

TEST REPORT

Report No.: SRTC2017-9003(F)-0011

Product Name: Mobile Phone

Model Name: Hisense L675 PRO

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Specification: FCC Part15B (2017 edition)

FCC ID: 2ADOBL675PRO

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, Shijingshan District,

Beijing, China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1.1 Notes of the test report	3
4. O lafa maratica, also est the stantian laboratem.	
1.2 Information about the testing laboratory	3
1.3Applicant's details	
1.4Manufacturer's details	3
1.5 Application details	4
1.6 Reference specification	4
1.7 Information of EUT	4
1.7.1 General information	4
1.7.2 EUT details	
1.7.3 Auxiliary equipment details	5
2.Test information	6
2.1 Summary of the test results	6
2.2 Test result	7
2.2.1 Conducted Emissions-FCC Part15.107	7
2.2.2 RadiatedEmissions-FCC Part15.109	10
2.3. List of test equipment	13
Appendix错误! 未定义书	签。

No.: SRTC2017-9003(F)-0011

General information

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio monitoring center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

The State Radio monitoring center Testing Center (SRTC) Company: Address: 15th Building, No.30 Shixing Street, Shijingshan District

Beijing City: Country or Region: China Contacted person: Liu Jia

+86 10 57996183 Tel: Fax: +86 10 57996388 Email: liujiaf@srtc.org.cn

1.3Applicant's details

Hisense International Co., Ltd. Company:

Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao,

266071, China

Country or Region: P.R.China Contacted person: Zhang Hanhan Tel: 86-532-55753706

Fax:

Email: zhanghanhan@hisense.com

1.4Manufacturer's details

Company: Hisense Communications Co., Ltd.

Address: 218 Qianwangang Road, Economic & Technological

Development Zone, Qingdao, Shandong Province, P.R. China

City: Qingdao Country or Region: P.R.China Contacted person: Li Xin

Tel: 86-532-55755993

Fax:

Email: linxin12@hisense.com

Copyright © SRTC

1.5 Application details

Date of reception of test sample: 28th November 2017 Date of test: 28th November 2017 to 7th December 2017

1.6 Reference specification

FCC Part 15B, 2017 (Certification)

1.7 Information of EUT

1.7.1 General information

Name of EUT	Mobile Phone	
FCC ID	2ADOBL675PRO	
Modulation Type	GSM/GPRS:GMSK EDGE:GMSK WCDMA:QPSK LTE:QPSK; 16QAM	
Equipment Class	Class B	
Antenna Type	PIFA Antenna	
Power Supply	Battery or Charger	
Rated Power Supply Voltage	3.8V	
Extreme Voltage	Minimum: 3.5V Maximum: 4.35V	
HW Version	V1.00	
SW Version	L1402.6.01.00.MX05	

1.7.2 EUT details

Product Name	Model Name	IMEI
Mobile Phone	Hisense L675 PRO	002101541722314

No.: SRTC2017-9003(F)-0011

1.7.3 Auxiliary equipment details

AE (Auxiliary Equipment) 1#: Charger

Equipment	TRAVELCHARGER
Manufacturer	DONGGUAN AOHAI POWER
	TECHNOLOGY CO,LTD.
Model Number	A31-501000
Input Voltage	100V-240V AC
Output Voltage	5.0V DC
Frequency	50/60Hz

AE (Auxiliary Equipment) 2-1#: Battery

Equipment	Battery
Manufacturer	TMB
Model Number	LIW38238
S/N	1
Rated Voltage	3.8V

AE (Auxiliary Equipment) 2-2#: Battery

Equipment	Battery
Manufacturer	VEKEN
Model Number	LIW38238
S/N	1
Rated Voltage	3.8V

AE (Auxiliary Equipment) 3#: Headset

Equipment	Headset	
Manufacturer	DONGGUAN HETONG INDUSTRIAL	
	CO.,LTD	
Model Number	PY-1309102-05KD45	

AE (Auxiliary Equipment) 4-1#: USB Cable

Equipment	USB Cable
Manufacturer	FKY
Model Number	FKYM1-2828L08WHR

AE (Auxiliary Equipment) 4-2#: USB Cable

Equipment	USB Cable
Manufacturer	KOAR
Model Number	FKYM1-2828L08WHR

Note: The equipment is an variation device, add secondary source with Memory. After assessment, select the worst configuration with charger to perform conducted and radiated emission testing(30MHz-1GHz). The original test report refer to report No.:BTL-FCCE-1-1705C280B.

2. Test information

2.1 Summary of the test results

No.	Test case	FCC reference	Verdict
1	Conducted emissions	15.107	Pass
2	Radiated emissions	15.109	Pass

Approved by Mr. Liu Wei Director of the test department	Checked by Mr. He Jia Project manager of the test department
刘巍。	何佳
Tested by: Mr. Chen Huaiwei Test engineer	Issued date:
陈怀蔚	2017.12.12

No.: SRTC2017-9003(F)-0011

2.2 Test result

2.2.1 Conducted Emissions-FCC Part15.107

Ambient condition:

Temperature	Relative humidity	Pressure
23.8°C	45.8%	100.8kPa

Test Setup with charger:

Figure 1

Test Procedure:

The EUT is placed on a non-matellic table 0.8m above the horizontal metal reference ground plane. The EUT is connected with LISN via the charger. The LISN is connected to the reference ground. The accessories of the EUT are connected with the EUT such as headset etc.

The test set-up and the test methods are performed according to ANSI C63.4:2014. Then start the test software EMC 32. Sweep the whole frequency band through the range from 150 KHz to 30 MHz . The measurement should be done for both L line and N line. During pre-test, the receiver uses both peak detector and average detector. And the final test, the receiver uses both average detector and Quasi-peak detector.

The data of cable loss has been calibrated in full testing frequency range before the testing.

Limit:

Frequency of Emission(MHz)	Limits(dBμV)				
	Quasi-peak	Average			
0.15~0.5	66 to 56*	56 to 46*			
0.5~5	56	46			
5∼30	60	50			

Note: * Decreases with the logarithm of the frequency

Test result:

EUT+Charger

Pic1.Conducted emission L Line

Frequency (MHz)	QuasiPeak (dB¦ÌV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)	Comment
0.920000	39.8	100.0	9.000	On	L1	9.9	16.2	56.0	
1.010000	39.8	100.0	9.000	On	L1	9.8	16.2	56.0	
1.600000	45.0	100.0	9.000	On	L1	9.8	11.0	56.0	
1.640000	45.1	100.0	9.000	On	L1	9.8	10.9	56.0	
1.680000	44.7	100.0	9.000	On	L1	9.8	11.3	56.0	
1.740000	43.9	100.0	9.000	On	L1	9.8	12.1	56.0	
2.710000	42.0	100.0	9.000	On	L1	9.8	14.0	56.0	

Pic2.Conducted emission N Line

Frequency (MHz)	QuasiPeak (dB¦ÌV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)	Comment
0.480000	50.2	100.0	9.000	On	N	10.1	6.2	56.3	
0.715000	49.6	100.0	9.000	On	N	10.0	6.4	56.0	
0.815000	49.8	100.0	9.000	On	N	10.0	6.2	56.0	
1.010000	48.6	100.0	9.000	On	N	9.9	7.4	56.0	
1.575000	45.4	100.0	9.000	On	N	9.8	10.6	56.0	
1.915000	43.5	100.0	9.000	On	N	9.8	12.5	56.0	
2.555000	45.0	100.0	9.000	On	N	9.8	11.0	56.0	

Frequency (MHz)	Average (dB¦ÌV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)	Comment
0.480000	40.2	100.0	9.000	On	N	10.1	6.1	46.3	
0.720000	41.4	100.0	9.000	On	N	10.0	4.6	46.0	
0.765000	41.2	100.0	9.000	On	N	10.0	4.8	46.0	
0.815000	40.2	100.0	9.000	On	N	10.0	5.8	46.0	
1.590000	35.4	100.0	9.000	On	N	9.8	10.6	46.0	

2.2.2 RadiatedEmissions-FCC Part15.109

Ambient condition:

Temperature	Relative humidity	Pressure
24.9°C	43.7%	100.8kPa

Test Setup:

Figure 2

Test Procedure:

EUT+Charger:

The EUT should be placed on a non-metallic table 80cm above the ground plane. The receive antennas shall be moved from 1 to 4 meters. The distance between EUT and receive antenna should be 3 meters.

The EUT should work in idle mode. The accessories of the EUT are connected with the EUT such as headset etc. The test set-up and the test methods are performed according to ANSI C63.4:2014.

Then start the test software EMC 32. Sweep the whole frequency band through the range from 30MHz to 1GHz, using receive log period antenna HL562.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The EUT is laid in two modes as follow: 1. put the EUT in horizontal direction; 2. put the EUT in vertical direction.

The data of cable loss and antenna factor have been calibrated in full testing

frequency range before the testing.

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

The measurement results are obtained as described below:

Result= P_{mea} + A_{Rpl}

Limit:

Frequency of Emission(MHz)	Limits		
	Detector Unit (dBµV/n		
30~88	Quasi-peak	40	
88~216	Quasi-peak	43.5	
216~960	Quasi-peak	46	
960~1000	Quasi-peak	54	
1000∼5th harmonic of the highest	Average	54	
frequency or 40GHz, whichever is lower	Peak	74	

Test result: EUT+Charger

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	Pmea (dBuV/m)	Polarity
30.420000	23.9	8.2	15.7	Vertical
32.775331	23.5	8.2	15.3	Vertical
61.462285	19.0	9.4	9.6	Vertical
73.566974	16.5	10.7	5.8	Vertical
90.711202	19.2	11.7	7.5	Vertical
117.233267	23.7	15.2	8.5	Vertical

Page number:11 of 15

Fax:86-10-57996388

EUT+Charger:

Pic3.Radiated emission

2.3. List of test equipment

No.	Name/Model	Manufacturer	S/N	Calibration Date	Calibration Due Date
1	23.18m×16.88m×9.60m Semi-Anechoic Chamber	FRANKONIA		2017.8.20	2018.8.19
2	ESI 40EMI test receiver	R&S	100015	2017.8.20	2018.8.19
3	E5515C(8960) Mobile Station Tester	Agilent	GB44050904	2017.8.20	2018.8.19
4	9.080m×5.255m×3.525m Shielding room	FRANKONIA		2017.8.20	2018.8.19
5	ESCS30EMI test receiver	R&S	100029	2017.8.20	2018.8.19
6	HL562Ultra log test antenna	R&S	100016	2017.8.20	2018.8.19
7	ESH3-Z2 Pulse limiter	R&S	10002	2017.8.20	2018.8.19
8	ENV216 AMN	R&S	3560.6550.12	2017.8.20	2018.8.19
9	ESH2Z11 LISN	R&S	50FH-020-10	2017.8.20	2018.8.19
10	HF 906 Double-Ridged Waveguide Horn Antenna	R&S	100030	2017.8.20	2018.8.19
11	PS2000 Turn Table	FRANKONIA			
12	MA260 Antenna Master	FRANKONIA			
13	EMC 32 EMI test software	R&S			

Appendix1 Test Setup

Radiated Emissions Test Setup (with computer)

Radiated Emissions Test Setup (with charger)

Conducted Emissions Test Setup (with charger)