LOW-TEMPERATURE ESR STUDY OF P_{b0} DEFECTS RESIDING IN THE (111) Si/NATIVE OXIDE INTERFACE

A. STESMANS *

Departement Natuurkunde, Katholieke Universiteit Leuven, B-3030 Leuven, Belgium

Received 15 April 1987; accepted for publication 22 April 1987

A K-band electron spin resonance (ESR) study of the (111) Si/native SiO₂ structure has been carried out in the temperature range $2.4 \lesssim T \lesssim 30$ K. The ESR signal of the interfacial [111] P_{b0} center was observed, exhibiting in general similar properties to the well-documented [111] P_{b0} signal observed on firmly thermally-oxidized (TO) Si. However, many details in the P_{b0} spectrum differ like, e.g., the strain-induced inhomogeneous (g-spread) part (ΔB_{pp}^G) of the linewidth. For $B \parallel [111]$ (B being the externally applied magnetic field), the ²⁹Si hyperfine structure of the [111] P_{b0} center has been observed which is characterized by the hyperfine splitting $a^{hf} = 159 \pm 2$ G and the hf signal width $\Delta B_{pp}^{hf} = 14.8 \pm 0.5$ G. Both the observed ΔB_{pp}^G and ΔB_{pp}^{hf} reveal the existence of a significantly larger strain-induced g distribution in Si/native SiO₂. Apart from the [111] P_{b0} center, also the signals of the P_{b0} defects with their dangling orbital parallel to [11 $\bar{1}$], [1 $\bar{1}$ 1] or [111] have been observed; as yet, these signals have not been observed on TO structures. The saturation behaviour has been examined showing the P_{b0} Si/native oxide interface center to be much less saturable than the P_{b0} in TO structures. The observations are related to the particular physicochemical interface structure.

1. Introduction

For many years already, the $\mathrm{Si/SiO_2}$ interface has been known to contain defects which may act both as recombination and trapping centers, thus significantly influencing the properties of Si-based semiconductor devices. In view of the profound technological interest, this has caused the basic $\mathrm{Si/SiO_2}$ structure to be subjected to numerous investigations by a wealth of methods [1], among which the electron spin resonance (ESR) technique has been particularly successful.

Till now, two ESR-active interface defects have been observed, labelled as P_{b0} and P_{b1} centers respectively, and commonly referred to as P_{b0} centers, a symbol introduced by Nishi [2], who was the first to observe this anisotropic defect. The final identification, however, was done by Caplan and coworkers [3], leading to the atomic models, namely 'Si \equiv Si $_3$ and 'Si \equiv Si $_2$ O for the P_{b0} and

0169-4332/87/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

^{*} Supported by "Het Nationaal Fonds voor Wetenschappelijk Onderzoek", Belgium.

 P_{b1} defects respectively. The conclusive proof for the P_{b0} model, that is, an unpaired electron in a dangling Si hybrid orbital on an interfacial Si atom pyramidally backbonded to three Si atoms in the bulk was considered to be given by the observation [4] of the ²⁹Si (nuclear spin I=1/2; 4.7% natural abundance) hyperfine structure (hfs) on P_{b0} . The model proposed for P_{b1} still remains somewhat less convincing. However, regarding the P_{b0} model, the formerly accepted conclusive proofs are at present interpreted somewhat more reserved [5]. Instead of the *undercoordinated* Si model, i.e., 'Si \equiv Si₃, an *overcoordinated* defect, referred to as a floating bond, has been proposed. This suggestion has caused renewed interest in the correct atomic modelling of the P_{b0} signal.

As it stands today, most of the ESR work on P_{b0} has been carried out on state-of-the-art high-quality thermally-oxidized (TO) c-Si (i.e., oxidized at ~ 1000 °C in 1 atm O_2 ambient), whereby the [111] Si/Si O_2 interface has been most extensively analysed, mainly for practical spectroscopical reasons [6]; the sensitivity [7] of the defects to various types of irradiation and electrical bias has been well analysed. However, one might expect to gain some relevant additional information by expanding the measurements to differently-oxidized Si–Si O_2 structures and do some comparative analysis. The present work has to be put in the light of this goal: It reports on the study of the P_{b0} defect located in the (111) Si/native interface. Related to this, it is interesting to note that recently a first observation of P_{b0} in a somewhat different structure, namely, the crystalline Si/buried Si O_2 /crystalline Si O_2 (SIMOX) structure, has been reported [8].

2. Experimental details

2.1. Sample preparation

The samples studied were taken from p-type (B-doped) Czochralski-grown 3 inch diameter Si plates ($10\pm2~\Omega$ cm). These (111)-main-face oriented wafers were two-sided polished to optical finish using the cupric-ion chem-mechanical polishing method, resulting for the two wafers treated in thicknesses of $d_{\rm Si}=140\pm20$ and $89\pm9~\mu{\rm m}$ respectively. Via scribing and breaking, ESR samples having either a $1\times9~{\rm mm}^2$ or a $2\times9~{\rm mm}^2$ (111) face were obtained. A schematic presentation of the sample shape relative to the crystallographic orientation is given in fig. 1. In order to eliminate interference from a cracking-induced dangling-bond (DB) line, the slices were first treated in planar etch at room temperature (RT) for 20 s. Subsequently, they were submitted to a chemical cleaning procedure after which they were allowed to grow a native oxide in air at RT for several days. In stacking several slices together to form an ESR sample, identical crystallographic positioning of the platelets regarding the [112] direction pointing "left" or "right" in the bundle, was taken care off.

Fig. 1. Schematic view of the atomic configuration at a (111) Si plane, together with the particular ESR sample shape.

2.2. ESR technique

K-band (~ 20.9 GHz) ESR experiments were carried out in the temperature range $2.4 \le T \le 30$ K. By applying the magnetic field-modulation technique and phase-sensitive detection, the absorption-derivative $dP_{\mu a}/dB$ spectra were recorded; $P_{\mu a}$ and B represent the microwave power adsorbed in the cavity during resonance and the externally-applied magnetic induction respectively. Spin concentrations $N_{\rm S}$ have been determined relative to a ruby: ${\rm Cr}^{3+}$ standard (spin content known to an accuracy of 1%) using either the double numerical integration method of the $dP_{\mu a}/dB$ spectra or the $I=LV_{\rm D}$ ($\Delta B_{\rm pp}$) method, where I is the signal intensity (area under the absorption curve), L the line shape factor, $\Delta B_{\rm pp}$ the peak-to-peak linewidth and $2V_{\rm D}$ the peak-to-peak height of the $dP_{\mu a}/dB$ signal. The defects' anisotropic properties were analysed, mostly by varying the angle ϕ_B between B and [111] from [$\overline{112}$] ($\phi_B \equiv 90^{\circ}$) to [$11\overline{2}$] ($\phi_B \equiv -90^{\circ}$). More details about the experimental set-up have been presented elsewhere [6].

3. Experimental results and discussion

3.1. General ESR signal characteristics

A typical K-band (20.775 GHz) Si/native SiO_2 spectrum observed at 4.7 K for $B \parallel [111]$ is shown in fig. 2. Signal I in this figure is the one attributed to

Fig. 2. K-band (20.775 GHz) ESR P_{b0} spectrum observed from a (111) Si/native SiO₂ sample at 4.7 K for B = [111]. The sample thickness is $89 \pm 9 \,\mu m$ and microwave power in the cavity = -13 dBm. Signal I together with the hf signals correspond to the [111] P_{b0} center, while signal II is the sum of the $[\bar{1}11]$, $[1\bar{1}1]$ and $[11\bar{1}]$ P_{b0} centers; for B = [111], all three 19° centers coincide.

the [111] P_{b0} defect, i.e., with the 'Si \equiv Si₃ unsaturated bond perpendicular to the sample surface. This may be inferred from the generally similar ESR properties observed for [111] P_{b0} centers in TO structures.

For $B \parallel [111]$, the linewidth has its minimum value given as $\Delta B_{\rm pp} = 3.6 \pm 0.1$ G (equally for both samples), which increases to 9.0 ± 0.6 G for $|\phi_B| \rightarrow 90^{\circ}$. Concomitantly, the line shape, which is a mixture of Lorentzian and Gaussian shapes (Voigt profile) at $\phi_B = 0^{\circ}$, changes to an almost Gaussian profile for $|\phi_B| \rightarrow 90^{\circ}$. X-band (8.99 GHz) measurements at 4.7 K gave $\Delta B_{\rm pp}(X) = 2.31 \pm 0.05$ G for $B \parallel [111]$; this reveals the presence of a significant inhomogeneous line broadening part, thus accounting for the observed Voigt profile.

The g value of the 140 μ m slices varies from $g_{\parallel} = 2.00186 \pm 0.00004$ to $g_{\perp} = 2.0087 \pm 0.0001$ for **B** parallel with and perpendicular to [111] respectively; the g tensor is found to be axially-symmetric and T-independent. The observed $g(\phi_B)$ behaviour is perfectly in agreement with the "theoretical" g versus ϕ_B limb calculated for the position DB || [111] from an axially-symmetric g tensor using $g_{\parallel} = 2.00186$ and $g_{\perp} = 2.0088$. However, it has to be remarked that while about equal g_{\perp} values have been found at 4.3 K for both sample types, a somewhat different g_{\parallel} value, i.e., $g_{\parallel} = 2.00144 \pm 0.00004$, is observed for the thinner sample; the latter value is more in agreement with the data of TO samples [3]. This difference in g_{\parallel} between both sample types could not be ascribed to misorientations in sample mounting; apparently, the results show that slight variations in g may occur between various Si/native oxide samples.

Apart from the well-known [111] P_{b0} defect, the signals due to the other possible out-of-(111) plane pointing DB orientations, i.e., [111], [111] and [111] P_{b0} centers (= 19° P_{b0} centers, cf. fig. 1), have been observed too. In fig. 2, it is signal II which is due to these centers; because of the symmetry (namely, $B \parallel [111]$; cf. fig. 1), all three signals are identical and coincide; for other ϕ_B values, however, the signal splits up. The inferred values of g and ΔB_{pp} and the variations of g, ΔB_{pp} and line shape with ϕ_B (ϕ_B now being the angle between B and the symmetry axis of the particular center concerned) are very similar to the [111] P_{b0} behaviour, from where the observation of the 19° P_{b0} centers has been concluded.

For the [111] P_{b0} center a spin concentration $N_S = (1.2-1.3) \times 10^{12}$ ($\pm 30\%$) has been found, which value comes out rather low compared with the typical TO value, i.e., $N_S(TO) \approx 5 \times 10^{12}$ cm⁻².

The observed K-band line shape of the [111] P_{b0} centers for $\boldsymbol{B}_{\parallel}$ could be computer fitted with a Voigt profile characterized by the ratio $a_c \equiv (3/2)^{1/2}$ $\Delta B_{pp}^{L}/\Delta B_{pp}^{G} = 0.86 \pm 0.05$ and $L = 1.7 \pm 0.1$; ΔB_{pp}^{L} and ΔB_{pp}^{G} represent the widths of the "natural" constituent spin-packet line and the Gaussian broadening function arising from a strain-induced [9,10] g distribution (i.e., "glass effect"; predominantly a distribution on g_{\perp}) respectively. The ΔB_{pp} data obtained at both frequencies (f) for $\phi_B = 0$ ° could be self-consistently computer deconvoluted, resulting in $\Delta B_{pp}^{G} = 1.10$ and 2.56 G at X and K band respectively, together with the ϕ_B and f independent value $\Delta B_{pp}^{L} = 1.8$ G.

As described above, the observed properties of the [111] P_{b0} Si/native SiO₂ signal are in general agreement with the similar defect prevailing in TO (111) Si/SiO₂ structures [3,9,10]. However, there are several differences, two of which are considered of special importance, as they clearly pertain to the particular physico-chemical interfacial structure. Firstly, there is a significantly larger ΔB_{pp}^{G} value for [111] P_{b0} Si/native SiO₂ centers, which reveals a substantially increased g distribution compared to TO samples and which indicates an enhanced strain-induced degree of local distortions of the P_{b0} structure. Secondly, the 19° P_{b0} centers have been clearly observed on Si/native oxide interfaces which so far has not been the case for TO structures; however, they have previously also been observed [11] on thermally-treated (TT) samples (i.e., oxidized at $T \approx 1000$ °C in reduced O_2 pressure; $P_{O_2} \lesssim 10^{-5}$ Torr).

3.2. Saturation behaviour; measurement of T_i

The saturation of the [111] P_{b0} defect has been analysed for various T's by measuring the variation of V_D with B_1 , the latter varying in the range $0.007 \le B_1 \le 0.16$ G, where $2B_1$ represents the amplitude of the linearly-polarized hf field at the sample site. From this data, values of the spin-lattice relaxation time T_1 have been deduced using the saturation theory [12] for

Fig. 3. Plot of measured spin-lattice relaxation time versus T of the [111] P_{b0} center. Solid and open symbols represent the situation of [111] P_{b0} residing at the interfaces of (111) Si/native SiO₂ and thermally-oxidized (111) Si/SiO₂ structures respectively.

inhomogeneously-broadened lines and using the T-independent transverse relaxation time T_2 derived from the previously determined $\Delta B_{\rm pp}^{\rm L}$, giving $T_2 = 2/\sqrt{3} \, \gamma \Delta B_{\rm pp}^{\rm L} = 3.6 \times 10^{-8} \, \text{s}$. The T_1 results thus obtained are shown in fig. 3. As may be seen, for $T \le 12 \, \text{K}$, a $T_1 \propto T^{-1}$ relation is found, T_1 decreasing much faster for higher T's. For reasons of comparison, previously obtained T_1 data [13] on TO samples is also included in fig. 3.

Clearly, there are two remarkable differences between the two interface types. Firstly, the [111] P_{b0} center appears much less saturable (about a factor of 1000 at 4.2 K) when prevailing at the Si/native SiO₂ interface than when placed in a TO structure. Secondly, a significantly different T dependence for both interface types emerges, indicating two different spin-relaxation mechanisms to be operative. Likely, the behaviour of the [111] P_{b0} defect located at the Si/native SiO₂ interface is to be explained by the interaction of the [111] P_{b0} unpaired electron spin with an at the interface accumulated conduction electron (CE) layer, i.e., a kind of Korringa relaxation. The CE layer may arise as a result of the action of positive fixed oxide charge N_{ox} residing close to the Si/SiO2 interface in a nonstoichiometric thin "SiO2 layer" and which does not exchange charge with the Si; the presence of the latter $N_{\rm ox}$ is generally agreed upon [14]. The $N_{\rm ox}$ is known to be strongly dependent on the oxidation process (anneal temperature) and to be relatively more expressed in Si/native oxide structures, which may explain the difference in spin-lattice relaxation between the two interface types. In view of the "short" T_1 values observed for the [111] P_{b0} Si/native SiO₂ center, another possible explanation, i.e., the direct-phonon relaxation mechanism [15], is held improbable.

3.3. ²⁹Si hyperfine interaction

An interesting detail in the P_{b0} spectrum is the ²⁹Si hyperfine structure, which observation supplies valuable information on the character and extension of the wavefunction. As shown in fig. 2, these signals could be observed at K band, in spite of their low amplitude (each signal is expected to contain only 2.35% of the main signal's intensity). The observed hyperfine splitting, i.e., $a^{\rm hf} = 159 \pm 2$ G, is in good agreement with previous observations on TO samples [4], and also with observations on thermally treated [11] samples. However, the hf linewidth observed for $\boldsymbol{B} \parallel [111]$, namely $\Delta B_{pp}^{hf} = 14.8 \pm 0.5$ G is significantly broader than the TO one [4] (~8-9 G). As the hyperfine interaction is known to be highly sensitive to fluctuations in local environments, this result bears out the presence of a broader variation of distortions on the local configuration of P_{b0} in the Si/native oxide structure compared to the TO situation. This affirms the previous conclusion drawn from the observed broader $\Delta B_{\rm pp}^{\rm G}$ for the Si/native SiO₂ structure. The ratio in spectra intensities of the hf signals to the Zeeman resonance is found to be 0.03, in fair agreement with expectations.

4. Conclusive remarks

As clearly shown, the P_{b0} signal exhibits well-resolved differences in its ESR spectrum between the various "types" of Si/SiO_2 interfaces studied. This, in fact, is as expected since the ESR features are extremely sensitive to local structural alterations; it is known that the Si/SiO_2 interfacial regions do not come out identical over the various preparations techniques and one can hardly imagine a probe more sensitive to the particular interface morphology than the P_{b0} center.

Various differences in the ESR spectra of the P_{b0} center when residing in either TO or Si/native SiO₂ structures are noticed like, e.g., spectra composition, line shape and width, g tensor and T dependence. However, regarding the comparison of different oxidation methods, two main items are striking. The first one concerns the markedly differing spin-relaxation behaviour of the unpaired P_{b0} electron for the two interface types compared. Secondly, the Si/native SiO₂ interface contains a higher degree of strain-induced local disorder. This clearly relates to the differing physico-chemical structure of the particular interfaces compared; the chemical composition of the interface has previously been found to be Si₂O and SiO for the Si/native SiO₂ and TO interfaces respectively [16].

References

- [1] See, for example,
 - E.H. Nicolian and J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982);
 - F.J. Grunthaner, P.J. Grunthaner, M.H. Hecht and D. Lawson, in: Insulating films on Semiconductors, Eds. J.J. Simonne and J. Buxo (North-Holland, Amsterdam, 1986) p. 1, and references therein.
- [2] Y. Nishi, Japan. J. Appl. Phys. 5 (1966) 333; 10 (1971) 52.
- [3] P.J. Caplan, E.H. Poindexter, B.E. Deal and R.R. Razouk, J. Appl. Phys. 50 (1979) 5847; E.H. Poindexter, P.J. Caplan, B.E. Deal and R.R. Razouk, J. Appl. Phys. 52 (1981) 879.
- [4] K.L. Brower, Appl. Phys. Letters 43 (1983) 1111.
- [5] S.T. Pantelides, Phys. Rev. Letters 57 (1986) 2979.
- [6] A. Stesmans, Z. Phys. Chem. (NF) 151 (1987) 191.
- [7] See, e.g., D.L. Griscom, J. Appl. Phys. 58 (1985) 2524, and references therein.
- [8] R.C. Barklie, A. Hobbs and P.L.F. Hemment, Radiation Effects 99 (1986) 83.
- [9] A. Stesmans and J. Braet, in: Insulating Films on Semiconductors, Eds. J.J. Simonne and J. Buxo (North-Holland, Amsterdam, 1986) p. 25.
- [10] K.L. Brower, Phys. Rev. B33 (1986) 4471.
- [11] A. Stesmans, Appl. Phys. Letters 48 (1986) 972.
- [12] T.G. Castner, Jr., Phys. Rev. B115 (1959) 1506.
- [13] J. Braet and A. Stesmans, Physica (1984) 463.
- [14] See, e.g., W.A. Pliskin and R.A. Gdula, in: Handbook on Semiconductors, Vol. 3, Ed. S.P Keller (North-Holland, Amsterdam, 1980) p. 641.
- [15] See, e.g., P.L. Scott and C.D. Jeffries, Phys. Rev. 127 (1962) 32.
- [16] See, e.g., C.R.M. Grovenor, A. Cerezo and G.D.W. Smith, in: Layered Structures, Epitaxy and Interfaces, Eds. J.M. Gibson and L.R. Dawson (Materials Research Society, Pittsburgh, PA, 1985) p. 199.