

Benefits of Early Stopping in Gradient Descent for Overparameterized Logistic Regression

Jingfeng Wu¹ Peter Bartlett¹³ Matus Telgarsky² Bin Yu¹ ¹UC Berkeley ²New York University ³Google DeepMind

Background

 $y_i \in \{\pm 1\}, x_i \in \mathbb{R}^d, i = 1,...,n, d > n$ Dataset

 $\widehat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i^{\mathsf{T}} w))$ overparameterization => linear separability

Gradient descent $w_{t+1} = w_t - \eta \nabla \widehat{L}(w_t), \ w_0 = 0$

Asymptotic implicit bias

max-margin direction $\tilde{w} = \arg \max_{\|w\|=1} \min_{i} y_i x_i^{\top} w$

[Soudry et al, 2018; Ji & Telgarsky, 2018]

If $\eta = \Theta(1)$, then as $t \to \infty$,

$$||w_t|| \to \infty, \quad \frac{w_t}{||w_t||} \to \tilde{w}$$

Data model

allow rank(Σ), $||w^*|| = \infty$

[Population distribution] For $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$,

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

 $L(w) = \mathbb{E} \ln(1 + \exp(-yx^{\mathsf{T}}w))$ Logistic risk

sigmoid, $s(t) = \frac{1}{1 + \exp(-t)}$

 $Z(w) = \Pr(yx^{\mathsf{T}}w \le 0)$ Zero-one risk

Calibration risk $C(w) = \mathbb{E} |s(x^T w) - \Pr(y = 1 | x)|^2$

[Consistency & calibration] An estimator w_n is

• logistic or 0-1 consistent if $L(w_n) \to \min L$ or $Z(w_n) \to \min Z$

• calibrated if $C(w_n) \to 0$

[Simulations] d = 2000, n = 1000, $\Sigma_{ii} = i^{-2}$, $w_{0:100}^* = 1$, $w_{100:d}^* = 0$

Early-stopped GD

[Basic facts]

logistic consistent => calibration => zero-one consistent

• w^* minimizes L, Z, and C

 $Z(w) - \min Z \le 2\sqrt{C(w)} \le \sqrt{2}\sqrt{L(w) - \min L}$

 $<\Theta(1)$ noise => overfitting • $\min L \gtrsim 1$ and $\min Z \gtrsim 1$

Risk bounds

[Theorem] Let $\eta \lesssim 1$ so GD is stable. Pick a stopping time t

$$t(w^*, \Sigma, k_n) > \widehat{L}(w_t) \le \widehat{L}(w_{0:k}^*) \le \widehat{L}(w_{t-1})$$

Then with high probability

"best" rank-k projection

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

[Examples] (rates are improvable) $| o(1) \text{ for } k_n \uparrow |$

o(1) since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

• Finite norm: $||w^*|| \lesssim 1$

$$L(w_t) - \min L \le \tilde{O}(n^{-1/2})$$

• Power laws: $\lambda_i = i^{-a}$, $\lambda_i(w_i^*)^2 = i^{-b}$, a, b > 1

Power laws:
$$\lambda_i = i^{-a}$$
, $\lambda_i(w_i^*)^2 = i^{-b}$, $a, b > 1$

$$L(w_t) - \min L \le \begin{cases} \tilde{O}(n^{-1/2}) & b > a + 1 \\ \tilde{O}(n^{\frac{1-b}{a+b-1}}) & b \le a + 1 \end{cases}$$

$$\tilde{V}_0$$
Theorem D passes through W^*

GD passes through w^* but eventually diverges from it

Key ideas

[Lemma (known)] For all convex-smooth \widehat{L} and small η , we have

$$\forall u, t, \qquad \frac{\|w_t - u\|^2}{2\eta t} + \widehat{L}(w_t) \le \widehat{L}(u) + \frac{\|u\|^2}{2\eta t}$$

 $\widehat{L}(w_t) \le \widehat{L}(u)$ $||w_{t-1} - u|| \le ||u||$

Interpolating estimators

Issue of divergent norm

apply to GD when [Theorem] For all $(w_t)_{t>0}$ such that overparameterized $\lim \|w_t\| = \infty$, $\lim \frac{w_t}{\|w_t\|}$ exists poorly calibrated inconsistent we have $L(w_{\infty}) = \infty, \quad C(w_{\infty}) \gtrsim 1$

Issue of interpolation

[Theorem] Assume that $||w^*||_{\Sigma} \approx 1$ and $\Sigma^{1/2}w^*$ is k-sparse. If

$$\left[\min_{i} y_{i} x_{i}^{\mathsf{T}} \hat{w} > 0 \right] \quad n \gtrsim k \ln k, \quad \operatorname{rank}(\Sigma) \approx n \ln n$$

then for every interpolator \hat{w} , with high probability

$$Z(\hat{w}) - \min Z \gtrsim \frac{1}{\sqrt{\ln n}}$$

poly(1/n) for early stopping in "simple problems"

Early stopping and l₂-regularization

 $u_{\lambda} = \arg\min \widehat{L}(u) + \frac{1}{2\lambda} ||u||^2$

[Theorem] For all convex-smooth \widehat{L} , small η , and all t > 0,

$$||w_t - u_\lambda|| \le \frac{1}{\sqrt{2}} ||w_t|| \text{ for } \lambda = \eta t$$

 $||w_t - u_\lambda|| \leq \frac{1}{\sqrt{2}} ||w_t|| \text{ for } \lambda = \eta t$ global, but relative As a result: $\angle(w_t, u_\lambda) \leq \frac{\pi}{4}, \ 0.585 < \frac{||w_t||}{||u_\lambda||} < 3.415$

[Theorem] For logistic regression

• If rank{support vectors} = rank{data}, then $||w_t||, ||u_{\lambda}|| \to \infty$

$$\lambda \neq \eta t$$
 $\geqslant \exists \lambda(t) \to \infty, \quad ||w_t - u_\lambda|| \to 0$

• For dataset $x_1=(\gamma,0)$, $x_2=(\gamma,\gamma_2)$, $y_1=y_2=1$, with $0 < \gamma_2 < \gamma < 1$, which violates the above condition, we have

$$\forall \lambda(t), \quad ||w_t - u_\lambda|| \gtrsim \ln \ln ||w_t|| \to \infty$$