Paper Seminar

Adversarial Examples Improve Image Recognition

Xie et al., 2020, CVPR

Myeongsup Kim

Integrated M.S./Ph.D. Student
Data Science & Business Analytics Lab.
School of Industrial Management Engineering
Korea University

Myeongsup_kim@korea.ac.kr

< What Are Not Covered in This Seminar>

Details of Batch Normalization

<u>Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML, 2015</u>

- Adversarial Example
- Adversarial Training
- Degrading Performance

- Adversarial Example

<Recap: Previous Seminar>

Adversarial example

- 특수한 noise를 원본 example에 더하 여 사람이 판단하기에는 똑같지만, machine이 판단하기에는 다른 class 가 되는 example
- 예를 들어 오른쪽 이미지는 우리가 보기 에는 여전히 고양이지만 DNN이 보기에 는 오븐이 된다!

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

<Perturbation>

- Adversarial Example

- Adversarial Example

- Adversarial Example

<Perturbation>

- Adversarial Example

- Adversarial Example

- Adversarial Example

- Adversarial Example

<Adversarial Example>

x
"panda"
57.7% confidence

 $+.007 \times$

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Adversarial Training

- Degrading Performance

<Degrading Performance>

• "Finally, we report that our ResNet-152 baseline with *adversarial* training has 62.32% accuracy when tested on *clean* images, whereas its counterpart with "clean" training obtains 78.91%." (Xie et al., 2019)

• "Adversarial training caused a slight (less than 1%) decrease of accuracy on clean examples in our ImageNet experiments." (Kurakin et al., 2017)

• "Similar to the dip in clean accuracy on CIFAR-10 reported by Madry et al. (2017), we found that our models have a slight dip in clean accuracy to 72%." (Kannan et al., 2018)

- Degrading Performance

<Degrading Performance>

• "Finally, we report that our ResNet-152 baseline with *adversarial* training has 62.32% accuracy when tested on *clean* images, whereas its counterpart with "clean" training obtains 78.91%." (Xie et al., 2019)

• "Adversarial training caused a slight (less than 1%) decrease of accuracy on clean examples in our ImageNet experiments." (Kurakin et al., 2017)

"Similar to the dip in clean accuracy on CIFAR-10 reported by Madry et al. (2017), we found that our models have a slight dip in clean accuracy to 72%." (Kannan et al., 2018)

- Degrading Performance

<Degrading Performance>

		Clean	$\epsilon=2$
Baseline (standard training)	top 1	78.4%	30.8%
	top 5	94.0%	60.0%
Adv. training	top 1	77.6%	73.5%
	top 5	93.8%	91.7%
Deeper model (standard training)	top 1	78.7%	33.5%
	top 5	94.4%	63.3%
Deeper model (Adv. training)	top 1	78.1%	75.4%
	top 5	94.1%	92.6%

<Kurakin et al., 2017>

Adversary Model	Natural	FGSM	FGSM random
Simple (standard training)	92.7%	27.5%	19.6%
Simple (FGSM training)	87.4%	90.9%	90.4%
Simple (PGD training)	79.4%	51.7%	55.9%
Wide (standard training)	95.2%	32.7%	25.1%
Wide (FGSM training)	90.3%	95.1%	95.0%
Wide (PGD training)	87.3%	56.1%	60.3%

<Madry et al., 2018>

- Degrading Performance

<Degrading Performance>

		Clean	$\epsilon=2$
Baseline	top 1	78.4%	30.8%
(standard training)	top 5	94.0%	60.0%
Adv. training	top 1	77.6%	73.5%
	top 5	93.8%	91.7%
Deeper model (standard training)	top 1	78.7%	33.5%
	top 5	94.4%	63.3%
Deeper model (Adv. training)	top 1	78.1%	75.4%
	top 5	94.1%	92.6%

<Kurakin et al., 2017>

Adversary Model	Natural	FGSM	FGSM random	
Simple (standard training)	92.7%	27.5%	19.6%	
Simple (FGSM training)	87.4%	90.9%	90.4%	
Simple (PGD training)	79.4%	51.7%	55.9%	
Wide (standard training)	95.2%	32.7%	25.1%	
Wide (FGSM training)	90.3%	95.1%	95.0%	
Wide (PGD training)	87.3%	56.1%	60.3%	

<Madry et al., 2018>

- Degrading Performance

<Degrading Performance>

		Clean	$\epsilon=2$		Adversary	Natural	FGSM	FGSM random
Training Deep	top 1 p Neu ad Gar	78.4% ral Ne peraliz	30.8% twork	with A		xamp	les Ma	ay Lead
Adv. training	top 5	93.8%	91.7%	CITOIT	Simple (PGD training)	79.4%	51.7%	55.9%
How Can W	top 1 e Use	78.7% Adver	33.5% sąrią l	Examp	Wide les as Additi	95.2% onal	32.7% Exam l	oles to
Deeper model	top 1	Impro	ve Mo	odel Pe	rformance?	90.3%	95.1%	95.0%
(Adv. training)	top 5	94.1%	92.6%		Wide (PGD training)	87.3%	56.1%	60.3%

<Kurakin et al., 2017>

<Madry et al., 2018>

Adversarial Examples Improve Image Recognition Xie et al., 2020, CVPR

Adversarial Examples Improve Image Recognition

Xie et al., 2020, CVPR

"Our work is the first to show adversarial examples can improve model performance in fully-supervised setting on the large-scale lmageNet dataset."

- Preliminary Way to Boost Performance

- Preliminary Way to Boost Performance

<Adversarial Training vs Data Augmentation>

- Preliminary Way to Boost Performance

<Adversarial Training vs Data Augmentation>

- Preliminary Way to Boost Performance

<Adversarial Training & Fine-tuning>

Two take-home message from the experiments on ImageNet:

- (1) Training exclusively on adversarial examples results in performance degradation
- (2) Fine-tuning with clean images can improve network performance

- Preliminary Way to Boost Performance

<Adversarial Training & Fine-tuning>

- PGD-based Adversarial Training
- Disentangled Learning
- AdvProp

- Projected Gradient Descent

<Projected Gradient Descent>

 $\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}}[L(\theta,x,y)]$

Notations

 \mathbb{D} : Underlying Distribution

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

- Projected Gradient Descent

<Projected Gradient Descent>

 $\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}}[L(\theta,x,y)]$

Notations

 \mathbb{D} : Underlying Distribution

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

 \mathbb{D} : Underlying Distribution

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

 \mathbb{S} : Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

 \mathbb{D} : *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

\$: Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

 \mathbb{D} : *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

\$: Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(x, y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\boldsymbol{\theta}, x + \epsilon, y) \right]$$

Notations

 \mathbb{D} : *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

θ: Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

\$: Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

D: *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

S: Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

D: *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

 \mathbb{S} : Perturbation Range

- Projected Gradient Descent

<Projected Gradient Descent>

$$\min_{\theta} \mathbb{E}_{(x, y) \sim \mathbb{D}} \left[\max_{\epsilon \in \mathbb{S}} L(\theta, x + \epsilon, y) \right]$$

Notations

D: *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

 θ : Network Parameters

x: *Training Sample*

y: Ground Truth Label

 ϵ : Adversarial Perturbation

S: Perturbation Range

- Projected Gradient Descent

Notations

D: *Underlying Distribution*

 $L(\cdot,\cdot,\cdot)$: Loss Function

θ: Network Parameters

x: Training Sample

y: Ground Truth Label

 ϵ : Adversarial Perturbation

S: Perturbation Range

<Proposed Objective>

Clean Image Adversarial Example

---→ Gradient Ascent

Gradient Descent

- Disentangled Learning

<Distribution Mismatch>

<Clean Image>

<Adversarial Example>

- Disentangled Learning

<Distribution Mismatch>

- Disentangled Learning

<Distribution Mismatch>

- Disentangled Learning

<Disentangled Learning>

- AdvProp

<Adversarial Propagation>

```
Algorithm 1: Pseudo code of AdvProp
Data: A set of clean images with labels;
Result: Network parameter \theta;
for each training step do
  Sample a clean image mini-batch x^c with label y;
  Generate the corresponding adversarial mini-batch x^a
     using auxiliary BNs;
  Compute loss L^c(\theta, x^c, y) on clean mini-batch x^c using
     the main BNs;
  Compute loss L^a(\theta, x^a, y) on adversarial mini-batch x^a
     using the auxiliary BNs;
  Minimize the total loss w.r.t. network parameter
     \min_{\alpha} [L^{\alpha}(\theta, x^{\alpha}, y) + L^{c}(\theta, x^{c}, y)]
end
return \theta
```

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^c(\theta, x^c, y)$ on clean mini-batch x^c using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^a(\theta, x^a, y) + L^c(\theta, x^c, y)]$

end

return θ

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^c(\theta, x^c, y)$ on clean mini-batch x^c using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^{a}(\theta, x^{a}, y) + L^{c}(\theta, x^{c}, y)]$

end

return θ

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^{c}(\theta, x^{c}, y)$ on clean mini-batch x^{c} using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^{a}(\theta, x^{a}, y) + L^{c}(\theta, x^{c}, y)]$

end return θ

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^c(\theta, x^c, y)$ on clean mini-batch x^c using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^a(\theta, x^a, y) + L^c(\theta, x^c, y)]$

end

return θ

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^c(\theta, x^c, y)$ on clean mini-batch x^c using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^{a}(\theta, x^{a}, y) + L^{c}(\theta, x^{c}, y)]$

end return θ

- AdvProp

<Adversarial Propagation>

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;

Result: Network parameter θ ;

for each training step do

Sample a clean image mini-batch x^c with label y;

Generate the corresponding adversarial mini-batch x^a using auxiliary BNs;

Compute loss $L^c(\theta, x^c, y)$ on clean mini-batch x^c using the main BNs;

Compute loss $L^a(\theta, x^a, y)$ on adversarial mini-batch x^a using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter $\min_{\theta} [L^{a}(\theta, x^{a}, y) + L^{c}(\theta, x^{c}, y)]$

end

return θ

- ImageNet Results

- Model

<EfficientNet>

Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

- ImageNet Results

<Datasets>

ImageNet-C

Designed for measuring the network robustness to common image corruption.

ImageNet-A

Adversarially collected natural, unmodified but "hard" real-world images.

Stylized-ImageNet

Removed local texture cues while retaining global shape via style transfer.

- ImageNet Results

<Datasets>

<ImageNet>

<ImageNet-C>

<ImageNet-A>

<Stylized-ImageNet>

- ImageNet Results

< ImageNet Results >

"AdvProp boosts model performance over the vanilla training baseline on ImageNet. This Improvement becomes more significant if trained with larger network."

- ImageNet Results

< ImageNet Results >

NA - J.J.	ImageNet-C	ImageNet-A	Stylized-ImageNet Top-1 Acc. (↑)		
Model	mCE (↓)	Top-1 Acc. (↑)			
ResNet-50	74.8	3.1	8.0		
EfficientNet-B0	70.7	6.7	13.1		
+AdvProp (ours)	66.2 (-4.5)	7.1 (+0.4)	14.6 (+1.5)		
EfficientNet-B1	65.1	9.0	16.8		
+AdvProp (ours)	60.2 (-4.9)	10.1 (+1.1)	17.8 (+1.0)		
EfficientNet-B2	64.1	10.8	17.8		
+AdvProp (ours)	61.4 (-2.7)	11.8 (+1.0)	21.4 (+3.6)		
EfficientNet-B3	62.9	17.9	20.2		
+AdvProp (ours)	57.8 (-5.1)	18.0 (+0.1)	22.5 (+1.7)		
EfficientNet-B4	60.7	26.4	20.2		
+AdvProp (ours)	58.6 (-5.1)	27.9 (+1.5)	22.5 (+1.7)		
EfficientNet-B5	62.3	29.4	20.8		
+AdvProp (ours)	56.2 (-6.1)	34.4 (+5.0)	24.4 (+3.6)		
EfficientNet-B6	60.6	34.5	20.9		
+AdvProp (ours)	53.6 (-7.0)	40.6 (+6.1)	25.9 (+4.0)		
EfficientNet-B7	59.4	37.7	21.8		
+AdvProp (ours)	52.9 (-6.5)	44.7 (+7.0)	26.6 (+4.8)		

- ImageNet Results

< ImageNet Results >

NA o del	ImageNet-C	ImageNet-A	Stylized-ImageNet Top-1 Acc. (↑)			
Model	mCE (↓)	Top-1 Acc. (↑)				
ResNet-50	74.8	3.1	8.0			
EfficientNet-B0	70.7	6.7	13.1			
+AdvProp (ours)	66.2 (-4.5)	7.1 (+0.4)	14.6 (+1.5)			
EfficientNet-B1	65.1	9.0	16.8			
+AdvProp (ours)	60.2 (-4.9)	10.1 (+1.1)	17.8 (+1.0)			
EfficientNet-B2	64.1	10.8	17.8			
+AdvProp (ours)	61.4 (-2.7)	11.8 (+1.0)	21.4 (+3.6)			
EfficientNet-B3	62.9	17.9	20.2			
+AdvProp (ours)	57.8 (-5.1)	18.0 (+0.1)	22.5 (+1.7)			
EfficientNet-B4	60.7	26.4	20.2			
+AdvProp (ours)	58.6 (-5.1)	27.9 (+1.5)	22.5 (+1.7)			
EfficientNet-B5	62.3	29.4	20.8			
+AdvProp (ours)	56.2 (-6.1)	34.4 (+5.0)	24.4 (+3.6)			
EfficientNet-B6	60.6	34.5	20.9			
+AdvProp (ours)	53.6 (-7.0)	40.6 (+6.1)	25.9 (+4.0)			
EfficientNet-B7	59.4	37.7	21.8			
+AdvProp (ours)	52.9 (-6.5)	44.7 (+7.0)	26.6 (+4.8)			

- ImageNet Results

<Results on Adversarial Attacker Strength>

	В0	B1	B2	В3	В4	B5	В6	В7
PGD5 ($\epsilon=4$)	77.1	79.2	80.3 81.8 83.3 84. 3	84.3	84.8	85.2		
PGD4 ($\epsilon=3$)	77.3	79.4	80.4	81.9	83.3	84.3	84.7	85.1
PGD3 ($\epsilon=2$)	77.4	79.4	80.4	81.9	83.1	84.3	84.7	85.0
PGD1 ($\epsilon=1$)	77.6	79.6	80.5	81.8	83.1	84.3	84.6	85.0

ImageNet performance of models trained with AdvProp and different attack strength

- ImageNet Results

<Results on Adversarial Attacker Strength>

	В0	B1	B2	В3	B4	B5	В6	В7
PGD5 ($\epsilon=4$)	77.1	79.2	80.3	81.8	81.8 83.3 84.3 84.8		84.8	85.2
PGD4 ($\epsilon=3$)	77.3	79.4	80.4	81.9	83.3	84.3	84.7	85.1
PGD3 ($\epsilon=2$)	77.4	79.4	80.4	81.9 8	83.1	84.3	84.7	85.0
PGD1 ($\epsilon=1$)	77.6	79.6	80.5	81.8	83.1	84.3	84.6	85.0

ImageNet performance of models trained with AdvProp and different attack strength

- ImageNet Results

<Comparisons to Adversarial Training>

Figure 5. AdvProp substantially outperforms adversarial training [7] on ImageNet, especially for small models.

- ImageNet Results

<Comparisons to Adversarial Training>

$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha) J(\theta, x + \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y)), y)$$

<Fast Gradient Sign Method>

- ImageNet Results

<Pushing the Envelope with a Larger Model>

- "To push the envelope, we train a larger network, EfficientNet-B8."
- "Our AdvProp improves the accuracy of EfficientNet-B8 from 84.8% to 85.5%, achieving a new state-of-the-art accuracy on ImageNet without using extra data."

-2020.07-

- ImageNet Results

< ImageNet Benchmark >

58	EfficientNetV2-L	85.7%		121M	×	EfficientNetV2: Smaller Models and Faster Training	0	Ð	2021	EfficientNet
59	XCiT-S24	85.6%			×	XCiT: Cross- Covariance Image Transformers	0	Ð	2021	
60	AdvProp (EfficientNet-B8)	85.5%	97.3%	88M	×	Adversarial Examples Improve Image Recognition	0	Ð	2019	EfficientNet
61	HaloNet4 (base 128, Conv-12)	85.5%		87M	×	Scaling Local Self-Attention for Parameter Efficient Visual Backbones	C	Ð	2021	
62	KDforAA (EfficientNet-B7)	85.5%		66M	×	Circumventing Outliers of AutoAugment with Knowledge Distillation		Ð	2020	EfficientNet

ImageNet Benchmark -2021.08-

Conclusion

<Conclusion>

- Proposed AdvProp, a new training scheme that bridges the distribution mismatch with a simple yet highly effective two batchnorm approach.
- Showed adversarial examples can improve model performance in the fully-supervised setting on the large-scale ImageNet dataset.
- AdvProp significantly improved accuracy of all ConvNets and reported the state-of-theart 85.5% top-1 accuracy on ImageNet without any extra data.

Any Questions?

Thank You