

# SCHOOL OF COMPUTER SCIENCE AND ENGINEERING JUNE, 2021

# **BANK MARKETING**

# A PROJECT REPORT

Submitted by

# KSHITIZ CHOUDHARY - 18BCE0606

Course Code: CSE 3013

Course Title: Artificial Intelligence

Under the guidance of

Dr. S. Anto
Associate Professor, SCOPE,

VIT, Vellore.

# 1 Table of Contents

| 1 Table of Contents                           | 2  |
|-----------------------------------------------|----|
| 2 Index of Tables                             | 3  |
| 3 Index of Figures                            | 3  |
| 1. INTRODUCTION                               | 4  |
| 1.1. ABSTRACT                                 | 4  |
| 1.2. INTRODUCTION                             | 4  |
| 2. LITERATURE SURVEY                          | 6  |
| 2.1. PAPERS REFERED                           | 6  |
| 2.2. BASE PAPERS                              | 12 |
| 2.3. PROBLEM DEFINITION                       | 13 |
| 3. OVERVIEW OF THE WORK                       | 15 |
| 3.1. OBJECTIVES OF THE PROJECT                | 15 |
| 3.2. SOFTWARE REQUIREMENTS                    | 15 |
| 3.3. HARDWARE REQUIREMENTS                    | 15 |
| 4. SYSTEM DESIGN                              | 16 |
| 4.1. DATA PREPROCESSING                       | 16 |
| 4.2. TRAIN TEST SPLIT                         | 16 |
| 4.3. MACHINE LEARNING ALGORITHMS              | 16 |
| 4.3.1. LOGISTIC REGRESSION                    | 16 |
| 4.3.2. SUPPORT VECTOR MACHINE                 | 17 |
| 4.3.3. DECISION TREE CLASSIFIER               | 17 |
| 4.3.4. ENSEMBLE LEARNING MODELS               | 17 |
| 4.3.4.1. RANDOM FORREST                       | 17 |
| 4.3.4.2. XGB-CLASSIFIER                       | 18 |
| 5. IMPLEMENTATION                             | 19 |
| 5.1. DESCRIPTION OF MODULES/PROGRAMS          | 19 |
| 6. OUTPUT AND PERFORMANCE ANALYSIS            | 21 |
| 6.1. EXECUTION SNAPSHOTS                      | 21 |
| 6.2. OUTPUT – IN TERMS OF PERFORMANCE METRICS | 28 |
| 6.2.1. CROSS VALIDATION SCORE                 | 28 |
| 6.2.2. ACCURACY AND RMSE COMPARISON           | 28 |

|              | 7. CONCLUSION AND FUTURE DIRECTIONS                            | 0        |
|--------------|----------------------------------------------------------------|----------|
|              | 8. REFERENCES                                                  | 4        |
|              |                                                                |          |
|              |                                                                |          |
|              |                                                                |          |
| 2            | Index of Tables                                                |          |
| Tab<br>Tab   | le 1 Paper Refered6 le 2 Base Papers                           | 126      |
| 3            | Index of Figures                                               |          |
|              |                                                                |          |
| Figu<br>Figu | ure 1 Age Count Distribution                                   | 29<br>80 |
|              | ure 6 Contact, Months and Days of the week Count Distribution3 |          |

#### 1. INTRODUCTION

#### 1.1. ABSTRACT

Bank marketing refers to the various ways in which a bank can help a customer, such as operating accounts, making transfers, paying standing orders and selling foreign currency. Marketing is important for growing market share as well as sales in banking and insurance. Marketing is essential for any business. Since the Banking sector is moving towards customer-centric, Marketing is very important for that. The marketing of bank services is the activity of presenting, advertising and selling of bank's products in the best possible way in order to satisfy consumers' requirements. In this project we will be using a bank marketing dataset from UCI machine learning repository. The data is related to direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls This dataset is multivariate and has a total of 17 attributes. The primary objective of this project is to predict whether the client will subscribe to a term deposit or not. We will be using various supervised machine learning techniques such as logistic regression, decision tree classifier, support vector machine, etc and then we will compare accuracy of all the techniques among them. This will give us the best model with the highest accuracy. We will also find out the metricscores of the model such as precision, recall and f1 score. This will give us the best model with the highest accuracy.

#### 1.2. INTRODUCTION

In the last few years, machine learning (ML) has grown into one of the most significant IT and Artificial intelligence (AI) branches. This is a specific sub-group of AI based on the idea that the machine can learn by identifying patterns and make predictions in various data problems with minimum human intervention. Machine learning is a data analysis method that is widely used in various business and industrial sectors. The main reason for that because ML can build predictive models to produce better predictions and achieve the desired level of accuracy, leading to better outcomes.

The aim of the project is to find how to use machine learning techniques for analysis and

makingpredictions using existing dataset in banking marketing. To find how they can be used together ina process of converting raw data to effective decision-making knowledge. Building the predictive models will help to predict whether the client will subscribe for a term deposit.

This report will describe the different stages of preparation and implementation of the predictive models, staring with a literature review on machine learning techniques; in particular, linear regression and decision trees and how machine learning techniques are used in banking marking.

Once the literature review of these techniques has been revised, a methodology will be composed on how to pursue the investigation. The methodology is needed to establish how the implementation of the models will continue.

After the establishment of the methodology, the methods of data cleaning and preparation methods on the raw data will be described and explained. The project will identify probabilities and visualize the results in order to improve the solutions and achieve desired outcomes. At the same time, a good understanding of banking marketing dataset will be provided so that the scopeof the analysis can be clearly defined.

# 2. LITERATURE SURVEY

# 2.1. PAPERS REFERED

Table 1 Paper Refered

| S.  | Title of the   | Algorithms       | Performance     | Dataset      | Gaps identified |
|-----|----------------|------------------|-----------------|--------------|-----------------|
| No. | Paper And      | Used             | Measures        | being used   |                 |
|     | year           |                  |                 |              |                 |
| 1   | Predicting     | Multilayer       | Evaluation of   | UCI          | Better Models   |
|     | Customer       | Perceptron       | the classifiers | Machine      | Can be used.    |
|     | Response to    | Neural Network   | was performed   | Learning     |                 |
|     | Bank Direct    | (MLPNN),         | using           | Repository   |                 |
|     | Telemarketing  | Decision Tree    | classification  | database     |                 |
|     | Campaign       | (C4.5), Logistic | accuracy and    |              |                 |
|     | (2017)         | Regression and   | ROC. The RF     |              |                 |
|     |                | Random Forest    | classifier      |              |                 |
|     |                | (RF).            | produced        |              |                 |
|     |                |                  | 86.80% as well  |              |                 |
|     |                |                  | as 92.7%        |              |                 |
|     |                |                  | respectively to |              |                 |
|     |                |                  | place first     |              |                 |
|     |                |                  | among the       |              |                 |
|     |                |                  | classifiers.    |              |                 |
| 2   | Evaluation of  | Logistic         | A mix of ROC    | Unnamed      | Better Ensemble |
|     | Classification | Regression,      | AUC and         | Portuguese   | Models Can be   |
|     | and Ensemble   | Decision Tree,   | Classification  | bank dataset | used.           |
|     | Algorithms for | Naïve Bayes and  | Error rates.    | with 17      |                 |
|     | Bank Customer  | the Random       | Random          | features.    |                 |
|     | Marketing      | Forest ensemble  | Forrest         |              |                 |
|     | Response       | after Cross      | performed the   |              |                 |
|     | Prediction     | Industry         | best with AUC   |              |                 |
|     | (2016)         | Standard for     | of 74.2% in     |              |                 |
|     |                | Data Mining      | balanced and    |              |                 |
|     |                | (CRISP-DM)       |                 |              |                 |

|   |                 |                 | unbalanced       |            |                   |
|---|-----------------|-----------------|------------------|------------|-------------------|
|   |                 |                 | dataset.         |            |                   |
|   |                 |                 |                  |            |                   |
|   |                 |                 |                  |            |                   |
|   |                 |                 |                  |            |                   |
|   |                 |                 |                  |            |                   |
| 3 | Evaluation of   | comparison of   | Standard         | UCI        | Many advanced     |
|   | Machine         | Logical         | Accuracy         | Machine    | classification    |
|   | Learning        | Regression and  | Measurements.    | Learning   | models could      |
|   | Frameworks on   | Linear SVM on   | Results show     | Repository | have been tested. |
|   | Bank Marketing  | Weka, Scikit-   | best results are | database   |                   |
|   | and Higgs       | Learn and Spark | obtained by      |            |                   |
|   | Datasets (2015) | frameworks      | Logistic         |            |                   |
|   |                 |                 | regression on    |            |                   |
|   |                 |                 | Scikit-Learn     |            |                   |
|   |                 |                 | framework.       |            |                   |
| 4 | Mining a        | Naive-Bayes     | Confusion        | UCI        | Many advanced     |
|   | Marketing       | Algorithm and   | Matrix and       | Machine    | classification    |
|   | Campaigns Data  | One-R           | accuracy         | Learning   | models(ensemble)  |
|   | of Bank (March  | Algorithm.      | evaluation.      | Repository | could have been   |
|   | 2019)           |                 | Results show     | database   | Used.             |
|   |                 |                 | one-r to         |            |                   |
|   |                 |                 | perform best     |            |                   |
|   |                 |                 | with an          |            |                   |
|   |                 |                 | accuracy of      |            |                   |
|   |                 |                 | 89.3875%         |            |                   |

| 5 | **Predicting the | Best subset     | AUC and         | UCI        | Advanced        |
|---|------------------|-----------------|-----------------|------------|-----------------|
|   | Success of Bank  | algorithms of   | Accuracy used   | Machine    | classification  |
|   | Telemarketing    | LASSO, logistic | as performance  | Learning   | models(enseble  |
|   | using various    | regression and  | measures.       | Repository | models) could   |
|   | Classification   | random forrest  | Results show    | database   | have been used. |
|   | Algorithms       | followed by     | best            |            |                 |
|   | (2017)           | SVM, DT, RF     | performance     |            |                 |
|   |                  | and ANN         | by RF           |            |                 |
|   |                  | classifiers     | algorithm of    |            |                 |
|   |                  |                 | 90.63%          |            |                 |
|   |                  |                 | accuracy on     |            |                 |
|   |                  |                 | full model and  |            |                 |
|   |                  |                 | 90.56%          |            |                 |
|   |                  |                 | accuracy on the |            |                 |
|   |                  |                 | subset selected |            |                 |
|   |                  |                 | by random       |            |                 |
|   |                  |                 | forest.         |            |                 |
| 6 | Imbalanced       | resampling      | Evaluation is   | UCI        | Advanced        |
|   | customer         | algorithms of   | done using      | Machine    | Ensemble models |
|   | classification   | SMOTE, Tomek    | confusion       | Learning   | can be used.    |
|   | for bank direct  | links, cluster  | matrix.         | Repository |                 |
|   | marketing        | under sampling  | Logistic        | database   |                 |
|   | (2017)           | and Classifiers | Regression and  |            |                 |
|   |                  | namely Linear   | secondarily     |            |                 |
|   |                  | discriminant,   | Linear          |            |                 |
|   |                  | logistic        | Discriminant    |            |                 |
|   |                  | regression, k-  | on SMOTE        |            |                 |
|   |                  | nearest         | oversampled     |            |                 |
|   |                  | neighbours,     | data proved the |            |                 |
|   |                  | C4.5, and       | most effective  |            |                 |
|   |                  | MLPNN on raw    | practices in    |            |                 |
| 1 |                  |                 |                 |            |                 |
|   |                  | and resampled   | case of limited |            |                 |

| 7 | Direct          | Deep belief       | Precision        | Web data     | Better Ensemble   |
|---|-----------------|-------------------|------------------|--------------|-------------------|
|   | marketing       | network, RF,      | Recall Metrics   | from one of  | Models Can be     |
|   | campaigns in    | CART              | used for         | the leading  | used.             |
|   | retail banking  | algorithms after  | evaluation.      | ecommerce    |                   |
|   | with the use of | Feature selection | After            | companies    |                   |
|   | deep learning   | with Boruta       | evaluation       | in Korea     |                   |
|   | and random      | algorithm         | CART             |              |                   |
|   | forests (2019)  |                   | classifier       |              |                   |
|   |                 |                   | applied after    |              |                   |
|   |                 |                   | boruta           |              |                   |
|   |                 |                   | provides the     |              |                   |
|   |                 |                   | best results     |              |                   |
|   |                 |                   | suited to the    |              |                   |
|   |                 |                   | given business   |              |                   |
|   |                 |                   | model            |              |                   |
| 8 | Customer        | SVM and ANN       | Model            | The          | Enseble           |
|   | Segmentation in | models            | evaluation was   | database     | classifiers could |
|   | Private Banking |                   | done using       | consists of  | have been used to |
|   | Sector Using    |                   | confusion        | 2,783        | increase accuracy |
|   | Machine         |                   | matrix, SVM      | observations | and efficiency    |
|   | Learning        |                   | model using      | representing |                   |
|   | Techniques      |                   | RBF kernel       | active       |                   |
|   | (2012)          |                   | function         | cardholders  |                   |
|   |                 |                   | clearly outruns  | at an        |                   |
|   |                 |                   | the "affluent"   | important    |                   |
|   |                 |                   | detection of the | commercial   |                   |
|   |                 |                   | MLP using        | bank from    |                   |
|   |                 |                   | gradient         | Romania.     |                   |
|   |                 |                   | descent          |              |                   |
|   |                 |                   | algorithm.       |              |                   |

| 9  | Visualization   | Oversampling   | It is found that | UCI        | Better              |
|----|-----------------|----------------|------------------|------------|---------------------|
|    | and Analysis in | by SMOTE,      | RF classifier    | Machine    | classification      |
|    | Bank Direct     | ADASYN,        | gives the best   | Learning   | models could        |
|    | Marketing       | ROS, ADOMS,    | accuracy After   | Repository | have been used.     |
|    | Prediction      | SPIDER and     | SMOTE            | database   |                     |
|    | (2019) *        | AHC followed   | (89.98%) and     |            |                     |
|    |                 | by RF, SVM, K- | on RAW           |            |                     |
|    |                 | neatest        | data(90.02%)     |            |                     |
|    |                 | neighbour,     |                  |            |                     |
|    |                 | Naïve Bayes.   |                  |            |                     |
| 10 | Bank Direct     | Multilayer     | Evaluation is    | UCI        | Neural network      |
|    | Marketing       | perceptron     | done using       | Machine    | simply decimates    |
|    | Based on Neural | neural network | accuracy,        | Learning   | the                 |
|    | Network (2013)  | (MLPNN) and    | sensitivity,     | Repository | interpretability of |
|    |                 | Ross Quinlan   | specificity.     | database   | your features to    |
|    |                 | new decision   | Results show     |            | the point where it  |
|    |                 | tree model     | MLPNN to be      |            | becomes             |
|    |                 | (C5.0).        | better           |            | Meaningless for     |
|    |                 |                | algorithm with   |            | the sake of         |
|    |                 |                | accuracy of      |            | performance,        |
|    |                 |                | 90.32%           |            | instead better      |
|    |                 |                |                  |            | classifier could    |
|    |                 |                |                  |            | have been used.     |
| 11 | ** Research on  | Under sampling | 89.3%            | UCI        | smaller dataset.    |
|    | Bank Marketing  | followed by    | accuracy         | Machine    | Better models       |
|    | Behaviour       | C5.0 decision  | calculated after | Learning   | could have been     |
|    | Based on        | tree           | analysing        | Repository | used.               |
|    | Machine         |                | confusion        | database   |                     |
|    | Learning (2020) |                | matrix           |            |                     |

| 12 | ** Knowledge    | data preparation | C5.0 algorithm  | UCI Irvine | Better Models     |
|----|-----------------|------------------|-----------------|------------|-------------------|
|    | creation in     | and key simple   | proved to be    | machine    | Can be used.      |
|    | banking         | and multiple     | the best        | learning   |                   |
|    | marketing using | linear           | algorithm after | repository |                   |
|    | machine         | regression, and  | Entropy         |            |                   |
|    | learning        | C5.0 and CART    | attribute       |            |                   |
|    | techniques      | decision tree.   | selection       |            |                   |
|    | (2019)          |                  | method with     |            |                   |
|    |                 |                  | accuracy of     |            |                   |
|    |                 |                  | 91.44%          |            |                   |
| 13 | Bank Direct     | MLPNN, TAN,      | Results show    | UCI        | Better            |
|    | Marketing       | LR and           | that MLPNN      | Machine    | classification    |
|    | Analysis of     | C5.0             | shows best      | Learning   | Models Can be     |
|    | Data Mining     |                  | results with    | Repository | used.             |
|    | Techniques      |                  | 90.49%          | database   |                   |
|    | (2014)          |                  | accuracy        |            |                   |
| 14 | A data-driven   | LR, DT, SVM,     | NN gave the     | UCI Irvine | Ensemble          |
|    | approach to     | NN               | best value of   | machine    | classification    |
|    | predict the     |                  | 0.794 AUC       | learning   | Models Can be     |
|    | success of bank |                  |                 | repository | used.             |
|    | telemarketing.  |                  |                 |            |                   |
|    | (2014)          |                  |                 |            |                   |
| 15 | ** Zhang, C.,   | Logistic         | best results    | UCI Irvine | Better Pre-       |
|    | (2016) Machine  | Regression,      | were shown by   | machine    | processing can be |
|    | Learning on     | Radom Forest,    | gradient        | learning   | done.             |
|    | Bank Marketing  | Gradient         | boosting.       | repository |                   |
|    | Data [Online]   | Boosting,        | Sensivity of    |            |                   |
|    |                 | Support Vector   | NN and          |            |                   |
|    |                 | Classifier and   | gradient        |            |                   |
|    |                 | Neural Network.  | boosting model  |            |                   |
|    |                 | (with and        | increased on    |            |                   |
|    |                 | without          | oversampling    |            |                   |
|    |                 | oversampling)    | but that's but  |            |                   |

|  | the correct     |  |
|--|-----------------|--|
|  | metric for this |  |
|  | business model  |  |
|  |                 |  |
|  |                 |  |
|  |                 |  |
|  |                 |  |
|  |                 |  |

# 2.2. BASE PAPERS

Table 2 Base Papers

| S.  | Title of the     | Algorithms Used | Performance     | Dataset    | Gaps identified |
|-----|------------------|-----------------|-----------------|------------|-----------------|
| No. | Paper And year   |                 | Measures        | being      |                 |
|     |                  |                 |                 | used       |                 |
| 5   | **Predicting the | Best subset     | AUC and         | UCI        | Advanced        |
|     | Success of Bank  | algorithms of   | Accuracy used   | Machine    | classification  |
|     | Telemarketing    | LASSO, logistic | as performance  | Learning   | models(enseble  |
|     | using various    | regression and  | measures.       | Repository | models) could   |
|     | Classification   | random forrest  | Results show    | database   | have been used. |
|     | Algorithms       | followed by     | best            |            |                 |
|     | (2017)           | SVM, DT, RF     | performance     |            |                 |
|     |                  | and ANN         | by RF           |            |                 |
|     |                  | classifiers     | algorithm of    |            |                 |
|     |                  |                 | 90.63%          |            |                 |
|     |                  |                 | accuracy on     |            |                 |
|     |                  |                 | full model and  |            |                 |
|     |                  |                 | 90.56%          |            |                 |
|     |                  |                 | accuracy on the |            |                 |
|     |                  |                 | subset selected |            |                 |
|     |                  |                 | by random       |            |                 |
|     |                  |                 | forest.         |            |                 |

| 11 | ** Research on   | Under sampling     | 89.3%            | UCI        | smaller dataset.  |
|----|------------------|--------------------|------------------|------------|-------------------|
|    | Bank Marketing   | followed by C5.0   | accuracy         | Machine    | Better models     |
|    | Behaviour Based  | decision tree      | calculated after | Learning   | could have been   |
|    | on Machine       |                    | analysing        | Repository | used.             |
|    | Learning (2020)  |                    | confusion        | database   |                   |
|    |                  |                    | matrix           |            |                   |
|    |                  |                    |                  |            |                   |
| 12 | ** Knowledge     | data preparation   | C5.0 algorithm   | UCI Irvine | Better Models     |
| 12 | creation in      | and key simple     | proved to be     | machine    | Can be used.      |
|    | banking          | and multiple       | the best         | learning   | Can be used.      |
|    | marketing using  | linear regression, | algorithm after  | repository |                   |
|    | machine learning | and C5.0 and       | Entropy          | repository |                   |
|    | techniques       | CART decision      | attribute        |            |                   |
|    | (2019)           | tree.              | selection        |            |                   |
|    | (2017)           |                    | method.          |            |                   |
| 15 | **Zhang, C.,     | Logistic           | best results     | UCI Irvine | Better Pre-       |
|    | (2016) Machine   | Regression,        | were shown by    | machine    | processing can be |
|    | Learning on      | Radom Forest,      | gradient         | learning   | done.             |
|    | Bank Marketing   | Gradient           | boosting.        | repository |                   |
|    | Data [Online]    | Boosting,          | Sensitivity of   |            |                   |
|    |                  | Support Vector     | NN and           |            |                   |
|    |                  | Classifier and     | gradient         |            |                   |
|    |                  | Neural Network.    | boosting model   |            |                   |
|    |                  | (with and without  | increased on     |            |                   |
|    |                  | oversampling)      | oversampling     |            |                   |
|    |                  |                    | but that's but   |            |                   |
|    |                  |                    | the correct      |            |                   |
|    |                  |                    | metric for this  |            |                   |
|    |                  |                    | business model   |            |                   |

# 2.3. PROBLEM DEFINITION

With the advancement of data processing technology and changes in the competitive environment, the cooperation of strategy and technology is signaling a customer-oriented era. Currently commercial banks are highly competitive, and business insights based on data analysis and mining are becoming the core competitiveness of commercial banks in the era of big data. Marketing is technique of exposing the target clients to a product via suitable systems and channels. It ultimately facilitates the way to buy the product or service and even helps in determining the need of the product and persuade customers to buy it. The overall aim is to increase sales of products and services for enterprise, business and financial institutions. It also helps to maintain the reputation of the company.

#### 3. OVERVIEW OF THE WORK

## 3.1. OBJECTIVES OF THE PROJECT

- 1. Provide the best model to predict customer response in a European bank marketing campaign.
- 2. Understand which features in the database (which attribute of user) has most impact on the response
- 3. Aim is to provide a methodology and Algorithm that gives better results with the prediction and analysis than existing systems.

# 3.2. SOFTWARE REQUIREMENTS

- 1. Jupyter Notebook
- 2. Ubuntu Operating

## 3.3. HARDWARE REQUIREMENTS

- 1. 8 GB RAM
- 2. 4/8 core processor machine

#### 4. SYSTEM DESIGN

The aim of this project is to predict if the client will subscribe to a term deposit (target variable y). We carried out our classification goal by first dividing the main dataset into 3 different sets of datasets. The purpose behind this step is that the main dataset contains around 3 groups of attributes which are clients' attributes, bank attributes and social and economic context attributes.

#### 4.1. DATA PREPROCESSING

We have obtained the datasets from the UCI machine learning repository which is related with direct marketing campaigns of a Portuguese banking institution. Bank Marketing contains 41188 instances and 17 attributes. Its features are both numerical and categorical. Hence the data needs to be vectorized. For this dataset, feature extraction and feature selection has to be done properly.

#### 4.2. TRAIN TEST SPLIT

Sklearn's train\_test\_split is used to split the dataset into training and testing set. It takes the features and the target variables as parameters. Along with them, it has other parameters to define train size and test size, random state, shuffle and stratify. All these parameters are used to divide training and testing sets.

#### 4.3. MACHINE LEARNING ALGORITHMS

#### 4.3.1. LOGISTIC REGRESSION

Logistic Regression is a machine learning model used to model a binary dependent variable (here, bank term deposit). We apply Logistic Regression and fit the model using the Training Data. First import the Logistic Regression from sklearn and create an object logmodel. Fit the model by using the training data and then evaluate the model using the testing data.

#### 4.3.2. SUPPORT VECTOR MACHINE

Support Vector Machine (or SVM) is a classification model used to divide various points into different zones and then predict the output within a zone. We use Support Vector Machine to fit the model using the Training Data. First import the SVC from sklearn.svm and create an object named svc with sigmoid kernel.Fit the model by using the training data and then evaluate the model using the testing data.

#### 4.3.3. DECISION TREE CLASSIFIER

Decision Tree Classification is used to go from various variables and their ranged or discrete values to predict a discrete output. We now use Decision Tree to classify. First import the DecisionTreeClassifier from sklearn.tree and create an object named dtree with criterion as entropy. Fit the model by using the training data and then evaluate the model using the testing data.

#### 4.3.4. ENSEMBLE LEARNING MODELS

In order to boost the accuracy of the models, we are going to apply these 2 following ensemble techniques:

- 1. Random Forest
- 2. XGBClassifier

#### 4.3.4.1. RANDOM FORREST

Random forests are ensembles of decision tree classifications and hence generate multiple decision trees to have the most accurate results. We use the Random Forest Ensemble Method to classify. First import the RandomForestClassifier from sklearn.ensemble and create an object named rfc with criterion as entropy with 200 estimators. Fit the model by using the

training data and then evaluate the model using the testing data.

## 4.3.4.2. XGB-CLASSIFIER

XGBClassification or Gradient Boosting works as an ensemble of weak prediction models and then chooses the best to generate results. Next, we use the XGBClassifier Ensemble Method to classify. First import the XGBClassifier from xgboost and create an object named xgb. Fit the model by using the training data and thenevaluate the model using the testing data.

#### 5. IMPLEMENTATION

#### 5.1. DESCRIPTION OF MODULES/PROGRAMS

## 1. Numpy

NumPy is a Python library used for working with arrays. It also has functions for working in domain of linear algebra, fourier transform, and matrices. NumPy stands for Numerical Python. In Python we have lists that serve the purpose of arrays, but they are slow to process. NumPy aims to provide an array object that is up to 50x faster than traditional Python lists. The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working with ndarray very easy. Arrays are very frequently used in data science, where speed and resources are very important.

#### 2. Pandas

Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open-source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

## 3. Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shell, web application servers, and various graphical user interface toolkits.

#### 4. Seaborn

Seaborn is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures. Here is some of the functionality that seaborn offers:

- A dataset-oriented API for examining relationships between multiple variables
- Specialized support for using categorical variables to show observations or aggregate statistics
- Options for visualizing univariate or bivariate distributions and for comparing them between subsets of data
- Automatic estimation and plotting of linear regression models for different kinds dependent variables
- Convenient views onto the overall structure of complex datasets
- High-level abstractions for structuring multi-plot grids that let you easily build complex visualizations
- Concise control over matplotlib figure styling with several built-in themes
- Tools for choosing color palettes that faithfully reveal patterns in your data

#### 5. Sklearn

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction via a consistence interface in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and Matplotlib.

#### 6. OUTPUT AND PERFORMANCE ANALYSIS

#### **6.1. EXECUTION SNAPSHOTS**



```
print('Jobs:\n', bank_client['job'].unique())
print('Marital:\n', bank_client['marital'].unique())
print('Gefuction:\n', bank_client['education'].unique())
print('Housing:\n', bank_client['deduction'].unique())
print('Housing:\n', bank_client['housing'].unique())
print('Housing:\n', bank_client['housing'].unique())

Jobs:
['housemaid' 'services' 'admin. 'blue-collar' 'technician' 'retired'
'management' 'unemployed' 'self-employed' 'unknown' 'entrepreneur'
'student']
'imarited' 'single' 'divorced' 'unknown' 'entrepreneur'
'duction:
['basic.-\n' 'nigh.-school' 'basic.6\n' 'basic.6\n' 'professional.course'
'unknown' 'university.degree' 'illiterate']
Default:
['no' 'unknown' 'yes'
'Nousing:
['no' 'yes' 'unknown']
['no' 'yes' 'unknown']
['no' 'yes' 'unknown']
['no' 'yes' 'unknown']

print('Max age: ', bank_client['age'].min())
print('Null Values: ', bank_client['age'].sinull().any())

Max age: 98
Nin age: 17
Null Values: False
```











```
| Labelencoder X = LabelEncoder() | Labelencoder X = Labe
```

```
bank_related = bank.iloc[: , 7:11]
bank_related.head()

C contact month day_of_week duration

0 telephone may mon 261
1 telephone may mon 149
2 telephone may mon 151
4 telephone may mon 307

[] print("Kind of Contact: \n", bank_related['contact'].unique())
print("Mich sonthis this campaign work: \n", bank_related['month'].unique())
print("Mich sonthis this campaign work: \n", bank_related['month'].unique())
Kind of Contact:
['telephone' week this campaign work: \n", bank_related['day_of_week'],unique())
Kind of Contact:
['telephone' cellular']
['relay' 'jun' 'jul' 'vilu' 'wagi' 'oct' 'nov' 'dec' 'mar' 'apr' 'sep']
Which days of week this campaign work:
['mon' 'tue' 'wed' 'thu' 'fri']
```



```
bank_o = bank.loc[: , ['campaign', 'pdays','previous', 'poutcome']]
bank_o.head()
 D
         campaign pdays previous poutcome
       0 1 999 0 nonexistent
                     1 999
                                             0 nonexistent
       2 1 999 0 nonexistent
                      1 999
                                             0 nonexistent
       4 1 999 0 nonexistent
] bank_o['poutcome'].unique()
      array(['nonexistent', 'failure', 'success'], dtype=object)
 | bank_o['poutcome'].replace(['nonexistent', 'failure', 'success'], [1,2,3], inplace = True)
bank_final= pd.concat([bank_client, bank_related, bank_se, bank_o], axis = 1)
bank_final = bank_final[['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
'contact', 'month', 'day_of_week', 'duration', 'emp.var.rate', 'cons.price.idx',
'cons.conf.idx', 'euribor3m', 'nr.employed', 'campaign', 'pdays', 'previous']]
bank_final.shape
      (41188, 19)
] from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(bank_final, y, test_size = 0.33)
from sklearn.model_selection import KFOold
from sklearn.model_selection import cross_val_score
X_fold = KFOold(m_splits=0), shuffle=rrue, random_state=0)
 ] from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score,f1_score
 1 X test.head(10)
```

```
age job marital education default housing loan contact month day_of_week duration emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed campaign pdays previous
 4874 2 0 1 3 0 1 1 6 4 2 11 93.994 -36.4 4.858 5191.0 2 999 0
  16274 2 7
  38335 2 0 2 3 0 0 0 0 8 0 1 -3.4 92.431 -26.9 0.739 501.7.5 1 999 0
 32794 1 4
                                  0
                                                                -18
                                                                        92.893
                                                                                  -46.2
                                                                                        1 299
                                                                                               5099.1
                                                                                                         999
 32794 1 4 2 6 0 2 0 0 6 1 2 -1.8 92.833 -46.2 1.299 5099.1 1 1999 0
15003 2 1 1 2 1 2 0 1 3 2 3 1.4 93.918 -42.7 4.956 5228.1 3 999 0
 -41.8
                                                                                       4.960
                                                                                               5228.1
                                                                                                       2 999
                                                                               -41.8 4.962 5228.1 13 999 0
 25645 2 9
 13095 1 0 2 2 0 0 0 1 3 3 3 1.4 93.918 42.7 4.962 5228.1 5 999 0
 24405 2 10
                                                                -0.1
                                                                        93.200
                                                                                  -42.0
                                                                                       4.191
                                                                                               5195.8
                                                                                                       1 999
] from sklearn.preprocessing import StandardScaler
sc, X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
```

```
[] import sklearn
import math
from sklearn.linear_model import LogisticRegression
lognoded = LogisticRegression()
lognodel.fit(K_train,y_train)
logpord = lognodel.paredlet(K_test)
print(*Confusion Matrix: \n', confusion_matrix(y_test, logpred))
print(*Precision: , precision : , logpred))
print(*fl score*, fl score*, fl
```

```
| from akhaern.twm import SVC
svc = SSC(Euronel - signoid')
svc_fitty(train, y train)
print('Accuracy', accuracy score(y test, svcpred))
print('faceall', recall_score(y_test, svcpred))
svs_fitty = sand.sqctimel
svs_f
```

# **6.2. OUTPUT – IN TERMS OF PERFORMANCE METRICS**

# **6.2.1. CROSS VALIDATION SCORE**

Table 3 Cross Validation Score of Models used

|   | Models                   | Score    |
|---|--------------------------|----------|
| 4 | XGBoost                  | 0.912267 |
| 3 | Logistic Model           | 0.907120 |
| 0 | Random Forest Classifier | 0.906903 |
| 1 | Decision Tree Classifier | 0.882660 |
| 2 | Support Vector Machine   | 0.861823 |

## 6.2.2. ACCURACY AND RMSE COMPARISON

Table 4 Accuracy and RMSE comparison for models used

| S.No | Models                      | Accuracy | RMSE | Precision | F1 Score | Recall |
|------|-----------------------------|----------|------|-----------|----------|--------|
| 1.   | Logistic Regression         | 91.0%    | 0.29 | 65.0%     | 48.5%    | 38.7%  |
| 2.   | Support Vector<br>Machine   | 86.4%    | 0.36 | 38.1%     | 38.6%    | 39.1%  |
| 3.   | Decision Tree<br>Classifier | 88.8%    | 0.33 | 48.9%     | 50.6%    | 52.4%  |
| 4.   | Random Forest               | 91.1%    | 0.29 | 61.7%     | 55.7%    | 50.8%  |

| 5.         XGBoost Classifier         91.6%         0.28         65.5%         56.1% | 49.1% |
|--------------------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------------------|-------|

#### 7. CONCLUSION AND FUTURE DIRECTIONS

Our results show that the accuracy of Logistic Regression, Support Vector Machine, and XGB classifier are all similar and the highest. Support vector machine performs the worst with least accuracy of 87%.

The Objective of the experiment is to compare the performance of machine learning algorithms when deployed on different frameworks in terms of the accuracy and RMSE. The dataset contains 41188 instances of bank client's data and 20 different features out of which 10 are nominal and the rest are numeric features. It is a binary classification problem to predict whether the client will subscribe to that bank's term deposit or not.

#### Bank client

This is our main dataset deduced from the main dataset. Bank\_client contains age, job, martial, education, default, housing and loan as it attributes. The min age of a customer is 17 years and max age is 98 years.



Figure 1 Age Count Distribution

This is the age count distribution bar plot which signifies that the majority of customers lie under 31 years of age group.



Figure 2 Job Count Distribution

This is the job count distribution bar plot which signifies that the majority of customers lie underthe administrative job group (administrative workers) and minority lies under unknown category



Figure 3Marital Count Distribution

This is the marital count distribution bar plot which signifies that the majority of customers are married.



Figure 4 Education Count Distribution

This is the education count distribution bar plot which signifies that the majority of customers have university degrees.



Figure 5 Default, Housing and Loan Count Distribution

From the default, housing loan and personal loan distribution barplot it has been deduced that themajority of the customers have no credit, no personal loans but they have house loans.

At last attributes of the bank\_client dataset are label encoded so as to convert values of all attributes to numerical values.

#### Bank related

Bank\_related contains contact, month, day\_of\_week and duration as it attributes.



Figure 6 Contact, Months and Days of the week Count Distribution

From the contact, Months and day of week counts distribution bar plot it has been deduced that the majority of the campaigns is done through cellular calls in the month of May and mostly on every day.

At last attributes of the bank\_related dataset is label encoded so as to convert values of all attributes to numerical values.

#### 8. REFERENCES

- 1. Grzonka, Daniel, Grażyna Suchacka, and Barbara Borowik. "Application of selected supervised classification methods to bank marketing campaign." *Information Systems in Management* 5.1 (2016): 36-48.
- 2. Macmillan Education Ltd. *Bank marketing management*. Macmillan International Higher Education, 2015.
- 3. Moro, Sergio, Raul Laureano, and Paulo Cortez. "Using data mining for bank direct marketing: An application of the crisp-dm methodology." (2011).
- 4. Doerr, Sebastian, Leonardo Gambacorta, and José María Serena Garralda. "Big data and machine learning in central banking." *BIS Working Papers* 930 (2021).
- 5. Dalmia, Hemlata, Ch VSS Nikil, and Sandeep Kumar. "Churning of Bank Customers Using Supervised Learning." *Innovations in Electronics and Communication Engineering*. Springer, Singapore, 2020. 681-691.