1. Codierung

#DigitalTechnik

Themen

- 1. Codierung Allgemein
- 2. Arten von Codierung
- 3. Zeichencodierung
- 4. Zahlencodierung

Codierung Allgemein

Codierung ist die Darstellung von Information als Symbol oder Symbolfolge aus einem Alphabet.

Alphabet: eine endliche Menge von Symbolen

\(\rightarrow Hinweis

Die Ausgangsinfo kann analog oder digital sein, die Zielinfo ist immer digital.

Wenn die Ausgangsinfo digital ist, spricht man von einer "Umcodierung".

Arten von Codierung

- 1. Zahlencodierung -> Zahlenwerte werden dargstellt
- 2. Zeichencodierung -> Schriftzeichen werden dargestellt
- 3. Signalcodierung -> abstrakte Info wird als Signal oder Signalfolge dargestellt
- 4. Anwendungscodierung -> Info einer bestimmten Anwendung werden codiert
- 5. Komprimierung -> Umcodierung, bei welcher das Datenvolumen verringert werden soll
- 6. Verschlüsselung -> Umcodierung, bei welcher ohne Spezialinfos ("Schlüssel") die Ursprungsinfo nicht rekonstruiert werden kann

1 Definition zu 3.

Ein Signal ist eine physisch messbare Größe.

∄≡ Beispiele zu 4.

- Textcodierung (HTML, DOCX, ODT,...)
- Bildcodierung (PNG, JPEG, GIF, SVG,...)
- Videocodierung (MP4,...)
- Audiocodierung (MP3,...)
- Farbcodierung (RGB, CMYK, HSL,...)

Zeichencodierung

Verschiedene Zeichencodierungen

- ASCII (≈ 1970): Alphabet = {0, 1, 2, 3,..., 127}
 - max. 128 Schriftzeichen darstellbar
- ISO-8859 (≈ 1990): Alphabet = {0, 1, 2, 3,..., 255}
 - um "nationale Sonderzeichen" erweiterter ASCII-Zeichensatz
 - z.B. ä, ö, ü, Ä, Ö, Ü, ß, à, Á ç, ...
 - max. 256 Schriftzeichen darstellbar
 - verschiedene Varianten:
 - ISO-8859-1: westeuropäisch (veraltet)
 - ISO-8859-5: kyrillisch
 - ISO-8859-7: griechisch
 - ISO-8859-15: westeuropäisch (inkl. €)
- Unicode (≈ 2000): Anspruch, alle Schriftzeichen, aller aktuellen, ehemaligen und zukünftigen Schriftsprachen darstellen zu können
 - notwendig ist eine bestimnmte "Transfercodierung":

#überschlägigesRechnen

- *UTF-8*: Alphabet = {0,..., 255}
- *UTF-16*: Alphabet = {0,...,65535}
- *UTF-32*: Alphabet = $\{0,...,2^{32}-1\}$
- Es muss jeweils mindestens ein "Fortsetzungssymbol" geben, welches anzeigt dass die Symbolfolge für das aktuelle Schriftzeichen noch nicht zu Ende ist

 Die Wahl zwischen UTF-8/-16/-32 ist eine Frage der verwendeten Schriftzeichen und der Speicherplatz effizienz

Zahlencodierung

Abzählsysteme

Abzählsysteme grundsätzlich: dargestellter Zahlenwert wird bestimmt als Summe der dargestellten Symbolwerte

Fingerabzählsystem

```
Alphabet = {Finger | }
Symbolwert (Finger | ) = 1
```

Beispiele:

- 5 -> \\
- 2 ->
 - Vor- und Nachteile
 - ① extrem einfach, verständlich
 - O extrem eingeschränkt, Wertebeschränkt (0-10)

(bis auf weiteres nur nicht negative und ganze Zahlen)

① extrem einfache Verfahren für Addition und Subtraktion

einfache Strichliste

```
Alphabet = \{ | \}
Symbolwert ( | ) = 1
```

- **?** Vor- und Nachteile
- unendlicher Wertebereich

- ⊝⊕ Schreibwerkzeug wird benötigt
- übersichtlicher Wertebereich ist eingeschränkt
- ⊕⊕⊖ Addition extrem einfach aber Subtraktion erfordert "Löschmöglichkeit"
- ⊖⊖⊕ Multiplikation und Division mit einfachen Verfahren (mehrfache Addition bzw. Subtraktion) möglich, aber deutlich höherer Aufwand

Beispiele:

5: ||||

2: ||

7: |||||| (oder auch |||| ||)

10: |||||||| (oder auch |||| ||||)

erweiterte Strichliste

Jeder fünfte Strich wird als Querstrich durch vier Striche gezogen

Alphabet = { |, ++++ }

Symbolwert (|) = 1

Symbolwert (++++++) = 5

Regel: Symbole müssen sortiert nach Wertigkeit notiert werden.

- Vor- und Nachteile
- übersichtlicher Wertebereich bis 50
- Addition und Subtraktion erfordern zusätzliche Neusortierung und ggf.
 Zusammenfassen bzw. Auflösung von Symbolen

römisches Zahlensystem

```
Alphabet = \{I, V, X, L, C, D, M\}
```

Symbolwert (|) = 1

Symbolwert (V) = 5

Symbolwert (X) = 10

Symbolwert (L) = 50

Symbolwert (C) = 100

Symbolwert (D) = 500

Symbolwert (M) = 1000

Beispiele:

 $\mathbf{4} \neq \mathbf{IIII}$

4 = IV

Sonderregel: niedrigwertiges Symbol vor höherwertigem Symbol ist manchmal erlaubt, aber der niedere Wert wird dann vom höheren Wert abgezogen und nicht aufsummiert. Nur maximal drei gleiche Symbole nebeneinander erlaubt (daraus folgt auch einer der Nachteile des Systems).

- Vor- und Nachteile
- onur endlicher Wertebereich bis etwa 4000
- O Rechnen ist ein Alptraum

Stellenwertsysteme (SWS)

Dezimalsystem

```
Alphabet = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Symbole heißen "Ziffern"
```

Symbole fielder Ziffer

Ziffernwert (0) = 0

.

Ziffernwert (9) = 9

n-stellige Zahl ist eine Folge von Ziffern

$$Z_{n-1}Z_{n-2}Z_{n-3}\dots Z_2Z_1Z_0$$

Werteformel

Wert
$$(Z_{n-1} \dots Z_0) =$$

$$\sum_{i=0}^{n-1} |Z_i \cdot 10^i|$$

$$Z_i$$
 = Ziffernwert
 10^i = Stellenwert

? Vor- und Nachteile

⊕⊕ etwas komplexer, aber noch etwas Einarbeitungszeit gut verständlich und einfach verwendbar

- undendlicher Wertebereich
- igoredown sehr großer übersichtlicher Wertebereich (bis $10^{10}=10Mrd$.)
- ① erstmals explizite Darstellung der "0" möglich
- ⊖⊕ Verfahren für alle Grundrechenarten mit gewisser Komplexität, aber mäßigem Aufwand verfügbar

SWS zur Basis b

$$b \in \mathbb{N} \setminus \{1\}$$
 $(b > 1 \text{ oder } b \ge 2)$

Ziffernmenge enthält genau b verschiedene Ziffern, die kleinste Ziffer hat den Wert 0, die größte Ziffer hat den Wert (b-1)

Werteformel

Wert
$$(Z_{n-1}Z_{n-2}\dots Z_2Z_1Z_0) =$$

$$\sum_{i=0}^{n-1} |Z_i| \cdot b^i$$

Minweis

SWS zur Basis b=1 ist *keine* Strichliste; der einzig darstellbare Wert ist 0, da 0 auch die einzige Ziffer ist -> SWS zur Basis 1 macht keinen Sinn

? Vor- und Nachteile

 \oplus übersichtlicher Wertebereich bis etwa b^{10} (exponentielle und nicht nur lineare Abhängigkeit von b)

Hinweis: Bei größeren Basen leidet die Übersichtlichkeit, aber an der Anzahl

gängige Basen

b=10: Dezimalsystem -> von Menschen verwendet

b=2: Binär/Dualsystem -> von Computern verwendet

b=16: Hexadezimalsystem -> für kompakte und Computer-nahe Darstellung von Zahlen mit einfacher und direkter

Umrechnungsmöglichkeit ins Binärsystem

b=8: Oktalsystem -> folgt in Kürze

Umrechnung zwischen verschiedenen Basen

- a) Umrechnung von Basis $b \neq 10$ nach Basis 10
- -> Werteformel

$$\sum_{i=0}^{n-1} |Z_i| \cdot b^i$$

- b) Umrechnung von Basis nach Basis $b_2 \neq 10$
 - 1. umgekehrte Werteformel
 - 2. Ganzzahldivision und Restbildung die notierten Reste ergeben die Ziffernfolge zur Basis b_2

Beispiel:

$$62_{10} = ?_2$$

$$62:2=31\ R\ 0 \qquad 0=Z_0$$

$$31:2=15\ R\ 1 \qquad 1=Z_1$$

$$15:2=7\ R\ 1 \qquad 1=Z_2$$

$$7:2=3\ R\ 1 \qquad 1=Z_3$$

$$3:2=1\ R\ 1 \qquad 1=Z_4 \ 1:2=0\ R\ 1 \qquad 1=Z_5$$

$$1:2=0\ R\ 1 \qquad 1=Z_5$$

$$= 111110_2$$

$$\begin{aligned} 111110_2 &= 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 1 \cdot 2^5 \\ &= 0 \cdot 1 + 1 \cdot 2 + 1 \cdot 4 + 1 \cdot 8 + 1 \cdot 16 + 1 \cdot 32 \\ &= 0 + 2 + 4 + 8 + 16 + 32 \\ &= 63 \end{aligned}$$

$$62_{10} = ?_3$$

$$62:3=20\ R\ 2$$
 $2=Z_0$

$$20:3=6\ R\ 2$$
 $2=Z_1$

$$6:3=2\ R\ 0 \qquad 0=Z_2$$

$$2:3=0\ R\ 2$$
 $1=Z_3$

$$3:2=1\ R\ 1 \qquad 1=Z_4$$

$$1:2=0\ R\ 1 \qquad 1=Z_5$$

$$=2022_{3}$$

$$2022_3 = 2 \cdot 3^0 + 2 \cdot 3^1 + 0 \cdot 3^2 + 2 \cdot 3^3$$

$$= 2 \cdot 1 + 2 \cdot 3 + 0 \cdot 0 + 2 \cdot 27$$

$$= 2 + 6 + 0 + 54$$

$$= 62_{10}$$

c) Umrechnung von Basis $b_1 \neq 10$

allgemein: Umrechnung in zwei Teilschritten:

von
$$b_1$$
 nach $b_z = 10$

und von
$$b_z = 10$$
 nach b_2

(reintheoretisch wäre das auch per Ganzzahldivision durch b_2 direkt machbar, aber die

Rechnung müsste zur Basis b_1 durchgeführt werden)

direkte Umrechnung ist möglich, falls $b_1^k=b_2$, dann könnte k Ziffern zur Basis b_1 in eine Ziffer zur Basis b_2 "umgerechnet" werden (am besten in einer Tabelle)

Beispiel:

Von
$$b_1=2$$
 nach $b_2=16$ (wird umgerechnet):

$$2^4 = 16$$

direkte Umrechnung ist auch dann möglich wenn $b_1^k = b_2^m$, dann kann eine Folge von k Zifferns zur Basis b_1 direkt in eine Folge von m Ziffern zur Basis b_2 umgerechnet werden Beispiel:

$$8^k = 16^m$$

$$(2^3)^k = (2^4)^m$$

$$2^{3k} = 2^{4m}$$

$$3k = 4m$$

$$\rightarrow k = 4 \text{ und } m = 3$$

$$8^4 = 16^3$$

Problem: Umrechnungstabelle hat $8^4=16^3=2^{12}=4096$

Beispiel:

Wert	Hexziffern	4-Binärziffernfolge
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111

Hexadezimal	Oktal
⊕ kompakte Darstellung	nur Verwendung von üblichenZiffersymbolen
1 Byte ist mit genau zwei Hex-Ziffern darstellbar	
heute üblicherweise verwendet	früher häufiger verwendet

Wert	Oktalziffern	3-Binärziffernfolge
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

 $AFFE_{16} = 1010\ 1111\ 1111\ 1110_2 = 001\ 010\ 111\ 111\ 111\ 110_2 = 127776_8$

Aufhebung der Einschränkungen:

Darstellung von (auch) negativen Zahlen

a) Vorzeichen und Betrag

notwendig ist (mindestens) ein weiteres Symbol im Alphabet für das "Vorzeichen": Minus: -

optional Plus: +

○ Nachteile:

- zwei unterschiedliche Verfahren für die "Addition" von positiven und negativen Zahlen notwendig (Addition einer negativen Zahl müsste als Subtraktion ausgeführt werden)
- nicht eindeutige Darstellung der Null (+0) und (-0)

b) Einerkomplement (nur noch Binär)

Festlegen der Stellenzahl so, dass sie mindestens "1" größer ist als notwendig für den

größten Betrag im gesammten Rechenweg

Invertieren jeder Ziffer in der Ziffernfolge:

$$0
ightarrow 1$$
 und $1
ightarrow 0$

Beispiel:

$$5_{10} = 0101_2 \overset{inv}{ o} 1010 = -5$$

$$42_{10} = 101010_2 = 0010 \ 1010 \overset{inv}{ o} 1101 \ 0101 = -42$$

$$13_{10} = 1101_2 = 0000 \ 1101 \overset{inv}{\rightarrow} 1111 \ 0010 = -13$$

 $-42:1101\ 0101$

 $+\ 13:0000\ 1101$

 $11\overline{100010} = -29 \text{ negativ}$

 $1110\ 0010 \overset{inv}{\to} 0001\ 1101 = 29$

 $+42:0010\ 1010$

 $-13:1111\ 0010$

 $0001\ 1100 = 28\ \text{positiv}$

Ergebnis liegt (haarscharf) um 1 daneben, ist also falsch. Die hälfte aller Rechnungen im Einerkomplement ist richtig, die andere falsch.

onegierte Null

 $0 = 0000 \ 0000 \xrightarrow{inv} 1111 \ 1111 = "-0"$

→ keine eindeutige Darstellung der Null

♦ Wertebereich mit 8bit

größte Zahl: $0111\ 1111=1+2+4+8+16+32+64=127$

kleinste Zahl: $1000\ 0000\overset{inv}{\rightarrow}0111\ 1111=127\implies 1000\ 0000=-127$

- Wertebereich von -127 bis 127 mit 8bit Einerkomplement darstellbar.
- insgesamt "nur" 255 Zahlendarstellbar (statt 256, wie mit 8bit eigentlich möglich sein sollten)
- → somit ergeben sich 3 Nachteile des 1er-Komplements

c) Zweierkomplement

Bildung wie 1er-Komplement, d.h. Stellenanzahl festlegen, alle Ziffern "invertieren", dann zusätzlich "+1" addieren.

 $42: 101010 = 0010 \ 1010 \xrightarrow{inv} 1101 \ 0101 \xrightarrow{+1} 1101 \ 0110$ $13: 1101 = 0000 \ 1101 \xrightarrow{inv} 1111 \ 0010 \xrightarrow{+1} 1111 \ 0011$ $-42: 1101 \ 0110$ $+13: 0000 \ 1101$ $1110 \ 0011 \xrightarrow{inv} 0001 \ 1100 \xrightarrow{+1} 0001 \ 1101 = 1 + 4 + 8 + 16 = 29$ $+42: \ 0010 \ 1010$ $-13: \ 1111 \ 0011$ $\underline{ign. \rightarrow 1} \ 1100 \ 010$ $0001 \ 1101 = 29 \ positiv$

A Wichtig

Die führende 0 gibt an, dass es sich um eine positive Zahl handelt. Ist die führende Ziffer eine 1, so ist die Zahl negativ.

♦ Darstellung der 0

 $0000\ 0000\overset{inv}{ o}\ 1111\ 1111\overset{+1}{ o}\ 0000\ 0000=0$

• eine Darstellung der 0

♦ Wertebereich mit 8bit

größte Zahl: $0111\ 1111 = 127$

kleinste Zahl: 1000 0000 $\stackrel{inv}{\to}$ 0111 1111 $\stackrel{+1}{\to}$ 1000 0000 (nicht negativ, da Betrag einer Zahl!) = 128 \implies -128

- Wertebereich geht von -128 bis +127
- insgesamt 256 verschiedene Werte
- © unsymmetrischer Wertebereich, d.h. es gibt mehr negative als positive darstellbare Zahlen

Darstellung (auch) nicht-ganzer Zahlen

(vorläufig wieder nur nicht-negative Zahlen)

a) Brüche (d.h. Darstellung mit Zähler und Nenner, dazwischen ein Bruchstrich)

z.B.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{10}$, $\frac{3}{8}$

$$1 = \frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \frac{4}{4} = \dots$$

→ für jede Zahl gibt es unendlich viele Darstellungen als Bruch

Abhile: maximales Kürzen

Darstellung als Bruch ist im Computer unüblich.

Ausnahme: Mathematikprogramme zum Lösen von Gleichungssystemen (z.B. Maple, GeoGebra, WolframAlpha)

b) Festkommazahl

notwendig ist (mindestens) ein weiteres Symbol im Alphabet: Komma:

ightarrow Das Komma darf nur genau einmal verwendet werden, davor gibt es n Vor- und m Nachkommastellen $Z_{n-1}Z_{n-2}\dots Z_2Z_1Z_0, Z_{-1}Z_{-2}\dots Z_{-m+1}Z_{-m}$ Das geht mit unteschiedlichen Basen $b\in\mathbb{N}\backslash\{1\}$

Kommazahlen zwischen verschiedenen Basen umrechnen:

z.B.
$$1101,0011_2 = ?_{10}$$

Werteformel:
$$\sum\limits_{i=0}^{n-1}|Z_i|\cdot b^i+\sum\limits_{j=1}^m|Z_i|\cdot b^{-1}=\sum\limits_{i=-m}^{n-1}|Z_i|\cdot b^i$$

$$\begin{aligned} 1101,0011_2 &= 1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} \\ &= 1 + 4 + 8 + \frac{1}{8} + \frac{1}{16} \\ &= 13 + 0,125 + 0,0625 \\ &= 13,1875_{10} \end{aligned}$$

Umrechnung von Basis 10 nach Basis $b \neq 10$:

getrennte Behandlung von Vor- und Nachkommaanteil:

- Vorkommateil umwandeln, wie bekannt, also Ganzzahldivision mit Rest oder umgekehrte Werteformel.
- Nachkommateil entweder über umgekehrte Werteformel (teilweise schwierig handhabbar) oder über Multiplikation mit Zielbasis und Aufteilung in Vor- und Nachkommaanteil; Vorkommaanteil ist die nächste Nachkommastelle, mit dem Nachkommateil muss weitergerechnet werden.

$$egin{aligned} 13,1875_{10}&=1101,00110_2\ 0,1875\cdot 2&=0,375
ightarrow Z_{-1}&=0\ 0,375\cdot 2&=0,75
ightarrow Z_{-2}&=0\ 0,75\cdot 2&=1,5
ightarrow Z_{-3}&=1\ 0,5\cdot 2&=1,0
ightarrow Z_{-4}&=1\ 0,0\cdot 2&=0,0
ightarrow Z_{-5}&=0 \end{aligned}$$

. . .

c) Gleitkommazahl (GKZ)

GKZ besteht aus Mantisse und Exponent.

$$\text{Wert}(\text{GKZ}) = \text{Mantisse } \cdot b^{\text{Exponent}}$$

Die Mantisse ist eine (Fest-)Kommazahl und gibt die Ziffernfolge der Zahl an.

Der Exponent ist eine ganze Zahl (positiv und negativ möglich) und gibt die Verschiebung des Kommas (Anzahl der Stellen) bei der Mantise an (Vorzeichen des Exponenten steht dabei für die Richtung der Verschiebung nach rechts oder links).

z.B.
$$1 = 1, 0 \cdot 10^{0} = 0, 1 \cdot 10^{1} = 10, 0 \cdot 10^{-1} = \dots$$

→ für jede Zahl gibt es unendlich viele Darstellungen als GKZ

Abhilfe: normierte Darstellung, aber: es gibt zwei Varianten

- a) nur eine Vorkommastelle, diese ist $\neq 0$
- b) Vorkommaanteil ist =0, die erste Nachkommastelle ist $\neq 0$

Die gängige Variante ist Variante a

Problem: Für die "0" gibt es keine normierte Darstellung

Abhilfe: Für die "normierte 0" gibt es eine reservierte Bitfolge (nur "0")

Minweis

Die Basen für die Darstellung der Mantisse und mit welcher der Exponent potenziert wird, müssen die gleichen sein, da der Exponent die Kommaverschiebung der Mantisse vorgeben soll.

Im Computer wird die Basis b = 2 verwendet.

♦ Größenvergleich von zwei GKZ

- 1. Vergleich der Exponenten → größerer Exponent gehört zur größeren Zahl
- 2. bei gleichem Exponent → erst Größenvergleich der Mantissen

Beispiel zum Größenvergleich:

$$42 = 00 {\color{red}10} \ 1010 \stackrel{inv}{
ightarrow} 1101 \ 0101 \stackrel{+1}{
ightarrow} 11{\color{red}01} \ 0110 = -42$$

$$13 = 0000 \ 1101 \overset{inv}{ o} 1111 \ 0010 \overset{+1}{ o} 1111 \ 0011 = -13$$

→ Prüfen von links nach rechts, erste unterschiedliche Ziffer: 1 gehört zur größeren Zahl

```
+42 = 0010 \ 1010
```

$$-13 = 1111 \ 0011$$

- → Problem: bei unteschiedlichem Vorzeichen gehört die "0" zur größeren Zahl
 - Fallunterscheidung wäre nötig

• Keine 2er-Komplement-Darstellung beim Exponent üblich!

Stattdessen: "Bias-Darstellung"

$$\operatorname{Exp}_{\operatorname{gesp}} = \operatorname{Exp}_{\operatorname{real}} + \operatorname{Bias}$$

$$\operatorname{Exp}_{\operatorname{real}} = \operatorname{Exp}_{\operatorname{gesp}} - \operatorname{Bias}$$

z.B. bei 8bit \rightarrow Bias = 127 \rightarrow Wertebereich für $\mathrm{Exp_{real}}$ von -127 bis +128 darstellbar

Normierung (Variante a): eine Vorkommastelle $\neq 0$

im Binärsystem ist diese also immer "1"

- → diese "1" braucht man nicht expliziet zu speichern, sondern nutzt das bit besser für eine weitere Nachkommastelle.
- → Hidden-Bit-Darstellung (üblicherweise verwendet und empfohlen)

Problem: Bei der "0" darf es kein Hidden-Bit geben → beim für "0" definierten Bitmuster gibt es kein Hidden-Bit

Darstellung (auch) nicht-ganzer, negativer Zahlen

eine negative Mantisse macht auch die Gleitkommazahl negativ.

Addition von 2 GKZ:

 erst muss bei einer GKZ das Komma so verschoben werden, dass sie denselben Exponenten wie die andere GKZ hat (Aufhebung der Normierungsbedingung für eine GKZ) danach Addition der Mantisse.
 z.B.

$$egin{aligned} 1,01101\cdot 2^3 &= 0,0101101\cdot 2^5 \ 1,01101\cdot 2^5 \end{aligned}$$
 $01,01101\overset{inv}{ o} 10,10010\overset{inv}{ o} 10,10011\cdot 2^3$

- → zur Fallunterscheidung müsste jetzt eine führende "1" vorne drangestellt werden
- → Fallunterscheidung wird eingespart

negative Mantisse?

- kein 2er-Komplement
- Vorzeichen und Betrag als Speicherformat (nur für die Rechnung wird "kurzzeitig" das 2er-Komplement verwendet)

IEEE 754

Genauigkeit	Speichermenge [bit]	Vorzeichen [bit]	Mantisse [bit]	Exponent [bit]	empfohlener Bias
half	16	1	10	5	15
float/single	32	1	23	8	127

Genauigkeit	Speichermenge [bit]			Exponent [bit]	empfohlener Bias
double	64	1	52	11	1023

außerdem:

- · Hidden-Bit-Darstellung empfohlen
- Normierung mit einer Vorkommastelle ≠ 0 empfohlen
- gespeichert wird in der Reihenfolge: Vorzeichen Exponent Mantisse

reservierte Bitmuster

- alle bit "0": Zahlenwert 0 (kein Hidden-Bit)
- alle Exponentenbit "0": kein Hidden-Bit, keine normierte Darstellung ${\rm Exp_{real}}$ = 1 Bias (um Lücke zwischen kleinster normierter und größter nichtnormierter Zahl zu verhindern)
- alle Exponentenbita "1"
 - und alle Mantissenbits "0": Zahl liegt außerhabl des darstellbaren Wertebereichs also " $\pm\infty$ "
 - und Mantisse ≠ 0: Zahl ist "NaN" (z.B. beim Teilen durch 0 oder Ziehen der Wurzel von -1)

Wertebereich von Gleitkommazahlen — am Beispiel von "half"

zum Vergleich:

- 16 bit nicht-negative ganze Zahlen: $0 ext{ bis } 65535 \, (= 2^{16} 1)$
- 16 bit 2er-Komplement: -32768 bis +32767
- 16 bit GKZ "half":
 - größte Zahl (siehe <u>Tabelle</u>):
 - Wert (größte Zahl): $(2-2^{10}) \cdot 2^{15} = 2^{16} 2^5 = 65536 32 = 65504$
 - kleinste Zahl (siehe <u>Tabelle</u>):
 - Wert (kleinste Zahl): −65504

half (größte Zahl)

0	11110	[1,]111111111
Vorzeichen positiv	Exponent (gespeichert) Exp (gesp) = 30 Exponent (real) = Exp(gesp) - Bias = 30 - 15 = 15	Mantisse = $2-2^{10}=2-rac{1}{1024}$

half (kleinste Zahl)

1	11110	[1,]111111111
Vorzeichen negativ	Exponent (gespeichert) Exp (gesp) = 30 Exponent (real) = Exp(gesp) - Bias = 30 - 15 = 15	Mantisse

Hidden-Bit

kleinste positive Zahl (d.h. kleinster Betrag)

a) normierte Darstellung

0	00001	[1,]000000000
VZ	Exp	Mantisse
	$egin{aligned} \operatorname{Exp}_{\mathrm{gesp}} &= 1 \\ \operatorname{Exp}_{\mathrm{real}} &= 1 - 15 = -14 \end{aligned}$	Mantisse = 1

Wert (Zahl) =
$$1 \cdot 2^{-14} = \frac{1}{16384}$$

b) nicht-normierte Darstellung

0	00000	[O,]0000000001
VZ	Exp	Mantisse
	$egin{aligned} \operatorname{Exp}_{\mathrm{gesp}} &= 1 \\ \operatorname{Exp}_{\mathrm{real}} &= 1 - 15 = -14 \end{aligned}$	$ m Mantisse = 2^{-10}$

Wert (Zahl) =
$$2^{-10} \cdot 2^{-14} = 2^{-24} pprox rac{1}{16 \, \mathrm{Mio}}$$

kein Hidden-Bit

Umrechnung einer Dezimalkommazahl in eine Gleitkommazahl zur Basis 2

z.B.
$$-4, 2 \cdot 10^{-1}$$

- 1. Entfernen des Vorzeichens und merken für später: $4, 2 \cdot 10^{-1}$
- 2. Umwandeln in eine Kommazahl ohne Exponent: 0,42
- 3. Umwandeln der Zahl (zur Basis 10) in die Zielbasis nach bekannten Verfahren, bis die Anzahl relevanter Stellen bei der Mantisse (d.h. die entsprechende Stellenzahl nach der ersten "1") erreicht ist

$$0,42_{10}=0,011010111000_2=1,10101110000\cdot 2^{-2}$$
 $0,42\cdot 2=0,84$
 $0,84\cdot 2=1,68$
 $0,68\cdot 2=1,36$
 $0,36\cdot 2=0,72$
 $0,72\cdot 2=1,44$
 $0,44\cdot 2=0,88$
 $0,88\cdot 2=1,76$
 $0,76\cdot 2=1,52$
 $0,52\cdot 2=1,04$
 $0,04\cdot 2=0,08$

4. Bestimmen des Exponenten durch verschieben des Kommas bei der Mantisse, um den Exponenten ${\rm Exp}_{\rm real}$ zu bestimmen

$$egin{aligned} 0,011010111000_2 &= 1,10101110000 \cdot 2^{-2} \ \mathrm{Exp_{real}} &= -2 \end{aligned}$$

5. $\operatorname{Exp}_{\operatorname{gesp}} = \operatorname{Exp}_{\operatorname{real}} + \operatorname{Bias}$

$$\text{Exp}_{\text{gesp}} = -2 + 15 = 13$$

6. Exp_{gesp} in Binärsystem umrechnen und mit vorgegebener Stellenzahl darstellen

$$\text{Exp}_{\text{gesp}} = -2 + 15 = 13 = 8 + 4 + 1 = 01101$$

7. Bitmuster in vorgegebner Reihenfolge notieren $Vorzeichen - Exp_{gesp} - Mantisse$

$$-4, 2 \cdot 10^{-1} = 1 \ 01101 \ 1010111000$$

Vorzeichen, Exponent, Mantisse

Zahlencodierung lässt sich untescheiden in

- Wertecodierung:
 - Der Wert an sich wird umgerechnet in die Zieldarstellung
- Zifferncodierung:

Die bereits in einem Stellenwertsystem codierte Zahl wird Ziffer für Ziffer in die andere Darstellung gebracht

Alle Zahlencodierungen waren bisher Wertecodierung

Ausnahme: direkte Umrechnung zwischen zwei verschiedenen Basen, falls $b_1^n=b_2^n$ weiteres Beispiel für Zifferncodierung: Darstellung von Zahlen im Fließtext

Nachteil: viel größerer Speicherumfang; oder mit bestimmter Anzahl bit lässt sich ein viel kleinerer Wertebereich darstellen als bei binär codierten Zahlen

Bsp.:

8bit in Textcodierung: Zahlen von 0 bis 9 8bit Binärcodierung: Zahlen von 0 bis 255 Besser: BCD (Binary Coded Decimals)

→ 4bit je Dezimalziffer reichen aus

Bsp: Bei ABAP (SAP-Prog.-Sprache) gibt es einen entsprechenden Datentyp sowie zugehörige Rechenroutinen

Nr.	4bit	Dez. Ziff
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	X
11	1011	X
12	1100	X
13	1101	X
14	1110	X
15	1111	X

X : nicht standardisiert, also entweder "Fehler" oder selbst anderen "wichtigen" Zeichen zugeordnet, z.B. Vorzeichen, Komma, ...

Bsp.: Fließband

Falsche Zwischenwerte können immer dann entstehen, wenn zwischen zwei aufeinanderfolgenden Zahlenwerten sich mehr als eine Ziffer (quasi gleichzeitig) ändern müsste, die Änderung aber nacheinander vollzogen wird.

1 Definition

Ein einschrittiger Zahlencode ist eine Form der Zahlencodierung, bei welcher sich zwischen zwei aufeinanderfolgenden Zahlenwerten nur ein Symbol (eine Stelle, eine Ziffer) ändert.

Bsp.: Der Gray-Code ist ein einschrittiger Code

Gray-Code	Dezimalsystem	Gray-Code	Dezimalsystem
0000	0	1100	8
0001	1	1101	9
0011	$\overline{2}$	1111	10
0010	3	1110	11
0110	4	1010	12
0111	5	1011	13
0101	6	1001	14
0100	7	1000	15
	ı		I

Bildungsregel:

- Variante a: Ausgehend von "00...0" für 0 wird die Symbolfolge für den nächsten Wert gebildet, in dem das rechteste mögliche Symbol verändert wird, bei welchem eine noch nicht verwendete Symbolfolge entsteht.
- Variante b: aus einem n-stelligen kann man einen n+1-stelligen Gray-Code machen, indem man vor die bisherige Symbolfolge eine 0 stellt und für die neuen Symbolfolgen die alten Symbolfolgen in umgekehrter Reihenfolge mit vorangestellter "1" verwendet.