Formelsammlung An2E

1 Integralrechnung

Darstellungsformen			
Funktion	Ableitung	Funktion	Ableitung
(uv)'	u'v + uv'	$\left(\frac{u}{t}\right)'$	$\left(\frac{u't-ut'}{t^2}\right)$
$(u^v)'$	$u^{v}\left(v'\ln(u) + \frac{vu'}{u}\right)$ $\frac{1}{\sqrt{1-x^{2}}}$ $\frac{1}{1+x^{2}}$	$ a^x$	$a^x \cdot \ln(a)$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$	arcos(x)	$-\frac{1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$	arccot(x)	$-\frac{1}{1+x^2}$
arsinh(x)	$\frac{1}{\sqrt{x^2 + 1}}$	arcosh(x)	$-\frac{1}{\sqrt{1-x^2}}$ $-\frac{1}{1+x^2}$ $\frac{1}{\sqrt{x^2-1}}$ $\frac{1}{\sqrt{x^2-1}}$
artanh(x)	$\frac{1}{1-x^2}$	arcoth(x)	$\frac{1}{1-x^2}$
tanh(x)	$\frac{1}{1-x^2}$ $\frac{1}{\cosh^2(x)} = 1 - \tanh(x)^2$		
	9	nsmethoden	
Linearität $\int f(\alpha x + \beta) dx = \frac{F(\alpha x + \beta)}{\alpha} + C$			
Partielle Integration	$\int f(\alpha x + \beta) dx = \frac{F(\alpha x + \beta)}{\alpha} + C$ $\int_{a}^{b} u'(x) \cdot v(x) dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) dx$		
Rationalisierung	$t = \tan \frac{x}{2}, dx = \frac{2dt}{1+t^2} \sin x = \frac{2t}{1+t^2} \cos x = \frac{1-t^2}{1+t^2}$ $\int R(\sin(x)\cos(x))dx$		
Substitution	itution $ \int_{a}^{b} f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t)dt \qquad t = g^{-1}(x) $ $\boxed{\mathbf{x} = \mathbf{g}(t)} \qquad dx = g'(t) \cdot dt $		
Logarithmische $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C \qquad (f(x) \neq 1)$			
Potenzregel	Potenzregel $\int f'(x) \cdot (f(x))^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1)$		
Differentiation	$\int_{a}^{b} f'(t)dt = f(b) - f(a)$		
$\frac{d}{dx} \int_{0}^{x} f(t)dt = f(x)$			

Uneigentliche Integrale		
Für unbeschränkte Funktionen	Für unbeschränkte Grenzen	
$I = \int_{a}^{c} f(x)dx = \lim_{t \to b-} \int_{a}^{t} f(x)dx + \lim_{t \to b+} \int_{t}^{c} f(x)dx$	$I = \int_{-\infty}^{\infty} f(x)dx = \lim_{t_1 \to \infty} \lim_{t_2 \to \infty} \int_{-t_1}^{a} f(x)dx + \int_{a}^{t_2} f(x)dx$	
Majorantenprinzip (konvergent)	Minorantenprinzip(divergent)	
Majorante $g(x) \geq f(x)$: Konvergiert $\int_{a}^{\infty} g(x)dx$,	Minorante $g(x) \leq f(x)$: Divergiert $\int_{a}^{\infty} g(x)dx$,	
dann konvergiert auch $\int_{a}^{\infty} f(x)dx$. $(x \in [a, \infty))$	dann divergiert auch $\int_{a}^{\infty} f(x)dx$. $(x \in [a, \infty)$	

Cauchy Hauptwert: bei unbeschränkter Funktion, welche Symmetrisch ist. \Rightarrow Nur ein limit

 $I = \int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0} \left(\int_{a}^{\xi - \epsilon} f(x)dx + \int_{\xi + \epsilon}^{b} f(x)dx \right)$

Funktionsgraphen $\mathbf{2}$

Trigo-Funktionen

0

Arcus-Funktion

Hyperbel-Funktionen

90°

180°270° 360°

3 Anwendung der Differential- und Integralrechnung

Darstellungsformen		
Parameterform	Explizite Form	Implizite Form
$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \Psi(t) \\ \varphi(t) \end{pmatrix}$	$y = f(x)$ $r = f(\varphi)$	F(x,y) = 0 $F(\varphi,r) = 0$

	Kurvenarten		
Polarform:	'+', Kurve auf linke Seite geöffnet	'-' , Kurve auf rechte Seite geöffnet	
	Kreis	Ellipse	
Implizit	$(x - x_0)^2 + (y - y_0)^2 = r^2$	$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 = 1$	
Polarform	$r = \frac{p}{1 + \epsilon \cos(\varphi)}; \epsilon = 0$	$r = \frac{p}{1 + \epsilon \cos(\varphi)}; 0 < \epsilon < 1 \qquad \text{(rechter Brennpkt)}$	
Parameterform	$x = x_0 + R\cos(t), y = y_0 + R\sin(t)$	$x = a\cos(t); y = b\sin(t) \qquad \text{um } P(0,0)$	
p,ϵ	$p = \frac{b^2}{a}$	$\epsilon = \frac{c}{a}$	
	Hyperbel	Parabel	
Implizit	$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$	$y^2 = 2p(x - x_0)$	
Polarform	$r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon > 1_{(rechts)}$	$r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon = 1$	
Parameterform	$x = a \cosh(t); y = b \sinh(t)$	$x = \frac{t^2}{2p}; y = t$	
		p =Halbparameter (2·Abstand Scheitel-Brennpunkt)	
Kardio	$\mathbf{pide}/\mathbf{Herzk.}: r = a(1 + \cos(\varphi))$	Lemniskate " ∞ ": $r = a\sqrt{2\cos(2\varphi)}$	
Strophoide/harm. K.: $r = -a \frac{\cos(2\varphi)}{\cos(\varphi)}; (a > 0)$		log. Spirale: $r = e^{a\varphi}$	

Gleichungen			
linearer MW	absoluter MW (gleichrichtwert)	quadratischer MW(Effektivwert)	
$ \frac{1}{b-a} \int_{a}^{b} f(x) dx $	$\frac{1}{b-a} \int_{a}^{b} f(x) dx \qquad \qquad \sqrt{\frac{1}{b-a} \int_{a}^{b} f(x) ^{2} dx}$		
Tangentengleichung	Normalengleichung	Hessesche Normalform	
$y - y_0 = m(x - x_0)$	$y - y_0 = -\frac{1}{m}(x - x_0)$	$x \cdot \cos \varphi_0 + y \cdot \sin \varphi_0 = r_0$	
Abstand zum Ursprung	Doppelpunkt	glatte Kurve(keine Ecken)	
$\frac{ y_0 - m \cdot x_0 }{\sqrt{m^2 + 1}}$	$t_1 \neq t_2 \Rightarrow P(t_1) = P(t_2)$	$\varphi(t)^2 + \psi(t)^2 \neq 0$	
Länge Subtangente	Länge Subnormale		
		Subtangente Tangente Subnormale	
$\frac{y_0}{ y_0' }$	$ y_0' \cdot y_0 $	Normale	

Berührung in n-ter Ordnung: Zwei explizit gegebene Kurven y = f(x) und y = g(x) berühren einander im Punkt P x_0, y_0 von der Ordnung n, wenn die Funktionswerte und die ersten n Ableitungen existieren und übereinstimmen.

 $f(x_0) = g(x_0); \ f'(x_0) = g'(x_0); \ f''(x_0) = g''(x_0); \dots; \ f^{(n)}(x_0) = g^{(n)}(x_0) \qquad f^{(n+1)}(x_0) \neq g^{(n+1)}(x_0)$ Für annäherung von Polynom an beliebige Kurve

Kartesisch	Parameter	Polar	
Anstieg einer Kurve, Ab	leitung, 2. Ableitung		
$y' = f'(x_o)$ $y'' = f''(x_0)$	$y' = \frac{\dot{y}}{\dot{x}} y'' = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$	$y' = \frac{r'(\varphi)\sin(\varphi) + r(\varphi)\cdot\cos(\varphi)}{r'(\varphi)\cos(\varphi) - r(\varphi)\cdot\sin(\varphi)}$	
Bogenlänge			
$s = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$	$ s = \int_{t_1}^{t_2} \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$	$ s = \int_{\varphi_1}^{\varphi_2} \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$	
Krümmung ebener Kurv	en $\frac{\Delta \alpha}{\Delta s}$ Scheitel bei: $K'(x) = 0$	K(r) < 0 Maxima	
$\kappa = \frac{f''(x)}{(\sqrt{1 + (f'(x))^2})^3}$	$\kappa = \frac{\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)}{(\sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2})^3}$	$\kappa = \frac{2(r'(\varphi))^2 - r(\varphi)r''(\varphi) + (r(\varphi))^2}{(\sqrt{(r'(\varphi))^2 + (r(\varphi))^2})^3}$	
Konvex (Linkskurve): $\kappa \geq 0$	Streng konvex: $\kappa > 0$ Wendepund	kt: $\kappa = 0$ Analog für konkav	
Krümmungskreisradius $r= rac{1}{\kappa} $			
$r = \left \frac{(\sqrt{1 + (f'(x))^2})^3}{f''(x)} \right $	$r = \left \frac{(\sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2})^3}{\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)} \right $	$r = \left \frac{(\sqrt{(r'(\varphi))^2 + (r(\varphi))^2})^3}{2(r'(\varphi))^2 - r(\varphi)r''(\varphi) + (r(\varphi))^2} \right $	

Kartesisch

Flächeninhalt um x-Achse y-Achse: Umkerhfunktion $f^{-1}(x)$ von y_0 bis y_1 integrieren				
$A = \int_{a}^{b} f(x)dx$	$A = \frac{1}{2} \int_{t_1}^{t_2} [x\dot{y} - \dot{x}y] dt$	$A = rac{1}{2} \int\limits_{arphi_1}^{arphi_2} r^2 darphi$		
Volumen Symmetrie! nur 1.Hä	lfte der Kurve integrieren (pos. Me	ridian)		
$V = \pi \int_{a}^{b} (f(x))^{2} dx$	$V=\pi \left \int\limits_{t_1}^{t_2} y^2 \dot{x} dt \right $	$V = \pi \int_{\varphi_1}^{\varphi_2} r^2 \sin^2 \varphi [r' \cos(\varphi) - r \sin(\varphi)] d\varphi$		
Oberflächeninhalt Symmertire! nur 1.Hälfte der Kurve integrieren (pos. Meridian)				
$O = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} dx \qquad O = 2\pi \int_{t_1}^{t_2} y \sqrt{\dot{x}^2 + \dot{y}^2} dt$		$O = 2\pi \int_{\varphi_1}^{\varphi_2} r\sin\varphi \sqrt{(r')^2 + r^2} d\varphi$		
Polar: $\sin \varphi = \text{Drehung um Polgerade}$ $\cos y = \text{Drehung um y-Achse} \ (f = \frac{\pi}{2})$ \rightarrow siehe Fläche				
Krümmungskreismittelpunkt				
$x_c = x - \frac{\frac{dy}{dx}[1 + (\frac{dy}{dx})^2]}{\frac{d^2y}{dx^2}}$	$x_c = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$ $y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$	$x_c = r \cdot \cos \varphi - \frac{(r^2 + r'^2)(r \cdot \cos \varphi + r' \cdot \sin \varphi)}{r^2 + 2r'^2 - r \cdot r''}$		
$x_c = x - \frac{\frac{dy}{dx} \left[1 + \left(\frac{dy}{dx}\right)^2\right]}{\frac{d^2y}{dx^2}}$ $y_c = y + \frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}}$	$y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$	$y_c = r \cdot \sin \varphi - \frac{(r^2 + r'^2)(r \cdot \sin \varphi - r' \cdot \cos \varphi)}{r^2 + 2r'^2 - r \cdot r''}$		

 $dx = \dot{x}dt \Rightarrow$

Polar

 $\int y(t)\dot{x}(t)dt$

Parameter

Umrechnung Kart \Leftrightarrow Komp.: x(t), y(t) und $\int f(x)dx \Rightarrow$

4 Reihen

	Grundlegendes
Reihe	Folge $\langle a_n \rangle = a_1, a_2a_n$ Folge $\langle s_1 \rangle = a_1$ und $\langle s_2 \rangle = a_1 + a_2$ Eine Reihe ist eine Folge ihrer Partialsummen $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{k=1}^\infty a_k = s$
Konvergenz/Divergenz	Konvergiert die unendliche Reihe $\langle s_n \rangle$ so besitzt sie die Summe s. $s = \sum_{k=1}^{\infty} a_k$ Existiert der Grenzwert nicht, so ist die Reihe divergent. Wenn man in einer Reihe endlich viele Summanden hinzu/weglässt, so bleibt sie Konvergent oder Divergent(nicht so bei Folge)
Vertauschen der Summanden	Für unendliche Reihen gilt , dass die einzelnen Summen untereinander nicht vertauscht werden können
Es gilt ausserdem	$a = \sum_{k=1}^{\infty} a_k$ $b = \sum_{k=1}^{\infty} b_k$ sind konvergente Reihen $a_k \le b_k$ $\forall n \in \mathbb{N}$ dann ist $a \le b$
	Konvergenzkriterien
Notwendiges Konvergenzkriterium	Wenn ein Grenzwert konvergieren soll,muss $\lim_{n\to\infty}a_n=0$ sein. (Reihe kann trotzdem divergieren z.B. unbestimmt)
Notwendiges Divergenzkriterium	$\lim_{n \to \infty} a_n \neq 0$
Cauchyches Konvergenzkrit.	Es existiert ein $\epsilon > 0$ $\epsilon \ge s_0 = \sum_{k=1}^{n_0}$ Nun gilt für alle $m > n > n_0$ $ \sum_{k=n}^{m} a_k < \epsilon$ Dann Konvergiert die Reihe, ansonsten divergiert sie. $(s_m - s_n < \epsilon)$
Reziprokkrit	$s = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \text{konvergent für} & \alpha > 1\\ \text{divergent für} & \alpha \le 1 \end{cases}$
Majorantenkrit	Ist die Reihe $\sum_{n=1}^{\infty} c_n$ konvergent, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n $ und somit auch $\sum_{n=1}^{\infty} a_n$ für $ a_n \leq c_n$ (absolut). Dies gilt auch für $ a_n \leq c_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.
Minorantenkrit.	Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.
Quotientenkrit.	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n$
Wurzelkrit.	$\lim_{n \to \infty} \sqrt[n]{ a_n } = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n$ $\begin{cases} \alpha < 1 & \text{(aboslut) konvergent} \\ \alpha = 1 & \text{keine Aussage!} \\ \alpha > 1 & \text{divergent} \end{cases}$
Integralkrit.	$\int_{1}^{\infty} f(x)dx \text{ konvergent} \Leftrightarrow \sum_{n=1}^{\infty} f(n) \text{ konvergent}.$
	Gilt nur, wenn f auf $[1,\infty)$ definiert und monoton fallend $(f'(x) \leq 0)$ ist.
	Zudem muss $f(x) \ge 0$ für alle $x \in [1, \infty)$ sein.

Leibniz Krit.	Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $\langle a_n \rangle$ eine monoton fallende	
	Nullfolge $(\lim_{n\to\infty} a_n = 0)$ ist. Monotonie mittels Verhältnis $(\frac{a_{n+1}}{a_n})$, Differenz $(a_{n+1} - a_n)$ oder vollständiger Induktion beweisen.	
	Abschätzung Restglied einer alternierenden konvergenten Reihe: $ R_n = s - s_n \le a_n + 1 $	
Absolute Konvergenz	Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent , wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist.	
Unbedingt Konvergent	Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.	
Bedingt Konvergent	Unbedingt kann man umordnen, ohne dass sich konvergenz oder Grenzwert ändert.	
	Potenzreihen	
Grundlegend	$\sum_{n=0}^{\infty} a_n (x-x_0)^n$ ist eine Potenzreihe mit Entwicklungspunkt x_0 und a_n als Koeffizienten	
Konvergenzkrit	$\sum_{n=0}^{\infty} a_n x^n \text{ Es sei } \lim_{n \to \infty} \sqrt[n]{ a_n } = a \begin{cases} a = 0 & \text{absolut Konvergent } \forall x \in \mathbb{R} \\ a > 0 & \text{absolut Konvergent für } x < \frac{1}{a} \end{cases}$	
Konvergenzradius Wurzelkrit.	Ist die Folge $\langle \sqrt[n]{ a_n } \rangle$ konvergent, so heisst die Zahl $\rho = \frac{1}{a}$ Konvergenzradius Wurzelkrit.	
Quotientenkrit.	$\rho = \lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right $	
Mehrere Summen	$\sum_{n=0}^{\infty} a_n x^n \text{ hat } \rho_1 \sum_{n=0}^{\infty} b_n x^n \text{ hat } \rho_2 \qquad \rho = \min\{\rho_1, \rho_2\} \text{Dann gilt:}$ $\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$ $\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$ $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \text{Der Konvergenz radius } \rho \text{ bleibt gleich}$	
Ableitung Potreihen	$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \text{Der Konvergenz radius } \rho \text{ bleibt gleich}$ Es gilt auch: $f^{(i)}(x) = \sum_{n=i}^{\infty} n(n-1) \dots (n-i+1) \cdot a_n x^{n-i}$	
Aufleitung Potreihen	$\int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} a_n \int x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$	
Taylor-Reihe	Für eine beliebig oft differenzierbare Funktion gibt es die Taylorreihe $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$ Für alle Glieder der Taylorreihe muss die folgende Bedingung erfüllt sein $\lim_{n \to 0} T(\xi) = 0$	

Grenzwerte			
$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$	$\lim_{n \to \infty} (\sqrt[n]{n^a}) = 1 \ (a \text{ const.})$	$\lim_{n \to \infty} (\sqrt[n]{n}) = 1$	$\lim_{\substack{n \to \infty \\ (a > 0 \text{ und const.})}} (\sqrt[n]{a}) = 1$
$\lim_{n \to \infty} \left(\frac{K}{n!} \right) = 0 \ (K \text{ const.})$	$\lim_{n \to \infty} (\sqrt[n]{ p(n) }) = 1 \ (p(n) \neq 0)$	$\lim_{n\to\infty}(\sqrt[n]{n!})=+\infty$	$\lim_{n \to \infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0$ (K > 0 und const.)
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$			
Einige Reihen			
		Harmonische: (divergiert) $s = \sum_{n=0}^{\infty} \frac{1}{n} - 1 + \frac{1}{n} + \frac{1}{n}$	

Einige Reihen		
Geometrische: $s_n = \sum_{k=0}^n a_0 q^k = a_0 \cdot \frac{1-q^n}{1-q}$ $s = \sum_{k=0}^\infty a_0 q^k = \frac{a_0}{1-q}$	Arithmetische: $s_n = \sum_{k=0}^{n} a_0 + k \cdot d = \frac{n}{2}(a_1 + a_n)$	Harmonische: (divergiert) $s_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3}$
$\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}} : \rho = 1$ $\text{für } \rho = 1 \begin{cases} \alpha = 0 & divergent \\ 0 < \alpha \le 1 & beachte \ x \\ \alpha > 1 & konvergiert \end{cases}$	$\sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad \rho = +\infty \text{quotkrit.}$	$\sum_{n=0}^{\infty} {\alpha \choose n} \cdot x^n = (1+x)^{\alpha} \rho = 1$ $\text{p.m. } {u \choose k} = \frac{u!}{(u-k)!k!}$
$\sum_{n=1}^{\infty} 2^n (x-3)^n p = \frac{1}{2}$ $[3-\rho, 3+\rho] = [\frac{5}{2}, \frac{7}{2}]$	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$	$\sum_{n=1}^{\infty} \frac{1}{n^2}$

${\bf 5}\quad {\bf Differential gleichungen}$

Grundlegendes		
Grundsätzlich	Eine Gleichung zur Bestimmung einer Funktion heisst Differentialgleichung, wenn sie mindestens eine Ableitung der gesuchten Funktion enthält	
Ordnung	Die Ordnung wird besti	mmt durch die höchste Ableitung der gesuchten Funktion
Anfangswertproblem	Funktion: $y^{(n)} = f(x, y, y',, y^{(n-1)})$ Das Anfangswertproblem hat die Aufgabe, eine Funktion zu finden, die folgendes erfüllt: $y(x_0) = y_0 y'(x_0) = y_1 y^{n-1}(x_0) = y_{n-1}$ Anfangswerte: $y_0, y_1,, y_{n-1} \text{mit Anfangspunkt } x_0$	
Existenz/Eindeutigkeit (Piccard-Lindelöf)	Die Funktion $f(x, u, u_1,, u_{n-1})$ sei in einer Umgebung der Stelle $(x_0, y_0, y_1,, y_{n-1}) \in \mathbf{R}^{\mathbf{n}+1}$ stetig und besitzt dort stetige partielle Ableitungen nach $u, u_1,, u_{n-1}$ dann existiert in einer geeigneten Umgebung des Anfangspunktes x_0 genau eine Lösung des Anfangswertproblems $y^{(n)} = f(x, y, y',, y^{(n-1)}) \text{ mit } y(x_0) = y_0, y'(x_0) = y_1,, y^{(n-1)}(x_0) = y_{n-1}$ $\frac{\partial f}{\partial y} \dots \frac{\partial f}{\partial f^{(n-1)}} \text{endlich beschränkt} \Rightarrow \text{eindeutige Lösbarkeit}$	
	$\begin{split} y' &= -\frac{x}{2} - \sqrt{4 + \frac{x^2}{4}} AW: y(0) = 1 \\ y' &= f(x,y) \frac{\partial f}{\partial y} = \frac{-1}{2\sqrt{y + \frac{x^2}{4}}} \text{Allgemein: } y \neq -\frac{x^2}{4} \\ \text{für dieses AW-Problem AW einsetzen:} -\frac{1}{2\sqrt{1 + 0}} = \frac{1}{2} \Rightarrow \text{eindeutig lösbar} \end{split}$	
	Anfangsbedingungen müssen ungabhängig sein: $y_0 = ae^{x_0} + be^{-x_0}$ $y_1 = ae^{x_0} - be^{-x_0} \Rightarrow$ $det \begin{pmatrix} e^{x_0} & e^{-x_0} \\ e^{x_0} & -e^{-x_0} \end{pmatrix} = -2 \neq 0$	
		DGL 1. Ordnung
Art	Form	Lösung
Separation	$y' = f(x) \cdot g(y)$	$\frac{y'}{g(y)} = f(x), \text{ nun ist die DGL beidseitig nach x integrierbar}$ $(dy = y'(x)dx): \qquad \int \frac{1}{g(y)} dy = \int f(x) dx$
separierte Lösung	$y' = ax + by + c = z$ 1. Substitution: $z = ax + by + c$ $\int_{z_0}^{z} \frac{z'}{a + bz} d\tilde{x}$ $[d\tilde{z} = (a + by') d\tilde{x}] \text{ oder}$	
Gleichgradigkeit	$y' = f\left(\frac{y}{x}\right)$	1. Substitution: $z = \frac{y}{x}$ $zx = y$ $z'x + z = y'$ Glg mit z,x: eine seite z, andere x $\Rightarrow \int$
Allgemeine DGL 1. Ordnung	y' + f(x)y = g(x) $g(x) : Störterm$	$y = e^{-\int f(x)dx}(k + \int g(x)e^{\int f(x)dx}dx) \qquad (k \in \mathbf{R})$ $Y = y_H + y_p \text{Var. K ist Konstante}$

	DGL 1. Ordnung				
Orthagonaltrajektorien	Orthogonaltrajektorien sind die normalen der DGL. Sie stehen senkrecht auf den Kurven die lurch die DGL entstehen. Um Orthagonaltrajektorien zu erhalten y' ersetzen durch $-\frac{1}{y'}$ und DGL lösen.				
	y Ableiten $\Rightarrow y' \rightarrow -\frac{1}{y'} \rightarrow \text{DGL}$ löse	n			
	DGL 2. Or	dnung			
Form	Lösung				
$y'' + a_1 \cdot y' + a_0 \cdot y = g(x)$	Wie bei 1. Ordnung: $Y = y_H + y_H$ Homogene DGL: $g(x) = 0$				
	Homogene DGL y''	$+ a_1 \cdot y' + a_0 \cdot y = 0$			
Charakt. Polynom:	$\underline{\lambda^2 + a_1 \cdot \lambda + a_0 = 0} \qquad \text{von}$	$\underline{y'' + a_1 \cdot y' + a_0 \cdot y = 0} \qquad (\lambda_{1,2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_0}}{2})$			
$(D > 0) Falls: \lambda_1 \neq \lambda_2$	und $\lambda_{1,2} \in R$: $Y_H = Ae^{\lambda_1 x} + Be^{\lambda_1 x}$	$\lambda_2 x$ } starke Dämpfung			
$D = 0$ Falls: $\lambda_1 = 0$	$\lambda_2 \text{ und } \lambda_{1,2} \in R \qquad : Y_H = e^{\lambda_1 x} (A + A)$	$B \cdot x$) } aperiodischer Grenzfall			
$D < 0 $ Falls $\lambda_{1,2} =$		$+Bsin(\alpha x))$ } schwache Dämpfung / Schwingfall			
Eigenfrequenz	$\omega = \alpha = \frac{\sqrt{ a_1^2 - 4a_0 }}{2}$				
	inhomogene DGL y'' +	$-a_1 \cdot y' + a_0 \cdot y = g(x)$			
Grundlöseverfahren	2. Anfangsbedingungen in Hom. $y(x_0) = 0$ $y'(x_0) = 1$ A,B I	1. Homogene DGL lösen: $g(x) = 0$ setzen ergibt Y_H 2. Anfangsbedingungen in Hom. DGL einsetzen: Wenn möglich $x_0 = 0$ $y(x_0) = 0$ $y'(x_0) = 1$ A,B bestimmen 3. Einsetzen der Hom. Glg. in Faltungsintegral			
	4. $y_P(x) = \int_{x_o}^x y_H(x + x_0 - t) \cdot g(t)$	t)dt			
	$5. Y = y_H + y_P$				
C ()	Ansatz in Form de	-			
$\mathbf{f}(\mathbf{x}) = \mathbf{p_n}(\mathbf{x})$ Fall a: $a_0 \neq 0$:		$(p_n(x) \text{ und } q_n(x) \text{ sind Polynome vom gleichen Grad})$ $y_P = q_n(x)$			
Fall b: $a_0 \neq 0$:		$y = q_n(x)$ $y = x \cdot q_n(x)$			
Fall c: $a_0 = 0, a_1 \neq 0$. Fall c: $a_0 = a_1 = 0$:		$y_P = x \cdot q_n(x)$ $y_P = x^2 \cdot q_n(x)$			
	auf die linke Seite der DGL	01 " 1n(")			
$\mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{b}\mathbf{x}} \cdot \mathbf{p_n}(\mathbf{x})$					
Fall a: b nicht Nullstelle des char. Polynoms:		$y_P = e^{bx} \cdot q_n(x)$			
Fall b: b einfache Nullste	lle des char. Polynoms:	$y_P = e^{bx} \cdot x \cdot q_n(x)$			
Fall c: b zweifache Nullst	elle des char. Polynoms:	$y_P = e^{bx} \cdot x^2 \cdot q_n(x)$			
$f(\mathbf{x}) = e^{\alpha \mathbf{x}} (\mathbf{p_n}(\mathbf{x}) \cos \beta \mathbf{x} + \mathbf{q_n}(\mathbf{x}) \sin \beta \mathbf{x})$					
Fall a: $\alpha + j\beta$ nicht Lösung der charakteristischen Gleichung: $y_p = e^{\alpha x}(r_n(x)\cos\beta x + s_n(x)\sin\beta x)$					
Fall b: $\alpha + j\beta$ Lösung d	er charakteristischen Gleichung:	$y_p = e^{\alpha x} \mathbf{x}(r_n(x)\cos\beta x + s_n(x)\sin\beta x)$			

Vorgehen bei einer DGL in Form des Störgliedes

- Y_H mit λ_1 und λ_2 berechnen 1.
- 2. Ordnung n anhand der r.h.s der DGL bestimmen Koeffizient b anhand der r.h.s der DGL bestimmen (Achtung kann aus mehreren Elementen bestehen z.B. $x^2e^x + x$; Superposition)
- Anhand der Störglied Tabellen y_p bestimmen 3.
- $q_n = ax^n + bx^{n-1} + \dots + cx + d$ 4.
- $y_p'' + a_1 y_p' + a_0 y_p = f(x)$ y_p ableiten und in die **l.h.s** der DGL einsetzen. 5.
- Koeffizienten bestimmen: $x^2e^x \cdot 18a + xe^x(6a + 12b) + e^x(2b + 6c) = x^2e^x$ 6.

18a = 118a kommt 1mal in der r.h.s vor

(6a + 12b) = 0 (6a + 12b) kommt 0mal vor auf der r.h.s

(2b + 6c) = 0(2b+6c) kommt 0mal vor auf der r.h.s

- 7. Koeffizienten in y_p einsetzen
- Wenn das Störglied f(x) aus mehreren Teilen besteht (z.B. $x^2e^x + x$), Störglied auseinander nehmen und in zwei 8. Teile x^2e^x und x unterteilen und Schritt 3 - 6 wiederholen
- 9. $y = Y_H + y_{p1} + y_{p2} + \dots$

Superpositionsprinzip

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

$$y_1 \text{ ist spezielle L\"osung der DGL} \qquad y_1'' + a_1 \cdot y_1' + a_0 \cdot y_1 = c_1 f_1(x)$$

$$y_2 \text{ ist spezielle L\"osung der DGL} \qquad y_2'' + a_1 \cdot y_2' + a_0 \cdot y_2 = c_2 f_2(x)$$

$$\text{dann ist } y_P = c_1 y_1 + c_2 y_2$$

Lineare DGL n. Ordnung mit konstanten Koeffizienten

Form
$$\sum_{k=0}^{n} a_k y^{(k)} = y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \dots + a_0 \cdot y = g(x)$$

n-verschiedene Homogene Lösungen $y_1 = e^{\lambda_1 x}, y_2 = xe^{\lambda_1 x}, \dots, y_r = x^{r-1}e^{\lambda_1 x}$ Fall a: r reelle Lösungen

Starke Dämpfung / Kriechfall

 λ_1 :

 $y_1 = e^{\alpha x} \cos(\beta x), \dots, y_k = e^{\alpha x} x^{k-1} \cos(\beta x)$ Fall b: k komplexe Lösungen

Schwache Dämpfung /

 $y_{k+1} = e^{\alpha x} \sin(\beta x), \dots, y_{2k} = e^{\alpha x} x^{k-1} \sin(\beta x)$ $\lambda_2 = \alpha + j\beta$: Schwingfall

 $Y_H = Ay_1 + By_2 + Cy_3 + \dots + Ny_n$

Allgemeinste Lösung des partikulären Teils

$$\sum_{k=0}^{n} a_k y^{(k)} = \underbrace{e^{\alpha x} (p_{m1}(x) \cos(\beta x) + q_{m2}(x) \sin(\beta x))}_{\text{St\"{o}rglied}} \qquad \lambda \text{ aus Homogenl\"osung}$$

Unterscheide die Lösungen des charakteristischen Polynoms (λ):

Fall a: $\alpha + j\beta \neq \lambda$, so ist

Fall b: $\alpha + i\beta$ ist u-fache Lösung von λ , so ist

mit m = max(m1, m2)

$$y_P = e^{\alpha x} (r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$$

 $y_P = e^{\alpha x} x^u (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$ u-fache Resonanz

Grundlöseverfahren

$$g(x_0) = 0 = Ay_1(x_0) + By_2(x_0) + \dots + Ny_n(x_0)$$

$$g'(x_0) = 0 = Ay'_1(x_0) + By'_2(x_0) + \dots + Ny'_n(x_0)$$

$$\vdots \qquad \vdots$$

$$g^{(n-1)}(x_0) = 1 = Ay_1^{(n-1)}(x_0) + By_2^{(n-1)}(x_0) + \dots + Ny_n^{(n-1)}(x_0)$$

$$y(x_0) = y_0 \qquad y'(x_0) = y_1 \qquad y''(x_0) = y_2 \qquad \dots \qquad y^{(n-1)}(x_0) = y_{n-1}$$

$$y^{(n-1)}(x_0) = y_{n-1}$$

 $y(x_0) = y_0$ $y'(x_0) = y_1$ $y''(x_0) = y_2$ Anfangswertproblem

Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

 $\dot{x} = ax + by + f(t) \\ \dot{y} = cx + dy + g(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$ Form:

 $\underbrace{\ddot{x} - (a+d)\dot{x} + (ad-bc)x = \dot{f}(t) - df(t) + bg(t)}_{\text{normale DGL 2.Ordnung} \to \text{nach } x \text{ auflösen}}$ Die allgem. Lösung ergibt sich aus der DGL:

 $y = \frac{1}{h}(\dot{x} - ax - f(t))$

Anfangsbedinung: $x_0(t_0) = x_0, \dot{x}_0(t_0) = ax_0 + by_0 + f(t_0)$

Anordnung beachten! Gesuchte Grösse immer zu oberst (in diesem Fall ist die gesuchte Grösse x)

6 Anhang und AN1E

6.1 Für Prüfung

- $\bullet\,$ Definitionsbereich aufschreiben wenn Variable gebraucht wird.
- \bullet Induktion: IA: Induktionsannahme und IE: Induktionsschritt

Induction: 1A. inductionsamannie und 12. inductionssemite				
		Spezielle Uı	ngleichungen	
Bernoulli-Ungleichung	(1 -	$(a+a)^n > 1 + n \cdot a \text{ für } n \in$	$N,n\geq 2,a\in R,a>-1,a\neq 0$	
Binomische Ungleichung	$ a \cdot$	$b \le \frac{1}{2}(a^2 + b^2)$		
Dreiecksumgleichung	a	$ a+b \le a + b $ $ a-b \le a + b $ $ a-b \ge a - b $		
Geometrisches Mittel	a_i \geq	$\geq 0, \ n \in \mathbb{N}, \ i \in \{1, 2,, n\}$	n}:	
Arithmetisches Mittel	v√a	$\sqrt[n]{a_1 a_2 \dots a_n} \le \frac{1}{n} \cdot \sum_{i=1}^n a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$		
Natürliche Funktionen		$1 + x \le e^x \le \frac{1}{1-x}$ $1 - \frac{1}{x} \le \ln(x) \le x - 1$		
Fakultät	n! :	$n! > 2^{n-1}$		
		Summenzeichen un	d Binomischer Satz	
$\sum_{i=1}^{n} a_i = \sum_{i=1-j}^{n-j} a_{i+j}$	(a +	$b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} \cdot b^i$	$\left(i \stackrel{n}{-} 1\right) + \binom{n}{i} = \binom{n+1}{i}$	$\binom{n}{i} = \frac{n(n-1)\cdot\ldots\cdot(n-i+1)}{1\cdot2\cdot3\cdot\ldots\cdot i}$
$\binom{n}{i} = \frac{n!}{i!(n-i)!}$	$\binom{n}{i}$:	$\binom{n}{i} = \binom{n}{n-i} \qquad \binom{n}{0} = 1 \qquad \binom{0}{0} = 1$		
(2n+2)! = (2n+2)(2n+1)((2n)!)				
Transformationen				
$\pm \mathbf{a} \cdot \mathbf{f}(\pm \mathbf{b} \cdot (\mathbf{x} \pm \mathbf{c})) \pm \mathbf{d}$ 1. a Vertikale Streckung um a bzw. Spiegelung an x bei -a				

$\pm \mathbf{a} \cdot \mathbf{f}(\pm \mathbf{b} \cdot (\mathbf{x} \pm \mathbf{c})) \pm \mathbf{d}$	 a Vertikale Streckung um a bzw. Spiegelung an x bei -a b Horizontale Streckung um 1/b bzw. Spiegelung an y bei -b c Verschiebung nach links (+c) oder rechts (-c) d Verschiebung nach oben (+d) oder unten (-d) 		

${\bf Gerade/Ungerade\ Funktionen}$			
Gerade Funktionen(Achsensymmetrisch): $f(-x) = f(x)$	Ungerade Funktionen(Punktsymmetrisch): $f(-x) = -f(x)$		

uneigentliche Grenzwerte						
Bestimmte Form $\infty + \infty = \infty$ $-\infty - \infty = -\infty$ $\infty \cdot \infty = \infty$ $-\infty \cdot (\infty) = -\infty$						
	$\frac{1}{\infty} = 0$	$\frac{\infty}{0+} = \infty$	$\frac{\infty}{0-} = -\infty$			
Unbestimmte Form	$\frac{0}{0}$	$\frac{\infty}{\infty}$	$\infty - \infty$	00		
	∞^0	1∞				

Trigonometrische Funktionen

Winkel	Bogen	\sin	cos	tan
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	$\pm \infty$

α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
$\sin \alpha$	-	$\sqrt{1-\cos^2\alpha}$	$\frac{\tan\alpha}{\sqrt{1+\tan^2\alpha}}$
$\cos \alpha$	$\sqrt{1-\sin^2\alpha}$	-	$\frac{1}{\sqrt{1+\tan^2\alpha}}$
$\tan \alpha$	$\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha}}$	$\frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha}$	-

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\cos(2\alpha) = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{1}{2}(1 - \cos\alpha)}$$

$$\sin^{2}\alpha = \frac{1}{2}(1 - \cos2\alpha)$$

$$\sin^{2}\alpha = \frac{1}{2}(1 - \cos2\alpha)$$

$$\sin^{2}\alpha = \frac{1}{2}(1 - \cos2\alpha)$$

$$\sin^{2}\alpha = \frac{1}{2}(1 + \cos2\alpha)$$

$$\cos^{2}\alpha = \frac{1}{2}(1 + \cos2\alpha)$$

$$\sin^{2}\alpha = \frac{1}{2}(1 + \cos\alpha)$$

$$\cos^{2}\alpha = \frac{1}{2}(1 + \cos\alpha)$$

$$\sin^{2}\alpha = \frac{1}{2}(1 + \cos\alpha)$$

$$\sin^$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

$$\text{Cosinussatz: } c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$$

$$\tan \alpha \pm \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

Orthoganalitätsbedingung: $m_1 \cdot m_2 = -1$

Hyperbolicus Funktionen				
$\sinh x = \frac{1}{2}(e^x - e^{-x})$	$\cosh x = \frac{1}{2}(e^x + e^{-x})$	$\tanh x = \frac{\sinh x}{\cosh x}$		
$arsinh(x) = \ln(x + \sqrt{x^2 + 1})$	$arcosh(x) = \ln(x + \sqrt{x^2 - 1})$ mit $x \in [1, \infty)$	$artanh(x) = \frac{1}{2} \ln \frac{1+x}{1-x}$ mit $x \in \mathbb{R} \setminus [-1, 1]$		
$\cosh^2 x - \sinh^2 x = 1$	$e^x = \cosh x + \sinh x$			

Partialbruchzerlegung				
1. Nenner hat n verschiedene Nullstellen	$q(x) = k(x - x_1)(x - x_2)(x - x_n)$			
	Ansatz: $\frac{p(x)}{q(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{x - x_2} + \dots + \frac{A_n}{x - x_n}$			
2. Nenner hat n reelle Nullstellen (mehrfache Nullstellen)	$q(x) = k(x - x_1)^{n_1}(x - x_2)^{n_2}(x - x_n)^{n_i}$			
	Ansatz: $\frac{p(x)}{q(x)} = \frac{A_1}{(x-x_i)} + \frac{A_2}{(x-x_i)^2} + \dots + \frac{A_{n_i}}{(x-x_i)^{n_i}}$			
3. Nenner enthält nicht zerlegbare Nullstellen	$x^2 + bx + c$			
	Ansatz: $\frac{Bx + C}{x^2 + bx + c}$			

Kurvendiskussion Programm			
1	Definitionsmenge/Wertemenge		
2	Symmetrien (gerade \leftrightarrow Achsensymmetrie, ungerade \leftrightarrow Punktsymmetrie), Periodizität $(k\pi)$, Transformation $(a \cdot f(bx + c) + d)$		
3	Nullstellen $(f(x) = 0)$		
4	Stetigkeit (voraussetzung für Differenzierbarkeit), Differenzierbarkeit (f', f'', f''') Hinweis: Zu beachten sind hier besonders Lücken, Polstellen, Sprungstellen, Oszillationsstellen		
5	A) Monotonieverhalten, Extremalstellen B) Krümmungsverhalten, Wendestellen/Wendetangenten		
6	Grenzverhalten $x \to \pm \infty/\text{Randstellen/Polstellen}$		

Spezielle Grenzwerte $\lim_{x \to \infty} \frac{x^{\alpha}}{a^{\beta x}} = 0 \ (a > 1; \ \alpha, \beta > 0)$ $\lim_{x \to 0} (1 + x) \frac{1}{x} = e$ $\lim_{x \to 0} \frac{\sin x}{x} = 1 \Rightarrow \frac{\sin 4x}{x} = 4$ $\lim_{x \to \infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0$ $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$ $\lim_{x \to 0} \frac{\log_a(x+1)}{x} = \frac{1}{\ln a}$ $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$ $\lim_{x \to \infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0$ $\lim_{x \to \infty} \frac{x}{\tan x}$ $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ $\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$ $\lim_{x\to 0+} x \ln x = 0$ $\lim_{x \to \infty} \sum_{k=0}^{n} q^k = \begin{cases} +\infty & q \ge 1\\ \frac{1}{1-q} & |q| < 1\\ \text{unbest.divergent} & q \le -1 \end{cases}$ $\lim_{\alpha \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$ $\lim_{x \to 0} \frac{x}{1 - e^{-x}} = 1$ $\lim_{x \to \infty} \frac{x^n}{n!} = 0 \ (x > 0)$ $\lim_{x\to\infty}\frac{x^k}{a^x}=0\;(q>1;\;k\in\mathbb{N})$ $\lim_{x \to \infty} \sqrt[x]{p} = 1$

	Zahlenfolge					
arithmetische Folge			geometrische Folge			
$\begin{vmatrix} a_1 = c \text{ und } a_n n + 1 = a_n + d \\ (d = a_{an+1} - a_n \Rightarrow \text{Monotonie}) \end{vmatrix}$			$a_1 = c \text{ und } a_{n+1} = q \cdot a_n$ $\left(q = \frac{a_{n+1}}{a_n} \Rightarrow \text{Monotonie}\right)$			
		Grenzwerte von re	ekursiven Folgen			
1. Monoton	ie annehmen(ev. erste	Glieder Berechnen)	\Rightarrow mit vollständiger Induktion beweisen Verankerung: $f_1 < f_2$ Vererbung: $f_n < f_{n+1}$			
2. Hypothetischer Grenzwert ausrechnen			Beschränktheit annehmen und Limes ziehen $f_n = f_{n+1}$ in unendlichkeit (für f_n und f_{n+1} einfach x einsetzen)			
3. Beweisen	1		Beschränktheit mittels des hypotthetischen Grenzwertes und vollständiger Induktion beweisen			
		Asymp	otote			
	Asymp	tote einer gebrochen ratio	onalen Funktion r	$(x) = \frac{p_m(x)}{Q_n(x)}$		
	m < n	m = n		m > n		
$\lim_{x \to \pm \infty} =$	0	$\frac{a_m}{b_n}$		$\pm \infty$		
Asymptote	x-Achse	Parallel zur x-Achse: $y = \frac{a_m}{b_n}$		Ganzrationaler Teil der Pol. division		
	für Funktionen, die nic	ht gebrochenrational sind	(existiert nur wen	n alle Grenzwerte existieren)		
		Asymptote: $g = ax + b \Rightarrow$	$\lim_{x \to \infty} (f(x) - ax - ax)$	b) = 0		
$a = \lim_{x \to \infty} \frac{f(x)}{x}$	$\frac{c}{c}$ oder $a = \lim_{x \to \infty} f'(x)$		$b = \lim_{x \to \infty} f(x) - ax$			
Differentialrechnung						
$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$			Tangentengleichung: $t(x) = f(x_0) + f'(x_0)(x - x_0)$			
Normalengleichung: $n(x) = \frac{x_0 - x}{f'(x_0)} + f(x_0)$			Mittelwertsatz: $\frac{f(b) - f(a)}{b - a} = f'(\xi)$			
abs. Fehler: $ \Delta y \approx dy = f'(x) \cdot \Delta \delta $			rel. Fehler: $\left \frac{f'(x)}{y} \right \cdot dx \le \left \frac{f'(x)}{f(x)} \right \cdot \Delta \delta $			
$f'(x) \ge 0$ Mo	onoton steigend ↑		$f'(x) \leq 0$ Monoton fallend \downarrow			

 $\operatorname{konvex}(\operatorname{linkskr\"{u}mmung}) \Leftrightarrow f' \uparrow \Leftrightarrow f'' \geq 0$

 $\operatorname{konkav}(\operatorname{rechtskr\"{u}mmung}) \Leftrightarrow f' \downarrow \Leftrightarrow f'' \leq 0$

Extremalstelle: $f'(x_0) = 0$ /Wendepunkt: $f''(x_0) = 0$ potentieller Kandidat

$$f''(x_0) = 0, ..., f^{n-1}(x_0) = 0, f^n(x_0) \neq 0$$

$$f''(x_0) = 0, ..., f^{n-1}(x_0) = 0, f^n(x_0) \neq 0 \begin{cases} f^n(x_0) > 0 \Rightarrow \text{relatives Minimum bei } x_0 \\ f^n(x_0) < 0 \Rightarrow \text{relatives Maximum bei } x_0 \end{cases}$$

n ungerade \Rightarrow Wendestelle bei $x_0(\text{Terrassenpunkt}f'(x_0) = 0)$

$$\lim_{x \downarrow x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \downarrow x_0} \frac{f_1'(x)}{f_2'(x)} \text{ das gilt für } \frac{0}{0} \text{ oder den } \frac{\pm \infty}{\pm \infty} \text{ fall.}$$

$$0 \cdot \pm \infty \Rightarrow \frac{f_1}{\frac{1}{f_2}} = \frac{0}{0} \text{ oder } \frac{f_2}{\frac{1}{f_1}} = \frac{\pm \infty}{\pm \infty} \qquad \qquad \infty - \infty \Rightarrow \frac{\frac{1}{f_2} - \frac{1}{f_1}}{\frac{1}{f_1 \cdot f_2}} \qquad \qquad \text{bei } f^g = 1^\infty, 0^0, \infty^0 \Rightarrow e^{g \cdot \ln(f)}$$

$$0 \cdot \pm \infty \Rightarrow \frac{f_1}{\frac{1}{f_2}} = \frac{0}{0} \text{ oder } \frac{f_2}{\frac{1}{f_1}} = \frac{\pm \infty}{\pm \infty}$$

$$\infty - \infty \Rightarrow \frac{\frac{1}{f_2} - \frac{1}{f_1}}{\frac{1}{f_1 \cdot f_2}}$$

bei
$$f^g = 1^{\infty}, 0^0, \infty^0 \Rightarrow e^{g \cdot \ln(f)}$$

Taylor-Polynom

$$\frac{(x_0 = \text{Entwicklungspunkt}) \quad f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{3!}h^3 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + R_n(x_0, h)}{R_n(\text{Lagrange}): \quad R_n(x_0, h) = \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!}h^{n+1}, (0 < \theta < 1)}$$

$$R_n(\textbf{Lagrange}): R_n(x_0, h) = \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1}, (0 < \theta < 1)$$

$$\lim_{n \to \infty} R_n(x_0, h) = 0 \Longrightarrow f(x_0 + h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} h^n$$

$$\lim_{n \to \infty} R_n(x_0, h) = 0 \Longrightarrow f(x_0 + h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} h^n$$
MacLaurinsche-Form (gilt für $x_0 = 0, h = x$): $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot x^k + R_n$

$$R_n = \frac{f^{(n+1)}(\theta x)}{(n+1)!} \cdot x^{n+1}, (0 < \theta < 1)$$

Funktionsgraphen

e-Funktion

Logarithmusfunktion

 $\frac{1}{\pi}$ - Funktion

