Dizgi Hüseyin Gül

ÜÇGEN

ÜÇGENDE AÇI ÖZELLİKLERİ

1. Üçgenin iç açıları ölçüleri toplamı 180° dir.

$$x + y + z = 180^{\circ}$$

2. Üçgenin dış açıları ölçüleri toplamı 360° dir.

$$x^{1} + y^{1} + z^{1} = 360^{\circ}$$

 Bir dış açının ölçüsü kendisine komşu olmayan iki iç açının ölçüleri toplamına eşittir.

$$x' = y + z$$
 $y' = x + z$ $z' = x + y$

 İki açıortayın kesişmesiyle oluşan açının ölçüsü

$$x = 90^{\circ} + \frac{m(\widehat{A})}{2}(\widehat{BDC})$$
 (geniş açı)

İki dış açıortayın kesişmesiyle oluşan açının ölçüsü

$$y = 90^{\circ} + \frac{m(\widehat{A})}{2}(\widehat{BDC})$$
 (dar açı)

6. Bir iç açıortay ile bir dış açıortayın kesismesiyle olusan açının ölçüsü

$$z = \frac{m(\widehat{A})}{2}$$

Üçgenin bir kenarı içe büküldüğünde oluşan açının ölçüsü

$$x = a + b + c$$

ÜÇGENDE AÇI-KENAR BAĞINTILARI

 Bir üçgende açılar arasındaki sıralama ile bu açıların karşısındaki kenarlar arasındaki sıralama doğru orantılıdır.

$$m(A) \ge m(B) \ge m(C)$$
 ise $a \ge b \ge c$ dir.

 Bir üçgende herhangi bir kenarın uzunluğu, diğer iki kenarın uzunluğunu farkının mutlak değerinden büyük toplamlarından ise küçüktür.

$$|b - c| < a < b + c$$

$$|a - c| < b < a + c$$

$$|a - b| < c < a + b$$

3. ABC üçgeninde

$$m(B) > 90^{\circ}$$
 ise, $b^2 > a^2 + c^2$ dir.

$$m(B) < 90^{\circ}$$
 ise, $b^2 < a^2 + c^2$ dir.

4. Bir üçgenin sınırladığı alan içindeki herhangi bir nokta ile köşeler birleştirildiğinde, ABC üçgeninin çevresi verilirse ve çevreye 2u denirse

$$u < |PA| + |PB| + |PC| < 2u dur.$$

DİK ÜÇGEN

PİSAGOR BAĞINTISI

ABC dik üçgeninde [AC] kenarına **hipotenüs** denir ve $b^2 = a^2 + c^2$ dir.

Bir dik üçgende hipotenüse çizilen kenarortayın uzunluğu hipotenüs uzunluğunun yarısıdır.

ÖKLİD BAĞINTILARI

- **a)** $h^2 = p \cdot h$
- **b)** $b^2 = k \cdot a$
- c) $c^2 = p \cdot a$
- d) $A(\widehat{ABC}) = \frac{b \cdot c}{2} = \frac{a \cdot h}{2}$

İKİZKENAR ÜÇGEN

 İki kenar uzunluğu eşit olan üçgenlere ikizkenar üçgen denir. Diğer kenara taban denir.

[BC]: Taban,

B ve C: Taban açıları,

A: Tepe acisi

$$|AB| = |AC| \Leftrightarrow m(B) = m(C)$$

2. A, B ve H noktaları doğrusal F, B ve C noktaları doğrusal [FH] ⊥ [HB]

$$|AB| = |AC|$$
 ise, $|FE| - |FH| = h_b - h_c$ dir.

3. P herhangi bir nokta

[PR] // [AB], [PS] // [AC] ve |AB| = |AC| olmak üzere |PR| + |PS| = |AB| = |AC|

EŞKENAR ÜÇGEN

1. Üç kenar uzunluğu da birbirine eşit olan üçgendir. İç açıları eşit ve 60 ar derecedir.

2. Eşkenar üçgende yükseklik hem açıortay hem de kenarortaydır.

$$(h_a = h_b = h_c = V_a = V_b = V_c = n_A = n_B = n_C)$$

 Eşkenar üçgenin üzerinden veya içinden alınan herhangi bir noktadan kenarlara çizilen dikmelerin toplamı, eşkenar üçgenin yüksekliğine eşittir.

ABC eşkenar üçgen, |AH| = h

P, herhangi bir nokta |PD| + |PF| + |PE| = h

 Eşkenar üçgenin içinden alınan herhangi bir noktadan kenarlara çizilen paralellerin toplamı, eşkenar üçgenin bir kenar uzunluğuna eşittir.

ABC eşkenar üçgen, P herhangi bir nokta ise

ÜÇGENDE AÇIORTAY BAĞINTILARI

 ABC üçgeninde [AN], iç açıortay olmak üzere (n_A)

$$\frac{|AB|}{|AC|} = \frac{|BN|}{|NC|} = \frac{A(\widehat{ABN})}{A(\widehat{ANC})}$$

2. ABC üçgeninde [AN'] dış açıortay olmak üzere, $\frac{|AC|}{|AB|} = \frac{|N'C|}{|N'B|}$

$$||AN'||^2 = ||N'C|| \cdot ||N'B|| - ||AC|| \cdot ||AB||$$
 şeklindedir.

- Bir üçgende iki dış açıortayı ile bir iç açıortayı bir noktada kesişir. Bu nokta üçgenin dış teğet çemberlerinden birinin merkezidir.
 - O, ABC üçgeninin dış teğet çemberlerinden birinin merkezidir.
- **4.** D, ABC üçgeninin iç teğet çemberinin merkezi ise.

$$\frac{A(\widehat{CDB})}{a} = \frac{A(\widehat{ADC})}{b} = \frac{A(\widehat{ABD})}{c} \text{ dir.}$$

ÜÇGENDE KENARORTAY BAĞINTILARI

 Kenarortaylar bir noktada kesişirler. Bu nokta üçgenin ağırlık merkezidir.

G, ağırlık merkezi olmak üzere,

|CG| = 2|GE| dir.

Kenarortay teoremi, $2 \cdot V_a^2 + \frac{a^2}{2} = b^2 + c^2$

2. [AD] kenarortay, [AH] yükseklik,

 $|HD| = x \text{ ise}, \quad 2 \cdot a \cdot x = |b^2 - c^2| \quad \text{dir.}$

3. G, ABC üçgeninin ağırlık merkezi

 $m(\widehat{BAC})$ = 90° ise, $5 \cdot V_a^2 = V_b^2 + V_c^2$

4. [BD] \perp [CE] $\Rightarrow V_a^2 = V_b^2 + V_c^2$

ÜCGENDE ALAN

Yükseklik: Bir üçgende herhangi bir köşeden karşısındaki kenara (veya kenarın uzantısına) indirilen dikmeye denir.

$$A(\widehat{ABC}) = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$$

Herhangi İki Kenar ve Bu İki Kenar Arasındaki Açısı Verilen Üçgenin Alanı

$$A(\widehat{\overline{ABC}}) = \frac{1}{2}b \cdot c \sin(\widehat{A})$$

$$A(\widehat{ABC}) = \frac{1}{2} a \cdot c \sin(\widehat{B})$$

$$A(\widehat{ABC}) = \frac{1}{2}a \cdot b \sin(\widehat{C})$$

Üç Kenar Uzunluğu Verilen Üçgenin Alanı

ABC üçgeninin çevresi

$$C(\widehat{ABC}) = a + b + c$$
 olmak üzere,

$$u = \frac{a+b+c}{2} = \frac{\widehat{C(ABC)}}{2}$$

$$A(\widehat{ABC}) = \sqrt{u \cdot (u - a) \cdot (u - b) \cdot (u - c)}$$

seklindedir.

Çevresi ve İç Teğet Çemberinin Yarıçapı Verilen Üçgenin Alanı

O, iç teğet çemberinin merkezi r, çemberin yarıçapı ve

$$u = \frac{a+b+c}{2}$$
 olmak üzere

$$A(\widehat{ABC}) = u \cdot r$$

seklindedir.

Çevresel Çemberin Yarıçapı ve Kenar Uzunlukları Verilen Üçgenin Alanı

|OC| = R (çevrel çemberin yarıçapı)

$$A(\widehat{ABC}) = \frac{a \cdot b \cdot c}{4R}$$

şeklindedir.

ÜÇGENDE ALAN İLE İLGİLİ BAZI ÖZEL DURUMLAR

 Yükseklikleri eşit olan üçgenlerin alanları oranı ile tabanları oranı esittir.

d₁ // d₂ ise h, ABC ve DEF üçgenlerinin ortak yüksekliğidir.

$$\frac{A(\widehat{ABC})}{A(\widehat{DEF})} = \frac{\frac{a \cdot h}{2}}{\frac{d \cdot h}{2}} = \frac{a}{d}$$

 Taban uzunlukları eşit olan üçgenlerin alanları oranı, (eşit olan tabanlara ait) yüksekliklerinin oranına eşittir.

a = d ise
$$\frac{A(\widehat{ABC})}{A(\widehat{DEF})} = \frac{\frac{a \cdot n_a}{2}}{\frac{d \cdot h_d}{2}} = \frac{h_a}{h_d}$$
 olur.

3. $\frac{A(\widehat{ABC})}{A(\widehat{DEF})} = \frac{|AB| \cdot |AC| \cdot |BC|}{a \cdot c \cdot e + b \cdot d \cdot f}$ şeklindedir.

BENZERLİK ORANI VE BENZER ÜÇGENLERİN ALANLARI ORANI

$$\frac{\mid AB\mid}{\mid DE\mid} = \frac{\mid BC\mid}{\mid EF\mid} = \frac{\mid AC\mid}{\mid DF\mid} = k \quad \text{oranına} \quad \text{benzerlik}$$

oranı denir.

Benzerlik oranı:

$$\frac{\mid AB\mid}{\mid DE\mid} = \frac{\mid BC\mid}{\mid EF\mid} = \frac{\mid AC\mid}{\mid DF\mid} = \frac{h_a}{h_d} = \frac{h_b}{h_e} = \frac{h_c}{h_f} = k$$

$$\frac{n_A}{n_D} = \frac{n_B}{n_E} = \frac{n_C}{n_F} = \frac{V_a}{V_d} = \frac{V_b}{V_e} = \frac{V_c}{V_f} = \frac{C(\widehat{ABC})}{C(\widehat{DEF})} = k$$

ve
$$\frac{A(\widehat{ABC})}{A(\widehat{DEF})} = k^2$$

TEMEL BENZERLİK TEOREMİ

ABC üçgeninde [ED] // [BC]

$$\frac{|AE|}{|AB|} = \frac{|AD|}{|AC|} = \frac{|ED|}{|BC|}$$

temel benzerlik teoremi denir.

THALES (TALES) TEOREMI

1. [AD] // [BE] // [CF]

$$\frac{|AB|}{|BC|} = \frac{|DE|}{|EF|}$$
 ve $\frac{|AB|}{|AC|} = \frac{|DE|}{|DF|}$ şeklindedir.

2. [AC] // [DE] olmak üzere

$$\frac{|AB|}{|BE|} = \frac{|CB|}{|BD|} = \frac{|AC|}{|DE|}$$
 şeklindedir.

MENELAUS TEOREMİ

Şekildeki ABC üçgeninin BC kenarının uzantısı ile, [AB] ve [AC] nı kesen d doğrusu verildiğinde;

$$\frac{|PC|}{|PB|} \cdot \frac{|BS|}{|AS|} \cdot \frac{|AR|}{|CR|} = 1$$
 olur.

SEVA TEOREMİ

Şekildeki ABC üçgeninde,

$$\frac{|AS|}{|BS|} \cdot \frac{|BT|}{|CT|} \cdot \frac{|CR|}{|AR|} = 1 \text{ şeklindedir.}$$

STEWART TEOREMI

Şekildeki ABC üçgeninde a, b ve c kenar uzunlukları P, [BC] nın üzerinden alınan herhangi bir nokta olmak üzere,

$$x^{2} = \frac{b^{2} \cdot m + c^{2} \cdot n}{a} - m \cdot n \text{ şeklindedir.}$$

CARNOT TEOREMI

P, herhangi bir nokta olmak üzere;

$$a^{2} + c^{2} + e^{2} = b^{2} + d^{2} + f^{2}$$
 şeklindedir.

COKGENLER

Konveks Çokgenin Özellikleri

n kenarlı bir konveks çokgenin;

- İç açılarının ölçülerinin toplamı:
 (n 2) · 180° dir.
- 2. Dış açılarının ölçüleri toplamı 360° dir.
- Bir köşesinden çizilen köşegenlerle çokgen, (n – 2) tane üçgene ayrılır.
- **4.** Bir köşesinden çizilen tüm köşegenlerin sayısı, (n-3) tür.
- 5. Bir çokgenin tüm köşegenlerinin sayısı;

$$\frac{n(n-3)}{2}$$
 dir.

6. Kenar sayısı n olan bir konveks çokgenin çizilebilmesi için (2n – 3) tane elemanı bilinmelidir. Bu elemanların en az (n – 2) tanesi uzunluk, en çok (n – 1) tanesi açı olmalıdır.

DÜZGÜN ÇOKGENLER

Kenarları eşit uzunlukta ve iç açılarının ölçüleri esit olan çokgene **düzgün çokgen** denir.

Düzgün Çokgenin Özellikleri

 n kenarlı bir düzgün çokgenin bir dış açısının ölçüsü:

$$\frac{360^{\circ}}{n}$$
 dir.

n kenarlı bir düzgün çokgenin bir iç açısının ölçüsü:

$$\frac{(n-2)\cdot 180^{\circ}}{n} \text{ veya } 180^{\circ} - \frac{360^{\circ}}{n} \text{ dir.}$$

Düzgün Çokgenin Alanı

 Bir kenarının uzunluğu a, iç teğet çemberinin yarıçapı r olan n kenarlı düzgün çokgenin alanı:

$$A = \frac{n \cdot a \cdot r}{2} \ dir.$$

Çevrel çemberinin yarıçapı R olan n kenarlı düzgün çokgenin alanı

$$A = \frac{1}{2} \cdot n \cdot R^2 \cdot \sin \alpha \, (\alpha = \frac{360^{\circ}}{n}) \ dir.$$

DÖRTGENLER

Konveks Dörtgenin Genel Özellikleri

- 1. İç açılarının ölçüleri toplamı 360° dir.
- 2. $A(ABCD) = \frac{1}{2} \cdot |AC| \cdot |BD| \cdot \sin\alpha dr$.

3. Köşegenleri dik kesişen bir dörtgende

a)
$$a^2 + c^2 = b^2 + d^2$$

b) $A(ABCD) = \frac{|AC| \cdot |BD|}{2}$

4. [AC] ve [BD] köşegen

$$S_1 \cdot S_3 = S_2 \cdot S_4$$
tür.

PARALELKENAR

Karşılıklı kenarları parelel ve eşit olan dörtgene **paralelkenar** denir. Paralelkenarın karsılıklı acıları esittir.

[AB] // [DC] ve [AD] // [BC] dir.

 $\alpha + \theta = 180^{\circ}$ olur.

 Köşegen uzunlukları, birbirlerini eşit iki parçaya bölerler. Alan dört eşit parçaya bölünür. E noktası parelelkenarın ağırlık merkezi veya simetri merkezidir.

 Paralelkenarın a kenarına ait yüksekliği h_a ve b kenarına ait yüksekliği h_b olsun.

 $h_a \neq h_b$ dir. Paralelkenarın alanı;

$$A(ABCD) = a \cdot h_a = b \cdot h_b$$

3. Paralelkenarın kenar uzunlukları ile bir açısı veriliyor ise alanı;

$$A(ABCD) = a \cdot b \sin \alpha = a \cdot b \cdot \sin \theta$$

4. K, paralelkenarın üzerinde herhangi bir nokta ise $A(\widehat{BKC}) = S_1 + S_2$ ve

$$A(ABCD) = 2 \cdot A(\widehat{BKC})$$
 dir.

5. P, paralelkenarın içerisinde herhangi bir nokta ise $S_1 + S_3 = S_2 + S_4$

6. B, H, F, E noktaları ve E, D, C noktaları doğrusal ise $|BH|^2 = |HF| \cdot |HE|$

7. A(ABCD) = S ise A(
$$\widehat{BEF}$$
) = $\frac{3}{8} \cdot S$

$$A(\widehat{ABE}) = A(\widehat{BCF}) = \frac{1}{4} \cdot S$$

$$A(\widehat{DEF}) = \frac{1}{8} \cdot S$$
 olur.

DİKDÖRTGEN

Köşe açılarının ölçüleri 90° dir. Karşılıklı kenarları ve kösegen uzunlukları esittir.

1. Köşegenler alanı dört eşit parçaya böler.

Köşegenler birbirini ortalar.

2. Dikdörtgenin çevresi,

$$C(ABCD) = 2 \cdot (a + b)$$

Dikdörtgenin alanı,

 $A(ABCD) = a \cdot b$ seklindedir.

P, herhangi bir nokta olmak üzere P yi köşelerle birleştirdiğimizde;

$$|AP|^2 + |CP|^2 = |BF|^2 + |DP|^2 \text{ ve}$$

 $A(\widehat{APD}) + A(\widehat{BPC}) = A(\widehat{APB}) + A(\widehat{CPD})$
seklindedir.

 P, dikdörtgenin dışında herhangi bir nokta olmak üzere P vi köselerle birlestirdiğimizde;

$$|AP|^2 + |CP|^2 = |BP|^2 + |DP|^2$$
 şeklindedir.

KARE

Köşegenleri dik kesişen ve köşegenleri açıortay olan dikdörtgene **kare** denir.

Dikdörtgenin özellikleri kare için de geçerlidir.

ABCD karesinde
$$|AC| = |BD| = a\sqrt{2}$$
 dir.

$$A(ABCD) = a \cdot a = a^2 ve$$

$$A(ABCD) = \frac{|AC| \cdot |BD|}{2}$$

DELTOID

Taban uzunlukları ortak iki ikizkenar üçgenden oluşan şekle **deltoid** denir. Tepe azçılarını birleştiren köşegen açıortaydır. Ayrıca diğer köseqenin uzunluğunu dik ortalar.

$$m(\widehat{ADC}) = m(\widehat{ABC})$$
 ve

$$A(ABCD) = \frac{|AC| \cdot |BD|}{2}$$

YAMUK

İki kenarı birbirine paralel olan dörtgene yamuk denir.

Paralel olan kenarlara **yamuğun tabanları**, diğer kenarlara yamuğun **yan kenarları** denir. [AD] nın orta noktası E, [BC] nın orta noktası F ise [EF] na **orta taban** denir ve

[EF] // [AB] / [CD] dır.

Özellikler

1. [AB] // [DC],

$$m(\widehat{A}) + m(\widehat{D}) = m(\widehat{B}) + m(\widehat{C}) = 180^{\circ} \text{ dir.}$$

2. [EF] orta taban,

$$|AB| = a$$
, $|CD| = c$ ise $|EF| = \frac{a+c}{2}$ dir.

3. ABCD yamuğunda [AC] ve [DB] köşegen

$$A(\widehat{KAD}) = S_1, A(\widehat{KAB}) = S_2$$

$$A(\widehat{KBC}) = S_3$$
, $A(\widehat{KCD}) = S_4$ ise

$$S_1 = S_3 \text{ ve } S_1 = \sqrt{S_2 \cdot S_4} \text{ tür.}$$

A(ABCD) =
$$(\sqrt{S_2} + \sqrt{S_4})^2$$
 dir.

YAMUĞUN ALANI

ABCD yamuk, [KH] \perp [AB],

|AB| = a, |DC| = c, |KH| = h ise

Alan(ABCD) =
$$\left(\frac{a+c}{2}\right) \cdot h$$

◆ ABCD yamuk,

$$|KC| = |KB| \text{ ise } A(\widehat{AKD}) = \frac{A(ABCD)}{2} \text{ ve}$$

 $A(ABCD) = |KH| \cdot |AD| dir.$

◆ ABCD yamuk, [EF] // [AB],

$$|EF| = x$$
, $A(EDCF) = S_1$, $A(AEFB) = S_2$ ve

$$S_1 = S_2 \text{ ise } x = \sqrt{\frac{a^2 + c^2}{2}} \text{ dir.}$$

IKIZKENAR YAMUK

Paralel olmayan kenarları eşit uzunlukta olan yamuğa **ikizkenar yamuk** denir.

Özellikler

1. Taban açıları eşittir.

$$m(\widehat{A}) = m(\widehat{B}) = \alpha$$
, $m(\widehat{C}) = m(\widehat{D}) = \beta$ dir.

- 2. Köşegenleri eşit uzunluktadır.
- 3. [DH] \perp [AB], [CK] \perp [AB]

$$|AH| = |KB| = |\frac{a-c}{2}|$$

4. ABCD ikizkenar yamuk, [AC] \perp [BD] ve yamuğun yüksekliği ise

$$h = \frac{a+c}{2}$$
 ve A(ABCD) = h^2 dir.

DİK YAMUK

Yan kenarlarından biri tabanlara dik olan yamuğa **dik yamuk** denir.

 Bir dik yamukta köşegenler dik kesişiyorsa h = √a⋅c dir.

CEMBER

Teğet : Çember ile bir ortak noktası olan

doğruya **teğet** denir.

Kesen : Çember ile iki ortak noktası olan

doğruya **kesen** denir.

Kiriş : İki ucu da çember üzerinde olan doğru parçasına kiriş denir. Merkezden geçen kirise cap denir. En büvük kiris captır.

Yay : Cember üzerindeki iki nokta arasında

kalan parcaya yay denir.

AB yayı, $\stackrel{\frown}{AB}$ şeklinde gösterilir.

AB yayının ölçüsü ise m(AB) şeklinde gösterilir.

ÇEMBERDE AÇI, TEĞET, KİRİŞ, KESEN ÖZELLİKLERİ

1. Merkez Açı

İki yarıçapın oluşturduğu açıya merkez açı denir.

Merkez açının ölçüsü gördüğü yayın ölçüsüne esittir.

 $m(\widehat{AB}) = m(\widehat{AOB}) = \alpha$

2. Çevre Açı

Bir ucu ortak olan iki kriş arasındaki açıya **cevre açı** denir.

Çevre açı gördüğü yayın yarısına eşittir.

3. Teğet-Kiriş Açı

Çember üzerinde teğet ile kirişin oluşturduğu açıya **teğet-kiriş açı** denir.

Teğet-kiriş açının ölçüsü gördüğü yayın yarısına eşittir.

4. Çapı Gören Çevre Açı

Çapı gören çevre açının ölçüsü 90° dir.

5. Merkezle teğetin değme noktasını birleştiren yarıçap, teğete diktir.

T, teget noktası ise d \perp [TO]

 Çemberin sınırladığı alan içerisinde kesişen iki kirişin oluşturduğu açı

$$\alpha = \frac{m(\widehat{AB}) + m(\widehat{CD})}{2} = \frac{a+b}{2}$$

 Çemberin sınırladığı alan dışında kesişen iki kesenin oluşturduğu açı

$$m(\widehat{BPC}) = \frac{m(\widehat{BC}) - m(\widehat{AD})}{2}$$

$$\alpha = \frac{x-y}{2} \ \text{şeklindedir}.$$

CEMBERDE UZUNLUK

1. Çembere dışındaki bir P noktasından iki tane teğet çizilirse bu uzunlukları birbirine eşittir.

[PA ve [PB teğet |PA| = |PB| şeklindedir.

2. Çemberin dışındaki bir noktadan çembere sonsuz sayıda kesen çizilir.

Bu kesenler arasındaki bağıntı;

P, çemberin dışındaki bir nokta olduğuna göre |PA| · |PB| = |PC| · |PD| = |PE| · |PF| = ... şeklindedir.

Noktanın çembere göre kuvveti alındığında;

A, teğet noktası olmak üzere $\left| \mathsf{PA} \right|^2 = \left| \mathsf{PB} \right| \cdot \left| \mathsf{PC} \right| = \left| \mathsf{PD} \right| \cdot \left| \mathsf{PE} \right|$ şeklindedir.

 Çemberin içindeki bir P noktasından sonsuz sayıda kiriş çizilir. P noktasının bu kirişlerden ayırdığı parçaların uzunlukları çarpımı eşittir.

$$|PA| \cdot |PE| = |PB| \cdot |PF| = |PC| \cdot |PH| =$$

|PD| · |PK| = ... şeklindedir.

P noktasının çembere göre kuvveti;

Kuvvet = $|PA| \cdot |PE| = |PB| \cdot |PF| = ...$ şeklindedir.

5. Merkezden, uzunlukları eşit olan kirişlere cizilen dikmelerin uzunlukları birbirine esittir.

$$|AB| = |CD|$$
 ise $|AH_1| = |BH_1| = |CH_2| = |DH_2|$ ve $|OH_1| = |OH_2|$ şeklindedir.

6. [AB] // |[CD] ise
$$|\widehat{AC}| = |\widehat{BD}|$$
 dir.

$$|AB| = |CD|$$
 ise $|\overrightarrow{AB}| = |\overrightarrow{CD}|$

DAİRENİN ALANI VE ÇEVRESİ

Bir çember ve çemberin iç bölgesini oluşturan noktaların kümesinin oluşturduğu sekle daire denir.

Dairenin alanı = $\pi \cdot r^2$

$$A(AOB)_{Daire dilimi} = \frac{\pi \cdot r^2 \cdot \alpha}{360^\circ} = \frac{|\widehat{AB}| \cdot r}{2}$$

2. Çemberin çevre uzunluğu = $2 \cdot \pi \cdot r$

AB yayının uzunluğu $|\widehat{AB}| = \frac{2 \cdot \pi \cdot r \cdot \alpha}{360^{\circ}}$

$$|\widehat{AB}| = \frac{2 \cdot \pi \cdot r \cdot \alpha}{360^{\circ}}$$

şeklindedir.