1°) Identification par la méthode de Broïda:

Le système est approximé à un modèle du premier ordre avec retard pur:

E signal d'entrée du procédé M signal de mesure en sortie du procédé

$$M(t) = G_s \Delta E \left(1 - e^{-\frac{t - \tau}{\theta}}\right) + M_0 = \Delta M \left(1 - e^{-\frac{t - \tau}{\theta}}\right) + M_0$$

Cette méthode s'applique-t-elle à un procédé auto-stable ou évolutif? _____

L'essai se fait-il en boucle ouverte ou en boucle fermée? _____

A partir d'un essai mesurer et en déduire le gain statique G_s =_____

$$\Delta M$$
=____ et ΔE = ____

$$G_s = \underline{\hspace{1cm}}$$

Mesurer

pour
$$X_1 = 28\%$$

et

pour
$$X_2 = 40\%$$

En déduire: $\theta \approx 5.5 (t_2 - t_1)$

 $\tau \approx 2.8 \ t_1 - 1.8 \ t_2$ et

2°)Tableau des réglages:

$\underline{\theta}$	autre	2	PID	5	PI	10	P	20	Tout ou rien
τ									

	P	PI série	PI //	PID série	PID //	PID mixte
G _r	$\frac{0.8 \theta}{G_s \tau}$	$\frac{0.8 \theta}{G_s \tau}$	$\frac{0.8 \theta}{G_s \tau}$	$\frac{0.85 \theta}{G_s \tau}$	$\frac{\frac{\theta}{\tau} + 0.4}{1.2G_s}$	$\frac{\frac{\theta}{\tau} + 0.4}{1.2G_s}$
T _i	Maximum	θ	$\frac{G_s \tau}{0.8}$	θ	$\frac{G_s \tau}{0,75}$	θ+0,4τ
T _d	0	0	0	0,4τ	$\frac{0,35\theta}{G_{S}}$	$\frac{\theta \tau}{\tau + 2,5\theta}$

Indiquez ici le type de régulateur que vous utilisez:

et déterminez les valeurs:

- de la bande proportionnelle X_p
- du temps d'intégrale T_{I}
- du temps de dérivée T_D

que vous allez prendre comme base pour vos réglages.