

Probability and Stochastic Processes

Monotone Convergence Theorem, Expectations of Non-Negative Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

30 September / 03 October 2024

Pointwise Convergence and Monotone Convergence Theorem – 1

Pointwise Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and $\{X_n\}_{n=1}^{\infty}=\{X_1,X_2,\ldots\}$ be random variables w.r.t. \mathscr{F} .

Pointwise Convergence

We say that the sequence of random variables $\{X_n\}_{n=1}^{\infty}$ converges pointwise to the random variable X if

$$\lim_{n\to\infty} X_n(\omega) = X(\omega) \qquad \forall \omega \in \Omega.$$

Notation:

$$X_n \stackrel{\text{pointwise}}{\longrightarrow} X.$$

Non-Negative Random Variable as Pointwise Limit of Simple Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Proposition

(Non-Negative Random Variable as Pointwise Limit of Simple Random Variables)

Let X be a non-negative random variable, i.e.,

$$X(\omega) \geq 0 \quad \forall \omega \in \Omega.$$

Then, there exists a sequence of random variables $\{X_n\}_{n=1}^{\infty}$ such that

- X_n is a simple random variable for each $n \in \mathbb{N}$, and
- $X_n \stackrel{\text{pointwise}}{\longrightarrow} X$.

Monotone Convergence Theorem (MCT) - 1

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and $\{X_n\}_{n=1}^{\infty}$ be random variables defined w.r.t. \mathscr{F} .

Theorem (Monotone Convergence Theorem (MCT) - 1)

Let X be a non-negative random variable.

Suppose that

- X_n is a simple random variable for each $n \in \mathbb{N}$,
- $0 \le X_1(\omega) \le X_2(\omega) \le \cdots$ for all $\omega \in \Omega$ (monotone),
- $X_n \xrightarrow{\text{pointwise}} X$ (convergence).

Then, $0 \leq \mathbb{E}[X_1] \leq \mathbb{E}[X_2] \leq \cdots$, and

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[X_n].$$

Remark: We will state the MCT in greater generality later in the course.

Expectations of Non-Negative Random Variables

Expectations of Non-Negative Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$, and X is a non-negative random variable, then

$$\mathbb{E}[X\cdot\mathbf{1}_A]=0.$$

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 1$, and X is a non-negative random variable, then

$$\mathbb{E}[X\cdot \mathbf{1}_A]=\mathbb{E}[X].$$

• If X, Y are non-negative random variables, and $X(\omega) \geq Y(\omega) \geq 0$ for all $\omega \in \Omega$, then

$$\mathbb{E}[X] \geq \mathbb{E}[Y].$$

Expectations of Non-Negative Random Variables

• If *X* is a non-negative random variable, then

$$\mathbb{E}[X] = 0 \quad \Longleftrightarrow \quad \mathbb{P}(\{X = 0\}) = 1.$$

• Linearity of expectations (for non-negative random variables) If X, Y are non-negative random variables, and $\alpha \geq 0$, then

$$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X], \qquad \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

• If *X* is a non-negative random variable, then

$$\mathbb{E}[X \cdot \mathbf{1}_{\{X \ge x\}}] \ge x \cdot \mathbb{P}(\{X \ge x\}), \qquad x \ge 0,$$

$$\mathbb{E}[X \cdot \mathbf{1}_{\{X \le x\}}] \le x \cdot \mathbb{P}(\{X \le x\}), \qquad x \ge 0,$$

$$\mathbb{E}[X \cdot \mathbf{1}_{\{X=x\}}] = x \cdot \mathbb{P}(\{X=x\}), \qquad x \ge 0.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a discrete random variable taking values in the countable set $E = \{a_1, a_2, \ldots\}$.

- Suppose *X* is simple.
 - Then, there exists $n \in \mathbb{N}$ such that

$$E = \{a_1, \ldots, a_n\}, \qquad a_1, \ldots, a_n \geq 0.$$

- Set $A_i = \{X = a_i\}$, i = 1, ..., n. Then, $\{A_1, ..., A_n\}$ partition Ω.
- X can be expressed as

$$X = \sum_{i=1}^n a_i \; \mathbf{1}_{A_i}.$$

The expectation of X is given by

$$\mathbb{E}[X] = \sum_{i=1}^n a_i \, \mathbb{P}(A_i).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a discrete random variable taking values in the countable set $E = \{a_1, a_2, \ldots\}$.

- Suppose *X* is non-negative.
 - Here,

$$E = \{a_1, a_2, \ldots\}, \qquad a_i \geq 0 \ \forall i \in \mathbb{N}.$$

- Set $A_i = \{X = a_i\}, i = 1, ..., n$. Then, $\{A_1, A_2, ...\}$ partition Ω .
- X can be expressed as

$$X=\sum_{i=1}^{\infty}a_{i}\;\mathbf{1}_{A_{i}}.$$

— For each $n \in \mathbb{N}$, let

$$X_n := \sum_{i=1}^n a_i \, \mathbf{1}_{A_i}.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let X be a discrete random variable taking values in the countable set $E = \{a_1, a_2, \ldots\}$.

- Suppose *X* is non-negative.
 - Then, $0 \le X_1 \le X_2 \le \cdots$, and $X_n \stackrel{\text{pointwise}}{\longrightarrow} X$.

Using MCT, we have

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[X_n] = \lim_{n \to \infty} \sum_{i=1}^n a_i \, \mathbb{P}(A_i) = \sum_{i=1}^\infty a_i \, \mathbb{P}(A_i).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a discrete random variable taking values in the countable set $E = \{a_1, a_2, \ldots\}$.

- Suppose *X* is arbitrary.
 - Here, some of the a_i could be negative.
 - Define

$$X_{+} = \max\{X, 0\}, \qquad X_{-} = -\min\{X, 0\}$$

- If $\min\{\mathbb{E}[X_+], \mathbb{E}[X_-] < +\infty\}$, then

$$\mathbb{E}[X] := \mathbb{E}[X_+] - \mathbb{E}[X_-].$$

Summary

For a discrete random variable X taking values in set $E = \{a_1, a_2, \ldots\}$,

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} a_i \cdot \mathbb{P}(\{X = a_i\}) = \sum_{i=1}^{\infty} a_i \cdot p_X(a_i).$$

Examples

- Suppose $X \sim \mathrm{Unif} \big(\{1, \dots, n\} \big)$. What is $\mathbb{E}[X]$?
- Suppose $X \sim \operatorname{Geom}(p)$, $p \in (0, 1)$. What is $\mathbb{E}[X]$?
- Let $\mathbb{P}(\{X=k\})=rac{c}{k^2}, \qquad k\in\mathbb{N}.$ What is $\mathbb{E}[X]$?
- Let $\mathbb{P}(\{X=k\})=rac{c}{k^2}, \qquad k\in\mathbb{Z}.$ What is $\mathbb{E}[X]$?

Expectation Over Different Spaces

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a discrete random variable w.r.t. \mathscr{F} .

Let $g:\mathbb{R} o \mathbb{R}$ be Borel-measurable.

Let Y = g(X).

Theorem (Expectation Over Different Spaces)

We have

$$\mathbb{E}[Y] = \int_{\Omega} g(X) d\mathbb{P} = \int_{\mathbb{R}} g d\mathbb{P}_X = \int_{\mathbb{R}} \gamma d\mathbb{P}_Y.$$