Sapienza University of Rome

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2024/2025

Prof. Luca locchi

Luca locchi

2. Performance Evaluation

1/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

2. Performance Evaluation

Luca locchi

Luca locchi 2. Performance Evaluation 2 / 32

Overview

- Statistical evaluation
- Performance metrics for classification
- Performance metrics for regression

References

T. Mitchell. Machine Learning. Chapter 5

Luca locchi

2. Performance Evaluation

3/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Statistical methods for estimating accuracy

Performance evaluation in classification based on accuracy or error rate.

Questions:

- How to estimate accuracy of a hypothesis *h*?
- Given accuracy of *h* over a limited sample of data, how well does this estimate its accuracy over additional examples?
- Given that h outperforms h' over some sample of data, how probable is it that h is more accurate in general?
- When data is limited what is the best way to use data to both learn *h* and estimate its accuracy?
- Is accuracy the unique performance metric to evaluate classification methods?

Luca locchi 2. Performance Evaluation 4 / 32

Problem definition

Consider a typical classification problem:

 $f: X \to Y$

 \mathcal{D} : probability distribution over X

S: sample of n instances drawn from X (according to distribution \mathcal{D}) and for which we know f(x)

Consider a hypothesis h, solution of a learning algorithm obtained from S.

What is the best estimate of the accuracy of *h* over future instances drawn from the same distribution?

What is the probable error in this accuracy estimate?

Luca locchi

2. Performance Evaluation

5/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Example

You want to develop an App for university students and predict whether it will be successful.

WillBuyMyApp : $X \rightarrow \{Yes, No\}$

X: features about university students, including age

Probability distribution over age in X is not uniform.

Sampling $x \in X$ (i.e., pick up a random university student) Pr(age(x) = 22) > Pr(age(x) = 27)

A sample set S of university students will contain more values with age 22 than values with age 27.

Luca locchi 2. Performance Evaluation 6 / 32

Two Definitions of Error/Accuracy

The **true error** of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The **sample error** of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x)) \text{ are unlongly predict}$$
 where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise. Errore cue connections on a sometimano on un sometima in the datase Note: $accuracy(h) \equiv 1 - error(h) < \sum_{Accuracy(h) = 1 - error(h) = 1 - error(h) = 1 - errores(h) = 1 - err$

Luca locchi

2. Performance Evaluation

7/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Two Definitions of Error

CORRECT CONCEPT OF PERFORMANCE

WE CANNOT COMPUTE IT BECAUSE WE DON'T MAVE ALL DATA-SET

The **true error** cannot be computed, the **sample error** is computed only on a small data sample.

How well does $error_{\mathcal{D}}(h)$ estimate $error_{\mathcal{D}}(h)$?

Note: the goal of a learning system is to be accurate in h(x), $\forall x \notin S$ If $accuracy_S(h)$ is very high, but $accuracy_D(h)$ is poor, then our system would not be very useful.

Luca locchi 2. Performance Evaluation 8 / 32

Expected Value of Sample Error

 $error_S(h)$ is a random variable depending on sampling S from \mathcal{D} Sampling two different sets S and S' from \mathcal{D} returns different values $error_S(h)$ and $error_{S'}(h)$

 $E_S[error_S(h)]$ is the expected value of the sample error, i.e., the weighted average over all the possible samples S.

Note: the expected value E[V] of a random variable V is the wighted average of all the possible outcomes, weighted by the probability that any outcome occurs.

Example:
$$V = \text{outcome of rolling a 6-sided die}$$
, $E[V] = 1/6 \cdot 1 + 1/6 \cdot 2 + ... + 1/6 \cdot 6 = 3.5$

Luca locchi

2. Performance Evaluation

9/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Problems in Estimating the True Error

- If S is the training set used to compute h, $error_S(h)$ is optimistically biased
- 2 For unbiased estimate, h and S must be chosen independently $E_S[error_S(h)] = error_D(h)$
- 3 Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$. The smaller the set S, the greater the expected variance.

Luca locchi 2. Performance Evaluation 10 / 32

Confidence Intervals

lf

- \bullet S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

where

N%:	50%	68%	80%	90%	95%	98%	99%
z _N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Luca locchi

2. Performance Evaluation

11/32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Unbiased Estimators

How to compute an unbiased estimation $error_S(h)$

- Partition the data set D ($D = T \cup S$, $T \cap S = \emptyset$, |T| = 2/3|D|)
- Compute a hypothesis h using training set T
- 3 Evaluate $error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_{\mathcal{S}}(h)$ is an unbiased estimator for $error_{\mathcal{D}}(h)$

Using $error_S(h)$, suitably computed, is the best we can do!

Luca locchi

2. Performance Evaluation

12/32

Trade off between training and testing

In general

- Having more samples for training and less for testing improves performance of the model: potentially better model, but $error_{\mathcal{D}}(h)$ does not approximate well $error_{\mathcal{D}}(h)$
- Having more samples for evaluation and less for training reduces variance of estimation: $error_{\mathcal{D}}(h)$ approximates well $error_{\mathcal{D}}(h)$, but this value may be not satisfactory.

Trade off for medium sized datasets: 2/3 for training, 1/3 for testing.

Luca locchi

2. Performance Evaluation

13 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Estimating the expected value

Computing $error_S(h)$ is not enough (it's just one outcome of the random variable)

 $E_S[error_S(h)]$ can be approximated by averaging the computed values of $error_{S_i}(h)$ for several subsets S_i .

Example: to compute E[outcome of a die] we can average the values observed when rolling the die many times.

Luca locchi 2. Performance Evaluation 14/32

Evaluation of a learning algorithm

How can we evaluate the performance of a learning algorithm?

h = L(T) solution of learning algorithm L when using training set T

With different training sets T and T', we have different solutions h = L(T) and h' = L(T')

How to compute an **unbiased estimation** of the **expected value** of the **sample error** of a learning algorithm L?

⇒ K-Fold Cross Validation algorithm

Luca locchi

2. Performance Evaluation

15 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

K-Fold Cross Validation

- Partition data set D into k disjoint sets S_1, S_2, \ldots, S_k ($|S_i| > 30$)
- 2 For $i=1,\ldots,k$ do

 Nyperparameter

 use S_i as test set, and the remaining data as training set T_i
 - $\begin{array}{l} \bullet \quad T_i \leftarrow \{D-S_i\} \\ \bullet \quad h_i \leftarrow L(T_i) \\ \bullet \quad \delta_i \leftarrow error_{S_i}(h_i) \end{array} \right\} \text{Random-uniform selection}$
- Return

$$\mathit{error}_{\mathsf{L},\mathsf{D}} \equiv rac{1}{k} \sum_{i=1}^k \delta_i$$

Note: $accuracy_{L,D} = 1 - error_{L,D}$

Luca locchi 2

2. Performance Evaluation

16 / 32

Comparing two hypotheses

Given two hypotheses h_1 , h_2 , the true comparison is

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$$

and its estimator is

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

 \hat{d} is an *unbiased estimator* for d, iff h_1 , h_2 , S_1 and S_2 are independent from each other. Still valid if $S_1 = S_2 = S$.

$$E_S[\hat{d}] = d$$

Luca locchi

2. Performance Evaluation

17 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Overfitting

Consider error of hypothesis h over

- sample data S: $error_S(h)$
- entire data distribution \mathcal{D} : $error_{\mathcal{D}}(h)$

GOOD DURING THE TRAIN - & ORRIBLE DURING THE TES

Hypothesis $h \in H$ overfits sample data S if there is an alternative hypothesis $h' \in H$ such that

$$error_S(h) < error_S(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

Luca locchi 2. Performance Evaluation 18 / 32

Comparing learning algorithms L_A and L_B

Which algorithm is better?

We would like to estimate:

$$error_{\mathcal{D}}(L_{\mathcal{A}}(T)) - error_{\mathcal{D}}(L_{\mathcal{B}}(T))$$

where L(T) is the hypothesis output by learner L using training set T using

$$E_S[error_S(L_A(T)) - error_S(L_B(T))]$$

This measure can be again approximated by a K-Fold Cross Validation.

Luca locchi

2. Performance Evaluation

19 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Comparing learning algorithms L_A and L_B

Use K-Fold Cross Validation to compare algorithms L_A and L_B .

- Partition data set D into k disjoint sets S_1, S_2, \ldots, S_k ($|S_i| > 30$)
- 2 For i from 1 to k, do

use S_i as test set, and the remaining data as training set T_i

- $T_i \leftarrow \{D S_i\}$
- $h_A \leftarrow L_A(T_i)$
- $h_B \leftarrow L_B(T_i)$
- $\delta_i \leftarrow error_{S_i}(h_A) error_{S_i}(h_B)$
- Return

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

COME PRINA NA PER

Note: if $\bar{\delta} < 0$ we can estimate that L_A is better than L_B .

Luca locchi 2. Performance Evaluation 20 / 32

Performance metrics in classification

	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

Problems when datasets are unbalanced.

Luca locchi 2. Performance Evaluation

21 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Performance metrics in classification

Is accuracy always a good performance metric?

Example:

Binary classification $f: X \to \{-, +\}$, with test set D containing 90% of negative samples.

 $h_1(x)$ has 90% of accuracy, $h_2(x)$ has 85% of accuracy.

Which one is better? $\rightarrow \mathcal{U}_{2}(x)$

Luca locchi 2. Performance Evaluation 22 / 32

Performance metrics in classification

 $h_1(x) = -$ (most common value of Y in D) $h_2(x)$ is the result of a classification algorithm

In some cases, accuracy only is not enough to assess the performance of a classification method.

Unbalanced data sets are very common in problems related to anomaly detection (e.g, malware analysis, fraud detection, medical tests, etc.)

Luca locchi

2. Performance Evaluation

23 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Other performance metrics in classification

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

Recall = | true positives | / | real positives | = TP / (TP + FN) ability to avoid false negatives (1 if FN = 0)

Precision = | true positives | / | predicted positives | = TP / (TP + FP) ability to avoid false positives (1 if FP = 0)

Impact of false negatives and false positives depend on the application.

F1-score = $2(Precision \cdot Recall)/(Precision + Recall)$

Luca locchi 2. Performance Evaluation 24 / 32

Other performance measures

- Recall, Sensitivity, True Positive Rate TPR = TP/P = TP/(TP + FN)
- Specificity, True Negative Rate TNR = TN/N = TN/(TN + FP)
- False Positive Rate
 FPR = FP/N = FP/(TN + FP)
- False Negative Rate FNR = FN/P = FN/(TP + FN)
- ROC curve: plot TPR vs FPR varying classification threshold
- AUC (Area Under the Curve)

Luca locchi

2. Performance Evaluation

25 / 32

26 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Domain-dependent targets

 $PredictDesease: X \rightarrow \{T, F\}$

FP: disease is predicted, but it is not true

Impact: undue medical treatment

FN: disease is not predicted, but it is true

Impact: lack of medical treatment

 $DetectPedestrian: X \rightarrow \{T, F\}$

FP: pedestrian is predicted, but it is not present

Impact: car brakes without reason

FN: pedestrian is not predicted, but it is present

Impact: possible injury of a person

Luca locchi 2. Perfe

2. Performance Evaluation

Multi-class Confusion Matrix

Report how many times an instance of class C_i is classified in class C_j .

$T \setminus P$	C_1	C_2	<i>C</i> ₃	C ₄	C_5
C_1					
C_2					
<i>C</i> ₃					
C_4					
C_5					

Main diagonal contains accuracy for each class.

Outside the diagonal: which classes are more often confused. Sum of row $i = \text{total number of samples fo class } C_i$ in dataset When using percentages, each row is normalized to 1 (100 %)

Luca locchi

2. Performance Evaluation

27 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Confusion Matrix

Often represented with color-maps

Luca locchi 2. Performance Evaluation 28 / 32

Performance metrics for regression

For regression problems $f: X \to \mathbb{R}^d$, with test set $S = \{(x_i, t_i)_{i=1}^n\}$, performance measured in terms of

$$|\hat{f}(x_i) - t_i|$$
 for $(x_i, t_i) \in S$

Mean Absolute Error (MAE)

$$\frac{1}{n}\sum_{i=1}^n|\hat{f}(x_i)-t_i|$$

Mean Squared Error (MSE)

$$\frac{1}{n}\sum_{i=1}^n(\hat{f}(x_i)-t_i)^2$$

Root Mean Squared Error (RMSE) \sqrt{MSE}

Luca locchi

2. Performance Evaluation

29 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Performance metrics for regression

... or in terms of percentage error

$$\frac{|\hat{f}(x_i)-t_i|}{t_i}$$

Mean Absolute Percentage Error (MAPE)

Mean Squared Percentage Error (MSPE)

Root Mean Squared Percentage Error (RMSPE)

Luca locchi 2. Performance Evaluation 30 / 32

Performance evaluation for regression

k-Fold Cross-Validation can be extended to regression problems using appropriate metrics.

- Partition data set D into k disjoint sets S_1, S_2, \ldots, S_k ($|S_i| > 30$)
- 2 For i = 1, ..., k do

 use S_i as test set, and the remaining data as training set T_i
 - $T_i \leftarrow \{D S_i\}$
 - $h_i \leftarrow L(T_i)$
 - $\delta_i \leftarrow MAE_{S_i}(h_i)$
- Return

$$MAE_{L,D} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Luca locchi

2. Performance Evaluation

31 / 32

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Summary

- Performance evaluation of machine learning methods is important and tricky.
- k-Fold Cross Validation is a general prototype method to evaluate classification methods.
- Several performance metrics can be considered and in some cases best metrics to use depend on the application.
- Performance estimation is very useful also during the execution of an algorithm.

Luca locchi 2. Performance Evaluation 32 / 32