### Multiscale 3D Feature Extraction and Matching

Hadi Fadaifard and George Wolberg

Graduate Center, City University of New York

May 18, 2011

#### Overview

- We present a scale-space based surface representation useful for shape matching
- The representation is
  - insensitive to noise
  - · computationally efficient
  - capable of automatic scale selection
- We refer to our representation as Curvature Scale Space 3D (CS3).

#### Motivation:



Figure: Blob detection with automatic scale selection (Lindeberg, '94).

### Motivation—SIFT → AutoStitch, Photosynth, etc





# Scale Space Representation of Surface Signals (Continuous)

• Scale-space representation,  $F: \mathcal{M} \times \mathbb{R} \to \mathbb{R}^n$ , of signal  $f: \mathcal{M} \to \mathbb{R}^n$  on surface  $\mathcal{M}$  is defined as the solution to the heat (diffusion) equation

$$\frac{\partial}{\partial t}F(\mathbf{x};t) = \Delta_{\mathcal{M}}F(\mathbf{x};t) , \qquad (1)$$

with the initial condition  $F(\mathbf{x}; 0) = f(\mathbf{x})$ .

ullet  $\Delta_{\mathcal{M}}$  is the Laplace-Beltrami operator



### Scale Space Representation of Surface Signals (Discrete)

- Surface is represented by polygonal mesh  $\mathcal{M} = (\mathcal{V}, \mathcal{E})$ , where
  - $\mathcal{V} = \{v_1, \dots, v_N\}$  is the vertex set
  - $m{\epsilon} \in \{e_{ij}|v_i ext{ is connected to } v_j\}$  is the edge set
- Let  $f: \mathcal{V} \to \mathbb{R}^n$  denote the initial signal on  $\mathcal{M}$ .
- Let

$$\mathbf{f} = \begin{pmatrix} f(v_1) & \dots & f(v_N) \end{pmatrix}^\top . \tag{2}$$

 The solution to the heat equation can be estimated using the backward Euler method

$$(\mathbf{I} - \lambda \mathbf{L})\mathbf{f}^{\lambda} = \mathbf{f} , \qquad (3)$$

where

- $\lambda$  is a time step,
- vector  $\mathbf{f}^{\lambda}$  contains the signal values at time  $\lambda$ ,
- I is the  $N \times N$  identity matrix, and  $\mathbf{L} = (w_{ij})_{N \times N}$  is the Laplacian matrix with elements

$$w_{ij} = \left\{ egin{array}{ll} -1 & ext{for } i = j \; , \ rac{1}{|\mathcal{N}(i)|} & ext{for } j \in \mathcal{N}(i) \; , \ 0 & ext{otherwise}. \end{array} 
ight.$$

# Scale Space Representation of Surface Signals (3)

#### Advantages:

Equation

$$(\mathbf{I} - \lambda \mathbf{L})\mathbf{f}^{\lambda} = \mathbf{f}^{0} , \qquad (5)$$

is sparse and can be solved efficiently using the Conjugate Gradient Method.

#### Disadvantages:

- What is the relation between  $\lambda$  and the time parameter t in the original heat equation?
- The resulting transfer function of Eq. (5) is

$$h(\omega) = (1 + \lambda \omega^2)^{-1} , \qquad (6)$$

where  $\omega$  denotes surface signal frequency (Desbrun, '99).

• However, to be consistent with the scale-space representation of signals in  $\mathbb{R}^n$ , we desire the transfer function to be a Gaussian.

# Scale Space Representation of Surface Signals (4)

• The scale-space representation of the surface signal  $\mathbf{f}$  is then given by the sequence  $(\mathbf{F}^0, \dots, \mathbf{F}^{L-1})$ , which is obtained iteratively using

$$\mathbf{F}' = \begin{cases} (\mathbf{I} - \lambda_{l-1} \mathbf{L})^{-1} \mathbf{F}^{l-1} & \text{if } l > 0\\ \mathbf{f} & \text{if } l = 0 \end{cases}, \tag{7}$$

where  $(\lambda_0, \dots, \lambda_{L-1})$  denotes a sequence of time steps used at intermediate levels  $l = 0, \dots, L-1$ .

• Transfer function of  $\mathbf{F}^0 \to \mathbf{F}^L$  is

$$h_L(\omega) = \prod_{l=0}^{L-1} (1 + \lambda_l \omega^2)^{-1} ,$$
 (8)

which approaches a Gaussian as L grows (central limit theorem).

# Scale Space Representation of Surface Signals (5)



Figure:  $h_L(\omega)$  at L=1 (red) and L=5 (blue).

 We define the scale parameter at level L as the inverse of variance of the transfer function at L:

$$t_L = \frac{\int_{-\infty}^{\infty} \left( \prod_{l=0}^{L-1} (1 + \lambda_l \omega^2)^{-1} \right) d\omega}{\int_{-\infty}^{\infty} \left( \omega^2 \prod_{l=0}^{L-1} (1 + \lambda_l \omega^2)^{-1} \right) d\omega}$$
(9)

### Curvature Scale Space 3D (CS3)

• Curvature Scale Space 3D (CS3) of surface  $\mathcal{M}$  is defined as the scale-space representation of the *surface* (*mean*) *curvatures*.



Figure: The CS3 representation of the Bimba model shown in (a), at scales (b) t = 3.0, (c) t = 7.5, (d) t = 13.8.

### Feature Extraction using CS3

We introduce the scale-invariant Laplacian of Curvatures (si-LoC) as

$$\Delta^{si}\mathbf{F}^{l} = \frac{\Delta\mathbf{F}^{l} - \bar{\mathbf{F}}^{l}}{\sigma_{l}} , \qquad (10)$$

where

$$\Delta \mathbf{F}^{I} = \frac{2(\mathbf{F}^{I+1} - \mathbf{F}^{I})}{t_{I+1} - t_{I}} \ . \tag{11}$$

and

$$\bar{\mathbf{F}}^I = \frac{1}{N} \mathbf{1}^{\top} \Delta \mathbf{F}^I \mathbf{1}, \quad \sigma_I = \frac{1}{\sqrt{N}} \|\Delta \mathbf{F}^I - \bar{\mathbf{F}}^I\|,$$
 (12)

denote the vector-form mean, and standard deviation of the LoC values at level *I*, respectively;

 N is the total number of vertices in M, and 1 is an N-dimensional vector of all 1's.

# Feature Extraction using CS3 (2)



Extracted features on the Bimba model at t=21.7; the false-colors in (b) reflect the response of the  $\Delta^{si}$  at each vertex on the model.

# Feature Extraction using CS3 (3)



Extracted features on a noisy (80% Gaussian) version of the model at t=21.7

# Feature Extraction using CS3 (4)



Slippage of keypoints due to noise.

# Feature Extraction using CS3 (5)

#### Displacement statistics:

| min   | max   | avg.  | std.  | avg. edge len | avg. disp. (nbrsz) |
|-------|-------|-------|-------|---------------|--------------------|
| 0.000 | 0.127 | 0.023 | 0.022 | 0.0057        | 4.044              |

159 keypoints on noiseless mesh 166 keypoints on noisy mesh

# Feature Extraction using CS3 (6)



Figure: Plots of the *scale-invariant* LoC values of a few vertices on the Bimba model

# Feature Extraction using CS3 (7)



Figure: Comparison of scale-invariant LoC curves of the Bimba model with different spatial scales

#### Feature Extraction with Auto. Scale Selection



Figure: Automatic scale selection on the Caesar model. (a) Original model. (b) Estimated scales at a few locations on the model. (c) Plots of the scale-normalized Laplacian of the surface mean curvatures at the selected vertices as functions of scale; the locations of the filled squares on the scale-axis indicate the detected scale for the keypoints.

The radii of the blue spheres are drawn proportional to the detected scales at the extracted keypoints.

# Feature Extraction with Auto. Scale Selection (2)



Figure: Automatic scale selection on the Bimba model. (a) Original model; (b) estimated scales at a few locations on the model.

### Application: Surface Registration



# Application: Surface Registration Results



# Application: 3D Face Extraction/Recognition



Sample inputs to our face extraction/recognition system

### Application: 3D Face Extraction



- Performance of our extraction system was tested on a set of 1068 models.
- The correct extraction rate of the system was 92.13%.
- The extraction time on a model with 113.4K vertices was 180secs on a 2.4 GHz CPU.

### 3D Face Recognition

#### Face Recognition:

- Input: database of 3D faces with known classes + a query model
- Output: determine to which class the query belongs



Examples of 3D faces used in our 3D face recognition system

#### GavabDB Dataset

- Contains 3D face scans of 61 individuals (used 7 scans per individual—total of 427 scans)
- Contains the following poses/expressions:
  - 1 scan looking up,
  - 1 scan looking down,
  - 2 frontal scans,
  - 1 scan with random gesture,
  - 1 scan with laughter,
  - 1 scan with smile.

# Comparison of Results with Other Works (GavabDB)

| Pose           | This Work | Mahoor '09 | Berretti '07 |  |
|----------------|-----------|------------|--------------|--|
| Frontal        | 95.08%    | 95.0%      | 94%          |  |
| Smile          | 93.44%    | 83.6%      | 85%          |  |
| Laughter       | 80.33%    | 68.9%      | 81%          |  |
| Random gesture | 78.69%    | 63.4%      | 77%          |  |
| Looking down   | 88.52%    | 85.3%      | 80%          |  |
| Looking up     | 85.25%    | 88.6%      | 79%          |  |
| Overall        | 86.89%    | 82.83%     | 84.29%       |  |

| Approach     | Controlled | Non-controlled |
|--------------|------------|----------------|
| This work    | 98.36%     | 96.02%         |
| Moreno (PCA) | 82.00%     | 76.20%         |
| Moreno (SVM) | 90.16%     | 77.90%         |

#### Future Work

- Improve the performance of the face extraction system (92.13% accuracy).
- Test the performance of the CS3 representation in a 3D face recognition system (more extensive tests).