

Task 4

1. Create the DEPARTMENT table based on the following table instance chart.

Confirm that the table is created.

COLUMN NAME	ID	NAME
Default value	1	Not available
DATATYPE	Number	Varchar2
LENGTH	7	25
Populate the DEP	ARTMENT table v	vith data from departments table.
	ARTMENT table v nns that you need.	vith data from departments table.
Include only colum	nns that you need.	vith data from departments table. 150) to table department.

CREATE TABLE department

(id NUMBER(7) default 1, name VARCHAR2(25));

select * from department;

a) INSERT INTO department

SELECT department_id, department_name

FROM departments;

b) alter table department

add location varchar2(150);

c)truncate table department;


```
2. Create table employee based on the structure of the employees
table(Structure with data).
Include only the employee_id, last_name, email, salary and
department_id columns
Employee_id Primary key
email unique
 CREATE TABLE employee as
 SELECT employee_id , last_name, email, salary,
 department_id
 FROM employees;
 select *from employee;
 ALTER table employee
 MODIFY employee_id NUmber(6) NOT NULL;
 ALTER table employee
ADD CONSTRAINT PK_id PRIMARY KEY (employee_id);
ALTER table employee
add constraint email_uniq unique( email );
3. Create the following tables using ddl
Trainers [tr_id, tr_name, tr_mobile]
Courses [ crs_id, crs_name, crs_price ]
Use Many to Many relationship;
Solve using create tables, then alter trainers and add email column then alter
again to add unique constraints;
```



```
se insert to set those data
Trainer [ aly ] > teach [ php – oracle – java ]
Trainer [ Mohamed ] > teach [ oracle ]
Trainer [Omar] > teach [oracle - java]
Then select the data using inner join
CREATE TABLE courses(
 c_id Number(3) NOT NULL,
 course_name varchar2(25) NOT NULL,
 course_price Number(3) NOT NULL,
 CONSTRAINT course_pk PRIMARY KEY (c_id));
CREATE TABLE trainers_courses(tr_id Number(3) NOT NULL,
 c_id Number(3) NOT NULL,
 CONSTRAINT trainer_course_pk PRIMARY KEY (tr_id,c_id));
CREATE TABLE Trainers (tr_id Number(3) NOT NULL,
 tr_name varchar2(100) NOT NULL,
 mobile varchar2(15) NOT NULL,
 CONSTRAINT trainer_pk PRIMARY KEY (tr_id));
INSERT INTO Trainers (TR_ID, TR_NAME, MOBILE) VALUES (1, 'Aly', '012000');
INSERT INTO Trainers (TR_ID, TR_NAME, MOBILE) VALUES (2, 'Mohamed', '011000');
```

INSERT INTO Trainers (TR_ID, TR_NAME, MOBILE) VALUES (3, 'Omar', '010000');

TR_ID	TR_NAME	MOBILE
1	Aly	012000
3	Omar	010000
2	Mohamed	011000

INSERT INTO courses (C_ID, COURSE_NAME, COURSE_PRICE) VALUES (500, 'Oracle', 100);
INSERT INTO courses (C_ID, COURSE_NAME, COURSE_PRICE) VALUES (600, 'java', 300);
INSERT INTO courses (C_ID, COURSE_NAME, COURSE_PRICE) VALUES (700, 'PHP', 900);

L	E C_ID	COURSE_NAME	COURSE_PRICE
ı	500	Oracle	100
	600	java	300
	700	PHP	900

INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (1,500);
INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (1,600);
INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (1,700);
INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (2,500);
INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (3,500);
INSERT INTO trainers_courses (TR_ID, C_ID) VALUES (3,600);

4. Create a view called EMP_VU based on the employee number, employee name, and department number from the EMPlOYEES table. Change the heading for the employee name to EMPLOYEE

create or replace VIEW EMP_VU AS

SELECT employee_id, last_name employee, department_id FROM employees;

_			
∷≣	EMPLOYEE_ID	EMPLOYEE	DEPARTMENT_ID
▶	106	Pataballa	60
	108 Greenberg		100
	109	109 Faviet	
	111	Sciarra	100
	113	Popp	100

Modify the EMP_VU view to display the employees in department 20. Note:

the view can't be used to manipulate the employees in departments other than 20.

create or replace VIEW EMP_VU AS SELECT employee_id, last_name employee, department_id FROM employees WHERE department_id= 20 WITH CHECK OPTION;

select t.tr_name,t.mobile ,cr.c_id,cr.course_name, cr.COURSE_PRICE

from trainers t

inner join trainers_courses tc

on t.tr_id=tc.tr_id inner join courses cr

on tc.c_id =cr.c_id;

	TR_NAME	MORITE	C_ID	COURSE_NAME	COURSE_PRICE
Þ	Aly	012000	500	Oracle	100
	Aly	012000	600	java	300
	Aly	012000	700	PHP	900
	Mohamed	011000	500	Oracle	100
	Omar	010000	500	Oracle	100
	Omar	010000	600	java	300

5. Create a sequence to be used with the primary key column of the DEPARTMENTS table. The sequence should start at 400 and have a maximum value of 1000. Have your sequence increment by ten numbers. Name the sequence DEPT_ID_SEQ. and use it to insert a new row in departments table

CREATE SEQUENCE DEPT_ID_SEQ

START WITH 400

INCREMENT BY 10

MAXVALUE 1000;

insert into departments

(DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID)

values

(DEPT_ID_SEQ.nextval, 'AI', 102, 1700);

1	DEPARTME ▽	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID	
١	400	AI	102	1700	
	280	DA dept	109	1700	
	270	Payroll		1700	
	260	Recruiting		1700	
	250	Retail Sales		1700	
14					

6. Create new user "accountant" grant this user two system roles with minimum privileges to access the system.

```
SQL*Plus: Release 11.2.0.2.0 Production on Sat Dec 10 02:21:21 2022

Copyright (c) 1982, 2010, Oracle. All rights reserved.

SQL> conn sys/sys as sysdba
Connected.

SQL> create user accountant identified by accountant;

User created.

SQL> grant connect, resource to accountant;

Grant succeeded.

SQL>
```

7. Create public synonyms for the view EMP_VU.

```
SQL*Plus: Release 11.2.0.2.0 Production on Sat Dec 18
Copyright (c) 1982, 2010, Oracle. All rights reserve
SQL> conn sys/sys as sysdba
Connected.
SQL> create user accountant identified by accountant
User created.
SQL> grant connect, resource to accountant;
Grant succeeded.
SQL> CREATE PUBLIC SYNONYM empv for EMP_VU
2;
Synonym created.
SQL>
```

8. Create role to select and do DML operations on the EMPLOYEES table in your schema, grant access on this role to all users.

```
SQL> grant select ,insert, update,delete on hr.EMPLOYEES to acc_role;

Grant succeeded.

SQL> grant acc_role to public;

Grant succeeded.

SQL>
```