CS 301 - Lecture 21 **Turing Machine Variations**

Fall 2008

Review

- Languages and Grammars
 Alphabets, strings, languages
 Regular Languages
 Regular Languages
 Deterministic Finite and Nondeterministic Automata
 Equivalence of NFA and DFA
 Regular Grammars
 Properties of Regular Languages
 Languages that are not regular and the pumping lemma
 Context Free Languages
 Context Free Grammars
 Derivations: leftmost, rightmost and derivation trees
 Parsing and ambiguity
 Simplifications and Normal Forms
 Nondeterministic Pushdown Automata
 Pushdown Automata
 Pumping Lemma for context free Grammars
 Deterministic Pushdown Automata
 Pumping Lemma for context free grammars
 Properties of Context Free Grammars
 Turing Machines
- Turing Machines

 Definition, Accepting Languages, and Computing Functions
 Combining Turing Machines and Turing's Thesis
 Today: Turing Machine Variations

Variations of the **Turing Machine**

The Standard Model Infinite Tape $\Diamond \Diamond a a b a b b c a c a \Diamond \Diamond \Diamond$ Read-Write Head (Left or Right) Control Unit Deterministic

Variations of the Standard Model

Turing machines with: • Stay-Option

- · Semi-Infinite Tape
- ·Off-Line
- Multitape
- Multidimensional
- Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power with the Standard Model

Same Power of two classes means:

Both classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine M_1 of first class there is a machine $\,M_2\,$ of second class

such that: $L(M_1) = L(M_2)$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

Second Class
Simulation Machine M_2 M_1 M_1

Final Configuration

Original Machine: d_f Simulation Machine: d_f' The Simulation Machine and the Original Machine accept the same language

Turing Machines with Stay-Option

The head can stay in the same position $\frac{\Diamond |\Diamond a| a| b| a| b| b| c| a| c| a| \Diamond |\Diamond |\Diamond}{\Diamond}$ Left, Right, Stay

L,R,S: moves

Theorem: Stay-Option Machines
have the same power with
Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines are at least as powerful as Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Standard Turing machines simulate
Semi-infinite tape machines:

Trivial

Theorem: Semi-infinite tape machines have the same power with Standard Turing machines

Off-line machines simulate
Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in
Standard Turing machine

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Theorem: Off-line machines
have the same power with
Stansard machines

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

- · Use a multi-track tape
- A tape of the Multiple tape machine corresponds to a pair of tracks

Multi-tape machines Theorem: have the same power with Standard Turing Machines Same power doesn't imply same speed:

Language
$$L = \{a^n b^n\}$$

Acceptance Time

 n^2 Standard machine

n

Two-tape machine

 $L = \{a^n b^n\}$

Standard machine:

Go back and forth n^2 times

Two-tape machine:

Copy b^n to tape 2 (n steps)

Leave a^n on tape 1 (n steps)

Compare tape 1 and tape 2 (n steps)

Multidimensional machines simulate Standard machines:

Use one dimension

Standard machines simulate Multidimensional machines:

Standard machine:

- · Use a two track tape
- · Store symbols in track 1
- Store coordinates in track 2

Standard machine:

Repeat for each transition

- · Update current symbol
- Compute coordinates of next position
- Go to new position

Theorem: MultiDimensional Machines have the same power with Standard Turing Machines

What's Next

- - Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), 7.1, 7.2, 7.3, (skip 7.4), 8, 9, 10

 - JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9 Next Lecture Topics From 10.3, 10.4 and 10.5
- Non-Deterministic Turing Machines, Universal Turing Machines, and Linear Bounded Automata
- Quiz 3 in Recitation on Wednesday 11/12
 - Covers Linz 7.1, 7.2, 7.3, (skip 7.4), 8, and JFLAP 5,6,7
 - Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you
 - Quiz will take the full hour
- Homework
- Homework Thursday