Insper

Tecnologias Hackers

Aula análise de logs e conexões

Professor Dr. Rodolfo Avelino

Objetivo da aula

Analisar conexões TCP;

Explorar as características de uma comunicação TCP;

Utilizar ferramentas para análise;

Entender a importância da análise de logs e conexões de rede;

Aprender a interpretar os diferentes tipos de logs;

Identificar padrões e anomalias em conexões de rede.

Encapsulamento

Fonte: Aprendendo Pentest com Python, Christopher Duffy. Pág. 96

Protocolo ARP (fundamental em redes locais

O protocolo ARP, permite encontrar o endereço físico a partir do endereço IP da máquina alvo. Para tal, o protocolo usa um mecanismo de difusão (broadcast) na rede local, enviando uma solicitação a todas as máquinas da rede, sendo que a máquina alvo responde indicando o par endereço IP/endereço físico.

Mac address

O endereço físico também é conhecido como endereço de MAC e corresponde ao endereço Ethernet de 48 bits, representado na forma de seis bytes hexadecimais, por exemplo:

54:8c:a0:df:c7:4f

Para melhorar a performance do protocolo no mapeamento dos endereços IP em endereços físicos, cada máquina possui uma memória (cache) com as últimas consultas realizadas, evitando múltiplos broadcasts. Ainda como refinamento, junto com o broadcast, a estação solicitante envia seu par endereço IP/endereço físico, permitindo que todas as máquinas da rede incluam este par em suas caches locais.

Visualizando o cache ARP

Comando arp -a

```
C:\Users\rodolfosa1>arp -a
Interface: 10.100.0.212 --- 0x12
                        Endereco físico
                                              Tipo
 Endereco IP
                                              dinâmico
 10.100.0.1
                        00-00-0c-9f-f4-5e
 10.100.0.3
                        d0-94-66-ab-93-10
                                              dinâmico
                                              dinâmico
 10.100.0.4
                        fc-4d-d4-4d-ad-3b
                                              dinâmico
 10.100.0.5
                        64-1c-67-70-7b-79
                        fc-4d-d4-4d-a1-c3
                                              dinâmico
 10.100.0.6
                        64-1c-67-a2-93-da
                                              dinâmico
 10.100.0.7
 10.100.0.10
                        64-1c-67-a0-ef-4f
                                              dinâmico
                        64-1c-67-74-0e-6d
                                              dinâmico
 10.100.0.11
                                              dinâmico
 10.100.0.15
                        64-1c-67-85-5c-6a
                                              dinâmico
 10.100.0.16
                        64-1c-67-6d-99-c7
```


Descobrindo máquinas na rede

arp-scan --interface=wlp58s0 --localnet

```
root@avelino-XPS-13-9350:/home/avelino# arp-scan --interface=wlp58s0 --localnet
Interface: wlp58s0, type: EN10MB, MAC: 54:8c:a0:df:c7:4f, IPv4: 10.100.31.100
Starting arp-scan 1.9.7 with 4096 hosts (https://github.com/royhills/arp-scan)
                                      Cisco Systems, Inc
10.100.16.1 00:00:0c:9f:f4:5f
10.100.16.7 08:8c:2c:4c:57:b6
                                      Samsung Electronics Co.,Ltd
10.100.16.19 04:ea:56:e8:c5:92
                                      Intel Corporate
10.100.16.25 bc:ff:eb:5e:13:8a
                                      Motorola Mobility LLC, a Lenovo Company
(Unknown: locally administered)
10.100.16.29
              Oc:3e:9f:e9:8e:ed
                                      Apple, Inc.
                                      (Unknown: locally administered)
10.100.16.33
               42:32:29:bf:17:a1
10.100.16.34
            c0:8c:71:b5:4f:72
                                      Motorola Mobility LLC, a Lenovo Company
10.100.16.40
             70:fd:46:88:91:8a
                                      Samsung Electronics Co.,Ltd
                                      (Unknown: locally administered)
10.100.16.41
              2e:dd:91:86:d0:68
                                      Intel Corporate
10.100.16.43
            24:77:03:4c:d8:90
```


Por meio da infecção do cache ARP é possível direcionar máquinas em uma LAN para máquinas ou servidores comprometidas

Arp Spoofing

Ataque Arp spoofing

Este ataque consistem em adicionar/substituir na tabela arp da maquina alvo uma entrada que aponte um IP do Alvo para o MAC Address do Atacante na tabela ARP da vítima.

É o método mais rápido de se estabelecer no meio da comunicação entre duas máquinas e interceptar as informações enviadas entre ambas

Executando com arpsoof

```
arpspoof -i <INTERFACE REDE> -t
<IP_DO_ALVO> <IP_DO_GATEWAY >
```

- -i → nome da interface de rede
- $-t \rightarrow alvo$

Considerações protocolo TCP

Características comunicação TCP

- Usa o conceito de sockets para caracterizar uma conexão.
- Permite estabelecer uma conexão entre um par de sockets de acordo com parâmetros de qualidade de serviço e segurança previamente especificados.
- O estabelecimento de conexões é negociado (uso do mecanismo de "three-way handshaking").
- "Handshaking" = troca de mensagens de controle.

Three- way Handshake

Three- way Handshake (finalizando conexão)

Características

- Admite o término negociado ou abrupto de conexões.
- Implementa temporização na entrega de dados.
- Realiza a entrega ordenada de dados.
- Permite a sinalização de dados urgentes.
- Permite o relato de falha de serviço.
- Permite a entrega obrigatória de dados (flagpush).

Características

- A camada de transporte associa um identificador a cada processo de aplicação. Esse identificador é chamado de "Porta" ("port number).
- Os números das portas TCP variam de 0 a 65535.Portas de 0 a 1023 são reservadas para o acesso a serviços padrão, como FTP e Telnet (well-knownports).
- Um socket é definido pela combinação de um endereço IP e uma porta, sendo escrito sob a forma "número IP.número da porta"

Exemplo: 192.168.0.11.3389

Socket

- Um socket provê toda a informação de endereçamento que um cliente ou um servidor necessita para identificar seu parceiro na comunicação.
- Uma conexão TCP é caracterizada univocamente por dois sockets, um em cada lado da conexão.

Permitem diferenciar múltiplas conexões

TCP Connection of Two Hosts

Connection	Source IP Address	TCP Port	Destination IP Address	TCP Port
1	192.9.218.97	1234	192.9.218.96	23 Telnet
2	192.9.218.97	1235	192.9.218.96	23 Telnet

Visualizando conexões e sockets

Netstat

O netstat é uma ferramenta de linha de comando usada para exibir informações sobre conexões de rede, tabelas de roteamento, estatísticas de interface, entre outros detalhes.

```
netstat -atpn
Conexões Internet Ativas (servidores e estabelecidas)
Proto Recv-Q Send-Q Endereço Local
                                             Endereço Remoto
                                                                                  PID/Program name
                                                                      Estado
                  0 0.0.0.0:22
                                             0.0.0.0:*
                                                                     OUÇA
                                                                                 2243/sshd: /usr/sbi
tcp
                 36 192.168.85.100:22
                                             192.168.85.220:50999
                                                                     ESTABELECIDA 2297/sshd: kali [pr
tcp
                  0 :::80
                                                                     OUCA
                                                                                 2279/apache2
tcp6
                                             :::*
                  0 :::22
                                                                     OUÇA
                                                                                 2243/sshd: /usr/sbi
tcp6
                                             :::*
```

Netstat

Algumas opções comuns:

- -a: Mostra todas as conexões e portas em escuta.
- t: Mostra as conexões tcp.
- u: Mostra as conexões udp
- -n: Exibe os endereços IP e portas em formato numérico.
- -p: Mostra o PID e o nome do programa associado a cada conexão.
 - -r: Exibe a tabela de roteamento.
 - -s: Exibe estatísticas de protocolo.

serviços. Suas características:

25

Fieral and en cultrestringindo portas de serviços

Controla fluxo de pacotes Pode bloquear portas/serviços Defende contra ataques

Bloquear HTTP de entrada ibtax (e) PMP Stcp --dport 80 -j DROP

Permitir SSH apenas do IP confiável

iptables -A INPUT -p tcp --dport 22 -s 192.168.1.100 -j ACCEPT iptables -A INPUT -p tcp --dport 22 -j DROP

TCPDUMP

É uma ferramenta utilizada para monitorar os pacotes trafegados numa rede de computadores. Ela mostra os cabeçalhos dos pacotes que passam pela interface de rede.

Instalação

apt install tcpdump

Introdução

O topdump é muito flexível as necessidades do administrador, permitindo a especificação desde a interface desejada para a execução do monitoramento até a especificação de portas de origem ou destino que serão monitoradas.

Argumentos

- -i Escute na interface. Se não especificado o topdump irá procurar a lista de interfaces do sistema, interfaces ativas (excluindo a de loopback).
- -n Não converter endereços (Ex: endereços de hosts e números de portas, etc) para nomes.
- -p Não coloca a interface em modo promíscuo.
- -v Detalhamento da saída.
- -vv Saída mais detalhada. Por exemplo, campos adicionais serão impressos em pacotes NFS de resposta.

Exemplo

```
hacker@exin-eth: ~
Arquivo Editar Ver Pesquisar Terminal Ajuda
root@exin-eth:/# tcpdump -i wlan0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wlan0, link-type EN10MB (Ethernet), capture size 65535 bytes
09:54:25.678557 IP avelinux.local.45954 > gru06s25-in-f4.1e100.net.http: Flags [.], ack 1104334710, win 245, options [nop,nop,TS val 33
30808 ecr 1852273362], length 0
09:54:25.679528 IP avelinux.local.32951 > c90602a9.virtua.com.br.domain: 43618+ PTR? 4.222.58.216.in-addr.arpa. (43)
09:54:25.691160 IP gru06s25-in-f4.1e100.net.http > avelinux.local.45954: Flags [.], ack 1, win 343, options [nop,nop,TS val 1852283378
ecr 33232991, length 0
09:54:25.695172 IP c90602a9.virtua.com.br.domain > avelinux.local.32951: 43618 1/4/4 PTR gru06s25-in-f4.1e100.net. (227)
09:54:25.695379 IP avelinux.local.56434 > c90602a9.virtua.com.br.domain: 13956+ PTR? 27.0.168.192.in-addr.arpa. (43)
09:54:25.707784 IP c90602a9.virtua.com.br.domain > avelinux.local.56434: 13956 NXDomain* 0/1/0 (129)
09:54:25.808590 IP6 fe80::1e65:9dff:fe82:e41e.mdns > ff02::fb.mdns: 0 PTR (0M)? 27.0.168.192.in-addr.arpa. (43)
^C09:54:25.808716 IP avelinux.local.mdns > 224.0.0.251.mdns: 0 PTR (QM)? 27.0.168.192.in-addr.arpa. (43)
 packets captured
123 packets received by filter
85 packets dropped by kernel
root@exin-eth:/#
```

Capturando pacotes de uma interface específica (wlan0)

Saída do commando

22:01:07:710000 192.168.0.2.1173 > 192.168.0.30.21: S

32691180:32691180(0) win 512

22:01:07:710000 Carimbo do pacote (time stamp).

- 2 dígitos HH
- 2 dígitos MM
- 2 dígitos SS
- Últimos 6 dígitos para fração de segundos.

Adaptado: http://www.itnerante.com.br

Saída do comando

• 22:01:07:710000 192.168.0.2.1173 > 192.168.0.30.21: S 32691180:32691180(0) win 512

• 192.168.0.2 IP ou o nome de domínio origem do pacote.

Saída do comando

• 22:01:07:710000 192.168.0.2.1173 > 192.168.0.30.21: S 32691180:32691180(0) win 512

- 1173 Essa é a porta de origem.
- > Somente indica a direção do fluxo. (ORIGEM > DESTINO).
- 192.168.0.30 Esse é o IP de destino.
- 21 Esse indica a porta de destino
- S Esse indica que a flag SYN do TCP.

Saída do comando

• 22:01:07:710000 192.168.0.2.1173 > 192.168.0.30.21: S 32691180:32691180(0) win 512

- 32691180:32691180(0) Esse é o NUMERO DE SEQUENCIA INICIAL:NUMERO DE SEQUENCIA FINAL (QUANTIDADE DE BYTES).
- win 512 É o tamanho do buffer para receber dados que o IP 192.168.0.2 está aceitando em bytes. (Tamanho da Janela).

Outro exemplo de saída

avelinux.com.39006 > faculdade.edu.21: \$ 3774957990:3774957990(0) win 8760 <mss 1460 > (DF)

faculdade.edu.21> avelinux.com.39006: \$ 2009600000:2009600000(0) ack 3774957991 win 1024 <mss 1460>

avelinux.com.39006 > faculdade.edu.21: .ack 1 win 8760 (DF)

avelinux.com.39006 > faculdade.edu.21: P 1:28(27) ack 1 win 8760 (DF)

Adaptado:

http://www.itnerante.colmsper

avelinux.com.39006 > faculdade.edu.21: **S 3774957990:3774957990(0)** win 8760 <mss 1460> (DF)

3774957990:3774957990(0) Número de sequência. Nenhum dado sendo transmitido.

<mss 1460> Isso indica o Maximum Segmet Size ou tamanho máximo do segmento.

(DF) Flag que indica que este pacote não aceita fragmentação.

Adaptado: http://www.itnerante.com.br

www.insper.edu.br Professor Rodolfo Avelino

faculdade.edu.21> avelinux.com.39006: **S** 2009600000:2009600000(0) **ack** 3774957991 win 1024 <mss 1460>

ack 3774957991 Indica que confirmou os pacotes com sequence number 3774957990 e agora o próximo pacote que esperar receber é o que tem sequence number 3774957991

Adaptado: http://www.itnerante.com.br

avelinux.com.39006 > faculdade.edu.21: .ack 1 win 8760 (DF)

ack 1 Confirma o recebimento do ultimo pacote e espera receber o próximo pacote de sequence number relativo 1 do server.com

Adaptado: http://www.itnerante.com.br

avelinux.com.39006 > faculdade.edu.21: P 1:28(27) ack 1 win 8760 (DF)

P Indica que a flag PUSH está ligada, essa flag fala para enviar o pacote diretamente para a aplicação.

1:28(27) Sequence numbers que está enviando. Indica que tem uma carga (payload) de 27 bytes sendo enviado. Está enviando os sequence number de 1 a 28.

Adaptado: http://www.itnerante.com.br

Professor Rodolfo Avelino

Insper

Expressões

Seleciona quais pacotes serão capturados. Se nenhuma expressão for passada, todos os pacotes da rede serão capturados.

Se informada, apenas os pacotes que tiverem a expressão como sendo verdadeira (combinarem com a expressão) serão capturados.

Expressões

Existem 3 principais expressões do TCPDUMP: type, dir e proto

- As opções do type são: host, net e port
- As opções do dir (direção) são: src e dst (e suas combinações)
- proto, permite a seleção dos protocolos: tcp, udp, icmp, entre outras opções tratadas pelo tcpdump

Expressões

Identificadores

host - indicação do host a ser identificado na captura net - indicação da rede a ser identificada na captura port - indicação da porta de comunicação

Direções

src – host de origem

dst – host de destino

src or dst – origem ou destino

src and dst – origem e destino

Exemplos

Captura de pacotes sem que o ip seja resolvido para nome

tcpdump -n -i eth0

 Capturando pacotes do host de origem 10.0.0.20 com o destino a porta 80.

tcpdump -i eth0 src host 10.0.0.20 and dst port 80

 Capturar somente o tráfego associado ao protocolo ICMP, na interface eth0:

tcpdump -i eth0 icmp

Exemplos

Para que o topdump grave um arquivo com os resultados da captura utilizamos a opção –w:

tcpdump -i eth0 -w resultadodacaptura.pcap

O arquivo resultadodacaptura.pcap que foi gerado pode ser acessado por meio da opção –r:

tcpdump -r resultadodacaptura.pcap

Exercício

Utilizando a ferramenta tcpdump:

- 1)Capture somente os pacotes gerados por sua máquina.
- 2) Capture somente pacotes destinados à sua máquina.
- 3) Capture pacotes para ou do gateway
- 4) Capture pacotes HTTPS.

Salve os pacotes capturados de cada exercício em arquivos chamado "exercicio X capturados SEUNOME".

Um dos principais fundamentos em SI

A análise de logs e conexões de rede é fundamental para:

- Identificar atividades maliciosas: Os logs podem revelar tentativas de intrusão, malware, ataques de negação de serviço (DDoS) e outras ameaças cibernéticas.
- Solução de problemas: Através da análise de logs, é possível diagnosticar problemas de rede, identificar falhas em aplicativos e resolver questões de desempenho.
- Otimização de desempenho: Analisar padrões de tráfego e uso de recursos permite otimizar a infraestrutura de rede, melhorar a eficiência operacional e planejar upgrades futuros.

Exemplos de log

- Logs de firewall
- Logs de servidores web
- Logs de servidores de aplicativos
- Logs de sistemas operacionais
- Logs de IDS/IPS

Diretório de logs (/var/log)

```
aDebian-107-buster-64-minimal /var/log # ls
alternatives.log
                                       daemon.log
alternatives.log.1
                                       daemon.log.1
                       auth.log
                                                         dpkg.log
                       auth.log.1
                                                         dpkg.log.1
                                                                        faillog
                                                                                        lastlog
                                                                                                       postgresql
                                       debug
                                                                                        messages
                                                                                                       syslog
                                       debug.1
                                                                                                                       user.log
                       btmp
                                                                        kern.log
                                                                                        messages.1
                                                                                                       syslog.1
                                                                        kern.log.1
                                                                                                                       user.log.1
                       btmp.1
```


Diretório de logs (/var/log)

```
Feb 14 10:09:01 Debian-107-buster-64-minimal systemd[1]: Starting Clean php session files...
Feb 14 10:09:02 Debian-107-buster-64-minimal systemd[1]: phpsessionclean.service: Succeeded.
Feb 14 10:09:02 Debian-107-buster-64-minimal systemd[1]: Started Clean php session files.
Feb 14 10:15:01 Debian-107-buster-64-minimal CRON[21163]: (root) CMD (command -v debian-sal > /dev/null && debian-sal 1 1
Feb 14 10:17:01 Debian-107-buster-64-minimal CRON[21580]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly)
Feb 14 10:19:56 Debian-107-buster-64-minimal systemd[1]: Created slice User Slice of UID 0.
Feb 14 10:19:56 Debian-107-buster-64-minimal systemd[1]: Starting User Runtime Directory /run/user/0...
Feb 14 10:19:56 Debian-107-buster-64-minimal systemd[1]: Started User Runtime Directory /run/user/0.
Feb 14 10:19:56 Debian-107-buster-64-minimal systemd[1]: Starting User Manager for UID 0...
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on GnuPG network certificate management daemon.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Reached target Timers.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Starting D-Bus User Message Bus Socket.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on GnuPG cryptographic agent (ssh-agent emulation)
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on GnuPG cryptographic agent and passphrase cache
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on GnuPG cryptographic agent and passphrase cache
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on GnuPG cryptographic agent and passphrase cache.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Reached target Paths.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Listening on D-Bus User Message Bus Socket.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Reached target Sockets.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Reached target Basic System.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Reached target Default.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[22170]: Startup finished in 1.390s.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[1]: Started User Manager for UID 0.
Feb 14 10:19:57 Debian-107-buster-64-minimal systemd[1]: Started Session 243399 of user root.
```


Em uma análise o que interpretar?

- Identificação de padrões e tendências.
- Reconhecimento de eventos incomuns ou suspeitos.
- Identificação de tráfego suspeito.

Exemplo ataque brute force ssh

```
Oct 2 06:25:46 host-vps sshd[8463]: Failed password for root from 116.31.116.17 port 31142 ssh2 Oct 2 06:25:48 host-vps sshd[8463]: Failed password for root from 116.31.116.17 port 31142 ssh2 Oct 2 06:25:51 host-vps sshd[8463]: Failed password for root from 116.31.116.17 port 31142 ssh2 Oct 2 06:25:51 host-vps sshd[8463]: Received disconnect from 116.31.116.17: 11: [preauth]
```


Em uma análise o que interpretar?

Identificar atividades maliciosas: Os logs podem revelar tentativas de intrusão, malware, ataques de negação de serviço (DDoS) e outras ameaças cibernéticas.

Exemplo ataque web server

```
191.96.249.97 - - [20/Apr/2017:15:45:49 +0200] "GET /phpmyadmin/scripts/setup.php HTTP/1.0" 404 162 "-" "-" "-" 190.129.24.154 - - [14/Jul/2015:06:41:59 -0400] "GET /phpMyAdmin/index.php HTTP/1.1" 404 162 "-" "Python-urllib/2.6" "-" 190.129.24.154 - - [20/Apr/2017:09:04:47 +0200] "PROPFIND /webdav/ HTTP/1.1" 405 166 "-" "WEBDAV Client" "-" 180.97.106.37 - - [20/Apr/2017:04:31:02 +0200] "\x04\x01\x00P\xB4\xA3qR\x00" 400 166 "-" "-" "-"
```


Fique atento com os status http

1xx Informações

2xx Sucesso

3xx Redirecionamento

4xx Erro Do Cliente

5xx Erro De Servidor

Caixa de ferramentas

Ping e traceroute

São dois comandos básicos muito utilizados por administradores de rede. Permitem determinarmos qual Sistema Operacional do alvo por meio doTTL (Time-To-Live)

TTL:

Linux 64

Windows 128

Unix 255

fping

Ferramenta usada para envio de ICMP Echo Request para vários hosts ao mesmo tempo.

fping -g 192.168.0.0/24

fping 192.168.0.2 192.168.0.10

Arping

Utiliza o protocolo ARP Request como protocolo de requisição, sendo muito útil na análise em uma Rede Local.

arping 192.168.0.1

Netdiscover

Similar à ferramenta arping, porém é possível enviar pacotes ARP Request para um range de lps.

netdiscover -r 10.0.0.0/24 -i eth0

- -r rande de lps
- -i interface de rede

Dúvidas?

