Projet 7 : Implémentez un modèle de scoring

Lancelot Leclerco

5 mai 2022

Sommaire

- 1. Introduction
- 2. Analyse et traitement des données
- 3. Optimisation du modèle

Introduction

Introduction

Problématique

 L'entreprise Prêt à dépenser est une société financière qui propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt

- Objectifs
 - mettre en œuvre un outil de "scoring crédit" pour calculer la probabilité qu'un client rembourse son crédit
 - classifier la demande en crédit accordé ou refusé
 - développer un algorithme de classification en s'appuyant sur des sources de données variées (données comportementales, données provenant d'autres institutions financières, etc.)
 - Développer un dashboard interactif
 - expliquer de facon la plus transparente possible les décisions d'octroi de crédit.
 - permettre aux clients de disposer de leurs informations personnelles et de les explorer facilement

Données

 Principal fichier utilisé application_{train||test}.csv

Analyse et traitement des données

- Certaines colonnes comportent un grand nombre de données manquantes
 - Nous utiliserons des modèles résistants à ces données manquantes comme XGBoost et LightGBM
- Encodage des variables catégorielles
 - par LabelEncoder pour les variables ayant 2 catégories
 - par pandas.get_dummies() pour les varibles ayant plus de 2 catégories

- L'age des clients semble avoir un impact sur le fait que le client fasse défaut ou non

- Les données EXT_SOURCE semblent aussi avoir une certaines corrélation avec le fait que le client fasse défaut

- Comme on a pu le voir les données sont déséqulibrées du fait que les clients faisant défauts sont peu nombreux par rapport à ceux ne faisant pas défaut
- Classer tous les clients comme ne faisant pas défaut permettrait d'avoir un score honnorable avec seulement 8% d'erreurs
- Nous avons donc utilisé la librairie imblearn qui permet de rééchantillonner notre jeu de données

Analyse et traitement des données Rééchantillonnage du jeux de données

- Pour essayer les différentes méthodes de rééchantillonnage nous avons réaliser une régression logistique sur les données rééchantiollonnées avec les différents outils
 - RandomUnderSampler et TomekLinks : méthodes de sous-échantillonnages
 - on conserve le même nombre de clients ne faisant pas défaut que de client faisant défaut
 - RandomUnderSampler choisi ces dernier au hasard
 - TomekLinks conserve un certains nombre de clients par groupe de clients similaire (repose sur les KNN)
 - RandomOverSampler et SMOTE : méthodes de sur-échantillonnages
 - on multiplie le nombre de clients faisant défaut
 - RandomOverSampler dédouble des clients faisant défaut au hasard
 - SMOTE créé de nouveaux clients à partir de groupe de clients similaires
 - SMOTEENN et SMOTETomek sont des méthodes combinant le sur- et le sous-échantillonnage
- Les scores AUC semblent plutôt bon (>0,7)

Analyse et traitement des données Rééchantillonnage du jeux de données

- Les 2 cas de droites ne sont pas intéressant car le premier classe tout les clients comme ne faisant pas défaut et le second classe 50/50

Analyse et traitement des données Création de variables polynomiales

- Afin d'améliorer les scores des modèles nous avons essayé de créer des variables polynomiales à partir des colonnes les plus corrélées avec la cible
- L'amélioration n'est pas pertinente nous n'avons donc pas conservé ces variables pour notre modèle final

Optimisation du modèle

Optimisation du modèle

Optimisation du modèle Courbe ROC

Optimisation du modèle Différentes métriques utilisées

Optimisation du modèle Métrique métier

- But

- Diminuer le nombre de faux négatifs (prédit 0, réel 1) afin d'éviter de manquer des clients qui pourraient potentiellement faire défaut
- → Améliorer le recall

- Outil

- Utilisation du F_{β} -score qui permet d'ajouter du poid respectivement au recall lorsque le facteur β est >1 ou à la precision lorsque le facteur β est <1
- Utilisation de β=2

