Assignment-2: Detection and Segmentation (Q 1 to 4 - 50 Marks)

Instructions:

- [1] Any plagiarism will lead to award of F grade STRICTLY
- [2] Use python only for the implementation of all the assignments
- [3] Use NumPy to represent the vector and array
- [4] Do not use the inbuilt functionality of any library including NumPy until suggest so.
- [5] PyTorch must be used to implement the deep learning-based methods.
- [6] One mark will be deducted for each late day.
- [7] Submit via Moodle only. Email submissions won't be considered.

No.	Questions	Marks
01	 Comparative analysis of Recent 5 face detection and recognition models. Datasets: UMD Face, PASCAL Face, AFW, FDDB, UFDD, or Other from https://paperswithcode.com/datasets?task=face-detection&page=1 Recent Models: https://paperswithcode.com/task/face-detection You can train or use pre-trained models if available for large dataset but train one from scratch Compare the evaluation metrics as well as run-time performance memory CPU/GPU usage and avg. clock time per detection/image/fps Present the results using tables, plots, qualitative results with good and bad examples 	10
02	Comparative analysis of Recent 5 segmentation models on 3-5 datasets. Models: UNet, Mask-RCNN, FPN, DeepLabV3, https://paperswithcode.com/task/semantic-segmentation Datasets: ChestX-ray https://paperswithcode.com/paper/chestx-ray8-hospital-scale-chest-x-ray , or others from https://paperswithcode.com/datasets?task=semantic-segmentation You can train or use pre-trained models if available for large dataset but train one from scratch Compare the evaluation metrics as well as run-time performance memory CPU/GPU usage and avg. clock time per image/fps Present the results using tables, plots, qualitative results with good and bad examples	10
03	Comparative analysis of Recent 5 person re-identification models on 3-5 datasets. Datasets & Methods: https://paperswithcode.com/task/person-re-identification You can train or use pre-trained models if available for large dataset but train one from scratch Compare the evaluation metrics as well as run-time performance memory CPU/GPU usage and avg. clock time per detection/image/fps Present the results using tables, plots, qualitative results with good and bad examples	15

O4 Comparative analysis of Recent 5 Action/Activity Recognition methods on
3-5 datasets.

Datasets & Models: https://paperswithcode.com/task/action-recognition-in-videos
You can train or use pre-trained models if available for large dataset but train one from scratch

Compare the evaluation metrics as well as run-time performance memory CPU/GPU usage and avg. clock time per video/fps

Present the results using tables, plots, qualitative results with good and bad examples