Math156 Final Project Neural Network Report

Group 5

7/22/2020

PART I. Loading data and Define helper functions

```
Vdata <- read.csv("../data/videogames.csv")</pre>
#Vdata <- Vdata[as.numeric(as.character(Vdata$Year_of_Release)) > 2009, ] # only game after 2010
Vdata <- Vdata[(!is.na(Vdata$Critic_Score)),] # remove missing values
Anova_test <- function(classifier, data = Vdata) {</pre>
  summary(aov(data$Global_Sales ~ data[[classifier]]))
get_freq <- function(x, breaks) {</pre>
  len <- length(breaks)</pre>
  res <- numeric(len)</pre>
  for (i in seq_len(len)) {
    res[i] <- sum(breaks[i] < x & x <= breaks[i+1])</pre>
  }
  res
}
get_density <- function(x, breaks, by) {</pre>
  res <- get_freq(x, breaks) / (length(x) * by)</pre>
  res
get_density_idx <- function(gs) {</pre>
  ceiling(20 * gs)
}
testclass <- function(classifier, data=Vdata){</pre>
  table <- tapply(Vdata$Global_Sales, Vdata[[classifier]], function(x){x})</pre>
  table[[1]] <- NULL
  par(mfrow = c(1, 2))
  boxplot(table, las = 3, cex=0.2, pch=20)
  boxplot(table, ylim=c(0,5), las = 3, cex=0.2, pch=20)
  Anova_test(classifier)
}
rangef <- function(x, divider=5) {</pre>
  x %/% divider * divider + divider/2
```

Name ÷	Platform	Year_of_Release	Genre ÷	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	User_Score	User_Cour
Wii Sports	Wii	2006	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76	51	8	322
Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NA	NA		NA
Mario Kart Wii	Wii	2008	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82	73	8.3	709
Wii Sports Resort	Wii	2009	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80	73	8	192
Pokemon Red/Po	GB	1996	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37	NA	NA		NA
Tetris	GB	1989	Puzzle	Nintendo	23.20	2.26	4.22	0.58	30.26	NA	NA		NA
New Super Mario	DS	2006	Platform	Nintendo	11.28	9.14	6.50	2.88	29.80	89	65	8.5	431
Wii Play	Wii	2006	Misc	Nintendo	13.96	9.18	2.93	2.84	28.92	58	41	6.6	129
New Super Mario	Wii	2009	Platform	Nintendo	14.44	6.94	4.70	2.24	28.32	87	80	8.4	594
Duck Hunt	NES	1984	Shooter	Nintendo	26.93	0.63	0.28	0.47	28.31	NA	NA		NA
Nintendogs	DS	2005	Simulation	Nintendo	9.05	10.95	1.93	2.74	24.67	NA	NA		NA
Mario Kart DS	DS	2005	Racing	Nintendo	9.71	7.47	4.13	1.90	23.21	91	64	8.6	464
Pokemon Gold/P	GB	1999	Role-Playing	Nintendo	9.00	6.18	7.20	0.71	23.10	NA	NA		NA
Wii Fit	Wii	2007	Sports	Nintendo	8.92	8.03	3.60	2.15	22.70	80	63	7.7	146

Figure 1: Snapshot of Data

PART II. Heuristically explore the effect of each paramemter

Anova test on Genre

Avona test on Platform

Anova Publisher

Plot Global Sale \sim Paramemter

 $\operatorname{Critic_Score}$ defines an upper bound

 $Critic_Score \times Critic_count$ no useful finding

```
plot((Vdata$Critic_Score*Vdata$Critic_Count), ylim=c(0, 5), Vdata$Global_Sales, cex=0.1)
```


plot(sqrt(Vdata\$Critic_Score*Vdata\$Critic_Count), ylim=c(0, 5), Vdata\$Global_Sales, cex=0.1)

plot(log(Vdata\$Critic_Score*Vdata\$Critic_Count), ylim=c(0, 5), Vdata\$Global_Sales, cex=0.1)

Test multicolineality

```
cor.test(as.numeric(as.character(Vdata$User_Score)), Vdata$Critic_Score)
## Warning in cor.test(as.numeric(as.character(Vdata$User_Score)),
## Vdata$Critic_Score): NAs introduced by coercion
##
    Pearson's product-moment correlation
##
##
## data: as.numeric(as.character(Vdata$User_Score)) and Vdata$Critic_Score
## t = 59.769, df = 7015, p-value < 2.2e-16
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
    0.5651609 0.5961733
## sample estimates:
##
         cor
## 0.5808778
```

Focus on Critic score

```
#plot((Vdata$Critic_Score), Vdata$Global_Sales, cex=0.1, ylim=c(0,20))
x <- seq(0,100,len=1000)
y <- 1/1500*x^2
idx <- Vdata$Global_Sales <= (Vdata$Critic_Score)^2/1500
plot((Vdata$Critic_Score)[idx], Vdata$Global_Sales[idx], cex=0.1)
lines(x,y,lty=3,col="red")</pre>
```



```
plot(factor((Vdata$Critic_Score)[idx]), ylim=c(0,5),Vdata$Global_Sales[idx], cex=0.1)
f <- 1/20000000*x^4+1/150000000*x^5+0.2
t <- 1/50000000*x^4
m <- 1/80000000*x^4+1/2000000000*x^5+0.1
lines(x,f,lty=2,col="red")
lines(x,t,lty=2,col="blue")
lines(x,m,lty=2,col="green")</pre>
```



```
# 5 range
Vdata <- Vdata[idx, ]
Vdata <- Vdata[Vdata$Global_Sales <= 4, ]
ran <- rangef(Vdata$Critic_Score)
plot(factor(ran), ylim=c(0,5), Vdata$Global_Sales, cex=0.1)</pre>
```


Sale for Critic Score within [35 , 40]

Sale for Critic Score within [40 , 45]

Sale for Critic Score within [45 , 50]

Sale for Critic Score within [50,55]

Sale for Critic Score within [55,60]

Sale for Critic Score within [60 , 65]

Sale for Critic Score within [65,70]

Sale for Critic Score within [70,75]

Sale for Critic Score within [75,80]

Sale for Critic Score within [80,85]

Sale for Critic Score within [85, 90]

The goal is to approximate the blue density curve given the value of Critic Score

Objective function: $\sum (f(CS, GS) - \hat{f}(CS, GS))^2$

```
ran <- rangef(Vdata$Critic_Score)
dataf <- data.frame("Global_Sale" = numeric(0), "Critic_Score" = numeric(0), "Density" = numeric(0))
for (i in seq(11)) {
    gs <- Vdata$Global_Sales[ran == (32.5+5*i)]
    cs <- Vdata$Critic_Score[ran == (32.5+5*i)]
    ccount <- log10(Vdata$Critic_Count[ran == (32.5+5*i)])
    ds <- get_density(Vdata$Global_Sales[ran == (32.5+5*i)], seq(0,4,by=0.05), 0.05)
    ds_idx <- get_density_idx(gs)
    cs_range <- 32.5+5*i
    ds <- ds[ds_idx]
    dataf <- rbind(dataf, cbind(gs, cs_range,ccount, cs,ds))
}
write.csv(dataf, "CS_GL_FQ.csv")</pre>
```

Use elu 4-6-2-1 network Adam MSE:0.039741843938827515

```
Pdata <- read.csv('predictedData.csv')
for (i in seq(11)) {</pre>
```

Sale for Critic Score within [35, 40]

Sale for Critic Score within [40 , 45]

Sale for Critic Score within [45 , 50]

Sale for Critic Score within [50 , 55]

Sale for Critic Score within [55,60]

Sale for Critic Score within [60 , 65]

Sale for Critic Score within [65,70]

Sale for Critic Score within [70,75]

Sale for Critic Score within [75,80]

Sale for Critic Score within [80 , 85]

Sale for Critic Score within [85,90]

Sale for Critic Score within [35 , 40]

Sale for Critic Score within [40 , 45]

Sale for Critic Score within [45 , 50]

Sale for Critic Score within [50 , 55]

Sale for Critic Score within [55,60]

Sale for Critic Score within [60 , 65]

Sale for Critic Score within [65,70]

Sale for Critic Score within [70,75]

Sale for Critic Score within [75,80]

Sale for Critic Score within [80,85]

Sale for Critic Score within [85,90]

