Cryptanalysis of Round Reduced Keccak

Nikhil Mittal

Under supervision of

Prof. Manindra Agrawal and Dr. Shashank Singh

IIT Kanpur

nickedes@cse.iitk.ac.in

June 9, 2019

Hash Function

• A hash function is of the form $H:\{0,1\}^* \to \{0,1\}^n$.

Hash Function

- A hash function is of the form $H: \{0,1\}^* \to \{0,1\}^n$.
- It is a deterministic function.
- It takes as input an arbitrary size string and outputs a fixed size (n) string.

Hash Function

- A hash function is of the form $H: \{0,1\}^* \to \{0,1\}^n$.
- It is a deterministic function.
- It takes as input an arbitrary size string and outputs a fixed size (n) string.
- It is used in cryptographic applications such as Authentication, Digital Signatures and Integrity etc..

 Cryptographic applications require Hash functions to satisfy the following conditions:

- Cryptographic applications require Hash functions to satisfy the following conditions:
 - **Efficiency**: Given a message m, it is easy to compute its Hash i.e. H(m).

- Cryptographic applications require Hash functions to satisfy the following conditions:
 - **Efficiency**: Given a message m, it is easy to compute its Hash i.e. H(m).
 - Preimage Resistance: Given H(m), it is computationally hard to find the message m.

- Cryptographic applications require Hash functions to satisfy the following conditions:
 - **Efficiency**: Given a message m, it is easy to compute its Hash i.e. H(m).
 - **Preimage Resistance**: Given H(m), it is computationally hard to find the message m.
 - **Second-preimage Resistance**: Given a message m, it is computationally hard to find another message m' such that H(m) = H(m').

- Cryptographic applications require Hash functions to satisfy the following conditions:
 - **Efficiency**: Given a message m, it is easy to compute its Hash i.e. H(m).
 - **Preimage Resistance**: Given H(m), it is computationally hard to find the message m.
 - Second-preimage Resistance: Given a message m, it is computationally hard to find another message m' such that H(m) = H(m').
 - Collision Resistance: It is computationally hard to find two messages m and m' such that H(m) = H(m').

- Cryptographic applications require Hash functions to satisfy the following conditions:
 - **Efficiency**: Given a message m, it is easy to compute its Hash i.e. H(m).
 - **Preimage Resistance**: Given H(m), it is computationally hard to find the message m.
 - Second-preimage Resistance: Given a message m, it is computationally hard to find another message m' such that H(m) = H(m').
 - Collision Resistance: It is computationally hard to find two messages m and m' such that H(m) = H(m').
- Hash functions having the above properties are referred to as cryptographic hash functions.

Need For Sha-3

 \bullet MD5, SHA-1, SHA-2 are very popular hash functions and are widely used.

Need For Sha-3

- MD5, SHA-1, SHA-2 are very popular hash functions and are widely used.
- In year 2005, First practical collision attacks were found on:
 - \bullet MD5, SHA-0 and SHA-1 by Xiaoyun Wang et al.

Need For Sha-3

- MD5, SHA-1, SHA-2 are very popular hash functions and are widely used.
- In year 2005, First practical collision attacks were found on:
 - MD5, SHA-0 and SHA-1 by Xiaoyun Wang et al.
- National Institute of Standards and Technology (NIST) was worried about the security of hash functions.
- \bullet Though by that time $\mathrm{SHA}\text{--}2$ family of hash functions was standardized.

Need For SHA-3

- MD5, SHA-1, SHA-2 are very popular hash functions and are widely used.
- In year 2005, First practical collision attacks were found on:
 - MD5, SHA-0 and SHA-1 by Xiaoyun Wang et al.
- National Institute of Standards and Technology (NIST) was worried about the security of hash functions.
- \bullet Though by that time $\rm SHA\text{--}2$ family of hash functions was standardized.
- \bullet SHA-2 was also based on Merkle-Damgard construction like SHA-0, SHA-1.
- There was a possibility that it could also be attacked in a similar fashion.

 With this thought, in the year 2006 NIST decided to hold a competition for the next secure hash function.

- With this thought, in the year 2006 NIST decided to hold a competition for the next secure hash function.
- \bullet In 2008, NIST announced a competition for the Secure Hash Algorithm-3 (SHA-3).

- With this thought, in the year 2006 NIST decided to hold a competition for the next secure hash function.
- In 2008, NIST announced a competition for the Secure Hash Algorithm-3 (SHA-3).
- In the year 2012, NIST announced Keccak as the winner of the competition among the five finalists viz. BLAKE, Grøstl, JH, Keccak and Skein.

- With this thought, in the year 2006 NIST decided to hold a competition for the next secure hash function.
- In 2008, NIST announced a competition for the Secure Hash Algorithm-3 (SHA-3).
- In the year 2012, NIST announced Keccak as the winner of the competition among the five finalists viz. BLAKE, Grøstl, JH, Keccak and Skein.
- \bullet Since 2015, Keccak has been standardized as $\rm SHA\textsc{-}3$ by NIST.

Keccak

- Keccak hash function is based on sponge construction.
- Sha-3 family of hash functions is based on Keccak.
- The Sha-3 family provides four hash functions:
 - SHA3-224, SHA3-256, SHA3-384 and SHA3-512.

KECCAK

- Keccak hash function is based on sponge construction.
- SHA-3 family of hash functions is based on Keccak.
- ullet The ${
 m Sha-3}$ family provides four hash functions:
 - SHA3-224, SHA3-256, SHA3-384 and SHA3-512.
- KECCAK's excellent resistance towards crypt-analytic attacks is one of the main reasons for its selection by NIST.
- The algorithm is a good mixture of linear as well as non-linear operations.

Sponge Construction

- A sponge construction consists of:
 - Permutation function f,
 - Parameter "rate" r, and
 - Padding rule pad.

Sponge Construction

- A sponge construction consists of:
 - Permutation function f,
 - Parameter "rate" r, and
 - Padding rule pad.
 - This construction produces a sponge function that takes as input a bit string M and generates a string of length I.

Figure: The sponge construction

Keccak-p Permutation

- The function f in the sponge construction is denoted by Keccak-f[b].
- b is the length of input string.
- Internally, Keccak-f[b] consists of a round function p which is applied n_r number of times.
- Keccak-f[b] function is specialization of Keccak- $p[b, n_r]$.

Keccak State

- The state input to Keccak-f[b] consists of b bits.
- The state is divided into slices.
- Each slice is of fixed size i.e., 25 bits.
- A state S, which is a b-bit string, in Keccak is usually denoted by a 3-dimensional grid of size $(5 \times 5 \times w)$.

Figure: The KECCAK State

Round Function of Keccak-p

- The round function p in Keccak comprises of 5 step mappings.
- The Keccak state undergoes some transformations specified by the step mapping.
- These step mappings are called θ , ρ , π , χ and ι .
- These transformations are applied in sequence.
- Now, we will describe these 5 step mappings in detail.

 XORs each bit in the state with the parities of two neighboring columns.

- XORs each bit in the state with the parities of two neighboring columns.
- For bit position (x, y, z), one column is $((x-1) \mod 5, z)$ and the other is $((x+1) \mod 5, (z-1) \mod w)$.

- XORs each bit in the state with the parities of two neighboring columns.
- For bit position (x, y, z), one column is $((x-1) \mod 5, z)$ and the other is $((x+1) \mod 5, (z-1) \mod w)$.
- If we have A as the input state to θ then the output state B is:

$$B[x, y, z] = A[x, y, z] \bigoplus P[(x-1) \mod 5, z]$$

$$\bigoplus P[(x+1) \mod 5, (z-1) \mod w] \qquad (1)$$

- XORs each bit in the state with the parities of two neighboring columns.
- For bit position (x, y, z), one column is $((x-1) \mod 5, z)$ and the other is $((x+1) \mod 5, (z-1) \mod w)$.
- If we have A as the input state to θ then the output state B is:

$$B[x, y, z] = A[x, y, z] \bigoplus P[(x-1) \mod 5, z]$$

$$\bigoplus P[(x+1) \mod 5, (z-1) \mod w] \qquad (1)$$

• P[x, z] represents the parity of the column (x, z).

$$P[x, z] = \bigoplus_{y=0}^{4} A[x, y, z]$$

• ρ (**rho**): This step rotates each lane by a constant value towards the MSB.

- ρ (**rho**): This step rotates each lane by a constant value towards the MSB.
- If we have A as the input state to ρ then the output state B is:
 - $B[x, y, z] = A[x, y, z + \rho(x, y) \mod w]$

- ρ (**rho**): This step rotates each lane by a constant value towards the MSB.
- If we have A as the input state to ρ then the output state B is:
 - $B[x, y, z] = A[x, y, z + \rho(x, y) \mod w]$
- $\rho(x, y)$ is the constant for lane (x, y).
- The constant value $\rho(x, y)$ is specified for each lane in the construction of KECCAK.

- ρ (**rho**): This step rotates each lane by a constant value towards the MSB.
- If we have A as the input state to ρ then the output state B is:
 - $B[x, y, z] = A[x, y, z + \rho(x, y) \mod w]$
- $\rho(x, y)$ is the constant for lane (x, y).
- The constant value $\rho(x, y)$ is specified for each lane in the construction of KECCAK.
- ullet ho is a linear step mapping.

π step mapping

- π (**pi**): It permutes the positions of lanes.
- The new position of a lane is determined by a matrix,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}, \tag{2}$$

where (x', y') is the position of lane (x, y) after π step.

 \bullet π is a linear step mapping.

χ step mapping

• χ (**chi**): Each bit in the original state is XOR-ed with a non-linear function of next two bits in the same row.

$$B[x, y, z] = A[x, y, z] \oplus ((A[(x+1) \bmod 5, y, z] \oplus 1) \cdot A[(x+2) \bmod 5, y, z])).$$
(3)

χ step mapping

• χ (**chi**): Each bit in the original state is XOR-ed with a non-linear function of next two bits in the same row.

$$B[x, y, z] = A[x, y, z] \oplus ((A[(x+1) \bmod 5, y, z] \oplus 1) \cdot A[(x+2) \bmod 5, y, z])).$$
(3)

• χ is the only non-linear operation among the 5 step mappings in Keccak.

ι step mapping

- ι (iota): This step mapping only modifies the (0, 0) lane depending on the round number.
- If we have A as the input state to ι then the output state B is:

$$B[0, 0] = A[0, 0] \oplus RC_i, \tag{4}$$

where RC_i is round constant that depends on the round number.

ι step mapping

- ι (iota): This step mapping only modifies the (0, 0) lane depending on the round number.
- If we have A as the input state to ι then the output state B is:

$$B[0, 0] = A[0, 0] \oplus RC_i, \tag{4}$$

where RC_i is round constant that depends on the round number.

The remaining 24 lanes remain unaffected.

ι step mapping

- ι (iota): This step mapping only modifies the (0, 0) lane depending on the round number.
- If we have A as the input state to ι then the output state B is:

$$B[0, 0] = A[0, 0] \oplus RC_i, \tag{4}$$

where RC_i is round constant that depends on the round number.

- The remaining 24 lanes remain unaffected.
- All the rounds are identical but the symmetry is destroyed by this step due to the addition of a round constant to a particular lane.

Specification of Keccak- $p[b, n_r]$

- Round in Keccak is given by:
 - Round $(A, i_r) = \iota (\chi (\pi (\rho (\theta (A)))), i_r)$
- It consists of n_r number of rounds of Round (A, i_r) .
- Keccak- $p[b, n_r](S)$
 - Convert S into a state array A
 - For i_r from 0 to $n_r 1$, let $A = \text{Round}(A, i_r)$
 - Convert A into string S' of length b
 - Return S'

SHA-3 Hash Function

- The Sha-3 hash function is Keccak- $\rho[b, 12 + 2 \cdot I]$
- w = b/25 and $I = \log_2(w)$
- The value of b = 1600, so we have l = 6
- Thus the f function in SHA-3 is KECCAK-p [1600, 24]
- ullet Instances of Keccak are denoted by Keccak $[r,\ c]$
- Where r = 1600 c and the capacity c is chosen to be twice the size of hash output d
- To avoid generic attacks with expected cost below 2^d
- The hash function with output length *d* is denoted by

Keccak-
$$d = \text{Keccak}[r := 1600 - 2 \cdot d, c := 2 \cdot d]$$
 (5)

pad10*1

- The padding rule followed by Keccak is pad10*1
- Rule is that the input string is appended with a 1 bit followed by some number of 0 bits and followed by 1 bit
- The asterisk in the padding rule indicates that 0 bit is either not present or is repeated as required so that the length of output string after padding is a multiple of the block length (i.e. r)

KECCAK[r:=800-384, c:=384]

• Keccak [r := 800 - 384, c := 384] =Keccak-p[800, 24][r := 800 - 384, c := 384]

Keccak[r:=800-384, c:=384]

- Keccak [r := 800 384, c := 384] =Keccak-p[800, 24][r := 800 - 384, c := 384]
- 2-round Keccak [r := 800 384, c := 384] =Keccak-p [800, 2] [r := 800 384, c := 384]

Observations

• **Observation 1:** If we know all the bits of a row then we can invert χ for that row. It is depicted below.

Figure: Computation of χ^{-1} for full row

$$a'_{i} = a_{i} \oplus (a_{i+1} \oplus 1) \cdot (a_{i+2} \oplus (a_{i+3} \oplus 1) \cdot a_{i+4})$$
 (6)

• **Observation 2:** When only one output bit is known after χ step, then we can fix the first output bit to be the same as the input bit and the second bit as 1.

Figure: Computation of χ^{-1} when only 1-bit is known in row

Observations

- Observation 3:
- a_i are the output bits of χ and a'_i are the input bits
- ullet Guo ${\it et~al.}$ observed that when 4 out of 5 output bits of χ are known
- Then we can obtain 4 linear relations in terms of a_i'

$$a'_{i} = a_{i} \oplus (a_{i+1} \oplus 1) \cdot (a_{i+2} \oplus (a_{i+3} \oplus 1) \cdot a_{i+4})$$
 (7)

- If the values of a_0 , a_1 , a_2 , a_3 are known
- Using the Equation 7, we can eliminate the expression a_4 from the rest of the equations
- Hence obtain 4 linear relations

Notations

- State is represented by 25 lanes
- Each lane is represented by a variable which is a 32-bit array
- ullet A variable with a number in round bracket " (\cdot) " represents the shift of the bits in array towards MSB
- A variable with a number in square bracket "[·]" represents the bit value of the variable at that index.
- If there are multiple numbers in the square bracket then it represents the corresponding bit values.

2 rounds of Keccak[r:=800-384,c:=384]

Figure: Two rounds of Keccak[r := 800 - 384, c := 384]

We will discuss a preimage attack on above structure

Final State of 2-round Keccak[r:=800-384,c:=384]

• $c = 384 \rightarrow d = 192 \rightarrow \text{hash of 6 lanes}$

Figure: The Final Hash State for Keccak[r := 800 - 384, c := 384]

Initial State of 2-round Keccak[r:=800-384,c:=384]

• $r = 800 - 384 \rightarrow r = 416 \rightarrow \text{Message block of } 13 \text{ lanes}$

0	0	0	0	0
0	0	0	0	0
a_1	b_1	<i>c</i> ₂	0	0
a ₂	b_2	<i>c</i> ₁	d_1	e_1
a ₀	b_0	<i>c</i> ₀	d_0	e_0

Figure: Setting of Initial State in the Attack

Attack

- Our aim is to find the values of a_0 , a_1 , a_2 , b_0 , b_1 , b_2 , c_0 , c_1 , c_2 , d_0 , d_1 and e_0 , e_1 variables in the initial state
- Such that they lead to a final state having first six lanes as h_0 , h_1 , h_2 , h_3 , h_4 and h_5
- We follow the basic idea of the attack given by Naya et al. in 2011
- 2 rounds of Keccak[r := 800 384, c := 384]
 - Best-known attack, has a time complexity of $O(2^{64})$
 - Based on the idea of Linear structures given by Jian Guo et al. in 2016

First round θ step mapping

- ullet step mapping diffuses message bits to full state
- Aim: Control the diffusion
- By adding constraints on message bits
- Conditions to make column parity zero:

$$a_2 = a_0 \oplus a_1, \quad b_2 = b_0 \oplus b_1, \quad c_2 = c_0 \oplus c_1$$

 $d_1 = 0, \quad d_0 = 0 \quad \text{and} \quad e_1 = e_0$ (8)

State 1 to State 2

0	0	0	0	0		c ₀ (30)	$d_1(23)$	0	0	0
0	0	0	0	0	$\xrightarrow{\theta,\pi,\rho}$	e ₀ (27)	a ₂ (4)	b ₁ (10)	0	0
a ₁	<i>b</i> ₁	<i>c</i> ₂	0	0		b ₀ (1)	c ₁ (6)	0	0	0
a ₂	<i>b</i> ₂	<i>c</i> ₁	d_1	e ₁		$d_0(28)$	e ₁ (20)	a ₁ (3)	0	0
a ₀	<i>b</i> ₀	<i>c</i> ₀	d_0	e ₀		a ₀ (0)	b ₂ (12)	c ₂ (11)	0	0

State 1 State 2

Figure: Preimage attack on 2-round Keccak[r := 800 - 384, c := 384]

χ and ι inverse

State 4

Figure: Inversion of hash through $\chi^{-1} \circ \iota^{-1}$

State 4 to State 3

										h' ₄ (18)
									h'_3(11)	
					$\xrightarrow{\iota^{-1}, \chi^{-1}} \xrightarrow{\pi^{-1}, \rho^{-1}}$			h' ₂ (21)		
h ₅					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		h'_1(20)			1
h ₀	h ₁	h ₂	h ₃	h ₄		$h'_{0}(0)$			h' ₅ (4)	

State 4 State 3

State 1 to 4

Figure: Preimage attack on 2-round Keccak[r := 800 - 384, c := 384]

State 2 to State 3

c ₀ (30)	d ₁ (23)	0	0	0						h' ₄ (18)
e ₀ (27)	a ₂ (4)	b ₁ (10)	0	0					h'_3(11)	
b ₀ (1)	c ₁ (6)	0	0	0	$\xrightarrow{\chi, \iota, \theta}$			h' ₂ (21)		
$d_0(28)$	e ₁ (20)	a ₁ (3)	0	0			h'_1(20)			1
a ₀ (0)	b ₂ (12)	c ₂ (11)	0	0		$h'_{0}(0)$			h' ₅ (4)	

State 2 State 3

Figure: Intermediate States in 2-round preimage attack on $\ensuremath{\mathrm{KECCAK}\text{--}384}$

• Fix d_0 , d_1 as constants (with condition that $d_0 = d_1$).

- Fix d_0, d_1 as constants (with condition that $d_0 = d_1$).
- In state 2, we have $11 \cdot 32$ free variables.

- Fix d_0, d_1 as constants (with condition that $d_0 = d_1$).
- In state 2, we have $11 \cdot 32$ free variables.
- \bullet And we need to satisfy $7\cdot 32$ Boolean equations and $4\cdot 32$ column parity conditions.

- Fix d_0 , d_1 as constants (with condition that $d_0 = d_1$).
- In state 2, we have $11 \cdot 32$ free variables.
- And we need to satisfy $7 \cdot 32$ Boolean equations and $4 \cdot 32$ column parity conditions.
- So, we expect a solution.

- Fix d_0 , d_1 as constants (with condition that $d_0 = d_1$).
- In state 2, we have $11 \cdot 32$ free variables.
- And we need to satisfy $7 \cdot 32$ Boolean equations and $4 \cdot 32$ column parity conditions.
- So, we expect a solution.
- We do find the possible solution subspace.

• In state 3, the values of $i^{\rm th}$ -slice depend on the $(i-1)^{\rm th}$ and $i^{\rm th}$ -slice of state 2.

• In state 3, the values of $i^{\rm th}$ -slice depend on the $(i-1)^{\rm th}$ and $i^{\rm th}$ -slice of state 2.

• We first find the set of input message bits which satisfy the small collection of consecutive slices of state 3.

- In state 3, the values of $i^{\rm th}$ -slice depend on the $(i-1)^{\rm th}$ and $i^{\rm th}$ -slice of state 2.
- We first find the set of input message bits which satisfy the small collection of consecutive slices of state 3.
- We then merge the solutions to find message bits which satisfy large collection of consecutive slices.

• Consider a group of 3 slices (for example take the first 3 slices).

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
 - $a_0[0,1,2]$, $a_1[3,4,5]$, $a_2[4,5,6]$
 - $b_0[1,2,3]$, $b_1[10,11,12]$, $b_2[12,13,14]$
 - $c_0[30, 31, 0], c_1[6, 7, 8], c_2[11, 12, 13]$
 - $\bullet \ e_0[27,28,29], \ e_1[20,21,22]$

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
 - $a_0[0,1,2]$, $a_1[3,4,5]$, $a_2[4,5,6]$
 - $b_0[1,2,3]$, $b_1[10,11,12]$, $b_2[12,13,14]$
 - $c_0[30, 31, 0], c_1[6, 7, 8], c_2[11, 12, 13]$
 - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
 - $a_0[0,1,2]$, $a_1[3,4,5]$, $a_2[4,5,6]$
 - $b_0[1,2,3]$, $b_1[10,11,12]$, $b_2[12,13,14]$
 - $c_0[30, 31, 0], c_1[6, 7, 8], c_2[11, 12, 13]$
 - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed
- Furthermore there is no dependency between these message bits

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
 - $a_0[0,1,2]$, $a_1[3,4,5]$, $a_2[4,5,6]$
 - $b_0[1,2,3]$, $b_1[10,11,12]$, $b_2[12,13,14]$
 - $c_0[30, 31, 0], c_1[6, 7, 8], c_2[11, 12, 13]$
 - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed
- Furthermore there is no dependency between these message bits
- ullet Thus the total possible solutions for this 3-slice $=2^{33-2\cdot7}=2^{19}$

• This is obtained by merging two groups of 3 slices

- This is obtained by merging two groups of 3 slices
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
 - $a_0[0-5]$, $a_1[3-8]$, $a_2[4-9]$
 - $b_0[1-6]$, $b_1[10-15]$, $b_2[12-17]$
 - $c_0[30-3]$, $c_1[6-11]$, $c_2[11-16]$
 - $e_0[27-0]$, $e_1[20-25]$

- This is obtained by merging two groups of 3 slices
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
 - $a_0[0-5]$, $a_1[3-8]$, $a_2[4-9]$
 - $b_0[1-6]$, $b_1[10-15]$, $b_2[12-17]$
 - $c_0[30-3]$, $c_1[6-11]$, $c_2[11-16]$
 - $e_0[27-0]$, $e_1[20-25]$
- During merging, we get to compute the bit values of slice 3 of the State 3 as well.

- This is obtained by merging two groups of 3 slices
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
 - $a_0[0-5]$, $a_1[3-8]$, $a_2[4-9]$ • $b_0[1-6]$, $b_1[10-15]$, $b_2[12-17]$
 - $c_0[30-3]$, $c_1[6-11]$, $c_2[11-16]$
 - $e_0[27-0]$, $e_1[20-25]$
- During merging, we get to compute the bit values of slice 3 of the State 3 as well.
- Since, we already have the correct bit values of slice 3 of the State 3, and there is dependency between the above message bit variables, we end up having total possible solutions $= 2^{2 \cdot 19 2 7} = 2^{29}$.
- There is dependency between bits $a_0[4,5]$, $a_1[4,5]$ and $a_2[4,5]$.

• Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices
- Consider, for example, the first 12 slices. It contain the following message bits:
 - $a_0[0-11]$, $a_1[3-14]$, $a_2[4-15]$
 - $b_0[1-12]$, $b_1[10-21]$, $b_2[12-23]$
 - $c_0[30-9]$, $c_1[6-17]$, $c_2[11-22]$
 - $e_0[27-6]$, $e_1[20-31]$

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices
- Consider, for example, the first 12 slices. It contain the following message bits:
 - $a_0[0-11]$, $a_1[3-14]$, $a_2[4-15]$
 - $b_0[1-12]$, $b_1[10-21]$, $b_2[12-23]$
 - $c_0[30-9]$, $c_1[6-17]$, $c_2[11-22]$
 - $e_0[27-6]$, $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices
- Consider, for example, the first 12 slices. It contain the following message bits:
 - $a_0[0-11]$, $a_1[3-14]$, $a_2[4-15]$
 - $b_0[1-12]$, $b_1[10-21]$, $b_2[12-23]$
 - $c_0[30-9]$, $c_1[6-17]$, $c_2[11-22]$
 - $e_0[27-6]$, $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3
- Similar to 6-slice, the bit variables are not independent
- The bit variables a_0 , a_1 , $a_2[6,7,8,9]$, b_0 , b_1 , $b_2[12]$, $e_0[27-31]$ and $e_1[27-31]$ are dependent

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices
- Consider, for example, the first 12 slices. It contain the following message bits:
 - $a_0[0-11]$, $a_1[3-14]$, $a_2[4-15]$
 - $b_0[1-12]$, $b_1[10-21]$, $b_2[12-23]$
 - $c_0[30-9]$, $c_1[6-17]$, $c_2[11-22]$
 - $e_0[27-6]$, $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3
- Similar to 6-slice, the bit variables are not independent
- The bit variables a_0 , a_1 , $a_2[6,7,8,9]$, b_0 , b_1 , $b_2[12]$, $e_0[27-31]$ and $e_1[27-31]$ are dependent
- Hence, the total possible solutions = $2^{2 \cdot 29 10 7} = 2^{41}$

This is obtained by merging two groups of 12 slices

- This is obtained by merging two groups of 12 slices
- For example, consider the first 24 slices i.e.,
 - $a_0[0-23]$, $a_1[3-26]$, $a_2[4-27]$
 - $b_0[1-24]$, $b_1[10-1]$, $b_2[12-3]$
 - $c_0[30-21]$, $c_1[6-29]$, $c_2[11-2]$
 - $e_0[27-18]$, $e_1[20-11]$

- This is obtained by merging two groups of 12 slices
- For example, consider the first 24 slices i.e.,
 - $a_0[0-23]$, $a_1[3-26]$, $a_2[4-27]$
 - $b_0[1-24]$, $b_1[10-1]$, $b_2[12-3]$
 - $c_0[30-21]$, $c_1[6-29]$, $c_2[11-2]$
 - $e_0[27-18]$, $e_1[20-11]$
- This is very much similar to the 12 slice solution
- In this case we get 34 dependencies
- The total number of possible solutions is equal to $2^{2\cdot 41-34-7}=2^{41}$

• Thus, using above method, we find the possible solutions for the remaining 6 slices and 2 slices

- Thus, using above method, we find the possible solutions for the remaining 6 slices and 2 slices
- For finding the solution for the last consicutive 8 slices, we merge possible solution of its consituent 6-slice and 2-slice

- Thus, using above method, we find the possible solutions for the remaining 6 slices and 2 slices
- For finding the solution for the last consicutive 8 slices, we merge possible solution of its consituent 6-slice and 2-slice
- Final solution space is obtained by merging the solution space of first 24 slices and the last 8 slices

- Thus, using above method, we find the possible solutions for the remaining 6 slices and 2 slices
- For finding the solution for the last consicutive 8 slices, we merge possible solution of its consituent 6-slice and 2-slice
- Final solution space is obtained by merging the solution space of first 24 slices and the last 8 slices
- Space complexity of the attack = 2^{42}

- Thus, using above method, we find the possible solutions for the remaining 6 slices and 2 slices
- For finding the solution for the last consicutive 8 slices, we merge possible solution of its consituent 6-slice and 2-slice
- Final solution space is obtained by merging the solution space of first 24 slices and the last 8 slices
- Space complexity of the attack = 2^{42}
- Time complexity of the attack = 2^{44}

Conclusion

• We have presented a preimage attack on the 2 rounds of round reduced Keccak[r := 800 - 384, c := 384].

Conclusion

• We have presented a preimage attack on the 2 rounds of round reduced Keccak[r := 800 - 384, c := 384].

A practical attack with attack complexity of 2⁴⁴

Conclusion

- We have presented a preimage attack on the 2 rounds of round reduced Keccak[r := 800 384, c := 384].
- A practical attack with attack complexity of 2⁴⁴
- Future work: Variant(s) of this attack for more rounds of KECCAK.

Questions?

Thank You