DEVOIR DE PROGRAMMATION

Hakim Baaloudj | Lydia Ronava

Tas priorité min

Implémentation basé sur un tableau

- On travaillent avec des indices
- Aller chercher le dernier élément coute rien.
- Parcours avec indices

Implémentation avec une structure auto référencée

- On travaillent avec des références.
- Exactement temps logarithmique pour aller chercher le dernier élément, constant pour la racine, et h(noeud) pour tout autre nœud
- Parcours avec représentation binaire (slide suivant)

On veux insérer un 13

On calcul la représentation binaire de 9 (prochain indice ou insérer l'élément) [1,0,0,1]

On ignore le premier chiffre qui représente la racine et

On respècte cet ordre 0 -> aller a gauche

1 -> aller a droite.

Pour insérer on doit aller deux fois a gauche, une fois a droite.

Complex union tasMinTree avec un tas initial 20K clé

Complexité consIter Tasmin (arbre)

Complexité consIter Tasmin (tableau)

Complex union tasMinArray avec un tas initial 20K clé

Complexité union FileBinomiale

Complexité ConsIter sur FileBinomiale

temps d'execution ajout sur mot distinct Shakespeare

temps d'execution supprMin sur mot distinct Shakespeare

temps d'execution union sur mot distinct Shakespeare

temps d'execution ConsIter sur mot distinct Shakespeare

