## Module 13 Transformations of Absolutely Continuous Random Variables

• X: an A.C. r.v. with d.f.  $F_X(\cdot)$  and p.d.f.  $f_X(\cdot)$ ;

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \ x \in \mathbb{R};$$

• For  $-\infty < a < b < \infty$ ,  $P(\{X = a\}) = 0$ ,

$$P({a < X \le b}) = P({a < X < b}) = P({a \le X < b})$$

$$= P({a \le X \le b}) = \int_{a}^{b} f_{X}(t)dt;$$

• In general, for any set  $A \subseteq \mathbb{R}$ ,

$$P(\lbrace X \in A \rbrace) = \int_{A}^{A} f_X(t) dt = \int_{-\infty}^{\infty} f_X(t) I_A(t) dt.$$

• We will assume throughout that  $f_X(\cdot)$  is continuous everywhere except at (possibly) finite number of points (say,  $x_1, x_2, \ldots, x_n$ ), where it has jump discontinuities. In that case  $F_X(\cdot)$  is differentiable everywhere except at discontinuity points  $\{x_1, \ldots, x_n\}$  of  $f_X(\cdot)$ . Moreover

$$f_X(t) = \left\{ egin{array}{ll} F_X'(t), & ext{if } t 
otin \{x_1, \dots, x_n\} \ 0, & ext{otherwise} \end{array} 
ight..$$

Support

$$S_X = \{x \in \mathbb{R} : F_X(x + \epsilon) - F_X(x - \epsilon) > 0, \ \forall \ \epsilon > 0\}.$$

- $g: \mathbb{R} \to \mathbb{R}$ : a given function;
- Then Y = g(X) is a r.v.;
- **Goal**: To find the probability distribution (i.e., d.f.  $F_Y(\cdot)$  and/or, p.d.f./p.m.f.  $f_Y(\cdot)$ ) of Y = g(X);

**Remark 1**: We have seen that when X is discrete, Y = g(X) is also discrete. When X is A.C., Y = g(X) may not be A.C. (or even continuous) as the following example illustrates.

**Example 1**: Let X be an A.C. r.v. with p.d.f.

$$f_X(x) = \left\{ egin{array}{ll} rac{1}{2}, & ext{if } -1 < x < 1 \ 0, & ext{otherwise} \end{array} 
ight. .$$

Let Y = [X] (maximum integer contained in X). Note that  $P(\{X \in (-1,1)\}) = 1$ .

$$Y = \left\{ \begin{array}{ll} -1, & \text{if } -1 < X < 0 \\ \\ 0, & \text{if } 0 \leq X < 1 \end{array} \right..$$

Then

$$P(\{Y = -1\}) = P(\{-1 < X < 0\}) = \int_{-1}^{0} f_X(x) dx$$
$$= \int_{-1}^{0} \frac{1}{2} dx = \frac{1}{2},$$

$$P(\{Y=0\}) = P(\{0 \le X < 1\}) = \int_0^1 f_X(x) dx$$
$$= \int_0^1 \frac{1}{2} dx = \frac{1}{2}.$$

Thus Y is discrete with support  $S_Y = \{-1, 0\}$  and p.m.f.

The following result provides sufficient conditions under which a function of an A.C. random variable is A.C.



**Result 1**: Suppose  $S_X = \bigcup_{i=1}^k S_{i,X}$ , where  $\{S_{i,X}, i=1,\dots,k\}$  is a collection of disjoint intervals and in  $S_{i,X}$   $(i=1,\dots,k), \ g:S_{i,X}\to\mathbb{R}$  is strictly monotone with inverse function  $g_i^{-1}(y)$  such that  $\frac{d}{dy}g_i^{-1}(y)$  is continuous. Let  $g(S_{i,X}) = \{g(x): x \in S_{i,X}\}, \ i=1,\dots,k$ . Then the r.v. Y = g(X) is A.C. with p.d.f.

$$f_Y(y) = \sum_{i=1}^k f_X(g_i^{-1}(y)) \left| \frac{d}{dy} g_i^{-1}(y) \right| I_{g(S_{i,X})}(y),$$

where, for a set A,  $I_A(\cdot)$  denotes its indicator function, i.e.,

$$I_{\mathcal{A}}(y) = \left\{ egin{array}{ll} 1, & \mbox{if } y \in \mathcal{A} \\ 0, & \mbox{otherwise} \end{array} 
ight..$$

**Corollary 1**: Suppose that  $g: S_X \to \mathbb{R}$  is strictly monotone with inverse function  $g^{-1}(y)$  such that  $\frac{d}{dy}g^{-1}(y)$  is continuous. Let  $g(S_X) = \{g(x) : x \in S_X\}$ . Then Y = g(X) is of A.C. type with p.d.f.

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| I_{g(S_X)}(y).$$

**Example 2**: Let X be an A.C. r.v. with p.d.f.

$$f_X(x) = \left\{ egin{array}{ll} rac{|x|}{2}, & ext{if } -1 < x < 1 \ & rac{x}{3}, & ext{if } 1 < x < 2 \ & 0, & ext{otherwise} \end{array} 
ight.,$$

and let  $Y = X^2$ .

- (a) Find the p.d.f. of Y and hence find the d.f. of Y;
- (b) Find the d.f. of Y and hence find the p.d.f. of Y.

**Solution:**  $S_X = [-1, 2] = [-1, 0) \cup [0, 2] = S_{1,X} \cup S_{2,X}$ .  $g(x) = x^2$ ,  $x \in S_X$ , is monotone in  $S_{1,X}$  and  $S_{2,X}$ .



$$\begin{array}{c|c} S_{1,X} = [-1,0) & S_{2,X} = [0,2] \\ g_1^{-1}(y) = -\sqrt{y} & g_2^{-1}(y) = \sqrt{y} \\ \frac{d}{dy}g_1^{-1}(y) = \frac{-1}{2\sqrt{y}} & \frac{d}{dy}g_2^{-1}(y) = \frac{1}{2\sqrt{y}} \\ g\left(S_{1,X}\right) = (0,1] & g\left(S_{2,X}\right) = [0,4) \\ y \in g\left(S_{1,X}\right) \Leftrightarrow 0 < y \le 1 & y \in g\left(S_{2,X}\right) \Leftrightarrow 0 \le y \le 4 \\ f_X(g_1^{-1}(y)) \left| \frac{d}{dy}g_1^{-1}(y) \right| & f_X(g_2^{-1}(y)) \left| \frac{d}{dy}g_2^{-1}(y) \right| \\ = f_X(-\sqrt{y}) \left| \frac{-1}{2\sqrt{y}} \right| I_{(0,1]}(y) & = f_X(\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right| I_{[0,4]}(y) \end{array}$$

Thus a p.d.f. of Y is

$$f_{Y}(y) = \sum_{i=1}^{2} f_{X}(g_{i}^{-1}(y)) \left| \frac{d}{dy} g_{i}^{-1}(y) \right| I_{g(S_{i,X})}(y)$$

$$= \begin{cases} \frac{1}{2}, & \text{if } 0 < y < 1\\ \frac{1}{6}, & \text{if } 1 \le y < 4 \\ 0, & \text{otherwise} \end{cases}$$

$$F_Y(y) = P(\{Y \le y\}) = \int_{-\infty}^y f_Y(t)dt = \begin{cases} 0, & \text{if } y < 0 \\ 1, & \text{if } y \ge 4 \end{cases}.$$

For  $0 \le y < 1$ ,

$$F_Y(y) = P(\{Y \le y\}) = \int_0^y \frac{1}{2} dt = \frac{y}{2}.$$

For  $1 \le y < 4$ 

$$F_Y(y) = \int_0^1 \frac{1}{2} dt + \int_1^y \frac{1}{6} dt = \frac{y+2}{6}.$$

Thus the d.f. of Y is

$$F_Y(y) = \begin{cases} 0, & \text{if } y < 0\\ \frac{y}{2}, & \text{if } 0 \le y < 1\\ \frac{y+2}{6}, & \text{if } 1 \le y < 4\\ 1, & \text{if } y \ge 4 \end{cases}.$$

(b) For y < 0,

$$F_Y(y) = P(\{Y \le y\}) = P(\{X^2 \le y\}) = 0.$$

For  $y \geq 0$ ,

$$F_Y(y) = P(\{X^2 \le y\}) = P(\{-\sqrt{y} \le X \le \sqrt{y}\}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(t) dt.$$

For 0 < v < 1.

$$F_Y(y) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{|t|}{2} dt = \frac{y}{2}.$$

For 1 < y < 4,

$$F_Y(y) = \int_{-1}^{1} \frac{|t|}{2} dt + \int_{1}^{\sqrt{y}} \frac{t}{3} dt$$
  
=  $\frac{y+2}{6}$ .



For 
$$y \ge 4$$
,  $F_Y(y) = 1$ .

Thus the d.f. of Y is

$$F_Y(y) = \left\{ \begin{array}{ll} 0, & \text{if } y < 0 \\ \frac{y}{2}, & \text{if } 0 \leq y < 1 \\ \frac{y+2}{6}, & \text{if } 1 \leq y < 4 \\ 1, & \text{if } y \geq 4 \end{array} \right..$$

Clearly  $S_Y = [0, 4]$ ,  $F_Y(\cdot)$  is differentiable everywhere except at points 0, 1 and 4. Let

$$g(y) = \begin{cases} F'_Y(y), & \text{if } y \notin \{0, 1, 4\} \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{1}{2}, & \text{if } 0 < y < 1 \\ \frac{1}{6}, & \text{if } 1 < y < 4 \\ 0, & \text{otherwise} \end{cases}$$

Then  $\int_{-\infty}^{\infty} g(y)dy = 1$ . Thus Y is of A.C. type with p.d.f.

$$f_Y(y) = g(y) = \left\{egin{array}{ll} rac{1}{2}, & ext{if } 0 < y < 1 \ & rac{1}{6}, & ext{if } 1 < y < 4 \ & 0, & ext{otherwise} \end{array}
ight.$$

## Take home problem

Let X be a r.v. with p.d.f.

$$f_X(x) = \left\{ \begin{array}{ll} e^{-x}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{array} \right.$$

Let Y = 2X + 3.

- (a) Find the p.d.f. of Y and hence find the d.f. of Y;
- (b) Find the d.f. of Y and hence find the p.d.f. of Y.

## **Abstract of Next Module**

- ullet X: a r.v. associated with a random experiment  ${\cal E}$ ;
- ullet Each time the random experiment is performed we get a value of X;

**Question:** If the random experiment is performed infinitely what is the mean (or expectation) of observed values of X or g(X), for some function real-valued function  $g(\cdot)$ ?

In the discrete case, the relative frequency interpretation of probability suggests that we take

$$E(g(X)) = \lim_{N \to \infty} \frac{\sum_{x \in S_X} g(x) \times \text{ Number of times we get } \{X = x\}}{N}$$

$$= \sum_{x \in S_X} g(x) \lim_{N \to \infty} \frac{\text{frequency of } \{X = x\}}{N}$$

$$= \sum_{x \in S_X} g(x) P(\{X = x\}) = \sum_{x \in S_X} g(x) f_X(x).$$