MULTICLASS CLUSTERING

V. CHEN

1. Multiclass, nonhierarchical algorithm. We describe the multiclass algorithm. Recall that for $v \in \mathbb{R}^k$, we define $S(v) = e_p$, $p = \operatorname{argmax}(v_r)$ where $\{e_1, \dots e_k\}$ is the standard basis of \mathbb{R}^k . Now, the classifying function is of the form $u: Z \to \mathbb{R}^k$, or $u = (u^{[1]}, u^{[2]}, \dots u^{[k]})$ with functions $u^{[j]}: Z \to \mathbb{R}$. Each of the $u^{[j]}$ has prior distribution given by N(0,C) with $C = (L + \tau^2 I)^{-\alpha}$. We retain

$$\Phi(u) = \frac{1}{2\gamma^2} \sum_{l \in Z'} \text{norm}(y(l) - S(u(l)))^2$$

We will implement the non-centered approach. Here, the variable is $\xi = (\xi^{[1]}, \dots \xi^{[k]})$ where each $\xi^{[j]}$ is associated with $u^{[j]}$ by the following:

$$T(\xi^{[j]}) = \sum_{i=1}^{M} \frac{1}{(\lambda_j + \tau^2)^{\alpha/2}} \xi_i^{[j]} q_i = u^{[j]}$$

(1)
$$T(\xi) = (T(\xi^{[1]}), \dots T(\xi^{[k]})) = u$$

We can think about u as a $N \times k$ matrix.

Algorithm 1 Multiclass, Metropolis-within-Gibbs updates

Choose $\xi_1^{(0)}, \dots \xi_k^{(0)} \in \mathbb{R}^N, \tau, \alpha, \beta \in (0, 1]$. for i = 0 to S do

for j = 1 to k do

Propose $\hat{\xi}_{j}^{(i)} = (1 - \beta^{2})^{\frac{1}{2}} \xi_{j}^{(i)} + \beta \zeta^{(i)}, \ \zeta^{(i)} \sim \mathsf{N}(0, I)$ Make transition $\xi_{j}^{(i)} \to \hat{\xi}_{j}^{(i)}$ with probability

$$A(\xi_j^{(i)} \to \hat{\xi}_j^{(i)}) = \min \left\{ 1, \exp \left(\Phi(T(\xi^{(k)}, \tau^{(k)}, \alpha^{(k)}, M^{(k)})) - \Phi(T(\hat{\xi}^{(k)}, \tau^{(k)}, \alpha^{(k)}, M^{(k)})) \right) \right\}$$

end for end for

REFERENCES