An Introduction to Algorithms By Hossein Rahmani

h_rahmani@iust.ac.ir http://webpages.iust.ac.ir/h_rahmani/

Graphs

- Graph G = (V, E)
 - -V = set of vertices
 - $-E = set of edges \subseteq (V \times V)$
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w: E \to \mathbb{R}$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| << |V|^2$.
- $|E| = O(|V|^2)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1.$
 - Furthermore, if |E| = |V| 1, then G is a tree.

Graph Samples

- Geography:
 - Cities and roads
 - Airports and flights (diameter ≈ 20 !!)
- Publications:
 - The co-authorship graph
 - E.g. the Erdos distance
 - The reference graph
- Phone calls: who calls whom
- Almost everything can be modeled as a graph!

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.

Adjacency Matrix.

	1	2	3	4
1	0	1 0 1 0	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

- Adjacency Lists
 Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E|$$
No. of edges leaving V

- Total storage: $\Theta(|V| + |E|)$
- For undirected graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{degree}(v) = 2|E|$$
No. of edges incident on v. Edge (u,v) is incident on vertices u and v .

- Total storage: $\Theta(|V| + |E|)$

Pros and Cons: adj list

- Pros
 - Space-efficient, when a graph is sparse.
 - Can be modified to support many graph variants.
- Cons
 - Determining if an edge (u, v) ∈G is not efficient.
 - Have to search in u's adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner. $A[i,j] = a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	1 0 0	0	0

	1	2	3	4	
1	0	1 0 1 0	1	1	
2	1	0	1	0	
3	1	1	0	1	
4	1	0	1	0	

 $A = A^{T}$ for undirected graphs.

Space and Time

- Space: $\Theta(V^2)$.
 - Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Some graph operations

	adjacency matrix	adjacency lists
insertEdge	O(1)	O(e)
isEdge	O(1)	O(e)
#successors?	O(V)	O(e)
#predecessor	s? O(V)	O(E)

traversing a graph

Where to start?
Will all vertices be visited?
How to prevent multiple visits?

- Path
 - Sequence of nodes n₁, n₂, ... n_k
 - Edge exists between each pair of nodes n_i, n_{i+1}
 - Example
 - A, B, C is a path

- Path
 - Sequence of nodes n₁, n₂, ... n_k
 - Edge exists between ea
 - Example
 - A, B, C is a path
 - A, E, D is not a path

- Cycle
 - Path that ends back at starting node
 - Example
 - A, E, A

- Cycle
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A
- Simple path
 - No cycles in path
- Acyclic graph
 - No cycles in graph

- Reachable
 - Path exists between nodes
- Connected graph
 - Every node is reachable from some node in graph

Connectivity

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Connectivity

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A *complete* graph has an edge between every pair of vertices

Connectivity

A (strongly) connected component is a subgraph which is (strongly) connected

CC in an undirected graph:

SCC in a directed graph:

Distance and Diameter

• The <u>distance</u> between two nodes, d(u,v), is the length of <u>the shortest paths</u>, or ∞ if there is <u>no path</u>

 The <u>diameter</u> of a graph is the <u>largest distance</u> between any two nodes

Graph is strongly connected iff diameter < ∞

Bipartiteness

Graph G = (V,E) is **bipartite** iff it can be partitioned into two sets of nodes A and B such that each edge has one end in A and the other end in B

Alternatively:

- Graph G = (V,E) is bipartite iff all its cycles have even length
- Graph G = (V,E) is bipartite iff nodes can be coloured using two colours

Question: given a graph G, how to test if the graph is bipartite?

Note: graphs without cycles (trees) are bipartite

Subgraphs

A subgraph of a graph G = (V, E) is a graph H =(V', E') where V' is a subset of V and E' is
a subset of E

Application example: solving sub-problems within a graph

Graph - Isomorphism

- G1 = (V1, E2) and G2 = (V2, E2) are isomorphic if:
- There is a one-to-one and onto function f from V1 to V2 with the property that
 - a and b are adjacent in G1 if and only if f (a) and f (b) are adjacent in G2, for all a and b in V1.
- Function f is called isomorphism

Application Example:

In chemistry, to find if two compounds have the same structure

Graph - Isomorphism

Representation example: G1 = (V1, E1), G2 = (V2, E2)

$$f(u_1) = v_1$$
, $f(u_2) = v_4$, $f(u_3) = v_3$, $f(u_4) = v_2$,

Graph-searching Algorithms

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

Output:

- -d[v]= distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v]=\infty$ if v is not reachable from s.
- $-\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - *u* is *v*'s predecessor.
- Builds breadth-first tree with root s that contains all reachable vertices.

Breadth-first Search

- Expands the <u>frontier</u> between discovered and undiscovered vertices <u>uniformly</u> across the breadth of the frontier.
 - A vertex is "discovered" the <u>first time</u> it is encountered during the search.
 - A vertex is "<u>finished</u>" if all vertices <u>adjacent</u> to it have been <u>discovered</u>.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
             do color[u] \leftarrow white
2
                                                        initialization
3
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{nil}
4
    color[s] \leftarrow gray
   d[s] \leftarrow 0
                                                        access source s
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
    enqueue(Q,s)
10 while Q \neq \Phi
             do u \leftarrow dequeue(Q)
11
12
                           for each v in Adj[u]
13
                                        do if color[v] = white
14
                                                      then color[v] \leftarrow gray
15
                                                             d[v] \leftarrow d[u] + 1
16
                                                             \pi[v] \leftarrow u
                                                             enqueue(Q,v)
17
18
                           color[u] \leftarrow black
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices

color[v]: color of v

d[v]: distance from s to v

 $\pi[u]$: predecessor of v

Q: s

Q: w r 1 1

Q: r t x 1 2 2

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y

Q: Ø

BF Tree

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex *v*.
- When all edges of v have been explored, <u>backtrack</u> to explore other edges leaving the vertex from which v was discovered.
- "Search as <u>deep</u> as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a <u>new source</u> and search is <u>repeated</u> from that source.

Depth-first Search Input: G = (V, E), directed or undirected. No source vertex given!

Output:

- 2 timestamps on each vertex. Integers between 1 and 2 | V |.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
- $-\pi[v]$: predecessor of v = u, such that \underline{v} was discovered during the scan of u's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
 - "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- color[u] ← GRAY // White vertex u
 has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(ν)
- 8. $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Example (DFS)!!!

Recursive DFS Algorithm

```
Traverse()
   for all nodes X
      visited[X]= False
   DFS(1st node)
DFS(X)
   visited[X] = True
   for each successor Y of X
      if (visited[Y] = False)
         DFS(Y)
```


 The Breadth First Search algorithm has been implemented using the queue data structure. One possible order of visiting the nodes of the following graph is

Α

MNOPQR

NQMPOR

QMNPRO

QMNPOR

Give the visited node order for each type of graph search, starting with s, given the following adjacency lists and accompanying figure:

$$adj(s) = [a, c, d],$$

 $adj(a) = [],$
 $adj(c) = [e, b],$
 $adj(b) = [d],$
 $adj(d) = [c],$
 $adj(e) = [s].$

- BFS?
- DFS?

Consider the following graph Among the following sequences

- I) a b e g h f
- II) a b f e h g
- III) a b f h g e

Α I, II and IV only В I and IV only II, III and IV only D I, III and IV only

 Suppose depth first search is executed on the graph below starting at some unknown vertex. Assume that a recursive call to visit a vertex is made only after first checking that the vertex has not been visited earlier. Then the maximum possible recursion depth (including the initial call) is?

A 17
B 18
C 19
D 20

Discuss the Order of BFS and DFS algorithms,
 with respect to V and E.