Inference for Dynamic Treatment Regimes: Non-regular Asymptotics under Different Settings

Yating Zou

Gillings School of Public Health University of North Carolina at Chapel Hill

Nov 11, 2022

Overview

- Intro to Paper Inference of Value Function for RL in Infinite-Horizon Settings¹
- Regularity Conditions
 - What are they?
 - When is there a problem?
 - How to solve?
- 3 Asymptotic Inference for DTR when Using:
 - Outcome Weighted Learning (OWL)
 - Reinforcement learning (RL)
 - Finite Horizon
 - Infinite Horizon *

¹Shi et al., (2021)

Motivating Example

Mobile Health - infinite timepoints, needs to find the best policy when there's no pre-determined stopping point.

Question:

How to Quantify Uncertainty using asymptotic Confidence Intervals (CI) for the Value function associated with the estimated optimal DTR?

Other Major Contributions:

- Non-asyptotic error bound
- Characterize the approximation error for the Value Function.
- Valid in non-regular cases where opt DTR is not unique
- Converge as long as either n or $t \to \infty$.

Other Major Contributions:

- Converge as long as either n or $t \to \infty$.
- Non-asyptotic error bound
- Characterize the approximation error for the Value Function.
- Valid in *non-regular* cases where opt DTR is not unique

Quantifying Uncertainty

Recall Basic Ingredients in Reinforcement Learning:

Recall Standard Notations:

- Markov Decision Process (MDP): (X, A, P, γ, R) , where
 - ullet X a subspace of \mathbb{R}^d
 - $\mathcal{A} = \{0, 1, \dots, m-1\}$
 - $\mathcal{P}(S|x,a)$ transition probability given x and a
 - γ the discount factor
 - R: $\mathbb{X} \times \mathcal{A} \to \mathbb{R}$, $R(x, a) := \mathbb{E}(Y | X = x, A = a)$
- Policy $\pi(\cdot|x): \mathcal{X} \to \mathcal{P}(\mathcal{A})$, a probability distribution over \mathcal{A}
- Value Function associated with a Policy:

$$V(\pi; x) = \sum_{t \ge 0} \gamma^t \mathbb{E}^{\pi} (Y_t | X_{t=0} = x)$$
$$Q(\pi; x, a) = \sum_{t \ge 0} \gamma^t \mathbb{E}^{\pi} (Y_t | X_{t=0} = x, A_{t=0} = a)$$

• Goal: Use data $\{(X,A,Y)_{i,t}\}_{i\in\{1,2,\ldots,n\},t\geq 0}$,

Find $\pi^* \in \arg\max_{\pi \in \Pi} V^\pi$, and quantify its uncertainty

Big Picture:

- $\pi^* \in \arg\max_{\pi \in \Pi} V^{\pi}$ (Why exist?)
- Value Function can be formulated using either Q or V (Why? Which?)
- Don't know the Value Function → Estimate (How?)

Big Picture:

• $\pi^* \in \arg\max_{\pi \in \Pi} ValueFunction^*$ (Why exist?)

Add Assumptions

Denote history up to and not including t as $H_t = \{(Y_j, X_j, A_j)\}_{0 \leq j < t}$

Markov Assumption (MA):

$$Pr(X_{t+1} \in S | X_t = x, A_t = a, H_t) = \mathcal{P}(S | x, a)$$
 , for S any subset of $\mathbb X$

Onditional Mean Independence Assumption (CMIA):

$$\mathbb{E}(Y_t|X_t = x, A_t = a, H_t) = \mathbb{E}(Y_t|X_t = x, A_t = a) = r(x, a)$$

- 3 There exists at least one optimal policy π^* such that $V(\pi^*;x) \geq V(\pi;x)$, $\forall \pi,x$ (Puterman, 1994)
- Value Function can be formulated using either Q or V (Why? Which?)
- Don't know the Value Function → Estimate (How?)

Big Picture:

• $\pi^* \in \arg\max_{\pi \in \Pi} ValueFunction^*$ (Why π^* exist?)

Fixed Point Theorem

 $lue{1}$ Bellman Operator $\mathcal{B}:\mathcal{F} o\mathcal{F}$, where \mathcal{F} is a space of functions on \mathcal{S}

$$\|\mathcal{B}V_1 - \mathcal{B}V_2\|_{\infty} \le \gamma \|V_1 - V_2\|_{\infty}$$

- 2 Fixed Point Theorem: The sequence $V, \mathcal{B}V, \mathcal{B}^2V, \dots$ converges for every V, and the limit V^* is a unique fixed point, 'fixed' in the sense $\mathcal{B}V^* = V^*$
- 3 Rmk: V^* unique, but π might not be unique.

- Value Function can be formulated using either Q or V (Why? Which?)
- Don't know the Value Function → Estimate (How?)

Big Picture:

- $\pi^* = \arg \max ValueFunction^*$ (Why exist?)
- Value Function can be formulated using either Q or V (Why? Which?)

Infinite-Horizon

- $V^*(s) = Q^*(s, \pi^*(s))$
- Don't know the Value Function → Estimate (How?)

Big Picture:

- $\pi^{opt} = \arg \max ValueFunction^{opt}$ (Why exist?)
- Value Function can be formulated using either Q or V (Why? Which?)

Take Into Account our goal of Inference

When would there be sufficient smoothness?

- ① When π is not continuous in a for any given x, $V(\pi; \cdot)$ would not be continuous \to Raising a problem for non-constant deterministic policy.
- 2 When $r(\cdot,a)$ is smooth, $Q(\pi,\cdot,a)$ is p-smooth \to Can deal with both deterministic and random policies.
- Don't know the Value Function → Estimate (How?)

Big Picture:

- $\pi^{opt} = \arg \max ValueFunction^{opt}$ (Why exist?)
- Value Function can be formulated using either Q or V (Why? Which?)

Another Advantage

① If use V, need to estimate the data generating behavior policy, say b(a|x), and adjust the value function $V(\pi;X)$ by a weight $\frac{\pi(A,X)}{b(A,X)}$

$$0 = \mathbb{E}\left[\frac{\pi(A_t; X_t)}{b(A_t; X_t)} (Y_t + \gamma V(\pi, X_{t+1}) - V(\pi, X_t)) | X_t = x_t\right]$$

Don't know the Value Function → Estimate (How?)

Big Picture:

- $\pi^{opt} = \arg \max ValueFunction^{opt}$ (Why exist?)
- Value Function can be formulated using either Q or V (Why? Which?)
- Don't know the Value Function → Estimate (How?)

A Common Solution – Linear Parametrization

① $Q(\pi; x, a) = \Phi_L(x)^\intercal \beta_{\pi, a}, \ \forall x \in \mathbb{X}, a \in \mathcal{A}, \text{ where } \Phi_L(\cdot) = \{\phi_{L,1}(\cdot), \phi_{L,2}(\cdot), \cdots, \phi_{L,L}(\cdot)\}^\intercal \text{ a vector of } L \text{ basis functions.}$

$$\begin{split} V(\pi;x) &= \sum_{a \in \mathcal{A}} Q(\pi;x,a) \pi(a|x) \\ &= \sum_{a \in \mathcal{A}} \Phi_L(x)^\intercal \beta_{\pi,a} \pi(a|x) = U_\pi(x)^\intercal \beta_\pi \end{split}$$

All Together - Inference under a fixed policy (thus unique):

- 1 parametrize $Q(\pi;x,a) = \Phi_L^T(x)\beta_{\pi,a}$
- 2 Estimate β from the Bellman Equation

$$\mathbb{E}\left[\left\{Y_{t} + \gamma \sum_{a \in \mathcal{A}} Q(\pi; X_{t+1}, a) \pi(a | X_{t+1}) - Q(\pi; X_{t}, A_{t}) \middle| X_{t}, A_{t}\right]\right\} = 0$$

temporal difference error

 $oldsymbol{3}$ obtain CI for $\widehat{V}(\pi;\mathbb{G})$, \mathbb{G} a reference distribution for X, using

$$\frac{V(\pi; \mathbb{G}) - \widehat{V}(\pi; \mathbb{G})}{(nT)^{-1/2}\widehat{\sigma}(\pi; \mathbb{G})}$$

$$= \frac{(nT)^{-1/2}}{\sigma(\pi; \mathbb{G})} \sum_{i,t} \left\{ \int U_{\pi}(x) \mathbb{G}(x) \right\}^{T} \Sigma_{\pi}^{-1} \xi_{i,t} \epsilon_{\pi,i,t} + o_{p}(1)$$

All Together - Inference under an estimated policy (possibly not unique):

- $oxed{1}$ parametrize $Q(\pi;x,a)=\Phi_L^T(x)eta_{\pi,a}$
- $oldsymbol{2}$ Estimate eta from the Bellman Equation
- $oldsymbol{3}$ obtain CI for $\widehat{V}(\widehat{\pi};\mathbb{G})$, \mathbb{G} a reference distribution of X, using

$$\begin{split} & \frac{V(\widehat{\pi}; \mathbb{G}) - \widehat{V}(\widehat{\pi}; \mathbb{G})}{(nT)^{-1/2} \widehat{\sigma}(\widehat{\pi}; \mathbb{G})} \\ = & \frac{(nT)^{-1/2}}{\sigma(\widehat{\pi}; \mathbb{G})} \sum_{i,t} \left\{ \int \underbrace{U_{\widehat{\pi}}(x) \mathbb{G}(x)}_{\widehat{\pi}} \right\}^{T} \underbrace{\Sigma_{\widehat{\pi}}^{-1} \xi_{i,t} \epsilon_{\widehat{\pi},i,t}}_{\widehat{\pi}} + o_{p}(1) \end{split}$$

Section 2: Regularity

smoothness... uniqueness...

But what is 'Regularity', specifically?

Section 2: Regularity

Usually, the steps to quantifying uncertainty: point approximation \rightarrow local approximation

```
\begin{array}{c} {\sf asymptotically\ unbiased\ (consistency)} \\ \to {\sf asymptotic\ normality} \\ \to {\sf smallest\ possible\ variance\ (efficiency)} \\ \to {\sf finite\ inference} \end{array}
```

We usually assume regularity conditions to begin with proving these results. The specific conditions differ case-by-case.

A example using M-estimators For $\{m(X, \theta) : \theta \in \Theta\}, m_{\theta} : \mathbb{X} \to \mathbb{R}, \{X_i\}_{i=1,\dots,n}$ i.i.d.

- Assume the true parameter $\theta_0 = \arg\min_{\theta \in \Theta} Pm(X, \theta)$
- However, only have \widehat{P}_n , an empirical measure. So $\widehat{\theta}_n = \arg\min_{\theta \in \Theta} \widehat{P}_n m(X, \theta) = \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i \leq n} m(X_i, \theta)$

How good does $\widehat{\theta}$ approximate θ_0 ? Assume consistency: $\widehat{\theta}_n = \theta_0 + o_p(1)$

Consistency:

- θ_0 is the unique minimizer of $Pm(X,\theta)$
 - Assume a true θ_0 exist (a philosophical argument...)
 - Assume θ_0 can be identified
- ullet $\widehat{ heta}_n$ is the unique minimizer of $\widehat{P}_n m(X, heta)$
 - If $m(X, \theta)$ continuous in θ , a compact parameter space
 - exist by Extreme Value Theorem
- If $\widehat{P}_n m(X, \theta) \to Pm(X, \theta)$ uniformly over Θ
- Then $\widehat{\theta}_n o \theta_0$ in probability

Local quadratic approximation using Taylor Expansion:

$$f(x) = f(a) + f^{(1)}(a)(x-a) + \frac{1}{2}f^{(2)}(a)(x-a)^2 + \cdots$$

Replace x with θ_0 , a with $\widehat{\theta}_n$, integrate over \widehat{P}_n of a random variable X:

$$\widehat{P}_n m(X, \widehat{\theta}_n) = \frac{1}{n} \sum_{i \le n} \left\{ m(X_i, \theta_0) + m^{(1)}(X_i, \theta_0) d + \frac{1}{2} m^{(2)}(X_i, \theta_0) d^2 + R_n(|d|^3) \right\}$$

where $d = (\widehat{\theta}_n - \theta_0)$.

Equivalently, in a cleaner, vector form, with $Z_n = \frac{1}{\sqrt{n}} \sum_{i \leq n} m^{(1)}(X_i, \theta_0)$, $J_n = \sum_{i \leq n} m^{(2)}(X_i, \theta_0)$

Local approximation

$$\widehat{P}_n m(X,\widehat{\theta}_n) - \widehat{P}_n m(X,\theta_0) = \tfrac{1}{\sqrt{n}} d^\intercal Z_n + \tfrac{1}{2} d^\intercal J_n d + R_n(|d|^3)$$

- If we want to minimize this expression
- Consider the existence of such expansion and the validity of desired operations under a distributional argument

Local approximation

$$\widehat{P}_n m(X, \widehat{\theta}_n) - \widehat{P}_n m(X, \theta_0) = \frac{1}{\sqrt{n}} d^\intercal Z_n + \frac{1}{2} d^\intercal J_n d + R_n(|d|^3)$$

Classical Regularity Conditions:

If at θ_0 , there is a neighborhood $\mathcal{N}(\theta_0)$ of $\theta_0 = \arg\min_{\theta} Pm(X, \theta)$, with $\theta \in \Theta$, satisfying

- Interior Point:
 - θ_0 an interior point of Θ (otherwise zero derivative might not be equivalent to being an extreme point)
- Smoothness within $\mathcal{N}(\theta_0)$:
 - For almost all x under P, derivatives up to the third order exists and derivatives up to the second order can go under the integral sign.
 - $J = Pm^{(2)}(X, \theta_0)$, the Fisher Information, is positive definite.
 - $R_n(|d|^3)$ can be bounded, that is, $sup_{\theta\in\Theta}|m^{(3)}(x,\theta)|\leq M(x)$, with $\mathbb{E}M(X)<\infty$.

Local approximation

$$\widehat{P}_n m(X, \widehat{\theta}_n) - \widehat{P}_n m(X, \theta_0) = \frac{1}{\sqrt{n}} d^\intercal Z_n + \frac{1}{2} d^\intercal J_n d + R_n(|d|^3)$$

Under regularity conditions, with $\widehat{\theta}_n \stackrel{p}{\to} \theta_0$, show

- $R_n(|d|^3)/|d|^3 \stackrel{p}{\to} 0$
- $J_n \stackrel{p}{\to} J$ (if J exists, by WLLN)
- $\widehat{\theta}_n$ within $o_p(1/n)$ in minimizing $P_nm(X,\theta)$

Then

- $\widehat{\theta}_n = \theta_0 J_n^{-1} Z_n / \sqrt{n} + o_p (1 / \sqrt{n})$
- If $Z_n \stackrel{d}{\to} N(0,\Sigma)$, then $\sqrt{n}(\widehat{\theta}_n \theta_0) \stackrel{d}{\to} N(J^{-1}\Sigma J)$

Section 2: Regularity – Semiparametric Model

Asymptotic Inference under Semiparametric Setting The von Mises Expansion:

$$\begin{split} \sqrt{n}(\widehat{\Psi} - \Psi) &= \sqrt{n} \int \phi(O_i, \widehat{P}_n) d(\widehat{P}_n - P)(O) + R_2(\widehat{P}_n, P) \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \{\phi(O_i, P)\} - \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^n \{\phi(O_i, \widehat{P}_n)\}}_{\text{Plug-in bias}} \\ &+ \underbrace{\sqrt{n}(P_n - P)\{\phi(O, \widehat{P}_n) - \phi(O, P)\}}_{\text{Empirical Process Term}} + \underbrace{R_2(\widehat{P}_n, P)}_{\text{Remainder}}. \end{split}$$

- First term: $\stackrel{d}{\rightarrow} \mathcal{N}(0, Var(\phi(O, P)))$
- Empirical Process term: assume Donsker condition / use cross-validation
- Remainder term: by controlling convergence rate of nuisance parameter

Rmk: Here, a similar problem of non-smoothness would be pathwise non-differentiable.

Section 3: Uncertainty in DTR

When is there a problem of Regularity in DTR research?

Recall Models related to DTR:

Reinforcement Learning

A possible issue:

Greedy Gradient Q-Learning (Ertefaie & Strawderman, 2018)

$$0 = \mathbb{E}\Big[R^{t} + \gamma \max_{a \in \mathcal{A}} Q^{*}(S^{t+1}, a) - Q^{*}(s^{t}, a^{t}))|S^{t} = s^{t}, A^{t} = a^{t}\Big]$$

Reinforcement Learning

$$Q_2(H_2, A_2) = \mathbb{E}[Y_2 | H_2, A_2] \tag{1}$$

$$Q_1(H_1, A_1) = \mathbb{E}[Y_1 + \max_{a_j} Q_2(H_2, a_2) | H_1, A_1]$$
 (2)

Consider a linear model with ψ our parameter of interest:

$$Q(H, A; \beta, \phi) = \beta^T H_1 + (\psi^T H_2) A,$$

where $A \in \{-1, 1\}, H = (H_1, H_2)^T$

Then in step (2),

$$\widehat{Y}_1 = Y_1 + \widehat{\beta}_2^T H_{2,0} + |\widehat{\psi}_2^T H_{2,1}| \text{, non-smooth in } \psi$$

$$\widehat{Y}_1 = Y_1 + \widehat{\beta}_2^T H_{2,0} + |\widehat{\psi}_2^T H_{2,1}|$$
 , non-smooth in ψ

Hard Threshold:

$$|\widehat{\psi}_{2}^{T}H_{2,1}|I\left\{\frac{\sqrt{n}|\widehat{\psi}_{2}^{T}H_{2,1}|}{\sqrt{H_{2,1}^{\mathsf{T}}\widehat{\Sigma}_{2}H_{2,1}}} \geq z_{\alpha/2}\right\}$$

Soft Threshold:

$$|\hat{\psi}_{2}^{T}H_{2,1}|I\Big(1-\frac{\lambda}{|\hat{\psi}_{2}^{\intercal}H_{2,1}|^{2}}\Big)^{+}$$

mitigate the problem

Outcome Weighted Learning

DTR as a weighted classification problem:

Single stage OWL (Zhao et al., 2012)
 Minimize classification risk

$$\mathbb{E}\Big[\frac{Y}{b(A,X)}I(A \neq \pi(X))\Big]$$

Finite Multi-stage OWL (Zhao et al., 2015)
 Minimize weighted cumulative risk

$$\mathbb{E}\Big[\frac{(\sum_{j=t}^{T} Y_j) \prod_{j=t+1}^{T} I(A_j = \pi_j^*(H_j))}{\prod_{j=t}^{T} b_j(A_j, H_j)} I(A_t \neq \pi_t(H_t))\Big]$$

mitigate the problem using convex surrogates

What about Bootstrap?

When the estimator non-smooth,

- "n out of n bootstrap" would be inconsistent.
- "m out of n bootstrap" would be consistent with valid asymptotics as both m and n goes large. (Bickel, 2008)
 - However, it will sacrifice convergence rate and would introduce a data-adaptive tunning parameter m which might not be obvious. Its use for small sample is limited partly because performance is sensitive to m.

References

- Andrews, D. W. K. Inconsistency of the Bootstrap When a Parameter is on the Boundary of the Parameter Space. Econometrica 68, 399–405. ISSN: 00129682, 14680262. http://www.jstor.org/stable/2999432 (2022) (2000).
- Bickel, P. J. & Sakov, A. On the choice of m in the m out of n Bootstrap and Confidence Bounds for Extrema.
 Statistica Sinica 18, 967–985, ISSN: 10170405, 19968507, http://www.istor.org/stable/24308525 (2022) (2008)
- Ertefaie, A. & Strawderman, R. L. Constructing dynamic treatment regimes over indefinite time horizons. Biometrika 105, 963–977 (Dec. 2018).
- Goldberg, Y. & Kosorok, M. R. Q-Learning with Censored Data. Annals of statistics 40 1, 529–560 (2012).
- In, Ian, Ing, Uen & Heung. Generalization Error Bounds of Dynamic Treatment Regimes in Penalized Regression-Based Learning. in (2021).
- Luckett, D. J. et al. Estimating Dynamic Treatment Regimes in Mobile Health Using V-Learning. Journal of the American Statistical Association 115, 692–706 (2020).
- Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st. ISBN: 0471619779 (John Wiley & Sons, Inc., USA, 1994).
- Shao, J. Bootstrap Sample Size in Nonregular Cases. Proceedings of the IEEE (1994).
- Shi, C., Zhang, S., Lu, W. & Song, R. Statistical inference of the value function for reinforcement learning in infinite-horizon settings. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 84, 765–793
- Song, R., Wang, W., Zeng, D. & Kosorok, M. R. Penalized Q-Learning for Dynamic Treatment Regimens. Statistica Sinica 25, 901–920 (July 2015).
- Zhao, Y. Q. et al. Doubly Robust Learning for Estimating Individualized Treatment with Censored Data. Biometrika 102 1, 151–168 (2015).
- Zhao, Y.-Q., Zeng, D., Laber, E. B. & Kosorok, M. R. New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes. *Journal of the American Statistical Association* 110, 583–598 (2015).
- Zhao, Y.-Q., Zeng, D., Rush, A. J. & Kosorok, M. R. Estimating Individualized Treatment Rules Using Outcome Weighted Learning. Journal of the American Statistical Association 107, 1106–1118 (2012).
- Weighted Learning. Journal of the American Statistical Association 107, 1106–1118 (2012).
 Zhou, X., Mayer-Hamblett, N., Khan, U. & Kosorok, M. R. Residual Weighted Learning for Estimating Individualized