Control Systems

G V V Sharma*

1

1

3

3

CONTENTS

1	Feedback	Voltage	Amplifier:	Series-
Shunt				

1.1 Introduction

2 Feedback Current Amplifier: Shunt-Series

2.1 Introduction

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1.1 Introduction

1.1.1. Fig. 1.1.1.1 shows a non-inverting op-amp configuration with parameters described in Table 1.1.1. Draw the equivalent control system.

Parameter	Value
input resistance	∞
output resistance	0
Input voltage	V_s
Output Voltage	V_o
Feedback resistance	R_2
load resistance	R_L

TABLE 1.1.1

Solution: See Fig. 1.1.1.2

1.1.2. Draw the small signal model for Fig. 1.1.1.1. **Solution:** The equivalent circuit of the amplifier is in Fig. 1.1.2

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1

Fig. 1.1.1.1

Fig. 1.1.1.2

1.1.3. Assuming that the operational amplifier has infinite input resistance and zero output resistance, find the *feedback factor H*. **Solution:** Let the gain of the operational amplifier be G. From the equivalent circuit, Applying Ohms law,

$$V_0 = G(V_i) (1.1.3.1)$$

and,
$$V_i = V_+ - V_-$$
 (1.1.3.2)

Fig. 1.1.2

Now, Applying voltage dividing rule

$$V_{-} = \left[\frac{R_1}{R_1 + R_2}\right] V_0 \tag{1.1.3.3}$$

Substituting in equ.1.1.3.1

$$V_0 = G(V_+ - \left[\frac{R_1}{R_1 + R_2}\right] V_0) \quad (1.1.3.4)$$

$$\implies V_0 = GV_+ - G\left[\frac{R_1}{R_1 + R_2}\right]V_0 \quad (1.1.3.5)$$

$$G(V_{+}) = V_{0} + G\left[\frac{R_{1}}{R_{1} + R_{2}}\right]V_{0}$$
 (1.1.3.6)

But,

$$V_s = V_+ (1.1.3.7)$$

because, no current flows through resistor.

$$V_0 = G \left[\frac{1}{1 + \frac{GR_1}{R_1 + R_2}} \right] V_s \qquad (1.1.3.8)$$

Gain =
$$\frac{V_0}{V_s} = \left[\frac{G}{1 + \frac{GR_1}{R_1 + R_2}} \right]$$
 (1.1.3.9)

For a negative feedback system,

$$\frac{V_0}{V_i} = \frac{G}{1 + GH} \quad (1.1.3.10)$$

where.,
$$H = \frac{R_1}{R_1 + R_2}$$
 (1.1.3.11)

The equation.1.1.3.1 looks exactly similar to the Gain of a negative feedback system with

- Open loop gain = G
- Loop gain = P
- Amount of feedback = F

- Feedback factor = f
- closed loop gain = T

Parame- ters	Definition	For given circuit
Open loop gain	G	G
Feedback factor	Н	$\frac{R_1}{R_1 + R_2}$
Loop gain	GH	$G^{rac{R_1}{R_1+R_2}}$
Amount of feedback	1+GH	$1 + \frac{GR_1}{R_1 + R_2}$
Closed loop gain	<u>G</u> 1+ <i>GH</i>	$\frac{G(R_1 + R_2)}{R_1 + R_2 + GR_1}$

TABLE 1.1.3

Therefore, So, the feedback factor ...

$$f = H = \frac{R_1}{R_1 + R_2} \tag{1.1.3.12}$$

1.1.4. Find the condition under which closed loop gain T is almost entirely determined by the feedback network. **Solution:** For T to entirely dependent on feedback network, it should be independent on G(open loop gain) T is given by...,

$$T = \frac{G}{1 + \frac{GR_1}{R_1 + R_2}} \tag{1.1.4.1}$$

(1.1.4.2)

For T to be independent on G.,

$$GH >> 1$$
 (1.1.4.3)

$$G\frac{R_1}{R_1 + R_2} >> 1 \tag{1.1.4.4}$$

$$G >> 1 + \frac{R_2}{R_1} \tag{1.1.4.5}$$

Under such condition...

$$T = \frac{1}{H} \tag{1.1.4.6}$$

$$T = \frac{R_1 + R_2}{R_1} \tag{1.1.4.7}$$

$$T = 1 + \frac{R_2}{R_1} \tag{1.1.4.8}$$

so, the necessary condition for T depend only

on feedback network is

$$G >> T$$
 (1.1.4.9)

1.1.5. If the open loop voltage gain

$$G = 10^4 \tag{1.1.5.1}$$

Find the ratio of R2 and R1 to obtain a closed loop gain of 10. **Solution:** The closed loop gain gain T is given by

$$T = \frac{G}{1 + GH} = \frac{G}{1 + \frac{GR_1}{R_1 + R_2}} = 10$$

(1.1.5.2)

where...,
$$G = 10^4$$
 (1.1.5.3)

$$10 = \frac{10^4}{1 + \frac{10^4}{1 + \frac{R_2}{R_1}}} \tag{1.1.5.4}$$

$$\implies 1 + \frac{R_2}{R_1} = \frac{10^4}{\frac{10^4}{10} - 1} \tag{1.1.5.5}$$

$$1 + \frac{R_2}{R_1} = 10.010 \tag{1.1.5.6}$$

$$\frac{R_2}{R_1} = 9.010\tag{1.1.5.7}$$

1.1.6. What is the amount of feedback in decibels? **Solution:** The value of F in decibals is given by

$$F(dB) = 20\log(F) \qquad (1.1.6.1) \quad 2.1 \text{ Introduction}$$

where...
$$F = 1 + GH$$
 (1.1.6.2)

$$F = \frac{G}{T} \tag{1.1.6.3}$$

where..,
$$G = 10^4$$
 (1.1.6.4) 2.1.2

$$T = 10 (1.1.6.5)$$

$$F(dB) = 20\log(\frac{10^4}{10}) = 20\log(1000)$$
(1.1.6.6)

$$F(dB) = 60dB (1.1.6.7)$$

1.1.7. If G decreases by 20%, what is the corresponding decrease in T? **Solution:** Given

$$G = 10^4 \tag{1.1.7.1}$$

If G decrease by 20% then, the value of G is...

$$G = (1 - 0.2)10^4 \tag{1.1.7.2}$$

$$= 8000 ag{1.1.7.3}$$

For this value of G and,

$$\frac{R_2}{R_1} = 9.010 \tag{1.1.7.4}$$

The value of T can be solved as follows,

$$T = \frac{G}{1 + \frac{G}{1 + \frac{R_2}{R_1}}} \tag{1.1.7.5}$$

$$T = \frac{8000}{1 + \frac{8000}{1 + 0.9010}} \tag{1.1.7.6}$$

$$T = 9.99749 \tag{1.1.7.7}$$

The percentage change in T is..,

$$fractional change = \frac{10 - 9.99749}{10} \quad (1.1.7.8)$$

$$= 2.51x10^{-4} \qquad (1.1.7.9)$$

$$%changeinT = 0.00251$$
 (1.1.7.10)

Therefore T decreases by 0.0025% when G decreases by 20%

1.1.8. Write a python code that can compute closed loop gain,loop gain,amount of feedback given all input parameters. **Solution:** Code to compute different gains.,

codes/ee18btech11005/ee18btech11005.py

2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES

2 TEEDBACK CORRENT AMPLITIES. SHOT

(1.1.6.2) 2.1.1. Draw the equivalent control system for the feedback current amplifier shown in 2.1.1.4 **Solution:** See Fig. 2.1.1.5.

(1.1.6.4) 2.1.2. For the feedback current amplifier shown in (1.1.6.5) 2.1.1.4, draw the Small-Signal Model. Neglect the Early effect in Q_1 and Q_2 .

Solution: See Fig. 2.1.2.

While drawing a Small-Signal Model, we ground all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit. Neglecting Early effect, in Small-Signal Analysis a N-MOSFET is modelled as a Current Source with value of current equal to $g_m v_{gs}$ flowing from Drain to Source. Whereas a P-MOSFET is modelled as a Current Source with value of current equal to $g_m v_{sg}$ flowing from Source to Drain.

(1.1.7.3) 2.1.3. Describe how the given circuit is a Negetive Feedback Current Amplifier.

Fig. 2.1.1.4

Solution: For the feedback to be negative, I_f must have the same polarity as I_s . To ascertain that this is the case, we assume an increase in I_s and follow the change around the loop: An increase in I_s causes I_i to increase and the drain voltage of Q_1 will increase. Since this voltage is applied to the gate of the p-channel device Q_2 , its increase will cause I_o , the drain current of Q_2 , to decrease. Thus, the voltage across R_M will decrease, which will cause I_f to increase. This is the same polarity assumed

Fig. 2.1.2: Small Signal Model

for the initial change in I_s , verifying that the feedback is indeed negative.

2.1.4. Find the Expression for the Open-Loop Gain $G = \frac{I_0}{I_i}$, from the Small-Signal Model. in Fig. 2.1.2.

Solution: In Small-Signal Model,

$$v_B = I_i R_D (2.1.4.1)$$

$$v_{gs_2} = v_B = I_i R_D (2.1.4.2)$$

In Small-Signal Analysis, P-MOSFET is modelled as a current source where current flows from Source to Drain. So, the value of current flowing from Source to Drain in P-MOSFET is,

$$I_o = -g_{m_2} v_{gs_2} = -g_{m_2} I_i R_D (2.1.4.3)$$

So, the Open-Circuit Gain is

$$G = \frac{I_o}{I_i} = -g_{m_2} R_D (2.1.4.4)$$

in I_s and follow the change around the loop: 2.1.5. Find the Expression of the Feedback Factor An increase in I_s causes I_i to increase and the $H = \frac{I_f}{L}$, from Small-Signal Model.

Solution: I_o is fed to a current divider formed by R_M and R_F . R_F is a Large Resistance compared to Input resistance of Amplifier and so most of the current flows through it leaving a small current as input to Amplifier. Hence the voltage at point 'A' is very small and is

considered, $v_A \simeq 0$. So R_F and R_M are parallel and Voltage Drop across them is same.

$$(I_o + I_f)R_M \simeq -I_f R_F$$
 (2.1.5.1)

$$\frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M}$$
 (2.1.5.2)

So, the Feedback Factor,

$$H \equiv \frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.5.3}$$

2.1.6. Find the Expression for the Closed-Loop Gain $T = \frac{I_o}{I_s}$. **Solution:** From (2.1.4.4) and (2.1.5.3),

$$T = \frac{I_o}{I_s} = \frac{G}{1 + GH} \tag{2.1.6.1}$$

$$= -\frac{g_{m_2}R_D}{1 + g_{m_2}R_D/\left(1 + \frac{R_F}{R_M}\right)}$$
 (2.1.6.2)

$$\implies T = -\frac{g_{m_2} R_D}{1 + g_{m_2} R_D / \left(1 + \frac{R_F}{R_M}\right)} \quad (2.1.6.3)$$