

中国人民解放军战略支援部队信息工程大学—曹一冰讲师

PLA Strategic Support Force Information Engineering University——Lecturer. Yibing Cao

● 主要研究方向: 地理空间建模、地理信息系统平 台及应用技术研究。

▶ 获省部级科技进步二等奖1项、三等奖1项。获第 五届全国高校GIS青年教师讲课比赛一等奖,指导第 九届全国大学生GIS应用技能大赛获特等奖。

● 近五年来,主持国家重点研发计划项目子课题2项,发表学术论文10篇,受理国家发明专利9项,获得计算机软件著作权7项。

常规四叉树编码

Conventional Quadtree Coding

基本思想

将空间区域($2^n \times 2^n$,且 $n \ge 1$)按照

四个象限进行递归均等分割,直到

子象限的属性值相同为止。

常规四叉树编码 Conventional Quadtree Coding

03 常规四叉树编码
Conventional Quadtree Coding

结点位置

结点属性

父结点位置(1)

子结点位置(4)

属性值(1)

常规四叉树编码

- (1)数据冗余小
- (2) 寻址复杂

04

十进制线性四叉树编码

Decimal Linear Quadtree Encoding

8		IJ	0	1	2	3	4	5	6	7
		J_b	000	001	010	011	100	101	110	111
II	I_b									
0	000		0	1	4	5	16	17	20	21
1	001		2	3	6	7	18	19	22	23
2	010	Š	8	9	12	13	24	25	28	29
3	011	V \	10	11	14	15	26	27	30	31
4	100		32	33	36	37	48	49	52	53
5	101		34	35	38	39	50	51	54	55
6	110	4	40	41	44	45	56	<i>5</i> 7	60	61
7	111	× _	42	43	46	47	58	59	62	63

二维地址 —— 一维地址

04

十进制线性四叉树编码

Decimal Linear Quadtree Encoding

基本思想

不需要记录中间结点,仅记录叶结点的信息,并用地址码表示叶结点的位置。

地址码 (Morton码—M_D)

n: 层数

十进制线性四叉树编码

Decimal Linear Quadtree Encoding

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 B B A B A A A A C B B

2、四相邻栅格属性相同的合并,只记录第一个栅格的Morton码

8 | 12 13 14 15 | 16 B B A B A C A A C

3、再比较所形成的大块(4n),相同的再合并,直到不能合并为止

B A B A C A A C B

栅格数据模型

Raster Data Model

Raster Data Model

和

思考题

四叉树编码要求空间区域满足 $2^n \times 2^n$,如果不满足,应该如何处理呢?

