ORGANIC FERTILIZER

Fertiliser: materials occurring naturally or commercially produced for application to soil

add deficient nutrients
costs 20% of all crop productions
increases yield by 50%

Profitable when:

based on soil test added in efficient manner soil is managed

Unprofitable when:

soil moisture limited
pest and adverse temps are problem
increased yield has less market value than cost of fertilizer

Principles of Organic Gardening:

soil food web - microorganisms provide nutrients to plants and soil

Soil Organism

Photosynthesizer: plants, algae&bacteria capture energy, fix CO2

Decomposers: bacteria & fungi break down residue retain nutrients in biomass

Mutualist: bacteria & fungi enhance plant growth fix nitrogen deliver nutrients

Earthworms

break down residue enhance soil structure

Requirements of living system:

- food
- air
- water
- shelter
- living organism

Feeding soil a balanced diet:

- compost
- cover crops
- organic mulches
- organic residues
- other organic nutrients

Organic VS. Chemical Fertilizers

Organic slower the rate of release in response to environmental factors: soil moisture and temperature

Chemicals are bad for environment

Advantages

mild, non-caustic materials
slow release = available longer
high OM content = improvement in soil
sources of many essential elements

Disadvantages

low concentration of nutrients
slow release
concentration is too low to supply needs
expensive

Organic amendments

- increase OM content in soil
- · increase nutrient storage capabilities
- supplies plant nutrients
- stabilizes pH
- · promotes beneficial microbial populations

Pre-plant preparation

- soil analysis
- adjust pH
- · adding soil amendments prior to planting

Fertilizers: ratio on the bag

total N available P2O5 Soluble K2O

Law of minimum

Justus vol Liebig

Role of Mineral Nutrients

affect crop quality and yield

direct

indirect

N excess make cell swollen

Manure

low nutrition per volume rapidly decay heat generating unpleasant odor

Cover Crops

green manure
grasses/legumes
planted after harvest of primary crop
benefits:

reduced soil erosion
improve soil structure
suppress weeds, insects, diseases
enhance soil fertility

Compost

- · organic fertilizer produced by composing organic materials
- organic waste -> biological reduction -> compost
- greens(N-rich material) and browns(C-rich material)
- · composting methods:

without aeration

slow, smelly

with aeration

rapid, not smelly

conventional composting

layer organic materials (30cm)
overlay with animal manure (5cm)
repeat 4-5 times
water

cover on top with soil to keep humid

To make quicker compost, make a good mixture, control temperature, aerate compost heap, optimize humidity and add effective microorganisms.

composting requires heating and covering with white fiber.

why compost?

cheap

simple

no chemicals which kill soil organisms

better plant and water quality

why compost is better than manure?

clean (heating kills pathogenic disease) no smell

what should not be used as organic fertilizers?

heavy metal/toxin contaminated materials strong acid/base

wood - hard to decompose

diseased manure

green manure with risk of weed

Crop Residue

portion of plant remaining in soil after harvest maintains OM can harbor disease and insect pests: avoided by crop rotation benefits:

increased OM content increased soil aggregation prevents soil crusting, erosion improves water infiltration rates provides nutrients

Mulches

keep soil cool in summer
retain soil moisture
adds organic matter, helps in nutrition
improves soil structure
reduce weed pressure
increase soil water holding capacity

Ground vs. Foliar

Ground: most efficient way to apply nitrogen, phosphorus, potassium, magnesium

Foliar: boron, zinc, copper, manganese