B.Tech-1st Basic Electronics

Full Marks: 50

Time: $2\frac{1}{2}$ hours

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

Any supplementary materials to be provided

1. Answer all questions:

 2×5

- (a) Find the PIV requirement of diodes employed in center-tapped full wave rectifier circuit.
- (b) Discuss the transfer characteristic of JFET.
- (c) Analyze the influence of negative feedback on gain of an amplifier.

- (d) Find the decimal number whose signed magnitude representation is 1110.
- (e) What is the purpose of control grid and deflecting plates in the cathode ray tube?
- 2. (a) Draw and compare the V-I characteristics of Ge diode and ideal diode. Are threshold voltage and break down voltage same for a diode?
 - (b) Find the current through R_1 , R_2 and voltage across R_1 , R_2 . Given E=10 V, $R_1 = 1 \text{ K}\Omega$, $R_2 = 3 \text{ K}\Omega$. Assuming diode (D) to be
 - (i) Ideal Diode
 - (ii) Ge Diode

Or

- (a) What do you understand by biasing in a transistor? Based on biasing discuss various region of operation of transistor and mention their application.
- (b) The β value for a transistor in common base configuration is 110. Find the collector current (I_C) . Given the emitter current (I_E) is 13 mA and I_{CBO} is 250 μ A. 4
- 3. (a) Explain the construction and operation principle of D-MOSFET.
 - (b) Explain the fabrication process of monolithic IC for NPN transistor in detail.

Or

(a) Write the current equations (I_D) for JFET and E-MOSFET. For given $I_{DSS} = 15$ mA, $V_p = -3$ V, find the drain current (I_D) , source current (I_S) and gate current (I_G) in a JFET when $V_{GS} = -2$ v.

- (b) What do you understand by IC and VLSI? Discuss limitations of VLSI in detail.
- 4. (a) Explain the concept of feedback with suitable diagram. Compare positive feedback and negative feedback. Mention the advantages of negative feedback.
 - (b) Define CMRR and Slew rate for an Op-Amp. Determine the output voltage of an Op-Amp if the input voltages are $V_1 = 150 \mu V$, $V_2 = 140 \mu V$. Given $A_d = 4000$ and CMRR = 1000.

Or

- (a) Describe four different topologies of feedback amplifier with block diagrams having all required notations.
- (b) Write the characteristics of practical Op-Amp. For the circuit below find the output voltage V_0 . Given $V_1 = 2.5$ V, $V_2 = 1.8$ V, $R_1 = 2.5$ K Ω , $R_2 = 5$ K Ω , $R_1 = 2.5$ K Ω .

- 5. (a) (i) Compute the equivalent decimal number of $(A0.5)_{16}$, $(565.10)_{8}$.
 - (ii) Divide the binary number 1101.11 with 11.
 - (b) Explain the rules for binary subtraction using 1's and 2's complement methods with suitable examples.

Or

- (a) Simplify the expression (Y1 and Y2) and draw logic circuit for the simplified expression:
 - (i) Y1=ABC+ABC'+AB'C+AB'C'+A'B'C
 - (ii) Y2 = AB+A'C+BC

	(6)	Which gates are called as universal gate and why? Implement NOR, Ex-OR and AND gates using minimum number of NAND gates.	4
6.	(a)	Provide a detailed explanation of how a digital storage oscilloscope differs from a Cathode ray oscilloscope.	4
	(b)	Explain how a wave form is getting displayed in the CRO screen.	4
		Or	
	(a)	Explain the working of CRT with a neat diagram.	4
	(b)	Why modulation is essential? Make a comparison between various modulation schemes.	4