Hidden Surface Removal

CMSC 161: Interactive Computer Graphics

1st Semester 2014-2015

Institute of Computer Science

University of the Philippines - Los Baños

Lecture by James Carlo Plaras

Hidden Surface Removal

Discovery of what part of the object is visible/invisible to the viewer

Polygon-level determination

3D Objects composed of triangles

Hidden Surface Removal

Outside the view frustum

Clipping and Culling Algorithms

Inside the view frustum

Hidden Surface Removal Algorithms

Frustum shape

The extent and shape of the frustum determines how much of the 3D view space Is mapped to the screen and the type of 3D to 2D projection that takes place.

Hidden Surface Removal Approaches

Object Space Approach

Image Space Approach

Object-Space Approach

Works on geometry

Vertex-level approaches

Applied before vertices are mapped to pixels

Works on 4 cases of polygon occlusion

Object-Space Approach

Image-Space Approach

Works on fragment level

Applied after rasterization

Hidden Surface Removal in WebGL

HIDDEN SURFACE REMOVAL ALGORITHMS

Painter's Algorithm

Object Space Approach

Also known as **Priority Fill**

Based on the technique of scene painters

Painter's Algorithm

Painter's Algorithm Disadvantages

Cannot handle cyclic overlaps

Scanline Algorithm

Using an extended Odd-Even Fill version

Scanline Algorithm

Back-Face Removal

Culling of polygon facing away from the viewer

Based on the normal vector of the polygon

- Facing forward if:
 - $-90 \le \theta \le 90$
 - $\cos \theta \ge 0$
 - $n \cdot v \ge 0$

Back-Face Removal: Normal Direction

OpenGL/WebGL Exploits the property of a polygon normal

Vertices counterclockwise: Front-facing

Vertices clockwise: Back-facing

Back-Face Removal: Normal Direction

Z-Buffer Algorithm

Image-Space approach

Most used hidden-surface removal algorithm

Easy to implement

Used by OpenGL/WebGL

Z-Buffer Algorithm

DEPTH BUFFER

Z-Buffer Algorithm

```
For each face F in the scene {
For each fragment P in face F {
      if (depthBuffer[P.x][P.y] < P.depth) {</pre>
             colorBuffer[P.x][P.y] = P.color
```


			3	3						
			3	3						
		3	3	3	3					
		3	3	3	3					
	3	3	3	3	3	3				
	3	3	3	3	3	3				
3	3	3	3	3	3	3	3			

			3	3								
			3	3								
		3	3	3	3							
		3	3	3	5	5	5	5	5	5	5	
	3	3	3	3	5	5	5	5	5	5	5	
	3	3	3	3	5	5	5	5	5	5	5	
3	3	3	3	3	5	5	5	5	5	5	5	
					5	5	5	5	5	5	5	
					5	5	5	5	5	5	5	

			5	5	5	5	5	5	5	
			5	5	5	5	5	5	5	
			5	5	5	5	5	5	5	
			5	5	5	5	5	5	5	
			5	5	5	5	5	5	5	
			5	5	5	5	5	5	5	

			3	3								
			3	3								
		3	3	3	3							
		3	3	3	5	5	5	5	5	5	5	
	3	3	3	3	5	5	5	5	5	5	5	
	3	3	3	3	5	5	5	5	5	5	5	
3	3	3	3	3	5	5	5	5	5	5	5	
					5	5	5	5	5	5	5	
					5	5	5	5	5	5	5	

Z-Buffer: Depth Computation

Based on your projection matrix

Perspective

$$z' = \frac{far + near}{far - near} + \frac{1}{z} \frac{(-2 \times far \times near)}{far - near}$$

Orthographic

$$z' = 2 \times \frac{z - near}{far - near} - 1$$

Z-Buffer Advantages

Easily handles cyclic overlaps

More Hidden Surface Removal Algorithms

Binary Space Partition Trees

Warnock's Area Subdivision

Depth Sorting (generalization of Painters

Algorithm)

A-Buffer

Ongoing researches on faster HSR Algorithms...

Binary Space Partition Trees

Warnock's Area Subdivision

References

- ANGEL, E. AND SHREINER, D. 2012. Interactive computer graphics: a top-down approach with shader-based OpenGL. Addison-Wesley. 6 ed. Boston, MA.
- CANTOR, D. AND JONES, B. 2012. WebGL Beginner's Guide. Packt Publishing. Birmingham, UK.
- MATSUDA, K. AND LEA, R. 2013. WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL.. Addison-Wesley. Upper Saddle River, NJ

Lecture Slides

- LINDEMAN, R. Hidden Surface Removal: CS 543: Computer Graphics

Images

- http://i.imgur.com/ATIHeec.jpg
- http://en.wikipedia.org/wiki/File:Painter%27s_algorithm.svg
- http://en.wikipedia.org/wiki/File:Painters_problem.svg
- http://en.wikipedia.org/wiki/File:Warnock_algorithm.svg