Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019 EE3CO12 / EX3CO12 Power System-II

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 i.	i.	Which of the following power system problem is not static?		
		(a) Load flow	(b) Transient stability	1
		(c) Economic dispatch	(d) All of these	
	ii.	Normally <i>Y</i> bus matrix is a		1
		(a) Null matrix	(b) Sparse matrix	
		(c) Singular matrix	(d) Zero matrix	
	iii.	For n bus power system siz	e of Y bus matrix is	1
		(a) $(n-1) \times (n-1)$	(b) n×n	
		(c) $(n-1) \times (n-2)$	(d) $(n-2) \times (n-2)$	
iv.	The value of off diagonal e	lements of Y-Bus is admittance	1	
		(a) Which is connected bet	ween bus i and bus j with negative sign	
		(b) Which is connected bet	ween bus i and bus j with positive sign	
		(c) Sum of admittances cor	nnected at bus i	
		(d) Sum of admittances cor	nnected at bus j	
	v.	Steady-state stability of a p	ower system is improved by	1
		(a) Reducing fault clearing	time	
		(b) Using double circuit lin	e instead of single circuit line	
		(c) Single pole switching		
		(d) Decreasing generator in	iertia	
	vi.	The critical clearing time o	f a fault is power system is related to	1
		(a) Reactive power limit		
		(b) Short circuit limit		
		(c) Steady-state stability lir	nit	
		(d) Transient stability limit		
			τ	ото

P.T.O.

1

1

- vii. With increase in fault clearing time, the transient stability limit of a 1 power system
 - (a) Increases
 - (b) Decreases
 - (c) First increases then decreases
 - (d) First decreases and then increases
- viii. Transient disturbances are caused by
 - (a) Sudden load changes (b) Switching operations
 - (c) Fault in the power system (d) All of these
- ix. If a line is considered with negligible power losses, then the real 1 power transmitted will be proportional to $sin(\delta)$.
 - (a) True

- (b) False
- x. With increase in load, system frequency increases
 - (a) True

- (b) False
- Q.2 i. Discuss the applications of Y-bus and Z-bus matrix?
 - ii. Connect a new bus (bus no.4) with bus no.2 through a new 3 transmission line of impedance (0.04+j0.3) p.u. and form [Y $_{BUS}$] for the new system

- iii. Obtain 'π' model of an OLTC which is connected to one end of a transmission line. The transmission line has series reactance of j0.15 p.u. and line charging susceptance is j0.05 p.u. Take a=1.05.
- OR iv. Develop mathematical model of regulating transformer placed in a 5 two bus system.
- Q.3 i. What is the need of Slack bus in load flow studies?
 - ii. For the two bus system as shown in fig. below, bus 1 is a slack bus with $V_1 = 1.0 \angle 0^0 \ p.u$. A load of 100 MW and 50 Mvar is taken from

bus 2. Using N-R Method, obtain the voltage magnitude and phase angle of bus 2. Start with an initial estimate of $\left|V_2\right|^{(0)} = 1.0 \, p.u.$ and

[3]

 $\delta_2^{(0)} = 0^0$. Perform two iterations.

- OR iii. Briefly discuss the Gauss-Siedal method of solving power flow 8 equations. How do you include voltage control buses?
- Q.4 i. Explain the necessity of maintaining a constant frequency in power 3 system operation.
 - ii. Explain briefly the different parts of speed governing system.

7

5

- OR iii. A subgrid has total rated capacity 3000 MW. It encounters a loads 7 increase of 40 MW when the normal operating load is 2000 MW. Assume H = 5 Sec and regulation of generators in the system as 3 Hz/p.u MW. Find:
 - (a) ALFC loop parameters
 - (b) Static frequency drop
 - (c) Transient response of ALFC loop
- Q.5 i. Explain the role of reactive power in voltage control.
 - ii. Explain a static VAR system.
- OR iii. Explain general block diagram for voltage regulators.
- Q.6 Attempt any two:
 - i. Classify the power system stability.
 - ii. Derive power angle equation of a two machine system.
 - iii. Starting from first principle, derive the swing equation of a 5 synchronous machine.

Marking Scheme EE3CO12 / EX3CO12 Power System-II

Q.1	i.	Which of the following power system problem is not static?			
ii.		(b) Transient stability Normally Y bus matrix is a		1	
	iii.	(b) Sparse matrixFor n bus power system size of Y bus matrix is(b) n×n			
	iv.	The value of off diagonal elements of $Y-Bus$ is admittance (a) Which is connected between bus i and bus j with negative sign			
v. Steady-state stability of a power system is improved (b) Using double circuit line instead of single circuit			•	1	
	vi.	The critical clearing time of a fault is power system is related to (d) Transient stability limit			
	vii.	With increase in fault clearing time, the transient so power system	tability limit of a	1	
	viii.	(b) DecreasesTransient disturbances are caused by(d) All of these		1	
	ix.	If a line is considered with negligible power losses, then the real power transmitted will be proportional to $sin(\delta)$. (a) True			
	х.	With increase in load, system frequency increases (b) False		1	
Q.2	i.	Applications of Y-bus Z-bus matrix	1 mark 1 mark	2	
	ii.	Diagram Solution	1 mark 2 marks	3	
	iii.	Obtain 'π' model of an OLTC Stepwise marking		5	
OR	iv.	Develop mathematical model of regulating transformer Stepwise marking		5	
Q.3	i. ii.	Need of Slack bus in load flow studies Using N-R Method, Voltage magnitude and phase angle Rest	4 marks 4 marks	2 8	

OR iii. Gauss-Siedal method of solving power flow equations		Gauss-Siedal method of solving power flow equations	8
		5 marks	
		Include voltage control buses 3 marks	
Q.4	i.	Necessity of maintaining a constant frequency	3
	ii.	Two parts of speed governing system	7
		3.5 marks for each (3.5 marks*2)	
OR	iii.	Find:	7
		(a) ALFC loop parameters 2 marks	
		(b) Static frequency drop 2 marks	
		(c) Transient response of ALFC loop 3 marks	
Q.5	i.	Role of reactive power in voltage control	4
		Any two 2 marks for each (2 marks * 2)	
	ii.	Static VAR system	6
		Diagram 3 marks	
		Explanation 2 marks	
		Equation 1 mark	
OR	iii.	General block diagram for voltage regulators 3 marks	6
		Explanation 3 marks	
Q.6		Attempt any two:	
	i.	Definition of stability 3 marks	5
		Classification the power system stability 2 marks	
	ii. Derive power angle equation of a two machine system.		5
Stepwise marking			
	iii.	Starting from first principle, derive the swing equation of	a 5
		synchronous machine.	
		Stepwise marking	
