Proposal for a Multi-Arm Biomarker RCT Executive Summary

April 1, 2025

Motivation

► **Goal:** Design a multi-arm RCT to validate treatment-predictive biomarkers in psychiatry.

Motivation

- ▶ Goal: Design a multi-arm RCT to validate treatment-predictive biomarkers in psychiatry.
- ▶ (1) Efficiency: Validating known biomarker candidates is often more statistically efficient than discovering them de novo.

Motivation

- ▶ Goal: Design a multi-arm RCT to validate treatment-predictive biomarkers in psychiatry.
- ▶ (1) Efficiency: Validating known biomarker candidates is often more statistically efficient than discovering them de novo.
- ▶ (2) Future Data: Yields a rich dataset suitable for *post-hoc* development of complex predictive models (which treatment for whom?).

▶ **Trial Structure:** *K* distinct experimental treatment arms.

- ▶ **Trial Structure:** *K* distinct experimental treatment arms.
- ► **Key Simplification:** Powering based on **one treatment, one biomarker** assumption.

- ▶ **Trial Structure:** *K* distinct experimental treatment arms.
- ► **Key Simplification:** Powering based on **one treatment, one biomarker** assumption.
 - **Each** arm k is paired prospectively with a unique biomarker X_k .

- ▶ **Trial Structure:** *K* distinct experimental treatment arms.
- ► **Key Simplification:** Powering based on **one treatment, one biomarker** assumption.
 - \triangleright Each arm k is paired prospectively with a unique biomarker X_k .
 - Aligns with literature reporting & simplifies power calculations.

- ▶ **Trial Structure:** *K* distinct experimental treatment arms.
- ► **Key Simplification:** Powering based on **one treatment, one biomarker** assumption.
 - \triangleright Each arm k is paired prospectively with a unique biomarker X_k .
 - Aligns with literature reporting & simplifies power calculations.
 - (Acknowledges reality: one biomarker might affect multiple treatments).

▶ **Goal:** Power the trial to detect significance of parameters in:

▶ **Goal:** Power the trial to detect significance of parameters in:

$$Y_i = \beta_0 + \sum_{k=1}^{K} [\beta_{1k} T_{ik} + \beta_{2k} X_{ik} + \beta_{3k} (T_{ik} \cdot X_{ik})] + \text{error}_i$$

▶ **Goal:** Power the trial to detect significance of parameters in:

$$Y_i = \beta_0 + \sum_{k=1}^{K} [\beta_{1k} T_{ik} + \beta_{2k} X_{ik} + \beta_{3k} (T_{ik} \cdot X_{ik})] + \text{error}_i$$

 $ightharpoonup T_{ik} = 1$ if patient *i* in arm *k*, 0 otherwise.

▶ **Goal:** Power the trial to detect significance of parameters in:

$$Y_i = \beta_0 + \sum_{k=1}^{K} [\beta_{1k} T_{ik} + \beta_{2k} X_{ik} + \beta_{3k} (T_{ik} \cdot X_{ik})] + \text{error}_i$$

- $ightharpoonup T_{ik} = 1$ if patient i in arm k, 0 otherwise.
- $ightharpoonup X_{ik} = \text{Biomarker value for patient } i \text{ associated with arm } k.$

 $ightharpoonup eta_0$: Average outcome for the reference treatment group.

- \triangleright β_0 : Average outcome for the reference treatment group.
- β_{1k} : Main effect of treatment k vs. reference (traditional RCT target).

- \triangleright β_0 : Average outcome for the reference treatment group.
- \triangleright β_{1k} : Main effect of treatment k vs. reference (traditional RCT target).
- β_{2k} : General association of biomarker X_k with outcome (prognostic effect; nuisance/confounder control).

- \triangleright β_0 : Average outcome for the reference treatment group.
- β_{1k} : Main effect of treatment k vs. reference (traditional RCT target).
- β_{2k} : General association of biomarker X_k with outcome (prognostic effect; nuisance/confounder control).
- β_{3k} : Interaction effect (Primary Target!) How biomarker X_k modulates treatment k's effect. Goal is accurate, significant estimation.

Source: Simulations based on plausible effect sizes (β_{3k}) derived from literature.

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- ► Examples Modeled (K=4):

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- Examples Modeled (K=4):
 - ▶ iAPF (EEG) for rTMS (e.g., $\beta_3 \approx 0.2 0.3$)

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- ► Examples Modeled (K=4):
 - ▶ iAPF (EEG) for rTMS (e.g., $\beta_3 \approx 0.2 0.3$)
 - ▶ AUD History (EHR) for Ketamine (e.g., $\beta_3 \approx 0.6$ or higher from OR)

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- ► Examples Modeled (K=4):
 - ▶ iAPF (EEG) for rTMS (e.g., $\beta_3 \approx 0.2 0.3$)
 - ▶ AUD History (EHR) for Ketamine (e.g., $\beta_3 \approx 0.6$ or higher from OR)
 - ▶ Inflammatory Markers (Blood) for ECT (e.g., $\beta_3 \approx 0.2$)

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- ► Examples Modeled (K=4):
 - ▶ iAPF (EEG) for rTMS (e.g., $\beta_3 \approx 0.2 0.3$)
 - ▶ AUD History (EHR) for Ketamine (e.g., $\beta_3 \approx 0.6$ or higher from OR)
 - ▶ Inflammatory Markers (Blood) for ECT (e.g., $\beta_3 \approx 0.2$)
 - ▶ Speech Latency (Voice) for Novel Agents (e.g., $\beta_3 \approx 0.3$)

- **Source:** Simulations based on plausible effect sizes (β_{3k}) derived from literature.
- ► Examples Modeled (K=4):
 - ▶ iAPF (EEG) for rTMS (e.g., $\beta_3 \approx 0.2 0.3$)
 - ▶ AUD History (EHR) for Ketamine (e.g., $\beta_3 \approx 0.6$ or higher from OR)
 - ▶ Inflammatory Markers (Blood) for ECT (e.g., $\beta_3 \approx 0.2$)
 - ▶ Speech Latency (Voice) for Novel Agents (e.g., $\beta_3 \approx 0.3$)
- ▶ Caveats: Literature estimates are rough (differing populations, disease criteria, outcome measures, reported stats). Use with caution.

Power Estimates: Definitions Control

▶ **Statistical Power:** Probability of correctly detecting a true effect (interaction $\beta_{3k} \neq 0$) when it exists. Target often 80%.

Power Estimates: Definitions Control

- ▶ **Statistical Power:** Probability of correctly detecting a true effect (interaction $\beta_{3k} \neq 0$) when it exists. Target often 80%.
- ▶ Family-Wise Error Rate (FWER): Probability of making at least one false positive discovery (claiming $\beta_{3k} \neq 0$ when it's truly 0) across all K tests.

Power Estimates: Definitions Control

- ▶ **Statistical Power:** Probability of correctly detecting a true effect (interaction $\beta_{3k} \neq 0$) when it exists. Target often 80%.
- ▶ Family-Wise Error Rate (FWER): Probability of making at least one false positive discovery (claiming $\beta_{3k} \neq 0$ when it's truly 0) across all K tests.
- ► Control Method: Used Holm's procedure (conservative) to control FWER at 5%.

Figure: Power per biomarker vs. sample size *per arm* (K=4, Holm FWER control).

Observation 1: Required sample size varies greatly by interaction strength (β_{3k}) .

- **Observation 1:** Required sample size varies greatly by interaction strength (β_{3k}) .
- ► Example (80% Power):

- ▶ **Observation 1:** Required sample size varies greatly by interaction strength (β_{3k}) .
- ► Example (80% Power):
 - ▶ Strong ($\beta_{3k} \approx 0.6$): 50 subjects/arm

- **Observation 1:** Required sample size varies greatly by interaction strength (β_{3k}) .
- Example (80% Power):
 - Strong ($\beta_{3k} \approx 0.6$): 50 subjects/arm
 - Weak ($\beta_{3k} \approx 0.2$): 350 subjects/arm

- ▶ **Observation 1:** Required sample size varies greatly by interaction strength (β_{3k}) .
- ► Example (80% Power):
 - Strong ($\beta_{3k} \approx 0.6$): 50 subjects/arm
 - Weak ($\beta_{3k} \approx 0.2$): 350 subjects/arm
- Observation 2: If goal is to validate all K biomarkers, trial must be sized for the weakest interaction (350/arm -¿ Total N = 1400).

▶ Biomarker Correlation: Assumed biomarkers are correlated (via latent factor U).

- ▶ Biomarker Correlation: Assumed biomarkers are correlated (via latent factor U).
 - Higher correlation generally decreases power, potentially requiring larger sample sizes than shown if correlation is strong. (Estimating this pre-trial is valuable).

- ▶ Biomarker Correlation: Assumed biomarkers are correlated (via latent factor U).
 - Higher correlation generally decreases power, potentially requiring larger sample sizes than shown if correlation is strong. (Estimating this pre-trial is valuable).
- ▶ Adaptive Designs?: Could potentially *reduce* sample size (e.g., drop futile arms/biomarkers early, enrich promising ones).

- ▶ Biomarker Correlation: Assumed biomarkers are correlated (via latent factor U).
 - Higher correlation generally decreases power, potentially requiring larger sample sizes than shown if correlation is strong. (Estimating this pre-trial is valuable).
- ▶ Adaptive Designs?: Could potentially reduce sample size (e.g., drop futile arms/biomarkers early, enrich promising ones).
 - ► Trade-off: Increased operational and statistical complexity.

- ▶ Biomarker Correlation: Assumed biomarkers are correlated (via latent factor U).
 - Higher correlation generally decreases power, potentially requiring larger sample sizes than shown if correlation is strong. (Estimating this pre-trial is valuable).
- Adaptive Designs?: Could potentially reduce sample size (e.g., drop futile arms/biomarkers early, enrich promising ones).
 - ► Trade-off: Increased operational and statistical complexity.
- ▶ Forthcoming: Predictive Modeling Simulations: Planning extended simulations focusing on building *predictive models* using the full feature set (many biomarkers, instruments) to generate patient-specific treatment profiles (see separate plan).

End