Black-Scholes-Merton Model

BUSS386. Futures and Options

Professor Ji-Woong Chung

Lecture Outline

- Black-Scholes-Merton Model
 - Log-Normal Property of Stock Prices
 - Derivation
 - Iterpretation

BSM Model

Binomial vs. BSM Model

- In the binomial model, we assume that the price can change discretely at a constant interval.
- In contrast, actual stock prices change almost every instant. Thus, the assumption in the binomial model may over-simplify the reality.
- The Black-Scholes-Merton model recognizes the fact that stock prices change continuously over time. Based on the recognition, the model provides the option prices.
- Still, the BSM model and the binomial model are closely connected.
 - When we make the time step in the binomial model infinitesimally small, we can obtain the analytic expression of BSM option prices.

BSM Model - Distribution of Future Stock Price

 One of assumptions in the BSM model is that stock price follows a log-normal distribution:

$$\ln(S_T) \sim \phi(m,s)$$

where $\phi(m,s)$ denotes a normal distribution with mean m and the standard deviation $s^{\,1}$

- In fact, we can prove this log-normality from the binomial model.
 - Assuming that the tree has infinitely many steps until option expiration (or unit time steps becomes very short), the stock price becomes log-normally distributed.
- Let's prove the log-normality.

 $^{^{1}}$ In Alternative Derivation II, we show that when stock price follows a geometric Brownian motion, ln(S) follows a generalized Wiener process (using Ito's lemma). And ln(S) is normal, i.e., S is log-normal.

- Consider a binomial tree where the stock price can go up by u or down by d
 in each step.
- The expiration date of option is T and there are n time steps until the maturity.
 - The length of each step is $\Delta t = \frac{T}{n}$.
- The stock price at the expiration T is

$$S_T(j) = S_0 u^j d^{n-j}$$

when there are $j (= 0, 1, 2, \dots, n)$ upward movements.

 The number of upward movement j is a random variable with the following probability:

$$\binom{n}{j} p^j (1-p)^{n-j}$$

where p is the risk-neutral probability of upward movement.

In statistics, we call this a binomial random variable.

$$j \sim B(n, p)$$

- The binomial random variable has the following property:
 - The mean is np.
 - The standard deviation is $\sqrt{np(1-p)}$.

- What will happen if *n* becomes infinitely large? (This would be equivalent to making each step infinitesimally small).
- To see this, let's increase the number of steps *n*.

Distribution of j when n = 10 and p = 0.5

- We find that as n goes to infinity, a binomial distribution approaches a normal distribution. → The Central Limit Theorem
- Hence, as n approaches infinity, the number of upward movement will be normally distributed

$$j \sim \phi(np, \sqrt{np(1-p)}).$$

- We now know the distribution of j. Next, let's find the distribution of $S_T(j)$.
- Using $u = e^{\sigma\sqrt{\Delta t}}$ and $d = e^{-\sigma\sqrt{\Delta t}}$

$$S_{T}(j) = S_{0}u^{j}d^{n-j}$$

$$= S_{0}e^{(\sigma\sqrt{\Delta t})j}e^{(-\sigma\sqrt{\Delta t})(n-j)}$$

$$= S_{0}e^{(2\sigma\sqrt{\Delta t})j-n\sigma\sqrt{\Delta t}}$$

The log of stock price is

$$\ln S_T(j) = \ln S_0 + (2\sigma\sqrt{\Delta t})j - n\sigma\sqrt{\Delta t}$$

• As j is normally distributed, In S_T is also normally distributed. Hence, $S_T(j)$ is log-normally distributed.

- To further identify the distribution, let's find the mean and the standard deviation of $\ln S_T$.
- The mean of $\ln S_T$ is

$$E(\ln S_T) = \ln S_0 + 2\sigma\sqrt{\Delta t}E(j) - n\sigma\sqrt{\Delta t}$$
$$= \ln S_0 + 2\sigma\sqrt{\Delta t}(np) - n\sigma\sqrt{\Delta t}$$

• To proceed, we use $p=\frac{e^{r\Delta t}-e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}}-e^{-\sigma\sqrt{\Delta t}}}$ (i.e., risk-neutral probability). Here we use the Tylor series of e^x and also the fact $\Delta t \to 0$ as $n \to \infty$.²

$$p \approx \frac{1 + r\Delta t - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)}{(1 + \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2) - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)}$$
$$= \left(\frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right)$$

• Plugging this p into $E(\ln S_T)$ in the previous page, the mean becomes

$$E(\ln S_T) = \ln S_0 + \left(r - \frac{\sigma^2}{2}\right) T$$

where we use the fact $\Delta t = \frac{T}{R}$.

 $e^{-2}e^{r\Delta t} \approx 1 + r\Delta t + \frac{1}{2}r^2\Delta t^2 \text{ (set } \Delta t \text{ as } x), \ e^{-\sigma\sqrt{\Delta t}} \approx 1 - \sigma\sqrt{\Delta t} + \frac{1}{2}\sigma^2\Delta t \text{ (set } \sqrt{\Delta t} \text{ as } x).$

• The standard deviation of $\ln S_T$ is

Std.Dev.(In
$$S_T$$
) = $2\sigma\sqrt{\Delta t} \times \sqrt{np(1-p)}$
= $2\sigma\sqrt{Tp(1-p)}$.

• Next, let's simplify the standard deviation. We find

$$p(1-p) = \left(\frac{1}{2} + \frac{(r-\sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right) \left(\frac{1}{2} - \frac{(r-\sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right)$$
$$= \frac{1}{4} - \frac{(r-\sigma^2/2)^2}{4\sigma^2}\Delta t \approx \frac{1}{4}$$

• Thus, the standard deviation of $\ln S_T$ becomes

Std.Dev.(In
$$S_T$$
) = $\sigma \sqrt{T}$.

Combining the mean and the standard deviation, we conclude

$$\ln S_T \sim \phi \left(\ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

in the risk-neutral world.

Log-Normal Property of Stock Prices - Real probability

• Consider the real world where investors require the return α per annum on stock. Then, we can use the real probability p^* instead of p.

$$p^* = \frac{e^{\alpha \Delta t} - d}{u - d}$$

 Following the same logic as in the risk-neutral world, the real world distribution of stock price is

$$\ln S_T \sim \phi \left(\ln S_0 + \left(\alpha - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

Log-Normal Property of Stock Prices - Example

• Suppose that $S_0 = 10$, r = 0.09, $\sigma = 0.4$, and T = 1. Below are the probability density functions of S_T and $r_T (= \ln(S_T/S_0))$.

log-normal distribution

normal distribution

Probability of Option Exercise

- Using the distribution of future stock price, we can determine the probability of option exercise.
- Consider a European call with strike price K and expiration date T.
- What is the probability of option exercise,

$$\operatorname{Prob}\left(S_{T}\geq K\right)$$

when S_T is log-normally distributed?

Probability of Option Exercise

The probability is ...

$$\begin{aligned} &\operatorname{Prob}\left(S_{T} \geq K\right) = \operatorname{Prob}\left(\ln S_{T} \geq \ln K\right) \\ &= \operatorname{Prob}\left(\frac{\ln S_{T} - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}} \geq \frac{\ln K - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}}\right) \\ &= 1 - \operatorname{Prob}\left(\frac{\ln S_{T} - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}} < \frac{\ln K - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}}\right) \\ &= 1 - N\left(\frac{\ln K - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}}\right) \\ &= 1 - N\left(\frac{\ln K - \ln S_{0} - (r - \sigma^{2}/2)T}{\sigma\sqrt{T}}\right) \\ &= N\left(\frac{-\ln K + \ln S_{0} + (r - \sigma^{2}/2)T}{\sigma\sqrt{T}}\right) \equiv N(d_{2}) \end{aligned}$$

where $\phi(0,1)$ is a standard normal random variable, and N(x) is the cumulative distribution function of the standard normal.

Next

 Using the log-normal distribution of stock price, we can calculate the expected payoff of an option. This will lead us to the Black-Scholes-Merton formula.

• The exercise probability, $N(d_2)$, will be a part of the BSM result.

Math Review

Derivation of the BSM formula - Math Review

 In the derivation of the BSM formula, we need to compute the expected value of a function of random variable.

- This requires the understanding of a normal random variable and its probability density function.
- In addition, the calculation requires us to change variable in integration. This technique will be reviewed in the next slide.

Math Review - Normal Distribution

- Recall that to define N(x), we consider a standard normal random variable Z.
- For a certain value x, N(x) is the probability that Z is lower than or equal to x.

$$N(x) \equiv \operatorname{Prob}(Z \leq x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

• Graphically, N(x) is the shadowed area in the below figure.

• In Excel, we can use the function "norm.s.dist(x, TRUE)" to compute N(x).

Math Review - Change of variable in integration

• Suppose that we integrate function f(y) with respect to y:

$$\int f(y)dy.$$

- In addition, y is a function of another variable x, y = g(x).
- Then, we can rewrite the above integration with respect to x

$$\int f(y)dy = \int f(g(x))g'(x)dx.$$

• Intuitively, we change dy to g'(x)dx based on the derivative

$$\frac{dy}{dx} = g'(x)$$

Math Review - Change of variable in integration

e.g. Y is a normal random variable with mean m and the standard deviation w. f(Y) is a function of the variable. Then, the expectation of f(Y) is

$$E[f(Y)] = \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy$$

• Consider a new variable $z = \frac{y-w}{w}$. Then, y = m + wz and (dy) = w(dz). We can rewrite the above integration in terms of z:

$$\int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy = \int_{-\infty}^{\infty} f(m+wz) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{z^2}{2}} w(dz)$$
$$= \int_{-\infty}^{\infty} f(m+wz) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Derivation of Black-Scholes-Merton Model

Black-Scholes-Merton Model - Assumptions

- The derivation of BSM option price is based on following assumptions.
 - The stock price follows a log-normal distribution.
 - The risk-free rate, r, is constant and the same for all maturities.
 - There are no dividends during the life of the derivative.
 - There are no transaction costs or taxes.
 - There are no arbitrage opportunities.

Using the present-value approach, the call price is

$$c_0 = e^{-rT} E \left[\max(S_T - K, 0) \right].$$

when we compute the expected payoff under the risk-neutral probability \Rightarrow Risk-neutral valuation

• Utilizing the log-normal distribution of S_T , we can compute the expected option payoff. Then, by discounting as above, we obtain the option price.

- First, let's calculate $E[\max(S_T K, 0)]$
- Note that S_T is log-normally distributed in the risk-neutral world.

$$\ln S_T \sim \phi \left(\underbrace{\ln S_0 + \left(r - \frac{\sigma^2}{2}\right) T}_{\equiv m}, \underbrace{\sigma\sqrt{T}}_{\equiv w} \right)$$

• To simplify the notation, let V denote $\ln S_T$. So, $V \sim \phi(m, w)$. Then, the probability density function of V is

$$g(V) = \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}}$$

• Let's use g(V) to compute the expected payoff of the call.

• The expected payoff is

$$\begin{split} E\left[\max(S_T-K,0)\right] &= E\left[\max(e^V-K,0)\right] \\ &= \int_{-\infty}^{\infty} \max(e^V-K,0)g(V)dV \\ &= \int_{-\infty}^{\ln K} \underbrace{\max(e^V-K,0)}_{=0}g(V)dV + \int_{\ln K}^{\infty} \underbrace{\max(e^V-K,0)}_{=e^V-K}g(V)dV \\ &= \int_{\ln K}^{\infty} (e^V-K)g(V)dV \\ &= \underbrace{\int_{\ln K}^{\infty} e^V \cdot g(V)dV}_{\equiv \mathbb{A}} - \underbrace{\int_{\ln K}^{\infty} K \cdot g(V)dV}_{\equiv \mathbb{B}} \end{split}$$

Let's calculate A and B separately and combine later.

Let's find B first.

$$\mathbb{B} = \int_{\ln K}^{\infty} K \cdot g(V) dV$$

$$= K \int_{\ln K}^{\infty} g(V) dV$$

$$= K \cdot \text{Prob} (V \ge \ln K)$$

$$= K \cdot \text{Prob} \left(\underbrace{e^{V}}_{=S_{T}} \ge \underbrace{e^{\ln K}}_{=K} \right)$$

$$= K \cdot N(d_{2})$$

where
$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}}$$
.

Next, let's find A.

$$\mathbb{A} = \int_{\ln K}^{\infty} e^{V} \cdot g(V) dV = \int_{\ln K}^{\infty} e^{V} \cdot \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}} dV$$

• To simplify the calculation, define a new variable $Q = \frac{V-m}{w}$. Then, V = m + wQ, and (dV) = w(dQ) in the change of variable in the integration.

$$\begin{split} \mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m + wQ} \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{Q^2}{2}} w \times dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m + wQ} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2}} dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ + m} dQ \\ &= \dots \end{split}$$

$$\begin{split} \mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2} + \frac{w^2}{2} + m} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2}} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(Q - w)^2}{2}} dQ \end{split}$$

• To simplify, define a new variable Y = Q - w. Then, Q = Y + w and (dQ) = (dY) in the change of variable in the integration.

$$\begin{split} \mathbb{A} &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m - w^2}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Y^2}{2}} dY \\ &= e^{m + \frac{w^2}{2}} \times \operatorname{Prob}\left(Y \geq \frac{\ln K - m - w^2}{w}\right) \\ &= \dots \end{split}$$

$$\mathbb{A} = e^{m + \frac{w^2}{2}} \times \left[1 - \operatorname{Prob}\left(Y < \frac{\ln K - m - w^2}{w}\right) \right]$$

$$= e^{m + \frac{w^2}{2}} \times \left[1 - N\left(\frac{\ln K - m - w^2}{w}\right) \right]$$

$$= e^{m + \frac{w^2}{2}} \times N\left(\frac{-\ln K + m + w^2}{w}\right)$$

• In A.

$$m + \frac{w^2}{2} = \ln S_0 + \left(r - \frac{\sigma^2}{2}\right)T + \frac{\sigma^2T}{2} = \ln S_0 + rT$$
$$\frac{-\ln K + m + w^2}{w} = \frac{\ln S_0 - \ln K + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

Thus,

$$A = e^{m + \frac{w^2}{2}} \times N\left(\frac{-\ln K + m + w^2}{w}\right)$$

$$= S_0 e^{rT} \times N\left(\underbrace{\frac{\ln S_0 - \ln K + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}}_{\equiv d_1}\right)$$

$$= S_0 e^{rT} \times N(d_1)$$

Now, let's combine A and B.

$$egin{aligned} E\left[\mathsf{max}(S_T - K, 0)
ight] &= \mathbb{A} - \mathbb{B} \ &= S_0 e^{rT} imes \mathit{N}(d_1) - K imes \mathit{N}(d_2) \end{aligned}$$

The current price of the call is

$$c_0 = e^{-rT} E \left[\max(S_T - K, 0) \right]$$

$$= e^{-rT} \left[S_0 e^{rT} \times N(d_1) - K \times N(d_2) \right]$$

$$= S_0 N(d_1) - K e^{-rT} N(d_2)$$

 Once the call option is obtained, we can easily drive the put price using the put-call parity.

$$p_0 = c_0 + Ke^{-rT} - S_0$$

$$= S_0 N(d_1) - Ke^{-rT} N(d_2) + Ke^{-rT} - S_0$$

$$= -S_0 [1 - N(d_1)] + Ke^{-rT} [1 - N(d_2)]$$

$$= -S_0 N(-d_1) + Ke^{-rT} N(-d_2)$$

Black-Scholes-Merton Model

- The BSM model provides an analytic form that determines the option price as a function of the followings:
 - Current stock price S₀
 - Strike price K
 - Time to expiration T
 - Risk-free interest rate r
 - Volatility of underlying asset σ
- Through the BSM model, we can find the option price by simply inputting numbers into the option-pricing formula.

Black-Scholes-Merton Model - Result

The prices of European call and put options on non-dividend-paying stock are

$$c_0 = S_0 N(d_1) - Ke^{-rT} N(d_2)$$

$$p_0 = Ke^{-rT}N(-d_2) - S_0N(-d_1)$$

where

$$\begin{split} d_1 &= \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} \\ d_2 &= \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}, \end{split}$$

and N(x) is the cumulative probability distribution function for a standard normal random variable.

Black-Scholes-Merton Model - Example

Q. There is a 6-month European call option on a stock whose current price is \$42. The strike price is \$40, and the risk-free interest rate is 10% per annum. The stock volatility is 20% per annum. What is the price of the option?

Black-Scholes-Merton Model - Example

Q. There is a 6-month European call option on a stock whose current price is \$42. The strike price is \$40, and the risk-free interest rate is 10% per annum. The stock volatility is 20% per annum. What is the price of the option?

Answer:

$$\begin{split} d_1 &= \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} = \frac{\ln(42/40) + (0.1 + 0.2^2/2)(0.5)}{0.2\sqrt{0.5}} = 0.7693 \\ d_2 &= d_1 - \sigma\sqrt{T} = 0.6278 \\ c &= S_0N(d_1) - Ke^{-rT}N(d_2) \\ &= 42 \times N(0.7693) - 40e^{-0.1 \times 0.5} \times N(0.6278) \\ &= 42 \times \text{norm.s.dist}(0.7693, \text{TRUE}) - 40e^{-0.1 \times 0.5} \times \text{norm.s.dist}(0.6278, \text{TRUE}) \\ &= \$4.759. \end{split}$$

Black-Scholes-Merton Model - Example

- What if we use the binomial model for the previous question?
- Let's start with 10-step binomial model and increases the number of steps.

number of steps	option price
10	4.800
20	4.768
50	4.762
:	:
500	4.759
BSM price	4.759

 As the number of steps increases, the binomial price converges to the BSM price.

Black-Scholes-Merton Model - Another Example

Q. Consider a derivative on a stock with the time to expiration ${\cal T}$ and the following payoff:

$$\begin{cases} 0 & \text{if } S_{\mathcal{T}} < K_1 \\ K_1 & \text{if } K_1 \leq S_{\mathcal{T}} < K_2 \\ 0 & \text{if } K_2 \leq S_{\mathcal{T}} \end{cases}$$

where $K_2 > K_1$. What is the present value of the derivative? Provide an analytic expression of the price using $N(\cdot)$, the cumulative probability distribution function of a standard normal random variable.

Black-Scholes-Merton Model - Another Example

Answer: Let V denote $\ln S_T$. Then, V is normally distributed, i.e., $V \sim \phi(m, w)$. Let g(V) denote the probability density function of V. To find the present value of the derivative, we first compute the expected option payoff:

$$\begin{split} E\left[\mathsf{Payoff}\right] &= \int_{-\infty}^{\infty} \mathsf{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} \mathsf{Payoff} \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} \mathsf{Payoff} \cdot g(V) dV \\ &\quad + \int_{\ln K_2}^{\infty} \mathsf{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} 0 \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} K_1 \cdot g(V) dV + \int_{\ln K_2}^{\infty} 0 \cdot g(V) dV \\ &= K_1 \int_{\ln K_1}^{\ln K_2} g(V) dV \\ &= K_1 \cdot \mathsf{Prob} \left(\ln K_1 \leq V \leq \ln K_2 \right) \\ &= K_1 \cdot \mathsf{Prob} \left(K_1 \leq S_T \leq K_2 \right) \\ &= K_1 \cdot \left[\mathsf{Prob} \left(K_1 \leq S_T \right) - \mathsf{Prob} \left(K_2 \leq S_T \right) \right] \end{split}$$

Black-Scholes-Merton Model - Another Example

Answer (cont'd):

$$= \mathcal{K}_1 \cdot \left\lceil N \left(\frac{\ln(S_0/\mathcal{K}_1) + \left(r - \frac{\sigma^2}{2}\right) T}{\sigma \sqrt{T}} \right) - N \left(\frac{\ln(S_0/\mathcal{K}_2) + \left(r - \frac{\sigma^2}{2}\right) T}{\sigma \sqrt{T}} \right) \right\rceil.$$

Next, multiplying by the discount factor, we obtain the present value as follows:

$$\mathit{f}_{0} = e^{-\mathit{r}T} \mathit{K}_{1} \cdot \left[N \left(\frac{ ln(\mathit{S}_{0}/\mathit{K}_{1}) + \left(\mathit{r} - \frac{\sigma^{2}}{2} \right) \mathit{T}}{\sigma \sqrt{\mathit{T}}} \right) - N \left(\frac{ ln(\mathit{S}_{0}/\mathit{K}_{2}) + \left(\mathit{r} - \frac{\sigma^{2}}{2} \right) \mathit{T}}{\sigma \sqrt{\mathit{T}}} \right) \right].$$

BSM formula: Interpretation

- The BSM expresses the option as a portfolio of stocks and bonds.
- $N(d_1)$ is the fraction of share we hold in the replicating portfolio at t. In fact, we can show that:

$$\Delta_c = \frac{\partial C}{\partial S} = N(d_1) > 0$$

 $\Delta_p = \frac{\partial P}{\partial S} = -N(-d_1) < 0$

- For a call, $Ke^{-rT}N(d_2)$ is the amount of initial borrowing in the replicating portfolio.
- The value of the call is the cost of the replicating portfolio.

$$c_0 = \Delta_c \times S - B$$

= $S_0 e^{-\delta T} N(d_1) - K e^{-rT} N(d_2)$

Extending the BSM model

The BSM for dividend payout

- ullet Suppose the underlying pays continuous dividend q .
 - Dividend should, for the purposes of option valuation, be defined as the reduction in the stock price.
- ullet Replace the stock price S in the formula by Se^{-qT}

$$c = S_0 e^{-\mathbf{q}T} N(d_1) - K e^{-rT} N(d_2)$$

, where $d_1=rac{\ln(S_0/K)+(r-\mathbf{q}+\sigma^2/2)T}{\sigma\sqrt{T}}$ and $d_2=d_1-\sigma\sqrt{T}$. (called Merton model)

- Delta = $e^{-qT}N(d_1)$
- Put-Call parity: $p + S_0 e^{-qT} = c + K e^{-rT}$
 - Given the price of puts and calls, we can solve this for the "implied dividend yield q".
- For proof, go to the slide, "The BSM for dividend payout: Derivation".

The BSM for option on futures

- Futures call option
 - Right to enter into a long futures contract at a pre-specified futures price
 - If exercised, holder gets long position in futures contract plus cash difference between most recent settlement price on futures and strike price on futures option
 - Effective payoff is max(F-K,0), where F is the current price of the futures.
- Futures put option
 - Right to enter into a short futures contract at a pre-specified futures price
 - If exercised, holder gets short position in futures contract and receives cash difference between strike price and most recent settlement price
 - Effective payoff is max(K-F, 0), where F is the current price of the futures

- Example: On August 15 and a trader has one September futures call option contract on copper with a strike price of 320 cents per pound. One futures contract is on 25,000 pounds of copper.
- The futures price of copper for delivery in September is currently 331 cents, and at the close of trading on August 14 it was 330 cents.
 - If the option is exercised, the trader receives a cash amount of $25,000 \times (330-320)$ cents =+2,500, plus a long position in a futures contract to buy 25,000 pounds of copper in September.
 - If the position in the futures contract is closed out immediately. The trader gets the \$2,500 cash payoff plus an amount $25,000 \times (331-330)$ cents =+250, reflecting the change in the futures price since the last settlement.
 - The total payoff from exercising the option on August 15 is \$2,750, which equals \$25,000(F-K), where F is the futures price at the time of exercise and K is the strike price.

- Futures options have potential advantages over spot options
 - Futures contracts may be easier to trade and more liquid than the underlying asset.
 - Exercise of option does not lead to delivery of underlying asset.
 - Futures options and futures usually trade on same exchange (reduced margin requirement).
- European futures options and European spot options are equivalent when futures contract matures at the same time as the option $(F_T = S_T)$.
- Popular contracts include agricultural commodities, energy, gold, VIX, and interest rates
- Most futures options are American-style.

- The underlying is a futures contract, so S in the equation is the futures price, call it F.
 - Remember F₀ = S₀e^{rT}. As time passes, e^{rT} shrinks at the rate of r like dividend yield q.
 - Let's assume Futures = Forward here.
- Replace the stock price S in the formula by the discounted value of the futures price F: Fe^{-rT}

$$c = Fe^{-rT}N(d_1) - Ke^{-rT}N(d_2) = e^{-rT}[FN(d_1) - KN(d_2)]$$

, where
$$d_1=rac{\ln(F/K)+(\sigma^2/2)T}{\sigma\sqrt{T}}$$
 and $d_2=d_1-\sigma\sqrt{T}$

- Delta = $e^{-rT}N(d_1)$
- Put-Call parity: $p + Fe^{-rT} = c + Ke^{-rT}$

- Fischer Black derived this model in 1976.
 - Avoids need to calculate convenience yield or income on underlying asset (already incorporated in futures)
 - The underlying is a forward rather than a futures price.
 - When interest rates are assumed to be deterministic, forward and futures prices are equal and so this is valid.
 - Forward price follows the log-normal distribution.
 - Very useful in applications beyond futures options (e.g., options on bonds)
 - Note the formula is for European, not for American.
 - Binomal tree model can be used.

The BSM for currency option

- The price of the underlying is the exchange rate (in \$ per unit of FX). The underlying pays interest at the foreign riskless rate, so set $q=r_F$. The riskless rate r is the domestic rate (Garman-Kohlhagen Model).
- Replace the stock price S in the formula by Se^{-r_FT}

$$c = S_0 e^{-r_F T} N(d_1) - K e^{-rT} N(d_2)$$

, where
$$d_1=rac{\ln(S_0/K)+(r-r_F+\sigma^2/2)T}{\sigma\sqrt{T}}$$
 and $d_2=d_1-\sigma\sqrt{T}$

- Delta = $e^{-r_FT}N(d_1)$
- Put-Call parity: $p + S_0 e^{-r_F T} = c + K e^{-rT}$
- Using the Black's model: $c = e^{-rT}[FN(d_1) KN(d_2)]$, where F is the futures price on currency.

Alternative Derivation I

Review

- This derivation is also based on the Binomal Tree model in the risk-neutral world.
 - The final stock price: $S_0 u^j d^{n-j}$.
 - The payoff from a European call option: $max(S_0u^jd^{n-j}-K,0)$
 - The probability of j upward and n-j downward steps: $\frac{n!}{j!(n-j)!}p^j(1-p)^{n-j}$
 - The expected payoff: $\sum_{j=0}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} K, 0)$
 - The option value: $c = e^{-rT} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} p^{j} (1-p)^{n-j} \max(S_0 u^{j} d^{n-j} K, 0)$

Alternative Formulation of Call Price

The Payoff is positive if
$$S_0u^jd^{n-j}>K\Rightarrow \ln(S_0/K)>-j\ln(u)-(n-j)\ln(d)$$
 Plug in $u=e^{\sigma\sqrt{T/n}}, u=e^{-\sigma\sqrt{T/n}}$ $\Rightarrow \ln(S_0/K)>n\sigma\sqrt{T/n}+2j\sigma\sqrt{T/n}$ $\Rightarrow j>\frac{n}{2}-\frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$ Therefore, $c=e^{-rT}\sum_{j>\alpha}\frac{n!}{j!(n-j)!}p^j(1-p)^{n-j}\max(S_0u^jd^{n-j}-K,0),$ where $\alpha=\frac{n}{2}-\frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$ Write $c=e^{-rT}(S_0U_1-KU_2),$ where $U_1=\sum_{j>\alpha}\frac{n!}{j!(n-j)!}p^j(1-p)^{n-j}u^jd^{n-j}$ and $U_2=\sum_{j>\alpha}\frac{n!}{j!(n-j)!}p^j(1-p)^{n-j}$

Increase the Number of Steps in a Binomial Tree

Fact: as
$$n \to \infty, j \sim B(n,p) \longrightarrow \phi(np,\sqrt{np(1-p)})$$
 U_2 is $\Pr(j > \alpha)$, therefore, $U_2 = \Pr(\frac{j-np}{\sqrt{np(1-p)}} > \frac{\alpha-np}{\sqrt{np(1-p)}}) = N\left(\frac{np-\alpha}{\sqrt{np(1-p)}}\right)$ $\Rightarrow U_2 = N\left(\frac{\ln(S_0/K)}{2\sigma\sqrt{Tp(1-p)}} + \frac{\sqrt{n}(p-1/2)}{\sqrt{p(1-p)}}\right)$ Remember $p = \frac{e^{rT/n} - e^{-\sigma\sqrt{T/n}}}{e^{\sigma\sqrt{T/n}} - e^{-\sigma\sqrt{T/n}}}$ Applying the Taylor expansion: $e^{rT/n} \approx 1 + r(T/n)$ $e^{\sigma\sqrt{T/n}} \approx 1 + \sigma\sqrt{T} + \frac{1}{2}\sigma^2(T/n)$ $e^{-\sigma\sqrt{T/n}} \approx 1 - \sigma\sqrt{T} + \frac{1}{2}\sigma^2(T/n)$ Hence, as $n \to \infty$,

$$p(1-p) \rightarrow 1/4 \text{ and } \sqrt{n}(p-1/2) \rightarrow \frac{(r-\sigma^2/2)\sqrt{T}}{2\sigma}$$

 $\Rightarrow U_2 = N\left(\frac{\ln(S_0/K) + (r-\sigma^2/2)T}{\sigma\sqrt{T}}\right)$

Increase the Number of Steps in a Binomial Tree

$$\begin{split} &U_1 = \sum_{j > \alpha} \frac{n!}{j!(n-j)!} (up)^j (d(1-p))^{n-j} \\ &\text{Let } p^* = \frac{pu}{pu + (1-p)d} \\ &\text{Then } 1 - p^* = \frac{(1-p)d}{pu + (1-p)d} \\ &\Rightarrow U_1 = (pu + (1-p)d)^n \sum_{j > \alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j} \\ &U_1 = e^{rT} \sum_{j > \alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j} \\ &\text{Therefore, following the same step, } U_1 = e^{rT} N \left(\frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} \right) \\ &\Rightarrow c = e^{-rT} (S_0 U_1 - K U_2) = c = S_0 N(d_1) - K e^{-rT} N(d_2)) \end{split}$$

Alternative Derivation II

Overview

- This derivation is not based on the Binomial Tree model.
 - The Binomial Model set up a framework in which the underlying asset and the riskless bond could be combined to create a position that exactly replicates the payoff on the option.
 - The Black-Scholes model is derived in a similar way: The option and the stock are combined to create a hedged position that is like a riskless bond.
 - The riskless option-stock hedged position must return the riskless rate of interest. This leads to a fair price for the option.

Underlying Assumptions of the BSM Model

- Options are European
- "Perfect" markets no transactions costs, no taxes, no constraints on short selling with full use of the proceeds, no indivisibilities, etc.
- No limits on borrowing or lending at a known risk free rate of interest
- The price of the underlying asset follows a "lognormal diffusion" process
- The return volatility of the underlying asset is known
- No dividends or cash payouts from the underlying asset prior to option maturity

The Asset Price Process

 The BSM model assumes the price of the underlying asset follows a "lognormal diffusion" process:

$$dS_t = \mu S_t dt + \sigma S_t dz_t$$
$$\Rightarrow \frac{dS_t}{S_t} = \mu dt + \sigma dz_t$$

- dS_t = the change in stock price over the next instant
- $\mu=$ the "drift," that is, the average rate of capital gains as a continuously compounded annualized figure
- dt = an "instant"
- ullet $\sigma=$ the volatility, expressed as an annual rate
- dz_t = "Brownian motion," a very small random shock to the price over the next instant.

Definitions

- A variable z_t follows a Brownian motion (Wiener process) if
 - 1 $dz_t = \epsilon \sqrt{dt}$, where $\epsilon \sim \phi(0,1)$.
 - $E[dz_t] = 0$ and $\sigma(dz_t) = \sqrt{dt}$
 - 2 dz_t for any two different short intervals of time are independent.
 - 3 $z_0 = 0$ and z is continuous in t.
- $dS_t = \mu dt + \sigma dz_t$: Generalized Wiener process
 - μ and σ are constant.
- $dS_t = \mu(S_t, t)dt + \sigma(S_t, t)dz$: Ito process
 - μ and σ are functions of S_t and time t.

The Process for a Stock Price

- $dS_t = \mu dt$?
 - There is no uncertainty.
 - $S_t = \mu t$, i.e., stock price grows by μ . \Rightarrow Not realistic!
- $dS_t = \mu dt + \sigma dz$?
 - There is uncertainty, dz.
 - But stock price can take a negative value!
- $dS_t/S_t = \mu dt + \sigma dz$
 - The most widely used model of stock price behavior.
 - For a risk-free asset, $\mu = r$ and $\sigma = 0$. Hence, $S_t = e^{rt}$.
 - Ito process, log-normal diffusion process, geometric Brownian motion

Ito's Lemma

- Suppose x follows an Ito process: dx = a(x, t)dt + b(x, t)dz
- Ito shows that a function of x and t, G(x,t) follows another Ito process:

$$dG = \left(\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2\right)dt + \frac{\partial G}{\partial x}bdz$$

• Apply a Taylor series expansion on G(x, t):

$$dG \approx \frac{\partial G}{\partial x}dx + \frac{\partial G}{\partial t}dt + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}dx^2 + \frac{1}{2}\frac{\partial^2 G}{\partial t^2}dt^2 + \frac{\partial^2 G}{\partial x \partial t}dxdt$$

- $dx^2 \approx b^2 dz^2 = b^2 \epsilon^2 dt^3$
- $E(b^2\epsilon^2 dt) = b^2 dt$ and $Var(\epsilon^2 dt) = 2dt^2 \approx 0$ (: $Var(\epsilon^2) = E(\epsilon^4) - E(\epsilon^2)^2 = 3 - 1 = 2$).
- Ignore higher order terms (e.g. $dt^{1.5}$, dt^2).

$$dG \approx \frac{\partial G}{\partial x}dx + \frac{\partial G}{\partial t}dt + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2dt$$

• Plug in dx = a(x, t)dt + b(x, t)dz.

 $^{^{3}}dtdz = 0$ and $(dz)^{2} = dt$

Apply Ito's Lemma

• Apply Ito's lemma on $dS_t = \mu S_t dt + \sigma S_t dz_t$

$$dG = \left(\frac{\partial G}{\partial S}\mu S + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial G}{\partial S}\sigma Sdz$$

• Now consier $G = \ln S_t$.

$$\frac{\partial G}{\partial S} = \frac{1}{S_t}, \quad \frac{\partial^2 G}{\partial S^2} = -\frac{1}{S_t^2}, \quad \frac{\partial G}{\partial t} = 0$$

• Therefore,

$$dG = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dz$$

• It follows a generalized Wiener process.

•
$$G_T - G_0 = \ln S_T - \ln S_0 \sim \phi \left(\left(\mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$$

• That is,
$$\ln S_T \sim \phi \left(\ln S_0 + \left(\mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$$

Apply Ito's Lemma

- The stochastic process usually assumed for a stock price is geometric Brownian motion.
- Under this process the return to the holder of the stock in a small period of time is normally distributed and the returns in two nonoverlapping periods are independent.
- The value of the stock price at a future time has a lognormal distribution.
- The Wiener process *dz* underlying the stochastic process for *S* is exactly the same as the Wiener process underlying the stochastic process for *G*.
- Both are subject to the same underlying source of uncertainty.

The BSM Differential Equation

- The stock price process, $dS_t = \mu S_t dt + \sigma S dz_t$.
- V is the price of a call option, a function of S and t.

$$dV = \left(\frac{\partial V}{\partial S}\mu S + \frac{\partial V}{\partial t} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial V}{\partial S}\sigma Sdz$$

• Construct a portfolio: Long 1 unit of the call option and short $\frac{\partial V}{\partial S}$ number of shares. The value of the portfolio is:

$$\Pi = V - \frac{\partial V}{\partial S}S$$

$$d\Pi = dV - \frac{\partial V}{\partial S}dS$$

$$= \left(\frac{\partial V}{\partial t} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2S^2\right)dt$$

The BSM Differential Equation

 Because this equation does not involve dz, the portfolio must be riskless during time dt. Therefore,

$$\Pi = e^{rdt}$$

$$d\Pi = r\Pi dt$$

$$\left(\frac{\partial V}{\partial t} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2\right)dt = r\left(V - \frac{\partial V}{\partial S}S\right)dt$$

$$\Rightarrow \frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2 = rV$$

- This is called the Black–Scholes–Merton differential equation.
- Solving the differential equation with the boundary conditions, e.g., $V = \max(S K, 0)$ when = T, gives a formula for a European call option.
 - Unfortunately, no exact analytic formula for the value of an American put option on a non-dividend-paying stock has been produced.

NB There is no μ , the expected return!

The BSM Differential Equation

$$\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2 = rV$$

- If $V(S, T) = S_T$, i.e., the stock itself, $V(S, t) = S_t$
- If V(S,T)=K, i.e., constant, then $V(S,t)=Ke^{-r(T-t)}$
- If $V(S,T) = S_T K$, i.e., forward, then $V(S,t) = S_t Ke^{-r(T-t)}$
- Does $V(S,0) = S_0 N(d_1) Ke^{-rT} N(d_2)$ satisfy the equation?
- The PDE above is so general that it can solve (mostly numerially) for V depending on the boundary conditions.

The BSM for dividend payout: Derivation

• In time dt the holder of the portfolio earns capital gains equal to $d\Pi$ and dividends on the stock position equal to

$$dD = qS \frac{\partial V}{\partial S} dt$$

• The change in the wealth of the portfolio holder in time Δt is the sum of $\Delta\Pi$ and ΔD :

$$\Delta W_t = \left(-\frac{\partial V}{\partial t} - \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 + q S \frac{\partial V}{\partial S} \right) \Delta t$$

The portfolio is instantaneously riskless.

$$\left(-\frac{\partial V}{\partial t} - \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2 + qS\frac{\partial V}{\partial S}\right)\Delta t = r\left(-V + \frac{\partial V}{\partial S}S\right)\Delta t$$
$$\frac{\partial V}{\partial t} + (r - q)S\frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2}\sigma^2 S^2 = rf$$

 $\Delta W_t = r \Pi \Delta t$

The BSM for dividend payout: Derivation

- The PDE does not involve any variable affected by risk preferences, μ . We can again apply the risk-neutral valuation, i.e., $c=e^{-rT}E[(\max(S_T-K,0)]$ with risk-neutral probabilities.
- The expected growth rate in the stock price is r q.

$$dS = (r - q)Sdt + \sigma Sdz$$

• The expected stock price at T is $S_0e^{(r-q)T}$. Going through the same steps, we get:

$$E[(\max(S_T - K, 0)] = S_0 e^{r-q} N(d_1) - KN(d_2)$$

and

$$c = S_0 e^{-q} N(d_1) - K e^{-rT} N(d_2)$$