DEFI-IA 2022

JASY

Jiawen / Adja / Salamata / Younes 5MA

Sommaire

Preprocessing / Feature Engineering / Exploration des données

- Imputation des valeurs manquantes
- Analyse descriptive

Modèle de régression

Approche série temporelle

ARIMA

Modèles de Deep Learning: LSTM et CNN

Autres approches de Machine Learning

Modèles linéaires et non linéaires

Modèles de Deep Learning

Ouverture

Classification suivie d'une régression

Preprocessing / Feature Engineering / Exploration des données

Imputation des valeurs manquantes

- On considère la moyenne des mesures par jour pour les variables ff, t, td, hu et dd.
- Utilisation du module geopy pour trouver la distance entre deux stations en se servant de leurs longitudes et de leurs latitudes.
- Calcul d'une matrice de distance par paires de stations.
- Imputation des valeurs manquantes par interpolation

Preprocessing / Feature Engineering / Exploration des données

Imputation des valeurs manquantes

• Sur l'échantillon d'apprentissage :

Remplacement d'un NaN par la valeur de la station la plus proche (disponibilité de la valeur sur un rayon de cinq stations)

- Sur l'échantillon test
 - Construction de clusters de stations
 - ☐ Calcul de la moyenne par jour pour chaque cluster
 - Remplacement d'un NaN par la moyenne de son cluster le même jour ou la date la plus récente si cette valeur n'est pas disponible.

number_sta	0.00	0.00
date	0.00	0.00
td	32.13	1.28
hu	32.07	10.52
ff	39.48	10.54
t	4.92	18.12
dd	39.50	18.12

Preprocessing / Feature Engineering / Exploration des données

Analyse descriptive

Arima:

Test Dickey-Fuller: p-valeur = 0.0005

MAPE = 154.04

MAPE = 187.80

Méthodologie autour des méthodes de Deep learning

- 1. Construction d'une matrice 1093x325 (pluviométrie par jour et par station)
- 2. Transformation logarithmique
- 3. Séparation en des matrices X (de taille 60x325) et un vecteur y (de taille 325)
- 4. Constitution des échantillons d'apprentissage et de test
- 5. Implémentation du réseau de neurone
- 6. Récupération des ld à prédire
- 7. Seuillage des valeurs négatives
- 8. Calcul du MAPE

```
2.68102153, 2.68784749],

[0.18232156, 0. ],

[0.58778666, 0. ], X

[1.5260563 , 1.28093385], X

[2.07944154, 2.17475172],

[0. , 0. ], y

[2.17475172, 2.21920348], y

[1.02961942, 0.58778666],

[2.28238239, 2.10413415],

[1.7227666 , 2.02814825],

[0.33647224, 0. ],
```

RNN-LSTM bidirectionnels

Model: "sequential"

Layer (type)	Output Shape	Param #
masking (Masking)	(None, 60, 325)	0
bidirectional (Bidirectiona 1)	(None, 400)	841600
repeat_vector (RepeatVector)	(None, 1, 400)	0
bidirectional_1 (Bidirectio nal)	(None, 1, 200)	400800
dropout (Dropout)	(None, 1, 200)	0
time_distributed (TimeDistr ibuted)	(None, 1, 325)	65325

Mean Absolute Percentage Error (MAPE): 32.47 %

200

250

300

100

150

CNN

Mean Absolute Percentage Error (MAPE): 38.94 %

Model: "sequential_1"

Layer (type)	Output Shape	Param #
masking_1 (Masking)	(None, 60, 325)	0
conv1d_2 (Conv1D)	(None, 59, 64)	41664
conv1d_3 (Conv1D)	(None, 58, 32)	4128
max_pooling1d_1 (MaxPool 1D)	ling (None, 29, 32)	0
flatten_1 (Flatten)	(None, 928)	0
dense_2 (Dense)	(None, 600)	557400
dropout_1 (Dropout)	(None, 600)	0
dense_3 (Dense)	(None, 325)	195325

Total params: 798,517 Trainable params: 798,517 Non-trainable params: 0

Modèle de régression-Autres approches

Modèles linéaires et non linéaires

Algorithmes	Meilleur MAPE sur les quatre modèles
Régression linéaire	50
CART	49
Forêts aléatoires	52
Perceptrons	47

Modèle 1: t, td, hu, dd et ff

Modèle 2: t, td, hu, dd, ff et forecast

Modèle 3: t, td, hu, dd, ff, forecast, coordonnées et saison

Modèle 4: t, hu, dd, ff, forecast, coordonnées et saison

Model:	"sequential	2"

Layer (type)	Output Shap	e Param #
Dense_n1 (Dense)	(None, 64)	384
Dense_n2 (Dense)	(None, 64)	4160
Dense_n3 (Dense)	(None, 32)	2080
Output (Dense)	(None, 1)	33

Modèle de régression-Autres approches

XGBoost

Nous approchons le gradient et l'hessienne de MAPE au moyen de Huber loss.

$$L_\delta(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta\,|y-f(x)| - rac{1}{2}\delta^2 & ext{otherwise}. \end{cases}$$

Modèle de régression-Autres approches

Réseau de neurones

Layer (type)	Output Shape	Param #
Linear-1	[-1, 136000, 32]	448
Tanh-2	[-1, 136000, 32]	0
Linear-3	[-1, 136000, 16]	528
Tanh-4	[-1, 136000, 16]	0
Linear-5	[-1, 136000, 1]	17
Total params: 993 Trainable params: 993 Non-trainable params: 0		
Input size (MB): 6.74 Forward/backward pass size Params size (MB): 0.00 Estimated Total Size (MB):		

```
MAPE = 30.213 sur TrainSet
MAPE = 31.328 sur TestSet
```

Ouverture

Classifier

Classifier	accuracy_score(onDataset2)	accuracy_score(onDataset3)
ExtraTreesClassifier	0.789	0.741
RandomForestClassifier	0.818	0.725
Ada Boost Classifier	$\boldsymbol{0.834}$	0.727
BaggingClassifier	0.715	0.715
DecisionTreeClassifier	0.720	0.666
${\bf Gradient Boosting Classifier}$	0.806	0.729
XGBClassifier	0.812	0.724

Ouverture

Regressor

```
Avec XGBoost et Dataset2
MAPE = 31.417 -> 31.260 AMELIORATION!
```

