Lecture 6.1 Introduction to Probabilistic models

Machine Learning
Ivan Smetannikov

09.04.2021

Lecture plan

- Overview and Motivation
- Distributions
- Factors

Lecture plan

- Overview and Motivation
- Distributions
- Factors

What is machine learning?

What is machine learning?

What is machine learning?

Problem

An illness, which is spread among 1% of population. This illness test returns true answers in 95% of cases. Someone receives a positive result. What is the probability, he actually suffers the illness?

PGM: Motivation and Overview

predisposing symptoms test results diseases treatment outcomes

PGM: Motivation and Overview

symptoms
test results
diseases
treatment outcomes

millions of pixels or thousands of superpixels

Each, needs to be labeled {grass, sky, water, cow, horse, ...}

PGM: Motivation and Overview

symptoms
test results
diseases
treatment outcomes

millions of pixels or thousands of superpixels

Each, needs to be labeled {grass, sky, water, cow, horse, ...}

Probabilistic Graphical Models

Models

Declarative representation

Models

Declarative representation

Models

Partial knowledge of state of the world

- Partial knowledge of state of the world
- Noisy observations

- Partial knowledge of state of the world
- Noisy observations
- Phenomena not covered by our model

- Partial knowledge of state of the world
- Noisy observations
- Phenomena not covered by our model
- Inherent stochasticity

Probability Theory

Declarative representation with clear semantics

Probability Theory

- Declarative representation with clear semantics
- Powerful reasoning patterns

Conditioning Decision making

Probability Theory

Declarative representation with clear semantics

Powerful reasoning patterns

Conditioning Decision making

Established learning methods

Complex Systems

predisposing symptoms test results diseases treatment outcomes class labels for thousands of superpixels

Complex Systems

predisposing
symptoms
test results
diseases
treatment outcomes

class labels for thousands of superpixels

Random variables $X_1, ..., X_n$

Complex Systems

predisposing symptoms test results diseases treatment outcomes

class labels for thousands of superpixels

Random variables
$$X_1, ..., X_n$$

Joint distribution
$$P(X_1, ..., X_n)$$

Binary valued distibrution over 2^n possible states

Graphical Models

$$X_1, ..., X_n$$
 — nodes

Bayesian networks

Directed graph

Difficulty Intelligence Grade SAT Letter

Markov networks

Undirected graph

Graphical Models

CPCS diagnosis ~480 nodes ~900 edges

Graphical Representation

- Intuitive and compact data structure
- Efficient reasoning using general—purpose algorithms
- Sparse parameterization
 - feasible elicitation ← by hand
 - learning from data ← automatically

Many Applications

- Medial diagnosis
- Fault diagnosis
- Natural language processing
- Traffic analysis
- Social network models
- Message decoding
- Computer vision
 - Image segmentation

- 3D reconstruction
- -Holistic scene analysis
- Speech recognition
- Robot localization and mapping

Textual Information Extracion

Mrs. Green spoke today in New York. Green chairs the finance committee.

person location person organization

Multi-Sensor Integration

Multi-Sensor Integration

- Trained on historical data
- Learn to predict current and future road speed, including on unmeasured roads
- Dynamic route optimization

- 195 corridor experiment: accurate to ±5 MPH in 85% of cases
- Fielded in 72 cities

Multi-Sensor Integration

- Representation
 - Directed and undirected
 - Temporal and plate models
- Inference
 - Exact and approximate
 - Decision making
- Learning
 - Parameters and structure
 - —With and without complete data

Lecture plan

- Overview and Motivation
- Distributions
- Factors

Joint Distribution

- Intelligence (I) i^0 (low), i^1 (high)
- Difficulty (D) d^0 (easy), d^1 (hard)
- Grade (G) g^1 (A), g^2 (B), g^3 (C)

Joint Distribution

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 $g^1 \text{ (A), } g^2 \text{ (B), } g^3 \text{ (C)}$

Joint Distribution

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 g^1 (A), g^2 (B), g^3 (C)

Parameters: 2x2x3=12

[D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

Joint Distribution

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 $g^1 \text{ (A), } g^2 \text{ (B), } g^3 \text{ (C)}$

Parameters: 2x2x3=12

Independent parameters: 11

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

sum=1

Conditioning

condition on g^1

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

Conditioning

condition on g^1

ı	D	G	P(I,D,G)
i ⁰	d^0	g^1	0.126
ı	u	y	0.100
10	40	<i>9</i>	0.120
<i>i</i> ⁰	d^1	g^1	0.009
ı	u	y	0.045
ι	a-	g^{-}	0.120
i^1	d^0	g^1	0.252
•1	70	2 8	0.0221
,1	u	9	0.0050
i^1	d^1	g^1	0.06
•1	71	2	0.006
.1	71	ر ع	0.021

Conditioning: Reduction

condition on g^1

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^1	g^1	0.009
i^1	d^0	g^1	0.252
i^1	d^1	g^1	0.06

Conditioning: Renormalization

I	D	G	P(I,D,G)	
i^0	d^0	g^1	0.126	
i^0	d^1	g^1	0.009	
i^1	d^0	g^1	0.252	
i^1	d^1	g^1	0.06	

sum=0.447

 $P(I,D, g^1)$ unnormalized measure

Conditioning: Renormalization

I	D	G	P(I,D, g^1)	
i^0	d^0	g^1	0.126	0.447
i^0	d^1	g^1	0.009	0.447
i^1	d^0	g^1	0.252	0.447
i^1	d^1	g^1	0.06	0.447

sum=0.447

 $P(I,D, g^1)$ unnormalized measure

Conditioning: Marginalization

Marginalize I

I	D	P(I,D)
i^0	d^0	0.282
i^0	d^1	0.02
i^1	d^0	0.564
i^1	d^1	0.134

Conditioning: Marginalization

Marginalize I

Lecture plan

- Overview and Motivation
- Distributions
- Factors

Factors

- A factor $\phi(X_1, ..., X_k)$ $\phi: Val(X_1, ..., X_k) \to R$
- Scope = $\{X_1, ..., X_k\}$

Joint distribution

P(I,D,G)

ı	D	G	P(I,D,G)
i ⁰	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i ⁰	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

Unnormalized measure $P(I,D, g^1)$

 $P(I,D,g^1)$

I	D	G	P(I,D,G)	
i ⁰	d^0	g^1	0.126 0.009	
i^0	d^1	g^1		
i^1	d^0	g^1	0.252	
i^1	d^1	g^1	0.06	

Scope = {I,D}

Conditional Probability Distribution (CPD)

P(G|I,D)

	g^1	g^2	g^3
i^0 , d^0	0.3	0.4	0.3
i^0 , d^1	0.05	0.25	0.7
i^1 , d^0	0.9	0.08	0.02
i^1 , d^1	0.5	0.3	0.2

Conditional Probability Distribution (CPD)

General factors

Α	В	φ
a^0	b^0	30
a^0	b^1	5
a^1	b^0	1
a^1	b^1	10

Scope = {A,B}

Factor product

	ϕ_1					
a^1	b^1	0.5		ϕ_2		
a^1	b^2	0.8	b^1	c^1	0.5]
a^2	b^1	0.1	b^1	c^2	0.7	1
a^2	b^2	0	b^2	c^1	0.1	
a^3	b^1	0.3	b^2	c^2	0.2	†
a^3	b^2	0.9	Ca			1
Sco	ope = { <i>A</i>	A,B}	500	ope = {E	3,C}	

		_	
a^1	b^1	c^1	0.5x0.5=0.25
a^1	b^1	c^2	0.5x0.7=0.35
a^1	b^2	c^1	0.8x0.1=0.08
a^1	b^2	c^2	0.8x0.2=0.16
a^2	b^1	c^1	0.1x0.5=0.05
a^2	b^1	c^2	0.1x0.7=0.07
a^2	b^2	c^1	0x0.1=0
a^2	b^2	c^2	0x0.2=0
a^3	b^1	c^1	0.3x0.5=0.15
a^3	b^1	c^2	0.3x0.7=0.21
a^3	b^2	c^1	0.9x0.1=0.09
a^3	b^2	c^2	0.9x0.2=0.18

Factor product

Factor Marginalization

Scope = {A,B,C}

a^{1} b^{1} c^{1} 0.25 $M_{arginalize}$ a^{1} b^{2} a^{1} 0.08 $M_{arginalize}$ Scope = {A,C}
a^1 b^1 c^2 0.35 Scope = {A,C}
8 30000 [71]0]
$u \mid v \mid c \mid 0.08$
a^1 b^2 c^2 0.16 a^1 c^1 0.33
a^2 b^1 c^1 0.05 a^1 c^2 0.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$a^3 \mid c^2 \mid 0.39$
a^3 b^1 c^1 0.15
a^3 b^1 c^2 0.21
$a^3 b^2 c^1 0.09$
$a^3 \ b^2 \ c^2 \ 0.18$

Factor reduction

a^1	b^1	c^1	0.25
a^1	b^1	c^2	0.35
a^1	b^2	c^1	0.08
a^1	b^2	c^2	0.16
a^2	b^1	c^1	0.05
a^2	b^1	c^2	0.07
a^2	b^2	c^1	0
a^2	b^2	c^2	0
a^3	b^1	c^1	0.15
a^3	b^1	c^2	0.21
a^3	b^2	c^1	0.09
a^3	b^2	c^2	0.18

Reduce to the context c^1

Factor reduction

a^1	b^1	c^1	0.25
a^1	b^1	c^2	0.35
a^1	b^2	c^1	0.08
a^1	b^2	c^2	0.16
a^2	b^1	c^1	0.05
a^2	b^1	c^2	0.07
a^2	b^2	c^1	0
a^2	b^2	c^2	0
a^3	b^1	c^1	0.15
a^3	b^1	c^2	0.21
a^3	b^2	c^1	0.09
a^3	b^2	c^2	0.18

a^1	b^1	c^1	0.25
a^1	b^2	c^1	0.08
a^2	b^1	c^1	0.05
a^2	b^2	c^1	0
a^3	b^1	c^1	0.15
a^3	b^2	c^1	0.09

Scope = {A,B}

Why factors?

- Fundamental building block for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these probability distributions