We claim:

1. An N'-substituted N-acylamidine-transition metal complex of the general formula I

$$\begin{bmatrix} O & Ar & R^1 \\ N & N & N \\ N & N & N \end{bmatrix}_n$$

5

where

M is a transition metal selected from the group of the metals Ni, Cu, Ru, Rh, Pd, Os, Ir and Pt

X is CI, Br, triflate, methanesulfonate or p-toluenesulfonate

m is 0, 1 or 2,

15

10

is 1, 2 or 3

and the radicals are defined as follows:

20 R^1, R^2

n

are each a straight-chain, branched or cyclic hydrocarbon radical having from 1 to 20 carbon atoms which may be mono- or polyunsaturated, an aromatic radical having from 6 to 14 ring members which may be bonded directly or via a C_1 - to C_6 -alkyl or C_2 - to C_6 -alkylene group, and the radicals mentioned may bear one or more substituents selected from the group of C_1 - to C_6 -alkyl, C_1 - to C_4 -haloalkyl, OR^3 , NR^4R^5 , $COOR^6$, $Si(R^7)_3$, $Si(R^7)_2R^8$, halogen, aryl, C_3 - C_8 -cycloalkyl,

R³, R⁶, R⁸

are each independently C_1 - to C_{12} -alkyl, C_7 - to C_{12} -aralkyl, C_6 - to C_{10} -aryl, C_3 - to C_8 -cycloalkyl, C_3 - to C_8 -cycloalkyl in which one CH_2 group has been replaced by O, NH or NR^9 ,

30

25

R⁴, R⁵, R¹⁰, R¹¹

are each independently hydrogen, straight-chain or branched C_{1} - to C_{12} -alkyl, C_{7} - to C_{12} -aralkyl, C_{6} - to C_{10} -aryl, C_{3} - to C_{8} -cycloalkyl or C_{3} - to C_{8} -cycloalkyl in which one CH_{2} group has been replaced by O, NH or NR^{9} ,

5

10

15

20

25

and R⁴ and R⁵ and/or R¹⁰ and R¹¹ may each together be -(CH₂)_y-, where y is an integer from 4 to 7;

- R⁷, R⁹ are each independently straight-chain or branched C₁- to C₁₂-alkyl or C₇- to C₁₂-aralkyl,
 - Ar is C_6 - C_{10} -aryl or hetaryl having from 5 to 10 ring members, and the radicals mentioned may be substituted by C_1 to C_6 -alkyl, C_1 to C_4 -haloalkyl, $NR^{10}R^{11}$, $COOR^6$, $Si(R^7)_3$, $Si(R^7)_2R^8$, OR^3 and/or halogen.
 - 2. A transition metal complex of the formula I as claimed in claim 1 where M is a transition metal selected from the group of Ru, Rh, Os, Ir, Pd and Pt.
 - 3. A transition metal complex of the formula I as claimed in claim 1 where M is Pd or Pt and m and n are each 2.
 - 4. A transition metal complex of the formula I as claimed in any of claims 1 to 3 where
- R^1 and R^2 are each branched or unbranched C_{1^-} to C_{12^-} alkyl, C_{7^-} to C_{12^-} aralkyl, C_{6^-} to C_{10^-} aryl, and the radicals mentioned may be substituted by from one to three halogen atoms and/or one or two C_{1^-} C₆-alkyl, trifluoromethyl and/or C_{1^-} to C_{6^-} alkoxy substituents, and
- Ar is C_6 - C_{10} -aryl or hetaryl having 5 or 6 ring members, and the radicals mentioned may be substituted by one or more C_1 to C_6 -alkyl, C_1 to C_6 -alkoxycarbonyl, C_1 to C_6 -alkoxy, trialkylsilyl or diarylalkylsilyl and/or trifluoromethyl substituents and/or halogen.
- 5. A process for preparing N'-substituted N-acylamidine-transition metal complexes of the general formula I as claimed in any of claims 1 to 4, which comprises dissolving an N'-substituted N-acylamidine ligand of the formula III

$$\mathbb{R}^2$$
 \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

and a transition metal compound containing the desired central atom M according to formula I in an organic solvent or in a mixture of different organic solvents and

5

10

crystallizing the N'-substituted N-acylamidine-transition metal complex by adding a further solvent different to the solvent or solvent mixture used initially.

- A process as claimed in claim 5, wherein the first solvent used is a halogenated or aromatic solvent or a mixture of different halogenated or aromatic solvents, and an ethereal solvent or solvent mixture is added for crystallization.
- 7. The use of an N'-substituted N-acylamidine-transition metal complex of the formula I as claimed in any of claims 1 to 4 as a catalyst.
- 8. The use as claimed in claim 7 for transition metal-catalyzed coupling reactions in which at least one new bond is formed between two carbon atoms.
- 9. The use as claimed in claims 7 and 8 for transition metal-catalyzed olefination,
 alkynylation, arylation or diaryl coupling reactions.

N'-Substituted N-acylamidine-transition metal complexes and their use as catalysts

Abstract

The present invention relates to N'-substituted N-acylamidine-transition metal complexes of the general formula I

10 where

20

25

30

M is a transition metal selected from the group of the metals Ni, Cu, Ru, Rh,

Pd, Os, Ir and Pt

15 X is CI, Br, triflate, methanesulfonate or p-toluenesulfonate

m is 0, 1 or 2,

n is 1, 2 or 3

and the radicals are defined as follows:

R¹, R² are each a straight-chain or branched, cyclic hydrocarbon radical having from 1 to 20 carbon atoms which may be mono- or polyunsaturated, an aromatic radical having from 3 to 6 ring members which may be bonded directly or via a C₁- to C₆-alkyl or C₂- to C₆-alkylene group, and the radicals

mentioned may bear one or more substituents.

Ar is C₆- to C₁₀- aryl or hetaryl having from 5 to 10 ring members, and the radicals mentioned may be substituted by C₁- to C₆-alkyl, C₁- to C₄-haloalkyl, NR¹⁰R¹¹, COOR⁶, Si(R⁷)₃, Si(R⁷)₂R⁸, OR³ and/or halogen.

The invention further relates to a process for preparing this novel class of transition metal complexes and to their use as catalysts.