Explainable Machine Learning based on **Group Equivariant Non-Expansive** Operators (GENEOs). Protein pocket detection: a case study

Giovanni Bocchi Department of Environmental Science and Policy, University of Milan.

GENEOs

A Group Equivariant Non-Expansive Operator F is a map between two functional spaces $\Phi = \{\phi: X \to \mathbb{R}\}$ and $\Psi = \{\psi: Y \to \mathbb{R}\}$ that, given two subgroups $G \subseteq Homeo(X)$ and $H \subseteq Homeo(Y)$ and a fixed group homomorphism $T: G \to H$, has two properties:

- **1.** Equivariance: $F(\phi \circ g) = F(\phi) \circ T(g)$ for all $\phi \in \Phi$ and $g \in G$.
- 2. Non Expansivity: $||F(\varphi_1) F(\varphi_2)||_{\infty} \le ||\varphi_1 \varphi_2||_{\infty}$ for all $\varphi_1, \varphi_2 \in \Phi$

Conclusions

GENEOs are powerful mathematical tools for **Explainable Machine** Learning.

- 1. Very few trainable parameters.
- 2. Intrepretability of the parameters.
- 3. Can incorporate Prior Knowledge.
- Equivariance by design.
- 5. Fewer data are necessary for training.
- 6. Lower computational complexity compared to similar deep networks.

Reach me at:

