Álgebra Moderna 2: Teoría de Espacios Vectoriales

Rafael Dubois Universidad del Valle de Guatemala dub19093@uvg.edu.gt

5 de octubre de 2021

1. Conceptos básicos y elementales

Un conjunto no vacío V es un espacio vectorial sobre un campo F si forma un grupo abeliano bajo la suma (+), y si para todo $\alpha, \beta \in F$ y $v, w \in V$ se tiene:

- 1. Cerradura del producto por escalar.
- 2. Distributividad del producto por escalar sobre la suma.
- 3. Distributividad de la suma sobre el producto por escalar.
- 4. Asociatividad del producto por escalar.
- 5. Neutro del producto por escalar.

Subespacios vectoriales

Si V es un espacio vectorial sobre F y si $W \subseteq V$, se dice que W es un subespacio vectorial de V si este es también un espacio vectorial sobre F, con las mismas operaciones de V. De manera equivalente, W es un subespacio de V si para todo $w_1, w_2 \in W$ y para todo $\alpha, \beta \in F$ se da $\alpha w_1 + \beta w_2 \in W$.

Homomorfismos de espacios vectoriales

Si U y V son espacios vectoriales sobre F, se dice que $T:U\to V$ es un homomorfismo si

$$T(u_1 + u_2) = T(u_1) + T(u_2),$$
 $T(\alpha u) = \alpha T(u).$

Isomorfimos de espacios vectoriales

Si U y V son espacios vectoriales sobre F, y si $T:U\to V$ es un homomorfismo inyectivo, este es directamente un isomorfismo de U en V.

En este documento, los códigos de color van de la siguiente manera: Negro, Títulos; Azul, Lemas; Rojo, Teoremas; Violeta, Definiciones; Morado, Propiedades; Aqua, Otros subtítulos.

Lema 4.1:

Si V es un espacio vectorial sobre F, para $\alpha \in F$ y $v \in V$ se cumple:

- $\bullet \ \alpha \cdot 0 = 0;$
- $0 \cdot v = 0;$
- $(-\alpha)v = -(\alpha v);$
- $v \neq 0$ y $\alpha v = 0$ implica $\alpha = 0$.

Lema 4.2:

Si V es un espacio vectorial sobre F y W es un subespacio de V, entonces V/W es un espacio vectorial sobre F que cumple:

- $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W;$

El subespacio V/W recibe el nombre de espacio cociente.

Teorema 4A:

Si T es un homomorfismo sobreyectivo de U en V con kernel K, entonces V es isomorfo a U/K. Además, si U es un espacio vectorial y W es subespacio de U, existe un homomorfismo sobreyectivo de U en U/W.

Suma interna directa

Sea V un espacio vectorial sobre F, y sean U_1, \ldots, U_n subespacios de V. Se dice que V es la suma directa interna de U_1, \ldots, U_n si cada elemento $v \in V$ puede ser escrito de forma única como la suma de un elemento de cada U_i .

Suma externa directa

Dados V_1, \ldots, V_n espacios vectoriales sobre F, y V el espacio de n-tuplas con entradas de cada V_i, V es la suma externa directa de V_1, \ldots, V_n . Esto se expresa $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$.

Teorema 4B:

Si V es la suma interna directa de U_1, \ldots, U_n , entonces V es isomorfo a la suma externa directa del mismo conjunto de espacios U_1, \ldots, U_n .

2. Independencia lineal y bases

Combinación lineal

Si V es un espacio vectorial sobre F, cada elemento $\alpha_1 v_1 + \cdots + \alpha_n v_n$ es una combinación lineal.

Generado

Si S es un subconjunto no vacío del espacio vectorial V, se define a L(S) como el generado lineal de S: el conjunto de todas las combinaciones lineales de elementos de S.

Lema 4.3:

Cada L(S) es un subespacio de V.

Lema 4.4:

Dados S y T subconjuntos de V, entonces:

- $S \subseteq T$ implies $L(S) \subseteq L(T)$;
- $L(S \cup T) = L(S) + L(T);$
- L(L(S)) = L(S).

Espacios finito-dimensionales

Se dice que el espacio vectorial V es finito-dimensional si tiene un subconjunto finito S tal que V = L(S).

Dependencia lineal

Si V es un espacio vectorial, se dice que $v_1, \ldots, v_n \in V$ son linealmente dependientes si existen escalares no todos nulos $\alpha_1, \ldots, \alpha_n \in F$ tales que $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$.

Lema 4.5:

Si $v_1, \ldots, v_n \in V$ son linealmente independientes, entonces todo elemento en $L\{v_1, \ldots, v_n\}$ tiene una representación única en la forma $\alpha_1 v_1 + \cdots + \alpha_n v_n$ para $\alpha_1, \ldots, \alpha_n \in F$.

Teorema 4C:

Todo subconjunto de elementos $v_1, \ldots, v_n \in V$ es linealmente independiente o cumple con que existe algún $v_k \in \{v_1, \ldots, v_n\}$ que es combinación lineal de los demás elementos en $\{v_1, \ldots, v_n\}$.

Corolario 1 del teorema 4C:

Si $v_1, \ldots, v_n \in V$ tiene generado W, y si para k < n se tiene que v_1, \ldots, v_k son linealmente independientes, entonces existe un subconjunto de v_1, \ldots, v_n que contiene a v_1, \ldots, v_k y otros vectores, el cual es linealmente independiente y también tiene generado W.

Corolario 2 del teorema 4C:

Si V es un espacio vectorial finito-dimensional, entonces contiene un conjunto finito v_1, \ldots, v_n de elementos linealmente independientes que generan a V.

Base

Un subconjunto S de un espacio vectorial V se llama una base de V si consiste de elementos linealmente independientes y si V = L(S).

Corolario 3 del teorema 4C:

Si V es un espacio vectorial finito-dimensional y v_1, \ldots, v_n genera a V, entonces algún subconjunto de v_1, \ldots, v_n forma una base para V.

Lema 4.6:

Si v_1, \ldots, v_n es una base de V sobre F y si w_1, \ldots, w_m en V es linealmente independiente sobre F, entonces $m \leq n$.

Corolario 1 del lema 4.6:

Si V es un espacio vectorial finito-dimensional sobre F, entonces la cardinalidad de sus bases siempre es la misma.

Corolario 2 del lema 4.6:

 F^n es isomorfo a F^m si y solo si m=n.

Corolario 3 del lema 4.6:

Si V es un espacio vectorial finito-dimensional sobre F, entonces V es isomorfo a F^n para un entero n único, el cual es la cardinalidad de su base.

Dimensión de un espacio vectorial

La cardinalidad de la base de un espacio vectorial V es la dimensión de dicho espacio.

Corolario 4 del lema 4.6:

Todo par de espacios vectoriales finito-dimensionales sobre F con la misma dimensión son isomorfos.

Lema 4.7:

Si V es un espacio vectorial finito-dimensional sobre F y $v_1, \ldots, v_m \in V$ son linealmente independientes, entonces existen $v_{n+1}, \ldots, v_{m+n} \in V$ tales que v_1, \ldots, v_{m+n} es una base de V.

Lema 4.8:

Si V es un espacio vectorial finito-dimensional y W es un subespacio de V, entonces W es finito-dimensional, $\dim(W) \leq \dim(V)$ y $\dim(V/W) = \dim(V) - \dim(W)$.

Corolario del lema 4.8:

Si A y B son subespacios finito-dimensionales del espacio vectorial V, entonces A+B es finito-dimensional y $\dim(A+B) = \dim(A) + \dim(B) - \dim(A\cap B)$.

3. Espacios duales

Conjunto de homomorfismos

Se define Hom(V, W) como el conjunto de todos los homomorfismos de V en W.

Lema 4.9:

Para V y W espacios vectoriales sobre F, se tiene que $\mathrm{Hom}(V,W)$ es también un espacio vectorial sobre F

Teorema 4D:

Si V y W son espacios vectoriales sobre F de dimensión m y n respectivamente, entonces Hom(V, W) es espacio vectorial sobre F de dimensión mn.

Corolario 1 del teorema 4D:

Si $\dim(V) = m$, entonces $\dim(\operatorname{Hom}(V, V)) = m^2$.

Corolario 2 del teorema 4D:

Si $\dim(V) = m$, entonces $\dim(\operatorname{Hom}(V, F)) = m$.

Espacio dual

Si V es un espacio vectorial sobre F, entonces se define a $V^* = \text{Hom}(V, F)$ como su espacio dual. Cada elemento de V^* recibe el nombre de funcional lineal de V en F, y son funciones que mapean elementos del espacio vectorial a su campo de escalares.

Lema 4.10:

Si V es un espacio finito-dimensional y $v \in V$ es distinto de 0, entonces existe $f \in V^*$ tal que f(v) sea también distinto de 0.

Doble dual

El espacio dual de V^* es llamado doble dual, y se denota por V^{**} .

Lema 4.11:

Si V es un espacio finito-dimensional y se define $\psi: V \to V^{**}$ con $\psi(v) = T_v(f) = f(v)$ para $f \in V^*$, entonces ψ es un isomorfismo sobreyectivo de V en V^{**} .

Aniquilador

Si W es un subespacio de V, entonces $A(W) = \{f \in V^* \mid \forall w \in W, f(w) = 0\}$ es el aniquilador de W. Este conjunto es un subespacio de V^* .

Teorema 4E:

Si V es un espacio finito-dimensional y W es un subespacio de V, entonces W^* es isomorfo a $V^*/A(W)$ y dim $(A(W)) = \dim(V) - \dim(W)$.

Corolario del teorema 4E:

El aniquilador del aniquilador es el conjunto original: A(A(W)) = W.

Rango

Dado F^n , un subespacio U de F^n generado por m vectores de la forma (a_{i1}, \ldots, a_{in}) , y el sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0, \end{cases}$$

se define la dimensión de U como el rango del sistema de ecuaciones lineales.

Teorema 4F:

Sea un sistema de ecuaciones de $m \times n$ y rango r, donde cada $a_{ij} \in F$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Entonces, existen n-r soluciones linealmente independientes en F^n .

Corolario del teorema 4F:

Si se tienen más variables que ecuaciones en un sistema de ecuaciones de $m \times n$ (es decir, si n > m), entonces existe una solución (x_1, \ldots, x_n) del sistema donde no todos los x_1, \ldots, x_n son cero.

4. Espacios de producto interno

Se dice que el espacio vectorial V sobre F es un espacio de producto interno si para cada $u, v, w \in V$ y $\alpha, \beta \in F$ se cumple

- $(u, u) \ge 0;$
- $\langle u, u \rangle = 0$ si y solo si u = 0;

Norma

Dado $v \in V$, se define la norma de v como $||v|| = \sqrt{\langle v, v \rangle}$.

Lema 4.12:

Si $u, v \in V$ y $\alpha, \beta \in F$, entonces $\langle \alpha u + \beta v, \alpha u + \beta v \rangle = \alpha \overline{\alpha} \langle u, u \rangle + \alpha \overline{\beta} \langle u, v \rangle + \overline{\alpha} \beta \langle v, u \rangle + \beta \overline{\beta} \langle v, v \rangle$.

Corolario del lema 4.12:

Si $v \in V$ y $\alpha \in F$, entonces $\|\alpha v\| = |\alpha| \|v\|$.

Lema 4.13:

Dados $a, b, c, \lambda \in \mathbb{R}$ tales que a > 0 y $a\lambda^2 + 2b\lambda + c \ge 0$ para todo λ , entonces $b^2 \le ac$.

Teorema 4G (Cauchy-Schwarz):

Si $u, v \in V$, entonces $|\langle u, v \rangle| \le ||u|| ||v||$.

Vectores ortogonales

Si $u, v \in V$, se dice que u es ortogonal a v si $\langle u, v \rangle = 0$.

Complemento ortogonal

Si W es un subespacio de V, se llama complemento ortogonal de W al conjunto

$$W^{\perp} = \{ x \in V \mid \forall w \in W, \langle x, w \rangle = 0 \}.$$

Lema 4.14:

Si W es un subespacio de V, entonces W^{\perp} es subespacio de V.

Vectores ortonormales

Un conjunto de vectores v_1, \ldots, v_n es ortonormal si:

- $\bullet \forall v_i, \|v_i\| = 1;$
- Si $i \neq j$, entonces $\langle v_i, v_j \rangle \neq 0$.

Lema 4.15:

Dado un conjunto v_1, \ldots, v_n de vectores ortonormales, estos son linealmente independientes entre sí. Dada una combinación lineal $w = \alpha_1 v_1 + \cdots + \alpha_n v_n$, entonces $\alpha_i = \langle w, v_i \rangle$.

Lema 4.16:

Dado un conjunto v_1, \ldots, v_n de vectores ortonormales y un $w \in V$, entonces

$$u = w - \sum_{k=1}^{n} \langle w, v_k \rangle v_k$$

es ortogonal a cada vector de v_1, \ldots, v_n .

Teorema 4H:

Si V es un espacio de producto interno finito-dimensional, entonces tiene un conjunto ortonormal como base.

Teorema 4I:

Si V es un espacio de producto interno finito-dimensional con un subespacio W, entonces $V = W \oplus W^{\perp}$.

Corolario del teorema 4I:

Si V es un espacio de producto interno finito-dimensional con un subespacio W, entonces $V = (W^{\perp})^{\perp}$.

5. Módulos

Dado un anillo R, un conjunto no vacío M es un R-módulo (o un módulo sobre R) si M es un grupo abeliano bajo la suma tal que para todo $r \in R$ y $m \in M$, se tiene $rm \in M$ tal que:

- r(a+b) = ra + rb;
- r(sa) = (rs)a;;
- -(r+s)a = ra + sa;

para todo $a,b\in M$ y $r,s\in R$. Si $1\in R$ es tal que $1\cdot m=m$ para todo $m\in M$, entonces se dice que M es un R-módulo unital.

Ejemplos de módulos

- Todo grupo abeliano G es un módulo sobre el anillo de los números enteros, $(\mathbb{Z}, +)$.
- lacktriangle Dado R un anillo, todo M un ideal izquierdo de R es un R-módulo.
- \blacksquare Todo anillo R es un R-módulo sobre sí mismo.
- Dado R un anillo con un ideal izquierdo λ , el conjunto M de todas las clases laterales de λ sobre R es un R-módulo.

Suma directa de módulos

Si M es un R-módulo y si M_1, \ldots, M_s son submódulos de M, entonces se dice que M es la suma directa de M_1, \ldots, M_s si todo $m \in M$ puede escribirse de manera única como $m = m_1 + \cdots + m_s$, donde $m_k \in M_k$ para $1 \le k \le s$ entero.

Módulos cíclicos

Un R-módulo M es cíclico si existe un elemento $m_0 \in M$ tal que todo $m \in M$ es de la forma $m = rm_0$, para algún $r \in R$.

Módulos finito-generados

Un R-módulo M es finito generado si existen elementos $a_1, \ldots, a_n \in M$ tales que todo $m \in M$ sea de la forma $m = r_1 a_1 + \cdots + r_n a_n$, para algunos $r_k \in R$.

Teorema 4J (Teorema fundamental de módulos finito-generados):

Sea R un anillo euclideano; entonces cualquier R-módulo finito-generado M es la suma directa de un número finito de submódulos cíclicos.

Corolario del teorema 4J:

Todo groupo abeliano finito es el producto directo de grupos cíclicos.