

Будник А.М.

1. Уравнение Пуассона

1.1 Постановка задачи

Поставлена задача Дирихле для уравнения Пуассона в прямоугольной области:

$$\begin{split} \frac{\partial^2(u)}{\partial x^2} + \frac{\partial^2(u)}{\partial y^2} &= -f(x,y), \\ x &\in [a,b], y \in [c,d] \\ u(a,y) &= \psi_1(y), \quad u(b,y) = \psi_2(y) \\ u(x,c) &= \psi_3(x), \quad u(x,d) = \psi_4(x) \end{split}$$

Требуется найти значения функции на равномерной сетке узлов в прямоугольнике [a, b] * [c, d].

1.2 Описание метода

Исходное дифференциальное уравнение записывается на сетке на пятиточечном шаблоне:

$$\frac{y_{i+1,j}-2y_{ij}+y_{i-1,j}}{h_x^2}+\frac{y_{i,j+1}-2y_{ij}+y_{i,j-1}}{h_y^2}=-f_{ij}, \ \ i=\overline{1,N_x-1}, j=\overline{1,N_y-1}$$

Данное уравнение можно решить с помощью метода Зейделя:

$$y_{ij}^{k+1} = (\frac{2}{h_x^2} + \frac{2}{h_y^2})^{-1} (f_{ij} + \frac{y_{i+1,j}^k + y_{i-1,j}^{k+1}}{h_x^2} + \frac{y_{i,j+1}^k + y_{i,j-1}^{k+1}}{h_y^2}), \quad i = \overline{1, N_x - 1}, j = \overline{1, N_y - 1}$$

Двигаясь слева направо, сверху вниз получаем разностный метод решения задачи Дирихле с погрешностью $O({h_x}^2 + {h^2}_y)$. Итерации проводятся пока норма невязки изменения решения не окажется меньше $\varepsilon = O(min({h_x}^3, {h^3}_y))$.

1.3. Результаты

Условия задачи Дирихле:

$$\begin{split} \frac{\partial^2(u)}{\partial x^2} + \frac{\partial^2(u)}{\partial y^2} &= -(-e^{-xy^2}) \\ x \in [1,2], y \in [2,3] \\ u(a,y) &= (y-2)(y-3) \quad u(b,y) = y(y-2)(y-3) \\ u(x,c) &= (x-1)(x-2), \quad u(x,d) = x(x-1)(x-2) \end{split}$$

Точное решения находилось с помощью Wolfram Mathematica.

ð	1	2	3	4	5	6	7	8	9	10
0e+0	8.33e-17	-5.55e-17	0e+0	-5.55e-17	0e+0	0e+0	-5.55e-17	0e+0	1.11e-16	0e+0
6.94e-17	6.74e-4	8.38e-4	9.7e-4	1.15e-3	1.39e-3	1.72e-3	2.19e-3	2.82e-3	3.2e-3	2.22e-16
1.11e-16	8.15e-4	1.32e-3	1.69e-3	2.06e-3	2.45e-3	2.89e-3	3.32e-3	3.54e-3	2.82e-3	2.78e-16
-5.55e-17	8.67e-4	1.58e-3	2.14e-3	2.63e-3	3.07e-3	3.43e-3	3.61e-3	3.34e-3	2.21e-3	-1.11e-16
0e+0	9.12e-4	1.71e-3	2.37e-3	2.89e-3	3.3e-3	3.54e-3	3.49e-3	2.96e-3	1.77e-3	0e+0
0e+0	9.33e-4	1.76e-3	2.42e-3	2.91e-3	3.24e-3	3.38e-3	3.2e-3	2.6e-3	1.48e-3	0e+0
0e+0	9.57e-4	1.74e-3	2.33e-3	2.75e-3	2.99e-3	3.06e-3	2.86e-3	2.29e-3	1.31e-3	0e+0
-5.55e-17	9.89e-4	1.68e-3	2.12e-3	2.39e-3	2.55e-3	2.59e-3	2.45e-3	2.03e-3	1.21e-3	-2.22e-16
1.11e-16	1.04e-3	1.5e-3	1.7e-3	1.82e-3	1.91e-3	1.95e-3	1.91e-3	1.73e-3	1.2e-3	2,78e-16
6.94e-17	1.02e-3	1.05e-3	1e-3	1.01e-3	1.03e-3	1.07e-3	1.11e-3	1.17e-3	1.11e-3	1.39e-16
0e+0	6.94e-17	-2.78e-17	2.78e-17	0e+0	0e+0	0e+0	-5.55e-17	-2.78e-17	6.94e-17	0e+0

1.4. Вывод

Как видно из результата, построенный метод обладает погрешностью не более $O(h_x^2 + h_y^2)$. Недостатком данного метода является то, что для обеспечения точности в 3 знака после запятой потребовалось совершить 122 итерации.

2. Уравнение теплопроводности

2.1 Постановка задачи

Поставлена граничная задача для дифференциального уравнения в частных производных.

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x} + f(x,t), & 0 \le x, t \le 1, \\ u(x,0) = u_0(x), \\ \alpha_0 u(0,t) + \beta_0 \frac{\partial u(0,t)}{\partial x} = \mu_0(t), \\ \alpha_1 u(1,t) + \beta_1 \frac{\partial u(1,t)}{\partial x} = \mu_1(t). \end{cases}$$

Требуется найти приближенное значение функции на равномерной сетке узлов в прямоугольнике [a, b] * [c, d] с погрешностью не хуже $O(h^2 + \tau)$.

2.2 Описание метода

Записав условия на шеститочечном шаблоне, получим:

$$-\frac{\sigma}{h^{2}}y_{i-1,j} + (\frac{1}{\tau} + \frac{2\sigma}{h^{2}})y_{i,j} - \frac{\sigma}{h^{2}}y_{i+1,j} = \frac{y_{i,j-1}}{\tau} + \frac{1-\sigma}{h^{2}}(y_{i+1,j-1} - 2_{i,j-1} + y_{i-1,j-1}) + f_{ij-1}, i = \overline{1, N-1}$$

$$(\frac{\beta_{0}}{h} - \alpha_{0} + \frac{\beta_{0}h}{2\tau})y_{0,j} - \frac{\beta_{0}h}{h}y_{1,j} = -\mu_{0,j} + \frac{\beta_{0}h}{2\tau}(y_{0,j-1} + \tau f_{0,j})$$

$$(-\frac{\beta_{1}}{h}y_{N-1,j} + (\alpha_{1} + \frac{\beta_{1}}{h} + \frac{\beta_{1}h}{2\tau})y_{N,j} = -\mu_{1,j} + \frac{\beta_{1}h}{2\tau}(y_{N,j-1} + \tau f_{N,j})$$

Первый ряд $y_{i,0}$ известен из условий, остальные вычисляются последовательно.

2.3. Результаты

Условия:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x}, & 0 \le x, t \le 1, \\ u(x,0) = e^{-x}, \\ \frac{\partial u(0,t)}{\partial x} = -e^t, \\ u(1,t) = e^{t-1}, \\ \sigma = 0.5. \end{cases}$$

0	1	2	3	4	5	6	7	8	9	10	
1	0.90484	0.81873	0.74082	0.67032	0.60653	0.54881	0.49659	0.44933	0.40657	0.36788	
1.1055	1.0003	0.90505	0.8189	0.74096	0.67044	0.60663	0.54889	0.49664	0.44936	0.40657	
1,222	1.1057	1.0005	0.90523	0.81906	0.74109	0.67054	0.6067	0.54893	0.49664	0.44933	
1.3507	1,2222	1.1059	1.0006	0.90535	0.81916	0.74117	0.67059	0.60671	0.54891	0.49659	
1.4929	1.3509	1.2223	1.106	1.0007	0.90541	0.8192	0.74118	0.67056	0.60666	0.54881	
1.6501	1.493	1.351	1.2224	1.106	1.0007	0.90542	0.81918	0.74112	0.67048	0.60653	
1.8237	1.6502	1.4931	1.351	1.2224	1.106	1.0007	0.90537	0.81909	0.741	0.67032	
2.0156	1.8238	1.6502	1.4932	1.351	1.2224	1.106	1.0006	0.90526	0.81895	0.74082	
2.2276	2.0156	1.8238	1.6502	1.4932	1.351	1.2223	1.1059	1.0005	0.90509	0.81873	
2.4619	2,2277	2.0157	1.8238	1.6502	1.4931	1.3509	1,2222	1.1057	1.0003	0.90484	
2.7209	2.462	2.2277	2.0157	1.8238	1.6502	1.493	1.3508	1,222	1.1055	1	
0	1	2	3	4	5		6	7	8	9	10
0e+0	2.58e-	6 -7.53	Be-7 1.78	le-6 -4.	.6e-8 -	6.6e-7	-1.64e-6	4.7e-6	1.04e-6	3.4e-7	5.59e-7
-3.23e-							-9.05e-5	-7.15e-5	-5.38e-5		3.4e-7
-6.04e-							-1.99e-4	-1.47e-4	-1.05e-4	-4.37e-5	1.1e-5
-8.43e-							-3.26e-4	-2.45e-4	-1.72e-4		4.7e-6
-1.07e-	3 -9.66e	-4 -8.61	le-4 -7.6	1e-4 -6.	53e-4 -	5.54e-4	-4.49e-4	-3.37e-4	-2.25e-4	-1.16e-4	8.36e-6
-1.27e-	3 -1.16e	-3 -1.04	le-3 -9.1	7e-4 -7.	97e-4 -	6.76e-4	-5.5e-4	-4.17e-4	-2.73e-4	-1.37e-4	1.93e-5
-1.46e-			-3 -1.0				-6.36e-4	-4.8e-4	-3.14e-4		3e-5
-1.65e-	3 -1.51e	-3 -1.37	e-3 -1.2	2e-3 -1.	.06e-3 -	8.94e-4	-7.2e-4	-5.5e-4	-3.6e-4	-1.68e-4	4.18e-5
-1.83e-	3 -1.69e	-3 -1.53	Be-3 -1.3	7e-3 -1.	.19e-3 -:	1e-3	-8.08e-4	-6.1e-4	-4.04e-4	-1.75e-4	5.92e-5
-2.06e-	3 -1.9e-	3 -1.72	2e-3 -1.5	4e-3 -1.	34e-3 -:	1.14e-3	-9.16e-4	-6.96e-4	-4.59e-4	-2.11e-4	5.26e-5
-2.33e-	3 -2.15e	-3 -1.95	59-3 -1 7	Se-3 -1.	52e-3 -:	1.29e-3	-1.05e-3	-7.91e-4	-5.28e-4	-2.46e-4	5e-5

2.4. Вывод

Погрешность полученного метода не превышает допустимую.

3. Листинги

```
// poisson.js
require('console.table')
const {cloneDeep} = require('lodash')
const {max, pow, abs} = Math
const {eval, subtract, transpose} = require('mathjs')
const array = n => [...Array(n).keys()].map(_ => 0)
const range = (a, b, n = 1) \Rightarrow [...Array(n + 1).keys()].map(i \Rightarrow a + (b - a) / n * i)
const f = (x, y) \Rightarrow eval('e^(-x y^2)', \{x, y\})
const top = (x, y) \Rightarrow x * (x - 1) * (x - 2)
const right = (x, y) \Rightarrow y * (y - 2) * (y - 3)
const bottom = (x, y) \Rightarrow (x - 1) * (x - 2)
const left = (x, y) \Rightarrow (y - 2) * (y - 3)
const EPS = 1E-5
const N = 10
const vx = range(1, 2, N)
const vv = range(3, 2, N)
const hx = abs(vx[1] - vx[0])
const hy = abs(vy[1] - vy[0])
const matrix = array(N + 1).map(\_ => array(N + 1))
for (let i = 0; i < N + 1; ++i) {
    matrix[0][i] = top(vx[i], vy[0])
    matrix[N][i] = bottom(vx[i], vy[N])
    matrix[i][0] = left(vx[0], vy[i])
    matrix[i][N] = right(vx[N], vy[i])
}
let eps = 1
let iters count = 0
let c = 1 / (2 / pow(hx, 2) + 2 / pow(hy, 2))
while (eps > EPS && ++iters count) {
    eps = 0
    let prev matrix = cloneDeep(matrix)
    for (let i = 1; i < N; ++i) {
        for (let j = N - 1; j > 0; --j) {
            matrix[i][j] = c * (f(vx[i], vy[j]) +
                 (prev matrix[i + 1][j] + matrix[i - 1][j]) / pow(hx, 2) +
                 (prev_matrix[i][j + 1] + matrix[i][j - 1]) / pow(hy, 2))
            eps = max(eps, abs(matrix[i][j] - prev_matrix[i][j]))
        }
    }
1
const solution =
[[0., -0.099, -0.192, -0.273, -0.336, -0.375, -0.384, -0.357, -0.288,
-0.171, 0.], [-0.09, -0.14483, -0.20528, -0.26218, -0.30918, -0.3414,
-0.35521, -0.34869, -0.32286, -0.28523, -0.261], [-0.16, -0.18609,
-0.22251, -0.26147, -0.29735, -0.32648, -0.3472, -0.36061, -0.37192,
-0.3933, -0.448], [-0.21, -0.21743, -0.23755, -0.26414, -0.29261,
-0.32037, -0.34717, -0.37573, -0.4128, -0.47044, -0.567], [-0.24,
-0.23625, -0.24642, -0.26525, -0.28897, -0.31572, -0.34602, -0.38324,
-0.43419, -0.5096, -0.624], [-0.25, -0.2413, -0.24686, -0.2618,
-0.28268, -0.308, -0.33853, -0.37769, -0.4318, -0.51023, -0.625],
[-0.24, -0.2322, -0.23818, -0.25273, -0.27233, -0.29549, -0.32291,
-0.35771, -0.40557, -0.47479, -0.576], [-0.21, -0.20949, -0.22119,
-0.23893, -0.2588, -0.27912, -0.30035, -0.32511, -0.35836, -0.40763,
-0.483], [-0.16, -0.17485, -0.19854, -0.22338, -0.24517, -0.26219,
-0.27463, -0.28445, -0.2956, -0.31469, -0.352], [-0.09, -0.13204,
-0.17529, -0.21125, -0.23659, -0.25012, -0.25186, -0.24288, -0.22551,
-0.20428, -0.189], [0., -0.09, -0.16, -0.21, -0.24, -0.25, -0.24,
-0.21, -0.16, -0.09, 0.]]
console.log('Iterations count:', iters_count)
\verb|console.table(subtract(solution, matrix).map(row => row.map(v => Number(v.toPrecision(3)).toExponential())))| \\
// poisson_wolfram.nb
```

```
sol = NDSolveValue[{D[u[x, y], x, x] + D[u[x, y], y, y] ==}
    Exp[-x y^2], u[1, y] == (y - 2)*(y - 3),
   u[2, y] == y*(y - 2)*(y - 3), u[x, 2] == (x - 1)*(x - 2),
   u[x, 3] == x*(x - 1)*(x - 2)}, u, {x, 1, 2}, {y, 2, 3},
  PrecisionGoal -> 10]
Plot3D[sol[x, y], {x, 1, 2}, {y, 2, 3}]
Table[Round[sol[x, y], .00001], \{y, 3, 2, -.1\}, \{x, 1, 2, .1\}]
MatrixForm[%]
// transcalency.js
require('console.table')
const {cloneDeep} = require('lodash')
const {max, pow, abs, exp} = Math
const {eval, lusolve, subtract, transpose} = require('mathjs')
const array = n => [...Array(n).keys()].map(_ => 0)
const range = (a, b, n = 1) \Rightarrow [...Array(n + 1).keys()].map(i \Rightarrow a + (b - a) / n * i)
const f = (x, t) \Rightarrow 0
const u0 = x \Rightarrow exp(-x)
const alpha0 = 0
const beta0 = 1
const mu0 = t \Rightarrow -exp(t)
const alpha1 = 1
const beta1 = 0
const mu1 = t \Rightarrow exp(t - 1)
const sigma = .5
const EPS = 1E-5
const N = 10
const vx = range(0, 1, N)
const vt = range(0, 1, N)
const h = abs(vx[1] - vx[0])
const matrix = array(N + 1).map( \Rightarrow array(N + 1))
matrix[0] = vx.map(u0)
for (let j = 1; j \le N; ++j) {
    const A = array(N + 1).map(_ => array(N + 1))
    const b = array(N + 1)
    const u prev = matrix[j - 1]
    A[0][0] = beta0 / h - alpha0 + (beta0 * h) / (2 * h)
    A[0][1] = -beta0 / h
    b[0] = - mu0(vx[j]) + (beta0 * h) / (2 * h) * (u prev[0] + h * f(vx[0], vt[j]))
    A[N][N - 1] = -beta1 / h
    A[N][N] = alpha1 + beta1 / h + beta1 * h / (2 * h)
    b[N] = mu1(vt[j]) + beta1 * h / (2 * h) * (u_prev[N] + h * f(vx[N], vt[j]))
    for (let i = 1; i < N; ++i) {
        A[i][i - 1] = -sigma/pow(h, 2)
        A[i][i] = 1 / h + 2 * sigma / pow(h, 2)
        A[i][i + 1] = -sigma/pow(h, 2)
        b[i] = u_prev[i] / h + (1 - sigma) / pow(h, 2) *
            (u_prev[i + 1] - 2 * u_prev[i] + u_prev[i - 1]) + f(vx[i], vt[j - 1])
    matrix[j] = transpose(lusolve(A, b))[0]
const prettify = row => row.map(v => Number(v.toPrecision(5)))
console.table(matrix.map(prettify))
const solution = [[1., 0.90484, 0.81873, 0.74082, 0.67032, 0.60653, 0.54881, 0.49659,
  0.44933, 0.40657, 0.36788], [1.10518, 1.00001, 0.90485, 0.81874,
 0.74083, 0.67033, 0.60654, 0.54882, 0.49659, 0.44933,
 0.40657], [1.22143, 1.1052, 1.00002, 0.90486, 0.81875, 0.74084,
 0.67034, 0.60655, 0.54882, 0.4966, 0.44934], [1.34989, 1.22143,
  1.1052, 1.00003, 0.90486, 0.81875, 0.74084, 0.67034, 0.60654,
  0.54882, 0.49659], [1.49187, 1.3499, 1.22144, 1.1052, 1.00003,
  0.90486, 0.81875, 0.74084, 0.67034, 0.60654, 0.54882], [1.64879,
```

```
1.49189, 1.34992, 1.22146, 1.10522, 1.00004, 0.90487, 0.81876,
 0.74085, 0.67034, 0.60655], [1.82223, 1.64882, 1.49192, 1.34994,
 1.22148, 1.10524, 1.00006, 0.90489, 0.81878, 0.74086,
 0.67035], [2.01391, 1.82226, 1.64885, 1.49194, 1.34997, 1.2215,
 1.10526, 1.00007, 0.9049, 0.81878, 0.74086], [2.22576, 2.01395,
 1.8223, 1.64888, 1.49197, 1.34999, 1.22152, 1.10527, 1.00008,
 0.90491, 0.81879], [2.45985, 2.22576, 2.01396, 1.8223, 1.64889,
 1.49197,\ 1.34999,\ 1.22151,\ 1.10526,\ 1.00007,\ 0.90489]\,,\ [2.71853,
 2.45983, 2.22575, 2.01394, 1.82229, 1.64887, 1.49195, 1.34997,
 1.22149, 1.10524, 1.00005]]
console.table(subtract(solution, matrix).map(row => row.map(v => Number(v.toPrecision(3)).toExponential())))
// transcalency wolfram.nb
sol = NDSolveValue[\{D[u[x, t], t] == D[u[x, t], x, x],
  u[x, 0] == Exp[-x], (D[u[x, t], x] /. x -> 0) == -Exp[t],
  u[1, t] == Exp[t - 1], u, \{x, 0, 1\}, \{t, 0, 1\},
 PrecisionGoal -> 10]
Plot3D[sol[x, t], {x, 0, 1}, {t, 0, 1}]
\label{lower_relation} Table[Round[sol[x, t], .00001], \{t, 0, 1, .1\}, \{x, 0, 1, .1\}]
MatrixForm[%]
```