Todo list

presentar o estado-da-arte	3
lock	4
Iemória DDR3, MIG, MIS	4
electMAP	4
CAP e ICAPE2	4

Capítulo 1

Revisão Bibliográfica

Este capítulo visa apresentar o estado-da-arte da reconfiguração dinâmica e da auto-reconfiguração e as ferramentas necessárias para sua realização.

1.1 Introdução

Os temas reconfiguração dinâmica, parcial e autoreconfiguração

1.1.1 Classes de Reconfiguração

Com a chegada de CPLDs e FPGAs, requisitos cada vez mais complexos foram sendo introduzidos ao projeto de sistemas digitais. Tais requisitos forçaram as ferramentas de síntese a suportar diferentes classes de reconfiguração. Note que reconfiguração diz respeito, como dito anteriormente, a modificação do comportamento, ou configuração, de um dispositivo reconfiguravel.

1.1.1.1 Reconfiguração Total

A reconfiguração total, herdada da tecnologia tradicional, compreende a mudança do comportamento de todo o dispositivo reconfigurável, sem exceção de blocos lógicos. Tal reconfiguração é bastante dispendiosa, visto que maior parte das alterações realizadas são incrementais e dizem respeito à apenas uma pequena parte do dispositivo. Apesar disto, todos os FPGAs dão suporte a este tipo de reconfiguração.

1.1.1.2 Reconfiguração Parcial

A reconfiguração parcial, ao contrário da reconfiguração total, diz respeito à programação de apenas parte de um dispositivo reconfigurável (??). Para tal, faz-se necessário a divisão do dispositivo nas chamadas partições, cada uma com sua configuração individual. Desta forma, mudanças feitas em uma partição não afetam as outras, acelerando o processo de síntese e programação. Outro processo que é acelerado é o de roteamento, uma vez que o particionamento introduz limitações no mapeamento das funções. Nem todos os FPGAs dão suporte a este tipo de reconfiguração, que pode ser realizado tanto de forma dinâmica

1.1.1.3 Reconfiguração Estática

O termo reconfiguração estática se refere a programação de um dispositivo reconfigurável enquanto ele não estiver executando. No caso em que alguma programação já tenha sido transferida para ele e ele a esteja executando, esta é parada para que o dispositivo seja configurado novamente. Por ser mais fácil de ser implementada e não necessita de circuitos adicionais, todos os FPGAs dão suporte a este tipo de reconfiguração.

1.1.1.4 Reconfiguração Dinâmica

A reconfiguração dinâmica acontece frente à necessidade de reprogramação parcial do dispositivo sem que ele pare de funcionar. As funcionalidades modificadas são interrompidas e substituidas sem afetar o funcionamento do todo. Normalmente este processo, quando não associado a autorreconfiguração, é realizado através de um circuito externo à FPGA, tal como um controlador, um microcontrolador, ou mesmo um computador, como apresentado na figura 1.1. Quase todos os FPGAs modernos dão suporte a esta tecnologia.

Figura 1.1: Imagem ilustrativa para diferenciação entre autorreconfiguração e reconfiguração externa, extraido de (??).

É implicito o uso da reconfiguração parcial com a reconfiguração dinâmica, uma vez que faz pouco sentido reconfigurar todo o FPGA enquanto ela ainda está em execução. Note que este tipo de reconfiguração em geral também necessita de uma parte permanentemente estática, para interfacear com o circuito controlador. Esta partição estática é responsável pelo menos por controlar a comunicação com o circuito controlador.

Vale lembrar que a este tipo de reconfiguração, apesar de abrir muitas possibilidades, introduz uma

necessidade de preocupação com *overheads* de reconfiguração (??). Este *overhead* é proporcional ao tamanho da partição que se deseja modificar e inversamente proporcional às velocidades das interfaces de reconfiguração. Tal fator pode se tornar crucial na escolha entre o uso desta tecnologia ou alguma outra alternativa, possivelmente multiplexada. Note que existem outros fatores que influenciam na opção por reconfiguração dinâmica, tais como preço, capacidade e potência, dentre outros, que não serão considerados aqui.

1.1.1.5 Autorreconfiguração

Modalidade de reconfiguração dinâmica parcial onde a reconfiguração do dispositivo é decidida por uma lógica pertencente a ele mesmo. Normalmente usa-se um microcontrolador ou uma máquina de estados finitos para controlar a mudança de configurações. Este tecnologia é nova e ainda representa uma forte área de pesquisa. Por isso não são todos os FPGAs que dão suporte a este tipo de reconfiguração.

Para que a autorreconfiguração aconteça, os *bitstreams*, resultado da sintetização, devem ser passados para uma memória acessível ao FPGA durante a execução do mesmo. O circuito controlador identifica então um padrão que defina a necessidade de reconfiguração e transfere o *bitstream* correspondente a esta nova necessidade para a partição destino, que assim muda seu comportamento. Note que para tal, as entradas e saídas das partições tem que ser fixas, para que a mudança nas configurações das partições não danifique o FPGA em si.

Apresentar o estado-da-arte

1.2 Ferramentas

Diversas ferramentas foram utilizadas para a realização deste trabalho. Dentre eles pode-se citar os programas da Xilinx, interpretadores da linguagem Python, Perl e Tcl, compiladores de LATEXe a ferramenta de controle de versão Git. Abaixo segue uma pequena descrição sobre estas ferramentas mais críticas.

1.2.1 Xilinx ISE Design Suite

O *ISE Design Suite* é um conjunto de ferramentas da Xilinx para o desenvolvimento de projetos de *hardware*. Estes programas estão apresentados a seguir.

1.2.1.1 Xilinx ISE Design Tools

O *ISE Design Tools*, disponível para os sistemas Windows XP (32 e 64 bits), Windows 7 (32 e 64 bits), Windows Server 2008 (64 bits), Red Hat Enterprise 5 e 6 (32 e 64 bits) e SUSE Linux Enterprise 11 (32 e 64 bits) (??), controla todos os aspectos do fluxo de projeto (??). Através do *Project Navigator*, sua principal ferramenta, é possivel acessar todas as configurações e ferramentas de implementação de configurações.

Project Navigator O <i>Project Navigator</i> é a principal ferramenta do <i>ISE Design Tools</i> . Através dela é possível criar projetos, incluir arquivos de descrição de <i>hardware</i> , seja em VHDL, Verilog ou esquemáticos construir componentes de propriedade intelectual, impor restrições e compilá-los, dentre outras coisas.
iMPACT
Core Generator
1.2.1.2 Embedded Development Kit
Xilinx Platform Studio
Xilinx Software Development Kit
1.2.1.3 PlanAhead
1.2.1.4 ChipScope
1.2.1.5 System Generator
1.2.1.6 Ferramentas de Linha de Comando
Xilinx Sinthesis Tool (XST)
1.3 Componentes
1.3.1 Intellectual Property
Clock
Memória DDR3, MIG, MIS

1.3.2 Interfaces

ICAP e ICAPE2

SelectMAP