Démonstration des inégalités de type Poincaré

Martin Averseng

January 17, 2019

Definition 1. Convergence faible Soit E un espace de Hilbert dont le produit scalaire est noté $(\cdot, \cdot)_E$. On dit que la suite (u_n) converge faiblement vers u si pour tout $v \in E$,

$$\lim_{n \to +\infty} (u_n, v)_E = (u, v)_E.$$

Dans ce qui suit, on s'apprête à utiliser le (puissant) résultat d'analyse fonctionnelle suivant:

Theorem 1. Soit E un espace de Hilbert et $(u_n)_n$ une suite bornée dans E. Alors $(u_n)_n$ admet une sous-suite faiblement convergente.

On utilise aussi le théorème de Rellich:

Theorem 2. Soit Ω un ouvert borné et connexe de frontière régulière. Alors toute suite (u_n) bornée dans $H^1(\Omega)$ admet une sous-suite convergente dans $L^2(\Omega)$.

Soit
$$H^1_{\#}(\Omega) := \{ u \in H^1(\Omega) \mid \int_{\Omega} u(x) dx = 0 \}.$$

Theorem 3. Il existe une constante C > 0 telle que

$$\forall u \in H^1_\#(\Omega), \quad \int_\Omega u^2(x) dx \le C \int_\Omega |\nabla u(x)|^2 dx.$$

Avant de commencer la démonstration, voici l'idée principale de la preuve. Si le résultat était faux, cela voudrait dire qu'il y a des fonctions $u \in H^1_\#(\Omega)$ telles que leur norme L^2 est égale à 1 et la norme de leur gradient est aussi petite que l'on veut. (C'est ce qu'on va bientôt formaliser en prenant la négation de la phrase avec quantificateurs \forall,\exists dans notre raisonnement par l'absurde). Intuitivement, si la norme L^2 du gradient est presque 0, c'est que la fonction est presque constante. Et si la fonction est presque constante, la contrainte de moyenne nulle oblige la fonction à être presque nulle. Or nous avons supposé que u a sa norme L^2 égale à 1. C'est cette contradiction que nous allons faire ressortir précisément dans la démonstration.

 ${\it Proof.}$ Pour commencer, nous allons raisonner par l'absurde et donc supposer que le résultat

$$\exists C>0: \forall u\in H^1_\#(\Omega), \quad \int_\Omega u^2(x) dx \leq C \int_\Omega \left|\nabla u(x)\right|^2 dx\,.$$

Pour prendre la négation d'une phrase avec quantificateurs, on change les \exists en \forall et inversement, et dans les prédicats sans quantificateurs, on change < en \ge , \le en >, = en \ne etc. Ici, cela donne donc:

$$\forall C > 0: \exists u \in H^1_\#(\Omega), \quad \int_{\Omega} u^2(x) dx > C \int_{\Omega} |\nabla u(x)|^2 dx.$$

Nous supposons par l'absurde que cette phrase est vraie. Cela nous permet d'affirmer que pour tout $n \in \mathbb{N}$, (en prenant C = n), il existe une fonction $u_n \in H^1_{\#}(\Omega)$ telle que

$$\int_{\Omega} u_n^2(x) dx > n \int_{\Omega} |\nabla u_n(x)|^2 dx.$$

Nous normalisons u_n en posant $v_n = \frac{u}{\|u\|_{L^2(\Omega)}}$. En divisant les deux membres de l'inégalité par $\|u\|_{L^2(\Omega)}^2$, on obtient

$$1 > n \int_{\Omega} \left| \nabla v_n(x) \right|^2 dx$$

Nous en déduisons

$$\int_{\Omega} \left| \nabla v_n(x) \right|^2 dx < \frac{1}{n}$$

et donc la suite $(\nabla v_n)_n$ converge vers 0 dans $L^2(\Omega)$. Par ailleurs, on a

$$\|v_n\|_{H^1_{\#}(\Omega)}^2 = \int_{\Omega} v_n(x)^2 dx + \int_{\Omega} |\nabla v_n(x)|^2 dx < 1 + \frac{1}{n} \le 2$$

donc $(v_n)_n$ est bornée dans $H^1_\#(\Omega)$. D'après Theorem 1, puisque $H^1_\#(\Omega)$ est un espace de Hilbert, on en déduit que v_n admet une sous-suite w_n faiblement convergente vers une limite w dans $H^1_\#(\Omega)$. Puisque w_n est une sous-suite de v_n et que ∇v_n converge vers 0, ∇w_n converge également vers 0. Utilisons finalement le théorème de Rellich: puisque w_n est bornée dans $H^1(\Omega)$, elle admet une sous-suite z_n convergente dans $L^2(\Omega)$, dont la limite est notée z. Récapitulons: on a $z_n \to z$ dans L^2 , $\nabla z_n \to 0$ dans L^2 et z_n converge faiblement vers w dans $H^1_\#(\Omega)$. Il nous reste à jongler avec ces différentes limites pour montrer z = w = 0 d'où naîtra une contradiction. Pour ce faire, on se concentre sur la convergence la plus faible, c'est à dire celle de w:

$$\forall v \in H^1_\#(\Omega), \quad (z_n, v)_{H^1} \to (w, v)_{H^1} .$$

Les convergences plus fortes que nous avons pour z_n nous permettent de calculer autrement le membre de gauche:

$$(z_n, v)_{H^1} = \int_{\Omega} z_n(x)v(x)dx + \int_{\Omega} \nabla z_n(x) \cdot \nabla v(x)dx \to \int_{\Omega} z(x)v(x)dx$$