Евклидово пространство

Содержание

- §1 Метрическое и нормированное пространства
- 2

§2 Евклидово пространство

 $\mathbf{2}$

§3 Неравенство Шварца

3

1

§1. Метрическое и нормированное пространства

Определение. Метрическим пространством M называется некоторое множество, на котором определено отображение $\rho: M \times M \to \mathbb{R}$, обладающее следующими свойствами:

M1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0 \Leftrightarrow x = y$;

M2.
$$\rho(x, y) = \rho(y, x);$$

M3.
$$\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$$
.

Замечание. Отображение ρ называется **расстоянием** (или метрикой).

Пример 1.1. Приведем несколько примеров:

(a)
$$M$$
 - произвольное, $\rho(x,y)=\left\{ egin{array}{ll} 1 & x
eq y, \\ 0 & x=y; \end{array} \right.$

(6)
$$M = \mathbb{R}, \, \rho(x, y) = |x - y|;$$

(B)
$$M = \mathbb{R}^n, \, \rho = \sqrt{\sum_{i=1}^n (\xi^i - \eta^i)^2};$$

(r)
$$M = C[a, b], \rho(x, y) = \max_{t \in [a, b]} |x(t) - y(t)|;$$

Определение. Нормированным пространством называется линейное пространство $X(\mathbb{R})$, наделенное отображением $\|\cdot\|: X \to \mathbb{R}$, обладающим следующими свойствами:

N1.
$$||x|| \ge 0$$
, $||x|| = 0 \Leftrightarrow x = 0$;

N2.
$$\|\alpha x\| = |\alpha| \cdot \|x\|, \alpha \in \mathbb{R};$$

N3.
$$||x + y|| \le ||x|| + ||y||$$
.

Пример 1.2. Пусть $X = \mathbb{R}^n$, тогда

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |\xi^i|^p}, \quad ||x||_m = \max_{i=1...n} |\xi^i|$$

Лемма 1.1. Любое нормированное пространство может быть метризовано:

$$\rho(x,y) = \|x - y\|.$$

Доказательство. Действительно, аксиома M1 следует из N1, точно также M2 следует из N2:

$$\rho(x,y) = ||x - y|| = |-1|||y - x|| = ||y - x|| = \rho(y,x).$$

Для доказательства **М3** положим в **N3**

$$x = a - b$$
, $y = b - c$, $\Rightarrow x + y = a - c$.

которые после подстановки сразу дают необходимое неравенство.

§2. Евклидово пространство

Определение. Линейное пространство X над $\mathbb C$ называется комплексным евклидовым пространством, если на нем задана метрическая форма $g(x,y) = \langle x,y \rangle$ со следующими свойствами:

- E1. $\langle x, \alpha y_1 + \beta y_2 \rangle = \alpha \langle x, y_1 \rangle + \beta \langle x, y_2 \rangle$ линейность по второму аргументу;
- E2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ эрмитовость;
- E3. $\langle x, x \rangle \ge 0$, $\langle x, x \rangle = 0$ \Leftrightarrow x = 0.

Замечание. Из аксиом Е1 и Е2, в частности, следует

$$\langle \alpha x, y \rangle = \overline{\langle y, \alpha x \rangle} = \overline{\alpha \cdot \langle y, x \rangle} = \overline{\alpha} \cdot \langle x, y \rangle$$
.

То есть, из первого аргумента множитель выносится с сопряжением.

Замечание. Пусть $\{e_j\}_{j=1}^n$ - базис евклидова пространства X. Пусть также $x,y\in X,$ так что

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad y = \sum_{j=1}^{n} \eta^{j} e_{j}.$$

Рассмотрим скалярное произведение $\langle x, y \rangle$:

$$\langle x, y \rangle = \sum_{i,j=1}^{n} \overline{\xi^{i}} \eta^{j} \langle e_{i}, e_{j} \rangle = \overline{\xi^{i}} \eta^{j} g_{ij}.$$

Определение. Совокупность чисел $g_{ij} = g\left(e_i, e_j\right)$ называется метрическим тензором, а соответствующая матрица $G = \|g_{ij}\|$ - матрицей Грама:

$$G = \begin{pmatrix} g_{11} & g_{12} & \dots & g_{1n} \\ g_{21} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{n1} & g_{n2} & \dots & g_{nn} \end{pmatrix} = \begin{pmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle & \dots & \langle e_1, e_n \rangle \\ \langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle & \dots & \langle e_2, e_n \rangle \\ \dots & \dots & \dots & \dots \\ \langle e_n, e_1 \rangle & \langle e_n, e_2 \rangle & \dots & \langle e_n, e_n \rangle \end{pmatrix}.$$

Замечание. Свойства матрицы Грама:

- (a) $G_{ii} = \overline{G}_{ij}$;
- (6) $G_{ii} > 0 \quad \forall i = 1 \dots n;$
- (B) $\overline{\xi^i}\xi^j g_{ij} \geqslant 0$, $\overline{\xi}^i \xi^j g_{ij} = 0 \Leftrightarrow \xi^i = 0$, $\forall i$.

Пример 2.1. Пример нарушения аксиомы **ЕЗ** - пространство МИнковского. Пусть $X=\mathbb{R}^4, \quad x=\left(\xi^0,\xi^1,\xi^2,\xi^3\right)^T$ и

$$\langle x, y \rangle = \xi^0 \eta^0 - \xi^1 \eta^1 - \xi^2 \eta^2 - \xi^3 \eta^3.$$

Рассмотрим вектор $x = \begin{pmatrix} 1 & 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}^T$, тогда

$$\langle x, x \rangle = 1 - 1/3 - 1/3 - 1/3 = 0,$$

и значит x - нулевой вектор ($x \neq 0$, но g(x, x) = 0).

§3. Неравенство Шварца

Лемма 3.1. Евклидово пространство может быть нормировано:

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Доказательство. Проверка первых двух аксиом нормы проводится непосредственно:

$$\begin{split} \sqrt{\langle x, x \rangle} &\geqslant 0, \\ \sqrt{\langle \alpha x, \alpha x \rangle} &= \sqrt{\alpha^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle}. \end{split}$$

Проверка последней аксиомы сводится к проверке утверждения

$$\langle x, y \rangle^2 \leqslant \langle x, x \rangle \cdot \langle y, y \rangle$$

которое составляет утверждение теоремы о неравенстве Шварца.

Теорема 3.1. (Неравенство Шварца) Имеет место следующее соотношение между скалярным произведением и порождаемой им нормой

$$|\langle x, y \rangle| \leqslant ||x|| \, ||y|| \, .$$

Доказательство. Рассмотрим билинейную форму, с параметром λ :

$$\begin{aligned} & \|\lambda x + y\|^2 = \langle \lambda x + y, \lambda x + y \rangle = \\ & = \langle \lambda x, \lambda x \rangle + \langle \lambda x, y \rangle + \langle y, \lambda x \rangle + \langle y, y \rangle = \\ & = |\lambda|^2 \|x\|^2 + \lambda \left(\langle x, y \rangle + \langle y, x \rangle \right) + \|y\|^2 \geqslant 0. \end{aligned}$$

(a) Пусть $X = X(\mathbb{R})$, тогда $\langle x, y \rangle = \langle y, x \rangle$ и выражение преобразуется в

$$|\lambda|^2 ||x||^2 + 2\lambda \langle x, y \rangle + ||y||^2 \geqslant 0.$$

Тогда $D=4\left|\left\langle x,y\right\rangle \right|^{2}-4\left\|x\right\|^{2}\left\|y\right\|^{2}\leqslant0$ и теорема доказана.

(б) Пусть $X=X(\mathbb{C}),$ тогда $\langle x,y\rangle=\overline{\langle y,x\rangle}$ и расмотрим

$$\langle x, y \rangle = e^{i\varphi} |\langle x, y \rangle|, \quad \varphi = \arg \langle x, y \rangle.$$

Определим вектор $z = e^{-i\varphi}x$, тогда

$$\begin{split} \langle z,y\rangle &= e^{-i\varphi}\,\langle x,y\rangle = r = |\,\langle x,y\rangle\,| \in \mathbb{R},\\ \langle z,z\rangle &= e^{-i\varphi}\,\langle x,e^{-i\varphi}x\rangle = \langle x,x\rangle\,. \end{split}$$

Далее применим результат первого доказательства

Пемма 3.2. Неравенство Шварца обращается в точное равенство тогда и только тогда, когда x u y - линейно зависимые векторы.

Доказательство. Пусть $y = \alpha x$, тогда

$$|\langle x, \alpha x \rangle| \le ||x|| \, ||\alpha x||, \quad \Rightarrow \quad |\alpha| \, ||x||^2 \le |\overline{\alpha}| \, ||x||^2, \quad |\overline{\alpha}| = |\alpha|.$$

Пусть $|\langle x,y\rangle| = ||x|| \, ||y||$, тогда

$$D/4 = |\langle x, y \rangle|^2 - ||x||^2 ||y||^2 = 0 \Leftrightarrow \exists \lambda \neq 0 : ||\lambda x + y||^2 = 0,$$

 $\Leftrightarrow \lambda x + y = 0.$

4