

Introduction to 3D graphics

3D Graphics is a key technology for developing computer game.

• It takes as input 3D representations of objects and performs various calculations on them to produce images called *frames*.

Introduction to 3D graphics

Consecutive changes of frames produce an illusion of movement (or motion).

- In film, producing a frame often takes as long as minute or hour for a single frame (off-line rendering). In return, photorealistic frames will be obtained.
- In game, at least 30 frames should be rendered in a second.

consecutive frames produce an illusion of movement

3D graphics

In video games, frames must be produced at a very high speed (at least 30 frames per second).

- We call this real-time rendering (or real-time computer graphics).
- The algorithms and techniques used in real-time graphics are fairly different from those in off-line graphics.
- For example, water simulation is easier to achieve in filmmaking than in games.
 - In filmmaking, we can theoretically spend an infinite amount of time rendering a single frame.
 - In games, we can spend up to 0.034 seconds rendering a single frame.

3D graphics

In video games, frames must be produced at a very high speed (at least 30 frames per second).

A game requires real-time dynamics!

3D Graphics Production

The major steps in 3D computer graphics production.

- Pre-Production: This includes ideation and design.
- Production: This includes Layout, Modeling, Texturing, Rigging, Animation, Lighting, and Rendering.
- Post-Production: This includes Additional VFX, Color correction, etc.

Modeling & Texturing

A *model* is referred to as a computer representation of an object such as a polygon mesh, and *modeling* is the process of creating the objects comprising the virtual scenes.

• The scope of modeling includes creating *textures*.

Texturing is referred to as a work of paving a texture onto an object's surface.

Rigging

Let's imagine that we want to render a baseball player.

- A baseball player should be able to hit a ball, run, and slide into a base, i.e., we need to animate the player.
 - For this purpose, we usually specify the skeleton of the player.
 - We then define how the skeletal motion deforms the player's polygon mesh.
 - For example, the polygons of the arm are made to move when the arm bone is lifted.
 - This process is often referred to as rigging.

Animation

The graphics artist creates a sequence of motions.

- A widely used approach is a key frame animation.
- It defines a set of positions and performs smooth transitions between them.

keyframe 1

keyframe 2

Rendering

Rendering is the process of generating a 2D image from a 3D scene.

- Rendering is similar to taking a picture with a camera.
- Multiple models can be specified in a single scene.
- Then the scene is captured with a virtual camera.
- Rendering includes many computational process such as lighting and texturing.

3D object in a scene

rendering result

Post-production

As an optional step, post-production uses a set of special operations to give additional effects to the rendered images.

This includes adding VFX, color correction, etc.

post-production enhances the quality of the scene

Advanced topics

So far, we have overviewed major steps in 3D graphics production.

- In each step, there are many challenges to producing realistic scenes faster.
- For example, producing a photorealistic frame requires more than a minute. This is impractical for games.
- Reducing the workload on graphic designers is also actively researched. (for modeling, rigging, animation, etc.)

Then, let's take a look at the advanced topics.

Physics simulation

Physics is one of the key components to reproduce realistic scenes in the game.

- The key task in simulation is solving the physics equations.
- Unfortunately, it is impossible to accurately calculate all the physical quantities present in a scene.
- Therefore, rather than accurately simulate the game world, it aims to provide approximate simulation in real-time.

what happens next?

Physics simulation

Computational cost increases as the accuracy of physics engine increases.

- Physics engines usually perform approximate simulations.
 - Instead of calculating the physical quantities of all objects, a constant approximation value is sometimes used.
 - Minor physical quantities are sometimes ignored.
- However, this inevitably produces unrealistic simulation results.

Mesh and animation generation

Generating mesh and animation usually requires animator's intensive labor.

- This problem could be mitigated by using automatic generation techniques.
- These days, deep neural network and reinforcement learning techniques have widely been used.

Data-driven Animation

Data-driven animation can produce a large variety of animations without the animator's intensive

labor.

Data-driven Animation

Data-driven animation can produce a large variety of animations without the animator's intensive labor.

- When grasping a 3D object, the animation should be changed depending on the geometry and usage of the object.
- However, it is impossible to create the appropriate animations for all kinds of objects.
- To resolve this problem, a data-driven animation approach has been introduced.

Image, Texture, and Mesh Synthesis

Synthesis is the process of creating new contents from some form of contents description.

These days, neural network based techniques have shown photorealistic results.

End

This class aims to teach students about basic theories of 3D computer graphics.

- We will focus more on real-time graphics.
- The GPU architecture will also be briefly introduced.

I hope you enjoy this class ^^!

More 3D game graphics related videos can be found in IIIXR LAB YouTube.