```
import pandas as pd
```

data = pd.read_excel('/content/tweets.xlsx')
df = pd.read_csv('/content/bitcoin.csv')

data

	Unnamed: 0	Unnamed: 1	date	text	
0	0	2021-02-11 23:59:04	44237.999352	Blue Ridge Bank shares halted by NYSE after #b	blue ridge bank shares halted nyse t
1	1	2021-02-11 23:58:48	44237.999167	$\eth\ddot{\gamma}^{\sim}\check{Z}$ Today, that's this #Thursday, we will do	today thursday take friend leowander
2	2	2021-02-11 23:54:48	44237.996389	Guys evening, I have read this article about B	guys evening read article btc wou
3	3	2021-02-11 23:54:33	44237.996215	\$BTC A big chance in a billion! Price: \487264	btc big chance billion price bitco
4	4	2021-02-11 23:54:06	44237.995903	This network is secured by 9 508 nodes as of t	network secured nodes today soon big
26201	26201	2021-02-15 23:53:35	44241.995544	More than 200% Profits & Dy 115M\$ Volume in \$	profits amp volume sky pump megapump
26202	26202	2021-02-15 23:53:29	44241.995475	More than 200% Profits and 115M\$ Volume in \$SK	profits volume sky pump megapump powe
26203	26203	2021-02-15 23:53:10	44241.995255	More than 200% Profits & More; 115M\$ Volume in \$	profits amp volume sky pump megapump
26204	26204	2021-02-15 23:53:09	44241.995243	More than 200% Profits & Dy 115M\$ Volume in \$	profits amp volume sky pump megapump
26205	26205	2021-02-15 23:52:54	44241.995069	IT MONDAY MADNESS with the lovely Lisa @LisaNE	monday madness lovely lisa lisanedwa

26206 rows × 7 columns

```
data['DateTimeColumn'] = pd.to_datetime(data['Unnamed: 1'])
# Format the date in the desired format
data['Date'] = data['DateTimeColumn'].dt.strftime("%d-%m-%Y")
```

df

```
Date Closing Price
0 05-02-2021
                    37926.51
1 06-02-2021
                    38023.74
2 07-02-2021
                    38120.97
3 08-02-2021
                    38218.20
4 09-02-2021
                    38315.43
5 10-02-2021
                    38412.66
6 11-02-2021
                    38509.89
7 15-02-2021
                    38900.81
```

```
38998.04
      8 16-02-2021
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from \ sklearn.preprocessing \ import \ MinMaxScaler
from textblob import TextBlob # Import TextBlob for sentiment analysis
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# 1. Select relevant columns
data = data[['Date', 'cleanText']]
# 2. Clean the text
data['cleanText'].fillna('', inplace=True) # Replace NaN with an empty string
# 3. Calculate Polarity Score using TextBlob
data['Polarity Score'] = data['cleanText'].apply(lambda x: TextBlob(x).sentiment.polarity)
data
```

```
<ipython-input-7-3349986bd1a1>:16: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-data['cleanText'].fillna('', inplace=True) # Replace NaN with an empty string

<ipython-input-7-3349986bd1a1>:19: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-data ['Polarity Score'] = data['cleanText'].apply(lambda x: TextBlob(x).sentiment.polarity)

	Date	cleanText	Polarity Score
0	11-02-2021	blue ridge bank shares halted nyse bitcoin atm	0.00
1	11-02-2021	today thursday take friend leowandersleb btc w	0.00
2	11-02-2021	guys evening read article btc would like share	0.00
3	11-02-2021	btc big chance billion price bitcoin btc crypto	0.00
4	11-02-2021	network secured nodes today soon biggest bears	-0.25
26201	15-02-2021	profits amp volume sky pump megapump powerful \dots	0.30
26202	15-02-2021	profits volume sky pump megapump powerful pump	0.30
26203	15-02-2021	profits amp volume sky pump megapump powerful \dots	0.30
26204	15-02-2021	profits amp volume sky pump megapump powerful \dots	0.30
26205	15-02-2021	monday madness lovely lisa lisanedwards charts	0.50

26206 rows × 3 columns

result = data.groupby('Date')['Polarity Score'].sum().reset_index()

 $\mbox{\tt\#}$ Create a new DataFrame with the result and corresponding dates

a = result.rename(columns={'Polarity Score': 'Sum of Polarity Score'})

Display the new DataFrame

a

	Date	Sum of Polarity Score
0	06-02-2021	150.741613
1	07-02-2021	293.434627
2	08-02-2021	310.092931
3	09-02-2021	540.900319
4	10-02-2021	428.768825
5	11-02-2021	331.761890
6	15-02-2021	7.407143
7	16-02-2021	731.736755

```
# 4. Tokenize the text
```

max_words = 10000 # Adjust this value based on the size of your dataset tokenizer = Tokenizer(num_words=max_words)

tokenizer.fit_on_texts(data['cleanText'])

5. Convert text to sequences

sequences = tokenizer.texts_to_sequences(data['cleanText'])

6. Pad sequences to a fixed length

max_sequence_length = 100 # Adjust this value as needed

X = pad_sequences(sequences, maxlen=max_sequence_length)

7. Normalize Polarity Score

scaler = MinMaxScaler()

data['Polarity Score'] = scaler.fit_transform(data['Polarity Score'].values.reshape(-1, 1))

```
<ipython-input-10-eb33df901019>:15: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus data['Polarity Score'] = scaler.fit_transform(data['Polarity Score'].values.reshape(-1, 1))

merged_df

```
Date Sum of Polarity Score Closing Price Price Difference
      0 06-02-2021
                                   0.197886
                                                   0.000000
                                                                         97.23
      1 07-02-2021
                                   0.394886
                                                   0.099795
                                                                         97.23
      2 08-02-2021
                                   0.417884
                                                   0.199589
                                                                         97.23
      3 09-02-2021
                                   0.736534
                                                   0 299384
                                                                         97.23
      4 10-02-2021
                                   0.581726
                                                   0.399179
                                                                         97.23
      5 11-02-2021
                                   0.447800
                                                   0.498974
                                                                         97.23
      6 15-02-2021
                                   0.000000
                                                   0.900205
                                                                        390.92
                                   1.000000
      7 16-02-2021
                                                   1.000000
                                                                         97.23
pip install Augmentor
     Collecting Augmentor
       Downloading Augmentor-0.2.12-py2.py3-none-any.whl (38 kB)
     Requirement already satisfied: Pillow>=5.2.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (9.4.0)
     Requirement already satisfied: tqdm>=4.9.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (4.66.1)
Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from Augmentor) (1.23.5)
     Installing collected packages: Augmentor
     Successfully installed Augmentor-0.2.12
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, GRU, Dense
from sklearn.metrics import mean_squared_error, mean_absolute_error
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
# Load the provided DataFrame
merged_df = pd.DataFrame({
    "Date": ["06-02-2021", "07-02-2021", "08-02-2021", "09-02-2021", "10-02-2021", "11-02-2021", "15-02-2021", "16-02-2021"],
    "Sum of Polarity Score": [0.197886, 0.394886, 0.417884, 0.736534, 0.581726, 0.447800, 0.000000, 1.000000],
    "Closing Price": [0.000000, 0.099795, 0.199589, 0.299384, 0.399179, 0.498974, 0.900205, 1.000000],
    "Price Difference": [97.23, 97.23, 97.23, 97.23, 97.23, 390.92, 97.23]
})
# Define the number of augmented samples to generate
num_augmented_samples = 1000  # Adjust as needed
# Initialize empty lists for augmented data
augmented_polarity = []
augmented_price = []
# Perform data augmentation
for i in range(num_augmented_samples):
    random_idx = np.random.randint(len(merged_df))
    original_polarity = merged_df.iloc[random_idx]["Sum of Polarity Score"]
    original_price = merged_df.iloc[random_idx]["Closing Price"]
    # Simulate a small random change in polarity
    augmented_polarity.append(original_polarity + np.random.uniform(-0.1, 0.1))
    # Simulate a small random change in price
    augmented_price.append(original_price + np.random.uniform(-0.1, 0.1))
# Create a DataFrame from augmented data
augmented df = pd.DataFrame({
    "Sum of Polarity Score": augmented_polarity,
    "Closing Price": augmented_price
})
# Merge the original and augmented data
merged_df = pd.concat([merged_df, augmented_df], ignore_index=True)
# Normalize data
scaler = MinMaxScaler()
merged_df["Sum of Polarity Score"] = scaler.fit_transform(merged_df["Sum of Polarity Score"].values.reshape(-1, 1))
# Split the data into training and testing sets
X = merged_df["Sum of Polarity Score"].values
```

```
y = merged_df["Closing Price"].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Reshape the data for LSTM and GRU models
X_train = X_train.reshape(-1, 1, 1)
X_test = X_test.reshape(-1, 1, 1)
# Build LSTM model
lstm_model = Sequential()
lstm_model.add(LSTM(64, input_shape=(1, 1)))
lstm_model.add(Dense(1))
lstm_model.compile(optimizer="adam", loss="mean_squared_error")
# Build GRU model
gru_model = Sequential()
gru_model.add(GRU(64, input_shape=(1, 1)))
gru_model.add(Dense(1))
gru model.compile(optimizer="adam", loss="mean squared error")
# Train LSTM and GRU models
lstm_model.fit(X_train, y_train, epochs=50, batch_size=16)
gru_model.fit(X_train, y_train, epochs=50, batch_size=16)
# Predict using the models
lstm_predictions = lstm_model.predict(X_test)
gru predictions = gru model.predict(X test)
# Evaluate the models
lstm_mse = mean_squared_error(y_test, lstm_predictions)
lstm_mae = mean_absolute_error(y_test, lstm_predictions)
gru_mse = mean_squared_error(y_test, gru_predictions)
gru_mae = mean_absolute_error(y_test, gru_predictions)
# Calculate correlation
correlation, _ = pearsonr(merged_df["Sum of Polarity Score"], merged_df["Closing Price"])
print(f"LSTM MSE: {lstm_mse}, MAE: {lstm_mae}")
print(f"GRU MSE: {gru_mse}, MAE: {gru_mae}")
print(f"Correlation between Polarity and Closing Price: {correlation}")
# Plot results
plt.figure(figsize=(12, 6))
plt.plot(y_test, label="Actual Closing Price")
plt.plot(lstm_predictions, label="LSTM Predictions")
plt.plot(gru_predictions, label="GRU Predictions")
plt.legend()
plt.title("Bitcoin Closing Price Predictions")
plt.show()
```


J=, J=				,		
Epoch	3/50					
51/51 Epoch	[========]	-	0s	3ms/step -	loss:	0.1125
	[=========]	_	0s	3ms/step -	loss:	0.1122
Epoch			0 -	For a distance	1	0 4422
51/51 Epoch	[=====================================	-	05	Sms/step -	1055:	0.1122
51/51	[=====]	-	0s	4ms/step -	loss:	0.1120
Epoch 51/51	//50 [========]	_	0s	6ms/step -	loss:	0.1119
Epoch	8/50			·		
51/51 Epoch	9/50	-	0s	4ms/step -	loss:	0.1116
51/51	[=====]	-	0s	5ms/step -	loss:	0.1115
Epoch 51/51	[========]	_	0s	4ms/step -	loss:	0.1112
Epoch	11/50			·		
	[=====================================	-	0s	3ms/step -	loss:	0.1111
	[=======]	-	0s	2ms/step -	loss:	0.1112
Epoch 51/51	[=========]	_	0s	3ms/step -	loss:	0.1111
Epoch	14/50 [=======]		Q.c	2ms/ston	10001	0 1106
	15/50	_	03	2113/3CEP -	1033.	0.1100
51/51 Epoch	[========] 16/50	-	0s	2ms/step -	loss:	0.1102
51/51	[=====]	-	0s	3ms/step -	loss:	0.1102
Epoch 51/51	17/50 [=======]	_	0s	3ms/step -	loss:	0.1096
Epoch			0.5	2ms /s+an	10001	0 1002
Epoch	[========] 19/50	-	05	sms/step -	1055:	0.1093
51/51 Epoch	[========]	-	0s	2ms/step -	loss:	0.1088
51/51	[=====]	-	0s	4ms/step -	loss:	0.1079
	21/50 [========]	_	۵s	4ms/sten -	loss	0 1071
Epoch	22/50			·		
51/51 Epoch	[=========]	-	0s	4ms/step -	loss:	0.1060
51/51	[]	-	0s	3ms/step -	loss:	0.1051
Epoch 51/51	24/50 [=========]	-	0s	2ms/step -	loss:	0.1039
Epoch	25/50 [======]		Q.c	2ms/ston	10001	0 1016
Epoch	26/50			·		
51/51 Epoch	[=====================================	-	0s	2ms/step -	loss:	0.0993
	[========]	-	0s	2ms/step -	loss:	0.0971
Epoch 51/51	[=========]	-	0s	1ms/step -	loss:	0.0931
	29/50 [========]	_	۵s	2ms/sten -	loss	a a895
Epoch	30/50			·		
	[=====================================	-	0s	1ms/step -	loss:	0.0857
51/51	[======]	-	0s	2ms/step -	loss:	0.0807
Epoch 51/51	32/50 [========]	_	0s	2ms/step -	loss:	0.0753
Epoch			0.5	2ms /s+on	10001	0 0702
Epoch	[========] 34/50	-	05	zms/step -	1055:	0.0703
51/51 Epoch	[=========]	-	0s	2ms/step -	loss:	0.0657
51/51	[=====]	-	0s	2ms/step -	loss:	0.0611
-	36/50 [=======]	_	0 s	2ms/sten -	loss:	0.0570
Epoch	37/50			·		
	[=======] 38/50	-	0s	2ms/step -	loss:	0.0543
51/51 Epoch	[=========]	-	0s	2ms/step -	loss:	0.0518
51/51	[=====]	-	0s	2ms/step -	loss:	0.0500
	40/50 [=======]	_	0s	2ms/step -	loss:	0.0487
Epoch	41/50			·		
Epoch				·		
51/51 Epoch	[=====================================	-	0s	2ms/step -	loss:	0.0475
51/51	[======]	-	0s	2ms/step -	loss:	0.0472
Epoch 51/51	44/50 [========]	_	0s	2ms/sten -	loss:	0.0472
Epoch	45/50					
51/51	[======]	-	Øs	2ms/step -	loss:	0.0468

```
Epoch 46/50
51/51 [=====
         Epoch 47/50
Epoch 48/50
51/51 [=====
           Epoch 49/50
51/51 [====
            =========] - 0s 2ms/step - loss: 0.0465
Epoch 50/50
51/51 [=====
          ========= ] - 0s 2ms/step - loss: 0.0465
Epoch 1/50
51/51 [===:
           =========] - 2s 2ms/step - loss: 0.1574
Epoch 2/50
Epoch 3/50
51/51 [====
           Epoch 4/50
Epoch 5/50
51/51 [===:
            Epoch 6/50
Epoch 7/50
51/51 [============= - - 0s 2ms/step - loss: 0.1121
Epoch 8/50
51/51 [============= ] - 0s 2ms/step - loss: 0.1123
Epoch 9/50
51/51 [============ - - 0s 2ms/step - loss: 0.1126
Epoch 10/50
51/51 [=====
            Epoch 11/50
51/51 [============] - 0s 2ms/step - loss: 0.1111
Epoch 12/50
51/51 [========== ] - 0s 2ms/step - loss: 0.1118
Epoch 13/50
51/51 [============= ] - 0s 2ms/step - loss: 0.1114
Epoch 14/50
51/51 [============ - - 0s 2ms/step - loss: 0.1108
Epoch 15/50
51/51 [=====
         Epoch 16/50
Epoch 17/50
51/51 [=====
         Epoch 18/50
Epoch 19/50
51/51 [=====
        Epoch 20/50
51/51 [=========== ] - 0s 2ms/step - loss: 0.1079
Epoch 21/50
51/51 [============ ] - 0s 2ms/step - loss: 0.1088
Epoch 22/50
51/51 [=====
          Epoch 23/50
51/51 [=====
          Epoch 24/50
51/51 [=====
          :========= l - Os 2ms/step - loss: 0.1041
Epoch 25/50
Epoch 26/50
51/51 [=====
           ========= ] - 0s 2ms/step - loss: 0.1016
Epoch 27/50
51/51 [====
         Epoch 28/50
51/51 [=====
           ========= ] - 0s 2ms/step - loss: 0.0964
Epoch 29/50
51/51 [======
         Epoch 30/50
51/51 [=====
            ========= ] - 0s 2ms/step - loss: 0.0905
Epoch 31/50
51/51 [=====
            =========] - 0s 2ms/step - loss: 0.0880
Epoch 32/50
51/51 [=====
         Epoch 33/50
51/51 [=====
            =========] - 0s 2ms/step - loss: 0.0801
Epoch 34/50
Epoch 35/50
51/51 [=====
            ========= ] - 0s 2ms/step - loss: 0.0722
Epoch 36/50
51/51 [=====
          ========= ] - 0s 2ms/step - loss: 0.0685
Epoch 37/50
51/51 [=====
                    ==1 - 0s 2ms/step - loss: 0.0649
Epoch 38/50
51/51 [==:
            =========] - 0s 2ms/step - loss: 0.0619
Epoch 39/50
Epoch 40/50
51/51 [============== ] - 0s 2ms/step - loss: 0.0560
Fnoch /11/50
```

```
51/51 [=====
                                   0s 2ms/step - loss: 0.0542
Epoch 42/50
51/51 [=====
                                   0s 2ms/step - loss: 0.0529
Epoch 43/50
51/51 [====
                                   0s 2ms/step - loss: 0.0515
Epoch 44/50
51/51 [=====
                                   0s 2ms/step - loss: 0.0507
Epoch 45/50
Epoch 46/50
51/51 [=====
                                   0s 2ms/step - loss: 0.0487
Epoch 47/50
51/51 [=====
                                 - 0s 2ms/step - loss: 0.0490
Epoch 48/50
51/51 [====
                                   0s 2ms/step - loss: 0.0486
Epoch 49/50
51/51 [======
              ========= 1 - 0s 2ms/step - loss: 0.0483
Epoch 50/50
{\tt WARNING:tensorflow:5}\ \ {\tt out\ of\ the\ last\ 5}\ \ {\tt calls\ to\ <function\ Model.make\_predict\_funct}
7/7 [======= ] - 0s 2ms/step
WARNING:tensorflow:5 out of the last 11 calls to <function Model.make_predict_func
7/7 [======] - 0s 2ms/step
LSTM MSE: 0.04753636538164562, MAE: 0.17748847698805617
GRU MSE: 0.048146038374199285, MAE: 0.17948140844354232
Correlation between Polarity and Closing Price: 0.22229806230395566
```

