1 More on Optimization with Equality Constraints (June 2)

1.1 SONC and SOSC, Equality Constraints

Theorem 1.1. (Second order necessary conditions for a local minimizer with equality constraints) Consider functions f, h_1, \ldots, h_k which are C^2 on the open $\Omega \subseteq \mathbb{R}^n$. Suppose x_0 is a regular point of the constraints given by $h_1(x) = \cdots = h_k(x) = 0$, and that it is a local minimizer of f on $M = \bigcap h_i^{-1}(\{0\})$. Then

1. There exist $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ such that

$$\nabla f(x_0) + \sum \lambda_i \nabla h_i(x_0) = 0.$$

2. The Lagrangian

$$L(x_0) = \nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0)$$

is positive semi-definite on $T_{x_0}M$.

Proof. Let x(s) be a smooth curve with x(0) = 0 in M. Recall that, by the product rule,

$$\frac{d}{ds}f(x(s)) = \nabla f(x(s)) \cdot x'(s)$$

$$\frac{d^2}{ds^2}f(x(s)) = x'(s) \cdot \nabla^2 f(x(s))x'(s) + \nabla f(x(s)) \cdot x''(s).$$

By the second order Taylor approximation, we have

$$0 \le f(x(s)) - f(x(0)) = s \left. \frac{d}{ds} \right|_{s=0} f(x(s)) + \frac{1}{2} s^2 \left. \frac{d^2}{ds^2} \right|_{s=0} f(x(s)) + o(s^2).$$

This is, equivalently,

$$0 \le f(x(s)) - f(x(0)) = s\nabla f(x_0) \cdot \underbrace{x'(0)}_{\in T_{x_0}M} + \frac{1}{2}s^2 \left. \frac{d^2}{ds^2} \right|_{s=0} f(x(s)) + o(s^2).$$

Since the gradient at a regular local minimizer is perpendicular to the tangent space there, the first-order term above vanishes. We have

$$0 \le \frac{1}{2}s^2 \left. \frac{d^2}{ds^2} \right|_{s=0} f(x(s)) + o(s^2).$$

By the definition of M, we may write the above as

$$0 \le \frac{1}{2}s^2 \left. \frac{d^2}{ds^2} \right|_{s=0} \left[f(x(s)) + \sum_{s=0} \lambda_i h_i(x(s)) \right] + o(s^2).$$

Or

$$0 \le \frac{1}{2}s^2x'(0) \cdot \underbrace{\left(\nabla^2 f(x_0) + \sum_{i=1}^{n} \lambda_i \nabla^2 h(x_0)\right)}_{=L(x_0)} x'(0) + \frac{1}{2}s^2 \underbrace{\left(\nabla f(x_0) + \sum_{i=1}^{n} \lambda_i \nabla h_i(x_0)\right)}_{=0} \cdot x''(0) + o(s^2).$$

Divide by s^2 :

$$0 \le \frac{1}{2}x'(0) \cdot L(x_0)x'(0) + \frac{o(s^2)}{s^2}.$$

By taking s small it follows that $0 \leq \frac{1}{2}x'(0) \cdot L(x_0)x'(0)$. Since any tangent vector $v \in T_{x_0}M$ can be described as the tangent vector to a curve in M through x_0 , it follows that $L(x_0)$ is positive semi-definite on $T_{x_0}M$.

Theorem 1.2. (Second order sufficient conditions for a local minimizer with equality constraints) Consider functions f, h_1, \ldots, h_k which are C^2 on the open $\Omega \subseteq \mathbb{R}^n$. Suppose x_0 is a regular point of the constraints given by $h_1(x) = \cdots = h_k(x) = 0$. Let $M = \bigcap h_i^{-1}(\{0\})$. Suppose there exist $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ such that

1.

$$\nabla f(x_0) + \sum \lambda_i \nabla h_i(x_0) = 0$$

2. The Lagrangian

$$L(x_0) = \nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0)$$

is positive definite on $T_{x_0}M$.

Then x_0 is a strict local minimizer of f on M.

Proof. Recall that if $L(x_0)$ is positive definite on $T_{x_0}M$, then there is an a > 0 such that $v \cdot L(x_0)v \ge a\|v\|^2$ for all $v \in T_{x_0}M$. (This is very easily proven by diagonalizing the matrix.) Let x(s) be a smooth curve in M such that $x(0) = x_0$, and normalize the curve so that $\|x'(0)\| = 1$. We have

which becomes

$$\begin{split} f(x(s)) - f(x(0)) &= s \frac{d}{ds} \bigg|_{s=0} f(x(s)) + \frac{1}{2} s^2 \frac{d^2}{ds^2} \bigg|_{s=0} f(x(s)) + o(s^2) \\ &= s \frac{d}{ds} \bigg|_{s=0} \left[f(x(s)) + \sum_{i} \lambda_i h_i(x(s)) \right] + \frac{1}{2} s^2 \frac{d^2}{ds^2} \bigg|_{s=0} \left[f(x(s)) + \sum_{i} \lambda_i h_i(x(s)) \right] + o(s^2) \\ &= s \underbrace{\left[\nabla f(x_0) + \sum_{i} \lambda_i \nabla h_i(x_0) \right] \cdot x'(0) + \frac{1}{2} s^2 x'(0) \cdot L(x_0) x'(0)}_{=0 \text{ by 1.}} \\ &+ \frac{1}{2} s^2 \underbrace{\left[\nabla f(x_0) + \sum_{i} \lambda_i \nabla h_i(x_0) \right] \cdot x''(0) + o(s^2)}_{=0 \text{ by 1.}} \\ &= \frac{1}{2} s^2 x'(0)^T L(x_0) x'(0) + o(s^2) \\ &\geq \frac{1}{2} s^2 a \|x'(0)\|^2 + o(s^2) \\ &= \frac{1}{2} s^2 a + o(s^2) \\ &= s^2 \left(\frac{1}{2} a + \frac{o(s^2)}{s^2} \right) \end{split}$$

For sufficiently small s, the above is positive, so $f(x(s)) > f(x_0)$ for all sufficiently small s. Since x(s) was arbitrary, x_0 is a strict local minimizer of f on M.

1.2 Examples

1. Recall the box example: maximizing the volume of a box of sides $x, y, z \ge 0$ subject to a fixed surface area A > 0. We were really minimizing the negative of the volume. We got $(x_0, y_0, z_0) = (l, l, l)$, where $l = \sqrt{A/6}$. Our Lagrange multiplier was $\lambda = \frac{A}{8(x_0 + y_0 + z_0)} = \frac{A}{24l} > 0$. We had (after some calculation)

$$L(x_0, y_0, z_0) = (2\lambda - l) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Here, $2\lambda - l < 0$. We have

$$T_{(x_0,y_0,z_0)}M = \operatorname{span}(\nabla h(x_0,y_0,z_0))^{\perp} = \{(u,v,w) \in \mathbb{R}^3 : u+v+w=0\},\$$

since $\nabla h(x_0, y_0, z_0) = (4l, 4l, 4l)$. If $(u, v, w) \in T_{(x_0, y_0, z_0)}M$ is nonzero,

$$(u \quad v \quad w) (2\lambda - l) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = (u \quad v \quad w) (2\lambda - l) \begin{pmatrix} v + w \\ u + w \\ u + v \end{pmatrix}$$

$$= (2\lambda - l) (u \quad v \quad w) \begin{pmatrix} -u \\ -v \\ -w \end{pmatrix}$$

$$= -(2\lambda - l)(u^2 + v^2 + w^2) > 0,$$

so by the SOSC under equality constraints, our point (x_0, y_0, z_0) is a strict local maximizer of the volume. In fact, it is a strict global minimum (which is yet to be seen).

2. Consider the problem

minimize
$$f(x, y) = x^2 - y^2$$

subject to $h(x, y) = y = 0$.

Then

$$\nabla f(x,y) + \lambda \nabla h(x,y) = \begin{pmatrix} 2x \\ -2y \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

implying that $\lambda = 0$ and that (x, y) = (0, 0) is our candidate local minimizer. Since $\nabla h(x, y) \neq (0, 0)$, the candidate is a regular point. We have

$$L(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix},$$

which is not positive semi-definite everywhere. What about on the tangent space $T_{(0,0)}(x$ -axis) = (x-axis)? Clearly it is positive definite on the x-axis, so by the SOSC that we just proved, (0,0) is a strict local minimizer of f on the x-axis. Thinking of level sets, this is intuitively true.

3. Consider the problem

minimize
$$f(x,y) = (x-a)^2 + (y-b)^2$$

subject to $h(x,y) = x^2 + y^2 - 1 = 0$.

Let us assume that (a, b) satisfies $a^2 + b^2 > 1$. We have $\nabla h(x, y) = (2x, 2y)$, which is non-zero on S^1 , implying that every point of S^1 is a regular point. Lagrange tells us that

$$\begin{pmatrix} 2(x-a) \\ 2(y-b) \end{pmatrix} + \lambda \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

as well as $x^2 + y^2 = 1$. This may be written

$$(1 + \lambda)x = a$$
$$(1 + \lambda)y = b$$
$$x^{2} + y^{2} = 1$$

By our assumption that $a^2 + b^2 > 1$, we have $\lambda \neq -1$. Therefore

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{1+\lambda} \begin{pmatrix} a \\ b \end{pmatrix},$$

which implies that

$$\frac{1}{1+\lambda} = \frac{1}{\sqrt{a^2 + b^2}}$$

by the third equation. Therefore

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Thinking of level sets, this is intuitively true. The Lagrangian is

$$L(x_0, y_0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \underbrace{(1+\lambda)}_{>0} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$

which, by the SOSC that we proved, proves that (x_0, y_0) is a strict local minimizer of f on S^1 . In fact, this point is a global minimizer of f on S^1 , which follows immediately by the fact that f necessarily takes on a global minimum on S^1 and that it only takes on the point (x_0, y_0) .

4. For a special case, we will derive the Lagrange multipliers equation. Suppose we are working with C^1 functions f, h. Our problem is

minimize
$$f(x, y, z)$$

subject to $g(x, y, z) = z - h(x, y) = 0$.

That is, we are minimizing f(x, y, z) on the graph Γ_h of h. The Lagrange equation tells us that

$$\nabla f(x,y,z) + \lambda g(x,y,z) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y,z) \\ \frac{\partial f}{\partial y}(x,y,z) \\ \frac{\partial f}{\partial z}(x,y,z) \end{pmatrix} + \lambda \begin{pmatrix} -\frac{\partial h}{\partial x}(x,y,z) \\ -\frac{\partial y}{\partial x}(x,y,z) \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

We will derive the above formula by expressing it as an unconstrained minimization problem

minimize
$$(x,y) \in \mathbb{R}^2 F(x,y)$$

for some function F. We will then find the first order necessary conditions for an unconstrained minimization, and then express it as the equation we would like to prove.

Define F(x,y) = f(x,y,f(x,y)). The constrained minimization problem is therefore equivalent to the unconstrained problem. By our theory of unconstrained minimization, $\nabla F(x_0,y_0) = (0,0)$. That is,

$$\nabla F(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial h}{\partial x} \\ \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial h}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Rather,

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial h}{\partial x} = 0$$
$$\frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial h}{\partial y} = 0$$

Let $\lambda = -\frac{\partial f}{\partial z}$. The equation becomes

$$\frac{\partial f}{\partial x} - \lambda \frac{\partial h}{\partial x} = 0$$
$$\frac{\partial f}{\partial y} - \lambda \frac{\partial h}{\partial y} = 0$$
$$\frac{\partial f}{\partial z} + \lambda = 0$$

which is what we wanted.