CS 5/7320 Artificial Intelligence

Constraint Satisfaction Problems AIMA Chapter 6

Slides by Michael Hahsler based on Slides by Svetlana Lazepnik with figures from the AIMA textbook

This work is licensed under a <u>Creative Commons</u> <u>Attribution-ShareAlike 4.0 International License</u>.

Constraint Satisfaction Problems (CSPs)

Definition:

- State is defined by a factored state representation:
 - A set of variables X_i called fluents.
- Partial Solution: Each variable can have a value from domain D_i or be unassigned.
- Constraints are a set of rules specifying allowable combinations of values for subsets of the variables.

E.g.,
$$X_1 = 3$$
, $X_1 \neq X_7$ or $X_2 > X_9 + 3$

- Solution: a state that is a
 - a) Consistent assignment: satisfies all constraints.
 - b) Complete assignment: assigns value to each variable.

Comparison to Other Methods

	Generic Tree Search	Local Search	CSP	
State representation	Atomic states Variables are only used to create human readable labels or calculate heuristics.	Factored representation to find local moves.	Factored	
Assignment	Always complete	Always complete	Partial assignment during search	
Constraints	Constrains are implicit in the search problem (initial + goal state + transition function).	Constraints are represented by the objective function and may not be met.	Enforces explicit constraints.	

⁺ General-purpose solvers for CSP with more power than standard search algorithms exit.

Example: Map Coloring (Graph coloring)

- Variables representing state: WA, NT, Q, NSW, V, SA, T
- Variable Domains: {red, green, blue}
- Constraints: adjacent regions must have different colors e.g.,

```
WA ≠ NT ⇔ (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}
```


Example: Map Coloring

Solutions are complete and consistent assignments, e.g.,

Example: N-Queens

- Variables: X_{ij} for $i, j \in \{1, 2, ..., N\}$
- **Domains:** {0, 1} # Queen: no/yes

Constraints:

$$\Sigma_{i,j} X_{ij} = N$$
 $(X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same col.}$
 $(X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same row.}$
 $(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$
 $(X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$

1

for
$$i, j, k \in \{1, 2, ..., N\}$$

N-Queens: Alternative Formulation

• Variables: Q_1 , Q_2 , ..., Q_N

• **Domains:** {1, 2, ..., *N*} # row for each col.

• Constraints:

 $\forall i, j \text{ non-threatening } (Q_i, Q_j)$

Example:

Example: Sudoku

• Variables: X_{ij}

• **Domains:** {1, 2, ..., 9}

• Constraints:

Alldiff(X_{ij} in the same unit)

Alldiff(X_{ij} in the same row)

Alldiff(X_{ij} in the same *column*)

					8			4
	8	4		1	6			
			5			1		
1		3	8			9		
6		8		X_{ij}		4		3
		2		33	9	5		1
		7			2			
			7	8		2	6	
2			3					

Some Popular Types of CSPs

Boolean Satisfiability Problem (SAT)

Find variable assignments that make a Boolean expression (often expressed in conjunctive normal form) evaluate as true.

$$(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 = True$$

Integer Programming

Variables are restricted to integers. Find a feasible solution that satisfies all constraints. The traveling salesman problem can be expressed as an integer program.

Linear Programming

Variables are continuous and constraints are linear (in)equalities. Find a feasible solution using, e.g., the simplex algorithm.

Real-world CSPs

Assignment problems

e.g., who teaches what class for a fixed schedule. A teacher cannot be in two classes at the same time!

Timetable problems

e.g., which class is offered when and where? No two classes in the same room at the same time.

- **Scheduling** in transportation and production (e.g., order of production steps).
- Many problems can naturally also be formulated as CSPs.
- More examples of CSPs: http://www.csplib.org/

Formulation of a CSP as a Search Problem

State:

Values assigned so far

Initial state:

The empty assignment { } (all variables are unassigned)

Transition function (Successor function):

- Choose an unassigned variable and assign it a value that does not violate any constraints
- Fail if no legal assignment is found

Goal state:

Any complete and consistent assignment.

Note: Path cost is not important.

Backtracking Search

- Start with all variables unassigned.
- Build a search tree that assigns a value to one variable per level.
 - Tree depth: number of variables n
 - Number of leaves: $O(d^n)$ where d is the number of values per variable
- Depth-first search for CSPs with single-variable assignments is typically done with **backtracking search**.

Example: Backtracking Search (DFS)

Backtracking Search Algorithm

```
function Recursive-Backtracking(assignment, csp)
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp)
       if value is consistent with assignment given CONSTRAINTS[csp]
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
   return failure
Call: Recursive-Backtracking({}, csp)
```

Improving backtracking efficiency:

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Similar to move ordering in games.

Tree pruning (like in alpha-beta search)

Local Search for CSPs

CSP algorithms

- Allow incomplete states.
- States must satisfy all constraints.

VS.

Local Search

- Only complete states
- Allows states with unsatisfied constraints.

Local search can attempt to reduce unsatisfied constraints using the min-conflicts heuristic:

- 1. Select a variable that violates a constraint (produces a conflict).
- 2. Choose a new value that violates fewer constraints.
- 3. Repeat till all constraints are met (or a local optimum is reached).

Simulated Annealing is often very effective for CSPs. Especially for very large problems where an imperfect solution is acceptable.

\bigstar

What You Should Know

- CSPs are a special type of search problem:
 - States are factored and defined by a set of variables and value assignments
 - The goal is defined by a set of constraints on the variables.
 - Incomplete assignments are used to create a complete assignment piece by piece.
 - The goal test is defined by
 - Consistency with constraints
 - Completeness of assignment
- Many problems can be formulated as a CSP, and problems where the constraints are very restrictive on the solution space may be easier to solve as CSPs (e.g., scheduling problems and puzzles).
- Effective off-the-shelf solvers exist. They typically use:
 - **Depth-first search**: successor states are generated variable-by-variable by adding a consistent value assignment to single unassigned variables.
 - Local search can be used as an effective heuristic. It searches the space of all complete assignments for consistent assignments = min-conflicts heuristic.