CS M51A, Winter 2021, Assignment 4 (Total Mark: 90 points, 9%)

Due: Wed Feb 3rd, 10:00 AM Pacific Time Student Name: Student ID:

Note: You must complete the assignments entirely on your own, without discussing with others.

1. (a) (14 Points) Given the circuit below, complete the table below, determining the resistances for Q_1 to Q_6 and the final output Z. The transistors Q_1 to Q_6 should be High or Low (show by 'H' or 'L') resistance. The output Z may be 0, 1, float (show by –) or short (show by *).

A	B	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Z
0	0							
0	1							
1	0							
1	1							

(b) (6 Points) Write sum of MINTERMS and product of MAXTERMS for Z.

2. (a) (4 Points) Write the sum of minterms and product of maxterms function for the following table.

\overline{A}	В	F
0	0	0
0	1	1
1	0	0
1	1	0

(b) (6 Points) Implement F using PMOS and NMOS transistors. Use at most 6 transistors in total; only the signal itself can be used as input.

(c) (6 Points) Implement F using inverters and transmission gates; you may use logic 0, logic 1 or the signal itself as input.

3. Consider the following system where the output Z has a load (L) of 4.

Gate	Fan-	Propagation Delays (ns)		
Type	in	t_{pLH}	t_{pHL}	
NOT	1	0.02 + 0.038L	0.05 + 0.017L	
NAND	2	0.05 + 0.038L	0.08 + 0.027L	
NOR	2	0.06 + 0.075L	0.07 + 0.016L	
AND	2	0.08 + 0.038L	0.09 + 0.027L	
OR	2	0.08 + 0.075L	0.09 + 0.016L	

(a) (8 Points) determine the low to high propagation delay $t_{pLH}(d,z)$ of the output z.

(b) (8 Points) determine the high to low propagation delay $t_{pHL}(b,z)$ of the output z.

4. Consider the following circuit, where /S1 and /S0 present complement (NOT) of S1 and S0, respectively.

- (a) (2 Points) What is the value of output when S0=1, S1=0.
- (b) (2 Points) What is the value of output when S0=1, S1=1.
- (c) (8 Points) Write a sum of product expression for the output in terms of A,B,C,D,S0,S1.

5. Use transmission gates to implement the following logical expressions; you may use logic 0, logic 1, the signal itself or its complement as input, e.g. A, A', 0, 1 are all valid input of your design):

(a) (6 Points)
$$F = A + B$$
 (OR gate)

(b) (6 Points)
$$F = (ABC)$$
' (3-input NAND gate)

(d) (6 Points) F = ABC + DE

6. (2 Points) For a transmission gate, why are both PMOS and NMOS used?