PH 712 Probability and Statistical Inference

Part I: Random Variable

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/09/08 22:15:23

Probability (HMC Sec. 1.1–1.3)

- Sample space (denoted by Ω): the set of all the possible outcomes, e.g.,
 - $-\Omega = \mathbb{R}^+$ if investigating survival times of cancer patients
 - $-\Omega = \{\text{"yes", "no"}\}\$ if investigating whether a treatment is effective
- Event (denoted by capital Roman letters, e.g., A): a subset of the sample space, e.g., corresponding to the previous sample spaces,
 - (0, 10]: the survival time ≤ 10
 - {"yes"}: the treatment is effective
- Occurrence of event: the outcome is part of the event
- Probability (denoted by Pr): a function quantifying the occurrence likelihood
 - Input: an event
 - Output: a real number
 - Requirements:
 - * Pr(A) > 0 for any event A
 - * $Pr(\Omega) = 1$ (i.e., the sample space as a special event always occurs)
 - * (The probability of the union of mutually exclusive countably events is the sum of the probability of each event) If $\{A_n\}_{n=1}^{\infty}$ is a sequence of events with $A_{n_1} \cap A_{n_2} = \emptyset$ for all $n_1 \neq n_2$, then $\Pr(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Pr(A_n)$
 - More properties (deduced from the above requirements):
 - * $Pr(A) = 1 Pr(A^c)$, where the superscript denotes the complement set
 - $* \Pr(\emptyset) = 0$
 - * $Pr(A) \leq Pr(B)$ if $A \subset B$
 - * $0 \le \Pr(A) \le 1$ for each A
 - * $\lim_{n\to\infty} \Pr(A_n) = \Pr(\lim_{n\to\infty} A_n) = \Pr(\bigcup_{n=1}^{\infty} A_n)$ if $\{A_n\}_{n=1}^{\infty}$ is nondecreasing (i.e., $A_1 \subset A_2 \subset \cdots$)
 - * $\lim_{n\to\infty} \Pr(A_n) = \Pr(\lim_{n\to\infty} A_n) = \Pr(\bigcap_{n=1}^{\infty} A_n)$ if $\{A_n\}_{n=1}^{\infty}$ is nonincreasing (i.e., $A_1 \supset A_2 \supset \cdots$)
 - * $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$ for any events A and B regardless if they are disjoint or not
 - * $\Pr(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \Pr(A_n)$ for arbitrary sequence $\{A_n\}_{n=1}^{\infty}$

Conditional probability and independence (HMC Sec. 1.4)

- Conditional probability of B given A (with Pr(A) > 0): $Pr(B \mid A) = Pr(A \cap B)/Pr(A)$
 - Properties:

- * $\Pr(B \mid A) \geq 0$
- * Pr(A | A) = 1
- * $\Pr(\bigcup_{n=1}^{\infty} B_n \mid A) = \sum_{n=1}^{\infty} \Pr(B_n \mid A)$ if $\{B_n\}_{n=1}^{\infty}$ are mutually exclusive
- * (Law of total probability) $\Pr(B) = \sum_{n=1}^{N} \Pr(A_n) \Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^{N}$ form a partition of Ω (i.e., $\{A_{n_1}\}_{n=1}^{N}$ are mutually exclusive and $\Omega = \bigcup_{n=1}^{N} A_n$)
 * (Bayes' theorem) $\Pr(A_i \mid B) = \Pr(A_i) \Pr(B \mid A_i) / \sum_{n=1}^{N} \Pr(A_n) \Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^{N}$ form
- a partition of Ω
- Independence between two events B and A (i.e., $B \perp A$): $\Pr(B \cap A) = \Pr(A) \Pr(B)$
 - $\Leftrightarrow B \perp A^c$
 - $\Leftrightarrow \Pr(B \mid A) = \Pr(B) \text{ (if } \Pr(A) \neq 0)$
- Mutual independence among N events A_1, \ldots, A_N : for arbitrary subset of $\{A_1, \ldots, A_N\}$, say $\{A_{n_1}, \dots, A_{n_K}\}\$ with $2 \le K \le N$, $\Pr(\bigcap_{k=1}^K A_{n_k}) = \prod_{k=1}^K \Pr(A_{n_k})$

HMC Ex. 1.4.31

• A French nobleman, Chevalier de Méré, had asked a famous mathematician, Pascal, to explain why the following two probabilities were different (the difference had been noted from playing the game many times): (1) at least one six in four independent casts of a six-sided die; (2) at least a pair of sixes in 24 independent casts of a pair of dice. From proportions it seemed to de Méré that the two probabilities should be the same. Compute the probabilities of (1) and (2).

Distribution of an RV (HMC Chp. 1.5–1.7)

- An RV: a function encoding the entries of Ω
 - Input: an entry of Ω
 - Output: a real number
 - Usage: any event may be expressed in term of
- The cumulative distribution function (cdf) of RV X, say F_X , is defined as

$$F_X(t) = \Pr(X \le t), \quad t \in \mathbb{R}.$$

- $-F_X$ satisfies following three properties:
 - * (Right continuous) $\lim_{x \to t^+} F_X(x) = F_X(t)$ (p.s., $\lim_{x \to t^-} F_X(x) = \Pr(X < t)$);
 - * (Non-decreasing) $F_X(t_1) \leq F_X(t_2)$ for $t_1 \leq t_2$;
 - * (Ranging from 0 to 1) $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- Reversely, a function satisfying the three above properties must be a cdf for certain RV.
 - * Indicating an one-to-one correspondence between the set of all the RVs and the set of all the
- Knowing the distribution of an RV

 knowing the cdf

Example Lec1.1

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of real x.

- Show that F_X is a cdf. (Hint: Check all the three properties of cdf, especially the right-continuity of F at positive integers.)

Distribution of an RV (con'd)

- Discrete RV
 - RV X merely takes countably different values
 - Probability mass function (pmf): $p_X(t) = \Pr(X = t)$

- * $F_X(t) = \sum_{x \le t} p_X(x)$ * $p_X(t) = F_X(t) \Pr(X < t) = F_X(t) \lim_{x \to t^-} F_X(x)$
- Knowing the distribution of a discrete RV ⇔ knowing the pmf
- Examples:
 - * Bernoulli: a discrete RV with two possible outcomes, typically coded as 0 (failure) and 1 (success).
 - · https://en.wikipedia.org/wiki/Bernoulli distribution
 - * Binomial: the number of successes in a fixed number of independent Bernoulli trials.
 - · https://en.wikipedia.org/wiki/Binomial_distribution
 - · E.g., flipping a coin 10 times and counting the number of heads.
 - * Negative binomial: the number of trials until a specified number of successes is achieved.
 - · https://en.wikipedia.org/wiki/Negative binomial distribution
 - · E.g., the number of coin flips until you get 3 heads.
 - * Geometric: the number of trials until the first success in a series of independent Bernoulli trials.
 - · https://en.wikipedia.org/wiki/Geometric distribution
 - · E.g., the number of coin flips needed until the first head appears.
 - * Hypergeometric: the number of successes in a sample drawn without replacement from a finite population.
 - · https://en.wikipedia.org/wiki/Hypergeometric distribution
 - E.g., drawing a certain number of red balls from a bag containing both red and blue balls without replacement.
 - * Poisson: the number of events that occur in a fixed interval of time or space, where events happen independently.
 - · https://en.wikipedia.org/wiki/Poisson_distribution
 - · E.g., the number of emails you receive in an hour.
 - * Uniform (the discrete version): each outcome in a finite set has an equal probability.
 - · https://en.wikipedia.org/wiki/Discrete_uniform_distribution
 - · E.g., rolling a fair dice, where each of the six faces has an equal chance of landing.
- Continuous RV
 - RV X is continuous \Leftrightarrow its cdf F_X is absolutely continuous, i.e., there exists f_X such that

$$F_X(t) = \int_{-\infty}^t f_X(x) dx, \quad \forall t \in \mathbb{R}.$$

- * Probability density function (pdf): $f_X(t) = dF_X(t)/dt = \lim_{\delta \to 0^+} \Pr(t < X \le t + \delta)/\delta(\ge 0)$.
- * $\int_{-\infty}^{\infty} f_X(x) dx = 1$ Knowing the distribution of a continuous RV \Leftrightarrow knowing the pdf
- Examples:
 - * Uniform (the continuous version): all outcomes in a continuous range are equally likely.
 - https://en.wikipedia.org/wiki/Uniform distribution (continuous)
 - * Normal/Gaussian (denoted by $\mathcal{N}(\mu, \sigma^2)$): the most important and widely used distributions, where data is symmetrically distributed around the mean.
 - · https://en.wikipedia.org/wiki/Normal distribution
 - * Exponential: the time between events in a Poisson process, often used to describe waiting
 - · https://en.wikipedia.org/wiki/Exponential_distribution
 - * Chi-squared: sum of squared standard normal RVs; arising in hypothesis testing, particularly in tests of independence and goodness of fit.
 - · https://en.wikipedia.org/wiki/Chi-squared distribution
 - * Cauchy: known for its heavy tails and undefined mean and variance; used in robust statistics.
 - · https://en.wikipedia.org/wiki/Cauchy distribution
 - * Weibull: a generalization of the exponential distribution, used in reliability engineering and failure time analysis.
 - · https://en.wikipedia.org/wiki/Weibull distribution

- * Log-normal: $\exp(\mathcal{N}(0,1))$; commonly used to model stock prices and other financial data.
 - · https://en.wikipedia.org/wiki/Log-normal_distribution
- * (Student's) t: used in hypothesis testing, particularly for small sample sizes.
 - · https://en.wikipedia.org/wiki/Student%27s_t-distribution

Example Lec1.2

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- What is the type of X, discrete or continuous?

Support of RV (CB pp. 50 & HMC pp. 46)

- For discrete RV X with pmf p_X
 - $\text{ supp}(X) = \{x \in \mathbb{R} : p_X(x) > 0\}$
 - E.g., support of Binom(n, p) is $\{0, \ldots, n\}$
 - $-\int_{\operatorname{supp}(X)} f_X(x) \mathrm{d}x = 1$
- For continuous RV X with pdf f_X
 - $\text{ supp}(X) = \{x \in \mathbb{R} : f_X(x) > 0\}$
 - E.g., support of $\mathcal{N}(0,1)$ is \mathbb{R} $\sum_{x \in \text{supp}(X)} p_X(x) = 1$

Example Lec1.3

• Revisit F_X defined in Example Lec1.1, i.e.,

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of real x.

- What is the support of X?

Expectations (HMC Sec. 1.8–1.9)

- Given RV X and function g, the expectation of g(X) is $\mathbb{E}\{g(X)\}$

 - $\begin{array}{l} = \int_{-\infty}^{\infty} g(x) f_X(x) \mathrm{d}x \text{ for continuous } X \\ = \sum_{x \in \mathrm{supp}(X)} g(x) p_X(x) \text{ for discrete } X \\ \text{ Weighted average of values of } g(X) \end{array}$

 - $E\{a_1g_1(X) + a_2g_2(X)\} = a_1E\{g_1(X)\} + a_2E\{g_2(X)\}\$
- Mean of X (a.k.a. the 1st raw moment/moment about 0 of X): $\mathrm{E}(X)$
- Variance of X (a.k.a. the 2nd central moment of X): $Var(X) = E\{X E(X)\}^2$
 - $Var(X) = E(X^{2}) \{E(X)\}^{2}$ $Var(aX + b) = a^{2}Var(X)$
- Standard deviation of X: square root of the variance of X

Example Lec1.4

• Find the mean and variance of $X \sim \mathcal{N}(0,1)$, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

4

- Find the mean and variance of $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, i.e., $f_X(x) =$ $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \text{ (p.s. } X \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow Z = (X-\mu)/\sigma \sim \mathcal{N}(0, 1)$
- Find the mean and variance of Cauchy distribution, i.e., $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}$

Distribution of an RV (con'd)

- Moment generating function (MGF, HMC Sec. 1.9/CB Sec. 2.3)
 - $-M_X(t) = \mathbb{E}\{\exp(tX)\}$
 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$
 - * Discrete X: $M_X(t) = \sum_{u \in \text{supp}(X)}^{\infty} \exp(tx) p_X(x)$
 - The MGF of X is $M_X(t)$, $t \in A$, $\Leftrightarrow M_X(t)$ is finite for t in a neighborhood of 0, say A; otherwise the MGF does NOT exist or is NOT well defined.
 - $-M_{aX+b}(t) = \exp(bt)M_X(at)$
 - Knowing the distribution of an RV ⇔ knowing the MGF (if any)
 - If MGF M(t) is well-defined, then the kth raw moment is the kth-order derivative of M(t) evaluated at 0, i.e., $E(X^k) = M^{(k)}(0)$
- Characteristic function (CF, optional)
 - $-\varphi_X(t) = \mathbb{E}\{\exp(itX)\}$

 - * Continuous X: $\varphi_X(t) = \int_{-\infty}^{\infty} \exp(itu) f_X(u) du$ * Discrete X: $\varphi_X(t) = \sum_{u \in \text{supp}(X)} \exp(itu) p_X(u)$
 - Always well-defined
 - $-\varphi_{aX+b}(t) = \exp(bt)\varphi_X(at)$
 - Knowing the distribution of an RV \Leftrightarrow knowing the CF

Example Lec1.5

- Find the MGF of $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- Find the MGF of Cauchy distribution, i.e., $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}$

Indicator function

Given a set A, the indicator function of A is

$$\mathbf{1}_A(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Example Lec1.6

• Revisit F_X defined in Example Lec1.1, i.e.,

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- Please reformulate F_X with the indicator function of $A = \{x : x \ge 1\}$.