ASSIGNMENT DATE	24 SEPTEMBER 2022
STUDENT NAME	PRIYADHARSHAN S
STUDENT REGISTER NUMBER	2019504564
MAXIMUM MARKS	2 MARKS

Assignment 2: Data Visualization and Pre-processing

```
In []: import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
```

2. Load the data set

```
In [ ]: df = pd.read_csv('Churn_Modelling.csv')
    df.head()
```

Out[]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is Active Member	Estim
														a
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	

3. Data Visualizations

3.1. Univariate Analysis

```
In [ ]: sns.kdeplot(x='CreditScore', data = df , hue = 'Exited')
plt.show()
```


3.2. Bi - Variate Analysis

```
In [ ]: density = df['Exited'].value_counts(normalize=True).reset_index()
    sns.barplot(data=density, x='index', y='Exited', );
    density
```

Out[]: index Exited

0 0 0.7963

1 1 0.2037


```
In [ ]: sns.catplot(x='Gender', y='Age', hue='Exited', data=df)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1695df8bdc0>

3.3. Multi - Variate Analysis

```
In [ ]: sns.pairplot(data=df[['CreditScore','Age','Tenure','Balance','EstimatedSalary','Exited']],hue='Exited')
```


4. Descriptive Statistics

:	NOW TAILIDE	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estima
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	
4	5	15737888	Mitchell	850	Spain	Female	43 \	2	125510.82	1	1	1	

In []: df.info()

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): Column Non-Null Count Dtype RowNumber 10000 non-null int64 10000 non-null int64 1 CustomerId 2 Surname 10000 non-null object 10000 non-null int64 CreditScore Geography 10000 non-null object 5 Gender 10000 non-null object 6 10000 non-null int64 Age 10000 non-null int64 Tenure 8 Balance 10000 non-null float64 NumOfProducts 10000 non-null int64 HasCrCard 10000 non-null int64 10 11 IsActiveMember 10000 non-null int64 12 EstimatedSalary 10000 non-null float64 13 Exited 10000 non-null int64 dtypes: float64(2), int64(9), object(3) memory usage: 1.1+ MB

<class 'pandas.core.frame.DataFrame'>

In []: df.describe()

Out[]:	RowNumber		CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedS
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.00
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.2
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.49
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.5
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.1
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.9
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.24
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.4

 \blacksquare

5. Handle the Missing values

```
In [ ]: df.isnull().sum()
Out[]: RowNumber
                           0
                           0
        CustomerId
                           0
        Surname
        CreditScore
                           0
        Geography
                           0
        Gender
                           0
                           0
        Age
                           0
        Tenure
        Balance
                           0
        NumOfProducts
                           0
        HasCrCard
        IsActiveMember
                           0
        EstimatedSalary
                           0
        Exited
                           0
        dtype: int64
```

The datset does not any missing values, So no need for null value handling!!!

6. Find the outliers and replace the outliers

```
In [ ]: sns.boxplot(x='CreditScore',data=df)
```


Out[]: <AxesSubplot:xlabel='CreditScore'>

7. Check for Categorical columns and perform encoding

```
In [ ]: from sklearn.compose import ColumnTransformer
    from sklearn.preprocessing import OneHotEncoder
    df['Geography'].unique()
    ct = ColumnTransformer([('oh', OneHotEncoder(), [4])], remainder="passthrough")
```

8. Split the data into dependent and independent variables.

```
In [ ]: x=df.iloc[:,0:12].values
x.shape
Out[ ]: (10000, 12)
In [ ]: x=df.iloc[:,0:12]
x.shape
x.head()
```

Out[]		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	0	1	15634602	Hargrave	619.0	France	Female	42	2	0.00	1	1	1
	1	2	15647311	Hill	608.0	Spain	Female	41	1	83807.86	1	0	1
	2	3	15619304	Onio	502.0	France	Female	42	8	159660.80	3	1	0
	3	4	15701354	Boni	699.0	France	Female	39	1	0.00	2	0	0
	4	5	15737888	Mitchell	850.0	Spain	Female	43	2	125510.82	1	1	1

```
In [ ]: y=df.iloc[:,12:14].values
        y.shape
Out[]: (10000, 2)
In [ ]: y=df.iloc[:,12:14]
        y.shape
        y.head()
Out[ ]:
            EstimatedSalary Exited
        0
                101348.88
                112542.58
        2
                113931.57
                 93826.63
        4
                 79084.10
                              0
In [ ]: x=ct.fit_transform(x)
In [ ]: print(x.shape)
        print(y.shape)
        (10000, 14)
        (10000, 2)
```

9. Scale the independent variables

```
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
x[:,8:12]=sc.fit_transform(x[:,8:12])
```

10. Split the data into training and testing

```
In [ ]: from sklearn.model_selection import train_test_split
        x train, x test, y train, y test = train test split(x,y,test size=0.25, random state=0)
In [ ]: print(x_train.shape)
         print(x test.shape)
        x_train
         (7500, 14)
         (2500, 14)
Out[]: array([[0.0, 1.0, 0.0, ..., 2.5270566192762067, 0, 0],
               [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
               [0.0, 0.0, 1.0, ..., 0.8077365626180174, 1, 1],
               [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
               [0.0, 0.0, 1.0, ..., 0.8077365626180174, 1, 1],
               [0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 0]], dtype=object)
In [ ]: print(y_train.shape)
        print(y_test.shape)
        y_test
         (7500, 2)
         (2500, 2)
```

Out[]:		EstimatedSalary	Exited
	9394	192852.67	0
	898	128702.10	1
	2398	75732.25	0
	5906	89368.59	0
	2343	135662.17	0
	•••		
	8764	86701.40	0
	4359	108398.63	0
	2041	84487.62	0
	1108	46522.68	0
	3332	72927.68	0

2500 rows × 2 columns