МИКРОПРОЦЕССОРЫ

с микропрограммным управлением

Методические указания к Лабораторным работам по курсу ACBT

> МГТУ им. Н.Э. Баумана ИУ-8 МОСКВА 2022

Данный практикум предназначен для изучения секционных процессорных элементов, блоков микропрограммного управления, микропрограммирования операций в микропроцессорных системах с разрядно – модульной архитектурой.

КРАТКОЕ ОПИСАНИЕ УСТРОЙСТВА «МИКРОТРЕНАЖЕР МТ1804» (МТ1804)

1. Назначение и структура

Устройство **MT1804** предназначено дня изучения архитектуры, основ микропрограммирования и применения МПК серии KI804. Для работы устройства необходим источник питания постоянного тока напряжением +5 B $\pm 5\%$ и максимальным током нагрузки не менее 2,5 A.

Структурная схема МТ1804 приведена на рис.1. Функционально устройство делится на узел управления и операционный узел. Узел управления содержит: БИС управления адресом микрокоманды КІ804ВУ1, микропрограммную память объемом шестнадцать 32-разрядных слов на микросхемах К155РУ2, 32-разрядный регистр микрокоманд (МК) на микросхемах К1804ИР1, ПЗУ для управления выборкой следующего адреса объемом тридцать два байта на микросхеме К155РЕ3, внутренний тактовый генератор с частотой 1 МГц. Операционный узел содержит: БИС центрального процессора К1804ВС1, мультиплексоры сдвига, регистр выходных данных, регистр состояния и мультиплексор флагов состояния.

Регистр МК, данных и регистр состояния имеют общую линию синхронизации от тактовых импульсов (ТИ). Запись информации в эти регистры происходит по положительному фронту (0/1) ТИ, т.е. в регистры записывается информация, представленная на входах этих регистров к моменту поступления ТИ. По этой причине установка признаков (флагов) в регистре состояния для последующего использования происходит на такт позже по сравнению с моментом их появления на выходах процессора. Выходные данные процессора Y записываются в выходной регистр данных также с задержкой на один такт.

Взаимодействие оператора с устройством осуществляется через органы управления и индикации. Устройство имеет переключатели режимов работы ЗАГРУЗКА - РАБОТА, ШАГ - АВТОМАТ, генератора тактовых импульсов ВНУТРЕННИЙ - ВНЕШНИЙ; переключатели для задания адреса ячейки микропрограммной памяти (АДРЕС), записываемого кода данных (ДАННЫЕ), для управления мультиплексорами (МУЛЬТИПЛЕКСОР); кнопки ПУСК и ЗАГРУЗКА.

Для контроля информации в **MT1804** установлено 12 светодиодных индикаторов (3 секции по 4 индикатора в каждой): правая секция - для индикации содержимого адресуемой ячейки микропрограммной памяти, средняя - регистра МК, левая - для индикации данных на основных шинах устройства. Подключение выходов памяти, регистра МК и контрольных точек (шин) к светодиодам осуществляется потетрадно через мультиплексоры. В зависимости от номера, устанавливаемого на переключателях МУЛЬТИПЛЕКСОР, к индикаторам подключается определенная группа разрядов памяти, регистра МК (табл. I) или контрольных точек (табл. 2).

								Табли	ща 1
Номер	7	6	5	4	3	2	1	0	
тетрады Номера	31-28	27-24	23-20	19-16	15-12	11-8	7-4	3-0	
разрядов									

Код	Индикаторы данных			ных	Функция	
	3	2	I	0		
000	Y3	Y2	Y1	Y0	Выходы К1804ВУ1	
001	Y3	Y2	Y1	Y0	Выходы КІ804ВСІ	
010	C4	OVR	F3	Z	Флаги КІ804ВСІ	
011	C4*	CCE	/P	/G	*)	
100	ST3	ST2	ST1	ST0	Выходы регистра состояния	
101	PQ3	PQ0	PR3	PR0	Входы/выходы сдвига КІ804ВСІ	
110	Y3'	Y2'	Y1 '	YO'	Выходы регистра выходных данных	
III	<i>Y3</i>	Y2	Y1	Y0	То же	

Таблица 2

2. Основные режимы работы МТ1804

Устройство **MT1804** может работать в режиме ЗАГРУЗКА для программирования микропрограммной памяти и в режиме РАБОТА для выполнения микропрограммы.

- 2.1 Для выполнения режима ЗАГРУЗКА необходимо:
- а) переключатель режима установить в положение ЗАГРУЗКА,
- б) переключателями АДРЕС набрать код адреса ячейки,
- в) переключателями МУЛЬТИПЛЕКСОР установить двоичный номер тетрады,
- г) переключателями ДАННЫЕ набрать код, записываемый в указанную тетраду ячейки,
- д) нажав кнопку ЗАГРУЗКА, произвести запись,
- е) для загрузки 32-разрядной ячейки памяти действия в)-д) повторить 8 раз. Контроль записываемой информации осуществляется по показаниям светодиодов памяти.
- 2.2. Для запуска программы на микропрограммном уровне необходимо произвести начальную установку регистра МК (инициализацию), т.е. ввести в регистр МК микрокоманду со стартовым адресом программы. Для этого после загрузки всей программы на переключателях АДРЕС нужно установить значение стартового адреса и нажать кнопку ПУСК. При этом из памяти по указанному адресу будет выбрана микрокоманда, помещаемая в регистр МК, в чем можно убедиться с помощью индикаторов регистра МК.

2.3. Для дальнейшего выполнения программы переключатель режима следует перевести в положение РАБОТА. В шаговом режиме при однократном нажатия кнопки ПУСК выполняется одна микрокоманда, в автоматическом режиме - вся программа.

Работа № І. ИССЛЕДОВАНИЕ ФУНКЦИЙ ПРОЦЕССОРА

Цель работы - изучение устройства МТ1804; изучение структуры, принципа действия и функций процессорного элемента (секции АЛУ операционного устройства) - KI804BCI; программирование и выполнение линейных микропрограмм.

Теоретическая часть

Функционирование ОА процессора рассмотрим по структурной схеме (рис. 2). На схеме можно выделить четыре блока: внутренней памяти, арифметико - логический, регистра Q, управления. Блок внутренней памяти содержит: регистровое запоминающее устройство (РЗУ), имеющее шестнадцать 4разрядних регистров общего назначения (РОН); сдвигатель данных (СДА), позволяющий записывать в РЗУ информацию без сдвига и со сдвигом вправо или влево на один разряд; два регистра РгА и РгВ на выходе блока. Выбор регистров РЗУ как источников информации осуществляется по адресам на входах А и В. Информация из РОНов поступает на регистры РгА, РгВ по сигналу логической единицы (I) на тактовом входе Т. При сигнале логического нуля (0) эти регистры находятся в режиме хранения. Запись информации в регистр

РЗУ возможна только по адресу В и происходит при поступлении сигнала 0 на вход Т.

Данные (F) с выхода АЛУ загружаются в РОН без сдвига или со сдвигом влево или вправо по схеме (рис. 3) в зависимости от кода управления на входах I8-6.

Рис. 3

Арифметико-логический блок содержит арифметико-логическое устройство (АЛУ), выполняющее 8 операций над операндами R и S в зависимости от кода управления на входах I5-3 (табл. 3). Арифметические операции в АЛУ выполняются с учетом значения сигнала входного переноса СО в дополнительном коде. На выходах АЛУ формируются 4 флага (признака) результата: перенос из старшего разряда C4, переполнение OVR=C4 ⊕C3, знак (или содержимое старшего разряда АЛУ) F3 и признак нулевого результата z=1, если F=0. При выполнении логических операций C4 и OVR вычисляются иначе /см. [I]/.

Кроме того, формируются сигналы генерации G и распространения P переноса из АЛУ, необходимые для организация ускоренного переноса в многоразрядной схеме, построенной из нескольких секций процессора.

Таблица 3

I5-3	Φ ункция АЛУ (F)
000	R+S+CO
001	S-R-1+CO
010	R-S-I+CO
011	$R \vee S$
100	$R \cdot S$
101	$\overline{R} \cdot S$
110	$R \oplus S$
111	$\overline{R} \oplus \overline{S}$

Источниками операндов R и S могут быть регистры P3У, внешняя шина данных D, выделенный регистр Q и шина "0". Выбор источников по входам R и S проводится с помощью селектора источника данных (СИД), управляемого кодом 12-0 (табл. 4). Результат операции (F) из АЛУ поступает на селектор выходных данных (СВД), на сдвигатель СДА и регистр Q. Приемник результата (адресуемый по адресу В регистр общего назначения в P3У, регистр Q или выходная шина Y) зависит от кода управления на входах I8-6 (табл. 5).

Таблица 4

12.0	Источники операндов						
12-0	R	S					
000	POH(A)	PQ					
001	POH(A)	РОН(В)					
010	0	P Q					
011	0	POH(B)					
100	0	POH(A)					
101	D	POH(A)					
110	D	P Q					
111	D	0					

Таблица 5

10.6	Приемник результата								
18-6	Тип загрузки	Выход Ү							
000	P Q	F							
001	Нет загрузки	F							
010	POH(B)	A							
011	POH(B)	F							
100	F/2 →POH(B) Q/2 →P Q	F							
101	F/2 →POH(B)	F							
110	2F →POH(B) 2Q →P Q	F							
111	2F →POH(B)	F′							

Раздельное управление операциями в АЛУ и приемником результата позволяет реализовать в одной микрокоманде комбинированные операции: сложения-вычитания со сдвигом влево или вправо, логические операции со сдвигом влево или вправо и др. Для организации логического, циклического или арифметического сдвигов влево или вправо при одинарной или двойной длине операндов (рис. 4) необходимо управлять входами/выходами PRO, PR3, PQO, PQ3 процессора. Это осуществляется путем соответствующей коммутации входов/выходов и линий сигналов логического 0 и F3. Для этой цели в схеме (см. рис. I) используются мультиплексоры, установленные в цепи сдвигов. Управление мультиплексорами осуществляется 2-разрядным кодом (MI, MO) микрокоманды, определяющим тип сдвига, и кодом 18-6, определяющим направление сдвига.

Блок регистра Q состоит из Q - регистра (PQ) и сдвигателя регистра (СДР), который осуществляет сдвиг содержимого PQ вправо или влево на один разряд.

Блок управления вырабатывает управляющие сигналы на остальные блоки процессора в зависимости от кода I8-0 на входах.

В устройстве МТ1801 применяются 32-разрядные микрокоманды. Формат микрокоманды показан в табл. 6. В табл. 7 приведены примеры программирования некоторых операций процессора KI804BCI. Незаполненные поля в микрокомандах обозначают несущественное значение их для данной операции. XXXX - исходные данные на шине D процессора, устанавливаемые через тетраду 0 регистра МК.

00- ποιυψεςκού εθδοι, 01- ανκπυνέσκού εθδοι, 10-ανκπουμέςκού εθδοι θδούκου βροκό 11- οροφπετουμέςκου εθδοι θδούκου θποικόι

Таблица 6

Номер тетрады	Номер бита	Назначение бита	Функция
0	0 1 2 3	D0 D1 D2 D3	Данные для D-шины
1	4 5 6 7	B0 B1 B2 B3	Адрес РОН на входах В
2	8 9 10 11	A0 A1 A2 A3	Адрес РОН на входах А
3	12 13 14	13 14 15	Функция АЛУ
	15	СО	Значение входного переноса в АЛУ
4	16 17 18	10 11 12	Указатель операндов в АЛУ
	19	MO	Нулевой бит управления мультиплексорами сдвига
5	20 21 22	16 17 18	Определение приемника результата операции
	23	M1	Первый бит управления мультиплексорами сдвига
6	24 25 26 27	CA0 CA1 CA2 CA3	Управление выборкой адреса следующей микрокоманды
7	28 29 30 31	AR0 AR1 AR2 AR3	Адрес перехода

Порядок прохождения микропрограммы в устройстве рассмотрим на примере выполнения последовательности микрокоманд МКО, МК5, МК5 размещенных в памяти по адресам 0, 5 (табл. 7 и табл. 8).

В табл. 8 представлен процесс обработки микрокоманд, учитывающий действия оператора и свойства процессора.

В таблице использованы следующие обозначения: значения тактового импульса ТИ, принимаемые в течение одного такта работы (0/1 - переход из 0 в I, I - уровень логической единицы, 0 - уровень логического нуля); → - операция пересылки; (РОНО) - содержимое регистра общего назначения. В табл. 9 приведены наблюдаемые состояния шин после выполнения каждой микрокоманды.

Таблица 7

Адрес	Номер тетрады											Операции
памяти	7-6	4	5		4		3		2	I	0	
	AR-CA	M1.I8	8-6	M0	.I2-0	CO	.I5-3		A	В	D	
0		0	11		111		011			0000	XXXX	Загрузка РОН 0
I		0	01		011		011			0000		Чтение <i>РОН 0</i>
2		?	??		???		???					Загрузка РО
3		?	??		???		???					Чтение PQ
4		?	??		???		???					Установка 0 в PQ
5		0 10	01	0	011		011			0000		Сдвиг РОН 0 вправо
6		?	??	?	???		???			????		Сдвиг РОН 0 влево
7			10	0	011		011			0000		Двойной сдвиг влево
8			??	?	???		???			????		Двойной сдвиг вправо
9		1	11		011	I	000			0000		POH 0+1→ <i>POH</i> 0
10		?	??		???	?	???			????		<i>POH 0-1</i> → <i>POH 0</i>
11		0 10	01	0	011	1	000			0000		Сложение со сдвигом
11		0 1	<i>J</i> 1	U	011	1	000			0000		вправо
12		$ _{?}$?	??	?	???	9	999			????		Сложение со сдвигом
12			• •	•		?	???					влево

Таблица 8

		Tuomita
Пуск по адресу	ТИ	Выполняемая операция
AO	0/1 1 0	MK0 → P ∈ MK (занесение MK0 в регистр MK) $F = D → Y$ (на выходе МП значение D)
		$F = D \rightarrow POH 0$ - (загрузка D в POH 0)
A5	0/1	$MK5 \rightarrow P \in MK$
	1	$F = (POH \ 0) \rightarrow Y$
	0	$F/2 = D/2 \rightarrow POH 0$
A5	0/1	$MK5 \rightarrow P \in MK$
	1	$F = (POH \ 0) \rightarrow Y$
	0	$F/2 = D/4 \rightarrow POH 0$

Таблица 9

Пуск по адресу	Вых. <i>Y</i> К1804ВСІ	Флаги <i>C4 OVR F3 Z</i>	Вых. Рг данных	Вых. Рг сост.
A0	0110	?? 00	XXXX	-
A5	0110	?? 00	0110	-
A5	0011	?? 00	0110	-
A5	0001	?? 00	0011	-

Задание для самостоятельной подготовки

- 1. Ознакомьтесь с описанием и основными режимами работы устройства МТ1804, способами контроля информации в МТ1804. Изучите структуру микропроцессора К1804ВС1 и выполняемые им функции.
- 2. Запрограммируйте неопределенные поля микрокоманд в табл.7 для выполнения всех указанных операций. Подготовьте в форме табл.8,9 описание заданной преподавателем последовательности операций.
- 3. Составьте микропрограммы для решения заданий п. 5 (см. порядок выполнения работы).

Порядок выполнения работы

- 1. Изучить конструкцию устройства. Найти основные блоки узла управления и операционного узла.
- 2. Подключить к клеммам XP1 источник питания напряжением +5 В и нагрузочной способностью не менее 2,5 А. Установить переключатель генератора тактовых импульсов в положение ВНУТРЕННИЙ, переключатели режима в положение ЗАГРУЗКА и ШАГ.

Внимание! При выключении источника питания содержимое микропрограммной памяти не сохраняется.

- 3. Загрузить в память микропрограмму из табл. 7. Выполнить заданную последовательность МК, адресуя их с переключателей адреса в режиме ЗАГРУЗКА. После выполнения каждой МК наблюдать на индикаторах состояния выходов Y и флаги процессора, выходов регистров данных и состояния. Результаты записать в виде табл. 9, сравнивая их с ожидаемыми. Объяснить полученные результаты.
- 4. Проверить при многократном исполнении действие остальных микрокоманд из табл. 7, предварительно очистив регистр Q.
- 5. Разработать и выполнить микропрограммы следующих операций:
- а) очистка регистра РОНі;
- б) обмен данными регистров РОНі и РОНј(PQ);
- в) алгебраическое сложение/вычитание в дополнительном коде. Изменяя операнды, получить наибольшее количество возможных комбинаций флагов Z, C4, OVR, F3. Запротоколировать результаты наблюдений;
- г) изменение знака числа;
- д) алгебраическое сложение/вычитание чисел в обратном коде;

Содержание отчета

В отчет должны входить: структурная схема и таблицы функций управления процессорного элемента; описание выполнения заданной последовательности микрокоманд; микропрограммы и результаты наблюдений в виде таблиц.

Содержание отчета

В отчет должны входить:

- структурная схема и таблицы функций управления процессорного элемента;
- описание выполнения заданной последовательности микрокоманд;
- микропрограммы и результаты наблюдений в виде таблиц;
- скриншоты экрана с последовательностью выполнения микропрограмм.
- пошаговые комментарии к микропрограммам

Работа выполняется на эмуляторе – mtemu 1.0.3

Справочная информация на странице - https://ru.bmstu.wiki/Микротренажёр MT1804

Микротренажер МТ1804

Предназначен для изучения Архитектуры секционных Процессоров, Алгоритмов микропрограмм и получения навыков разработки системы команд Процессора на базе Секционного Процессорного Комплекта К1804

Фото 1 Микротренажер МТ1804

Фото 2 КМ1804ВС1