

Introduction to Audio Content Analysis

module 5.0: data, data splits, and augmentation

alexander lerch

introduction overview

corresponding textbook section

chapter 5

lecture content

- data requirements
- data splits for train and test
- N-Fold cross-validation
- data augmentation

learning objectives

- understand the importance of data in machine learning
- define task-specific data requirements
- discuss possibilities of data augmentation
- implement N-Fold cross-validation in Python

introduction overview

corresponding textbook section

chapter 5

lecture content

- data requirements
- data splits for train and test
- N-Fold cross-validation
- data augmentation

learning objectives

- understand the importance of data in machine learning
- define task-specific data requirements
- discuss possibilities of data augmentation
- implement N-Fold cross-validation in Python

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - **6 evaluate** classifier with test set

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - **6 evaluate** classifier with test set

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - **6 evaluate** classifier with test set

machine learning

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - **6 evaluate** classifier with test set

machine learning

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - **6 evaluate** classifier with test set

machine learning

- derive classification parameters from data, e.g.,
- ⇒ learn feature distributions/separation metrics per class
 - typical steps
 - 1 define training set: annotated results
 - 2 normalize training set
 - 3 train classifier
 - 4 evaluate classifier with validation set
 - **5** (adjust classifier settings, return to 4.)
 - 6 evaluate classifier with test set

what are important properties of our data

what are important properties of our data

representative

- represent all necessary factors of input data (e.g., range of genres, audio qualities, musical complexity, etc.)
- unbiased representation of class balance/label distribution
- clean, non-noisy
 - potential issues with subjective tasks

sufficient

complex tasks/systems require lots of data

- a bigger data set is commonly split in subsets
 - training data ($\approx 70 80\%$)
 - used to build the machine learning model
 - validation data ($\approx 10-15\%$)
 - used to tweak model parameters
 - testing data ($\approx 10-15\%$)
 - used to evaluate the model
 - needs to be **unseen!**
- no overlap between subsets!
 - also make sure that similar content (from one recording, album, artist, ...) is grouped into one subset only

- a bigger data set is commonly split in subsets
 - training data ($\approx 70 80\%$)
 - used to build the machine learning model
 - validation data ($\approx 10-15\%$)
 - used to tweak model parameters
 - testing data ($\approx 10-15\%$)
 - used to evaluate the model
 - needs to be unseen!
- no overlap between subsets!
 - also make sure that similar content (from one recording, album, artist, ...) is grouped into one subset only

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- $oldsymbol{3}$ train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test set
- 5 repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- $oldsymbol{\mathbb{B}}$ train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test set
- 5 repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- f 3 train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test se
- 5 repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- f 3 train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test se
- 5 repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- f 3 train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test set
- 5 repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- f 3 train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test set
- $\mathbf{5}$ repeat until all N parts have been tested
- 6 overall result: average classification rate

- trying to utilize ALL data as both training and testing data
- special case: Leave One Out CV
- tends to be time-consuming
- \blacksquare split training set into N parts (randomly, but preferably identical number per class)
- 2 select one part as test set
- f 3 train the classifier with all observations from remaining N-1 parts
- 4 compute the classification rate for the test set
- $\mathbf{5}$ repeat until all N parts have been tested
- 6 overall result: average classification rate

data N-Fold cross validation 2/2

	Data			
	Split 1	Split 2	Split 3	Split 4
1.	Test	Train	Train	Train
2.	Train	Test	Train	Train
3.	Train	Train	Test	Train
4.	Train	Train	Train	Test

erview intro **data** augmentation summar

classification

interaction of data, features, and classifier

training set

- training set too small, feature number too large
 overfitting
- training set too noisy
 - \Rightarrow underfitting
- training set **not representative**
 - \Rightarrow bad classification performance

classifier

- classifier too complex
- ⇒ overfitting
- poor classifier
 - ⇒ bad classification performance

features

poor features

⇒ bad classification performance

Georgia Center for Music

verview intro data augmentation summar

classification interaction of data, features, and classifier

training set

- training set too small, feature number too large
 overfitting
- training set too noisy
 - \Rightarrow underfitting
- training set not representative
 - ⇒ bad classification performance

classifier

- classifier too complex
 - \Rightarrow overfitting
- poor classifier
 - ⇒ bad classification performance

features

poor reatures

⇒ bad classification performance

erview intro **data aug**mentation summar

○ 0000 ○ 0

classification

interaction of data, features, and classifier

training set

- training set too small, feature number too large
 - *⇒* overfitting
- training set too noisy
 - ⇒ underfitting
- training set not representative
 - ⇒ bad classification performance

classifier

- classifier too complex
 - \Rightarrow overfitting
- poor classifier
 - ⇒ bad classification performance

features

- poor features
 - \Rightarrow bad classification performance

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

- if annotated data is insufficient, we can 'cheat' by increasing the amount of training data
- ⇒ data augmentation: apply irrelevant transforms to audio data
 - data segmentation
 - treat audio snippets as separate observations
 - quality degradation
 - add noise and distortion, limit bandwidth, etc.
 - audio effects
 - apply reverb, etc.
 - changing pitch/tempo
 - combine data
 - mix different audio inputs together (if labels can be "mixed")
 - mask out parts of the signal

summary lecture content

data

- representative
- clean, non-noisy
- sufficient

data split

- train
- validation
- test

cross validation

- multiple runs with varying data splits
- maximum data utilization

