UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA MODERNA I

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: PRIMERO

CLAVE: **0249**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: OBLIGATORIA.

MODALIDAD: CURSO.

SERIACIÓN INDICATIVA ANTECEDENTE: Ninguna.

SERIACIÓN INDICATIVA SUBSECUENTE: Geometría Moderna II, Geometría Pro-

yectiva.

OBJETIVO(S): Que el alumno conozca los conceptos y resultados básicos de la Geometría Euclidiana, y aprenda a resolver, utilizando el método deductivo y resultados ya demostrados, problemas que le ayuden a desarrollar su creatividad

NUM. HORAS	UNIDADES TEMÁTICAS
25	1. Geometría del triángulo
	1.1 Congruencia. Semejanza. Teorema de Tales. Teorema de Pitágo-
	ras. Teorema de Stewart.
	1.2 Circuncentro, incentro, excentros, ortocentro, baricentro.
	1.3 Recta de Euler.
	1.4 Triángulos pedales.
15	2. Circunferencia y cuadriláteros cíclicos
	2.1 Cuadriláteros cíclicos.
	2.2 Potencia. Círculos coaxiales(*).
	2.3 Ángulos en la circunferencia.
	2.4 Antiparalelas.
	2.5 Teorema de Ptolomeo. Línea de Simson.
	2.6 Circunferencia de los nueve puntos.

30	3. Introducción a la geometría moderna
	3.1 Breve discusión sobre los postulados euclidianos explícitos e
	implícitos.
	3.2 Segmentos y ángulos dirigidos(*).
	3.3 Puntos al infinito. División de un segmento en una razón dada.
	3.4 Teorema de Euler.
	3.5 Puntos armónicos.
	3.6 Dualidad(*).
	3.7 Cuadrilátero y cuadrángulo completos.
	3.8 Homotecia: polígonos homotéticos; puntos homólogos y antiho-
	mológos; círculo de similitud.
10	4. Principales teoremas
	4.1 Teorema de Ceva. Teorema de Menelao.
	4.2 Teorema de Desargues.
	4.3 Teorema de Pascal(*).
	4.4 Teorema de Pappus(*).
	4.5 Teorema de Brianchon(*).

BIBLIOGRAFÍA BÁSICA:

- 1. Efimov, N., Geometría Superior, Moscú: MIR, 1984.
- 2. Euclides, Euclid's Elements, New York: Dover, 1979.
- 3. Eves, H., Estudio de las Geometrías, México: UTEHA, 1969.
- 4. Hilbert, D., Cohn Vossen, S., Geometry and the Imagination, México: Vínculos Matemáticos No. 150, Facultad de Ciencias, UNAM, 2000.
- 5. Shively, L., Introducción a la Geometría Moderna, México: Ed. Continental, 1961.
- 6. Wentworth, J., Smith, D. E., Geometría Plana y del Espacio, México: Ed. Porrúa, 1976.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Cabri, software. **.
- 2. Courant, R., Robbins, H., ¿Qué es la Matemática?, Madrid: Ed. Aguilar, 1967.
- 3. Coxeter, S. M., Greitzer, S. L., Geometry Revisited, New York: Random House, 1967.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.