Another rule for choosing the stepsize is Armijo's rule.

These methods, and others, are discussed in detail in Berstekas [17].

Boyd and Vandenberghe discuss steepest descent methods for various types of norms besides the Euclidean norm; see Boyd and Vandenberghe [29] (Section 9.4). Here is brief summary.

49.8 Steepest Descent for an Arbitrary Norm

The idea is to make $\langle \nabla J_{u_k}, d_k \rangle$ as negative as possible. To make the question sensible, we have to limit the size of d_k or normalize by the length of d_k .

Let $\| \|$ be any norm on \mathbb{R}^n . Recall from Section 14.7 that the dual norm is defined by

$$||y||^D = \sup_{\substack{x \in \mathbb{R}^n \\ ||x|| = 1}} |\langle x, y \rangle|.$$

Definition 49.8. A normalized steepest descent direction (with respect to the norm $\| \|$) is any unit vector $d_{\text{nsd},k}$ which achieves the minimum of the set of reals

$$\{\langle \nabla J_{u_k}, d \rangle \mid ||d|| = 1\}.$$

By definition, $||d_{\text{nsd},k}|| = 1$.

A unnormalized steepest descent direction $d_{\mathrm{sd},k}$ is defined as

$$d_{\mathrm{sd},k} = \|\nabla J_{u_k}\|^D d_{\mathrm{nsd},k}.$$

It can be shown that

$$\langle \nabla J_{u_k}, d_{\operatorname{sd},k} \rangle = -(\|\nabla J_{u_k}\|^D)^2;$$

see Boyd and Vandenberghe [29] (Section 9.4).

The steepest descent method (with respect to the norm $\| \|$) consists of the following steps: Given a starting point $u_0 \in \text{dom}(J)$ do:

repeat

- (1) Compute the steepest descent direction $d_{\mathrm{sd},k}$.
- (2) Line search. Perform an exact or backtracking line search to find ρ_k .
- (3) Update. $u_{k+1} = u_k + \rho_k d_{\text{sd},k}$.