REX: Gall Plots

Moriah Young, Kara Dobson

July 28, 2021

COLLABORATORS: Phoebe Zarnetske, Mark Hammond, Emily Parker, Kristin Wolford DATA INPUT: Cleaned gall csv from the shared Google drive

DATA OUTPUT: Plots visualizing gall data - Rmd is located in the "R/T7_warmx_plant_traits" folder in the rex-analysis Git repository PROJECT: REX

```
# Clear all existing data
rm(list=ls())
# Load packages
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.3
                     v purrr
                               0.3.4
## v tibble 3.0.6
                     v dplyr
                               1.0.4
## v tidyr
          1.1.2
                     v stringr 1.4.0
## v readr
            1.4.0
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
# Set working directory from .Renviron
dir <- Sys.getenv("ANALYSIS_DIR")</pre>
list.files(dir)
                                 "GHG"
   [1] "animal"
##
  [3] "Irrigation"
                                 "lookup_tables"
   [5] "microbes"
                                 "REX_Data_Management.gdoc"
## [7] "REX_Data_Template.gsheet" "soil"
## [9] "T7_ANPP"
                                 "T7_plant_comp"
## [11] "T7_plant_phenology"
                                 "T7_warmx_insect"
## [13] "T7_warmx_plant_traits"
                                 "T7_warmx_VOC"
## [15] "weather"
# Read in data
galls <- read.csv(file.path(dir, "T7_warmx_plant_traits/L1/T7_warmx_galls_L1.csv"))</pre>
# making it so that plant_height, gall_diameter, and gall_height are on the same row for the same plant
# so each unique plant will have just one row ompared to two in the raw data.
```

```
#galls2 <- galls %>%
        select(-date) %>%
         group_by(rep, footprint, treatment, plant_num, gall_present) %>%
         summarise(across(everything(), na.omit)) %>%
         distinct()
galls3 <- galls %>% dplyr::select(rep, footprint, treatment, plant_num, gall_present, plant_height) %>%
 na.omit() # creating a data frame with just the plant height variable (not gall height or gall diamet
# NAs
galls4 <- galls %>% dplyr::select(-plant_height) %>%
 na.omit() %>% # get rid of plant_height variable and NAs
 full_join(galls3) # joining the two data sets together
## Joining, by = c("rep", "footprint", "treatment", "plant_num", "gall_present")
# The cleaned dataset has data on the same plant that was collected on different dates. So some plants
galls5 <- galls4 %>% dplyr::select(-date) # get rid of date - we don't need this and some have NAs for
# create a dateframe that only contains galled plants
gall_only <- galls5[!(galls5$gall_present == "no_gall"),]</pre>
# Emily only wants to look at the effects of warming on goldenrod & galls so get rid of "drought" and "
# gall_warmed <- galls2[!(galls2$treatment == "drought" | galls2$treatment == "warmed_drought"),]
Looking at Plant Height - Galls vs No Galls
# Take subplot average of plant height
plant_height <- galls5 %>%
        group_by(rep, footprint, treatment, gall_present) %>%
        summarize(plant_height = mean(plant_height, na.rm = TRUE))
## 'summarise()' has grouped output by 'rep', 'footprint', 'treatment'. You can override using the '.gr
# Boxplot
ggplot(plant_height, aes(x = treatment, y = plant_height, fill = gall_present)) +
        geom_boxplot(color = "black", outlier.shape = NA) +
        labs(x = "Treatment", y = "Plant Height (cm)", fill = "Gall Presence") +
        scale_fill_manual(values = c("olivedrab", "darkgoldenrod1"), labels = c("Gall", "No Gall")) +
        scale_x_discrete(limits = c("irr_control", "ambient", "drought", "warmed", "warmed_drought"),
                         labels=c("ambient" = "Control",
                                  "drought" = "Drought",
                                  "irr_control" = "Irrigated Control",
                                  "warmed" = "Warmed",
                                  "warmed_drought" = "Warmed & Drought"),
                         guide = guide_axis(n.dodge=2)) +
        #qeom_jitter(shape=16, position=position_jitterdodge(), alpha = 0.6, aes(colour = qall_present)
        theme_classic()
```


Looking at Gall Diameter

'summarise()' has grouped output by 'rep', 'footprint', 'treatment'. You can override using the '.gr

Looking at Gall Height

'summarise()' has grouped output by 'rep', 'footprint', 'treatment'. You can override using the '.gr

Height x Gall diamater or gall height

```
lm_gall <- lm(gall_diameter ~ plant_height, data = gall_only)
plot(gall_diameter ~ plant_height, data = gall_only) +
abline(lm_gall)</pre>
```


integer(0)

```
summary(lm_gall)
```

```
##
## Call:
## lm(formula = gall_diameter ~ plant_height, data = gall_only)
##
## Residuals:
               1Q Median
##
      Min
                                      Max
## -2.8076 -1.0916 -0.0941 1.1214 4.0714
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.944937
                          0.548298 9.019 2.37e-15 ***
## plant_height -0.019735
                         0.008022 -2.460 0.0152 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.469 on 128 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.04515,
                                  Adjusted R-squared: 0.03769
## F-statistic: 6.052 on 1 and 128 DF, p-value: 0.01522
# ggplot version
ggplot(gall_only,aes(plant_height, gall_diameter)) +
 geom_point(color='olivedrab') +
 geom smooth(method='lm', color="olivedrab") +
 labs(x = "Plant Height (cm)", y = "Gall Diameter (cm)") +
theme_classic()
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
```


lm_gall2 <- lm(gall_height ~ plant_height, data = gall_only)
plot(gall_height ~ plant_height, data = gall_only) +
abline(lm_gall2)</pre>

integer(0)

summary(lm_gall2)

```
##
## Call:
## lm(formula = gall_height ~ plant_height, data = gall_only)
##
## Residuals:
##
      Min
               1Q Median
                              ЗQ
                                    Max
## -2.4456 -0.7204 0.1042 0.5718 2.9447
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.068449 0.342059 8.971 3.1e-15 ***
0.626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9165 on 128 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.001858, Adjusted R-squared: -0.00594
## F-statistic: 0.2383 on 1 and 128 DF, p-value: 0.6263
# ggplot version
ggplot(gall_only,aes(plant_height, gall_height)) +
 geom_point(color='olivedrab') +
 geom_smooth(method='lm', color="olivedrab") +
 labs(x = "Plant Height (cm)", y = "Gall Height (cm)") +
 theme_classic()
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
```

