

SAMSUNG Al Center

Pairwise Augmented GANs with Adversarial Reconstruction Loss

Aibek Alanov 1,2,3,* , Max Kochurov 1,3,* , Daniil Yashkov 5 , Dmitry Vetrov 2,3,4

¹Samsung AI Center in Moscow

²National Research University Higher School of Economics

³Skolkovo Institute of Science and Technology

⁴Joint Samsung-HSE lab

⁵FRC "Informatics and Management" of the Russian Academy of Sciences

December 5, 2018

Contents

GANs

Generative Adversarial Networks (GANs)

Standard Reconstruction Losses

Introducing Encoder Part Reconstruction Loss Drawbacks of Standard Losses

Pairwise Augmented GANs

Augmentation Function
Discriminator on Pairs
Matching Encoder to Prior

Experiment Results

Samples and Reconstructions Reconstruction Inception Dissimilarity Ablation Study Choice of Augmentation

Conclusion

Generative Adversarial Networks (GANs)

Input: x_1, \ldots, x_n - real samples from $p^*(x)$

GAN:

- generator $G_{\theta}: z \to x, \ z \sim p(z)$ samples objects from a noise
- discriminator $D_{\psi}: extit{x}
 ightarrow [0,1]$ classifies real objects from generated ones

Goal: match the generator's distribution $p_{\theta}(x)$ to $p^*(x)$

Discriminator's objective:

$$\mathbb{E}_{p^*(x)} \log D_{\psi}(x) + \mathbb{E}_{p(z)} \log (1 - D_{\psi}(G_{\theta}(z))) \quad o \quad \max_{\psi}$$

Generator's objective:

$$\mathbb{E}_{p(z)} \log D_{\psi}(G_{\theta}(z)) \quad o \quad \max_{\theta}$$

GAN Advantages

The idea of adversarial learning is very fruitful:

- To date, there are more than 500 different GAN models¹
- Many applications in computer vision
- Around 6000 cites to the original paper of Goodfellow et al.

¹https://github.com/hindupuravinash/the-gan-zoo

GAN Advantages

GAN generates **high quality** images

GAN Drawbacks

It is hard to train:

- training process can be unstable
- there is no stopping criteria except for a visual judgement

GAN Drawbacks

Mode collapsing problem:

· generator samples only a small subset of training dataset

GAN Drawbacks

There is no **inverse mapping**:

- there is no encoder which maps the generated image to the corresponding noise vector
- such auto-encoding property has many applications, e.g. image editing, image inpainting, etc.

Introducing Encoder Part

Encoder $E_{\varphi}: x \to z$ maps input image to the corresponding latent vector.

Objective for the encoder: to have good reconstructions, i.e.,

$$G_{\theta}(E_{\varphi}(x)) \approx x$$

Reconstruction Loss

Standard reconstruction losses:

- $||x y||_2^2$ L_2 loss;
- $||x y||_1^2 L_1$ loss;
- $\|\Phi(x) \Phi(y)\|_2^2$ perceptual loss where $\Phi(\cdot)$ is the output of intermediate layers of a pretrained network (e.g. VGG)

Many bidirectional GANs use them:

- AGE.
- α-GANs,
- Cycle-GANs,
- ALICE,
- MINE,
- SVAE

Drawbacks of Standard Losses

Figure: First column is original, second is augmentation

Drawbacks of Standard Losses

Blur	Pad + crop
0.21	0.4
0.074	0.26
2.24	3.52
9.02	13.79
	0.21 0.074 2.24

Drawbacks of L_1 and L_2

- The space of pixels is very noisy and does not capture the perceptual similarity of images
- L₁ and L₂ encourage the exact coincidence of images rather than a content-wise similarity
- L₁ and L₂ enforce auto-encoding model to recover too many unnecessary details of the source object

Drawbacks of Perceptual Loss

- The choice of intermediate layers and their weights is heuristic
- First layers have the same problems as L_1 and L_2 , deep layers lose local details of the image
- Necessity of an additional pretrained network

Augmentation Function

An augmentation function $a(\cdot): x \to y$ is a stochastic transformation of input image

Examples:

- Gaussian blur;
- contrast;
- combination of padding and random crop

Figure: Original, Blur, Contrast, Pad+Crop

Conditional Distributions

Mappings $G_{\theta}(z)$, $E_{\varphi}(x)$ and a(x) induce the following conditional distributions:

- $p_{\theta}(x|z)$ over outputs of the generator $G_{\theta}(z)$ given z;
- $q_{\varphi}(z|x)$ over outputs of the encoder $E_{\varphi}(x)$ given x;
- r(y|x) over the augmentations a(x) given a source object x.

Discriminator on Pairs

Two classes of pairs:

- real class: (x, y) from $p^*(x)r(y|x)$, i.e., x is real, y = a(x) is its augmentation;
- fake class: (x, y) from $p^*(x)p_{\theta,\varphi}(y|x) = p^*(x)\int p_{\theta}(y|z)q_{\varphi}(z|x)dz$, i.e., x is real, $y = G_{\theta}(E_{\varphi}(x))$ is its reconstruction

Figure: Left - real pair, right - fake pair

Discriminator on Pairs

Discriminator $D_{\tau}(x, y)$ classifies mentioned two classes of pairs.

Discriminator's objective:

$$\mathbb{E}_{\rho^*(x)r(y|x)}\log D_\tau(x,y) + \mathbb{E}_{\rho^*(x)p_{\theta,\varphi}(y|x)}\log(1-D_\tau(x,y)) \to \max_\tau$$

Generator's objective:

$$\mathbb{E}_{p^*(x)p_{\theta,\varphi}(y|x)}\log D_{\tau}(x,y) \quad o \quad \max_{\theta}$$

Encoder's objective:

$$\mathbb{E}_{p^*(x)p_{\theta,\varphi}(y|x)}\log D_{\tau}(x,y) \quad o \quad \max_{\varphi}$$

It is crucial to use augmentation pairs!

Matching Encoder to Prior

- Outputs of $E_{\varphi}(x)$ for real images can be very far from the prior distribution p(z).
- G_{θ} should generate good images both for samples from the prior p(z) and for outputs of E_{φ} .
- As a result, it will lead to unstable training of G_{θ}

Therefore we introduce the third discriminator $D_{\zeta}(z)$ for matching E_{φ} to the prior p(z).

Discriminator's objective:

$$\mathbb{E}_{p(z)} \log D_{\zeta}(z) + \mathbb{E}_{p^*(x)} \log (1 - D_{\zeta}(E_{\varphi}(x))) \quad \to \quad \max_{\zeta}$$

Encoder's objective:

$$\mathbb{E}_{p^*(x)} \log D_{\zeta}(E_{\varphi}(x))) \rightarrow \max_{\varphi}$$

PAGAN Diagram

The diagram of Pairwise Augmented GAN (PAGAN) model:

PAGAN Algorithm

until convergence

Algorithm 1 The PAGAN training algorithm.

$$\begin{array}{ll} \theta, \varphi, \psi, \zeta, \tau \leftarrow \text{initialize network parameters} \\ \textbf{repeat} \\ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)} \sim p^*(\boldsymbol{x}) & \triangleright \text{ Draw } N \text{ samples from the dataset and the prior} \\ \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(N)} \sim p(\boldsymbol{z}) \\ \hat{\boldsymbol{z}}^{(i)} \sim q_{\varphi}(\boldsymbol{z} \mid \boldsymbol{x} = \boldsymbol{x}^{(i)}), \quad i = 1, \dots, N \\ \boldsymbol{x}^{(j)}_{pr} \sim p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z} = \hat{\boldsymbol{z}}^{(i)}), \quad j = 1, \dots, N \\ \boldsymbol{x}^{(i)}_{aug} \sim r(\boldsymbol{y} \mid \boldsymbol{x} = \boldsymbol{x}^{(i)}), \quad j = 1, \dots, N \\ \mathcal{L}^{x}_{d} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\boldsymbol{x}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log \left(1 - D(\boldsymbol{x}^{(j)}_{pr})\right) \triangleright \text{Compute discriminator loss} \\ \mathcal{L}^{z}_{d} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\boldsymbol{x}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log \left(1 - D(\boldsymbol{x}^{(j)}_{pr})\right) \\ \mathcal{L}^{xx}_{d} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(i)}_{aug}) - \frac{1}{N} \sum_{j=1}^{N} \log \left(1 - D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec})\right) \\ \mathcal{L}_{g} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(i)}_{aug}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}^{(i)}) - \frac{1}{N} \sum_{j=1}^{N} \log D(\hat{\boldsymbol{x}}^{(j)}, \boldsymbol{x}^{(j)}_{rec}) \\ \mathcal{L}_{e} \leftarrow -\frac{1}{N} \sum_{i=1}^{N} \log D(\hat{\boldsymbol{x}}$$

Samples and Reconstructions

Figure: Samples and reconstructions of PAGAN model for CIFAR10 dataset.

Inception Score, Fréchet Inception Distance (FID)

Model	FID	ID Inception Score		
WAE-GAN	87.7	87.7 4.18 ± 0.04		
ALI		5.34 ± 0.04		
AGE	39.51	5.9 ± 0.04		
ALICE		6.02 ± 0.03		
S-VAE		6.055		
lpha-GANs		6.2		
AS-VAE		6.3		
PD-WGAN	33.0	$\textbf{6.70}\pm\textbf{0.09}$		
PAGAN (ours)	32.84	6.56 ± 0.06		

Reconstruction Inception Dissimilarity

- As we showed, standard reconstruction losses are not good metric for evaluating reconstruction quality
- We introduced a novel metric Reconstruction Inception Dissimilarity (RID) which is based on a pre-trained classification network:

$$RID = \exp \left\{ \mathbb{E}_{x \sim \mathcal{D}} D_{\mathrm{KL}}(p(y|x) || p(y|G(E(x)))) \right\}$$

where p(y|x) is a pre-trained classifier that estimates the label distribution given an image.

RID Results

Model	RMSE	RID
AUG	8.89	1.57 ± 0.02
VAE	5.85	44.33 ± 2.27
SVAE	8.59	38.13 ± 1.92
AGE	6.675	19.02 ± 0.84
PAGANs	8.12	$\textbf{13.01}\pm\textbf{0.82}$

Ablation Study

Model	FID	IS	RID
PAGAN	32.84	$\textbf{6.56}\pm\textbf{0.06}$	$\textbf{13.01}\pm\textbf{0.82}$
PAGAN-L1	76.73	4.46 ± 0.03	30.94 ± 1.58
PAGAN-NOAUG	111.151	4.23 ± 0.06	50.15 ± 2.71

Choice of Augmentation

Augmentation		IS	FID	RID
crop+padding	0	3.35±0.03	108.81	
	0.05	5.62 ± 0.01	45.60	14.70 ± 1.08
	0.1	6.56 ± 0.09	37.20	12.75 ± 0.75
	0.15	6.16 ± 0.03	39.38	$12.25 {\pm} 0.71$
	0.2	6.16 ± 0.19	39.18	$13.86 {\pm} 0.72$
Blur		2.15 ± 0.01	200.66	$32.92{\pm}1.46$
Contrast		4.18±0.01	101.27	50.02 ± 2.10

Conclusion

- We propose a novel auto-encoding generative model
- We introduce an augmented adversarial loss based on the discriminator on pairs
- We propose Reconstruction Inception Dissimilarity as an alternative metric for evaluating reconstruction quality
- Our model shows good results on sampling from the prior and on encoding real images