Particle spectrograph

Wave operator and propagator

שמו כב בסוושנו מווונש		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0}^{#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_1^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#_{1}}\alpha=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\sigma_{1}^{\#2}{}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}=0$	3
0 ==	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == \partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha}$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta X} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial_{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\beta} \sigma^{\delta \varepsilon}{}_{\delta} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\alpha \delta \varepsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta\delta}{}_{\delta}$	
$\tau_{2+}^{\#1}\alpha\beta=0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	
Total constraints/and	-	

Quadratic (free) action $S = \iiint (\frac{1}{6} (6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 r_3 \partial_\beta \omega_\beta^{\ \theta} + 4 t_2 \omega_{\beta \alpha}^{\ \theta} - 6 r_3 \partial_\alpha \omega^{\alpha \beta l} \partial_\theta \omega_\beta^{\ \theta} + 12 r_2 \partial_\alpha \beta_\alpha^{\ \theta} + 2 t_2 \partial_\alpha \beta_\alpha^{\ \theta} + 2 \sigma_\alpha \beta_\alpha^{\ \theta} + 2 \partial_\alpha \beta_\alpha^{\ \theta} - \frac{1}{2} \partial_\alpha \beta_\alpha^{\ \theta} - \frac{1}{2} \partial_\alpha \beta_\alpha^{\ \theta} + 2 \partial_\beta \beta_\alpha^{\ \alpha} - \frac{1}{2} \partial_\alpha \beta_\alpha^{\ \alpha} - 1$	
--	--

								101	U					
0	0	0	0	0	0	0								
0	0	0	0	0	0	0	$f_{1}^{\#2}$	0	0	0	0	0	0	С
0	0	0	0	0	0	0	$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	C
0	0	0	0	0	0	0	$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	С
(3 r ₃	4 <i>t</i> 2) <i>r</i> 3 <i>t</i> 2	1 t 2 r 3 t 2					$\omega_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	c
$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0	$f_{1}^{\#1}$	$i\sqrt{2} kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	С
4 /3	t2_3 t2	1t2) r3t2						11 K		2				
$\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9 k^2 r_3 + 4 t_2}{3 (k + k^3)^2 r_3 t_2}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0	$\omega_1^{\#_2^2}$	$\frac{\sqrt{2} t_2}{3}$	\$\frac{t2}{3}	$-\frac{1}{3}$ Ikt ₂	0	0	0	O
m	-	- <u>i</u> (4 t ₂)		t_2				
$\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0	$\omega_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ k t_2	0	0	0	C
$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + ^{lphaeta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$ au_{1}^{\#1} +^{lpha}$	$\tau_{1}^{\#2} + ^{\alpha}$		$\omega_1^{\#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha \beta$	$f_{1+}^{\#1} +^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^-}^{\#1} +^\alpha$	$f_{\mu}^{2} + \alpha$

#1 . 0	$\sigma_2^{"+} + \Gamma^{"}$	 ′	$\sigma_{2}^{*1} + ^{\mu ho}$		#1
	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$	<u>.</u> 271
†	0	0	0	0	t1 t#2
†	0	0	0	0	$t_{\perp}^{t_{\perp}}$
†	0	0	0	0	Ψ,
†	0	0	0	$k^2 r_2 + t_2$	

σ#1+ τ^{#1}+ τ^{#2}+ τ^{#2}+ σ^{#1}+

Massive and massless spectra

Square mass: $\left| -\frac{t_2}{r_2} > 0 \right|$

Unitarity conditions