פתרון בחינה 2

תשובה 1

[3] : X

הסבר: נסמן

lpha את הפסוק יי לאברהם יש שכל יי ב- lpha

 $^{\prime\prime}$ את הפסוק אברהם שותה $^{\prime\prime}$

 γ את הפסוק אברהם נוהג γ

הפסוק המביע את הטענה ייאם לאברהם יש שכל, אז אם אברהם שותה הוא לא נוהגיי הוא:

$$\varphi = \alpha \rightarrow (\beta \rightarrow (\neg \gamma))$$

על-ידי שימוש בשקילות $q = (\neg p) \lor q$ ובכללי דה מורגן נקבל:

$$\varphi \equiv (\neg \alpha) \lor (\beta \to (\neg \gamma)) \equiv (\neg \alpha) \lor (\neg \beta) \lor (\neg \gamma) \equiv \neg (\alpha \land \beta \land \gamma)$$

נרשום כעת את הפסוקים הרשומים כתשובות אפשריות:

:אם לאברהם אין שכל אז אם אברהם שותה הוא נוהג

$$(\neg \alpha) \rightarrow (\beta \rightarrow \gamma) \equiv \alpha \lor (\beta \rightarrow \gamma) \equiv \alpha \lor (\neg \beta) \lor \gamma$$

.אם לאברהם אין שכל אז הוא שותה ונוהג.

$$(\neg \alpha) \rightarrow (\beta \land \gamma) \equiv \alpha \lor (\beta \land \gamma)$$

.אין לו שכל. [3] אם אברהם שותה ונוהג

$$(\beta \land \gamma) \rightarrow (\neg \alpha) \equiv (\neg (\beta \land \gamma)) \lor (\neg \alpha) \equiv (\neg \beta) \lor (\neg \gamma) \lor (\neg \alpha)$$

.אם אברהם שותה ולא נוהג – יש לו שכל.

$$((\beta \land (\neg \gamma)) \rightarrow \alpha \equiv (\neg(\beta \land (\neg \gamma)) \lor \alpha \equiv (\neg\beta) \lor \gamma \lor (\alpha)$$

.אם אברהם נוהג ולא שותה – יש לו שכל.

$$.(\gamma \land (\neg \beta)) \rightarrow \alpha \equiv (\neg(\gamma \land (\neg \beta)) \lor \alpha \equiv (\neg \gamma) \lor \beta \lor (\alpha)$$

מכאן ברור שהתשובה הנכונה היא [3]

[3] ולכן התשובה היא
$$d^C = |P(\mathbf{R})|^{|\mathbf{R}|} = (2^{|\mathbf{R}|})^{|\mathbf{R}|} = 2^{|\mathbf{R}||\mathbf{R}|} = 2^{|\mathbf{R} \times \mathbf{R}|} = 2^{|\mathbf{R}|} = d$$
: ב

ג: [3] כמספר החלוקות של קבוצה בת 6 אברים לשלוש מחלקות של שני אברים כל אחת.

תשובה 2

$$(R^{-1}R)^{-1} = R^{-1}R$$
 א. סימטרי: נכון כללית

. $(T)^2 \subseteq T$: הוא הוא יחס של לטרנזיטיביות לטרנזיטיבי: תנאי לטרנזיטיביות איי

$$(R^{-1}R)^2 = R^{-1}RR^{-1}R = R^{-1}I_AR = R^{-1}R$$
 אצלנו

ב. נותר רק להראות ש- $R^{-1}R$ רפלקסיבי.

 $(y,x) \in R$ -יהי y כך ש- $x \in A$ יהי מהנתון על הטווח, קיים

 $(x,x) \in R^{-1}R$ מתקיים אפוא גם $(x,y) \in R^{-1}$ משני אלה יחד, לכן

תשובה 3 (השאלה הופיעה במספרים אחרים לפני כמה מועדים)

 $. 7 \cdot 6 \cdot 5 \cdot 4 = 840$.

. $\mid U \mid$ = 840 $\mid Y$ ל- $\mid X \mid$ של הפונקציות החד-חד-ערכיות ל- $\mid U \mid$ קבוצת הפונקציות החד-חד

 $.\:f(i)\!=\!i$ המקיימות ל-Xל- אל החד-חד-ערכיות הפונקציות קבוצת הפונק אוי , $i\!\in\!X$ לכל המקיימות קבוצת הפונקציות החד

. $|A_1' \cap A_2' \cap A_3' \cap A_4'|$ המספר שאנו נדרשים לחשב הוא

. $|(A_1 \cup A_2 \cup A_3 \cup A_4)'|$ או במלים אחרות

 $|A_1|$ נכין נתונים לשימוש בהכלה והפרדה. נתחיל בחישוב

אם התמונה של 1 חייבת להיות 1, אז כדי לקבוע פונקציה חד-חד-ערכית של X ל- Y נותר לנו לבחור תמונות עבור 2,3,4 . תמונות אלה צריכות להבחר מתוך הקבוצה $Y - \{1\}$, והן צריכות להיות שונות זו מזו. מספר האפשרויות לעשות זאת הוא כמספר הפונקציות החד-חד-ערכיות של קבוצה בת 3 איברים לקבוצה בת 6 איברים, כלומר 6.5.4 = 120.

. A_i אלא לכל אחת מהקבוצות ליכונה לא רק ל- אלא לכל ליכונה נכונה מובן כי אותה תוצאה ליכונה לא רק

 A_{i} ויש לנו 4 קבוצות , $|A_{i}| = 120$: משמע

בצורה דומה, $(i \neq j)$ ו $|A_i \cap A_i| = 5 \cdot 4 = 20$ בצורה דומה, בצורה דומה,

. יש לנו 4 חיתוכים כאלה. $|A_i\cap A_i\cap A_i\cap A_k|=4$ בדומה, בדומה, אונים $|A_i\cap A_i\cap A_k|=4$

 $.|A_{\!1}\cap A_{\!2}\cap A_{\!3}\cap A_{\!4}| \ = \ 1$ לעצמו ב- Xלעצמו השולחת ויחידה אחת אחת ויחידה אחת ולבסוף איבר איבר ב-

מעקרון ההכלה וההפרדה, מספר הפונקציות המבוקש הוא

 $840 - 4 \cdot 120 + 6 \cdot 20 - 4 \cdot 4 + 1 = 465$

תשובה 4

 $\lambda^2 - 6p\lambda + 5p^2 = 0$ יחס הנסיגה לינארי הומוגני. המשוואה האופיינית:

. $a_{\scriptscriptstyle n} = Ap^{\scriptscriptstyle n} + B(5p)^{\scriptscriptstyle n}$: פתרונותיה הנסיגה פתרון כללי פתרון פתרונותיה . $\lambda = p,\, 5p$

 $k = A \cdot p + B \cdot 5p = 8p \implies A + 5B = 8$, 0 = A + B : תנאי התחלה

 $a_n = 2(5^n - 1) \cdot p^n$ כלומר . A = -2 , B = 2 : מכאן

תשובה 5 (המקור הוא הספר של שי גירון ושוני דר)

- א. נניח ש- $v_1,v_2\in V$ צמתים שונים בגרף. מתאימים להם שני זוגות של צבעים $v_1,v_2\in V$ או נניח ש- $v_1,v_2\in V$ צמתים שונים באם $b_1,b_2\in B$ ווואם באבעים שונים באשר \overline{G} כאשר שונים באינם שונים ב- v_1,v_2 אינם סמוכים ב- v_1,v_2 או הם סמוכים ב- v_1,v_2 או הם נצבעים שם v_1,v_2 או אונם סמוכים ב- v_1,v_2 אונים כלומר v_1,v_2 אונים סמוכים ב- v_1,v_2 מכאן שבכל מקרה v_1,v_2 וולכן ההתאמה הנתונה בצבעים שונים כלומר v_1,v_2 מכאן שבכל מקרה v_1,v_2 וולכן ההתאמה הנתונה היא חד-חד-ערכית.
 - ע בו נצבע שבו $a\in A$ הוא f(v)=(a,b) , $v\in V$ כך: לכל $f:V\to A\times B$ ב. ב. נגדיר $g:V\to A\times B$ הוא הצבע שבו נצבע $g:V\to A\times B$ הוא ש- בגרף שבו נצבע בגרף שבו נצבע $g:V\to A\times B$ הוא ש- בגרף שבו נצבע הוא חד-חד-ערכית.
 - ג. מאחר ש- $F:V\to A\times B$ היא חד-חד-ערכית, נובע שהעוצמה של V אינה גדולה מזו של $f:V\to A\times B$ במילים אחרות $|A|\cdot |B|\geq n$ זה מבטיח ש- $|A\times B|\geq |V|$ ומאחר שמספר הצביעה של $(G)\cdot \chi(\overline{G})\geq n$ של $(G)\cdot \chi(\overline{G})\geq n$ הוא $(G)\cdot \chi(\overline{G})\geq n$ של $(G)\cdot \chi(\overline{G})\geq n$ הוא $(G)\cdot \chi(\overline{G})\geq n$