Examen d'instrumentation

Consignes

- Indiquez immédiatement vos nom, prénom et section en bas de CHAQUE page
- Documents et calculatrices graphiques ou avec mémoire **NE SONT PAS AUTORISES**.
- L'examen dure **3h00**
- L'examen est coté au total sur 40 points (ramené ensuite sur 20 points)
- Répondez directement dans les cases prévues à cet effet
- Décrivez le raisonnement qui a conduit à chaque réponse (la longueur de l'emplacement prévu pour la réponse vous indique approximativement la longueur du développement attendu)
- Efforcez-vous d'écrire le plus clairement et le plus lisiblement possible

NOM:	
PRENOM:	
SECTION:	

Question 1 / 10pts

Une société désire réaliser un système de mesure de la température de précision à un canal pour un thermostat industriel. Les spécifications de cette chaine d'acquisition vous sont fournies :

- La température doit pouvoir être mesurée entre -50°C et +100°C
- La puissance max est budgétée à 7.5 mW
- Précision sur la température de 0.01 10⁻³ °C
- Bruit sur la mesure inférieur à 0.02 10⁻³ °C _{RMS}
- On veut mesurer les variations de la température pour des fréquences allant jusqu'à maximum 1Hz.
- Alimentation du circuit en 0-6V

Le capteur de température a les spécifications suivantes :

- en sortie 0.5V à 0°C et une sensibilité linéaire de 10mV/°C
- $R_{\text{source}} = 1 \text{k}\Omega$

Pour réaliser cette chaîne, vous avez à votre disposition différents composants (vous pouvez prendre plusieurs fois le même composant si nécessaire). Vous avez aussi à disposition tous les composants numériques que vous pourriez désirer. Pour des raisons économiques, vous désirez minimiser le nombre total de composants utilisés.

Il vous est demandé de dimensionner la chaîne d'acquisition respectant le cahier des charges. Veuillez préciser son architecture (en vous aidant d'un schéma bloc) et, pour chaque composant, discuter son utilité (est-il nécessaire de l'inclure dans la chaine ?), sa position dans la chaine et la manière dont il est utilisé (quelle(s) amplification(s) pour le(s) amplificateur(s) ? quelle(s) fréquence(s) de coupure pour le(s) filtre(s) ?). Veuillez calculer la contribution en bruit de chaque composant ainsi que le bruit total, référé à l'entrée, de la chaine. Si plusieurs possibilités sont offertes (par exemple, plus d'un composant possible ou plus d'une valeur possible), veuillez le noter.

Amplificateurs:

	Bruit E _n	Bruit I _n	G.BP	Puissance
Ampli 1	$10\frac{nV}{\sqrt{Hz}}$	$100 rac{pA}{\sqrt{Hz}}$	5 <i>MHz</i>	2mW
Ampli 2	$5\frac{nV}{\sqrt{Hz}}$	$500 \frac{pA}{\sqrt{Hz}}$	0.1 <i>MHz</i>	1mW
Ampli 3	$5\frac{nV}{\sqrt{Hz}}$	$1\frac{nA}{\sqrt{Hz}}$	10MHz	0.5mW

Filtres passe-haut:

	Bruit E _n	Bruit I _n	G.BP	Puissance	F _{coupure}
Filtre PH1	$500 \frac{nV}{\sqrt{Hz}}$	$100 \frac{pA}{\sqrt{Hz}}$	50 <i>MHz</i>	2mW	A déterminer
Filtre PH2	$250 \frac{nV}{\sqrt{Hz}}$	$100 \frac{nA}{\sqrt{Hz}}$	20 <i>MHz</i>	2mW	A déterminer
Filtre PH3	$100 \frac{\mu V}{\sqrt{Hz}}$	$100 \frac{nA}{\sqrt{Hz}}$	10MHz	0.5mW	A déterminer

Filtres passe-bas :

	Bruit E _n	Bruit I _n	G.BP	Puissance	F _{coupure}
Filtre PB1	$800 \frac{nV}{\sqrt{Hz}}$	$100 rac{pA}{\sqrt{Hz}}$	50 <i>MHz</i>	0.5mW	A déterminer
Filtre PB2	$800 \frac{nV}{\sqrt{Hz}}$	$100 \frac{nA}{\sqrt{Hz}}$	20 <i>MHz</i>	0.5mW	A déterminer
Filtre PB3	$100 \frac{nV}{\sqrt{Hz}}$	$100 \frac{nA}{\sqrt{Hz}}$	10MHz	2mW	A déterminer

Convertisseurs analogique-numérique :

	Bruit E _n	F _{sampling} max	Nombre de bits	Puissance	
CAN 1	$100 \frac{nV}{\sqrt{Hz}}$	100kHz	16	2mW	
CAN 2	$100 \frac{nV}{\sqrt{Hz}}$	100kHz	20	2mW	
CAN 3	$100 \frac{nV}{\sqrt{Hz}}$	100kHz	24	2mW	
CAN 4	$400 \frac{nV}{\sqrt{Hz}}$	100kHz	16	1mW	
CAN 5	$400 \frac{nV}{\sqrt{Hz}}$	100kHz	20	1mW	
CAN 6	$400 \frac{nV}{\sqrt{Hz}}$	100kHz	24	1mW	

Cahier des charges

Le capteur donne en sortie 0.5V à 0°C et une sensibilité linéaire de 10mV/°C. Il a donc une sortie en tension de 0V (-50°C) à 1.5V (100°C). L'offset nous intéresse, puisqu'il est nécessaire pour obtenir la température (en valeur absolue).

On veut mesurer les variations de la température pour des fréquences allant jusqu'à maximum 1Hz. Il faut donc une fréquence d'échantillonnage > 2Hz minimum pour respecter Shannon.

On veut un bruit sur la mesure inférieur à 0.02 10-3°Crms, c'est-à-dire un bruit référé à l'entrée de 0.2µVrms.

Choix de l'ampli

Gain max = 4 (=6V/1.5V). Le produit gain*BP = 4*1Hz = 4, ne pose de problème pour aucun des trois amplis.

Rs = $1k\Omega$ donc c'est le bruit de courant qui va être prépondérant. La densité bruit de courant domine largement pour les trois amplis :

- pour l'ampli A :
$$10\frac{nV}{\sqrt{Hz}}$$
 < $1k\Omega*100\frac{pA}{\sqrt{Hz}}=100\frac{nV}{\sqrt{Hz}}$
- pour l'ampli B : $5\frac{nV}{\sqrt{Hz}}$ < $1k\Omega*500\frac{pA}{\sqrt{Hz}}=500\frac{nV}{\sqrt{Hz}}$
- pour l'ampli C : $5\frac{nV}{\sqrt{Hz}}$ < $1k\Omega*1000\frac{pA}{\sqrt{Hz}}=1000\frac{nV}{\sqrt{Hz}}$

- pour l'ampli B :
$$5 \frac{nV}{\sqrt{Hz}} < 1 k \Omega * 500 \frac{pA}{\sqrt{Hz}} = 500 \frac{nV}{\sqrt{Hz}}$$

- pour l'ampli C :
$$5\frac{nV}{\sqrt{Hz}}$$
 < $1k\Omega*1000\frac{pA}{\sqrt{Hz}}=1000\frac{nV}{\sqrt{Hz}}$

C'est l'ampli 1 qui a le plus petit bruit en courant et qui minimise le bruit total. La densité spectrale de bruit, presque uniquement due au bruit en courant, vaut :

$$en = \sqrt{\left(1k\Omega * 100 \frac{pA}{\sqrt{Hz}}\right)^2 + \left(10 \frac{nV}{\sqrt{Hz}}\right)^2} = \sqrt{\left(100 \frac{nV}{\sqrt{Hz}}\right)^2 + \left(10 \frac{nV}{\sqrt{Hz}}\right)^2} \approx 100 \frac{nV}{\sqrt{Hz}}$$

Le bruit total de l'ampli vaut :

$$En = 100 \frac{nV}{\sqrt{Hz}} * \sqrt{1Hz} = 100 nV_{RMS}$$

On respecte le cahier des charges. Si on prend l'ampli 2 ou 3, ce n'est plus le cas. On peut donc les reieter.

On choisit l'ampli 1.

Choix des filtres

Il ne faut pas de filtre passe haut.

Le filtre passe bas coupe à 1Hz (ou entre 1Hz et Fs/2 pour être précis). Le produit gain*BP = 1*1Hz = 1Hz. Tous les filtres conviennent.

lci, c'est le bruit en tension qui domine (Zin ~ 0). Le filtre avec le moins de bruit en tension donne

$$En = 100 \frac{nV}{\sqrt{Hz}} * \sqrt{1Hz}/4 = 25nV_{RMS}$$

Les deux autres donnent :

 $En=800rac{nV}{\sqrt{Hz}}*\sqrt{1Hz}/4=200nV_{RMS}.$ En le sommant au bruit de l'ampli on dépasse déjà le cahier des charges, on peut donc le rejeter.

On choisit le filtre PB3.

CAN

La précision sur la mesure est de 0,01 10-3°C à l'entrée de la chaine, correspondant à 0.1µV à la sortie du capteur, soit $4*0.1\mu\text{V} = 0.4\mu\text{V}$ à l'entrée du CAN. Nous avons donc une dynamique de $6\text{V}/0.4\mu\text{V} =$ 15M. Il nous faudra donc au minimum 24 bits (2^24=16M). => Uniquement le 3 ou le 6.

 $F_s = min 2^* fmax = 2Hz => tous les CAN conviennent.$

lundi 18 juin 2018

1^{re} session 2017/18

Bruit du 3 : $En = 100 \frac{nV}{\sqrt{Hz}} * \sqrt{1Hz}/4 = 25nV_{RMS}$ Bruit du 6 : $En = 400 \frac{nV}{\sqrt{Hz}} * \sqrt{1Hz}/4 = 100nV_{RMS}$

Budget bruit

Avec le CAN 3:

$$Etot = \sqrt{100nV^2 + 25nV^2 + 25nV^2} = 106nV_{RMS}$$

Avec le CAN 6:

$$Etot = \sqrt{100nV^2 + 25nV^2 + 100nV^2} = 143nV_{RMS}$$

A ce stade, les deux CAN peuvent convenir.

Budget puissance

Avec le CAN 3 : 2mW + 2mW + 2mW = 6mW

Avec le CAN 6 : 2mW + 2mW + 1mW = 5mW

Les deux CAN peuvent convenir.

Architecture finale

Question 2 / 10pts

Soit les trois montages ci-dessous.

Calculer la densité de bruit du montage A, en donnant successivement la contribution de R_1 , de R_2 et totale (R_1 et R_2). Montrer que la densité de bruit est équivalente à celui du montage B, qui contient une seule résistance de valeur [$R_1//R_2$].

$$\begin{aligned} e_{R1+R2}^{2} &= \left(e_{R1} \cdot \frac{R_{2}}{R_{1} + R_{2}}\right)^{2} + \left(e_{R2} \cdot \frac{R_{1}}{R_{1} + R_{2}}\right)^{2} \\ e_{R1+R2}^{2} &= \left(\sqrt{4kTR_{1}} \cdot \frac{R_{2}}{R_{1} + R_{2}}\right)^{2} + \left(\sqrt{4kTR_{2}} \cdot \frac{R_{1}}{R_{1} + R_{2}}\right)^{2} \\ e_{R1+R2}^{2} &= 4kT \left[R_{1} \cdot \left(\frac{R_{2}}{R_{1} + R_{2}}\right)^{2} + R_{2} \cdot \left(\frac{R_{1}}{R_{1} + R_{2}}\right)^{2}\right] \\ e_{R1+R2}^{2} &= 4kT(R_{1} \cdot R_{2}) \left[R_{2} \cdot \left(\frac{1}{R_{1} + R_{2}}\right)^{2} + R_{1} \cdot \left(\frac{1}{R_{1} + R_{2}}\right)^{2}\right] \\ e_{R1+R2}^{2} &= 4kT(\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}) \\ e_{R1+R2}^{2} &= \left(\sqrt{4kTR_{1}//R_{2}}\right)^{2} \\ e_{R1+R2}^{2} &= \left(\sqrt{4kTR_{1}//R_{2}}\right)^{2} \\ e_{R1+R2}^{2} &= \left(\sqrt{4kTR_{1}//R_{2}}\right)^{2} \end{aligned}$$

Calculer le bruit du montage C, pour toute la bande passante (DC à l'infini), en fonction de R et C.

$$e_{tot} = e_{R} \cdot \frac{Z_{c}}{R + Z_{c}}$$

$$e_{tot} = e_{R} \cdot \frac{1/jwc}{R + 1/jwc}$$

$$e_{tot} = e_{R} \cdot \frac{1}{1 + jwcR}$$

$$E_{tot}^{2} = \int_{0}^{\infty} |e_{tot}|^{2} df$$

$$E_{tot}^{2} = \int_{0}^{\infty} e_{R}^{2} \cdot \left| \frac{1}{1 + jwcR} \right|^{2} df$$

$$E_{tot}^{2} = \int_{0}^{\infty} e_{R}^{2} \cdot \left| \frac{1}{\sqrt{1^{2} + (wcR)^{2}}} \right|^{2} df$$

$$E_{tot}^{2} = \int_{0}^{\infty} e_{R}^{2} \cdot \frac{1}{1 + (wcR)^{2}} df$$

$$E_{tot}^{2} = \int_{0}^{\infty} e_{R}^{2} \cdot \frac{1}{1 + (2\pi cRf)^{2}} df$$

$$E_{tot}^{2} = \int_{0}^{\infty} e_{R}^{2} \cdot \frac{1}{1 + (f/f_{p})^{2}} df, avec f_{p} = \frac{1}{2\pi cR}$$

$$E_{tot}^{2} = \left| e_{R}^{2} f_{p} \cdot arctan(\frac{f}{f_{p}}) \right|_{0}^{\infty}$$

$$E_{tot}^{2} = e_{R}^{2} f_{p} \cdot \pi/2$$

Question 3 / 10pts

Nous aimerions créer un dispositif permettant de mesurer les battements cardiaques au moyen d'une diode électroluminescente et d'une photodiode, posées de part et d'autre d'un doigt. A chaque battement de cœur, un changement de pression sanguine apparait et modifie légèrement les propriétés optiques du doigt, ce qui résulte en une différence d'intensité de lumière reçue par la photodiode.

La photodiode agit comme une **source de courant** dont l'intensité est relative à l'intensité de la lumière reçue. Après l'étage amplificateur, un filtrage passe-bande sera effectué pour conserver les fréquences entre 0.1Hz et 20Hz.

Etant donné la faiblesse du signal utile, il nous faut minimiser le bruit de l'amplificateur opérationnel utilisé. Après quelques recherches, nous avons à notre disposition deux candidats dont les informations sont reprises ci-dessous.

On vous pose les questions suivantes :

- 1) Calculer le bruit en tension et en courant du LT1001 (prenez les valeurs typiques)
- 2) Calculer le bruit en tension et en courant du LT1880
- 3) Le but étant d'évaluer le bruit total sur le signal d'entrée, ramenez le bruit en courant et en tension de chaque amplificateur à **une seule grandeur relative à l'entrée**, pouvant être comparée avec le signal utile. Justifiez votre approche.

 Déduisez-en l'amplificateur minimisant le bruit pour notre application.

LT1001:

SYMBOL	PARAMETER	CONDITI	ONS		1001AM/ LT1001A TYP		LT1	001M/LT TYP	1001C MAX	UNITS
Voc	OS Input Offset Voltage	Note 2	LT1001AM/883		7	15		18	50	μV
*05			LT1001AC		10	25	 	10	<u>r</u>	μν
ΔV _{OS}	Long Term Input Offset Voltage						'	\	/	
ΔTime	Stability	Notes 3	Notes 3 and 4		0.2	1.0		0.3	1.5	μV/month
I _{OS}	Input Offset Current				0.3	2.0		0.4	3.8	nA
I _b	Input Bias Current				±0.5	±2.0		±07	±4.0	nA
e _n	Input Noise Voltage	0.1Hz to	0.1Hz to 10Hz (Note 3)		0.3	0.6		0.3	0.6	μV _{p-p}
e _n	Input Noise Voltage Density	f ₀ = 10H	z (Note 6)		10.3	18.0		10.5	18.0	nV√Hz
		$f_0 = 100$	OHz (Note 3)		9.6	11.0	4	9.8	11.0	nV√Hz
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$	$V_0 = \pm 12V$	450	800		400	800	1	V/mV
		$R_L \ge 1k\Omega$	$2 V_0 = \pm 10 V$	300	500		250	500	1	V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±13V		114	126		170	126		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V \text{ to } \pm 18V$		110	123		106	123		dB
R _{in}	Input Resistance Differential Mode			30	100		15	80		MΩ

LT1880:

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	0°C < T _A < 70°C -40°C < T _A < 85°C	•		40	150 200 250	μV μV μV
	Input Offset Voltage Drift (Note 6)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		0.3 0.3	1.2 1.2	μV/°C μV/°C
I _{OS}	Input Offset Current	0°C < T _A < 70°C -40°C < T _A < 85°C	•		150	900 1200 1400	pA pA pA
I _B	Input Bias Current	0°C < T _A < 70°C -40°C < T _A < 85°C	•		150	900 1200 1500	pA pA pA
	Input Noise Voltage	0.1Hz to 10Hz			0.5		μ∨р-р
en	Input Noise Voltage Density	f = 1kHz			13		nV/√Hz
in	Input Noise Current Density	f = 1kHz			0.07		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, V _{CM} = 1V to 3.8V			380 210		MΩ GΩ
C _{IN}	Input Capacitance				3.7		pF
V _{CM}	Input Voltage Range		•	(V ⁻ + 1.0)		(V ⁺ - 1.2)	V

LT1001

Tension:

En(0.1Hz-10Hz)_{modèle} = 9.6nV/ $\sqrt{\text{Hz}}$ * $\sqrt{[10\text{Hz} - 0.1\text{Hz} + 4\text{Hz}^*\ln(10\text{Hz}/0.1\text{Hz})]}$ * 6.6= 0.337 μ V_{P-P}

⇒ Le modèle est validé

 $En(0.1Hz-20Hz)_{modèle} = 9.6nV/\sqrt{Hz} * \sqrt{[20Hz - 0.1Hz + 4Hz*ln(20Hz/0.1Hz)]} * 6.6 = \textbf{0.406} \; \mu \textbf{V}_{P-P} + 4Hz*ln(20Hz/0.1Hz) = 0.406 \; \mu \textbf{V}_{P-$

OU

« constructeur (0.1-10Hz) + modèle (10-20Hz) » => $En(0.1Hz-20Hz)_{const + mod} = 0.376 \mu V_{P-P}$

Courant:

 $ln(0.1Hz-20Hz)_{modèle} = 0.11pA/\sqrt{Hz} * \sqrt{[20Hz - 0.1Hz + 70Hz*ln(20Hz/0.1Hz)]} * 6.6 = 14.35 pA_{P-P}$

Le graphique du bruit en tension ne fait que confirmer la valeur lue dans les tables.

LT1880

Tension:

Marge acceptée sur fc : de 5Hz à 15Hz

Prenons fc = 9Hz

En(0.1Hz-10Hz)_{modèle} = $13\text{nV}/\sqrt{\text{Hz}} * \sqrt{[10\text{Hz} - 0.1\text{Hz} + 9\text{Hz}^*\ln(10\text{Hz}/0.1\text{Hz})]} * 6.6 = 0.615 \,\mu\text{V}_{P-P}$

En(0.1Hz-20Hz)_{modèle} = $13\text{nV}/\sqrt{\text{Hz}} * \sqrt{[20\text{Hz} - 0.1\text{Hz} + 9\text{Hz*In}(20\text{Hz}/0.1\text{Hz})]} * 6.6 =$ **0.705<math>\muV**_{P-P}

OU

« constructeur (0.1-10Hz) + modèle (10-20Hz) » => $En(0.1Hz-20Hz)_{const + mod} = 0.61 \mu V_{P-P}$

Courant:

Marge acceptée sur fc : de 10Hz à 50Hz

Prenons fc = 30Hz

 $ln(0.1Hz-20Hz)_{modèle} = 0.07pA/\sqrt{Hz} * \sqrt{20Hz} - 0.1Hz + 30Hz*ln(20Hz/0.1Hz)] * 6.6 = 6.18 pA_{P-P}$

Le graphique du bruit en tension ne fait que confirmer la valeur lue dans les tables.

3

Nous savons que c'est un montage convertisseur courant-tension de gain -RF

Ainsi, la meilleure façon de procéder est de ramener à l'entrée l'ensemble des bruits sous forme de courant, étant donné que le signal utile est un courant (une différence de courant pour être exact) émis par la photodiode.

Le courant de bruit RTI reste donc inchangé, et doit être superposé au courant de bruit d \hat{u} à la tension de bruit à l'entrée. Pour faire cette conversion, il suffit de remarquer que le bruit en tension apparaitra inchangé sur la tension de sortie selon la méthode de superposition (il faut mettre la photodiode en circuit ouvert). Ce qui fait que le bruit en courant RTI d \hat{u} au bruit en tension de l'ampli n'est autre que celui-ci divisé par R_F .

 $In(<tension) = En/R_F$

LT1001 =>
$$In($$

$$N_{TOT} = \sqrt{(\ln^2 + \ln^2(< tension))} = 14.9 pA_{P-P}$$

LT1880 =>
$$In($$

$$N_{TOT} = \sqrt{(\ln^2 + \ln^2(< tension))} = 9.38 pA_{P-P}$$

Le meilleur amplificateur est donc le LT1880

(quel que soit votre choix de fc et de méthode, normalement)

Question 4 / 10pts

Soit le filtre à somme glissante décrit par l'équation aux différences :

$$y(n) = x(n) + x(n-1) + x(n-2) + \dots + x(n-N+1)$$

1) Déterminer la fonction de transfert de ce système

$$H(z) = 1 + z^{-1} + z^{-2} + \dots + z^{-(N-1)}$$
 $\forall z$

$$=\sum_{n=0}^{N-1}z^{-n}=\frac{1-z^{-N}}{1-z^{-1}}$$

2) En déduire les pôles et les zéros, ainsi que la stabilité du système

Ces systèmes possèdent :

- un pôle en z = 0 (de multiplicité N 1)
- un pôle en z=1
- des zéros en $z=e^{jk^{rac{2\pi}{N}}}$ $k=0\cdots N-1$

Le pôle situé en z = 1 étant compensé par un zéro en z = 1, le système est donc stable.

3) Déterminer la réponse en fréquence

Le cercle unité faisant partie du domaine de convergence, la réponse en fréquence est :

$$H(e^{j\omega}) = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \frac{e^{-j\omega N/2}}{e^{-j\omega/2}} \left(\frac{e^{j\omega N/2} - e^{-j\omega N/2}}{e^{j\omega/2} - e^{-j\omega/2}} \right)$$

$$=e^{-j\omega(N-1)/2}\frac{\sin(\omega N/2)}{\sin(\omega/2)}$$

$$\Rightarrow \left| H(e^{j\omega}) \right| = \left| \frac{\sin(\omega N/2)}{\sin(\omega/2)} \right|$$

4) Dessinez un système permettant d'implémenter ce filtre, au moyen de bloc délais (z-1) et multiplicateur

Soit $\begin{array}{c|c} x(n) & & & & y(n) \\ \hline Z^1 & & & & \\ \hline \end{array}$

Soit avec N blocs z⁻¹ allant vers y(n)

5) Est-ce un système récursif ? Justifiez

Non, car le seul pôle est compensé par un zéro. Cela se voit aussi clairement quand le système est sous la forme :

$$H(z) = 1 + z^{-1} + z^{-2} + \dots + z^{-(N-1)}$$
 $\forall z$

Où il n'y a clairement pas de pôle.