(a)

$$(z-2)^{-1}=\frac{1}{(z-2)^1}$$
 therefore $z=2$ is isolated singularity, pole of order $n=1$ at $z=0$ $\frac{1}{(0-2)^1}=-\frac{1}{2}$ finite, not singular at $z=\pm\infty$ $\frac{1}{(\pm\infty-2)^1}=-\frac{1}{\pm\infty}=0$ finite, not singular

(c)

Use 14.24
$$\lim_{z\to 0} [(z-0)^n \sinh\left(\frac{1}{z}\right)] = \lim_{z\to 0} z^n \sinh\left(\frac{1}{z}\right)$$

Taylor expansion of $\sinh\left(\frac{1}{z}\right) = \sum_{m=0}^{\infty} \frac{\left(\frac{1}{z}\right)^{2m+1}}{(2m+1)!}$

Therefore
$$\lim_{z\to 0} z^n \sinh\left(\frac{1}{z}\right) = \lim_{z\to 0} z^n \sum_{m=0}^{\infty} \frac{\left(\frac{1}{z}\right)^{2m+1}}{(2m+1)!} = \lim_{z\to 0} \sum_{m=0}^{\infty} \frac{1}{(2m+1)!} \frac{z^n}{z^{2m+1}}$$

For some large m 2m+1 > n and denominator would be 0 so 1/0 is undefined and we have an essential singularity for z = 0

For $z = \pm \infty$ we just have to look at $\limsup_{z \to \infty} \sinh\left(\frac{1}{z}\right) = \sinh\left(0\right) = 0$ and not singular for $z = \pm \infty$

$$\frac{\mathbf{e}^{z}}{\mathbf{z}^{3}}$$

For
$$z = 0 e^z \rightarrow 1$$

Therefore take at look at $\lim_{z\to 0} \frac{e^z}{z^3} = \lim_{z\to 0} \frac{1}{z^3}$

Therefore singularity, pole of order 3

$$\text{For } \lim_{z \to \infty} \frac{e^z}{z^3} \{ \text{take Taylor expansion for } e^z \} = \lim_{z \to \infty} \frac{\sum_{n=0}^{\infty} \frac{z^n}{n!}}{z^3} = \lim_{z \to \infty} \sum_{n=0}^{\infty} \frac{z^{n-3}}{n!}$$

Therefore limit undefined and essential singularity at z = ∞