+Vincent.Knight @drvinceknight vincent-knight.com/Talks

$$(2,2)$$
 $(5,0)$ $(0,5)$ $(4,4)$

$m\in\mathbb{Z}$	Number of sources
$n\in\mathbb{Z}$	Number of service centers
$eta \in \mathbb{R}^{\it m}_{\geq 0}$	Worth of service
$\Lambda \in \mathbb{R}^{\overline{m}}_{\geq 0}$	Demand rate
w_j for $j \in [n]$	A convex utility function
d_{ij} for $i \in [m], j \in [n]$	Distance from source i to service center j
λ_{ij} for $i \in [m], j \in [n]$	Traffic from source i to service center j

Interpretation

Parameter

Price of Anarchy in Public Services *EJORS*, 2013.

What about the controllers?

$$K_2$$

$$\lambda_h^{(a)} \qquad \lambda_h^{(b)} \qquad \qquad \lambda_h^{(b)} \qquad \qquad \lambda_h^{(c)} \qquad \qquad \lambda_h^{(d)}$$

Parameter	Interpretation
$h \in \{1,2\}$	CCU
Ch	Capacity of CCU
K_h	Cutoff strategy of CCU

Demand rate

 μ_h

Service rate of CCU

Theorem.

Let $f_h(k): [1, c_{\bar{h}}] \to [1, c_h]$ be the best response of player

least one Nash Equilibrium in Pure Strategies.

 $h \in \{NH, RG\}$ to the diversion threshold of $\bar{h} \neq h$ ($\bar{h} \in \{NH, RG\}$). If $f_h(k)$ is a non-decreasing function in k then the game has at

$$A = egin{pmatrix} (U_{
m NH}(1,1)-t)^2 & \dots & (U_{
m NH}(1,c_{
m RG})-t)^2 \ (U_{
m NH}(2,1)-t)^2 & \dots & (U_{
m NH}(2,c_{
m RG})-t)^2 \ dots & \ddots & dots \ (U_{
m NH}(c_{
m NH},1)-t)^2 & \dots & (U_{
m NH}(c_{
m NH},c_{
m RG})-t)^2 \end{pmatrix}$$

$$B = \begin{pmatrix} (U_{\text{NH}}(c_{\text{NH}}, 1) - t)^2 & \dots & (U_{\text{NH}}(c_{\text{NH}}, c_{\text{RG}}) - t)^2 \end{pmatrix}$$

$$B = \begin{pmatrix} (U_{\text{RG}}(1, 1) - t)^2 & \dots & (U_{\text{RG}}(1, c_{\text{RG}}) - t)^2 \\ (U_{\text{RG}}(2, 1) - t)^2 & \dots & (U_{\text{RG}}(2, c_{\text{RG}}) - t)^2 \\ \vdots & \ddots & \vdots \\ (U_{\text{RG}}(c_{\text{RG}}, 1) - t)^2 & \dots & (U_{\text{RG}}(c_{\text{RG}}, c_{\text{RG}}) - t)^2 \end{pmatrix}$$

Measuring the Price of Anarchy in Critical Care Unit Interactions, Submitted to OMEGA

Hospital 1 Hospital 2 Ambulance
$$C^{(1)} - 1$$
 $C^{(2)} - 1$ Λ

$$(|u_1^{(1)} - u_2^{(1)}|, |u_1^{(2)} - u_2^{(2)}|, |w^{(1)} - w^{(2)}|)$$

 $S = \left\{ (i,j) \in \mathbb{Z}_{\geq 0}^2 \mid 0 \leq j \leq c_1 + c_2, \ 0 \leq i \leq c_1 + N - \max(j - c_2, 0) \right\}$

$$q_{(i_1,j_1),(i_2,j_2)} = \begin{cases} \Lambda, & \text{if } \delta = (1,0) \\ \min(c_1 - \max(j_1 - c_2,0), i_1)(1-p)\mu_1, & \text{if } \delta = (-1,1) \\ \min(c_1 - \max(j_1 - c_2,0), i_1)p\mu_1, & \text{if } \delta = (-1,0) \\ \min(c_2,j_1)\mu_2, & \text{if } \delta = (0,-1) \end{cases}$$

Analytical

Simulation

