"VooDoll"

implementation of a manipulation technique by Sebastian Schmitz and Anton Frolov

Concept

- derived from the "Voodoo Doll" manipulation technique by Pierce, Stearns and Pausch*
- bimanual, ambidextrous
- raycasting for object selection
- scale, translation & rotation manipulatable

Selection

- point at target

Selection

- press and release button
 - → object is selected

- keep button pressed
 - → object is selected and scaling mode entered

Scaling

- <u>keep button pressed</u>
 - → larger head-hand distance scales up
 - \rightarrow non-isomorph
 - → release button to end scaling

Scaling

- <u>keep button pressed</u>

- → larger head-hand distance scales up
- \rightarrow non-isomorph
- → release button to end scaling

Translation & Rotation

- move doll and needle to change their relative position
- updated in real-time
- <u>click needle button to</u> <u>release needle</u>
- <u>click doll button to release</u> <u>both</u>

Comparative study

Situational comparison of subjective effectiveness between the developed technique and "GoGo"

Same environment

3 manipulation tasks

5 participants (3 male, 2 female; 4 VR users and 1 non-user)

Feedback collection through Google forms

Study observations

- "VooDoll" has a steep learning curve
- works equally well for left- and right-handed participants
- distinction between copies and originals sometimes challenging
- ludic qualities
- experimental tool exploration

References

 Pierce, Stearns and Pausch: Voodoo Dolls: Seamless Interaction at Multiple Scales in Virtual Environments.
Carnegie Mellon University, 1999.