

Τμήμα Μηχανολόγων Μηχανικών, Σχολή Μηχανικών Ελληνικό Μεσογειακό Πανεπιστήμιο

Γ' εξάμηνο

Μάθημα Εφαρμ. Θερμοδυναμική Ι/ 3^η Ενότητα μαθήματος: Ιδιότητες καθαρής ουσίας

Διδάσκουσα Δρ. Κατερίνα Βαβουράκη

Google..search

Διδακτικά βιβλία για τους σπουδαστές της Ανώτατης Δημόσιας Σχολής Εμπορικού Ναυτικού (Α.Δ.Σ.Ε.Ν.):

- 1) Εφαρμοσμένη θερμοδυναμική (γ' έκδοση)
- &
- 2) Παράρτημα τεχνικής Θερμοδυναμικής

Εφαρμοσμένη θερμοδυναμική (γ' έκδοση)

Το βιβλίο αυτό απευθύνεται στους Μηχανικούς του Εμπορικού Ναυτικού και περιλαμβάνει τα βασικά λειτουργικά και θερμοδυναμικά χαρακτηριστικά μηχανών και μηχανημάτων όπως οι ΜΕΚ, οι στρόβιλοι, οι αεροσυμπιεστές, οι αεριοστρόβιλοι, οι ψυκτικές εγκαταστάσεις κ.ά.. Ο Μηχανικός του Εμπορικού Ναυτικού καλείται μέσω της Εφαρμοσμένης Θερμοδυναμικής να εφαρμόσει στην πράξη τις αρχές και τους νόμους βάσει των οποίων λειτουργούν οι μηχανικές εγκαταστάσεις του πλοίου.

Βιβλίο: Εφαρμοσμένη Θερμοδυναμική, Κ.Ζ. ΠΑΓΩΝΑΡΗ ΑΘΗΝΑ 2020

ΠΑΡΑΡΤΗΜΑ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ

Κωνσταντίνου Ζ. Παγωνάρη ΠΛΟΙΑΡΧΟΥ (M)Π.Ν. ΜΗΧΑΝΟΛΟΓΟΥ-ΜΗΧΑΝΙΚΟΥ Ν. P.G.S. ΗΠΑ

Παράρτημα τεχνικής Θερμοδυναμικής

Το τεύχος αυτό αποτελεί αναπόσπαστο μέρος του βιβλίου «Τεχνική Θερμοδυναμική», διότι περιλαμβάνει τους πίνακες και τα διαγράμματα που είναι απαραίτητα για την επίλυση των ασκήσεων επί της ύλης του βιβλίου. Ο διαχωρισμός των πινάκων και διαγραμμάτων από το βιβλίο κρίθηκε απαραίτητος, προκειμένου να μπορούν να χρησιμοποιηθούν από τους σπουδαστές στις γραπτές εξετάσεις.

Βιβλίο: Παράρτημα Τεχνικής Θερμοδυναμικής, Κ.Ζ. ΠΑΓΩΝΑΡΗ ΑΘΗΝΑ 2002

https://eclass.hmu.gr/

στο μάθημα:

ΕΦΑΡΜ. ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Γ' εξαμ. (2021-22) (ΜΕCH215)

https://eclass.hmu.gr/courses/MECH215/

Password: thermodynamics1

Δομή του μαθήματος: Εφαρμ. Θερμοδυναμική Ι

> **15 βδομάδες**, 4ώρες/ βδομάδα= 60ώρες συνολικά

Σύμφωνα με το Πρόγραμμα Σπουδών 2019 του Τμήματος Μηχ/Μηχ/ΕΛΜΕΠΑ Ύλη μαθήματος:

- 1. Θεμελίωση των βασικών ενεργειακών μεγεθών, ορισμοί. Η έννοια του πεπερασμένου συστήματος και οι νόμοι της θερμοδυναμικής, εισαγωγική περιγραφή
- 2. Καταστατικά μεγέθη και καταστατικές εξισώσεις. Οι καθαρές ουσίες, φάσεις της ύλης. Το ιδανικό αέριο, η έννοια της ισορροπίας, η σταθερά του ιδανικού αερίου και η καταστατική εξίσωσή του
- 3. Οι μεταβολές ιδανικού αερίου
- 4. Πρώτος Θερμοδυναμικός Νόμος, μετατροπή θερμότητας σε έργο
- 5. Θερμοδυναμικοί κύκλοι, Υπολογισμοί έργου και βαθμού απόδοσης
- 6. Η έννοια της Εντροπίας, Περιγραφή και ανάλυση θερμοδυναμικών κύκλων σε πεδία πίεσης όγκου και ενθαλπίας εντροπίας
- 7. Ο Δεύτερος Θερμοδυναμικός Νόμος. Ανάλυση Θερμοδυναμικών κύκλων κινητήριων μηχανών και αντλίας θερμότητας
- 8. Αλλαγή φάσεων και εισαγωγή στην θερμοδυναμική των μιγμάτων
- 9. Γενίκευση της έννοιας της εντροπίας, Αναφορές στην στατιστική μηχανική και στην θεωρία της πληροφορίας
- 10. Ενέργεια και πληροφορία, σχεδιασμός θερμοδυναμικών συστημάτων
- 11. Από την Στατιστική Μηχανική στην Κοσμολογία, το εύρος ισχύος των νόμων της Θερμοδυναμικής και οι εφαρμογές του μηχανικού σήμερα και αύριο

Δομή του μαθήματος: Εφαρμ. Θερμοδυναμική Ι

Ενότητες μαθήματος:

Βασικές έννοιες- Ορισμοί Πρώτος Νόμος Θερμοδυναμικής Ιδιότητες καθαρής ουσίας Ιδανικά αέρια- Διεργασίες- Κλειστό Θερμοδυναμικό σύστημα Ανοιχτό Θερμοδυναμικό σύστημα- Διεργασίες Δεύτερος Νόμος Θερμοδυναμικής, Αναστρεψιμότητα Εντροπία Θερμοδυναμικοί κύκλοι

3^η Ενότητα μαθήματος: Ιδιότητες καθαρής ουσίας

Ιδιότητες καθαρής ουσίας

- Νερό ως καθαρή ουσία
- > Στερεή, υγρή και αέρια φάση
- Ιδιότητες υδρατμών
- Ισορροπία στερεής, υγρής και αέριας φάσης
- Πίνακες θερμοδυναμικών ιδιοτήτων νερού- ατμού

Ιδιότητες καθαρής ουσίας (1/24)

Φάσεις μίας καθαρής ουσίας

Καθαρή ουσία είναι ένα μέρος της ύλης στο οποίο:

η σύσταση είναι σταθερή σε όλη του την έκταση.

- ✓ Π.χ. το νερό, το οξυγόνο, το άζωτο αλλά και ο αέρας, είναι καθαρές ουσίες.
- ✓ Ένα μίγμα 2 ή περισσοτέρων φάσεων μίας καθαρής ουσίας (π.χ. νερό και ατμός, ή νερό και πάγος, συνεχίζει να είναι καθαρή ουσία.

Ιδιότητες καθαρής ουσίας (2/24)

Φάσεις μίας καθαρής ουσίας

Οι τρείς φάσεις μίας καθαρής ουσίας είναι η υγρή, η στερεή και η αέρια

(τα κρυσταλλικά στερεά μπορούν να παρουσιάζουν περισσότερες από μία στερεές φάσεις με διαφορετική κρυσταλλική δομή η κάθε μία, αλλά κάτι τέτοιο δεν θα μας απασχολήσει στο παρόν μάθημα).

Στη **στερεή φάση** (Σχήμα α) τα μόρια της καθαρής ουσίας είναι σταθερά διατεταγμένα στο χώρο, σε μικρές αποστάσεις μεταξύ τους και με την αύξηση της θερμοκρασίας αυξάνεται το πλάτος ταλάντωσης τους γύρω από τις σταθερές τους θέσεις στο χώρο.

Στην **υγρή φάση** (Σχήμα β) τα μόρια της καθαρής ουσίας βρίσκονται επίσης σε πολύ μικρή απόσταση μεταξύ τους (εφάπτονται το ένα με το άλλο), όμως μπορούν να κινηθούν ελεύθερα (να κυλήσουν) το ένα επάνω στο άλλο και οι μεταξύ τους σχετικές θέσεις μεταβάλλονται. Με την αύξηση της θερμοκρασίας η κίνηση αυτή επιταχύνεται.

Στην **αέρια φάση** (Σχήμα γ) τα μόρια βρίσκονται σε μεγάλες αποστάσεις το ένα από το άλλο και κινούνται τυχαία στο χώρο και συγκρούονται μεταξύ τους ή με τις επιφάνειες στερεών ή υγρών που θα συναντήσουν.

Ιδιότητες καθαρής ουσίας (3/24)

Φάσεις μίας καθαρής ουσίας

Κάθε καθαρή ουσία μπορεί να υπάρξει και στις τρεις φάσεις ανάλογα με το συνδυασμό θερμοκρασίας και πίεσης στην οποία βρίσκεται. Έτσι:

- αν η θερμοκρασία είναι αρκετά χαμηλή και η πίεση αρκετά υψηλή, η ουσία θα βρεθεί στη στερεή φάση.
- σε έναν, συγκεκριμένο για την κάθε ουσία, συνδυασμό ενδιάμεσων θερμοκρασιών και πιέσεων η ουσία θα βρίσκεται στην υγρή φάση.
- αν η θερμοκρασία είναι αρκετά υψηλή και η πίεση αρκετά χαμηλή, τότε η ουσία θα βρεθεί στην αέρια φάση.

ΠΑΡΑΔΕΙΓΜΑ: νερό και σε σταθερή πίεση 1 atm (= $101.325 \text{ Nt/m}^2 = 101.325 \text{ Pa} = 1,01325 \text{ bar}$):

- 1. σε θερμοκρασία κάτω από 0 °C, θα είναι στερεό (πάγος)
- 2. στους 0 °C το στερεό θα είναι σε ισορροπία με το υγρό και οι δύο φάσεις θα συνυπάρχουν
- 3. σε θερμοκρασίες 0 100 °C, το νερό θα είναι υγρό
- 4. στους 100 °C, το υγρό θα είναι σε ισορροπία με το αέριο (ατμός) και οι δύο φάσεις θα συνυπάρχουν και ονομάζονται κορεσμένες (κορεσμένο υγρό, δηλαδή υγρό έτοιμο να εξατμιστεί και κορεσμένος ατμός, δηλαδή ατμός έτοιμος να υγροποιηθεί
- 5. πάνω από τους 100 °C το νερό θα βρίσκεται στην κατάσταση του αερίου (ατμός)

Ιδιότητες καθαρής ουσίας (4/24)

Φάσεις μίας καθαρής ουσίας

Νερό και σε σταθερή πίεση 1 atm (= 101.325 Nt/m² = 101.325 Pa = 1,01325 bar), τότε:

- 1. σε θερμοκρασίες 0 100 °C, το νερό είναι υγρό
- 2. στους 100 °C, το υγρό θα είναι σε ισορροπία με το αέριο (ατμός) και οι δύο φάσεις συνυπάρχουν
- 3. πάνω από τους 100 °C το νερό θα βρίσκεται στην κατάσταση του αερίου (ατμός)

- ✓ Στην περίπτωση 1 (θερμοκρασία: 0 °C έως 99,999.... °C, για πίεση 1 atm) το υγρό θα πρέπει να αυξήσει τη θερμοκρασία του, προκειμένου να γίνει κορεσμένο υγρό και στις συνθήκες αυτές το υγρό ονομάζεται υπόψυκτο ή συμπιεσμένο υγρό.
- ✓ Στην περίπτωση 3 ο ατμός πρέπει να ψυχθεί για να γίνει κορεσμένος και στις συνθήκες αυτές (θερμοκρασία πάνω από 100 °C και πίεση 1 atm) ο ατμός ονομάζεται υπέρθερμος.

Ιδιότητες καθαρής ουσίας (5/24)

Στερεή, υγρή και αέρια φάση νερού

Σχ. 5.1 Μεταβολή των τριών φάσεων του νερού

Ιδιότητες καθαρής ουσίας (6/24)

Φάσεις μίας καθαρής ουσίας

... μεταβολή του ειδικού όγκου* (v) του νερού με τν θερμοκρασίας (T) (P = 1 atm)

- ✓ 20 − 100 °C (υπόψυκτο υγρό) − διαστέλλεται ελαφρά με την αύξηση της θερμοκρασίας (η αύξηση της θερμοκρασίας γίνεται με την παροχή θερμότητας στο νερό)
- ✓ στους 100 °C συμβαίνει αλλαγή φάσης και το νερό βρίσκεται στην κατάσταση του μίγματος κορεσμένου υγρού και κορεσμένου ατμού (ή αλλιώς κορεσμένο μίγμα) η προσθήκη θερμότητας πολλαπλασιάζει τον ν, χωρίς να αυξηθεί η Τ στην κατάσταση 2 το κορεσμένο μίγμα αποτελείται από 100 % κορεσμένο υγρό και στην κατάσταση 4 το κορεσμένο μίγμα αποτελείται από 100 % κορεσμένο ατμό
- * Ο όγκος V (m³) είναι μία εκτατική ιδιότητα, δηλαδή εκτός από τη θερμοκρασία και την πίεση εξαρτάται και από τη μάζα της ουσίας (π.χ. στις ίδιες συνθήκες θερμοκρασίας και πίεσης, ο όγκος 2 kg μίας ουσίας είναι διπλάσιος από τον όγκο 1 kg). Για τις εκτατικές ιδιότητες (όπως ο όγκος αλλά και η εσωτερική ενέργεια, η ενθαλπία και η εντροπία, που θα δούμε στη συνέχεια), ορίζονται τα αντίστοιχα ειδικά μεγέθη, όπως ο ειδικός όγκος v, δηλαδή ο όγκος 1 kg μίας ουσίας (με μονάδες m³/kg). Τα εκτατικό μέγεθος συνδέεται με το αντίστοιχο ειδικό μέσω της μάζας της καθαρής ουσίας. Οπότε για τον όγκο: V = m*v [m³].

Ιδιότητες καθαρής ουσίας (7/24)

Φάσεις μίας καθαρής ουσίας

... μεταξύ των καταστάσεων 2 και 4 (κατάσταση 3), το ποσοστό (%) του ατμού στο κορεσμένο μίγμα ονομάζεται ποιότητα του κορεσμένου μίγματος, συμβολίζεται με **x**:

$$x = (v3 - v2)/(v4 - v2)$$

όπου v3, v2 και v4, οι ειδικοί όγκοι του νερού στις αντίστοιχες καταστάσεις (ειδικά v2 και v4, είναι οι ειδικοί όγκοι του κορεσμένου υγρού v_1 και του κορεσμένου ατμού v_2 στους v_3 100 °C (ή ισοδύναμα σε πίεση v_4 1 atm) και οι τιμές τους είναι πάντα δεδομένες από πίνακες.

Ιδιότητες καθαρής ουσίας (8/24)

Φάσεις μίας καθαρής ουσίας

Διάγραμμα T - v του νερού, σε διάφορες $P - \eta$ αύξηση της P ελαττώνει τη διαφορά $v_{sv} - v_{sl}$

Όταν η πίεση φθάσει τα 22,06 MPa (220,6 bar ή περίπου 220,6 atm), το ευθύγραμμο τμήμα του κορεσμένου μίγματος εκφυλίζεται σε σημείο, το κρίσιμο σημείο (critical point) :

κρίσιμη πίεση Pcr = 22,06 MPa κρίσιμο ειδικό όγκο vcr = 0,003106 m³/kg κρίσιμη θερμοκρασία Tcr = 373,95 °C

Στο κρίσιμο σημείο και σε θερμοκρασίες ή σε πιέσεις πάνω από τις κρίσιμες τιμές, οι καταστάσεις υγρού και ατμού δεν διαχωρίζονται και η ρευστή αυτή φάση της ουσίας ονομάζεται **υπερκρίσιμο ρευστό**.

Ιδιότητες καθαρής ουσίας (9/24)

Φάσεις μίας καθαρής ουσίας

- 1.προσθήκη θερμότητας υπό σταθερή πίεση
- 2.αφαίρεση θερμότητας υπό σταθερή πίεση
- 3.προσθήκη θερμότητας υπό σταθερό όγκο
- 4.αντίθετα, η αφαίρεση θερμότητας υπό σταθερό όγκο
- 5. αύξηση της πίεσης υπό σταθερή θερμοκρασία
- 6.ελάττωση της πίεσης υπό σταθερή θερμοκρασία

Ιδιότητες καθαρής ουσίας (10/24)

Ισορροπία στερεής, υγρής και αέριας φάσης νερού

Σχ. 5.4 Διάγραμμα p – Τ, όπου φαίνονται οι τρεις φάσεις του νερού και το τριπλό σημείο

Ιδιότητες καθαρής ουσίας (11/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακας κορεσμένου νερού (ως προς τη θερμοκρασία)

		Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/(kg·K)		
Temp.,	Sat. press., Par kPa	Sat. liquid,	Sat. vapor, v _o	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
0.01	0.6113	0.001000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9,1562	9.1562
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8,7498	8.9008
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814
20	2.339	0.001002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30	4.246	0.001004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8,4533
35	5.628	0.001006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531
40	7.384	0.001008	19.52	167.56	2262.6	an I want I let	167.57	2406.7	2574.3	61222	7.6845	8.2570

Για δεδομένες θερμοκρασίες δίνει:

- την πίεση κορεσμού (ή αλλιώς την πίεση ισορροπίας υγρού-ατμού)
- > τις τιμές του ειδικού όγκου (vf και vg σε m³/kg)
- τις τιμές της ειδικής εσωτερικής ενέργειας (uf και ug σε kJ/kg)
- τις τιμές της ειδικής ενθαλπίας (hf και hg σε kJ/kg) και
- τις τιμές της ειδικής εντροπίας (sf και sg σε kJ/kgK)

για το κορεσμένο υγρό (δείκτης f) και για τον κορεσμένο ατμό (δείκτης g)

Δίνει επίσης τις τιμές της ειδικής λανθάνουσας εσωτερικής ενέργειας εξάτμισης (ufg σε kJ/kg), της ειδικής λανθάνουσας ενθαλπίας (hfg σε kJ/kg) και της ειδικής λανθάνουσας εντροπίας (sfg σε kJ/kgK), τις οποίες σε ΔΕΝ ΘΑ ΧΡΗΣΙΜΟΠΟΙΟΥΜΕ

Ιδιότητες καθαρής ουσίας (12/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακας κορεσμένου νερού (ως προς τη θερμοκρασία)

		Specific volume, m ³ /kg		Internal energy, kJ/kg			E	kJ/kg	19	Entropy, kJ/(kg·K)			
Temp.,	Sat. press., Par kPa	Sat. liquid,	Sat.	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor, s _g	
0.01	0.6113	0.001000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9.1562	9.1562	
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257	
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8,9008	
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814	
20	2.339	0.001002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672	
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580	
30	4.246	0.001004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533	
35	5.628	0.001006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531	
40	7.384	0.001008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7,6845	8.2570	

Οι τιμές των παραπάνω μεγεθών σε θερμοκρασίες μεταξύ των θερμοκρασιών του Πίνακα, υπολογίζονται με γραμμική παρεμβολή. Π.χ. η ειδική εσωτερική ενέργεια του κορεσμένου ατμού στους 22 °C είναι:

T, oC	ug, kJ/kg	
20	2402,9	$(22-20)/(25-20) = (ug-2402,9)/(2409,8-2402,9) \Leftrightarrow$
22	ug	\Leftrightarrow ug = 2402,9 + (22 - 20)/(2409,8 - 2402,9)/(25 - 20) = 2405,66 kJ/kg
25	2409,8	

Αντίστοιχα, η ειδική εσωτερική ενέργεια του κορεσμένου ατμού στους 23 °C είναι:

$$(25-23)/(25-20) = (2409,8-ug)/(2409,8-2402,9) \Leftrightarrow ug = 2409,8-(25-23)*(2409,8-2402,9) /(25-20) = 2407,04 kJ/kg$$

Δηλαδή, ως βάση για τη γραμμική παρεμβολή λαμβάνεται κάθε φορά η θερμοκρασία που είναι πιο κοντά στη θερμοκρασία για την οποία την ιδιότητα ψάχνουμε.

Ιδιότητες καθαρής ουσίας (13/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακας κορεσμένου νερού (ως προς την πίεση)

			c volume, i³/kg	Int	Internal energy, kJ/kg			Enthalpy, kJ/kg	W	Entropy, kJ/(kg·K)			
Press., PkPa	Sat. temp., T _{st} *C	Sat. liquid,	Sat. vapor,	Sat. liquid, u	Evap.,	Sat. vapor, u _c	Sat. Ilquid, h,	Evap.,	Sat. vapor, h _c	Sat. liquid, s,	Evap.,	Sat. vapor,	
0.6113	0.01	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9,1562	9.1562	
1.0	6.98	0.001000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756	
1.5	13.03	0.001001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	0.1957	8.6322	8.8279	
20	17.50	0.001001	67.00	73.48	2320.0	2399.5	73.48	2460.0	2533.5	0.2607	8.4629	6.7237	
2.5	21.08	0.001002	54.25	88.48	2315.9	2404.4	88.49	2451.6	2540.0	0.5120	5.3311	8.6432	
3.0	24.08	0.001003	45.67	101.04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776	
4.0	28.96	0.001004	34.80	121.45	2293.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	8.4746	
5.0	32.88	0.001005	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.3951	
7.5	40.29	0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515	
10	45.81	0.001010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	D.6493	7.5009	8.1502	
15	53.97	0.001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085	
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7,9085	
25	64.97	0.001020	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9383	7.831	
30	69.10	0.001022	5.229	289.20	2179.2	2468.4	289.23	2336.1	2625.3	0.9439	6.8247	7.7686	
40	75.87	0.001027	3.993	317.53	2159.5	2477.0	317.58	2319.2	2636.6	1.0259	6.6441	7,6700	
50	81.33	0.001030	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0910	6.5029	7,5939	

Για δεδομένες πιέσεις δίνει:

- την θερμοκρασία κορεσμού (ή αλλιώς την πίεση ισορροπίας υγρού-ατμού)
- τις τιμές του ειδικού όγκου (vf και vg σε m³/kg)
- τις τιμές της ειδικής εσωτερικής ενέργειας (uf και ug σε kJ/kg)
- τις τιμές της ειδικής ενθαλπίας (hf και hg σε kJ/kg) και
- τις τιμές της ειδικής εντροπίας (sf και sg σε kJ/kgK)

για το κορεσμένο υγρό (δείκτης f) και για τον κορεσμένο ατμό (δείκτης g)

Πρόκειται στην ουσία για τον ίδιο με τον προηγούμενο Πίνακα, μόνο που αυτή τη φορά δίνονται οι πιέσεις στην πρώτη στήλη και σε σταθερό βήμα.

Ιδιότητες καθαρής ουσίας (14/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακες υπέρθερμου ατμού

0	m'/kg	N.Jike	Kathy	Katthe 10	m ³ /km	hJ/kg	kaling	kJ/(kg-K)	m ³ /kg	100	D	8
		D - 0 01 11			101110000000000000000000000000000000000		THE RESERVE AND ADDRESS.	The State of the S	-	kJ/kg	kJ/kg	kd/(kg-K)
	-	P = 0.01 M	PB [45.81	0)*		P = 0.05 \$	dPa [81,3	(0.6)		P = 0.10	MPa (99.6	iard)
BM7	14.674	2437.0	2584.7	8.1502	3345	2463.9	2645.9	7.9939	T.KDAID.	2526.1	2675.5	7.3594
50	34,863	2443.9	2102.6	8.1749			200	110000	-	10000	20100	
100	17,196	2515.5	2687.5	0.4479	3.410	25116	2002.5	7.6947	1.6968	2506.7	2676.2	7.0614
150	19.012	2587.9	2783.0	5.6882	3.800	2585.A	2790.1	7.5401	1,0004	2552.8	2776.4	7,0104
700	21,825	2061,3	2879.0	8,9006	A.050	2020.0	2877.7	8.1500	2.579	2656.1	2875.3	7.8343
150	24,100	2736.0	2917.0	9.1002	4.820	2135.0	2976.0	9.3656	2.400	2733.7	2074.0	8.0333
300	29.445	2812.1	2076.5	9,2910	5.294	2911.3	3075.5	8.5373	2.639	2910.4	3074.3	8.2158
100	31.063	2960.9	3279.6	9.6077	6.229	2965.5	3078.9	8.9642	3:103	2967.9	9278.2	8.5435
500	35.679	3132.3	3409.1	3.8976	7.134	3132.0	3486.7	9.1546	3.569	3131.6	3455.1	8.5342
600	49,250	5300.5	3701.4	10,1608	A.057	3302.2	3705.1	9.4179	4.029	3301.9	5704.4	0.0970
700	44.911	3479.6	3929.7	10.4029	11.001	3479.4	2020.5	9.0099	4.490	3479.2	2608.2	9.3338
800	49.500	2053 8	#109.0	10.6381	9.904	36903.6	4156.5	9.8652	4.052	2003.5	4155.6	9.5052
900	84.141	3855.0	4396.4	10.8306	10.826	3854.9	4390.3	10.0967	5.414	0554.8	4396.1	9.7767
1000	58.757	4003.0	4640.5	11:0300	11.751	4052.9	4640.5	10.2964	6.876	4002.8	4640.3	9.9764
1100	65.377	4257.5	4891.2	11.2067	12.674	4257.4	4091.1	10.4859	6.337	4257.3	4881.0	10.1659
1200	67 097	4407.33	\$142.8	11,4001	13.597	4467.8	\$147.7	10:0002	6,730	4467.7	\$147.6	10.3403
1300.	72.602	4683.7	5409.7	11.5811	14.521	4685.5	5409.6	10.8382	7.290	4683.5	5401.5	10.5160

Πρόκειται για ένα σύνολο μικρότερων πινάκων, ο καθένας σε σταθερή πίεση (για κάθε πίεση αναφέρεται και η αντίστοιχη θερμοκρασία κορεσμού). Σε κάθε πίνακα, στην πρώτη γραμμή δίνονται οι ιδιότητες (vg, ug, hg, sg) του κορεσμένου ατμού και στις επόμενες γραμμές οι ίδιες ιδιότητες του υπέρθερμου ατμού σε δεδομένη θερμοκρασία, πάνω από την θερμοκρασία κορεσμού.

Θα πρέπει να σημειωθεί ότι:

- ο υπέρθερμος ατμός, σε συγκεκριμένη πίεση, βρίσκεται πάντα σε υψηλότερη θερμοκρασία από τον κορεσμένο ατμό, στην ίδια πίεση
- ο υπέρθερμος ατμός, σε συγκεκριμένη θερμοκρασία, βρίσκεται πάντα σε χαμηλότερη πίεση από τον κορεσμένο ατμό, στην ίδια θερμοκρασία.

Ιδιότητες καθαρής ουσίας (15/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακες υπέρθερμου ατμού

G	m*/kg	kalke	kJ/kg	kJ(hg·K)	m*Nu	kJ/kg	kJ/kg	RATERO RO	m ² /kg	kJ/kg	kaliku	kd/the-K
	_	F= 0.01 M	Pa (45.81"	0)*		# = 0.05 B	4Pw (81.3	3°C)	-	F-0.10	MPa (99.6	
Set.1	14.674	2407.9	2584.7	8.1502	2240	2453.9	2645.9	7.5500	1.6940	2506.1	2675.5	7,3594
60	14,863	2443.9	2582.6	8.1749			113311		1111111		201002	1,000
100	17.196	2515.5	2687.5	8.4479	3.415	0511.0	2082.5	7.6947	1.0958	2906.7	2676.2	7,0014
150	19.512	2587.9	2783.0	8.6862	3.883	2585.6	2790.1	7.5401	1.0364	2552.8	2776.4	7,6154
200	21.825	2961.3	2979.5	8.0038	4.056	2050.0	2677.7	8.1580	2.172	3658.1	2875.3	7.6343
250	24,130	2730.0	2977.3	9.1002	4.820	2735.0	2276.0	8.3658	2.400	2733.7	2974.3	8.0330
000	26.445	2012.1	2076.6	9,2013	5.254	2911.3	3075.5	0.5573	2.639	2810.4	3074.3	5.2158
400	21 063	2900.0	3279.0	9.6077	6.209	2901.5	2078.9	8.0642	3.103	2967.8	3278.2	8,5435
500	35.679	01323	3469.1	0.0070	2,134	3132.0	3459.7	9.1546	3.565	3121.6	3486.1	8.6342
600	#0.295	3302.5	3705,4	10.1608	8.057	3302.2	3705.1	9.4179	4.029	3301,0	3704.4	9.0976
700	44.911	3479:6	3926.7	10.4028	8.901	3479.4	3929.5	9.6500	4,490	3479.2	3939.2	9.3308
800	49.500	3063.8	4159.0	10.6261	9.904	3663.6	4150.0	9.8652	4.952	5003.5	4155.0	3.5652
900	54.541	3465.0	4096.4	10.9300	10.829	3854.0	4390.3	10.0967	6.414	0054.6	4396.1	5.7767
1000	\$8.757	4053.0	4640.0	11.0393	31.751	4082.0	4640.5	10.0064	E.875	4002.8	4040.9	3.0764
1100	65,372	4257.6	4091.2	11.2097	12.674	4257.4	4591.1	10.4850	0.337	4217.3	4801.0	10.1659
1200	67.067	4407.8	\$147.8	11,4091	13.697	4467.9	5147.7	10.6662	6.730	4467.7	5147.6	10.3463
1200	72.002	4089.7	5409.7	11.5811	14.521	4633.6	5409.8	10.8365	7.290	4683.5	5400.5	10.5183

Για τον υπολογισμό των ιδιοτήτων του υπέρθερμου ατμού σε κάποιες συνθήκες, ενδέχεται να χρειαστεί να γίνουν τρεις γραμμικές παρεμβολές. Π.χ. η ειδική ενθαλπία του υπέρθερμου ατμού σε πίεση 60 kPa (0,06 Mpa) και στους 240 °C, υπολογίζεται ως εξής:

0,05 Mpa, 240 °C hg =
$$2976,0 - (250 - 240)*(2976,0 - 2877,7)/(250 - 200) = 2956,34 kJ/kg$$

0,1 Mpa, 240 °C hg =
$$2974,3 - (250 - 240)*(2974,3 - 2875,3)/(250 - 200) = 2954,50 kJ/kg$$

Και τέλος στα 0,06 Mpa και 240 °C

$$hg = 2956,34 + (0,06 - 0,05)*(2954,50 - 2956,34)/(0,1 - 0,05) = 2955,97 \text{ kJ/kg}$$

Ιδιότητες καθαρής ουσίας (16/24)

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

Πίνακες συμπιεσμένου (ή υπόψυκτου) υγρού

T C	m ⁵ /kg	kJ/kg	fr k-J/kg	kJ/(kg-K)	m ³ /kg	kJ/kg	kJ/kg	# kJ/(kg · K)	m ² /log	kJ/kg	kJ/kg	kJ/(kg·K)
	p	= 5 MPa	263.99*0	2)	p.	10 MP	a [311.0	6'0)	Pa	15 MPs	(342.2	4.C)
Sat.	0.0012659	1147.5	1154.2	2.9202	0.0014524	1390.0	1407.6	3.3596	0.0016581	1686.6	1610.5	3.6848
0	0.0009977	0.04	5.04	0.0001	0.0009952	0.09	10.04	0.0002	0.0009029	0.15	15.05	0.0004
20	0.0009995	83.65	88.65	0.2956	0.0009972	83.36	99.33	0.2945	0.0009950	83.00	97.99	0.2934
40	0.0010056	106.96	171.97	0.5705	0.0010034	166.35	176.08	0.5686	0.0010013	165.76	180.7E	0.5660
60	0.0010149	250.23	255.30	0.8285	0.0010127	249.36	250.40	0.8258	0.0010105	248.51	263.67	0.8332
80	0.0010268	233.72	338.85	1.0720	0.0010346	332.59	342.60	1,0668	0.0010222	331.48	346.81	1,0656
100	0.0010410	417.52	422.72	1.3030	0.0010385	416.12	406.50	1.2992	0.0019361	414,74	430.28	1.2965
120	0.0010576	501.60	507.00	1.5233	0.0010549	500.08	510.64	1,5189	0.0010522	496.40	514.10	1,5145
140	0.0010768	588.76	502,15	1,7343	0.0010737	584.68	595,42	1,7292	0.0010707	582.66	506,72	1.7242
160	0.0010988	672.62	676.12	1.8075	0.0010953	670.13	681.08	1.0317	0.0010916	667.71	684.09	1,0060
180	0.0011240	799.63	765.25	2,1341	0.0011189	756.65	767.84	2.1275	0.0011159	753.76	770.50	2,1210
220	0.0011530	848.1	860.0	2.0255	0.0011480	844.5	856.0	2.3178	0.0011433	841.0	858.2	2.3104
220	0.0011866	938.4	044.4	2.5129	0.0011805	034.1	945.9	2.5030	0.0011748	929.9	947.5	2.4963
240	0.0012264	1031.4	1037.5	2,6979	0.0012167	1025.0	1038.1	2.6872	0.0012114	1020.8	1009.0	2.6771
260	0.0012749	1127.0	11043	2.8830	0.0012645	1121.1	1123.7	2.8699	0.0012550	1114.6	1133.4	2.8576
280					0.0013216	1220.9	1224.1	3.0548	0.0013084	1212.5	1232.1	3.0393
300					0.0013972	1028.4	1342.3	3.2469	0.0013770	1316.6	1337.3	3.2060
320									0.0014724	1431.1	1463.2	3.4247
340									0.0016311	1567.5	1501.0	3.0540

Πρόκειται για ένα σύνολο μικρότερων πινάκων, ο καθένας σε σταθερή πίεση (για κάθε πίεση αναφέρεται και η αντίστοιχη θερμοκρασία κορεσμού), όπως και οι πίνακες υπέρθερμου ατμού

οι ιδιότητες του συμπιεσμένου υγρού είναι κατά προσέγγιση ίσες με τις ιδιότητες του κορεσμένου υγρού, <u>στην ίδια θερμοκρασία</u>

Ιδιότητες καθαρής ουσίας (17α/24)

Παράδειγμα 1

Να υπολογιστεί η ενθαλπία κεκορεσμένου ατμού μάζας 20 kg σε πίεση 60×10^3 N/m^2 .

Λύση

Από τις εξισώσεις (4.14) και (4.14α) έχουμε ότι:

$$h = u + pu \tag{1}$$

και

$$H = mh = U + pV \qquad (2)$$

Το άθροισμα u + pu το ονομάζουμε ενθαλπία h της μάζας.

$$h = u + pv \quad \sigma \varepsilon J/kg$$
 (4.14)

Η ενθαλπία είναι μία ιδιότητα της μάζας και δεν έχει καμία φυσική έννοια, παρά μόνο ότι παριστάνει το άθροισμα u + pu. Η ενθαλπία όλης της μάζας m, που περνά μέσα από το σύστημα, ισούται με:

$$mh = U + pV (4.14\alpha)$$

Για να υπολογίσουμε την h, θα πρέπει να προσδιορίσουμε το u και το υ από τον Πίνακα Γ2, γιατί γνωρίζουμε την πίεση p και όχι τη θερμοκρασία t. Η ανεξάρτητη μεταβλητή είναι η πίεση p.

H πίεση p = $60 \times 10^3 \text{ N/m}^2$ ή 0,6 bar

 $(1 \text{ bar} = 10^5 \text{ N/m}^2)$

Από τον Π ίνακα Γ 2, γ ια p = 0.6 bar, έχουμε ότι:

Ειδική εσωτερική ενέργεια του ατμού μ_α = <u>2</u>489,7 kJ/kg

Ειδικός όγκος του ατμού $u_g = 2,731 \text{ m}^3/\text{kg}$

Αντικαθιστούμε τις τιμές στην εξίσωση (1):

$$h_g = 2489.7 + (60 \times 2.731) = 2653.6 \text{ kJ/kg}$$

Από την εξίσωση (2) παίρνουμε την ολική ενθαλπία του ατμού:

$$H = mh$$
 \longrightarrow $H = 20 \times 2653,6 = 53.072 kJ$

Ιδιότητες καθαρής ουσίας (17β/24)

ΠΙΝΑΚΑΣ Γ2. Τδιότητες κεκορεσμένου νεροῦ καί κεκορεσμένου ἀτμοῦ. Πίνακας πιέσεως.

	'Απολ. Πίεση	Θερμ.	Είδικός δγι	κος, m³/kg	'Ενθ	αλπία,	kJ/kg	Έσωτερ. ἐν	έργεια, kJ/kg	Έντρ	οπία, κ.	J/kgK	'Απολ. πίεση
	bar	°C		Κεκ.ἀτμός	Κεκ.νερό		Κεκ.ἀτμός	Κεκ.νερό	Κεκ.άτμός	Κεκ.νερό	H	ζεκ.ἀτμός	bar
-	р	t	$v_{\rm f}$	υg	h _f	h fg	h g	uf	u g	s _f	s fg	S g	р
				В	1	18	ь	Wat 1					
	0.006 02	0	0.001 000 2	206.298 7	-0.0	2501.6	2501.6	-0.0	2375-6	-0.0	9.1578	9.1578	0.006 02
	0.006 11	0.01	0.001 000 2	206.162 9	+0.0	2501.6	2501.6	0	2375.6	0	9.1575	9-1575	0.006 11
	0.010	6.98	0.001 001	129.210 7	29.3	2485.0	2514.4	29.3	2385.2	0.1060	8.8706	8.9767	0.010
	0.020	17.51	0.001 001 2	67.011 6	73.5	2460.2	2533.6	73.5	2399.6	0.2606	8.4640	8.7246	0.020
	0.030	24.10	0.001 002 7	45.670 0	101-0	2444.6	2545.6	101.0	2408.6	0.3543	8.2242	8.5785	0.030
	0.040	28-98	0.001 004 0	34.803 3	121.4	2433-1	2554.5	121-4	2415.3	0.4225	8.0530	8.4755	0.040
	0.050	32.90	0.001 005 2	28.194 5	137.8	2423.8	2561-6	137.8	2420.6	0.4763	7.9197	8.3960	0.050
	0.060	36.18	0.001 006 4	23.740 6	151-5	2416 0	2567.5	151.5	2425.1	0.5209	7.8103	8.3312	0.060
	0.070	39.03	0.001 007 4	20-530 4	163-4	2409.2	2572.6	163-4	2428.9	0.5591	7.7176	8.2767	0.070
	0.080	41.54	0.001 008 4	18.103 8	173.9	2403.2	2577-1	173.9	2432.3	0.5926	7.6370	8.2295	0.080
	0.090	43.79	0.001 009 4	16.203 4	183.3	2397.9	2581-1	183.3	2435.3	0.6224	7.5657	8-1881	0.090
	0.10	45.83	0.001 010 2	14.673 7	191-8	2392-9	2584.8	191.8	2438-1	0.6493	7.5018	8-1511	0.10
	0.15	54.00	0.001 014 0	10.022 1	226.0	2373.2	2599.2	226.0	2448.9	0.7549	7.2544	8.0093	0.15
	0.20	60.09	0.001 017 2	7.649 2	251.5	2358-4	2609.9	251 5	2456.9	0.8321	7.0773	7.9094	0.20
	0.25	64.99	0.001 019 9	6.204 0	272 0	2346.4	2618-3	272.0	2463.2	0.8933	6.9390	7.8323	0.25
	0.30	69-13	0.001 022 3	5.229 0	289.3	2336-1	2625.4	289.6	2468.2	0.9441	6.8254	7.7695	0.30
	0.35	72.71	0.001 024 5	4.525 5	304-3	2327-2	2631.5	304.3	2473.1	0.9878	6.7288	7.7166	0.35
	0.40	75.89	0:001 026 5	3.993 2	317.7	2319.2	2636.9	317.7	2477-2	1.0261	6.6448	7.6709	0.40
	0.45	78.74	0.001 028 4	3.576 1	329.6	2312.0	2641.7	329.6	2480.8	1.0603	6.5703	7.6306	0.45
				9.300			****	240.5	2484-0	1.0012		7 5047	0.50
	0.50	81.35	0.001 030 1	3.240	340.6	2305-4		340.5	- 2 48 4- 0 2489-7	1.0912	6.5035	7.5947	0·50 0·60
	0.60	85.95	0.001 033 3		359.9	2293 6	2653.6	359.8	2494.6	1·1455 1·1921	6·3872 6·2883	7·5327 7·4804	0.70
	0.70.	89.96	0.001 036 1	2:364 7	376.8	2283-3		376.3	2498.8	1.2330	6.2022	7.4352	0.80
	0.80	93.51	0.001 038 7	2.086 9	391.7	2274·0 2265·6	2665·8 2670·9	391·6 405·1	2502.7	1.2696	6.1258	7.3954	0.90
	0.90	96.71	0.001 041 2	1.869 1	405.2	2203.0	2670-9	403.1	2502 7	1 2090	0 1230	7 3734	0,0
	1.00	99.63	0.001 043 4	1.693 7	417.5	2257-9	2675.4	417-4	2506.0	1.3027	6.0571	7-3598	1.00
	1.013 25	100.00	0.001 043 7	1.673 0	419-1	2256.9	2676.0	419.0	2506.5	1.3069	6.0485	7.3554	1.013 25
	1.20	104.81	0.001 047 6	1.428 1	439.4	2244-1	2683-4	439.3	2512-0	1.3609	5.9375	7.2984	1.20
	1.40	109-32	0.001 051 3	1.236 3	458-4	2231.9		458.3	2517.2	1.4109	5.8356	7.2465	1.40
	1.60	113.32	0.001 054 7	1.0911	475.4	2220.9	2696-2	475.2	2521.6	1.4550	5.7467	7.2017	1.60
	1.80	116.93	0.001 057 9	0.977 18	490.7	2210.8	2701-5	490.5	2525.6	1.4944	5.6677	7.1622	1.80

Ιδιότητες καθαρής ουσίας (18α/24)

Παράδειγμα 2

Ένας μικρός βοηθητικός λέβητας παράγει κεκορεσμένο ατμό πίεσης 1,28 bar. Ποια είναι η ενθαλπία του ατμού;

Λύση

Επειδή ο Πίνακας Γ2 δεν περιλαμβάνει την πίεση p = 1,28 bar, θα κάνουμε γραμμική παρεμβολή, όπως δίνεται από τη Μαθηματική Ανάλυση, μεταξύ των πιέσεων p = 1,20 bar και p = 1,40 bar, που δίνονται στους πίνακες. Έτσι για:

p = 1,20 bar έχουμε
$$h_g = 2683,4 \text{ kJ/kg}$$

p = 1,40 bar έχουμε $h_g = 2690,3 \text{ kJ/kg}$

οπότε με τη γραμμική παρεμβολή έχουμε ότι:

$$σε p = 1,28 bar$$
 $h_g = \frac{1,28 - 1,20}{1,40 - 1,20} × (2690,3 - 2683,4) + 2683,4 = 2686,2 kJ/kg$

Ιδιότητες καθαρής ουσίας (18β/24)

ΠΙΝΑΚΑΣ Γ2. Ἰδιότητες κεκορεσμένου νεροῦ καί κεκορεσμένου ἀτμοῦ. Πίνακας πιέσεως.

		1000										
'Απολ. Πίεση	Θερμ.	Είδικός ὄγ	κος, m³/kg	Ένθ	αλπία,	kJ/kg	Έσωτερ. έν	έργεια, kJ/kg	'Εντρ	οπία, κ.	J/kgK	'Απολ. πίεση
bar	°C	Κεκ.νερό Ι	Κεκ.ἀτμός	Κεκ.νερό		Κεκ.ἀτμός	Κεκ.νερό	Κεκ.ἀτμός	Κεκ.νερό	·	Κεκ.ἀτμός	bar
р	t	$v_{\rm f}$	υg	h _f	h fg	h g	uf	u _g	s _f	. S fg	s g	p
0·006 02 0·006 11 0·010 0·020 0·030	0 0·01 6·98 17·51 24·10	0.001 000 2 0.001 000 2 0.001 001 0.001 001 2 0.001 002 7	206·298 7 206·162 9 129·210 7 67·011 6 45·670 0	-0-0 +0-0 29-3 73-5 101-0	2501 ·6 2501 ·6 2485 ·0 2460 ·2 2444 ·6	2501 · 6 2501 · 6 2514 · 4 2533 · 6 2545 · 6	-0·0 0 29·3 73·5 101·0	2375·6 2375·6 2385·2 2399·6 2408·6	-0.0 0 0.1060 0.2606 0.3543	9·1578 9·1575 8·8706 8·4640 8·2242	9·1578 9·1575 8·9767 8·7246 8·5785	0.006 02 0.006 11 0.010 0.020 0.030
0 040 0 050 0 060 0 070 0 080 0 090	28.98 32.90 36.18 39.03 41.54 43.79	0-001 004 0 0-001 005 2 0-001 006 4 0-001 007 4 0-001 008 4 0-001 009 4	34·803 3 28·194 5 23·740 6 20·530 4 18·103 8 16·203 4	121·4 137·8 151·5 163·4 173·9 183·3	2433·1 2423·8 2416·0 2409·2 2403·2 2397·9	2554-5 2561-6 2567-5 2572-6 2577-1 2581-1	121·4 137·8 151·5 163·4 173·9 183·3	2415·3 2420·6 2425·1 2428·9 2432·3 2435·3	0·4225 0·4763 0·5209 0·5591 0·5926 0·6224	8·0530 7·9197 7·8103 7·7176 7·6370 7·5657	8·4755 8·3960 8·3312 8·2767 8·2295 8·1881	0·040 0·050 0·060 0·070 0·080 0·090
0·10 0·15 0·20 0·25 0·30 0·35 0·40 0·45	45·83 54·00 60·09 64·99 69·13 72·71 75·89 78·74	0·001 010 2 0·001 014 0 0·001 017 2 0·001 019 9 0·001 022 3 0·001 024 5 0·001 028 4	14·673 7 10·022 1 7·649 2 6·204 0 5·229 0 4·525 5 3·993 2 3·576 1	191·8 226·0 251·5 272·0 289·3 304·3 317·7 329·6	2392·9 2373·2 2358·4 2346·4 2336·1 2327·2 2319·2 2312·0	2584·8 2599·2 2609·9 2618·3 2625·4 2631·5 2636·9 2641·7	191·8 226·0 251·5 272·0 289·6 304·3 317·7 329·6	2438·1 2448·9 2456·9 2463·2 2468·2 2473·1 2477·2 2480·8	0.6493 0.7549 0.8321 0.8933 0.9441 0.9878 1.0261 1.0603	7·5018 7·2544 7·0773 6·9390 6·8254 6·7288 6·6448 6·5703	8·1511 8·0093 7·9094 7·8323 7·7695 7·7166 7·6709 7·6306	0·10 0·15 0·20 0·25 0·30 0·35 0·40 0·45
0·50 0·60 0·70. 0·80 0·90	81·35 85·95 89·96 93·51 96·71	0.001 030 1 0.001 033 3 0.001 036 1 0.001 038 7 0.001 041 2	3·240 1 2·731 7 2·364 7 2·086 9 1·869 1	340·6 359·9 376·8 391·7 405·2	2305·4 2293·6 2283·3 2274·0 2265·6	2646·0 2653·6 2660·1 2665·8 2670·9	340·5 359·8 376·3 391·6 405·1	2484·0 2489·7 2494·6 2498·8 2502·7	1·0912 1·1455 1·1921 1·2330 1·2696	6·5035 6·3872 6·2883 6·2022 6·1258	7·5947 7·5327 7·4804 7·4352 7·3954 7·3598	0·50 0·60 0·70 0·80 0·90
1:013 25 1:20 1:40 1:60 1:80	100·00 104·81 109·32 113·32 116·93	0.001 043 7 0.001 047 6 0.001 051 3 0.001 054 7 0.001 057 9	1.673 0 1.428 1 1.236 3 1.091 1 0.977 18	419·1 439·4 458·4 475·4 490·7	2256·9 2244·1 2231·9 2220·9 2210·8	2676·0 2683·4 2690·3 2696·2 2701·5	419·0 439·3 458·3 475·2 490·5	2506·5 2512·0 2517·2 2521·6 2525·6	1·3069 1·3609 1·4109 1·4550 1·4944	6·0485 5·9375 5·8356 5·7467 5·6677	7·3554 7·2984 7·2465 7·2017 7·1622	1·013 25 1·20 1·40 1·60 1·80

Ιδιότητες καθαρής ουσίας (18γ/24)

Γ' εξαμ. 2021-22

Γραμμική παρεμβολή..

$$p_1$$
 = 1,20 bar έχουμε $h_{g,1}$ = .683,4 kJ/kg p_2 = 1,40 bar έχουμε $h_{g,2}$ = .690,3 kJ/kg

$$p_3 = 1,28 \text{ bar}$$

$$h_1 = a \cdot p_1 + \beta$$

$$h_2 = a \cdot p_2 + \beta$$

$$\beta = h_1 - a \cdot p_1$$

$$h_2 = a \cdot p_2 + (h_1 - a \cdot p_1)$$

$$h_2 = h_1 + a \cdot (p_2 - p_1) \longrightarrow$$

$$\mathbf{x}(\mathbf{p})$$
 $\mathbf{a} = \frac{h_2 - h_1}{p_2 - p_1}$ & $\mathbf{\beta} = h_1 - \frac{h_2 - h_1}{p_2 - p_1} \cdot p_1 = \frac{p_2 h_1 - p_1 h_2}{p_2 - p_1}$

ΑΡΑ ΓΕΝΙΚΑ

$$h = a \cdot p + \beta$$
 $h = \frac{h_2 - h_1}{p_2 - p_1} \cdot p + \frac{p_2 h_1 - p_1 h_2}{p_2 - p_1}$

Για
$$p_3$$
= 1.28bar \rightarrow h_3 = 2686.2 kJ/kg

Ιδιότητες καθαρής ουσίας (19/24)

Κορεσμένο υγρό και κορεσμένος ατμός

Οι πίνακες αυτοί περιλαμβάνουν τον ειδικό όγκο υ, την ειδική ενθαλπία h, καθώς και την ειδική εσωτερική ενέργεια u, για διάφορες θερμοκρασίες και πιέσεις. Οι δείκτες των συμβόλων των ιδιοτήτων δείχνουν ότι η ιδιότητα του εργαζόμενου μέσου αναφέρεται:

f: στην κατάσταση του κεκορεσμένου υγρού

g: στην κατάσταση του κεκορεσμένου ατμού

fg: στη διαφορά μεταξύ κεκορεσμένου υγρού και κεκορεσμένου ατμού.

Ιδιότητες καθαρής ουσίας (20α/24)

Υγρός ατμός

όταν το νερό

βρίσκεται στη μεταβατική φάση μεταξύ του κεκορεσμένου υγρού και κεκορεσμένου ατμού, όταν δηλαδή έχουμε υγρό ατμό. Για να τις βρούμε, χρησιμοποιούμε μία καινούργια ποσότητα, η οποία ονομάζεται βαθμός ξηρότητας ή ποιότητα ατμού.

Ο βαθμός ξηρότητας είναι ο λόγος της μάζας του ατμού προς το σύνολο της μάζας του συστήματος που αποτελείται τόσο από μάζα ατμού όσο και από μάζα νερού. Τη μάζα αυτή του συστήματος τη συναντάμε στην περιοχή που περικλείεται από τις καμπύλες του κεκορεσμένου ατμού και κεκορεσμένου νερού στο διάγραμμα Τ - υ του σχήματος 5.3. Σημειώνουμε ότι ο ορισμός του βαθμού ξηρότητας προϋποθέτει ότι το μείγμα ατμού και νερού είναι ομογενές και σε ισορροπία. Έτσι, ο βαθμός ξηρότητας ορίζεται ως:

$$x = \frac{\mu άζα ατμού}{\mu άζα ατμού + μάζα νερού} = \frac{m_g}{m_g + m_f}$$
 (5.1)

Ιδιότητες καθαρής ουσίας (20β/24)

Υγρός ατμός

μάζα ατμού m_g και μάζα νερού m_f , δηλαδή συνολική μάζα $m_k = m_g + m_f$. Η ενθαλπία στο σημείο κ είναι ίση με το άθροισμα της ενθαλπίας του ατμού h_g και της ενθαλπίας του νερού h_f , που αντιστοιχούν στο σημείο αυτό. Το ίδιο ισχύει και για την ενέργεια, οπότε:

$$h_{\kappa} m_{\kappa} = h_{\alpha} m_{\alpha} + h_{f} m_{f}$$
 (5.1a)

όπου τα h_α και h_f δίνονται από τους πίνακες ατμού.

Επίσης η διαφορά των ενθαλπιών των σημείων δ και ε του σχήματος 5.4α είναι:

$$h_{fg} = h_g - h_f \tag{5.1\beta}$$

Από την εξίσωση (5.1α), μετά από ορισμένες πράξεις, έχουμε ότι η ενθαλπία στο σημείο κ και γενικά σε κάθε σημείο στην περιοχή του υγρού ατμού είναι:

$$h = h_f + xh_{fg} \tag{5.2}$$

$$\dot{\eta} \quad h = h_{a} - (1 - x) h_{fa} \tag{5.2a}$$

Οι εξισώσεις (5.2) και (5.2α) εφαρμόζονται και για τον <mark>ειδικό όγκο υ</mark> και για την <mark>ειδική εσωτερική ενέργεια υ</mark> του υγρού ατμού. Ισχύουν δηλαδή ανάλογα οι σχέσεις:

$$U = U_f + XU_{fg}$$
 $\dot{\eta}$ $U = U_g - (1 - X)U_{fg}$ (5.3)

όπου
$$U_{fg} = U_g - U_f$$

$$u = u_f + x u_{fg}$$
 $\dot{\eta}$ $u = u_g - (1 - x) u_{fg}$ (5.4)

όπου $u_{fg} = u_g - u_f$

Σχ. 5.2 Θέρμανση νερού υπό σταθερή πίεση 1 at

Ιδιότητες καθαρής ουσίας (21α/24)

Παράδειγμα 3

Να υπολογιστεί η ενθαλπία, ο ειδικός όγκος και η ειδική εσωτερική ενέργεια ατμού πίεσης p = 7 bar και βαθμού ξηρότητας 50%.

Λύση

Η ενθαλπία μπορεί να υπολογιστεί από την εξίσωση (5.2):

$$h = h_f + x h_{fq} \tag{1}$$

Από τον Π ίνακα Γ 2 έχουμε ότι για p = 7 bar

οπότε από την εξίσωση (1): h = 697,1 + $(0,5 \times 2064,9)$ = 1729,6 kJ/kg

$$U_{fq} = U_q - U_f \tag{2}$$

αλλά, από τον Πίνακα Γ2 για την ίδια πίεση παίρνουμε ότι:

Αντικαθιστώντας στην εξίσωση (2) έχουμε:

$$U_{fg} = 0.27268 - 0.00111 = 0.27157 \text{ m}^3/\text{kg}$$

Ιδιότητες καθαρής ουσίας (21β/24)

Για τον ειδικό όγκο έχουμε όμοια ότι, εξίσωση (5.3):

$$U = U_f + XU_{fg} \tag{3}$$

οπότε $u = 0.00111 + (0.5 \times 0.27157) = 0.13690 \text{ m}^3/\text{kg}$

Με τον ίδιο τρόπο, εξίσωση (5.4), υπολογίζουμε την εσωτερική ενέργεια του ατμού, γιατί:

$$u = u_f + x u_{fq} \tag{4}$$

αλλά από τον Πίνακα Γ2 έχουμε ότι:

$$u_{fg} = u_g - u_f = 2571,1 = 696,3 = 1874,8 \text{ kJ/kg},$$

οπότε από την εξίσωση (4),

$$u = 696,3 + (0,5 \times 1874,8) = 1633,7 \text{ kJ/kg}$$

$$h = u + pv$$
 $u = h - pv$ $u = 1729,6 - \left(\frac{7 \times 10^5}{1000} \times 0,13690\right) = 1633,8 \text{ kJ/kg}$

$$h = 1729,6 \text{ kJ/kg}$$
 $\kappa \alpha i$ $u = 0,13690 \text{ m}^3/\text{kg}$

Ιδιότητες καθαρής ουσίας (21γ/24)

ΠΙΝΑΚΑΣ Γ2. Ἰδιότητες κεκορεσμένου νεροῦ καί κεκορεσμένου ἀτμοῦ. Πίνακας πιέσεως.

'Απολ. Πίεση bar	Θερμ. °C	Κεκ.νερό Κεκ.άτμός					*	έργεια, kJ/kg Κεκ.ἀτμός				
р	t	v_{f}	vg	h _f	h fg	h g	uf	u _g	s _f .	s fg	S g	
6·00 1 7·00 1 8·00 1	51·85 58·84 64·96 70·41 75·36	0.001 092 8 0.001 100 9 0.001 108 2 0.601 +15 0 0.001 121 3	0·374 66 0·315 46 0·272 68 0·240-26 0·214 82	640·1 670·4 697·1 720·9 742·6	2107·4 2085·0 2064·9 2046-5 2029·5		639·6 -659·7 -696·3 720·0 741·6	2560-2 2566-2 2571-1 2575-3 2578-8	1·8604 1·9308 1·9918 2·0457 2·0941	4.8267	6·8192 6·7575 6·7052 6·6596 6·6192	

Ιδιότητες καθαρής ουσίας (22α/24)

Παράδειγμα 1

Ένας λέβητας που διαθέτει υπερθερμαντήρα παράγει ατμό πίεσης $1.5 \times 10^6 \, \text{N/m}^2$

με βαθμό υπερθέρμανσης 76.7°C Να βρεθεί η ενθαλπία, ο ειδικός όγκος και η εσωτερική ενέργεια του ατμού.

Λύση

Όταν λέμε «βαθμό υπερθέρμανσης: 76.7 °C η θερμοκρασία του ατμού είναι κατά 76,7 °C πάνω από τη θερμοκρασία του κεκορεσμένου ατμού στην αντίστοιχη πίεση.

Από τον Πίνακα Γ3 βλέπουμε ότι για p=15 bar η θερμοκρασία του κεκορεσμένου ατμού (x=100%) είναι $t_g=198,3$ °C. Συνεπώς η θερμοκρασία t του παραγόμενου υπέρθερμου ατμού είναι:

$$t = 198,3 + 76,7 = 275$$
°C

Η θερμοκρασία όμως αυτή δεν περιέχεται στον Πίνακα Γ3, άρα θα πρέπει να πραγματοποιηθεί παρεμβολή, ως εξής:___ _ _ _ _

Γραμμική παρεμβολή..

Συνεπώς σε p = 15 bar και t = 275°C, θα έχουμε:

h =
$$2923.5 + \frac{275 - 250}{300 - 250} \times (3038.9 - 2923.5) = 2981.2 \text{ kJ/kg}$$

Ιδιότητες καθαρής ουσίας (22β/24)

Παράδειγμα 1

Ένας λέβητας που διαθέτει υπερθερμαντήρα παράγει ατμό πίεσης $1.5 \times 10^6 \, \text{N/m}^2$

με βαθμό υπερθέρμανσης _{76,7 °C} Να βρεθεί η ενθαλπία, ο ειδικός όγκος και η εσωτερική ενέργεια του ατμού.

Όμοια, για τον ειδικό όγκο:

σε p = 15 bar, t = 250°C έχουμε
$$v = 0,15199 \text{ m}^3/\text{kg}$$

και για p = 15 bar και t = 275°C έχουμε ότι:

Γραμμική παρεμβολή...

$$u = 0.15199 + \frac{275 - 250}{300 - 250} \times (0.16970 - 0.15199) = 0.16085 \text{ m}^3/\text{kg}$$

Η <mark>ειδική εσωτερική ενέργεια</mark> υπολογίζεται ως:

$$u = h - pv = 2981, 2 - \left(\frac{1,5 \times 10^6}{1000} \times 0,16085\right) = 2739,9 \text{ kJ/kg}$$

Ιδιότητες καθαρής ουσίας (22γ/24)

ΠΙΝΑΚΑΣ Γ3. Τδιότητες επέρθερμου ατμοῦ

[Είδικός ὄγκος, υ, m³/kg - 'Ενθαλπία, h, kJ/kg - 'Εντροπία, s, kJ/kgK]

Ιδιότητες καθαρής ουσίας (23/24)

Εσωτερική ενέργεια, U

Η εσωτερική ενέργεια U [kJ] μίας καθαρής ουσίας είναι η συνολική ενέργεια που περιέχεται σε μία ποσότητα μάζας της ουσίας και αφορά την ενέργεια χημικών δεσμών των μορίων της καθαρής ουσίας, την κινητική ενέργεια μεταφοράς, την ενέργεια δόνησης των ατόμων μέσα στο μόριο, την ενέργεια περιστροφής των μορίων, την ενέργεια κίνησης και περιστροφής (spin) των ηλεκτρονίων, ακόμη και η ενέργεια που συγκρατεί τα σωματίδια του πυρήνα των ατόμων.

η σύσταση εξ ορισμού δεν μεταβάλλεται και ούτε (τα μόρια της δεν συμμετέχουν σε χημικές αντιδράσεις, πολύ περισσότερο τα άτομα που αποτελούν τα μόρια της δεν μεταστοιχειώνονται (δεν συμβαίνουν πυρηνικές αντιδράσεις, τα σχετικά ποσά εσωτερικής ενέργειας δεν μεταβάλλονται με τη θερμοκρασία και την πίεση, δηλαδή με την κατάσταση της ουσίας.

Οι τιμές εσωτερικής ενέργειας των Πινάκων θερμοδυναμικών ιδιοτήτων (όπως και οι τιμές ενθαλπίας και εντροπίας) είναι σχετικές τιμές μεταξύ της κατάστασης που αναφέρει ο Πίνακας και της κατάστασης αναφοράς. Η κατάσταση αναφοράς για τις τιμές των Πινάκων αυτών είναι η κατάσταση του κορεσμένου νερού σε θερμοκρασία 0,01 °C, όπου η εσωτερική ενέργεια και η εντροπία παίρνουν την τιμή μηδέν.

Η εσωτερική ενέργεια είναι μία εκτατική ιδιότητα (δηλαδή λαμβάνει τιμές ανάλογες της μάζας της ουσίας που βρίσκεται σε μία κατάσταση), οπότε και για την εσωτερική ενέργεια ορίζεται η ειδική εσωτερική ενέργεια u (kJ/kg) η οποία αναφέρεται στην εσωτερική ενέργεια που περιέχεται σε μάζα 1 kg της καθαρής ουσίας στην ίδια κατάσταση (σε αναλογία με τον όγκο V [m³] και τον ειδικό όγκο v [m³/kg]).

Ιδιότητες καθαρής ουσίας (24/24)

Έργο, W & Ενθαλπία, Η

Όταν μία ουσία αυξάνει τον όγκο της (διαστέλλεται) κατά V [m³], υπό πίεση P [kPa] τότε παράγει έργο:

$$Wh = P * V$$

$$[m^3 * kPa = m^3 * kNt/m^2 = kNt * m = kJ]$$

η σε όρους ειδικών μεγεθών:

$$wb = P * v$$

$$[m^3/kg *kPa = m^3 * kNt/kg*m^2 = kNt * m/kg = kJ/kg]$$

Αντίστοιχα όταν συστέλλεται, καταναλώνει (απορροφά) έργο Wb. Παράδειγμα, ένα έμβολο σε ένα κύλινδρο, που περιέχει μία ουσία. Όταν η ουσία διαστέλλεται, το έμβολο κινείται προς τα έξω και μας δίνει έργο. Το έργο αυτό που έχει να κάνει με τη μεταβολή του όγκου μίας ουσίας ονομάζεται έργο ογκομεταβολής Wb [kJ] και όταν έχει να κάνει με τη μεταβολή του όγκου 1 kg της ουσίας ονομάζεται ειδικό έργο ογκομεταβολής wb [kJ/kg].

Όταν ένα ποσό ενέργειας Ε1 μεταφέρεται προς μία ουσία (η ενέργεια μεταφέρεται είτε με τη μορφή θερμότητας, είτε με τη μορφή έργου) και η ουσία μεταβαίνει (εξαιτίας αυτής της μεταφοράς) από την κατάσταση 1 στην κατάσταση 2, τότε:

αν ο όγκος της ουσίας δεν μεταβάλλεται (π.χ. αν η ουσία βρίσκεται μέσα σε ένα άκαμπτο στεγανό δοχείο), τότε όλη η ενέργεια μεταφράζεται σε αύξηση της εσωτερικής ενέργειας U της ουσίας (Ε1 = ΔU)

αν όμως ο όγκος της ουσίας μεταβάλλεται (π.χ. όταν αυτή βρίσκεται σε έναν στεγανό κύλινδρο με κινούμενο έμβολο), τότε για να μεταβεί η ουσία από την κατάσταση 1 στην κατάσταση 2, και να μεταβληθεί η εσωτερικής της ενέργεια κατά ΔU , τότε το ποσό της ενέργειας που πρέπει να μεταφερθεί προς της ουσία θα πρέπει να είναι μεγαλύτερο από το E1 κατά το έργο ογκομεταβολής $P^*\Delta V$. Έστω E2 αυτό το ποσό της ενέργειας για το οποίο ισχύει E2 = E1 + $P\Delta V$ = ΔU + $P\Delta V$. Με τον τρόπο αυτό ορίζεται το θερμοδυναμικό μέγεθος της ενθαλπίας ΔH [kJ], ως ΔH = ΔU + $P\Delta V$ και αν 1 είναι η κατάσταση αναφοράς:

$$H = U + PV$$

[kJ]

η οποία ως άθροισμα δύο εκτατικών μεγεθών είναι επίσης εκτατικό μέγεθος, οπότε ορίζεται και η ειδική ενθαλπία h [kJ/kg]. Δηλαδή, η ενθαλπία είναι η εσωτερική ενέργεια μίας ουσίας σε μία κατάσταση συν το έργο ογκομεταβολής που αντάλλαξε η ουσία με το περιβάλλον της κατά τη μετάβαση της ουσίας από την κατάσταση αναφοράς στην κατάσταση αυτή, όταν η μετάβαση αυτή συνοδεύεται από μεταβολή του όγκου της ουσίας.