Stat Summary CheatSheet

2	immediate
3	2024-11-06
4	Abstract
5 6	Start with literature review and idea about how to estimate moment function with DIFM data $$
7	0.1 Cheat Sheet 1: Linear and Non-Linear Regression Models
8	1. Linear Regression Model
9	• Equation:
Э	$Y = X\beta + \epsilon$
0 1 2 3 4 5 6 7 8 9 0 1	 Where Y is the dependent variable, X is the matrix of independent variables, β is the coefficient vector, and ε represents the error term. Assumptions: Linearity: The relationship between Y and X is linear. Full Rank: The X matrix has full rank; multicollinearity is absent. No Endogeneity: X and ε are uncorrelated. Homoscedasticity: Constant variance of the error terms. No Autocorrelation: Errors are not correlated with one another. Normality of Errors: Errors are normally distributed for inference. Violation Impacts: Multicollinearity: Leads to large standard errors for β, making coefficients imprecise. Endogeneity: Causes bias in β estimates.
3 4 5	 Heteroscedasticity: Leads to inefficient estimators; standard errors are incorrect, affecting hypothesis tests. Autocorrelation: Leads to inefficient β estimates and unreliable standard errors.
7	• Remedies:
8 9 0	 Multicollinearity: Drop collinear variables or use regularization techniques (e.g., Ridge/Lasso). Endogeneity: Use instrumental variables (IV). Heteroscedasticity: Use robust standard errors or GLS.
	- Autocorrelation: Use CIS or Newey West standard errors

2. Non-Linear Regression Model

• Equation (Example - Logistic Regression):

$$P(Y=1|X) = \frac{1}{1+e^{-X\beta}}$$

The response variable is binary, and the model is nonlinear in parameters.

- Key Assumptions:
 - Independent Errors: Observations are independent.
 - Correct Model Specification: The functional form is correctly specified.
- Violation Impacts:
 - Misspecification: Leads to biased estimates.
 - Multicollinearity: Impacts the stability of estimated coefficients.
- Remedies:

34

35

37

38

40

42

43

44 45

46

48

49

51

54

55

57

59

61

63

65

66

67

69

- Misspecification: Use non-parametric techniques to verify functional form
- Multicollinearity: Use variable selection or regularization.

3. Bias and Efficiency

- Unbiased Estimator: An estimator is unbiased if $E(\hat{\beta}) = \beta$. Violations like omitted variables or endogeneity cause bias.
- Efficiency: An efficient estimator has the smallest variance among all unbiased estimators. Violations of homoscedasticity or autocorrelation typically lead to inefficiencies.

53 0.2 Cheat Sheet 2: Statistical Tests for Regression Models

- 1. Assumption Checks for Linear Regression
 - Multicollinearity:
 - Variance Inflation Factor (VIF): High VIF (> 10) indicates multicollinearity.
 - Homoscedasticity:
 - Breusch-Pagan Test: Tests if variance of errors is constant.
 - White Test: Tests for heteroscedasticity without assuming a specific form.
 - Normality of Errors:
 - Shapiro-Wilk Test: Tests normality of residuals.
 - Q-Q Plot: Visual inspection for normality.
 - No Autocorrelation:
 - Durbin-Watson Test: Checks for first-order autocorrelation in residuals.

8 2. Assumption Checks for Non-Linear Models

• Model Fit:

- Likelihood Ratio Test: Compares nested models to determine if
 added complexity improves fit.
 - Wald Test: Tests the significance of individual regression coefficients.
 - Multicollinearity:

72

74

75

76

77

79

80

81

82

84

86

87

90

91

93

- Condition Index: High values (> 30) indicate multicollinearity.
- Goodness of Fit:
 - Pseudo \mathbb{R}^2 (e.g., McFadden's \mathbb{R}^2): Used for logistic regression to measure model fit.

78 3. Model Feature Tests

- Endogeneity:
 - Hausman Test: Compares IV and OLS to determine if an endogeneity problem exists.
- Nonlinearity:
 - RESET Test: Tests if non-linear combinations of the fitted values help explain the response variable.

5 4. Hypothesis Testing

- T-Test: Tests the significance of individual coefficients.
- F-Test: Tests the joint significance of multiple coefficients.
 - Likelihood Ratio Test: Used for nested model comparison.

$_{89}$ 0.3 Summary

- Relaxation of Assumptions can cause bias (e.g., endogeneity leads to biased β) or inefficiency (e.g., autocorrelation affects standard errors).
- Tests help identify violations of key assumptions, and remedies such as using robust standard errors or instrumental variables can address these issues.