Section 8.1 Homework

Note: For each problem, justify why your recurrence relation works by giving a verbal description of what each term of your recurrence relation represents.

- 1. For the following problem, tiles can be of the following types:
 - 1×1 tiles that are red, blue, or green.
 - 1 × 2 tiles that are green or blue (which can be rotated to be vertical or horizontal)

For each sequence a_n below, find a linear recurrence relation for a_n . Also, compute a_1 , a_2 , a_3 , and a_4 .

- (a) a_n is the number of tilings of a $1 \times n$ rectangle.
- (b) a_n is the number of tilings of a $1 \times n$ rectangle where only blue or green tiles are used.
- (c) a_n is the number of tilings of a $1 \times n$ rectangle so that only 1×1 tiles are used, and red tiles occur consecutively.
- (d) a_n is the number of tilings of a $1 \times n$ rectangle using only red and green tiles and so that red tiles do not occur consecutively.
- (e) a_n is the number of tilings of a $2 \times n$ rectangle using only blue or green 1×2 tiles which can be placed horizontally or vertically.
- (f) a_n is the number of tilings of a $2 \times n$ rectangle using only blue or green 1×2 tiles, where only the green tiles can be placed horizontally. (*Note:* For the $2 \times n$ rectangle, the vertical dimension is 2 and the horizontal dimension is n.)
- 2. Consider strings of digits consisting of the numbers 1, 2, 4. For each sequence a_n below, find a linear recurrence relation for a_n . Also, compute a_1 , a_2 , a_3 , a_4 , a_5 .
 - (a) a_n is the number of such strings that sum to n.
 - (b) a_n is the number of such strings that sum to n and don't contain two consecutive 1s.
- 3. A ternary string is a string of numbers from the set $\{0,1,2\}$. For each sequence a_n below, find a linear recurrence relation for a_n . Also, compute a_1 , a_2 , a_3 , a_4 , and a_5 .
 - (a) a_n is the number of ternary strings of length n that don't contain 00 consecutively.
 - (b) a_n is the number of ternary strings of length n that contain 000 consecutively.

Answers:

- 1. (a) $a_n = 3a_{n-1} + 2a_{n-2}$ $a_0 = 1, a_1 = 3, a_2 = 11, a_3 = 39, a_4 = 139$
 - (b) $a_n = 2a_{n-1} + 2a_{n-2}$ $a_0 = 1$, $a_1 = 2$, $a_2 = 6$, $a_3 = 16$, $a_4 = 44$
 - (c) $a_n = 2a_{n-1} + 2a_{n-2} + 3^{n-2}$ $a_0 = 0$, $a_1 = 0$, $a_2 = 1$, $a_3 = 5$, $a_4 = 21$
 - (d) $a_n = a_{n-1} + 2a_{n-2} + a_{n-3}$ $a_0 = 1$, $a_1 = 2$, $a_2 = 4$, $a_3 = 9$, $a_4 = 19$
 - (e) $a_n = 2a_{n-1} + 4a_{n-2}$ $a_0 = 1$, $a_1 = 2$, $a_2 = 8$, $a_3 = 24$, $a_4 = 80$
 - (f) $a_n = 2a_{n-1} + a_{n-2}$ $a_0 = 1$, $a_1 = 2$, $a_2 = 5$, $a_3 = 12$, $a_4 = 29$
- 2. (a) $a_n = a_{n-1} + a_{n-2} + a_{n-4}$ $a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 6, a_5 = 10$
 - (b) $a_n = a_{n-2} + a_{n-3} + a_{n-4} + a_{n-5}$ $a_0 = 1, \quad a_1 = 1, \quad a_2 = 1, \quad a_3 = 2, \quad a_4 = 3, \quad a_5 = 5$
- 3. (a) $a_n = 2a_{n-1} + 2a_{n-2}$ $a_0 = 1$, $a_1 = 3$, $a_2 = 8$, $a_3 = 22$, $a_4 = 60$, $a_5 = 164$
 - (b) $a_n = 2a_{n-1} + 2a_{n-2} + 2a_{n-3} + 3^{n-3}$ $a_0 = 0, a_1 = 0, a_2 = 0, a_3 = 1, a_4 = 5, a_5 = 21$