Цель работы

Разработка адаптивной информационной системы мониторинга безопасности периметра промышленных и критических инфраструктурных объектов на основе компьютерного зрения и нейросетей с использованием БПЛА

Задачи

- Проанализировать существующие технологии охраны периметра
- Выполнить сравнительный анализ отечественных и зарубежных решений по применению БПЛА и
 ИИ-аналитики в сфере безопасности
- Разработать многоуровневую архитектуру системы (IDEF0, UML) и объектную модель данных
- Реализовать программные модули: управление БПЛА (РХ4 / MAVLink), детекция объектов (YOLOv5), прогноз рисков (LSTM), геоинформационный интерфейс (Qt 6)
- Провести экспериментальную верификацию прототипа

Описание решения

АДАПТИВНАЯ ИС ДЛЯ АВТОМАТИЗИРОВАННОГО МОНИТОРИНГА ПЕРИМЕТРА КВО С ИСПОЛЬЗОВАНИЕМ БПЛА И МАШИННОГО ОБУЧЕНИЯ (YOLO, LSTM)

Гибко конфигурируется под целевой объект

Функционирует автономно

Обрабатывает видеопоток в режиме, близкому к реальном времени

Прогнозирует угрозы на основе телеметрии и временных рядов

Диаграмма пакетов

Описание решения: Процесс разработки

Описание процессов разработки в нотации IDEF0:

Описание решения: Логика работы системы

Диаграмма компонентов:

Описание решения: Функциональные возможности

Диаграмма вариантов использования:

Технический стек

ЯЗЫКИ ПРОГРАММИРОВАНИЯ:

C++

Python

ФРЕЙМВОРКИ И БИБЛИОТЕКИ:

Qt

TensorFlow

ONNX

OpenCV

СРЕДСТВА ОБМЕНА ИНФОРМАЦИЕЙ:

MAVSDK и Mavlink

СРЕДСТВА РАЗРАБОТКИ:

Qt Creator

СРЕДСТВА ХРАНЕНИЯ И ОБРАБОТКИ ДАННЫХ:

SQLite

JSON

XML

СРЕДСТВА СИМУЛЯЦИИ:

Gazebo Sim

PX4-AutoPilot

СРЕДСТВА СОПРОВОЖДЕНИЯ:

GIT

АРХИТЕКТУРЫ МАШИННОГО ОБУЧЕНИЯ:

YOLOv5

LSTM

Результаты

Результаты обучения LSTM модели

Accuracy	88.72%
AUC	0.9825
Precision	98.13%
Recall	82.32%

LSTM слои

- Три последовательных LSTM слоя с 256, 128 и 64 нейронами соответственно.
- Каждый слой включает Dropout (0.3), L1/L2 регуляризацию и BatchNormalization.

Тестирование

Успешное конфигурирование карты объекта

Верификация общего интерфейса:

Верификация модуля администрирования:

Результативное управление данными системы

Тестирование: верификация средств представления данных

Корректное отображение системных данных

Тестирование: верификация модуля управления БПЛА

Качественный стриминг видеоизображения на экран оператора

Тестирование: верификация модуля управления БПЛА

Успешное отображение полета на карте

Тестирование

Верификация МL-модуля:

Детекция возгорания с точностью 0,99963

Итог по прогнозированию рисков в выбранном секторе

Верификация аналитического модуля:

Результативное применение аналитических инструментов

Тестирование: верификация аналитического модуля

Успешный экспорт данных в форматы JSON,XML,TXT

Создание отчетности и просмотр медиа

