The Deep Mathematics Behind A.I. and Deep Learning

A mathematical generalisation and important theorems in contemporary A.I. and deep learning problems.

Sepehr Saryazdi

University of Sydney

March 4, 2023

Why learn the math behind AI?

Who am I?

Overview

- Motivation
- The Face-Space Problem Logical Boundaries Fuzzy Logic ROC/Confusion Matrix Adjustment
- 3 A General Mathematical Framework
- 4 Important Theorems Kolmogorov-Arnold Representation Theorem Universal Approximation Theorem Spin Hamiltonian-Loss Correspondence Representer Theorem
 - 5 Conclusions

Logical Boundaries

Logical Boundaries (Logic Values = $\{0, 1\}$)

Some Subset of the Face-Space

Logical Boundaries

Logical Boundaries (Logic Values = $\{0, 1\}$)

Some Subset of the Face-Space

Fuzzy Logic (Logic Values = $[0, 1] \subseteq \mathbb{R}$)

Some Subset of the Face-Space

ROC/Confusion Matrix Adjustment

 ROC (Receiver Operating Characteristic Curve) / Confusion Matrices quantify where things are going wrong for each boundary function choice.

ROC/Confusion Matrix Adjustment

 ROC (Receiver Operating Characteristic Curve) / Confusion Matrices quantify where things are going right/wrong for each boundary function choice.

ROC/Confusion Matrix Adjustment

 ROC (Receiver Operating Characteristic Curve) / Confusion Matrices quantify where things are going right/wrong for each boundary function choice.

A.I. Model Representations

- Let P be a topological space, representing the model's parameters (i.e. $P = \mathbb{R}^n$).
- Let X, Y be topological spaces, and let C(X, Y) be the space of continuous functions from X to Y.
- Let a map that takes a parameter to A.I. models for $X \to Y$ be denoted by \mathcal{M} .

A.I. Model Representations

Every A.I. model may be viewed as a function \mathcal{M} that maps parameters to continuous functions from $X \to Y$.

$$\mathcal{M}: P \rightarrow C(X, Y)$$

A.I. Model Representations

A.I. Model Representations

Every A.I. model may be viewed as a function \mathcal{M} that maps parameters to continuous functions from $X \to Y$.

$$\mathcal{M}: P \to C(X, Y)$$

Example 1: $\mathbb{R} \to \mathbb{R}$ Linear Model

$$P = \mathbb{R}^2, (a, b) \in P, X = Y = \mathbb{R}$$

 $(\mathcal{M}(a, b))(x) := a + bx$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}$ Linear Model $(\mathcal{M}(a,b))(x) := a + bx$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}$ Quadratic Model $(\mathcal{M}(a,b,c))(x) := a + bx + cx^2$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural Network Model

Example 3: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural Network Model

$$P = \mathbb{R}^7, (a_1, a_1, b_1, b_2, b_3, c_1, c_2) \in P, X = Y = \mathbb{R}$$
 $(\mathcal{M}(a_1, a_1, b_1, b_2, b_3, c_1, c_2))(x)$
 $:= (\mathsf{ReLU}((a_1 \ a_2)x + (b_1 \ b_2))) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + b_3$
 $\mathsf{ReLU}(x_1, x_2) := (\mathsf{max}(x_1, 0) \ \mathsf{max}(x_2, 0))$

A.I. Model Representations: $\mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}$ Neural **Network Model**

Generalised Loss Functions

- Let P, X, Y be topological spaces and $\mathcal{M}: P \to C(X, Y)$ a function.
- Let $d: C(X,Y) \times C(X,Y) \to \mathbb{R}_{\geq 0}$ be a metric.
- Let L_f for some $f \in C(X, Y)$ be named a "loss function".

Generalised Loss Functions

Define the loss function $L_f: P \to \mathbb{R}_{\geq 0}$ to satisfy

$$L_f(p) := d(f, \mathcal{M}(p))$$

Generalised Loss Functions

Example: $L^2(X, \mathbb{R}_{>0})$ Loss Function

$$L_f(p) = \int_X ||f(x) - (\mathcal{M}(p))(x)||^2 dx$$

Loss Surfaces: $f(x) := \sin x$, (M(a, b))(x) := a + bx, L^2 -Loss Function

Loss Surfaces: Optimal Parameter Search

• Let $(p_n)_{n\in\mathbb{N}}\subseteq P$ be a sequence of parameters.

Optimal Parameter Search

An optimal parameter search is an algorithm where for any $p_0 \in P$, it returns a sequence $(p_n)_{n \in \mathbb{N}} \subseteq P$ such that

$$L_f(p_n) \underset{n \to \infty}{\longrightarrow} \inf_{p \in P} L_f(p)$$

Note: Such a sequence need not have a unique limit, as
 P and M may over-cover the goal function f.

Loss Surfaces: Gradient Descent

Loss Surfaces: Gradient Descent

- Let $\gamma \in \mathbb{R}_{>0}$ be named the "learning rate".
- Let ∇L_f denote the gradient function of L_f .

Gradient Descent Optimal Parameter Search Algorithm

Assuming $p_0 \in P$ is given, construct the sequence $(p_n)_{n \in \mathbb{N}} \subseteq P$ with recursion given by

$$p_{n+1} = p_n - \gamma(\nabla L_f)(p)$$

• In practice, a fixed γ causes either zero movement or large oscillations near local minima of L_f , so a strictly decreasing sequence $(\gamma_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}_{>0}$ is often used, or similar ideas like "momentum".

Loss Surfaces: Gradient Descent

Loss Functions: Finite Sampling of $f: X \to Y$

- In practice, we can only sample $N \in \mathbb{N}$ finitely many points $(x_i, y_i) \in X \times Y$ with $f(x_i) = y_i$.
- This collapses the L^2 loss function to a finite sum.

Finite Sampling of $L^2(X, \mathbb{R}_{\geq 0})$ Loss Function (MSE)

$$L_f(p) \approx \frac{1}{N} \sum_{i=1}^{N} ||f(x_i) - (\mathcal{M}(p))(x_i)||^2$$

• As $N \to \infty$ and assuming the sampling is distributed uniformly over X, then this will approach the true L^2 loss function.

Kolmogorov-Arnold Representation Theorem

- This is a solution to the famous 13th Hilbert Problem.
- Colloquially, this theorem says that the "only true continuous multivariable function is the sum".

KA Representation Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ with $f(\mathbf{x}) := f(x_1, ..., x_n)$ be a continuous function. Then there exists univariate functions $\Phi_q: \mathbb{R} \to \mathbb{R}^m, \phi_{q,p}: \mathbb{R} \to \mathbb{R}$ such that:

$$f(\mathbf{x}) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$

Kolmogorov-Arnold Representation Theorem

Consequences of KA Representation Theorem

- From this theorem, feature engineering was born.
- This theorem allows us to transform each data column. independently before combining them with sums in an A.I. algorithm.

x_1	x_2	x_3		$0.5x_1 + 2x_2 - x_3$
10	99	85		118
67	13	8	_	51.5
82	48	89		48
:	:	:		:
÷	70			190 5
7	76	25		130.5

 This says that neural networks can be used to approximate any continuous function if X is closed and bounded.

Universal Approximation Theorem

If given $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and a valid non-polynomial function $\sigma: \mathbb{R} \to \mathbb{R}$, then $L_f(p) := ||f - \mathcal{M}(p)||_{\infty}$ can be made arbitrarily small where

$$(\mathcal{M}(p))(x) := C_p (\sigma \circ (A_p(x) + b))$$

$$p \in P := \mathbb{R}^{k(1+m+n)}, A_p \in \mathbb{R}^{k \times n}, C_p \in \mathbb{R}^{m \times k}, b \in \mathbb{R}^k$$

Universal Approximation Theorem

Universal Approximation Theorem

Universal Approximation Theorem: How It Works

- The choice of $\sigma: \mathbb{R} \to \mathbb{R}$ was really the crucial part of the entire theorem.
- This is because σ acts as a tool for approximating the 'ramp' function and this can then approximate any continuous function.

Spin Hamiltonian-Loss Correspondence

The Fundamental Issue of Machine Learning

How do we know we have found the global minima of $L_f: P \to \mathbb{R}_{>0}$?

- Fear not! It turns out for large neural networks, any local minima is good enough under reasonable sampling!
- This is thanks to the Spin-Glass Hamiltonian and Neural Network Loss Function Correspondence.

Spin Hamiltonian-Loss Correspondence: Hamiltonians

 Hamiltonians are a concept from Physics; they quantify how much energy a system is capable of moving around.

Example: Particle in Gravity Hamiltonian

$$\mathcal{H}(x,v) = \frac{1}{2}mv^2 - \frac{GMm}{|x|}$$

Spin Hamiltonian-Loss Correspondence: Hamiltonians

Example: Particle in Gravity Hamiltonian

$$\mathcal{H}(x,v) = \frac{1}{2}mv^2 - \frac{GMm}{|x|}$$

• The natural state of the system (when energy moves around the least) occurs whenever $(x_n, v_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^2$ is a sequence such that

$$\mathcal{H}(x_n, v_n) \xrightarrow[n \to \infty]{} \inf_{(x, v) \in \mathbb{R}^2} \mathcal{H}(x, v)$$

Spin Hamiltonian-Loss Correspondence

Spin Hamiltonian-Loss Correspondence: Spin-Glass

- Physicists have been interested in how magnets work for a long time.
- They modelled a block magnet as being made up of locally frozen magnets on the unit sphere $S^2 \subset \mathbb{R}^3$ that align/repel neighbouring magnets.

Spin Hamiltonian-Loss Correspondence: Spin-Glass

 Bumping up to N-dimensional magnets and only considering interactions between p ≥ 2 closest neighbouring magnets, we get the p-Spin Glass Model.

The Spin-Glass Hamiltonian

$$\mathcal{H}_{N,p}(\sigma) = \frac{1}{N^{(p-1)/2}} \sum_{i_1,\dots,i_p=1}^{N} J_{i_1,\dots,i_p} \sigma_{i_1} \cdots \sigma_{i_p}$$

$$\sigma = (\sigma_1, \cdots, \sigma_N) \in S^{(N-1)/\sqrt{N}}, \sum_{i=1}^N \sigma_i^2 = N$$

Spin Hamiltonian-Loss Correspondence: Hamiltonian Local Minima

• With reasonable (but technical) distribution assumptions, one can show that any local minima of $\mathcal{H}_{N,p}$ is good enough (Auffinger A. et. al., 2011).

The Spin-Glass Global-Local Minima Proximity

If $\sigma_{\min} \in \mathcal{S}^{(N-1)/\sqrt{N}}$ is a local minima of $\mathcal{H}_{N,p}$, then we expect its Hamiltonian value $\mathcal{H}_{N,p}(\sigma_{\min})$ to be close to the globally smallest value $\inf_{\sigma \in \mathcal{S}^{(N-1)/\sqrt{N}}} \mathcal{H}_{N,p}(\sigma)$.

$$\mathcal{H}_{N,p}(\sigma_{\min}) pprox \inf_{\sigma \in \mathcal{S}^{(N-1)/\sqrt{N}}} \mathcal{H}_{N,p}(\sigma)$$

Spin Hamiltonian-Loss Correspondence

• It turns out that the loss function L_f of a neural network (under certain assumptions) can be bijectively mapped to $\mathcal{H}_{N,p}$ (Choromanska A. et. al, 2015).

Spin Hamiltonian-Loss Correspondence

$$\sigma_{\min} \in \mathcal{S}^{(N-1)/\sqrt{N}} \Leftrightarrow p_{\min} \in P$$

$$\mathcal{H}_{N,p}(\sigma_{\min}) pprox \inf_{\sigma \in S^{(N-1)/\sqrt{N}}} \mathcal{H}_{N,p} \Leftrightarrow L_f(p_{\min}) pprox \inf_{p \in P} L_f(p)$$

Spin Hamiltonian-Loss Correspondence

 This theorem explains why A.I. works reasonably well even when only approaching one local minima (assuming certain distributional assumptions hold).

Representer Theorem: Regularisation

- A technical issue that arises, when sampling finitely many points of an infinite space, is the bias-variance tradeoff.
- If you want your model to generalise faster (less variance in predictions), it needs to be more biased!

L^2 Regularisation Bias (Hyper-Parameter $\lambda > 0$)

$$L_{f,\lambda}(p) := \int_{X} ||f(x) - (M(p))(x)||^{2} dx + \lambda ||M(p)||_{2}^{2}$$
$$||M(p)||_{2}^{2} = \int_{X} ||(M(p))(x)||^{2} dx$$

Representer Theorem: Hilbert Spaces

• Due to some nice mathematics, L^2 is what's called a *Hilbert Space* \mathcal{H} , i.e. it has a notion of 'angles' which allows for a faster way of measuring how similar two functions are.

Hilbert Space Inner Product

$$\langle f, g \rangle_{\mathcal{H}} = \int_{X} f(x)g(x)dx = ||f||_{\mathcal{H}}||g||_{\mathcal{H}}\cos\theta$$

Representer Theorem: Kernels

- Kernels show up everywhere in machine learning due to something called the Kernel Trick.
- The idea is to lift our sample points $(x_i, y_i) \in X \times Y := X \times \mathbb{R}$ into a higher dimensional Hilbert Space, then use the inner product as a 'similarity' measure for any two data points.
- Let κ: X × X → ℝ be the Kernel which lifts the data via a transformation g: X → H and evaluates the inner product, defined as

Kernel Function

$$\kappa(x,y) := \langle g(x), g(y) \rangle_{\mathcal{H}}$$

Representer Theorem

Representer Theorem: Reproducing Kernel Hilbert Space

Representer Theorem: Minimiser A.I. Model

L^2 Regularisation Bias (Hyper-Parameter $\lambda > 0$)

$$L_{f,\lambda}(p) \approx \frac{1}{N} \sum_{i=1}^{N} ||f(x_i) - (M(p))(x_i)||^2 + \lambda ||M(p)||_2^2$$

 The Representer Theorem beautifully constructs an A.I. model function M* which becomes linear in the coefficients and directly keeps track of all the sampled data points, enabling data efficiency.

Representer Theorem: Minimiser A.I. Model

Representer Theorem

There exists $p=(p_1,\cdots,p_N)\in P:=\mathbb{R}^N$ and $M^*:\mathbb{R}^N\to C(X,\mathbb{R})$ which minimises the loss function $L_{f,\lambda}$ given as

$$(M^*(p))(x) = \sum_{i=1}^{N} p_i \kappa(x, x_i) \in \operatorname{span}_{\mathbb{R}} \{ \kappa(x, x_i) \mid i \in \{1, \dots, N\} \}$$

Representer Theorem: Applications

- This shows up in reinforcement learning, where the goal function $f: \mathcal{S} \to \mathcal{A}$ is a decision process function with state-space \mathcal{S} and action-space \mathcal{A} .
- Since $\mathcal{S} \subseteq \mathbb{R}^n$ for continuously moving objects, then this is an infinite-dimensional space so making f linearly represented by a finite function basis generated by the Kernel $\kappa: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ is very data-efficient.

Conclusions

- Overall, A.I. is secretly the study of functions.
- The KA Representation Theorem justifies the univariate transformation of features in feature engineering.
- The Universal Approximation Theorem explains why neural networks are so successful at approximating continuous functions.
- The Spin Hamiltonian-Loss Correspondence explains why local minima of loss in neural networks are close to the global minima.
- The Representer Theorem allows for a linear representation of the A.I. model that utilises the "similarity" measure (the Kernel) about all the data points, so it's data-efficient.