X-RA2413MT 技术规格 V2.0

24GHz ISM 频段

生命存在感应最远距离 4.5 米

3.3V 单电源供电

上海芯苗物联网科技有限公司 www.xinmiaolink.com

目录

修订	·历史	5
1	模块描述	6
2	主要特性	6
3	主要应用	6
4	系统描述	7
5	硬件说明	7
6	软件说明	8
7	固件说明	8
8	可视化配置工具说明	9
8	1 可视化配置工具介绍	9
8	2 可视化配置工具使用	.10
9	安装与探测范围	.13
1	O 挂顶安装与探测范围	.13
1	1 挂壁安装与探测范围	.14
1:	2 通信协议	.15
1:	2.1 协议格式	16
1:	2.1.1 协议格式	16
	2.1.2 命令协议帧格式	
1:	2.2 发送命令与 ACK	.16
13	2.2.1 读取固件版本命令	.16
1:	2.2.2 使能配置命令	17
1:	2.2.3 结束配置命令	17
	2.2.4 最大距离门与无人持续时间参数配置命令	
1:	2.2.5 读取参数命令	18
1:	2.2.6 使能工程模式命令	.18
1:	2.2.7 关闭工程模式命令	.19
1:	2.2.8 距离门灵敏度配置命令	.19
	2.3 雷达数据输出协议	
1:	2.3.1 上报数据帧格式	.20
1:	2.3.2 目标数据组成	21
1:	2.4 雷达命令配置方式	.21
13	2.4.1 雷达命令配置步骤	.21
13	2.4.2 雷达配置注意事项	.22
1	3 机械尺寸	.23
1.	4 安装说明	.23
1	5 注意事项	.24
1	5 联系方式	.25

X-RA2413MT

智能毫米波传感器用户手册

图目录

Figure 1. X-RA2413MT 正面与反面器件分布图	7
Figure 2. X-RA2413MT 通用串口工具与电脑连接示例	9
Figure 3. 可视化工具界面	10
Figure 4. 灵敏度设置界面	11
Figure 5. 上位机操作流程	12
Figure 6. 挂顶安装示意图	13
Figure 7. 雷达挂顶安装角度辨别	13
Figure 8. 雷达挂顶安装时探测范围示意图(长度为 m, 角度为°)	14
Figure 9. 雷达挂壁安装示意图	14
Figure 10. 雷达挂壁安装角度辨别	15
Figure 11. 雷达挂壁安装时探测范围示意图	15
Figure 12. 雷达命令配置流程	22
Figure 13. X-RA2413MT 机械尺寸图	23

X-RA2413MT

智能毫米波传感器用户手册

表目录

Table1. 极限特性	7
Table2. J1 引脚说明	8
Table3. J2 引脚说明	8
Table4. 参数说明	8
Table5. 发送命令协议帧格式	16
Table6. 发送帧内数据格式	16
Table7. ACK 命令协议帧格式	
Table8. ACK 帧内数据格式	16
Table9. 0x0060 协议参数字	
Table10. 0x0064 协议参数字	19
Table11. 上报数据帧格式	
Table12. 帧内数据帧格式	20
Table13. 数据类型说明	20
Table14. 目标数据帧组成	
Table15. 目标状态值说明	21
Table 16. 目标数据(工程模式)帧组成	21

X-RA2413MT

智能毫米波传感器用户手册

修订历史

V 1.0	01-07-2022	预发布
V2.0	05-29-2022	新增软件说明

模块描述 1

X-RA2413MT 是芯苗物联自主研发设计的一款低功耗,高性能,24GHz 雷达传感器模块。传 感器硬件由 AIoT 毫米波雷达芯片 CS2411L、高性能一收一发微带天线和低成本 MCU 及外围辅助 电路组成。智能算法固件 XMCS01 采用 EMCW 波形和 CS 系列芯片专有的先进信号处理技术。本 方案主要应用在家庭、办公和酒店等普通室内场景,实现对人等生物体的存在感应。

X-RA2413MT 的最远检测距离为 4.5 米。用户可通过可视化工具界面配置最大感应距离、各距 离门感应灵敏度、无人持续时间等关键参数。本方案支持 GPIO 和 UART 接口上报感知结果,即插 即用。

2 主要特性

- 工作频率: 24GHz ISM频段
- 整合智能毫米波雷达单芯片CS2411L和智能算法固件XMCS01
- 精准室内生命存在感知与距离检测
- 超小模组尺寸:: 22mm x 16mm
- 电压范围: 3.0V~3.6V(典型*3.3V)
- 持续工作平均电流50mA@10Hz上报频率
- 自动加载默认配置,即插即用
- 提供可视化工具, 支持配置探测距离区间、按距离门设置灵敏度
- 生命存在感应最远距离4.5米
- 方位角+45度,俯仰角+45度
- 支持挂顶、挂壁等多种安装方式

3 主要应用

X-RA2413MT 生命存在感应传感器可对运动、站立和静止人体进行探测、识别,广泛应用于 各种 AIoT 场景,覆盖以下类型:

智能家居

智能楼宇

智能商业

安防系统

智慧照明

智能医疗

4 系统描述

X-RA2413MT 是芯苗物联自主研发的智能精确生命存在感应传感器方案。传感器采用 FMCW 波形,结合 MCU 专有的雷达信号处理和内置智能存在感应算法,能够探测指定区域内的目标并实时上报结果。基于本参考方案,用户可快速开发相应的生命存在感应产品。

X-RA2413MT 规格参数如表 table1 所示。

Table1.	极限特性

参数	备注	最小值	典型值	最大值	单位
X-RA2413MT 硬件规格					
支持频段		24	-	25	GHz
支持最大扫描带宽		-	0.25	1	GHz
最大等效全向辐射功率		-	-	15	dBm
供电电压		3.0	3.3	3.6	V
尺寸			22x 16		mm
环境温度	TSTR	-40°C		+85°C	°C
X-RA2413MT 系统性能	·	·		·	
	运动&静止	-	4	4.5	m
距离探测范围	人体目标				
 距离分辨率	运动&静止	0.75	-	-	m
匹芮刀拼竿	人体目标	0.75			
测距精度	-	0	0.15	-	m
工作频段	符合 FCC CE ラ	元 24	-	24.25	GHz
扫频带宽	委会认证标准	-	-	250	MHz
平均工作电流	100ms 上报		50		A
1 岁上17 电弧	周期	-	30	-	mA

5 硬件说明

Figure 1为 X-RA2413MT 的器件分布图。X-RA2413MT 硬件预留 5 个插针称为 J1,其为电源及通信接口。雷达烧录口称为 J2。

Figure 1. X-RA2413MT 正面与反面器件分布图

J1 和 J2 的引脚说明请参考 Table2 和 Table3。

Table2. J1 引脚说明

J管脚	名称	类型	功能	说明
J1_Pin1	VCC 电源	P	电源输入	3.0V~3.6V, Typ.3.3V
J1_Pin2		P	地 (GND)	-
J1_Pin3	O_T1		可以配置为 UART_TX 或 IO 功能,和 O_T2 不可以同时 配置为 UART_TX。默认为 IO	0~3.3V
J1_Pin4	RX	I	UART_RX	0~3.3V
J1_Pin5	O_T2	I/O	可以配置为 UART_TX 或 IO 功能,和 O_T1 不可以同时 配置为 UART_TX。默认为 UART_TX	0~3.3V

Table3. J2 引脚说明

J管脚	名称	类型	功能	说明
J2_Pin1	GND	P	Ground	-
J2_Pin2	DIO	O	数据口	0~3.3V
J2_Pin3	CLK	-	时钟信号	0~3.3V
J2_Pin4	3V3	I	电源输入	1.8V~3.6V,典型 3.3V

RA2413MT 支持 keil5IDE 烧录 hex 固件,可使用 J-LinkV9 以上版本、CMSIS-DAP 等烧录器下载程序。烧录前请确保已经安装 GigaDeviceGD32E23xDFP.1.0.0pack 和 ARMCMSIS.5.6.0.pack。请从芯苗销售处或芯苗新官网获取相关固件。

6 软件说明

X-RA2413MT 模块出厂已烧录系统固件 XMCS01。芯苗物联提供针对 X-RA2413MT 的可视化上位机配置工具软件,方便用户根据使用场景对 X-RA2413MT 模块进行参数配置,优化感应效果。

7 固件说明

X-RA2413MT 雷达存在感应模块,默认配置下的最远探测距离为 4.5 米(运动&静止),X-RA2413MT 固件默认配置如表 Table4 所示。用户可根据实际场景进行多种参数配置。

Table4. 参数说明

参数名称	可配范围	默认配置	说明
最大探测距离门	2~6	6	单距离门距离 75 厘米
无人持续时间	0~65535 秒	5秒	-
运动灵敏度	1~100	20	-
静止灵敏度	1~100	25	-

智能毫米波传感器用户手册

雷达默认输出数据包含目标状态、目标距离(运动&静止)和目标能量值(运动&静止)。在可视化工具中,可通过勾选工程模式或者串口发送 12.2.6 使能工程模式命令,雷达输出数据会在上述信息的基础上增加各距离门的能量值信息,这时的雷达输出数据称为工程数据。雷达具体输出数据协议请参考 12.3 雷达数据输出协议。

8 可视化配置工具说明

8.1 可视化配置工具介绍

芯苗物联 24G 雷达配置工具是一款专为 X-RA2413MT 开发的绿色软件。在与 X-RA2413MT 连接后,配置工具可以显示、记录雷达数据,也允许用户对雷达进行参数配置。

以下是连接可视化配置工具与雷达模组的步骤。

步骤一:从芯苗销售处获取"芯苗物联 24G 雷达配置工具.rar"软件包,使用解压软件解压该软件包。

步骤二:使用串口转 USB 连接板连接雷达模组和电脑,连接方式如图 Figure2 所示。

Figure 2. X-RA2413MT 通用串口工具与电脑连接示例

步骤三:双击可执行文件"芯苗物联 24G 雷达配置工具 V1.5.0.exe",配置工具界面会弹出,如图 Figure3 所示。

Figure 3. 可视化工具界面

可视化工具界面主要分为"启动设置区(1)","雷达参数设置区(2)","目标灵敏度统计区(3)", "探测实际信息区(4)",和"图标/日志信息区(5)"。各区域功能如下:

- (1) 启动设置区:获取雷达串口工具的端口号,配置波特率与数据格式(工程模式)。
- (2) **雷达参数设置区**:配置或显示雷达参数,包括探测最远距离门(运动&静止),无人持续时间,各 距离门灵敏度(运动&静止)等参数。
- (3) **目标灵敏度统计区**:显示雷达每帧发送数据的所有距离门中最大能量值(运动&静止),并实时更新。
- (4) **探测实际信息区**:显示固件版本号,目标的基本信息,包括有无目标、目标状态、目标距离(运动&静止),目标能量值(运动&静止)。
- (5) **图标/日志信息区**:勾选"工程模式"后,此区域会显示雷达各距离门的能量值,以曲线绘图的方式呈现。红色为实时更新的目标能量值曲线:绿色为灵敏度曲线,读取参数后曲线会更新至读取的参数。

8.2 可视化配置工具使用

可视化工具提供包括"设备连接","开始/停止数据接收"","参数读取/配置","灵敏度配置"等操作。

设备连接

步骤一:模组上电后,使用串口转 USB 连接板连接雷达模组和电脑。从电脑端打开"芯苗物联 24G 雷达配置工具 V1.5.0.exe",会弹出可视化工具界面,如图 Figure 3 所示。

步骤二:点击界面"刷新"按钮获取串口端口号。若有多个端口号,请选择与雷达通信的端口号。 步骤三:在界面"波特率"的文本框内键入通信波特。注意波特率需要与雷达固件波特率保持一 致,相关注意事项请参考<u>第15章</u>。

步骤四点击"连接设备"按钮,当目标与版本信息出现在界面区域(4)中时,说明可视化工具已经与雷达建立连接。

开始/停止数据接收

步骤一:成功连接设备与上位机后,在可视化工具界面点击"开始"按钮,按钮上的文字随即变为"停止"。可视化界面的区域(2)~(4)会显示目标的详细信息。如果勾选可视化界面的"工程模式"选框,则区域(5)会显示各个距离门的具体能量值(运动&静止)。此时工具无法下发配置参数。

步骤二:点击"停止"按钮,可视化工具停止解析数据。此时可以配置以及读取参数。

参数读取/配置

步骤一:成功连接设备与上位机后,且"开始/停止"按钮在"开始"状态,点击"读取"按钮,读取 雷达当前的配置参数、灵敏度等数据,并更新至可视化工具中。

步骤二:如需要更改雷达参数配置,在可视化工具区域(2)的文本框中键入新的参数数值,依次点击"设置"、"确定"按钮,上位机即将当前参数发送至雷达。

步骤三:如需要恢复雷达的默认参数设置,依次点击"重置"、"确定"按钮,上位机即将默认参数 发送至雷达。

灵敏度配置

步骤一:成功连接设备与上位机后,点击"灵敏度配置"按钮,会弹出"灵敏度设置"界面,如图 Figure4 所示。用户可以在界面上设置各距离门的灵敏度(运动&静止)。

步骤二:如需将所有距离门的灵敏度(运动&静止)设为同一数值,首先在"灵敏度设置"界面底部分别键入目标数值,然后点击"设置"按钮保存数据,最后点击"确定"按钮将新的参数发送给雷达。 也可以通过双击表格单元格可以修改后点击"确定"按钮将新的参数发送给雷达。

步骤三:如需将所有距离门的灵敏度(运动&静止)重新设为默认数值,首先点击界面底部的"重置"按钮将所有距离门的灵敏度设为默认值,再点击"确定"按钮将当前参数发送给雷达。

步骤四:如需对除距离门 0 和 1 外的其他距离门单独设置灵敏度,首先双击界面表格中相应数据,再键入目标参数值,最后点击"确定"按钮将新的参数发送给雷达。

参数读取或者配置完成后,点击可视化工具界面的"开始"按钮,雷达将以新的参数配置工作并 上报目标的数据信息。

每次在可视化工具界面点击"开始"按钮,都会在其路径下的"oa/"文件夹里生成日志以供用户分析。

Figure 4. 灵敏度设置界面

可视化工具在上位机的操作流程请参考 Figure 5。

Figure 5. 上位机操作流程

9 安装与探测范围

X-RA2413MT 典型的安装方式为挂壁安装和挂顶安装。挂壁安装时 X-RA2413MT 可以提供精准区域设置功能,测距精度为±15 厘米。挂顶安装时由于挂高高度、人的身高、体型和姿态的不同,X-RA2413MT 的径向感应距离也会有所不同,默认配置下的最大径向感应距离为 45 米。

X-RA2413MT 属干宽波束雷达,因此挂项安装可以实现对较大范围的探测,建议安装高度范围为 2.6~3 米。挂壁安装需要考虑应用场景中的遮挡以及顶部的干扰物,建议安装高度范围为 15~2 米。

10 挂顶安装与探测范围

Figure 6. 挂顶安装示意图

挂顶安装时,如图 Figure6 所示,天线朝向的法向为 0 度,雷达照射方向左侧为负,右侧为正,如图 Figure7 所示。图 Figure8 展示了挂顶安装高度为 2.7 米时本参考方案的探测范围。

Figure 7. 雷达挂顶安装角度辨别

Figure 8. 雷达挂顶安装时探测范围示意图(长度为 m, 角度为°)

11 挂壁安装与探测范围

Figure 9. 雷达挂壁安装示意图

挂壁安装时,如图 Figure9 所示,雷达照射法向为 0 度,左侧方位角度为负,右侧方位角度为正,如图 Figure10 所示。图 Figure11 展示了挂壁高度 1.5 米时本参考方案的探测范围,其中,探测角度范围是以雷达天线法向为中心的 \pm 45 度,探测最大距离是 4.5 米。

Figure 10. 雷达挂壁安装角度辨别

Figure 11. 雷达挂壁安装时探测范围示意图

12 通信协议

本通信协议主要供需脱离可视化工具进行二次开发的用户使用。X-RA2413MT 通过串口(TTL 电平)与外界通信。雷达的数据输出与参数配置命令均在本协议下进行。雷达串口默认波特率为256000,1停止位,无奇偶校验位。

X-RA2413MT

12.1 协议格式

12.1.1 协议格式

X-RA2413MT 数据通信使用小端格式,以下表格中所有数据均为十六进制(HEX);

12.1.2 命令协议帧格式

协议定义的雷达配置命令和 ACK 命令格式如 Table5 至 Table8 所示。

X-RA2413MT 数据通信使用小端格式,以下表格中所有数据均为十六进制(HEX);

Table5. 发送命令协议帧格式

帧头	帧头数据长度	帧内数据	帧尾
FD FC FB FA	2字节	见表 6-2	04 03 02 01

Table6. 发送帧内数据格式

命令字(2字节)	命令字(N 字节)

Table7. ACK 命令协议帧格式

帧头 帧头数据长度		帧内数据	帧尾
FD FC FB FA	2 字节	见表 6-4	04 03 02 01

Table8. ACK 帧内数据格式

发送命令字 & 0x100 (2字节)	返回值(N字节)
---------------------	----------

12.2 发送命令与 ACK

12.2.1 读取固件版本命令

此命令读取雷达固件版本信息。

命令字:0x0000

命令值:无

返回值:2 字节 ACK 状态(0 成功, 1 失败)+2 字节产品类型(0x8004) +2 字节固件类型 (0x0000)+2 字节主版本号+2 字节次版本号+2 字节 patch 版本号

发送数据

FD FC FB FA	02 00	00 00	04 03 02 01

雷达 ACK (成功)

FD FC FB FA 0E 00 00 01 00 00 04 80 00 00 0x ³ 00 0x 00 04 03 02 00
--

12.2.2 使能配置命令

对雷达下发的任何其他命令必须在此命令下发后方可执行,否则无效。

命令字:0x00FF

命令值:0x0001

返回值:2 字节 ACK 状态(0 成功, 1 失败) +2 字节协议版本(0x0001 +2 字节缓冲区大小(0x0040) 发送数据

FD FC FB FA	04 00	FF 00	01 00	04 03 02 01

雷达 ACK (成功)

FD FC FB FA	08 00	FF 01	00 00	01 00	40 00	04 03 02 01

12.2.3 结束配置命令

对雷达下发的任何其他命令必须在此命令下发后方可执行,否则无效。

命令字:0x00FE

命令值:无

返回值:2字节 ACK 状态(0成功,1失败)

发送数据

FD FC FB FA	02 00	FE 00	04 03 02 01

雷达 ACK (成功)

FD FC FB FA	04 00	FE 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

12.2.4 最大距离门与无人持续时间参数配置命令

此命令设置雷达最大探测距离门(运动&静正)(配置范围 2~6),以及无人持续时间参数(配置范围 0~65535 秒)。具体参数字请参考表 Table9。

命令字:0x0060

命令值:2字节最大运动距离门字+4字节最大运动距离门参数+2字节最大静止距离门字+4字节最大静止距离门参数+2字节无人持续时间字+4字节无人持续时间参数

返回值:2字节 ACK 状态(0成功,1失败)

Table9. 0x0060 协议参数字

参数名称	参数字
最大运动距离门	0x0000
最大静止距离门	0x0001
无人持续时间	0x0002

发送数据:最大距离门 6(运动&静止), 无人持续时间 5 秒

雷达 ACK (成功)

I	FD FC FB FA	04 00	60 01	00 00	04 03 02 01

12.2.5 读取参数命令

此命令可以读取雷达当前的配置参数。

命令字:0x0061

命令值:无

返回值:2 字节 ACK 状态(0 成功,1 失败)+头(0xAA)+最天距离门 N(0x06))+配置最大运动距离门+配置最大静止距离门+距离门 0 运动灵敏度+…+距离门 N 运动灵敏度+距离门 0 静止灵敏度+…+距离门 N 静止灵敏度+无人持续时间(2 字节)

发送数据

1	FD FC FB FA	02 00	61 00	04 03 02 01

雷达 ACK(成功,最大距离门 6,配置运动距离门 5,静止距离门 4,运动灵敏度 20,静止灵敏度 25 无人持续时间 3 秒)

FD FC FB FA 18 00 61 01 00 00 AA 06 05 04 14 14 14 14 14 14 19 19 19 19 19 19 19 03 00 04 03 02 01

12.2.6 使能工程模式命令

此命令打开雷达工程模式。打开工程模式后,雷达上报数据中将添加各距离门能量值,详细格式请参考 12.3.2 目标数据组成。

命令字:0x0062

命令值:无

智能毫米波传感器用户手册

返回值:2字节 ACK 状态(0成功,1失败)发送数据

FD FC FB FA 02 00	62 00	04 03 02 01
-------------------	-------	-------------

雷达 ACK (成功)

FD FC FB FA	04 00	62 01	00 00	04 03 02 01

12.2.7 关闭工程模式命令

此命令关闭雷达工程模式。关闭后,雷达上报数据格式请参考12.3.2目标数据组成。

命令字:0x0063

命令值:无

返回值:2字节 ACK 状态(0成功,1失败)发送数据

FD FC FB FA	02 00)	63 00	04 03 02 01
雷达 ACK(成功)				
FD FC FB FA	04 00	63 01	00 00	04 03 02 01

12.2.8 距离门灵敏度配置命令

此命令配置距离门的灵敏度。本协议既支持对各个距离门进行单独配置,也支持将所有距离门同时配置成统一的数值。若同时设置所有距离门灵敏度为同一值,需将距离门值设置 0xFFFF,具体参数字请参考表 6-6

命令字:0x0064

命令值:命令值:2字节距离门字+4字节距离门值+2字节运动灵敏度字+4字节运动灵敏度值+2字节静止灵敏度字+4字节静止灵敏度值

返回值:2字节 ACK 状态(0成功,1失败)

Table10. 0x0064 协议参数字

参数名称	参数字
距离门	0x0000
运动灵敏度字	0x0001
静止灵敏度字	0x0002

发送数据:配置距离门3的运动灵敏度15,静止灵敏度25

FD FC FB FA	14 00 64 00 00	00 03 00 00 00	01 00	FF 00 00 00	02 00	19 00 00 00	04 03 02 01
----------------	----------------	----------------	----------	-------------	-------	-------------	-------------

智能毫米波传感器用户手册

雷达 ACK (成功)

FD FC FB FA	04 00	64 01	00 00	04 03 02 01

发送数据:配置所有距离门的运动灵敏度 15,静止灵敏度 25

FD FC FB	1	64 00	00 00	FF FF 00	01 00	FF 00 00	02 00		04 03 02
FA	00			00		00		00	01

雷达 ACK (成功)

FD FC FB FA	04 00	64 01	00 00	04 03 02 01

12.3 雷达数据输出协议

X-RA2413MT 通过吕口输出雷达探测结果,默认输出目标基本信息,包括目标状态、运动能 量值、静止能值、运动距离、静止距离等信息。如果配置雷达为工程模式,雷达会额外输出各距离 门能量值(运动&静止)。雷达数据按照规定帧格式输出。

12.3.1 上报数据帧格式

协议定义的雷达上报消息帧格式如表 Table11 和表 Table12 所示。正常工作模式和工程模 式下,上报数据类型值的定义如表 Table13 所示。

Table11. 上报数据帧格式

帧头	帧头数据长度	帧内数据	帧尾
F4 F3 F2 F1	2 字节	见表 Table12	F8 F7 F6 F5

帧内数据帧格式 Table12.

数据类型	头部	目标数据	尾部	校验
1字节	0xAA	见表 Table13	0x55	0x00

Table13. 数据类型说明

数据类型值	说明
0x01	工程模式数据
0x02	目标基本信息数据

智能毫米波传感器用户手册

12.3.2 目标数据组成

雷达上报的目标数据内容会根据雷达的工作模式而改变。正常工作模式下,雷达默认输出目标的基本信息数据;

配置为工程模式后,雷达会在目标的基本信息数据之后添加各距离门能量值信息。因此,目标的基本信息总会在雷达上报数据中输出,而距离门能量值信息需要命令使能才会输出。

正常工作模式下,雷达上报的目标数据组成如表 6-10 所示,目标状态值的定义如表 6-11 所示。工程模式下目标数据帧的组成如表 6-12 所示。

Table14. 目标数据帧组成

目标状态	运动目标距离(厘米)	运动目标能量值	静止目标距离(厘米)	静止目标能量值
1 字节	2字节	1字节	2字节	1字节

Table15. 目标状态值说明

目标状态值说明	说明
0x01	无目标
0x02	运动目标
0x03	静止目标
0x04	运动&静止目标

Table16. 目标数据(工程模式)帧组成

	静止目 标距离	静止目 标能量	最大运 动距离 门 N	最大静 止距离 门 N	运动 距离门 0能量 值	 运动 距离门 N能量 值	静止距 离门 0 能量值	 静止距 离门 N 能量值
	2字节	1字节	1字节	1字节	1字节	 1字节	1字节	 1字节

12.4 雷达命令配置方式

12.4.1 雷达命令配置步骤

X-RA2413MT 雷达执行一条配置命令的过程包含上位机"发送命令"与雷达"回复命令 ACK" 两个环节。若雷达无 ACK 回复或回复 ACK 失败,则说明雷达执行配置命令失败。

如前所述,向雷达发送任何其他命令前,开发者需先发送"使能配置"命令,然后在规定时间内(详见 <u>12.4.2 雷达配置注意事项</u>)发送配置命令。命令配置完成之后,发送"结束配置"命令告知雷达配置已经结束。

例如,若要读取雷达配置参数,首先上位机发送"使能配置"命令;待收到雷达 ACK 成功后,再发送"读取参数"命令;待收到雷达 ACK 成功后,最后发送"结束配置"命令;待雷达 ACK 成功后,表明完整的读取参数动作结束。

雷达命令配置流程如图 Figure 12 所示。

Figure 12. 雷达命令配置流程

12.4.2 雷达配置注意事项

超时机制:对雷达进行命令处理前,需要先发送"使能配置"命令。雷达收到"使能配置"命令之后,进入3秒计时的命令配置阶段,此时可以配置多条命令,且每条命令都会重启3秒的计时。计时阶段,雷达除命令响应外,无其他数据输出。如果3秒内雷达没有接收到任何命令,将自动退出命令配置阶段,恢复正常工作模式,并输出检测数据。如需再次配置雷达,需要重新发送"使能配置"命令开启新的计时周期。

13 机械尺寸

本章描述了 X-RA2413MT 硬件 PCB 的机械尺寸,单位均为毫米。X-RA2413MT 板厚为 1.6mm,板厚公差±10%。具体尺寸如图 Figure 13 所示。

Figure 13. X-RA2413MT 机械尺寸图

14 安装说明

确认最小安装间隙

如果雷达需要安装外壳,则外壳必须在 24GHz 有良好的透波特性,且不能含有金属或对电磁波有屏蔽作用的材料。

安装环境要求

本产品需要安装在合适的环境中,如在以下环境中使用,检测效果将受到影响:

- 感应区域内存在持续运动的非人物体,如动物,持续摆动的窗帘和正对出风口的大株绿植等。
- 感应区域内存在大面积的强反射物,强反射物正对雷达天线会造成干扰。
- 挂壁安装时,需要考虑室内顶部的空调、电风扇等外部的干扰因素

安装时注意事项

- 尽量保证雷达天线正对要检测的区域,且天线四周开阔无遮挡。
- 保证传感器的安装位置牢固、稳定,雷达本身的晃动将影响检测效果。
- 保证雷达的背面不会有物体运动或震动。由于雷达波具有穿透性,天线信号背瓣可能会检测到雷达背面的运动物体。可以采用金属屏蔽罩或者金属背板,对雷达背瓣进行屏蔽,减弱雷达背面物体造成的影响。

15 注意事项

最大探测距离

雷达探测目标的最大范围是直线距离 4.5 米。在探测范围(1.5 米~4.5 米)内,雷达会上报目标距雷达的直线距离。注意:由于受直流信号影响,近处的目标信号噪声偏大,导致雷达对于 1.5 米内的目标无法给出准确距离,故对于 1.5 米以内的目标距离,雷达均上报 1.5 米。

启动时间

雷达上电启动后,在 200ms 以内上报运动目标,在 3 秒后上报静止目标。

最远距离与精度

理论上,本参考方案雷达测距精度为 0.15 米(此为在物理分辨率为 0.75 米的基础上通过专有算法处理得到的结果)。由于目标的体型,状态,RCS 等不同,目标距离精度会有波动,同时最远探测距离也会稍有波动。

无人持续时间

当雷达模组检测到目标区域内没有人体存在时,并不会立即上报区域内"无人"状态,而是有所延迟。其延迟上报的机制为:一旦在测试范围内检测不到人体目标,雷达模组会开启计时,时长即为无人持续时间,若在计时内持续检测到无人存在,则在计时结束后上报"无人"状态;若在此时间段内检测到有人存在,则立即结束并更新计时,上报目标信息。

智能毫米波传感器用户手册

16 联系方式

地址: 上海市浦东新区周祝公路 268 弄 2 号楼 1315 室

网址: http://www.xinmiaolink.com

邮件联系: sales@chipfresh.com

<结束>

This document contains information that is proprietary to Shanghai xinmiaolink Inc.

Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited.