Московский физико-технический институт (госудраственный университет)

Устный экзамен по физике (термодинамика) Вопрос по выбору

Термодинамическая устойчивость

Талашкевич Даниил Группа Б01-009

Долгопрудный 2021

Содержание

1	Алг	ебра ло	ГИ	ΚI	1																1
	1.1	Задача	1.																		1
	1.2	Задача																			2
	1.3	Задача																			3
	1.4	Задача																			3
	1.5	Задача																			5
	1.6	Задача																			5
	1.7	Задача																			6
	1.8	Задача	8.																		7
	1.9	Задача																			7
	1.10	Задача																			8
2	Мно	эжества	и	Л	OΓ	' II	Ka	ı													8
																					8
	2.1	Задача	1.																		0
	2.1 2.2	Задача Задача																			
			2 .																		9
	2.2	Задача	2 . 3 .																		9 10
	2.2 2.3	Задача Задача	2 . 3 . 4 .								 	 		 	 			 			9 10 11
	2.2 2.3 2.4	Задача Задача Задача	2 . 3 . 4 . 5 .						 	 	 	 	 	 	 		 	 	 		9 10 11 12
	2.2 2.3 2.4 2.5	Задача Задача Задача Задача Задача	2 . 3 . 4 . 5 . 6 .						 	 	 · · · · · ·	 		 	 	 	 	 	 		9 10 11 12 13
	2.2 2.3 2.4 2.5 2.6	Задача Задача Задача Задача Задача Задача	2 · 3 · 4 · 5 · 6 · 7 · .						 	 	 · · · · · · · · · · · · · · · · · · ·	 	 	 	 		 	 	 		9 10 11 12 13 14
	2.2 2.3 2.4 2.5 2.6 2.7	Задача Задача Задача Задача Задача	2 . 3 . 4 . 5 . 6 . 7 .						 · · · · · · · · · · · · · · · · · · ·	 	 	 	· · · · · · · ·	 	 		 	 	 	·	9 10 11 12 13 14 15

1 Алгебра логики

1.1 Задача 1

Согласно условию задачи,

$$\neg (x = y) \land ((y < x) \rightarrow (2z > x)) \land ((x < y) \rightarrow (x > 2z)) = 1$$

Так как это выражение - истина, тогда истине равны:

- $a) \neg (x = y) = 1$
- b) $(y < x) \to (2z > x) = 1$
- $(x < y) \rightarrow (x > 2z) = 1$

Из пункта а) следует, что $x \neq y$, то есть $x \neq 16$. Пункт б) выполняется всегда, кроме случая:

$$\begin{cases} (y < x) = 1\\ (2z > x) = 0 \end{cases}$$

$$\begin{cases} x > y\\ x \ge 2z \end{cases}$$

$$\begin{cases} x > 16\\ x \ge 14 \end{cases}$$

$$x > 16$$

То есть пункт б) выполняется, если

$$x \leqslant 15$$

Пункт в) отличается от б) только знаками неравенств:

$$x \geqslant 15$$

В итоге получили систему уравнений:

$$\begin{cases} x \geqslant 15 \\ x \leqslant 15 \\ x \neq 16 \end{cases}$$
$$x = 15$$

Ответ: 15

1.2 Задача 2

$$f(x, y, z) = \neg((x \land \neg y) \land z)$$

Найдём все значения функции для построения таблицы истинности:

$$f(0,0,0) = \neg((0 \land \neg 0) \land 0) = \neg(0 \land 0) = 1$$

$$f(0,0,1) = \neg((0 \land \neg 0) \land 1) = \neg(0 \land 1) = 1$$

$$f(0,1,0) = \neg((0 \land \neg 1) \land 0) = \neg(0 \land 0) = 1$$

$$f(0,1,1) = \neg((0 \land \neg 1) \land 1) = \neg(0 \land 1) = 1$$

$$f(1,0,0) = \neg((1 \land \neg 0) \land 0) = \neg(1 \land 0) = 1$$

$$f(1,0,1) = \neg((1 \land \neg 0) \land 1) = \neg(1 \land 1) = 0$$

$$f(1,1,0) = \neg((1 \land \neg 1) \land 0) = \neg(0 \land 0) = 1$$

$$f(1,1,1) = \neg((1 \land \neg 1) \land 1) = \neg(1 \land 0) = 1$$

(\		, ,
x	y	z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1.3 Задача 3

$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1)$$

Для доказательства рассмотрим, когда (в каких случаях) оба выражения равны истине:

- 1) $f_1(x_1, x_2) = (1 \oplus x_1) \oplus x_2 = 1$
- a) если $x_1 = 0$, то $x_2 = 0$,
- b) если $x_1=1$, то $x_2=1$, То есть $x_1=x_2$, если $f_1(x_1,x_2)=1$
- 2) $f_2(x_1, x_2) = (x_1 \to x_2) \land (x_2 \to x_1) = 1$

Заметим, что $x_1=x_2=0$ или $x_1=x_2=1$, иначе возникает ситуация $1\to 0=0$, то есть $x_1=x_2$, если $f_2(x_1,x_2)=1$

Оба выражения равны истине только тогда, когда $x_1 = x_2$, в остальных случаях $(x_1 \neq x_2)$ они равны нулю (лжи), то есть булевы функции $f_1(x_1, x_2)$ и $f_2(x_1, x_2)$ ведут себя одинаково при различных x_1 и x_2 , значит они эквивалентны.

Доказано

1.4 Задача 4

$$a) \ x \wedge (y \to z) = (x \wedge y) \to (x \wedge z)$$

Пусть x = 0, тогда выражение слева в a) всегда равно нулю

$$(0 \land (y \to z)) = 0$$

Значит

$$(x \land y) \to (x \land z) = 0$$

$$\begin{cases} x \land y = 1 \\ x \land z = 0 \end{cases}$$
$$x = y = 1$$

Получили, что x=1, предполагая, что x=0. Противоречие. Дистрибутивность не вып b) $x \oplus (y \leftrightarrow z) = (x \oplus y) \leftrightarrow (x \oplus z)$

Предположим, что выражение слева $(x \oplus (y \leftrightarrow z))$ равно истине, тогда:

$$x \oplus (y \leftrightarrow z) = 1 \tag{1}$$

$$(x \oplus y) \leftrightarrow (x \oplus z) = 1 \tag{2}$$

Рассмотрим решение уравнения (1): случай 1:

$$\begin{cases} x \oplus y = 1 \\ x \oplus z = 1 \end{cases}$$

$$y = z \neq x$$

Рассмотрим случай 2:

$$\begin{cases} x \oplus y = 0 \\ x \oplus z = 0 \end{cases}$$
$$y = z = x$$

В любом случае в решении $(x \oplus y) \leftrightarrow (x \oplus z) = 1$ выполняется y = z. Решением уравнения (2) являются 2 системы:

$$\begin{cases}
 x = 0 \\
 y = z
\end{cases}$$
(3)

$$\begin{cases} x = 1 \\ y \neq z \end{cases} \tag{4}$$

То есть одно из решений содержит $y \neq z$, но в решении уравнения (1) всегда y=z. Противоречие. Дистрибутивность не выполянется.

1.5 Задача 5

- а) Коммутативность для импликации $x \to y = y \to x$ не выполняется, так как если x=0,y=1, то $0\to 1=1,$ но $1\to 0=0$
- b) <u>Ассоциативность</u> $(x \to y) \to z = x \to (y \to z)$ <u>не выполняется,</u> так как при если x=0, то $x \to (y \to z)=1$ при любых y и z, при этом $x \to y=1$, но если z=0, то $(x \to y) \to z=0$, в то время как $x \to (y \to z)=1$

1.6 Задача 6

a) $f(x_1, x_2, x_3) = 00111100$

Для наглядности составим таблицу истинности:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Заметим, что при $x_1=x_2$ выходит $f(x_1,x_2,x_3)=0$, а в других случаях $f(x_1,x_2,x_3)=1$, значит $\underline{x_1}$ и $\underline{x_2}$ - существенные переменные, а x_3 - фиктивная.

b)
$$g(x_1, x_2, x_3) = (x_1 \to (x_1 \lor x_2)) \to x_3$$

Если
$$x_1 = 1$$
, то $(x_1 \to (x_1 \lor x_2)) = (1 \to 1) = 1$.

Если
$$x_1 = 0$$
, то $(x_1 \to (x_1 \lor x_2)) = (0 \to (0 \lor x_2)) = 1$.

Получили, что $(x_1 \to (x_1 \lor x_2)) = 1$ не зависит от x_1 и тем более от x_2 , значит $g(x_1, x_2, x_3) = 1 \to x_3$. Итак, x_1 и x_2 - фиктивные переменные, а x_3 - существенная

1.7 Задача 7

$$f(x_1, ..., x_n) = (x_1 \lor f(0, x_2, ..., x_n)) \land (\neg x_1 \lor f(1, x_2, ..., x_n))$$

1) Пусть $f(0, x_2, ..., x_n) = 0$, тогда:

$$f(0, x_2, ..., x_n) = (0 \lor f(0, x_2, ..., x_n)) \land (1 \lor f(1, x_2, ..., x_n)) = 0 \land 1 = 0$$

Выражение выполняется.

2) Пусть $f(0, x_2, ..., x_n) = 1$, тогда:

$$f(0, x_2, ..., x_n) = (0 \lor f(0, x_2, ..., x_n)) \land (1 \lor f(1, x_2, ..., x_n)) = 1 \land 1 = 1$$

Выражение выполняется.

3) Пусть $f(1, x_2, ..., x_n) = 0$, тогда:

$$f(1, x_2, ..., x_n) = (1 \lor f(0, x_2, ..., x_n)) \land (0 \lor f(1, x_2, ..., x_n)) = 1 \land 0 = 0$$

Выражение выполняется.

4) Пусть $f(1, x_2, ..., x_n) = 1$, тогда:

$$f(0, x_2, ..., x_n) = (1 \lor f(0, x_2, ..., x_n)) \land (0 \lor f(1, x_2, ..., x_n)) = 1 \land 1 = 1$$

Выражение выполняется.

Итак, исходное равенство выполняется для любых функций с любыми значениями x_1 . Интересно также отметить, что равенство выполняется для любого аргумента x_i ($0 \le i \le n$), так как аргументы являются независимыми.

1.8 Задача 8

$$x_1^{\alpha_1} \wedge x_2^{\alpha_2} \wedge \dots \wedge x_n^{\alpha_n} = 1$$

Равенство возможно только в одном случае: $x_i^{\alpha_i} = 1 \ (1 \leqslant i \leqslant n)$. Значение $x_i^{\alpha_i}$ зависит от x_i и α_i : если $x_i = 0$, то $\alpha_i = 0$, чтобы $x_i^{\alpha_i} = 1$ и если $x_i = 1$, то $\alpha_i = 1$, чтобы $x_i^{\alpha_i} = 1$. Определённому значению x_i соответсвует определённое α_i , значит если выбран определённый набор $x_1, ..., x_n$, ему будет соответствовать единственный набор $\alpha_1, ..., \alpha_n$

Доказано

1.9 Задача 9

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n})$$

1) $\bigvee_{i,j}(x_i\oplus x_j)=1$, если хотя бы одна комбинация x_i и x_j отличается по значениям. В этом же случае $(x_1\vee x_2\vee\ldots\vee x_n)=1$, так как среди x_i будет по крайней мере одна единица, и $(\overline{x_1}\vee\overline{x_2}\vee\ldots\vee\overline{x_n})=1$, так как по крайней мере найдётся одно значение $x_i=0$, а значит $\overline{x_i}=1$. Значит

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n}) = 1$$

Получается, что равенство в условии выполняется.

2) $\bigvee_{i,j}(x_i\oplus x_j)=0$, если все значения x_i равны (0 или 1), значит либо $(x_1\vee x_2\vee\ldots\vee x_n)=0$, либо $(\overline{x_1}\vee\overline{x_2}\vee\ldots\vee\overline{x_n})=0$, тогда

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n}) = 0$$

Равенство в условии снова выполняется, значит оно справедливо для любых значений x_i .

1.10 Задача 10

Пусть булева функция выражается только через связки \vee и \wedge . Заметим, что эти связки могут только либо сохранять предыдущие значения выражений (переменных), либо увеличивать их до 1, значит функции, использующие только эти связки - нестрого возрастающие. Получается, что нестрого или строго убывающую функцию эти связки описать не могут (перевести 1 в 0), для этого как минимум требуется использовать связку \neg . Значит существует убывающая функция, которая не может быть описана только связками \vee и \wedge .

2 Множества и логика

2.1 Задача 1

Верно ли, что для любых множеств А и В выполняется равенство:

$$(A \setminus B) \cap ((A \cup B) \setminus (A \cap B)) = A \setminus B ?$$

Решение:

$$(A \setminus B) \cap ((A \cup B) \setminus (A \cap B)) = A \setminus B$$

Обозначим $X=A\setminus B$, пусть $x\in X$, тогда $x\in A\cap \overline{B}$, значит можно переписать равенство в условии так:

$$(A \cap \overline{B}) \cap ((A \cup B) \cap \overline{(A \cap B)}) = A \cap \overline{B}$$

 $A \cup B$ - объединение множеств, а $A \cap B$ - пересечение, тогда понятно, что множество $(A \cup B) \cap \overline{(A \cap B)}$ можно заменить на $A \triangle B$, тогда условие переписывается в виде:

$$(A \cap \overline{B}) \cap (A \triangle B) = A \cap \overline{B}$$

По определению операции "симметричное или"

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A})$$

Значит $(A \cap \overline{B}) \subseteq (A \triangle B)$ и справедливо

$$(A \cap \overline{B}) \cap (A \triangle B) = A \cap \overline{B}$$

Это выражение эквивалентно исходному, значит и исходное равенство верно.

2.2 Задача 2

Верно ли, что для любых множеств A, B и C выполняется равенство: $((A\setminus B)\cup (A\setminus C))\cap (A\setminus (B\cup C))=A\setminus (B\cup C)\ ?$

Решение:

$$((A \setminus B) \cup (A \setminus C)) \cap (A \setminus (B \cap C)) = A \setminus (B \cup C)$$

Для удобства перепишем равенство, пользуясь тем, что $A \setminus B = A \cap \overline{B}$:

$$((A \cap \overline{B}) \cup (A \cap \overline{C})) \cap (A \cap \overline{(B \cap C)}) = A \cap \overline{(B \cup C)}$$

Воспользуемся формулой дистрибутивности и законом де Моргана:

$$(A \cap \overline{B}) \cup (A \cap \overline{C}) = A \cap (\overline{B} \cup \overline{C}) = A \cap \overline{(B \cap C)}$$

Равенство в условии принимает вид:

$$(A \cap \overline{(B \cap C)}) \cap (A \cap \overline{(B \cap C)}) = A \cap \overline{(B \cup C)}$$

Очевидно, что

$$(A \cap \overline{(B \cap C)}) \cap (A \cap \overline{(B \cap C)}) = (A \cap \overline{(B \cap C)})$$

Тогда равенство принимает вид:

$$A \cap \overline{(B \cap C)} = A \cap \overline{(B \cup C)}$$

$$A \cap (\overline{B} \cup \overline{C}) = A \cap (\overline{B} \cap \overline{C})$$

Понятно, что это равенство неверно.

2.3 Задача 3

Верно ли, что для любых множеств A, B и C выполняется равенство: $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$?

Решение:

$$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$$

Преобразуем равенство так же, как и в первых двух задача:

$$(A\cap B)\cap \overline{C}=(A\cap \overline{C})\cap (B\cap \overline{C})$$

В записанном равенстве используются только операции пересечения \cap , а они ассоциативны:

$$A \cap B \cap \overline{C} = A \cap \overline{C} \cap B \cap \overline{C}$$
$$A \cap B \cap \overline{C} = A \cap \overline{C} \cap B$$
$$A \cap B \cap \overline{C} = A \cap B \cap \overline{C}$$

Получили верное равенство, значит равенство в условии верно.

2.4 Задача 4

Верно ли, что для любых множеств A и B выполняется включение $(A \cup B) \setminus (A \setminus B) \subseteq B$?

Решение:

$$(A \cup B) \setminus (A \setminus B) \subseteq B$$

Для анализа этого включения немного его преобразуем:

$$(A \cup B) \cap \overline{(A \cap \overline{B})} \subseteq B$$

$$\overline{(A \cap \overline{B})} \cap (A \cup B) \subseteq B$$

Очевидно, что $(A \cap \overline{B}) \subseteq A$ и $(A \cap \overline{B}) \cap B = 0$. Значит $B \subseteq \overline{(A \cap \overline{B})}$, при этом $\overline{(A \cap \overline{B})} \cap A = B \cap A$ и $\overline{(A \cap \overline{B})} \cap B = B$. Применим дистрибутивность:

$$\overline{(A \cap \overline{B})} \cap (A \cup B) \subseteq B$$

$$(\overline{(A \cap \overline{B})} \cap A) \cup (\overline{(A \cap \overline{B})} \cap B) \subseteq B$$

Теперь подставим записанные ранее выражения:

$$(B \cap A) \cup B \subseteq B$$

Очевидно, что $B\subseteq B$ и $(B\cap A)\subseteq B$, тогда верно и

$$(B \cap A) \cup B \subseteq B$$

Это включение было получено из включения в условии, значит и включение в условии верно.

2.5 Задача 5

Пусть P = [10, 40]; Q = [20, 30]; известно, что отрезок A удовлетворяет соотношению

$$((x \in A) \to (x \in P)) \land ((x \in Q) \to (x \in A)).$$
 Решение:

$$((x \in A) \to (x \in P)) \land ((x \in Q) \to (x \in A)) = 1$$

Из равенства следует, что:

$$\begin{cases} (x \in A) \to (x \in P) = 1\\ (x \in Q) \to (x \in A) = 1 \end{cases}$$

Первое равенство выполняется всегда, кроме случая:

$$\begin{cases} (x \in A) = 1\\ (x \in P) = 0 \end{cases}$$
$$\begin{cases} x \in A\\ x \notin [10, 40] \end{cases}$$

Отсюда получаем:

$$A \subset [10, 40]$$

Второе равенство выполняется всегда, кроме случая:

$$\begin{cases} (x \in Q) = 1\\ (x \in A) = 0 \end{cases}$$
$$\begin{cases} x \in [20, 30]\\ x \notin A \end{cases}$$

Отсюда получаем, что $A\subseteq [\alpha,\beta]$, где $\alpha\leqslant 20$, а $\beta\geqslant 30$ Запишем два полученных условия:

$$\begin{cases} A\subseteq [\alpha,\beta], \ \text{где}\ \alpha\leqslant 20,\ \text{а}\ \beta\geqslant 30\\ A\subseteq [10,40] \end{cases}$$

Значит $A\subseteq [\alpha,\beta]$, где $\alpha\in [10,20]$, а $\beta\in [30,40]$ Минимально возможный отрезок A равен 10, максимальный - 30.

Ответ: 1) 30, 2) 10

2.6 Задача 6

Про множества A, B, X, Y известно, что $A \cap X = B \cap X, A \cup Y = B \cup Y$. Верно ли, что тогда выполняется равенство $A \cup (Y \setminus X) = B \cup (Y \setminus X)$?

Решение:

По условию $A \cap X = B \cap X, A \cup Y = B \cup Y$. Предположим, что справедливо

$$A \cup (Y \setminus X) = B \cup (Y \setminus X)$$

Преобразуем равенство следующим образом:

$$A \cup (Y \cap \overline{X}) = B \cup (Y \cap \overline{X})$$

$$(A \cup Y) \cap (A \cup \overline{X}) = (B \cup Y) \cap (B \cup \overline{X})$$

По условию, как уже было записано, $A \cup Y = B \cup Y$, значит

$$(A \cup Y) \cap (A \cup \overline{X}) = (A \cup Y) \cap (B \cup \overline{X})$$

Возьмём дополнение обоих частей равенства, используя закон де Моргана:

$$\overline{(A \cup Y)} \cup (X \cap \overline{A}) = \overline{(A \cup Y)} \cup (X \cap \overline{B})$$

Сделаем маленькое преобразование:

$$(X\cap \overline{A})=(X\cap \overline{A})\cup\varnothing=(X\cap \overline{A})\cup(X\cap \overline{X})=X\cap(\overline{A}\cup \overline{X})=X\cap\overline{(A\cap X)}=X\setminus(A\cap X)$$

Тогда

$$\overline{(A \cup Y)} \cup (X \setminus (A \cap X)) = \overline{(A \cup Y)} \cup (X \setminus (B \cap X))$$

По условию $A \cap X = B \cap X$, значит равенство выполняется.

2.7 Задача 7

Пусть $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \supseteq A_n \supseteq \ldots$ — невозрастающая последовательность множеств. Известно, что $A_1 \setminus A_4 = A_6 \setminus A_9$. Докажите, что $A_2 \setminus A_7 = A_3 \setminus A_8$. **Решение:**

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots \supseteq A_n \supseteq \dots$$

 $A_1 \setminus A_4 = A_6 \setminus A_9$

Очевидно, что $A_6 \setminus A_9 \subseteq A_6$, но тогда и $A_1 \setminus A_4 \subseteq A_6$, также по условию $A_6 \subseteq A_4$. Получается, что $A_1 \setminus A_4 \subseteq A_6 \subseteq A_4$, то есть $A_1 \setminus A_4 \subseteq A_4$, но по определению разности множеств $A_1 \setminus A_4 \not\subseteq A_4$ в общем случае. Противоречия не возникает только если $A_1 = A_4$, тогда $A_1 \setminus A_4 = \varnothing \subseteq A_4$.

Описанная выше ситуация возможна только при $A_1=A_2=A_3=A_4$, а так как по условию $A_1\setminus A_4=A_6\setminus A_9=\varnothing$, то $A_6=A_7=A_8=A_9$.

Тогда получается, что $A_2 = A_3$ и $A_7 = A_8$ и $A_2 \setminus A_7 = A_3 \setminus A_8$.

Доказано

2.8 Задача 8

Пусть A, B, C, D — такие отрезки прямой, что $A \triangle B = C \triangle D$ (симметрические разности равны). Верно ли, что выполняется включение $A \cap B \subseteq C$?

Решение:

$$A \triangle B = C \triangle D$$

Пусть $A=(\alpha_0,\alpha_1), B=(\beta_0,\beta_1),$ причём $\alpha_0<\beta_0<\beta_1<\alpha_1,$ то есть $B\subseteq A.$ Тогда $A\bigtriangleup B=A\setminus B=(\alpha_0,\beta_0)\cup(\beta_1,\alpha_1).$

Выберем такие C и D, что $C = (\alpha_0, \beta_0), D = (\beta_1, \alpha_1)$ и $C \triangle D = (\alpha_0, \beta_0) \cup (\beta_1, \alpha_1)$. Тогда получим, что $A \triangle B = C \triangle D$, что и написано в условии.

Но тогда $A \cap B = B = (\beta_0, \beta_1)$, а $C = (\alpha_0, \beta_0)$, то есть $(A \cap B) \cap C = \emptyset$, тогда тем более $(A \cap B) \subseteq C$.

Не верно

2.9 Задача 9

Характеристической функцией множества А называется функция:

$$X_A: U \to \{0, 1\}.$$

такая, что

$$X_A(x) = \begin{cases} 1, x \in A, \\ 0, x \notin A. \end{cases}$$

Докажите, что

- $a)\chi_{A\cap B}(x) = \chi_A(x) \cdot \chi_B(x);$
- $6)\chi_{A\setminus B}(x) = \chi_A(x) \chi_A(x) \cdot \chi_B(x);$
- $_{B})\chi_{A\cup B}(x) = \chi_{A}(x) + \chi_{B}(x) \chi_{A}(x) \cdot \chi_{B}(x);$
- $\Gamma)\chi_{\overline{A}}(x) = 1 \chi_A(x).$

Решение:

Основываясь на том, что функции алгебры логик аналогичны с теоретикомножественными операторами, получим:

а) $A \cap B = A \wedge B$. Пользуясь условием получим, что

A	B	$A \wedge B$	$A \cdot B$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{A\cap B}(x)=\chi_A(x)\cdot\chi_B(x)$. Доказано. 6) $A\setminus B=A\cap\overline{B}=A\wedge\overline{B}$

A	B	$A \wedge \overline{B}$	$\chi_A(x) - \chi_A(x) \cdot \chi_B(x)$
0	0	0	0
0	1	0	0
1	0	1	1
1	1	0	0

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{A\setminus B}(x) = \chi_A(x) - \chi_A(x) \cdot \chi_B(x)$. Доказано.

 $B) A \cup B = A \vee B$

A	B	$A \vee B$	$\chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Видно, что выполняется при всех $(A,B) \Rightarrow \chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$. Доказано.

 Γ) A

A	\overline{A}	$1-\chi_A(x)$
0	1	1
0	1	1
1	0	0
1	0	0

Бидно, что выполняется при всех (A,B) $\Rightarrow \chi_{\overline{A}}(x) = 1 - \chi_A(x)$.Доказано.

Ответ: доказано.

2.10 Задача 10

Используя формализм счетного объединения, докажите, что в любом бесконечном множестве есть счетное подмножество.

Решение:

Пусть множество ${\bf B}$ бесконечно. Тогда оно содержит хотя бы один элемент a_1 . В силу бесконечности ${\bf B}$ в нём найдется элемент a_2 , отличный от a_1 . Так как злементы a_2 и a_1 не исчерпывают всего множества ${\bf B}$, то в нём найдется элемент a_3 , отличный и от a_2 и от a_1 . Если уже выделено n элементов a_1, a_2, \ldots, a_n , то в силу бесконечности ${\bf B}$ в нём найдётся еще один элемент, который обозначим a_{n+1} , отличный от всех ранее выбранных элементов. Таким образом, для каждого натурального числа n можно выделить элемент

 a_n из ${\bf B}$, причём все выделенные элементы попарно различны. Выделенные элементы образуют последовательность $a_1,a_2,\ldots a_n\ldots$ Множество её членов по определению счётно, и это множество есть часть ${\bf B}$.

Ответ: доказано.