Section 6: Clustering

Giải thuật k-mean

- 1. Chọn một giá trị k
- 2. Chọn k đối tượng (k-object) theo kiểu tùy ý (giá trị tại mỗi điểm k là nhỏ nhất, hoặc ngẫu nhiên hoặc lớn nhất). Sử dụng chúng là tập hợp ban đầu của k.
- 3. Gán từng đối tượng cho cụm mà nó gần nhất với Tâm.
- 4. Tính lại các trọng tâm của k cụm (k clusters).
- 5. Lặp lại bước 3 và 4 cho đến khi trung tâm không còn di chuyển được nữa.

from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
from sklearn.cluster import KMeans

In [3]: data = pd.read_csv('Datasets/wine.csv')

In [4]: data.head()

Out[4]:

	class	Alcohol	Malic_acid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocyanins	Color_intensity	Hue
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04

<

k means clustering is an unsupervised machine learning algorithm

Three key features of k-means that make it efficient are often regarded as its biggest drawbacks:

Euclidean distance is used as a metric and variance is used as a measure of cluster scatter. The number of clusters k is an input parameter: an inappropria choice of k may yield poor results. That is why, when performing k-means, it is important to run diagnostic checks for determining the number of clusters in data set. Convergence to a local minimum may produce counterintuitive ("wrong") results

Source: https://en.wikipedia.org/wiki/K-means_clustering

```
6]: ## scale the data

mms = MinMaxScaler()
data.loc[:, data.columns != 'class'] = mms.fit_transform(data.loc[:, data.columns != 'class'])
```

```
In [13]: data_elb = data.loc[:, data.columns != 'class']

sse = {}
for k in range(1, 20):
    kmeans = KMeans(n_clusters=k, max_iter=1000).fit(data_elb)
    data_elb["clusters"] = kmeans.labels_
    sse[k] = kmeans.inertia_ # Inertia: Sum of distances of samples to their closest cluster center
plt.figure()
plt.plot(list(sse.keys()), list(sse.values()))
plt.xlabel("Number of cluster")
plt.ylabel("SSE")
plt.show()
```


