- 5) Вычислить решение системы $x = H_D x + g_D$ методом Зейделя с точностью ε .
- 6) При выполнении задания в математическом пакете определить спектральный радиус матрицы перехода, если рассматривать метод Зейделя как метод простой итерации. Уточнить последнее приближение по Люстернику. Вывести его фактическую погрешность.
- 7) Получить решение системы Ax = b методом верхней релаксации с точностью ε . В качестве критерия использовать фактическую погрешность.
- 8) *Получить решение системы Ax=b методом с чебышевским набором параметров с точностью $\varepsilon=0.0001$.

Сравнить требуемое количество итераций в различных методах.

Вариант 12

Дана линейная система Ax = b.

- 1) Найти решение x^* методом Гаусса.
- 2) Преобразовать исходную систему к системе вида $x = H_D x + g_D$, где $H_D = E D^{-1} A$, $g_D = D^{-1} b$. Здесь D диагональная матрица, у которой на диагонали находятся диагональные элементы матрицы A. Вычислить $||H_D||_{\infty}$.
- 3) Найти априорную оценку того k, при котором $||x^*-x^k||_{\infty}<\varepsilon,\ \varepsilon=0.001.$
- 4) Вычислить решение методом простой итерации с точностью ε = 0.001. Сравнить требуемое фактическое число итераций с априорным значением k. Вывести фактическую погрешность, апостериорную оценку, априорную оценку. Уточнить последнее приближение по Люстернику. Вывести его фактическую погрешность.
- 5) Вычислить решение системы $x = H_D x + g_D$ методом Зейделя с точностью $\varepsilon = 0.001$.
- 6) При выполнении задания в математическом пакете определить спектральный радиус матрицы перехода, если рассматривать метод Зейделя как метод простой итерации. Сравнить результаты с результатами, полученными методом простой итерации.
- 7) Получить решение системы Ax=b методом верхней релаксации с точностью $\varepsilon=0.001$. В качестве критерия использовать фактическую погрешность.

Сравнить требуемое количество итераций в различных методах.