课程代码

C,
$$\int_0^x dy \int_y^x f(x,y)dx$$
; D, $\int_0^x dy \int_0^x f(x,y)dx$

D,
$$\int_0^a dy \int_0^a f(x,y)dx$$

5. 设
$$\alpha$$
 为常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\sin n\alpha}{n^2} - \frac{1}{\sqrt{n}} \right)$

- A、绝对收敛:

- B、条件收敛; C、发散; D、敛散性与α取值有关

得分	评卷人

二、填空题(本大题共 5 小题,每小题 4 分,共 20 分) 1、. 设函数
$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
,则 $f(1,\frac{y}{x}) = \underline{\hspace{1cm}}$

- 2、已知点 A(3,2,-1) 和点 B(7,-2,3) ,取点 M 使 $\overline{AM} = 2\overline{MB}$,则向量 $\overline{OM} = \underline{\hspace{1cm}}$
- 3、设 $u = xy + \frac{y}{r}$,则 $\frac{\partial^2 u}{\partial x^2} =$ _____

分	评卷人

三.计算及解答题(共8个小题,每小题5分,满分40分)

1、已知三点A(1,0,-1),B(1,-2,0),C(-1,2,-1),求同时垂直于这三点所在

平面的单位向量:并计算三角形 ABC 的面积

装
订
线
内
答
题
无效

**

** 装

**

** **

订

** ** 线

2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+4}-2}$$

3、求常数
$$A$$
、 B , 使平面 π : $Ax + By + 6z - 7 = 0$ 与直线 l : $\frac{x-4}{2} = \frac{y+5}{-4} = \frac{z+1}{3}$ 垂直

4、设函数
$$z = e^{3x+2y}$$
, 而 $x = \cos t$, $y = t^2$, 求 $\frac{\mathrm{d}z}{\mathrm{d}t}$

5、设函数
$$u(x,y) = \frac{x+y}{1+y}$$
, 求全微分 $du\Big|_{(-1,2)}$

6、计算二重积分
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
, 其中区域 $D: x^2 + y^2 \le 4$

7、计算曲线积分
$$\int_L \frac{2y}{x} dx + x dy$$
 , 式中 L 是曲线 $y=\ln x$ 上从 $A(1,0)$ 到 $B(e,1)$ 的一段弧

8、计算 $\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z(x^2 + y^2) dx dy$, 其中曲面 Σ 为 $z = x^2 + y^2$ 被 z = 4 所截的部分的外侧

得分	评卷人

装

订

**

线

四、综合题(共5个小题,每题5分,共25分)

1、求函数 $z = 3x^2 - xy + y^2 - 3x + \frac{7}{3}y + 2$ 的极值

2、求曲面 $e^{xz} + e^{yz} = 2e^{-2}$ 在点(-1,-1,2)处的切平面和法线方程

3、级数 $\frac{1}{\pi^2} \sin \frac{\pi}{2} - \frac{1}{\pi^3} \sin \frac{\pi}{3} + \frac{1}{\pi^4} \sin \frac{\pi}{4} - \frac{1}{\pi^5} \sin \frac{\pi}{5} + \cdots$ 是否收敛? 是否绝对收敛? 并说明理由。

《高等数学》2012年汉本理工下册 18 周试题 第 5 页 (共 6 页)

4、求幂级数 $\sum_{n=1}^{\infty} (2n+1)x^n$ 的收敛半径及收敛域

5、 将函数 f(x) 展开成以 2π 为周期的傅里叶级数,其中 $f(x) = \begin{cases} 1 & -\pi < x < 0 \\ -1 & 0 \le x < \pi \end{cases}$