

Windows程序性能优化

性能问题是什么

• 性能问题实例

读出一段数据列表(20条)用了14秒左右,感觉比较<mark>慢</mark> 上网打开页面很慢,打开一个网页要3-4秒钟 ESET NOD32绝不**拖慢计算机**,侦测速度比其竞争对手快3到34倍 网络硬盘上传下载文件慢

登录卡的时间长短取决于电脑配置、网速、好友数、群数等QQ登录后需提取的相 关数据

找好友往下拉的时候一晃一晃的卡死人 UCWEB,资源消耗比较小,耗流量小 内存占用,QQ2005正式版约为14M,而MSN 8.0 Beta达到了30M QQ2009装了卸了几次了,最大的原因就是狂读硬盘,CPU占用高

玩LOL后者CF的时候,卡一下我的角色就被打死

- 典型的软件性能问题
 - 某个操作非常慢
 - 卡住无响应
 - CPU, GDI等资源占用多

软件性能应该包括哪些方面?

- · 从表现角度来看
 - 速度类
 - 资源消耗类

- · 从软件行为的角度来看
 - · IO类
 - · CPU运算类

内容大纲

- ・性能工作之必要性
- 如何提高性能
- 性能监控
- 建立性能备忘体系
- 性能与用户
- 性能工具

误区-硬件可以解决性能问题

- "硬件可以解决我的性能问题"
- CPU速度每两年翻一番,就像戈登·摩尔在1975年预测的那样。

摩尔定律是指IC上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。摩尔定律是由英特尔(Intel)名誉董事长戈登·摩尔(Gordon Moore)经过长期观察发现得之。

误区-性能工作的必要性

- CPU速度是每两年翻一番,可是其它部件呢?
 - 硬盘的寻址时间受机械限制
 - 网络速度无法超越光速
- 随着硬件水平的不断提高,人们希望更强大、更智能、更漂亮的软件
- 硬件可以帮忙 但不能解决所有性能问题
- 操作系统并不是只运行一个软件(比如QQ),还要运行其他网游, 其他Office软件。。。。不要一个软件把性能耗光了
- 死循环,死锁,Sleep,卡死系统等是机器再好也会出问题

性能关系产品成败

me OS

内容大纲

- 性能工作之必要性
- ・性能与用户
- 如何提高性能
- 性能监控
- 建立性能备忘体系
- 性能工具

谁来评判性能?

- 用户是最终的裁判
- 成功的关键是要达到用户的期望
- 用户的期望可能会改变
- 不同用户期望可能不同
- 性能应该是产品必备的特性

用户感知的三个重要的响应时间

- 0.1秒 反应迅速. 用户感觉控制不错
- 1秒 系统还工作. 但反应不够迅速
- 10秒 用户会觉得系统死掉了

性能工作的用户要领

• 性能问题的优先级和目标?

优先级取决于用户对该功能的使用频繁度,重要性。目标取决于用户对于该功能的期望。

• 性能工作什么时候终止?

性能工作应该以达到用户期望为目标。而当目标已经达成,性能上的表现对用户来说将变得比较不关注。这个时候应该终止性能优化。否则,优化是无止境的,且从0.02ms到0.01ms的优化,用户根本就不Care。

内容大纲

- 性能工作之必要性
- 性能与用户
- ・如何提高性能
- 性能监控
- 建立性能备忘体系
- 性能工具

如何提高这些性能?

- 找出问题瓶颈,预估修改效果
- 通过性能优化或者性能策略修正问题
 - 1.从程序优化方面去优化性能
 - 2.从性能策略方面去优化性能

如何找出瓶颈?

性能工具法

API和关键路径监控法

性能日志法

- 1.分解过程
- 2.在各大步骤,分别加上Log
- 3.通过Log数据,找出消耗分布情况
- 4.找出消耗大头和消耗瓶颈,进行优化

这一步是解决性能问题的关键所在。如果找不到关键问题所在,绝对不要盲目优化!!!

追查问题-注意事项

不要被表象数据所迷惑

设置控件大小非常耗时?

设置控件状态非常耗时?

分类	第一次打开耗时(ms)	第二次打开耗时(ms)
CreateUIControlListBase	266	93
InitProfileFrame	204	78
InitPlugInFrame	391	172
IntPlugInFrame(put_state)	157	31
InitTopToolbarFrame	110	16
ShowAIO	219	63
合计	1190	422

追查问题-注意事项

规避测试本身对测试数据的影响

比如用Log来测试性能的话,要减少Log对数据造成的影响。

代码优化

通过提高代码本身的执行效率,来提高程序的执行效率,是最直接的优化方法。

代码优化指导1-硬盘IO

• 硬盘IO往往是瓶颈

顺序读写速度远远大于 随机读写

硬盘的速度只决定于其转速、 缓存大小和平均寻道时间。主 轴转速,目前市场上流行的是 5400rpm(每分钟转数)和 7200rpm的硬盘

数据读取时间 = 寻道时间 + 旋转时间 + 读写时间

寻道时间一般占 60% - 70% 旋转时间一般占 20% - 30% 读取时间一般占 10% - 20%

代码优化指导2-网络IO

处理好网络IO将提高响应的速度

优化网络协议,减少网络往返次数,在每个包中可附带多方数据(当然要保证包的大小不能太大)

尽可能的利用当前网络环境以及 让带宽饱和

UDP传文件优化效果图

代码优化指导3-去冗余

去冗余

冗余的逻辑是指,做了可以不用做的逻辑. 做多余的事意味着浪费!!!!

为什么2010正式版QQ挂机时,CPU在5%-7%(调用不必要的InvalidateRect,会引起绘制的冗余)

多余绘制区域的裁剪

ListCtrl在做批量插入的时候,如不做 SetRedaw(false),则每插入一个项都会重绘 一遍

逻辑的精细化控制

调用频率,数据更新频率等控制 育. 未经允许不得使用或转载

代码优化指导4-正确的调用顺序

调用顺序是否正常

排序算法做了优化,之前每次比较都会取一次权重值,现在是一次性取得权重值并缓存起来,下次比较时直接用该值。↓ 在 480 个群成员节点的情况下,**排序耗时从之前的 547ms 耗时下降为 62ms** ♣↓

代码优化指导5-确保你的数据结构高效

当数据操作比较频繁时,选正确的数据结构将可能决定你代码的执行效率。

map和set的查找速度大于vector的速度。

stl容器都是基于分配拷贝原则的。

功能太强大的容器往往性能比较差一些。比如泛型数据结构的性能一般都远差于struct等数据结构。

TXData的泛滥使用,尽量避免数据结构之间的转换处理

代码优化指导6-CPU指令优化

• CPU指令集优化

MMX,SSE,SSE2,SSE3指令优化

MMX:8个64位MMX寄存器(mm0-mm7),也可为各SSE扩展所使用; 数据为整数,最多支持两个32位,运算中没有寄存器能够进行溢出指示;

SSE:8个128位xmm寄存器,MXSCR寄存器,EFLAGS寄存器 支持单精度浮点,MXSCR含有rounding,overflow标志,支持64位SIMD整数

SSE2: 执行环境同SSE, 双精度浮点, 128位整数, 双一单精度转换

代码优化指导6-CPU指令优化

我们的绘制函数中最核心的几个运算,主要包括缩放,alpha混合,BitBlt,以及关键色处理都使用了CPU指令集优化。理论上绘制的效率可以提高4倍,实测值也可以提高2-3倍。

```
pxor mm7, mm7 //mm7置0
movd mm6, 256 //mm6赋值为256
movd mmO, [esi] //读取源像素
movd mm1, [edi] //读取目标像素
pumpcklbw mm1, mm7 //目标像素 00 00 00 00 AA RR GG BB 展开成 00 AA 00 RR 00 GG 00 BB
movd mm2, mm0 //将源像素的值赋给mm2
psrld mm2, 24 //按DWORD右移24位,mm2为00 00 00 00 00 00 AA
movq mm3, mm6 //mm3赋值为256
psubw mm3, mm2 //alpha = 256 - src.alpha
pumpcklwd mm3, mm3 //展开为00 00 00 00 00 AA 00 AA
pumpckldg mm3, mm3 //展开为00 AA 00 AA 00 AA 00 AA
pmullw mm1, mm3 //dest * alpha
psrlw mm1, 8
paddusb mm0, mm1 //(dest * (256 - src.alpha)) / 256 + src
packuswb mm0, mm7 //打包为00 00 00 00 AA RR GG BB
movd [edi] mmo
emms
```

代码优化指导7-避免频繁分配内存

- 全局且频繁访问的数据用内存池
- 避免频繁分配内存

频繁分配内存可能引起内存碎片 频繁分配内存可能引起页面切换以及页面错误的产生 频繁分配内存本身就意味着你在不断做数据操作

• 如何避免

vector自身用*2分配原则避免频繁分配 避免过多CString的拷贝或者转换 避免过多的数据的拷贝 STL顺序容器在可预估大小情况下的预分配

为什么正式版2010在半透明下页面错误非常多?

代码优化指导8-更多的细节优化方法

结合实际情况,还有更多更细节的优化方法。

避免在临时文件夹目录操作文件

找出问题的程序段之后,查看该程序段使用的算法,结合实际情况优化 具体算法。

减少dll数目,比如插件使用脚本等来完成。

坚决杜绝死循环在代码中出现

优化策略

优化策略,不一定是从提高程序的实际执行速度,但是却能 从其他方面去提高用户的性能体验。 同时有些优化方法是一定要结合优化策略来执行才能够进行的。

优化策略指导1-多线程多进程策略

登录中界面的多线程

Chrome的多线程模型和 多进程模型 QQ的跨进程IE/Flash QQ计划尝试的多线程多 进程模型

优化策略指导2-同步问题变成异步

• 同步动作变成异步

菜单关闭刷新

同步函数的使用导致的卡

如GetHostByName、 GetEnumWindow、 GetTrayPositon、 GetWindowText、主线程 Sleep、主线程 SendMsgTimeOut等等

版权归腾讯学院所有, 来经允许不得使用或转载

优化策略指导3-缓存策略

IO缓存策略:资源以及其他相关文件的缓存

绘制缓存:把一些绘制过程缓存成bitmap

淘汰策略:一般有先进先出,后进先出,末位淘汰,手动淘汰等。

这里主要做到提高命中率。

清理缓存:一定要找时机清理缓存,否则会有资源问题

Draw资源描述->Key

版权归腾讯学院所有,来经允许不得使用或转载

优化策略指导4-部分工作可预处理时做

把部分工作放到发布之前去做,这样就可以省掉这些工作的消耗

QQ会把配置的XML文件转换为MetaData 二进制文件保存到发布版本中去。

WPF也会把对应的XAML文件转换为BAML 文件(是XAML的二进制形式,被当作程序集的资源文件嵌入)保存到发布程序中去。

优化策略指导5-越频繁调用越要做原子优化

- 了解代码在运行栈中的位置是很重要的
 - 谁调用我?多么经常?在什么情况下?
 - 我会调用谁?多少次?是预料之中的吗?存在性能问题吗?

对于非常频繁的被人调用的块,要进行非常细致的原子优化

优化策略指导6-延迟或者提前加载处理

- 了解功能的常用度以及使用时机
 - 对于经常用或者肯定要用到的功能,可以做提前加载。
 - 对于很少使用的 或者 部分用户不会使用的功能,可以做延迟加载。

比如dll的懒加载,插件的懒启动,配置文件的提前加载。

公司同事如果到达5-6万人以后,RTX如何支撑?

- 1.分清主次和关键路径
- 2.OWnerData模式
- 3. 懒加载 懒处理 懒创建

优化策略指导7-简化系统

简化系统

越复杂的系统,越可能出现的问题

不要写过于复杂的处理函数,过于复杂的处理过程可以分步骤走,过于复杂的函数可以分解成几个部分。

时间片优化方案的讨论。 红绿灯思想

优化策略指导8-视觉类性能问题

- 不要给用户在视觉上造成性能错觉
 - 以前登录完毕,插件一个一个的显示出来。
 - 以前打开一个聊天窗口,个签,QQShow,广告都是一个一个显示出来的。
 - 一个一个显示出来,会给用户造成显示过程非常慢,而且也非常影响到视觉
 - 上的体验,不如全部准备完毕一起显示出来。

400ms-6s 体验原则 不断给用户反馈

举例讨论:老大给你安排一个复杂的任务,需要1年才能完成,你是一年后才去告诉你的老大说我完成了吗?

优化策略指导9-产品策略化解

产品策略

• 当确认性能无法提升,需要从产品角度来解决问题

互动环节

以前在工作或者学习过程中,有解决过性能问题吗?怎么发现和解决的?

内容大纲

- 性能工作之必要性
- 性能与用户
- 如何提高性能
- ・性能监控
- 建立性能备忘体系
- 性能工具

性能监控的缘由

问题:

一个QQ,四个中心都在增加代码,公司所有业务都在上面增加功能和需求,性能恶化速度怎么控制?怎么办?

第一时间知道性能变化!!

- 1.不会把问题拖到最后
- 2.刚引入的问题最容易查
- 3.问题拖到后期解决,修改成本非常高。

性能监控做法

- 重点路径的监控
 - 所有的消耗源头
 - 重要业务功能点
 - 以前出现过性能问题的点
- 定期自动运行,发布前对比关键监控点的性能

· 思考? QQ应该要监控哪些地方

性能运营监控

- 重点路径Imoss系统数据
- 投诉运营

内容大纲

- 性能工作之必要性
- 性能与用户
- 如何提高性能
- 性能监控
- 建立性能备忘体系
- 性能工具

全面的性能保障体系

建立完善的用户 反馈体系

确保测试人员将性能 测试作为常项工作

每个开发员在写代码 的时候都要想到性能

每一个功能组都将性能看作自己的责任

确保架构将性能的各 个方面都加以考虑

确保在提出需求的时候 就开始考虑性能特征

> 思考? 有前面5步,是完善的保障体系吗?

产品经理检查清单

- 1 PM必须收集可能影响性能的各个方面
- 2 考虑到使用上的不同特性
- 3 要考虑到数据量和并发用户相关的特性

开发人员检查清单

• 选择正确的设计能够处理不同情况下的使用特性,数据量,并发用户.只有有好的性能的架构才是好的架构!

测试人员检查清单

- 测试是确保最终产品是否符合用户期望的最后手段
- 当代码做改动后,很难预测对整体性能的影响
- 因此需要:
 - 创建子系统和场景测试
 - 用接近现实的数据来测试
 - 用合理的并行人数来测试
 - 用接近现实的环境来测试

请问:什么是接近真实的环境和数据?

完善的用户反馈体系

- 1.用性能工具采集用户投诉现场分析处理
- 2.数据上报
- 3.性能调查体系

举例:

插件的一些原则:比如微博插件 漫游皮肤,多态登录,多帐号登录等新需求 个人资料改版等问题

QQ秀引起CPU高,热词搜索引起死循环等性能架构的一些优化

内容大纲

- 性能工作之必要性
- 如何提高性能
- 性能监控
- 建立性能备忘体系
- 性能与用户
- ・性能工具

工具

- Visual Studio 2005
- Compuware Devpartner Studio
 - BoundsChecker
- IBM PurifyPlus
- AutomatedQA
- Telelogic Logiscope

- AppVerifier
- DriverVerifier
- Perfmon
- NetMon
- UMDH
- 性能定位工具(自研)
- 内存, GDI泄露检查工具

VS2005-Performance Tools

VS2005-PT查性能问题

QQDoctor090914.vsp 🛭 StackPanel.cpp 😩 GFTestXmlCase.cpp 😩 RichToolTip	.h RichToolTip.cpp MenuE	х.срр 🚨 IGFMer	nuEx.h 🔒	=
unction Name	Inclusive Percent ▼	Exclusive Per	Inclusive Sa	Exclusive
MFC80U.DLL	88.889	0.000	24	
[MFC80U.DLL]	88.889	0.000	24	
- QQDoctor.exe	88.889	0.000	24	
[QQDoctor.exe]	88.889	0.000	24	
tmainCRTStartup	88.889	0.000	24	
- SafeCommon.dll	81.481	11.111	22	
`anonymous namespace'::CTimerDetail::OnTimer(unsigned int)	48.148	0.000	13	
`anonymous namespace'::CTimerDetail::Call(class std::list <struct `anonymous="" n<="" td=""><td>48.148</td><td>0.000</td><td>13</td><td></td></struct>	48.148	0.000	13	
`anonymous namespace'::CTimerBase::TimerWndProc(struct HWND_ *,unsigned	48.148	0.000	13	
Util::Boot::InitPlatformGFConfig(void)	18.519	0.000	5	
CTXStringW::~CTXStringW(void)	14.815	0.000	4	
CTxStringData::Release(void)	14.815	3.704	4	
CTxSimpleString <wchar_t>::FormatV(wchar_t const *,char *)</wchar_t>	11.111	0.000	3	
CTXStringW::Format(wchar_t const *,)	11.111	0.000	3	
CTxStringMgr::Allocate(int,int)	7.407	0.000	2	
CTxSimpleString <wchar_t>;:PrepareWrite(int)</wchar_t>	7.407	0.000	2	
CTXThreadModel::ThreadProxyProc(void *)	7.407	0.000	2	
CMemPool::Free(void *)	7.407	0.000	2	
CTxSimpleString <wchar_t>::PrepareWrite2(int)</wchar_t>	7.407	0.000	2	
CTxSimpleString <wchar_t>;;Fork(int)</wchar_t>	7.407	0.000	2	
CHttpCookieReadWriter::GetCookie(wchar_t const *,wchar_t const *,class CTXStr	7.407	0.000	2	
AllocBuffer(unsigned int)	7.407	0.000	2	
operator+(wchar_t const *,class CTXStringW const &)	7.407	0.000	2	
CTxStringMgr::Free(struct CTxStringData *)	7.407	0.000	2	
CTXHttpDownload::Run(void)	7.407	0.000	2	
CTxSimpleString <wchar_t>::Concatenate(class CTxSimpleString<wchar_t> &,wch</wchar_t></wchar_t>	7.407	0.000	2	
FreeBuffer(void *)	7.407	0.000	2	
CTXHttpDownload::BuildRqHead(class CTXStringA &)	7.407	0.000	2	
png_read_info	3.704	0.000	1	
StringPoolAddRef(wchar_t const *,int)	3.704	0.000	1	
Util::F5::LoadXmlByName(wchar_t const *,struct IXMLDOMDocument * *)	3.704	0.000	1	
png_crc_read	3.704	0.000	1	
CTXData::SetDoc2(unsigned int,unsigned char *)	3.704	0.000	1	
CDefaultAllocator::Free(void *)	3.704	0.000	1	
png_handle_cHRM	3.704	0.000	1	
CMemPool::GetAllocator(unsigned long)	3.704	3.704	1	
CTXData::CopyTo(struct ITXData *)	3.704	0.000	1	
CxImage::Decode(class CxFile *,unsigned long)	3.704	0.000	1	
StringPoolAddRefInternal	3.704	0.000	1	
CPreAllocBlockMgr::MapAllocator(void *)	3.704	3.704	1	

Perf Tool查QQ医生启动过程

monitor-监控文件IO情况

GdiUsage-GDI泄露检查

BoundsChecker-内存泄露检查

<u>F</u> ile <u>E</u> dit <u>P</u> rogram <u>H</u> elp					_ =
💞 🔛 🎒 👫 🦀 🏚 🔊 🕨 🗉	🞸 🔼				
/pe	Quantity	/ Total (bytes)	Allocation Location		
	1	424	99Show.dll ! 0m00055AF2	7, 02	
± 🐧 Leak exiting program	2	432	GF.dll ! 0±000133E2		
Leak exiting program	1	452	MainFrame.dll ! 0m000B0A2D	1, 48	
± 🐧 Leak exiting program	6	528	AppMisc.dll ! Om000A7FFF		
± 💧 Leak exiting program	2	528	HainFrame.dll ! 0x0006C362		
+ 💧 Leak exiting program	6	528	IM dl1 ! 0±0019A27B		
🛨 💧 Leak exiting program	15	540	AppUtil.dll ! 0m0007DE32		
▲ Leak exiting program	1	556	GF.d11 ! 0±0013E512	1, 02	
Leak exiting program	1	568	GF.dll ! 0m00064A82	1, 85	
▲ Leak exiting program	1	600	SkinMgr.dll ! 0m00000A496	51:	
± 💧 Leak exiting program	5	640	GF. dll ! 0m0012EA13		
+ A Leak exiting program	31	744	GF.dll ! 0m001604A2		
± 💧 Leak exiting program	35	840	MainFrame.dll ! 0x0005C6E2		
+ A Leak exiting program	24	864	HainFrame.dll ! 0x000B1042		
+ 💧 Leak exiting program	3	960	GF.dll ! 0m0004F162		
+ A Leak exiting program	7	994	Common.dll ! 0m00140A7C		
+ A Leak exiting program	43	1,032	Common. d11 ! 0x000E7F05		
+ A Leak exiting program	38	1,064	MainFrame.dll ! 0x0009E314		
+ A Leak exiting program	37	1, 332	AppUtil.dll ! 0m00027475		
+ A Leak exiting program	36	1, 440	MainFrame.dll ! 0x00120235		
+ A Leak exiting program	3	1,644	GF.d11 ! 0±000D9C32		
▲ Leak exiting program	1	1,726	Common. dll ! 0m00161AED	5.17	
+ A Leak exiting program	90	1,800	GF.d11 ! 0±000201F2		
+ A Leak exiting program	2	2, 176	RTX0LAss.dll ! 0±00015D53		
+ A Leak exiting program	13	2,600	GF.d11 ! 0±0000C4C2		
+ A Leak exiting program	8	3,008	GF.d11 ! 0±001470C2		
+ A Leak exiting program	8	3,200	GF.d11 ! 0±00043582		
+ A Leak exiting program	49	3,360	RIX0LAss. dll ! 0x0000EE0E		
Summary 👌 Memory Leaks 🍫 Ot	her Leaks 🗶	Errors A . NET Perform	nance 🥞 Modules 🗼 Transcrip)t	

自研工具

•既然有如此强大的性能工具阵营,为什么还需要自己做工具?

用业界工具去追查我们的问题的时候发现:

- 1.1 整个追查问题的过程QQ会变得非常慢,登录都要十几分钟。
 - 1.2 分析出来的结果关系网都非常复杂。
 - 1.3 他们均会把最后的很多消耗直接归结到底层。
- 1.4 他们都只能发现很面上的东西,而不能发现点上的东西,故不能快速的定位到问题所在。

复杂的关系网

Rational Quantify查QQ出登陆框过程

消耗简单归结到底层

QQ医生现在启动的时候,初始化GF/common 模块和创建第一个GF窗口耗费了70%的时间。

⊕ [WS2_32. dll]	2.381	0.000
endthreadex	4.762	0,000
tmainCRTStartup	92.857	0.000
☐ AfxWinMain(struct HINSTANCE *, struct HINSTANCE *, wchar_t *, int)	92.857	0.000
☐ CLightDogApp::InitInstance(void)	92.857	0.000
_AfxSocketInit(struct WSAData *)	2.381	0.000
☐ CLightDogApp::ShowMainDlg(void)	90, 476	0.000
☐ CLgMainUlg::ShowMainUlg(int)	26, 190	0,000
⊕ [SafeGF. dll]	14.286	0.000
■ Util::GF::CreateGFObjectByXtmlEx <struct igfstandardwin="">(wchar_t *, struct IGFStandardWin)</struct>	11.905	0,000
CLightDogApp::MessageLoop(void)	11.905	0.000
± CLightDogApp::StartSelfUpdate(void)	28.571	0.000
☐ CTXIMSBase::Init(void)	23, 810	0.000
⊞ [SafeCommon.dll]	23, 810	0.000

VS的Perf Tool查QQ医生启动问题

并不能把问题定位到比较细的可修改的点

afeCommon.dll	81.481	11.111	22
···`anonymous namespace'::CTimerDetail::OnTimer(unsigned int)	48.148	0.000	13
`anonymous namespace'::CTimerDetail::Call(class std::list <struct `anonymous="" n<="" td=""><td>48.148</td><td>0.000</td><td>13</td></struct>	48.148	0.000	13
`anonymous namespace'::CTimerBase::TimerWndProc(struct HWND *,unsigned	48.148	0.000	13
Util::Boot::InitPlatformGFConfig(void)	18.519	0.000	5
CTXStringW::~CTXStringW(void)	14.815	0.000	4
CTxStringData::Release(void)	14.815	3.704	4
	11.111	0.000	3
CTXStringW::Format(wchar_t const *,)	11.111	0.000	3
CTxStringMgr::Allocate(int,int)	7.407	0.000	2
CTxSimpleString <wchar_t>::PrepareWrite(int)</wchar_t>	7.407	0.000	2
CTXThreadModel::ThreadProxyProc(void *)	7.407	0.000	2
CMemPool::Free(void *)	7.407	0.000	2
CTxSimpleString <wchar_t>::PrepareWrite2(int)</wchar_t>	7.407	0.000	2

Ontimer占了60%,请问我该如何去修改?

- 1.知道是哪个Timmer ID吗?
- 2.知道Timmer响应的是哪个类的哪个函数吗?

特色1-精确定位,直接指导修改

项名	时	百	次数
⊒ 🧀 PerfStat	3734	100%	1
🖮 🦳 Thread (2768)	3734	100%	1
in GFMsg-HandleOnWinMsg:15	3624	97%	19
亩 👝 GFMsg-DispatchFrameMsg	3560	98%	4728
i GFM_PaintBkg	3522	98%	1182
☐ ☐ GFDraw-PaintInternal	3506	99%	257
	3270	93%	57
📵 platformres:crm\mainpanel\mainboard_bkg.bmp	117	3%	19
platformres:crm\mainpanel\fastreply\background.bmp	63	1%	19
ii [□ GFM_Paint	23	0%	1182
	63	1%	1
⊕ — GFMsg-DispatchFrameMsg	90	2%	1503
i ☐ IsNetConnectionOK	14	0%	7
i ← CTXCSProcessor::OnRecvData	0	0%	1

自研工具追查CRM CPU占用高问题

特色2-统计挖掘,直接得出有效数据

你想知道 整段时间的绘制消耗(排除IO)吗?

特色3-分析区段过滤

你想知道 CPU占用超过50%的地方在做什么吗?

特色4-丰富的堆栈信息,方便查未知问题

任何时段任何线程的发生了诡异的事情,都能得到堆栈的使用情况

特色5-丰富的现场信息,直接解决关键问题

你想知道用户是什么时段卡住了么? 你想知道用户采集现场的时段 CPU占用情况么? 你想知道用户采集现场的时段内存的占用情况么? 你想知道用户采集现场的时段的IO情况么?

自研-性能定位工具的基本原理

Windows客户端软件,都是基于消息驱动的。通过覆盖所有的消耗源头,在所有的消耗源加上比较详细的附带信息。包括耗时API。

然后把所有消耗点的数据,整理成一个数据库集的形式,通过对Log库分析统计挖掘,同时提取关键信息,得出整个过程的消耗占用情况以及相关关键信息。

自研-内存和GDI泄露检查工具

自研-泄露检查工具原理

通过API Hook,监管所有的GDI操作,以及内存分配 释放操作,以及当时的CallBack信息,最后通过统计结 合pdb信息,即可以打印出GDI以及内存有泄露的地方, 同时还可以跳转到泄露对应的代码行上去。

建议与观点

如何让性能走得更好?您有更好的高招

么?

谢谢!