

Augmentation-Free Self-Supervised Learning on Graph 2023 Winter DSAIL Internship 한재민

Contents

- Introduction
- Background
- Method
- Experiments
- Conclusion
- Implementation

Contrastive Learning

Contrastive Learning is a type of self-supervised representation learning

Augmentation

Augmentation on Graph

- Augmentation may behave arbitrarily on graphs
- Graphs contain not only the semantic but also the structural information

Problem

- The quality is dependent on the choice of the augmentation scheme
- Limitation of inherent philosophy of contrastive learning
 - → Overlooks the structural information of graphs
- Requirements of a large amount of negative samples
 - → High computational and memory costs, impractical in reality

Related Work-Contrastive Methods on Graphs

DGI

Learn node representations by maximizing the mutual information between the local patch of a graph

GRACE

Creates two augmented view of a graph(for the first)

However, they have sampling bias problem → BGRL

Related Work-Augmentations on Graphs

GRACE

Randomly drops edges and masks node features

GCA

GRACE + advanced adaptive augmentation techniques that consider both structural and attribute information

There is no universally outperforming data augmentation scheme for graphs.

BYOL(Bootstrap Your Own Latent)

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2}$$

BYOL(Bootstrap Your Own Latent)

$$egin{aligned} \mathcal{L}_{ heta,\xi} &= \left\|ar{q}_{ heta}(\mathbf{z_1}) - ar{\mathbf{z}}_2
ight\|^2 \ \mathcal{L}_{ heta,\xi}^{\mathrm{BYOL}} &= \mathcal{L}_{ heta,\xi} + \widetilde{\mathcal{L}}_{ heta,\xi}. \end{aligned} \qquad ext{symmetric(+x_1, x_2 change loss)}$$

Each training

$$eta \leftarrow ext{optimizer} \left(heta,
abla_{ heta} \mathcal{L}_{ heta,\xi}^{ ext{BYOL}}, \eta
ight)$$

$$\xi \leftarrow au \xi + (1- au) heta \qquad ext{EMA(Exponential Moving Average)}$$

 η : learning rate for online network

 γ : decay rate that controls how close ξ remains to θ

BGRL(Bootstrap Your Own Latent)

- Fully non-contrastive method for learning node representations
- Do not need negative sample
- Simple Augmentation(node feature masking, edge masking)

Limitation of BGRL

		Comp.	Photo	CS	Physics	
Node	BGRL	-4.00%	-1.06%	-0.20%	-0.69%	
Classi.	GCA	-19.18%	-5.48%	-0.27%	OOM	(best-worst) ~ 100
Node	BGRL	-11.57%	-13.30%	-0.78%	-6.46%	$-\frac{(\text{best-worst})}{\text{best}} \times 100$
Clust.	GCA	-26.28%	-23.27%	-1.64%	OOM	

Performance on downstream tasks learned by BGRL varies greatly according to the choice of hyperparameters associated with augmentations

$$sim(v_i, v_j) = \frac{\mathbf{h}_i^{\theta} \cdot \mathbf{h}_j^{\xi}}{\|\mathbf{h}_i^{\theta}\| \|\mathbf{h}_j^{\xi}\|}, \forall v_j \in \mathcal{V}$$

$$\mathbf{P}_i = (\mathbf{B}_i \cap \mathbf{N}_i) \cup (\mathbf{B}_i \cap \mathbf{C}_i)$$

$$\mathcal{L}_{\theta,\xi} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{v_j \in \mathbf{P}_i} \frac{\mathbf{z}_i^{\theta} \mathbf{h}_j^{\xi \top}}{\left\| \mathbf{z}_i^{\theta} \right\| \left\| \mathbf{h}_j^{\xi} \right\|},$$

Datasets

	# Nodes	# Edges	# Feat.	# Cls.
WikiCS	11,701	216,123	300	10
Amazon-Computers	13,752	245,861	767	10
Amazon-Photo	7,650	119,081	745	8
Coauthor-CS	18,333	81,894	6,805	15
Coauthor-Physics	34,493	247,962	8,415	5

Table 5: Statistics for datasets used in this paper.

5 datasets(WikiCS, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics)

Evaluation protocol

Three node-level tasks

- Node classification
- Node clustering
- Node similarity search

Encoder: GCN

Performance on node classification

	WikiCS	Computers	Photo	Co.CS	Co.Physics
Sup. GCN	77.19 ± 0.12	86.51 ± 0.54	92.42 ± 0.22	93.03 ± 0.31	95.65 ± 0.16
Raw feats.	71.98 ± 0.00	73.81 ± 0.00	78.53 ± 0.00	90.37 ± 0.00	93.58 ± 0.00
node2vec	71.79 ± 0.05	84.39 ± 0.08	89.67 ± 0.12	85.08 ± 0.03	91.19 ± 0.04
DeepWalk	74.35 ± 0.06	85.68 ± 0.06	89.44 ± 0.11	84.61 ± 0.22	91.77 ± 0.15
DW + feats.	77.21 ± 0.03	86.28 ± 0.07	90.05 ± 0.08	87.70 ± 0.04	94.90 ± 0.09
DGI	75.35 ± 0.14	83.95 ± 0.47	91.61 ± 0.22	92.15 ± 0.63	94.51 ± 0.52
GMI	74.85 ± 0.08	82.21 ± 0.31	90.68 ± 0.17	OOM	OOM
MVGRL	77.52 ± 0.08	87.52 ± 0.11	91.74 ± 0.07	92.11 ± 0.12	95.33 ± 0.03
GRACE	77.97 ± 0.63	86.50 ± 0.33	92.46 ± 0.18	92.17 ± 0.04	OOM
GCA	77.94 ± 0.67	87.32 ± 0.50	92.39 ± 0.33	92.84 ± 0.15	OOM
BGRL	76.86 ± 0.74	89.69 ± 0.37	93.07 ± 0.38	92.59 ± 0.14	95.48 ± 0.08
AFGRL	77.62 ± 0.49	89.88 ± 0.33	93.22 ± 0.28	93.27 ± 0.17	95.69 ± 0.10

Table 2: Performance on node classification (OOM: Out of memory on 24GB RTX3090).

Performance on node clustering

		GRACE	GCA	BGRL	AFGRL
WikiCS	NMI	0.4282	0.3373	0.3969	0.4132
WIKICS	Hom.	0.4423	0.3525	0.4156	0.4307
Computers	NMI	0.4793	0.5278	0.5364	0.5520
Computers	Hom.	0.5222	0.5816	0.5869	0.6040
Photo	NMI	0.6513	0.6443	0.6841	0.6563
Filoto	Hom.	0.6657	0.6575	0.7004	0.6743
Co.CS	NMI	0.7562	0.7620	0.7732	0.7859
Co.Cs	Hom.	0.7909	0.7965	0.8041	0.8161
Co.Physics	NMI	OOM	OOM	0.5568	0.7289
Co.Filysics	Hom.	OOM	OOM	0.6018	0.7354

Table 3: Performance on node clustering in terms of NMI and homogeneity.

Performance on similarity search

		GRACE	GCA	BGRL	AFGRL
WikiCS	Sim@5	0.7754	0.7786	0.7739	0.7811
WIKICS	Sim@10	0.7645	0.7673	0.7617	0.7660
Computers	Sim@5	0.8738	0.8826	0.8947	0.8966
Computers	Sim@10	0.8643	0.8742	0.8855	0.8890
Photo	Sim@5	0.9155	0.9112	0.9245	0.9236
Filoto	Sim@10	0.9106	0.9052	0.9195	0.9173
Co.CS	Sim@5	0.9104	0.9126	0.9112	0.9180
Co.Cs	Sim@10	0.9059	0.9100	0.9086	0.9142
Co.Physics	Sim@5	OOM	OOM	0.9504	0.9525
Co.F Hysics	Sim@10	OOM	OOM	0.9464	0.9486

Table 4: Performance on similarity search. (Sim@n: Average ratio among n nearest neighbors sharing the same label as the query node.)

Ablation Study

AFGRL gives competitive performance even when the adjacency matrix is sparse

→ Practical

Hyperparameter Analysis

Figure 5: Sensitivity analysis.

Performance is stable over various Ms(M: number of clustering)

AFGRL benefits from high-dimensional embeddings

Visualization of embeddings

Nodes are more tightly grouped in AFGRL than GCA

→ AFGRL captures more fine-grained class information

Figure 8: t-SNE embeddings of nodes in *Photo* dataset.

Conclusion

- Neither using augmentation techniques nor negative samples
- Discovers nodes that can serve as positive samples considering the local structural information and the global semantics of graphs
- Stability over hyperparameters(even without using negative sample)

Implementation

```
[11] class Encoder(nn.Module):
         def __init__(self, layer_config, dropout=None, project=False, **kwargs):
             self.stacked_gnn = nn.ModuleList([GCNConv(layer_config[i - 1], layer_config[i]) for i in range(1, len(layer_config))])
             self.stacked_bns = nn.ModuleList([nn.BatchNorm1d(layer_config[i], momentum=0.01) for i in range(1, len(layer_config))])
             self.stacked_prelus = nn.ModuleList([nn.PReLU() for _ in range(1, len(layer_config))])
         def forward(self, x, edge_index, edge_weight=None):
             for i, gnn in enumerate(self.stacked_gnn):
                 x = gnn(x, edge_index, edge_weight=edge_weight)
                 x = self.stacked_bns[i](x)
                 x = self.stacked_prelus[i](x)
             return x
Class embedder
         def __init__(self, args):
             self.args = args
             self.hidden_layers = eval(args.layers)
             printConfig(args)
         def infer_embeddings(self, epoch):
             self._model.train(False)
             self._embeddings = self._labels = None
             self._train_mask = self._dev_mask = self._test_mask = None
             for bc, batch_data in enumerate(self._loader):
                 batch_data.to(self._device)
                 emb, _, _, _ = self._model(x=batch_data.x, y=batch_data.y, edge_index=batch_data.edge_index,
                                                                               neighbor=[batch_data.neighbor_index, batch_data.neigh
                                                                               edge_weight=batch_data.edge_attr, epoch=epoch)
                 emb = emb.detach()
                 y = batch_data.y.detach()
                 if self, embeddings is None:
                     self._embeddings, self._labels = emb, y
```

☐ Graphs

Wiki-CS

☑ Edit

Introduced by Mernyei et al. in Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural Networks

Wiki-CS is a Wikipedia-based dataset for benchmarking Graph Neural Networks. The dataset is constructed from Wikipedia categories, specifically 10 classes corresponding to branches of computer science, with very high connectivity. The node features are derived from the text of the corresponding articles. They were calculated as the average of pretrained GloVe word embeddings (Pennington et al., 2014), resulting in 300-dimensional node features.

The dataset has 11.701 nodes and 216.123 edges.

Node Clustering

Source: (b) Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural Networks

Usage ∆

O

Benchma	irks				g Edit
rend	Task	Dataset Variant	Best Model	Paper	Code
	Node Classification	Wiki-CS	CGT	•	O

Wiki-CS

CGT

Implementation

	WikiCS	Computers	Photo	Co.CS	Co.Physics
Sup. GCN	77.19 ± 0.12	86.51 ± 0.54	92.42 ± 0.22	93.03 ± 0.31	95.65 ± 0.16
Raw feats.	71.98 ± 0.00	73.81 ± 0.00	78.53 ± 0.00	90.37 ± 0.00	93.58 ± 0.00
node2vec	71.79 ± 0.05	84.39 ± 0.08	89.67 ± 0.12	85.08 ± 0.03	91.19 ± 0.04
DeepWalk	74.35 ± 0.06	85.68 ± 0.06	89.44 ± 0.11	84.61 ± 0.22	91.77 ± 0.15
DW + feats.	77.21 ± 0.03	86.28 ± 0.07	90.05 ± 0.08	87.70 ± 0.04	94.90 ± 0.09
DGI	75.35 ± 0.14	83.95 ± 0.47	91.61 ± 0.22	92.15 ± 0.63	94.51 ± 0.52
GMI	74.85 ± 0.08	82.21 ± 0.31	90.68 ± 0.17	OOM	OOM
MVGRL	77.52 ± 0.08	87.52 ± 0.11	91.74 ± 0.07	92.11 ± 0.12	95.33 ± 0.03
GRACE	77.97 ± 0.63	86.50 ± 0.33	92.46 ± 0.18	92.17 ± 0.04	OOM
GCA	77.94 ± 0.67	87.32 ± 0.50	92.39 ± 0.33	92.84 ± 0.15	OOM
BGRL	76.86 ± 0.74	89.69 ± 0.37	93.07 ± 0.38	92.59 ± 0.14	95.48 ± 0.08
AFGRL	77.62 ± 0.49	89.88 ± 0.33	93.22 ± 0.28	93.27 ± 0.17	95.69 ± 0.10

WikiCS에서는 0.77 정도로 논문에 나와있는데 1500 epoch에도 0.68정도 나옴

Implementation

- Related work, 선행 연구가 많아 어떤 점이 왜 바뀌었는지 찾는게 어려웠음
- ▶ 논문을 보다 헷갈릴 때, 코드를 보고 이해하는 경우가 있었음