Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра программного обеспечения информационных технологий Дисциплина: ТИ (Теория информации)

ОТЧЕТ

по лабораторной работе № 4

Тема работы: Электронная цифровая подпись

Выполнил: гр. 951007 Воривода М.А.

Проверила: Болтак С.В.

1 SMOKE TEST

Проверка генерации ключей:

Проверка введённых значений:

Подпись:

Проверка подписи (верно):

Проверка подписи (неверно: исходное сообщение было изменено на «BSUI»):

2 РАСЧЁТЫ

Быстрое возведение в степень

$$3^5 mod p = 3^5 mod 7$$

 $p - 1 = 6_{10} = 110_2$

Степень 0: $(1 \cdot 3) \mod 7 = 3$

Степень 1: $(3 \cdot 3) mod 7 = 2$

Степень 2: $(2 \cdot 3) mod 7 = 6$

Степень 3: $(6 \cdot 3) mod 7 = 4$

Степень 4: $(4 \cdot 3) mod 7 = 5$

Степень 5: $(5 \cdot 3) mod 7 = 1$

Первообразный корень по модулю

Первообразный корень g по модулю m – это такое целое число, что

$$g^{\varphi(m)} = 1 \bmod m$$

$$g^{l} \neq 1 \bmod m, 1 \leq l < \varphi(m)$$

Нахождение первообразного корня по модулю 13.

$$\varphi(13) = 13 - 1 = 12 = 2 \cdot 2 \cdot 3$$

 $l = \{6, 4\}$

 $g\epsilon\{1,2,3,4,5,6,7,8,9,10,11,12\}$

 $1^6 \mod 13 = 1, 1^4 \mod 13 = 1$

 $2^6 mod \ 13 = 12, 2^4 mod \ 13 = 3$

 $3^6 \mod 13 = 1, 3^4 \mod 13 = 3$

 $4^6 mod \ 13 = 1, 4^4 \ mod \ 13 = 9$

 $5^6 mod \ 13 = 12, 5^4 \ mod \ 13 = 1$

 $6^6 mod \ 13 = 12, 6^4 \ mod \ 13 = 9$

 $7^6 mod \ 13 = 12, 7^4 \ mod \ 13 = 9$

 $8^6 mod \ 13 = 12, 8^4 mod \ 13 = 1$

 $9^6 mod \ 13 = 1, 9^4 \ mod \ 13 = 9$

 $10^6 mod \ 13 = 1, 10^4 \ mod \ 13 = 3$

 $11^6 mod \ 13 = 12, 11^4 mod \ 13 = 12$

 $12^6 \mod 13 = 1, 12^4 \mod 13 = 1$

Расширенный алгоритм Евклида

Расширенный алгоритм Евклида позволяет найти наибольший общий делитель и коэффициенты из леммы Безу. Лемма Безу гласит о том, что для любых целых чисел а и b есть такие целые числа х и у, для которых верно равенство $\boldsymbol{a} * \boldsymbol{x} + \boldsymbol{b} * \boldsymbol{y} = (\boldsymbol{a}, \boldsymbol{b})$.

Пусть
$$a = 36$$
, $b = 25$. HOД $(a, b) = 1$

$$x_n = x_{n-2} - q * x_{n-1}$$

 $y_n = y_{n-2} - q * y_{n-1}$

q	a	b	r	Xn	y n
-	36	25	-	1	0
-	36	25	-	0	1
1	36	25	11	1	-1
2	25	11	3	-2	3
3	11	3	2	7	-10
1	3	2	1	-9	13
2	2	1	0	-	-

$$-9*36+13*25=-324+325=1$$