전정대배달로봇

이세계_개발_라이프

HYPER

멘토:김대호 신승희 이원준

멘티:강지원 신희준 황준태

CONTENT

01. DEFINITION 04. PROCESS

02. GOALS 05. DIFFICULTY

03. USED PARTS 06. REUSLT

PROJECT DEFINITION

PROJECT GOALS

로봇을 사용하여 주행 중 목표하는 번호판을 인식하면 문 앞에서 정지

USED PARTS

TurtleBot 3 Waffle

Lidar 센서, 모터, Raspberry pi 등 다양한 모듈이 포함되어 있는 하드웨어 Local PC

Ubuntu 18.04가 설치 되어있는 PC

Raspberry pi

카메라와 연결되어 있으며 RaspberryPi 자체 OS를 사용

PROJECT PROCESS

프로젝트 준비

하드웨어에 사용할 OS 버전 선택과 번호판 인식 알고리즘을 ANPR로 결정했습니다.

환경 구성

로컬 pc와 터틀봇의 Raspberry pi에 Ubuntu 18.04와 ROS를 설치했습니다.

통신 및 제어

터틀봇과 로컬 pc를 ROS를 사용하여 연결한 뒤 SLAM을 사용하여 지도를 작성했습니다.

번호판 인식

소켓 통신을 통해 Raspberry pi 카메라에서 처리한 데이터를 PC로 전송하고데이터가 옳다면 터틀봇으로 전송합니다.

PROJECT PROCESS

하드웨어, 소프트웨어 환경 조사 -> 라즈베리파이 OS 선정 및 세팅

하드웨어, 소프트웨어 환경 조사 -> Turtlebot OS 선정 및 세팅

신승희,이원준,신희준

번호 인식 알고리즘 조사 -> 프로젝트 목적에 맞는 알고리즘 (ANPR) 선정

신승희,강지원

Python, C++ 간 Socket 통신 구축 -> Turtlebot C++, 라즈베리파이 Python

김대호, 황준태

Python, C++ gRPC 통신 구축 -> Socket 통신으로 선정

황준태,강지원,신희준

결과 테스트 및 서류 작성 → -> 조성된 환경에서 Test 및 발표 자료 제작

김대호,신승희

실험 환경 조성 및 결과 Test -> 조성된 환경에 맞게 Code 수정 및 Test

PROJECT DEFFICULTY

라즈베리파이 과부화

Turtlebot 에서 주행과 번호 인식을 동시에 진행하기 어렵다. -> 별도의 라즈베리파이에 카메라를 부착하여 부하를 덜어준다.

Turtlebot navigation 실행파일만 존재한다

코드를 수정하여 번호 인식 후 주행을 변경할 수 없다.

-> Rviz navigation 프로세스를 kill 하는 방법으로 주행을 변경한다.

라즈베리파이와 Turtlebot 간 사용 언어 다름

Turtlebot 은 C++, 라즈베리파이는 Python 언어를 사용함 -> TCP socket 통신하여 양 언어간 통신이 가능하게 함.

Turtlebot 속도가 빠르다

Turtlebot 속도로 번호 인식을 잘 하지 못함.

-> Turtlebot 속도를 낮춰준다.

PROJECT RESULT

PROJECT RESULT

- 01 제한된 통신 반경
- 02 딥러닝을 이용한 번호판 인식
- 03 하드웨어 제약
- 04 완전한 실내 자율 주행

THANK YOU. 이세계_개발_라이프