Self-Assembly to create mesoporous materials

Micelles

Polymers

Liquid Crystals

Outline

- 1. What are they?
- 2. What are they useful for?
- 3. What are some of the theoretical aspects behind these materials?
- 4. How can we synthetize them?
- 5. What are the factors affecting their sizes, shapes and their existence?

What are mesoporous materials?

 Porous materials whose pores are between 2 and 50 nm in diameter.

 Silica based materials first synthesized by scientists at the Mobil Corporation in 1992.

 Non-silica mesoporous materials first reported at UC Santa Barbara in 1994.

Applications

Molecular sieves

High surface area catalysts

Gas sensors

Dye sensitized photovoltaic solar cells

Micelles

Mesoporous materials are templated by amphiphilic molecules.

- An amphiphillic molecule has a hydrophillic (water loving) head and a hydrophobic (water loathing) tail.
- Surfactant is an amphiphilic molecule with a tendency to adsorb onto free surfaces and interfaces and to aggregate to form micelles
- Micelle is an <u>association</u> of amphiphillic molecules.
- Mesoporous structures are created by the ordered packing of micelles.
- Small molecules M_w≈100-1000

Questions to be answered about micelles

What are amphiphylic molecules?

Why do micelles form?

What factors determine the shape and size of the micelles?

What determines their packing geometry?

What are their properties?

How can we used them?

Why do amphiphiles form micelles?

- Gibb's Free Energy (Δ G) is a thermodynamic quantity which predicts the spontaneity of a reaction. (A decrease in Gibb's Free Energy indicates a spontaneous reaction)
- Water molecules create structure by forming hydrogen bonds with one another.
- The hydrophobic tails of individual amphiphiles placed in solution force water molecules to associate in a particular way. This decreases the entropy (ΔS) of the system.
- When the hydrophobic tails associate to each other (form micelles) in order to minimize their interaction with water molecules they increase the entropy of the system.

$$\Delta G = \Delta H - T\Delta S$$

 An increase in entropy, decreases Gibb's Free Energy of the system therefore the reaction will occur spontaneously.

Shape of aggregates

Self assembled structures are rich in phases:

- response by changing size and shape and arrangement of micelles
- dramatic change in properties

Basic shapes:

- spheres
- cylinders
- bilayers
- vesicles

Superstructures:

- micellar crystals
- lamellar phases
- bicontinuous networks

- . . .

Packing Geometry of Aggregates:

Attaining the desired Self-Assembled Structures considering Physico-Chemical aspects

Effect of surfactant concentration

Surfactant conc \uparrow : lower hydration of head groups $\rightarrow R = \frac{v}{a_0 l_c}$

lower $a_0 \rightarrow higher R \rightarrow lamellar structure$

Effect of surfactant chain length

If l_c increases, v increases, however if R increases too much, spherical \rightarrow lamellar

Effect of co-solvent

- Polar solvents, like alcohols, tend to associate with head groups and reduce the tendency for the surfactant molecules to associate; CM may disappear,
- Non-polar solvents associate with hydrophobic chains of the surfactant increase $v \rightarrow increase R \rightarrow less curved structures$

Effect of salts and ionic species

On ionic surfactants, reduces repulsive energy between head groups, reducing $a_0 \rightarrow larger$ $R \rightarrow less curved structures$

Shape of the Aggregates: Optimum head group area (1), a_0

Factors determining the shape

- i) Optimum head group are, a_0
- ii) Critical chain length, I_c
- iii) Hydrocarbon volume, v

v - volume of the tail# of tails, side groups, ...

Shape of the Aggregates: Optimum head group area (2), a_0

a₀ controlled by

repulsive forces:
electrostatic or steric repulsion
(can be altered by e.g
salt concentration)

attractive forces: protecting the tail

Shape of aggregates:

Volume considerations

Spheres - smallest area/volume

Volume:

$$4\pi r^3/3=Nv$$

(N is the # of molecules in aggregate)

Surface area:

$$4\pi r^2 = N a_0$$

$$4\pi r^2 = 3 Nv/r$$

$$-> r = 3v/a_0$$

but
$$r_{\text{max}} \le I_c$$

Fig. 4.4. Schematic diagram of a micelle

 $v/l_c a_0 \le 1/3$ for spherical micells

What determines the shape of the aggregates (1)?

Diagrams compiled from work by Brian Eggiman and Soler-Illia et al, "Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures", Chem. Rev. 2002, 102, 4093-4138.

What determines the shape of the aggregates (2)?

Spheres: $v/l_c a_0 \le 1/3$

Cylinders: $1/3 \le v/l_c a_0 \le \frac{1}{2}$

Bilayer: $v/l_c a_0 > 1/2$

Fig. 5.4. Three possible morphologies, with their curvature. (a) Sphere, curvature 1/R + 1/R = 2/R. (b) Cylinder, curvature 1/R + 0 = 1/R. (c) Bilayer, zero curvature

What determines the shape of the aggregates (3)?

Geometric packing parameter (shape factor)

v = hydrocarbon chain volume

 a_0 = optimal head group area

l_c = critical chain length

$$R = \frac{v}{a_0 l_c}$$

R	< 0.5	> 0.5	>1
structure	spherical- cylindrical	bilayers	inverse micelle

Packing Geometry

FIGURE 2.5. Relationship between the bilayer structures and the packing parameters (shape

Area a

Volume V

Major driving forces for amphiphyles to form well-defined aggregates are:

factors) (reproduced and adapted from Ref. 17 with permission from Academic Press).

- hydrophobic attraction at hydrocarbon-water interfaces and
- hydrophilic ionic or steric repulsion between head groups.

Structure, also depends on:

Surfactant characteristics

Head group charge, head group size, chain length, pH & ionic strentgth

Cationic:

- long chain amines or ammonium salts are positively charges at pH<7,
- not charged at pH >7, then not active
- quaternary ammonium salts are charged and active at all pH's

Anionic:

- Long chain carboxylic or sulfonic acids, are negatively charges at pH > 7,
- (at pH < 7 not ionized, not active)

Non-Ionic surfactants:

• have the advantage in that pH, counter ions, or solvents do not affect their activity

Surfactant Activity fo ionic ones, depends on:

- pH, ionic strength of the solution
- Counter ions neutralize charges on surfactant head groups, and even cause its precipitation.

Temperature Effects

- (a) Gas (dispersed) → Liquid (condensed)under Van der Waals attraction forces
- (b) Polymer gels (dispersed) → Collapsed polymer gel (condensed)
 under rubber elasticity (entropy change), counter ions osmotic pressure, and electrostatic repulsive forces
- (c) Colloidal particles (dispersed) →
 self-assembled colloidal crystals and
 super lattice structures
- (d) Surfactant packing transition cubic, hexagonal, lamellar, solid

FIGURE 2.4. Phase diagrams of several systems showing the transition from dispersed states to condensed states. (a) Gas-liquid phase transition. (b) Swelling-deswelling in polymer gets. (c) Consolidation of colloidal crystals. (d) Surfactant phase diagrams, In Fig. 2.4(d) M, C, H, L, S represent micelles, cubic phase, hexagonal phase, lamellar phase, and solid phase respectively. Figures 2.4(a) and (b) are redrawn after Refs. 9, 10. Figure 2.4(c) is redrawn after Ref. 13. Figure 2.4(d) is redrawn after Ref. 16.

Self-Assembled Structures vs. Temperature

Surfactant concentration effects

keeping constant other variables

FIGURE 2.6. Schematic phase diagrams of surfactant-water-oil systems, 1. Spherical micelles, 2. Rod-like micelles, 3. Irregular bicontinuous phase, 4. Reverse cylindrical micelles, 5. Reverse micelles, 6. Hexagonal phase, 7. Cubic phase, 8. Lamellar phase, 9. Reverse cubic phase, 10. Reverse bexagonal phase (Derived from Refs, 18 and 19 with permissions from the publishers).

Increase Surfactant Conc.: spherical micelles → **rod-like micelles** → **cubic** → **lamellar**

Packing Geometry: Attaining the Desired Self-Assembled Structures

FIGURE 2.7. Phase structures as a function of external conditions.

Structure, also depends on:

Critical Micelle Concentration

Micelles are formed at the critical micelle concentration (CMC) and at that concentration some of the properties have an inflection point:

- Surface tension
- Conductivity
- Turbidity

Critical Micelle Concentration

Fig. 1. A plot of viscosity for micellar solutions of the water/ C_{16} SE/LA system at 30 °C against shear rate at various weight fractions of LA in total amphiphiles (W_1) is shown. Weight fraction of water in the whole system is fixed at 0.9. Sucrose monopalmitate (C_{16} SE lauric acid (LA)

Sizes

Micelle size:

Aggregation number:

Ionic surfactants $z_A = 10-170$

Nonionic surfactants $z_A = 30-10.000$

Critical micelle concentrations (CMC):

cmc of ionic surfactants is generally higher compared to nonionic surfactants lonic surfactants cmc = 10-3 - 10-2 M

Nonionic surfactants cmc = 10-4 - 10-3 M

Chemical Communications Issue 26, 2013

Switchable viscosity triggered by CO₂ using smart worm-like micelles <u>†</u> Xin Su,^a Michael F. Cunningham*^{ab} and Philip G. Jessop*^a

Abstract

We report two CO₂-responsive aqueous solutions having switchable viscosity. The solution of sodium octadecyl sulfate and 2-(dimethylamino)ethanol forms viscoelastic worm-like micelles in the presence of CO₂ but not in its absence at 60 °C. Another solution of sodium stearate and sodium nitrate has high viscosity only if CO₂ is absent.

Chemistry, Medicine

Published in Journal of the American Chemical Society 2006 DOI: 10.1021/ja060021e

Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating.

Tanner S Davies, Aimee M. Ketner, Srinivasa R. Raghavan

Unilamellar vesicles are observed to form in aqueous solutions of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), when 5-methyl salicylic acid (5mS) is added at slightly larger than equimolar concentrations. When these vesicles are heated above a critical temperature, they transform into long, flexible wormlike micelles. In this process, the solutions switch from low-viscosity, Newtonian fluids to viscoelastic, shear-thinning fluids having much larger zero-shear viscosities

Self Assembly

- Self-assembly is the fundamental principle
 which generates structural organization on all
 scales from molecules to galaxies. It is defined
 as reversible processes in which pre-existing
 parts or disordered components of a preexisting
 system form structures of patterns. Self assembly can be classified as either static or
 dynamic.
- http://en.wikipedia.org/wiki/Self-assembly

Molecular Self-Assembly

- Molecular self-assembly is the assembly of molecules without guidance or management from an outside source. There are two types of self-assembly, intramolecular self-assembly and intermolecular self-assembly, although in some books and articles the term self-assembly refers only to intermolecular self-assembly.
- Intramolecular self-assembling molecules are often complex <u>polymers</u> with the ability to assemble from the <u>random coil</u> conformation into a well-defined stable structure (secondary and tertiary structure). An example of intramolecular self-assembly is <u>protein folding</u>.
- Intermolecular self-assembly is the ability of molecules to form
 <u>supramolecular assemblies</u> (quarternary structure). A simple example is the
 formation of a <u>micelle</u> by <u>surfactant</u> molecules in solution.

Self Assembled Monolayers

- SAMs Self Assembled Monolayers
 - Alkane Thiol complexes on gold
 - C10 or longer, functionalized end groups
- Can build multilayer / complex structures
- Used for creating biosensors
 - Link bioactive molecules into a scaffold
- The first cells on earth formed from SAMs

Langmuir-Blodgett Films

- Definition of LB films
 - History and development
- Construction with LB films
- Building simple LB SAMs
- Nano applications of LB films
 - Surface derivatized nanoparticles
 - Functionalized coatings in LB films

Langmuir-Blodgett Films

- A Langmuir-Blodgett film contains of one or more monolayers of an organic material, deposited from the surface of a liquid onto a solid by immersing (or emersing) the solid substrate into (or from) the liquid.
- A monolayer is added with each immersion or emersion step, thus films with very accurate thickness can be formed.
- Langmuir Blodgett films are named after <u>Irving Langmuir</u> and <u>Katherine</u> <u>Blodgett</u>, who invented this technique.
- An alternative technique of creating single monolayers on surfaces is that of self-assembled monolayers.

Langmuir-Blodgett Films

http://www.bio21.bas.bg/ibf/PhysChem_dept.html

http://www.ksvltd.com/pix/keywords html m4b17b42d.jpg

Deposition of Langmuir-Blodgett molecular assemblies of lipids on solid substrates.

SAM Technology Platform

- SAM reagents are used for electrochemical, optical and other detection systems. Self-Assembled Monolayers (SAMs) are unidirectional layers formed on a solid surface by spontaneous organization of molecules.
- Using functionally derivatized C10 monolayer, surfaces can be prepared with active chemistry for binding analytes.

An example of Self-Assembly Process

A schematic of SAM (n-alkanethiol $CH_3(CH_2)_nSH$ molecules) formation on a Au(111) sample.

The self-assembly process. An *n*-alkane thiol is added to an ethanol solution (0.001 M). A gold (111) surface is immersed in the solution and the self-assembled structure rapidly evolves. A properly assembled monolayer on gold (111) typically exhibits a lattice.

Co-Assembly of Liquid Structures and Inorganic Materials

Self-assembled liquid crystals from surfactants act as a **template** to support the growth of ceramic materials. These ordered structures are cross-linked together through the condensation of the aluminosilicate ions. Subsequently, the surfactant molecules can be removed by thermal or chemical treatment without collapsing the ordered structure (2-50 nm tunable).

Self-assembled periodic structures can be further used as a structural frame work to develop new materials:

- 1. by incorporating functional molecules and active sites into the porous channels (e.g. nanoporous silica)
- 2. by using the periodic nanoporous structures as a template (e.g. for carbon or metals)
- 3. by physically confining a new material in the organized nanostructures.

Co-Assembly of Liquid Structures and Inorganic Materials

Interactions between cationic surfactants and Anionic Silicates

Mesoporous materials: mixing aluminosilicate precursors (e.g. sodium aluminate, tetramethyl ammonium silicate, and silica) in a surfactant solution (e.g. ≥ 1 wt% cetyltrimethyl ammonium bromide (CTAB))

Inorganic ions play an important role in the self assembly process

FIGURE 2.11. Liquid crystaline templating mechanisms initially suggested for the formation of ordered nanoscale materials (redrawn after Ref. 23).

Particles

Electrostatic Stabilization

Steric Stabilization

In-Situ Generation of Nanophases

TEOS Hydrolysis/condensation

Sol-gel derived silicon oxide networks

- Acid-catalyzed
 - yield primarily linear or randomly branched polymer

- Base-catalyzed
 - yield highly branched clusters

Lotus Effect

Rainwater cleans lotus leaves because of their bumpy surface.

Abramzon, et al., Chemistry & Life (1982) Barthlott et al., Annals of Botany (1997)

Nano-Structuring Methods

Figure 2. SEM image of self-cleaning surfaces with different structure size

Nun, Oles, & Schleich, Macromol. Symp., 187, 677-682 (2002)

"Nanostructured superhydrophobic surfaces", H. M. Shang, Y. Wang, K. Takahashi, G. Z. Cao, D. Li, and Y. N. Xia, J. Mater. Sci., 40, 3587, 2005

Homework 4

Read, make a 200 word Abstract and propose a method to produce the surface indicated in the paper

Transformation of a Simple Plastic into a

Superhydrophobic Surface H. Yıldırım Erbil<u>1,*</u>A. Levent

Demirel2,*Yonca Avcı1, Olcay Mert1

Science 28 Feb 2003:

Vol. 299, Issue 5611, pp. 1377-1380

DOI: 10.1126/science.1078365

Abstract

Superhydrophobic surfaces are generally made by controlling the surface chemistry and surface roughness of various expensive materials, which are then applied by means of complex time-consuming processes. We describe a simple and inexpensive method for forming a superhydrophobic coating using polypropylene (a simple polymer) and a suitable selection of solvents and temperature to control the surface roughness. The resulting gel-like porous coating has a water contact angle of 160°. The method can be applied to a variety of surfaces as long as the solvent mixture does not dissolve the underlying material.

Homework

Langmuir-Blodgett Trough Tutorial - Part I: Introduction https://www.youtube.com/watch?v=9Sm8MvIYINg

Langmuir-Blodgett Trough Tutorial - Part II: Cleaning and preparation https://www.youtube.com/watch?v=XEjdjtSkylU

Langmuir-Blodgett Trough Tutorial - Part III: Monolayer formation and taking an isotherm

https://www.youtube.com/watch?v=orV-xtM4lxl

Langmuir-Blodgett Trough Tutorial - Part IV: Deposition of a monolayer https://www.youtube.com/watch?v=NQ6H3ys6-_o

Uses

- As small chemical reactor to obtain:
 - zero dimension nanoparticles
- As templates to create stable mesoporous materials
 - Molecular sieves
 - High surface area catalysts
 - Gas sensors
 - Dye sensitized photovoltaic solar cells
 - Nanotubes

May you want to know more, this

ANNEX 1

is for you

Methods of Measuring Surface Tension

Method	Pure Liquids	Solutions
Wilhelmy Plate	quick and easy to operate	Good, suitable when ageing occurs
Du Nuöy Ring	Satisfactory	n/a
Sessile Drop	Very Good	Good when surface ageing occurs
Drop Weight	Suitable	Poor when surface ageing occurs
Capillary Height	Very Good	n/a if θ≠0
Bubble pressure	Very Good	Good when ageing occurs

https://www.slideshare.net/AfaqWajid/surface-tension-52462596/6

In Our Library

Digital

Contenido

Buscar en

Mis notas

Colloidal Particles at Liquid Interfaces

Autor: Horozov, Tommy S., Binks, Bernard P.

Fecha: 2006

Registro detallado

Permisos del editor:

Imprimir/Enviar por correo electrónico/Guardar 100 páginas Copiar/Pegar ilimitado Descarga sin restricciones

Disponibilidad de libros electrónicos:

Copias ilimitadas disponibles

Portada

- Half-title
- Dedication
- Title
- Copyright
- Contents
- Preface
- List of Contributors
- 1 Colloidal Particles at Liquid Interfaces: An Introduction
 - 1.1 Some Basic Concepts
 - Mostrar nivel 1.2 Single Particle at a Fluid Interface
 - 1.3 Particle Monolayers at Horizontal and Vertical Liquid Interfaces
 - 1.4 Thin Liquid Films with Particle Monolayers at Their Surfaces
 - Mostrar nivel 1.5 Particle-Stabilised Curved Liquid—Liquid Interfaces **Including Emulsions**
 - 1.6 Particle-Stabilised Bubbles and Foams
 - Acknowledgements
 - References
- Particles at Planar Liquid Interfaces
- Particles at Curved Liquid Interfaces
- Index

Printed (Quéretaro)

Interfaces, Surfactants and Colloids in Engineering

Editors

H.-J. Jacobasch

Book

Wiley Online Library

Access by ITESM Campus Leon

Search

Journal of Polymer Science Part C: Polymer Symposia

Article

Time-temperature superposition in ultimate behavior of heterogeneous gels with varying microstructure

M. Raab, Z. Pelzbauer, J. Janáček, M. Štol

First published:1972 | https://doi.org/10.1002/polc.5070380118 | Citations: 2

Abstract

If water is present in a volume concentration higher than about 0.5 during the crosslinking copolymerization of poly(2-hydroxyethyl methacrylate), porous <a href="https://net.org/net

Journal of the Korean Ceramic Society Vol. 56, No. 3, pp. 211–232, 2019. https://doi.org/10.4191/kcers.2019.56.3.02

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

Ik Jin Kim[©] **, Jung Gyu Park*, Young Han Han**, Suk Young Kim***, and James F. Shackelford****

*Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, Seosan 31962, Korea

**Department of Materials Science and Engineering, Wuhan University of Technology, Hubei 430070, China
***Department of Materials Science and Engineering, Yeungnam University, Gyeongsan 3841, Korea
****Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
(Received March 4, 2019; Revised March 21, 2019; Accepted April 1, 2019)

ABSTRACT

Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal amas, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 µm to 570 µm and the porosity within the range from 70% to 85%.

Key words: Colloidal suspension, Surfactants, Wet foam stability, Direct foaming, Porous ceramics

https://onlinelibrary.wiley.com/doi/abs/10.1002/polc.5070380118

https://e-sciencecentral.org/upload/jkcs/pdf/kcers-2019-56-3-02.pdf

Critical Micelle Concentration

 ϕ volume fraction of amphiphile

$$\phi < \phi_c$$
 monomers

$$\phi > \phi_c$$
 micelles of average size M

$$X_M = M \left[X_1 \exp \left(\frac{\Delta \varepsilon}{k_B T} \right) \right]^M \qquad \Delta \varepsilon = \varepsilon_1 - \varepsilon_M$$

$$\phi_c = \exp(-\Delta \varepsilon / k_B T)$$
 (CMC)

Polymers

Condensation

O
$$C - (CH_2)_4 - C$$
 O $C - (CH_2)_4 - C$ O $C - (CH_2)_6 - N$ O $C - ($

chain initiation

chain propagation

$$R - \overset{H}{C} = \overset{H}{C} + \overset{H}{C} = \overset{H}{C} \longrightarrow R - \overset{H}{C} + \overset{H}{C$$

chain termination

Figure 7.11.3: The crystalline parts of this polymer are shown in blue

branched homopolymer

graft copolymer

Self-assembled Block Copolymer Nanostructures

- ✓ Block copolymers are amphiphilic molecules containing distinctively different polymer segments (blocks):
 - polystyrene and poly isoprene block copolymer
 - polystyrene and poly butadiene block copolymer
 - polyethylene and poly propylene block copolymer
- **✓** Different blocks in a single polymer chain are covalently bonded.
- ✓ The phase separation occurs on the nanometric scale, as determined by the dimension of the blocks.
- ✓ Factors: monomer type, composition and molecular size, and molecular configuration.

2.5 Self-assembled Block Copolymer Nanostructures

Flory-Huggins segment-segment interaction parameter χ :

$$\chi = \frac{E_{AB} - 1/2(E_{AA} + E_{BB})}{k_B T}$$

 $\chi\rangle 0$ phase separation is favored

E: Interaction Energy

f = **volume fraction**

 $f_A = f_B \longrightarrow straight cylinder \longrightarrow lamellar phase$

 $f_A > f_B$ \rightarrow cone structure \rightarrow B phase dispersed in A phase as spherical micelles

 $f_B > f_A$ \rightarrow cone structure \rightarrow A phase dispersed in B phase as spherical micelles