Midterm Exam II

7:00-8:30pm, Wednesday, November 6, 2019

Name: _			
Section:	10:00 AM	12:00 PM	3:00 PM
NetID: _		-	
Score:			

Problem	Pts.	Score
1	20	
2	6	
3	9	
4	5	
5	8	
6	5	
7	10	
8	10	
9	15	
10	4	
11	8	
Total	100	

Instructions

- You may not use any books, calculators, or notes other than two <u>handwritten</u> two-sided sheets of 8.5" x 11" paper.
- Show all your work to receive full credit for your answers.
- When you are asked to "calculate", "determine", or "find", this means providing closed-form expressions (i.e., without summation or integration signs).
- Neatness counts. If we are unable to read your work, we cannot grade it.
- Turn in your entire booklet once you are finished. No extra booklet or papers will be considered.

(20 Pts.)

- 1. Mark "True" or "False" for the following statements.
 - (a) Zero padding a finite-length signal can change its DTFT. T/F(b) Suppose that x[n] is bandlimited to $\frac{\pi}{4}$. Then, its DTFT $X_d(\omega) = 0$ for $|\omega| > \frac{\pi}{4}$. T/F(c) The DTFT of the finite-length signal $x[n] = \cos\left(\frac{\pi}{32}n\right), n = 0, 1, \dots, 15$ is given by the formula $X_d(\omega) = \pi \left[\delta(\omega - \frac{\pi}{32}) + \delta(\omega + \frac{\pi}{32})\right]$. T/F(d) An LSI system has transfer function H(z). Suppose that the output of the system to the input $x[n] = \cos(\omega_0 n + \phi)$ is $y[n] = |H(e^{j\omega_0})| \cos(\omega_0 n + \phi + \angle H(e^{j\omega_0}))$ for any ω_0, ϕ , where $H(e^{j\omega}) = H(z)|_{z=e^{j\omega}}$. Then, the system h[n] can be either real T/For complex. (e) The DTFT $X_d(\omega)$ of a discrete-time signal x[n] is periodic only when x[n] has infinite length. T/F(f) The 64-point DFT of the finite-length signal $x[n] = \cos(\frac{\pi}{16}n), 0 \le n \le 63$ has only T/Ftwo nonzero elements. (g) Linear convolution can be computed as a circular convolution via zero-padding. T/F
 - (h) Circular convolution can be applied to two finite duration sequences with arbitrary lengths.
 - (i) Let $\{x[n]\}_{n=0}^5 = \{1, -1, -2, 3, 4, -3\}$. Consider the corresponding 6-point DFT $\{X[k]\}_{k=0}^5$. Then, X[0] = 0.

T/F

(j) FFT is just an efficient algorithm to evaluate DFT.

T/F

(6 Pts.)

- 2. A real continuous-time signal $x_c(t)$ is bandlimited to frequencies below 20 kHz, i.e., $X_a(\Omega) = 0$ for $|\Omega| \geq 2\pi(20000)$. Suppose that $x_a(t)$ is sampled with sampling frequency $F_s = 40$ kHz to produce $x[n] = x_a(nT_s)$ and 1000 samples are extracted corresponding to $n = 0, 1, \ldots, 999$. Let $\{X[k]\}_{k=0}^{999}$ be the 1000-point DFT of $\{x[n]\}_{n=0}^{999}$.
 - (a) To what continuous-time frequencies do the indices k = 300 and k = 800 correspond? Provide your answers in Hz.
 - (b) What is the spacing between the DFT samples in Hz (continuous-time frequency spacing)?

(9 Pts.)

3. Consider the following signal:

$$x[n] = \delta[n+3] - 3\delta[n+2] + 5\delta[n+1] - 7\delta[n] + 5\delta[n-1] - 3\delta[n-2] + \delta[n-3]$$

Compute the following quantities:

- (a) $X_d(0)$
- (b) $X_d(\pi)$
- (c) $\int_{-\pi}^{\pi} X_d(\omega) d\omega$

(5 Pts.)

4. Let $\{X[k]\}_{k=0}^7$ be the 8-point DFT of $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Determine the sequence $\{y[n]\}_{n=0}^7$ whose DFT is $Y[k] = e^{-j\frac{\pi}{4}k}X[k], \quad k = 0, 1, \dots, 7$.

(8 Pts.)

5. Give a closed-form expression for x[n], valid for all n, given that its DTFT is $X_d(\omega) = e^{-j\frac{\omega}{3}}$ for $|\omega| \leq \pi$. Your answer should not include complex numbers.

(5 Pts.)

6. A sequence x[n] with DTFT $X_d(\omega) = e^{-j\frac{\omega^2}{3}}$ is input to an LSI system with unit-pulse response $h[n] = (\frac{1}{3})^n u[n]$. Can the output sequence y[n] be real? Explain.

(10 Pts.)

7. Consider an LSI system characterized by the transfer function:

$$H(z) = 1 + z^{-4}$$

Compute the system response, y[n], to the input

$$x[n] = 3 + 4\cos\left(\frac{\pi}{4}n\right) + e^{j\frac{\pi}{2}n}$$

(10 Pts.)

- 8. The discrete-time signal $x[n] = \delta[n-3]$ goes through a digital-to-analog (D/A) converter with interpolating interval T. Determine and sketch $x_a(t)$ for the following cases (label your graphs carefully):
 - (a) The D/A is a ZOH
 - (b) The D/A is an ideal D/A

(15 Pts.)

9. Consider the processing of a continuous-time signal $x_a(t)$ bandlimited to $\Omega_{\text{max}} = 1000\pi$ rad/sec via the system shown below (where the A/D is an analog-to-digital converter with sampling interval T and the D/A is an ideal digital-to-analog converter with interpolating interval T).

- (a) Find the Nyquist interval T_{NYQ} (Nyquist sampling period) associated with the signal $x_a(t)$.
- (b) For $T < T_{NYQ}$, is the overall continuous-time system with input $x_a(t)$ and output $y_a(t)$ linear shift-invariant? If so, draw the frequency response $H_a(\Omega)$ of this continuous-time system for $|\Omega| < 1000\pi$ (use T as a parameter in your plot).
- (c) Is it possible to find $T > T_{NYQ}$ such that the overall continuous-time system with input $x_a(t)$ and output $y_a(t)$ is linear shift-invariant? If so, what is the largest such value of T?

(4 Pts.)

10. Shown below is part of a radix-2, 32-point DIT FFT. Determine the indices α and β , and the weighting coefficients a, b, c, and d.

(8 Pts.)

11. You are given two finite-duration sequences: $\{x_n\}_{n=0}^{14}$ and $\{h_n\}_{n=0}^{7}$, and you wish to compute their linear convolution using (a) a DFT approach with appropriate zero-padding (namely, $\{x_n\}_{n=0}^{14} * \{h_n\}_{n=0}^{7} = \text{DFT}^{-1}\{\text{DFT}\{x_n\} \cdot \text{DFT}\{h_n\}\})$ and (b) a radix-2, DIT FFT algorithm. What is the minimum number of zeros that must be padded to each of the sequences in order to compute (x*h) using each approach?

DFT Approach: Number of zeros added to $\{x_n\}$ =

DFT Approach: Number of zeros added to $\{h_n\}$

FFT Approach: Number of zeros added to $\{x_n\}$ =

FFT Approach: Number of zeros added to $\{h_n\}$