Statistik och Dataanalys I Föreläsning 13 - Slumpvariabler

Oskar Gustafsson

Statistiska institutionen Stockholms universitet

Översikt

- Slumpvariabler och sannolikhetsfördelningar
- Sammanfatta sannolikhetsfördelningar väntevärde och varians
- Kontinuerliga slumpvariabler en första titt på normalfördelningen.
- Räkna med slumpvariabler skift, skalning, linjärkombination och summor
- Beroende slumpvariabler korrelation och kovarians

Slumpvariabler

Slumpvariabel mäter ett numeriskt värde från slumpmässigt försök. T ex antal prickar vid kast med tärning, eller

$$X = \begin{cases} 0 & \text{om minusgrader} \\ 1 & \text{om plusgrader} \end{cases}$$

- Vi skriver slumpvariabler med stora bokstäver X och deras numeriska utfall med små bokstäver X.
- Slumpvariabeln "antal prickar" X fick utfallet x=3.
- En slumpvariabel kan vara:
 - **diskret** (utfallen går att räkna, även 0, 1, 2, ... till oändligt)
 - kontinuerlig (utfallen går inte att räkna, många decimaler)
- Exempel
 - ightharpoonup Diskret: X =antal prickar på tärning
 - ightharpoonup Kontinuerlig: X = temperatur (med decimaler)

Sannolikhetsfördelning

- Varje värde x som slumpvariabeln X kan anta har en sannolikhet P(X = x) (eller bara P(x)).
- **Sannolikhetsfördelningen** för X är sannolikheterna för alla möjliga utfall. $\sum P(x) = 1$.

×	1	2	3	4	5	Σ
P(x)	0.10	0.25	0.40	0.20	0.05	1

Diskret slumpvariabel

Kontinuerlig slumpvariabel

Kasta två tärningar - fördelning för slumpvariabel

■ Slumpvariabel: Händelser ⇒ numeriska värden.

Kasta två tärningar - fördelning för slumpvariabel

Väntevärde - fördelningens centrum

Medelvärdet för ett stickprov

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} x_1 + \frac{1}{n} x_2 + \ldots + \frac{1}{n} x_n$$

- \blacksquare X är en slumpvariabel med sannolikhetsfördelning P(X=x).
- Väntevärdet för slumpvariabeln X är (expected value)

$$E(X) = \sum_{\mathsf{alla}\ X} x \cdot P(x)$$

- \blacksquare Summan är över alla möjliga värden för X.
- Vi använder ofta grekiska bokstaven μ för E(X). Grekiska bokstaven för m, m som i mean. "lilla my".
- Mer utförligt: om X kan anta värdena $\{x_1, x_2, \dots, x_m\}$ så är

$$E(X) = \sum_{i=1}^{m} x_i \cdot P(x_i)$$

Väntevärde - mått fördelningens centrum (läge)

- Väntevärde sannolikhetsfördelningens centrum.
- Väntevärdet punkt där sannolikhetsfördelning 'balanserar'.
- Medelvärdet \bar{x} påverkas mycket av extrema värden. Jfr median.
- Väntevärdet påverkas mycket av fördelningens 'svansar'.

Förväntad vinst - Trisslott

E(vinst) =	$0 \cdot 0.7855 + 30 \cdot 0.0942605 +$
	$60 \cdot 0.100176 + \cdots + 2765000 \cdot 0.0000005$

 $=14.7~\mathrm{kr}$

vinst antal		probs
0	4713000	0.7855000000
30	565563	0.0942605000
60	601056	0.1001760000
90	78000	0.0130000000
120	21600	0.0036000000
150	11280	0.0018800000
180	3600	0.0006000000
300	2790	0.0004650000
450	375	0.0000625000
500	600	0.0001000000
600	600	0.0001000000
750	150	0.0000250000
900	180	0.0000300000
1000	480	0.0000800000
1500	240	0.0000400000
2000	150	0.0000250000
2500	45	0.0000075000
5000	90	0.0000150000
10000	132	0.0000220000
20000	21	0.0000035000
50000	9	0.0000015000
100000	6	0.0000010000
200000	3	0.0000005000
265000	26	0.0000043333
1000000	1	0.0000001667
2765000	3	0.0000005000
summa:	6000000	1

Vilken räntekostnad för bolån i slutet av 2023?

Antag: lån på 1 miljon. 1% högre ränta än styrräntan.

bankränta i %	sannolikhet	månadskostnad
1	0.017	833
2	0.094	1667
3	0.252	2500
4	0.334	3333
5	0.219	4167
6	0.071	5000
7	0.011	5833
8	0.001	6667

$$E(\text{bankränta}) = 1 \cdot 0.017 + 2 \cdot 0.094 + ... + 8 \cdot 0.001 \approx 3.9\%$$

 $E(\text{kostnad}) = 833 \cdot 0.017 + 1667 \cdot 0.094 + ... + 6667 \cdot 0.001 \approx 3252 \text{ kr}$

Diagram 5 från Penningpolitisk rapport, Nov 2022, Sveriges Riksbank, https://www.riksbank.se

Varians - fördelningens spridning (i kvadrat)

- Väntevärdet μ är bara en slags bästa gissning.
- Ofta viktigt att veta fördelningens spridning. Osäkerhet.
- Medelavvikelse från μ som spridning?
 - ightharpoonup Avvikelser från centrum $x \mu$.
 - ▶ Problem: Negativa och positiva avvikelser tar ut varandra.
 - ▶ Lösning: kvadrera avvikelserna $(x \mu)^2$ först.
- Variansen för en slumpvariabel

$$Var(X) = \sum_{\mathsf{alla} \ \mathsf{x}} (x - \mu)^2 P(x)$$

- Variansen skrivs ofta med symbolen σ^2 .
- Exempel: X = räntekostnad. $\mu = E(X) = 3252$.

$$Var(X) = (833 - 3252)^2 \cdot 0.017 + (1667 - 3252)^2 \cdot 0.094 + \dots + (6667 - 3252)^2 \cdot 0.001 \approx 965553.1 \text{ kr}^2$$

Standardavvikelse - ett mått på medelspridning

■ Variansen för en slumpvariabel

$$\mathit{Var}(X) = \sum_{\mathsf{alla}\; \mathsf{x}} (\mathsf{x} - \mu)^2 P(\mathsf{x})$$

Variansen har enheter i kvadrat. Ingen trevlig tolkning.

Standardavvikelsen har samma enheter som slumpvariabeln

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Exempel: X = räntekostnad.

$$\sigma = \sqrt{965553.1} \approx 982.63 \text{ kr}$$

- Vår "bästa gissning" av räntekostnad: $\mu = 3252 \text{ kr}$
- En genomsnittlig avvikelse från denna gissning är cirka 983 kr.

Väntevärde och standardavvikelse

Normalfördelning - 68-95-99.7% regeln

- Normalfördelning, $X \sim N(\mu, \sigma)$
 - ▶ Väntevärde $E(X) = \mu$
 - ▶ Standardavvikelse $SD(X) = \sigma$
- Parametrarna μ och σ är just väntevärdet och standardavvikelsen!
- 68-95-99.7% regeln

68-95-99.7% regeln

Kontinuerliga slumpvariabler och täthetsfunktionen

- **Kontinuerlig slumpvariabel** antar alla värden, men P(X = x) = 0 för alla x!
- **Täthetsfunktion**: f(x).
- Täthetsfunktion ger **inte** sannolikheter.
 - f(x) > 0 för alla x. (ok med f(x) > 1)
 - ightharpoonup arean under f(x) ska vara 1.
- Täthetsfunktionen används för att beräkna sannolikheter:

$$P(a \le X \le b) = \text{arean under } f(x) \text{ mellan } a \text{ och } b$$

SDAIII: räkna arean under funktion med integration.

Normalfördelning - interaktivt

Median och interkvartilavstånd

Median, m: värde med 50% av sannolikhetsmassan till vänster.

$$P(X \le m) = 0.5$$

- 10%-kvantil: 10% av sannolikhetsmassan till vänster.
- **Kvartiler**: 25%, 50%, 75%.
- Interkvartilavstånd (IQR): avstånd mellan 25%-kvartil och 75%-kvartil.

Skifta slumpvariabler

- Exempel: X ränta i procent på mitt banklån. E(X)=3.9%.
- Sämre förhandlare: bankräntan 2% högre än min.
- Din ränta: Y = X + 2. Skiftar/förskjuter slumpvariabeln.
- Måste vi göra om alla beräkningar för dig? Nope.

$$E(Y) = E(X) + 2 = 3.9 + 2 = 5.9\%$$

Väntevärde - skiftade slumpvariabler.

$$E(X \pm c) = E(X) \pm c$$
 för godtycklig konstant c

■ Variansen ändras inte av ett skift:

Varians - skiftade slumpvariabler.

$$Var(X \pm c) = Var(X)$$
 för godtycklig konstant c

Skala slumpvariabler

- Exempel: får dra av 30% på skatten för räntekostnad.
- Räntekostnad efter skatt: $Y = 0.7 \cdot X$. Skalar slumpvariabeln.

Väntevärde - skalning.

$$E(aX) = a \cdot E(X)$$
 för godtycklig konstant a

Varians - skalning.

$$Var(aX) = a^2 Var(X)$$
 för godtycklig konstant a

Standardavvikelse - skalning.

$$SD(aX) = |a| \cdot SD(X)$$
 för godtycklig konstant a

- $E(Y) = E(0.7 \cdot X) = 0.7 \cdot E(X) = 0.7 \cdot 3252 = 2276.4 \text{ kr}$
- $SD(Y) = SD(0.7 \cdot X) = |0.7| \cdot SD(X) = 0.7 \cdot 982.63 \approx 687.84 \text{ kr}$

Linjärkombinationer av slumpvariabler 🖭

Linjärkombination av slumpvariabel = skift och skalning.

$$Y = c + aX$$

Väntevärde - linjärkombination.

$$E(c \pm aX) = c \pm aE(X)$$
 för konstanter a och c

Varians - linjärkombination.

$$Var(c \pm aX) = a^2 Var(X)$$
 för konstanter a och c

- Exempel företags produktionskostnader:
 - X antal efterfrågade enheter (slumpvariabel).
 - Fast produktionskostnad c
 - Rörlig produktionskostnad per enhet a
 - Produktionskostnad: Y = c + aX

Standardisering

lacksquare Om $X \sim \mathcal{N}(\mu, \sigma)$ så gäller att

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Standardisering: från allmän normalfördelning till standard normal genom skift och skalning

$$Z = \frac{X - \mu}{\sigma}$$

Beräkna sannolikheter för $X \sim \mathit{N}(\mu, \sigma)$ från standard normal

$$P(X \le x) = P(X - \mu \le x - \mu) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

Exempel: $X \sim N(2,3)$, vad är sannolikheten att $X \leq 5$?

$$P(X \le 5) = P\left(\frac{X-2}{3} \le \frac{5-2}{3}\right) = P(Z \le 1) = 0.8413$$

Normalfördelning - Z-tabell

Normalfördelning

Tabellen ger sannolikheten $\Phi(z)=P(Z\leq z)$ för olika z där Z är standardnormal, $Z\sim N(0,1)$. Sannolikheter i den vänstra svansen fås genom symmetri: $P(Z\leq -z)=1-P(Z\leq z)$.

Andra decimalen i z

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Standardisering

Normalfördelning i R

 $X \sim N(\mu, \sigma)$.

Beräkning	R kommando
f(2)	dnorm(x = 2, mean = 1, sd = 1.5)
$P(X \le 2)$	pnorm(q = 2, mean = 1, sd = 1.5)
Kvantil	qnorm(p = 0.5, mean = 1, sd = 1.5)
10 slumptal	rnorm(n = 10, mean = 1, sd = 1.5)

Väntevärde - summa av slumpvariabler

- X och Y är två olika slumpvaribler
 - ▶ X antal prickar på 1:a tärningen
 - Y antal prickar på 2:a tärningen
 - \rightarrow X + Y = totalt antal prickar på båda tärningarna.

Väntevärde - summa av slumpvariabler.

$$E(X + Y) = E(X) + E(Y)$$

Varians - summa av oberoende slumpvariabler

- För variansen måste vi vara försiktiga med eventuella beroenden mellan variabler.
- Vadslagning:
 - ▶ X är din vinst/förlust i ett vad.
 - Y är din motståndares vinst/förlust.
 - X + Y = 0, dvs har ingen varians alls! Perfekt beroende.
- Aktieportfölj:
 - X är avkastning aktie.
 - Y är avkastning på annan aktie.
 - ▶ Total avkastning: X + Y. Varians?
- Om vi antar att X och Y är oberoende blir variansen enkel:

Varians - summa av oberoende slumpvariabler.

$$Var(X + Y) = Var(X) + Var(Y)$$

Väntevärde och varians - många oberoende variabler

Låt X_1, X_2 och X_3 vara tre oberoende slumpvariabler.

$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$$

 $Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3)$

Väntevärde - summa av slumpvariabler.

$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$$

Varians - summa av oberoende slumpvariabler.

$$V(X_1+X_2+\ldots+X_n) = Var(X_1) + Var(X_2) + \ldots + Var(X_n)$$

Simultanfördelning - två diskreta variabler

- X och Y diskreta variabler, t ex
 - \rightarrow X = antal mål som hemmalaget gör
 - ightharpoonup Y =antal mål som bortalaget gör

punktens storlek representerar den simultana sannolikheten P(x,v)

Simultanfördelning - två diskreta variabler

			Υ		
		0	1	2	Marginal X
	0	0.25	0.05	0.02	0.32
Χ	1	0.1	0.23	0.05	0.38
	2	0.05	0.1	0.15	0.3
Marginal Y		0.4	0.38	0.22	1

Väntevärden

$$\begin{split} E(X) &= \sum_{\text{alla x}} x \cdot P(x) = 0 \cdot 0.32 + 1 \cdot 0.38 + 2 \cdot 0.30 = 0.98 \\ E(Y) &= \sum_{\text{alla y}} y \cdot P(y) = 0 \cdot 0.40 + 1 \cdot 0.38 + 2 \cdot 0.22 = 0.82 \end{split}$$

Varianser

$$V(X) = \sum_{\text{alla x}} (x - E(X))^2 \cdot P(x) = (0 - 0.98)^2 \cdot 0.32 + (1 - 0.98)^2 \cdot 0.38 + (2 - 0.98)^2 \cdot 0.30 = 0.62$$

$$V(Y) = \sum_{\text{alla x}} (y - E(Y))^2 \cdot P(y) = (0 - 0.82)^2 \cdot 0.40 + (1 - 0.82)^2 \cdot 0.38 + (2 - 0.82)^2 \cdot 0.22 = 0.59$$

Simultanfördelning - två diskreta variabler

			Υ		
		0	1	2	Marginal X
	0	0.25	0.05	0.02	0.32
Х	1	0.1	0.23	0.05	0.38
	2	0.05	0.1	0.15	0.3
Marginal Y		0.4	0.38	0.22	1
mai gii	141 1	0.4	0.00	0.22	

Kovarians mellan X och Y

$$\mathit{Cov}(X,Y) = \sum_{\mathsf{alla}\,(\mathbf{x},\mathbf{y})\,\mathsf{par}} (\mathbf{x} - E(X))(\mathbf{y} - E(Y)) \cdot P(\mathbf{x},\mathbf{y})$$

där

$$E(X) = 0.98$$
 och $E(Y) = 0.82$

$$Cov(X,Y) = (0 - 0.98)(0 - 0.82) \cdot 0.25 + (1 - 0.98)(0 - 0.82) \cdot 0.10 + (2 - 0.98)(0 - 0.82) \cdot 0.05 + \dots + (2 - 0.98)(2 - 0.82) \cdot 0.15$$

$$= 0.326$$

Korrelation mellan X och Y

$$Corr(X, Y) = \frac{Cov(X, Y)}{SD(X) \cdot SD(Y)} = \frac{0.326}{\sqrt{0.62}\sqrt{0.588}} = 0.54$$

Korrelation kontinuerliga variabler - Stickprov

Korrelation: linjärt beroende mellan variabler.

Positiv korrelation - flest datapunkter med

$$(x_i-ar{x})(y_i-ar{y})>0$$
 $(x_i-ar{x})(y_i-ar{y})<0$

Negativ korrelation - flest datapunkter med negativa bidrag till täljaren i korrelationen

Stickprovskovarians:
$$s_{xy} = Cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Korrelation kontinuerliga variabler - Sannolikhetsmodell

- Låt X ha väntevärde μ och Y väntevärde ν .
- **Kovarians**: **linjärt beroende** mellan slumpvariabler.

$$Cov(X, Y) = E((X - \mu)(Y - \nu))$$

Positiv kovarians - mest sannolikhetsmassa med positiva bidrag till täljaren i kovariansen

Korrelation $(-1 \le Corr(X, Y) \le 1)$

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$

Variansen av en summan av beroende variabler

Varians - summa av beroende slumpvariabler.

$$V(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

- Positiv kovarians variansen f\u00f6r summan st\u00f6rre \u00e4n vid oberoende.
- Negativ kovarians variansen f\u00f6r summan mindre \u00e4n vid oberoende.
- Säker aktieportfölj: välj aktier var priser tenderar att röra sig i olika riktningar. Negativ kovarians. Even Steven.

Credits

Dessa slides skapades för kursen statistik och dataanalys 1 av Mattias Villani HT 2023, och har modifierats av Oscar Oelrich VT 2024, och Oskar Gustafsson för VT 2025.