Limit sets of Anosov representations

 ${\rm Giorgos}$

April 23, 2024

Contents

1	Introduction
	1.1 Lie group preliminaries
	1.2 Limit set preliminaries
2	Upper bound
	2.1 Proof of bound
	2.2 Lemmata

Chapter 1

Introduction

1.1 Lie group preliminaries

We fix the Cartan subalgebra \mathfrak{a} of $SL(d, \mathbb{R})$:

$$\mathfrak{a} = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_d) : \alpha_1 + \dots + \alpha_d = 0 \}$$

and the Weyl chamber \mathfrak{a}^+ of $SL(d,\mathbb{R})$

$$\mathfrak{a}^+ = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_d) : \alpha_1 \ge \dots \ge \alpha_d \}.$$

Denoting with $K=\mathrm{SO}(d,\mathbb{R}), A^+=e^{\mathfrak{a}^+},$ we have the Cartan decomposition:

$$\mathfrak{sl}(d,\mathbb{R}) \to K \times A^+ \times K$$

 $g \mapsto (k_q, a_q, l_q)$

such that $g = k_g a_g l_g$. In particular $a_g = \operatorname{diag}(\sigma_1(g), \dots, \sigma_d(g))$ with $\sigma_1 \ge \dots \ge \sigma_d(g)$, where $\sigma_i(g)$ is the *i*-th singular value of g, i.e. eigenvalue of $g^t \cdot g$.

We will use the spaces

$$U_p(g) = \mathbb{R}u_1(g) \oplus \cdots \oplus \mathbb{R}u_p(g)$$

where $u_i(g) = k_g \cdot e_i$. One can easily show that the decomposition

$$g^{-1} \cdot U_p(g) \oplus U_{d-p}(g^{-1})$$

is orthogonal with respect to the standard inner product and that $u_p(g^{-1}) = l_g^{-1} e_{d-p+1}(g)$.

1.2 Limit set preliminaries

Definition 1.2.1. For $p \in \{2, ..., d\}$, $s \in \mathbb{R}$ and $g \in SL(d, \mathbb{R})$ we denote with $\tilde{\Psi}^p_s(g), \Psi^p_s(g) : SL(d, \mathbb{R}) \to \mathbb{R}$ the functional:

$$\Psi_{s}^{p}(g) = \alpha_{12}(a(g)) + \dots + \alpha_{1(p-1)}(a(g)) + (s - (p-2))\alpha_{1p}(a(g))$$

$$\tilde{\Psi}_{s}^{p}(g) = \left(\frac{\sigma_{2}}{\sigma_{1}} \cdots \frac{\sigma_{p-1}}{\sigma_{1}}(g)\right) \left(\frac{\sigma_{p-1}}{\sigma_{1}}(g)\right)^{s - (p-2)}$$

Remark 1.2.1. We have $\alpha_{ij}(a) = a_i - a_j, a_i(g) = \log(\sigma_i(g))$ and

$$\Psi_s^p(g) = \log \tilde{\Psi}_s^p(g)$$

and that

$$\min_{p \in [\![2,d]\!]} \left\{ \sum_{|\gamma| = T} \frac{\sigma_2}{\sigma_1} \cdots \frac{\sigma_{p-1}}{\sigma_1}(g) \left(\frac{\sigma_{p-1}}{\sigma_1}(g) \right)^{s - (p-2)} \right\} = \sum_{|\gamma| = T} e^{-\max_{p \in [\![2,d]\!]} \Psi^p_s(g)}$$

Remark 1.2.2. For any $g \in \mathrm{SL}(d,\mathbb{R})$ we have that:

$$\max_{p \in [2,d]} \Psi_s^p(g) = \Psi_s^{p_0}(g) \text{ for } s \in [p_0 - 2, p_0 - 1].$$

Indeed, a quick calculation shows that for $s \ge 0$ and $p \in [2, d]$:

$$\Psi_s^p(g) \leq \Psi_s^p(g)$$
 if and only if $s \geq p-1$.

and that equality holds in the case s = p - 1. Thus for $s \in [p - 2, p - 1]$ we have that

$$s \geq p-2, \ldots, 1$$
 implies that $\Psi_s^p(g) \geq \ldots \geq \Psi_s^2(g)$

$$s \leq p, \ldots, d-1$$
 implies that $\Psi_s^p(g) \leq \ldots \leq \Psi_s^d(g)$

Another way to see this (refer to Figure 1.1) is to note that $\Psi^2_s(g), \cdots, \Psi^d_s(g)$ is a sequence of functions that are affine in s, with slopes $\alpha_{12}(g) \leq \cdots \leq \alpha_{1d}(g)$ and that they satisfy $\Psi^2_1(g) = \Psi^2_2(g), \Psi^3_2(g) = \Psi^4_3(g), \cdots, \Psi^{d-1}_{d-2}(g) = \Psi^d_{d-2}(g)$.

Figure 1.1: Visual illustration that $\max_p \Psi_s^p(g) = \Psi_s^{p_0}(g)$ for $s \in [p_0 - 2, p_0 - 1]$.

The following definition comes from [1], in the special case of projective Anosov representations (P=1):

Definition 1.2.2. For $s \geq 0$ we consider the Falconer functional $F_s : \mathrm{SL}(d,\mathbb{R}) \to \mathbb{R}$ by:

$$F_s(g) = \min \left\{ \sum_{j=2}^d s_j \alpha_{1j}(a(g)) : s_j \in (0,1], \sum_{j=2}^d s_j = s \right\},$$

and define the Falconer dimension $\dim_F(\rho)$ of ρ to be its critical exponent:

$$\dim_F(\rho) = \inf \left\{ s > 0 : \sum_{\gamma \in \Gamma} e^{-F_s(\rho(\gamma))} < \infty \right\}.$$

Remark 1.2.3. Using elementary computations one may prove that for all $s \ge 0$:

$$F_s(g) = \max_{p \in [2,d]} \Psi_s^p(g)$$

Definition 1.2.3. Let $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a linear representation and $p \in [1,d-1]$. We say that ρ is p-Anosov if there exist constants $\mu, C > 0$ such that for all $\gamma \in \Gamma$:

$$\frac{\sigma_{p+1}}{\sigma_p}(\rho(\gamma)) \le Ce^{-\mu|\gamma|}.$$

One can show that in that case there exist equivariant continuous maps $\xi^p: \hat{\Gamma} \to \mathcal{G}_p(\mathbb{R}^d), \xi^{d-p}: \hat{\Gamma} \to \mathcal{G}_{d-p}(\mathbb{R}^d)$ that are transverse and restrict to

$$\xi^p(\gamma) = U_p(\rho(\gamma)), \xi^{d-p}(\gamma) = U_{d-p}(\rho(\gamma))$$

for $\gamma \in \Gamma$, where $U_p(\gamma), U_{d-p}(\gamma)$ denote the flags corresponding to $\rho(\gamma)$.

Figure out what this exactly means

Chapter 2

Upper bound

2.1 Proof of bound

Lemma 2.1.1 (Upper bound for dimension). Let $\rho : \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a projective Anosov representation. Then:

$$\dim_H(\xi^1(\partial\Gamma)) \le \dim_F(\rho).$$

Remark 2.1.1. The idea of the proof of Lemma 2.1.1 is to find a covering whose Hausdorff content is dominated by the Dirichlet series of some functional Ψ^p_s , which will in turn imply that $\dim_H(\xi^1(\partial\Gamma)) \leq h_p(\Psi^p)$. Choosing then the most "effective" cover (i.e. the one which yields the smallest Hausdorff content up to a constant) we obtain that

$$\dim_H(\xi^1(\partial\Gamma)) \le h_\rho(\max_p \Psi^p)$$

To obtain this we first cover $\xi^1(\partial\Gamma)$ by the bassins of attraction $\rho(\gamma) \cdot B_{\alpha_1,\alpha}(\rho(\gamma))$ for $\gamma \in \Gamma$ satisfying $|\gamma| = T$. Then we cover each bassin by an ellipsoid of axes lengths

$$\frac{1}{\sin(\alpha)} \frac{\sigma_2}{\sigma_1}(\rho(\gamma)), \dots, \frac{1}{\sin(\alpha)} \frac{\sigma_d}{\sigma_1}(\rho(\gamma)).$$

Finally we cover each ellipsoid by balls of some fixed radius r > 0. It can be shown by comparing the series appearing in the Hausdorff content of each resulting cover that the most "effective" choice of r depends only on the Hausdorff exponent s > 0 and in any case will be to have r equal (up to a constant) to the the length of an axis of the ellipsoid, i.e.

$$r \in \left\{ \frac{1}{\sin(\alpha)} \frac{\sigma_2}{\sigma_1}(\rho(\gamma)), \dots, \frac{1}{\sin(\alpha)} \frac{\sigma_d}{\sigma_1}(\rho(\gamma)). \right\}$$

In particular, when $s \in [p-2, p-1]$, the most effective choice is $r = \sigma_p(\rho(\gamma))/\sigma_1(\rho(\gamma))$, whose Hausdorff content is dominated by the Dirichlet series of Ψ^p_s .

Proof of Lemma 2.1.1. Let $p \in [2, d]$. Then using Proposition 2.2.1, Lemma 2.2.2, and Lemma 2.2.3 we have that for T > 0 large enough, $\xi^1(\partial \Gamma)$ is covered by the family

$$\mathcal{U}_T = \{ \rho(\gamma) B_{\alpha_1,\alpha}(\rho(\gamma)) : |\gamma| = T \},$$

and that each basin $\rho(\gamma)B_{\alpha_1,\alpha}(\rho(\gamma))$ is in turn covered by

$$2^{p-2} \cdot \frac{\sigma_p(g)^{p-2}}{\sigma_2(g) \cdots \sigma_{p-1}(g)}$$

many balls of radius

$$\sqrt{d-1}\frac{1}{\sin\alpha}\frac{\sigma_p(g)}{\sigma_1(g)}$$
.

By the definition of the Hausdorff measure, for $s \ge 0$:

$$\mathcal{H}^{s}(\xi^{1}(\partial\Gamma)) \leq \sum_{|\gamma|=T} 2^{2p+1} \cdot \frac{\sigma_{2}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \cdots \frac{\sigma_{p-1}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \left(\frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{-(p-2)} \left(\sqrt{d-1} \frac{1}{\sin \alpha} \frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{s} =$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} \frac{\sigma_{2}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \cdots \frac{\sigma_{p-1}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \left(\frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{s-(p-2)} =$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} e^{-\left(\alpha_{12}+\dots+\alpha_{1(p-1)}+(s-(p-2))\alpha_{1p}\right)\rho(\gamma)}$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} e^{-\Psi^{p}_{s}(\rho(\gamma))}$$

and thus

$$\mathcal{H}^s(\xi^1(\partial\Gamma)) \leq 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin\alpha}\right)^s \sum_{|\gamma| = T} e^{-\max_p \Psi^p_s(\rho(\gamma))} \lesssim \sum_{|\gamma| = T} e^{-F_s(\rho(\gamma))}.$$

To see that the above implies the upper bound, consider some $s > \dim_F(\rho)$. By the definition of the Falconer dimension, this implies that the Dirichlet series corresponding to the Falconer functional converges:

$$\sum_{\gamma \in \Gamma} e^{-F_s(\rho(\gamma))} < \infty$$

and in particular

$$\mathcal{H}^s(\xi^1(\partial\Gamma)) \le \lim_{T \to \infty} e^{-F_s(\rho(\gamma))} = 0.$$

2.2 Lemmata

Definition 2.2.1. Let V be a finite-dimensional \mathbb{R} -vector space. We consider a decomposition

$$V = \mathbb{R}u_1 \bigoplus \cdots \bigoplus \mathbb{R}u_d$$

be a direct decomposition that is orthogonal with respect to a fixed inner-product over V. Given $\beta_2 \geq \ldots \beta_d > 0$, we define an ellipsoid with axes $u_1 \oplus u_p(g)$ and lengths β_p to be the image of

$$\left\{ v = \sum_{1}^{d} v_i u_i \in V : \sum_{2}^{d} \left(\frac{v_j}{\beta_j} \right)^2 \le 1 \right\}$$

through the projection $V \to \mathbb{P}(V)$.

The following aims to be something along the lines of [2, Lemma 2.4]:

Figure 2.1: Depiction in \mathbb{R}^3 of an ellipsoid of $\mathbb{P}(\mathbb{R}^2)$

Lemma 2.2.1. Let $\rho: \Gamma \to \operatorname{SL}(d,\mathbb{R})$ be a projective Anosov representation. For $\alpha > 0$ small enough, there exists L > 0 such that for any geodesic ray $(a_j)_j$ through e we have:

$$\angle (U_1(\rho(a_i)), U_{d-1}(\rho(a_0))) > \alpha$$

when $|a_i|, |a_0| > T$.

Proof. Assume the contrary for the shake of contradiction. Then (see Figure 2.2) for each n > 0 there exists a geodesic ray a^n through e such that

$$|a_n^n|, |a_0^n| > n \text{ and } \angle(U_1(\rho(a_n^n)), U_1(\rho(a_0^n))) < \frac{1}{n}.$$

Due to compactness of $\partial\Gamma$ we may assume (up to a subsequence) that $a^n \to x$ in $\partial\Gamma$ for some $x \in \partial\Gamma$. Then $a_n^n, a_0^n \to x$ in $\hat{\Gamma}$ which implies

Not sure if this is true.

$$\angle(\xi^{1}(x), \xi^{d-1}(x)) = 0$$

using the fact that the limit maps ξ^1, ξ^{d-1} are continuous, which contradicts their tranversality.

The following is [2, Proposition 3.5].

Lemma 2.2.2. Let $\rho: \Gamma \to SL(d,\mathbb{R})$ be projective Anosov. Then for $\alpha > 0$ small enough, there exists some $T_0 > 0$ such that for all $T \geq T_0$ the family

$$\mathcal{U}_T = \{ \rho(\gamma) B_{\alpha_1, \alpha}(\rho(\gamma)) : |\gamma| = T \}$$

is an open covering of $\xi^1(\partial\Gamma)$.

Proof. Let $\alpha, T > 0$ be as in the statement of Lemma 2.2.1 and $x \in \partial \Gamma$ be represented by a geodesic ray $(\gamma_j)_{j \geq 0}$ starting from e. Then $(\gamma_T^{-1}\gamma_j)_j$ is a geodesic ray starting from $(\gamma_T)^{-1}$ that passes through e, so

$$\angle(U_1(\rho(\gamma_T^{-1}\gamma_j)), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

Figure 2.2: Situation in Lemma 2.2.1

as implied by Lemma 2.2.1. Taking the limit $j \to \infty$ and using the equivariance of the limit map, we obtain

$$\angle(\rho(\gamma_T^{-1})\xi^1(x), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

and thus $\xi^1(x) \in \rho(\gamma_T) \cdot B_{\alpha_1,\alpha}(\rho(\gamma_T))$.

The following is [2, Proposition 3.8].

Proposition 2.2.1. For each $g \in SL(d,\mathbb{R}), \alpha > 0$, the basin of attraction $g \cdot B_{\alpha_1,\alpha}(g)$ lies in the ellipsoid with axes $u_1(g) \oplus u_p(g)$ with lengths

$$\frac{1}{\sin\alpha} \cdot \frac{\sigma_p(g)}{\sigma_1(g)}$$

Proof. Using the definition of the basin of attraction (see Figure 2.3), we have that $w=w_1u_1(g^{-1})+\cdots+w_du_d(g^{-1})\in B_{\alpha_1,\alpha}(g)$ if and only if

$$w_d^2 \ge (\sin \alpha)^2 \sum_{i=1}^d w_i^2.$$

Considering now some $v = v_1 u_1(g) + \cdots + v_d u_d(g) \in g \cdot B_{\alpha_1,\alpha}(g)$ we have that

$$w = g^{-1}v = v_1\sigma_1(g)^{-1}l_g^{-1}e_1(g) + \cdots + v_d\sigma_d(g)^{-1}l_g^{-1}e_d(g)$$
$$= v_1\sigma_1(g)^{-1}u_d(g^{-1}) + \cdots + v_d\sigma_d(g)^{-1}u_1(g^{-1})$$

where we used that $u_p(g^{-1}) = l_g^{-1} e_{d+1-p}$. Hence

$$\sigma_1(g)^{-2} \cdot v_1^2 \ge (\sin a)^2 \sum_{i=1}^d \sigma_i(g)^{-2} v_i^2.$$

The following is [2, Lemma 3.7]:

Lemma 2.2.3. For any $p \in [2,d]$, an ellipsoid in $\mathbb{P}(\mathbb{R}^d)$ of axes lengths β_2, \dots, β_d is covered by

$$2^{p-2} \frac{\beta_2 \cdots \beta_{p-1}}{\beta_p^{p-2}}$$

many (projected) balls of radius $\sqrt{d-1}\beta_p$.

Figure 2.3: Aid for Proposition 2.2.1

Proof. We assume that E is an ellipsoid about $\mathbb{R}e_1$, so it suffice to cover its intersection $E_1 = E \cap U_1 \subseteq \mathbb{R}^{d-1}$ with the affine chart $U_1 = \{[x_1 : \dots, x_d] \in \mathbb{P}(\mathbb{R}^d) : x_1 \neq 0\}$. Clearly $E_1 \subseteq [-\beta_2, \beta_2] \times \dots \times [-\beta_d, \beta_d]$, so we proceed by covering the rectangle with side-lengths $2\beta_2, \dots, 2\beta_d$. Clearly each interval $(-\beta_j, \beta_j)$ is contained in the union of $[\beta_j/\beta_p]$ intervals of length $2\beta_p$, thus E_1 is contained in the union of

$$\left[\frac{\beta_2}{\beta_p}\right] \cdots \left[\frac{\beta_{p-1}}{\beta_p}\right] = \left[\frac{\beta_2}{\beta_p}\right] \cdots \left[\frac{\beta_d}{\beta_p}\right]$$

many squares of side-length $2\beta_p$. Since each such product is contained in a (d-1)-ball of radius $\sqrt{d-1}\beta_p$ we may use at most

$$\left\lceil \frac{\beta_2}{\beta_p} \right\rceil \cdots \left\lceil \frac{\beta_{p-1}}{\beta_p} \right\rceil \le \sum_{i \in \{0,1\}^{p-2}} \prod_{j=2}^{p-1} \left(\frac{\beta_j}{\beta_p} \right)^{i_j} \le 2^{p-2} \frac{\beta_2}{\beta_p} \cdots \frac{\beta_{p-1}}{\beta_p}$$

many (d-1)-balls of radius $\sqrt{d-1}\beta_p$ to cover E_1 .

The following can be found in [2, Proposition 3.3]:

Proposition 2.2.2. Let $\rho: \Gamma \to SL(d, \mathbb{R})$ be projective Anosov and $\alpha > 0$ Then there exist $c_0, c_1 > 0$ that depends only on α and ρ such that for all $\gamma \in \Gamma$:

$$(\xi^1)^{-1}(B_{\alpha_1,\alpha}(\rho(\gamma))) \subseteq C^{\infty}_{c_0,c_1}(\gamma)$$

Proof. We begin by noting that it suffices to show this for all but finitely many $\gamma \in \Gamma$, since then we may alter the constants to satisfy the wanted inclusion also for the finitely many remaining $\gamma \in \Gamma$. Given this, we shall assume that $|\gamma| \geq l_0$ where $l_0 > 0$ is such that $Ce^{-\mu l_0} < 1$ and $C, \mu > 0$ are the constants appearing in the definition of the Anosov property of ρ ..

Suppose $x \in \partial \Gamma$ such that $\xi^1(x) \in B_{\alpha_1,\alpha}(\rho(\gamma))$, and consider a geodesic ray $a_j \to x$ starting from $a_0 = e$. To prove the result, it suffices to find constants c_0, c_1 independent of γ and a (c_0, c_1) -quasi-geodesic from γ^{-1} to x that passes through e and stays at a bounded distance from $(a_j)_{j=0}^{\infty}$

Using [2, Proposition 2.5] we have that $d(\xi^1(a_j), U_{d-1}(\rho(\gamma^{-1}))) \leq Ce^{-\mu j}$, so there exists some L > 0 that depends only on α such that for all $j \geq L : U_1(\rho(a_j)) \in B_{\alpha_1,\alpha}(\rho(\gamma))$ and in particular

$$d(\xi^1(a_j), \gamma^{-1}) = d(U_1(\rho(a_j)), U_1(\rho(\gamma^{-1}))) \ge d(U_1(\rho(a_j)), U_{d-1}(\rho(\gamma^{-1}))) > \sin \alpha.$$

Along with the uniform continuity of $\xi^1: \Gamma \cup \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)$ this implies there exists some $\alpha' > 0$ and L > 0 such that for all $j \geq L$:

$$d(a_j, \gamma^{-1}) \ge \alpha'.$$

Upon considering a large L, we may also assume that $|a_L| = L > l_0$. Note that both α' and L do not depend on each γ but only on ρ and α .

Using some geometric group theory, we can show that for all $j \geq L$

$$d(\gamma^{-1}, a_j) > \alpha' \Rightarrow d([\gamma^{-1}, a_j], e) < \alpha''$$

for some α'' that depends only on Γ and α' , where $[a_j, \gamma^{-1}]$ denotes the geodesic segment connecting γ^{-1} and a_j .

Consider the concatenation $(a'_j)_{j=L-K}^{\infty}$ of $[\gamma^{-1}, a_L]$ and $[a_L, x]$. To find quasi-geodesic-constants that are uniform in γ , we note that for any $c_0 \geq 1, c_1 \geq 0$:

$$c_0^{-1}|i-j|-c_1 \le d(a_i',a_j') = d(a_i,a_j) \le d(a_i)c_0^{\dagger}i-j|+c_1 \text{ when } i,j \ge L \text{ or } i,j \le L$$

and that the upper bound follows trivially by the triangle inequality.

For the lower bound we proceed in two steps. First we bound the distance of $\gamma^- 1 = a'_{L-K}$ to a_{L+j} for $j \ge 0$:

$$d(a'_{L-K}, a'_{L+j}) \ge \nu(|a_{L+j}| - |\gamma^{-1}|) - c'_0 - c'_1 |\log(d(U_1(\rho(a_{L+j})), U_1(\rho(\gamma^{-1}))))| \ge$$

$$\ge \nu((L+j) + (K-L)) - c'_0 - c'_1 |\log(\sin a)| \ge$$

$$= c_0^{-1}(j+K) - c_1$$

for $c_0 = \nu^{-1}$, $c_1 = c_0' + c_1' |\log(\sin \alpha)|$. The first inequality comes from [2, Lemma 3.9]. For the second inequality we estimate $|\gamma^{-1}|$ from below using the triangle inequality. We are now ready to show that the concatenation $(a_i')_j$ is indeed a (c_0, c_1) -geodesic:

$$d(a_{L+j}, a_{L-i}) \ge d(a_{L+j}, a_{LK}) - d(a_{LK}, a_{L-i}) \ge c_0^{-1}(j+K) - c_1 - (K-i) \ge c_0^{-1}(j+i) - c_1.$$

Note however that (a_j') does not necessarily lie in $C_{\infty}^{c_0,c_1}$ since it may not pass through e. For this reason we some $L-K \leq i_0 \leq L$ such that $|a_{i_0}| < \alpha''$, the existence of which is guaranteed by the fact that $d([\gamma^{-1}, a_L], \epsilon) < \alpha''$. We then consider alter (a_j') at i_0 so that it passes through e to obtain

$$a_j'' = \begin{cases} a_j & \text{for } j \neq i_0 \\ e & \text{for } j = i_0 \end{cases}$$

which is a $(c_0, c_1 + \alpha'')$ -quasigeodesic passing from e and converging to x.

Bibliography

- [1] François Ledrappier and Pablo Lessa. "Dimension gap and variational principle for Anosov representations". In: (Dec. 2023). arXiv:2310.13465 [math] version: 3 (cit. on p. 3).
- [2] Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard. "Anosov representations with Lipschitz limit set". In: *Geometry & Topology* 27.8 (Nov. 2023). arXiv:1910.06627 [math], pp. 3303–3360. ISSN: 1364-0380, 1465-3060 (cit. on pp. 6–10).