CLAIMS

What is claimed is:

1. In a wireless communications network, a method in a base station to communicate with a remote unit that is in a sleep mode, the remote unit having a unique identification value, comprising the steps of:

establishing a periodic reference instant at the base station and at the remote station;

determining a delay interval following said periodic reference instant at the base station, said delay interval being derived from said unique identification value of said remote unit; and

transmitting a message from the base station to the remote unit at a second instant following said delay interval, said remote unit having changed from said sleep mode to a standby mode after said delay interval.

2. The method of claim 1, wherein said base station is part of a wireless discrete multitone spread spectrum communications system.

1

2

3

GIBBONS 4-3

- 3. The method of claim 1, wherein said periodic reference instant is established by a beginning subframe count instant that is incremented by a packet count value at the base station and at the remote unit.
 - 4. The method of claim 3, wherein said delay interval is determined by a value N of a quantity of M least significant bits of said unique identification value of said remote unit, the delay interval being an interval required for the occurrence of a plurality of N of said beginning subframe count instants.
 - 5. The method of claim 4, wherein said remote unit changes from said sleep mode to a standby mode after said delay interval.

1	6. In a wireless communications network, a method in a base station to communicate
2	with a remote unit that is in a sleep mode, the remote unit having a unique identification value,
3	comprising the steps of:
4	
5	establishing a periodic reference instant at the base station and at the remote station;
6	
7 =	determining a delay interval following said periodic reference instant at the base station
7	said delay interval being derived from said unique identification value of said remote unit;
9 📜	
10	attempting to initiate a communication from said base station to said remote unit;
11	
12	concluding at the base station that the remote unit is in a sleep mode if said attempting
13=	step fails to initiate communications with the remote unit;
14	
15	waiting for said delay interval following said periodic reference instant at the base
16	station; and
17	
18	transmitting a message from the base station to the remote unit at a second instant
19	following said delay interval, said remote unit having changed from said sleep mode to a
20	standby mode after said delay interval.

1

2

1

2

- 7. The method of claim 6, wherein said base station is part of a wireless discrete multitone spread spectrum communications system.
 - 8. The method of claim 6, wherein said periodic reference instant is established by a beginning subframe count instant that is incremented by a packet count value at the base station and at the remote unit.
 - 9. The method of claim 8, wherein said delay interval is determined by a value N of a quantity of M least significant bits of said unique identification value of said remote unit, the delay interval being an interval required for the occurrence of a plurality of N of said beginning subframe count instants.
 - 10. The method of claim 9, wherein said remote unit changes from said sleep mode to a standby mode after said delay interval.

1	11. A highly bandwidth-efficient communications method in a base station to
2	communicate with a remote unit that is in a sleep mode, the remote unit having a unique
3	identification value, comprising the steps of:
4	
5	establishing a periodic reference instant at the base station and at the remote station;
6	
7	determining a delay interval following said periodic reference instant at the base station,
8=	said delay interval being derived from said unique identification value of said remote unit;
9 <u>5</u>	
9 10 11	receiving at a base station a spread signal comprising an incoming data traffic signal
	spread over a plurality of discrete traffic frequencies;
12	
12 13	adaptively despreading the signals received at the base station by using despreading
14	weights;
15	
16	attempting to initiate a communication from said base station to said remote unit;
17	
18	concluding at the base station that the remote unit is in a sleep mode if said attempting
19	step fails to initiate communications with the remote unit;
20	
21	waiting for said delay interval following said periodic reference instant at the base

transmitting at the base station to the remote unit a spread signal comprising an outgoing data traffic signal spread over a plurality of discrete traffic frequencies.

12. The method of claim 11, wherein said base station is part of a wireless discrete multitone spread spectrum communications system.

13. The method of claim 11, wherein said periodic reference instant is established by a beginning subframe count instant that is incremented by a packet count value at the base station and at the remote unit.

14. The method of claim 13, wherein said delay interval is determined by a value N of a quantity of M least significant bits of said unique identification value of said remote unit, the delay interval being an interval required for the occurrence of a plurality of N of said beginning subframe count instants.

15. The method of claim 14, wherein said remote unit changes from said sleep mode to a standby mode after said delay interval.

18.

1

1	16.	A remote unit for a personal wireless area network comprising:
2		a receiver;
3		an AC power supply coupled to the receiver and supplying power to the
4	receiver;	
5		a battery-backup power supply coupled to the receiver, the battery-backup
6	power supply	becoming operative to supply power to the receiver when the AC power supply
7	fails; and	
8		a controller coupled to the receiver, the AC power supply and the battery-
8 9 9 10	backup powe	er supply, the controller detecting when the AC power supply fails and in response
	controls the	receiver and the battery-backup power supply by invoking a sleep mode of
11 12 12 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	operation, th	e sleep mode operation being periodically interrupted by the controller controlling
12	the receiver	and the battery-backup power supply to enter a standby mode of operation in
13	which the re	ceiver scans for a CONNECT message indicating an incoming call, the controller
14	controlling t	he sleep mode and the standby mode of operations based on a frame count that is
15	generated from	om an identification number of the remote unit.
16		
17	17.	The remote unit according to claim 16, wherein the receiver scans for a connect
18	message for	a predetermined number of subframes of a TDD timing structure.

The remote unit according to claim 17, wherein the predetermined number of

2	subframes	ec	uals	3

1

2

3 - 1 1 2-

3

4

1	19.	The remote unit according to claim 17, wherein when the remote unit enters the
2.	standby mode	the remote unit reacquires synchronization to the TDD timing structure.

- 20. The remote unit according to claim 19, wherein the remote unit reacquires synchronization to the TDD timing structure in about 34 subframes.
 - 21. The remote unit according to claim 19, wherein the remote unit scans for a CONNECT message at a subframe that is related to an identification number of the remote unit.
 - 22. A method for reducing power consumption of a remote unit in a PWAN system, comprising the steps of:
- powering a remote unit using a battery backup power supply when an AC power supply fails at the remote unit;
- entering a sleep mode of operation at the remote unit, the sleep mode having a reduced power consumption for the battery backup power supply;
- entering a standby mode of operation at the remote unit a predetermined period

 of time after entering the sleep mode of operation
- 9 scanning for a CONNECT message indicating an incoming call for the remote

10	unit:	200
117	umi.	and

reentering the sleep mode of operation when no CONNECT message is

12 received.

- 1 23. The method according to claim 22, further comprising the step of synchronizing
 2 the remote unit to a TDD timing structure before the step of entering the standby mode of
 3 operation.
 - 24. The method according to claim 23, wherein the predetermined period of time is a predetermined number of subframes after a boundary subframe of the TDD timing structure.
 - 25. The method according to claim 24, wherein the predetermined number of subframes is based on an identification number of the remote unit.