

Deep Neural Network

Input Layer: Input variables
To input the Joth feature; in our case, pixel values of an image

MNSIT

Stretched'

Holden Layer (s)

- it is a block box

e we'll open the black box:
??
as agreed

Caution: going to be overwhelming

- Intermediate layer between input and output layers.
- these layers (hidden) terform computations and exelect the featurel from the input data
- 'deep' learning term refers to the network with multiple hidden layers.

Olthur Layer

- It is the final layer that produces the of g the network.
 - one neuron in the output dayer for binary classifications

Warren Mc culloh and Watter Pitts (1943) - professed the first mathematical model for neural network.

0-255 hormalization 0-1

Intuitive Understanding (going one layer deep)

How does the training work?

edges -> Pattern -> digit

Detecting edges and firming patterns to help us with Image - recognition tasks

Source - Kevin Pluck

How information passes between layers

Least-Squares Regression

