# CROSS-EVALUATION OF METRICS TO PREDICT THE IMPORTANCE OF CREATIVE WORKS

Movies undoubtedly constitute a critical part of modern pop-culture. With international productions gaining popularity and the affordable, ubiquitous streaming services available today, we are now consuming more content than ever. The industry is overflowing with creative works. Therefore, an effective system in filtering out the important works from the meaningless one, would be of great assistance to the general public in deciding amongst them.

IMDB is one of the most widely used platforms for cinephiles, offering information ranging from the financial statistics of a movie's release, to random trivia and, of course, the movie's IMDb score. Registered users get to vote on every released title available in the database, on a scale of 1 to 10. Individual votes are then aggregated and summarized as a single IMDb rating, visible on the title's main page. Another popular website with movie data is Metacritic. It similarly assigns scores to films however the voting isn't open to the public. The website curates a group of respected critics, assigns scores to their reviewing abilities, and then applies a weighted average to their reviews. For a score to become available on the Metacritic website, at least 4 accredited critics must have reviewed it.

The goal of this study was to create a model that relates some of each movie's features to its popularity, as expressed by its IMDb score. The hypothesis of this study was that movies which are more favorably reviewed by the accredited critics, as seen through their meta-score, whose gross income was higher, which received a higher number of votes on IMDb and which had a longer runtime, would also be highly valued by the wider audience as reflected in their IMDb score. Following this hypothesis, a simple linear regression model. The primary goal of this study is to test the relationship between the critic reviews, runtime, number of votes, movie runtime and audience preference, modeled by the following simple regression:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \varepsilon_i.$$

 $IMDb\ score\ =\ \beta_0\ +\ \beta_1\ *\ Metascore\ +\ \beta_2\ *\ Gross\ Income\ +\ \beta_3\ *\ number\ of\ votes\ +\ \beta_4\ *\ runtime\ +\ \epsilon$ 

 $\beta_1$  represents the estimated associated change in a film's IMDb score as its Meta-score increases by one percent, holding all else in the model fixed. Similarly,  $\beta_2$  represents the estimated associated change in a film's IMDb score as its Gross Income increases by one unit, holding all else in the model fixed. Most importantly, these  $\beta_s$  are not to be interpreted marginally and do not show the relationship of the target variable to a single predictor alone.

# **Data Collection**

This analysis is based on the first 150 most voted on feature films for 2019 on IMDB<sub>1</sub>. I decided to use web-scrapping as my data collection technique, to ensure the reliability and consistency of the data. To do so, I used python, using a third-party library named 'requests'. I sent a HTTP request to the URL of the IMDB webpage, the server responding with the HTML content of the webpage. I proceeded to parse the data, however since most of it is nested, I

 $<sup>{\</sup>tt 1} \label{thm:page} \ \, \textbf{1} \ \, \textbf{1} \ \, \textbf{2} \ \, \textbf{1} \ \, \textbf{2} \ \, \textbf{2} \ \, \textbf{2} \ \, \textbf{2} \ \, \textbf{3} \ \, \textbf{2} \ \, \textbf{3} \ \, \textbf{2} \ \, \textbf{3} \$ 

resorted to a few string processing techniques. I used another third-party python library, Beautiful Soup, to create a data tree and parse through it, able to pull out the pieces of information that were of importance for the analysis. From there, I used the 'find\_all' function, to separate the html content that referred to each specific movie and continued pulling out data from each section. I was able to do so due to the consistency of the html code. I exported that to an excel sheet and then to a csv, to more easily process the information in R. A detailed view of the code I wrote for web-scrapping can be found in appendix A. The csv file created from the web-scraping can be found in appendix B.

# **Data Analysis**

Lets first take a look at the data:

# Descriptive Statistics: IMDb, Metascore, Runtime, Votes, Gross Income

| IMDB          | Metascore     | Runtime       | Votes          | Gross             |
|---------------|---------------|---------------|----------------|-------------------|
| Min. :28.00   | Min. :19.00   | Min. : 81.0   | Min. : 14407   | Min. : 0.35       |
| 1st Qu.:61.75 | 1st Qu.:48.00 | 1st Qu.:100.0 | 1st Qu.: 28046 | 1st Qu.: 31.86    |
| Median:67.00  | Median :58.50 | Median :113.0 | Median : 47234 | Median : 173.01   |
| Mean :67.12   | Mean :59.01   | Mean :114.3   | Mean : 83385   | Mean : 28302.48   |
| 3rd Qu.:74.00 | 3rd Qu.:68.25 | 3rd Qu.:123.2 | 3rd Qu.: 88808 | 3rd Qu.: 31414.00 |
| Max. :86.00   | Max. :96.00   | Max. :209.0   | Max. :695789   | Max. :283621.00   |

A "typical" movie has an IMDb score of around 65-70, with the most beloved movies in the dataset being 'Joker' and 'Parasite' with an IMDb score of 86. The least liked one was 'Cats', with an IMDb score of 28. On the other hand, a "typical" movie has an Metascore of around 57-63, with the most well performing movie amongst critics being 'Parasite' with an Metascore of 96. The least critically acclaimed movie in the dataset was 'Polar', with a score of 19. The "typical" movie had a runtime of around 115 minutes. Unsurprisingly, the longest movie in the dataset was Scorsese's acclaimed 'Irishman' running for a total of 209 minutes, arguably boosting the movie's popularity due to the traction it gained with people on the internet joking about having trouble not falling asleep. The shortest film was 'I lost my body' an animated French film running for only 81 minutes. The most voted on movie was blockbuster 'Joker' with 695,789 votes, while a typical movie only received around 83 thousand votes. The highest grossing film was 'Parasite', with a Gross Income of \$283621 million USD, with an average film earning around \$28-29 million USD.

Below are frequency histograms for each of the Variables:



Regression and Multivariate Data Analysis Anna Skarpalezou

Assignment 3



To explore the relationship of the predictors to the target variable on an preliminary level, I used scatter plot of the response variable versus each predictor. These describe the independent relationships however and not how the predictors will work together in our model. As expected, the movies that receive higher Metascores in general also tend to receive higher metascores. Surprisingly, it seems that runtime might also be a factor, with longer running movies tending to fractionally receive better IMDb scores. The weakest relationship seems to be that with Votes and Gross Income.



We can see both from the histograms and the scatter plots above that, while Metascore seems to be fairly symmetric, the other predictors seem to be skewed to the right (long right-tailed). This may suggest that logarithms might be applicable in modeling.

Below are the results of a regression of IMDb score on the 4 predictors:

```
Call:
lm(formula = IMDB ~ Votes + Gross + Runtime + Metascore)
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-29.0518 -3.8062
                   0.3679
                            3.4572
                                    17,6529
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  9.960 < 2e-16
(Intercept) 4.022e+01 4.038e+00
           1.641e-05
                                          0.0113 *
Votes
                                  2.569
                      6.389e-06
Gross
           9.660e-06
                      1.164e-05
                                  0.830
                                          0.4080
           5.067e-02
                      3.589e-02
                                  1.412
                                          0.1603
Runtime
Metascore
           3.298e-01 3.815e-02
                                  8.646 1.64e-14 ***
               0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Signif. codes:
Residual standard error: 6.482 on 131 degrees of freedom
Multiple R-sauared:
                    0.5241,
                               Adjusted R-squared:
F-statistic: 36.06 on 4 and 131 DF, p-value: < 2.2e-16
```

# **Regression Equation**

```
IMDb score = 40.22 + 1.641(10^{-5})Votes + 9.66(10^{-6})Gross + 0.05067 Runtime + .3298Metascore
```

The regression is quite strong with an adjusted R-squared of .5095. Somewhat shockingly, it seems that given the other information, a movie's gross income adds virtually no predictive power to the model. This suggests that a blockbuster, that brought in a lot of money is not necessarily the best choice when looking for a film most people would love. Similarly, given the other values, the number of votes a film receives seems to also contribute insignificantly to the predictive power of the model. The coefficient for **Runtime** shows that given the other 3 predictors are held constant, a one-minute increase in runtime is associated with an estimated expected increase in the movie's IMDb score of .05 points. The coefficient for **Metascore** says that given the other 3 predictors are held constant, a one-point increase is associated with an expected increase in IMDb score of .33 points. The value for the residual standard error implies that a rough 95% prediction interval for a movies IMDb score using this model is  $\pm 12.964$ .

To measure multicollinearity, I used the variance inflation factor (VIF), which assesses how much the variance of an estimated regression coefficient increases if the predictors are correlated. Each of these VIF values corresponds to an estimate of how much we think the variance of its predictor's  $\beta$  hat, the variance of its slope coefficient, has been inflated relative to what the variance would have been if our data had perfectly uncorrelated predictors. My VIF numbers are relatively close to 1, so collinearity doesn't seem to be a concern at this point. Apparently, the number of votes a movie gets, its gross income, its runtime and its perception by critics do not necessarily go together.

#### VIF VALUES

Votes Gross Runtime Metascore 1.402295 1.247410 1.596317 1.196928

Looking now at the relevant residual plots, the standardized residual versus fitted values plot, the normal plot of the residuals and the standardized residuals versus index show the movie "Cats" to be a clear outlier. The movie has a standardized residual of much higher than  $\pm 2.5$ , meaning that we expect it to occur far less than 1% by random chance in the sample. The movie faced a slightly better critic than public reception, but in general underperformed massively. With an IMDb score of 28, the smallest one in the data set, the model is unable to predict it. The runtime was close to the typical 115minute-long film, running for 110 minutes. The main problem is that the intercept is on its own higher than the IMDb score received. The normal plot shows the some heavy-tailedness, with the right upper end of the normality plot going above the hypothetical straight and the left lower end going below it. The residuals versus fitted values plot also shows some non-constant variance.



To explore the potential existence of leverage points or influential points, I looked at Leverage values and Cook's distances; We can recognize here that a few points seem to have high leverage values and Cook's distance, especially the observation at index 0, therefore it is important to explore the implications of removing them on our model.



We should now consider our options to simplifying the model. A reasonable first step would be to omit the Gross Income as a predictor, or the number of Votes, or both. Instead I decided to first consider a few linear restrictions on the model. I wanted to see see if only the sum of all the predictors might matter. I created the variable:

The null hypothesis in this case would be that the simpler model that follows, that ther predictors added up are adequate and so one predictor is needed rather than 4. The alternative hypothesis would then be the full model.

The full model is:

$$IMDb\ score\ =\ \beta_0\ +\ \beta_1\ *\ Metascore\ +\ \beta_2\ *\ Gross\ Income\ +\ \beta_3\ *\ number\ of\ votes\ +\ \beta_4\ *\ runtime\ +\ \epsilon$$

The restricted (subset) model is

$$IMDb \ score \ = \beta_0 \ + \beta_1 \ * (Metascore + \ Gross \ Income + \ number \ of \ votes + \ runtime) + \epsilon$$

The second model is basically a simplification of the first with  $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \gamma_1$ Linear hypothesis test

```
Hypothesis:
```

```
- Runtime + Metascore = 0
Votes - Runtime = 0
Gross - Runtime = 0
```

Model 1: restricted model

Model 2: IMDB ~ Votes + Gross + Runtime + Metascore

```
Res.Df RSS Df Sum of Sq F Pr(>F)
1 134 8991.8
2 131 5503.8 3 3488 27.673 6.295e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Regression and Multivariate Data Analysis

Anna Skarpalezou Assignment 3

To explore the validity of this formula, I used a partial F-Test. Not surprisingly, the F value of 27.673, with the appropriate degrees of freedom corresponds to a p-value of of  $6.295 * 10^{-14}$ . Therefore there is really strong evidence against the null hypothesis and we accept the alternative. As we expected, the simplified model is not sufficient, both because the predictors have different predictive strength as explored above, but also because they are on a different scale.

Eliminating the least effective predictor, gross income adjusted R-square actually increases to 51.07%. The regression:

```
lm(formula = IMDB ~ Metascore + Runtime + Votes)
Residuals:
     Min
               10
                    Median
                                  30
                                         Max
                                     17.7323
-28.8543
          -3.6416
                    0.5729
                             3.3124
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.911e+01
                       3.804e+00
                                  10.281
                                           < 2e-16
                                   9.007 2.06e-15
Metascore
            3.362e-01
                       3.733e-02
Runtime
            5.951e-02
                       3.423e-02
                                   1.739
                                            0.0844
                       6.381e-06
Votes
            1.643e-05
                                   2.575
                                            0.0111 *
Signif. codes:
                        0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.474 on 132 degrees of freedom
Multiple R-squared:
                     0.5216,
                                Adjusted R-squared:
F-statistic: 47.96 on 3 and 132 DF,
                                     p-value: < 2.2e-16
```

# **Regression Equation**

```
IMDb score = 39.11 + 1.643(10^{-5})Votes
+0.05951 Runtime + .3362Metascore
```





Regression and Multivariate Data Analysis Anna Skarpalezou

I also tried removing the second least effective predictor, number of Votes. Adjusted R square falls to 48.887%

```
lm(formula = IMDB ~ Metascore + Runtime + Gross)
Residuals:
                   Median
              10
    Min
                                3Q
                                        Max
-29.4594
                   0.0789
                            3.3609
                                    18.4483
        -3.3356
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.609e+01 3.781e+00
                                  9.544 < 2e-16 ***
Metascore 3.425e-01 3.862e-02
                                  8.866 4.55e-15 ***
Runtime
           9.229e-02 3.269e-02
                                  2.823
                                         0.0055 **
           9.794e-06 1.188e-05
Gross
                                  0.824
                                          0.4112
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.618 on 132 degrees of freedom
Multiple R-squared: 0.5001, Adjusted R-squared:
F-statistic: 44.02 on 3 and 132 DF, p-value: < 2.2e-16
```

#### **Regression Equation**

```
IMDb score = 36.09 + 9.794(10^{-6})Gross + 0.09229 Runtime + .3435 Metascore
```

Now removing both the number of votes and the gross income, adjusted R-squared is smaller than the original case and the first simplified model, but higher than the second simplified model. This model however only relies on 2 predictors. The regression follows:

```
lm(formula = IMDB ~ Metascore + Runtime)
Residuals:
     Min
               1Q
                   Median
                                3Q
                                        Max
-29.2598 -3.4911
                   0.1319
                            3.2398
                                    18.1035
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.94969
                       3.51651
                                 9.939 < 2e-16 ***
Metascore
            0.34893
                       0.03777
                                 9.238 5.28e-16 ***
                       0.03077
                                 3.293 0.00127 **
Runtime
            0.10131
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Residual standard error: 6.61 on 133 degrees of freedom
Multiple R-squared: 0.4975,
                               Adjusted R-squared:
F-statistic: 65.84 on 2 and 133 DF, p-value: < 2.2e-16
```

### **Regression Equation**

```
IMDb score = 34.94969 + +.10131 Runtime + .34893 Metascore
```



Looking at the standardized residuals against the individual predictors, we can see significantly stronger inconstant variance in the runtime predictor.

A reasonable next step now would be to try to run the regression, having removed the outlier:

# Forward residual plot $m_0 = 68$



I used the package ForwardSearch to apply some outlier identification methods that are designed to avoid masking and swamping and to help me correctly identify the outlier. The system pointed out element [105] to be an outlier, which is indeed the movie "Cats". The resulting regression is as follows;

The regression is even stronger now with an R squared of 54.36%, increasing by more than 3%. The residual versus fitted values plot and normal plot show the same issues, signs of nonconstant variance and heavy-tailedness.

### Call:

lm(formula = IMDB ~ Metascore + Runtime + Votes + Gross)

# Residuals:

Min 1Q Median 3Q Max -12.8800 -4.1284 0.2517 3.0516 16.4476

#### Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.157e+01 3.576e+00 11.625 < 2e-16 \*\*\* 2.977e-01 3.403e-02 8.747 1.07e-14 \*\*\* Metascore Runtime 5.883e-02 3.177e-02 1.852 0.0664 2.633 Votes 1.490e-05 5.658e-06 0.0095 \*\* 1.201 Gross 1.235e-05 1.028e-05 0.2319

\_\_\_

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

Residual standard error: 5.71 on 128 degrees of freedom Multiple R-squared: 0.5574, Adjusted R-squared: 0.5436 F-statistic: 40.3 on 4 and 128 DF, p-value: < 2.2e-16

# **Regression Equation**

IMDb score =  $41.57 + 1.49(10^{-5})Votes + 1.235(10^{-5})Gross + 0.05883 Runtime + 0.2977Metascore$ 

#### Normal Q-Q Plot



Removing now the Gross Income predictor, adjusted R square reaches 54.2%:

#### **Regression Equation**

```
IMDb score = 40.12 + 1.49(10^{-5})Votes + 0.07023 Runtime + .3061Metascore
```

lm(formula = IMDB ~ Metascore + Runtime + Votes)

#### Residuals:

Min 1Q Median 3Q Max -12.5201 -3.9319 0.2143 3.0039 16.7013

## Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.012e+01 3.372e+00 11.899 < 2e-16 \*\*\*
Metascore 3.061e-01 3.336e-02 9.176 9.3e-16 \*\*\*
Runtime 7.023e-02 3.037e-02 2.313 0.02233 \*
Votes 1.490e-05 5.667e-06 2.629 0.00962 \*\*

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

Residual standard error: 5.72 on 129 degrees of freedom Multiple R-squared: 0.5524, Adjusted R-squared: 0.542 F-statistic: 53.07 on 3 and 129 DF, p-value: < 2.2e-16

Removing the number of Votes instead, Adjusted R squared falls to 52.26%:

#### **Regression Equation**

```
IMDb score = 37.81 + 1.235(10^{-5})Gross + 0.09706 Runtime + .3088 Metascore
```

lm(formula = IMDB ~ Metascore + Runtime + Gross)

#### Residuals:

Min 1Q Median 3Q Max -12.8179 -3.8965 0.0304 2.9858 18.1320

## Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.781e+01 3.352e+00 11.278 < 2e-16 \*\*\*
Metascore 3.088e-01 3.454e-02 8.939 3.5e-15 \*\*\*
Runtime 9.706e-02 2.890e-02 3.358 0.00103 \*\*
Gross 1.235e-05 1.052e-05 1.174 0.24250

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

Residual standard error: 5.84 on 129 degrees of freedom Multiple R-squared: 0.5334, Adjusted R-squared: 0.5226 F-statistic: 49.16 on 3 and 129 DF, p-value: < 2.2e-16 Removing now both predictors, the adjusted R squared goes to 52.12%:

## **Regression Equation**

$$IMDb\ score = 36.35803 + 0.10846\ Runtime + .31719Metascore$$

lm(formula = IMDB ~ Metascore + Runtime)

### Residuals:

| Min      | <b>1Q</b> | Median | 3Q     | Max     |  |
|----------|-----------|--------|--------|---------|--|
| -12.5905 | -3.5476   | 0.1352 | 2.9477 | 17.6953 |  |

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.35803 3.12155 11.647 < 2e-16 \*\*\*
Metascore 0.31719 0.03384 9.374 2.88e-16 \*\*\*
Runtime 0.10846 0.02726 3.979 0.000114 \*\*\*
--Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.848 on 130 degrees of freedom Multiple R-squared: 0.5284, Adjusted R-squared: 0.5212

F-statistic: 72.84 on 2 and 130 DF, p-value: < 2.2e-16

#### **Normal Q-Q Plot**



We can get the highest adjusted R-squared by using the whole model with 4 predictors, at 54.36%. However, to decide the best model out of the different options, I decided to compare the Cp values of the models. Here are the Cp values of all the best possible models for each number of predictors, for the model without the outliers. I decided to use the Cp metric and so the best model for our data seems to be a 3-predictor model, predictors being Metascore, Runtime and number of Votes.

```
> leaps(cbind(Metascore, Gross, Runtime, Votes), IMDB, nbest=2)
$which
            2
                   3
   TRUE FALSE FALSE FALSE
1
  FALSE FALSE
1
               TRUE FALSE
   TRUE FALSE FALSE
2
   TRUE FALSE
                TRUE FALSE
3
   TRUE FALSE
                TRUE
3
         TRUE FALSE
   TRUE
         TRUE
                TRUE
                      TRUE
$label
[1] "(Intercept)" "1"
                                  "2"
                                                 "3"
$size
[1] 2 2 3 3 4 4 5
$Cp
[1] 23.920457 98.797127
                          7.985726
                                     9.497982
                                                4.625376
                                                           6.355413
```

Therefore, the best regression equation is:

# **Regression Equation**

```
IMDb score = 40.12 + 1.49(10^{-5})Votes + 0.07023 Runtime + .3061Metascore
```

With an R squared of 54.2%.



Since 3 out of the 4 predictors used on the model seemed right tailed, I decided to also explore the potential for modeling them using a semi-logarithmic model. These are the three variables logged plotted against the target variable:



We can see there is a clear linear relationship between the log of a movie's votes and runtime versus their IMDB score. There is linear relationship with the log of the Gross income, but it is somewhat weaker.

An initial regression shows:

lm(formula = IMDB ~ Metascore + Log.Gross + Log.Runtime + Log.Votes)

#### Residuals:

Min 1Q Median 3Q Max -12.166 -3.748 -0.483 2.790 15.481

#### Coefficients:

Estimate Std. Error t value Pr(>|t|) -0.486(Intercept) -7.26500 14.94319 0.6277 Metascore 0.29722 8.932 3.86e-15 0.03328 Log.Gross 0.60019 0.32063 1.872 0.0635 Log.Runtime 21.81282 8.71497 2.503 0.0136 \* 0.1398 Log.Votes 2.28797 1.53994 1.486

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '

Residual standard error: 5.655 on 128 degrees of freedom Multiple R-squared: 0.5473, Adjusted R-squared: 0.5332 F-statistic: 38.69 on 4 and 128 DF, p-value: < 2.2e-16

# **Regression Equation**

```
IMDb score = -7.265 + 2.28797 * logVotes + .6 * logGross + 21.81282 * logRuntime + 0.29722Metascore
```

### Normal Q-Q Plot



I investigated the "best model" by using a best subsets regression. I looked at Mallows Cp and choose to minimize Cp, which recommended the full four-variable model. That gives us an R squared of 54.7%. The normal plot shows the some heavy-tailedness, with the right upper end of the normality plot going above the hypothetical straight and the left lower end going below it. The residuals versus fitted values plot also shows some non-constant variance.

```
> leaps(cbind(Metascore,Log.Gross,Log.Runtime,Log.Votes),IMDB,nbest=2)
$which
   TRUE FALSE FALSE FALSE
1
1
 FALSE FALSE
               TRUE
   TRUE FALSE
               TRUE FALSE
              FALSE
2
   TRUE FALSE
3
  TRUE
         TRUE
               TRUE
                    FALSE
3
   TRUE
        FALSE
               TRUE
                      TRUE
   TRUE
         TRUE
               TRUE
                      TRUE
$label
[1] "(Intercept)" "1"
                                 "2"
                                                "3"
                                                               "4"
[1] 2 2 3 3 4 4 5
[1] 21.770222 94.829720
                         6.207804 13.397734
                                               5.207452
                                                         6.504017
[1] 0.4667845 0.2084016 0.5288960 0.5034680 0.5395070 0.5349216 0.5473139
$adir2
[1] 0.4627142 0.2023589 0.5216482 0.4958290 0.5287979 0.5241058 0.5331675
```

The applicable regression equation therefore is the one above. This equation tells us that given that Gross income, Runtime and Metascore are held fixed, a one unit increase in the logged number of votes is associated with a 2.28797 unit increase in the IMDb score of a movie. Or multiplying number of votes by 10 is associated with an expected 2.28797 unit increase IMDb

Regression and Multivariate Data Analysis

Anna Skarpalezou Assignment 3

score, holding all else constant. Similarly multiplying the Gross income by 10, is associated with an expected .6 unit increase IMDb score, holding all else constant. On the contrary, a 1 point increase in the Metascore, is associated with an expected .29722 unit increase IMDb score, holding all else constant. The regression is somewhat significant with 53.32% of the variability in IMDb being accounted for by the predictors. A prediction interval for the IMDb score is  $\pm 2\,^{\circ}\sigma$   $\approx$  11.31 that is 95% of the time the logged inbound tourism is known within  $\pm 11.31$ . The normal plot shows the some heavy-tailedness, with the right upper end of the normality plot going above the hypothetical straight and the left lower end going below it. The residuals versus fitted values plot also shows some non-constant variance.

One way that this model might be used is to predict other movies' IMDb scores. For that purpose, I decided to web-scrape the next 50 most voted movies for 2019 and apply this model to them:

|    | Title                                     | IMDB score | fit         | lower predicted limit | upper predicted limit |
|----|-------------------------------------------|------------|-------------|-----------------------|-----------------------|
| 1  | Angry Birds 2: Η Ταινία                   | 64         | 61.92510111 | 47.87998241           | 75.97021981           |
| 2  | Αντίστροφη Μέτρηση                        | 53         | 72.09049477 | 57.09523686           | 87.08575268           |
| 3  | Guns Akimbo                               | 63         | 71.8695473  | 57.07019805           | 86.66889655           |
| 4  | Ο Παραλίας                                | 55         | 63.70387767 | 49.63874844           | 77.7690069            |
| 5  | Κάποιος Υπέροχος                          | 62         | 75.64797983 | 61.2210604            | 90.07489926           |
| 6  | Κάνε να Χιονίσει                          | 58         | 65.66397119 | 51.48107598           | 79.8468664            |
| 7  | Honey Boy                                 | 74         | 63.60915624 | 49.34515963           | 77.87315285           |
| 8  | 47 Meters Down: Uncaged                   | 50         | 79.83073139 | 64.42097872           | 95.24048407           |
| 9  | Μετά την καταστροφή                       | 63         | 66.79997664 | 52.53589627           | 81.064057             |
| 10 | Color Out of Space                        | 62         | 66.23365936 | 51.96464053           | 80.50267818           |
| 11 | Blinded by the Light                      | 69         | 69.12205104 | 55.04606525           | 83.19803683           |
| 12 | Ένας Καλός Ψεύτης                         | 66         | 71.31169218 | 57.05894608           | 85.56443829           |
| 13 | Ένας αληθινός φίλος                       | 74         | 59.93058317 | 45.8844072            | 73.97675913           |
| 14 | Κινητό, αγάπη μου (2019)                  | 61         | 60.80342638 | 46.70426152           | 74.90259124           |
| 15 | The Kid Who Would Be King                 | 60         | 67.91088085 | 53.76813053           | 82.05363117           |
| 16 | Η Τρύπα                                   | 57         | 57.60986352 | 43.4722425            | 71.74748454           |
| 17 | Jay and Silent Bob Reboot                 | 58         | 75.02718795 | 60.58188983           | 89.47248608           |
| 18 | Harriet                                   | 64         | 60.65589598 | 46.70515976           | 74.6066322            |
| 19 | Queen & Slim                              | 70         | 67.48519019 | 53.49643195           | 81.47394842           |
| 20 | Τραύματα                                  | 40         | 65.04019586 | 50.26713831           | 79.81325341           |
| 21 | 400 Μίλια Αγάπης                          | 67         | 72.50565531 | 57.98971305           | 87.02159757           |
| 22 | Haunt                                     | 63         | 67.52681747 | 53.46713842           | 81.58649651           |
| 23 | Unplanned                                 | 58         | 67.8103936  | 53.53554681           | 82.08524038           |
| 24 | Brittany Runs a Marathon                  | 68         | 58.70704007 | 44.60791926           | 72.80616088           |
| 25 | Πού Χάθηκες, Μπερναντέτ                   | 65         | 63.39642682 | 49.11994953           | 77.67290411           |
| 26 | Τα Γεράκια της Νύχτας                     | 77         | 56.08760001 | 42.18090122           | 69.9942988            |
|    | 3 Δευτερόλεπτα                            | 65         | 67.30187668 | 52.72501693           | 81.87873643           |
| 28 | Η Λαίδη και ο Αλήτης                      | 63         | 58.39520019 | 44.60890149           | 72.18149889           |
| 29 | Προάγγελμα Θανάτου                        | 59         | 59.33530471 | 45.15085864           | 73.51975078           |
|    | Χελς Κίτσεν: Οι βασίλισσες του εγκλήματος | 54         | 73.84997005 | 59.46514105           | 88.23479905           |
| 31 | The Intruder                              | 55         | 58.71424755 | 44.64631406           | 72.78218105           |
|    | Η καρδερίνα                               | 62         | 62.5704273  | 48.51223502           | 76.62861958           |
| 33 | Point Blank: Αντίστροφη Μέτρηση           | 56         | 64.6304615  | 50.51969169           | 78.74123131           |
| 34 | The Last Black Man in San Francisco       | 74         | 64.37954615 | 50.34499487           | 78.41409743           |
| 35 | Noelle                                    | 62         | 63.30950597 | 49.31099558           | 77.30801636           |



On the above graph, the actual IMDb score of each movie is shown as a triangle, the upper limit is shown as a cross and the lower as a circle. The model does a relatively good job predicting the intervals with only 3 values outside of the prediction intervals. We would expect at least 1 out of 20 values to be outside of the bounds since these are 95% prediction intervals. The three movies that are found outside of the prediction intervals are "Countdown", "47 meters down" and "Traumas" all of which underperformed compared to our model.

# **Discussion and Conclusion**

Although a single regression model predicting the IMDb score of a movie based on critic reviews, number of votes on IMDb, Runtime and Gross Income was successfully generated, we cannot infer causality for the variables given that this is an observational study in which the variables were not controlled but simply recorded. Prediction is possible but with somewhat limited precision.

There were also flaws in the data that were beyond the control of this study. Out of the 150 films for which IMDb scores were collected, only 136 films had meta-scores. This presented a challenge in using stepwise regression to create a linear model. This deletion of rows with missing values, reduced the sample size and affected the informativeness of the regression. To get around this problem, only the 136 films for which both an IMDb and a meta-score was available were used in stepwise regression.

In order to create a possibly more accurate multiple linear regression, further research on other factors that could affect the popularity of a movie should investigated. Data on word-of-mouth interaction, marketing budgets, production values and distributors, though hard to collect or retrieve could offer additional insights. Ideally, further research may also use a larger sample size in order to mitigate the effect of deletion due to missing observations.

# **Appendices**

# Appendix A.

```
In [1]: urls = ["https://www.imdb.com/search/title/?title_type=feature&year=2019-01-01,2019-12-31&sort=num_votes,desc",'l
           import requests
r = requests.get(urls[0])
           r1 =requests.get(urls[1]
           r2 = requests.get(urls[2])
           r.status_code
           rl.status_code
           r2.status code
Out[1]: 200
In [2]: html = r.text
html1 = r1.text
html2 = r2.text
           import bs4
           soup = bs4.BeautifulSoup(html, 'html.parser')
soup1 = bs4.BeautifulSoup(html1, 'html.parser')
soup2 = bs4.BeautifulSoup(html2, 'html.parser')
           type(soup)
           soup.title.text.strip()
Out[2]: 'Feature Film, \nReleased between 2019-01-01 and 2019-12-31\n(Sorted by Number of Votes Descending) - IMDb'
In [3]: movies1 = soup.find_all('div', class_="lister-item mode-advanced")
    movies2 = soup1.find_all('div', class_="lister-item mode-advanced")
    movies3 = soup2.find_all('div', class_="lister-item mode-advanced")
           movies=[]
           for movie in movies1:
           movies.append(movie)
for movie in movies2:
           movies.append(movie)
for movie in movies3:
                movies.append(movie)
           len(movies)
Out[3]: 150
In [4]: tags=[]
           for per movie in movies:
               collection = per_movie.findAll("img")
               for img in collection:
                    if 'alt' in img.attrs:
                        if img.attrs['alt'] not in tags:
                              tags.append(img.attrs['alt'])
          len(tags)
Out[4]: 150
[121]: metascores=[]
           for per_movie in movies:
               meta_score = per_movie.find('div', class_="inline-block ratings-metascore")
               if meta score!=None:
                   if meta_score.find('span', class_="metascore mixed") != None:
                        metascores.append(meta_score.find('span', class_="metascore mixed").text.strip())
                    elif meta_score.find('span', class_="metascore favorable") != None:
    metascores.append(meta_score.find('span', class_="metascore favorable").text.strip())
                    elif meta_score.find('span', class_="metascore unfavorable") != None:
                         metascores.append(meta_score.find('span', class_="metascore unfavorable").text.strip())
                    else: metascores.append(None)
               else: metascores.append(None)
          len(metascores)
it[121]: 150
[122]: movie_ratings=[]
           for per_movie in movies:
               rating= per_movie.find('strong').text
rating = float(rating)/.1
               movie_ratings.append(rating)
          len(movie_ratings)
it[122]: 150
```

```
In [123]: movie_genres=[]
for per_movie in movies:
               genre= per_movie.find('span', class_="genre").text.strip()
movie_genres.append(genre)
len(movie_genres)
Out[123]: 150
In [124]: runtimes=[]
for per_movie in movies:
    runtime= per_movie.find('span',class_="runtime")
    runtime = int(runtime.text.strip()[0:3])
                     runtimes.append(runtime)
               len(runtimes)
Out[124]: 150
In [125]: How_PG =[]
               for per_movie in movies:
    PG= per_movie.find('span',class_="certificate")
    if PG!= None:
                         How PG.append(PG.text.strip())
                   else: How_PG.append(None)
               len(How_PG)
Out[125]: 150
   In [5]: gross_1 = []
               gross_t = []
gross= per_movie in movies:
    gross= per_movie.find('p',class_="sort-num_votes-visible").find_all('span')[-1].text.strip()
    gross=gross.replace('M',"").replace('$',"")
                     gross_1.append(gross)
               len(gross_1)
  Out[5]: 150
```

```
In [ ]: import xlsxwriter
workbook = xlsxwriter.Workbook('2019_Movie_Data.xlsx')
worksheet = workbook.add_worksheet()
        column=0
         for heading in headings:
worksheet.write(row, column, heading)
             column += 1
         #titles
         row=1
         column=0
         for title in tags :
           worksheet.write(row, column, title)
             row += 1
         #IMDB Rating
         row=1
         for IMDB_rating in movie_ratings :
    worksheet.write(row, column, IMDB_rating)
         #Metascores
         row=1
         column=2
         for score in metascores :
           worksheet.write(row, column, score)
row += 1
         #Genres
         column=3
         for genres in movie genres :
           worksheet.write(row, column, genres)
            row += 1
         #Runtimes
         row=1
column=4
         for time in runtimes :
          worksheet.write(row, column, time)
            row += 1
        #How_PG
row=1
         column=5
         for pg in How_PG:
    worksheet.write(row, column, pg)
    row += 1
        #n_votes
row=1
         column=6
         for n in n votes:
         worksheet.write(row, column, n)
row += 1
#gross_1
         row=1
         column=7
         for income in gross_1:
          worksheet.write(row, column, income)
             row += 1
         workbook.close()
```

# Appendix B.

| Movie Title I                  |          | Metascore | Genres                          | Runtime    | PG rating      | Number of V        |                   |
|--------------------------------|----------|-----------|---------------------------------|------------|----------------|--------------------|-------------------|
| Avengers: En<br>Captain Man    | 85<br>69 | 78<br>64  | Action, Adve                    | 181        | PG-13<br>PG-13 | 671,859<br>395,782 | 858.37<br>426.83  |
| Once Upon a                    | 77       | 83        | Comedy, Dra                     | 161        | R              | 393,816            | 135.37            |
| Parasite<br>Spider-Man:        | 86<br>75 | 96<br>69  | Comedy, Dra<br>Action, Adve     | 132<br>129 | R<br>PG-13     | 275,863<br>265,380 | 275,863<br>388.53 |
| Star Wars: T                   | 68       | 53        | Action, Adve                    | 142        | PG-13          | 258,853            | 258,853           |
| The Irishmar<br>John Wick: C   | 80<br>75 | 94<br>73  | Biography, C<br>Action, Crime   | 209<br>131 | R<br>R         | 248,286<br>225,687 | 248,286<br>171.02 |
| Shazam!                        | 71       | 71        | Action, Adve                    | 132        | PG-13          | 217,593            | 140.37            |
| 1917<br>Alita: Battle          | 85<br>73 | 78<br>53  | Drama, War                      |            | R<br>PG-13     | 195,788            | 195,788<br>85.71  |
| Knives Out                     | 80       | 82        | Action, Adve<br>Comedy, Crir    | 131        | PG-13<br>PG-13 | 191,688<br>190,357 | 190,357           |
| Aladdin                        | 70       | 53        | Adventure, F                    | 128        |                | 187,524            | 354.87            |
| Us<br>Glass                    | 69<br>67 | 81<br>43  | Horror, Myste<br>Drama, Sci-F   | 116<br>129 | R<br>PG-13     | 184,057<br>182,566 | 175.01<br>111.04  |
| Marriage Stc                   | 80       | 93        | Comedy, Dra                     | 137        | R              | 178,107            | 178,107           |
| The Lion King<br>Toy Story 4   | 69<br>79 | 55<br>84  | Animation, A<br>Animation, A    | 118<br>100 |                | 168,348<br>159,291 | 540.08<br>433.03  |
| It Chapter Tv                  | 66       | 58        | Drama, Fant                     | 169        | R              | 158,707            | 193.77            |
| El Camino: A                   | 74       | 72        | Action, Crime                   | 122        | TV-MA          | 151,119            | 151,119           |
| Ford v Ferrar<br>Ad Astra      | 82<br>66 | 81<br>80  | Action, Biogr<br>Adventure, D   | 152        | PG-13<br>PG-13 | 149,989<br>145,817 | 149,989<br>35.4   |
| Jojo Rabbit                    | 80       | 58        | Comedy, Dra                     | 108        | PG-13          | 138,375            | 0.35              |
| Fast & Furior<br>X-Men: Dark   | 65<br>58 | 60<br>43  | Action, Adve                    | 137        | PG-13<br>PG-13 | 133,752<br>125,072 | 165.55<br>65.85   |
| Midsommar                      | 72       | 72        | Drama, Horre                    | 148        | R              | 119,793            | 27.33             |
| Pokémon De<br>Godzilla: Kin    | 66<br>61 | 53<br>48  | Action, Adve                    | 104        | PG<br>PG-13    | 114,965<br>109.195 | 144.11<br>110.5   |
| Uncut Gems                     | 76       | 90        | Action, Adve<br>Crime, Dram     | 132        |                | 105,619            | 105,619           |
| 6 Undergrou                    | 61       | 41        | Action, Adve                    | 128        |                | 102,138            | 102,138           |
| Terminator:                    | 63<br>73 | 54<br>69  | Action, Adve<br>Biography, D    | 128<br>121 |                | 98,507<br>97,021   | 98,507<br>96.37   |
| Triple Frontic                 | 65       | 61        | Action, Adve                    | 125        | R              | 91,153             | 91,153            |
| How to Train<br>Men in Black   | 75<br>56 | 71<br>38  | Animation, A<br>Action, Adve    | 104        | PG<br>PG-13    | 87,533<br>86,588   | 160.8<br>79.8     |
| Zombieland:                    | 68       | 55        | Action, Come                    | 99         |                | 85,595             | 26.8              |
| Jumanji: The                   | 69       | 58        | Action, Adve                    |            | PG-13          | 84,551             | 84,551            |
| Murder Myst<br>Yesterday       | 60<br>69 | 38<br>55  | Action, Come<br>Comedy, Fan     | 97<br>116  | PG-13<br>PG-13 | 81,977<br>78,982   | 81,977<br>73.29   |
| Doctor Sleep                   | 74       | 59        | Drama, Fant                     | 152        | R              | 76,792             | 76,792            |
| The Lighthou                   | 77<br>76 | 83<br>75  | Drama, Fant                     | 109<br>125 | R<br>PG-13     | 76,346<br>75,651   | 0.43<br>75,651    |
| The Two Pop<br>Frozen II       | 71       | 75<br>64  | Comedy, Dra<br>Animation, A     | 103        | PG             | 75,463             | 75,463            |
| Long Shot                      | 69       | 67<br>48  | Comedy, Ror                     | 125        | R              | 71,162             | 30.32<br>57.01    |
| Escape Roon<br>Pet Sematar     | 63<br>57 | 48<br>57  | Action, Adve<br>Horror, Myst    | 101        | PG-13<br>R     | 68,218<br>67,806   | 57.01             |
| Hellboy                        | 52       | 31        | Action, Adve                    | 120        | R              | 67,188             | 21.9              |
| Booksmart<br>Ready or Not      | 72<br>68 | 84<br>64  | Comedy<br>Comedy, Hor           | 102<br>95  | R              | 66,162<br>65,378   | 22.68<br>26.74    |
| Polar                          | 63       | 19        | Action, Crime                   | 118        | TV-MA          | 65,307             | 65,307            |
| Extremely W                    | 66       | 52        | Biography, C                    | 110<br>140 | R              | 64,380             | 64,380            |
| The King<br>Little Wome        | 73<br>80 | 62<br>91  | Biography, D<br>Drama, Rom      | 135        |                | 64,231<br>64,156   | 64,231<br>64,156  |
| Brightburn                     | 61       | 44        | Drama, Horre                    | 90         | R              | 62,257             | 17.3              |
| The Highway<br>I Am Mother     | 69<br>68 | 58<br>64  | Biography, C<br>Drama, Myst     | 132<br>113 | R<br>TV-14     | 60,823<br>60,485   | 60,823<br>60,485  |
| Klaus                          | 82       | 65        | Animation, A                    | 96         | PG             | 58,244             | 58,244            |
| Rambo: Last                    | 62       | 26<br>51  | Action, Adve<br>Adventure, F    |            | R              | 57,594             | 18.87             |
| Dumbo<br>Gemini Man            | 63<br>57 | 38        | Action, Dram                    | 112<br>117 | PG-13          | 56,004<br>55,107   | 114.77<br>20.55   |
| Maleficent: f                  | 67       | 43        | Adventure, F                    | 119        | PG             | 54,973             | 36.95             |
| Isn't It Roma<br>Hustlers      | 59<br>64 | 60<br>79  | Comedy, Fan<br>Comedy, Crir     | 89<br>110  | PG-13<br>R     | 54,771<br>54,077   | 48.79<br>80.55    |
| Fighting with                  | 71       | 68        | Biography, C                    | 108        | PG-13          | 52,258             | 22.96             |
| Angel Has Fa<br>Cold Pursuit   | 64<br>62 | 45<br>57  | Action, Thrill<br>Action, Crime | 121<br>119 | R              | 52,009<br>47,872   | 67.16<br>32.14    |
| Velvet Buzzs                   | 57       | 61        | Horror, Myst                    | 113        |                | 47,872             | 47,827            |
| Crawl                          | 62<br>66 | 60<br>65  | Drama, Horre                    | 87<br>107  | R              | 46,384             | 39.01             |
| The Lego Mo<br>Happy Death     | 62       | 57        | Animation, A<br>Comedy, Hor     |            | PG-13          | 45,875<br>45,765   | 105.81<br>28.05   |
| Annabelle Cc                   | 59       | 53        | Horror, Myste                   | 106        | R              | 45,108             | 73.65             |
| Scary Stories<br>Captive State | 62<br>60 | 61<br>54  | Horror, Myste<br>Drama, Horre   |            | PG-13<br>PG-13 | 42,929<br>42,476   | 62.74<br>5.96     |
| Good Boys                      | 67       | 60        | Adventure, C                    | 90         | R              | 41,670             | 69.06             |
| Anna<br>The Gentlem            | 66<br>81 | 40<br>51  | Action, Thrill<br>Action, Come  | 119<br>113 | R<br>R         | 40,540<br>39,714   | 7.74<br>39,714    |
| Dolemite Is I                  | 73       | 76        | Biography, C                    | 118        |                | 39,280             | 39,280            |
| Fractured                      | 63<br>68 | 36<br>64  | Mystery, Thri                   | 99         | TV-MA          | 38,380             | 38,380            |
| Always Be M<br>The Secret Li   | 65       | 55        | Comedy, Ror<br>Animation, A     | 86         | PG-13<br>PG    | 38,362<br>38,102   | 38,362<br>158.14  |
| The Dead Do                    | 55       | 53        | Comedy, Fan                     | 104        |                | 37,188             | 6.56              |
| Shaft<br>In the Tall Gr        | 64<br>54 | 40<br>46  | Action, Come<br>Drama, Horre    | 111<br>101 | R<br>TV-MA     | 36,514<br>35,306   | 21.36<br>35,306   |
| Pain and Glo                   | 76       | 87        | Drama                           |            | R              | 34,224             | 34,224            |
| The Hustle<br>The Peanut E     | 54<br>77 | 35<br>70  | Comedy, Crir<br>Adventure, C    | 93<br>97   | PG-13<br>PG-13 | 34,105<br>33.863   | 35.42<br>13.12    |
| The Dirt                       | 70       | 39        | Biography, C                    | 107        | TV-MA          | 33,640             | 33,640            |
| The Laundroi<br>Child's Play   | 63<br>58 | 57<br>48  | Comedy, Crir<br>Horror, Sci-F   | 95<br>90   |                | 33,131<br>32,935   | 33,131<br>29.21   |
| Bombshell                      | 68       | 64        | Biography, D                    | 109        |                | 32,889             | 32,889            |
| The Farewell                   | 77<br>52 | 89<br>25  | Comedy, Dra                     | 100        | PG<br>PG-13    | 30,749<br>30,520   | 16.88<br>30,520   |
| Ine Silence<br>In the Shado    | 52<br>62 | 48        | Drama, Horre<br>Crime, Myste    | 115        | TV-MA          | 30,389             | 30,520            |
| Midway                         | 67       | 47        | Action, Dram                    |            | PG-13          | 29,869             | 29,869            |
| The Curse of<br>Five Feet Ap   | 53<br>72 | 41<br>53  | Horror, Myst<br>Drama, Rom      | 93<br>116  | PG-13          | 29,665<br>29,600   | 54.73<br>45.73    |
| Serenity                       | 53       |           | Drama, Myst                     | 106        |                | 29,349             | 8.55              |
| Stuber<br>A Beautiful [        | 61<br>74 | 42<br>80  | Action, Come<br>Biography, D    | 93<br>109  | R<br>PG        | 28,090<br>28,017   | 22.37<br>28.017   |
| Last Christm                   | 65       | 50        | Comedy, Dra                     |            | PG-13          | 27,900             | 27,900            |
| Ma<br>Downton Abl              | 56<br>74 | 53        | Horror, Myst                    | 99<br>122  |                | 27,895             | 45.37<br>31.03    |
| Gully Boy                      | 82       | 65        | Drama, Rom<br>Drama, Musi       |            | Not Rated      | 27,835<br>24,826   | 5.57              |
| Judy                           | 69       | 66        | Biography, D                    |            | PG-13          | 24,121             | 24,121            |
| After<br>Tolkien               | 54<br>68 | 30        | Drama, Rom<br>Biography, D      |            | PG-13<br>PG-13 | 24,098<br>23,227   | 12.14<br>4.54     |
| The Wanderi                    | 60       | 57        | Action, Dram                    | 125        | TV-MA          | 23,179             | 2.19              |
| Between Tw<br>Motherless E     | 61<br>69 | 59        | Crime Dram                      | 82<br>144  | TV-MA          | 21,851<br>21,452   | 21,851<br>21,452  |
| The Report                     | 72       | 66        | Crime, Dram<br>Biography, C     | 144        |                | 19,841             | 19,841            |
| The Prodigy                    | 58       | 45        | Horror, Thrill                  | 92         |                | 19,243             | 14.86             |
| Late Night<br>The Art of Se    | 65<br>67 | 70        | Comedy, Dra<br>Comedy, Crir     | 102<br>104 |                | 19,107<br>18,389   | 15.5<br>2.41      |
| Richard Jewe                   | 75       | 68        | Biography, C                    | 131        | R              | 18,162             | 18,162            |
| Close<br>Abominable            | 57<br>70 | 51<br>61  | Action, Dram<br>Animation, A    | 94<br>97   | TV-MA          | 18,161<br>18,068   | 18,161<br>20.61   |
| Portrait of a                  | 82       |           | Drama, Rom                      | 122        |                | 17,586             | 17,586            |
| Togo                           | 81       | 71        | Adventure, B                    | 113        | PG             | 17,309             | 17,309            |
| The Boy Who<br>21 Bridges      | 76<br>66 | 68<br>51  | Drama<br>Action, Crime          | 113<br>99  | TV-PG<br>R     | 17,096<br>17,033   | 17,096<br>17,033  |
| What Men W                     | 52       | 49        | Comedy, Fan                     | 117        | R              | 16,766             | 54.61             |
| I Lost My Boo<br>The Addams    | 76<br>58 | 80        | Animation, E                    | 81         | TV-MA<br>PG    | 16,702<br>15,989   | 16,702<br>30.3    |
| The Addams<br>Wine Countr      | 58<br>54 | 46<br>56  | Animation, C<br>Comedy          | 103        | R              | 15,989<br>15,985   | 30.3<br>15,985    |
| Dora and the                   | 60       | 63        | Adventure, F                    | 102        | PG             | 15,850             | 54.89             |
| Missing Link<br>The Aeronau    | 67<br>66 |           | Animation, A<br>Action, Adve    | 93<br>100  | PG<br>PG-13    | 15,840<br>15,786   | 16.65<br>15,786   |
| A Rainy Day                    | 66       | 48        | Comedy, Ron                     | 92         | PG-13          | 15,503             | 15,503            |
| Dark Waters                    | 76       | 72        | Biography, D                    |            | PG-13          | 15,307<br>14,377   | 15,307<br>14,377  |
| Someone Gr                     | 62       |           | Comedy, Ror                     |            |                |                    |                   |