Атанов Андрей

HSE

3 Октября 2016

Данные

 $X = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$ - объекты выборки и $t \in \mathbb{R}^n$ - вектор целевых переменных.

Данные

 $X = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$ - объекты выборки и $t \in \mathbb{R}^n$ - вектор целевых переменных.

Посыл

$$t_n \sim \mathcal{N}(y(w, x_i), \sigma^2)$$

Данные

 $X = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$ - объекты выборки и $t \in \mathbb{R}^n$ - вектор целевых переменных.

Посыл

$$t_n \sim \mathcal{N}(y(w, x_i), \sigma^2)$$

$$y(w, x) = \sum_{i=1}^{D} w_i \phi_i(x) = w^{T} \phi(x)$$

$$\phi(x) = (\phi_1(x), ..., \phi_D(x))$$
 - вектор признаков.

Функция правдоподобия

$$p(t|X, w, \sigma^2) = (2\pi\sigma^2)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||\Phi w - t||^2\right\} \Rightarrow w_{ML}$$

Функция правдоподобия

$$p(t|X, w, \sigma^2) = (2\pi\sigma^2)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||\Phi w - t||^2\right\} \Rightarrow w_{ML}$$

Есть серьезная проблема - переобучение.

Функция правдоподобия

$$p(t|X, w, \sigma^2) = (2\pi\sigma^2)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||\Phi w - t||^2\right\} \Rightarrow w_{ML}$$

Есть серьезная проблема - переобучение.

Регуляризация

$$\mathbf{w} \sim \mathcal{N}(0, \mathbf{A}^{-1})$$

$$A = diag(\alpha_1, ..., \alpha_D)$$

Функция правдоподобия

$$p(t|X,w,\sigma^2) = (2\pi\sigma^2)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}||\Phi w - t||^2\right\} \Rightarrow w_{ML}$$

Есть серьезная проблема - переобучение.

Регуляризация

$$\mathbf{w} \sim \mathcal{N}(0, \mathbf{A}^{-1})$$

$$A = diag(\alpha_1, ..., \alpha_D)$$

Апостериорное распределение

$$p(w|t) \propto p(t|w)p(w|\alpha) \Rightarrow w_{MAP}$$

Хотим

Зная обучающую выборку $\{X,\,t\}$, оценить для нового объекта x^* целевую переменную t^* (восстановить плотность).

$$p(t^*|t) = \int p(t^*|w, \alpha, \sigma^2) p(\alpha, \sigma^2, w|t) dw d\alpha d\sigma^2$$

Хотим

Зная обучающую выборку $\{X,\,t\}$, оценить для нового объекта x^* целевую переменную t^* (восстановить плотность).

$$p(t^*|t) = \int p(t^*|w, \alpha, \sigma^2) p(\alpha, \sigma^2, w|t) dw d\alpha d\sigma^2$$

Проблема

$$p(w, \alpha, \sigma^{2}|t) = \frac{p(t|\sigma^{2}, \alpha, w)p(\alpha, \sigma^{2}, w)}{p(t)}$$

Хотим

Зная обучающую выборку $\{X, t\}$, оценить для нового объекта x^* целевую переменную t^* (восстановить плотность).

$$p(t^*|t) = \int p(t^*|w, \alpha, \sigma^2) p(\alpha, \sigma^2, w|t) dw d\alpha d\sigma^2$$

Проблема

$$p(w, \alpha, \sigma^{2}|t) = \frac{p(t|\sigma^{2}, \alpha, w)p(\alpha, \sigma^{2}, w)}{p(t)}$$

p(t) - нельзя вычислить аналитически.

Хотим

Зная обучающую выборку $\{X,\,t\}$, оценить для нового объекта x^* целевую переменную t^* (восстановить плотность).

$$p(t^*|t) = \int p(t^*|w, \alpha, \sigma^2) p(\alpha, \sigma^2, w|t) dw d\alpha d\sigma^2$$

Проблема

$$p(w, \alpha, \sigma^{2}|t) = \frac{p(t|\sigma^{2}, \alpha, w)p(\alpha, \sigma^{2}, w)}{p(t)}$$

p(t) - нельзя вычислить аналитически.

Решение

$$p(w, \alpha, \sigma^2 | t) = p(w|t, \alpha, \sigma^2)p(\alpha, \sigma^2 | t)$$

Выбор модели (настройка гиперпараметров)

Максимизация обоснованности

$$p(\alpha, \sigma^{2}|t) \propto p(t|\alpha, \sigma^{2})p(\alpha)p(\sigma^{2})$$
$$\alpha_{MP}, \sigma_{MP}^{2} = \operatorname{argmax}\{p(t|\alpha, \sigma^{2})\}$$

Для задачи регрессии обоснованность можно посчитать аналитически, для классификации приходится пользоваться аппроксимацией Лапласа.

Выбор модели (настройка гиперпараметров)

Максимизация обоснованности

$$p(\alpha, \sigma^{2}|t) \propto p(t|\alpha, \sigma^{2})p(\alpha)p(\sigma^{2})$$
$$\alpha_{MP}, \sigma_{MP}^{2} = \operatorname{argmax}\{p(t|\alpha, \sigma^{2})\}$$

Для задачи регрессии обоснованность можно посчитать аналитически, для классификации приходится пользоваться аппроксимацией Лапласа.

Итоговое распределение

$$\begin{aligned} p(t^*|t, \alpha_{MP}, \sigma_{MP}^2) &= \int p(t^*|w, \alpha_{MP}, \sigma_{MP}^2) p(w|t, \alpha_{MP}, \sigma_{MP}^2) dw \\ &= \mathcal{N}(t^*|y_*, \sigma_*^2) \end{aligned}$$

Пример

Обсуждение

• $\alpha_i \to +\infty \Rightarrow$ вес і-го признака обнуляется и соответствующий признак удаляется из модели. Обученная модель оказывается намного разреженнее по сравнению с SVM. Данный эффект носит название Auto Relevance Determination.

Обсуждение

• $\alpha_i \to +\infty \Rightarrow$ вес і-го признака обнуляется и соответствующий признак удаляется из модели. Обученная модель оказывается намного разреженнее по сравнению с SVM. Данный эффект носит название Auto Relevance Determination.

Обсуждение

• Автоматическая настройка параметров α, σ^2 .

Обсуждение

- Автоматическая настройка параметров α, σ^2 .
- Использование всей выборке для настройки параметров и гиперпараметров

Обсуждение

- Автоматическая настройка параметров α, σ^2 .
- Использование всей выборке для настройки параметров и гиперпараметров
- НО все-таки необходимо подбирать параметры ядровой функции

Подбор параметра ядровой функции

Идея

При использовании ядровой ф-ии в качестве признаков, правдоподобие так же зависит и от параметра, входящего в нее. Например, для RBF ядра $K(x_i,x_j)=\exp\{-\gamma||x_i-x_j||^2\}$:

$$p(t|\alpha,\sigma^2,\gamma) \to \max_{\gamma \in C}$$

С - конечное множетсво.

Результаты

Кросс-валидация

Data set	Polynomial Kernel			RBF Kernel			
Data set	$CV R^2$	Test \mathbb{R}^2	$\log p(t \alpha, \sigma^2)$	$CV R^2$	Test \mathbb{R}^2	$\log p(t \alpha, \sigma^2)$	
Airfoil	0.509	0.591	-221	0.509	0.645	-198	
Concrete	0.61	0.733	-169	0.672	0.778	-178	
CCPP	0.927	0.926	-61	0.933	0.935	-42	
Life expectancy	0.882	0.345	-43	0.922	0.814	-23	
Friedman #3	0.482	0.734	-282	0.765	0.879	-196	
Boston Housing	0.834	0.906	-308	0.862	0.919	-133	

Максимизация обоснованности

Data set		Polynomial Kernel		RBF Kernel		
Data Set	$CV R^2$	Test \mathbb{R}^2	$\log p(t \alpha, \sigma^2)$	$CV R^2$	Test \mathbb{R}^2	$\log p(t \alpha, \sigma^2)$
Airfoil	0.495	0.591	-221	0.666	0.739	-168
Concrete	0.656	0.722	-152	0.663	0.762	-155
Poly data	0.964	0.985	21	0.969	0.991	18
CCPP	0.927	0.926	-58	0.933	0.935	-35
Life expectancy	0.724	0.328	-41	0.916	0.888	-21
Friedman $#3$	0.478	0.721	-269	0.049	0.095	-136
Boston Housing	0.789	0.925	-255	0.478	0.713	-40

Подходит ли ядро для данных?

Рассмотрим простой искусственный пример.

$$t = x + \mathcal{N}(0, \sigma^2)$$

Подходит ли ядро для данных?

Рассмотрим простой искусственный пример.

$$t = x + \mathcal{N}(0, \sigma^2)$$

Сходимость

Сходимость

Сходимость

Литература

- ► Tipping, http: //www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf.
- ► Bishop 1.2-1.3, 3.3-3.4, 7.2.
- ► Лекции https://www.youtube.com/watch?v=sZxE-BrSMAE&list= PLlb7e2G7aSpR8mbaShVBods-hGaFGifkl

Спасибо за внимание!