Dynamické programování

prof. Ing. Pavel Tvrdík CSc.

Katedra počítačových systémů FIT České vysoké učení technické v Praze

DSA, ZS 2009/10, Předn. 12

http://service.felk.cvut.cz/courses/X36DSA/

Rozděl-a-panuj vs. dynamické programování

- Metody rozděl-a-panuj je vhodné pro řešení úloh, které lze rozdělit na nezávislé podúlohy:
 - Rozděl úlohu na nezávislé podúlohy.
 - Rekurzivně vyřeš podúlohy.
 - Zkombinuj řešení podúloh do celkového výsledku úlohy.
- Dynamické programování (DP) je vhodné pro řešení úloh, ve kterých se podúlohy překrývají, t.j., řeší se stejné podpodúlohy.
- Pro takové úlohy nejsou metody rozděl-a-panuj vhodné, protože sdílené podúlohy se opakovaně (redundantně, zbytečně) řeší znovu a znovu, což může vést na řádově vyšší složitost.
- Metody DP si hodnoty dříve vyřešených podúloh zapamatují a při jejich znovuobjevení je využijí.

Význam termínu DP

- Termín "programování" v "dynamickém programování" nemá standardní význam vytváření počítačového kódu.
- Je odvozen z termínu "matematické programování", což je synonymum pro optimalizaci.
- V této interpretaci, slovo "program" znamená optimální či přijatelný plán (rozpis, rozvrh) pro provedení nějaké množiny souvisejících úkonů.
- Programování v tomto smyslu tedy znamená metodu nalezení takového plánu či rozvrhu akcí.

Dynamické programování pro řešení optimalizačních úloh

Definice

Optimalizační úloha: Z více možných řešení hledáme řešení s optimální cenou (maximální či minimální hodnotou, ...).

Vytvoření DP algoritmu pro řešení dané optimalizační úlohy se skládá ze 4 kroků:

- Charakterizuj strukturu optimálního řešení.
- Rekurzivně definuj hodnotu optimálního řešení.
- Vypočítej efektivně hodnotu optimálního řešení:
 - metodou shora dolů.
 - metodou zdola nahoru.
- (Zrekonstruuj strukturu optimálního řešení z vypočtených hodnot.)

Poslední bod odpadá, pokud stačí pouze cena (hodnota) optimálního řešení.

Řetězové násobení matic

Definice

Je dána posloupnost matic A_1, A_2, \ldots, A_n , matice A_i má rozměry $d_{i-1} \times d_i$. Řetězové násobení matic (ŘNM) je úkol vypočítat součin $A = A_1 A_2 \cdots A_n$ s minimální aritmetickou složitostí (= cena řešení). Jinými slovy, úkolem je najít takové uzávorkování pořadí násobení matic, které vede na vynásobení s nejmenším počtem aritmetických operací. Předpokládáme klasické násobení matic "řádky krát sloupce". Složitost součinu $A_i A_{i+1}$ aproximujeme výrazem $d_{i-1} \cdot d_i \cdot d_{i+1}$ (zanedbáváme konstanty a nižší členy).

Vlastnosti ŘNM

Poznámky:

- Násobení matic je asociativní, proto jakékoli uzávorkování dá správný výsledek A.
- Různé pořadí násobení má dramatický vliv na aritmetickou složitost výpočtu.

Příklad

Uvažujme n=3 a $d_0=5$, $d_1=50$, $d_2=10$ a $d_3=30$. Pak

- uzávorkování $(A_1A_2)A_3$ má aritmetickou složitost $5 \cdot 50 \cdot 10 + 5 \cdot 10 \cdot 30 = 2500 + 1500 = 4000$.
- kdežto uzávorkování $A_1(A_2A_3)$ má složitost $50\cdot 10\cdot 30 + 5\cdot 50\cdot 30 = 15000 + 7500 = 22500!!!$
- Přitom kombinatorická složitost ŘNM je **exponenciální**, takže řešení hrubou silou, zkoušením všech možností, není myslitelná.

Počet různých uzávorkování

- Označme Z(n) počet všech různých způsobů, jak uzávorkovat součin $A_1A_2\cdots A_n$.
- Posloupnost matic můžeme rozdělit na dvě části **hranicí** mezi A_k a A_{k+1} pro libovolné $k=1,2,\ldots,n-1$ a pak uzávorkovat **rekurzívně** a **nezávisle** na sobě obě vzniklé podposloupnosti A_1,\ldots,A_k a A_{k+1},\ldots,A_n .
- Proto platí rekurentní vztah

$$Z(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} Z(k) Z(n-k) & \text{if } n \ge 2. \end{cases}$$

• Řešením jsou tzv. Catalanova čísla: Z(n)=C(n-1), viz http://mathworld.wolfram.com/CatalanNumbers.html, o kterých se ví, že

$$C(n) = \frac{1}{n+1} \binom{2n}{n} = \Omega\left(4^n/n^{\frac{3}{2}}\right).$$

První krok algoritmu DP: Charakterizování optimálního závorkování

- ullet Označme $A_{i\dots j}$ matici vzniklou vynásobením $A_iA_{i+1}\dots A_j$, $i\leq j$.
- Pro každé optimální závorkování existuje **hranice** k, $1 \leq k < n$, taková, že rekurzivně se zkonstruuje závorkování pro výpočet $A_{1...k}$, pak závorkování pro výpočet $A_{k+1...n}$, a výslednou $A = A_{1...n}$ získáme vynásobením $A_{1...k}A_{k+1...n}$.
- Aritmetická složitost ŘNM je tedy složitost výpočtu $A_{1...k}$ + složitost výpočtu $A_{k+1...n}$ + složitost násobení 2 matic $A_{1...k}A_{k+1...n}$.

Lemma

Nechť k je hranice optimálního závorkování (s minimální aritmetickou složitostí). Pak závorkování pro výpočet $A_{1...k}$ i závorkování pro výpočet $A_{k+1...n}$ musejí být optimální.

• **Důkaz.** Důkaz sporem. Pokud by např. první nebylo, existovalo by závorkování pro $A_{1...k}$ s nižší cenou a tím by i výsledná cena byla nižší, což je spor, protože dané závorkování pro $A_{1...n}$ je optimální.

Druhý krok algoritmu DP: Rekurzivní definice ceny optimálního závorkování

• Nechť m[i,j] je minimální **cena závorkování** (=nejmenší aritmetická složitost násobení) $A_iA_{i+1} \dots A_j$, $i \leq j$. Pak platí:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + d_{i-1} d_k d_j \} & \text{if } i < j. \end{cases}$$
(1)

ullet Označme h[i,j] právě takové k, které v (1) dává minimum, čili

$$m[i,j] = m[i,h[i,j]] + m[h[i,j] + 1,j] + d_{i-1}d_{h[i,j]}d_j.$$

Pak cena optimálního závorkování je

$$m[1, n] = m[1, h[1, n]] + m[h[1, n] + 1, n] + d_0 d_{h[1, n]} d_n.$$

Třetí krok algoritmu DP: Algoritmus výpočtu ceny optimálního závorkování

Přímý rekurzivní algoritmus $\operatorname{RECRNM}(d,1,n)$ realizující výpočet m[1,n] podle (1) nelze použít, protože má **exponenciální složitost**!!!

Strom rekurzivních volání (SRV) RECRNM

- Důvod exponenciální složitosti je podobný jako u rekurzivního výpočtu Fibonacciho čísel (viz Slajdy 25 až 33 v Přednášce 8).
 - ▶ Celkový počet hodnot m[*,*], které je třeba vypočítat pro zjištění hodnoty m[1,n], je pouze počet všech dvojic i,j takových, že $1 \le i \le j \le n$, což je $\binom{n}{2} + n = \binom{n+1}{2} \doteq \frac{n^2}{2}$.
 - Dochází však masivně k opakovenému výpočtu stejných hodnot, viz příklad stromu rekur. volání RECRNM(1,4).

Časová složitost $\operatorname{RECRNM}(d,1,n)$

Lemma

Časová složitost t(n) běhu RecRNM(d, 1, n) je $\Omega(2^{n-1})$.

Důkaz. (Substituční metodou.)

- Předpokládejme, že kód na řádku (1) a (6) trvá čas aspoň 1.
- Pak triviálně $t(1) \ge 1$.
- Dále pro n > 1 je $t(n) \ge 1 + \sum_{k=1}^{n-1} (t(k) + t(n-k) + 1)$.
- Díky symetrii sčítanců to je totéž jako $t(n) \ge n + 2\sum_{i=1}^{n-1} t(i)$.
- Ukažme indukcí, že $t(n) \geq 2^{n-1}$.
 - ▶ Indukční základ: $T(1) \ge 1 = 2^0$ triviálně z předpokladů.
 - ▶ Indukční krok pro $n \ge 2$:

$$t(n) \ge n + 2\sum_{i=1}^{n-1} 2^{i-1} = n + 2(2^{n-1} - 1) = n + 2^n - 2 \ge 2^{n-1}$$
.

Třetí krok DP algoritmu: Efektivní varianta 1. Nerekurzivní algoritmus výpočtu ceny optim. závorkování zdola nahoru

Předpoklady:

- Vstupem je pole $d[0,\ldots,n]$ rozměrů matic.
- Výstupem jsou 2 pole:
 - $lacktriangleq m[1,\ldots,n,1,\ldots,n]$, kam se ukládají ceny opt. závorkování pro výpočet $A_{i\ldots j}$,
 - $h[1\dots n-1,2\dots n]$, kam se ukládají příslušné hodnoty hranic optimálního závorkování.

Princip:

Systematické zaplňování tabulky zdola nahoru pro všechny dvojice i, j, kde $1 \le i \le j \le n$ ($\binom{n+1}{2}$ hodnot).

```
procedure BOTTOMUPRNM(n, d, m, h)
(1) for (i \leftarrow 1 \text{ to } n) do m[i, i] \leftarrow 0;
(2)for (l \leftarrow 2 \text{ to } n)
(3)
         for (i \leftarrow 1 \text{ to } n - l + 1)
                do \{j \leftarrow i+l-1;
(4)
(5)
                       m[i,j] \leftarrow +\infty;
(6)
                       for (k \leftarrow i \text{ to } i-1)
(7)
                             do { q \leftarrow m[i, k] + m[k+1, j] + d[i-1] \cdot d[k] \cdot d[j];
(8)
                                    if (q < m[i, j])
(9)
                                    then \{m[i,j] \leftarrow q;
(10)
                                           h[i, j] \leftarrow k:
(11)
(12)return(m[1...n,1...n], h[1...n-1,2...n]);
```

Příklad běhu BottomUpRNM(6, d, m, h)

A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10 × 20	20×25

Příklad běhu BottomUpRNM(6, d, m, h)

A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10 × 20	20×25

Příklad běhu BOTTOMUPRNM(6, d, m, h)

A_1	A_2	A_3	A_4	A_5	A_6
30×35	35×15	15×5	5×10	10 × 20	20×25

Příklad běhu BottomUpRNM(6, d, m, h)

Příklad běhu BottomUpRNM(6, d, m, h)

Třetí krok DP algoritmu: Varianta 2 Rekurzivní algoritmus (shora dolů) výpočtu ceny optim. závorkování s tabelací

Princip tabelace (anglické označení je memoization):

- Algoritmus také vytváří tabulku s hodnotami řešení podúloh.
- Každá položka tabulky je také inicializována speciální hodnotou Neurčeno.
- Řídící struktura pro zaplňování však není záplavové plnění zdola nahoru jako ve variantě 1, ale pořadí vyvolávané rekurzivním algoritmem.
- První rekurzivně vyvolané řešení dané podúlohy provede výpočet a výsledek uloží do příslušného místa v tabulce.
- Následné opakované volání řešení téže podúlohy pouze přečte tuto hodnotu z tabulky.

Rekurzivní algoritmus s tabelací

```
procedure MemRecRNM(n, d) {
      for (i \leftarrow 1 \text{ to } n)
(2)
         for (i \leftarrow i \text{ to } n) do m[i, j] \leftarrow \text{Neurceno}.
(3)
      return(LOOKUPRNM(d, 1, n))}
procedure LOOKUPRNM(d, i, j) {
(1)
      if (m[i, j] \neq \text{Neurceno})
(2)
         then return(m[i, j]);
(3) if (i = j)
(4)
         then m[i,j] \leftarrow 0
(5)
        else for (k \leftarrow i \text{ to } i-1)
(6)
                  do \{q \leftarrow \text{LOOKUPRNM}(d, i, k)\}
(7)
                      +LOOKUPRNM(d, k+1, j) + d[i-1] \cdot d[k] \cdot d[j];
(8)
                     if (q < m[i, j]) then \{m[i, j] \leftarrow q; h[i, j] \leftarrow k\}\};
      return(m[i, j])
(9)
```

Strom rekurzivních volání MEMRECRNM

 Zakroužkované uzly stromu rekurzivních volání se nepočítají, ale pouze načtou z tabulky.

Složitost a srovnání MEMRECRNM a BOTTOMUPRNM

Lemma

Oba algoritmy mají složitost $O(n^3)$.

Srovnání:

- Algoritmus MEMRECRNM je svojí podstatou metoda shora dolů, kdežto BOTTOMUPRNM je metoda zdola nahoru.
- Pokud logika výpočtu vyžaduje, aby každá podúloha byla řešena aspoň jednou, pak BOTTOMUPRNM je rychlejší o multiplikativní konstantu.
- Pravidelnost přístupu do tabulky pak uspoří čas i díky menším výpadkům skrytých pamětí a efektivnějším tokům dat mezi pamětí a procesorem.
- Pokud rekurzivní sestup umožní, že některé podúlohy se vůbec nevyvolají, pak MEMRECRNM může být rychlejší.

Čtvrtý krok DP algoritmu: Konstrukce optimálního řešení úlohy ŘNM

- Tabulka $h[1\dots n-1,2\dots n]$ obsahuje hodnoty hranic pro optimální závorkování při ŘNM.
- Díky Lemmatu na Slajdu 7 je konstrukce optimálního řešení triviální rekurzivním sestupem.
- Na nejvyšší úrovni to je h[1,n]: Nejprve rekurzivně optimálně vypočteme $A_1\cdots A_{h[1,n]}$, pak $A_{h[1,n]+1}\cdots A_n$ a výsledné matice nakonec vynásobíme.

Čtvrtý krok DP algoritmu: Konstrukce optimálního řešení úlohy ŘNM

- Úloha ŘNM je pak vyřešena voláním RNM(A, n, h, 1, n).
- Vstupní data: posloupnost matic A_1, A_2, \ldots, A_n a tabulka hranic $h[1 \ldots n-1, 2 \ldots n]$.

Výpočet Fibonacciho posloupnosti

Naivní rekurzivní algoritmus:

procedure RecFib(n)

```
(1)
      if (n \le 1) then return(1);
(2)
      return(RECFIB(n-1) +RECFIB(n-2))}
```


 SRV naivního rekurzivního algoritmu má exponenciální velikost $(O(\Phi^{n+1}), \text{ viz Slajdy 25 až 33 v Přednášce 8}).$

DP: Tabelizace při výpočtu Fibonacciho posloupnosti

- Efekt tabelizace DP je ještě razantnější než v případě "2-rozměrného" ŘNM.
- Zakroužkované části se nemusí volat, pokud se příslušná hodnota Fibonacciho čísla při rekurzivním sestupu zapamatuje.
- Znovuvýpočet každého z těchto zakroužkovaných znovuvyvolaných podstromů je nahrazen přečtením 1 čísla z tabulky v O(1) čase!!!
- Exponenciální složitost se změní na lineární!!!

DP: Metoda shora dolů

```
procedure MemRecFib(n) {
(1) for (i \leftarrow 1 \text{ to } n) do F[i] \leftarrow \text{Neurceno}.
(2) \operatorname{return}(\operatorname{LookUpFib}(n))
procedure LOOKUPFIB(i) {
         if (F[i] \neq \text{Neurceno})
(1)
(2)
               then return(F[i]);
(3) if (i \le 1)
(4)
               then F[i] \leftarrow 1
(5)
               else F[i] \leftarrow \text{LookUpFib}(i-1) + \text{LookUpFib}(i-2);
(6)
         return(F[i])
```

Nejefektivnější algoritmus: iterační výpočet zdola nahoru

```
 \begin{array}{lll} \text{procedure } \operatorname{ITERFIB}(n) \; \{ \\ (1) & \text{if } (n \leq 1) \\ (2) & \text{then } F[i] \leftarrow 1 \\ (3) & \text{else for } (i \leftarrow 2 \text{ to } n) \\ (4) & \text{do } F[i] \leftarrow F[i-1] + F[i-2]; \\ (5) & \text{return}(F[1 \dots n]) \} \\ \end{array}
```

Shrnutí principů algoritmů DP

DP se hodí na řešení optimalizačních úloh s vysokou (superpolynomiální) složitostí, pokud mají následující 2 vlastnosti:

- Úloha vykazuje optimální substrukturu: Optimální řešení celé úlohy lze poskládat z optimálních řešení podúloh.
- Podúlohy se výrazně překrývají, t.j. ve stromu rekurzivních volání se mnohé podstromy vyskytují vícenásobně.

Příklady úloh vhodných pro řešení metodou DP

- Floydův algoritmus hledání nejkratších cest v grafech.
- Optimální plánování výpočetních úloh, zadaných časovými intervaly, v kterých mohou běžet.
- Výpočet Levenshteinovy vzdálenosti mezi 2 textovými řetězci.
- Určení způsobu, jak nejlépe daný řetězec vygenerovat pomocí dané bezkontextové gramatiky.
- Hledání nejdelšího společného podřetězce dvou řetězců.
- Optimální triangularizace konvexního mnohoúhelníku.
- Problém obchodního cestujícícho:
 - Obecný případ v exponenciálním, ale o(n!) čase.
 - Spec. případy v polynomiálním čase.
- **8** . . .