PCT/JP2004/015316

# 明 AP20 Rec'd PCT/PTO 10 APR 2006

α1,6-フコシルトランスフェラーゼの機能を抑制する RNA を用いた抗体組成物の製造法

## 技術分野

本発明は、細胞を用いて抗体組成物を製造する方法において、N-グリコシド結合複合型糖鎖 還元末端の N-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した細胞を用いることを特徴とする、抗体組成物を製造する方法、該製造方法で用いられる該 RNA、該 RNA に対応する DNA および該 RNA または DNA を導入したまたは発現させた細胞、該細胞の作製方法および該酵素を抑制する方法に関する。

#### 背景技術

一般的に、医薬への応用が考えられているヒト化抗体の多くは、遺伝子組換え技術を用いて作製され、動物細胞、例えばチャイニーズハムスター卵巣組織由来 CHO 細胞等を宿主細胞として用い製造されているが、抗体依存性細胞傷害活性(以下、ADCC 活性と表記する)、補体依存性細胞傷害活性(以下、CDC 活性と表記する)等の細胞傷害活性をエフェクター細胞に惹起する抗体のエフェクター機能には糖鎖構造、特に抗体のN-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンへのフコースの付加が重要な役割を担っていること(WOO2/31140)、宿主細胞によって発現された糖蛋白質の糖鎖構造に違いが観察されることから [J. Biol. Chem., 278, 3466 (2003)]、より高いエフェクター機能を有する抗体を作製することが可能な生産細胞の開発が望まれている。

近年、Rituxan による非ホジキン白血病患者の治療、Herceptin による乳癌患者の治療において、該抗体医薬が患者のエフェクター細胞に強い ADCC 活性を惹起した場合には、より高い治療効果が得られている (Blood, 99, 754, 2002; J. Clin. Oncol., 21, 3940, 2003; Clin. Cancer Res., 10, 5650, 2004)。

細胞の糖鎖の修飾に係わる酵素の活性を調節し、生産される糖蛋白質の糖鎖構造を改変する一つの方法として、糖鎖の修飾に係わる酵素の阻害剤を応用することが試みられている。しかしながら、このような阻害剤の特異性は低く、また標的とする酵素を十分に阻害することも難しいため、生産抗体の糖鎖構造を確実に制御することは難しい。

また、糖鎖の修飾に係わる酵素遺伝子を導入することによって、生産される糖蛋白質の糖鎖構造を改変することも試みられている [J. Biol. Chem.,  $\underline{261}$ , 13848 (1989)、Science,  $\underline{252}$ , 1668 (1991) ]。 $\beta$ 1,4-N-アセチルグルコサミン転移酵素 III (GnTIII) を導入した CHO 細胞を用いて抗体を発現させた場合には、親株で発現させた抗体と比べて 16 倍高い ADCC 活性を示した [Glycobiology,  $\underline{5}$ , 813 (1995)、W099/54342]。しかしながら、GnTIII あるいは $\beta$ 1,4-N-アセチルグルコサミン転移酵素 V (GnTV) の過剰発現は CHO 細胞に対して毒性を示すため、抗体医薬の生産には適切ではない。

糖鎖の修飾に係わる酵素遺伝子の活性が変化した突然変異体を宿主細胞として用いることで、生産される糖鎖構造が変化した糖蛋白質の生産例も報告されている [J. Immunol., 160, 3393 (1998)]。最近になって、細胞内糖ヌクレオチド GDP-フコースの生合成に関与する酵素である GDP-mannose 4,6-dehydratase (以下、GMD と表記する) の発現が低下した細胞株、例えば CHO 細胞 Lec13 株等を用いて、ADCC 活性が有為に上昇した抗体の発現に成功した例が報告された [J. Biol. Chem., 277, 26733 (2002)]。

変異剤処理によって取得された株の変異は、ランダムに導入されており、目的としない変異 の導入が想定されるため、医薬品製造に用いる株として適切ではない。

以上のように、生産される糖蛋白質の糖鎖構造を改変するために、宿主細胞の糖鎖の修飾に係わる酵素の活性を調節する試みがなされているが、実際には糖鎖の修飾機構は多様かつ複雑であり、かつ糖鎖が持つ生理的な役割の解明も十分とは言い難いため試行錯誤を繰り返しているのが現状である。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位 が $\alpha$ 結合する糖鎖修飾に関与する酵素としては、哺乳動物では、 $\alpha$ 1,6-フコシルトランスフェラーゼ (FUT8) が存在することが知られている [Biochem. Biophys. Res. Commun., 72, 909 (1976)]。FUT8 (EC 2.4.1,68) の遺伝子構造は 1996 年に明らかにされた [WO92/27303、J. Biol. Chem., 271, 27817 (1996)、J. Biochem., 121, 626 (1997)]。

このような中、免疫グロブリン IgG の N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンへのフコースの結合により、抗体自身の ADCC 活性が変化することが報告され、  $\alpha$ 1,6-フコシルトランスフェラーゼの活性と ADCC 活性との関係が注目されている [W002/31140、W000/61739、J. Biol. Chem., <u>278</u>, 3466 (2003)、J. Biol. Chem., <u>277</u>, 26733 (2002)]。 具体的には、1)  $\alpha$ 1,6-フコシルトランスフェラーゼを過剰に発現させた細胞株が生産する抗

体の ADCC 活性は低下すること、 2)  $\alpha$ 1,6-フコシルトランスフェラーゼの対立遺伝子の片方を破壊した細胞株が産生する抗体の抗体依存性細胞傷害活性は上昇することが示されている (W002/31140)。

しかしながら、上述の相同組換え法による遺伝子破壊の方法以外に、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の機能を人為的に抑制する方法は知られていない。

#### 発明の開示

本発明の目的は、細胞を用いて抗体組成物を製造する方法において、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞を用いることを特徴とする、抗体組成物を製造する方法、該製造方法で用いられる該RNA、該RNAに対応するDNAおよび該RNAまたはDNAを導入したまたは発現させた細胞、該細胞の作製方法および該酵素を抑制する方法を提供することにある。本発明の方法により製造される抗体組成物は高いエフェクター機能を有しており、医薬品として有用である。

本発明は、以下の(1)~(29)に関する。

- (1) 細胞を用いて抗体組成物を製造する方法において、以下の(a)または(b)から選ばれるRNAおよびその相補RNAで構成される二本鎖RNAを細胞内に導入させた細胞を用いる抗体組成物の製造方法;
  - (a) 配列番号9~30で表される塩基配列からなるRNA;
- (b) 配列番号9~30で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA。
- (2) N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素が、  $\alpha$ 1,6-フコシルトランスフェラーゼである、
- (1) に記載の方法。
- (3)  $\alpha$ 1,6-フコシルトランスフェラーゼが、以下の (a) $\sim$ (h)からなる群から選ばれる DNA がコードする蛋白質である、 (2) に記載の方法。

- (a) 配列番号1で表される塩基配列からなるDNA;
- (b) 配列番号2で表される塩基配列からなるDNA;
- (c) 配列番号3で表される塩基配列からなるDNA;
- (d) 配列番号4で表される塩基配列からなるDNA;
- (e) 配列番号1で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズ し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードするDNA;
- (f) 配列番号2で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズ し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードするDNA;
- (g) 配列番号3で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズ し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードするDNA;
- (h) 配列番号4で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズ し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードするDNA。
- (4)  $\alpha_{1,6}$ -フコシルトランスフェラーゼが、以下の (a) $\sim$ (1)からなる群から選ばれる蛋白質である、 (2) に記載の方法。
  - (a)配列番号5で表されるアミノ酸配列からなる蛋白質;
  - (b)配列番号6で表されるアミノ酸配列からなる蛋白質;
  - (c)配列番号7で表されるアミノ酸配列からなる蛋白質;
  - (d)配列番号8で表されるアミノ酸配列からなる蛋白質;
- (e)配列番号5で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質;
- (f)配列番号6で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質;
- (g)配列番号7で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質;
- (h)配列番号8で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性

#### を有する蛋白質;

- (i)配列番号5で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (j)配列番号6で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質:
- (k)配列番号7で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質:
- (1)配列番号8で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質。
- (5) N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの 1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞が、N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性を有する細胞である、(1)  $\sim$  (4) のいずれか1項に記載の方法。
- (6) 以下の(a)~(d)からなる群から選ばれるレクチンのいずれか1つに耐性である、(5) に記載の方法。
  - (a) レンズマメレクチン;
  - (b) エンドウマメレクチン:
  - (c) ソラマメレクチン;
  - (d) ヒイロチャワンタケレクチン。
- (7) 細胞が、酵母、動物細胞、昆虫細胞および植物細胞からなる群から選ばれる細胞である、 $(1) \sim (6)$  のいずれか 1 項に記載の方法。
- (8) 細胞が、下記の (a) $\sim$ (i) からなる群から選ばれる細胞である、 (1) $\sim$ (7) のいずれか 1 項に記載の方法。
  - (a) チャイニーズハムスター卵巣組織由来CHO細胞;
  - (b) ラットミエローマ細胞株YB2/3HL.P2.G11.16Ag.20細胞;
  - (c) マウスミエローマ細胞株NSO細胞;
  - (d) マウスミエローマ細胞株SP2/0-Ag14細胞;
  - (e) シリアンハムスター腎臓組織由来BHK細胞;

- (f) 抗体を産生するハイブリドーマ細胞;
- (g) ヒト白血病細胞株ナマルバ細胞;
- (h) 胚性幹細胞;
- (i) 受精卵細胞。
- (9) 細胞が、抗体分子をコードする遺伝子を導入した形質転換体である、 $(1) \sim (8)$  のいずれか 1 項に記載の方法。
- (10) 抗体分子が、以下の(a)~(d)からなる群から選ばれる分子である、(9) に記載の方法。
  - (a) ヒト抗体;
  - (b) ヒト化抗体;
  - (c) (a) または(b) のFc領域を含む抗体断片;
  - (d) (a)または(b)のFc領域を有する融合蛋白質。
- (11) 抗体分子のクラスがIgGである、(9) または (10) に記載の方法。
- (12) 以下の(a)または(b)から選ばれるRNAおよびその相補RNAで構成される二本鎖RNA を細胞内に導入していない親株細胞が生産する抗体組成物の抗体依存性細胞傷害活性より、高い抗体依存性細胞傷害活性を有する抗体組成物を製造する、(1)  $\sim$  (11) のいずれか1項に記載の方法;
  - (a)配列番号9~30で表される塩基配列からなるRNA;
- (b)配列番号 $9\sim30$ で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA。
- (13) 高い抗体依存性細胞傷害活性を有する抗体組成物が、N-グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が、親株細胞が生産する抗体組成物よりも高いことを特徴とする、(12)に記載の方法。
- (14) N-グリコシド結合複合型糖鎖が、該糖鎖還元末端のN-アセチルグルコサミンの6位 にフコースの1位が $\alpha$ 結合していない糖鎖である、(13)に記載の方法。
- (15) 高い抗体依存性細胞傷害活性を有する抗体組成物が、N-グリコシド結合複合型糖鎖

をFc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が20%以上である抗体組成物である、(12)~(14)のいずれか1項に記載の方法。

- (16) 抗体依存性細胞傷害活性が高い抗体組成物が、N-グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体組成物である、(12)~(15)のいずれか1項に記載の方法。
- (17) (1)~(16)のいずれか1項に記載の方法で用いられる、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞。
- (18) N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素が $\alpha$ 1,6-フコシルトランスフェラーゼである(17)に記載の細胞。
- (19) 配列番号9~30のいずれかで表される塩基配列からなる群のRNAから選ばれるRNAを 導入または発現させた細胞。
- (20) 以下の(a)または(b)から選ばれるRNAおよびその相補RNAで構成される二本鎖RNA;
- (a) 配列番号9~30で表される塩基配列からなるRNA;
- (b) 配列番号  $9\sim30$  で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA。
- (21) (20) に記載の RNA に対応する DNA および該 DNA の相補 DNA。
- (22) (20) に記載の RNA に対応する DNA および該 DNA の相補 DNA をベクターに組み込んで得られる組換え体 DNA。
- (23) (20) に記載の二本鎖 RNA を発現させることを特徴とする、(22) に記載の組換え体 DNA。
- (24) (22) または (23) に記載の組換え体 DNA を細胞に導入して得られる形質転換体。

- (25) (20) に記載の二本鎖 RNA を細胞内に導入または発現させることを特徴とする、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性を有する細胞を作製する方法。
- (26) Nーグリコシド結合複合型糖鎖還元末端のNーアセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性が、少なくとも、以下の $(a)\sim(d)$ からなる群から選ばれるレクチンの一つに耐性である、(25)に記載の方法。
  - (a) レンズマメレクチン;
  - (b) エンドウマメレクチン;
  - (c) ソラマメレクチン;
  - (d) ヒイロチャワンタケレクチン。
- (27) 配列番号 9~30 のいずれかで表される塩基配列からなる群の RNA から選ばれる RNA を用いて、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコース の 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する方法。
  - (28) N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素が  $\alpha$  1,6-フコシルトランスフェラーゼである (27) に記載の方法。

以下、本発明を詳細に説明する。本願は 2003 年 10 月 9 日に出願された日本国特許出願 2003-350167 号の優先権を主張するものであり、当該特許出願の明細書および図面に記載される内容を包含する。

本発明は、細胞を用いて抗体組成物を製造する方法において、N-グリコシド結合複合型糖鎖 還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与す る酵素の機能を抑制する RNA を導入した細胞を用いることを特徴とする、抗体組成物を製造す る方法、該製造方法で用いられる該 RNA、該 RNA に対応する DNA および該 RNA または DNA を導 入したまたは発現させた細胞、該細胞の作製方法および該酵素を抑制する方法に関する。

細胞を用いて抗体組成物を製造する方法としては、ハイブリドーマ細胞を用いてモノクローナル抗体を製造する方法、抗体遺伝子を導入した宿主細胞を用いてヒト抗体およびヒト化抗体を製造する方法、抗体遺伝子を導入したヒト以外の動物の胚性幹細胞または受精卵細胞をヒト以外の動物の初期胚へ移植後、発生させたトランスジェニック非ヒト動物を用いてヒト抗体およびヒト化抗体を製造する方法、抗体遺伝子を導入した植物カルス細胞より作製したトランス

ジェニック植物を用いてヒト抗体およびヒト化抗体を製造する方法等を包含する。

本発明の製造方法で用いられる細胞としては、抗体分子を発現できる細胞であればいかなる 細胞でもよいが、酵母、動物細胞、昆虫細胞、植物細胞等があげられ、好ましくは動物細胞が あげられる。動物細胞の具体例としては、チャイニーズハムスター卵巣組織由来の CHO 細胞、ラットミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20 細胞、マウスミエローマ細胞株 NSO 細胞、マウスミエローマ細胞株 SP2/0-Ag14 細胞、シリアンハムスター腎臓組織由来 BHK 細胞、抗体を産生するハイブリドーマ細胞、ヒト白血病細胞株ナマルバ細胞、胚性幹細胞、受精卵細胞等 があげられる。

本発明の、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した細胞は、N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性を有する。

従って、本発明において、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等の抗体組成物を製造することができる細胞であって、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性を有する細胞があげられ、具体的には、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性を有する、ハイブリドーマ細胞、ヒト抗体およびヒト化抗体を製造するための宿主細胞、ヒト抗体を生産するためのトランスジェニック非ヒト動物を製造する胚性幹細胞および受精卵細胞、ヒト抗体を生産するためのトランスジェニック非ヒト動物を製造する植物カルス細胞、ミエローマ細胞、トランスジェニック非ヒト動物由来の細胞等があげられる。本発明のトランスジェニック非ヒト動物由来の細胞等があげられる。本発明のトランスジェニック非ヒト動物由来の半エローマ細胞はハイブリドーマ細胞を製造する際に融合細胞として用いることができる。また、トランスジェニック非ヒト動物に抗原を免疫し該動物の脾臓細胞を用いて公知の方法でハイブリドーマ細胞を作製することもできる。

レクチンに耐性な細胞とは、培養培地にレクチンを有効濃度与えて細胞培養を行ったときに も、生育が阻害されない細胞をいう。

本発明において、生育が阻害されないレクチンの有効濃度は、親株細胞に用いる細胞株に応

じて適宜定めればよいが、通常  $10\mu g/mL\sim 10mg/mL$ 、好ましくは  $0.5\sim 2mg/mL$  である。親株細胞に N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した場合のレクチンの有効濃度とは、該親株細胞が正常に生育できない濃度以上の濃度であり、好ましくは該親株細胞が正常に生育できない濃度以上の濃度であり、好ましくは 10 倍の濃度、最も好ましくは 10 倍以上の濃度をいう。

親株細胞とは、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入する前の細胞をいう。

親株細胞としては特に限定はないが、具体例として、以下に示す細胞があげられる。

NSO 細胞の親株細胞としては、BIO/TECHNOLOGY, <u>10</u>, 169 (1992)、Biotechnol. Bioeng., <u>73</u>, 261, (2001)等の文献に記載されている NSO 細胞があげられる。また、理化学研究所細胞開発銀行に登録されている NSO 細胞株 (RCB0213)、あるいはこれら株を生育可能な様々な培地に馴化させた亜株等もあげられる。

SP2/0-Ag14 細胞の親株細胞としては、J. Immunol.,  $\underline{126}$ , 317, (1981)、ネイチャー(Nature),  $\underline{276}$ , 269, (1978) 、Human Antibodies and Hybridomas,  $\underline{3}$ , 129, (1992)等の文献に記載されている SP2/0-Ag14 細胞があげられる。また、アメリカンタイプカルチャーコレクション(以下、ATCC とも表記する)に登録されている SP2/0-Ag14 細胞(ATCC CRL-1581)あるいはこれら株を生育可能な様々な培地に馴化させた亜株(ATCC CRL-1581.1)等もあげられる。

チャイニーズハムスター卵巣組織由来 CHO 細胞の親株細胞としては、Journal of Experimental Medicine, 108, 945 (1958)、Proc. Natl. Acad. Sci. USA, 60, 1275 (1968)、Genetics, 55, 513 (1968)、Chromosoma, 41, 129 (1973)、Methods in Cell Science, 18, 115 (1996)、Radiation Research, 148, 260 (1997)、Proc. Natl. Acad. Sci. USA, 77, 4216 (1980)、Proc. Natl. Acad. Sci. 60, 1275 (1968)、Cell, 6, 121 (1975)、Molecular Cell Genetics, Appendix I, II (p883-900)等の文献に記載されている CHO 細胞等があげられる。また、ATCCに登録されている CHO-K1株(ATCC CCL-61)、DUXB11株(ATCC CRL-9096)、Pro-5株(ATCC CRL-1781)や、市販の CHO-S 株 (Lifetechnologies 社製 Catl1619)、あるいはこれら株を生育可能な様々な培地に馴化させた亜株等もあげられる。

ラットミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20 細胞の親株細胞としては、Y3/Ag1.2.3 細

胞 (ATCC CRL-1631) から樹立された株化細胞が包含される。その具体的な例としては、J. Cell. Biol., 93, 576 (1982)、Methods Enzymol., 73B, 1(1981)等の文献に記載されている YB2/3HL.P2.G11.16Ag.20 細胞があげられる。また、ATCC に登録されている YB2/3HL.P2.G11.16Ag.20 細胞 (ATCC CRL-1662) あるいはこれら株を生育可能な様々な培地に 馴化させた亜株等もあげられる。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンとしては、該糖鎖構造を認識できるレクチンであれば、いずれのレクチンも包含される。その具体的な例としては、レンズマメレクチン LCA (Lens Culinaris 由来の Lentil Agglutinin)、エンドウマメレクチン PSA (Pisum sativum 由来の Pea Lectin)、ソラマメレクチン VFA (Vicia faba 由来の Agglutinin)、ヒイロチャワンタケレクチン AAL (Aleuria aurantia 由来の Lectin)等があげられる。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素としては、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素があげられる。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素としては、具体的には、 $\alpha$ 1,6-フコシルトランスフェラーゼ等があげられる。

本発明において、 $\alpha$ 1,6-フコシルトランスフェラーゼとしては、下記(a) $\sim$ (h)の DNA がコードする蛋白質、または下記(i) $\sim$ (t)の蛋白質等があげられる。

- (a) 配列番号1で表される塩基配列からなる DNA;
- (b) 配列番号2で表される塩基配列からなるDNA;
- (c) 配列番号3で表される塩基配列からなるDNA;
- (d) 配列番号 4 で表される塩基配列からなる DNA:
- (e) 配列番号 1 で表される塩基配列からなる DNA とストリンジェントな条件でハイブリダイズし、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質をコードする DNA ;
- (f) 配列番号 2 で表される塩基配列からなる DNA とストリンジェントな条件でハイブリダイズし、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DNA;
  - (g) 配列番号 3 で表される塩基配列からなる DNA とストリンジェントな条件でハイブリダ

イズし、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DNA;

- (h) 配列番号 4 で表される塩基配列からなる DNA とストリンジェントな条件でハイブリダイズし、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DNA。または、
  - (i)配列番号5で表されるアミノ酸配列からなる蛋白質;
  - (j)配列番号6で表されるアミノ酸配列からなる蛋白質;
  - (k)配列番号 7 で表されるアミノ酸配列からなる蛋白質;
  - (1)配列番号8で表されるアミノ酸配列からなる蛋白質;
- ( $\mathbf{n}$ )配列番号 5 で表されるアミノ酸配列において、1 以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質;
- (n)配列番号 6 で表されるアミノ酸配列において、 1 以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコシルトランスフェラーゼ活性を有する蛋白質;
- (0)配列番号 7 で表されるアミノ酸配列において、 1 以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (p)配列番号 8 で表されるアミノ酸配列において、 1 以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (q)配列番号 5 で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (r)配列番号 6 で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (s)配列番号 7 で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
- (t)配列番号 8 で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質。

本発明において、ストリンジェントな条件下でハイブリダイズする DNA とは、例えば、配列

番号1、2、3または4のいずれかで表される塩基配列を有するDNA等のDNAまたはその一部の断片をプローブとして、コロニー・ハイブリダイゼーション法、ブラーク・ハイブリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはブラーク由来のDNAを固定化したフィルターを用いて、0.7~1Mの塩化ナトリウム存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAをあげることができる。ハイブリダイゼーションは、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)、DNA Cloning 1: Core Techniques, A Practical Approach, Second edition, Oxford University (1995)等に記載されている方法に準じて行うことができる。ハイブリダイズ可能なDNAとして具体的には、配列番号1、2、3または4のいずれかで表される塩基配列と少なくとも60%以上の相同性を有するDNA、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上の相同性を有するDNAをあげることができる。

本発明において、配列番号 5、6、7または8のいずれかで表されるアミノ酸配列において1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつα1,6-フコシルトランスフェラーゼ活性を有する蛋白質とは、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci., USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci USA, 82, 488 (1985)等に記載の部位特異的変異導入法を用いて、例えば、配列番号 5、6、7または8のいずれかで表されるアミノ酸配列を有する蛋白質をコードするDNAに部位特異的変異を導入することにより取得することができる蛋白質を意味する。

欠失、置換、挿入および/または付加されるアミノ酸の数は 1 以上でありその数は特に限定されないが、上記の部位特異的変異導入法等の周知の技術により、欠失、置換もしくは付加できる程度の数であり、例えば、1~数十個、好ましくは 1~20 個、より好ましくは 1~10 個、さらに好ましくは 1~5 個である。

また、本発明において、配列番号 5、6、7 または 8 のいずれかで表されるアミノ酸配列と 80%以上の相同性を有し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質とは、BLAST [J. Mol. Biol., 215, 403 (1990)] や FASTA [Methods in Enzymology, 183, 63 (1990)] 等の解析ソフトを用いて計算したときに、配列番号 5、6、7 または 8 のいずれかに記載のアミノ酸配列を有する蛋白質と少なくとも 80%以上、好ましくは 85%以上、より好ましくは 90%以上、さらに好ましくは 95%以上、特に好ましくは 97%以上、最も好ましくは 99%以上の相同性を有し、かつ $\alpha$ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質である。

本発明において、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する RNA の長さとしては、 $10{\sim}40$ 、好ましくは $10{\sim}35$ 、より好ましくは $15{\sim}29$  の連続した以下に示す RNA があげられる。

- (a)配列番号 1 で表される塩基配列中、連続した 5 塩基以上のアデニンあるいはチミジンを含まない部分の中で、連続した  $10\sim40$  の塩基配列で表される塩基配列からなる DNA に対応する RNA ;
  - (b)配列番号 2 で表される塩基配列中、連続した 5 塩基以上のアデニンあるいはチミジンを含まない部分の中で、連続した  $10{\sim}40$  の塩基配列で表される塩基配列からなる DNA に対応する RNA;
- (c)配列番号 3 で表される塩基配列中、連続した 5 塩基以上のアデニンあるいはチミジンを含まない部分の中で、連続した  $10{\sim}40$  の塩基配列で表される塩基配列からなる DNA に対応する RNA;
- (d)配列番号 4 で表される塩基配列中、連続した 5 塩基以上のアデニンあるいはチミジンを含まない部分の中で、連続した  $10{\sim}40$  の塩基配列で表される塩基配列からなる DNA に対応する RNA;

#### 具体的には、

- (e)配列番号 9 で表される塩基配列からなる RNA;
- (f)配列番号 9 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (g)配列番号 10 で表される塩基配列からなる RNA;

(h)配列番号 10 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;

- (i)配列番号11で表ざれる塩基配列からなるRNA;
- (j)配列番号 11 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (k)配列番号 12 で表される塩基配列からなる RNA;
- (1)配列番号 12 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6 位にフコースの1 位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (m)配列番号 13 で表される塩基配列からなる RNA;
- (n)配列番号 13 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA:
  - (o)配列番号14で表される塩基配列からなるRNA;
- (p)配列番号 14 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (q)配列番号15で表される塩基配列からなるRNA;
- (r)配列番号 15 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;

- (s)配列番号 16 で表される塩基配列からなる RNA;
- (t)配列番号 16 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (u)配列番号17で表される塩基配列からなるRNA;
- (v)配列番号 17 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (w)配列番号 18 で表される塩基配列からなる RNA;
- (x)配列番号 18 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (y)配列番号 19 で表される塩基配列からなる RNA:
- (z)配列番号 19 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (A)配列番号20で表される塩基配列からなるRNA;
- (B)配列番号 20 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA;
  - (C)配列番号21で表される塩基配列からなるRNA;
- (D)配列番号 21 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制す

## る活性を有する RNA:

- (E)配列番号 22 で表される塩基配列からなる RNA;
- (F)配列番号 22 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (G)配列番号 23 で表される塩基配列からなる RNA;
- (H)配列番号 23 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6 位にフコースの1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (I)配列番号 24 で表される塩基配列からなる RNA;
- (J)配列番号 24 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (K)配列番号 25 で表される塩基配列からなる RNA;
- (L)配列番号 25 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (M)配列番号26で表される塩基配列からなるRNA;
- (N)配列番号 26 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (0)配列番号 27 で表される塩基配列からなる RNA;
- (P)配列番号 27 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端の N-アセチ

・ルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;

- (Q)配列番号 28 で表される塩基配列からなる RNA;
- (R)配列番号 28 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA;
  - (S)配列番号 29 で表される塩基配列からなる RNA;
- (T)配列番号 29 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA;
  - (U)配列番号30で表される塩基配列からなるRNA;
- (V)配列番号 30 で表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA; があげられる。

配列番号  $9\sim30$  でそれぞれ表される塩基配列において、1 または数個の塩基が欠失、置換、挿入および/または付加された塩基配列としては、塩基が欠失、置換、挿入および/または付加された結果生じる二本鎖 RNA は、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する限り、一方の鎖にのみ塩基が欠失、置換、挿入および/または付加されていてもよく、即ち、該二本鎖 RNA は必ずしも完全な相補鎖でなくてもよい。

本発明において、抗体組成物とは、N-グリコシド結合複合型糖鎖を Fc 領域に有する抗体分子を含有する組成物をいう。

抗体は、重鎖および軽鎖(以下、それぞれ「H鎖」および「L鎖」と表記する)の 2 種類のポリペプチド鎖がそれぞれ 2 分子ずつ会合した 4 量体である。H鎖の N 末端側の約 4 分の 1 と L鎖の N 末端側の約 2 分の 1 (それぞれ 100 余アミノ酸)は可変領域(以下、「V領域」と表記する)と呼ばれ、多様性に富み、抗原との結合に直接関与する。V領域以外の部分の大半は定常

領域(以下、「C 領域」と表記する)と呼ばれる。抗体分子は C 領域の相同性により IgG、IgM、 IgA、IgD、IgE の各クラスに分類される。

また  $\lg G$  クラスは C 領域の相同性により、例えばヒトにおいては  $\lg G1 \sim \lg G4$  のサブクラスに分類される。

H鎖はN末端側より抗体H鎖V領域(以下、VHと表記する)、抗体H鎖C領域1(以下、CH1と表記する)、抗体H鎖C領域2(以下、CH2と表記する)、抗体H鎖C領域3(以下、CH3と表記する)、抗体H鎖C領域3(以下、CH3と表記する)の4つのイムノグロブリンドメインに分かれ、CH1とCH2の間にはヒンジ領域と呼ばれる可動性の高いペプチド領域があり、CH1とCH2とが区切られる。ヒンジ領域以降のCH2とCH3からなる構造単位はFc領域と呼ばれ、N-グリコシド結合型糖鎖が結合している。また、この領域は、Fcレセプター、補体等が結合する領域である(免疫学イラストレイテッド原書第5版、2000年2月10日発行、南江堂版、抗体工学入門、1994年1月25日初版、地人書館)。抗体等の糖蛋白質の糖鎖は、蛋白質部分との結合様式により、アスパラギンと結合する糖鎖(N-グリコシド結合糖鎖)とセリン、スレオニン等と結合する糖鎖(0-グリコシル結合糖鎖)の2種類に大別される。

本発明において、N-グリコシド結合糖鎖は、以下の化学式1で示される。

化学式1

$$\pm \operatorname{Gal} \beta \, 1 \rightarrow 4 \operatorname{GlcNAc} \beta \, 1 \rightarrow 2 \operatorname{Man} \alpha \, 1$$

$$\pm \operatorname{GlcNAc} \beta \, 1 \rightarrow 4 \operatorname{Man} \beta \, 1 \rightarrow 4 \operatorname{GlcNAc} \beta \, 1 \rightarrow 2 \operatorname{Man} \alpha \, 1$$

化学式1において、アスパラギンと結合する糖鎖の末端を還元末端、反対側を非還元末端という。

N-グリコシド結合糖鎖としては、化学式1で示されるのコア構造を有するものであればいかなるものでもよいが、コア構造の非還元末端にマンノースのみが結合するハイマンノース型、コア構造の非還元末端側にガラクトース-N-アセチルグルコサミン(以下、Gal-GlcNAc と表記する)の枝を並行して1ないしは複数本有し、更に Gal-GlcNAc の非還元末端側にシアル酸、バイセクティングの N-アセチルグルコサミン等の構造を有するコンプレックス型(複合型)、コア構造の非還元末端側にハイマンノース型とコンプレックス型の両方の枝を持つハイブリッド型等があげられる。

抗体分子の Fc 領域には、N-グリコシド結合糖鎖が1カ所ずつ結合する領域を有しているので、抗体1分子あたり2本の糖鎖が結合している。抗体分子に結合する N-グルコシド結合糖鎖としては、化学式1で示されるコア構造を含むいかなる糖鎖も包含されるので、抗体に結合する2本の N-グルコシド結合糖鎖には多数の糖鎖の組み合わせが存在する。

したがって、本発明において、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した細胞を用いて製造した抗体組成物は、本発明の効果が得られる範囲であれば、単一の糖鎖構造を有する抗体分子から構成されていてもよいし、複数の異なる糖鎖構造を有する抗体分子から構成されていてもよい。

抗体組成物中に含まれる Fc 領域に結合する全 N-グリコシド結合複合型糖鎖のうち、糖鎖還元末端の N-アセチルグルコサミンにフコースが結合していない糖鎖の割合 (以下、「本発明の糖鎖の割合」と表記する)とは、該組成物中に含まれる Fc 領域に結合する全ての N-グリコシド結合複合型糖鎖の合計数に対して、糖鎖還元末端の N-アセチルグルコサミンにフコースが結合していない糖鎖の数が占める割合をいう。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖とは、フコースが、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンに  $\alpha$ 結合していない糖鎖をいう。具体的には、フコースの 1 位が N-グリコシド結合複合型糖鎖の N-アセチルグルコサミンの 6 位に  $\alpha$ 結合していない糖鎖があげられる。本発明の糖鎖の割合が高いほど、抗体組成物の ADCC 活性が高くなる。

ADCC 活性が高い抗体組成物としては、本発明の糖鎖の割合が、好ましくは 20%以上、より好ましくは 30%以上、さらに好ましくは 40%以上、特に好ましくは 50%以上、最も好ましくは 100% である抗体組成物があげられる。

また、本発明は、親株細胞が生産する抗体組成物より ADCC 活性が高い抗体組成物の製造方法に関する。

ADCC 活性とは、生体内で、腫瘍細胞等の細胞表面抗原等に結合した抗体が、抗体 Fc 領域とエフェクター細胞表面上に存在する Fc レセプターとの結合を介してエフェクター細胞を活性化し、腫瘍細胞等を傷害する活性をいう [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., Capter 2.1 (1995)]。エフェクター細胞としては、キラー細胞、ナチュラルキラー細胞、活性化されたマクロファージ等があげられる。

N-グリコシド結合複合型糖鎖を Fc 領域に有する抗体分子を含有する組成物中に含まれる、糖鎖還元末端の N-アセチルグルコサミンにフコースが結合していない糖鎖の割合は、抗体分子からヒドラジン分解や酵素消化等の公知の方法 [生物化学実験法 23—糖蛋白質糖鎖研究法 (学会出版センター) 高橋禮子編(1989)] を用い、糖鎖を遊離させ、遊離させた糖鎖を蛍光標識または同位元素標識し、標識した糖鎖をクロマトグラフィー法にて分離することによって決定することができる。また、遊離させた糖鎖を HPAED-PAD 法 [J. Liq. Chromatogr., 6, 1577 (1983)] 等によって分析することによっても決定することができる。

抗体分子としては、抗体の Fc 領域を含む分子であればいかなる分子も包含される。具体的には、抗体、抗体断片、Fc 領域を含む融合蛋白質等があげられる。

抗体としては、動物に抗原を免疫し、免疫動物の脾臓細胞より作製したハイブリドーマ細胞が分泌する抗体のほかにも、遺伝子組換え技術により作製された抗体、すなわち、抗体遺伝子を挿入した抗体発現ベクターを、宿主細胞へ導入することにより取得された抗体等があげられる。具体的には、ハイブリドーマが生産する抗体、ヒト化抗体、ヒト抗体等をあげることができる。

ハイブリドーマは、ヒト以外の哺乳動物に抗原を免疫して取得された B 細胞と、マウス、ラット等に由来するミエローマ細胞とを細胞融合させて得られる、所望の抗原特異性を有したモノクローナル抗体を生産する細胞をいう。

ヒト化抗体としては、ヒト型キメラ抗体、ヒト型 CDR 移植抗体等があげられる。

ヒト型キメラ抗体は、ヒト以外の動物の抗体 H 鎖 V 領域(以下、「HV」または「VH」とも称す)および抗体 L 鎖 V 領域(以下、「LV」または「VL」とも称す)とヒト抗体の H 鎖 C 領域(以下、「CH」とも称す)およびヒト抗体の L 鎖 C 領域(以下、「CL」とも称す)とからなる抗体を意味する。ヒト以外の動物としては、マウス、ラット、ハムスター、ラビット等、ハイブリ

ドーマを作製することが可能であれば、いかなるものも用いることができる。

ヒト型キメラ抗体は、モノクローナル抗体を生産するハイブリドーマより、VH および VL をコードする cDNA を取得し、ヒト抗体 CH およびヒト抗体 CL をコードする遺伝子を有する宿主 細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを構築し、宿主細胞へ導入することにより発現させ、製造することができる。

ヒト型キメラ抗体の CH としては、ヒトイムノグロブリン(以下、「 $hIg_J$  と表記する)に属すればいかなるものでもよいが、hIgG クラスのものが好適であり、更に hIgG クラスに属するhIgG1、hIgG2、hIgG3、hIgG4 といったサブクラスのいずれも用いることができる。また、ヒト型キメラ抗体の CL としては、hIg に属すればいかなるものでもよく、 $\kappa$  クラスあるいは入クラスのものを用いることができる。

ヒト型 CDR 移植抗体は、ヒト以外の動物の抗体の VH および VL の CDR のアミノ酸配列をヒト 抗体の VH および VL の適切な位置に移植した抗体をいう。

ヒト型 CDR 移植抗体は、ヒト以外の動物の抗体の VH および VL の CDR 配列を任意のヒト抗体の VH および VL の CDR 配列に移植した V 領域をコードする cDNA を構築し、ヒト抗体の CH および VL の CDR 配列に移植した V 領域をコードする cDNA を構築し、ヒト抗体の CH およびヒト抗体の CL をコードする遺伝子を有する宿主細胞用発現ベクターにそれぞれ挿入してヒト型 CDR 移植抗体発現ベクターを構築し、該発現ベクターを宿主細胞へ導入することによりヒト型 CDR 移植抗体を発現させ、製造することができる。

ヒト型 CDR 移植抗体の CH としては、hIg に属すればいかなるものでもよいが、hIgG クラスのものが好適であり、更に hIgG クラスに属する hIgG1、hIgG2、hIgG3、hIgG4 といったサブクラスのいずれも用いることができる。また、ヒト型 CDR 移植抗体の CL としては、hIg に属すればいかなるものでもよく、 $\kappa$ クラスあるいは入クラスのものを用いることができる。

ヒト抗体は、元来、ヒト体内に天然に存在する抗体をいうが、最近の遺伝子工学的、細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファージライブラリーならびにヒト抗体トランスジェニック動物あるいはヒト抗体トランスジェニック植物から得られる抗体等も含まれる。

ヒト体内に存在する抗体は、例えば、ヒト末梢血リンパ球を単離し、EB ウイルス等を感染させ不死化、クローニングすることにより、該抗体を生産するリンパ球を培養でき、培養物中より該抗体を精製することができる。

ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝子に

挿入することにより 『ab、一本鎖抗体等の抗体断片をファージ表面に発現させたライブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標として所望の抗原結合活性を有する抗体断片を発現しているファージを回収することができる。該抗体断片は、更に遺伝子工学的手法により、2本の完全な H 鎖および 2本の完全な L 鎖からなるヒト抗体分子へも変換することができる。

ヒト抗体トランスジェニック非ヒト動物は、ヒト抗体遺伝子が細胞内に組込まれた動物をいう。具体的には、マウス胚性幹細胞ヘヒト抗体遺伝子を導入し、該胚性幹細胞を他のマウスの初期胚へ移植後、発生させることによりヒト抗体を産生するトランスジェニック非ヒト動物を作製することができる。また、動物の受精卵にヒト抗体遺伝子を導入し、該受精卵を発生させることにヒト抗体を産生するトランスジェニック非ヒト動物を作製することもできる。ヒト抗体を産生するトランスジェニック非ヒト動物を作製することもできる。ヒト抗体を産生するトランスジェニック非ヒト動物からのヒト抗体の作製方法は、通常のヒト以外の哺乳動物で行われているハイブリドーマ作製方法によりヒト抗体ハイブリドーマを得、培養することで培養物中にヒト抗体を蓄積させることができる。

トランスジェニック非ヒト動物は、ウシ、ヒツジ、ヤギ、ブタ、ウマ、マウス、ラット、ニワトリ、サルまたはウサギ等があげられる。

また、本発明において、抗体が、腫瘍関連抗原を認識する抗体、アレルギーあるいは炎症に 関連する抗原を認識する抗体、循環器疾患に関連する抗原を認識する抗体、自己免疫疾患に関 連する抗原を認識する抗体、またはウイルスあるいは細菌感染に関連する抗原を認識する抗体 であることが好ましく、抗体のクラスは IgG が好ましい。

抗体断片は、上記の抗体の Fc 領域の一部または全部を含んだ抗体断片である。

本発明の抗体断片組成物としては、Fab、Fab、 $F(ab')_2$ 、scFv、diabody、dsFv および CDR を含むペプチドなどの抗体断片組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体 Fc 領域の一部または全部を含む抗体断片組成物があげられるが、該抗体断片組成物に抗体の Fc 領域の一部または全部を含まない場合は、該抗体断片と、N-グリコシド結合複合型糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖を有する抗体 Fc 領域の一部または全部との融合蛋白質とすればよいと融合させるか、または該 Fc 領域の一部または全部を含む、蛋白質との融合蛋白質組成物とすればよい。

Fab は、IgG を蛋白質分解酵素パパインで処理して得られる断片のうち (H 鎖の 224 番目のアミノ酸残基で切断される)、H 鎖のN末端側約半分とL鎖全体がジスルフィド結合で結合した分子量約5万の抗原結合活性を有する抗体断片である。

本発明の Fab は、上記の抗体を蛋白質分解酵素パパインで処理して得ることができる。または、該抗体の Fab をコードする DNA を原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。

F(ab')₂は、IgG を蛋白質分解酵素ペプシンで処理して得られる断片のうち (H 鎖の 234 番目のアミノ酸残基で切断される)、Fab がヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、分子量約10万の抗原結合活性を有する抗体断片である。

本発明の F(ab')。は、上記の抗体を蛋白質分解酵素ペプシンで処理して得ることができる。 または、下記の Fab'をチオエーテル結合あるいはジスルフィド結合させ、作製することができる。 る。

 $\mathbb{F}ab$ 'は、上記  $\mathbb{F}(ab')$ 2 のヒンジ領域のジスルフィド結合を切断した分子量約 5万の抗原結合活性を有する抗体断片である。

本発明の Fab'は、上記の F(ab')』を還元剤ジチオスレイトール処理して得ることができる。 または、該抗体の Fab'断片をコードする DNA を原核生物用発現ベクターあるいは真核生物用発 現ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することにより発現させ、 製造することができる。

scFv は、1本の VII と 1本の VIL とを適当なペプチドリンカー (以下、P と表記する)を用いて連結した、VII-P-VIL ないしは VIL-P-VIIポリペプチドで、抗原結合活性を有する抗体断片である。

本発明の scFv は、上記の抗体の VH および VL をコードする cDNA を取得し、scFv をコードする DNA を構築し、該 DNA を原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。

diabodyは、scFvが二量体化した抗体断片で、二価の抗原結合活性を有する抗体断片である。 二価の抗原結合活性は、同一であることもできるし、一方を異なる抗原結合活性とすることも できる。

本発明の di abody は、上記の抗体の VH 組成物および VL をコードする cDNA を取得し、scFv をコードする DNA を P のアミノ酸配列の長さが 8 残基以下となるように構築し、該 DNA を原核 生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。

dsFv は、VII および VL 中のそれぞれ 1 アミノ酸残基をシステイン残基に置換したポリペプチドを該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基は Reiter らにより示された方法 (Protein Engineering, 7,697-704, 1994) に従って、抗体の立体構造予測に基づいて選択することができる。

本発明の dsFv は、上記の抗体の VH および VL をコードする cDNA を取得し、dsFv をコードする DNA を構築し、該 DNA を原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。

CDR を含むペプチドは、VH または VL の CDR の少なくとも 1 領域以上を含んで構成される。 複数の CDR を含むペプチドは、直接または適当なペプチドリンカーを介して結合させることが できる。

本発明の CDR を含むペプチドは、上記の抗体の VH および VL の CDR をコードする DNA を構築し、該 DNA を原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。

また、CDR を含むペプチドは、Fmoc 法 (フルオレニルメチルオキシカルボニル法)、tBoc 法 (t-ブチルオキシカルボニル法)などの化学合成法によって製造することもできる。

以下、本発明の製造方法を詳細に説明する。

## 1. 本発明の製造に用いる細胞の作製

本発明の、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した細胞は、例えば、以下のように作製することができる。

N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の cDNA あるいはゲノム DNA を調製する。

調製した cDNA あるいはゲノム DNA の塩基配列を決定する。

決定した DNA の配列に基づき、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が α 結合する糖鎖修飾に関与する酵素をコードする部分あるいは非翻訳領域の部分を含む適当な長さの RNAi 遺伝子のコンストラクトを設計する。

該 RNAi 遺伝子を細胞内で発現させるために、調製した DNA の断片、または全長を適当な発現ベクターのプロモーターの下流に挿入することにより、組換えベクターを作製する。

該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより形質転換体 を得る。

導入した N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位がα結合する糖鎖修飾に関与する酵素の活性、あるいは産生抗体分子または細胞表面上の糖蛋白質の糖鎖構造を指標に形質転換体を選択することで、本発明の細胞を得ることができる。

宿主細胞としては、酵母、動物細胞、昆虫細胞、植物細胞等、標的とするN-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の遺伝子を有しているものであればいずれも用いることができる。具体的には、後述の第2項に記載の宿主細胞があげられる。

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、設計した RNAi 遺伝子を転写できる位置にプロモーターを含有しているものが用いられる。具体的には、ポリメラーゼ III により転写が行われるタイプの発現ベクターあるいは後述の第2項に記載の発現ベクターがあげられる。

各種宿主細胞への遺伝子の導入には、後述の第2項に記載の各種宿主細胞に適した組換えべ クターの導入方法を用いることができる。

N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位 が  $\alpha$ 結合する糖鎖修飾に関与する酵素の cDNA およびゲノム DNA を取得する方法としては、例 えば、以下に記載の方法があげられる。

#### cDNA の調製方法

各種宿主細胞から全 RNA または mRNA を調製する。

調製した全 RNA または mRNA から cDNA ライブラリーを作製する。

N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位

が $\alpha$ 結合する糖鎖修飾に関与する酵素の既知アミノ酸配列、例えばヒトのアミノ酸配列、に基づいて、デジェネレイティブプライマーを作製し、作製した cDNA ライブラリーを鋳型として PCR 法にて、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$ 結合する糖鎖修飾に関与する酵素をコードする遺伝子断片を取得する。

取得した遺伝子断片をプローブとして用い、cDNA ライブラリーをスクリーニングし、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素をコードする cDNA を取得することができる。

各種宿主細胞の mRNA は、市販のもの(例えば Clontech 社製)を用いてもよいし、以下のごとく各種宿主細胞から調製してもよい。各種宿主細胞から全 RNA を調製する方法としては、チオシアン酸グアニジンートリフルオロ酢酸セシウム法[Methods in Enzymology, 154, 3 (1987)]、酸性チオシアン酸グアニジン・フェノール・クロロホルム (AGPC) 法 [Analytical Biochemistry, 162, 156 (1987); 実験医学、9, 1937 (1991)] 等があげられる。

また、全 RNA から poly(A)<sup>†</sup> RNA として mRNA を調製する方法としては、オリゴ (dT) 固定化セルロースカラム法[Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] 等があげられる。

さらに、Fast Track mRNA Isolation Kit (Invitrogen 社製) 、Quick Prep mRNA Purification Kit (Pharmacia 社製) 等のキットを用いることにより mRNA を調製することができる。

調製した各種宿主細胞 mRNA から cDNA ライブラリーを作製する。cDNA ライブラリー作製法としては、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997) 等に記載された方法、あるいは市販のキット、例えば SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies 社製)、ZAP-cDNA Synthesis Kit (STRATAGENE 社製)を用いる方法等があげられる。

cDNA ライブラリーを作製するためのクローニングベクターとしては、大腸菌 K12 株中で自立複製できるものであれば、ファージベクター、プラスミドベクター等いずれでも使用できる。 具体的には、ZAP Express [STRATAGENE 社製、ストラテジーズ(Strategies), <u>5</u>, 58 (1992)]、 pBluescript II SK(+) [Nucleic Acids Research, <u>17</u>, 9494 (1989)]、Lambda ZAP II (STRATAGENE 社製)、入gt10、入gt11 [DNA cloning, A Practical Approach, <u>1</u>, 49 (1985)]、入TriplEx

(Clontech 社製) 、入ExCell (Pharmacia 社製) 、pT7T318U (Pharmacia 社製) 、pCD2 [モレキュラー・セルラー・バイオロジー(Mol. Cell. Biol., 3, 280 (1983)] および pUC18 [Gene, 33, 103 (1985)] 等をあげることができる。

cDNA ライブラリーを作製するための宿主微生物としては、微生物であればいずれでも用いることができるが、好ましくは大腸菌が用いられる。具体的には、Escherichia coli XL1-Blue MRF' [STRATAGENE 社製、Strategies, 5, 81 (1992)]、Escherichia coli C600 [Genetics, 39, 440 (1954)]、Escherichia coli Y1088 [Science, 222, 778 (1983)]、Escherichia coli Y1090 [Science, 222, 778 (1983)]、Escherichia coli Y1090 [Science, 222, 778 (1983)]、Escherichia coli IMM522 [J. Mol. Biol., 166, 1 (1983)]、Escherichia coli K802 [J. Mol. Biol., 16, 118 (1966)] および Escherichia coli JM105 [Gene, 38, 275 (1985)] 等が用いられる。

この cDNA ライブラリーを、そのまま以降の解析に用いてもよいが、不完全長 cDNA の割合を下げ、なるべく完全長 cDNA を効率よく取得するために、菅野らが開発したオリゴキャップ法 [Gene, 138, 171 (1994); Gene, 200, 149 (1997); 蛋白質核酸酵素, 41, 603 (1996); 実験医学, 11, 2491 (1993); cDNA クローニング(羊土社)(1996); 遺伝子ライブラリーの作製法(羊土社)(1994)] を用いて調製した cDNA ライブラリーを以下の解析に用いてもよい。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が  $\alpha$  結合する糖鎖修飾に関与する酵素のアミノ酸配列に基づいて、該アミノ酸配列をコードすることが予測される塩基配列の 5 端および 3 端の塩基配列に特異的なデジェネレイティブプライマーを作製し、作製した cDNA ライブラリーを鋳型として PCR 法 [PCR Protocols, Academic Press (1990)] を用いて DNA の増幅を行うことにより、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素をコードする遺伝子断片を取得することができる。

取得した遺伝子断片が N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6位にフコースの 1位が $\alpha$ 結合する糖鎖修飾に関与する酵素をコードする DNA であることは、 通常用いられる塩基配列解析方法、例えばサンガー (Sanger) らのジデオキシ法 [Proc. Natl. Acad. Sci. U.S.A., 74, 5463 (1977)]あるいはABI PRISM377 DNA シークエンサー (PE Biosystems 社製)等の塩基配列分析装置を用いて分析することにより、確認することができる。

該遺伝子断片を DNA プローブとして、各種宿主細胞に含まれる mRNA から合成した cDNA あるいは cDNA ライブラリー対してコロニーハイブリダイゼーションやプラークハイブリダイゼー

ション [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] を行うことにより、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の DNA を取得することができる。

また、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素をコードする遺伝子断片を取得するために用いた プライマーを用い、各種宿主細胞に含まれる  $\alpha$  RNA から合成した  $\alpha$  CDNA あるいは  $\alpha$  CDNA ライブラリーを鋳型として、 PCR 法を用いてスクリーニングを行うことにより、 N-グリコシド結合複合 型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に 関与する酵素の DNA を取得することもできる。

取得した N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$ 結合する糖鎖修飾に関与する酵素をコードする DNA の塩基配列を末端から、通常用いられる塩基配列解析方法、例えばサンガー (Sanger) らのジデオキシ法 [Proc. Natl. Acad. Sci. U.S.A., 74, 5463 (1977)] あるいは ABI PRISM377 DNA シークエンサー (PE Biosystems 社製)等の塩基配列分析装置を用いて分析することにより、該 DNA の塩基配列を決定する。

決定した cDNA の塩基配列をもとに、BLAST 等の相同性検索プログラムを用いて、GenBank、BMBL および DDBJ 等の塩基配列データベースを検索することにより、データベース中の遺伝子の中で N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素をコードしている遺伝子を決定することもできる。

上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6位にフコースの 1位が $\alpha$ 結合する糖鎖修飾に関与する酵素をコードしている遺伝子の塩基配列としては、例えば、配列番号 1、2、3 または 4 に記載の塩基配列が挙げられる。

決定された DNA の塩基配列に基づいて、フォスフォアミダイト法を利用したパーキン・エルマー社製の DNA 合成機 model 392 等の DNA 合成機で化学合成することにより、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖 修飾に関与する酵素の cDNA を取得することもできる。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素のゲノムDNAを調製する方法としては、例えば、以下に記載の方法が挙げられる。

## ゲノム DNA の調製方法

ゲノム DNA を調製する方法としては、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)等に記載された公知の方法があげられる。また、ゲノム DNA ライブラリースクリーニングシステム(Genome Systems 社製)や Universal GenomeWalker™ Kits (CLONTECH 社製)等を用いることにより、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素のゲノム DNA を単離することもできる。

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位 がα結合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択する方法として は、例えば、以下の方法があげられる。

## 形質転換体を選択する方法

N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が低下した細胞を選択する方法としては、文献[新生化学実験講座3一糖質I,糖蛋白質(東京化学同人)日本生化学会編(1988)]、文献[細胞工学,別冊,実験プロトコールシリーズ,グライコバイオロジー実験プロトコール,糖蛋白質・糖脂質・プロテオグリカン(秀潤社製)谷口直之・鈴木明美・古川清・菅原一幸監修(1996)]、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)等に記載された生化学的な方法あるいは遺伝子工学的な方法等があげられる。生化学的な方法としては、例えば、酵素特異的な基質を用いて酵素活性を測定する方法があげられる。遺伝子工学的な方法としては、例えば、酵素特異的な基質を用いて酵素活性を測定する方法があげられる。遺伝子工学的な方法としては、例えば、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の遺伝子のmRNA量を測定するノーザン解析やRT-PCR法等があげられる。

また、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の活性が低下した結果生じる形質の変化を指標に細胞を選択する方法としては、例えば、産生抗体分子の糖鎖構造を指標として形質転換体を選択する方法や、細胞表面上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法等が挙げられる。産生抗体分子の糖鎖構造を指標として形質転換体を選択する方法としては、後述

の4. に記載の方法が挙げられる。細胞表面上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては、N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法を挙げることができる。その具体的な例としては、Somatic Cell Mol. Genet., 12, 51, (1986)等に記載のレクチンを用いた方法が挙げられる。

レクチンとしては、N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンであればいずれのレクチンでも用いることができるが、好ましくはレンズマメレクチン LCA (Lens Culinaris 由来のLentil Agglutinin) エンドウマメレクチン PSA (Pisum sativum 由来の Pea Lectin) 、ソラマメレクチン VFA (Vicia faba 由来の Agglutinin)、ヒイロチャワンタケレクチン AAL (Aleuria aurantia 由来の Lectin) 等があげられる。

具体的には、10μg/mL~10mg/mL、好ましくは 0.5~2mg/mL の濃度の上述のレクチンを含む 培地に 1 日~2 週間、好ましくは 3 日~1 週間培養し、生存している細胞を継代培養あるいは コロニーを採取後、別の培養器に移し、さらに引き続きレクチンを含む培地で培養を続けることで、本発明の細胞を選択することができる。

N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の遺伝子の mRNA 量を抑制するための RNAi 遺伝子は、常法または DNA 合成機を用いることにより調製することができる。

RNAi 遺伝子のコンストラクトは、 [Nature, 391, 806, (1998)、Proc. Natl. Acad.Sci. USA, 95, 15502, (1998)、Nature, 395, 854, (1998)、Proc. Natl. Acad. Sci. USA, 96, 5049, (1999)、Cell, 95, 1017, (1998); Proc. Natl. Acad. Sci. USA, 96, 1451, (1999)、Proc. Natl. Acad. Sci. USA, 95, 13959, (1998); Nature Cell Biol., 2, 70, (2000)、Nature, 411, 494, (2001)、Proc. Natl. Acad. Sci. USA, 98, 9742, (2001)] 等の記載に従って設計することができる。また、発現ベクターを用いず、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の塩基配列に基づいて設計した二本鎖 RNA を、直接宿主細胞に導入することで、本発明の細胞を得ることもできる。

二本鎖 RNA は、常法または RNA 合成機を用いることにより調製することができる。具体的には、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の cDNA およびゲノム DNA の相補 RNA 塩基配列のうち、

連続した 1~40 塩基、好ましくは 5~40 塩基、より好ましくは 10~35 塩基、さらに好ましくは 15~29 塩基に相当する配列を有するオリゴヌクレオチドの配列情報に基づき、該オリゴヌクレオチドと相補的な配列に相当するオリゴヌクレオチド (アンチセンスオリゴヌクレオチド)を合成することで調製することができる。該オリゴヌクレオチドとアンチセンスオリゴヌクレオチドは、それぞれ独立に合成してもよいし、二本鎖 RNA 形成に支障のないようなスペーサーヌクレオチドでつながれていてもよい。

オリゴヌクレオチドとしては、オリゴ RNA および該オリゴヌクレオチドの誘導体 (以下、オリゴヌクレオチド誘導体という)等があげられる。

オリゴヌクレオチド誘導体としては、オリゴヌクレオチド中のリン酸ジェステル結合がホスフォロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合が N3'-P5'ホスフォアミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジェステル結合がペプチド核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体、オリゴヌクレオチド・カウラシルが C-5 プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルが C-5 チアゾールウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン (phenoxazine-modified cytosine) で置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド・カレオチド誘導体、オリゴヌクレオチド・カレオチド誘導体、オリゴヌクレオチド・カリゴヌクレオチド・カリゴスクレオチド・カースで置換されたオリゴヌクレオチド・カースで置換されたオリゴスクレオチド・カースが2'-メトキシェトキシリボースで置換されたオリゴヌクレオチド・誘導体、あるいはオリゴヌクレオチド・カリボースが2'-メトキシェトキシリボースで置換されたオリゴヌクレオチド・誘導体等があげられる [細胞工学、16、1463 (1997)]。2. 抗体組成物の製造方法

抗体組成物は、Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)、Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)、Monoclonal Antibodies: principles and practice, Third Edition, Acad. Press (1993)、Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press (1996)等に記載された方法を用い、例えば、以下のように宿主細胞中で発現させて取得することができる。抗体分子の cDNA を調製する。

調製した抗体分子の全長 cDNA をもとにして、必要に応じて、該蛋白質をコードする部分を

含む適当な長さの DNA 断片を調製する。

該 DNA 断片、または全長 cDNA を適当な発現ベクターのプロモーターの下流に挿入することにより、組換えベクターを作製する。

該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより、抗体分子 を生産する形質転換体を得ることができる。

宿主細胞として、酵母、動物細胞、昆虫細胞、植物細胞等、目的とする遺伝子を発現できる ものであればいずれも用いることができるが、好ましくは動物細胞があげられる。

抗体分子の Fc 領域に結合する N-グリコシド結合糖鎖の修飾に係わる酵素を遺伝子工学的な手法を用いて導入した、酵母、動物細胞、昆虫細胞、植物細胞等の細胞を宿主細胞として用いることもできる。

本発明の抗体組成物の製造方法に用いられる宿主細胞としては、上記 1. で作製した、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が α 結合する糖鎖修飾に関与する酵素の機能を抑制する RNA を導入した細胞をあげることができる。

発現ベクターとしては、上記各種宿主細胞において自立複製可能ないしは染色体中への組込が可能で、目的とする抗体分子をコードする DNA を転写できる位置にプロモーターを含有しているものが用いられる。

cDNA は、上記第1項に記載の「cDNA の調製方法」に従い、ヒトまたは非ヒト動物の組織または細胞より、目的とする抗体分子に特異的なプローブプライマーを用いて調製することができる。

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEP13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419) 等をあげることができる。

プロモーターとしては、酵母菌株中で発現できるものであればいずれのものを用いてもよく、例えば、ヘキソースキナーゼ等の解糖系の遺伝子のプロモーター、PHO5 プロモーター、PGK プロモーター、GAP プロモーター、ADH プロモーター、gal 1 プロモーター、gal 10 プロモーター、Lートショック蛋白質プロモーター、MF $\alpha$ 1 プロモーター、CUP 1 プロモーター等をあげることができる。

宿主細胞としては、サッカロミセス属、シゾサッカロミセス属、クリュイベロミセス属、トリコスポロン属、シュワニオミセス属等に属する酵母、例えば、<u>Saccharomyces cerevisiae</u>、 <u>Schizosaccharomyces pombe</u>、<u>Kluyveromyces lactis</u>、<u>Trichosporon pullulans</u>、<u>Schwanniomyces</u>

<u>alluvius</u>等をあげることができる。

組換えベクターの導入方法としては、酵母に DNA を導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods. Enzymol.,194, 182 (1990)]、スフェロプラスト法 [Proc. Natl. Acad. Sci. U.S.A, 84, 1929 (1978)]、酢酸リチウム法 [J. Bacteriology,153, 163 (1983)]、Proc. Natl. Acad. Sci. U.S.A, 75, 1929 (1978)] に記載の方法等をあげることができる。

動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pCDNAI、pCDM8 (フナコシ社より市販)、pAGE107 [特開平 3-22979; Cytotechnology, 3, 133, (1990)]、pAS3-3 [特開平 2-227075]、pCDM8 [Nature, 329, 840, (1987)]、pCDNAI/Amp (Invitrogen 社製)、pREP4 (Invitrogen 社製)、pAGE103 [J. Biochemistry, 101, 1307 (1987)]、pAGE210 等をあげることができる。

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス (CMV) の IE (immediate early) 遺伝子のプロモーター、SV40 の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター等をあげることができる。また、ヒト CMV の IE 遺伝子のエンハンサーをプロモーターと共に用いてもよい。

宿主細胞としては、ヒトの細胞であるナマルバ (Namalwa) 細胞、サルの細胞である COS 細胞、チャイニーズ・ハムスターの細胞である CHO 細胞、HBT5637 (特開昭 63-299) 、ラットミエローマ細胞、マウスミエローマ細胞、シリアンハムスター腎臓由来細胞、胚性幹細胞、受精卵細胞等をあげることができる。

組換えベクターの導入方法としては、動物細胞に DNA を導入する方法であればいずれも用いることができ、例えば、エレクトロボレーション法 [Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法 [特開平 2-227075]、リボフェクション法 [Proc. Natl. Acad. Sci. U.S.A., 84, 7413 (1987)]、インジェクション法 [Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)]、パーティクルガン (遺伝子銃)を用いる方法 [特許第 2606856、特許第 2517813]、DEAE-デキストラン法 [バイオマニュアルシリーズ4一遺伝子導入と発現・解析法 (羊土社) 横田崇・新井賢一編(1994)]、ウイルスベクター法 [Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)] 等をあげることができる。

昆虫細胞を宿主として用いる場合には、例えば Current Protocols in molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992)、Bio/Technology, 6, 47 (1988)等に記載された方法によって、蛋白質を発現することができる。

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞 培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質 を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII (ともに Invitorogen 社製) 等をあげることができる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ボリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、<u>Spodoptera frugiperda</u>の卵巣細胞である Sf9、Sf21 [Current Protocols in molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992)]、<u>Tricho plusiani</u>の卵巣細胞である High Five (Invitrogen 社製)等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平 2-227075)、リボフェクション法 [Proc. Natl. Acad. Sci. U.S.A., <u>84</u>, 7413 (1987)] 等をあげることができる。

植物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、Ti プラスミド、タバコモザイクウイルスベクター等をあげることができる。

プロモーターとしては、植物細胞中で発現できるものであればいずれのものを用いてもよく、例えば、カリフラワーモザイクウイルス (CaMV) の 35S プロモーター、イネアクチン 1 プロモーター等をあげることができる。

宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファ ルファ、イネ、コムギ、オオムギ等の植物細胞等をあげることができる。

組換えベクターの導入方法としては、植物細胞に DNA を導入する方法であればいずれも用いることができ、例えば、アグロバクテリウム (Agrobacterium) [特開昭 59-140885、特開昭

60-70080、W094/00977]、エレクトロポレーション法 [特開昭 60-251887]、パーティクルガン (遺伝子銃) を用いる方法 [日本特許第 2606856、日本特許第 2517813] 等をあげることができる。

抗体遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング第2版に記載されている方法に準じて、分泌生産、融合蛋白質発現等を行うことができる。

糖鎖の合成に関与する遺伝子を導入した、酵母、動物細胞、昆虫細胞または植物細胞等により発現させた場合には、導入した遺伝子によって糖あるいは糖鎖が付加された抗体分子を得ることができる。

以上のようにして得られる形質転換体を培地に培養し、培養物中に抗体分子を生成蓄積させ、 該培養物から採取することにより、抗体組成物を製造することができる。形質転換体を培地に 培養する方法は、宿主細胞の培養に用いられる通常の方法に従って行うことができる。

酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該生物が資化 し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれ ば天然培地、合成培地のいずれを用いてもよい。

炭素源としては、該生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類等を用いることができる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、 リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム塩、その他の含窒素化合物、な らびに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大 豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物等を用いることができる。

無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マン癌、硫酸銅、炭酸カルシウム等を用いることができる。

培養は、通常振盪培養または深部通気攪拌培養等の好気的条件下で行う。培養温度は 15~40℃がよく、培養時間は、通常 16 時間~7 日間である。培養中の pH は 3~9 に保持する。pH の調製は、無機または有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行う。

また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた組換えベクターで形質転換した酵母を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lac プロモーターを用いた組換えベクターで形質転換した酵母を培養するときにはイソプロピル-βーD-チオガラクトピラノシド等を、trp プロモーターを用いた組換えベクターで形質転換した酵母を培養するときにはインドールアクリル酸等を培地に添加してもよい。

動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されている RPMI1640 培地 [The Journal of the American Medical Association, 199, 519 (1967)]、Eagle の MEM 培地[Science, 122, 501 (1952)]、ダルベッコ改変 MEM 培地邊[Virology, 8, 396 (1959)]、199 培地 [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)]、Whitten 培地[発生工学実験マニュアルートランスジェニック・マウスの作り方 (講談社) 勝木元也編 (1987)]またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。

培養は、通常 pH6~8、30~40℃、5%CO₂存在下等の条件下で 1~7 日間行う。フェドバッチ培養、ホロファイバー培養等の培養法を用いて 1 日~数ヶ月培養を行うこともできる。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されている TNM-FH 培地 (Pharmingen 社製)、Sf-900 II SFM 培地 (Life Technologies 社製)、ExCell400、 ExCell405(いずれも JRH Biosciences 社製)、Grace's Insect Medium [Nature, 195, 788 (1962)] 等を用いることができる。

培養は、通常 pH6~7、25~30℃等の条件下で、1~5 日間行う。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

植物細胞を宿主として得られた形質転換体は、細胞として、または植物の細胞や器官に分化させて培養することができる。該形質転換体を培養する培地としては、一般に使用されているムラシゲ・アンド・スクーグ(MS)培地、ホワイト(White)培地、またはこれら培地にオーキシン、サイトカイニン等、植物ホルモンを添加した培地等を用いることができる。

培養は、通常 pH5~9、20~40℃の条件下で 3~60 日間行う。

また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地に添加し

てもよい。

上記のとおり、抗体分子をコードする DNA を組み込んだ組換え体ベクターを保有する酵母、動物細胞、あるいは植物細胞由来の形質転換体を、通常の培養方法に従って培養し、抗体組成物を生成蓄積させ、該培養物より抗体組成物を採取することにより、抗体組成物を製造することができる。

抗体組成物の生産方法としては、宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、あるいは宿主細胞外膜上に生産させる方法があり、使用する宿主細胞や、生産させる抗体分子の構造を変えることにより、該方法を選択することができる。

抗体組成物が宿主細胞内あるいは宿主細胞外膜上に生産される場合、ボールソンらの方法[J. Biol. Chem., <u>264</u>, 17619 (1989)]、ロウらの方法 [Proc. Natl. Acad. Sci. U.S.A., <u>86</u>, 8227 (1989); Genes Develop., <u>4</u>, 1288 (1990)]、または特開平 05-336963、W094/23021 等に記載の方法を準用することにより、該抗体組成物を宿主細胞外に積極的に分泌させることができる。

すなわち、遺伝子組換えの手法を用いて、発現ベクターに、抗体分子をコードする DNA、および抗体分子の発現に適切なシグナルペプチドをコードする DNA を挿入し、該発現ベクターを宿主細胞へ導入した後に抗体分子を発現させることにより、目的とする抗体分子を宿主細胞外に積極的に分泌させることができる。

また、特開平 2-227075 に記載されている方法に準じて、ジヒドロ葉酸還元酵素遺伝子等を 用いた遺伝子増幅系を利用して生産量を上昇させることもできる。

さらに、遺伝子導入した動物または植物の細胞を再分化させることにより、遺伝子が導入された動物個体 (トランスジェニック非ヒト動物) または植物個体 (トランスジェニック植物) を造成し、これらの個体を用いて抗体組成物を製造することもできる。

形質転換体が動物個体または植物個体の場合は、通常の方法に従って、飼育または栽培し、 抗体組成物を生成蓄積させ、該動物個体または植物個体より該抗体組成物を採取することによ り、該抗体組成物を製造することができる。

動物個体を用いて抗体組成物を製造する方法としては、例えば公知の方法[American Journal of Clinical Nutrition, <u>63</u>, 639S (1996); American Journal of Clinical Nutrition, <u>63</u>, 627S (1996); Bio/Technology, <u>9</u>, 830 (1991)] に準じて遺伝子を導入して造成した動物中に目的とする抗体組成物を生産する方法があげられる。

動物個体の場合は、例えば、抗体分子をコードする DNA を導入したトランスジェニック非ヒト動物を飼育し、抗体組成物を該動物中に生成・蓄積させ、該動物中より抗体組成物を採取することにより、抗体組成物を製造することができる。該動物中の生成・蓄積場所としては、例えば、該動物のミルク(特開昭 63-309192)、卵等をあげることができる。この際に用いられるプロモーターとしては、動物で発現できるものであればいずれも用いることができるが、例えば、乳腺細胞特異的なプロモーターである $\alpha$ カゼインプロモーター、 $\beta$ カゼインプロモーター、ホエー酸性プロテインプロモーター等が好適に用いられる。

植物個体を用いて抗体組成物を製造する方法としては、例えば抗体分子をコードする DNA を導入したトランスジェニック植物を公知の方法 [組織培養, 20 (1994); 組織培養, 21 (1995); Trends in Biotechnology, 15, 45 (1997)] に準じて栽培し、抗体組成物を該植物中に生成・蓄積させ、該植物中より該抗体組成物を採取することにより、抗体組成物を生産する方法があげられる。

抗体分子をコードする遺伝子を導入した形質転換体により製造された抗体組成物は、例えば 抗体組成物が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回 収し、水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイ ザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離す ることにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による 塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)ーセファロース、DIAION HPA-75(三菱化学社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF (Pharmacia 社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロ ース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用い たゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電 気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、抗体組成物の精製標品を得 ることができる。

また、抗体組成物が細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破砕し、遠心分離を行うことにより、沈殿画分として抗体組成物の不溶体を回収する。回収した抗体組成物の不溶体を蛋白質変性剤で可溶化する。該可溶化液を希釈または透析することにより、該抗体組成物を正常な立体構造に戻した後、上記と同様の単離精製法により該抗体組成物の精製

標品を得ることができる。

抗体組成物が細胞外に分泌された場合には、培養上清に該抗体組成物を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、抗体組成物の精製標品を得ることができる。

このようにして取得される抗体組成物として、例えば、抗体、抗体断片、抗体の Fc 領域を有する融合蛋白質等を挙げることができる。

以下に、抗体組成物の取得のより具体的な例として、ヒト化抗体組成物および Fc 融合蛋白質の製造方法について記すが、他の抗体組成物を上述の方法および当該方法に準じて取得することもできる。

## A. ヒト化抗体組成物の製造

## (1) ヒト化抗体発現用ベクターの構築

ヒト化抗体発現用ベクターとは、ヒト抗体のCHおよびCLをコードする遺伝子が組み込まれた動物細胞用発現ベクターであり、動物細胞用発現ベクターにヒト抗体のCHおよびCLをコードする遺伝子をそれぞれクローニングすることにより構築することができる。

ヒト抗体の C 領域としては、任意のヒト抗体の CH および CL であることができ、例えば、ヒト抗体の H 鎖の IgG1 サブクラスの C 領域(以下、「 $hC\gamma1$ 」と表記する)およびヒト抗体の L 鎖の  $\kappa$  クラスの C 領域(以下、「 $hC\kappa$ 」と表記する)等があげられる。

ヒト抗体のCHおよびCLをコードする遺伝子としてはエキソンとイントロンから成る染色体 DNA を用いることができ、また、cDNA を用いることもできる。

動物細胞用発現ベクターとしては、ヒト抗体の C 領域をコードする遺伝子を組込み発現できるものであればいかなるものでも用いることができる。例えば、pAGE107 [Cytotechnology, 3, 133 (1990)]、pAGE103 [J. Biochem., 101, 1307 (1987)]、pHSG274 [Gene, 27, 223 (1984)]、pKCR [Proc. Natl. Acad. Sci. U.S.A., 78, 1527 (1981)]、pSG1 β d2-4 [Cytotechnology, 4, 173 (1990)] 等があげられる。動物細胞用発現ベクターに用いるプロモーターとエンハンサーとしては、SV40 の初期プロモーターとエンハンサー [J. Biochem., 101, 1307 (1987)]、モロニーマウス白血病ウイルスの LTR [Biochem. Biophys. Res. Commun., 149, 960 (1987)]、免疫グロブリン H 鎖のプロモーター [Cell, 41, 479 (1985)] とエンハンサー [Cell, 33, 717

(1983)] 等があげられる。

ヒト化抗体発現用ベクターは、抗体 H 鎖および L 鎖が別々のベクター上に存在するタイプあるいは同一のベクター上に存在するタイプ (以下、タンデム型と表記する) のどちらでも用いることができるが、ヒト化抗体発現ベクターの構築の容易さ、動物細胞への導入の容易さ、動物細胞内での抗体 H 鎖および L 鎖の発現量のバランスが均衡する等の点からタンデム型のヒト化抗体発現用ベクターの方が好ましい [J. Immunol. Methods, 167, 271 (1994)] 。

構築したヒト化抗体発現用ベクターは、ヒト型キメラ抗体およびヒト型 CDR 移植抗体の動物 細胞での発現に使用できる。

(2) ヒト以外の動物の抗体のV領域をコードする cDNA の取得、

ヒト以外の動物の抗体、例えば、マウス抗体の VH および VL をコードする cDNA は以下のようにして取得することができる。

目的のマウス抗体を産生するハイブリドーマ細胞より mRNA を抽出し、cDNA を合成する。合成した cDNA をファージ或いはプラスミド等のベクターにクローニングして cDNA ライブラリーを作製する。該ライブラリーより、既存のマウス抗体の C 領域部分或いは V 領域部分をプローブとして用い、VH をコードする cDNA を有する組換えファージ或いは組換えプラスミドおよび VL をコードする cDNA を有する組換えファージ或いは組換えプラスミドをそれぞれ単離する。組換えファージ或いは組換えプラスミド上の目的のマウス抗体の VH および VL の全塩基配列を決定し、塩基配列より VH および VL の全アミノ酸配列を推定する。

ヒト以外の動物としては、マウス、ラット、ハムスター、ウサギ等、ハイブリドーマ細胞を 作製することが可能であれば、いかなるものも用いることができる。

ハイブリドーマ細胞から全 RNA を調製する方法としては、チオシアン酸グアニジンートリフルオロ酢酸セシウム法 [Methods in Enzymol., 154, 3 (1987)] 、また全 RNA から mRNA を調製する方法としては、オリゴ(dT)固定化セルロースカラム法[Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] 等があげられる。また、ハイブリドーマ細胞から mRNA を調製するキットとしては、Fast Track mRNA Isolation Kit(Invitrogen 社製)、Quick Prep mRNA Purification Kit (Pharmacia 社製)等があげられる。

cDNA の合成および cDNA ライブラリー作製法としては、常法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)]、或いは市販のキット、例えば、Super

Script<sup>™</sup>Plasmid System for cDNA Synthesis and Plasmid Cloning (GIBCO BRL 社製) や ZAP-cDNA Synthesis Kit (Stratagene 社製) を用いる方法等があげられる。

cDNA ライブラリーの作製の際、ハイブリドーマ細胞から抽出した mRNA を鋳型として合成した cDNA を組み込むベクターは、該 cDNA を組み込めるベクターであればいかなるものでも用いることができる。例えば、ZAP Express [Strategies, 5, 58 (1992)]、pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)]、 入ZAP II (Stratagene 社製)、入gt10、入gt11 [DNA Cloning: A Practical Approach, I, 49 (1985)]、Lambda BlueMid (Clontech 社 製)、入ExCell、pT7T3 18U (Pharmacia 社製)、pCD2 [Mol. Cell. Biol., 3, 280 (1983)] および pUC18 [Gene, 33, 103 (1985)] 等が用いられる。

ファージ或いはプラスミドベクターにより構築される cDNA ライブラリーを導入する大腸菌としては該 cDNA ライブラリーを導入、発現および維持できるものであればいかなるものでも用いることができる。例えば、XL1-Blue MRF' [Strategies, 5, 81 (1992)]、C600 [Genetics, 39, 440 (1954)]、Y1088、Y1090 [Science, 222, 778 (1983)]、NM522 [J. Mol. Biol., 166, 1 (1983)]、K802 [J. Mol. Biol., 16, 118 (1966)] および JM105 [Gene, 38, 275 (1985)] 等が用いられる。

cDNA ライブラリーからのヒト以外の動物の抗体の VH および VL をコードする cDNA クローンの選択法としては、アイソトープ或いは蛍光標識したプローブを用いたコロニー・ハイブリダイゼーション法或いはプラーク・ハイブリダイゼーション法[Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] により選択することができる。また、プライマーを調製し、mRNA から合成した cDNA 或いは cDNA ライブラリーを鋳型として、PCR 法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)] により VH および VL をコードする cDNA を調製することもできる。

上記方法により選択された cDNA を、適当な制限酵素等で切断後、pBluescript SK(-) (Stratagene 社製) 等のプラスミドにクローニングし、通常用いられる塩基配列解析方法、例えば、サンガー (Sanger) らのジデオキシ法 [Proc. Natl. Acad. Sci.,U.S.A., 74, 5463 (1977)] 等の反応を行い、塩基配列自動分析装置、例えば、ABI PRISM 377 シークエンサー (Applied Biosystems 社製) 等を用いて解析することで該 cDNA の塩基配列を決定することができる。

決定した塩基配列から VII および VL の全アミノ酸配列を推定し、既知の抗体の VII および VL

の全アミノ酸配列 [Sequences of Proteins of ImmunologicalInterest, US Dept. Health and Human Services, 1991] と比較することにより、取得した cDNA が分泌シグナル配列を含む抗体の VH および VL の完全なアミノ酸配列をコードしているかを確認することができる。

# (3)ヒト以外の動物の抗体の∇領域のアミノ酸配列の解析

分泌シグナル配列を含む抗体の VH および VL の完全なアミノ酸配列に関しては、既知の抗体の VH および VL の全アミノ酸配列[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991] と比較することにより、分泌シグナル配列の長さおよび N末端アミノ酸配列を推定でき、更にはそれらが属するサブグループを知ることができる。また、 VH および VL の各 CDR のアミノ酸配列についても、既知の抗体の VH および VL のアミノ酸配列 [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991] と比較することによって見出すことができる。

## (4) ヒト型キメラ抗体発現ベクターの構築

本項2のAの(1)に記載のヒト化抗体発現用ベクターのヒト抗体のCHおよびCLをコードする遺伝子の上流に、ヒト以外の動物の抗体のVHおよびVLをコードするcDNAをクローニングし、ヒト型キメラ抗体発現ベクターを構築することができる。例えば、ヒト以外の動物の抗体のVHおよびVLをコードするcDNAを、ヒト以外の動物の抗体VHおよびVLの3'末端側の塩基配列とヒト抗体のCHおよびCLの5'末端側の塩基配列とから成り、かつ適当な制限酵素の認識配列を両端に有する合成DNAとそれぞれ連結し、それぞれを本項2のAの(1)に記載のヒト化抗体発現用ベクターのヒト抗体のCHおよびCLをコードする遺伝子の上流にそれらが適切な形で発現するようにクローニングし、ヒト型キメラ抗体発現ベクターを構築することができる。

# (5) ヒト型 CDR 移植抗体の V 領域をコードする cDNA の構築

ヒト型 CDR 移植抗体の VH および VL をコードする cDNA は、以下のようにして構築することができる。まず、目的のヒト以外の動物の抗体の VH および VL の CDR を移植するヒト抗体の VH および VL のフレームワーク(以下、FR と表記する)のアミノ酸配列を選択する。ヒト抗体の VH および VL の FR のアミノ酸配列としては、ヒト抗体由来のものであれば、いかなるものでも 用いることができる。例えば、Protein Data Bank 等のデータベースに登録されているヒト抗体の VH および VL の FR のアミノ酸配列、ヒト抗体の VH および VL の FR の各サブグループの共通アミノ酸配列 [Sequences of Proteins of Immunological Interest, US Dept. Health and

Human Services, 1991] 等があげられるが、その中でも、十分な活性を有するヒト型 CDR 移植 抗体を作製するためには、目的のヒト以外の動物の抗体の VH および VL の FR のアミノ酸配列 とできるだけ高い相同性 (少なくとも 60%以上) を有するアミノ酸配列を選択することが望ま しい。

次に、選択したヒト抗体の VH および VL の FR のアミノ酸配列に目的のヒト以外の動物の抗体の VH および VL の CDR のアミノ酸配列を移植し、ヒト型 CDR 移植抗体の VH および VL のアミノ酸配列を設計する。設計したアミノ酸配列を抗体の遺伝子の塩基配列に見られるコドンの使用頻度 [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991] を考慮して DNA 配列に変換し、ヒト型 CDR 移植抗体の VH および VL のアミノ酸配列をコードする DNA 配列を設計する。設計した DNA 配列に基づき、100 塩基前後の長さから成る数本の合成 DNA を合成し、それらを用いて PCR 法を行う。この場合、PCR での反応効率および合成可能な DNA の長さから、H鎖、L鎖とも6本の合成 DNA を設計することが好ましい。

また、両端に位置する合成 DNA の 5 末端に適当な制限酵素の認識配列を導入することで、本項 2 の A の (1) で構築したヒト化抗体発現用ベクターに容易にクローニングすることができる。 PCR 後、増幅産物を pBluescript SK(-) (Stratagene 社製) 等のプラスミドにクローニングし、本項 2 の A の (2) に記載の方法により、塩基配列を決定し、所望のヒト型 CDR 移植抗体の VH および VL のアミノ酸配列をコードする DNA 配列を有するプラスミドを取得する。

## (6) ヒト型 CDR 移植抗体の V 領域のアミノ酸配列の改変

ヒト型 CDR 移植抗体は、目的のヒト以外の動物の抗体の VH および VL の CDR のみをヒト抗体の VH および VL の FR に移植しただけでは、その抗原結合活性は元のヒト以外の動物の抗体に 比べて低下してしまうことが知られている [BIO/TECHNOLOGY, 9, 266 (1991)]。この原因としては、元のヒト以外の動物の抗体の VH および VL では、CDR のみならず、FR のいくつかのアミノ酸残基が直接的或いは間接的に抗原結合活性に関与しており、それらアミノ酸残基が CDR の移植に伴い、ヒト抗体の VH および VL の FR の異なるアミノ酸残基へと変化してしまうことが考えられている。この問題を解決するため、ヒト型 CDR 移植抗体では、ヒト抗体の VH および VL の FR のアミノ酸残基や CDR のアミノ酸残基と相互作用したり、抗体の立体構造を維持し、間接的に抗原との結合に関与しているアミノ酸残基を同定し、それらを元のヒト以外の動物の抗体に見出されるアミノ酸残基に改変し、低下した抗原結合活性を上昇させることが行われている [BIO/TECHNOLOGY, 9, 266

(1991)]。

ヒト型 CDR 移植抗体の作製においては、それら抗原結合活性に関わる FR のアミノ酸残基を如何に効率よく同定するかが、最も重要な点であり、そのために X 線結晶解析 [J. Mol. Biol., 112, 535 (1977)] 或いはコンピューターモデリング [Protein Engineering, 7, 1501 (1994)] 等による抗体の立体構造の構築および解析が行われている。これら抗体の立体構造の情報は、ヒト型 CDR 移植抗体の作製に多くの有益な情報をもたらして来たが、その一方、あらゆる抗体に適応可能なヒト型 CDR 移植抗体の作製法は未だ確立されておらず、現状ではそれぞれの抗体について数種の改変体を作製し、それぞれの抗原結合活性との相関を検討する等の種々の試行錯誤が必要である。

ヒト抗体の VH および VL の FR のアミノ酸残基の改変は、改変用合成 DNA を用いて本項 2 の Aの (5) に記載の PCR 法を行うことにより、達成できる。 PCR 後の増幅産物について本項 2 の Aの (2) に記載の方法により、塩基配列を決定し、目的の改変が施されたことを確認する。

## (7) ヒト型 CDR 移植抗体発現ベクターの構築

本項2のAの(1)に記載のヒト化抗体発現用ベクターのヒト抗体のCHおよびCLをコードする遺伝子の上流に、本項2のAの(5)および(6)で構築したヒト型CDR移植抗体のVHおよびVLをコードするcDNAをクローニングし、ヒト型CDR移植抗体発現ベクターを構築することができる。例えば、本項2のAの(5)および(6)でヒト型CDR移植抗体のVHおよびVLを構築する際に用いる合成DNAのうち、両端に位置する合成DNAの5'末端に適当な制限酵素の認識配列を導入することで、本項2のAの(1)に記載のヒト化抗体発現用ベクターのヒト抗体のCHおよびCLをコードする遺伝子の上流にそれらが適切な形で発現するようにクローニングし、ヒト型CDR移植抗体発現ベクターを構築することができる。

## (8) ヒト化抗体の安定的生産

本項2のAの(4)および(7)に記載のヒト化抗体発現ベクターを適当な動物細胞に導入することによりヒト型キメラ抗体およびヒト型 CDR 移植抗体(以下、併せてヒト化抗体と称す)を安定に生産する形質転換株を得ることができる。

動物細胞へのヒト化抗体発現ベクターの導入法としては、エレクトロポレーション法 [Cytotechnology, <u>3</u>,133 (1990)] 等があげられる。

ヒト化抗体発現ベクターを導入する動物細胞としては、ヒト化抗体を生産させることができる動物細胞であれば、いかなる細胞でも用いることができる。

具体的には、マウスミエローマ細胞である NSO 細胞、SP2/0 細胞、チャイニーズハムスター 卵巣細胞 CHO/dhfr 細胞、CHO/DG44 細胞、ラットミエローマ YB2/0 細胞、IR983F 細胞、シリア ンハムスター腎臓由来である BHK 細胞、ヒトミエローマ細胞であるナマルバ細胞等があげられるが、好ましくは、チャイニーズハムスター卵巣細胞である CHO/DG44 細胞、ラットミエローマ YB2/0 細胞、前記 1. に記載の細胞等があげられる。

ヒト化抗体発現ベクターの導入後、ヒト化抗体を安定に生産する形質転換株は、特開平2-257891 に開示されている方法に従い、G418 sulfate (以下、G418 と表記する; SIGMA 社製)、等の薬剤を含む動物細胞培養用培地により選択できる。動物細胞培養用培地としては、RPMI1640 培地 (日水製薬社製)、GIT 培地 (日本製薬社製)、EX-CELL302 培地 (JRH 社製)、IMDM 培地 (GIBCO BRL 社製)、Hybridoma-SFM 培地 (GIBCO BRL 社製)、またはこれら培地に牛胎児血清 (以下、FBS と表記する)等の各種添加物を添加した培地等を用いることができる。得られた形質転換株を培地中で培養することで培養上清中にヒト化抗体を生産蓄積させることができる。培養上清中のヒト化抗体の生産量および抗原結合活性は酵素免疫抗体法 [以下、ELISA 法と表記する; Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 14 (1998)、Monoclonal Antibodies: Principles and Practice, Academic Press Limited (1996)]等により測定できる。また、形質転換株は、特開平 2-257891 に開示されている方法に従い、DHFR 遺伝子増幅系等を利用してヒト化抗体の生産量を上昇させることができる。

ヒト化抗体は、形質転換株の培養上清よりプロテイン A カラムを用いて精製することができる [Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 8 (1988)、 Monoclonal Antibodies: Principles and Practice, Academic Press Limited (1996)]。また、その他に通常、蛋白質の精製で用いられる精製方法を使用することができる。例えば、ゲル滤過、イオン交換クロマトグラフィーおよび限外滤過等を組み合わせて行い、精製することができる。精製したヒト化抗体のH鎖、L鎖或いは抗体分子全体の分子量は、ポリアクリルアミドゲル電気泳動 [以下、SDS-PAGE と表記する; Nature, 227, 680 (1970)] やウエスタンプロッティング法 [Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)、 Monoclonal Antibodies: principles and practice, Third Edition, Acad. Press (1993)] 等で測定することができる。

## B. Fc 融合蛋白質の製造

#### (1) Fc 融合蛋白質発現用ベクターの構築

Fc 融合蛋白質発現用ベクターとは、ヒト抗体のFc 領域と融合させる蛋白質とをコードする遺伝子が組み込まれた動物細胞用発現ベクターであり、動物細胞用発現ベクターにヒト抗体のFc 領域と融合させる蛋白質とをコードする遺伝子をクローニングすることにより構築することができる。

ヒト抗体の  $\mathbb{F}$ c 領域としては、CH2 と CH3 領域を含む領域のほか、ヒンジ領域、CH1 の一部が含まれるものも包含される。また CH2 または CH3 の少なくとも 1 つのアミノ酸が欠失、置換、付加または挿入され、実質的に  $\mathbb{F}$ c  $\gamma$  受容体への結合活性を有するものであればいかなるものでもよい。

ヒト抗体の Fc 領域と融合させる蛋白質とをコードする遺伝子としてはエキソンとイントロンから成る染色体 DNA を用いることができ、また、cDNA を用いることもできる。それら遺伝子と Fc 領域を連結する方法としては、各遺伝子配列を鋳型として、PCR 法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)] を行うことがあげられる。

動物細胞用発現ベクターとしては、ヒト抗体の C 領域をコードする遺伝子を組込み発現できるものであればいかなるものでも用いることができる。例えば、pAGE107 [Cytotechnology, 3, 133 (1990)]、pAGE103 [J. Biochem., 101, 1307 (1987)]、pHSG274 [Gene, 27, 223 (1984)]、pKCR [Proc. Natl. Acad. Sci. U.S.A., 78, 1527 (1981)]、pSG1 β d2-4 [Cytotechnology, 4, 173 (1990)] 等があげられる。動物細胞用発現ベクターに用いるプロモーターとエンハンサーとしては、SV40 の初期プロモーターとエンハンサー [J. Biochem., 101, 1307 (1987)]、モロニーマウス白血病ウイルスの LTR [Biochem. Biophys. Res. Commun., 149, 960 (1987)]、免疫グロブリン H 鎖のプロモーター [Cell, 41, 479 (1985)] とエンハンサー [Cell, 33, 717 (1983)] 等があげられる。

#### (2) ヒト抗体の Fc 領域と融合させる蛋白質とをコードする DNA の取得

ヒト抗体の Fc 領域と融合させる蛋白質とをコードする DNA は以下のようにして取得することができる。

目的の Fc と融合させる蛋白質を発現している細胞や組織より mRNA を抽出し、cDNA を合成する。合成した cDNA をファージ或いはプラスミド等のベクターにクローニングして cDNA ライブラリーを作製する。該ライブラリーより、目的の蛋白質の遺伝子配列部分をプローブとして用

い、目的の蛋白質をコードする cDNA を有する組換えファージ或いは組換えプラスミドを単離する。組換えファージ或いは組換えプラスミド上の目的の蛋白質の全塩基配列を決定し、塩基配列より全アミノ酸配列を推定する。

ヒト以外の動物としては、マウス、ラット、ハムスター、ウサギ等、細胞や組織を摘出する ことが可能であれば、いかなるものも用いることができる。

細胞や組織から全 RNA を調製する方法としては、チオシアン酸グアニジン-トリフルオロ酢酸セシウム法 [Methods in Enzymol., 154, 3 (1987)]、また全 RNA から mRNA を調製する方法としては、オリゴ(dT)固定化セルロースカラム法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] 等があげられる。また、細胞や組織からmRNA を調製するキットとしては、Fast Track mRNA Isolation Kit (Invitrogen 社製)、Quick Prep mRNA Purification Kit (Pharmacia 社製)等があげられる。

cDNA の合成および cDNA ライブラリー作製法としては、常法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)、Current Protocols in molecular Biology, John Wiley & Sons (1987-1997)]、或いは市販のキット、例えば、Super Script™Plasmid System for cDNA Synthesis and Plasmid Cloning (GIBCO BRL社製) やZAP-cDNA Synthesis Kit (Stratagene 社製)を用いる方法等があげられる。

cDNA ライブラリーの作製の際、細胞や組織から抽出した mRNA を鋳型として合成した cDNA を組み込むベクターは、該 cDNA を組み込めるベクターであればいかなるものでも用いることができる。例えば、ZAP Express [Strategies, 5, 58 (1992)]、pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)]、入ZAPII (Stratagene 社製)、入gt10、入gt11 [DNA Cloning: A Practical Approach, I, 49 (1985)]、Lambda BlueMid (Clontech 社製)、入ExCell、pT7T3 18U (Pharmacia 社製)、pCD2 [Mol. Cell. Biol., 3, 280 (1983)] および pUC18 [Gene, 33, 103 (1985)] 等が用いられる。

ファージ或いはプラスミドベクターにより構築される cDNA ライブラリーを導入する大腸菌としては該 cDNA ライブラリーを導入、発現および維持できるものであればいかなるものでも用いることができる。例えば、XL1-Blue MRF' [Strategies, <u>5</u>, 81 (1992)]、C600 [Genetics, <u>39</u>, 440 (1954)]、Y1088、Y1090 [Science, <u>222</u>, 778 (1983)]、NM522 [J. Mol. Biol., <u>166</u>, 1 (1983)]、K802 [J. Mol. Biol., <u>16</u>, 118 (1966)]および JM105 [Gene, <u>38</u>, 275 (1985)]等が用いられる。

cDNA ライブラリーからの目的の蛋白質をコードする cDNA クローンの選択法としては、アイソトープ或いは蛍光標識したプローブを用いたコロニー・ハイブリダイゼーション法或いはプラーク・ハイブリダイゼーション法 [Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York (1989)] により選択することができる。また、プライマーを調製し、mRNA から合成した cDNA 或いは cDNA ライブラリーを鋳型として、PCR 法により目的の蛋白質をコードする cDNA を調製することもできる。

目的の蛋白質をヒト抗体の Fc 領域と融合させる方法としては、PCR 法があげられる。例えば、目的の蛋白質の遺伝子配列の 5'側と 3'側に任意の合成オリゴ DNA(プライマー)を設定し、PCR 法を行い PCR 産物を取得する。同様に、融合させるヒト抗体の Fc 領域の遺伝子配列に対しても任意のプライマーを設定し、PCR 産物を得る。このとき、融合させる蛋白質の PCR 産物の 3'側と Fc 領域の PCR 産物の 5'側には同じ制限酵素部位もしくは同じ遺伝子配列が存在するようにプライマーを設定する。この連結部分周辺のアミノ酸改変が必要である場合には、その変異を導入したプライマーを用いることで変異を導入する。得られた 2 種類の PCR 断片を用いてさらに PCR を行うことで、両遺伝子を連結する。もしくは、同一の制限酵素処理をした後にライゲーションすることでも連結することができる。

上記方法により連結された遺伝子配列を、適当な制限酵素等で消化後、pBluescript SK(-) (Stratagene 社製)等のプラスミドにクローニングし、通常用いられる塩基配列解析方法、例えばサンガー (Sanger)らのジデオキシ法 [Proc. Natl. Acad. Sci. U.S.A., 74, 5463 (1977)] あるいは ABI PRISM 377DNAシークエンサー (Applied Biosystems 社製)等の塩基配列分析装置を用いて分析することにより、該 DNA の塩基配列を決定することができる。

決定した塩基配列から Fc 融合蛋白質の全アミノ酸配列を推定し、目的のアミノ酸配列と比較することにより、取得した cDNA が分泌シグナル配列を含む Fc 融合蛋白質の完全なアミノ酸配列をコードしているかを確認することができる。

## (3) Fc 融合蛋白質の安定的生産

本項2のBの(1)項に記載のFc融合蛋白質発現ベクターを適当な動物細胞に導入することによりFc融合蛋白質を安定に生産する形質転換株を得ることができる。

動物細胞への Fc 融合蛋白質発現ベクターの導入法としては、エレクトロポレーション法 [Cytotechnology, 3, 133 (1990)] 等があげられる。

Fc 融合蛋白質発現ベクターを導入する動物細胞としては、Fc 融合蛋白質を生産させること

ができる動物細胞であれば、いかなる細胞でも用いることができる。

具体的には、マウスミエローマ細胞である NSO 細胞、SP2/0 細胞、チャイニーズハムスター 卵巣細胞 CHO/dhf r 細胞、CHO/DG44 細胞、ラットミエローマ YB2/0 細胞、IR983F 細胞、シリア ンハムスター腎臓由来である BHK 細胞、ヒトミエローマ細胞であるナマルバ細胞等があげられるが、好ましくは、チャイニーズハムスター卵巣細胞である CHO/DG44 細胞、ラットミエローマ YB2/0 細胞、前記第1項に記載の本発明の方法に用いられる宿主細胞等があげられる。

Fc 融合蛋白質発現ベクターの導入後、Fc 融合蛋白質を安定に生産する形質転換株は、特開 平 2-257891 に開示されている方法に従い、G418 等の薬剤を含む動物細胞培養用培地により選択できる。動物細胞培養用培地としては、RPMI1640 培地(日水製薬社製)、GIT 培地(日本製薬社製)、EX-CBLL302 培地(JRH 社製)、IMDM 培地(GIBCO BRL 社製)、Hybridoma-SFM 培地(GIBCO BRL 社製)、またはこれら培地にインスリン、インスリン様増殖因子、トランスフェリン、アルブミン等の各種添加物を添加した培地等を用いることができる。得られた形質転換株を培地中で培養することで培養上清中に Fc 融合蛋白質を生産蓄積させることができる。培養上清中のFc 融合蛋白質の生産量および抗原結合活性は ELISA 法等により測定できる。また、形質転換株は、特開平 2-257891 に開示されている方法に従い、dhfr 遺伝子増幅系等を利用して Fc 融合蛋白質の生産量を上昇させることができる。

Fc 融合蛋白質は、形質転換株の培養上清よりプロテインAカラムやプロテインGカラムを用いて精製することができる[Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)、 Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., Capter 2.1 (1995)]。また、その他に通常、蛋白質の精製で用いられる精製方法を使用することができる。例えば、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾過等を組み合わせて行い、精製することができる。精製した Fc 融合蛋白質分子全体の分子量は、SDS-PAGE [Nature, 227, 680 (1970)] やウエスタンブロッティング法 [Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)] 等で測定することができる。

以上、動物細胞を宿主とした抗体組成物および Fc 融合蛋白質の製造方法を示したが、上述したように、酵母、昆虫細胞、植物細胞または動物個体あるいは植物個体においても製造することができる。

既に、宿主細胞が抗体分子を発現する能力を有している場合には、前記1.に記載の方法を 用いて抗体分子を発現させる細胞を調製した後に、該細胞を培養し、該培養物から目的とする

抗体組成物を精製することにより、本発明の抗体組成物を製造することができる。

### 3. 抗体組成物の活性評価

精製した抗体組成物の蛋白量、抗原との結合性あるいはエフェクター機能を測定する方法としては、Monoclonal Antibodies: principles and practice, Third Edition, Acad. Press (1993)、Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press (1996)等に記載の公知の方法を用いることができる。

その具体的な例としては、抗体組成物がヒト化抗体の場合、抗原との結合活性、抗原陽性培養細胞株に対する結合活性は ELISA 法および蛍光抗体法 [Cancer Immunol. Immunother., 36, 373 (1993)] 等により測定できる。抗原陽性培養細胞株に対する細胞傷害活性は、CDC 活性、ADCC 活性等を測定することにより、評価することができる [Cancer Immunol. Immunother., 36, 373 (1993)]。

また、抗体組成物のヒトでの安全性、治療効果は、カニクイザル等のヒトに比較的近い動物 種の適当なモデルを用いて評価することができる。

#### 4. 抗体組成物の糖鎖の分析

各種細胞で発現させた抗体分子の糖鎖構造は、通常の糖蛋白質の糖鎖構造の解析に準じて行うことができる。例えば、IgG分子に結合している糖鎖はガラクトース、マンノース、フコース等の中性糖、N-アセチルグルコサミン等のアミノ糖、シアル酸等の酸性糖から構成されており、糖組成分析および二次元糖鎖マップ法等を用いた糖鎖構造解析等の手法を用いて行うことができる。

#### (1)中性糖・アミノ糖組成分析

抗体分子の糖鎖の組成分析は、トリフルオロ酢酸等で、糖鎖の酸加水分解を行うことにより、 中性糖またはアミノ糖を遊離し、その組成比を分析することができる。

具体的な方法として、Dionex 社製糖組成分析装置 (BioLC) を用いる方法が挙げられる。BioLC は HPAEC-PAD (high performance anioN-exchange chromatography-pulsed amperometric detection) 法 [J. Liq. Chromatogr., 6, 1577 (1983)] によって糖組成を分析する装置である。

また、2-アミノビリジンによる蛍光標識化法でも組成比を分析することができる。具体的には、公知の方法 [Agruc. Biol. Chem., <u>55(1)</u>, 283 (1991)] に従って酸加水分解した試料を2-アミノビリジル化で蛍光ラベル化し、HPLC 分析して組成比を算出することができる。

#### (2)糖鎖構造解析

抗体分子の糖鎖の構造解析は、2次元糖鎖マップ法 [Anal Biochem., 171, 73 (1988)、生物化学実験法23-糖蛋白質糖鎖研究法(学会出版センター)高橋禮子編(1989)]により行うことができる。2次元糖鎖マップ法は、例えば、X軸には逆相クロマトグラフィー糖鎖の保持時間または溶出位置を、Y軸には順相クロマトグラフィーによる糖鎖の保持時間または溶出位置を、それぞれプロットし、既知糖鎖のそれらの結果と比較することにより、糖鎖構造を推定する方法である。

具体的には、抗体をヒドラジン分解して、抗体から糖鎖を遊離し、2-アミノビリジン(以下、PAと略記する)による糖鎖の蛍光標識 [J.Biochem., 95, 197 (1984)] を行った後、ゲルろ過により糖鎖を過剰のPA化試薬等と分離し、逆相クロマトグラフィーを行う。次いで、分取した糖鎖の各ピークについて順相クロマトグラフィーを行う。これらの結果をもとに、2次元糖鎖マップ上にプロットし、糖鎖スタンダード (TaKaRa 社製)、文献 [Anal. Biochem., 171, 73 (1988)] とのスポットの比較より糖鎖構造を推定することができる。

さらに各糖鎖の MALDI-TOF-MS 等の質量分析を行い、2 次元糖鎖マップ法により推定される構造を確認することができる。

#### 5. 本発明により得られる抗体組成物の利用

本発明により得られる抗体組成物は高い ADCC 活性を有する。高い ADCC 活性を有する抗体は、 癌、炎症疾患、自己免疫疾患、アレルギー等の免疫疾患、循環器疾患、またはウィルスあるい は細菌感染をはじめとする各種疾患の予防および治療において有用である。

癌、すなわち悪性腫瘍では癌細胞が増殖している。通常の抗癌剤は癌細胞の増殖を抑制することを特徴とする。しかし、高い ADCC 活性を有する抗体は、殺細胞効果により癌細胞を傷害することにより癌を治療することができるため、通常の抗癌剤よりも治療薬として有効である。特に癌の治療薬において、現状では抗体医薬単独の抗腫瘍効果は不充分な場合が多く化学療法との併用療法が行われているが [Science, 280, 1197, 1998]、本発明の抗体組成物は単独で高い抗腫瘍効果を有するため、化学療法に対する依存度が低くなり、副作用の低減にもつながる。

炎症疾患、自己免疫疾患、アレルギー等の免疫疾患において、それら疾患における生体内反応は、免疫細胞によるメディエータ分子の放出により惹起されるため、高い ADCC 活性を有する抗体を用いて免疫細胞を除去することにより、アレルギー反応を抑えることができる。

循環器疾患としては、動脈硬化等があげられる。動脈硬化は、現在バルーンカテーテルによる治療を行うが、治療後の再狭窄での動脈細胞の増殖を高い ADCC 活性を有する抗体を用いて抑えることより、循環器疾患を予防および治療することができる。

ウィルスまたは細菌に感染した細胞の増殖を、高い ADCC 活性を有する抗体を用いて抑えることにより、ウィルスまたは細菌感染をはじめとする各種疾患を予防および治療することができる。

腫瘍関連抗原を認識する抗体、アレルギーあるいは炎症に関連する抗原を認識する抗体、循環器疾患に関連する抗原を認識する抗体、自己免疫疾患に関連する抗原を認識する抗体、またはウイルスあるいは細菌感染に関連する抗原を認識する抗体の具体例を以下に述べる。

腫瘍関連抗原を認識する抗体としては、抗 CA125 抗体 [Immunology Today, <u>21</u>, 403 (2000)]、 抗 17-1A 抗体 [Immunology Today, <u>21</u>, 403 (2000)] 、抗インテグリンαvβ3 抗体 [Immunology Today, <u>21</u>, 403 (2000)]、抗CD33 抗体 [Immunology Today, <u>21</u>, 403 (2000)]、抗CD22 抗 体 [Immunology Today, <u>21</u>, 403 (2000)] 、抗 HLA 抗体 [Immunology Today, <u>21</u>, 403 (2000)] 、 抗HLA-DR 抗体 [Immunology Today, 21, 403 (2000)]、抗CD20 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD19 抗体[Immunology Today, 21, 403 (2000)]、抗 EGF 受容体抗体[Immunology Today, 21, 403 (2000)]、抗CD10 抗体 [American Journal of Clinical Pathology, 113, 374 (2000)、Proc. Natl. Acad. Sci. USA, 79, 4386 (1982)]、抗GD2 抗体 [Anticancer Res., 13, 331 (1993)]、抗GD3 抗体 [Cancer Immunol. Immunother., 36, 260 (1993)]、抗GM2 抗体 [Cancer Res., <u>54</u>, 1511 (1994)]、抗HER2 抗体[Proc. Natl. Acad. Sci. USA, <u>89</u>, 4285 (1992)]、 抗 CD52 抗体 [Nature, 332, 323-327 (1988)]、抗 MAGE 抗体 [British J. Cancer, 83, 493 (2000)]、抗HM1.24 抗体 [Molecular Immunol., 36, 387 (1999)]、抗副甲状腺ホルモン関 連蛋白 (PTHrP) 抗体 [Cancer, 88, 2909 (2000)]、抗 FGF8 抗体 [Proc. Natl. Acad. Sci. USA, 86,9911 (1989)]、抗塩基性繊維芽細胞増殖因子抗体、抗 FGF8 受容体抗体 [J. Biol. Chem., 265, 16455 (1990)]、抗塩基性繊維芽細胞増殖因子受容体抗体、抗インスリン様増殖因子抗 体 [J. Neurosci. Res., 40, 647 (1995)] 、抗インスリン様増殖因子受容体抗体 [J. Neurosci. Res., 40, 647 (1995)]、抗PMSA 抗体 [J. Urology, 160, 2396 (1998)]、抗血管内皮細胞 増殖因子抗体 [Cancer Res., <u>57</u>, 4593 (1997)] または抗血管内皮細胞増殖因子受容体抗体 [Oncogene, <u>19</u>, 2138 (2000)] 等が挙げられる。

アレルギーあるいは炎症に関連する抗原を認識する抗体としては、抗 IgE 抗体 [Immunology

Today, 21, 403 (2000)]、抗 CD23 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD11a 抗体 [Immunology Today, 21, 403 (2000)]、抗 CRTH2 抗体 [J. Immunol., 162, 1278 (1999)]、抗 CCR8 抗体 (W099/25734)、抗 CCR3 抗体 (US6207155)、抗インターロイキン 6 抗体 [Immunol. Rev., 127, 5 (1992)]、抗インターロイキン 6 受容体抗体 [Molecular Immunol., 31, 371 (1994)]、抗インターロイキン 5 抗体 [Immunol. Rev., 127, 5 (1992)]、抗インターロイキン 5 受容体抗体 [Molecular Immunol., 31, 371 (1994)]、抗インターロイキン 4 抗体 [Cytokine, 3, 562 (1991)]、抗インターロイキン 4 受容体抗体 [J. Immunol. Meth., 217, 41 (1998)]、抗腫瘍壊死因子抗体 [Hybridoma, 13, 183 (1994)]、抗腫瘍壊死因子受容体抗体 [Molecular Pharmacol., 58, 237 (2000)]、抗 CCR4 抗体 [Nature, 400, 776 (1999)]、抗ケモカイン抗体 [J. Immunol. Meth., 174, 249 (1994)] または抗ケモカイン受容体抗体 [J. Exp. Med., 186, 1373 (1997)] 等が挙げられる。

循環器疾患に関連する抗原を認識する抗体としては、抗 GpIIb/IIIa 抗体 [J. Immunol., 152, 2968 (1994)]、抗血小板由来増殖因子抗体 [Science, 253, 1129 (1991)]、抗血小板由来増殖因子技体 [J. Biol. Chem., 272, 17400 (1997)] または抗血液凝固因子抗体 [Circulation, 101, 1158 (2000)] 等が挙げられる。

自己免疫疾患、例えば、乾癬、関節リウマチ、クローン病、潰瘍性大腸炎、全身性エリテマトーデス、多発性硬化症に関連する抗原を認識する抗体としては、抗自己 DNA 抗体 [Immunol. Letters, 72, 61 (2000)]、抗 CD11a 抗体 [Immunology Today, 21, 403 (2000)]、抗 ICAM3 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD80 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD2 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD3 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD4 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD4 抗体 [Immunology Today, 21, 403 (2000)]、抗 CD4 抗体 [Immunology Today, 21, 403 (2000)]、抗 IL-2 受容体抗体 [Immunology Today, 21, 403 (2000)] 等が挙げられる。

ウイルスあるいは細菌感染に関連する抗原を認識する抗体としては、抗 gp120 抗体 [Structure, <u>8</u>, 385 (2000)]、抗 CD4 抗体 [J. Rheumatology, <u>25</u>, 2065 (1998)]、抗 CCR5 抗体または抗べ口毒素抗体 [J. Clin. Microbiol., <u>37</u>, 396 (1999)]等が挙げられる。

上記抗体は、ATCC、理化学研究所細胞開発銀行、工業技術院生命工業技術研究所等の公的な機関、あるいは大日本製薬株式会社、R&D SYSTEMS 社、PharMingen 社、コスモバイオ社、フナコシ株式会社等の民間試薬販売会社から入手することができる。

本発明により得られる抗体組成物を含有する医薬は、治療薬として単独で投与することも可

能ではあるが、通常は薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが望ましい。

投与経路は、治療に際して最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与をあげることができ、抗体 製剤の場合、望ましくは静脈内投与をあげることができる。

投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、 軟膏、テープ剤等があげられる。

経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤等が あげられる。

乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の糖類、ボリエチレングリコール、プロピレングリコール等のグリコール類、ごま油、オリーブ油、大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等のフレーバー類等を添加剤として用いて製造できる。

カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マンニトール等の賦形剤、 デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤、 ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤、脂肪酸エステ ル等の界面活性剤、グリセリン等の可塑剤等を添加剤として用いて製造できる。

非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。

注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製される。または、抗体組成物を常法に従って凍結乾燥し、これに塩化ナトリウムを加えることによって粉末注射剤を調製することもできる。

座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。

また、噴霧剤は該抗体組成物そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、かつ該抗体組成物を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製される。

担体として具体的には乳糖、グリセリン等が例示される。該抗体組成物および用いる担体の 性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤に おいても経口剤で添加剤として例示した成分を添加することもできる。

投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、通常成人1日当たり $10 \mu g/kg \sim 20 mg/kg$  である。

また、抗体組成物の各種腫瘍細胞に対する抗腫瘍効果を検討する方法は、インビトロ実験としては、CDC 活性測定法、ADCC 活性測定法等があげられ、インビボ実験としては、マウス等の実験動物での腫瘍系を用いた抗腫瘍実験等があげられる。

CDC 活性、ADCC 活性、抗腫瘍実験は、文献 [Cancer Immunology Immunotherapy, 36, 373 (1993); Cancer Research, 54, 1511 (1994)] 等記載の方法に従って行うことができる。

### 図面の簡単な説明

第1図は、FUT8を標的とした siRNA 発現ベクターライブラリーを用いた有効 siRNA 標的配列の探索によって得た 159 クローンの標的配列の分布を示した図である。図中の A から J で示される部分は標的配列として選択した領域である。

第2図は、FUT8 を標的とした siRNA 発現ベクターの導入により取得したレクチン耐性株および その親株の FUT8 遺伝子の発現量を示した図である。FUT8 遺伝子の発現量は、 $\beta$ -アクチン遺伝 子発現量で標準化した親株の FUT8 遺伝子発現量を 100 として示した。

第3図は、ヒトU6プロモーター、クローニングサイトおよびターミネーター発現力セットを含むプラスミドpBS-U6termの構築を示した図である。

第4図は、ヒトU6プロモーター、クローニングサイトおよびターミネーター発現力セットおよびピューロマイシン耐性遺伝子発現力セットを有するプラスミドpPUR-U6termの構築を示した図である。

第5図は、ヒトU6プロモーターを用いたFUT8を標的としたショートへアピンRNA発現力セットおよびピューロマイシン耐性遺伝子発現力セットを有するプラスミドFUT8shB/pPURおよびFUT8shR/pPURの構築を示した図である。

第6図は、ヒトtRNAvalプロモーター、クローニングサイトおよびターミネーター発現力セットおよびピューロマイシン耐性遺伝子発現力セットを有するプラスミドpPUR-tRNAp-term(-)の構築を示した図である。

第7図は、ヒト tRNAval プロモーターを用いた FUT8 を標的としたショートへアピン RNA 発現 カセットおよびピューロマイシン耐性遺伝子発現カセットを有するプラスミド tRNA-FUT8shB/pPUR(-)および tRNA-FUT8shR/pPUR(-)の構築を示した図である。

第8図は、ヒトtRNAvalプロモーターを用いたFUT8を標的としたショートへアピンRNA発現 カセットおよびピューロマイシン耐性遺伝子発現力セットを有するプラスミド tRNA-FUT8shB/pPUR(+)およびtRNA-FUT8shR/pPUR(+)の構築を示した図である。

第9図は、FUT8を標的とした si RNA 発現ベクターの導入により取得したレクチン耐性プール株 およびその親株の FUT8 遺伝子の発現量を示した図である。FUT8 遺伝子の発現量は、 $\beta$ -アクチン遺伝子発現量で標準化した親株の FUT8 遺伝子発現量を 100 として示した。

第10図は、無血清培地に馴化した FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株を用いた無血清フェドバッチ培養における培養開始後の各時点における生細胞密度を示した図である。横軸に培養日数を、縦軸に生細胞密度を対数でそれぞれ示した。

第11図は、無血清培地に馴化した FUT8 を標的とした si RNA 発現プラスミドを導入したレクチン耐性株を用いた無血清フェドバッチ培養における培養開始後の各時点における細胞生存率を示した図である。横軸に培養日数を、縦軸に細胞生存率をそれぞれ示した。

第12図は、無血清培地に馴化した FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株を用いた無血清フェドバッチ培養における培養開始後の各時点における培養上清中の抗 CCR4 キメラ抗体濃度を示した図である。横軸に培養日数を、縦軸に ELISA 法により定量した抗体濃度をそれぞれ示した。

第13図は、還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合していない糖鎖の割合 [Fucose(-)%] が既知の標準抗体の $\mathrm{shFc}\gamma\mathrm{RIIIa}$  に対する結合活性を示した。横軸に各標準抗体の $\mathrm{Fucose}(-)$ %、縦軸に各標準抗体の $\mathrm{shFc}\gamma\mathrm{RIIIa}$  に対する結合活性を表す $\mathrm{ELISA}$  法の $\mathrm{OD415}$  実測値をそれぞれ示した。

第14図は、無血清培地に馴化した FUT8 を標的とした si RNA 発現プラスミドを導入したレクチン耐性株を用いた無血清フェドバッチ培養における培養開始後の各時点における培養上清中の抗 CCR4 キメラ抗体の、還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合していない糖鎖の割合 [Fucose(-)%] を示した図である。横軸に培養日数を、縦軸に shFc  $\gamma$  RIIIa に対する結合活性を表す ELISA 法の結果から求めた Fucose(-)%をそれぞれ示した。

以下の実施例により本発明をより具体的に説明するが、実施例は本発明の単なる例示を示す ものにすぎず、本発明の範囲を限定するものではない。

### 実施例

#### (実施例1)

FUT8 を標的とした Small interfering(si)RNA 発現ベクターライブラリーを用いたレクチン耐性株取得に有効な siRNA 標的配列の探索

- 1. FUT8 を標的とした siRNA 発現ベクターライブラリーFUT8 shRNAlib/pPUR の作製
  - (1) CHO 細胞由来 FUT8 をコードする cDNA 配列の取得

W000/61739 の記載に従って、チャイニーズハムスター卵巣由来 CHO/DG44 細胞より調製した 1 本鎖 cDNA より、以下の手順でチャイニーズハムスター由来 FUT8 をコードする cDNA をクローニングした。

まず、マウス FUT8 の cDNA 塩基配列 [GenBank, AB025198] より、5'側非翻訳領域に特異的なフォワードプライマー (配列番号 31 に示す) および 3'側非翻訳領域に特異的なリバースプライマー(配列番号 32 に示す)を設計した。

次に DNA ポリメラーゼ ExTaq(宝酒造社製)を用いて、CHO/DG44 細胞由来の 1 本鎖 cDNA 1  $\mu$ L を含む  $25\mu$ L の反応液[ExTaq buffer (宝酒造社製)、0.2 nmo 1/L dNTPs、4% DMSO、 $0.5 \mu \text{mo} 1/\text{L}$  上記特異的プライマー(配列番号 31 および配列番号 32)]を調製し、PCR を行った。PCR は、94  $^{\circ}$  で 1 分間の加熱の後、94  $^{\circ}$  で 30 秒間、55  $^{\circ}$  で 30 秒間、72  $^{\circ}$  で 2 分間からなる反応を 1 サイクルとして 30 サイクル行った後、さらに 72  $^{\circ}$  で 10 分間反応させた。

PCR 後、該反応液を 0.8%アガロースゲル電気泳動に供し、約 2Kb の増幅断片を回収した。該 増幅断片を、TOPO TA cloning Kit (Invitrogen 社製) 用いて、添付の説明書に従ってプラスミド pCR2.1 と連結反応を行い、該反応液を用いて大腸菌 DH5  $\alpha$ 株を形質転換した。得られたカナマイシン耐性コロニーのうち cDNA が組み込まれた 8 クローンから、QIAprep spin Mini prep Kit (QIAGEN 社製) を用いて、それぞれのプラスミド DNA を単離した。

単離したそれぞれのプラスミドの塩基配列は、BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、全てのプラスミドに挿入された cDNA が、チャイニーズハムスターの FUT8 の ORF 全長をコードする cDNA であることを確認した。配列を決定したプラスミド DNA の挿入 cDNA うち、PCR に伴う塩基の読み誤りを含まないプラスミド DNA を選択した。以下、本プラスミドを CHf FUT8-pCR2.1と称す。このようにして決定したチャイニーズハムスターの FUT8 cDNA の塩基配列を配列番号 1 に示した。

#### (2) FUT8 を標的とした si RNA 発現ベクターライブラリーの調製

本項(1)で得られた CHf FUT8-pCR2.1 を用いて、W003/46186 実施例 13 に記載の方法と同様にして、FUT8 を標的としたヒト tRNA-val プロモーター型 siRNA 発現ベクターライブラリーを作製した。尚、アンチセンスコード DNA とセンスコード DNA との間の Loop 配列としては制限酵素 BamHI の認識配列を用い、pPUR (CLONTECH 社製)をベクターとして用いた。以下、作製したライブラリーを FUT8shRNAlib/pPUR/DH10B と称す。

滅菌シャーレ[243mm×243mm×18mm (Nalgenunc 社製)]を用いて100μg/mLアンピシリンを含む LB 寒天培地を作製し、シャーレ1枚当たり50μLの FUT8shRNAlib/pPUR/DH10Bのグリセロールストックを播種した。37℃にて一晩静置培養した後、プレート上の菌体を滅菌水に懸濁して回収し、菌体から QIAfilter Plasmid Midi Kit (QIAGEN 社製)を用いて、プラスミドライブラリーを回収した。以下、回収したプラスミドライブラリーをFUT8shRNAlib/pPURと称す。

2. FUT8 を標的とした si RNA 発現ライブラリーを導入したレクチン耐性株の取得

本実施例第 1 項で得られた FUT8 を標的とした siRNA 発現ライブラリープラスミド FUT8shRNAlib/pPUR を、参考例に記載の方法で得られた CHO/DG44 細胞を宿主細胞とする抗 CCR4 キメラ化抗体生産株の 1 つである 32-05-12 株へ導入し、  $\alpha$ 1,6-フコースを特異的に認識する レクチンである LCA に耐性を有する株を、以下のようにして取得した。

本実施例第1項で得られたプラスミド FUT8shRNAlib/pPUR を制限酵素 FspI (New England Biolabs 社製) で消化して線状化し、線状化した  $10\mu g$  のプラスミド FUT8shRNAlib/pPUR を  $1.6 \times 10^6$  個の 32-05-12 株へエレクトロポレーション法 [Cytotechnology,  $\underline{3}$ , 133 (1990)] で導入した後、基本培地[10% ウシ胎児透析血清 (Invitrogen 社製)、 $50\mu g$ /mL ゲンタマイシン (ナカライテスク社製)、および 500nmol/L メソトレキセート (以下、MTX と称す; SIGMA 社製)を含む Iscove's Modified Dulbecco's Medium (以下、IMDM と称す; Invitrogen 社製)] に懸濁し、接着細胞培養用 10cm ディッシュ(Falcon 社製)3 枚へ 8mL ずつ播種した。この時、同一の条件で 10 回の遺伝子導入を行い、合計 30 枚の培養用 10cm ディッシュにおいて、以下のように培養を行った。5%CO $_2$ インキュベーター内で 37%C、24 時間培養後、ビューロマイシン(SIGMA 社製)を  $12\mu g$ /mL の濃度で含む基本培地 8mL に培地交換した。5%CO $_2$ インキュベーター内で 37%C、7 日間培養した後、ビューロマイシン(SIGMA 社製)を  $12\mu g$ /mL の濃度で、および LCA(VECTOR 社製)を 0.5mg/mL の濃度で含む基本培地 8mL に培地交換し、さらに 6~8 日間の培養を行い、レクチン耐性クローンを取得した。

- 3. FUT8 を標的とした siRNA 発現プラスミドの標的配列の解析
- (1) レクチン耐性株ゲノム DNA 上の siRNA 発現カセットの単離

本実施例第2項で得られたレクチン耐性株に対し、以下のようにしてゲノム DNA より si RNA 発現力セットの単離を行った。

レクチン耐性クローンを、公知の方法 [Gene Targeting, Oxford University Press, (1993)] に従って接着細胞用平底プレート (Greiner 社製) へ採取し、ピューロマイシン (SIGMA 社製) を  $12\mu$ g/mL の濃度で含む基本培地を用いて 5%CO $_2$ インキュベーター内で 37  $^{\circ}$ C、1 週間培養した。

培養後、上記プレートの各クローンに対しトリプシン処理を行い、2 枚の接着細胞用平底 96 穴プレート (Greiner 社製) へ播種した。このうち 1 枚のプレートをレプリカプレートとする一方、残りの 1 枚のプレートをマスタープレートとして凍結保存した。レプリカプレートは、ビューロマイシン (SIGMA 社製) を 12 μg/mL の濃度で含む基本培地を用いて 5%CO₂ インキュベーター内で 37℃、1 週間培養した後、公知の方法 [Analytical Biochemistry, 201, 331 (1992)] に従って各クローンのゲノム DNA を調製し、各々30 μL の TE-RNase 緩衝液 (pH8.0) [10mmo1/L Tris-HCl、1mmo1/L EDTA、200 μg/mL RNase A] に一晩溶解した後、DNA 濃度が 0.05 μg/μL の濃度となるように滅菌水で希釈した。

また、FUT8 を標的とした siRNA 発現プラスミド FUT8shRNAlib/pPUR の、siRNA 発現カセットの tRNA-val プロモーター領域の上流に結合するフォワードプライマー (配列番号 33) および siRNA 発現カセットのターミネーター配列の下流に結合するリバースプライマー(配列番号 34) をそれぞれ設計した。

KOD polymerase (東洋紡績社製)を用いて、上記で調製した各クローンのゲノム DNA を鋳型とした PCR を行った。PCR は、各クローンについて、上記のゲノム DNA 溶液を  $5\mu$ L 含む  $50\mu$ L の反応液 [KOD Buffer1 (東洋紡績社製)、0.2 mmol/L dNTPs、1 mmol/L MgCl<sub>2</sub>、 $0.4 \mu$ mol/L 上記プライマー (配列番号 33 および配列番号 34) ]を調製し、94 Cで 1 分間の加熱の後、97 Cで 10 秒間、68 C

PCR後、該反応液をアガロースゲル電気泳動に供し、siRNA発現力セットを含む約300bpの増幅断片を回収した。

一方、プラスミド pPUR(CLONTECH 社製) を制限酵素 PvuII (New England Biolabs 社製)を用いて 37℃で一晩消化反応を行った。消化反応後、該反応液をアガロースゲル電気泳動に供し、

約 4.3Kb の <u>Pvu</u>II 断片を回収した。

上記で得られた約 300bp の 増幅断片を、 Ligation High(東洋紡績社製)を用いてプラスミド pPUR 由来の約 4.3Kb の PvuII 断片と、制限酵素 PvuII 共存下において連結反応を行い、該反応液を用いて大腸菌 DH5  $\alpha$ 株を形質転換した。得られた複数のアンピシリン耐性コロニーから、QIAprep spin Mini prep Kit (QIAGEN 社製)を用いて、それぞれプラスミド DNA を単離した。

- (2) siRNA 発現ユニットに含まれる標的配列の解析
- 本項(1)で得られたプラスミド中の siRNA 発現力セットに含まれる FUT8 に対する標的配列の解析を行った。

まず、本項(1)で得られた各プラスミド DNA に挿入された siRNA 発現カセットの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析した。決定した159クローンの塩基配列のうち、FUT8 に対する標的配列について、CHO 細胞 FUT8 cDNA 配列(配列番号1)との相同性を比較し、配列番号1に示される塩基配列における各標的配列の分布および各標的配列の配列番号1に示される塩基配列における開始点および終止点を第1図に示した。

第1表

| グローン音    | 母的配列       | 學的配列        | 學的配到     |
|----------|------------|-------------|----------|
| 북        | 点戗阻        | 禁止点         | 長さ9点     |
| 1        | 1          | 19          | 19       |
| 2        | 1          | 20          | 20       |
| 3        | 1          | 22          | 22       |
| 4        | 2          | 31          | 30       |
| S        | S.         | 30          | 28       |
| 8        | 29         | 53          | 25       |
| 1        | 39         | 60          | 28       |
| 8        | 35         | 62          | 20       |
| 10       | 78         | 103         | 28       |
|          | 78         | 103         | 28       |
| 11       | 83         | 112         | 26       |
| 13       | 95 .       |             | 28       |
| 14       | 96         | 120         | 29       |
| 15       | 97         | 121         | 25       |
| 18       | 103        | 133         | 25       |
| 17       | 121        | 146         | 28       |
| 18       | 144        | 170         | 27       |
| 19       | 140        | 174         | 27       |
| 20       | 150        | 174         | 25       |
| 21       | 175        | 280         | 26 -     |
| 22       | 218        | 242         | 27       |
| 23       | 221        | 250         | 40       |
| 24       | 230        | 255_        | 27       |
| 25       | 245_       | 267         | 23       |
| 28       | 269        | 295         | 29       |
| 27       | 275        | 300         | 26       |
| 28       | 275        | 306         | 31       |
| 29       | 278        | 308         | 31       |
| 30       | 276        | 305         | 28       |
| 31<br>32 | 203        | 308         | 26       |
| 33       | 302        | 326         | 25       |
| 34       | 330        | 351         | 32       |
| 35       | 334        | 350         | 26       |
| 35       | 372        | 398         | 27       |
| 37       | 401        | 428         | 20 -     |
| 38       | 534        | 553         | 30       |
| 39       | 534        | 262         | 33       |
| 40       | 535        | 583         | 28       |
| 41       | 532        | 565         | 27       |
| 42       | 543        | 557         | 25       |
| 43       | 543        | 570         | 28       |
| 44       | 545        | 539         | 25       |
| 45       | 501        | 569         | 29       |
| 46       | 567        | 539         | 23       |
| 47 .     | 503        | 629         | 27       |
|          | 608        | 540         | 33       |
| 49       | 542        | 660         | 19       |
| 51       | 542<br>542 | 6 <u>63</u> | 22<br>29 |
| 52       | 650        | 679         | 30       |
| 53       | 663        | .633        | 27       |
| 24       | 832        | 703         | 27       |
| šš       | 710        | 738         | 27       |
| 5.65     | 711        | 741         | 31       |
| 57       | 713        | 740         | 23       |
| 58       | 774        | 601         | 28       |
| 59       | 789        | 616         | 28       |
| 80       | 202        | 635         | 35       |

| クローン番        | 學的配列       | 原的配列       | 即的配列  |
|--------------|------------|------------|-------|
| <del>5</del> | 点线阻        | <b>我止点</b> | 長さ(年) |
| 61<br>62     | 824        | 850        | 29    |
|              | 824        | 352        | 31    |
| 63           | 624        | 854        |       |
| <u>84</u>    | 824        | 858        | 32    |
|              | Ø27        |            | 25    |
| 50<br>57     | 828        | 858        | 25    |
| 68           | 834<br>834 | 858        | 25    |
| 66           | 634        | 880        | 27    |
| 70           | 880        | 908        | 27    |
| 71           | 605        | 913        | 28    |
| 72           | 890        | 926        | 29    |
| 73           | 900        | 922        | 23    |
| 74           | 909        | 930        | 26    |
| 75           | 907        | 334        | 28    |
| 76           | 012        | 937        | 26    |
| 77           | 917        | 348        | 30    |
| 78           | 932        | 952        | 21    |
| 70           | 950        | 856        | 19    |
| 60           | 988        | 1013       | 28    |
| 81           | 660        | 1019       | 30    |
| 82           | 1015       | 1042       | 28    |
| 83           | 1022       | 1049       | 28    |
| <b>G</b> 4   | 1048       | 1071       | 26    |
| 85           | 1052       | 1069       | 23    |
| 85           | 1073       | 1102       | 20    |
| 87           | 1005       | 1124       | 30    |
| 48           | 1112       | 1137       | 28    |
| -99          | 1122       | 1145       | 24    |
| 91           | 1133       | 1159       | 32    |
| 92           | 1149       | 1132       | 26    |
| 69           | 1150       | 1181       | 32    |
| 94           | 1157       | 1181       | 25    |
| 95           | 1156       | 1131       | 26    |
| 95           | 1160       | 1207       | 28 '  |
| 67           | 1211       | 1237       | 27    |
| 98           | 1254       | 1276       | 25    |
| 89           | 1340       | 1365       | 26    |
| 100          | 1340       | 1370       | 31    |
| 101          | 1416       | 1445       | 20    |
| 102          | 1422       | 1448       | 27    |
| 103          | 1425       | 1453       | 29    |
| 104          | 1423       | 1489 .     | 33    |
| 105          | 1441       | 1468       | 28    |
| 105          | 1451       | 1480       | 30    |
| 107          | 1463       | 1461       | 20    |
| 103          | 1464       | 1489       | 25    |
| 109          | 1465       | 1490       | 26    |
| 110          | 1498       | 1517       | 20    |
| 112          | 1499       | 1517       | 28    |
| 113          | 1501       | 1534       | 34    |
| 113          | 1502       | 1529       | 28    |
| 115          | 1504       | 1529       | 26    |
| 116          | 1504       | 1520       | 27    |
| 117          | 1504       | 1534       | 31    |
| 112          | 1508       | 1526       | 19    |
| 116          | 1532       | 1597       | 28    |
|              |            |            |       |

| クローン母・ | 學的配列   | 存的配列 | <b>建的配到</b> |
|--------|--------|------|-------------|
| - 号    | 開始点    | 新止点  | 長さ(bp)      |
| 121    | 1555   | 1578 | 24          |
| 122    | 1584   | 1612 | 29          |
| 123    | 1568   | 1515 | 28          |
| 124    | 1591   | 1615 | 25          |
| 125    | 1591   | 1619 | 29          |
| 128    | 1602   | 1623 | 29          |
| 127    | 1602   | 1920 | 28          |
| 128    | 1510   | 1637 | 23          |
| 120    | 1613   | 1637 | 25          |
| 130    | 1519   | 1645 | 27          |
| 131    | 1522   | 1647 | 26          |
| 132    | 1530   | 1707 | 26          |
| 133    | 1687   | 1713 | 27          |
| 134    | 1729   | 1745 | 18          |
| 139    | 1730   | 1748 | 17          |
| 138    | 1730   | 1746 | 17          |
| 137    | 1744   | 1756 | 19          |
| 138    | 1744   | 1768 | 25          |
| 130    | 1744   | 1773 | 30          |
| 140    | 1789   | 1796 | 32          |
| 141    | 1785   | 1811 | 26.         |
| 142    | 1021   | 1630 | 10          |
| 143    | 1821   | 1842 | 22          |
| 144    | 1621   | 1644 | 24          |
| 145    | 1853   | 1860 | 28          |
| 146    | 1927   | 1951 | 25          |
| 147    | 1940   | 1955 | 26          |
| 148    | 1948   | 1984 | 37          |
| 149    | 1049   | 1976 | 26          |
| 150    | 1951   | 1979 | 29          |
| 151    | 1057   | 1982 | 26          |
| 152    | 1957   | 1902 | 26          |
| 193    | 1953   | 1937 | 25          |
| 154    | 1963   | 1980 | 27          |
| 155    | 1953   | 1990 | 26          |
| 156    | 1964   | 1987 | 24          |
| 157    | 1955 . | 1880 | 26          |
| 156    | 1974   | 2000 | 27          |
| 159    | 1978   | 2008 | <b>3</b> 1  |

159 クローンの標的配列のうち、代表的であった領域を図中の A から J で示した。A から J の領域に対応する FUT8 の塩基配列は、それぞれ領域 A は配列番号 9、領域 B は配列番号 10、 領域 C は配列番号 11、領域 D は配列番号 18、領域 E は配列番号 12、領域 F は配列番号 17、領 域 G は配列番号 13、領域 H は配列番号 14、領域 I は配列番号 15、領域 J は配列番号 16 にそれ ぞれ示した。尚、本項(1)で得た各プラスミドのうち、配列番号 9 に含まれる配列を標的配列 とする siRNA 発現プラスミドを以下 FUT8shRNA/lib1/pPUR、配列番号 10 に含まれる配列を標的 配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib2/pPUR、配列番号 11 に含まれる配列を 標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib3/pPUR、配列番号 12 に含まれる配 列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib4/pPUR、配列番号 13 に含まれ る配列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib5/pPUR、配列番号 14 に含 まれる配列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib6/pPUR、配列番号 15 に含まれる配列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib7/pPUR、配列番 号 16 に含まれる配列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib8/pPUR、配 列番号17に含まれる配列を標的配列とするsiRNA発現プラスミドを以下FUT8shRNA/lib9/pPUR、 配列番号 18 に含まれる配列を標的配列とする siRNA 発現プラスミドを以下 FUT8shRNA/lib10/pPUR とそれぞれ称す。

- (3) si RNA 発現ユニットに含まれる標的配列のマウス、ラットおよびヒトのホモログ配列の 検索
- 本項(2)で得られた配列番号 9~18 で示され他領域に相当する配列をマウス、ラットおよびヒトの FUT8 の配列中から、以下のようにして検索した。

配列番号 2 はマウスの FUT8 を、配列番号 3 はラットの FUT8 を、配列番号 4 はヒトの FUT8 の配列をそれぞれ示す。該配列中より、本項(2)で得られた配列番号  $9\sim18$  で示される標的配列に相当する配列を検索した。このとき、配列番号  $9\sim18$  で示される標的配列と完全に一致する配列は除外した。

以下に、選択した配列の配列番号をそれぞれ示す。配列番号 10 に対応するマウス FUT8 の配列は配列番号 19、配列番号 10 に対応するヒト FUT8 の配列は配列番号 20、配列番号 11 に対応するヒト FUT8 の配列は配列番号 21、配列番号 12 に対応するヒト、マウスおよびラット FUT8 の配列は配列番号 22、配列番号 13 に対応するマウス FUT8 の配列は配列番号 23、配列番号 13 に対応するヒト FUT8 の配列は配列番号 24、配列番号 13 に対応するラット FUT8 の配列は配列

番号 25、配列番号 14 に対応するマウスおよびラット FUT8 の配列は配列番号 26、配列番号 14 に対応するヒト FUT8 の配列は配列番号 27、配列番号 15 に対応するマウス FUT8 の配列は配列番号 28、配列番号 15 に対応するヒト FUT8 の配列は配列番号 29、配列番号 17 に対応するラット FUT8 の配列は配列番号 30 にそれぞれ示した。

#### (実施例2)

FUT8 を標的とした siRNA 発現プラスミド導入によるレクチン耐性 CHO/DG44 細胞の作製と該細胞の FUT8 mRNA 量の定量

1. FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株の取得

実施例1第3項(1)において得られた siRNA 発現プラスミド FUT8shRNA/lib1/pPUR、FUT8shRNA/lib2/pPUR、FUT8shRNA/lib3/pPUR、FUT8shRNA/lib4/pPUR、FUT8shRNA/lib5/pPUR、FUT8shRNA/lib6/pPUR、FUT8shRNA/lib6/pPUR、FUT8shRNA/lib7/pPUR、FUT8shRNA/lib8/pPUR、FUT8shRNA/lib9/pPUR および FUT8shRNA/lib10/pPUR を、それぞれ以下のようにして参考例に記載の 32-05-12 株へ導入し、LCA 耐性株を取得した。

上記の各 siRNA 発現プラスミドを、制限酵素 Fspl (New England Biolabs 社製)で消化して線状化し、線状化した 10μg の各 siRNA 発現プラスミドを 1.6×10°個の 32-05-12 株へエレクトロボレーション法 [Cytotechnology, 3, 133 (1990)] により導入した後、基本培地[10% ウシ胎児透析血清 (Invitrogen 社製)、50μg/mL ゲンタマイシン (ナカライテスク社製)、および 500nmol/L MTX (SIGMA 社製)を含む IMDM (Invitrogen 社製)] に懸濁し、接着細胞培養用 10cm ディッシュ (Falcon 社製) 4 枚へ 8mL ずつ播種した。5%CO2インキュベーター内で 37°C、24 時間培養後、ピューロマイシン (SIGMA 社製)を 12μg/mL の濃度で含む基本培地 8mL に培地交換した。5%CO2インキュベーター内で 37°C、7 日間培養した後、ピューロマイシン (SIGMA 社製)を 12μg/mL の濃度で含む基本培地 8mL に培地交換し、さらに 6~8 日間の培養を行い、レクチン耐性クローンを取得した。さらに 6~8 日間の培養を行い、レクチン耐性株を 12-1ib1、siRNA 発現プラスミド FUT8shRNA/1ib1/pPUR を導入したレクチン耐性株を 12-1ib2、siRNA 発現プラスミド FUT8shRNA/1ib3/pPUR を導入したレクチン耐性株を 12-1ib3、siRNA 発現プラスミド FUT8shRNA/1ib3/pPUR を導入したレクチン耐性株を 12-1ib4、siRNA 発現プラスミド

FUT8shRNA/lib5/pPUR を導入したレクチン耐性株を 12-lib5、siRNA 発現プラスミド FUT8shRNA/lib6/pPUR を導入したレクチン耐性株を 12-lib6、siRNA 発現プラスミド FUT8shRNA/lib7/pPUR を導入したレクチン耐性株を 12-lib7、siRNA 発現プラスミド FUT8shRNA/lib8/pPUR を導入したレクチン耐性株を 12-lib8、siRNA 発現プラスミド FUT8shRNA/lib9/pPUR を導入したレクチン耐性株を 12-lib9、siRNA 発現プラスミド FUT8shRNA/lib10/pPUR を導入したレクチン耐性株を 12-lib1、siRNA 発現プラスミド FUT8shRNA/lib10/pPUR を導入したレクチン耐性株を 12-lib1 とそれぞれ称す。

2. FUT8 を標的とした si RNA 発現プラスミドを導入したレクチン耐性株における FUT8 の mRNA 量の定量

本実施例第1項で得られたレクチン耐性株 12-lib1、12-lib2、12-lib3、12-lib4、12-lib5、12-lib6、12-lib7、12-lib8、12-lib9、12-lib10、および該レクチン耐性株の親株である 32-05-12 株に対し、FUT8 の mRNA 量の定量を行った。

上記レクチン耐性株をそれぞれ、ビューロマイシン(SIGMA 社製)を  $12\mu$ g/mL の濃度で含む基本培地[10% ウシ胎児透析血清 (Invitrogen 社製)、 $50\mu$ g/mL ゲンタマイシン(ナカライテスク社製)、および 500nmol/L MTX(SIGMA 社製)を含む Iscove's Modified Dulbecco's Medium (Invitrogen 社製)]に  $3\times10^5$  個/mL の細胞密度で懸濁し、接着細胞用 T25 フラスコ(Greiner 社製)に播種して  $5\%00_2$  インキュベーター内で 37%、3 日間培養した後、トリプシン処理を施した。トリプシン処理により得られた各細胞懸濁液を 3000rpm、4%の条件で 5%0 の遠心分離を行って上清を除去し、ダルベッコ PBS 緩衝液 (Invitrogen 社製)に懸濁した。再度 3000rpm、4%0の条件で 5%1 の遠心分離を行って上清を除去し、ダルベッコ PBS 緩衝液 (Invitrogen 社製)に懸濁した。再度 3000rpm、4%0の条件で 5%1 の遠心分離を 2 回行った後、-80%0 で凍結した。また、親株である 32-05-12 株についても、ビューロマイシンを含まない基本培地を用いて同様に培養を行い、細胞を回収した。

上記で得られた各細胞を室温で融解後、RNAeasy (QIAGEN 社製) を使用し、添付の説明書に従い、全 RNA を抽出した。得られた全 RNA を  $45 \mu$ L の滅菌水に溶解し、DNase 処理を行い、各試料中に混入したゲノム DNA を分解した。反応後、RNAeasy (QIAGEN 社製) により各全 RNA を再精製し、 $40 \mu$ L の滅菌水に溶解した。

得られた各全 RNA3μg に対し、SUPERSCRIPT™ Preamplification System for First Strand cDNA Synthesis (Invitrogen 社製) を用いて添付の説明書に従い、オリゴ(dT) プライマーを用いて逆転写反応を行うことにより、1本鎖 cDNA を合成した。

競合的 PCR による FUT8 遺伝子の転写量およびβ-アクチン遺伝子の転写量の定量を、以下の

ように行った。

上記の 1 本鎖 cDNA を含む該反応液を滅菌水にて 50 倍に希釈した水溶液を、各々使用するまで-80℃で保管した。W000/61739 実施例 8 に記載の方法に従い、各細胞株由来全 cDNA を鋳型とした競合的 PCR を実施し、各細胞株由来全 RNA 中の FUT8 の mRNA 量および $\beta$ -アクチンの mRNA 量を測定した。異なる細胞間で $\beta$ -アクチン mRNA 量は均一であると考え、 $\beta$ -アクチンの mRNA 量に対する FUT8 の mRNA 量の相対値を算出した結果、FUT8 を標的とした siRNA 発現プラスミド 導入により得られたレクチン耐性株では親株と比較して FUT8 の mRNA 量が低下していた。

#### (実施例3)

FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株の取得と該細胞を用いた 抗体組成物の生産

- 1. FUT8 を標的とした si RNA 発現プラスミドを導入したレクチン耐性株の取得および培養
- (1) FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株の取得

実施例2第2項において得られたレクチン耐性株は、該細胞株を取得する際に、導入した siRNA 発現プラスミドの標的配列毎に耐性株の出現頻度に差が認められた。そこで、耐性株の 出現頻度が高い標的配列について、詳細な解析をするために以下の検討を行った。

実施例1第3項(1)において得られた FUT8 に対する siRNA の標的配列から、配列番号10に示される31塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib2/pPUR、配列番号10に含まれる5'末端側の26塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib2B/pPUR、配列番号11に示される33塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib3/pPUR、配列番号12に含まれる34塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib4/pPUR、配列番号12に含まれる28塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib4/pPUR、配列番号14に含まれる28塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib6/pPUR、配列番号16に含まれる26塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib8/pPUR、配列番号17に示される34塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib8/pPUR、配列番号17に示される34塩基を標的配列とする siRNA の発現プラスミド FUT8shRNA/lib9/pPUR をそれぞれ実施例1第3項(1)に記載の方法に従って参考例に記載の32-05-12株へ導入し、LCA 耐性株を取得した。

(2) レクチン (LCA) 耐性株の拡大培養

本項(1)において得られた LCA 耐性株を以下の手順で拡大培養した。

出現したレクチン耐性コロニーを、実体顕微鏡観察下にてピペットマン(GILSON 社製)を用いて掻き取って吸い込み、接着細胞用 U 底 96 穴プレート(旭テクノグラス社製)へ採取した。トリプシン処理を行なった後、接着細胞用平底 96 穴プレート(Greiner 社製)へ各クローンを播種し、ピューロマイシン (SIGMA 社)を  $12\mu g/mL$  の濃度で含む基本培地を用いて  $5\%CO_2$ 、 $37^{\circ}C$  の条件下で一週間培養した。培養後、各 siRNA 発現プラスミドあたり 5 クローンについて、ピューロマイシン(SIGMA 社製)を  $12\mu g/mL$  の濃度で含む基本培地を用いて拡大培養を行なった。

拡大培養に供した細胞株について、FUT8shRNA/lib2/pPUR を導入したレクチン耐性株を 12-lib2-1、12-lib2-2、12-lib2-3、12-lib2-4、12-lib2-5と、FUT8shRNA/lib2B/pPUR を導入したレクチン耐性株を 12-lib2B-1、12-lib2B-2、12-lib2B-3、12-lib2B-4、12-lib2B-5と、FUT8shRNA/lib3/pPUR を導入したレクチン耐性株を 12-lib3-1、12-lib3-2、12-lib3-3、 12-lib3-4、12-lib3-5と、FUT8shRNA/lib4/pPUR を導入したレクチン耐性株を 12-lib4-1、 12-lib4-2、12-lib4-3、12-lib4-4、12-lib4-5と、FUT8shRNA/lib6/pPUR を導入したレクチン耐性株を 12-lib4-1、12-lib4-1、12-lib6-1、12-lib6-2、12-lib6-3、12-lib6-4、12-lib6-5と、FUT8shRNA/lib8/pPUR を導入したレクチン耐性株を 12-lib8-1、12-lib8-2、12-lib8-3、12-lib8-4、12-lib8-5と、FUT8shRNA/lib9/pPUR を導入したレクチン耐性株を 12-lib8-1、12-lib8-2、12-lib8-3、12-lib8-4、12-lib8-5と、FUT8shRNA/lib9/pPUR を導入したレクチン耐性株を 12-lib8-1、12-lib8-1、12-lib9-1、12-lib9-2、12-lib9-3、12-lib9-4、12-lib9-5と、それぞれ命名し、後述の本実施例第 2 項の解析に供した。 尚、12-lib2B-4 株および 12-lib3-5 株は、平成 16 年 7 月 1 日付けで独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東 1 丁目 1 番地 1 中央第 6 )に FERM BP-10052 および FERM BP-10053 としてそれぞれ寄託されている。

2. FUT8 を標的とした siRNA 発現ベクターを導入したレクチン耐性株における FUT8 mRNA 量の 定量

#### (1) 全 RNA の調製

本実施例第1項で得られた FUT8 を標的とした siRNA 発現ベクターを導入したレクチン耐性株および該レクチン耐性株の親株である 32-05-12 株からの全 RNA 調製、並びに1本鎖 cDNA の合成は実施例 2 第2項に記載の方法に従って行なった。尚、培養は接着細胞用 6 cm ディッシュ(ファルコン社製)で行い、調製した全 RNA は  $40\mu$ L の滅菌水に溶解した。

## (2) SYBR-PCR による FUT8 遺伝子転写量の定量

FUT8 遺伝子由来のmRNA 転写量の定量およびβ-アクチン遺伝子由来のmRNA 転写量の定量は、 以下の手順で行なった。なお、FUT8 定量の内部コントロールとしては、W002/31140 実施例 9

記載の FUT8 スタンダードプラスミドを  $0.0512 \ fg/\mu L$ 、 $0.256 \ fg/\mu L$ 、 $1.28 \ fg/\mu L$ 、 $6.4 \ fg/\mu L$ 、 $32 \ fg/\mu L$ 、 $160 \ fg/\mu L$  の濃度に希釈したものを、 $\beta$ -アクチン定量の内部コントロール としては、W002/31140 実施例 9 記載の $\beta$ -アクチンスタンダードプラスミドを  $1.28 \ fg/\mu L$ 、 $6.4 \ fg/\mu L$ 、 $32 \ fg/\mu L$ 、 $160 \ fg/\mu L$ 、 $800 \ fg/\mu L$ 、 $4000 \ fg/\mu L$  の濃度に希釈したものそれぞれ を使用した。また、PCR プライマーとしては、FUT8 の増幅には配列番号  $36 \ c$ に示すフォワード プライマーおよび配列番号  $37 \ c$ に示すリバースプライマーを、 $\beta$ -アクチンの増幅には配列番号  $38 \ c$ に示すフォワードプライマーおよび配列番号  $39 \ c$ に示すリバースプライマーをそれぞれ 使用した。

For Real Time PCR TaKaRa Ex Taq R-PCR Version(タカラバイオ社製)を用いて、本項(1)で合成し滅菌水で 50 倍希釈した 1 本鎖 cDNA 溶液あるいは各濃度の内部コントロールプラスミド溶液を各々5μL 含む 20μL の反応液[R-PCR buffer(タカラバイオ社製)、2.5mM Mg²+ Solution for R-PCR(タカラバイオ社製)、0.3μM フォワードプライマー、0.3μMリバースプライマー、2×10-5倍に希釈した SYBR GreenI(タカラバイオ社製)、1単位 TaKaRa Ex Taq R-PCR]を調製した。調製した反応液を 96-well Polypropylene PCR reaction Plate(ファルコン社製)の各ウェルへ分注し、Plate Sealer(Edge Biosystems)を用いてプレートをシールした。PCR 反応および解析には、ABI PRISM 7700 Sequence Detection System を用い、添付マニュアルに従って FUT8 の mRNA 量およびβ-アクチンの mRNA 量の測定を行なった。

内部コントロールプラスミドでの測定結果から検量線を作成し、FUT8 の mRNA 量および $\beta$ -アクチンの mRNA 量を数値化した。さらに、細胞株間において、 $\beta$ -アクチンの mRNA 転写量は 均一であるものと考え、 $\beta$ -アクチンの mRNA 量に対する FUT8 の mRNA 量の相対値を算出し、その値を比較した結果を第 2 図に示した。FUT8 を標的とした si RNA 発現プラスミド導入により得られた細胞株ではいずれも、親株と比較して最大約 5%まで FUT8 mRNA 量が低下していた。

siRNA 発現ベクター導入により得られた細胞株のうち、12-lib2-3 株、12-lib2B-4 株、12-lib3-5 株、12-lib4-1 株、12-lib6-3 株、12-lib8-4 株、12-lib9-1 株について、以下の第3項の解析に供した。

- 3. FUT8 を標的とした siRNA 発現ベクターを導入したレクチン耐性株による抗体組成物の製造 および抗体組成物の単糖組成分析
- (1) 抗体組成物の製造

本実施例第1項において取得した FUT8 を標的とした siRNA 発現ベクター導入レクチン耐性株である 12-lib2-3 株、12-lib2B-4 株、12-lib3-5 株、12-lib4-1 株、12-lib6-3 株、12-lib8-4 株、12-lib9-1 株および該レクチン耐性株の親株である 32-05-12 株をそれぞれ用いて、以下の手順で抗体組成物を製造した。

32-05-12 株は基本培地、si RNA 発現ベクター導入レクチン耐性株はピューロマイシン (SIGMA 社製)を12μg/mL の濃度で含む基本培地を用いて、それぞれ 3×10<sup>5</sup>cells/mL の細胞密度で懸濁し、接着細胞用 T182 フラスコ (グライナー社製)に 25mL ずつ播種した。5%CO₂、37℃の条件下で 5 日間培養後、培養上清を除去し、20mL のダルベッコ PBS(インビトロジェン社製)で 2 回洗浄を行なった後、EXCELL301 培地(JRH Bioscience 社製)を 50mL 注入した。5%CO₂、37℃の条件下で 7 日間培養後、培養上清を回収し、MabSelect(アマシャムバイオサイエンス社製)カラムを用いて、添付の説明書に従って、抗体組成物を精製した。

#### (2) 抗体組成物の単糖組成分析

本項(1)で得られた抗体に対し、公知の方法 [Journal of liquid Chromatography, <u>6</u>, 1577 (1983)] に従って、単糖組成分析を行なった。

各抗体の単糖組成比より計算される、全複合型糖鎖に占めるフコースを持たない複合型糖鎖 の割合を第2表に示した。

第2表

| 細胞株名       | フコースを持たな<br>い糖鎖の割合 |  |
|------------|--------------------|--|
| 32-05-12   | 9%                 |  |
| 12-lib2B-4 | 79%                |  |
| 12-lib2-3  | 75%                |  |
| 12-lib3-5  | <b>72</b> %        |  |
| 12-lib4-1  | 58%                |  |
| 12-lib6-3  | <b>52</b> %        |  |
| 12-lib8-4  | <b>72</b> %        |  |
| 12-lib9-1  | 30%                |  |

親株である 32-05-12 株の生産する抗体のフコースを持たない糖鎖の割合が 9%であったのに対し、FUT8 を標的とした siRNA 導入レクチン耐性株が生産する抗体のフコースを持たない糖鎖の割合は 30~79%に上昇しており、FUT8 を標的とした siRNA 発現ベクター

FUT8shRNA/lib6/pPUR、FUT8shRNA/lib8/pPUR、あるいは FUT8shRNA/lib9/pPUR の導入により、宿主細胞の生産する抗体の複合型糖鎖への $\alpha$ 1,6-フコース付加を抑制する効果が得られることが示された。尚、実施例 1 第 3 項(1)において得た他の si RNA 分子の発現プラスミドを用いて同様の試験を行なった場合にも、同様の効果が得られた。

### (実施例4)

FUT8 を標的とした有効 siRNA の異なる siRNA 発現システムでの RNAi 活性の比較

1. FUT8 を標的としたヒト U6 プロモーターを用いたショートへアピン型 siRNA 発現ベクターの構築

配列番号 10 に含まれる配列を標的配列とする siRNA および配列番号 18 に示される配列を標的配列として含む siRNA について、以下の手順でヒト U6 プロモーターを用いたショートへアピン型 siRNA 発現ベクターを構築した。

(1) ヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現力セットのクローニング

以下の手順で、ヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現力セットを取得した(第3図)。

まず、ヒト U6 プロモーター配列[GenBank,M14486]に結合する塩基配列の 5'末端に制限酵素 HindIII 及び EcoRV の認識配列を付加したフォワードプライマー (以下 hU6p-F-Hind3/EcoRV と称し、配列番号 39 に示す) および、ヒト U6 プロモーター配列に結合する塩基配列の 5'末端に、制限酵素 XbaI 及び EcoRV の認識配列、ターミネーター配列に相当する連続した 6 塩基のアデニン、さらに後の合成オリゴ DNA 挿入のための制限酵素 KpnI 及び SacI の認識配列を付加したリバースプライマー(以下 hU6p-R-term-Xba1/EcoRV と称し、配列番号 40 に示す)をそれぞれ設計した。

次に、KOD polymerase (東洋紡績社製)を用いて、鋳型として WOO3/85118 実施例 12 記載の U6\_FUT8\_B\_puro を 40ng 含む 50μL の反応液[KOD buffer#1 (東洋紡績社製)、0.1mM dNTPs、1mM MgC1₂、0.4μM hU6p-F-Hind3/EcoRV プライマー、0.4μM hU6p-R-term-Xba1/EcoRV プライマー] を調製し、PCR を行った。PCR は、94℃で 2 分間の加熱の後、94℃で 15 秒間、65℃で 5 秒間、74℃で 30 秒間からなる反応を 1 サイクルとして 30 サイクル行った。

PCR後、該反応液をアガロースゲル電気泳動に供し、約300bp の増幅断片を回収した。該DNA 断片を制限酵素 XbaI (New England Biolabs 社製)および制限酵素 HindIII (New England Biolabs 社製) を用いて37℃で2時間消化反応を行った。反応終了後、該反応液に対してフェノール/クロロホルム抽出処理およびエタノール沈澱を行った。

一方、プラスミド pBluescriptII KS(+)(STRATAGENE 社製) を制限酵素 <u>Hin</u>dIII および <u>Xba</u>I(New England Biolabs 社製) を Alkaline Phosphatase <u>E. coli</u> C75(タカラバイオ社製) を用いて、37℃で 1 時間脱リン酸化反応を行った。反応後、該反応液をアガロースゲル電気泳動に供し、プラスミド pBluescriptII KS(+)由来の約 2.9Kb の <u>Hin</u>dIII-XbaI 断片を回収した。

上記で得られた約 300bp の PCR 増幅断片を、 Ligation High(東洋紡社製) を用いてプラスミド pBluescriptII KS(+)由来の約 2.9kbp の HindIII-XbaI 断片と連結反応を行い、該反応液を用いて大腸菌 DH5 α株(東洋紡績社製)を形質転換し、得られたアンピシリン耐性クローンより QIAprep spin Mini prep Kit (キアゲン社製) を用いてそれぞれプラスミドを単離した。単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、目的のプラスミド pBS-U6term を取得したことを確認した。

(2)ヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現力セットの pPUR への連結

以下の手順で、本項(1)で得られたプラスミド pBS-U6term に含まれるヒト U6 プロモーターークローニングサイト-ターミネーター配列発現力セットを、発現ベクターpPUR へ連結した (第4図)。

まず、本項(1)で作製したプラスミド pBS-U6term を制限酵素 EcoRV (New England Biolabs 社製)を用いて 37 C で 2 時間消化反応を行った。消化反応後、該反応液をアガロースゲル電気 泳動に供し、ヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現力セットを 含む、約 350bp の DNA 断片を回収した。

一方、プラスミド pPUR(CLONTECH 社製) を制限酵素 PvuII(New England Biolabs 社製)を用いて 37  $\mathbb C$  で一晩消化反応を行った。消化反応後、該反応液を Alklaline Phosphatase E. coli C75(タカラバイオ社製) を用いて、37  $\mathbb C$  で 1 時間脱リン酸化反応を行った。反応後、該反応液をアガロースゲル電気泳動に供し、約 4.3 Kb の PvuII 断片を回収した。

上記で得られたヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現カセットを含む約 350bp の DNA 断片を、Ligation High(東洋紡社製)を用いてプラスミド pPUR 由来の約 4.3kb の PvuII 断片と、連結反応を行い、該反応液を用いて大腸菌 DH5 α株(東洋紡績社製)を形質転換した。得られたアンピシリン耐性クローンより QIAprep spin Mini prep Kit (キアゲン社製)を用いて、それぞれプラスミド DNA を単離した。該プラスミド DNA を制限酵素 SacIおよび HindIII (New Bngland Biolabs 社製)を用いて 37℃で 2 時間消化反応を行った。該反応液をアガロースゲル電気泳動に供し、目的とする挿入断片の有無および挿入方向を確認した。さらに、単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、挿入 DNA のうちヒト U6 プロモーター領域の配列が GenBank Acc.No. M14486の配列と一致し、ヒト U6 プロモーター-クローニングサイト-ターミネーター配列発現カセットの増幅に用いたプライマー領域の配列および各連結部の配列に間違いが無いことを確認した。得られたプラスミドのうち、挿入した hU6 プロモーターの方向が、ビューロマイシン耐性遺伝子発現ユニットと同方向であるプラスミドを選択し、以下、該プラスミドを pPUR-U6term と称す。

# (3) 合成オリゴ DNA のプラスミド pPUR-U6term への挿入

以下の手順で、実施例 1 第 3 項(1)において得られた FUT8 に対する RNAi の標的配列のうち、配列番号 10 に含まれる配列を標的配列とする siRNA および配列番号 18 に示される配列を標的配列として含む siRNA を発現させる二本鎖 DNA カセットを形成する合成オリゴ DNA を設計し、本項(2)にて取得した pPUR-U6term のクローニングサイトへの挿入を行った(第 5 図)。 二本鎖 DNA カセットを形成する合成オリゴ DNA の設計は以下の手順で行なった。二本鎖 DNA カセットを形成する合成オリゴ DNA の設計は以下の手順で行なった。二本鎖 DNA カセットは 5'末端から順に、制限酵素 SacI 切断により生じる 3'突出末端、センスコード DNA、ヒト mi R-23-precursor-19 micro RNA(GenBank,AF480558)の 10 塩基のループ配列、アンチセンスコード DNA および制限酵素 KpnI 切断により生じる 3'突出末端を有する。また、該二本鎖 DNA カセットを形成する合成オリゴ DNA の 5'末端はリン酸化した。配列番号 10 に含まれる標的配列について設計した合成オリゴ DNA のセンス鎖(以下、Ft8-dsRNA-B-F と称す)の塩基配列を配列番号 42、アンチセンス鎖(以下、Ft8-dsRNA-B-R と称す)の塩基配列番号 43、配列番号 18 を含む標的配列について設計した合成オリゴ DNA のセンス鎖(以下、Ft8-dsRNA-R-F と称す)の塩基配列を配列番号 44、アンチセンス鎖(以下、Ft8-dsRNA-R-R と称す)の塩基配列を

配列番号 45 にそれぞれ示した。該合成オリゴ DNA の 5'末端はリン酸化したものを以下において用いた。

合成オリゴ DNA のアニーリングを以下の手順で行った。合成オリゴ DNA センス鎖およびアンチセンス鎖各 200pmol を、アニーリングバッファー [10mM Tris(pH7.5)、50mM NaCl、1mM EDTA]  $10\mu$ L に溶解し、2 分間煮沸した。その後、約 3 時間かけて室温まで徐々に冷却し、滅菌水で 15 倍希釈した。

一方、プラスミド pPUR-U6term から、実施例1第3項(1)に記載の方法と同様にして、プラスミド pPUR-U6term 由来の約4.5 Kb の <u>Kpn</u>I-<u>Sac</u>I 断片を回収した。

上記で得た二本鎖合成オリゴ溶液を、Ligation High(東洋紡社製)を用いてプラスミド pPUR-U6term 由来の KpnI-SacI 断片と連結反応を行い、該反応液を用いて大腸菌 DH5  $\alpha$ 株(東洋紡績社製)を形質転換した。得られたアンピシリン耐性クローンについて、QIAprep spin Mini prep Kit (キアゲン社製)を用いてプラスミド DNA を単離した。

単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、挿入された合成オリゴ DNA の配列および連結部に間違いが無いことを確認した。以下、合成オリゴ DNA Ft8-dsRNA-B-F および Ft8-dsRNA-B-R からなる二本鎖 DNA が挿入されたプラスミドを FUT8shB/pPUR、合成オリゴ DNA Ft8-dsRNA-R-F および Ft8-dsRNA-R-R からなる二本鎖 DNA が挿入されたプラスミドを FUT8shR/pPUR と称す。

2. FUT8 を標的としたヒト tRNAval プロモーターを用いたショートへアピン型 siRNA 発現ベクターの構築

配列番号 10 に含まれる配列を標的配列とする siRNA および配列番号 18 に示される配列を標 的配列として含む siRNA について、以下の手順でヒト tRNA プロモーターを用いたショートへ アピン型 siRNA 発現ベクターを構築した。

(1)ヒト tRNAval プロモーター-クローニングサイト-ターミネーター配列発現力セットのクローニング

以下の手順で、ヒト tRNAval プロモーター-クローニングサイト-ターミネーター配列発現力セットを取得した(第6図)。

まず、実施例 1 に記載の siRNA 発現ベクターライブラリーFUT8shRNAlib/pPUR/DH10B より、ヒト tRNAval プロモーター配列取得の鋳型として用いるためのプラスミド DNA を以下の手順で調製した。

siRNA 発現ベクターライブラリーFUT8shRNA1ib/pPUR/DH10B の大腸菌グリセロールストックを適当な濃度に希釈して 100 μg/mL アンピシリンを含む LB 寒天培地に播種した。37℃で一晩培養し、得られたアンピシリン耐性クローンより QIAprep spin Mini prep Kit (キアゲン社製)を用いてプラスミド DNA を単離した。単離したプラスミド DNA を制限酵素 BamHI (New England Biolabs 社製)を用いて 37℃で一晩消化反応を行った。消化反応後、該反応液に対して、フェノール/クロロホルム抽出およびエタノール沈澱を行った。単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析した。以下、本プラスミドを pPUR-tRNAp と称す。

次に、プラスミド pPUR-tRNAp を鋳型とし、human tRNAval promoter 配列に結合するフォワードプライマーの 5'末端に制限酵素 PvuII の認識配列を付加した合成オリゴ DNA(以下、tRNA-PvuII-Fと称し、配列番号 46 に示す)、および、pPUR-tRNAp に結合するリバースプライマーの 5'末端に制限酵素 PvuII の認識配列、ターミネーター配列に相当する連続した 6 塩基のアデニン、さらに合成 DNA 挿入のための制限酵素 KpnI および SacI の認識配列を付加した合成オリゴ DNA(以下、tRNA-PvuII-Rと称し、配列番号 47 に示す)をプライマーとした PCR を行った。 PCR は、KOD polymerase(東洋紡績社製)を用いて、鋳型として pPUR-tRNAp を 50ng 含む50 μ1 の反応液[KOD buffer#1(東洋紡績社製)、0.1mmol/L dNTPs、1mmol/L MgCl。0.4 μmol/L プライマーtRNA-PvuII-F、0.4 μmol/L プライマーtRNA-PvuII-R]を調製し、94℃で 2 分間の加熱の後、94℃で 15 秒間、65℃で 5 秒間、74℃で 30 秒間からなる反応を 1 サイクルとして 30 サイクル行った。反応後、該反応液をアガロースゲル電気泳動に供し、約 200bp の増幅 DNA 断片を回収した。回収液に対しエタノール沈澱を行い、得られた DNA 断片を制限酵素 PvuII (New England Biolabs 社製)を用いて 37℃で 3 時間消化反応を行った。消化反応後、該反応液に対してフェノール/クロロホルム抽出処理およびエタノール沈澱を行った。

一方、pPUR(Clontech 社製)から、本実施例第1項(2)に記載の方法と同様にして、プラスミド pPUR 由来の約4.3Kb の <u>Pvu</u>II 断片を回収した。

上記で得られた約 200bp の DNA 断片を、Ligation High (東洋紡社製)を用いてプラスミド pPUR 由来の約 4.3 Kb の Pvu II 断片と連結反応を行い、該反応液を用いて大腸菌 DH5  $\alpha$ 株 (インビトロジェン社製)を形質転換し、得られたアンピシリン耐性クローンから、QIAprep spin Mini prep Kit (キアゲン社製)を用いてプラスミド DNA を単離した。

単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、挿入された DNA の配列および連結部に間違いが無いことを確認した。以下、本プラスミドを pPUR-tRNAp-term(-)と称す。尚、pPUR-tRNAp-term(-)は、pPUR の PvuII サイトへ tRNAval プロモーター-クローニングサイト-ターミネーター配列発現カセットがピューロマイシン耐性遺伝子発現ユニットと逆の向きに挿入されていた。

## -(2) 合成オリゴ DNA のプラスミド pPUR-tRNAp-term(-)への挿入

以下の手順で、本項(1)にて得られた pPUR-tRNAp-term(-)への、本実施例第1項(3)にて設計した合成オリゴ DNA の挿入を行った(第7図)。

まず、プラスミド pPUR-tRNAp-term(-)を制限酵素 <u>Kpn</u>I および <u>Sac</u>I (New England Biolabs 社製)を用いて 37℃で一晩消化反応を行った。消化反応後、該反応液を Alkaline Phosphatase <u>E. coli</u> C75(タカラバイオ社製)を用いて、37℃で 1 時間脱リン酸化反応を行った。反応後、該反応液をアガロースゲル電気泳動に供し、プラスミド pPUR-tRNAp-term(-)由来の約 4.5 Kb の <u>Kpn</u>I-<u>Sac</u>I 断片を回収した。

本実施例第1項(3)で得られた Ft8-dsRNA-B-F および Ft8-dsRNA-B-R をアニーリングした 二本鎖合成オリゴ溶液または Ft8-dsRNA-R-F および Ft8-dsRNA-R-R をアニーリングした二本鎖合成オリゴ溶液を、 Ligation High(東洋紡社製)を用いてプラスミド pPUR-tRNAp-term(-)由来 の約 4.5~ Kb の Kpn I-Sac I 断片と、連結反応を行い、該反応液を用いて大腸菌 DH5  $\alpha$ 株(インビトロジェン社製)を形質転換した。得られたアンビシリン耐性クローンから、QIAprep spin Mini prep Kit (キアゲン社製)を用いてそれぞれプラスミド DNA を単離した。

単離したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサーABI PRISM 377を用いて解析し、挿入された合成オリゴ DNA の配列および連結部に間違いが無いことを確認した。以下、合成オリゴ DNA Ft8-dsRNA-B-F および Ft8-dsRNA-B-R からなる二本鎖 DNA が挿

入されたプラスミドを tRNA-FUT8shB/pPUR(-)、合成オリゴ DNA Ft8-dsRNA-R-F および Ft8-dsRNA-R-R からなる二本鎖 DNA が挿入されたプラスミドを tRNA-FUT8shR/pPUR(-)と称す。
(3) tRNA promoter-short hairpin型 siRNA 発現ベクター(+)の構築

本項(2)で得られた tRNA-FUT8shB/pPUR(-)および tRNA-FUT8shR/pPUR(-)より、以下の手順で pPUR の PvuII サイトヘヒト tRNAval プロモーター-ショートへアピン RNA-ターミネーター配列発現力セットがピューロマイシン耐性遺伝子発現ユニットと同じ向きに挿入されたヒート tRNA プロモーターを用いたショートへアピン型 siRNA 発現ベクターを構築した(第8図)。

tRNA-FUT8shB/pPUR(-)あるいは tRNA-FUT8shR/pPUR(-)に制限酵素 <u>Pvu</u>II(New England Biolabs 社製)を用いて 37℃で一晩消化反応を行った。消化反応後、該反応液をアガロースゲル電気泳動に供し、約 300bp の DNA 断片を回収した。

一方、pPUR(Clontech 社製)から、本実施例第1項(2)に記載の方法と同様にして、プラスミド pPUR 由来の約 4.3Kb の  $\underline{Pvu}$ II 断片を回収した。

上記で得られた約 300bp の DNA 断片を、Ligation High (東洋紡社製)を用いてプラスミド pPUR 由来の約4.3Kb の $\underline{Pvu}$ II 断片連結反応をい、該反応液を用いて大腸菌 $DH5\alpha$ 株(インビトロジェーン社製)を形質転換した。得られたアンピシリン耐性クローンについて、QIAprep spin Mini prep Kit (キアゲン社製)を用いてプラスミド DNA を単離し、各プラスミド DNA に制限酵素 <u>Hin</u>dIII(New England Biolabs 社製)を用いて 37℃で 2 時間消化反応を行った。消化反応後、 該反応液をアガロースゲル電気泳動に供し、目的とする挿入断片の有無および挿入方向を確認 し、挿入断片のヒト tRNAval プロモーター-ショートへアピン RNA-ターミネーター配列発現力 セットがピューロマイシン耐性遺伝子発現ユニットと同じ向きに挿入されているクローンを 選択した。選択したプラスミドの塩基配列を、BigDye Terminator v3.0 Cycle Sequencing Kit (Applied Biosytems 社製)を用いて添付の説明書に従って、反応後、同社の DNA シーケンサ ーABI PRISM 377 を用いて解析し、該プラスミドの挿入 DNA の配列および各連結部の配列に間 違いが無いことを確認した。以下、tRNA-FUT8shB/pPUR(-)のヒト tRNAval プロモーター-ショ ートへアピン RNA-ターミネーター配列発現力セットを含むプラスミドを tRNA-FUT8shB/pPUR(+)、tRNA-FUT8shR/pPUR(-)のヒト tRNAval プロモーター-ショートヘアピ ン RNA-ターミネーター配列発現カセットを含むプラスミドを tRNA-FUT8shR/pPUR(+)とそれぞ れ称す。

3. FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株の取得および培養

本実施例第1項において構築した FUT8 を標的としたヒト U6 プロモーターを用いたショートヘアピン型 siRNA 発現ベクターFUT8shB/pPUR および FUT8shR/pPUR、本実施例第2項において構築した FUT8 を標的としたヒト tRNAval プロモーターを用いたショートヘアピン型 siRNA 発現ベクターtRNA-FUT8shB/pPUR(+)および tRNA-FUT8shR/pPUR(+)、並びに WOO3/85118 実施例 12 記載の FUT8 を標的としたヒト U6 プロモーターを用いたタンデム型 siRNA 発現ベクター U6\_FUT8\_B\_puro および U6\_FUT8\_R\_puro を、実施例 2 第1項に記載の方法に従って、それぞれ 32-05-12 株へ導入し、LCA 耐性株の取得した。その結果、いずれの siRNA 発現システムを用いた場合にもレクチン耐性株が取得された。

4. FUT8 を標的とした si RNA 発現プラスミドを導入したレクチン耐性株の拡大培養および FUT8 mRNA 発現解析

#### (1) 全 RNA の調製

32-05-12 株および本実施例第3項で得られたレクチン耐性株からの全 RNA 調製、並びに1本鎖 cDNA の合成は、実施例2第2項と同様の手順で行なった。尚、培養は接着細胞用 6cm ディッシュ(ファルコン社製)で行い、調製した全 RNA は 40μL の滅菌水に溶解した。

### (2) SYBR-PCR による FUT8 遺伝子転写量の定量

実施例 3 第 2 項(3)に記載の方法と同様にして、FUT8 遺伝子由来の mRNA 転写量の定量および $\beta$ -アクチン遺伝子由来の mRNA 転写量の定量を行なった。さらに、細胞株間での $\beta$ -アクチン遺伝子由来の mRNA 転写量は均一であると考え、 $\beta$ -アクチン mRNA 量に対する FUT8 mRNA 量の相対値を算出し、その値を比較した結果を第 9 図に示した。

いずれの si RNA 発現システムを用いた場合のレクチン耐性株においても、親株と比較して FUT8 mRNA 量が低下していることが示された。従って、親株をレクチン耐性株へと変換することが可能な FUT8 を標的とした si RNA による RNAi 活性は、いずれの si RNA 発現システムを用いた場合にも認められることが示された。

#### (実施例5).

FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性 CHO/DG44 細胞の無血清フェドバッチ培養

1. FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株の無血清培地への馴化

32-05-12 株、実施例 3 第 1 項で取得した FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株 12-1ib2B-1 株、12-1ib2B-4 株、12-1ib3-4 株、12-1ib3-5 株の無血清培地への馴化を、以下の手順で行なった。

32-05-12 株は基本培地、FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性 株はピューロマイシン(SIGMA 社製)を 12μg/mL の濃度で含む基本培地を用いて、それぞれ 3× 10<sup>5</sup>cells/mL の細胞密度で懸濁し、接着培養用 75cm<sup>2</sup> フラスゴ (グライナー社製) に 15mL ずつ 播種した。5%00、37℃の条件下で3日間培養し、トリプシン処理により各細胞懸濁液を回収 し、懸濁液に対し 1000rpm、5 分間の遠心分離を行なって上清を除去した。32-05-12 株は、 MTX(SIGMA 社製)を 500nmo1/L の濃度で、L-グルタミン(インビトロジェン社製)を 6mmo1/L の濃 度で、3,3,5-Triiodo-L-thyronine(SIGMA社製)を100nmol/Lの濃度で含む EX-CELL302 培地(JRH 社製) (以下、無血清培地と称す) を用いて、FUT8 を標的とした siRNA 発現プラスミドを導入 したレクチン耐性株はピューロマイシン(SIGMA 社製)を 12μg/mL の濃度で含む無血清培地を 用いて、それぞれ回収した細胞を 5×10<sup>5</sup> cells / L の密度で懸濁し、該細胞懸濁液 15 mL を 125 mL 三角フラスコ (コーニング社製) に播種した。培養容器の4倍量以上の5%002を通気してフ ラスコ内の空気を置換した後に密栓し、35℃、90~100rpmにて浮遊旋回培養を行った。3~4 日間隔で継代を繰り返し、最終的には無血清培地で増殖可能な細胞株を取得した。以下、無血 清培地へ馴化した 32-05-12 株を 32-05-12AF、無血清培地へ馴化した 12-1ib2B-1 株を 12-lib2B-1AF、無血清培地へ馴化した 12-lib2B-4 株を 12-lib2B-4AF、無血清培地へ馴化した 12-lib3-4株を12-lib3-4AF、無血清培地へ馴化した12-lib3-5株を12-lib3-5AFと称す。 2. 無血清培地に馴化した FUT8 を標的とした siRNA 発現プラスミドを導入したレクチン耐性株 を用いた無血清フェドバッチ培養

本実施例第1項で無血清培地に馴化した32-05-12AF株、12-1ib2B-1AF株、12-1ib2B-4AF株、12-1ib3-4AF株、および12-1ib3-5AF株を用いて、以下の手順で無血清フェドバッチ培養を行った。

フェドバッチ培養には、MTX(SIGMA 社製)を 500nmol/L の濃度で、L-グルタミン(インビトロジェン社製)を 6mmol/L の濃度で、3,3,5-Triiodo-L-thyronine(SIGMA 社製)を 100nmol/L の濃度で、Pluronic F-68(インビトロジェン社製)を 0.1%の濃度で、D(+)-グルコース(ナカライテスク社製)を 5000mg/L の濃度で含む EX-CELL302 培地 (JRH 社製) (以下、無血清フェドバッチ培養培地と称す)を、フィード用の培地としては、通常の添加濃度よりも高濃度に調製したア

ミノ酸 (L-アラニン 0.177g/L、L-アルギニンー塩酸 0.593g/L、L-アスパラギン一水和物 0.177g/L、L-アスパラギン酸 0.212g/L、L-シスチン二塩酸 0.646g/L、L-グルタミン酸 0.530g/L、L-グルタミン酸 0.530g/L、L-グルタミン 5.84g/L、グリシン 0.212g/L、L-ヒスチジン一塩酸二水和物 0.297g/L、L-イソロイシン 0.742g/L、L-ロイシン 0.742g/L、L-リジン一塩酸 1.031g/L、L-メチオニン 0.212g/L、L-フェニルアラニン 0.466g/L、L-プロリン 0.283g/L、L-セリン 0.297g/L、L-スレオニン 0.671g/L、L-トリプトファン 0.113g/L、L-チロシンニナトリウム三水和物 0.735g/L、L-バリン 0.664g/L)、ビタミン (d-ビオチン 0.0918mg/L、D-パントテン酸カルシウム 0.0283g/L、塩 化コリン 0.0283g/L、葉酸 0.0283g/L、myo-イノシトール 0.0509g/L、ナイアシンアミド 0.0283g/L、ビリドキサール塩酸 0.0283g/L、リボフラビン 0.00283g/L、チアミン塩酸 0.0283g/L、シアノコパラミン 0.0918mg/L)、インシュリン 0.314g/L から構成された培地 (以下、フィード培地と称す)を用いた。

32-05-12AF 株、12-1ib2B-1AF 株、12-1ib2B-4AF 株、12-1ib3-4AF 株、および12-1ib3-5AF 株を、3×10<sup>5</sup>cells/mLの密度で無血清フェドバッチ培養培地に懸濁し、該細胞懸濁液を250mL 三角フラスコ(コーニング社製)に40mL ずつ播種した。培養容器の4倍量以上の5%C0₂を通気してフラスコ内の空気を置換した後に密栓し、35℃、90~100rpm にて浮遊旋回培養を行った。培養開始後3日目、6日目、9日目、12日目に、アミノ酸等の消費量を補う目的でフィード培地を3.3mL添加し、グルコース濃度を制御する目的で20%(w/v)グルコース溶液を終濃度5000mg/Lとなるように添加した。培養開始後0日目、3日目、6日目、9日目、12日目、14日に培養液を2~4mL採取し、生細胞密度と細胞生存率をトリバンブルー染色により、各培養上清中に含まれる抗体濃度を本実施例第3項(1)に記載のELISAによる抗体濃度の定量法によりそれぞれ測定した。培養開始後の各時点における生細胞密度、細胞生存率、および培養上清中の抗体濃度の結果を第10図~第12図に示した。

3. 可溶性ヒト  $Fc\gamma RIIIa$  に対する結合活性を指標とした、還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合していない糖鎖を持つ抗体の定量

本実施例第2項で採取した32-05-12AF 株、12-1ib2B-1AF 株、12-1ib2B-4AF 株、12-1ib3-4AF 株、および12-1ib3-5AF 株の無血清フェドバッチ培養サンプルに含まれる抗 CCR4 キメラ抗体の、還元末端のN-アセチルグルコサミンの6 位にフコースの1 位が $\alpha$ 結合していない糖鎖の割合を、参考例2 に記載の可溶性ヒト $Fc\gammaRIIIa$  (以下、 $shFc\gammaRIIIa$  と表記)に対する結合活性を指標として、以下の手順で測定した。

## (1) ELISA による抗体濃度の定量

培養上清中の抗体濃度の定量は以下の手順で行なった。

1mL の抗ヒト IgG(H+L)抗体 $(American\ Qualex\ American\ Qualex\ Am$ 

anti-humanIgG(H&L)-HRP(American Qualex 社製)を二次抗体として  $50\,\mu$ L ずつ各ウェルに添加した。室温にて  $1\sim2$  時間放置し、0.05%Tween-PBS バッファーで洗浄した後、さらにレジン水により洗浄した。洗浄液の水分を除去した後 0.1%H $_2$ O $_2$  を加えた ABTS 基質液を  $50\,\mu$ L ずつ各ウェルに添加し発色させた。約  $15\,$ 分放置し、適当な発色が得られた時点で 5%SDS 溶液を  $50\,\mu$ L ずつ各ウェルに添加し反応を停止させた。マイクロプレートリーダーを用いて波長  $415\,$ nm の吸収を対照として  $490\,$ nm の吸光度を測定した。各希釈試料の抗体濃度の算出は、標準抗体精製標品を用いた検量線シグモイドカーブの直線領域を使用して行なった。得られた希釈試料の抗体濃度に希釈率を乗じて、培養上清の抗体濃度を算出した。

(2) N-グリコシド結合複合型糖鎖の還元末端の N-アセチルグルコサミンにフコースが結合 していない糖鎖の割合の異なる抗体の調製

参考例 1 に記載の、YB2/0 細胞由来の抗 CCR4 キメラ抗体 KM2760-1、および CHO/DG44 細胞由来の KM3060 を用い、N-グリコシド結合複合型糖鎖の還元末端の N-アセチルグルコサミンにフコースが結合していない糖鎖を有する抗体の割合(以下、抗体組成物の Fucose(-)%と称す)が異なる標準品抗 CCR4 キメラ抗体組成物を調製した。KM2761-1 と KM3060、および両者を混合して調製した 9 サンプルを含む計 11 サンプルの標準品について、実施例 3 第 3 項 (2) に記載の単糖組成分析により抗体組成物の Fucose(-)%を測定したところ、KM2760-1 は 90%、KM3060 は 10%であり、両者を混合して調製した 9 サンプルの標準品はそれぞれ 82%、74%、66%、58%、50%、42%、34%、26%、18%であった。

(3) 抗体の shFcγRIIIa に対する結合活性の評価

参考例 1 第 2 項で作製した抗 CCR4 キメラ抗体が反応する配列番号 35 で示されるアミノ酸配列を有するヒト CCR4 細胞外領域ペプチドの BSA(Bovine Serum Albumin)コンジュゲートを、1 μg/mL の濃度で 96 ウェル ELISA 用プレート(グライナー社製)に 50 μL/ウェル分注し、4℃で一晩放置して吸着させた。PBS で洗浄後、1%BSA-PBS を 100 μL/ウェル添加し、室温で 1 時間反応させて残存する活性基をブロックした。各ウェルを Tween-PBS で洗浄後、本項(1)に記載の ELISA による抗体濃度の定量法により測定した抗体濃度をもとに 5.0 μg/mL となるように 1%BSA-PBS で希釈した各培養上清溶液、あるいは、本項(2)で調製し、蛋白質濃度が 5.0 μg/mL となるように 1%BSA-PBS で希釈した各培養上清溶液の Fucose(-)%の標準品を 50 μL/ウェル添加し、室温で 1 時間反応させた。各ウェルを Tween-PBS で洗浄後、1%BSA-PBS で 5 μg/mL に希釈した参考例 2 に示される方法で作製された shFc γ RIIIa 溶液を 50 μL/ウェル加え、室温で 1 時間反応させた。Tween-PBS で洗浄後、1%BSA-PBS を用いて 0.1 μg/mL に調製した His-tag に対する HRP 標識マウス抗体 Penta-His HRP Conjugate (QIAGEN 社製)を 50 μL/ウェル添加し、室温で 1 時間反応させた。 Tween-PBS で洗浄後、ABTS 基質液を 50 μL/ウェル加えて発色させ、0D415 を測定した。

第13図に、本項(2)で調製した、抗体組成物の Fucose(-)%の標準品の  $shFc\gamma RIIIa$  に対する結合活性を示した。抗体組成物の Fucose(-)%に比例する、抗体組成物の  $shFc\gamma RIIIa$  に対する結合活性の検量線が得られた。

本実施例第2項で採取した無血清フェドバッチ培養サンプルに含まれる抗 CCR4 キメラ抗体の  $shFc\gamma RIIIa$  に対する結合活性を示す oddering Oddering

PCT/JP2004/015316

#### (参考例1)

N-グリコシド結合型糖鎖の還元末端の N-アセチルグルコサミンにフコースが結合していない糖鎖の割合の異なる抗 CCR4 キメラ抗体の調製

1. CHO/DG44 細胞を用いた抗体生産細胞の作製

CHO/DG44 細胞に対し、WO01/64754 記載の抗 CCR4 キメラ抗体発現ベクターpKANTEX2160 を導入し、抗 CCR4 キメラ抗体の安定生産細胞を以下のように作製した。

抗 CCR4 キメラ抗体発現ベクターpKANTEX2160 の  $4\mu$ g を  $1.6\times10^6$  細胞の CHO/DG44 細胞へエレクトロボレーション法 [サイトテクノロジー (Cytotechnology), 3, 133 (1990)] により導入後、10mL の IMDM-dFBS(10)-HT(1) [ウシ胎児透析血清(Invitrogen 社製)を 10%、HT supplement (Invitrogen 社製)を 16濃度で含む IMDM 培地 (Invitrogen 社製)] に懸濁し、 96 ウェル培養用プレート (旭テクノグラス社製)に  $100\mu$ L/ウェルずつ分注した。5%CO $_2$ 37℃、、 24 時間培養した後、IMDM-dFBS(10)(透析 FBS を 10%で含む IMDM 培地)に培地交換し、 $1\sim2$  週間培養した。HT supplement 非依存的な増殖を示す形質転換株のコロニーが出現したウェルより培養上清を回収し、上清中の抗 CCR4 キメラ抗体の発現量を本参考例第 2項記載の ELISA 法により測定した。

培養上清中に抗 CCR4 キメラ抗体の生産が認められたウェルの形質転換株については、DHFR 遺伝子増幅系を利用して抗体生産量を増加させる目的で、MTX を  $50\,\mathrm{nmol}/\mathrm{L}$  含む IMDM-dFBS(10) 培地に  $1\sim2\times10^6$  細胞/mL になるように懸濁し、24 ウェルプレート(旭テクノグラス社製)に 0.5mL ずつ分注した。 $5\%CO_2$  インキュベーター内で  $37^{\circ}C$ 、 $1\sim2$  週間培養して、 $50\,\mathrm{nmol}/\mathrm{L}$  MTX 耐性を示す形質転換株を誘導した。増殖が認められたウェルの形質転換株については、上記と 同様の方法により、MTX 濃度を  $500\,\mathrm{nmol}/\mathrm{L}$  に上昇させ、最終的に MTX を  $500\,\mathrm{nmol}/\mathrm{L}$  の濃度で含む IMDM-dFBS(10) 培地で増殖可能かつ、抗 CCR4 キメラ抗体を生産する形質転換株 32-05-12 株を得た。

2. 抗体 CCR4 部分ペプチドに対する結合活性(ELISA 法)

抗 CCR4 キメラ抗体が反応するヒト CCR4 細胞外領域ペプチドとして、配列番号 35 で示されるアミノ酸配列の化合物 1 を使用した。化合物 1 を ELISA 法の抗原として用いるため、以下の方法で BSA (Bovine Serum Albumin) (ナカライテスク社製) とのコンジュゲートを作製した。

10 mg の BSA を含む PBS 溶液  $900 \mu\text{L}$  に、 $100 \mu\text{L}$  の 25 mg/mL SMCC [4-(N-マレイミドメチル) シ クロヘキサン-1-カルボキシリックアシッド N-ヒドロキシサクシンイミドエステル] (SIGMA

社製)-DMSO 溶液を撹拌しながら滴下し、30 分間ゆるやかに撹拌した。25mL の PBS で平衡化した NAP-10 カラムに 1mL の反応液をアプライし、1.5mL の PBS で溶出させ、溶出液を BSA-SMCC 溶液とした( $A_{280}$  測定から BSA 濃度を算出)。次に、0.5mg の化合物 1 に  $250\mu$ L の PBS を加え、次いで  $250\mu$ L のジメチルスルフォキシド(DMF)を加えて完全に溶解させた後、前述の BSA-SMCC 溶液(BSA 換算 1.25mg)を撹拌しながら添加し、添加後 3 時間攪拌した。反応液を PBS に対して  $4^{\circ}$ C、一晩透析し、最終濃度 0.05%となるようにアジ化ナトリウムを添加して、 $0.22\mu m$  フィルターでろ過減菌した。以下、該溶液を BSA-化合物 1 溶液と称す。

#### 3. ラットミエローマ YB2/0 細胞を用いた生産細胞の作製

抗 CCR4 キメラ抗体発現ベクターpKANTEX2160 の  $10\mu g$  を  $4\times10^8$  細胞のラットミエローマ YB2/0 細胞(ATCC CRL1662)へエレクトロポレーション法 [Cytotechnology, 3, 133 (1990)] により導入後、40mL の Hybridoma-SFM-FBS(5) [FBS (PAA ラボラトリーズ社製)を 5%含む Hybridoma-SFM 培地(インビトロジェン社製)] に懸濁し、96 ウェル培養用プレート(住友ベークライト社製)に  $200\mu$ L/ウェルずつ分注した。 $5\%CO_2$ インキュベーター内で 37%C、24 時間 培養した後、G418 を 1mg/mL になるように添加して  $1\sim2$  週間培養した。G418 耐性を示す形質 転換株のコロニーが出現し、増殖の認められたウェルより培養上清を回収し、上清中の抗 CCR4 キメラ抗体の抗原結合活性を上記第 2 項記載の ELISA 法により測定し、CCR4 に対する結合活性を示すことを確認した。

培養上清中に抗 CCR4 キメラ抗体の生産が認められたウェルの形質転換株については、dhfr 遺伝子増幅系を利用して抗体生産量を増加させる目的で、G418 を 1mg/mL、DHFR の阻害剤である MTX (SIGMA 社製) を 50nmol/L 含む Hybridoma-SFM-FBS(5)培地に 1~2×10⁵細胞/mL になるように懸濁し、24 ウェルプレート (Greiner 社製) に 1mL ずつ分注した。5%CO₂インキュベーター内で 37℃で 1~2 週間培養して、50nmol/L MTX 耐性を示す形質転換株を誘導した。形質転換株の増殖が認められたウェルの培養上清中の抗 CCR4 キメラ抗体の抗原結合活性を上記第 2 項記載の ELISA 法により測定した。

培養上清中に抗 CCR4 キメラ抗体の生産が認められたウェルの形質転換株については、上記と同様の方法により、MTX 濃度を上昇させ、最終的に MTX を 200nmol/L の濃度で含む Hybridoma-SFM-FBS(5) 培地で増殖可能かつ、抗 CCR4 キメラ抗体を高生産する形質転換株を得た。得られた形質転換株について、2回の限界希釈法によるクローン化を行い、得られた形質 転換細胞クローンを KM2760#58-35-16 と名付けた。

### 4. 抗 CCR4 キメラ抗体の精製

### (1) CHO/DG44 細胞由来の生産細胞の培養および抗体の精製

上記第1項で得られた抗 CCR4 キメラ抗体を生産する形質転換細胞株 32-05-12 株を IMDM-dFBS(10) 培地中で、182cm²フラスコ (Greiner 社製) にて 5%CO₂インキュベーター内で 37℃にて培養した。数日後、細胞密度がコンフルエントに達した時点で培養上清を除去し、25mL の PBS バッファーにて細胞を洗浄後、EXCELL301 培地 (JRH 社製) を 35mL 注入した。5%CO₂インキュベーター内で 37℃にて 7 日間培養後、培養上清を回収した。培養上清より Prosep-A (ミリボア社製) カラムを用いて、添付の説明書に従い、抗 CCR4 キメラ抗体を精製した。精製した抗 CCR4 キメラ抗体は IM3060 と名付けた。

### (2) YB2/0 細胞由来の生産細胞の培養および抗体の精製

上記第 3 項 で得られた抗 CCR4 キメラ抗体を発現する形質転換細胞クローン KM2760#58-35-16 を 200nmol/L MTX、Daigo's GF21 (和光純薬製)を 5%の濃度で含む Hybridoma-SFM (インビトロジェン社製)培地に  $2\times10^6$  細胞/mL となる様に懸濁し、スピナーボトル (岩城硝子社製)を用いて 37℃の恒温室内で Fed-Batch 攪拌培養した。8-10 日間培養して回収した培養上清より、Prosep-A (ミリボア社製)カラムおよびゲルろ過法を用いて、抗 CCR4 キメラ抗体を精製した。精製した抗 CCR4 キメラ抗体を KM2760-1 と名づけた。

KM2760-1 および KM3060 の CCR4 に対する結合活性を上記第 2 項に記載の ELISA 法により測定した結果、同等の結合活性を示した。

#### (参考例2)

可溶性ヒトFcyRIIIa蛋白質の作製

- 1. 可溶性ヒト Fc γ RIIIa 蛋白質の発現ベクターの構築
- (1) ヒト末梢血単核球 cDNA の作製

健常人の静脈血 30mL にヘバリンナトリウム (武田薬品社製)を加え穏やかに混合した。これを Lymphoprep (第一化学薬品社製)を用いて使用説明書に従って単核球層を分離した。 RPMI1640 培地で1回、RPMI1640-FCS(10)培地で1回遠心分離して洗浄後、RPMI1640-FBS(10)中に懸濁した2×10<sup>8</sup>個/mLの末梢血単核球懸濁液を調製した。該末梢血単核球懸濁液の5mLを室温下800rpmで5分間の遠心分離を行った後、上清を除去し、5mLのPBSに懸濁した。室温下800rpmで5分間の遠心分離を行った後、上清を除去し、QIAampRNABloodMiniKit (QIAGEN社製)を用いて添付の説明書に従い、全RNAを抽出した。

得られた全 RNA2μg に対し、SUPERSCRIPT™ Preamplification System for First Strand cDNA Synthesis (Life Technologies 社製) を用いて添付の説明書に従い、オリゴ (dT)をプライマーとして逆転写反応を行うことにより、一本鎖 cDNA を合成した。

(2) ヒト FcγRIIIa 蛋白質をコードする cDNA の取得

ヒト  $Fc\gamma RIIIa$  蛋白質(以下、 $hFc\gamma RIIIa$  と表記する)の cDNA の取得は、以下のようにして行った。

まず、hFc $\gamma$ RIIIa の cDNA の塩基配列[J. Exp. Med., 170, 481 (1989)] より、翻訳開始コドンを含む特異的なフォワードプライマー(配列番号 48 に示す)および翻訳終止コドンを含む特異的なリバースプライマー(配列番号 49 に示す)を設計した。

次に DNA ポリメラーゼ ExTaq (宝酒造社製)を用いて、本項 (1)で調製したヒト末梢血単核 球由来の cDNA 溶液の 20 倍希釈液  $5\mu$ L を含む  $50\mu$ L の反応液 [1 倍濃度の ExTaq buffer (宝酒造社製)、0.2mM dNTPs、 $1\mu$ M 上記遺伝子特異的プライマー (配列番号 48 および 49)]を調製し、PCR を行った。PCR は、94 Cにて 30 秒間、56 Cにて 30 秒間、72 Cにて 60 秒間からなる 反応を 1 サイクルとして、35 サイクル行った。

PCR後、該反応液を QIAquick PCR Purification Kit (QIAGEN 社製) を用いて精製し、滅菌

水  $20\mu$ L に溶解した。制限酵素  $\underline{Bco}$ RI (宝酒造社製) および  $\underline{Bam}$ HI (宝酒造社製) で消化した後、アガロースゲル電気泳動に供し、PCR 由来の約 800bp の断片を回収した。

一方、プラスミド pBluescriptII SK(-) 2.5 μg (Stratagene 社製) を制限酵素 <u>Eco</u>RI (宝酒造社製) および <u>Bam</u>HI (宝酒造社製) で消化後、アガロースゲル電気泳動に供し、約 2.9kbp の断片を回収した。

上記で得られたヒト末梢血単核球 cDNA 由来の約 800bp の断片とプラスミド pBluescriptII SK (-)由来の約 2.9kbp の断片を、DNA Ligation Kit Ver. 2.0 (宝酒造社製)を用いて連結反応を行った。該反応液を用いて大腸菌 DH5  $\alpha$  株 (東洋紡績社製)を形質転換した。得られた形質転換株のクローンより各プラスミド DNA を調製し、BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems 社製)を用いて添付の説明書に従って反応後、同社の DNA シーケンサーABI PRISM 377 により各プラスミドに挿入された cDNA の塩基配列を決定した。本法により配列決定した全ての挿入 cDNA が、hFc  $\gamma$  RIIIa の cDNA の ORF 全長配列をコードすることを確認した。結果として配列番号 46 に示した塩基配列を有する hFc  $\gamma$  RIIIa をコードする cDNA を含むプラスミドとして pBSFc  $\gamma$  RIIIa5-3 を得たことを確認した。配列番号 50 の塩基配列に対応するアミノ酸配列を配列番号 51 に示す。

#### (3) 可溶性 hFcγRIIIa をコードする cDNA の取得

hFcγRIIIa の細胞外領域 (配列番号 51 の 1~193 番目) と C 末端に His-tag 配列を持つ可溶性 hFcγRIIIa [以下、shFcγRIIIa と表記する]をコードする cDNA を以下のようにして構築した。

まず、配列番号 50 に示される hFc $\gamma$ RIIIa の cDNA の塩基配列より、細胞外領域に特異的なプライマーFcgR3-1 (配列番号 52 に示す)を設計した。

次に DNA ポリメラーゼ ExTaq (宝酒造社製)を用いて、本項 (2)で作製したプラスミド pBSFc  $\gamma$  RIIIa5-3をテンプレートとして含む反応液 [1倍濃度の ExTaq buffer (宝酒造社製)、0.2mM dNTPs、 $1\mu$ M プライマーFcgR3-1、 $1\mu$ M プライマーM13M4 (宝酒造社製)]を調製し、PCR を行った。PCR は、94℃にて 30 秒間、56℃にて 30 秒間、72℃にて 60 秒間からなる反応を 1 サイクルとして、35 サイクル行った。PCR 後、反応液を QIAquick PCR Purification Kit (QIAGEN 社製)を用いて精製し、滅菌水  $20\mu$ L に溶解した。制限酵素 PstI (宝酒造社製)および BamHI (宝酒造社製)で消化後、アガロースゲル電気泳動に供し、約 110bp の特異的増幅断片を回収した。

一方、プラスミド pBSFc  $\gamma$  RIII a5-3 を制限酵素 Pst I (宝酒造社製) および BamHI (宝酒造社製) で消化後、アガロースゲル電気泳動に供し、約 3.5kbp の断片を回収した。

上記で得た hFcγRIIIa の cDNA 由来の約 110bp の特異的増幅断片とプラスミド pBSFcγRIIIa5-3 由来の約 3.5kbp の断片を、DNA Ligation Kit Ver.2.0(宝酒造社製)を用いて連結反応を行った。該反応液を用いて大腸菌 DH5 α 株 (東洋紡績社製)を形質転換した。得られた形質転換株のクローンより各プラスミド DNA を調整し、BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Parkin Elmer 社製)を用いて添付の説明書に従って反応後、同社のDNAシークエンサー377により各プラスミドに挿入された cDNA の塩基配列を解析し、pBSFcγRIIIa+His3 が得られたことを確認した。

決定した shFcγRIIIa の全長 cDNA 配列を配列番号 53、それに対応するシグナル配列を含むアミノ酸配列を配列番号 54 にそれぞれ示す。

- (4) shFcγRIIIa の発現ベクターの構築 shFcγRIIIa の発現ベクターは、以下のようにして構築した。
- 本項 (3) で得られたプラスミド pBSFc  $\gamma$  RIII a+Hi s 3 を制限酵素 <u>Eco</u>RI (宝酒造社製) および <u>Bam</u>HI (宝酒造社製) で消化後、アガロースゲル電気泳動に供し、それぞれ約 620bp の各断片 を回収した。
- 一方、プラスミド pKANTEX93 を制限酵素 <u>Eco</u>RI (宝酒造社製) および <u>Bam</u>HI (宝酒造社製) で消化後、アガロースゲル電気泳動に供し、約 10.7kbp の断片を回収した。

上記で得た shFc  $\gamma$  RIIIa)の cDNA を含む約 620bp の各断片とプラスミド pKANTEX93 由来の約 10.7kbp の断片を、DNA Ligation Kit Ver.2.0(宝酒造社製)を用いて連結反応を行った。該反応液を用いて大腸菌 DH5  $\alpha$  株 (東洋紡績社製)を形質転換した。得られた形質転換株のクローンより各プラスミド DNA を調整し、BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Parkin Elmer 社製)を用いて添付の説明書に従って反応後、同社の DNA シークエンサー377 により各プラスミドに挿入された cDNA の塩基配列を解析し、目的の shFc  $\gamma$  RIIIacDNA を含む発現ベクターpKANTEXFc  $\gamma$  RIIIa-His が得られたことを確認した。

#### 2. shFcγRIIIa の安定生産細胞の作製

上記第1項で構築した  $shFc\gamma$  IIIa の発現ベクター $pKANTEXFc\gamma$  RIIIa-His を参考例 1 第 3 項 に記載の方法と同様にして、ラットミエローマ YB2/0 細胞 [ATCC CRL-1662、J. Cell. Biol., 93, 576 (1982)] に導入し、 $shFc\gamma$  RIIIa の安定生産細胞を作製した。尚、培養上清中の

 ${
m shFc}\gamma {
m RIIIa}$  の発現量を後述する本参考例の第4項に示す  ${
m ELISA}$  法により測定した。最終的に  ${
m G418}$  を  $1.0{
m mg/mL}$ 、 ${
m MTX}$  を  $200{
m nM}$  の濃度で含む  ${
m Hybridoma-SFM-FBS}(10)$  培地で増殖可能かつ、  ${
m shFc}\gamma {
m RIIIa}$  を高生産する形質転換株を得た。得られた形質転換株に対して、2 回の限界希釈 法によるクローン化を行った。 ${
m shFc}\gamma {
m RIIIa}$  を生産する形質転換細胞クローン  ${
m KC1107}$  が得られた。

#### 3. shFcγRIIIa の精製

本参考例の第 2 項で得られた shFcγRIIIa を生産する形質転換細胞クローン KC1107 を G418 を 1mg/mL、MTX を 200nmol/L で含む Hybridoma-SFM-GF(5) [5% Daigo's GF21 (和光純薬社製)を含む Hybridoma-SFM 培地(LIFE TECHNOLOGIES 社製)]に 3×10<sup>5</sup> 細胞/皿 となるように懸濁し、182cm²フラスコ (Greiner 社製) に 50mL 分注した。5%CO₂インキュベーター内で 37℃で 4 日間 培養後、培養上清を回収した。培養上清より Ni-NTA agarose (QIAGEN 社製) カラムを用いて、添付の説明書に従い、shFcγRIIIa を精製した。

#### 4. shFcγRIIIaの検出 (ELISA法)

培養上清中あるいは精製した  ${
m shFc} \gamma RIIIa の検出、定量は、以下に示す <math>{
m ELISA}$  法により行った。

His-tag に対するマウス抗体 Tetra—His Antibody (QIAGEN 社製) を PBS を用いて  $5\mu$ g/mL に調製した溶液を 96 ウェルの ELISA 用のプレート(Greiner 社製)に  $50\mu$ L/ウェルで分注し、  $4^{\circ}$ C、12 時間以上反応させた。反応後、1%BSA-PBS を  $100\mu$ L/ウェルで加え、室温で 1 時間反応させて残存する活性基をプロックした。1%BSA-PBS を捨て、形質転換株の培養上清あるいは精製した  $shFc\gamma$ RIIIa の各種希釈溶液を  $50\mu$ L/ウェルで加え、室温で 1 時間反応させた。反応後、各ウェルを Tween-PBS で洗浄後、1%BSA-PBS で 50 倍に希釈したビオチン標識マウス抗ヒト CD16 抗体溶液(PharMingen 社製)を  $50\mu$ L/ウェルで加え、室温で 1 時間反応させた。反応後、Tween-PBS で洗浄後、1%BSA-PBS で 4000 倍に希釈したペルオキシダーゼ標識 Avidin 1 溶液(Vector 社製)を  $10\mu$ L/ウェルで加え、室温で 1 時間反応させた。反応後、Tween-PBS で洗浄後、 $10\mu$ L/ウェルで加え、室温で 1 時間反応させた。反応後、 $10\mu$ C/ウェルで加え、 $10\mu$ C/ウェルで加えを独立させた。反応後、 $10\mu$ C/ウェルで加え、 $10\mu$ C/ウェルで加えて発色させ、 $10\mu$ C/ウェルで加えて発色させた。反応後、 $10\mu$ C/ウェルで加えて死色させた。

配列表フリーテキスト

配列番号 10-人工配列の説明:合成 RNA

配列番号 11-人工配列の説明:合成 RNA

配列番号 12-人工配列の説明: 合成 RNA

配列番号 13-人工配列の説明:合成 RNA

配列番号 14-人工配列の説明:合成 RNA

配列番号 15-人工配列の説明:合成 RNA

配列番号 16-人工配列の説明:合成 RNA

配列番号 17-人工配列の説明:合成 RNA

配列番号 18-人工配列の説明:合成 RNA

配列番号 22-人工配列の説明:合成 RNA

配列番号 23-人工配列の説明:合成 RNA

配列番号 24-人工配列の説明:合成-RNA

配列番号 25-人工配列の説明:合成 RNA

配列番号 26-人工配列の説明:合成 RNA

配列番号 27-人工配列の説明:合成 RNA

配列番号 28-人工配列の説明:合成 RNA

配列番号 29-人工配列の説明:合成 RNA

配列番号 30-人工配列の説明:合成 RNA

配列番号 31-人工配列の説明:合成 DNA

配列番号 32-人工配列の説明:合成 DNA

配列番号 33-人工配列の説明:合成 DNA

配列番号 34-人工配列の説明:合成 DNA

配列番号 36-人工配列の説明:合成 DNA

配列番号 37-人工配列の説明:合成 DNA

配列番号 38-人工配列の説明:合成 DNA

配列番号 39-人工配列の説明:合成 DNA

配列番号 40-人工配列の説明:合成 DNA

配列番号 41-人工配列の説明:合成 DNA

配列番号 42-人工配列の説明:合成 DNA

配列番号 43-人工配列の説明:合成 DNA

配列番号 44-人工配列の説明:合成 DNA

配列番号 45-人工配列の説明:合成 DNA

配列番号 46-人工配列の説明:合成 DNA

配列番号 47-人工配列の説明:合成 DNA

配列番号 48-人工配列の説明:合成 DNA

配列番号 49-人工配列の説明:合成 DNA

配列番号 52-人工配列の説明:合成 DNA

#### 請求の範囲

- 1. 細胞を用いて抗体組成物を製造する方法において、以下の(a)または(b)から選ばれる RNAおよびその相補RNAで構成される二本鎖RNAを細胞内に導入させた細胞を用いる抗体組成物の製造方法;
  - (a)配列番号9~30で表される塩基配列からなるRNA;
- (b)配列番号9~30で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA。
- 2. N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が $\alpha$ 結合する糖鎖修飾に関与する酵素が、 $\alpha 1,6$ -フコース転移酵素である、請求の範囲 1 に記載の方法。
- 3.  $\alpha$ 1,6-フコース転移酵素が、以下の (a) $\sim$ (h)からなる群から選ばれるDNAがコードする 蛋白質である、請求の範囲 2 に記載の方法。
  - (a) 配列番号1で表される塩基配列からなるDNA;
  - (b) 配列番号2で表される塩基配列からなるDNA;
  - (c) 配列番号3で表される塩基配列からなるDNA;
  - (d) 配列番号4で表される塩基配列からなるDNA;
- (e) 配列番号1で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ $\alpha$ 1,6-フコース転移酵素活性を有する蛋白質をコードするDNA;
- (f) 配列番号2で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ $\alpha$ 1,6-フコース転移酵素活性を有する蛋白質をコードするDNA;
- (g) 配列番号3で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ $\alpha1,6$ -フコース転移酵素活性を有する蛋白質をコードするDNA;
- (h) 配列番号4で表される塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし、かつ $\alpha$ 1,6-フコース転移酵素活性を有する蛋白質をコードするDNA。
- 4.  $\alpha$ 1,6-フコース転移酵素が、以下の (a) $\sim$ (1)からなる群から選ばれる蛋白質である、 請求の範囲 2 に記載の方法。

- (a)配列番号5で表されるアミノ酸配列からなる蛋白質;
- (b)配列番号6で表されるアミノ酸配列からなる蛋白質;
- (c)配列番号7で表されるアミノ酸配列からなる蛋白質;
- (d)配列番号8で表されるアミノ酸配列からなる蛋白質;
- (e)配列番号5で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1$ ,6-フコース転移酵素活性を有する蛋白質;
- (f)配列番号6で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコース転移酵素活性を有する蛋白質;
- (g)配列番号7で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha1,6$ -フコース転移酵素活性を有する蛋白質;
- (h)配列番号8で表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつ $\alpha$ 1,6-フコース転移酵素活性を有する蛋白質;
- (i)配列番号5で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha1.6$ -フコース転移酵素活性を有する蛋白質;
- (j)配列番号6で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、 $\alpha1,6$ -フコース転移酵素活性を有する蛋白質;
- (k)配列番号7で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha1,6$ -フコース転移酵素活性を有する蛋白質;
- (1)配列番号8で表されるアミノ酸配列と80%以上の相同性を有するアミノ酸配列からなり、かつ $\alpha1,6$ -フコース転移酵素活性を有する蛋白質。
- 5.N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞が、N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性を有する細胞である、請求の範囲 $1\sim4$ のいずれか1項に記載の方法。

6. 以下の(a)~(d)からなる群から選ばれるレクチンのいずれか1つに耐性である、請求の 範用5に記載の方法。

- (a) レンズマメレクチン;
- (b) エンドウマメレクチン;
- (c) ソラマメレクチン;
- (d) ヒイロチャワンタケレクチン。
- 7. 細胞が、酵母、動物細胞、昆虫細胞および植物細胞からなる群から選ばれる細胞である 、請求の範囲1~6のいずれか1項に記載の方法。
- 8. 細胞が、下記の (a)  $\sim$  (i) からなる群から選ばれる細胞である、請求の範囲  $1 \sim 7$  のいずれか 1 項に記載の方法。
  - (a) チャイニーズハムスター卵巣組織由来CHO細胞;
  - (b) ラットミエローマ細胞株YB2/3HL.P2.G11.16Ag.20細胞;
  - (c) マウスミエローマ細胞株NSO細胞;
  - (d) マウスミエローマ細胞株SP2/0-Ag14細胞;
  - (e) シリアンハムスター腎臓組織由来BHK細胞;
  - (f) 抗体を産生するハイブリドーマ細胞;
  - (g) ヒト白血病細胞株ナマルバ細胞;
  - (h) 胚性幹細胞;
  - (i) 受精卵細胞。
- 9. 細胞が、抗体分子をコードする遺伝子を導入した形質転換体である、請求の範囲1~8 のいずれか1項に記載の方法。
- 10. 抗体分子が、以下の $(a)\sim(d)$ からなる群から選ばれる分子である、請求の範囲 9 に記載の方法。
  - (a) ヒト抗体;
  - (b) ヒト化抗体;
  - (c) (a) または(b) のFc領域を含む抗体断片;
  - d) (a)または(b)のFc領域を有する融合蛋白質。
- 11. 抗体分子のクラスがIgGである、請求の範囲9又は10に記載の方法。
- 12. 以下の(a)または(b)から選ばれるRNAおよびその相補RNAで構成される二本鎖RNAを

細胞内に導入していない親株細胞が生産する抗体組成物の抗体依存性細胞傷害活性より、高い 抗体依存性細胞傷害活性を有する抗体組成物を製造する、請求の範囲 1 ~ 1 1 のいずれか1項 に記載の方法;

- (a)配列番号9~30で表される塩基配列からなるRNA;
- (b)配列番号 $9\sim30$ で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有するRNA。
- 13. 高い抗体依存性細胞傷害活性を有する抗体組成物が、N-グリコシド結合複合型糖鎖を Fc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖 の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が、親株細胞が 生産する抗体組成物よりも高いことを特徴とする、請求の範囲12に記載の方法。
- 14. N-グリコシド結合複合型糖鎖が、該糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位が $\alpha$ 結合していない糖鎖である、請求の範囲13に記載の方法。
- 15. 高い抗体依存性細胞傷害活性を有する抗体組成物が、N-グリコシド結合複合型糖鎖を Fc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖 の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が 20%以上である抗体組成物である、請求の範囲 12~14のいずれか 1項に記載の方法。
- 16. 抗体依存性細胞傷害活性が高い抗体組成物が、N-グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる抗体組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体組成物である、請求の範囲  $12 \sim 15$  のいずれか 1 項に記載の方法。
- 17. 請求の範囲1~16のいずれか1項に記載の方法で用いられる、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にフコースの1位がα結合する糖鎖修飾に関与する酵素の機能を抑制するRNAを導入した細胞。
- 18. N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素が  $\alpha$  1,6-フコース転移酵素である請求の範囲 17 に記載の細胞。
- 19. 配列番号9~30のいずれかで表される塩基配列からなる群のRNAから選ばれるRNAを導

入または発現させた細胞。

- 20. 以下の(a)または(b)から選ばれるRNAおよびその相補RNAで構成される二本鎖RNA;
  - (a)配列番号9~30で表される塩基配列からなるRNA;
- (b)配列番号 9~30 で表される塩基配列において、1または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの 6位にフコースの 1位が $\alpha$ 結合する糖鎖修飾に関与する酵素の機能を抑制する活性を有する RNA。
  - 21. 請求の範囲20に記載の RNA に対応する DNA および該 DNA の相補 DNA。
- 22. 請求の範囲20に記載の RNA に対応する DNA および該 DNA の相補 DNA をベクターに組み込んで得られる組換え体 DNA。
- 23. 請求の範囲20に記載の二本鎖 RNA を発現させることを特徴とする、請求の範囲22 に記載の組換え体 DNA。
- 24. 請求の範囲22または23に記載の組換え体 DNA を細胞に導入して得られる形質転換体。
- 25. 請求の範囲 20 に記載の二本鎖 RNA を細胞内に導入または発現させることを特徴とする、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性を有する細胞を作製する方法。
- 26. N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位が $\alpha$ 結合した糖鎖構造を認識するレクチンに耐性が、少なくとも、以下の(a)~(d)からなる群から選ばれるレクチンの一つに耐性である、請求の範囲25に記載の方法。
  - (a) レンズマメレクチン;
  - (b) エンドウマメレクチン;
  - (c) ソラマメレグチン;
  - (d) ヒイロチャワンタケレクチン。 ·
- 27. 配列番号 9~30 のいずれかで表される塩基配列からなる群の RNA から選ばれる RNA を用いて、N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの 1 位が  $\alpha$  結合する糖鎖修飾に関与する酵素の機能を抑制する方法。
- 28. N-グリコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンの 6 位にフコースの

1位が $\alpha$ 結合する糖鎖修飾に関与する酵素が $\alpha$ 1,6-フコース転移酵素である請求の範囲 2 7 に記載の方法。

第1図



第2図



2/14

# 第3図



# 第4図





## 第5図



# 第6図



# 第7図



## 第8図



# 第9図



# 第10図



第11図



第12図



第13図



## 第14図



WO 2005/035778

PCT/JP2004/015316

# SEQUENCE LISTING OREC'D PCT/PTO 10 APR 2006

<110> KYOWA HAKKO KOGYO CO., LTD.

<120> Process for producing the antibody composition using RNA which inhibits a function of  $\alpha$ 1,6-fucosyltransferase

<130> 11621WO1

<150> P2003-350167

<151> 2003-10-09

<160> 35

<17.0> PatentIn Ver. 2.1

<210> 1

**<211> 2008** 

<212> DNA

<213> Cricetulus griseus

<400> 1

aacagaaact tattttcctg tgtggctaac tagaaccaga gtacaatgtt tccaattctt 60
tgagctccga gaagacagaa gggagttgaa actctgaaaa tgcgggcatg gactggttcc 120
tggcgttgga ttatgctcat tctttttgcc tgggggacct tattgtttta tataggtggt 180
catttggttc gagataatga ccaccctgac cattctagca gagaactctc caagattctt 240
gcaaagctgg agcgcttaaa acaacaaaat gaagacttga ggagaatggc tgagtctctc 300
cgaataccag aaggccctat tgatcaggg acagctacag gaagagtccg tgttttagaa 360
gaacagcttg ttaaggccaa agaacagatt gaaaattaca agaaacaagc taggaatgat 420
ctgggaaagg atcatgaaat cttaaggagg aggattgaaa atggagctaa agagctctgg 480

ttttttctac aaagtgaatt gaagaaatta aagaaattag aaggaaacga actccaaaga 540 catgcagatg aaattctttt ggatttagga catcatgaaa ggtctatcat gacagatcta 600 tactacctca gtcaaacaga tggagcaggt gagtggcggg aaaaagaagc caaagatctg 660 acagagetgg tecageggag aataacatat etgeagaate ceaaggaetg cageaaagee 720 agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780 gtttactgct tcatgattgc ttatggcacc cagcgaacac tcatcttgga atctcagaat 840 tggcgctatg ctactggagg atgggagact gtgtttagac ctgtaagtga gacatgcaca 900 gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aaatgttcaa 960 gtggtcgagc tccccattgt agacagcctc catcctcgtc ctccttactt acccttggct 1020 gtaccagaag accttgcaga tcgactcctg agagtccatg gtgatcctgc agtgtggtgg 1080 gtatcccagt ttgtcaaata cttgatccgt ccacaacctt ggctggaaag ggaaatagaa 1140 gaaaccacca agaagcttgg cttcaaacat ccagttattg gagtccatgt cagacgcact 1200 gacaaagtgg gaacagaagc agccttccat cccattgagg aatacatggt acacgttgaa 1260 gaacattttc agcttctcga acgcagaatg aaagtggata aaaaaaagagt gtatctggcc 1320 actgatgacc cttctttgtt aaaggaggca aagacaaagt actccaatta tgaatttatt 1380 agtgataact ctatttcttg gtcagctgga ctacacaacc gatacacaga aaattcactt 1440 cggggcgtga tcctggatat acactttctc tcccaggctg acttccttgt gtgtactttt 1500 teateceagg tetgtagggt tgettatgaa ateatgeaaa eactgeatee tgatgeetet 1560 gcaaacttcc attetttaga tgacatetac tattttggag gccaaaatge ccacaaccag 1620

attgcagttt atcctcacca acctcgaact aaagaggaaa tccccatgga acctggagat 1680
atcattggtg tggctggaaa ccattggaat ggttactcta aaggtgtcaa cagaaaacta 1740
ggaaaaacag gcctgtaccc ttcctacaaa gtccgagaga agatagaaac agtcaaatac 1800
cctacatatc ctgaagctga aaaatagaga tggagtgtaa gagattaaca acagaattta 1860
gttcagacca tctcagccaa gcagaagacc cagactaaca tatggttcat tgacagacat 1920
gctccgcacc aagagcaagt gggaaccctc agatgctgca ctggtggaac gcctctttgt 1980
gaagggctgc tgtgccctca agcccatg 2008

<210> 2

<211> 1728

<212> DNA

<213> Mus musculus

<400> 2

atgcgggcat ggactggttc ctggcgttgg attatgctca ttcttttgc ctgggggacc 60 ttgttatttt atataggtgg tcatttggtt cgagataatg accaccctga tcactccagc 120 agagaactct ccaagattct tgcaaagctt gaacgcttaa aacagcaaaa tgaagacttg 180 aggcgaatgg ctgagtctct ccgaatacca gaaggcccca ttgaccaggg gacagctaca 240 ggaagagtcc gtgtttaga agaacagctt gttaaggcca aagaacagat tgaaaattac 300 aagaaacaag ctagaaatgg tctggggaag gatcatgaaa tcttaagaag gaggattgaa 360 aatggagcta aagagctct gttttcta caaagcgaac tgaagaaatt aaagcattta 420 gaaggaaatg aactccaaag acatgcagat gaaattcttt tggatttagg acaccatgaa 480

aggtctatca tgacagatct atactacctc agtcaaacag atggagcagg ggattggcgt 540 gaaaaagagg ccaaagatct gacagagctg gtccagcgga gaataacata tctccagaat 600 cctaaggact gcagcaaagc caggaagctg gtgtgtaaca tcaataaagg ctgtggctat 660 ggttgtcaac tccatcacgt ggtctactgt ttcatgattg cttatggcac ccagcgaaca 720 ctcatcttgg aatctcagaa ttggcgctat gctactggtg gatgggagac tgtgtttaga 780 cctgtaagtg agacatgtac agacagatet ggceteteca etggaeaetg gteaggtgaa 840 gtaaatgaca aaaacattca agtggtcgag ctccccattg tagacagcct ccatcctcgg 900 cctccttact taccactgge tgttccagaa gaccttgcag accgactcct aagagtccat 960 ggtgaccctg cagtgtggtg ggtgtcccag tttgtcaaat acttgattcg tccacaacct 1020 tggctggaaa aggaaataga agaagccacc aagaagcttg gcttcaaaca tccagttatt 1080 ggagtccatg tcagacgcac agacaaagtg ggaacagaag cagccttcca ccccatcgag 1140 gagtacatgg tacacgttga agaacatttt cagcttctcg cacgcagaat gcaagtggat 1200 aaaaaaagag tatatctggc tactgatgat cctactttgt taaaggaggc aaagacaaag 1260 tactccaatt atgaatttat tagtgataac tctatttctt ggtcagctgg actacacaat 1320 cggtacacag aaaattcact tcggggtgtg atcctggata tacactttct ctcacaggct 1380 gactttctag tgtgtacttt ttcatcccag gtctgtcggg ttgcttatga aatcatgcaa 1440 accetgeate etgatgeete tgegaactte eattetttgg atgacateta etattttgga 1500 ggccaaaatg cccacaatca gattgctgtt tatcctcaca aacctcgaac tgaagaggaa 1560 attccaatgg aacctggaga tatcattggt gtggctggaa accattggga tggttattct 1620

aaaggtatca acagaaaact tggaaaaaca ggcttatatc cctcctacaa agtccgagag 1680 aagatagaaa cagtcaagta tcccacatat cctgaagctg aaaaatag 1728

<210> 3

<211> 979

<212> DNA

<213> Rattus norvegicus

<400> 3

actcatcttg gaatctcaga attggcgcta tgctactggt ggatgggaga ctgtgtttag 60 acctgtaagt gagacatgca cagacagate tggcetetee actggacact ggteaggtga 120 agtgaatgac aaaaatattc aagtggtgga gctccccatt gtagacagcc ttcatcctcg 180 geeteettae ttaccaetgg etgtteeaga agaeettgea gategaeteg taagagteea 240 tggtgatect geagtgtggt gggtgteeea gttegteaaa tatttgatte gteeacaace 300 ttggctagaa aaggaaatag aagaagccac caagaagctt ggcttcaaac atccagtcat 360 tggagtccat gtcagacgca cagacaaagt gggaacagag gcagccttcc atcccatcga 420 agagtacatg gtacatgttg aagaacattt tcagcttctc gcacgcagaa tgcaagtgga 480 taaaaaaaaga gtatatctgg ctaccgatga ccctgctttg ttaaaggagg caaagacaaa 540 gtactccaat tatgaattta ttagtgataa ctctatttct tggtcagctg gactacacaa 600 teggtacaca gaaaatteae tteggggegt gateetggat atacaettte teteteagge 660 tgacttccta gtgtgtactt tttcatccca ggtctgtcgg gttgcttatg aaatcatgca 720 aaccetgeat cetgatgeet etgeaaactt ceaetettta gatgacatet actattttgg 780 aggecaaaat geceacaace agattgeegt ttateeteac aaacetegaa etgatgagga 840

aattccaatg gaacctggag atatcattgg tgtggctgga aaccattggg atggttattc 900 taaaggtgtc aacagaaaac ttggaaaaac aggcttatat ccctcctaca aagtccgaga 960 gaagatagaa acggtcaag 979

<210> 4

<211> 1728

<212> DNA

<213> Homo Sapience

<400> 4

atgoggccat ggactggttc ctggcgttgg attatgctca ttctttttgc ctgggggacc 60 ttgctgtttt atataggtgg tcacttggta cgagataatg accatcctga tcactctagc 120 cgagaactgt ccaagattct ggcaaagctt gaacgcttaa aacagcagaa tgaagacttg 180 aggcgaatgg ccgaatctct ccggatacca gaaggcccta ttgatcaggg gccagctata 240 ggaagagtac gcgttttaga agagcagctt gttaaggcca aagaacagat tgaaaattac 300 aagaacaga ccagaaatgg tctggggaag gatcatgaaa tcctgaggag gaggattgaa 360 aatggagcta aagagctctg gttttccta cagagtgaat tgaagaaatt aaagaactta 420 gaaggaaatg aactccaaag acatgcagat gaatttcttt tggatttagg acatcatgaa 480 aggtctataa tgacggatct atactacctc agtcagacag atggagcagg tgattgcgg 540 gaaaaaagagg ccaaagatct gacagaactg gttcagcgga gaataacata tcttcagaat 600 cccaaggact gcagcaaagc caaaaagctg gtgtgtaata tcaacaaagg ctgtggctat 660 ggctgtcagc tccatcatgt ggtctactgc ttcatgattg catatggcac ccagcgaaca 720

ctcatcttgg aatctcagaa ttggcgctat gctactggtg gatgggagac tgtatttagg 780 cctgtaagtg agacatgcac agacagatct ggcatctcca ctggacactg gtcaggtgaa 840 gtgaaggaca aaaatgttca agtggtcgag cttcccattg tagacagtct tcatcccgt 900 cctccatatt tacccttggc tgtaccagaa gacctcgcag atcgacttgt acgagtgcat 960 ggtgaccctg cagtgtggtg ggtgtctcag tttgtcaaat acttgatccg cccacagcct 1020 tggctagaaa aagaaataga agaagccacc aagaagcttg gcttcaaaca tccagttatt 1080 ggagtccatg tcagacgcac agacaaagtg ggaacagaag ctgccttcca tcccattgaa 1140 gagtacatgg tgcatgttga agaacatttt cagcttcttg cacgcagaat gcaagtggac 1200 aaaaaaagag tgtatttggc cacagatgac cettetttat taaaggagge aaaaacaaag 1260 taccccaatt atgaatttat tagtgataac tetattteet ggteagetgg actgeacaat 1320 cgatacacag aaaattcact tcgtggagtg atcctggata tacattttct ctctcaggca 1380 gacttcctag tgtgtacttt ttcatcccag gtctgtcgag ttgcttatga aattatgcaa 1440 acactacate etgatgeete tgcaaaette eattetttag atgacateta etattttggg 1500 ggccagaatg cccacaatca aattgccatt tatgctcacc aaccccgaac tgcagatgaa 1560 attcccatgg aacctggaga tatcattggt gtggctggaa atcattggga tggctattct 1620 aaaggtgtca acaggaaatt gggaaggacg ggcctatatc cctcctacaa agttcgagag 1680 1728 aagatagaaa cggtcaagta ccccacatat cctgaggctg agaaataa

<sup>&</sup>lt;210> 5

<sup>&</sup>lt;211> 575

<sup>&</sup>lt;212> PRT

<213> Cricetulus griseus

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His
100 105 110

Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Lys Leu Glu Gly Asn Glu 130 135 140

Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175

Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln 180 185 190

| I | Arg              | Arg        | Ile<br>195 | Thr        | Tyr        | Leu        | Gln        | Asn<br>200. | Pro        | Lys        | Asp        | Cys        | Ser<br>205 | Lys        | Ala        | Arg        |
|---|------------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
| I | Lys              | Leu<br>210 | Val        | Cys        | Asn        | Ile        | Asn<br>215 | Lys         | Gly        | Cys        | Gly        | Tyr<br>220 | Gly        | Cys        | ·Gln       | Leu        |
|   | His<br>225       | His        | Val        | Val        | Tyr        | Cys<br>230 | Phe        | Met         | Ile        | Ala        | Tyr<br>235 | Gly        | Thr        | Gln        | Arg        | Thr<br>240 |
| ] | Leu              | Ile        | Leu        | Glu        | Ser<br>245 |            | Asn        | Trp         | Arg        | Tyr<br>250 | Ala        | Thr        | Gly        | Gly        | Trp<br>255 |            |
|   | Thr <sub>.</sub> | Val        | Phe        | Arg<br>260 | Pro        | Val        | Ser        | Glu         | Thr<br>265 | Cys        | Thr        | Asp        | Arg        | Ser<br>270 | Gly        | Leu        |
| 1 | Ser              | Thr        | Gly<br>275 | His        | Trp        | Ser        | Gly        | Glu<br>280  | Val        | Lys        | Asp        | Lys        | Asn<br>285 | Val        | .Gln       | Val        |
| ٦ | Val              | Glu<br>290 | Leu        | Pro        | Ile        | Val        | Asp<br>295 | Ser         | Leu        | His        | Pro        | Arg<br>300 | Pro        | Pro        | Tyr        | Leu        |
|   | Pro<br>305       | Leu        | Ala        | Val        | Pro        | Glu<br>310 | Asp        | Leu         | Ala        | Asp        | Arg<br>315 | Leu        | Leu        | Arg        | Val        | His<br>320 |
| • | Gly              | Asp        | Pro        | Ala        | Val<br>325 | Trp        | Trp        | Val         | Ser        | Gln<br>330 | Phe        | Val        | Lys        | Tyr        | Leu<br>335 | Ile        |
| • | Arg              | Pro        | Gln        | Pro<br>340 | Trp        | Lėu        | Glu        | Arg         | Glu<br>345 |            | Glu        | Glu<br>·   | Thr        | Thr<br>350 | Lys        | Lys        |
|   | Leu              | Gly        | Phe<br>355 | Lys        | His        | Pro        | Val        | Ile<br>360  |            | Val        | His        | Val        | Arg<br>365 | Arg        | Thr        | Asp        |
|   | Lys              | Val<br>370 | Gly        | Thr        | Glu        | Ala        | Ala<br>375 |             | His        | Pro        | Ile        | Glu<br>380 | Glu        | Tyr        | Met        | Val        |
|   | His              | Val        | Glu        | Glu        | His        | Phe        | Gln        | Leu         | Leu        | Glu        | Arg        | Arg        | Mẹt        | Lys        | Val        | Asp        |

. 385 / 390

395

400

Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Leu Lys Glu
405 410 415

Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile
420 425 430

Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg 435 440 445

Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val 450 455 460

Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln 465 470 475 480

Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile 485 490 495

Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro 500 505 510

His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile 515 520 525

Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn 530 535 540

Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu 545 550 555 560

Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys 565 570

<210> 6 <211> 575

<212> PRT

<213> Mus musculus

<400> 6

Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe 1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp
20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Gly Leu Gly Lys Asp His 100 105 110

Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys His Leu Glu Gly Asn Glu 130 135 140

Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175

Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln

180 185 190

Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg 195 200 205

Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu 210 215 220

His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr 225 230 235 240

Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu 245 250 255

Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu 260 265 270

Ser Thr Gly His Trp Ser Gly Glu Val Asn Asp Lys Asn Ile Gln Val 275 280 285

Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu 290 295 300

Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His 305 310 315 320

Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile 325 330 335

Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys 340 345 350

Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp 355 360 365

Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val 370 375 380

| His<br>385 | Val        | Glu        | Glu        | His        | Phe<br>390 | Gln        | Leu        | Leu        | Ala        | Arg<br>395 | Arg        | Met        | Gln        | Val        | Asp<br>400 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Lys        | Arg        | Val        | Tyr<br>405 | Leu        | Ala        | Thr        | Asp        | Asp<br>410 | Pro        | Thr        | Leu        | Leu        | Lys<br>415 | Glu        |
| Ala        | Lys        | Thr        | Lys<br>420 | Tyr        | Ser        | Asn        | Tyr        | Glu<br>425 | Phe        | Ile        | Ser        | Asp        | Asn<br>430 | Ser        | Ile        |
| Ser        | Trp        | Ser<br>435 | Ala        | Gly        | Leu        | His        | Asn<br>440 | Arg        | Tyr        | Thr        | Glu        | Asn<br>445 | Ser        | Leu        | Arg        |
| Gly        | Val<br>450 | Ile        | Leu        | Asp        | Ile        | His<br>455 | Phe        | Leu        | Ser        | Gln        | Ala<br>460 | Asp        | Phe        | Leu        | Val        |
| Cys<br>465 | Thr        | Phe        | Ser        | Ser        | Gln<br>470 | Val        | Cys        | Arg        |            | Ala<br>475 | Tyr        | Glu        | Ile        | Met        | Gln<br>480 |
| Thr        | Leu        | His        | Pro        | Asp<br>485 | Ala        | Ser        | Ala        | Asn        | Phe<br>490 | His        | Ser        | Leu        | Asp        | Asp<br>495 | Ile        |
| Tyr        | Tyr        | Phe        | Gly<br>500 | Gly        | Gln        | Asn        | Ala        | His<br>505 | Asn        | Gln        | Ile        | Ala        | Val<br>510 | Tyr        | Pro        |
| His        | Lys        | Pro<br>515 | Árg        | Thr        | Glu        | Glu        | Glu<br>520 | Ile        | Pro        | Met        | Glu        | Pro<br>525 | Gly        | Asp        | Ile        |
| Ile        | Gly<br>530 | Val        | Ala        | Gly        | Asn        | His<br>535 | Trp        | Asp        | Gly        | Tyr        | Ser<br>540 | Lys        | Gly        | Ile        | Asn        |
| Arg<br>545 | Lys        | Leu        | Gly        | Lys        | Thr<br>550 | Gly        | Leu        | Tyr        | Pro        | Ser<br>555 | Tyr        | Lys        | Val        | Arg        | Glu<br>560 |
| Lys        | Ile        | Glu        | Thr        | Val<br>565 | Lys        | Tyr        | Pro        | Thr        | Tyr<br>570 | Pro        | Glu        | Ala        | Glu        | Lys        |            |

<211> 575

<212> PRT

<214> Rattus norvegicus

<400> 7

Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe 1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95

Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Gly Leu Gly Lys Asp His
100 105 110

Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe 115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys His Leu Glu Gly Asn Glu 130 135 140

Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175 Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu . 210 His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu Ser Thr Gly His Trp Ser Gly Glu Val Asn Asp Lys Asn Ile Gln Val Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Val Arg Val His Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys . 350 Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp 

Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val

.370

| His<br>385 | Val        | Glu        | Glu        | His        | Phe<br>390 | Ģln        | Leu        | Leu        | Ala        | Arg<br>395 | Arg        | Met        | Gln        | Val        | Asp<br>400 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Lys        | Arg        | Val        | Tyr<br>405 | Leu        | Ala        | Thr        | Asp        | Asp<br>410 | Pro        | Ala        | Leu        | Leu        | Lys<br>415 | Glu        |
| Ala        | Lys        | Thr        | Lys<br>420 | Tyr        | Ser        | Asn        | Tyr        | Glu<br>425 | Phe        | Il·e       | Ser        | Asp        | Asn<br>430 | Ser        | Ile        |
| Seŗ        | Trp        | Ser<br>435 | Ala        | Gly        | Leu        | His        | Asn<br>440 | Arg        | Tyr        | Thr        | Glu        | Asn<br>445 | Ser        | Leu        | Arg        |
| Gly        | Val<br>450 | Ile        | Leu        | Asp        | Ile        | His<br>455 | Phe        | Leu        | Ser        | Gln        | Ala<br>460 | Asp        | Phe        | Leu        | Val        |
| Cys<br>465 | Thr        | Phe        | Ser        | Ser        | Gln<br>470 | Val        | Cys        | Arg        | Val        | Ala<br>475 | Tyr        | ·Glu       | Ile        | Met        | Gln<br>480 |
| Thr        | Leu        | His        | Pro        | Asp<br>485 | Ala        | Ser        | Ala        | Asn        | Phe<br>490 | His        | Ser        | Leu        | Asp        | Asp<br>495 | Ile        |
| Tyr        | Tyr        | Phe        | Gly<br>500 | Gly        | Gln        | Asn        | Ala        | His<br>505 | Asn        | Gln        | Ile        |            | Val<br>510 | Tyr        | Pro        |
| His        | Lys        | Pro<br>515 |            | Thr        | Asp        | Glu        | Glu<br>520 | Ile        | Pro        | Met        | Glu        | Pro<br>525 | Gly        | Asp        | Ile        |
| Ile        | Gly<br>530 |            | Ala        | Gly        | Asn        | His<br>535 |            | Asp        | Gly        | ·Tyr       | Ser<br>540 | Lys        | Gly        | Val        | Asn        |
| Arg<br>545 |            | Leu        | Gly        | Lys        | Thr<br>550 |            | Leu        | Tyr        | Pro        | Ser<br>555 |            | Lys        | Val        | Arg        | Glu<br>560 |
| Lys        | Ile        | Glu        | Thr        | Val<br>565 |            | Tyr        | Pro        | Thr        | Tyr<br>570 |            | Glu        | Ala        | Glu        | Lys        |            |

<210> 8

<211> 575

<212> PRT

<215> Homo Sapience

<400> 8

Met Arg Pro Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe 1 5 10 15

Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30

Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45

Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60

Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Pro Ala Ile 65 70 75 80

Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95

Ile Glu Asn Tyr Lys Lys Gln Thr Arg Asn Gly Leu Gly Lys Asp His
100 105 110

Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125

Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Asn Leu Glu Gly Asn Glu 130 135 140

Leu Gln Arg His Ala Asp Glu Phe Leu Leu Asp Leu Gly His His Glu 145 150 155 160

Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175

Gly Asp Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Lys Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Ile Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Val Arg Val His Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile Arg Pro Gln Pro Trp Leu Glu Lys Glu Ile Glu Glu Ala Thr Lys Lys Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val

|            |            |            | .,         |            |            |            |            |            |            |            |            |            |            |                  |            |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|--|
|            | 370        |            |            | 1          |            | 375        | •          |            |            |            | 380        |            |            |                  |            |  |
| His<br>385 | Val        | Glu        | Glu        | His        | Phe<br>390 | Gln        | Leu        | Leu        | Ala        | Arg<br>395 | Arg        | Met        | Gln        | Val              | Asp<br>400 |  |
| Lys        | Lys        | Arg        | Val        | Tyr<br>405 | Leu        | Ala        | Thr        | Asp        | Asp<br>410 | Pro        | Ser        | Leu        | Leu        | Lys<br>415       | Glu        |  |
| <br>Ala    | Lys        | Thr        | Lys<br>420 | Tyr        | Pro        | Asn        | Tyr        | Glu<br>425 | Phe        | Ile.       | Ser        | Asp        | Asn<br>430 | Ser              | Ile        |  |
| Ser        | Trp        | Ser<br>435 | Ala        | Gly        | Leu        | His        | Asn<br>440 | Arg        | Tyr        | Thr        | Glu        | Asn<br>445 | Ser        | Leu              | Arg        |  |
| Gly        | Val<br>450 | Ile        | Leu        | Asp        | Ile        | His<br>455 | Phe        | Leu        | Ser        | Gln        | Ala<br>460 | Asp        | Pḥe        | Leu <sup>.</sup> | Val        |  |
| Cys<br>465 | Thr        | Phe        | Ser        | Ser        | Gln<br>470 | Val        | Cys        | Arg        | Val        | Ala<br>475 | Tyr        | Glu        | Ile        | Met              | Gln<br>480 |  |
| Thr        | Leu        | His        | Pro        | Asp<br>485 | Ala        | Ser        | Ala        | Asn        | Phe<br>490 | His        | Ser        | Leu        | Asp        | Asp<br>495       | Ile        |  |
| Tyr        | Tyr        | Pḥe        | Gly<br>500 | Gly        | Gln        | Asn        | Ala        | His<br>505 | Asn        | Gln        | Ile        | Ala        | Ile<br>510 | Tyr              | Ala        |  |
| His        | Gln        | Pro<br>515 | Arg        | Thr        | Ala        | Asp        | Glu<br>520 | Ile        | Pro        | Met        | Glu        | Pro<br>525 | Gly        | Asp              | Ile        |  |
| Ile        | Gly<br>530 | Val        | Ala        | Gly        | Asn        | His<br>535 | Trp        | Asp        | Gly        | Tyr        | Ser<br>540 | Lys        | Gly        | Val              | Asn        |  |
| Arg<br>545 | Lys        | Leu        | Gly        | Arg        | Thr<br>550 | Gly        | Leu        | Tyr        | Pro        | Ser<br>555 | Tyr        | Lys        | Val        | Arg              | Glu<br>560 |  |

570

Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys

565

| <210>  | 9                                                  |    |
|--------|----------------------------------------------------|----|
| <211>  | 40                                                 |    |
| <212>  | RNA .                                              | •  |
|        | Artificial Sequence                                |    |
| 1210   |                                                    |    |
| <220>  |                                                    |    |
|        | Description of Artificial Sequence: Synthetic RNA  |    |
| 10007  | Description of Midificial Sodamore Statement       |    |
| <400̈> | -·                                                 |    |
|        | ·                                                  | 40 |
| gaaggg | gaguu gaaacucuga aaaugcgggc auggacuggu             |    |
|        |                                                    |    |
|        |                                                    |    |
| <210>  |                                                    |    |
| <211>  | •                                                  |    |
| <212>  | •                                                  |    |
| <213>  | Artificial Sequence                                |    |
| •      |                                                    |    |
| <220>  |                                                    |    |
| <223>  | Description of Artificial Sequence: Synthetic RNA  |    |
|        |                                                    |    |
| <400>  | 10                                                 |    |
| gagga  | gaaug geugagueue ueegaauaee a                      | 31 |
|        |                                                    |    |
|        |                                                    |    |
| <21:0> | 11                                                 |    |
| <211>  |                                                    |    |
| <212>  |                                                    |    |
|        | Artificial Sequence                                |    |
| 14107  | Altilitat soquenos                                 |    |
| <220>  |                                                    |    |
|        | Description of Artificial Sequence: Synthetic RNA  |    |
| (443)  | Description of Artificial bequence. Synonecte into |    |
|        |                                                    |    |
| <400>  |                                                    | 33 |
| ccaaa  | gacau gcagaugaaa uucuuuugga uuu                    | JJ |
|        |                                                    |    |
|        |                                                    | •  |
| <210>  | . 12                                               |    |

| • •                                                     |     |
|---------------------------------------------------------|-----|
| <211> 35                                                |     |
| <212> RNA                                               |     |
| <213> Artificial Sequence                               |     |
|                                                         |     |
| <220> ·                                                 |     |
| <223> Description of Artificial Sequence: Synthetic RNA |     |
|                                                         | •   |
| <400> 12                                                |     |
| ucuuggaauc ucagaauugg cgcuaugcua cugga                  | 35  |
|                                                         |     |
| •                                                       |     |
| <210> 13                                                |     |
| <211> 32                                                |     |
| <212> RNA                                               |     |
| <213> Artificial Sequence                               |     |
|                                                         |     |
| <b>(220)</b>                                            |     |
| <223> Description of Artificial Sequence: Synthetic RNA |     |
|                                                         |     |
| <400> 13                                                | 0.0 |
| auacacagaa aauucacuuc ggggcgugau cc                     | 32  |
|                                                         |     |
| (010) 14                                                |     |
| <210> 14                                                |     |
| <211> 34<br><212> RNA                                   |     |
|                                                         |     |
| <213> Artificial Sequence                               |     |
| <220>                                                   |     |
| <223> Description of Artificial Sequence: Synthetic RNA |     |
| (220) Description of interrest bodycono, bynamoute with |     |
| <400> 14                                                |     |
| ucaucccagg ucuguagggu ugcuuaugaa auca                   | 34  |
|                                                         |     |
|                                                         |     |
|                                                         |     |

<210> 15

<211> 36

<212> RNA

| (213) | Artificial | Sequence  |
|-------|------------|-----------|
|       | UICTICIO   | DOGGOTIOO |

<220>

<223> Description of Artificial Sequence: Synthetic RNA

<400> 15

caucuacuau uuuggaggee aaaaugeeea caacca

36

<210> 16

<211> 31

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic RNA

<400> 16

ugcacuggug gaacgccucu uugugaaggg c

31

<210> 17

<211> 34

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic RNA

<400> 17

caagaagcuu ggcuucaaac auccaguuau ugga

34

<210> 18

<211> 35 ·

<212> RNA

<213> Artificial Sequence

| WO 2005/035778                                                | PCT/JP2004/015316                     |
|---------------------------------------------------------------|---------------------------------------|
| <220> ·                                                       |                                       |
| <223> Description of Artificial Sequence: Synthetic RNA       |                                       |
| <400> 18                                                      |                                       |
| uauggcaccc agcgaacacu caucuuggaa ucuca                        | 35                                    |
|                                                               |                                       |
| <210> 19                                                      | · · · · · · · · · · · · · · · · · · · |
| <211> 31                                                      |                                       |
| <212> RNA                                                     |                                       |
| <213> Artificial Sequence                                     | •                                     |
|                                                               |                                       |
| <220> <223> Description of Artificial Sequence: Synthetic RNA |                                       |
| (223) Description of Artificial Sequence. Symphotic Man       |                                       |
| <400> 19                                                      |                                       |
| gaggcgaaug geugagueue uccgaauace a                            | 31                                    |
| · ·                                                           | •                                     |
|                                                               |                                       |
| <210> 20                                                      |                                       |
| <211> 31                                                      |                                       |
| <212> RNA                                                     | •                                     |
| <213> Artificial Sequence                                     | •                                     |
|                                                               | •                                     |
| <220>                                                         |                                       |
| <223> Description of Artificial Sequence: Synthetic RNA       | ,                                     |
|                                                               |                                       |
| <400> 20                                                      |                                       |
| gaggegaaug geegaaueue ueeggauaee a                            | 31                                    |
|                                                               |                                       |
| <210> 21                                                      | •                                     |
| <211> 33                                                      |                                       |
| <212> RNA                                                     |                                       |
| <213> Artificial Sequence                                     |                                       |

<223> Description of Artificial Sequence: Synthetic RNA

<220>

<400> 24

| <400> 21                                                |    |
|---------------------------------------------------------|----|
| ccaaagacau gcagaugaau uucuuuugga uuu                    | 33 |
| ·                                                       |    |
|                                                         |    |
| <210> 22 _                                              |    |
| <211> 35                                                |    |
| <212> RNA                                               |    |
| <213> Artificial Sequence                               |    |
| <del>-</del> -                                          |    |
| <220>                                                   |    |
| <223> Description of Artificial Sequence: Synthetic RNA |    |
|                                                         |    |
| <400> 22                                                |    |
| ucuuggaauc ucagaauugg cgcuaugcua cuggu                  | 35 |
|                                                         |    |
|                                                         |    |
| <210> 23                                                |    |
| <211> 32                                                | ,  |
| <212> RNA                                               |    |
| <213> Artificial Sequence                               |    |
|                                                         |    |
| <220>                                                   |    |
| <223> Description of Artificial Sequence: Synthetic RNA |    |
| •                                                       |    |
| <400> 23                                                | •  |
| guacacagaa aauucacuuc ggggugugau cc                     | 32 |
| ,                                                       |    |
|                                                         |    |
| <210> 24                                                |    |
| <211> 32                                                |    |
| <212> RNA                                               |    |
| <213> Artificial Sequence                               |    |
|                                                         |    |
| <220>                                                   |    |
| <223> Description of Artificial Sequence: Synthetic RNA |    |
|                                                         | •  |
| $\cdot$                                                 |    |

| WO 2005/035778                                         | PCT/JP2004/015316 |
|--------------------------------------------------------|-------------------|
| auacacagaa aauucacuuc guggagugau cc                    | 32                |
| <210> 25                                               |                   |
| <211> 32                                               | •                 |
| <212> RNA                                              | •                 |
| <213> Artificial Sequence                              |                   |
|                                                        |                   |
| <220>                                                  |                   |
| <223> Description of Artificial Sequence: Synthetic RI | NA .              |
|                                                        |                   |
| <400> 25                                               | 32                |
| guacacagaa aauucacuuc ggggcgugau cc                    |                   |
|                                                        | •                 |
| <210> 26                                               |                   |
| ⟨211⟩ 34                                               | ,                 |
| <212> RNA                                              |                   |
| <213> Artificial Sequence                              |                   |
|                                                        | • .               |
| ⟨220⟩                                                  |                   |
| (223) Description of Artificial Sequence: Synthetic R  | NA '              |
| (100) 00                                               |                   |
| <400> 26 ucaucccagg ucugucgggu ugcuuaugaa auca         | 34                |
| ucaucceagg ucugucgggu ugcuuaugaa auca                  |                   |
|                                                        |                   |
| <210> 27                                               |                   |
| <211> 34                                               |                   |
| <212> RNA                                              |                   |
| <213> Artificial Sequence                              |                   |

34

<223> Description of Artificial Sequence: Synthetic RNA

ucaucccagg ucugucgagu ugcuuaugaa auua

<220>

<400> 27

⟨210⟩ 31

| 210>  | 28                                                |    |
|-------|---------------------------------------------------|----|
| 211>  | 36                                                |    |
| 212>  | RNA                                               |    |
| 213>  | Artificial Sequence                               |    |
|       |                                                   |    |
| (220> | Goodland DNA                                      |    |
| (223> | Description of Artificial Sequence: Synthetic RNA |    |
| (400> | 28                                                |    |
|       | acuau uuuggaggcc aaaaugccca caauca                | 36 |
|       |                                                   |    |
| (210> | 20                                                |    |
|       |                                                   |    |
| (211) |                                                   |    |
| (212) |                                                   |    |
| (213) | Artificial Sequence                               |    |
| <220> |                                                   |    |
| <223> | Description of Artificial Sequence: Synthetic RNA |    |
| <400> | 29                                                |    |
|       | acuau uuugggggcc agaaugccca caauca                | 36 |
| Jauou |                                                   |    |
|       |                                                   |    |
| <210> | •                                                 |    |
| <211> | 34                                                |    |
| <212> |                                                   |    |
| <213> | Artificial Sequence                               |    |
| <220> | ·                                                 |    |
|       | Description of Artificial Sequence: Synthetic RNA |    |
| <400> | 20                                                |    |
|       |                                                   | 34 |
| caaga | ageuu ggeuucaaac auccagucau ugga                  | UT |
|       | ·                                                 |    |

WO 2005/035778

<212> DNA

PCT/JP2004/015316

<211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic DNA <400> 31 24 gtctgaagca ttatgtgttg aagc <210> 32 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic DNA <400> 32 23 gtgagtacat tcattgtact gtg <210> 33 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic DNA <400> 33 17 ttcccagtca cgacgtt <210> 34 <211> 17

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 34

caggaaacag ctatgac

17

<210> 35

<211> 18

<212> PRT

<213> Homo sapiens

<220>

<400> 35

Asp Glu Ser Ile Tyr Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys

1 5 10 15

Pro Cys

<210> 36

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 36

atcetegtee teettaetta ee

22

<210> 37

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 37

tccagctgac caagaaatag ag

22

⟨210⟩ 38

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 38

gatatcgctg cgctcgtcgt cgac

. 24

<210> 39

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 39

caggaaggaa ggctggaaga gagc

24

<210> 40

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

**<400> 40** 

| occasactta | atatcaaggt | СБББСЯББЯЯ | gagggcctat |
|------------|------------|------------|------------|
| CCaagCllg  | alallaaggi | UBBBUABBAA | 5455500040 |

40

<210> 41

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 41

gctctagaga tatcaaaaaa ggtaccgagc tcggtgtttc gtcctttcca ca

52

<210> 42

<211> 74

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 42

cgaatggctg agtctctccg aataccagaa cttcctgtca ttctggtatt cggagagact 60

cagccattcg gtac

74

<210> 43

<211> 74

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 43

| cgaatggetg agteteteeg aataccagaa tgacaggaag ttetggtatt eggagag          | act 60 |
|-------------------------------------------------------------------------|--------|
| cagccattcg agct                                                         | 74     |
|                                                                         |        |
| <210> 44                                                                |        |
| <211> 74                                                                |        |
| <212> DNA                                                               |        |
| <213> Artificial Sequence                                               |        |
| Value in official posturios                                             |        |
| <220>                                                                   |        |
| <223> Description of Artificial Sequence: Synthetic DNA                 |        |
|                                                                         |        |
| <400> 44                                                                |        |
| cccagcgaac actcatcttg gaatctcaga cttcctgtca tctgagattc caagatg          | agt 60 |
|                                                                         |        |
| gttcgctggg gtac                                                         | 74     |
|                                                                         |        |
|                                                                         | •      |
| <210> 45                                                                |        |
| <211> 74                                                                |        |
| <212> DNA                                                               |        |
| <213> Artificial Sequence                                               | •      |
|                                                                         | •      |
| <220>                                                                   |        |
| <223> Description of Artificial Sequence: Synthetic DNA                 |        |
| 4100 45                                                                 | •      |
| <400> 45 cccagcgaac acteatettg gaateteaga tgacaggaag tetgagatte caagatg | agt KN |
| cccagegaac acteatering gaareteaga tgaeaggaag tetgagatte caagates        | 460 00 |
| gttcgctggg agct                                                         | 74     |
| 500050055 u500                                                          | • -    |
|                                                                         |        |
| <210> 46                                                                |        |
| · — — • · · · · · · · · · · · · · · · ·                                 |        |

<212> DNA

<213> Artificial Sequence

PCT/JP2004/015316 WO 2005/035778

<220> ·

<223> Description of Artificial Sequence: Synthetic DNA

<400> 46

ggcagctgcg ccagggtttt cccagtcacg ac

32

<210> 47

<211> 44

<212> DNA

<213> Artificial Sequence

⟨220⟩

<223> Description of Artificial Sequence: Synthetic DNA

<400> 47

cccagctgaa aaaaggtacc ctatgagctc ggggttggtt tttg

'44

<210> 48

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 48

taaatagaat teggeateat gtggeagetg et

32

<210> 49

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 49
aataaaggat cctggggtca tttgtcttga gggt

34

<210> 50
<211> 788
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (13)..(774)

<400> 50
gaa ttc ggc atc atg

gaa ttc ggc atc atg tgg cag ctg ctc ctc cca act gct ctg cta ctt 4

Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu

5 10

cta gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg 96 Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val 15 20 25

ttc ctg gag cct caa tgg tac agg gtg ctc gag aag gac agt gtg act 144
Phe Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr
30 35 40

ctg aag tgc cag gga gcc tac tcc cct gag gac aat tcc aca cag tgg 192 Leu Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp

45 50 55 60

ttt cac aat gag agc ctc atc tca agc cag gcc tcg agc tac ttc att 240
Phe His Asn Glu Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile
65 70 75

gac gct gcc aca gtc gac gac agt gga gag tac agg tgc cag aca aac 288 Asp Ala Thr Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn

80 85 90

ctc tcc acc ctc agt gac ccg gtg cag cta gaa gtc cat atc ggc tgg 336 Leu Ser Thr Leu Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp 95 100 105

ctg ttg ctc cag gcc cct cgg tgg gtg ttc aag gag gaa gac cct att 384 Leu Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile

110 115 120 cac ctg agg tgt cac agc tgg aag aac act gct ctg cat aag gtc aca 432 His Leu Arg Cys His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr 125 130 135 140 tat tta cag aat ggc aaa ggc agg aag tat ttt cat cat aat tct gac 480 Tyr Leu Gln Asn Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp 150 ttc tac att cca aaa gcc aca ctc aaa gac agc ggc tcc tac ttc tgc 528 Phe Tyr Ile Pro Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys 160 165 170 agg ggg ctt ttt ggg agt aaa aat gtg tct tca gag act gtg aac atc 576 Arg Gly Leu Phe Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile 175 180 185 acc atc act caa ggt ttg gca gtg tca acc atc tca tca ttc ttt cca 624 Thr Ile Thr Gln Gly Leu Ala Val Ser Thr Ile Ser Ser Phe Phe Pro 190 195 200 cct ggg tac caa gtc tct ttc tgc ttg gtg atg gta ctc ctt ttt gca 672 Pro Gly Tyr Gln Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala 205 210 215 gtg gac aca gga cta tat ttc tct gtg aag aca aac att cga agc tca 720 Val Asp Thr Gly Leu Tyr Phe Ser Val Lys Thr Asn Ile Arg Ser Ser 225 230 235 aca aga gac tgg aag gac cat aaa ttt aaa tgg aga aag gac cct caa 768 Thr Arg Asp Trp Lys Asp His Lys Phe Lys Trp Arg Lys Asp Pro Gln 240 245 250 gac aaa tga ccc cag gat cc 788 Asp Lys

<210> 51

<211> 254

<212> PRT

<213> Homo sapiens

<400> 51

Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala

1 5 10 15

Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro

|            |            |            | 20         | •          |            |            |            | 25         |            |            |            |            | . 30       | •          |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ğln        | Trp        | Tyr<br>35  | Arg        | Val        | Leu        | Glu        | Lys<br>40  | Asp        | Ser        | Val        | Thr        | Leu<br>45  | Lys        | Cys        | Gln        |
| Gly        | Ala<br>50  | Tyr        | Ser        | Pro        | Glu        | Asp<br>55  | Asn        | Ser        | Thr        | Gln        | Trp. 60    | Phe        | His        | Asn        | Glu        |
| Ser<br>65  | Leu        | Ile        | Ser        | Ser        | Gln<br>70  | Ala        | Ser        | Ser        | Tyr        | Phe<br>75  | Ile        | Asp        | Ala        | Àla        | Thr<br>80  |
| Val        | Asp        | Asp        | Ser        | Gly<br>85  | Glu        | Tyr        | Arg        | Cys        | Gln<br>90  | Thr        | Asn        | Leu        | Ser        | Thr<br>95  | Leu        |
| Ser        | Asp        | Pro        | Val<br>100 | Gln        | Leu        | Glu        | Val        | His<br>105 | Ile        | Gly        | Trp        | Leu        | Leu<br>110 | Leu        | Gln        |
| Ala        | Pro        | Arg<br>115 | Trp        | Val        | Phe        | Lys        | Glu<br>120 | Glu        | Asp        | Pro        | Ile        | His<br>125 | Leu<br>-   | Arg        | Cys        |
| His        | Ser<br>130 | Trp        | Lys        | Asn        | Thr        | Ala<br>135 | Leu        | His        | Lys        | Val        | Thr<br>140 | Tyr        | Leu        | Gln        | Asn        |
| Gly<br>145 | Lys        | Gly        | Arg        | Lys        | Tyr<br>150 | Phe        | His        | His        | Asn        | Ser<br>155 | Asp        | Phe        | Tyr        | Ile        | Pro<br>160 |
| Lys        | Ala        | Thr        | Leu        | Lys<br>165 | Asp        | Ser        | Gly        | Ser        | Tyr<br>170 | Phe        | Cys        | Arg        | Gly        | Leu<br>175 | Phe        |
| Gİy        | Ser        |            | Asn<br>180 | Val        | Ser        | Ser        | Glu        | Thr<br>185 | Val        | Asn        | Ile        | Thr        | Ile<br>190 | Thr        | Gln        |
| Gly        | Leu        | Ala<br>195 | Val        | Ser        | Thr        | Ile        | Ser<br>200 | Ser        | Phe        | Phe        | Pro        | Pro<br>205 | Gly        | Tyr        | Gln        |
| Val        | Ser<br>210 | Phe        | Cys        | Leu        | Val        | Met<br>215 | Val        | Leu        | Leu        | Phe        | Ala<br>220 | Val        | Asp        | Thr        | Gly        |
| Leu<br>225 | Tyr        | Phe        | Ser        | Val        | Lys<br>230 | Thr        | Asn        | Ile        | Arg        | Ser<br>235 | Ser        | Thr        | Arg        | Asp        | Trp<br>240 |
| Lys        | Asp        | His        | Lys        | Phe<br>245 | Lys        | Trp        | Arg        | Lys        | Asp<br>250 | Pro        | Gln        | Asp        | Lys        | •          |            |

<210> 52

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

```
<400> 52
tgttggatcc tgtcaatgat gatgatgatg atgaccttga gtgatggtga t
                                                                    51
<210> 53
<211> 620
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (13)..(609)
<400> 53
gaa ttc ggc atc atg tgg cag ctg ctc ctc cca act gct ctg cta ctt
                Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu
                                                        10
                    1
cta gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg
Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val
                                                  25
                             20
         15
ttc ctg gag cct caa tgg tac agg gtg ctc gag aag gac agt gtg act 144
Phe Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr
                         35
     30
ctg aag tgc cag gga gcc tac tcc cct gag gac aat tcc aca cag tgg 192
Leu Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp
                                                              60
                     50
 45
ttt cac aat gag agc ctc atc tca agc cag gcc tcg agc tac ttc att 240
Phe His Asn Glu Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile
                 65
                                      70
gac gct gcc aca gtc gac gac agt gga gag tac agg tgc cag aca aac 288
Asp Ala Ala Thr Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn
                                                      90
                                  85
             80
ctc tcc acc ctc agt gac ccg gtg cag cta gaa gtc cat atc ggc tgg 336
Leu Ser Thr Leu Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp
                             100
                                                 105
          95
ctg ttg ctc cag gcc cct cgg tgg gtg ttc aag gag gaa gac cct att 384
Leu Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile
```

. 120 110 115 cac ctg agg tgt cac agc tgg aag aac act gct ctg cat aag gtc aca 432 His Leu Arg Cys His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr 125 130 135 140 ' tat tta cag aat ggc aaa ggc agg aag tat ttt cat cat aat tct gac 480 Tyr Leu Gln Asn Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp 150 145 ttc tac att cca aaa gcc aca ctc aaa gac agc ggc tcc tac ttc tgc 528 Phe Tyr Ile Pro Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys 160 165 agg ggg ctt ttt ggg agt aaa aat gtg tct tca gag act gtg aac atc 576 Arg Gly Leu Phe Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile 185 175 180 acc atc act caa ggt cat cat cat cat cat tga cag gat cc Thr Ile Thr Gln Gly His His His His His 190 195

<210> 54

<211> 199

<212> PRT

<213> Homo sapiens

<400> 54

 Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu Leu Val Ser Ala

 1
 5
 10
 15

 Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro
 20
 25
 30

 Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln
 45

 Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp Phe His Asn Glu
 50
 55
 60

Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile Asp Ala Ala Thr
65 70 75 80

Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn Leu Ser Thr Leu 85 90 95

Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln
100 105 110

| 1 | Ala | Pro | Arg                  | ${\tt Trp}$ | Val | Phe | Lys  | Glu | Glu | Asp | Pro | Ile | His | Leu | Arg                           | Cys   |
|---|-----|-----|----------------------|-------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-------------------------------|-------|
|   |     |     | 115                  |             |     |     |      | 120 |     |     |     |     | 125 |     |                               |       |
| ] | His | Ser | $\operatorname{Trp}$ | Lys         | Asn | Thr | Ala  | Leu | His | Lys | Val | Thr | Tyr | Leu | Gln                           | Asn   |
|   |     | 130 |                      |             |     |     | 135. |     |     |     |     | 140 |     |     |                               |       |
| ( | Gly | Lys | Gly                  | Arg         | Lys | Tyr | Phe  | His | His | Asn | Ser | Asp | Phe | Tyr | Ile                           | Pro   |
|   | 145 |     |                      |             |     | 150 |      |     |     |     |     |     |     |     |                               | 160   |
|   | Lys | Ala | Thr                  | Leu         | Lys | Asp | Ser  | Gly | Ser | Tyr | Phe | Cys | Arg | Gly | Leu                           | Phe ' |
|   |     |     |                      |             | 165 |     |      |     |     | 170 |     |     |     |     | 175                           |       |
|   | Gly | Ser | Lys                  | Asn         | Val | Ser | Ser  | Glu | Thr | Val | Asn | Ile | Thr | Ile | $\operatorname{\mathtt{Thr}}$ | Gln   |
|   |     |     | •                    | 180         |     |     |      |     | 185 |     |     |     |     | 190 |                               |       |
|   | Gly | His | His                  | His         | His | His | His  |     |     |     |     |     |     |     |                               |       |
|   |     |     | 195                  |             |     |     |      |     |     |     |     |     |     |     |                               |       |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.