

Table of contents

- Introduction (https://www.kaggle.com/ashishpatel26/light-gbm-demandforecasting#Introduction)
- Preparation (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#Preparation)
 - Dependencies (https://www.kaggle.com/ashishpatel26/light-gbm-demandforecasting#Dependencies)
 - Load the datasets (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#Load-the-datasets)

- Time series data exploration (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#Time-series-data-exploration)
 - Distribution of sales (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#Distribution-of-sales)
 - How does sales vary across stores (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#How-does-sales-vary-across-stores)
 - How does sales vary across items (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#How-does-sales-vary-across-items)
 - Time-series visualization of the sales (https://www.kaggle.com/ashishpatel26/light-gbm-demand-forecasting#Time-series-visualization-of-the-sales)

Introduction

Kernel for the demand forecasting (https://www.kaggle.com/c/demand-forecasting-kernels-only) Kaggle competition.

Answer some of the questions posed:

- What's the best way to deal with seasonality?
- Should stores be modeled separately, or can you pool them together?
- Does deep learning work better than ARIMA?
- Can either beat xgboost?

Preparation

Dependencies

```
In [1]:
    import pandas as pd
    import numpy as np
    from datetime import datetime
    import matplotlib.pyplot as plt
    import seaborn as sns
    plt.style.use('fivethirtyeight')
    sns.set()
    %matplotlib inline
    import plotly.offline as py
```

```
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import statsmodels.api as sm
import xgboost as xgb
import lightgbm as lgb
from sklearn.model_selection import train_test_split

import warnings
# import the_module_that_warns

warnings.filterwarnings("ignore")

from fbprophet import Prophet
```

/opt/conda/lib/python3.6/site-packages/statsmodels/compat/pandas.p
y:56: FutureWarning:

The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.

Load the datasets

```
In [2]:
    # Input data files are available in the "../input/" directory.
    # First let us load the datasets into different Dataframes
    def load_data(datapath):
        data = pd.read_csv(datapath)
        # Dimensions
        print('Shape:', data.shape)
        # Set of features we have are: date, store, and item
        display(data.sample(10))
        return data

train_df = load_data('../input/demand-forecasting-kernels-only/tra
        in.csv')
    test_df = load_data('../input/demand-forecasting-kernels-only/tes
        t.csv')
    sample_df = load_data('../input/demand-forecasting-kernels-only/sa
        mple_submission.csv')
```

Shape: (913000, 4)

	date	store	item	sales
431889	2015-08-12	7	24	49
393805	2016-04-30	6	22	96
553144	2017-08-20	3	31	113
10319	2016-04-04	6	1	18
472061	2015-08-12	9	26	59
573654	2013-10-18	5	32	26
808104	2015-10-10	3	45	110
678768	2016-08-15	2	38	94

540056	2016-10-18	6	30	31
456322	2017-07-07	10	25	153

Shape: (45000, 4)

	id	date	store	item
379	379	2018-01-20	5	1
3960	3960	2018-01-01	5	5
21450	21450	2018-01-31	9	24
33666	33666	2018-01-07	5	38
28309	28309	2018-02-19	5	32
7511	7511	2018-02-11	4	9
2003	2003	2018-01-24	3	3
22559	22559	2018-03-01	1	26
881	881	2018-03-13	10	1
27878	27878	2018-03-10	10	31

Shape: (45000, 2)

	id	sales
19444	19444	52
28912	28912	52
10073	10073	52
40548	40548	52
4555	4555	52
42578	42578	52
8988	8988	52
32348	32348	52
17238	17238	52
39203	39203	52

Time series data exploration

(This portion was forked (https://www.kaggle.com/danofer/getting-started-with-time-series-features).)

The goal of this kernel is data exploration of a time-series sales data of store items. The tools pandas, matplotlib and, plotly are used for slicing & dicing the data and visualizations.

Distribution of sales

```
In [3]:
        # Sales distribution across the train data
        def sales_dist(data):
                Sales_dist used for Checing Sales Distribution.
                data: contain data frame which contain sales data
            sales_df = data.copy(deep=True)
            sales_df['sales_bins'] = pd.cut(sales_df.sales, [0, 50, 100, 1
        50, 200, 250])
            print('Max sale:', sales_df.sales.max())
            print('Min sale:', sales_df.sales.min())
            print('Avg sale:', sales_df.sales.mean())
            print()
            return sales_df
        sales_df = sales_dist(train_df)
        # Total number of data points
        total_points = pd.value_counts(sales_df.sales_bins).sum()
        print('Sales bucket v/s Total percentage:')
        display(pd.value_counts(sales_df.sales_bins).apply(lambda s: (s/to
        tal_points)*100))
```

```
Max sale: 231
Min sale: 0
```

Avg sale: 52.250286966046005

Sales bucket v/s Total percentage:

```
(0, 50] 54.591407
(50, 100] 38.388322
(100, 150] 6.709974
(150, 200] 0.308544
(200, 250] 0.001752
Name: sales_bins, dtype: float64
```

In [4]: # Let us visualize the same sales_count = pd.value_counts(sales_df.sales_bins) sales_count.sort_values(ascending=True).plot(kind='barh', title='S ales distribution',); # sns.countplot(sales_count)

As we can see, almost 92% of sales are less than 100. Max, min and average sales are 231, 0

and 52.25 respectively.

So any prediction model has to deal with the skewness in the data appropriately.

How does sales vary across stores

Let us get a overview of sales distribution in the whole data.

```
In [5]:
# Let us understand the sales data distribution across the stores
def sales_data_understanding(data):
    store_df = data.copy()
    plt.figure(figsize=(20,10))
    sales_pivoted_df = pd.pivot_table(store_df, index='store', val
    ues=['sales','date'], columns='item', aggfunc=np.mean)
    sales_pivoted_df.plot(kind="hist",figsize=(20,10))
    # Pivoted dataframe
    display(sales_pivoted_df)
    return (store_df,sales_pivoted_df)

store_df,sales_pivoted_df = sales_data_understanding(train_df)
```

	sales						
item	1	2	3	4	5	6	7
store							
1	19.971522	53.148959	33.208105	19.956188	16.612815	53.060789	52.7836
2	28.173604	75.316539	46.992333	28.234940	23.540526	74.945235	75.0585
3	25.070099	66.804491	41.771084	25.116101	20.857612	67.007119	66.6478
4	22.938664	61.715225	38.548193	23.086528	19.525192	61.270537	61.6254
5	16.739321	44.488499	27.835706	16.776561	14.086528	44.564622	44.5355
6	16.717963	44.533954	27.811062	16.754107	13.893209	44.503834	44.5991
7	15.159365	40.717963	25.531216	15.358160	12.733844	40.703724	40.7097
8	26.983571	71.656627	45.076123	26.948521	22.427711	71.958379	71.7305
9	23.325849	61.792442	38.535049	23.150055	19.272180	61.412377	61.8121
10	24.736035	65.566813	41.113363	24.721249	20.637459	65.612267	65.8077
4							+

10 rows × 50 columns

<matplotlib.figure.Figure at 0x7f30f9671c18>

This pivoted dataframe has average sales per each store per each item. Let use this dataframe and produce some interesting visualizations!

```
In [6]:
# Let us calculate the average sales of all the items by each store
sales_across_store_df = sales_pivoted_df.copy()
sales_across_store_df['avg_sale'] = sales_across_store_df.apply(la
mbda r: r.mean(), axis=1)
```

```
In [7]:
        # Scatter plot of average sales per store
        sales_store_data = go.Scatter(
            y = sales_across_store_df.avg_sale.values,
            mode='markers',
            marker=dict(
                size = sales_across_store_df.avg_sale.values,
                color = sales_across_store_df.avg_sale.values,
                colorscale='Viridis',
                showscale=True
            text = sales_across_store_df.index.values
        )
        data = [sales_store_data]
        sales_store_layout = go.Layout(
            autosize= True,
            title= 'Scatter plot of avg sales per store',
            hovermode= 'closest',
            xaxis= dict(
                title= 'Stores',
                ticklen= 10,
                zeroline= False,
                gridwidth= 1,
            ),
            yaxis=dict(
                title= 'Avg Sales',
                ticklen= 10,
                zeroline= False,
                gridwidth= 1,
            ),
            showlegend= False
        fig = go.Figure(data=data, layout=sales_store_layout)
        py.iplot(fig,filename='scatter_sales_store')
```

Scatter plot of avg sales per store

From the visualization, it is clear that the stores with ID 2 and 8 have higher average sales than the remaining stores and is a clear indication that they are doing good money!

Whereas store with ID 7 has very poor performance in terms of average sales.

How does sales vary across items

```
In [8]:
        def sales_insight(sales_pivoted_df):
            # Let us calculate the average sales of each of the item across
         all the stores
            sales_across_item_df = sales_pivoted_df.copy()
            # Aggregate the sales per item and add it as a new row in the sa
        me dataframe
            sales_across_item_df.loc[11] = sales_across_item_df.apply(lamb
        da r: r.mean(), axis=0)
            # Note the 11th index row, which is the average sale of each of
         the item across all the stores
            #display(sales_across_item_df.loc[11:])
            avg_sales_per_item_across_stores_df = pd.DataFrame(data=[[i+1,
        a] for i,a in enumerate(sales_across_item_df.loc[11:].values[0])],
        columns=['item', 'avg_sale'])
            # And finally, sort by avg sale
            avg_sales_per_item_across_stores_df.sort_values(by='avg_sale',
        ascending=False, inplace=True)
            # Display the top 10 rows
            display(avg_sales_per_item_across_stores_df.head())
            return (sales_across_item_df,avg_sales_per_item_across_stores_
        df)
        sales_across_item_df,avg_sales_per_item_across_stores_df = sales_i
        nsight(sales_pivoted_df)
```

	item	avg_sale
14	15	88.030778
27	28	87.881325
12	13	84.316594
17	18	84.275794
24	25	80.686418

Great! Let us visualize these average sales per item!

```
In [9]:
    avq_sales_per_item_across_stores_sorted = avq_sales_per_item_acros
```

```
s_stores_df.avg_sale.values
# Scatter plot of average sales per item
sales_item_data = go.Bar(
    x=[i for i in range(0, 50)],
   y=avg_sales_per_item_across_stores_sorted,
   marker=dict(
        color=avg_sales_per_item_across_stores_sorted,
        colorscale='Blackbody',
        showscale=True
    ),
    text = avg_sales_per_item_across_stores_df.item.values
data = [sales_item_data]
sales_item_layout = go.Layout(
    autosize= True,
    title= 'Scatter plot of avg sales per item',
   hovermode= 'closest',
    xaxis= dict(
        title= 'Items',
        ticklen= 55,
        zeroline= False,
        gridwidth= 1,
    ),
    yaxis=dict(
        title= 'Avg Sales',
        ticklen= 10,
        zeroline= False,
        gridwidth= 1,
    ),
    showlegend= False
fig = go.Figure(data=data, layout=sales_item_layout)
py.iplot(fig,filename='scatter_sales_item')
```

Scatter plot of avg sales per item

Top tuerns with highest average sale are 15, 26, 13, 16 and with least average sales are 5, 1, 41 and so on.

Time-series visualization of the sales

Let us see how sales of a given item in a given store varies in a span of 5 years.

```
In [10]:
         def Time_visualization(data):
             store_item_df = data.copy()
             # First, let us filterout the required data
             store id = 10 # Some store
             item_id = 40
                             # Some item
             print('Before filter:', store_item_df.shape)
             store_item_df = store_item_df[store_item_df.store == store_id]
             store_item_df = store_item_df[store_item_df.item == item_id]
            print('After filter:', store_item_df.shape)
             #display(store_item_df.head())
             # Let us plot this now
             store_item_ts_data = [go.Scatter(
                 x=store_item_df.date,
                 y=store_item_df.sales)]
             py.iplot(store_item_ts_data)
             return store_item_df
         store_item_df = Time_visualization(train_df)
```

Before filter: (913000, 4) After filter: (1826, 4)

Woww! Clearly there is a pattern here! Feel free to play around with different store and item IDs.

Almost all the items and store combination has this pattern!

The sales go high in June, July and August months. The sales will be lowest in December, January and February months. That's somethina!!

Let us make it more interesting. What if we aggregate the sales on a montly basis and compare different items and stores.

This should help us understand how different item sales behave at a high level.

```
In [11]:
         def sales_monthly(data):
            multi_store_item_df = data.copy()
            # First, let us filterout the required data
             store_ids = [1, 1, 1, 1] # Some stores
            item_ids = [10, 20, 30, 40]
                                          # Some items
            print('Before filter:', multi_store_item_df.shape)
             multi_store_item_df = multi_store_item_df[multi_store_item_df.
         store.isin(store_ids)]
            multi_store_item_df = multi_store_item_df[multi_store_item_df.
         item.isin(item_ids)]
            print('After filter:', multi_store_item_df.shape)
            #display(multi_store_item_df)
            # TODO Monthly avg sales
            # Let us plot this now
            multi_store_item_ts_data = []
            for st,it in zip(store_ids, item_ids):
                 flt = multi_store_item_df[multi_store_item_df.store == st]
                 flt = flt[flt.item == it]
                multi_store_item_ts_data.append(go.Scatter(x=flt.date, y=f
        lt.sales, name = "Store:" + str(st) + ",Item:" + str(it)))
            py.iplot(multi_store_item_ts_data)
             return (multi_store_item_df)
        multi_store_item_df = sales_monthly(train_df)
```

Before filter: (913000, 4) After filter: (7304, 4)

Though the pattern remains same across different stores and items combinations, the **actual** sale value consitently varies with the same scale.

As we can see in the visualization, item 10 has consistently highest sales through out the span of 5 years!

This is an interesting behaviour that can be seen across almost all the items.

ARIMA

ARIMA is Autoregressive Integrated Moving Average Model, which is a component of SARIMAX, i.e. Seasonal ARIMA with eXogenous regressors.

(sources: 1 (https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/), 2 (https://www.digitalocean.com/community/tutorials/a-guide-to-time-series-forecasting-with-arima-in-python-3), 3 (http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases))

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases (http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases)

LIGHTGBM

In [13]:

```
In [12]:
         def split_data(train_data,test_data):
            train_data['date'] = pd.to_datetime(train_data['date'])
             test_data['date'] = pd.to_datetime(test_data['date'])
             train_data['month'] = train_data['date'].dt.month
             train_data['day'] = train_data['date'].dt.dayofweek
             train_data['year'] = train_data['date'].dt.year
             test_data['month'] = test_data['date'].dt.month
             test_data['day'] = test_data['date'].dt.dayofweek
            test_data['year'] = test_data['date'].dt.year
            col = [i for i in test_data.columns if i not in ['date','id']]
            y = 'sales'
             train_x, test_x, train_y, test_y = train_test_split(train_data
         [col],train_data[y], test_size=0.2, random_state=2018)
             return (train_x, test_x, train_y, test_y,col)
        train_x, test_x, train_y, test_y,col = split_data(train_df,test_df
```

```
params = {'application':'regression_11', 'num_iterations':
 n_estimators, 'learning_rate':learning_rate, 'early_stopping_roun
d':100, 'metric':'auc'}
#
          params["num_leaves"] = int(round(num_leaves))
#
          params['feature_fraction'] = max(min(feature_fraction, 1),
0)
          params['bagging_fraction'] = max(min(bagging_fraction, 1),
0)
          params['max_depth'] = int(round(max_depth))
          params['lambda_11'] = max(lambda_11, 0)
          params['lambda_12'] = max(lambda_12, 0)
          params['min_split_gain'] = min_split_gain
          params['min_child_weight'] = min_child_weight
#
          cv_result = lgb.cv(params, train_data, nfold=n_folds, seed
=random_seed, stratified=True, verbose_eval =200, metrics=['auc'])
          return max(cv_result['auc-mean'])
      # range
      lgbB0 = BayesianOptimization(lgb_eval, {'num_leaves': (24, 4
#
5),
                                               'feature_fraction':
 (0.1, 0.9),
#
                                               'bagging_fraction':
 (0.8, 1),
                                               'max_depth': (5, 8.9
#
9),
#
                                               'lambda_11': (0, 5),
#
                                               'lambda_12': (0, 3),
                                               'min_split_gain': (0.0
01, 0.1),
                                               'min_child_weight':
 (5, 50)}, random_state=0)
      # optimize
      lgbBO.maximize(init_points=init_round, n_iter=opt_round)
      # output optimization process
      if output_process==True: lgbB0.points_to_csv("bayes_opt_resul
t.csv")
      # return best parameters
      return lgbB0.res['max']['max_params']
# opt_params = bayes_parameter_opt_lgb(train_x, train_y, init_round=
5, opt_round=10, n_folds=3, random_seed=6, n_estimators=100, learnin
g_rate=0.02)
```

```
In [15]: # opt_params
```

```
'feature_fraction': 0.9,
                       'feature_fraction': 0.8108472661400657,
            #
                       'bagging_fraction': 0.9837558288375402,
                    'bagging_fraction': 0.8,
                     'bagging_freq': 5,
                     'lambda_11': 3.097758978478437,
                     'lambda_12': 2.9482537987198496,
                     'lambda_11': 0.06,
                     'lambda_12': 0.1,
This kernel has been released under the Apache 2.0 open source license.
                     'min_child_weight': 6.996211413900573,
                     'min_split_gain': 0.037310344962162616,
Did you find this Kernel useful?
Show your appreciation with an unyote Dataset (train
                lgb_valid = lgb.Dataset(test_x,test_y)
```

Data

Data Sources

- [Private Dataset]
- 🗸 🕏 Store Item Demand F...
 - sample_submission....
 - test.csv
 test.csv

[Private Dataset]

model = lgb.train(params, lgb_train, 3000, valid_sets=[lgb_tra

Access to this Dataset is restricted. You are seeing this placeholder because you have access to the Kernel.

Output Files

New Dataset

New Kernel

Download All

20

Output Files

- lgb_bayasian_param.csv
- Submission.csv

About this file

This file was created from a Kernel, it does not have a description.

■ lgb_bayasian_param.csv

1	id	sales
2	0	12.0960609 60947812
3	1	13.4836201 95751687
4	2	14.5976186 4377739
5	3	14.6385760 84571595
6	4	15.2402159 5349735
7	5	16.1718878 57432512
8	6	18.4005345 3614795
9	7	12.0960609 60947812
10	8	13.4836201 95751687

11	9	14.5976186 4377739
12	10	14.6385760 84571595
13	11	15.2402159 5349735
14	12	16.1718878 57432512
15	13	18.4005345 3614795
16	14	12.0960609 60947812
17	15	13.4836201 95751687
18	16	14.5976186 4377739
19	17	14.6385760 84571595
20	18	15.2402159

Run Info

True	Run Time	153.7 seconds
0	Queue Time	0 seconds
/python(Dockerfile)	Output Size	0
False	Used All Space	False
	0 /python(Dockerfile)	O Queue Time /python(Dockerfile) Output Size

Log Download Log

```
Time Line # Log Message
3.9s
              [NbConvertApp] Converting notebook script.ipynb to html
          1
4.0s
              [NbConvertApp] Executing notebook with kernel: python3
13.2s
              [LightGBM] [Info] Total Bins 88
           3
              [LightGBM] [Info] Number of data: 730400, number of used features:
13.2s
           4
13.3s
           5 [LightGBM] [Info] Start training from score 47.000000
13.3s
              [LightGBM]
                         [Warning] No further splits with positive gain, best
           6
              gain: -in
                         [Warning] No further splits with positive gain, best
13.4s
           7
              [LightGBM]
13.5s
           8
              [LightGBM]
                         [Warning] No further splits with positive gain, best
13.7s
           9
              [LightGBM]
                         [Warning] No further splits with positive gain, best
              gain: -in
              [LightGBM]
13.8s
          10
                         [Warning] No further splits with positive gain, best
              gain: -in
13.9s
          11
              [LightGBM]
                         [Warning] No further splits with positive gain, best
14.0s
              [LightGBM]
                         [Warning] No further splits with positive gain, best
              gain: -in
14.1s
              [LightGBM]
                         [Warning] No further splits with positive gain, best
          13
              gain: -in
              [LightGBM]
                         [Warning] No further splits with positive gain, best
14.2s
          14
14.3s
              [LightGBM]
                         [Warning] No further splits with positive gain, best
          15
                         [Warning] No further splits with positive gain, best
14.4s
          16
              [LightGBM]
              [LightGBM]
14.5s
          17
                         [Warning] No further splits with positive gain, best
14.6s
          18
              [LightGBM]
                         [Warning] No further splits with positive gain, best
14.7s
          19
              [LightGBM]
                         [Warning] No further splits with positive gain, best
              gain: -in
                         [Warning] No further splits with positive gain, best
14.8s
          20
              [LightGBM]
              gain: -ini
14.9s
          21
              [LightGBM]
                         [Warning] No further splits with positive gain, best
              gain: -ini
15.0s
              [LightGBM]
                         [Warning] No further splits with positive gain, best
              gain: -in1
```

		Light GE	sivi demand-	·IOIE	ecasting	Kaggie				
15.1s	23	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.1s	24	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.2s	25	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.3s	26	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.4s	27	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.5s	28	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.6s	29	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.7s	30	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.8s	31	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
15.9s	32	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.0s	33	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.1s	34	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.1s	35	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.2s	36	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.3s	37	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.4s	38	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.5s	39	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.7s	40	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.8s	41	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
16.9s	42	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.0s	43	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.1s	44	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.1s	45	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.2s	46	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.3s	47	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.4s	48	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.5s	49	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.6s	50	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.7s	51	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.8s	52	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
17.9s	53	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
18.0s	54	[LightGBM] gain: -inf								
18.1s	55	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
18.2s	56	[LightGBM] gain: -inf								
18.3s	57	[LightGBM] gain: -inf								
18.4s	58	[LightGBM] gain: -inf								
18.5s	59	[LightGBM] gain: -inf								
18.6s	60	[LightGBM] gain: -inf								
18.7s	61	[LightGBM] gain: -inf								
18.8s	62	[LightGBM] gain: -inf								
18.9s	63	[LightGBM] gain: -inf	[Warning]							
19.0s	64	[LightGBM] gain: -inf								
19.0s	65	[LightGBM] gain: -inf								
19.2s	66	[LightGBM] gain: -inf	[Warning]	No	Turther	splits	with	positive	gain,	best

Light GBM demand-forecasting Kaggle										
19.3s	67	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.3s	68	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.4s	69	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.5s	70	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.6s	71	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.7s	72	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.8s	73	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
19.9s	74	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.0s	75	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.1s	76	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.2s	77	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.3s	78	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.4s	79	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.5s	80	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.6s	81	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.7s	82	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.8s	83	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.8s	84	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
20.9s	85	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.0s	86	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.1s	87	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.2s	88	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.3s	89	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.4s	90	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.5s	91	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.6s	92	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.7s	93	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.8s	94	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
21.9s	95	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
22.0s	96	[LightGBM] gain: -inf								
22.1s	97	[LightGBM] gain: -inf							,	
22.2s	98	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
22.3s	99	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
22.4s	100	[LightGBM] gain: -inf	[Warning]	No	further	splits	with	positive	gain,	best
153.2s	1348									
153.2s 153.2s	1349 1350	Complete. E	Exited with	1 0	ode 0.					

© 2019 Kaggle Inc

Our Team Terms Privacy Contact/Support

Nice Kernel!!!!

NikitPatel • Posted on Version 9 • 8 months ago • Options • Reply

^ 2 ~