Advanced Astroinformatics - Student Project

# Machine Learning: Intro to Scikit-Learn

Dr. Nina Hernitschek June 27, 2022

#### shifting use cases:

As data become more plentiful, finding the right data has Motivation become more important.

#### shifting use cases:

As data become more plentiful, finding the *right* data has become more important.



lachine earning tikit-lea

Motivation

### Motivation

\_earning scikit-learn

#### shifting use cases:

As data become more plentiful, finding the *right* data has become more important.



#### **Data Mining**

Individual measurements giving way to statistics, clustering, patterns in the data.

Data processing needs to be **highly automatized**.

Analysis growing more exploratory rather than pre-defined/scripted.

#### **Examples:**

Finding and classifying variable stars in PS1  $3\pi$  required processing of  $10^9$  sparse light curves  $\Rightarrow$  44,000 RRab stars.

Transient science (gravitational wave follow-up, GRBs, unknowns from LSST) requires rapid access to data sets of what is already known, anywhere on sky.



image credit: LIGO

Motivation

Machine
Learning

Motivation

Machine

Learning scikit-lear

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

Motivation

Machine

Learning

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 $\Rightarrow$  allows to uncover hidden correlation patterns through iterative learning by sample data

Motivation

Machine
Learning

scikit-learn

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 $\Rightarrow$  allows to **uncover hidden correlation patterns** through iterative learning by sample data



Motivation

Machine
Learning

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 $\Rightarrow$  allows to uncover hidden correlation patterns through iterative learning by sample data

- $\Rightarrow$  allows **to model a survey**:
  - lacktriangle describing data quality o outlier
  - describing light curve characteristics → "features"
  - classifying sources → catalogs
  - finding substructure  $\rightarrow$  clumps, overdensities, ...

# Unsupervised vs. Supervised Learning

unsupervised learning or "learning without labels"

#### Clustering:

Find subtypes or groups that are not defined a priori based on measurements

⇒ members of the same cluster are "close" in some sense

VS.

supervised learning or "learning without labels"

#### Classification:

Use a priori group labels in analysis to assign new observations to a particular group or class

#### Regression:

instead of having training data with discrete labels, the "truth" is a continuous property and we are trying to predict the values of that property for the test data

Machine Learning

scikit-lea

# Unsupervised vs. Supervised Learning

supervised learning or "learning without labels"

#### Classification:

Use a priori group labels in analysis to assign new observations to a particular group or class

#### Regression:

instead of having training data with discrete labels, the "truth" is a continuous property and we are trying to predict the values of that property for the test data

#### example:

The task of determining whether an object is a star, a galaxy, or a quasar is a classification problem: the label is from three distinct categories. On the other hand, we might wish to estimate the age of an object based on such observations: this would be a regression problem, because the label (age) is a continuous quantity.

Machine Learning

scikit-lear

# Clustering Methods

■ Abell clustering richness class (Abell 1958)



Machine Learning

# Clustering Methods

■ Abell clustering richness class (Abell 1958)



Machine Learning

scikit-lear

■ Gamma Ray Bursts: use properties of GRBs (e.g. location on the sky, arrival time, duration) to find classes of events



image credit: (Mukherjee+1998)

# Clustering Methods

....

Machine Learning

#### Percolation or 'Friends of Friends (FoF)' algorithm

- 1. Plot data points in a 2-dimensional diagram (or: calculate distances using a metric).
- 2. Find the closest pair, and call the merged object a cluster.
- 3. Repeat step 2 until some chosen threshold is reached. Some objects will lie in rich clusters, others have one companion, and others are isolated.



#### Classification Methods

#### Classification

Use a priori group labels in analysis to assign new observations to a particular known group or class.

⇒ supervised learning or "learning with labels".



Machine Learning

scikit-lear

## Concepts of Supervised Classification

Motivation

Machine
Learning
scikit-learn

training set

classifier

target set's
probabilities

#### training set:

- set of sources inside/outside the category we are looking for
- same data quality as found in target set

# Concepts of Supervised Classification

Machine Learning

cikit-learn



#### training set:

- set of sources inside/outside the category we are looking for
- same data quality as found in target set

#### What's happening internally?

## Concepts of Supervised Classification

The learning process ("training"):

To build a decision tree, the set is divided into smaller and smaller subsets by **splitting** w.r.t. a single **feature** at a time.

Split criteria: select feature and split point to produce the smallest impurity in the two resultant nodes based on the **training set**.



Motivatio Machine Learning

#### Supervised Classification - Ensemble Methods

Random Forest Classifier as ensemble method: many trees are grown from subsets of the training set

Machine Learning



#### Supervised Classification - Ensemble Methods

Random Forest Classifier as ensemble method: ... and are "voting" for classification



Motivation

Machine

Learning

#### Supervised Classification - Ensemble Methods

Machine Learning



# **divide-and-conquer approach** improves classification performance

- less sensitive to training set variances
- robust to outliers
- training and classification can be parallelized

## Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

Machine Learning

scikit-lea

### Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

make usage of the training set  $\Rightarrow$  **10-fold cross-validation** 10 % held out  $\Rightarrow$  train on 90%, apply to 10% in turn

Machine Learning scikit-learn

### Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

make usage of the training set  $\Rightarrow$  10-fold cross-validation 10 % held out  $\Rightarrow$  train on 90%, apply to 10% in turn

#### purity-completeness (or precision-recall) curves



Machine Learning

#### completeness:

# selected true RR Lyrae / # true RR Lyrae purity:

# selected true RR Lyrae / # all selected sources

#### scikit-learn



Learning scikit-learn



scikit-learn is a popular Python package containing a collection of tools for **machine learning** 

it includes algorithms used for classification, regression and clustering

it comes with an extensive **online documentation**: http://scikit-learn.org/stable/tutorial/basic/tutorial.html

scikit-learn is built upon Python's NumPy (Numerical Python) and SciPy (Scientific Python) libraries, which enable efficient in-core numerical and scientific computation within Python.

#### scikit-learn

Motivation Machine Learning

scikit-learn

scikit-learn uses 3 steps for **developing**, **applying and testing** machine learning algorithms:

- Train the model using an existing data set describing the phenomena you need the model to predict.
- Test the model on another existing data set to ensure it performs well.
- Use the model to predict phenomena as needed for your project.

### Break & Questions

afterwards we continue with notebook\_5.ipynb from the
github repository

Machine

scikit-learn