第3章有穷自动机

编译原理 陈炬桦 isscjh@mail.sysu.edu.cn

作业

- 理论: Cconline.sysu.edu.cn
- 编译器构造实验: 222.200.185.45

- QQ: 597371232
- 实验报告提交: 1967074105@qq.com
- isscjh@mail.sysu.edu.cn

有穷自动机的形式定义

定义3.1 一个确定型有穷自动机DFA是一个五元组

DFA= $(Q, \Sigma, t, q0, F)$

Q: 非空有穷状态集;

 Σ : 有穷输入字母表;

t: 是一个单值映射 t(q,a) → q'

q0: 开始状态, q0∈Q

F: 非空终止状态集 F Q

DFA状态转换(左表)图

	a	b
q0	q1	q3
q1	q0	q2
q2	q3	q1
q3	q2	q0

有穷自动机的扩充的映射

• **定义 3.2** DFA= (Q,Σ,t,q0,F) 扩充的映射

t:
$$Q \times \Sigma^* \to Q$$
定义为

- 1 $t(q,\epsilon)=q$
- 2 $t(q,a\alpha)=t(t(q,a),\alpha)$
- 定义 3.3 DFA=(Q, Σ , t, q0, F), 如果 $t(q0,\alpha)=q\in F$, 称 α 为DFA接收。
- **定义 3.4** 两个有穷自动机A1和A2, 如果L(A1)=L(A2),则称自动机A1与A2等价。

非确定型有穷自动机NDFA

• **定义 3.5** 一个非确定型 有穷自动机NDFA是一 个五元组

NDFA= $(Q, \Sigma, t, Q0, F)$

t: 是一个多值映射

Q0: 开始状态集,

 $Q0 \subseteq Q$

• 例3.6 NDFA

NDFA到DFA的转换

空移环路的寻找和消除

NDFA到DFA的转换

消除空移

- 如果B是终止状态,置A为终止状态;
- 如果A是开始状态,置B为开始状态;

确定化——子集法

• 设NDFA A= (Q,Σ,t,Q0,F) 设一个非确定型有穷自动机,它的语言为L(A),可以构造一个与它等价的确定型有穷自动机

DFA A'= $(Q, \Sigma, t, q0, F)$, L(A) = L(A')

确定化——造表法

	X	y
[q0]	[q1,q2]	[q0]
[q1,q2]	[q0,q3]	[q1,q2,q3]
[q0,q3]	[q1,q2,q3]	[q0,q3]
[q1,q2,q3]	[q0,q1,q3]	[q1,q2,q3]
[q0,q1,q3]	[q0,q1,q2,q3]	[q0,q1,q2,q3]
[q0,q1,q2,q3]	[q0,q1,q2,q3]	[q0,q1,q2,q3]

		X		y	
[q0]	q0'	[q1,q2]	q1 ′	[q0]	q0 ′
[q1,q2]	q1 ′	[q0,q3]	q2 '	[q1,q2,q3]	q3 ′
[q0,q3]	q2'	[q1,q2,q3]	q3 ′	[q0,q3]	q2 '
[q1,q2,q3]	q3'	[q0,q1,q3]	q4 '	[q1,q2,q3]	q3 ′
[q0,q1,q3]	q4'	[q0,q1,q2,q3]	q5 ′	[q0,q1,q2,q3]	q5 ′
[q0,q1,q2,q3]	q5 ′	[q0,q1,q2,q3]	q5 ′	[q0,q1,q2,q3]	q5 ′

ε NDFA的确定化

 $\varepsilon NDFA = (Q, \Sigma \cup \{\varepsilon\}, t, Q0, F)$

• **定义 3.8** 状态子集 I的ε-闭包, ε-closure (I)={q | t (I, ε)=q}

• 定义 3.9 Ia=ε-closure (J), 其中J=t (I,a)

ε NDFA的确定化举例

ε NDFA

			Ix		Iy
0	[S]	1	[1,2,3]		
1	[1,2,3]	2	[4]	3	[2,3,5]
2	[4]			4	[6,7,8]_
3	[2,3,5]	5	[4,6,7,8]	3	[2,3,5]
4	[6,7,8]	6	[7,8]		
5	[4,6,7,8]	6	[7,8]	4	[6,7,8]
6	[7,8]	6	[7,8]		

DFA的化简

- <1>终止状态与非终止状态可区分的,分成子集
- <2> 对所有子集对所有输入符号判断,如果可区分则分解子集
- <3>如果<2>有分解子集,转<2>,否则结束。
- · 从化简的DFA到程序设计

		X	у
A	0, 2	0,2	0,2
		BB	AA
В	1,3,4,5	1,3,4,5	
		ABBB	
A	0, 2	0, 2	
		ВС	
В	1		
C	3,4,5		
A	0		
В	1		
С	2		
D	3,4,5	3,4,5	3,4,5
		DDD	DDD

DFA的化简举例

正规文法与有穷自动机

从正规文法到FA

- G={VN, VT, P, S}
- $FA=(Q, \Sigma, t, q0, F)$
- $q0 = \{S\}$
- $\Sigma = VT$
- 在FA增加一个终止状态Z, F={Z}, Q =VNUF
- $A \rightarrow aB = > t (A, a) = B;$ $A \rightarrow a = > t (A, a) = Z$

正规文法与有穷自动机举例 从正规文法到FA

• 例3.14 G19[S]:

$$S \rightarrow aS \mid aA \mid bB$$

$$A \rightarrow bA \mid cC$$

$$B \rightarrow aB \mid dD$$

$$C \rightarrow cC \mid c$$

$$D \rightarrow dD \mid d$$

正规文法与有穷自动机 从FA到正规文法

- $FA = (Q, \Sigma, t, q0, F)$
- G=(VN, VT, P, S)

- VN=Q
- $VT=\Sigma$
- S=q0
- $t(A,a)=B=>A\rightarrow aB$,
- 如果A∈F, A→ε

正规文法与有穷自动机举例 从FA到正规文法

• 例3.15

G20[S]:

 $S \rightarrow xA \mid yB$

 $A \rightarrow yA \mid yC \mid xB$

 $B \rightarrow xC \mid yC \mid yA \mid \varepsilon$

 $C \rightarrow \epsilon$

正规表达式的定义

• 定义 3.12 字母表 Σ 上的正规表达式和正规集递归定义如下

符号	正规表达式	正规集
$a \in \Sigma$	a	{ a }
3	3	$\{\epsilon\}$
	φ	$\{\Phi\}$
	e1与e2	L(e1)与L(e2)
	e1 e2	$L(e1 e2) = L(e1) \cup L(e2)$
	e1. e2	L(e1 . e2)= L(e1) L(e2)
	(e1)*	L((e1)*)= L(e1)*

正规表达式到NDFA的转换

正规表达式到NDFA的转换举例

NDFA到正规表达式的转换

NDFA到正规表达式的转换

 \bullet [(x!yy)(y|xy)*(y|x(x|y)]|[(y|xy*x)(yy*x)*(yy*y|x|y)]

正规文法到正规表达式

规则:

正规文法到正规表达式举例

- $S \rightarrow aS \mid aA \mid bB$
- $A \rightarrow bA \mid cC$
- $B \rightarrow aB \mid dD$
- $C \rightarrow cC|c$
- $D \rightarrow dD \mid d$

- S→aS | (a b* c c* c | b a*d d*d)
 →a* a b* c c* c | a*b a*d d*d
- $A \rightarrow bA \mid c c * c$ $\rightarrow b * c c * c$
- $B \rightarrow aB \mid d d*d$ $\rightarrow a*d d*d$
- $C \rightarrow c*c$
- $D \rightarrow d*d$

举例

①构造该正则式所对应的NFA(画出转换图)

- 设字母表∑: {a, b}, 给出∑上的一个正则式 aa*bb*(ab*)*b。
- ①构造该正则式所对应的NFA(画出转换图)
- ②将所求的NFA确定化(画出DFA的转换图)
- ③将所求的DFA最小化(画出极小化后的转换图);

②将所求的NFA确定化(画出DFA的转换图)

a

b

b

q1

b

a

q4

a

q5

b

q6

b

	\rightarrow S a	▶ 1	ϵ 2 ϵ	3	$\frac{b}{4}$ ϵ $\frac{\epsilon}{5}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			a		b	
q0	[S]	q1	[1,2,3]			
q1	[1,2,3]	q2	[2,3]	q3	[4,5,6,7,10]	
q2	[2,3]	q2	[2,3]	q3	[4,5,6,7,10]	

q5	[5,6,7 10,Z]				
q6	[9,7,10,Z]	q4	[8,9,7,10]	q6	[9,7,10,Z]
	-				00

举例

- ①构造该正则式所对应的NFA(画出转换图)
- 设字母表∑: {0, 1}, 给出∑上的一个正则式
 1 (01) * (10|1) * 0 *。
- ①构造该正则式所对应的NFA(画出转换图);
- ②将所求的NFA确定化(画出DFA的转换图);
- ③将所求的DFA最小化(画出极小化后的转换图);

	b	[B,D.F]	c	[C,G]
③ 最小化	c	[C,G]	e	[E]
	e	[E]	e	[E]

[A]

0

1

b

b

b

[B,D,F]

[B,D,F]

[B,D,F]

		e	[E]	e
— a 1	b b	0 c	0	e