Análisis Matemático I

Práctica 2: Diferenciabilidad

Parte rutinaria

Derivadas parciales

Oiferenciabilidad

4 Conclusión del estudio

Planteamiento del problema

El problema

Dado un abierto $\Omega\subset\mathbb{R}^N$, estudiar la continuidad, la diferenciabilidad y la continuidad de las derivadas parciales, de un campo escalar $f:\Omega\to\mathbb{R}$

Primer paso: la parte rutinaria del problema

La rutina

Habitualmente, existe un conjunto abierto $U\subset\Omega$ tal que $f\big|_U$ se obtiene mediante operaciones con funciones de clase C^1 , luego es fácil comprobar que $f\big|_U$ es de clase C^1 y, como U es abierto, el carácter local de la continuidad y la diferenciabilidad nos dicen que f es diferenciable, luego también continua, en todo punto de U De paso habremos calculado las derivadas parciales de f en U y comprobado que son continuas en U

Por tanto, la parte rutinaria del problema consiste en:

- a.1 Definir el conjunto U y comprobar que es abierto
- a.2 Comprobar que $f|_{U} \in C^{1}(U)$
- a.3 Usar el carácter local de la continuidad y de la diferenciabilidad

A partir de ahora se trata de estudiar lo que ocurre en cada punto de $\Omega \setminus U$

Segundo paso

Cálculo de las derivadas parciales

El segundo paso en nuestro estudio debe ser el siguiente:

- (b) En cada punto $a\in\Omega\setminus U$, estudiar la existencia de las derivadas parciales de f en a y, en su caso, calcularlas
 - Si no existe alguna de las derivadas parciales de f en a, sabemos que f no es diferenciable en a. Quedará estudiar la continuidad en el punto a de f y de las derivadas parciales que estén definidas en a (Práctica 1)
 - Si f es parcialmente derivable en a, disponemos del vector gradiente $\nabla f(a)$

Diferenciabilidad

Criterio de diferenciabilidad

Suponiendo que f es parcialmente derivable en un punto $a\in\Omega\setminus U$, sabemos que f es diferenciable en a si, y sólo si, se tiene:

$$\lim_{x \to a} \frac{f(x) - f(a) - \left(\nabla f(a) \,\middle|\, x - a\right)}{\|x - a\|} = 0$$

Podemos definir
$$\varphi(x) = \frac{f(x) - f(a) - \left(\nabla f(a) \,\middle|\, x - a\right)}{\|x - a\|} \quad \forall \, x \in \Omega \setminus \{a\}$$
 y f será diferenciable en a si, y sólo si, $\lim_{x \to a} \varphi(x) = 0$

- ullet La norma en la definición de arphi se elige a voluntad, pero la norma euclídea suele ser la mejor elección
- ullet A veces no es necesario saber si arphi tiene límite en el punto a

Conclusión del estudio (I)

Para concretar, suponemos que N=2 y que f es parcialmente derivable en Ω . Fijado un punto $a\in\Omega\setminus U$, tenemos las tres opciones siguientes.

La opción más "optimista"

(c) Estudiar primero la continuidad de las derivadas parciales de f en a Si una de ellas es continua en a, sabremos que f es diferenciable, luego también continua, en a

La opción más "pesimista"

(c) Estudiar primero la continuidad de f en a

Si f no es continua en a, tampoco podrá ser diferenciable y ninguna derivada parcial podrá ser continua en a

Conclusión del estudio (II)

La opción más "conservadora"

- (c) Estudiar primero la diferenciabilidad de f en a
 - ullet Si f es diferenciable en a, también será continua en a Quedará estudiar la continuidad de las derivadas parciales
 - ullet Si f no es diferenciable en a, ninguna derivada parcial será continua en a Quedará estudiar la continuidad de f