STAT 311: Hypothesis Testing for Two Way Tables

Y. Samuel Wang

Summer 2016

Logistics

- Final on Friday
- Practice final posted on catalyst
- Review practice final on Wednesday
- Thursday will be general review / Questions

Example: Vaccination Rates

Do vaccination rates vary by state?

Vaccination Rates by State

Percentage of kindergartners vaccinated by state, 2013-2014 school year

Note: Data for Wyoming is from the 2012-13 school year. Source: Centers for Disease Control and Prevention

Analysis of Variance

Analysis of **Va**riance (ANOVA) is a way to measure dependence between categorical and quantitative variables.

- Regression used for bivariate continuous data
- Two way tables for bivariate categorical data
- ANOVA for bivariate continuous and categorical data

Analysis of Variance

Comparing means of multiple groups

- Two Sample difference in Means is a specific case with 2 groups
- Could test all pairs of groups, but that results in multiple testing problem
- ANOVA analyzes multiple groups at once

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

 H_A : There is some mean(s) not equal to the others

How sure are you that these groups have different means?

How sure are you that these groups have different means?

ANOVA considers two types of variability

- Inter-group: How much do the group means vary from each other?
- Intra-group: How much do the individuals within a group vary from each other?

ANOVA considers two types of variability

- Inter-group: How much do the group means vary from each other?
- Intra-group: How much do the individuals within a group vary from each other?

If inter-group variability is large relative to the intra-group variability then we are more certain that the means are different.

ANOVA vs T-Test

If inter-group variability is large relative to the intra-group variability then we are more certain that the means are different.

Remember the difference in means test statistic

$$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

- Numerator is inter-group variability
- Denominator is intra-group variability

ANOVA Test-Statistic

For the entire data of all N individuals (all K groups together), we have the grand total average \bar{y} .

For each group $1, 2, \ldots K$

- Group size: n_k
- Group mean: \bar{y}_k
- Group standard deviation: s_k

ANOVA Test-Statistic

For the entire data of all N individuals (all K groups together), we have the grand total average \bar{y} .

For each group $1, 2, \ldots K$

- Group size: n_k
- Group mean: \bar{y}_k
- Group standard deviation: s_k

Inter-group variability-

$$\frac{\sum_{k}^{K} n_k (\bar{y}_k - \bar{y})^2}{K - 1}$$

Intra-group variability-

$$\frac{\sum_{k}^{K}(n_{k}-1)s_{k}^{2}}{N-K}$$

ANOVA Test-Statistic

$$F = \frac{\text{Inter-group variability}}{\text{Intra-group variability}} = \frac{\frac{\sum_{k=1}^{K} n_k (\bar{y}_k - \bar{y})^2}{K - 1}}{\frac{\sum_{k=1}^{K} (n_k - 1) s_k^2}{N - K}}$$

If the F statistic is large, then there is strong evidence that the group means differ from each other. Under the null distribution (no difference in means), the F statistic follows an F Distribution.

F Statistic

The *F* distribution has two parameters: numerator df and denominator df.

$$\mathbb{E}(F) = df_{denom}/(df_{denom} - 2)$$

$$Var(F) = \frac{2df_{denom}^2(df_{numer} + df_{denom} - 2)}{df_{numer}(df_{denom} - 2)^2(df_{denom} - 4)}$$

Use the R commands: rf, df, pf and qf.

