

Projet Python: Les arbres de Grenoble

L'emblématique arbre de Venon Source : francebleu.fr

Itération 4

Distribution géographique des arbres

Objectif de l'activité

Analyser et représenter la distribution géographique des arbres. Prendre conscience de la complexité algorithmique.

Objectifs pédagogiques

- Installer des libraires externes sur Python
- Utiliser des éléments tiers sur un notebook

Consignes

- 1. Mettez sur une carte tous les arbres sur une carte en utilisant Folium.
 - o Pensez à installer folium dans votre environnement de travail. Voir R1.
 - Vous avez environs 30k des données pensez à regarder la documentation afin de trouver la meilleure manière de présenter les données. Voir R4.
- 2. Calculer la distance entre deux arbres de deux manières différentes
 - En implémentant vous-même la formule de Haversine. Wikipedia vous sera très utile.
 - o Grâce au module geopy. Voir R2.
 - o Quelle est la différence de temps de calcul ? Voir R3.
- 3. Quels sont les 10 arbres les plus proches de chez vous ?
- 4. Quelle est la distance moyenne entre les arbres ?
- 5. (Optionnel) Quel est l'arbre le plus entouré?
- 6. (Optionnel) Quel est l'arbre le plus solitaire?

Ressources

- **R1** Avant d'installer, savezs-vous si vous devez utiliser pip ou conda pour installer des libraires sur votre environnement ? Installer folium : https://pypi.org/project/folium/
- **R2** https://pypi.org/ est un site officiel qui répertorie la plupart des libraires existantes sur le langage python. Dans un environnement conda vous allez vous tourner davantage sur https://anaconda.org/conda-forge/repo. A vous de trouver le et installer geopy.

R3 – Grâce à son ensemble des fonctionnalités, le notebook est un environnement qui facilite la recherche et la programmation sur Python . Une de ces fonctionnalités est les « magic commands». Trouvez sur https://ipython.readthedocs.io/en/stable/interactive/magics.html la commande permettant de calculer facilement le temps d'exécution d'une opération.

R4 - https://python-visualization.github.io/folium/plugins.html