Direction PA (W)	G/T (dB/K)	G.S. (dBm)	S/C (dBm)									
Uplink 2.0 @ G.S.	-23.1	+45.9 EIRP	-104.5 Isotropic									
Downlink 1.0 @ S/C	-12.2	-119.8 Isotropic	+30.6 EIRP									
1.0 @ 0/0	12.2	113.0 1301100110	100.0 EII (1	Linear Tech. LTC5								
				60dB linear dynamic 42 mV/dB, Ic = 7r	mA ¯			Power Det	tection			
			10dB ↓	Shutdown = 0.1 _L Log RF	1	PA T _X (dBm)	Direction	VSWR I	RL (dB) li		DC Out (V)	
			[] Sub }	Detector	DC _{REV} (to M4)	0	FWD	-	-	-54	0.30	
			'		_	0	REV	1.10	26	-60	0.20	
			30dB	Log RF	DC _{FWD} (to M4)	+35	FWD	-	-	-19	1.75	
				Detector		+35	REV	5.83	3	-2	2.45	
Canted Turnstile			Reverse Forward	Enable—————								
Backplane SMPM/µStrip Loss: 0.27dB	Qorvo Q Loss: 0.2 Switch	DPC1022	-24dB -24dB -24dB -24dB MiniCirc. BDCN-20-13+ Loss: 0.18dB Linear Tech. Delay on falling a Id = 7	Gain: + NF: 4.8 Ic = 85 (based Shutdo	DmA @ +33dBm on 940MHz) wn = ? mA 3dB? Shape and shape	. LTC6994-1 sing edge (R	c = high	efault)	P'	(ANTP1)– WRAMP– (ANTP/N)- CLKP/N	Sensitivity MSK w/o I	5043 :ceiver for 100kbps: =EC: -106 dBm =C: -111 dBm
		MiniCirc. BPF- 400MHz - 51 Loss: 0.81dB @	0MHz	Qorvo TQP3M9036 Gain: 24dB NF: 0.38dB Ic = 45mA Shtdn = 2mA	Fc: BV	Jurata SF244 435.0 MHz V: 10 MHz Sss: 1.9dB	46E				CMOS 16 Eval: E HC Stability: +/-2 Phase Noise:	or Clipped SW 000 MHz CS-TXO-3225 MOS out 2.5 ppm (-30 to +85) -135dBc/Hz @ 1kHz
								7	70cm Fr	ront-Er	nd Transce	iver on S/C
Notes: • All devices requiring power operate at 3.3V, except for the PA which requires 5V • For link models see GitHub (oresat-c3-rf/link-models)									Primary downlink & secondary uplink			
									Operating Freq: 435 - 438 MHz			
· I OI IIIN IIIOUEIS SE	on in the cores	Jac Co-Hillin-Hillari	3)						Date	e: 2019-0	ne 04	Rev: 2.2