Solutions for Homework 2

1. Consider a bivariate linear regression model

$$Y_t = X'_t \beta^0 + \varepsilon_t, \quad t = 1, \dots, n,$$

where $X_t = (X_{0t}, X_{1t}) = (1, X_{1t})'$, and ε_t is a regression error. Let $\hat{\rho}$ denote the sample correlation between Y_t and X_1t ; namely,

$$\hat{\rho} = \frac{\sum_{t=1}^{n} x_{1t} y_t}{\sqrt{\sum_{t=1}^{n} x_{1t}^2 \sum_{t=1}^{n} y_t^2}},$$

where $y_t = Y_t - \bar{Y}$, $x_{1t} = X_{1t} - \bar{X}_1$, and \bar{Y} and \bar{X}_1 are the sample means of Y_t and X_1t . Show $R^2 = \hat{\rho}^2$.

ANSWER:

$$y_{t} = Y_{t} - \bar{Y} = \beta_{1}^{0} + X_{1t}\beta_{2}^{0} + \varepsilon_{t} - (\beta_{1}^{0} + \bar{X}_{1}\beta_{2}^{0}) = x_{1t}\beta_{2}^{0} + \varepsilon_{t}$$

$$\hat{\beta}_{2}^{0} = \arg\min\sum\left(y_{t} - x_{1t}\beta_{2}^{0}\right)^{2} = \sum_{t=1}^{n} x_{1t}y_{t} / \sum_{t=1}^{n} x_{1t}^{2}$$

$$R^{2} = \frac{\sum_{t=1}^{n} (\hat{Y}_{t} - \bar{Y})^{2}}{\sum_{t=1}^{n} (Y_{t} - \bar{Y})^{2}} = \frac{\sum_{t=1}^{n} \hat{y}_{t}^{2}}{\sum_{t=1}^{n} y_{t}^{2}} = \frac{\sum_{t=1}^{n} (x_{1t}\hat{\beta}_{2}^{0})^{2}}{\sum_{t=1}^{n} y_{t}^{2}} = \frac{(\hat{\beta}_{2}^{0})^{2} \sum_{t=1}^{n} x_{1t}^{2}}{\sum_{t=1}^{n} y_{t}^{2}} = \frac{\sum_{t=1}^{n} (x_{1t}y_{t})^{2}}{\sum_{t=1}^{n} y_{t}^{2}} = \hat{\rho}$$

This completes the proof.

2. Consider the following linear regression model

$$Y_t = X'_t \beta^0 + u_t, \quad t = 1, \dots, n,$$
 (1)

where

$$u_t = \sigma(X_t) \varepsilon_t$$

where X_t is a nonstochastic process, and $\sigma(X_t)$ is a positive function of X_t such that

$$\Omega = \begin{bmatrix} \sigma^2(X_1) & 0 & 0 & \cdots & 0 \\ 0 & \sigma^2(X_2) & 0 & \cdots & 0 \\ 0 & 0 & \sigma^2(X_3) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^2(X_n) \end{bmatrix} = \Omega^{\frac{1}{2}}\Omega^{\frac{1}{2}}.$$

with

$$\Omega^{\frac{1}{2}} = \begin{bmatrix}
 \sigma(X_1) & 0 & 0 & \cdots & 0 \\
 0 & \sigma(X_2) & 0 & \cdots & 0 \\
 0 & 0 & \sigma(X_3) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & \sigma(X_n)
\end{bmatrix}$$

Assume that ε_t is i.i.d. N(0,1). Then u_t is i.i.d. $N(0,\sigma^2(X_t))$. This differs from Assumption 3.5 of the classical linear regression analysis, because now u_t exhibits conditional heteroskedasticity.

Let $\hat{\beta}$ denote the OLS estimator for β^0 .

(a) Is $\hat{\beta}$ unbiased for β^0 ?

(b) Show that $\operatorname{var}\left(\hat{\beta}\right) = (X'X)^{-1}X'\Omega X(X'X)^{-1}$. Consider an alternative estimator

$$\tilde{\beta} = (X'\Omega X)^{-1} X'\Omega Y$$

$$= \left[\sum_{t=1}^{n} \sigma^{-2} (X_t) X_t X'_t \right]^{-1} \sum_{t=1}^{n} \sigma^{-2} (X_t) X_t Y$$

(c) Is $\tilde{\beta}$ unbiased for β^0 ? (d) Show that $\operatorname{var}\left(\tilde{\beta}\right) = (X'\Omega X)^{-1}$. (e) Is $\operatorname{var}\left(\hat{\beta}\right) - \operatorname{var}\left(\tilde{\beta}\right)$ negative semi-definite (n.s.d)? Which estimator, $\hat{\beta}$ or $\tilde{\beta}$, is more efficient? (f) Is $\tilde{\beta}$ the Linear Best Unbiased Estimator (BLUE) for β^0 ? [Hint: There are several approaches to this question. A simple one is to consider the transformed model

$$Y_t^* = X_t^{*\prime} \beta^0 + \varepsilon_t, \quad t = 1, \cdots, n, \tag{2}$$

where $Y_t^* = Y_t/\sigma(X_t)$, $X_t^* = X_t/\sigma(X_t)$. This model is obtained from model (1) after dividing by $\sigma(X_t)$. In matrix notation, model (2) can be written as

$$Y^* = X^{*'}\beta^0 + \varepsilon,$$

where the $n \times 1$ vector $Y^* = \Omega^{-\frac{1}{2}}Y$ and the $n \times k$ matrix $X^* = \Omega^{-\frac{1}{2}}X$.

- (g) Construct two test statistics for the null hypothesis of interest $H_0: \beta_2^{0} = 0$. One test is based on $\hat{\beta}$, and the other test is based on $\tilde{\beta}$. What are the finite sample distributions of your test statistics under H_0 ? Can you tell which test is better?
- (h) Construct two test statistics for the null hypothesis of interest $H_0: R\beta^0 = r$, where R is a $J \times k$ matrix with J > 0. One test is based on $\hat{\beta}$, the other test is based on $\tilde{\beta}$. What are the finite sample distributions of your test statistics under H_0 ?

ANSWER: (a)

$$E[\hat{\beta}] = (X'X)^{-1}X'E[X'\beta^0 + u | X]$$

= $(X'X)^{-1}X'X\beta^0 + 0$
= β^0

thus, $\hat{\beta}$ is unbiased.

(b)

$$\begin{split} Var\left(\hat{\beta}\right) &= E[(\hat{\beta} - \beta^0)(\hat{\beta} - \beta^0)' \, | X] \\ &= E[(X'X)^{-1} X' u u' X (X'X)^{-1} \, | X] \\ &= (X'X)^{-1} X' E[u u' \, | X] X (X'X)^{-1} \\ &= (X'X)^{-1} X' \Omega X (X'X)^{-1} \end{split}$$

(c)

$$\begin{split} E[\tilde{\beta}] &= E[\left(X'\Omega^{-1}X\right)^{-1}X'\Omega^{-1}X'\beta^{0} + u\,|X] \\ &= \left(X'\Omega^{-1}X\right)^{-1}X'\Omega^{-1}X\beta^{0} + 0 \\ &= \beta^{0} \end{split}$$

thus, $\tilde{\beta}$ is unbiased. (d)

$$\begin{split} Var\left(\tilde{\beta}\right) &= E[(\tilde{\beta} - \beta^{0})(\tilde{\beta} - \beta^{0})' \, | X] \\ &= E[\left(X'\Omega^{-1}X\right)^{-1} X'\Omega^{-1} u u'\Omega^{-1} X \left(X'\Omega^{-1}X\right)^{-1} | X] \\ &= \left(X'\Omega^{-1}X\right)^{-1} X'\Omega^{-1} E[u u' \, | X]\Omega^{-1} X \left(X'\Omega^{-1}X\right)^{-1} \\ &= \left(X'\Omega^{-1}X\right)^{-1} \end{split}$$

(e) Let $c = \Omega^{-\frac{1}{2}} X (X'X)^{-1}$

$$\begin{aligned} Var\left(\hat{\beta}\right) - Var\left(\tilde{\beta}\right) &= \left(X'X\right)^{-1} X' \Omega X \left(X'X\right)^{-1} - \left(X'\Omega^{-1}X\right)^{-1} \\ &= c'c - c'\Omega^{-\frac{1}{2}} X \left(X'\Omega^{-1}X\right)^{-1} X' \Omega^{-\frac{1}{2}} c \\ &= c'\left(I - \Omega^{-\frac{1}{2}} X \left(X'\Omega^{-1}X\right)^{-1} X' \Omega^{-\frac{1}{2}}\right) c \end{aligned}$$

It is easy to proof that $I - \Omega^{-\frac{1}{2}} X (X' \Omega^{-1} X)^{-1} X' \Omega^{-\frac{1}{2}}$ is an idempotent matrix. So $Var(\hat{\beta}) - Var(\tilde{\beta})$ is p.s.d. and $\tilde{\beta}$ is more efficient.

(f) For model

$$Y^* = X^* \beta^0 + \varepsilon$$

 $\hat{\beta}^*$ is BLUE. And we have

$$\hat{\beta}^* = (X^{*'}X^*)^{-1}X^{*'}Y^* = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y = \tilde{\beta}$$

So, $\tilde{\beta}$ is also BLUE.

(g) we have proved that

$$\begin{split} \hat{\beta} &\sim N\left(\beta^0, (X'X)^{-1}X'\Omega X(X'X)^{-1}\right) \\ \tilde{\beta} &\sim N\left(\beta^0, (X'\Omega X)^{-1}\right) \end{split}$$

Define $R = (0, 0, 1, 0, \dots, 0)$, then

$$H_0: R\beta^0 = 0$$

If Ω is known, then

$$\frac{R\hat{\beta} - r}{\sqrt{R(X'X)^{-1}X'\Omega X(X'X)^{-1}R'}} \sim N(0, 1)$$
$$\frac{R\tilde{\beta} - r}{\sqrt{R(X'\hat{\Omega}^{-1}X)^{-1}R'}} \sim N(0, 1)$$

If Ω is unknown, then

$$\begin{split} t_{\hat{\beta}} &= \frac{R\hat{\beta} - r}{\sqrt{R(X'X)^{-1}X'\hat{\Omega}X(X'X)^{-1}R'}} \\ t_{\tilde{\beta}} &= \frac{R\tilde{\beta} - r}{\sqrt{R\left(X'\hat{\Omega}^{-1}X\right)^{-1}R'}} \end{split}$$

Both $t_{\hat{\beta}}$ and $t_{\tilde{\beta}}$ valued for large sample, they have no exact distribution for finite sample. So, we can not tell which one is better. (h)

$$H_0: R\beta^0 = r$$

For Ω is known,

$$F_{\hat{\beta}} = \left(R\hat{\beta} - r\right)' \left[R(X'X)^{-1}X'\Omega X(X'X)^{-1}R'\right]^{-1} \left(R\hat{\beta} - r\right) \sim \chi_J^2$$

$$F_{\tilde{\beta}} = \left(R\tilde{\beta} - r\right)' \left[R(X'\Omega^{-1}X)^{-1}R'\right]^{-1} \left(R\tilde{\beta} - r\right) \sim \chi_J^2$$

For Ω is unknown,

$$W_{\hat{\beta}} = \left(R\hat{\beta} - r\right)' \left[R(X'X)^{-1}X'\hat{\Omega}X(X'X)^{-1}R'\right]^{-1} \left(R\hat{\beta} - r\right) \stackrel{d}{\to} \chi_J^2$$

$$W_{\tilde{\beta}} = \left(R\tilde{\beta} - r\right)' \left[R\left(X'\hat{\Omega}^{-1}X\right)^{-1}R'\right]^{-1} \left(R\tilde{\beta} - r\right) \stackrel{d}{\to} \chi_J^2$$

Both $W_{\hat{\beta}}$ and $W_{\tilde{\beta}}$ converge in distribution to χ_J^2 . They have no exact distribution for finite sample, So we can not tell which one is better.

3. Suppose X'X is a $K \times K$ matrix, and V is a $N \times n$ matrix, and both X'X and V are symmetric and nonsingular, with the minimum eigenvalue $\lambda_{\min}(X'X) \to \infty$ as $n \to \infty$ and $0 < c \le \lambda_{\max}(V) \le C < \infty$. Show that for any $\tau \in R^K$ such that $\tau'\tau = 1$,

$$\tau' \operatorname{var}\left(\hat{\beta} \mid X\right) \tau = \sigma^2 \tau' (X'X)^{-1} X' V X (X'X)^{-1} \tau \to 0$$

as $n \to \infty$. Thus, var $(\hat{\beta} | X)$ vanishes to zero as $n \to \infty$ under conditional heteroskedasticity.

ANSWER:

$$\begin{split} \tau'(X'X)^{-1}X'VX(X'X)^{-1}\tau &\leq \tau'(X'X)^{-1}X'VX(X'X)^{-1}\tau\lambda_{\max}\left(V\right) \\ &= \lambda_{\max}\left(V\right)\tau'(X'X)^{-1}\tau \\ &\leq \lambda_{\max}\left(V\right)\lambda_{\max}(X'X)^{-1} \\ &= \frac{\lambda_{\max}\left(V\right)}{\lambda_{\min}\left(X'X\right)} \\ &\leq \frac{C}{\lambda_{\min}\left(X'X\right)} \to 0 \quad as \quad n \to \infty \end{split}$$

Thus $\tau'(X'X)^{-1}X'VX(X'X)^{-1}\tau\to 0$ as $n\to\infty$. This completes the proof.