

Introduction

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units

<u>Outline</u>

- Motivation
- What is Machine Learning?
- The Lecture
- Course Map

<u>Outline</u>

- Motivation
- What is Machine Learning?
- The Lecture
- Course Map

Why Machine Learning?

- automating workflows
 - → face recognition, identification/authentication tools
 - → manufacturing processes, quality control
 - → repetitive, standardized workflows

- handling large data sets
 - → epigenetic data for drug development
 - → traffic management
 - → disease control
 - → stock market dynamics
- generating new data
 - → new materials (semiconductor, superconductor)
 - → AI generated images/videos

Why Machine Learning?

LinkedIn: 1st three Job Postings, Jan 10th 2025

Why Machine Learning?

Listen up son, there are three languages you need to learn in order to become successful: - English

- Math

- Python *)

Outline

- Motivation
- What is Machine Learning?
- The Lecture
- Course Map

Wiki says:

"Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions"

→ more flexible than standard programs

- artificial intelligence
- statistics

cluster and/or categorize data and understand relations/interactions, find pattern

curve fitting, linear/logistic models: **training** data set and a **test** data set...

- Support Vector Machine
- K-nearest
- ANNs

curve fitting, linear/logistic models: **training** data set and a **test** data set...

no training data set required – we can start right away!

- **S**upport **V**ector **M**achine
- K-nearest
- ANNs

- K means
- GMM
- trees

curve fitting, linear/logistic models: **training** data set and a **test** data set...

- 1) creating the model:
- my_model = library.method(argument1 = 'arg1'
 , ...)
- 2) training the model
- out = my_model.fit(xtrain, ytrain)
- 3) evaluation

```
ypred = out.predict(xeval)
accur = (ypred == yeval).sum()/len(yeval)
```

- 4) prediction (actual application)
- ypred = out.predict(xnew)

- Support Vector Machine
- K-nearest
- ANNs

no training data set required – we can start right away!

1) creating the model:

```
my_model = library.method(argument1 = 'arg1'
, ... )
```

3) evaluation (*if* y is known)

```
ypred = out.predict(xeval)
accur = (ypred == yeval).sum()/len(yeval)
```

4) prediction (actual application)

ypred = out.predict(xnew)

- K means
- GMM
- trees

tasks:

- classification

optimizing an objective function

- regression

- generation

tasks:

- classification

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0	341.704	2.65585	3.09407	2	9.11147	Toxic
1	335.951	3.22262	2.89039	7	8.92848	Toxic
2	235.203	2.44115	2.48203	1	6.49731	Non-Toxic
3	246.505	2.76656	2.71547	7	7.45089	Non-Toxic
4	437.939	3.4801	3.59569	3	10.9156	Non-Toxic

- regression

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	toxicity_score
0	341.704	2.65585	3.09407	2	9.11147	80.9281
1	335.951	3.22262	2.89039	7	8.92848	83.4911
2	235.203	2.44115	2.48203	1	6.49731	61.8406
3	246.505	2.76656	2.71547	7	7.45089	57.0538
4	437.939	3.4801	3.59569	3	10.9156	131.326

- generation

"create a molecule with the properties XYZ, such that it is non-toxic"

carrier proteins (drug development)

Outline

- Motivation
- What is Machine Learning?
- The Lecture
- Course Map

GSI: Eric Chung-Yueh Yuan

Grad Student at

Teresa Head- Gordon Lab

UC Berkeley

<u>Lecturer:</u> Markus Hohle

Lecturer at UC Berkeley &

Data Analysis Consultant

PhD Physics

Introduction

Lecture: Monday 3:00 – 4:00pm PT

Discussion (Eric/Markus): Thursday 1:00 – 2:30pm PT

Office Hours (Markus): Friday 5:00 – 7:00pm PT

you can pick a ML/AI project

- work in teams of 4/5

start planning after 1/3 of the course

- more detailed intro after ½ of the course

submit proposal

- checkpoint

presentation

Material: Recorded Lectures: → bcourses

codes/slides → bcourses & GitHub

HW assignments → bcourses

Grades: HW assignments: \rightarrow 50%

Final Project → 40%

Course Attendance → 10%

Outline

- Motivation
- What is Machine Learning?
- The Lecture
- Course Map

Lecture 1: Course Overview and Introduction to Machine Learning

Lecture 2: Bayesian Methods in Machine Learning

classic ML tools & algorithms

Lecture 3: Dimensionality Reduction: Principal Component Analysis

Lecture 4: Linear and Non-linear Regression and Classification

Lecture 5: Unsupervised Learning: Clustering and Gaussian Mixture Models

Lecture 6: Adaptive Learning and Gradient Descent Optimization Algorithms

Lecture 7: Introduction to Artificial Neural Networks - The Perceptron

ANNs/AI/Deep Learning

Lecture 8: Introduction to Artificial Neural Networks - Building Multiple Dense Layers

Lecture 9: Convolutional Neural Networks (CNNs) - Part I

Lecture 10: CNNs - Part II

Lecture 11: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)

Lecture 12: Combining LSTMs and CNNs

Lecture 13: Running Models on GPUs and Parallel Processing

Lecture 14: Project Presentations

Lecture 15: Transformer

Lecture 16: GNN

Dec 2024

Thank you very much for your attention!

?Questions?