Calculus I

Derivative of a trigonometric function times a monomial

Todor Milev

2019

Differentiate
$$f(x) = x \cos x$$
.

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

Differentiate
$$f(x) = x \cos x$$
.

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

= (?) $(\cos x) + (x)$ (?)

Differentiate
$$f(x) = x \cos x$$
.

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

= (?) $(\cos x) + (x)(-\sin x)$

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

= (?) $(\cos x) + (x)(-\sin x)$

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$

= (1) $(\cos x) + (x)(-\sin x)$

Differentiate
$$f(x) = x \cos x$$
.

Product Rule:
$$f'(x) = \frac{d}{dx}(x)(\cos x) + (x)\frac{d}{dx}(\cos x)$$
$$= (1)(\cos x) + (x)(-\sin x)$$
$$= -x\sin x + \cos x.$$