

Valve types

Distinctive features of hydraulic valves

Outline of todays lecture

	N / I	100
1	\/alve	desian
-	vaivo	design

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Design: sliding spool valve

Spool valve: Basis component in resistive controlled systems

Design of a spool valve:

Working principle of a spool valve

Control of flow rate rsp. Pressure difference via resistor

Calculation of flow with orifice equation

$$Q = \alpha_D \cdot A \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}$$

$$A = D \cdot \pi \cdot x$$

Simulation and representation of flow in valves

Overlap conditions of valves

negative overlap	zero overlap	positive overlap
y_0 Q_A Q_B	$y_0 = 0$ $Q_A \downarrow \qquad \downarrow Q_B$	y_0 Q_A Q_B
$Q_{A}(y) = 0 \text{ at } y \ge y_{0}$	$Q_A(y) = 0$ at $y \ge 0$	$Q_{A}(y) = 0 \text{ at } y \ge -y_{0}$

Variation of the metering geometry (examples)

4/3-way valve with blocked connections in centre position

4/3-way valve with open connection to the pump in centre position

4/3-way valve with circulation in centre position

4/3-way rotary spool valve

Outline of todays lecture

\ \ /		100			
∖ \/a	lve	CLE	124	C	n
 v G	V	ac		9	

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Functional principle of seat valves

poppet valve

disc valve

Ball valve with switching solenoid (Dr. Breit GmbH)

Outline of todays lecture

\/2	lve	\mathbf{d}	۵ei	an
Va		u	COI	YI.

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Forces acting on a valve spool

Simplified analysis of flow forces

- Restistance flow:
 Total pressure constant (Bernoulli for lossfree, idealised flow)
- $p_{statisc h} + \underbrace{\rho \cdot \frac{v^2}{2}}_{p_{dyn}} = p_{total} = const$

- High velocities at control edge
 - → local high dynamic pressure
 - → local low static pressure
 - → force in valve closing direction

Conservation of momentum in a spool valve

Conservation of momentum:

$$\vec{F}_{pruck} + \vec{F}_{reib} + \vec{F}_{dew} + \vec{F}_{ext} = \frac{\partial}{\partial t} \int_{KV} \vec{v} \cdot \rho \cdot dV + \int_{KF} \vec{v} \cdot \rho \cdot (\vec{v} \cdot \vec{n}) dA$$

Application on control volume spool valve:

$$F_{str} = \rho \cdot \frac{\partial}{\partial t} ((\vec{v})_x \cdot V_{KV}) + (\overrightarrow{v_1})_x \cdot \rho \cdot (\overrightarrow{v_1} \cdot \overrightarrow{n_1}) \cdot A_1 + (\overrightarrow{v_2})_x \cdot \rho \cdot (\overrightarrow{v_2} \cdot \overrightarrow{n_2}) \cdot A_2$$

$$F_{str} = -\rho \cdot l \cdot \frac{\partial Q}{\partial t} + (-v_{1,x}) \cdot \rho \cdot (-v_{1,r}) \cdot A_1 + (-v_{2,x}) \cdot \rho \cdot (v_{2,r}) \cdot A_2$$

Conservation of momentum in a spool valve

Replacing velocity by flow rate:

$$F_{str} = -\rho \cdot l \cdot \frac{\partial Q}{\partial t} + \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1) \cdot A_1} \cdot \rho \cdot Q^2 - \frac{\cos(\varepsilon_2)}{\sin(\varepsilon_2) \cdot A_2} \cdot \rho \cdot Q^2$$

For stationary conditions:

$$F_{str,stat} = \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1) \cdot A_1} \cdot \rho \cdot Q^2 - \frac{\cos(\varepsilon_2)}{\sin(\varepsilon_2) \cdot A_2} \cdot \rho \cdot Q^2$$

Stationary flow force acting on spool valve

Determination of areas:

$$A_1 = \pi \cdot D \cdot x$$

$$A_2 = \frac{\pi \cdot d^2}{4}$$

$$F_{str,stat} = \frac{\cos(\varepsilon_1)}{\sin(\varepsilon_1) \cdot A_1} \cdot \rho \cdot Q^2 - \frac{\cos(\varepsilon_2)}{\sin(\varepsilon_2) \cdot A_2} \cdot \rho \cdot Q^2$$

Determination of angles: $\varepsilon_1 \sim 69^\circ$ $\varepsilon_2 \sim 90^\circ$

Stationary flow force acting on spool valve

Flow force over spool position

Ways to reduce flow forces via compensation

[Rexroth]

Schematic curve of the flow force as function of spool stroke

Flow force as a function of the spool stroke

 Constant pressure system (small spool stroke)

$$F_{Str} = \rho \cdot v \cdot Q \cdot \cos(\varepsilon)$$

$$\frac{Q}{A} = \alpha_D \sqrt{\frac{2\Delta p}{\rho}}$$

$$Q = \alpha_D \cdot A \cdot \sqrt{\frac{2\Delta p}{\rho}}$$

$$\pi \cdot d \cdot x$$

$$F_{Str} = 2 \cdot \alpha_D^2 \cdot \pi \cdot d \cdot \Delta p \cdot \cos(\varepsilon) \cdot x$$
$$= > F_{Str} \sim x$$

2. Constant flow system (large control stroke)

$$F_{Str} = \rho \cdot \frac{Q^2}{A} \cdot \cos(\varepsilon)$$

$$= \rho \cdot Q^2 \cdot \frac{\cos(\varepsilon)}{\pi \cdot d} \cdot \frac{1}{x}$$

$$= > F_{Str} \sim \frac{1}{x}$$

Reduction of radial load on a control spool

symmetric bores

pressure compensation grooves

detail B

Shape deviations of a control spool

Axial unloading of a spool

3-chamber valve

5-chamber valve

Outline of todays lecture

1	Va	lve	d	esi	an
					9.

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Symbols for different actuation principles

Centering by spring and actuation by lever (Sauer-Danfoss)

Electro-mechanical converters, part 1

electro-mech. converter	switching solenoid	proportional solenoid	voice coil
exemplary design	i v ts	±s	i ±s
characteristic curves	F i	F i	F
stroke range maximum forces energy of stroke energy of stroke/ space hysteresis linearity dynamic range input power complexity pressure restistance comments	3 - 8.5 mm 55 - 220 N 75 - 850 Nmm 2.1 - 3.8 Nmm/cm³ n. s. correction control required n. s. 16 - 42 W low (without control) standard unusual for control valves	2 – 4.5 mm 45 - 200 N 70 - 800 Nmm 1.3 - 3.5 Nmm / cm³ controlled < 4 % good < 200 Hz 15 - 40 W moderate (control cone) standard no fail-safe	> 2 mm > ± 100 N > 300 Nmm ca. 1.2 Nmm/cm³ good very good typ. 350 Hz < 100 W expensive perm. magnets special connector required low load density

Electro-mechanical converters, part 2

electro-mech. converter	linear motor	torque motor	piezo-el. converter
exemplary design	±s NS/SN		(a) stack (b) disc ts (c) macro-translator ts u
characteristic curves	F	M _λ α	F u u s
stroke range maximum forces energy of stroke energy of stroke / space hysteresis linearity dynamic range input power complexity pressure restistance comments	0.7 - 2 mm ± 100 - ± 300 N 140 - 780 Nmm 1.5 - 2.5 Nmm/cm³ n. s. moderate if uncontrolled ca. 260 Hz 7.2 - 65 W expensive perm. magnet yes	Lever: ±0.25 - 0,8 mm Deflector.: ± 0.035 mm < 70 N 2 - 40 Nmm n. s. controlled < 3% controlled < 5% 100 - 1000 Hz 0.02 - 7.5 W expensive perm. magnet yes	< 0.18 < 0.2 <1 mm 3500 35 50 N > 400 7 50 Nmm ca. 5 0.25 1 Nmm/cm³ low in control mode high in control mode > 2000 1100 100 Hz typ. 50 W high (accurate parts req.) n. s. expensive,(a) long design

Switching solenoid (Magnet-Schultz)

Proportional solenoid (Magnet-Schultz)

Solenoid force – stroke characteristic curve (static)

Static and dynamic characteristic curve of a DC solenoid

Switching cycle of a DC solenoid

Legend

t_R = reaction time

t₁ = switching time

 $t_{O,tot}$ = opening time

 $t_{C,tot}$ = closing time

 L_0 = inductivity: open

 L_S = inductivity: closed

Outline of todays lecture

\ /_	1.70	\sim	00	0110
1/7	lve			
V 04				3''

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Mechanical-hydraulic converter

sliding spool p₀, Q d

d = 4 - 12 mm

 $s_0 = 1 - 4 \text{ mm}$ $p_0 = 0 - 350 \text{ bar}$

 $Q_{max} = 5 - 200 \text{ l/min}$

flapper-nozzle

d = 0.25 - 0.5 mm $s_0 = 60 - 75 \text{ mm}$

 $p_0 = 0 - 350 \text{ bar}$

 $Q_{max} = 0.3 - 2.5 \text{ l/min}$

jet pipe

d = 0.12 - 0.2 mm

 $s_0 = 0 - 0.47 \text{ mm}$

 $p_0 = 0 - 210 \text{ bar}$

 $Q_{max} = 0.1 - 2.5 \text{ l/min}$

Two stage 4/3-way switching valve (Parker)

Outline of todays lecture

\ /		100			
\/_	lve	α	201		
Va		()t		U	
- U		91		3	

- 1.1 Spool design
- 1.2 Seat design
- 2 Forces on spool valves
- 3 Actuation of valves
 - 3.1 Electro-mechanical actuation
 - 3.2 Mechanical-hydraulic actuation
- 4 Summary

Summary

- For which functions are valves used?
 - Check valves, directional control valves, pressure control valves, flow control valves
- Which types of valves are available?
 - Spool design, seat design
- Which forces occur with translatory spool valves?
 - Friction forces (Coulomb, Newtonian), acceleration forces, pressure forces, flow forces
- How does the flow force change over the valve stroke?
 - − Constant pressure system: $F_{Str} \sim x$
 - Constant flow system: $F_{Str} \sim \frac{1}{x}$
- How are valves operated?
 - Mechanical, electro-mechanical, mechanical-hydraulic

Thank you for your attention.

