MATLAB Deep Learning Notes XII

Key Words: The structure of example CNN; The result images

1. The Structure of Example CNN

Figure 1: How the image is processed while it passes through the convolution and pooling layers.

1. The original dimension of the MNIST image is 28×28

Figure 2: One of the original dimension of the MNIST image.

2. We have 20 9×9 convolution filters as follows

Figure 3: 20.9×9 convolution filters.

3. Once the image is processed with 20 9×9 convolution filter, it becomes 20 20×20 feature maps.

Figure 4: $20 \ 20 \times 20$ feature maps.

4. The ReLU function processed on the feature map from the convolution layer.

Figure 5: The ReLU function processed on the feature map from the convolution layer.

5. Through the 2×2 mean pooling process, the pooling layer shrinks feature maps to $20 \times 10 \times 10$ features maps.

Figure 6: $20\ 10 \times 10$ features maps.

Program 28: plotFeatures

Listing 1: plotFeatures.m

```
clear
 1
2
3
   load('MnistConv.mat')
4
  k = 2; % figure of the number 2
   x = X(:,:,2)
   y1 = conv(x, W1);
   y2 = ReLU(y1);
   y3 = pool(y2);
10 | y4 = reshape( y3, [ ], 1);
11 | v5 = W5 * y4;
12 y5 = ReLU(v5);
13 | v = Wo * y5;
14 \mid y = softmax(v);
15
16 | figure;
17
   display_network(x( : ));
   title('Input Image')
18
19
20
   convFilters = zeros( 9*9, 20 );
21
   for i = 1 : 20
22
        filter = W1( :, :, i );
        convFilters( :, i ) = filter( : );
23
24 end
25 | figure
```

```
26 | display_network(convFilters);
27 | title('Convolution Filters')
28
29 | fList = zeros( 20 * 20, 20 );
30 | for i = 1 : 20
31
       feature = y1( :, :, i );
32
       fList(:, i ) = feature(:);
33 end
34 | figure
35 | display_network(fList);
36 | title('Features [Convolution]')
37
38 | fList = zeros(20 * 20, 20);
39 | for i = 1 : 20 |
40
       feature = y2(:,:,i);
41
       fList(:, i) = feature(:);
42 end
43 | figure
44 | display_network(fList);
45 | title('Features [Convolution + ReLU]')
46
47 \mid fList = zeros(10 * 10, 20);
48 | for i = 1 : 20
49
       feature = y3(:,:,i);
50
       fList(:, i ) = feature(:);
51 end
52 | figure
53 | display_network(fList);
54 | title('Features [Convolution + ReLU + MeanPool]')
```