Tensorstruktur der Zellmatrizen bei finiten Elementen

Enes Witwit Universität Heidelberg

23. Mai 2017

Contents

- Einleitung
- 2 Theorie

- 3 Pseudoinverse
- 4 Effiziente Berechnung

Einleitung

2 Theorie

3 Pseudoinverse

4 Effiziente Berechnung

Hochleistungsrechnen

Ziel Löse ein sehr komplexes Problem.

Lösungsansatz Teile das komplexe Problem auf in Subprobleme (Parallelisierung).

Initial-Problem

$$v = A(u)$$

A, möglicherweise nichtlinearer, finite Elemente Operator, der Vektor u als Input nimmt.

Probleme

- A wird unter Umständen sehr groß \rightarrow Speicherplatz.
- A liegt nicht mehr im Cache → Abrufen der Elemente von A zeitintesiv.
- Berechnung des Matrix-Vektor-Produkts komplex

Divide and Conquer

Nach [MK12] können wir die Ursprungsgleichung umformen zu

$$v = A(u) = \sum_{k=1}^{n_{cells}} P_k^T A_k P_k u.$$

 P_k kümmert sich um die Einordnug der lokalen Freiheitsgrade in die globalen Freiheitsgrade.

$$v_k = A_k u_k$$
$$A_k^{-1} v_k = u_k$$

Inverse/Pseudoinverse

- Tensorstruktr und Summenfaktorisierung.
- Singulärwertzerlegung höherer Ordnung (HOSVD).

1 Einleitung

2 Theorie

3 Pseudoinverse

4 Effiziente Berechnung

Higher Order Singular Value Decomposition

Higher Order Singular Value Decomposition

Definition Tensor

Ein Tensor ist eine multidimensionale Matrix $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$. Die Ordnung ist die Anzahl der Dimensionen, in diesem Fall N.

Abbildung: Tensor dritter Ordnung $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$ [TK09, 456]

Tensoren: Definitionen und Eigenschaften

Bemerkung Tensor-Charakteristiken Es sei $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ ein Tensor.

- a) Den Tensor $\boldsymbol{\mathcal{X}}$ nennt man kubisch genau dann, wenn $I_i = I_j$ für alle i, j.
- b) Einen kubischen Tensor nennt man supersymmetrisch genau dann, wenn die Elemente des Tensors konstant bleiben unter jeglicher Permutation der Indizes.
- c) Einen Tensor nennt man stückweise symmetrisch, wenn die Elemente konstant bleiben unter der Permutation von mindestens zwei Indizes.

Definition Diagonal

Den Tensor ${\boldsymbol{\mathcal{X}}}$ nennt man diagonal, wenn $x_{i_1,\ldots,i_N} \neq 0$ genau dann wenn

$$i_1=\cdots=i_N$$
.

Definition Diagonal

Den Tensor ${\cal X}$ nennt man diagonal, wenn $x_{i_1,\ldots,i_N} \neq 0$ genau dann wenn

$$i_1 = \cdots = i_N$$
.

Definition Faser

Eine Faser ist das multidimensionale Analog zu Matrixspalten und Matrixzeilen. Wir definieren eine Faser, indem wir jeden Index abgesehen von einem festhalten.

Tensor-Entfaltung

Wir wollen unseren Tensor als Matrix darstellen.

Tensor-Entfaltung

Wir wollen unseren Tensor als Matrix darstellen.

- Mode n Entfaltung von \mathcal{X} wird mit $\mathbf{X}_{(n)}$ notiert.
- Ordnet die mode n Fasern in die Spalten der Ergebnismatrix.
- Formal ist es eine Abbildung des Indize N-tupels (i_1, \ldots, i_N) auf das Matrixindize-Tupel (i_n, j)

$$j = 1 + \sum_{\substack{k=1 \ k
eq n}}^{N} (i_k - 1) J_k \; ext{mit} \; J_k = \prod_{\substack{m=1 \ m
eq n}}^{k-1} I_m \, .$$

Tensor-Matrix Produkt

Definition n-mode Produkt Das n-mode Produkt des Tensors $\boldsymbol{\mathcal{X}}$ mit einer Matrix $\mathbf{U} \in \mathbb{R}^{J \times I_n}$ wird mit $\boldsymbol{\mathcal{X}} \times_n \mathbf{U}$ notiert. Die Ergebnismatrix hat die Größe $I_1 \times \ldots I_{n-1} \times J \times I_{n+1} \times \ldots I_N$

$$(\boldsymbol{\mathcal{X}} \times_{n} \mathbf{U})_{i_{1} \dots i_{n-1} j i_{n+1} \dots i_{N}} = \sum_{i_{n}=1}^{I_{n}} x_{i_{1} \dots i_{N}} u_{j i_{n}}$$

Tensor-Matrix Produkt

Definition *n* – *mode* Produkt

Das n-mode Produkt des Tensors \mathcal{X} mit einer Matrix

 $\mathbf{U} \in \mathbb{R}^{J \times I_n}$ wird mit $\boldsymbol{\mathcal{X}} \times_n \mathbf{U}$ notiert. Die Ergebnismatrix hat die Größe $I_1 \times \ldots I_{n-1} \times J \times I_{n+1} \times \ldots I_N$

$$(\boldsymbol{\mathcal{X}} \times_{n} \mathbf{U})_{i_{1} \dots i_{n-1} j i_{n+1} \dots i_{N}} = \sum_{i_{n}=1}^{l_{n}} x_{i_{1} \dots i_{N}} u_{j i_{n}}$$

Jedes n-mode Produkt kann mit Hilfe von entfalteten Tensoren äquivalent ausgedrückt werden.

$$\mathbf{\mathcal{Y}} = \mathbf{\mathcal{X}} \times_n \mathbf{U} \Longleftrightarrow \mathbf{Y}_{(n)} = \mathbf{U} \mathbf{X}_{(n)}$$

Higher Order Singular Value Decomposition

Ziel Sinnvolle Zerlegung eines Tensors.

- Für Matrizen gibt es die Singulärwertzerlegung. $(M = U\Sigma V^T)$
- Für Tensoren haben wir die Higher Order Value Decomposition (HOSVD) oder auch Tucker Decomposition genannt.
- Die HOSVD ist eine multidimensionale Hauptkomponentenanalyse.
- ullet Zerlegt Tensor in einen Kerntensor (Core Tensor), welcher das pendant zum Σ ist und mehreren orthogonalen Matrizen.

Higher Order Singular Value Decomposition

Allgemein ist die HOSVD des Tensors $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ gegeben durch

$$\boldsymbol{\mathcal{X}} = \boldsymbol{\mathcal{G}} \times_1 A^{(1)} \ldots \times_N A^{(N)}.$$

Man kann äquivalent die HOSVD, wie in [TK09, 462], auch mit entfalteten Tensoren wie folgt angeben

$$\mathbf{X}_{(n)} = A^{(n)} \mathbf{G}_{(n)} (A^{(N)} \otimes \ldots \otimes A^{(n+1)} \otimes A^{(n-1)} \otimes \cdots \otimes A^{(1)})^T.$$

Beispiel

Es sei $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{I \times J \times K}$. Dann kann man den Tensor $\boldsymbol{\mathcal{X}}$ zerlegen in

$$\boldsymbol{\mathcal{X}} \approx \boldsymbol{\mathcal{G}} \times_1 A \times_2 B \times_3 C, \qquad (1)$$

wobei $A \in \mathbb{R}^{I \times P}$, $B \in \mathbb{R}^{J \times Q}$ und $C \in \mathbb{R}^{K \times R}$ die orthogonalen Faktormatrizen sind. Der Tensor \mathcal{G} bezeichnet den Kerntesor und zeigt wie hoch die Korrelation zwischen den verschiedenen Komponenten ist.

Abbildung: HOSVD eines Tensors dritter Ordnung [TK09, 475]

Berechnung

Die Berechnung der HOSVD von $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ funktioniert wie folgt:

- **1** Berechne die mode-k Entfaltungen $\mathbf{X}_{(k)}$ für alle k.
- ② Berechne die Singulärwertzerlegung $\mathbf{X}_{(k)} = U_k \Sigma_k V_k^T$ und speichere U_k .
- ① Der Kerntensor \mathcal{G} ergibt sich aus der Projektion des Tensors auf die Tensorbasis geformt von den Faktormatrizen $\{U_k\}_{k=1}^N$ also $\mathcal{G} = \mathcal{X} \times_{n=1}^N U_n^T$.

Kronecker Produkt

Lemma (Invertieren des Kronecker Produkts) Es seien $A \in \mathbb{R}^{i \times i}$ und $B \in \mathbb{R}^{j \times j}$ invertierbar, so ist auch $(A \otimes B)$ invertierbar.

$$(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$$

Für die Moore Penrose Pseudoinversen gilt analog

$$(A\otimes B)^+=A^+\otimes B^+.$$

Lemma (Transponieren)

Es seien A, B beliebige Matrizen. Es gilt

$$(A \otimes B)^T = A^T \otimes B^T.$$

Lemma (Matrixprodukt und Kronecker Produkt) Es seien A, B, C, D Matrizen, deren Matrizenprodukte AC und BD definiert sind. Dann gilt

$$AC \otimes BD = (A \otimes B)(C \otimes D).$$

Einleitung

2 Theorie

3 Pseudoinverse

4 Effiziente Berechnung

Lokale Massenmatrix

$$M_{ik} = \int_{T} \varphi_i(\mathbf{x}) \, \varphi_j(\mathbf{x}) \, d\mathbf{x}$$

Elementsteifigkeitsmatrix der Laplace Bilinearform

$$V_{ij} = \int_{T} \nabla \varphi_i(\mathbf{x}) \, \nabla \varphi_j(\mathbf{x}) d\mathbf{x}$$

- T sei die Referenzzelle für Rechtecke
- $\varphi_i(\mathbf{x})$ sei eine zweidimensionale reelle Basisfunktion des diskreten Raumes V_n mit $\mathbf{x} = (x, y)$.

Tensorstruktur der Ansatzfunktionen

$$\varphi_{i}^{2D}(\mathbf{x}) = \varphi_{i_{1}+(N+1)i_{2}}^{2D}(x,y) = \varphi_{i_{1}}^{1D}(x)\varphi_{i_{2}}^{1D}(y),$$

Abbildung: [Tea, 3]

Es seien $\mathbf{x}_q = (x_{q1}, x_{q2})$ die Stützstellen und $\mathbf{w}_q = w_{q1}w_{q2}$ die Gewichte der Gauss Quadratur.

$$M_{ij} = \int_{T} \varphi_i(\mathbf{x}) \, \varphi_j(\mathbf{x}) \, d\mathbf{x}$$

Es seien $\mathbf{x}_q = (x_{q1}, x_{q2})$ die Stützstellen und $\mathbf{w}_q = w_{q1}w_{q2}$ die Gewichte der Gauss Quadratur.

$$M_{ij} = \int_{T} \varphi_i(\mathbf{x}) \, \varphi_j(\mathbf{x}) \, d\mathbf{x}$$

$$\approx \sum_{q=1}^{Q} \mathbf{w}_q \, \varphi_i(\mathbf{x}_q) \, \varphi_j(\mathbf{x}_q)$$

Es seien $\mathbf{x}_q = (x_{q1}, x_{q2})$ die Stützstellen und $\mathbf{w}_q = w_{q1}w_{q2}$ die Gewichte der Gauss Quadratur.

$$\begin{split} M_{ij} &= \int\limits_{T} \varphi_{i}(\mathbf{x}) \, \varphi_{j}(\mathbf{x}) \, d\mathbf{x} \\ &\approx \sum_{q=1}^{Q} \mathbf{w}_{q} \, \varphi_{i}(\mathbf{x}_{q}) \, \varphi_{j}(\mathbf{x}_{q}) \\ &= \sum_{q_{1}=1}^{Q_{1D}} \sum_{q_{2}=1}^{Q_{1D}} \varphi_{i_{1}}(x_{q1}) \varphi_{i_{2}}(x_{q2}) \varphi_{j_{1}}(x_{q1}) \varphi_{j_{2}}(x_{q2}) \, w_{q1} w_{q2} \\ &= \sum_{q_{1}=1}^{Q_{1D}} w_{q1} \varphi_{i_{1}}(x_{q1}) \varphi_{j_{1}}(x_{q1}) \sum_{q_{2}=1}^{Q_{1D}} w_{q2} \varphi_{i_{2}}(x_{q2}) \varphi_{j_{2}}(x_{q2}) \, . \end{split}$$

Definiere

- Es sei \mathcal{N} eine Matrix mit $\mathcal{N}_{iq} = \varphi_i(\mathbf{x}_q)$.
- Es sei \mathcal{W} eine Matrix mit $\mathcal{W}_{ii} = \mathbf{w}_i$, sonst Nullen.

Dann können wir die Massenmatrix schreiben als

$$M = \underbrace{\mathcal{N}\mathcal{W}}_{:=\mathcal{W}_N} \mathcal{N}^T. = \mathcal{W}_N \mathcal{N}^T$$

Definiere

- Es sei \mathcal{N} eine Matrix mit $\mathcal{N}_{ia} = \varphi_i(\mathbf{x}_a)$.
- Es sei \mathcal{W} eine Matrix mit $\mathcal{W}_{ii} = \mathbf{w}_i$, sonst Nullen.

Dann können wir die Massenmatrix schreiben als

$$M = \underbrace{\mathcal{N}\mathcal{W}}_{:=\mathcal{W}_N} \mathcal{N}^T . = \mathcal{W}_N \mathcal{N}^T$$

Nutze Tensorstruktur der Ansatzfunktionen

$$\mathcal{N} = \mathcal{N}^{1D} \otimes \mathcal{N}^{1D}$$

$$\mathcal{W}_{\textit{N}} = \mathcal{W}_{\textit{N}}^{1D} \otimes \mathcal{W}_{\textit{N}}^{1D}$$

$$M = \mathcal{W}_{N} \mathcal{N}^{T}$$

$$= (\mathcal{W}_{N}^{1D} \otimes \mathcal{W}_{N}^{1D}) (\mathcal{N}^{1D} \otimes \mathcal{N}^{1D})^{T}$$

$$= (\mathcal{W}_{N}^{1D} \otimes \mathcal{W}_{N}^{1D}) ((\mathcal{N}^{1D})^{T} \otimes (\mathcal{N}^{1D})^{T})$$

$$= (\mathcal{W}_{N}^{1D} (\mathcal{N}^{1D})^{T}) \otimes (\mathcal{W}_{N}^{1D} (\mathcal{N}^{1D})^{T})$$

Pseudoinverse der Massenmatrix

$$M^{+} = [(\mathcal{W}_{N}^{1D}(\mathcal{N}^{1D})^{T}) \otimes (\mathcal{W}_{N}^{1D}(\mathcal{N}^{1D})^{T})]^{+}$$
$$= (\mathcal{W}_{N}^{1D}(\mathcal{N}^{1D})^{T})^{+} \otimes (\mathcal{W}_{N}^{1D}(\mathcal{N}^{1D})^{T})^{+}$$

Tensorstruktur der Laplace Bilinearform

$$V_{ij} = \int_{T} \nabla \varphi_{i}(\mathbf{x}) \, \nabla \varphi_{j}(\mathbf{x}) d\mathbf{x}$$

$$= \int_{T} (\partial_{x_{1}} \varphi_{i}(\mathbf{x}) \partial_{x_{1}} \varphi_{j}(\mathbf{x})) + (\partial_{x_{2}} \varphi_{i}(\mathbf{x}) \partial_{x_{2}} \varphi_{j}(\mathbf{x})) d\mathbf{x}$$

$$= \int_{T} (\partial_{x_{1}} \varphi_{i}(\mathbf{x}) \partial_{x_{1}} \varphi_{j}(\mathbf{x})) + (\partial_{x_{2}} \varphi_{i}(\mathbf{x}) \partial_{x_{2}} \varphi_{j}(\mathbf{x})) d\mathbf{x}$$

$$= \int_{T} \partial_{x_{1}} \varphi_{i}(\mathbf{x}) \partial_{x_{1}} \varphi_{j}(\mathbf{x}) d\mathbf{x} + \int_{T} \partial_{x_{2}} \varphi_{i}(\mathbf{x}) \partial_{x_{2}} \varphi_{j}(\mathbf{x}) d\mathbf{x}$$

$$= \sum_{q=1}^{(N+1)^{2}} \mathbf{w}_{q} \partial_{x_{1}} \varphi_{i}(\mathbf{x}_{q}) \partial_{x_{1}} \varphi_{j}(\mathbf{x}_{q}) + \sum_{q=1}^{(N+1)^{2}} \mathbf{w}_{q} \partial_{x_{2}} \varphi_{i}(\mathbf{x}_{q}) \partial_{x_{2}} \varphi_{j}(\mathbf{x}_{q})$$

$$= \sum_{q=1}^{(N+1)^{2}} \mathbf{w}_{q} \partial_{x_{1}} \varphi_{i}(\mathbf{x}_{q}) \partial_{x_{1}} \varphi_{j}(\mathbf{x}_{q}) + \sum_{q=1}^{(N+1)^{2}} \mathbf{w}_{q} \partial_{x_{2}} \varphi_{i}(\mathbf{x}_{q}) \partial_{x_{2}} \varphi_{j}(\mathbf{x}_{q})$$

$$\begin{split} K_{ij}^{1} &= \sum_{q=1}^{(N+1)^{2}} \mathbf{w}_{q} \partial_{x_{1}} \varphi_{i}(\mathbf{x}_{q}) \partial_{x_{1}} \varphi_{j}(\mathbf{x}_{q}) \\ &= \sum_{q_{1}=1}^{N} \sum_{q_{2}=1}^{N} w_{q1} w_{q2} \partial_{x_{1}} \varphi_{i1}(x_{q1}) \varphi_{i2}(x_{q2}) \partial_{x_{1}} \varphi_{j1}(x_{q1}) \varphi_{j2}(x_{q2}) \\ &= \sum_{q_{1}=1}^{N} \sum_{q_{2}=1}^{N} w_{q1} w_{q2} \varphi'_{i1}(x_{q1}) \varphi_{i2}(x_{q2}) \varphi'_{j1}(x_{q1}) \varphi_{j2}(x_{q2}) \\ &= \sum_{q_{1}=1}^{N} w_{q1} \varphi'_{i1}(x_{q1}) \varphi'_{j1}(x_{q1}) \sum_{q_{2}=1}^{N} w_{q2} \varphi_{i2}(x_{q2}) \varphi_{j2}(x_{q2}) \end{split}$$

Definiere

- Es sei $\widehat{\mathcal{N}}^{1D}$ eine Matrix mit $\widehat{\mathcal{N}}_{ik}^{1D}=arphi_i^{\prime 1D}(x_k)$
- Dementsprechend ist $\widehat{\mathcal{W}}_N^{1D}$ eine Matrix, die aufgebaut ist wie \mathcal{W}_N^{1D} , mit dem Unterschied, dass sie die Evaluationen der ersten Ableitungen der Ansatzfunktionen beinhaltet.

Definiere

- Es sei $\widehat{\mathcal{N}}^{1D}$ eine Matrix mit $\widehat{\mathcal{N}}_{ik}^{1D}=arphi_i^{\prime 1D}(x_k)$
- Dementsprechend ist $\widehat{\mathcal{W}}_{N}^{1D}$ eine Matrix, die aufgebaut ist wie \mathcal{W}_{N}^{1D} , mit dem Unterschied, dass sie die Evaluationen der ersten Ableitungen der Ansatzfunktionen beinhaltet.

Dann können wir K_1 , K_2 schreiben als

$$\begin{split} & \mathcal{K}_1 = (\widehat{\mathcal{W}}_N^{1D}(\widehat{\mathcal{N}}^{1D})^T) \otimes (\mathcal{W}_N^{1D}(\mathcal{N}^{1D})^T) \\ & \mathcal{K}_2 = (\mathcal{W}_N^{1D}(\mathcal{N}^{1D})^T) \otimes (\widehat{\mathcal{W}}_N^{1D}(\widehat{\mathcal{N}}^{1D})^T) \end{split}$$

$$V = \widehat{\mathcal{W}}_N \widehat{\mathcal{N}}^T \otimes \mathcal{W}_N \mathcal{N}^T + \mathcal{W}_N \mathcal{N}^T \otimes \widehat{\mathcal{W}}_N \widehat{\mathcal{N}}^T.$$

Problem bei Laplace

Problem Die Addition in der Tensorstruktur macht unseren ersten Ansatz hinfällig.

Idee Vereinfache die Form durch geeignete Basiswahl und dann sehen wir weiter. Wir wählen geeignete Basis, sodass $\mathcal{W}_N \mathcal{N}^T = I_n$. Folgende Basispolynome bieten sich an:

$$\varphi_i^{1D}(x_k) = \frac{1}{\sqrt{w_i}} I_i(x_k) = \begin{cases} \frac{1}{\sqrt{w_i}} & \text{, wenn } i = k \\ 0 & \text{, sonst.} \end{cases}$$

Die Funktion $l_i(x_k)$ bezeichnet das i - te Lagrange Polynom.

Einleitung

2 Theorie

3 Pseudoinverse

4 Effiziente Berechnung

Bibliography

Example

Katharina Kormann Martin Kronbichler.

A generic interface for parallel cell-based finite element operator application.

Elsevier, 2012.

Efficient evaluation of weak forms in discontinuous Galerkin methods.

Brett Bader Tamara Kolda.

Tensor Decompositions and Applications.

SIAM. 2009.