Decision Tree & Empirical Distribution (Bertsimas & Freund 2004, Chapter 1)

Howard Hao-Chun Chuang (莊皓鈞)

Professor
College of Commerce
National Chengchi University

September, 2024 Taipei, Taiwan

Key Characteristics

Decision tree: A roadmap that represents different choices for decision-making (see page 8)

- From left to right, each square node (A & C) is a decision point, where one has to make a choice.
- Decisions are mutually exclusive and collectively exhaustive?! What do you have to say about this?
- What are the circle nodes?

Key Characteristics

Decision tree: A roadmap that represents different choices for decision-making (see page 8)

- Each circle node (B, D, & E) is the event node that leads to uncertain outcomes.
- Sum of the probabilities of all possible outcomes should be 1.
- The final branches should have numerical values (\$).

Expected Monetary Value

EMV: An weighted-average of all possible numerical outcomes/payoffs(\$)

- EMV of Node E = 21600*0.05 + 16800*0.25 + 12000*0.4 + 6000*0.25 + 0*0.05 = 11580.
- EMV of node D: 11580.
- What are the key parameters?

Optimal Decision Strategy

Solution: Backward induction & choose the local optimal.

- 1. Reject John's offer.
- 2. If Vanessa offers him a summer job, accept it.
- 3. If Vanessa does not extend an offer, go for the school's recruitment.
- The optimal strategy has an EMV of ?
- Read page 11 for solution procedures

Sensitivity Analysis

How will the optimal solution change when parameters change?

- The probability that Vanessa would offer Bill a summer job.
- The cost of Bill's time and effort in participating in the school's corporate summer recruiting.
- The distribution of summer salaries that Bill could expect to receive.

	Spreadsheet Representation of Bill Sampras' Decision Problem		
Data	+		
Value of John's offer	\$12,000		,
Value of Vanessa's offer	\$14,000		
Probability of offer from Vanessa's firm	0.60		
Cost of participating in Recruiting	\$0		
	Distribution of Salaries from Recruiting		
	Weekly Salary	Total Summer Pay	Percentage of Student
		(based on 12 weeks)	who Received this Salar
•	\$1,800	\$21,600	5%
	\$1,400	\$16,800	25%
	\$1,000	\$12,000	40%
	\$500	\$6,000	25%
	\$0	\$0	5%
	EMV of Nodes		-
	Nodes	EMV	
	A	\$13,032	
	В	\$13,032	
	C	\$14,000	
	D	\$11,580	
	Е	\$11,580	

Departure from EMV

Decision Analysis Steps

- 1. List all the decisions, uncertain events, and outcomes.
- 2. Construct a decision tree & estimate probabilities of uncertain events.
- 3. Compute the EMV.
- 4. Solve the decision tree through backward induction.
- 5. Perform sensitivity analysis.

EMV as a decision criterion, what is missing?

- Most of the people are risk averse.
- 100% to get? millions versus 50% to get 10 millions & 50% get nothing.
 - ? denotes CE (certainty equivalent)
 - Risk Premium = EMV CE
 - Great for repeated decisions, NOT so good for one-shot decision

The Need for Monte-Carlo Simulation

Based on EMV, we should reject John's offer. But...

- This is a sure thing, and he must respond to John now. Vanessa will NOT inform him until next week.
- Must learn the consequences of saying NO to John. Should he
 - 1. wait for Vanessa?
 - 2. bet on the school's offer
- What are possible consequences?
 What can be learnt from simulation?

Empirical Distribution

How to form such a distribution?

- experience/belief from (often small) information
- objective (maybe big) data

Example: MLB Baseball

- hot zone of a hitter
- strike zone of a pitcher

Distance of two empirical distributions

- Wassertein distance (earth mover)
- JS divergence
- KL divergence

Distribution of Salaries from Recruiting					
Weekly Salary	Total Summer Pay	Percentage of Students			
	(based on 12 weeks)	who Received this Salary			
\$1,800	\$21,600	5%			
\$1,400	\$16,800	25%			
\$1,000	\$12,000	40%			
\$500	\$6,000	25%			
\$0	\$0	5%			

Empirical Distribution

What is the limit of such a distribution?

 Example: To obtain a model for campus Internet security in NCCU, the number of cyber-attacks occurring each week was observed over a period of 1 year. It was found that,

0 attacks occurred in each of 9 weeks

1 attack occurred in each of 14 weeks

2 attacks occurred in each of 13 weeks

3 attacks occurred in each of 9 weeks

4 attacks s occurred in each of 4 weeks

5 attacks occurred in each of 2 weeks

6 attacks occurred in each of 1 weeks

© 2024 H. Chuang All rights reserved

Empirical Distribution: Transportation Problem

Weltman & Tokar (2019) paper

Three types of cost:

- transportation cost
- stockout cost: \$60 per ton
- inventory holding cost: \$20 per ton

Table 1. Transportation Costs (\$/ton)

From\to	A. Boston	B. New York	C. Chicago	D. Indianapolis
 Detroit Pittsburgh Buffalo 	8	2	35	11
	12	3	31	5
	10	1	34	9

Objective: Minimize total cost

Empirical Distribution Case: Transportation Problem

Decision variables:

From\to	A. Boston	B. New York	C. Chicago	D. Indianapolis
 Detroit Pittsburgh Buffalo 	$egin{array}{c} x_{1A} \ x_{2A} \ x_{3A} \end{array}$	$egin{array}{c} x_{1B} \ x_{2B} \ x_{3B} \end{array}$	$egin{array}{c} x_{1C} \ x_{2C} \ x_{3C} \end{array}$	$egin{array}{c} x_{1D} \ x_{2D} \ x_{3D} \end{array}$

$$8x_{1A} + 12x_{2A} + 10x_{3A} + \dots + 11x_{1D} + 5x_{2D} + 9x_{3D}$$

$$(+60 * \max(demand_{Bos} - (x_{1A} + x_{2A} + x_{3A}), 0) + \dots + 60 * \max(demand_{Ind} - (x_{1D} + x_{2D} + x_{3D}), 0)$$

$$+20 * \max((x_{1A} + x_{2A} + x_{3A}) - demand_{Bos}, 0) + \dots + 20 * \max((x_{1D} + x_{2D} + x_{3D}) - demand_{Ind}, 0))$$

$$x_{1A} + x_{1B} + x_{1C} + x_{1D} \le 300$$

 $x_{2A} + x_{2B} + x_{2C} + x_{2D} \le 180$
 $x_{3A} + x_{3B} + x_{3C} + x_{3D} \le 250$
 月过去以滤斗
 持有过多時 9 成本

台庫最多出的貨

Empirical Distribution Case: Transportation Problem

Empirical Distribution Case: Transportation Problem

- Solution Strategy I: Fixed mean
 assume future D is Mean of past 24-month demand
 find decisions that minimize Cost(E[D])
- BOS NY CH IND Det 96 47 25 0 Pitt 0 0 110 70 Buff 0 128 122 0
- Solution Strategy II: Monthly forecast
 use models/algorithms to predict D every month (e.g., Prophet)
 find decisions that minimize Cost(Dforecast)
- Solution Strategy III: Empirical simulation use empirical distributions to simulate S scenarios find decisions that minimize E[Cost(D)]

© 2024 H. Chuang All rights reserved

Backtesting: Implement the strategies to months 25-36 & assess performance

