Note: Page numbers followed by "f" indicate figures, "t" indicate tables, and "b" indicate boxes.

Α	Bohr atom, 64–65
Ab initio Frenkel-Davydov exciton model	Bond dissociation, 314, 321
(AIFDEM)	Born-Oppenheimer approximation, 192
2-methylene-2H-indene, 276-283	Boron anion, 140–147t, 146–151, 149–151t
protocol, 270–271	Bound-state, 22-23, 34-35
tetracene dimer, 271–276	Brinkman-Kramers approximation, 189
Addition theorems (AdTs), 100–101	••
Alkali hydrides, 222. See also NaH molecule	C
Analysis, multiresolution (MRA), 7	-
adaptiveness, 12-13	Carbon K-edge X-ray absorption, 244, 246f CASINO code, 312, 317
applications, 40-43, 41f	Casula T-moves, 319–320
arithmetic operations, 17-24	Central ionsphere—central ionsphere
differentiation, 18–19	integral, 104–105
Haar scaling function, 8, 9-10f, 14-15	Central ionsphere–noncentral ionsphere
inner product, 17–18	integral, 105
integral operator, 20–24	Charge density, one-body (1-CD), 291–294
low-rank tensor approximations, 25-26	Charge transfer (CT) states, 264–265
nuclear singularities, regularization of,	Chlorophyll-a, MRA computation of,
29–32	40–41, 41 <i>f</i>
singular value decomposition (SVD),	11-Cis-retinal, MRA computation of,
25–26, 47	40–41, 41 <i>f</i>
tree structure, 12–13	Clebsch–Gordan coefficient, 106–109
wavelet formalism, 7-11, 13-17, 24-25	Cluster ansatz, 4, 30, 38–40, 83
Analytic continuation method, 326	Cluster wavefunction normalization.
Analytic energy gradient expressions, 167	See Overlap integrals of interstitial
Angular momentum theory, 68–69	region
Angular energy, 147–148, 147 <i>t</i>	Collisions (inelastic, of electrons with atoms
Askey scheme, 67–70	and molecules), 180, 186-197
Asymptotic theory of functional	Complete active space self-consistent field
analysis, 67–68, 72	(CASSCF) wave functions, 266–267
Atom-centered basis functions, 5–6	Complete basis set (CBS) limit, 248–249
Atomic effective potential, 186–191	Configuration interaction (CI) method, for
	boron anion, 136–148, 140–146 <i>t</i>
В	SOS-CI (scaled opposite spin), 269
Basis set superposition error (BSSE), 5-6	Configuration interaction singles (CIS),
Benchmarks (for metal-catalyst systems),	40–41
313–314	Confinement (H-atom), 324-325, 328-330,
Beryllium hydride, cuspless and	332–334
cusp-corrected HF wave functions	Continuous and discrete expansions, 70-73
of, 124–126, 125–126 <i>f</i>	Core excitations, 242, 244, 246-247, 257

of, 124–126, 125–126f Bessel functions (BFs), 98-100

Core-level spectroscopy, 242

Core-valence separation (CVS), 243	Electron-electron potential energy,
Coulomb Sturmian functions (CSF), 84–85	156–157
Coulomb three-body Schrödinger	Electronic coupling
equation, 80–84	2-methylene-2H-indene, 281–283, 281 <i>t</i>
Coupled cluster linear response (CC-LR),	tetracene pair, 275, 275 <i>t</i>
242–243	Electron–nucleus cusp correction algorithm
Coupled cluster (CC) method, 36–38,	119, 120 <i>b</i>
222–223	Electron pairing approach, 161–163
Coupled cluster singles and doubles	Encapsulated atoms
(CCSD), 170	applications, 323–324
Coupled cluster singles, doubles and triples	bound state properties, 324
(CCSDT), 243	Equation-of-motion coupled cluster
ionization energies, 253–257, 254 <i>t</i> , 256 <i>t</i>	(EOM-CC) method, 222–223, 225
Coupled perturbed Hartree–Fock (CPHF)	231, 242–243
equations, 34–35	Equilibrium geometries, 170
Cusp-corrected orbitals, 116–117, 119	Euler–Lagrange equation, 202–203
Cuspless Gaussian basis functions, 114–115, 121–122	Exchange-correlation potential, 207–208
121-122	CASSCF wavefunctions, 212–213, 213f
D	HF wavefunctions, 211–212, 211–212 <i>f</i>
Density-based descriptors, 291–293,	unified, 204, 209, 215 Excited-state electronic structure, 290
298–299	boron anion, 149–151
Density functional theory (DFT), 28–29,	helium, 83–84, 84 <i>f</i>
202	2-methylene-2H-indene, 277–278
Density matrix	NaH, 226, 226 <i>t</i>
attachment A, 291–292	phenylpyrrole molecules, 301–304, 302f.
detachment D, 291–292	303t
Depurated inversion method (DIM), 180,	tetracene pair, 272–274, 275 <i>t</i>
185	Exponential Shannon information entropy,
many-electron atoms, 191	332, 332 <i>f</i>
molecules, 191–197	, ,
Descriptors, density-based, 291-293,	F
298–299	Favard's theorem, 56
Detachment and attachment one-body	Fermi potential, 203, 205-207, 210
reduced density matrices, 290-294,	ab initio wavefunctions, 210-214, 211t
295 <i>t</i>	algorithm, 209–210
Diffusion Monte Carlo (DMC) method,	CASSCF wavefunctions, 212–213, 213f
317, 320	HF wavefunctions, 211–212, 211–212f
Disequilibrium function, 326, 331-332,	Fermi's golden rule, 266-267
331 <i>f</i>	First Born approximation (FBA), 180-181
Double electron affinity (DEA), 222	First principle quantum chemical methods, 222–223, 233–234
E	Fisher information measure, 327, 331–332,
Eckart-Sayvetz conditions, 171-172	331 <i>f</i>
Effective Hamiltonian operator, 223–225	Fisher-Shannon complexity (FS) index, 327
Electron affinity (EA), 222, 225	Fock matrix, 117–120
boron atom, 149, 149–150t	Fock space coupled cluster (FS-CC)
definition, 136, 148-149	method, 222–225

Fock space (FS) theory, 222–223 Full configuration interaction (FCI),	Hypergeometric polynomials, 56–57, 67–68, 70
164–165, 164 <i>f</i>	Hyperquantization algorithm, 73 Hyperspherical harmonics, 59–62, 71
G	Tryperspherical narmomes, 37–62, 71
Galerkin method, 86–88	1
Gauge-invariant atomic orbitals (GIAO), 33–34	Inelastic collisions, 180–181, 186, 197 Information theoretical tools, 331
Gaunt coefficients, 100–101 Gaussian basis functions, 5–6	Intermediate Hamiltonian (IH) formulation, 225
Generalized Sturmian functions (GSF), 80–82	Interstitial, 98–100, 102–111 Inverted Hartree–Fock equations, 192–193
Geometry optimization, 166–174 Geminals (strongly orthogonal), 158	Ionization probability, 324–325, 330, 330f Ionsphere, 98–99
н	
Hahn polynomials, 66–67	J
Harmonic vibrational frequencies, 170–174	Jacobi ladder, 67–70
Hartree–Fock (HF) approximation, 157	Jacobi polynomials, 65 Jastrow factor, 114–116, 316–317
Hartree–Fock equations, 28–29, 192–193	Jastrow factor, 114–110, 510–517
Hartree-Fock (HF) wavefunctions, 210	К
Helium atom	
cuspless and cusp-corrected HF wave	Kepler-Coulomb problem, 64–65, 70–71 Kinetic energy integrals, 128
functions, 122–124, 123–124 <i>f</i> , 124 <i>t</i>	Kohn–Sham density-functional scheme,
scattering states, 79–80, 83–84, 84 <i>f</i>	202–204, 207–209
Hellmann–Feynman theorem, 32–33	Kohn–Sham orbitals, 315
Hermite polynomials, 62–64	Kravchuk polynomials, 68, 72
Hessian (expression, matrix), 168–172	Kronecker delta, 116–117
Hohenberg–Kohn theorem, 156, 202	,
Hubbard model, 163–165	L
Hydrogen atom	Laguerre polynomials, 64–65
confinement, 324–325 complexity measures, 326	Legendre polynomials, 8–10, 106–109
ionization probability, 325–326, 330,	Levy–Perdew–Sahni formalism, 203–204
330 <i>f</i>	Light-induced electronic structure
LMC shape complexity measure,	reorganization, 290
332–334, 333 <i>f</i>	Linear combination of atomic orbitals
orbital energy vs. confinement radius,	(LCAO), 5-6, 33-34, 38-43, 45, 48
327–330, 327–329 <i>f</i>	Löwdin-like population analysis, 293-294
reduced radial functions, 328-329, 328f	
Shannon entropy, 332, 332f	M
cuspless and cusp-corrected HF wave functions, 121–122, 121 <i>f</i> , 122 <i>t</i>	Many-electron basis functions (MEBFs), 266–269, 274–275, 278–281
physisorption, 313, 319-320	Mass weighted Cartesian coordinates
Hydrogen-like wavefunctions, 62, 64–65	(MWC), 170–171
Hylleraas-configuration interaction (Hy-CI)	Metal surface, 312-313, 319
calculations, 137–139, 152	Methane, DIM for, 193–195
Hypergeometric functions, 56–59, 65, 68	Modified Sternheimer equation, 34–35

Moeller-Plesset perturbative (MP2), 36-38, noncentral ionsphere-different 170, 172, 173*f* noncentral ionsphere integral, Molecular effective potential, 191–197 109 - 110Molecular nano-containers, 323-324 noncentral ionsphere-same noncentral Muffin-tin approximation, 98 ionsphere integral, 105-109 Mulliken population analysis, 293 Watson-central ionsphere integral, Multireference CI (MRCI) approach, 102 - 103230-231 Watson-noncentral ionsphere integral, Multiresolution analysis (MRA). See 103-104 Watson-Watson integral, 102 Analysis, multiresolution (MRA) Oxygen K-edge X-ray absorption, 244, 245f, 247f, 249, 250f Ν NaH⁺ molecular ion Ρ potential energy curves, 231-233, 232f Pauli potential, 203–204, 207–208 spectroscopic constants, 228t, 233 CASSCF wavefunctions, 212–213, 213f NaH molecule HF wavefunctions, 211–212, 211–212f energies of electronic states, 226, 226t Penetrable repulsive spherically symmetric potential energy curves, 229, 229–230f model for confinement, 324 spectroscopic constants, 226, 227t Photoelectron spectroscopy, 242 Natural orbital functional (NOF), 157–160 Photoionization, 190-191, 197 Natural orbitals (NOs), 157 Piris natural orbital functional (PNOF), Nitrogen K-edge X-ray absorption, 244, 160 - 163248f, 251, 252f independent pair model PNOF5, 158, Noncentral integrals c.f. central case, 161–163, 165–168, 170 105 - 110inter-pair electron correlation model Nonorthogonal configuration interaction PNOF7, 163, 165–168, 170, (NOCI), 266–267 172 - 1742-methylene-2H-indene, 276-283 Plane waves, 6 tetracene dimer, 271-276 Polarizable continuum model, 42 N-representability, 157-161, 163-164 Population analysis, 293–295 Nuclear attraction integrals, 129 Potential energy curves (PECs), 222-223 Numerical integration on Cartesian grids Proton-impact charge exchange, 189 (NI grid), 293, 295-296, 298 Proton-impact excitation, 186–188 Proton-impact ionization, 188, 195–196 Pseudopotential approximation (PPA), 0 180 - 184Occupation numbers (ONs), 157, 159–160 Pseudo-potentials, 317–319 One-particle reduced density matrix (1RDM), 156-157, 205-207 Q Orbital population analysis, 293–295 Orthogonal polynomials, 56–63, 65–72 Quadrature mirror coefficients (QMF), Overlap integrals, 127–128 15 - 16Overlap integrals of interstitial region Quantum Monte Carlo (QMC) method, 312 - 313central ionsphere-central ionsphere integral, 104-105 fixed-node error, 312-313, 319 central ionsphere-noncentral ionsphere heterogeneous systems, 312, 315 metal surface, 312-314, 319 integral, 105

R	one-dimensional, 81, 84-87, 85-86f,
Racah coefficients, 66-67	89–93, 91 <i>t</i> , 91 <i>f</i>
Racah polynomials, 66-67	two-dimensional, 87–93, 91f, 91t
Real-space grid methods, 6	Sturmian orbitals, 64–65, 70
Reduced density matrix (RDM)	Sturm-Liouville theory, 56
one-particle, 156–157	Sudden approximation, 324
two-particle, 156–157	Supercomputer (architecture), 114
Restricted active space with two spin flips (RAS-2SF)	Т
2-methylene-2H-indene, 276–283 protocol, 271	Tamm–Dancoff approximation (TDA), 42–43
tetracene dimer, 271–276	Time-dependent density functional theory
Restricted Hartree–Fock (RHF) reference	(TD-DFT), 242
function, 222 Rydberg excited states, 151, 251–253	Time-dependent Hartree–Fock (TDHF) calculations, 297
Trydoeig exelled states, 151, 251 255	Transition-state (TS) geometry, 312–313
S	Tridiagonal and symmetric matrices, 56
Scale up methods, 114	Two-particle reduced density matrix
Scattered wavefunction method, 98	(2RDM), 156–157, 205–207, 209
Schrödinger equation, 26–28, 99–100,	
137–138, 312	U
Self-consistent dressing (SCD), 118–119	Unrestricted Hartree–Fock (UHF) reference
Shannon information entropy, 326–327	function, 222
Shape LMC complexity index, 326,	
332–334, 333 <i>f</i>	V
Shockley–Queisser limit, 264	Variational Monte Carlo (VMC), 316-317,
Singlet fission (SF), 264-267, 269, 276-278	320
Slater basis functions, 115-116, 121-122	Vibrational frequencies, 170-174
Slater-Jastrow wave function, 316	
Slater type orbitals (STOs), 137-139, 149,	W
151	Water molecule
Spatial confinement, 323-324	molecular properties, 42-43, 42t
Specific reaction parameter density	solvatochromatic shifts, 42, 42t
functional theory (SRP-DFT), 313	X-ray absorption, 244, 245f
Spectral method, 80–82	Watson-central ionsphere integral, 102-103
Spherical harmonic (SH) function, 99–101	Watson-noncentral ionsphere
Spherical harmonics, 59–62	integral, 103–104
Spin-free exact 2C theory, 243	Watson sphere, 98-99
Standard basis, 249, 254t	Watson-Watson integral, 102
Sturmian functions (SF)	Wigner matrix elements, 68–70