Seminar Report

Penrose Incompleteness Theorem

Prabha Shankar

Masters Student, Mathematical Physics (Department of Physics, Leipzig University)

Under the supervision of

Prof. Dr. Stephan Czimek

(Department of Mathematics, Leipzig University)

Introduction

This is the placeholder for introduction.

1 Double Null Hypersurfaces and Foliations

This is the first chapter

2 Null Structure Equations

This is the second chapter

3 Condition for Regularity of Null Hypersurfaces

This is the third chapter

4 Causality for Spacetimes with Trapped Surfaces

Recall the geometric construction in the previous sections. If S is a closed 2-dimensional surface in a globally hyperbolic time-orientable spacetime (\mathcal{M}, g) and C and \underline{C} be future outgoing and incoming null geodesic congruence normal to S respectively. Then:

$$\partial \mathcal{J}^+(S) \subset C \cup \underline{C}. \tag{1}$$

We always have:

$$C \cup \underline{C} \subset \mathcal{J}^+(S). \tag{2}$$

However, it is not always the case that:

$$C \cup \underline{C} \subset \partial \mathcal{J}^+(S). \tag{3}$$

The reason for this is in case $C \cup \underline{C}$ lies in the interior of the future of S, i.e., $\mathscr{J}^+(S)$ implies \exists timelike curves connecting points on $C \cup \underline{C}$ to S and also to a neighborhood of S which is interior of $\mathscr{J}^+(S)$.

Insert connecting text here

Proposition 4.1. Let S be a closed 2-dimensional manifold surface in a globally hyperbolic time oriented spacetime (\mathcal{M}, g) . Let C and \underline{C} denote the (future) outgoing and incoming null geodesic congruence normal to S. Let C^* and \underline{C}^* be parts of C and \underline{C} that do not contain any focal point. Then, $\partial \mathcal{J}^+(S) \subset C^* \cup \underline{C}^*$.

4.1 Trapped Surface

Assume $\Omega = 1$ on $C \cup \underline{C}$. Consider L and \underline{L} to be the geodesic vector field of C and \underline{C} with τ and $\underline{\tau}$ the respective affine parameters such that $S \equiv \{\tau = 0\} = \{\underline{\tau} = 0\} \equiv S_0$.

Relationship between the area of sections S_{τ} and the second fundamental forms χ and $\underline{\chi}$:

The area relates, as we shall see later, the det g to tr χ and helps deduce the regularity of the null hypersurfaces. We present the solutions only corresponding to the hypersurface C. The computations are same for \underline{C} .

We assume the canonical coordinates $(\tau, \theta^1, \theta^2)$ on C, where $(\theta^1, \theta^2) \in \mathcal{U} \subset \mathbb{R}^2$ and g is the induced metric on the sections S_{τ} of C.

In the following, we use the first variational formula and the Jacobi formula for the derivative of a matrix determinant:

$$\nabla_{L}(\sqrt{\det g}) = \frac{1}{2\sqrt{\det g}} \nabla_{L}(\det g) = \frac{1}{2\sqrt{\det g}} (\det g) \operatorname{tr}((g^{-1})^{AB} \nabla_{L} g_{AB})$$

$$= \frac{\sqrt{\det g}}{2} \operatorname{tr}((g^{-1})^{AB} \mathcal{L}_{L} g_{AB}) = \frac{\sqrt{\det g}}{2} \operatorname{tr}((g^{-1})^{AB} 2 \chi_{AB})$$

$$= \sqrt{\det g} \operatorname{tr}(\chi)$$

We know,

Area
$$(S_{\tau}) = \int_{\mathscr{U}} \sqrt{\det g(\tau)} d\theta^1 d\theta^2$$

Thus,

$$\nabla_L(\operatorname{Area}(S_{\tau})) = \int_{\mathscr{U}} \operatorname{tr} \chi \, d\mu_{\not g}.$$

More generally,

$$\nabla_{fL}(\operatorname{Area}(S_{\tau})) = \int_{\mathscr{U}} f \cdot \operatorname{tr} \chi \, d\mu_{g}, \quad \forall f \ge 0 \text{ and } f \in C^{\infty}(S_{\tau}). \tag{4}$$

Interpretation: The equations above represent the rate of change of the second fundamental form χ and the rate of change of the area of S_{τ} under infinitesimal displacement along the null generators. Therefore, $\operatorname{tr}\chi$ is also called expansion of S_{τ} .

Definition 4.1 (Trapped Surfaces). A 2-dimensional surface S in (\mathcal{M}, g) for which the area decreases under infinitesimal (arbitrary) displacements along the null generators of both null geodesics congruences $C \cup C$ normal to S.

If (\mathcal{M}, g) is globally hyperbolic with a trapped surface, implies that $C \cup C$ bounds the future of S, i.e., $\partial \mathcal{J}^+(S) \subset C \cup \underline{C}$. Hence, it cannot expand in its future. Thus the term *trapped*. It is for this reason (3) does not always hold true.

In view of this definition and (4), for a trapped surface, the following statements holds:

$$\int_{\mathcal{U}} f \cdot \operatorname{tr} \chi \ d\mu_{\not g} < 0 \,, \quad \int_{\mathcal{U}} f \cdot \operatorname{tr} \underline{\chi} \ d\mu_{\not g} < 0 \quad \forall f \ge 0 \text{ and } f \in C^{\infty}(S_{\tau})$$

Equivalent definition for Trapped Surfaces: A trapped surface is a closed 2-dimensional surface S in a Lorentzian manifold (\mathcal{M}, g) such that:

$$tr\chi < 0$$
, $tr\underline{\chi} < 0$

Trapped surfaces and focal points:

A null generators on an incoming null hypersurface \underline{C} contain focal points. The null expansion of an incoming null hypersurface, in our case \underline{C} is negative. The following proposition shows that these two properties are related:

Proposition 4.2. Assume S to be a closed two-dimensional surface (not necessarily trapped) in a Lorentzian manifold (\mathcal{M}, g) which satisfies the Einstein equation Ric(g) = 0. If $\text{tr}\chi < 0$ at some point $x \in S$, then \exists a focal point on the null generator G_x of C emanating from point x. A similar result holds for C.

Proof to Proposition 4.2. Using Raychaudhari equation,

$$\overline{\chi}_4(\operatorname{tr}\chi) = -|\chi|^2 + \omega \operatorname{tr}\chi$$

and the other equation:

$$|\chi|^2 = \frac{1}{2} (\text{tr}\chi)^2 + |\hat{\chi}|^2$$

we get, the following Riccati-type equation[§]:

$$\nabla_L(\operatorname{tr}\chi) = -\frac{1}{2}(\operatorname{tr}\chi)^2 - |\hat{\chi}|^2 \le 0$$
 (5)

If $T = \operatorname{tr} \chi_x = \operatorname{tr} \chi(0) < 0$, then $\operatorname{tr} \chi(\tau) < 0$, $\forall \tau \ge 0$.

Ignoring the term $|\hat{\chi}|$, yields:

$$\nabla_L \left(-\frac{1}{\operatorname{tr} \chi} \right) \leq -\frac{1}{2}$$

Thus,

$$\Rightarrow \nabla_L \left(-\frac{1}{\operatorname{tr} \chi} \right) \leq -\frac{1}{2}$$

$$\Rightarrow -\frac{1}{\operatorname{tr} \chi} \leq -\frac{1}{T} - \frac{\tau}{2}$$

$$\Rightarrow \tau_* = \frac{2}{-T} = \frac{2}{-\operatorname{tr} \chi_x}$$

We obtain $\operatorname{tr} \chi(\tau_*) = -\infty$ and hence $G_{x}(\tau_*)$ is the first focal point on G_{x} .

Remarks: The equality in equation (5) holds for $Ric(L, L) = tr \alpha = 0$. From second variational formula insert equation no., we see that Riccati-type equation similar to equation5 can be obtained for a more relaxed condition, $tr\alpha = Ric(L, L) \ge 0$. This is also called as the *positive null energy condition*, which is weaker than the Einstein equations. Hence, the proposition 4.2 also holds for the positive null energy condition.

[¶] For our case, the null lapse function, $\Omega = 1$, hence $\omega = 0$.

[§] Riccati-type equations have a finite-time blow-up.

5 Penrose Incompleteness Theorem

5.1 Motivation

Theorem 5.1 (Penrose Incompleteness Theorem). Let (\mathcal{M},g) be a globally hyperbolic time-orientable (Hausdorff) spacetime with a non-compact Cauchy Hypersurface \mathcal{H} such that \mathcal{M} contains a trapped surface S. If, in addition, (\mathcal{M},g) satisfies $Ric(L,L) \geq 0 \ \forall$ null vector fields L, then \mathcal{M} is future geodesically incomplete. In fact, \exists a null generator of $C \cup \underline{C}$, the future null geodesic congruences normal to S, that cannot be extended $\forall \tau \geq 0$ in \mathcal{M} .

Corollary 5.1.1. There are no trapped surfaces in Minkowski spacetime as it is geodesic complete.

Definition 5.1 (Geodesic Complete). A geodesic complete manifold implies that all its causal geodesics can be extended to arbitrary values of their affine parameters. Formally, a manifold (\mathcal{M}, g) is geodesically complete if every timelike (or null) geodesic $\gamma : \mathbb{R} \supset (-\varepsilon, \varepsilon) \to \mathcal{M}$, such that $\gamma(0) = p, \forall p$ can be extended to $\widetilde{\gamma} : \mathbb{R} \to \mathcal{M}$. That is, the timelike or null geodesics can be extended from a real interval to the entire real line.

Proof to Corollary 5.1.1. In the cartesian coordinate frame for the spatial coordinates, the Minkowski metric, η , takes the form, $\eta = -dt^2 + dx^2 + dy^2 + dz^2$. The Christoffel symbols, $\Gamma_{\alpha\beta}^{\sigma}$, α , β , $\sigma = \{0,1,2,3\}$, for this coordinate choice are all identically zero. The geodesic equation for an affinely parameterized curve, $\gamma(\tau)$, with τ as the affine parameter, takes the form:

$$\frac{d^2x^{\sigma}}{d\tau^2} + \Gamma^{\sigma}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0$$

, which reduces to $\frac{d^2x^{\sigma}}{d\tau^2}=0$. The general solution of such a differential equation is given by $x^{\mu}(\tau)=A^{\mu}\tau+B^{\mu}$, where the constants A^{μ} and B^{μ} can be determined based on the initial data. We see that $x^{\mu}(\tau)$ is linear in the affine parameter and can be extended to any arbitrary value of τ . Since this is true for any arbitrary curve in Minkowski spacetime, this completes our proof. \Box

The proof of the Penrose Incompleteness theorem relies on two important theorems/results from differential topology. These are presented below and proof to only the second one is provided:

Ingredient theorem (i) A bijective continuous map from compact spaces to a Hausdorff space is a homeomorphism.

Ingredient theorem (ii) Let $\mathcal{N} \subset \mathcal{M}$ be an (injective) immersed topological submanifold with $\dim(\mathcal{N}) = \dim(\mathcal{M}) = n$ such that \mathcal{N} is compact and \mathcal{M} is a Hausdorff connected non-compact topological manifold. Then $\partial_{\min} \mathcal{N} \neq \emptyset$, where $\partial_{\min} \mathcal{N}$ denotes the boundary of \mathcal{N} in the sense of (topological) manifolds.

Proof to Ingredient theorem (ii) (By contradiction). Assume $\partial_{\text{mani}} \mathcal{N} = \emptyset$ $\implies \forall x \in \mathcal{N}, \exists \delta > 0$, such that $B_{\delta}(x)$ homeomorphic to \mathbb{R}^n .

Since, $\dim(\mathcal{M}) = \dim(\mathcal{N})$, $B_{\delta}(x)$ is also open in \mathcal{M} . By compactness, we can say that $\mathcal{N} \subset \mathcal{M}$ is open. However, \mathcal{N} is compact and is a subset of a Hausdorff space, hence, \mathcal{N} is closed. By connectedness, $\mathcal{M} = \mathcal{N}$, which is a contradiction.

We move on to the proof of the Penrose Incompleteness theorem.

Proof to the Penrose Incompleteness Theorem 5.1. From the results of Section - look into the previous section, we know that if $\operatorname{tr} \chi_x = -k_x < 0$, $x \in S = \{\tau = 0\}$, then the first focal point of the generator $G_x \subset C$ appears at time $\tau = \frac{2}{k_x}$. In view of compactness of S^{\dagger} , we have:

$$\sup_{S} \operatorname{tr} \chi = k_{C} < 0, \qquad \sup_{S} \operatorname{tr} \chi = k_{\underline{C}} < 0, \qquad \sup\{k_{C}, k_{\underline{C}}\} = k < 0 \tag{6}$$

We assume (\mathcal{M}, g) to be future null geodesically complete. We define \mathcal{V} to be the union of all the null generators of $C \cup \underline{C}$ for which $0 \le \tau \le 2/k$, i.e.,

$$\mathcal{V} = \bigcup_{\substack{\tau \in \left[0, \frac{2}{k}\right], \\ x \in S}} \left(G_x(\tau), \ \underline{G}_x(\tau)\right) \tag{7}$$

(Check this bit) Based on this construction, $\mathcal{V} \subset \mathcal{M}$. The null generators, G and G, can be viewed as the following continuous maps:

$$\begin{split} G: S \times \left[0, \frac{2}{k}\right] &\to C \;, \qquad (x, \tau) \mapsto G_x(\tau) \\ \underline{G}: S \times \left[0, \frac{2}{k}\right] &\to \underline{C} \;, \qquad (x, \tau) \mapsto \underline{G}_x(\tau) \end{split}$$

Continuity implies that the null generators are mappings between compact sets. This implies that V is itself compact.

[†]A continuous function on a compact set is bounded and attains its maximum

The trace condition implies every null generator in V contains at least one focal point. Therefore, from the previous section on causality, we can say that:

$$\partial \mathcal{J}^+(S) \subseteq \mathcal{V} \subset \mathcal{M}. \tag{8}$$

The topological boundary $\partial \mathcal{J}^+(S)$ is closed by definition[‡]. Since \mathcal{V} is compact, by 8, we conclude $\partial \mathcal{J}^+(S)$ is compact**.

We now show that global topological argument leads to a contradiction, and hence (\mathcal{M}, g) cannot be future null geodesically complete.

Since \mathcal{M} is time-orientable, \exists global timelike vector field T whose integral curves are timelike foliate of \mathcal{M} and intersect the Cauchy Hypersurface exactly once. Futhermore, the integral curves intersect $\partial \mathcal{J}^+(S)$ exactly once, since $\mathcal{J}^+(S)$ is future set and the topological boundary of a future set is a closed achronal three-dimensional Lipschitz submanifold without boundary where ∂_{mani} denotes the boundary in the sense of (topological) manifolds. Projection of $\partial \mathcal{J}^+(S)$ on \mathcal{H} via the integral curve T is a continuous injective mapping from $\partial \mathcal{J}^+(S)$ onto a subset of $\mathcal{T} \subset \mathcal{H}$.

From Ingredient theorem (i), we can say that $\partial \mathcal{J}^+(S)$ is homeomorphic to $\mathfrak{T} \subset \mathcal{H}$. This implies that \mathfrak{T} is a Lipschitz three-dimensional compact submanifold without a boundary, i.e., $\partial_{\text{mani}} \mathfrak{T} \neq \emptyset$, in the compact three-dimensional manifold \mathcal{H} . However, from Ingredient theorem (ii), \mathfrak{T} must have a non-empty boundary. This is a contradiction. Thus, our assumption that (\mathcal{M}, g) is future null geodesically complete is false.

[‡]Topological boundary of subset A of a topological space X, ∂A , is given by $\partial A = \overline{A} \cap \overline{X \setminus A}$.

^{**}Closed subset of a compact set is itself compact.

^{‡‡}**Proposition:** Let \mathscr{F} be a future set in a Lorentzian manifold \mathscr{M} . Then the topological boundary $\partial \mathscr{F}$ is closed achronal three-dimensional locally Lipschitz submanifold of \mathscr{M} such that $\partial_{\text{mani}} \partial \mathscr{F} \neq \varnothing$