Big Data Computing

Master's Degree in Computer Science 2022-2023

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

Recap from Last Lecture

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff
- Model selection vs. Model evaluation

LINEAR REGRESSION

Observations (simulated)

$$Y = f(X) + \varepsilon$$

Observations (simulated)

True yet unknown relationship between X and Y

Observations (simulated)

True yet unknown relationship between X and Y

• There exists a relationship between X (features) and Y (values)

$$\mathcal{Y} = f(\mathcal{X}) + \epsilon$$

• There exists a relationship between X (features) and Y (values)

$$\mathcal{Y} = f(\mathcal{X}) + \epsilon$$

• f is some fixed but unknown function of X

There exists a relationship between X (features) and Y (values)

$$\mathcal{Y} = f(\mathcal{X}) + \epsilon$$

- f is some fixed but unknown function of X
- ε is a random error term, which is independent of X and has 0-mean

There exists a relationship between X (features) and Y (values)

$$\mathcal{Y} = f(\mathcal{X}) + \epsilon$$

- f is some fixed but unknown function of X
- ε is a random error term, which is independent of X and has 0-mean
- In this formulation, f represents the systematic information that X provides about Y

• Find an approximation *h* of the true relationship *f*

- Find an approximation h of the true relationship f
- Choose h from a specific hypothesis space H
 (i.e., linear functions)

- Find an approximation *h* of the true relationship *f*
- Choose h from a specific hypothesis space H
 (i.e., linear functions)
- Use a dataset D of observations to learn h

 $h(X) \sim f(X)$

Recap of Notation

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

 (\mathbf{x}_i, y_i)

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

 $y_i \in \mathcal{Y}$

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}\$$

input feature space

output space

real-value label(regression)

i-th labeled instance

n-dimensional feature vector of the *i*-th instance

label of the *i*-th instance

dataset of m i.i.d. labeled instances

The hypothesis space is defined as follows:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathcal{X} \mapsto \mathcal{Y} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n \}$$

The hypothesis space is defined as follows:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathcal{X} \mapsto \mathcal{Y} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n \}$$

 $oldsymbol{ heta}$ n+1-dimensional vector of model parameters

The hypothesis space is defined as follows:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathcal{X} \mapsto \mathcal{Y} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n \}$$

 θ n+1-dimensional vector of model parameters

 $x_0 = 1$ by convention

The hypothesis space is defined as follows:

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : \mathcal{X} \mapsto \mathcal{Y} \mid h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n \}$$

 θ n+1-dimensional vector of model parameters

 $x_0 = 1$ by convention

Among all the possible instantiations of θ the learning algorithm selects θ^* as the one which minimizes a loss function measured on D

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 i-th observation $\hat{y}_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) pprox f(\mathbf{x}_i)$ i-th prediction

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 i-th observation $\hat{y}_i = h_{\theta}(\mathbf{x}_i) \approx f(\mathbf{x}_i)$ i-th prediction

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}$$

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 i-th observation $\hat{y}_i = h_{m{ heta}}(\mathbf{x}_i) pprox f(\mathbf{x}_i)$ i-th prediction $\hat{y}_i = h_{m{ heta}}(\mathbf{x}_i) = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}$ $e_i = \hat{y}_i - y_i = h_{m{ heta}}(\mathbf{x}_i) - \underbrace{y_i}_{f(\mathbf{x}_i) + \epsilon_i}$ i-th residual

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 i-th observation $\hat{y}_i = h_{m{ heta}}(\mathbf{x}_i) pprox f(\mathbf{x}_i)$ i-th prediction

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}$$

$$e_i = \hat{y}_i - y_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) - \underbrace{y_i}_{i\text{-th residual}}$$
i-th residual

$$RSS(h_{\theta}, \mathcal{D}) = \sum_{i=1}^{m} e_i^2 = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2$$

Ordinary Least Squares (OLS)

 Remember that the supervised learning problem can be generally defined as the following optimization problem

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

Ordinary Least Squares (OLS)

 Remember that the supervised learning problem can be generally defined as the following optimization problem

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

• OLS is the usual approach to fit (i.e., find the optimal set of parameters of) linear regression models

Ordinary Least Squares (OLS)

 Remember that the supervised learning problem can be generally defined as the following optimization problem

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

• OLS is the usual approach to fit (i.e., find the optimal set of parameters of) linear regression models

$$h^* = h_{\theta^*} = \operatorname{argmin}_{\theta} L(h_{\theta}, \mathcal{D})$$

The Loss Function L: Mean Squared Error

• OLS uses Mean Squared Error as the loss function to minimize

The Loss Function L: Mean Squared Error

- OLS uses Mean Squared Error as the loss function to minimize
- MSE measures the average error when the true f is substituted with a hypothesis h_{θ} in H (in-sample error)

The Loss Function L: Mean Squared Error

- OLS uses Mean Squared Error as the loss function to minimize
- MSE measures the average error when the true f is substituted with a hypothesis h_{θ} in H (in-sample error)

$$MSE(h_{\theta}, \mathcal{D}) = \frac{1}{m}RSS(h_{\theta}, \mathcal{D}) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2$$

The OLS Learning Algorithm

OLS aims at solving the following optimization problem:

$$h^* = h_{\theta^*} = \operatorname{argmin}_{\theta} MSE(h_{\theta}, \mathcal{D}) =$$

$$= \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

The OLS Learning Algorithm

OLS aims at solving the following optimization problem:

$$h^* = h_{\theta^*} = \operatorname{argmin}_{\theta} MSE(h_{\theta}, \mathcal{D}) =$$

$$= \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

How do we solve that?

The OLS Learning Algorithm

OLS aims at solving the following optimization problem:

$$h^* = h_{\theta^*} = \operatorname{argmin}_{\theta} MSE(h_{\theta}, \mathcal{D}) =$$

$$= \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

NOTE:

The function to minimize can be proven convex

Min/Max of a Convex/Concave Function

• Any local minimum (maximum) of a convex (concave) function is also a global minimum (maximum)

Min/Max of a Convex/Concave Function

- Any local minimum (maximum) of a convex (concave) function is also a global minimum (maximum)
- If the function is convex (concave) finding the **global** minimum (maximum) can be done just by computing the first derivative and set it to 0

Min/Max of a Convex/Concave Function

- Any local minimum (maximum) of a convex (concave) function is also a global minimum (maximum)
- If the function is convex (concave) finding the **global** minimum (maximum) can be done just by computing the first derivative and set it to 0
- In the case of a multivariate function, this generalizes to compute the gradient (∇) of the function and set it to 0

The Gradient **∇**

The gradient of an *n*-variable function is the *n*-dimensional vector of the partial derivatives of the function w.r.t. each of its variable

The Gradient **∇**

The gradient of an *n*-variable function is the *n*-dimensional vector of the partial derivatives of the function w.r.t. each of its variable

$$f: \mathbb{R}^n \to \mathbb{R} \qquad \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

The Gradient **∇**

The gradient of an *n*-variable function is the *n*-dimensional vector of the partial derivatives of the function w.r.t. each of its variable

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$

Solving $\nabla f = 0$ means finding the *n*-dimensional vector **x** such that:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) = \underbrace{(0, 0, \dots, 0)}_{n} = \mathbf{0}$$

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

Observations y_i and features x_i can be thought of as fixed constants

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

Observations y_i and features x_i can be thought of as fixed constants

Each term of the summation is a multivariate linear function of the model parameters θ

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

Observations y_i and features x_i can be thought of as fixed constants

Each term of the summation is a multivariate linear function of the model parameters θ

Linear functions are convex and so is any sum of those

$$\operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2 \right]$$

Observations y_i and features x_i can be thought of as fixed constants

Each term of the summation is a multivariate linear function of the model parameters θ

Linear functions are convex and so is any sum of those

Convex functions have a unique local minimum, which therefore happens to be the global minimum

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2 \right]$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2 \right]$$

$$\frac{\partial}{\partial t} f(\alpha t) = \alpha \frac{\partial}{\partial t} f(t), \alpha \in \mathbb{R} \text{ (constant)}$$
 scalar multiple rule

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2 \right]$$

$$\frac{\partial}{\partial t} f(\alpha t) = \alpha \frac{\partial}{\partial t} f(t), \alpha \in \mathbb{R} \text{ (constant)}$$
 scalar multiple rule

$$\frac{\partial}{\partial t} f \left(\sum t \right) = \sum \left(\frac{\partial}{\partial t} f(t) \right)$$
 sum rule

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}_i) - y_i)^2 \right]$$

$$\frac{\partial}{\partial t} f(\alpha t) = \alpha \frac{\partial}{\partial t} f(t), \alpha \in \mathbb{R} \text{ (constant)}$$

scalar multiple rule

$$rac{\partial}{\partial t}f\Bigg(\sum t\Bigg) = \sum \Bigg(rac{\partial}{\partial t}f(t)\Bigg)$$

sum rule

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{1}{m} \left[\sum_{i=1}^{m} \nabla (h_{\theta}(\mathbf{x}_i) - y_i)^2 \right]$$

To make things easier, let's assume the dataset D contains a single instance (x, y)

$$\nabla MSE(h_{\theta}, \mathcal{D}) = \nabla (h_{\theta}(\mathbf{x}) - y)^2$$

To make things easier, let's assume the dataset D contains a single instance (x, y)

$$\nabla MSE(h_{\theta}, \mathcal{D}) = \nabla (h_{\theta}(\mathbf{x}) - y)^2$$

$$\frac{\partial}{\partial t}t^n = nt^{n-1}, \ n \in \mathbb{N}$$
power rule

To make things easier, let's assume the dataset D contains a single instance (x, y)

$$\nabla MSE(h_{\theta}, \mathcal{D}) = \nabla (h_{\theta}(\mathbf{x}) - y)^2$$

$$\frac{\partial}{\partial t}t^n = nt^{n-1}, \ n \in \mathbb{N}$$
power rule

$$\frac{\partial}{\partial t} f(g(t)) = \frac{\partial}{\partial g(t)} f(g(t)) * \frac{\partial}{\partial t} g(t)$$
 chain rule

To make things easier, let's assume the dataset D contains a single instance (x, y)

$$\nabla MSE(h_{\theta}, \mathcal{D}) = \nabla (h_{\theta}(\mathbf{x}) - y)^2$$

$$\frac{\partial}{\partial t}t^n = nt^{n-1}, \ n \in \mathbb{N}$$
power rule

$$\frac{\partial}{\partial t} f(g(t)) = \frac{\partial}{\partial g(t)} f(g(t)) * \frac{\partial}{\partial t} g(t)$$
 chain rule

$$2(h_{\theta}(\mathbf{x}) - y)\nabla(h_{\theta}(\mathbf{x}) - y)$$

To make things easier, let's assume the dataset D contains a single instance (x, y)

$$\nabla MSE(h_{\theta}, \mathcal{D}) = \nabla (h_{\theta}(\mathbf{x}) - y)^2$$

$$\frac{\partial}{\partial t}t^n = nt^{n-1}, \ n \in \mathbb{N}$$
power rule

$$\frac{\partial}{\partial t} f(g(t)) = \frac{\partial}{\partial g(t)} f(g(t)) * \frac{\partial}{\partial t} g(t)$$

chain rule

$$2(h_{\theta}(\mathbf{x}) - y)\nabla(h_{\theta}(\mathbf{x}) - y)$$

$$\nabla(h_{\theta}(\mathbf{x}) - y) = \nabla(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y) =$$

$$\nabla (h_{\theta}(\mathbf{x}) - y) = \nabla (\theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n - y) =$$

$$= \left(\underbrace{\frac{\partial(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y)}{\partial \theta_0}, \dots, \frac{\partial(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y)}{\partial \theta_n}}\right) = (x_0, x_1, \dots, x_n) = \mathbf{x}$$

$$\nabla (h_{\theta}(\mathbf{x}) - y) = \nabla (\theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n - y) =$$

$$= \left(\underbrace{\frac{\partial(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y)}{\partial \theta_0}, \dots, \frac{\partial(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n - y)}{\partial \theta_n}}_{n+1}\right) = (x_0, x_1, \dots, x_n) = \mathbf{x}$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \underbrace{2(h_{\theta}(\mathbf{x}) - y)}_{\text{scalar}} \cdot \underbrace{\mathbf{x}}_{(n+1)\text{-dimensional vector}}$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \underbrace{2(h_{\theta}(\mathbf{x}) - y)}_{\text{scalar}} \cdot \underbrace{\mathbf{x}}_{(n+1)\text{-dimensional vector}}$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \underbrace{2(h_{\theta}(\mathbf{x}) - y)}_{\text{scalar}} \cdot \underbrace{\mathbf{x}}_{(n+1)\text{-dimensional vector}}$$

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n = \boldsymbol{\theta}^T \cdot \mathbf{x}$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \underbrace{2(h_{\theta}(\mathbf{x}) - y)}_{\text{scalar}} \cdot \underbrace{\mathbf{x}}_{(n+1)\text{-dimensional vector}}$$

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n = \boldsymbol{\theta}^T \cdot \mathbf{x}$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)\mathbf{x}$$

$$\nabla MSE(h_{\theta}, \mathcal{D}) = 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)\mathbf{x}$$

$$\nabla MSE(h_{\boldsymbol{\theta}}, \mathcal{D}) = 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)\mathbf{x}$$

$$= \begin{bmatrix} 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)x_{0} \\ 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)x_{1} \\ \vdots \\ 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)x_{n} \end{bmatrix} = \begin{bmatrix} 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y) \\ 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)x_{1} \\ \vdots \\ 2(\boldsymbol{\theta}^{T} \cdot \mathbf{x} - y)x_{n} \end{bmatrix}$$

$$\nabla MSE(h_{\boldsymbol{\theta}}, \mathcal{D}) = 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)\mathbf{x}$$

$$= \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_0 \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix} = \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y) & \mathbf{x}_0 = 1 \text{ by definition} \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix}$$

$$\nabla MSE(h_{\theta}, \mathcal{D}) = 2(\theta^T \cdot \mathbf{x} - y)\mathbf{x}$$

$$= \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_0 \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix} = \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y) & \mathbf{x}_0 = 1 \text{ by definition} \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix}$$

The resulting gradient is an (n+1)-dimensional vector as expected!

Setting the Gradient Equal to Zero

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y) \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

Setting the Gradient Equal to Zero

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y) \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_1 \\ \vdots \\ 2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

We need to solve a system of n+1 linear equations with n+1 variables

$$2(\boldsymbol{\theta}^T \cdot \mathbf{x} - y)x_j = 0 \ \forall j \in \{0, 1, \dots, n\}$$

In the general case where the dataset D contains a m instances

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \nabla \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \right]$$

In the general case where the dataset D contains a m instances

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \nabla \left(h_{\theta}(\mathbf{x}_i) - y_i \right) \right]$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \underbrace{\left(h_{\theta}(\mathbf{x}_{i}) - y_{i}\right)}_{\text{scalar}} \underbrace{\mathbf{x}_{i}}_{n+1\text{-dimensional vector}} \right]$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \underbrace{\left(h_{\theta}(\mathbf{x}_{i}) - y_{i}\right)}_{\text{scalar}} \underbrace{\mathbf{x}_{i}}_{n+1\text{-dimensional vector}} \right]$$

$$\nabla \text{MSE}(h_{\theta}, \mathcal{D}) = \frac{2}{m} \left[\sum_{i=1}^{m} \underbrace{\left(h_{\theta}(\mathbf{x}_{i}) - y_{i}\right)}_{\text{scalar}} \underbrace{\mathbf{x}_{i}}_{n+1\text{-dimensional vector}} \right]$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \begin{bmatrix} \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,0} + \dots + \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,0} \\ \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,1} + \dots + \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,1} \\ \vdots \\ \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,n} + \dots + \frac{2}{m} (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,n} \end{bmatrix}$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \begin{bmatrix} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,1} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,1} \\ \vdots \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,n} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,n} \end{bmatrix}$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \begin{bmatrix} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,1} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,1} \\ \vdots \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,n} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,n} \end{bmatrix}$$

Computing the Gradient of MSE (m instances)

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \begin{bmatrix} (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,1} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,1} \\ \vdots \\ (\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,n} + \dots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,n} \end{bmatrix}$$

Again, we need to solve a system of n+1 linear equations with n+1 variables

$$\frac{2}{m} \left[(\boldsymbol{\theta}^T \cdot \mathbf{x}_1 - y_1) x_{1,j} + \ldots + (\boldsymbol{\theta}^T \cdot \mathbf{x}_m - y_m) x_{m,j} \right] = 0 \ \forall j \in \{0, \ldots, n\}$$

Matrix Notation

$$\mathbf{X} = \underbrace{\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix}}_{m \times n+1 \text{ feature matrix}} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_m^T - \end{bmatrix}$$

Matrix Notation

$$\mathbf{X} = \underbrace{\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix}}_{m \times n+1 \text{ feature matrix}} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_m^T - \end{bmatrix}$$

$$m{ heta}=egin{array}{c} egin{array}{c} eta_0 \ eta_1 \ dots \ eta_n \end{bmatrix} \ & n+1 ext{-dimensional parameter vector} \end{array}$$

Matrix Notation

$$\mathbf{X} = \underbrace{\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix}}_{m \times n+1 \text{ feature matrix}} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_m^T - \end{bmatrix}$$

$$egin{aligned} eta & egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{bmatrix} \ & n+1 ext{-dimensional parameter vector} \end{aligned}$$

 $= \begin{bmatrix} y_2 \\ \vdots \\ y_m \end{bmatrix}$

m-dimensional target vector

Vectorized Form of the Optimization Problem

$$h^* = h_{\boldsymbol{\theta}^*} = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\underbrace{\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2}_{\text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D})} \right]$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y})$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y})$$

$$\frac{2}{m} \mathbf{X}^T (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}) = \mathbf{0}$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \mathbf{X}^{T} (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y})$$
$$\frac{2}{m} \mathbf{X}^{T} (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}) = \mathbf{0}$$
$$\mathbf{X}^{T} \mathbf{X} \cdot \boldsymbol{\theta} = \mathbf{X}^{T} \cdot \mathbf{y}$$

$$\nabla \text{MSE}(h_{\boldsymbol{\theta}}, \mathcal{D}) = \frac{2}{m} \mathbf{X}^{T} (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y})$$
$$\frac{2}{m} \mathbf{X}^{T} (\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}) = \mathbf{0}$$
$$\mathbf{X}^{T} \mathbf{X} \cdot \boldsymbol{\theta} = \mathbf{X}^{T} \cdot \mathbf{y}$$
$$\boldsymbol{\theta} = \mathbf{X}^{\dagger} \cdot \mathbf{y}$$

 $\mathbf{X}^{\dagger} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is the **pseudo-inverse** of \mathbf{X}

The Pseudo-Inverse of X

• In general, the feature matrix X is non-squared therefore non-invertible

The Pseudo-Inverse of X

- In general, the feature matrix X is non-squared therefore non-invertible
- X^TX is instead square (n-by-n) and very likely invertible
 - The chance of a randomly generated squared matrix is invertible approaches.
 - To be non-invertible, the determinant must be 0 (linearly dependent columns)

The Pseudo-Inverse of X

- In general, the feature matrix X is non-squared therefore non-invertible
- X^TX is instead square (n-by-n) and very likely invertible
 - The chance of a randomly generated squared matrix is invertible approaches I
 - To be non-invertible, the determinant must be 0 (linearly dependent columns)
- Typically, the number m of rows (instances) are way larger than the number n of columns (features)
 - X^TX is smaller than X

Additional Notes on OLS

• OLS is also known as one-step learning as there exists a closed-form (i.e., analytical) solution to the convex optimization problem

Additional Notes on OLS

- OLS is also known as one-step learning as there exists a closed-form (i.e., analytical) solution to the convex optimization problem
- However, other choices of loss functions (even if convex) may need an iterative approach to get to a (local) minimum

Additional Notes on OLS

- OLS is also known as one-step learning as there exists a closed-form (i.e., analytical) solution to the convex optimization problem
- However, other choices of loss functions (even if convex) may need an iterative approach to get to a (local) minimum
- Though in general n << m, computing the inverse of an n-by-n matrix is still a costly operation ($O(n^3)$ time complexity*)

Subtle yet important difference between errors and residuals

Subtle yet important difference between errors and residuals

i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

Subtle yet important difference between errors and residuals

i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

i-th unobservable **error**

Subtle yet important difference between errors and residuals

i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

i-th unobservable error

i-th prediction

$$\hat{y}_i = h_{\theta}(\mathbf{x}_i) \approx f(\mathbf{x}_i)$$

Subtle yet important difference between errors and residuals

i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

i-th unobservable error

i-th prediction

$$\hat{y}_i = h_{\theta}(\mathbf{x}_i) \approx f(\mathbf{x}_i)$$

$$e_i = \hat{y}_i - y_i = h_{\theta}(\mathbf{x}_i) - \underbrace{y_i}_{f(\mathbf{x}_i) + \epsilon_i}$$

Subtle yet important difference between errors and residuals

i-th observation

 $y_i = f(\mathbf{x}_i) + \epsilon_i$

i-th unobservable error

i-th **prediction**

$$\hat{y}_i = h_{\theta}(\mathbf{x}_i) \approx f(\mathbf{x}_i)$$

$$\underbrace{e_i} = \hat{y}_i - y_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) - \underbrace{y_i}_{f(\mathbf{x}_i) + \epsilon_i}$$
 i-th residual

Subtle yet important difference between errors and residuals

i-th observation

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

i-th unobservable error

i-th **prediction**

$$\hat{y}_i = h_{\theta}(\mathbf{x}_i) \approx f(\mathbf{x}_i)$$

$$\underbrace{e_i} = \hat{y}_i - y_i = h_{\boldsymbol{\theta}}(\mathbf{x}_i) - \underbrace{y_i}_{f(\mathbf{x}_i) + \epsilon_i}$$
 i-th residual

MSE is computed from residuals, not unobservable errors!

• Weak exogeneity → Predictor variables (i.e., features) can be treated as error-free constants

- Weak exogeneity

 Predictor variables (i.e., features) can be treated as error-free constants
- Linearity -> Linear relationship between the features and the response
 - Only a restriction on the parameters; features themselves can be arbitrarily combined using non-linear transformations

- Weak exogeneity → Predictor variables (i.e., features) can be treated as error-free constants
- Linearity -> Linear relationship between the features and the response
 - Only a restriction on the parameters; features themselves can be arbitrarily combined using non-linear transformations
- Error independence \rightarrow Error terms ε_i are uncorrelated with each other
 - Knowing that $arepsilon_i$ is positive (negative) gives no information on the sign of $arepsilon_{i+1}$

- Homoscedasticity Different values of the response variable have the same variance in their errors, regardless of the feature values
 - In practice, this does not hold when the response varies over a wide scale

- Homoscedasticity Different values of the response variable have the same variance in their errors, regardless of the feature values
 - In practice, this does not hold when the response varies over a wide scale
- No Multicollinearity

 There must not be two or more features whose values are perfectly correlated with each other
 - The feature matrix X must have full column rank n
 - If X is full column rank n then X^TX is always invertible
 - It can be shown that if $X^TXu = 0$ for some vector u, then u = 0 (trivial solution)

Checking OLS Assumptions

• A good way to assess the OLS assumptions hold is to use residual plots

Checking OLS Assumptions

- A good way to assess the OLS assumptions hold is to use residual plots
- Plotting residuals against each feature and/or the predicted value may help spot:
 - Non-linearity
 - Correlation between error terms
 - Non-constant variance of error terms (i.e., heteroscedasticity)

• . . .

• Suppose we have fit a linear regression model to some dataset of observations $D = \{(x_i, y_i)\}_{i=1..m}$

- Suppose we have fit a linear regression model to some dataset of observations $D = \{(x_i, y_i)\}_{i=1..m}$
- In other words, we estimated the vector of parameters θ^* using OLS

- Suppose we have fit a linear regression model to some dataset of observations $D = \{(x_i, y_i)\}_{i=1..m}$
- In other words, we estimated the vector of parameters $\boldsymbol{\theta}^*$ using OLS

How do we measure the "goodness-of-fit" of the model?

- Suppose we have fit a linear regression model to some dataset of observations $D = \{(x_i, y_i)\}_{i=1..m}$
- In other words, we estimated the vector of parameters $\boldsymbol{\theta}^*$ using OLS

How do we measure the "goodness-of-fit" of the model?

Residual Standard Error (RSE)

- Suppose we have fit a linear regression model to some dataset of observations $D = \{(x_i, y_i)\}_{i=1..m}$
- In other words, we estimated the vector of parameters $\boldsymbol{\theta}^*$ using OLS

How do we measure the "goodness-of-fit" of the model?

Residual Standard Error (RSE)

R² statistic

Residual Standard Error (RSE)

Recall that every observation of the target variable y_i is associated with an error term ε_i

$$y_i = \underbrace{\theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}}_{h_{\boldsymbol{\theta}}(\mathbf{x}_i)} + \epsilon_i$$

Residual Standard Error (RSE)

Recall that every observation of the target variable y_i is associated with an error term ε_i

$$y_i = \underbrace{\theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}}_{h_{\boldsymbol{\theta}}(\mathbf{x}_i)} + \underbrace{\epsilon_i}_{k_i}$$

Residual Standard Error (RSE)

Recall that every observation of the target variable y_i is associated with an error term ε_i

$$y_i = \underbrace{\theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n}}_{h_{\boldsymbol{\theta}}(\mathbf{x}_i)} + \underbrace{\epsilon_i}$$

Even if we were able to find the exact parameters of the true f, we would not be able to perfectly predict y_i from x_i

Residual Standard Error (RSE)

RSE is an estimate of the standard deviation of ε

$$RSE(h_{\theta}, \mathcal{D}) = \sqrt{\frac{1}{\underbrace{m-n-1}}\underbrace{\sum_{i=1}^{m}(\hat{y}_{i}-y_{i})^{2}}_{RSS}}$$

Residual Standard Error (RSE)

RSE is an estimate of the standard deviation of ε

$$RSE(h_{\theta}, \mathcal{D}) = \sqrt{\frac{1}{\underbrace{m-n-1}} \underbrace{\sum_{i=1}^{m} (\hat{y}_i - y_i)^2}_{RSS}}$$

A measure of the lack of fit of the model to the data the lower the better

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

With 2 data points I am always able to fit a perfect line

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

With 2 data points I am always able to fit a perfect line

Problem is that my fitted line may drastically change depending on where the second point is located!

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

With 2 data points I am always able to fit a perfect line

If I want my model to be more "flexible" I need at least 3 points which leave me with I degree of freedom

$$y_i = \theta_0 + \theta_1 x_{i,1} + \epsilon_i$$

How many observations *m* do I need to estimate model's parameters?

With 2 data points I am always able to fit a perfect line

If I want my model to be more "flexible" I need at least 3 points which leave me with I degree of freedom

What happens when we add more variables to the model?

$$y_i = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n} + \epsilon_i$$

What happens when we add more variables to the model?

$$y_i = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n} + \epsilon_i$$

Given the same number of observations m, we loose I degree of freedom for each variable we add

What happens when we add more variables to the model?

$$y_i = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \ldots + \theta_n x_{i,n} + \epsilon_i$$

Given the same number of observations m, we loose I degree of freedom for each variable we add

$$df = \underbrace{m}_{\text{\#observations}} - \underbrace{n}_{\text{\#features}} - \underbrace{1}_{\text{intercept}}$$

$$egin{aligned} t_i &= y_i - ar{y} \ e_i &= y_i - \hat{y}_i \ r_i &= \hat{y}_i - ar{y} \end{aligned}$$

$$TSS = \sum_{i=1}^m (y_i - ar{y}_{}^{})^2 = \sum_{i=1}^m t_i^2$$

$$RSS = \sum_{i=1}^m (y_i - \hat{y}_i)^2 = \sum_{i=1}^m e_i^2$$

$$R^2 = 1 - rac{RSS}{TSS} = rac{TSS - RSS}{TSS}$$

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{m} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}}$$

TSS measures the total variance in the response Y before the regression takes place

$$R^{2} = 1 - \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{m} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}}$$

TSS measures the total variance in the response Y before the regression takes place

RSS measures the amount of variability that is **left unexplained** after performing the regression

$$R^{2} = 1 - \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{m} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \bar{y})^{2}}$$

TSS measures the total variance in the response Y before the regression takes place

RSS measures the amount of variability that is **left unexplained** after performing the regression

 R^2 measures the proportion of variability in Y that can be explained using X

• An R² statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression

- An R² statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression
- The larger R² the better is the linear regression model

- An R² statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression
- The larger R² the better is the linear regression model
- R² is easier to interpret than RSE as it always ranges between 0 and 1

• Fixing the sample size m, RSS decreases (or, at worst, it stays the same) as more variables are added to the fitted model

- Fixing the sample size m, RSS decreases (or, at worst, it stays the same) as more variables are added to the fitted model
- R² always increases as more variables are added (as df decreases!)

- Fixing the sample size m, RSS decreases (or, at worst, it stays the same) as more variables are added to the fitted model
- R² always increases as more variables are added (as df decreases!)
- We need a way to adjust for that, otherwise we could get a better model by simply adding useless features to it!

$$R_{\text{adj}}^2 = 1 - \frac{\frac{\text{RSS}}{m-n-1}}{\frac{\text{TSS}}{m-1}}$$

• Maximizing the adjusted R² is equivalent to minimizing RSS/(m-n-1)

- Maximizing the adjusted R² is equivalent to minimizing RSS/(m-n-1)
- We know RSS may decrease if the number of variables in the model increases

- Maximizing the adjusted R² is equivalent to minimizing RSS/(m-n-1)
- We know RSS may decrease if the number of variables in the model increases
- RSS/(m-n-I) may increase or decrease, due to the presence of n in the denominator

- Maximizing the adjusted R² is equivalent to minimizing RSS/(m-n-1)
- We know RSS may decrease if the number of variables in the model increases
- RSS/(m-n-I) may increase or decrease, due to the presence of n in the denominator
- We may need to increase the sample size m to compensate for the increasing of RSS due to the inclusion of more features n

Regularization

- ullet The absolute value of learned parameters $oldsymbol{ heta}$ should not be very large
 - Otherwise, a small change in an input feature may cause a high difference in the ouput predicted value

Regularization

- ullet The absolute value of learned parameters $oldsymbol{ heta}$ should not be very large
 - Otherwise, a small change in an input feature may cause a high difference in the ouput predicted value
- This is an indication of overfitting:
 - The learned model is highly "training set dependent" and does not generalize

Regularization

- ullet The absolute value of learned parameters $oldsymbol{ heta}$ should not be very large
 - Otherwise, a small change in an input feature may cause a high difference in the ouput predicted value
- This is an indication of overfitting:
 - The learned model is highly "training set dependent" and does not generalize
- Regularization → Put some constraint on the optimization problem so as
 to limit the values of the learned parameters

We consider a far more general optimization framework, which OLS is just a special case of

We consider a far more general optimization framework, which OLS is just a special case of

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2 + \lambda \left(\alpha |\boldsymbol{\theta}| + (1 - \alpha) ||\boldsymbol{\theta}||^2 \right) \right]$$

We consider a far more general optimization framework, which OLS is just a special case of

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2 + \lambda \left(\alpha |\boldsymbol{\theta}| + (1 - \alpha) ||\boldsymbol{\theta}||^2 \right) \right]$$

 $\lambda>0$ regularization parameter: when this is 0 we backup to OLS (no regularization at all)

We consider a far more general optimization framework, which OLS is just a special case of

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2 + \lambda \left(\alpha |\boldsymbol{\theta}| + (1 - \alpha) ||\boldsymbol{\theta}||^2 \right) \right]$$

 $\lambda \geq 0$ -regularization parameter: when this is 0 we backup to OLS (no regularization at all)

 $lpha \in [0,1]$ tradeoff parameter: to weight regulatization penalties

We consider a far more general optimization framework, which OLS is just a special case of

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2 + \lambda \left(\alpha |\boldsymbol{\theta}| + (1 - \alpha) ||\boldsymbol{\theta}||^2 \right) \right]$$

 $\lambda \geq 0$ regularization parameter: when this is 0 we backup to OLS (no regularization at all)

 $lpha \in [0,1]$ tradeoff parameter: to weight regulatization penalties

 $\lambda>0;\; lpha=1\;$ Least Absolute Shrinkage and Selection Operator or LASSO (L1-regularization only)

We consider a far more general optimization framework, which OLS is just a special case of

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{m} ||\mathbf{X} \cdot \boldsymbol{\theta} - \mathbf{y}||^2 + \lambda \left(\alpha |\boldsymbol{\theta}| + (1 - \alpha) ||\boldsymbol{\theta}||^2 \right) \right]$$

 $\lambda \geq 0$ regularization parameter: when this is 0 we backup to OLS (no regularization at all)

 $lpha \in [0,1]$ tradeoff parameter: to weight regulatization penalties

 $\lambda>0;\; lpha=1\;$ Least Absolute Shrinkage and Selection Operator or LASSO (L1-regularization only)

 $\lambda>0;\; lpha=0\;\;$ Ridge (L2-regularization only)

• Linear Regression is a simple yet powerful tool for learning real-valued functions between feature and response variables

- Linear Regression is a simple yet powerful tool for learning real-valued functions between feature and response variables
- The estimation of model's parameters is usually done via Ordinary Least Squares (OLS) by minimizing Mean Squared Error (MSE)

- Linear Regression is a simple yet powerful tool for learning real-valued functions between feature and response variables
- The estimation of model's parameters is usually done via Ordinary Least Squares (OLS) by minimizing Mean Squared Error (MSE)
- OLS admits a closed-form solution which allows computing the parameters analytically via the pseudo-inverse of the feature matrix X

- Linear Regression is a simple yet powerful tool for learning real-valued functions between feature and response variables
- The estimation of model's parameters is usually done via Ordinary Least Squares (OLS) by minimizing Mean Squared Error (MSE)
- OLS admits a closed-form solution which allows computing the parameters analytically via the pseudo-inverse of the feature matrix X
- Several quality measures: RSE, R², Adjusted R², etc.

- Linear Regression is a simple yet powerful tool for learning real-valued functions between feature and response variables
- The estimation of model's parameters is usually done via Ordinary Least Squares (OLS) by minimizing Mean Squared Error (MSE)
- \bullet OLS admits a closed-form solution which allows computing the parameters analytically via the pseudo-inverse of the feature matrix X
- Several quality measures: RSE, R², Adjusted R², etc.
- Regularization to prevent overfitting: Elastic Net, LASSO, Ridge

Further Readings

An Introduction to Statistical Learning [Chapter 3]

Freely available at:

https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf