13

Централизованное тестирование по математике, 2001 год

		Часть А										
\1 .	Если $\sqrt{3-t} - \sqrt{3-t}$	$\sqrt{2-t} = 1, \ \sqrt{3-t} + \sqrt{3}$	$\frac{1}{2-t}$	равно								
1.	1/4	2. 1	3.	$\frac{5}{2}$	4.	2	5.					

A2. Если $f(x) = \frac{2x-3}{x-4}$, то $f(x^2) - f(x+2)$ приводится к виду:

1.
$$\frac{x+1}{x^2-4}$$
 2. $-\frac{5x+1}{x^2-4}$ 3. $-\frac{5(x+1)}{x^2-4}$ 4. $\frac{5x+1}{x^2-4}$ 5. $\frac{5(x+1)}{x^2-4}$

А3. Сумма координат вершины параболы $y = x^2 - 4x + 6$ равна

А4. Произведение корней уравнения $(x^2 + x + 1)(x^2 + x - 1) = 3$ равно

1.
$$\sqrt{10}$$
 2. -2 3. 8 4. -8 5. 10

А5. Результат вычисления выражения $2^{\log_4(\sqrt{3}-2)^2} + 3^{\log_9(2+\sqrt{3})^2}$ равен

1.
$$\sqrt{3}$$
 2. $2\sqrt{3}$ 3. 2 4. 4 5. 5

А6. Сумма корней уравнения $2^{x^2} + 2^{x^2+3} - 2^{x^2+1} = 7 \cdot 2^{5x+6}$ равна

1. 5 2.
$$-\frac{5}{2}$$
 3. -6 4. -5 5. $\frac{5}{2}$

А7. Произведение корней уравнения $\log_{\frac{1}{2}}^{2} \frac{x}{9} + \log_{\frac{1}{2}}^{2} \frac{x}{3} = 1$ равно

1. 27 2. 9 3.
$$\frac{1}{27}$$
 4. $\frac{1}{9}$ 5. 3

А8. Если в арифметической прогрессии первый и девятый члены соответственно равны -6 и 10, то сумма первых двенадцати членов прогрессии равна

- **А9.** Значение выражения $\sin\left(\arctan\left(-\frac{5}{6}\right)\right)$ равно
- 1. $\frac{6\sqrt{59}}{59}$ 2. $\frac{6\sqrt{61}}{61}$ 3. $\frac{6\sqrt{62}}{62}$ 4. $\frac{6\sqrt{65}}{65}$ 5.

- **А10.** Результат вычисления выражения $\frac{\cos 76^{\circ} \cos 16^{\circ}}{1 \sin^2 22^{\circ}}$ равен
- 1.
- 2. $-\frac{1}{2}$ 3. $\frac{1}{2}$

- -2
- А11. Если одна из сторон треугольника на 3 см меньше другой, высота делит третью сторону на отрезки длиной 5 см и 10 см, то периметр треугольника равен (в см)
- **2.** 40
- **3**. 32
- 5.
- А12. Если сфера проходит через все вершины прямоугольного параллелепипеда с ребрами 1 см, 2 см, и 2 см, то объем шара (в см³), ограниченного этой сферой, равен
- 3π
- 2. $\frac{7}{2}\pi$ 3. 4π
- 4. $\frac{9}{2}\pi$

Часть В

Ответы к заданиям части B запишите в бланке ответов рядом с номером задания, начиная с первого окошка. Ответом может быть только число. Каждую цифру числа (и знак минус, если имеется) пишите в отдельном окошке по образцам, приведенным в верхней части бланка.

- **В1.** Найдите сумму корней уравнения $|(x-1)^3 36| = 28$.
- **В2.** Укажите число целых решений неравенства $\frac{x^2 9x + 17}{(x 1)(x 3)} \le -\frac{1}{x 3}$.
- **В3.** Найдите число целых решений неравенства $\sqrt{x+1} \sqrt{x-2} > 1$.
- **В4.** Найдите число целых решений неравенства $\left(\sin\frac{\pi}{6}\right)^{x^2-x-6} < \left(\operatorname{tg}^2\frac{\pi}{6}\right)^{x^2-x-6}$.
- **В5.** Найдите наименьшее целое решение неравенства $11^{\log_7 x} + x^{\log_7 11} = 2 \cdot x^{2\log_x 11}$
- **В6.** Найдите число решений уравнения $2\sin^2 x 5\cos x 4 = 0$, принадлежащих отрезку $\left[0; \frac{9\pi}{2}\right]$.
- В7. Найдите сумму координат точки с положительной абсциссой, касательная в которой к графику функции $f(x) = x^2 - 3x + 4$ проходит через начало координат.
- **В8.** Сколько точек (x; y) с целыми координатами x, y лежат внутри прямоугольника с вершинами $A\left(\frac{3}{2};\frac{3}{2}\right)$, $B\left(\frac{3}{2};\frac{11}{2}\right)$, $C\left(\frac{11}{2};\frac{11}{2}\right)$, $D\left(\frac{11}{2};\frac{3}{2}\right)$?
- **В9.** Найдите $|\vec{a} + \vec{b}|$, если $|\vec{a}| = 11$, $|\vec{b}| = 23$ и $|\vec{a} \vec{b}| = 30$.
- **В10.** Найдите значение параметра a, при котором наибольшее отрицательное решение неравенства $\frac{ax+10}{r} \ge -3$ равно -5.

Ответы

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
2	3	4	2	4	1	1	4	2	1	2	4

ĺ	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10
I	8	2	1	4	2	4	4	16	20	-1