Introduction to Databases

Lecture 7 – Graph databases: Neo4j

Gianluca Quercini

gianluca.quercini@centralesupelec.fr

Master DSBA 2020 - 2021

What you will learn

In this lecture you will learn:

- What a graph database is.
- Why relational and aggregate-based NoSQL databases are not a good choice to represent large graphs.
- The basic concepts of Neo4j.

Neo4j query language: Cypher.

An example: Wikipedia

▲ Representing a graph in a relational database

• Impedance mismatch. Graph represented as a set of tables.

Page				
id	title	lang	type	
0	Paris	en	article	
1	Musée Rodin	en	article	
2	Eiffel Tower	en	article	
		•	•	
50	Tour Eiffel	fr	article	
	•			
	•			
		•	•	
99	Capitals in Europe	en	category	
	•		•	

Link						
src	dst	type				
0	1	link				
0	2	link				
0	99	belongsTo				
1	0	link				
2	0	link				
•	•					
•	•					
2	50	crosslink				

▲ Graph traversal in SQL

- n: number of pages.
- Indexes (B-trees) on Page.id, Page.title, Page.lang, Link.src.

Get the articles that have a link from Paris

```
SELECT p1.title
FROM Page p1 JOIN Link 1 ON p1.id = 1.dst
   JOIN Page p2 ON p2.id = 1.src
WHERE p2.title = 'Paris' AND p2.lang = 'en'
```

- Two join operations: Page p1 ⋈ (Link 1 ⋈ Page p2)
 - Link $1 \bowtie Page p2 = Temp with \kappa rows.$
- Cost of WHERE: O(log n).
- Cost of Link 1 \bowtie Page p2: $O(\log n) + \kappa$.
- Cost of Page $p \bowtie Temp: \kappa \cdot O(\log n)$.
- The cost of the query depends on the size of the whole graph.
 - Even if the operation is local to a node.

▲ Graph traversal in SQL

Articles that have a link from the articles that have a link from Paris

```
SELECT p2.title
FROM Page p1 JOIN Link l1
ON p1.id = l.src
JOIN Link l2
ON 12.src = l1.dst
JOIN Page p2
ON 12.dst = p2.id
WHERE p1.title = 'Paris' AND p1.lang = 'en'
AND 12.dst <> p1.id
```

Graph databases Vs Relational databases

▲ Graphs in aggregate NoSQL databases

```
nodeld: 0.
                            nodeld: 1.
title : "Paris".
                            title: "Musée Rodin".
lang: "en".
                            land: "en".
type : "article",
                            type : "article",
linksTo: [
                            linksTo: [
        edgeld: 0,
        src : 0,
        dst : 1,
        type: "link"
                            nodeld: 2.
                            title: "Eiffel Tower".
        edgeld: 1,
                            lang: "en",
                            type : "article",
        src : 0
        dst : 2.
                            linksTo: [
              : "link"
        type
```

▲ Graphs in relational and NoSQL databases

In relational and aggregate NoSQL databases relationships are not explicitly represented. This is why they're inefficient on graph traversal operations.

▲ Neo4j

- Neo4j is the most used graph database today.
- Neo4j uses the labelled property graph model to represent a graph.
- Neo4j provides a query language called Cypher.
 - declarative language (like SQL).
 - not standard (unlike SQL).
- Neo4j supports a standard language: SPARQL
 - Used in the Semantic Web to query RDF data.
 - Syntax similar to SQL.
 - Complicated syntax.

▲ The labelled property graph model

★ Storage in Neo4j

Node record

inUse	nextRelld	nextPropId	labels	extra	15 B	
1 B	4 B	4 B	5 B	1 B		

Relationship record

inUse	srcNodeld	trgNodeld	relType	srcPrevRelId	srcNextRelId	trgPrevRelId	trgNextRelId	nextPropld	flag	34 B
1 B	4 B	4 B	4 B	4 B	4 B	4 B	4 B	4 B	1 B	

★ Storage in Neo4j

▲ Patterns in Cypher

Idea of Cypher: query by drawing patterns.

(a)-[:redirectsTo]->(b)

(a)-[:redirectsTo]->(b)-[:link]->(c)-[:link]->(a)

Binding a pattern to specific nodes and links

(a:Redirect)-[:redirectsTo]->(b:Article {title:'Paris', lang:'en'})

Introduction to Databases

Queries

```
MATCH (n:Article {title:"Paris"})
RETURN n
```

```
MATCH (n:Article)
WHERE n.title="Paris"
RETURN n
```

```
MATCH (:Article {title:"Paris", lang:"en"})-[:link]->(m:Article)
RETURN m.title
```

```
MATCH (n:Article)
RETURN DISTINCT n.title
```

```
MATCH (n:Article {title:"Paris", lang:"en"})-[r:link]->(m:Article)
RETURN *
```

▲ Aggregating functions in Cypher

```
MATCH (n:Article {title:"Paris", lang:"en"})-[:belongsTo]->(m:Category)
RETURN n.title, COUNT(m) AS nbCategories
```

```
MATCH (n:Article)-[r:link]->(m:Article)
RETURN n.title, COUNT(r) AS nbLinks
ORDER BY nbLinks DESC
```

```
MATCH (n:Article)-[r:link]->(m:Article)
WITH n.title AS title, COUNT(r) AS nbLinks
RETURN AVG(nbLinks)
```

★ Transactions

- Since its inception, Neo4j has supported ACID transactions.
- It was an exception in the NoSQL world.
- The primary goal of a graph database was not data distribution.
- Today other NoSQL databases acknowledge the usefulness of ACID transactions (even in a distributed context).