University of BOUIRA
Faculty of sciences
Department of Informatics

Module

Logique Mathematique

2ème Année Licence

Cours 2

Logique des propositions

les bases (1)

BY: BENAISSI Sellami

s.benaissi@gmail.com

OCT 2022

PLAN

Part 1

Rappelle

Definition

On peut définir la logique comme :

« la science qui étudie les règles générales du raisonnement correcte »

Le but de l'étude de la logique est donc :

- * Raisonner correctement
- Résoudre les problèmes complexes
- * Trouver les solutions rapidement

La logique classique

La logique comprend classiquement :

1. la logique des propositions

2. la logique des prédicats.

Calcul propositionnel

La proposition (assertion)

C'est une phrase informative qu'on peut juger vraie ou fausse, La proposition peut être affirmative ou négative

Variable propositionnelle

Une proposition (atome, proposition élémentaire) est représentée par une variable

- exemples:
- La terre est sphérique ≡
- Le soleil tourne autour de la terre ≡ Q

On dit que la valeur de vérité de la première phrase = Vrai

Calcul propositionnel

Les Connecteurs logiques

Connecteur	Opération	Exemple
-	Négation (non)	¬P
٨	Conjonction (et)	PΛQ
V	Disjonction (ou)	PVQ
→	Implication (implique)	P→Q
\leftrightarrow	Equivalence (équivalent à)	P↔Q

Calcul propositionnel

La Table de vérité

P	Q	¬P	P∧Q	P√Q	P→Q	P⇔Q
٧	٧	F	٧	٧	٧	٧
٧	F	F	F	٧	F	F
F	٧	٧	F	٧	٧	F
F	F	٧	F	F	V	V

Part 2

Propriétés des connecteurs

Propriétés des connecteurs

Commutativité de ∧ et V:

$$\mathbf{P} \wedge \mathbf{Q} \equiv \mathbf{Q} \wedge \mathbf{P}$$
$$\mathbf{P} \vee \mathbf{Q} \equiv \mathbf{Q} \vee \mathbf{P}$$

2 Associativité de ∧ et ∨:

$$P \land (Q \land R) \equiv (P \land Q) \land R$$

 $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

Bistributivité de ∧ et ∨:

$$\frac{\mathbf{P}V(\mathbf{Q}\Lambda\mathbf{R}) \equiv (\mathbf{P}V\mathbf{Q})\Lambda(\mathbf{P}V\mathbf{R})}{\mathbf{P}\Lambda(\mathbf{Q}V\mathbf{R}) \equiv (\mathbf{P}\Lambda\mathbf{Q})V(\mathbf{P}\Lambda\mathbf{R})}$$

Autres propriétés:

Lois de Morgan

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

Idempotence

$$\neg \neg P \equiv P$$

$$P \land P \equiv P$$

$$P \lor P \equiv P$$

Propriétés de →

$$P \rightarrow Q \neg (P \land \neg Q) \equiv \neg P \lor Q$$
 $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
 $P \lor Q \equiv \neg P \rightarrow Q$
 $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$

Part 3

Formules propositionnelles

- Les propositions **atomiques** sont des formules
- P et Q sont des formules

- Les propositions **complexes** sont des formules
- Si P et Q sont des formules alors $(P \land Q)$, $(P \lor Q)$, $(P \to Q)$, $(P \leftrightarrow Q)$, $\neg P$ sont des formules

Utilisation des parenthèses

Les parenthèses () sont un moyen de lever l'ambiguïté.

•
$$\mathbf{P} \to \mathbf{Q} \leftrightarrow \neg \mathbf{R} \equiv (\mathbf{P} \to \mathbf{Q}) \leftrightarrow (\neg \mathbf{R})$$

•
$$\mathbf{P} \to \mathbf{Q} \to \mathbf{R} \equiv (\mathbf{P} \to \mathbf{Q}) \to \mathbf{R}$$

Exemples de Formules

Formule	Non-Formule	
P	P+Q	
(¬ P)	P¬Q	
P→Q	ΛQ	
(P ∧ (Q))	(/\)	
(¬(P ∧ Q) ∨ R)	(Q	
(P → (Q ∨ R))	(P → (Q V R)	

Sous Formule propositionnelle

Les sous formules d'une formule f sont définies par :

- f est une sous formule de f
- Si $\neg f'$ est une sous formule de f alors f' est une sous formule de f
- Si $k \in \{\Lambda, V, \rightarrow, \leftrightarrow\}$ et f1 k f2 est une sous formule de f alors f1 et f2 sont des sous formules de f

Une sous formule de f est dite **stricte** si elle est différente de f elle même

Sous Formule propositionnelle

Exemple:

L'ensemble des sous formules de (((PVQ) $\land \neg P$) $\rightarrow R$) est :

$$\{ (((PVQ) \land \neg P) \rightarrow R), (PVQ) \land \neg P), (PVQ), \neg P, P, Q, R \}$$

L'ensemble des sous formules de ¬¬¬P est:

$$\{\neg \neg \neg P, \neg \neg P, \neg P, P\}$$

Arbre syntaxique d'une formule propositionnelle

On peut représenter une formule sous forme d'un **arbre**. Cela permet de bien lire la formule.

Arbre syntaxique d'une formule propositionnelle

Pour chaque formule propositionnelle *f* il est possible de retrouver les sous formules qui ont servi à la construire :

Procédure de décomposition :

- Découper au niveau du connecteur principal de f.
- Enlever les **parenthèses** les plus externes de chacun des arguments du connecteur principal.
- Répéter l'opération de décomposition pour chacun des arguments jusqu' à arriver aux **variables**.

Les **nœuds de l'arbre** de décomposition d'une formule f sont les sous formules de f

Construire l'arbre de décomposition de la formule suivante :

$$\neg ((P \lor Q) \rightarrow P) \land (Q \rightarrow R)$$

Construire l'arbre de décomposition de la formule suivante :

$$((\neg P \leftrightarrow Q) \lor \neg (R \land S)) \rightarrow P$$

$$((\neg P \leftrightarrow Q) \lor \neg (R \land S)) \rightarrow P$$

$$(\neg P \leftrightarrow Q) \lor \neg (R \land S)$$

$$\neg P \qquad Q \qquad R \land S$$

Exemple

Notation préfixée (polonaise)

Notation préfixée (polonaise) d'une formule

- Les formules peuvent êtres représentées par la notation polonaise qui consiste à mettre les connecteurs en tête de la formule,
- La notation polonaise se déduit en parcourant l'arbre décomposition comme suit :

Racine, Branche gauche, Branche droite

La notation polonaise de la formule:

$$\neg ((P \lor Q) \rightarrow P) \land (Q \rightarrow R)$$

est

Notation polonaise: $\Lambda \neg \rightarrow V P Q P \rightarrow Q R$

Notation préfixée (polonaise)

$\neg ((P \lor Q) \rightarrow P) \land (Q \rightarrow R)$

Notation préfixée (polonaise)

Calcul de vérité

La valeur de vérité d une formule peut être calculée comme suit :

- Parcourir la formule (notation polonaise) de droite à gauche,
- Si on rencontre un connecteur unaire (¬) on l'applique à la variable située à sa droite (on remplace ce connecteur et cette variable par la valeur de vérité résultante)
- Si on rencontre un connecteur binaire, on l'applique aux deux propositions à sa droite (on remplace ce connecteur et les deux propositions par le résultat)

Notation préfixée (polonaise)

Exemple 1:

Calcul de vérité

soit la formule : $\neg ((PVQ) \rightarrow P) \land (Q \rightarrow R)$

Soit P = Vrai, Q = Faux, R = Vrai

La notation polonaise de la formule : ∧¬ →VPQP→QR

$$\begin{array}{ccc}
\textcircled{1} & \wedge \neg \rightarrow \bigvee PQP \xrightarrow{} QR \\
& & \text{Vrai}
\end{array}$$

Faux

Longueur d'une formule

La longueur d'une formule est le **nombre de symboles** de l'alphabet qu'elle contient

Formule	Longueur
P	1
¬ P	2
¬ (P)	4
¬((P)Λ(Q))	10
$(\neg(P)\Lambda(Q)) \rightarrow R$	12
$((P)\Lambda(Q)) \rightarrow ((R)\Lambda(S))$	19

Profondeur d'une formule

La profondeur d'une formule correspond à son arbre de décomposition C'est le **nombre de branche** qui sépare **la racine** (Niveau 0) de la branche la **plus éloignée**

Formule	Profondeur
P	0
¬ P	1
¬ (P)	1
¬((P)Λ(Q))	2
$(\neg(P)\Lambda(Q)) \rightarrow R$	3
$((P)\Lambda(Q)) \rightarrow ((R)\Lambda(S))$	2

Complexité (ordre) d'une formule

La complexité d'une formule est le **nombre de connecteurs** qu'elle contient.

Formule	Complexité	
P	0	
¬ P	1	
¬ (P)	1	
¬((P)Λ(Q))	2	
$(\neg(P)\Lambda(Q)) \rightarrow R$	3	
$((P)\Lambda(Q)) \rightarrow ((R)\Lambda(S))$	3	

Substitution simple

Une **substitution** associe à une variable propositionnelle **P** une formule α Elle est notée $\lceil \alpha/P \rceil$.

L'application de $[\alpha/P]$ à une formule f (notée f $[\alpha/P]$) est le résultat de remplacement simultané de toutes les occurrences de P dans f par α .

Substituti Formule [Substitution]	Substitution simple		
Formule [Substitution]	Formule après substitution		
(P V Q) [R/P]	RVQ		
(P → Q) [P/Q]	P → P		
(P → Q) [S/R]	P → Q		
((P V Q) Λ ¬P) [¬P/P]	(¬P V Q) Λ ¬¬P		
((P V Q) Λ ¬P) [(RΛS)/P]	$((R\Lambda S) V Q) \Lambda \neg (R\Lambda S)$		
$(P \rightarrow S) [(Q \rightarrow R)/P]$	$(Q \rightarrow R) \rightarrow S$		

Substitution simultanée

- Une **substitution simultanée** consiste à substituer simultanément $m{n}$ variables propositionnelles dans une formule $m{f}$.
- On note f [α_1/P_1 , α_2/P_2 ,..., α_n/P_n] la substitution dans f des variables propositionnelles P_i par les formules α_i

Les P_i sont distincts

Substitution simultanée Formule [Substitution] Formule après substitution	
Formule [Substitution]	Formule après substitution
(P V Q) [R/P, S/Q]	RVS
$(P \rightarrow Q) [P/Q, R/P]$	R → P
(P → Q) [S/R, P/P]	P→Q
((P V Q) Λ ¬P) [¬P/P, (PΛQ)/Q]	(¬P V (PΛQ)) Λ ¬¬P

Substitution composée

- Plusieurs substitutions peuvent être appliquées à une formule,
- On note ($f [\alpha_1/P_1, \alpha_2/P_2, ..., \alpha_n/P_n]$) [$\beta_1/Q_1, \beta_2/Q_2, ..., \beta_n/Q_n$]
- Substituer dans f les variables ${f P_i}$ par les formules ${f lpha_i}$, dans la formule obtenue, substituer les variables ${f Q_i}$ par les formules ${f eta_i}$

Substitution composée		
Formule [Substitution]	Formule après substitution	
((P V Q) [(Q → R)/P]) [¬Q/Q]	$(\neg Q \rightarrow R) V \neg Q$	
$((P \rightarrow Q) [P/Q]) [(R/S)/P]$	(R∧S) → (R∧S)	
((P → Q) [S/R]) [P/P]	P→Q	
(((P V Q) Λ ¬P) [¬P/P]) [(PΛQ)/Q]	(¬P V (PΛQ)) Λ ¬¬P	

Thank you

