Problem Set 5

Problem 1. Let R be a domain and Q be its fraction field. Let T(-) denote the torsion functor we introduced in Problem Set 3.

- a) Show that $T(M) = \operatorname{Tor}_{1}^{R}(M, Q/R).^{1}$
- b) Show that for every short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

of R-modules gives rise to an exact sequence²

$$0 \longrightarrow T(A) \longrightarrow T(B) \longrightarrow T(C) \longrightarrow (Q/R) \otimes_R A \longrightarrow (Q/R) \otimes_R B \longrightarrow (Q/R) \otimes_R C \longrightarrow 0.$$

c) Show that the right derived functors of T are $R^1T = (Q/R) \otimes_R -$ and $R^iT = 0$ for all $i \leq 2$.

Problem 2. Let I be an ideal in R. Show that

$$\operatorname{Ext}_R^n(I,M) \cong \operatorname{Ext}_R^{n+1}(R/I,M)$$

for all $n \ge 1$ and all R-modules M.

Problem 3. Let (R, \mathfrak{m}) be a Noetherian local ring. Let $r \in R$ and M and N be finitely generated R-modules.

- a) Show that the map $\operatorname{Ext}^i_R(M,N) \to \operatorname{Ext}^i_R(M,N)$ induced by $M \xrightarrow{r} M$ is the map given by multiplication by r.
- b) Show that if r is regular on M and $\operatorname{Ext}^i_R(M/rM,N)=0$ for $i\gg 0$, then $\operatorname{Ext}^i_R(M,N)=0$ for $i\gg 0$.

Problem 4. Let (R, \mathfrak{m}) be a Noetherian local ring.

- a) Show that for every short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ of R-modules, $\operatorname{depth}(A) \geqslant \min\{\operatorname{depth}(B), \operatorname{depth}(C) + 1\}.$
- b) Given any finitely generated R-module M, show that there exists $n \ge 1$ such that either $\operatorname{pdim}(M) < n$ or $\operatorname{depth}(\Omega_n M) = \operatorname{depth} R$.

¹Hint: you want to look at some long exact sequence for Tor.

²Hint: apply the Snake Lemma to some nice diagram.

Problem 7. Consider the ring $R = \mathbb{Q}[x, y, z, a, b, c]/(xb - ac, yc - bz, xc - az)$ and the 2-generated R-module M = Rf + Rg, where the generators f, g satisfy the relations

$$yf - xg = 0 \quad bf - cg = 0 \quad cf - zg = 0.$$

Let P be the ideal in $S=\mathbb{Q}[x,y,z]$ defining the curve $\{(t^{13},t^{42},t^{73})\mid t\in\mathbb{Q}\}.$

To solve this problem, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

- a) Find $\operatorname{pdim}_{S}(S/P)$ and $\operatorname{depth}(S/P)$.
- b) Is P generated by a regular sequence?
- c) Find $\operatorname{pdim}_R(M)$ and $\operatorname{depth}(M)$.
- d) Is R a regular ring? Is it Cohen-Macaulay?