Introductory Econometrics I – Spring 2024

Problem Set 2 – Due date: Apr 7

Last updated: March 24, 2024

Notes: Please submit a single PDF file containing your answers to all questions on Web-learning. For empirical questions, original codes and complete results need to be attached.

1. Consider the following regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u.$$

Assumptions MLR.1-MLR.5 hold. In particular, Assumption MLR.4 means $\mathbb{E}[u|x_1,x_2]=0$. In addition, assume x_1 is independent of x_2 , and $\mathbb{E}[x_2]=0$. Let $\sigma_u^2=\mathbb{V}[u|x_1,x_2]=\mathbb{V}[u]>0$ and $\sigma_2^2=\mathbb{V}[x_2|x_1]=\mathbb{V}[x_2]>0$. There is a random sample $\{(y_i,x_{i1},x_{i2}):1\leq i\leq n\}$. Consider the following two estimators:

- Run a simple regression of y on 1 and x_1 . Denote the coefficient on x_1 by $\tilde{\beta}_1$.
- Run a multiple regression of y on 1, x_1 and x_2 . Denote the coefficient on x_1 by $\hat{\beta}_1$.
- (a) Show that $\mathbb{E}[\tilde{\beta}_1] = \beta_1$. [Hint: Define $e = \beta_2 x_2 + u$. Note that x_1 is independent of x_2 implies $\mathbb{E}[x_2|x_1] = \mathbb{E}[x_2] = 0$.]
- (b) Show that

$$\mathbb{V}[\tilde{\beta}_1|x_1] = \frac{\sigma_u^2 + \beta_2^2 \sigma_2^2}{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2},$$

where $\bar{x}_1 = \frac{1}{n} \sum_{i=1}^n x_{i1}$, and $\mathbb{V}[\tilde{\beta}_1|x_1]$ denotes the conditional variance of $\tilde{\beta}_1$ given the explanatory variables (x_{11}, \dots, x_{n1}) .

[Hint: Define an error term $e = \beta_2 x_2 + u$. Use the law of iterated expectation to show $\mathbb{E}[x_2 u | x_1] = 0$.]

(c) In class, we have discussed the variance of the multiple regression estimator $\hat{\beta}_1$:

$$\mathbb{V}[\hat{\beta}_1|x_1, x_2] = \frac{\sigma_u^2}{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2 (1 - R_1^2)},$$

where R_1^2 is the R-squared from regressing x_1 on 1 and x_2 . In large samples (when the sample size n gets large), what value do you think R_1^2 gets close to? You only need to explain your intuition.

[Hint: x_1 is independent of x_2 implies that $\mathbb{E}[x_1|x_2] = \mathbb{E}[x_1]$. Think about the population coefficient on x_2 in the simple regression of x_1 on 1 and x_2 .]

(d) When the sample size n is large, which estimator do you prefer in this special case, $\hat{\beta}_1$ or $\tilde{\beta}_1$?

1

2. Consider the following regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u.$$

Assumptions MLR.1-MLR.6 hold. We want to test

$$H_0: \beta_1 - \beta_2 = 1, \quad H_1: \beta_1 - \beta_2 \neq 1.$$

- (a) Write $\mathbb{V}[\hat{\beta}_1 \hat{\beta}_2]$ in terms of $\mathbb{V}[\hat{\beta}_1]$, $\mathbb{V}[\hat{\beta}_2]$ and $Cov[\hat{\beta}_1, \hat{\beta}_2]$.
- (b) Write the formula for the t statistic used to test H_0 .

- (c) Let $\theta_1 = \beta_1 \beta_2$. Rewrite the regression model so that θ_1 appears on one of the independent variables.
- 3. (**Data exercise**) We are interested in exploring factors affecting labor income and collect a data set with the following variables:
 - id: individual index
 - age: age of an individual
 - agesq: the square of age, age²
 - IQ: IQ score
 - lwage: natural log of the monthly earnings
 - educ: year of education
 - exper: years of work experience

Please answer the following questions using the dataset:

- (a) We first use the dataset to verify the FWL theorem.
 - i. Run the multiple regression of log(wage) on educ and IQ (including the intercept), and obtain the slope coefficients, $\hat{\beta}_1$ and $\hat{\beta}_2$, respectively.
 - ii. Run a simple regression of educ on IQ (including the intercept) to obtain the residual, \hat{r}
 - iii. Run the simple regression of lwage on \hat{r} , get the slope coefficient $\hat{\delta}$. Verify that $\hat{\delta} = \hat{\beta}_1$.
- (b) Suppose lwage is jointly determined by education and IQ, in the following way:

$$lwage = \beta_0 + \beta_1 educ + \beta_2 IQ + u,$$

where the model satisfies MLR.1-MLR.4. Instead, we estimate the following model:

$$lwage = \alpha_0 + \alpha_1 educ + e.$$

Do you expect to overestimate or underestimate the effects of education on log wage? Please state your intuition, and verify using the data.

For the following questions, consider the regression model:

lwage =
$$\beta_0 + \beta_1$$
educ + β_2 exper + β_3 IQ + β_4 age + β_5 age² + u .

Assume that MLR.1-MLR.5 holds for this model.

- (c) Estimate the model and report the results.
- (d) What's the $\hat{\beta}_1$? Interpret it causally.
- (e) Test the joint significance of age and age² at the 1% significance level. What's your conclusion?
- (f) State the null hypothesis that another year of general workforce experience has the same effect on lwage as another year of education.
- (g) Test the null hypothesis in the last question against a two-sided alternative at the 10% significance level, by constructing a 90% confidence interval. What do you conclude? [Hint: Consider your answer for question 2. Let $\theta = \beta_1 \beta_2$, then $\beta_1 = \theta + \beta_2$. Plug this formula into the original regression equation. Estimate the new model. In Stata, we can add level(90) as an option in the reg command to report the 90% confidence interval.]