Machine Learning 机器学习

Lecture7: 贝叶斯学习

李洁 nijanice@163.com

判别模型 Discriminative Model

Directly estimate $y = f_{\theta}(x)$ or the conditional probabilities P(y/x)

Only capture the distinctions between categories

- Logistic regression
- Decision Trees
- neural networks
- Support Vector Machine

生成模型 Generative Model

Generative

estimate P(x,y) or P(x), to understand how data is generated, and then infer P(y/x)

can generate new data instances require more computation

- Naïve Bayes
- Bayesian Networks
- Hidden Markov Models (HMMs)
- Gaussian Mixture Model(GMM)

判别模型和生成模型 Discriminative Model VS Generative Model

- ✓ Understanding of Data
- ✓ Performance and Efficiency
- ✓ Data Requirements

判别模型和生成模型 Discriminative Model VS Generative Model

- Conditional Probability
- Higher Predictive Performance
- Faster Training and Inference
- Do Not Generate Data Directly
- Sensitivity to Data Bias
- Less Adaptability
- Task-Specific Customization

Generative

- Joint Probability Distribution
- Data Generation Capability
- Handling Missing Data
- Robustness
- Comprehensive Understanding of Sample Space
- Slower Training and Inference
- Multi-task Learning

全概率公式 Theorem of total probability

$$P(A) = P(B_1) P(A/B_1) + P(B_2) P(A/B_2) + \dots + P(B_n) P(A/B_n)$$

• If B_1 , B_2 , ... B_n are exhaustive, and mutually exclusive

$$\sum_{i=1}^{n} P(B_i) = 1$$
, $B_i B_j = \emptyset$, $i, j = 1, 2, ... n$;

条件概率 Conditional Probability

 The conditional probability of A given B is the joint probability of A and B, divided by the marginal probability of B.

独立 Independence

Two events are independent if the occurrence of one in no way affects the probability of the other

Thus if A and B are statistically independent,

 However, if A and B are statistically dependent, then

独立 Independence

Two events are independent if the occurrence of one in no way affects the probability of the other

Thus if A and B are statistically independent,

$$p(A \mid B) = \frac{p(A,B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A).$$

 However, if A and B are statistically dependent, then

$$p(A \mid B) \neq p(A)$$
.

独立 Independence

Two events are independent if the occurrence of one in no way affects the probability of the other

Thus if A and B are statistically independent,

$$p(A \mid B) = \frac{p(A,B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A).$$

 However, if A and B are statistically dependent, then

$$p(A \mid B) \neq p(A)$$
.

条件概率 Conditional Probability

 The conditional probability of A given B is the joint probability of A and B, divided by the marginal probability of B.

贝叶斯定理推导 Bayes' Theorem Deduction

 Bayes' Theorem is simply a consequence of the definition of conditional probabilities:

$$p(A | B) = \frac{p(A, B)}{p(B)} \rightarrow p(A, B) = p(A | B)p(B)$$

$$p(B \mid A) = \frac{p(A,B)}{p(A)} \rightarrow p(A,B) = p(B \mid A)p(A)$$

Thus
$$p(A \mid B)p(B) = p(B \mid A)p(A)$$

$$\rightarrow p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Bayes' Equation

贝叶斯定理推导 Bayes' Theorem Deduction

 Bayes' Theorem is simply a consequence of the definition of conditional probabilities:

$$p(A | B) = \frac{p(A, B)}{p(B)} \rightarrow p(A, B) = p(A | B)p(B)$$

$$p(B \mid A) = \frac{p(A,B)}{p(A)} \rightarrow p(A,B) = p(B \mid A)p(A)$$

Thus
$$p(A \mid B)p(B) = p(B \mid A)p(A)$$

$$\rightarrow p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Bayes' Equation

最大后验假设 Maximum a Posteriori Hypothesis (MAP)

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

例子:分类昆虫 Example: classify insects

Example: classify insects

With a lot of data, we can build a histogram. Let us just build one for "Antenna Length" for now...

■ Katydids

Example: classify insects

Example: classify insects

• We can just ask ourselves, give the distributions of antennae lengths we have seen, is it more *probable* that our insect is a **Grasshopper** or a **Katydid**.

 $p(c_i | d)$ = probability of class c_i , given that we have observed d

Example: classify insects

$$P(Grasshopper | 3) = 10 / (10 + 2) = 0.833$$

$$P(Katydid | 3) = 2/(10 + 2) = 0.166$$

 $p(c_i \mid d)$ = probability of class c_i , given that we have observed d

Example: classify insects

$$P(Grasshopper | 7) = 3 / (3 + 9) = 0.250$$

$$P(Katydid | 7) = 9/(3+9) = 0.750$$

 $p(c_i \mid d)$ = probability of class c_i , given that we have observed d

Example: classify insects

$$P(Grasshopper | 5) = 6 / (6 + 6) = 0.500$$

$$P(Katydid | 5) = 6/(6+6) = 0.500$$

 $p(c_j | d)$ = probability of class c_j , given that we have observed d

$$P(h \mid D) = \frac{P(D \mid h) P(h)}{P(D)}$$
 (假设h的先验概率)
Posterior (后验概率)
Evidence (数据D的先验概率)

 Bayes' theorem is most commonly used to estimate the state of a hidden, causal variable h based on the measured state of an observable variable D:

Whereas the posterior p(h|D) is often difficult to estimate directly, reasonable models of the likelihood p(D|h) can often be formed. This is typically because h is causal on D.

Thus Bayes' theorem provides a means for estimating the posterior probability of the causal variable *h* based on observations *D*.

The Monty Hall problem is a famous probability puzzle, stemming from a television game show scenario.

The question is: Does switching doors increase the contestant's chances of winning the car?

In a study of 228 subjects, 13% chose to switch.

例子: 三门问题

Example: The Monty Hall Problem

Car hidden behind Door 1		Car hidden behind Door 2	Car hidden behind Door 3
Player initially picks Door 1			
Host opens either Door 2 or 3		Host must open Door 3	Host must open Door 2
Switching loses with probability 1/6	Switching loses with probability 1/6	Switching wins with probability 1/3	Switching wins with probability 1/3
Switching loses with probability 1/3		Switching wins with probability 2/3	

 Bayes' theorem is most commonly used to estimate the state of a hidden, causal variable h based on the measured state of an observable variable D:

- Let's assume you initially select Door 1.
- Suppose that Monty then opens Door 2 to reveal a goat.
- We want to calculate the posterior probability that a car lies behind Door 1 & 3 after Monty has provided these new data.

$$P(h_1/D_2) = \frac{P(D_2/h_1)P(h_1)}{P(D_2)}$$

- Let's assume you initially select Door 1.
- · Suppose that Monty then opens Door 2 to reveal a goat.
- We want to calculate the posterior probability that a car lies behind Door 1 & 3 after Monty has provided these new data.

$$\begin{split} P(h_1/D_2) &= \frac{P(D_2/h_1)P(h_1)}{P(D_2)} \\ &= \frac{P(D_2/h_1)P(h_1)}{P(D_2/h_1)P(h_1) + P(D_2/h_2)P(h_2) + + P(D_2/h_3)P(h_3)} \\ &= \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{2} + 0 \times \frac{1}{2} + 1 \times \frac{1}{2}} = \frac{1}{3} \end{split}$$

- Let's assume you initially select Door 1.
- Suppose that Monty then opens Door 2 to reveal a goat.
- We want to calculate the *posterior* probability that a car lies behind Door 1&3 after Monty has provided these new data.

$$P(h_3/D_2) = \frac{P(D_2/h_3)P(h_3)}{P(D_2)}$$

- · Let's assume you initially select Door 1.
- · Suppose that Monty then opens Door 2 to reveal a goat.
- We want to calculate the *posterior* probability that a car lies behind Door 1&3 after Monty has provided these new data.

$$P(h_3/D_2) = \frac{P(D_2/h_3)P(h_3)}{P(D_2)}$$

$$= \frac{P(D_2/h_3)P(h_3)}{P(D_2/h_1)P(h_1) + P(D_2/h_2)P(h_2) + +P(D_2/h_3)P(h_3)}$$

$$= \frac{1 \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{2}{3}$$

最大后验假设 Maximum a Posteriori Hypothesis (MAP)

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

给定训练数据,最可能的假设是什么?

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} \ P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \ \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} \ P(D \mid h) P(h)$$
If all of $P(h)$
are equal

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h)$$

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$
If all of $P(h)$
are equal

Maximum Likelihood
hypothesis h_{MLP} = $\underset{h \in H}{\operatorname{argmax}} P(D/h)$

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.
 - 1. What is the probability that this patient has cancer?
 - 2. What is the probability that he does not have cancer?
 - 3. What is the diagnosis?

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.
 - 1. What is the probability that this patient has cancer?
 - 2. What is the probability that he does not have cancer?
 - 3. What is the diagnosis?

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.

$$P(cancer) = 0.008$$

 $P([+] \mid cancer) = 0.98$
 $P([+] \mid \neg cancer) = 0.03$

$$P(\neg cancer) = 0.992$$

 $P([-] \mid cancer) = 0.02$
 $P([-] \mid \neg cancer) = 0.97$

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.

```
P(cancer) = 0.008

P([+] \mid cancer) = 0.98

P([+] \mid \neg cancer) = 0.03
```

$$P(\neg cancer) = 0.992$$

 $P([-] \mid cancer) = 0.02$
 $P([-] \mid \neg cancer) = 0.97$

P(cancer |[+])

 $P(\neg cancer | [+])$

P([+]| - cancer)

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.

$$P(cancer) = 0.008$$

 $P([+] \mid cancer) = 0.98$
 $P([+] \mid \neg cancer) = 0.03$

$$P(\neg cancer) = 0.992$$

 $P([-] \mid cancer) = 0.02$
 $P([-] \mid \neg cancer) = 0.97$

HARIE KA

Example: disease diagnosis

- A patient takes a lab test and the result comes back positive.
- It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases; Furthermore, only 0.008 of the entire population has this disease.

```
P(cancer) = 0.008

P([+] \mid cancer) = 0.98

P([+] \mid \neg cancer) = 0.03
```

```
P(\neg cancer) = 0.992

P([-] \mid cancer) = 0.02

P([-] \mid \neg cancer) = 0.97
```


最大后验

假设

```
P([+] | cancer) P(cancer)
= 0.98 \times 0.008 = 0.0078
P([+] |¬ cancer) P(\rceil cancer)
= 0.03 \times 0.992 = 0.0298
```

 $h_{MAP} = \neg$ cancer

最大似然 假设

 h_{MLP} = cancer

Brute-Force MAP学习算法 Brute-Force MAP Learning algorithm

For each h in H, calculate the posterior probability

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

Output the h_{MAP}

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h \mid D)$$

 This algorithm requires significant computation, because it need to calculate each P(h|D). This is impractical for large hypothesis spaces.

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

给定训练数据,最可能的分类是什么?

例子:最可能的分类 Example: most probable classification

 Given new instance x, what is its most probable classification?

•
$$P(h_1|D)=0.4$$
, $h1(x)=+$

•
$$P(h_2|D)=0.3$$
, $h_2(x)=-$

•
$$P(h_3|D)=0.3$$
, $h_3(x)=-$

例子:最可能的分类 Example: most probable classification

 Given new instance x, what is its most probable classification?

•
$$P(h_1|D)=0.4$$
, $h1(x)=+$

•
$$P(h_2|D)=0.3$$
, $h_2(x)=-$

•
$$P(h_3|D)=0.3$$
, $h_3(x)=-$

$$h_{MAP} = \underset{h \in H}{\text{arg max}} P(h \mid D) = h1(x) = +$$

例子:最可能的分类

Example: most probable classification

 Given new instance x, what is its most probable classification?

•
$$P(h_1|D)=0.4$$
, $h1(x)=+$
$$\sum_{h_i \in H} P(+|h_i)P(h_i|D)=0.4$$
• $P(h_2|D)=0.3$, $h2(x)=-$
$$\sum_{h_i \in H} P(-|h_i)P(h_i|D)=0.6$$
• $P(h_3|D)=0.3$, $h3(x)=-$

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} \ P(h \mid D) = h1(x) = +$$

例子:最可能的分类

Example: most probable classification

 Given new instance x, what is its most probable classification?

•
$$P(h_1|D)=0.4$$
, $h1(x)=+$

$$\sum_{h_i \in H} P(+|h_i)P(h_i|D)=0.4$$
• $P(h_2|D)=0.3$, $h2(x)=-$

$$\sum_{h_i \in H} P(-|h_i)P(h_i|D)=0.6$$
• $P(h_3|D)=0.3$, $h3(x)=-$

$$h_{MAP} = \underset{h \in H}{\text{arg max}} P(h \mid D) = \text{h1}(x) = +$$

MAP is not the most probable classification!

In many learning scenarios, the learner considers a set of hypotheses H and is interested in finding the most probable hypothesis $h \in H$ given the observed data D. Any such hypothesis is called $maximum\ a\ posteriori\ hypothesis$.

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D \mid h) P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D \mid h) P(h)$$

MAP is not the most probable classification!

贝叶斯最优分类器 Bayes Optimal Classifier

 Bayes Optimal Classification: The most probable classification of a new instance is obtained by combining the predictions of all hypotheses, weighted by their posterior probabilities:

$$\underset{v_j \in V}{\operatorname{argmax}} \sum_{h_i \in H} P(v_j/h_i) P(h_i/D)$$

where v is the set of all the values a classification can take and v_i is one possible such classification.

例子:最可能的分类

Example: most probable classification

 Given new instance x, what is its most probable classification?

•
$$P(h_1|D)=0.4$$
, $h1(x)=+$
$$\sum_{h_i \in H} P(+|h_i)P(h_i|D)=0.4$$
• $P(h_2|D)=0.3$, $h2(x)=-$
$$\sum_{h_i \in H} P(-|h_i)P(h_i|D)=0.6$$
• $P(h_3|D)=0.3$, $h3(x)=-$

$$h_{MAP} = \underset{h \in H}{\operatorname{arg \, max}} P(h \mid D) = h1(x) = +$$

$$\underset{v_{i} \in \{+,-\}, h_{i} \in H}{\operatorname{arg \, max}} \sum_{h_{i} \in H} P(v_{j} \mid h_{i}) P(h_{i} \mid D) = -$$

Bayes Optimal Classification gives us a lower bound on the classification error that can be obtained for a given problem.

贝叶斯最优分类器 Bayes Optimal Classifier

 Bayes Optimal Classification: The most probable classification of a new instance is obtained by combining the predictions of all hypotheses, weighted by their posterior probabilities:

$$\underset{v_j \in V}{\operatorname{argmax}} \sum_{h_i \in H} P(v_j/h_i) P(h_i/D)$$

where v is the set of all the values a classification can take and v_i is one possible such classification.

Unfortunately, Bayes Optimal Classifier is usually too costly to apply!

• Let each instance x of a training set D be described by a conjunction of m attribute values $\langle x_1, x_2, ..., x_m \rangle$ and let f(x), the target function, be such that $f(x) \in V$, a finite set.

Bayesian Approach:

$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k/x_1, x_2, ..., x_m) = \underset{v_k \in V}{\operatorname{argmax}} \frac{P(x_1, x_2, ..., x_m/v_k)P(v_k)}{P(x_1, x_2, ..., x_m)}$$

$$= \underset{v_k \in V}{\operatorname{argmax}} P(x_1, x_2, ..., x_m/v_k)P(v_k)$$

• Let each instance x of a training set D be described by a conjunction of m attribute values $\langle x_1, x_2, ..., x_m \rangle$ and let f(x), the target function, be such that $f(x) \in V$, a finite set.

Bayesian Approach:

$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k / x_1, x_2, ..., x_m) = \underset{v_k \in V}{\operatorname{argmax}} \frac{P(x_1, x_2, ..., x_m / v_k) P(v_k)}{P(x_1, x_2, ..., x_m)}$$

$$= \underset{v_k \in V}{\operatorname{argmax}} P(x_1, x_2, ..., x_m / v_k) P(v_k)$$

$$v_k \in V$$

Require a very huge training data set!

Let each instance x of a training set D be described by a conjunction of m attribute values $\langle x_1, x_2, ..., x_m \rangle$ and let f(x), the target function, be such that $f(x) \in V$, a finite set.

Bayesian Approach:

$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k / x_1, x_2, ..., x_m) = \underset{v_k \in V}{\operatorname{argmax}} \frac{P(x_1, x_2, ..., x_m / v_k) P(v_k)}{P(x_1, x_2, ..., x_m)}$$

$$= \underset{v_k \in V}{\operatorname{argmax}} P(x_1, x_2, ..., x_m / v_k) P(v_k)$$

$$v_k \in V$$

Naive Bayesian Approach: assume that the attribute values are conditionally independent so that

$$P(x_1, x_2, ..., x_m/v_k) = \prod_{i=1}^{n} P(x_i/v_k)$$

• Naive Bayes Classifier:
$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k) \coprod_{j=1}^m P(x_j/v_k)$$

$$v = \underset{v_k \in V}{\operatorname{argmax}} P(v_k) \prod_{j=1}^{n} P(x_j/v_k)$$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Consider the weather data and we have to classify the instance:

< Outlook = sunny, Temp = cool, Hum = high, Wind = strong>

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

PlayTennis

$$P(yes) = 9/14$$

 $P(no) = 5/14$

Outlook		
P(sunny yes) = 2/9	P(sunny no) = 3/5	
P(overcast yes) = 4/9	P(overcast no) = 0	
P(rain yes) = 3/9	P(rain no) = 2/5	
Temp		
P(hot yes) = 2/9	P(hot no) = 2/5	
P(mild yes) = 4/9	P(mild no) = 2/5	
P(cool yes) = 3/9	P(cool no) = 1/5	
Hum		
P(high yes) = 3/9	P(high no) = 4/5	
P(normal yes) = 6/9	P(normal no) = 2/5	
Windy		
P(true yes) = 3/9	P(true no) = 3/5	
P(false yes) = 6/9	P(false no) = 2/5	

Consider the weather data and we have to classify the instance:

< Outlook = sunny, Temp = cool, Hum = high, Wind = strong>

The task is to predict the value (*yes* or *no*) of the concept PlayTennis. We apply the naive bayes rule:

$$y = \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) \prod_{j=1}^{m} P(x_j/v_k)$$

$$= \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) P(outlook = sunny/v_k) P(Temp = cool/v_k)$$

$$P(Hum = high/v_k) P(Wind = strong/v_k)$$

$$y = \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) \prod_{j=1}^{m} P(x_j/v_k)$$

$$= \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) P(outlook = sunny/v_k) P(Temp = cool/v_k)$$

$$P(Hum = high/v_k) P(Wind = strong/v_k)$$

$$P(yes) P(sunny|yes) P(cool|yes) P(high|yes) P(strong|yes) = .0053$$

$$P(no) p(sunny|no) P(cool|no) P(high|no) P(strong|no) = .0206$$

Thus, the naive Bayes classifier assigns the value 'no' to PlayTennis!

$$y = \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) \coprod_{j=1}^{m} P(x_j/v_k)$$

$$= \underset{v_k \in \{\text{yes}, no\}}{\operatorname{argmax}} P(v_k) P(outlook = sunny/v_k) P(Temp = cool/v_k)$$

$$P(Hum = high/v_k) P(Wind = strong/v_k)$$

$$P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) = .0053$$

$$P(no)p(sunny|no)P(cool|no)P(high|no)P(strong|no) = .0206$$

normalize

例子: 文本分类

Example: Learning to classify text

- Target concept, $v_k \in \{like, dislike\}$
- Attributes to represent text documents
 - One attribute per word position in document
 - Vector of words for each document

This is an example document for the naïve bayes classifier. This document contains only one paragraph, or two sentences.

$$y = \underset{v_k \in \{like, dislike\}}{\operatorname{argmax}} P(v_k) \prod_{j=1}^{j} P(x_j = w_j/v_k)$$
$$= \underset{v_k \in \{like, dislike\}}{\operatorname{argmax}} P(v_k) P(x_1 = this/v_k) \dots P(x_{19} = setnences/v_k)$$

例子: 文本分类

Example: Learning to classify text

- Target concept, $v_k \in \{like, dislike\}$
- Attributes to represent text documents
 - One attribute per word position in document
 - Vector of words for each document

This is an example document for the naïve bayes classifier. This document contains only one paragraph, or two sentences.

$$y = \underset{v_k \in \{like, dilike\}}{\operatorname{argmax}} P(v_k) \coprod_{j=1} P(x_j = w_j / v_k)$$

 $\underset{v_k \in \{like,dilike\}}{\operatorname{argmax}} P(v_k) P(x_1 = this/v_k) \dots P(x_{19} = setnences/v_k)$

Assumption: independent of position

=
$$\underset{v_k \in \{like,dilike\}}{P(v_k)P(this/v_k) \dots P(setnences/v_k)}$$

例子: 文本分类 Example: Learning to classify text

To estimate the probability $P(w_i/v_k)$ we use:

$$P(w_j/v_k) = \frac{\text{in all the instances whose target value is } v_k}{\text{total number of the words}}$$

$$\text{in all the instances whose target value is } v_k$$

例子: 文本分类 Example: Learning to classify text

To estimate the probability $P(w_i/v_k)$ we use:

$$P(w_j/v_k) = \frac{\text{in all the instances whose target value is } v_k}{\text{total number of the words}}$$

$$\text{in all the instances whose target value is } v_k$$

Laplacian smoothing

$$P(w_j/v_k) = \frac{in \ all \ the \ instances \ whose \ target \ value \ is \ v_k}{total \ number \ of \ the \ words} + \alpha * |Vocabulary|$$
 in all the instances whose target value is v_k

(usually set $\alpha = 1$)

例子: 文本分类

Example: Learning to classify text

- Learn_Naive_Bayes_Text(Examples, V)
 Examples为一组文本文档以及它们的目标值。V为所有可能目标值的集合。此函数作用是学习概率项P(w_k|v_j)和P(v_j)。
 - 收集Examples中所有的单词、标点符号以及其他记号
 - Vocabulary←在Examples中任意文本文档中出现的所有单词及记号的集合
 - 计算所需要的概率项 $P(v_i)$ 和 $P(w_k|v_i)$
 - 对V中每个目标值v_j
 - docs_i←Examples中目标值为v_i的文档子集
 - P(v_i)←|docs_i| / |Examples|
 - Text_j←将docs_j中所有成员连接起来建立的单个文档
 - n←在Text_i中不同单词位置的总数
 - 对Vocabulary中每个单词wk
 - » n_k←单词w_k出现在Text_i中的次数
 - » $P(w_k|v_j)\leftarrow(n_k+1) / (n+|Vocabulary|)$

$$v_{NB} = \underset{v_j \in V}{\operatorname{arg max}} P(v_j) \prod_{i \in positions} P(a_i \mid v_j)$$

朴素贝叶斯用于文本分类 NB algorithm for learning & classifying text

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.motorcyclrec.sport.basel rec.sport.hock

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns

sci.space sci.crypt sci.electronic sci.med

Naive Bayes: 89% classification accuracy

Resources for those interested

code and dataset can be found at http://www.cs.cmu.edu/~tom/book.html

- Learn from examples which articles are of interest
- Learn to classify web pages by topic
- NB classifiers are one of the most effective for this task

Accuracy vs. Training set size (1/3 withheld for test)

Let each instance x of a training set D be described by a conjunction of m attribute values $\langle x_1, x_2, ..., x_m \rangle$ and let f(x), the target function, be such that $f(x) \in V$, a finite set.

Bayesian Approach:

$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k / x_1, x_2, ..., x_m) = \underset{v_k \in V}{\operatorname{argmax}} \frac{P(x_1, x_2, ..., x_m / v_k) P(v_k)}{P(x_1, x_2, ..., x_m)}$$

$$= \underset{v_k \in V}{\operatorname{argmax}} P(x_1, x_2, ..., x_m / v_k) P(v_k)$$

$$v_k \in V$$

Naive Bayesian Approach: assume that the attribute values are conditionally independent so that

$$P(x_1, x_2, ..., x_m/v_k) = \prod_{i=1}^{n} P(x_i/v_k)$$

Naive Bayes Classifier:
$$y = \underset{v_k \in V}{\operatorname{argmax}} P(v_k) \coprod_{j=1}^m P(x_j/v_k)$$

m

不同的朴素贝叶斯分类器 Different NBs

Gaussian NB

continuous features

$$P(x_i/v_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp(-\frac{x_i - \mu_k}{2\sigma_k^2})$$

- Multinomial NB
 - multivariate discrete features

$$P(x_i/v_k) = \frac{N_{x_{i,v_k}} + \alpha}{N_{v_k} + \alpha * n}$$

- Bernoulli NB
 - binary discrete or very sparse multivariate discrete features
- •

朴素贝叶斯分类器问题 NB's Problem

Sex	Over 6 foot	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Over 200 pounds	
Male	Yes	0.11
	No	0.80
Female	Yes	0.05
	No	0.95

朴素贝叶斯分类器问题 NB's Problem

Solution

Consider the relationships between attributes...

Sex

Male

Female

No

 Over 6 foot
 Over 6 foot

 Yes
 0.15

 No
 0.85

 Yes
 0.01

0.99

$p(x v_j)$	
$p(x_2 v_j)$	$p(x_n v_j)$
Sex Over 200 nounds	

Sex	Over 200 pounds	
Male	Yes and Over 6 foot	0.11
	No and Over 6 foot	0.59
	Yes and NOT Over 6 foot	0.05
	No and NOT Over 6 foot	0.35
Female	Yes and Over 6 foot	0.01

贝叶斯置信网 Bayesian Belief Networks(Bayes nets)

- naive assumption of conditional independency too restrictive
- But it's intractable without some such assumptions...
- Bayesian belief networks describe conditional independence among subsets of variables
- allows combining prior knowledge about causal relationships among variables with observed data

条件独立 Conditional Independence

Definition: X is conditionally independent of Y given Z is the probability distribution governing X is independent of the value of Y given the value of Z, that is, if

$$\forall x_i, y_j, z_k \quad P(X=x_i|Y=y_j, Z=z_k) = P(X=x_i|Z=z_k)$$
 or more compactly $P(X|Y,Z) = P(X|Z)$

Example: Thunder is conditionally independent of Rain given Lightning

P(Thunder | Rain, Lightning) = P(Thunder | Lightning)

Notice: P(*Thunder* | *Rain*) ≠ P(*Thunder*)

Naive bayes uses cond. Indep. to justify:

$$P(A_1, A_2 | V) = P(A_1 | A_2, V) P(A_2 | V)$$

= $P(A_1 | V) P(A_2 | V)$

条件独立 Conditional Independence

精确定义条件独立性

令X,Y和Z为3个离散值随机变量,当给定Z值时X服从的概率分布独立于Y的值,称X在给定Z时条件独立于Y,即

$$(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

上式通常简写成P(X|Y,Z)=P(X|Z)

扩展到变量集合

下面等式成立时,称变量集合X1...XI在给定变量集合Z1...Zn时 条件独立于变量集合Y1...Ym

$$P(X_1...X_l | Y_1...Y_m, Z_1...Z_n) = P(X_1...X_l | Z_1...Z_n)$$

条件独立性与朴素贝叶斯分类器的之间的关系

$$P(A_1, A_2 | V) = P(A_1 | A_2, V)P(A_2 | V)$$

= $P(A_1 | V)P(A_2 | V)$

贝叶斯信念网 Bayesian Belief Networks (BBNs)

Network represents a set of conditional independence assertions:

• Each node is conditionally independent of its non-descendants, given its immediate predecessors. (directed acyclic graph)

贝叶斯信念网 Bayesian Belief Networks (BBNs)

Network represents joint probability distribution over all variables

- P(Storm,BusGroup,Lightning,Campfire,Thunder,Forestfire)
- $P(y_1,...,y_n) = \prod_{i=1}^n P(y_i|Parents(Y_i))$
- joint distribution is fully defined by graph plus $P(y_i|Parents(Y_i))$

贝叶斯信念网 Bayesian Belief Networks (BBNs)

- 1. Graphical model that represents probabilistic relationships among a set of variables.
- 2. Composed of a Directed Acyclic Graph (DAG) and Conditional Probability Distributions (CPDs).

Key Concept:

- 1. Encodes causal relationships via its graphical structure.
- 2. Provides probabilities for each variable given the state of its parent variables.

贝叶斯信念网的应用 Applications of BBNs

Medical Diagnosis:

Diagnose diseases based on the probabilistic relationships between diseases and symptoms.

Recommendation Systems:

Predict preferences or interests based on user behavior and attributes of items.

Risk Assessment:

Evaluate potential risks in fields like finance, insurance, etc.

Fault Diagnosis:

simulate different mechanical components and their interactions, predicting failures and suggesting maintenance actions.

• • •

贝叶斯信念网的优点和挑战 Advantages and Challenges of BBNs

Advantages:

- 1. High interpretability due to its graphical structure.
- 2. Naturally handles uncertainty and missing data.
- 3. Incorporates prior knowledge seamlessly.

Challenges:

- 1. Scalability: Inference can be complex and timeconsuming for large networks.
- 2. Data sparsity: Might lead to overfitting when learning parameters for intricate networks with insufficient data.

贝叶斯网的推理 Inference in Bayesian Network

How can one infer the (probabilities of) values of one or more network variables, given observed values of others?

- If only one variable with unknown value, easy to infer it
- Exact inference may not be feasible in large or highly complex networks, hence approximate methods are often favored.

In practice, can succeed in many cases

- Learning the parameter:
 - Maximum Likelihood Estimation (MLE), Bayesian Estimation
 (BE), Expectation-Maximization (EM) ...
- Learning the Structure (heuristic algorithms)
 - Score-based methods; Constraint-based methods; Hybrid methods...

期望最大化算法 Expectation Maximization Algorithm

The EM (Expectation-Maximization) algorithm is a powerful and iterative approach to statistical estimation in cases where data are incomplete or have some missing or hidden parts.

when to use

- data is only partially observable
- unsupervised clustering: target value unobservable
- supervised learning: some instance attributes unobservable applications
- training Bayesian Belief Networks
- unsupervised clustering
- learning hidden Markov models

•

期望最大化算法 Expectation Maximization Algorithm

The algorithm consists of two main steps that are repeated until convergence:

- 1. Expectation (E) step: Given the current estimates of parameters, calculate the expected values of the hidden variables. This step involves creating a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters.
- **2. Maximization (M) step:** Maximize the expectation function from the E step to find the new estimates of the parameters. This maximizes the likelihood of the data given the expected values of the hidden variables from the E step.

The idea is that each iteration will increase the likelihood of the data incrementally, and under certain conditions, the algorithm is guaranteed to converge to a (local) maximum.

Example: Coin Tossing Experiment

Esitimate $\theta = < \theta_A$, $\theta_B >$ when X, Z are known.

	нтттннтнтн		
	нннтнннн		
	нтннннтнн		
	нтнтттннтт		
A	тнннтнннтн		
5 sets, 10 tosses per set			

Coin A	Coin B		
	5 H, 5 T		
9 H, 1 T			
8 H, 2 T			
	4 H, 6 T		
7 H, 3 T			
24 H, 6 T	9 H, 11 T		

$$\hat{\theta_A} = \frac{\text{\# of heads using coin A}}{\text{total \# of flips using coin A}}$$

$$\hat{\theta_B} = \frac{\text{\# of heads using coin B}}{\text{total \# of flips using coin B}}$$

Example: Coin Tossing Experiment

Esitimate $\theta = < \theta_A$, $\theta_B >$ when X, Z are known.

0	нтттннтнтн		
	ннннтнннн		
	нтннннтнн		
	нтнтттннтт		
	тнннтнннтн		
5 sets, 10 tosses per set			

Coin A	Coin B	, c1 1 · · · ·
	5 H, 5 T	$\hat{\theta_A} = \frac{\text{\# of heads using coin A}}{\text{total \# of flips using coin A}}$
9 H, 1 T		$\hat{\theta_B} = \frac{\text{# of heads using coin B}}{\text{total # of flips using coin B}}$
8 H, 2 T		total # of hips using conf b
	4 H, 6 T	$\hat{\theta}_A = \frac{24}{24+6} = 0.80$
7 H, 3 T		$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
24 H, 6 T	9 H, 11 T	

- X=(x1,x2, x3,x4,x5), xi is the number of heads observed during th ith set of tosses $xi \in \{0,1,2,3,4,5,6,7,8,9,10\}$
- Z = (z1, z2, z3, z4, z5), zi is the identity of the coin used during the ith set of tosses. $zi \in \{A,B\}$

Example: Coin Tossing Experiment

Esitimate $\theta = \langle \theta_A, \theta_B \rangle$ when X is observable, Z is unobservable

O H	тттннтнтн			
	нннтннннн			
	тнннннтнн			
O H	тнтттннтт			
O	нниннинни			
5 sets, 10 tosses per set				

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

 $\hat{\theta_A} = \frac{\text{\# of heads using coin A}}{\text{total \# of flips using coin A}}$

 $\hat{\theta_B} = \frac{\text{\# of heads using coin B}}{\text{total \# of flips using coin B}}$

- X=(x1,x2, x3,x4,x5), xi is the number of heads observed during th ith set of tosses $xi \in \{0,1,2,3,4,5,6,7,8,9,10\}$
- Z = (z1, z2, z3, z4, z5), zi is the identity of the coin used during the ith set of tosses. $zi \in \{A,B\}$

Example: Coin Tossing Experiment

Esitimate $\theta = \langle \theta_A, \theta_B \rangle$ when X is observable, Z is unobservable

混合高斯模型

Generating Data from Mixture of Gaussians

Each instance x generated by

- choosing one of the k Gaussians at random
- Generating an instance according to that Gaussian

EM算法估计高斯混合模型参数 EM for Estimating GMM Parameters

EM is iterative technique designed for probabilistic models.

Given:

- instances from X generated by mixture of k Gaussians
- unknown means $\langle \mu_1, ..., \mu_k \rangle$ of the k Gaussians
- don't know which instance x_i was generated by which Gaussian Determine:
- maximum likelihood estimates of $<\mu_1,...,\mu_k>$ Think of full description of each instance as $y_i=< x_i,z_{i1},z_{i2}>$
- z_{ij} is 1 if x_i generated by j-th Gaussian
- x_i observable
- z_{ij} unobservable

EM算法估计高斯混合模型参数 EM for Estimating GMM Parameters

EM algorithm: pick random initial $h=<\mu_1, \mu_2>$ then iterate

• E step:

Calculate the expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming the current hypothesis

• $h = <\mu_1, \mu_2 > \text{holds.}$

• M step:

Calculate a new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$ assuming the value taken on by each hidden variable z_{ij} is its expected value $E[z_{ij}]$ calculated in the E-step.

Replace h=< μ_1 , μ_2 > by h'=< μ'_1 , μ'_2 >

$$E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i | \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^{2} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} E[z_{ij}] x_{i}}{\sum_{i=1}^{m} E[z_{ij}]}$$

思考题

• 简述贝叶斯最优分类器、朴素贝叶斯分类器和贝叶斯信念网络的区别?