

Teste Intermédio de Matemática

Versão 1

Teste Intermédio

Matemática

Versão 1

Duração do Teste: 90 minutos | 11.05.2010

3.º Ciclo do Ensino Básico – 9.º ano de Escolaridade

Decreto-Lei n.º 6/2001, de 18 de Janeiro

Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Não é permitido o uso de corrector. Sempre que precisares de alterar ou de anular uma resposta, risca, de forma clara, o que pretendes que fique sem efeito.

Escreve, de forma legível, a numeração dos itens, bem como as respectivas respostas. As respostas ilegíveis são classificadas com zero pontos.

Para cada item, apresenta apenas uma resposta. Se apresentares mais do que uma resposta a um mesmo item, só a primeira é classificada.

Podes utilizar a máquina de calcular com que habitualmente trabalhas.

Para responderes aos itens de escolha múltipla, escreve, na folha de respostas:

- o número do item;
- a letra que identifica a opção correcta.

O último item do teste (item 13.) é o único em que podes utilizar material de desenho e de medição. Este item deve ser resolvido, a lápis, no enunciado.

As cotações dos itens encontram-se no final do enunciado da prova.

O teste inclui, na página 2, um formulário e, na página 3, uma tabela trigonométrica.

Formulário

Números

Valor aproximado de π (pi): 3,14159

Geometria

Perímetro do círculo: $2 \pi r$, sendo r o raio do círculo

Áreas

Paralelogramo: $base \times altura$

Losango: $\frac{diagonal\ maior \times\ diagonal\ menor}{2}$

Trapézio: $\frac{base\ maior +\ base\ menor}{2} \times\ altura$

Polígono regular: $ap ext{o}tema imes \frac{per ext{i}metro}{2}$

Círculo: πr^2 , sendo r o raio do círculo

Superfície esférica: $4 \pi r^2$, sendo r o raio da esfera

Volumes

Prisma e cilindro: área da base \times altura

Pirâmide e cone: $\frac{\acute{a}rea\ da\ base \times\ altura}{3}$

Esfera: $\frac{4}{3} \pi r^3$, sendo r o raio da esfera

Álgebra

Fórmula resolvente de uma equação do segundo grau

da forma $ax^2 + bx + c = 0$: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Trigonometria

Fórmula fundamental: $sen^2 x + cos^2 x = 1$

Relação da tangente com o seno e o co-seno: $tgx = \frac{senx}{cosx}$

Tabela Trigonométrica

Graus	Seno	Co-seno	Tangente	Graus	Seno	Co-seno	Tangente
1	0,0175	0,9998	0,0175	46	0,7193	0,6947	1,0355
2	0,0349	0,9994	0,0349	47	0,7314	0,6820	1,0724
3	0,0523	0,9986	0,0524	48	0,7431	0,6691	1,1106
4	0,0698	0,9976	0,0699	49	0,7547	0,6561	1,1504
5	0,0872	0,9962	0,0875	50	0,7660	0,6428	1,1918
6	0,1045	0,9945	0,1051	51	0,7771	0,6293	1,2349
7	0,1219	0,9925	0,1228	52	0,7880	0,6157	1,2799
8	0,1392	0,9903	0,1405	53	0,7986	0,6018	1,3270
9	0,1564	0,9877	0,1584	54	0,8090	0,5878	1,3764
10	0,1736	0,9848	0,1763	55	0,8192	0,5736	1,4281
11	0,1908	0,9816	0,1944	56	0,8290	0,5592	1,4826
12	0,2079	0,9781	0,2126	57	0,8387	0,5446	1,5399
13	0,2250	0,9744	0,2309	58	0,8480	0,5299	1,6003
14	0,2419	0,9703	0,2493	59	0,8572	0,5150	1,6643
15	0,2588	0,9659	0,2679	60	0,8660	0,5000	1,7321
16	0,2756	0,9613	0,2867	61	0,8746	0,4848	1,8040
17	0,2924	0,9563	0,3057	62	0,8829	0,4695	1,8807
18	0,3090	0,9511	0,3249	63	0,8910	0,4540	1,9626
19	0,3256	0,9455	0,3443	64	0,8988	0,4384	2,0503
20	0,3420	0,9397	0,3640	65	0,9063	0,4226	2,1445
21	0,3584	0,9336	0,3839	66	0,9135	0,4067	2,2460
22	0,3746	0,9272	0,4040	67	0,9205	0,3907	2,3559
23	0,3907	0,9205	0,4245	68	0,9272	0,3746	2,4751
24	0,4067	0,9135	0,4452	69	0,9336	0,3584	2,6051
25	0,4226	0,9063	0,4663	70	0,9397	0,3420	2,7475
26	0,4384	0,8988	0,4877	71	0,9455	0,3256	2,9042
27	0,4540	0,8910	0,5095	72	0,9511	0,3090	3,0777
28	0,4695	0,8829	0,5317	73	0,9563	0,2924	3,2709
29	0,4848	0,8746	0,5543	74	0,9613	0,2756	3,4874
30	0,5000	0,8660	0,5774	75	0,9659	0,2588	3,7321
31	0,5150	0,8572	0,6009	76	0,9703	0,2419	4,0108
32	0,5299	0,8480	0,6249	77	0,9744	0,2250	4,3315
33	0,5446	0,8387	0,6494	78	0,9781	0,2079	4,7046
34	0,5592	0,8290	0,6745	79	0,9816	0,1908	5,1446
35	0,5736	0,8192	0,7002	80	0,9848	0,1736	5,6713
36	0,5878	0,8090	0,7265	81	0,9877	0,1564	6,3138
37	0,6018	0,7986	0,7536	82	0,9903	0,1392	7,1154
38	0,6157	0,7880	0,7813	83	0,9925	0,1219	8,1443
39	0,6293	0,7771	0,8098	84	0,9945	0,1045	9,5144
40	0,6428	0,7660	0,8391	85	0,9962	0,0872	11,4301
41	0,6561	0,7547	0,8693	86	0,9976	0,0698	14,3007
42	0,6691	0,7431	0,9004	87	0,9986	0,0523	19,0811
43	0,6820	0,7314	0,9325	88	0,9994	0,0349	28,6363
44	0,6947	0,7193	0,9657	89	0,9998	0,0175	57,2900
45	0,7071	0,7071	1,0000				

- 1. A Rita e o Paulo têm à sua frente, sobre uma mesa, 30 autocolantes, todos com a mesma forma e com o mesmo tamanho: 16 autocolantes têm imagens de mamíferos, 11 autocolantes têm imagens de peixes e os restantes autocolantes têm imagens de aves.
 - O Paulo baralha os 30 autocolantes e espalha-os sobre a mesa, com as imagens voltadas para baixo.

A Rita vai tirar, ao acaso, um autocolante de cima da mesa.

Qual é a probabilidade de a Rita tirar um autocolante com imagens de aves?

Transcreve a letra da opção correcta.

- (A) 5%
- (B) 10% (C) 30% (D) 50%
- 2. A Figura 1 ilustra um painel que a Rita vai pintar, para afixar na sala de aula. O painel tem três tiras verticais.

Figura 1

A Rita dispõe de tintas de três cores diferentes, para pintar as tiras verticais: amarelo, verde e rosa.

De quantas maneiras diferentes pode a Rita pintar o painel, sabendo que pinta cada tira com uma só cor e que não repete cores?

Mostra como chegaste à tua resposta.

3. Considera o conjunto $P = \left[-3, \sqrt{2}\right] \cap \left[-\sqrt{2}, +\infty\right[$

Qual dos conjuntos seguintes é igual a P?

Transcreve a letra da opção correcta.

(A)
$$|-\sqrt{2}, \sqrt{2}|$$

(B)
$$\left[-3,+\infty\right]$$

(C)
$$|-3,\sqrt{2}|$$

(A)
$$\left[-\sqrt{2},\sqrt{2}\right]$$
 (B) $\left[-3,+\infty\right[$ (C) $\left[-3,\sqrt{2}\right]$ (D) $\left[-\sqrt{2},+\infty\right[$

4. Considera o conjunto $S = \left\{ \sqrt{\frac{1}{4}}, \sqrt[3]{\frac{1}{64}}, \sqrt[3]{27}, \sqrt{27} \right\}$

Qual dos números do conjunto $\,S\,$ é um número irracional?

- 5. Qual dos pares ordenados $\ (x,y)$ seguintes é solução da equação $\ 3x=15-y$? Transcreve a letra da opção correcta.
 - (A) (-3, 6) (B) (-6, 3) (C) (3, 6)

6. Resolve a inequação seguinte:

$$\frac{2(1-x)}{3} \ge \frac{1}{4}$$

Apresenta o conjunto solução na forma de um intervalo de números reais.

Apresenta os cálculos que efectuaste.

7. Para medir a temperatura, podem utilizar-se termómetros graduados em graus Celsius ou termómetros graduados em graus Fahrenheit.

Para relacionar graus Celsius com graus Fahrenheit, utiliza-se a fórmula

$$F = 1.8C + 32$$

em que $\,\,C\,\,$ representa o valor da temperatura em graus Celsius e $\,\,F\,\,$ representa o correspondente valor em graus Fahrenheit.

- **7.1.** Determina o valor da temperatura, em graus Fahrenheit, correspondente a $-25\,$ graus Celsius. Mostra como chegaste à tua resposta.
- **7.2.** Determina o valor da temperatura, em graus Celsius, correspondente a $\,95\,$ graus Fahrenheit. Mostra como chegaste à tua resposta.
- **7.3.** Nem o gráfico A nem o gráfico B traduzem a relação $F=1, 8\,C+32$ Apresenta uma razão para rejeitar o gráfico A e uma razão para rejeitar o gráfico B.

8. O astrónomo e matemático Ptolomeu enunciou a propriedade seguinte:

«Num quadrilátero inscrito numa circunferência, a soma dos produtos das medidas dos lados opostos é igual ao produto das medidas das diagonais.»

Na Figura 2, está representado um trapézio [ABCD] inscrito numa circunferência.

A figura não está desenhada à escala.

Figura 2

Sabe-se que:

•
$$\overline{AB} = 12$$
 e $\overline{CD} = 9$

•
$$\overline{AC} = \overline{BD} = \sqrt{150}$$

•
$$\overline{AD} = \overline{BC}$$

Determina o valor exacto de $\ AD$, utilizando a propriedade enunciada por Ptolomeu.

Apresenta os cálculos que efectuaste.

9. A Rita tem 5,50 euros no mealheiro. No total, tem 17 moedas, sendo umas de 20 cêntimos e outras de 50 cêntimos.

Seja $\,x\,$ o número de moedas de $\,20\,$ cêntimos e seja $\,y\,$ o número de moedas de $\,50\,$ cêntimos que a Rita tem no mealheiro.

Indica qual dos sistemas seguintes permite determinar quantas moedas de 20 cêntimos e quantas moedas de 50 cêntimos tem a Rita no mealheiro.

Transcreve a letra da opção correcta.

(A)
$$\begin{cases} x + y = 17 \\ 20x + 50y = 55 \end{cases}$$
 (B)
$$\begin{cases} x + y = 17 \\ 0, 2x + 0, 5y = 5, 5 \end{cases}$$

(C)
$$\begin{cases} x+y=55\\ 20x+50y=17 \end{cases}$$
 (D)
$$\begin{cases} x+y=5,5\\ 0,2x+0,5y=17 \end{cases}$$

10. Para assegurar a actividade de prevenção, vigilância e detecção de incêndios florestais, existem torres de vigia. A Figura 3 é uma fotografia de uma dessas torres.

Para determinar a altura da plataforma da torre, imaginaram-se dois triângulos rectângulos, semelhantes, representados na Figura 4.

Figura 3

Figura 4

A Figura 5 representa um esquema desses dois triângulos. O esquema não está desenhado à escala.

Sabe-se que:

- $\overline{DC} = 2.5 \, m$
- $\overline{EC} = 1,6 \, m$
- $\overline{AB} = 4.8 \, m$

Qual é o comprimento, em metros, de $\lceil CB \rceil$?

Apresenta os cálculos que efectuaste.

- 11. Na Figura 6, está representada uma circunferência de centro \it{O} , na qual está inscrito um hexágono regular $\it{[ABCDEF]}$.
 - **11.1.** Qual é a amplitude, em graus, do ângulo DOC?
 - **11.2.** Relativamente à Figura 6, sabe-se ainda que:
 - a circunferência tem raio 4;
 - o triângulo [DOC] tem área $4\sqrt{3}$

Determina a área da região sombreada.

Escreve o resultado arredondado às unidades.

Apresenta os cálculos que efectuaste.

Figura 6

Nota: Sempre que, nos cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, duas casas decimais.

11.3. Considera a rotação de centro no ponto ${\cal O}$ e de amplitude 240° (sentido contrário ao dos ponteiros do relógio).

Qual é a imagem do ponto $\,D\,$ obtida por meio dessa rotação?

12. A Figura 7 mostra um conjunto de painéis solares. Numa das estruturas de apoio de um desses painéis, imaginou-se um triângulo rectângulo.

A Figura 8 é um esquema desse triângulo. O esquema não está desenhado à escala.

Figura 7

Figura 8

Relativamente ao triângulo rectângulo [ABC], sabe-se que:

- $\overline{AB} = 2.5 m$
- $\overline{BC} = 1,7 m$

Qual é a amplitude, em graus, do ângulo $\ CAB$?

Escreve o resultado arredondado às unidades.

Mostra como chegaste à tua resposta.

Nota: Nos cálculos intermédios, conserva duas casas decimais.

13. A Figura 9 representa um mapa da zona onde vai ser instalado um conjunto de painéis solares.

O local da instalação deve obedecer às seguintes condições:

- ficar dentro da zona representada no mapa;
- estar a mais de $9\,km$ e a menos de $12\,km$ da localidade C.

Desenha a lápis, na Figura 9, uma construção geométrica rigorosa que te permita obter a parte do mapa correspondente à zona onde, de acordo com as condições anteriores, é possível instalar o conjunto de painéis.

Sombreia essa zona.

FIM

Esta folha vai acompanhar a tua folha de respostas; por isso, deves identificá-la, escrevendo o teu	ی nome.
Nome:	

COTAÇÕES

	TOTAL	100 pontos
13.		6 pontos
12.		6 pontos
	11.3.	5 pontos
	11.2.	6 pontos
	11.1.	6 pontos
11.		
10.		6 pontos
9.		5 pontos
8.		7 pontos
	7.3.	6 pontos
	7.2	7 pontos
	7.1	5 pontos
7.		
6.		7 pontos
5.		5 pontos
4.		6 pontos
3.		5 pontos
2.		7 pontos
1.		5 pontos