

(vii) We are given,

$$\frac{x-2}{3} = y-3$$

We get,

$$y = \frac{x-2}{3} + 3$$

$$y = \frac{x+7}{3}$$

Now, substituting x = 5 in $y = \frac{x+7}{3}$, we get

$$v = 4$$

Substituting x = 8 in
$$y = \frac{x+7}{3}$$
, we get

$$y =$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

x	5	8
ν	4	5

(viii) We are given,

$$2y = -x + 1$$

We get,

$$y = \frac{-x+1}{2}$$

Now, substituting x = 1 in $y = \frac{-x+1}{2}$, we get

$$y = -1$$

Substituting x = 5 in
$$y = \frac{-x+1}{2}$$
, we get

$$v = -2$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

	9	
x	1	5
ν	-1	-2

****** END *******