	Memo No
Mo Tu We Th Fr Sa Su	Date /
LECY: 225	.2.20
More about validity	of Green's theo
We have seen two to	•

We	have se	en tw	form	15 /c	FiTd	s = //p c	ur(F)dA
			•	1	? nds		
	Melli) C			10		001 7010
	VIII						***************************************
only	work	it F	cand	anti d	en'vat	ive) de	fined

Everywhere in R

Example: $\vec{F} = \frac{7i^4xi^4}{x^4y^2}$, \vec{F} not defined at origin, and $\vec{F} = 0$ everywhere else

Q = extend to green theorem.

$$\frac{f''}{f''} = \int_{\mathcal{R}} cur \langle F' \rangle d\vec{r} - f_{c''} = \int_{\mathcal{R}} cur \langle F' \rangle dA$$

$$= 0 \text{ (in this case)}$$

\text{\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Z		R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

3 Remember: $ancor(R) = \iint_R 1 dA$, mass any value fin jacobin determinator (\hat{X}, \hat{Y}) center of mass)

\times	Z	5	R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.				
Date	1	/		

polar moment of mortia In = 1/(x+x+) SdA,
inertia rim
- Evaluating S:
MUST KNOW: (usual intergral) 2 substitution
2 substitution
(integration by parts
- change of variable u=u(x,y), v=v(x,y)
1) find acuity lax uy 1 duch = 1 acuity dxo
& substitute x, y's in the integral absolute
3 Setting up boards:
2 Line Integrals: F=(M,N)
ScF'dr' = ScMdx +Ndy (F'.dr)
Sc F. Winds = Sc Mdy - Ndx (F. Cdy, -dx)
Evaluation: reducing to a single parameter
X=X(+), y = y(+)
* if and of) =Nx - My =0
(U domain simply-connected)
If x=M () F = Of =) find f

 图 图	
Mo Tu Wo Th To So Su	Memo No.
Mo Tu We Th Fr Sa Su	Date / /
— Greens theorem:	So F'dr = Sk curlF. da
Je F. Ads = // divl	E.dA Nx-My
J.	
<i>N</i> ∗×	+ Ny
No. 1	
•	Ya. Carallana
4	
·	
AVEX STATE STATE	
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- J-42 - 1 - 15-	
V = ()	

03

./.

4-4 /435