ELSEVIER

Contents lists available at ScienceDirect

# **Expert Systems with Applications**

journal homepage: www.elsevier.com/locate/eswa



# DeLorean: A reasoner for fuzzy OWL 2 \*

Fernando Bobillo <sup>a,\*</sup>, Miguel Delgado <sup>b</sup>, Juan Gómez-Romero <sup>c</sup>

- <sup>a</sup> Department of Computer Science and Systems Engineering, University of Zaragoza, Spain
- <sup>b</sup> Department of Computer Science and Artificial Intelligence, University of Granada, Spain
- <sup>c</sup> Applied Artificial Intelligence Group, University Carlos III, Madrid, Spain

#### ARTICLE INFO

#### Keywords: Fuzzy rough description logics Fuzzy rough ontologies Fuzzy description logic reasoner Fuzzy rough ontology reasoner

#### ABSTRACT

Today, there is a growing interest in the development of knowledge representations able to deal with uncertainty, which is a very common requirement in real world applications. Despite the undisputed success of ontologies, classical ontologies are not suitable to deal with uncertainty and, consequently, several extensions with fuzzy logic and rough logic, among other formalisms, have been proposed.

In this article we describe Delorean 2, the first ontology reasoner that supports fuzzy extensions of the standard languages OWL and OWL 2. In a strict sense, Delorean is not a reasoner but a translator from fuzzy rough ontology languages ( $GZ SROIQ(\mathbf{D})$ ) into classical ontology languages ( $SROIQ(\mathbf{D})$ ). This allows using classical (widely available) Description Logic inference engines to reason with the representation resulting from the transformation. We describe the main features of the application: evolution, functionality, architecture, graphical interface, input language, and implementation details.

© 2011 Elsevier Ltd. All rights reserved.

## 1. Introduction

The use of ontologies as formalisms for knowledge representation in many different application domains has grown significantly lately. Ontologies have been successfully used as part of expert and multiagent systems, as well as a core element in the Semantic Web, which proposes to extend the current web to give information a well-defined meaning (Berners-Lee, Hendler, & Lassila, 2001). An ontology is defined as an explicit and formal specification of a shared conceptualization (Gruber, 1993), which means that ontologies represent the concepts and the relationships in a domain promoting interrelation with other models and automatic processing. Ontologies allow adding semantics to data, making knowledge maintenance, information integration, and reuse of components easier. The language OWL 2 (Cuenca-Grau et al., 2008) has very recently become a W3C Recommendation for ontology representation. OWL 2 is an extension of the previous standard language OWL (W3C, 2004).

Description Logics (DLs for short) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003) are a family of logics for representing structured knowledge. Each logic is denoted by using a string of capital letters which identify the constructors of

*E-mail addresses*: fbobillo@unizar.es (F. Bobillo), mdelgado@ugr.es (M. Delgado), jgromero@inf.uc3m.es (J. Gómez-Romero).

the logic and therefore its complexity. DLs have proved to be very useful as ontology languages. For instance, the languages OWL 2 and OWL are almost equivalent to  $\mathcal{SROIQ}(\mathbf{D})$  (Horrocks, Kutz, & Sattler, 2006) and  $\mathcal{SHOIN}(\mathbf{D})$  (Horrocks & Patel-Schneider, 2004), respectively.

Nevertheless, it has been widely pointed out that classical ontologies are not appropriate to deal with imprecise and vague knowledge, which is inherent to several real world domains (Sanchez, 2006). Since fuzzy set theory and fuzzy logic are suitable formalisms to handle these types of knowledge, several fuzzy extensions of DLs can be found in the literature (Lukasiewicz & Straccia, 2008), yielding fuzzy ontologies. Fuzzy ontologies have proved to be useful in several applications, such as information retrieval (Calegari & Sanchez, 2008), image interpretation (Hudelot, Atif, & Bloch, 2008), and the Semantic Web and the Internet (Costa, Laskey, & Lukasiewicz, 2008; Sanchez, 2006), among many others.

Rough sets theory offers a qualitative approach to model vagueness (Pawlak, 1982). Fuzzy logic and rough logic are complementary formalisms and hence it is natural to combine them by means of fuzzy rough sets. Fuzzy rough extensions of ontologies have also been presented (Bobillo & Straccia, 2009).

In this paper we describe DeLorean (Description LOgic Reasoner with vAgueNess), <sup>1</sup> a reasoner that supports fuzzy rough extensions of the languages OWL and OWL 2, also implementing some interesting optimization techniques. As stated by some authors, we strongly believe that "the broad acceptance of the forthcoming

<sup>\*</sup> This paper is a revised and extended version of "DeLorean: A Reasoner for Fuzzy OWL 1.1", in the Proceedings of the 4th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2008).

<sup>\*</sup> Corresponding author.

<sup>1</sup> http://www.webdiis.unizar.es/fbobillo/delorean.

OWL 2 ontology language will largely depend on the availability of editors, reasoners and numerous other tools that support the use of OWL 2 from a high-level/application perspective" (Horridge, Bechhofer, & Noppens, 2007). This is a significant contribution in this direction, since Delorean is the first tool that supports fuzzy OWL 2.

In a strict sense, DeLorean is not a reasoner but a *translator* from a fuzzy rough ontology language into a classical ontology language (the standard language OWL or OWL 2, depending on the expressivity of the original ontology). Then, a classical DL reasoner is employed to reason with the resulting ontology. Nevertheless, due to this ability of combining the reduction procedure with the classical DL reasoning, we will refer to DeLorean as a reasoner.

This paper is organized as follows. Section 2 recalls some preliminaries on fuzzy rough set theory and fuzzy logic. Section 3 describes the fuzzy rough DL GZ  $SROIQ(\mathbf{D})$ , which is equivalent to the language supported by Delorean. Then, Section 4 contains the main part, a detailed description of the architecture and the development of the application. Next, Section 5 reviews some related work. Finally, Section 6 sets out some conclusions and ideas for future work.

## 2. Fuzzy rough sets and fuzzy logic

Fuzzy set theory and fuzzy logic were proposed by Zadeh (1965) to manage imprecise and vague knowledge. While in classical set theory elements either belong to a set or not, in fuzzy set theory elements can belong to a set to some degree. More formally, let X be a set of elements called the reference set. A fuzzy subset A of X is defined by a membership function  $\mu_A(x)$ , or simply A(x), which assigns any  $x \in X$  to a value in the interval of real numbers between 0 and 1. As in the classical case, 0 means no-membership and 1 full membership, but now a value between 0 and 1 represents the extent to which x can be considered as an element of X.

All classical set operations are extended to fuzzy sets. The intersection, union, complement and implication set operations are performed by some functions (a t-norm, a t-conorm, a negation, and an implication, respectively). Table 1 shows the most important fuzzy logics, which are set according to the definition of these operations: Zadeh, Łukasiewicz, Gödel, and Product. The implication of Zadeh fuzzy logic is called Kleene-Dienes implication.

It is also common to restrict to finite chains of degrees of truth, instead of the real interval [0,1]. For our purposes all finite chains with the same number of elements are equivalent, so we will deal with the simplest finite chain of p+1 elements:  $\mathcal{N}=\{0=\gamma_0<\gamma_1<\dots<\gamma_p=1\}$ , where  $p\geqslant 1$  (Mayor & Torrens, 1993). Such an  $\mathcal N$  can be understood as a set of linguistic terms or labels. For example, {false, closeToFalse, neutral, closeToTrue, true}. From a practical point of view, it is very often sufficient to use a small p.

For every  $\alpha \in \mathcal{N}$ , the  $\alpha$ -cut of a fuzzy set A is defined as the (crisp) set such that its elements belong to A with degree at least

**Table 1** Popular fuzzy logics over [0,1].

| _ |                        |                                                      |                                                                   |                                                                                |                                                                                                                     |
|---|------------------------|------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|   | Family                 | t-norm $\alpha \otimes \beta$                        | t-conorm $\alpha \oplus \beta$                                    | $\begin{array}{l} negation \\ \ominus \alpha \end{array}$                      | implication $\alpha \Rightarrow \beta$                                                                              |
|   | Zadeh<br>Gödel         | $\min\{\alpha, \beta\}$<br>$\min\{\alpha, \beta\}$   | $\max\{\alpha,\beta\}$<br>$\max\{\alpha,\beta\}$                  | $ \begin{cases} 1-\alpha \\ 1, & \alpha=0 \\ 0, & \alpha>0 \end{cases} $       | $\max\{1-\alpha,\beta\}$ $\begin{cases} 1 & \alpha \leqslant \beta \\ \beta, & \alpha > \beta \end{cases}$          |
|   | Łukasiewicz<br>Product | $\max\{\alpha + \beta - 1, 0\}$ $\alpha \cdot \beta$ | $\min\{\alpha + \beta, 1\}$ $\alpha + \beta - \alpha \cdot \beta$ | $ \begin{cases} 1 - \alpha \\ 1, & \alpha = 0 \\ 0, & \alpha > 0 \end{cases} $ | $\min\{1 - \alpha + \beta, 1\}$ $\begin{cases} 1 & \alpha \leq \beta \\ \beta/\alpha, & \alpha > \beta \end{cases}$ |

 $\alpha$ , i.e.  $\{x \mid \mu_A(x) \ge \alpha\}$ . Similarly, the *strict*  $\alpha$ -*cut* is defined as  $\{x \mid \mu_A(x) > \alpha\}$ .

T-norms, t-conorms, negations and implications can be restricted to finite chains (Mas, Monserrat, & Torrens, 2004; Mayor & Torrens, 1993). Table 2 shows the most important fuzzy logics under finite chains: Zadeh, Łukasiewicz, and Gödel. Clearly, a product-based fuzzy logic cannot be defined over a finite chain since, in general,  $\gamma_i \otimes \gamma_i \notin \mathcal{N}$ .

Fuzzy logic uses fuzzy set theory to perform approximate reasoning. For the scope of this paper, fuzzy statements have the form  $\phi \geqslant \alpha$  or  $\phi \leqslant \beta$ , where  $\alpha \in \mathcal{N} \setminus \{\gamma_0\}, \beta \in \mathcal{N} \setminus \{\gamma_p\}$ , and  $\phi$  is a statement. Fuzzy statement represents that the degree of truth of  $\phi$  is at least  $\alpha$  (resp. at most  $\beta$ ). For example, ripeTomato  $\geqslant$  closeToTrue says that it is almost true that a tomato is ripe.

Relations can also be extended to the fuzzy case. A (binary) fuzzy relation R over two countable sets X and Y is a function  $R: X \times Y \to \mathcal{N}$ . Several properties of the relations (such as reflexive, irreflexive, symmetric, asymmetric, transitive, or disjointness can) and operations (inverse, composition) can trivially be extended to the finite case.

The notion of rough set was introduced by Pawlak (1982). The key idea in rough set theory is the approximation of a vague concept when there is only incomplete information about the concept. More precisely, there are only some examples of elements that belong to the concept, and an indiscernibility equivalence (reflexive, symmetric, and transitive) or similarity (reflexive and symmetric) relation between elements of the domain. In this case, a vague concept is approximated by means of a pair of concepts: a sub-concept or lower approximation, and a super-concept or upper approximation. The lower approximation describes the sets of elements that definitely belong to the vague set. The upper approximation describes the sets of elements that possibly belong to the vague set. A *rough set* is then defined as a pair of concepts: a lower approximation and an upper approximation of a vague concept.

A very natural extension to rough sets is to consider a fuzzy similarity relation instead of an indiscernibility relation, which gives raise to *fuzzy rough sets* (Cock, Cornelis, & Kerre, 2007; Radzikowska & Kerre, 2002).

While in rough sets one element of the domain can only belong to one equivalence class, in fuzzy rough sets one element can belong to several fuzzy similarity classes (with different degrees of truth). Thus, the notion of tight and loose approximation naturally appear (Cock et al., 2007): a tight approximation considers all fuzzy similarity classes, whereas a lower approximation considers the best one among the similarity classes.

Given a fuzzy similarity relation s, a t-norm  $\otimes$  and an implication function  $\Rightarrow$ , the lower approximation  $(s \downarrow A)$ , the upper approximation  $(s \uparrow A)$ , the tight lower approximation  $(s \downarrow A)$ , the loose lower approximation  $(s \uparrow \downarrow A)$ , the tight upper approximation  $(s \downarrow \uparrow A)$ , and the loose upper approximation  $(s \uparrow \uparrow A)$  of a fuzzy subset A of X are defined by the following membership functions:

$$(s \downarrow A)(x) = \inf_{y \in X} \{s(x, y) \Rightarrow A(y)\}$$

$$(s \uparrow A)(x) = \sup_{y \in X} \{s(x, y) \otimes A(y)\}$$

$$(s \downarrow A)(x) = \inf_{z \in X} \left\{s(x, z) \Rightarrow \inf_{y \in X} \{s(z, y) \Rightarrow A(y)\}\right\}$$

$$(s \uparrow \downarrow A)(x) = \sup_{z \in X} \left\{s(x, z) \otimes \inf_{y \in X} \{s(z, y) \Rightarrow A(y)\}\right\}$$

$$(s \uparrow \uparrow A)(x) = \inf_{z \in X} \left\{s(x, z) \Rightarrow \sup_{y \in X} \{s(z, y) \otimes A(y)\}\right\}$$

$$(s \uparrow \uparrow A)(x) = \sup_{z \in X} \left\{s(x, z) \otimes \sup_{y \in X} \{s(z, y) \otimes A(y)\}\right\}$$

**Table 2** Popular fuzzy logics over a finite chain.

| Family         | $\gamma_i \otimes \gamma_j$                               | $\gamma_i \oplus \gamma_j$                                   | $\ominus \gamma_i$                                                                               | $\gamma_i \Rightarrow \gamma_j$                                                                                                    |
|----------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Zadeh<br>Gödel | $\min\{\gamma_i, \gamma_j\}$ $\min\{\gamma_i, \gamma_j\}$ | $\max\{\gamma_i, \gamma_j\}$<br>$\max\{\gamma_i, \gamma_j\}$ | $\begin{cases} \gamma_{p-i} \\ \gamma_p, & \gamma_i = 0 \\ \gamma_0, & \gamma_i > 0 \end{cases}$ | $\max\{\gamma_{p-i}, \gamma_j\} $ $\begin{cases} \gamma_p & \gamma_i \leq \gamma_j \\ \gamma_j, & \gamma_i > \gamma_j \end{cases}$ |
| Łukasiewicz    | $\gamma_{\max\{i+j-p,0\}}$                                | $\gamma_{\min\{i+j,p\}}$                                     | $\gamma_{p-i}$                                                                                   | $\gamma_{\min\{p-i+j,p\}}$                                                                                                         |

#### 3. Fuzzy rough SROIQ(D)

In this section we define a fuzzy rough extension of  $\mathcal{SROIQ}(\mathbf{D})$ , namely GZ  $\mathcal{SROIQ}(\mathbf{D})$ . GZ  $\mathcal{SROIQ}(\mathbf{D})$  correspond to a fuzzy extension of the DL  $\mathcal{SROIQ}(\mathbf{D})$ , equivalent to OWL 2, under a semantics given by Zadeh (denoted by the Z) and Gödel (denoted by the G) fuzzy logics, restricted to a finite chain of degrees of truth. In fact, concepts are fuzzy rough sets of individuals, roles are fuzzy binary relations. Axioms are extended to the fuzzy case, and some of them hold to a degree.

This logic was firstly presented in Bobillo, Delgado, and Gómez-Romero (2009) (Z  $SROIQ(\mathbf{D})$ , and Bobillo, Delgado, Gómez-Romero, & Straccia (2009) (G  $SROIQ(\mathbf{D})$ , and extended with fuzzy rough concepts in Bobillo & Straccia (2009); Bobillo & Straccia (submitted). In Bobillo, Delgado, Gómez-Romero, & Straccia (Submitted), an unified and comprehensive view on GZ  $SROIQ(\mathbf{D})$  was provided.

In the remainder of this section, we will assume the reader to be familiar with non-fuzzy DLs (Baader et al., 2003).

# 3.1. Fuzzy concrete domains

A *fuzzy concrete domain* (Straccia, 2005) **D** is a pair  $\langle \Delta_{\mathbf{D}}, \Phi_{\mathbf{D}} \rangle$ , where  $\Delta_{\mathbf{D}}$  is a concrete interpretation domain, and  $\Phi_{\mathbf{D}}$  is a set of fuzzy concrete predicates **d** with an arity n and an interpretation  $\mathbf{d}_{\mathbf{D}}$ :  $\Delta_{\mathbf{D}}^{n} \rightarrow [0,1]$ , which is an n-ary fuzzy relation over  $\Delta_{\mathbf{D}}$ .

As fuzzy concrete predicates we allow a discretized version of the trapezoidal membership function (Fig. 1 (a)). The trapezoidal membership function can be used to represent other popular functions, such as the triangular, the left-shoulder, and the right-shoulder functions (Straccia, 2005).

# 3.2. Fuzzy modifiers

A fuzzy modifier mod is a function  $f_{mod}: \mathcal{N} \to \mathcal{N}$  which applies to a fuzzy set to change its membership function. A typical example is the fuzzy modifier *very*. We will allow modifiers defined in terms of the triangular membership function (Fig. 1 (b)).

**Table 3** Syntax of concepts, roles, and axioms in *GZ SROIQ*.

| Concept constructor                                                                                                                                                                                                                                                                                                                                                                                                                                        | Syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Top concept                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bottom concept                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Atomic concept                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conjunction                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C \sqcap D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Disjunction                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C \sqcup D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gödel negation                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg_G C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zadeh negation                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg_z C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gödel universal restriction                                                                                                                                                                                                                                                                                                                                                                                                                                | $\forall_G R.C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Zadeh universal restriction                                                                                                                                                                                                                                                                                                                                                                                                                                | $\forall_Z R.C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Existential restriction                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∃R.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Concrete Gödel universal restriction                                                                                                                                                                                                                                                                                                                                                                                                                       | $\forall_G T.\mathbf{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Concrete Zadeh universal restriction                                                                                                                                                                                                                                                                                                                                                                                                                       | $\forall_Z T.\mathbf{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Concrete existential restriction                                                                                                                                                                                                                                                                                                                                                                                                                           | ∃ <i>T</i> . <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fuzzy nominal                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\{\alpha/a\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| At-least restriction                                                                                                                                                                                                                                                                                                                                                                                                                                       | (≥m S.C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Gödel at-most restriction                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\leqslant_G n \ S.C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Zadeh at-most restriction                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\leq_Z n S.C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Concrete at-least restriction                                                                                                                                                                                                                                                                                                                                                                                                                              | $(\geqslant m \ T.\mathbf{d})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Concrete Gödel at-most restriction                                                                                                                                                                                                                                                                                                                                                                                                                         | $(\leqslant_G n \ T.\mathbf{d})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Concrete Zadeh at-most restriction                                                                                                                                                                                                                                                                                                                                                                                                                         | $(\leqslant_{\mathbb{Z}} n \ T.\mathbf{d})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Local reflexivity                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∃S.Self                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cut concept                                                                                                                                                                                                                                                                                                                                                                                                                                                | $[C \geqslant \alpha]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Modified concept                                                                                                                                                                                                                                                                                                                                                                                                                                           | mod(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tight lower approximation                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(s_i \sqcup C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Loose lower approximation                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(s_i \uparrow \downarrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lower approximation                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(s_i \downarrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tight upper approximation                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(s_i\downarrow\uparrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loose upper approximation                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(s_i \uparrow \uparrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Upper approximation                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(s_i \uparrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Role constructor                                                                                                                                                                                                                                                                                                                                                                                                                                           | Syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Atomic abstract role                                                                                                                                                                                                                                                                                                                                                                                                                                       | $R_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Concrete abstract role                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Concrete abstract role                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Universal role                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Universal role<br>Inverse role                                                                                                                                                                                                                                                                                                                                                                                                                             | U<br>R <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Universal role<br>Inverse role<br>Axiom                                                                                                                                                                                                                                                                                                                                                                                                                    | U<br>R <sup>-</sup><br>Syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Universal role Inverse role Axiom Concept assertion                                                                                                                                                                                                                                                                                                                                                                                                        | $U$ $R^-$ Syntax $\langle a: C \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Universal role Inverse role Axiom  Concept assertion Role assertion                                                                                                                                                                                                                                                                                                                                                                                        | $U$ $R^-$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion                                                                                                                                                                                                                                                                                                                                                          | $U$ $R^-$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion                                                                                                                                                                                                                                                                                                                             | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{C} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion                                                                                                                                                                                                                                                                                                        | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion                                                                                                                                                                                                                                                                                     | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Gödel General Concept Inclusion (GCI)                                                                                                                                                                                                                                               | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$ $\langle C \sqsubseteq_{G} D \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI)                                                                                                                                                                                                         | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$ $\langle C \sqsubseteq_{G} D \bowtie \gamma \rangle$ $\langle C \sqsubseteq_{Z} D \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                     |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA)                                                                                                                                                                        | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$ $\langle C \sqsubseteq_{G} D \bowtie \gamma \rangle$ $\langle R_{1} \dots R_{m} \sqsubseteq_{G} R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                     |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA)                                                                                                                    | $U \atop R^-$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_G R \bowtie \gamma \rangle \\ \langle (a,b): \neg_Z R \bowtie \gamma \rangle \\ a \neq b \\ a = b \\ \langle C \sqsubseteq_G D \bowtie \gamma \rangle \\ \langle C \sqsubseteq_Z D \bowtie \gamma \rangle \\ \langle R_1 \dots R_m \sqsubseteq_G R \bowtie \gamma \rangle \\ \langle R_1 \dots R_m \sqsubseteq_Z R \bowtie \gamma \rangle$                                                                                                                                                                                                                                    |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Gödel concrete RIA                                                                                                                              | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{C} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$ $\langle C \sqsubseteq_{C} D \bowtie \gamma \rangle$ $\langle C \sqsubseteq_{C} D \bowtie \gamma \rangle$ $\langle R_{1} \dots R_{m} \sqsubseteq_{C} R \bowtie \gamma \rangle$ $\langle R_{1} \dots R_{m} \sqsubseteq_{C} R \bowtie \gamma \rangle$ $\langle T_{1} \sqsubseteq_{C} T_{2} \bowtie \gamma \rangle$                                                                                                                                                              |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Zadeh Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Gödel concrete RIA Zadeh concrete RIA                                                                                                 | $U$ $R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a \neq b$ $a = b$ $\langle C \sqsubseteq_{G} D \bowtie \gamma \rangle$ $\langle C \sqsubseteq_{Z} D \bowtie \gamma \rangle$ $\langle R_{1} \dots R_{m} \sqsubseteq_{G} R \bowtie \gamma \rangle$ $\langle T_{1} \sqsubseteq_{G} T_{2} \bowtie \gamma \rangle$ $\langle T_{1} \sqsubseteq_{G} T_{2} \bowtie \gamma \rangle$                                                                                                                                                                      |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Zadeh Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Gödel concrete RIA Zadeh concrete RIA Transitive role axiom                                                                                     | $U \atop R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{G} R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{G} R \bowtie \gamma \rangle \\ a \neq b \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                 |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Tansitive role axiom Disjoint role axiom                                                                                              | $U \atop R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{G} R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{Z} R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{Z} R \bowtie \gamma \rangle \\ a \neq b \\ a = b \\ \langle C \sqsubseteq_{G} D \trianglerighteq \gamma \rangle \\ \langle C \sqsubseteq_{Z} D \trianglerighteq \gamma \rangle \\ \langle R_{1} \dots R_{m} \sqsubseteq_{G} R \trianglerighteq \gamma \rangle \\ \langle R_{1} \dots R_{m} \sqsubseteq_{Z} R \trianglerighteq \gamma \rangle \\ \langle T_{1} \sqsubseteq_{C} T_{2} \trianglerighteq \gamma \rangle \\ \text{trans}(R) \\ \text{dis}(S_{1},S_{2})$ |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Gödel concrete RIA Zadeh concrete RIA Transitive role axiom Disjoint role axiom Disjoint concrete role axiom       | $U \atop R^{-}$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{G} R \bowtie \gamma \rangle \\ \langle (a,b): \neg_{Z} R \bowtie \gamma \rangle \\ a \neq b $ $a = b $ $\langle C \sqsubseteq_{G} D \bowtie \gamma \rangle \\ \langle C \sqsubseteq_{Z} D \bowtie \gamma \rangle \\ \langle R_{1} \dots R_{m} \sqsubseteq_{G} R \bowtie \gamma \rangle \\ \langle R_{1} \dots R_{m} \sqsubseteq_{Z} R \bowtie \gamma \rangle \\ \langle T_{1} \sqsubseteq_{G} T_{2} \bowtie \gamma \rangle \\ \langle T_{1} \sqsubseteq_{G} T_{2} \bowtie \gamma \rangle \\ \text{trans}(R) \\ \text{dis}(S_{1}, S_{2}) \\ \text{dis}(T_{1}, T_{2})$       |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Cödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Cödel concrete RIA Zadeh concrete RIA Transitive role axiom Disjoint role axiom Disjoint concrete role axiom Reflexive role axiom                        | $U \atop R^-$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_C R \bowtie \gamma \rangle \\ \langle (a,b): \neg_Z R \bowtie \gamma \rangle \\ a \neq b \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                       |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Zadeh General Concept Inclusion (GCI) Gödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Transitive role axiom Disjoint role axiom Disjoint concrete role axiom Reflexive role axiom Irreflexive role axiom | $U \atop R^-$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_C R \bowtie \gamma \rangle \\ \langle (a,b): \neg_Z R \bowtie \gamma \rangle \\ a \neq b \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                       |
| Universal role Inverse role  Axiom  Concept assertion Role assertion Gödel negated role assertion Zadeh negated role assertion Inequality assertion Equality assertion Equality assertion Gödel General Concept Inclusion (GCI) Cödel Role Inclusion Axiom (RIA) Zadeh Role Inclusion Axiom (RIA) Cödel concrete RIA Zadeh concrete RIA Transitive role axiom Disjoint role axiom Disjoint concrete role axiom Reflexive role axiom                        | $U \atop R^-$ Syntax $\langle a: C \bowtie \gamma \rangle \\ \langle (a,b): R \bowtie \gamma \rangle \\ \langle (a,b): \neg_C R \bowtie \gamma \rangle \\ \langle (a,b): \neg_Z R \bowtie \gamma \rangle \\ a \neq b \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                       |



Fig. 1. (a) Trapezoidal membership function; (b) Triangular fuzzy modifier.

 $\begin{tabular}{ll} \textbf{Table 4} \\ \textbf{Semantics of concepts, roles, and axioms in $\sf GZ$ $\it SROIQ$.} \end{tabular}$ 

| Concept C                                                                                                                                                | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\top)^{\mathcal{I}}(\mathbf{x})$                                                                                                                       | $\gamma_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $(\perp)^{\mathcal{I}}(x)$                                                                                                                               | γο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(A)^{\mathcal{I}}(x)$                                                                                                                                   | $A^{\mathcal{I}}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(C \sqcap D)^{\mathcal{I}}(x)$                                                                                                                          | $C^{\mathcal{I}}(\mathbf{x})\otimes D^{\mathcal{I}}(\mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(C \sqcup D)^{\mathcal{I}}(x)$                                                                                                                          | $C^{\mathcal{I}}(x) \oplus D^{\mathcal{I}}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\neg_G C)^{\mathcal{I}}(x)$                                                                                                                            | $\ominus_{G}C^{\mathcal{I}}(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\neg_Z C)^{\mathcal{I}}(x)$                                                                                                                            | $\ominus_{\mathbf{Z}} C^{\mathcal{I}}(\mathbf{X})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(\forall_G R.C)^{\mathcal{I}}(x)$                                                                                                                       | $\inf_{y \in \Delta^{\mathcal{I}}} \left\{ R^{\mathcal{I}}(x, y) \Rightarrow_{G} C^{\mathcal{I}}(y) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(\forall_Z R.C)^T(x)$                                                                                                                                   | $\inf_{y \in \Delta^{\mathcal{I}}} \left\{ R^{\mathcal{I}}(x, y) \Rightarrow_{\mathcal{I}} C^{\mathcal{I}}(y) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                      |
| $(\exists R.C)^{\mathcal{I}}(x)$                                                                                                                         | $\sup_{y\in\Delta^{\mathcal{I}}}\left\{R^{\mathcal{I}}(x,y)\otimes C^{\mathcal{I}}(y)\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\forall_G T.d)^T(x)$                                                                                                                                   | $\inf_{v \in \Delta_{\mathbb{D}}} \{ T^{\mathcal{I}}(x, v) \Rightarrow_{G} \mathtt{d}_{\mathbb{D}}(v) \}$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(\forall_Z T.d)^T(x)$                                                                                                                                   | $\inf_{\nu \in \Delta_{\mathbb{D}}} \left\{ T^{\mathcal{I}}(X, \nu) \Rightarrow_{\mathcal{I}} d_{\mathbb{D}}(\nu) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(\exists T.d)^{\mathcal{I}}(x)$                                                                                                                         | $\sup_{\nu \in \Delta_0} \{ T^{\mathcal{I}}(x, \nu) \otimes d_{\mathbb{D}}(\nu) \}$<br>\(\alpha\) if $x = a^{\mathcal{I}}$ , $\gamma_0$ otherwise                                                                                                                                                                                                                                                                                                                                                                            |
| $(\{\alpha/a\})^{\mathcal{I}}(x)$ $(\geqslant m \ S.C)^{\mathcal{I}}(x)$                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , , , ,                                                                                                                                                  | $\sup_{y_1,\dots,y_m\in\Delta^{\mathcal{I}}}\left[\left(\min_{i=1}^m\left\{S^{\mathcal{I}}(x,y_i)\otimes C^{\mathcal{I}}(y_i)\right\}\right)\otimes\left(\otimes_{j< k}\{y_j\neq y_k\}\right)\right]$                                                                                                                                                                                                                                                                                                                        |
| $(\leqslant_G n \ S.C)^T(x)$                                                                                                                             | $\inf_{y_1,\dots,y_{n+1}\in\Delta^{\mathcal{I}}}\left[\left(\min_{i=1}^{n+1}\left\{S^{\mathcal{I}}(x,y_i)\otimes C^{\mathcal{I}}(y_i)\right\}\right)\Rightarrow_G\left(\oplus_{j< k}\{y_j=y_k\}\right)\right]$                                                                                                                                                                                                                                                                                                               |
| $((\leqslant_Z n \ S.C))^T(x)$                                                                                                                           | $\inf_{y_1,\dots,y_{n+1}\in\Delta^{\mathcal{I}}}\left[\left(\min_{i=1}^{n+1}\left\{S^{\mathcal{I}}(x,y_i)\otimes C^{\mathcal{I}}(y_i)\right\}\right)\Rightarrow_{\mathcal{I}}\left(\oplus_{j< k}\{y_j=y_k\}\right)\right]$                                                                                                                                                                                                                                                                                                   |
| $(\geqslant m \ T.d)^{\mathcal{I}}(x)$                                                                                                                   | $\sup_{\nu_1,\dots,\nu_m\in\Delta_{\mathbb{D}}} \left[ \left( \min_{i=1}^m \left\{ T^{\mathcal{I}}(x,\nu_i) \otimes \mathrm{d}_{\mathbb{D}}(\nu_i) \right\} \right) \otimes \left( \otimes_{j < k} \left\{ y_j \neq y_k \right\} \right) \right]$                                                                                                                                                                                                                                                                            |
| $(\leqslant_G n \ T.d)^T(x)$                                                                                                                             | $\inf_{v_1,,v_{n+1}\in\Delta_{\mathbb{D}}}\left[\left(\min_{i=1}^{n+1}\left\{T^{\mathcal{I}}(x,v_i)\otimes \mathtt{d}_{\mathbb{D}}(v_i) ight\}\right)\Rightarrow_{G}\left(\oplus_{j< k}\{y_j=y_k\}\right) ight]$                                                                                                                                                                                                                                                                                                             |
| $((\leqslant_{Z} n \ T.d))^{\mathcal{I}}(x)$                                                                                                             | $\inf_{ u_1,\dots,u_{n+1}\in\Delta_{\mathbb{D}}}\left[\left(\min_{i=1}^{n+1}\left\{T^{\mathcal{I}}(x, u_i)\otimes\mathtt{d}_{\mathbb{D}}( u_i) ight\}\right)\Rightarrow_{\mathcal{I}}\left(\oplus_{j< k}\left\{y_j=y_k ight\}\right) ight]$ $S^{\mathcal{I}}(x,x)$                                                                                                                                                                                                                                                           |
| $(\exists S. \mathtt{Self})^{\mathcal{I}}(x)$ $([C \geqslant \alpha])^{\mathcal{I}}(x)$                                                                  | $\gamma_p$ if $C^{\mathcal{I}}(x) \ge \alpha$ , $\gamma_0$ otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $([C \geqslant \alpha])(x)$<br>$(mod(C))^{\mathcal{I}}(x)$                                                                                               | $f_{mod}(C^{\mathcal{I}}(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(s_i \downarrow \downarrow C)^{\mathcal{I}}(x)$                                                                                                         | $\inf_{z \in \Lambda^{\mathcal{I}}} \left\{ s_{i}^{\mathcal{I}}(x, z) \Rightarrow \inf_{y \in \Lambda^{\mathcal{I}}} \left\{ s_{i}^{\mathcal{I}}(z, y) \Rightarrow C^{\mathcal{I}}(y) \right\} \right\}$                                                                                                                                                                                                                                                                                                                     |
| $(s_i \uparrow \downarrow C)^T(x)$                                                                                                                       | $\sup_{z \in A^{T}} \left\{ s_{i}^{T}(x, z) \to \inf_{y \in A^{T}} \left\{ s_{i}^{T}(z, y) \to C^{T}(y) \right\} \right\}$ $\sup_{z \in A^{T}} \left\{ s_{i}^{T}(x, z) \otimes \inf_{y \in A^{T}} \left\{ s_{i}^{T}(z, y) \to C^{T}(y) \right\} \right\}$                                                                                                                                                                                                                                                                    |
| $(s_i \downarrow C)^T(x)$                                                                                                                                | $\inf_{\mathbf{y} \in \Lambda^{\mathbf{I}}} \left\{ s_{i}^{\mathbf{I}}(\mathbf{x}, \mathbf{y}) \Rightarrow C^{\mathbf{I}}(\mathbf{y}) \right\}$ $\inf_{\mathbf{y} \in \Lambda^{\mathbf{I}}} \left\{ s_{i}^{\mathbf{I}}(\mathbf{x}, \mathbf{y}) \Rightarrow C^{\mathbf{I}}(\mathbf{y}) \right\}$                                                                                                                                                                                                                              |
| $(s_i\downarrow\uparrow C)^T(x)$                                                                                                                         | $\inf_{y \in \Lambda^{\mathcal{I}}} \left\{ s_{i}^{\mathcal{I}}(x, y) \Rightarrow C \mid \mathcal{G} \right\} $ $\inf_{z \in \Lambda^{\mathcal{I}}} \left\{ s_{i}^{\mathcal{I}}(x, z) \Rightarrow \sup_{y \in \Lambda^{\mathcal{I}}} \left\{ s_{i}^{\mathcal{I}}(z, y) \otimes C^{\mathcal{I}}(y) \right\} \right\}$                                                                                                                                                                                                         |
| $(s_i \uparrow \uparrow C)^T(x)$                                                                                                                         | $\sup_{z \in A^{T}} \left\{ s_{i}^{T}(x, z) \Rightarrow \sup_{y \in A^{T}} \left\{ s_{i}^{T}(z, y) \otimes C^{T}(y) \right\} \right\}$                                                                                                                                                                                                                                                                                                                                                                                       |
| $(s_i \uparrow C)^{\mathcal{I}}(x)$                                                                                                                      | $\sup_{\mathbf{y} \in \Lambda^{\mathbf{z}}} \left\{ s_{i}^{\mathbf{z}}(\mathbf{x}, \mathbf{y}) \otimes \mathbf{C}^{\mathbf{z}}(\mathbf{y}) \right\}$ $\sup_{\mathbf{y} \in \Lambda^{\mathbf{z}}} \left\{ s_{i}^{\mathbf{z}}(\mathbf{x}, \mathbf{y}) \otimes \mathbf{C}^{\mathbf{z}}(\mathbf{y}) \right\}$                                                                                                                                                                                                                    |
| Role R                                                                                                                                                   | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(R_A)^T(x,y)$                                                                                                                                           | $R_A^T(x,y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $(R_A)^{\mathcal{I}}(x,y)$<br>$(T)^{\mathcal{I}}(x,y)$                                                                                                   | $T_{\mathbf{A}}^{\mathcal{I}}(\mathbf{x}, \mathbf{y})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(U)^{\mathcal{I}}(x,y)$                                                                                                                                 | $\gamma_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $(R^-)^{\mathcal{I}}(x,y)$                                                                                                                               | $R^{\mathcal{I}}(y,x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Axiom τ                                                                                                                                                  | Semantics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\langle a:C\bowtie\gamma\rangle$                                                                                                                        | $C^{\mathcal{I}}(a^{\mathcal{I}})\bowtie\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\langle (a,b):R \triangleright \gamma \rangle$                                                                                                          | $R^{\mathcal{I}}(a^{\mathcal{I}},b^{\mathcal{I}}) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\langle (a,b): \neg_G R \rhd \gamma \rangle$                                                                                                            | $\ominus_{\mathcal{G}} R^{\mathcal{I}}(a^{\mathcal{I}}, b^{\mathcal{I}}) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\langle (a,b): \neg_Z R \rhd \gamma \rangle$                                                                                                            | $\ominus_{\mathbf{Z}}\mathbf{R}^{\mathcal{I}}(\mathbf{a}^{\mathcal{I}},\mathbf{b}^{\mathcal{I}})\triangleright\gamma$                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\langle (a, v) : T \triangleright \gamma \rangle$                                                                                                       | $T^{\mathcal{I}}(a^{\mathcal{I}}, \nu_{\mathrm{D}}) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\langle (a, v) : \neg_G T \triangleright \gamma \rangle$ $\langle (a, v) : \neg_Z T \triangleright \gamma \rangle$                                      | $\ominus_{\mathcal{G}}T^{\mathcal{I}}(a^{\mathcal{I}}, \nu_{\mathbb{D}}) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\langle (a, \nu), \neg_{Z} i \triangleright \gamma \rangle$<br>$a \neq b$                                                                               | $\ominus_{\mathbf{Z}}T^{\mathcal{I}}(a^{\mathcal{I}}, u_{\mathtt{D}})\triangleright\gamma$ $a^{\mathcal{I}}\neq b^{\mathcal{I}}$                                                                                                                                                                                                                                                                                                                                                                                             |
| a = b                                                                                                                                                    | $a^{\mathcal{I}} = b^{\mathcal{I}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\langle C \sqsubseteq_G D \triangleright \gamma \rangle$                                                                                                | $\left(\inf_{x \in \Delta^{2}} C^{\mathcal{I}}(x) \Rightarrow_{G} D^{\mathcal{I}}(x)\right) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\langle C \sqsubseteq zD \rhd \gamma \rangle$                                                                                                           | $\left(\inf_{\mathbf{x}\in\Delta^{\mathcal{I}}}C^{\mathcal{I}}(\mathbf{x})\Rightarrow_{\mathcal{I}}D^{\mathcal{I}}(\mathbf{x})\right)\triangleright\gamma$                                                                                                                                                                                                                                                                                                                                                                   |
| $\langle R_1 \dots R_m \sqsubseteq {}_{G}R \rhd \gamma \rangle$                                                                                          | $\left(\inf_{\mathbf{x}_{1},\mathbf{x}_{m+1}\in\Delta^{\mathcal{I}}}\sup_{\mathbf{x}_{2},\dots,\mathbf{x}_{m}\in\Delta^{\mathcal{I}}}\left(R_{1}^{\mathcal{I}}(\mathbf{x}_{1},\mathbf{x}_{2})\otimes\cdots\otimes R_{n}^{\mathcal{I}}(\mathbf{x}_{m},\mathbf{x}_{m+1})\right)\Rightarrow_{G}R^{\mathcal{I}}(\mathbf{x}_{1},\mathbf{x}_{m+1})\right)\triangleright\gamma$                                                                                                                                                     |
| $\langle R_1 \dots R_m \sqsubseteq {}_{Z}R \triangleright \gamma \rangle$                                                                                | $\left(\inf_{\mathbf{x}_{1},\mathbf{x}_{m+1}\in\Delta^{\mathcal{I}}}\sup_{\mathbf{x}_{2},\ldots,\mathbf{x}_{m}\in\Delta^{\mathcal{I}}}\left(R_{1}^{\mathcal{I}}(\mathbf{x}_{1},\mathbf{x}_{2})\otimes\cdots\otimes R_{n}^{\mathcal{I}}(\mathbf{x}_{m},\mathbf{x}_{m+1})\right)\Rightarrow_{\mathbf{Z}}R^{\mathcal{I}}(\mathbf{x}_{1},\mathbf{x}_{m+1})\right)\triangleright\gamma$                                                                                                                                           |
| $\langle T_1 \sqsubseteq_G T_2 \triangleright \gamma \rangle$                                                                                            | $\inf_{\mathbf{x}\in\Delta^{\mathcal{I}}, \nu\in\Delta_{\mathbf{D}}} T_{1}^{\mathcal{I}}(\mathbf{x}, \nu) \Rightarrow_{G} T_{2}^{\mathcal{I}}(\mathbf{x}, \nu) \triangleright \gamma$                                                                                                                                                                                                                                                                                                                                        |
| $\langle T_1 \sqsubseteq_Z T_2 \triangleright \gamma \rangle$                                                                                            | $\inf_{\mathbf{x}\in\Delta^{\mathcal{I}},\nu\in\Delta_{0}}T_{1}^{\mathcal{I}}(\mathbf{x},\nu)\Rightarrow_{\mathbf{Z}}T_{2}^{\mathcal{I}}(\mathbf{x},\nu)\triangleright\gamma$                                                                                                                                                                                                                                                                                                                                                |
| / 1 = 7-7 · //                                                                                                                                           | $\forall x, y \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(x, y) \geqslant \sup_{z \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(x, z) \otimes R^{\mathcal{I}}(z, y)$                                                                                                                                                                                                                                                                                                                                                               |
| trans(R)                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trans(R)<br>$dis(S_1, S_2)$                                                                                                                              | $\forall x,y \in \Delta^{\mathcal{I}}, S_1^{\mathcal{I}}(x,y) = \gamma_0 \text{ or } S_2^{\mathcal{I}}(x,y) = \gamma_0$                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{aligned} & \operatorname{trans}(R) \\ & \operatorname{dis}(S_1, S_2) \\ & \operatorname{dis}(T_1, T_2) \end{aligned}$                            | $ \begin{split} \forall \mathbf{x}, \mathbf{y} \in \Delta^{\mathcal{I}}, S_1^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) &= \gamma_0 \text{ or } S_2^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) = \gamma_0 \\ \forall \mathbf{x} \in \Delta^{\mathcal{I}}, \ \nu \in \Delta_{\mathbb{D}}, T_1^{\mathcal{I}}(\mathbf{x}, \ \nu) &= \gamma_0 \text{ or } T_2^{\mathcal{I}}(\mathbf{x}, \ \nu) = \gamma_0 \end{split} $                                                                                                                    |
| trans(R)<br>$dis(S_1, S_2)$<br>$dis(T_1, T_2)$<br>ref(R)                                                                                                 | $ \begin{split} \forall \mathbf{x}, \mathbf{y} \in \Delta^{\mathcal{I}}, S_1^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) &= \gamma_0 \text{ or } S_2^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) = \gamma_0 \\ \forall \mathbf{x} \in \Delta^{\mathcal{I}}, \mathbf{v} \in \Delta_{\mathbb{D}}, T_1^{\mathcal{I}}(\mathbf{x}, \mathbf{v}) &= \gamma_0 \text{ or } T_2^{\mathcal{I}}(\mathbf{x}, \mathbf{v}) = \gamma_0 \\ \forall \mathbf{x} \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(\mathbf{x}, \mathbf{x}) &= \gamma_p \end{split} $ |
| $trans(R)$ $dis(S_1,S_2)$ $dis(T_1,T_2)$ $ref(R)$ $irr(S)$                                                                                               | $ \forall x, y \in \Delta^{\mathcal{I}}, \varsigma_{1}^{\mathcal{I}}(x, y) = \gamma_{0} \text{ or } S_{2}^{\mathcal{I}}(x, y) = \gamma_{0} $ $ \forall x \in \Delta^{\mathcal{I}}, \nu \in \Delta_{0}, T_{1}^{\mathcal{I}}(x, \nu) = \gamma_{0} \text{ or } T_{2}^{\mathcal{I}}(x, \nu) = \gamma_{0} $ $ \forall x \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(x, x) = \gamma_{p} $ $ \forall x \in \Delta^{\mathcal{I}}, S^{\mathcal{I}}(x, x) = \gamma_{0} $                                                                 |
| $\begin{aligned} & \operatorname{trans}(R) \\ & \operatorname{dis}(S_1, S_2) \\ & \operatorname{dis}(T_1, T_2) \\ & \operatorname{ref}(R) \end{aligned}$ | $ \begin{split} \forall \mathbf{x}, \mathbf{y} \in \Delta^{\mathcal{I}}, S_1^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) &= \gamma_0 \text{ or } S_2^{\mathcal{I}}(\mathbf{x}, \mathbf{y}) = \gamma_0 \\ \forall \mathbf{x} \in \Delta^{\mathcal{I}}, \mathbf{v} \in \Delta_{\mathbb{D}}, T_1^{\mathcal{I}}(\mathbf{x}, \mathbf{v}) &= \gamma_0 \text{ or } T_2^{\mathcal{I}}(\mathbf{x}, \mathbf{v}) = \gamma_0 \\ \forall \mathbf{x} \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(\mathbf{x}, \mathbf{x}) &= \gamma_p \end{split} $ |

#### 3.3. Notation

Firstly, let us introduce some notation that will be used in the paper. C, D are (possibly complex) concepts, A is an atomic concept, R is a (possibly complex) role,  $R_A$  is an atomic role, S is a simple role (see the definition below), T is a concrete fuzzy role, a, b are abstract individuals, v is a concrete individual,  $\mathbf{d}$  are fuzzy concrete predicates, n, m are natural numbers ( $n \ge 0, m > 0$ ),  $s_i$  is a fuzzy similarity relation (reflexive and symmetric), mod is a fuzzy modifier, mathrightarrow is n0, n1, n2, n3, n3, n4, n5, n5,

# 3.4. Syntax

Fuzzy SROIQ assumes three alphabets of symbols, for concepts, roles and individuals. The syntax of fuzzy concepts and roles is shown in Table 3. In the following, we will use the generic term "fuzzy concepts" to denote also fuzzy rough concepts.

**Remark 3.1.** Note that, in contrast to to the classical case, there are two types of negations, universal restrictions and at-most restrictions, one corresponding to Gödel fuzzy logic and another one corresponding to Zadeh fuzzy logic (denoted with the subscripts  $_{\it G}$  and  $_{\it Z}$ , respectively). However, there is only one type of conjunction, disjunction, existential or at-least restrictions because the semantics in both logics coincide.

Another differences with respect to the classical case are fuzzy nominals, modified concepts, cut concepts, fuzzy rough concepts, and concrete roles with fuzzy datatypes. Note that we consider singleton fuzzy nominals, since a complex fuzzy nominal  $\{\alpha_1/o_1,\alpha_2/o_2,\ldots,\alpha_n/o_n\}$  can be represented as  $\{\alpha_1/o_1\}\sqcup\{\alpha_2/o_2\}\sqcup\cdots\sqcup\{\alpha_n/o_n\}$ .

A Fuzzy Knowledge Base (KB) contains a finite set of axioms organized in three parts: a fuzzy ABox  $\mathcal{A}$  (axioms about individuals), a fuzzy TBox  $\mathcal{T}$  (axioms about concepts) and a fuzzy RBox  $\mathcal{R}$  (axioms about roles). A fuzzy axiom is an axiom that has a truth degree in  $\mathcal{N}$ . The axioms that are allowed in our logic are also shown in Table 3.

**Remark 3.2.** Note again the difference with respect to the classical case as there are two types of negated role assertions, fuzzy GCIs and fuzzy RIAs.

Simple roles are inductively defined as follows:

- $R_A$  is simple if it does not occur on the right side of a fuzzy RIA.
- $R^-$  is simple if R is.
- If R occurs on the right side of a fuzzy RIA, R is simple if the axiom is of the form ⟨S ⊆ R > γ⟩, for a simple role S.

As in the non-fuzzy case, there are some restrictions in the use of roles, in order to guarantee the decidability of the logic (Horrocks et al., 2006):

- Concept constructors ( $\geqslant m$  S.C), ( $\leqslant_C n$  S.C), ( $\leqslant_Z n$  S.C),  $\exists$ S.Self require simple roles.
- RBox axioms  $dis(S_1, S_2)$ , irr(S), asy(S) require simple roles.
- RBox axioms cannot contain the universal role *U*.
- Finally, given a regular order ≺, every RIA should be ≺-regular (Horrocks et al., 2006). Intuitively, regularity prevents a role hierarchy from containing cyclic dependencies.

# 3.5. Semantics

A fuzzy interpretation  $\mathcal I$  with respect to a fuzzy concrete domain  $\mathbf D$  is a pair  $(\Delta^{\mathcal I}, \cdot^{\mathcal I})$  consisting of a non-empty set  $\Delta^{\mathcal I}$  (the interpretation

domain) disjoint with  $\Delta_D$  and a fuzzy interpretation function  $\cdot^{\mathcal{I}}$  mapping:

- Every abstract individual a onto an element  $a^{\mathcal{I}}$  of  $\Delta^{\mathcal{I}}$ .
- Every concrete individual v onto an element  $v_{\mathbf{D}}$  of  $\Delta_{\mathbf{D}}$ .
- Every fuzzy rough concept *C* onto a function  $C^{\mathcal{I}}: \Delta^{\mathcal{I}} \to \mathcal{N}$ .
- Every fuzzy abstract role *R* onto a function  $R^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to \mathcal{N}$ .
- Every fuzzy concrete role T onto a function  $T^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta_{\mathbf{D}} \to \mathcal{N}$ .
- An n-ary fuzzy concrete predicate  ${\bf d}$  onto the fuzzy relation  ${\bf d_p}:\Delta^n_{\bf p}\to \mathcal{N}.$
- A fuzzy modifier mod onto a function  $f_{mod}: \mathcal{N} \to \mathcal{N}$ .

The fuzzy interpretation function is extended to fuzzy *complex concepts, roles* and *axioms* as shown in Table 4.

We use  $\otimes$  for denoting Gödel (maximum) t-norm,  $\oplus$  for Gödel (minimum) t-conorm,  $\ominus_G$  for Gödel negation,  $\ominus_Z$  for Łukasiewicz negation,  $\Rightarrow_G$  for Gödel implication, and  $\Rightarrow_Z$  for Kleene-Dienes implication.

 $C^{\mathcal{I}}$  denotes the membership function of the fuzzy concept C with respect to the fuzzy interpretation  $\mathcal{I}$ .  $C^{\mathcal{I}}(x)$  gives us the degree of being x an element of the fuzzy concept C under  $\mathcal{I}$ . Similarly,  $R^{\mathcal{I}}$  denotes the membership function of the fuzzy role R with respect to  $\mathcal{I}$ .  $R^{\mathcal{I}}(x,y)$  gives us the degree of being (x,y) an element of the fuzzy role R.

Note an important difference with the previous work in fuzzy DLs, which maps every concept C onto a function  $C^{\mathcal{I}}:\Delta^{\mathcal{I}}\to [0,1]$ , and every role R onto a function  $R^{\mathcal{I}}:\Delta^{\mathcal{I}}\times\Delta^{\mathcal{I}}\to [0,1]$ . The current semantics is more natural, and allows a representation involving ontologies of lower size (Bobillo et al., Submitted).

Assuming a semantics in [0,1], a fuzzy KB  $\{\langle a:C>0.5\rangle, \langle a:C<0.75>\}$  is satisfiable, by taking any  $C^{\mathcal{I}}(a)\in(0.5,0.75)$ . But now, given  $\mathcal{N}=\{0,0.25,0.5,0.75,1\}$ , the same KB is not satisfiable, since  $C^{\mathcal{I}}(a)\in(0.5,0.75)$  is in contradiction with the fact that  $C^{\mathcal{I}}(a)\in\mathcal{N}$ .

#### 3.6. Definable axioms

As in the non-fuzzy case, fuzzy GCIs can be used to express some interesting axioms.

- Concept/role equivalence.  $C_1, C_2 \dots C_m$  are equivalent, denoted as  $C_1 \equiv C_2 \equiv \dots \equiv C_m$ , can be expressed with the axioms  $\langle C_i \sqsubseteq C_j \geqslant 1 \rangle$ ,  $\langle C_j \sqsubseteq C_i \geqslant 1 \rangle$  with  $1 \leqslant i, j \leqslant m, i \neq j$ . The case of roles is exactly the same.
- *Disjointness of concepts*. The fact that  $C_1 \dots C_m$  are disjoint can be expressed as  $\langle C_i \sqcap C_i \sqsubseteq \bot \geqslant 1 \rangle$ .
- Disjoint union of concepts.  $C_1$  can be defined as a disjoint union of concepts  $C_2 ... C_m$  with the axioms  $C_1 \equiv C_2 C_m$  and disjoint  $(C_2,...,C_m)$ .
- *Domain* of a role. The fact that concept *C* is the domain of a role *R* can be expressed as  $\langle \top \sqsubseteq \forall R^-.C \ge 1 \rangle$  or  $\langle \exists R. \top \sqsubseteq C \ge 1 \rangle$ .
- Range of a role. The fact that concept C is the range of a role R can be expressed as ⟨ ⊤ ⊑ ∀R.C ≥ 1⟩.
- Functionality of a role. The fact that a role R is functional can be expressed as ⟨ ⊤ ⊑ (≤1 R.⊤) ≥ 1⟩.

## 3.7. Reasoning tasks

In fuzzy rough DLs, there are many reasoning tasks. Usually, they can be reduced to fuzzy KB satisfiability (Straccia, 2001).

• Fuzzy KB satisfiability. A fuzzy interpretation  $\mathcal I$  satisfies (is a model of) a fuzzy KB  $\mathcal K = \langle \mathcal A, \mathcal T, \mathcal R \rangle$  iff it satisfies each element in  $\mathcal A, \ \mathcal T$  and  $\mathcal R$ .

- Concept satisfiability. C is  $\alpha$ -satisfiable w.r.t. a fuzzy KB  $\mathcal{K}$  iff  $\mathcal{K} \cup \{\langle a: C \geqslant \alpha \rangle\}$  is satisfiable, where a is a new individual, not appearing in  $\mathcal{K}$ .
- *Entailment*: A fuzzy concept assertion  $a: C \bowtie \alpha$  is entailed by a fuzzy KB  $\mathcal{K}$  (denoted  $\mathcal{K} \models \langle a: C \bowtie \alpha \rangle$ ) iff  $\mathcal{K} \cup \{\langle a: C \bowtie \alpha \rangle\}$  is unsatisfiable. The case for fuzzy role assertions is similar. The negation  $\neg \bowtie$  of an operator  $\bowtie$  is defined as follows:  $\neg \geqslant = <$ ,  $\neg > = <$ ,  $\neg < = >$ .
- Concept subsumption: D subsumes C (denoted  $C \sqsubseteq D$ ) w.r.t. a fuzzy KB  $\mathcal{K}$  iff, for every  $\alpha \in \mathcal{N}$ ,  $\mathcal{K} \cup \{a : C \geqslant \alpha\} \cup \{a : D < \alpha\}$  is unsatisfiable, where a is a new individual.
- Best degree bound (BDB). The BDB of a concept or role assertion  $\tau$  is defined as the  $\sup\{\alpha:\mathcal{K}\models\langle\tau\geqslant\alpha\rangle\}$ . It can be computed as a binary search in  $\mathcal{N}$ , performing at most  $\log|\mathcal{N}|$  entailment tests (Straccia, 2001).
- *Maximal concept satisfiability degree*. The maximal satisfiability degree of a fuzzy concept C w.r.t. a fuzzy KB  $\mathcal{K}$  is defined as the  $\sup\{\beta:\mathcal{K}\models\langle a:C>\beta\rangle\}$ , where a is a new individual. It can be computed as a binary search in  $\mathcal{N}$ , performing at most  $\log|\mathcal{N}|$  entailment tests.

#### 3.8. Reasoning in FUZZYDL

Aside from the development of customized inference procedures, which is a difficult task, reasoning in Z  $SROIQ(\mathbf{D})$  (Bobillo et al., 2009) and in G  $SROIQ(\mathbf{D})$  (Bobillo et al., 2009) is possible by providing a reduction to an equivalent non-fuzzy ontology, in such a way that current non-fuzzy DL reasoners can then be used. These algorithms can be combined, as shown in Bobillo et al. (Submitted). The integration of fuzzy rough sets and fuzzy DL is seamless, as the rough set component can mapped into the fuzzy DL component, as shown in Bobillo & Straccia (2009); Bobillo & Straccia (submitted).

An interesting property from a practical point of view of the non-fuzzy representations is that, under a certain condition, the reduction of an ontology can be reused when adding new axioms and only the reduction of the new axioms has to be included. This condition is that the new axiom does not introduce new atomic concepts, atomic roles, or degrees of truth.

Restricting the set of degrees of truth in the language is necessary in Gödel logic for theoretical reasons (Bobillo et al., 2009), but it is also convenient for practical reasons. As we have already mentioned, it allows reusing the non-fuzzy representations. Furthermore, the complexity of the resulting non-fuzzy KBs is reduced (linear with the size of the input ontology), and the computation of some reasoning tasks that require a binary search becomes more feasible.

# 3.9. A motivating example

We conclude this section, with an example illustrating the expressivity of fuzzy ontologies as well as the usefulness of the reasoning tasks to derive new information about the explicitly represented knowledge.

A known issue in health-care support is that consensus in the used vocabulary is required to achieve understanding among different physicians and systems. Medical taxonomies are an effort in this direction, as they provide a well-defined catalogue of codes to label diseases univocally. Two examples are ICD<sup>2</sup> (for general medicine) and DSM-IV (American Psychiatric Association, 1994) (for mental disorders), which identify prototypical clinical medical profiles with a name and a code. Medical taxonomies have been

developed to be non-fuzzy, so they can be transcribed almost directly to OWL.

However, vagueness could be introduced at different levels of the taxonomy so that richer semantics would be represented:

• In order to associate diagnostic codes to patient electronic records, fuzzy assertions would be be useful, allowing the knowledge base to contain statements such as "Patient001's Serotonin Level is quite low" or "Patient001's disease is likely to be a Substance-Induced Anxiety Disorder". This can be represented using the following fuzzy concept assertions:

• In the current version of DSM-IV, "Substance-Induced Anxiety Disorder" is defined as a subclass of "Substance-Related Disorder". A fuzzy GCI could refine this definition by stating that a "Substance-Induced Anxiety Disorder can be partially considered a Substance-Related Disorder", as well as an "Anxiety Disorder".

```
\langle SubstanceInducedAnxietyDisorder \sqsubseteq_G SubstanceRelatedDisorder \\ \geqslant \texttt{closeToTrue} \rangle \\ \langle SubstanceInducedAnxietyDisorder \sqsubseteq_G AnxietyDisorder \geqslant \texttt{true} \rangle
```

We assume, for instance, a set of degrees of truth {false, closeToFalse, neutral, closeToTrue, true}.

Now, we can use a fuzzy DL reason to obtain new knowledge. For instance, it holds that *BDB*(patient001:∃hasDisease. AnxietyDisorder) = closeToTrue, even if this information was not implicitly represented in the original KB.

Also, the concept SubstanceInducedAnxietyDisorder  $\sqcap \neg$  SubstanceRelatedDisorder is neutral-satisfiable, which does not happen in the non-fuzzy case.

## 4. DeLorean fuzzy DL reasoner

This section describes in detail our prototype implementation, called Delorean (Description Logic Reasoner with vAgueNess),<sup>3</sup> the first reasoner that supports fuzzy extensions of the languages OWL and OWL 2.

In a strict sense, DeLorean is not a reasoner but a translator from fuzzy (rough) ontologies to standard ontologies. Given a fuzzy rough ontology (in a GZ SROIQ(D)-based language, e.g. the one presented in Section 4.3), it obtains an equivalent nonfuzzy representation (in OWL or OWL2, depending on the expressivity of the original ontology). A classical DL reasoner can be used to reason with the resulting ontology. Since Delorean transparently performs the reduction procedure and the reasoning with an underlying DL reasoner, we refer to it simply as a reasoner.

This section is organized as follows. Section 4.1 describes the architecture, features and different versions of the reasoner. Section 4.2 presents the graphical interface and the functionality of the reasoner. The syntax of the fuzzy language and the functions of the Application Programming Interface (API) are analyzed in Sections 4.3 and 4.4 respectively. Finally, Sections 4.5 describes some of the implemented optimizations.

<sup>&</sup>lt;sup>2</sup> http://www.who.int/classifications/icd/en.

<sup>&</sup>lt;sup>3</sup> http://www.webdiis.unizar.es/fbobillo/delorean.

#### 4.1. Architecture, features and versions

#### 4.1.1. DeLorean 1.0

In 2007 we developed this first version by using the Java programming language, the JavaCC parser generator, the Jena API, and the DIG 1.1. interface.

JavaCC<sup>4</sup> (Java Compiler Compiler) was used to read the inputs. It is an open-source parser generator for the Java programming language. Given a formal specification in EBNF (Extended Backus-Naur Form) notation of a grammar, it produces as output the Java source code of the parser.

Jena (McBride, 2002)<sup>5</sup> is a very popular Semantic Web API. It is an open-source framework which includes an RDF API, a SPARQL query engine and an OWL API. Jena does not allow directly to reason with OWL ontologies, but it can use an external reasoner by means of the DIG interface.

DIG (Description logic Implementation Group) (Bechhofer, Möller, & Crowther, 2003) was used to communicate with classical DL reasoners. It is a common interface to access DL reasoners, avoiding the need to know the particularities of the representation languages of all of them. The latest version is 1.1 and it supports OWL DL without datatypes  $(\mathcal{SHOIQ})$ . There was a project to develop a newer version, DIG 2.0,  $^6$  supporting  $\mathcal{SROIQ}$  (Turhan et al., 2006), but it never came out.

The use of Java makes Delorean platform independent. Moreover, Delorean can take advantage of any DL reasoner as long as it supports DIG interface. However, DIG interface 1.1 does not support full  $\mathcal{SROIQ}$ , so the logic supported by this first version of Delorean was restricted to Z  $\mathcal{SHOIN}$  (which is reduced to OWL DL). From a historical point of view, this version was the first reasoner that supported a fuzzy extension of the OWL DL language (Bobillo, Delgado, & Gómez-Romero, 2007).

# 4.1.2. DeLorean 1.1

With the aim of augmenting the expressivity of the logic, we implemented a second version which used OWL API 2 instead of Jena API.

OWL API 2 is an open-source API for manipulating OWL 2 ontologies (Horridge et al., 2007). It extends the previous OWL API (or WonderWeb API) (Bechhofer, Lord, & Volz, 2003), which only supports OWL ontologies. Applications can use some integrated DL reasoners such as Pellet (Sirin, Parsia, Cuenca-Grau, Kalyanpur, & Katz, 2007) and FaCT++ (Tsarkov & Horrocks, 2006), but the API also supports integration with DIG-compliant DL reasoners. The API does not support the universal role.

In this version, DeLorean supported the fuzzy DLs Z  $\mathcal{SROIQ}(\mathbb{D})$  and G  $\mathcal{SROIQ}(\mathbb{D})$ . The only limitation is that the universal role cannot be used, since OWL API 2 did not allow it. From a historical point of view, DeLorean was the first reasoner that supports a fuzzy extension of OWL 2.

Since DIG interface did not allow the full expressivity of OWL 2, our solution was to integrate directly Delorean with a concrete DL reasoner, *Pellet* (Sirin et al., 2007), which can be directly used from OWL API 2. This way, the user was free to choose to use either a generic DL reasoner (restricting the expressivity to  $\mathcal{SHOIQ}$ ) or *Pellet* (with no expressivity limitations).

# 4.1.3. DELOREAN 2

The current version presents many differences with the previous one: more expressivity of the language (it supports the fuzzy rough DL GZ  $\mathcal{SROIQ}(\mathbb{D})$ ), more functionality (it supports several

reasoning tasks and not only KB consistency), and use of the modern SW technologies, since we have replaced OWL API 2 with OWL API 3.

*OWL API 3* is the latest version of OWL APIs (Horridge & Bechhofer, 2009).<sup>8</sup> It has an important impact on client code. One of the most important differences is that the API replaces DIG support with OWLlink support. OWL API 3 is becoming a de facto standard and many SW tools already support it, such as the ontology editor *Protégé* 4.1<sup>9</sup> (Noy et al., 2001), or the DL reasoners *Pellet* 2.1, *Fact++* 1.3 (Tsarkov & Horrocks, 2006, Horridge, Tsarkov, & Redmond, 2006)<sup>10</sup> and *HermiT* 1.2.2 (Shearer, Motik, & Horrocks, 2008).<sup>11</sup>

*OWLlink*<sup>12</sup> is an extensible protocol for communication among OWL2-aware systems (Liebig, Luther, & Noppens, 2009). OWLlink is based on the DIG 2 proposal and aims to replace the outdated DIG 1.1 protocol. At the current date, the only DL reasoner that supports OWLlink is *RacerPro* (Haarslev & Möller, 2001),<sup>13</sup> but this situation is expected to change soon.

Because OWLlink is not widely supported yet, we have also integrated directly DeLorean with *Pellet* and *HermiT* reasoners. Hence, the user is free to choose either one of these reasoners or a generic one via OWLlink protocol.

#### 4.1.4. Architecture

Fig. 2 illustrates the architecture of the system:

- The *Parser* reads a fuzzy rough ontology contained in an input physical URI and translates it into an internal representation of a fuzzy KB. Interestingly, we can use any language to encode the fuzzy rough ontology, as long as this module can understand the representation. Moreover, we could have several parsers, each of them being responsible of the translation of a different fuzzy rough ontology language.
- The *Reduction* module implements the reduction of the fuzzy rough ontology into an equivalent non-fuzzy ontology. In particular, it builds an OWL API 3 model with an equivalent non-fuzzy ontology, which can be exported to an OWL 2 file. The implementation also takes into account the optimizations described in Section 4.5.
- The *Inference* module communicates with a non-fuzzy reasoner (either one of the integrated reasoners or a reasoner via OWL-link protocol) in order to perform different reasoning tasks, as described in the next section.
- A simple *User interface* manages inputs and outputs. More details are given in the next section.

# 4.2. Using DeLorean

# 4.2.1. User interface

A snapshot of the user interface is shown in Fig. 3. It is structured in four parts:

**Input.** Here, the user can specify the input fuzzy ontology, using the syntax explained in Section 4.3, and the DL reasoner that will be used in the reasoning. The possible choices are *HermiT*, *Pellet*, and a OWLlink-complaint reasoner. Once a fuzzy ontology is loaded, the reasoner will check that every degree of truth that appears in it belongs to the set specified in the section on the right.

<sup>4</sup> https://javacc.dev.java.net.

<sup>&</sup>lt;sup>5</sup> http://www.jena.sourceforge.net.

<sup>6</sup> http://www.dig.cs.manchester.ac.uk.

<sup>&</sup>lt;sup>7</sup> http://www.clarkparsia.com/pellet.

<sup>&</sup>lt;sup>8</sup> http://www.owlapi.sourceforge.net.

<sup>9</sup> http://www.protege.stanford.edu.

<sup>10</sup> http://www.owl.man.ac.uk/factplusplus.

<sup>11</sup> http://www.hermit-reasoner.com.

<sup>12</sup> http://www.owllink.org.

<sup>13</sup> http://www.racer-systems.com/products/racerpro/index.phtml.



Fig. 2. Architecture of DeLorean reasoner.

**Degrees of truth.** The user can specify here the set of degrees of truth that will be considered. 0 (false) and 1 (true) are mandatory. Other degrees can be added, ordered (by moving them up or down), and removed. For the user convenience, it is possible to directly specify a number of degrees of truth, and they will be generated directly.

**Reasoning.** This part is used to perform the different reasoning tasks that Delorean supports. A more detailed description of the different reasoning tasks is given below.

**Output.** Here, output messages are displayed. Some information about the reasoning is shown here, such as the time taken, or the result of the reasoning task asked.

#### 4.2.2. Reasoning tasks

The panel *Reasoning* of the user interface is divided into five tabs, each of them dedicated to a specific reasoning task (we recall the reader that these reasoning tasks have been defined in Section 3.7).

**Crisp representation.** The main reasoning task is the computation of the equivalent *crisp representation* of the fuzzy ontology, which is actually necessary for the other reasoning tasks. In this tab we can export the resulting non-fuzzy ontology into a new OWL 2 file. This tab can be seen in Fig. 3.

**Satisfiability.** In this tab (see Fig. 4 (a)), the user can perform three tasks: *fuzzy KB consistency*, *fuzzy concept satisfiability* and the computation of the *maximum degree of satisfiability of a fuzzy concept*. In the two latter cases, the interface makes it possible

to specify the name of the fuzzy concept for which the satisfiability test will be computed. Note that the interface expects the name of a fuzzy concept, and not a concept expression.

**Entailment.** In this tab (see Fig. 4 (b)), the user can compute, given the current fuzzy ontology, the *entailment* of a fuzzy concept assertion or a fuzzy role assertion. Firstly, the user has to specify the type of the assertion, and then the corresponding parameters. For fuzzy concept assertions, the parameters are: name of the individual, name of the fuzzy concept, inequality sign, and degree of truth. For fuzzy role assertions, the parameters are: name of the subject individual, name of the role, name of the object individual, inequality sign, and degree of truth for fuzzy role assertions.

**Subsumption.** In this tab (see Fig. 4 (c)), it is possible to compute *fuzzy concept subsumption*. It is firstly necessary to specify the names of both the subsumed fuzzy concept and the subsumer fuzzy concept.

**BDB.** Finally, in the fifth tab (see Fig. 4 (d)), the user can compute the BDB of a fuzzy concept assertion or a fuzzy role assertion. As in the case of entailment, previously the user has to specify the type of the assertion and the corresponding parameters. For fuzzy concept assertions, the parameters are: name of the individual, and name of the fuzzy concept. For fuzzy role assertions, the parameters are: name of the subject individual, name of the role, and name of the object individual.

# 4.3. Language to encode the ontologies

The input fuzzy rough ontology can be submitted to Delorean in two ways. The first option is to load a file storing the fuzzy ontology encoded in a proper language. The second option is to create a new ontology programmatically by using the reasoner API. In this section we shall focus on the first option, describing the syntax of the language supported by Delorean. The second option will be studied in Section 4.4.

Let us remark that we support alternative languages to encode the fuzzy rough ontology. It is only necessary to develop a new parser translating the new language into the internal representation of the reasoner.

The language we have defined assumes three alphabets of symbols, for individuals, concepts (fuzzy sets of individuals), and roles (fuzzy binary relation between individuals). We use the notation



Fig. 3. User interface of DeLorean reasoner.



Fig. 4. (a) Concept satisfiability and KB consistency; (b) Concept and role entailment; (c) Concept subsumption; (d) BDB.

introduced in Section 3). The syntax of axioms and fuzzy concepts draws inspiration from the Knowledge Representation System Specification (Patel-Schneider & Swartout, 1993).

# 4.3.1. Concepts

Concepts are defined according to the syntax defined in Table 5. Note the similarity with the fuzzy DL syntax. Some syntactic sugar has been added: the extension of *n*-ary conjunctions and disjunctions, and the exactly cardinality constructors (a conjunction of at-least and at-most restrictions). In the case of the concrete concepts, the only fuzzy datatype supported is the trapezoidal functions, which can be defined as shown in Table 5.

# 4.3.2. Roles

Roles are either atomic or the universal role, as shown in Table 5. Inverse roles are defined using axioms, as we will see below.

#### 4.3.3. Axioms

The axioms of a fuzzy KB are defined according to the syntax defined in Table 5. Note that we allow some useful syntactic sugar axioms (role domain, role range, role functionality, concept disjointness), as well as statements imposing that concepts or roles should be interpreted as crisp.

#### 4.3.4. Restrictions

Note that, in fuzzy nominal concepts, if  $\alpha$  is omitted then 1 is assumed. Also, whenever  $\bowtie \gamma$  or  $\triangleright \gamma$  is omitted in axioms,  $\geqslant 1$  is assumed.

In cardinality restrictions, if C or  $\mathbf{d}$  are omitted, T is assumed. In RIAs involving concrete roles, n = 1 (there cannot be a role chain in the left side).

There are some restrictions in the degrees. If  $\bowtie$  is  $\geqslant$  or  $\lt$ , then  $\gamma$  cannot be  $\gamma_0$ ; whereas if  $\bowtie$  is  $\gt$  or  $\leqslant$ , then  $\gamma$  cannot be  $\gamma_p$ .

## 4.3.5. Importing OWL 2 ontologies

In order to make the representation of fuzzy KBs easier, we have also developed a parser (OWL2Parser class) that allows importing OWL 2 ontologies. These (non-fuzzy) ontologies are saved as a text file that the user can edit and extend, for example by adding membership degrees to the fuzzy axioms or specifying a particular fuzzy operator (Zadeh or Gödel family) for some complex concept.

4.4. Fuzzy ontology management and reasoning with the DELOREAN API

As we have seen, Delorean can be used as a stand-alone application. Additionally, Delorean services can be used from other programs by means of the Delorean API. The Delorean API is a Java library that allows fuzzy ontology management and reasoning. Briefly, the Delorean API provides support for fuzzy ontology creation, fuzzy axiom definition, and fuzzy reasoning. These basics of programming with the Delorean API are depicted in Fig. 5. The figure shows a code snippet implementing the three main features of the API:

- Fuzzy ontology creation.
- Population of the fuzzy ontology with axioms.
- Preparation and execution of reasoning tasks.

The remaining part of this section explains in detail which functionalities are provided. More information can be found in the Javadoc documentation provided with the reasoner.

## 4.4.1. Fuzzy ontology creation

The first step to use the reasoner is to create a new fuzzy ontology. This new ontology can be empty or, alternatively, we can load an existing ontology file with the syntax specified in Section 4.3. Reading and parsing an ontology file is performed by the Parser class, which is a factory to obtain a KnowledgeBase instance. Interestingly enough, the programmer can use a custom implementation of the Parser read ontology method.

# 4.4.2. Individuals, roles, and concept creation

The KnowledgeBase class provides methods to retrieve individuals, atomic roles, and atomic concepts previously defined in the fuzzy ontology. In general, these retrieval methods returns the entity with the specified name, creating it in case there does not already exist an entity with such a name. The retrieval methods return instances of the classes Individual, Role, and Concept, respectively.

Complex concepts can be obtained by using the different methods of the Concept class (see Table 6). All these methods return a Concept instance.

When the semantics of the concept depends on the choice of the fuzzy operator, it is required to use the appropriate method. This is the case for all, complement, and qatmost. Gödel semantics are noted by prepending the goedel identifier to the method name. Note also that some concept constructors can be applied to

Table 5
Syntax for fuzzy concepts and axioms in DeLorean.

| DeLorean concept syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fuzzy DL syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *top*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *bottom*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(and C_1 \dots C_m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_1 \sqcap \cdots \sqcap C_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (or $C_1 \dots C_m$ )<br>(g-not $C$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_1 \sqcup \cdots \sqcup C_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (z-not C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¬ <sub>C</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (some R C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∃R.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (some R d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∃ <i>R</i> . <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (g-all <i>R C</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\forall_G R.C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (g-all <i>R d</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ∀ <sub>G</sub> R. <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (z-all R C)<br>(z-all R d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∀ <sub>Z</sub> R.C<br>∀ <sub>Z</sub> R. <b>d</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (one-of $a[\alpha]$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\{\alpha/a\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (self S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∃S.Self                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (cut $C \alpha$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[C \geqslant \alpha]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (at-least <i>M S</i> [ <i>C</i> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (≥m S.C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (at-least M S [d])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\geqslant m \ S.\mathbf{D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (g-at-most N S [C])<br>(g-at-most N S [d])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(\leqslant_G m \ S.C)$<br>$(\leqslant_G m \ S.D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (z-at-most N S [C])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\leqslant_{C} m \ S.C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (z-at-most N S [d])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\leqslant_Z m \ S.\mathbf{D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (exactly M S [C])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\geqslant m \ S.C) \sqcap (\leqslant_Z m \ S.C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (exactly <i>M S</i> [ <i>d</i> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\geqslant m \ S.\mathbf{D}) \sqcap (\leqslant_{\mathbf{Z}} m \ S.\mathbf{D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (triangular t1 t2 t3 C)<br>(upper s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_{tri(t1,t2,t3)}(C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (tight-upper s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(s_i \uparrow C)$<br>$(s_i \downarrow \uparrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (loose upper s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(s_i \uparrow \uparrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (lower s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(s_i \downarrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (tight-lower s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(s_i \downarrow \downarrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (loose lower s C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(s_i \uparrow \downarrow C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DeLorean role syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fuzzy DL syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R<br>*topRole*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *topRole*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U fuzzy DL syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  DeLorean datatype syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *topRole*  DeLorean datatype syntax  (trapezoidal q1 q2 q3 q4)  DeLorean axiom syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \in \gamma$ )  (related $a \in R \setminus \gamma$ )  (g-not-related $a \in R \setminus \gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_{G} R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ ) (related $a \ b \ R \rhd \gamma$ ) (g-not-related $a \ b \ R \rhd \gamma$ ) (z-not-related $a \ b \ R \rhd \gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *topRole*  DeLorean datatype syntax  (trapezoidal q1 q2 q3 q4)  DeLorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \ b \ R \triangleright \gamma$ )  (g-not-related $a \ b \ R \triangleright \gamma$ )  (z-not-related $a \ b \ R \triangleright \gamma$ )  (same-as $a \ b$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_C R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $a = b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)  DELOREAN axiom syntax  (instance $a \in \nabla \gamma$ )  (related $a \in R = \gamma$ )  (g-not-related $a \in R = \gamma$ )  (z-not-related $a \in R = \gamma$ )  (same-as $a \in R = \gamma$ )  (different-to $a \in R = \gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_G R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \in C \bowtie \gamma$ )  (related $a \in B \bowtie C \bowtie$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{G} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $\langle (a,b): \neg_{Z} R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)  DELOREAN axiom syntax  (instance $a \in \nabla \gamma$ )  (related $a \in R = \gamma$ )  (g-not-related $a \in R = \gamma$ )  (z-not-related $a \in R = \gamma$ )  (same-as $a \in R = \gamma$ )  (different-to $a \in R = \gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_G R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \land b \land R \rhd \gamma$ )  (g-not-related $a \land b \land R \rhd \gamma$ )  (z-not-related $a \land b \land R \rhd \gamma$ )  (same-as $a \land b$ )  (different-to $a \land b$ )  (g-implies-concept $C_1 \land C_2 \rhd \gamma$ )  (kd-implies-concept $C_1 \land C_2 \rhd \gamma$ )  (equivalent-concepts $C_1 \land C_m$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_c R \bowtie \gamma \rangle$ $\langle (a, b): \neg_z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $C_1 \sqsubseteq_C C_2 \trianglerighteq \gamma \rangle$ $C_2 \trianglerighteq_C C_2 \trianglerighteq \gamma \rangle$ $C_1 \sqsubseteq_C C_2 \trianglerighteq \gamma \rangle$ $C_2 \trianglerighteq_C C_2 \trianglerighteq \gamma \rangle$ $C_3 \trianglerighteq_C C_2 \trianglerighteq_C \gamma \rangle$ $C_4 \trianglerighteq_C C_2 \trianglerighteq_C \gamma \trianglerighteq_C \gamma \rangle$ $C_5 \trianglerighteq_C C_2 \trianglerighteq_C \gamma \trianglerighteq$ |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \land b \land b \land \gamma$ )  (g-not-related $a \land b \land b \land \gamma$ )  (z-not-related $a \land b \land b \land \gamma$ )  (same-as $a \land b$ )  (different-to $a \land b$ )  (g-implies-concept $C_1 \land C_2 \rhd \gamma$ )  (kd-implies-concept $C_1 \land C_2 \rhd \gamma$ )  (equivalent-concepts $C_1 \land C_m$ )  (disjoint-concepts $C_1 \land C_m$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_G R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \bowtie \gamma \rangle$ $disjoint (C_1 \dots C_m) \{C_1 \equiv C_2 \sqcup \dots \sqcup C_m, \text{ disjoint } (C_2 \dots C_m)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ ) (related $a \land b \land R \rhd \gamma$ ) (g-not-related $a \land b \land R \rhd \gamma$ ) (z-not-related $a \land b \land R \rhd \gamma$ ) (same-as $a \land b$ ) (different-to $a \land b$ ) (g-implies-concept $C_1 \land C_2 \rhd \gamma$ ) (equivalent-concepts $C_1 \land C_m$ ) (disjoint-concepts $C_1 \land C_m$ ) (disjoint-union-concept $C_1 \land C_m$ ) (crisp-concept $C$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_{C}R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_{C} C_2 \bowtie \gamma \rangle$ $\langle C_1 \bowtie_{C} C_m \rangle$ disjoint $\langle C_1 \ldots C_m \rangle$ $\langle C_1 \bowtie_{C} C_1 \bowtie_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)  DELOREAN axiom syntax  (instance $a \ C \bowtie \gamma$ ) (related $a \ b \ R \bowtie \gamma$ ) (g-not-related $a \ b \ R \bowtie \gamma$ ) (z-not-related $a \ b \ R \bowtie \gamma$ ) (same-as $a \ b$ ) (different-to $a \ b$ ) (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (equivalent-concepts $C_1 \dots C_m$ ) (disjoint-concepts $C_1 \dots C_m$ ) (disjoint-concept $C_1 \dots C_m$ ) (crisp-concept $C$ ) (g-implies-role $C$ ) (g-implies-role $C$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $U$ $fuzzy DL syntax$ $d = trap(q_1, q_2, q_3, q_4)$ $fuzzy DL syntax$ $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq_G C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq \cdots \sqsubseteq C_m \rangle$ $disjoint (C_1 \dots C_m) \{C_1 \sqsubseteq C_2 \sqcup \cdots \sqcup C_m, disjoint (C_2 \dots C_m)\} C^{\mathcal{I}} : \Delta^{\mathcal{I}} \to \{\gamma_0, \gamma_p\} \langle R_1 \dots R_m \sqsubseteq_G R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \ C \bowtie \gamma$ )  (related $a \ b \ R \bowtie \gamma$ )  (g-not-related $a \ b \ R \bowtie \gamma$ )  (z-not-related $a \ b \ R \bowtie \gamma$ )  (same-as $a \ b$ )  (different-to $a \ b$ )  (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (equivalent-concepts $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )  (kd-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{Z}R\bowtie\gamma \rangle \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)  DELOREAN axiom syntax  (instance $a \ C \bowtie \gamma$ ) (related $a \ b \ R \bowtie \gamma$ ) (g-not-related $a \ b \ R \bowtie \gamma$ ) (z-not-related $a \ b \ R \bowtie \gamma$ ) (same-as $a \ b$ ) (different-to $a \ b$ ) (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (equivalent-concepts $C_1 \dots C_m$ ) (disjoint-concepts $C_1 \dots C_m$ ) (disjoint-concept $C_1 \dots C_m$ ) (crisp-concept $C$ ) (g-implies-role $C$ ) (g-implies-role $C$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $U$ $fuzzy DL syntax$ $d = trap(q_1, q_2, q_3, q_4)$ $fuzzy DL syntax$ $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq_G C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \bowtie \gamma \rangle$ $\langle C_1 \sqsubseteq \cdots \sqsubseteq C_m \rangle$ $disjoint (C_1 \dots C_m) \{C_1 \sqsubseteq C_2 \sqcup \cdots \sqcup C_m, disjoint (C_2 \dots C_m)\} C^{\mathcal{I}} : \Delta^{\mathcal{I}} \to \{\gamma_0, \gamma_p\} \langle R_1 \dots R_m \sqsubseteq_G R \bowtie \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *topRole*  DeLorean datatype syntax  (trapezoidal q1 q2 q3 q4)  DeLorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \ b \ R \rhd \gamma$ )  (g-not-related $a \ b \ R \rhd \gamma$ )  (z-not-related $a \ b \ R \rhd \gamma$ )  (same-as $a \ b$ )  (different-to $a \ b$ )  (g-implies-concept $C_1 \ C_2 \rhd \gamma$ )  (kd-implies-concept $C_1 \ C_2 \rhd \gamma$ )  (equivalent-concepts $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $C_1 \dots C_m$ )  (inverse $C_1 \dots C_m \cap C_m$ )  (inverse $C_1 \dots C_m \cap C_m$ )  (inverse $C_1 \dots C_m \cap C_m$ )                                                                                                                                                                                                                                                                                                                                                                                                     | $U$ fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a, b): R \bowtie \gamma \rangle$ $\langle (a, b): \neg_G R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $\langle (a, b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq_G C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \triangleright \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \bowtie C_m \bowtie C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *topRole*  DeLorean datatype syntax  (trapezoidal q1 q2 q3 q4)  DeLorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \ b \ R \rhd \gamma$ )  (g-not-related $a \ b \ R \rhd \gamma$ )  (z-not-related $a \ b \ R \rhd \gamma$ )  (same-as $a \ b$ )  (different-to $a \ b$ )  (g-implies-concept $C_1 \ C_2 \rhd \gamma$ )  (equivalent-concept $C_1 \ C_2 \rhd \gamma$ )  (equivalent-concepts $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $R_1 \ R_2 \dots R_m \ R \rhd \gamma$ )  (kd-implies-role $R_1 \ R_2 \dots R_m \ R \rhd \gamma$ )  (equivalent-roles $R_1 \ R_2$ )  (inverse $R_1 \ R_2$ )  (inverse $R_1 \ R_2$ )  (domain $R \ C$ )  (g-range $R \ C$ )                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C \bowtie \gamma \rangle \\ \langle (a,b):R \bowtie \gamma \rangle \\ \langle (a,b):\neg_{G}R \bowtie \gamma \rangle \\ \langle (a,b):\neg_{G}R \bowtie \gamma \rangle \\ \langle (a,b):\neg_{Z}R \bowtie \gamma \rangle \\ a = b \\ a \neq b \\ \langle C_1 \sqsubseteq_{G} C_2 \trianglerighteq \gamma \rangle \\ \langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle \\ \langle C_1 \sqsubseteq_{G} C_2 \trianglerighteq \gamma \rangle \\ \langle C_1 \sqsubseteq_{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \land b \land b \land \gamma$ )  (g-not-related $a \land b \land b \land \gamma$ )  (z-not-related $a \land b \land b \land \gamma$ )  (same-as $a \land b$ )  (different-to $a \land b$ )  (g-implies-concept $C_1 \land C_2 \lor \gamma$ )  (kd-implies-concept $C_1 \land C_2 \lor \gamma$ )  (equivalent-concepts $C_1 \land C_m$ )  (disjoint-concepts $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (crisp-concept $C$ )  (g-implies-role $C_1 \land C_m$ )  (kd-implies-role $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-inverse $C_1 \land C_m \land C_m$ )  (inverse $C_1 \land C_m \land C_m$ )  (g-range $C_1 \land C_m \land C_m$ ) | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{Z}R\bowtie\gamma \rangle \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \ C \bowtie \gamma$ )  (related $a \ b \ R \bowtie \gamma$ )  (g-not-related $a \ b \ R \bowtie \gamma$ )  (z-not-related $a \ b \ R \bowtie \gamma$ )  (same-as $a \ b$ )  (different-to $a \ b$ )  (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (equivalent-concepts $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )  (kd-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )  (equivalent-roles $R_1 \ R_2$ )  (inverse $R_1 \ R_2$ )  (domain $R \ C$ )  (g-range $R \ C$ )  (z-range $R \ C$ )  (functional $R$ )                                                                                                                                                                                                                                                                                          | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{C}R\bowtie\gamma \rangle \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ )  (related $a \land b \land b \land \gamma$ )  (g-not-related $a \land b \land b \land \gamma$ )  (z-not-related $a \land b \land b \land \gamma$ )  (same-as $a \land b$ )  (different-to $a \land b$ )  (g-implies-concept $C_1 \land C_2 \lor \gamma$ )  (kd-implies-concept $C_1 \land C_2 \lor \gamma$ )  (equivalent-concepts $C_1 \land C_m$ )  (disjoint-concepts $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (crisp-concept $C$ )  (g-implies-role $C_1 \land C_m$ )  (kd-implies-role $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (disjoint-union-concept $C_1 \land C_m$ )  (crisp-concept $C_1 \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-implies-role $C_1 \land C_m \land C_m$ )  (g-inverse $C_1 \land C_m \land C_m$ )  (inverse $C_1 \land C_m \land C_m$ )  (g-range $C_1 \land C_m \land C_m$ ) | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{G}R\bowtie\gamma \rangle \\ \langle (a,b):\neg_{Z}R\bowtie\gamma \rangle \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \ C \bowtie \gamma$ )  (related $a \ b \ R \bowtie \gamma$ )  (g-not-related $a \ b \ R \bowtie \gamma$ )  (z-not-related $a \ b \ R \bowtie \gamma$ )  (same-as $a \ b$ )  (different-to $a \ b$ )  (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ )  (equivalent-concepts $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (disjoint-union-concept $C_1 \dots C_m$ )  (crisp-concept $C$ )  (g-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )  (kd-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ )  (equivalent-roles $R_1 \ R_2$ )  (inverse $R_1 \ R_2$ )  (domain $R \ C$ )  (g-range $R \ C$ )  (z-range $R \ C$ )  (trange $R \ C$ )  (functional $R$ )  (inverse-functional $R$ )                                                                                                                                                                                                                                            | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):-cR\bowtie\gamma \rangle \\ \langle (a,b):-cR\bowtie\gamma \rangle \\ \langle (a,b):-zR\bowtie\gamma \rangle \\ a=b \\ a\neq b \\ \langle C_1\sqsubseteq_C_2\trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq_C C_2\trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq_C C_2\trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq\cdots\sqcup C_m \rangle \\ \text{disjoint } (C_1\dots C_m) \\ \{C_1\equiv C_2\sqcup\cdots\sqcup C_m, \text{disjoint } (C_2\dots C_m)\} \\ C^{\mathcal{I}} : \Delta^{\mathcal{I}} \to \{\gamma_0,\gamma_p\} \\ \langle R_1\dots R_m\sqsubseteq_C R\trianglerighteq\gamma \rangle \\ \langle R_1\dots R_m\sqsubseteq_C R\trianglerighteq\gamma \rangle \\ \langle R_1\dots R_m\sqsubseteq_C R\trianglerighteq\gamma \rangle \\ \langle R_1\sqsubseteq R_2 \\ \exists R, \top\sqsubseteq C\geqslant 1 \rangle \\ \langle \exists R, \top\sqsubseteq C\geqslant 1 \rangle \\ \langle \top\sqsubseteq_C \forall_Z R, C\geqslant 1 \rangle \\ \langle \top\sqsubseteq_C (\leqslant_Z 1 R, \top) \rangle \\ \langle \top\sqsubseteq(\leqslant_Z 1 R, \top, \top) \rangle \\ \langle \top\sqsubseteq(\leqslant_Z 1 R, \top, \top) \rangle \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *topRole*  DELOREAN datatype syntax  (trapezoidal q1 q2 q3 q4)  DELOREAN axiom syntax  (instance $a \ C \bowtie \gamma$ ) (related $a \ b \ R \bowtie \gamma$ ) (g-not-related $a \ b \ R \bowtie \gamma$ ) (z-not-related $a \ b \ R \bowtie \gamma$ ) (different-to $a \ b$ ) (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (equivalent-concepts $C_1 \dots C_m$ ) (disjoint-concepts $C_1 \dots C_m$ ) (disjoint-concepts $C_1 \dots C_m$ ) (crisp-concept $C$ ) (g-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ ) (kd-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ ) (equivalent-roles $R_1 \ R_2$ ) (inverse $R_1 \ R_2$ ) (domain $R \ C$ ) (g-range $R \ C$ ) (z-range $R \ C$ ) (transitive $R$ ) (inverse-functional $R$ ) (inverse-functional $R$ ) (transitive $R$ ) (asymmetric $R$ )                                                                                                                                                                                                                                                  | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):-cR\bowtie\gamma \rangle \\ \langle (a,b):-cR\bowtie\gamma \rangle \\ \langle (a,b):-zR\bowtie\gamma \rangle \\ a=b \\ a\neq b \\ \langle C_1\sqsubseteq_C_2\trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq_C C_2\trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq_C C_2 C_2 \rangle \\ \langle C_1\sqsubseteq_C C_2 C_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ ) (related $a \land k \rhd \gamma$ ) (g-not-related $a \land k \rhd \gamma$ ) (z-not-related $a \land k \rhd \gamma$ ) (different-to $a \land k \rhd \gamma$ ) (different-to $a \land k \rhd \gamma$ ) (kd-implies-concept $C_1 \land C_2 \rhd \gamma$ ) (equivalent-concepts $C_1 \land C_2 \rhd \gamma$ ) (equivalent-concepts $C_1 \land C_2 \rhd \gamma$ ) (disjoint-concepts $C_1 \land C_m$ ) (disjoint-union-concept $C_1 \land C_m$ ) (crisp-concept $C$ ) (g-implies-role $R_1 \land R_2 \land R_m \land R \rhd \gamma$ ) (kd-implies-role $R_1 \land R_2 \land R_m \land R \rhd \gamma$ ) (equivalent-roles $R_1 \land R_2$ ) (inverse $R_1 \land R_2$ ) (domain $R \land C$ ) (g-range $R \land C$ ) (z-range $R \land C$ ) (transitive $R$ ) (symmetric $R$ ) (asymmetric $R$ ) (asymmetric $S$ ) (reflexive $R$ )                                                                                                                                                              | fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \bowtie C_m \rangle$ disjoint $(C_1 \dots C_m)$ $\{C \equiv C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \sqsubseteq C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \sqsubseteq C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \bowtie C_2 \bowtie C_m \bowtie C_m \geqslant $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \ C \bowtie \gamma$ ) (related $a \ b \ R \bowtie \gamma$ ) (g-not-related $a \ b \ R \bowtie \gamma$ ) (z-not-related $a \ b \ R \bowtie \gamma$ ) (same-as $a \ b$ ) (different-to $a \ b$ ) (g-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (kd-implies-concept $C_1 \ C_2 \bowtie \gamma$ ) (equivalent-concepts $C_1 \dots C_m$ ) (disjoint-union-concept $C_1 \dots C_m$ ) (disjoint-union-concept $C_1 \dots C_m$ ) (crisp-concept $C$ ) (g-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ ) (kd-implies-role $R_1 \ R_2 \dots R_m \ R \bowtie \gamma$ ) (equivalent-roles $R_1 \ R_2$ ) (inverse $R_1 \ R_2$ ) (domain $R \ C$ ) (g-range $R \ C$ ) (z-range $R \ C$ ) (transitive $R$ ) (symmetric $R$ ) (asymmetric $R$ ) (asymmetric $R$ ) (irreflexive $R$ ) (irreflexive $R$ )                                                                                                                                                                                                                  | $\begin{array}{l} U \\ \text{fuzzy DL syntax} \\ \textbf{d} = trap(q_1,q_2,q_3,q_4) \\ \text{fuzzy DL syntax} \\ \\ \langle a:C\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):R\bowtie\gamma \rangle \\ \langle (a,b):\neg_cR\bowtie\gamma \rangle \\ \langle (a,b):\neg_cR\bowtie\gamma \rangle \\ \langle (a,b):\neg_zR\bowtie\gamma \rangle \\ a=b \\ a\neq b \\ \langle C_1\sqsubseteq_G C_2 \trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq_C C_2 \trianglerighteq\gamma \rangle \\ \langle C_1\sqsubseteq\dots \sqsubseteq C_m \rangle \\ \text{disjoint } (C_1\dots C_m) \\ \{C_1\equiv C_2\sqcup\dots\sqcup C_m, \text{ disjoint } (C_2\dots C_m)\} \\ C^{\mathcal{I}}: \Delta^{\mathcal{I}} \to \{\gamma_0,\gamma_p\} \\ \langle R_1\dots R_m\sqsubseteq_G R\trianglerighteq\gamma \rangle \\ \langle R_1\dots R_m\sqsubseteq_G R\trianglerighteq\gamma \rangle \\ \langle R_1 = R_2 \\ \langle \exists R. \top\sqsubseteq C\geqslant 1 \rangle \\ \langle \top\sqsubseteq_G \forall_C R.C\geqslant 1 \rangle \\ \langle \top\sqsubseteq_G \forall_C R.C\geqslant 1 \rangle \\ \langle \top\sqsubseteq_G \forall_C R.T\searrow \rangle \\ \langle T\sqsubseteq(\leqslant_Z 1 R.T.) \rangle \\ \langle \top\sqsubseteq(\leqslant_Z 1 R.T.) \rangle \\ \text{trans}(R) \\ \text{sym}(R) \\ \text{asy}(S) \\ \text{ref}(R) \\ \text{irr}(S) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *topRole*  Delorean datatype syntax  (trapezoidal q1 q2 q3 q4)  Delorean axiom syntax  (instance $a \subset \bowtie \gamma$ ) (related $a \land k \rhd \gamma$ ) (g-not-related $a \land k \rhd \gamma$ ) (z-not-related $a \land k \rhd \gamma$ ) (different-to $a \land k \rhd \gamma$ ) (different-to $a \land k \rhd \gamma$ ) (kd-implies-concept $C_1 \land C_2 \rhd \gamma$ ) (equivalent-concepts $C_1 \land C_2 \rhd \gamma$ ) (equivalent-concepts $C_1 \land C_2 \rhd \gamma$ ) (disjoint-concepts $C_1 \land C_m$ ) (disjoint-union-concept $C_1 \land C_m$ ) (crisp-concept $C$ ) (g-implies-role $R_1 \land R_2 \land R_m \land R \rhd \gamma$ ) (kd-implies-role $R_1 \land R_2 \land R_m \land R \rhd \gamma$ ) (equivalent-roles $R_1 \land R_2$ ) (inverse $R_1 \land R_2$ ) (domain $R \land C$ ) (g-range $R \land C$ ) (z-range $R \land C$ ) (transitive $R$ ) (symmetric $R$ ) (asymmetric $R$ ) (asymmetric $S$ ) (reflexive $R$ )                                                                                                                                                              | fuzzy DL syntax $\mathbf{d} = trap(q_1, q_2, q_3, q_4)$ fuzzy DL syntax $\langle a: C \bowtie \gamma \rangle$ $\langle (a,b): R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_G R \bowtie \gamma \rangle$ $\langle (a,b): \neg_Z R \bowtie \gamma \rangle$ $a = b$ $a \neq b$ $\langle C_1 \sqsubseteq_G C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq_C C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \sqsubseteq C_2 \trianglerighteq \gamma \rangle$ $\langle C_1 \bowtie C_m \rangle$ disjoint $(C_1 \dots C_m)$ $\{C \equiv C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \sqsubseteq C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \sqsubseteq C_2 \bowtie C_m \bowtie C_m \rangle$ $\{C_1 \bowtie C_2 \bowtie C_m \bowtie C_m \geqslant $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

abstract and concrete roles (all, goedelAll, qatleast, qatmost, some). Therefore, we provide two different methods in each case, requiring respectively a Concept and a TrapezoidalNumber as parameter. The class TrapezoidalNumber manages trapezoidal membership

functions, and requires the four values  $(q_1, q_2, q_3, q_4)$  defining the function.

### 4.4.3. Adding axioms to the fuzzy ontology

The KnowledgeBase class provides several methods to add axioms to the fuzzy ontology (see Table 7). Individuals, roles, and concepts involved in the axioms are created as already explained.

The names of the methods are self-descriptive, and there are only a couple of remarks to notice. Firstly, the Delorean API does not offer different methods for creating axioms involving concrete and abstract roles. The reasoner is responsible for maintaining apart a list of concrete roles and a list of abstract roles and checking that they are disjoint. Secondly, as it occurs in the case of complex concept constructors, whenever the semantics of an axiom depends on the choice of the fuzzy operator, the API offers different methods to create it. This is the case for GCIs, RIAs, role range axioms, and negated role assertions.

Inequalities, in turn, are defined as values of the enumerated type Inequality. Degrees of truth are managed with the class Degree, which represents a linguistic label. The degrees of truth allowed for a fuzzy ontology must be previously set with the setDegrees method. This method restricts the degrees of truth than can be used in subsequent axioms.

# 4.4.4. Performing reasoning tasks

To perform a reasoning task with a fuzzy ontology, the API provides de Delorean class. To create an instance of Delorean, we only have to specify the fuzzy ontology (a KnowledgeBase instance) and the namespace of this ontology. Next, it is necessary to specify the DL reasoner that will be used. As we have seen, there are three possible choices of DL reasoner, which can be indicated with the static constants defined in the Owl2Reasoner class.

After having created the fuzzy ontology, and specified the set of degrees of truth and the DL reasoner, it is possible to perform reasoning tasks. Before running more complex reasoning tasks, it is necessary to compute the equivalent non-fuzzy representation of the fuzzy ontology. The reduction can be performed with the normal procedure or with an optimized procedure (see Section 4.5). After the reduction, several methods for computing different reasoning tasks can be called: ontology consistence, entailment, BDB, concept satisfiability, maximum concept satisfiability degree, and subsumption (see Table 8).

### 4.5. Optimizations

In this section we overview the main optimizations that the reasoner implements. These optimizations have proved to be very useful in reducing the size of the equivalent non-fuzzy ontology. A more detailed exposition of the benefits of the optimizations is not possible without providing full details of the reasoning algorithm, which is out of the scope of this paper. For more technical details and proofs, as well as a careful evaluation of their impact, both at a theoretical and a practical level, we refer the reader to Bobillo, Delgado, & Gómez-Romero (2008), Bobillo et al. (2009).

# 4.5.1. Minimizing the number of final concepts and axioms

Algorithms to obtain non-fuzzy representations for fuzzy DLs are based on the creation of new concepts representing  $\alpha$ -cuts of the fuzzy concepts. In particular, for every fuzzy atomic concept A and every  $\gamma \in \mathcal{N}$ , four new concepts are created:  $A_{\geqslant \gamma}$ ,  $A_{>\gamma}$ ,  $A_{>\gamma}$ ,  $A_{<\gamma}$ . These new concepts require some new axioms to maintain their semantics; for instance,  $A_{>\gamma} \sqsubseteq A_{\geqslant \gamma}$ . The case of roles is similar.

Delorean uses a more optimized representation. For every fuzzy atomic concept A and every  $\gamma \in \mathcal{N}$ , Delorean creates at-most only one (non-fuzzy) concept. Consequently, the number of new axioms is considerably reduced.

```
import edu.es.ugr.arai.delorean.*:
import java.util.Vector:
import java.util.zip.DataFormatException;
public class UsingAPI {
    public static void main(String args[])
        // Create KB
        KnowledgeBase kb = new KnowledgeBase();
        // Select degrees of truth
        Vector < Degree > deg = new Vector < Degree > ();
        deg.add (new Degree ("false"));
        deg.add (new Degree ("neutral"));
        deg.add (new Degree ("true"));
        kb.setDegrees(new DegreeSet (deg));
        // Add axioms to the KB
        Individual i = kb.getIndividual ("a");
        Concept c = new Concept ("C");
        kb.addConceptAssertion (i, c, Inequality.GREATER_EQUAL,
                                deg.get(1);
        // Setup reasoner and reasoning
        DeLorean r = new DeLorean (kb, "http://arai.ugr.es/ont.owl");
        r.setReasoner (Owl2Reasoner.PELLET_REASONER);
            // Compute reduction
            r.reduceKB();
            // Perform reasoning tasks
            System.out.println ("Consistent?" +
                                 r.isOntologyConsistent() );
        }
        catch (DataFormatException e)
            System.out.println ("Exception " + e);
    }
}
```

Fig. 5. Example of use of DeLorean API.

# 4.5.2. Allowing crisp concepts and roles

According to the previous paragraph, for a fuzzy KB with  $n_A$  fuzzy atomic concepts, at most  $n_A \cdot |\mathcal{N}|$  concepts are created, in addition to the axioms to preserve the semantics. Fortunately, in real applications not all concepts and roles are fuzzy.

Delorean allows crisp concept and role declarations. If a concept (resp. role) is declared as crisp, we just need one concept (resp. role) to represent it and no new axioms. This optimization requires some manual intervention, since the ontology developer has to identify the crisp concepts and roles.

## 4.5.3. Ignoring superfluous elements

Theoretical algorithms to obtain a non-fuzzy equivalence of a fuzzy ontology are designed to promote reusing of the final ontology. However, for some reasoning tasks some of them are superfluous; for instance when checking the satisfiability of a fuzzy ontology.

Clearly, if some additional axioms are added the ontology, the reduction may be different and previous superfluous elements may not be superfluous any more. Delorean ignores superfluous elements whenever possible, and guarantees that a new reduction is computed only when it is absolutely necessary.

# 4.5.4. Optimizing common cases

In some particular and frequent cases, the reduction of the axioms can be optimized w.r.t. the direct representation; for example,

in range role axioms, domain role axioms, functional role axioms, irreflexive role axioms, or disjoint concept axioms.

# 4.5.5. Reducing reasoning tasks

Finally, we would like to highlight that DeLorean reuses previously computed reductions when performing a new reasoning task.

Let  $\mathtt{crisp}(\mathcal{K})$  denote the non-fuzzy representation of the fuzzy KB  $\mathcal{K}$ , let  $\mathtt{crisp}(\tau)$  denote the non-fuzzy representation of the fuzzy  $\mathcal{SROIQ}(\mathbb{D})$  axiom  $\tau$ , and let  $\mathtt{crisp}(\mathcal{C}, > \gamma)$  denote the strict  $\gamma$ -cut of  $\mathcal{C}$ .

Consider for instance the fuzzy entailment problem. According to Section 3.7,  $\mathcal{K} \models \langle a : C \bowtie \gamma \rangle$ ) iff  $\mathcal{K}' = \mathcal{K} \cup \{\langle a : C \neg \bowtie \gamma \rangle\}$  is unsatisfiable. However, instead of checking the (un) satisfiability of  $\mathcal{K}'$  (which does not make it possible to reuse the reduction of  $\mathcal{K}$ ), we check if  $\operatorname{crisp}(\mathcal{K}) \models \operatorname{crisp}(\langle a : C \bowtie \gamma \rangle)$ .

In particular, DeLorean computes the supported reasoning tasks as follows:

- Concept satisfiability: C is satisfiable w.r.t. C iff  $\mathtt{crisp}(C, > \gamma_0)$  is satisfiable w.r.t.  $\mathtt{crisp}(\mathcal{K})$ .
- Entailment:  $\mathcal{K} \models \langle a : C \bowtie \gamma \rangle$  iff  $\mathtt{crisp}(\mathcal{K}) \models \mathtt{crisp}(\langle a : C \bowtie \gamma \rangle)$ . The case for fuzzy role assertions is similar.
- Concept subsumption:  $\mathcal{K} \models \{\langle C \sqsubseteq_G D \geqslant 1 \rangle\}$  iff  $\operatorname{crisp}(\mathcal{K}) \models \operatorname{crisp}(\langle C \sqsubseteq_G D \geqslant 1 \rangle)$ ,

**Table 6**Complex concept construction methods.

| Method           | Parameters     |                     |                     |              |
|------------------|----------------|---------------------|---------------------|--------------|
| all              | Role r         | Concept c           |                     |              |
| all              | Role r         | Trapezoidal d       |                     |              |
| and              | Concept c1     | Concept c2          |                     |              |
| at least         | int card       | Role r              |                     |              |
| atmost           | int card       | Role r              |                     |              |
| bottomConcept    |                |                     |                     |              |
| complement       | Concept c      |                     |                     |              |
| cut              | Concept c      | Degree x            |                     |              |
| goedelAll        | Role r         | Concept c           |                     |              |
| goedelAll        | Role r         | TrapezoidalNumber t |                     |              |
| goedelAtmost     | int card       | Role r              |                     |              |
| goedelComplement | Concept c      |                     |                     |              |
| goedelQatmost    | int card       | Role r              | Concept c           |              |
| goedelQatmost    | int card       | Role r              | TrapezoidalNumber t |              |
| looseLowerApprox | Role r         | Concept c           | -                   |              |
| looseUpperApprox | Role r         | Concept c           |                     |              |
| lowerApprox      | Role r         | Concept c           |                     |              |
| nominal          | Individual ind | Degree d            |                     |              |
| or               | Concept c1     | Concept c2          |                     |              |
| qatleast         | int card       | Role r              | Concept c           |              |
| qatleast         | int card       | Role r              | TrapezoidalNumber t |              |
| qatmost          | int card       | Role r              | Concept c           |              |
| qatmost          | int card       | Role r              | TrapezoidalNumber t |              |
| self             | Role r         |                     | •                   |              |
| some             | Role r         | Concept c           |                     |              |
| some             | Role r         | TrapezoidalNumber t |                     |              |
| tightLowerApprox | Role r         | Concept c           |                     |              |
| tightUpperApprox | Role r         | Concept c           |                     |              |
| topConcept       |                | •                   |                     |              |
| triangular       | double a       | double b            | double c            | Concept con- |
| upperApprox      | Role r         | Concept c           |                     | •            |

**Table 7** Axiom creation methods.

| Method                   | Parameters               |                |              |              |          |
|--------------------------|--------------------------|----------------|--------------|--------------|----------|
| addAsymmetricRole        | Role role                |                |              |              |          |
| addConceptAssertion      | Individual a             | Concept c      | Inequality i | Degree d     |          |
| addConceptEquivalence    | ArrayList < Concept > a  |                |              |              |          |
| addCrispConcept          | String conceptName       |                |              |              |          |
| addCrispRole             | String roleName          |                |              |              |          |
| addDisjointConcepts      | ArrayList < Concept > a  |                |              |              |          |
| addDisjointRoles         | ArrayList < Role > a     |                |              |              |          |
| addDisjointUnionConcept  | ArrayList < Concept > a  |                |              |              |          |
| addEquality              | String ind1              | String ind2    |              |              |          |
| addFunctionalRole        | Role role                |                |              |              |          |
| addGoedelGCI             | Concept conc1            | Concept c      | Inequality i | Degree d     |          |
| addGoedelNegatedRoleAss  | Individual a             | Role role      | Individual b | Inequality i | Degree o |
| addGoedelRIA             | ArrayList < Role > roleC | Role roleP     | Inequality i | Degree d     |          |
| addGoedelRoleRange       | Role role                | Concept c      |              |              |          |
| addIndividual            | String indName           | Individual ind |              |              |          |
| addInequality            | String ind1              | String ind2    |              |              |          |
| addInverseRole           | Role roleName            | Role invName   |              |              |          |
| addInverseRoleFunctional | Role role                |                |              |              |          |
| addIrreflexiveRole       | Role role                |                |              |              |          |
| addKDGCI                 | Concept conc1            | Concept conc2  | Inequality i | Degree d     |          |
| addKDRIA                 | ArrayList < Role > roleC | Role roleP     | Inequality i | Degree d     |          |
| addNegatedRoleAssertion  | Individual a             | Role role      | Individual b | Inequality i | Degree ( |
| addReflexiveRole         | Role role                |                |              |              |          |
| addRoleAssertion         | Individual a             | Role role      | Individual b | Inequality i | Degree ( |
| addRoleDomain            | Role role                | Concept c      |              |              |          |
| addRoleEquivalence       | ArrayList < Role > a     |                |              |              |          |
| addRoleRange             | Role role                | Concept c      |              |              |          |
| addSymmetricRole         | Role role                |                |              |              |          |
| addTransitiveRole        | Role role                |                |              |              |          |

- *BDB.* Given a fuzzy  $\mathcal K$  and  $a:\mathcal C$ , DeLorean computes a binary search of the maximal  $\gamma \in \mathcal N$  such that  $\mathtt{crisp}(\mathcal K) \models \mathtt{crisp}(\langle a:\mathcal C \geqslant \gamma \rangle)$ . The case for fuzzy role assertions is similar.
- *Maximal concept satisfiability degree*. Given a fuzzy  $\mathcal{K}$  and C, DeL orean computes a binary search of the maximal  $\gamma \in \mathcal{N}$  such that  $\mathtt{crisp}(C, > \gamma)$  is satisfiable w.r.t.  $\mathtt{crisp}(\mathcal{K})$ .

**Table 8**Reasoning methods.

| Туре    |                      | Parameters   |             |              |              |          |
|---------|----------------------|--------------|-------------|--------------|--------------|----------|
| boolean | entails              | Individual a | Concept c   | Inequality i | Degree d     |          |
| boolean | entails              | Individual a | Role role   | Individual b | Inequality i | Degree d |
| Degree  | getBdb               | Individual a | Concept c   |              |              |          |
| Degree  | getBdb               | Individual a | Role r      | Individual b |              |          |
| Degree  | getMaxSatDegree      | Concept c    |             |              |              |          |
| boolean | isConceptSatisfiable | Concept c    |             |              |              |          |
| boolean | isKBConsistent       |              |             |              |              |          |
| void    | optimizedReduceKB    |              |             |              |              |          |
| void    | reduceKB             |              |             |              |              |          |
| boolean | subsumes             | Concept sub  | Concept sup |              |              |          |
| void    | write                | String file  |             |              |              |          |

#### 5. Related work

Since the first work of J. Yen in 1991 Yen (1991), an important number of fuzzy extensions to DLs can be found in the literature (Lukasiewicz & Straccia, 2008). In this section we will overview other existing fuzzy DL reasoners (in chronological order).

fuzzyDL. This may be considered the first fuzzy DL reasoner (Bobillo & Straccia, 2008). It extends fuzzy rough  $\mathcal{SHIF}(\mathbb{D})$  with concept modifiers (using linear hedges and triangular functions), explicit definitions of fuzzy concepts (by means of triangular, trapezoidal, left-shoulder and right-shoulder functions), concrete features or datatypes (which can have a value with is an integer, a real or a string), some concept constructors (weighted concepts. weighted sum concepts, and threshold concepts). From a reasoning point of view, it supports both Zadeh and Łukasiewicz logics, and is able to compute several queries, ranging from typical reasoning tasks (such as entailment, BDB, concept satisfiability and subsumption problems) to variable optimization and defuzzifications. Reasoning is based on a mixture of a tableau and a MILP optimization problem. Another interesting feature is that the degrees of the fuzzy axioms may not only be numerical constants, but also variables, thus being able to deal with unknown degrees of truth. Developed in Java, it is publicly available.<sup>14</sup>

Fire. It implements a tableau algorithm for fuzzy  $\mathcal{SHIN}$  under Zadeh logic (Stoilos, Simou, Stamou, & Kollias, 2006). It supports several reasoning tasks (consistency, entailment, Best Degree Bound, concept satisfiability, subsumption problems, and classification). An interesting feature is its graphical interface, although users need to deal directly with the syntax of the language for the representation of the fuzzy KB. Moreover, it can serialize ontologies in fuzzy  $\mathcal{SHIF}$  into RDF triples, and is integrated with classical RDF storing systems, which provide persistent storing and querying over large-scale fuzzy information. Developed in Java, it is publicly available. <sup>15</sup>

GURDL. It supports an extension of  $\mathcal{ALC}$  with an abstract and more general notion of uncertainty (Haarslev, Pai, & Shiri, 2009). The reasoning algorithm is also based on a mixture of tableau rules and the resolution of a set of inequations. Moreover, it implements some interesting optimization techniques (lexical normalization, concept simplification, partitions based on individual connectivity, caching) and studies the applicability of some techniques used in the non-fuzzy case. It is not publicly available.

GERDS. GEneralised Resolution Deductive System is a prototype implementation of a resolution algorithm for fuzzy  $\mathcal{ALC}$  extended with some role constructors (role negation, top role and bottom

role) under Łukasiewicz logic (Habiballa, 2007). It is publicly available. <sup>16</sup>

YADLR. It is a Prolog implementation of a combination of a resolution-based algorithm with linear programming for reasoning with a multi-valued DL under Łukasiewicz logic (Konstantopoulos & Apostolikas, 2007). An interesting feature is that it allows variables as degrees of truth. It is not publicly available.

*KAON2*. It is a DL reasoner which has been extended with the reduction of fuzzy DLs to classical DLs proposed in Straccia (2004), as mentioned in Agarwal and Hitzler (2005). An empirical study of the scalability of reasoning with fuzzy ontologies using this reasoner has been performed in Cimiano et al. (2008). The reasoner is publicly available, <sup>17</sup> but the fuzzy extension is not.

ONTOSEARCH2. It is the first scalable query engine for fuzzy ontologies (Pan, Thomas, & Sleeman, 2006; Thomas, Pan, & Sleeman, 2007). It implements an instance retrieval algorithm from a KB in fuzzy DL-Lite, allowing queries to be defined using a fuzzy extension of SPARQL. It is publicly available.<sup>18</sup>

*DLMedia*. It is an ontology-based multimedia information retrieval system combining logic-based retrieval with multimedia feature-based similarity retrieval (Straccia & Visco, 2008). An ontology layer may be used to define the application domain, using DLR-Lite with fuzzy concrete domains expressing similarity relations between keywords. It is publicly available.<sup>19</sup>

FRESG. The most recent fuzzy DL reasoner implements a tableau algorithm for fuzzy  $\mathcal{ALC}(\mathbb{D})$  under Zadeh logic, with customized fuzzy data types and customized fuzzy data type predicates. It supports several reasoning tasks (consistency, entailment, concept satisfiability, retrieval, and realization). It has a simple graphical interface, but it is not publicly available (Wang, Ma, & Yin, 2009).

# 5.1. Discussion

<code>fuzzyDL</code> supports a very expressive logic, fuzzy rough  $S\mathcal{ROIQ}(\mathbb{D})$ , that no other reasoner is able to support. Hence, <code>fuzzyDL</code> is the only that currently supports fuzzy OWL 2. Also, no other reasoner supports Gödel logic, a semantics relying on a finite chain of degrees of truth, and (with the exception of <code>fuzzyDL</code>) fuzzy rough concepts. However, most of the other reasoners also provide features that <code>fuzzyDL</code> is not able to support.

• fuzzyDL supports Łukasiewicz logic, new concept constructors, new fuzzy datatypes, new reasoning tasks, variables as degrees of truth, and new reasoning tasks.

<sup>14</sup> http://www.straccia.info/software/fuzzyDL/fuzzyDL.html.

<sup>15</sup> http://www.image.ece.ntua.gr/nsimou/FiRE.

<sup>16</sup> http://www1.osu.cz/home/habibal/page8.html.

<sup>17</sup> http://www.kaon2.semanticweb.org.

<sup>18</sup> http://www.dipper.csd.abdn.ac.uk/OntoSearch.

<sup>19</sup> http://faure.isti.cnr.it/straccia/software/DL-Media/DL-Media.html.

- Fire implements a classification algorithm and persistent storing support.
- GURDL supports a more general representation of uncertainty.
- GERDS supports additional role constructors.
- YADLR supports variables as degrees of truth.
- DLMedia and ONTOSEARCH2 provide scalable reasoning.
- FRESG supports customized datatypes and new reasoning tasks.

## 6. Conclusions and future work

This paper has presented the fuzzy rough ontology reasoner DeL orean, the first one that supports fuzzy extensions of the languages OWL and OWL 2. DeLorean integrates translation and reasoning tasks. Given a fuzzy rough ontology in our fuzzy extension of OWL or OWL 2, DeLorean computes its non-fuzzy representation in OWL or OWL 2, respectively. Then, it uses a classical DL reasoner to perform the reasoning.

We describe the technologies used in the development, some implementations details (in particular the optimization techniques) and its functionality, with some unique features with respect to other fuzzy ontology reasoners. It supports a combination of Zadeh and Gödel fuzzy logics, allowing the ontology developer to take the best of them. It also supports a finite chain of degrees of truth, which is very useful in practice, since expert knowledge is usually expressed using linguistic terms, and since numerical interpretations of these labels can be avoided. Also, it is possible to manage vagueness in two different but complementary ways, extending the fuzzy ontology language with fuzzy rough sets.

The main direction for future work is to perform a detailed benchmark of the reasoner. On the one hand, we will compare fuzzy reasoning with Delorean against classical reasoning. We expect to demonstrate that the overload added by the fuzzy representation is compensated for the increase of the expressiveness. On the other hand, we will compare Delorean with other fuzzy DL reasoners.

In the former case, we will consider a real-world fuzzy ontology. As far as we know, there does not exist any significant fuzzy KB; the only one that we are aware of is a fuzzy extension of LUBM (Pan, Stamou, Stoilos, Thomas, & Taylor, 2008), but it is a non expressive ontology (in fuzzy DL Lite). We expect that fuzzy versions of more realistic ontologies will be tractable under our approach.

The latter case is complicated because different reasoners support different features and expressivities, and have different input formats. In that regard, it would be interesting to design a common fuzzy OWLlink interface.

Additionally, we plan to design and implement a tableau algorithm for a fuzzy Gödel DL, because nowadays we are not aware of any other reasoning algorithm that directly supports this kind of logics –apart from the reduction implemented by Delorean.

We also plan to develop a graphical interface (such as a Protégé plug-in) to assist user in the development of fuzzy ontologies.

## Acknowledgement

The authors have been partially funded by the Spanish Ministry of Science and Technology under project TIN2009–14538-C02–01. J. Gómez-Romero also acknowledges funding by the Comunidad de Madrid under project CAM CONTEXTS S2009/TIC-1485.

#### References

Agarwal, S., & Hitzler, P. (2005). sMart – A semantic matchmaking portal for electronic markets. In *Proceedings of the 7th international IEEE conference on E-commerce technology (CEC'05)*. IEEE Computer Society.

- American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV-TR.
- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (2003). The description logic handbook: theory, implementation, and applications. Cambridge University Press.
- Bechhofer, S., Lord, P., Volz, R. (2003). Cooking the Semantic Web with the OWL API. In Proceedings of the 2nd international semantic web conference (ISWC 2003).
- Bechhofer, S., Möller, R., Crowther, P. (2003). The DIG Description Logic interface: DIG/1.1. In *Proceedings of the 16th international workshop on description logics* (DL 2003).
- Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 284(5), 34–43.
- Bobillo, F., Delgado, M., Gómez-Romero, J. (2007). Optimizing the crisp representation of the fuzzy Description Logic SROIQ. In Proceedings of the 3rd ISWC workshop on uncertainty reasoning for the semantic web (URSW 2007), CEUR workshop proceedings (Vol. 327).
- Bobillo, F., Delgado, M., Gómez-Romero, J. (2008). DeLorean: A reasoner for fuzzy OWL 1.1. In Proceedings of the 4th international workshop on uncertainty reasoning for the semantic web (URSW 2008), CEUR workshop proceedings (Vol. 423).
- Bobillo, F., Delgado, M., & Gómez-Romero, J. (2009). Crisp representations and reasoning for fuzzy ontologies. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 17(4), 501–530.
- Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U. (Submitted). Joining Gödel and Zadeh fuzzy logics in fuzzy Description Logics.
- Bobillo, F., Delgado, M., Gómez-Romero, J., & Straccia, U. (2009). Fuzzy Description Logics under Gödel semantics. *International Journal of Approximate Reasoning*, 50(3), 494–514.
- Bobillo, F., Straccia, U. (submitted). Generalized fuzzy rough Description Logics.
- Bobillo, F., & Straccia, U. (2008). fuzzyDL: An expressive fuzzy description logic reasoner. In Proceedings of the 17th IEEE international conference on fuzzy systems (FUZZ-IEEE 2008) (pp. 923–930). IEEE Computer Society.
- Bobillo, F., & Straccia, U. (2009). Supporting fuzzy rough sets in fuzzy Description Logics. In Proceedings of the 9th European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2009). Lecture Notes in Computer Science (Vol. 5590, pp. 676–687). Springer.
- Calegari, S., & Sanchez, E. (2008). Object-fuzzy concept network: An enrichment of ontologies in semantic information retrieval. *Journal of the American Society for Information Science and Technology*, 59(13), 2171–2185.
- Cimiano, P., Haase, P., Ji, Q., Mailis, T., Stamou, G.B., Stoilos, G., Tran, T., Tzouvaras, V. (2008). Reasoning with large A-Boxes in fuzzy Description Logics using DL reasoners: An experimental valuation. In Proceedings of the 1st workshop on advancing reasoning on the web: scalability and commonsense (ARea2008), CEUR workshop proceedings (Vol. 350).
- Costa, P.C.G., Laskey, K.B., Lukasiewicz, T. (2008). Uncertainty representation and reasoning in the Semantic Web. In J. Cardoso and M.D. Lytras (Eds.), Semantic Web Engineering in the Knowledge Society.
- Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U. (2008). OWL 2: The next step for OWL. *Journal of Web Semantics*, 6(4), 309–322.
- (2006). ONL 2: The liext step of OWL Journal of Web Sentantics, 6(4), 509–522. Cock, Martine De, Cornelis, Chris, & Kerre, Etienne E. (2007). Fuzzy rough sets: The forgotten step. *IEEE Transactions on Fuzzy Systems*, 15(1), 121–130.
- Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 5(2), 199–220.
- Haarslev, V., & Möller, R. (2001). Racer system description. In Proceedings of international joint conference on automated reasoning (IJCAR-01). Lecture Notes in Computer Science (Vol. 2083, pp. 701–705). Springer-Verlag.
- Haarslev, V., Pai, H.-I., & Shiri, N. (2009). A formal framework for Description Logics with uncertainty. International Journal of Approximate Reasoning, 50(9), 1399–1415.
- Habiballa, H. (2007). solution strategies for fuzzy Description Logic. In Proceedings of the 5th Conference of the European Society for fuzzy logic and technology (EUSFLAT 2007) (Vol. 2, pp. 27–36).
- Horridge, M., Bechhofer, S. (2009). The OWL API: A Java API for working with OWL 2 ontologies. In *Proceedings of the 6th international workshop on OWL: experiences and directions (OWLED 2009), CEUR workshop proceedings (Vol. 529).*
- Horridge, M., Bechhofer, S., Noppens, O. (2007). Igniting the OWL 1.1 touch paper: The OWL API. In *Proceedings of the 3rd international workshop on OWL:* experiences and directions (OWLED 2007), CEUR workshop proceedings (Vol. 258).
- Horridge, M., Tsarkov, D., Redmond, T. (2006). Supporting early adoption of OWL 1.1 with Protege-OWL and FaCT++. In Proceedings of the 2nd international workshop on OWL: experience and directions (OWLED 2006), CEUR workshop proceedings (Vol. 216).
- Horrocks, I., Kutz, O., Sattler, U. (2006). The even more irresistible *SROIQ*. In Proceedings of the 10th international conference of knowledge representation and reasoning (KR 2006) (pp. 452–457).
- Horrocks, I., & Patel-Schneider, P. F. (2004). Reducing OWL entailment to Description Logic satisfiability. *Journal of Web Semantics*, 1(4), 345–357.
- Hudelot, C., Atif, J., & Bloch, I. (2008). Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets and Systems, 159(15), 1929–1951.
- Konstantopoulos, S., & Apostolikas, G. (2007). Fuzzy-DL reasoning over unknown fuzzy degrees. In Proceedings of the 3rd international workshop on semantic web and web semantics (SWWS 07), Part II. Lecture Notes in Computer Science (Vol. 4806, pp. 1312–1318). Springer-Verlag.
- Liebig, T., Luther, M., Noppens, O. (2009). The OWLlink protocol. In Proceedings of the 6th international workshop on OWL: experiences and directions (OWLED 2009), CEUR workshop proceedings (Vol. 529).

- Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in Description Logics for the semantic web. *Journal of Web Semantics*, 6(4), 291–308
- Mas, M., Monserrat, M., & Torrens, J. (2004). S-implications and r-implications on a finite chain. *Kybernetika*, 40(1), 3–20.
- Mayor, G., & Torrens, J. (1993). On a class of operators for expert systems. International Journal of Intelligent Systems, 8(7), 771–778.
- McBride, B. (2002). Jena: A semantic web toolkit. *IEEE Internet Computing*, 6(6), 55–59.
- Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., & Musen, M. A. (2001). Creating semantic web contents with Protégé-2000. *IEEE Intelligent Systems*, 16(2), 60–71.
- Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E., Taylor, S. (2008). Scalable querying service over fuzzy ontologies. In Proceedings of the 17th international world wide web conference (WWW2008).
- Pan, J.Z., Thomas, E., Sleeman, D. (2006). ONTOSEARCH2: Searching and querying web ontologies. In Proceedings of the IADIS international conference WWW/ Internet 2006.
- Patel-Schneider, P.F., Swartout, B. (1993). Description-Logic knowledge representation system specification from the KRSS group of the ARPA knowledge sharing effort. Technical report, DARPA Knowledge Representation System Specification (KRSS) Group of the Knowledge Sharing Initiative.
- Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11(5), 341–356.
- Radzikowska, Anna Maria, & Kerre, Etienne E. (2002). A comparative study of fuzzy rough sets. Fuzzy Sets and Systems, 126(2), 137–155.
- Sanchez, E. (Ed.). (2006). Fuzzy logic and the semantic web. Capturing Intelligence (Vol. 1). Elsevier Science.
- Shearer, R., Motik, B., Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner. In Proceedings of the 5th international workshop on OWL: experiences and directions (OWLED 2008).
- Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. *Journal of Web Semantics*, 5(2), 51–53.
- Stoilos, G., Simou, N., Stamou, G., & Kollias, S. (2006). Uncertainty and the Semantic Web. *IEEE Intelligent Systems*, 21(5), 84–87.

- Straccia, U. (2001). Reasoning within fuzzy Description Logics. *Journal of Artificial Intelligence Research*, 14, 137–166.
- Straccia, U. (2004). Transforming fuzzy Description Logics into classical description logics. In *Proceedings of the 9th european conference on logics in artificial intelligence (JELIA 2004). Lecture Notes in Computer Science* (Vol. 3229, pp. 385–399). Springer-Verlag.
- Straccia, U. (2005). Description logics with fuzzy concrete domains. In Proceedings of the 21st conference on uncertainty in artificial intelligence (UAI 2005). AUAI Press
- Straccia, U., Visco, G. (2008). DL-Media: An ontology mediated multimedia information retrieval system. In Proceedings of the 4th international workshop on uncertainty reasoning for the semantic web (URSW 2008), CEUR workshop proceedings (Vol. 423).
- Thomas, E., Pan, J.Z., Sleeman, D. (2007). ONTOSEARCH2: Searching ontologies semantically. In Proceedings of the 3rd international workshop on OWL: experiences and directions (OWLED 2007), CEUR workshop proceedings (Vol. 258).
- Tsarkov, D., Horrocks, I. (2006). FaCT++ Description Logic reasoner: System description. In *Proceedings of the 3rd international joint conference on automated reasoning (IJCAR 2006).*
- Turhan, A.Y., Bechhofer, S., Kaplunova, A., Liebig, T., Luther, M., Möller, R., Noppens, O., Patel-Schneider, P., Suntisrivaraporn, B., and Weithöner, T. (2006). DIG 2.0 Towards a flexible interface for Description Logic reasoners. In Proceedings of the 2nd international workshop on OWL: experience and directions (OWLED 2006), CEUR workshop proceedings (Vol. 216).
- W3C. OWL Web Ontology Language overview, 2004. Available: http://www.w3.org/TR/owl-features.
- Wang, H., Ma, Z. M., & Yin, J. (2009). Fresg: A kind of fuzzy description logic reasoner. In *Proceedings of the 20th international conference on database and expert systems applications (DEXA 2009)* (Vol. 5690, pp. 443–450). Lecture notes in computer science. Springer-Verlag.
- Yen, J. (1991). Generalizing term subsumption languages to fuzzy logic. In *Proceedings of the 12th international joint conference on artificial intelligence* (IJCAI 1991) (pp. 472-477). Morgan Kaufman.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.