Progetto - Fondamenti d'Informatica

Enrico Piccin - IN0501089

Anno Accademico 2021/2022

Indice

1	\mathbf{Ind}	viduazione della funzione Booleana	2
	1.1	Codifica dei termini minimi (minterm)	3
	1.2	Codifica dei termini massimi (maxterm)	4
2	Sen	plificazione dell'espressione Booleana	5
	2.1	Semplificazione per via algebrica	5
		2.1.1 Semplificazione dei <i>minterm</i>	5

1 Individuazione della funzione Booleana

A partire dalla matricola IN0501089, si procede elidenndo il prefisso IN ed individuando il numero di matricola associato: **0501089**.

Dividendo tale numero per $2^{2^4} = 65536$ si perviene al risultato seguente:

$$\frac{501089}{65536} = 7 + \mathbf{42337}$$

Avendo ricavato il resto 42337, si procede a codificarlo in binario, impiegando 16 bit, tramite successive divisioni del numero ottenuto per 2, come illustrato di seguito:

$$42337 = 21168 \cdot 2 + \boxed{1}$$

$$21164 = 10584 \cdot 2 + \boxed{0}$$

$$10584 = 5298 \cdot 2 + \boxed{0}$$

$$5298 = 2646 \cdot 2 + \boxed{0}$$

$$2646 = 1323 \cdot 2 + \boxed{0}$$

$$1323 = 661 \cdot 2 + \boxed{1}$$

$$661 = 330 \cdot 2 + \boxed{1}$$

$$330 = 165 \cdot 2 + \boxed{0}$$

$$165 = 82 \cdot 2 + \boxed{1}$$

$$82 = 41 \cdot 2 + \boxed{0}$$

$$41 = 20 \cdot 2 + \boxed{1}$$

$$20 = 10 \cdot 2 + \boxed{0}$$

$$10 = 5 \cdot 2 + \boxed{0}$$

$$5 = 2 \cdot 2 + \boxed{1}$$

$$2 = 1 \cdot 2 + \boxed{0}$$

$$1 = 0 \cdot 2 + \boxed{1}$$

 $42337_{10} = \mathbf{1010010101100001_2}$

Tabella 1: Rappresentazione del resto 42337 in binario

Pertanto, la funzione Booleana a 4 associata corrisponde alla stringa binaria di cui sopra, da cui si evincono i seguenti termini minimi (minterm) e massimi (maxterm):

		x	y	z	$w \mid$	f				x	y	z	$w \mid$	f	
m_0	\overline{xyzw}	0	0	0	0	1	μ_0	M_0	x+y+z+w	0	0	0	0	1	μ_0
m_1	$\overline{xyz}w$	0	0	0	1	0	μ_1	M_1	$x+y+z+\overline{w}$	0	0	0	1	0	μ_1
m_2	$\overline{xy}z\overline{w}$	0	0	1	0	1	μ_2	M_2	$x+y+\overline{z}+w$	0	0	1	0	1	μ_2
m_3	$\overline{xy}zw$	0	0	0	1	0	μ_3	M_3	$x + y + \overline{z} + \overline{w}$	0	0	0	1	0	μ_3
m_4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0	μ_4	M_4	$x + \overline{y} + z + w$	0	1	0	0	0	μ_4
m_5	$\overline{x}y\overline{z}w$	0	1	0	1	1	μ_5	M_5	$x + \overline{y} + z + \overline{w}$	0	1	0	1	1	μ_5
m_6	$ \overline{x}yz\overline{w} $	0	1	1	0	0	μ_6	M_6	$x + \overline{y} + \overline{z} + w$	0	1	1	0	0	μ_6
m_7	$ \overline{x}yzw $	0	1	1	1	1	μ_7	M_7	$x + \overline{y} + \overline{z} + \overline{w}$	0	1	1	1	1	μ_7
m_8	$x\overline{y}\overline{z}\overline{w}$	1	0	0	0	0	μ_8	M_8	$ \overline{x} + y + z + w $	1	0	0	0	0	μ_8
m_9	$x\overline{y}\overline{z}w$	1	0	0	1	1	μ_9	M_9	$ \overline{x} + y + z + \overline{w} $	1	0	0	1	1	μ_9
m_{10}	$x\overline{y}z\overline{w}$	1	0	1	0	1	μ_{10}	M_{10}	$ \overline{x} + y + \overline{z} + w $	1	0	1	0	1	μ_{10}
m_{11}	$x\overline{y}zw$	1	0	1	1	0	μ_{11}	M_{11}	$ \overline{x} + y + \overline{z} + \overline{w} $	1	0	1	1	0	μ_{11}
m_{12}	$xy\overline{zw}$	1	1	0	0	0	μ_{12}	M_{12}	$ \overline{x} + \overline{y} + z + w $	1	1	0	0	0	μ_{12}
m_{13}	$ xy\overline{z}w $	1	1	0	1	0	μ_{13}	M_{13}	$ \overline{x} + \overline{y} + z + \overline{w} $	1	1	0	1	0	μ_{13}
m_{14}	$ xyz\overline{w} $	1	1	1	0	0	μ_{14}	M_{14}	$ \overline{x} + \overline{y} + \overline{z} + w $	1	1	1	0	0	μ_{14}
m_{15}	$\mid xyzw \mid$	1	1	1	1	1	μ_{15}	M_{15}	$ \overline{x} + \overline{y} + \overline{z} + \overline{w} $	1	1	1	1	1	μ_{15}

Tabella 2: Funzione Booleana a 4 variabili associata alla stringa 1010010110100001₂

1.1 Codifica dei termini minimi (minterm)

Se nella tavola di verità della funzione f considerata si pone in evidenza la codifica dei termini minimi si ottiene:

		x	y	z	w	$\mid f \mid$	
m_0	\overline{xyzw}	0	0	0	0	1	μ_0
m_1	$\overline{xyz}w$	0	0	0	1	0	μ_1
m_2	$\overline{xy}z\overline{w}$	0	0	1	0	1	μ_2
m_3	$\overline{xy}zw$	0	0	0	1	0	μ_3
m_4	$\overline{x}y\overline{z}\overline{w}$	0	1	0	0	0	μ_4
m_5	$\overline{x}y\overline{z}w$	0	1	0	1	1	μ_5
m_6	$\overline{x}yz\overline{w}$	0	1	1	0	0	μ_6
m_7	$\overline{x}yzw$	0	1	1	1	1	μ_7
m_8	$x\overline{y}\overline{z}\overline{w}$	1	0	0	0	0	μ_8
m_9	$x\overline{y}\overline{z}w$	1	0	0	1	1	μ_9
m_{10}	$x\overline{y}z\overline{w}$	1	0	1	0	1	μ_{10}
m_{11}	$x\overline{y}zw$	1	0	1	1	0	μ_{11}
m_{12}	$xy\overline{zw}$	1	1	0	0	0	μ_{12}
m_{13}	$xy\overline{z}w$	1	1	0	1	0	μ_{13}
m_{14}	$xyz\overline{w}$	1	1	1	0	0	μ_{14}
m_{15}	xyzw	1	1	1	1	1	μ_{15}

Tabella 3: Codifica dei termini minimi

Pertanto, se si codificano le quaterne d'ingresso associate a ciascun termine minimo con il corrispondente intero rappresentato in notazione posizionale in base 2, è possibile indicare i termini minimi che compongono la sommatoria di prodotti usando gli interi compresi tra 0 e 2^4-1 , come illustrato di seguito:

$$f(x, y, z, w) = \sum_{i=0}^{2^4 - 1} \mu_i \cdot m_i = \sum_{i: \mu_i = 1} m_i$$

dove μ_i è il valore assunto dalla funzione in corrispondenza del termine minimo m_i e $0 \le i \le 2^n - 1$. Nel caso analizzato, si ha $m_0 = \overline{xyzw}, m_2 = \overline{xy}\overline{zw}, m_5 = \overline{x}y\overline{z}w, m_7 = \overline{x}yzw, m_9 = x\overline{y}\overline{z}w, m_{10} = x\overline{y}\overline{z}\overline{w}, m_{15} = xyzw, \mu_0 = \mu_2 = \mu_5 = \mu_7 = \mu_9 = \mu_{10} = \mu_{15} = 1, \mu_1 = \mu_3 = \mu_4 = \mu_6 = \mu_8 = \mu_{11} = 1$ $\mu_{12} = \mu_{13} = \mu_{14} = 0.$

Per cui si perviene al risultato seguente

$$f(x, y, z, w) = \sum_{i \in \{0, 2, 5, 7, 9, 10, 15\}} m_i = m_0 + m_2 + m_5 + m_7 + m_9 + m_{10} + m_{15}$$

Quindi l'espressione dei *minterm* è:

$$f(x, y, z, w) = \overline{xyzw} + \overline{xy}z\overline{w} + \overline{x}y\overline{z}w + \overline{x}yzw + x\overline{y}z\overline{w} + xyzw$$

poiché 0, 2, 5, 7, 9, 10 e 15 sono le codifiche in base 2 di 0000, 0010, 0101, 0111, 1001, 1010 e 1111.

1.2 Codifica dei termini massimi (maxterm)

Analogamente, procedendo per dualità, se nella tavola di verità della funzione f considerata si pone in evidenza la codifica dei termini massimi si ottiene:

		x	y	z	w	$\mid f \mid$	
$\overline{M_0}$	x+y+z+w	0	0	0	0	1	μ_0
M_1	$ x+y+z+\overline{w} $	0	0	0	1	0	μ_1
M_2	$ x+y+\overline{z}+w $	0	0	1	0	1	μ_2
M_3	$ x+y+\overline{z}+\overline{w} $	0	0	0	1	0	μ_3
M_4	$ x+\overline{y}+z+w $	0	1	0	0	0	μ_4
M_5	$ x + \overline{y} + z + \overline{w} $	0	1	0	1	1	μ_5
M_6	$x + \overline{y} + \overline{z} + w$	0	1	1	0	0	μ_6
M_7	$x + \overline{y} + \overline{z} + \overline{w}$	0	1	1	1	1	μ_7
M_8	$ \overline{x} + y + z + w $	1	0	0	0	0	μ_8
M_9	$ \overline{x} + y + z + \overline{w} $	1	0	0	1	1	μ_9
M_{10}	$ \overline{x} + y + \overline{z} + w $	1	0	1	0	1	μ_{10}
M_{11}	$ \overline{x} + y + \overline{z} + \overline{w} $	1	0	1	1	0	μ_{11}
M_{12}	$ \overline{x} + \overline{y} + z + w $	1	1	0	0	0	μ_{12}
M_{13}	$ \overline{x} + \overline{y} + z + \overline{w} $	1	1	0	1	0	μ_{13}
M_{14}	$ \overline{x} + \overline{y} + \overline{z} + w $	1	1	1	0	0	μ_{14}
M_{15}	$ \overline{x} + \overline{y} + \overline{z} + \overline{w} $	1	1	1	1	1	μ_{15}

Tabella 4: Codifica dei termini massimi

Analogamente a quanto già esposto, se ora si codificano le quaterne d'ingresso associate a ciascun termine massimo con il corrispondente intero rappresentato in notazione posizionale in base 2, è possibile indicare i termini massimi che compongono il prodotto di somme usando gli interi compresi tra $0 e 2^4 - 1$, come illustrato di seguito:

$$f(x, y, z, w) = \prod_{i=0}^{2^4 - 1} \mu_i \cdot M_i = \prod_{i: \mu_i = 1} M_i$$

dove μ_i è il valore assunto dalla funzione in corrispondenza del termine massimo M_i e $0 \le i \le 2^n - 1$. Nel caso analizzato, si ha $M_1 = x + y + z + \overline{w}, M_3 = x + y + \overline{z} + \overline{w}, M_4 = x + \overline{y} + z + w, M_6 = x + \overline{y} + \overline{z} + w, M_8 = \overline{x} + y + z + w, M_{11} = \overline{x} + y + \overline{z} + \overline{w}, M_{12} = \overline{x} + \overline{y} + z + w, M_{13}\overline{x} + \overline{y} + z + \overline{w}, M_{14} = \overline{x} + \overline{y} + \overline{z} + w, \mu_0 = \mu_2 = \mu_5 = \mu_7 = \mu_9 = \mu_{10} = \mu_{15} = 1, \mu_1 = \mu_3 = \mu_4 = \mu_6 = \mu_8 = \mu_{11} = \mu_{12} = \mu_{13} = \mu_{14} = 0.$

Per cui si perviene al risultato seguente

$$f(x, y, z, w) = \prod_{i \in \{1, 3, 4, 6, 8, 11, 12, 13, 14\}} M_i = M_1 \cdot M_3 \cdot M_4 \cdot M_8 \cdot M_{11} \cdot M_{12} \cdot M_{13} \cdot M_{14}$$

Quindi l'espressione dei maxterm è:

$$f(x,y,z,w) = (x+y+z+\overline{w}) \cdot (x+y+\overline{z}+\overline{w}) \cdot (x+\overline{y}+z+w) \cdot (x+\overline{y}+\overline{z}+w) \cdot (\overline{x}+y+z+w) \cdot (\overline{x}+y+z+w) \cdot (\overline{x}+\overline{y}+z+\overline{w}) \cdot (\overline{x}+\overline{y}+z+w) \cdot (\overline{x}+\overline{y}+z+\overline{w}) \cdot (\overline{x}+\overline{y}+z+w)$$

poiché 1, 3, 4, 6, 8, 11, 12, 13 e 14 sono le codifiche in base 2 di 0001, 0011, 0100, 0110, 1000, 1011, 1100, 1101 e 1110.

2 Semplificazione dell'espressione Booleana

Di seguito si espongono i 3 diversi procedimenti di semplificazione dell'espressione Booleana precedentemente ottenuta, ricondotta alla forma minima tramite l'applicazione delle relazioni fondamentali dell'Algebra Booleana (assiomi e teoremi), tramite le mappe di Karnaugh e attraverso il metodo tabellare di Quine - Mc Cluskey.

2.1 Semplificazione per via algebrica

Si procede, ora, alla semplificazione delle espressioni ottenute per via diretta, facendo uso degli assiomi A1-A7 e dei teoremi T1-T10 dell'Algebra Booleana.

2.1.1 Semplificazione dei minterm

$$f(x,y,z,w) = \overline{xyzw} + \overline{xy}z\overline{w} + \overline{x}yzw + x\overline{y}z\overline{w} + x\overline{y}z\overline{w} + xyzw$$

$$(A4 e A5) = (\overline{xyzw} + \overline{xy}z\overline{w}) + (\overline{x}y\overline{z}w + \overline{x}yzw) + x\overline{y}z\overline{w} + xyzw$$

$$(T9) = \overline{xyw} + \overline{x}yw + x\overline{y}z\overline{w} + xyzw$$

$$(A4) = \overline{xyw} + x\overline{y}z\overline{w} + \overline{x}yw + xyzw + x\overline{y}zw$$

$$(A4 e A6) = \overline{yw} \cdot (\overline{x} + xz) + yw \cdot (\overline{x} + xz) + x\overline{y}zw$$

$$(T5) = \overline{yw} \cdot (\overline{x} + z) + yw \cdot (\overline{x} + z) + x\overline{y}zw$$

$$(A4 e A6) = \overline{yw} \cdot (\overline{x} + z) + yw \cdot (\overline{x} + z) + x\overline{y}zw$$

$$(A4 e A6) = \overline{xyw} + \overline{y}z\overline{w} + \overline{x}yw + yzw + x\overline{y}zw$$

2.1.2 Semplificazione dei maxterm

$$f(x,y,z,w) = (x+y+z+\overline{w})\cdot(x+y+\overline{z}+\overline{w})\cdot(x+\overline{y}+z+w)\cdot(x+\overline{y}+\overline{z}+w)\cdot(\overline{x}+y+z+w) \\ \cdot (\overline{x}+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+\overline{y}+\overline{z}+w) \\ \cdot (\overline{x}+y+z+\overline{w})\cdot(x+y+\overline{z}+\overline{w})]\cdot[(x+\overline{y}+z+w)\cdot(x+\overline{y}+\overline{z}+w)]\cdot[(\overline{x}+y+z+w) \\ \cdot (\overline{x}+\overline{y}+z+w)]\cdot(\overline{x}+y+\overline{z}+\overline{w})\cdot(\overline{x}+\overline{y}+z+w)\cdot(\overline{x}+\overline{y}+\overline{z}+w) \\ \cdot (\overline{x}+\overline{y}+z+w)]\cdot(x+\overline{y}+w)\cdot(\overline{x}+z+w)\cdot(\overline{x}+y+z+\overline{w})\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(\overline{x}+\overline{y}+z+w) \\ \stackrel{(A4)}{=}(x+\overline{y}+w)\cdot(\overline{x}+\overline{y}+\overline{z}+w)\cdot(\overline{x}+z+w)\cdot(\overline{x}+\overline{y}+z+\overline{w})\cdot(x+y+\overline{w})\cdot(\overline{x}+y+\overline{z}+\overline{w}) \\ \stackrel{(A4)}{=}(y+w+x\cdot(\overline{x}+\overline{z})]\cdot[\overline{x}+z+w\cdot(\overline{y}+\overline{w})]\cdot[y+\overline{w}+x\cdot(\overline{x}+\overline{z})] \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}w)\cdot(y+\overline{w}+x\overline{z}) \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}+w)\cdot(\overline{y}+\overline{z}+w)\cdot(\overline{x}+y+z)\cdot(x+y+\overline{w})\cdot(y+\overline{z}+\overline{w}) \\ \stackrel{(A4)}{=}(y+w+x\overline{z})\cdot(\overline{x}+z+\overline{y}+w)\cdot(\overline{y}+\overline{z}+w)\cdot(\overline{x}+\overline{y}+z)\cdot(x+y+\overline{w})\cdot(y+\overline{z}+\overline{w}) \\ \stackrel{(A4)}{=}(y+y+\overline{w})\cdot(y+\overline{y}+x)\cdot(y+\overline{y}+z+w)\cdot(\overline{x}+y+z)\cdot(x+y+\overline{w})\cdot(y+\overline{z}+\overline{w}) \\ \stackrel{(A4)}{=}(y+y+\overline{w})\cdot(y+\overline{y}+x)\cdot(y+\overline{y}+x)\cdot(y+\overline{y}+z+w)\cdot(y+\overline{y}+z+\overline{w})$$