Monday, 8/8/2022

statement about divisibility However, it often makes it easier to discover proofs. The theory of congruences was introduced by & Congruences: A 'congruence' in nothing more than a Corl Friedrich Grawn (1777-1855)

congruent to b module m, and we write a = b (mod m). integers such that on (a-b), then we say that a in Definition: Let my 1 be an integer. It a and b are two Example: $4 \equiv 1 \pmod{3}$, $-5 \equiv 2 \pmod{7}$, etc.

(1) a = b (mod m), b = a (mod m), and a - b = o (mod m) are all Theorem 1: Let m > 1, and a, b, c, d & Z. Then: equivalent statements.

(2) If $\alpha \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

(3) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

(4) If $\alpha \equiv b \pmod{m}$ and $d \mid m$, d > 0, then $\alpha \equiv b \pmod{d}$. $a + c = b + d \pmod{mod m}$ and $ac = bd \pmod{mod m}$

(5) If $R \equiv b \pmod{m}$, then $ac \equiv bc \pmod{mc}$ for c > 0

Broof: Easy.

corollary: congruence in an equivalence relation.

132 ax = ay (mod m) => ax - ay = m = for some (3) $\chi = \gamma \pmod{m_i}$ for i=1,2,...,n if and only if (2) If $ax \equiv ay \pmod{m}$, and gcd(a, m) = 1, then $x \equiv y \pmod{m}$ | Morem 2: (1) $a.x \equiv a.y \pmod{m} \iff x \equiv y \pmod{\frac{m}{3cd(a,m)}}$ $gcd(\alpha, m)$ gcd(a,m) $\chi \equiv \chi \pmod{\text{leasy}(m_1, m_2, \dots, m_n)}$ gcd(a,m) (x-y), But gcd (gcd(a,m), gcd(a,m))=1 and time m م gcd(c,m) d = gcd(a,m) | (x-y) = x = y (mod m) 9cd(a,m) 275

by Theorem 1, one have $x \equiv y \pmod{m_i}$ for i = 1, 2, ..., nConversely, if $x \equiv y \pmod{lcm(m_1, m_2, ..., m_n)}$, then => x = y (mod /(m (m, m2, ..., mn)) > (cm (m, m2, ..., mn) 2-4 => x-y is a common multiple of m,, m2, ..., mn Since m, / 1cm (301, m2, ..., mn) & i. $x = y \pmod{m_i}, i = 1,2,...,n \Rightarrow m_i | (x-y) + i = 1,2,...,n$ These or values constitute a complete residue system modulo m. module in to one of the values 0,1,2,..., m-1. And, it is dear Let m>, 1. Thus, we see that every integer is congruent Salution: 7=49 = -1 (mod 10) Ex: Find the last digit of 7358 9 in the Last digit of 7 358 1 \Rightarrow $(7^{2})^{19} = (-1)^{19} \pmod{10}$ 7 = -1 = 9 (mod 10). $358 = 2 \times 179$

Definition: If $x \equiv y \pmod{m}$, then y in called a residue of x modulo m. A set $\{x_1, x_2, \dots, x_m\}$ in called a complete residue system modulo m if for every y there is one and only one x_j . Such that $y \equiv x_j$ (mod m).

· Les opposes mother ·9t in obvious that there are infinitely many complete residue

in a complete tresidue system modulo m For each i=0,1,...,m-1, let $x_i \in i+m\mathbb{Z}$. Then $\{x_0,x_1,...,x_{m-1}\}$ $1=\{\chi\in\mathbb{Z}\mid\chi\equiv\{(modm)\}=1+m\mathbb{Z},\ldots,\overline{m-1}=(m-1)+m\mathbb{Z}.$

of integers h; such that gcd (ri, m) = 1, h; \pm h; (mod m) whenever i \pm i, and every \pm cophime to m is congruent Definition: A reduced residue system modulo m is a set module in to some member to; of the set. Proof: b = c (mod m) => b = c + km for some integer k. Thursem 3: If b=c(mod m), then gcd(b, m) = gcd(c, m). Now, gcd(c, m) = gcd(c+km, m) [wing proportion &) = gcd(b, m).

In view of Theorem 3, it is clear that a reduced reduced residue system modulo m. Thun, $\# R = R = \varphi(m)$. residue system modulo in can be obtained by deleting from Theorem 4. Let m31. Let $R = \{x_1, \dots, x_p\}$ be a set of m>1, let $\varphi(m)=\#\{k\mid 1\leq k\leq m, \gcd(k,m)=1\}$

not relatively prime to m. Let m = 8. Thus, $\{0, 1, 2, 3, 4, 5, 6, 7\}$ is a complete residue a complete residue system modulo in those members that are

system modulo 8. System module 8. Also, 11, 3, 5, 7) in a reduced residue