Consider an array a of n positive integers.

You may perform the following operation:

- select two indices l and r ($1 \le l \le r \le n$), then
- decrease all elements $a_l, a_{l+1}, \ldots, a_r$ by 1.

Let's call f(a) the minimum number of operations needed to change array a into an array of n zeros.

Determine if for all permutations b of a, $f(a) \leq f(b)$ is true.

[†] An array b is a permutation of an array a if b consists of the elements of a in arbitrary order. For example, [4, 2, 3, 4] is a permutation of [3, 2, 4, 4] while [1, 2, 2] is not a permutation of [1, 2, 3].

Input

The first line contains a single integer t ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains a single integer n ($1 \le n \le 10^5$) — the length of the array a.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — description of the array a.

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, print "YES" (without quotes) if for all permutations b of a, $f(a) \le f(b)$ is true, and "NO" (without quotes) otherwise.

You can output "YES" and "NO" in any case (for example, strings "yEs", "yes" and "Yes" will be recognized as a positive response).

Sample 1

Input	сору		Output	сору
3 4 2 3 5 4 3 1 2 3 4 3 1 3 2		YES YES NO		

Note

In the first test case, we can change all elements to 0 in 5 operations. It can be shown that no permutation of [2,3,5,4] requires less than 5 operations to change all elements to 0.

In the third test case, we need 5 operations to change all elements to 0, while [2,3,3,1] only needs 3 operations.