- 1) π first name, middle initial, last name (σ appointed date > date('2020-03-15') (data_officer))
- 2) Cannot calculate sum in the given set of relational algebra operators.
- 3) $\pi_{data_officer.first_name, data_officer.middle_initial, data_officer.last_name}$ ($\sigma_{max_date.appointed_date} = data_officer.appointed_date$ (data_officer × $\rho(max_date, (\pi_{appointed_date} (data_officer) \pi_{C1.appointed_date} (\sigma_{C1.appointed_date} < c_{C2.appointed_date} (\rho(C1, (data_officer))))))))))))))$
- 5) Not possible: in part of this query we would need to use SUM to count up the population counts. As we cannot calculate sum in our relational algebra operators, we cannot do this.
- 6) π_{L.id}, R.id, L.last_unit_id</sub>, R.last_unit_id (ρ(L, (π_{last_unit_id}, id, allegation_id (data_officer ⋈ data_officer.id = data_officerallegation.officer_id data_officerallegation))) ⋈ L_{allegation_id} = R.allegation_id and L.id < R.id and Llast_unit_id ≠ R.last_unit_id ρ(R, (π_{last_unit_id}, id, allegation_id (data_officer ⋈ data_officer.id = data_officerallegation.officer_id data_officerallegation))))
- 7) Cannot be cone as this requires calculating averages, which cannot be done in relational algebra
- 8) $\pi_{\text{rank, sustained_count}}$ (data_officer $\pi_{\text{s1.rank, s1.allegations}}$ ($\rho(\text{s1, data_officer}) \bowtie \text{s1.rank} = \text{s2.rank and s1.sustained_count}$ < sustained_count $\rho(\text{s2, data_officer})$))
- 9) Not possible to do. Firstly, the manipulation of extracting year from end_date cannot be done in relational algebra. Additionally, this requires the count of rows, which is not possible in our set of operators.
- 10) Not possible. In order to get the number of each type of complaints, counting rows is required. This is not possible in our set of relational algebra operators.