

Disambiguation of Regular Expressions with Backreferences via Term Rewriting

Daria Ismagilova

Antonina Nepeivoda

Bauman Moscow State Technical University

Memory Finite Automaton

Backref-regex (ref-words, by Shmid) operations: $[k\tau]_k$ (named capturing)

&k (reading memory cell)

Example: $[a^*]_1a^+b\&1$ defines $\{a^mba^n \mid m > n\}$

Memory Finite Automaton by Shmid (extended Glushkov

automaton)

0 Memory operations:

(open)

(retain)

(close)

Cyclic Memories

 $[1&3]_1$ $[_3\&2]_3$ $[_{2}\&1]_{2}$

- Destroy closure properties
- Hard to restrict syntactically

RE2 Matching Strategy

Rewriting Rules

- Semiring properties
 - $\bullet \ x(yz) = (xy)z$
 - $\bullet \ x(y+z)=xy+xz$
- Conway—Crob transformations
- $\bullet x^*(yx^*)^* = (x + y)^*$
- $\bullet \ x(yx)^* = (xy)^*x$

Suggested Approach

Problem

Improve matching

for ref-words

ACREG class

- Preserving semiring & Conway–Crob rules
- Closed under sound memory renaming

Sound renaming

 $[a^*]_1b\&1[2b^*]_2\&2 \equiv [a^*]_1b\&1[a^*]_1\&1$

Unsound renaming

 $[a^*]_1b[a^*]_2\&1\&2 \equiv [a^*]_1b[a^*]_1\&1\&1$

Main Idea

Memory can be disambiguated, leading to Backref-Normal Form

Theorem

- 1. ACREG languages are closed under reversal;
- 2. Shmid ref-word languages are not closed under reversal.

Experimental Matching Algorithm

