Algèbre linéaire 3 (L2 - 2023/2024)

Feuille de TD nº 3 — Réduction des endomorphismes (fin du chapitre).

Cette feuille est tirée en partie des feuilles de TD proposées par Guillaume Legendre (2020 à 2022), disponibles ici: https://www.ceremade.dauphine.fr/~legendre/enseignement/alglin3/

Trigonalisation

Exercice 1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 1. Montrer que f est trigonalisable.
- 2. Montrer que le sous-espace propre associé à la valeur propre 1 est de dimension égale à 1. Montrer que u = (1, 1, 0) est un vecteur non nul de ce sous-espace.
- 3. Montrer que v = (0,0,1) est tel que $(f \mathrm{id}_{\mathbb{R}^3})(v) = u$.
- 4. Chercher un vecteur propre w associé à la valeur propre 2. Montrer que (u, v, w) est une base de \mathbb{R}^3 . Calculer la matrice T de f dans cette base.
- 5. Calculer $f^k(v)$ pour tout entier naturel k. En déduire T^k .
- 6. Calculer A^k pour tout entier naturel k.

Exercice 2. Trigonaliser les matrices $\begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$ et $\begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$.

Exercice 3. Si $A \in M_n(\mathbb{K})$, $B \in M_n(\mathbb{K})$ et $C \in M_{n,m}(\mathbb{K})$, on considère la matrice triangulaire par blocs $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

- 1. Si $A = P_1 T_1 P_1^{-1}$ et $B = P_2 T_2 P_2^{-1}$ avec T_1 et T_2 des matrices triangulaires supérieures, trouver une matrice inversible $P \in M_{n+m}(\mathbb{K})$ et une matrice triangulaire supérieure T telles que $M = PTP^{-1}$.
- 2. Si $A = \lambda I_n$ et que $\lambda \notin \operatorname{Sp}(B)$, trouver une matrice inversible P telle que $M = P \begin{pmatrix} \lambda I_n & 0 \\ 0 & B \end{pmatrix} P^{-1}$.

Exercice 4. Trigonaliser les matrices $\begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix} \text{ et } \begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}.$

Polynômes annulateurs

Exercice 5. Trouver le polynôme caractéristique d'un endomorphisme nilpotent d'un K-espace vectoriel de dimension finie non nulle.

Exercice 6. Soit n un entier naturel non nul. On suppose que le polynôme P(X) = X(X+2) est un polynôme annulateur d'une matrice A de $M_n(\mathbb{R})$ non nulle. Montrer que -2 est valeur propre de A et que A est diagonalisable.

Exercice 7. Soit la matrice $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

- 1. Calculer A^2 et en déduire une relation simple liant A^2 , A et I_4 .
- 2. En déduire que A est diagonalisable et donner son spectre.
- 3. Diagonaliser A.

Exercice 8. \diamond Soit n un entier naturel non nul et A une matrice de $M_n(\mathbb{R})$.

- 1. On suppose que $A^3 3A 4I_n = 0$. Montrer que A est de déterminant strictement positif.
- 2. On suppose que $A^2 + A + I_n = 0_{M_n(\mathbb{R})}$. Montrer que n est pair.
- 3. On suppose que $A^3 + A^2 + A = 0_{M_n(\mathbb{R})}$. Montrer que le rang de A est pair.

Applications de la diagonalisation

Exercice 9. Les matrices $A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$ sont-elles semblables?

Exercice 10. Diagonaliser la matrice $A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}$ et en déduire la valeur de A^n pour tout entier naturel n.

Exercice 11. On considère les suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par la donnée de leur premiers termes respectifs u_0 , v_0 et w_0 et les relations de récurrence suivantes :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = -4u_n - 6v_n \\ v_{n+1} = 3u_n + 5v_n \\ w_{n+1} = 3u_n + 6v_n + 5w_n \end{cases}.$$

Déterminer les termes u_n , v_n et w_n en fonction de n.

Exercice 12. Diagonaliser la matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$ et en déduire toutes les matrices qui commutent avec elle.

Exercices supplémentaires

Exercice 13. Soit p et q deux entiers naturels non nuls et M la matrice triangulaire par blocs

$$M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

où A appartient à $M_p(\mathbb{K})$ et B appartient à $M_q(\mathbb{K})$. On suppose que P est un polynôme annulateur de A et que Q est un polynôme annulateur de B. Déterminer un polynôme annulateur de M à partir de P et de Q (sans utiliser le théorème de Cayley-Hamilton).

Exercice 14. \diamond Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E. Existe-t-il toujours un polynôme annulateur de f autre que le polynôme nul?

Exercice 15. Soit n un entier naturel non nul et A et B deux matrices de $M_n(\mathbb{R})$. On suppose que A possède n valeurs propres distinctes et que tout vecteur propre de A est également vecteur propre de B. Montrer qu'il existe un polynôme P de $\mathbb{R}[X]$ tel que P(A) = B.