YUANKAI LI

(+86) 156-0196-1787♦ yuankaili21@m.fudan.edu.cn

EDUCATION

Fudan University

Sept. 2021 - present

B.Eng. in Artificial Intelligence (Honor Class, Data Science Track)

GPA: 3.48/4.00 Rank: 5/26

Relevant coursework Method of Optimization(A), Stochastic Processes(A), Data Structure and Algorithm Design(A), Artificial Intelligence(Honor, A), Mathematical Statistics(Honor, A), Pattern Recognition and Machine Learning(A)

RESEARCH INTERESTS

Large Language Models(LLMs), with a specific focus on:

- Exploring and expanding the capability of LLMs to reason reliably via training, alignment and in-context learning
- Building helpful and reliable AI agents and exploring the use of LLMs in embodied AI
- Building computer systems that communicate through natural language and continuously improve through interaction

PUBLICATION

Dissecting Dissonance: Benchmarking Large Multimodal Models Against Self-contradictory Instructions

Jin Gao, **Yuankai Li**, Yixin Ye, Lei Gan, Dequan Wang Submitted to CVPR 2024

LLMs as NPCs: Toward Human-Like and Interpretable Multi-Agent Driving Simulation

Lingfeng Zhou, **Yuankai Li**, Jin Gao, Dequan Wang Submitted to ICRA 2024

RESEARCH EXPERIENCE

Demonstration Selection for In-context Learning

Shanghai AI Laboratory Dec. 2023 - Feb. 2024

Advisor: Prof. Dequan Wang and Prof. Zhijie Deng

- Proposed a training-free few-shot demonstration selection method for LLMs on knowledge-intensive QA tasks using sparse retrieval methods.
- Introduced a novel prompting paradigm that achieved 5% accuracy improvement on QA tasks including medicine and college mathematics together with the proposed demonstration selection method.
- Explored in depth what makes good demonstrations for domain-knowledge-intensive tasks.
- Contributed to a co-first-authored paper in preparation for COLM 2024.

Benchmarking LMMs against Self-contradictory Instruction
Advisor: Prof. Dequan Wang

Shanghai AI Laboratory
Sept. 2023 - Nov. 2023

• Introduced the idea of self-contradictory instructions in Large Multimodal Models(LMMs), emphasized its potential harm, and sought to benchmark and address this problem.

- Created a diverse benchmark dataset that aims to assess the capability of LMMs to handle self-contradictory instructions, covering both the language and the vision modality.
- Conducted thorough experiments on various LMMs and proved that current SOTA LMMs perform badly even when equipped with in-context learning.
- Contributed to a second-authored paper submitted to CVPR 2024.

Building LLMs Agent in Autonomous Driving Simulation Advisor: Prof. Dequan Wang

Shanghai AI Laboratory June 2023 - Sept. 2023

- Developed an autonomous driving simulation system using LLMs in the decision-making stage and devised a method to translate a series of LLM decisions into simulation trajectories.
- Proposed the idea that descriptive natural language can be used to generate rare corner case driving simulations, e.g. the vehicle executes an evasive maneuver when detecting an accident ahead.
- Through massive experiments, proved that LLMs can handle such decision-making tasks and respond accordingly to natural language.
- Contributed to a second-authored paper submitted to ICRA 2024.

PROJECT EXPERIENCE

Supervised Fine-tuning on Small Language Models

Fudan University

Course Project of Pattern Recognition and Machine Learning

Dec. 2023 - Jan. 2024

- Finetuned GPT2-small over the MOSS-002 SFT dataset and conducted various capability tests with the BigBench dataset.
- Explored the performances of models fine-tuned with different datasets, *i.e.* MOSS-002 SFT "helpful", "harmless" and "honest" dataset.
- Dealt with practical problems such as how to choose the most human-preferred model when facing over-fitting during fine-tuning.

Simple Machine Learning Framework

Fudan University

Course Project of Artificial Intelligence(Honor)

Oct. 2023 - Dec. 2023

- Redeveloped a simple machine learning framework in Python that implements a backpropagation algorithm, various neural network architectures (like MLP and CNN), manifold statistical learning models (like HMM and CRF), etc.
- Achieved accuracy over 95% in tasks like text recognition and named entity recognition (NER) classification.

AWARDS AND SCHOLARSHIPS

 1^{st} Prize, East China Mathematical Contest in Modeling (Rank 4^{th} in East China) 2^{nd} Prize, Contemporary Undergraduate Mathematical Contest in Modeling (Shanghai)

Nov. 2023

SKILLS

Programming Languages and skills C, Python, Matlab, R, Languages, Linux, Git Frameworks Pytorch, Huggingface Transformers, Huggingface Datasets, Langchain Languages English (TOEFL iBT 104), Chinese (native)