МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ КОМП'ЮТЕРНИХ НАУК ТА КІБЕРНЕТИКИ КАФЕДРА ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ

Звіт до лабораторної роботи №2 на тему: «Чисельне розв'язування крайових задач математичної фізики. Метод скінченних елементів»

> Виконав студент групи ОМ-4 Скибицький Нікіта

Зміст

1	Іостановка задачі	2
	.1 Загальна постановка задачі	2
	1.1.1 Зауваження	2
	.2 Параметри варіанту	3
2	Георитичні відомості	3
	.0 Аналітичні маніпуляції	3
	.0 Аналітичні маніпуляції	3
	2.1.1 Координатна система функцій	3
	.2 Виведення системи	4
3	Ірактична частина	5
	.1 Похибки	5
	.2 Графіки	6

1 Постановка задачі

1.1 Загальна постановка задачі

Знайти наближений розв'язок наступної задачі проекційним та варіаційним методами: задано рівняння

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(k(x) \cdot \frac{\mathrm{d}u(x)}{\mathrm{d}x}\right) + q(x) \cdot u(x) = f(x), \quad a < x < b,$$
(1.1)

з крайовими умовами

$$-k(x) \cdot \frac{\mathrm{d}u(x)}{\mathrm{d}x} + \alpha_1 u(x) = \mu_1, \quad x = a,$$
(1.2)

$$k(x) \cdot \frac{\mathrm{d}u(x)}{\mathrm{d}x} + \alpha_2 u(x) = \mu_2, \quad x = b,$$
(1.3)

де

$$k(x) = k_1 \sin(k_2 x) + k_3, \tag{1.4}$$

$$k(x) > 0$$
,

$$q(x) = q_1 \sin(q_2 x) + q_3,$$

$$q(x) \ge 0,$$

$$\alpha_1, \alpha_2 > 0.$$

$$(1.5)$$

1.1.1 Зауваження

Задача *модельна*, тому функцію f(x) і константи μ_1 , μ_2 виражаємо з відповідних рівностей:

$$f(x) = -(k(x) \cdot u'(x))' + q(x) \cdot u(x), \tag{1.6}$$

$$\mu_1 = -k(a) \cdot u'(a) + \alpha_1 u(a),$$
(1.7)

$$\mu_2 = k(b) \cdot u'(b) + \alpha_2 u(b),$$
(1.8)

де u(x) — точний розв'язок задачі, функція $u(x) = m_1 \sin(m_2 x) + m_3$.

1.2 Параметри варіанту

a	b	α_1	α_2	k_1	k_2	k_3	q_1	q_2	q_3	m_1	m_2	m_3
0	4	4	2	2	3	1	0	2	3	2	2	1

2 Теоритичні відомості

2.0 Аналітичні маніпуляції

Перш за все, виразимо функцію f(x) і константи μ_1, μ_2 з рівностей (1.6)–(1.8):

$$f(x) = 10\sin(2x) + 2\sin(3x) - 2\cos(x) - 22\cos(5x) + 1,$$
(2.1)

$$\mu_1 = 0, \tag{2.2}$$

$$\mu_2 = 6. \tag{2.3}$$

2.1 Алгоритм

Нехай задане рівняння

$$Au = f, (2.1.1)$$

де $A: \mathcal{H} \to \mathcal{H}$ (\mathcal{H} — гільбертовий простір), та неоднорідні крайові умови виду (1.2)–(1.3). Наближення розв'язку $u_n(x)$ задачі (2.1.1) будемо шукати у скінченновимірному підпросторі \mathcal{H}_n , базис якого утворений лінійно незалежною координатною системою функцій $\{\varphi_i\}_{i=0}^n$, тобто у вигляді

$$u_n(x) = \sum_{i=1}^n y_i \varphi_i(x). \tag{2.1.2}$$

Одразу зауважимо, що тоді $u(x_i) = y_i$.

2.1.1 Координатна система функцій

Систему функцій $\{\varphi_i\}_{i=0}^n$ побудуємо наступним чином: на інтервалі [a,b] побудуємо рівномірну сітку з (n+1)-го вузла:

$$x_i = \frac{(n-i)a + ib}{n}, \quad i = \overline{0..n}.$$
 (2.1.3)

Приклад. $\{\varphi_i\}_{i=1}^{n-1}$ — так звані штафетини:

Графіки цих функцій мають вигляд

$$\varphi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h_i}, & x_{i-1} \le x \le x_i, \\ \frac{x_{i+1} - x}{h_i}, & x_i \le x \le x_{i+1}, \\ 0, & \text{ihakine.} \end{cases}$$
(2.1.4)

А також φ_0, φ_n — напівштафетини, у яких обрізані половини, які виходять за $[x_0, x_n]$,

$$\varphi_0(x) = \begin{cases} \frac{x_1 - x}{h_i}, & x_0 \le x \le x_1, \\ 0, & \text{iнакше.} \end{cases}$$
 (2.1.5)

$$\varphi_n(x) = \begin{cases} \frac{x - x_{n-1}}{h_i}, & x_{n-1} \le x \le x_n, \\ 0, & \text{iнакшe.} \end{cases}$$
 (2.1.6)

Рис. 1: "штафетина" від x_{i-1} до x_{i+1} .

Зауваження: у коді зручно задавати їх у вигляді phi[i](x) := max(0, 1 - abs(x - x[i]) / h) * (a <= x <= b), або навіть без індикатора належності x області [a,b] якщо це гарантує клієнтський код.

2.2 Виведення системи

Розв'язок шукаємо як мінімум функціонала

$$\Phi_n = \min_{u_n \in \mathcal{H}_n} \Phi(u_n) = \min_{u_n \in \mathcal{H}_n} \|Au_n - f\|^2$$
(2.2.1)

Відомо (з леми), що $G(u_n, \varphi_i) = \ell(\varphi_i)$, при $i = \overline{0..n}$. Це рівносильно системі:

$$\sum_{i=1}^{n} c_i G(\varphi_i, \varphi_j) = \ell(\varphi_j), \quad j = \overline{0..n},$$
(2.2.2)

або, іншими словами,

$$\sum_{i=1}^{n} a_{i,j} y_i = b_j, \quad j \in \overline{0..n}.$$
 (2.2.3)

Він досягається на розв'язку наступної системи (n+1)-го алгебраїчного рівняння відносно y_i :

$$\sum_{i=1}^{n} c_i G(\varphi_i, \varphi_j) = \ell(\varphi_j), \quad j = \overline{0..n},$$
(2.2.4)

де

$$a_{ij} = G(\varphi_i, \varphi_j) = \int_a^b (-k(x)\varphi_i'(x))'\varphi_j(x) + q(x)\varphi_i(x)\varphi_j(x) dx =$$

$$= \int_a^b -k(x)\varphi_i'(x)\varphi_j'(x) + q(x)\varphi_i(x)\varphi_j(x) dx - k(x)\varphi_i'(x)\varphi_j(x)|_a^b =$$

$$= \int_a^b -k(x)\varphi_i'(x)\varphi_j'(x) + q(x)\varphi_i(x)\varphi_j(x) dx + \alpha_1\varphi_i(a)\varphi_j(a) + \alpha_2\varphi_i(b)\varphi_j(b),$$
(2.2.5)

i

$$b_j = \ell(\varphi_j) = \int_a^b f(x)\varphi_j(x)dx + \mu_1\varphi_j(a) + \mu_2\varphi_j(b).$$
 (2.2.6)

Зауважимо, що

$$\varphi_i'(x) = \begin{cases} \frac{1}{h}, & x_{i-1} \le x \le x_i, \\ -\frac{1}{h}, & x_i \le x \le x_{i+1}, \\ 0, & \text{ihakme.} \end{cases}$$
 (2.2.7)

при $i = \overline{1..n - 1}$, і

$$\varphi_0'(x) = \begin{cases} -\frac{1}{h}, & x_0 \le x \le x_1, \\ 0, & \text{інакше.} \end{cases} \qquad \varphi_n'(x) = \begin{cases} \frac{1}{h}, & x_{n-1} \le x \le x_n, \\ 0, & \text{інакше.} \end{cases}$$
 (2.2.8)

Підставимо точні значення функції $\varphi_i(x)$ та їх похідних в систему, матимемо:

$$a_{0,0} = \int_{x_0}^{x_1} \frac{k(x)}{h^2} + q(x)\varphi_0^2(x) dx + \alpha_1 \varphi_0^2(a), \qquad (2.2.9)$$

$$a_{i,i} = \int_{x_{i-1}}^{x_{i+1}} \frac{k(x)}{h^2} + q(x)\varphi_i^2(x) dx, \quad i = \overline{1..n-1},$$
(2.2.10)

$$a_{n,n} = \int_{x_{n-1}}^{x_n} \frac{k(x)}{h^2} + q(x)\varphi_n^2(x) dx + \alpha_2 \varphi_n^2(b),$$
 (2.2.11)

$$a_{i,i-1} = \int_{x_{i-1}}^{x_i} -\frac{k(x)}{h^2} + q(x)\varphi_i(x)\varphi_{i-1}(x) dx, \quad i = \overline{1..n},$$
(2.2.12)

$$a_{i,i+1} = \int_{x_i}^{x_{i+1}} -\frac{k(x)}{h^2} + q(x)\varphi_i(x)\varphi_{i+1}(x) dx, i = \overline{0..n-1},$$
(2.2.13)

а також

$$b_0 = \int_{x_0}^{x_1} f(x)\varphi_0(x) \, \mathrm{d}x + \mu_1, \tag{2.2.14}$$

$$b_{i} = \int_{x_{i-1}}^{x_{i+1}} f(x)\varphi_{i}(x) dx, \quad i = \overline{1..n-1},$$
(2.2.15)

$$b_n = \int_{x_{n-1}}^{x_n} f(x)\varphi_n(x) dx + \mu_2.$$
 (2.2.16)

Зауваження: $a_{i,j}=0$ при |i-j|>1, адже тоді області де $\varphi_i\neq 0$ та $\varphi_j\neq 0$ не перетинаються, і $G(\varphi_i,\varphi_j)=0$, отже матриця системи — тридіагональна і її (систему) можна розв'язувати методом прогонки.

3 Практична частина

Було використано мову програмування python і бібліотеки numpy, scipy і matplotlib.

3.1 Похибки

Відхилення від точного розв'язку в нормі

$$||f|| = \frac{1}{b-a} \int_a^b f^2(x) \, \mathrm{d}x :$$
 (3.1.1)

- 4 функції: 0.11072227505224305;
- 8 функцій: 0.059055683092381954;
- 16 функцій: 0.0022117026009372417;
- 32 функції: 0.000455942368470552.

3.2 Графіки

