代数1H班作业3

2022 年 9 月 30 日

注记,如果我们在讨论半直积的定义时采用 G = HK, H 正规, $K \cap H = \{e\}$, 有 K 在 H 上共轭作用诱导 $K \to Aut(H)$,则 G 同构于上次作业 13 题中定义的半直积的方式,通常教科书中会采用这种方式,我们上课时的记号和这个是相反的。

题 1. 设 p 为素数, 求 $GL(\mathbb{F}_p)$ 中 Sylow-p 子群的个数.

題 2. 如果 S_n 中元素 σ 的写成不相交的轮换的乘积 $\sigma = \sigma_1 \cdots \sigma_l$,其中长度为 m 的轮换个数为 λ_m . (这里 1-轮换 (i) 表示保持该元素 i 不变)。我们将 σ 的 type 记作 $1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$,并满足 $\sum_i i\lambda_i = n$. 请证明 S_n 中两个元素共轭当且仅当两者有相同的 type.

12. In S_n , compute the number of the permutations of type $1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$, and prove the following formula

$$\sum_{\lambda} \frac{1}{\prod_{i=1}^{n} i^{\lambda_i} \lambda_i!} = 1.$$

Here λ is the index $(\lambda_1, \lambda_2, \dots, \lambda_n)$ such that $\sum_i i\lambda_i = n$. (Hint: π ψ 2)

18. Let $n \geq 2$, prove that (12) and (123 ··· n) generate the group S_n .

18. 5. Let $n \geq 3$. Prove that (123), (124), \cdots , (12n) generate the group A_n .

题 6. 证明 D_n 同构于由两个生成元 x,y 生成,且满足如下关系的群。

$$x^n = y^2 = (xy)^2 = e$$

题 7. 假设 p 和 q 是两个素数,请分类 pq 阶的群。

题 8. 请分类 12 阶群。

题 9. The conjugation induces an group homomorphism from G to Aut(G). We call the image of this morphism Inn(G) as inner automorphism group. Prove that the group of inner automorphisms of a group G is normal in Aut(G). We call the quotient group Aut(G)/Inn(G) as outer automorphism group Out(G). 注意: 有同学认为半直积的结构由到 H 到 Out(G) 的 morphism 确定,这个一般是不对的,参见 https://math.stackexchange.com/questions/1710620/do-homomorphisms-h-to-operatornameautk-that-coincide-at-the-level-of-o?rg=1。

题 10. 证明如果群 G 有有限指数的子群,则 G 有有限指数的正规子群。

题 11. 证明如果群 G 有两个有限指数的子群 H 和 K, 则 $H \cap K$ 也是 G 的有限指数子群.

题 12. 循环群

- 1. Let p be a prime number, $G = \{x \in \mathbb{C} \mid \exists n \text{ such that } x^{p^n} = 1\}$. Then G is a group with usual multiplication, and every proper subgroup of G are cyclic of finite order.
- 2. Prove that $(\mathbb{Q},+)$ is not a cyclic group, but any finitely generated subgroup are cyclic.
- 3. Let G be a nonabelian group. Prove that the group Aut(G) is not cyclic. In particular, if |Aut(G)| is a prime number, then G is abelian. (Hint: Consider the inner automorphism $Inn(G) \leq Aut(G)$, prove that $Inn(G) \cong G/Z(G)$)

13. (Burnside lemma) Suppose a finite group G acts on a finite set G. Let $F(g) = |\{ x \in S \mid gx = x \}|$, namely the number of fixed point by G. Write G as the number of different orbits of action G on G. Prove the following formula

$$t = \frac{\sum_{g \in G} F(g)}{|G|}$$

題 14. Let p be a prime number, G is a p-group. Prove that the number of non-normal subgroups of G must be multiple of p.

15. Let $G = GL_n(\mathbb{C})$. Prove that G has no proper subgroups of finite index.

16. Let G be a group, and A a normal abelian subgroup. Show that G/A operates on A by conjugation, and in this manner get a homomorphism of G/A into Aut(A).

题 17 (思考题,不用交).下面我们确定在正规子群和商群确定时如何分类群的结构。我们引入一些概念。

定义 1. 假设有群 G_1,G_2,G_3 的同态 $f:G_1\to G_2,g:G_2\to G_3$ 。我们称如下序列

$$G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3$$

在 G_2 处正合,如果 $Im(f) = \ker(g)$ 。一个元素的群记作 1.则称序列

$$1 \to G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3 \to 1$$

为短正合列,如果序列在 G_1 , G_2 , G_3 处均正合,即 f 是单同态,g 是满同态,且 $Im(f) = \ker(g)$. 这个序列此时也称作 G_3 关于 G_1 的一个 extension. 另一个 extension

$$1 \to G_1 \xrightarrow{f'} G_2' \xrightarrow{g'} G_3 \to 1$$

和已知的这个同构是指存在 $G_2 \to G_2'$ 的群同构 F,使得有如下的图表中的每一个矩形都交换

$$1 \longrightarrow G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3 \longrightarrow 1$$

$$\downarrow^{id} \qquad \downarrow^{F} \qquad \downarrow^{id}$$

$$1 \longrightarrow G_1 \xrightarrow{f'} G'_2 \xrightarrow{g'} G_3 \longrightarrow 1$$

 $\mathbb{P} f' = F \circ f \not = q = q' \circ F.$

定义 2. 短正合列

$$1 \to G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3 \to 1$$

分裂是指存在同态 $i: G_3 \to G_2$ 使得 $g \circ i = Id_{G_3}$ 。

以下我们假设 G_1 是交换群, 其中的群运算记作 +, 单位元记作 0。则由以上习题知, 短正合列

$$1 \to G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3 \to 1$$

会诱导一个 G_3 在 G_1 上的共轭作用,或者等价于有群同态 $\phi: G_3 \rightarrow Aut(G_1)$. 我们现在分类这个同态 ϕ 给定的情况下的所有 extension.

- 1. 证明当短正合列分裂时, G_2 同构于 G_1 和 G_3 的半直积.
- 2. 取映射 $s: G_3 \to G_2$, 使得 $g \circ s = Id_{G_3}$. 证明这样的 s 可以取到,且若映射 $s': G_3 \to G_2$, 满足 $g \circ s' = Id_{G_3}$, 则存在映射 $y: G_3 \to G_1$,使得 s'(b) = y(b)s(b). 我们称这样的 s 为截面.
- 3. 定义映射 $\alpha: G_1 \times G_3 \to G_2$ 为 $\alpha(a,b) = a \cdot s(b)$. 证明这是一个双射.
- 4. 利用这一双射和 G_2 的群结构在集合 $G_1 \times G_3$ 上诱导一个群结构, 使 得 α 是一个群同构. 证明在这个群结构下存在映射 $c: G_3 \times G_3 \to G_1$ 使得 $(a_1,b_1)\cdot (a_2,b_2) = (a_1+(\phi(b_1))(a_2)+c(b_1,b_2),b_1b_2)$, 且 c 满足

$$(\phi(b_1))(c(b_2,b_3)) - c(b_1b_2,b_3) + c(b_1,b_2b_3) - c(b_1,b_2) = 0$$

对任意 $b_1, b_2, b_3 \in G_3$ 成立.

- 5. 假设给定 c 满足如上条件,利用上述公式 $(a_1,b_1)\cdot (a_2,b_2)=(a_1+(\phi(b_1))(a_2)+c(b_1,b_2),b_1b_2)$ 在 $G_1\times G_3$ 上定义运算,证明这是一个群结构,且做成 G_3 在 G_1 上的 extension.
- 6. 映射 $\{x: G_3 \times G_3 \to G_1\}$ 组成的集合有自然的交换群结构, 加法定义为 $(x_1+x_2)(b_1,b_2)=x_1(b_1,b_2)+x_2(b_1,b_2)$. 证明满足以上条件的 c 构成一个子群, 记作 $Z^2(G_3,G_1)$.
- 7. 不同的截面 s 的选取会对应 $Z^2(G_3,G_1)$ 的一个子群 $B^2(G_3,G_1)$. 具体来说,请证明 s 换成 s' 时,对应的 c' 满足 $c'(b_1,b_2)=c(b_1,b_2)+\phi(b_1)(y(b_2))-y(b_1b_2)+y(b_1)$. 证明形如 $x(b_1 b_2)=\phi(b_1)(y(b_2))-y(b_1b_2)+y(b_1)$ 的映射构成 $Z^2(G_3,G_1)$ 的一个子群,记作 $B^2(G_3,G_1)$.
- 8. 证明 $Z^2(G_3,G_1)/B^2(G_3,G_1)$ 分类了所有固定 ϕ 的, G_3 关于 G_1 的 extension 的同构类. 这个交换群记作 $H^2(G_3,G_1)$.
- 9. 证明如果 ϕ 平凡,则 G_1 在 G_2 的中心里.
- 10. 假设 $G_1 = \mathbb{Z}$, $G_3 = C_p$ 是素数 p 阶循环群, ϕ 平凡. 证明 $H^2(C_p, \mathbb{Z}) \cong C_p$ 并找到对应的 extension.