Ringen en Lichamen - Opdracht 4

Luc Veldhuis - 2538227

November 2017

1. Zij $R = Z[\sqrt{-7}] = \{a + b\sqrt{-7} \text{ met } a \text{ en } b \text{ in } \mathbb{Z}\}$, een deelring van \mathbb{C} . Bepaal alle verschillende ontbindingen van 8 in R. Hierbij beschouwen we twee ontbindingen $8 = p_1 \cdots p_m$ en $8 = q_1 \cdots q_n$ met alle p_i en q_j irreducibel in R als gelijk als m = n en we na eventuele herordening van de q_j hebben dat $q_1 = \pm p_1, \ldots q_m = p_m$. (Merk op dat $R^* = \{\pm 1\}$.) Aanwijzing: gebruik de norm. We nemen als norm: $N(a + b\sqrt{-7}) = a^2 + 7b^2$. Dan geldt nu voor eenheden $u, v \in R$ dat 1 = uv = vu. Maar dan moet gelden dat: 1 = N(1) = N(uv) = N(u)N(v), dus $N(u) = \pm 1$ en $N(v) = \pm 1$, dus $u, v \in \{\pm 1\}$. Dus $R^* = \{\pm 1\}$.

Dus we weten nu dat we de elementen $\{0, -1, 1\}$ niet mogen gebruiken in onze ontbinding, omdat deze niet irreducibel zijn.

Dan hebben we nu dat als $8 = p_1 \cdots p_n$ dan $N(8) = N(p_1 \cdots p_n) = N(p_1) \cdots N(p_m)$.

Dit geeft $64 = N(p_1) \cdot \cdot \cdot (p_n)$.

Dit geeft als mogelijke ontbindingen: $64 = 2 \cdot 32 = 4 \cdot 16 = 8 \cdot 8 = 16 \cdot 4 = 32 \cdot 2$.

We zien dat:

$$32 = 2 \cdot 16 = 4 \cdot 8 = 8 \cdot 4 = 16 \cdot 2.$$

$$16 = 2 \cdot 8 = 4 \cdot 4 = 8 \cdot 2.$$

$$8 = 2 \cdot 4 = 4 \cdot 2$$

$$4 = 2 \cdot 2$$
.

Omdat voor $N(p_i) = 2$ geen oplossingen bestaan met $a \in R$, want dan hebben we dat $a = \pm \sqrt{2}$, vallen alle ontbindingen met een element met norm 2 erin af.

Dan kijken we naar de ontbindingen: $64 = 4 \cdot 16 = 8 \cdot 8 = 16 \cdot 4$ met $16 = 4 \cdot 4$.

Dan beschouwen we nu alle elementen die voldoen aan $N(p_i) \in \{4, 8, 16\}$.

Dit geeft als $N(p_i) = 4$, dan $p_i \in \{\pm 2\}$.

Dit geeft als $N(p_i) = 8$, dan $p_i \in \{\pm (1 \pm \sqrt{-7})\}$.

Dit geeft als $N(p_i) = 16$, dan $p_i \in \{\pm 4, \pm (3 \pm \sqrt{-7})\}$.

Volgens dit schema is een mogelijke ontbinding met beschouwing tot de norm: $8 = \pm 2 \cdot \pm (3 \pm \sqrt{-7})$.

Deze ontbinding is niet correct, want Im(8) = 0, maar $Im(\pm 2 \cdot \pm (3 \pm \sqrt{-7})) = \pm 2\sqrt{-7}$. Dus deze ontbinding valt af.

Ook zien we dat $4 = 2 \cdot 2$, maar 2 is geen eenheid, dus 4 is niet irreducibel. Dus dit element valt ook af.

Dan hebben we nu de ontbindingen:

- $8 = (1 + \sqrt{-7}) \cdot (1 \sqrt{-7}) = (1 \sqrt{-7}) \cdot (1 + \sqrt{-7}) = -(1 + \sqrt{-7}) \cdot -(1 \sqrt{-7}) = -(1 \sqrt{-7}) \cdot -(1 + \sqrt{-7})$. Deze ontbindingen tellen als 1 ontbinding.
- 2. Zij $R = \{\frac{a}{b} \text{ in } \mathbb{Q} \text{ met } a \text{ en } b \text{ in } \mathbb{Z} \text{ en } b \text{ oneven}\}$. Gegeven is dat R een deelring is van \mathbb{Q} die de identiteit $\frac{1}{1}$ van \mathbb{Q} bevat.

- (a) Laat zien dat $R^* = \{\frac{a}{b} \text{ in } R \text{ met } a \text{ en } b \text{ oneven}\}.$ Een element in $a \in R$ is een eenheid en dus in R^* als geldt dat ab = ba = 1 voor een $b \in R$. Neem een element $\frac{a}{b} \in R$, dan geldt $\frac{a}{b} \frac{b}{a} = \frac{ab}{ba} = 1$ als $\frac{b}{a} \in R$. Dit element $\frac{b}{a} \in R$ bestaat alleen als a oneven is per definitie. Ook moet er gelden dat boneven is per definitie van R. Dus elk element $\frac{a}{b} \in R$ met a en b oneven is een eenheid. Dus $R^* = \{ \frac{a}{b} \text{ in } R \text{ met } a \text{ en } b \text{ oneven} \}.$
- (b) Toon aan dat de irreducibele elementen van R de elementen 2u met u in R^* zijn. Aanwijzing: elk element in R kun je schrijven als $\frac{a2^n}{b}$ met a en b oneven en $n \geq 0$.

We kunnen elk getal in \mathbb{Z} schrijven als $a2^n$ voor $n \geq 0$ voor een oneven getal a.

We moeten bewijzen dat $r \in R$ irreducibel $\Leftrightarrow r = 2u \text{ met } u \in R^*$.

Bewijs $r \in R$ irreducibel $\Rightarrow r = 2u$.

Neem een irreducibel element $r = \frac{a}{b} \in R$. Schrijf dit vervolgens als $\frac{c2^n}{b} \in R$ met $a = c2^n$ en $c \in \mathbb{Z}$ oneven. Omdat per definitie $r \notin R^*$, moet gelden dat $n \geq 1$, omdat anders a

Neem nu een $d, e \in R$ met $d = \frac{f2^m}{g}$ en $e = \frac{h2^l}{j}$ met $f, g, h, j \in \mathbb{Z}$ oneven en $m, l \geq 0$ zodat

Deze bestaan altijd, neem namelijk d = r en $e = \frac{1}{1}$.

We gaan nu kijken naar de vorm van het element de.

• Stel m + l = 0.

Dan zijn d en e eenheden, want de tellers zijn oneven.

Dan geldt $\frac{c2^n}{b} = \frac{f}{g} \frac{h}{j} = \frac{fh}{gj}$. Dus $\frac{c2^n gj}{bgj} = \frac{fhb}{bgj}$. Dus er moet gelden dat $c2^n gj = fhb$.

Maar fhb is oneven, en omdat $n \geq 1$ is $c2^n gj$ even. Dus het is niet mogelijk dat m+l=0.

• Stel m + l = 1.

Dan geldt dat $r=de=\frac{f2^m}{g}\frac{h2^l}{j}=\frac{fh2}{gj}=2\frac{fh}{gj}$. Maar nu is $fh,gj\in\mathbb{Z}$ oneven, dus er bestaat een $u\in R^*$, zodat $u=\frac{fh}{gj}$ en r=2u.

• Stel m+l>1. Dan hebben we dat $de=\frac{f2^m}{g}\frac{h2^l}{j}=\frac{fh2^{m+l}}{gj}$. Dan kunnen we dit ook schrijven als $\frac{fh2^{m+l}}{gj}=\frac{fh2^{m+l-1}}{gj}\frac{2}{1}$. Maar $\frac{2}{1}\not\in R^*$, want 2 is even, en $\frac{fh2^{m+l-1}}{gj}\not\in R^*$, want m+l-1>0, dus $fh2^{m+l-1}$ is

Dit is een tegenspraak dat r irreducibel is, want $r = \frac{fh2^{m+l-1}}{gj} \frac{2}{1}$, maar geen van beide termen uit R is een eenheid. Dus het is onmogelijk dat m+l>1.

Hieruit blijkt dat als er 2 elementen $d, e \in R$ zijn zodat r = de, dan moet gelden dat $de = 2u \text{ met } u \in \mathbb{R}^*$. Dus elk irreducibel element $r \in \mathbb{R}$ is te schrijven als r = 2u met $u \in R^*$.

Bewijs $r \in R$ irreducibel $\Leftarrow r = 2u$.

Neem een element $r \in R$ zodat r = 2u. Omdat $0 \notin R^*$, geldt dat $r \neq 0$.

Stel $u = \frac{a}{b} \in \mathbb{R}^*$, dan zijn a en b oneven per definitie.

Maar dan is $r = \frac{2a}{b}$, en 2a is even, dus $r \notin R^*$.

Nu rest ons nog te bewijzen dat voor elke andere elementen $d, e \in R$ zodat r = 2u = de, moet gelden dat d of e een eenheid is.

Stel d en e zijn geen eenheid, dan moet gelden dat $d = \frac{f2^m}{g}$ met $m \ge 1$ en $e = \frac{h2^l}{i}$ met $l \geq 1$ en met $f, g, h, j \in \mathbb{Z}$ oneven.

Dan hebben we dat $de = \frac{f2^m}{g} \frac{h2^l}{j} = \frac{fh2^{m+l}}{gj} = 2u = \frac{2a}{b}$.

Dit geeft $\frac{fhb2^{m+l}}{gjb} = \frac{2agj}{gjb}$ met $fhb, gjb, agj \in \mathbb{Z}$ oneven.

Dus er moet gelden dat $2agj = fhb2^{m+l}$. Omdat deze vergelijking in $\mathbb Z$ moet gelden, kunnen we beide kanten door 2 delen. Dit geeft $agj = fhb2^{m+l-1}$, met $m+l-1 \ge 1$, dus $fhb2^{m+l-1}$ is even, maar agj oneven. Dit is een tegenspraak.

Dus tenminste 1 van d of e moet een eenheid zijn.

Dus voor elke ontbinding r = 2u = de, geldt dat dat d of e een eenheid is, en u is per aanname een eenheid.

Aan alle eisen voor een irreducibel element zijn nu voldaan, dus r is een irreducibel element. We hebben nu bewezen dat $r \in R$ irreducibel $\Leftrightarrow r = 2u$ met $u \in R^*$.

(c) Zijn de elementen uit (b) ook priemelementen? We zien in (b) dat voor een $r \in R$ geldt dat, als deze irreducibel is, dan is geldt r = 2u met $u \in R^*$.

Hieruit volgt dat (r) = (2u). Dus geldt nu ook $2uu^{-1} = 2 \in (r)$, en u^{-1} bestaat, want $u \in R^*$.

Dus $(2) \subset (r)$.

Stel $1 \in (r)$, dan moet gelden 1 = rk, voor een $k \in R$, maar dan is r een eenheid, maar r is irreducibel. Dit is onmogelijk.

Dus $(r) \neq R$.

Als we not kunnen laten zien dat (2) een maximaal ideaal is, dan moet gelden dat (2) = (r), en dan volgt direct dat (2) een priem ideaal is.

Stel er is een ideaal $I \subseteq R$ zodat $(2) \subseteq I$. We zien direct dat (2) = 2R, dus elk element

 $\frac{a2^m}{b} \in 2R$ heeft tenminste $m \geq 1.$ Omdat (2) $\subsetneq I$, moet er een element $t \in I$ bestaan zodat t niet in (2), dus $t = \frac{c2^n}{d}$, met $n=0 \text{ en } c, d \in \mathbb{Z}, \text{ want als } n \geq 1, \text{ dan zit } t \in (2).$

Maar als n=0 dan zit t in R^* en is nu een eenheid. Als een ideaal een eenheid bevat is het gelijk aan de hele ring, dus geldt nu I = R.

Dus (2) is een maximaal ideaal.

Hieruit volgt dat (2) = (r), omdat $(r) \neq R$ en dus is (r) een maximaal ideaal en ook direct een priem ideaal.

Een element $p \in R$ is een priem element als geldt dat (p) een priem ideaal is.

Dus elk irreducibel element is ook een priem element.