

WEST[Help](#) [Logout](#) [Interrupt](#)[Main Menu](#) [Search Form](#) [Posting Counts](#) [Show S Numbers](#) [Edit S Numbers](#) [Preferences](#)**Search Results -**

Terms	Documents
I2 and standard and weight and mass spectrometry	2

Database:

- US Patents Full-Text Database
- US Pre-Grant Publication Full-Text Database
- JPO Abstracts Database
- EPO Abstracts Database
- Derwent World Patents Index
- IBM Technical Disclosure Bulletins

Refine Search:

Search History**Today's Date: 10/24/2001**

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT	I2 and standard and weight and mass spectrometry	2	<u>L3</u>
USPT	I1 and standard	4	<u>L2</u>
USPT	5607859	4	<u>L1</u>

(FILE 'HOME' ENTERED AT 11:04:24 ON 24 OCT 2001)

INDEX 'ADISALERTS, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI,
BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO,
CABA,
CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DDFB,
DDFU, DGENE, DRUGB, DRUGLAUNCH, DRUGMONOG2,' ENTERED AT 11:07:23 ON
24 OCT 2001

SEA STABLE ISOTOPE LABEL?

7 FILE ADISALERTS
32 FILE AGRICOLA
65 FILE ANABSTR
11 FILE AQUASCI
12 FILE BIOBUSINESS
4 FILE BIOCOMMERCE
477 FILE BIOSIS
25 FILE BIOTECHABS
25 FILE BIOTECHDS
82 FILE BIOTECHNO
97 FILE CABA
24 FILE CANCERLIT
701 FILE CAPLUS
6 FILE CEABA-VTB
16 FILE CEN
6 FILE CIN
25 FILE CONFSCI
10 FILE CROPU
26 FILE DDFB
68 FILE DDFU
14 FILE DGENE
26 FILE DRUGB
91 FILE DRUGU
5 FILE EMBAL
411 FILE EMBASE
154 FILE ESBIOBASE
22 FILE FROSTI
12 FILE FSTA
3 FILE HEALSAFE
5 FILE IFIPAT
67 FILE JICST-EPLUS
72 FILE LIFESCI
377 FILE MEDLINE
10 FILE NIOSHTIC
16 FILE NTIS
4 FILE OCEAN
208 FILE PASCAL
2 FILE PHIN
13 FILE PROMT
473 FILE SCISEARCH
1 FILE SYNTHLINE
238 FILE TOXLIT
34 FILE USPATFULL
15 FILE WPIDS
15 FILE WPINDEX

QUE STABLE ISOTOPE LABEL?

SEA L1 AND WEIGHT SHIFT

L1

L2

QUE L1 AND WEIGHT SHIFT

SEA L1 AND ISOTOPE(25W) SHIFT

1 FILE DDFU
1 FILE DRUGU
1 FILE EMBASE
1 FILE MEDLINE
L3 QUE L1 AND ISOTOPE(25W) SHIFT

FILE 'DRUGU, EMBASE, MEDLINE' ENTERED AT 11:20:47 ON 24 OCT 2001

L4

3 S L1 AND ISOTOPE(25W) SHIFT
L5 1 DUP REM L4 (2 DUPLICATES REMOVED)

(FILE 'HOME' ENTERED AT 07:37:55 ON 24 OCT 2001)

INDEX 'ADISALERTS, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI,
BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO,
CABA,
CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPUS, DDFB,
DDFU, DGENE, DRUGB, DRUGLAUNCH, DRUGMONOG2, ...' ENTERED AT 07:38:10 ON
24 OCT 2001

SEA CONTROL AND MASS SPECTROMET?

22 FILE ADISALERTS
1 FILE ADISINSIGHT
2 FILE ADISNEWS
296 FILE AGRICOLA
615 FILE ANABSTR
143 FILE AQUASCI
475 FILE BIOBUSINESS
8 FILE BIOCOMMERCE
5815 FILE BIOSIS
89 FILE BIOTECHABS
89 FILE BIOTECHDS
834 FILE BIOTECHNO
602 FILE CABA
258 FILE CANCERLIT
5472 FILE CAPLUS
250 FILE CEABA-VTB
216 FILE CEN
7 FILE CIN
27 FILE CONFSCI
18 FILE CROPB
51 FILE CROPUS
7 FILE DDFB
77 FILE DDFU
40 FILE DGENE
7 FILE DRUGB
255 FILE DRUGU
1 FILE DRUGUPDATES
45 FILE EMBAL
2853 FILE EMBASE
1143 FILE ESBIOBASE
207 FILE FROSTI
103 FILE FSTA
48 FILE HEALSAFE
419 FILE IFIPAT
682 FILE JICST-EPLUS
8 FILE KOSMET
534 FILE LIFESCI
3 FILE MEDICONF
2296 FILE MEDLINE
250 FILE NIOSHTIC
696 FILE NTIS
28 FILE OCEAN
3308 FILE PASCAL
17 FILE PHIN
858 FILE PROMT
3171 FILE SCISEARCH
1116 FILE TOXLIT
11069 FILE USPATFULL

662 FILE WPIDS
662 FILE WPINDEX
L1 QUE CONTROL AND MASS SPECTROMET?

SEA L1 AND CONTROL (25W) WEIGHT

1 FILE AGRICOLA
3 FILE ANABSTR
1 FILE BIOBUSINESS
33 FILE BIOSIS
6 FILE BIOTECHNO
4 FILE CABA
4 FILE CANCERLIT
1 FILE CAPLUS
SEA L1 AND CONTROL (25W) (WEIGHT OR MW)

1 FILE AGRICOLA
3 FILE ANABSTR
1 FILE BIOBUSINESS
35 FILE BIOSIS
7 FILE BIOTECHNO
4 FILE CABA
4 FILE CANCERLIT
2 FILE CAPLUS
3 FILE CEN
1 FILE DDFU
4 FILE DRUGU
34 FILE EMBASE
18 FILE ESBIOWEIGHT
3 FILE FROSTI
1 FILE IFIPAT
2 FILE JICST-EPLUS
6 FILE LIFESCI
29 FILE MEDLINE
3 FILE NIOSHTIC
4 FILE NTIS
21 FILE PASCAL
5 FILE PROMT
36 FILE SCISEARCH
1 FILE TOXLIT
641 FILE USPATFULL
2 FILE WPIDS
2 FILE WPINDEX
QUE L1 AND CONTROL (25W) (WEIGHT OR MW)

SEA L2 AND CONTROL (10W) (WEIGHT OR MW)

1 FILE ANABSTR
1 FILE BIOBUSINESS
15 FILE BIOSIS
3 FILE BIOTECHNO
1 FILE CABA
2 FILE CANCERLIT
2 FILE CAPLUS
3 FILE CEN
3 FILE DRUGU
20 FILE EMBASE
8 FILE ESBIOWEIGHT
1 FILE FROSTI
1 FILE JICST-EPLUS
1 FILE LIFESCI
14 FILE MEDLINE
1 FILE NIOSHTIC
1 FILE NTIS
6 FILE PASCAL
3 FILE PROMT

19 FILE SCISEARCH
1 FILE TOXLIT
262 FILE USPATFULL
2 FILE WPIDS
2 FILE WPINDEX
L3 QUE L2 AND CONTROL(10W) (WEIGHT OR MW)

SEA L3 AND (WEIGHT OR MW) (25W) (SHIFT? OR CHANG? OR MODIF?)

1 FILE BIOSIS
1 FILE DRUGU
1 FILE EMBASE
1 FILE MEDLINE
1 FILE PROMT
1 FILE SCISEARCH
52 FILE USPATFULL
L4 QUE L3 AND (WEIGHT OR MW) (25W) (SHIFT? OR CHANG? OR MODIF?)

SEA L4 AND CONTROL(25W) MASS SPECTRO?

1 FILE PROMT
1 FILE USPATFULL
L5 QUE L4 AND CONTROL(25W) MASS SPECTRO?

FILE 'PROMT, USPATFULL' ENTERED AT 07:51:51 ON 24 OCT 2001
L6 2 S L4 AND CONTROL(25W) MASS SPECTRO?

L2 ANSWER 1 OF 1 USPATFULL
AN 94:37865 USPATFULL
TI Serum with reduced levels of steroids
IN Lensmeyer, Gary L., Fitchburg, WI, United States
PA Wisconsin Alumni Research Foundation, Madison, WI, United States (U.S.
corporation)
PI US 5308768 19940503
AI US 93-46681 19930413 (8)
DT Utility
LN.CNT 556
INCL INCLM: 436/016.000
INCLS: 436/017.000; 436/018.000; 436/817.000
NCL NCLM: 436/016.000
NCLS: 436/017.000; 436/018.000; 436/817.000
IC [5]
ICM: G01N033-78
ICS: G01N033-96
EXF 436/8; 436/16; 436/17; 436/18; 436/817; 252/408.1
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

925 FILE SCISEARCH
63 FILE TOXLIT
693 FILE USPATFULL
52 FILE WPIDS
52 FILE WPIINDEX
L2 QUE STANDARD? (25W) MASS SPECTROMET?

SEA L2 AND STANDARD? (25W) (WEIGHT OR MW)

3 FILE AGRICOLA
1 FILE AQUASCI
2 FILE BIOBUSINESS
16 FILE BIOSIS
2 FILE BIOTECHNO
3 FILE CABA
1 FILE CANCERLIT
1 FILE DRUGU
7 FILE EMBASE
3 FILE ESBIOBASE
1 FILE LIFESCI
11 FILE MEDLINE
1 FILE NTIS
2 FILE PASCAL
1 FILE PROMT
13 FILE SCISEARCH
38 FILE USPATFULL
2 FILE WPIDS
2 FILE WPIINDEX
L3 QUE L2 AND STANDARD? (25W) (WEIGHT OR MW)

SEA L3 AND (WEIGHT OR MW) (25W) (SHIFT? OR CHANG? OR MODIF?)

1 FILE PROMT
4 FILE USPATFULL
L4 QUE L3 AND (WEIGHT OR MW) (25W) (SHIFT? OR CHANG? OR MODIF?)

FILE 'USPATFULL, PROMT' ENTERED AT 08:44:22 ON 24 OCT 2001
L5 5 S L3 AND (WEIGHT OR MW) (25W) (SHIFT? OR CHANG? OR MODIF?)
L6 5 DUP REM L5 (0 DUPLICATES REMOVED)

(FILE 'HOME' ENTERED AT 08:33:01 ON 24 OCT 2001)

INDEX 'ADISALERTS, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI,
BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO,
CABA,
CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DDFB,
DDFU, DGENE, DRUGB, DRUGLAUNCH, DRUGMONOG2, ...' ENTERED AT 08:33:44 ON
24 OCT 2001

SEA STANDARD (25W) MASS SPRECTROMET?

L1 QUE STANDARD (25W) MASS SPRECTROMET?

SEA STANDARD? (25W) MASS SPRECTROMET?

SEA STANDARD? (25W) MASS SPECTROMET?

1 FILE ADISALERTS
62 FILE AGRICOLA
213 FILE ANABSTR
33 FILE AQUASCI
65 FILE BIOBUSINESS
1 FILE BIOCOMMERCE
912 FILE BIOSIS
4 FILE BIOTECHABS
4 FILE BIOTECHDS
154 FILE BIOTECHNO
124 FILE CABA
54 FILE CANCERLIT
593 FILE CAPLUS
16 FILE CEABA-VTB
13 FILE CEN
1 FILE CIN
10 FILE CONFSCI
7 FILE CROPB
15 FILE CROPU
11 FILE DDFB
28 FILE DDFU
11 FILE DRUGB
75 FILE DRUGU
16 FILE EMBAL
765 FILE EMBASE
291 FILE ESBIOBASE
35 FILE FROSTI
14 FILE FSTA
11 FILE HEALSAFE
21 FILE IFIPAT
72 FILE JICST-EPLUS
1 FILE KOSMET
150 FILE LIFESCI
697 FILE MEDLINE
95 FILE NIOSHTIC
194 FILE NTIS
7 FILE OCEAN
472 FILE PASCAL
1 FILE PHAR
3 FILE PHIN
47 FILE PROMT

1 FILE AQUASCI
3 FILE BIOBUSINESS
69 FILE BIOSIS
10 FILE BIOTECHNO
12 FILE CABA
3 FILE CANCERLIT
29 FILE CAPLUS
3 FILE DDFB
3 FILE DDFU
3 FILE DRUGB
7 FILE DRUGU
1 FILE EMBAL
68 FILE EMBASE
24 FILE ESBIOWBASE
5 FILE FROSTI
1 FILE FSTA
1 FILE HEALSAFE
2 FILE IFIPAT
2 FILE JICST-EPLUS
6 FILE LIFESCI
65 FILE MEDLINE
3 FILE NIOSHTIC
2 FILE NTIS
31 FILE PASCAL
1 FILE PROMT
57 FILE SCISEARCH
13 FILE TOXLIT
38 FILE USPATFULL
1 FILE WPIDS
1 FILE WPIINDEX

L2 QUE L1 AND (ISOTOP?) (25W) (STANDARD OR CONTROL)

FILE 'BIOSIS, EMBASE, MEDLINE, SCISEARCH, USPATFULL, PASCAL, CAPLUS,
ESBIOWBASE, ANABSTR, TOXLIT, CABA, BIOTECHNO, DRUGU, LIFESCI, FROSTI,
AGRICOLA, BIOBUSINESS, CANCERLIT, DRUGB, NIOSHTIC, IFIPAT, JICST-EPLUS,
NTIS, AQUASCI, EMBAL, FSTA, HEALSAFE, PROMT, ...' ENTERED AT 10:17:41 ON
24 OCT 2001

L3 428 S L1 AND (ISOTOP?) (15W) (STANDARD OR CONTROL)

L4 153 S L3 AND ISOTOP? (15W) MASS

L5 71 DUP REM L4 (82 DUPLICATES REMOVED)

L6 12475955 S L4 AND LABEL? (10W) STANDARD OR CONTROL

L7 78 S L4 AND LABEL? (10W) (STANDARD OR CONTROL)

L8 31 DUP REM L7 (47 DUPLICATES REMOVED)

(FILE 'HOME' ENTERED AT 10:10:38 ON 24 OCT 2001)

INDEX 'ADISALERTS, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI,
BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO,
CABA,
CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPUS, DDFB,
DDFU, DGENE, DRUGB, DRUGLAUNCH, DRUGMONOG2, ...' ENTERED AT 10:10:49 ON
24 OCT 2001

SEA MASS SPECTRO? (25W) (ISOTOP?) AND LABEL?

2 FILE ADISALERTS
55 FILE AGRICOLA
51 FILE ANABSTR
8 FILE AQUASCI
12 FILE BIOBUSINESS
1 FILE BIOCOMMERCE
423 FILE BIOSIS
6 FILE BIOTECHABS
6 FILE BIOTECHDS
93 FILE BIOTECHNO
79 FILE CABA
20 FILE CANCERLIT
792 FILE CAPLUS
3 FILE CEABA-VTB
5 FILE CEN
6 FILE CONFSCI
5 FILE CROPB
15 FILE DDFB
21 FILE DDFU
15 FILE DRUGB
31 FILE DRUGU
6 FILE EMBAL
420 FILE EMBASE
138 FILE ESBIOBASE
17 FILE FROSTI
8 FILE FSTA
5 FILE HEALSAFE
8 FILE IFIPAT
15 FILE JICST-EPLUS
54 FILE LIFESCI
401 FILE MEDLINE
14 FILE NIOSHTIC
56 FILE NTIS
3 FILE OCEAN
198 FILE PASCAL
2 FILE PHIN
5 FILE PROMT
410 FILE SCISEARCH
206 FILE TOXLIT
178 FILE USPATFULL
17 FILE WPIDS
17 FILE WPINDEX

L1 QUE MASS SPECTRO? (25W) (ISOTOP?) AND LABEL?

SEA L1 AND (ISOTOP?) (25W) (STANDARD OR CONTROL)

3 FILE AGRICOLA
14 FILE ANABSTR

different imipramine formulations, in which it was shown that to detect a 20% difference in area under the plasma concentration-time curve (with a probability of 0.8) between the 2 formulations required the use of 20 subjects, but only 3 to 4 subjects with the stable isotope method. Other studies on the relative bioavailability of different formulations have been conducted with maprotiline, verapamil and timolol. The influence of formulation factors on the absorption of benoxaprofen, dextropropoxyphene and methoxsalen have been conducted by using solutions of their stable isotopes. The major advantages of using stable isotope **labelled** drugs are: (a) that time-dependent (i.e. day-to-day) variations in drug disposition are minimised; (b) a small number of subjects are required in bioavailability studies; and (c) patients are less inconvenienced, for studies which normally require dosing on 2 occasions can now be easily accomplished.

ANSWER 30 OF 31 EMBASE COPYRIGHT 2001 ELSEVIER SCI. B.V.

AN 83014745 EMBASE

DN 1983014745

TI Application of stable labelled drugs in clinical pharmacokinetic investigations.

AU Eichelbaum M.; Von Unruh G.E.; Somogyi A.

CS Dep. Med., Univ. Bonn, Bonn, Germany

SO Clinical Pharmacokinetics, (1982) 7/6 (490-507).

CODEN: CPKNDH

CY Australia

DT Journal

FS 037 Drug Literature Index

030 Pharmacology

023 Nuclear Medicine

LA English

AB The application of stable isotope labelled drugs in clinical pharmacokinetic studies has rapidly increased over the past decade. Isotopes are atoms of the same chemical element, but differ from one another by their mass, due to the different number of neutrons in the nucleus. As they are not radioactive they can be administered in therapeutic doses to man. The major applications of stable

isotope labelled drugs are as an internal standard in gas chromatography-mass spectrometry (GC-MS) analysis and as so-called 'biological internal standards'. This latter application is accomplished by administering the stable isotope labelled drug to man, measuring its plasma concentration and determining various pharmacokinetic parameters.

Problems

associated with this technique include having a suitable mass difference between labelled and unlabelled drug, having the label in the fragment ion to be monitored and exclusion of isotope effects. The applications of the technique include investigations into the pharmacokinetics and autoindication of carbamazepine metabolism in epileptic patients during long term monotherapy and combination therapy, and determination of the time course of carbamazepine disposition in children, studies of valproic acid pharmacokinetics during combined anticonvulsant therapy and during pregnancy, and the influence of valproic

acid on phenobarbitone (phenobarbital) disposition. These studies have been conducted in patients by substituting the normal dose with a pulse dose of the labelled antiepileptic drug and hence normal therapy was continued and not withdrawn. Also, several studies have been conducted

with a solution of stable labelled verapamil, including single dose and multiple dose pharmacokinetics, and disposition and bioavailability in liver cirrhosis and in a patient before and after construction of a mesocaval shunt. Aspects of drug metabolism have also been studied by the use of stable isotopes. These include the metabolism of procainamide and N-acetylprocainamide. Stereoselectivity of drug metabolism has been investigated using a pseudoracemate of warfarin, and the interaction of the enantiomers of warfarin with phenylbutazone and quinalbarbitone (secobarbital) has elegantly demonstrated this stereoselectivity of human drug metabolism. Absolute bioavailability studies with N-acetylprocainamide, barbitone and verapamil have been performed with stable isotopes in that both the intravenous and oral doses

were given simultaneously to man. The advantage of this technique has been

clearly demonstrated in a study on the relative bioavailability of 2

L5 ANSWER 1 OF 1 DRUGU COPYRIGHT 2001 DERWENT INFORMATION LTD
AN 1986-46633 DRUGU C A
TI Drug Metabolite Identification: Stable Isotope Methods.
AU VandenHeuvel W J A
CS Merck-USA
LO Rahway, New Jersey, United States
SO J.Clin.Pharmacol. (26, No. 6, 427-34, 1986) 6 Fig. 4 Tab. 44 Ref.
CODEN: JCPCBR ISSN: 0091-2700
AV Merck Sharp & Dohme Research Laboratories, P.O. Box 2000 Rahway, NJ
07065, U.S.A.
LA English
DT Journal
FA AB; LA; CT; MPC
FS Literature
AB **Stable isotope labeling (SIL)** of drugs, in combination with MS-based methods, to facilitate the recognition and identification of metabolites, and the use of SIL derivatization reagents, e.g. bis-tms-acetamide-d18 in the structure elucidation of metabolites from unlabeled drugs via GLC-MS, are reviewed. The **isotope peak shift** permits generation of data applied to metabolite identification. Judicious labeling of a drug permits characterization of metabolites by MS-based recognition of **isotope cluster signatures**. Studies using SIL are exemplified by data on aminopyrine and isopropylantipyrine metabolism. Examples of the derivatization **shift** approach comprise those from studies of

L4 ANSWER 8 OF 17 USPATFULL
AN 1998:4402 USPATFULL
TI Devices and methods utilizing arrays of structures for analyte capture
IN Hansmann, Douglas D., Libertyville, IL, United States
Grace, John P., Lake Villa, IL, United States
Lowery, Michael G., Wildwood, IL, United States
Oosta, Gary M., Gurnee, IL, United States
Loomis, Neil W., Racine, WI, United States
Shain, Eric B., Glencoe, IL, United States
Schapira, Thomas G., Bristol, WI, United States
PA Abbott Laboratories, Abbott Park, IL, United States (U.S. corporation)
PI US 5707799 19980113
AI US 1994-315364 19940930 (8)
DT Utility
EXNAM Primary Examiner: Chin, Christopher L.
LREP Weinstein, David L.; Steele, Gregory W.
CLMN Number of Claims: 30
ECL Exemplary Claim: 1
DRWN 6 Drawing Figure(s); 2 Drawing Page(s)
LN.CNT 1235
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB The present invention relates to analytical devices for determining the presence or amount of an analyte in a test sample. The analytical devices comprise an inlet port, a vent, a channel, and an array of structures. The structures have immobilized reagent covalently or non-covalently attached to the surface of the structures. The immobilized reagent captures analyte in the test sample where it is detected by a detection system. The present invention also provides methods and reagents for performing assays utilizing the analytical devices of the present invention. The present invention also provides methods of manufacturing the analytical devices of the present invention.

ANSWER 8 OF 17 USPATFULL

DETD . . . means can be used to verify an assay result. One control means comprises a confirmatory assay that is performed essentially automatically and simultaneously with the assay for the detection of analyte. In a particular embodiment, the test sample containing the analyte is contacted with a predetermined amount of labeled reagent to form a mixture containing an analyte/labelled reagent complex. The resulting . . . reagent is a mobile specific binding member having the same binding specificity for the labeled reagent as the test sample analyte. The positive control reagent can be either an analyte identical to that of the test sample or a corresponding analyte-analog. When the mixture contacts the positive control reagent zone, the positive control reagent is reconstituted and binds specifically with unbound labeled reagent to form a positive control reagent/labelled reagent complex. This complex migrates to the positive control capture site. The positive control capture site contains the same immobilized anti-analyte specific binding member as the first pathway. Therefore, the positive control capture site is capable of forming a detectable immobilized complex. A detectable

signal

at the positive control capture site confirms. . . .

DETD . . . coated with 0.5 microliters (.mu.l) of a 2 milligram per milliliter (mg/ml) solution of anti-beta human thyroid stimulating hormone (hTSH) (**Abbott** Laboratories, **Abbott** Park, Ill., 60064) and incubated for 90 minutes at 37.degree. Celsius (C.). The structures are then overcoated with 1 mg/ml. . . .

DETD . . . are premixed with 282 nanometer (nm) diameter orange fluorescent microparticles in solution (Molecular Probes, Inc., Eugene, Oreg., 97402) with anti-alpha hTSH (**Abbott** Laboratories) conjugated to the microparticle surface.

DETD The mixture includes 1 part of a 0.1% microparticle solution, 2 parts

of

IMx.RTM. diluent (**Abbott** Laboratories, **Abbott** Park, Ill.) and 6 parts of the hTSH calibrators (50 .mu.l=6 parts). The assay is run for approximately 5 minutes.