Homework 01

(due day in two weeks, 3/20)

Problem 1: (40 points)

Please determine whether the following functions belong to periodic function. If yes, please fine the period.

(1)
$$\sin \frac{n\pi x}{l}$$
 (2) $\cos \frac{n\pi x}{l}$ (3) $f(x) = a_0 \cdot e^{-x}$

(4)
$$f(x) = a_0 + a_1 \cos \frac{\pi x}{l} + b_1 \sin \frac{\pi x}{l} + a_2 \cos \frac{2\pi x}{l} + b_2 \sin \frac{2\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} + \dots$$

Problem 2: (10 points)

Set $f_1(-x) = -f_1(x)$, $f_2(-x) = f_2(x)$, $f_3(-x) = -f_3(x)$, $g(x) = f_1(x) f_2(x)$, and $h(x) = f_1(x) f_3(x)$. Please determine the result of g(-x) and h(-x)

Problem 3: (10 points)

If $f(x + 2\pi) = f(x)$ and $f(x) = \begin{cases} -1, -\pi \le x < 0 \\ 1, 0 < x < \pi \end{cases}$, please find f(x)'s Fourier Series.

Problem 4: (40 points)

Given the function $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \sin x, 0 \le x < \pi \end{cases}$

- (1) Find its Fourier series
- (2) Show that $\frac{1}{2} + \frac{1}{1 \times 3} \frac{1}{3 \times 5} + \frac{1}{5 \times 7} \frac{1}{7 \times 9} + \dots = \frac{\pi}{4}$