${\bf Computer system sicher heit}$

Lena Thuy Trang Vo

 $Wintersemester\ 2024/25$

Inhaltsverzeichnis

_	m.	4 71 (01)	•
1		ema 1: Einführung	2
	1.1	Themenübersicht	
	1.2	Begriffsbedeutung	. 2
		1.2.1 Was bedeutet Sicherheit?	. 2
		1.2.2 Sicherheitseigenschaften	
		1.2.3 Wie können wir uns schützen? Allgemeine Sicherheitsprinzipien	
		1.2.5 Wie konnen wir uns schutzen: Angemeine Sichernensprinzipien	. 3
2	The	ema 2: Einführung Kryptographie	5
4			
	2.1	Themenübersicht	
	2.2	Was ist Kryptographie?	
	2.3	Klassische vs. moderne Kryptographie	. 5
		2.3.1 Klassische Kryptographie	. 5
		2.3.2 Moderne Kryptographie	
	2.4	Ziele der Kryptographie	
	$\frac{2.4}{2.5}$	Schlüssel	
	2.6	Kerkhoff'sches Prinzip	
	2.7	Klassische Chiffren	
	2.8	Moderne Kryptographie	. 6
		2.8.1 Anwendung Heute	. 6
		2.8.2 Ansatz der modernen Kryptographie	. 7
		2.8.3 Was sind kryptographische Annahmen?	
		2.8.4 Kryptographische Primitive und Konstruktionen	
		2.6.4 Kryptographische i innitive und Konstruktionen	. 1
3	The	ema 3: Symmetrische Kryptographie	7
•	3.1	Themenübersicht	
	3.2	Definition Symmetrischer Chiffren	
	3.2		
		3.2.1 Schutzziel	
		3.2.2 Funktionale Definition	
		3.2.3 Sicherheitsdefinition	. 8
		3.2.4 Sicherheitsspiel (IND-CPA)	. 9
		3.2.5 Bietet IND-CPA die stärkste Sicherheit?	
		3.2.6 Stärkere Sicherheit: IND-CCA	
		3.2.7 Unterschied zwischen IND-CPA und IND-CCA	
	0.0	One-Time-Pad Verschlüsselung	
	3.3		
		3.3.1 One-Time-Pad	
		3.3.2 Sicherheit	
		3.3.3 Schlüssel nur einmal verwenden	. 11
		3.3.4 Venona-Projekt: Risiken von One-Time-Pads	. 11
		3.3.5 Nachteile von One-Time-Pad	
4	Übı	ung 1	12
	4.1	Aufgabe 1: Wissensfragen	. 12
	4.2	Aufgabe 2: IND-CPA vs. IND-CCA	
5	The	ema 3: Symmetrische Kryptographie - Teil	13
	5.1	Data Encryption Standard (DES)	. 13
		5.1.1 DES: Angriffe	
		5.1.2 Triple-DES	
	- 0		
	5.2	Advanced Encryption Standard (AES)	
		5.2.1 Angriffe in der Praxis	
	5.3	Modes of Operation	
		5.3.1 Electronic Code Book (ECB) Modus	. 15
		5.3.2 Cipher Block Chaining (CBC) Modus	
		5.3.3 Counter Modus (CTR)	

Thema 1: Einführung

Themenübersicht

- Begriffsbedeutung
- Warum ist Sicherheit wichtig?
- Fallbeispiele für Sicherheitsvorfälle
- Sicherheitsprinzipien
 - Kenne die Angreifer
 - Berücksichtige menschliche Faktoren
 - Sicherheit ist wirtschaftliche Abwägung
 - Detektieren falls nicht verhinderbar
 - Defense in depth (gestaffelte Verteidigung)
 - Fail-safe Standard

Begriffsbedeutung

1.2.1 Was bedeutet Sicherheit?

Betriebssicherheit / Safety

- Schutz gegen Fehler/Unfälle
- Fehler meist unabsichtig verursacht
- Gegenmaßnahme: Verifikation, Testen

Angriffsicherheit/Security

- Schutz gegen worst-case Angreifer
- meist Schadabsicht
- Verifikation und Testen hilft wenig

Security und Safety können im Konflikt zueinander stehen

Beispiel Notausgang

- Safety: Im Notfall können Personen aus dem Gebäude
- Security: Für Gebäudeschutz am besten gar keine Tür

1.2.2 Sicherheitseigenschaften

Sicherheit kann vieles bedeuten...

- 1. Vertraulichkeit von Daten/Nachrichten (z.B. von Whatsapp Nachrichten)
 - Sicherstellung, dass das System keine unautorisierte Informationsgewinnung ermöglicht
- 2. Anonymität von Benutzern (z.B. beim Surfen im Web)
- 3. Integrität von Daten/Berechnungen (z.B. bei Überweisungen im Online-Banking)
 - Gewährleistung, dass nicht autorisierte Subjekte ein Objekt nicht unbemerkt ändern können
- 4. Authentizität von Dateien (z.B. Software-Updates)
 - Echtheit und Glaubwürdigkeit eines Objektes, die kryptografisch überprüfbar ist
- 5. Verfügbarkeit von Diensten (z.B. des Stromnetzes)
 - Gewährleistung, dass autorisierte Subjekte nicht in der Funktionalität beeinträchtigt werden

1.2.3 Wie können wir uns schützen? Allgemeine Sicherheitsprinzipien

Sicherheitsprinzipien

- 1. Kenne die Angreifer
- 2. Berücksichtige menschliche Faktoren
- 3. wirtschaftliche Faktoren beeinflussen Sicherheit
- 4. Detektieren falls nicht verhinderbar
- 5. Defense in depth (gestaffelte Verteidigung)
- 6. Fail-safe Standards

1. Kenne die Angreifer

Um ein effektives Bedrohungsmodell zu entwickeln, ist es wichtig, die **potenziellen Angreifer** und deren **Motivationen** zu verstehen.

Ressourcen:

- Individuum
- Organisierte Gruppen
- Terroristen
- staatlich geförderte Organisationen

Motivation:

- Geld
- politische Maßnahmen
- Vergeltung
- aus Spaß

Annahmen über Angreifer sind schwer zu treffen

- rechtzeitiges Erkennen von Angriffen schwierig: Angreifer kann unbemerkt mit dem System interagieren
- Angreifer kennt das System: Welches Betriebssystem wird verwendet, welche Hardware? (kennt Schwachstellen)
- Kann Glück haben: bei Chance 1:1.000.000 kann der Angreifer es 1.000.000 mal Probieren

2. Berücksichtige menschliche Faktoren

Einschränkung der Sicherheit durch menschliches Verhalten möglich

- als Benutzer:in
 - neigen dazu, Sicherheitsmechanismen zu umgehen, wenn diese die Nutzung erschweren
 - Beispiel: Wahl einfacher und wiederverwendeter Passwörter

• als Programmierer:in

- Programmierer können Fehler machen, die Sicherheitslücken schaffen
- benutzen Tools, die erkauben Fehler zu machen (z.B. Sprache ohne Typsicherheit)

• als Angreifer:in

Angreifer nutzen oft menschliche Eigenschaften wie Vertrauen oder Leichtgläubigkeit aus, um Informationen zu stehlen oder Zugang zu Systemen zu erlangen (Social Engineering)

Ergo: alle verwendeten Tools und Systeme sollten narrensicher sein.

3. wirtschaftliche Faktoren beeinflussen Sicherheit

- organisierte Cyberkriminialität nimmt zu
- Angrifffsziele von organisierter Cyberkriminalität: wirtschaftliche Interessen
 - sei es zur direkten finanziellen Bereicherung oder um einem Wettbewerber oder Land zu schaden
- aus Sicht der angreifenden Partei:
 - Angriff teurer als Belohnung → kein Angriffsversuch
- aus Sicht der verteidigenden Partei:
 - viel Sicherheit kostet viel Geld
 - Abwägung zwischen Kosten-/Nutzen
 - * Nutzen der Sicherheitsmaßnahmen proportional zu Kosten eines erfolgreichen Angriffs

4. Detektieren, falls nicht verhinderbar

- 1. **Abschrecken:** Einen Angriff abschrecken, bevor dieser stattfindet.
- 2. Verhindern: Falls Angriff stattfindet, verhindere dessen Erfolg
- 3. Detektieren: Stelle fest, falls ein Angriff stattgefunden hat
 - Falls nicht verhinderbar, dann wenigstens feststellen, dass ein Angriff stattgefunden hat
 - es ist essenziell, ihn schnell zu erkennen, um den Schaden zu minimieren
- 4. Reagieren: Reaktion auf stattgefundenen Angriff
 - Detektion ohne Reaktion ist nutzlos: Es ist entscheidend, nach der Erkennung eines Angriffs sofortige Maßnahmen zu ergreifen, um weitere Schäden zu verhindern.

5. Defense in Depth

- verschiedene Sicherheitsmaßnahmen implementieren
- schichtweiser Aufbau
 - Sicherheitsmaßnahmen übereinander legen, sodass ein Angreifer alle Schichten durchbrechen muss, um erfolgreich zu sein.
- Sicherheit ist oft weniger als die Summe aller Teile
 - Trotz der Vielzahl an Schutzmaßnahmen kann die Sicherheit oft nur so stark sein wie das schwächste Glied in der Kette.

6. Fail-Safe Standards

Dieses Prinzip sorgt dafür, dass ein System bei einem **Ausfall** oder einer Anomalie in einen Zustand übergeht, der den **geringstmöglichen Schaden** verursacht.

Beispiele:

mechanisches Zugsignal:

Bei einem mechanischen Zugsignal fällt das Signal auf "Halt", wenn das Zugseil reißt. Dies stellt sicher, dass Züge bei einem technischen Defekt automatisch gestoppt werden und keine Gefahr entsteht.

elektronisches Nummernschloss:

Bei einem elektronischen Nummernschloss ist es nicht immer einfach zu entscheiden, was der sichere Zustand ist. Bei einem Stromausfall könnte das Schloss entweder offen bleiben, um den Zugang zu ermöglichen, oder geschlossen bleiben, um unbefugten Zutritt zu verhindern. Die Entscheidung hängt von der spezifischen Anwendung und den damit verbundenen Risiken ab.

Thema 2: Einführung Kryptographie

Themenübersicht

- Was ist Kryptographie?
- Ziele der Kryptographie
- Klassiche Chiffren
- Ansätze der modernen Kryptographie

Was ist Kryptographie?

Kryptographie ist die Wissenschaft der Verschlüsselung und Entschlüsselung von Informationen. Sie dient dazu, Daten und Kommunikation vor unbefugtem Zugriff und Manipulation zu schützen.

- unzählige Anwendungen in der Praxis
 - grundlegender Baustein jedes Sicherheitssytems
 - z.B. ohne Kryptographie keine Sicherheit im Internet

Klassische vs. moderne Kryptographie

2.3.1 Klassische Kryptographie

- bezieht sich auf ältere Verschlüsselungsmethoden, die hauptsächlich zur sicheren Kommunikation über unsichere Kanäle verwendet wurden
- Hauptanwendung: Militär

2.3.2 Moderne Kryptographie

- bietet starke Sicherheitsgarantien für Daten und Berechnungen, selbst in Anwesenheit eines Angreifers
- wird in nahezu jedem Lebensbereich angewendet

Ziele der Kryptographie

- 1. Vertraulichkeit: Angreifer kann den Inhalt der Nachricht nicht lernen
 - nur autorisierte Parteien haben Zugang zu den Informationen, während unbefugte Dritte ausgeschlossen werden
- 2. Integrität: Angreifer kann Nachricht nicht ändern, ohne das Änderung bekannt wird
- 3. Authentizitä: Angreifer kann nicht die Nachricht von einer anderen Person stammen lassen
 - sicherstellen, dass der Absender einer Nachricht wirklich derjenige ist, für den er sich ausgibt

Schlüssel

- Kurzer Schlüssel: Kryptoverfahren verwenden zufällig gewählten, kurzen Schlüssel
- Symmetrische Kryptographie: Gleicher Schlüssel zum Ver- und Entschlüsseln
- Asymmetrische Kryptographie:
 - öffentlicher Schlüssel: z.B. im Internet veröffentlicht
 - geheimer Schlüssel: nur einzelnen Nutzern eines Kryptoverfahren bekannt

Kerkhoff'sches Prinzip

- ein Kryptoverfahren soll sicher bleiben, selbst wenn der Angreifer den Kryptoalgorithmus kennt
- \bullet alles ist öffentlich außer ein kurzer Schlüssel k, der zufällig gewählt wurde

Warum Kerckhoff?

- in kommerziell eingesetzten Produkten ist es schwar, die Spezifikation geheim zu halten
 - Reverse Engineering: Algorithmen können rekonstruiert werden
- kurze Schlüssel sind einfacher zu schützen, zu erzeugen und auszutauschen
- die Sicherheit des Designs kann öffentlich analysiert werden

Kerkhoff's Grundsatz verletzt ⇒ Sicherheit bei Verschleierung

Klassische Chiffren

Shift-Chiffre

- ullet zyklischer Shift jedes Buchstaben um k Stellen im Alphabet
- Caesars Chiffre: k = 3
- \bullet alle Schlüssel ausprobieren bei Angriff \longrightarrow Brute-Force-Angriff

Erweiterte Shift-Chiffre

Benutze Wort als Schlüssel und verschiebe jeden Buchstaben, um die durch den Schlüssel gegebene Differenz

Substitutionschiffre

- ist eine Erweiterung der Shift-Chiffre, bei der jeder Buchstabe des Alphabets durch einen anderen Buchstaben ersetzt wird, basierend auf einer beliebigen Permutation des Alphabets
- keine feste Verschiebung
- Anzahl an Schlüsseln: 26! $\approx 2^{88} \Longrightarrow$ zu viele Schlüssel für ausprobieren

Moderne Kryptographie

2.8.1 Anwendung Heute

- Sichere Kommunikation im Internet
- Digitale Zertifikate
- Sichere Datenspeicherung, z.B. für die Cloud
- Zugriffskontrolle, z.B. als Autoschlüssel
- E-Commerce und Online-Banking
- Digitale Signaturen
- Hashfunktionen
- ...

2.8.2 Ansatz der modernen Kryptographie

1. Formale Definition:

- Ziel des Angreifers: z.B bei Verschlüsselung sollte Angreifer nichts über Klartext lernen
- Angreifermodell: Was kann der Angreifer tun und sehen (z.B. Angreifer sieht nur Chiffretexte)

2. Konstruktion:

• z.B.Konstruktion komplexer Kryptoverfahren aus einfachen Kryptoprimitiven

3. Sicherheitsbeweis:

- Annahme hält \Longrightarrow Kryptoverfahren ist sicher gemäß der formalen Definition (z.B. zahlentheoretische Annahme)
- Reduktionsbeweis: Angreifer gegen Kryptoverfahren \Longrightarrow Annahme hält nicht

2.8.3 Was sind kryptographische Annahmen?

- Kryptoverfahren nutzen Annahmen, auf denen Sicherheit basiert
 - stellt sich heraus, dass Annahme falsch ist oder effizient gelöst werden kann, so wäre das Verfahren nicht mehr sicher
- Einwegfunktion: in eine Richtung einfach zu berechnen, in die andere praktisch unmöglich
- Annahme, praktisch unmöglich, Eingabe aus Ausgabe zu berechnen

Häufig genutzte Annahmen:

- Primfaktorzerlegung großer natürlicher Zahlen ist schwer
- Berechnung des Diskreten Logarithmus ist schwer
- Allgemein: Schwierigkeit mathematischer Probleme

2.8.4 Kryptographische Primitive und Konstruktionen

Kryptograhische Primitive

- ist eine abstrakte, fundamentale Funktion mit spezifischen kryptographischen Eigenschaften
- Beispiele: Blockchiffren, Hashfunktionen, Digitale Signaturen etc.

Kryptograhische Konstruktion

- beschreibt, wie **kryptographische Primitive instanziiert** und miteinander kombiniert werden, um **komplexe kryptographische Systeme** zu erstellen
- Beispiele: AES, SHA-256, Schnorr-Signaturen etc.

Thema 3: Symmetrische Kryptographie

Themenübersicht

- Was ist symmetrische Kryptographie?
- Definition Symmetrische Chiffre
- One-Time-Pad
- Block-Chiffren
- Modes of Operation

- Kryptographische Hashfunktionen
- Message Authentication Codes (MACs)
- Authenticated Encryption

Symmetrische Kryptographie: Es gibt nur einen Schlüssel für alle Algorithmen

Definition Symmetrischer Chiffren

3.2.1 Schutzziel

Welches kryptographische Schutzziel möchten wir mit symmetrischen Chiffren erreichen?

• Vertraulichkeit: Angreifer kann den Inhalt der Nachricht nicht lernen

3.2.2 Funktionale Definition

- beschreibt Input/Output-Verhalten der Algorithmen
- Algorithmen: Gen, Enc, Dec

Abbildung 1: Funktionale Definition

- \bullet Gen: generiert einen zufälligen Schlüssel k, der später sowohl für die Verschlüsselung als auch für die Entschlüsselung verwendet wird
- ullet Enc (Verschlüsselung): nimmt den Klartext m und Schlüssel k als Eingabe und erzeugt einen Chiffretext c
- Dec (Entschlüsselung): nimmt den Chiffretext und denselben geheimen Schlüssel als Eingabe und stellt den ursprünglichen Text wieder her

Korrektheit:

Die Entschlüsselung eines gültigen Chiffretextes resultiert in die original verschlüsselte Nachricht

Dec(k, Enc(k, m)) = m für alle Nachrichten m und Schlüssel $k \longleftarrow Gen$

Effizienz: Verschlüsselung und Entschlüsselung sind effizient (1 GB/s)

3.2.3 Sicherheitsdefinition

- Ziel des Angreifers: Was ist ein erfolgreicher Angriff?
- $\bullet\,$ naive Option: Angreifer lernt den Schlüssel k nicht
- \bullet in der Kryptographie: Angreifer lernt **nichts Neues** über m

Angreifermodell:

- beschreibt die Fähigkeiten und Ressourcen des Angreifers
- Angreifer lernt nur Chiffretext (known ciphertext attack), z.B. durch Abhören des Kanals
- Angreifer lernt **Paare von Klartexten/Chiffretexten** (known plaintext/ciphertext attack), z.B. bestimmter Teil der verschlüsselten Nachricht kann bekannt sein
- Angreifer wählt Klartexte und lernt zugehörige Chiffretexte (chosen plaintext attack), z.B. Angteifer überzeugt Challenger davon, Nachrichten seiner Wahl zu verschlüsseln

3.2.4 Sicherheitsspiel (IND-CPA)

• Sicherheit wird in der Kryptographie durch sein Spiel zwischen Angreifer und Challenger definiert

Abbildung 2: Sicherheitsspiel

Sicherheit:

Symmetrische Chiffre ist **IND-CPA sicher**, falls alle **effizienten** Angreifer das Sicherheitsspiel maximal mit der Wahrscheinlichkeit $\approx \frac{1}{2}$ gewinnen können

Was bedeutet effizient?

- effizient: Laufzeit polynomiell in der Schlüssellänge
- nicht effizient: Laufzeit exponentiell in der Schlüssellänge

3.2.5 Bietet IND-CPA die stärkste Sicherheit?

- Nein, es gibt noch stärkere
- IND-CPA bietet grundlegenden Schutz gegen passive Angriffe (nur Zugriff auf Verschlüsselungen)
- Gefahr : Chosen Ciphertext Angriff
 - Angreifer hat auch Zugang zu Entschlüsselung von (bestimmten) Chiffretexten
 - Angreifer kann diese Informationen nutzen, um sensitive Informationen zu erlangen
- Beispiel: Padding Orakel Angriff
 - Angreifer kann durch gezielte Entschlüsselungsanfragen Informationen über den Klartext gewinnen

3.2.6 Stärkere Sicherheit: IND-CCA

Abbildung 3: Sicherheitsspiel

• Chosen Ciphertext Angriff

• geht einen Schritt weiter als IND-CPA und schützt auch vor Angreifern, die zusätzlich die Möglichkeit haben, bestimmte Chiffretexte zu entschlüsseln

3.2.7 Unterschied zwischen IND-CPA und IND-CCA

- IND-CPA Sicherheit:
 - schützt vor Angriffen, bei denen Angriefer **Verschlüsselungen** seiner Wahl erzeugen kann
 - reicht nicht aus, wenn Angreifer auch Zugriff auf Entschlüsselungen hat
- IND-CCA Sicherheit:
 - stärkere Sicherheit
 - schützt selbst dann, wenn Angreifer zusätzlich Entschlüsselungen anfordern kann (außer dem zu entschlüsselnden Chiffretext)
- Fazit
 - IND-CCA Sicherheit ist notwendig, wenn Angreifer auf Entschlüsselungsoperationen zugreifen kann

Wie zeigen wir (Un-)sicherheit?

- Unsicheres Verfahren
 - konstruiere effizienten Angreifer, der mit mit Wahrscheinlichkeit signifikant größer als $\frac{1}{2}$
- Sicheres Verfahren:
 - Zeige, dass alle Angreifer das Sicherheitsspiel mit Wahrscheinlichkeit $\approx \frac{1}{2}$ gewinnen
 - Reduktionsbeweis auf Annahmen

One-Time-Pad Verschlüsselung

Wiederholung: XOR

Bit XOR Operationen

x ⊕ 0 = x
x ⊕ x = 0
$x \oplus y = y \oplus x$
$(x \oplus y) \oplus z = x \oplus (y \oplus z)$
$(x \oplus y) \oplus x = y$

Erweiterung auf Bitstrings

Abbildung 4: XOR

3.3.1 One-Time-Pad

- auch häufig Vernam-Chiffre genannt
- symmetrisches Verschlüsselungsverfahren
- ullet zur Verschlüsselung von **Bitstrings der Länge** n

Funktionsweise

- Gen: in zufälliger Schlüssel k wird aus der Menge $\{0,1\}^n$ erzeugt, wobei n die Länge des Klartextes m ist
 - Schlüssel muss mindestens so lang wie der Klartext sein und darf nur einmal verwendet werden

Enc: Verschlüsselung erfolgt durch eine \mathbf{XOR} -Operation zwischen dem $\mathbf{Klartext}$ \mathbf{m} und dem $\mathbf{Schlüssel}$ \mathbf{k}

 $\operatorname{Enc}(k,m) = k \oplus m \implies \operatorname{Ergebnis} \text{ ist der } \mathbf{Chiffretext } \mathbf{c}$

• Dec: um den Chiffretext zu entschlüsseln wird erneut eine XOR-Operation zwischen dem Chiffretext c und dem Schlüssel k durchgeführt

$$Dec(k,c) = k \oplus c$$

• da bein XOR die Operation invertierbar ist $(x \oplus x = 0)$, erhält man den ursprünglichen Klartext zurück.

3.3.2 Sicherheit

- beschränktes Sicherheitsspiel: Angriefer erhält keinen Zugriff auf Chiffretexte
- Angreifer gewinnt das Sicherheitsspiel, wenn b = b'
- Analyse ergibt: Perfekte Sicherheit c* gibt keine Information über m_b preis

Abbildung 5: beschränktes Sicherheitsspiel

3.3.3 Schlüssel nur einmal verwenden

One-Time-Pad ist unsicher bei Wiederverwendung des gleichen Schlüssels

Abbildung 6: One-Time-Pad Schlüssel nur einmal verwenden

- Lernen des XORs kann nützliche Informationen preisgeben
- z.B. welche Bits von m_0 und m_1 gleich sind
- \bullet wenn m_0 bekannt ist, dann ist auch m_1 bekannt (und vice versa)
- Moral: zur Verschlüsselung jeder Nachricht muss ein neuer zufälliger Schlüssel gewählt werden

3.3.4 Venona-Projekt: Risiken von One-Time-Pads

- Venona-Projekt (1943-1980)
 - Ziel: Entschlüsselung sowjetischer Kommunikation durch USA und Großbritannien
 - Sowjetische Nachrichten wurden mit One-Time-Pads verschlüsselt

- Fehler: Schlüssel wurden unter Zeitdruck mehrfach verwendet

• Risiken von One-Time-Pads

- Mehrfachnutzung von Schlüsseln: Führt dazu, dass Angreifer durch XOR der Chiffretexte Informationen über die Klartexte gewinnen können
- US-Geheimdienste nutzten diesen Fehler, um sowjetische Nachrichten zu entschlüsseln
- Lektion: One-Time-Pad ist nur sicher, wenn jeder Schlüssel einmalig verwendet wird

3.3.5 Nachteile von One-Time-Pad

- 1. Schlüssel ist so lang wie Nachricht
 - für große Mengen von Daten müssen lange zufällige Schlüssel gespeichert und ausgestauscht werden
 - gute Zufälligkeit zu erzeugen, ist sehr aufwendig
- 2. Schlüssel kann nur einmal benutzt werden
 - mehrfache Verwendung kann etwa über Klartexte preisgeben
 - für viele Nachrichten benötigt man viele Schlüssel
- 3. Sicheheit im beschränkten Angreifermodell
 - Chiffretext-Only Angriffe

$\ddot{ ext{U}}$ bung $oldsymbol{1}$

Aufgabe 1: Wissensfragen

- (a) Beschreiben Sie die Unterschiede zwischen Safety und Security.
 - Safety (Betriebssicherheit)
 - Schutz gegen Fehler/Unfälle
 - Fehler meist unbeabsichtigt
 - mögliche Gegenmaßnahmen: Verifikation und Testen
 - Security (Angriffssicherheit)
 - Schutz gegen worst-case-Angreifer
 - meist Schadabsicht
 - Verifikation und Testen hilft wenig
- (b) Nennen und beschreiben Sie drei Sicherheitseigenschaften.
 - Vertraulichkeit (Angreifer kann Nachricht nicht lernen)
 - Anonymität (Eigenschaft, dass eine Person oder Gruppe nicht identifiziert werden kann)
 - Integrität (Angreifer kann Nachricht nicht ändern, ohne dass Änderung erkannt wird)
 - Authentizität (Angreifer kann nicht behaupten, dass eine Nachricht von Alive kam, die diese nicht gesendet hat)
 - Verfügbarkeit (Eigenschaft eines Systems Zugriff für autorisierte Benutzer auf Daten und Dienste zu erlauben)
- (c) Beschreiben Sie das Sicherheitsprinzip der fail-safe Standards. Geben Sie ein Beispiel an.

Dieses Prinzip sorgt dafür, dass ein System bei einem Ausfall oder einer Anomalie in einen Zustand übergeht, der den geringstmöglichen Schaden verursacht.

Beispiel: mechanisches Zugsignal (aus VL)

(d) Was sagt das Kerckhoffs'sche Prinzip aus?

Ein Kryptoverfahren soll sicher bleiben, selbst wenn der Angreifer den Kryptoalgorithmus kennt. Die Sicherheit des Kryptoverfahrens beruht auf der Geheimhaltung des Schlüssels.

Aufgabe 2: IND-CPA vs. IND-CCA

(a) **Szenario 1:** Sichere Kommunikation im Web: Um Nachrichten zwischen einem Webbrowser und einem Webserver abzusichern, wird ein Verschlusselungsverfahren "eingesetzt. Die Kommunikation soll dabei auch gegen einen Angreifer, der die Kommunikationskan ale kontrolliert, abgesichert werden.

In diesem Szenario hat der Angreifer möglicherweise die Kontrolle über den Kommunikationskanal. Das bedeutet, er könnte nicht nur Nachrichten abfangen (passiver Angriff), sondern auch aktiv Nachrichten modifizieren oder selbst verschlüsselte Nachrichten an den Server senden (aktiver Angriff). Da die IND-CPA jedoch nur vor passiven Angriffen schützt, empfiehlt sich hier eher die IND-CCA Sicherheit.

Musterlösung:

Ein Angreifer, der die Kommunikationskanäle kontrolliert, kann Chiffretexte abfangen, erneut senden oder modifizieren. Der Chiffretext wird dabei vom Empfänger entschlüsselt und der Empfänger führt mögliche Aktionen aus. In diesem Szenario ist IND-CPA Sicherheit nicht ausreichend und wir brauchen IND-CCA Sicherheit des Verschlüsselungsverfahren. Der Empfänger stellt in diesem Szenario eine Art Entschlüsselungsorakel dar. Auch wenn der Empfänger die entschlüsselte Nachricht nicht an den Angreifer zurück schickt, kann der Angreifer möglicherweise Informationen aus den Aktionen des Empfängers ableiten. (z.B. der Webserver führt eine Transaktion aus). Um einen solchen Angriff zu verhindern, benötigt es eine stärkere Sicherheit als IND-CPA Sicherheit.

(b) Szenario 2: Data at Rest: In einem Unternehmen werden sensible Daten auf einer Festplatte gespeichert. Diese Informationen sollen durch ein Verschlüsselungsverfahren abgesichert werden, sodass selbst bei einem Diebstahl der Festplatte die Daten geheim bleiben.

Musterlösung:

In diesem Szenario ist IND-CPA Sicherheit ausreichend. Sollte ein Angreifer im Besitz einer Festplatte kommen, dann hat er keinen Zugriff auf ein Entschlüsselungsorakel (Unter der Annahme, dass der Schlüssel nicht auf der Festplatte gespeichert ist). Der Angreifer kann lediglich versuchen die Klartexte zu erraten oder andere Online-Angriffe wie einen Bruce-Force-Angriff durchzuführen.

Thema 3: Symmetrische Kryptographie - Teil

Data Encryption Standard (DES)

- symmetrischer Verschlüsselungsalgorithmus, der in den 1970er Jahren von IBM im Auftrag des National Institute of Standards and Technology (NIST) entwickelt wurde
- Blockchiffre, die Daten in Blöcken von 64 Bit verschlüsselt und entschlüsselt

• Blocklänge: n=64 Bits

• Schlüssellänge: k=56 Bits

Verschlüsselung und Entschlüsselung

- Verschlüsselung erfolgt mit einem Schlüssel $K \in \{0,1\}^{56}$ und einer Nachricht $M \in \{0,1\}^{64}$
- das Ergebnis ist ein Chiffrat $C \in \{0,1\}^{64}$
- die Entschlüsselung funktioniert ähnlich, wobei derselbe Schlüssel K verwendet wird, um das Chiffrat C wieder in die ursprüngliche Nachricht M zu konvertieren

Abbildung 7: Des

5.1.1 DES: Angriffe

Theoretische Angriffe:

- Differenzielle Kryptoanalyse
- Lineare Kryptoanlyse
- DES bietet Schutz gegen Differenzielle Kyptoanalyse
- Hauptschwachpunkt: kurzer Schlüssel (nur 56 Bits)
 - Brute-Force Angriff ist möglich
 - DES Cracker: bricht DES in wenigen Tagen (in 1988)
- Erweiterungen: Mehrfachanwendung von DES zur Verlängerung des Schlüssels (z.B. Triple DES)

5.1.2 Triple-DES

- DES-Algorithmus wird dreimal hintereinander auf einen Datenblock angewendet, um die Sicherheit zu erhöhen
- dabei werden drei 56-Bit-Schlüssel verwendet, was zu einer nominalen Schlüssellänge von 168 Bits führt

Meet-in-the-Middle Angriff

- nutzt den Umstand aus, dass der Angreifer sowohl den Klartext als auch den Chiffretext kennt und durch Berechnung von Zwischenergebnissen den Schlüsselraum effizienter durchsuchen kann
- funktioniert folgendermaßen:
 - 1. Ein Angreifer berechnet für alle möglichen Schlüssel K_0 das Ergebnis $X = DES(M, K_0)$, wobei M die bekannte Nachricht ist (2⁵⁶ Möglichkeiten)
 - 2. danach berechnet er für alle möglichen Schlüssel K_1 das Ergebnis $Y = DES^{-1}(X, K_1)$ ($2^{56} \cdot 2^{56}$ Möglichkeiten)
 - 3. schließlich berechnet er für alle möglichen Schlüssel K_2 das Ergebnis $Z = DES^{-1}(C, K_2)$, wobei C der bekannte Chiffretext ist
 - 4. Der Angreifer vergleicht nun alle Werte von Y ind Z. Wenn eine Übereinstimmung gefunden wird, hat er potenziell den richtigen Schlüssel gefunden
- \bullet dieser Angriff reduziert den Aufwand für das Knacken von Triple-DES auf etwa 2^{112} Operationen anstatt der erwarteten 2^{168} Operationen

Advanced Encryption Standard (AES)

- Schlüsselgröße: **128**, **192** oder **256** Bit
- Block-Größe: 128 Bit
- gilt als unangebrochen: in den USA Zulassung für höchte Geheimhaltungsstufe

5.2.1 Angriffe in der Praxis

1. Seiten-Kanal-Angriffe

- passive Angriffe, bei denen der Angreifer **physikalische Informationen** während der Ausführung einer kryptographischen Operation beobachtet
- Messe die Zeit, die für kryptographische Operationen benötigt wird
- Messe den Stromverbrauch

2. Fehlerangriffe

- aktive Angriffe, bei denen der Angreifer gezielt Fehler in den Berechnungsprozess einführt
- können durch **physikalische Manipulationen**, wie Laserstrahlen, elektromagnetische Pulse oder Spannungsschwankungen verursacht werden
- Ziel ist es durch die **Analyse der fehlerhaften Ausgaben** Informationen über den geheimen Schlüssel zu gewinnen

Blockchiffren im Einsatz

- nicht IND-CPA sicher
- Nachrichten belieber Länge können nicht direkt verschlüsselt werden
- Merke: Deterministische Verschlüsselung kann nicht IND-CPA sicher sein

Modes of Operation

- Ziel: Verschlüsselung von Nachrichten mit beliebiger Länge
- 1. Electronic Codebook (ECB) Modus
 - nicht IND-CPA sicher
- 2. Cipher-Block-Chaining (CBC) Modus
- 3. Counter (CTR) Modus

5.3.1 Electronic Code Book (ECB) Modus

- $\bullet\,$ jeder Klartextblock wird **unabhänig** voneinander mit **demselben Schlüssel** verschlüsselt
- \bullet bedeutet, dass identische Klartextblöcke immer zu identischen Chiffretextblocken führen \to erhebliche Schwäche

Wenn |m| kein Vielfaches der Blocklänge, dann muss der Klartext um ein Padding pad ergänzt werden

Abbildung 8: ECB-Modus

Funktionsweise:

1. Aufteilung des Klartextes in Blöcken

- ullet Klartext m wird in Blöcke der Größe der Blockchiffre unterteilt
- wenn Länge des Klartextes |m| kein Vielfaches der Blockgröße ist, wird der letzte Block durch Padding (Auffüllen) ergänzt, um die Blockgröße zu erreichen

2. Verschlüsselung:

ullet jeder Klartexttblock wird **unabhängig** voneinander mit dem **gleichen Schlüssel** k verschlüsselt

$$c_i = Enc_k(m_i)$$

3. Entschlüsselung:

• jeder Chiffretextblock wird unabhänig voneinander mit dem gleichen Schlüssel entschlüsselt

$$m_i = Dec_k(c_i)$$

• die entschlüsselten Blöcke werden zu einem Klartextblock kombiniert

Schwächen des ECB-Modus:

- da jeder Block unabhängig verschlüsselt wird, gibt es keine Zufälligkeit oder Verknüpfung zwischen den Blöcken
 - führt dazu, dass ein Angreifer, der einen Teil des Klartextes kennt, leicht Rückschlüsse auf den Chiffretext ziehen kann

5.3.2 Cipher Block Chaining (CBC) Modus

- jeder Klartextblock wird vor der Verschlüsselung mit dem vorherigen Klartextblock verknüpft, was sicherstellt, dass gleiche Klartextblöcke nicht zu gleichen Chiffretextblocken führen
 - dadurch wird eine Form der Randomisierung eingeführt

Abbildung 9: CBC-Verschlüsselung

Abbildung 10: CBC-Entschlüsselung

Funktionsweise des CBC-Modus:

- 1. Initialisierungsvektor (IV):
 - beginnt mit einem zufälligen Initialisierungsvektor, der genau so lang ist wie ein Block
- 2. Verknüpfung der Blöcke:
 - jeder Klartextblock wird vor der Verschlüsselung mit dem **Chiffretext des vorherigen Blocks** XOR verknüpft
- 3. Entschlüsselung:
 - jeder Chiffretext wird entschlüsselt und dann mit dem vorherigen Chiffretextblock XOR verknüpft, um den ursprünglichen Klartext wiederherzustellen

CBC-Modus: Sicherheit

• ist IND-CPA sicher, wenn er korrekt verwendet wird

Padding Angriffe auf CBC

- Chosen-Ciphertext Angriffe können Informationen über Bits der Nachricht liefern
- Bitänderungen in Chiffretext Block 1 führen zu Änderungen in Klartext Block 2
- wenn angteifer lernt ob bei der Entschlüsselung das Padding ungültig war, können gezielte Modifikationen in Block 1 Informationen über Klartext in Block 2 liefern

Angriffsszenario:

- Angreifer hat Zugriff auf verschlüsselten Chiffretext, der im CBC-Modus erstellt wurde
- kennt den Schlüssel nicht, hat jedoch die Möglichkeit, den Chiffretext zu modifizieren und an ein System zu senden, das die Entschlüsselung durchführt
- System gibt Rückmeldungen darüber, ob das **Padding nach der Entschlüsselung korrekt** war (z.B. durch Fehlermeldungen)

Sicherheit gegen Padding-Angriffe vs. IND-CPA/IND-CCA

- Sicherheit gegen Padding Angriffe ist stärker als IND-CPA Sicherheit
 - Bsp: CBC-Mode ist IND-CPA sicher, aber nicht gegem Padding Angriffe
- im IND-CCA Spiel hat Angreifer Zugriff auf Entschlüsselungsorakel
 - kann alles, was Padding Orakel auch kann (aber noch mehr)
 - ist mächtiger als ein Padding Orakel!
 - IND-CCA bietet stärkere Sicherheit
- ightarrow Sicherheit gegen Padding Angriffe liegt zwischen IND-CPA und IND-CCA Sicherheit

5.3.3 Counter Modus (CTR)

- Idee: Nutze Ausgabe der Blockchiffre als One-Time-Pad
- anstatt wie beim One-Time-Pad einen großen zufälligen Schlüssel zu verwenden, wird beim CTR-Modus ein Zählerwert(Counter) verwendet
- dieser Zähler wird bei jeder Verschlüsselung **inkrementiert** und zusammen mit einem festen Wert verschlüsselt

Abbildung 11: Counter Modus

Fehlerresistenz

Abbildung 12: Fehlerresistenz

Vergleich der Modi

Abbildung 13: Vergleich der unterschiedlichen Modi