

HiKER-SGG: Hierarchical Knowledge Enhanced **Robust Scene Graph Generation**

Simon Stepputtis Joseph Campbell Katia Sycara

Motivation for *Robust* Scene Graph Generation

- Scene Graph Generation (SGG) from visual inputs is a powerful method of extracting semantic information, enabling many subsequent reasoning tasks.
- However, most existing studies assume access to "clean" images. This contrasts with real-world situations where images often have corruptions like sun glare, dust, etc.
- Handling such corruptions is a challenging task as it is unlikely that models can be sufficiently trained to handle such domain shifts.

Corrupted Visual Genome (VG-C) Benchmark

We introduce a challenging benchmark – Corrupted Visual Genome (VG-C) – providing 20 procedurally generated image corruptions, including simple transformations and severe weather conditions. VG-C benchmark offers a comprehensive evaluation platform to assess the robustness of SGG models in adverse conditions.

HiKER-SGG Framework Highlights

HiKER-SGG: Hierarchical Knowledge Enhanced Robust Scene Graph Generation

- ★ Overview. In this work, we propose a novel method HiKER-SGG which utilizes a hierarchical approach that reasons over multiple levels of domain knowledge with increasing granularity in order to generate accurate scene graphs in adverse conditions.
- **Hierarchical Knowledge.** The hierarchical knowledge graph is constructed from external knowledge base. We define it as comprising a set of commonsense object and relation nodes, and superclass nodes. The representations of superclass nodes are initialized by averaging the children nodes representations.
- **Hierarchical Inference.** HiKER-SGG employs a *hierarchical* strategy, leveraging multilevel domain knowledge to produce precise scene graphs for both corrupted and clean images. It classifies objects/relations by initially determining their superclasses, subsequently narrowing the search space to the respective subclasses. This method simplifies the process compared to the conventional direct detailed prediction.
- Adaptive Refinement. HiKER-SGG integrates an adaptive refinement mechanism to mitigate biases in predicate classes. Specifically, our adaptive refinement dynamically updates the transition probabilities that can convert a *general* prediction into a more specific prediction during the training process.
- **Corruption Agnostic.** Note that all models are solely trained on clean images and directly tested on corrupted ones.

Takeaways

- We propose HiKER-SGG, a novel method for generating scene graphs via hierarchical inference over structured domain knowledge, allowing it to gradually specify increasingly granular classifications through iterative sub-selection.
- ✓ We introduce a new synthetic VG-C benchmark for SGG, containing 20 challenging image corruptions, including simple transformations and severe weather conditions.
- Extensive experiments demonstrate that HiKER-SGG outperforms current state-ofthe-art methods on SGG tasks, while simultaneously providing a strong zero-shot baseline for generating scene graphs from corrupted images.

Experiments

Qualitative Results

Fvaluation on Clean Visual Genome (VG) Dataset

Mathad	Vacarra		PredCls		SGCls					
Method	Venue	mR@20: UC/C	mR@50: UC/C	mR@100: UC/C	mR@20: UC/C	mR@50: UC/C	mR@100: UC/0			
IMP+ [75]	CVPR'17	- / -	20.3 / 9.8	28.9 / 10.5	- / -	12.1 / 9.8	16.9 / 10.5			
Neural Motifs [87]	CVPR'18	- / 10.8	24.8 / 14.0	37.3 / 15.3	- / 6.3	13.5 / 7.7	19.6 / 8.2			
VCTree [62]	<i>CVPR</i> '19	- / 14.0	- / 17.9	- / 19.4	-/8.2	- / 10.1	- / 10.8			
PCPL [77]	ACMMM'20	-/-	50.6 / 35.2	62.6 / 37.8	-/-	<u>26.8</u> / 18.6	<u>32.8</u> / 19.6			
Transformer + CogTree [84]	IJCAI'21	- / 22.9	- / 28.4	-/31.0	- / 13.0	- / 15.7	- / 16.7			
VCTree + EBM [60]	CVPR'21	- / 14.2	- / 18.0	- / 28.8	- / 8.2	- / 10.2	-/11.0			
G2S: Transformer [22]	ICCV'21	- / 26.7	-/31.9	-/34.2	- / 15.7	- / 18.5	- / 19.4			
MotifNet + DLFE [10]	<i>ACMMM</i> '21	- / 22.1	- / 26.9	- / 28.8	- / 12.8	- / 15.2	- / 15.9			
MotifNet + RTPB [6]	AAAI'22	- / 28.8	- / 35.3	-/37.7	- / 16.3	- / 19.4	- / 20.6			
MotifNet + PPDL [43]	CVPR'22	- / 27.9	-/32.2	-/33.3	- / 15.8	- / 17.5	-/18.2			
MotifNet + NICE [40]	CVPR'22	- / 23.7	- / 29.8	-/32.2	- / 13.6	- / 16.7	- / 17.9			
MotifNet + NARE [19]	CVPR'22	-/21.3	- / 27.1	- / 29.7	-/11.3	- / 14.3	- / 15.7			
Transformer + HML [13]	ECCV'22	- / 27.4	-/33.3	-/35.9	- / 15.7	- / 19.1	- / 20.4			
SQUAT [36]	<i>CVPR</i> '23	- / 25.6	- / 30.9	-/33.4	- / 14.4	- / 17.5	- / 18.8			
PE-Net [92]	CVPR'23	- / 25.8	-/31.4	-/33.5	- / 15.2	- / 18.2	- / 19.3			
PE-Net + SIL [69]	ACMMM'23	- / 26.9	-/33.1	-/35.3	- / <u>16.7</u>	- / <u>19.9</u>	- / <u>20.7</u>			
GB-Net [85]	ECCV'20	23.8 / 15.3	41.1 / 19.3	55.4 / 20.9	13.1 / 7.9	21.4 / 9.6	29.1 / 10.2			
EB-Net + EOA [9]	<i>WACV'23</i>	<u>39.8</u> / <u>30.8</u>	<u>54.9</u> / <u>36.7</u>	<u>66.3</u> / <u>39.2</u>	<u>19.6</u> / 14.9	26.7 / 17.3	32.5 / 18.3			
HiKER-SGG (Ours)	-	42.1 / 33.4	57.9 / 39.3	69.2 / 41.2	22.6 / 18.2	30.0 / 20.3	36.7 / 21.4			

Evaluation on Corrupted Visual Genome (VG-C) Dataset

					_																	
	Method	gaus	shot	imp	dfcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	sun	wtd	smk	rain	dust	Average mR
nR@20: C/UC	GB-Net [†] [85]	15.2	16.0	15.2	16.9	14.9	16.5	16.6	17.9	18.9	21.4	21.6	14.7	16.8	16.6	18.2	16.7	17.8	16.0	20.1	18.5	17.3 (-27.3%)
	EB-Net [†] [9]	28.0	29.8	27.4	31.2	26.5	30.3	30.5	32.1	33.2	35.8	36.3	27.3	30.3	27.0	30.6	30.6	30.7	33.7	35.6	30.1	30.9 (-22.4%)
	HiKER-SGG	31.1	33.3	31.5	35.4	28.5	35.0	34.1	36.5	37.7	39.8	40.8	30.5	33.7	31.3	34.2	33.5	34.9	37.1	39.8	32.6	34.6 (-17.8%)
	GB-Net [†] [85]	10.3	10.6	10.4	11.6	10.4	10.9	10.7	11.9	12.3	13.7	13.8	10.0	11.1	10.8	11.7	11.1	11.2	10.5	13.0	12.1	11.4 (-25.5%)
	EB-Net [†] [9]	21.7	22.8	20.4	24.9	19.6	23.2	23.8	23.2	24.6	27.5	28.0	20.1	23.1	21.1	23.6	24.0	23.4	25.6	27.3	22.9	23.5 (-23.7%)
	HiKER-SGG	24.8	25.8	24.8	27.5	22.4	27.4	26.4	27.8	28.7	31.1	31.5	23.3	26.0	24.3	26.5	26.3	26.8	28.5	30.9	24.9	26.8 (-19.8%)
mR@50: C/UC	GB-Net [†] [85]	27.5	28.7	27.6	30.8	26.4	29.8	29.9	31.9	33.8	37.2	37.6	26.3	29.9	30.0	33.0	29.5	32.3	28.7	35.8	32.8	31.0 (-24.6%)
	EB-Net [†] [9]	42.1	43.7	41.5	44.9	40.2	45.6	44.2	46.9	47.7	50.4	51.2	41.2	44.1	41.4	45.1	45.4	45.5	48.4	49.7	44.6	45.2 (-17.7%)
	HiKER-SGG	46.7	48.4	46.9	50.2	43.2	49.6	48.3	51.3	52.5	55.1	55.9	45.0	48.1	46.0	49.9	48.6	50.0	52.4	54.8	47.0	49.5 (-14.5%)
	GB-Net [†] [85]	13.3	13.6	13.3	15.1	13.6	14.1	14.0	15.4	15.6	17.4	17.5	13.0	14.5	14.4	15.2	14.5	14.6	13.6	16.6	15.4	14.7 (-24.2%)
	EB-Net [†] [9]	24.8	27.6	25.6	28.3	25.9	28.9	29.4	29.3	30.5	32.0	32.8	26.1	28.6	26.3	27.9	29.2	28.6	30.8	31.8	27.2	28.6 (-22.1%)
	HiKER-SGG	30.1	31.7	30.4	33.2	28.3	33.3	32.1	34.1	34.4	37.3	37.4	28.8	31.7	30.1	32.9	32.5	32.2	34.5	36.7	30.4	32.6 (-17.0%)
mR@100: C/UC	GB-Net [†] [85]	40.1	41.9	40.1	43.8	37.8	42.9	42.7	45.1	47.1	50.8	51.7	37.8	42.8	42.9	46.6	42.5	46.1	41.2	49.6	45.9	44.0 (-20.6%)
	EB-Net [†] [9]	54.7	56.0	52.9	56.8	52.4	55.6	55.3	58.4	59.9	61.6	61.1	53.3	55.0	54.3	57.7	56.4	57.6	59.0	60.7	54.8	56.7 (-14.5%)
	HiKER-SGG	59.3	60.3	58.6	62.3	55.6	61.9	59.8	63.4	64.0	66.9	67.4	56.4	60.1	58.4	62.3	59.8	62.1	63.7	66.3	58.9	61.4 (-11.3%)
	GB-Net [†] [85]	14.8	15.1	14.6	16.6	15.1	15.6	15.6	16.9	17.1	19.1	19.0	14.4	16.0	16.0	16.8	16.1	16.1	15.0	18.1	17.0	16.3 (-22.0%)
	EB-Net [†] [9]	28.7	30.1	27.8	31.9	27.1	31.1	30.5	32.8	32.4	36.1	35.7	28.2	30.9	28.4	30.9	31.4	31.0	31.8	33.9	29.6	31.0 (-20.9%)
	HiKER-SGG	32.7	33.8	32.6	36.0	30.4	35.7	34.7	36.3	36.7	39.9	39.7	31.1	34.2	32.7	35.4	34.9	35.4	37.1	39.2	32.6	35.1 (-14.8%)
l —																						

Contact: Ce Zhang (cezhang@cs.cmu.edu), Yaqi Xie (yaqixie@cmu.edu)