A Book of Abstract Algebra (2nd Edition)

Chapter 27, Problem 5EF Show all steps: ON
Problem
Let F be a finite field, and F^* the multiplicative group of nonzero elements of F . Obviously $H = \{x^2: x \in F^*\}$ is a subgroup of F^* ; since every square x^2 in F^* is the square of only two different elements, namely $\pm x$, exactly half the elements of F^* are in H . Thus, H has exactly two cosets: H itself, containing all the squares, and aH (where $a \notin H$), containing all the nonsquares. If a and b are nonsquares, then by Chapter 15, Theorem 5(i), $ab^{-1} = \frac{a}{b} \in H$ Thus: if a and b are nonsquares, a/b is a square. Use these remarks in the following: If the minimum polynomial of a over F has degree 2, we call $F(a)$ a quadratic extension of F . If a and b are nonsquares in $F(a)$ is a square (why?). Use the same argument as in part 4 to prove that any two simple extensions of $F(a)$ are isomorphic (hence isomorphic to $F(a)$).
Step-by-step solution
Step 1 of 2 A
Objective is to prove that if a and b non-squares real numbers then a/b is a square.
Since a and b are some real numbers, then corresponding \sqrt{a} , \sqrt{b} will also be the members of a . Then $\frac{a}{b} = \frac{\left(\sqrt{a}\right)^2}{\left(\sqrt{b}\right)^2} = \left(\sqrt{\frac{a}{b}}\right)^2.$ Let $c = \sqrt{\frac{a}{b}}$. Then $\frac{a}{b} = c^2$. This shows that a/b is a square in the field of real numbers.
Step 2 of 2 ^
Note that, any simple extension of R will be quadratic. Also, polynomials of degree ≤ 2 are the only irreducibles in R .
Also from the result: if polynomials $p(x)$ and $q(x)$ are arbitrary irreducibles in $F[x]$ of degree 2, then any two quadratic extensions of a field are isomorphic.
Thus, any two simple extensions of R are isomorphic. Since quadratic extension of R is the set of all complex numbers, therefore any two simple extensions of R are isomorphic to \mathbb{C} .
Comment

2 4 B