Digitaltechnik Wintersemester 2021/2022 5. Vorlesung

Umfrage

Inhalt

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Agenda

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - Bubble Pushing
 - Logik-Realisierung mit Basis-Gattern
 - Karnaugh Diagramme

Harris 2013/2016 Kap. 2.4, 2.5, 2.7, 2.8

Agenda

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Graphische Umformung von Schaltungen nach De Morgan und Involution

$$A \rightarrow \overline{\overline{A}} = A$$

Invertierungsblasen verschieben Bubble Pushing

über Gatter (AND/OR/NOT/BUF) hinweg

Vorwärts: Eingang → Ausgang

➤ rückwärts: Ausgang → Eingang

Art des Gatters ändern: AND \leftrightarrow OR

▶ Blasen an allen Eingängen ändern: vorhanden ↔ nicht vorhanden
▶ Blase an Ausgang ändern: vorhanden ↔ nicht vorhanden

zwischen Gattern

vorwärts: Treiber → alle Empfänger
rückwärts: alle Empfänger → Treiber

doppelte Blasen heben sich gegenseitig auf (Involution)

verbleibende Buffer (vorher Inverter) können entfernt werden

Beispiel: Invertierungsblasen rückwärts verschieben

- De Morgan über G3
 - lacktriangleright Blase an beiden Eingängen
 - AND → OR
- Blasen entlang Leitungen verschieben
 - G3 → G1
 - ▶ $G3 \rightarrow G2$ (Doppelblase aufheben)
- De Morgan über G1
 - Blasen an Ein- und Ausgängen invertieren
 - ightharpoonup OR ightharpoonup AND
- Buffer G2 entfernen
- zwei Inverter weniger

Anwendungen

- Schaltungen vereinfachen
 - weniger Inverter
 - weniger Literale (z.B. nur A statt A, \overline{A})
 - weniger verschiedene Gatter-Arten → einfachere Zellbibliothek (z.B. nur AND, kein OR)
- Komplementäre Schaltungen für CMOS-Schaltung ableiten
 - Y für Pull-Up Netzwerk $\leftrightarrow \overline{Y}$ für Pull-Down Netzwerk

 - $Y = \overline{AB + C}$ $\overline{Y} = \overline{AB + C} = \overline{\overline{AB}} \overline{C} = (A + \overline{B})\overline{C}$

Agenda

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Zweistufige Logik

- direkte (konstruktive) Umsetzung der disjunktiven Normalform (DNF)
 - ► Eingangsliterale: ein Inverter pro Variable (falls benötigt)
 - ▶ Minterme: je ein "breites" AND Gatter an passende Literale anschließen
 - ► Summe: alle Minterme an ein "breites" OR Gatter anschließen
- Gatter mit vielen Inputs als Bäume kleinerer Gatter
- ⇒ jede boole'sche Funktion realisierbar mit Basisgattern
 - AND2
 - OR2
 - NOT

Konventionen für lesbare Schaltpläne

- ► Eingänge links (oder oben)
- Ausgänge rechts (oder unten)
- Gatter von links nach rechts (oben nach unten) angeordnet
- gerade (oder rechtwinklige) Verbindungen
- ⇒ keine Schrägen oder Kurven
- ➤ 3-armige Kreuzungen gelten implizit als verbunden
- 4-armige Kreuzungen gelten nur bei Markierung (Punkt) als verbunden

verbunden verbunden verbunden

Weitere kombinatorische Grundelemente

- zweistufige Logik
 - sehr mächtig
 - aufwändige Darstellung und Realisierung
 - realisiertes Verhalten nicht intuitiv ersichtlich
- weitere Basisgatter neben AND, OR, NOT:

► XOR: Parität

Multiplexer (MUX): n zu 1

Dekodierer (DEC): n zu 2ⁿ

- ▶ Selektiert einen der *n* Dateneingänge $A_0, ..., A_{n-1}$ als Ausgang Y
- \blacktriangleright $k = \lceil \log_2 n \rceil$ Steuersignale $S_0, ..., S_{k-1}$
- $Y = A_{u_{2,k}(S_{k-1}...S_0)}$

Multiplexer

 $\text{MUX4}: \mathbb{B}^6 \to \mathbb{B}$

S_1	S_0	Y
0	0	A_0
0	1	A_1
1	0	A_2
1	1	A_3

Logikrealisierung mit Multiplexern

LQ7-4 RQ7-4 MUX1 MUX2 MUX3 MUX4

- Variablen als Steuersignale verwenden
- Wahrheitswertetabelle als Konstanten an Dateneingängen
- entspricht adressiertem Speicherzugriff
 - Look-up Tabelle
 - ► ROM oder RAM → rekonfigurierbare Logik
- Beliebige Funktion mit N Variablen kann sogar via MUX2^{N-1} realisiert werden (s. Harris, Fig. 2.60)

Α	В	Y = A B
0	0	0
0	1	0
1	0	0
1	1	1
		'

Dekodierer

$\mathsf{DECODE}n:\mathbb{B}^n\to\mathbb{B}^{2^n}$

- ightharpoonup n Eingänge A_0, \dots, A_{n-1}
- \triangleright 2ⁿ Ausgänge Y_0, \dots, Y_{2^n-1}
- "One-Hot" Kodierung: $Y_i = u_{2,n}(A_{n-1} ... A_0) == i ? 1 : 0$

A_1	A_0	<i>Y</i> ₀	Y_1	Y_2	Y_3
0 0 1	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1 0 0 0	0	0	1

Implementierung von Dekodierern

Logikrealisierung mit Decodern LQ7-4 RQ7-4

- Summe über Minterme, auf denen Zielfunktion wahr ist
- Decoder ersetzt erste Stufe der zweistufigen Logikrealisierung

$$\begin{array}{c|cccc} A & B & Y = A \oplus B \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Umfrage

Agenda

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Maurice Karnaugh, 1924 -

- Bell Labs
- ► IBM Research
- ► Techniken und Methoden für den schnellen Entwurf informationstechnischer Systeme
- ⇒ Karnaugh(-Veitch) Diagramme

Graycode

Karnaugh Diagramme LQ4-1 RQ4-1

- boole'sche Ausdrücke können durch Zusammenfassen von Mintermen minimiert werden
 - $Y = AB + A\overline{B} = A$
- Karnaugh Diagramme stellen Zusammenhänge graphisch dar
 - Anordnung der Wahrheitswertetabelle via Gray code
 - ⇒ Zusammenhängende Minterme besser erkennbar

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	0	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	1	$m_3 = A B$

Y: ∖ <i>A</i>		_A_
В	0	1
0	0	1
<i>B</i> 1	1	3 1

Karnaugh Diagramm für drei Eingänge LQ4-2

Α	В	С	Y	Minterm
0	0	0	0	$m_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	$m_1 = \overline{A} \overline{B} C$
0	1	0	1	$m_2 = \overline{A} B \overline{C}$
0	1	1	0	$m_3 = \overline{A} B C$
1	0	0	0	$m_4 = A \overline{B} \overline{C}$
1	0	1	0	$m_5 = A \overline{B} C$
1	1	0	1	$m_6 = A B \overline{C}$
1	1	1	1	$m_7 = ABC$

Y∶ ∖ AE	3		/	4
c	00	01	11	10
0	0	1	6 1	4
<i>C</i> 1	1	3	⁷ 1	5
			3	

$$Y = AB + B\overline{C}$$

Karnaugh Diagramm für vier Eingänge LQ4-2

Α	В	С	D	Y	Minterm
0	0	0	0	1	$m_0 = \overline{A} \overline{B} \overline{C} \overline{D}$
0	0	0	1	0	$m_1 = \overline{A} \overline{B} \overline{C} D$
0	0	1	0	1	$m_2 = \overline{A} \overline{B} C \overline{D}$
0	0	1	1	0	$m_3 = \overline{A} \overline{B} C D$
0	1	0	0	0	$m_4 = \overline{A} B \overline{C} \overline{D}$
0	1	0	1	1	$m_5 = \overline{A} B \overline{C} D$
0	1	1	0	0	$m_6 = \overline{A} B C \overline{D}$
0	1	1	1	0	$m_7 = \overline{A} B C D$
1	0	0	0	1	$m_8 = A \overline{B} \overline{C} \overline{D}$
1	0	0	1	0	$m_9 = A \overline{B} \overline{C} D$
1	0	1	0	1	$m_{10} = A \overline{B} C \overline{D}$
1	0	1	1	0	$m_{11} = A \overline{B} C D$
1	1	0	0	0	$m_{12} = A B \overline{C} \overline{D}$
1	1	0	1	1	$m_{13} = A B \overline{C} D$
1	1	1	0	0	$m_{14} = ABC\overline{D}$

RQ4-2

Abdeckung von Mintermen durch Implikanten

- n Eingangsvariablen
- Implikant aus $k \le n$ Literalen deckt 2^{n-k} Minterme ab
- Primimplikant
 - nicht vergrößerbare zusammenhängende viereckige Fläche im Karnaugh Diagramm
 - Achtung: Umbruch an Rändern beachten

Minimierungsregeln für Karnaugh Diagramme

LQ4-3 RQ4-3

- Eintragen von Mintermen
 - Einsen aus Wahrheitswertetabelle
 - "Don't Cares" (*) für ungültige Eingangskombinationen
- Markieren von Implikanten
 - markierte Bereiche dürfen 1 und * enthalten, aber keine 0
 - nur Rechtecke mit 2^k Einträgen erlaubt (keine L- oder Z-Formen)
 - Bereiche dürfen sich überschneiden
 - Bereiche dürfen um die Ränder des Diagrammes herum reichen (Torus)
 - Bereiche müssen so groß wie möglich sein (Primimplikanten)
- Ziel: Überdeckung aller Einsen mit möglichst wenigen Primimplikanten

Karnaugh Diagramm mit vier Eingängen

Karnaugh Diagramm mit "Don't Cares" LQ4-4

RQ4-4

Agenda

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Zusammenfassung und Ausblick

- Bubble Pushing
- Logik-Realisierung mit Basis-Gattern
- Karnaugh Diagramme
- Nächste Vorlesung behandelt
 - automatisierte Logikminimierung
 - Zeitverhalten von Schaltungen

DT Hybridlehre

DT Präsenzbearbeitung

Fr, 11:40-13:20 in S103/226 (105 Plätze bei 50% Belegung, derzeit 3G Nachweis)

	Anmeldungen (max. 100)	Anwesend
Fr, 22.10.	100	ca. 70
Fr, 29.10.	92	ca. 80
Fr, 05.11.	73	ca. 55
Fr, 12.11.	45	ca. 40

DT Hybrid-Vorlesung?

Mi, 9:50-11:30; Raum mit 242 Plätzen bei 50% Belegung ist geblockt

Umfrage: Wer von Ihnen hätte Stand JETZT prinzipiell Interesse an einer DT Hybrid-**Vorlesung** und würde in den Hörsaal kommen wollen?

Klausur

- ► Termin: 08.03.2022, 11:00 13:00 Uhr
 - Bearbeitungszeit: 90 Minuten
 - Derzeit in Präsenz geplant. Raumzuteilung wird rechtzeitig bekannt gegeben
- Anmeldung in TUCaN bis 31.01.2022 notwendig
 - Für Fachprüfung (ab 01.11.2021) und ggf. Studienleistung (ab 01.09.2021)
 - Am besten direkt anmelden!
- ► Kein Notenbonus nach §25(2) APB
- ► Keine Hilfsmittel (Taschenrechner, etc.) zugelassen
 - Ausnahme: Hilfsblatt
- Klausuraufbau: je Themenblock 1/3 der Punkte für
 - Wissens- und Verständnisfragen (s. Vorlesungen)
 - Übungsaufgaben (s. Übungsblätter)
 - Transferaufgaben
- Wiederholungsklausur im Herbst 2022
- Wir stellen keine alten Klausuren zur Verfügung