Vi tích phân 1: Chương 3

Anh Ha Le

University of Sciences

Ngày 15 tháng 3 năm 2023

Outline

- 1 Úng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiểu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ thị
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Định nghĩa (Cực đại, cực tiểu tuyệt đối)

Cho $c \in D$ với D miền xác định của hàm số f. Khi đó

- ullet giá trị cực đại tuyệt đối của D nếu $f(c) \geq f(x)$ với mọi $x \in D$
- ullet giá trị cực tiểu tuyệt đối của D nếu $f(c) \leq f(x)$ với mọi $x \in D$

Định nghĩa (Cực đại, cực tiếu địa phương)

Cho $c \in D$ với D miền xác định của hàm số f. Khi đó

- giá trị **cực đại địa phương** của D nếu $f(c) \geq f(x)$ với mọi x thuộc lân cận của c
- giá trị **cực tiểu địa phương** của D nếu $f(c) \leq f(x)$ với mọi x thuộc lân cận của c

Ví dụ: Tìm giá trị cực tiểu địa phương, cực tiểu tuyệt đối, cực đại địa phương, cực đại tuyệt đối của đồ thị hàm số

$$f(x) = 3x^4 - 16x^3 + 18x^2 \qquad -1 \le x \le 4$$

Định nghĩa (Định lý cực trị)

Cho hàm số f liên tục trên đoạn đóng [a,b] thì tồn tại điểm c và d thuộc [a,b] sao cho f(c) là giá trị nhỏ nhất và f(d) là giá trị lớn nhất

Định nghĩa (Định lý Fermat)

Nếu f có cực đại hay cực tiểu địa phương tại c và nếu f'(c) tồn tại thì f'(c)=0

Tìm cực đại địa phương và cực tiểu địa phương của hàm số sau: $f(x) = x^{3/5}(4-x)$

Tìm cực tiểu, cực đại

Để tìm các giá trị cực đại, cực tiểu tuyệt đối của hàm số f liên tục trên đoạn $\left[a,b\right]$

- ullet Tìm điểm c sao cho f'(c)=0 hay f'(c) không tồn tại
- ullet Tìm giá trị của f tại a (f(a)) và b (f(b))
- Giá trị lớn nhất các giá trị từ bước 1 đến bước 2 chính là giá trị cực đại tuyệt đối; còn giá trị nhỏ nhất các giá trị đó chính là giá trị cực tiểu tuyệt đối

Ví dụ: Tìm cực trị của hàm số

$$f(x) = x^3 - 3x^2 + 1$$
 $-\frac{1}{2} \le x \le 4$

Ví dụ: Tìm cực trị của hàm số sau:

$$f(x) = x - 2\sin(x), \quad 0 \le x \le 2\pi$$

Outline

- 1 Úng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiếu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ th
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Định lý giá trị trung bình

Định Lý (Định lý Rolle)

Cho hàm số f thỏa mãn 3 giải thiết sau:

- ullet f liên tục trên đoạn [a,b]
- ullet f khả vi trên khoảng (a,b)
- f(a) = f(b)

Luôn tồn tại một số $c \in (a,b)$ sao cho f'(c)=0

Định lý giá trị trung bình

 \mathbf{V} í dụ: Tìm điểm c thỏa định lí Rolle của hàm số:

$$\begin{split} f(x) &= x^3 - x^2 - 6x + 2 \text{ trên } [0,3] \\ f(x) &= \cos(2x) \text{ trên } [\pi/8,7\pi/8] \end{split}$$

Ví dụ: Chứng minh phương trình $x^3+x-1=0$ có một nghiệm duy nhất **Ví dụ:** Cho hàm só $f(x)=1-x^{2/3}$. Ta có f(-1)=f(1) nhưng không có điểm $c\in (-1,1)$ sao cho f'(c)=0.???

Đinh lý giá tri trung bình

Định Lý (Định lý giá trị trung bình)

Cho hàm số f thỏa mãn 2 giải thiết sau:

- f liên tuc trên đoan [a,b]
- f khả vi trên khoảng (a,b)

Khi đó tồn tại một số $c \in (a,b)$ sao cho

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c)(b - a)$$

hoăc

$$f(b) - f(a) = f'(c)(b - a)$$

Định lý giá trị trung bình

Ví dụ: Chứng minh sự tồn tạ của c thông qua hàm số $f(x) = x^3 - x$ trên đoạn [a,b]

 \mathbf{V} í dụ: Tìm điểm c thỏa định lý trung bình của hàm số sau:

(a)
$$f(x) = \sqrt{x}$$
, $[0, 4]$, (b) $f(x) = e^{-x}$, $[0, 2]$, (c) $f(x) = \ln(x)$, $[1, 4]$

Ví dụ: Chứng minh rằng những phương trình chỉ có một nghiệm duy nhất.

(a)
$$f(x) = 2x + \cos(x)$$
, (b) $x^3 + e^x = 0$

Ví dụ: Cho hàm số f(x)=2-|2x-1|. Chúng minh rằng không có điểm $c\in(0,3)$ thỏa f(3)-f(0)=f'(c)(3-0). Giải thích tại sao???

Ví dụ: Giả sử rằng $3 \le f'(x) \le 5$ cho tất cả x. Chứng minh rằng $18 \le f(8) - f(2) \le 30$

Định Lý

Nếu f'(x)=0 với mọi điểm $x\in(a,b)$ thì f là hàm hằng

 \mathbf{V} í dụ: Cho hàm số f được định nghĩa sau

$$f(x) = \frac{x}{|x|} = \begin{cases} 1 & \text{n\'eu } x > 0 \\ -1 & \text{n\'eu } x < 0 \end{cases}$$

Ví dụ: Chứng minh rằng $\tan^{-1} x + \cot^{-1} x = \pi/2$

Outline

- 1 Ứng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiếu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ thị
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Hình dáng của đồ thị

Tiêu chuẩn đồng biến/nghịch biến

- (a) Nếu $f^{\prime}(x)>0$ với mọi x thuộc một khoảng I thì hàm số f đồng biến trên I
- (b) Nếu f'(x) < 0 với mọi x thuộc một khoảng I thì hàm số f nghịch biến trên I

Tìm khoảng tăng và khoảng giảm của hàm số

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

Hình dáng của đồ thị

Tiêu chuẩn đạo hàm cấp một

Giả sử c là một điểm tới hạn của một hàm số liên tục f

- (a) Nếu f^\prime đổi dấu từ dương sang âm tại c, thì f là một cực đại địa phương tại c
- (b) Nếu f' đổi dấu từ âm sang dương tại c, thì f là một cực tiểu địa phương tại c
- (c) Nếu f' không đổi dấu tại c, thì f không có cực đại hay cực tiểu địa phương tại c

Hình dáng của đồ thi

Ví dụ: Tìm các giá trị cực đại và cực tiểu đia phương của hàm số

$$g(x) = x + 2\sin(x) \qquad 0 \le x \le 2\pi$$

Ví du: Tìm điểm cực đại và cực tiểu của những hàm số sau:

(a)
$$f(x) = x^4 - 2x^2 + 3$$
, (b) $f(x) = \cos^2(x) - 2\sin x$, $[0, 2\pi]$
(c) $f(x) = x^2 - x - \ln x$

$$f(x) = x^2 - x - \ln x$$

Đồ thị lõm, lồi

Định nghĩa (Đồ thị lõm, lồi)

Nếu đồ thị hàm số f nằm trên tất cả những tiếp tuyến của nó trong một khoảng I cho trước thì đồ thị hàm số được gọi là l \tilde{o} m trong khoảng I. Ngược lại, Nếu đồ thị hàm số f nằm dưới tất cả những tiếp tuyến của nó trong một khoảng I cho trước thì đồ thị hàm số được gọi là l \tilde{o} \tilde

Tiêu chuẩn lồi/lõm, Điểm uốn

Tiêu chuẩn lồi/lõm

- (a) Nếu f''(x)>0 với mọi $x\in I$, thì đồ thị của f lõm trên khoảng I
- (b) Nếu f''(x) < 0 với mọi $x \in I$, thì đồ thị của f lồi trên khoảng I

Định nghĩa (Điểm uốn)

Một điểm P thuộc đường cong y=f(x) được gọi là **điểm uốn** nếu hàm số f liên tục tại đó và đường cong thay đổi từ lồi sang lõm hay ngược lại

Tiêu chuẩn lồi/lõm, Điểm uốn

Ví dụ: Phát họa đồ thị của hàm f thỏa mãn:

(i)
$$f(0) = 0$$
, $f(2) = 3$, $f(4) = 6$, $f'(0) = f'(4) = 0$

(ii)
$$f'(x) > 0$$
 với $0 < x < 4$, $f'(x) < 0$ với $x < 0$ và với $x > 4$

(iii)
$$f''(x) > 0$$
 với $x < 2$, $f''(x) < 0$ với $x > 2$

Tiêu chuẩn đạo hàm cấp 2

Tiêu chuẩn đạo hàm cấp 2

Giả sử f'' liên tục tại lân cận điểm c

- (a) Nếu f'(c)=0 và f''(c)>0 thì f có cực tiểu địa phương tại c
- (b) Nếu f'(c)=0 và f''(c)<0 thì f có cực đại địa phương tại c

Ví dụ: Tìm cực đại và cực tiểu địa phương dùng tiêu chuẩn đạo hàm cấp 1 và 2.

(a)
$$f(x) = \frac{x^2}{x-1}$$
, (b) $f(x) = 1 + 3x^2 - x^3$

Tiêu chuẩn đạo hàm cấp 2

Ví dụ:

- (a) Tìm điểm cực trị của hàm số $f(x) = x^4(x-1)^3$.
- (b) Tìm cực đại và cực tiểu địa phương bằng đạo hàm cấp 2.
- (c) Tìm cực đại và cực tiểu địa phương bằng đạo hàm cấp 1.

 $\dot{\mathbf{Vi}}$ dụ: Xét tính lồi lõm của đường cong $y=x^4-4x^3$, tìm các điểm uốn, cực đại, cực tiểu địa phương.

Ví dụ: Xét tính lồi lõm của hàm số $f(x)=x-\sin x,\ [0,4\pi]$, tìm các điểm uốn, cực đại, cực tiểu địa phương.

Outline

- 1 Ứng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiếu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ thị
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Quy tắc l'Hospital

Có cách dễ dàng nào để tính giới hạn:

$$\lim_{x\to 1}\frac{\ln(x)}{x-1} \text{ hay } \lim_{x\to 0}\frac{\sin(x)}{x}$$

Quy tắc L'Hospital's

Giả sử f và g khả vi, và $g'(x) \neq 0$ trên một lân cận của a. Giả sử

$$\lim_{x\to a} f(x) = 0 \text{ and } \lim_{x\to a} g(x) = 0$$
$$\lim_{x\to a} f(x) = \pm \infty \text{ and } \lim_{x\to a} g(x) = \pm \infty$$

hay
$$\lim_{x \to a} f(x) = \pm \infty$$
 and $\lim_{x \to a} g(x) = \pm \infty$

và tồn tại $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ hữu hạn hay vô hạn thì

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Quy tắc l'Hospital

Ví dụ: Tìm giới hạn sau:

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}, \qquad \lim_{x \to \infty} \frac{e^x}{x^2}, \quad \lim_{x \to \pi^-} (\sec x - \tan x)$$

Dạng tích

Nếu $\lim_{x \to a} f(x) = 0$ và $\lim_{x \to a} g(x) = \pm \infty$, ta có thể tích giới hạn

$$\lim_{x \to a} fg(x) = \lim_{x \to a} \frac{f}{1/g} \text{ hay } \lim_{x \to a} fg(x) = \lim_{x \to a} \frac{g}{1/f}$$

Ví dụ: Tính giới hạn

$$\lim_{x \to 0^+} x \ln(x), \qquad \lim_{x \to \infty} \sqrt{x} e^{-x/2}$$

Dạng hiệu

Nếu $\lim_{x \to a} = \infty$ và $\lim_{x \to a} g(x) = \infty$, để tính $\lim_{x \to a} (f(x) - g(x))$, ta dùng biến đổi đua về dạng $\frac{\infty}{\infty}$ hay $\frac{0}{0}$ và dùng quy tắc L'Hospital để tính giới hạn

Ví dụ: Tính giới hạn

$$\lim_{x \to \pi^{-}} (\sec x - \tan x), \quad \lim_{x \to 0} (\cot x - \frac{1}{x})$$

Dạng mũ

Nếu giới hạn của $[f(x)]^{g(x)}$ có dạng 1^∞ , ∞^0 hoặc 0^0 thì chúng ta có thể đưa về dạng $\frac{0}{0}$ bằng cách sử dụng công thức $a^b=e^{b\ln(a)}$

Ví dụ: Tính các giới hạn sau:

$$\lim_{x \to 0^+} (1 + \sin(4x))^{\cot x}, \quad \lim_{x \to 0^+} x^x, \quad \lim_{x \to 0^+} (\cos(x))^{1/x^2}$$

Outline

- 1 Úng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiếu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ thị
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Phương pháp Newton

Để giải phương trinh sau:

$$48x(1+x)^{60} - (1+x)^{60} + 1 = 0$$

Cho x_1 ,để tính x_2 như trong hình. Ta có đường thẳng tiếp tiếp tại $(x_1,f(x_1))$

$$y - f(x_1) = f'(x_1)(x - x_1)$$

Phương pháp Newton

Để tính x_2 , ta có công thức

hay

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Vậy ta có thể tổng quát hóa khi tìm giá trị x_{n+1} khi biết x_n :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Phương pháp Newton

Ví dụ: Bắt đầu với $x_1=2$, tìm nghiệm xấp xĩ thứ ba x_3 của phương trình:

$$x^3 - 2x - 5 = 0$$

Ví dụ: Sử dụng phương pháp Newton để tìm $\sqrt[6]{2}$ chính xác đến 8 chữ số thập phân

Ví dụ: Tìm nghiệm của phương trình $\cos(x)=x$, lấy chính xác đến 6 chữ số thập phân

Ví dụ: Tìm nghiệm chính xác đến 6 con số: $(x-2)^2 = \ln x$

Outline

- 1 Úng Dụng của Đạo Hàm
 - Giá trị cực đại và cực tiếu
 - Định lý giá trị trung bình
 - Đạo hàm cho biết hình dáng của đồ thị
 - Quy tắc l'Hospital
 - Phương pháp Newton
 - Nguyên hàm

Nguyên hàm

Định nghĩa (Nguyên hàm)

Một hàm số F được gọi là nguyên hàm của f trên khoảng I nếu F'(x)=f(x) với mọi $x\in I$

Định Lý (Nguyên hàm)

Nếu F là nguyên hàm của f trên khoảng I, thì nguyên hàm của f trên khoảng I có dạng tổng quát:

$$F(x) + C$$

với C là hằng số tùy ý

Nguyên hàm

Ví dụ: Tìm nguyên hàm của hàm số $f(x) = x^2$

Ví dụ: Tìm nguyên hàm của các hàm sau:

(a)
$$f(x) = \sin(x)$$
 (b) $f(x) = \frac{1}{x}$, (c) $f(x) = x^n$, $n \neq -1$

Bảng nguyên hàm

Hàm số	Nguyên hàm	Hàm số	Nguyên Hàm
cf(x)	cF(x)	$\sec^2(x)$	tan(x)
f(x) + g(x)	F(x) + G(x)	$\sec(x)\tan(x)$	sec(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}(x)$
$\frac{1}{x}$	$\frac{\ln(x)}{e^x}$	$\frac{1}{1+x^2}$	$\tan^{-1}(x)$
Ŭ .		$\cosh(x)$	$\sinh(x)$
$\cos(x)$	$\sin(x)$	$\sinh(x)$	$\cosh(x)$
$\sin(x)$	$-\cos(x)$		

Ví dụ: Tìm tất cả hàm số
$$g$$
 sao cho $g'(x) = 4\sin(x) + \frac{2x^5 - \sqrt{x}}{x}$

Ví dụ: Tìm
$$f$$
 nếu $f'(x) = x\sqrt{x}$ và $f(1) = 2$

Ví dụ: Tìm
$$f$$
 nếu $f'(x) = e^x + 20(1+x^2)^{-1}$ và $f(0) = -2$