Cấu Trúc Lưu Trữ Solana: State & Storage

★ Meta Description

Solana lưu trữ dữ liệu on-chain như thế nào? Tìm hiểu RocksDB, state root, validator nodes & so sánh với Ethereum, Near về tốc độ, chi phí.

🔎 Giới Thiệu Về Cấu Trúc Lưu Trữ Của Solana

Khác với Ethereum và Near, Solana sử dụng **RocksDB** để lưu trữ **trạng thái (state)** của mạng. Hệ thống này giúp **đọc/ghi nhanh hơn**, nhưng không phân mảnh trạng thái (state sharding) như Near.

- Ethereum: Dùng Merkle Patricia Trie, hỗ trợ light clients nhưng tốn tài nguyên.
- Near Protocol: Phân mảnh trang thái trên nhiều shard để tối ưu hóa.
- Solana: Không phân mảnh, mỗi validator giữ toàn bộ trạng thái, giúp TPS cao hơn nhưng đòi hỏi phần cứng manh hơn.

🥕 Key Takeaways

- ✓ Solana sử dung RocksDB, không phân mảnh trang thái (state sharding).
- ✓ Ethereum lưu trữ trên Merkle Patricia Trie, hỗ trơ light clients nhưng châm.
- ✓ Near sử dụng Merkle Trie trên nhiều shard, tăng hiệu suất nhưng phức tạp hơn.
- ✓ Solana ưu tiên tốc độ & thông lượng giao dịch cao, mỗi validator lưu trữ toàn bộ trạng
 thái

★ Liên quan: Kiến trúc Sealevel, Turbine & Gulf Stream giúp Solana nhanh hơn Ethereum như thế nào?

Cách Solana Lưu Trữ Dữ Liệu Trên On-Chain Storage

Kiến Trúc Lưu Trữ Của Solana

Solana sử dụng **RocksDB**, một cơ sở dữ liệu key-value hiệu suất cao, để lưu trữ trạng thái (state).

- ✓ Trạng thái bao gồm:
- ✓ Tài khoản & số dư
- ✓ Hơp đồng thông minh (programs)
- ✓ Lịch sử giao dịch & trạng thái hợp đồng

Mỗi validator node giữ một bản sao toàn bộ của trạng thái, đảm bảo tính nhất quán trong mạng.

- Solana cập nhật trạng thái theo từng **slot** (đơn vị thời gian trong Solana, tương đương với block trong Ethereum).
- Piểm khác biệt với Ethereum:
- ✔ Ethereum dùng Merkle Patricia Trie, tạo cây băm để truy vấn dữ liệu nhanh hơn nhưng tốn tài nguyên.
- ✓ Solana không dùng trie, mà lưu trữ trực tiếp trong RocksDB, giúp đọc/ghi dữ liệu nhanh
 hơn
- ★ Tìm hiểu thêm: RocksDB là gì?

So Sánh Kiến Trúc Lưu Trữ: Solana vs Ethereum vs Near

Tiêu chí	Solana	Ethereum	Near Protocol
Công nghệ lưu trữ	RocksDB	Merkle Patricia Trie	Merkle Trie trên shard
Phân mảnh trạng thái	X Không có	X Không có (sắp có sharding)	✓ Có sharding
Cơ chế xác minh	State root (băm dữ	Merkle root trong mỗi	Merkle root trong shard
trạng thái	liệu tài khoản)	block	
Ľu điểm	Đọc/ghi nhanh, hỗ trợ	Hỗ trợ light client, đảm	Xử lý song song, giảm
	TPS cao	bảo an ninh	tải validator
Nhược điểm	Không hỗ trợ light	Tốn tài nguyên, đồng	Đồng bộ shard phức
	clients	bộ hóa chậm	tạp, có độ trễ

[★] Liên quan: Proof of History giúp Solana đạt tốc độ 65.000 TPS như thế nào?

Or Chế Phân Tán Dữ Liệu Trên Validator Nodes Của Solana

Validator Nodes Lưu Trữ Dữ Liệu Như Thế Nào?

Trong Solana, mỗi **validator** giữ **toàn bộ trạng thái của blockchain**, thay vì phân chia thành nhiều shard như Near.

- ✓ Validator xác minh giao dịch thông qua:
- ✓ Proof of Stake (PoS) để chọn leader
- ✔ Proof of History (PoH) để sắp xếp giao dịch theo thời gian
- ★ Theo Solana Validator Guide, mỗi validator:
- ✓ Câp nhật trang thái theo từng slot, giúp xử lý nhanh hơn.

- ∠ Lưu trữ toàn bộ dữ liệu trong RocksDB, không bị phân mảnh.
- ✓ Có thể yêu cầu snapshot để đồng bộ hóa nhanh hơn với mạng.

📉 Hạn Chế Của Kiến Trúc Lưu Trữ Solana

- 🕍 Nhược điểm chính:
- Không hỗ trợ light clients, vì mỗi validator cần lưu toàn bộ trạng thái.
- Yêu cầu phần cứng cao, do dữ liệu blockchain lớn dần theo thời gian.
- Không phân mảnh trạng thái, khiến một số node nhỏ khó tham gia làm validator.
- ★ Liên quan: Solana có thực sự phi tập trung không?

☆ Kết Luận: Vì Sao Solana Lưu Trữ Dữ Liệu Theo Cách Này?

- ✓ Ưu tiên tốc độ, giúp Solana duy trì 50.000+ TPS mà không bị chậm.
- ✓ Không phân mảnh trang thái, giúp đồng bô nhanh giữa các validator.
- ✓ Dùng RocksDB thay vì Merkle Trie, giúp đọc/ghi dữ liệu nhanh hơn Ethereum.
- ➡ Bạn nghĩ Solana có thể cải thiện mô hình lưu trữ trong tương lai không? Bình luận ý kiến của ban bên dưới!
- Pai tiếp theo: Bảo mật của Solana có thực sự phi tập trung?