$O(n^x)$ # polynomial complexity

Rice's theorem:

Let P be a language. Given that:

- P is not trivial $(P \neq \emptyset, P \neq \Sigma^*)$
- P is only influenced by itself (for two turing machines that have the same language ($Z(M_1) = Z(M_2)$), then $M_1 \in P \Leftrightarrow M_2 \in P$)

Then, P is undecidable

$$s \in A$$
, $|s| \ge p$, $s = xyz \Rightarrow i \ge 0$, $xy^iz \in A$, $|y| > 0$, $|xy| \le p$ # Pumping lemma $p \ge 1$, $|s| \ge p$, $s = uvwxy$, $|vx| \ge 1$, $|vwx| \le p$, $uv^pwx^py \in L$ for all $p \ge 0$ $s = uv^nxy^nz$ where n=0+. Show that it can't be pumped Show that $s = uvxyz = 0^p \# 0^{2p} \# 0^{3p}$ can not be pumped $\# \notin v$ and $\# \notin y$ since $s = uv^2xy^2z$ would contain extra $\# if \# \notin v$ and $\# \notin y \to u \ne 0^p$ or $x \ne 0^{2p}$ or $z \ne 0^{3p} \Rightarrow |u|$: $|x|$: $|z| \ne 1$: 2: 3 $\Rightarrow s$ can not be pumped

Union:

$$S \to S_1 | S_2$$

If $S_1 \in \mathit{CFL}$ and $S_2 \in \mathit{CFL}$, then $S_1 | S_2 \in \mathit{CFL}$

For a PDA, this can be represented by an ϵ transition from the start state \Rightarrow set of CFL is closed under a union

 $A \le_p B$ (A mapping reduces to B, A is no harder than B): transform A into B and call B solver Mapping reduction to prove (not) decidable

To prove undecidability: If $A \leq_m B$ and A is undecidable, then B is undecidable.

To prove non-Turing-recognizability: If $A \leq_{\mathrm{m}} B$ and A is non-Turing-recognizable, then B is non-Turing-recognizable.

To prove NP-completeness: If $A \leq_{\mathbf{P}} B$ and A is NP-complete (and $B \in \mathbf{NP}$), then B is NP-complete.

To prove decidability: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq \infty \Rightarrow f(n) = O(g(n))$$

Suppose that we have one of the following cases,

$$\lim_{x o a}rac{f\left(x
ight)}{g\left(x
ight)}=rac{0}{0} \qquad ext{ OR } \qquad \lim_{x o a}rac{f\left(x
ight)}{g\left(x
ight)}=rac{\pm\infty}{\pm\infty}$$

where a can be any real number, infinity or negative infinity. In these cases we have,

$$\lim_{x o a}rac{f\left(x
ight)}{g\left(x
ight)}=\lim_{x o a}rac{f'\left(x
ight)}{g'\left(x
ight)}$$

Turing description:

- 1. Mark first unmarked 0. If none, go to 6.
 - 2. Move the head to the front
 - 3. Mark first unmarked 1. If none, reject
 - 4. Move the head to the front
 - 5. Go to 1
 - 6. Scan if there is any unmarked 1. If so, reject. Else accept

There exists $L(M') = L_1 \bullet L_2$ with the following description for input $w_1 w_2$

- 1. Run M_1 on W_1 . If M_1 rejected, then reject
- 2. Run M_2 on w_2 . If M_2 rejected, then reject
- 3. Else, accept

Let $T_{_A}$ and $T_{_B}$ be NP -machines decidable by languages A and B respectively.

Union:

 $T_{A \cup B} = \text{On input } w$:

- 1. Run T_A on w and accept if it accepts
- 2. Run T_B on w and accept if it accepts
- 3. Reject

Complexity: $O(T_A + T_B)$