# Proportional multi-state multiple-cohort life table model

## $Belen\ Zapata\text{-}Diomedi\ and\ Ali\ Abbas$

## 26 March 2018

## Contents

| 1                       | Inti          | roducti | ion                                | 2   |  |  |  |
|-------------------------|---------------|---------|------------------------------------|-----|--|--|--|
|                         | 1.1           | Contri  | bution to ITHIMR                   | 3   |  |  |  |
|                         |               | 1.1.1   | Difference between ITHIM and PMSLT | 3   |  |  |  |
| 2                       | R development |         |                                    |     |  |  |  |
|                         | 2.1           | Inputs  | 8                                  | 6   |  |  |  |
|                         |               | 2.1.1   | Life table                         | 6   |  |  |  |
|                         |               | 2.1.2   | Disease life tables                | 7   |  |  |  |
|                         | 2.2           | Code    |                                    | 7   |  |  |  |
|                         |               | 2.2.1   | Set up                             | 8   |  |  |  |
|                         |               | 2.2.2   | Inputs                             | 9   |  |  |  |
| 3                       | Cor           | nments  | S                                  | 318 |  |  |  |
|                         | 3.1           | Road i  | injuries in the PMsLT              | 318 |  |  |  |
| $\mathbf{R}^{\epsilon}$ | efere         | nces    |                                    | 318 |  |  |  |

### 1 Introduction

The proportional multi-state multiple-cohort life table model (PMSLT) is a population level model (macro) approach to simulate health (and economic) implications of changes in exposure to health risk factors (e.g. physical inactivity, air pollution and diet). The PMSLT has been widely used to simulate outcomes for population level interventions for the reduction of chronic diseases.

The model was developed by Jan Barendregt and colleagues and has been widely used in Australia and New Zealand (T. Vos et al. 2010; Blakely et al. 2015).

The basic infrastructure of the model consist of three components: (1) Effect size for the intervention of interest (e.g. intervention to urban design that modifies population levels of physical activity); (2) Calculation of the potential impact fraction (PIF) to derive the change in occurrence of disease (incidence rate/case fatality rate) attributable to a change in the distribution of the risk factor (e.g. physical activity); and (3) Use of the PMSLT to simulate health (and economic) outcomes attributable to a change in the distribution of health risk factor/s in the population of interest. Figure 1 summaries the basic infrastructure of the model. ITHIM is included in Figure 1 to show that both approaches share in common steps one and two and differ in the mechanisms of calculation of change in health burden.

#### HALYs, QALYs and DALYs

In this model we use the term health-adjusted life year (HALY). As summary measure of population health it measures both quantity and quality of life, where one HALY represent the equivalent of one year in full health (which could be two years with a quality of life of 0.5, for example). Specific types of HALY are the quality-adjusted life year (QALY) and the disability-adjusted life year (DALY). The QALY derives from economics and was first used in the 1960s as a measure of health gain (Gold, Stevenson, and Fryback 2002). The disability-adjusted life-year (DALY) was developed for use in burden of disease studies as a measure of health loss due to disease (Gold, Stevenson, and Fryback 2002). Our calculated HALYs are neither QALYs not DALYs, but something in between. They are similar to QALYs in that they represent health gains. However, the main difference is in the calculation of the health-related quality of life component. QALYs use measures of utility weights that traditionally represent individual experiences of health, whereas our estimated HALYs use disability weights linked to specific diseases, which were developed for the Global Burden of Disease study (Gold, Stevenson, and Fryback 2002). As discussed in past research (L. Cobiac, Vos, and Barendregt 2009; Roux, Pratt, and Tengs 2008) the main advantage of using disability weights over utility weights is that disability weights refer to specific diseases rather than health states (which are difficult to link to risk factors-e.g. physical inactivity). We opted to use the more general terms HALYs given that the use of the DALYs terminology may lead to think that our calculations are similar to those in burden of diseases studies (Murray et al. 2012). In our study, our model does not explicitly separate years of life lost (YLL) and years lived with disability (YLD) components, but instead calculates the total number of life years lived, adjusted for the average health-related quality of life in those years (by age and sex). In burden of disease studies, DALYs are defined as the sum Years of Life Lost (YLL) and Years Lived with Disability (YLD).



Figure 1: Basic ITHIMR infrastructure

#### 1.1 Contribution to ITHIMR

The PMSLT similar to ITHIM is a comparative risk assessment approach (Briggs, Scarborough, and Smith 2016) that consist of calculating the change in the health burden for a population of interest from a change in exposure to health risks factors (e.g. physical inactivity, air pollution and road trauma). As depicted in Figure 1, both methods need estimates of the potential impact fraction (PIF), which indicates the proportion of the disease burden attributable to a risk factor of interest (e.g. physical inactivity) (Barendregt and Veerman 2010). A step further back, is the development of scenarios that bring about change in the distribution of the risk factor of interest. For now, we only focus on calculations from the PIF onward, and provide a hypothetical example of change in the population distribution of physical activity. Incorporation of additional health risk factor (air pollution, road trauma, NO2 and noise) will be discussed in the relevant code sections.

#### 1.1.1 Difference between ITHIM and PMSLT

- Time component The *PMSLT* follows a population of interest over time. For example, as set up here, we simulate sex and age (5 years starting at 20) cohorts over time until they die or reach 100 years of age. This implies that we can include trends for diseases, time lags for change in exposure to risk factors and change in health and demographic changes (e.g. population growth). In addition, we can estimate yearly changes in the burden of diseases over the life course or for a specified number of years. The *ITHIM* approach is a snapshot of change in burden for one year.
- Interaction between multiple diseases The *PMSLT* accounts for the interaction between multiple diseases, with proportions of the population being able to be in more than one health state (Briggs,

Scarborough, and Smith 2016). This avoids overestimation of outcomes as a result of summing health outcomes attributable to each disease individually as done in *ITHIM*. It is important to note that the *PMSLT* assumes that diseases are independent of each other. That is to say, developing a disease is unrelated to a concurrent diagnoses of another disease).

- Mortality rate The *PMSLT* calculations for changes in life years (and health-adjusted life years) and mortality outcomes is based on observed mortality rates for the population of interest. In the *ITHIM* model, if burden of disease estimates from the Global Burden of Disease (GBD) study are used, then, the mortality component is based on the highest attained life expectancy observed in the world.
- Impact of disability in increased life expectancy In GBD studies, YLLs are not adjusted for disability; hence, their use in estimating intervention effects results in over-estimation, which the *PMSLT* approach avoids. Another way of seeing this is that estimated changes in morbidity using the *ITHIM* do not allow for how implicit increases in life expectancy impact on morbidity. While the changes in deaths and prevalence using the *PMSLT* are in some ways more accurate than those from the *ITHIM* approach it should be noted that that the average age of death and incident disease will change and thus the disease burden will be on average be shifted later in life (which is a realistic approach).

## 2 R development

The model is set up as a long script to perform the required mathematical calculations. Where possible, we wrote functions and loops to avoid repetition. We set up the model with data for Greater London. Figure 2 depicts the PMSLT model framework, which was followed in the code development.



Figure 2: Proportional multi-state life-table simplified framework. The simplied PMST shows the interaction between the life table, disease life table and potential impact fraction (PIF). The PIF calculations by age and sex group are the same as those generated for ITHIM. The PIF (or 1-PIF) modifies incidence of disease, which changes prevalence and mortality (disease specific life table). Changes in prevalence and mortality rates from the disease specific life tables feed into the life table by changing all-cause mortality, which in turn changes life years. Change in prevalence of diseases changes total years lived with disability, which in turn modifies health-adjusted life years

In what follows, first, we specify input parameters. Second, we present the code with explaining notes. Third, we present examples of outcomes and lastly we comment on topics related to implementation. Here we only included the physical activity health pathway. In the comments section, we discuss the implementation of exposure to air pollution and road trauma. Note that in the presentation of input parameters, those needed to calculate PIFs are excluded, as these are common to the ITHIM, expect if trends are included (refer to comments section).

#### 2.1 Inputs

We specify data requirements for the life table and disease life tables (Figure 2) and potential sources.

#### 2.1.1 Life table

Inputs of the life table are: population numbers by sex (per 1-year or age grouping of interest), mortality rates or probability of all cause mortality by single age group and sex and total prevalent years lived with disability rate per single year by sex. Disease specific disability weights are presented as inputs here as these adjust the total years lived with disability, hence, the health-adjusted life years.

#### 2.1.1.1 Population numbers

These data will be provided by the synthetic population or derived from other data. In the code presented here, we simulate 5-year age and sex cohorts. Data for population may be in five-year age groups or one-year. For the example for Greater London, we derive 5-year age groups from GBD IHME data, however, we also provide a script if five-year age groups are to be derived from one-year age groups data. I left potential data sources below as a reference.

Data source: (1) National census; (2) Worldwide population and mortality data: http://www.mortality.org/(mostly high income countries; and (3) Calculate from the Global Burden of Disease by the Institute of Health Metrics and Evaluation (GBD IHME) data (rates and numbers available from (http://ghdx.healthdata.org/gbd-results-tool).

#### 2.1.1.2 Mortality rates

Mortality rates are needed per single year and sex. These data are available from GBD IHME, however, in age groups (1-4, 5-9, etc). We provide an interpolation script to derive in between ages rates (cubic spline).

Note that we need data for population numbers and all cause mortality rates for: (1) PMSLT and (2) Dismod II collection (more in Dismod II section). Population data from the synthetic population is used for the PMSLT (if available). For Dismod II, population and mortality data should be from the same source (GBD IHME).

#### 2.1.1.3 Total years lived with disability rates per single year and sex.

These data is available from the GBD (http://ghdx.healthdata.org/gbd-results-tool) per 5-year age groups. We can use interpolation to derive between ages rates (script provided).

#### 2.1.1.4 Disability weights (quality of life weights)

Disability weights (DW) are derived from disease specific years lived with disability (YLD) and disease specific prevalence by age group (5 years) and sex. Data for YLDs prevalence is obtained from the online GBD IHME data tool (http://ghdx.healthdata.org/gbd-results-tool). An age and sex specific-correction was introduced to counteract the effects of accumulating comorbid illnesses in the older age groups (Equation 1).

$$(YLDd/Pd)/(1 - YLDt) = DWadjusted for total YLDs$$
(1)

Where YLDd is the YLD mean number per age and sex for a given disease, Pd is the prevalence (as reported in GBD) for a given disease by age and sex and YLDt is total YLD rate per age and sex.

#### 2.1.2 Disease life tables

#### 2.1.2.1 Incidence and case fatality

For each of the modeled diseases the PMSLT needs incidence and case fatality rates per sex and one-year intervals. Data from the GBD IHME studies with Dismod II (free at https://www.epigear.com/index\_files/dismod\_ii.html) is used to derive internally consistent data and generate missing data. For example, the GBD studies provide data for incidence, prevalence and disease mortality, however, not case fatality. Other national level sources may also be explored/used, and compare with estimates produce from GBD data and Dismod II.

**Dismod II** inputs are: (1) population numbers and mortality rates and (2) disease specific inputs.

Population and mortality

Within Dismod II, each setting (e.g. country) has a collection that consists of population numbers (preferably the same as used in GBD IHME studies, due to the mortality envelop) and all- cause mortality rates (numbers and calculate rates). The GBD provides 5-year age groups that are acceptable input parameters for Dismod II.

Disease inputs by age group and sex

Each setting collection has a given number of diseases. Dismod II works with at least three of: case fatality, prevalence, incidence, mortality (disease), case fatality, remission, duration and the relative risk for mortality. So far, we have been assuming that remission is zero for chronic diseases, that is to say, when people become diseased, they do not recover. Special care should be taken with this assumption, as the GBD data assumes remission for some diseases, for example cancers, where after 10 years cases recover, except for long term sequelae. Since GBD now provides prevalence, incidence and mortality, it may be best to use all three as Dismod II input parameters to compare the effect of the remission assumption by the GBD for some diseases.

#### 2.2 Code

Following the structure of Figure 2, we developed functions to perform sex and age cohorts calculations for the life table, disease life tables and potential impact fractions: run\_life\_table, run\_disease and and run\_pif. We also generated two functions for outputs: plot\_outputs and gen\_aggregate. The function plot\_outputs

Table 1: PMSLT inputs

| Input              | Source                                                                  | Comments                                                                                                                                                                                              |
|--------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life table         | Synthetic population per sex and age group                              | Age grouping in life table to match synthetic population                                                                                                                                              |
| Life table         | Synthetic population per sex and one-year age group                     | If one year age group is not<br>avabilable it can be derive using<br>interpolation from age groups data                                                                                               |
| Life table         | Global Burden of Disease (GBD) study per one-year age group and sex     | GBD data is in five-year age<br>groups, interpolation to derive<br>one-year age groups                                                                                                                |
| Disease life table | GBD data for prevalence, incidence and mortality and DISMOD II          | Two step process. First obtain disease and population data from GBD. Second, use Dismod II to derive internally consistent estimates for incidence and case fatality (PMSLT disease life table iputs) |
| Disease life table | Derive from disease prevalence and years lived with disability from GBD | Adjustments for comorbidities in later years of life to be applied                                                                                                                                    |

creates age-group and sex linear plots for specified outcomes (e.g. health-adjusted life years, incidence of diabetes) and gen\_aggregate adds up each cohort results. Functions were then used in a code script. In what follows, we explain each step in the development of the script. Here we also include code chunks, however, we also kept them separately in the MSLT folder, in the code file.

In what follows, we start explain the script step by step.

#### 2.2.1 Set up

We start by cleaning the global environment (1) to keep track of our works and ensure that the code is generating our desired outcomes. Then, we set up an option to avoid the use of scientific notation (2) and lastly we load the functions (3). The code chunks are shown in the rmarkdown output.

1) Clean Global Environment

```
rm (list = ls())
```

2) Avoid scientific notation

```
options(scipen=999)
```

3) Load functions

source("code/functions.R")

### **2.2.2** Inputs

Table 1 describes data needs for the PMSLT, here we expand on the data needs and mechanisms (Figure 3) to use the PMSLT approach in ITHIMR (Figure 1).

Initial case studies for the ITHIMR are: London, Sao Pablo, Delhi, Accra, Los Angeles and Edinburgh. Here, we will start with **Greater London** given the availability of disease epidemiology data from the GBD IHME study. For the rest of the case study cities data is available at the country level, hence, a scaling method is needed to reflect the local burden of disease.



Figure 3: Proportional multi-state life-table model. Three sections are presented in Figure 3: **Data input sources**, **Inputs PMSLT** and **PMSLT** mechanisms. The color coding from Data inputs sources to Inputs PMSLT link sources with inputs for the PMSLT. Solid arrows represent final inputs and dashed-arrows represent intermediate inputs that need further processing. Purple coding means a process and green coding represent change in mortality and disability prevalence rates to modify the life table parameters. Black color coding with white color font represent final model outcomes. For both, the life table and disease life table, two sets of each are simulated, one for the baseline and the other for the scenario.



Figure 4: Global Burden of Disease data results tool.

#### 2.2.2.1 Global Burden of Disease data

First, we explain how to obtain the data, second additional processing to derive data not reported (population) and one-year age groups (original data is in five-year age groups) and last procedure to use Dismod II. Data from the *Global Burden of Disease data* in Figure 3 can be download from here: http://ghdx.healthdata.org/gbd-results-tool. Figure 4 is a screenshot of the GHDx.

Table 2 specifies the selections to do for each of the tabs in Figure 2.

Once the selections described in Table 2 are made, the option \*Download CVS\*\* in the GHDx website is selected. A prompt comes up asking for an email address. The data is sent to the designated email address (within minutes) in ZIP format, unzip and use the code below to read the data (4). Here, we selected data for Greater London and England. The aim is to compare and derive scaling factors as for most cities the data is not available from the GBD and country level data may be used and scaled to the city level. Note that the data input requirement for the PMSLT, except population numbers, is in rates. Therefore the scaling is to better reflect the burden of an area, this is a different issue than working with numbers (e.g. total mortality numbers, total YLDs numbers) as in the ITHIM approach.

4) Read GBD data

```
GBDdata <- read.csv("data/UK/gbd2016.csv", stringsAsFactors = F)</pre>
```

The following codes serves to sort out the GBD data to the inputs required for the life table, disease life table and Dismod II

These data should be used to generate the general life table and disease life tables (Figure 3).

5) Change all upper cases to lower case and delete () from variables.

Table 2: Global burden of disease data

| Tab      | Selection                                                                                                                                                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base     | Single                                                                                                                                                                                   |
| Location | Case study city                                                                                                                                                                          |
| Year     | Latest available                                                                                                                                                                         |
| Context  | Cause                                                                                                                                                                                    |
| Age      | Under 5, 5 to 9, 10 to 14, 15 to 19, 20 to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 84, 89 to 89, 90 to 95, 95 plus |
| Metric   | Number, Rate                                                                                                                                                                             |
| Measure  | Deaths, YLDs, Prevalence, Incidence                                                                                                                                                      |
| Sex      | Male, Female                                                                                                                                                                             |
| Cause    | Total All causes, ischemic heart disease, etc                                                                                                                                            |

```
GBDdata <- mutate_all(GBDdata, funs(tolower))
GBDdata$measure[GBDdata$measure=="ylds (years lived with disability)"] <- "ylds"</pre>
```

6) Create age categories index in GBDdata (mid age, to match cohort running), total of 20 age groups. These are the age cohorts to simulate.

```
# 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97
GBDdata$age_cat [GBDdata$age =="under 5"] <- 2</pre>
GBDdata$age_cat [GBDdata$age =="5 to 9"] <- 7</pre>
GBDdata$age_cat [GBDdata$age =="10 to 14"] <- 12
GBDdata$age_cat [GBDdata$age =="15 to 19"] <- 17
GBDdata$age_cat [GBDdata$age =="20 to 24"] <- 22
GBDdata$age_cat [GBDdata$age =="25 to 29"] <- 27
GBDdata$age_cat [GBDdata$age =="30 to 34"] <- 32
GBDdata$age_cat [GBDdata$age =="35 to 39"] <- 37
GBDdata$age_cat [GBDdata$age =="40 to 44"] <- 42
GBDdata$age_cat [GBDdata$age =="45 to 49"] <- 47
GBDdata$age cat [GBDdata$age =="50 to 54"] <- 52
GBDdata$age_cat [GBDdata$age =="55 to 59"] <- 57
GBDdata$age cat [GBDdata$age =="60 to 64"] <- 62
GBDdata$age_cat [GBDdata$age =="65 to 69"] <- 67
GBDdata$age_cat [GBDdata$age =="70 to 74"] <- 72
GBDdata$age_cat [GBDdata$age =="75 to 79"] <- 77
GBDdata$age_cat [GBDdata$age =="80 to 84"] <- 82
GBDdata$age_cat [GBDdata$age =="85 to 89"] <- 87
GBDdata$age_cat [GBDdata$age =="90 to 94"] <- 92
GBDdata$age_cat [GBDdata$age =="95 plus"] <- 97</pre>
```

7) Create age and sex categories to obtain population numbers. Population numbers from GBD are used in Dismod II. For the Life table (Figure 3), the numbers may be from the synthetic population. For

now, the Life table is set up with population numbers derived from the GBD data.

```
GBDdata$sex_age_cat <- paste(GBDdata$sex,GBDdata$age_cat, sep = "_" )</pre>
```

8) Convert string variables to numeric to do calculations.

```
GBDdata$val <- as.numeric(as.character(GBDdata$val))</pre>
```

9) Generate population numbers for Greater London in a new data frame ("GBD\_population"). Note that there is data for England as well, which is used in a separate rmarkdown document (GBDCompare). Population numbers are derived from rates per 100,000 and total numbers of cases.

```
GBD_population <- filter(GBDdata, measure == "deaths", cause == "all causes",
metric == "rate" | metric == "number" ) %>% select(metric, age_cat, sex, val,
sex_age_cat, location)
```

10) Generate population numbers from given number of cases and rates per 100,000 people.

```
for (i in 1:nrow(GBD_population)) {
   if (GBD_population$metric[i] == "number") {
     GBD_population$five_year_population[i] <- GBD_population$val[i] * 100000/
     GBD_population$val[i + 2]}
   else {GBD_population$five_year_population[i] <- NA}
}</pre>
```

11) Remove rows with zero

```
GBD_population <- GBD_population[!is.na(GBD_population$five_year_population),]
```

12) Keep relevant variables

```
GBD_population <- filter(GBD_population) %>%
select(sex_age_cat, sex, age_cat, five_year_population, location)
```

13) Create data frames for Greater London to be later used for: a) interpolation of rates and b) PMLT cohorts.

```
GBD_population_GL <- filter(GBD_population, location == "greater london") %>%
select(sex_age_cat, age_cat, sex, five_year_population, location, sex_age_cat)
```

12) Check population total numbers

```
GreaterLondon <- sum(GBD_population_GL$five_year_population)
```

13) Generate data frames for Greater London with per person rates (per 100,000 in original data).

```
GBDGL <- filter(GBDdata, location == "greater london" & metric == "rate") %>%
select(measure, location, sex, age, metric, cause, val, age_cat, sex_age_cat)
GBDGL$one_rate <- GBDGL$val/100000</pre>
```

14) For the life table, we need to mortality and total yld rates in one year age intervals. The original data is in five years. Thus, the following code is used to interpolate a single-year age distribution form a

five-yearly distribution.

## Loop to generate interpolated rates for all cause mortality and ylds for males and females ## UPDATE WITH YLDS RATES ALL CAUSES ADJUSTED FOR ALL OTHER MODELLED DISEASES. i sex <- c("male", "female")</pre> i\_measure <- c("deaths", "ylds") #" (years lived with disability)") for(sex\_index in i\_sex) { for (measure\_index in i\_measure) { data <- filter(GBDGL, measure == measure\_index, sex == sex\_index,</pre> cause == "all causes") %>% select(measure, location, sex, age, metric, cause, val, age\_cat, one\_rate) assign(paste(sex\_index, measure\_index, "interpolated\_data", sep = "\_"), data) x=data\$age\_cat y=log(data\$one\_rate) interpolation\_func <- splinefun(x, y, method = "natural", ties = mean)</pre> interpolated <- as.data.frame(interpolation func(seq(0, 100, 1))) age <- seq(0,100,by=1)interpolated <- cbind(interpolated, age)</pre> interpolated[,1] <- exp(interpolated[,1])</pre> colnames(interpolated)[1] <- paste(measure\_index)</pre> ## Add column with sex to create age\_sex category to then merge with input\_life table interpolated\$sex <- paste(sex\_index)</pre> interpolated\$sex\_age\_cat <- paste(interpolated\$sex, interpolated\$age, sep = "\_")</pre> ## Change name of column death to mx and ylds to pyld\_rate to then merge ## with input\_life table if (colnames(interpolated)[1] == "deaths") colnames(interpolated)[1] <- paste("mx")</pre> else colnames(interpolated)[1] <- paste("pyld\_rate")</pre> # Name data frame assign(paste(sex\_index, measure\_index, "interpolated", sep = "\_"), interpolated) # plot(interpolated\$age,interpolated\$rate) ##Do graph with another layer for original rates in age groups for comparison purposes. p <- ggplot(data = interpolated, mapping = aes(age, interpolated[,1])) +</pre> geom\_line(aes(color = "Interpolated")) +

```
geom_point(
    data = data,
    mapping = aes(age_cat, one_rate, color = "Original")) +
    labs(colour="",x="Age",y="Rates", sep = " ") +
    labs (title = paste("Rates", sex_index, "all cause",
    measure_index, sep = " "), size=14) +
    theme_classic() +
    theme (plot.title = element_text(hjust = 0.5))
    print(p)
}
```

## Rates male all cause deaths



Figure 5: TRUE



Figure 6: TRUE



Figure 7: TRUE



Figure 8: TRUE

15) The following code brings together all the required data to create the inputs life table (Figure 3).

```
## Create empty data frame
input_life_table <- as.data.frame(matrix(0, ncol=2, nrow = 202))</pre>
## Give variables names (mx=total mortality rate,
## yldsx = total years lived with disability rates )
names(input_life_table) <- c("age", "sex")</pre>
## Populate life table: Age, 0 to 100
input_life_table[1:101, 1] <- c(0:100)
input_life_table[102:202, 1] <- c(0:100)
## Populate life table: sex, male, female
input_life_table[1:101, 2] <- "male"</pre>
input_life_table[102:202, 2] <- "female"</pre>
## Create variable age_sex to match with population data.
input_life_table$sex_age_cat <- paste(input_life_table$sex,input_life_table$age,
                                 sep = "_" )
##Populate life table: five_year_pop.
input_life_table <- merge(input_life_table, select(GBD_population_GL, c(sex_age_cat, five_year_populati
```

```
##Populate life table: mortality rates (from interpolated rates)
## Males mortality rates. NEED MATCHING NAMES
input_life_table <- merge(input_life_table, select(male_deaths_interpolated, c(sex_age_cat, mx)), by =
input_life_table <- merge(input_life_table, select(female_deaths_interpolated ,c(sex_age_cat, mx)), by
input_life_table <- merge(input_life_table, select(male_ylds_interpolated ,c(sex_age_cat, pyld_rate)) ,</pre>
input_life_table <- merge(input_life_table, select(female_ylds_interpolated ,c(sex_age_cat, pyld_rate))</pre>
## DISCUSS WITH ALI TO IMPROVE
input_life_table$mx <- ifelse(input_life_table$sex == "male",</pre>
input_life_table$mx.x, input_life_table$mx.y)
input_life_table$pyld_rate <- ifelse(input_life_table$sex == "male",</pre>
input_life_table$pyld_rate.x, input_life_table$pyld_rate.y)
## Drop redundant variables
input_life_table <- subset(input_life_table, select = -c(mx.y, mx.x, pyld_rate.x, pyld_rate.y))</pre>
## Cross check population numbers
sum(input_life_table$five_year_population, na.rm = TRUE)
## [1] 8778396
## Sort data by sex and age to use in life table function.
input_life_table<-input_life_table(order(input_life_table(sex, input_life_table(sex),))
```

16) Generate **baseline life tables** from input\_data\_frame using run\_life\_table function. Life tables are generated for each age (5-years) and sex cohort. It is assumed that current observed rates of mortality and disability are going to be observed in the future.

```
i_age_cohort <- c(22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97)

general_life_table_list_bl <- list()

index <- 1

for (age in i_age_cohort){
    for (sex in i_sex){
        # cat("age ", age, " and sex ", sex, "\n") #Uncomment to see index
        general_life_table_list_bl[[index]] <- run_life_table(in_idata = input_life_table,
        in_sex = sex, in_mid_age = age)
        index <- index + 1
    }
}

## Uncommnet to check life table list
# View(general_life_table_list_bl[[2]])</pre>
```

17) Generate baseline disease life tables using run\_disase function. Inputs of the disease life tables are: incidence, case fatality (Figure 3, purple shaded area) and disability weights. Internally consistent estimates of incidence and case fatality are derived from GBD data (by five-year age groups and sex) and Dismod II. Disability weights are derived from GBD disease specific YLDs and prevalence (by five-year age groups and sex) adjusted for all-cause YLDs (see section 2.1.1.4).

Note that Dismod II is an external software. The code below is used to generate the inputs for Dismod II using GBD data (see Figure 3, purple shaded area). Dismod II requires data for the collection (population numbers and all cause mortality rates) and data set (disease specific parameters). We will generate a data set with all inputs for dismod by 5 year-age (represent at mid age) groups and sex for five diseases (ischemic heart disease, ischemic stroke, diabetes mellitus, colon and rectum cancer and breast cancer-women). WE WILL NEED ADJUSTMENT FOR TO MATCH RRS TO DISEASES

(COLON AND RECTUM CANCER AND DIABETES MELLITUS). \*Code here is work in progress\*\*,

for now the disease input data is organised externally with excel.

## Use externaly generated inputs for for disease life table. The previous code will serve to to some o idata <- read.csv("data/UK/idata.csv", stringsAsFactors = F)</pre> ## Use run disease i disease <- c("ihd", "istroke", "diabetes", "colon cancer", "breast cancer") i sex <- c("male", "female")</pre> i\_age\_cohort <- c(22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97) disease\_life\_table\_list\_bl <- list()</pre> index <- 1 for (age in i\_age\_cohort){ for (sex in i\_sex){ for (disease in i disease) { # Exclude breast\_cancer for Males if (sex == "male" && disease == "breast cancer"){ #  $cat("\n")$  #Uncomment to see list } else { # cat("age ", age, " sex ", sex, "and disease", disease, "\n") #Uncomment to see list disease\_life\_table\_list\_bl[[index]] <- run\_disease(in\_idata = idata, in\_sex = sex, in\_mid\_age = index <- index + 1</pre> } } } } ##### Uncommnet to check disease life table list # View(disease\_life\_table\_list\_bl[[8]])

18) Generate mock change in incidence of disease to generate scenario life tables. In the final version, this will come from the calculated PIFs by disease. PIFs are applied here to incidence, however, may also be applied to case fatality, depending on the RRs. Also, we can include time delays from change in exposure to change in health outcomes via the PIF.

```
## Create value to use as factor changing incidence rates.
incidence_change <- 0.95
#####Generate scenario incidence (for each disease)
incidence_sc <- list()</pre>
index <- 1
for (age in i_age_cohort){
  for (sex in i_sex){
    for (disease in i_disease) {
      # Exclude breast_cancer for Males
      if (sex == "male" && disease == "breast_cancer"){
        # cat("\n") # Uncomment to see list
      }
      else {
        incidence_sc[[index]] <- disease_life_table_list_bl[[index]]$incidence_disease * incidence_chan
        index <- index + 1</pre>
     }
    }
 }
}
##### Uncommnet to check scenario incidence
# View(incidence_sc[[1]])
```

19) Use scenario incidence to calculate scenario disease life tables.

```
disease_life_table_list_sc <- list()
index <- 1
for (age in i_age_cohort){
  for (sex in i_sex){
    for (disease in i_disease) {
      # Exclude breast_cancer for Males</pre>
```

```
if (sex == "male" && disease == "breast_cancer"){
      # cat("\n")
    }
    else {
      # cat("age ", age, " sex ", sex, "and disease", disease, "\n")
      # modify idata's incidence for the said scenario
     td1 <- idata
     td1[td1$age >= age & td1$sex == sex,][[paste("incidence", disease, sep = "_")]] <- incidence_sc
      # Instead of idata, feed td to run scenarios
      disease_life_table_list_sc[[index]] <- run_disease(in_idata = td1, in_sex = sex, in_mid_age = a
      disease_life_table_list_sc[[index]] diff_inc_disease <- disease_life_table_list_sc[[index]] inc_disease <- disease_life_table_list_sc[[index]] inc_disease
      index <- index + 1</pre>
  }
 }
}
##### Uncommnet to check scenario life tables
# View(disease_life_table_list_sc[[1]])
```

20) Calculate life tables scenario.

```
#####Generate total change in mortality rate
###### Sum mortality rate scenarios (mx_sc_total)

mx_sc_total <- list()
l_index <- 1
index <- 1
index <- 1
for (age in i_age_cohort){
    for (sex in i_sex){
        mortality_sum <- NULL
        create_new <- T

    for (disease in i_disease) {
        if (sex == "male" && disease == "breast_cancer"){
            # cat("\n")
        }else{

        if (create_new){
            mortality_sum <- select(disease_life_table_list_sc[[index]], c('age', 'sex')))</pre>
```

```
mortality_sum$total <- 0</pre>
          create_new <- F</pre>
          mortality_sum$total <- mortality_sum$total + (disease_life_table_list_sc[[index]]$diff_mort_d
        }else{
          mortality_sum$total <- mortality_sum$total + (disease_life_table_list_sc[[index]]$diff_mort_d
        }
        # cat(age, " - ", sex," - ", disease," - ", index, " - ", l_index, "\n")
        index <- index + 1</pre>
      }
    }
    mx_sc_total[[l_index]] <- mortality_sum</pre>
    l_index <- l_index + 1</pre>
  }
}
##### Uncommnet to check sceanrio mortality and changes
# View(mx_sc_total[[1]])
####Generate total change in prevalent yld rates
#####total ylds rate= sum (change prevalence disease*dw)
pylds_sc_total <- list()</pre>
l_{index} < -1
index <- 1
for (age in i_age_cohort){
  for (sex in i_sex){
    pylds_sum <- NULL</pre>
    create_new <- T</pre>
    for (disease in i_disease) {
      if (sex == "male" && disease == "breast_cancer"){
        # cat("\n")
      }else{
        if (create_new){
          pylds_sum <- select(disease_life_table_list_sc[[index]], c('age', 'sex'))</pre>
          pylds_sum$total <- 0</pre>
          create_new <- F</pre>
          pylds_sum$total <- pylds_sum$total + (disease_life_table_list_sc[[index]]$diff_pylds_diseas</pre>
        }else{
```

```
pylds_sum$total <- pylds_sum$total + (disease_life_table_list_sc[[index]]$diff_pylds_disease)
       }
       # cat(age, " - ", sex," - ", disease," - ", index, " - ", l_index, "\n")
       index <- index + 1
     }
   pylds_sc_total[[l_index]] <- pylds_sum</pre>
   l_index <- l_index + 1</pre>
 }
}
##### Uncommnet to check scenario pyld change
# View(pylds_sc_total[[2]])
###Original mortality rate is modified by the mx_sc_total (total change in mortality from diseases)
###Original pyld rate is modified by the change in each disease pylds
general_life_table_list_sc <- list()</pre>
index <- 1
for (age in i_age_cohort){
 for (sex in i_sex){
   # cat("age ", age, " and sex ", sex, "\n")
   # modify idata's mortality and pyld total for the said scenario
   td2 <- input_life_table
   td2[td2$age >= age & td2$sex == sex,][[paste("mx")]] <- general_life_table_list_bl[[index]]$mx + mx
   td2[td2$age >= age & td2$sex == sex,][[paste("pyld_rate")]] <- general_life_table_list_bl[[index]]$
   # Instead of idata, feed td to run scenarios
   general_life_table_list_sc[[index]] <- run_life_table(in_idata = td2, in_sex = sex, in_mid_age = ag</pre>
   index <- index + 1</pre>
 }
##### Uncommnet to check scenario life tables
# View(general_life_table_list_sc[[1]])
# View(general_life_table_list_bl[[2]])
```

#### 21) Generate list of outputs by age and sex

```
#####In the following list "output_life_table", 32 data frames are nested per age and sex cohort
output_burden <- list()</pre>
1 index <- 1
index <-1
for (age in i_age_cohort){
 for (sex in i_sex){
    #Males do not have breast cancer, that is why we need the if/else.
    #We create a TRUE/FALSE variable for the loop to move into the next disease
    create_new <- T</pre>
    for (disease in i_disease) {
      if (sex == "male" && disease == "breast_cancer"){
        # cat("\n")
      }else{
        if (create new){
          output_burden_sc <- select(disease_life_table_list_sc[[index]], c('age', 'sex', 'incidence_di
          names(output_burden_sc) [names(output_burden_sc) == 'incidence_disease'] <- paste('incidence_d</pre>
          names(output_burden_sc) [names(output_burden_sc) == 'mx'] <- paste('mx', disease, "sc", sep =</pre>
          names(output_burden_sc) [names(output_burden_sc) == 'px'] <- paste('px', disease, "sc", sep =</pre>
          output_burden_bl <- select(disease_life_table_list_bl[[index]], c('incidence_disease', 'mx',</pre>
          names(output_burden_bl)[names(output_burden_bl) == 'incidence_disease'] <- paste('incidence_d</pre>
          names(output_burden_bl) [names(output_burden_bl) == 'mx'] <- paste('mx', disease, "bl", sep =</pre>
          names(output_burden_bl)[names(output_burden_bl) == 'px'] <- paste('px', disease, "bl", sep =</pre>
          ####New list to add calculations for changes in burden of disease (incidence and mortality nu
          output burden change <- list()</pre>
          output_burden_change$inc_num_bl <- disease_life_table_list_bl[[index]]$incidence_disease * (1
          output_burden_change$inc_num_sc <- disease_life_table_list_sc[[index]]$incidence_disease * (1
          output_burden_change$inc_num_diff <- (disease_life_table_list_sc[[index]]$incidence_disease *
          output_burden_change$mx_num_bl <- disease_life_table_list_bl[[index]]$mx * general_life_table
          output_burden_change$mx_num_sc <- disease_life_table_list_sc[[index]]$mx * general_life_table
          output_burden_change$mx_num_diff <- (disease_life_table_list_sc[[index]]$mx * general_life_ta
          names(output_burden_change) [names(output_burden_change) == 'inc_num_bl'] <- paste('inc_num_bl')</pre>
          names(output_burden_change) [names(output_burden_change) == 'inc_num_sc'] <- paste('inc_num_sc</pre>
          names(output_burden_change) [names(output_burden_change) == 'inc_num_diff'] <- paste('inc_num_</pre>
```

```
names(output_burden_change) [names(output_burden_change) == 'mx_num_sc'] <- paste('mx_num_sc',</pre>
  names(output_burden_change)[names(output_burden_change) == 'mx_num_diff'] <- paste('mx_num_di
  ###Bind all lists
  output_burden_sc <- cbind(output_burden_sc, output_burden_bl)</pre>
  output_burden_sc <- cbind(output_burden_sc, output_burden_change)</pre>
  create new <- F
  #Here the calculations above are repeated, here is where the F is telling to move into the ne
}else{
  td3 <- select(disease_life_table_list_sc[[index]], c('incidence_disease', 'mx', 'px'))
  names(td3)[names(td3) == 'incidence_disease'] <- paste('incidence_disease', disease, "sc", se</pre>
  names(td3)[names(td3) == 'mx'] <- paste('mx', disease, "sc", sep = "_")</pre>
  names(td3)[names(td3) == 'px'] <- paste('px', disease, "sc", sep = "_")</pre>
  td4 <- select(disease_life_table_list_bl[[index]], c('incidence_disease', 'mx', 'px'))
  names(td4) [names(td4) == 'incidence_disease'] <- paste('incidence_disease', disease, "bl", se</pre>
  names(td4)[names(td4) == 'mx'] <- paste('mx', disease, "bl", sep = "_")</pre>
  names(td4)[names(td4) == 'px'] <- paste('px', disease, "bl", sep = "_")</pre>
  output_burden_change2 <- list()</pre>
  output_burden_change2\sinc_num_bl <- disease_life_table_list_bl[[index]]\sincidence_disease * (
  output_burden_change2\sinc_num_sc <- disease_life_table_list_sc[[index]]\sincidence_disease * (
  output_burden_change2\sinc_num_diff <- (disease_life_table_list_sc[[index]]\sincidence_disease
  output_burden_change2\smx_num_bl <- disease_life_table_list_bl[[index]]\smx * general_life_tabl
  output_burden_change2\smx_num_sc <- disease_life_table_list_sc[[index]]\smx * general_life_tabl
  output_burden_change2\sum_num_diff <- (disease_life_table_list_sc[[index]]\sum_* general_life_t
  names(output_burden_change2) [names(output_burden_change2) == 'inc_num_bl'] <- paste('inc_num_bl')</pre>
  names(output_burden_change2) [names(output_burden_change2) == 'inc_num_sc'] <- paste('inc_num_</pre>
  names(output_burden_change2) [names(output_burden_change2) == 'inc_num_diff'] <- paste('inc_num_diff')</pre>
  names(output_burden_change2) [names(output_burden_change2) == 'mx_num_bl'] <- paste('mx_num_bl</pre>
  names(output_burden_change2) [names(output_burden_change2) == 'mx_num_sc'] <- paste('mx_num_sc</pre>
```

names(output\_burden\_change) [names(output\_burden\_change) == 'mx\_num\_bl'] <- paste('mx\_num\_bl',</pre>

```
names(output_burden_change2) [names(output_burden_change2) == 'mx_num_diff'] <- paste('mx_num_output_burden_change2)</pre>
          ###Bind all lists
          output_burden_sc <- cbind(output_burden_sc, td3)</pre>
          output_burden_sc <- cbind(output_burden_sc, td4)</pre>
          output_burden_sc$age_cohort <- age
          output_burden_sc <- cbind(output_burden_sc, output_burden_change2)</pre>
        }
        # cat(age, " - ", sex," - ", disease," - ", index, " - ", l_index, "\n")
        index <- index + 1
      }
    }
    # general_life_table_list_sc and general_life_table_list_bl (Lx)
    output_burden_lf_sc <- select(general_life_table_list_sc[[l_index]], c('Lx', 'Lwx'))</pre>
    names(output_burden_lf_sc)[names(output_burden_lf_sc) == 'Lx'] <- paste('Lx', "sc", sep = "_")</pre>
    names(output_burden_lf_sc)[names(output_burden_lf_sc) == 'Lwx'] <- paste('Lwx', "sc", sep = "_")</pre>
    output_burden_lf_bl <- select(general_life_table_list_bl[[l_index]], c('Lx', 'Lwx'))</pre>
    names(output_burden_lf_bl)[names(output_burden_lf_bl) == 'Lx'] <- paste('Lx', "bl", sep = "_")</pre>
    names(output_burden_lf_bl)[names(output_burden_lf_bl) == 'Lwx'] <- paste('Lwx', "bl", sep = "_")</pre>
    output_burden_lf_sc$Lx_diff <- general_life_table_list_bl[[l_index]]$Lx - general_life_table_list_s
    output_burden_lf_sc$Lwx_diff <- general_life_table_list_bl[[l_index]] $Lwx - general_life_table_list
    output burden sc <- cbind(output burden sc, output burden lf sc)
    output_burden_sc <- cbind(output_burden_sc, output_burden_lf_bl)</pre>
    output_burden[[l_index]] <- output_burden_sc</pre>
    l_index <- l_index + 1</pre>
 }
}
#Uncomment to check
# View(output_burden[[32]])
```

22) Combine all lists of outputs in a data frame to facilitate extraction of outcomes of interest and plotting.

#####Generate a data frame for all results and create function to get outcomes.

output\_df <- plyr::ldply(output\_burden, rbind)

#Remove variables that are not used in the generation of outputs. CHANGE THIS NAMES, TOO LONG

output\_df <- subset(output\_df, select = -c(incidence\_disease\_ihd\_bl, incidence\_disease\_ihd\_sc, incidence\_disease\_ind\_sc)

incidence\_disease\_colon\_cancer\_bl, incidence\_disease\_colon\_cancer\_sc, mx\_ihd\_bl, mx\_ihd\_sc, mx\_istroke

23) Plot outcomes for each age and sex cohort using created function. ADD A LOOP TO GENERATE ALL OUTCOMES FOR IN\_AGE, IN\_POPULATION, IN\_OUTCOMES AND IN\_LEGEND. FIX THE COLORS IN THE FUNCTION.

```
## Do a loop, the first in_outcomes is age.
i_outcome <- c("mx", "inc")</pre>
for (age in i_age_cohort){
  for (sex in i_sex) {
     for (disease in i_disease){
       for (outcome in i_outcome) {
       if (sex == "male" && disease == "breast_cancer"){
         # cat("\n")
       }else{
 p <- plot_output(in_data = output_df, in_age = age, in_population = sex, in_outcomes = c("age", paste(
           }
         }
       }
     }
   }
 }
```



Figure 9: TRUE



Figure 10: TRUE



Figure 11: TRUE



Figure 12: TRUE



Figure 13: TRUE



Figure 14: TRUE



Figure 15: TRUE



Figure 16: TRUE



Figure 17: TRUE



Figure 18: TRUE



Figure 19: TRUE



Figure 20: TRUE



Figure 21: TRUE



Figure 22: TRUE



Figure 23: TRUE



Figure 24: TRUE



Figure 25: TRUE



Figure 26: TRUE



Figure 27: TRUE



Figure 28: TRUE



Figure 29: TRUE



Figure 30: TRUE



Figure 31: TRUE



Figure 32: TRUE



Figure 33: TRUE



Figure 34: TRUE



Figure 35: TRUE



Figure 36: TRUE



Figure 37: TRUE



Figure 38: TRUE



Figure 39: TRUE



Figure 40: TRUE



Figure 41: TRUE



Figure 42: TRUE



Figure 43: TRUE



Figure 44: TRUE



Figure 45: TRUE



Figure 46: TRUE



Figure 47: TRUE



Figure 48: TRUE



Figure 49: TRUE



Figure 50: TRUE



Figure 51: TRUE



Figure 52: TRUE



Figure 53: TRUE



Figure 54: TRUE



Figure 55: TRUE



Figure 56: TRUE



Figure 57: TRUE



Figure 58: TRUE



Figure 59: TRUE



Figure 60: TRUE



Figure 61: TRUE



Figure 62: TRUE



Figure 63: TRUE



Figure 64: TRUE



Figure 65: TRUE



Figure 66: TRUE



Figure 67: TRUE



Figure 68: TRUE



Figure 69: TRUE



Figure 70: TRUE



Figure 71: TRUE



Figure 72: TRUE



Figure 73: TRUE



Figure 74: TRUE



Figure 75: TRUE



Figure 76: TRUE



Figure 77: TRUE



Figure 78: TRUE



Figure 79: TRUE



Figure 80: TRUE



Figure 81: TRUE



Figure 82: TRUE



Figure 83: TRUE



Figure 84: TRUE



Figure 85: TRUE



Figure 86: TRUE



Figure 87: TRUE



Figure 88: TRUE



Figure 89: TRUE



Figure 90: TRUE



Figure 91: TRUE



Figure 92: TRUE



Figure 93: TRUE



Figure 94: TRUE



Figure 95: TRUE



Figure 96: TRUE



Figure 97: TRUE



Figure 98: TRUE



Figure 99: TRUE



Figure 100: TRUE



Figure 101: TRUE



Figure 102: TRUE



Figure 103: TRUE



Figure 104: TRUE



Figure 105: TRUE



Figure 106: TRUE



Figure 107: TRUE



Figure 108: TRUE



Figure 109: TRUE



Figure 110: TRUE



Figure 111: TRUE



Figure 112: TRUE



Figure 113: TRUE



Figure 114: TRUE



Figure 115: TRUE



Figure 116: TRUE



Figure 117: TRUE



Figure 118: TRUE



Figure 119: TRUE



Figure 120: TRUE



Figure 121: TRUE



Figure 122: TRUE



Figure 123: TRUE



Figure 124: TRUE



Figure 125: TRUE



Figure 126: TRUE



Figure 127: TRUE



Figure 128: TRUE



Figure 129: TRUE



Figure 130: TRUE



Figure 131: TRUE



Figure 132: TRUE



Figure 133: TRUE



Figure 134: TRUE



Figure 135: TRUE



Figure 136: TRUE



Figure 137: TRUE



Figure 138: TRUE



Figure 139: TRUE



Figure 140: TRUE



Figure 141: TRUE



Figure 142: TRUE



Figure 143: TRUE



Figure 144: TRUE



Figure 145: TRUE



Figure 146: TRUE



Figure 147: TRUE



Figure 148: TRUE



Figure 149: TRUE



Figure 150: TRUE



Figure 151: TRUE



Figure 152: TRUE



Figure 153: TRUE



Figure 154: TRUE



Figure 155: TRUE



Figure 156: TRUE



Figure 157: TRUE



Figure 158: TRUE



Figure 159: TRUE



Figure 160: TRUE



Figure 161: TRUE



Figure 162: TRUE



Figure 163: TRUE



Figure 164: TRUE



Figure 165: TRUE



Figure 166: TRUE



Figure 167: TRUE



Figure 168: TRUE



Figure 169: TRUE



Figure 170: TRUE



Figure 171: TRUE



Figure 172: TRUE



Figure 173: TRUE



Figure 174: TRUE



Figure 175: TRUE



Figure 176: TRUE



Figure 177: TRUE



Figure 178: TRUE



Figure 179: TRUE



Figure 180: TRUE



Figure 181: TRUE



Figure 182: TRUE



Figure 183: TRUE



Figure 184: TRUE



Figure 185: TRUE



Figure 186: TRUE



Figure 187: TRUE



Figure 188: TRUE



Figure 189: TRUE



Figure 190: TRUE



Figure 191: TRUE



Figure 192: TRUE



Figure 193: TRUE



Figure 194: TRUE



Figure 195: TRUE



Figure 196: TRUE



Figure 197: TRUE



Figure 198: TRUE



Figure 199: TRUE



Figure 200: TRUE



Figure 201: TRUE



Figure 202: TRUE



Figure 203: TRUE



Figure 204: TRUE



Figure 205: TRUE



Figure 206: TRUE



Figure 207: TRUE



Figure 208: TRUE



Figure 209: TRUE



Figure 210: TRUE



Figure 211: TRUE



Figure 212: TRUE



Figure 213: TRUE



Figure 214: TRUE



Figure 215: TRUE



Figure 216: TRUE



Figure 217: TRUE



Figure 218: TRUE



Figure 219: TRUE



Figure 220: TRUE



Figure 221: TRUE



Figure 222: TRUE



Figure 223: TRUE



Figure 224: TRUE



Figure 225: TRUE



Figure 226: TRUE



Figure 227: TRUE



Figure 228: TRUE



Figure 229: TRUE



Figure 230: TRUE



Figure 231: TRUE



Figure 232: TRUE



Figure 233: TRUE



Figure 234: TRUE



Figure 235: TRUE



Figure 236: TRUE



Figure 237: TRUE



Figure 238: TRUE



Figure 239: TRUE



Figure 240: TRUE



Figure 241: TRUE



Figure 242: TRUE



Figure 243: TRUE



Figure 244: TRUE



Figure 245: TRUE



Figure 246: TRUE



Figure 247: TRUE



Figure 248: TRUE



Figure 249: TRUE



Figure 250: TRUE



Figure 251: TRUE



Figure 252: TRUE



Figure 253: TRUE



Figure 254: TRUE



Figure 255: TRUE



Figure 256: TRUE



Figure 257: TRUE



Figure 258: TRUE



Figure 259: TRUE



Figure 260: TRUE



Figure 261: TRUE



Figure 262: TRUE



Figure 263: TRUE



Figure 264: TRUE



Figure 265: TRUE



Figure 266: TRUE



Figure 267: TRUE



Figure 268: TRUE



Figure 269: TRUE



Figure 270: TRUE



Figure 271: TRUE



Figure 272: TRUE



Figure 273: TRUE



Figure 274: TRUE



Figure 275: TRUE





Figure 277: TRUE



Figure 278: TRUE



Figure 279: TRUE



Figure 280: TRUE



Figure 281: TRUE



Figure 282: TRUE



Figure 283: TRUE



Figure 284: TRUE



Figure 285: TRUE



Figure 286: TRUE



Figure 287: TRUE



Figure 288: TRUE



Figure 289: TRUE



Figure 290: TRUE



Figure 291: TRUE



Figure 292: TRUE



Figure 293: TRUE



Figure 294: TRUE



Figure 295: TRUE



Figure 296: TRUE

paste(age, sex, disease, outcome, sep = " ")

24) Add up all outcomes per year of simulation with generated function.

```
####Generate data frame with all outputs to graph total change in burden by simulation year.
###first, need to run function for males and females separetly, in_cohorts indicates the number of age
####include. To show all select 16. what is specified in in_outcomes will be graphed or can also be pre
aggregate_frame_males <- gen_aggregate(in_data = output_df, in_cohorts = 16, in_population = "male", in
aggregate_frame_females <- gen_aggregate(in_data = output_df, in_cohorts = 16, in_population = "female"
#####The following adds up both males and females
# Remove non-numeric columns starting with age and sex
aggregate_frame_males <- aggregate_frame_males %>% select(-starts_with("age"), -starts_with("sex"))

# Create a copy of aggregate_frame_females
total_aggr <- aggregate_frame_females
# Add aggregate_frame_males values to it</pre>
```

```
for (i in 1:ncol(aggregate_frame_females)){
  total_aggr[i] <- total_aggr[i] + aggregate_frame_males[i]
}
total_aggr$sim_year <- seq.int(nrow(total_aggr))</pre>
```

25) Plots using total aggregated change in burden.

```
####This plot has to be customised to in_outcomes, here, only totals shown, but specifications are up t
####[] is used here to indicate the number of simulation years into the future.
####Disease outcomes has to be changed to the outcome of interest
disease_outcome <- "Health adjusted life years"</pre>
total_plot <- ggplot(total_aggr[1:79,], aes(x = sim_year)) +</pre>
  geom_line(mapping = aes(y = total_Lx_bl, colour = "total_Lx_bl")) +
 theme_classic() +
  geom_hline(yintercept=0, linetype="dashed", color = "black") +
  geom_line(mapping = aes(y = total_Lx_sc, colour = "total_total_Lx_sc")) +
  geom_line(mapping = aes(y = total_Lx_diff, colour = "total_Lx_diff")) +
  xlab ("Simulation years") + ylab ("Cases") + labs (title = paste(disease_outcome)) +
  theme(plot.title = element_text(hjust = 0.5, size = 12)) +
  scale_color_discrete(name = paste(""), labels = c("Baseline", "Difference", "Scenario")) +
  theme(plot.title = element_text(hjust = 0.5))
#Print to view
print(total_plot)
```



Figure 297: TRUE

## 3 Comments

## 3.1 Road injuries in the PMsLT

The disease model used in each of the disease life table is not directly applicable to road injuries, however, similar concept can be follow. Firstly, changes in road fatalities impact on the overall mortality rate, hence, by knowing the road fatality rates for baseline and scenarios, we will be able to incorporate changes to mortality attributable to road fatalities. For road injuries, methods developed by Kavi Bhalla and Marko Tanio (REFS) that derive the average YLD attributable to life long and short term injuries can be applied to derive the change in total YLDs (CHECK THAT THESE WERE DEVELOPED AS INCIDENCE YLDs).MT's methods assumes that injuries do not reduce the life expectancy of the injured person.

## References

Barendregt, J.J., and J.L. Veerman. 2010. "Categorical Versus Continuous Risk Factors and the Calculation of Potential Impact Fractions." Journal Article. *J Epidemiol Community Health* 64 (3): 209–12.

doi:10.1136/jech.2009.090274.

Blakely, T., L. J. Cobiac, C. L. Cleghorn, A. L. Pearson, F. S. Deen, G. Kvizhinadze, N. Nghiem, M. McLeod, and N. Wilson. 2015. "Health, Health Inequality, and Cost Impacts of Annual Increases in Tobacco Tax: Multistate Life Table Modeling in New Zealand." Journal Article. *PLoS Med* 12. doi:10.1371/journal.pmed.1001856.

Briggs, Adam, Peter Scarborough, and Adrian Smith. 2016. "Modelling in Public Health." Book Section. In *Public Health Intelligence: Issues of Measure and Method*, edited by Krishna Regmi and Ivan Gee, 67–90. Cham: Springer International Publishing. doi:10.1007/978-3-319-28326-5\_4.

Cobiac, L.J., T. Vos, and J.J. Barendregt. 2009. "Cost-Effectiveness of Interventions to Promote Physical Activity: A Modelling Study." Journal Article. *Plos Med* 6 (7): e1000110–e1000110. doi:10.1371/journal.pmed.1000110.

Gold, Marthe R., David Stevenson, and Dennis G. Fryback. 2002. "HALYs and Qalys and Dalys, Oh My: Similarities and Differences in Summary Measures of Population Health." Journal Article. *Annu Rev Public Health* 23 (1): 115–34. doi:doi:10.1146/annurev.publhealth.23.100901.140513.

Murray, Christopher J. L., Majid Ezzati, Abraham D. Flaxman, Stephen Lim, Rafael Lozano, Catherine Michaud, Mohsen Naghavi, et al. 2012. "GBD 2010: Design, Definitions, and Metrics." Journal Article. *The Lancet* 380 (9859): 2063–6. doi:10.1016/S0140-6736(12)61899-6.

Roux, L., M. Pratt, and T. O. Tengs. 2008. "Cost Effectiveness of Community-Based Physical Activity Interventions." Journal Article. Am J Prev Med 35. doi:10.1016/j.amepre.2008.06.040.

Vos, T., R. Carter, J. J Barendregt, Mihalopoulos C., JL. Veerman, A. Magnus, L. Cobiac, Bertram MY., and AL. Wallace. 2010. "Assessing Cost-Effectiveness in Prevention (Ace-Prevention): Final Report." Report.