m-

й. Э

pris-

ents

of

. tan-

٦y-

(12) UK Patent (19) GB (11) 2 020 557 B

SCIENCE REFERENCE LIBRARY

- (54) Title of invention
 Medical instrument for removing objects from body
 passages
- (51) INT CL3:A61B 17/50
- (21) Application No 7916667
- (22) Date of filing 14 May 1979
- (30) Priority data
 - (31) 2821048
 - (32) 13 May 1978
 - (33) Fed Rep of Germany (DE)
- (43) Application published 21 Nov 1979
- (45) Patent published 19 Jan 1983
- (52) Domestic classification ASR CX
- (55) Documents cited
- (58) Field of Search ASR F2N

- (73) Proprietor
 Willy Rusch GmbH and Co KG
 (FR Germany)
 7053 Kernen i R
 (Rommelshausen)
 Federal Republic of Germany
- (72) Inventor Heinz Rusch
- (74) Agents
 Wheatley & Mackenzie
 Scottish Life House
 Bridge Street
 Manchester M3 3DP

BEST AVAILABLE COPY

LONDON THE PATENT OFFICE

2/3

Fig. 8

Fig. 10

Fig. 11

SPECIFICATION

Medical instrument for removing objects from body passages

The invention relates to a medical instrument for the removal of bodies out of physiological channels, such as ureters and biliary ducts, arteries, veins, bronchi, trachea and oesopha-10 gus and the like, which comprises a flexible tube for insertion into the physiological channel involved, the said tube having an operating element at its operator end and an expandable flexible element at its insertion end, the 15 said flexible element being attached at one end to the tip of the tube and at the other to one end of a controlling element which passes through the tube and is connected to the

operating element. Similar instruments in the form of fishbone extractors have been known for many decades. These well-known fishbone extractors comprise a tube, through which a flexible rod is passed which is provided with a ring at its 25 operator end. The operator end of the tube is provided with a handle. At the insertion end of the tube, a ring of hog's bristles arranged in the longitudinal direction, that is, along surface lines, is attached, the ends of the said 30 bristles being bound together and affixed to

the end of the flexible rod passing through the tube. For the facilitation of the introduction of the instrument, a small, spherical piece of sponge or a rounded rubber or metal head is 35 affixed to the free end. By applying traction to the ring-shaped operating element, the practically stretched log's bristles, which are only slightly curved outwards and form a kind of tube, are bent and, in consequence, more 40 strongly curved outwards until they form a

sort of sphere. In consequence of this operation, the fishbone to be removed from the oesophagus becomes graspable and can be captured between the hog's bristles and re-45 moved, removal being effected by complete or partial release of the operating element, thus effecting the relaxation of the hog's bristles and their resilient return to an original shape. (Rüsch-Katalog of 1910, pages 48, 49).

Further, an instrument for the removal of foreign bodies out of physiological channels is also known (DE-PS 1099126), which comprises a flexible small-bore tube, through which a controlling element is passed, the 55 said controlling element being provided with en operating member at the operator end. At the insertion end, a bushing is attached to the controlling element, into which bushing a number of spring wires wound in the form of 60 screw threads are inserted, the free ends of which engage in a pointed-arch-shaped head.

in which they are fixed. By applying traction to the operating element, the spring wires are drawn into the tube. After insertion of the 65 instrument into the physiological channel, the

operating element, which is located at a distance from the operator end of the tube, is shifted towards this end of the tube, with the result that the spring wires emerge from the

70 end of the tube and, owing to their springiness, form themselves into a basket which, in profile, takes up an onion-like form, the said basket being capable of accepting a kidney stone or other foreign body. By par-

75 tially pulling back the operating element, the basket is caused to narrow and made to close round the foreign body which can subsequently be removed by withdrawing the tube.

Gall stone extractors are also known (Rüsch-80 Katalog No. 328000), which comprise a flexible tube, at the insertion end of which a balloon is affixed, the said balloon being inflatable via the tube by employing a Luer Lok (registered trade mark) syringe or something

85 similar. The extractor is introduced into the physiological channel, for example, into the ureter, until the balloon is located beyond the stone to be removed. Following the inflation of the balloon, the stone is released by the

90 dilatation thus caused and can be removed by withdrawing the extractor.

Finally, a universal embolus and thrombus extractor is also known (Rüsch-Katalog No. 327000), which is essentially identical in its 95 construction to, differing merely in its dimensions from, the previously mentioned gall stone extractor. It serves to remove thrombi and emboli from arteries or veins.

The objective of the present invention is to 100 provide an improved, universally employable instrument for the removal of bodies out of physiological channels, which can be employed by the physicians without any probtem.

According to the present invention there is provided a medical instrument for the removal of foreign bodies out of physiological channels, such as ureters and biliary ducts, arteries, veins, bronchi, trachea and oesophagus 110 and the like, which comprises a flexible tube

for insertion into the physiological channel involved, the said tube having an operating element at its operator end and an expandable flexible element at its introduction end, the

115 said flexible element being attached at its proximal end to the distal end of the tube and at its distal end to the distal end of a controlling element, and which is expanded and collapsed by means of the controlling element

120 which passes through the tube and is connected to the operating element, the expandable element comprising a woven-fabric tube. In this (viewed retrospectively) surprisingly

simple manner, it has been possible to pro-125 duce a universally employable medical instrument for the removal of foreign bodies out of physiological channels, which, depending upon its dimensions, can be employed to advantage for a wide range of different pur-130 poses. On the one hand, it can serve as a

fishbone extractor and can equally be used for the removal of gall stones and the like. In the latter case, a particular advantage resides in the fact that neither the capture of the stone in a basket is required—a manouvre requiring considerable luck and skill-nor is there any risk of the balloon of the extractor being burst 2by a sharp-edged stone. In the case of the instrument of the invention it is, namely, of 10 advantage that, in consequence of the expansion of the expandable element, an umbrella is formed which not only dilates the physiological channel and thus results in an easier release of the stone, but which also manifests 15 no tendency to wedge the stone in the acute angle between the balloon and the wall of the the channel, but rather, in the manner of a snowplough, pushes the stone before it. In consequence, the handling of the instrument 20 of the invention is extremely simple, with the result that the chances of achieving success with the manouvre are very much increased and the risks to the patient considerably reduced. However, the instrument of the inven-25 tion is also equally suitable for the removal of thrombi and emboli out of veins and arteries, the already mentioned snowplough effect being of great advantage. Finally, a further advantage resides in the fact that the collapsed 30 element manifests a relatively small diameter, while the expanded element manifests a multiply enlarged diameter. Moreover, in some applications an additional advantage lies in the fact that the expandable element, whether 35 in the collapsed or expanded state, manifests a grid-like structure, which permits the pas-

sage of fluids. The introduction end of the instrument can take various forms. For example, the introduc-40 tion end can be formed by a fusion of the threads forming the woven fabric tube. The end of the controlling element passes into, and is attached to this fused head, for example by melting. In the case of other preferred 45 embodiments of the invention, however, a small-bore tube having a closed, rounded free end, is pushed over the insertion end of the controlling element and woven-fabric tube. Both embodiments have the advantage of 50 permitting the easy introduction of the instrument in the form known from catheters and

familiar to every physician. As the controlling element, preference is given to a spring wire. Such a wire is, on the 55 one hand, adequately stable while, on the other hand, being sufficiently formable. In addition, it offers the advantage of conferring X-ray opaqueness on the medical instrument, which means that the physician can establish 60 the depth of insertion of the instrument and the course it has taken, or the location of the insertion end within the body of the patient.

The flexible tube can be made of various different materials. Preferentially, it is made of 65 a plastic material. In a more advanced em-

bodiment of the invention, a helical spring is inserted to stiffen the tube and provide a guideway for the controlling element. Nevertheless, the tube is flexible. Its construction is 70 comparable to the outer sheathing of a Bow-

den cable.

In particular in the case of a relatively long and very thin instrument, such as is required. for example, for the removal of thrombi and 75 emboli, the manufacture of the instrument can give rise to difficulties. Therefore, in the preferred versions of the invention, the flexible tube is constructed in the form of a shrinkdown plastic tubing. In consequence of its 80 enlarged diameter, this tubing can be easily pushed over the helical spring sheathing, to which, after appropriate heating and resulting shrinking, it approximates tightly and virtually jointless

In a preferred embodiment of the invention, the medical instrument is provided with more than one expandable element and the individual expandable elements are arranged at a

distance from one another. This embodiment 90 of the invention has considerable advantages. For example, it makes it possible to capture a foreign body between two expanded elements as in a cage, and to push it along the physiclogical channel. During this process the lead-

95 ing expanded element, by virtue of its snowplough effect, removes other depositions or bodies located within the channel which might make the removal of the foreign body in the cage difficult or, by conglomerating 100 with the foreign body, even prevent is re-moval altogether. Finally, when expanded, the

expandable elements can manifest differing diameters, which, in particular, can increase progressively in one direction. This feature, 105 too, can lead to a more reliable and certain

action of the instrument of the invention, when the elements are appropriately dimensigned.

The constructive design of the instrument 110 with several expandable elements, can take varying forms. For example, a separate controlling element can be associated with each expandable element, each controlling element being provided with its own separate operat-115 ing element. This design, however, both re-

quires a relatively complicated construction and thus is expensive in its manufactuand also results in a relatively complicated form of application. In the preferred

120 embodiments of the instrument of the inverttion, therefore, a stiff section of tube is provided between the expandable elements, and the expandable elements are expandable by means of a common controlling element

125 which is connected to the expanded element closest to the insertion end. The traction applied to the introduction end by the controlling element acts, via the nearest expandable element and the following section of tube,

130 upon the next expandable element and causes

all the expandable elements to become expanded in the same manner.

In preferred embodiment of the invention, the woven or braided material has a mesh size which is some three to ten-fold greater than 3the thickness of the threads forming the woven or braided fabric. Such a relationship of dimensions results in the expandable element having good qualities of formability coulto pled with an adequate permeability and, on the other hand, an adequately small mesh for the removal of even relatively small bodies or foreign bodies. The small mesh of the expanded element results, in particular, from the 15 fact that the "umbrella" created by expansion, comprises two woven or braided layers in contact with each other, with the result that

the effective mesh size is reduced. The relatively large mesh size of the unexpanded element offers the advantage of high flexibility. In the unexpanded element, the mesh spaces adopt a rhomboid shape, of which the diagonal parallel to the longitudinal direction of the instrument is very much greater than the diagonal arranged tangentially to the tube.

The individual threads run substantially along a helical line, account having to be taken of the fact that the tube section has no constant diameter in the longitudinal direction, but 30 manifests a diameter which increases somewhat from the ends towards the middle. When expanding the element, the individual

threads move relative to one another, and the length ratio of the two diagonals of each 35 rhombic shape alters until, in a mean position, the rhombic shapes have become substantially square. On being further altered in shape, the expandable element forms a circular disc com-

prising two layers of material under initial 40 tension, the centre of the disc merging, funnel-like, into the neighbouring end of the tube. The funnel adopts the form of the whirlpool seen at a water-drain hole. In this expanded position, the threads adopt a sub-

5 stantially circular contour in the region in which they form the disc. The form of the mesh spaces can deviate from the form just described if other fabric weaves are used as will be described in more detail later.
O In preferred embodiments of the invention.

the weave or braid consists of plastic-material threads, in particular, solid polyester, polyamide or PVC threads. The use of solid threads in preference to spun or braided threads prosides the advantage of improved mobility of the threads with respect to one another, with the result that the change of shape and return to the original shape of the expandable element is favoured.

O However, as in other embodiments, the woven fabric or braided fabric can be made also of a natural material, in particular silk, linen or cotton. (silk is obtained from the insides of the silkworm).

5 The weave of the woven fabric or braided

fabric can take various forms. For example, either a plain weave or a satin weave can be employed. In the preferred embodiment of the invention, however, the woven fabric or the 70 braided fabric is of twill weave and, in particu-

J braided fabric is or twill weave and, in particular is a Kt₂ weave. This weave has proved particularly successful, since it permits ready deformation of the expandable element and, on the other hand, provides a good returning force. In addition, at the same time, favouring

75 force. In addition, at the same time, favourable mesh widths can be realized.

Preferably, the individual threads of the woven-fabric tube when considered in the collapsed condition of the expandable element 80 are twisted, partially to the right, partially to the left in an approximately screwthread-like

The non-expanded element, preferably manifests the same shape as the unexpanded 85 fishbone extractor, that is, the shape of a spindle or a tube having a somewhat greater diameter in the middle. Nevertheless, without there being any change in the outer appearance of the unexpanded element, it is possible

manner.

90 for the expanded element to have differing shapes. In general, it takes the already described shape of a disc ending on either side in a funnel. The expanded element is symmetrical to a place passing through the middle of

rical to a plane passing through the middle of 95 the disc, the plane being traversed centrally and perpendicularly by the tube and the controlling element. In other preferred embodiments of the invention, however, the expandable element is, an expansion, arranged un-

100 symmetrically with respect to a transverse central plane, and in the expanded state takes the form of an opened umbrella. Thus, the two contacting or neighbouring surfaces of the braided or woven fabric which, in the

105 expanded state extend from a circular outer common margin, are not domed in opposing directions, but in one and the same direction. In this condition, the open side of the dome or vault can face the insertion end. Preferably,

110 however, the expanded element presents a concave umbrella shape, the opening of which faces the operator end. This has the advantage that, when removing foreign bodies, the latter show a tendency to move

115 towards the middle of the umbrella, that is, away from the wall of the physiological channel. This not only facilitates the removal procedure, but also, for example, prevents any damage being done to the wall of the physio-

120 logical channel during the removal of sharpedged stones from relatively narrow channels.
Thus, the expandable element spread into an
umbrella-like shape not only dilates the channel locally and reversibly, but, at the same

125 time, also ensures that the foreign body is kept at a distance from the wall of the channel.

The realization of the expandable element in such a way as to result in an umbrella-like 130 shape in the expanded state, is effected by a

type of mechanical memory of the wovenfabric or braided-fabric tube section. This mechanical memory can, for example, be induced by means of a constrained mechanical 5 deformation during the initial expansion. However, a thermal treatment can also be carried out either in place of or additional to this mechanical treatment. It would also be possible to produce the braided fabric using yarn 10 or threads tapering in one direction, so that in this manner a preferential deformation might 4be achieved. Admittedly, the manufacture of a braided fabric employing tapering yarn or threads would be very complicated and expen-15 sive, so that the previously explained methods are preferably employed.

Further details and improvements of the present invention will be obvious from the following description and the drawing showing embodiments explained herein, read in conjunction with the claims. The figures are

Figure 1 a side view of an instrument of the invention with the element in the non-ex-25 panded condition.

Figure 2 a cross-section taken along line II-II of Fig. 1.

Figure 3 the instrument shown in Fig. 1. with the element partially expanded,

Figure 4 the instrument shown in Fig. 1, with the element completely expanded.

Figure 5 an instrument which, with unexpanded elements, is indistinguishable from the instrument shown in Fig. 1, with ex-35 panded element,

Figure 6 an instrument with expandable element expanded to another shape,

Figure 7 an instrument with two non-expanded, expandable elements,

O Figure 8 the instrument shown in Fig. 7, with the elements expanded,

Figure 9 an instrument similar to that shown in Fig. 8, but with the elements unsymmetrically expanded, and

45 Figures 10 and 11 schematically represented elements with numerous elements of different diameters.

The representation in the drawings is, in part, enlarged, in order the better to represent

The medical instrument illustrated in Fig. 1 comprises a flexible tube, 1, which is preferably made of plastic material and whose diameter can be between about 2 to 3 mm and 55 50 to 100 mm, depending upon the particular application. At the operator end of the tube, 1, a locking means, 2, is provided, which comprises a bushing with a radially arranged screw, 3, with the aid of which a

arranged screw, 3, with the aid of which a
60 wire passing through the bushing and serving
as a controlling element, 4, can be locked. At
the free end of the controlling element, 4,
there is an operating element, 5, which, for
example, takes the form of a section of tubing
65 or a small operating knob. At the opposite

end of the tube, 1, an expandable element, 6, is arranged comprising a tube-like section made of woven fabric or braided fabric, one end of which is introduced into the end of the 70 tube, 1, whereas the opposite end is intro-

duced into, and affixed to, a hollow head piece, 7, the distal section of which is tapered, and the tip of which is rounded and closed off. Within the tube, 1, and also within 75 the section of the expandable element, 6,

75 the section of the expandable element, 0, located within the tube, 1, there is arranged a helical spring, 9, (Fig. 2), the closely neighbouring windings of which form a sort of tubular guideway similar to that seen in the 80 Bowden cable. The controlling element, 4,

which takes the form of a wire, extends to the head piece, 7, in which its end is affixed.

The woven-fabric or braided-fabric tube sec-

tion that makes up the expandable element, 85 6, consists of twill-woven yarn 10, a K2 weave being preferably used. In this weave, each warp yarn passes over two filling yarns and then under two filling yarns while, vice versa, the filling threads pass in the same

90 manner over two warp yarns and under two warp yarns. Neighbouring warp and filling threads are displaced with respect to each other by one thickness. The yarns, 10, each comprise a single thread, that is, they are not

95 made up of a number of twisted, braided or woven or tangled threads. Preferentially, they are made of artificial material and manifest as smooth a surface as possible, so that, when the expandable element, 6, is made to change

100 its shape, they can move relative to one another. However, the yarns, 10, may also be made of natural fibres or silk.

If, by pulling on the operating element, 5, the controlling element, 4 is moved relative to 105 tube, 1, that is, if the controlling element, 4 is drawn out of the tube, 1, the end of the controlling element, 4, takes the head piece with it, so that the expandable element, 6, is expanded until it has attained approximately

110 the form shown in Fig. 3. During this process, the shape of the mesh formed by the threads, 10, changes. If the head piece, 7, is further moved towards the tube, 1, the configuration of the expandable element, 6, represented in

115 Fig. 4 is finally attained, the outer diameter of which is two- or several-fold the diameter of the non-expanded element, 6, (Fig. 1).

When employed, the instrument is inserted

with the end, 8, leading into the physiological 120 channel, for example, via the urethra and bladder into the ureter, and advanced until the expandable element, 6, is located at the far side of the foreign body to be removed, for example, a gall stone or a kidney stone.

125 During this process, the position of the instrument can be monitored by X-ray means, since both the helical spring, 9, and the wire forming the controlling element, 4, are clearly imaged. Finally, by applying traction to, and 130 then releasing, the controlling element, 4, for ment, 6, bearing the stone with it.

For the removal of thrombi, that is clots of

blood, or emboli, that is, droplets of fat, 10 foreign bodies or the like, out of veins or arteries, the instrument is introduced into the Sappropriate vessel until the end, 8, penetrates through the thrombus or embolus and the expandable element, 6, is located beyond 15 the embolus. Finally the element, 6, is expanded until it is in contact over its circumference with the wall of the vein, the latter being dilated during the process, and then the instrument is withdrawn, the expandable ele-

20 ment, 6, bearing the embolus with it. By appropriate mechanical, thermal or chemical pre-treatment of the expandable element, 6, it is also possible to achieve expanded configurations such as are shown in 25 Figs. 5 and 6. In particular, the arrangement shown in Fig. 6 is especially suitable for the removal of foreign bodies, since with the shape of this embodiment, when the instrument is withdrawn, the body to be removed is 30 collected up as in a basket, the circumferential

wall serving as a scraping means which loosens any particles adhering to the walls of the channel and causes them to move into the basket

Multiple arrangements as shown in Figs. 7 35 to 11 are also possible. In such embodiments, the expandable elements can take on varying expanded forms and also differing expanded diameters.

A substantial advantage of the instruments of the invention is the fact that they are highly universal in their application, and need to be matched to the physiological channel involved, only with respect to their dimensions,

it also being possible to effect such a matching by appropriately adjusting the degree of expansion of the expandable element. In many cases, the grid-like lattice structure of the expanded element, 6, is also of advan-50 tage, since it permits the passage of fluids

through it.

The instruments of the invention also make it possible to remove thrombi and emboli located at places that are difficult of access.

55 They also make it possible to do away with the insertion of filters into veins, for example the inferior vena cava, the use of which has occasionally led to complications owing to the fact that the inserted umbrella has come away 60 from its achorage and migrated through the

vein to the heart and through the heart into

the pulmonary artery.

The Mobin-Uddin filter employed, for example in this case, then had to be removed by surgical means. If, instead of using such a

filter, a vena cave occlusion is carried out with the aid of a balloon, it can be observed that, over the course of several months, the balloon collapses, and it is not certain whether it is

70 then held in situ by the vein. But, also in this case, a permanently in-dwelling foreign body remains in the vein, which can give rise to disorders. The balloon cannot be made of silicone rubber, since this material is not ade-75 quately stable mechanically (tear propagation

resistance) and since silicone rubber has too great a permeability for gases. For this reason, it must be made of latex, to which softening agents and other additives are admixed which

80 can separate out again and migrate through, or distribute themselves throughout, the body of the patient. In contrast, the instrument of the invention can also be employed in such cases and removed again after several days.

85 Such applications are found, for example, following surgical operations, after accidents or in the case of patients confined to bed over lenthy periods of time, in whom thrombi frequently form, in particular in the veins of the

90 legs. Such thrombi, when they become detached, pass via the heart into the arteries of the lungs, where they cause embolisms. In consequence of this, if such an embolism does not lead to death within a matter of

95 seconds, larger or smaller areas of the lungs are cut off from the circulation and an overloading of the right heart, pneumonia and the like occur. Treatment of these pulmonary emboli is possible by means of lysis with the aid 100 of Streptokinase at the very early stage. Further thrombi can, however, become detached within the deep veins of the legs and the veins of the pelvis, which thrombi can lead to

further embolisms. In general, it is not pos-105 sible to reduce the clottability of the blood in freshly operated-on patients, since, then, the surgical wounds would start to bleed again. The treatment with Streptokinase can, however, be carried out only over a few days

110 since then, an anti-reaction of the body eliminates the effect of the Streptokinase again. Thus, a patient must be protected from further emboli both during the lysis of a pulmonary embolus and also subsequently, and this is

115 why the already mentioned Mobin-Uddin filter or a balloon has been used to occlude the vena cava. By employing one of the instruments of the invention, and with appropriate expansion, which can be fixed by locking the

120 controlling element, 4, with the aid of the screw, 3, the above-mentioned problem can be solved in a simple manner. The expanded element is permeable and blood can continue to flow through the vein. Any thrombi that

125 might be carried along by the blood, are captured by the expandable element and, when after a number of days the danger is past, the instrument, together with any captured thrombi, can be removed again, unless

130 no lysis or breakdown has been achieved by

means of anti-clotting agents such as, for example, heparin or Streptokinase. Thus, no foreign body, which itself could represent an endangerment or could give rise to complications, remains for any lengthy period of time within the body of the patient. The embodiments illustrated in Figs. 10 and 11, serve to produce a gradual dilatation of the physiological channel. On the basis of the increasing 10 and, possibly, again decreasing series of diameters of the expanded elements, a gentle 6dilatation and, where applicable, re-narrowing of the channel can be achieved.

It is also possible, but not illustrated in the 15 drawing, to pass a further thin tube or a thin length of tubing, through the flexible tube, 1, the thin tube or length of tubing terminating at one of the elements, 6, or in the head piece, 7. Through this thin tube or thin length 20 of tubing, fluids or gases can be introduced or removed. Thus, for example, stone-dissolving or thrombolytic agents can be this manner be introduced. Equally, specimen of the patient's own body fluids can be obtained from the

25 side of application of the expandable elements and, for example, employed for analytical purposes.

CLAIMS

30 1. A medical instrument for the removal of foreign bodies out of physiological channels, such as ureters and biliary ducts, arteries, veins, bronchi, trachea and oesophagus and the like, which comprises a flexible tube for 35 insertion into the physiological channel involved, the said tube having an operating

element at its operator end and an expandable elastic element at its introduction end, the said flexible element being attached at its 40 proximal end to the distal end of the tube and

at its distal end to the distal end of a controlling element, and which is expanded and collapsed by means of the controlling element which passes through the tube and is connected to the operating element, the expandable element comprising a woven-fabric tube.

2. A medical instrument in accordance with Claim 1, wherein a head piece having the form of a small tube with a closed, rounded 50 free end is fitted over the insertion end of the controlling element and the expandable element.

A medical instrument in accordance with Claim 1, wherein at the insertion end the 55 threads of the woven-fabric of the tube comprising the expandable element are fused one with the other and that at the fused head, the end of the controlling element is affixed, for example, by melting.

4. A medical instrument in accordance with any one of Claims 1 to 3, wherein a spring wire is employed as the controlling element.

A medical instrument in accordance 65 with any one of Claims 1 to 4, wherein said flexible tube is stiffened by means of an inserted helical spring which forms a guideway for the controlling element.

6. A medical instrument in accordance 70 with one of the previous claims, wherein the flexible tube is formed from a shrink-on tube. 7. A medical instrument in accordance

with one of the previous claims, wherein more than merely one expandable element is pro-75 vided, and the individual expandable elements are provided in spaced arrangement.

8. A medical instrument in accordance with Claim 7, wherein between adjacent expandable elements a rigid tube section is

- 80 provided, and the expandable elements are expandable by means of a joint controlling element which is connected to the expandable element in closest proximity to the insertion end.
- 85 A medical instrument in accordance with Claim 7 or 8, wherein the expandable elements manifest, in the expanded state, varying and increasing diameters in one direction.
- 90 A medical instrument in accordance with any one of the preceding claims, wherein the woven fabric forming the or each expandable element manifests a mesh width which is three to ten times the thickness of the 95 threads forming the woven fabric.

11. A medical instrument in accordance with any one of the preceding claims, wherein the woven fabric is made of threads or yarn of a plastic material, for example, solid polyester, 100 polyamide PVC threads or yarn.

A medical instrument in accordance with any one of Claims 1 to 10, wherein the woven fabric is made of a natural material, for example, silk, linen or cotton.

13. A medical instrument in accordance with any one of the preceding claims, wherein the woven fabric is made in twill weave, for example, as K3 weave.

14. A medical instrument in accordance

110 with any one of the preceding claims, wherein the or each expandable element on being expanded, distorts unsymmetrically with respect to a transverse central plane of the controlling element and, in the expanded 115 state, manifests the shape of an open um-: brella.

A medical instrument in accordance with Claim 14, wherein the or each expandable element forms a concave umbrella shape 120 open towards the operator end.

16. A medical instrument as claimed in any one of the preceding claims, wherein the individual threads of the woven-fabric tube when considered in the collapsed condition of 125 the expandable element are twisted, partially to the right, partially to the left, in an approxi-

mately screwthread-like manner. A medical instrument, substantially as herein described with reference to and as 130 illustrated in the accompanying drawings.

THIS PAGE BLANK (USPTO)

DIALOG(R) File 351: DERWENT WPI (c) 2000 Derwent Info Ltd. All rts. reserv.

002283413

WPI Acc No: 79-82621B/197946

Medical implement for removing solid bodies from physiological ducts - comprises solid flexible tube with intermediate section of widenable polyester, nylon, PVC or natural fibre tubular netting

Patent Assignee: RUSCH W & CO GMBH (RUSC-N)

Inventor: RUESCH H

Number of Countries: 003 Number of Patents: 004

Basic Patent:

Patent No Kind Date Applicat No Kind Date Main IPC Week
DE 2821048 B 19791108 197946 B

Priority Applications (No Type Date): DE 2821048 A 19780513

Abstract (Basic): DE 2821048 B

Medical instrument for removing (foreign) bodies from body ducts e.g. ureters, bile ducts, arteries and veins windpipes, aesophagi, has a flexible, insertable tube with an operational member at its applicator end, and a widenable, opt. resilient, element at its inserted end, which is fastened, on one hand, at the end of the tube, and, on the other hand, at the end of an adjusting element. The widenable element is in form of a woven or braided tubular section whose individual component threads are spaced away from one another, thus giving this section the appearance of a tubular netting.

The threads of the tubular, net-like section are made of natural material e.g. cotton, silk, linen, or synthetic material e.g. massive polyester, polyamide or PVC.

BUNDESREPUBLIK DEUTSCHLAND

THE BRITISH LIBRARY

1 8 AUG 1980

SCRICE REFERENCE LIERARY

28 21 048 **Patentschrift** 0 **7**

Aktenzeichen:

P 28 21 048.2-35

Ø

Anmeldetag:

13. 5.78

Offenlegungstag:

9

Bekanntmachungstag: 8.11.79

Ausgabetag:

17. 7.80

Patentschrift stimmt mit der Auslegeschrift überein

3 Unionsprioritāt:

② ③ ③

Bezeichnung:

Medizinisches Instrument

3 Patentiert für:

Willy Rüsch GmbH & Co KG, 7053 Kemen

0 Erfinder:

Rüsch, Heinz, Ing.(grad.), 7050 Waiblingen

(5) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

FR 13 72 274

FR 11 97 808

US 35 40 431

US 25 56 783

Patentansprüche:

1. Medizinisches Instrument zum Entfernen von Körpern aus physiologischen Kanillen, wie Harnleitern und Gallengangen, Arterien, Venen, Bronchien, Luft- und Speiseröhren u. dgl., mit einem flexiblen, in den betreffenden physiologischen Kanal einzuführenden Rohr, das arr seinem applikatorseitigen Ende ein Bedienungsglied und an seinem einführseitigen Ende. ein aufweitbares, gegebenenfalls federndes Element aufweist, das einerseits an dem Rohrende und andererseits an einem Ende eines Stellelementes befestigt ist und über das durch das Rohr hindurchgeführte und mit dem Bedienungsglied verbundene Stellelement aufzuweiten bzw. zusammenzulegen ist, dadurch gekennzeichnet, daß das aufweitbare Element (6) aus einem Geflecht-Schlauchabschnitt besteht, dessen einzelne Fäden einen Abstand voneinander aufweisen.

2. Medizinisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß über das einführseitige Ende von Stellelement (4) und aufweitbarem Element (6) ein Kopfstück (7) in Form eines Röhrchens mit geschlossenem, abgerundetem 25

freiem Ende (8) geschoben ist.

3. Medizinisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß am einführseitigen Ende die Fäden (10) des Gewebes oder Geflechtes des das aufweitbare Element (6) bildenden Schlauchabschnittes miteinander verschmolzen sind und an dem Schmelzkopf das Ende des Stellelementes (4) befestigt, beispielsweise eingeschmolzen, ist.

4. Medizinisches Instrument nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als 35 Stellelement (4) ein Federdraht verwendet ist.

- 5. Medizinisches Instrument nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Rohr (1) durch eine eingeschobene Schraubenfeder (9) versteift ist, die eine Führung für das Stellelement 40 (4) bildet.
- 6. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohr (1) durch einen Schrumpfschlauch gebildet ist.
- 7. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehr als ein aufweitbares Element (6) vorgesehen ist und die einzelnen aufweitbaren Elemente im Abstand voneinander angeordnet sind.
- 8. Medizinisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß zwischen den aufweitbaren Elementen (6) jeweils ein steifer Rohrabschnitt (11) vorgesehen und sie durch ein gemeinsames Stellelement (4) aufweitbar sind, das mit dem 55 dem Einführende (8) nächsten Element (6) verbunden ist.
- 9. Medizinisches Instrument nach Anspruch 7 oder 8. dadurch gekennzeichnet, daß die aufweitbaren Elemente (6) in aufgeweitetem Zustand unterschiedliche und insbesondere in einer Richtung zunehmende Durchmesser aufweisen.
- 10. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aufweitbare Element (6) bildende ni Gewebe oder Geflecht eine Maschenweite aufweist, die das Drei- bis Zehnfache der Dicke der das Gewebe oder Geflecht bildenden Fäden (10) ist.

11. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewebe oder Geflecht aus Kunststofftden, insbesondere aus massiven Polyester-, Polyamid-oder PVC-Fäden besteht.

12 Medizinisches Instrument nach einem der Ansprüche 1 bis 10, dadurch gehennzeichnet, daß das Gewebe oder Geflecht aus einem Naturmaterial, insbesondere aus Silk, Leinen oder Baumwolle

besteht.

13. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewebe oder Geflecht in Köperbindung und insbesondere als K_2^2 hergestellt ist.

14. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aufweitbare Element (6) sich beim Aufweiten unsymmetrisch zu einer Quermittelebene des Stellelementes (4) verformt und aufgeweitet die Form eines gespannten Regenschirmes aufweist.

Die Erfindung betrifft ein medizinisches Instrument zum Entfernen von Körpern aus physiologischen Kanälen, wie Harnleitern und Gallengängen, Arterien, Venen, Bronchien, Luft- und Speiseröhren u. dgl., mit einem flexiblen, in den betreffenden physiologischen Kanal einzuführenden Rohr, das an seinem applikatorseitigen Ende ein Bedienungsglied und an seinem einführseitigen Ende ein aufweitbares, gegebenenfalls federndes Element aufweist, das einerseits an dem Rohrende und andererseits an einem Ende eines Stellelementes befestigt ist und über das durch das Rohr hindurchgeführte und mit dem Bedienungsglied verbundene Stellelement aufzuweiten bzw. zusammenzulegen ist.

Derartige Instrumente sind in Gestalt von Grätenfängern seit vielen Jahrzehnten bekannt. Diese bekannten Grätenfänger umfassen ein Rohr, durch das ein biegsamer Stab hindurchgeführt ist, der an seinem applikatorseitigen Ende mit einem Ring versehen ist. Das applikatorseitige Rohrende ist mit einem Haltegriff versehen. An dem einführseitigen Rohrende sind ein Kranz von Schweinsborsten in Längsausrichtung, also entlang von Mantellinien verlaufend, aufgebunden, deren Enden zusammengebunden und an dem Ende des durch das Rohr hindurchlaufenden bewegsamen Stabes angebunden sind. Zur Erleichterung des Einführens ist am freien Ende noch ein kleiner, kugelförmiger Schwamm- oder ein abgerundeter Gummi- oder Metallkopf angebracht. Durch Ziehen an dem ringförmigen Bedienungsglied werden die nahezu gestreckten, nur geringfügigen nach außen gewölbten und eine Art Rohr bildenden Schweinsborsten gekrümmt und damit stärker nach außen gewölbt, bis sie eine Art Kugel bilden. Dadurch ist die aus dem Oesophagus zu entfernende Gräte erfaßbar und kann zwischen den Schweinsborsten gefangen und entfernt werden, wobei zum Herausziehen durch völliges oder teilweises Loslassen des Bedienungsgliedes ein Entspannen der Schweinsborsten und damit deren zu federndes Zurückverformen bewirkt werden (Rüsch-Katalog von 1910. Seite 48, 49).

Es ist ferner auch ein Instrument zur Entfernung von Fremdkörpern aus physiologischen Kanälen bekannt

4

(DE-PS 10 99 126, FR-PS 11 97 808), das aus einem biegsamen Röhrchen besteht, durch das ein Stellelement hindurchgeführt ist, das am applikatorseitigen Ende mit einem Bedienungsglied versehen ist. Am einführseitigen Ende ist an dem Stellelement eine Hülse befestigt, in die von der Einführseite her mehrere schraubenlinienförmig gewundene Federdrähte eingesteckt sind, deren freie Enden in einen spitzbogenförmigen Kopf zusammenlaufen, in dem sie befestigt sind. Durch Zug am Bedienungsglied werden die Federdrähte in das Rohr hereingezogen. Nach dem Einführen in den physiologischen Kanal wird das Bedienungsglied, das dabei einen Abstand vom applikatorseitigen Rohrende aufweist, zu diesem Rohrende hin verschoben, wodurch die Federdrähte aus dem Rohrende austreten und sich aufgrund ihrer federnden Eigenschaften aufwölben, wodurch sie einen den Umriß einer Zwiebel aufweisenden Korb bilden, der einen Nierenstein oder sonstigen Fremdkörper zu erfassen vermag. Durch teilweises Zurückziehen des Betätigungsgliedes wird der Korb verengt und 20 umschließt den Fremdkörper, der nachher durch Herausziehen des Rohres entfernt werden kann.

Es sind auch Gallenstein-Extraktoren bekannt (Rüsch-Katalog Nr. 328000), die aus einem flexiblen Rohr bestehen, an dessen einführseitigem Ende ein Ballon angebracht ist, der durch das Rohr hindurch mittels einer Luer-Lok-Spritze od. dgl. aufblasbar ist. Der Extraktor wird in den physiologischen Kanal, beispielsweise in den Harnleiter eingeführt, bis sich der Ballon jenseits des zu entfernenden Steines befindet. Nach dem Aufblasen des Ballons löst sich durch die dadurch bedingte Erweiterung des verformbaren physiologischen Kanals der Stein und kann durch Herausziehen des Extraktors entfernt werden.

Ein medizinisches Instrument der eingangs genannten 35 Art ist aber auch aus der US-PS 25 56 783 bekannt. Während bei dem zuvor erläuterten medizinischen Instrumenten als federnd aufweitbares Element ein Kranz von entlang von Mantellinien angeordneten Borsten bzw. ein aufblasbarer Ballon dient, ist bei letzterer das federnd aufweitbare Element durch Längsabschnitte des Rohres gebildet, die durch entlang von Mantellinien verlaufenden Schlitzen erzeugt und begrenzt sind. Es sind lediglich die einzelnen Teile des aufweitbaren Elementes mit dem Rohr einstückig und 45 nicht an diesem festgebunden und es ist ihr Querschnitt rechteckförmig und nicht kreisrund; außerdem sind ihre Querschnittsabmessungen um ein Vielfaches größer als die Querschnittsabmessungen der Borsten des bekannten Grätenfängers. In beiden Fällen erstrecken sich 50 jedoch die das aufweitbare Element bildenden Borsten oder Bänder achsparallel zum flexiblen Rohr. Ein solches Instrument läßt sich zwar einfach herstellen. doch ist sein Anwendungsbereich und die Skala der unterschiedlich erzeugbaren Eigenschaften sehr be- 55 grenzt, weil Material und Ouerschnitt der einzelnen Bänder unmittelbar von dem verwendeten flexiblen Rohr abhängig, weil mit diesem einstückig, sind. Auch sind die Zwischenräume zwischen den einzelnen Bändern in gespreiztem Zustand sehr groß. Von 60 Nachteil dürfte ferner noch sein, daß sich die einzelnen Bänder in Achsrichtung erstrecken, weil ein zu erfassender Stein, wofür dieses Instrument gedacht ist, entlang dem Schnitt zwischen zwei Bändern hindurchgleiten kann.

Schließlich ist auch ein Universal-Embolus- und Thrombus-Extraktor bekannt (Rüsch-Katalog Nr. 327000), der im wesentlichen gleich aufgebaut und

lediglich anders dimensioniert ist als der mit einem Ballon versehene und zuvor erwähnte Gallenstein-Extraktor. Er dient zum Entfernen von Thromben und Embolien aus Arterien bzw. Venen.

Aufgabe der vorliegenden Erfindung ist es, ein verbessertes, universell einsetzbares Instrument zum Entfernen von Körpern aus physiologischen Kanälen zu schaffen, das vom Arzt problemlos in Einsatz gebracht werden kann.

Gelöst wird diese Aufgabe, ausgehend von einem medizinischen Instrument der eingangs genannten Art, erfindungsgemäß dadurch, daß das aufweitbare Element aus einem Geflecht-Schlauchabschnitt besteht, dessen einzelne Fäden einen Abstand voneinander aufweisen.

Auf diese bei nachträglicher Betrachtung verblüffend einfache Weise gelingt es, ein universell einsetzbares medizinisches Instrument zum Entfernen von Fremdkörpern aus physiologischen Kanälen zu schaffen, das je nach Dimensionierung für die unterschiedlichsten Zwecke vorteilhaft eingesetzt werden kann. Es kann einerseits als Grätenfänger dienen und kann ebenso auch zum Entfernen von Gallensteinen u. dgl. verwendet werden. Im letzteren Fall ist vor allem von Vorteil. daß weder ein Einfangen des Steines in einen Korb erforderlich ist, was viel Glück und Geschick erfordert, noch die Gefahr besteht, daß der Ballon des Extraktors durch einen scharfkantigen Stein zum Platzen gebracht wird. Von Vorteil ist nämlich bei dem erfindungsgemä-Ben Instrument, daß sich durch das Spreizen des aufweitbaren Elementes ein Schirm bilden läßt, der nicht nur den physiologischen Kanal aufweitet und dadurch ein leichteres Lösen des Steines ergibt, sondern der auch nicht zum Festklemmen des Steines in dem spitzen Winkel zwischen Ballon und Kanalaufwand neigt, sondern der wie ein Schneeschieber den Stein vor sich herschiebt. Die Handhabung des erfindungsgemäßen Instrumentes ist daher denkbar einfach, wodurch die Erfolgsaussichten des Eingriffes sehr stark erhöht und die Risiken für den Patienten erheblich vermindert werden. Das erfindungsgemäße Instrument eignet sich jedoch in gleicher Weise auch zum Entfernen von Thromben und Embolien aus Venen und Arterien, wobei ebenfalls die bereits erwähnte Schieber-Wirkung von großem Vorteil ist. Von Vorteil ist schließlich ferner noch, daß das ungespreizte Element einen relativ kleinen und das gespreizte Element einen vielfach vergrößerten Durchmesser aufweist. Dabei ist das ungespreizte Element sehr elastisch und das gespreizte Element überraschend steif und widerstandsfähig gegen Verformung. In manchen Anwendungsfällen ist ferner noch von Vorteil, daß das spreizbare Element sowohl im ungespreizten als auch im gespreizten Zustand eine gitterförmige Struktur aufweist, die den Durchtritt von Flüssigkeit zuläßt.

Das einführseitige Ende des Instrumentes kann unterschiedlich ausgebildet sein. Beispielsweise kann das einführseitige Ende durch Verschmelzen der das Gewebe oder Geflecht des Schlauchabschnittes bildenden Fäden gebildet sein. In diesen Schmelzkopf ist das Ende des Stellelementes eingeführt und befestigt, beispielsweise umschmolzen. Bei bevorzugten anderen Ausführungsformen der Erfindung ist jedoch über das einführseitige Ende von Stellelement und Schlauchabschnitt ein Röhrchen mit geschlossenem, abgerundetem, freiem Ende geschoben. Beide Ausführungsformen haben den Vorteil, daß sie ein bequemes Einführen des Instrumentes ermöglichen, wie es auch von Kathetern her bekannt und jedem Arzt geläufig ist.

Als Stellelement ist bevorzugt ein Federdraht verwendet. Ein derartiger Draht ist einerseits ausreichend stebil und andererseits genügend verformbar. Er bietet ferner den Vorteil, daß das medizinische Instrument dadurch röntgenfähig ist, also für den Arzt 5 feststellbar ist, wie weit das Instrument eingeschoben ist und welchen Verlauf es hat bzw. vo sich das einführseitige Ende im Körper des Patienten befindet.

Das Rohr kann aus unterschiedlichen Wertstoffen hergestellt sein. Bevorzugt besteht es aus einem 10 Kunststoff. In weiterer Ausgestaltung ist eine Schraubenfeder eingeschoben, die das Rohr versteift und eine Führung für das Stellelement bildet. Dennoch ist das Rohr elastisch federnd verformbar. Es ist in seinem Aufbau vergleichbar mit einer Bowdenzughülle.

Insbesondere bei einem relativ langen und sehr dünnen Instrument, wie es beispielsweise zum Entfernen von Thromben und Embolien erforderlich ist, kann die Herstellung Schwierigkeiten bereiten. Bei bevorzugten Ausführungsformen der Erfindung ist daher das Rohr zu durch einen Schrumpfschlauch gebildet. Dieser kann aufgrund seines vergrößerten Durchmessers bequem über die Schraubenfederhülle geschoben werden, an die er sich nach entsprechender Erwärmung und dadurch bedingter Schrumpfung stramm und praktisch fugenlos 25 abschließend anlegt.

In einer bevorzugten Ausgestaltung der Erfindung ist das medizinische Instrument mit mehr als einem spreizbaren Element versehen und es sind die einzelnen spreizbaren Elemente im Abstand voneinander an- 30 geordnet. Diese Ausführungsform der Erfindung hat erhebliche Vorteile. Sie ermöglicht es beispielsweise, einen Fremdkörper zwischen zwei gespreizten Elementen wie in einen Käfig einzufangen und entlang des physiologischen Kanals zu verschieben. Dabei entfernt 35 das in Bewegungsrichtung vordere Spreizelement aufgrund seiner Schieber-Wirkung andere, in dem Kanal befindliche Ablagerungen oder Körper, die ein Entfernen des in dem Käfig befindlichen Fremdkörpers erschweren oder durch Zusammenklumpen mit diesem 40 sogar verhindern könnten. Schließlich können auch die spreizbaren Elemente in gespreiztem Zustand unterschiedliche und insbesondere in einer Richtung zunehmende Durchmesser aufweisen. Auch dies kann bei entsprechender Dimensionierung zu einer zuverlässigeren und sichereren Wirkungsweise des erfindungsgemä-Ben medizinischen Instrumentes führen.

Die konstruktive Ausbildung des Instrumentes mit mehreren spreizbaren Elementen kann unterschiedlich gelöst sein. Beispielsweise kann zu jedem spreizbaren 50 Element ein eigenes Stellelement geführt sein, das jeweils mit einem eigenen Bedienungsglied versehen ist. Das hat jedoch sowohl einen relativ komplizierten Aufbau und damit eine teure Herstellung als auch eine relativ komplizierte Anwendung zur Folge. Bei bevorzugten Ausführungsformen der Erfindung ist daher zwischen den spreizbaren Elementen jeweils ein steifer Rohrabschnitt vorgesehen und es sind die spreizbaren Elemente durch ein gemeinsames Stellelement spreizbar, das mit dem dem Einführende nächsten Spreizele- 60 ment verbunden ist. Die auf das einführseitige Ende durch das Stellelement ausgeübte Zugkraft wirkt sich über das nächstliegende spreizbare Element und den anschließenden Rohrabschnitt jeweils auf das nächste spreizbare Element aus und bewirkt, daß alle Spreizele- 65 mente in gleicher Weise gespreizt werden.

Bei bevorzugten Ausführungsformen der Erfindung weist das Gewebe oder Geflecht eine Maschenweite

auf, die das etwa Drei- bis Zehmfrehe der Dicke der das Gewebe oder Gestacht bildenden Filden ist. Ein derartiges Größenverhilbnis ergibt eine gute Verformbarkeit des spreizbaren Elementes bei ausreichender Durchlässigheit und andereneits gentlyender Engmaschigheit für das Entsernen auch relativ kleiner Körper oder Fremdhörper. Die Engancechigheit ergibt sich bei gespreiztem Element vor allem dodurch, daß der durch das Spreizen gebildete Schirm aus zwei Gewebe- oder Gestechtlagen besteht, die aneinander anliegen, wodurch die wirksome Moschengriße vermindert wird Die relativ große Masshenweite bei ungespreiztem Element hat den Vorteil einer guten Flexibilität. Die Maschen weisen bei ungespreiztem Element die Form von Rauten auf, deren in Langerichtung des Instrumentes weisende Diagonale sehr viel größer ist als deren zum Rohr tangentiale Diagonale. Die einzelnen Fäden verlaufen annähernd enthang einer Schraubenlinie, wobei allerdings zu berüchsichtigen ist, daß der Schlauchabschnitt in Lingsrichtung keinen konstanten Durchmesser aufweist, sondern sich von den Enden zur Mitte hin im Durchmesser etwas vergrößert. Beim Spreizen des Elementes verschieben sich die einzelnen Fäden zueinander und es ündert sich das Längenverhältnis der beiden Diagonalen einer jeden Raute, bis in einer mittleren Stellung die Routen etwa quadratisch sind. Beim weiteren Verformen bildet das Spreizelement eine kreisförmige Scheibe von zwei unter Vorspannung aneinanderliegenden Gewebelagen, die im Zentrum trichterförmig in das angrenzende Rohrende übergehen. Der Trichter weist dabei die Gestalt auf, die ein Wasserablaufwirbel hat Die Filden nehmen in dieser gespreizten Lage in dem Bereich, in dem sie die Scheibe bilden, annähernd eine Kreiskontur ein. Die Gestalt der Maschen kann von der soeben erkluterten Form abweichen, wenn entsprechend andere Gewebebindungen verwendet sind, wie es nachher noch näher besprochen wird.

Bei bevorzugten Ausführungsformen der Erfindung besteht das Gewebe oder Geslecht aus Kunststoffäden, insbesondere aus mussiven Polyester-, Polyamid- oder PVC-Fäden. Die Verwendung von massiven Fäden gegenüber gesponnenen oder geslochtenen Fäden hat den Vorteil einer besseren Beweglichkeit der Fäden zueinander, was die Verformung und Rückverformung des spreizbaren Elementes begünstigt.

Es kann jedoch auch, wie es bei anderen Ausführungsformen vorgesehen ist, das Gewebe oder Geflecht aus einem Naturmaterial bestehen, insbesondere aus Silk, Leinen oder Baumwolle (Silk wird aus Seidenraupendarm gewonnen).

Die Bindung des Gewebes oder Gestechts kann unterschiedlich gewilhlt sein. Beispielsweise kann Leinenbindung oder auch Atlasbindung verwendet sein. Bei bevorzugten Aussührungssormen der Erfindung ist jedoch das Gewebe oder Gestecht in Köperbindung und

insbesondere als K_2^2 Bindung hergestellt. Diese Bindung hat sich besonders bewührt, weil sie eine leichte Verformung des spreizburen Elementes zuläßt und andererseits eine gute Rückstellkruft ergibt. Darüber hinaus lassen sich gleichzeitig günstige Maschenweiten realisieren.

Das ungespreizte Element weist bevorzugt jeweils etwa die gleiche Gestalt auf, wie sie auch vom ungespreizten Grätenfänger her bekannt ist, nämlich die Gestalt einer Spindel oder eines in seiner Mitte leicht aufgebauchten Rohres auf. Trotzdem ist es möglich,

ohne daß sich das äußere Aussehen des ungespreizten Elementes andert, daß das gespreizte Element unterschiedliche Gestalt aufweist. Im allgemeinen weist es die. zuvor beschriebene Gestalt einer Scheibe mit beidseitigem Trichteransatz auf. Dabei ist das gespreizte 5 Element symmetrisch zu einer in der Scheibenmitte. liegenden Ebene, auf der das Rohr und das Stellelement zentral senkrecht stehen. Bei bevorzugten anderen. Ausführungsformen der Erfindung ist jedoch das spreizbare Element bei dem Spreizen unsymmetrisch zu 10 einer Quermittelebene verformt und weist gespreizt die Form eines gespannten Regenschirmes auf. Die beiden in gespreiztem Zustand von einem radial äußeren gemeinsamen Rand ausgehenden und aneinander anliegenden oder einander benachbarten Bereiche des Geflechtes oder Gewebes sind also nicht entgegengesetzt, sondern in gleicher Richtung gewölbt. Dabei kann die offene Seite der Wölbung zum einführseitigen Ende weisen. Bevorzugt bildet jedoch das gespreizte Element einen zur Applikatorseite hin offenen, konkaven Schirm. 20 Dies hat den Vorteil, daß beim Entfernen von Fremdkörpern diese eine Tendenz zu einer Bewegung zur Schirmmitte hin zeigen, also von der Wand des physiologischen Kanals entfernt werden. Dies erleichtert nicht nur das Entfernen, es verhindert auch, daß 25 beispielsweise beim Entfernen von scharfkantigen-Steinen aus relativ engen Kanälen die Kanalwand durch den Stein beschädigt wird. Das schirmförmige gespreizte Element weitet dabei nicht nur den Kanal örtlich und reversibel auf, sondern es sorgt auch gleichzeitig noch 30 für ein Abhalten des Körpers von der Kanalwand.

Die Verwirklichung des spreizbaren Elementes in der Weise, daß es in gespreiztem Zustand die Form eines Schirmes aufweist, erfolgt durch eine Art »mechanisches Gedächtnis« des Gewebe- oder Geflecht- Schlauchabschnittes. Dieses mechanische Gedächtnis kann beispielsweise durch erzwungene mechanische Verformung bei der erstmaligen Spreizung eingeprägt werden. Es kann auch an Stelle oder zusätzlich zu dieser mechanischen Behandlung eine thermische Behandlung treten. Auch wäre es möglich, das Geflecht aus sich in einer Richtung verjüngenden Fäden zu bilden, wodurch ebenfalls eine Vorzugsverformung erzielt werden könnte. Allerdings wäre die Herstellung eines Geflechtes aus sich verjüngenden Fäden sehr aufwendig, so daß die zuvor erläuterten Methoden bevorzugt angewandt

werden.

Weitere Einzelheiten und Ausgestaltungen der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in der Zeichnung dargestellter und anschließend erläuterter Ausführungsformen im Zusammenhang mit den Ansprüchen. Es zeigt

Fig. 1 eine Seitenansicht eines erfindungsgemäßen medizinischen Instrumentes mit ungespreiztem Ele-

nent.

Fig. 2 einen Schnitt nach der Linie II-II der Fig. 1, Fig. 3 das Instrument gemäß Fig. 1 mit teilweise gespreiztem Element,

Fig. 4 das Instrument gemäß Fig. 1 mit völlig

gespreiztem Element.

Fig. 5 ein Instrument, das bei ungespreiztem Element von dem Instrument nach Fig. 1 nicht unterscheidbar ist, mit gespreiztem Element,

Fig. 6 ein Instrument mit zu anderer Form gespreiztem Element,

Fig. 7 ein Instrument mit zwei ungespreizten spreizbaren Elementen.

Fig. 8 das Instrument nach Fig. 7 mit gespreizten

Elementen.

Fig. 9 ein Instrument ähnlich Fig. 8, jedoch mit unsymmetrisch gespreizten Elementen, und

Fig. 10 und 11 schematisch dargestellte Instrumente mit einer Vielzahl von unterschiedlichen Durchmesser aufweisenden Elementen.

Die Darstellung gemäß der Zeichnung ist teils vergrößert, um Einzelheiten deutlicher darstellen zu können.

Das in Fig. 1 dargestellte medizinische Instrument umfaßt ein biegsames Rohr 1, das vorzugsweise aus Kunststoff besteht und dessen Durchmesser zwischen etwa 2 bis 3 mm und 50 bis 100 mm je nach Anwendungsfall sein kann. An dem applikatorse tigen Ende des Rohres 1 ist ein Feststeller 2 vorgesehen, der eine Hülse mit radial eindrehbarer Schraube 3 umfaßt, mittels der ein durch die Hülse geführter Draht, der als Stellelement 4 dient, festklemmbar ist. Am freien Ende des Stellelementes 4 ist ein Bedienungsglied 5. beispielsweise in Form eines Schlauchabschnittes oder eines kleinen Betätigungsknopfes, angebracht. An dem gegenüberliegenden Ende des Rohres 1 schließt ein spreizbares Element 6 an, das aus einem Gewebe- oder Geflecht-Schlauchabschnitt besteht, dessen eines Ende in das Ende des Rohres 1 eingeführt ist, wogegen das gegenüberliegende einführseitige Ende in ein hohles Kopfstück 7 mit verjüngtem und abgerundetem geschlossenen Ende 8 eingeführt und befestigt ist. Innerhalb des Rohres 1 und auch des im Rohr 1 befindlichen Teiles des spreizbaren Elementes 6 ist eine Schraubenfeder 9 (Fig. 2) eingesetzt, deren dicht an dicht liegende Windungen eine Art Rohrführung wie bei einem Bowdenzug bilden. Das Stellelement 4, das als Draht ausgebildet ist, erstreckt sich bis zum Kopfstück 7. in dem sein Ende befestigt ist.

Der das spreizbare Element 6 bildende Gewebe- oder Geflecht-Schlauchabschnitt besteht aus miteinander in Köperbindung verwobenen Fäden 10, wobei vorzugs-

weise eine $K\frac{2}{2}$ -Bindung verwendet ist. Bei dieser Bindung führt jeder Kettfaden jeweils über zwei Schußfäden und anschließend unter zwei Schußfäden hindurch, wogegen umgekehrt die Schußfäden in gleicher Weise jeweils über zwei Kettfäden hinweg und unter zwei Kettfäden hindurchgeführt sind. Benachbarte Kett- und Schußfäden sind jeweils um eine Fadenteilung zueinander versetzt. Die Fäden 10 bestehen jeweils aus einem einzigen Faden, bestehen also nicht aus einer Vielzahl von miteinander verseilten, verflochtenen oder verwobenen oder verfülzten Fäden. Sie bestehen vorzugsweise aus Kunststoff und weisen eine möglichst glatte Oberfläche auf, damit sie sich bei der Verformung des spreizbaren Elementes 6 zueinander bewegen können. Es können jedoch die Fäden 10 such aus Naturfasern oder aus Silk hergestellt sein.

Wird durch Ziehen am Bedienungsglied 5 das Stellelement 4 relativ zum Rohr 1 verschoben, also das Stellelement 4 aus dem Rohr 1 herausgezogen, so nimmt das Ende des Stellelementes 4 das Kopfstück 7 mit, wobei das Spreizelement 6 aufgespreizt wird, bis es etwa die Form gemäß Fig. 3 erreicht hat. Dabei ändert sich die Gestalt der Maschen, die durch die Fäden 10 gebildet sind. Wird das Kopfstück 7 weiter in Richtung auf das Rohr 1 bewegt, so wird schließlich die in Fig. 4 dargestellte Konfiguration des spreizbaren Elementes 6 erzielt, in der dessen Außendurchmesser auf das Zweibis Mehrfache gegenüber dem Durchmesser bei ungespreiztem Element 6 (Fig. 1) erreicht.

Bei der Benutzung des Instrumentes wird dieses mit dem Ende 8 voraus in den physiologischen Kanal, beispielsweise durch Harnröhre und Blase hindurch in den Harnleiter so weit eingeführt, bis sich das spreizbare Element 6 jenseits eines zu entfernenden Körpers, beispielsweise eines Gallen- oder Nierensteines befindet. Die Position des Instrumentes kann dabei durch Röntgenisierung festgestellt werden, da sowohl die Schraubenfeder 9 als auch der das Stellelement 4 bildende Draht sich deutlich abbilden. Anschließend 10 wird nun durch gegebenenfalls mehrmaliges Spannen und Wiederlösen des Stellelementes 4 das spreizbare Element 6 gespreizt und entspreizt, um ein Lösen des Steines von der Wand des physiologischen Kanals zu erreichen. Anschließend wird mit gespreiztem Element 15 6 das Instrument herausgezogen, wobei das spreizbare Element 6 den Stein mitnimmt.

Zum Entfernen von Thromben, also Blutgerinnsel, oder Embolien, also Fetttröpfchen, Fremdkörpern od. dgl. aus Venen oder Arterien wird das Instrument in 20 die entsprechende Vene eingeführt, bis das Ende 8 den Thrombus oder Embolus durchstößt und sich das spreizbare Element 6 hinter dem Embolus befindet. Anschließend wird durch Spreizen des Elementes 6, bis Venenwand innen anliegt, das Instrument herausgezogen, wobei das spreizbare Element 6 den Embolus mitnimmt

Durch entsprechende mechanische, thermische oder chemische Vorbehandlung des spreizbaren Elementes 6 30 ist es auch möglich, Spreizkonfigurationen zu erzielen, wie sie in den Fig. 5 und 6 dargestellt sind. Insbesondere

die Anordnung nach Fig:6 eignet sich besonders gut zum Entfernen von Körpern, weil bei dieser Ausführungsform beim Herausziehen des Instrumentes der zu entfernende Körper wie in einem Körbehen eingesammelt wird, wobei der Umfangsrand als Abstreifer dient, der an der Kanalwandung haftende Teilchen löst und sie in das Körbcheninnere fördert.

Es sind auch Mehrfachanordnungen wie in den Fig. 7 bis 11 dargestellt möglich. Dabei können die spreizbaren Elemente unterschiedliche Spreizformen und auch unterschiedliche Spreizdurchmesser aufweisen.

Ein wesentlicher Vorteil der erfindungsgemäßen Instrumente liegt darin, daß sie sehr universell einsetzbar sind und lediglich hinsichtlich ihrer Dimensionierung an den jeweiligen physiologischen Kanal angepaßt sein müssen, wobei jedoch die Anpassung auch durch entsprechend starke oder weniger starke Spreizung des spreizbaren Elementes erfolgen kann. In vielen Fällen ist auch die gitterartige Struktur des gespreizten Elementes 6 von Vorteil, weil sie einen Flüssigkeitsdurchfluß zuläßt.

Die erfindungsgemäßen Instrumente gestatten es, auch an schlecht zugänglichen Stellen befindliche Thromben und Embolien zu entfernen. Sie ermöglichen dessen Umfang unter Aufweitung der Vene an der 25 es, auf das Einsetzen von Filtern in Venen, beispielsweise die Vena cava inferior zu verzichten, deren Einsatz schon gelegentlich zu Komplikationen geführt hat, weil sich der dort eingesetzte Schirm aus seiner Verankerung löste und durch die Vene bis zum Herz und durch das Herz hindurch bis in die Aorta pulmonalis disloziierte.

Hierzu 3 Blatt Zeichnungen

Nummer: **28 21 048**Int. Cl.²: A 61 B 17/22
Bekanntmachungstag: 8. November 1979

Fig. 2

Fig. 3

Fig. 4

Nummer: 28 21 048
Int. Cl.²: A 61 B 17/22
Bekanntmachungstag: 8. November 1979

Fig. 5

Fig. 6

Nummer:

Int. Cl.2:

28 21 048 A 61 B 17/22

Bekanntmachungstag: 8. November 1979

Fig. 8

Fig. 10

Fig. 11 -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PACE BLANK USPIO