Machining

Vertical Milling (Metal):

- 1. Material is clamped into place
- 2. Cutter is selected and RPM is chosen
- 3. The material always remains stationary while your machine's cutting tool rotates.
- 4. As the cutting tool moves, it presses against the workpiece and shapes the material.

Advantages	Disadvantages
 Visibility 	 Uses a lot of electricity
 Cost effective to run 	 Expensive to buy machines
• Ease	
 Precision 	

Uses: Cutting gears, produce slots, drilling

Horizontal milling (Metal):

- 1. Material is clamped into place
- 2. Cutter is selected and RPM is chosen
- 3. The material always remains stationary while your machine's cutting tool rotates.
- 4. As the cutting tool moves, it presses against the workpiece and shapes the material.

Advantages	Disadvantages
Run faster than vertical millingCapacityDurablePrecision	 Not good at doing radial cuts Machinery takes up lots of space Uses a lot of electricity More expensive machinery than vertical milling

Uses: Cutting gears, produce slots, drilling

Routing (Wood):

- 1. Material is clamped into place
- 2. Cutter is selected and RPM is chosen
- 3. The material always remains stationary while your machine's cutting tool rotates.
- 4. As the cutting tool moves, it presses against the workpiece and shapes the material.

Advantages	Disadvantages
 Quick 	 Uses electricity
 Low skilled 	 Can be dangerous
 Can be CNC- safer etc 	

Uses: Cabinets, doors

Drilling:

- 1. Drill bit is selected and holes are marked up
- 2. Drill it is fixed in the chuck and tightened using a chuck key
- 3. The table is set at a certain height and the RPM of the drill bit is chosen
- 4. The hand wheel is lowered to drill the hole.

Note: Parallel shanks are held in by a chuck and key and Taper shanks are held in by friction

Advantages	Disadvantages
 Quick Cheap	Drill can overheat if drill bit isn't sharp or at correct rotational
Can be automated easilyLow skilled	speedWood can become burnt
	Hole finish can be poor

Uses: Separating pop rivets, drilling holes for products

Turning:

- 1. Begin by placing a circular-, square- or rectangular-shaped piece of metal/wood into the CNC lathe's drive area.
- 2. The metal/wood piece is typically secured using a pressure pad.
- 3. Once in place, the CNC lathe is activated to rotate and press the mould against the metal/wood piece.
- HEADSTOCK CHUCK COOLANT TOP SLIDE
 SUPPLY TOOLPOST LEADSCREW

 MOTOR
 LEVER

 SADDLE HANDLE

 SADDLE HANDLE

 SADDLE HANDLE

 SADDLE HANDLE
- 4. The rotational force of the CNC lathe then deforms the metal/wood piece to achieve the same shape as the mould.
- 5. When metal/wood spinning is performed by hand, a worker manually presses the mould against the metal/wood piece.

Note: If using Metal, you would use a Metal working lathe whereas if you were using Wood you would use a Woodturning lathe, as shown by the images.

Advantages	Disadvantages
 Complex designs/shapes can be made Energy efficient Good surface finish Can be computer controlled 	 Dangerous pieces ejected from machine Some materials are very hard to turn

Uses: Table legs (wood), Table lamp (wood), engine parts (metal), handles (metal)

Stamping:

- Process is usually done via a CNC
- 2. The CNC program moves the platen carrying the sheet metal

- 3. Once the sheet metal is under the stamp the die is punched against the sheet metal
- 4. The waste material is then recycled and the stamped metal is collected

Advantages	Disadvantages
 Economical 	 Residual cracks appear
 Can be done many times 	along the edges
very quickly	 Hardening along the edges
	 Burrs can be created if
	clearance is excessive

Uses: Shape sheet metal into shapes with holes, washers, cog, tin can pull tab

Pressing:

1. A sheet metal is clamped over the die and held in the correct position using the back gauge

2. A hydraulically operated punch is then pushed into the sheet metal

3. Once the desired shape is formed the punch is retracted and the sheet component is ejected

Advantages	Disadvantages
 High strength in pressed 	 Expensive set up cost
parts	 Large runs needed to be
 Can be mass produced 	economical
	 Can make product heavy

Uses: Shaping sheet metal, patterns on metal trolley bases