京大数学理科後期 1995 年度

1 問題1

自然数 n に対して、 x^n を $x^2 + ax + b$ で割った余りを $r_n x + s_n$ とする.次の 2 条件 (イ)、(ロ) を考える.

- (イ) $x^2 + ax + b = (x \alpha)(x \beta), \alpha > \beta > 0$ と表せる.
- (ロ) 全ての自然数 n に対して $r_n < r_{n+1}$ が成り立つ.
 - 1. (イ), (ロ) が満たされる時,全ての自然数 n に対して $\beta-1<\left(\frac{\alpha}{\beta}\right)^n(\alpha-1)$ が成り立つことを示せ.
 - 2. 実数 a, b がどのような範囲にあるとき (4), (口) が満たされるか. 必要十分条件を求め、点 (a,b) の存在する範囲を図示せよ.

2 問題 2

O を中心とする円周上に相異なる 3 点 A_0 , B_0 , C_0 が時計回りの順に置かれている。自然数 n に対し、点 A_n , B_n , C_n を次の規則で定めていく。

- (イ) A_n は弧 $A_{n-1}B_{n-1}$ を二等分する点である. (ここで弧 $A_{n-1}B_{n-1}$ は他の点 C_{n-1} を含まない方を考える. 以下においても同様である.)
- (ロ) B_n は弧 $B_{n-1}C_{n-1}$ を二等分する点である.
- (Λ) C_n は弧 $C_{n-1}A_{n-1}$ を二等分する点である.

 $\angle A_n OB_n$ の大きさを α_n とする.ただし, $\angle A_n OB_n$ は点 C_n を含まない方の弧 $A_n B_n$ の中心角を表す.

- 1. 全ての自然数 n に対して $4\alpha_{n+1}-2\alpha_n+\alpha_{n-1}=2\pi$ であることを示せ. 2. 全ての自然数 n に対して $\alpha_{n+2}=\frac{3}{4}\pi-\frac{1}{8}\alpha_{n-1}$ であることを示せ.
- $3. \alpha_{3n} \in \alpha_0$ であらわせ

問題 3 3

a, b, c は実数で $a \ge 0$, $b \ge 0$ とする.

$$p(x) = ax^{2} + bx + c$$
$$q(x) = cx^{2} + bx + a$$

とおく. $-1 \le x \le 1$ を満たす全ての x に対して $|p(x)| \le 1$ が成り立つ時, $-1 \le x \le 1$ を満たす全てのxに対して|q(x)| < 2が成り立つことを示せ.

問題 4 4

- 1. 平面ベクトル $\vec{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$, $\vec{y}=\begin{pmatrix}y_1\\y_2\end{pmatrix}$ から 2 行 2 列の行列 $P=\begin{pmatrix}x_1&y_1\\x_2&y_2\end{pmatrix}$ を作 る. \vec{x} , \vec{y} のどの一方も他方の実数倍ではない時,P は逆行列を持つことを示せ.
- 2. $B = \begin{pmatrix} p & b \\ c & -n \end{pmatrix}$ は単位行列の実数倍ではないとする. この時設問 (1) のようにして 作った P が逆行列 P^{-1} を持ち、

$$P^{-1}BP = \begin{pmatrix} 0 & p^2 + bc \\ 1 & 0 \end{pmatrix}$$

が成り立つようなベクトル \vec{x} , \vec{y} があることを示せ.

3. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ は単位行列の実数倍ではなく, $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ も単位行列の実数倍 ではないとする。A、A'が

$$a + d = a' + d', ad - bc = a'd' - b'c'$$

を満たせば、 $P^{-1}BP = A'$ となる P があることを示せ、

5 問題 5

- 1. p_1 , p_2 , q_1 , q_2 を求めよ.
- 2. $p_n + q_n = 1$, $(n+2)p_n np_{n-2} = 1$, $(n=3,4,5,\cdots)$ であることを示せ.
- $3. p_n$ を求めよ.

6 問題 6

曲線 $C: y = \frac{1}{x}(x>0)$, 3点 A=(a,0), R=(4,0), Q=(0,2) を考える. ただし 0 < a < 4 とする. 点 A から C に接線 L_a をひき, その y 軸との交点を B, 原点を O とする.

1. 直線 RQ が接線 L_a と第 1 象限の点 $M = (x_0, y_0), x_0 > 0, y_0 > 0$ で交わるため の必要十分条件を求めよ.

設問 (1) の条件が満たされている時、四角形 OAMQ の面積を T、 \triangle ARM の面積を S_1 、 \triangle BQM の面積を S_2 とする.

 $2 r = S_1 + S_2$, $m = S_1 S_2$ とおく時, 点 (r, m) の存在する範囲を図示せよ.