PCB Layout

Component placement (LEDs, mounting holes)

```
led_coords = 8×2
  125.1777
              95.1777
  107.5000
             102.5000
   89.8223
              95.1777
   82.5000
              77.5000
   89.8223
              59.8223
  107.5000
              52.5000
  125.1777
              59.8223
  132.5000
              77.5000
mountingHolePos = 1 \times 2
  129.0711
              66.9791
mountingHolePos = 1 \times 2
   86.1158
              66.6042
mountingHolePos = 1 \times 2
  100.0836 100.3254
```


Calculate position of capacitor for .POS file exporting (KiCAD will not put the positions of through hole components, so the capacitor must be interpolated from nearby component data)

$$cap_pos_x = -11.3435$$

 $cap_pos_y = 17.1943$

Component choices

Checking the behavior of C4 (Supercapacitor) and R1 (Shield resistor). Results suggest using PWM to adjust the charging voltage of C4, as suggested below. Suggested charging curve of

Duty Cyle = constrain(0.1 + 0.1t, 0, 1)

where t is in seconds.

 $temperature_increase_of_steel_wool_after_discharge = 101.9022$

```
R_shield = 500
drain_tau = 12.5000
max_power_shield_resistor = 0.0500
resistance_value_ok = logical
1
```

Battery life calculations

```
energy_per_capacitor_charge = 0.0052 \text{ A V h}

battery_life = (5.2351 \text{ h} 3.5150 \text{ h})

battery_life_loss_one_capacitor_discharge = (0.0042 \text{ h} 0.0028 \text{ h})
```

Checking delay RC circuits on the reset pin

```
enable_delay_time_ms = 14.1414
```


Calculations for the acceleration that is measured by the accelerometer while spinning

