Point Visibility

Arturo González Peñaloza Dulce Julieta Mora Hernández

Universidad Nacional Autónoma de México

16 de mayo de 2024

1. Introducción

- 1.1 Definiciones Fundamentales
- 1.2 Algoritmo para cierre convexo en O(n)
- 1.3 Cierre Convexo en O(n)
- 1.4 Punto en polígono

2. Calculando la visibilidad de un punto

3. Algoritmo para calcular V(q)

- 3.1 Algoritmo
- 3.2 Complejidad
- 3.3 Ejemplo

Polígono de visibilidad

El *polígono de visibilidad* V(q) de un punto q en un polígono simple P es el conjunto de todos los puntos de P que son visibles desde q.

$$V(q) = \{ p \in P \mid q \operatorname{sees} p \}$$

3 2

V(q)

Figura: Polígono simple

Figura: Polígono con hoyos

Figura: Conjunto de lineas

Sea ab una arista en el perímetro de V(q) de manera que

- Ningún punto de ab, excepto a y b, pertenecen al perímetro de P
- q, a y b son colineales
- a o b es un vértice de P

La arista ab se llama arista construida de V(q)

Revoluciones

Para un polígono simple P y un punto $z \in P$, el *número de revoluciones* de P con respecto a z es el número de revoluciones que el perímetro de P hace alrededor de z.

Si el número de revoluciones de P respecto a z es uno, P es llamado non-winding polygon.

El número de revoluciones de P respecto a q es dos

El número de revoluciones de P respecto a q es una

Algoritmo para calcular CH en O(n)

```
1. t \leftarrow -1: b \leftarrow 0:
    v_1 \leftarrow \text{input}; v_2 \leftarrow \text{input}; v_3 \leftarrow \text{input};
    if (v_1, v_2, v_3) > 0
          then begin push v_1; push v_2; end
          else begin push v_2; push v_1; end
    push v_3; insert v_3;
2. v \leftarrow \text{input};
    until (v, d_b, d_{b+1}) < 0 or (d_{t-1}, d_t, v) < 0
          do v \leftarrow input end:
3. until (d_{t-1}, d_t, v) > 0 do pop d_t end;
    push v;
4. until (v, d_b, d_{b+1}) > 0 do remove d_b end;
    insert v:
    goto 2
```


Algoritmo de Melkman

Los polígonos simples simplifican el proceso de calcular su cierre convexo. El algoritmo de Melkman es una herramienta que aprovecha esta propiedad.

Algoritmo de Melkman

- 1. $D \leftarrow (p_2, p_1, p_1)$ // Se agregan a una deque dos puntos consecutivos del polígono.
- 2. Para $i \leftarrow 3$ a n hacer:
 - 2.1 Si p_i está fuera del ángulo $v_{t-1}v_tv_{b+1}$, entonces
 - 2.1.1 Mientras p_i esté a la izquierda de $\overrightarrow{v_b v_{b+1}}$, entonces se saca desde abajo de D.
 - 2.1.2 Mientras p_i esté a la derecha de $\overrightarrow{v_t v_{t-1}}$, entonces se saca desde arriba de D.
 - 2.2 Se agrega a p_i , al inicio y al final de D.

Observación

Si tomamos los primeros tres vértices de la deque (leidos de izquierda a derecha), obtenemos una vuelta a la derecha. Si tomamos los últimos tres vértices de la deque (leidos de derecha a izquierda), obtenemos una vuelta a la izquierda.

Figura: Polígono simple

Figura: Polígono simple con su cierre convexo

Se agrega a la deque dos puntos consecutivos del polígono.

c está a la derecha de \overrightarrow{ab} , entonces se saca desde abajo de D.

 $a \mid b$

Se agrega a c al inicio y al final de la deque.

d está a la izquierda de \overrightarrow{ca} , entonces se saca desde abajo de la deque.

Se agrega a *d* al inicio y al final de la deque.

e se encuentra a la derecha de \overrightarrow{dc} , entonces se saca desde arriba de la deque.

e se encuentra a la derecha de \overrightarrow{cb} , entonces se saca desde arriba de la deque.

Se agrega a e al inicio y al final de la deque.

f está a la derecha de \overrightarrow{eb} , así que se saca desde arriba de la deque.

f está a la derecha de \overrightarrow{ba} , así que se saca desde arriba de la deque.

Se agrega a f al inicio y al final de la deque.

Complejidad

Si el polígono tiene n vértices, entonces se realizan a lo más 2n inserciones y 2n-3 eliminaciones. Así, el algoritmo es O(n).

Punto en poligono

Un problema geométrico es determinar si un punto específico está dentro o fuera de un polígono dado.

Figura: Punto *q* fuera de polígono.

Figura: Punto q dentro de polígono.

Método del rayo

1. Se traza una línea horizontal desde el punto hacia la derecha a lo largo del eje x.

Algoritmo para

Método del rayo

- 1. Se traza una línea horizontal desde el punto hacia la derecha a lo largo del eje x.
- 2. Se cuenta el número de intersecciones con las aristas del polígono:
 - 2.1 Si el número de intersecciones es par, entonces el punto está afuera del polígono.
 - 2.2 En otro caso, el punto está dentro del polígono.

Complejidad

- Se traza una línea horizontal desde el punto hacia la derecha a lo largo del eje x.
 O(1)
- 2. Se cuenta el número de intersecciones con las aristas del polígono: O(n)
 - 2.1 Si el número de intersecciones es par, entonces el punto está afuera del polígono. **O(1)**
 - 2.2 En otro caso, el punto está dentro del polígono. O(1)

Complejidad: O(n)

Calculando la visibilidad de un punto

El problema

Non-winding polygon: O(n) algorithm

El primer paso del algoritmo es determinar si q se encuentra dentro o fuera de P.

Figura: q se encuentra dentro de P

Figura: q se encuentra fuera de P

Existen dos situaciones:

- q se encuentra fuera del cierre convexo de P
- q se encuentra fuera de P pero dentro del cierre convexo de P

Algoritmo para

Si q se encuentra fuera del cierre convexo de P

- Trazamos dos tangentes (digamos, qv_i y qv_j) a partir de q hacia el cierre convexo de P.
- 2. Ahora q es un punto interno de P.

Observación

Sea bd(P) el perímetro de P. Notemos que todos los puntos visibles del bd(P) a partir de q se encuentran entre v_i y v_j viendo hacia q.

Si q se encuentra fuera de P pero dentro del cierre convexo de P

- 1. Trazamos una línea a partir de q que pase por cualquier vértice v_k de P (denotado como $\overrightarrow{qv_k}$).
- Sea q' el punto más cercano a q entre todos los puntos de las intersecciones de aviccon bd(P).
- A partir de q' recorremos bd(P) en el sentido de las manecillas del reloj(y en sentido contrario) hasta que un vértice v_i del cierre convexo (respectivamente, v_i) se alcanza.
- 4. Ahora, q es un punto dentro de P

A partir de ahora, se considera que el punto q es un punto interno de P. Por lo que, de ahora en adelante, se asume que bd(P) no tiene winding alrededor de q.

El problema es calcular V(q) de P de q.

Observación

Sea $bd(v_i, v_k)$ el límite en sentido antihorario de P desde v_i hasta v_k .

También asumimos que los vértices (y los puntos finales de las *aristas construidas*) en $bd(v_0v_{i-1})$, las cuales se encuentran para ser visibles desde q por el procedimiento, son colocadas en un stack en el orden en que son encontradas, donde v_0 y v_{i-1} están en la parte inferior y superior del stack, respectivamente.

Contamos con los siguientes casos

- 1. El vértice v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$
- 2. El vértice v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$
 - 2.1 El vértice v_i se encuentra a la derecha de $\overrightarrow{v_{i-2}v_{i-1}}$
 - 2.2 El vértice v_i se encuentra a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$

Calculando la visibilidad de un punto

Caso 1

El vértice v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$

Como v_i y los vértices y puntos en el stack se encuentran ordenados por el ordenamiento angular respecto a q, v_i es ingresado al stack.

El vértice v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$

Puede observarse que v_{i-1} y v_i no pueden ser visibles por q ya que qv_i es intersectado por $bd(v_0, v_{i-1})$ o qv_{i-1} es intersectado por $bd(v_{i+1}, v_n)$

Caso 2a

El vértice v_i se encuentra a la derecha de $\overrightarrow{v_{i-2}v_{i-1}}$

El vértice v; y algunos de los vértices subsecuentes de vi (que serán revisados) no son visibles desde q.

Sea $v_{k-1}v_k$ la primer arista desde v_{i+1} en $bd(v_{i+1}, v_n)$, en sentido antihorario de manera que $v_{k+1}v_k$ intersecta $\overrightarrow{qv_{i-1}}$.

Sea z el punto de intersección.

El vértice v_i se encuentra a la derecha de $\overrightarrow{v_{i-2}v_{i-1}}$

Veamos que v_k se encuentra a la izquierda de $\overrightarrow{qv_{v_{i-1}}}$ ya que bd(P) does not wind around q. Entonces, ningún vértice de $bd(v_i, v_{v_{k-1}})$ es visible desde q y por consiguiente, z es el siguiente punto de v_{i-1} en $bd(v_{i-1}, v_n)$ visible desde q. Así que, v_iz es una arista construida de V(q), donde q, v_{i-1} y z son puntos colineales.

Caso 2b

El vértice v_i se encuentra a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$

El vértice v_{i-1} y algunos de los vértices anteriores de v_i (quien está actualmente en el stack) no son visibles desde q. Sacamos a v_i del stack.

Sea u vértice que se encuentra en la parte superior del stack. La arista $v_{i-1}v_i$ es conocida como arista frontal. Mientras $v_{i-1}v_i$ intersecta uq y u es un vértice de P, realizamos pop al stack.

Después de ejecutar el backtracking, pueden suceder dos situaciones

- i. $v_{i-1}v_i$ no intersecta uq
- ii. $v_{i-1}v_i$ intersecta uq

Caso 2b.i

$v_{i-1}v_i$ no intersecta uq

Si v_{i+1} se encuentra a la derecha de $\overrightarrow{qv_i}$, el backtracking continua con v_iv_{i+1} como la *arista frontal* actual.

De otra forma, v_{i+1} se encuentra a la izquierda de $\overrightarrow{av_i}$.

$v_{i-1}v_i$ no intersecta uq

Sea m el punto de intersección de $\overrightarrow{qv_i}$ con la arista del polígono que contiene u

Si v_{i+1} se encuentra a la derecha de $\overrightarrow{v_{i-1}v_i}$, entonces termina el backtracking.

Caso 2b.i

$v_{i-1}v_i$ no intersecta uq

Ingresamos m y v_{i+1} al stack y v_{i+1} se convierte en el nuevo v_i .

Si v_{i+1} se encuentra a la izquierda de $\overrightarrow{v_{i-1}v_i}$, revisamos $bd(v_{i+1},v_n)$ desde v_{i+1} hasta que un vértice v_k es encontrado de manera que la arista $v_{k-1}v_k$ intersecta mv_i . El backtracking continua con $v_{k-1}v_k$ como la arista frontal actual

Introducción

Caso 2b.ii

$v_{i-1}v_i$ intersecta uq

u no es un vértice de P. Sea w el vértice que se encuentra justo debajo de u en el stack. Por lo que, uw es una arista construida

Caso 2b.ii

$v_{i-1}v_i$ intersecta uq

Sea p el punto de intersección de uq y $v_{i-1}v_i$. Si $p \in qw$, la visibilidad de ambos, u y w desde q esta bloqueada por $v_{i-1}v_i$. Vaciamos el stack.

El backtracking continua y $v_{i-1}v_i$ permanece como la *arista frontal*.

Caso 2b.ii

$v_{i-1}v_i$ intersecta uq

De otra forma, $v_{i-1}v_i$ ha intersectado uw como p pertenece a uw.

Checamos $bd(v_{i+1,v_n})$ desde v_{i+1} hasta encontrar un vértice v_k tal que la arista $v_{k-1}v_k$ ha sido intersectada por wp en algún punto (digamos, z). Así que, todo bd(w,z)(a excepción de w y z) no es visible por q. Vaciamos el stack.

Caso 2b.ii

$v_{i-1}v_i$ intersecta uq

Ingresamos a z y a v_k al stack. Por lo que, v_{k+1} se convierten en el nuevo v_i . Puede suceder que la arista construida que termina en u (digamos, uu') haya sido calculada por el Caso 2b al final de la fase de backtracking. Esto significa que el vértice u' es el último vértice en el stack que va a ser sacado en la fase de backtracking actual. Por lo tanto, q, w y z no son colineales. Los sacamos del stack y notemos que nos encontramos la primera situación del backtracking actual.

Algoritmo para calcular V(q)

Algoritmo para calcular V(q)

- 1. Ingresamos a v_1 al stack y i := i + 1. Si i = n + 1 Ir al Paso 8.
- 2. Si v_i se encuentra a la izquierda de $\overrightarrow{qv_{i-1}}$ entonces *Ir al Paso 1*
- 3. Si v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$ y $\overrightarrow{v_{i-2}v_{i-1}}$ entonces
 - 3.1 Checar desde v_{i+1} en sentido antihorario hasta encontrar un vértice v_k tal que $v_{k-1}v_k$ intersecta $\overrightarrow{qv_{i-1}}$. Sea z el punto de intersección.
 - 3.2 Ingresamos z al stack. i := k e Ir al Paso 1.
- 4. Si v_i se encuentra a la derecha de $\overrightarrow{qv_{i-1}}$ y a la izquierda de $\overrightarrow{v_{i-2}v_{i-1}}$ entonces
 - 4.1 Sea u el elemento que se encuentra en la parte superior del stack. Realizamos pop al stack.
 - 4.2 Mientras u sea un vértice y $v_{i-1}v_i$ intersecte uq, realizamos pop al stack.

- 5. Si $v_{i-1}v_i$ no intersecta uq entonces
 - 5.1 Si v_{i+1} se encuentra a la derecha de $\overrightarrow{qv_i}$ entonces i := i+1 e *Ir al Paso 4b*.
 - 5.2 Sea m el punto de intersección de $\overrightarrow{qv_i}$ y la arista que contiene a u. Si v_{i+1} se encuentra a la derecha de $\overrightarrow{v_{i-1}v_i}$ entonces ingresamos m al stack y vamos al vamos va
- 6. Sea w el vértice que se encuentra justo debajo de u en el stack. Sea p el punto de intersección entre $v_{i-1}v_i$ y uq. Si $p \in qw$ o q, w y u no son colineales entonces realizamos pop al stack y vamos al paso 4b.
- 7. Checamos desde v_{i+1} en sentido antihorario hasta encontrar un vértice v_k tal que $v_{k-1}v_k$ intersecte wp. Insertamos el punto de intersección al stack, asignamos k a i y vamos al Paso 1.
- 8. Generamos V(q) sacando todos los vértices y puntos del stack y nos detenemos.

Figura: Polígono con punto q

Ejemplo

Calculamos el cierre convexo.

calcular V(q)

Ejemplo

Trazamos una línea a partir de q que pase por un vértice de P.

calcular V(q)

Ejemplo

Encontramos al punto más cercano a q de las intersecciones de $\overrightarrow{qv_k}$ con bd(P).

calcular V(q)

Introducción

Calculando la visibilidad de un punto Algoritmo para calcular V(q)

Ejemplo

Encontramos a v_i y v_j .

Ahora q es un punto interno del polígono conseguido.

TODO

 v_0

 $v_2 = v_1 = v_0$

Ejemplo

Ejemplo

Ejemplo

TODO

 $v_2 = v_1 = v_0$

calcular V(q)

bilidad de un punto

Ejemplo

Ejemplo

Ejemplo

Algoritmo para calcular V(q)

TODO fdsaf dfs asf sad fas fas fsad TODO fdsaf dfs asf sad fas fas fsadTODO fdsaf dfs asf sad fas fas fsad

Complejidad del algoritmo

Invariante

El algoritmo mantiene una invariante de que los vértices y puntos en la pila en cualquier etapa están ordenados angularmente con respecto a q.

Revisemos paso a paso la complejidad del algoritmo

- 1. Inicialización: O(1)
- 2. La ejecución recorre los n vértices una vez y para cada vértice se realizan operaciones en el stack: O(n)

Complejidad Total: O(n)

Gracias por su atención

Arturo González Peñaloza Dulce Julieta Mora Hernández