY OF THE INVENTION

[0006] The present invention relates to novel piperidine-3-carboxamide derivative compounds of the following formula:

wherein

[0007] X is selected from the group consisting of N and O;

[0008] R₁ is selected from the group consisting of a substituted aromatic heterocyclic ring, C₃-C₁₂ substituted alicycle and substituted phenyl;

[0009] R₂ is selected from the group consisting of H; -OH; C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₂-C₇ alkenyl; C₁ to C₇ substituted alkenyl; C₂ to C₇ alkynyl; C₂ to C₇ substituted alkynyl; unsubstituted phenyl; naphthyl; substituted phenoxy; C₂ to C₇ heterocyclic ring; substituted C₂ to C₇ heterocyclic ring; substituted cyclic C₂ to C₇ alkylene; C₁ to C₇ alkyl; C₁ to C₇ substituted alkyl; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁ to C₇ alkoxy; halo; C₁ to C₁₀ alkylthio; C₁ to C₁₀ alkylnitrile; a C₇ to C₁₈ substituted phenylalkyl; substituted phenyl;

[0010] R₃ and R₄ are independently selected from the group consisting of – OH; H; C₁ to C₆ alkyl; C₁ to C₇ substituted alkyl; C₂ to C₇ alkenyl; C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁

to C_{10} alkylthio; C_1 to C_{10} alkylnitrile; C_1 to C_4 alcohol; substituted phenyl; C_1 to C_6 substituted alkyl; C_1 to C_7 alkoxy; C_3 to C_7 cycloalkyl; and C_3 to C_7 substituted cycloalkyl; C_2 to C_7 heterocyclic ring; C_2 to C_7 substituted heterocyclic ring; phenoxy; and substituted phenoxy,

[0011] R₅ is selected from the group consisting of H and NH₂, and

[0012] R₆ is selected from the group consisting of phenyl, substituted phenyl, C_2 to C_7 heterocyclic ring, and substituted C_2 to C_7 heterocyclic ring.

[0013] The invention further relates to combinatorial libraries containing two or more such compounds, as well as methods of preparing piperidine-3-carboxamide derivative compounds.

BRIEF DESCRIPTION OF THE DRAWING

[0014] Figures 1 and 2 show two parts of a scheme for the combinatorial synthesis of piperidine-3-carboxamide derivative compounds.

[0015] Figure 3 shows a scheme for the production of (Substituted Phenyl)-glutaric anhydrides.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The present invention provides compounds and combinatorial libraries of compounds of the formula:

wherein:

[0017] X is selected from the group consisting of N and O;

[0018] R₁ is selected from the group consisting of a substituted aromatic heterocyclic ring, C₃-C₁₂ substituted alicycle and substituted phenyl;

[0019] R₂ is selected from the group consisting of H; -OH; C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₂-C₇ alkenyl; C₁ to C₇ substituted alkenyl; C₂ to C₇ alkynyl; C₂ to C₇ substituted alkynyl; unsubstituted phenyl; naphthyl; substituted phenoxy; C₂ to C₇ heterocyclic ring; substituted C₂ to C₇ heterocyclic ring; substituted cyclic C₂ to C₇ alkylene; C₁ to C₇ alkyl; C₁ to C₇ substituted alkyl; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁ to C₇ alkoxy; halo; C₁ to C₁₀ alkylthio; C₁ to C₁₀ substituted alkylthio; C₁ to C₁₀ alkylnitrile; a C₇ to C₁₈ substituted phenylalkyl; substituted phenyl;

[0020] R₃ and R₄ are independently selected from the group consisting of – OH; H; C₁ to C₆ alkyl; C₁ to C₇ substituted alkyl; C₂ to C₇ alkenyl; C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁ to C₁₀ alkylthio; C₁ to C₁₀ alkylnitrile; C₁ to C₄ alcohol; substituted phenyl; C₁ to C₆ substituted alkyl; C₁ to C₇ alkoxy; C₃ to C₇ cycloalkyl; and C₃ to C₇ substituted cycloalkyl; C₂ to C₇ heterocyclic ring; C₂ to C₇ substituted heterocyclic ring; phenoxy; and substituted phenoxy,

[0021] R_5 is selected from the group consisting of H and NH_2 , and

[0022] R_6 is selected from the group consisting of phenyl, substituted phenyl, C_2 to C_7 heterocyclic ring, and substituted C_2 to C_7 heterocyclic ring.

[0023] The invention also provides methods of preparing piperidine-3-carboxamide derivative compounds and combinatorial libraries. In one method, as shown in Figures 1 and 2, such compounds can be prepared by a process comprising:

[0024] preparing a resin bound aldehyde or diamine,

[0025] reacting said resin bound aldehyde with an amine, or said resin bound diamine with an aldehyde, to form a resin bound imine,

[0026] cyclizing said resin bound imine to produce a resin bound carboxylic acid,

[0027] acylating said resin bound carboxylic acid, and

[0028] cleaving and extracting said piperidine-3-carboxamide derivative compound from said resin.

[0029] Examples of aldehydes which are useful in the above reaction include but are not limited to 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 2hydroxy-5-methylbenzaldehyde. 3,5-dimethyl-4-hydroxybenzaldehyde. 2hydroxy-4-methoxybenzaldehyde, 3-ethoxysalicylaldehyde, 2-hydroxy-1-5-bromosalicylaldehyde, naphthaldehvde. cyclopropanecarboxaldehyde, furaldehyde, benzaldehyde, 2-thiophenecarboxaldehyde, 3thiophenecarboxaldehyde, P-tolualdehyde, 4,5-dimethyl-2-furancarboxaldehyde, P-anisaldehyde, 5-methylfurfural, O-tolualdehyde, 2,4,5-trimethylbenzaldehyde, piperonal, 5-methyl-2-thiophenecarboxaldehyde. 4-(difluoromethyoxy)benzaldehyde, 5-bromo-2-furaldehyde. 4biphenylcarboxaldehyde and 5-bromo-2-thiophenecarboxaldehyde.

[0030] Examples of diamines and amines useful in the above reaction when producing a resin bound diamine or reaction an aldehyde with an amine, include but are not limited methylamine, propargylamine, ethylamine, cyclopropylamine, allylamine, propylamine, 3-aminopropionitrile, isobutylamine, cyclopentylamine, cyclohexylamine, hexylamine, N-acetylethylenediamine, 3ethoxypropylamine, 4-chlorobenzylamine, 1-(3-aminopropyl)-2-pyrrolidinone, tryptamine, 3-(trifluoromethyl)benzylamine, 2,4-diclorophenethylamine, 4-amino-1-benzylpiperidine, benzylamine, ethylenediamine, 1,3-diaminopropane, 1,4diaminobutane, trans-1,2-cyclohexanediamine, trans-1,4-diaminocyclohexane, 2,2-thiobis(ethylamine), and N,N-Bis(3-aminopropyl)methylamine.

[0031] Examples of amines useful in the above reaction when acylating the resin bound carboxylic acid include but are not limited to nipecotamide, 1-(2-aminoethyl)pyrrolidine, pyrrolidine, histamine, cyclopentylamine, allylamine, 2-methoxyethylamine, cyclohexylamine, 1-methylpiperazine, tetrahydrofurfurylamine, 4-methylbenzylamine, 3-fluorobenzylamine, 4-fluorobenzylamine, 1-(3-aminopropyl)imidazole, cyclopropylamine, propylamine, ethanolamine, 2-thiophenemethylamine, n,n-dimethyl-1,3-propanediamine, 1-(2-

aminoethyl)piperidine. isoamylamine, 3-ethoxypropylamine, (r)-(-)-1cyclohexylethylamine, neopentylamine, 3-(methylthio)propylamine, isobutylamine. 3-amino-1-propanol, 2-ethoxyethylamine, 2,6dimethylpiperazine, propargylamine, thiophene-2-ethylamine, butylamine amino-1-methoxypropane, 3-aminopropionitrile, 3-methylpiperidine, Panisidine, 1,2,3,6-tetrahydropyridine, 2,6-dimethylmorpholine, methoxyamine hydrochloride, n-ethylpiperazine, water, and hydroxylamine.

[0032] When the above-described compounds include one or more chiral centers, the stereochemistry of such chiral centers can independently be in the R or S configuration, or a mixture of the two. The chiral centers can be further designated as R or S or R,S or d,D, I,L or d,I, D,L.

[0033] In the above formula , the term " C_1 to C_7 alkyl" denotes such radicals as methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, amyl, tert-amyl, hexyl and the like. The preferred " C_1 to C_7 alkyl" groups are methyl, iso-butyl, sec-butyl and iso-propyl.

[0034] The term "C₁ to C₇ substituted alkyl," denotes that the above C₁ to C₇ alkyl groups are substituted by one or more, and preferably one or two, halogen, hydroxy, protected hydroxy, oxo, protected oxo, C₃ to C₇ cycloalkyl, naphthyl, amino, protected amino. (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C1 to C_7 alkoxy, C_1 to C_7 acyl, C_1 to C_7 acyloxy, nitro, carboxy, protected carboxy. carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl)carboxamide, protected N-(C₁ to C₆ alkyl)carboxamide, N₁N-di(C₁ to C₆ alkyl)carboxamide, cyano, methylsulfonylamino, thiol, C1 to C4 alkylthio or C1 to C4 alkylsulfonyl groups. The substituted alkyl groups may be substituted once or more, and preferably once or twice, with the same or with different substituents.

[0035] Examples of the above substituted alkyl groups include the 2-oxo-prop-1-yl, 3-oxo-but-1-yl, cyanomethyl, nitromethyl, chloromethyl, hydroxymethyl, tetrahydropyranyloxymethyl, trityloxymethyl, propionyloxymethyl, amino, methylamino, aminomethyl, dimethylamino, carboxymethyl,

allyloxycarbonylmethyl. allyloxycarbonylaminomethyl. methoxymethyl, ethoxymethyl, t-butoxymethyl, acetoxymethyl, chloromethyl, bromomethyl. iodomethyl, trifluoromethyl, 6-hydroxyhexyl, 2,4-dichloro(n-butyl), 2-aminopropyl, 1-chloroethyl, 2-chloroethyl, 1- bromoethyl, 2-chloroethyl, 1-fluoroethyl, fluoroethyl. 1- iodoethyl, 2-iodoethyl, 1-chloropropyl, 2-chloropropyl, 3chloropropyl, 1-bromopropyl, 2-bromopropyl, 3-bromopropyl, 1-fluoropropyl, 2fluoropropyl, 3-fluoropropyl, 1- iodopropyl, 2-iodopropyl, 3-iodopropyl, aminoethyl, 1- aminoethyl, N-benzoyl-2-aminoethyl, N-acetyl-2-aminoethyl, Nbenzoyl-1-aminoethyl, N-acetyl-1-aminoethyl and the like.

[0036] The term " C_1 to C_7 alkoxy" as used herein denotes groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy and like groups. A preferred alkoxy is methoxy. The term " C_1 to C_7 substituted alkoxy" means the alkyl portion of the alkoxy can be substituted in the same manner as in relation to C_1 to C_7 substituted alkyl. Similalry, the term " C_1 to C_7 phenylalkoxy" as used herein means " C_1 to C_7 alkoxy" bonded to a phenyl radical.

[0037] The substituent term "C₃ to C₇ cycloalkyl" includes the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl rings. The substituent term "C₃ to C₇ substituted cycloalkyl" indicates the above cycloalkyl rings substituted by one or two halogen, hydroxy, protected hydroxy, C₁ to C₄ alkylthio, C₁ to C₄ alkylsulfoxide, C₁ to C₄ alkylsulfonyl, C₁ to C₄ substituted alkylsulfoxide, C₁ to C₄ substituted alkylsulfonyl, C₁ to C₆ alkyl, C₁ to C₇ alkoxy, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, oxo, protected oxo, (monosubstituted)amino, (disubstituted)amino, trifluoromethyl, carboxy, protected carboxy, phenyl, substituted phenyl, phenylthio, phenylsulfoxide, phenylsulfonyl, amino, or protected amino groups.

[0038] The term "substituted phenyl" specifies a phenyl group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₆ alkyl, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, C₁ to C₇ substituted alkoxy, C₁ to C₇ acyl, C₁ to C₇ substituted acyl, C₁ to C₇ alkylthio, C₁ to C₇ acyloxy, carboxy, protected carboxy, carboxymethyl, protected

hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C_1 to C_6 alkyl)carboxamide, protected N-(C_1 to C_6 alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_6 alkyl)sulfonyl)amino, – (phenylsulfonyl)amino or phenyl, wherein the phenyl is substituted or unsubstituted, such that, for example, a biphenyl results.

Examples of the term "substituted phenyl" includes a mono- or di(halo)phenyl group such as 2, 3 or 4-chlorophenyl, 2,6-dichlorophenyl, 2,5dichlorophenyl, 3,4-dichlorophenyl, 2, 3 or 4-bromophenyl, 3,4-dibromophenyl, 3chloro-4-fluorophenyl, 2, 3 or 4-fluorophenyl and the like; a mono or di(hydroxy)phenyl group such as 2, 3 or 4-hydroxyphenyl, 2,4-dihydroxyphenyl, the protected-hydroxy derivatives thereof and the like; a nitrophenyl group such as 2, 3 or 4-nitrophenyl; a cyanophenyl group, for example, 2, 3 or 4cyanophenyl; a mono- or di(alkyl)phenyl group such as 2, 3 or 4-methylphenyl, 2,4-dimethylphenyl, 2, 3 or 4-(iso-propyl)phenyl, 2, 3 or 4-ethylphenyl, 2, 3 or 4-(n-propyl)phenyl and the like; a mono or di(alkoxyl)phenyl group, for example, 2,6-dimethoxyphenyl, 2, 3 or 4-methoxyphenyl, 2, 3 or 4-ethoxyphenyl, 2, 3 or 4-(isopropoxy)phenyl, 2, 3 or 4-(t-butoxy)phenyl, 3-ethoxy-4-methoxyphenyl and the like; 2, 3 or 4-trifluoromethylphenyl; a mono- or dicarboxyphenyl or (protected carboxy)phenyl group such as 2, 3 or 4-carboxyphenyl or 2,4-di(protected carboxy)phenyl; di(hydroxymethyl)phenyl (protected а mono-or hydroxymethyl)phenyl such as 2, 3, or 4-(protected hydroxymethyl)phenyl or 3,4di(hydroxymethyl)phenyl; a mono- or di(aminomethyl)phenyl or (protected aminomethyl)phenyl such as 2, 3 or 4-(aminomethyl)phenyl or 2,4-(protected aminomethyl)phenyl; or a mono- or di(N-(methylsulfonylamino))phenyl such as 2, 3 or 4-(N-(methylsulfonylamino))phenyl. Also, the term "substituted phenyl" represents disubstituted phenyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxyphenyl, 3-chloro-4-hydroxyphenyl, 2-methoxy-4bromophenyl, 4-ethyl-2-hydroxyphenyl, 3-hydroxy-4-nitrophenyl, 2-hydroxy 4chlorophenyl and the like.

[0040] The terms "halo" and "halogen" refer to the fluoro, chloro, bromo or

iodo atoms. There can be one or more halogen, which are the same or different. Preferred halogens are chloro and fluoro.

[0041] The term "substituted amino" refers to an amino group with one substituent chosen from the group consisting of phenyl, substituted phenyl, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 acyl, C_1 to C_7 substituted acyl, C_2 to C_7 alkenyl, C_2 to C_7 substituted alkenyl, C_2 to C_7 alkynyl, C_2 to C_7 substituted alkynyl, C_7 to C_{12} phenylalkyl, C_7 to C_{12} substituted phenylalkyl and heterocyclic ring. The substituted amino can additionally have an amino-protecting group as encompassed by the term "protected substituted amino."

[0042] The term "(disubstituted)amino" refers to an amino group with two substituents chosen from the group consisting of phenyl, substituted phenyl, C_1 to C_6 alkyl, C_1 to C_6 substituted alkyl, C_1 to C_7 acyl, C_2 to C_7 alkenyl, C_2 to C_7 alkynyl, C_7 to C_{12} phenylalkyl, and C_7 to C_{12} substituted phenylalkyl. The two substituents can be the same or different.

[0043] The term " C_1 to C_4 alkylthio" refers to sulfide groups such as methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, t-butylthio and like groups.

[0044] The term " C_1 to C_4 substituted alkylthio," denotes that the C_1 to C_4 alkyl portion of this group may be substituted as described above in relation to "substituted alkyl."

[0045] The term "phenoxy" denotes a phenyl bonded to an oxygen atom, wherein the binding to the rest of the molecule is through the oxygen atom. The term "substituted phenoxy" specifies a phenoxy group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to

C₁₂ alkyl)sulfonyl)amino and N- (phenylsulfonyl)amino.

The terms "C₇ to C₁₈ substituted phenylalkyl" and "C₁ to C₁₂ substituted [0046] heterocycloalkyl" denote a C₇ to C₁₈ phenylalkyl group or C₁ to C₁₂. heterocycloalkyl substituted (on the alkyl or, where applicable, phenyl or heterocyclic portion) with one or more, and preferably one or two, groups chosen from halogen, hydroxy, protected hydroxy, oxo, protected oxo, amino, protected amino, substituted amino, protected substituted amino, (disubstituted)amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, C_1 to C_{12} alkyl, C_1 to C_{12} substituted alkyl, C_1 to C_{12} alkoxy, C_1 to C_{12} substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ substituted acyl, C₁ to C₁₂ acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-(C₁ to C₁₂ dialkyl)carboxamide, cyano, N-(C₁ to C₁₂ alkylsulfonyl)amino, thiol, C₁ to C₁₀ alkylthio, C₁ to C₁₀ alkylsulfonyl groups; and/or the phenyl group may be substituted with one or more, and preferably one or two, substituents chosen from halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C_{12} substituted acyl, C_1 to C_{12} acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted)amino, protected (monosubstituted)amino, (disubstituted)amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, cyclic C₂ to C₁₂ alkylene or a phenyl group, substituted or unsubstituted, for a resulting biphenyl group. The substituted alkyl, phenyl or heterocyclic groups may be substituted with one or more, and preferably one or two, substituents which can be the same or different. Examples of the term "C₇ to C₁₈ substituted phenylalky!" include groups such as 2-phenyl-1-chloroethyl, 2-(4-methoxyphenyl)ethyl, 4-(2,6-dihydroxy phenyl)n-hexyl, 2-(5-cyano-3-methoxyphenyl)n-pentyl, 3-(2,6-dimethylphenyl)npropyl, 4-chloro-3-aminobenzyl, 6-(4-methoxyphenyl)-3-carboxy(n-hexyl), 5-(4aminomethylphenyl)- 3-(aminomethyl)n-pentyl, 5-phenyl-3-oxo-n-pent-1-yl and the like.

[0048] The term "C₇ to C₁₈ phenylalkylene" specifies a C₇ to C₁₈ phenylalkyl, as defined above, where the phenylalkyl radical is bonded at two different positions connecting together two separate additional groups. The definition includes groups of the formula: -phenyl-alkyl-, -alkyl-phenyl- and -alkyl-phenyl-alkyl-. Substitutions on the phenyl ring can be 1,2, 1,3 or 1,4.

[0049] C₇ to C₁₈ phenylalkylenes include, for example, 1,4-tolylene and 1,3-xylylene.

[0050] The terms "cyclic C_2 to C_7 alkylene," "substituted cyclic C_2 to C_7 alkylene," "cyclic C_2 to C_7 heteroalkylene," and "substituted cyclic C_2 to C_7 heteroalkylene," defines such a cyclic group bonded ("fused") to the phenyl radical resulting in a bicyclic ring system. The cyclic group may be saturated or contain one or two double bonds. Furthermore, the cyclic group may have one or two methylene or methine groups replaced by one or two oxygen, nitrogen or sulfur atoms which are the cyclic C_2 to C_7 heteroalkylene.

[0051] The cyclic alkylene or heteroalkylene group may be substituted once or twice by the same or different substituents which, if appropriate, can be connected to another part of the compound (e.g., alkylene) selected from the group consisting of the following moieties: hydroxy, protected hydroxy, carboxy, protected carboxy, oxo, protected oxo, C₁ to C₄ acyloxy, formyl, C₁ to C₁₂ acyl, C₁ to C₁₂ alkyl, C₁ to C₇ alkoxy, C₁ to C₁₀ alkylthio, C₁ to C₁₀ alkylsulfoxide, C₁ to C₁₀ alkylsulfonyl, halo, amino, protected amino, substituted amino, protected substituted amino, (disubstituted)amino, hydroxymethyl or a protected hydroxymethyl.

[0052] The cyclic alkylene or heteroalkylene group fused onto the benzene radical can contain two to ten ring members, but it preferably contains three to six members. Examples of such saturated cyclic groups are when the resultant bicyclic ring system is 2,3-dihydro-indanyl and a tetralin ring. When the cyclic groups are unsaturated, examples occur when the resultant bicyclic ring system is a naphthyl ring or indolyl. Examples of fused cyclic groups which each contain

one nitrogen atom and one or more double bond, preferably one or two double bonds, are when the benzene radical is fused to a pyridino, pyrano, pyrrolo, pyridinyl, dihydropyrrolo, or dihydropyridinyl ring. Examples of fused cyclic groups which each contain one oxygen atom and one or two double bonds are when the benzene radical ring is fused to a furo, pyrano, dihydrofurano, or dihydropyrano ring. Examples of fused cyclic groups which each have one sulfur atom and contain one or two double bonds are when the benzene radical is fused to a thieno, thiopyrano, dihydrothieno or dihydrothiopyrano ring. Examples of cyclic groups which contain two heteroatoms selected from sulfur and nitrogen and one or two double bonds are when the benzene radical ring is fused to a thiazolo, isothiazolo, dihydrothiazolo or dihydroisothiazolo ring. Examples of cyclic groups which contain two heteroatoms selected from oxygen and nitrogen and one or two double bonds are when the benzene ring is fused to an oxazolo, isoxazolo, dihydrooxazolo or dihydroisoxazolo ring. Examples of cyclic groups which contain two nitrogen heteroatoms and one or two double bonds occur when the benzene ring is fused to a pyrazolo, imidazolo, dihydropyrazolo or dihydroimidazolo ring or pyrazinyl.

[0053] The term "heterocycle" or "heterocyclic ring" denotes optionally substituted five-membered to eight-membered rings that have 1 to 4 heteroatoms, such as oxygen, sulfur and/or nitrogen, in particular nitrogen, either alone or in conjunction with sulfur or oxygen ring atoms. These five-membered to eight-membered rings may be saturated, fully unsaturated or partially unsaturated, with fully saturated rings being preferred. Preferred heterocyclic include morpholino, piperidinyl, piperazinyl, 2-amino-imidazovl, tetrahydrofurano, pyrrolo, tetrahydrothiophen-yl, hexylmethyleneimino heptylmethyleneimino.

[0054] The term "substituted heterocycle" or "substituted heterocyclic ring" means the above-described heterocyclic ring is substituted with, for example, one or more, and preferably one or two, substituents which are the same or different which substituents can be halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl,

 C_1 to C_{12} acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, (disubstituted)amino carboxamide, protected carboxamide, N-(C_1 to C_{12} alkyl)carboxamide, protected N-(C_1 to C_{12} alkyl)carboxamide, trifluoromethyl, N-((C_1 to C_{12} alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, heterocycle or substituted heterocycle groups.

One or more of the compounds of the invention, even within a given library, may be present as a salt. The term "salt" encompasses those salts that form with the carboxylate anions and amine nitrogens and include salts formed with the organic and inorganic anions and cations discussed below. Furthermore, the term includes salts that form by standard acid-base reactions with basic groups (such as amino groups) and organic or inorganic acids. Such acids include hydrochloric, sulfuric, phosphoric, acetic, succinic, citric, lactic, maleic, fumaric, palmitic, cholic, pamoic, mucic, D-glutamic, D-camphoric, glutaric. phthalic, tartaric, lauric, stearic, salicyclic. methanesulfonic. benzenesulfonic, sorbic, picric, benzoic, cinnamic, and like acids.

[0056] The term "organic or inorganic cation" refers to counter-ions for the carboxylate anion of a carboxylate salt. The counter-ions are chosen from the alkali and alkaline earth metals, (such as lithium, sodium, potassium, barium, aluminum and calcium); ammonium and mono-, di- and tri-alkyl amines such as trimethylamine, cyclohexylamine; and the organic cations, dibenzylammonium, benzylammonium, 2-hydroxyethylammonium, bis(2hydroxyethyl)ammonium, phenylethylbenzylammonium, dibenzylethylenediammonium, and like cations. See. for example, "Pharmaceutical Salts," Berge et al., J. Pharm. Sci., 66:1-19 (1977). cations encompassed by the above term include the protonated form of procaine, quinine and N-methylglucosamine, and the protonated forms of basic amino acids such as glycine, ornithine, histidine, phenylglycine, lysine and arginine. Furthermore, any zwitterionic form of the instant compounds formed by a carboxylic acid and an amino group is referred to by this term. For example, a cation for a carboxylate anion will exist when R_2 or R_3 is substituted with a (quaternary ammonium)methyl group. A preferred cation for the carboxylate anion is the sodium cation.

[0057] The compounds of the invention can also exist as solvates and hydrates. Thus, these compounds may crystallize with, for example, waters of hydration, or one, a number of, or any fraction thereof of molecules of the mother liquor solvent. The solvates and hydrates of such compounds are included within the scope of this invention.

FOO581 One or more compounds of the invention, even when in a library, can be in the biologically active ester form, such as the non-toxic, metabolically-labile ester-form. Such ester forms induce increased blood levels and prolong the efficacy of the corresponding non-esterified forms of the compounds. groups which can be used include the lower alkoxymethyl groups, for example, methoxymethyl, ethoxymethyl, isopropoxymethyl and the like; the $-(C_1 \text{ to } C_7)$ alkoxyethyl groups, for example methoxyethyl, ethoxyethyl, propoxyethyl, isopropoxyethyl and the like; the 2-oxo-1,3-diooxlen-4-ylmethyl groups, such as 5-methyl-2-oxo-1,3-dioxolen-4-ylmethyl, 5-phenyl-2-oxo-1,3-dioxolen-4-ylmethyl and the like; the C₁ to C₄ alkylthiomethyl groups, for example methylthiomethyl, ethylthiomethyl, iso-propylthiomethyl and the like; the acyloxymethyl groups, for example pivaloyloxymethyl, pivaloyloxyethyl, -acetoxymethyl and the like; the ethoxycarbonyl-1-methyl group; the -acetoxyethyl; 1-(C₁ the alkyloxycarbonyloxy)ethyl groups such as the 1-(ethoxycarbonyloxy)ethyl group; and the 1-(C₁ to C₇ alkylaminocarbonyloxy)ethyl groups such as the 1-(methylaminocarbonyloxy)ethyl group.

[0059] The term "amino acid" includes any one of the twenty naturally-occurring amino acids or the D-form of any one of the naturally-occurring amino acids. In addition, the term "amino acid" also includes other non-naturally occurring amino acids besides the D-amino acids, which are functional equivalents of the naturally-occurring amino acids. Such non-naturally-occurring amino acids include, for example, norleucine ("Nle"), norvaline ("Nva"), L- or D-naphthalanine, ornithine ("Orn"), homoarginine (homoArg) and others well known

in the peptide art, such as those described in M. Bodanzsky, "Principles of Peptide Synthesis," 1st and 2nd revised ed., Springer-Verlag, New York, NY, 1984 and 1993, and Stewart and Young, "Solid Phase Peptide Synthesis," 2nd ed., Pierce Chemical Co., Rockford, IL, 1984. Amino acids and amino acid analogs can be purchased commercially (Sigma Chemical Co.; Advanced Chemtech) or synthesized using methods known in the art.

[0060] The term "functionalized resin" means any resin, crosslinked or otherwise, where functional groups have been introduced into the resin, as is common in the art. Such resins include, for example, those functionalized with amino, alkylhalo, formyl or hydroxy groups. Such resins which can serve as solid supports are well known in the art and include, for example, methylbenzhydrylamine-copoly(styrene-1% divinylbenzene) (MBHA). hydroxymethyl-copoly(styrene-1% divinylbenzene), 4-oxymethylphenyl-acetamido-copoly(stryene-1% divinylbenzene)(Wang), phenylacetamido methyl (Pam), and TentagelTM, from Rapp Polymere Gmbh. trialkoxy-diphenyl-methyl ester- copoly(styrene-1% divinylbenzene)(RINK) all of which are commercially available. Other functionalized resins are known in the art and can be use without departure from the scope of the current invention. Such resins may include those described in Jung, G., Combinatorial Peptide and Nonpeptide Libraties, A Handbook (VCH Verlag, 1996) or Bunin, B. A., The Combinatorial Index (Academic Press, 1998).

[0061] As used herein, a "combinatorial library" is an intentionally created collection of differing molecules which can be prepared by the means provided below or otherwise and screened for biological activity in a variety of formats (e.g., libraries of soluble molecules, libraries of compounds attached to resin beads, silica chips or other solid supports). A "combinatorial library," as defined above, involves successive rounds of chemical syntheses based on a common starting structure. The combinatorial libraries can be screened in any variety of assays, such as those detailed below as well as others useful for assessing their biological activity. The combinatorial libraries will generally have at least one active compound and are generally prepared such that the compounds are in

equimolar quantities.

[0062] A combinatorial library of the invention can contain one or more of the above-described compounds. The invention further provides a combinatorial library containing five or more of the above-described compounds. In another embodiment of the invention, a combinatorial library can contain ten or more of the above-described compounds. In yet another embodiment of the invention, a combinatorial library can contain fifty or more of the above-described compounds. If desired, a combinatorial library of the invention can contain 100,000 or more, or even 1,000,000 or more, of the above-described compounds.

[0063] By way of example, the preparation of the combinatorial libraries can use the "split resin approach." The split resin approach is described by, for example, U.S. Patent 5,010,175 to Rutter, WO PCT 91/19735 to Simon, and Gallop et al., *J. Med. Chem.*, 37:1233-1251 (1994).

[0064] For preparing pharmaceutical compositions containing compounds of the invention, inert, pharmaceutically acceptable carriers are used. The pharmaceutical carrier can be either solid or liquid. Solid form preparations include, for example, powders, tablets, dispersible granules, capsules, cachets, and suppositories.

[0065] A solid carrier can be one or more substances which can also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material.

[0066] In powders, the carrier is generally a finely divided solid which is in a mixture with the finely divided active component. In tablets, the active compound is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

[0067] For preparing pharmaceutical composition in the form of suppositories, a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient-sized molds and allowed to cool and solidify.

[0068] Powders and tablets preferably contain between about 5% to about 70% by weight of the active ingredient. Suitable carriers include, for example, magnesium carbonate, magnesium stearate, talc, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter and the like.

[0069] The pharmaceutical compositions can include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component (with or without other carriers) is surrounded by a carrier, which is thus in association with it. In a similar manner, cachets are also included. Tablets, powders, cachets, and capsules can be used as solid dosage forms suitable for oral administration.

[0070] Liquid pharmaceutical compositions include, for example, solutions suitable for oral or parenteral administration, or suspensions, and emulsions suitable for oral administration. Sterile water solutions of the active component or sterile solutions of the active component in solvents comprising water, ethanol, or propylene glycol are examples of liquid compositions suitable for parenteral administration.

[0071] Sterile solutions can be prepared by dissolving the active component in the desired solvent system, and then passing the resulting solution through a membrane filter to sterilize it or, alternatively, by dissolving the sterile compound in a previously sterilized solvent under sterile conditions.

[0072] Aqueous solutions for oral administration can be prepared by dissolving the active compound in water and adding suitable flavorants, coloring agents, stabilizers, and thickening agents as desired. Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural or synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.

[0073] Preferably, the pharmaceutical composition is in unit dosage form. In such form, the composition is divided into unit doses containing appropriate quantities of the active piperidine-3-carboxamide. The unit dosage form can be a

packaged preparation, the package containing discrete quantities of the preparation, for example, packeted tablets, capsules, and powders in vials or ampules. The unit dosage form can also be a capsule, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms.

[0074] As pharmaceutical compositions for treating infections, pain, or any other indication the compounds of the present invention are generally in a pharmaceutical composition so as to be administered to a subject at dosage levels of from 0.7 to 7000 mg per day, and preferably 1 to 500 mg per day, for a normal human adult of approximately 70 kg of body weight, this translates into a dosage of from 0.01 to 100 mg/kg of body weight per day. The specific dosages employed, however, can be varied depending upon the requirements of the patient, the severity of the condition being treated, and the activity of the compound being employed. The determination of optimum dosages for a particular situation is within the skill of the art.

[0075] Variant piperidine-3-carboxamide derivative compounds and combinatorial libraries can be prepared as shown in figures 1 and 2 in order to achieve a high level of diversity.

[0076] Resins suitable for use in the present invention can easily be determined by one skilled in the art. Such resins include but are not limited to polystyrene resin (e.g. Wang resin : *p*-benzyloxybenzyl alcohol-polystyrene) and PEG-grafted polystyrene resin (e.g. Tentagel, Argogel).

[0077] Other suitable resins known in the art can be found in "Solid Phase Synthesis and Combinatorial Technologies", Seneci, P.; John Wiley and Sons, 2000, p 1-45.

[0078] The resulting compound can be cleaved from the resin. Resin-bound piperidine-3-carboxamide derivative compounds can be cleaved by treating them, for example, with HF. They can also be cleaved with TFA/DCM, provided that TFA sensitive protecting group such as Boc are not used in the synthetic scheme. The compounds can be extracted from the spent resin, for example, with AcOH.

[0079] The nonsupport-bound combinatorial libraries can be screened as

single compounds. In addition, the nonsupport-bound combinatorial libraries can be screened as mixtures in solution in assays such as radio-receptor inhibition assays, anti-bacterial assays, anti-fungal assays, calmodulin-dependent phosphodiesterase (CaMPDE) assays and phosphodiesterase (PDE) assays, as described in detail below. Deconvolution of highly active mixtures can then be carried out by iterative or positional scanning methods. These techniques, the iterative approach or the positional scanning approach, can be utilized for finding other active compounds within the combinatorial libraries of the present invention using any one of the below-described assays or others well known in the art.

The iterative approach is well-known and is set forth in general in Houghten et al., Nature, 354, 84-86 (1991) and Dooley et al., Science, 266, 2019-2022 (1994), both of which are incorporated herein by reference. In the iterative approach, for example, sub-libraries of a molecule having three variable groups are made wherein the first variable is defined. Each of the compounds with the defined variable group is reacted with all of the other possibilities at the other two variable groups. These sub-libraries are each tested to define the identity of the second variable in the sub-library having the highest activity in the screen of choice. A new sub-library with the first two variable positions defined is reacted again with all the other possibilities at the remaining undefined variable position. As before, the identity of the third variable position in the sub-library having the highest activity is determined. If more variables exist, this process is repeated for all variables, yielding the compound with each variable contributing to the highest desired activity in the screening process. Promising compounds from this process can then be synthesized on larger scale in traditional singlecompound synthetic methods for further biological investigation.

[0081] The positional-scanning approach has been described for various combinatorial libraries as described, for example, in R. Houghten *et al.* PCT/US91/08694 and U.S. Patent 5,556,762, both of which are incorporated herein by reference. In the positional scanning approach, sublibraries are made defining only one variable with each set of sublibraries and all possible sublibraries with each single variable defined (and all other possibilities at all of

the other variable positions), made and tested. From the instant description one skilled in the art could synthesize combinatorial libraries wherein two fixed positions are defined at a time. From the testing of each single-variable defined combinatorial library, the optimum substituent at that position can be determined, pointing to the optimum or at least a series of compounds having a maximum of the desired biological activity. Thus, the number of sublibraries for compounds with a single position defined will be the number of different substituents desired at that position, and the number of all the compounds in each sublibrary will be the product of the number of substituents at each of the other variables.

[0082] Individual compounds and pharmaceutical compositions containing the compounds, as well as methods of using the same, are included within the scope of the present invention. The compounds of the present invention can be used for a variety of purposes and indications and as medicaments for any such purposes and indications. For example, piperidine-3-carboxamide derivative compounds of the present invention can be used as pesticides, acaricides, receptor agonists or antagonists and antimicrobial agents, including antibacterial or antiviral agents. The libraries can be screened in any variety of melanocortin receptor and related activity assays, such as those detailed below as well as others known in the art. Additionally, the subject compounds can be useful as analgesics. Assays which can be used to test the biological activity of the instant compounds include antimicrobial assays, a competitive enzyme-linked immunoabsorbent assay and radio-receptor assays, as described below.

[0083] The melanocortin (MC) receptors are a group of cell surface proteins that mediate a variety of physiological effects, including regulation of adrenal gland function such as production of the glucocorticoids cortisol and aldosterone; control of melanocyte growth and pigment production; thermoregulation; immunomodulation; and analgesia. Five distinct MC receptors have been cloned and are expressed in a variety of tissues, including melanocytes, adrenal cortex, brain, gut, placenta, skeletal muscle, lung, spleen, thymus, bone marrow, pituitary, gonads and adipose tissue (Tatro, Neuroimmunomodulation 3:259-284 (1996)). Three MC receptors, MCR-1, MCR-3 and MCR-4, are expressed in

brain tissue (Xia et al., Neuroreport 6:2193-2196 (1995)).

[0084] A variety of ligands termed melanocortins function as agonists that stimulate the activity of MC receptors. The melanocortins include melanocyte-stimulating hormones (MSH) such as α -MSH, β -MSH and γ -MSH, as well as adrenocorticotropic hormone (ACTH). Individual ligands can bind to multiple MC receptors with differing relative affinities. The variety of ligands and MC receptors with differential tissue-specific expression likely provides the molecular basis for the diverse physiological effects of melanocortins and MC receptors. For example, α -MSH antagonizes the actions of immunological substances such as cytokines and acts to modulate fever, inflammation and immune responses (Catania and Lipton, Annals N. Y. Acad. Sci. 680:412-423 (1993)).

[0085] The role of certain specific MC receptors in some of the physiological effects described above for MC receptors has been elucidated. For example, MCR-1 is involved in pain and inflammation. MCR-1 mRNA is expressed in neutrophils (Catania et al., <u>Peptides</u> 17:675-679 (1996)). The anti-inflammatory agent α -MSH was found to inhibit migration of neutrophils. Thus, the presence of MCR-1 in neutrophils correlates with the anti-inflammatory activity of α -MSH.

[0086] An interesting link of MC receptors to regulation of food intake and obesity has recently been described. The brain MC receptor MCR-4 has been shown to function in the regulation of body weight and food intake. Mice in which MCR-4 has been knocked out exhibit weight gain (Huszar et al., Cell 88:131-141 (1997)). In addition, injection into brain of synthetic peptides that mimic melanocortins and bind to MCR-4 caused suppressed feeding in normal and mutant obese mice (Fan et al., Nature 385:165-168 (1997)). These results indicate that the brain MC receptor MCR-4 functions in regulating food intake and body weight.

[0087] Due to the varied physiological activities of MC receptors, high affinity ligands of MC receptors could be used to exploit the varied physiological responses of MC receptors by functioning as potential therapeutic agents or as lead compounds for the development of therapeutic agents. Furthermore, due to

the effect of MC receptors on the activity of various cytokines, high affinity MC receptor ligands could also be used to regulate cytokine activity.

188001 A variety of assays can be used to identify or characterize MC receptor ligands of the invention. For example, the ability of a piperidine-3-carboxamide derivative compound to compete for binding of a known MC receptor ligand can be used to assess the affinity and specificity of a piperidine-3-carboxamide derivative compound for one or more MC receptors. Any MC receptor ligand can be used so long as the ligand can be labeled with a detectable moiety. The detectable moiety can be, for example, a radiolabel, fluorescent label or chromophore, or any detectable functional moiety so long as the MC receptor ligand exhibits specific MC receptor binding. A particularly useful detectable MC receptor ligand for identifying and characterizing other MC receptor ligands is 125I-HP 467, which has the amino acid sequence Ac-NIe-GIn-His-(p(I)-D-Phe)-Arg-(D-Trp)-Gly-NH2 and is described in Dooley et al., "Melanocortin Receptor Ligands and Methods of Using Same," U.S. patent application 09/027,108, filed February 20, 1998, which is incorporated herein by reference. HP 467 is a paraiodinated form of HP 228.

[0089] Using assay methods such as those described above, binding kinetics and competition with radiolabeled HP 467 can confirm that piperidine-3-carboxamide derivative compounds of the invention bind to one or more MC receptors. Furthermore, piperidine-3-carboxamide derivative compounds of the invention can exhibit a range of affinities and specificity for various MC receptors. [0090] The invention provides MC receptor ligands that can bind to several MC receptors with similar affinity. In addition, the invention also provides MC receptor ligands that can be selective for one or more MC receptors. As used herein, the term "selective" means that the affinity of a MC receptor ligand differs between one MC receptor and another by about 10-fold, generally about 20- to 50-fold, and particularly about 100-fold. In some cases, a MC receptor ligand having broad specificity is desired. In other cases, it is desirable to use MC receptor ligands having selectivity for a particular MC receptor. For example, MCR-1 ligands are particularly useful for treating pain and inflammation, whereas

MCR-4 ligands are useful for treating obesity. The binding characteristics and specificity of a given MC receptor ligand can be selected based on the particular disease or physiological effect that is desired to be altered.

[0091] Another assay useful for identifying or characterizing MC receptor ligands measures signaling of MC receptors. MC receptors are G protein-coupled receptors that couple to adenylate cyclase and produce cAMP. Therefore, measuring cAMP production in a cell expressing a MC receptor and treated with a MC receptor ligand can be used to assess the function of the MC receptor ligand in activating a MC receptor.

Ligands for MC-3 that can alter the activity of an MC-3 receptor can be useful for treating sexual dysfunction and other conditions or conditions associated with MC-3 such as inflammation. Other MC-3-associated conditions that can be treated with the MC-3 receptor ligands include disuse deconditioning; organ damage such as organ transplantation or ischemic injury; adverse reactions associated with chemotherapy; diseases such as cancer atherosclerosis that are mediated by free radicals and nitric oxide action; bacterial endotoxic sepsis and related shock; adult respiratory distress syndrome; and autoimmune or other patho-immunogenic diseases or reactions such as allergic reactions or anaphylaxis, rheumatoid arthritis, inflammatory disease, ulcerative colitis, glomerulonephritis, systemic lupus erythematosus, transplant atherosclerosis and parasitic mediated immune dysfunctions such as Chagas's disease.

[0093] The invention further provides a method for treating an MC-3-associated condition in a subject. The term "MC-3-associated condition" includes any condition or condition mediated by MC-3 or can be affected by binding an MC-3 ligand. Such conditions include inflammation and sexual dysfunction.

[0094] The term "sexual dysfunction" herein means any condition that inhibits or impairs normal sexual function, including coitus. However, the term need not be limited to physiological conditions, but may include psychogenic conditions or perceived impairment without a formal diagnosis of pathology.

[0095] In males, sexual dysfunction includes erectile dysfunction. The term "erectile dysfunction" or "impotence" means herein the inability or impaired ability to attain or sustain an erection that would be of satisfactory rigidity for coitus. Sexual dysfunction in males can also include premature ejaculation and priapism, which is a condition of prolonged and sometimes painful erection unrelated to sexual activity, often associated with sickle-cell disease.

[0096] In females, sexual dysfunction includes sexual arousal disorder. The term "sexual arousal disorder" means herein a persistent or recurrent failure to attain or maintain the lubrication-swelling response of sexual excitement until completion of sexual activity. Sexual dysfunction in females can also include inhibited orgasm and dyspareunia, which is painful or difficult coitus. Sexual dysfunction can also be manifested as inhibited sexual desire or inhibited lordosis behavior in animals.

[0097] In addition, the ability of the compounds to inhibit bacterial growth, and therefore be useful to that infection, can be determined by methods well known in the art. Compounds of the present invention can be shown to have antimicrobial activity by the *in vitro* antimicrobial activity assay described below and, therefore, are useful as antimicrobial agents.

[0098] Moreover, an exemplary *in vitro* antimicrobial activity assay is described in Blondelle and Houghten, *Biochemistry* 30:4671-4678 (1991), which is incorporated herein by reference. In brief, *Staphylococcus aureus* ATCC 29213 (Rockville, MD) is grown overnight at 37°C in Mueller-Hinton broth, then re-inoculated and incubated at 37°C to reach the exponential phase of bacterial growth (i.e., a final bacterial suspension containing 105 to 5 x 105 colony-forming units/ml). The concentration of cells is established by plating 100 μ l of the culture solution using serial dilutions (e.g., 10-2, 10-3 and 10-4) onto solid agar plates. In 96-well tissue culture plates, compounds, individual or in mixtures, are added to the bacterial suspension at concentrations derived from serial two-fold dilutions ranging from 1500 to 2.9 μ g/ml. The plates are incubated overnight at 37°C and the growth determined at each concentration by OD620 nm. The IC50

(the concentration necessary to inhibit 50% of the growth of the bacteria) can then be calculated.

[0099] The competitive ELISA method which can be used here is a modification of the direct ELISA technique described previously in Appel et al., J. Immunol. 144:976-983 (1990), which is incorporated herein by reference. It differs only in the MAb addition step. Briefly, multi-well microplates are coated with the antigenic peptide (Ac-GASPYPNLSNQQT-NH2) at a concentration of 100 pmol/50 µl. After blocking, 25 µl of a 1.0 mg/ml solution of each mixture of a synthetic combinatorial library (or individual compound) is added, followed by MAb 125-10F3 (Appel et al., *supra*) (25 µl per well). The MAb is added at a fixed dilution in which the bicyclic guanidine in solution effectively competes for MAb binding with the antigenic peptide adsorbed to the plate. The remaining steps are the same as for direct ELISA. The concentration of compound necessary to inhibit 50% of the MAb binding to the control peptide on the plate (IC50) is determined by serial dilutions of the compound.

[0100] Alternative screening can be done with radio-receptor assays. The radio-receptor assay, can be selective for any one of the μ , κ , or δ opiate receptors. Compounds of the present invention can be useful in vitro for the diagnosis of relevant opioid receptor subtypes, such as κ , in the brain and other tissue samples. Similarly, the compounds can be used *in vivo* diagnostically to localize opioid receptor subtypes.

[0101] The radio-receptor assays are also an indication of the compounds' analgesic properties as described, for example, in Dooley et al., *Proc. Natl. Acad. Sci.*, 90:10811-10815 (1993). For example, it can be envisioned that these compounds can be used for therapeutic purposes to block the peripheral effects of a centrally acting pain killer. For instance, morphine is a centrally acting pain killer. Morphine, however, has a number of deleterious effects in the periphery which are not required for the desired analgesic effects, such as constipation and pruritus (itching). While it is known that the many compounds do not readily cross the blood-brain barrier and, therefore, elicit no central effect, the subject

compounds can have value in blocking the periphery effects of morphine, such as constipation and pruritus. Accordingly, the subject compounds can also be useful as drugs, namely as analgesics, or to treat pathologies associated with other compounds which interact with the opioid receptor system.

[0102] Additionally, such compounds can be tested in a σ receptor assay. Ligands for the σ receptor can be useful as antipsychotic agents, as described in Abou-Gharbia et al., *Annual Reports in Medicinal Chemistry*, 28:1-10 (1993).

[0103] Radio-receptor assays can be performed with particulate membranes prepared using a modification of the method described in Pasternak et al., *Mol. Pharmacol.* 11:340-351 (1975), which is incorporated herein by reference. Rat brains frozen in liquid nitrogen can be obtained from Rockland (Gilbertsville, PA). The brains are thawed, the cerebella removed and the remaining tissue weighed. Each brain is individually homogenized in 40 ml Tris-HCl buffer (50 mM, pH 7.4, 4°C) and centrifuged (Sorvall® RC5C SA-600: Du Pont, Wilmington, DE) (16,000 rpm) for 10 minutes. The pellets are resuspended in fresh Tris-HCl buffer and incubated at 37°C for 40 minutes. Following incubation, the suspensions are centrifuged as before, the resulting pellets resuspended in 100 volumes of Tris buffer and the suspensions combined. Membrane suspensions are prepared and used in the same day. Protein content of the crude homogenates generally range from 0.15-0.2 mg/ml as determined using the method described in Bradford, M.M., *Anal. Biochem.* 72:248-254 (1976), which is incorporated herein by reference.

[0104] Binding assays are carried out in polypropylene tubes, each tube containing 0.5 ml of membrane suspension. 8 nM of 3H-[D-Ala2,Me-Phe4,Gly-ol5]enkephalin (DAMGO) (specific activity = 36 Ci/mmol, 160,000 cpm per tube; which can be obtained from Multiple Peptide Systems, San Diego, CA, through NIDA drug distribution program 271-90-7302) and 80 µg/ml of bicyclic guanidine, individual or as a mixture and Tris-HCl buffer in a total volume of 0.65 ml. Assay tubes are incubated for 60 mins. at 25°C. The reaction is terminated by filtration through GF-B filters on a Tomtec harvester (Orange, CT). The filters are

subsequently washed with 6 ml of Tris-HCl buffer, 4°C. Bound radioactivity is counted on a Pharmacia Biotech Betaplate Liquid Scintillation Counter (Piscataway, NJ) and expressed in cpm. To determine inter- and intra-assay variation, standard curves in which 3H-DAMGO is incubated in the presence of a range of concentrations of unlabeled DAMGO (0.13-3900 nM) are generally included in each plate of each assay (a 96-well format). Competitive inhibition assays are performed as above using serial dilutions of the piperidine-3-carboxamides, individually or in mixtures. IC50 values (the concentration necessary to inhibit 50% of 3H-DAMGO binding) are then calculated. IC50 values of less than 1000 nM are indicative of highly active opioid compounds which bind to the µ receptor, with particularly active compounds having IC50 values of 100 nM or less and the most active compounds with values of less than 10 nM.

[0105] As opposed to this μ receptor selective assay, which can be carried out using 3H-DAMGO as radioligand, as described above, assays selective for κ receptors can be carried out using [3H]-U69,593 (3 nM, specific activity 62 Ci/mmol) as radioligand. Assays selective for δ opiate receptors can be carried out using tritiated DSLET ([D-Ser2, D-Leu5]-threonine-enkephalin) as radioligand. Assays selective for the σ opiate receptor can use radiolabeled pentazocine as ligand.

[0106] Screening of combinatorial libraries and compounds of the invention can be done with an anti-fungal assay. Compounds of the present invention can be useful for treating fungal infections.

[0107] Screening of combinatorial libraries and compounds of the invention also can be done with a calmodulin-dependent phosphodiesterase (CaMPDE) assay. Compounds of the present invention can be useful as calmodulin antagonists.

[0108] Calmodulin (CaM), which is the major intracellular calcium receptor, is involved in many processes that are crucial to cellular viability. In particular, calmodulin is implicated in calcium-stimulated cell proliferation. Calmodulin

antagonists are, therefore, useful for treating conditions associated with increased cell proliferation, for example, cancer. In addition, calmodulin antagonists such as compounds of the subject invention are useful both in vitro and in vivo for identifying the role of calmodulin in other biological processes. The disadvantages of known antagonists such as trifluoperazine and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W13) include their non-specificity and toxicity. In contrast, advantages of the combinatorial libraries and compounds of the subject invention as calmodulin antagonists include their reduced flexibility and ability to generate broader conformational space of interactive residues as compared to their linear counterparts.

An example of an assay that identifies CaM antagonists is a CaMPDE assay. In brief, samples are mixed with 50 µl of assay buffer (360 mM Tris, 360 mM Imidazole, 45 mM Mg(CH3COO)2, pH 7.5) and 10 µl of CaCl2 (4.5 mM) to a final volume of 251 μl. 25 μl of calmodulin stock solution (Boehringer Mannheim; $0.01~\mu\text{g/}\mu\text{l})$ is then added and the samples then sit at room temperature for 10 minutes. 14 µl of PDE (Sigma; 2 Units dissolved in 4 ml of water; stock concentration: 0.0005 Units/ul) is then added, followed by 50 µl of 5'-nucleotidase (Sigma; 100 Units dissolved in 10 ml of 10 mM Tris-HCl containing 0.5 mM Mg(CH3COO)2, pH 7.0; stock concentration: 10 Units/ml). The samples are then incubated for 10 minutes at 30°C. 50 μ l of adenosine 3',5'-cyclic monophosphate (cAMP) (20 mM in water at pH 7.0) is added, the samples incubated for 1 hour at 30°C and then vortexed. 200 μ l of trichloroacetic acid (TCA) (55% in water) is added to a 200 μ l sample aliquot, which is then vortexed and centrifuged for 10 minutes. 80 µl of the resulting supernatants of each sample is transferred to a 96-well plate, with 2 wells each containing 80 µl of each sample. 80 µl of ammonium molybdate (1.1% in 1.1N H2SO4) is then added to all the wells, and the OD of each were determined at 730nm, with the values later subtracted to the final OD reading. 16 µl of reducing agent (6g sodium bisulfite, 0.6g sodium sulfite and 125mg of 1-amino-2-naphtol-4-sulfonic acid in 50ml of water) is then added to one of each sample duplicate and 16 µl of water is added to the other duplicate. After sitting for 1 hour at room

temperature, the OD of each well is determined at 730nm. The percent inhibition of calmodulin activity is then calculated for each sample, using as 0% inhibition a control sample containing all reagents without any test samples and as 100% inhibition a control sample containing test samples and all reagents except calmodulin. In addition, the percent inhibition of phosphodiesterase activity was determined by following a similar protocol as the CaMPDE assay described above, except not adding calmodulin to the sample mixture and calculating the percent inhibition by using as 0% inhibition a control reagent without any test samples and as 100% inhibition a control sample containing test samples and all reagents except cAMP.

[0110] The following examples are provided to illustrate but not limit the present invention. The following abreviations have the corresponding meanings:

DMF: N,N-dimethylforamide;

HOBt: 1-hydroxybenzotriazole;

Boc : tert-butoxycarbonyl;

DIC: N,N=-diisopropylcarbodiimide;

TFA: trifluoroacetic acid;

DIEA: N,N-diisopropylethylamine;

DCM: dichloromethane;

RT: room temperature

MeOH: methanol

MeOEtOH: 2-methoxyethanol

DCE: 1,2-dichloroethane

THF: tetrahydrofuran

ACN: acetonitrile

Wang resin : p-benzyloxybenzyl alcohol-polystyrene Br-Wang resin :

p-benzyloxybenzyl bromide-polystyrene

PP: polypropylene

PPh3Br2: triphenylphosphine dibromide

DMAP: 4-dimethylamino-pyridine

Example 1 Synthetic Protocol

Step 1a. Loading Hydroxybenzaldehydes on Bromo-Wang Resin

A 1 L Pyrex media bottle was charged with 100 g Bromo-Wang resin (100-200 mesh, 1.4 mmol/g). DMF (350 ml) was added and the bottle was shaken by hand to distribute the solvent within the swollen resin. A 500 ml Pyrex media bottle was charged with the hydroxybenzaldehyde (420 mmol, 3 eq) and the aldehyde was dissolved in DMF (300 ml). The aldehyde solution was cooled to 0° C (ice bath) and potassium tert-butoxide (44.8 g, 400 mmol) was added in two equal portions shaking for about 5 min. between additions. CAUTION: EXOTHERMIC REACTION. The temperature must be maintained at or below 25° C. The bottle was removed from the ice bath and shaken periodically to help dissolve the potassium tert-butoxide completely. After the second portion of potassium tert-butoxide was added, the bottle was allowed to warm to 25° C. After 30 min. at 25° C, all the potassium tert-butoxide dissolved and the solutions had various dark colors. The phenoxide solution was added to the swollen resin in two portions, shaking between portions. The 1L bottles were clamped horizontally in an orbital shaker oven and allowed to shake at 25° C for 30 min. The temperature was then increased to 50° C and the reaction allowed to shake for 14 h. After cooling, each resin slurry was poured into a 8" x 10" 3-sided porous polypropylene packet (tea bag) sitting in a 2 L beaker. After the solvent mixture had drained from the resin, the fourth side of the tea bag was sealed and the tea bags were washed in wide-mouth HDPE Nalgene bottles as follows: 2 x DMF, 4 x DMF/H₂O (4:1), 3 x DMF, 4 x MeOH. The tea bags were allowed to air dry in a fume hood.

Step 1b. Loading Diamines on Wang-Imidazolide Resin

[0112] For each R₁ diamine, a 4 L Nalgene bottle was charged with 17 x 2.5 g

tea bags containing Wang resin (100-200 mesh, 1.4 mmol/g). DCM (2 L) was added followed by 1,1'-carbonyldiimidazole (97 g, 0.60 mol, 0.3 M). The bags were shaken for 3 h at room temperature. Each diamine (0.72 mol, 0.4 M) was placed in a 2 L Nalgene bottle and 1.8 L of DCM added.

[0113] After 3 h shaking with CDI, the Wang-imidazolide tea bags were washed quickly with DCM (x2). The diamine solution was added immediately and the bags shaken overnight at room temperature. The bags were washed with DCM (x3) and MeOH (x3).

Step 2a. Imine Formation for the R₁ Hydroxybenzaldehydes.

[0114] After splitting the tea bags from step 1a, each set of 8 x 2.5 g bags was placed into a 1 L Nalgene bottle. The containers were then filled with 250 ml of trimethylorthoformate and 250 ml of anhydrous DMF. After the bags were saturated with the solvent, the primary amine (150 mmol, 0.3 M) was added. The reaction was then allowed to shake at room temperature for 24 h. The wash procedure must be carried out just before step 3 and the description is included in that section.

Step 2b. Imine Formation for the R₁ Primary Diamines.

[0115] After splitting the tea bags from step 1b, each set of 7 x 2.5 g bags was placed into a 1 L Nalgene bottle. The containers were then filled with 250 ml of trimethylorthoformate and 250 ml of anhydrous DMF. After the bags were saturated with the solvent, the aldehyde (150 mmol, 0.3 M) was added. The reaction was then shaken at room temperature for 24 h. The wash procedure must be carried out just before step 3 and is described in that section.

Step 3. Cyclization with 2-Phenylglutaric Anhydride

[0116] In an 8L Nalgene bottle, 2-Phenylglutaric anhydride (1.0 mol, 0.4M) was completely dissolved in 2.5L anhydrous DMF and triethylamine (0.03 M) was added. This anhydride solution is created before washing the imine tea bags. The imine tea bags from step 2 (60 X 2.5g bags) were quickly washed with

anhydrous DMF (3 x, 3 minutes or less washing). After washing, the imine bags were immediately transferred to the 2-Phenylglutaric anhydride solution and the reaction shaken at RT for 5 days. The bags were washed with DMF (x3) DCM (x3) and MeOH (x3) and air-dried.

Step 4. Acylation of the Resin Bound Carboxylic Acid.

[0117] Each tea bag from step 3 was plated into 40 wells of a 2 ml deep-well microtiter plate. The resin bound carboxylic acid was pre-activated by treatment with 0.6 ml of a solution containing 0.6 M DIC, 0.6M HOBt in anhydrous DMF. The plates were allowed to stand for one hour at room temperature. During this time, each amine solution was prepared by dissolving the amine (0.6M) in a solution of DIEA (0.8 M) in DMF. To each well containing the pre-activated acid resin was added 0.6 ml of the amine solution. The final concentrations in each well were: amine (0.3M), DIEA (0.4 M), HOBt (0.3 M), and DIC (0.3 M). The plates were vortexed and were placed in a shaker oven at 50° C for 24 h. After cooling to room temperature, the resin was washed using a robotic wash station with 20% water/DMF (x2), DMF (x8) and MeOH (x6) and air-dried.

Step 5. Cleavage from Linker and Extraction

[0118] To dry microtiter plates was added 0.5 ml of 20% TFA/DCM to each well. The plates were capped and placed on a shaker at room temperature for 2 h. The plates were transferred to a GENEVAC to remove the volatile TFA/DCM solution. The resin was extracted with AcOH and the extracts were frozen and lyophilized to afford the products as yellow oils. All of the final products were analyzed by HPLC/MS using ELSD detection to determine purity.

Example 2

Preparation of (Substituted Phenyl)-glutaric anhydrides

[0119] The appropriate substituted phenylacetic acid ethyl or methyl ester 1 (0.01 mol) is dissolved in anhydrous ethanol (100 ml). To this solution is added

Sodium ethoxide (0.01 mol), followed by ethyl acrylate (0.015 mol), and the solution is heated to reflux overnight. The solution is cooled and the solvent evaporated under reduced pressure. The product 2 is then dissolved in 100 ml H2O/EtOH 1:1 and KOH added (0.10 mol). The solution is heated to reflux for 10 hours, acidified to pH 3 with 1 N HCl and the diacid product 3 extracted with EtOAc, washed with water and brine, and dried with MgSO4. After removal of the solvent, the resulting solid is suspended in Acetic anhydride (100 ml) and heated to reflux for 1 hour to afford the anhydride. The solvent is removed and the residue is suspended in toluene and evaporated to afford the product 4.

List of Compounds 1: ETHYL 2-THIOPHENEACETATE ETHYL THIOPHENE-3-ACETATE INDOLE-3-ACETIC ACID ETHYL ESTER **ETHYL 2-PYRIDYLACETATE** ETHYL 3-PYRIDYLACETATE ETHYL O-TOLYLACETATE ETHYL P-TOLYLACETATE METHYL 1-METHYL-2-PYRROLEACETATE METHYL 2,3,4,5,6-PENTAFLUOROPHENYLACETATE **ETHYL 2-NAPHTHYLACETATE** METHYL 2-(4,5-DIMETHOXY-2-NITROPHENYL)ACETATE ETHYL P-BROMOPHENYLACETATE ETHYL 4-NITROPHENYLACETATE METHYL 2,3,4-TRIMETHOXYPHENYL ACETATE METHYL 3,4,5-TRIMETHOXYPHENYL ACETATE ETHYL 3,4-DIMETHOXYPHENYLACETATE ETHYL M-TOLYLACETATE 2,4-DICHLOROPHENYLACETIC ACID METHYL ESTER ETHYL 4-CHLOROPHENYLACETATE ETHYL 1-NAPHTHYLACETATE ETHYL 3-METHOXYPHENYLACETATE ETHYL 4-BENZYLOXYPHENYLACETATE ETHYL 4-METHOXYPHENYLACETATE 5-BENZYLOXYINDOLE-3-ACETIC ACID METHYL ESTER ETHYL PYRIDINE-4-ACETATE METHYL 4-TERT-BUTYLPHENYLACETATE ETHYL MESITYLACETATE ETHYL 4-ETHOXYPHENYLACETATE ETHYL 2-BROMOPHENYLACETATE 4-BUTOXYPHENYLACETIC ACID METHYL ESTER

ETHYL 3,5-DIMETHYLPHENYLACETATE METHYL 3,5-DIMETHOXYPHENYLACETATE ETHYL 2-NITROPHENYLACETATE 2-CHLOROPHENYLACETIC ACID METHYL ESTER METHYL 4-BENZYLOXYPHENYLACETATE METHYL 5-CHLOROBENZO[B]THIEN-3-YLACETATE 2,6-DICHLOROPHENYLACETIC ACID METHYL ESTER ETHYL 2,5-DIMETHOXYPHENYLACETATE METHYL (5-METHYL-2-PHENYLOXAZOL-4-YL)ACETATE METHYL 5,6-DICHLORO-3-INDOLEACETATE METHYL 2-(5-METHOXY-2-METHYL-1H-INDOL-3-YL)ACETATE METHYL (5-METHYL-2-PHENYLTHIAZOL-4-YL)ACETATE IMIDAZO(2,1-B)THIAZOL-6-YL-ACETIC ACID ETHYL ESTER (4-CHLORO-2-NITRO-PHENYL)-ACETIC ACID ETHYL ESTER ETHYL 2-(TRIFLUOROMETHYL)PHENYL ACETATE ETHYL 2-[2-(ACETYLAMINO)-1,3-THIAZOL-4-YL]ACETATE (1H-IMIDAZOL-4-YL)-ACETIC ACID METHYL ESTER (4,5-DIMETHOXY-2-NITRO-PHENYL)-ACETIC ACID ETHYL ESTER ETHYLFURYL ACETATE METHYL 2-FLUOROPHENYLACETATE METHYL 2-CHLORO-6-FLUOROPHENYLACETATE METHYL 4-FLUOROPHENYLACETATE METHYL 2-CHLORO-4-FLUOROPHENYL ACETATE METHYL 3-CHLOROPHENYLACETATE METHYL 3,4-DICHLOROPHENYLACETATE ETHYL 2-(2-PHENYL-1,3-THIAZOL-4-YL)ACETATE ETHYL 3,4-DICHLOROPHENYLACETATE ETHYL 2-(2-METHYL-1,3-THIAZOL-4-YL)ACETATE ETHYL 2-[2-[4-(TERT-BUTYL)PHENYL]-1,3-THIAZOL-4-YL]ACETATE ETHYL 2-[2-(4-CHLOROPHENYL)-1,3-THIAZOL-4-YL]ACETATE METHYL (2-CYANOPHENYL)ACETATE METHYL (4-CYANOPHENYL)ACETATE

Example 3

Anti-microbial Screen

[0120] Streptococcus pyogenes (ATCC# 97-03 14289) was grown in Todd Hewitt Broth (THB) (Difco Laboratories #0492-17-6) overnight until reaching an optical density of (OD = 0.636@ 570 nm) by reading 0.1 ml in a 96 well microtiter plate in a Molecular Devices Thermomax. This preparation was kept frozen as stocks in 30% v/v glycerol in 1.5 ml aliquots at -70mC until use. Prior to experiments, 6 ml aliquots were thawed and diluted into 50 ml 2X THB. 60 ul

of this dilution was added to 92 wells of microtiter plate. To three wells THB (200 ul) was added to serve as a blank and a sterility control. Test compounds in DMSO and appropriate concentrations of DMSO were added to Growth/Solvent Controls at 0 time. Plates were read at 0 time at 570 nm in the Molecular Devices plate reader to obtain compounds correction factors for insoluble or colored compounds. Plates were read again at 4 hours.

[0121] Percent inhibition is calculated with the following formula

[0122] Color correct = O.D. 0 hr - Blank 0 hr)-(Solvent Control 0hr - Blank 0 hr)

[0123] % Inhibition =

100 - O.D. test compound 4 hr - Blank 4 hr - color correct O.D. growth/solvent control 4 hr - Blank 4 hr

568.542	593.686	670.568	521.698	
C31 H35 Cl2 N3 O3	G G₂√ H₃₅ F₃ N₃ O₃	C ₃₀ H ₄₀ Br N ₃ O ₃	G31 H43 N3 O4	
#NAME?	#NAME?	#NAME?	#NAME?	ر ه
(compound) LionID 0.1776 TR0910002979 _{H.C.} H _{.C.}	TR0910000682	TR0910002442	TR09100033002	
one mg/m 0.1776	0.1776	0.1778	0.1776	,
	Spy4H	Spy4H	Spy4H	
99.97 Spy41	98.90	97.52		
ONE MADE	0.112	0.17	0. 112	•
Library Cdrpd Col ExtReg Plate Well Raw Data 9100 2979 1 000728122 9100-042 C 04 0.098	1 000728065 9100-009 B 07	2442 1 000727585 9100-035 B 07	1 000728145 9100-042 B 07	
Стра 2979	682	2442	3002	
9100 9100	9100	9100	9100	

			•	
580.552	608.606	608.608	580.552	
C ₃₂ H ₃₅ Cl ₂ N ₃ O ₃	C ₂₄ H ₃₈ Cl ₂ N ₃ O ₃	C ₃₄ H ₃₉ Cl ₂ N ₃ O ₃	C ₃₂ H ₃₅ Cl ₂ N ₃ O ₃	
#NAME?	HAME?	HAN CHAME?	H,GH H,HH H,GH H,GH H,GH H,GH H,GH H,GH	
Conc.mg/m LionID 	TR0910002482	TR0910002509	TR0910000869	
Запа: т.д/т 0.1776	0.1778	0.1776	0.1776	
f Assay II Spy4H	Spy4H	Spy4H	Sру4H	·
Assay Result Assay 97.24 Spy41	98.69	98.33	. 98.21	
Raw Data 0.203	0.13	0.162	0.207	
Librer, Cmpd Lol ExiReg Plate Well Raw 5 9100 2989 1 000728132 9100-042 E 05 0.20	2482 1 000727625 9100-036 B 02	2509 1 000727652 9100-036 E 05	000726052 9100-009 E 05	
Lat ExtRe 1 00072	1 00072	1 00072	1 000726	
ry. Cmpd 2989			699	
U.Dre 9100	9100	9100	9100	

562.106	558.541	531.487	
C ₃₂ H ₃₈ CI N ₃ O ₄	C ₂₉ H ₃₈ Br N ₃ O ₃	C ₂₇ H ₃₅ Br N ₂ O ₄	
#NAME?	#NAME?	HJC-N HJC-N HNAME?	
Assay Cand mg/m LlonID Spy4H 0.1776 TR0910002722	TR0910002449	H ₃	Š.
Sana mg/m 0.1776	0.1778	0.1778	· .
# Assay Spy4H	Spy4H	S ру4Н	
Assey Result 95.57	95.27	94.31	`.
Raw Data 0.112	0.216	0.234	
pd Lot ExtReg Blate Wilell Raw Data 22 1 000727865 9100-039 B 02 0.112	19 1 000727592 9100-035 A 08	1 000727810 9100-035 C 10	
22	·	7	

9100

570.73	491.672	525.689
C34 H42 N4 O4	G ₃₀ H ₄₁ N ₃ O ₃	G ₃ H ₃₉ N ₃ O ₃
#NAME?	H,C,T,H,H,C,H,H,C,H,H,C,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,C,H,H,H,H,C,H,H,H,H,C,H,H,H,H,C,H,H,H,H,C,H,H,H,H,C,H,H,H,H,C,H,H,H,H,H,H,C,H	#NAME?
LionID TR0910003739	TR0910001029	TR0910002402
Cano mg/f 0.1776	0.1778	0.1776
f Assay Spy4H	S ру4Н	Sру4H
Assay Resu 94.27	26 1.	. 65.38
Raw Data 0.132	0,162	0.12
	1029 1 000726412 9100-013 E 10	2402 1 000727545 9100-035 B 02
Library (1 0016	9100 2

570.568	929.29	625.689
C ₃₀ H ₄₀ Br N ₃ O ₃	C ₃₁ H ₃₃ Cl ₂ N ₃ O ₃	CH3 H38 N3 O3 CH3
#NAME?	HOTH HOTH SHE	HAME?
LionID TR0910002469	TR0910000649	TR0910002420
Sana mg/tr 0.1776	0.1778	0.1776
Resay - Spy4H	Spy4H	Sру4Н
Assay Resu 90.14	84.40	84.37
Raw Data 0.231	0.217	0.219
	649 1 000728032 9100-009 A 03	2420 1 000727563 9100-035 D 04
ot ExtReg I 00072761	000728035	000727563
Cmpd L 2469	649 1	2420 1
Library 9100	9100	0016

526.472	593.686	527.445	
C27 H32 Br N3 O3	C ₃₄ H ₃₈ F ₃ N ₃ O ₃	C ₂₈ H ₂₈ Cl ₂ N ₂ O ₄	
#NAME?	BH HN OOH WANNE?	HOTEL OF THE STATE	
Assev Result Assay Code marm LionID 84.05 Spy4H 0.1776 TR0910002474	1 TR0910000709	TR0910000657	
ans mg/m 0.1776	0.1776	0.1776	
Assay I.C Spy4H	Spy4H	Spy4H	
43say Result 84.05	83.73	83.39	
2000	0.178	0.188	
	709 1 000726092 9100-009 E 10	1 000726040 9100-009 A 04 0.188	
1 0007	1 00072		
Стр д 2474	709	657	
Library 9100	9100	9100	

560.134	543.035	521.054	567.524	·
C33 H38 CI N3 O3	С ₃₂ Н ₂₈ СІ F N ₂ О ₃ Он	С ₃₀ Н ₃₃ Сі N ₂ О ₄	C ₂₉ H ₃₅ Br N ₄ O ₃	
#NAME?	B. A.	#NAME?	#NAME?	_5 5
SSBY RABUIT Assay Conc. mg/ml LlonID 83.27 Spy4H 0.1776 TR0910002602	TR0910000853	TR0910000862	TR0910002444	
опс тр/т 0.1776	0.1776	0.1776	0.1776	
Assay Spy4H	Spy4H	Spy4H	S ру4Н	
538425	83.27	83.27	82.77	
Raw Data 0.157	0.28	0.255	0.275	
Library, Cmpd Let Exideg Plate , Mell Raw Data 9100 2602 1 000727745 9100-037 B 07 0.157	000726236 9100-011 E 08	1 000726245 9100-011 F 09	1 000727587 9100-035 D 07	
H EXIRES 000727745	000726236	000726245	000727687	
Cmpd Li 2602 1	653	862	2444 1	
Worteny 9100	9100	9100	9100	

596.562	530.503	499.392	555.499	
C ₃₁ H ₃₈ Br N ₃ O ₄	C ₂₇ H ₃₈ Br N ₃ O ₃	C ₂₈ H ₂₄ Cl ₂ N ₂ O ₄	C ₃₀ H ₃₂ Cl ₂ N ₂ O ₄	ច
#NAME?	H,C,H,H,H,H,H,H,C,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,	HO HO OH WAME?	HAMME?	
LionID TR0910000995	TR0910001699	TR0910002997	TR0910000668	
്ടർ നയ്യ് 0.1776	0.1778	0.1776	0.1776	
f Assay Spy4H	Spy4H	Sру4H	Sру4H	
Assay Kesult Assay. Cond.mg/ml LlonID 82.45 Spy4H 0.1776 TR091	82.28	82.26	82.04	
Raw Data 0.291	0.177	0.488	0.328	
Library, Cmpd, Lof ExtReg Plate Well Raw Data 4 9100 995 1 000726378 9100-013 C 06 0.291	000726842 9100-023 C 04	000728140 9100-042 E 06	000728051 9100-009 D 05	
3d Lot 5 1	-	-	- ,	
y Cmt 995	1699	2997	899	
Librar 9100	9100	9100	9100	

513.678	607.027	584.551	577.509	
С ₃₂ Н ₃₉ N ₃ О ₃ .он .он	C ₂₈ H ₃₁ Cl N ₂ O ₄	G ₃₀ H ₃₈ Br N ₃ O ₄	G ₃₁ H ₃₀ Cl ₂ N ₄ O ₃	
#NAME?	#NAME?	WAME?	THE WAME?	\
_	TR0910000868	TR0910002441 o≠	TR0910000644	
ane mg/m	0.1776	0.1776	0.1776	
Spy4H	. Sру4Н	Spy4H	Spy4H	
Assay Result	81.37	79.88	78.67	
caw Data 0.157	0.248	0.189	0.211	
Library Cmpd Lef ExtReg Plate Well Raw Data Assay Result Assay Cond mg/ml LlonID 9100 2419 1 000727562 9100-035 C 04 0.157 81.80 Spy4H 0.1776 TR0910002419	000726251 9100-011 D 10	2441 1 000727584 9100-035 A 07	1 000728027 9100-009 D 02	
N. EXIREG 00072756	00072625	00072758	00072602	
Smpd Li 2419 1	868	1 1441	1 449	
U.brary 9100	9100	9100	9100	

474.985	636.456	542.514
C ₂₈ H ₂₇ Cl N ₂ O ₃	C ₂₈ H ₂₇ Cl ₂ N ₃ O ₃	C ₂₈ H ₃₈ Br N ₃ O ₃
#NAME?	#John Wame?	WAME?
#\$BY Result Assay Cont mg/m LionID 78.13 Spy4H 0.1776 TR0910000846	H TR0910000674	TR0910001682
രം നയ്യിന 0.1776	0.1776	0.1776
Assay 10 Spy4H	Spy4H	S ру4Н
Assay Result 78.13	77.32	77.18
kaw Data 0.31	0.275	0.193
Library Cimpol Lol ExtReg Plate Well Raw D 9100 846 1 000726229 9100-011 F 07 0.31	1 000726057 9100-009 B 08	1682 1 000726825 9100-023 B 02
Cmpd L 846	674	
Library 9100	9100	0010

472.97	679.531	532.081
C ₂₈ H ₂₅ Cl N ₂ O ₃	C ₃₁ H ₃₅ Br N ₂ O ₄	03. H34 O N3 O 03.
#NAME?	#NAME?	THE STATE OF THE S
LionID TR0910000870	TR0910002476	TR0910000869
Canc mg/mil LionID 0.1776 TR091	0.1776	0.1778
Assay C Spy4H	. Spy4H	Spy4H
ssay Result 76.50	75.71	75.89
aw Data A 0.278	0.35	0.255
Librery Cmpd Lot ExfReg Plate Well Raw Da 9100 870 1 000726253 9100-011 F 10 0.278	2476 1 000727819 9100-035 D 11	000726252 9100-011 E 10
1 ExtRag 000726253	000727819	000726252
Cmpd Lt 870 1	2476 1	. 88
Library 9100	9100	. 000

499.392	434.577	422.566	448.603	
C ₂₈ H ₂₄ Cl ₂ N ₂ O ₄	C ₂₇ H ₃₄ N ₂ O ₃	C ₂₈ H ₃₄ N ₂ O ₃	C ₂₈ H ₃₈ N ₂ O ₃	
#NAME?	HO WAME?	H,CH, WAME?	#NAME?	OF OF
ans mg/mil LionID 0.1776 TR0910000677	H TR0910001006	TR0910001101	TR0910001003	· · · · · · · · · · · · · · · · · · ·
and mg/ml 0.1776	. 0.1776	0.1778	0.1776	
Assay C Spy4H	Spy4H	Spy4H	Spy4H	
ssay Result 75.63	75.14	74.29	74.05	
aw Data A 0.23	0.334	0.263	0.302	
Litriery Cmpd Lell ExtReg Plate Well Raw Da. 9100 677 1 000728060 9100-009 E 06 0.23	1008 1 000726389 9100-013 F 07	1101 1 000726484 9100-014 E 09	1003 1 000726386 9100-013 C 07	
ry Cmpd 677			•	
9100	9100	9100	9100	

520.07	511.662	657.525	
С ₂₀ Н ₃₄ Ci N ₃ O ₃ Он	G ₃₂ H ₃₇ N ₃ O ₃	C ₂₈ H ₃₇ Br N ₂ O ₄	
#NAME?	#NAME?	#NAME?	THE PERSON OF TH
Cane mg/m LlonID 0.1776 TR0910000859 H,C	TR0910002409	TR0910002450	oʻ.
anc mg/m 0.1776	0.1776	0.1778	
Assay Spy4H	Spy4H	Spy4H	
73.80	73.79	73.79	
aw Data A 0.204	0.211	0.294	
Library Cmpd Edi ExtReg Plate Well Raw Dat 9100 859 1 000726242 9100-011 C 09 0.204	1 000727552 9100-035 A 03	2450 1 000727593 9100-035 B 08	
1 00 EX		0 1 00	
Liotary Cril 9100 859	9100 2408	9100 245	

559.541	651.478	531.073	432.561
C ₂₉ H ₃₉ Br N ₂ O ₄	C ₂₈ H ₃₁ Br N ₂ O ₄	C ₃₀ H _{Z7} Ci N ₂ O ₃ S	C ₂₇ H ₃₂ N ₂ O ₃
#NAME?	#NAME?	H H C H CH, H OH	# #NAME?
Cane mg/mi LionID 0.1776 TR0910002462	TR0910001716	TR0910000858	TR0910001030
3012,1776 0.1776	0.1776	0.1776	0.1776
Spy4H	Spy4H	Spy4H	Spy4H
73.79	73.16	72.99	72.97
0.254	0.445	0.303	0.28
Libbary Cmpd Lot ExtReg Ritte Well Raw Dat 9100 2462 1 000727605 9100-035 F 09 0.254	1716 1 000726859 9100-023 D 06	858 1 000726241 9100-011 B 09	1030 1 000726413 9100-013 F 10
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	9100	9100	9100

410.511	460.614	493	533.709
C ₂₄ H ₃₀ N ₂ O ₄	C ₂₉ H ₃₈ N ₂ O ₃	C ₂₈ H ₂₈ Cl N ₂ O ₄	G ₂₂ H ₃₃ N ₃ O ₄
#NAME?	H, C, H, MAME?	#NAME?	#o #name?
Sane mg/mil LionID 0.1776 TR0910001037	Ho. TR0910001075	TR0910000867	TR0910002340
ans mg/ml 0.1778	0.1778	0.1776	0.1776
Assay C Spy4H	Sру4H	Spy4H	Spy4H
88y Result 72.97	72.88	72.72	. 72.58
aw Data At 0.26	0.3	0.233	0.218
Library Cmpd Lot ExtRag Plate Well Raw Dat 9100 1037 1 000726420 9100-013 E 11 0.26	1075 1 000726458 9100-014 C 06	867 1 000726250 9100-011 C 10	2340 1 000727483 9100-033 D 04
Library C	9100	9100	9100

543.035	589.732	. 609.687
C ₃₂ H ₂₈ CI F N ₂ O ₃	G ₃₇ H ₃₈ N ₃ O ₄	C ₃₀ H ₄₃ N ₃ O ₄
#NAME?	#NAME?	#NAME?
Cons.mg/fffi LionID 0.1776 TR0910000852	TR0910003731	н _ь с ТR0910003019 н _ь с
one mg/fff	0.1776	0.1778
Spy4H	Spy4H	Spy4H
72.45	72.29	72.18
aw Data A.	0.3	0.205
Library Corps Lot EdReg Blate Well Raw Da 9100 852 1 000728235 9100-011 D 08 0.332	3731 1 000728874 9100-051 C 08	3019 1 000728162 9100-042 C 09
Cintra E 852		
Ciribitaty 9100	9100	9100

632.081	517.461	545,514	673.081
C31 H34 C1 N3 O3 5	C ₂₈ H ₃₃ Br N ₂ O ₄	C ₂₈ H ₃₇ Br N ₂ O ₄ E	G ₃₃ H ₃₀ CI F N ₂ O ₄ (
#NAME?		#NAME?	#NAME?
Cone mg/m LlonID 0.1776 TR0910000860	н,с ТR0910001708 н,с	TR0910002468	TR0910002733
one mg/ml 0.1778	0.1776	0.1776	0.1776
Assay Spy4H	Spy4H	Sру4H	Вру4Н
kssay Result 72.18	72.09	71.54	71.19
aw Data / 0.266	0.379	0.28	0.429
Library C-mpd (on ExiRag Plate Well Raw Dat 9100 860 1 000728243 9100-011 D 09 0.266	1 000726851 9100-023 D 05	1 000727611 9100-035 D 10	1 000727876 9100-039 E 03
ot ExtRag 1 000728	1 000728	1 000727	1 000727
Cmpd L 860	1708	2468	2733
Library 9100	9100	9100	0100

642.514	532.081	487.984	461.353	·
C ₂₈ H ₃₈ Br N ₃ O ₃	C31 H34 C1 N3 O3	C28 H26 CI N3 O3	C ₂₂ H ₂₅ Br N ₂ O ₄	
#NAME?	HINAME?	#NAME?	AHNAME?	of the state of th
Cane mg/mil LionID 0.1776 TR0910001709	H TR0910000842	TR0910000874	TR0910001717	_ ·
ana mg/m 0.1776	0.1776	0.1778	0.1776	
Assayı C Spy4H	Spy4H	Spy4H	Spy4H	
ssay Result 71.02	70.82	70.82	70.21	
aw Data A 0.383	0.215	0.258	0.329	
Librery Cmpd (of ExiReg Plate Well Raw Date	9 1 000726225 9100-011 B 07	-	7 1 000726860 9100-023 E 06	
rany cmp	9100 842		9100 1717	*
3	2 2	9	2	,

460.546	529.037	491.672	627.6	
C ₂₈ H ₂₉ F N ₂ O ₃	C ₃₀ H ₂₈ Cl N ₄ O ₃	C ₃₀ H ₄₁ N ₃ O ₃	C ₂₈ H ₃₅ Br N ₂ O ₃	
#NAME?	#NAME?	#NAME?	#NAME?	
Cane Mg/m LionID 0.1776 TR0910001093	TR0910000844	TR0910001020	TR0910002443	
ane mg/m 0.1778	0.1778	0.1778	0.1776	
Assayı Spy4H	Sру4H	Spy4H	Spy4H	
rsey Result 70.04	69.74	69.72	69.62	
	0.221	0.217	0.383	
山的时,	000728227 8100-011 D 07	000726403 9100-013 D 09	000727586 9100-035 C 07	
Lot EXITE 1 00072	1 00072	1 00072	1 00077	
/ Стра 1093	448	1020 1	2443	
Library 9100	9100	9100	9100	

	1		
519.038	539.072	593.695	
C ₃₀ H ₃₁ Cl N ₂ O ₄	C ₃₃ H ₃₁ Cl N ₂ O ₃	С ₃₈ Н ₃₈ F N ₃ O ₄	
#NAME?	#NAME?	#NAME?	· CZ~
Cone.mg/mi LionID 0.1776 TR0910000850	a TR0910000851	н ТR0910003733	
one mg/m 0.1776	0.1778	0.1776	
Assay (Spy4H	Spy4H	Spy4H	
ssay Resul 69.47	69.20	68.93	
caw Data A 0.322	0.374	0.332	
[Library Cmpd Let ExtReg Plate Well Raw Data 9100 850 1 000728233 9100-011 B 08 0.322	1 000726234 9100-011 C 08	3733 1 000728876 9100-051 E 08	
Smpd L. 850 1	1 12	3733	
Library (9100	. 0100	.00100	

BNSDOCID: <WO____03076403A1_i_>

584,551	920.085	562.106	
C ₃₀ H ₃₈ Br N ₃ O ₄	C3, H38 CI N3 O4	C ₃₂ H ₃₈ Cl N ₃ O ₄	
#NAME?	HAMME?	H, C, H, C, H, H, C, H,) — ʊ
Cene.mg/tn LloniD 0.1776 TR0910000981	H,C TR0910002739 H,C.	TR0910002749	
ൺ നമ്യിനി 0.1776	0.1778	0.1778	
Assay C Spy4H	Sру4H	Spy4H	:
ssay Result 68.63	68.58	68.29	
av Data A 0.321	0.205	0.252	
Library Cripid Lot ExtReg Plate Well Ray Data 9100 981 1 000726364 9100-013 E 04 0.321	2739 1 000727882 9100-039 C 04	2749 1 000727892 9100-039 E 05	
Lof ExfReg 1 000726	. 1 000727	1 00072	
Cmpd 981			
Library 9100	9100	9100	

527.445	543.064	482.621
C ₂₈ H ₂₈ Ol ₂ N ₂ O ₄	C ₃₁ H ₃₁ Cl N ₄ O ₃	C ₃₁ H ₃₄ N ₂ O ₃
#NAME?	HNAME?	HNAME?
Cene mg/ml LlonID 0.1776 TR0910002517	H TR0910000854	TR0910001755
anc mg/ml 0.1776	0.1776	0.1778
Assay C Spy4H	у Вру4Н	Зру4H
ssay Result 68.27		67.80
Saw Data 4 0.402	0.269	0.363
Library, Cmbd Lot Exfreg Plate Well Raw Data 9100 2517 1 000727660 9100-036 E 06 0.402	1 000726237 9100-011 F 08	1755 1 000726898 9100-023 C 11
d Lot Ext	- 000	2 1 000
тагу, Стр 10 2517	954	9100 1756
<u>2</u> 6	9100	916

525.889	460.546	460.548	503.039
C ₃₃ H ₃₈ N ₃ O ₃	C ₂₈ H ₂₉ F N ₂ O ₃	C28 H29 F N2 O3	C _{30.} H ₃₁ CI N ₂ O ₃
#NAME?	#WAME?	#NAME?	#NAME?
LlonID TR0910002429	TR0910001092	TR0910000813	TR0910000845
Cana mg/mi LloniD 0.1776 TR091	0.1776	0.1776	0.1776
Assay C Spy4H	Spy4H	Sру4H	Spy4H
ssay Resul 67.70	67.49	67.40	67.31
	0.322	0.319	0.421
Library Cripd Lot Exiftey Plate Well Raw Data 9100 2429 1 000727572 9100-035 E 05 0.217	1092 1 000728475 9100-014 D 08	1 000725996 9100-008 E 08	845 1 000726228 9100-011 E 07
Стра 2429		613	
Librery 9100	9100	9100	9100

530,665	608.606	593.686	450.92	
C ₃₁ H ₃₈ N ₄ O ₂	С ₂₄ Н ₃₉ Cl ₂ N ₃ O ₃ Он Сн,	C34 H38 F3 N3 O3 OH CH3	C ₂₅ H ₂₃ Cl N ₂ O ₄	
#NAME?	WAME?	#NAME?	HO WAME?	<u>-</u> -0
0002324	TR0910002500	TR0910000700	TR0910000877	·
one marmi LioniD 0.1776 TR091	0.1776	0.1776	0.1778	
Assay C Spy4H	Sру4Н	Spy4H	Sру4H	
888) Result 66.94	66.93	98.99	77	
eaw Data 7 0.232	0.368	0.288	0.255	
Library Cimpd Lot ExtReg Plate Well Raw Da 9100 2324 1 000727467 9100-033 D 02 0.232	1 000727643 9100-036 D 04	1 000726083 9100-009 D 09	1 000726260 9100-011 E 11	
N Cmpd 2324	2500	700	877	
9100 9100	9100	9100	9100	

565.754	602.628	669.098	483.403
C ₃₈ H ₄₃ N ₃ O ₃	G31 H36 F N2 O3	r, C ₂₄ H ₃₃ Cl N ₂ O ₄	C ₂₅ H ₂₇ Br N ₂ O ₃
#NAME?	WAME?	#NAME?	#NAME?
201776 TR0910002595 0.1776 TR0910002595 H,C,	TR0910001013	TR0910002731	TR0910001710
ona mg/ml 0.1778	0.1776	0.1776	0.1776
Assay C Spy4H	Spy4H	Вру4Н	Spy4H
Assay Result 66.62	66.46	66.26	66.20
o.24	0.414	0.388	0.415
Libjary Cmpd Lot ExtReg Plate Well Raw De 9100 2595 1 000727738 9100-037 C 08 0.24	1013 1 000726396 9100-013 E 08	2731 1 000727874 9100-039 C 03	9100 1710 1 000726853 9100-023 F 05
16d Col	ن 4	31 1	1
<u> </u>	9100 10	9100 27	9100 17

NSDOCID: <WO_____03076403A1_I_:

569.526	442.556	631.487	518.694	504.667	
C ₃₁ H ₃₄ Cl ₂ N ₂ O ₄	Сга Нзо № Оз Он	C ₂₇ H ₃₅ Br N ₂ O ₄	C ₃₂ H ₄₂ N ₂ O ₄	C31 H40 N2 O4	
#NAME?	H,C H, C	#NAME?	HJCH CH CH	#NAME?	H H H H H H H H H H H H H H H H H H H
0000662	TR0910000731	TR0910001702	TR0910002355	TR0910001955	
ona mg/mi LlonID 0.1776 TR091	0.1776	0.1776	0.1776	0.1776	٠.
Assay C Spy4H	Spy4H	Вру4Н	Spy4H	Spy4H	
asay Resul	65.76	65.66	65.53	65.27	
0.32	0.283	0.417	0.452	0.353	
Ulbrer, Cmbd Lot ExtReg Plate Well Raw Da 9100 662 1 000726045 9100-009 F 04 0.32	1 1 000728114 9100-010 C 03	1702 1 000726845 9100-023 F 04	55 1 000727498 9100-033 C 06	1955 1 000727098 9100-028 C 08	
(Library Cm) 9100 66;	9100 731	9100 170	9100 2355	9100 196	

555.553	818.568	544.688	548.651	
C ₃₀ H ₃₉ Br N ₂ O ₃	C33 H36 Br N3 O4	C ₃₃ H ₄₀ N ₂ O ₆	C ₃₂ H ₃₇ F N ₂ O ₅	
#NAME?	#NAME?	H,CC #NAME?	#NAME?	, , , , , , , , , , , , , , , , , , ,
© LionID TR0910002475	TR0910000971	H TR0910002531	TR0910002533	
опа та/т 0.1776	0.1776	0.1776	0.1776	
Passay 1 C Spy4H	Spy4H	S ру4Н	Sру4Н	
Assay Result Assay! Cond mg/mil LionID 65.13 Spy4H 0.1776 TR091	65.11	65.08	65.06	.
Raw Data 0.305	0.379	0.302	0.304	
Library Cripid Lei ExtReg Plate Well Raw D 9100 2475 1 000727618 9100-035 C 11 0.30	1 000726354 9100-013 C 03	1 000727874 9100-036 C 08	1 000727676 9100-036 E 08	•
Library Cmp 9100 2475	9100 971	9100 2531	9100 2533	
may -	- -		<u> </u>	

489.012	562.106	460.546	445.311	
C ₂₈ H ₂₈ Cl N ₂ O ₃	C ₃₂ H ₃₆ Cl N ₃ O ₄	C ₂₈ H ₂₉ F N ₂ O ₃	C ₂₁ H ₂₁ Br N ₂ O ₄	
#NAME?	Ho H	#NAME?	HNAME?	Ho
Canampimi LlonID 0.1776 TR0910000843	н TR0910002740	TR0910000812	TR0910000237	·
:anc mg/m 0.1778	0.1776	0.1776	0.1776	
Spy4H	Spy4H	Spy4H	Sру4H	-
Assay Resul 64.87	64.80	64.80	64.74	
Raw Data 0.364	0.384	0.339	0.281	
Librery Cmpd Loi ExtReg Plate Well Raw D 9100 843 1 000726226 9100-011 C 07 0.36	2740 1 000727883 9100-039 D 04	000725995 9100-008 D 08	1 000725620 9100-003 E 11	
čmpd Lot 843 1	2740 1	612 1	237 1	
Library 9100	9100	9100	. 6100	

520.666		565.633	448.603	511.457	
C ₃₁ H ₄₀ N ₂ O ₅		C ₃₂ H ₃₄ F ₃ N ₃ O ₃	C ₂₈ H ₃₈ N ₂ O ₃	C27 H31 Br N2 O3 CH3	
#NAME?		CON CONTRACT	HOH WAME?	H, c H cH,	
LionID TR0910002330	ď	TR0910004100	TR0810000595	TR0910002470	
say Resulf, Assay Conomormi LoulD 64.69 Spy4H 0.1776 TR091		0.1778	0.1776	0.1776	
Assay I Cl Spy4H		Spy4H	Spy4H	Spy4H	•
say Rasult 64.69		64.67	64.51	64.49	,
aw Data At 0.281		0.261	0.339	0.294	
		4100 1 000729243 9100-057 D 04	595 1 000725978 9100-008 C 06	2470 1 000727613 9100-035 F 10	
Library Cri 9100 23		9100 41	9100	9100 24	

622.532		541.472	533.065	474.573	
C ₃₂ H ₃₃ Br F N ₃ O ₄	•	C ₂₈ H ₃₀ Cl ₂ N ₂ O ₄	C ₃₁ H ₃₃ Cl N ₂ O ₄	C ₂₉ H ₃₁ F N ₂ O ₃	
#NAME?	ST. ST.	H,C-O H, OH	#NAME?	#NAME?	Ho Hoth
Cone mg/mi LionID 0.1776 TR0910000973		FR0910000847	TR0910000878	TR0810000573	
one mg/ml 0.1776	•	0.1776	0.1776	0.1778	
Assay C Spy4H		Sру4H	Spy4H	Spy4H	
ssay Result 64.02		63.83	63.79	63.64	
aw Data .A 0.304		0.295	0.356	0.359	
Library Cmpd Lot ExtRag Plate Well Raw D 9100 973 1 000728356 9100-013 E 03 0.30		1 000726030 9100-009 G 02	1 000726261 9100-011 F 11	1 000725956 9100-008 E 03	
Cmpd L 973 1		647	878	673	
Library 9100		9100	9100	9100	

565.754	614.662	493	602.855	
C ₃₈ H ₄₃ N ₃ O ₃	C ₃₂ H ₃₈ N ₂ O ₄	C ₂₈ H ₂₈ CI N ₂ O ₄	G ₃₀ H ₃₈ № O ₃	
#NAME?	WAME?	#NAME?	#NAME?	T T T
Assay Conc.mg/m LlonID Spy4H	TR0910002422	TR0910000847	TR0910001014	ř.
one mg/ml 0.1776	0.1776	0.1776	0.1776	1 191 1 191 1 191
Assay C Spy4H	Spy4H	Spy4H	Spy4H	
63.59	63.53	63.52	63.48	
aw Data A 0.239	0.259	0.292	0.247	
Library Cmpd Lat Edfieg Plate Well Ray Da 9100 2235 1 000727378 9100-031 C 11 0.239	1 000727585 9100-035 F 04	1 000726230 9100-011 G 07	1 000726397 9100-013 F 08	
mbd Ll 2235 1	2422 1	847 1		
Library (9100	9100	9100	9100 1014	. •

595.76		463.818	593.807	499,446	
C ₃₆ H ₃₇ N ₃ O ₄ S		C ₂₈ H ₃₇ N ₃ O ₃	C ₃₈ H ₄₇ N ₃ O ₃	C ₂₈ H ₃₁ Br N ₂ O ₃	
#NAME?		#NAME?	#ICH CH.	#NAME?	1,0 H 0,1 H
©Gane.mg/mi LionID 1 0.1776 TR0910003751		TR0910000589	TR0910004155	TR0910001683	
ano mg/mi 0.1776		0.1776	0.1776	0.1778	
Assay G Spy4H	•	Ѕру4Н	Sру4H	Spy4H	
Assay Result 63.44		63.35	63.27	63.25	
cav Data 0.289		0.225	0.321	0.484	
Library Cmpd Lot ExtReg Plate Well Raw Da 9100 3751 1 000728894 9100-051 G 10 0.289		1 000725972 9100-008 E 05	4155 1 000729298 9100-057 C 11	1 000726826 9100-023 C 02	
у. Стра 3751		. 68		1683	
Librar 9100		9100	9100	9100	

477.001	623.094	484.693	486.609	
C ₂₈ H ₂₈ Cl N ₂ O ₃	C ₂₈ H ₃₁ Cl N ₂ O ₃ S	C₃0 H₃2 N₂ O₄	G ₃₀ H ₃₄ N ₂ O ₄	-
#NAME?	HAME?	#, #NAME?	The state of the s	>
7. Cdr. mg/mi LlonID H 0.1776 TR0910000859	H,C TR0910000885	TR0910001076	TR0910002427	
ano mg/ml 0.1776	0.1776	0.1776	0.1776	
Assay C Spy4H	Sру4Н	S ру4Н	Spy4H	
ssey Resulf Assa 63.25 Spy4	63.25	63.24	63.21	
aw Data . A 0.335	0.272	0.291	0.268	
Librer, Cmpd Lot ExtReg Plate Well Raw D 9100 856 1 000726239 9100-011 H 08 0.33	1 000726248 9100-011 A 10	1 000728459 9100-014 D 06	2427 1 000727570 9100-035 C 05	
Cmpd (856	865 3	1076	2427	
Library 9100	9100	9100	9100	

472.582	503.434	560.134	436.592	
C ₂₈ H ₃₂ N ₂ O ₄	C ₂₅ H ₃₁ Bf N ₂ O ₄	C ₃₃ H ₃₈ Cl N ₃ O ₃	C ₂₇ H ₃₈ N ₂ O ₃	
#NAME?	#NAME?	HO HICHCH, WHAME?	HNAME?	#5-5-fu
LionID TR0910000596	, , , , , , , , , , , , , , , , , , ,	H TR0910002629	H. TR0910000581	
Conc mg/m LionID 0.1776 TR091	0.1776	0.1776	0.1776	
394333	Spy4H	Вру4Н	S HAVOS	.
ssey Result Assay 63.06 Spy41-	62.99	62.89		
caw Data A 0.286	0.352	0.275	328	·
Library, Cmbd Lot ExtReg. Plate Well Raw Data 9100 598 1 000725979 9100-008 D 06 0.286	1 000726850 9100-023 C 05	2629 1 000727772 9100-037 E 10	00000000000000000000000000000000000000	
npd Lo 96 1	1707	129 1		_
Library Cr 9100 5	9100 17	9100 26		

492.656	98 783		600.635	571.552
C ₃₀ H ₄₀ N ₂ O ₄	C 2 0	(30 T31 T T T T T T T T T T T T T T T T T T	C31 H38 N2 O4	C ₃₀ H ₃₉ Br N ₂ O ₄ .
#NAME?	PO N N N N N N N N N N N N N N N N N N N	Ho Ch,	#NAME?	#NAME?
Cane mg/mil LionID 0.1776 TR0910001038	_	Kushuouu / / 3	TR0910001971	TR0910002478
ana mg/m 0.1776		0.1//6	0.1776	0.1776
Assay¹ C Spy4H	:	Spy4H	S ру4Н	Вру4Н
ssay Resul 62.40			61.99	61.92
kaw Data / 0.295			0.298	0.285
[ilibrary, Cripd Lol Exifteg Biste Well Raw D 9100 1038 1 000728421 9100-013 F 11 0.29		1 000726156 9100-010 E 08	1971 1 000727114 9100-028 C 08	2478 1 000727621 9100-035 F 11
EXITED 000726421		000726156	000727114	000727621
Cmpd Lc 1038 1		173	1971 1	2478 1
Library 9100		9100	9100	9100

466.618	446.588	456.583	467.361
С ₂₈ Н ₃₈ N ₂ О ₄ Он	5 C ₂₈ H ₂₄ N ₂ O ₃	C ₂₈ H ₃₂ N ₂ O ₃	C ₂₄ H ₂₃ Br N ₂ O ₃
#NAME?	#NAME?	ENAME?	#NAME?
∰ LioniD TR0910001028 H,C,	TR0910001045	TR0910001091	0.1776 TR0910000230
S606.mg/m LlonID 0.1776 TR091	0.1776	0.1776	0.1776
Spy4H	Spy4H	Spy4H	Spy4H
61.86 61.86	61.83	61.83	61.69
0.257	0.331	0.346	0.323
Library, Cmbd Lot ExtReg.	1045 1 000726428 9100-014 E 02	1091 1 000726474 9.100-014 C.08	230 1 000725613 9100-003 F 10
000728411	000726428	000726474	000725813
mpd (1 245 1	191	30
Ulbrary.©	9100 10	9100	9100 23

474,985	556.715		691.723
C ₂₈ H ₂₇ Cl N ₂ O ₃	G ₃₄ H ₄₁ N ₃ O ₄		C ₃₇ H ₃₈ F N ₃ O ₃
#NAME?	#NAME?		H ₃ C CCH ₃ #NAMF?
MITALIONID 76 TR0910000855	TR0910003741		TR0910002213
Cano mg/m 0.1776	0.1776		0.1776
M Assay Spy4H	Spy4H	· · · · · · · · · · · · · · · · · · ·	Spy4H
Assay Rest 61.63	61.60	÷ .	61.41
Raw Data 0.344	0.246		0.271
Liberary, Crinpd Let ExtReg. Platte Meill Raw E 9100 855 1 000728238 9100-011 G 08 0.34	3741 1 000728884 9100-051 E 09		2213 1 000727356 9100-031 E 08
855 855	3741		2213
Librar 9100	9100		9100

561,099	699.568	479.661
C ₃₁ H ₂₉ Cl N ₂ O ₄ S	C₃o H₃a Br N₄ O₄	C ₂₈ H ₄₁ N ₃ O ₃
#NAME?	HNAME?	H, C,
\$89 Result Assay Conormg/ml LionID 61.32 Spy4H 0.1776 TR0910002738	ci CITRO910000979	TR0910001019 H,C.
Sana mg/m 0.1776	0.1776	0.1776
f Assay (Spy4H	Spy4H	Spy4H
4ssay Resu 61.32	61.31	
Raw Data 0.398	0.245	0.239
Library Cripd (ci ExiReg Plate Well Raw Data 9100 2738 1 000727881 9100-039 B 04 0.398	979 1 000728362 9100-013 C 04	1019 1 000728402 9100-013 C 09
2738 1 (019 1
Library (9100	9100	0100

		•
581.523	581.675	
C31 H34 Br F N2 O3	o Ž Ľ	
#NAME?	PANANA PANANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANA PANANANA PANANA PANANANA PANANANA PANANANA PANANANAN	£
TR0910002452	TR0910000699	of f
0.1776	0.1776	
Spy4H	Spy(2)	
61.28	61.13	•
0,327	22 31	
3 9100-035 D 08	9100-009 C 09	•
000727598	000726082	
2462 1		
9100		
	HO, PHO, PHO, PHO, PHO, PHO, PHO, PHO, P	2452 1 000727595 9100-035 D 08 0.327 61.28 Spy4H 0.1776 TR0910002452 #NAME? C ₃₁ H ₃₄ Br F N ₂ O ₃ H ₃₅ Br F N ₂ O ₃ H ₃₆ Br F N ₂ O ₃

		• .	
606.599	491.672	488 R2R	21000
G ₃₂ H ₃₀ N ₂ O ₄	C ₃₀ H ₄₁ N ₃ O ₃	C 2	728 T38 T4 C3
#NAME?	#NAMIE?	# # # # # # # # # # # # # # # # # # #	#NAME:
*LlonID TR0910001756	TR0910001002		TR0910001004
Cano mg/mi LloniD 0.1776 TR091	0.1776		0.1778
f Assay (Spy4H	Spy4H		Spy4H
Assey Result Assay 61.11 Spy4H	61.04		9.19
Raw Data 0.289	. 0.24	•	0.242
Library Cmpd Lot ExtReg Plate Well Raw Data 9100 1756 1 000726899 9100-023 D 11 0.289	9100 1002 1 000726385 9100-013 B 07		9100 1004 1 000726387 9100-013 D 07
/ Cmpd 1756	. 1002		1004
Library 9100	9100		9100

BNSDOCID: <WO____03076403A1_I_>

422.566	653.743	579,659	533.709	586, 528	٠.
C ₂₈ H ₃₄ N ₂ O ₃	C ₃₆ H ₄₃ N ₃ O ₃	C ₂₃ H ₃₆ F ₃ N ₃ O ₃	C ₃₂ H ₄₃ N ₃ O ₄	C ₃₁ H ₃₃ Cl ₂ N ₃ O ₃	
#NAME?	HJC H HJC H, #NAMF?	#NAME? #G-NNO CH, OH	ENAME?	# NAME?	
0000621	TR0910002221	TR0910000889	TR0910002322	TR0910002969	- - -
Sane mg/ml LionID 0.1776 TR091	0.1778	0.1776	0.1776	0.1776	: :
Assay C Spy4H	Sру4H	Ѕру4Н	Spy4H	Spy4H	;
issay Result 61.03	60.87	60.79	60.75	60.74	
caw Data A 0.29	0.251	0.249	0.255	0.328	·
Library Cripd Lot Exifteg Plate Well Raw Da 9100 621 1 000726004 9100-008 E 09 0.29	1 000727364 9100-031 E 09	1 000726072 9100-009 A 08	1 000727465 9100-033 B 02	1 · 000728112 9100-042 A 03	
y Cmpd 621	2221	689	2322	2969	
116 ar 9100	9100	9100	9100	9100	

518.054	491.028	507.027	420.55
C ₂₀ H ₃₂ Cl N ₃ O ₃	C ₂₉ H ₃₁ Cl N ₂ O ₃	C ₂₈ H ₃₁ Gl N ₂ O ₄	C ₂₈ H ₃₂ N ₂ O ₃
#NAME?	H,C-N-H H,C-H H,C-	H,C-O, H,C-O, H,	#NAME?
cey Result Assay Conc.mg/ml LlonID 80.55 Spy4H 0.1776 TR0910000849	H, H, H,	TR0910000873	TR0910000605
and mg/m 0.1776	0.1776	0.1776	0.1776
Assay : (Sp)4H	Spy4H	Spy4H	Sру4H
Assay Resul 60.55	60.55	60.55	60.46
?aw.Data 0.295	0.398	0.371	0.254
Library Chipd Lot ExtReg Plate Well Raw Data 9100 849 1 000728232 9100-011 A 08 0.295	1 000728249 9100-011 B 10	000726256 9100-011 A 11	1 000725988 9100-008 E 07
- 100 - 000	6	<u>6</u>	60
Cmpd 849	886	873	. 605
Library 9100	0100	9100	9100

541.688	543.542	552.486
C ₃₃ H ₃₉ N ₃ O ₄	C ₂₉ H ₃₉ Br N ₂ O ₃	C ₂₈ H ₃₀ Br N ₃ O ₄
#NAME?	H ₃ C #NAME?	HOTH WAME?
LionID TR0910003752	H TR0910002461	TR0910000990
Sona mg/m 0.1776	0.1776	0.1776
f Assay Spy4H	Spy4H	Spy4H
455ay Resu 60.38	60.32	60.23
Raw Data 0.258	0.402	0.26
[library Chipd Lot Exiteg	2461 1 000727604 9100-035 E 09	1 000726373 9100-013 F 05
ot ExtReg 1 000728895	000727604	000726373
Cmpd L 3752	2461 1	
Library 9100	9100	9100

INSDOCID: <WO____03076403A1_i >

606.706	634.653		521.698	474.573	
C ₃₄ H ₃₃ F ₃ N ₂ O ₃ S	G ₃₄ H ₃₄ N ₂ O ₄		C31 H43 N3 O4	C ₂₈ H ₃₁ F N ₂ O ₃	
#NAME?	#NAME?	£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	#NAME?	#NAME?	# # # # # # # # # # # # # # # # # # #
Cone.mg/mil LionID 0.1776 TR0910000711	TR0910002436	•	TR0910002339	TR0910000572	
onc mg/m 0.1776	0.1776		0.1776	0.1776	
Spy4H	Spy4H		Spy4H	Spy4H	
Assay Resul 60.12	90.00		59.91 	59.88	
Raw Data 0.388	0.314		0.257	0.338	
Library, Cmpd Lot ExtRag Plate Wall Raw D 9100 711 1 000726094 9100-009 G 10 0.38	2436 1 000727579 9100-035 D 08		1 000727482 9100-033 C 04	1 000725855 9100-008 D 03	
y Cmpd 711			2339	572	
Librar 9100	9100		9100	9100	

A48 603	478.973		505.055	478.973
2	СН, С ₂₈ 12, С ₃ 13, С ₄ 14, С ₄ 15, С ₄ 1	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C ₃₀ H ₃₃ Ci N ₂ O ₃	C ₂₇ H ₂₇ Cl N ₂ O ₄
	HJCH, #NAME:	\frac{1}{2}	H ₃ CH, #NAME?	#NAME?
Cano mg/mi LionID		- Kushuousa - Kushuousa - Kushuo	TR0910000881	TR0910002637
ano mg/ml	0.1776	0.17/6	0.1776	0.1778
Assay			Sру4Н	З ру4Н
ssay Resulf	8.69 4.89		59.74	69.73
aw Data A	0.403	0.265	0.427	0.35
Bary Cmod Lot ExtReg Plate Well Raw Data	1081 1 000728444 9100-014 E 04	857 1 000726240 9100-011 A 09	861 1 000726244 9100-011 E 09	2637 1 000727780 9100-037 E 11
lorary C	9100	9100	000	9100

620.541	542.514	534.625
C ₃₂ H ₃₄ Br N ₃ O ₅	C ₂₈ H ₃₈ Br N ₃ O ₃	C3, H35 F N2 O5
Z	H ₃ C ^{-O} #NAME?	HNAME? HOUSE AND A CHORAGE AN
10 TR0910000996 TR0910000996	TR0910001700	TR0910000813
onc mg/m 0.1776	0.1776	0.1776
Assay (Spy4H.	 Spy4H	Spy4H
dssay Result 59.69	59.50	59.47
Raw Data 0.279	0.316	0.38
[Library, Cmpd Lot ExtReg Plate Well Raw D 9100 996 1 000726379 9100-013 D 08 0.27	1700 1 000726843 9100-023 D 04	1 000728198 9100-011 E 03
Gmpd 1	1700	813
Library 9100	9100	9100

	594.579	586.523	484.593
	C ₃₃ H ₃₇ Cl ₂ N ₃ O ₃	C ₂₉ H ₃₆ Br N ₃ O ₅	C ₃₀ H ₃₂ N ₂ O ₄
	#NAME?	#NAME?	ćн, #NAME?
LionID	0002489	TR0910000988	TR0910003236
Cana mg/h	0.1778	0.1776	0.1776
# Assay	ВрудН	Spy4H	59.42 ·· Spy4H
Assay Resu	59.45 45.	59.42	59.42
Raw Data	0.361	0.247	0.304
Plate Well	9100 2489 1 000727632 9100-036 A 03 0.381 59.45 Spy4H 0.1778 TR091	1 .000726371 9100-013 D 05	3236 1 000728379 9100-045 D 06
ot ExtReg	1 000727632	1 .000726371	000728379
Cmpd	2489	888	3236 1
LIBrany	9100	9100	9100

				•
526.673	434.577	515.489	543.498	
C ₃₃ H ₃₈ N ₂ O ₄	G27 H34 N2 O3	C ₂₇ H ₃₅ Br N ₂ O ₃	C ₂₈ H ₃₅ Br N ₂ O ₄	·
#NAME?	HJCH HJC H HJC OH HJC OH HJC OH HJC OH HNAME?	#NAME?	H ₃ C _H C _H C _H 3 H ₃ C _H C _H C _H 3 #NAME?	
ssay Result Assay Cono.mg/mi LlonID 59.36 Spy4H 0.1776 TR0910002438	H TR0910001115	H ₃	H ₁	Ť *
Jana mg/ft 0.1776	0.1776	0.1776	0.1776	
Spy4H	Spy4H	Spy4H	Spy4H	
858y Resul 59.36	59.28	59.24		
Raw Data / 0.285	0.262	0.512	0.364	
Library, Cmpd Lot ExtReg Plate Well Raw D 9100 2438 1 000727581 9100-035 F 06 0.28	1115 1 000728498 9100-014 C 11	1701 1 000728844 9100-023 E 04	1718 1 000726861 9100-023 F 06	
1 ExtReg 000727581	000726498	000728844	000726861	
Cmpd Li 2438 1	1115 1	1701		
Llorary. 9100	9100	9100	9100	

508.59	508.655	480.645
C ₃₂ H ₂₉ F N ₂ O ₃	.он С ₃₀ H ₄₀ N ₂ О ₆	С ₂₈ Н ₄₀ N ₂ О ₄
#NAME?	#NAME?	H,C,H,C,H,C,H,L,C,
Cano mg/mi LionID 0.1776 TR0910001733	F TR0910000835	H TR0910001022
ano mg/m 0.1778	0.1776	0.1776
22222	Spy4H	Spy4H
Assay Rasuft Assay 59.24 Spy4h	59.20	59.15
2aw Data 0.331	0.321	0.261
Library, Cmpd Lot ExtRag Plate Well Raw Data 9100 1733 1 000726876 9100-023 E 08 0.331	1 000726218 9100-011 C 08	9100 1022 1 000728405 9100-013 F 09
Стрб Lc 1733 1		1022 1
Ubrany 9100	9100	9100

581,551			454.587	408 418		
C ₃₀ H ₃₇ Br N ₄ O ₃			C ₂₈ H ₃₀ N ₂ O ₃	, c	(28 T 28 C 1 28	
#NAME?		H H	н,с #NAME? Но р		#NAME:	# H H
Assay Cont mg/m LlonID Spy4H			н TR0910001723		TR0910001714	60
Jana (mg/tm 0.1776			0.1776		0.1776	
L Assay (Spy4H			Spy4H		Sру4Н	
4ssay Resull 59.04	•		58.97	:	58.70	
Raw Data 0.283			0.289		0.335	
Library, Cmpd Lot Exifess Plate Well Raw Da 9100 2454 1 000727597 9100-035 F 08 0.283	-		1723 1 000726866 9100-023 C 07		1714 1 000726857 9100-023 B 06	
Cmpd Lo 2454 1			1723 1		1714 1	
Library 9100			9100		9100	

	590.643	420.55	472.582	517.068
	G ₃₃ H ₃₃ F ₃ N ₄ O ₃	C ₂₈ H ₃₂ N ₂ O ₃	C ₂₈ H ₃₂ N ₂ O ₄	C31 H33 CI N2 O3
	#NAME?	#NAME?	#NAME?	#NAME?
Assay Conomg/mi LloniD		TR0910001086	TR0910002417	TR0910000848
Сопо тр/п	0.1776	0.1778	0.1776	0.1776
f Assay	N PA	Sру4H	Sру4H	Sру4H
Assay Result	60 64 64	68.43	58.40	58.38
Raw Data	0.231	0.26	0.302	0.279
Library Cmpd Lot ExtReg Plate Well Raw Date	67 9100-009 D 07	1085 1 000726468 9100-014 E 07	000727560 9100-035 A 04	1 000726231 9100-011 H 07
at EXReg	000/200	00072646	00072756	00072623
Cmpd L		1085	2417 1	848
Ciprary		9100	9100	9100

.

605.563	526.472	613,429	521.698
C33 H34 Cl2 N4 O3	C ₂₇ H ₃₂ Br N ₃ O ₃	C ₂₈ H ₂₈ Br N ₂ O ₄	G3, H3 N3 O4
#NAME?	WAME?	#NAME?	HIN HOH
LionID TR0910002484	TR0910000202	TR0910000210	TR0910003029
Assay (Conc.mg/ml LionID Spy4H, 0.1776 TR091	0.1776	0.1776	0.1776
	Spy4H	Spy4H	Sру4H
Assay Resul 58.38	58.34	58.34	58.29
Raw Data 0.319	0.243	0.331	0.279
Library Cmpd Lot ExtRug Plate (Vell Rav Da 9100 2484 1 000727627 9100-036 D 02 0.319	1 000725585 9100-003 B 07	1 000725593 9100-003 B 08	1 000728172 9100-042 E 10
Lot ExtReg 1 0007276	1 0007255	1 0007255	1 0007281:
Cmpd 2484	202	210	
Library 9100	9100	9100	9100 3029

504.599	. 434.677	591.723		569.561
C ₃₀ H ₃₃ F N ₂ O ₄	C ₂₇ H ₃₄ N ₂ O ₃	О Д О	?	C ₂₈ H ₃₃ Br N ₂ O ₃ S
#NAME?	#NAME?	#NAME?		#NAME?
LionID TR0910001972	TR0910000635	#.		TR0910002458
Jana mg/m 0.1776	. 0.1778	0 1778		0.1776
f Assay (Spy4H	Spy4H	14.va	i S	Spy4H
Assay Resul 58.15	58.14 41.83	88 44	`.	58.08
Raw Data 0.284	0.326	1800		0.285
Libitaty, Cmbd, Let ExtReg Plate Well Raw Data Assay Result Assay, Condumg/mil LlonID 9100 1972 1 000727115 9100-028 D 08 0.284 58.15 Spy4H 0.1776 TR091	000726018 9100-008 C 11	2010 1 000727355 0100.031 D.08		2458 1 000727801 9100-035 B 09
mbd (172	635 1	ē.		58
7 C				
3 2	9100		2	9100

611.577	513.473	561.581	
C31 H38 Br N4 O4	C ₂₇ H ₃₃ Br N ₂ O ₃	C ₂₈ H ₃₇ Br N ₂ O ₃ S	
#NAME?	H ₂ C HO HO H ₃ C HO HO H ₃ C HO H ₃ C H ₃	#NAME?	S S S S S S S S S S S S S S S S S S S
Cone mg/ml LlonID 0.1776 TR0910000980	н, ТR0910002446	H ₂ 0	O.H.
one mg/m 0.1776	0.1778	0.1778	
Assay Spy4H	Spy4H	Spy4H	
18say Result 58.06	57.76	. 57.76	•
Raw Data // 0.254	0.408	0.25	
Library Cmpd Ldt ExtReg Plate Well Raw D 9100 980 1 000726363 9100-013 D 04 0.25	2446 1 000727589 9100-035 F 07	2465 1 000727608 9100-035 A 10	
EXIREG 000726363	000727589	000727608	
mpd Lt 380 1	44. 		
Library C 9100	. 0019	9100	

593.695	510.674	530.661	
C ₃₈ H ₃₈ F N ₃ O ₄	C ₃₃ H ₃₈ N ₂ O ₃	C ₃₂ H ₃₈ N ₂ O ₅	
#NAME?	H,CH (CH, O)	#NAME?	~~ ~~
Canc mg/mi LianID 0.1776 TR0910003732	TR0910002435	TR0910000811	
and mg/m 0.1776	0.1776	0.1776	
Spy4H Spy4H	Spy4H	Spy4H	
ssay Resul 57.63	57.43	57,30	•
caw Data 4 0.312	0.395	0.377	
Library Chipd Lot ExtReg Plate Well Raw D 9100 3732 1 000728875 9100-051 D 08 0.31	2435 1 000727578 9100-035 C 08	1 000726194 9100-011 C 03	
10 - 10 EX	000	. 000	
Cmpd 1 3732		£	
Library 9100	00100	9100	

536.456	560.134	580.769	585.633	•
C ₂₉ H ₂₇ Cl ₂ N ₃ O ₃	C ₃₃ H ₃₈ Cl N ₃ O ₃	G ₃₈ H ₄₄ N ₄ O ₃	C ₃₂ H ₃₄ F ₃ N ₃ O ₃	
#NAME?	H, C, N,	#NAME?	#NAME?	~ • "
LloniD TR0910002994	TR0910002620	TR0910002580	TR0910004082	
ano mg/m 0.1776	0.1776	0.1776	0.1778	-
Assay C Spy4H	Spy4H	Spy4H	Sру4H	-
Assay Result Assay Cono mg/m LlonlD 57.20 Spy4H 0.1776 TR091	57.14	56.86	· 98.80	
Raw Data 0.413	0.268	0.243	0.248	
Library Cmpd Lot ExtReg Plate Well Raw Data 9100 2994 1 000728137 9100-042 B 06 0.413	000727763 9100-037 D 09	1 000727723 9100-037 D 04	1 000729225 9100-057 B 02	•
pd (cor E 34 1 00	· -			
Library Cm 9100 296	9100 2620	9100 2580	9100 4082	

		•	
641.044	579.697	573.061	
C ₃₂ H ₂₉ CI N ₂ O ₄	C34 H37 N6 O2	C ₃₃ H ₃₀ Ci F N ₂ O ₄	
#NAME?		#NAME?	- { ō
S88Y Rebuilt Aerely Conc.mg/mi LionID 56.76 - 0.1776 TR0910000876	TR0910003724	TR0910002732	· · ·
onc mg/tr 0.1776	0.1776	0.1776	". <i>.</i>
[A*κ3y ^{τι}	урудн Н	Spy4H	
Assay Resul 56.76	56.72	56.68	
Raw Data 0.432	0.252	0.457	
Library Gmod Lol ExtReg Plate (Vall Raw Data 9100 876 1 000726259 9100-011 D 11 0.432	3724 1 000728867 9100-051 D 07	1 000727875 9100-039 D 03	
Loi ExtReg 1 000726	1 0007286	1 0007278	
Cmpd 876	3724	2732	
Library 9100	. 0016	9100	

430.601	532,633	545.1	
C ₂₈ H ₂₈ N ₂ O ₄	C ₃₁ H ₃₈ N ₂ O ₆	C31 H29 CI N2 O3 S	·
#NAME?	P. P. O. P. C. P. S.	#NAME?	
IlonID TR0910000198	7R0910000836	7R0910000871	`ω_//
Бале та/т 0.1776	0.1776	0.1776	
f Assay Spy4H	Spy4H	Spy4H	
Assay Resu 56.51	56.49	56.49	
Raw Data 0.252	0.304	0.336	
Library, Empd Let ExtReg. Plate Wall Raw D 9100 196 1 000725579 9100-003 D 06 0.25	000726219 9100-011 D 06	1 000726254 9100-011 G 10	
of ExtReg 1 000725578	000726219	000726254	
Cmpd 196	836		
Library 9100	9100	9100	

581.523	486.584	468.655	530.416	
C31 H34 Br F N2 O3	C ₃₀ H ₃₁ F N ₂ O ₃	C ₂₈ H ₃₀ N ₂ O ₄	C ₂₆ H ₂₈ Br N ₃ O ₅	
#NAME?	WAME?	#NAME?	#NAME?	The state of the s
Assay Conc.mg/m LionID Spy4H 0.1776 TR0910002453	TR0910001053	TR0910001118	TR0910000997	Ž. Ž.
anc mg/mf 0.1776	0.1776	0,1776	0.1776	
	Spy4H	Sру4H	Spy4H	٠
ssay Result 56.47	56.44	58.44		
Saw Data 0.43	0.478	0.265	0.254	
Library, Cmpd. Col. ExtReg Plate Well Raw Data 9100 2453 1 000727596 9100-035 E 08 0.43	000726438 9100-014 E 03	1 000728498 9100-014 D 11	000726380 9100-013 E 06	
1pd Lot 53 1	1053 1	1116 1	. 1	
Library Ch 9100 24	9100 10	9100 11	9100	

434.577	502.995	496.644	
C ₂₇ H ₃₄ N ₂ O ₃	C ₂₈ H ₂₇ Cl N ₂ O ₄	C ₂₈ H ₄₀ N ₂ O ₆	-e-
#NAME?	HNAME?	#NAME?	45-0-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
	TR0910002750	TR0910000821	
ona mg/m 0.1776	0.1776	0.1778	
L Assayı C Spy4H	Spy4H	Spy4H	
Assay Result Assay 58.40 Spy4H	56.39	56.22	:
Raw Data 0.304	0.457	0.322	
(library Cmbd Lof ExfReg Plate V/fell Raw Data 9100 565 1 000725948 9100-008 E 02 0.304	9100 2750 1 000727893 9100-039 F 05	1 000726204 9100-011 E 04	
if ExfReg 000725948	000727893	000726204	
Cmpd Lt 565 1	. 2750 1	1 18	
Library 9100	9100	9100	

611.577	517.461	382.457	
C31 H39 Br N4 O4	G ₂₈ H ₃₃ Br N ₂ O ₄	C22 H28 N2 O4	
#NAME?	HN HO	HO H	
Assay (Rasult Assay: Conc.mg/m/ LionID 56.17 Spy4H 0.1776 TR0910000989	H TR0910002457	HO TR0910000597	
Jane mg/ir 0.1776	0.1776	0.1776	
t A≴say Spy4H	Spy4H	Spy4H	
Assay Resul 56.17	56.15	58. 17.	
Raw Data 0.257	0.275	0.25	
nary Cmpd Loi ExtReg Plate Wall Raw Data 00 989 1 000726372 9100-013 E 05 0.257	2457 1 000727600 9100-035 A 09	597 1 000725980 9100-008 E 06	
Cmpd I	2457 1	1 285	
orary 00	9	Q	

	541.688 	580.552	510.671	432.561
	C ₃₃ H ₃₈ N ₃ O ₄	С ₃₂ Н ₃₆ СІ ₂ N ₃ О ₃ Он	С ₃₀ H ₄₂ N ₂ O ₅	G21 H32 N2 O3
	#NAME?	#NAME?	HJC-H, H, OH, OH,	#NAME?
Assay Result Assay Conomg/mi LionID	TR0910003746	TR0910000660	TR0910002541	TR0910003203
Cono mg/fr	0.1776	0.1776	0.1776	0.1778
f Assay (Spy44	Sру4H	Sру4H	S ру4Н
Assay Resu	11.	56.07	55.98	55.92
		0.433	0.289	. 0.392
Library, Cmpd Lot ExReg Plate Well Raw Data	0728889 9100-051 B 10	1 000726043 9100-009 D 04	000727684 9100-036 E 09	000728346 9100-045 C 02 .
ă	-	1 000	00	1 000
Cmbd	3746	099	2541	3203
Clbrery	9100	9100	9100	9100

572.497	482.821	698.724
C ₂₈ H ₃₄ Br N ₃ O ₆	C ₃₁ H ₃₄ N ₂ O ₃	C ₃₅ H ₄₀ N₄ O ₆
#NAME?	HO CH, #NAME?	H,C H H H MAME?
Concingin LionID 0.1776 TR0910000987	TR0910002403	TR0910003721
20nc mg/m 0.1776	0.1776	0.1776
Assay Spy4H	Spy4H	Spy4H
Assey Result 65.89		65.80
Raw Data 0.265	0.434	0.298
Library Cmbd Lof ExtReg Plate Well Raw D 9100 987 1 000726370 9100-013 C 05 0.26	2403 1 000727546 9100-035 C 02	3721 1 000728864 9100-051 A 07
Cmpd 987	2403	1721
Library 9100	9100	9100

NSDOCID: <WO____03076403A1_I_

581.734		689.732	448 803	
C ₃₄ H ₃₅ N ₃ O ₄ S		C ₃₇ H ₃₈ N ₃ O ₄	. d	50 24 85 1 87 87 1 87 1 87 1 87 1 87 1 87 1 87 1
#NAME?		#NAME?	T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
SSY Result Askay Cone mg/m LlonID 65.80 Spy4H 0.1776 TR0910003738		TR0910002596	TR091000322	±
Зеле тg/fr 0.1776		0.1776) - - - -
Spy4H		Spy4H	H4/va	3
Assay Resu 55.80		55.71	7. 6. 6.	}
Raw Data 0.275		0.263	0 75 75	
Ubrery Cmpd Lof ExtReg Plate Well Raw Data 9100 3738 1 000728881 9100-051 B 09 0.275		2596 1 000727739 9100-037 D 06	3221 1 000728384 9100-045 F 04	
ot ExtReg 1 000728881		000727739		
3738	·			
(1) Draft		9100	000	

460.614	682.741	582.659	482.621
C ₂₈ H ₃₈ N ₂ O ₃	C ₃₅ H ₄₂ N₄ O₄	С ₃₃ Н ₃₇ F ₃ N ₂ О ₄ он сн,	С ₃₁ Н ₃₄ № 03 он сн,
#NAME?	# WAME?	H,sc. CH, or	#NAME?
Conc.mg/mil LionID 0.1776 TR0910003235	H TR0910003722	TR0910000702	TR0910001051
ano mg/ml 0.1776	0.1776	0.1776	0.1776
Assay 10 Spy4H	Вру4Н	Spy4H	Spy4H
stay Result 55.86	29.20	55.40	55.31
aw Data A 0.352	0.26	0.29	0.422
Library, Cmpd Let ExtReg Plate Well Raw Dat 9100 3235 1 000728378 9100-045 C 08 0.352	000728865 9100-051 B 07	1 000726085 9100-009 F 09	1 000726434 9100-014 C 03
Cmpd Lo 3235 1	3722 1	702	1051
Library 9100	9100	. 00100	9100

416.518	476.813	663.699	
C ₂₈ H ₂₈ N ₂ O ₃	C ₂₉ H ₃₈ N ₂ O ₄	G ₃₄ H ₃₉ N ₃ O ₄	
#NAME?	H,C OH #NAME?	H ₃ C H H ₃ C CH ₃	
Cone mg/ml LlonID 0.1776 TR0910001070	H TR0910001078	H TR0910003725	~ % 0
Cono mg/m 0.1776	0.1776	. 0.1776	•
R Assay Spy4H	Spy4H	S ру4Н	
Assay Result Assay, 55.31 Spy4H		55.19	
	0.255	0.264	
Library, Gripd Lot ExtReg. Plate Well Raw Data 9100 1070 1 000726453 9100-014 F 05 0.255	1078 1 000728461 9100-014 F 06	3725 1 000728888 9100-051 E 07	
Lot ExtRe 1 00072	1 000728	1 000728	
у. Стра 1070	•	3725	
Cibrar 9100	9100	9100	

568.714	655.715	545.514
C34 H40 N4 O4	C ₂₄ H ₄₁ N ₃ O ₄	C ₂₈ H ₃₇ Br N ₂ O ₄
#NAME?	H ₃ C-N H	H ₃ C _H , C _H , C _H , C _H , C _C , Whame?
C mg/mi LlonID .1776 TR0910003729	TR0910003744	H TR0910002473
மோன்று/ஈ 0.1776	0.1778	0.1776
Spy4H	Spy4H	Spy4H
Assay Resu 55.19	55.19	55.19
Raw Data 0.301	0.268	0.334
Librery Cimpd Loi Exireg Plats Well Raw Da 9100 3729 1 000728872 9100-051 A 08 0.301	3744 1 000728887 9100-051 H 09	2473 1 000727818 9100-035 A 11
101		
«Стр. 3729		2473
Library 9100	9100	

504.599	462.63	434.577	545.119
C ₃₀ H ₃₃ F N ₂ O ₄	он С28 Н38 N2 О3	C ₂₇ H ₃₄ N ₂ O ₃	C ₃₃ H ₃₇ Cl N ₂ O ₃
#NAME?	#NAME?	#NAME?	THOH THOME?
Conc mg/ml LlonID 0.1776 TR0910001973	FTR0910001005	TR0910001066	TR0910000863
36ng mg/m 0.1776	0.1776	0.1778	0.1776
Assay Spy4H	Spy4H	Spy4H	Spy4H
Assay Resul 55.14	55.08	55.03	54.87
Raw Data 0.28	0.445	0. 30 52	0.487
Library, Chipd Lot, ExtReg Plate Well Raw D 9100 1973 1 000727116 9100-028 E 08 0.26	1 000726388 9100-013 E 07	1 000726449 9100-014 B 05	1 000726246 9100-011 G 09
ry Cmpd 1973	. 1005 1	1066	863
9100	9100	9100	9100

486.584	394,468	469.376	622.646	•
C ₃₀ H ₃₁ F N ₂ O ₃	G ₂₃ H _{26.} N ₂ O ₄	C ₂₄ H ₂₅ Br N ₂ O ₃	C32 H34 N4 O3	
#NAME?	HO OH CH, CH, CH,	#C W CH	#NAME?	₹ \ :
ssay Result Assay Conc.mg/m LlonID 54.75 Spy4H 0.1776 TR0910001052	TR0910001077	TR0910000206	TR0910002404	
ana mg/m 0.1776	0.1776	0.1778	0.1776	
Assay I C Spy4H	. Spy4н	Spy4H	Spy4H	
ssay Resul 54.75	54.75	54.68	54.55	
8aw Data 4 0.419	0.257	0.305	0.242	
Library Cmbd Lot EXTReg Plate Well Raw Data 9100 1052 1 000726435 9100-014 D 03 0.419	1077 1 000726460 9100-014 E 08	1 000725589 9100-003 F 07	2404 1 000727547 9100-035 D 02	
Cmbd 1052	1077	208	2404	
Library 9100	9100	9100	9100	

554.606		683.725	464.602
C ₃₁ H ₃₃ F ₃ N ₂ O ₄	C ₃₃ H ₃₇ F ₃ N ₂ O ₃	C ₃₅ H ₄₁ N ₃ O ₆	C ₂₈ H ₃₈ N ₂ O ₄
#	Hyc. Charles A. Charle	#NAME?	H,C,H, H,C,H, H,C,H,
Canding/mi LionID 0.1778 TR0910000687	TR0910000704	TR0910003758	0.1776 TR0910001062
and mg/ml 0.1776	0.1778	0.1776	0.1776
Assay IC Spy4H	Spy4H	Sру4H	Зру4 Н
issay Resul 54.38	75.38	54.27	84.18
caw Data 0.351	0.399	0.285	0.258
Udrary Cmpd Ldi ExtReg Plate , Well Raw Dat 9100 687 1 000726070 9100-009 G 07 0.351	000726087 9100-009 H 09	1 000728901 9100-051 F 11	1 000728445 9100-014 F 04
Cmpd Lt 687 1	1 404	3758 1	1062 1
Library 9100	9100	9100	9100

553.498	508.655	551.08	587.76	
C ₂₈ H ₃₃ Br N ₄ O ₃	C ₃₀ H ₄₀ N ₂ O ₆	сн, Сзт Нзь С1 N2 Os	C ₃₆ H ₄₁ N ₃ O ₃	·
#NAME?	H ₃ C _{H₃} H ₀ H	HIT OH OCH,	Wedner of the control	
LionID TR0910001694	H TR0910002525	TR0910002742	TR0910002211	± €
Sano mg/tr 0.1776	0.1778	0.1776	0.1776	
R Assay Spy4H	Spy4H	Spy4H	Spy4H	
4ssay Resu 54.15	45. 11.	54.08	54.05	
Raw Date 0.304	0.325	4.0	0.323	
[Ubrary Cmp4 Lot ExtReg. Plate Well Raw Date Assay Result Assay, Cono.mg/ml LlonID 8100 1694 1 000728837 9100-023 F 03 0.304 54.15 Spy4H 0.1776 TR091	2525 1 000727668 9100-036 E 07	1 000727885 9100-039 F 04	2211 1 000727354 9100-031 C 08	
ot ExtReg 000726837	000727668	000727885	000727354	
Cmpd L 1694 1	2625 1	2742 1	2211	
Library 9100	8100	. 9100	9100	

539.672	•	475.629	608.69	498.62
C ₃₃ H ₃₇ N ₃ O ₄ ·		C ₂₈ H ₃₇ N ₃ O ₃	C ₃₂ H ₂₈ F N ₂ O ₃	C ₃₁ H ₃₄ N ₂ O ₄
#NAME?		HIN COH, HICK HING COH, COH, COH, COH, COH, COH, COH, COH,	#NAME?	#NAME?
LionID TR0910003723		TR0910001069	TR0910001732	TR0910004396
3810 mg/m 0.1776		0.1776	0.1776	0.1776
issay/Result Assay Conc.mg/m LlonID 53.97 Spy4H 0.1776 TR091		Уру4Н	Sру4H	Sру4Н
		63.90	53.88	63.87
Raw Data 0.28		0.259	0.333	0.347
Library, Cringo Lot Extrago Plate Well Raw D 9100 3723 1 000728868 9100-051 C 07 0.28		000728452 9100-014 E 05	1 000726875 9100-023 D 08	000729539 9100-080 D 11
_ E ← E ⊗	•	←		- 00
3723 3723		1089	1732	4398
9100 9100	;	9100 0	9100	9100

470.61	458.555	533.597	568.633
C ₃₀ H ₃₄ N ₂ O ₃	он С28 Н30 N2 О4	C ₃₀ H ₃₂ F N ₃ O ₅	1, C ₃₂ H ₃₈ F ₃ N ₂ O ₄ OH CH ₃
#NAME?	#NAME?	ENAMIE?	#NAME?
Cane marm LlonID 0.1776 TR0910000571	TR0910000836	TR0910003253	TR0910000708
anc mg/m 0.1778	0.1778	0.1776	0.1776
2020 T -	Вру4 Н	Sру4H	Spy4H
8say Resulf Assay 53.80 Spy41	53.80	53.78	63.71
caw Data 0.395	0.278	0.283	0.308
Library, Critick Lot ExtReg. Plate Well Raw Data 9100 571 1 000725954 9100-008 C 03 0.395	1 000726019 9100-008 D 11	3253 1 000728396 9100-045 E 08	1 000726091 9100-009 D 10
Cmpd 571	636	3253	708
Library 9100	9100	9100	9100

517.066	536.672	519,682	
C ₃₁ H ₃₃ Cl N ₂ O ₃	G ₃₃ H ₃₈ N ₄ O ₃	G, H, N, O,	
#NAME?	HO CH ₃ CI HO CH ₃ RNAME?	#NAME?	OF THE STATE OF TH
以的时,Cmpd Lot ExtReg Riste Vitell Raw Data Assay Result Assay。Conc mg/mi LlonID 9100 2603 1 000727746 9100-037 C 07 0.487 53.70 Spy4H 0.1776 TR0910002803	TR0910002414	TR0910001949	•
Conc mg/ff 0.1776	0.1776	0.1776	
f Assay Spy4H	Spy4H	Spy4H	
Assay Resu 53.70	53.59	53.49	
Raw Data 0.467	0.258	0.281	
Plate Well 9100-037 C 07	2414 1 000727557 9100-035 F 03	1949 1 000727092 9100-028 E 05	
LEXIREG 000727746	000727557	000727092	,
Cmpd L. 2603 1	1 414 1	1 948	
Ulbrary 9100	9100	1 0016	

612.561	446.588	591.704	
C31 H38 Br N3 O6	C ₂₈ H ₃₄ N ₂ O ₃	C36 H37 N3 O6	
#NAME?	H,CH, HO H,CH, HO H,CH, HO HNAME?	H,C Coh, Coh, Coh, Coh, Coh, Coh, Coh, Co	T T T T T T T T T T T T T T T T T T T
Cond.mg/ml LlonID 0.1776 TR0910000998	H. TR091000765	H 1 TR0910003756	
Sand mg/m 0.1776	0.1776	0.1778	
f Assay (Spy4H	Spy4H	Spy4H	
asay Resul 53.46	53.41	53.36	; ;
Raw Data 0.276	0.252	0.288	
Library, Cmpd Loi ExtReg Plate Well Raw Data 9100 998 1 000726381 9100-013 F 06 0.276	1 000728148 8100-010 E 07	1 000728899 9100-051 D 11	
of ExtRe 1 00072	1 000728	1 000728	•
Cmpd (3756	
Library 9100	9100	9100	

486.584	651.727	589,732	449.591	·
C ₃₀ H ₃₁ F N ₂ O ₃	C ₃₅ H ₄₁ N ₃ O ₃	C ₃₇ H ₃₉ N ₃ O ₄	C ₂₇ H ₃₈ N ₃ O ₃	
#NAME?	HO HANAME?	#NAME?	#NAME?	H V V V V V V V V V V V V V V V V V V V
Cons.mg/mi LionID 0.1776 TR0910003213	1 TR0910002205	TR0910002236	d TR0910000629	o E E
Cono mg/n 0.1778	0.1778	0.1776	0.1776	
f Assay Spy4H	Spy4H	Sру4H	Вру4Н	
Assay Result Assay 53.24 Spy4H	53.24	63.24	63.22	
Raw Data 0.422	0.27	0.276	0.268	
Library, Chipd Lot ExtReg Riate Well Raw Deta 9100 3213 1 000728356 9100-045 E 03 0.422	2205 1 000727348 9100-031 E 07	1 000727379 9100-031 D 11	1 000726012 9100-008 E 10	
Cmpd Lo 3213 1	2205 1	2236 1	629 1	
Library 9100	9100	0016	. 010	

474,622		450.576	464.502	591.723
C28 H30 N2 O3 S		C ₂₇ H ₂₄ N ₂ O ₄	C ₂₈ H ₃₆ N ₂ O ₄	C ₃ , H ₃₈ F N ₃ O ₃
#NAME?	2 = £	#NAME?	#NAME?	#NAMF7
LionID TR0910001058	ъ	TR0910001068	TR0910000598	TR0910002573
Sonc mg/m 0.1776		0.1776	0.1776	0.1776
ft Assay Spy4H		Spy4H	Spy44	Spy4H
Assay Resu 53.05		53.05	52.93	52.84
Raw Data 0.351		0.261	0.264	0.287
Library Cmpd Lof ExtReg Plate Well Raw Data Assay Result Assay Conc.mg/ml LionID 9100 1058 1 000726441 9100-014 B 04 0.351 53.05 Spy4H 0.1776 TR091		000726451 9100-014 D 05	000725981 9100-008 F 06	1 000727716 9100-037 E 03
1 ExtReg 000725441		000728451	000725981	000727716
Cmpd Lt 1058 1		1068 1	598	2573 1
Library 1 9100		0000	60	0.00 C

392.496	448.584	595.779
C ₂₄ H ₂₈ N ₂ O ₃	C ₂₈ H ₂₈ N ₂ O ₃ S	C ₃₇ H ₄₅ N ₃ O ₄
#NAME?	S. A. T. S.	CHOCH WAME?
cant. mg/m LionID 0.1776 TR0910001086	TR0910001098	TR0910003743
Cano mg/m 0.1776	0.1778	0.1776
f Assay Spy4H	Spy4H	Spy4H
Assay Rest 52.76	52.78	52.75
Raw Data 0.263	0.298	0.347
Library, Cmpd Lot ExtReg Plate Well Raw Da 9100 1086 1 000726469 9100-014 F 07 0.263	1098 1 000726481 9100-014 B 09	3743 1 000728886 9100-051 G 09
7 Cmpd 1086		3743
Ulbran 9100	0016	9100

534.625	529.633	580.769	444.528	
C31 H36 F N2 O5	G ₃₁ H ₃₆ N ₃ O ₆	C ₃₈ H ₄₄ N ₄ O ₃	∬ C ₂₇ H ₂₈ N₂ O₄	
#NAME?	THO THE STATE OF T	#NAMIF?	#NAME?	E E
LlonID TR0910000812	TR0910002198	TR0910002220	TR0910002437	-
and mg/m 0.1776	0.1776	0.1776	0.1776	
Spy4H	Spy4H	Sру4H	Spy4H	•
Assay Resulf Assay, Cana mg/mi LlonID 52.70 Spy4H 0.1778 TR091	52.69	52.69	52.63	
Raw Data 0.339	0.271	0.269	0.261	
Library Cripd Col ExtReg Plate Well Raw Data 9100 812 1 000728195 9100-011 D 03 0.339	1 000727339 9100-031 D 08	2220 1 000727363 9100-031 D 09	2437 1 000727580 9100-035 E 08	
Стра L 812 1	2198 1	2220 1	2437 1	
Library 9100		9100	9100	

				•
480.945	486.585	526.472	567.091	
C ₂₈ H ₂₅ Cl N ₂ O ₅	C ₂₉ H ₃₀ N ₂ O ₆	C ₂₇ H ₃₂ Br N ₃ O ₃	C ₃₂ H ₃₃ Ci N ₆ O ₃	.
#NAME?	HNAME?	#NAME?	HINAME?	# # # # # # # # # # # # # # # # # # #
★ LioniD TR0910002757	TR0910002398	TR0910000229	1 TR0910002604	
Cand mg/mi LioniD 0.1776 TR091	0.1776	0.1776	0.1776	
P Assay 10 Spy4H	Spy4H	Вру4Н	Spy4H	
Assey Resul 52.61	52.60	52.55		
Raw Date 0.359	0.334	0.268	0.267	·
	1 000727539 9100-033 D 11	000725612 9100-003 E 10	2604 1 000727747 9100-037 D 07	
npd Lot 757 1	2396 1	1	200	·
Library C. 9100 27	9100 23	9100		

571.117		490.684	525.646
C33 H35 C1 N4 O3	•	C ₃₁ H ₄₂ N ₂ O ₃	G ₂₂ H ₃₅ N ₃ O ₂
#NAME?	2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	₽ <u></u>	
(Assay Conomorn LioniD Spy4H 0.1776 TR0910002814	Ö	TR0910003701	TR0910003726
cano mg/m 0.1776		0.1776	0.1776
		Spy4H	Sру4H
45sey Resul 52.55		52.44	52.44
Raw Data 0.317		0.418	0.275
Ubirer, Chpd [cir ExtReg Plate Well Raw Data 9100 2614 1 000727757 9100-037 F 08 0.317		9100 3701 1 000728844 9100-051 E 04	3726 1 000728889 9100-051 F 07
of EXR8		1 000728	1 000728
©трd 2614		3701	3726
Ubrery 9100		9100	9100

587.726	484 646		452.591
C ₃₆ H ₄₁ N ₃ O ₄	o Z		C ₂₇ H ₃₈ N ₂ O ₄
#NAME?	NAMAN STATES	4,0°4,	#NAME?
Cons. Mg/fff LionID 0.1776 TR0910003755	TR0910001021		TR0910001027
5000 Mg/H 0.1776	7778		0.1776
Spy4H	S Puv4H		Spy4H
Assay Resul 52.44	52 37		52.37
Raw Data 0.294	98		0.28
Library, Gmpd Lot ExtRag Plate Well Raw Data 9100 3755 1 000728898 9100-051 C 11 0.294	1021 1 000728404 9100-013 E 09		9100 1027 1 000726410 9100-013 C 10
Cmpd Lt 3755 1	1021	- - -	1027 1
Library 9100	9		9100

604.669		451.607	406.523	565.754	
C ₃₄ H ₃₅ F ₃ N ₄ O ₃		С ₂₇ Н ₃₇ N ₃ О ₃ он	C ₂₅ H ₃₀ N ₂ O ₃	G ₃₈ H ₄₃ N ₃ O ₃	
#NAME?		#NAME?	#NAME?	H ₃ C #NAME?	or I
Assay Cono rigim LionID Spy4H 0.1776 TR0910000694	u.' ™	TR0910000579 н,с.	TR0910000603	TR0910004123	Ι,
ano mg/m 0.1776		0.1776	0.1776	0.1776	•
Assay C Spy4H		Spy4H	Spy4H	Spy4H	;
ssay Result 52.36	•	62.35	52.35	52.30	
aw Data A 0.285		0.261	0.269	0.289	
Library Cmpd Lot ExtReg Plate Well Raw Data 9100 694 1 000726077 9100-009 F 08 0.285		000725962 9100-008 C 04	000725986 9100-008 C 07	1 000729266 9100-057 C 07	
6 EXIRED 00072607		000725962	000725986	000729286	
Ompd Lt 694 1		579 1	603 1	4123 1	
Library 1 9100		9100	9100	9100	

511,457	523.67	546.084	491.028	
C ₂₇ H ₃₁ Br N ₂ O ₃	C ₃₀ H ₄₁ N ₃ O ₆	C ₃₁ H ₃₂ Cl N ₃ O ₄	C ₂₉ H ₃₁ Cl N ₂ O ₃	
#NAME?	H,C	#NAME?	The wanter of the state of the	⊷ ō
Cond mg/mi LionID 0.1776 TR0910000235	н ТR0910000820	TR0910000841	TR0910000872	
ona mg/m 0.1776	0.1776	0.1776	0.1776	:
Assay (Spy4H	Spy4H	Spy4H	Sру4H	
52.25	52.16	52.16		
eaw Date A 0.485	0.272	0.354	0.408	
Libiary Cmpd Lot ExtReg Plate Walf Raw Da 9100 235 1 000725618 9100-003 C 11 0.485	1 000726203 9100-011 D 04	1 000726224 9100-011 A 07	1 000728255 9100-011 H 10	
йу Стра 3 235	820	841	0 872	
910	9100	9100	9100	

582.741		463.618	446.548	654.608
C35 H42 N4 O4		С ₂₈ Н ₃₇ N ₃ O ₃	C ₂₈ H ₃₀ N ₄ O ₃	G ₃₁ H ₃₃ F ₃ N ₂ O ₄
#NAME?		#NAME?	#NAME?	#NAME?
Assey Result Assey. Conc.mg/mil.LlonID 52.14 Spy4H 0.1776 TR0910003740	ν. · · · · · · · · · · · · · · · · · · ·	TR0910000580	TR0910000804	TR0910000707
one mg/ml 0.1776		0.1778	0.1776	0.1778
Assay 10 Spy4H		S ру4Н	Spy4H	Яру 4 Н
ssay Result 52.14		52.08		52.02
		0.263	0.281	0.308
Library, Cripd Let ExtReg Plate Well Raw Data 9100 3740 1 000728883 9100-051 D 09 0.275		1 000725963 9100-008 D 04	000725987 9100-008 D 07	1 000726090 9100-009 C 10
4 ExiReg 00072888		000725983	00072598	000726090
3740 1		580 1	604	1 101
Library 9100		9100	9100	9100

562.589		446.519	462.611	422.566	.·
C ₃₁ H ₂₉ F ₃ N ₄ O ₃		C ₂₇ H ₂₇ F N ₂ O ₃ OH	C ₂₇ H ₃₀ N ₂ O ₃ S	C ₂₈ H ₃₄ N ₂ O ₃	
#NAME?	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	#NAME?	#NAME?	H, C,	, , , , , , , , , , , , , ,
LionID TR0910004084		TR0910000733	TR0910000578	TR0910000586	
Cane mg/ml LlonID 0.1776 TR091		0.1778	0.1776	0.1778	
Assay Spy4H		Spy4H	Spy4H	Spy4H	
ssay Resul 52.02	:	51.92	51.77	61.77	•
Raw Data 0.284		0.253	0.334	0.301	•
Library Chipd Lot ExtReg Plate Well Raw Data / 9100 4084 1 000729227 9100-057 D 02 0.284		1 000726116 9100-010 E 03	1 000725981 9100-008 B 04	1 000725969 9100-008 B 05	
51 EXIREG 0007292		0007261	0007259	0007259	
Cmpd L 4084 1		733 1	578 1	586	
Library 9100		9100	9100	9100	

424.538	390.48	527.445	485.419
С ₂₅ H ₃₂ N ₂ О ₄	C ₂₄ H ₂₆ N ₂ O ₃	C ₂₈ H ₂₈ Cl ₂ N ₂ O ₄	C ₂₆ H ₂₉ Br N ₂ O ₃
#NAME?	#NAME?	#NAME?	#NAME?
LlonID TR0910000628	TR0910000630	TR0910002977	TR0910001695
2010 mg/m 0.1776	0.1776	0.1776	0.1776
Assay (Spy4H	S ру4Н	яруч Н	Sру4H
Assay Result 51.77	51.77	51.75	51.74
0.263	0.264	0.341	0.442
Ibrary Cimpd Lot ExtReg Pitte Well Raw D 9100 628 1 000726011 9100-008 D 10 0.28	630 1 000726013 9100-008 F 10	2977 1 000728120 9100-042 A 04	1695 1 000728838 9100-023 G 03
L brary 9100	9100	9100	9100

80			மு
550.618	· .	607.671	628.645
C ₃₂ H ₃₃ F ₃ N ₂ O ₃		C ₃₀ H ₄₁ N ₃ O ₄	C32 H38 N2 O5
#NAME?	5 J	#NAME?	#NAME?
EloniD TR0910000683		TR0910001939	TR0910001956
cano mg/m 0.1776		0.1776	0.1778
Spy4H		Spy4H	Spy4H
Assay Resu 51.69	•	51.58	51,58
Raw Data 0.546		0.287	0.29
(Library Criptd Lot ExtReg Plate Well Raw Data Assery Result Assery Conc mg/mi LloniD 9100 683 1 000726086 9100-009 C 07 0.546 51.69 Spy4H 0.1776 TR091	,	1939 1 000727082 9100-028 C 04	1956 1 000727099 9100-028 D 06
of ExtRe 1 00072		1 00072	1 00072
Cmpd 1 683			1956
Clorer, 9100		9100	9100

434.577		633.709	608.822	548.651	514.481	
C27 H34 N2 O3		C ₃₂ H ₄₃ N ₃ O ₄	C ₃₈ H ₄₈ N ₄ O ₃	C ₃₂ H ₃₇ F N ₂ O ₆	C ₂₈ H ₃₂ Br N ₃ O ₃	
#NAME?		#NAME?	#NAME?	#NAME?	#NAME?	- v - √ - o
LlonID TR0910001015	₫	TR0910002349	TR0910004122	TR0910002532	TR0910000219	
one mg/mi 0.1776		0.1776	0.1776	0.1776	0.1778	
Assay C Spy4H		Spy4H	Spy4H	Spy4H	Spy4H	
ta Assay Result Assay. Conc mg/mi LlonID 51.56 Spy4H 0.1776 TR091		51.48	51.46	. 44.12	51.33	
aw Data A 0.352		0.299	0.273	0.323	0.265	
Library Cimpd Eql ExtReg Plate Well Raw Da 9100 1015 1 000728398 9100-013 G 08 0.352	•	I 000727492 9100-033 E 05	I 000729265 9100-057 B 07	1 000727675 9100-038 D 08	I 000725602 9100-003 C 09	
Cmpd L 1015 1		2349 1	4122 1	2632 1	219	
Library 9100		9100	9100	9100	9100	

600.55		571.714	569,526
C ₃₀ H ₃₈ Br N ₃ O ₅		C34 H41 N3 O5	С31 Н34 Cl2 N2 О4
#NAME?	ST. N.	, #NAME?	#WAME?
Assay Conc.mg/mi LionID Spy4H 0.1776 TR0910000982		н,с [.] ТR0910003742	H,c
ane mg/m 0.1776		0.1776	0.1778
L Assay T C Spy4H		Spy4H	Spy4H
issay Resul 51.29		51.22	51.21
Raw Data 0.28		0.276	0.438
Ibrary Cmpd Lot ExtReg Plate Well Raw Dai 3100 982 1 000726365 9100-013 F 04 0.28		3742 1 000728885 9100-051 F 09	1 000728125 9100-042 F 04
5 9 9		6	
Cmpd 982			2982
Jbran 3100		9100	

498.62	448.56	438.565	449.591	
C31 H34 N2 O4	C ₂₇ H ₃₂ N ₂ O ₄	C ₂₈ H ₃₄ N ₂ O ₄	н С ₂₇ Н ₃₈ N ₃ О ₃	
#NAME?	H, C, N, H,	#NAME?	#NAME?	
© LionID TR0910001758	H TR0910002365	TR0910000588	TR0910000620	Ŧ.
Cono mg/m LionID 0.1776 TR091	0.1776	0.1776	0.1778	
Assay C Spy4H	Spy4H	Spy4H	Spy4H	
ssay Result 51.20	61.19	51.19	51,19	
kaw Data A 0.298	0.34	0.267	0.264	
Library Cmpd Lot ExtRag Plate Well Raw.E 9100 1758 1 000726901 9100-023 F 11 0.29	1 000727508 9100-033 E 07	1 000725971 9100-008 D 05	1 000726003 9100-008 D 09	
Cmpd 1758	2365	58 88	620	
Clbras 9100	9100	9100		

541.472	475,629	537.7	536. <u>6</u> 44
C ₂₉ H ₃₀ Cl ₂ N ₂ O ₄	C ₂₈ H ₃₇ N ₃ O ₃	C ₃₄ H ₃₉ N ₃ O ₃	G ₃₄ H ₃₃ F N ₂ O ₃
#NAME?	HNAME?	#NAME?	HNAME?
NOTOTI LIONID 76 TR0910002519	TR0910001060	TR0910002203	TR0910002413
ana mg/ml 0.1776	0.1776	0.1776	0.1776
Assay C Spy4H	Spy4H	Sру4H	Spy4H
ssay Result 51.17	51.08	51.08	51.02
aw Data A 0.383	0.269	0.277	0.49
LIBHEN CHIDD LOI EXIREG Plate Well Raw Da 9100 2519 1 000727862 9100-036 G 06 0.383	1060 1 000726443 9100-014 D 04	9100 2203 1 000727346 9100-031 C 07	9100 2413 1 000727556 9100-035 E 03
Стра Lo 2519 1	1060 1	2203 1	2413 1
Library 9100	9100	9100	9100

529.515	582.535	489.407
C ₂₈ H ₃₇ Br N ₂ O ₃	C ₃₀ H ₃₈ Br N ₃ O ₄	C ₂₄ H ₂₈ Br N ₂ O ₄
#NAME?	HJCH H OH CHJ	HAME?
©ane mg/mi LlonID 0.1776 TR0910002466	TR0910000965	TR0910001697
o.1776	0.1778	0.1776
Passay C Spy4H	Spy4H	Sру4H
issay Result 51.02	51.02	50.94
Raw Data 0.394	0.337	0.363
LIDIBIY Cripd Lot ExiReg Rlate Well Raw D 9100 2466 1 000727609 9100-035 B 10 0.39	1 000726348 9100-013 E 02	000726840 9100-023 A 04
1 EX	000	
mpd (1 486	965	1697 1
Library C 9100 2	9100	1 0016

527.5	498.644	524.701	557.667	Hawari Hawari
C ₂₈ H ₃₅ Br N ₂ O ₃	C ₂₈ H ₄₀ N ₂ O ₅	С ₃₄ Н ₄₀ N ₂ O ₃ он сн,	C ₃₃ H ₃₉ N ₃ O ₆	
#NAME?	H,C-O,H,H,CH,CH,H,CH,H,CH,H,CH,H,CH,H,CH	#NAME? GH,	#NAME?	
Cana mg/mi LionID 0.1776 TR0910001715	н ТR0910003033	TR0910003691	TR0910003748	
ans mg/m 0.1778	0.1776	0.1776	0.1776	
Assay (Spy4H	Sру4H	S ру4Н	Spy4H	
ssay Rasull 50.94	50.94	50.92	50.92	
	0.445	0.457	0.275	
Library, Chipd Lot EXREss Plate VVBI Raw Da 9100 1715 1 000726858 9100-023 C 05 0.557	000728176 9100-042 A 11	1 000728834 9100-051 C 03	000728891 [.] 9100-051 D 10	
mpd Lof 1715 1	3033 1	3891 1	3748 1	·
Library (9100	9100	9100	9100	

488.556	392.49	448.584	460.644
CH, C28 H28 F N2 O4	C ₂₄ H ₂₈ N ₂ O ₃	C ₂₆ H ₂₈ N ₂ O ₃ S	C ₂₈ H ₃₈ N ₂ O ₃
#NAME?	#NAME?	#NAME?	HO CH, NAME?
Conc.mg/mi LlonID 0.1776 TR0910002373	TR0910000608	TR0910000618	о° TR0910002795
one mg/m 0.1776	0.1778	0.1778	0.1778
Assay Spy4H	Spy4H	Spy4H	Spy4H
Assay Resul 50.91	50.80	. 50.90	50.87
Raw Data 0.351	0.266	0.291	0.392
	000725989 9100-008 F D7 .	000726001 9100-008 B 09	000727938 9100-039 C 11
of Exifted	. 000725	1 000726	1 000727
Cmpd L 2373	908	81.8	2795
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	9100	9100	0010

549.107	390.46 -	502.626	539.672 - 1	•
C ₃₂ H ₃₇ Ci N ₂ O ₄	C ₂₄ H ₂₈ N ₂ O ₃	C31 H35 F N2 O3	C ₃₃ H ₃₇ N ₃ O ₄	
#NAME? CH,	#NAME?	#NAME?	#NAME?	
remg/mi LlonID 0.1776 TR0910002622	TR0910001110	н ТR0910001012	, TR0910002401	·
ano mg/m 0.1776	0.1776	0.1776	0.1778	
Astay C Spy4H	Spy4H	Spy4H	Spy4H	·
Assay Result 50.83	50.78	50.75		
Raw Data 0.377	0.272	0.517	0.33	
LIBFisty、Compd Cot ExtReg Blate Well Raw Dat 9100 2622 1 000727765 9100-037 F 09 0.377	1110 1 000726493 9100-014 F 10	1012 1 000726395 9100-013 D 08	2401 1 000727544 9100-035 A 02	
/ Стра 1 2622	110	1012		
Library 9100	9100	9100	9100	·

484.636	603.434	522.682	408.539	Luste I consti
C ₃₁ H ₃₈ N ₂ O ₃	C ₂₅ H ₃₁ Br N ₂ O ₄	C ₃₁ H ₄₂ N ₂ O ₆	^сн, С ₂₆ H ₃₂ N ₂ O ₃	·
#NAME?	#NAME?	H,C-O H,CHCH,	#NAME?	H H J J J J J J J J J J J J J J J J J J
Conc.mg/mi LionID 0.1776 TR0910002428	н н ТR0910001687	H,	н,с- ТR0910000626	
:anc mg/m 0.1776	0.1776	0.1778	0.1778	
Assay C Spy4H	S ру4Н	Spy4H	Spy4H	1 201 201
issay Result 50.70	50.67	50.63	50.62	
Raw Data / 0.324	0,338	0.32	0.284	
Ibrery Cmpd Cot ExtReg Plate Well Raw D 9100 2428 1 000727569 9100-035 B 05 0.32	1 000728830 9100-023 G 02	2342 1 000727485 9100-033 F 04	1 000726009 9100-008 B 10	
Стр4 L 2428	1687	2342	929	٠
Library 9100		000		

501.58	432.581	523,673	2. 2. 2. 2. 2.	
C ₂₉ H ₃₁ N ₃ O ₅	C ₂₇ H ₃₂ N ₂ O ₃	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		C28 H34 N2 C4
#NAME?	óн #NAME?	Ho H	P. C.	H ₃ C ₀ C ₁ H ₃ C ₁
Assay Result Assay Cono.mg/mil LionID 50.61 Spy4H 0.1778 TR0910003757	TR0910002763	# #		TR0910001102
one mg/ml 0.1778	0.1778	77.7a	- -	0.1778
Assay C Spy4H	Spy4H		r F	Spy4H
Assay Result 50.61	50.58		:	50.50
Raw Data / 0.272	0.322		0.27	0.271
Library Cmod Lot ExtReg Plate Well Raw D 9100 3757 1 000728900 9100-051 E 11 0.27	1 000727908 9100-039 C 07	!	2206 1 000727349 9100-031 F 07	1102 1 000726485 9100-014 F 09
Cmpd 1 3757	2763	·	2206	1102
Library 9100	9100		9100	9100

466.578	512.625	677.726	568. 758
C ₃₀ H ₃₀ N ₂ O ₃	C ₂₈ H ₂₇ F ₃ N ₂ O ₄	C ₃₆ H ₃₉ N ₅ O ₃	C ₃₅ H ₄₄ N ₄ O ₅
#NAME?	#NAME?	#NAME?	# WAME?
60 mg/m LlonID 0.1776 TR0910002430	НО ТR0910000717	TR0910002204	TR0910002219 _{H,c}
ana mg/ml 0.1776	0.1776	0.1776	0.1778
Assay C Spy4H	Spy4H	Вру4Н	Spy4H
56.38	60.34	50.24	50.24
caw Data A 0.288	0.252	0.278	0.282
	1 000726100 9100-009 E 11	2204 1 000727347 9100-031 D 07	2219 _1 000727362 9100-031 C 09
Cmpd 2430		2204	
Library 9100	9100	9100	9100

	463.618	449.59	466.618	622 56
	C ₂₈ H ₃₇ N ₃ O ₃	C ₂₇ H ₃₅ N ₃ O ₃	C ₂₈ H ₃₈ N ₂ O ₄	G ₃₁ H ₃₈ Br N ₅ O ₄
	#NAME?	#NAME?	#NAME	
Cone mg/mil LionID	ТR0910001059 _{H,C.} _{H,} C	TR0910001109	TR0910001981	TR0910000974
im/gm and	0.1776	0.1776	0.1776	0.1776
Assay C	Вру4H	Sру4Н	Яру4H	Spy4H
ssay Result	50.21	50.21	50.21	60.20
caw Date A	0.273	0.273	0.283	0.28
Exièbe Plate Well R	9100 1059 1 000728442 9100-014 C 04 0.273	000726492 9100-014 E ∮0	000727124 9100-028 E 09	1 000726357 9100-013 F 03
10 D	<u>0</u>	₹"	-	•
VCmb	105	1109	1981	974
Corar	9100	9100		9100

485.419	619.581	424.538	498.閱8	
C ₂₈ H ₂₈ Br N ₂ O ₃	C ₃₅ H ₃₃ Cl ₂ F N ₂ O ₃	C ₂₅ H ₃₂ N ₂ O ₄	C ₂₈ H ₃₈ N ₂ O ₈	
#NAME?	#NAME?	#NAME?	#NAME?	~ -
Cune mg/mi LloniD 0.1776 TR0910001686	H ₂ C	TR0910000587	TR0910000828	
ono mg/mi 0.1776	0.1776	0.1776	0.1776	
Assay C Spy4H	Spy4H	Spy4H	Sру4H	
ssey Result 50.13	50.10	50.04	90.00	
kaw Data A 0.427	0.632	0.273	0.28	
Library Chipd Lot BXR6g Plate Well Raw 9100 1686 1 000726829 9100-023 F 02 0.4	 000727636 9100-036 E 03	1 000725970 9100-008 C 05	1 000726211 9100-011 D 05	
impd L 1686	2493	. 283	828	
Library C 9100	000	9100	9100	

582.741

C₃₅ H₄₂ N₄ O₄

#NAME?

Library Gmod Lei ExtReig Plate Well Raw Data Assay Result Assay. Conormy/ml. LlonID 9100 3749 1 000728892 9100-051 E 10 0.28 50.00 Spy4H 0.1776 TR0910003749

BNSDOCID: <WO_____03076403A1_I_>

EXAMPLE 4

Melanocortin Receptor Assay

This example describes methods for assaying binding to MC receptors. [0124] [0125] All cell culture media and reagents are obtained from GibcoBRL (Gaithersburg MD), except for COSMIC CALF SERUM (HyClone; Logan UT). HEK 293 cell lines are transfected with the human MC receptors hMCR-1, hMCR-3, and hMCR-4 (Gantz et al., Biochem. Biophys. Res. Comm. 200:1214-1220 (1994); Gantz et al., J. Biol. Chem. 268:8246-8250 (1993); Gantz et al. J. Biol. Chem. 268;15174-15179 (1993); Haskell-Leuvano et al., Biochem. Biophys. Res. Comm. 204:1137-1142 (1994); each of which is incorporated herein by reference). Vectors for construction of an hMCR-5 expressing cell line are obtained, and a line of HEK 293 cells expressing hMCR-5 is constructed (Gantz, supra, 1994). hMCR-5 has been described previously (Franberg et al., <u>Biochem.</u> Biophys. Res. Commun. 236:489-492 (1997); Chowdhary et al., Cytogenet. Cell Genet. 68:1-2 (1995); Chowdhary et al., Cytogenet. Cell Genet. 68:79-81 (1995), each of which is incorporated herein by reference). HEK 293 cells are maintained in DMEM, 25 mM HEPES, 2 mM glutamine, non-essential amino acids, vitamins, sodium pyruvate, 10% COSMIC CALF SERUM, 100 units/ml penicillin, 100 µg/ml streptomycin and 0.2 mg/ml G418 to maintain selection.

[0126] Before assaying, cells are washed once with phosphate buffered saline ("PBS"; without Ca2+ and Mg2+), and stripped from the flasks using 0.25% trypsin and 0.5 mM EDTA. Cells are suspended in PBS, 10% COSMIC CALF SERUM and 1 mM CaCl2. Cell suspensions are prepared at a density of 2x104 cells/ml for HEK 293 cells expressing hMCR-3, hMCR-4 or hMCR-5, and 1x105 cells/ml for HEK 293 cells expressing hMCR-1. Suspensions are placed in a water bath and allowed to warm to 37°C for 1 hr.

[0127] Binding assays are performed in a total volume of 250 μ l for HEK 293 cells. Control and test compounds are dissolved in distilled water. 125I-HP 467 (50,000 dpm) (2000 Ci/mmol) (custom labeled by Amersham; Arlington Heights IL) is prepared in 50 mM Tris, pH 7.4, 2 mg/ml BSA, 10 mM CaCl2, 5 mM MgCl2,

2 mM EDTA and added to each tube. To each tube is added 4x103 HEK 293 cells expressing hMCR-3, hMCR-4 or hMCR-5, or 2x104 cells expressing hMCR-1. Assays are incubated for 2.5 hr at 37°C.

[0128] GF/B filter plates are prepared by soaking for at least one hour in 5 mg/ml BSA and 10 mM CaCl2. Assays are filtered using a Brandel 96-well cell harvester (Brandel Inc.; Gaithersburg, MD). The filters are washed four times with cold 50 mM Tris, pH 7.4, and the filter plates dehydrated for 2 hr and 35 μl of MICROSCINT is added to each well. Filter plates are counted using a Packard Topcount (Packard Instrument Co.) and data analyzed using GraphPad PRISM v2.0 (GraphPad Software Inc.; San Diego CA) and Microsoft EXCEL v5.0a (Microsoft Corp.; Redmond WA).

[0129] To assay piperidine-3-carboxamide derivative compounds, binding assays are performed in duplicate in a 96 well format. HP 467 is prepared in 50 mM Tris, pH 7.4, and 125I-HP 467 is diluted to give 100,000 dpm per 50 μl. A piperidine-3-carboxamide derivative compound, is added to the well in 25 μl aliquots. A 25 μl aliquot of 125I-HP 467 is added to each well. A 0.2 ml aliquot of suspended cells is added to each well to give the cell numbers indicated above, and the cells are incubated at 37°C for 2.5 hr. Cells are harvested on GF/B filter plates as described above and counted.

EXAMPLE 5

Penile erection due to administration of a piperidine-3-carboxamide derivative compounds

[0130] Adult male rats are housed 2-3 per cage and are acclimated to the standard vivarium light cycle (12 hr. light, 12 hr. dark), rat chow and water for a least a week prior to testing. All experiments are performed between 9 a.m. and noon and rats are placed in cylindrical, clear plexiglass chambers during the 60 minute observation period. Mirrors are positioned below and to the sides of the chambers, to improve viewing.

[0131] Observations begin 10 minutes after an intraperitoneal injection of either saline or compound. An observer counts the number of grooming motions,

stretches, yawns and penile erections (spontaneously occurring, not elicited by genital grooming) and records them every 5 minutes, for a total of 60 minutes. The observer is unaware of the treatment and animals are tested once, with n=6 in each group. Values in the figures represent the group mean and standard error of the mean. HP 228 can be used as a positive control for penile erections. Significant differences between groups are determined by an overall analysis of variance and the Student Neunmann-Keuls post hoc test can be used to identify individual differences between groups (p £ 0.05).

[0132] Although the invention has been described with reference to the examples provided above, it should be understood that various modifications can be made by those skilled in the art without departing from the invention. Accordingly, the invention is set out in the following claims.

WE CLAIM:

1. A combinatorial library of two or more compounds of the formula:

wherein:

X is selected from the group consisting of N and H;

 R_1 is selected from the group consisting of a substituted aromatic heterocyclic ring, C_3 - C_{12} substituted alicycle and substituted phenyl;

 R_2 is selected from the group consisting of C_1 to C_7 alkoxy; C_1 to C_7 substituted alkoxy; C_2 - C_7 alkenyl; C_1 to C_7 substituted alkenyl; C_2 to C_7 alkenyl; unsubstituted phenyl; naphthyl; substituted phenoxy; C_2 to C_7 heterocyclic ring; substituted C_2 to C_7 heterocyclic ring; substituted cyclic C_2 to C_7 alkylene; C_1 to C_6 alkyl; C_1 to C_6 substituted alkyl; C_3 to C_7 cycloalkyl; C_3 to C_7 substituted cycloalkyl; C_1 to C_7 alkoxy; halo; C_1 to C_{10} alkylthio; C_1 to C_{10} alkylnitrile; a C_7 to C_{18} substituted phenylalkyl; and substituted phenyl;

 R_3 and R_4 are independently selected from the group consisting of -OH; H; C_1 to C_6 alkyl; C_1 to C_6 substituted alkyl; C_2 to C_7 alkenyl; C_1 to C_7 alkoxy; C_1 to C_7 substituted alkoxy; C_3 to C_7 cycloalkyl; C_3 to C_7 substituted cycloalkyl; C_1 to C_{10} alkylnitrile; C_1 to C_4 alcohol; phenyl; substituted phenyl; C_1 to C_6 substituted alkyl; C_1 to C_7 alkoxy; C_3 to C_7 cycloalkyl; and C_3 to C_7

substituted cycloalkyl; C_2 to C_7 heterocyclic ring; C_2 to C_7 substituted heterocyclic ring; phenoxy; and substituted phenoxy,

R₅ is selected from the group consisting of H and NH₂ and

 R_6 is selected from the group consisting of phenyl, substituted phenyl, C_2 to C_7 heterocyclic ring, and substituted C_2 to C_7 heterocyclic ring;

and wherein

said C₁ to C₆ substituted alkyl, said C₁ to C₄ substituted alkylthio and said C₁ to C₇ substituted alkoxy are substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, oxo, protected oxo, C₃ to C₇ cycloalkyl, naphthyl, amino, protected amino, substituted amino, protected substituted amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C₁ to C₇ alkoxy, C₁ to C₇ acyl, C₁ to C₇ acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl)carboxamide, protected N-(C₁ to C₆ alkyl)carboxamide, cyano, methylsulfonylamino, thiol, phenyl, substituted phenyl, C₁ to C₄ alkylthio and C₁ to C₄ alkylsulfonyl groups,

said C₃ to C₇ substituted cycloalkyl is substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, C₁ to C₄ alkylthio, C₁ to C₄ alkylsulfoxide, C₁ to C₄ alkylsulfoxide, C₁ to C₄ alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxyl, C₁ to C₅ alkyl, C₁ to C₇ alkoxy, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, oxo, protected oxo, substituted amino, trifluoromethyl, carboxy, protected carboxy, phenyl, substituted phenyl, phenylthio, phenylsulfoxide, phenylsulfoxyl, amino, and protected amino groups,

said substituted phenyl, substituted aromatic heterocyclic ring and substituted alicycle are substituted with at least one substituent independently selected from the group consisting of H, halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₆ alkyl, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, C₁ to C₇ substituted acyl, thio, C₁ to C₇ alkylthio,

C₁ to C₇ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl)carboxamide, protected N-(C₁ to C₆ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₆ alkyl)sulfonyl)amino, NB(phenylsulfonyl)amino, phenyl and substituted phenyl, said substituted amino is substituted with one or two substituents independently selected from the group consisting of phenyl, substituted phenyl, C₁ to C₆ alkyl, C₁ to C₆ substituted alkyl, C₁ to C₇ acyl, C₁ to C₇ substituted acyl, C₂ to C₇ alkenyl, C₂ to C₇ substituted alkenyl, C₂ to C₇ substituted alkyl, C₇ to C₁₂ phenylalkyl, C₇ to C₁₂ substituted phenylalkyl and a heterocyclic ring,

said substituted phenoxy is substituted with one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino and N- (phenylsulfonyl)amino,

said C₇ to C₁₈ substituted phenylalkyl and said C₁ to C₁₂ substituted heterocycloalkyl are substituted with one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, oxo, protected oxo, amino, protected amino, substituted amino, protected substituted amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, C₁ to C₁₂ alkyl, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, cyano, N-(C₁ to C₁₂ alkyl)carboxamide, cyano, N-(C₁ to C₁₂

alkylsulfonyl)amino, thiol, C₁ to C₁₀ alkylthio, and C₁ to C₁₀ alkylsulfonyl; and if substituted any phenyl group is substituted with at least one substituent independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ substituted acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, cyclic C₂ to C₁₂ alkylene and a substituted or unsubstituted phenyl group, and

said substituted heterocyclic ring is substituted with at least one substituent independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, heterocycle and substituted heterocycle.

- 2. The combinatorial library according to claim 1, wherein said C_1 to C_6 substituted alkyl is substituted with at least one substituent selected from the group consisting of thiol, halo, C_1 to C_6 alkoxy, and phenyl unsubstituted or substituted with a substituent selected from the group consisting of halo and C_1 to C_6 alkoxy.
- 3. The combinatorial library according to claim 1, wherein R_1 is a substituted phenyl.

- 4. The combinatorial library according to claim 1, wherein R₅ is H.
- 5. The combinatorial library according to claim 1, wherein R₅ is NH₂.
- 6. A compound of the formula:

wherein:

X is selected from the group consisting of N and H;

R₁ is selected from the group consisting of a substituted aromatic heterocyclic ring, C₃-C₁₂ substituted alicycle and substituted phenyl;

R₂ is selected from the group consisting of C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₂-C₇ alkenyl; C₁ to C₇ substituted alkenyl; C₂ to C₇ alkynyl; C₂ to C₇ substituted alkynyl; unsubstituted phenyl; naphthyl; substituted phenoxy; C₂ to C₇ heterocyclic ring; substituted C₂ to C₇ heterocyclic ring; substituted cyclic C₂ to C₇ alkylene; C₁ to C₆ alkyl; C₁ to C₆ substituted alkyl; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁ to C₇ alkoxy; halo; C₁ to C₁₀ alkylthio; C₁ to C₁₀ substituted alkylthio; C₁ to C₁₀ alkylnitrile; a C₇ to C₁₈ substituted phenylalkyl; and substituted phenyl;

R₃ and R₄ are independently selected from the group consisting of –OH; H; C₁ to C₆ alkyl; C₁ to C₆ substituted alkyl; C₂ to C₇ alkenyl; C₁ to C₇ alkoxy; C₁ to C₇ substituted alkoxy; C₃ to C₇ cycloalkyl; C₃ to C₇ substituted cycloalkyl; C₁ to C₁₀ alkylthio; C₁ to C₁₀ alkylnitrile; C₁ to C₄ alcohol; phenyl; substituted phenyl; C₁ to C₆ substituted alkyl; C₁ to C₇ alkoxy; C₃ to C₇ cycloalkyl; and C₃ to C₇ substituted cycloalkyl; C₂ to C₇ heterocyclic ring; C₂ to C₇ substituted heterocyclic ring; phenoxy; and substituted phenoxy,

 R_5 is selected from the group consisting of H and NH₂, and R_6 is selected from the group consisting of phenyl, substituted phenyl, C_2 to C_7 heterocyclic ring, and substituted C_2 to C_7 heterocyclic ring, and wherein

said C₁ to C₆ substituted alkyl, said C₁ to C₄ substituted alkylthio and said C₁ to C₇ substituted alkoxy are substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, oxo, protected oxo, C₃ to C₇ cycloalkyl, naphthyl, amino, protected amino, substituted amino, protected substituted amino, guanidino, protected guanidino, heterocyclic ring, substituted heterocyclic ring, imidazolyl, indolyl, pyrrolidinyl, C₁ to C₇ alkoxy, C₁ to C₇ acyl, C₁ to C₇ acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl)carboxamide, protected N-(C₁ to C₆ alkyl)carboxamide, cyano, methylsulfonylamino, thiol, phenyl, substituted phenyl, C₁ to C₄ alkylthio and C₁ to C₄ alkylsulfonyl groups,

said C₃ to C₇ substituted cycloalkyl is substituted by one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, C₁ to C₄ alkylthio, C₁ to C₄ alkylsulfoxide, C₁ to C₄ alkylsulfoxide, C₁ to C₄ alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxide, C₁ to C₄ substituted alkylsulfoxyl, C₁ to C₅ alkoxy, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, oxo, protected oxo, substituted amino, trifluoromethyl, carboxy, protected carboxy, phenyl, substituted phenyl, phenylthio, phenylsulfoxide, phenylsulfoxyl, amino, and protected amino groups.

said substituted phenyl, substituted aromatic heterocyclic ring and substituted alicycle are substituted with at least one substituent independently selected from the group consisting of H, halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₆ alkyl, C₁ to C₆ substituted alkyl, C₁ to C₇ alkoxy, C₁ to C₇ substituted alkoxy, C₁ to C₇ acyl, C₁ to C₇ substituted acyl, thio, C₁ to C₇ alkylthio, C₁ to C₇ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₆ alkyl)carboxamide, protected N-(C₁ to C₆ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₆ alkyl)sulfonyl)amino, NB(phenylsulfonyl)amino, phenyl and substituted phenyl,

said substituted amino is substituted with one or two substituents independently selected from the group consisting of phenyl, substituted phenyl, C₁ to C₆ alkyl, C₁ to C₆ substituted alkyl, C₁ to C₇ acyl, C₁ to C₇ substituted acyl, C₂ to C₇ alkenyl, C₂ to C₇ substituted alkenyl, C₂ to C₇ alkynyl, C₂ to C₇ substituted alkynyl, C₇ to C₁₂ phenylalkyl, C₇ to C₁₂ substituted phenylalkyl and a heterocyclic ring,

said substituted phenoxy is substituted with one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino and N- (phenylsulfonyl)amino,

said C₇ to C₁₈ substituted phenylalkyl and said C₁ to C₁₂ substituted heterocycloalkyl are substituted with one or more substituents independently selected from the group consisting of halogen, hydroxy, protected hydroxy, oxo, protected oxo, amino, protected amino, substituted amino, protected substituted amino, guanidino, protected quanidino, heterocyclic ring, substituted heterocyclic

ring, C₁ to C₁₂ alkyl, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ substituted acyl, C₁ to C₁₂ acyloxy, nitro, carboxy, protected carboxy, carbamoyl, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-(C₁ to C₁₂ dialkyl)carboxamide, cyano, N-(C₁ to C₁₂ alkylsulfonyl)amino, thiol, C_1 to C_{10} alkylthio, and C_1 to C_{10} alkylsulfonyl; and if substituted any phenyl group is substituted with at least one substituent independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ substituted alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ substituted acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C1 to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, cyclic C2 to C12 alkylene and a substituted or unsubstituted phenyl group, and

said substituted heterocyclic ring is substituted with at least one substituent independently selected from the group consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, C₁ to C₁₂ alkyl, C₁ to C₁₂ alkoxy, C₁ to C₁₂ substituted alkoxy, C₁ to C₁₂ acyl, C₁ to C₁₂ acyloxy, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, substituted amino, protected substituted amino, carboxamide, protected carboxamide, N-(C₁ to C₁₂ alkyl)carboxamide, protected N-(C₁ to C₁₂ alkyl)carboxamide, N, N-di(C₁ to C₁₂ alkyl)carboxamide, trifluoromethyl, N-((C₁ to C₁₂ alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino, heterocycle and substituted heterocycle.

7. The compound according to claim 6, wherein said C₁ to C₆ substituted alkyl is substituted with at least one substituent selected from the group

consisting of thiol, halo, C_1 to C_6 alkoxy, and phenyl unsubstituted or substituted with a substituent selected from the group consisting of halo and C_1 to C_6 alkoxy.

- 8. The compound according to claim 6, wherein R₁ is a substituted phenyl.
- 9. The compound according to claim 6, wherein R_5 is H.
- 10. The compound according to claim 6, wherein R_5 is NH_2 .
- 11. A method of making the compound of claim 6, comprising preparing a resin bound aldehyde or diamine, reacting said resin bound aldehyde with an amine, or said resin bound diamine with an aldehyde, to form a resin bound imine, cyclizing said resin bound imine to produce a resin bound carboxylic acid,
- acylating said resin bound carboxylic acid, and cleaving and extracting said piperidine-3-carboxamide derivative compound from said resin.
- 12. The method according to claim 11, wherein said aldehyde is selected from the group consisting of 4-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde, 3,5-dimethyl-4-hydroxybenzaldehyde, 2-hydroxy-4-methoxybenzaldehyde, 3-ethoxysalicylaldehyde, 2-hydroxy-1-naphthaldehyde, 5-bromosalicylaldehyde, cyclopropanecarboxaldehyde, 3-furaldehyde, benzaldehyde, 2-thiophenecarboxaldehyde, 3-thiophenecarboxaldehyde, 4,5-dimethyl-2-furancarboxaldehyde, P-anisaldehyde, 5-methylfurfural, O-tolualdehyde, 2,4,5-trimethylbenzaldehyde, piperonal, 5-methyl-2-thiophenecarboxaldehyde, 4-(difluoromethyoxy)benzaldehyde, 5-bromo-2-furaldehyde, 4-biphenylcarboxaldehyde and 5-bromo-2-thiophenecarboxaldehyde.

- 13. The method according to claim 12, wherein said resin is *p*-benzyloxybenzyl alcohol-polystyrene.
- 14. The method according to claim 12, wherein said diamine is selected from the group consisting of ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, trans-1,2-cyclohexanediamine, and trans-1,4-diaminocyclohexane.
- 15. The method according to claim 12, wherein said resin bound aldehyde is reacted with an amine selected from the group consisting of methylamine, ethylamine, propargylamine, cyclopropylamine, allylamine, propylamine, 3-aminopropionitrile, isobutylamine, cyclopentylamine, cyclohexylamine, hexylamine, N-acetylethylenediamine, 3-ethoxypropylamine, 4-chlorobenzylamine, 1-(3-aminopropyl)-2-pyrrolidinone, tryptamine, 3-(trifluoromethyl) benzylamine, 2,4-diclorophenethylamine, 4-amino-1-benzylpiperidine, benzylamine, 2,2-thiobis(ethylamine), and N,N-Bis(3-aminopropyl)methylamine.
- 16. The method according to claim 12, wherein said resin bound carboxylic acid is acylated in the presence of an amine selected from the group consisting of nipecotamide, 1-(2-aminoethyl)pyrrolidine, pyrrolidine, histamine, cyclopentylamine, allylamine, 2-methoxyethylamine, cyclohexylamine, 1-methylpiperazine, tetrahydrofurfurylamine, 4-methylbenzylamine, 3-fluorobenzylamine, 4-fluorobenzylamine, 1-(3-aminopropyl)imidazole, cyclopropylamine, propylamine, ethanolamine, 2-thiophenemethylamine, n,n-dimethyl-1,3-propanediamine, 1-(2-aminoethyl)piperidine, isoamylamine, 3-ethoxypropylamine, (r)-(-)-1-cyclohexylethylamine, neopentylamine, 3-(methylthio)propylamine, isobutylamine, 3-amino-1-propanol, 2-ethoxyethylamine, 2,6-dimethylpiperazine, propargylamine, thiophene-2-ethylamine, butylamine, 2-amino-1-methoxypropane, 3-aminopropionitrile, 3-methylpiperidine, P-anisidine, 1,2,3,6-tetrahydropyridine, 2,6-

dimethylmorpholine, methoxyamine hydrochloride, n-ethylpiperazine, water, and hydroxylamine.

- 17. The compound according to claim 6, wherein said compound is bound to a polystyrene resin.
- 18. The compound according to claim 17 wherein said polystyrene resin is PEG-grafted polystyrene resin.
- 19. The compound according to claim 17, wherein said polystyrene resin is *p*-benzyloxybenzyl alcohol-polystyrene.

Figure 1

SUBSTITUTE SHEET (RULE 26)

Figure 3

IN RNATIONAL SEARCH REPORT

Intermental Application No PCT/US 03/06570

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D211/78 C07D401/12 C07D407/12 C07D413/06 C07D409/12
C07D409/14 A61K31/451

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, CHEM ABS Data, EPO-Internal

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	i
US 4 476 311 A (HOFER PETER ET AL) 9 October 1984 (1984-10-09)	1-5, 11-19
column 1, line 20 -column 2, line 25; example 4	6-10
US 2001/041345 A1 (CHAI WENYING ET AL) 15 November 2001 (2001-11-15) page 1, paragraph 11 -page 2, paragraph 25	1–19
-/	
	column 1, line 20 -column 2, line 25; example 4 US 2001/041345 A1 (CHAI WENYING ET AL) 15 November 2001 (2001-11-15)

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority daim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 1 July 2003	Date of mailing of the international search report 11/07/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Usuelli, A

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Interior nal Application No
PCT/US 03/06570

		PCT/US 03	3/06570	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
A	AJAY KUMAR, K; LOKANATHA RAI, K.M.; UMESHA, K.B.: "Evaluation of antibacterial activity of 3,5-dicyano-4,6-diaryl-4-ethoxycarbonyl-pi perid-2-ones" JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 27, - 1 February 2002 (2002-02-01) pages 837-840, XP002246018 the whole document		1-19	
Α	COCCO M T ET AL: "Synthesis and antitumour activity of 4-hydroxy-2-pyridone derivatives" EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 35, no. 5, May 2000 (2000-05), pages 545-552, XP004330447 ISSN: 0223-5234 the whole document		1-19	
		•		
	•			
	·			
	•			
	·			
ĺ				
	•			
Ì				
İ	•			
i				

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

IN RNATIONAL SEARCH REPORT

information on patent family members

Intermenal Application No
PCT/US 03/06570

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4476311	A	09-10-1984	US US	4639529 A 4731457 A	27-01-1987 15-03-1988
US 2001041345	A1	15-11-2001	US	6288235 B1	11-09-2001

Form PCT/ISA/210 (patent family annex) (July 1992)