Software Project Management

Week - 8

Today's Lecture

• Financial Analysis of a Project

2

We have...

- Let us consider an example
 - Your FYP
 - You have to prepare cost
 - Question arises, how?
 - Activities ->
 - SRS Dev, Design, Imp, Testing
 - (Hardware req, Inputs (M/S), Controller conf, Wifi Modules req, Sensors requirements, overall system, application, external req, ...)
 - Screen scrapping req, best buy option module, ...
- Up to now...
 - Net project cost

We have...

- Up to now...
 - Net project cost
- Price has component of Cost and a component of profit = P = C +Profit
- Cost has several heads
- One of the dimensions for project selection is financial aspect
- This means you are clear about the expense side of the project

Financial Analysis of Projects

- Financial considerations are often an important consideration in selecting projects
- Three primary methods for determining the projected financial value of projects:
 - Net present value (NPV) analysis
 - Return on investment (ROI)
 - Payback analysis

5

What should I calculate				
Month	Details	Transaction amount Inward	Expense	Balance
1	M/Adv	1,000,000*10%=100,000	85,000	15,000
2	Nil		85,000	(70,000)
3	SRS	1,000,000*15%=150,000	85,000	(5,000)
4			85,000	(90,000)
5			85,000	(175,000)
6			85,000	(260,000)
7	R1	1,000,000*35%=350,000	85,000	5,000
8			85,000	(80,000)
9			85,000	(165,000)
10	FR	1,000,000*20%=200,000	85,000	(50,000)
		1,000,000*20%=200,000	35,000	115,000
Total				

What should I calculate				
Month	Details	Transaction amount Inward	Expense	Balance
1	M/Adv	12000+12000/1	12000	15,000
2	Nil			(70,000)
3	SRS	1,000,000*15%=150,000		(5,000)
4				(90,000)
5				(175,000)
6				(260,000)
7	R1	1,000,000*35%=350,000		5,000
8				(80,000)
9				(165,000)
10	FR	1,000,000*20%=200,000		(50,000)
		1,000,000*20%=200,000	12,000	115,000
Total				

My analysis

- Investment from company = 1,000,000
- Profit = 115,000
- Time to profit = 1 years
- I went to National Bank of Pakistan (NBP)
- NPV
 - Let bank rate of return is 5%
 - -1,000,000/1.05 = 952,381 = 48,000
 - Current situation = 115,000 48,000 = 67,000
- 100,000 ->120,000
- 120,000/1.07 = 112,149;
- 112 149-100 000=12 149

What should I calculate				
Month	Details	Transaction amount Inward	Expense	Balance
1	M/Adv	1,000,000*10%=100,000	85,000	15,000
2	Nil		85,000	(70,000)
3	SRS	1,000,000*15%=150,000	85,000	(5,000)
4			85,000	(90,000)
5			85,000	(175,000)
6			85,000	(260,000)
7	R1	1,000,000*35%=350,000	85,000	5,000
8			85,000	(80,000)
9			85,000	(165,000)
10	FR	1,000,000*20%=200,000	85,000	(50,000)
		1,000,000*20%=200,000	35,000	115,000
Total				

Net Present Value Analysis: NPV

- NPV: a method of calculating the expected net monetary gain or loss from a project by discounting all expected future cash inflows and outflows to the present point in time
- Projects with a positive NPV should be considered if financial value is a key criterion
- The higher the NPV, the better

11

Net Present Value

- Capital Budgeting Decision
 - Suppose you had the opportunity to buy a Tbill (Treasury Bill) which would be worth \$400,000 one year from today.
 - Interest rates on Tbills are a risk free 7%.
 - What would you be willing to pay for this investment?

Net Present Value

- Capital Budgeting Decision
 - You would be willing to pay \$373,382 for a risk free \$400,000 a year from today.
 - Suppose this were, instead, an opportunity to construct a building, which you could sell in a year for \$400,000 with certainty (That means the project is risk free.)
 - Since this investment has the same risk and promises the same cash flows as the Tbill, it is also worth the same amount to you:

\$373,282

7-13

Net Present Value

- Capital Budgeting Decision
 - Now, assume you could buy the land for \$50,000 and construct the building for \$300,000. Is this a good deal?
 - Sure! If you would be willing to pay \$373,382 for this investment and can acquire it for only \$350,000, you have found a very good deal!
 - You are better off by:

\$373,382 - \$350,000 = \$23,832

7-14

Net Present Value

- Capital Budgeting Decision
 - We have just developed a way of evaluating an investment decision which is known as **Net Present Value (NPV)**.
 - NPV is defined as the PV of the cash flows from an investment minus the initial investment.

```
NPV = PV - Required Investment (C0)
= [$400,000/(1+.07)] - $350,000
= $23,832
```

7-15

Net Present Value

- Capital Budgeting Decision
 - This discount rate is known as the opportunity cost of capital.
 - It is called this because it is the return you give up by investing in the project.
 - In this case, you give up the money you could have used to buy a 7% tbill so that you can construct a building.
 - But, a Tbill is risk free! A construction project is not!
 - We should use a higher opportunity cost of capital.

7-16

Net Present Value

- Risk and Net Present Value
 - Suppose instead you believe the building project is as risky as a stock which is yielding 12%.
 - Now your opportunity cost of capital would be 12% and the NPV of the project would be:

- The project is significantly less attractive once you take account of risk.
- This leads to a basic financial principal: A risky dollar is worth less than a safe one.
- 10,000,000 yields 14,000,000 -> 2,500,000 yield 3,500,000
- -3,500,000/(1+0.11) = 3,153,153

7-17

Net Present Value

- Valuing long lived projects
 - The NPV rule works for projects of any duration:
 - Simply discount the cash flows at the appropriate opportunity cost of capital and then subtract the cost of the initial investment.

$$NPV = C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \dots + \frac{C_n}{(1+r)^n}$$

Initial Investment negative cash flow

Discounted expected future cash flows

- The critical problems in any NPV problem are to determine:
 - The amount and timing of the cash flows.
 - The appropriate discount rate.

NPV Rule: Accept Projects with Positive NPVs

7-18

Return on Investment (ROI)

- ROI: income divided by investment
 ROI = (total discounted benefits total discounted costs) / discounted costs
- The higher the ROI, the better
- Many organizations have a required rate of return or minimum acceptable rate of return on investment for projects

19

Understanding ROI

 $ROI = \frac{Net operating income}{Average operating assets}$

Margin = Net operating income
Sales

Turnover = Sales
Average operating assets

ROI = Margin × **Turnover**

An ROI Example

• <u>Year 1:</u>	ABC Div	XYZ Div
•Sales	\$30,000,000	\$117,000,000
 Operating income 	1,800,000	3,510,000
 Average operating assets 	10,000,000	19,500,000
• <u>Year 2:</u>		
•Sales	\$40,000,000	\$117,000,000
Operating income	2,000,000	2,925,000
Average operating assetsMinimum return of 10%	10,000,000	19,500,000

Margin and Turnover Comparisons

•	<u>ABC Div</u>		XYZ Div			
•	Year 1	Year 2	Year 1	Year 2		
 Margin 	6.0%	5.0%	3.0%	2.5%		
 Turnover 	<u>x 3.0</u>	x 4.0	x 6.0	x 6.0		
• ROI	18.0%	20.0%	18.0%	15.0%		
	===	===	===	===		

Increasing ROI – An Example

Ahmed Bilal's Company reports the following:

Net operating income\$ 30,000Average operating assets\$ 200,000Sales\$ 500,000Operating expenses\$ 470,000

What is ABC Company's ROI?

ROI = Margin × Turnover

ROI = Net operating income Sales Average operating assets

Increasing ROI – An Example

$$ROI = Margin \times Turnover$$

$$ROI = \frac{\$30,000}{\$500,000} \times \frac{\$500,000}{\$200,000}$$

 $ROI = 6\% \times 2.5 = 15\%$

Investing in Operating Assets to Increase Sales

Suppose that Regal's manager invests in a \$30,000 piece of equipment that increases sales by \$35,000, while increasing operating expenses by \$15,000.

Regal Company reports the following:

Net operating income\$ 50,000Average operating assets\$ 230,000Sales\$ 535,000Operating expenses\$ 485,000

Let's calculate the new ROI.

Investing in Operating Assets to Increase Sales

$$ROI = Margin \times Turnover$$

$$ROI = \frac{\text{Net operating income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Average operating assets}}$$

$$ROI = \frac{\$50,000}{\$535,000} \times \frac{\$535,000}{\$230,000}$$

$$ROI = 9.35\% \times 2.33 = 21.8\%$$

ROI increased from 15% to 21.8%.

Payback Analysis

- Another important financial consideration is payback analysis
- The "payback period" is the amount of time it will take to recoup, in the form of net cash inflows, the net dollars invested in a project
- Payback occurs when the cumulative discounted benefits and costs are greater than zero
- Many organizations want IT projects to have a fairly short payback period

27

Payback Period

- How long does it take to recover the initial cost of a project?
- Computation
 - Estimate the cash flows
 - Subtract the future cash flows from the initial cost until initial investment is recovered
 - A "break-even" type measure
- Decision Rule Accept if the payback period is <u>less</u> than some preset limit

Calculate Payback Period

- If investment cost \$100 and receive \$50 a year for 3 years, what is payback period?
- What if investment cost \$75?
- Same project as before
 - Year 0: CF = -165,000
 - Year 1: CF = 63,120
 - Year 2: CF = 70,800
 - Year 3: CF = 91,080

Computing Payback for the Project

Capital Budgeting Project

Year	CF		C	cum. CFs
0	\$	(165,000)	\$	(165,000)
1	\$	63,120	\$	(101,880)
2	\$	70,800 91,080	\$	(31,080)
3	\$	91,080	\$	60,000

Payback =

2.34 years

Do we accept or reject the project?

Advantages and Disadvantages of Payback

- Advantages
 - Easy to understand
 - Biased towards liquidity
- Disadvantages
 - Ignores the time value of money
 - Requires an arbitrary cutoff point
 - Ignores cash flows beyond the cutoff date

Weighted Scoring Model

- A weighted scoring model is a tool that provides a systematic process for selecting projects based on many criteria
 - First identify criteria important to the project selection process
 - Then assign weights (percentages) to each criterion so they add up to 100%
 - Then assign scores to each criterion for each project
 - Multiply scores * weights = total weighted scores
- The higher the weighted score, the better

33