

A Smeared-Crack Approach to Modeling Hydraulic Fracture in GEOS

Brian Giffin under the advisement of Dr. Mark Rashid and in collaboration with Dr. Randolph Settgast February 13, 2015

Outline

- Introduction & Approach
- Poromechanics
- Damage Mechanics
- GEOS Implementation
- Conclusions & Future Work

Introduction

Collaboration with LLNL

- Interest in modeling hydraulic fracturing
- GEOS: suitable platform for such problems

Main Goal: Implement a new modeling approach within GEOS

Approach

Homogenized (``Smeared'') Approach for Modeling Hydraulic Fracture

- Treat cracked rock mass as a homogenized medium
 - Variable and anisotropic stiffness and hydraulic conductivity
 - Evolve constitutive behavior via a damage parameter to simulate crack propagation

Eliminates the need for:

- Re-meshing the geometry as `cracks' evolve
- Contact enforcement between cracked faces
- The generation of a separate `flow mesh'

Poromechanics

- Coupled solution of solid deformation and flow in a porous medium
 - Quasi-static deformation
 - Fully saturated, single phase, diffusive fluid flow
- Consider a RVE to define the poroelastic solid

Governing Equations

Equilibrium of the Poroelastic Solid

$$\sigma_{ij,j} + \rho g_i = 0 \quad \forall x \in B$$

 σ_{ij} Total stress tensor

 ρ Overall mass density per unit of initial (undeformed) volume

 g_i Gravitational body force (vector)

Compressible Fluid Flow in a Porous Medium

$$\frac{\partial}{\partial t}\phi + \mathcal{V}_{i,i} = 0 \qquad \forall x \in B$$

 \mathcal{V}_i Volumetric fluid flux

 ϕ Lagrangian porosity

Constitutive Relations

For the Poroelastic Solid

$$\sigma_{ij} = C_{ijkl}\varepsilon_{kl} - b_{ij}p$$

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

 C_{ijkl} Tangent stiffness modulus of the "skeleton"

 ε_{ij} "Skeleton" strain tensor

 b_{ij} Biot's modulus (symmetric rank 2 tensor; links total stress and fluid pressure increments)

p Fluid (pore) pressure

 u_i Displacement of the ``skeleton"

Constitutive Relations

For the Compressible Fluid

$$\phi = \phi_0 + b_{ij}\varepsilon_{ij} + \frac{p}{M}$$

$$\mathcal{V}_i = -\frac{\kappa_{ij}}{\mu}(p_{,j} - \rho^f g_j)$$

 $1/M\,$ Fluid capacity parameter (scalar valued quantity that links pore pressure and porosity variation)

 κ_{ij} Intrinsic permeability tensor

 μ Fluid viscosity

 ho^f Intrinsic fluid mass density

Boundary Conditions

For the Poroelastic Solid

$$u_i = \bar{u}_i \quad on \quad \partial_u B$$

 $\sigma_{ij} n_j = \bar{t}_i \quad on \quad \partial_t B$

$$p = \bar{p}$$
 on $\partial_p B$
$$\mathcal{V}_i n_i = \bar{\mathcal{V}} \quad on \quad \partial_{\mathcal{V}} B$$

Weak Form

Find $u_i \in \mathcal{S}$ and $p \in \mathcal{T}$ such that:

$$\int_{B} \sigma_{ij} v_{i,j} dv = \int_{\partial_{t} B} \bar{t}_{i} v_{i} da + \int_{B} \rho g_{i} v_{i} dv \quad \forall v_{i} \in V$$

and

$$\int_{B} \mathcal{V}_{i} q_{,i} dv = \int_{\partial \mathcal{V}_{B}} \bar{\mathcal{V}} q da + \int_{B} \frac{\partial \phi}{\partial t} q dv \quad \forall q \in \mathcal{Q}$$

Finite Element System of Equations

$$\begin{bmatrix} \mathbf{K_{uu}} & -\mathbf{K_{up}} \\ -\mathbf{K_{pu}} & -\left(\frac{\Delta t}{2}\mathbf{K_{pp}} + \mathbf{M_{pp}}\right) \end{bmatrix}^{(m+1)} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix}^{(m+1)} \cdots \\ \cdots = \begin{bmatrix} -\mathbf{K_{uu}} & \mathbf{K_{up}} \\ -\mathbf{K_{pu}} & \left(\frac{\Delta t}{2}\mathbf{K_{pp}} - \mathbf{M_{pp}}\right) \end{bmatrix}^{(m)} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix}^{(m)} \cdots \\ \cdots + \begin{bmatrix} \mathbf{F_{u}} \\ \left(\frac{\Delta t}{2}\mathbf{F_{p}^{1}} + \mathbf{F_{p}^{2}}\right) \end{bmatrix}^{(m+1)} + \begin{bmatrix} \mathbf{F_{u}} \\ \left(\frac{\Delta t}{2}\mathbf{F_{p}^{1}} - \mathbf{F_{p}^{2}}\right) \end{bmatrix}^{(m)} \end{aligned}$$

Damage Mechanics

Proof of concept using a simple isotropic material degradation scheme:

• Consider a damage parameter: $D \in (0,1]$

$$\lambda = \lambda(D); \qquad \mu = \mu(D); \qquad \kappa_{ij} = \kappa_{ij}(D)$$

- Evolve material properties using an appropriate failure criterion to emulate fracture
- Desired behavior:
 - $-\sigma_{\rm t} << \sigma_{\rm c}$ (lower tensile rupture stress)
 - Pressure-dependent material failure
 - Damage linked to the deviatoric stress

Failure Criterion

Drucker-Prager failure criterion:

$$\sqrt{J_2} = A + BI_1$$

- J_2 second invariant of the deviatoric part of the *effective* skeleton stress
- I_1 first invariant of the *effective* skeleton stress
- A, B constants that depend on $\sigma_{\rm t}$ and $\sigma_{\rm c}$

Damage Evolution Law

- Permanent, irreversible degradation of the elastic properties and hydraulic conductivity:
 - Failure surface: $f(\sigma'_{ij}) = J_2 (A + BI_1)^2 = 0$
 - Consistency condition: df = 0 during failure

Test Problem in MATLAB

- 2-D cube of poroelastic material subjected to an external pressure load
- $u_{\perp} = 0$ on $\partial_u B$
- p=0 on $\partial_p B$
- $\mathcal{V}_i n_i = 0$ on $\partial_{\mathcal{V}} B$
- $\sigma_{\perp j} n_j = -P(t)$ on $\partial_t B$
- $\sigma_{\parallel j} n_j = 0$ on $\partial_t B$

Test Problem 1

Material: homogeneous, isotropic, time invariant

Test Problem 2

P(t) = constant

Pressure Oscillations

- Known issue with coupled poromechanics
- Occurs for:
 - Incompressibility constraint
 - Violation of minimum time step criterion
- Can be overcome through mesh refinement
- There exist several remediation techniques
- Fluid pressure Laplacian stabilization (FPL)
 - Adds stabilization terms to the weak form

Test Problem 3

Inhomogeneous material properties

$$\kappa(\mathbf{x}) = \begin{cases} 100\kappa & 0 \le x_2 \le h_e \\ \kappa & h_e < x_2 \end{cases}$$

Implementation in GEOS

- Code based around physics `solvers'
 - Different solvers model different physics
 - e.g. solid mechanics or fluid mechanics
- Goal: create a `Poromechanics Solver' that incorporates a rudimentary damage model

3D Test Problem

3D version of MATLAB Test Problem 1, using GEOS

Pressure-Driven Damage Test

- 2D block of initially undamaged poroelastic material
- $u_{\perp} = 0$ on $\partial_u B$
- p=0 on $\partial_p B$
- $\mathcal{V}_j n_j = 0$ on top, left, bottom faces of $\partial_{\mathcal{V}} B$
- $\mathcal{V}_j n_j = F < 0$ on right face (F < 0, inward directed)

Depiction of Damage Evolution

Opportunities for Future Work

- Differentiate between crack initiation and propagation
 - Would require proper identification of crack tips
- Investigate anisotropic material degradation
- Employ a more sophisticated damage evolution law
 - Look at plasticity models for granular materials
 - Nonlocal damage theories
- Pursue methods for abating spurious pressure oscillations (FPL)
- Implement dynamics and finite deformations
- Consider multi-phase fluid flow
- Investigate a double-porosity model to differentiate between crack porosity vs. rock porosity

Questions?