pixel value at a necessary position within each reference irrange, and either interpolation or extrapolation. For calcularing determined values from a plurality of pixel values obtained from the respective reference images, there are other alternative methods than a simple averaging method such as a weighted average method and a method for calculating by using a coefficient of a low-pass filter. Although description has been made of the case for determining motion compensation based on a field of an interlace signed in the present embodiment, it is needless to mention that the effect of the determination does not change if a frame is used as a base or a noninterlace image is used as a base as shown in the second and third embodiments respectively.

According to the present invention, as is clear from the above-described embodiments, a time position of a reference image is corrected by using a motion vector as required so that a plurality of pieces of reference images sampled at different times according to detected motion at certain time intervals of a block unit including at least one pixel become images at times separated from the input image by the above time intervals, so that it is possible to obtain a plurality of pieces of images at positions separated by the above time intervals from the input image. By combining the plurality of pieces of images together, a reference image of high pixel density can be obtained and a pixel value at a position which has been compensated by the detected motion is calculated by using the reference image of high pixel density, so that the calculated pixel value is used as a determined value. Thus, there is an effect that it is possible to determine motion compensation of an image at a very high level of precision.

Further, according to the present invention, a vector for correcting a time position of the above reference image can be calculated based on motion detected at a certain time interval, which does not require a detection again of a motion vector for correcting the time position, so that this has an effect that motion compensation at a high precision level can be ensured. Further, since an interlace signal can be used as an input signal and a reference image can be in two fields of a certain frame, the above determination of motion compensation can be applied to a frame image, thus ensuring a determination, at a high precision level, of motion compensation based on a frame.

Further, since the same value can be used for a block of each input image among blocks of a plurality of pieces of input images, each block having its whole or part of spatial position superposed with that of the other blocks, as a move detected at a certain time interval of a block unit including at least one pixel, it is not necessary to carry out a plurality of detections of moves of many block in a plurality of input images so that there is an effect that a determination of motion compensation at a high precision level can be ensured.

We claim:

[1. A method of determining motion compensation for an input image from motion vectors between the input image and a plurality of reference images, said method comprising the steps of:

- (a) calculating a motion vector MV1 between the input image and one reference image of said plurality of reference images from a motion of at least one block unifact a second set time interval T₂ between the input image and said one reference image said at least one block unit being a part of said input image and comprising a plurality of pixels.
- (b) providing a motion vector MV2 between at least two reference images of the plurality of reference images at

11

- a first set time interval T_1 , which is parallel to the motion vector MV1 at the second set time interval T_2 and different in magnitude from the motion vector MV1 at the second set time interval T_2 by a value determined by MV1. T_1/T_2 ; and
- (c) calculating the motion compensation of the input image from both of (i) the motion vector MV1 between the input image and said one reference image and (ii) the motion vector MV2 between the at least two reference images of the plurality of reference images.
- 2. A method of determining motion compensation for an input image from a motion vector between the input image and a plurality of reference images, said method comprising the steps of:
 - (a) detecting a motion vector MV1 between the input image and one reference image R1 of said plurality of reference images at a second set time interval T₂;
 - (b) providing a motion vector MV3 between the reference image R1 and another reference image R2 of said plurality of reference images at a first set time interval T₁, said motion vector MV3 being parallel to the motion vector MV1 and different in magnitude from the motion vector MV1 by a value determined by MV1.T₂/T₂;
 - (c) obtaining a motion vector MV2 between the input image and the another reference image R2 at a third set time interval T3 from a sum of the motion vector MV1 and the motion vector MV3, and calculating respective pixels corresponding to the motion vector MV1 and the motion vector MV2 from pixels of the reference image R1 and the reference image R2 corresponding to the motion vector MV1 and the motion vector MV2 or from pixels positioned peripherally of the pixels of the reference image R1 and the reference image R2; and

12

- (d) calculating motion-compensated pixel values from the calculated pixels of the reference images.
- 3. A method of obtaining a motion-compensated image from a motion vector between the motion-compensated image and a plurality of reference images, said method comprising the steps of:
 - (a) obtaining a motion vector MV1 between the motioncompensated image and one reference image RI of said plurality of reference images at a second set time interval T₂;
 - (b) providing a motion vector MV3 between the reference image R1 and another reference image R2 of said plurality of reference images at a first set time interval T1, which is parallel to the motion vector MV1 and different in magnitude from the motion vector MV1 by a value determined by MV1·T1/T2;
 - (c) obtaining a motion vector MV2 between the motion-compensated image and said another reference image R2 at a third set time interval T3 from a sum of the motion vector MV1 and the motion vector MV3, and calculating respective pixels corresponding to the motion vector MV1 and the motion vector MV2 from pixels of the reference image R1 and the reference image R2 corresponding to the motion vector MV1 and the motion vector MV1 and the motion vector MV2 or from pixels positioned peripherally of the pixels of the reference image R1 and the reference image R2; and
 - (d) calculating motion-compensated pixel values from the calculated pixels of the reference images to obtain the motion-compensated image. \(\bar{\cap}\)

* * * * *

- 4. A method of determining motion compensation for an input image, said method comprising the steps of:
- (a) providing a first motion vector MV1 between the input image and a reference image part r1 of one reference image R1 having a plurality of reference image parts;
- (b) calculating a second motion vector MV2 between the input image and a reference image part r2 of another reference image R2 having a plurality of reference image parts from said first motion vector MV1;
- (c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and
- (d) calculating said motion compensation for said input image from said pixel values calculated in step (c).
- 5. A method for determining a motioncompensated image, said method comprising the steps of:
- (a) providing a first motion vector MV1 between the motion-compensated image and a reference image part r1 of one reference image R1 having a plurality of parts;
- (b) calculating a second motion vector MV2 between the motion-compensated image and a reference image part r2 of another reference image R2 having a plurality of reference image parts from said first motion vector MV1;
- (c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and
- (d) calculating motion-compensated pixel values from said pixel values calculated in step (c) to

determine said motion-compensated image.

- 6. An apparatus for determining motion compensation for an input image, said apparatus comprising:
- (a) means for providing a first motion vector MV1 between the input image and a reference image part r1 of one reference image R1 having a plurality of reference image parts;
- (b) means for calculating a second motion vector MV2 between the input image and a reference image part r2 of another reference image R2 having a plurality of reference image parts from said first motion vector MV1;
- (c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and
- (d) means for calculating motioncompensated pixel values of said input image from said pixel values of said reference image parts r1 and r2 to determine said motion compensation.
- 7. An apparatus in accordance with claim 6, wherein said reference images R1 and R2 are previous to said input image in a time sequence.
- 8. An apparatus for determining a motioncompensated image from a reference image having a plurality of parts and a motion vector of the reference image, said apparatus comprising:
- (a) means for providing a first motion vector MV1 between said motion-compensated image and a reference image part r1 of one reference image R1 having a plurality of reference image parts;
- (b) means for calculating a second motion vector MV2 between said motion-compensated image and a reference image part r2 of another reference image R2 having a plurality of reference image parts from said first motion vector MV2;
- (c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which

said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

- (d) means for calculating motion-compensated pixel values from said pixel values of said reference image parts r1 and r2 to determine said motion-compensated image.
- 9. An apparatus in accordance with claim 8, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence.
- 10. A method in accordance with claim 4, wherein said parts R1 and R2 are previous to said input image in a time sequence.
- 11. A method in accordance with claim 5, wherein said parts R1 and R2 are previous to said motion-compensated image in a time sequence.