In [1]: %run Latex_macros.ipynb

So many words!

The size of the vocabulary ${f V}$ can easily be tens of thousands.

Not only are there many words, there are variations of each word

- verbs: past, present and future tense
- nouns:
 - singular, plural
 - gender agreement with subject

"Classical" NLP has developed techniques to convert words to "canonical" form

- stemming: convert word to its root form (root may not be in dictionary)
 - drive, driver, driving \mapsto driv
- lemmatization: convert word to a root that is in dictionary
 - him: \mapsto he
 - took \mapsto take
 - \blacksquare earlier \mapsto early

So one way to reduce the vocabulary size is by using these techniques. There is still a place for this techniques in Deep Learning. • spaCy (https://spacy.io/) is a very popular toolkit for dealing with text. It is also possible that Embeddings will create a "dimension" that captures variations common to many words.

• the "plural" dimension

But there is still an issue

OOV: Out of Vocabulary

No matter how big we make \mathbf{V} , there will still be words in use that are not found there.

An elegant solution is *sub-word tokenization*

- break an OOV token into pieces, each of which is in-vocabulary
 - here's \mapsto here, \', s
 - tokenizer \mapsto token, ##izer

This encoding is referred to as Byte Piece Encoding.

Universal model: adapting task-specific inputs

Picture from: http://twimgs.com/ddj/cuj/images/cuj9402gage/fig1.gif"

• Pass 1: $AB \mapsto H$

• Pass 2: $HC \mapsto G$

BPE has become fairly common in modern NLP systems

- Balances brevity of character encoding
- With expressiveness of word encoding