CS 58500: Theoretical Computer Science Toolkit

RtB

2025-2-1

Contents

1	Ma	thematical Inequalities
	1.1	Taylor's Theorem
		1.1.1 A Problem
	1.2	Convex Functions
		1.2.1 Cauchy-Schwarz Inequality
		1.2.2 Young's Inequality
2	Est	imating Summations and Stirling Approximation
_		0 11
	2.1	Stirling Approximation
	2.2	Binomial Coefficient Estimate

1 Mathematical Inequalities

1.1 Taylor's Theorem

1.1.1 A Problem

Let $f(x) = \ln(1-x)$ and a = 0. For $k \ge 0$, define $p_k(\epsilon) = \sum_{i=1}^k \frac{-\epsilon^i}{i}$. For $0 \le \epsilon \le 1$, deduce that

- We have $\ln(1 \epsilon) \le p_k(\epsilon)$, for all $k \ge 0$
- What is the magnitude of the remainder?
- How will you get a lower bound of $\ln(1 \epsilon)$?

My Solution We can calculate that the n-th derivative of the function f

$$\frac{\mathrm{d}^n f}{\mathrm{d}x^n} = -\frac{(n-1)!}{(1-x)^n} \tag{1}$$

The Taylor remainder of this function is

$$-\frac{n!}{(1-\theta\epsilon)^{n+1}} \cdot \frac{\epsilon^{n+1}}{(n+1)!} \tag{2}$$

Since $0 \le \epsilon \le 1$ and $0 \le \theta \le 1$, We have $0 \le \theta \epsilon \le 1$ and $1 - \theta \epsilon \ge 0$. Then we know that the taylor remainder of f is always less than 0, and we have $\ln(1 - \epsilon) \le p_k(\epsilon), \forall k \ge 0$.

We can derive the following estimation from the Taylor remainder term.

$$-\frac{n!}{(1-\theta\epsilon)^{n+1}} \cdot \frac{\epsilon^{n+1}}{(n+1)!} = -\left(\frac{\epsilon}{1-\theta\epsilon}\right)^{n+1} \cdot \frac{1}{n+1}$$
 (3)

$$\geq -\left(\frac{\epsilon}{1-\epsilon}\right)^{n+1} \cdot \frac{1}{n+1} \tag{4}$$

Then we can give a lower bound of $ln(1 - \epsilon)$:

$$\ln(1 - \epsilon) \ge p_k(\epsilon) - \left(\frac{\epsilon}{1 - \epsilon}\right)^{k+1} \cdot \frac{1}{n+1} \tag{5}$$

1.2 Convex Functions

Note: based on the definition of convex functions provided in the course PowerPoint slides, the convex functions mentioned here are all twice differentiable.

1.2.1 Cauchy-Schwarz Inequality

Derive the Cauchy-Schwarz Inequality: For positive a_1, a_2, b_1, b_2 , we have:

$$(a_1b_1 + a_2b_2) \le (a_1^2 + a_2^2)^{1/2}(b_1 + b_2^2)^{1/2} \tag{6}$$

Equality holds if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ Consider the function $f(x) = \ln(1 + \exp(x))$.

My Solution First, we can consider the Cauchy-Schwarz Inequality of the function $\ln(1 + \exp(x))$. It is easy to verify that this is a convex function.

$$\ln(1 + e^{(x_1 + x_2)/2}) \le \frac{1}{2} [\ln(1 + e^{x_1}) + \ln(1 + e_2^x)] \tag{7}$$

And we get:

$$1 + e^{(x_1 + x_2)/2} \le (1 + e^{x_1})^{1/2} (1 + e^{x_2})^{1/2} \tag{8}$$

Let $\frac{a_2^2}{a_1^2} = e^{x_1}$, $\frac{b_2^2}{b_1^2} = e^{x_2}$, we have

$$1 + \frac{a_2 b_2}{a_1 b_1} \le \left(1 + \frac{a_2^2}{a_1^2}\right)^{1/2} \left(1 + \frac{b_2^2}{b_1^2}\right)^{1/2} \tag{9}$$

After some simple derivation, we can obtain

$$(a_1b_1 + a_2b_2) \le (a_1^2 + a_2^2)^{1/2}(b_1 + b_2^2)^{1/2} \tag{10}$$

The equality holds if and only if $x_1 = x_2$, which means $\frac{a_1}{b_1} = \frac{a_2}{b_2}$.

1.2.2 Young's Inequality

Lemma 1. For a concave function f and $p,q \ge 1$ satisfy $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\frac{f(a)}{p} + \frac{f(b)}{q} \le f(\frac{a}{p} + \frac{b}{q})$$

Equality holds if and only if $\frac{a}{p} = \frac{b}{q}$

Proof. Conduct a Taylor expansion of f at point $\frac{a}{p} + \frac{b}{q}$.

$$f(a) = f(\frac{a}{p} + \frac{b}{q}) + f^{(1)}(\frac{a}{p} + \frac{b}{q})(\frac{(p-1)a}{p} - \frac{b}{q})$$

$$+ f^{(2)}(\theta_a a + (1 - \theta_a)(\frac{a}{p} + \frac{b}{q}))\frac{(\frac{(p-1)a}{p} - \frac{b}{q})^2}{2}$$

$$f(b) = f(\frac{a}{p} + \frac{b}{q}) + f^{(1)}(\frac{a}{p} + \frac{b}{q})(\frac{(q-1)b}{q} - \frac{a}{p})$$

$$+ f^{(2)}(\theta_b + (1 - \theta_b)(\frac{a}{p} + \frac{b}{q}))\frac{(\frac{(q-1)b}{q} - \frac{a}{p})^2}{2}$$

$$(12)$$

We can multiply equation (11) by 1/p, multiply equation (12) by 1/q, add them together and scale the remainder term using the condition of a concave function to obtain

$$\frac{f(a)}{p} + \frac{f(b)}{q} \le f(\frac{a}{p} + \frac{b}{q}) \tag{13}$$

and we can get equality holds if and only if $\frac{a}{p} = \frac{b}{q}$.

Derive the Young's Inequality: Let $p,q\geq 1$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Such a pair of p and q is referred to as Hölder conjugates. For positive a, b, we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Equality holds if and only if $a^p = b^q$. Consider the function $f(x) = \ln x$.

Proof. Consider proving the expression:

$$\frac{\ln a^p}{p} + \frac{\ln b^q}{q} \le \ln(\frac{a^p}{p} + \frac{b^q}{q}) \tag{14}$$

The expression can be proven by Lemma 1.

2 Estimating Summations and Stirling Approximation

2.1 Stirling Approximation

$$\sqrt{2\pi n} \cdot \frac{n^n}{e^n} \exp(\frac{1}{12n+1}) \le n! \le \sqrt{2\pi n} \cdot \frac{n^n}{e^n} \exp(\frac{1}{12n}) \tag{15}$$

The formula can be used to estimate the number of combinations.

$$\binom{n}{k} \ge \frac{1}{\sqrt{2\pi npq}} (p^p q^q)^{-n} \exp\left(\frac{1}{12n+1} - \frac{1}{12k} - \frac{1}{12(n-k)}\right)$$
 (16)

$$\binom{n}{k} \le \frac{1}{\sqrt{2\pi npq}} (p^p q^q)^{-n} \exp\left(\frac{1}{12n} - \frac{1}{12k+1} - \frac{1}{12(n-k)+1}\right)$$
(17)

2.2 Binomial Coefficient Estimate

Let $0 \le k \le n$ and p = k/n and q = 1 - p. Then, the following bound holds

$$\frac{1}{\sqrt{8npq}} (p^p q^q)^{-n} \le \binom{n}{k} \le \frac{1}{\sqrt{2\pi npq}} (p^p q^q)^{-n} \tag{18}$$

If n = 0, we know that $\binom{0}{0} = 1$. If we consider the limit of $\frac{1}{\sqrt{8npq}}(p^pq^q)^{-n}$ at the point 0, we can find that it does not converge and the definition of p become unclear. So I will not discuss this aspect. If k is 0, the expression will also diverge, so we only discuss the case where 0 < k < n

Proof.

$$\frac{1}{12n+1} - \frac{1}{12k} - \frac{1}{12(n-k)} = \frac{1}{12n+1} - \frac{1}{12npq}$$
 (19)

If n = 2, k = 1, we have

$$\frac{1}{\sqrt{8npq}} (p^p q^q)^{-n} = 2$$
$$\binom{2}{1} = 2$$

If n > 2, we have

$$\frac{1}{12n+1} - \frac{1}{12npq} \ge \frac{1}{12n+1} - \frac{n}{12(n-1)}$$

$$= \frac{12n-12-12n^2-n}{12(n-1)(12n+1)}$$

$$= \frac{-12n^2+11n+1-13}{12(12n^2-11n-1)}$$

$$= -\frac{1}{12} - \frac{13}{12(12n^2-11n-1)}$$
(20)

Consider the equation (20), we can calculate the solution of $12n^2 - 11n - 1 = 0$ is n = 0 and n = -1/12. So when $n \ge 3$, we have

$$-\frac{1}{12} - \frac{13}{12(12n^2 - 11n - 1)} \ge -\frac{1}{12} - \frac{13}{12 \times (12 \times 3^2 - 11 \times 3 - 1)} = -\frac{29}{296}$$
(21)

and

$$-\frac{29}{296} \ge -0.1 \ge \ln\sqrt{\frac{\pi}{4}} \tag{22}$$

So

$$\binom{n}{k} \ge \frac{1}{\sqrt{2\pi npq}} (p^p q^q)^{-n} e^{(\frac{1}{12n+1} - \frac{1}{12k} - \frac{1}{12(n-k)})} \ge \frac{1}{\sqrt{8npq}} (p^p q^q)^{-n}$$
(23)

$$\frac{1}{12n} - \frac{1}{12k+1} - \frac{1}{12(n-k)+1} = \frac{144nk+1 - 144k^2 - 144n^2 - 12n}{12n(12k+1)(12n-12k+1)}$$
(24)

Since the denominator is greater than 0, we only consider the numerator.

$$1 - 12n \le 0 \tag{25}$$

$$144nk - 144n^2 \le 0 \tag{26}$$

So due to equation (17), we have

$$\binom{n}{k} \le \frac{1}{\sqrt{2\pi npq}} (p^p q^q)^{-n} \tag{27}$$