

Cairo University Faculty of Computers and Artificial Intelligence

Report for problem 2 - The car dealer

Name	ld
omar magdy Abdelhalim	20200355
Youssef Mohamed Soliman	20200667
Fatma Abdel Monem Mohamed	20210285
Ahmed Abdel Nasser Mohamed	20210498

Course Name: Systems Modeling and Simulation

Under supervision of

Assoc. Prof. Ayman Ghoneim

Contents

Problem formulation & Objectives:	3
System Components:	3
Experimental Design Parameters	<u>6</u>
Justification of experiment parameters values	6
Results Analysis	<u>6</u>
Conclusion	7

Problem formulation & Objectives:

System: The car Dealer.

Objects: cars, showroom, inventory.

Purpose:

- 1. The average ending units in showroom and the inventory.
- 2. The number of days when a shortage condition occurs.
- 3. Does the theoretical average demand of the demand distribution match the experimental one?
- 4. Does the theoretical average lead time of the lead time distribution match the experimental one?
- 5. Is there a better value for the review period variable N to minimize the shortage?

System Components:

• Entity: cars.

• Attributes: Model.

• Activity: selling.

- State variables:
 - a. The number of available cars.
 - b. The number of demands.
- Events:

• Exogenous event: Demand.

• Endogenous event: Review of inventory.

System analysis including cumulative distribution tables, calendar table (for 10 Days).

Demand	Probability	Cumulative Probability	intervals
0	0.2	0.2	00-20
1	0.34	0.54	20-54
2	0.36	0.9	54-90
3	0.1	1	90-100

Demand

Days	Random number	Demand
1	59	2
2	100	3
3	25	1
4	60	2
5	95	3
6	91	3
7	93	3
8	56	2
9	13	1
10	17	1

Lead time distribution

Lead time	Probability	Cumulative Probability	intervals
1	0.4	0.4	00-40
2	0.35	0.75	40-75
3	0.25	1	75-100

We generate the lead time when the inventory makes an order.

Calendar

	begin	begin			end					Net
day	inv	show	demand	end inv	show	shortage	order	lead	review	profit
1	3	4	1	2	4	0	5	2	2	8000
2	2	4	2	0	4	0	0	1	1	20000
3	4	5	1	3	5	0	0	0	0	7000
4	3	5	1	2	5	0	7	3	2	8000
5	2	5	3	0	7	0	0	2	1	30000
6	0	7	2	0	7	0	0	1	0	20000
7	9	5	0	9	5	0	8	3	2	-9000
8	9	5	3	6	5	0	0	2	1	24000
9	6	5	2	4	5	0	0	1	0	16000
10	10	5	2	8	5	0	6	3	2	12000

calendar from the code

Days	beg	in inv	begi	n show								_							Daily net profit		Total profit
1	l	3	i	4	i	1	i	2	i	4	i	0	i	5		2	2		8000	ï	8000
2		2		4	1	2	I	0		4	1	0	1	0	I	1	1	- 1	20000		28000
3	ı	4		5	1	1	I	3		5	1	0	1	0	I	0	0		7000		35000
4		3		5	1	1	I	2		5	1	0	1	7	I	3	2		8000		43000
5	ı	2		5	1	3	I	0		7	1	0	1	0		2	1		30000		73000
6		0		7	1	2	I	0		7	1	0	1	0	I	1	0	- 1	20000		93000
7		9		5	1	0	I .	9		5	1	0	1	8	I	3	2		-9000		84000
8		9		5	1	3	I .	6		5	1	0	1	0	I	2	1		24000		108000
9		6		5	1	2	I .	4		5	1	0	1	0	ı	1	0		16000		124000
10		10	I .	5	1	2	1	8	1	5	1	0	1	6		3	2		12000		136000
he ave	erage	ending	units	in sho in the a short	in	ventor	у =3.		s =	0											
				or the			r =13	600.0													
he the	eoret:	ical av	erage	demand	=1.	34															
he exp	perim	ental a	verage	demand	1 =1	7															
o we	can s	ay that	it ap	proxima	ites	match															
he the	eoret	ical av	erage	lead t	me	=1.85															
he exp	perim	ental a	verage	lead t	∶im∈	=1.8															
o we																					

- 1. The average ending units in showroom =5.2
- The average ending units in inventory =3.4
 - 2. The number of days when a shortage condition occurs = 0
 - 3. The average net profit =13600
 - 4. The theoretical average demand = 1.34 and in the experimental one = 1.38 So it's approximately match

5. The theoretical average lead time = 1.85 and in the experimental one =1.8 So approximately match

Experimental Design Parameters

Days = 500

Review period N=3

Daily demand is random value.

Lead time is random value.

Max size in inventory = 10

Max size in showroom = 5

Justification of experiment parameters values

Days = to test every case in the problem (shortage- Ending inventory-

Ending showroom- Average Demand-Average lead time).

Lead time is a random value because there are no specific days until the order arrives.

Daily demand is random because there is no specific demand during the day.

Results Analysis

• In theoretical Average ending units in showroom = (Total cars in showroom/days)= 52/10 and the experimental one = 4.8

It's close

• In theoretical average ending units in inventory = 34/10 = 3.4 and the experimental one = 4.16

the difference isn't big enough so we can assume that the theoretical average and experimental matched

- In theoretical the number of days when a shortage condition occurs = 0 and the experimental one =0
- The theoretical average demand = 1.34 and in the experimental one = 1.38 So it's approximately match
- The theoretical average lead time = 1.8 and in the experimental one = .96 the difference almost big so it's not match

When review period is 5 the net profit increases so the best value for review period is 5

Conclusion

In the simulation model we will find the experimental is with more accuracy than the theoretical because we trace with large number but in theoretical, we trace with small number so the result of experimental is the best one.