서울시립대학교 수학과

캡스톤 디자인

2020.09.18

고지형 김양기 박진수 안나민

Introduction to Deep Learning

말하는 인공지능 (유튜브)

목차

딥러닝의 정의와 예시 뉴런 딥러닝의 구성요소 퍼셉트론과 전파 활성화 함수와 비용 함수 그레디언트 디센트(경사하강법) 딥러닝의 구조와 학습 단계 역전파 학습률 파라미터 최적화 과적합 규제

뉴럴 네트워크를 사용하여 데이터에서 패턴을 추출하는 것

딥러닝의 구성요소

Weights
Sum
Non-Linearity
Output

Inputs

활성화 함수

비용 함수

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(y^{(i)} - f(x^{(i)}; \mathbf{W})\right)^{2}}_{\text{Actual}}$$
Actual Predicted

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

그레이디언트 디센트

딥러닝의 구조 (예측)

Table 10-1. Typical Regression MLP Architecture

Hyperparameter	Typical Value
# input neurons	One per input feature (e.g., 28 x 28 = 784 for MNIST)
# hidden layers	Depends on the problem. Typically 1 to 5.
# neurons per hidden layer	Depends on the problem. Typically 10 to 100.
# output neurons	1 per prediction dimension
Hidden activation	ReLU (or SELU, see Chapter 11)
Output activation	None or ReLU/Softplus (if positive outputs) or Logistic/Tanh (if bounded outputs)
Loss function	MSE or MAE/Huber

$$P(y=j \mid \boldsymbol{\Theta}^{(i)}) = \frac{\mathbf{e}^{\boldsymbol{\Theta}^{(i)}}}{\sum_{j=0}^{k} \mathbf{e}^{\boldsymbol{\Theta}^{(i)}_{k}}}$$
where $\boldsymbol{\Theta} = w_{o}x_{o} + w_{1}x_{1} + ... + w_{k}x_{k} = \sum_{i=0}^{k} w_{i}x_{i} = w^{T}x$

A mathematical representation of the Softmax Regression function

딥러닝의 단계

참고 자료

MIT Lecture 1 Intro to Deep Learning

OREILLY Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow

YOUTUBE Speaking of AI

ABHRANIL BIOG Training Neural Networks with Genetic Algorithms

GOOGLE Images

역전파(Backpropagation)

역전파

- 주어진 가중치를 통해 예측치를 구하는 과정: 순전파(Forward propagation)
- 역전파: 순전파로 구한 예측치와 관측치의 오차가 감소하도록 가중치를 업데이
 트 하는 과정
- '오차 최소 = 손실함수 값이 최소가 되는 지점'
- 경사하강법을 통해 가중치를 업데이트하여 최소 지점을 찾음

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$
 J: 손실함수, η : 학습률

역전파(Backpropagation)

역전파 예시

가정

- 이진 분류
- 1개의 은닉층
- 활성화 함수: Sigmoid
- 손실함수는 Binary Cross Entropy

$$E=-\sum_{i=1}^{nout}(t_ilog(x_i)+(1-t_i)log(1-x_i))$$
 where, $x_i=rac{1}{1+e^{-s_i}}$, $s_i=\sum_{j=1}x_jw_{ji}$.

(1) 출력층과 은닉층 사이의 가중치 업데이트

체인룰(Chain Rule)에 의해 다음이 유도됨

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial x_i} \frac{\partial x_i}{\partial s_i} \frac{\partial s_i}{\partial w_{ji}}$$

1.
$$\frac{\partial E}{\partial x_i} = \frac{-t_i}{x_i} + \frac{1-t_i}{1-x_i} = \frac{x_i-t_i}{x_i(1-x_i)}$$

2.
$$\frac{\partial x_i}{\partial s_i} = x_i (1-x_i)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

3.
$$rac{\partial s_i}{\partial w_{ji}} = x_j$$

$$g'(z) = g(z)(1 - g(z))$$

$$\therefore rac{\partial E}{\partial w_{ii}} = (x_i - t_i)x_j$$

역전파(Backpropagation)

역전파 예시

가정

- 이진 분류
- 1개의 은닉층
- 활성화 함수: Sigmoid
- 손실함수는 Binary Cross Entropy

$$E=-\sum_{i=1}^{nout}(t_ilog(x_i)+(1-t_i)log(1-x_i))$$
 where, $x_i=rac{1}{1+e^{-s_i}}$, $s_i=\sum_{j=1}x_jw_{ji}$.

(2) 은닉층과 입력층 사이의 가중치 업데이트

$$rac{\partial E}{\partial w_{kj}} = rac{\partial E}{\partial s_j} rac{\partial s_j}{\partial w_{kj}}$$

1.
$$\frac{\partial E}{\partial s_i} = \sum_{i=1}^{nout} \frac{\partial E}{\partial s_i} \frac{\partial s_i}{\partial x_j} \frac{\partial x_j}{\partial s_j} = \sum_{i=1}^{nout} (x_i - t_i)(w_{ji})(x_j(1 - x_j))$$

2.
$$rac{\partial s_j}{\partial w_{kj}} = x_k \ (\because s_j = \sum_{k=1} x_k w_{kj})$$

$$egin{array}{l} rac{\partial E}{\partial x_i} = rac{-t_i}{x_i} + rac{1-t_i}{1-x_i} = rac{x_i-t_i}{x_i(1-x_i)} \ rac{\partial x_i}{\partial s_i} = x_i(1-x_i) \end{array}$$

$$\therefore rac{\partial E}{\partial w_{kj}} = \sum_{i=1}^{nout} (x_i - t_i)(w_{ji})(x_j(1-x_j))(x_k)$$

학습률(Learning Rate)

학습률

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

- 기울기(Gradient)에 사용자가 지정한 만큼 상수배한 것을 기존 가중치에 빼 최적화 진행
- 이 상수값이 학습률이며, 0과 1 사이의 값임
- 너무 크면 최소 지점을 찾지 못하는 발산 위험
- 너무 작으면 학습 속도가 너무 느리거나, 국소 최소 지점에 수렴하는 문제
- 경험적으로 조절하거나, Adaptive Learning Rate 방법 사용
- Adaptive Learning Rate 최적화 함수 AdaGrad, RMSProp, Adam

Figure 1: Learning Rate와 Gradient Descent

파라미터 최적화(Parameter Optimization)

경사하강법 기반 파라미터 최적화 방식

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

(1) Batch Gradient Descent(BGD)

- 모든 데이터셋을 하나의 배치(batch)로 보고 전체 미분값을 평균하여 1 에폭(epoch)동안 1회의 업 데이트

- 장점: 최적 지점을 확실히 찾을 수 있다

- 단점: 속도가 느리다

*에폭: 한 번의 학습이 진행되는 것 *배치: 한 번의 업데이트에 활용되는 데이터 덩어리

(2) Stochastic Gradient Descent(SGD)

- 임의로 하나의 데이터만을 뽑아 학습시키는 방법

- 장점: 속도가 빠르다

- 단점: 최적 지점을 찾는 과정에서 노이즈 발생 위험

(3) Mini-Batch Gradient Descent(MGD)

- 전체 데이터 중 N개의 데이터를 뽑아 미분값을 평균하여 업 데이트
- BGD에 비해 속도가 빠르고, SGD에 비해 안정적
- 가장 많이 사용하는 방식

과적합(Overfitting & Underfitting)

과적합 문제는 모델 성능과 직결됨 과적합을 조절하여 모델을 일반화하는 것이 관건

(1) 과대적합(Overfitting)

- 모델이 학습 데이터에 지나치게 피팅(fitting)되어 있는 상태
- 검증 데이터는 제대로 예측하지 못하는 문제가 발생

(2) 과소적합(Underfitting)

- 모델이 학습 데이터에 지나치게 피팅(fitting)되어 있지 않은 상태
- 이도 저도 아닌 일반화가 제대로 되지 않은 상태

규제(Regularization)

규제

- 모델의 과적합을 방지하기 위한 방법

(1) 드롭아웃(Dropout) 방법

- 은닉층의 일부 노드를 임의로 학습 단계에서 제외

(2) 학습 조기 종료(Early Stopping)

- 학습 과정에서 손실값에 대한 커브가 올라가기 전에 학 습을 미리 종료

감사합니다

