

SEARCH CSRC:

ABOUT MISSION CONTACT STAFF SITE MAP

CSRC HOME GROUPS PUBLICATIONS DRIVERS FEDERAL REGISTER NOTICES NEWS & EVENTS ARCHIVE

Cryptographic Technology**Cryptographic Standards Development Process Review**

NIST Solicits Comments on the Process

e-Authentication Initiative**Cryptographic Applications & Infrastructures****Cryptographic Toolkit****Cryptographic Key Management Project****Cryptographic Research Projects****Security Aspects of Electronic Voting****Cryptographic Hash Project****FIPS 140-3 (Draft)****NIST Randomness Beacon****Crypto Reading Club****Workshops and Events**

CSRC HOME > GROUPS > CT

NIST INITIATING REVIEW OF CRYPTOGRAPHIC STANDARDS DEVELOPMENT PROCESS

Update- February 18, 2014: NIST requests comments on **Draft NIST Interagency Report 7977, NIST Cryptographic Standards and Guidelines Development Process.** This document describes the principles, processes and procedures behind our cryptographic standards development efforts.

[Click here for more information.](#)

Recent news reports about leaked classified documents have caused concern from the cryptographic community about the security of NIST cryptographic standards and guidelines. NIST is also deeply concerned by these reports, some of which have questioned the integrity of the NIST standards development process.

NIST has a proud history in open cryptographic standards, beginning in the 1970s with the Data Encryption Standard. We strive for a consistently open and transparent process that enlists the worldwide cryptography community to help us develop and vet algorithms included in our cryptographic guidance. NIST endeavors to promote confidence in our cryptographic guidance through these inclusive and transparent development processes, which we believe are the best in use.

Trust is crucial to the adoption of strong cryptographic algorithms. To ensure that our guidance has been developed according to the highest standard of inclusiveness, transparency and security, NIST has initiated a formal review of our standards development efforts. We are compiling our goals and objectives, principles of operation, processes for identifying cryptographic algorithms for standardization, methods for reviewing and resolving public comments, and other important procedures necessary for a rigorous process.

Once complete, we will invite public comment on this process. We also will bring in an independent organization to conduct a formal review of our standards development approach and to suggest improvements. Based on the public comments and independent review, we will update our process as necessary to make sure it meets our goals for openness and transparency, and leads to the most secure, trustworthy guidance practicable.

Furthermore, we will be reviewing our existing body of cryptographic work, looking at both our documented process and the specific procedures used to develop each of these standards and guidelines. If any current guidance does not meet the high standards set out in this process, we will address these issues as quickly as possible.

Our mission is to protect the nation's IT infrastructure and information through strong cryptography. We cannot carry out that mission without the trust and assistance of the world's cryptographic experts. We're committed to continually earning that trust.

Contact:

Donna Dodson, Chief, Computer Security Division
donna.dodson@nist.gov

[Back to Top of Page](#)

SEARCH CSRC:

ABOUT MISSION CONTACT STAFF SITE MAP

CSRC HOME GROUPS PUBLICATIONS DRIVERS FEDERAL REGISTER NOTICES NEWS & EVENTS ARCHIVE

CSRC HOME > GROUPS > CT

Cryptographic Technology**Cryptographic Standards Development Process Review**

NIST Solicits Comments on the Process

e-Authentication Initiative**Cryptographic Applications & Infrastructures****Cryptographic Toolkit****Cryptographic Key Management Project****Cryptographic Research Projects****Security Aspects of Electronic Voting****Cryptographic Hash Project****FIPS 140-3 (Draft)****NIST Randomness Beacon****Crypto Reading Club****Workshops and Events****NIST SOLICITS COMMENTS ON ITS CRYPTOGRAPHIC STANDARDS DEVELOPMENT PROCESS****Summary:**

NIST requests comments on *Draft NIST Interagency Report 7977, NIST Cryptographic Standards and Guidelines Development Process*. This document describes the principles, processes and procedures behind our cryptographic standards development efforts. Please send comments to crypto-review@nist.gov by **April 18, 2014**.

Background:

In November 2013, NIST initiated a review of its cryptographic standards development process in response to public concerns about the security of NIST cryptographic standards and guidelines.

To enable this review, we have compiled information about the principles, processes and procedures that drive our cryptographic standards development efforts to help the public understand how we develop our standards. This information is being published in draft NIST IR 7977, *NIST Cryptographic Standards and Guidelines Development Process*. We are soliciting public comments on this draft NIST IR to obtain feedback on the mechanisms we use to engage experts in industry, academia and government to develop these standards.

We will review all public comments, post them on the CSRC website, and publish a revised NIST IR based on the feedback we receive. This revised publication will serve as basis for our future standards development efforts.

The revised NIST IR 7977 will also serve as the basis for a review of our existing body of cryptographic work. We will examine the procedures used to develop each of our cryptographic standards or guidelines to ensure they were developed in accordance with the principles outlined in NIST IR 7977. If any current guidance does not meet the high standards set out in this process, we will address these issues as quickly as possible, taking into consideration the process used to develop the guidance and a technical review of the affected cryptographic algorithms or schemes.

Note to Reviewers:

As part of your review of NIST IR 7977, we request comments on the following topics:

Are there other principles that we should use to drive our standards development efforts?

What are the most effective processes identified in the draft for engaging the cryptographic community for providing the necessary inclusivity and transparency to develop strong, trustworthy standards? Are there other processes we should consider?

Do these processes include appropriate mechanisms to ensure proposed standards are thoroughly reviewed and interested parties' views are heard? Are there other mechanisms that should be included in our process?

What are other communication channels that NIST should consider to effectively communicate with its stakeholders?

[Back to Top of Page](#)

NISTIR 7977

NIST Cryptographic Standards and Guidelines Development Process (Draft)

The Cryptographic Technology Group

NISTIR 7977

NIST Cryptographic Standards and Guidelines Development Process (Draft)

The Cryptographic Technology Group
Information Technology Lab

February 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

National Institute of Standards and Technology Interagency or Internal Report 7977
14 pages (February 2014)

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at <http://csrc.nist.gov/publications>.

Public comment period: February 18, 2014 through April 18, 2014

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: crypto-review@nist.gov

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in Federal information systems.

Abstract

This document describes the principles, processes and procedures that drive our cryptographic standards development efforts. This draft document will be revised based on the feedback received during the public comment period, and the revised publication will serve as basis for NIST's future standards development efforts. It will also serve as the basis for the review of NIST's existing body of cryptographic standards and guidelines.

Keywords

Cryptographic standards; cryptographic guidelines;

1 **Introduction**

2 The Computer Security Division (CSD), a part of the Information Technology Laboratory (ITL)
3 at the National Institute of Standards and Technology (NIST) is responsible for developing
4 standards (i.e., Federal Information Processing Standards), guidelines (NIST Recommendations),
5 tests, and metrics to protect non-national security federal information systems. Cryptographic
6 standards and guidelines for the protection of sensitive federal information in transit or storage
7 have always been a key component of this effort. These standards must be robust and have the
8 confidence of the cryptographic community in order to be widely adopted and effective at
9 securing information systems worldwide.

10 To ensure these standards provide high-quality, cost-effective security mechanisms, NIST works
11 closely with a broad stakeholder community to select, define and promulgate these standards and
12 guidelines. NIST's stakeholder community includes subject matter experts, academia,
13 government agencies, and sectors and organizations that voluntarily adopt NIST cryptographic
14 standards. NIST has found that open and transparent processes are critical to developing the
15 most secure and trusted cryptographic standards possible. NIST strives to engage all of its
16 stakeholders in these processes.

17 **Principles**

18 NIST believes equitable standards development processes produce the strongest, most effective,
19 and most highly trusted cryptographic standards. The following principles guide NIST's
20 standards and guidelines development processes.

21 ***Transparency:*** All interested and affected parties have access to essential information regarding
22 standards-related activities and venues. NIST is committed to transparency in the development
23 and documentation of its cryptographic standards with respect to the selection and evaluation
24 criteria, specification, security and performance characteristics, and provenance of proposed
25 standards or guidelines. NIST strives to be transparent with all stakeholders by informing and
26 involving them through presentations at conferences and standards meetings, and publication of
27 draft documents for public review.

28 ***Openness:*** Participation is open to all interested and affected parties. All stakeholders, including
29 security professionals, researchers, standards development organizations, and users, have an
30 opportunity to be involved in the standards and guidelines development process. NIST strives to
31 maintain this open process by posting draft documents for public comment, holding public
32 workshops and conferences, and engaging the cryptographic community at industry and
33 academic events.

34 ***Technical Merit:*** NIST's decisions during the development of cryptographic standards and
35 guidelines are based on the technical merit of a proposal. NIST strives to standardize
36 cryptographic algorithms, schemes, and modes of operation whose security properties are well
37 understood.

38 **Balance:** NIST strives to achieve balance of interests among stakeholders, weighing these
39 interests to develop cryptographic standards that are secure, efficient, and promote
40 interoperability. NIST solicits input from a wide-range of stakeholders representing government,
41 industry and academia to ensure its standards are strong, practical, and meet the needs of the
42 Federal government as well as the broader user community.

43 **Integrity:** NIST serves as an impartial technical authority when developing cryptographic
44 standards and guidelines. When evaluating, selecting, and standardizing cryptographic
45 algorithms, NIST strives to maintain its objectivity when it forms and documents its
46 decisions. **Continuous Improvement:** During the course of the development of cryptographic
47 algorithms, the cryptographic community is encouraged to identify weaknesses, vulnerabilities,
48 or other deficiencies in cryptographic functions specified in NIST publications. When
49 vulnerabilities are identified, NIST engages with the broader cryptographic community to
50 address them.

51 **Stakeholders**

52 NIST's statutory responsibility is to develop cryptographic standards and guidelines for
53 protecting sensitive government information on non-national security systems. These are widely
54 used across the federal government. However, NIST cryptographic standards have long been
55 voluntarily adopted by other public and private organizations. For example, the Data Encryption
56 Standard (DES), published as Federal Information Processing Standard (FIPS) 46 in 1977, filled
57 a critical need for the financial services industry at a time when electronic transactions were
58 becoming commonplace. NIST cryptographic standards and guidelines continue to be
59 voluntarily adopted in the private sector, particularly in the financial and health care sectors.

60 The national security community within the United States federal government has also adopted a
61 subset of NIST's cryptographic standards and guidelines through the Suite B program. The
62 NIST algorithms that comprise Suite B have been approved by the National Security Agency
63 (NSA) to protect classified information up to the Secret level, with a class of algorithms with
64 larger key sizes approved to protect information at the Top Secret level. NIST works closely
65 with the NSA in the development of cryptographic standards. This is done because of the NSA's
66 vast expertise in cryptography and because NIST, under the Federal Information Security
67 Management Act of 2002, is statutorily required to consult with the NSA on standards.

68 Standards Developing Organizations (SDOs) have also adopted NIST cryptographic standards as
69 foundational building blocks for security protocols. For example, the Advanced Encryption
70 Standard (AES) block cipher is included in ISO/IEC 18033-3:2010, is the preferred block cipher
71 for IEEE 802.11 to secure wireless networks, and is mandatory to implement in version 1.2 of
72 the IETF's Transport Layer Security (TLS) protocol.

73 This widespread adoption has had significant benefits for all participating communities, whether
74 they are participating by statute or by choice. Widespread international adoption has resulted in
75 widespread availability of commercial products supporting strong cryptography. In combination
76 with international standards, security services that are globally interoperable have permitted an
77 explosion of e-commerce internationally.

78 NIST works closely with experts in industry, academia and government to develop its
79 cryptographic standards and guidelines. Since the development of DES, the community
80 researching and developing cryptographic technologies within industry and academia has
81 expanded greatly. Using the mechanisms and processes described in this document, NIST works
82 with these stakeholders to identify areas where standards or guidelines are needed, evaluate
83 proposals, and develop standards or publications. NIST's role as a well-respected and trusted
84 technical authority in this field is to balance these needs to ensure that its standards and
85 guidelines are technically sound and have the confidence of the community.

86 **Engaging the Cryptographic Community**

87 NIST uses a variety of mechanisms to engage its stakeholders in academia, industry, and
88 government in the development of its cryptographic standards and guidelines. These
89 mechanisms include holding international competitions to select new cryptographic algorithms,
90 participating in SDOs, and developing new standards in collaboration with cryptographers
91 around the world.

92 **Cryptographic Competitions**

93 Cryptographic algorithm competitions allow NIST to standardize a state-of-the-art, widely
94 accepted cryptographic primitive by involving the international cryptographic research
95 community in a fair, open-design competition to select an algorithm that NIST will standardize
96 and promote. Interested parties have an opportunity to participate in the competition by
97 publishing research papers, submitting comments, and attending public workshops. Researchers
98 contribute candidate designs and papers on theory, cryptanalysis and performance. The winning
99 submitters are recognized, but agree to relinquish claim to intellectual property rights for their
100 design so that the winning candidate can be available for royalty-free use. NIST determines the
101 algorithm submission requirements and selection criteria, organizes workshops, hosts a
102 competition website and e-mail discussion forum, selects the winning algorithm (based on its
103 own analysis and that of the public), and explains and documents the selection.

104 A typical competition starts with a public dialog on the need and requirements for a new
105 algorithm, both on-line and through public workshop(s), as well as a Federal Register
106 announcement inviting comment on NIST's proposed criteria. A subsequent Federal Register
107 announcement states the submission requirements, schedule and selection criteria. A candidate
108 conference is held, usually juxtaposed with a major cryptographic research conference, for each
109 "round" of the competition to review the candidates and research results (i.e., cryptanalysis,
110 performance and proofs of properties) on the candidates. Following each round, NIST
111 announces the candidates selected to continue to the next round, and provides a report that
112 documents the rationale for the selections. This winnowing allows the community to focus its
113 analytical efforts on the most promising candidates. The last round usually has about five strong
114 candidates. Following the final candidate conference, NIST selects the winner, writes a final
115 report and formally proposes a standard for the algorithm through the normal FIPS process.

116 Adoption of Existing Standards

117 NIST participates in Standards Development Organizations (SDOs), either as a member
118 organization (e.g., X9, Inc.¹ working groups, INCITS² technical committees), or as individual
119 representatives (e.g., IEEE SA³ working groups and IETF⁴ working groups). NIST experts also
120 participate in some international SDOs through US National Body or Member State
121 representation. ANSI⁵ is the sole US representative for two major non-treaty international
122 standards organizations, the International Organization for Standardization (ISO), and, via the
123 US National Committee (USNC), the International Electrotechnical Commission (IEC). For
124 treaty-based international standards bodies, such as the International Telecommunication Union
125 (ITU), the Department of State represents the US.

126 The principles used to develop voluntary consensus standards within SDOs are outlined in OMB
127 Circular A-119, which instructs agencies to consider the use of these standards except where
128 inconsistent with law or otherwise impractical. Active participation in such SDOs helps to
129 ensure that NIST cryptographic standards and guidelines are highly secure and interoperable
130 with its international partners. When appropriate, SDO publications are referenced in NIST
131 guidance publications.

132 Development of New Standards

133 When NIST identifies a requirement for a standard and determines that no suitable standard
134 already exists, NIST often develops a guidance document for use by Federal agencies. If there is
135 also broader applicability, NIST may offer the guidance document or an adaptation of the
136 document as a contribution to an SDO standards activity. NIST experts in cryptographic
137 algorithms and standards develop these guidance documents in collaboration with experts in
138 academia, industry and government. Transparency and collaboration is accomplished through
139 formal public review processes and interaction with experts at public workshops and standards
140 meetings. For the development of new, basic cryptographic functions, NIST may invite
141 contributions from the public and hold a formal competition. In some cases, NIST guidance
142 publications are offered as contributions to and form a basis for SDO standards.

143 NIST Publications

144 NIST uses several types of documents to publish and disseminate its cryptographic standards and
145 guidelines. Three categories of NIST publications are commonly used: Federal Information
146 Processing Standards, Special Publications, and Interagency Reports. Draft and final
147 cryptographic standards and guidelines are posted by NIST on its Computer Security Resource
148 Center web pages and are freely available to anyone.

¹ X9, Inc., Financial Industry Standards.

² InterNational Committee for Information Technology Standards.

³ Institute of Electronic and Electrical Engineers Standards Association.

⁴ Internet Engineering Task Force.

⁵ American National Standards Institute.

149 **Federal Information Processing Standards (FIPS):** FIPS publications are issued by NIST
150 after approval by the Secretary of Commerce pursuant to Section 5131 of the Information
151 Technology Reform Act of 1996 (Public Law 104-106) and the Federal Information Security
152 Management Act of 2002 (Public Law 107-347). FIPS publications are used by NIST to
153 publish standards for fundamental cryptographic primitives, such as block ciphers, digital
154 signature algorithms, and hash functions.

155 **Special Publications (800 Series):** The Special Publication 800 series document a wide range
156 of research, guidelines, and outreach efforts in computer security. Cryptographic guidelines
157 in the 800 series build upon the primitives specified in FIPS publications, sometimes
158 specifying additional cryptographic algorithms, schemes and modes of operation, as well as
159 providing guidance for their use. For example, Special Publications in the 800 series specify
160 random bit generators, block cipher modes of operation, key-derivation functions, and key-
161 establishment schemes. These algorithms and schemes use the block ciphers, hash functions,
162 and mathematical primitives defined in FIPS publications as fundamental building blocks. In
163 addition, NIST also issues guidelines on the selection and use of cryptographic algorithms in
164 800 series Special Publications.

165 **NIST Interagency Reports (NIST IR):** NIST IRs describe technical research of interest to a
166 specialized audience. NIST does not specify cryptographic algorithms in NIST IR
167 publications. Instead, NIST uses NIST IR publications to disseminate information about its
168 cryptographic standards efforts. Historically, the Computer Security Division has used NIST
169 IRs to publish workshop and conference reports, discussion documents on new challenges in
170 cryptography, and status reports on cryptographic algorithm competitions.

171 While any NIST publication containing cryptographic standards or guidelines is first released as
172 a draft for public comment, the specific development process differs by publication type.
173 Because FIPS are mandated by formal legislation, and the algorithms they specify are at the heart
174 of many critical security technologies, FIPS publications undergo the most formal development
175 process. FIPS documents are developed by NIST, but approved and promulgated by the
176 Secretary of Commerce. Formal announcements for draft and final FIPS documents are
177 published in the Federal Register. As such, FIPS documents tend to have much longer
178 development cycles than Special Publications. Special Publications are promulgated by NIST,
179 with announcements posted on the Computer Security Division website. Special Publications
180 have a shorter development cycle and usually are not announced in the Federal Register but are
181 posted for a specified public comment period for external review and participation.

182 **Public Review and Outreach**

183 NIST strives in its cryptographic standards and guidance activities to be as open, and transparent
184 as possible. NIST provides public notice of its activities in cryptography including:

185 • Plans for cryptographic standards and recommendations,
186 • Invitations for public participation in workshops that discuss topics in cryptography and
187 its standardization,

188 • Announcements of the availability of draft cryptographic standards and recommendations
189 for public review and comment, and
190 • Announcements of the adoption of cryptographic standards and recommendations for use
191 by the US Federal Government.

192 All announcements are posted and available on the Computer Security Division website
193 (<http://csrc.nist.gov>), while major announcements, including those proposing the adoption of
194 FIPS and inviting comments on a proposed standard, are also announced in the Federal Register.
195 In addition, press releases usually accompany significant announcements, and sometimes
196 Information Technology Laboratory (ITL) Security Bulletins are posted that provide information
197 about the use of cryptographic standards and recommendations. In some cases, NIST maintains
198 a public email forum for ongoing open discussion of subjects relevant to cryptographic standards
199 or research activities.

200 The primary feedback mechanism for NIST cryptographic designs and implementation guidance
201 is the posting of drafts and requests for public comment on the Computer Security Division
202 website. Comment periods depend on the size and complexity of the drafts, as well as any prior
203 history of public exposure and commentary, but typically run from 30 to 90 days. Comments
204 may be submitted as electronic mail messages, transmission of electronically completed
205 comment templates, or as hard copy correspondence. If the nature or extent of changes to a draft
206 resulting from the comments is sufficiently extensive, one or more additional cycles of public
207 review may be conducted. Comments received on draft FIPS, and their dispositions, are
208 summarized in the Federal Register Notice announcing the approval of a new or revised
209 standard. In the case of commercial or consensus standards, feedback is generated and received
210 in accordance with the policies and procedures of the respective standards bodies.

211 Announcements and public review are vital, but only the externally visible part of the process.
212 Public outreach begins well before formal announcements and extends beyond the adoption of
213 standards. NIST is deeply involved in the cryptographic research community, participating
214 extensively in the community by attending research conferences; providing program committee
215 members, speakers and reviewers for conferences and workshops; and writing papers on NIST
216 research. NIST also invites and hosts guest researchers, postdoctoral fellows and visiting
217 scholars; sometimes funds academic research; and provides services, such as the NIST
218 Randomness Beacon,⁶ for the research community. As a result, cryptographers around the world
219 often know whom to contact at NIST in their area of interest. NIST encourages and receives
220 valuable informal advice, often based on independent cryptanalysis, from researchers.

221 NIST's previously discussed participation in SDOs provides another avenue for outreach and
222 feedback. In many cases, NIST staff are contributors, editors or working-group chairs for
223 proposed voluntary standards that use cryptography. NIST participates in the SDO standards
224 process along with industry and companies involved in the design, development and
225 implementation of cryptography. Such outreach promotes a two-way flow of information, and
226 provides early feedback on the effects of NIST standards and the need for new or different
227 standards.

⁶ See http://www.nist.gov/itl/csd/ct/nist_beacon.cfm

228 NIST must prioritize its participation within meetings, conferences, standards organizations and
229 industry groups based on the stakeholders involved and the expected impact of involvement.
230 There are also limits on the number of guest researchers and visiting scholars that can be
231 accommodated, based on the available resources. Process and fairness require that some
232 activities be kept confidential until announced publicly to everyone at the same time. Within
233 these constraints, NIST strives to keep stakeholders informed by reaching out to the community,
234 being accessible for discussions, listening to concerns, responding to questions, making
235 important activities public, participating actively in the cryptographic research community, and
236 supporting voluntary standards development efforts.

237 **Appendix: Examples of Development Processes**

238 **Advanced Encryption Standard**

239 During the 1990s, NIST wanted a block cipher standard that was stronger and faster than
240 the existing Triple-DES standard, which was primarily used for encryption and message
241 authentication. In January 1997 NIST announced its interest in the development of a
242 successor to Triple-DES, to be called the Advanced Encryption Standard (AES). NIST
243 requested feedback and held a public workshop to discuss the criteria for the design of
244 this algorithm. NIST then announced the start of a competition and its rules and
245 requirements in September 1997, calling for candidate submissions in nine months.
246 NIST received 15 complete candidates, and held three conferences to review and winnow
247 the candidates down to five finalists. After the third conference, NIST chose Rijndael to
248 be the AES in October 2000, and in February 2001, formally proposed the AES standard,
249 FIPS 197, in a Federal Register announcement soliciting public comment. The final
250 approval of AES occurred on November 26, 2001.

251 **Block Cipher Modes of Operation**

252 FIPS 197 authorizes NIST Recommendations as a source for modes of operation for
253 implementations of the AES algorithm. Recommendations for a variety of modes have
254 been published, in a relatively agile manner under that authority, in the 800-38 series of
255 Special Publications. Two sets of those modes originated in the Federal government: 1) the
256 adaptations of the four DES encryption modes in FIPS 81 to the AES algorithm, and
257 2) the key-wrapping modes that were developed by NSA at NIST's request. All of the
258 other block cipher modes approved by NIST were based on proposals that were
259 submitted for NIST's consideration from academia and industry, including both
260 individual companies and standards groups. All mode proposals are posted on NIST's
261 CSRC website, with an open invitation for public comments.

262 The initial step in the development process is to determine whether a version of a mode
263 proposal is appropriate to include in NIST's cryptographic toolkit of standards. The main
264 considerations are: 1) whether the mode serves an important need, 2) whether existing
265 modes in the toolkit, or other modes proposals, can adequately provide the needed
266 properties/functionality, 3) whether the mode meets NIST's security requirements, and 4)
267 for patented modes, whether acceptable royalty-free alternatives are available. NIST has
268 often sought public input into these initial decisions, either from public workshops or
269 through public comment periods.

270 When NIST is interested in approving a mode proposal, the next step is the development
271 of a draft special publication that specifies the mode. Normally, NIST develops the draft
272 in consultation with the mode submitter. After passing internal review, the draft is posted
273 on the CSRC website for a period of public comment, after which any received
274 comments are also posted. NIST considers the public comments carefully and decides

275 whether to finalize the draft for publication, with appropriate revisions to address any
276 remaining public or internal concerns.

277 Since 2001, NIST has approved twelve block cipher modes of operation within six
278 special publications in the 800-38 series. These modes provide confidentiality and/or
279 authentication for a variety of general and special purpose applications, including modes
280 designed for wireless local-area networks, disk encryption, and high-throughput Internet
281 routers. A seventh document in the series, specifying modes for format-preserving
282 encryption, is currently in development.

283 **Deterministic Random Bit Generators**

284 In 1998, NIST recognized that the random number generators described in FIPS 186-2
285 would not be adequate for anticipated future requirements for the generation of random
286 numbers. As a member of X9F1, a subcommittee of the American Standards Committee
287 (ASC) X9 (the committee for Financial Services), NIST concluded that X9F1 would be
288 an appropriate venue to develop a standard on random number generation, since the
289 committee included members from several organizations with cryptographic expertise. A
290 development team was formed to develop this standard (ANS X9.82) led by NIST and
291 NSA staff. The standard was developed in four parts: a general discussion of random
292 number generators (Part 1), requirements for entropy sources (Part 2), specifications for
293 deterministic random bit generator (DRBG) algorithms (Part 3), and constructions for
294 building Random Bit Generators (RBGs) from DRBGs and entropy sources (Part 4).

295 During the development of Part 3 of ANS X9.82, a version of the document was provided
296 to the International Standards Organization (ISO), where it became the basis for ISO/IEC
297 18031.

298 In order to obtain a wider review of the standard, include additional test and validation
299 guidance that was not appropriate for the X9 standard, and allow a more efficient review
300 and comment process, NIST incorporated the material into the SP 800-90 series of
301 documents. This series specifies algorithms (in NIST SP 800-90A), requirements and
302 tests for entropy sources (in NIST SP 800-90B), and constructions for combining the
303 DRBG algorithms and entropy sources into Random Bit Generators (in NIST SP 800-
304 90C).

305 ANS X9.82, Part 3 became the basis for NIST SP800-90A. Part 3 of ANS X9.82
306 contains three algorithms: *HMAC_DRBG*, *CTR_DRBG* and *Dual_EC_DRBG*. However,
307 when SP 800-90A was developed, four algorithms were included: *Hash_DRBG*,
308 *HMAC_DRBG*, *CTR_DRBG* and *Dual_EC_DRBG*. *Hash_DRBG* was originally
309 designed in response to a request for a generator that would be appropriate for the
310 generation of values with higher security requirements than were provided in the older
311 random number generators specified in the Digital Signature Standard (FIPS 186-2).

312 During the development of the SP 800-90 series, NIST has held several workshops,
313 hosted discussions with organizations and experts involved in testing or designing

314 random bit generators, and provided the drafts of the SP 800-90 documents for public
315 comment. All such feedback was considered for incorporation into the SP 800-90
316 documents.

317 Some in the cryptographic community have expressed concern about the
318 *Dual_EC_DRBG* specified in SP 800-90A. In light of these concerns, NIST published an
319 ITL Bulletin⁷ discussing the history of the document development and the issue of
320 concern, provided the SP 800-90 documents for an additional public comment period,
321 and advised against using the *Dual_EC_DRBG* pending the resolution of the security
322 concerns. As part of our commitment to continuous improvement of our standards and
323 guidelines, NIST will review these comments and make a determination of the
324 appropriate action to take.

⁷ See <http://csrc.nist.gov/publications/nistbul>