CS5222 Computer Networks and Internets

Prof Weifa Liang

weifa.liang@cityu-dg.edu.cn

Slides based on book Computer Networking: A Top-Down Approach.

Slides based on book Computer Networking: A Top-Down Approach.

Today's Lecture

Goal:

- Overview of "big picture," introduction to terminology
 - more depth & details later
- Approach:
 - use Internet as example

Roadmap:

- What is the Internet?
- What is a protocol?
- Network edge: host, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

 collection of devices, routers, links: managed by an organization

Introduction: 1-4

1-2

Introduction: 1-3

"Fun" Internet-connected devices

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: a "service" view

- Infrastructure that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, ecommerce, social media, interconnected appliances, ...
- provides programming interface to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a guestion"
- introductions
- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define...

- the format,
- order of messages sent and received among network entities,
- actions taken on msg transmission and/or msg receipt

ntroduction: 1

Example

A human protocol and a computer network protocol:

Roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

Introduction: 1-9

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

duction: 1-11 Introduction: 1-12

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Introduction: 1-13

two packets,

L bits each

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

What to look for:

- transmission rate (bits per second) of access network?
- shared or dedicated access among users?

Introduction: 1-14

Host: sends *packets* of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

packet time needed to transmission =
$$\frac{L}{\text{delay}}$$
 time needed to $\frac{L}{\text{-bit}}$ = $\frac{L}{R}$ (bits/sec)

Roadmap

- What is the Internet?
- What *is* a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

Introduction: 1-15 Introduction: 1-16

The network core

- mesh of interconnected routers
- packet-switching: hosts split application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Introduction: 1-17

Packet-switching: store-and-forward

- Store and forward: entire packet must arrive at router before it can be transmitted on next link
- Transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- End-end delay: 2L/R (above), assuming a zero propagation delay (more on delay shortly)

One-hop numerical example:

- *L* = 10 Kbits
- R = 100 Mbps
- one-hop transmission delay = 0.1 msec

Introduction: 1-18

Packet-switching: queuing delay, loss

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for a period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Two key network-core functions

Introduction: 1-19

Circuit Switching: alternative to packet switching

end-end resources reserved for "call" between source and destination

- commonly used in traditional telephone networks
- In Figure: each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - guaranteed performance
- circuit segment idle if not used by call (no sharing)

Introduction: 1-21

Circuit switching: FDM and TDM

Frequency Division Multiplexing (FDM)

- optical, electromagnetic frequencies divided into (narrow) frequency bands
- each call allocated its own band, can transmit at max rate of that narrow band

Time Division Multiplexing (TDM)

- time divided into slots
- each call allocated periodic slot(s), can transmit at maximum rate of (wider) frequency band, but only during its time slot(s)

time

Introduction: 1-22

Numerical example

- How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - All links are 1.536 Mbps
 - Each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out!

Packet switching versus circuit switching

Example:

- 1 Gb/s link
- each user:
 - 100 Mb/s when "active"
 - active 10% of time
- circuit-switching: 10 users
- packet switching: with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?

→ packet switching allows more users to use network!

Packet switching versus circuit switching

Is packet switching always preferable?

- great for "bursty" data sometimes has data to send, but at other times not
 - · resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss due to buffer overflow
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees traditionally used for audio/video applications

Internet structure: a "network of networks"

- Hosts connect to Internet via access Internet Service Providers (ISPs)
 - residential, enterprise (company, university, commercial) ISPs
- Access ISPs in turn must be interconnected
 - so that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

Introduction: 1-25

Introduction: 1-26

Internet structure: a "network of networks"

Question: given millions of access ISPs, how to connect them together?

Internet structure: a "network of networks"

Question: given millions of access ISPs, how to connect them together?

oduction: 1-27 Introduction: 1-28

Internet structure: a "network of networks"

Option: connect each access ISP to one global transit ISP? Customer and provider ISPs have economic agreement.

Introduction: 1-29

Internet structure: a "network of networks"

But if one global ISP is viable business, there will be competitors

Introduction: 1-30

Internet structure: a "network of networks"

But if one global ISP is viable business, there will be competitors who will want to be connected

Internet structure: a "network of networks"

... and regional networks may arise to connect access nets to ISPs

Introduction: 1-31 Introduction: 1-32

Internet structure: a "network of networks"

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

Introduction: 1-33

Internet structure: a "network of networks"

At "center": small # of well-connected large networks

- "tier-1" commercial ISPs (e.g., AT&T, PCCW, NTT, Tata), national & international coverage
- content provider networks (e.g., Google, Facebook): private network that connects its data centers to Internet, often bypassing tier-1, regional ISPs

Introduction: 1-34

Roadmap

- What is the Internet?
- What *is* a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

How do packet loss and delay occur?

packets queue in router buffers

- packets queue, wait for turn
- arrival rate to link (temporarily) exceeds output link capacity: packet loss

free (available) buffers: arriving packet dropped (loss) if no free buffers

Introduction: 1-35 Introduction: 1-36

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec</p>

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Introduction: 1-37

Packet delay: four sources

Introduction: 1-38

Caravan analogy

- car = bit; caravan = packet
- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- Q: How long until caravan is lined up before 2nd toll booth?
- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for some car to propagate from exit of 1st to 2nd toll both: 100km/(100km/hr) = 1 hr
- A: 62 minutes

Caravan analogy

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
 A: Yes! after 7 min, first car arrives at second booth; three cars still at first booth

Introduction: 1-39 Introduction: 1-40

Packet queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate
- La/R ~ 0: avg. queueing delay small
- La/R --> 1: avg. queueing delay large
- La/R > 1: more "work" arriving is more than can be serviced
 average delay infinite (in theory)!

Packet queueing delay (additional details)

More realistic: Random arrival intervals.

A closer look at case $La/R \rightarrow 1$. Two extreme scenarios:

- 1. What happens if 1 packet arrives every (L/R) sec?
- → No queueing delay. Why?
- 2. What happens if **N** packets arrive every **(NL/R)** sec?
- → Queueing delay grows with **N.** Why?

Introduction: 1-42

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time.
 If file of F bits takes T sec until received then F/T bits/sec

Introduction: 1-43 Introduction: 1-44

Throughput

 $R_{\rm s} < R_{\rm c}$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: min(R_c,R_s,R/10)
- in practice: R_c or R_s is often bottleneck

Introduction: 1-46

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

Introduction: 1-45

packet time needed to transmission transmit
$$L$$
-bit packet into link $=\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Roadmap

- What is the Internet?
- What *is* a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

Introduction: 1-47 Introduction: 1-48

Protocol "layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers,
- links of various media
- applications
- protocols .
- hardware, software

Question:

is there any hope of organizing structure of network?

Example: organization of air travel

ticket (purchase)
baggage (check)
gates (load)
runway takeoff
airplane routing

ticket (complain?)
baggage (claim)
gates (unload)
runway landing
airplane routing

airplane routing

airline travel: a series of steps, involving many services

Introduction: 1-49

ma oddetiom 1 45

Example: organization of air travel

ticket (purchase)	ticketing service	ticket (complain)	
baggage (check)	baggage service	baggage (claim)	
gates (load)	gate service	gates (unload)	
runway takeoff	runway service	runway landing	
airplane routing	routing service	airplane routing	

layers: each layer implements a service

- by performing internal-layer actions, and
- relying on services provided by layer below

Why layering?

- Allows us to discuss well-defined, specific part of complex system.
- Modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of airline system

Introduction: 1-51 Introduction: 1-52

Internet protocol stack

- application: supporting network applications
 HTTP, IMAP, SMTP, ...
- transport: process-process data transferTCP. UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

Introduction: 1-53

ISO/OSI reference model

Two layers not found in Internet protocol stack!

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application

application
presentation
session
transport
network
link
physical

The seven layer OSI/ISO reference model

Introduction: 1-54