



### Ínría\_





### PEReN Pâla d'Ev

Pôle d'Expertise de la Régulation Numérique

### Are there models harder to audit?

Change-relaxed active fairness auditing

PFIA – RJCIA 2023 · 7 juillet 2023









Gilles Tredan



Camilla Penzo



François Taïani

### The Auditing Game



### The Auditing Game



$$S = (x_1, ..., x_n), h(S) = (h(x_1), ..., h(x_n))$$
 
$$\hookrightarrow \mu(S, h(S)) = 0.035$$

### Context

Automated Decision Systems





### HIRING PLATFORM

Fast. Fair. Flexible. Finally, hiring technology that works how you want it to.

HireVue is a talent experience platform designed to automate workflows and make scaling hiring easy. Improve how you engage, screen and hire talent with text recruiting, assessments, and video interviewing software.

Hirevue claims it is "Fast. Fair. Flexible."

### **Context**

Automated Decision Systems







Hirevue claims it is "Fast. Fair. Flexible."



Headlines / Society / EU Al Act: first regulation on artificial intelligence

Created: 08-06-2023 - 11:40

EU AI Act: first regulation on artificial intelligence

3 / 11 Augustin Godinot

[1], [2], [3], [4], [5]



Input space

Output space  $\mathcal{Y} = \{0, 1\}$ 

Model  $h \in \mathcal{H}$ 

Metric  $\mu: \mathcal{H} \times 2^{\mathcal{X}} \to \mathbb{R}$ 

 $\mathcal{X}$ 



Input space

 $\mathcal{X}$ 

Output space  $\mathcal{Y} = \{0, 1\}$ 

$$\mathcal{Y} = \{0, 1\}$$

Model

$$h \in \mathcal{H}$$

**Metric** 

$$\mu: \mathcal{H} \times 2^{\mathcal{X}} \to \mathbb{R}$$

### **Auditor prior**

 ${\mathcal H}$  known by the auditor



Input space  $\beta$ 

Output space  $\mathcal{Y} = \{0, 1\}$ 

Model  $h \in \mathcal{H}$ 

Metric  $\mu: \mathcal{H} \times 2^{\mathcal{X}} \to \mathbb{R}$ 

### **Auditor prior**

 ${\mathcal H}$  known by the auditor

### Consistency

$$h_{t_{ ext{audit}}}^{ ext{API}}(x) = y$$

$$\Rightarrow \forall t \geq t_{\mathrm{audit}}, h_{t(x)}^{\mathrm{API}} = y$$

Measuring the audit robustness





Measuring the audit robustness



$$\mathcal{H}(S,h^*) = \{h \in \mathcal{H}: \forall x \in S, h(x) = h^*(x)\}$$

Measuring the audit robustness



$$\mathcal{H}(S,h^*) = \{h \in \mathcal{H} : \forall x \in S, h(x) = h^*(x)\}$$

$$\mathrm{diam}_{\mu}\mathcal{H}(S,h^*) = \mathrm{max}_{h \in \mathcal{H}(S,h^*)} |\mu(h) - \mu(h^*)|$$



### Prior art



### Audit as a set covering problem

Algorithm 1 Minimax optimal deterministic auditing

**Require:** Finite hypothesis class  $\mathcal{H}$ , target error  $\epsilon$ , fairness measure  $\mu$ 

**Ensure:**  $\hat{\mu}$ , an estimate of  $\mu(h^*)$ 

1: Let  $V \leftarrow \mathcal{H}$ 

2: while  $\operatorname{diam}_{\mu}(V) > 2\epsilon \operatorname{do}$ 

3: Query  $x \in \operatorname{argmin}_x \max_y \operatorname{Cost}(V_x^y)$ , obtain label  $h^*(x)$ 

4:  $V \leftarrow V(h^*, \{x\})$ 

5: **return**  $\frac{1}{2} \left( \max_{h \in V} \mu(h) + \min_{h \in V} \mu(h) \right)$ 

Active Fairness Auditing, Yan Le et al. [6]

### Audit with explanations

| Auditor                                                           | Query Complexity                            |
|-------------------------------------------------------------------|---------------------------------------------|
| Baseline                                                          | $O(\frac{1}{\epsilon}\log\frac{1}{\delta})$ |
| $\mathtt{AlgLC}_c$                                                | 1                                           |
| $\begin{array}{c} \mathtt{AlgLC}_a \\ \mathtt{AlgDT} \end{array}$ | $O(d\log(\frac{2C}{\epsilon}))$             |
| AlgDT                                                             | O(V)                                        |

A learning-theoretic framework for certified auditing of machine learning models, Chhavi Yadav et al. [7]



6 / 11 Augustin Godinot



$$\begin{split} \mathcal{H}(S,h^*,\pmb{r}) &= \{h \in \mathcal{H}: \|\pmb{h}(S) - \pmb{h}^*(S)\| \leq \pmb{r}\} \\ \mathrm{diam}_{\mu}\mathcal{H}(S,h^*,\pmb{r}) &= \mathrm{max}_{h \in \mathcal{H}(S,h^*,\pmb{r})} |\mu(h) - \mu(h^*)| \end{split}$$

No prior, no gain

### Theorem:

IF 
$$\mathcal{H} = \mathcal{Y}^{\mathcal{X}}$$
 (no prior)

THEN 
$$\operatorname{diam}_{\mu}\mathcal{H}(S,h^*) \underset{|S| \ll |A|}{\approx} 2\Big(1-\frac{|S|}{|A|}\Big)$$



Empirical study



Figure 1:  $\operatorname{diam}_{\mu}\mathcal{H}(S,h)$  for different type of models with varying hyperparameters, on AdultIncome and student perf datasets. Bootstrapped with 15 realizations. |S|=.1  $|\mathcal{X}|$ 



Empirical study



Capacity (empirical Rademacher):

$$\mathcal{R}(\mathcal{H}, m) = \mathbb{E}_{\substack{x_i \\ y_i}} \left[ \frac{1}{m} \max_{h \in \mathcal{H}} \sum_{i=1}^m \mathbb{1}\{h(x_i) = y_i\} \right]$$



### Merci! Questions?

### **Bibliography**

- [1] J. Dastin, "Amazon Scraps Secret Al Recruiting Tool That Showed Bias against Women", Reuters, Oct. 2018, Accessed: Mar. 06, 2023. Available: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
- [2] L. Chen, A. Mislove, and C. Wilson, "An Empirical Analysis of Algorithmic Pricing on Amazon Marketplace", in WWW '16. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, Apr. 2016, pp. 1339–1349. doi: 10.1145/2872427.2883089.
- [3] "EU AI Act: First Regulation on Artificial Intelligence | News | European Parliament". Accessed: Jun. 21, 2023. [Online]. Available: https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
- [4] J. Larson, S. Mattu, L. Kirchner, and J. Angwin, "How We Analyzed the COMPAS Recidivism Algorithm", ProPublica, May 2016, Accessed: Mar. 06, 2023. Available: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
- [5] Rédaction, "Numérique : que sont le DMA et le DSA, les règlements européens qui visent à réguler internet ?". Accessed: Jun. 21, 2023. [Online]. Available: https://www.touteleurope.eu/societe/numerique-que-sont-le-dma-et-le-dsa-les-reglements-europeens-qui-veulent-reguler-internet/
- [6] T. Yan and C. Zhang, "Active Fairness Auditing", presented at the International Conference on Machine Learning, PMLR, Jun. 2022, pp. 24929–24962. Accessed: Dec. 01, 2022. Available: https://proceedings.mlr.press/v162/yan22c.html

[7] C. Yadav, M. Moshkovitz, and K. Chaudhuri, "A Learning-Theoretic Framework for Certified Auditing with Explanations". Accessed: Dec. 20, 2022. [Online]. Available: http://arxiv.org/abs/2206.04740