Topic Modeling: Latent Dirichlet Allocation

Team 11

Fatima-Zahra Banani Mohamed Kleit Robert Chamoun

Introduction

- Topic Modeling is is a form of unsupervised machine learning that allows for efficient processing of large collections of text.
- Latent Dirichlet Allocation is a generative probabilistic model.
- LDA is a three-level hierarchical Bayesian model.

Graphical Model

Figure 1:Graphical Model representation of LDA

$$p(\theta_d, Z_d, W_d \mid \alpha, \beta) = p(\theta_d \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta_d) p(w_n \mid z_n, \beta)$$

Model Assumptions

For each document d:

- $\theta_d \sim \mathsf{Dirichlet}(\alpha)$
- For each word n:
- $z_n \sim \mathsf{Multinomial}(\theta_d)$
- $w_n|z_n$ is a Multinomial Probability given β

k is the number of topics, V the size of Vocabulary β : $k \times V$ matrix with $\beta_{i,j} = p(w^j = 1 | z^i = 1)$

Goal

Find:

$$\alpha^*, \beta^* = \operatorname{argmax} \log (p(D \mid \alpha, \beta))$$
$$= \operatorname{argmax} \sum_{d=1}^{M} \log (p(W_d \mid \alpha, \beta))$$

Parameter Estimation

• $p(\theta_d, Z_d | W_d, \alpha, \beta)$ is intractable \Rightarrow Variational EM.

Figure 2: Graphical Model representation of variational distribution

$$p(\theta_d, Z_d \mid \gamma_d, \phi_d) = q(\theta_d \mid \gamma_d) \prod_{n=1}^{N} q(z_n \mid \phi_d^n)$$

$$log(p(W_d|\alpha,\beta)) = L(\gamma_d,\phi_d,\alpha,\beta) + D(q(\theta_d,Z_d|\gamma_d,\phi_d)||p(\theta_d,Z_d|_d,\alpha,\beta))$$

Variational E Step:

For each document d:

$$\gamma_d^{*t+1}, \phi_d^{*t+1} = argmin D(q(\theta_d, Z_d | \gamma_d, \phi_d) | | p(\theta_d, Z_d | W_d, \alpha^{*t}, \beta^{*t}))$$

Variational M Step:

$$\alpha^{*t+1}, \beta^{*t+1} = argmax L(\gamma^{*t+1}, \phi^{*t+1}, \alpha, \beta) = argmax \sum_{d=1}^{M} L(\gamma_d^{*t+1}, \phi_d^{*t+1}, \alpha, \beta)$$

Implementation and Results

Reproduced results from paper with our own implementation:

Documents: 2247

• Topics: 100

Topic Sample							
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5			
club	new	child	ago	american			
year	percent	people	africa	states			
york	yen	having	leaders	union			
old	economy	report	france	told			
building	rate	education	people	political			
business	rates	aids	african	leaders			
years	said	children	french	conference			
new	prices	said	south	president			
city	market	care	police	said			
said	dollar	health	said	soviet			

Tested our implementations on scribe notes:

Documents: 17

Topics: 8

Topic Sample						
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		
inference	number	problem	constraints	sufficient		
structure	possible	passing	uniform	moments		
active	beta	running	hessian	divergence		
parents	equal	vector	point	likelihood		
treewidth	parameters	latent	constant	principle		
elimination	information	following	lagrange	inference		
eliminate	posteriori	inference	equality	optimization		
graphs	priori	regression	constraint	proof		
property	posterior	property	family	information		
ordering	case	matrix	stationary	general		

References

[1] Michael I. Jordan David M. Blei, Andrew Y. Ng.
Latent dirichlet allocation.

Journal of Machine Learning Research, (3):993--1022, 2003.