Reverse Dictionary

Aarti Pol

*Under Guidance of*Dr. Gaurav Bhatnagar

Reverse Dictionary

- A regular (forward) dictionary maps words to their definitions.
- While a reverse dictionary takes the description of a word as input and outputs the target word together with other semantically similar words.

Motivation

- It can help with "tip-of-the-tongue" problem.
- It can also be helpful in case of some neurological disorders where people are able to identify and describe an object but struggle to name it.
- Provides assistance to new language learners with limited vocabulary.
- In NLP system:
 - can be used to evaluate the quality of sentence representations
 - o beneficial to the tasks involving text-to-entity mapping
 - question answering
 - information retrieval

Existing Systems

a road where cars go quickly without stopping

OneLook.com

highway: a major road for any form of motor transport; more definitions... usage examples...

Showing words related to a road where cars go quickly without stopping, ranked by relevance.

Filter by... Alphabetize

highway	21. layby	41. lay-by	81. travel	81. end
freeway	22. lay	42. round	62 walk	82 rollercoaster
expressway	23. bridge	43. buzz	63. scat	83. cease
pass	24. bridged	44. pull-off	84. leaving	84. ended
passed	25. bridging	45. rest area	65. hacking	85. landing
station	28. through	46. rest stop	86. leave	86 continuous
stationing	27. draw	47. park	87. speed trap	87. triathlon
stations	28. skid	48. order	68. short	88. hell
shoulder	29. take	49. home	eg. dead	se interchange
stump	30. frog	50. separation	70. depart	90. consecutive
stumped	31. down	51. run	71. shorts	et. obstacle
stumping	32. away	52. sledge	72. wau	92. transition
stumps	33. sight	53. sledging	73. hydroplane	93. terminal
turnout	34. sights	54. point	74. slide	94. riot
turn	35. part	55. push	75. pit	95. cruise
turned	зв. straight	58. jump	76. speed	98. control
hotel	37. rope	57. hack	77. clearway	97. transfer
stop	38. roping	58. door	78. paddock	98. pause
stops	39. stage	59. spin	79. balking	99. stall
drag	40. flash	60. pole	80. tipple	100. discretion

Existing Systems

RverseDictionary.org

Limitations of existing systems

- Code is not open source
 - Unreliable
 - Paid
- Not multilingual
 - Work only on English language
- Not cross-lingual
 - Can have input in one language and output in another

Natural Language Processing (NLP)

- Interdisciplinary field of computer science, linguistics and artificial intelligence
- Deals with understanding of human language and their interaction with computer systems.
- Many interesting problems
 - Classification
 - Translation
 - Information Extraction
 - Question answering
 - Dialogue systems
- Major progress in the last decade due to enhancement in deep learning models

Text Pre-processing

- Corpus
- Tokenization
- Normalization
- Stemming
- Lemmatization
- Stop Words
- Parts-of-speech (POS) Tagging

Text to features

One-hot encoding

mango	1	0	0	0	0
is	0	1	0	0	0
sweet	0	0	1	0	0
and	0	0	0	1	0
pulpy	0	0	0	0	1

- Bag of Words (BoW)
 - Unique words: ['and', 'is', 'mango', 'orange', 'puppy', 'sour', 'sweet'].
 - o BoW is number of times that word has occurred in the given sentence

	and	is	mango	orange	puppy	sour	sweet
mango is sweet and puppy	1	1	1	0	1	0	1
orange is sweet and sour	1	1	0	1	0	1	1

Text to features

TF-IDF Model

$$tf_{t,d} = \frac{n_{t,d}}{Number\ of\ terms\ in\ the\ document}$$

$$idf_t = log \frac{Number\ of\ documents}{Number\ of\ documents\ with\ term\ 't'}$$

$$(tf - idf)_{t,d} = tf_{t,d} * idf_t$$

- Advantage of TF-IDF over BoW:
 - Gives weightage to more and less frequently occurring words accordingly
- Drawbacks of BoW and TF-IDF:
 - o don't capture the meaning for words and sentences themselves.

Word Embedding

- Words or phrases are embedded (mapped) to real valued vectors such that their meaning is captured.
- Main idea:
 - "distributional hypothesis" or
 - "You shall know a word by its neighbours"
- We can apply mathematical operations on these vectors.
- Commonly used word vectors come from these embeddings like
 - Word2Vec, GloVe word based
 - FastText subword based

Word vectors in a 2d plane

Word Embedding methods

- Continuous Bag of Words (CBOW)
 - Context vector to word
 - Uses weighted sum
- Skip-Gram
 - Word vector to context vectors
- Argmax over the probability distribution to get the predicted word.

Neural Language Model (NLM)

- Hill et al., TACL, 2016 (from Yoshua Bengio's lab) first introduced the problem of reverse dictionary in this paper.
- Input sentence is mapped to representation of a word which defines its meaning
- Used LSTM model M to get context vector M(s)
- Train the models M to map the input definition phrase s_c of word c to a location close to the the pre-trained embedding emb_w of target word.
 - \circ reduce the cosine distance between M(s) and emb_{M}
- Finally, return words whose embeddings are closest to the input query representation.

Issues

- Many words are of low-frequency (Zipf's Law) and hence have a poor embeddings,
- As, the the objective is to bring the representation of $M(s_c)$ and emb_w closer, words that have poor embedding will affect the overall performance.

Observations

- RNN models do not significantly outperform the BOW models -> BOW models recover concepts from descriptions strikingly well, even when the words in the description are permuted.
- Pre-training input embeddings seems to help most on the concept descriptions, which are furthest from the training data in terms of linguistic style.
- OneLook performs better on seen words at the cost of a greater memory footprint, since the model requires access to its database of dictionaries at query time.
- While NLMs seem to generalise more consistently than OneLook on unseen dataset.

Multi-channel Reverse Dictionary Model

- Zhang et al., AAAI 2020 proposed a model inspired by how humans tries to infer the word from a given description.
 - For e.g. we unknowingly consider the category, entity type and even pos tags.
- Having knowledge of these characteristics makes it easier to search the target word.
- Morpheme is smallest meaningful unit of word
 - "unbreakable" -> {"un", "break", "able"}
- Sememes represents meaning of a word at atomic/morpheme level
 - for e.g. morpheme "un" means "not"
- Apart from original task of predicting target word from phrase, they created 4 other tasks using 2 channels:
 - Internal channels for predicting pos tag and morpheme of words in input phrase
 - External channel for predicting word category and sememe of words input phrase

Multi-channel Reverse Dictionary Model

- Learning to predict these characteristics have several advantages:
 - POS tags helps to identify where the target word will be a verb, noun etc.
 - Category helps model the ability to remove semantically similar target words which are not from the same category as input.
 - "Voice" and "hear" are closely related in terms of semantic but belong to different categories.
 - Learning to predict morpheme and sememe helps the model to learn target word's compositional information
 i.e. units that form the target word.
- Finally, combine confidence/probability scores from all predictors i.e. direct word prediction and 4 indirect characteristic prediction to make final prediction.

Multi-channel Reverse Dictionary Model

- Main task along with 4 additional task
 - Pos tag prediction
 - Category prediction
 - Morpheme prediction
 - Sememe prediction
- Dotted ellipse is NLM model with only main task.

Our Problem Statement

- Humans are quite good at solving the reverse dictionary problem due to understanding of the world around them.
- For a model to solve reverse dictionary problem:
 - Learn representations of input phrases and words
 - Learn a model that can map these representations by bringing them closer in embedding space.

- Multilingual setting
- Cross-lingual setting

Future Work and Challenges

- Solving the problem in multilingual and cross-lingual setting, requires collection of parallel data - not currently available:
 - Multilingual: {phrase_L1, target_word_L1}, {phrase_L2, target_word_l2} ...
 - Cross-lingual: {phrasel1, target_wordl2}, {phrasel2, target_wordl3} ...

- For *n* number of languages:
 - We have n*n models representing each pair
 - For e.g. [eng -> eng], [eng ->hi], [eng ->mr], [hi ->hi] [hi ->eng], [hi ->mr], [mr -> mr] ...
 - Computationally expensive train these number of models and then save them
- To decrease number of sub-models, we need to look into multi-lingual word embeddings and transformer models.

Proposed Solution

- Hill et al. proposed a simple variation of this in a bilingual setting (English/French)
 - Replace the target monolingual embeddings with those from a bilingual embedding space (here English+French embeddings).
 - Train the model on Monolingual task i.e. English Phrase -> English Concept
 - At the inference time, return the the nearest French word neighbours for the given definition.
 - Results will depend on quality of bilingual embedding.
- Using Multilingual Embeddings like can be even more helpful
 - MUSE 157 languages, fastText trained on Common Crawl and Wikipedia.
 - Multilingual BERT (mBERT) 104 languages, BERT trained on Wikipedia content with a shared vocabulary

Thank you!!