EECS 16A Designing Information Devices and Systems I Summer 2020 Discussion 7B

1. Orthogonal Matching Pursuit

Let's work through an example of the OMP algorithm. Suppose that we have a vector $\vec{x} \in \mathbb{R}^4$ that is sparse and we know that it has only 2 non-zero entries. In particular,

$$\mathbf{M}\vec{\mathbf{x}} \approx \vec{\mathbf{y}} \tag{1}$$

$$\begin{bmatrix} | & | & | & | \\ \vec{m}_1 & \vec{m}_2 & \vec{m}_3 & \vec{m}_4 \\ | & | & | & | \end{bmatrix} \vec{x} \approx \vec{y}$$
 (2)

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \approx \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$$
 (3)

where exactly 2 of x_1 to x_4 are non-zero. Use Orthogonal Matching Pursuit to estimate x_1 to x_4 .

(a) Why can we not solve for \vec{x} directly?

Answer:

We cannot solve for \vec{x} directly because we have three measurements (or equations) but four unknowns. Since our system is underdetermined, we cannot solve for the unique \vec{x} directly.

(b) Why can we not apply the least squares process to obtain \vec{x} ?

Answer:

Recall the least squares solution: $\vec{x} = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \vec{y}$. $\mathbf{M}^T \mathbf{M}$ is only invertible if it has a trivial null space, i.e., if \mathbf{M} has a trivial null space. However, in this case, \mathbf{M} is a 3×4 matrix, so there is at least one free variable, which means that its null space is non-trivial. Therefore, $\mathbf{M}^T \mathbf{M}$ is not invertible, and we cannot use least squares to solve for \vec{x} .

(c) Let us start by reviewing the OMP procedure,

Inputs:

- A matrix **M**, whose columns, \vec{m}_i , make up a set of vectors, $\{\vec{m}_i\}$, each of length n
- A vector \vec{y} of length n
- The sparsity level k of the signal

Outputs:

- A vector \vec{x} , that contains k non-zero entries.
- A error vector $\vec{e} = \vec{y} \mathbf{M}\vec{x}$

Procedure:

- Initialize the following values: $\vec{e} = \vec{y}$, j = 1, k, A = [
- while $(j \le k)$:

- i. Compute the inner product for each vector in the set, \vec{m}_i , with \vec{e} : $c_i = \langle \vec{m}_i, \vec{e} \rangle$.
- ii. Column concatenate matrix **A** with the column vector that had the maximum absolute inner product value with \vec{e} , c_i : $\mathbf{A} = \begin{bmatrix} \mathbf{A} & | & \vec{m}_i \end{bmatrix}$
- iii. Use least squares to compute \vec{x} given the **A** for this iteration: $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y}$
- iv. Update the error vector: $\vec{e} = \vec{y} A\vec{x}$
- v. Update the counter: j = j + 1
- (d) Compute the inner product of every column with the \vec{y} vector. Which column has the largest absolute inner product? This will be the first column of the matrix \bf{A} .

Answer:

$$\left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 5$$

$$\left\langle \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 3$$

$$\left\langle \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 12$$

$$\left\langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\1\\1 \end{bmatrix} \right\rangle = 6$$

The third column has the largest inner product with $\begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$, so $\mathbf{A} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$.

(e) Now, find the projection of \vec{y} onto the columns of \mathbf{A} (ie. $\text{proj}_{\text{Col}(\mathbf{A})}\vec{y} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$). Use this to update the error vector.

Answer:

$$\vec{\hat{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y} = \begin{pmatrix} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{8} \cdot 12 = \frac{3}{2}$$

$$\operatorname{proj}_{\operatorname{Col}(\mathbf{A})} \vec{y} = \mathbf{A} \vec{\hat{x}} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \cdot \frac{3}{2} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$

$$\vec{e} = \vec{y} - \operatorname{proj}_{\operatorname{Col}(\mathbf{A})} \vec{y} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

(f) Now compute the inner product of every column with the new error vector. Which column has the largest absolute inner product? This will be the second column of **A**.

Answer:

$$\left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 2$$

$$\left\langle \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 0$$

$$\left\langle \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 0$$

$$\left\langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\rangle = 3$$

The fourth column has the largest inner product with $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, so $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

(g) We now have two non-zero entries for our vector, \vec{x} . Find the values of those two entries.

(Reminder:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
)

Answer:

$$\vec{\hat{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{\mathbf{y}} = \begin{pmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Therefore,
$$x_3 = 1$$
 and $x_4 = 2$, so $\vec{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.

2. One Magical Procedure (Fall 2015 Final)

Suppose that we have a vector $\vec{x} \in \mathbb{R}^5$ and an $N \times 5$ measurement matrix **M** defined by column vectors $\vec{c}_1, \dots, \vec{c}_5$, such that:

$$\mathbf{M}\vec{x} = \begin{bmatrix} | & & | \\ \vec{c}_1 & \cdots & \vec{c}_5 \\ | & & | \end{bmatrix} \vec{x} \approx \vec{b}$$

We can treat the vector $\vec{b} \in \mathbb{R}^N$ as a noisy measurement of the vector \vec{x} , with measurement matrix \mathbf{M} and some additional noise in it as well.

You also know that the true \vec{x} is sparse – it only has two non-zero entries and all the rest of the entries are zero in reality. Our goal is to recover this original \vec{x} as best we can.

However, your intern has managed to lose not only the measurements \vec{b} but the entire measurement matrix **M** as well!

Fortunately, you have found a backup in which you have all the pairwise inner products $\langle \vec{c}_i, \vec{c}_j \rangle$ between the columns of \mathbf{M} and each other as well as all the inner products $\langle \vec{c}_i, \vec{b} \rangle$ between the columns of \mathbf{M} and the vector \vec{b} . Finally, you also know the inner product of \vec{b} with itself, i.e. $\langle \vec{b}, \vec{b} \rangle$.

All the information you have is captured in the following table of inner products. (These are not the vectors themselves.)

$\langle \cdot, \cdot angle$	\vec{c}_1	\vec{c}_2	\vec{c}_3	\vec{c}_4	\vec{c}_5	$ec{b}$
\vec{c}_1	2	0	1	-1	1	1
\vec{c}_2		2	1	-1	-1	-5
\vec{c}_3			2	0	-1	2
\vec{c}_4				2	-1	6
\vec{c}_5					2	-1
$ec{b}$						29

(So, for example, if you read this table, you will see that the inner product $\langle \vec{c}_2, \vec{c}_3 \rangle = 1$, that the inner product $\langle \vec{c}_3, \vec{b} \rangle = 2$, and that the inner product $\langle \vec{b}, \vec{b} \rangle = 29$. By symmetry of the real inner product, $\langle \vec{c}_3, \vec{c}_2 \rangle = 1$ as well.)

Your goal is to find which entries of \vec{x} are non-zero and what their values are.

(a) Use the information in the table above to answer which of the $\vec{c}_1, \dots, \vec{c}_5$ has the largest magnitude inner product with \vec{b} .

Answer:

Reading off the table, $|\vec{c}_4|$ has the largest inner product with \vec{b} .

(b) Let the vector with the largest magnitude inner product with \vec{b} be \vec{c}_a . Let \vec{b}_p be the projection of \vec{b} onto \vec{c}_a . Write \vec{b}_p symbolically as an expression only involving \vec{c}_a , \vec{b} , and their inner products with themselves and each other.

Answer:

The magnitude of the projection is $\frac{\langle \vec{c}_a, \vec{b} \rangle}{\|\vec{c}_a\|}$, and the direction of the projection is $\frac{\vec{c}_a}{\|\vec{c}_a\|}$. Thus:

$$ec{b}_p = oxed{igg|rac{\left\langle ec{c}_a, ec{b}
ight
angle}{\left\langle ec{c}_a, ec{c}_a
ight
angle}} ec{c}_a$$

(c) Use the information in the table above to find which of the column vectors $\vec{c}_1, \dots, \vec{c}_5$ has the largest magnitude inner product with the residue $\vec{b} - \vec{b}_p$.

Hint: The linearity of inner products might prove useful.

Answer

The inner product of $\vec{b} - \vec{b}_p$ with a vector \vec{c}_i is:

$$\left\langle ec{b} - ec{b}_p, ec{c}_i \right\rangle = \left\langle ec{b}, ec{c}_i \right\rangle - rac{\left\langle ec{c}_a, ec{b} \right\rangle}{\left\langle ec{c}_a, ec{c}_a \right\rangle} \left\langle ec{c}_a, ec{c}_i \right
angle$$

Finding the numerical values of the inner products:

Thus the vector with the highest inner product with the residue is: \vec{c}_1 .

(d) Suppose that the vectors we found in parts (a) and (c) are \vec{c}_a and \vec{c}_c . These correspond to the components of \vec{x} that are non-zero, that is, $\vec{b} \approx x_a \vec{c}_a + x_c \vec{c}_c$. However, there might be noise in the measurements \vec{b} , so we want to find the least squares estimates \hat{x}_a and \hat{x}_c . Write a matrix expression for $\begin{bmatrix} \hat{x}_a \\ \hat{x}_c \end{bmatrix}$ in terms of appropriate matrices filled with the inner products of \vec{c}_a , \vec{c}_c , \vec{b} .

We use least squares to solve for $\begin{bmatrix} \hat{x}_a \\ \hat{x}_c \end{bmatrix}$. Let $\mathbf{A} = \begin{bmatrix} \vec{c}_a & \vec{c}_c \end{bmatrix}$. Using the least-squares formula,

$$\begin{bmatrix} \widehat{x}_{a} \\ \widehat{x}_{c} \end{bmatrix} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T} \vec{b}$$

$$= \begin{bmatrix} \langle \vec{c}_{a}, \vec{c}_{a} \rangle & \langle \vec{c}_{a}, \vec{c}_{c} \rangle \\ \langle \vec{c}_{c}, \vec{c}_{a} \rangle & \langle \vec{c}_{c}, \vec{c}_{c} \rangle \end{bmatrix}^{-1} \begin{bmatrix} \langle \vec{c}_{a}, \vec{b} \rangle \\ \langle \vec{c}_{c}, \vec{b} \rangle \end{bmatrix}$$

(e) Compute the numerical values of \hat{x}_a and \hat{x}_c using the information in the table.

Answer:

Answer:

Substituting the previous expression with values from the table, we get: $x_1 = 2\frac{2}{3}, x_4 = 4\frac{1}{3}$.

$$\begin{bmatrix}
\hat{x}_4 \\
\hat{x}_1
\end{bmatrix} = \begin{bmatrix}
\langle \vec{c}_4, \vec{c}_4 \rangle & \langle \vec{c}_4, \vec{c}_1 \rangle \\
\langle \vec{c}_1, \vec{c}_4 \rangle & \langle \vec{c}_1, \vec{c}_1 \rangle
\end{bmatrix}^{-1} \begin{bmatrix}
\langle \vec{c}_4, \vec{b} \rangle \\
\langle \vec{c}_1, \vec{b} \rangle
\end{bmatrix} \\
= \begin{bmatrix}
2 & -1 \\
-1 & 2
\end{bmatrix}^{-1} \begin{bmatrix}
6 \\
1
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix} \begin{bmatrix}
6 \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{13}{3} \\
\frac{8}{3}
\end{bmatrix}$$