Proof of the searchability of \mathbb{N}_{∞}

Martín Hötzel Escardó

Principle of omniscience

$$\Pi(p: X \to 2), (\Sigma(x:X), p(x) = 0) + (\Pi(x:X), p(x) = 1).$$

Can be proved for X finite (not for X subfinite in general).

For $X = \mathbb{N}$ this is LPO, so can't be proved.

For $X=2^{\mathbb{N}}$ can be proved from Brouwerian assumptions. (Continuity, fan theorem. We don't do this here.)

Drinker paradox

In every pub there is a person a such that if a drinks then everybody drinks.

$$\Pi(p: X \to 2), \Sigma(a: X), p(a) = 1 \implies \Pi(x: X), p(x) = 1.$$

For X inhabited, this is equivalent to the omniscience of X.

Selection of roots of 2-valued functions

A selection function for a set X is a functional $\varepsilon \colon (X \to 2) \to X$ such that for all $p \colon X \to 2$,

$$p(\varepsilon(p)) = 1 \implies \Pi(x:X), p(x) = 1.$$

Equivalently, the function p has a root if and only if $\varepsilon(p)$ is a root.

$$p(\varepsilon(p)) = 0 \iff \Sigma(x:X), p(x) = 0.$$

Searchable sets

We say that a type is searchable if it has a selection function.

The generic convergent sequence

$$\mathbb{N}_{\infty} = \Sigma(x:2^{\mathbb{N}}), \Pi(i:\mathbb{N}), x_i \ge x_{i+1}.$$

Also known as the one-point compactification of the natural numbers. (And it is the final co-algebra of the functor $X\mapsto 1+X$.)

The univalent set \mathbb{N}_{∞} has elements $\underline{n}=1^n0^{\omega}$ and $\infty=1^{\omega}$.

Saying that every element of \mathbb{N}_{∞} is of one of the forms \underline{n} or ∞ amounts to LPO.

Lemma.
$$\Pi(x:\mathbb{N}_{\infty}), (\Pi(n:\mathbb{N}), x \neq \underline{n}) \implies x = \infty.$$

Proof. For any i, if we had $x_i = 0$, then we would have $x = \underline{n}$ for some n < i, and so we must have $x_i = 1$.

We don't have LPO, but we have the following

Lemma (Density). For all $p: \mathbb{N}_{\infty} \to 2$, if

- 1. $p(\underline{n}) = 1$ for every $n : \mathbb{N}$, and
- 2. $p(\infty) = 1$,

then

3. p(x) = 1 for every $x : \mathbb{N}_{\infty}$.

Proof. If we had $p(x) \neq 1$, then we would have $x \neq \underline{n}$ for every $n : \mathbb{N}$, and hence $x \neq \infty$, by the previous lemma, which contradicts the hypothesis.

\mathbb{N}_{∞} is searchable and hence omniscient

Proof. Given $p: \mathbb{N}_{\infty} \to 2$, let

$$\varepsilon(p) = \lambda i \cdot \min_{n \le i} p(\underline{n}).$$

Clearly $\varepsilon(p): \mathbb{N}_{\infty}$ (it is clearly a decreasing sequence). Also

(0)
$$\Pi(n:\mathbb{N}), \varepsilon(p) = \underline{n} \implies p(\underline{n}) = 0,$$

(1)
$$\varepsilon(p) = \infty \implies \Pi(n : \mathbb{N}), p(\underline{n}) = 1.$$

We need to show that $p(\varepsilon(p))=1 \implies \Pi(x:\mathbb{N}_{\infty}), p(x)=1.$

Claim 0.
$$p(\varepsilon(p)) = 1 \implies \Pi(n \in \mathbb{N}), \varepsilon(p) \neq \underline{n}.$$

Proof. We know that $\Pi(n:\mathbb{N}), \varepsilon(p) = \underline{n} \implies p(\underline{n}) = 0.$

But, for any $n:\mathbb{N}$, if we have $\varepsilon(p)=\underline{n}$, the hypothesis of the claim gives $p(\underline{n})=1.$

Claim 1.
$$p(\varepsilon(p)) = 1 \implies \varepsilon(p) = \infty$$
.

Proof. This follows from Claim 0 and the previous lemma that

$$\Pi(x:\mathbb{N}_{\infty}), (\Pi(n:\mathbb{N}), x \neq \underline{n}) \implies x = \infty.$$

Claim 2.
$$p(\varepsilon(p)) = 1 \implies \Pi(n : \mathbb{N}), p(\underline{n}) = 1.$$

Proof. This follows from the previous fact $\varepsilon(p) = \infty \implies \Pi(n : \mathbb{N}), p(\underline{n}) = 1$.

Claim 1.
$$p(\varepsilon(p)) = 1 \implies \varepsilon(p) = \infty$$
.

Claim 2.
$$p(\varepsilon(p)) = 1 \implies \Pi(n : \mathbb{N}), p(\underline{n}) = 1.$$

Claim 3.
$$p(\varepsilon(p)) = 1 \implies p(\infty) = 1$$
.

Proof. This follows from Claim 1 and function extensionality.

Claim 4.
$$p(\varepsilon(p)) = 1 \implies \Pi(x : \mathbb{N}_{\infty}), p(x) = 1.$$

Proof. This follows from Claims 2 and 3 and the density Lemma. Q.E.D.

Addendum

 $\varepsilon(p)$ is the infimum of the set of roots of p.

(The infimum of the empty set is the top element ∞ .)

So it is the least root if p has a some root.

Consequences

WLPO is also undecided

$$\Pi(p: \mathbb{N} \to 2), (\Pi(n: \mathbb{N}), p(n) = 1) + \neg \Pi(x: \mathbb{N}), p(n) = 1$$

But we have:

Theorem.
$$\Pi(p:\mathbb{N}_{\infty}\to 2), (\Pi(n:\mathbb{N}),p(\underline{n})=1)+\neg\Pi(n:\mathbb{N}),p(\underline{n})=1.$$

The point is that now we quantify over \mathbb{N} , although the function p is defined on \mathbb{N}_{∞} .

More consequences

- 1. Every function $f: \mathbb{N}_{\infty} \to \mathbb{N}$ is constant or not.
- 2. Any two functions $f, g : \mathbb{N}_{\infty} \to \mathbb{N}$ are equal or not.
- 3. Any function $f: \mathbb{N}_{\infty} \to \mathbb{N}$ has a minimum value, and it is possible to find a point at which the minimum value is attained.
- 4. For any function $f: \mathbb{N}_{\infty} \to \mathbb{N}$ we can find a point $x: \mathbb{N}_{\infty}$ such that if f has a maximum value, the maximum value is x.
- 5. Any function $f: \mathbb{N}_{\infty} \to \mathbb{N}$ is not continuous, or not-not continuous.
- 6. There is a non-continuous function $f: \mathbb{N}_{\infty} \to \mathbb{N}$ iff WLPO holds.