Chicago Property Valuation Analysis

Justin Cox, Will Dibb, Taylor Rasley, Taylor Williams, Zhongyi Zhang

Agenda

- 1. Overview & Objective
- 2. Data Sources
- 3. ETL Model
- 4. Data Processing & Analysis
- 5. RDBMS
- 6. Data Visualization
- 7. Limitations & Lessons
- 8. Alternative Databases
- 9. Discussion & Next Steps

Overview

- Model development for property value comparison of Chicago areas
- Various livability considerations to identify areas where property values might be overvalued or undervalued.
- Objective: identifying these areas where property is out of alignment with livability provides potential investment opportunities and consumer information

Data Sources

- Chicago Zip Geospatial Map
- Active Business Licenses
- Crime
- Community Assets:
 - Grocery Stores
 - Schools

Property Values

Population (Zip)

Data Pipeline

Data Pipeline: Collection

ETL

Extract

- OpenRefine used to retrieve current data from Zillow API
- Additional data sources identified and static CSV files aggregated

Transform

 R and Python used to read, join, and clean tables, select and transform features

Load

 R used to export clean CSV files into MySQL path and imported into SQL database

Data Pipeline: Processing & Analysis

Scoring & Analysis

Scoring

 As part of feature transformation and RDBMS model, zip level scoring systems were developed and implemented for each respective data table

Analysis

- Multiple regression analyses demonstrated association between estimated property values and active business licenses (p-value = 0.025)
- Weights for features were as anticipated, but not significant p-values (e.g. groceries p-value = 0.079)

Multiple Linear Regression Result

P-value < 0.05 reject null hypothesis Negative - Lower crime scores - higher property values

(Intercept) count_groceries crime_score business_score school_score 155590.36 54359.83 -31375.13 20857.46 41326.09

Data Pipeline: Database Development

RDBMS

DDL

- SQL data definition language written in MySQL workbench to create defined tables and relationships
- Reverse engineered schema for star model with central fact table for property valuations and livability index scores

Data Import

- SQL CSV import language written to populate generated relational database model
- MongoDB Use Case NoSQL document database MongoDB use case also generated

Entity Relationship Diagram - Star Model

Dimensional Design Considerations

- Modeling zip code area value based on livability considerations against actual average property values
- 2. Granularity Zip Code
- 3. Dimensions Each livability factor that is considered for livability
- 4. Facts scores derived from dimension data for each zip code as well as model predicted scores

Additional Considerations:

- -Dimension normalization not required
- -Updating dimensions requiring bulk reload

Data Pipeline: Dashboard Visualization

Data Visualization & BI

MySQL Server Connection

RDBMS extracted into Tableau dashboard workbook

Reports & Dashboard

- Primary data visualization is an interactive heat map for zip codes for undervalued or overvalued
- Additional reports allow data visualization for specific dimensions as well as zip-level reference information

Tableau Dashboard

Scoring Considerations & Limitations

Property Values

Does not account for property type (apartment vs single family home)

Grocery Stores

- Excluded "Liquor" stores
- Scored based on square footage

Schools

Scored based on School Quality Rating Policy (only public schools)

Crime

Scored crime types using heuristics (violence, severity)

Businesses

Binary score for positive and negative value adding businesses

Data Limitations & Lessons Learned

Limitations from approach:

- Dimension scoring was more heuristic than scientific
- Scores don't account for neighboring areas
- Point in time snapshot of data
 - Reliant on infrequently refreshed static data sources

Lessons learned:

- Zip codes change
- More factors could have been considered:
 - CTA/Transit
 - Parks & Attractions
 - TIFs
- Geospatial data has many potential identifiers which makes getting consistent crosswalks a challenge

Document Database Considerations

- Analytical nature of use case (as opposed to OLTP) aligns with document database
- Flexible schema beneficial for evolving data set/model
- Scripts for loading/cleaning data would need to change (for example references to JOINS)
- Scaling of analysis beyond Chicago would be more economically feasible

Graph Database Considerations

- Graph Compute Engine aligns for OLAP
- Different factor nodes would have relationship "in" zip code
- Limited relationship types (i.e. school is in zip code)
 included so far limit added benefit of graph database but
 additional relationships identified would increase benefit
 of using graph database
- Zip code nodes would allow for easy identification of associated factors

Scope for Improvement & Next Steps

Process:

- Utilize additional tools in cloud platform
- Automate or further streamline procedures for initial data collections via web scraping and interval static file collections from respective sources

Analysis:

- Enhance scoring model for livability index values with additional data sources and context
- Include more factors such as: traffic congestion, public transit proximity, environmental quality
- Update DDL/data pipeline to support time variant analysis

Questions