Es02B:Circuito RC - Filtri passivi

Gruppo 1.BN Massimo Bilancioni, Alessandro Foligno, Giuseppe Zanichelli

17 ottobre 2018

1 Filtro Passa-basso

1.1

I valori misurati sono: $R_1 = (3.24 \pm 0.03) K\Omega$ e $C_1 = (9.7 \pm 0.4) nF$.

- a) La frequenza di taglio teorica è $f_T=1/2\pi R_1C_1$ che in base ai valori viene $f_T=(5.1\pm0.2)KHz$
- b) A bassa frequenza la funzione di guadagno vale

$$A \simeq 1 - \frac{f^2}{2f_t^2}$$

dove la condizione è

$$2\pi RCf \ll 1$$

c) Per f = 2kHz il guadagno vale

$$A_{V(teo)} = 0.93 \pm 0.01$$

d) Per f = 20kHz il guadagno vale

$$A_{V(teo)} = 0.24 \pm 0.01$$

Notiamo che nei punti c) e d) non siamo nel regime di basse frequenze e non possiamo usare la formula del punto b).

1.2

a) b

Partitore con resistenze da circa 1 k Valori misurati R_1 e R_2 e valore atteso di $A_{\rm exp}$:

$$R_1 = (0.988 \pm 0.008) \,\mathrm{k}\Omega, \quad R_2 = (1.187 \pm 0.01) \,\mathrm{k}\Omega, \quad A_{\mathrm{exp}} = (0.544 \pm 0.002) \,\mathrm{k}\Omega$$

1.3

a) l'attenuazione misurata vale, a 2kHz:

$$A=0.92\pm0.03$$

a 20kHz:

$$A = 0.245 \pm 0.003$$

b) i) Il valore misurato di f_T nel primo modo è:

$$f_{T,A} = 5.50kHz \pm 0.1$$

Il valore di f_T riportato nel titolo è, invece, stato ottenuto tramite fit del modello esatto effettuato con il modulo curvefit.optimize di scipy.

ii) + c) Per propagare l'errore sull'intersezione scriviamo $f_t(a,b,c) = (c-b)/a$, dove a,b,c sono i parametri di fit delle due rette; la prima retta è y=c, la seconda y=ax+b. Dopodichè faccio la varianza di quest'espressione considerando errori piccoli e la correlazione fra a e b. La formula ricavata per la varianza di $\log_{10}(f_T)$ è:

$$\frac{\sigma_{b}^{2}}{a^{2}}+\frac{\sigma_{a}^{2}(c-b)^{2}}{a^{4}}+\frac{\sigma_{c}^{2}}{a^{2}}+2\frac{\sigma_{ab}^{2}(b-c)}{a^{3}}$$

VOUT/VIN	σ VOUT/VIN	f [kHz]	σ f [kHz]
1.0	0.03	0.1	0.001
0.97	0.03	1.065	0.01
0.96	0.04	1.49	0.01
0.92	0.03	2.085	0.02
0.90	0.03	2.51	0.01
0.87	0.03	3.01	0.01
0.81	0.02	3.51	0.01
0.78	0.02	3.968	0.01
0.75	0.02	4.428	0.01
0.71	0.02	5.005	0.01
0.67	0.02	5.601	0.01
0.65	0.02	6.038	0.01
0.59	0.02	7.09	0.01
0.960	0.008	0.939	0.028
0.790	0.002	3.71	0.11
0.497	0.003	8.97	0.27
0.255	0.003	19.2	0.6
0.0790	0.0003	66.0	2
0.0406	0.0003	135.0	4
0.0184	0.0003	299.0	9
0.0103	0.0006	53.2*10	1.6*10
0.0065	0.0002	90.5*10	3.0 *10

Tabella 1: (2.b) Tabella con i dati presi e i relativi errori (sono i dati usati per costruire il grafico). Dato che V_{in} lo si è tenuto costante il suo errore sistematico è l'errore di scala della lettura, che nel diagramma di Bode ha l'effetto di traslare tutte le misure nel grafico di una quantità $\sigma_A = \frac{20\sigma_{V_{in}}}{V_{in}ln(10)}[dB] = 0.26dB$

Svolgendo i conti, viene $f_{T,B}=4.7\pm0.6.$

L'incertezza così elevata discende principalmente dal termine che tiene conto della correlazione fra a e b. Per ridurne il valore avremmo dovuto prendere molti più punti ad alte frequenze.

Figura 1: (2.b) Diagramma di Bode, la linea arancione rappresenta l'andamento atteso con i valori di R e C misurati

1.4

La misura del tempo di salita è $t_{sal} = (70 \pm 5) \mu s$

$$f_t = \frac{1.1}{\pi t_{sal}} = (5.00 \pm 0.36)kHz$$

1.5

- a) l'impedenza di ingresso del circuito è
 - a bassa frequenza infinita, è un circuito aperto per la presenza del condensatore.
 - ad alta frequenza $Z_{circuito} \sim R_1$, perchè l'impedenza del condensatore è trascurabile
 - alla frequenza di taglio $Z_{circuito} = R_1(1-j)$.
- b) Se R_c è la resistenza di carico e A_1 la funzione di trasferimento del passa-basso senza il carico, la nuova funzione di trasferimento diventa:

$$A_{1c} = v_{out}/v_{in} = \frac{A_1}{1 + \frac{R_1}{R_c}A_1}$$

Si vede che $A_{1c} \sim A_1$ nel limite in cui $R_1 \ll R_c$, che risulta ragionevolmente vero per $R_c = 100k\Omega$.

Nel caso in cui $R_c=10\,k\Omega,\,A_{1c}$ è sensibilmente diversa da A_1 , in particolare: max $|A_{1c}|=\frac{1}{1+R_1/R_C}=0.755$ (il guadagno massimo è minore di 1) e la frequenza di taglio aumenta $f_{tc} = 1.18 f_t$.

2 Filtro passa-banda

2.1

- a) I valori misurati di R_2 e C_2 sono $R_2=(3.28\pm0.03)k\Omega$ e $C_2=(102\pm4)nF$
 - b) Dalle misure risulta $A_2 = (1,00 0.01)$ e $f_2 = (491 \pm 7)Hz$.

Ci si aspetta che il massimo guadagno ad alta frequenza sia uguale a 1, mentre la frequenza di taglio attesa è:

$$f_{2,Att} = 1/(2\pi R_2 C_2) = (476 \pm 19)Hz$$

2.2

a) tramite le misure si è trovato $A_0=(0.479\pm0.008), f_L=(234\pm2)Hz$ e $f_H=(10.6\pm0.1)kHz$. I valori attesi sono rispettivamente $A_{0,Att}=\frac{1}{1+R_1/R_2}=0.503\pm0.005$ (l'incertezza deriva dall'errore sul rapporto delle resistenze), $f_{L,Att} = \frac{1}{2}f_2 = (238 \pm 10)Hz$ e $f_{H,Att} = 2f_1 = (10.2 \pm 0.4)kHz$ (in realtà il rapporto R_1/R_2 con il relativo errore modifica l'incertezza sulle frequenze attese che quindi sarà sicuramente più grande). L'errore su A_0 si è stimato guardando la minima variazione del cursore sull'oscilloscopio, l'errore su f_L e f_H si è ottenuto guardando l'intervallo di frequenze in cui l'ampiezza sull'oscilloscopio restava quella voluta.

b) La funzione di trasferimento totale del circuito è

$$A_{tot} = \frac{A_1 A_2}{1 + \frac{R_1}{R_2} A_1 A_2}$$

essendo nel nostro caso $R_1 \simeq R_2$,

$$A_{tot} \simeq \frac{A_1 A_2}{1 + A_1 A_2}$$

di conseguenza il guadagno massimo è 1/2.

Se $\omega \ll \omega_1$ allora $A_1 \simeq 1$ e

$$A_{tot} \simeq \frac{A_2}{1 + A_2} = \frac{1}{2} \frac{j\omega/(\omega_2/2)}{1 + j\omega/(\omega_2/2)}$$

da cui si vede che la frequenza di taglio teorica più bassa del passa-banda risulta $f_L = \frac{1}{2}f_2$.

Si fa un discorso analogo nel caso $\omega \gg \omega_2$ per trovare che la frequenza di taglio teorica più alta è $f_H=2f_1$ Si ha come ci si aspetta un allargamento della banda.

c) Si ha $A_{tot} \simeq A_1 A_2$ nel limite in cui $R_2 \gg R_1$, in questo limite l'impedenza del carico relativo al passabasso è così grande che si può approssimare con un circuito aperto e quindi i fue filtri si possono considerare in cascata.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.