L'effetto fotoelettrico

Indice

Generalità

- Definizione
- Cenni storici
- Ipotesi di Einstein e verifica di Millikan
- Applicazioni

Misura in laboratorio

- Apparato sperimentale
- Metodo
- -Stima di h/e
- Effetti sistematici e valutazione errori

Che cosa è l'effetto fotoelettrico?

- Interazione fotone-materia
 - assorbimento totale dell'energia da parte di elettroni negli shell di valenza > interazione coerente fotone-atomo
 - osservabile per fotoni dal visibile ai raggi γ (E_γ ≈ O(MeV))
 - processo dominante fino ai raggi X

- sezione d'urto $\sigma \propto Z^4/E_{\gamma^3}$ (\propto dimensioni del "dominio di coerenza")
- per energie maggiori preferita l'interazione con il singolo elettrone (scattering Compton)
- più probabile nei metalli (minore potenziale estrazione, dipendenza favorevole da Z)

Sezione d'urto differenziale

In atomi con alto Z e per energie tali da estrarre elettroni dagli shell più interni, l'effetto fotoelettrico lascia l'atomo in uno stato eccitato → emissione raggi X monocromatici

Prime evidenze

- 1887: Hertz
 - Osservazione di scariche da elettrodi illuminati in camera a scintilla, più lunghe in associazione a raggi UV incidenti
- 1888: Hallwachs, Righi
 - Lastre metalliche esposte a radiazione UV si caricano positivamente
- 1899: Thomson
 - Emissione di raggi catodici da lastre esposte a raggi UV in tubi a vuoto
- 1902: Lenard
 - Ionizzazione in gas indotta da luce UV
- Dipendenza dei fenomeni osservati dal colore (frequenza) della luce e non dalla sua intensità
- Incompatibilità con la teoria classica dell'elettromagnetismo Energia ∝ Intensità ∝ | \overrightarrow{E} |²

Ipotesi di Einstein (1905)

- Onde e.m. costituite da quanti discreti (fotoni)
- Energia di ciascun fotone ∝ frequenza
 E_γ = hν (h = costante di Planck)
 indipendente dall'intensità
- ciascun elettrone (fotoelettrone) emesso assorbe un fotone incidente ed acquista un'energia cinetica pari a

 $E_e = \frac{1}{2} \text{ mv}^2 = \text{hv} - W_o = \text{h} (\text{v} - \text{v}_o)$ $W_o = \text{potenziale di estrazione}$ $v_o = \text{frequenza di soglia}$ (dipendente dal metallo)

- Numero di fotoelettroni

 numero di fotoni incidenti
 - → fotocorrente ∝ intensità luminosa

Verifica di Millikan (1914)

Metodo del potenziale frenante (già usato da Lenard)

• Campo elettrico applicato nella direzione principale di moto dei fotoelettroni

- Circuito chiuso su amperometro per misura della foto-corrente
- Raggiungono l'altro elettrodo gli elettroni con $E_e = \frac{1}{2} \text{ mv}^2 > e \text{ V}$

• Esiste V_o per cui la fotocorrente și annulla

$$V_0 = \underbrace{\frac{h}{e}} \nu - \frac{W_0}{e}$$

 Pendenza → valore di h/e in accordo entro il 5%

Utilità

- Sensoristica
 - fotocellule
 - tubi fotomoltiplicatori (vedi sotto)
- Conversione energia solare → elettrica
 - pannelli fotovoltaici
- Produzione di raggi X
 - scansione di cristalli (Bragg)
- •

L'esperienza

- Obiettivo
 - Verifica della linearità energia-frequenza e stima di h/e
- Metodo
 - Riproposizione esperimento di Millikan
- Materiale a disposizione
 - Sorgente
 - Lampada LED a basso consumo → spettro continuo
 - Filtri interferenziali → selezione banda frequenza
 - Ricevitore
 - Fotocella Leybold 55877 (catodo di Potassio)
 - Elementi circuitali
 - Alimentatore DC da banco (generazione della tensione frenante)
 - Voltmetro (misura della stessa)
 - Pico-amperometro (misura della fotocorrente)

Filtri interferenziali

- Principio di funzionamento (simile al Fabry-Perot)
 - Intrappolamento e trasmissione della luce da lastre piane e parallele di conduttore separato da sottile strato dielettrico $(O(\lambda))$
 - Effetto di filtro dovuto all'interferenza tra i raggi trasmessi
 - → dipendenza dalla differenza dei cammini ottici =2nl cosθ)
 - → lunghezza d'onda nominale (λ = 2l) corrispondente al massimo di interferenza del primo ordine e per incidenza normale ----
 - Larghezza di banda tipica di pochi nm
 - per incidenza non normale la lunghezza d'onda trasmessa diminuisce con $\cos\theta$ \rightarrow spostamento verso il blu
 - → per tenere la larghezza (prossima) al valore nominale R₂ occorre tenere sotto controllo la divergenza del fascio di luce

n

Fotocella

- Trasduttore luce → corrente
 - Bulbo di vetro a vuoto
 - Effetto fotoelettrico su catodo (tipicamente alcalino) depositato sulla superficie opposta a quella di incidenza della luce
 - Fotoelettroni raccolti da anodo metallico (anello di lega di platino attraversato dalla luce)
- Contributi alla misura della foto-corrente
 - effetto fotoelettrico luce su catodo → corrente "diretta"
 - " " anodo → corrente "inversa"
 (in questo caso gli elettroni estratti dall'anodo sarebbero accelerati dal campo elettrico)
 - → da minimizzare cercando di concentrare il fascio di luce al centro del fotocatodo
 - effetto termoionico su catodo ed anodo (con il secondo che diventa più significativo all'aumentare della tensione di bias)

Apparato

 sistema lampada+diaframma+lenti+filtro+fotocella montato su banco ottico (con l'ultima separata da una parete nera)

- accoppiamento con
 - incidenza ~normale su filtro
 - immagine della fenditura a fuoco nel centro del catodo
- inserito in una scatola metallica (schermo da luce e rumori esterni)

Circuito equivalente

Metodo

Procedura

- Accendere lampada e lasciare accesa (essendo a basso consumo, impiega qualche minuto ad andare a regime)
- Disporre il filtro con la frequenza desiderata
 4 filtri disponibili da utilizzare in condivisione tra due gruppi
- Misurare la fotocorrente (dalla tensione anodo-terra) in funzione della tensione di bias (V_C)
- Per ogni filtro determinare la tensione di arresto dei fotoelettroni (vedi sotto)
- aprire la scatola, sostituire il filtro e ripetere

Accorgimenti

- assicurarsi che la fotocella sia coperta durante l'apertura della scatola per la sostutuzione del filtro
- maneggiare con cura (ed evitare di disallineare il banco)
- evitare movimenti "frenetici" durante le misure (le fotocorrenti sono frazioni di nA)

Risultato

Determinazione di V_o

- Metodo 1: annullamento della corrente
 - dalla curva $I(V_{bias})$ determinazione della tensione per cui $I(V_0) = 0$ |dV|

 $I(V_0) = 0$ - errore statistico $\sigma(V_0) \approx \left| \frac{\mathrm{d}V}{\mathrm{d}I} \right| \sigma(I)$

- errore sistematico dovuto alla corrente oscura (eventualmente da misurare al termine a lampada spenta e sottrarre)
- Metodo 2: interpolazione dati al ginocchio
 - distribuzione di Fermi-Dirac del gas di elettroni nella banda di conduzione del metallo con densità di stati

$$\rho(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{E}$$

$$\Rightarrow I(V) \propto \int \rho(E) dE \propto (V_0 - V)^{\frac{3}{2}} \quad hv - eV$$

$$\text{per } E < E_F + W_0 \Rightarrow$$

$$V > (h\nu - E_F - W_0)/e = V_0 - E_F/e$$

 interpolazione fotocorrente (al netto della corrente oscura) in prossimità del ginocchio mediante legge di potenza

