Mathematics for computer science

Homework 1

SID-LAKHDAR Riyane

15/10/2015

I understand what plagiarism entails and I declare that this report is my own, original work SID-LAKHDAR Riyane october the 15 th, 2015

Abstract

This report sumarise, explains and refers to the answers we have designed for the first Mathematics for computer sciencehomework. In this report, we will use the following notations:

- N and K are two finite sets of size n and k.
- ullet N will be represented as

$$N = \{n_i | \text{i bellongs to } [0, \text{ n-1}] \} \tag{1}$$

• The set of expected f function will include the partial functions: a function f bellonging to this set may be undefined on a specific point of its input set N.

If a function f is undefined on a point x bellonging to N, we will always write

$$f(x) = \epsilon \tag{2}$$

1 Question 1

A function

$$f: N \to K$$
 (3)

is an application which associates to each element n, bellonging to N, at most one element k bellonging to K.

Thus, building such a function f is equivalent to build a word

$$w = k_0...k_{n-1} \text{ where } \forall i \in [0, n-1]k_i \in K \cup \{\epsilon\}$$

$$\tag{4}$$

As we have no restriction on f, we have k+1 different choices to choose any one of the ki. This choice is independent from the choice of any kj where j is different from i. Thus, the number of different word

$$w = k_0 ... k_{n-1} (5)$$

is

$$\prod_{i=0}^{n-1} (k+1) = (k+1)^n \tag{6}$$

Thus, the number of different functions

$$f: K \to N \tag{7}$$

with no restriction on f is

$$(k+1)^n \tag{8}$$

This result would be

$$k^n$$
 (9)

if we only consider the non partial functions.

2 Question 2

Using the same arguments as previously, we can say that our problem is equivalent to find all the different words

$$w = k_0 ... k_{n-1} \text{ where } \forall i \in [0, n-1] k_i \in K \cup \{\epsilon\}$$
 (10)

Let w0 such a word, and fw0 the corresponding injective function. We have:

$$\forall i, j \in [0, n-1] \text{ with } i \neq j, f_{\omega 0}(n_i) = f_{\omega 0}(n_j) \Longrightarrow n_i = n_j$$
 (11)

which is absurde by definition of ni and nj. So

$$\forall i, j \in [0, n-1], i \neq j \Longrightarrow f_{\omega 0}(n_i) \neq f_{\omega 0}(n_j) \tag{12}$$

Using this condition we can conclude that

- To chose the character k0 of w0 among K union epsilon, we have (k+1) choices.
- To chose the character k1 of w0 among K union epsilon excluding K0, we have (k+1 -1) choices for each k0.

- To chose the character k2 of w0 among K union epsilon excluding K0, K1, we have (k+1 -2) choices for each k0, k1.
- To chose the character ki of w0 among K union epsilon excluding K0, K1, ...ki-1, we have (k+1 i) choices for each k0, k1, ...ki-1.

Thus, the number of different words w = k0....kn-1 which respect the condition (12), and the number of injective function is:

$$\prod_{i=0}^{n-1} k + 1 - i = \frac{(k+1)!}{(k-n+1)!} \text{ (as k } \ge \text{ n by definition of an injective function)}$$
(13)

This result would be

$$\frac{k!}{(k-n)!} \tag{14}$$

if we only consider the non partial functions.

3 Question 3

Let's f a surjection between N and K. So:

- Each element form K is mapped to at least 1 element from N
- Each element from N is mapped to at most 1 element from K

Thus, according to pigeonhole principle, n and k must to respect the rule:

$$n \ge k \tag{15}$$

Let f such a surjective function, and w its corresponding world: $w=w0,\,....,\,wn-1$ where wi=f(ni).

According to the definition of a surjective function, the word w should contain, at least, once every ki bellonging to K. Thus, a word w must be a combination of

$$k_0, ..., k_{k-1}$$
 $c_0, ..., c_{n-k-1}$ where $c_i \in K \cup \{\epsilon\}$ (16)

But we know that the number of different

$$k_0, ..., k_{k-1}$$
 isk! (17)

and the number of different

$$c_0, ..., c_{n-k-1}$$
 where $c_i \in K \cup \{\epsilon\}$ is $(k+1)^{n-k}$ (18)

Thus, the number of different word w, and the number of surjective functions is

$$(k+1)^{(n-k)}k! \text{ with } n \ge k \tag{19}$$

4 Question 4

By definition of an bijection, the input and output sets must have the same cardinals. Thus, in the following answer, we will consider the condition $\mathbf{k}=\mathbf{n}$ respected.

Building a bijection between N and K is equivalent to build a word

$$\omega = k_0, k_1, ..., k_{n-1} \text{ where } \forall i, j \in [0, n-1] k_i \neq k_j$$
 (20)

Thus,

- To chose the character k0 among K, we have k choices.
- \bullet To chose the character k1 among K excluding K0, we have (k 1) choices for each k0.
- To chose the character k2 among K excluding K0, K1, we have (k 2) choices for each k0, k1.
- To chose the character ki among K excluding K0, K1, ...ki-1, we have (k i) choices for each k0, k1, ..., ki-1.

Thus, the number of different bijective function from N to K is

$$\prod_{i=0}^{n-1} k - i = \prod_{i=0}^{n-1} n - i = n!$$
 (21)