

IRF8252TRPbF-1

HEXFET® Power MOSFET

V _{DS}	25	V
R _{DS(on) max} (@V _{GS} = 10V)	2.7	mΩ
Q _{g (typical)}	35	nC
I _D (@T _A = 25°C)	25	Α

Applications

- Synchronous MOSFET for Notebook Processor Power
- Synchronous Rectifier MOSFET for Isolated DC-DC Converters

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Page Part Number	Dookogo Typo	Standard Pac	Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF8252PbF-1	SO-8	Tape and Reel	4000	IRF8252TRPbF-1

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	25	V	
V_{GS}	Gate-to-Source Voltage	±20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	25		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	20	А	
I _{DM}	Pulsed Drain Current ①	200		
P _D @T _A = 25°C	Power Dissipation	2.5	w	
P _D @T _A = 70°C	Power Dissipation	1.6	vv	
	Linear Derating Factor	0.02	W/°C	
T_J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range		1	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ^⑤		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @ S		50	C/VV

Notes ① through ⑤ are on page 10

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	25			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.018		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.0	2.7		V _{GS} = 10V, I _D = 25A ③
			2.9	3.7	mΩ	$V_{GS} = 4.5V, I_D = 20A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	٧	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.67		mV/°C	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 20V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	- ^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	89			S	$V_{DS} = 13V, I_{D} = 20A$
Q_g	Total Gate Charge		35	53		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		10			$V_{DS} = 13V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		4.6			$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		12		nC	$I_D = 20A$
Q _{godr}	Gate Charge Overdrive		8.9		1	See Figs. 15 & 16
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		16			
Q _{oss}	Output Charge		26		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _g	Gate Resistance		0.61	1.22	Ω	
t _{d(on)}	Turn-On Delay Time		23			$V_{DD} = 13V, V_{GS} = 4.5V$
t _r	Rise Time		32			$I_D = 20A$
t _{d(off)}	Turn-Off Delay Time		19		ns	$R_G = 1.8\Omega$
t _f	Fall Time		12			See Fig. 18
C _{iss}	Input Capacitance		5305			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1340		pF	$V_{DS} = 13V$
C _{rss}	Reverse Transfer Capacitance		725		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		231	mJ
I _{AR}	Avalanche Current ①		20	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.1	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			200	Α	integral reverse graphs p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C$, $I_F = 20A$, $V_{DD} = 13V$
Q _{rr}	Reverse Recovery Charge		12	18	nC	di/dt = 230A/µs ③
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

 $\label{eq:VGS} {\it V}_{GS,} \, {\it Gate -to -Source Voltage} \,\, {\it (V)}$ Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Unclamped Inductive Test Circuit and Waveform

Fig 15. Gate Charge Test Circuit

Fig 16. Gate Charge Waveform

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INCHES		MILLIM	ETERS
DIIVI	MIN	MAX	MN	MAX
Α	.0532	.0688	1.35	1.75
Al	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
E	.1497	.1574	3.80 4.00	
е	.050 B	ASIC	1.27 B	ASIC
еl	.025 BASIC		0.635 E	BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification information

addinioation information			
Qualification level	Industrial (per JEDEC JES D47F ^{††} guidelines)		
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D ^{††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 1.12mH, $R_G = 25\Omega$, $I_{AS} = 20$ A.
- ③ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.
- ④ When mounted on 1 inch square copper board.
- $\ ^{\textcircled{5}}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

Revision History

TICVISION THISTORY	
Date	Comments
10/16/2014	• Corrected part number from" IRF8252PbF-1" to "IRF8252TRPbF-1" -all pages
10/16/2014	• Removed the "IRF8252PbF-1" bulk part number from ordering information on page1

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/