Symbolic Computation with Python and SymPy

Third Edition

Davide Sandonà

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner.

Notices

While the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

In particular:

- 1. Some code snippets come from SymPy source code. Also, a few pictures show SymPy documentation. This material is subject to SymPy license¹.
- 2. A couple of examples comes from Stack Overflow². This material is subject to the Creative Common Share-Alike license. The particular type of license will be specified in the examples.

Version History

First edition: November 2020 Second edition: September 2021

- Improved Section 5.3.3 Evaluation with lambdify().
- Added Exercise Divide Term By Term in Chapter 7.
- Modified Chapter 9 Expression Manipulation Part 3:
 - Removed the previous exercise: now this chapter only deals with trigonometry.
 - Moved old Section 7.5 into Section 9.1.
 - Created a new trigonometry exercise in *Section 9.2*.
- Added *Implicit Differentiation* in Chapter 11.
- Modified Chapter 22 Plotting Module and Interactivity to use the SymPy Plotting Backends module.

Third edition: January 2023

- Added section 4.5 Exercise Numerator and Denominator.
- Added paragraph to section 5.3.2 Evaluation with evalf().
- Added section 5.4 Simplification of numbers.
- Edited Exercise Introduction to Pattern Matching in Chapter 7.
- Modified introduction to Section 8.4 Solvers to account for linsolve(), nonlinsolve(), nsolve().
- Modified Chapter 9 Expression Manipulation Part 3:
 - Added Exercise Behaviour of solve() with numbers.
 - Added Exercise Numerical solution with nsolve().
- Modified Chapter 15 The Equation class to use a new module.
- Edited Section 17.2 Systems of Equations and Linear Algebra to account for linsolve().
- Updated Section 20.1.1 Coordinate Systems.
- Updated examples in *Chapter 22 Plotting Module and Interactivity*.

ISBN: 9798489815208

¹https://docs.sympy.org/latest/aboutus.html#license

²https://stackoverflow.com

Contents

A	bout t	the Aut	hor	xiii
Pr	eface			xv
1	Sett	ing up	the environment	1
	1.1	Jupyte	er Notebook	2
		1.1.1	Downloading the accompanying material	3
		1.1.2	Installing the SymPy Plotting Backends module	4
		1.1.3	Installing the Algebra with SymPy module	5
		1.1.4	Setting up Nbextensions	5
		1.1.5	Installing the antlr4 module	7
		1.1.6	Installing the Graphviz module	8
		1.1.7	Installing the Pyan3 module	8
		1.1.8	Downloading SymPy source code	9
	1.2	First n	notebook tutorial - Introduction to SymPy	9
		1.2.1	Notebook User Interface	9
		1.2.2	Getting Information about SymPy Functionalities	12
		1.2.3	Notebook Modes	12
		1.2.4	Introduction to SymPy	13
		1.2.5	Closing Jupyter Notebooks and Performance Considerations	16
		1.2.6	Setting up Jupyter themes	16
		1.2.7	Getting Help	17
2	Sym	ıbols ar	nd Assumptions	19
	2.1	Create	e a single symbol	19
		2.1.1	Symbols with subscript and superscript	19
		2.1.2	Assumptions - The old module	21
	2.2	Create	e multiple symbols	24
	2.3		ting symbols from sympy.abc module	25
	2.4		e global symbols	26
	2.5		ny symbols	28
	2.6		symbols	29

<u>vi</u> Contents

	2.7	Advanced Topics	29
		2.7.1 sympy.abc Module	30
		2.7.2 The var() method	31
			32
			36
3	Fun	ctions	39
	3.1	Undefined functions	39
	3.2		41
	3.3	·	43
	3.4		45
4	Exp	ression Manipulation - Part 1	47
•	4.1		47
	4.2	Cheek sheets are really assertal	50
	4.3	1	53
	4.4		54
	1.1		54
			56
		1	59
			62
	4.5	· · · · · · · · · · · · · · · · · · ·	63
_	3.7		
5			65
	5.1		65
	5.2	- J - J - J - J	67
		0	68
			68
			69
		0	71
		1	73
	5.3		73
		V · · · · · · · · · · · · · · · · · · ·	74
		V	74
		• •	76
	5.4	1	82
	5.5	1	84
		5.5.1 Relationships between Integer, Float, Rational	84
		5.5.2 Exploring the number Pi - The NumberSymbol class5.5.3 Creating a custom Constant class	84

CONTENTS vii

6	Exp	ressions	91
	6.1	The Expression Tree	91
		6.1.1 How SymPy represents Expressions	91
		6.1.2 The Basic and Expr classes	94
		6.1.3 Expression Manipulation	96
		6.1.4 Walking the Expression Tree	99
		6.1.5 The ordering of arguments	99
			100
	6.2		102
		1) 0	102
		1) 0	103
			104
	6.3	1	104
		1 ,	104
			106
			108
		1	109
		6.3.5 The AssocOp class - Argument Evaluation	110
7	Exp	ression Manipulation - Part 2	115
-	7.1	<u>-</u>	115
	7.2		116
	7.3		118
	7.4	·	120
			120
			121
			123
		7.4.4 Wild functions	125
	7.5		126
			126
			128
	7.6		132
	7.7		134
	7.8		137
8	Fau	alities and Inequalities	139
U	8.1	•	139
	0.1		139
			140
			141
		8.1.4 Equality: Identity, Equation and Mathematical operators on Rela-	111
			142
	8.2		143
	0.2	© 1	143

viii Contents

		8.2.2	Chaining Relationals Together	4
		8.2.3	The as_set() method	5
	8.3	Sets ar	nd Intervals	6
	8.4	Solver		
		8.4.1	Solving Equations	9
		8.4.2	Solving Inequalities	2
	8.5		vise Function	5
		8.5.1	Creating piecewise functions	
		8.5.2	The piecewise_fold() function	
	8.6	Advar	iced Topics	8
		8.6.1	Structure of the Relational module	9
		8.6.2	Structure of the Logic module	0
		8.6.3	Structure of the Sets module	0
		8.6.4	Inequality Solvers	2
_	_			_
9	-		Manipulation - Part 3	
	9.1		se - Simple Trigonometry Equation	_
	9.2		se - Missing Trigonometry Identity	
	9.3		se - Behaviour of solve() with numbers	
	9.4	Exercis	se - Numerical solution with nsolve()	6
10	Limi	its	18:	3
			of functions	
			of sequences	
			The limit_seq() function	0
			The AccumulationBounds class	0
			Examples	2
			1	
11		vatives		
			it Differentiation	
		•	it Differentiation	
	11.3	Advan	iced Topics	8
12	Integ	rrale	20'	1
14	mie	grais	20	1
13	Expr	ession	Manipulation - Part 4 20	5
	13.1	Exercis	se	5
		13.1.1	Solution	5
			Approach #1: Expression Manipulation	7
			Approach #2: Change Method of Integration 20	9
	13.2		se	2
			se - The Integral.transform() method	9

Contents

14	Series Expansion	223
	14.1 Taylor and Maclaurin Series Expansion	223
	14.1.1 The Order class and the removeO() method	224
	14.1.2 Series expansion of multivariate expressions	225
	14.1.3 Series expansion of undefined Functions	226
	14.2 Fourier Expansion	227
	14.3 Example - Linearization	229
15	The Equation class	233
	15.1 Using the Equation class	235
16	Differential Equations	241
	16.1 Solving Ordinary Differential Equations	242
	16.1.1 Laplace Transform	242
	16.1.2 The dsolve() function	249
	16.2 Solving Partial Differential Equations	252
17	Matrices and Linear Algebra	255
	17.1 Explicit Matrices	256
	17.1.1 Basic Usage	256
	17.1.2 Matrices and the Basic class	258
	17.1.3 Operations on matrices	259
	17.1.4 Operations on entries	262
	17.2 Systems of Equations and Linear Algebra	263
	17.3 Matrix Expressions	266
	17.3.1 Substitution and the as_explicit() method	269
	17.3.2 Limitations of Matrix Expressions	270
	17.4 Advanced Topics	271
	17.4.1 Structure of Explicit Matrices	271
	17.4.2 Structure of Matrix Expression	273
18	Multidimensional Arrays and Tensors	279
	18.1 Explicit Multidimensional Arrays	279
	18.2 Tensor Expressions	283
	18.3 Indexed Objects	284
	18.4 Advanced Topics	287
19	Expression Manipulation - Part 5	289
	19.1 Exercise	289
	19.2 Exercise - Matrices	291
	19.2.1 Approach #1 - Explicit Matrices only	292
	19.2.2 Approach #2 - Mixing Matrix Expressions and Explicit Matrices	294
	19.3 Exercise - Einstein notation	298
	19.3.1 Solution #1 - Multidimensional Arrays	299

CONTENTS

	19.3.2 Solution #2 - Indexed Objects	300
20	20.1 Explicit Vectors	303 303 303 307 309 311
21	Assumptions	315
21	21.1 New Assumptions Module 21.1.1 The Need for New Assumptions 21.1.2 The "New Assumptions Module" 21.2 Limitation of the "New Assumptions Module" 21.2.1 Keeping Track of the Assumptions 21.2.2 New Assumptions Are Not Used by SymPy 21.2.3 Limitation on refine() 21.3 Advanced Topics 21.3.1 Structure of the Old Assumptions Module	315 315 316 318 318 319 320 321 321 323
22	*	325
	22.2 Backends	326 328 330 334 336 336 339
23	23.1 The Printing Module 23.2 Latex Printer 23.3 Defining printing methods in custom classes 23.4 Code Generation 23.5 Example 23.5.1 Generating a lambda function 23.5.2 Generating an executable with autowrap()	343 347 352 357 360 362 364 369
A	A.1 Function Arguments or Parameters	373 373 375 382

CONTENTS xi

	A.3.1	Classes and Instances	382
	A.3.2	Defining and Instantiating Classes	383
	A.3.3	Constructor and Initialization	385
	A.3.4	Attributes - Instance Attribute vs Class Attribute	387
	A.3.5	Methods - Instance vs Class vs Static Methods	389
	A.3.6	Encapsulation - Properties, Setters and Name Mangling	392
	A.3.7	Inheritance and Polymorphism	396
	A.3.8	Multiple Inheritance and Method Resolution Order	401
	A.3.9	Composition	403
	A.3.10	Magic Methods and Operator Overloading	406
.	C D C1	. (1)	400
В	SymPy Che	eat Sheets	409
In	dex		417

About the Author

Davide Sandonà is an aerospace engineer and software developer. He became interested in Python a few years ago, at the dawn of the machine learning era. Since then, he happily explored different open source libraries and frameworks, determined to get the most out of them. Davide's interests range from Computer Vision to Geospatial Analytics to aerospace-related engineering topics.

To comment, ask technical questions about the book or to report any error, fill the form at https://dsandona.space/contact

Preface

Motivation for this Book

Python is a very popular, easy-to-learn general-purpose programming language with a thriving ecosystem of libraries that allows it to be used over a wide range of contexts, for example, web development, system administration, internet of things, machine learning and scientific computing in general.

When it comes to scientific computing with Python, the main libraries that we (as students, engineers, researchers and data scientists) should be aware of are:

- NumPy: add support for multi-dimensional arrays and matrices along with the necessary functionalities to create and operate on these data structures.
- SciPy: built on top of NumPy, it provides functionalities to perform optimization, integration, interpolation, linear algebra, signal processing, etc.
- Matplotlib: a plotting library for Python and NumPy.
- Pandas: built on top of the three previous libraries, it offers data structures and operations to manipulate numerical tables and data series. It is very useful for working with tabular data.
- SymPy: add support for symbolic mathematics. It aims to become a full-featured Computer Algebra System (CAS, from now on).

Python, as well as the libraries mentioned above, is free and open-source. There are also a lot of other scientific and engineering libraries developed on top of them, thus making the Python ecosystem a viable alternative to commercial applications like Matlab and Mathematica.

This book's focus is exclusively on SymPy and symbolic computations. We all probably have a good mathematical background from high school or university courses, which we use to solve problems in our field of work. In an ideal world, a CAS would be easy to learn and use, and should require only a minimum amount of programming skills. After all, a mathematical expression is just a combination of numbers and variables (also known as symbols) using operations and functions. In reality, specifically when referring to SymPy, the learning curve is probably steeper compared to the aforementioned numerical libraries. The reasons for this are manifold and will become apparent as we will

xvi Preface

learn how to use it. These are all experience-based observations that lay the foundations for this book:

- NumPy, SciPy and Pandas are specifically developed to work with numerical data types, whereas SymPy is specifically developed to work with symbolic data types. Fundamentally, numerical libraries are not able to operate on symbolic data types; similarly, SymPy is not able to operate on numerical data types. If our application needs both numerical and symbolic computation, we absolutely need to understand how to make the different libraries work together.
- SymPy is a strongly typed library: there are different types of numbers, different types of symbols, different types of operations, etc., that must work together in order to compute the final result. To be successful with SymPy, the user must understand how all the different types relate together and, to achieve that, a basic programming knowledge is required.
- While the official documentation is overall extensive, the quality varies from module to module. More so, the specific information we might be interested in may be scattered all around; we could find some bits of information in the *Modules reference*³, in the *Tutorial*⁴ and also in the *Gotchas and Pitfalls*⁵. There is indeed a chance we could miss something important.
- The examples provided in the *Tutorial* as well as in the *Modules reference* are very basic. This makes perfect sense as they are easy to follow; however, as soon as we try to apply the same concepts to our problems (most likely to be more difficult), things could get complicated really quickly.
- The way SymPy computes results may be very different from what we learned at school: the internal algorithms are designed to be efficient rather than intuitive. This could lead to unexpected results, requiring us to invest time investigating what happened. It will become apparent when dealing with trigonometry and integrals.
- The way we usually write and manipulate expressions with pen on paper might not be directly applicable to a CAS. More so, the results of a computation performed with SymPy might be in a different form from our expectations. Fortunately, SymPy is all about *expression manipulation*: we can modify the expression to obtain something that satisfies our need. In order to that, we must get acquainted with the way SymPy deals with expressions and its different manipulation functionalities.

While it is definitely possible to learn SymPy the hard way, that is by tinkering with our specific mathematical problems and exploring the documentation as we need it (thus learning small pieces of SymPy each time), this approach requires a substantial investment of time and resources that should arguably be better spent on solving actual problems rather than learning the library. By following this approach, we would undoubtedly encounter several "I wish I knew that from the beginning!" moments, which usually happen

³https://docs.sympy.org/latest/modules/index.html

⁴https://docs.sympy.org/latest/tutorial/index.html

⁵https://docs.sympy.org/latest/gotchas.html

after spending a considerable amount of time and energy. The situation becomes even worse if we are occasional users of SymPy as we could forget important things in between sessions: this could be further amplified by the lack of understanding of how this library works.

Therefore, much like we first learn the alphabet before writing, much like we first learn general mathematics before applying it to our everyday problems, by recognizing that SymPy is a tool at our disposal, it is the opinion of the Author that a better approach to effectively learn this library is to understand its building blocks and how they relate together. In contrast with the previous approach, this book requires an initial investment of time that will be hugely paid back once our problems get harder. Whether we are just trying to solve an integral or we are developing a model describing a physical system, ultimately this approach allows the users to focus on their tasks rather than constantly exploring the documentation.

Who should read this book

This book is for:

- Engineers and Scientists, who needs a time-efficient learning path.
- Students are frequently introduced to *new amazing softwares* and left alone figuring out how to use them, which very often result in far-from-optimal scenarios. The most common is the one in which they *reinvent the wheel* because they were unaware that a particular feature was already implemented. Given the huge amount of available features, SymPy is arguably the hardest Python scientific-library to master. Hence, this book is also meant for students, who will be able to spend more time studying their courses rather than learning a software.

A secondary but not less important objective is to bring students with a more diversified background closer to software development. Historically, many contributions to SymPy comes from *Google Summer of Code* projects, in which the dominant student-background has been *Computer Science*. As SymPy grows larger and larger, it is of paramount importance to have feedbacks from the users of topic-specific modules. Hopefully, not only they will be able to accurately elaborate which features need improvements, but they will become active contributors as well.

Anyone who loves software development. SymPy is a marvelous piece of software
engineering, which provides a wonderful playground to explore and understand
Object Oriented Programming. By using this software and exploring its source code,
we will learn what works great, what needs to be improved and, equally important,
we will surely become better developers.

Prerequisites

To follow this book, the Reader should have a basic knowledge of Python: in particular,

xviii Preface

understanding the different data types, creating variables and functions, understanding the *if-else* construct, using *for/while* loops, be comfortable with the list comprehension syntax, etc. Knowledge of numerical computation with NumPy, SciPy and visualization with Matplotlib is assumed for later chapters.

There will also be sections in which the Reader is required to understand the basic concepts of *Object Oriented Programming*, which are explained in Appendix A.3. The Author strongly suggests to read this Appendix right after *Chapter 1*.

How to read this book

This book is not meant to replace the official documentation! On the contrary, it is meant to provide a logical, smooth, incremental and time-saving learning path in order to get the most out of this symbolic library. It has been written in a tutorial style targeting SymPy version 1.11.1. Even though future versions might introduce slight changes, it is very likely that the fundamental concepts will remain the same.

Obviously, each one of us have different needs and applications when it comes to symbolic computing. For example, students might be interested in checking the solution of a particular math or physics exercise, whereas engineers might be interested in building a model describing a particular system; scientists will be focused on their research domain, etc. Whatever our application is, the basic building blocks of symbolic computing with SymPy are the same:

- the different data types that will be related together in our mathematical expressions;
- the manipulation functions used to modify the expressions.

With that in mind, this book will focus on the most common aspects of mathematics, specifically understanding how SymPy deals with mathematical expressions, expression manipulation, calculus, differential equations, multi-dimensional entities, linear algebra, etc. While SymPy provides different modules targeting specific fields (for example, physics, geometry, number theory, statistics, etc.), they will not be covered here. Instead, thanks to the knowledge acquired through this book, the Reader will be able to quickly explore and get the most out of them.

The book is organized in chapters covering three layers of information:

- 1. Each chapter is going to focus on a specific topic, even though, due to the nature of symbolic computation, it is often difficult to draw a clean boundary between different topics. Some chapters will explain well-defined topics, others will introduce several things related to the main topic.
- 2. Thanks to the exercises contained in the series of chapters "Expression Manipulation", the Reader will acquire the necessary skills to successfully use SymPy.
- 3. At the end of some chapters we will find a section named "Advanced Topics" which is meant to be optional but highly recommended. Since SymPy is an open-source

project, we are going to explore its source code to understand the internal mechanisms. We will also visualize how the different SymPy objects are related together thanks to simplified UML class diagrams. These sections will be particularly useful to extend SymPy functionalities or to build libraries on top of it. As a matter of fact, SymPy is still under active development and functionalities are being added in each release: it may happens that the features we are looking for are not yet implemented but, by understanding the internal mechanisms, we do have a chance to built them ourselves.

Let's quickly see what this book offers.

- In Chapter 1, we will setup the working environment and get acquainted with Jupyter Notebook. We will also download the accompanying materials (notebooks and source code).
- From Chapter 2 to Chapter 9 we will explore the foundations of this library. The Author strongly encourages the Reader not to skip them: while some of them might be a little tedious, they offer a basic understanding of the library that it is often overlooked, yet essential to successfully use SymPy.
- From Chapter 10 to Chapter 14 we will explore calculus-related functionalities.
- From Chapter 16 to Chapter 20 we will explore the multi-dimensional functionalities, namely matrices, arrays and vectors.
- In Chapter 21 and Chapter 22 we will explore assumptions and plotting respectively.
- In Chapter 23 we will explore the *Printing Module*, which allows to convert any symbolic expression to a specific representation and customize what we see on the screen. We will also explore the *Code Generation module*, which allows to convert a symbolic expression to C or Fortran code, compile it and load the executable in order to maximize the performance of numerical evaluation.
- In Appendix A we will explore the main concepts related to Object Oriented Programming.
- Finally, Appendix B contains several cheat sheets, that is, tables containing the most common commands. These will be extremely useful to beginners and occasional users.

While most chapters are meant to be read in succession, Chapter 15, Chapter 21 and Chapter 22 can be tackled right after the first 9 chapters. Without further ado, let's get started!

Chapter 1

Setting up the environment

We start by reading the installation guidelines¹ of SymPy. Here, we check which Python version is officially supported: at the time of writing this book, Python 3.5, 3.6, 3.7, 3.8 and PyPy.

For beginners, the easiest way to start with Python and scientific computing is by downloading and installing Anaconda²: this application is a collection of tools and libraries (also known as packages) that are going to be installed in a single step, thus avoiding the pain of installing each package separately. We just need to download the correct version for our operating system: select the newest Python version compatible with SymPy, *Python 3.8* at the time of writing this book. Then, follow the installation instructions³. What is Anaconda going to install into our system?

- Python 3.8;
- conda package manager⁴, which quickly runs and updates packages and their dependencies, and easily creates, saves, loads and switches between environments on your local computer;
- a lot of packages, including Jupyter Notebook, SymPy, NumPy, Matplotlib, which we are going to use throughout the book.

Once the installation is complete, don't forget to verify that everything works fine⁵. In particular, when viewing the output of the command conda list, make sure that SymPy is at the latest version, 1.9 at the time of writing this book. Alternatively, if the Reader has previous experiences with Python, it is also possible to install the aforementioned packages with *pip3*, the standard package manager for Python.

https://docs.sympy.org/latest/install.html

²https://www.anaconda.com/products/individual

https://docs.anaconda.com/anaconda/install/

⁴https://docs.conda.io/en/latest/

⁵https://docs.anaconda.com/anaconda/install/verify-install/

1.1 Jupyter Notebook

There are several technologies that allow us to write and execute Python code for computing purposes:

- Python shell: accessible from a terminal (or a *Command Prompt* in Windows) with the command python or python3. It provides basic functionalities that are quite limited for computing;
- Any modern source code editor with an integrated terminal (for example, Visual Studio Code, Atom, Sublime, etc.): after installing the necessary extensions to easily work with Python, these editors are great to write Python library code. However, they usually don't support interactive computing. Also, there are better alternatives to work with SymPy;
- IPython shell: accessible from a terminal with the command ipython. It provides interactive computing capabilities, significantly improving the experience in relation to the basic Python shell;
- Jupyter Notebook⁶: a web-based interactive computational environment to create Jupyter notebook documents. With them we can write texts, insert images, write and execute code and visualize the results of the computation all in a single document. We can save the notebook and reopen it later to continue our work. It is a great tool to tinker with computing problems! Differently from a source code editor where we would save the code into a file, then execute the code and eventually save the outputs into different files (for example, creating pictures from plots), with Jupyter Notebook we usually work on a single file, thus simplifying the workflow. Also, thanks to the Latex code generated by SymPy, the notebooks are capable of rendering the mathematical expressions, thus substantially improving the visualization experience.

Hence, we are going to use Jupyter Notebook, which also requires a modern web browser, like Mozilla Firefox or Google Chrome. To start this application we open a terminal (or command prompt) and run the command:

```
jupyter notebook
```

If Jupyter is not present but we previously installed Anaconda, run the following command:

```
conda install -c conda-forge notebook
```

If Jupyter is not present and we didn't install Anaconda, run the following command:

```
pip3 install notebook
```

⁶https://jupyter.org

The command jupyter notebook will launch a server process running on the local machine. A web page will open in our browser having the following address:

http://localhost:8888/tree

Here, *localhost* indicates that the server is running on the local machine, *8888* is the port number used by the notebook to communicate with the server, *tree* indicates the root directory from where we launched the application. The web page will be similar to Figure 1.1: it is called Jupyter *dashboard*.

Figure 1.1: Jupyter Dashboard

In Figure 1.1 we can see four tabs:

- *Files*: it shows a list of files and folders contained in our base folder. The figure shows an empty directory. Eventually, we can click over a file to open it and explore its content.
- *Running*: This will display a list of running notebooks.
- *Clusters*: We are not interested in this tab.
- *Nbextensions*: most likely, the Reader won't have this tab enabled, yet. It provides a set of useful extensions that are going to improve the user experience.

Before diving further into the notebooks, we need to install and setup a few modules. Let's close Jupyter server process by clicking the "Quit" button on the top-right corner.

1.1.1 Downloading the accompanying material

This book's accompanying material contains:

- the Jupyter notebooks associated to each chapter or section of the book;
- the file sympy_utils.py containing the source code of the custom classes and functions that we will implement.

To download this material, let's open the following link:

https://github.com/Davide-sd/sympy-book

Then click a green button named *Code*, and then *Download ZIP*. Finally, let's extract the content to a folder of our choosing, for example *Document*.

Alternatively, if the utility git is installed in our system, we can open a terminal window, move into any folder of our choosing and run the following command:

```
git clone https://github.com/Davide-sd/sympy-book.git
```

1.1.2 Installing the SymPy Plotting Backends module

As of SymPy version 1.11.1, plotting capabilities are rather limited. However, the Author implemented a more advanced and feature-rich plotting module, which will be explored in Chapter 22. Among the features, we can:

- create plots with Matplotlib, Bokeh, Plotly and k3D-Jupyter.
- easily plot lines, surfaces, vector fields, complex numbers, complex functions, geometric entities and more.
- get a better understanding of our symbolic expressions thanks to parametric interactive plots with widgets.

All of this comes with a price: many dependencies will be downloaded, for an approximate download size of about 125MB. Let's list the most important ones:

- ipympl⁷: it enables partial interactivity with Matplotlib.
- pane18: let us create interactive applications with widgets and plots.
- bokeh⁹, plotly¹⁰, k3d¹¹: three interactive plotting libraries.
- vtk¹²: used to compute 3D streamlines, which is a great functionality to better understand 3D vector fields.

Note that the module is very likely going to be integrated into SymPy in the future. Therefore, the Reader should first check the following web page¹³: if any indication is given about the status of the integration, the following installation can be skipped.

If Jupyter was installed with Anaconda, run the following commands:

```
conda install -c anaconda scipy notebook colorcet
conda install -c conda-forge ipympl panel
conda install -c conda-forge k3d msgpack-python
conda install -c bokeh ipywidgets_bokeh
conda install -c plotly plotly
conda install -c conda-forge vtk
conda install -c davide_sd sympy_plot_backends
```

```
7https://github.com/matplotlib/ipympl
8https://panel.holoviz.org/index.html
9https://bokeh.org/
10https://plotly.com/python/
11https://github.com/K3D-tools/K3D-jupyter/
12https://vtk.org/
13https://sympy-plot-backends.readthedocs.io/en/latest/install.html
```

If Jupyter was installed with pip3, run the following command:

```
pip install sympy_plot_backends[all]
```

1.1.3 Installing the Algebra with SymPy module

Algebra with SymPy¹⁴ is a module that implements an Equation class supporting mathematical operations. In particular, it is possible to add, subtract, divide or multiply two equations side by side. We will use it in Chapter 15.

If Jupyter was installed with Anaconda, run the following command:

```
conda install -c anaconda pip
pip install Algebra-with-SymPy
```

If Jupyter was installed with pip3, run the following command:

```
pip install Algebra-with-SymPy
```

1.1.4 Setting up Nbextensions

Let's enable the tab *Nbextensions* seen before in Figure 1.1. We need to install the package jupyter_contrib_nbextensions¹⁵ which contains the additional extensions. So, let's move to the terminal.

If Jupyter was installed with Anaconda, run the following command:

```
conda install -c conda-forge jupyter_contrib_nbextensions
```

If Jupyter was installed with pip3, run the following command:

```
pip3 install jupyter_contrib_nbextensions
```

Then, whether we used Anaconda or pip, to make the extensions available to Jupyter run the following command:

```
jupyter contrib nbextension install --user
```

Finally, let's start Jupyter again with the command jupyter notebook and let's click on the tab *Nbextensions*. We should see a list of extension, something like Figure 1.2. As we can see there are a lot of extensions; two of them are highly recommended:

¹⁴https://github.com/gutow/Algebra_with_Sympy

¹⁵https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html

💢 Jup	oyter						Quit	Logout
Files	Running	Clusters	Nbextension	S				
Config	ıurable r	bextens	ions					2
_				it compatibility (they may break yo	our notebook enviro	onment, but can be useful to show	for nbe:	xtension
developme	ent)							
filter:	by description	n, section, or ta	ags					
□ (some)	LaTeX enviro	nments for Ju	pyter	☐ 2to3 Converter		□ AddBefore		
□ Autope	p8			□ AutoSaveTime		□ Autoscroll		
☐ Cell Fil	ter			☐ Code Font Size		☐ Code prettify		
□ Codefo	olding			☐ Codefolding in Editor		☐ CodeMirror mode extensions		
☑ Collaps	sible Heading:	S		☐ Comment/Uncomment Hotkey		☑ contrib_nbextensions_help_ite	em	
□ datesta	amper			☑ Equation Auto Numbering		□ ExecuteTime		
☐ Execut	ion Depender	ncies		□ Exercise		☐ Exercise2		
☐ Export	Embedded H	TML		□ Freeze		☐ Gist-it		
☐ Help pa	anel			☐ Hide Header		☐ Hide input		
☐ Hide in	put all			☑ Highlight selected word		☐ highlighter		
☐ Hinterla	and			☐ Initialization cells		☐ isort formatter		
	-datawidgets/	extension						
	tension			☐ Keyboard shortcut editor		☐ Launch QTConsole		
☐ Limit O	utput			☐ Live Markdown Preview		☐ Load TeX macros		
☐ Move s	selected cells			□ Navigation-Hotkeys		✓ Nbextensions dashboard tab		
☑ Nbexte	ensions edit m	enu item		□ nbTranslate		□ Notify		
☑ plotlyw	idget/extensio	n		□ Printview		☐ Python Markdown		
☐ Rubber	rband			□ Ruler		☐ Ruler in Editor		
☐ Runtoo	ols			□ Scratchpad		☐ ScrollDown		
□ Select	CodeMirror K	eymap		☐ SKILL Syntax		☐ Skip-Traceback		
Snippe	ts			☐ Snippets Menu		□ spellchecker		
☐ Split Ce	ells Notebook			☑ Table of Contents (2)		☐ table_beautifier		
☐ Toggle	all line numbe	ers		☐ Tree Filter		☐ Variable Inspector		
□ zenmo	de							

Figure 1.2: *Nbextensions* Settings page

- Highlight selected word: this makes it easier to spot the selected word when we write
 a lot of code.
- *Snippets*: this allows to easily insert snippets of code (that is, code that is used frequently) with a mouse click. This is perfect to insert import statements.

Let's set up the Snippets extension: by clicking over Snippets, a configuration section should appear. Here, the extension is telling us to edit the following file (run the following command on the terminal):

```
$(jupyter --data-dir)/nbextensions/snippets/snippets.json
```

Note for Windows users: to find the path of that file, just run the command "jupyter -- data-dir", then add the remaining part of the aforementioned path to the result printed

on the screen. So, let's open that file with a text editor and replace the content with the following:

```
"snippets" : [
      "name" : "sympy-module",
      "code" : [
        "%matplotlib widgets",
        "import sympy as sp",
        "from sympy.interactive import printing",
        "printing.init_printing(use_latex=True)"
    },
{
      "name" : "sympy-all",
      "code" : [
        "%matplotlib widgets",
        "from sympy import *",
        "init_printing(use_latex=True)"
      ]
    }
 ]
}
```

These two snippets are almost identical. The reader will use one of them at the beginning of each new notebook for the entirety of this book. Let's break them down:

- %matplotlib widgets: this is a magic line used to tell Jupyter to wrap Matplotlib plots with interactive controls (zoom, pan, etc.) provided by the ipympl module (previously installed).
- import sympy as sp or from sympy import *: import the module or the entire content of the module. If we are using a notebook to perform symbolic computations only, we can use the snippet "sympy-all". On the other hand, if we also need to perform numerical computations with other libraries, for example NumPy, it is better to keep things separated and use the snippet "sympy-module". This is because SymPy and NumPy define their respective versions of mathematical functions, for example sin, cos, tan, etc., which cannot be mixed together. Refer to Appendix A.2 to understand namespaces and scopes.
- from sympy.interactive import printing and printing.init_printing(use _ latex=True): these are going to force SymPy to output Latex code that will be nicely rendered on the screen, thus providing an excellent user experience.

Once the file has been saved, quit Jupyter by clicking the dedicated button and then restart it.

1.1.5 Installing the antlr4 module

The *antlr4* module is a powerful parser which allows SymPy to easily convert Latex code to symbolic expressions.

Chapter 4

Expression Manipulation - Part 1

Now that we understand how to create symbols and functions, it is the perfect time to have some fun with *expression manipulation*. Obviously, we don't know yet all the details that allow us to be successful with this topic. More so, we will see that there is quite a gap between being able to manipulate expressions on paper and doing the same with SymPy.

Expression manipulation is a pillar of SymPy: whatever our computation is, the results are likely not to be in the form that we were hoping for. For example, integrals can compute very long results involving many operations and little to none collection of terms. Whether we are just interested in obtaining a result worth to be inserted into a document, or reducing the number of operations of an expression so that it can be efficiently evaluated, this is a topic that we have to master.

This chapter will introduce a considerable amount of new information; hence the Reader might feel overwhelmed. Do not worry: expression manipulation is a topic that requires patience, time and understanding of the different processes. We will explore it over several other chapters in this series titled "Expression Manipulation - Part X"; this is just the beginning. By the end of this series, we will be as good at SymPy's expression manipulation as we were doing it on paper, maybe even better.

Without further ado, let's get started.

4.1 Cheat Sheets are really useful

A great starting point to understand the complexities related to expression manipulation is the section *Simplify* of the online tutorial¹. It is strongly recommended for the Reader to explore it, since we are not going to repeat a lot of topics covered there. For example, dealing with power simplification, logarithm simplification, understanding that assumptions have an active role on the kind of manipulation we can expect to perform.

https://docs.sympy.org/latest/tutorial/index.html

However, somewhere in the middle of that tutorial, the Reader might get worried. *Are* we supposed to remember all of those functions? Do we need to flick through the documentation every time we forget something? What's the relationship between the different functions? Are they working together somehow?

Considering that SymPy is only one of the tools at our disposal, we are likely going to spend a relatively short amount of time with it. Therefore, it is unrealistic to think that we will be able to remember everything. From a time-efficiency point of view, it is also unrealistic to go through the huge documentation every time we forget something.

A possibly better approach is to create a *cheat sheet*, that is, a very useful handy table filled with the most common operations, something like Table 4.1. This is part of a larger SymPy cheat sheet that we can find in Appendix B. However, a cheat sheet is no useful if we don't understand what's in there, so let's break it down.

SIMPLIFICATION	EXPANSION	COLLECTION
<pre>simplify(expr, rational=False, inverse=False, doit=True)</pre>	expand(expr, e, deep=True, modulus=None, power_base=True,	collect(expr, syms, func=None, evaluate=None, exact=False,
radsimp(expr, symbolic=True, max_term=4)	power_exp=True, mul=True, log=True, multinomial=True, basic=True, complex=False, func=False, trig=False)	distribute_order_term=True) rcollect(expr, evaluate=None)
ratsimp(expr)	expand_mul(expr, deep=True)	collect_sqrt(expr, evaluate=True)
trigsimp(expr, method="matching groebner combined fu")	expand_log(expr, deep=True, force=False, factor=False)	collect_const(expr, *vars, Numbers=True)
combsimp(expr)	expand_func(expr, deep=True)	logcombine(expr, force=False)
<pre>powsimp(expr, deep=False, combine="all base expr", force=False)</pre>	expand_trig(expr, deep=True)	SEARCH / FIND
powdenest(expr, force=False, polar=False)	expand_complex(expr, deep=True)	expr.find(query, group=False)
	expand_multinomial(expr, deep=True)	expr.has(*patterns)
nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational conversion="base10 exact")	expand_power_exp(expr, deep=True)	expr.match(pattern, old=False)
	<pre>expand_power_base(expr, deep=True, force=False)</pre>	INFORMATION
		expr.args
factor(expr, deep=True, fraction=True)	SUBSTITUTION	expr.atoms(*types)
together(expr, deep=False, fraction=True)	expr. subs (old, new, simultaneous=False)	expr.free_symbols
		expr.func
cancel(f, *gens, **args)	expr.xreplace({k_old: v_new})	OTHERS
logcombine(expr, force=False)	expr. replace (query, value, map=False, simultaneous=True, exact=None)	fraction(expr, exact=False)
		rewrite(*args, **hints)
		sympify(obj, *args)

Table 4.1: Cheat Sheet - Expression Manipulation

When it comes to manipulation, on top of the standard arithmetic operations we can also perform expansion, collection, substitution and simplification. For each of these topics, SymPy provides a general function as well as many other specialized functions. Note: we are not going to describe each function, otherwise this book would mirror the documentation, which is left for the Reader to explore. Speaking of exploring, in order to read the documentation of a particular function we can run the command: help(name_j of_the_function).

Expansion. The general function is expand()². Many keyword arguments are available to control the expansion process: to expand a given feature we just set the respective ke j yword=True. The cheat sheet shows the default value of the different options: by default expand() is going to do a lot of stuff. However, also by default some options are turned off: for example, expanding trigonometric functions. Should we need to expand only a particular feature, we better use one of the specialized functions: these are wrapper functions that are going to call expand() with only the keyword argument of the interested feature set to True.

Collection. The general function is collect()³ that provides several options to control the process. This function is used to collect symbols and general expressions, but not numbers or combining logarithms; for that, we have to use the specialized functions. By exploring the source code, it turns out that rcollect() is calling collect(), whereas collect_sqrt() is calling collect_const().

Substitution. The general method is subs()⁴, whereas xreplace() and replace() allow for different level of controls, as we will understand in the exercises.

Simplification. The general function is simplify()⁵ that provides several options to control the process. This function applies several simplification techniques and it is usually good for interactive sessions. However, if we are designing functions or classes that requires simplification steps, we better use the specialized functions, because the actual implementation of simplify() may change over time, whereas the specialized functions are more likely to remain the same. As with collection, under *Simplification* we find several functions that are not called by simplify(), for example factor(), ratsimp(), pow denest(), cancel(), nsimplify(), but they perform useful simplification steps.

Search/Find, Information, Others. We will explore them in details during this series of chapters. For the moment we remember the property arg exposed by every SymPy object: it returns the arguments (or terms) of any expression. The property free_symbol returns a set of symbols that makes up the expression.

From Table 4.1 it is also evident that some methods and properties must be called directly from the actual expression, for example expr.subs(), expr.xreplace(), explr.args. However, simplify(), expand(), factor() and collect() are so useful that we can also call them directly from the expression, for example expr.simplify(**kwlargs) or expr.expand(**kwargs). In doing so, we can easily chain together multiple

²https://docs.sympy.org/latest/modules/core.html#sympy.core.function.expand

³https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.radsimp.co
llect

⁴https://docs.sympy.org/latest/modules/core.html?highlight=subs#sympy.core.basic.Basic.

 $^{^5} https://docs.sympy.org/latest/modules/simplify/simplify.html \# sympy.simplify.simplify.simplify$

$$(\alpha + 1)(\beta + 1) \tag{4.17}$$

This was pretty easy! After an expression manipulation, it is always a good idea to test if the result is mathematically equivalent to the original expression:

r.equals(expr)

True

It is interesting to note that prior to SymPy version 1.6.0, this exercise required a more convoluted procedure to be solved, as it was impossible to collect additive terms like beta + 1. This shows that improvements to SymPy are made in each release.

4.4 Exercise - Substitution and Solve

In the following exercise the Reader should not focus on the physics of the problem, but on the expression manipulation steps. Here we are going to compare a "handwritten" solution to a fully SymPy-based one. We will intentionally take the long route to solve it: in doing so, we will face the most common beginner mistakes but, at the same time, we will also gain a tremendous amount of experience that will help us in our every-day problems. Let's start!

Consider a pressure vessel constituted by a cylindrical body with spherical end caps, as pictured in Figure 4.1. The volume is given by:

$$V = \pi \frac{D^2}{4} L + \frac{4}{3} \pi \frac{D^3}{8} \tag{4.18}$$

where L is the length of the cylindrical portion, D is the diameter. The pressure vessel has a thin skin of a given material; its mass is given by:

$$M = \frac{\pi D^2 \rho(T) p}{2\sigma_y(T)} \left(L + \frac{D}{2} \right) \tag{4.19}$$

where p is the internal pressure, $\rho(T)$ is the temperature dependent density of the material of the vessel, $\sigma_v(T)$ is the temperature dependent stress level on the thin walls.

Derive an expression that for a given pressure vessel volume V yields the L/D ratio which minimizes the pressure vessel mass.

4.4.1 "Handwritten" Solution

The exercise is asking us to rewrite the mass of the pressure vessel in terms of the volume V and the ratio L/D, so that we can later do a minimization analysis. We are dealing with real physical quantities: they are all greater or equal than zero. To compute a solution, the following assumptions are used:

• We know the value of *V*.

Figure 4.1: Pressure vessel dimensions

- We don't know the values of *D* and *L*.
- We assume the range of values for L/D over which we will perform the minimization, for example $L/D \in [0,10]$. The number 0 is motivated by the fact that it can very well be L=0 (resulting in a spherical tank); the number 10 is arbitrary, we can go as high as we like.
- We know the value of the internal pressure, *p*.
- We assume the value of the temperature to be fixed. Therefore, we will treat ρ and σ_y as constant symbols, not as functions.

Let's start by rewriting the volume and mass equations as functions of the parameter L/D:

$$V = \pi \frac{D^{2}}{4} L + \frac{4}{3} \pi \frac{D^{3}}{8}$$

$$= \pi \frac{D^{2}}{4} L + \frac{2}{3} \pi \frac{D^{3}}{4}$$

$$= \pi \frac{D^{2}}{4} \left(L + \frac{2}{3} D \right)$$

$$= \pi \frac{D^{3}}{4} \left(\frac{L}{D} + \frac{2}{3} \right)$$

$$M = \frac{\pi D^{2} \rho p}{2\sigma_{y}} \left(L + \frac{D}{2} \right)$$

$$= \frac{\pi D^{3} \rho p}{2\sigma_{y}} \left(\frac{L}{D} + \frac{1}{2} \right)$$

$$= \frac{\pi D^{3} \rho p}{2\sigma_{y}} \left(\frac{L}{D} + \frac{1}{2} \right)$$

$$= \frac{\pi D^{3} \rho p}{2\sigma_{y}} \left(\frac{L}{D} + \frac{1}{2} \right)$$
(4.21)

Since we don't know the value of D, we manipulate Equation (4.20) so that:

$$D^3 = \frac{4V}{\pi \left(\frac{L}{D} + \frac{2}{3}\right)} \tag{4.22}$$

Finally, we insert Equation (4.22) into (4.21):

$$M = \frac{\rho p}{\sigma_y} \left(\frac{L}{D} + \frac{1}{2} \right) \frac{2V}{\left(\frac{L}{D} + \frac{2}{3} \right)}$$
 (4.23)

As for the minimization, we will do it later with SymPy!

4.4.2 Basic Expression Manipulation

Let's start by defining the necessary symbols with the appropriate assumptions and writing the expressions (4.18) and (4.19):

```
D, L = symbols("D, L", real=True, positive=True)
rho, p, sigma = symbols("rho, p, sigma", real=True, positive=True)
Vs, Ms = symbols("V, M", real=True, positive=True)
V = pi * (D / 2)**2 * L + Rational(4, 3) * pi * (D / 2)**3
M = pi * D**2 * rho * p / (2 * sigma) * (L + D / 2)
display(V, M)
```

$$\frac{\pi D^3}{6} + \frac{\pi D^2 L}{4}$$

$$\frac{\pi D^2 p\rho\left(\frac{D}{2} + L\right)}{2\sigma}$$
(4.24)

There are a few things to note:

- Symbols Vs and Ms represent volume and mass, whereas variables V and M represent the expressions of volume and mass respectively!
- With Rational (4, 3) we have created a rational number: we will learn all about numbers in the next chapter.
- In the expression V, the rational number 4/3 was then multiplied with $1/2^3$, thus producing 1/6.

Before starting with the manipulation, it is a good idea to create a copy of the original expressions; we will use them to verify that the manipulated expression is mathematically equivalent to the initial copy:

```
Vcopy = V
Mcopy = M
```

To fully use the interactive environment, we will chain different commands together. Also, we will override an expression only when we will be happy with the result.

Starting from Equation (4.18), our goal is to reach something similar to Equation (4.20). Much as we did by hand, we can start by factoring the expression. The factor ()⁷ method takes a polynomial and factors it into irreducible factors over the rational numbers:

https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.polytools.factor

V.factor()

$$\frac{\pi D^2 \left(2D + 3L\right)}{12} \tag{4.25}$$

Then, we divide by D^3 so we get D in the denominator. We will multiply it back at the end:

V.factor() / D**3

$$\frac{\pi \left(2D + 3L\right)}{12D} \tag{4.26}$$

To apply the division to both terms in the numerator we use $expand()^8$:

(V.factor() / D**3).expand()

$$\frac{\pi}{6} + \frac{\pi L}{4D} \tag{4.27}$$

The collect()⁹ function is used to collect additive terms of an expression:

(V.factor() / D**3).expand().collect(pi)

$$\pi \left(\frac{1}{6} + \frac{L}{4D} \right) \tag{4.28}$$

In the previous step, both terms contained the constant π . Earlier we said that collect() is not able to collect numbers, so what is going on? Turns out that pi is not really a number, as we will learn in the next chapter! Alternatively, we could have used the collect_const(V, pi) function.

Finally, we need to remember to multiply by D^3 :

V = (V.factor() / D**3).expand().collect(pi) * D**3

$$\pi D^3 \left(\frac{1}{6} + \frac{L}{4D} \right) \tag{4.29}$$

This result is good enough for our purposes. Note that we have overridden the initial expression.

At this point, it is really a good idea to perform a sanity check:

Vcopy.equals(V)

⁸https://docs.sympy.org/latest/modules/core.html#sympy.core.function.expand

 $^{^{9} \}texttt{https://docs.sympy.org/latest/modules/simplify.implify.html\#sympy.simplify.radsimp.collect}$

True

This means that we have correctly manipulated the expression, since it is mathematically identical to the one we started with.

It is important to realize that expression manipulation is not an exact science; we can reach any goal following different approaches. For example, we could have achieved the same result with the commands:

Note the lack of factor()! Also, in this case simplify() only applied an expansion.

Let's now try to do the same with the mass expression from Equation (4.19). We would like to obtain something similar to Equation (4.21). We start by dividing by D^3 so we get D in the denominator. We will multiply it back at the end:

$$\frac{\pi p\rho\left(\frac{D}{2} + L\right)}{2D\sigma} \tag{4.30}$$

To apply the division to both terms in the numerator we use expand() 10 :

$$\frac{\pi p \rho}{4\sigma} + \frac{\pi L p \rho}{2D\sigma} \tag{4.31}$$

The collect()¹¹ function is used to collect additive terms of an expression. In this case we are going to collect a group of symbols:

$$\frac{\pi p \rho \left(\frac{1}{4} + \frac{L}{2D}\right)}{\sigma} \tag{4.32}$$

Finally, we need to remember to multiply by D^3 :

$$\frac{\pi D^3 p\rho \left(\frac{1}{4} + \frac{L}{2D}\right)}{\sigma} \tag{4.33}$$

This result is good enough for our purposes. Again, a sanity check:

True

¹⁰https://docs.sympy.org/latest/modules/core.html#sympy.core.function.expand

¹¹https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.radsimp.co
llect

4.4.3 Substitution and Solve

We are now going to manipulate Expression (4.29) to obtain Expression (4.22). Let's start by writing the volume equation in the form of "(left-hand side) - (right-hand side)":

$$-\pi D^3 \left(\frac{1}{6} + \frac{L}{4D}\right) + V \tag{4.34}$$

We would like to solve this algebraic equation for D^3 . SymPy exposes the solve()¹² function to solve different types of equations (we will explore it in Section 8.4). The first parameter must be the equation, the second is the symbol we would like to solve the equation for.

We would be tempted to do something like this:

```
solve(Veq, D**3)
```

It will probably take a few seconds (up to a few minutes, depending on the machine) to complete the computation, eventually giving us a list of three possible results, each one looking terribly long. We are not even going to copy the results since it will probably cover an entire page! If the computation appears to take a long time, stop the process by clicking the "Interrupt the kernel" button on the top toolbar of Jupyter Notebook.

Here, we asked SymPy to solve Veq for D**3, which is an expression, not a symbol (we will learn more about expressions in Chapter 6). To convince ourselves about this fact:

```
print("Is D**3 a symbol? {}".format((D**3).is_symbol))
print("Is D**3 an expression? {}".format(isinstance(D**3, Expr)))
```

```
Is D**3 a symbol? False
Is D**3 an expression? True
```

solve() automatically extracted the symbols from the expression D**3 by using the property (D**3).free_symbols. Therefore, our cubic equation Veq was solved for D, thus returning the three roots.

To solve for D^3 , a possible approach would be to substitute D**3 with a new symbol into Veq and then solve for that. To perform the substitution we can try the subs(old, new)¹³ method. It should be quite easy, let's go for it:

```
t = symbols("t", real=True, positive=True)
Veq.subs(D**3, t)
```

 $^{^{12} \}verb|https://docs.sympy.org/latest/modules/solvers/solvers.html #sympy.solvers.so$

¹³https://docs.sympy.org/latest/modules/core.html?highlight=subs#sympy.core.basic.Basic.subs

82 Chapter 5. Numbers

5.4 Simplification of numbers

Very often our symbolic expressions will contain numbers. The type of numbers (particularly Float and Rational) might influence the execution of symbolic algorithms. In particular:

- Some algorithms might raise strange errors.
- Other algorithms might produce unexpected or wrong results.
- Other algorithms might take a very long time to conclude their task.

Consider the following basic example:

$$\begin{array}{l}
expr = exp(2 * x) - exp(2.0 * x) \\
expr
\end{array}$$

$$e^{2x} - e^{2.0x} ag{5.23}$$

Clearly, expr is equal to zero, but SymPy didn't perform the simplification. Moreso, if we execute simplify(expr) it will return expr. This happens because the number 2.0 has been converted to an object of type Float, which is not an exact entity: there are rounding errors. In this simple case, we can ask simplify() to convert Float numbers to Rational numbers, after which the simplification should occur:

$$0 (5.24)$$

The same result could be achieved with the more powerful nsimplify()¹⁶ function, which can be used to convert numbers to a simpler form. Let's consider another expression containing combinations of symbols and numbers:

$$\frac{77777x^3}{10000} + \frac{333x^2}{100} + \frac{5x}{2} \tag{5.25}$$

As can be seen from the output, the floating-point numbers have been converted to rational numbers, which are exact quantities. Now, let's apply this function to a floating-point approximation of $\sqrt{2}$:

```
nsimplify(1.4142135)
```

 $^{^{16} \}verb|https://docs.sympy.org/latest/modules/simplify/simplify.html #sympy.simplify.nsimplify$

$$\frac{2828427}{2000000} \tag{5.26}$$

As before, the floating-point number has been converted to a rational number. But we can do more: nsimplify()'s optional second argument is a list of constants that should be contained in the result. For example:

$$\sqrt{2} \tag{5.27}$$

Another example:

$$5\sqrt{3} \tag{5.28}$$

Sometimes the algorithm fails to produce the simplification. For example, we might want to replace 3.14 with π :

$$\frac{157}{50}$$
 (5.29)

This happens because the algorithm chose a very low tolerance: by default, 10^{-15} is used for objects of type Float. So, we can specify an appropriate tolerance:

$$\pi$$
 (5.30)

Note what happens when the tolerance is decreased:

```
tolerances = [1e-03, 1e-04, 1e-05, 1e-06]
expr = 3.14
print("%-8s %-22s %-16s %-12s" % ("tol", "symbolic result", "numeric result",

→ "approximation error"))
for t in tolerances:
    r = nsimplify(expr, [pi], tolerance=t)
    a = [t, r, r.n(), abs(expr - r.n()) / expr]
    print("%-8.e %-22s %-16f %12.e" % tuple(a))
```

```
tol
         symbolic result
                                 numeric result
                                                   approximation error
1e-03
                                 3.141593
                                                           5e-04
         рi
         3/89 + 88*pi/89
1e-04
                                 3.140002
                                                           5e-07
         -41/100 + 113*pi/100
1e-05
                                 3.140000
                                                           1e-07
1e-06
                                 3.140000
                                                           0e+00
```

pi is included in the first three symbolic results, but they are different from each other. The approximation error is inversely proportional to the tolerance. Eventually, it reaches zero when the floating-point number is converted to a rational number. Ultimately, we are responsible to decide if 3.14 should be replaced by π or by a rational number, depending on our application.

86 Chapter 5. Numbers

```
class NumberSymbol(AtomicExpr):
```

Again, there are several methods but the one we are interested in is the following:

```
def _eval_evalf(self, prec):
    return Float._new(self._as_mpf_val(prec), prec)
```

This method is called by SymPy when the function evalf() is invoked. Let's consider for example the object pi, which is an instance of the Pi class. Since Pi inherits from N umberSymbol, it exposes the _eval_evalf() method. Let's say we execute the command pi.evalf(), then SymPy is internally going to call pi._eval_evalf(prec) specifying the needed precision. Inside _eval_evalf(), we see the call to the _as_ mpf_val(prec) method, defined in the Pi class, which is going to return the numerical value. Ultimately, a SymPy's Float number is returned.

NumberSymbol also defines other methods, but we are not interested in them at this moment.

Finally, from what we have seen so far, it follows that the object pi is neither an instance of Symbol, nor an instance of Number. We can verify it:

pi is a different object altogether: it disguises itself to be a number thanks to the class-attribute is_number=True.

5.5.3 Creating a custom Constant class

Now that we understand how pi and E work, we can build our custom Constant class. What exactly should this class allow us to do?

- 1. It should not be specific like Pi or Exp1, which only defines the number pi or E respectively. Constant should allow us to define arbitrary constants. Consequently, we will have to pass to the constructor both the numerical value as well as the "name" to visualize on the screen.
- 2. For simplicity, we will only consider integer or real constants.

The complete code is contained in the file <code>sympy_utils.py</code>, which the Reader should have downloaded in Section 1.1.1. If this file is stored in the same folder of our notebooks, we can use this class after executing the following <code>import statement</code>: <code>from sympy_utils import Constant</code>. Let's see what the code does:

```
class Constant(NumberSymbol):
   is_real = True
```

5.5. ADVANCED TOPICS

We start by sub-classing NumberSymbol, which allows our instances of Constant to be evaluated. We are not going to create a singleton class because Constant should represent an arbitrary constant. The only class attribute we are going to define is is_real: this makes sense because the other attributes, like is_positive and is_negative, depend on the actual value of the constant. Therefore, they must be instance attributes!

Next, we override the constructor which was previously defined in the AtomicExpr class. We need to do it in order to pass custom parameters into the class:

```
def __new__(cls, value, name, latex="", pretty=""):
```

The parameters are quite self-explanatory:

- 1. value: this is the numerical value of the arbitrary constant.
- name: it will be used to visualize the name of the symbol when calling the print() function.
- 3. latex (optional): it will be used to render the constant on the screen. If not provided, name will be used instead.
- 4. pretty (optional): it will be used to render the constant when using the pprint() function. If not provided, name will be used instead. Keep in mind that it is possible to visualize Unicode strings with this parameter.

Next, we make sure only numbers of type int and float are allowed to be used, thus enforcing the condition defined above. If the type of value is different, an exception will be raised.

```
if not isinstance(value, (int, float)):
```

Next, the actual object is created and a few instance attributes are attached to it, so that the parameters are available in the entire object:

```
obj = AtomicExpr.__new__(cls)
obj._value = value
```

Then, we make sure the evaluation returns the value provided in the constructor:

```
def _as_mpf_val(self, prec):
    return mlib.from_float(self._value, prec)
```

The library *mpmath* is still used to produce the required float precision.

Next, the approximation interval is defined:

88 Chapter 5. Numbers

We used the functions ceil and floor from the library *math* to produce the numerical integers "bounding" the constant's value.

Finally, we have defined a few methods that are used by the different printers: they are quite self explanatory. The only enigmatic method is _sympyrepr: this will be called by the srepr() function, used to get a detailed string representation of a given object.

It's now time to perform a little test of our first custom class:

```
from utils import Constant
t = Constant(6.5, "tau", r"\tau", u"\N{Greek Small Letter Tau}")
t, t.evalf()
```

$$(\tau, 6.5)$$
 (5.31)

Here we created the constant t, named "tau". Note that we also used the Unicode name for improved printing when using the pprint() function; it is in the form u"\N{UNICODE SYMBOL NAME}" where the character u represent a Unicode string. A quick online search is usually enough to find the Unicode name of particular symbol.

We displayed the "symbolic" form as well as the evaluated number. It appears to be correct. Let's try the different print functions:

```
print(t)
```

tau

```
pprint(t)
```

τ

```
srepr(t)
```

```
"Constant(value=6.5, name='tau', latex='\tau ')"
```

And now, let's run a few queries on it:

```
print(t.is_real, t.is_positive, t.is_negative, t.is_zero)
```

True True False False

As we have seen, we didn't set these instance attributes, which depend on the actual value of the constant. Their values are recomputed every time we ask for a particular assumption's value.

Now, let's try to use this constant:

```
x = symbols("x")
expr = 2 * x + t
expr
```

$$2x + \tau \tag{5.32}$$

6.3.2 SymPy's Class Diagram

Thus far, we have talked a lot about the different types of objects interacting together in a mathematical expression: we have seen different types of numbers, symbols and functions. We have also seen the classes responsible for addition, multiplication and power operations, which can be combined together to represent subtraction and division.

A picture is worth a thousand words, though: if we were to explore SymPy source code to understand the relationships between the different classes seen thus far, we would come up with an UML class diagram. An extremely simplified version of it is shown in Figure 6.5, where a lot of things are missing for the sake of clarity; nonetheless, it gives a clear picture of SymPy's internal structure.

Figure 6.5: Simplified UML class diagram of SymPy expressions

In this diagram:

- Rectangles represent classes.
- Light gray rectangles represent base classes or mix-in classes: they provide functionalities to their sub-classes. Generally, they are not meant to be instantiated directly (except for Function). Note that there is nothing stopping us from instantiating them; for example, if x is an instance of Symbol, we can create the object Expr(S(3), x). What does it represent? It is neither an addition, nor a multiplication or a power, it is not a function either. It is just a collection of terms that makes

6.3. ADVANCED TOPICS 107

little to no sense.

 Dark gray rectangles represent classes that we can actually instantiate. Whether we should, that depends on our tasks.

- The arrows represent inheritance relationships: a given class can inherit functionalities from one or more parent classes. In practice, this also means that an instance of a given class is also an instance of the parent classes.
- Some classes have a little white square on the top-right corner, which represent the constructor method (note: this is the Author's concise way to represent this information; it is not UML's way). As we can see, the Symbol class implements its constructor. On the other hand, the Pi class doesn't: when we instantiate the constant pi, Python will move through the Method Resolution Order, eventually executing the constructor defined in the Basic class.

Since this is a simplified diagram, let's list what's missing:

- Firstly, only class names are shown: attributes and methods are not considered. Also, only inheritance relations are displayed.
- Meta-classes are not displayed: for example, if we look at the source code of the Basic class we see the ManagedProperties meta-class, which is the machinery that handles the *old assumptions*. Also, the Singleton meta-class is missing, which is used in the sub-classes of NumberSymbol.
- From SymPy version 1.7.0, the Basic class also inherits from the Printable class. It is not really important for our purposes, so it hasn't been included in the diagram.
- There are so many different types of functions that they would probably occupy an entire page. Therefore, only the Function base class is shown.
- The classes One, Half, Infinity, etc., which are sub-classes of Number, Rational, Integer.
- The classes GoldenRatio, TribonacciConstant, EulerGamma, Catalan which are sub-classes of NumberSymbol.
- The UnevaluateExpr class, which is a sub-class of Expr.

What does this diagram tell us?

- In Python, and consequently in SymPy too, everything is an object and almost everything has attributes and methods. That's clearly indicated by the inheritance from the Python's class object.
- The numerical evaluation functionality, exposed by the evalf() method, is implemented in the EvalfMixin class. Since this is a parent class to Expr, evalf() is available to every type of expressions: we can even call it on a symbol, even though it would return the symbol itself.
- Add and Mul inherit from AssocOp, which implements the logic for associative/ nonassociative, commutative/anti-commutative operations.

7.4.3 The find() method

The find()⁸ method is used to retrieve all the occurrences of a given pattern. It returns an object of type set. Let's consider the following example:

$$x^2 + 2x + 2y + 2 \tag{7.27}$$

Let's suppose we would like to collect together 2x and 2y. We can try the collect_con_j st()⁹ function:

$$x^2 + 2(x + y + 1) (7.28)$$

However, it collected a third element, which we were not interested in. We could perform this task manually, with:

$$x^2 + 2(x + y) + 2 \tag{7.29}$$

This is fine for this simple example, but in real life we are most likely going to encounter much more difficult expressions, thus the risk of introducing typing errors increases exponentially. More so, we will not take full advantage of SymPy functionalities.

Let's create a couple of wild symbols and extract the multiplications:

$$\left\{2x, x^2, 2y\right\} \tag{7.30}$$

Why did we also get x^2 ? It turns out that SymPy is able to recognize that it is equivalent to $x \cdot x$. We can verify it with:

$$\{w_1: x, \ w_2: x\} \tag{7.31}$$

Therefore, we need to be more specific with the wild symbols. Here, we will create w1 to match numbers:

⁸https://docs.sympy.org/latest/modules/core.html#sympy.core.basic.Basic.find

 $^{^{9}} https://docs.sympy.org/latest/modules/simplify/simplify.html \# sympy.simplify.radsimp.collect const$

```
w1 = Wild("w1", exclude=[1], properties=[lambda e: e.is_number])
w2 = Wild("w2", exclude=[1])
r = expr.find(w1 * w2)
r
```

$$\{2x, 2y\} \tag{7.32}$$

At this point, we sum up those terms to represent the subexpression that we would like to modify:

$$2x + 2y \tag{7.33}$$

Finally:

$$x^2 + 2(x+y) + 2 (7.34)$$

Let's consider another example:

```
x, y, z = symbols("x, y, z")

expr = y * (x**2 + 4 * x + 4) + z * (x**2 * y**2 + 2 * x**2 * y * z + x**2 * \rightarrow z**2)

expr
```

$$y(x^2 + 4x + 4) + z(x^2y^2 + 2x^2yz + x^2z^2)$$
(7.35)

There are two quadratic expressions that we would like to factor. We can try with:

```
expr.factor()
```

$$x^{2}y^{2}z + 2x^{2}yz^{2} + x^{2}y + x^{2}z^{3} + 4xy + 4y$$
 (7.36)

This is not the result we were looking for. In fact, the expression has only been expanded, not factored. We have to try something different.

Note that those quadratic forms are additions of three terms. Hence, we can use the find() method to select the additive terms of the expression:

```
expr.find(Add)
```

$$\left\{y\left(x^2+4x+4\right)+z\left(x^2y^2+2x^2yz+x^2z^2\right), x^2+4x+4, x^2y^2+2x^2yz+x^2z^2\right\} \quad (7.37)$$

Obviously, it selected too much. We can use a wild symbol and apply the correct properties, for example:

```
w1 = Wild("w1", properties=[lambda e: isinstance(e, Add) and (len(e.args) == 3)])
r = expr.find(w1)
r
```

$$\left\{x^2 + 4x + 4, x^2y^2 + 2x^2yz + x^2z^2\right\} \tag{7.38}$$

Here, we selected additive terms having 3 arguments! Now, we can create a substitution dictionary:

$$\left\{ x^2 + 4x + 4 : (x+2)^2, \ x^2y^2 + 2x^2yz + x^2z^2 : x^2(y+z)^2 \right\}$$
 (7.39)

Finally:

$$x^{2}z(y+z)^{2} + y(x+2)^{2}$$
(7.40)

7.4.4 Wild functions

Similarly to Wild symbols, a WildFunction matches any function with its arguments. Its constructor only requires two arguments:

- name: the usual name of the function, displayed on the screen;
- nargs: the number of arguments or a tuple to match a range of arguments.

For example:

```
x = symbols("x")
f = Function("f")(x)
expr = f + x * cos(4 * x) + sin(x**2) - exp(x)
expr
```

$$x\cos(4x) + f(x) - e^x + \sin(x^2)$$
 (7.41)

$$\left\{ f(x), e^x, \sin\left(x^2\right), \cos\left(4x\right) \right\} \tag{7.42}$$

Unlike Wild symbols, we can't be more specific about the nature of the function other than stating the number of arguments. However, we can pass any type of function to the find() method. Let's suppose we would like to select all trigonometric functions:

13.3 Exercise - The Integral.transform() method

Solve the following integral:

$$\int Ce^{-Ea} \sinh\left(\sqrt{Eb}\right) dE \tag{13.46}$$

where $a, b, C, E \in \mathbb{R}$ and $a, b, E \ge 0$.

13.3.1 Solution

Let start by creating the symbols and expression:

```
a, b, Ee = symbols("a, b, E", real=True, positive=True)
C = symbols("C", real=True)
expr = C * exp(-a * Ee) * sinh(sqrt(b * Ee))
```

Note that we used the variable Ee instead of E to represent a symbol of name "E", in order to avoid overriding the name "E" in the global namespace which is currently assigned to SymPy's special symbol/number E.

All we need to do is:

$$C \int e^{-Ea} \sinh\left(\sqrt{E}\sqrt{b}\right) dE \tag{13.47}$$

Whenever the integrate() method returns an unevaluated integral, that means none of the algorithms were able to evaluate it. We may think that we run out of options; however, we still have to try expression manipulation!

Our expression contains the hyperbolic sinh function, which can be rewritten in terms of exponential functions:

$$C\left(\frac{e^{\sqrt{E}\sqrt{b}}}{2} - \frac{e^{-\sqrt{E}\sqrt{b}}}{2}\right)e^{-Ea} \tag{13.48}$$

We saw in the previous exercises that it is a good idea to expand the expression and simplify the powers:

$$-\frac{Ce^{-\sqrt{E}\sqrt{b}-Ea}}{2} + \frac{Ce^{\sqrt{E}\sqrt{b}-Ea}}{2}$$
 (13.49)

Now let's integrate:

integrate(expr, Ee)

$$\frac{C\left(\int -e^{-\sqrt{E}\sqrt{b}}e^{-Ea} dE + \int e^{\sqrt{E}\sqrt{b}}e^{-Ea} dE\right)}{2}$$
 (13.50)

Again, no luck. What could possibly be wrong with our expression? Looking at Expression (13.49), the argument of the exponential function has the form $\sqrt{E} + E$ (disregarding the constants). Would SymPy be able to integrate an exponential function with a different argument, like $E + E^2$? Let's try:

```
integrate(exp(-(Ee + Ee**2)), Ee)
```

$$\frac{\sqrt{\pi}e^{\frac{1}{4}}\operatorname{erf}\left(E+\frac{1}{2}\right)}{2}\tag{13.51}$$

The integral was evaluated! It contains erf (), the error function². It seems that if the integration symbol (E in our case) appears in the argument of the exponential function with a rational exponent ($\sqrt{E} = E^{1/2}$ in our case), the algorithms will have a hard time to solve the integral.

It would be nice if we could easily apply a change of variable, for example setting $x = \sqrt{E}$. Luckily, the Integrate class exposes the transform()³ method to do just that. If we were dealing with a definite integral, transform() would also modify the limits of integration (if needed). Let's see how we can use it to perform a *u-substitution*:

```
x = symbols("x", real=True, positive=True)
i = Integral(expr, Ee).transform(sqrt(Ee), x)
i
```

$$\int 2x \left(-\frac{Ce^{-ax^2 - \sqrt{b}x}}{2} + \frac{Ce^{-ax^2 + \sqrt{b}x}}{2} \right) dx \tag{13.52}$$

As we can see, the expression has been modified accordingly. Note that we created the symbol x with the same assumptions of the symbol x.

To evaluate the integral:

```
r = i.doit()
r
```

²https://en.wikipedia.org/wiki/Error_function

 $^{^3} https://docs.sympy.org/latest/modules/integrals/integrals.html \# sympy.integrals.integrals.Integral.transform$

Chapter 15

The Equation class

Previously we have seen that we can represent equations in two ways:

- 1. an expression in the form of "(left-hand side) (right-hand side)" (the equal to zero part is implied).
- Equality objects, thus specifying the left and right-hand sides. However, relationals do not inherit from the Expr class, hence these objects do not support mathematical operations. We are severely limited on the amount of manipulations we can apply to them.

We are now going to explore the Equation class, implemented in the *algebra_with_sympy*¹ module first installed in Section 1.1.3. This class allow us:

- To write equations by specifying the left-hand side (LHS) and the right-hand side (RHS).
- To perform mathematical operations on equations. For example, adding the same expression to both sides of the equation, or adding two equations side by side.
- To evaluate derivatives and integrals.
- To apply the most common manipulation techniques, namely simplify(), colle ct(), factor(), expand(), etc.
- To apply any function to both sides, for example the sin function.
- To numerically evaluate the equation.
- To nicely print the equation on the notebook.

Let's briefly discuss the necessary *import* statements and some optional configurations:

```
from sympy import *
from algebra_with_sympy import *
```

https://github.com/gutow/Algebra_with_Sympy

```
| algwsym_config.output.label = False
| algwsym_config.output.show_solve_output = False
```

The order of the *import* statements is important. With the second one, we are importing:

- the Equation class.
- the solve function, which is just a wrapper to SymPy's solve function and it is capable of dealing with objects of type Equation.
- the algwsym_config object, which can be used to configure the module. By default:
 - equations will be shown with a label on the RHS. Depending on the use case, this can be either useful or annoying. Hence, with the third line of code we are going to hide the labels.
 - when the solve function receives inputs of type Equation, it shows the results on the screen. If there are many solutions or some of them are very long expressions, this will considerably slow down the rendering on the screen. Hence, with the last line of code we are going to disable this behaviour.

It is left to the Reader to change these options and explore the different outputs. Let's quickly introduce the most common functionalities:

```
a, b, c, x = symbols("a, b, c, x")
eq1 = Equation(a + b, c * x)
eq2 = Equation(x**2 - 4 * x, a + b)
display(eq1, eq2)
```

$$a + b = cx$$
 $x^2 - 4x = a + b$ (15.1)

Similarly to the Equality class, we can use the following attributes to get the LHS, the RHS and to swap both sides of an equation:

$$a+b cx cx = a+b (15.2)$$

When the solve function receives objects of type Equation, it will return a list of results of this type:

$$\left[x = \frac{a+b}{c}\right] \tag{15.3}$$

We can apply any mathematical operation on both sides of the equation simultaneously:

```
eq1 + 2
```

$$a + b + 2 = cx + 2 \tag{15.4}$$

We can also combine two equations side by side with a mathematical operation, for example:

eq1 / eq2

$$\frac{a+b}{x^2-4x} = \frac{cx}{a+b} \tag{15.5}$$

Alternatively, we can use the applylhs or applyrhs methods to apply an operation to a particular side. Here, we are going to square the RHS of the first equation:

eq1.applyrhs(lambda t: t**2)

$$a + b = c^2 x^2 (15.6)$$

We can use the subs method to look and replace something on both sides of the equation:

$$a + b = 2x \tag{15.7}$$

The subs method of an Equation also accepts objects of the same type: the LHS represents the pattern to look for, the RHS represents the substitution:

$$x^2 - 4x = cx (15.8)$$

15.1 Using the Equation class

As always, when it comes to do real world testing of new functionalities it is always a good idea to start with something easy with which we are comfortable. In the following section we will try to develop an analysis to determine the one-dimensional temperature distribution in a solid element due to heat conduction.

In doing so, we will learn how to use the Equation class and understand the differences between working with "pen and paper" versus SymPy. As always, the unfamiliar Reader should pay attention to the involved manipulation techniques, not on the physics of the problem.

Let's consider a differential solid element, as depicted in Figure 15.1:

The volume of the element is $\Delta V = \Delta x \Delta y \Delta z$, P is the power density (internal heat generation), q is the heat flux. Here we are considering the one-dimensional case along the x direction. We also need to consider the following quantities:

• Q: heat content.

Figure 15.1: Differential Element

- *T*: temperature.
- *k*: thermal conductivity of the material.
- *C_p*: specific heat capacity.
- *m*: mass of the material.
- ρ : density of the material.
- α : thermal diffusivity of the material.
- *t*: time.

In the next code block we create the necessary quantities:

```
t, k, x, m, Cp, rho, alpha = symbols(r"t, k, x, m, C_p, rho, alpha",

positive=True)

Dt, Dx, Dy, Dz, DV = [symbols(r"{\Delta}" + s, positive=True) for s in

"t,x,y,z,V".split(",")]

Q, q, P, T = [e(t, x) for e in symbols("Q, q, P, T", cls=Function)]
```

A few observations are in order:

- We created the symbols Dt, Dx, etc., using that syntax only to avoid writing Δ multiple times.
- Q, q, P, T are functions of time and position. We actually need them to be undefined functions so that we can take unevaluated derivatives with respect to time and position. If we were to use ordinary symbols, then their derivatives would evaluate to zero.
- We overrode the name "Q" in the global namespace which was previously assigned to the *assumptions object* (which we will explore in Chapter 21). Since we are not going to use that object in this exercise, everything is fine.

Now, let's take a few equations for granted:

Chapter 17

Matrices and Linear Algebra

When it comes to dealing with multi-dimensional arrays of symbolic expressions, SymPy provides different modules:

- 1. sympy.matrices: it implements the functionalities to work with two-dimensional arrays of symbolic expressions and linear algebra.
- 2. sympy.tensor: it implements the functionalities to work with multi-dimensional arrays of symbolic expressions, to perform tensor products, contractions and derivatives with respect to arrays.
- 3. sympy.vector: it provides the classes to work with vectors, that is, 3-dimensional entities having both a magnitude and a direction defined in a coordinate system.

At the time of writing this book, these three modules are not really designed to work together; however, a few methods are available to convert an object (a matrix, a tensor or a vector) from one module to the other. In this chapter we are going to explore the matrices module and the linear algebra capabilities provided by SymPy. In the next chapters we will look into tensors and vectors.

Let's start from the definition: a matrix is a rectangular array of numbers, symbols or expressions. If the matrix has only one column, we refer to it as a *column vector*. If the matrix has only one row, we refer to it as a *row vector*. Keep in mind that in this chapter we are talking about matrices!

Table 17.1 shows the main classes available to work with matrices. The first four classes represent *explicit matrices* in which we can access and eventually modify the elements. *Mutable* or *Immutable* refers to the capability to modify the single entries after the matrix has been created. *Dense* or *Sparse* refers to whether to store in memory all elements or only the non-zeros. The MatrixExpr class allows to write expressions involving matrix-symbols in which the elements are not yet defined.

Class Name	Alias
MutableDenseMatrix	Matrix
ImmutableDenseMatrix	ImmutableMatrix
MutableSparseMatrix	SparseMatrix
ImmutableSparseMatrix	
MatrixExpr	

Table 17.1: Main classes of matrices

17.1 Explicit Matrices

17.1.1 Basic Usage

In the following section, we are going to *extend* the content of this documentation page¹. Specifically, we will learn how to work with the MutableDenseMatrix and ImmutableDenseMatrix classes.

As we will see, there are quite a lot of attributes and methods to be aware of; chances are that we will forget something over time. Hence, a basic cheat sheet can be found in Appendix B.7 and Appendix B.8. The interested Reader should go through SymPy documentation and extend it.

Generally, we are going to create a (mutable dense) matrix with its alias Matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \tag{17.1}$$

We can also specify the number of rows and columns followed by a list of entries:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 (17.2)

To create a column or a row vector:

$$\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}\right)$$
(17.3)

We can also create special types of (mutable) matrices, namely *ones*, *zeros*, *eye*, *diag*, by calling their respective methods. For ones(), zeros() and eye(), the methods accept either:

https://docs.sympy.org/latest/modules/matrices/matrices.html

Chapter 21

Assumptions

In Section 2.1.2 we introduced assumptions on objects of type Symbol. They are defined in the module sympy.core.assumptions, which is also referred to as the "old assumptions module".

In this chapter we will explore the "new assumptions module", sympy.assumptions, to understand its capabilities, its limitations and why SymPy currently implements two assumption modules. We will try to maintain the discussion "light" on technical details, so that anyone can follow.

21.1 New Assumptions Module

21.1.1 The Need for New Assumptions

So far we have used the *old assumptions module* in which assumptions are set on symbols and are stored in the expressions. For example:

```
x, y = symbols("x, y", positive=True)
expr = x + y
expr.is_positive, expr.is_zero, expr.is_negative
```

```
(True, False, False)
```

When querying for a given attribute, like expr.is_positive, SymPy's inference engine will try to compute the attribute's value by calling the respective _eval_is_<ASSUMPTI_ON_NAME>() method defined on the different classes. In our example, it called the _eval_is_positive() method defined in the Expr class. If it's not possible to determine the value, None will be returned. These assumptions are used all across SymPy codebase, for example:

 In core classes like Add, Mul and Pow where arguments are evaluated and eventually modified.

- They are responsible for evaluation of functions, for example cos(n * pi) where n is a number.
- In more complex routines, like simplify(), etc.
- In different solvers.

They are so embedded into the core that at one point in time (many years ago), the following observations were made:

- 1. It became clear that refactoring the code was getting harder and harder.
- 2. There were performance concerns due to evaluation. For example, let's consider sqrt(x**2) when x is real; this is going to call Pow(Pow(x, 2), S.Half). Inside P_j ow's constructor the assumptions on x are checked, eventually evaluating the result to Abs(x). Do we really need this automatic evaluation? This might be fine for short expression, but for longer ones it definitely adds up computational time.
- 3. while being very useful they are also quite limited. In short, they are focused on numbers and sets, with attributes like is_positive, is_real, etc. Let's suppose we have two symbols, x and y: we can assume x > 0 and/or y > 0, but we cannot assume x > y.

Therefore, efforts were made to develop a new module in which assumptions were separate entities from the object that was being assumed about. Meet the "new assumptions module", sympy assumptions, first introduced in 2009. The original idea was to remove the "old assumptions" and replace them with the "new assumptions"; many attempts have been made over the years, all of them failed. There are several reasons for this, here we only mention the most important ones: first, "old assumptions" are used everywhere in the core, thus requiring a tremendous amount of work; second, "new assumptions" were not an option in the first place, being very slow (a lot of improvements have been made since then, dramatically improving the situation. Still, the "old assumptions" are fastest).

Without further ado, let's explore the new assumptions.

21.1.2 The "New Assumptions Module"

With the new assumptions module¹, assumptions can be made on expressions, not just symbols. They are not limited to numeric and set attributes, like is_positive, is_real, etc. As a matter of fact, we can use them to query matrices about their nature, for example if it is symmetric, diagonal, etc.

We already mentioned that, within this module, assumptions are separate entities from the object that is being assumed about; let's understand what that means. From a user's point of view, the module exposes three pillars:

 $^{^{1}}$ https://docs.sympy.org/latest/modules/assumptions/index.html#module-sympy.assumptions

22.5 Parametric-Interactive Plots

It is often difficult to fully understand the behaviur of a symbolic expression by inspection, especially when several parameters are involved. This is particurlarly true when studying physics and engineering problems.

The plotting functions exposes the params keyword argument. When it is set, it creates parametric interactive plots with widgets, that is, interactive controls such as sliders, buttons, spinners, etc. We can think of any symbolic expression as a collection of symbols:

- some symbols represent the domain of the function, which will be discretized according to some strategy.
- all other symbols represent symbolic parameters. Eventually, they will be substituted
 by numeric values and the expression will be numerically evaluated over the discretized domain.

The widgets are created with Holoviz's *Panel*¹⁷ and *Param*¹⁸. As a consequence, it only works within Jupyter Notebook. A design goal for this function was to be easy to use: as such, the Reader doesn't need to know anything about *Panel*. However, a little introduction to *Param* is necessary. As the name suggests, *Param* let us create parameters, which are extended Python attributes to support types, ranges, and documentation, which will then be used by *Panel* to create widgets. *Param*'s documentation does a good job illustrating the concepts of operation. Let's import this library:

```
import param
```

Each symbolic parameter must receive exactly one numeric value. Therefore, only widgets that returns exactly one numeric value can be used. Here is a list of *Param's* parameters that, once rendered as widgets, satisfy that condition (Figure 22.4):

- param. Integer or param. Number: represents an integer or a floating point number, respectively. If bounded (having valid minimum and maximum values) it will be rendered as a slider, otherwise it will be rendered as a spinner.
- param.ObjectSelector: represents a list of possible choices. It will be rendered as a drop-down list.
- param. Boolean: it will be rendered as a check box.

We are now ready to explore a couple of examples.

22.5.1 Example - Fourier Series Approximation

Let's consider a sawtooth wave¹⁹, defined as:

¹⁷https://panel.holoviz.org/index.html

¹⁸https://panel.holoviz.org/user_guide/Param.html

¹⁹https://mathworld.wolfram.com/SawtoothWave.html

Figure 22.4: Widgets producing one numeric output value

$$S(x) = \operatorname{frac}\left(\frac{x}{T}\right) \tag{22.1}$$

where T is the period and x is the domain. We'd like to understand its Fourier Series approximation²⁰:

$$f(x) = \frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{2\pi nx}{T}\right)$$
 (22.2)

Let's start by creating the above expressions:

```
x, T, n, m = symbols("x, T, n, m")
sawtooth = frac(x / T)
# Fourier Series of a sawtooth wave
fs = S(1) / 2 - (1 / pi) * Sum(sin(2 * n * pi * x / T) / n, (n, 1, m))
```

Note that we stopped the Fourier Series at m rather than infinity, because m represents the upper bound of the approximation. The higher the value of m, the more accurate the approximation. In the above expressions:

- T is a positive float number.
- m is a positive integer.

This is all the necessary code in order to create a parametric interactive plot:

```
from bokeh.models.formatters import PrintfTickFormatter
formatter = PrintfTickFormatter(format="%.3f")

plot(
    (sawtooth, (x, 0, 10), "f"),
    (fs, (x, 0, 10), "approx"),
    params = {
        T: (2, 0, 10, 80, formatter),
        m: param.Integer(3, bounds=(1, None), label="Sum up to n")
    },
    xlabel = "x",
    ylabel = "y",
    backend = PB
)
```

 $^{^{20} \}mathtt{https://mathworld.wolfram.com/FourierSeriesSawtoothWave.html}$

Let's break down the different pieces:

- First, we created a formatter object: it will be used to format the value shown by the slider. It is particularly useful when dealing with small floating point numbers. If a formatter is not used, the slider's value will be rendered with two decimal places.
- (sawtooth, (x, 0, 10), "f"): the arguments are the usual tuples specifying the expression, the range and an optional label to be used in the legend. This is a simple 2D example, but vector fields, functions of two variables, geometric entities and complex functions are supported as well.
- params: this dictionary maps the *symbolic parameters* to *Param's* parameters, which will be rendered as widgets.

We created an integer parameter associated to m, having a default value of 3, minimum value of 1, no maximum value and a custom label. It will be rendered as a spinner.

Instead of creating a param. Number associated to T, we are using a shortcut to create a slider. The tuple must have the form (*default, min, max, N, tick_format, label, spacing*) where the first three elements are mandatory. In particular:

- *N* is the number of steps in the slider.
- *tick_format* is the formatter to be used on the value shown by the slider.
- *label*: set the visible label of the slider. If not provided, the latex representation of the symbol will be used instead.
- *spacing*: the default value is "lin", which creates a linear spacing between the steps of the slider. Alternatively, it can be "log" to use a logarithmic spacing.
- Finally, the usual keyword arguments to customize the plot are provided.

The resulting interactive application is shown in Figure 22.5. A few observations are in order:

- By default, the widgets are shown on top of the plot and are automatically layed out from left to right. With many parameters a *grid* will be created. We can control the number of columns with the ncols keyword argument, whose default value is 2.
- The same performance consierations are valid: Matplotlib is the fastest at rendering 2D plots, followed by Bokeh while Plotly is the slowest. For 3D plots, K3D-Jupyter is the fastest, followed by Plotly while Matplotlib is the slowest.
- There is an annoying bug to be aware of. If we use BokehBackend and later decide to try MatplotlibBackend or K3DBackend, then no output will be shown on the screen. The only way to get them working again is by restarting Jupyter server.
- When no label is provided to a parameter, the Latex representation of the symbol will be used instead. However, there is a bug preventing the Latex labels to be

Figure 22.5: Resulting interactive application with BokehBackend

correctly rendered. We can turn off the Latex labels by setting use_latex=Fals_ e: in this case the string representation of the symbol will be used. If the result is not good enough, we might need to manually set the labels for each parameter, avoiding Latex code altogether.

22.5.2 Example - Temperature Distribution

Let's consider an annular rod of nuclear fuel. Let:

- *L*: the length of the rod.
- z: the position along the rod, $0 \le z \le L$. It represents the domain of our plot, whereas all other variables should be considered as parameters.
- r_i and r_0 : radius of the inner and outer walls, respectively. It must be $r_i < r_0$. A cooling fluid is going to traverse the cylindrical volume for $r < r_i$, also known as the inner channel.
- P_{ave} : average thermal power generated by the rod.

Chapter 23

Printers and Code Generation

SymPy offers two important modules:

- 1. *Printing module*¹: useful to generate an appropriate representation of any SymPy expression. It exposes different *printer* classes which can be categorized into:
 - Representation printers: they convert a SymPy expression to some representation intended to be shown to the user.
 - Code printers: they convert a SymPy expression to a target programming language. This is very convenient as it saves a time-consuming step in which we could possibly insert typing errors.
- 2. Code generation module²: built on top of the printing module, it creates compilable and executable code starting from symbolic expressions in a variety of programming languages. For example, we can use this module to speed up the numerical evaluation of our expressions.

23.1 The Printing Module

Figure 23.1 shows a simplified UML class diagram of the printing module. As we can see, there is a huge number of classes, each one responsible for a different representation. Luckily, we don't have to instantiate them directly, instead we can use the convenient wrapper functions listed in Table 23.1. So far, we have used:

The string representation, visualized with the print() function. Internally, it is going to call the Basic.__str__() method, which is going to use sstr(), a wrapper that instantiate the StrPrinter class.

https://docs.sympy.org/latest/modules/printing.html

²https://docs.sympy.org/latest/modules/codegen.html

