1.7 函数的连续性

主讲教师: 王玉兰

第八讲 函数的连续性与间断点

- 内容概要
- 一、函数的连续性

• 二、函数的间断点

• 三、小结,思考题

一、函数的连续性

1. 函数的增量

设函数 f(x)在 $U_{\delta}(x_0)$ 内有定义, $\forall x \in U_{\delta}(x_0)$,

 $\Delta x = x - x_0$, 称为自变量在点 x_0 的增量.

 $\Delta y = f(x) - f(x_0)$, 称为函数 f(x)相应于 Δx 的增量.

2. 连续的定义

定义 1 设函数 f(x) 在 $U_s(x_0)$ 内有定义,如果当自变量的增量 Δx 趋向于零时,对应的函数的增量 Δy 也趋向于零,即 $\lim_{\Delta x \to 0} \Delta y = 0$ 或

 $\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$, 那末就称函数

f(x)在点 x_0 连续, x_0 称为f(x)的连续点.

设
$$x = x_0 + \Delta x$$
, $\Delta y = f(x) - f(x_0)$,

 $\Delta x \rightarrow 0$ 就是 $x \rightarrow x_0$, $\Delta y \rightarrow 0$ 就是 $f(x) \rightarrow f(x_0)$.

定义 2 设函数 f(x) 在 $U_s(x_0)$ 内有定义, 如果函数 f(x) 当 $x \to x_0$ 时的极限存在, 且等于它在点 x_0 处的函数值 $f(x_0)$, 即 $\lim_{x \to x_0} f(x) = f(x_0)$ 那末就称函数 f(x) 在点 x_0 连续.

例1 试证函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 在 $x = 0$, 处连续.

函数 f(x)在 x = 0处连续.

3.单侧连续

若函数f(x)在 $(a,x_0]$ 内有定义,且 $f(x_0-0)=f(x_0)$,则称f(x)在点 x_0 处<u>左连续</u>;

若函数f(x)在 $[x_0,b)$ 内有定义,且 $f(x_0+0)=f(x_0)$,则称f(x)在点 x_0 处<u>右连续</u>.

性质1

函数 f(x) 在 x_0 处连续 \Leftrightarrow 函数 f(x) 在 x_0 处既左连续又右连续。

例2 讨论函数 $f(x) = \begin{cases} x+2, & x \ge 0, \\ x-2, & x < 0, \end{cases}$ 在 x = 0处的 连续性.

解
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x+2) = 2 = f(0),$$
 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (x-2) = -2 \neq f(0),$

右连续但不左连续,

故函数 f(x)在点 x = 0处不连续.

例3 (1) 讨论函数
$$f(x) = \begin{cases} 1 + \cos x &, x < \frac{\pi}{2} \\ \sin x &, x \ge \frac{\pi}{2} \end{cases}$$
 在 $x = \frac{\pi}{2}$

处的连续性。

①左极限:
$$\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{-}} (1 + \cos x) = 1$$

②右极限:
$$\lim_{x \to \frac{\pi^{+}}{2}} f(x) = \lim_{x \to \frac{\pi^{+}}{2}} (\sin x) = 1$$

③函数值:
$$f\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$$

$$f(x)$$
 在 $x = \frac{\pi}{2}$ 处是连续的。

(2) 函数
$$f(x) = \begin{cases} e^x & , x < 0 \\ x + a & , x \ge 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a 。

解: ①左极限:
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (e^{x}) = 1$$

②右极限:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x+a) = a$$

③函数值:
$$f(0) = 0 + a = a$$

$$a = 1$$

4.连续函数与连续区间

在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续.

如果函数在开区间 (a,b)内连续,并且在左端点 x = a处右连续,在右端点 x = b处左连续,则称 函数 f(x)在闭区间 [a,b]上连续.

连续函数的图形是一条连续而不间断的曲线.

例如,有理函数在区间 $(-\infty,+\infty)$ 内是连续的.

例4 证明函数 $y = \sin x$ 在区间($-\infty$, $+\infty$)内连续.

证 任取 $x \in (-\infty, +\infty)$,

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos(x + \frac{\Delta x}{2})$$

对任意的 α , 当 $\alpha \neq 0$ 时, 有 $\sin \alpha$ $< \alpha$,

即函数 $y = \sin x$ 对任意 $x \in (-\infty, +\infty)$ 都是连续的.

二、间断点及其分类

例5 函数
$$f(x) = \frac{x^2 - 1}{x - 1}$$
, 讨论点 $x = 1$ 。

P:
$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{(x - 1)} = x + 1$$
 $(x \neq 1)$

左极限:
$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^{-}} (x + 1) = 2$$

右极限:
$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} (x + 1) = \boxed{2}$$

x x=1 是间断点(可去间断点)

例6 函数
$$f(x) = \begin{cases} x+1, & x \ge 0 \\ x^2, & x < 0 \end{cases}$$
, 讨论点 $x = 0$.

解:

左极限:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2}) = 0$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x+1) = \boxed{1}$$

x=0 是间断点(跳跃间断点)

例7 函数
$$f(x) = \frac{x^2 + x + 1}{x - 1}$$
 , 讨论点 $x = 1$ 。

$$\lim_{x \to 1} \frac{x^2 + x + 1}{x - 1} = \infty$$

$$x=1$$
 是间断点(无穷间断点)

例8 函数 $f(x) = \sin \frac{1}{x}$, 讨论点 x = 0.

 $\mathbf{M}: \quad \stackrel{\text{def}}{=} x \to 0 \quad \text{时}, \quad \frac{1}{x} \to \infty$

 $\sin \frac{1}{x}$ 的取值在[-1,1]之间来回摆动。

$$x=0$$
 是间断点 (振荡间断点)

间断点的类型

第一类间断点

(左、右极限都存在)

可去间断点 (左极限=右极限)

跳跃间断点 (左极限≠右极限)

第二类间断点

(左、右极限至少 有一个不存在) 无穷间断点 $(f(x) \to \infty)$

振荡间断点 (f(x)趋势不唯一)

第一类间断点 可去型 跳跃型 $\boldsymbol{x_0}$ x_0 \mathcal{X} \mathcal{X} \mathcal{Y} 第二类间断点 χ x_0 χ 0 无穷型 振荡型

练习题

(1) 找出函数 $f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$ 的间断点,并讨论 其间断点类型。

f:
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2} = \frac{(x+1)(x-1)}{(x-1)(x-2)}$$

(1) x=1 (可去间断点)

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x-1)(x-2)} = \lim_{x \to 1} \frac{(x+1)}{(x-2)} = -2$$

(2) x=2 (无穷间断点)

$$\lim_{x \to 2} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x+1)(x-1)}{(x-1)(x-2)} = \lim_{x \to 2} \frac{(x+1)}{(x-2)} = \infty$$

(2) 找出函数 $f(x) = \begin{cases} \sin x & , x < 0 \\ 2x + 1 & , x \ge 0 \end{cases}$ 的间断点,并讨论其间断点类型。

解: (1) 左极限

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (\sin x) = 0$$

(2) 右极限

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (2x+1) = 1$$

x=0 是间断点 (跳跃间断点)

三、初等函数的连续性

性质2

一切初等函数在其定义域内都是连续的。

例9 设
$$f(x) = \begin{cases} \frac{2}{x} \sin x & , x < 0 \\ k & , x = 0 \end{cases}$$
,试确定 k 的值, $x \cdot \sin \frac{1}{x} + 2 & , x > 0$

使 f(x) 在定义域内连续。

例9 设
$$f(x) = \begin{cases} \frac{2}{x} \sin x & , x < 0 \\ k & , x = 0 \end{cases}$$
, 试确定 k 的值, $x \cdot \sin \frac{1}{x} + 2 & , x > 0$

使 f(x) 在定义域内连续。

解: ①左极限:
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \left(\frac{2}{x}\sin x\right) = 2\lim_{x\to 0^-} \left(\frac{\sin x}{x}\right) = 2$$
无穷小

②右极限:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left(x \right) = \frac{1}{x} + 2 = 0 + 2 = 2$$

③函数值:
$$f(0) = k$$

$$k = 2$$

解: ①函数是"0"型

函数的形式为 $\sqrt{\frac{0}{0}}$

将
$$x = 1$$
 代入分子 $1 - a + b = 0$ $\implies b = a - 1$

$$\lim_{x \to 1} \frac{x^2 - ax + b}{x - 1} = \lim_{x \to 1} \frac{x^2 - ax + (a - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{x^2 - 1 - ax + a}{x - 1} = \lim_{x \to 1} \frac{(x^2 - 1) - a(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x-1)(x+1-a)}{x-1} = \lim_{x \to 1} (x+1-a) = 2-a = 3$$

$$a = -1$$
 , $b = -2$

(2) 己知
$$\lim_{x\to 1} \frac{\sqrt{x^2+3}-[a+b(x-1)]}{x-1} = 0$$
 , 求 a 、 b 。

解: ① 函数是" $\frac{0}{0}$ "型

将
$$x = 1$$
 代入分子 $\sqrt{4} - (a+0) = 0 \implies a = 2$

② 原极限 = $\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - [2 + b(x - 1)]}{x - 1}$

$$= \lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2 - b(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} \left[\frac{\sqrt{x^2 + 3} - 2}{x - 1} - b \right]$$

$$= \left(\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x - 1}\right) - b$$

$$= \left[\lim_{x \to 1} \frac{\left(\sqrt{x^2 + 3} - 2\right)\left(\sqrt{x^2 + 3} + 2\right)}{(x - 1)\left(\sqrt{x^2 + 3} + 2\right)}\right] - b$$

$$= \left[\lim_{x \to 1} \frac{x^2 - 1}{(x - 1)\left(\sqrt{x^2 + 3} + 2\right)}\right] - b$$

$$= \left(\lim_{x \to 1} \frac{x + 1}{\sqrt{x^2 + 3} + 2}\right) - b = \frac{1}{2} - b = 0$$

$$a = 2$$
 , $b = \frac{1}{2}$

四、闭区间上连续函数的性质

性质3(最值定理)

f(x) 在闭区间 [a,b] 上连续,则在该区间一定存在最大值和最小值。

性质4(有界性定理)

f(x)在闭区间[a,b]上连续,则在该区间上有界。

$$m \le f(x) \le M$$

性质5 (零点定理)

f(x) 在闭区间 [a,b] 上连续,且 $f(a)\cdot f(b)<0$,则至少存在一个点 $\xi\in(a,b)$,使得 $f(\xi)=0$

性质6(介值定理)

f(x)在闭区间 [a,b]上连续,且 f(a)=A, f(b)=B, $A\neq B$,则对于A、B 间的任意数C,至少存在一个点 $\xi\in(a,b)$,使得 $f(\xi)=C$ 。

例11(1)证明 $x^5 - 5x - 1 = 0$ 在(1,2)内至少有一实根。

f(x) 在闭区间 [1,2] 上连续,

$$f(1) = 1 - 5 - 1 < 0$$

$$f(2) = 2^5 - 10 - 1 > 0$$

根据零点定理,得到

f(x)在(1,2)内至少存在一个零点,

即 $x^5 - 5x - 1$ 在 (1, 2) 内至少存在一个实根。

(2) 证明: $x + e^x = 0$ 在 (-1,1) 内有唯一的实根。

f(x) 在闭区间 [-1,1] 上连续,

$$f(-1) = -1 + e^{-1} = -1 + \frac{1}{e} < 0$$

$$f(1) = 1 + e > 0$$

根据零点定理,得到

f(x)在(-1,1) 内至少存在一个零点,

$$f(x) = x + e^x$$

$$f'(x) = (x + e^x)' = 1 + e^x > 0$$

f(x)在(-1,1) 内单调递增,

得到:

f(x)在(-1,1) 内有且只有一个零点,

即 $x + e^x = 0$ 在 (-1,1) 内有唯一的实根。

练习题

6、证明: 方程 $x^5 + x + 1 = 0$ 在 (-1,0) 内有且只有一个实根。

f(x) 在闭区间 [-1,0] 上连续,

$$f(-1) = -1 - 1 + 1 = -1 < 0$$

$$f(0) = 0 + 0 + 1 = 1 > 0$$

根据零点定理,得到

f(x)在(-1,0) 内至少存在一个零点,

$$f'(x) = (x^5 + x + 1)' = 5x^4 + 1 > 0$$

f(x)在(-1,0) 内单调递增,

得到:

f(x)在(-1,0) 内有且只有一个零点,

即方程 $x^5 + x + 1 = 0$ 在(-1,0)内有唯一的实根。

拓展练习

某位病人每24小时注射一次10单位的某种药物。已知该药物在体内按指数方式吸收与代谢,即注射1单位该药品后t 天,体内残留 $f(t)=e^{-t/5}$ 单位。如果该病人是无限次的连续注射10单位的该药品,长期下来,该病人在下一次注射前,体内残留该药品的量是多少?

假设:注射第n次后,在第n+1次前,体内残留 药品的量是 S_n 。

$$S_1 = 10e^{-\frac{1}{5}}$$

$$S_2 = 10e^{-\frac{1}{5}} + 10e^{-\frac{2}{5}}$$

$$S_3 = 10e^{-\frac{1}{5}} + 10e^{-\frac{2}{5}} + 10e^{-\frac{3}{5}}$$

•

•

$$S_n = 10e^{-\frac{1}{5}} + 10e^{-\frac{2}{5}} + 10e^{-\frac{3}{5}} + \dots + 10e^{-\frac{n}{5}}$$

$$S_n = 10e^{-\frac{1}{5}} + 10e^{-\frac{2}{5}} + 10e^{-\frac{3}{5}} + \dots + 10e^{-\frac{n}{5}}$$

$$=10\left(e^{-\frac{1}{5}}+e^{-\frac{2}{5}}+e^{-\frac{3}{5}}+\cdots+e^{-\frac{n}{5}}\right)$$

$$= 10 \times \frac{e^{-\frac{1}{5}} \left(1 - e^{-\frac{n}{5}}\right)}{1 - e^{-\frac{1}{5}}} = 10e^{-\frac{1}{5}} \times \left(\frac{1 - e^{-\frac{n}{5}}}{1 - e^{-\frac{1}{5}}}\right)$$

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} 10e^{-\frac{1}{5}} \times \left(\frac{1 - e^{-\frac{n}{5}}}{1 - e^{-\frac{1}{5}}}\right) \qquad f(t) = e^{-t/5}$$

$$= 10e^{-\frac{1}{5}} \times \lim_{n \to +\infty} \left(\frac{1 - e^{-\frac{n}{5}}}{1 - e^{-\frac{1}{5}}} \right)$$

$$=10e^{-\frac{1}{5}} \times \frac{1-0}{1-e^{-\frac{1}{5}}} = \frac{10e^{-\frac{1}{5}}}{1-e^{-\frac{1}{5}}} \approx 45.17$$