Beware of Fire! Follow the Cues!

Awareness Cues im VR-Feuerwehrszenario

Projekt zum Thema "Transitional Awareness Cues"

Alexander Schuldt, Bea Vorhof, Isabella Miller, Jona Knoblich & Mher Kondratyan

Agenda

- Einleitung
- Konzeption
- Implementierung
- Rückblick & Fazit

Einleitung

Projektidee

- Kollaboration zwischen Nutzer in VR und Nutzer in realer Umgebung
- VR-Nutzer
 - führt Bewegung aus
 - erledigt Aufgaben im VR-Raum
- Person ist im realen Raum
 - gibt Anweisungen mittels Awareness Cues
- Lösen einer gemeinsamen Aufgabe
- Kollaboration ohne Sprache

Forschungsfragen

- Welche Informationen sollen angezeigt werden?
 - Für den VR-Nutzer
 - Für Person im realen Raum

Welche Arten und Dimensionen von Awareness Cues sind geeignet?

Konzeption

Szenario

- **Feuerwehrszenario** im VR-Raum
- Anlehnung an Einsätze mit
 - Truppführer (Observer)
 - Löschmann (VR-Nutzer)
- Observer hat Lageplan mit Feuern
- Ziel: Alle Räume zu durchsuchen

VR-Umgebung

- Bürogebäude
- Labyrinth-Struktur
- Wände & Interior-Design dienen als Hindernis
- mehrere Feuer als Zielobjekte

Awareness Cue	Beschreibung	Information
Richtungspfeile	Pfeile (Bilder), die dem VR-Nutzer eine Richtung anzeigen	In welche Richtung muss der VR-Nutzer gehen?
Richtungslinie	Eine Linie auf dem Boden, welche dem VR-Nutzer den Weg vorgibt	Welchen Weg muss der VR-Nutzer gehen?
Position & Blickrichtung	Ein gleichschenkliges Dreieck, welches Position und - mit spitzer Ecke - die Blickrichtung anzeigt	Wo ist der VR-Nutzer in der Umgebung? In welche Richtung blickt der VR-Nutzer?
Beacon	Lichtsäule oder Lichtkegel als Zielpunkt für den VR-Nutzer	Wo muss der VR-Nutzer hin? Welches Ziel?
Icon	Form (z.B. Raute) am festgelegten Zielpunkt; auch hinter Wänden sichtbar	Wo muss der VR-Nutzer hin? Welches Ziel?
Kompass	Kompass im VR-HUD, welche Richtung und - wenn möglich - Zielpunkte anzeigt	In welche Himmelsrichtung blickt der Nutzer?
Durchsuchte Räume	Anzeige, welche Räume durchsucht wurden Raumnummern zum Abhaken der durchsuchten Räume	Welche Räume wurden bereits durchsucht? Welche müssen noch durchsucht werden?
Sauerstoffanzeige	Säule mit Anzeige, wie viel Sauerstoff noch vorhanden ist	Wie viel Zeit bleibt dem VR-Nutzer?

Observer - Ansicht

VR - Ansicht

Awareness Cue	Beschreibung	Information
Richtungspfeile	Pfeile (Bilder), die dem VR-Nutzer eine Richtung anzeigen; 2D oder 3D	In welche Richtung muss der VR-Nutzer gehen?
Richtungslinie	Eine Linie auf dem Boden, welche dem VR-Nutzer den Weg vorgibt	Welchen Weg muss der VR-Nutzer gehen?
Position & Blickrichtung	Ein gleichschenkliges Dreieck, welches Position und - mit spitzer Ecke - die Blickrichtung anzeigt	Wo ist der VR-Nutzer in der Umgebung? In welche Richtung blickt der VR-Nutzer?
Beacon	Lichtsäule oder Lichtkegel als Zielpunkt für den VR-Nutzer	Wo muss der VR-Nutzer hin? Welches Ziel?
Icon	Form (z.B. Raute) am festgelegten Zielpunkt; auch hinter Wänden sichtbar	Wo muss der VR-Nutzer hin? Welches Ziel?
Kompass	Kompass im VR-HUD, welche Richtung und - wenn möglich - Zielpunkte anzeigt	In welche Himmelsrichtung blickt der Nutzer?
Durchsuchte Räume	Anzeige, welche Räume durchsucht wurden Raumnummern zum Abhaken der durchsuchten Räume	Welche Räume wurden bereits durchsucht? Welche müssen noch durchsucht werden?
Sauerstoffanzeige	Säule mit Anzeige, wie viel Sauerstoff noch vorhanden ist	Wie viel Zeit bleibt dem VR-Nutzer?

Implementierung

Technische Details

- Verwendung von Unity 2020.3.11f1 als API
- Valve Index mit Knuckle Controller als HMD
- SteamVR Unity Plugin v2.7.3 (sdk 1.14.15)

Umgebung

- Modellierung eines Bürogebäudes
- Labyrinth-Charakter
 - Feuer werden nicht zu einfach gefunden
- Asset: Snaps Prototype Office (Asset Store Originals, 2020)
 - Prefabs für Stühle, Tische,
 Regale etc.

Implementierung - Grundaufbau

- Entwicklung der Awareness Cues als einzelne GameObjects
- Awareness Cues werden an die Kamera des VR-Controllers angebracht
- Awareness Cues werden, wenn benötigt, über die
 Observer-Ansicht eingeschaltet
- Kombination aller Skripte in einem separaten GameObject

Observer-Ansicht

- Entwicklung einer "Minimap"
- Kamera mit Top-Down-Ansicht (Orthografisch)
- Über "Culling Mask" werden nur Wände,
 Boden und Feuer gerendert

 Canvas neben der Mini-Map zur Interaktion mit den Awareness Cues

- Zeichnen
- Mausklick: Kamera sendet Strahl auf die Karte
- Setzen eines Zeichenpunktes an der Position des Schnittpunktes mit dem Boden

- Wegpunkt
- Mausklick: Kamera sendet Strahl auf die Karte
- Positionieren des GameObjects an die Stelle des Schnittpunktes
- Asset: Arrow Waypointer (TurnTheGameOn, 2020)

VR-Ansicht

- Verwendung von SteamVR
- Verwendung von Teleportation als Fortbewegung
- Teleporting-Plane auf dem Boden
- First-Person-VR-Player
- Positionierung der Awareness Cues im Sichtfeld
- Verbergen von Cues, wenn sie nicht benötigt werden

Multiplayer

- Splitscreen oder Netzwerk
- Netzwerk
 - Komplizierter und Zeitintensiver
 - Aber ermöglicht remote Anwendungen und ist dadurch erweiterbarer
- Wahl der Bibliothek
 - Kriterien: Kosten, Stabilität, Performance Einfachheit der Implementierung und Art der Verbindung
 - MLAPI Unity oder Mirror Network
- MLAPI: Kostenlos, stabil, performant und laut Recherche ohne Schwierigkeiten zu implementieren und Client/Server

Multiplayer

- Probleme mit MLAPI:
 - Wenig verfügbare Tutorials für unsere Zielsetzung
 - Nach langem zeitlich Aufwand stellte sich das "spawnen" und Aktualisieren von Spielercharakteren als zu komplex heraus
- Alternative Nutzung von Mirror Networking:
 - Vielversprechende Tutorials vorhanden
 - Umsetzung wurde aus zeitlichen Gründen abgebrochen
- Derzeitige Lösung: Fallback zum lokalen Multiplayer über eine Anwendung

Rückblick & Fazit

Herausforderungen

- Technische Limitationen
- Testen mit VR nur im Labor möglich
 - → Bugs durch Zeitstress/falsche Einschätzungen
- Zeit und Aufwand
- Multiplayer Lösungen -> Netzwerk programmiertechnisch schwer und unerfahren
- Splitscreen -> Panels
- Projektarbeit & Fehlerbearbeitung nur Online möglich

Fazit & Ausblick

Fazit

- Grafische Awareness Cues sind ein sinnvolles Tool bei Kollaborationen in virtuellen Umgebungen
- Über gesetzte Grenzen wären zusätzliche Cues theoretisch möglich, aber zeitlich nicht schaffbar
- Allgemein war das Projekt ein Erfolg

Ausblick

- Einbau von Audio Cues
- Multiplayer besser programmieren
- Implementierung eines Kompasses als alternativer Cue
- Benutzerstudie mit dem entwickelten System

Quellen

- Gugenheimer, Jan & Stemasov, Evgeny & Frommel, Julian & Rukzio, Enrico. (2017). ShareVR: Enabling Co-Located Experiences for Virtual Reality between HMD and Non-HMD Users. 4021-4033. 10.1145/3025453.3025683.
- Unity Blog, (2020). Choosing the right netcode for your game abgerufen am 16.06.21 unter https://blog.unity.com/technology/choosing-the-right-netcode-for-your-game
- Asset Store Originals. (2020). Snaps Prototype Office.
 https://assetstore.unity.com/packages/tools/particles-effects/arrow-waypointer-22642
- TurnTheGameOn. (2020). Arrow WayPointer.
 https://assetstore.unity.com/packages/tools/particles-effects/arrow-waypointer-22642

Demo

Beware of Fire! Follow the Cues!

Awareness Cues im VR-Feuerwehrszenario

Projekt zum Thema "Transitional Awareness Cues"

Alexander Schuldt, Bea Vorhof, Isabella Miller, Jona Knoblich, Mher Kondratyan