

Исследование явления локализации в решетках нелинейных осцилляторов с пространственной неоднородностью

Магистерская диссертация

студентки группы 381406м2: Игнашевой Е.В.

Научный руководитель: Рецензент:

Лаптева Т.В. Конаков О.И.

Введение

Круг задач:

 Численное интегрирование решётчатых систем на больших временных и пространственных масштабах

Актуальность:

 Программные средства, разработанные и используемые ранее, требуют объемных вычислительных ресурсов, поэтому для проведения исследований необходимы компьютерные кластеры, которые не всегда доступны

Постановка задачи

Основные решённые задачи:

- Изучение симплектического метода интегрирования семейства SABA второго порядка с корректором
- Реализация интегратора и подтверждение корректности вычислений
- Проведение оптимизации, получение максимального ускорения вычислений
- Применение на практике, демонстрация эффективности полученного инструмента интегрирования

FSW модель

$$H_{FSW} = \sum_{l} \left[\frac{p_{l}^{2}}{2} + \frac{e_{l}u_{l}^{2}}{2} + \alpha \frac{(u_{m} - u_{l})^{4}}{\gamma} \right]$$

Модель FSW описывает динамику цепи связанных осцилляторов, обладает свойством гамильтоновости.
Применима к схеме интегрирования SABA

SABA₂C для FSW

Общие формулы интегрирования для SABA₂C:

$$SABA_2 = e^{c_1 \tau L_A} e^{d_1 \tau L_B} e^{c_2 \tau L_A} e^{d_1 \tau L_B} e^{c_1 \tau L_A}$$

$$SABA_{2}C = e^{-(\tau^{3}g/2)L_{c}} \cdot SABA_{2} \cdot e^{-(\tau^{3}g/2)L_{c}}$$

Схема SABA₂C для FSW модели:

$$e^{\tau L_{A}} = \begin{cases} u'_{l} = u_{l} + \tau p_{l} \\ p'_{l} = p_{l}, \end{cases} e^{\tau L_{B}} = \begin{cases} u'_{l} = u_{l} \\ p'_{l} = p_{l} - \tau Q_{l} \end{cases}$$

$$e^{\tau L_{C}} = \begin{cases} u'_{l} = u_{l} \\ p'_{l} = p_{l} - 2\tau \{ [\tilde{e}_{l} + 3(u_{l-1} - u_{l})^{2} + 3(u_{l+1} - u_{l})^{2}]Q_{l} - \\ -3(u_{l-1} - u_{l})^{2}Q_{l-1} - 3(u_{l+1} - u_{l})^{2}Q_{l+1} \} \end{cases}$$

$$Q_{\gamma} = \tilde{e}_{\gamma}u_{\gamma} - (u_{\gamma-1} - u_{\gamma})^{3} - (u_{\gamma+1} - u_{\gamma})^{3}$$

Численный интегратор

$$\frac{Time_{Serial}}{Time_{OMP}} \cong 8, \quad \frac{Time_{Serial}}{Time_{CUDA}} \cong 16$$

$$\frac{Time_{Serial}}{Time_{OMP}} \cong 8, \quad \frac{Time_{Serial}}{Time_{CUDA}} \cong 128$$

Тип	Модель	Количество ядер	Максимальная полоса пропускания памяти	Частота
CPU	Intel Core i7 6770k	8	34,1 GB/s	4.2 GHz
GPU	NVidia GTX 960	1024	112 GB/s	1.2 MHz

Численный интегратор

Распределение вычислительной нагрузки:

Необхаодимо распределить нагрузку таким образом, чтобы всегда производились только полезные вычисления

Численный интегратор

$$Time_{GPU} = \frac{Time_{CPU}}{N_{OSC} \times N_{RUN}}$$

Полученное ускорение:

Время работы интегратора зависит от величины сетки потоков и производительности графического процессора. N_{OSC} и N_{RUN} - должны быть не больше максимальных значений сетки, поддерживаемой на конкретном GPU.

1024 64 1024

NVidia GTX 960

Понятие локализации

Локализация

Для локализованного случая характерно сохранение динамики только на возбужденном начальный момент осцилляторе, либо малой его окрестности, а ДЛЯ нелокализованного случая распространение энергии по всей цепи.

Применение на практике

Утверждение:

Если $\mathrm{E_{ini}}$ – полная энергия системы, $\mathrm{P_L}$ – вероятность локализации, то:

при
$$0 < E_{\rm ini} < \frac{1}{3}$$
: $P_{\rm L} = 1 - 3E_{\rm ini}$, при $E_{\rm ini} > \frac{1}{3}$: $P_{\rm L} \approx 0$

Результат:

На основе объемной экспериментальной выборки была получена статистическая вероятность локализации при заданных условиях. Линейный характер локализации виден на рисунке

Заключение

- Исследовано семейство симплектических интеграторов SABA
- Разработан производительный инструмент численного интегрирования
- Эффективность применения продемонстрирована в решении практической задачи
- Достигнут результат, способный в дальнейшем оказать значительную помощь в проведении численных экспериментов

Спасибо! Вопросы?

Магистерская диссертация студентки группы 381406м2:

Игнашевой Е.В.

Научный руководитель:

Лаптева Т.В.

Рецензент:

Приложение: Точность интегрирования

Приложение: Выбор SABA

- При малых шагах интегрирования наименьшую ошибку даёт схема с корректором $SABA_2C$
- Время счёта для различных конфигураций схемы SABA существенно не отличается

Приложение: Критерии локализации

Критерий локализации по числу участия: $P \le 2$,

где
$$P = \frac{\left(\sum_{i=0}^{N} E_i\right)^2}{\sum_{i=0}^{N} E_i^2}$$
, $E_{\rm exp}^2 = \left(\sum_{i=0}^{N} E_i\right)^2$ – полное мгновенное значение энергии (экспериментальное).

Приложение: Критерии локализации

Критерий локализации по невязке: $\log_{10} \epsilon \le -4$,

где
$$\epsilon = |X_0 - \overline{X}_0| =$$

$$= \sqrt{\sum_{i=0}^N [(u_i - \overline{u_i})^2 + (p_i - \overline{p_i})^2]} -$$

если евклидова норма между состояниями X_0 и \overline{X}_0 .

Приложение: Критерии локализации

Приложение: Код оператора L_A

Приложение: Код оператора L_B


```
_device___ void LB(float tau, int ID, float *X0, float *TempPoint, float *EPS)
      float ulM1_ul_3=0, ulP1_ul_3=0, Ql;
      if (ID!=0)
               uIM1_uI_3 = (X0[(ID-1)*2]-X0[ID*2])*(X0[(ID-1)*2]-
                         - X0[ID*2])*(X0[(ID-1)*2]-X0[ID*2]);
      else
               uIM1 uI 3 = 0;
      if (ID!=N-1)
               ulP1_ul_3 = (X0[(ID+1)*2]-X0[ID*2])*(X0[(ID+1)*2]-
                         - X0[ID*2])*(X0[(ID+1)*2]-X0[ID*2]);
      else
               ulP1 ul 3 = 0;
      Ql=EPS[ID]*X0[ID*2] - ulM1_ul_3 - ulP1_ul_3;
      TempPoint[ID*2] = X0[ID*2];
      TempPoint[ID*2+1] = X0[ID*2+1] - tau * QI;
```

Приложение: Код оператора L_C


```
_device___ void LC(float tau, int ID, float *X0, float *TempPoint, float *EPS)
       float ul_minus_1, el_minus_1, ul_minus_2, ulM1_ul_2, ulM1_ul_3,
       ulM2_ulM1_3, ul_plus_1, el_plus_1, ul_plus_2, ulP1_ul_2,
       ulP1_ul_3, ulP2_ulP1_3, ul, pl, el, Ql, Ql_minus_1, Ql_plus_1;
       ul = X0[ID*2];
       pl = X0[ID*2+1];
       el = EPS[ID];
       fill_bounds(ul_minus_1, el_minus_1, ul_minus_2, ulM1_ul_2, ulM1_ul_3,
                 ulM2_ulM1_3, ul, ul_plus_1, el_plus_1, ul_plus_2,
       ulP1 ul 2, ulP1 ul 3, ulP2 ulP1 3= 0);
       QI = eI*uI - uIM1 uI 3 - uIP1 uI 3;
       QI minus 1 = el minus 1*ul minus 1 - ulM2 ulM1 3 - (-1)*ulM1 ul 3;
       Ql plus 1 = el plus 1*ul plus 1 - (-1)*ulP1 ul 3 - ulP2 ulP1 3;
       TempPoint[ID*2] = ul;
       TempPoint[ID*2+1] = pl - 2 * tau * ( (el + 3*ulM1_ul_2 + 3*ulP1_ul_2 ) *
                 * Ql -3 * Ql_minus_1 * ulM1_ul_2 - 3 * Ql_plus_1 * ulP1_ul_2 );
```