Minimum Spanning Trees
Prim's Algorithm
Kruskal's Algorithm

Spanning Trees

Spanning Trees: A subgraph **T** of a undirected graph **G= (V,E)** is a spanning tree of **G** if it is a tree and contains every vertex of **G**. If the number of Vertices is n then (n-1) edges will be required to find connected graph.

Spanning Trees

Theorem: Every connected graph has a spanning tree.

Question: Why is this true?

Question: Given a connected graph **G**, how can you find a spanning tree of **G**?

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all edges.

Minimum Spanning Trees

A **Minimum Spanning Tree** in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Minimum Spanning Trees

Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique (we won't prove this now).

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.

The idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic. And if we are sure every time the resulting graph always is a subset of some minimum spanning tree, we are done.

Generic Algorithm for MST problem

Let **A** be a set of edges such that $A \subseteq T$, where **T** is a MST. An edge (u,v) is a safe edge for A, if $A \cup \{(u,v)\}$ is also a subset of some MST.

If at each step, we can find a safe edge (u,v), we can 'grow' a MST. This leads to the following generic approach:

```
Generic-MST(G, w)
Let A=EMPTY;
while A does not form a spanning tree
find an edge (u, v) that is safe for A add (u, v)
  to A
  return A
```

How can we find a safe edge?

Prim's Algorithm: How to grow a tree

Grow a Tree

- Start by picking any vertex R to be the root of the tree.
- While the tree does not contain all vertices in the graph
 - find shortest edge leaving the tree and add it to the tree.

Running time is $O((|V| + |E|) \log |V|)$.

Worked Example

Connected graph

Step 0

$$S=\{a\}$$

 $V \setminus S = \{b,c,d,e,f,g\}$

lightest edge = $\{a,b\}$

Prim's Example – Continued

Step 1.1 before $S=\{a\}$ $V \setminus S = \{b,c,d,e,f,g\}$ $A=\{\}$ lightest edge = $\{a,b\}$

Step 1.1 after $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = \{b,d\}, \{a,c\}

Prim's Example – Continued

Step 1.2 before $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = $\{b,d\}$, $\{a,c\}$

Step 1.2 after $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = \{d,c\}

Prim's Example – Continued

Step 1.3 before $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = $\{d,c\}$

Step 1.3 after $S=\{a,b,c,d\}$ $V \setminus S=\{e,f,g\}$ $A=\{\{a,b\},\{b,d\},\{c,d\}\}$ lightest edge = $\{c,f\}$

Prim's Example – Continued

Step 1.4 after
$$S=\{a,b,c,d,f\}$$
 $V \setminus S = \{e,g\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}$ lightest edge = $\{f,g\}$

Prim's Example – Continued

Step 1.5 before $S = \{a,b,c,d,f\}$ $V \setminus S = \{e,g\}$ $A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}$ lightest edge = $\{f,g\}$

Step 1.5 after $S = \{a,b,c,d,f,g\}$ $V \setminus S = \{e\}$ $A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\}\}$ lightest edge = $\{f,e\}$

Prim's Example – Continued

Step 1.6 after
$$S = \{a,b,c,d,e,f,g\}$$

$$V \setminus S = \{\}$$

$$A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\},$$

$$\{f,g\},\{f,e\}\}$$

$$MST completed$$

Step 0: Choose any element **r** and set $S = \{r\}$ and $A = \emptyset$. (Take **r** as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in **S** and the other is in $V \setminus S$. Add this edge to **A** and its (other) endpoint to **S**.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S, A)

Otherwise go to Step 1

Kruskal's Algorithm

- Kruskal's Algorithm is a famous greedy algorithm.
- It is used for finding the Minimum Spanning Tree (MST) of a given graph.
- To apply Kruskal's algorithm, the given graph must be weighted, connected and undirected.

Kruskal's Algorithm

Step-01:

Sort all the edges from low weight to high weight.

Step-02:

- Take the edge with the lowest weight and use it to connect the vertices of graph.
- If adding an edge creates a cycle, then reject that edge and go for the next least weight edge.

Step-03:

 Keep adding edges until all the vertices are connected and a Minimum Spanning Tree (MST) is obtained.

Kruskal's Algorithm

 Worst case time complexity of Kruskal's Algorithm is O(ElogV) or O(ElogE)

Solution:

- The edges can be maintained as min heap.
- The next edge can be obtained in O(logE) time if graph has E edges.
- Reconstruction of heap takes O(E) time. So, Kruskal's Algorithm takes O(ElogE) time.
- The value of E can be at most $O(V^2)$. So, O(logV) and O(logE) are same.

Alternate Solution:

- If the edges are already sorted, then there is no need to construct min heap.
- So, deletion from min heap time is saved.
- In this case, time complexity of Kruskal's Algorithm = O(E + V)

Since all the vertices have been connected / included in the MST, so we stop. Weight of the MST = Sum of all edge weights

$$= 10 + 25 + 22 + 12 + 16 + 14$$

= 99 units