Problem

 $B=\{\langle M_1\rangle,\langle M_2\rangle,\ldots\}_{\text{be a Turing-recognizable language consisting of TM descriptions. Show that there is a decidable language C consisting of TM descriptions such that every machine described in B has an equivalent machine in C and vice versa.}$

Step-by-step solution

Step 1 of 2

In order to solve this problem, we need to know the definition of enumerator and some theorems

Enumerator:-

An enumerator is a Turing machine that consist a work tape and the output tape. It outputs the strings by using the work tape without accepting any input.

Also we use the following theorem

Theorem 1:

"A language is Turing - decidable if and only if some enumerator enumerates the strings of this language in lexicographic order"

Comment

Step 2 of 2

Consider the language $B = \left\{\left\langle M_1 \right\rangle, \left\langle M_2 \right\rangle...\right\}$

B is a Turing recognizable language.

 ${\it C}$ is a language consisting of Turing machines descriptions.

Consider E be the enumerator for the Turing recognizable language B.

Construct an enumerator E_{o} which output the strings of C in lexicographic order.

From the above Theorem1, C is decidable.

Enumerator E_o simulates E.

When E gives the ith TM $\langle M_i \rangle$ as output, then enumerator E_o pads M_i by adding sufficiently many extra useless states to obtain a new TM M_i' where the length of $\langle M_i' \rangle$ is greater than the length of $\langle M_{i-1}' \rangle$. Then E outputs $\langle M_i' \rangle$.

Thus simulation occurs in both directions.

Therefore, E_o and E are equivalent.

Comments (1)