

87/2-101-A

W/458168

PL

1 BUILDING MATERIAL WITH PROTECTION FROM INSECTS, MOLDS, AND FUNGI

2

ACI

Background of the Invention

4 1. Field of the Invention

5 The present invention is directed to laminated building
6 panels with protection from insects, molds, and fungi. More
7 particularly, the present invention is directed to building
8 panels comprising a sandwich of two skins bonded to a core of a
9 firm solid insulating material, or the insulating material
10 itself, that is protected against attack by many types of
11 insects, molds, and fungi.

12 2. Description of the Related Art

13 Pests such as termites, carpenter ants, insects, and so
14 forth have long been a scourge of wooden buildings. Extensive
15 efforts to control insect infestation of buildings have been
16 undertaken. Many chemical preparations for exterior application
17 to a building or foundation have been developed. Many of these
18 chemicals are also hazardous to pets and humans and have
19 consequently been banned.

20 For example, creosote has long been used to
21 preserve wood and is now unavailable for residential use because
22 creosote is carcinogenic.

23 Copper-chrome-arsenate (CCA) solutions have long been
24 used to treat wood under high pressure and comprise the majority
25 of treated wood now available. CCA treated wood is, however,
26 highly insecticidal and fungicidal and must be handled with
27 considerable extraordinary care.

28 One such effort to develop a preservative to deter
29 insect and vermin infestation is found in U. S. Patent No.

30

1 2,186,134, issued to Chapman on January 9, 1940. Chapman
2 discloses the use of a preservative composition comprising a
3 halogenated phenol and an alkali metal salt of boric acid in an
4 aqueous solution which is applied to fiber based building
5 materials such as fiberboard, insulation made of paper and so
6 forth. Engineered materials unknown to Chapman now comprise an
7 important portion of the available range of building materials.
8 One such example is the prefabricated insulated building panels
9 comprising a core of expanded polystyrene (EPS), which may be
10 about 3 1/2 - 11 1/2 inches (8.9 - 40 cm) thick, sandwiched
11 between two wood-based sheets or other skins, such as metal. The
12 panels may be in any convenient size, with the most popular size
13 being about 4 feet by 8 feet (1.2 m x 2.4 m). The wood-based
14 panels, may be tempered hardboard, chipboard, particleboard,
15 oriented strand board, and the like. The two skins are each
16 typically at least 3/8 inch (0.95 cm) thick when the panels are
17 intended to form load bearing walls. The panels are adhesively
18 bonded by a urethane laminating adhesive. Such prefabricated
19 building panels have become extremely popular because they
20 provide high insulation value, and virtually eliminate drafts
21 through the roofs, walls and floors. They provide economical
22 alternatives to stick-built structures in part by reducing the
23 framing time of the construction of a new home or other buildings
24 by about two-thirds.

25 It has been found, however, that in some situations
26 such panels may be attacked by insects, molds, or fungus.
27 Insects may bore through the oriented strand board or waferboard
28 into the expanded polystyrene core (EPS), where they may nest.
29 The environment within the core of the building panel provides
30 good living conditions for most insects since it is usually warm

1 during the winter, cool during summer and non-toxic.
2 Conventional chemical treatments may be applied to prevent such
3 attacks in the same fashion as they are applied to other
4 wood-based structures. Regular application of such chemicals,
5 however, is expensive and inconvenient. In addition, such
6 chemicals may well be significantly toxic to humans and pets.

7 Accordingly, there is a need for an energy efficient
8 laminated building panel that resists attack by insects, mold and
9 fungus.

10 SUMMARY OF THE INVENTION

11 Accordingly, it is a primary object of the present
12 invention to provide an energy efficient laminated building panel
13 that resists attack by insects, mold and fungus.

14 These and other objects of the present invention are
15 achieved by providing a building panel comprising at least two
16 spaced-apart lamination skins, such as wood-based skins and a
17 core of firm, solid insulating material laminated between the
18 skins. The sandwich is held together by suitable adhesives, such
19 as a urethane laminating adhesive. A chemical composition of
20 matter having insecticidal and fungicidal properties without
21 major toxicological problems is diffused through and permeates at
22 least a portion of the skins and core. Alternatively, the core,
23 which is formed prior to fabrication of the building panel, may
24 be made from polystyrene beads mixed with a suitable chemical
25 prior to expansion into a solid core by conventional means. The
26 treated core may then be laminated with separately treated skins.
27 In an alternative environment, EPS so treated, whether formed
28 into blocks or loose fill, finds many construction and insulating
29 applications as a separate building material without any
30 lamination to skins or other material.

1 Preferably the insecticidal and fungicidal chemical
2 will be highly insecticidal and fungicidal to many types of
3 insects, mold and fungus, but will not be significantly
4 insecticidal and fungicidal to pets, other large animals, or
5 humans. In addition, the chemical should not migrate, but remain
6 in the building panel or EPS indefinitely. It has been found
7 that certain borates meet these criteria. More particularly,
8 disodium octaborate tetrahydrate embodies these desirable
9 characteristics and is the preferred primary chemical for
10 treating building panels or EPS according to the present
11 invention.

12 The panel skins may be wood-based and may comprise
13 plywood, wafer board, particleboard, tempered hardboard, and the
14 like. In the preferred embodiment, oriented strand board is
15 employed for the skin because it is highly resistant to warping
16 and exhibits good compression strength.

17 The core of the building panel consists of a rigid firm
18 foam insulating material, with the preferred material comprising
19 expanded polystyrene, or other foam.

20 Several processes for making a building panel protected
21 against insect pests have been developed. Perhaps most effective
22 is mixing the borate having insecticidal and fungicidal
23 properties with the polystyrene from the plastics manufacturer
24 prior to expanding the polystyrene and borate mixture into a mold
25 to produce the expanded polystyrene. The molded EPS, now
26 protected against many types of insects, molds and fungi, can be
27 put to many uses. For example, the EPS blocks may be used as
28 perimeter insulation and underslab insulation to stop or reduce
29 energy loss at the foundation and slab of a building, such as a
30 house. The expanded EPS, now treated for protection against

1 insects, molds, and fungi, is stable and has a very low moisture
2 gain. It is available in a variety of densities for higher
3 insulation value and compression resistance. The treated EPS may
4 also be used for exterior sheathing to create an energy loss
5 barrier for any frame type construction in both new and rehab
6 applications. EPS can be used for cavity fill and may be
7 manufactured in the desired sizes prior to treatment, or cut to
8 size in the field and given a supplemental field treatment prior
9 to installation or filling cavities such as spaces between
10 joists. The treated EPS also serves as an excellent siding
11 backer, eave vents, frame fill, and drywall backer. In all these
12 applications, the treated EPS increases the energy efficiency and
13 sound absorption characteristics of the building, as well as
14 reducing significantly the threat of infestation by insects,
15 molds, or fungi. In the aforementioned uses, the EPS is in the
16 form of a firm, solid block of EPS. In alternative embodiments,
17 however, the EPS may be in the form of peanut-shaped individual
18 pellets, loose expanded beads, or other forms of loose fill
19 material. Alternatively, the treated EPS can be laminated
20 between two skins to form building panels, the skins may be
21 metal, plastic, wood and the like. The skins may have been
22 previously treated by the borate, or may be treated after the
23 panel has been laminated.

24 In an other process, the entire building panel is
25 constructed and then treated with a borate having insecticidal
26 and fungicidal properties. The panel may be treated by dipping
27 or immersing it into an aqueous solution of the borate, by
28 spraying the solution onto the panel, e.g., by passing the panel
29 through a spray tunnel, by pressure treatment, by the hot and
30 cold bath process, or other methods.

1 In alternative embodiment of the process, the core is
2 formed of expanded polystyrene and then is treated according to
3 one of the methods described immediately above. The skins are
4 treated separately according to one of the methods cited above.
5 The skins may be treated in a different time and a different
6 place from the core, but after both are separately treated they
7 are united by laminating the core between at least two skins and
8 bonding the unit with a suitable adhesive, such as a urethane
9 laminating adhesive, to form the building panel.

10 Other objects and advantages of this invention will
11 become apparent from the following description taken in
12 conjunction with the accompanying drawings, wherein is set forth
13 by way of illustration and example, the preferred embodiments of
14 this invention.

15 C

Brief Description of the Drawings

16 Fig. 1 is a perspective view of a building panel
17 according to the present invention.

18 Fig. 2 is an end elevation of the building panel of
19 Fig. 1.

20 C

Detailed Description of the Preferred Embodiments

21 As required by the statutes and case law, a detailed
22 embodiment of the present invention is disclosed herein. It is
23 to be understood, however, that the disclosed embodiment is
24 merely exemplary of the invention, which may be embodied in many
25 various forms. Therefore, the specific structural and functional
26 details of the invention as disclosed herein are not to be
27 interpreted as limiting, but merely as a basis for the claims and
28 as a representative basis for teaching one skilled in the art to
29 variously employ the present invention in virtually any
30 appropriately detailed structure.

1 Referring to Fig. 1, the laminated building panel with
2 protection from insects, molds, and fungi 10 disclosed herein
3 comprises a central the core 14 of 3 1/2 - 11 1/2 inches (8.9 -
4 40 cm) of a firm solid insulating material, e.g., such expanded
5 polystyrene foam, or other foam material, which may be a chemical
6 foam material. The core 14 is laminated between at least two
7 skins 12, which are preferably wood-based skins of waferboard or
8 oriented strand board, although they may also be chipboard,
9 particleboard, tempered hardboard, and the like. In the
10 preferred embodiment, the core is of a solid rectangular shape
11 and two skins are employed, one on each of large flat surface of
12 the core. The skins are bonded to the core by an adhesive 16,
13 such as a urethane laminating adhesive.

14 The panel 10 is treated with a chemical highly
15 insecticidal and fungicidal to many insects, molds and fungi but
16 not significantly toxic to household pets, other large animals,
17 and human beings to prevent insects from boring through the skins
18 and nesting in the core, from which they may migrate into the
19 structure. It has been found that certain borates, particularly
20 a sodium borate, meet these criteria, and in particular disodium
21 octaborate tetrahydrate has been found useful in such
22 applications. Sodium borates kill many pests in addition to
23 discouraging them from attacking the treated building panels 10.

24 The panels may be treated with disodium octaborate
25 tetrahydrate and related chemicals either prior to or following
26 construction of the materials into a panel. A variety of
27 processes may be employed as described below.

28 A. Treatment Chemicals.

29 In general, building materials such as the panels 10 or
30 plain EPS may be treated by any of a number of processes, all or

1 any of which may be used to treat the materials of the building
2 panels 10 or the EPS either prior to or following lamination.
3 The preferred embodiment of the treatment chemicals and the
4 various preferred processes are described.

5 Borates are either salts or esters of boron. In
6 particular, disodium octaborate tetrahydrate ($\text{Na}_2\text{B}_8\text{O}_{13} \cdot 4\text{H}_2\text{O}$) which
7 may have a typical chemical analysis of sodium oxide (Na_2O) 14.7
8 percent; boric oxide (B_2O_3) 67.1 percent; and water of
9 crystallization (H_2O) 18.2 percent is particularly effective in
10 eliminating the threat of damage from many types of pests notably
11 many boring insects. The disodium octaborate tetrahydrate may
12 comprise 99.4 percent of the total chemical content of the
13 treatment chemical, with impurities and other inert ingredients
14 comprising the remaining 0.6 percent of the treatment chemical.
15 The minimum borate oxide (B_2O_3) content of the treatment chemical
16 should be in a range from about 50 percent to about 70 percent,
17 with the optimal proportion being about 66.1 percent. A
18 preservative so constituted is not considered harmful to human
19 beings or livestock. It can be handled by workmen without the
20 need to observe any special precautions. Further, there is no
21 danger to health in preparation or use of solutions of the
22 treatment chemical or in the handling and milling of construction
23 materials treated with this treatment chemical. The treatment
24 chemical has no objectionable odor and has nearly a neutral pH
25 factor. In timber, the salt retention is about 0.3 pounds per
26 cubic foot, which is very low compared with the total weight of
27 the timber. In foam, the salt retention rate may be somewhat
28 less. The solution of the treatment chemical water is
29 non-corrosive to ferrous metals, but may attack aluminum. The
30

1 treatment chemical has no effect on plastics, cements, rubber,
2 putties, bituminous solutions, mastics or other sealants.

3 Diffusion of the treatment chemical throughout wood, in
4 particular, timber, depends on a number of characteristics,
5 including the moisture content of the material, the concentration
6 and temperature of the treating solution, the curing and
7 diffusion storage conditions, and so forth. Most important among
8 these factors for timber is the moisture content. A moisture
9 content of wood or timber of greater than 40 percent based on
10 oven dry wood weight is recommended for complete diffusion. This
11 is because the primary vehicle for diffusing the treatment
12 chemicals throughout the lumber is osmosis, which causes the
13 salts to become equally concentrated throughout the wood by
14 passage of the solvent, i.e., the water, of the less concentrated
15 solution through the membranes of the timber toward the more
16 concentrated solution. Timber and wood, being cellulose designed
17 for drawing moisture, are highly amenable to chemical treatment
18 by aqueous solutions, because osmosis will distribute the
19 treatment chemicals.

20 EPS is comprised of essentially noncommunicating
21 air-filled cells, not the long grain structure that allows timber
22 to draw moisture. The actual EPS is a non-porous and has no cell
23 wall or membrane for diffusing chemicals through osmosis.
24 Accordingly, the diffusion mechanism used for treating wood is
25 unavailable for treating EPS.

26 A molded EPS, however, has a multitude of small
27 interstitial spaces. It is believed that these interstitial
28 spaces allow for the capillary uptake of the treatment solution
29 by the EPS and that complete diffusion throughout the EPS block
30 or the core 14 can be attained. It has also been found, however,

1 that complete diffusion is not required for good preservative
2 protection in the building panels 10 or the EPS because few, if
3 any, field cuts that would expose untreated cross sections of the
4 building panels 10 or the EPS are made. When such field cuts are
5 made, such as for windows, the exposed cross sections can be
6 field treated and then can be covered with other material, such
7 as headers, jams, sills, and so forth, which may be of treated
8 building material if desired.

9 Diffusion of the treatment chemicals throughout all or
10 a portion of the skins 12 or the core 14 of a building panel 10,
11 or of an EPS building material can be effected through a number
12 of processes for application of the treatment chemicals, some of
13 which are discussed below, with the treatment steps being clearly
14 set forth.

15 B. Treatment Processes.

16 1. In the momentary immersion process, the building
17 material is immersed in a solution of the treatment chemical and
18 water for a period of 2-5 minutes. After this soaking, the panel
19 is tilted so that excess preservative can be drained off. Then
20 the moist panel, or other construction materials, are moved to a
21 storage area to allow the diffusion process to proceed. A
22 plurality of building panels 10 may be stacked with suitable
23 spacers between the panels prior to dipping if desired
24 (stickerering).

25 2. In the spray tunnel process, individual building
26 panels 10, or cores 14, are passed on rollers through a tunnel
27 fitted with jets or a broad fan nozzle. Hot concentrated
28 treatment aqueous solution is pumped from a tank through the
29 piping and sprayed onto the building panel 10 or the the EPS, or
30 the core 14. The treatment solution that falls to the bottom of

1 the tank is collected and recirculated. It is run through a
2 filtering system to remove sawdust and other suspended material
3 from the circulating solution. For treatment of many laminated
4 building panels 10, a concentration of 150-350 pounds (68 - 169
5 kg) of treatment chemical per 100 gallons (377 l) of solution at
6 120°F - 140°F (60° - 67°C) is recommended to maximize the
7 penetration of the treatment chemicals into the building panel
8 10. Lesser concentrations may result in adequate protection.

9 3. In yet another method, the spray treatment process,
10 the treatment chemical can be sprayed onto the building panel 10
11 at a temperature of approximately 100°F (56°C) with an electric
12 or pneumatically driven pump sprayer. Proper storage for
13 diffusion allows adequate protection with this method.

14 Following coating of the building panels 10, or other
15 building materials, such as the EPS, the core 14 or the skins 12,
16 the treated materials are stacked and can be covered with
17 polyethylene sheeting or other vapor barrier, if desired, to
18 reduce or eliminate air movement around and within the stack of
19 materials and provide an impervious barrier to rain water. The
20 polyethylene sheeting, if used, slows evaporation and allows the
21 diffusion of the treatment chemical into the building materials
22 to continue. If the wet panels 10 are covered with a vapor
23 barrier for more than about 2 days, however, they may warp.

24 4. In the pressure treatment method, it is possible to
25 use the treatment chemical with a conventional pressure treatment
26 method commonly associated with preservatives such as creosote
27 and copper-crome-arsenate (CCA) solutions. The precise
28 parameters of the pressure treatment system will be determined by
29 the characteristics of the building material being treated, but
30 should result in a retention of about 0.3 pounds per cubic foot

1 (4.8 kg. per cubic meter) of the treatment chemical in the assay
2 zone. The concentration of the treatment solution must be
3 adjusted to give the correct retention. It is noted, however,
4 that solutions are in the range of 1-2 percent (0.1-0.2 pounds
5 per g/l)(12-24 gallon). For pressure treatment, the building
6 material should be dried to less than 25 percent moisture as oven
7 dry weight and stickered prior to treatment.

8 The processes described above in numbered
9 paragraphs 1, 2, 3, and 4 can be applied to the completed
10 building panel 10, or to the skins 12, to plain EPS, or the core
11 14 separately. The flexibility in applications of the processes
12 allows for the use of pre-treated skins 12, which naturally may
13 be provided by an outside vendor or prepared during the process
14 of manufacturing the entire panels.

15 When the entire laminated panel 10 is treated after its
16 manufacture, it must be stored for curing in a fully supported
17 flat shape. A minimum curing period of at least 1 day, during
18 which the material need not be covered with a vapor barrier, is
19 required to assure lamination. Preferably, a plurality of the
20 panels 10 is wet stacked, and allowed to cure for 3 days.

21 If the skins 12 and the EPS, or the core 14 are treated
22 separately, another embodiment of the treatment process is
23 preferred. The skins 12 are to be treated as described above.
24 The EPS, or the core 14 may be treated as described above or the
25 treatment chemicals may be incorporated in a dry powder form into
26 the core during its formation.

27 5. The simultaneous formation of expanded polystyrene
28 with a sodium borate preservative process. Expanding polystyrene
29 is a well known art. Polystyrene is commercially available in
30 small, irregular beads. Expanded polystyrene is made by pouring

1 the polystyrene beads into a hopper, from which they fall by the
2 force of gravity into a heating chamber where they are heated
3 with steam and forced along an air conveyor while subject to the
4 heat and moisture of the steam, which causes the beads of
5 polystyrene to expand. The beads expand continuously throughout
6 their travel along the air conveyor and into the mold, or blank.
7 The polystyrene beads become hot and tacky and, as they cool,
8 they adhere to one another. Only sufficient pressure to cause
9 the expanded polystyrene beads to stick together is applied. Too
10 much pressure would crush the foam beads and reduce their
11 insulating value. Expanded polystyrene can be formed in molds to
12 any convenient size, such as 4 feet by 8 feet by 5 inches (1.2 x
13 2.4 x .127 m), which is a useful size in the present application.
14 In the preferred embodiment for separately treated skins 12 and
15 cores 14, the treatment chemicals, consisting primarily of
16 disodium octaborate tetrahydrate in powdered form, are added to
17 the polystyrene beads and the two ingredients are mixed together
18 prior to expansion of the polystyrene beads by the steam. In
19 this process, the treatment chemicals are added to the
20 polystyrene beads in sufficient concentration to allow a
21 retention of the treatment chemical of 0.3 pounds per cubic foot
22 (4.8 kg. per cubic meter). In a typical sheet of the EPS, or the
23 core 14 material having the dimensions 4 feet by 8 feet by 5
24 inches (1.2 x 2.4 x .127 m), treatment chemicals would be added
25 in the range of about 3.0-4.1 pounds (1.77 - 1.8 kg), with an
26 ideal amount, assuming thorough mixing and the goal of providing
27 a largely homogenous dispersion of the treatment chemical
28 throughout the EPS, or the core 14 in the desired high
29 concentration, of about 3.9 pounds (1.77 kg). EPS is
30 conventionally manufactured in thicknesses up to about 2 feet

1 (0.6 m). To obtain the desired extent of penetration into such
2 blocks, it may be desired to subject the EPS to pressures greater
3 than 1 atmosphere, and to continue the treatment for a greater
4 time than with thinner blocks of EPS. For equal degrees at
5 penetration and protection, the desired ratios of the treatment
6 chemicals to the volume of EPS being treated remain the same.

7 Following such treatment, the EPS, or the core 14, now
8 infused with treatment chemicals is allowed to cool, is removed
9 from the mold stored fully supported and flat, and allowed to
10 cure for at least 1 day, preferably 3. Curing times and
11 temperatures may be adjusted as desired in accordance with
12 schedules set forth previously. Aging in ambient indoor
13 conditions to promote slow dehydration is preferred. When the
14 the EPS, or the core 14 is satisfactorily cured. Then the
15 building panel 10 can be fabricated as described above, by
16 laminating the two skins 12 on either side of the EPS core 14
17 with a suitable adhesive, such as a urethane laminating adhesive,
18 or in general construction uses.

19 C. Testing the Penetration of the Treatment Chemicals.

20 The penetration of the treatment chemicals into the
21 building panels 10 and EPS can be checked by a chemical test
22 applied to a cross section of the treated material. The testing
23 procedure requires cutting thin cross section about 1/4 to 1 inch
24 (.63 - 2.54 cm) thick (15 cm) from the end of the treated
25 material with a fine-tooth saw. The section is then dried in an
26 oven at a temperature not to exceed 140°F (60°C) for 2-3 hours.
27 Then a 10 percent alcoholic extract of curcumin is applied in a
28 fine uniform spray to the sample and allowed to dry. Then a
29 solution of 6.0 grams salicylic acid in 20 ml of concentrated
30 hydrochloric acid and then diluted to 100 ml with ethanol is

1 similarly sprayed onto the sample and allowed to dry a few
2 minutes. Any resulting color changes in the sample should be
3 observed and assessed 10-15 minutes after application of the
4 second solution. The color graduation from the surface of the
5 sample to the center of the cross section of the sample indicates
6 the extent of penetration of the treatment chemicals. The color
7 turns red where the treatment chemicals are present.

8 Quantitative analysis can also be carried out to
9 determine the amount of treatment chemicals that have become
10 embedded in the treated building materials, if desired.

11 D. Tests of Effectiveness.

12 Numerous independent tests of the effectiveness of the
13 treatment methods described above have been conducted on samples
14 of the building panels 10. They are described below.

15 EXAMPLE ONE

16 The purpose of this test was to monitor the effective
17 penetration of various solutions of a sodium borate, namely
18 disodium octaborate tetrahydrate in a post lamination application
19 to the building panels by utilizing the colorimetric test
20 described above. Eight samples 6 inches by 6 inches by 4 1/2
21 inches (15 x 15 x 11.5 cm) of the building panels were obtained
22 including a 3 5/8 inch (92 cm) expanded polystyrene core with
23 7/16 inch (1.11 cm) skins. Other core thicknesses and skin
24 thicknesses may be substituted if desired. Two solutions of the
25 treatment chemicals were prepared, the first consisting of 3.2
26 pounds (1.45 kg) of the treatment chemicals to 1 gallon (3.77 l)
27 of hot water (130°F; 72°C) and the second solution of 1.8 pounds
28 (5.5 kg) of the treatment chemicals to 1 gallon of hot water
29 (130°F) (72°C). The solutions were separately mixed thoroughly

30

1 and placed in separate labeled hand-held pump sprayers. Sprayers
2 were immersed into a hot water (130°F ; 72°C) bath until use.
3 Each solution was vigorously shaken for 1 minute
4 immediately prior to spraying all sides of the four labeled
5 samples. The solution was applied in sufficient quantity that
6 the solution ran off the samples. The wetted samples were placed
7 on a drying rack for 1 week at ambient drying conditions. After
8 drying, the panels were dissected to obtain cross sections of $1/4$
9 inch (.635 cm), $1/2$ inch(1.27 cm), and 1 inch (2.54 cm) in
10 thickness, using a fine bladed saw. They were tested according
11 to the colorimetric described above, with a 10 percent alcoholic
12 extractive curcumin solution and allowed to dry. Then a fine
13 mist of a solution of 6.0 grams salicylic acid and 20 ml.
14 concentrated HCl diluted to 100 ml. with ethanol was sprayed onto
15 the samples and the color of the samples 10 minutes, 15 minutes,
16 and 30 minutes after treatment were recorded. These tests showed
17 a deep red color on the interior face of all cross sections. The
18 red color was noted on both the core 14 and the skins, indicating
19 penetration and diffusion of the sodium borate throughout the
20 entire building panel 10.

21

EXAMPLE TWO

22 Six samples having to dimensions of 6 inches by 6
23 inches by $4\frac{1}{2}$ inches ($15 \times 15 \times 11.5$ cm), and including a $3\frac{5}{8}$
24 inch (9.2 cm) expanded polystyrene core and $7/16$ inch (1.11 cm)
25 wafer board skins on both sides of the core was sprayed using a
26 hand-held pump sprayer with a single solution of 2 pounds (.90
27 kg) of treatment chemicals dissolved in 1 gallon (3.77 l) of
28 water at 130°F (72°C). The pump sprayer containing the solution
29 was placed in a hot water bath (130°F ; 72°C). Prior to spray
30 application, the solution was vigorously agitated for 1 minute to

1 maximize dissolution of the treatment chemicals and hold any
2 undissolved treatment chemicals in suspension. The application
3 rate was approximately 200-250 square feet per gallon (4.9-6.1
4 square meters per liter). Three of the samples were treated in
5 this manner and were subjected to native Eastern subterranean
6 termites, Reticulitermes flavipes (Kollar). The termites were
7 killed very quickly in the test, which was conducted as follows.

8 A 1,600 gram layer of moist sand and vermiculite
9 mixture was placed in each of six 5 gallon (18.55 l) lard
10 containers with lids as a substrate for termites. The
11 approximate mixture of the substrate was: 363 grams vermiculite;
12 3,584 grams of sand, and 1,670 grams water (that is, 3 parts of
13 sand to 3 parts of vermiculite by volume). A brick sterilized by
14 heating in an oven was placed in each substrate layer to support
15 the panel sample above the moist substrate.

16 Counts of termites in the three 1 gram samples of
17 termites averaged 691 termites, therefore 14.4 grams (4,975 live
18 termites) of Reticulitermes flavipes termites of mixed castes
19 were placed in each can on March 24, 1989 after collection two
20 days earlier from naturally infested dead southern pine logs.

21 The exposure was ended on April 7, 1989 because all the
22 termites in the treated building panels 10 were dead. It further
23 appeared that these termites had been dead after only one week of
24 exposure to the treated building panel samples. Closer
25 examination revealed that 3 prelates (adult termites), 11
26 soldiers; 33 prelates, and 3 soldiers and 16 prelates, survived
27 in the respective three samples. All survivors are non-feeding
28 forms of termites that apparently did not receive sufficient
29 insecticidal and fungicidal before all the workers died. These
30 forms of termites will die from starvation in the absence of

1 workers. At the same time, the termites exposed to the untreated
2 panels remained healthy.

3 Thirty-two samples of building control panels measuring
4 12 inches by 12 inches by 4 1/2 inches (30.5 x 30.5 x 11.4 cm)
5 and including a 3 5/8 inch (9.2 cm) expanded polystyrene core
6 laminated to 7/16 inch (1.11 cm) wafer board skins and including
7 a horizontal electrical chase and a vertical electrical chase,
8 both measuring 1 1/2 inches (3.8 cm) in diameter located in the
9 center of the samples was treated as described in example two
10 above, with the spray being applied by a common hand-held garden
11 sprayer.

12 These samples were subjected to two large colonies each
13 of Camponotus modoc and C. vininus (carpenter ants) collected in
14 the wild in the Moscow mountains near Viola, Idaho and were
15 placed in garbage cans with a rim lining of petroleum jelly mixed
16 with mineral oil to prevent escape. Sets of five treated or
17 untreated sample panels were placed in each of the four carpenter
18 ant colonies. Water and honey dishes were placed on the top
19 panels of the cans. The panels were observed at intervals to
20 determine the rate of ant chewing and death due to the treatment.

21 On August 18, 1989 the ants were placed with the
22 panels. By the next day the C. modoc colony had started to chew
23 into the polystyrene cores of the control panels, i.e., the
24 untreated panels. On August 28, the C. vininus had started
25 chewing into the control panels and the C. modoc had excavated
26 more tunnels. No chewing occurred in either of the panel sets
27 that had been treated with the treatment chemicals, and dead ants
28 were seen on the bottoms of the garbage cans. On September 4,
29 about 95 percent of the C. modoc in the treated panels were dead,
30 with no chewing on the polystyrene. About 70 percent of the C.

1 vininus were also dead without any chewing. All but a few of the
2 C. modoc and the C. vininus with the treated panels were dead by
3 September 10. Conversely, the untreated panels were heavily
4 burrowed by the C. modoc, although not by the C. vininus. In
5 conclusion, the treatment was effective and worked fairly
6 quickly, and seems to have deterred the ants from chewing as well
7 as killing them.

8 EXAMPLE THREE

9 The purpose of this example was to monitor the effect,
10 if any, of the chemical treatments described herein on the bond
11 strength of the treated building panels by treating them with a
12 sodium borate, such as disodium octaborate tetrahydrate and then
13 using the AFM Tension Test. In particular, three samples of
14 building panel having dimensions 6 inches by 6 inches by 4 1/2
15 inches (15 x 15 x 11.5 cm), including a 3 5/8 inch (9.2 cm)
16 expand of polystyrene core with 7/16 inch (1.11 cm) oriented
17 strand board (OSB) skins secured by a suitable urethane
18 laminating adhesive were treated with the treatment chemicals. A
19 solution of 2 pounds (.90 kg) of treatment chemicals to 1 gallon
20 (3.77 l) of hot water (130°F; 72°C) was prepared and thoroughly
21 mixed and poured into a hand-held pump sprayer. The hot solution
22 was applied directly via spray to all sides of the three samples
23 in sufficient quantity that the solution ran off the samples.
24 The wetted samples were placed on a drying rack for one week in
25 abient conditions. Then they were placed in standard cardboard
26 containers and allowed further aging for six months in an abient
27 conditions. After six months of ambient storage they were
28 subjected to a standard AFM R-Control Quality Control tension
29 test, similar to a standard ASTM C-297. The tension test gauge
30

1 readings were documented and the actual bond strength calculated.

2 The samples determined in this test were:

	<u>Gauge Reading</u>	<u>Tensile Strength</u>
4 Sample #1	404 PSIG	23.6 lbs/in ²
5 Sample #2	385 PSIG	22.5 lbs/in ²
5 Sample #3	385 PSIG	22.5 lbs/in ²

6 These tensile strengths are the same as those of
7 untreated building panels 10. Accordingly, it appears that the
8 treatment regimen described in this example has no deleterious
9 effects on the bonds between the waferboard, or skins, and the
10 core of the building panel 10 that was present at the time of
11 panel construction.

12 In operation, it is important that the treated building
13 panels 10 not be exposed to excess moisture, or rain, after
14 treatment. During transportation and storage of the building
15 panels 10 therefore, they must be kept out of the rain to protect
16 the chemicals. Building codes almost always require the skins 12
17 to be covered with another layer of building material. Interior
18 walls must be covered with a 15 minute thermal index material,
19 such as gypsum board, to meet fire code requirements. Exterior
20 walls must be covered with sheathing or cladding, such as
21 clapboards to meet building codes. The cladding or wallboard is
22 then finished as desired by the consumer. These interior and
23 exterior cladding materials protect the treated building panels
24 10 from rain and other elements. When the building panels 10 are
25 kept dry by cladding or other means, the treatment is permanent,
26 protecting the building panels 10 from many types of insects,
27 molds, and fungi for the life of the structure.

28 While certain forms of this invention have been
29 illustrated and described herein, the invention is not limited
30

1 thereto, except insofar as such limitations are included in the
2 following claims.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30