1.44/2

0.25/2

13	16	The diagram shows triangles ABC and ABD with
	С	AD parallel to BC. The sides AC and BD
		intersect at Y. The point X lies on AB such that
		XY is parallel to AD and BC.

- (i) Prove that $\triangle ABC$ is similar to $\triangle AXY$.
- (ii) Hence, or otherwise, prove that

$$\frac{1}{XY} = \frac{1}{AD} + \frac{1}{BC}$$

 $\frac{D}{ABC}$ similar to ΔAXY , State Mean:

(i) D

In \triangle s *ABC*, *AXY*:

 $\angle A$ is common

$$\angle AXY = \angle ABC \text{ (corr } \angle s, XY \mid\mid BC)$$

 $\therefore \triangle ABC$ similar to $\triangle AXY$

(equiangular)

(ii) As $\triangle ABC$ similar to $\triangle AXY$,

$$\frac{XY}{BC} = \frac{AX}{AB}$$

 $\therefore AX = \frac{XY.AB}{BC} \qquad 1$

(matching sides of sim Δs in propⁿ)

Similarly, $\triangle BXY$ is similar to $\triangle BAD$ (equiangular)

$$\therefore \frac{XY}{AD} = \frac{XB}{AB}$$

$$\therefore XB = \frac{XY.AB}{AD} \qquad 2$$

Now as AX + XB = AB,

2 + 1:

$$AB = \frac{XY.AB}{AD} + \frac{XY.AB}{BC}$$

Divide through by XY.AB:

$$\therefore \ \frac{1}{XY} = \frac{1}{AD} + \frac{1}{BC}.$$

Board of Studies: Notes from the Marking Centre

Most candidates gained full marks.

A common problem was not giving a final reason (ie the test) for the similarity.

(ii) Many candidates identified the correct ratios of sides for similar triangles.

A common problem was not seeing connection with the ratio of sides involving XY in both triangles ABD and ABC.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies