교통 상황에 따른 신호 체계 최적화 모델 분석 기술 연구

위탁연구추진실적 중간발표자료 세종대학교 산학협력단 장 윤

요약

연구개발내용	4월	5월	6월	7월	8월	9월	10월	11월
교차로 신호 체계의최적화 모델 검증을 위한 분석 기술 개발								
시각적 분석 시스템 개발을 통한 비교 분석								
모델의 정확도 향상 및 실제 상황에의 응용 가능성 연구								

- 교차로 신호 체계의 최적화 모델 검증을 위한 분석 기술 개발 중
- •모델 비교 분석을 위한 시각적 분석 시스템 개발 중

교차로 신호 체계 최적화 기술 분석

교차로 신호 체계 최적화 기술

- Artificial intelligence
 - 데이터 기반 학습 및 판단
 - Neural network
 - Fuzzy logic
 - Rainforce learning
- Metaheuristics
 - 근사해법을 사용해 제한된 조건에서 교통 신호 최적화
 - Particle Swarm Optimization (PSO)
 - Ant Colony Optimization (ACO)
 - Genetic Algorithm (GA)

교차로 신호 체계 최적화 기술

- Bi-level programming
 - 상위 수준 (교통 네트워크)과 하위 수준 (개별 교차로)으로 문제를 나눠 신호 최적화
- Linear programming
 - 선형적인 목적 함수와 제약 조건 하에 수학적 기법을 통한 신호 최적화
- Other
 - 시뮬레이션, 수학적 기법, 컴퓨터 비젼 기반, 다중 오브젝트, 하이브리드 방법, 그리고 동적 프로그래밍을 활용한 최적화

교차로 신호 체계 최적화 기술 동향

	2021	2022	2023
Al	14	14	12
Metaheuristics	7	7	6
Bi-level programming	2	2	1
Linear programming	7	4	1
Other	8	3	7

- 인공지능을 이용한 신호 체계 최적화 기술이 가장 많이 출판됨
 - 강화학습을 이용한 신호 최적화 논문 2021년부터 각각 12, 9, 10개
- 메타 휴리스틱 알고리즘은 꾸준히 사용되고 있음
- 선형 프로그래밍 기반 신호 최적화 방법 사용이 감소하고 있음

교차로 신호 체계의 최적화 모델 검증을 위한 분석 기술 개발

신호 최적화 모델 검증 작업 흐름도

Work flow

- Traffic State Analysis: 속도를 이용해 현재 교통 상태를 분석
- Simulation Modeling: 신호 최적화 모델이 적용되지 않은 교통 시뮬레이션 모델링
- Apply Model: 검증할 교차로 신호 최적화 모델을 시뮬레이션에 적용

Simulation output data

- 도로 밀도
- 대기 시간
- 속도
- 통행량
- 지연 시간
- 여행 시간

Processed data

- 총 여행 시간
- 평균 대기 시간
- 평균 지연 시간

혼잡 측정 지표

- 교통 상태는 혼잡을 측정하고 혼잡에 따라서 분류
- 혼잡 측정은 보유하고 있는 실제 관측 데이터인 속도를 이용해 측정
- 교통 혼잡 지표는 다음과 같이 계산함

$$TCI_{(i,t)} = \frac{Speed_{(i,t)}}{FFS_i}$$

Table 7. Advantages and disadvantages of various congestion measures [2,32,52-54].

Category	Measurement Approach	Congestion Range	Advantages	Disadvantages		
Speed	Speed reduction index (SRI)	>4	Easily comprehensible Provides information about	Does not consider nonrecurring		
Speed	Speed performance index (SPI)	Different range levels	relative vehicle speed in normal and congested condition	conditions		
Travel time	Travel rate	No range available	Capacity is not included			
Delay	Delay rate	No range available	Can be used to estimate system performance and choose efficient travel method	Limited for a specific road type		
,	Delay ratio	No range available	No suggested congestion range			
Level of services (LoS)	Volume to capacity ratio	Different range levels	Comprehensible by non-technical users	Cannot provide continuous congestion value No information on speed and time are considered		
Congestion	Relative congestion index (RCI)	>2	Spatial-mean performance of traffic is represented	Limited to particular road type		
indices	Road segment congestion index	No range available	Appropriate to represent segment condition	Only applicable to measure specific segment conditions.		
	Congested Hours	No range available	Provides an estimation of the congested time period	Only depends on the speed		
Federal	Travel time index (TTI)	No range available	Accounts for recurring congestion Both time and space are considered	Value could vary due to different peak period consideration		
	Planning time index (PTI)	No range available	Describes travel time reliability to planners as well as network users	Planning for additional travel time might not always be reliable		

혼잡 측정 지표1

교통 상태 분류

• 혼잡 지표에 따라 교통 네트워크 상태는 다음과 같이 분류함

$$Traffic state = \begin{cases} Smooth & (Avg \, TCI_{(t)} > 0.9) \\ Slow & (Avg \, TCI_{(t)} \leq 0.9 \, and Avg \, TCI_{(t)} > 0.7) \\ Congestion & (Avg \, TCI_{(t)} \leq 0.7) \end{cases}$$

데이터 소개

- 도로 네트워크: ITS 국가 교통 정보 센터에서 제공하는 표준 노드 링크 데이터
- 통행량 데이터: View-T (한국 교통 연구원)에서 제공하는 추정 교통량 데이터
- 속도 데이터: TOPIS (서울시 교통정보 시스템) 에서 제공하는 속도 데이터 사용
- 신호 현시 데이터: 서울시 교통안전시설물 관리 시스템에서 제공하는 데이터

도로 네트워크

- ITS 국가 교통 정보 센터에서 제공하는 표준 링크 데이터 (shape)
- 강남구로 전처리
- 도로의 공간 데이터와 정보 등 포함
 - 차선 수, 도로명, 제한 속도, 그리고 도로 길이 포함

	А	В	С	D E	F	G	н	- I	J	K	L	М	N	0	Р	Q
1	LINK_ID	F_NODE	T_NODE	LANES ROAD_RANK	ROAD_TYPE	ROAD_NO	ROAD_NAME	ROAD_USE	MULTI_LINK	CONNECT	MAX_SPD	REST_VEH	REST_W	REST_H	LENGTH	REMARK
2	3980026501	3980010400	3980010401	1 103	000	24	마령로	O	O	000	60)	0	C	3441.406837262090	ı
3	3380109000	3380047900	3380047300	1 107	000	-	대불공원길	O	O	000	50)	0	C	67.244338752326	,
4	3380109500	3380047200	3380048500	2 107	000	-	대불주거3로	O	O	000	50)	0	C	211.587686343151	
5	3380109600	3380047900	3380048200	1 107	000	-	대불공원1길	O	0	000	50)	0	C	68.359063672388	

표준 링크 데이터

강남 통행량 데이터

- 한국 교통 연구원 추정 교통량
- 2022년 기준 일평균 교통량
- 1시간 단위 데이터
- ITS LINK ID, 도로 명 포함

강남 통행량 데이터

강남 속도 데이터

- 서울시 교통정보 제공 시스템 (TOPIS) 제공 데이터
- 일자, ITS LINK ID, 그리고 시간 별 평균 속도 데이터 포함

일자	요일	도로명	링크아이디	시점명	종점명	방향	거리	차선수	기능유형구분	도심/외곽구분	권역구분	01시	02시	03시	04시	05시	06시	07시	08시	09시	10시	11시
20220101	토	4.19로	1080012200	아카데미하우스	국립4.19묘지	상행	1179		1 보조간선도로	외곽	강북구	47.21	45.17	51.28	56.7	49.27	40.41	39.41	30.62	27.74	37.43	34.7
20220101	토	4.19로	1080012800	국립4.19묘지	국립4.19묘지입구	상행	352		2 보조간선도로	외곽	강북구	14.05	18.49	19.78	21.49	17.29	18.67	14.49	15.24	15.98	16.46	16.
20220101	토	4.19로	1080012700	국립4.19묘지입구	국립4.19묘지	하행	354		2 보조간선도로	외곽	강북구	22.75	24.51	29.71	28.38	24.45	24.86	18.96	24.02	25.94	17.8	19.9
20220101	토	4.19로	1080012100	국립4.19묘지	아카데미하우스	하행	1190		1 보조간선도로	외곽	강북구	47.97	40.48	44.39	65.45	86.19	50.99	45.56	36.91	47.79	44.34	50.4
20220101	토	가락로	1230024700	방이초교	방이동고분군	상행	844		1 기타도로	외곽	송파구	21.78	20.79	22	13.88	21.48	22.53	16.66	15.33	23.35	19.08	16.7
20220101	토	가락로	1230019500	방이동고분군	송파한양아파트	상행	416		1 기타도로	외곽	송파구	28.96	28.07	36.26	35.13	33.37	30.47	33.54	26.4	25.46	25.67	26.29
20220101	토	가락로	1230016300	송파한양아파트	송파사거리	상행	478		1 기타도로	외곽	송파구	19.7	25.25	28.39	27.84	29.53	19.31	35.12	41.08	25.06	21.06	19.3
20220101	토	가락로	1230014100	송파사거리	배명고교	상행	1288		1 기타도로	외곽	송파구	26.18	21.89	23.28	30.06	21.22	31.83	32.49	26.48	26.32	23.61	19.
20220101	토	가락로	1230014200	배명고교	송파사거리	하행	1288		1 기타도로	외곽	송파구	23.26	26.46	28.47	26.44	34.32	26.33	24.7	26.6	34.38	25.33	23.0
20220101	토	가락로	1230016400	송파사거리	송파한양아파트	하행	484		1 기타도로	외곽	송파구	26.04	29.03	32.78	30.85	33.29	28.12	25.76	27.38	26.87	22.1	24.0
20220101	토	가락로	1230019600	송파한양아파트	방이동고분군	하행	417		1 기타도로	외곽	송파구	17.34	23.76	18.72	22.33	26.84	22.6	23.58	15.28	17.61	15.05	15.6

신호 현시 데이터

- 서울시 교통안전시설물관리 시스템 제공
- 요일과 시간대 별 주기 및 현시 데이터 포함

• 교차로 단위로 데이터가 제공되현재 시뮬레이션에 모델링 중

	주현시	최소녹색 (MIN)	맵최대녹색 (MAP MAX)	중앙최대녹색 (HOST MAX)	보행녹색	보행점멸	황색신호	전적색신호	보행전시간	MDS
l	20:10:10:10 20:10:10:10	20:24:20:24 20:24:20:24	090:027:080:027 090:027:080:027	100:027:090:027 100:027:090:027	00:11:00:11 00:11:00:11	00:14:00:14 00:14:00:14	03:03:03:03 03:03:03:03	01:00:01:00 01:00:01:00	00:02:00:02 00:02:00:02	00:00:00:00

TOI) PLAN	√1(월.	요일)	TOD	PLAN 2	(화~+	금요일)	ĺ	TOI) PLAN	13(足)	요일)	TOI) PLAN	1 4(일:	요일)		특수일	
번호	시각	주기	패턴	번호	시각	주기	패턴		번호	시각	주기	패턴	번호	시각	주기	패턴	번호	DAY	TOD
1	05:00	140	2	1	00:00	130	1		1	00:00	130	1	1	08:30	150	6	1	신정	4
2	06:30	160	8	2	05:00	140	2		2	08:00	150	6	2	11:00	160	13	2	설날전	4
3	10:30	160	9	3	07:00	160	8		3	09:00	160	12	3	20:00	140	4	3	설날	4
4	14:00	160	10	4	10:30	160	9		4	15:00	160	13	4	22:00	130	1	4	설날후	4
5	16:30	170	14	5	14:00	160	10		5	20:00	140	4	5				5	삼일절	4
6	22:00	140	4	6	16:30	170	14		6	22:00	130	1	6				6	어린이날	4
7				7	21:00	140	4		7				7				7	석탄일	4
8				8					8				8				8	현충일	4
9				9					9				9				9	광복절	4
10				10					10				10				10	추석전	4
11				11					11				11				11	추석	4
12				12					12				12				12	추석후	4
13				13					13				13				13	개천절	4
14				14				ı	14				14				14	한글날	4
15				15				l	15				15				15	성탄일	4
16				16					16				16				16		

번호	주기	패턴	연동	현시값	번호	주기	패턴	연동	현시값
1	130	1	116	38:27:38:27 38:27:38:27	4	160	9	150	63:27:43:27 63:27:43:27
		2	18	$\frac{48:27:38:27}{48:27:38:27}$	4	100	10	26	58:27:48:27 58:27:48:27
2	140	3	88	48:27:38:27 48:27:38:27			11	112	63:27:43:27 63:27:43:27
		4	91	$\frac{47:27:39:27}{47:27:39:27}$	5	160	12	2	$\frac{66:27:40:27}{66:27:40:27}$
		5	118	58:27:38:27 58:27:38:27			13	40	$\frac{63:27:43:27}{63:27:43:27}$
3	150	6	2	51:27:45:27 51:27:45:27			14	138	53:27:63:27 53:27:63:27
		7	77	58:27:38:27 58:27:38:27	6	170	15	75	53:27:63:27 53:27:63:27
4	160	8	59	67:27:39:27 67:27:39:27			16	132	53:27:63:27 53:27:63:27

시뮬레이션 모델링

- 오픈소스 시뮬레이션 중 가장 많이 사용되는 Simulation of Urban Mobility (SUMO)¹ 사용
- 도로 링크데이터를 이용해 네트워크 모델링
- 통행량 데이터를 이용해 경로 데이터 모델링

출판된 논문에서 사용한 시뮬레이션² (2015 ~ 2019)

- 1. Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. IEEE Intelligent Transportation Systems Conference (ITSC), 2018.
- 2. Qadri, Syed Shah Sultan Mohiuddin, Mahmut Ali Gökçe, and Erdinç Öner. "State-of-art review of traffic signal control methods: challenges and opportunities." *European transport research review* 12 (2020): 1-23.

시뮬레이션에 신호 최적화 모델 적용 설계

- SUMO Traci API를 이용해 모델의 신호 매개변수 설정
 - 주기
 - 현시 순서
 - 현시녹색시간
 - offset
- sumo-rl¹과 PettingZoo Multi-agent API² 사용

^{1.} Alegre, L. N. (2019). *SUMO-RL*. GitHub https://github.com/LucasAlegre/sumo-rl

모델 검증을 위한 분석 방법

Process

- •모델 검증
 - 총 지연시간 변화
 - 대기행렬 길이 변화
 - 평균 정지 횟수 변화
 - 평균 속도 변화

	2021	2022	2023
Avg Delay Time	15	14	12
Avg Stop	6	2	3
Queue length	3	5	7
Avg Speed	5	2	3
Other	8	5	5

가상 네트워크 모델 적용 실험

- 4x4 가상 교통 네트워크를 이용해 시뮬레이션에 신호 최적화 모델 적용 실험
- 차량 1472대 생성 후 시뮬레이션 진행

신호 최적화 모델 적용 실험

- 총 대기 시간 유의미한 감소
 - 총 대기 시간 6434초 → 102초 약 1.6%로 감소
- Episode 1과 Episode 4의 총 대기 시간 차이는 크지 않음
- 신호 최적화 모델은 학습량을 늘려도 일정 값에 수렴함

Episode 1

Episode 4

신호 최적화 모델 적용 및 검증 실험

- 총 정지 횟수 유의미한 감소
 - 총 정지 횟수 319회 → 27회 약 8.5%로 감소
- 평균 속도의 유의미한 증가
 - 최저 속도 2.25 m/s (8.1 km/h)
 - 최고 속도 6.64 m/s (23.9 km/h)
 - 평균 속도 2.25 m/s → 6.64 m/s 약 195% 증가

향후 계획

- 강남구 시뮬레이션에 신호 현시 데이터 모델링 후 모델 적용 실험
- 행정 구역 단위 신호 최적화 모델 적용 및 검증 실험 진행 예정
- 대전시 교통 네트워크 모델링 후 신호 최적화 모델 적용 실험

시각적 분석 시스템 개발을 통한 비교 분석

신호 최적화 모델 시각적 분석 시스템 설계

시스템 흐름도

향후 계획

- 신호 파라미터 변화를 보여주는 시각화 기법 개발
- 단일 교차로 성능 변화 시각화 기법 개발
- 신호 최적화 모델 학습량에 따른 성능 시각화 개발
- 성능이 좋은 모델 선택을 위한 가이드 시각화 개발

모델의 정확도 향상 및 실제 상황에 응용 가능성 연구

모델링한 교통 시뮬레이션 문제

- 실제 데이터를 기반으로 구현한 강남 교통 시뮬레이션은 실제 보다 차량 처리 용량이 적음
- 따라서 교통량 데이터를 그대로 적용하면 교통 체증으로 인해 전체 도로가 멈추는 경우가 발생함

시뮬레이션 결과값이 일부 도로에서 실제 속도와 통행량과 달라지는 문제가 발생

교통 시뮬레이션 보완

• 강화 학습을 이용해 시뮬레이션과 실제 교통 데이터를 유사하 게 조정

교통 시뮬레이션 보완

- 강남의 혼잡 시간대 16~18시 통행량 시뮬레이션 결과
 - 속도 정확도 : 38.55%
 - 통행량 분포 정확도 : 61.31%
- 사용 알고리즘 : DDPG
- 보상 함수 : Speed Acc * 0.8 + Volume Distribution * 0.2
- 실험 결과
 - 속도 정확도 : 59.75%
 - 통행량 분포 정확도 : 57.44%

교통 시뮬레이션 보완

- 강남의 교통 시뮬레이션 네트워크의 유의미한 성능 향상 확인
- 다양한 알고리즘 사용과 보상 함수를 수정해 속도 정확도와 통행량 분포 정확도를 더 실제에 가깝게 수정 예정

향후 계획

- 신호 체계 최적화 모델의 하이퍼 파라미터 튜닝
- 실제 상황에 응용을 위한 예측 교통 데이터를 사용하는 방법 연구

교통 혼잡 해결 방법

- 도로 인프라 확장 방법
 - 단기간 교통 혼잡 해결에 효과적
 - 도로 확장을 위한 높은 비용을 요구
 - 장기적으로 교통 수요를 증가시켜 다시 혼잡해지는 문제 발생
- 기존 도로 인프라 효율화 방법
 - 신호 최적화를 통한 효율성 향상
 - 교통 정보 제공을 통한 교통 수요 분산
 - 혼잡통행료 정책을 통한 교통 수요 분산
- 일반적으로 기존 도로 인프라 효율화 방법을 함께 사용할 때 더 큰 혼잡 완화 효과를 보임

교통 패턴 분석을 위한 인과관계 분석 연구

- 그레인저 인과 검정은 교통 데이터 에서 유의미한 추세 효과와 계절 효과를 고려하지 않음
- 따라서 그레인저 인과 검정을 수행하기 전에 상호 정보를 제공함

$$I(X,Y) = \sum_{x,y} p(x,y) log\left(\frac{p(x)p(y)}{p(x,y)}\right)$$

교통 패턴 분석을 위한 인과관계 분석 연구

• 그레인저 인과검정은 목표값/결정 변수의 예측에 대한 각 입력 변수의 기여도를 확인함

$$X_{t} = \sum_{j=1}^{p} A_{xx,j} X(t-j) + \sum_{j=1}^{p} A_{xy,j} Y(t-j) + \mathcal{E}_{x}(t)$$

$$X_{t} = \sum_{j=1}^{p} A_{xx,j} X(t-j) + \mathcal{E}'_{x}(t)$$

$$H_{0}: A_{xy,0} = \dots = A_{xy,p} = 0$$

- 그레인저 인과 검정은 인과 관계의 유무를 나타내지만 인과 관계의 강도를 나타내지 않음
- 인과 관계의 강도를 수치화하기 위해 인과 밀도를 측정

$$F_{\{Y \to X\}} =: ln \frac{var(\mathcal{E}'_{X}(t))}{var(\mathcal{E}_{X}(t))} \qquad CD(X) =: \frac{1}{n(n-1)} \sum_{i \neq j} F_{\{X_{i} \to X_{j}\}}$$

인과 관계 분석 신뢰성 검증

- 그레인저 인과 검정은 데이터의 정상성을 확인해 야함
- 데이터가 비 정상성을 가진 경우 잘못된 인과 관계 를 탐지하거나 인과 강도가 잘못 추정됨
- 시계열 그래프가 정상성을 확인하는 옵션이 될 수 있지만 육안 검사만으로 정상성을 결정하지 못함
- 시계열 데이터의 정상성을 검증하기 위해 Augmented Dickey-Fuller test (ADF) 를 사용함

인과 관계 분석 프로세스

교통 패턴 분석 프레임워크

교통 데이터 예측

- 교통 데이터 예측은 VD, GPS, CCTV data를 활용
 - VD, GPS 데이터는 센서 고장과 같은 문제로 누락 데이터 발생
 - CCTV 데이터는 모든 교차로의 방향을 관측하지 못해 누락 데이터 발생
- 딥 러닝을 활용한 추정 방법은 이전 시점의 데이터를 통해 누락 된 값을 추정
 - 하나의 노드가 모든 시간에서 완전히 누락된 경우 추정 불가

누락된 교통 흐름 데이터 추정 방법

- 미관측 노드의 교통 흐름을 추정할 수 있는 가상 네트워크 기반 DCRNN 모델
 - 관측 노드를 바탕으로 가상 노드와 엣지를 갖는 가상 네트워크 생성
 - Graph Attention을 통해 가상 네트워크의 latent feature matrix 구성
 - DCRNN 모델을 활용하여 가상 네트워크의 교통 흐름 예측
 - 가상 노드의 값을 바탕으로 미관측 노드의 값 추정

완전히 관측된 교차로의 가상 네트워크

Adjacency Matrix

	1	2	3	4	а	b	С	d
1	1	1	1	1	1	0	0	1
2	1	1	1	1	1	1	0	0
3	1	1	1	1	0	1	1	0
4	1	1	1	1	0	0	1	1
а	1	1	0	0	1	0	1	0
b	0	1	1	0	0	1	0	1
С	0	0	1	1	1	0	1	0
d	1	0	0	1	0	1	0	1

Node Feature Matrix

					а	b	С	d
Speed	10	20	20	10	$(V_1 + V_2)/2$	$(V_2 + V_3)/2$	$(V_3 + V_4)/2$	$(V_1 + V_4)/2$

미관측 노드가 있는 교차로의 가상 네트워크

Adjacency Matrix

	1	3	4	а	b	С	d
1	1	1	1	1	0	0	1
3	1	1	1	0	1	1	0
4	1	1	1	0	0	1	1
а	1	0	0	1	1	1	0
b	0	1	0	1	1	0	1
С	0	1	1	1	0	1	0
d	1	0	1	0	1	0	1

Node Feature Matrix

	1	2	3	4	а	b	С	d
Speed	10	20	20	10	$(V_1 + V_3 + V_4)/3$	$(V_1 + V_3 + V_4)/3$	$(V_3 + V_4)/2$	$(V_1 + V_4)/2$

Graph Attention

- 합성 데이터인 가상 네트워크의 학습을 위한 graph attention mechanism
- 가상 네트워크의 latent feature matrix
 - $X_{virtual}^t = \sigma(\sum_{j \in N(i)} \alpha_{ij} X_j^t W^t)$
- Attention 계수 (α)
 - $\alpha_{ij} = softmax(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in N(i)} \exp(e_{ik})}$
 - $e_{ij} = LeakyReLU(a^t[X_iW, X_jW])$

Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).

DCRNN

• DCRNN은 교통 예측의 시공간 종속성을 캡처하기 위한 확산 프로세스를 통합

Li, Yaguang, et al. "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting." arXiv preprint arXiv:1707.01926 (2017).

V-DCRNN

- 가상 네트워크를 DCRNN의 입력 네트워크로 활용
 - Attention에 의해 생성된 latent feature matrix를 학습
 - 확산 프로세스를 바탕으로 이웃 노드의 값 예측
- 출력된 가상 네트워크에서 인접한 가상 노드의 값을 바탕으로 미관측 노드의 값 추정

이전 혼잡통행료 정책 연구

- 혼잡통행료는 런던, 스톡홀름, 싱가폴에서 적용되어 교통 혼잡 완화에 효과적임을 증명함
- 이전 연구에서 혼잡통행료 정책의 검증을 위해 시뮬레이션을 사용하여 혼잡 통행료 정책을 설계하거나 통행료를 최적화함

혼잡통행료 정책의 연구 필요성

- 남산 1, 3터널 혼잡통행료 적용 효과 실험 같은 경우가 적음
- 혼잡통행료 정책이 적용되기 전과 후의 데이터를 수집이 어려움
- 교통 분석은 시공간 패턴을 가지지만 혼잡통행료 연구에서 시공간 분석에 효과적인 시각적 분석 시스템을 찾기 어려움

시간과 공간에 따라 다른 추세를 보이는 교통 데이터 예시

혼잡통행료 정책의 실험 설계

- 실제 데이터를 기반으로 교통 시뮬레이션 모델링
- 혼잡통행료를 적용하기 전과 후의 데이터 생성
- 생성한 데이터를 딥 러닝 모델에 학습
- 학습된 모델에 실제 데이터를 적용해 혼잡통행료가 적용된 교통 데이터 예측

혼잡통행료 정책 분석 프로세스

- 대상 구역을 선택하고 통행료 징수 방법과 금액을 설정
- 학습된 딥 러닝 모델을 이용해 대상 구역에 혼잡통행료를 적용한 속도 예측
- 다중 구역에 대한 혼잡통행료 정책을 설정하고 혼잡통행료 정책의 효과 분석

혼잡통행료 효과 분석 시각화 예시

혼잡통행료 효과 분석 시각화 예시

