#### What is classification?

Marital Defaulted Home Annual Tid **Status** Borrower Owner Income Single 125K No Yes Married 100K Nο No 3 Single 70K Nο No 4 Yes Married 120K No 5 Nο Divorced 95K Yes 6 60K Nο Married No 220K Yes Divorced No 8 85K Nο Single Yes 75K Nο Married No 10 Nο Single 90K Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

#### What is classification?

Classification is the task of *learning a target function* f that maps attribute set x to one of the
 predefined class labels y

|     |               |                   | ical .           | OUS                   |
|-----|---------------|-------------------|------------------|-----------------------|
|     | binary        | catego            | ical<br>contin   | CIRSS                 |
| Tid | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
| 1   | Yes           | Single            | 125K             | No                    |
| 2   | Nο            | Married           | 100K             | No                    |
| 3   | Nο            | Single            | 70K              | No                    |
| 4   | Yes           | Married           | 120K             | No                    |
| 5   | Nο            | Divorced          | 95K              | Yes                   |
| 6   | Nο            | Married           | 60K              | No                    |
| 7   | Yes           | Divorced          | 220K             | No                    |
| 8   | Nο            | Single            | 85K              | Yes                   |
| 9   | Nο            | Married           | 75K              | No                    |
| 10  | No            | Single            | 90K              | Yes                   |

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

#### What is classification?



Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

### Why classification?

- The target function f is known as a classification model
- Descriptive modeling: Explanatory tool
  to distinguish between objects of different
  classes (e.g., description of who can pay
  back his loan)
- Predictive modeling: Predict a class of a previously unseen record

# Typical applications

credit approval

target marketing

medical diagnosis

treatment effectiveness analysis

# General approach to classification

 Training set consists of records with known class labels

 Training set is used to build a classification model

 The classification model is applied to the test set that consists of records with unknown labels

# General approach to classification



Figure 4.3. General approach for building a classification model.

# Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix

#### **Predicted Class**

| Class = 1              | Class = 0              |
|------------------------|------------------------|
| f <sub>11</sub>        | f <sub>10</sub>        |
| <b>f</b> <sub>01</sub> | <b>f</b> <sub>00</sub> |
|                        | f <sub>11</sub>        |

Accuracy = 
$$\frac{\text{\# correct predictions}}{\text{total \# of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate = 
$$\frac{\text{# wrong predictions}}{\text{total # of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

#### Model Evaluation

- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?

- Methods for Performance Evaluation
  - How to obtain reliable estimates?

- Methods for Model Comparison
  - How to compare the relative performance of different models?

# Metrics for Performance Evaluation

- Focus on the predictive capability of a model
  - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

|        | PRE       | PREDICTED CLASS |          |  |  |  |  |
|--------|-----------|-----------------|----------|--|--|--|--|
|        |           | Class=Yes       | Class=No |  |  |  |  |
| ACTUAL | Class=Yes | a: TP           | b: FN    |  |  |  |  |
| CLASS  | Class=No  | c: FP           | d: TN    |  |  |  |  |

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

# Metrics for Performance Evaluation...

|                 | PREDICTED CLASS |           |           |  |  |  |
|-----------------|-----------------|-----------|-----------|--|--|--|
|                 |                 | Class=Yes | Class=No  |  |  |  |
| ACTUAL<br>CLASS | Class=Yes       | a<br>(TP) | b<br>(FN) |  |  |  |
|                 | Class=No        | c<br>(FP) | d<br>(TN) |  |  |  |

Most widely-used metric:

Accuracy = 
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

### Limitation of Accuracy

- Consider a 2-class problem
  - Number of Class 0 examples = 9990
  - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
  - Accuracy is misleading because model does not detect any class 1 example

### **Cost Matrix**

|                 | PREDICTED CLASS |            |           |  |  |  |  |
|-----------------|-----------------|------------|-----------|--|--|--|--|
|                 | C(i j)          | Class=Yes  | Class=No  |  |  |  |  |
| ACTUAL<br>CLASS | Class=Yes       | C(Yes Yes) | C(No Yes) |  |  |  |  |
|                 | Class=No        | C(Yes No)  | C(No No)  |  |  |  |  |

C(ilj): Cost of misclassifying class j example as class i

# Computing Cost of Classification

| Cost<br>Matrix  | PREDICTED CLASS |    |     |  |  |  |
|-----------------|-----------------|----|-----|--|--|--|
| ACTUAL<br>CLASS | C(i j)          | +  | -   |  |  |  |
|                 | +               | -1 | 100 |  |  |  |
|                 |                 | 1  | 0   |  |  |  |

| Model M <sub>1</sub> | PREDICTED CLASS |     |     |  |  |  |
|----------------------|-----------------|-----|-----|--|--|--|
| ACTUAL CLASS         |                 | +   | -   |  |  |  |
|                      | +               | 150 | 40  |  |  |  |
|                      | •               | 60  | 250 |  |  |  |

Accuracy = 
$$80\%$$
  
Cost =  $3910$ 

Accuracy = 90%Cost = 4255

# Cost vs Accuracy

| Count  | PREDICTED CLASS |           |          |  |  |  |
|--------|-----------------|-----------|----------|--|--|--|
|        |                 | Class=Yes | Class=No |  |  |  |
| ACTUAL | Class=Yes       | а         | b        |  |  |  |
| CLASS  | Class=No        | С         | d        |  |  |  |

Accuracy is proportional to cost if

- 1. C(YesINo)=C(NoIYes)=q
- 2. C(YeslYes)=C(NolNo) = p

$$N = a + b + c + d$$

Accuracy = 
$$(a + d)/N$$

#### **Cost-Sensitive Measures**

Precision (p) = 
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$
  
Recall (r) =  $\frac{a}{a+b} = \frac{TP}{TP+FN}$   
F - measure (F) =  $\frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$ 

- Precision is biased towards C(YeslYes) & C(YeslNo)
- Recall is biased towards C(YeslYes) & C(NolYes)

Weighted Accuracy = 
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

#### Model Evaluation

- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?

- Methods for Performance Evaluation
  - How to obtain reliable estimates?

- Methods for Model Comparison
  - How to compare the relative performance of different models?

# Methods for Performance Evaluation

 How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
  - Class distribution
  - Cost of misclassification
  - Size of training and test sets

### Learning Curve



- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

#### Methods of Estimation

#### Holdout

- Reserve 2/3 for training and 1/3 for testing
- Random subsampling
  - Repeated holdout
- Cross validation
  - Partition data into k disjoint subsets
  - k-fold: train on k-1 partitions, test on the remaining one
  - Leave-one-out: k=n
- Bootstrap
  - Sampling with replacement

#### Model Evaluation

- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?

- Methods for Performance Evaluation
  - How to obtain reliable estimates?

- Methods for Model Comparison
  - How to compare the relative performance of different models?

# ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
  - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against

**FPR** (on the x-axis)

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

|        | PREDICTED CLASS |           |           |  |  |  |  |
|--------|-----------------|-----------|-----------|--|--|--|--|
|        |                 | Yes       | No        |  |  |  |  |
| Actual | Yes             | a<br>(TP) | b<br>(FN) |  |  |  |  |
|        | No              | c<br>(FP) | d<br>(TN) |  |  |  |  |

# ROC (Receiver Operating Characteristic)

- Performance of each classifier represented as a point on the ROC curve
  - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

### **ROC Curve**

- 1-dimensional data set containing 2 classes (*positive* and *negative*)
- any points located at x > t is classified as positive



### **ROC Curve**

#### (TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
  - Random guessing
  - Below diagonal line:
    - prediction is opposite of the true class



|        | PREDICTED CLASS |           |           |  |  |  |  |
|--------|-----------------|-----------|-----------|--|--|--|--|
| Actual |                 | Yes       | No        |  |  |  |  |
|        | Yes             | a<br>(TP) | b<br>(FN) |  |  |  |  |
|        | No              | c<br>(FP) | d<br>(TN) |  |  |  |  |

### Using ROC for Model Comparison



No model consistently outperform the other

- M<sub>1</sub> is better for smallFPR
- M<sub>2</sub> is better for largeFPR

Area Under the ROC curve

- Ideal: Area = 1
- Random guess:
  - Area = 0.5

#### How to Construct an ROC curve

| Instance | P(+ A) | True Class |
|----------|--------|------------|
| 1        | 0.95   | +          |
| 2        | 0.93   | +          |
| 3        | 0.87   | -          |
| 4        | 0.85   | -          |
| 5        | 0.85   | -          |
| 6        | 0.85   | +          |
| 7        | 0.76   | -          |
| 8        | 0.53   | +          |
| 9        | 0.43   | -          |
| 10       | 0.25   | +          |

- Use classifier that produces posterior probability for each test instance P(+IA)
- Sort the instances according to P(+IA) in decreasing order
- Apply threshold at each unique value of P(+IA)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

|           | Class | +    | -    | +    | -    | •    | -    | +    | -    | +    | +    |      |
|-----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Threshold | >=    | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|           | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    | 2    | 1    | 0    |
|           | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    | 0    | 0    | 0    |
|           | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    | 5    | 5    | 5    |
|           | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 4    | 5    |
| <b>→</b>  | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  | 0.4  | 0.2  | 0    |
| <b>→</b>  | FPR   | 1    | 1    | 0.8  | 8.0  | 0.6  | 0.4  | 0.2  | 0.2  | 0    | 0    | 0    |

