Math 425a - Midterm 1 - Spring 2022 Due February 14

You may consult books or notes but do not consult other individuals.

- 1. If $x \in \mathbb{R}^k$, $k \geq 2$, show there exists $y \in \mathbb{R}^k$ such that $x \cdot y = 0$.
- 2. True or False: If true prove it, if false counterexample it.
 - (a) Let $\{F_n\}$ be a countable collection of closed subsets of \mathbb{R} such that for any finite sub-collection

$$F_{n_1} \cap F_{n_2} \cap \cdots \cap F_{n_k} \neq \emptyset$$

Then

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset$$

- (b) Add the condition that each F_n is bounded and repeat (2a).
- (c) Repeat (2a) where closed and bounded $F_n \subset X$, an arbitrary metric space.
- 3. Consider the metric space \mathbb{Q} of all rationals on the real line with the euclidean metric. Prove that if $K \neq \emptyset$ is a compact subset of \mathbb{Q} then K cannot contain an open subset of \mathbb{Q} . *Hint*: Consider the relative topology.
- 4. Let F and K be nonempty closed subsets of the metric space X with $K \cap F = \emptyset$. Show that if K is compact there is a positive distance from F to K, i.e.

$$\inf\{d(x,y) \mid x \in F, \ y \in K\} = \delta > 0.$$

Is it still true if K is only assumed to be closed? If not, find a counterexample.

5. A base for a topological space X is a collection $\{V_{\alpha}|\alpha\in\mathcal{A}\}$ of open subsets of X such that for every open subset of $G\subset X$, one has $G=\cup_{\alpha\in\mathcal{B}}V_{\alpha}$ where $\mathcal{B}\subset\mathcal{A}$.

Prove that every compact metric space X has a countable base.