

## TD 4 – Projection, orthogonalité

- $\triangleright$  **Exercice 1.** Soit  $A = (a_{ij})_{1 \le i,j \le n} \in M(n,\mathbf{R})$ , on rappelle que  $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ .
  - **1.1.** Montrer que l'application (.|.) de  $\mathrm{M}(n,\mathbf{R}) \times \mathrm{M}(n,\mathbf{R})$  dans  $\mathbf{R}$  définie par

$$(X|Y) = \operatorname{tr}({}^{t}XY)$$

définit un produit scalaire qui fait de  $M(n, \mathbf{R})$  un espace euclidien. La norme matricielle associée s'appelle la norme de Frobenius.

- **1.2.** Soient X, Y et A dans  $M(n, \mathbf{R})$ , montrer que ce produit scalaire possède les propriétés suivantes :
  - (i)  $({}^{t}X|{}^{t}Y) = (X|Y)$
  - (ii)  $(AX|Y) = (X|^t AY)$ .
- **1.3.** Soit  $O \in O(n, \mathbf{R})$  une matrice orthogonale, montrer que l'application  $X \mapsto OX$  est une isométrie de  $M(n, \mathbf{R})$ .
- $\triangleright$  Exercice 2. On rappelle que L<sup>2</sup>([0,  $2\pi$ ], **R**) muni du produit scalaire

$$(x|y) = \int_{[0,2\pi]} xydt$$

est un espace de Hilbert. Soit  $F = \text{Vect}(\{\sin,\cos\})$ , et soit  $x_0$  défini par  $x_0(t) = e^t$ . Justifier que  $x_0$  possède un unique projeté orthogonal sur F et le calculer.

- $\triangleright$  Exercice 3.
  - **3.1.** Montrer que l'espace

$$\ell^2 = \{ X = (x_n)_n \in \mathbf{R}^{\mathbf{N}} \mid \sum_n |x_n|^2 < \infty \}$$

muni du produit scalaire  $(X|Y) = \sum_{n} x_{n}y_{n}$  est un espace de Hilbert.

MI2 TD 4

**3.2.** Soit  $G_k = \{X \in \ell^2 \mid \sum_{n=0}^{k-1} x_n = 0\}$  (où  $k \ge 1$  est fixé). Justifier que  $G_k$  est un sev fermé de  $\ell^2$ .

- **3.3.** Soit  $X=(1,0,\ldots,0,\ldots)\in\ell^2$ , évaluer  $d(X,G_k)$ , la distance de X à  $G_k$ .
- ▷ Exercice 4. Résoudre le problème d'optimisation

$$\begin{cases} \min \int_{[-1,1]} |x^5 - a_4 x^4 - a_3 x^3 - a_2 x^2 - a_1 x - a_0|^2 dx \\ a = (a_0, \dots, a_4) \in \mathbf{R}^5. \end{cases}$$