Quelques rappels sur la maille Hexagonale Compacte

Pr. A. SAMDI
Faculté des Sciences Aïn chock
Université Hassan II
Casablanca

Comment est formé un empilement compact?

Motif de base

Empilement de sphères

Empilement de sphères

2- Succession

des deux premiers Plans compacts A et B

2- Troisième plan compact C:

deux possibilités: la première est

Maille hexagonale compacte HC

Succession des plans ABABAB......

Maille hexagonale compacte, HC Plan A **Plan** Plan A

Maille hexagonale compacte, HC Plan A **Plan** Plan A

Pseudo maille Maille hexagonale compacte, = 1/3 de la Maille HC HC

Ces sommets bleus (60°C) appartiennent à 12 pseudo mailles

6 en bas + 6 en haut

Donc 4 x 1/12

L'atome interne rouge appartient à 1 pseudo maille

Donc 1 x 1

4 atomes aux sommets bleus (60°C) appartiennent à 12 pseudo mailles

Donc 4 x 1/12

4 atomes aux sommets jaunes (120°C) appartiennent à 6 pseudo mailles

Donc 4 x 1/6

Au total: $n = 1 + (4 \times 1/6) + (4 \times 1/12) = 2$

chaque atome a

12 voisins tangents situés

à la distance A

Coord (Hex. Comp.) = 12

Exprimer c = f(a)

Le triangle est rectangle
AGH au point G

$$AG^2 + GH^2 = AH^2$$

or $GH = c/2$

$$a^2/3 + c^2/4 = a^2$$

$$c = \sqrt{\frac{8}{3}} \cdot \alpha$$

Le rapport c/a de la maille hex. Comp. est

une cte =
$$c/a = \sqrt{8/3} = 1,633$$
,
qui permet de savoir

Si l'empilement est compact ou non.

Compacité ou taux de remplissage T :

n. Volume(1atome)

Volume(1 maille)

n: nombre d'atomes par maille

Compacité ou taux de remplissage T :

Compacité
$$T = \frac{n \cdot Volume(1 \text{ atome})}{Volume(1 \text{ maille})}$$
Avec
$$\frac{n \cdot Volume(1 \text{ maille})}{n \cdot volume(1 \text{ maille})}$$

Pseudo maille HC n = 2 atomes/ pseudo maille

Relation de tangence : 2R = a

D'où la relation:

$$T = \frac{2 \cdot (4/3) \pi R^3}{a^2 \cdot c \cdot \sin 120^\circ} = \frac{2 \cdot (4/3) \pi (a/2)^3}{a^2 \cdot c \cdot \sin 120^\circ} = \frac{0.74}{a^2}$$

$$c = \sqrt{\frac{8}{3}} \cdot a$$

