Turbulence Modeling using OpenFOAM (Introduction to Turbulence - ENGR5005G)

Arup Jyoti Chutia , Brayden York and Marcus Ebert

Mechanical Engineering Ontario Tech University

Outline

- Introduction
- Objectives
- Governing equations
- OpenFOAM solvers
- Geometry and problem parameters
- Mesh and boundary conditions
- Results
- Conclusions and recommendations
- References

Introduction

Turbulent flow

- Chaotic changes in field values :
 - velocity
 - pressure
- High Reynolds number flow :
 - low momentum diffusion (μ)
 - high momentum convection

Figure: 1. Flow visualisation (source: www.bronkhorst.com).

Introduction (contd...)

Why turbulence modeling?

- No general analytical theory
- Chaotic flow
- Closure Problem
- Mathematical models.

Figure: 2.(a)Laminar and (b) turbulent velocity (source: https://nptel.ac.in).

Objectives

- Understanding turbulence models in CFD (OpenFOAM).
- Simulations for transient and steady state conditions.
- Selecting turbulence model.

Governing equations (Mean flow) 1

RANS equations for incompressible flow:

Continuity equation

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0 \tag{1}$$

Momentum equations

$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_j \partial x_j} - \frac{\partial \overline{u_i' u_j'}}{\partial x_j} + \overline{g_i}$$
 (2)

Scaler equation

$$\frac{\partial \overline{\phi}}{\partial t} + \overline{u_i} \frac{\partial \overline{\phi}}{\partial x_i} = \frac{\partial}{\partial x_i} \left(D \frac{\partial \overline{\phi}}{\partial x_i} \right) - \frac{\partial \left(\overline{u_i' \phi'} \right)}{\partial x_i}$$
 (3)

Standard k- ϵ model²

$$\nu_{\text{eff}} = \nu + \nu_t, \ \nu_t = ?$$

k-turbulent kinetic energy

$$k = \frac{1}{2} (\overline{u'^2} + \overline{v'^2} + \overline{w'^2}) \tag{4}$$

- \bullet ϵ -turbulent dissipation
 - rate of dissipation of k.
- Turbulent viscosity

$$\nu_t = 0.09 \frac{k^2}{\epsilon}$$

• Transport equations for k and ϵ

OpenFOAM solvers

OpenFOAM solvers used in this project

- **simpleFoam**³: for steady state simulation.
 - RAS models: kEpsilon, kOmega and LRR.
- **pisoFoam**⁴: transient simulation for incompressible flow.
 - LES models : *Smagorinsky, kEqn*.
 - RAS model: kEpsilon

³Bahram Haddadi. *Tutorial 6, Turbulence, Steady State.* 5th edition, Sept. 2019 (accessed November 7, 2019).

⁴Bahram Haddadi. *Tutorial 7, Turbulence, Transient*. 5th edition, Sept. ²2015⁸¹¹⁷ (accessed November 7, 2019).

Geometry and problem parameters

Figure: 3.Schematic of geometry used for simulations (source: http://training.uhem.itu.edu.tr).

Mesh and boundary conditions

Figure: 4.Hexahedral mesh (source:www.cfdsupport.com).

Velocity boundary conditions

- Inlet: Dirichlet condition.
- *Outlet*: Zero-gradient condition.
- Upper Wall: No slip .
- Bottom Wall: No slip.

Turbulence – Steady State: Results

Figure: 5. Velocity magnitude for kEpsilon, kOmega and LRR models.

Turbulence – Steady State: Results(contd...)

Figure: 6. Turbulent viscosity for kEpsilon, kOmega and LRR models.

Turbulence - Transient : Results (Smargorinsky model)

Figure: 7.Smargorinsky velocity magnitude at different time steps.

Turbulence - Transient : Results (Smargorinsky model)

Figure: 8.Streamlines at 0.2s for Smargorinsky model.

Turbulence - Transient : Results (kEpsilon)

Figure: 9.kEpsilon model - Velocity magnitude at different time steps .

Turbulence - Transient : Results (contd...)

Figure: 10. Velocity vectors for different turbulence models - at 0.2s

Turbulence - Transient : Results (contd...)

Figure: 11. Turbulent viscosity for different turbulence models - at 0.2s

Conclusions and Recommendations

Steady State Simulations

• Similar results for kEpsilon, kOmega and LRR.

Transient Simulations

- LES -(Smagorinsky, kEqn) detail, fluctuation based.
- RAS -(kEpsilon), averaging nature.

References

- Haddadi, Bahram. *Tutorial 6, Turbulence, Steady State.* 5th edition, Sept. 2019 (accessed November 7, 2019).
- .Tutorial 7, Turbulence, Transient. 5th edition, Sept. 2019 (accessed November 7, 2019).
- Patel, Dipal. Lecture 3 Governing Equations I. Lecture Notes. 2019.
- Versteeg, Henk Kaarle and Weeratunge Malalasekera. *An introduction to computational fluid dynamics: the finite volume method.* Pearson education, 2007.

