CSC3631 Cryptography - Asymmetric Encryption I Thomas Gross

1

21

Roadmap

- Asymmetric Encryption
- · Chosen-Plaintext Attack Security
- Hybrid Encryption
- RSA Encryption
 - Textbook RSA
 - RSA with Padding

Goal for today:

- How to encrypt with asymmetric means?
- What are the nuts and bolts of RSA encryption?

CSC3631 Cryptography – Asymmetric Encryption I

23

24

Advantages No pre-shared secret Keys independent of sender Anyone who wants to encrypt to Alice can do so. Only a single private key to keep secret. Disadvantages 2-3 orders of magnitude slower than symmetric tools No data origin authentication or integrity Risk of impersonation attacks

CSC3631 Cryptography – Asymmetric Encryption I

Characteristics

- **Goal:** confidentiality
- Keep private key sk absolutely secret.
- Public key pk is inadvertently public. (also known by the adversary)
- The private key sk cannot be deduced from pk.
- Publish pk by distributing it integerly.

CSC3631 Cryptography – Asymmetric Encryption I

25

Key Distribution

Simplified

Each party only needs to distribute pk

Important

Key distribution must be guaranteed to done with integrity!

CSC3631 Cryptography – Asymmetric Encryption I

28

28

Chosen-Plaintext Attack Security I

A secure cipher should produce ciphertext that is indistinguishable from random.

Written as a game with Adversary A.

Setup: Generate keypair (pk, sk)

Inputs to Adversary **A:** pk, $Enc_{ok}()$

A produces candidate messages m₁, m₂

Choose random bit b \leftarrow {0,1}

Give challenge ciphertext to A: c \leftarrow Enc_{pk}(m_b)

Outputs from A: a bit b'

Success criterion for **A:** if guess correct b'=b

CSC3631 Cryptography – Asymmetric Encryption I

30

Roadmap

- Asymmetric Encryption
- Chosen-Plaintext Attack Security
- Hybrid Encryption
- RSA Encryption
 - Textbook RSA
 - RSA with Padding

Goal for today:

- How to encrypt with asymmetric means?
- What are the nuts and bolts of RSA encryption?

CSC3631 Cryptography – Asymmetric Encryption I

- 2

Deterministic Public-Key Encryption

No deterministic encryption can be CPA-secure. Public-key encryption must be randomized.

Example (encryption of short messages):

CSC3631 Cryptography – Asymmetric Encryption I

32

32

Roadmap

- Asymmetric Encryption
- Chosen-Plaintext Attack Security
- Hybrid Encryption
- RSA Encryption
 - Textbook RSA
 - RSA with Padding

Goal for today:

- How to encrypt with asymmetric means?
- What are the nuts and bolts of RSA encryption?

CSC3631 Cryptography – Asymmetric Encryption I

33

33

Take-home Messages

- Key distribution must be authentic.
- Ciphertext indistinguishable from random.
- Deterministic public-key encryption insecure.
- Efficiency: Use hybrid encryption!

CSC3631 Cryptography – Asymmetric Encryption I

Roadmap

- Asymmetric Encryption
- Chosen-Plaintext Attack Security
- Hybrid Encryption
- RSA Encryption
 - Textbook RSA
 - RSA with Padding

Goal for today:

- How to encrypt with asymmetric means?
- What are the nuts and bolts of RSA encryption?

CSC3631 Cryptography – Asymmetric Encryption I

36

36

The RSA Assumption

Recall: What's the basis of the RSA crypto system?

Setup: (N, e, d) \leftarrow **GenRSA**(1ⁿ), where $e \cdot d = 1 \mod \varphi(N)$

Choose y from $(\mathbf{Z}_N)^*$

Input for Adversary **A**: N, e, y

Output of Adversary **A**: $x \text{ in } (\mathbf{Z}_N)^*$

Adversary A success: if $x^e = y \pmod{N}$

The RSA problem is **hard** relative to GenRSA if all probabilistic and polynomial-time adversaries **A** only have negligible success probability.

CSC3631 Cryptography – Asymmetric Encryption I

38

37

RSA Key Generation

How to create a strong setting for RSA?

 $GenRSA(1^n)$

Input: key length *n*

Generate two large n-bit **distinct primes** p and q

Compute $N = p \cdot q$

and

 $\boldsymbol{\varphi}(N) = (p-1) \cdot (q-1)$

Choose a random integer e, $gcd(e, \phi(N)) = 1$

Compute e's inverse d: $d \cdot e = 1 \pmod{\varphi(N)}$

Output: pk = (N, e), sk = (N, d)

CSC3631 Cryptography – Asymmetric Encryption I

Textbook RSA Encryption

KevGen: $pk=(N, e), sk=(N, d) \leftarrow GenRSA(1^n)$

Given pk=(N, e) and message m: Enc:

 $c = m^e \pmod{N}$

Given sk=(d, N) and ciphertext c: Dec:

> (mod N) $m = c^d$

CSC3631 Cryptography - Asymmetric

40

RSA Example

Primes: p = 2357, q = 2551

Composite modulus: $N = p \cdot q = 6012707$

 $\varphi(N) = 6007800$

Choose *e*: 3674911 Find *d*: 422191

 $e \cdot d = 1 \pmod{\varphi(N)}$: 3674911·422191 (mod 6007800)

m = 5234673

 $c = m^e \pmod{N} = 5234673^{3674911} \pmod{6012707}$

= 3650502

[Example from Menezes et al., Handbook of Applied Cryptography]

CSC3631 Cryptography - Asymmetric

Correctness

Need to show:

 $Dec_{sk}(Enc_{pk}(m)) = m$

Key: $gcd(e, \varphi(N)) = 1$ and $ed = 1 \pmod{\varphi(N)}$

 $c^d = (m^e)^d = m^{de \pmod{\phi(N)}} = m^{(1+k\phi(N))} = m^1 m^{k\phi(N)} = m$

CSC3631 Cryptography - Asymmetric

41

How Secure is Textbook RSA?

Textbook RSA is CPA-secure against active adversaries under the RSA assumption.

Textbook RSA is CPA-secure against eavesdroppers under the RSA assumption.

Textbook RSA is not secure at all, even if the RSA assumption holds.

Textbook RSA is not secure at all and not even a proper encryption.

> CSC3631 Cryptography - Asymmetric Encryption I

RSA as Pseudo-Random Trapdoor Permutation

GenRSA(1ⁿ) provides pk=(N, e), sk=(N, d)

Permutation $(\mathbf{Z}_N)^* \rightarrow (\mathbf{Z}_N)^*$:

 $y = x^e \pmod{N}$

Reverse lookup with trapdoor d:

 $y^d = x \pmod{N}$

Currently only known method to compute the eth root: **factoring N**, but no reduction is known and there is evidence that none exists.

CSC3631 Cryptography – Asymmetric

y – Asymmetric

44

Common Modulus Attack

Assume organization uses **common modulus** *N* for all employees.

Each employee receives key pair (pk=e, sk=d)What can go wrong?

CSC3631 Cryptography – Asymmetric

Encrypting with small e

Assume e chosen as 3

For small m, there's trouble. What can go wrong?

CSC3631 Cryptography – Asymmetric Encryption I

45

45

Mangling Ciphertexts

Example: Alice sends bid m=1000 in an auction.

 $c = m^e \pmod{N}$

ncryption I

Small Decryption Exponent

Small decryption exponent $d < N^{0.3}$

One can compute d from e and N

Choose decryption exponent d large enough: $d > N^{1/2}$

CSC3631 Cryptography – Asymmetric Encryption I

48

RSA with PKCS #1 v1.5 Padding

Idea: Prefix D-byte message m with random padding

Encryption:

Choose random byte-string r (k-D-3>8 bytes).

16 bit

Random padding r

m

 $(00000000||00000010||r||00000000||m)^e$ (mod N)

Decryption:

As usual, check that the padding is ok!

Believed to be a **CPA-secure encryption**, but no proof for that exists.

CSC3631 Cryptography – Asymmetric Encryption I

50

Roadmap

- Asymmetric Encryption
- Chosen-Plaintext Attack Security
- Hybrid Encryption
- RSA Encryption
 - Textbook RSA
 - RSA with Padding

Goal for today:

- How to encrypt with asymmetric means?
- What are the nuts and bolts of RSA encryption?

CSC3631 Cryptography – Asymmetric Encryption I

45

