

MB110-224.8A

Модуль аналогового ввода

Руководство по эксплуатации

11.2022 версия 1.19

Содержание

Предупреждающие сообщения	4
Используемые аббревиатуры	5
Введение	6
1 Назначение	7
2 Технические характеристики и условия эксплуатации	8
2.1 Технические характеристики	
2.2 Гальваническая изоляция	
2.3 Условия эксплуатации	
3 Меры безопасности	12
4 Монтаж и демонтаж	13
4.1 Установка	
4.2 Отсоединение клеммных колодок	14
4.3 «Быстрая» замена	14
5 Подключение	15
5.1 Порядок подключения	
5.2 Рекомендации по подключению	15
5.3 Назначение контактов клеммника	15
5.4 Подключение питания	17
5.4.1 Питание переменного тока 230 В	17
5.4.2 Питание постоянного тока 24 В	17
5.5 Подключение датчиков	17
5.5.1 Общие сведения	17
5.5.2 Термометр сопротивления (ТС)	17
5.5.3 Термоэлектрический преобразователь (ТП)	
5.5.4 Активный датчик с выходом в виде напряжения или тока	19
5.5.5 Датчик положения резистивного типа	
5.5.6 Дискретный датчик типа «сухой контакт»	
5.6 Подключение по интерфейсу RS-485	
6 Устройство и принцип работы	22
6.1 Принцип работы	
6.2 Индикация	22
7 Настройка	23
7.1 Конфигурирование	
7.2 Конфигурационные и оперативные параметры	24
7.3 Включение датчика в список опроса	24
7.4 Установка диапазона измерения	25
7.5 Настройка цифровой фильтрации измерений	25
7.6 Коррекция измерительной характеристики датчиков	27
7.7 Восстановление заводских сетевых настроек	29
8 Интерфейс RS-485	30
8.1 Базовый адрес прибора в сети RS-485	30
8.2 Протокол ОВЕН	30
8.3 Протокол Modbus	31
8.4 Протокол DCON	32
8.5 Диагностика работы датчиков и исключительные ситуации	
9 Техническое обслуживание	35
9.1 Общие указания	35

9.2 Юстировка	35
9.2.1 Общие сведения	
9.2.2 Юстировка датчика положения	
10 Транспортирование и хранение	36
11 Упаковка	
12 Маркировка	37
13 Комплектность	
14 Гарантийные обязательства	37
ПРИЛОЖЕНИЕ А. Настраиваемые параметры	38
ПРИЛОЖЕНИЕ Б. Оперативные параметры протокола ОВЕН	41
ПРИЛОЖЕНИЕ В. Регистры обмена по протоколу Modbus Модельный протоколу Modbus	42

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о непосредственной угрозе опасной ситуации, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры

АЦП – аналого-цифровой преобразователь.

БП – блок питания.

ВЭ – выходной элемент.

HCX – номинальная статическая характеристика.

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ПО – программное обеспечение.

ТП – термоэлектрический преобразователь.

ТС – термопреобразователь сопротивления.

ШИМ – широтно-импульсная модуляция.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием модуля аналогового ввода МВ110-224.8А (в дальнейшем по тексту именуемого «прибор», «модуль»).

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

1 Назначение

Прибор предназначен для измерения аналоговых сигналов, преобразования измеренных параметров в значения физической величины и последующей их передачи по сети RS-485.

Прибор относится к изделиям государственной системы промышленных приборов и средств автоматизации.

Прибор зарегистрирован в Государственном реестре средств измерений. Свидетельство RU.C.34.004. А № 48323 от 02 октября 2012 г.

Прибор выпускается согласно ТУ 4217-018-46526536-2009.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика	Значение			
Питание				
Напряжение питания:				
• переменного тока	от 90 до 264 В (номинальное 230 В), частота			
	от 47 до 63 Гц			
• постоянного тока	от 18 до 30 В (номинальное 24 В)			
Потребляемая мощность, не более	6 BA			
Интерс	р ейсы			
Интерфейс связи с Мастером сети	RS-485			
Максимальное количество приборов,				
одновременно подключаемых к сети RS-485,	32			
не более				
Максимальная скорость обмена по интерфейсу	115000 5:17/0			
RS-485	115200 бит/с			
Протоколы связи, используемые для передачи	DCON Modbus ASCII Modbus DTII OPELI			
информации	DCON, Modbus-ASCII, Modbus-RTU, OBEH			
Bxo	рды			
Количество аналоговых каналов измерения	8			
Тип входа	Универсальный			
Типы поддерживаемых сигналов	См. таблицу 2.2			
Разрядность АЦП	16 бит			
Время опроса одного входа, не более:*				
•TC	0,9 c			
• ТП и унифицированные сигналы постоянного напряжения и тока	0,6 c			
Предел основной приведенной погрешности				
при измерении:				
• T∏	± 0,5 %			
 ТС и унифицированными сигналами постоянного напряжения и тока 	± 0,25 %			
Общие па	раметры			
Габаритные размеры	(63 × 110 × 75) ± 1 мм			
Степень защиты корпуса:				
• со стороны передней панели	IP20			
• со стороны клеммной колодки	IP00			
Средняя наработка на отказ	60 000 ч			
Средний срок службы	10 лет			
Масса, не более	0,5 кг			

i

ПРИМЕЧАНИЕ

* Опрос входов происходит последовательно, то есть опрос 8 входов займет время, равное сумме опросов входов с 1 по 8.

Таблица 2.2 – Датчики и входные сигналы

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной погрешности	
Термометры сопротивления согласно ГОСТ 6651 или TC согласно ГОСТ 6651*				
Cu50 (α = 0,00426 °C ⁻¹)	−50+200 °C			
50M (α = 0,00428 °C ⁻¹)	−180…+200 °C			
Pt50 (α = 0,00385 °C ⁻¹)	−200…+850 °C			
50Π (α = 0,00391 °C ⁻¹)	−200…+850 °C			
Cu100 (α = 0,00426 °C ⁻¹)	−50+200 °C			
100M (α = 0,00428 °C ⁻¹)	−180…+200 °C			
Pt100 (α = 0,00385 °C ⁻¹)	–200…+850 °C			
100Π (α = 0,00391 °C ⁻¹)	−200…+850 °C			
100H (α = 0,00617 °C ⁻¹)	−60+180 °C			
Pt500 (α = 0,00385 °C ⁻¹)	–200…+850 °C	0.004.00	2.25.0/	
500Π (α = 0,00391 °C ⁻¹)	–250+1100 °C	0,001 °C	± 0,25 %	
Cu500 (α = 0,00426 °C ⁻¹)	−50+200 °C			
500M (α = 0,00428 °C ⁻¹)	–180…+200 °C			
500H (α = 0,00617 °C ⁻¹)	−60+180 °C			
Cu1000 (α = 0,00426 °C ⁻¹)	−50+200 °C			
$1000M (\alpha = 0.00428 °C^{-1})$	–180…+200 °C			
Pt1000 (α = 0,00385 °C ⁻¹)	–200…+850 °C			
1000 Π (α = 0,00391 °C ⁻¹)	–200…+850 °C			
Ni 1000 (α = 0,00617 °C ⁻¹)	−60+180 °C			
ТСМ гр. 23	−50+200 °C			
	ТП согласно ГОС	T P 8.585	l	
TXK (L)	–200…+800 °C			
ТЖК (Ј)	–200+1200 °C			
THH (N)	–200+1300 °C			
TXA (K)	–200…+1360 °C			
ТПП (S)	−50+1750 °C			
ТПП (R)	−50+1750 °C	0,001 °C	± 0,5 %	
TMK (T)	−250+400 °C			
ТПР (В)	+200+1800 °C			
TBP (A-1)	0+2500 °C			
TBP (A-2)	0+1800 °C			
TBP (A-3)	0+1800 °C			
Уни	фицированные сигналы (согласно ГОСТ 26.011		
01 B	0100 %			
05 мА	0100 %	0,001 %	± 0,25 %	
020 мА	0100 %		_ 5,25 /5	
420 мА	0100 %	HOTOGWOUNG.		
_50+50 мВ	Сигнал постоянного 0100 %		± 0.25 0/	
Дискретные датчики с выходом типа «сухой контакт» Датчики контактные О и 100 Не устанавливается —				
Haraniki kontaktubic	0 и 100	Не устанавливается		

Продолжение таблицы 2.2

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной погрешности
	Датчики положения	я задвижек	
Резистивный (от 25 до 900	o= 2.0 =o 400**		
Ом)	от 2,8 до 100**		
Резистивный (от 25 до	or 1.26 no 100**	4	± 0,25 %
2000 Ом)	от 1,26 до 100**	l l	± 0,25 /6
Токовый от 0 (4) до 20 мА	от 0 до 100		
Токовый от 0 до 5 мА	от 0 до 100		

$\lceil i \rceil$

ПРИМЕЧАНИЕ

- * Приборы, работающие с ТС с НСХ согласно ГОСТ 6651, предназначены для использования в странах СНГ.
- ** Диапазон сопротивления от 0 до 25 Ом воспринимается прибором как короткое замыкание датчика.

2.2 Гальваническая изоляция

Прибор имеет следующие группы гальванически изолированных цепей:

- цепи питания прибора;
- цепи интерфейса RS-485;
- цепи измерительных входов.

Электрическая прочность изоляции цепей 1500 В.

2.3 Условия эксплуатации

Условия эксплуатации:

- температура окружающего воздуха от -10 до +55 °C;
- относительная влажность воздуха не более 80 % (при +25 °C и более низких температурах без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 ГОСТ Р 52931.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения B4 ГОСТ Р 52931.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 ГОСТ Р 52931.

По электромагнитной совместимости модули относятся к оборудованию класса А ГОСТ Р 51522. Допускается при подаче импульсных помех кратковременное прекращение обмена по сети RS-485. Обмен должен восстанавливаться сразу по окончании действия помехи.

ПРЕДУПРЕЖДЕНИЕ
В условиях сильных электромагнитных помех или в ситуации, когда не удалось обеспечить должный уровень защиты от них, возможно стирание данных, хранящихся в энергонезависимой памяти прибора. Эти данные (в основном конфигурационные параметры) могут быть восстановлены с помощью ПО «Конфигуратор М110».

3 Меры безопасности

ВНИМАНИЕ

На клеммнике присутствует опасное для жизни напряжение величиной до 250 В. Прибор, изготовленный в корпусе щитового крепления, должен устанавливаться в щитах управления, доступных только квалифицированным специалистам. Любые подключения к прибору и работы по его техническому обслуживанию производятся только при отключенном питании прибора и подключенных к нему устройств.

По способу защиты от поражения электрическим током прибор соответствует классу II ГОСТ 12.2.007.0.

Во время эксплуатации, технического обслуживания и поверки следует соблюдать требования следующих документов:

- ΓΟCT 12.3.019;
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора.

ПРЕДУПРЕЖДЕНИЕ

Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж и демонтаж

4.1 Установка

Прибор может быть установлен на DIN-рейке 35 мм или закреплен на внутренней стенке шкафа с помощью винтов.

Для установки прибора на DIN-рейку следует:

- 1. Подготовить место на DIN-рейке для установки прибора.
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке до фиксации защелки.

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 4.1 – Габаритные и установочные размеры

4.2 Отсоединение клеммных колодок

Для отсоединения клеммных колодок следует:

- 1. Отключить питание модуля и подключенных к нему устройств.
- 2. Поднять крышку.
- 3. Выкрутить винты.
- 4. Снять колодку, как показано на рисунке 4.2.

Рисунок 4.2 - Отделение съемных частей клемм

4.3 «Быстрая» замена

Конструкция клеммника позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Открутить крепежные винты по краям обеих клеммных колодок прибора.
- 3. Отделить съемную часть каждой колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Снять прибор с DIN-рейки или вынуть прибор из щита.
- 5. На место снятого прибора установить другой с предварительно удаленными разъемными частями клеммных колодок.
- 6. Подсоединить к установленному прибору снятые части клеммных колодок с подключенными внешними линиями связи.
- 7. Закрутить крепежные винты по краям обеих клеммных колодок.

5 Подключение

5.1 Порядок подключения

Для подключения прибора следует:

- 1. Подсоединить прибор к источнику питания.
- 2. Подсоединить датчики к входам прибора.
- 3. Подсоединить линии связи интерфейса RS-485.
- 4. Подать питание на прибор.

5.2 Рекомендации по подключению

Внешние связи следует монтировать проводом сечением не более 0,75 мм². Для многожильных проводов следует использовать наконечники.

Рисунок 5.1 – Рекомендации для проводов

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей следует подключать к контакту функционального заземления (FE) со стороны источника сигнала;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

Монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии прокладывать по схеме «звезда» с обеспечением хорошего контакта к заземляемому элементу;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой «Общая» и заземляющие линии.

5.3 Назначение контактов клеммника

Общий вид прибора с указанием номеров клемм и расположения переключателей представлен на рисунке ниже. Для доступа к клеммам и переключателям следует открыть защитную крышку на лицевой панели прибора.

Рисунок 5.2 – Назначение контактов клеммника

Таблица 5.1 – Назначение контактов клеммника прибора

Nº	Название	Назначение	Nº	Название	Назначение
		Питание ~90264 В			
1	PWR-	или минус питания	13	В	RS-485 линия В
		1830 B			
		Питание ~90264 В			
2	PWR+	или плюс питания	14	Α	RS-485 линия A
		−1830 B			
3	AI1-1	Вход 1–1	15	AI5-1	Вход 5–1
4	AI1-2	Вход 1–2	16	AI5-2	Вход 5–2
5	AI-R	Вход R	17	AI-R	Вход R
6	AI2-1	Вход 2–1	18	AI6-1	Вход 6–1
7	AI2-2	Вход 2–2	19	Al6-2	Вход 6–2
8	AI3-1	Вход 3–1	20	AI7-1	Вход 7–1
9	AI3-2	Вход 3–2	21	AI7-2	Вход 7–2
10	AI-R	Вход R	22	AI-R	Вход R
11	AI4-1	Вход 4–1	23	AI8-1	Вход 8–1
12	Al4-2	Вход 4–2	24	AI8-2	Вход 8–2

ПРИМЕЧАНИЕ

Все клеммы AI-R соединены между собой внутри прибора, подключать датчики можно к любой из них.

Таблица 5.2 – Назначение переключателей

Переключатель	Назначение
1	Восстановление заводских сетевых настроек. В заводском положении переключатель снят (заводские сетевые настройки отключены, см. раздел 7.7)
2	Не используется
3	Не используется

5.4 Подключение питания

5.4.1 Питание переменного тока 230 В

Прибор следует питать напряжением 230 В переменного тока от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования.

Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

5.4.2 Питание постоянного тока 24 В

Прибор следует питать напряжением 24 В постоянного тока от локального источника питания подходящей мощности.

Источник питания следует устанавливать в том же шкафу электрооборудования, в котором устанавливается прибор.

5.5 Подключение датчиков

5.5.1 Общие сведения

Входные измерительные устройства в приборе являются универсальными, т. е. к ним можно подключать любые первичные преобразователи (датчики) из перечисленных в таблице 2.2. К входам прибора можно подключить одновременно восемь датчиков разных типов в любых сочетаниях.

После подключения датчикам присваиваются порядковые номера тех входов прибора, с которыми они соединены (входу 1 соответствует датчик № 1, входу 2 – датчик № 2 и т. д.).

ПРЕДУПРЕЖДЕНИЕ

Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчик», перед подключением к клеммнику прибора их жилы следует на 1–2 секунды соединить с винтом функционального заземления (FE) щита.

Во время проверки исправности датчика и линии связи следует отключить прибор от сети питания. Чтобы избежать выхода прибора из строя во время «прозвонки» связей, следует использовать измерительные устройства с напряжением питания не более 4,5 В. Для более высоких напряжений питания этих устройств отключение датчика от прибора обязательно.

Параметры линии соединения прибора с датчиком приведены в таблице ниже.

Таблица 5.3 – Параметры линии связи прибора с датчиками

Тип датчика	Длина линий, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
тс	100	15	Трехпроводная, провода равной длины и сечения
тп	20	100	Термоэлектродный кабель (компенсационный)
Унифицированный сигнал постоянного тока	100	100	Двухпроводная
Унифицированный сигнал напряжения постоянного тока	100	5	Двухпроводная

5.5.2 Термометр сопротивления (ТС)

Выходные параметры ТС определяются их НСХ, стандартизованными ГОСТ Р 8.625.

Чтобы избежать влияния сопротивлений соединительных проводов на результаты измерения температуры, подключение датчика к прибору следует производить по трехпроводной схеме. К одному из выводов ТС подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу — третий соединительный провод. Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу (достаточно использовать одинаковые провода равной длины).

Рисунок 5.3 – Схема подключения ТС по трехпроводной схеме

5.5.3 Термоэлектрический преобразователь (ТП)

Выходные параметры ТП определяются их НСХ, стандартизованными ГОСТ Р 8.585.

ПРЕДУПРЕЖДЕНИЕ

Для работы с прибором могут быть использованы только ТП с изолированными и незаземленными рабочими спаями, так как отрицательные выводы их свободных концов объединены между собой на входе прибора.

Рисунок 5.4 – Схема подключения ТП

Если подключение свободных концов ТП непосредственно к контактам прибора невозможно, то ТП следует соединять с прибором с помощью компенсационных термоэлектродных проводов или кабелей с обязательным соблюдением полярности их включения. Использование термоэлектродных кабелей позволяет увеличить длину проводников термопары и «перенести» ее свободные концы к клеммнику прибора.

Для корректного вычисления параметров в схеме предусмотрена автоматическая коррекция показаний прибора по температуре свободных концов ТП. Температуру свободных концов ТП измеряет датчик, расположенный на плате прибора. Автоматическая коррекция обеспечивает правильные показания прибора с случае изменения температуры окружающей его среды.

В некоторых случаях (например, во время поверки прибора) автоматическая коррекция по температуре свободных концов термопар может быть отключена установкой в параметре **CJ-. С** значения **0** (см. приложение Настраиваемые параметры).

5.5.4 Активный датчик с выходом в виде напряжения или тока

Активные датчики следует питать от внешнего блока питания.

Активные преобразователи с выходным сигналом в виде постоянного напряжения (-50...+50 мВ или 0...1 В) и сопротивления (25... 2000 Ом) можно подключать непосредственно к входным контактам прибора.

ПРЕДУПРЕЖДЕНИЕ

Неправильный полярность подключения датчика тока может привести к выходу прибора из строя.

Рисунок 5.5 – Схема подключения активного датчика с выходом в виде напряжения –50...+50 мВ или 0...1 В

Рисунок 5.6 – Схема подключения активного датчика с токовым выходом 0...5, 0...20 или 4... 20 мА ($R_{\rm m}$ = 49,9 Ом ± 0,1 %)

ПРЕДУПРЕЖДЕНИЕ

В случае использования активных датчиков следует иметь в виду, что «минусовые» выводы их выходных сигналов в приборе объединены между собой.

ПРЕДУПРЕЖДЕНИЕ

Установка шунтирующего резистора $R_{\text{ш}}$ – **обязательна**. В качестве шунта рекомендуется использовать высокостабильные резисторы с минимальным значением температурного коэффициента сопротивления, например, типа C2-29B.

Шунтирующий резистор следует подключать в соответствии с рисунком ниже, т. е. вывод резистора должен заводиться с той же стороны винтовой клеммы, что и провод от датчика. В случае

использования провода сечением более 0,35 мм конец провода и вывод резистора следует скрутить или спаять.

Рисунок 5.7 – Подключение шунтирующего резистора

(1)

ПРЕДУПРЕЖДЕНИЕ

Неправильное подключение шунтирующего резистора может привести к пропаданию контакта между выводом резистора и клеммы, что повлечет за собой повреждение входа прибора.

5.5.5 Датчик положения резистивного типа

Прибор способен обрабатывать сигналы датчиков резистивного типа с сопротивлением от 25 до 900 Ом или от 25 до 2000 Ом.

Рисунок 5.8 – Схема подключения датчика положения резистивного типа 0...900 Ом или 0... 2000 Ом

ПРЕДУПРЕЖДЕНИЕ

В случае использования датчиков положения любого типа должна быть проведена совместная юстировка системы «датчик – прибор».

ПРИМЕЧАНИЕ

Диапазон сопротивления от 0 до 25 Ом воспринимается прибором как короткое замыкание датчика.

5.5.6 Дискретный датчик типа «сухой контакт»

Каждый аналоговый вход прибора может быть использован для подключения двух дискретных датчиков типа «сухой контакт». В качестве датчиков могут выступать выключатели, кнопки, контактные группы реле и т. д.

Рисунок 5.9 – Схема подключения дискретных датчиков типа «сухой контакт»

В качестве шунтирующих сопротивлений можно использовать любые резисторы с одинаковым номиналом в диапазоне от 200 до 3000 Ом.

Во время опроса датчика типа «сухой контакт» его состояние описывается целым числом от 1 до 4. Расшифровка этих чисел приведена в таблице ниже:

Таблица 5.4 – Расшифровка значений датчика типа «сухой контакт»

Значение датчика	Состояние контакта 1	Состояние контакта 2
1	Разомкнут	Разомкнут
2	Замкнут	Разомкнут
3	Разомкнут	Замкнут
4	Замкнут	Замкнут

5.6 Подключение по интерфейсу RS-485

Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме.

Длина линии связи должна быть не более 1200 метров.

Обесточенный прибор следует подключать к сети RS-485 витой парой проводов, соблюдая полярность. Провод **A** подключается к выводу **A** прибора, аналогично соединяются между собой выводы **B**.

ПРИМЕЧАНИЕ

Для подключения к ПК рекомендуется использовать преобразователь интерфейсов RS-485 <-> USB AC4 или преобразователь интерфейсов RS-485 <-> RS-232 AC3-M.

6 Устройство и принцип работы

6.1 Принцип работы

Работой модуля управляет Мастер сети. Модуль передает в сеть RS-485 данные о состоянии входов при запросе и получает команды на управление выходами от Мастера сети.

В качестве мастера сети можно использовать:

- □K;
- ПЛК;
- Панель оператора;
- удаленный облачный сервис.

6.2 Индикация

На лицевой панели прибора расположены светодиоды:

Рисунок 6.1 – Лицевая панель прибора

Таблица 6.1 – Назначение светодиодов

Светодиод	Состояние светодиода	Назначение
Питание	Светится	Питание подано
RS-485	Мигает	Передача данных по RS-485

7 Настройка

7.1 Конфигурирование

Прибор конфигурируется с помощью ПО «Конфигуратор М110». Установочный файл располагается на сайте www.owen.ru.

Для конфигурирования прибора следует:

- 1. Подключить прибор к ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB.
- 2. Подать питание на прибор.
- 3. Установить и запустить ПО «Конфигуратор М110».
- 4. Выбрать настройки порта для установки связи с прибором.

Рисунок 7.1 - Выбор настроек порта

5. Выбрать модель прибора.

Рисунок 7.2 - Выбор модели прибора

6. В открывшемся главном окне задать конфигурационные параметры (см. приложение Настраиваемые параметры).

Рисунок 7.3 - Главное окно

7. После задачи параметров записать настройки в прибор, выбрав команду в главном меню **Прибор** → **Записать все параметры**.

Подробная информация о работе с ПО «Конфигуратор М110» представлена в руководстве пользователя на сайте www.owen.ru.

7.2 Конфигурационные и оперативные параметры

Параметры в приборе разделяются на группы:

- конфигурационные;
- оперативные.

Конфигурационные параметры – это параметры, определяющие конфигурацию прибора: настройку входов и сетевые настройки. Значения этих параметров следует задавать с помощью ПО «Конфигуратор М110».

Значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются в случае выключения питания.

Оперативные параметры – это данные, которые прибор передает по сети RS-485 при запросе от Мастера. Оперативные параметры отражают текущее состояние регулируемой системы.

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Задержка ответа по RS-485» **Rs.dL**, где «Задержка ответа по RS-485» – название, **Rs.dL** – имя.

Конфигурационные параметры имеют также индекс – цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра. Работу с индексами выполняет ПО «Конфигуратор М110» автоматически.

Оперативные параметры не имеют индекса. Они индексируются через сетевой адрес.

7.3 Включение датчика в список опроса

Любой датчик включается в список опроса автоматически после задания типа его HCX в параметре **in-t**. Если в параметре **in-t** установить значение **00** (отключен), то датчик из списка опроса исключается.

Для каждого входа в параметре **ItrL** задается период опроса в интервале от 0,3 до 30 секунд. Если вход не может быть опрошен с заданной периодичностью (например, если на всех входах задан период

опроса 0,3 секунды), то прибор автоматически увеличивает период опроса до наименьшего возможного.

7.4 Установка диапазона измерения

Во время работы с активными преобразователями, выходным сигналом которых является напряжение или ток, в приборе предусмотрена возможность масштабирования шкалы измерения. Текущие величины контролируемых параметров вычисляются с помощью масштабирующих значений, задаваемых индивидуально для каждого такого датчика. Использование масштабирующих значений позволяет отображать контролируемые физические параметры непосредственно в единицах их измерения (атмосферах, килопаскалях, метрах и т. д.).

Для масштабирования шкалы измерения следует установить границы диапазона измерения:

- Ain.L нижняя граница соответствует минимальному уровню выходного сигнала датчика;
- Ain.H верхняя граница соответствует максимальному уровню выходного сигнала датчика.

Далее сигналы датчика обрабатываются в заданных единицах измерения по линейному закону (*прямо пропорциональному*, если **Ain. H > Ain. L** или *обратно пропорциональному*, если **Ain. H < Ain. L**). Текущее значение контролируемого датчиком параметра расчитывается по формуле:

$$\Pi_{\text{\tiny H3M}} = Ain.L + \frac{(Ain.H - Ain.L)(I_{\text{\tiny BX}} - I_{\text{\tiny MUH}})}{I_{\text{\tiny MAKC}} - I_{\text{\tiny MUH}}}, \tag{7.1}$$

где I_{ex} — текущее значение входного сигнала;

 $I_{\text{мин}}$, $I_{\text{макс}}$ — минимальное и максимальное значения входного сигнала датчика по данным таблицы 2.2 (мА, мВ или В);

 $\Pi_{\text{изм}}$ — измеренное прибором значение параметра.

Пример

В случае использования датчика с выходным током 4... 20 мА (тип датчика 11 в параметре **in-t**), контролирующего давление в диапазоне 0... 25 атм., в параметре **Ain. L** задается значение **00,00**, в параметре **Ain. H** — значение **25,00**. Дальнейшая обработка и отображение показаний будет производиться в атмосферах.

7.5 Настройка цифровой фильтрации измерений

Для дополнительной защиты от электромагнитных помех в приборе предусмотрен программный цифровой фильтр низких частот. Цифровая фильтрация проводится в два этапа.

На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы». Прибор вычисляет разность между результатами измерений входной величины, выполненных в двух последних циклах опроса, и сравнивает ее с заданным значением, называемым полосой фильтра. Если вычисленная разность превышает заданный предел, то производится повторное измерение, полученный результат отбрасывается, а значение полосы фильтра удваивается. В случае подтверждения нового значения фильтр перестраивается (т. е. полоса фильтра уменьшается до исходной) на новое стабильное состояние измеряемой величины. Первый этап фильтрации позволяет защитить прибор от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

Полоса фильтра задается в единицах измеряемой величины параметром **in.FG** индивидуально для каждого датчика. Уменьшение полосы фильтра улучшает помехозащищенность канала измерения, но приводит к замедлению реакции прибора на быстрое изменение входной величины. Поэтому при низком уровне помех или при работе с быстроменяющимися процессами рекомендуется увеличить значение полосы фильтра или отключить действие параметра **in.FG**. Во время работы в условиях сильных помех для устранения их влияния на работу прибора следует уменьшить значение полосы фильтра. Фильтр может быть отключен установкой значения **0** в параметре **in.FG**.

На втором этапе фильтрации сигнал сглаживается (демпфируется) с целью устранения шумовых составляющих. Основной характеристикой сглаживающего фильтра является **постоянная времени фильтра** – интервал, в течение которого изменение выходного сигнала фильтра достигает значения **0,63** от изменения входного сигнала.

Постоянная времени фильтра задается в секундах индивидуально для каждого канала в параметре in.FD.

Увеличение значения параметра **in. FD** улучшает помехозащищенность канала измерения, но и одновременно увеличивает его инерционность. То есть, реакция прибора на быстрые изменения входной величины замедляется.

В случае необходимости фильтр может быть отключен установкой значения 0 в параметре in.FD.

Временные диаграммы работы цифровых фильтров представлены на рисунке 7.4.

Рисунок 7.4 – Временные диаграммы работы цифровых фильтров

7.6 Коррекция измерительной характеристики датчиков

Для устранения начальной погрешности преобразования входных сигналов измеренное прибором значение может быть откорректировано. В приборе есть два типа коррекции, позволяющие осуществлять сдвиг или наклон характеристики на заданную величину.

Сдвиг характеристики применяется:

- для компенсации погрешностей, вносимых сопротивлением подводящих проводов в случае использования двухпроводной схемы подключения ТС;
- в случае отклонения у ТС значения R₀.

Сдвиг характеристики осуществляется путем прибавления к измеренной величине значения δ . Значение δ задается параметром **in. SH**. Пример сдвига характеристики для датчика TCM (Cu50) графически представлен на рисунке 7.5.

Рисунок 7.5 - Коррекция «сдвиг характеристики»

Изменение наклона характеристики осуществляется путем умножения измеренной (и скорректированной «сдвигом», если эта коррекция необходима) величины на поправочный коэффициент β, значение которого задается параметром **in. SL**. Пример изменения наклона измерительной характеристики графически представлен на рисунке 7.6.

Рисунок 7.6 - Коррекция «наклон характеристики»

Изменение наклона характеристики используется, как правило, для компенсации погрешностей самих датчиков. Например, в случае отклонения у TC параметра α от стандартного значения или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (во время работы с преобразователями, выходным сигналом которых является ток). Значение поправочного коэффициента β задается в безразмерных единицах в диапазоне от **0,900** до **1,100** и перед установкой определяется по формуле:

$$\beta = \frac{\Pi_{\Phi \text{AKT}}}{\Pi_{\text{M3M}}},\tag{7.2}$$

где $\Pi_{\phi a \kappa m}$ – фактическое значение контролируемой входной величины;

 $\Pi_{u_{3M}}$ – измеренное прибором значение той же величины.

Необходимость введения поправочного коэффициента можно определить, измерив максимальное или близкое к нему значение параметра, где отклонение наклона измерительной характеристики наиболее заметно.

ПРЕДУПРЕЖДЕНИЕ

Задание корректирующих значений, отличающихся от заводских установок (in.SH = 000.0 и in. SL = 1.000), изменяет стандартные метрологические характеристики прибора и должно производиться только в технически обоснованных случаях квалифицированными специалистами.

Полученная после фильтрации и коррекции результирующая информация об измеренных значениях входных параметров поступает для передачи в сеть RS-485.

7.7 Восстановление заводских сетевых настроек

Восстановление заводских сетевых настроек прибора используется для установки связи между ПК и прибором в случае утери информации о заданных значениях сетевых параметров прибора.

Для восстановления заводских сетевых настроек прибора следует:

- 1. Отключить питание прибора.
- 2. Открыть крышку на лицевой панели прибора.
- 3. Установить переключатель **1** в положение **ON** (см. рисунок **5.2**) прибор работает с заводскими значениями сетевых параметров, но в его памяти сохраняются установленные ранее значения сетевых параметров.
- 4. Включить питание.

ВНИМАНИЕ

Напряжение на некоторых элементах печатной платы прибора опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы!

- 5. Запустить ПО «Конфигуратор М110».
- 6. В окне установки связи задать значения заводских сетевых параметров (таблица 7.1) или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров.
- 7. Считать значения сетевых параметров прибора, выбрав команду **Прибор** → **Прочитать все параметры** или открыв папку **Сетевые параметры**.
- 8. Зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны.
- 9. Закрыть ПО «Конфигуратор М110».
- 10. Отключить питание прибора.
- 11. Снять переключатель 1.
- 12. Закрыть крышку на лицевой панели прибора.
- 13. Включить питание прибора и запустить ПО «Конфигуратор М110».
- 14. Установить зафиксированные ранее значения параметров в окне **Установка связи с прибором**.
- 15. Нажать кнопку Установить связь.
- 16. Проверить наличие связи с прибором, выбрав команду **Прибор** → **Проверка связи с прибором**.

Таблица 7.1 – Заводские значения сетевых параметров прибора

Параметр	Описание	Заводская установка
bPS	Скорость обмена данными	9600 бит/с
LEn	Длина слова данных	8 бит
PrtY	Тип контроля четности слова данных Отсутствует	
Sbit	Количество стоп-битов в посылке 1	
A.Len	Длина сетевого адреса 8 бит	
Addr	Базовый адрес прибора 16	
Rs.dl	Задержка ответа по RS-485 2 мс	

8 Интерфейс RS-485

8.1 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес. Базовый адрес прибора задается в ПО «Конфигуратор M110» (параметр **Addr**).

Таблица 8.1 - Адресация в сети RS-485

Параметр	Значение		
Протокол ОВЕН*			
Диапазон значений базового адреса при 8-битной адресации	от 0 до 247		
Диапазон значений базового адреса при 11- битной адресации	от 0 до 2032		
Широковещательный адрес при 8-битной адресации	255		
Широковещательные адреса при 11-битной адресации	от 2040 до 2047		
Базовый адрес прибора по умолчанию 16			
Базовый адрес каждого следующего прибора	[базовый адрес предыдущего прибора] + 1		
Протокол Modbus			
Диапазон значений базового адреса от 1 до 247			
Широковещательный адрес	0		
Протокол DCON			
Диапазон значений базового адреса	от 0 до 255		
тримечание * Длина базового адреса определяется параметром А.Len во время задания сетевых настроек.			
В адресе может быть 8, либо 11 бит.			

8.2 Протокол ОВЕН

Во время работы по протоколу OBEH прибор использует единственный оперативный параметр **rEAd**, служащий для передачи результата измерений одного входа прибора. Тип параметра **rEAd** – число с плавающей точкой (Float) с модификатором времени.

Для получения значений с каждого из восьми входов прибора следует получить значение параметра **rEAd** с каждого из восьми сетевых адресов прибора.

Для обмена данными следует занести в список опроса Мастера сети ОВЕН: имя оперативного параметра, его тип данных и адрес. Эти же сведения также следует указать в сетевых фильтрах приборов-получателей данных.

Адресация оперативных параметров протокола ОВЕН

Каждый вход прибора имеет собственный сетевой адрес. Таким образом, прибор занимает 8 адресов в адресном пространстве сети RS-485. Адреса прибора должны следовать подряд. Для удобства задания адресов задается только **Базовый адрес**, который соответствует адресу Входа 1. Для каждого последующего входа адрес увеличивается на 1.

Пример

Базовый адрес прибора **Addr = 32**. Для прибора выделяются адреса в адресном пространстве сети с 32-го по 39-й:

Таблица 8.2 – Оперативные параметры

	Вход 1	Вход 2	Вход 3	Вход 4	Вход 5	Вход 6	Вход 7	Вход 8
Расчет	Базовый							
сетевого	адрес	Addr + 1	Addr + 2	Addr + 3	Addr + 4	Addr + 5	Addr + 6	Addr + 7
адреса	(Addr)							
Сетевой								
адрес	32	33	34	35	36	37	38	39
Выхода								

То есть, восьмиканальный прибор с точки зрения работы с его оперативными параметрами «распадается» на 8 одноканальных приборов-измерителей.

8.3 Протокол Modbus

Работа по протоколу Modbus может вестись по стандарту ASCII или RTU.

По протоколу Modbus можно считать:

- результаты измерений каждого входа;
- время измерения;
- статус измерения.

Считывание идет стандартными для протокола командами чтения группы регистров (команда номер 03 или 04).

Результаты измерения представляются в следующих форматах:

- четырехбайтовые значения с плавающей точкой (без времени);
- двухбайтовое целочисленное значение.

Целое число – это результат измерения, умноженный на 10 в степени, заданной параметром **dP**. Значение **dP** может быть равно 0, 1, 2, 3 и задается отдельно для каждого канала.

ПРЕДУПРЕЖДЕНИЕ

Если задать параметру **dP** значения 2 и 3, то может возникнуть ситуация, когда измеренное значение, умноженное на 10 в степени **dP**, будет больше 32767 или меньше –32768 (для значений со знаком) или больше 65535 (для значений без знака). Такие значения не могут быть переданы в формате числа Int16. Это следует учитывать при задании значения **dP**.

Оба формата можно считать независимо, каждое по своему адресу (см. приложение Регистры протокола Modbus).

Время измерения – это циклическое время с шагом 0,01 секунды, передаваемое в двух байтах. Время точно соответствует времени проведения измерения в данном канале и при работе с ним. Во время вычисления дифференциальной составляющей при ПИД-регулировании можно не учитывать задержку передачи по сети RS-485. Отсчет циклического времени начинается при включении прибора, и каждые 65536 тактов (что соответствует 655,36 секундам) время обнуляется.

Запись регистров осуществляется командой 16 (0х10), чтение – командами 3 (0х03) или 4 (0х04).

8.4 Протокол DCON

По протоколу DCON передаются только значения с результатами измерений по двум типам команд:

- групповое чтение;
- чтение по каналам.

Групповое считывание данных

Посылка:

```
#АА [CHK] (cr)
где АА — адрес модуля от 0х00 до 0хFF;
[CHK] — контрольная сумма;
(cr) — символ перевода строки (0х0D).
```

Ответ:

```
(данные) [CHK] (cr),
```

где (данные) — записанные подряд без пробелов результаты всех 8 измерений в десятичном представлении. Длина каждой записи об одном измерении равна пяти символам, положение десятичной точки прибор определяет автоматически в зависимости от измеренного значения. В случае возникновения в измерительном канале исключительной ситуации возвращается значение —99999 или +99999. Диагностики типа исключительной ситуации не производится.

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не будет никакого ответа.

```
Пример >+100.23+34.050+124.56+07.331-101.45+1038.9-50.501+05.880[CHK](cr)
```

Поканальное считывание данных

Посылка:

```
#AAN[CHK] (cr),
где AA — адрес модуля от 0x00 до 0xFF;
N — номер канала от 0 до 7;
[CHK] — контрольная сумма;
(cr) — символ перевода строки (0x0D).
```

Ответ:

```
(данные) [CHK] (cr),
```

где (данные) – десятичное представление результата измерения, со знаком (пять значащих цифр).

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не будет никакого ответа.

Пример

>+120.65

В случае запроса данных с несуществующего канала ответ будет равен:

?AA[CHK](cr)

Контрольная сумма (СНК) позволяет обнаружить ошибки в командах, отправленных из ведущего устройства, а также в ответах ведомого. Контрольная сумма (СНК) передается как коды двух ASCII символов (от 0х00 до 0хFF) и представляет собой сумму ASCII кодов всех символов посылки не включая код символа переноса строки. В случае переполнения суммы, старшие разряды отбрасываются.

ПРИМЕЧАНИЕ

Вся информация, содержащаяся в кадре, включая адрес прибора, данные, СНК и символ перевода строки, передается в ASCII кодах. Следует обратить внимание, что использование ASCII кодов строчных латинских символов недопустимо.

8.5 Диагностика работы датчиков и исключительные ситуации

В процессе работы прибор контролирует работоспособность подключенных к нему датчиков. В случае обнаружения неисправности (исключительной ситуации) любого из них прибор передает сообщение об ошибке по сетевому интерфейсу RS-485.

Ошибки формируются:

- во время работы с ТС в случае их обрыва или короткого замыкания;
- во время работы с ТП в случае их обрыва, а также при увеличении температуры свободных концов термопар выше 90 °C или при ее уменьшении ниже минус 10 °C;
- во время работы с любым типом датчиков в случае получения результатов измерений, выходящих за установленные для данного датчика границы диапазона контроля.

Некоторые типы неисправностей первичных преобразователей не могут быть диагностированы прибором. К ним относятся обрывы датчиков тока и напряжения (измеренный вход выдает нулевое значение или диагностирует как исключительную ситуацию «Значение слишком мало»).

Из-за введенной в прибор диагностики короткого замыкания TC прибор воспринимает сигналы сопротивления менее 25 Ом как недостоверные, в связи с этим датчик 0...2000 Ом не может измерять сигналы в диапазоне от 0 до 25 Ом (от 0 до 1,26 % диапазона).

Если произошла исключительная ситуация (например, обрыв датчика), то при исправном приборе происходит передача специализированного пакета.

В случае передачи кода исключительной ситуации во время обмена по протоколу **ОВЕН** передается пакет, в поле данных которого идет однобайтовая посылка. Байт содержит первые 4 бита равные 1, вторые 4 бита содержат код исключительной ситуации.

В случае возникновения исключительной ситуации во время обмена по протоколу **Modbus** код исключительной ситуации передается в регистре статуса, а в регистрах, содержащих результаты измерения, сохраняются последние корректно полученные значения.

ПРИМЕЧАНИЕ

В случае успешного измерения по протоколу OBEH передается результат измерения, по протоколу Modbus – значение в регистре статуса **0x0000**.

Таблица 8.3 – Коды исключительных ситуаций

Исключительная ситуация	Для протокола ОВЕН:	Для протокола Modbus:		
исключительная ситуация	значение в посылке	значение в регистре статуса		
Значение заведомо неверно	0xF0	0xF000		
Данные не готовы. Следует				
дождаться результатов первого	050	05000		
измерения после включения	0xF6	0xF006		
прибора				
Датчик отключен	0xF7	0xF007		
Велика температура свободных	0,450	0,45000		
концов ТП	0xF8	0xF008		
Мала температура свободных	0xF9	0xF009		
концов ТП	UXF9	0XF009		
Измеренное значение слишком	0xFA	0xF00A		
велико	UXFA	UXFOOA		
Измеренное значение слишком	0xFB	0xF00B		
мало	OAI D	OXI OOD		
Короткое замыкание датчика	0xFC	0xF00C		
Обрыв датчика	0xFD	0xF00D		
Отсутствие связи с АЦП	0xFE	0xF00E		
Некорректный калибровочный	٥٧٢	0,45005		
коэффициент	0xFF	0xF00F		

9 Техническое обслуживание

9.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

9.2 Юстировка

9.2.1 Общие сведения

Юстировка прибора заключается в проведении технологических операций, обеспечивающих восстановление его метрологических характеристик.

ПРЕДУПРЕЖДЕНИЕ

Необходимость юстировки определяется по результатам поверки прибора и должна производиться только квалифицированными специалистами метрологических служб, осуществляющих поверку.

Во время юстировки прибор вычисляет соотношения между поступившими входными сигналами и сигналами соответствующих опорных точек схемы.

При положительных результатах юстировки в окно процедуры юстировки выводится сообщение, что результаты вычислений соответствуют норме.

Вычисленные соотношения (коэффициенты юстировки) записываются в энергонезависимую память прибора и используются как базовые для выполнения всех дальнейших расчетов.

Если вычисленное значение коэффициента выходит за пределы, установленные для него при разработке прибора, то в программе юстировки выводится сообщение об ошибке и о причине ее появления.

Перечень причин возникновения ошибок при юстировке прибора:

- значение коэффициента юстировки ниже установленного для него предела;
- значение коэффициента юстировки выше установленного для него предела;
- отказ измерительного устройства.

В случае появления сообщения об ошибке следует внимательно проверить соответствие источника сигнала, подключенного к контактам Входа, заданному (в параметре **in-t**) типу первичного преобразователя, правильность схемы их соединения, а также значение заданного для юстировки сигнала. После устранения выявленных ошибок операцию юстировки следует повторить в установленном порядке.

Юстировка производится только для датчиков положения, для остальных датчиков юстировка не требуется.

Во время проведения юстировки прибора следует соблюдать меры безопасности из раздела 3.

9.2.2 Юстировка датчика положения

Перед проведением юстировки следует:

- установить для датчика соответствующего канала значение параметров in.SH = 0 и in.SL = 1;
- отключить цифровые фильтры, установив значения параметров in.Fd и in.FG равными 0,0.

(1)

ПРЕДУПРЕЖДЕНИЕ

После завершения юстировки требуется вручную восстановить прежние настройки прибора.

Последовательность выполнения юстировки:

- 1. Подключить к контактам выбранного входа датчик положения. Схема подключения выбирается в зависимости от типа датчика.
- 2. Включить питание.
- 3. Запустить ПО «Конфигуратор М110» и перейти в режим юстировки, выбрав команду **Режимы** программы | Юстировка.
- 4. Выбрать **Юстировка «тип 4»**.
- 5. Выбрать входной канал прибора и тип датчика.
- 6. Ввести код доступа в режим юстировки 118.
- 7. Следовать указаниям ПО.
- 8. По окончании юстировки одного датчика аналогично провести юстировку остальных датчиков положения.
- 9. После проведения всех юстировок выключить питание прибора.

10 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

11 Упаковка

Прибор упаковывается в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона согласно ГОСТ 7933-89.

Для почтовой пересылки прибор упаковывается в соответствии с ГОСТ 9181-74.

12 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- знак утверждения типа средств измерений;
- класс точности средств измерений;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

13 Комплектность

Наименование	Количество
Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство по эксплуатации	1 экз.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

14 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Настраиваемые параметры

Полный перечень параметров прибора с указанием типов, имен, HASH-сверток, способа индексации и диапазонов значений приведен в файле «Параметры MB110-224.8A» на сайте www.owen.ru.

Таблица А.1 – Общие параметры

Имя параметра	Название параметра	Допустимые значения	Заводская установка
dev	Имя прибора	до 8 символов	MB110-8A
ver	Версия прошивки	до 8 символов	Установлен изготовителем
exit	Причина перезапуска прибора	0 – программный сброс;6 – аппаратный сброс;	
	присора	7 – включение питания;	_
		8 – сторожевой таймер	

Таблица А.2 – Конфигурационные параметры

Параметр			Заводская			
Имя Название [единицы измерения]		Допустимые значения	установка			
Папка «Входы»						
CjC	Режим работы автоматической	0 – Выключен;	0			
	коррекции по температуре	1 – Включен				
	свободных концов ТП					
in-t	Тип датчика	00 – Датчик отключен	00			
		02 – Cu 50 (α = 0,00426 °C ⁻¹)	=			
		10 – 50M (α = 0,00428 °C ⁻¹)				
		08 – Pt 50 (α = 0,00385 °C ⁻¹)				
		09 – 50Π (α = 0,00391 °C ⁻¹)	=			
		01 – Cu 100 (α = 0,00426 °C ⁻¹)				
		15 – 100M (α = 0,00428 °C ⁻¹)				
		03 – Pt 100 (α = 0,00385 °C ⁻¹)				
		04 – 100Π (α = 0,00391 °C ⁻¹)				
		30 – Ni 100 (α = 0,00617 °C ⁻¹)				
		31 – Cu 500 (α = 0,00426 °C ⁻¹)				
		32 – 500M (α = 0,00428 °C ⁻¹)				
		33 – Pt 500 (α = 0,00385 °C ⁻¹)				
		34 – 500Π (α = 0,00391 °C ⁻¹)				
		35 – Ni 500 (α = 0,00617 °C ⁻¹)				
		36 – Cu 1000 (α = 0,00426 °C ⁻¹)				
		37 – 1000M (α = 0,00428 °C ⁻¹)				
		38 – Pt 1000 (α = 0,00385 °C ⁻¹)				
		39 – 1000Π (α = 0,00391 °C ⁻¹)				
		40 – Ni 1000 (α = 0,00617 °C ⁻¹)				
		16 – TCM гр.23 (53 Ом) (α = 0,00426 °C ⁻¹)				
		05 – TXK (L)				
		21 – ТЖК (J)				
		20 – THH (N)				
		06 – TXA (K)				
		18 – T∏∏ (S)				
		19 – ΤΠΠ (R)	1			

Продолжение таблицы А.2

е [единицы измерения]	Допустимые значения 17 – ТПР (В) 22 – ТВР (А-1) 23 – ТВР (А-2) 24 – ТВР (А-3) 25 – ТМК (Т) 13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки с токовым выходом 0(4)20 мА	установка
	22 – ТВР (A-1) 23 – ТВР (A-2) 24 – ТВР (A-3) 25 – ТМК (Т) 13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	23 – ТВР (A-2) 24 – ТВР (A-3) 25 – ТМК (Т) 13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	24 – ТВР (А-3) 25 – ТМК (Т) 13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	25 – ТМК (Т) 13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	13 – Ток 05 мА 12 – Ток 020 мА 11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	12 — Ток 020 мА 11 — Ток 420 мА 07 — Напряжение –50+50 мВ 14 — Напряжение 01 В 26 — Резистивный датчик задвижки от 25 до 900 Ом 41 — Резистивный датчик задвижки от 25 до 2000 Ом 27 — Датчик положения задвижки	
	11 – Ток 420 мА 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	 07 – Напряжение –50+50 мВ 14 – Напряжение 01 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки 	
	14 – Напряжение 0…1 В 26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	26 – Резистивный датчик задвижки от 25 до 900 Ом 41 – Резистивный датчик задвижки от 25 до 2000 Ом 27 – Датчик положения задвижки	
	от 25 до 900 Ом 41 — Резистивный датчик задвижки от 25 до 2000 Ом 27 — Датчик положения задвижки	
	от 25 до 2000 Ом 27 – Датчик положения задвижки	
	о токовым выходом о(+)20 м/	
	28 – Датчик положения задвижки с токовым выходом 05 мА	
	29 – Датчики контактные (сухие)	
ная времени цифрового	от 0 до 1800	0,0
		0.5
п между измерениями	от 0,3 до 30,0	0,5
ия «сдвиг	от –999 до +9999	0,0
истики»		
ия «наклон	от 0,9 до 1,1	1,0
истики»		
цифрового фильтра	от 0 до 9999	0,0
вначение параметра,	от –999 до +9999	0,0
мое активным датчиком		
значение параметра,	от –999 до +9999	100,0
мое активным датчиком		
ие десятичной точки	0, 1, 2, 3	1
Папка «С	етевые параметры»	
ь обмена [кбод]	0-2,4;	2
	1 – 4,8;	
	2 – 9,6;	
	· · · · · · · · · · · · · · · · · · ·	
		1
/	1е десятичной точки Папка «С	ле десятичной точки 0, 1, 2, 3 Папка «Сетевые параметры» обмена [кбод] 0 - 2,4; 1 - 4,8; 2 - 9,6; 3 - 14,4; 4 - 19,2; 5 - 28,8; 6 - 38,4; 7 - 57,6; 8 - 115,2

Продолжение таблицы А.2

Параметр		Потустини на видиния	Заводская	
Имя	Название [единицы измерения]	Допустимые значения	установка	
PrtY	Контроль по четности	0 – отсутствует (no);	0	
		1 – четность (Even);		
		2 – нечетность (Odd)		
Sbit	Количество стоп-бит	0-1;	0	
		1-2		
A.Len	Размер сетевых адресов [бит]	0 – 8;	0	
		1 – 11		
Addr	Базовый адрес прибора	Протокол ОВЕН:	16	
		0247 для A.Len = 8;		
		02032 для A.Len = 11.		
		Протокол Modbus: 1247;		
		Протокол DCON: 0255		
Rs.dL	Задержка ответа по RS-485 [мс]	065535	2	

ПРИМЕЧАНИЕ

Из-за аппаратных ограничений невозможно использование в приборе следующих сочетаний сетевых параметров:

- PrtY = 0, Sbit = 0, LEn = 0 (контроль четности отсутствует, 1 стоп-бит, 7 бит);
 PrtY = 1, Sbit = 1, LEn = 1 (проверка на четность, 2 стоп-бита, 8 бит);
 PrtY = 2, Sbit = 1, LEn = 1 (проверка на нечетность, 2 стоп-бита, 8 бит).

Приложение Б. Оперативные параметры протокола ОВЕН

Таблица Б.1 – Оперативные параметры протокола ОВЕН

РМЯ	Название	Формат паши іх	Комментарии		
параметра	параметра	Формат данных	Rommerrapin		
rEAd	Измеренная	Число с плавающей	При штатной ситуации (6 байт):		
	величина	точкой Float 32 +	измеренная величина (4 байта) + время ее		
		модификатор времени	измерения 0,01 с (только чтение) (2 байта)		
		0xF0	При нештатной ситуации (1 байт):		
			вычисленное значение заведомо неверно		
		0xF6	Данные не готовы, измерения еще не		
			произведены		
		0xF7	Датчик отключен		
		0xF8	Температура холодного спая слишком		
			велика		
		0xF9	Температура холодного спая слишком		
			мала		
		0xFA	Вычисленное значение слишком велико		
		0xFB	Вычисленное значение слишком мало		
		0xFC	Короткое замыкание		
		0xFD	Обрыв датчика		
		0xFE	Отсутствие связи с АЦП		
		0xFF	Некорректный калибровочный		
			коэффициент		

Приложение В. Регистры обмена по протоколу Modbus

Таблица В.1 – Регистры протокола Modbus

Папачата	T	Адрес регистра		
Параметр	Тип	(Hex)	(Dec)	
Положение десятичной точки в целом значении для входа 1 (значение DP)	Int16	0000	0	
Целое значение измерение входа 1 со смещением точки	Int16	0001	1	
Статус измерения входа 1 (код исключительной ситуации)	Int16	0002	2	
Циклическое время измерения входа 1	Int16	0003	3	
Измерение входа 1 в представлении с плавающей точкой	Float32	0004, 0005	4, 5	
Положение десятичной точки в целом значении для входа 2 (значение DP)	Int16	0006	6	
Целое значение измерение входа 2 со смещением точки	Int16	0007	7	
Статус измерения входа 2 (код исключительной ситуации)	Int16	0007	8	
Циклическое время измерения входа 2	Int16	0008	9	
Измерение входа 2 в представлении с плавающей точкой	Float32	0009 000A, 000B	10, 11	
Положение десятичной точки в целом значении для входа 3	FIUALSZ	000A, 000B	10, 11	
(значение DP)	Int16	000C	12	
Целое значение измерение входа 3 со смещением точки	Int16	000D	13	
Статус измерения входа 3 (код исключительной ситуации)	Int16	000E	14	
Циклическое время измерения входа 3	Int16	000F	15	
Измерение входа 3 в представлении с плавающей точкой	Float32	0010, 0011	16, 17	
Положение десятичной точки в целом значении для входа 4 (значение DP)	Int16	0012	18	
Целое значение измерение входа 4 со смещением точки	Int16	0013	19	
Статус измерения входа 4 (код исключительной ситуации)	Int16	0014	20	
Циклическое время измерения входа 4	Int16	0015	21	
Измерение входа 4 в представлении с плавающей точкой	Float32	0016, 0017	22, 23	
Положение десятичной точки в целом значении для входа 5 (значение DP)	Int16	0018	24	
Целое значение измерение входа 5 со смещением точки	Int16	0019	25	
Статус измерения входа 5 (код исключительной ситуации)	Int16	001A	26	
Циклическое время измерения входа 5	Int16	001B	27	
Измерение входа 5 в представлении с плавающей точкой	Float32	001C, 001D	28, 29	
Положение десятичной точки в целом значении для входа 6 (значение DP)	Int16	001E	30	
Целое значение измерение входа 6 со смещением точки	Int16	001F	31	
Статус измерения входа 6 (код исключительной ситуации)	Int16	0020	32	
Циклическое время измерения входа 6	Int16	0021	33	
Измерение входа 6 в представлении с плавающей точкой	Float32	0022, 0023	34, 35	
Положение десятичной точки в целом значении для входа 7	Int16	0024	36	
(значение DP)		00		
Целое значение измерение входа 7 со смещением точки	Int16	0025	37	
Статус измерения входа 7 (код исключительной ситуации)	Int16	0026	38	
Циклическое время измерения входа 7	Int16	002	39	
Измерение входа 7 в представлении с плавающей точкой	Float32	0028, 0029	40, 41	

Продолжение таблицы В.1

Папацата	T	Адрес регистра	
Параметр	Тип	(Hex)	(Dec)
Положение десятичной точки в целом значении для входа 8	Int4C	0004	40
(значение DP)	Int16	002A	42
Целое значение измерение входа 8 со смещением точки	Int16	002B	43
Статус измерения входа 8 (код исключительной ситуации)	Int16	002C	44
Циклическое время измерения входа 8	Int16	002D	45
Измерение входа 8 в представлении с плавающей точкой	Float32	002E, 002F	46, 47

i

ПРИМЕЧАНИЕ

- 1. Все регистры только для чтения. Регистры считываются командами 03 или 04 (прибор поддерживает обе команды).
- 2. Во время передачи четырехбайтовых значений (тип Float32) старшее слово передается в регистре с меньшим номером.

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru

рег.:1-RU-32147-1.19