Дифракция света

Гончаров Марк

23 марта 2021 г.

1 Теория

Рис. 1: Схема установки для наблюдения дифракции Френеля

Ширину наблюдаемых зон Френеля определеяем, как

$$z_{\rm m} = \sqrt{am\lambda},$$

где а - расстояние от щели до плокости наблюдения.

Также важной характеристикой является число Френеля Ф

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}.$$

Это соотношение ширины щели D к размеру первой зоны Френеля. Обратную величину называют волновым параметром

$$p = \frac{1}{\Phi^2} = \frac{\sqrt{a\lambda}}{D}.$$

Рис. 2: Наюблюдение дифракции Фраунгофера на двух щелях.

При исследовании интерференции на двух щелях светлая интерференционная полоса наблюдается во всех тех случаях, когда указанная разность хода равна целому числу длин волн. Если $\Theta_{\rm m}$ - угловая координата интерференционного максимума, то

$$d \cdot \Theta_{\rm m} = m\lambda$$
.

где d - расстояние между щелями.

Тогда расстояние δx между соседними интерференционными полосами:

$$\delta x = f_2 \frac{\lambda}{d}.$$

Число полос, укладывающихся в области центрального дифракционного максимума

$$n = \frac{2\lambda f_2}{D \cdot \delta x} = \frac{2d}{D}.$$

Дифракция хорошо наблюдается лишь для небольших размеров щели. Это объясняется наложением интерференционных картин от разных элементов щели. Первое размытие интерференционных полос будет при условии

$$\frac{b}{f_1} = \frac{\lambda}{d}$$

2 Выполнение

Сначала рассматривали дифракцию Френеля.

Установили ширину щели $D=0.26\pm0.01$ мм. Далее при настроенном приборе, перемещали микроскоп вдоль измерительной шкалы. Засекали расстояния, при которых чётко видно некоторое число тёмных полос.

Таблица 1: Дифракция Френеля

Количество полос	1	2	3	4	5	6
Расстояние до щели а, мм	33	27	18	13	10	8

Далее рассчитаем величину

$$2z_{\rm n} = 2\sqrt{an\lambda},$$

где а - расстояние до щели, $\lambda \approx 578$ нм - жёлтый светофильтр.

Рассмотрим теперь дифракцию Фраунгофера.

Она возникает, когда $D \ll \sqrt{a\lambda}$. Снимем расстояния от центра полосы до тёмных полос. При записи в таблицу сразу учтём, что цена деления микроскопа 20мкм. Измерения 2.04 ± 0.01 на шкале микроскопа. Поэтому относительная погрешность измерения 0.005.

Таблица 2: Дифракция Фраунгофера

	' ' '	11 ' 1				
Номер полосы	-3	-2	-1	1	2	3
Расстояние до центра а, мкм	-19 ± 0.5	-13 ± 0.5	-6 ± 0.5	6 ± 0.5	11 ± 0.5	17 ± 0.5

Минимумы дифракции

Из теории:

$$D = f_2 m \frac{\lambda}{X_{\rm m}},$$

где $X_{\rm m}$ - расстояние от тёмной полосы до оси.

Поэтому легко найти угловой коээфициент прямой с помощью МНК: $k=0.0059\pm0.0006$, тогда

$$D = f_2 \frac{\lambda}{k} = 0.27 \pm 0.03.$$

Рассчёт погрешностей для D: так как фокусное расстояние использующейся линзы $f=10.8\pm0.05$ (посчитана лаборантами), то $\delta f\approx 0.005\ll\delta k$. Отсюда $\delta D=\delta k\approx0.1$, т.е. учитываем два знака.

Как видим, настоящее D = 0.26мм находится в пределах погрешности, что очень даже неплохо)

Также в задании требовалось найти среднее расстояние между соседними минимуммами. Так как получилось качественно измерить лишь три минимума, то можно на этом основании сказать, что среднее расстояние $x \approx 5.8$.

Далее исследовали дифракцию на двух щелях.

Таблица 3: Дифракция на двух щелях

_		, , 11		J		
	Номер полосы	Середина	1	2	3	4
	Расстояние до центра а, мкм	37.4 ± 0.2	44.0 ± 0.2	50.2 ± 0.3	56.4 ± 0.3	62.8 ± 0.3

Таблица 4: Линейное расстояние между соседними интерференционными полосами

1	_		111 '	
Номер полос		1-2	2-3	3-4
Расстояния между ними δx , м	КМ	6.2 ± 0.5	6.2 ± 0.6	6.4 ± 0.6

По формуле найдём расстояние между щелями

$$d = f_2 \frac{\lambda}{\delta x} = 990 \pm 100.$$

Причём измеренное с помощью микроскопа 1000мкм, что показывает просто обалденное попадание! Ширину щели опять можно измерить, как

$$b = 2\frac{\lambda}{d}f_2 = 0.22 \pm 0.02.$$

Число полос внутри главного максимума $n=\frac{2d}{D}\approx 5.7\approx 6,$ что мы и наблюдали.

Когда полуширина дифракционного изображения превышает расстояние между изображениями, то по виду дифракционной картины сложно определить, представляет собой источник двойную или одиночную щель. Для исключения этих сложностей, пользуются критерием Релея: изображения считаются различными, если максимум одного дифракционного пятна соответсвует минимуму другого. То есть

$$\frac{\lambda}{D_0} = \frac{l}{f_2} = \frac{d}{f_1}.$$

Проверим выполенение этого критерия.

У нас изображние двух щелей почти сливаются при $D_0=0.98\pm0.05$ мм. Теоретически из закона Релея: $D_1=\frac{\lambda f_1}{b}=1.08\pm0.06$ мм. Погрешность основная из измерения толщины щели в предыдущем опыте. В погрешность (учитывая с обоих сторон), попали, что неплохо.

3 Вывод

Мы научились:

- 1. Измерять радиусы зон Френеля
- 2. Теоретически и практически измерять толщину щели
- 3. Использовать МНК (почти забыли)
- 4. Исследовать дифракцию на двух щелях
- 5. Находить параметры щелей по дифракционной картине
- 6. Использовать закон Релея для проверки разрешающей способности прибора