Questi lucidi sono basati su una traduzione in italiano dei lucidi in inglese del Prof. Jeffrey D. Ullman

http://infolab.stanford.edu/~ullman/ialc/spr1 0/spr10.html#LECTURE%20NOTES

http://www-db.Stanford.edu/~Ullman/ialc.html

Il Pumping Lemma per i linguaggi context-free

Forma Normale di Chomsky

- Si dice che una CFG è in Forma Normale di Chomsky se ogni produzione è della forma:
 - 1. A -> BC (A, B, C variabili).
 - 2. A -> a (a terminale).
 - 3. $S \rightarrow \epsilon$

Inoltre se S -> ϵ è una produzione, B e C sono diversi da S.

Forma Normale di Chomsky

- ◆ Teorema: Per ogni grammatica context-free G esiste una grammatica equivalente in forma normale di Chomsky.
- Se L è un CFL, allora L ha una CFG in CNF.

Intuizione

- Ricordiamo il pumping lemma per i linguaggi regolari.
- ◆Il lemma dice che se esiste in L una stringa abbastanza lunga da "creare" un ciclo nel DFA per L, allora noi potremmo "iterare il ciclo" e ottenere una sequenza infinita di stringhe che devono appartenere al linguaggio.

Intuizione

Per i CFL la situazione è un po' più complicata.

- ◆Noi possiamo sempre trovare due fattori di una qualsiasi stringa sufficientemente lunga da "iterare" in tandem.
 - Cioè: se noi iteriamo ciascuno dei due pezzi lo stesso numero di volte, otteniamo un'altra stringa nel linguaggio.

Enunciato del Pumping Lemma per i CFL

Per ogni linguaggio context-free L Esiste un intero n, tale che Per ogni stringa z in L con $|z| \ge n$ Esiste z = uvwxy tale che:

- 1. $|vwx| \leq n$.
- 2. |vx| > 0.
- 3. Per ogni i ≥ 0 , uv^iwx^iy è in L.

Prova del Pumping Lemma

- G grammatica in CNF per L.
- Sia m il numero delle variabili della grammatica.
- \bullet Poniamo n = 2^{m} .
- ♦ Sia z in L con $|z| \ge n$.
- ◆Affermiamo ("Lemma 1") che un parse tree con prodotto z deve avere un cammino di lunghezza ≥m+1.

Prova del Pumping Lemma

◆Affermiamo ("Lemma 1") che un parse tree con prodotto z deve avere un cammino di lunghezza ≥m+1.

Prova del Lemma 1

Se tutti i cammini nel parse tree di una grammatica in CNF hanno lunghezza ≤ m, allora il più lungo prodotto ha lunghezza 2^{m-1}, come in:

m variabili un terminale $2^{m-1} \text{ terminali}$

Torniamo alla Prova del Pumping Lemma

- ◆Sappiamo che il parse tree per z ha un cammino con almeno m+1 variabili.
- Consideriamo il cammino più lungo.
- ◆Ci sono solo m variabili distinte, quindi tra le m+1 più in basso possiamo trovare due nodi con la stessa etichetta, diciamo A.
- Il parse tree ha allora la forma:

Parse Tree nella Prova del Pumping Lemma

"Pump" Zero Volte

Iteriamo due volte

Iteriamo tre volte Ecc., Ecc.

Uso del Pumping Lemma

- \bullet {0ⁱ10ⁱ | i \geq 1} è un CFL.
- \bullet Ma L = $\{0^{i}10^{i}10^{i} | i \ge 1\}$ non lo è.
- ◆Lo proviamo usando il pumping lemma.
- Supponiamo che L sia un CFL.
- Sia n la costante del pumping lemma per L.

Uso del Pumping Lemma

- \bullet Consideriamo z = $0^{n}10^{n}10^{n}$.
- Scriviamo z = uvwxy, dove $|vwx| \le n e |vx| \ge 1$.
- Caso 1: vx non ha occorrenze di 0.
 - Almeno uno tra v e x è 1 e uwy ha al più un 1, ma nessuna stringa in L ha questa proprietà.

Uso del Pumping Lemma

- Consideriamo ancora $z = 0^{n}10^{n}10^{n}$.
- Caso 2: vx ha almeno uno 0.
 - vwx è troppo corta (lunghezza ≤ n) per essere fattore di tutti e tre i blocchi di 0 in 0ⁿ10ⁿ10ⁿ.
 - Allora uwy ha almeno un blocco di n zeri e almeno un blocco con meno di n zeri.
 - Quindi, uwy non appartiene a L.