POS tagging

LING 570 Fei Xia

Outline

The POS tagging task

Rule-based approach

- Statistical approach
 - N-gram model: HMM
 - MaxEnt model: later in ling570
 - Other models: in Ling572 and beyond

The task

- Training data: a tagged corpus
- Build a system:
 - Input: w₁ w₂ w_n
 - Output: $w_1/t_1 \ w_2/t_2 \dots \ w_n/t_n$
- POS tags:
 - Open class: noun, verb, adj, adv
 - Closed class: prep, det, pron, conj, particles, ...
- Tagsets:
 - 30 tags or more is pretty common.
 - Ex: how many tags for verbs?

Why POS tagging?

- As a preprocessing step for parsing, chunking, etc.
 - Chunking: /Det? Adj* N* N/
 - Parsing: VP → V NP vs. VP → buy NP
- Text-to-speech: Please record the lecture
- Morphological analysis:
 - Ex: saw → see +V +past
 - saw → saw +N + PL

Main problem: ambiguity

- Example: book a flight; buy a book
- How hard is the tagging problem?
 - Many frequent words are ambiguous.
 - Penn English Treebank (PTB):
 - Unigram: 91%
 - Trigram: 93%
 - Best result: 97-98%
 - Upper bound: 97-98% (?)
 - The tagging problem may be harder for
 - other domains
 - other languages

Main approaches

- Rule-based approach:
- Stochastic approach: Choose $\mathbf{t_1} \, \mathbf{t_2} \, \, \mathbf{t_n}$ that maximizes $P(t_1^n | w_1^n)$
 - N-gram models:
 - Use a classifier with beam search
 - Ex: Decision Tree, MaxEnt, Boosting, SVM, ...
 - Use sequence labeling algorithms
 - Ex: HMM, CRF, TBL
- → Most of the algorithms will be covered in LING 572.
- → Today we will focus on N-gram models.

Evaluation

- Train your model on the training data
- Test on unseen test data to obtain the best tag sequence.
- Accuracy: the percentage of words in the test data that are correctly tagged:
 - System: John/N called/V this/PN number/N
 - Gold: John/N called/V this/DT number/N
 - Accuracy is 3/4

Rule-based approach

POS tagger for English

- Human knowledge
- Annotated data:
 - John/NNP will/MD book/VB the/DT flight/NN tomorrow/NN
 - Mary/NNP bought/VBD a/DT book/NN
- Rules:
 - NN => VB if the word follows a MD
- Transformation-based learning (TBL)

N-gram tagger

Building a statistical system

- Collect data and divide it into training, development, and testing or use n-fold cross validation
- Modeling:
 - What is the function to optimize? e.g., $P(y \mid x)$, P(x, y)
 - How to decompose it to something that can be estimated?
- Training: estimate the parameters from the training data
- Decoding: run the model on the test data
- Evaluation: compare the system output with the gold standard

Notation

$$w_1^n$$
: $w_1 \ w_2 \ ... \ w_n$
 t_1^n : $t_1 \ t_2 \ ... \ t_n$
 $max_y P(y|x)$
 $y^* = arg \ max_y P(y|x)$

N-gram POS tagger: modeling

$$arg \, max_{t_1^n} P(t_1^n | w_1^n)$$

$$= arg \, max_{t_1^n} \frac{P(t_1^n) * P(w_1^n | t_1^n)}{P(w_1^n)}$$

$$= arg \, max_{t_1^n} P(t_1^n) * P(w_1^n | t_1^n)$$

$$P(t_1^n) \approx \prod_i P(t_i | t_{i-N+1}^{i-1})$$

$$P(w_1^n | t_1^n) = \prod_i P(w_i | t_1^n, w_1^{i-1}) \approx \prod_i P(w_i | t_i)$$

N-gram POS tagger (cont)

$$argmax_{t_1^n}P(t_1^n|w_1^n)$$

$$\approx argmax_{t_1^n} \prod_i P(w_i|t_i) P(t_i|t_{i-N+1}^{i-1})$$

Bigram model:

$$\prod_{i} P(w_i|t_i)P(t_i|t_{i-1})$$

Trigram model:

$$\prod_{i} P(w_{i}|t_{i})P(t_{i}|t_{i-2},t_{i-1})$$

Bigram model: training

$$\prod_{i} P(w_i|t_i)P(t_i|t_{i-1})$$

Training: How to estimate $P(w_i | t_i)$ and $P(t_i | t_{i-1})$?

- Supervised learning (tags in the training data are known): ML estimation
- Unsupervised learning (tags in the training data are unknown): forward-backward algorithm

Bigram training: ML estimation

$$P(w_i|t_i) = \frac{Cnt(w_i, t_i)}{Cnt(t_i)}$$

$$P(t_i|t_{i-1}) = \frac{Cnt(t_{i-1}, t_i)}{Cnt(t_{i-1})}$$

Bigram model: decoding

 Given P(w_i | t_i) and P(t_i | t_{i-1}), how to find the best tag sequence for a sentence?

→ Use Viterbi algorithm for HMM

 The task of determining which sequence of variables is the underlying source of observations is called the decoding task.

Coming next

Hidden Markov Model (HMM)

Use a classifier