AUTOMATING REDISTRICTING USING AN ALGORITHMIC APPROACH

Final Project Presentation
Deven Hagen
5/21/25
Systems Lab - Yilmaz 1

PROBLEM

- States get delegates to the House proportional to their population
- State divided up into single-member districts
- Subject to partisan and racial gerrymandering [11]
 - Partisan: maps that give certain parties more power
 - Racial: maps that dilute the influence of certain demographics

Party	Republican	Democratic
Last election	12	7
Seats won	13	5
Seat change	1	▼ 2
Popular vote	2,710,070	2,793,538
Percentage	48.77%	50.28%

BACKGROUND

- Reason for bias is partisanship of state legislatures
- Independent Redistricting Commissions (IRCs) established to combat this
- Humans still have bias can we come up with a truly unbiased solution using computers?

OTHER SOLUTIONS

Two main types - heuristic and ensemble

Heuristic **Ensemble** • "Heuristic" that ranks Algorithm that creates maps based on various random maps criteria Can be used to compare a Can be thought of as map to a sample of the optimization population of all maps Result is a single map Can select maps that best with a high value for your fit your criteria heuristic

OTHER SOLUTIONS

Heuristic:

- Brian Olson's compactness-based approach [9]
- Auto-Redistrict: genetic algorithm[7]

• Ensemble:

Haas et al. -Seed-Fill-Shift-Repair (SFSR)[6]

SOURCE: U.S. Census Bureau (top), Brian Olson (bottom) GRAPHIC: The Washington Post, Published June 3, 2014

Brian Olson's

Auto-Redistrict

SFSR

WHY IS OURS BETTER?

- Novel heuristic that incorporates a wide variety of metrics
- Can compare multi-member options as well
 - Single-member: each district elects one delegate to Congress
 - Default
 - Multi-member: each district elects multiple delegates to Congress in the same election

NOVELTY

- First to use heuristics comparing single and multi-member options
- Heuristic is novel and incorporates partisanship, compactness, county splitting, and racial bias

IMPACT

- Independent redistricting commissions can use algorithm
- Allows for fairer maps with less racial and partisan bias
- Provides impartial but not binding guidance

METHOD

- Input: data from Census and Department of Elections [10]
- Transform/preprocess data
- Run algorithm
- Output: a congressional district map, with all precincts assigned

GEOID20	DISTRICT	NAME	ADJPOP	CVAP	WHITE	HISPANIC	BLACK	ASIAN	NATIVE	PACIFIC	D_VOTE_S
5.1E+10	100	Chincoteag	3357	2800	2660	75	10	C	24	0	0.34589
5.1E+10	100	Atlantic	1519	1271	1147	47	181	3	3	0	0.276382
5.1E+10	100	Greenback	2890	1746	1669	53	46	13	0	0	0.309561
5.1E+10	100	New Churc	3590	2738	1167	76	1347	92		0	0.553127
5.1E+10	100	Bloxom	1384	949	831	4	117	1	. 21		0.330986
5.1E+10	100	Parksley	1742	1041	836	39	184	4	20	0	0.378378
5.1E+10	100	Saxis	411	302	268	4	18	0	0	0	0.313729
5.1E+10	100	Mappsville	1806	1375	627	13	578	3	70	0	0.62521
5.1E+10	100	Rue	1922	1142	327	157	611	0	10	0	0.733624
5.1E+10	100	Accomac	2898	2097	1345	106	649	14	3	0	0.432487
5.1E+10	100	Tangier	440	315	315	0	0	C	0	0	0.192568
5.1E+10	100	Nandua	3720	2987	2073	212	667	4	45	0	0.440341
5.1E+10	100	Bobtown	1156	963	824	18	98	28	2	0	0.409396
5.1E+10	100	Melfa	1921	1297	732	28	429	22	8	0	0.520384
5.1E+10	100	Wachaprea	1009	878	663	30	140	C	4		0.336299
5.1E+10	100	Painter	3773	2994	1296	29	1743	4	8	0	0.627647
5.1E+10	100	Woodbrook	4043	3235	2440	35	569	174	14	0	0.693621
5.1E+10	100	Branchland	2395	1965	1580	35	325	C	14	. 0	0.757196
5.1E+10	100	Agnor-Hurt	4153	2616	1607	156	805	53	11	. 0	0.767369
5.1E+10	100	Dunlora	4419	3555	3155	70	195	130	0	0	0.750551
5.1E+10	100	Northside	5516	4593	3642	242	536	164	0	0	0.617262
5.1E+10	100	Jack Jouett	4982	3523	2974	127	309	101	. 13	0	0.643891
5.1E+10	100	University	7912	7910	5375	385	867	1259	22		0.852132

METHOD

- Use Python
- Parse .csv and .shx using Pandas, GeoPandas
- Project geospatial data so area calculations are correct
 - Conus Albers projection
- Use GerryChain to turn map into a graph and run algorithm
- Use matplotlib to visualize map created

METHOD: GERRYCHAIN

- Python library for using Markov Chain Monte Carlo methods (MCMC) with redistricting
- Stores map as a graph, decreasing runtime
- Allows for quick initial partitions
- Built-in metrics library

METHOD: GERRYCHAIN

- Can read in a GeoDataFrame or a .json file
- Input election data and population column
- Create the random initial partition

```
graph = Graph.from json("va crs corrected data.json")
graph.to json("va crs corrected data.json")
election names = ["COMP16-20"]
election columns = [["E 16-20 COMP Dem", "E 16-20 COMP Rep"]]
pop col = "ADJPOP"
myupdaters = {
    "population": updaters. Tally(pop col, alias="population"),
    "cut edges": cut edges,
    "polsby-popper": polsby popper
elections = [
    Election(name, { "Democratic": dem, "Republican": rep})
    for name, (dem, rep) in zip(election names, election columns)
election updaters = {election.name: election for election in elections}
myupdaters.update(election updaters)
total population = sum([graph.nodes[n][pop col] for n in graph.nodes])
assignment = recursive tree part(
    graph,
    range(NUMDISTRICTS),
    total population/NUMDISTRICTS,
    pop col,
    0.05
initial partition = GeographicPartition(graph, assignment, myupdaters)
```

METHOD: GERRYCHAIN

- Create proposal
- Use the SingleMetricOptimizer
 library to optimize the value of
 your heuristic
- Choose method:
 - Short bursts
 - Simulated annealing
 - Tilted runs
- Export new map

```
myproposal = partial(
   recom,
    pop col=pop col,
    pop target=total population/NUMDISTRICTS,
   epsilon=0.05,
   node repeats=2,
heur = lambda x: 20*(abs(x["COMP16-20"].efficie
optimizer = SingleMetricOptimizer(
    proposal=myproposal,
    constraints=myconstraints,
    initial state=initial partition,
   optimization metric=heur,
   maximize=False
total steps = 1000
```

```
data = [["GEOID20", "District"]]
for n in list(optimizer.best_part.graph.nodes):
    data.append([optimizer.best_part.graph.nodes[n]["GEOID20"], optimizer.best_part.assignment[n]])
with open("final.csv",'w', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(data)
```

METHOD: HEURISTIC

- Common considerations in redistricting process:
 - Population balance
 - Contiguity
 - Compactness
 - Partisan bias
 - o Racial bias
- Compound statistic:
 - Compactness
 - Polsby-Popper
 - o Partisan bias
 - Efficiency gap, Mean-Median difference, "partisan bias" metric
- Correlation between racial and partisan bias

Heuristic:

20 * the average of the three partisanship metrics + 1 - the average district Polsby-Popper score

Goal is to minimize the above

RESULTS

- Can measure maps created using a variety of metrics
 - Efficiency Gap
 - Calculates number of "wasted votes" for each party
 - Polsby-Popper Score
 - Measure of compactness circle has highest score
- Use Dave's Redistricting or PlanScore to easily calculate metrics

District	A votes	B votes	Winner	A Wasted Votes	B Wasted Votes
1	53	47	А	2	47
2	53	47	А	2	47
3	53	47	А	2	47
4	53	47	А	2	47
5	15	85	В	15	34
total	227	273	4-A, 1-B	23	222

The efficiency gap is the difference in the two party's wasted votes, divided by the total number of votes

- All votes for a losing candidate are wasted
- To win a district, 51 votes are needed, so the excess votes for the winner are wasted votes.

Efficiency gap =
$$\frac{222-23}{500} = 39.8\%$$
 in favor of Party A.

Efficiency Gap

$$PP(D) = rac{4\pi A(D)}{P(D)^2}$$

Polsby-Popper Score

RESULTS: CURRENT MAP (SC)

Bigger is	better	for the	ratings	above

				3
n	п	эt	rı	$\boldsymbol{\sim}$
IV	/ T	- 1		٠.

Reock

0.3611

• Polsby-Popper

0.2147

Metric	Value	Favors Democrats in this % of Scenarios*	More Skewed than this % of Historical Plans [‡]	More Pro-Democratic than this % of Historical Plans [‡]
Efficiency Gap	19.3% Pro-Republican	<1%	99%	1%
Declination	0.51 Pro-Republican	<1%	91%	5%

RESULTS: MY MAP (SC)

Metric

• Reock 0.4816

• Polsby-Popper 0.2891

Metric	Value	Favors Democrats in this % of Scenarios*	More Skewed than this % of Historical Plans [‡]	More Pro-Democratic than this % of Historical Plans [‡]
Efficiency Gap	5.0% Pro-Republican	34%	51%	22%
<u>Declination</u>	0.02 Pro-Democratic	68%	6%	54%

RESULTS: CURRENT MAP (IL)

RESULTS: MY MAP (IL)

LIMITATIONS

- Using precincts as building blocks for districts
 - Cannot make districts of ideal size (784,672)
- Not examining every combination of district sizes
- May be impossible to find "perfect heuristic"

NEXT STEPS

- Continue to make heuristic more complex
- Explore use of Simulated Annealing/Tilted Runs
- Create visualization of algorithm's performance for all states

CONCLUSION AND FUTURE WORK

- I was able to create a novel approach to automating redistricting to combat gerrymandering
- Future Work
 - Attempt to grade current congressional district maps
 - Put up a website for users to test out various approaches

REFERENCES

- [1] Altman, M., & McDonald, M. P. (2013). Paradoxes of political reform: Congressional redistricting in florida. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2421908
- [2] Chen, J., & Rodden, J. (2015). Cutting through the thicket: Redistricting simulations and the detection of partisan gerrymanders. Election Law Journal, 14(4).
- [3] Cirincione, C., Darling, T. A., & O'Rourke, T. G. (2000). Assessing south carolina's 1990s congressional districting. Political Geography, 19(2), 189-211. https://doi.org/10.1016/s0962-6298(99)00047-5
- [4] Duignan, B. (2024, September 21). Gerrymandering. Encyclopedia Britannica. https://www.britannica.com/topic/gerrymandering
- [5] Fifield, B., Higgins, Michael, Imai, K., & Tarr, A. (2020). Automated redistricting simulation using markov chain monte carlo. *Journal of Computational and Graphical Statistics*, 29(4), 715-728. https://doi.org/10.1080/10618600.2020.1739532
- [6] Haas, C., Hachadoorian, L., Kimbrough, S. O., Miller, P., & Murphy, F. (2020). Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation. *PloS one*, *15*(9), e0237935. https://doi.org/10.1371/journal.pone.0237935
- [7] Kevin Baas. (2018, May 11). About. AutoRedistrict. http://autoredistrict.org/
- [8] Liu, Y. Y., Cho, W. K. T., & Wang, S. (2016). PEAR: A massively parallel evolutionary computation approach for political redistricting optimization and analysis. *Swarm and Evolutionary Computation*, 30, 78-92. https://doi.org/10.1016/j.swevo.2016.04.004
- [9] Olson, B. (2020, October 17). 2010 redistricting results. BDistricting. https://bdistricting.com/2010/
- [10] Virginia data. (2024). Redistricting Data Hub. https://redistrictingdatahub.org/state/virginia
- [11] Volić, I. (2024). Making democracy count: How mathematics improves voting, electoral maps, and representation. Princeton University Press.

Q&A

Any questions?

DEMO

THANKS!