An introduction to statistical inference

Ben Lambert¹ ben.c.lambert@gmail.com

 $^{1}\mathrm{University}$ of Oxford

Tuesday 6th July, 2021

Course plan

- 9.30am-10.15am: lecture, "An introduction to statistical inference"
- 10.45am-1pm: practical

Outline

- 1 The scientific process and statistics
- 2 Estimating interesting quantities using regression
- Model based thinking
- 4 Unpicking the signal from the noise

- 1 The scientific process and statistics
- 2 Estimating interesting quantities using regression
- Model based thinking
- 4 Unpicking the signal from the noise

What is the aim of scientific inquiry?

Understand how the universe works.

How do we test our understanding?

Make predictions. Compare reality with our predictions.

What can statistical inference help with?

- Generating understanding from data
- Testing our scientific hypotheses versus data

But why do we need statistics?

- The universe is complex
- Its mechanisms are not directly observable
- Our data contain information both about the mechanisms and other nuisance factors

Statistics provides a way to separate the signal of the mechanisms from the noise.

How statistics separates signal from noise?

$$observations = signal + noise$$
 (1)

- Signal contains our interesting scientific mechanism
- Noise contains a bunch of things not of interest

Since we do not know or observe the exact noise processes, in statistics, it is assumed that the noise is represented as being *random*.

But random does not mean unstructured. In statistics, making assumptions about the nature of the random process allows us to bound its influence on the observed data.

Example 1: flipping a coin

Suppose we flip a coin twice. We could obtain:

- Two tails
- One head; one tail
- Two heads

Why can we get different outcomes each time the coin is flipped?

Different initial conditions

Precessional frequency: ω_N ; Magnitude of upward velocity, u.¹

White indicates heads; hatched indicates lands on sides; hatched indicates tails.

¹From Probability, geometry, and dynamics in the toss of a thick coin, Yong and Mahadevan (2011)

Coin flip dynamics: physics approach

Solve complex equations of motion (making assumptions about flipping process). One part of the system:

$$\frac{d\mathbf{N}}{dt} = \Omega \times \mathbf{N} \tag{2}$$

This system determines outcome given a set of initial conditions: precessional frequency and magnitude of upward velocity.

But we still don't know how different people throw a coin, so we'd need to measure this and likely represent this using randomness!

Coin flip dynamics: statistical approach

Assume outcome of a coin flip is a random variable with a probability of landing heads up (binomial distribution²). Implicitly:

²If we forget the landing on side situation.

Example 2: determining COVID-19 seropositivity

Imagine we want to determine the proportion of the UK population who have COVID-19 antibodies. To do this, we find 10 individuals and test their blood.

Does this mean 3/10=30% of the UK population have these antibodies?

The sampling process yields variation in outputs

No.

What probability model to use?

Again, we could use a binomial model.

Note, very different problems often can share the same probability model.

Questions?

- 1 The scientific process and statistics
- 2 Estimating interesting quantities using regression
- Model based thinking
- 4 Unpicking the signal from the noise

Example: Galton's 1885 study of 205 families (898 children)

Question: how inheritable is height from parent to child?

Potential model

Suppose child height linearly related to parent height:

$$\mathsf{child}_i = a + b * \mathsf{parent}_i. \tag{3}$$

Here, *b* represents the effect of interest:

- b = 1 ⇒ a 1 inch increase in average parent height is associated with a 1 inch increase in child height.
- $b = 0 \implies$ no relationship.

This isn't a causal model, so doesn't directly answer our heritability question. But it is still useful.

Important: this is a model: a simplified version of reality. It embodies a number of assumptions.

Example models

What's the problem with this model?

It doesn't provide a mechanism to exactly hit data.

How to modify the model

$$\mathsf{child}_i = a + b * \mathsf{parent}_i + \epsilon_i. \tag{4}$$

where ϵ_i is a random error term representing the myriad of other factors not captured by the other parts of the model.

What does this model look like?

How to estimate the model's parameters from data?

Want the non-random parts of the model to explain most variation.

So, choose (a, b) so that they minimise some measure of distance between points and line. For example, sum of squared errors:

$$d = \sum_{i=1}^{N} (\mathsf{child}_i - a - b * \mathsf{parent}_i)^2 \tag{5}$$

Sum of squared errors fit

Other distance measures

Could have chosen the sum of absolute distances instead:

$$d = \sum_{i=1}^{N} |\mathsf{child}_i - a - b * \mathsf{parent}_i| \tag{6}$$

Or of fourth power:

$$d = \sum_{i=1}^{N} (\mathsf{child}_i - a - b * \mathsf{parent}_i)^4 \tag{7}$$

Question: how would these choices affect the fit?

Various fits

Conclude: subjective choice of 'distance' affects our estimates.

A more principled probability-based approach

Assume:

$$\mathsf{child}_i = \mathsf{a} + \mathsf{b} * \mathsf{parent}_i + \epsilon_i, \tag{8}$$

where $\epsilon_i \sim \text{normal}(0, \sigma)$.

What does this model look like?

Ben to draw:

But isn't a normal distribution also arbitrary?

No! Why? The central limit theorem.

Suppose we flip a fair coin once. What does its probability distribution look like?

One coin flip

Two flips

I now flip the coin 2 times.

Question: What does the distribution look like now?

Two flips flips

What about five flips?

What about 30 flips?

What's going on?

The Central Limit Theorem (CLT) says that under general conditions:

"The distribution of the average of a large number of weakly dependent random variables is approximately normal."

In the coin flipping case, we effectively calculated the average number of independent coin flips landing heads up \implies CLT applies.

Back to our regression example

$$\mathsf{child}_i = a + b * \mathsf{parent}_i + \epsilon_i, \tag{9}$$

where $\epsilon_i \sim \text{normal}(0, \sigma)$.

Large number of weakly dependent factors – genetic, environmental and so-forth – likely influence a person's height.

CLT applies, so normal distribution may be appropriate.

Likelihood based inference

$$\mathsf{child}_i = a + b * \mathsf{parent}_i + \epsilon_i, \tag{10}$$

and

$$\epsilon_i \sim \text{normal}(0, \sigma),$$
(11)

means that:

$$\mathsf{child}_i - a - b * \mathsf{parent}_i \sim \mathsf{normal}(0, \sigma). \tag{12}$$

This provides us with a way of writing down the overall probability (density) of observations.

Likelihood

Due to independence of observations:

$$\mathcal{L} = \mathbb{P}(\epsilon_1) \times \mathbb{P}(\epsilon_2) \times ... \times \mathbb{P}(\epsilon_n)$$
(13)
= normal(child₁ - a - b * parent₁|0, \sigma) \times (14)
normal(child₂ - a - b * parent₂|0, \sigma) (15)
... (16)
normal(child_n - a - b * parent_n|0, \sigma) (17)

This object is a function of the parameters of our model: a and b. So choose a and b values to maximise \mathcal{L} .

This is known as the method of maximum likelihood.

Likelihood estimated model

Strength of association between parent and child heights

Estimates of regression coefficient:

$$child_i = a + b * parent_i + \epsilon_i, \tag{19}$$

- Least squares / maximum likelihood: b = 0.67
- Absolute deviance: b = 0.57
- Fourth power: b = 0.73

Regression to mean

Questions?

- The scientific process and statistics
- 2 Estimating interesting quantities using regression
- Model based thinking
- 4 Unpicking the signal from the noise

Regression is a model

$$\mathsf{child}_i = \mathsf{a} + \mathsf{b} * \mathsf{parent}_i + \epsilon_i, \tag{20}$$

and

$$\epsilon_i \sim \text{normal}(0, \sigma),$$
 (21)

is a model: an idealised version of reality.

Assumptions

Some of these:

- Linear association of average parental height with child height
- Variance of points around line is constant
- Normality of errors
- Male / female parent heights not separately important
- Sex of child unimportant in relationship

Checking linearity

Checking variance homogeneity

Questions?

- The scientific process and statistics
- 2 Estimating interesting quantities using regression
- Model based thinking
- 4 Unpicking the signal from the noise

How uncertain are we?

Least squares / maximum likelihood estimates:

$$\mathsf{child}_i = 22.15 + 0.67 * \mathsf{parent}_i + \epsilon_i, \tag{22}$$

How representative are these of the population as a whole?

Gauging uncertainty

Maybe draw this? Imagine:

- Repeatedly sampling from the population
- Each time calculating an estimate
- \implies variability in estimates dictates uncertainty.

Circularity

- If we knew variability in estimates, we'd know how accurate they were
- But to do so, we need exact details of the population

How to resolve this ambiguity?

Two resolutions

- Make mathematical assumptions about nature of population distribution. e.g. use CLT to determine normality
- Bootstrap sampling

Bootstrap sampling

Since sample is drawn from the population, it should mirror it.

 \implies repeatedly draw new samples from our sample! And perform estimation on each.

Note sampling done with replacement.

Bootstrapped Galton samples

average parent height

Bootstrapped Galton estimates

Bootstrapped Galton estimates

When doesn't bootstrapping work?

- Complex, highly structured data: for example, time series
- Large data ⇒ too expensive

⇒ probability model based approach less cumbersome in these cases.

That's it!

Questions?