

如何進行一個Al project?

黄志勝

義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授

AI工程師和資料科學家

AI工程師和資料科學家

https://vocus.cc/dnsc/5c0237c9fd89780001e51d88

https://aiacademy.tw/start-like-this/

Al project?

Al projects: 資料科學、機器學習、深度學習、強化學習

- 資料科學: 離職預測、庫存分析、商品良率分析…等。
- •機器學習、深度學習:車流偵測、人臉辨識、假/指紋辨識…等。
- •強化學習:空調控制、紅綠燈控制…等。

AI 學習方法

• What is machine learning?

Machine learning algorithms build a "<u>mathematical model</u>" based on sample data, known as "<u>training data</u>", in order to make predictions or decisions without being explicitly programmed to perform the task. [https://en.wikipedia.org/wiki/Machine_learning]

What is the "KEY" in machine learning?

ANS: Mathematics and Data.

How to start a machine/deep learning application

- 1. Tasks/Applications definition.
- •2. Data (collection, labeling)
- 3. Learning Model
- •4. Evaluation model

How to start a machine/deep learning application

- 1. Tasks/Applications definition. Marketing, PM
- 2. Data (collection, labeling) 資料工程師
- 3. Learning Model 機器學習AI工程師
- 4. Evaluation model 機器學習AI工程師

https://aiacademy.tw/start-like-this/

Tasks/Applications definition

Please do one right thing and one thing right.

- 1. Specific Problem (right thing): What problem do you want to solve?
- 離職預測、庫存分析、商品良率分析…等。
- 車流偵測、人臉辨識、假/指紋辨識…等。
- 空調控制、紅綠燈控制…等。

Tasks/Applications definition

Please do one right thing and one thing right.

2. Right Data (thing right):

What is useful data? More information more better?

指紋辨識

- · 為什麼Data很重要?
- 假設我們要做的分類問題是「男生和女生辨識」
- •特徵資料: 我們收集了三個資訊(居住地、身高和體重)

	居住地	身高	體重
男生1	新北市	180	90
女生 1	新北市	170	70
男生2	新北市	170	65
女生2	新竹市	160	60

	居住地	身高	體重
男生1	新北市	180	90
女生 1	新北市	170	70
男生2	新北市	170	65
女生 2	新竹市	160	60

Data processing is also a science.

"MOST IMPORTANT" is DATA.

"Garbage in, garbage out."

- How many data do I need in my projects?
 Question is what is your population?
- For instance,

Fingerprint anti-spoof

- Figure 1: Conductive artifact latex face paint with edible gold leaf coating
- Figure 2: Conductive artifact latex face paint with Bare Conductive Paint coating
- Figure 3: Conductive artifact acrylic paint with Bare Conductive Paint coating

Figure 1: Conductive artifact – latex face paint with edible gold leaf coating

Figure 2: Conductive artifact – latex face paint with Bare Conductive Paint coating

Figure 3: Conductive artifact acrylic paint with Bare Conductive Paint coating

Data Example: Fingerprint anti-spoof

Data Example: Fingerprint anti-spoof

Data Example: Fingerprint anti-spoof

上述屬於Data的品質

Data的量?

Source: Andrew Ng,

• How many data do I need in my projects?

Question is what is your population?

- How to know the population? From sampling.
- 1. CLT (中央極限定理): randomly sampling as large as possible.
- 2. Metadata-based sampling: randomly sampling with different scenarios.
- 3. Manual curation: sample data based on metadata, and manually select the most "useful" data.

Metadata

Images	Material	Recording device
	Real	Capacitive
	Gelatin	Capacitive
	Real	Optical
	Silcone	Optical

- How many data do I need in my projects?
 Question is what is your population?
- How to know the population? From sampling.
- Can you make sure the data pool approximating to population?

ANS: No, we can't.

• Can you make sure the data pool approximating to population?

ANS: No, we can't.

Based on metadata (scenarios definition), sampling data the more, the better.

The collection dataset will be randomly separated to

- 1. Training set
- 2. Testing set
- 3. Validation set (Deep learning)

Based on metadata (scenarios definition), sampling data the more, the better.

IF we got a data pool of >1 million, which possibly contains noisy or useless information, a smart selection is required. (Real Application).

Keep studying and researching.

Data (collection)

•學術界:

Research-based

- 1. Open database (ImageNet, MSCOCO, VOC, Cityscape)
- 2. Data Collection by researchers (limits)

・工業界:

Product-based

- 1. Open database (pre-trained)
- 2. Data collection in candidate device. (Device difference might be tested)
- 3. All sceneries must be considered.

How to start a machine/deep learning application

- 1. Tasks/Applications definition.
- 2. Data (collection, labeling)
- 3. Learning Model
- 4. Evaluation model

Machine Learning algorithms vs Deep Learning algorithms

Is necessary everything deep learning?

結構資料: 傳統的機器學習(SVM, Linear regression, LDA等)

非結構資料:深度學習。

怎麼選模型?

用簡單的方法先做

原因:簡單的測試做得好,用複雜的只會更好,所以用最差的先做快速測試。

基線(簡單的方法),後續會用不同常用的模型來進行訓練比較,然後挑一個模型。

在機器學習上沒有一個方法是最好的且不同領域都通用的。

特徵選得好,**簡單的線性模型**就可以分得很好,不需要複雜的模型

特徵選得不太好,需要複雜一點 的**非線性模型** 特徵選得非常不好,複雜一點的非線性模型也不能分類的好。

怎麼選模型?

結構化數據:	簡單的模型	複雜的模型
Regression	Linear regression	SVR, GDBT, XGBoost
Classification	Linear Discriminant Analysis / logistic regression	SVM, GDBT, XGBoost

非結構化數據:	簡單的模型	複雜的模型
	Backbone Network: MobileNet	Backbone Network: Inceptionv4
	Object detection: SSD	Object detection:YOLOv4
	Segmentation: Unet	Segmentation: HRNet

怎麼選模型?

1. 天縱英才: 題目一來就知道用什麼算法。

2. 後天努力: 閱讀學習,大腦充滿一堆知識。

3. Reference: 別人怎麼做你就怎麼做

Paper with code

主動學習新知 Human Learning

了解 AI 應用及其影響 ► Machine Learning

學習如何學習 Human Learning+

How to start a machine/deep learning application

- 1. Tasks/Applications definition.
- •2. Data (collection, labeling)
- 3. Learning Model
- •4. Evaluation model

Evaluation method 交叉驗證(Cross-validation, CV)

- 交叉驗證在機器學習上通常是用來驗證「你設計出來模型」的好壞。
- 1. Resubstitution
- 2. Holdout CV : Deep learning幾乎都是這種。
- 3. Leave-one-out CV
- 4. K-fold CV

交叉驗證 - Resubstitution

交叉驗證 - Holdout CV

交叉驗證 - Leave-one-out CV

交叉驗證 - K-fold CV

3-fold CV

The collection dataset will be randomly separated to

- 1. Training set (抽樣盡可能逼進母體)
- 2. Testing set (盡可能跟實際會應用的資料一樣)
- 3. Validation set (Deep learning)

如果RD驗證的測試集準確度都沒達標,開發的演算法就不需要到測試部門進行測試。

如果測試結果都不好,複雜的模型也做不出來。

請回過頭來,

- 1. 檢視目的問題和Sensor是否是合理的。(不應該發生,在開案前就應該先釐清)
- 2. 檢視收集的數據。(最常發生: class-imbalance)
- 如果是結構化數據,請採用Visualization技術看訓練和測試資料的分布情形。
- 非結構數據,請分析資料判斷的結果,補足數據。

結構化數據,請採用Visualization技術看訓練和測試資料的分布情形。 結構數據是多維度理論上無法用視覺呈現,因此可以採用PCA或是t-SNE。

https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b

非結構數據,請分析資料判斷的結果,補足數據。

檢視收集的數據:最常發生class-imbalance

假設數據量:正樣本資料9999萬筆,負樣本1萬筆。

深度學習進行batch learning。

一個batch(1000筆):正樣本有999筆,負樣本1筆。

假設正樣本loss梯度都是0.01,負樣本loss梯度為1,平均後梯度為0.010099。

模型在update的時候,負樣本的梯度會被正樣本的平均掉,怎麼學都學不到負樣本。

Q & A

