SOH Prediction of Li-ion Batteries Using Linear Regression and LSTM

Project Overview

Problem Background

- Lithium-ion batteries are used in various fields such as Electric Vehicle (EV) and Energy
 Storage System (ESS).
- Therefore, an effective SOH (State of Health) prediction algorithm is essential.
- **SOH (State of Health):** Represents the battery's degradation status, specifically the **capacity to store electricity**.
- SOH generally decreases as the charge/discharge cycle increases.
- Batteries are typically used until the SOH decreases to 60% ~ 70%.

1. Project Overview

SOH Calculation Method

The State of Health (SOH) is calculated using the battery's current discharge capacity relative to its initial, nominal capacity.

$$SOH = rac{Q_m}{Q_{nom}}$$

- Qnom: Initial battery discharge capacity (Nominal Capacity)
- Value used: 2 Ah
- Qm: Battery discharge capacity at the m^th Cycle.

This calculation is performed using the NASA PCoE Datasets

2. Project Overview

Data Experiment Conditions

The NASA PCoE Datasets used are categorized into three groups based on their experimental conditions:

- **Data Group A:** Normal temperature Charge/Discharge data (B05, B07, B18)
- **Data Group B:** Normal temperature **High-Power** Charge/Discharge data (B33, B34)
- **Data Group C: Low Temperature** Charge/Discharge data (B46, B47, B48)
- "Our LSTM model performed well because it was trained on a large and complex dataset We utilized data from eight
 individual batteries run under different conditions, from normal to low-temperature. For just one cell, the model processed
 tens of thousands of high-resolution measurements recorded over the battery's entire lifespan (up to 200 cycles).

Project Goals

The objective is to implement an SOH prediction simulation and compare different training scenarios:

- 1. Implement an **SOH prediction simulation** using **Linear Regression** and **LSTM**.
- 2. Perform training using **50% of the data**.
- 3. Perform training using **70% of the data**.
- 4. Visualize the prediction results.
- 5. Analyze results using RMSE and MAE

3. Execution Process

• SOH Calculation Review

The State of Health (SOH) was calculated for each discharge cycle using the **capacity** Q_m from the NASA PCoE dataset and the **Nominal Capacity** ($Q_{nom} = 2$ **Ah**).

	terminal_voltage	terminal_current	temperature	charge_current	charge_voltage	time	capacity	cycle	soн
0	4.191492	-0.004902	24.330034	-0.0006	0.000	0.000	1.856487	1	0.928244
1	4.190749	-0.001478	24.325993	-0.0006	4.206	16.781	1.856487	1	0.928244
2	3.974871	-2.012528	24.389085	-1.9982	3.062	35.703	1.856487	1	0.928244
3	3.951717	-2.013979	24.544752	-1.9982	3.030	53.781	1.856487	1	0.928244
4	3.934352	-2.011144	24.731385	-1.9982	3.011	71.922	1.856487	1	0.928244
50280	3.579262	-0.001569	34.864823	0.0006	0.000	2781.312	1.325079	168	0.662540
50281	3.581964	-0.003067	34.814770	0.0006	0.000	2791.062	1.325079	168	0.662540
50282	3.584484	-0.003079	34.676258	0.0006	0.000	2800.828	1.325079	168	0.662540
50283	3.587336	0.001219	34.565580	0.0006	0.000	2810.640	1.325079	168	0.662540
50284	3.589937	-0.000583	34.405920	0.0006	0.000	2820.390	1.325079	168	0.662540

4. SOH Visualization and Outliers

- SOH was plotted against the discharge cycle to observe the **degradation trend**.
- The plots revealed Outliers data points significantly deviating from the overall trend, notably in the Discharge_B33 graph (Group B).

5. Execution Process

Outlier Removal using Quartiles

To ensure the models were trained on clean data, outliers that deviated sharply from the degradation trend were removed.

- Method: Interquartile Range (IQR) method.
- **IQR Definition:** The difference between the third quartile (Q_3) and the first quartile (Q_1).

SOH Degradation Trends by Group

After data cleaning, the SOH versus Discharge Cycle was plotted for all batteries, grouped by their experimental conditions:

- Group A (Normal Temp: B05, B07, B18): Exhibits a relatively smooth and continuous SOH degradation trend.
- **Group B (High Power: B33, B34):** Shows a more scattered and complex degradation pattern, suggesting faster aging and more variance under high-power conditions.
- Group C (Low Temp: B46, B47, B48): Displays the steepest overall decline and significant fluctuation,
 characteristic of low-temperature degradation.

Linear Regression Model

Linear regression was implemented as the **baseline model** to predict SOH based on the relationship between SOH and the discharge cycle.

$$\widehat{y}_i = a_1 x_i + a_0$$

$$E = E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$

$$a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m \sum_{i=1}^{m} x_{i}^{2} - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}, \qquad a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \sum_{i=1}^{m} x_{i}^{2} - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

RNN Concept: The output at time h(t) depends on the current input x(t) and the memory of the previous state h(t-1)

$$h_t = f_w(h_{t-1}, x_t)$$

$$= \tanh(w_{hh}h_{t-1} + w_{xh}x_t)$$

$$y_t = w_{hy}h_t$$

LSTM Advantage: LSTM solves the **vanishing gradient problem** of standard RNNs, making it highly effective for modeling **long-term dependencies** and time-series data like battery degradation.

Gate Mechanism: LSTM uses three primary gates to regulate the flow of information:

- 1. **Forget Gate:** Controls what information from the past cell state should be forgotten.
- 2. **Input Gate:** Controls what new information (current input) should be stored in the cell state.
- 3. **Output Gate:** Determines the next hidden state based on the new cell state.

Component	Code	Parameter/Value	Explanation
Model Type	Sequential()	-	A linear stack of layers, used for building a basic deep learning model.
Recurrent Layer	model.add(LSTM(64,))	64	Defines a single LSTM layer with 64 units (neurons). These 64 units are the model's internal memory cells that process the sequential SOH data.
Input Shape	input_shape=(trainX.shape[1], trainX.shape[2])	(1, 1)	Specifies the shape of the input data: 1 timestep (since look_back=1) and 1 feature (the SOH value).
Output Layer	model.add(Dense(1))	1	A single Dense (fully connected) neuron. This is the output layer responsible for producing the final, single SOH prediction value.
Loss Function	model.compile(loss='mae',)	MAE (Mean Absolute Error)	The function the model minimizes during training. MAE measures the average magnitude of the errors, calculating the absolute difference between the predicted and real SOH values.
Optimizer	model.compile(, optimizer='adam')	Adam	A robust and highly effective optimization algorithm used to update the model weights. It efficiently finds the minimum of the loss function.

MODEL: TRAINING AND TESTING

Layer	Parameters		
LSTM (64)	16,896		
Dense (1)	65		
Total Parameters	16,961		

LSTM Prediction Results (50% Data Training)

Test RMSE: 0.009 Test MAE: 0.008(difference between model's predicted SOH and the actual SOH)

LSTM Prediction Results (70% Data Training)

Test RMSE: 0.010 Test MAE: 0.008

```
history = model.fit(trainX, trainY, epochs=100, batch size=20, validation data=(testX, testY), verbose=1, shuffle = False)
  2m 43.2s
poch 1/100
22/822 -
                            3s 2ms/step - loss: 0.0471 - val loss: 0.0109
poch 2/100
22/822 -
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0093
poch 3/100
22/822 -
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0107
poch 4/100
22/822 -
                            2s 2ms/step - loss: 0.0039 - val loss: 0.0098
poch 5/100
22/822 -
                            3s 2ms/step - loss: 0.0037 - val loss: 0.0129
poch 6/100
22/822 -
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0104
poch 7/100
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0095
22/822 -
poch 8/100
22/822 -
                            2s 3ms/step - loss: 0.0039 - val loss: 0.0107
poch 9/100
22/822 -
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0091
poch 10/100
22/822 -
                            2s 2ms/step - loss: 0.0037 - val loss: 0.0092
```

2s 2ms/step - loss: 0.0039 - val loss: 0.0087

2s 2ms/step - loss: 0.0031 - val loss: 0.0090

2s 2ms/step - loss: 0.0035 - val loss: 0.0088

1s 2ms/step - loss: 0.0034 - val loss: 0.0087

1s 2ms/step - loss: 0.0032 - val loss: 0.0084

Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

poch 11/100 22/822 ----

poch 12/100 22/822

poch 13/100 22/822

poch 99/100 22/822

poch 100/100 22/822