WHAT IS CLAIMED IS:

1	1.	A superconducting device comprising:						
2	a first coated superconductor, comprising:							
3		a first superconductor layer; and						
4		a first metal layer supported by the first superconductor layer; and						
5		a second coated superconductor releasably bonded to the first metal layer;						
6		wherein heating the superconducting device to at least about a predetermined						
7	temp	perature releases the first metal layer from the second coated superconductor without						
8	relea	releasing the first metal layer from the first superconductor layer.						
1	2.	The superconducting device of claim 1, wherein a critical current density of the first						
2	coate	ed superconductor remains substantially unchanged after heating the superconducting						
3	devi	ce to at least about the predetermined temperature.						
1	3.	The superconducting device of claim 2, wherein a critical current density of the						
2	seco	nd coated superconductor remains substantially unchanged after heating the						
3	supe	rconducting device to at least about the predetermined temperature.						
1	4.	The superconducting device of claim 1, wherein						
2		the first coated superconductor comprises:						
3		a first non-superconductor layer supporting the first superconductor layer; and						
4		the second coated superconductor comprises:						
5		a second non-superconductor layer;						
6		a second superconductor layer supported by the second non-superconductor						
7	layeı	; and						
8		a second metal layer supported by the second superconductor layer.						
1	5.	The superconducting device of claim 4, wherein the first metal layer is bonded to the						
2	first	superconductor layer with an electrically conducting bond.						

- 1 6. The superconducting device of claim 4, wherein the first metal layer is soldered to the
- 2 first superconductor layer.
- The superconducting device of claim 1, wherein the first metal layer is bonded to the
- 2 first superconductor layer using a method selected from a group consisting of vapor
- deposition, sonically bonding, and thermally bonding.
- 1 8. The superconducting device of claim 4, wherein each of the first and second metal
- 2 layers comprise multiple layers.
- 1 9. The superconducting device of claim 8, wherein a first layer of the multiple layers
- 2 comprises silver and a second layer of the multiple layers comprises copper.
- 1 10. The superconducting device of claim 9, wherein the multiple layers are thermally
- 2 bonded to each other.
- 1 11. The superconducting device of claim 9, wherein the multiple layers are sonically
- 2 bonded to each other.
- 1 12. The superconducting device of claim 9, wherein the multiple layers are bonded to
- 2 each other with a first solder.
- 1 13. The superconducting device of claim 12, wherein the first metal layer of the first
- 2 coated superconductor and the second metal layer of the second coated superconductor are
- 3 releasably bonded to each other with a second solder.
- 1 14. The superconducting device of claim 13, wherein a melting temperature of the second
- solder is at least about 5°C lower than a melting temperature of the first solder.

05770-198001 / AMSC-665

- 1 15. The superconducting device of claim 13, wherein a melting temperature of the second
- solder is at least about 10°C lower than a melting temperature of the first solder.
- 1 16. The superconducting device of claim 13, wherein a melting temperature of the second
- solder is at least about 15°C lower than a melting temperature of the first solder.
- 1 The superconducting device of claim 13, wherein a melting temperature of the second
- 2 solder is 25°C lower than a melting temperature of the first solder.
- 1 18. The superconducting device of claim 4, wherein the first non-superconductor layer
- 2 comprises a substrate.
- 1 19. The superconducting device of claim 18, wherein the substrate is a nickel alloy.
- 1 20. The superconducting device of claim 19, wherein the nickel alloy comprises Ni-W.
- 1 21. The superconducting device of claim 18, wherein at least one buffer layer is deposited
- 2 on the substrate.
- 1 22. The superconducting device of claim 4, wherein the first superconducting layer
- 2 comprises a high temperature superconductor with a transition temperature above about 30
- 3 Kelvin.
- 1 23. The superconducting device of claim 22, wherein the first superconducting layer
- 2 comprises a rare earth oxide.
- 1 24. The superconducting device of claim 4, wherein the first superconducting layer
- comprises $YBa_2Cu_3O_{7-x}$ where x is a number greater than 0 but less than 1.

1 25. The superconducting device of claim 4, wherein the first superconducting	; layer
--	---------

- 2 comprises YBa₂Cu₃O₇.
- 1 26. The superconducting device of claim 4, wherein the first superconducting layer
- 2 comprises YBa₂Cu₃O_{6.7}.
- 1 27. A superconducting device comprising:
- 2 a first coated superconductor; and
- a second coated superconductor releasably bonded to the first coated superconductor;
- 4 wherein subjecting the superconducting device to a solution formulated to dissolve a
- 5 bond between the first and second coated superconductors releases the first coated
- 6 superconductor from the second coated superconductor.
- 1 28. The superconducting device of claim 27, wherein a critical current density of the first
- 2 coated superconductor remains substantially unchanged after subjecting the superconducting
- 3 device to the solution.

1

6

- 1 29. The superconducting device of claim 28, wherein a critical current density of the
- 2 second coated superconductor remains substantially unchanged after subjecting the
- 3 superconducting device to the solution.
- 1 30. The superconducting device of claim 29, wherein the second coated superconductor is
- releasably bonded to the first coated superconductor with a metallic paste.
 - 31. A method of splicing superconducting devices, comprising:
- 2 providing a first superconducting device, the first superconducting device including a
- first coated superconductor releasably bonded to a second coated superconductor;
- 4 providing a second superconducting device including a third coated superconductor
- 5 releasably bonded to a fourth coated superconductor;
 - removing a first length of the second coated superconductor;

7		removing a complementary length of the third coated superconductor; and				
8		joining the first and second superconducting devices to form an interface between the				
9	first co	pated superconductor and the fourth coated superconductor.				
1	32.	The method of claim 31, wherein the interface is electrically conductive.				
1	33.	The method of claim 31, wherein heating the first superconducting device to at least				
2	about a predetermined temperature releases the first coated superconductor from the second					
3	coated superconductor.					
1	34.	The method of claim 33, wherein heating the second superconducting device to at				
2	least about the predetermined temperature releases the third coated superconductor from the					
3	fourth coated superconductor.					
1	35.	The method of claim 33, wherein removing the first length of the second coated				
2	superc	conductor comprises:				
3		heating the first superconducting device to at least about the predetermined				
4	tempe	rature to release at least a portion of the first coated superconductor from the second				
5	coated	superconductor; and				
6		cutting the second coated superconductor from an exposed surface of the second				
7	coated	superconductor to an interface between the first and second coated superconductors to				
8	release a first length from the first superconducting device.					
1	36.	The method of claim 33, wherein removing the complementary length comprises:				
2		heating the second superconducting device to at least about the predetermined				
3	tempe	rature to release at least a portion of the third coated superconductor from the fourth				
4	coated	superconductor; and				
5		cutting the third coated superconductor from an exposed surface of the third coated				
6	superc	conductor to an interface between the third and fourth coated superconductors to release				
7	a com	plementary length from the second superconducting device.				

- 1 37. The method of claim 31, wherein applying a chemical agent to the first
- 2 superconducting device releases the first coated superconductor from the second coated
- 3 superconductor.
- 1 38. A superconducting device, comprising:
- 2 a first coated superconductor;
- a second coated superconductor, the second coated superconductor being bonded to
- 4 the first coated superconductor in a first region of the superconducting device, the second
- 5 coated superconductor being unbonded to the first coated superconductor in a second region
- of the superconducting device; and
- 7 an electrically conducting element disposed in the second region and in electrical
- 8 communication with the first and second coated superconductors.
- 1 39. The superconducting device of claim 38, wherein the second coated superconductor is
- 2 releasably bonded to the first coated superconductor in the first region.
- 1 40. The superconducting device of claim 38, wherein the electrically conducting element
- 2 comprises metal.
- 1 41. The superconducting device of claim 40, wherein the electrically conducting element
- 2 comprises copper.
- 1 42. The superconducting device of claim 38, wherein the electrically conducting element
- 2 comprises a superconducting article.
- 1 43. The superconducting device of claim 38, wherein the electrically conducting element
- 2 has a cross-sectional shape selected from the group consisting of triangle, diamond, square,
- 3 rectangle, hexagon, trapezoid, and any combination thereof.

44.

1

2		a third coated superconductor; and
3		a fourth coated superconductor, the fourth coated superconductor being bonded to the
4	third	coated superconductor in a third region of the superconducting device, the fourth coated
5	super	conductor being unbonded to the third coated superconductor in the second region of
6	the su	perconducting device.
1	45.	The superconducting device of claim 44, wherein the electrically conducting element
2	is in e	electrical communication with the third and fourth coated superconductors in the second
3	region	n.
1		
1	46.	The superconducting device of claim 45, wherein the electrically conducting element
2	comp	rises metal.
1		
1	47.	The superconducting device of claim 45, wherein the first coated superconductor is in
2	conta	ct with the third coated superconductor in the second region.
1	48.	The superconducting device of claim 47, wherein the second coated superconductor is
2	in cor	ntact with the fourth coated superconductor in the second region.
1	49.	The superconducting device of claim 48, wherein in the second region the first coated
2	super	conductor has a greater length than the second coated superconductor.
1	50.	The superconducting device of claim 45, wherein the electrically conducting element
2	comp	rises:
3		a metal element; and
4		at least one superconducting article in electrical communication with the metal
5	eleme	ent.

The superconducting device of claim 38, further comprising:

1	51.	The superconducting	ig device o	f claim 50,	wherein the at	least one s	uperconducting
							•

- 2 article is in electrical communication with the first and third coated superconductors.
- The superconducting device of claim 51, wherein the at least one superconducting article is in electrical communication with the second and fourth coated superconductors.
- 1 53. A method of cutting a superconducting device comprising a first superconductor and a second superconductor releasably bonded to the first superconductor, the method comprising:

cutting the superconducting device so that the first coated superconductor, the second coated superconductor, and an interface between the first and second coated superconductors are exposed;

heating the first superconductor to at least about a predetermined temperature so that a first length of first coated superconductor releases from the second coated superconductor; and

removing the first length from the first coated superconductor so that an end of the first coated superconductor is offset from an end of the second coated superconductor.

- 1 54. The method of claim 53, wherein a second length of the second coated 2 superconductor is removed from the superconducting device, the second length being less 3 than the first length.
- The method of claim 53, wherein a critical current density of the first coated superconductor remains substantially unchanged after heating the superconducting device to at least about the predetermined temperature.
- 1 56. The method of claim 55, wherein a critical current density of the second coated 2 superconductor remains substantially unchanged after heating the superconducting device to 3 at least about the predetermined temperature.

1

4

5

6

7

8

9

10

11

05770-198001 / AMSC-665

57.

1

A superconducting device comprising:

2		a first coated superconductor;				
3		a second coated superconductor; and				
		a metallic paste,				
4		•				
5	wherein the metallic paste releasably bonds the first coated superconductor to the					
6	second	d coated superconductor to form an interface therebetween.				
1	58.	The superconducting device of claim 57, wherein a critical current density of each of				
2	the first and second coated superconductors remains substantially unchanged after peeling a					
3	portion of the first superconductor away from the interface.					
1						
1	59.	The superconducting device of claim 58, wherein the metallic paste is silver paste.				
1	60.	A method of joining a first coated superconductor to a second coated superconductor,				
2		the method comprising:				
3		removing a first portion of a first metallic layer, the first metallic layer being				
4	releasa	ably bonded to the first coated superconductor;				
5		removing a complementary portion of the second coated superconductor;				
6		removing a second portion of the first coated superconductor;				
7		removing a complementary portion of a second metallic layer, the second metallic				
8	layer t	being releasably bonded to the second coated superconductor;				
9		joining the first and second coated superconductors such that a stepped interface is				
10	forme	d therebetween.				
1	61.	A superconducting device comprising:				
2		a first article comprising:				
3		a first superconductor; and				
4		a first metal layer releasably bonded to the first superconductor; and				
5		a second article comprising:				
6		a second superconductor; and				
-		·				
		27				

1

7	a second metal layer releasably bonded to the second superconductor,
8	wherein the first article is joined to the second article along a stepped interface.

- 1 62. The superconducting device of claim 61, wherein the first metal layer comprises 2 multiple metal layers.
- 1 63. The superconducting device of claim 52, wherein the second metal layer comprises multiple metal layers.
- 1 64. The superconducting device of claim 63, further comprising a first nonsuperconducting layer bonded to the first coated superconductor.
- 1 65. The superconducting device of claim 63, further comprising a second non-
- 2 superconducting layer bonded to the second coated superconductor.