Source: [KBe2020math401index]

1 | Reading

Openstax

Link

· #define continuity at a point

•

$$\lim_{x \to a} f(x) = f(a)$$

- · To ensure that it is defined, connected on both sides, and doesn't have a random point
- To check for continuity, just check for f(a), $\lim_{x\to a} f(x)$, and that they are equal
- · Rational functions
 - · Are continuous on their domains
 - · Basically anywhere they are defined
- Discontinuity types
 - Removable discontinuities
 - · Hole in the graph
 - · infinite is continuity
 - · asymtote
 - jump discontinuity
- · Continuity from the right and left
 - · Same as definition of continuous, but replace the limit with right and left hand limits respectively

libretexts

Link - Basically the same thing - Properties of continuous functions (group like bits) - > Let \square and \square be continuous functions on an interval \square , let \square be a real number and let \square be a positive integer. The following functions are continuous on \square . > - Sums/Differences : \square $\pm \square$ > - Constant Multiples : \square \square > - Products : \square \square > - Quotients : \square / \square (as long as \square $\neq 0$ on \square) > - Powers : \square \square > - Roots : $f(x) = \sqrt[n]{x}$ (if \square is even then \square ≥ 0 on \square ; if \square is odd, then true for all values of \square on \square .) > - Compositions : Adjust the definitions of \square and \square to: Let \square be continuous on \square , where the range of \square on \square is \square , and let \square be continuous on \square . Then \square \square , i.e., \square (\square (\square)), is continuous on \square .

Exr0n · 2020-2021 Page 1