Vertex of the Quadratic

 $k_1 = -\frac{b}{2a}$ namely $j(k_1) = c - \frac{b^2}{4a}$

Given a quadratic $j(k) = a k^2 + b k + c$ compute its value at

Now compute the same quadratic at $\mathsf{k}_{1^+}\mathsf{h}$, namely $j(k_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = j(k_1 + h) - j(k_1) = ah^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

 $j(k) = 4k^2 - 16k - 33$ 800 600

-300

-400