Problem Set 11 - Partial Answers

Problem R-310 (C₁₁H₁₀Cl₂F₂). Interpret the 56.4 MHz ¹⁹F NMR spectrum below (CCl₄ solvent). Determine the chemical shifts of the fluorines, and estimate the various coupling constants. Consider conformations of the cyclobutane ring (*J. Am. Chem. Soc.* **1962**, *84*, 2935).

Sc

Problem R-311 (C₆H₃D₃). Assign the peaks in the ¹³C NMR spectrum below. The spectrum is not ¹H decoupled. Estimate the coupling constants (*J. Am. Chem. Soc.* **1967**, *88*, 2967).

ANSWER

There are four kinds of carbons in this molecule

D
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

- 1: The only significant coupling is ${}^{1}J_{CD}$ = 23 Hz. The ${}^{2}J_{CH}$ will be 1 Hz, too small to resolve
- 2: This carbon will be a double intensity dd, with $^1J_{\text{CH}}$ = 159 Hz and $^3J_{\text{CH}}$ = 7 Hz. There will also be a $^2J_{\text{CD}}$ of about 1Hz, too small to resolve

3: Carbon 3 will be a double intensity 1:1:1 triplet of 1:1:1 triplets, $^1J_{\rm CD}$ = 23 Hz and $^3J_{\rm CD}$ = 1 Hz

4: Carbon 4 will be a 1:1:1 triplet of 1:2:1 triplets, $^1J_{CD}$ = 23 Hz and $^3J_{CH}$ = 7 Hz the outer lines of the triplets are too small to be visible

These outer triplet peaks will be approximately 1/16 of the intensity of the superimposed central peaks, hence not detectable at this signal to noise

Problem R-28C (C₂₁H₃₂O₃SSi). Use the 500 MHz (CDCl₃) homonuclear decoupled spectra below to assign the protons of the compound shown. Source: Mark Matulenko/Burke

Assign all protons in this spectrum, using the 500 MHz ¹H NMR spectrum, and the 300 MHz COSY spectrum. The 300 MHz ¹H spectrum is also provided. Explain specifically why some of the peaks are more complicated in the 300 compared to the 500 MHz spectrum. Draw a conformation, and label with chemical shifts.

