第七章 参数估计

第四节 区间估计 第五节 正态总体均值与方差的区间估计

- 置信区间
- 正态总体均值的区间估计(单个总体)
- 正态总体方差的区间估计(单个总体)

正态总体的区间估计

设总体 $X \sim N(\mu, \sigma^2)$

 X_1, X_2, \dots, X_n 是总体X的一个样本

 x_1, x_2, \dots, x_n 为样本值

- 66 1. σ^2 已知时, σ^2 可知时, σ^2 可知时,

 - 3. 对 σ^2 的区间估计

$$\frac{\overline{X} - \mu}{\sigma / n} \backsim N(0,1)$$

$$\frac{\overline{X} - \mu}{S / n} \backsim t(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} \backsim \chi^2(n-1)$$

一. 置信区间

设:总体X的分布含有未知参数 θ X_1, X_2, \dots, X_n 是总体X的一个样本 $\alpha(0 < \alpha < 1)$ 为事先给定的正数

$$P\{\underline{\theta} < \theta < \overline{\theta}\} = 1 - \alpha$$

称: 1-α —— 置信度

多次抽样而得到的众多 区间中, 含 θ 真值的区间 出现的频率近似为 $1-\alpha$

 $\underline{\theta}$, $\overline{\theta}$ 置信下限, 置信上限

 $(\underline{\theta}, \overline{\theta})$ —— θ 的置信度为 $1-\alpha$ 的置信区间 随机区间,由样本值完全确定

二. 正态总体均值的区间估计

1. 单个正态总体 $N(\mu,\sigma^2)$ 情形

问题:设 X_1, X_2, \ldots, X_n 是取自 $N(\mu, \sigma^2)$ 的样本,

求: 参数 μ 的置信度为 $1-\alpha$ 的置信区间.

解: (1). 当方差 σ^2 已知的情形

选 μ 的点估计(无偏估计)为 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

统计量:
$$U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1),$$

对于给定的置信度 $1-\alpha$,确定一个区间 $(\underline{\mu},\overline{\mu})$

使:
$$P(\underline{\mu} < \mu < \overline{\mu}) = 1 - \alpha$$

 $1.\sigma^2$ 已知时, 对 μ 的区间估计

考虑
$$\frac{\bar{X}-\mu}{\sigma/_{-}}$$
 $\backsim N(0,1)$

含 μ 除µ以外不含其它未知参数 分布确定

由分位点定义
$$P\left\{\left|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right| < ?\right\} = 1-\alpha$$

$$P\left\{-z_{\frac{\alpha}{2}} < \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} < z_{\frac{\alpha}{2}}\right\} = 1-\alpha$$

$$P\left\{\bar{X} - \frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right\} = 1 - \alpha$$

: μ 的置信度为 1-α 的置信区间为

$$\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \quad \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right) \quad 简记为 \left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right)$$

已为
$$\left(ar{X} \pm rac{\sigma}{\sqrt{n}} z_{rac{lpha}{2}}
ight)$$

例1 在总体 $X \sim N(\mu,1)$ 中抽取一容量为100的样本,

算得样本均值 $\bar{x}=8$, 求 μ 的置信度为0.95的置信区间.

$$egin{aligned} R : \sigma^2 = 1 & 已知 & 选择: & U = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N \ (0,1), \ P\{\left|rac{ar{X} - \mu}{\sigma/\sqrt{n}}
ight| < z_{lpha/2}\} = 1 - lpha \end{aligned}$$

$$P\{\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\} = 1 - \alpha$$

$$\mu$$
的置信区间为 $\left(\bar{X}\pm\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right)$

$$\chi$$
 $\alpha = 0.05$, $z_{\alpha} = z_{0.025} = 1.96$ $\bar{x} = 8$, $n = 100$, $\sigma = 1$.

算得μ的置信区间为(7.806, 8.196).

例2.某实验室测量铝的比重 16 次,得平均值 x = 2.705设总体 $X \sim N(\mu, 0.029^2)$ 求: μ 的 95% 的置信区间.

解 因
$$\sigma^2$$
已知,故选择: $U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$P\{\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}\} = 1 - \alpha$$

$$P\{\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\} = 1 - \alpha$$
又 $\alpha = 0.05$, $z_{\alpha} = z_{0.025} = 1.96$

$$\mu$$
的置信区间为 $\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha}\right)$
 $\bar{x} = 2.705$ $n = 16$, $\sigma = 0.029$
得: $\frac{\sigma}{\sqrt{n}} z_{\alpha/2} = \frac{0.029}{\sqrt{16}} \times 1.96 = 0.014$

$$\mu$$
的置信区间为 $\left(\bar{X}\pm\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right)$ $\bar{x}=2.705$ $n=16$ 0.029

置信区间为:

$$(2.705 - 0.014, 2.705 + 0.014) = (2.691, 2.719)$$

2. σ^2 未知时,对 μ 的区间估计 样本方差是 σ^2 的无偏估计

考虑 $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$ 故用 S 法代替 σ^2 得 由分位点定义: $P\left\{\frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{\frac{\alpha}{2}}(n-1)\right\} = 1 - \alpha$ $P\left\{-t_{\frac{\alpha}{2}}(n-1) < \frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{\frac{\alpha}{2}}(n-1)\right\} = 1 - \alpha$ $P\left\{\bar{X} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1) < \mu < \bar{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right\} = 1 - \alpha$ 故用S 法代替 σ^2 得统计量

$$\therefore \mu$$
 的置信度为 $1-\alpha$ 的置信区间 $\left(\bar{X}\pm \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right)$

例3. 确定某种溶液的溶剂含量,现任取4个样品,测 得样本均值为 $\bar{x} = 8.34$ s = 0.03现溶液中溶剂含量近似服从正态分布 $N(\mu,\sigma^2)$ 求: µ 的置信度为 95% 的置信区间

 $∴ 1-\alpha = 95\%$ 故 $\alpha = 0.05$,

查 t 分布表得: $t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(3) = 3.1824$

从而 μ 的95%的置信区间为: (8.2923, 8.3877)

三. 正态总体方差的区间估计

单个正态总体 $N(\mu,\sigma^2)$ 的情形

问题: 设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均未知。

 $X_1, X_2, \cdots X_n$ 是总体 X 的一个样本,

给定置信度 $1-\alpha$ 求:方差 σ^2 的置信区间.

解: $: S^2 \neq \sigma^2$ 的无偏估计,且统计量:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

解:
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

由分位点定义:

$$P\{\chi_{1-\alpha/2}^{2}(n-1) \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{\alpha/2}^{2}(n-1)\} = 1-\alpha$$

于是所求 σ^2 的置信度为 $1-\alpha$ 置信区间为:

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2(n-1)}\right)$$

标准差 σ 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{\sqrt{n-1}\cdot s}{\sqrt{\chi_{\frac{\alpha}{2}}^{2}(n-1)}}, \frac{\sqrt{n-1}\cdot s}{\sqrt{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}}\right)$$

一自动车床加工的零件长度 $X(cm) \sim N(\mu, \sigma^2)$

现从加工后的零件中随机抽取4个,测得长度

12.6 13.4 12.8

求 1)样本方差 s^2 . 2) σ^2 的置信度为0.95的置信区间.

解
$$\bar{x} = \frac{1}{4} \sum_{i=1}^{4} x_i = 13$$
 $s^2 = \frac{1}{4-1} \sum_{i=1}^{4} (x_i - \bar{x})^2 = \frac{0.4}{3}$

统计量:
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\{\chi_{1-\alpha/2}^2(n-1) \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{\alpha/2}^2(n-1)\} = 1-\alpha$$

统计量:
$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$

$$P\{\chi_{1-\alpha/2}^{2}(n-1) \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{\alpha/2}^{2}(n-1)\} = 1-\alpha$$

$$\sigma^{2}$$
 的置信区间为
$$\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)$$

一自动车床加工的零件长度X(cm) $\backsim N(\mu,\sigma^2)$

现从加工后的零件中随机抽取4个,测得长度

12.6 13.4 12.8

求 1)样本方差 s^2 . 2) σ^2 的置信度为0.95的置信区间.

$$f$$
 σ^2 的置信区间为 $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right)$

$$X \alpha = 0.05, \chi_{\frac{\alpha}{2}}^{2}(n-1) = \chi_{0.025}^{2}(3) = 9.348$$

$$\chi_{1-\frac{\alpha}{2}}^{2}(n-1)=\chi_{0.975}^{2}(3)=0.216$$

算得 σ^2 的置信区间为(0.04, 1.85).

小结

总体
$$X \sim F(x,\theta)$$
, $X_1 X_2, \dots, X_n \atop x_1 x_2, \dots, x_n$ 对 θ 进行估计

★ 点估计

统计量
$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n) \rightarrow \theta$$
估计量

- 1)矩估计法: 求解: $\mu_i = A_i$, $i = 1, 2, \dots, k$
- *2)极大似然估计法: 求解: $L(\hat{\theta}) = \max_{\theta \in H} L(\theta)$

估计量的 优良性

1)无偏性:
$$E(\hat{\theta}) = \theta$$

2)有效性: $D(\hat{\theta}_1) < D(\hat{\theta}_2)$

$$P(\underline{\theta} < \theta < \overline{\theta}) = 1 - \alpha$$

 $(\underline{\theta}, \overline{\theta})$ 是置信度为 $1-\alpha$ 的置信区间

★区间估计

 $X \sim N(\mu, \sigma^2)$,对 μ, σ^2 进行区间估计

- 1) 求 μ 的置信区间 σ^2 为已知
- 2)求 μ 的置信区间 σ^2 为未知
- 3)求 σ^2 的置信区间

小结

$X \sim N(\mu, \sigma^2)$, 对 μ, σ^2 进行区间估计置信度 $1-\alpha$

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	J, $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$	$\bigstar (\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$
2)求 μ 的置信区间 σ^2 为未知	$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$\bigstar (\overline{X} \pm \frac{s}{\sqrt{n}} t_{\alpha/2} (n-1))$
3)求 σ^2 的置信区门	$\exists \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$

