Contents

Th 2.2 2.3	Aim Ref	5 5 7 9
2.1 Th 2.2 2.3	Ref	5 5 7 9
Th 2.2 2.3	e integers $\mathbb Z$ Addition:	5 7 9
Th 2.2 2.3	e integers $\mathbb Z$ Addition:	7 9
2.2 2.3	Addition:	9
2.2 2.3	Addition:	9
2.3	multiplication	
m.		
The	fundamental theorem of arithmetic	11
3.1	Def	11
3.2		11
		12
0.0		12
		12
0.0		12
0.0		13
3.8		13
Con	gruoneo in 7	15
	or delice in a	15
		16
		16
		16
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Con 4.1 4.2 4.3	3.1 Def

2 CONTENTS

preface

1.1 Aim

- $\bullet\,$ abstract algebraic structures on math objects.
- Basic language of modern math.

1.2 Ref

- Dummit & Foote: Abstract algebra, 3rd edition.
- 聂灵沼 & 丁石孙: 代数学引论 (第二版)

2.1

for an equation:

$$x^2 + 4x + 3 = 0$$

Analysis
$$x^2 + 4x + 3 = 0 \Rightarrow (x+3)(x+1) = 0 \Rightarrow x = -1 \text{ or } x = -3$$

Algebra Vary the coefficients, consider $ax^2+bx+c=0$ general solution is $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Geometry

For the analysis, we solve the problem itself, for algebra, we abstract the problem (using abstract def and notations) and for geometry, we care about the graph and shapes.

6 CHAPTER 2.

2.2. ADDITION: 9

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$$

There are two binary operations: addition and multiplication.

2.2 Addition:

 $\exists! (exists uniquely) \ 0 \in \mathbb{Z}$ such that

$$n + 0 = n$$

$$\forall n, \exists -n \in \mathbb{Z} \text{ s.t. } n + (-n) = 0$$
 and

$$n+m=m+n$$

2.3 multiplication

 $\exists ! 1 \in \mathbb{Z} \text{ s.t.}$

$$n \cdot 1 = n$$

and

$$m \cdot n = n \cdot m \quad \forall m, n \in \mathbb{Z}$$

Only ± 1 have multiplication inverses.

The fundamental theorem of arithmetic

3.1 Def

For $a,b\in\mathbb{Z}$ a divides b (written as $a\mid b)$ if

$$\exists c \text{ s.t } b = ac$$

3.2 Theorem: The division algorithm

Let $a, b \in \mathbb{Z}$ with b > 0. Then $\exists ! (q, r) \in \mathbb{Z}^2$ such that

$$a = b \cdot q + r$$
 and $0 \le r < b$

Proof

Let $S = \{a - bk \mid k \in \mathbb{Z}, a - bk \ge 0\} \subseteq \mathbb{N}$ If $0 \in S$ then $b \mid a$, then $q = \frac{a}{b}, r = 0$ Now assume $0 \notin S (\Rightarrow a \ne 0)$. Since $S \ne \emptyset$, by well ordering principle of \mathbb{N} , we have a smallest number, say r = a - bq > 0. It remains to show r < b. If $r \ge b$

$$a - b(q + 1) = a - bq - b = r - b \ge 0$$

and

$$a - b(q+1) = r - b < r$$

contradiction.

For uniqueness, assume a = bq + r and a = bq' + r'. Suppose $r' \ge r$ then

$$bq + r = a = bq' \implies b(q - q') = r' - r \ge 0$$

 $\Rightarrow b \mid r' - r \text{ and } 0 \leq r' - r \leq r' < b, \text{ thus we have}$

$$r' - r = 0$$

so as q = q'

3.3 Def

- gcd(a, b) is the greatest common divisor of a and b
- If gcd(a, b) = 1 then we say a and b are relative prime or coprime.

3.4 Corollary of 3.2

Let $a, b \in \mathbb{Z}$ no both zero, and let $c = \gcd(a, b)$. Then $\exists (xx, y) \in \mathbb{Z}^2$ such that ax + by = c

Proof

Let $S = \{ax + by \mid (x, y) \in \mathbb{Z}^2\} \cap \mathbb{Z}_{>0} \neq \emptyset$. Let $d = \min S$. We claim that

$$d = c = \gcd(a, b)$$

First note that $c \mid a \& c \mid b \Rightarrow c \mid ax + by \quad \forall x, y \in \mathbb{Z} \Rightarrow c \mid d$. With division algorithm, we write

$$a = dq + r = \leq r < d$$

Note that $r \in S$ Hence r = 0 i.e. $d \mid a$ similarly $d \mid b \Rightarrow d \mid c$ They are positive hence d = c

3.5 Def

For $a \in \mathbb{Z} \setminus \{0, \pm 1\}$

• a is called **irreducible** in \mathbb{Z} , if \forall factorization a = bc, we have

$$b \in \pm 1$$
 or $c \in \pm 1$

• a is called **prime** in \mathbb{Z} , if $a \mid bc \Rightarrow a \mid b$ or $a \mid c$

3.6 Euclid's Lemma

In \mathbb{Z} , irreducible \Leftrightarrow prime.

Proof

 \subseteq

Assume a is irreducible and $a \mid bc$. Without loss of generality (WLOG), we assume a > 0 and $a \mid bc$. We show $a \mid c$ in the following way:

airreducible
$$a > 0 \\ a \not \mid b$$
 $\Rightarrow gcd(a,b) = 1$
$$\stackrel{3.4}{\Rightarrow} \exists x, y \in \mathbb{Z} s.tax + by = 1$$

$$\Rightarrow c = acx + acy = a(cx + \frac{bc}{a}y)$$

$$\Rightarrow a \mid c$$

 \supseteq

Assume a is prime and a = bc. WLOG, assume that $a \mid b$, then

$$|b| \stackrel{a=bc}{=} \gcd(a,b) \stackrel{a|b}{=} |a| \Rightarrow c = \pm 1$$

3.7 The fundamental theorem of arithmetic

 $\forall n \in \mathbb{Z}_{\geq 2}$ is a product of positive primes. This prime factorization is unique in the following sense:

• if $n = p_1 \cdots p_s$ and $n = q_1 \cdots q_t$ with p_i, q_j are primes. Then s = t and after reordering and relabeling, $p_i = q_i \forall i$

Proof

For existence, using induction on n. For n = 2, 2 is prime. Assume that the prime factorization exists for any integer k that k < n

If n is prime, done. If n not a prime, using Euclid's lemma 3.6, n = bc with 1 < b < n, 1 < c < n By induction hypothesis, n is also a product of primes.

For uniqueness, using induction on $l = \max\{s,t\}$ If l = 1, $n = p_1 = q_1$. If $p_s \mid q_1 \cdots q_t \Rightarrow \exists i \text{ s.t. } p_s \mid q_i \text{ But } q_i \text{ is prime, so } p_s = p_i$. Reindex and we may assume $p_s = q_t$. Cancel p_s with q_t we get

$$p_1 \cdots p_{s-1} = q_1 \cdots q_{t-1}$$

. By induction hypothesis, s-1=t-1 and after reindex, $p_i=q_i \forall i$

3.8 Corollary

 $\forall n \in \mathbb{Z} \setminus \{0, \pm 1\}, \ n = \pm p_1^{\alpha_1} \cdots p_s^{\alpha_s} \text{ with } p_i \text{ are primes and } \alpha_i \in \mathbb{Z}_{\geq 0}$

Congruence in \mathbb{Z}

4.1 Def

Let $a, b, n \in \mathbb{Z}$ with n > 0 a is **congruent** of b **modulo** n, written as

$$a \equiv b \mod n$$

if $n \mid a - b$

Remark

- It is an equivalence relation.
- Reflexive: $a \equiv a \mod n$
- Symmetric: $a \equiv b \mod n \Rightarrow b \equiv a \mod n$
- Transitive: $a \equiv b \mod n \& b \equiv c \mod n \Rightarrow a \equiv c \mod n$

 $a \equiv b \mod n \Rightarrow a + c \equiv b + d \mod n$ $c \equiv d \mod n \Rightarrow ac \equiv bd \mod n$

So we can have congruence class modulo n:

$$[a]_n := \{b \in \mathbb{Z} \mid b \equiv a \mod n\} = a + n\mathbb{Z}$$

They are only n disjoint congruence class modulo n:

$$[0]_n,\cdots,[n-1]_n$$

The set of congruence classes modulo n is denoted as $\mathbb{Z}/n\mathbb{Z}$

4.2 Lemma

If
$$[a]_n = [i]_n, [b]_n = [j]_n$$
 thenn

$$[a+b]_n = [i+j]_n$$
 $[ab]_n = [ij]_n$ $[a-b]_n = [i-j]_n$

Therefore, we define the following binary operations on $\mathbb{Z}/n\mathbb{Z}$:

$$[i]_n + [j]_n := [i+j]_n$$

 $[i]_n \cdot [j]_n := [ij]_n$

We have addition and multiplication satisfying associativity law, distribution law, additive inverse.

4.3 Remark

In \mathbb{Z} , if a, b are non-zero, then $ab \neq 0$. But in $\mathbb{Z}/n\mathbb{Z}$, $[a]_n[b]_n = [0]_n$ if $n \mid ab$. In \mathbb{Z} for 2x = 1 it have no solution. But in $\mathbb{Z}/3\mathbb{Z}$, $[2]_3x = [1]_3 \Rightarrow x = [2]_3$

4.4 Theorem (The structure of $\mathbb{Z}/n\mathbb{Z}$, p prime)

For $p \in \mathbb{Z}_{\geq 2}$. The following are equivalent(TFAE):

- 1 p is prime
- $2 \ \forall a \neq 0 \ \text{in} \ \mathbb{Z}/p\mathbb{Z}, \ ax = 1 \ \text{has a solution in} \ \mathbb{Z}/p\mathbb{Z}$
- 3 whenever bc = 0 in $\mathbb{Z}/p\mathbb{Z}$, b = 0 or c = 0

Proof

 $1\Rightarrow 2$

 $0 \neq [a]_p \Rightarrow p \neq a$ so $\gcd(a,p) = 1$ then $\exists (x,y) \in \mathbb{Z} \text{ s.t. } ax + py = 1$. So moduloing p we get $ax \equiv 1 \mod p$. then $ax = 1 \mod \mathbb{Z}/p\mathbb{Z}$ has a solution

 $2 \Rightarrow 3$

Suppose bc=0 in $\mathbb{Z}/p\mathbb{Z}$, WLOG, we assume $b\neq 0$ in $\mathbb{Z}/p\mathbb{Z}$, $\exists \in \mathbb{Z}/p\mathbb{Z}$ s.t. xb=1.

$$\Rightarrow c = c \cdot 1 = xbc = 0$$

 $3 \Rightarrow 1$

bc = 0 in $\mathbb{Z}/p\mathbb{Z} \implies p \mid bc$ Hence it follows from the define of prime.