$$A = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 6 & 6 \end{bmatrix}$$

We leave it to the reader to verify that the eigenvalues of this matrix are $\lambda_1 = 2$ and

SECTION 6.1 EXERCISES

1. Find the eigenvalues and the corresponding eigenspaces for each of the following matrices:

(a)
$$\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 6 & -4 \\ 3 & -1 \end{bmatrix}$$

(c)
$$\begin{cases} 3 & -1 \\ 1 & 1 \end{cases}$$

(d)
$$\begin{bmatrix} 3 & -8 \\ 2 & 3 \end{bmatrix}$$

$$(\mathbf{g}) \quad \begin{cases} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{cases}$$

(g)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (h)
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{bmatrix}$$

(i)
$$\begin{cases} 4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{cases}$$

$$\mathbf{(k)} \begin{cases} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{cases}$$

- 2. Show that the eigenvalues of a triangular matrix are the diagonal elements of the matrix.
- **3.** Let A be an $n \times n$ matrix. Prove that A is singular if and only if $\lambda = 0$ is an eigenvalue of A.
- 4. Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .
- **5.** Let A and B be $n \times n$ matrices. Show that if none of the eigenvalues of A are equal to 1, then the matrix equation

$$XA + B = X$$

will have a unique solution.

- **6.** Let λ be an eigenvalue of A and let x be an eigenvector belonging to λ . Use mathematical induction to show that, for $m \ge 1$, λ^m is an eigenvalue of A^m and **x** is an eigenvector of A^m belonging to λ^m .
- 7. Let A be an $n \times n$ matrix and let $B = I 2A + A^2$.
 - (a) Show that if x is an eigenvector of A belonging to an eigenvalue λ , then **x** is also an eigenvector

of B belonging to an eigenvalue μ of B. How are λ and μ related?

- **(b)** Show that if $\lambda = 1$ is an eigenvalue of A, then the matrix *B* will be singular.
- **8.** An $n \times n$ matrix A is said to be idempotent if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix, then λ must be either 0 or 1.
- **9.** An $n \times n$ matrix is said to be *nilpotent* if $A^k = O$ for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0.
- **10.** Let A be an $n \times n$ matrix and let $B = A \alpha I$ for some scalar α . How do the eigenvalues of A and B compare? Explain.
- 11. Let A be an $n \times n$ matrix and let B = A + I. Is it possible for *A* and *B* to be similar? Explain.
- **12.** Show that A and A^T have the same eigenvalues. Do they necessarily have the same eigenvectors? Explain.
- 13. Show that the matrix

$$A = \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right]$$

will have complex eigenvalues if θ is not a multiple of π . Give a geometric interpretation of this result.

- **14.** Let A be a 2×2 matrix. If tr(A) = 8 and det(A) =12, what are the eigenvalues of A?
- **15.** Let $A = (a_{ij})$ be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that

$$\lambda_j = a_{jj} + \sum_{i \neq j} (a_{ii} - \lambda_i)$$
 for $j = 1, \dots, n$

- **16.** Let A be a 2 × 2 matrix and let $p(\lambda) = \lambda^2 + b\lambda + c$ be the characteristic polynomial of A. Show that $b = -\operatorname{tr}(A)$ and $c = \operatorname{det}(A)$.
- 17. Let λ be a nonzero eigenvalue of A and let x be an eigenvector belonging to λ . Show that $A^m \mathbf{x}$ is also an eigenvector belonging to λ for $m = 1, 2, \dots$

- 18. Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. If $A \lambda I$ has rank k, what is the dimension of the eigenspace corresponding to λ ? Explain.
- **19.** Let *A* be an $n \times n$ matrix. Show that a vector **x** in either \mathbb{R}^n or \mathbb{C}^n is an eigenvector belonging to *A* if and only if the subspace *S* spanned by **x** and A**x** has dimension 1.
- **20.** Let $\alpha = a + bi$ and $\beta = c + di$ be complex scalars and let A and B be matrices with complex entries.
 - (a) Show that

$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$$
 and $\overline{\alpha\beta} = \overline{\alpha} \overline{\beta}$

(b) Show that the (i,j) entries of \overline{AB} and $\overline{A}\overline{B}$ are equal and hence that

$$\overline{AB} = \overline{A} \ \overline{B}$$

- **21.** Let Q be an orthogonal matrix.
 - (a) Show that if λ is an eigenvalue of Q, then $|\lambda| = 1$.
 - **(b)** Show that $|\det(Q)| = 1$.
- **22.** Let Q be an orthogonal matrix with an eigenvalue $\lambda_1 = 1$ and let \mathbf{x} be an eigenvector belonging to λ_1 . Show that \mathbf{x} is also an eigenvector of Q^T .
- **23.** Let Q be a 3×3 orthogonal matrix whose determinant is equal to 1.
 - (a) If the eigenvalues of Q are all real and if they are ordered so that $\lambda_1 \geq \lambda_2 \geq \lambda_3$, determine the values of all possible triples of eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$.
 - (b) In the case that the eigenvalues λ_2 and λ_3 are complex, what are the possible values for λ_1 ? Explain.
 - (c) Explain why $\lambda = 1$ must be an eigenvalue of Q.
- **24.** Let $\mathbf{x}_1, \dots, \mathbf{x}_r$ be eigenvectors of an $n \times n$ matrix A and let S be the subspace of \mathbb{R}^n spanned by $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r$. Show that S is *invariant* under A (i.e., show that $A\mathbf{x} \in S$ whenever $\mathbf{x} \in S$).
- **25.** Let *A* be an $n \times n$ matrix and let λ be an eigenvalue of *A*. Show that if *B* is any matrix that commutes with *A*, then the eigenspace $N(A \lambda I)$ is invariant under *B*.
- **26.** Let $B = S^{-1}AS$ and let **x** be an eigenvector of *B* belonging to an eigenvalue λ . Show that S**x** is an eigenvector of *A* belonging to λ .
- **27.** Let *A* be an $n \times n$ matrix with an eigenvalue λ and let **x** be an eigenvector belonging to λ . Let *S* be a nonsingular $n \times n$ matrix and let α be a scalar. Show that if

$$B = \alpha I - SAS^{-1}, \quad \mathbf{y} = S\mathbf{x}$$

- then **y** is an eigenvector of *B*. Determine the eigenvalue of *B* corresponding to **y**?
- **28.** Show that if two $n \times n$ matrices A and B have a common eigenvector \mathbf{x} (but not necessarily a common eigenvalue), then \mathbf{x} will also be an eigenvector of any matrix of the form $C = \alpha A + \beta B$.
- **29.** Let A be an $n \times n$ matrix and let λ be a nonzero eigenvalue of A. Show that if \mathbf{x} is an eigenvector belonging to λ , then \mathbf{x} is in the column space of A. Hence the eigenspace corresponding to λ is a subspace of the column space of A.
- **30.** Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be an orthonormal basis for \mathbb{R}^n and let A be a linear combination of the rank 1 matrices $\mathbf{u}_1\mathbf{u}_1^T, \mathbf{u}_2\mathbf{u}_2^T, \dots, \mathbf{u}_n\mathbf{u}_n^T$. If

$$A = c_1 \mathbf{u}_1 \mathbf{u}_1^T + c_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + c_n \mathbf{u}_n \mathbf{u}_n^T$$

show that A is a symmetric matrix with eigenvalues c_1, c_2, \ldots, c_n and that \mathbf{u}_i is an eigenvector belonging to c_i for each i.

- **31.** Let *A* be a matrix whose columns all add up to a fixed constant δ . Show that δ is an eigenvalue of *A*.
- **32.** Let λ_1 and λ_2 be distinct eigenvalues of A. Let \mathbf{x} be an eigenvector of A belonging to λ_1 and let \mathbf{y} be an eigenvector of A^T belonging to λ_2 . Show that \mathbf{x} and \mathbf{y} are orthogonal.
- **33.** Let *A* and *B* be $n \times n$ matrices. Show that
 - (a) If λ is a nonzero eigenvalue of AB, then it is also an eigenvalue of BA.
 - (b) If $\lambda = 0$ is an eigenvalue of AB, then $\lambda = 0$ is also an eigenvalue of BA.
- **34.** Prove that there do not exist $n \times n$ matrices A and B such that

$$AB - BA = I$$

[Hint: See Exercises 10 and 33.]

35. Let $p(\lambda) = (-1)^n (\lambda^n - a_{n-1} \lambda^{n-1} - \dots - a_1 \lambda - a_0)$ be a polynomial of degree $n \ge 1$, and let

$$C = \left[\begin{array}{cccccc} a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & \cdots & 1 & 0 \end{array} \right]$$

- (a) Show that if λ_i is a root of $p(\lambda) = 0$, then λ_i is an eigenvalue of C with eigenvector $\mathbf{x} = (\lambda_i^{n-1}, \lambda_i^{n-2}, \dots, \lambda_i, 1)^T$.
- (b) Use part (a) to show that if $p(\lambda)$ has n distinct roots then $p(\lambda)$ is the characteristic polynomial of C

The matrix C is called the *companion matrix* of $p(\lambda)$.

At time t = 0, we have

$$x_1(0) = x_2(0) = 0$$
 and $x'_1(0) = x'_2(0) = 2$

It follows that

$$c_1 + c_3 = 0$$

 $c_1 - c_3 = 0$ and $c_2 + \sqrt{3}c_4 = 2$
 $c_2 - \sqrt{3}c_4 = 2$

and hence

$$c_1 = c_3 = c_4 = 0$$
 and $c_2 = 2$

Therefore, the solution to the initial value problem is simply

$$\mathbf{X}(t) = \left(\begin{array}{c} 2\sin t \\ 2\sin t \end{array} \right)$$

The masses will oscillate with frequency 1 and amplitude 2.

APPLICATION 3 Vibrations of a Building

For another example of a physical system, we consider the vibrations of a building. If the building has k stories, we can represent the horizontal deflections of the stories at time t by the vector function $\mathbf{Y}(t) = (y_1(t), y_2(t), \dots, y_k(t))^T$. The motion of a building can be modeled by a second-order system of differential equations of the form

$$M\mathbf{Y}''(t) = K\mathbf{Y}(t)$$

The mass matrix M is a diagonal matrix whose entries correspond to the concentrated weights at each story. The entries of the stiffness matrix K are determined by the spring constants of the supporting structures. Solutions of the equation are of the form $\mathbf{Y}(t) = e^{i\sigma t}\mathbf{x}$, where \mathbf{x} is an eigenvector of $A = M^{-1}K$ belonging to an eigenvalue λ and σ is a square root of λ .

SECTION 6.2 EXERCISES

1. Find the general solution of each of the following systems:

(a)
$$y'_1 = y_1 + y_2$$
 (b) $y'_1 = 2y_1 + 4y_2$
 $y'_2 = -2y_1 + 4y_2$ $y'_2 = -y_1 - 3y_2$

(c)
$$y'_1 = y_1 - 2y_2$$
 (d) $y'_1 = y_1 - y_2$
 $y'_2 = -2y_1 + 4y_2$ $y'_2 = y_1 + y_2$

(e)
$$y'_1 = 3y_1 - 2y_2$$
 (f) $y'_1 = y_1 + y_3$ $y'_2 = 2y_1 + 3y_2$ $y'_2 = 2y_2 + 6y_3$ $y'_3 = y_2 + 3y_3$

(a)
$$y'_1 = -y_1 + 2y_2$$

 $y'_2 = 2y_1 - y_2$
 $y_1(0) = 3, y_2(0) = 1$

(b)
$$y'_1 = y_1 - 2y_2$$

 $y'_2 = 2y_1 + y_2$
 $y_1(0) = 1, y_2(0) = -2$

(c)
$$y'_1 = 2y_1 - 6y_3$$

 $y'_2 = y_1 - 3y_3$
 $y'_3 = y_2 - 2y_3$
 $y_1(0) = y_2(0) = y_3(0) = 2$

(d)
$$y'_1 = y_1 + 2y_3$$

 $y'_2 = y_2 - y_3$
 $y'_3 = y_1 + y_2 + y_3$
 $y_1(0) = y_2(0) = 1, y_3(0) = 4$

3. Given

$$\mathbf{Y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_n e^{\lambda_n t} \mathbf{x}_n$$

is the solution to the initial value problem:

$$\mathbf{Y}' = A\mathbf{Y}, \qquad \mathbf{Y}(0) = \mathbf{Y}_0$$

(a) show that

$$\mathbf{Y}_0 = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n$$

- (b) let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and $\mathbf{c} = (c_1, \dots, c_n)^T$. Assuming that the vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent, show that $\mathbf{c} = X^{-1}\mathbf{Y}_0$.
- **4.** Two tanks each contain 100 liters of a mixture. Initially, the mixture in tank *A* contains 40 grams of salt while tank *B* contains 20 grams of salt. Liquid is pumped in and out of the tanks as shown in the accompanying figure. Determine the amount of salt in each tank at time *t*.

- **5.** Find the general solution of each of the following systems:
 - (a) $y_1'' = -2y_2$ $y_2'' = y_1 + 3y_2$ (b) $y_1'' = 2y_1 + y_2'$ $y_2'' = 2y_2 + y_1'$
- **6.** Solve the initial value problem

$$y_1'' = -2y_2 + y_1' + 2y_2'$$

$$y_2'' = 2y_1 + 2y_1' - y_2'$$

$$y_1(0) = 1$$
, $y_2(0) = 0$, $y_1'(0) = -3$, $y_2'(0) = 2$

7. In Application 2, assume that the solutions are of the form $x_1 = a_1 \sin \sigma t$, $x_2 = a_2 \sin \sigma t$. Substitute these expressions into the system and solve for the frequency σ and the amplitudes a_1 and a_2 .

8. Solve the problem in Application 2, using the initial conditions

$$x_1(0) = x_2(0) = 1$$
, $x'_1(0) = 4$, and $x'_2(0) = 2$

9. Two masses are connected by springs as shown in the accompanying diagram. Both springs have the same spring constant, and the end of the first spring is fixed. If x_1 and x_2 represent the displacements from the equilibrium position, derive a system of second-order differential equations that describes the motion of the system.

10. Three masses are connected by a series of springs between two fixed points as shown in the accompanying figure. Assume that the springs all have the same spring constant, and let $x_1(t)$, $x_2(t)$, and $x_3(t)$ represent the displacements of the respective masses at time t.

- (a) Derive a system of second-order differential equations that describes the motion of this system.
- **(b)** Solve the system if $m_1 = m_3 = \frac{1}{3}$, $m_2 = \frac{1}{4}$, k = 1, and

$$x_1(0) = x_2(0) = x_3(0) = 1$$

$$x'_1(0) = x'_2(0) = x'_3(0) = 0$$

11. Transform the *n*th-order equation

$$y^{(n)} = a_0 y + a_1 y' + \dots + a_{n-1} y^{(n-1)}$$

into a system of first-order equations by setting $y_1 = y$ and $y_j = y'_{j-1}$ for j = 2, ..., n. Determine the characteristic polynomial of the coefficient matrix of this system.