Human-Centered Artificial Intelligence

Fei-Fei Li

Sequoia Professor of Computer Science, Stanford University Co-Director, Stanford University Institute for Human-Centered AI (HAI)

Al has risen with dizzying speed in recent years.

1987

D. G. Lowe, Artificial Intelligence, 1987

1987

1999

D. G. Lowe, *ICCV*, 1999

D. G. Lowe, Artificial Intelligence, 1987

Y. LeCun, Proc. IEEE, 1998

1987

1999

2012

"Leopard"

"Container Ship"

D. G. Lowe, Artificial Intelligence, 1987

Y. LeCun, Proc. IEEE, 1998

A. Krizhevsky, I. Sutskever & G. E. Hinton, NIPS, 2012

J. Deng, L. Fei-Fei et al. ImageNet, 2009

IM GENET Challenge: Classification of 1000 Objects

Deng, J. et al. Fei-Fei, L. CVPR, 2009; Russakovsky et al. Fei-Fei, J. IJCV, 2012;

The Deep Learning Revolution

Computation

Algorithms

Big Data

Al's Explosive Impact on Industry

Growing Use of DeepLearning at Google

Source: Google

Startups Developing Al Systems

Source: Crunchbase, VentureSource, Sand Hill Econometrics

Global Al Market 2016-2026

Source: fortunebusinessinsights.com

Job Displacement

Bias

Privacy

It has become appallingly obvious that our technology has exceeded our humanity.

Albert Einstein

A new approach to AI:

"Human-Centered AI"

Human-Centered Al

The development of Al must be guided by a concern for its human impact.

Al should strive to augment and enhance us, not replace us.

Al must be more inspired by human intelligence.

MARCH 18, 2019

Stanford University launches the Institute for Human-Centered Artificial Intelligence

The new institute will focus on guiding artificial intelligence to benefit humanity.

Human-Centered Al

.....

H

The development of Al must be guided by a concern for its human impact.

Communication		Cyber Security		Political Science	:	Earth Sciences		Design
					:			
Music	····.	Medicine		Ethics		Neuroscience	. * * * * * * *	Biology
					:			
Linguistics		Economics		Al		Philosophy		Data Science
			<i>:</i>					
Education	(···	Law		Psychology		Sociology	*****	Management Science
					:			
Anthropology		Statistics		History		Art	····	Race & Technology

Case Study

From ML Bias To ML Fairness

MAI : ML Fairness

Dataset fairness (diversity and representation)

Prof. Jia Deng & Prof. Olga Russakovsky (CS, Princeton) Prof. Li Fei-Fei (CS, Stanford)

ML Fairness

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)

Prof. James Zou (EE) Prof. Londa Schiebinger (History)

Ghorbani & Zou, ICML 2019; Tannenbaum, et al. Nature 2019 Zou & Schiebinger. Nature 2018; Garg et al. PNAS, 2018.

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)
- Computing fairness (theoretical guarantees)

Prof. Omer Reingold (CS)

- New definition of fairness -> Aim to reduce discrimination for every large subgroup that can be identified computationally
- An iterative "fairness" algorithm to constantly "nudge" subpopulation averages to their correct values

Cardiology Application: N. Barda, N. Dagan, 2019

Calibration in the large: $1.36 \rightarrow 1.02$

Decreased variance between sub-groups: 96.2%

O. Reingold, FOCS, 2019; S. Garg, et al. EC, 2019; U. Hebert-Johnson et al., ICML, 2018; M. Kim, CoRR, 2018; C. Dwork et al. ITCS, 2012

HAI! ML Fairness

Prof. Tatsu Hashimoto & Prof. Percy Liang (CS) Prof. John Duchi (Statistics & EE)

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)
- Computing fairness (theoretical guarantees)

Preventing disparity amplification

Distributional robustness **Protects minority** performance over time

Human counterfactual robustness

Problem: Spurious correlations

Solution: Robustness w/ Human counterfactuals

Hashimoto, Srivastava, Namkoong, Liang ICML 2018 (Best paper runner up)

Srivastava, Hashimoto, Liang (under review) AISTATS

MAI : ML Fairness

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)
- Computing fairness (theoretical guarantees)
- Decision-making fairness (race-blind decisions)

Prof. Sharad Goel (Management Sci & Eng.)

Enabling race-blind decisions Stanford Computational Policy Lab

Corbett-Davies, S., & Goel, S. (2018). arXiv:1808.00023. Lin, Z., Chohlas-Wood, A., & Goel, S. (2019). Conference on Al, Ethics, and Society ACM.

ML Fairness

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)
- Computing fairness (theoretical guarantees)
- Decision-making fairness (gender-blind decisions)

Prof. Emma Brunskill (CS/Education, Stanford) Prof. Phil Thomas (CS, U. Mass. Amherst)

- Experiments where a simple tutoring system had multiple variants, some purposefully designed to be "unfair" showed other algorithms could be sexist
- High probability guarantee that resulting solution will satisfy desired fairness constraints: Fair Batch Decision Making **Under Uncertainty**

HAII ML Fairness

Prof. Rob Reich (Political Science)

- Dataset fairness (diversity and representation)
- Algorithmic fairness (de-biasing and bias mitigation)
- Computing fairness (theoretical guarantees)
- Decision-making fairness
- Ethics education (multidisciplinary course)

Prof. Susan Athey (Economics)

Al + Future of Work

Profs. Marco Pavone (AA), David Grusky (Soc), Mark Duggan (Econ) Societal Impact on Autonomous Robots

Prof. Jens Heinmueller (Pol. Sci.) Al + Refugee Policy

Human-Centered Al

Al should strive to augment and enhance us, not replace us.

~50%

Of all current work activities can theoretically be automated <u>now.</u>

McKinsey, 2017

"Replace"

"Augment"

Collaborators

Computer Science

Fei-Fei Li

Alexandre Alahi

Gabriel Bianconi

Michelle Guo

Albert Haque

Tim Hsieh

Bingbin Liu

Zelun Luo

Rishab Mehra

Sanyam Mehra

Alisha Rege

Serena Yeung

Medicine

Arnold Milstein

William Beninati

Wanda Chin

Lance Downing

Jeffrey Jopling

Grace Li

Jay Luxenberg

Terry Platchek

Amit Singh

Enhancing human care with intelligent systems

America's Medical Error

250K Deaths

Annually

Hospital-Acquired Infections

99K Deaths

Annually

Unmonitored Elderly Fall Injuries \$36.4B
Annually

From: Inconsistent hand hygiene

To: Intelligent sensors placed throughout hospitals

Smart sensors throughout a hospital unit

Clean Exit

Dirty Exit

Aggregated tracks can be used for space analytics

Haque, Guo, Alahi, Yeung, Luo, Rege, Singh, Jopling, Downing, Beninati, Platchek, Milstein & Fei-Fei. MLHC. 2017.

From observation to clinical behavioral changes

From: Ineffective wearables, lack of human caretakers

To: Intelligent sensors placed throughout senior living homes

Our system analyzes where each activity happens

Luo*, Hsieh*, Balachandar, Yeung, Pusiol, Luxenberg, Li, Li-Jia, Downing, Milstein, Fei-Fei. MLHC 2018.

and when each activity happens

Gait analysis can identify early signs of dementia or Parkinson's

Algorithm-assisted research

Prof. Emma Brunskill & collaborators, Stanford University

Today:

The Ocean One Robot can search the ocean at inhuman depths

Tomorrow:

Intelligent machines will spare first responders in disaster areas

Human-Centered Al

.................

Al must be more inspired by human intelligence.

Today's Al

Static, Simple goals, Disembodied

Human

Dynamic, Multi-sensory, Complex, Uncertain, Interactive

Today's Al

Static, Simple goals, Disembodied

Human

Dynamic, Multi-sensory, Complex, Uncertain, Interactive

Held & Hein, 1963: Visual development requires self-guided

Intelligence emerges from active perception and interaction with the real-world

Interact like a baby

Damian Mrowca
PhD student

Prof. Nick Haber

Prof. Li Fei-Fei

Prof. Dan Yamins

Infants are curious and play with their environment How might an Al agent train to interact with its environment

- "Scientists in the crib!"Gopnik 2000
- Novelty preference
 Fantz 1964
- Goldilocks effect
 Kidd 2012

Dynamics learning through intrinsically motivated interactions

World Model network: to predict consequences of actions Self Model network: to predict errors of world-model ("self-aware") Action choice: self-model is **adversarial** to world-model ("curious intrinsic motivation")

Emergent Behavior: Agent goes through learning stages

Primitive planning: Agent learns to focus on objects

Interact with the physical environment

Kuan Fang
PhD student

Prof. Yuke Zhu
Former PhD student

Prof. Animesh Garg
Former PostDoc

Prof. Li Fei-Fei

Prof. Silvio Savarese

Vision-Based Tool Manipulation Recognition > Understanding > Manipulation

K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, S. Savarese. RSS'18

Task-Agnostic Grasp vs. Task-Oriented Grasp

K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, S. Savarese. RSS'18

Keypoint Representations for Tool Manipulation

Composite Task: Multi-Stage Tool Use

Tool Creation

Keypoints offer a template for generating tools from object parts.

Hammering with the Created Tool

Generalizable Multi-Step Manipulation for Various Tasks and Targets

Clearing

Insertion

Crossing

Generalizable Multi-Step Manipulation for Various Tasks and Targets

Reasoning about Tools for Manipulation

Task-oriented grasping for tool manipulation

Fang, Zhu, Garg, Kurenkov, Fei-Fei & Savarese., RSS 2018

Observational Learning for Task Structures

Exploiting hierarchical task structures for better generalization

Xu*, Nair*, et al., ICRA 2018; Huang*, Nair*, Xu*, et al., CVPR 2019

Multi-stage tool use and creation

Qin, Fang, Zhu, Fei-Fei & Savarese (under review)

Multimodal Learning with Vision and Force

Learning multimodal representations for high-precision manipulation

Lee*, Zhu*, et al., ICRA 2018 (Best Paper Award)

Interact with humans

Ranjay Krishna PhD student

Prof. Michael Bernstein

Prof. Li Fei-Fei

Humans learn by interacting with other humans

Our aim:

A conversational Al agent that learns visual knowledge by interacting with and learning from people

Sarah: Found this little one outside of my apartment.

Red Panda.

Agent: I have never seen that animal, is that a fox?

Agent: I have never seen that animal, is that a fox?

Sarah: It's a Red Panda.

Engagement Learning: an open-vocabulary reinforcement learning algorithm

Engagement Learning: an open-vocabulary reinforcement learning algorithm

Engagement Learning: Results

Goal 1: Ask More Engaging Questions

Engagement Learning: Results

Goal 2: Expand visual knowledge of the AI agent

Q: What kind of bird is that?

A (by AI): Magpie

Q: What kind of flower is that?

A (by AI): Dahlias

Q: What is the white stuff on the plate?

A (by AI): Feta cheese

Human-Centered Al

The development of Al must be guided by a concern for its human impact.

Al should strive to augment and enhance us, not replace us.

Al must be more inspired by human intelligence.

