

Gameboard

Maths

Circles 4i

Circles 4i

A circle with centre C has the equation $x^2+y^2-10x+4y+4=0$.

Part A Find the coordinates of C

By completing the square for x and y find the coordinates of C. Enter the x and y coordinates below.

Enter the x coordinate:

The following symbols may be useful: \times

Enter the \boldsymbol{y} coordinate:

The following symbols may be useful: y

Part B Find radius

Find the radius of the circle.

Part C Find tangent

Find the equation of the tangent to the circle at the point P(8,2). Give your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Part D Find area

The circle meets the y axis at Q and the tangent to the circle at P (as in part C) meets the y axis at R. Find the area of triangle PQR.

Used with permission from UCLES, A level, June 2015, Paper 4721, Question 10.

Home Gameboard Maths Radians 2i

Radians 2i

Figure 1 shows a triangle ABC, and a sector ACD of a circle with centre A. It is given that $AB=11\,\mathrm{cm}$, $BC=8\,\mathrm{cm}$, angle $ABC=0.8\,\mathrm{radians}$ and angle $DAC=1.7\,\mathrm{radians}$. The shaded segment is bounded by the line DC and the arc DC.

Figure 1: Diagram showing triangle ABC and the sector ACD.

Calculate the length of AC correct to 3 significant figures.

Part B Area of segment

Find the area of the shaded segment. Give your answer to 3 significant figures.

Part C Perimeter of segment

Find the perimeter of the shaded segment. Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Small Angle Approximations 3ii

Small Angle Approximations 3ii

Part A Expression

Use the small angle approximation to write an approximate expression for $(\cos \theta + 5)(1 + \sin(2\theta))$ in powers of θ up to θ^2 .

The following symbols may be useful: theta

Part B Approximation

Use your answer from the above part to work out an approximate value for $(\cos \theta + 5)(1 + \sin(2\theta))$ when $\theta = 0.075$. Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Functions: Reciprocal Trig 3i

Functions: Reciprocal Trig 3i

It is given that heta is the acute angle such that $\sec \theta \sin \theta = 36 \cot \theta$.

Part A Value of $\tan \theta$

Find $\tan \theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B Value of $\tan{(\theta-\frac{\pi}{4})}$

Hence, using an appropriate formula, find the exact value of $\tan{(\theta-\frac{\pi}{4})}$.

The following symbols may be useful: pi, theta

Part C Value of $\tan{(2\theta)}$

Using an appropriate formula, find the exact value of $\tan{(2\theta)}$.

The following symbols may be useful: theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Trigonometry: Combined Angles 2i

Trigonometry: Combined Angles 2i

Part A Proof

Use the identity for $\cos{(A+B)}$ to write $4\cos{(\theta+60^\circ)}\cos{(\theta+30^\circ)}$ in the form $p+q\sin{(r\theta)}$, where $p,\,q$, $r\in{\mathbb R}$.

The following symbols may be useful: theta

Part B $4\cos 82.5^{\circ}\cos 52.5^{\circ}$

Hence find the exact value of $4\cos 82.5^{\circ}\cos 52.5^{\circ}$.

Part C Solve

Solve, for $0^\circ < \theta < 90^\circ$, the equation $4\cos\left(\theta + 60^\circ\right)\cos\left(\theta + 30^\circ\right) = 1$.

Give the smallest solution, in degrees, to three significant figures.

Give the largest solution, in degrees, to three significant figures.

Given that there are no values of $\boldsymbol{\theta}$ which satisfy the equation

$$4\cos\left(heta+60^{\circ}
ight)\cos\left(heta+30^{\circ}
ight)=k,$$

determine the set of values of the constant k.

Give one of the bounds, in the form k < a, $k \le a$, k > a or $k \ge a$ where a is an exact value.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , k$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Trigonometry: Double Angles 2i

Trigonometry: Double Angles 2i

Part A Proof

Simplify $\sin{(2\theta)} \big(\tan{\theta} + \cot{\theta} \big)$ as far as possible.

The following symbols may be useful: theta

Part B Exact Value

Hence find the exact value of $\tan \frac{\pi}{12} + \tan \frac{\pi}{8} + \cot \frac{\pi}{12} + \cot \frac{\pi}{8}$.

Part C Solve

Using your answer to part A, solve the equation $\sin{(4\theta)} \left(\tan{\theta} + \cot{\theta}\right) = 1$ for $0 < \theta < \frac{\pi}{2}$, to three significant figures, giving your answer in **radians**.

Part D
$$\left(1-\cos\left(2 heta
ight)
ight)\left(anrac{ heta}{2}+\cotrac{ heta}{2}
ight)^3$$

Using you answer to part A, express $\left(1-\cos\left(2\theta\right)\right)^2\!\left(anrac{ heta}{2}+\cotrac{ heta}{2}
ight)^3$ in terms of $\sin heta$.

The following symbols may be useful: theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Trigonometry: Combined Angles 4i

Trigonometry: Combined Angles 4i

Part A Combined Angles

Express $4\cos\theta-2\sin\theta$ in the form $R\cos{(\theta+\alpha)}$, where R>0 and $0^{\circ}<\alpha<90^{\circ}$.

Give the exact value of R.

The following symbols may be useful: R

Give the value of α to three significant figures.

Part B $4\cos\theta - 2\sin\theta = 3$

Hence solve the equation $4\cos\theta-2\sin\theta=3$ for $0^\circ<\theta<360^\circ$, giving your answers in degrees to three significant figures.

Give the smallest solution.

Give the largest solution.

Part C $25-(4\cos\theta-2\sin\theta)^2$

Using your answer to part A, determine the greatest and least values of

$$25-(4\cos\theta-2\sin\theta)^2$$

as θ varies, and, in each case, find the smallest positive value of θ for which that value occurs, giving your answers in degrees, to three significant figures.

Give the smallest value of θ which corresponds to the maximum value.

Give the smallest value of θ which corresponds to the minimum value.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Geometry & Trigonometry Revision

<u>Gameboard</u>

Maths

Functions Graph Sketching

Sketching Inverse Trigonometric Functions

Sketching Inverse Trigonometric Functions

Part A Sketch $\arcsin \frac{x}{3} + \frac{\pi}{2}$

Sketch the graph of $y = \arcsin rac{x}{3} + rac{\pi}{2}.$

Part B Sketch $2\arctan{(x-1)}$

Sketch the graph of $y = 2 \arctan(x - 1)$.

Part C Sketch $\arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$

Sketch the graph of $y=\arccos{\left(-\frac{x}{2}+\frac{1}{2}\right)}-\frac{\pi}{3}.$

Created for isaacphysics.org by Matthew Rihan