Bayesian Methods

David Rosenberg

New York University

April 22, 2015

Frequentist or "Classical" Statistics

ullet Probability model with parameter $heta \in \Theta$

$$\{p(y;\theta) \mid \theta \in \Theta\},\$$

where $p(y;\theta)$ is either a PDF or a PMF.

- Assume that $p(y;\theta)$ governs the world we are observing.
- In frequentist statistics, the parameter θ is a
 - fixed constant (i.e. not random) and is
 - unknown to us.
- If we knew θ , there would be no need for statistics.
- Instead of θ , we have a sample $\mathcal{D} = \{y_1, \dots, y_n\}$ i.i.d. $p(y; \theta)$.
- Statistics is about how to use \mathcal{D} in place of θ .

Point Estimation

- One type of statistical problem is **point estimation**.
- A statistic s = s(D) is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathfrak{D})$ is a **point estimator** if $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:
 - Consistency: As data size $n \to \infty$, we get $\hat{\theta} \to \theta$.
 - **Efficiency:** (Roughly speaking) For large n, $\hat{\theta}$ achieves accuracy at least as good as any other estimator.
 - e.g. maximum likelihood estimation is consistent and efficient under reasonable conditions.
- In frequentist statistics, you can make up any estimator you want.
 - Justify its use by showing it has desirable properties.

Bayesian Statistics

- Major viewpoint change In Bayesian statistics:
 - parameter $\theta \in \Theta$ is a **random variable**.
- New ingredient: the **prior distribution**:
 - a distribution on parameter space Θ .
 - Reflects our belief about θ.
 - Must be chosen before seeing any data.

The Bayesian Method

- Define the model:
 - Choose a distribution $p(\theta)$, called the **prior distribution**.
 - Choose a probability model or "likelihood model", now written as:

$$\{p(y \mid \theta) \mid \theta \in \Theta\}.$$

- **2** After observing \mathcal{D} , compute the **posterior distribution** $p(\theta \mid \mathcal{D})$.
- **3** Decide the **action** based on $p(\theta \mid \mathcal{D})$.

The Posterior Distribution

By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- likelihood: $p(\mathcal{D} \mid \theta)$
- prior: $p(\theta)$
- marginal likelhood: $p(\mathfrak{D})$.
- Note: $p(\mathcal{D})$ is just a normalizing constant for $p(\theta \mid \mathcal{D})$. Can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \sim \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}.$$

Recap and Interpretation

- Prior represents belief about θ before observing data \mathcal{D} .
- Posterior represents the rationally "updated" beliefs after seeing D.
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
 - No issue of "choosing a procedure" or justifying an estimator.
 - Only choices are the prior and the likelihood model.
 - For decision making, need a loss function.
 - Everything after that is **computation**.

Example: Coin Flipping

Suppose we have a coin, possibly biased

$$\mathbb{P}(\mathsf{Heads} \mid \theta) = \theta.$$

- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim \text{Beta}(2,2)$.

Example: Coin Flipping

- Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:
- Heads: 75 Tails: 60 • $\hat{\theta}_{MLE} = \frac{75}{75 \pm 60} \approx 0.556$
- Posterior distribution: $\theta \mid \mathcal{D} \sim \text{Beta}(77,62)$:

What to do with the Posterior Distribution?

- Look at it.
- Extract a point estimate of θ (e.g. mean or mode of posterior).
- Extract "credible set" for θ (a Bayesian confidence interval).
 - e.g. Interval [a, b] is a 95% credible set if

$$\mathbb{P}(\theta \in [a, b] \mid \mathcal{D}) \geqslant 0.95$$

- The most "Bayesian" approach is Bayesian decision theory:
 - Choose a loss function.
 - Find action minimizing "posterior risk".

Bayesian Decision Theory

- Ingredients:
 - Action space A.
 - Parameter space Θ .
 - Loss function: $\ell : \mathcal{A} \times \Theta \to \mathbf{R}$.
 - **Prior**: Distribution $p(\theta)$ on Θ .
- The **posterior risk** of an action $a \in A$ is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$

= $\int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta$.

- It's the expected loss under the posterior.
- A Bayes action a* is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

Bayesian Point Estimation

- General Setup:
 - Data \mathcal{D} generated by $p(y | \theta)$, for unknown $\theta \in \Theta$.
 - Want to produce a **point estimate** for θ .
- Choose the following:
 - Loss $\ell(\hat{\theta}, \theta) = \left(\theta \hat{\theta}\right)^2$
 - Prior $p(\theta)$ on $\hat{\Theta}$.
- Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\left(\theta - \hat{\theta}\right)^2 \mid \mathcal{D}\right]$$

= $\left[\left(\theta - \hat{\theta}\right)^2 p(\theta \mid \mathcal{D}) d\theta\right]$

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta \mid D) d\theta.$$

Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta \mid \mathcal{D}) d\theta$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d\theta}_{=1}$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}$$

Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}.$$

• First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta$$
$$= \mathbb{E}[\theta \mid \mathcal{D}]$$

• Bayes action for square loss is the posterior mean.

Bayesian Point Estimation: Absolute Loss

- Loss: $\ell(\theta, \hat{\theta}) = \left| \theta \hat{\theta} \right|$
- Bayes action for absolute loss is the posterior median.
 - That is, the median of the distribution $p(\theta \mid \mathcal{D})$.
 - Show with approach similar to what was used in Homework #1.

Bayesian Point Estimation: Zero-One Loss

- Suppose Θ is discrete (e.g. $\Theta = \{\text{english}, \text{french}\}\)$
- Zero-one loss: $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$
- Posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[1(\theta \neq \hat{\theta}) \mid \mathcal{D}\right]$$
$$= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \mathbb{P}\left(\theta = \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \rho(\hat{\theta} \mid \mathcal{D})$$

Bayes action is

$$\hat{\theta} = \arg \max_{\theta \in \Theta} p(\theta \mid \mathcal{D})$$

- This $\hat{\theta}$ is called the maximum a posteriori (MAP) estimate.
- The MAP estimate is the **mode** of the posterior distribution.

Bayesian Point Estimation: Custom Loss Function

- Suppose Θ is discrete (e.g. $\Theta = \{\text{english}, \text{french}\}\)$
- Loss function $\ell(\hat{\theta}, \theta)$:

$$\ell(\text{french}, \text{english}) = 10$$

 $\ell(\text{english}, \text{french}) = 1$
 $\ell(\text{english}, \text{english}) = 0$
 $\ell(\text{french}, \text{french}) = 0$

Posterior risk:

$$r(\text{french}) = 10p(\text{english} \mid \mathcal{D}) + 0p(\text{french} \mid \mathcal{D})$$

 $r(\text{english}) = 1p(\text{french} \mid \mathcal{D}) + 0p(\text{english} \mid \mathcal{D})$

• Bayes action is english iff r(english) > r(english), i.e. when

$$\frac{p(\mathsf{french} \mid \mathcal{D})}{p(\mathsf{english} \mid \mathcal{D})} = 10.$$

Bayesian Conditional Models

- Input space $\mathfrak{X} = \mathbf{R}^d$ Output space $\mathfrak{Y} = \mathbf{R}$
- Conditional probability model, or likelihood model:

$$\{p(y \mid x, \theta) \mid \theta \in \Theta\}$$

- Conditional here refers to the conditioning on the input x.
- Means that x's are known and not governed by our probability model.

Gaussian Regression Model

- Input space $\mathfrak{X} = \mathsf{R}^d$ Output space $\mathfrak{Y} = \mathsf{R}$
- Conditional probability model, or likelihood model:

$$y \mid x, \theta \sim \mathcal{N}(\theta^T x, \sigma^2)$$
,

for some known $\sigma^2 > 0$.

- Parameter space $\Theta = \mathbb{R}^d$.
- Data: $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - Write $y = (y_1, ..., y_n)$ and $x = (x_1, ..., x_n)$.
 - Assume y_i 's are **conditionally independent**, given x and θ .

Gaussian Likelihood

• The **likelihood** of $\theta \in \Theta$ for the data \mathcal{D} is

$$p(y \mid x, \theta) = \prod_{i=1}^{n} p(y_i \mid x_i, \theta) \quad \text{by conditional independence.}$$

$$= \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right) \right]$$

Recall from the GLM lecture¹ that the MLE is

$$\begin{aligned} \theta_{\mathsf{MLE}}^* &= & \underset{\theta \in \mathbf{R}^d}{\arg\min} \, p(y \,|\, x, \theta) \\ &= & \underset{\theta \in \mathbf{R}^d}{\arg\min} \, \sum_{i=1}^n (y_i - \theta^T x_i)^2 \end{aligned}$$

¹https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.

Priors and Posteriors

• Choose a Gaussian **prior distribution** $p(\theta)$ on Θ :

$$\theta \sim \mathcal{N}\left(0, \Sigma_{0}\right)$$

for some **covariance matrix** $\Sigma_0 \succ 0$ (i.e. Σ_0 is spd).

Posterior distribution

$$\begin{split} p(\theta \mid \mathcal{D}) &= p(\theta \mid x, y) \\ &= p(y \mid x, \theta) \, p(\theta) / p(y) \\ &\propto p(y \mid x, \theta) p(\theta) \\ &= \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_{i} - \theta^{T} x_{i})^{2}}{2\sigma^{2}}\right) \right] \text{ (likelihood)} \\ &\times |2\pi \Sigma_{0}|^{-1/2} \exp\left(-\frac{1}{2}\theta^{T} \Sigma_{0}^{-1}\theta\right) \text{ (prior)} \end{split}$$

Example in 1-Dimension

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbb{R}$
- Basic Gaussian regression model:

$$y=w_0+w_1x+\varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the likelihood model is

$$y \mid x, \theta = (w_0, w_1) \sim \Re(w_0 + w_1 x, 0.2^2).$$

Example in 1-Dimension

• Prior distribution: $\theta = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

• On right, plots of $y = w_0 + w_1 x$ for random $(w_0, w_1) \sim p(\theta) = \mathcal{N}(0, \frac{1}{2}I)$.

Example in 1-Dimension

- Consider y and x related as $y = w_0 + w_1 x + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.
- Conditional probability model, or likelihood model:

$$y \mid x, \theta = (w_0, w_1) \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

• Prior distribution: $\theta = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

• On right, plots of $y = w_0 + w_1 x$ for random $(w_0, w_1) \sim p(\theta) = \mathcal{N}(0, \frac{1}{2}I)$.

Example in 1-Dimension: 1 Observation

- On left, the white cross indicates the true parameter values.
- On right, the blue circle indicates the training observation.

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

Predictive Distribution

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D})$$

$$= \int p(y_{\text{new}} \mid x_{\text{new}}, \theta, \mathcal{D}) p(\theta \mid \mathcal{D}) d\theta$$

$$= \int p(y_{\text{new}} \mid x_{\text{new}}, \theta) p(\theta \mid \mathcal{D}) d\theta$$

 For Gaussian regression, posterior and predictive distributions have closed forms.

Closed Form for Posterior

Model:

$$\theta \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, \theta \text{ i.i.d. } \mathcal{N}(\theta^T x_i, \sigma^2)$

- Design matrix X
 Response column vector y
- Posterior distribution is a Gaussian distribution:

$$\theta \mid \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)$$

$$\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}$$

$$\mu_P = \sigma^{-2} \Sigma_P X^T y$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

$$\begin{array}{lcl} \boldsymbol{\theta} \mid \boldsymbol{\mathcal{D}} & \sim & \mathcal{N}(\boldsymbol{\mu}_P, \boldsymbol{\Sigma}_P) \\ \boldsymbol{\Sigma}_P & = & \left(\boldsymbol{\sigma}^{-2} \boldsymbol{X}^T \boldsymbol{X} + \boldsymbol{\Sigma}_0^{-1}\right)^{-1} \\ \boldsymbol{\mu}_P & = & \boldsymbol{\sigma}^{-2} \boldsymbol{\Sigma}_P \boldsymbol{X}^T \boldsymbol{y} \end{array}$$

The MAP estimator and the posterior mean are given by

$$\mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

- Look familiar?
- For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\mu_P = (X^T X + \lambda I)^{-1} X^T y,$$

which is of course the ridge regression solution.

Posterior Mean and Posterior Mode (MAP)

• Posterior density for $\Sigma_0 = \frac{\sigma^2}{\lambda}I$:

$$p(\theta \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2}\|\theta\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^{n} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

To find MAP, sufficient to minimize the log posterior:

$$\begin{split} \hat{\theta}_{\mathsf{MAP}} &= \underset{\theta \in \mathsf{R}^d}{\operatorname{arg\,min}} [-\log p(\theta \mid \mathcal{D})] \\ &= \underset{\theta \in \mathsf{R}^d}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^n (y_i - \theta^T x_i)^2 + \underbrace{\lambda \|\theta\|^2}_{\mathsf{log-prior}} \end{split}$$

• Which is the ridge regression objective.

Closed Form for Predictive Distribution

Model:

$$\begin{array}{ccc} \theta & \sim & \mathcal{N}(0, \Sigma_0) \\ y_i \mid x, \theta & \text{i.i.d.} & \mathcal{N}(\theta^T x_i, \sigma^2) \end{array}$$

Predictive Distribution

$$p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, \theta) p(\theta \mid \mathcal{D}) d\theta.$$

- ullet Averages over prediction for each ullet, weighted by posterior distribution.
- Closed form:

$$y_{\text{new}} \mid x_{\text{new}}, \mathcal{D} \sim \mathcal{N}(\eta_{\text{new}}, \sigma_{\text{new}})$$

$$\mu_{\text{new}} = \mu_{\text{P}}^{T} x_{\text{new}}$$

$$\sigma_{\text{new}} = \underbrace{x_{\text{new}}^{T} \Sigma_{\text{P}} x_{\text{new}}}_{\text{from variance in } \theta} + \underbrace{\sigma^{2}}_{\text{inherent variance in } y}$$

Predictive Distributions

• With predictive distributions, can draw error bands:

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)

Bayesian Predictive Distributions vs GLMs

- Gaussian regression with MLE, from our GLM lecture:
 - produces a Gaussian for each input x.

$$x \mapsto \mathcal{N}\left(x^T \theta_{\mathsf{MLE}}, \sigma^2\right)$$

- Bayesian predictive distributions:
 - produce a Gaussian for each input x

$$x \mapsto \mathcal{N}\left(\theta_{\mathsf{ridge}}^{\mathsf{T}}x, \underbrace{x_{\mathsf{new}}^{\mathsf{T}}\Sigma_{\mathsf{P}}x_{\mathsf{new}}}_{\mathsf{from variance in }\theta} + \underbrace{\sigma^2}_{\mathsf{inherent variance in }y}\right)$$

- In Bayesian version
 - equivalent to using a regularized least squares fit
 - ullet variance has additional piece from uncertainty in θ

Coin Flipping

• Parameter space $\theta \in \Theta = [0, 1]$:

$$\mathbb{P}(\mathsf{Heads} \,|\, \theta) = \theta.$$

- Data $\mathfrak{D} = \{H, H, T, T, T, T, T, H, ..., T\}$
 - n_h: number of heads
 - n_t : number of tails
- Conditional Independence Assumption:
 - Conditioned on θ , repeated flips are independent
- Likelihood model (Bernoulli Distribution):

$$p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• (probability of getting the flips in the order they were received)

Coin Flipping: Beta Prior

Prior:

$$\begin{array}{ccc} \theta & \sim & \mathrm{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

- Interpret *h* and *t* as the number of heads/tails received in a prior experiment.
 - Then $\mathbb{E}\theta$ is the obvious MLE and plug-in estimate for θ .
- For fixed $\mathbb{E}\theta$, $Var(\theta)$ decreases as number of flips n=h+t grows.

Coin Flipping: Posterior

Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

• Likelihood model:

$$p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta)\rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1} (1-\theta)^{t-1} \times \theta^{n_h} (1-\theta)^{n_t} \\ & = & \theta^{h-1+n_h} (1-\theta)^{t-1+n_t} \end{array}$$

Posterior is Beta

Prior:

$$\theta \sim \text{Beta}(h, t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

So

$$\theta \mid \mathcal{D} \sim \text{Beta}(h + n_h, t + n_t)$$

• It's as though we continued our experiment by adding more flips.

Conjugate Prior Examples

- A prior is conjugate for a likelihood model if the posterior is in the same "family" as the prior.
- If prior is a beta distribution, and likelihood model is a Bernoulli distribution, then posterior is a beta distribution.
 - Prior and posterior in the same family ⇒ Beta is a conjugate prior for Bernoulli
- ② If prior is a Gaussian distribution, and likelihood model is a Gaussian distribution, then posterior is a Gaussian distribution.
 - Prior and posterior in the same family \Longrightarrow Gaussian is a conjugate prior for Gaussian

Conjugacy of the prior is really a statement about the prior family.

Conjugate Prior Family

- Let π be a family of prior distributions on Θ .
- Let P be likelihood model with parameter space Θ .
- We say that π is conjugate to P if for any prior in π , the posterior is always in π .
- Trivial Example:
 - The family of all probability distributions is conjugate to any likelihood model.
- Every exponential family has a nontrivial conjugate prior family. (KPM Section 9.2)

Naive Bayes: A Generative Model for Classification

- $\mathfrak{X} = \left\{ \left(X_1, X_2, X_3, X_4 \right) \in \{0, 1\}^4 \right) \right\}$ $\mathfrak{Y} = \{0, 1\}$ be a class label.
- Consider the Bayesian network depicted below:

• BN structure implies joint distribution factors as:

$$p(x_1, x_2, x_3, x_4, y) = p(y)p(x_1 | y)p(x_2 | y)p(x_3 | y)p(x_4 | y)$$

• Features X_1, \ldots, X_4 are independent given the class label Y.

KPM Figure 10.2(a).

Parameterized Expression for Joint Distribution

Parameters:

$$\mathbb{P}(\,Y=1)=\theta_y \qquad \mathbb{P}(\,X_i=1\mid Y=1)=\theta_{i1} \qquad \mathbb{P}(\,X_i=1\mid Y=0)=\theta_{i0}$$

Joint distribution is

$$\begin{split} & \rho(x_1, \dots x_d, y) \\ &= \rho(y) \prod_{i=1}^n \rho(x_i \mid y) \\ &= (\theta_y)^y (1 - \theta_y)^{1-y} \\ &\quad \times \prod_{i=1}^n (\theta_{i1})^{yx_i} (1 - \theta_{i1})^{y(1-x_i)} (\theta_{i0})^{(1-y)x_i} (1 - \theta_{i0})^{(1-y)(1-x_i)} \end{split}$$

Maximum Likelihood Estimators for Naive Bayes

- Training set $\mathcal{D} = \{(x^1, y^1), \dots (x^n, y^n)\}.$
- Obvious "plug-in" estimators for the Naive Bayes model are also MLEs:

$$\begin{split} \mathbb{P}(Y = 1) &\approx & \hat{\theta}_{y} = \frac{1}{n} \sum_{i=1}^{n} 1(y^{i} = 1) \\ \mathbb{P}(X_{i} = 1 \mid Y = 1) &\approx & \hat{\theta}_{i1} = \frac{\sum_{j=1}^{n} 1(y^{j} = 1 \text{ and } x_{i}^{j} = 1)}{\sum_{j=1}^{n} 1(y^{j} = 1)} \\ \mathbb{P}(X_{i} = 1 \mid Y = 0) &= & \hat{\theta}_{i0} = \frac{\sum_{j=1}^{n} 1(y^{j} = 0 \text{ and } x_{i}^{j} = 1)}{\sum_{j=1}^{n} 1(y^{j} = 0)} \end{split}$$

Example: SPAM Classification

- Label $Y \in \mathcal{Y} = \{SPAM, HAM\}.$
- Features $X_i \in \{0, 1\}$.
- Bag of words representation:

$$X_i = 1(\text{Email contains word "Private_Jet"})$$

After parameter estimation, prediction done with

$$p(\mathsf{SPAM}|x) \propto p(\mathsf{SPAM}) \prod_{i=1}^d \hat{p}(x_i \mid \mathsf{SPAM}).$$

- Each $\hat{p}(x_i \mid y)$ is the estimated probability that x_i would be observed (or not) in a SPAM message.
- Issue: What if we never see $X_1 = 1$ when Y = SPAM in \mathfrak{D} ?
 - Then whenever we see $X_1 = 1$, we will predict $p(SPAM \mid x) = 0$.

The Zero Count Issue

- If any conditional probabilities $\mathbb{P}(X_i = x_i \mid y)$ get estimated as 0,
 - we'll predict 0 probability for some y whenever x_i is observed.
- This is bad:
 - Never want to predict probability 0 if something is possible.
- Worse: This occurrence is not unusual at all for small sample sizes or rare features.

Laplace Smoothing

- One traditional fix to the 0 count issue is called Laplace Smoothing.
- Idea is to add 1 to every empirical count.
- To estimate $\mathbb{P}(X_i = 1 \mid Y = 1)$, use

$$\hat{\theta}_{i1} = \frac{1 + \sum_{j=1}^{n} 1(y^{j} = 1 \text{ and } x_{i}^{j} = 1)}{1 + \sum_{i=1}^{n} 1(y^{j} = 1)}.$$

- The added 1 is called a pseudocount.
- Like assuming every outcome that can occur was observed at least once.
- Seems to solve the problem but is there a more principled approach?

Bayesian Naive Bayes

Parameters:

$$\mathbb{P}(Y = 1) = \theta_{y}$$
 $\mathbb{P}(X_{i} = 1 \mid Y = 1) = \theta_{i1}$ $\mathbb{P}(X_{i} = 1 \mid Y = 0) = \theta_{i0}$

- Put a Beta prior distribution on each parameter.
- Option 1: Use posterior mean as point estimate for each parameter, then continue as before.
 - Laplace smoothing is a special case, in which priors are all Beta(1,1).
- Option 2: Go full Bayesian.
 - No parameter estimates. Base everything on posterior $\theta \mid \mathfrak{D}$.
- Predict with the predictive distribution:

$$y \mid x, \mathcal{D}$$

• Recall, this is integrating out the parameter θ w.r.t. the posterior distribution.