https://matse.paddel.xyz/spicker

Analysis 1

Patrick Gustav Blaneck, Felix Racz

Letzte Änderung: 8. April 2021

Inhaltsverzeichnis

1 Grundlagen

1.1 Funktionen

Definition: Injektivität

$$f(x) = f(x') \implies x = x'$$

Definition: Surjektivität

$$\forall y, \exists x : x = f(y)$$

Definition: Bijektivität

$$\forall y, \exists ! x : x = f(y)$$

Algorithmus: Beweisen der Injektivität

- 1. Behauptung: f(x) = f(x')
- 2. Umformen auf eine Aussage der Form x = x'

Algorithmus: Beweisen der Surjektivität

- 1. Aufstellen der Umkehrfunktion
- 2. Zeigen, dass diese Umkehrfunktion auf dem gesamten Definitionsbereich definiert ist

Algorithmus: Beweisen der Bijektivität

- 1. Injektivität beweisen
- 2. Surjektivität beweisen

Bonus: Tipps und Tricks

- Gilt eine Eigenschaft nicht, ist ein Gegenbeispiel oft einfach gefunden.
- Gilt eine Eigenschaft nicht, ist die Abbildung auch nicht bijektiv.

1.2 Polynome

Definition: Polynom

Eine Funktion $p(x) = \sum_{i=0}^{n} a_i x^i$ mit $a_i, x \in \mathbb{R}$ $(\mathbb{C}), a_n \neq 0$ heißt *Polynom vom Grad n*.

1.2.1 Faktorisierung von Polynomen / Nullstellenberechnung

Bonus: Abspalten von Linearfaktoren

Sei x_0 eine Nullstelle eines Polynoms p(x), dann ist

$$p(x) = q(x) \cdot (x - x_0).$$

Dabei ist $(x - x_0)$ ein abgespaltener Linearfaktor und q(n) das entsprechend reduzierte Polynom mit $q(n) = \frac{p(x)}{x - x_0}$.

Bonus: Faktorisierung

Sind $x_1, ..., x_n$ Nullstellen eines Polynoms p(x), so ist

$$p(x) = a_n \cdot (x - x_1) \cdot \ldots \cdot (x - x_n)$$

die Faktorisierung von p(x).

Polynome vom Grad 2

Algorithmus: pq-Formel

1. Polynom der Form $x^2 + px + q = 0$

2.
$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Algorithmus: Mitternachtsformel

1. Polynom der Form $ax^2 + bx + c = 0$

2.
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Polynome vom Grad $n \ge 3$

Algorithmus: Raten einer Nullstelle bei n=3

- 1. Polynom der Form $p(x) = ax^3 + bx^2 + cx + d = 0$
- 2. Nullstelle x_1 stets Teiler von d
- 3. Einsetzen aller Teiler von *d* in die Funktion (auch negative!)
- 4. Polynomdivision durch Linearfaktor $(x x_1)$: $\frac{p(x)}{x x_1}$
- 5. Lösen der quadratischen Gleichung

Algorithmus: Substitution bei geraden Exponenten

- 1. Polynom der Form $ax^4 + bx^2 + c = 0$
- 2. Substituiere $y := x^2$
- 3. Lösen der quadratischen Gleichung $ay^2 + by + c = 0$
- 4. $x_{1,2} = \pm \sqrt{y_1} \wedge x_{3,4} = \pm \sqrt{y_2}$

Bonus: Besonderheiten bei $x \in \mathbb{C}$

• Ist x_i eine Nullstelle des Polynoms p(x) mit *reellen Koeffizienten*, dann ist auch $\overline{x_i}$ eine Nullstelle von p(x).

1.3 Gebrochen rationale Funktionen

Definition: Gebrochen rationale Funktionen

Seien $p_m(x)$ und $p_n(x)$ Polynome vom Grad m bzw. n, dann heißt

$$f(x) = \frac{p_m(x)}{p_n(x)}$$

gebrochen rationale Funktion.

Im Fall m < n heißt die Funktion echt gebrochen rational, sonst unecht gebrochen rational.

1.3.1 Polynomdivision

Algorithmus: Polynomdivision

Gegeben ist unecht gebrochen rationale Funktion $f(x) = \frac{p_m(x)}{p_n(x)}$

- 1. Dividiere die größten Exponenten aus beiden Polynomen
- 2. Mutipliziere Ergebnis mit Divisor zurück
- 3. Subtrahiere Ergebnis vom Dividenden
- 4. Wiederhole, bis:

Ergebnis 0 ist, oder

Grad des Ergebnisses kleiner ist als Grad des Divisors (ergibt Rest)

Bonus: Polynomdivision Beispiel

$$(x^{3} + x^{2} - 1) \div (x - 1) = x^{2} + 2x + 2 + \frac{1}{x - 1}$$

$$-x^{3} + x^{2} - 2x^{2}$$

$$-2x^{2} + 2x$$

$$2x - 1$$

$$-2x + 2$$

$$1$$

1.3.2 Hornerschema

Algorithmus: Hornerschema

Gegeben ist *Polynom* $p_m(x)$ und ein *Wert* x_0

Vorbereitung:

- Erstelle eine Tabelle mit m + 2 Spalten und 3 Zeilen
- Erste Zelle frei lassen und dann Koeffizienten a_m, a_{m-1}, \dots, a_0 in die erste Zeile schreiben
- In die erste Zelle der zweiten Zeile kommt x_0

Anwendung (beginnend in zweiter Zelle der dritten Zeile):

- 1. Erster Koeffizient der ersten Zeile in die dritte Zeile
- 2. Multipliziere Zahl der ersten Spalte mit diesem Koeffizienten
- 3. Schreibe Ergebnis in zweite Zeile, unterhalb des nächsten Koeffizienten
- 4. Addiere Ergebnis mit diesem Koeffizienten
- 5. Wiederhole 2-4 bis zum Schluss

Ergebnis:

- Wert des Polynoms $p_m(x_0)$ in letzter Zelle der letzten Zeile
- Bei Wert $p_m(x_0) = 0$ steht in der letzten Zeile das Polynom nach Abspalten des Linearfaktors $(x x_0)$

Bonus: Hornerschema Beispiel

Gegeben:
$$p_4(x) = 2x^4 - 3x^3 + 4x^2 - 5x + 2$$
 an der Stelle $x_0 = 1$

Ergebnis:
$$p_4(1) = 0 \implies (x-1)$$
 ist Linearfaktor von $p_4(x)$ und $\frac{p_4(x)}{x-1} = 2x^3 = x^2 + 3x - 2$

Bonus: Tipps und Tricks

- Polynomdivision und Hornerschema funktionieren auch sehr gut mit komplexen Zahlen
- Bei mehreren abzuspaltenden Linearfaktoren bietet sich das Hornerschema sehr gut an

1.3.3 Partialbruchzerlegung

Algorithmus: Partialbruchzerlegung

Gegeben: Echt gebrochen rationale Funktion $f(x) = \frac{p_m(x)}{p_n(x)}$

- 1. Berechne Nullstellen des *Nennerpolynoms* $x_0, \ldots, x_k \in \mathbb{R}$
- Verschiedene Fälle:

Relle Nullstellen:

$$x_i$$
 ist einfache Nullstelle $\implies \frac{A}{x-x_1}$

$$x_i$$
 ist einfache Nullstelle $\Longrightarrow \frac{A}{x-x_1}$
 x_i ist r -fache Nullstelle $\Longrightarrow \frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2} + \ldots + \frac{A_r}{(x-x_1)^r}$

Nichtrelle Nullstellen:

Einfacher quadratischer Term
$$\implies \frac{Ax+B}{x^2+px+q}$$

Einfacher quadratischer Term
$$\implies \frac{Ax+B}{x^2+px+q}$$

 r -facher quadratischer Term $\implies \frac{A_1x+B_1}{x^2+px+q} + \frac{A_2x+B_2}{(x^2+px+q)^2} + \ldots + \frac{A_rx+B_r}{(x^2+px+q)^r}$

- 3. Koeffizientenvergleich:
 - a) Brüche gleichnamig machen (Multipliziere beide Seiten mit Nennerpolynom)
 - b) Potenzen von x zusammenfassen
 - c) Gleichungssystem lösen
 - d) Lösungen in Ansatz einsetzen

Bonus: Besonderheiten in C

• Für Partialbrüche ohne relle Nullstellen können wir in C stets Nullstellen finden. Das Verfahren erfolgt dann analog mit komplexen Nullstellen.

Bonus: Tipps und Tricks

- Partialbruchzerlegung ist erst bei einer echt gebrochen rationale Funktion sinnvoll
- Ist die Funktion unecht gebrochen rational, führe zuerst eine Polynomdivision durch und zerlege dann den Rest in die Partialbrüche

1.4 Ungleichungen

Algorithmus: Berechnen einer Lösungsmenge bei Ungleichungen

Gegeben: Ungleichung mit Bezug auf Variable x

1. Für jeden Betrag |a(x)|, eine Fallunterscheidung machen für

$$a(x) \ge 0 \implies |a(x)| = a(x)$$

$$a(x) < 0 \implies |a(x)| = -a(x)$$

Hier haben wir bereits eine Einschränkung für die Lösungsmenge des jeweiligen Falles gegeben!

- 2. Ungleichungen nach x auflösen
- 3. Jeder Fall i erzeugt eine Lösungsmenge L_i bestehend aus *umgestellter Ungleichung* und Fallbedingungen
- 4. Lösungsmenge $L = \bigcup_{i=1}^{n} L_i$, wobei n die Anzahl der betrachteten Fälle ist

Bonus: Tipps und Tricks

- n Beträge in der Gleichung können zu 2^n Fällen führen.
- Es kann vorkommen, dass ein Fall einer Fallunterscheidung unerreichbar ist, z.B. für $x > 5 \land x < 1$. Die Lösungsmenge L ist dann leer $(L = \emptyset)$.
- Radizieren (Wurzelziehen) ist in Ungleichungen nur erlaubt, wenn danach der *Betrag* der Wurzel betrachtet wird
- Quadrieren einer Ungleichung 'erzeugt' potentiell ein falsches Ergebnis. Nach dem Quadrieren sollte man also jedes Ergebnis prüfen.
- Multiplikation mit negativen Zahlen sollte vermieden werden, da das Umdrehen des Ungleichheitszeichens schnell für Flüchtigkeitsfehler sorgen kann.

1.5 Komplexe Zahlen

1.5.1 Rechenregeln für komplexe Zahlen in Polarkoordinaten

To Do

To Do

1.5.2 Radizieren von komplexen Zahlen

2 Folgen und Reihen

- 2.1 Folgen
- 2.2 Reihen

2.2.1 Wiederholung Summen

Definition: Rechenregeln

$$\sum_{k=m}^{n} a_k = \sum_{k=m-l}^{n-l} a_{k+l} \tag{1}$$

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{c} a_k + \sum_{k=c}^{n} a_k \tag{2}$$

$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} a_k + b_k \tag{3}$$

$$\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k \tag{4}$$

Die Regeln gelten auch für unendliche Reihen.

2.2.2 Unendliche Reihen

Definition: Unendliche Reihe

$$\sum_{k=m}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=m}^{n} a_k$$

Definition: Cauchy-Reihe

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m+1}^n a_k \right| < \varepsilon, \forall n > m \ge_0$$

Eine Reihe konvergiert genau dann, wenn die zugehörige Cauchy-Reihe konvergiert.

Definition: Absolute Konvergenz

Eine Reihe heißt absolut konvergent wenn $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

Algorithmus: Teleskopsumme

Eine Teleskopsumme hat man dann, wenn sich die Terme einer Summe gegenseitig auflösen.

Bonus: Beispiel Teleskopsumme

$$\sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} = \frac{1}{1} + \left(\sum_{k=2}^{n} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k}\right) - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

2.2.3 Konvergenz unendlicher Reihen

Algorithmus: Majorantenkriterium

Man sucht eine zweite Folge b_k , sodass diese fast immer größer ist als die vorgegebene Folge ist. Konvergiert $\sum_{k=1}^{\infty} b_k$ dann konvergiert auch die ursprüngliche Reihe.

Bonus: Beispiel Majorantenkriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{k^2+1}$?

Ja, da $\frac{1}{k^2+1}<\frac{1}{k^2}$ und wir wissen, dass $\sum_{k=1}^{\infty}\frac{1}{k^2}$ konvergiert. Wir haben also eine konvergente

Algorithmus: Minorantenkriterium

Man sucht eine zweite Folge b_k , sodass diese fast immer kleiner ist als die vorgegebene Folge ist. Divergiert $\sum_{k=1}^{\infty} b_k$ dann divergiert auch die ursprüngliche Reihe.

Bonus: Beispiel Majorantenkriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{\ln(k)}$?

Nein, da $\frac{1}{k} < \frac{1}{\ln(k)}$ $(k \ge 3)$ und wir wissen, dass $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert. Wir haben also eine divergente Minorante.

Algorithmus: Cauchy-Kondensatioskriterium

Die Konvergenz von folgenden Reihen ist äquivalent.

$$\sum_{k=1}^{\infty} a_k \tag{5}$$

$$\sum_{k=1}^{\infty} a_k \tag{5}$$

$$\sum_{k=1}^{\infty} 2^k \cdot a_{2^k} \tag{6}$$

Bonus: Beispiel Cauchy-Kondensatioskriterium

Konvergiert $\sum_{k=1}^{\infty} \frac{1}{k}$?

Die Frage ist äquivalent dazu, ob

$$\sum_{k=1}^{\infty} 2^k \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} 1$$

konvergiert. Das tut sie offensichtlich nicht, also konvergiert auch $\sum_{k=1}^{\infty} \frac{1}{k}$ nicht.

Algorithmus: Wurzelkriterium

Sei $r=\lim_{n\to\infty}\sqrt[n]{|a_n|}$. Dann konvergiert $\sum_{k=1}^\infty a_k$ für r<1. Für r>1 divergiert die Reihe. Für r = 1 liefert das Kriterium keine Aussage.

Bonus: Beispiel Wurzelkriterium

Konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{1}{7^k}$?

Es gilt

$$r = \lim_{k \to \infty} \sqrt[k]{\frac{1}{7^k}} = \frac{1}{7} < 1$$

Also konvergiert die Reihe.

Algorithmus: Quotientenkriterium

Sei $r = \lim_{n \to \infty} \sqrt[n]{\left|\frac{a_{n+1}}{1_n}\right|}$. Dann konvergiert $sum_{k=1}^{\infty} a_k$ für r < 1. Für r > 1 divergiert die Reihe. Für r = 1 liefert das Kriterium keine Aussage.

Bonus: Beispiel Quotientenkriterium

Konvergert die Reihe $\sum_{k=1}^{\infty} \frac{x^k}{k!}$?

Wir berechnen dann

$$r = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = 0$$

Die Reihe konvergiert also für alle x.

Algorithmus: Leibnizkriterium

Das Leibnizkriterium wird für alternierende Reihen genutzt. Sei $\sum_{k=1}^{\infty} (-1)^n \cdot a_n$ und a_n eine beliebige Folge. Jetzt muss man nur drei Eigenschaften für a_n zeigen. a_n muss monoton fallend sein, a_n muss immer größer als Null sein und $\lim_{n\to\infty} a_n = 0$. Dann konvergiert die Reihe.

Bonus: Beispiel Leibnizkriterium

Konvergiert die Reihe $\sum_{k=2}^{\infty} (-1)^n \cdot \frac{1}{\ln(k)}$. Wir wissen, dass $\ln(k) > 0$ für k > 1. Außerdem wissen wir, dass der natürliche Logarithmus monoton steigend ist, also ist $\frac{1}{\ln(k)}$ monoton fallend. Es gilt auch $\lim_{n\to\infty} = 0$. Also konvergiert die Reihe.

2.2.4 Potenzreihen

Definition: Potenzreihe

$$p(x) := \sum_{n=0}^{\infty} a_n x^n$$

- 3 Konvergenz von Folgen, Reihen und Funktionen
- 4 Differentialrechnung
- 5 Integration