Tracing of Polar coordinates:

A point P in the plane, has polar coordinates (r, θ), where r is the distance of the point from the fixed origin O (Called the Pole) and θ is the angle between \overrightarrow{OP} and initial ray \overrightarrow{OA} (Called polar axis).

Relation between Polar and Cartesian coordinates:

Choose the polar axis along the positive x-axis and the pole at the origin , from right triangle PMO

$$cos\theta = \frac{x}{r}$$
 and $sin\theta = \frac{x}{r}$

 $x=rcos\theta$, $y=rsin\theta$, from these relation we have $r^2=x^2+y^2$ and $tan\theta=rac{y}{x}$

Procedure for tracing polar curves:

Let the equation of the curve be $f(r, \theta) = 0$

1.Symmetry:

(i) Symmetry about the initial line (polar axis): If the equation of the curve remains unchanged when θ is replaced by $-\theta$ or when the equation remains unchanged on replacing r by -r and θ by $\pi-\theta$ then the curve is symmetric with respect to the initial line(polar axis).

(ii) Symmetry about the line $\theta=\frac{\pi}{2}$ (Normal axis): If the equation of the curve remains unchanged when θ is replaced by $\pi-\theta$ or when the equation remains unchanged on replacing r by -r, and θ by $-\theta$ then the curve is symmetric with respect to the line $\theta=\frac{\pi}{2}$ (normal axis).

(iii) Symmetry about the pole : If the equation of the curve remains unchanged when r is replaced by -r (i.e. power of r is even) or when the equation remains unchanged on replacing θ by $\pi + \theta$ then the curve is symmetric with respect to the pole.

- **2. Pole(Origin):** put r=0 in the equation of curve , If we get real values of θ then the curve passes through the pole, real values of θ are tangents at pole
- 3. Angle between the radius vector and tangents:

The angle \emptyset between the radius vector and the tangent is given by $tan\emptyset = \frac{r}{\frac{dr}{d\theta}}$, if $tan\emptyset = 0$ tangent is coincides with the radius vector and $tan\emptyset = \infty$, tangent is perpendicular to radius vector.

(4) Tabular Values: corresponding to different values of θ find the values of r and $tan\phi$.

Example:1 Trace the curve $r = a(1 + cos\theta)$ (a > 0)

1. symmetry : Science the equation remains unchanged when θ is replaced by – θ , curve is symmetrical about the initial line .

2 pole: if r=0 : $a(1 + cos\theta) = 0$: $cos\theta = -1$ we get $\theta = (2k + 1)\pi$, $k \in \mathbb{Z}$,

 \therefore curve is passes through the pole and $\theta = (2k+1)\pi$, $k \in \mathbb{Z}$ are tangents at pole

3 Angle between the tangent and radius vector:

$$tan\emptyset = \frac{r}{\frac{dr}{d\theta}} \quad \because \ tan\emptyset = \frac{a(1+cos\theta)}{-asin\theta} \ \because tan\emptyset = -cot\frac{\theta}{2}$$

4 Tabular Values:

 $\theta: 0 \frac{\pi}{2} \pi$

r: 2a a 0

 $tan\emptyset$: ∞ -1 0

Example:2 Trace the Curve $r^2 = a^2 cos 2\theta$.

1. Symmetry: Science the equation remains unchanged when θ is replaced by – θ , curve is symmetrical about the initial line.

Since the equation remains unchanged when heta is replaced by $\pi- heta$, curve is symmetrical about normal line.

Since power of r is even , curve is symmetrical about pole.

2.Pole: if r=0 $\therefore cos2\theta=0$ $\therefore \theta=(2k+1)\frac{\pi}{4}$, $k\in Z$ \therefore Curve is passes through pole and $\theta=(2k+1)\frac{\pi}{4}$, $k\in Z$ are tangents at pole.

3. Angle between the tangent and radius vector:

From given equation $2r\frac{dr}{d\theta} = -2a^2sin2\theta$

Now
$$\tan \emptyset = \frac{r}{\frac{dr}{d\theta}}$$
 $\therefore \tan \emptyset = \frac{r}{\frac{-a^2 \sin 2\theta}{r}} = -\frac{r^2}{a^2 \sin 2\theta} = -\frac{a^2 \cos 2\theta}{a^2 \sin 2\theta} = -\cot 2\theta$

4 Tabular values:

$$\theta: \qquad 0 \qquad \frac{\pi}{4} \qquad \frac{\pi}{2} \qquad \frac{3\pi}{4} \qquad \pi$$

$$r:$$
 a 0 - 0 a

$$tan\emptyset: \infty \qquad 0 \qquad - \quad 0 \qquad \infty$$

Example:3 Trace the lemniscates $r = 2acos\theta$

1. Symmetry: Since the equation remain unchanged when θ is replaced by $-\theta$, curve is symmetrical about initial line.

2.Pole: if r=0, $\therefore cos\theta = 0$ $\therefore \theta = (2k+1)\frac{\pi}{2}$, $k \in Z$ \therefore Curve is passing through pole and

 $\therefore \theta = (2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$ are tangents at pole.

3. Angle between the tangent and radius vector: $tan\emptyset = \frac{r}{\frac{dr}{d\theta}}$ $\therefore tan\emptyset = \frac{2acos\theta}{-2asin\theta} = -cot\theta$

4. Tabular Values: θ : 0 $\frac{\pi}{2}$ π

 $tan\emptyset: \quad \infty \quad \quad 0 \quad \quad \infty$

Exercise: Trace the following Curves:

(1)
$$r = a(1 - \cos\theta)$$
 (2) $r = a(1 + \sin\theta)$ (3) $r = a(1 - \sin\theta)$

(1) (2) Ans:

(3)