Lecture 10: Deep Sequence Modeling. Recurrent neural networks.

Predictive learning

- Given an element predict nearby elements (e.g. next, previous, adjacent, etc.)
- Does not require annotated data ("selfsupervised")
- Usually considered as unsupervised, but often works much better than "plain" unsupervised
- Particularly prominent in NLP, but now gaining popularity in many fields

Today's focus: sequence modeling, sequence prediction

Predicting sequences matters

Applications:

- Synthesis (text, speech, etc.)
- **Probabilistic** modelling
- Compression

smbc-comics.com

Training sequence prediction

A cat sat on a ma?

Inherently probabilistic: need to predict probabilities over alphabet/lexicon

Training sequence prediction

A cat sat on a ma?

Predominantly maximum likelihood learning:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x_{t}^{i} | x_{t-1}^{i}, x_{t-2}^{i}, \dots, x_{1}^{i})$$

Many models go back fixed number of steps:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x_{t}^{i} | x_{t-1}^{i}, x_{t-2}^{i}, \dots, x_{t-N}^{i})$$

Temporal window

Fixed window/order architectures

$$p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_{t-N}^i)$$

- N-grams (with smoothing)
- ConvNets (aka TDNNs)
- Any probabilistic classifier (e.g. decision forest, etc.)

NB: using padding for the special symbol (UNK) we can train model for shorter sequences

Assessing a probabilistic model

1. Train $p_{\theta}(x_j \mid x_{j-1}, \dots, x_{j-N})$

2. Evaluate
$$\prod_{j=1}^{n} p_{\theta}(x_j \mid x_{j-1}, \dots, x_{j-N})$$
 on a hold-out set (can be a long text)

Common measure (perplexity):

$$PP(x_1,...,x_M) = \sqrt[M]{\prod_{j=1}^{M} p_{\theta}(x_j | x_{j-1},...,x_{j-N})}$$

Probabilistic modeling of long sequences

Assume given $p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_{t-N}^i)$

$$p(x_M, x_{M-1}, \dots, x_1) =$$

$$p(x_M | x_{M-1}, \dots, x_1) \cdot p(x_{M-1}, x_{M-2}, \dots, x_1) =$$

$$\prod_{j=2}^{M} p(x_j \mid x_{j-1}, \dots, x_1) \cdot p(x_1) \approx$$

$$\prod_{j=1}^{M} p_{\theta}(x_j \mid x_{j-1}, \dots, x_{j-N})$$

ML sequence generation

Task: draw a sample sequence with high-probability $\prod_{j=1}^{M} p_{\theta}(x_j \,|\, x_{j-1}, \dots, x_{j-N})$

Option 1: synthesize one-by-one greedily, picking the symbol with highest probability

$$\hat{x}_j = \arg\max_{x} p_{\theta}(x \mid \hat{x}_{j-1}, \dots, \hat{x}_{j-N})$$

Option 2: beam search

Why greedy synthesis is suboptimal

Toy example: three letters in the alphabet.

Task: synthesize most likely three letter word starting from red.

Greedy solution:

Best solution:

Beam search

	IVI	
The c??????	$\prod p_{\theta}(x_j x_j.$	(x_{j-N})
The ca?????	j=1 The cat???? The cap????	The cat????
	тие сар	
The co?????	The cor????	The cap????
	The col????	
The ch?????	The cha????	The cor????
THE CHEET		
	The cho????	

M

WaveNet

Generating raw waveforms at 16 kHz (very uncommon)

WaveNet: dilated ConvNet Output Hidden 0 0 0 0 0 0 0 0 0 0 0 0 0 Hidden O O O O O O O O O O O Hidden O O O O O O O O O O O Input 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WaveNet: dilated ConvNet

Repeated pattern of dilations:

Gated (bilinear) non-linearity:

$$\mathbf{z} = \tanh\left(W_{f,k} * \mathbf{x}\right) \odot \sigma\left(W_{g,k} * \mathbf{x}\right)$$

There are also skip connections

Details of the ConvBlock

WaveNet: speech results

- Trained on 24.6 hours of speech
- Receptive field is 0.24 seconds
- Conditioned on the speaker ID

WaveNet: piano results

 Trained on 60 hours of piano (from YouTube)

Similar ConvNet for sequence modeling

[Bai et al. 2018]

ConvNets vs RNNs

	Sequence Modeling Task	Model Size (\approx)	Models			
			LSTM	GRU	RNN	TCN
	Seq. MNIST (accuracy ^h)	70K	87.2	96.2	21.5	99.0
	Permuted MNIST (accuracy)	70K	85.7	87.3	25.3	97.2
	Adding problem T =600 (loss $^{\ell}$)	70K	0.164	5.3e-5	0.177	5.8e-5
	Copy memory $T=1000 \text{ (loss)}$	16K	0.0204	0.0197	0.0202	3.5e-5
	Music JSB Chorales (loss)	300K	8.45	8.43	8.91	8.10
	Music Nottingham (loss)	1M	3.29	3.46	4.05	3.07
	Word-level PTB (perplexity ^ℓ)	13M	78.93	92.48	114.50	89.21
	Word-level Wiki-103 (perplexity)	-	48.4	-	-	45.19
	Word-level LAMBADA (perplexity)	-	4186	-	14725	1279
	Char-level PTB (bpc $^{\ell}$)	3M	1.41	1.42	1.52	1.35
	Char-level text8 (bpc)	5M	1.52	1.56	1.69	1.45

[Bai et al. 2018]

Picking a probabilistic model

- N-grams
- CNNs (aka TDNNs)
- Any probabilistic classifier

Common problem: picking size of the window

- Avoiding overfitting
- To work on instances of different length
- To track long-range behavior

Probabilistic modeling of long sequences

$$p(x_M, x_{M-1}, \dots, x_1) =$$

$$p(x_M | x_{M-1}, \dots, x_1) \cdot p(x_{M-1}, x_{M-2}, \dots, x_1) =$$

$$\prod_{j=2}^{M} p(x_j \mid x_{j-1}, \dots, x_1) \cdot p(x_1) \approx$$

$$\prod_{i=1}^{M} p_{\theta}(x_j \mid h_{j-1})$$

"context variable" $\prod_{i=1}^{n} p_{\theta}(x_{j} \mid h_{j-1}) \qquad h_{j-1} = F(x_{j-1}, h_{j-2})$

Let us use a simple network here!

Recurrent neural network (RNN)

$$p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_1)$$

$$\uparrow h_t$$

$$\downarrow x_t$$

$$\downarrow \phi \circ *$$

$$h_t = W\phi(h_{t-1}) + W_x x_t$$

$$y_t = W_y \phi(h_t)$$

NB: I omit bias terms but they can be useful!

Most popular non-linearity for RNNs

$$anh x: \mathbb{R} o (-1;1)$$

Unwrapping RNN

$$h_t = W\phi(h_{t-1}) + W_x x_t$$
$$y_t = W_y \phi(h_t)$$

Training RNN

$$h_t = W\phi(h_{t-1}) + W_x x_t \quad y_t = W_y \phi(h_t)$$

Training RNN

$$h_t = W\phi(h_{t-1}) + W_x x_t$$

$$y_t = W_y \phi(h_t)$$

$$E = \sum_{t=1}^{S} E_t \qquad \frac{dE}{dW} = \sum_{t=1}^{S} \frac{dE_t}{dW}$$

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

In practice: unwrapping for a finite number of time-steps (or training on bounded length sequences)

Training RNN

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k+1}^t W^T \operatorname{diag}(\phi'(h_{i-1}))$$

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 \le \|W\|_2 L_\phi = \sigma_{max} L_\phi$$

$$\left\| \frac{\partial h_i}{\partial h_k} \right\|_{\Omega} \leq (\sigma_{max} L_{\phi})^{t-k}$$

Challenges with training RNN

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\left\| \frac{\partial h_i}{\partial h_k} \right\|_2 \le (\sigma_{max} L_{\phi})^{t-k}$$

$$\sigma_{\max} L_{\phi} < 1$$
 $\sigma_{\max} L_{\phi} > 1$

vanishing gradient:exploding gradient:network ignoreslearning quicklylong links"explodes"

Gradient clipping

Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 $\mathbf{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then}$
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
 \mathbf{g}
 \mathbf{g}

Simple trick handles gradient explosion (provided that the "valley" is wide)

[Pascanu et al. 2013]

Handling vanishing gradient

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\sigma_{\rm max} L_{\phi} < 1$$

- Even if the gradient does not vanish totally, the information stored in lowenergy subspaces will not be propagated
- Idea: we need mechanism to ensure long-term propagation.

Long Short-term Memory: cell update

Long Short-term Memory: gate activations

Vanishing gradient visualization

The influence of an input unit quickly vanishes with time [Graves 12]

Long Short-term Memory

[Graves 12]

[Hochreiter & Schmidhuber 97]

Recap: RNN-LSTM as a probabilistic model

$$p(x_t|x_1\dots x_{t-1})=?$$

$$h_t = LSTM(x_{t-1}, h_{t-1})$$

$$y_t = W_y h_t$$

$$p_t^i = \frac{\exp(y_t^i)}{\sum_k \exp(y_t^k)} = p(i|x_1, \dots x_{t-1})$$

$$x_t \sim \{p_t^i\}$$

Multi-layer RNNs

Computer generated "Linux kernel code"

© Andrej Karpathy:

```
static void do_command(struct seq file *m, void *v)
  int column = 32 << (cmd[2] & 0x80);
  if (state)
    cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
  else
    seg = 1;
  for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
      pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000ffffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x20000000);
    pipe set bytes(i, 0);
  /* Free our user pages pointer to place camera if all dash */
  subsystem info = &of changes[PAGE SIZE];
  rek controls(offset, idx, &soffset);
  /* Now we want to deliberately put it to device */
  control check polarity(&context, val, 0);
  for (i = 0; i < COUNTER; i++)
    seq puts(s, "policy ");
```

More fun: 1) http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 2) your assignment


```
Cell that turns on inside comments and quotes:
static inline int audit_dupe_lsm
   df->1sm_str);
  eturn ret;
```

[Karpathy et al. ICLR16]

```
Cell that is sensitive to the depth of an expression:
#ifdef CONFIG AUDITSYSCALL
static inline int audit_match_class bits(int
                  < AUDIT_BITMASK_SIZE; i++)
   if (mask[i] & classes[class][i])
Cell that might be helpful in predicting a new line. Note that it only turns on for some ")":
char 'audit_unpack_string(void ''bufp, size_t 'remain, si
     defines the longest valid length.
        n ERR_PTR(-ENAMETOOLONG);
               PTR ( - ENOMEM);
             , *bufp, len);
                                                [Karpathy et al.
                                                ICLR<sub>16</sub>1
```

Non-interpretable LSTM Cells

```
A large portion of cells are not easily interpretable. Here is a typical example:

/* unpack a filter field's string representation from user-space

buffer. //
char *audit unpack string (void *bufp, size_t *remain, size_t len) =

(char *str;
if (!*bufp | | (len == 0) | (len > *remain))

return ERR_PTR(-EINVAL);

/* of the currently implemented string fields, PATH_MAX

* defines the longest valid length.

*/
```

[Karpathy et al. ICLR16]

Gated Recurrent Units (GRU)

[Cho et al. 14] [Chung et al. 14]

Gated Recurrent Units (GRU)

$$h_t = (1-z_t) \odot h_{t-1} + \\ z_t \odot \phi(W_x x_t + W \ r_t \odot h_{t-1} + b)$$

$$z_t = \sigma(W_{xz} x_t + W_{hz} h_{t-1} + b_z)$$

$$r_t = \sigma(W_{xr} x_t + W_{hr} h_{t-1} + z_r)$$
 [Cho et al. 14]

GRU gate statistics

[Karpathy et al. ICLR16]

Plain vs LSTM vs GRU

Success at predicting next characters in the test sequence (cross-entropy loss) [Karpathy et al. ICLR16]:

(cross-entropy ross) [Narpathy et al. relixed].												
		LSTM			RNN			GRU				
	Lay	ers 1		2	3	1	2	3	1	2	3	
	Size	;			,	War and	1 Peace	Datase	t			
	64	1.4	49 1.	.442	1.540	1.446	1.401	1.396	1.398	1.373	1.472	
	128	1.2	77 1.	.227	1.279	1.417	1.286	1.277	1.230	1.226	1.253	
	256	1.13	89 1 .	.137	1.141	1.342	1.256	1.239	1.198	1.164	1.138	
	512	1.1	51 1.	.092	1.082	-	-	-	1.170	1.201	1.077	
					Lin	ıx Keri	el Data	set				
	64	1.3	55 1.	.331	1.366	1.407	1.371	1.383	1.335	1.298	1.357	
	128	1.14	49 1.	.128	1.177	1.241	1.120	1.220	1.154	1.125	1.150	
	256	1.03	26 0.	.972	0.998	1.171	1.116	1.116	1.039	0.991	1.026	
	512	0.9	52 0.	.840	0.846	-	-	-	0.943	0.861	0.829	
Model	n	1	2		3	4	5	6	7	8	9	20
14100001					War	and Dead	e Datas	at .				
n-gram		2.399	1.928	1 1				1.203	1.194	1.194	1.194	1.195
n-gram n-NN		2.399	1.931					1.321	-	-	-	-
Linux Kernel Dataset												
n-gram		2.702	1.954	1.4				1.027	0.982	0.953	0.933	0.889
n-NN		2.707	1.974	1.:	505 1	.395 1	1.256	1.376	-	-	-	-

RNN success cases

Success at predicting next characters in the test sequence (cross-entropy loss) [Karpathy et al. ICLR16]:

Linux kernel:

War and peace:

Plain vs LSTM vs GRU

Model similarity (t-SNE embedding of character probabilities):

```
LSTM-3 (64) A
              RNN-1 (64) ▼
                           RNN-3 (64) ____ LSTM-1 (64)
        RNN-1 (128) ▼ •A ▼ GRU-3 (64) A
                   RNN-2 (64) GRU-1 (64) LSTM-2 (64)

    GRU-2 (64)

     RNN-2 (128) . RNN-3 (128)
        LSTM-1 (128) ▼
                                    ▲ LSTM-3 (128)
▼ RNN-1 (256)
                  LSTM-2 (128)
                                 ▲ GRU-3 (128)
     ■ RNN-3 (256)

• RNN-2 (256) GRU-1 (128) ▼ GRU-2 (128)
            LSTM-2 (256) LSTM-3 (256)
      GRU-1 (256) ▼ ▲ GRU-3 (256)
                         ▼ LSTM-1 (512)
  GRU-1 (512) ▼
                     LSTM-3 (512)
       GRU-3 (512) A LSTM-2 (512)

    GRU-2 (512)

            GRU-2 (256) •
```

[Karpathy et al. ICLR16]

Bi-directional RNN

for t = 1 to T do

Do forward pass for the forward hidden layer, storing activations at each timestep

for t = T to 1 do

Do forward pass for the backward hidden layer, storing activations at each timestep

for t = 1 to T do

Do forward pass for the output layer, using the stored activations from both hidden layers

[A Graves, PhD thesis]

Bi-LSTM POS tagging

[Ling et al. EMNLP15]

Bi-LSTM POS tagging

Word Lookup	96.97	2000k	6K
Convolutional (S&Z)	96.80	42.5k	4K
Forward RNN	95.66	17.5k	4K
Backward RNN	95.52	17.5k	4K
Bi-RNN	95.93	40k	3K
Forward LSTM	97.12	80k	3K
Backward LSTM	97.08	80k	3K
Bi-LSTM $d_{CS} = 50$	97.22	70k	3K
Bi-LSTM	97.36	150k	2K

acc parameters words/sec

[Ling et al. EMNLP15]

Uni-directional vs bi-directional

- Bi-directional is not applicable when "future" is unavailable
- When future is available bi-directional is almost always better
- E.g. NLP (batch mode), bioinformatics

BiLM/ELMO

"Deep Learning", Spring 2018: Lecture 10, "Sequence prediction"

BiLM/ELMO

	Source	Nearest Neighbors				
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer				
biLM	Chico Ruiz made a spectacular play on Alusik's grounder {}	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play.				
	Olivia De Havilland signed to do a Broadway play for Garson {}	$\{\ldots\}$ they were actors who had been handed fat roles in a successful <u>play</u> , and had talent enough to fill the roles competently, with nice understatement.				

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

SNLI task [Bowman et al. EMNLP15]:

Figure 1: Comparison of baseline vs. ELMo performance for SNLI and SRL as the training set size is varied from 0.1% to 100%.

[Peters et al. ACL18]

Recap and outlook

- Sequence prediction
- ConvNets and Recurrent nets are SOA in wide variety of domains (NLP, speech/signal, bioinformatics)
- Gating in RNN makes its memory longer
- Sequence prediction extends to other tasks (fixed->seq, seq->fixed, seq->seq, fixed->fixed) – next lecture

Bibliography

Elman, Jeffrey L. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

A. Karpathy

The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Razvan Pascanu, Tomas Mikolov, Yoshua Bengio: On the difficulty of training recurrent neural networks. ICML (3) 2013: 1310-1318

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Textbook, Studies in Computational Intelligence, Springer, 2012

Sepp Hochreiter, Jürgen Schmidhuber:

Long Short-Term Memory. Neural Computation 9(8): 1735-1780 (1997)

Bibliography

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP 2014: 1724-1734

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRRabs/1412.3555 (2014)

Andrej Karpathy, Justin Johnson, Fei-Fei Li: Visualizing and Understanding Recurrent Networks. ICLR 2016

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., & Ranzato, M. A. (2014). Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, Koray Kavukcuoglu: WaveNet: A Generative Model for Raw Audio. SSW 2016: 125

Bibliography

Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez, Silvio Amir, Luís Marujo, Tiago Luís: Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP 2015: 1520-1530

Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer:

Deep Contextualized Word Representations. NAACL-HLT 2018: 2227-2237