SCAFFOLDING

ALEXANDRINA BODRUG

Context

Order and orient

GST feature

G51 leatures

GST modeled graph
Expected solution
Scaffolding solutions

Benchmarking workflow for the GST

Results

Short repeats

Perspectives

EVALUATION AND BENCHMARKING OF A NEW SCAFFOLDING METHODOLOGY

ALEXANDRINA BODRUG

SUPERVISORS: PR. RUMEN ANDONOV & DR. DOMINIQUE LAVENIER

University Rennes 1

BIOINFORMATICS AND GENOMICS MASTER

JUNE 25, 2015

Overview

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging problem

GST features Scripting for the GS

Expected solution
Scaffolding solutions

Benchmarking workflow for the GST

Result

Short repeat

Perspectives

1 Context

- Some definitions
- Order and orient
- Challenging problem

2 GST features

- Scripting for the GST
- GST modeled graph
- Expected solution
- Scaffolding solutions
- 3 Benchmarking workflow for the GST
- 4 Results
 - Large repeats
 - Short repeats
- 5 Perspectives

CONTEXT

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging probler

GST feature

GST modeled graph
Expected solution
Scaffolding solutions

workflow for

Results

Short repeat

Perspectives

SOME DEFINITIONS

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Some definitions Order and orient

Challenging problem

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

Benchmarkin workflow for the GST

Results

Short repeats

Perspective:

"The Contig Scaffolding Problem is to order and orientate the given contigs in a manner that is consistent with as many mate-pairs as possible".

Hudson et al. 2002

SOME DEFINITIONS

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging problet

GST features

GST modeled graph Expected solution

Scaffolding solutions

workflow for the GST

Result

Short repeat

Perspectives

Genome is fragmented, extremities are sequenced (\mapsto reads) . . .

... reads are assembled into consensus sequences.

Unitigs are high confidence contigs.

ORDER AND ORIENT

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Order and orient
Challenging probler

GST features Scripting for the GST GST modeled graph Expected solution

Benchmarkin workflow for

Dooulte

Short repeat

Perspectives

 $\label{eq:material} \begin{array}{l} \text{Mated-pair read} \mapsto \text{bridge between contigs} \\ \text{Several correctly mapped reads} \mapsto \text{link between contigs} \\ \text{High-confidence overlap} \mapsto \text{link between contigs} \\ \text{All linkage information} \mapsto \text{order and orient contigs} \\ \end{array}$

CONFLICTING LINKS CAN AND WILL EXIST.

CHALLENGING PROBLEM

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Order and orient

Challenging problem

GST feature

Scripting for the GST GST modeled graph Expected solution

Workflow for

Result

Short repea

Perspective

What would you do in these situations?

GENSCALE SCAFFOLDING TOOLS FEATURES

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging probler

GST features

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

workflow for the GST

Result

Short repeat

Perspectives

SEVERAL TOOLS MODEL THE PROBLEM DIFFERENTLY.

- → common features:
 - modeling of the scaffolding problem as a graph
 - use of unitigs instead of contigs to better compute coverage
 - use of unitig coverages to duplicate nodes representing unitigs
 - unitig orientations represented by separate nodes
- → differences:
 - weighted path model focuses solely on order and orientation
 - distance based model incorporates link length information
 - flow model accepts intervals for unitig coverage and link length

HANDLING THE MODELED GRAPHS

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Some definitions
Order and orient
Challenging problem

GST features

Scripting for the GST GST modeled graph Expected solution

Benchmarking workflow for

the GST

Large repeat

Perspectives

Automated ways to control the input data and validate the scaffolding solution:

- a script to visualize input data and GST solutions: graph_generator.py
- a script to inspect the features of the modeled input graph: graph_inspector.py
- a script to automatically detect correctly solved instances: graph_comparator.py

GST MODELED GRAPH

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Order and orient

GST features

Scripting for the GST GST modeled graph Expected solution

Benchmarking workflow for

Resu

Short repea

Perspective

Agrostis stolonifera chpl. genome input data graph

1	nodes	_ \ '	001/	\/	2

unitig	len	cov
1	19351	[2, 2]
0	160	[2, 4]
3	2276	[2, 2]
2	56143	[1, 1]
5	12878	[1, 1]
4	24519	[1, 1]

EXPECTED SOLUTION

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging problem

GST features

Scripting for the G

GST modeled graph Expected solution

Scaffolding solutions

workflow for

Result

Short repeat

Perspectives

Agrostis stolonifera chpl. genome expected solution

→ USE UNITIGS THE RIGHT NUMBER OF TIMES IN THE CORRECT ORIENTATION

→ORDER UNITIGS TO OBTAIN AN UNINTERRUPTED CIRCULAR PATH

unitig	orient.	occ.
1	reverse	1
1	forward	1
3	reverse	1
3	forward	1
0	reverse	1
0	forward	2

SCAFFOLDING SOLUTIONS

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Order and orient
Challenging proble

GST feature:

GST modeled graph Expected solution

Scaffolding solutions

workflow for the GST

Results

Short repeat

Perspectives

Agrostis stolonifera chpl. genome scaffolding solutions

UNITIGS FORMING THE INVERTED REPEATED SEQUENCE OF THE CHLOROPLASTIC GENOME ARE DUPLICATED.

BENCHMARKING WORKFLOW FOR THE GST

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging problem

GST feature

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

Benchmarking workflow for the GST

Result

Short repeat

Perspectives

SOLUTIONS FOUND WITH THE GENSCALE TOOLS ARE BENCHMARKED AGAINST THE SSPACE PUBLISHED SCAFFOLDER.

RESULTS

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Some definitions Order and orient Challenging problem

GST features Scripting for the GS' GST modeled graph Expected solution Scaffolding solutions

Benchmarking workflow for

Results

Short repeat

Perspectives

Using the benchmark workflow the following conclusions were drawn:

- Genomes with big repeated regions are solved a lot better with GSTs than with SSPACE
- Small repeats are very challenging to scaffold because too many conflicting links exist and GST can not take a decision or is too slow
- The GST models processing the link sequence length information perform worse than those focusing only on ordering and orientating

LARGE REPEATS - CHLOROPLASTIC GENOMES

SCAFFOLDING

ALEXANDRINA BODRUG

Contovi

Some definitions
Order and orient
Challenging proble

GST feature

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

workflow for the GST

Result

Large repeats

Perspectives

EXCELLENT RESULTS ARE OBTAINED FOR DATA SETS WITH LARGE REPEATS AND A SMALL NUMBER OF UNITIGS.

SHORT REPEATS - BACTERIAL GENOMES

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging probler

GST features

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

workflow for

Result

Short repeats

Perspectives

SMALL REPEATS ARE PROBLEMATIC STARTING FROM THE UNITIG BUILDING STEP.

THE WOLBACHIA ENDOSYMBIONT ORGANISM POSSESSES 444 UNITIGS AND ONLY 138 ARE LONGER THAN 1000 BASE PAIRS.

PERSPECTIVES

SCAFFOLDING

ALEXANDRINA BODRUG

Context

Some definitions
Order and orient
Challenging probler

GST features
Scripting for the GST
GST modeled graph
Expected solution
Scaffolding solutions

Benchmarking workflow for the GST

Result

Short repeat

Perspectives

DEVELOP - TEST - BENCHMARK

- Find strategies which solve more challenging data
 - \rightarrow flow model in development
- Benchmark against other tools trying to solve repeated regions
- Test the GST with real data
- Test the GST with other genome sequencing data types

THANK YOU FOR YOU ATTENTION

SCAFFOLDING

ALEXANDRINA BODRUG

Contex

Order and orient

Challenging problem

GST feature:

Scripting for the GST GST modeled graph Expected solution Scaffolding solutions

workflow for the GST

Result

Short repeats

Perspectives

SCAFFOLDING: SAFETY COMES FIRST

