

Université de Béjaïa Méthodes de Monte-Carlo

Master1 PSA: 2019-2020

Série de TD

Exercice 1. (examen 2018)

1. Soit le couple de v.a (X, Y) de densité :

$$q(x, y) = e^{-\frac{1}{2}y^2 + xy}, \ x, y \in \mathbb{R}.$$

- (a) Déterminer la densité q(x).
- **(b)** Déterminer la densité conditionelle q(y|x) et déduire la densité q(x|y).
- 2. Supposons maintenant, que l'on veuille simuler une loi de cauchy de densité $f(x) = \frac{1}{\pi(1+x^2)}$, $x \in \mathbb{R}$, par l'utilisation de la loi de proposition q(y|x).
 - (a) Taduire l'algorithme de Metropolis-Hastings dans ce cadre.
 - **(b)** En partant de X_1 , $X_1 \sim \mathcal{U}([-1,1])$. Donner l'algorithme qui permet de simuler une chaine de Markov $(X_n)_{n\geq 1}$.
 - (c) Ecrire le programme Matlab associé à cet algorithme.

Exercice 2. 1. Soit le couple de v.a (X, Y) de densité :

$$q(x, y) = e^{-(x+y)} \mathbb{1}_{x \ge 0} \mathbb{1}_{y \ge 0}.$$

- (a) Déterminer la densité conditionelle q(y|x).
- **(b)** Déterminer la densité conditionelle q(x|y).
- 2. Supposons maintenant, que l'on veuille simuler une loi de mélange de densité $f(x) = \frac{1}{3}e^{-x} + \frac{2}{3}(2)e^{-2x}$, $x \ge 0$, par l'utilisation de la loi de proposition q.
 - (a) Donner l'algorithme de Metropolis-Hastings dans ce cadre.
 - **(b)** En partant de $X_1 = 1$. Donner l'algorithme qui permet de simuler une chaine de Markov $(X_n)_{n \ge 1}$.
 - (c) Ecrire le programme Matlab associé à cet algorithme.