

DSP bloky - princip

Speciální bloky optimalizované na DPS aplikace (FIR, FFT,...),

- složeny z násobiček, sčítaček (příp. odečítaček) a registrů;
- jednotlivé bloky jsou mezi sebou vzájemně provázané;
- operace převážně ve formátu pevné řádové čárky.

DSP bloky - srovnání

V FPGA lze realizovat např. filtry mnohonásobně rychleji ve srovnání se signálovým procesorem

MSPS (Million Samples per Second)

Výkon FPGA (DSP bloků)

MMAC/s (Million Multiply Accumulates per Second) pohybuje se v rozmezí řádově od 10¹ do 10⁴ (milion násobení a mezisoučtů za sekundu).

často se redukuje na max. teoretický výkon = počet násobiček x max. hod. frekvence násobičky.

Např. LatticeECP-DSP20 má 28 násobiček (18x18) a max. hod. frekvence je 250 MHz \Rightarrow 7000 MMAC/s

Vysokorychlostní transceivery

Přechod od paralelních sběrnic k vysokorychlostním sériovým rozhraním (lepší časové parametry, integrita signálů, diferenční přenos v párech).

Signály se převádí z/do paralelního rozhraní (8–128 bitů), příp. se ještě linkově kódují (pro potlačení stejnosměrné složky a zajištění dostatečné hustoty hran v signálu).

Přenosové rychlosti cca od 0,5 do 58 Gb/s (podle typu FPGA). Na vstupu bývají bloky pro obnovu synchronizace CDR (Clock and Data Recovery).

Součástí bývají bloky PLL (společné pro více transceiverů) pro generování rychlých hodinových signálů.

Vysokorychlostní transceivery

Spojení FPGA + MCU

Elektronické systémy často používají jak levnější a univerzální procesor (včetně periferií), tak rychlý hardware (FPGA)

- ⇒ realizace obojího uvnitř FPGA
 - úspora plochy na DPS, současný společný vývoj systému.

Procesory:

hardwarové (ARM Cortex, PowerPC, Excalibur, AVR) – na čipu FPGA zaintegrováno CPU jádro (řadiče, ALU), jako paměť slouží embedded RAM, periferie často v log. poli; softwarové (NIOS V (na bázi RISC-V), MicroBlaze, LatticeMico) – sice pomalejší (cca o polovinu vůči HW), ale architekturu lze přizpůsobit potřebám; možno použít i více CPU současně; Ize implementovat do různých typů FPGA.

Procesor NIOS II (Intel)

Softwarový 32-bitový procesor, RISC

32 všeobecných registrů, 32 externích přerušení

Varianty Fast – Standard – Economy, výkonnost až 250 DMIPS;

Operace: aritmetické (+,-,*,/), relační (=, ≠, ≥, <) s typy signed a unsigned, logické (AND, OR, NOR, XOR), posuny a rotace.

Procesor LatticeMico32

- 32bitový softwarový procesor (data i instrukce), RISC,
- 32 všeobecných registrů, až 32 externích přerušení,
- řadiče paměti (pro asynchronní SRAM, pro paměť DDR1, pro blokovou paměť na čipu)
- 32bitový časovač, DMA řadič, řadič I2C, SPI, Ethernet řadič, UART)

Performance and Resource Utilization for LatticeEC/ECP Devices ¹			
Configuration	LUTs	fMAX (MHz)	
Basic	1,830	81	
Standard	2,040	89	
Full	2,230	92	

Performance and Resource Utilization for LatticeECP2/M Devices ¹			
Configuration	LUTs	fMAX (MHz)	
Basic	1,571	98	
Standard	1,816	116	
Full	2,158	116	

Napájecí napětí

Napájení se rozděluje do 3 skupin:

- napájení vlastního jádra s log. bloky;
- napájení vstupně-výstupních buněk (1,2 3,3 V);
- napájení speciálních bloků (např. fázové závěsy).

Napětí jádra souvisí s výrobní technologií: 3,3 V (350 nm), 2,5 V (220 nm), 1,8 V (150 nm), 1,5 V (130 nm), 1,2 V (90 nm), 1,0 V (65 nm), 0,9 V (40 nm), 0,85 V (28 nm).

Spotřeba: statická $P_s = \sum U_i I_i$

dynamická $P_d = \sum C_i U_i^2 f_i$

Náběh napájecího napětí

Náběh napájecích zdrojů by měl být monotónní.

Na pořadí náběhu zdrojů většinou nezáleží.

Obvody POR (Power On Reset).

Zdroje řešeny buď *spínanými* nebo *lineárními* regulátory.

Doba konfigurace

Záleží na velikosti obvodu a na paralelnosti načítání

Souvislost P, f a využití obvodu

Vzájemný vztah příkonu, rychlosti a využití obvodu

Virtex UltraScale+ (AMD)

- 14/16 nm technologie, až 832 I/O pinů, napěť. úrovně 1,0-1,8 V;
- až 4,4 mil. log. buněk;
- až 95 Mb blokRAM + 432 Mb UltraRAM;
- až 11904 DSP bloků;
- až 128 transceiverů (rychlost až 32,75 Gb/s);
- Integrované řadiče PCI Express, Ethernet 100G, 150G interlaken;

Agilex 9 (Intel)

- 10 nm technologie, 768 I/O pinů, až 2,693 mil. LE;
- až 17056 DSP bloků;
- až 287 Mb embedded paměti;
- 24 PLL bloků;
- Quad-core 64bit ARM Cortex-A53;
- 384 LVDS kanálů;
- 40 transceiverů 58 Gb/s;
- Hard IP: PCIe, Ethernet, podpora DDR4

ChipScope (AMD)

Programový blok využívající volné buňky obvodu FPGA k vytvoření logického analyzátoru (přes JTAG rozhraní)

- dovoluje na monitoru sledovat vnitřní signály, sběrnice, uzly, vestavěné hw i sw procesory, ...
- zkracuje se doba vývoje (rychlejší než simulace);
- určeno pro vybraná FPGA.

Metodika návrhu obvodů FPGA

- specifikace systému,
- vstup návrhu (popis funkce)
 - VHDL, Verilog, HDL, ...
- simulace (nejčastěji časová),
- syntéza logického obvodu,
- mapování na technologii,
- rozmístění a propojení,
- generace výstupního souboru,
- konfigurace (programování).

Inicializace FPGA

Možnosti inicializace FPGA obvodů na bázi SRAM:

Zabezpečení dat

Zejména u konfiguračních dat uložených v externích pamětech

Transparentní rekonfigurace

Za běhu aplikace je možno přehrát obsah flash paměti, pak se uzamknou piny a přehraje se nový program do RAM - minimální doba přerušení (cca za 1 ms) – Lattice Semiconductor

Dynamická rekonfigurace

Za provozu lze měnit část obsahu FPGA (oblast se uzamkne, přehraje se část konfigurace, která je již připravena v paměti) - Atmel (AT94k), Xilinx

Trendy vývoje FPGA obvodů

- růst velikosti FPGA obvodů (miliony logických buněk),
- stále rozsáhlejší vkládané bloky (embedded core) RAM, DSP,
- hybridní čipy kombinace procesorových jader (HW i SW) a programovatelné logiky,
- rekonfigurovatelná logika (on-the-fly),
- možná vzdálená změna konfigurace šifrováno
- snižování napěťových úrovní 3.3V → 2.5V → 1.8V → 1.5V → 1.0V (jádro 1.2V → 0.9V),
- technologie 65 nm → 40 nm → 28 nm → 16 nm → 10 nm,
- frekvence řádově stovky MHz.