

ប្រហ្មប៊ីលីតេគឺជាផ្នែកមួយយ៉ាងសំខាន់ដែលផ្សារភ្ជាប់ស្ថិតិអធិប្បាយ (descriptive statistics) ទៅនឹង ស្ថិតិវិភាគ (statistical analysis) ។

ការរសិក្សាទៅលើ descriptive statistics ផ្ដល់នូវការរួមចំនែកយ៉ាងធំធេងក្នុងការបង្កើត mathematics models ដើម្បីសិក្សាទៅលើបាតុភូតចៃដន្យ ដែលតែងតែកើតឡើងនៅក្នុងជីវភាពរស់នៅរបស់យើង។ លក្ខណៈចំបងនៃបាតុភូតចៃដន្យទាំងនេះត្រូវបានឆ្លើយតបទៅនឹងការគណនានៃ ប្រូបាប៊ីលីតេដែលបានរីក ចំរើនយ៉ាងលឿននៅក្នុងគណិតវិទ្យា ។

ការសិក្សាទៅលើមូលដ្ឋានចំបងនៃទ្រឹស្តី ប្រូបាប៊ីលីតេបានកើតឡើងនៅក្នុងសតវត្សទី XVI-XVII ដោយ លោក Kardana, Ferma, Pascal និងអ្នកប្រាជ្ញមួយចំនួនឡេត។

១- តើប្រូបាប៊ីលីតេសិក្សាអំពីអ្វី?

ប្រូបាប៊ីលីតេមានតួនាទីយ៉ាងសំខាន់ក្នុងការសិក្សាទៅលើបាតុភូត ចៃដន្យក៏ដូចជាការសិក្សាតាមដានទៅលើ ព្រឹត្តិការណ៍។

យើងចែកព្រឹត្តិការណ៍ ជា 3 ផ្នែកធំ ១:

- ព្រឹត្តិការណ៍ពិតប្រាកដៈ

ជាព្រឹត្តិការណ៏មួយដែលចាំបាច់ត្រូវតែកើតឡើងក្រោមលក្ខខ័ណ្ឌមួយច្បាស់លាស់ ។

ឧទាហរណ៏ :

ទឹកនៅក្នុងសម្ពាធបរិយាកាសធម្មតា កកនៅ $0^{\circ}\mathrm{C}$ ។ សម្ពាធបរិយាកាសធម្មតា ជាលក្ខខ័ណ្ឌច្បាស់លាស់ ចំណែកឯ កកនៅ 0°C ជាព្រឹត្តិការណ៍ពិតប្រាកដ។

- ព្រឹត្តការណ៍មិនអាចមានឬមិនពិត:

ក្រោមលក្ខខ័ណ្ឌមួយច្បាស់លាស់ព្រឹត្តិការណ៏នេះមិនអាចកើតមានឡើងទេ។

ឧទាហវណ៏ៈ

នៅក្នុងសម្ពាធបរិយាកាសធម្មតា ទឹក កក នៅ 20°C ។ លក្ខខណ្ឌរបស់យើងនៅពេលនេះគឺ សម្ពាត បរិយាកាសធម្មតា ចំនែកឯ ទឹក កកនៅ 20°C ជាព្រឹត្តិការណ៏មិនពិត។

- ព្រឹត្តិការណ៍ចៃងន្យះ

ជាព្រឹត្តិការណ៏មួយដែលកើតឡើងហើយដែលយើងពុំអាចកំណត់ទុកនូវលទ្ធផលរបស់វាជាមុនបាន។

ឧទាហរណ៍ :

នៅក្នុងការបោះគ្រាប់ឡូកឡាក់ យើងពុំអាចកំណត់ជាមុនបាននូវលទ្ធផលរបស់វា។ ព្រឹត្តិការណ៏ដែលនឹងកើត ឡើងជាព្រឹត្តិការណ៏ចៃដន្យ។

ដូច្នេះយើងអាចនិយាយថា ប្រូប្បប៊ីលីតេសិក្សាទៅលើច្បាប់បំរំរបំរូលនៃព្រឹត្តិការណ៏ដែលនឹងកើតមានឡើង នៅក្នុងការពិសោធ ។

វិញ្ញាសា (ការពិសោធ) និងព្រឹត្តិការណ៍ថៃដន្យះ

ះយន្តអាយុន្ន

ិវិញ្ញាសាជាទង្វើមួយដែលគេ ពុំអាចកំនត់ច្បាស់លាស់ជាមុននូវលទ្ធផលរបស់វា។

ខទាហរណ៏ :

នៅក្នុងថង់មួយមានកូនឃ្លីពណ៌ជាច្រើន ។ គេដកកូនឃ្លីមួយពីក្នុងថង់នោះ ។ ការដកកូនឃ្លីចេញពីក្នុងថង់ជា វិញ្ណាសា ចំនែកឯការកំណត់ពណ៌សំបុររបស់កូនឃ្លីដែលដកចេញមកនេះជា *ព្រឹត្តិការណ៍ចៃដន្យ* ។

ព្រឹត្តិការណ៍មិនចុះសំរុងគ្នា:

គេនិយាយថាព្រឹត្តិការណ៏ពីរជាព្រឹត្តិការណ៏មិនចុះសំរុងគ្នាកាលណាព្រឹត្តិការណ៏ទាំងពីរនេះពុំអាចកើតឡើង ព្រមពេលជាមួយគ្នាឬរួមគ្នា ។

ឧទាហរណ៏ះ

នៅក្នុងការបោះកាក់មួយដងយើងអាចទទួលបានឬមួយផ្នែក រូប ឬមួយផ្នែកខាងលេខ។ បានសេចក្ដីថា រូប និងលេខពុំអាចកើតឡើងព្រមពេលជាមួយគ្នាទេ។ ព្រឹត្តិការណ៏ទាំងពីរនេះជាព្រឹត្តិការណ៏មិនចុះសំរុងគ្នា។

ចំណាំ:

គេតែងតាងព្រឹត្តិការណ៏ដោយអក្សរ A,B,C,D,... ។ តាមន័យរបស់គណិតវិទ្យា បើ A និង B ជាព្រឹត្តិការណ៏ពីរមិនចុះសំរុងគ្នា នោះ:

$$A \cap B = \varphi$$

សាកល:

សាកល Ω គឺជាសំនុំលទ្ធផលដែលអាចកើតមានឡើងនៅក្នុងការពិសោធន៍ (នៃវិញ្ញាសា) ។ លទ្ធផល នីមួយ១ដែលអាចកើតមានឡើងនៃវិញ្ញាសាអោយឈ្មោះថា *ព្រឹត្តិកាណ៏ឯកធាតុ* (elementary events) ។ ព្រឹត្តិការណ៏ឯកធាតុច្រើនតាងដោយ $\omega_1, \omega_2, \omega_3, \ldots, \omega_n$ ។ គ្រប់ព្រឹត្តិការណ៏ឯកធាតុដែលយើងចង់ អោយកើតមានឡើងនៃវិញ្ញាសាអោយឈ្មោះថា *ព្រឹត្តិការណ៏នៃ ករណីស្រប* ចំណែកឯព្រឹត្តិការណ៏ឯកធាតុ ដែលអាចកើតមានឡើងនៃវិញ្ញាសាអោយឈ្មោះថា *ព្រឹត្តិការណ៏នៃករណីអាច*។

ឧទាហរណ៍ៈ

តេមានសំនួរនៃការអង្កេតដូចខាងក្រោម:

តើអ្នកចូលចិត្តទៅកំសាន្តនៅតំបន់ទេសចរណ៏ណាជាងគេនៅក្នុងប្រទេសកម្ពុជា?

>តំបន់ឆ្នេរ >តំបន់ភ្នំ >អង្គវត្ត >ផ្សេងពីនេះ

ក្នុងករណីនេះសាកលពៃតិមានដែលអាចទទួលបានពីការអង្កេតមាន **តំបន់ឆ្នេរ តំបន់ភ្នំ អង្គរវត្ត ផ្សេងពីនេះ** បង្កើតបានជាសាកល Ω ។

និយមន័យ:

ប្រូប្បចិសិតនៃព្រឹត្តិការណ៍ A គឺជាផលធ្យើបរវាងចំនួនព្រឹត្តិការណ៍នៃករណ៏ស្របនឹងចំនួនព្រឹត្តិការណ៍នៃ ករណីអាច ។

$$P(A) = \frac{m}{n}$$

$$\mathfrak{V} \qquad P(A) = \frac{Card(A)}{Card(\Omega)}$$

 ${f m}$ -ចំនួនព្រឹត្តិការណ៏នៃករណ៏ស្រប ; ${f n}$ -ចំនួនព្រឹត្តិការណ៏នៃករណីអាច ។ ក្នុងលក្ខខណ្ឌនេះយើងសន្មតថា ${f propertion}$ ព្រឹត្តិការណ៏ឯកធាតុទាំងអស់មិនចុះសំរុងគ្នា មានសមភាពនឹងគ្នាហើយបង្កើត បានជាសាកល ${f \Omega}$ ។

ចំណាំ:

តាមការបង្ហាញខាងលើប្រូបាប៊ីលីតេគឺជាតំលៃលេខ ដែលកំណត់លទ្ធភាពនៃការកើតឡើងនៃព្រឹត្តការណ៍។

២- លក្ខណៈសំគាល់នៃប្រូបាប៊ីលីតេះ

- ប្របាប៊ីលីតេនៃព្រឹត្តិការណ៍ពិតប្រាកដស្ចើមួយ
- ប្របាប៊ីលីតេនៃព្រឹត្តិការណ៍នៃព្រឹត្តិការណ៍មិនអាចមានស្មើសូន្យ
- ប្រជាប៊ីលីតេនៃព្រឹត្តិការណ៍ចៃដន្យជាចំនួនវិជ្ជមានដែលកំណត់នៅក្នុងចន្លោះសូន្យនិងមួយ **។**

$$0 \le P(A) \le 1$$

M-តំរៀប(arrangement) , ចំហាស់(Permutation), និងបន្សំ(Combination):

- តំរៀប(មិនសារឡើងវិញូ)

គេអោយសំនុំរាប់អស់ E ដែលមាន n ធាតុ ។ ដែលហៅថាតំរ្យេបនៃ m ធាតុនៃសំនុំ E គឺជាអនុវត្តន៏ ប្រកាន់នីមួយៗពី សំនុំ [1,m] ទៅសំនុំ E ។

$$A_n^m = n(n-1)(n-2)...(n-m+1) = \frac{n!}{(n-m)!}$$

Splus : choose(n,m,order.matters=T)

ឧទាហលោំះ

តើគេអាចសរសេរលេខ 2 ខ្ទង់ដែលបង្កើតឡើងដោយលេខ 1,2,3 បានប៉ុន្មានរប្បើប?

$$A_3^2 = 3*2 = 6$$
 {12,13,21,23,31,32}

 $\underline{\mathring{\mathbf{s}} \mathring{\mathbf{m}}}$: ក្នុងករណីនៃតំរ្យេសារឡើងវិញ $A_n^m = n^m$

- ចំលាស់ (Permutation)

បើ n=m តំរ្យេប A_n^m ហៅថាចំលាស់នៃ n ធាតុដែលតាងដោយ P_n ដែលកំណត់ : $P_n = A_n^n = n! = 1.2.3...n$

ឧទាហរណ៏ះ

តើគេអាចសរសេរលេខ 3ខ្ទង់ដែលបង្កឡើងដោយលេខ 1,2,3 បានប៉ុន្មានរប្បើប ?

$$A_3^3 = P_3 = 1*2*3 = 6$$

{123,132,213,231,312,321}

- បន្តរំ (Combination)

គេអោយសំនុំរាប់អស់ E ដែលមាន $\mathbf n$ ធាតុ ។ ដែលហៅថាបន្សំនៃ $\mathbf m$ ធាតុយកក្នុងសំនុំ E គឺជាផ្នែក មួយនៃសំនុំ $\mathbf E$ ដែលមាន $\mathbf m$ ធាតុ ហើយ តាងដោយ $\mathbf C_n^{^m} or \binom nm$ ។ $\mathbf C_n^{^m} = \frac{n!}{m!(n-m)!}$

$$C_n^m = \frac{n!}{m!(n-m)!}$$

<u>S-plus:</u> choose(n,m,order.matters=F) ឧទាហរណ៍ះ

តើគេអាចទាញប្បេ 2 សន្លឹកពីក្នុងប្បេដែលមាន 32 សន្លឹកបានប៉ុន្មានរប្បេប?

$$C_{32}^2 = \frac{32!}{2!30!}$$

ចំណាំ :

ក្នុងការដោះស្រាយបញ្ហាដែលទាក់ទងទៅនឹងបន្សំ គេច្រើនអនុវត្តក្បួនដូចខាងក្រោម:

- បើសិនណាវត្ថុ A ត្រូវបានជ្រើសរើសដោយ n រប្បេប ហើយវត្ថុ B ត្រូវបានជ្រើសរើសដោយ m រប្បេប ក្នុងចំណោមវត្ថុមួយចំនួននោះ ការជ្រើសរើសវត្ថុ A ឬ B អាចមាន n+m រប្បប។
- បើសិនណាវត្ថុ A ត្រូវបានជ្រើសរើសដោយ n រប្បើបហើយបន្ទាប់ពីការជ្រើសរើសវត្ថុ A វត្ថុ B ត្រូវបាន ជ្រើសដោយ mរប្បើប នោះគូ (A,B) ត្រូវបានជ្រើសរើសដោយ n+m រប្បើប។

ឧទាហរណ៍មួយចំនួនក្នុងការគណនាប្រូបមើលីតេ : ຊອາຫາໜໍ້ອ:

បុរសម្នាក់មានបំណងទូរស័ព្ទ ទៅមិត្តរបស់គាត់ ប៉ុន្តែគាត់ភ្លេចលេខដំបូងមួយខ្ទង់។ រកប្រួបាប៊ីលីតេដើម្បី អោយបុរសរូបនេះចុចចំលេខដែលគាត់ត្រូវការ ។

តាង A ជាព្រឹត្តិការណ៏ដែលបុរសរូបនេះចុចចំលេខដែលគាត់ត្រូវការ ។ ចំនួនព្រឹត្តិការណ៏នៃករណីអាចស្នើ 10 ដោយទូរសព្ទ័មាន 10 លេខ ដូច្នេះ:

$$P(A) = \frac{1}{10}$$

ទទាហរណ៍ ២ :

បុរសម្នាក់បានភ្លេចលេខទូរស័ព្ទ 2 ខ្ទង់ចុងក្រោយនៃលេខទូរស័ព្ទរបស់មិត្តគាត់ ហើយគាត់ដឹងឡេតថាលេខ ទាំងពីរខ្ទង់ចុងក្រោយនេះខុសគ្នា ។ រកប្រូបាប៊ីលីតេដើម្បីអោយបុរសនេះ ចុចចំលេខដែលគាត់ត្រូវការនៅ លើកទីមួយ ?

តាង Aជាព្រឹត្តិការណ៍ដែលបុរសម្នាក់នេះចុចចំលេខដែលគាត់ត្រូវការ ។

$$P(A) = \frac{1}{A_{10}^2}$$

ឧទាហរណ៍ 3 :

គេបោះគ្រាប់ឡុកឡាក់ 2 គ្រាប់ ។ រកប្រូបាប៊ីលីតេដើម្បីអោយគ្រាប់ឡុកឡាក់ទាំងពីរនេះស្ទើ 4 ។ តាង Aជាព្រឹត្តិការណ៏ដើម្បីអោយគ្រាប់ឡុកឡាក់ទាំងពីរមានផលបូកស្ទើ 4 ។ យើងឃើញថាគ្រាប់ឡុកឡាក់ នីមួយៗអាចចេញបាន 6រប្បើប ។ ដូច្នេះគ្រាប់ឡុកឡាក់ទាំងពីរនេះអាចចេញបាន 6*6 រប្បើប ។ ចំនួនព្រឹត្តិការណ៏នៃករណីអាចស្ទើ 36 រប្បើប ឯចំនួនព្រឹត្តិការណ៏នៃករណីស្របស្ទើ 3 គឺ:

$$\{(1,3),(3,1),(2,2)\}$$
$$P(A) = \frac{3}{36}$$

ឧទាហរណ៍អនុវត្តន៏:

១-នៅក្នុងសហគ្រាសមួយមានលោហធាតុ 10 ប្រភេទហើយដែលមាន 7 ប្រភេទជាប្រភេទលេខមួយ ។ រកប្រូបាប៊ីលីតេដើម្បីអោយក្នុងចំណោមលោហធាតុ 6 ប្រភេទដែលគេយកចេញពីសហគ្រាស នោះមាន លោហធាតុ 4 ប្រភេទជាប្រភេទលេខមួយ ។

២-គេទាញប៊្យេីវ 5 សន្លឹកពីក្នុងប៊្យេីវ 52 សន្លឹក។ តើលទ្ធផលនៃការទាញប៊្យេីវនេះអាចមានប៉ុន្មានរប្យេប ខុស១គ្នា ?

៣-សំនុំមួយមាន 5 ធាតុ តើគេអាចបង្កើតសំនុំរងដែលមាន 3 ធាតុបានប៉ុន្មានរប្បប្រ?

G- S-plus: Factorial, Combinations, Permutation

ទំរង់ code ក្នុងការប្រើប្រាស់

factorial(n) choose(n, k, order.matters=F) choose.multinomial(n, m)

ARGUMENTS ដែលចាំបាច់:

n integer vector. Must be length 1 for choose.multinomial. Need not be integer for

```
factorial.
k integer vector.
```

m integer vector, which sums to n.

តំលៃ:

```
a numeric vector factorial(n) is n! choose(n, k) is n! / (k! (n-k)!), i.e. the binomial coefficients. choose(n, k, order.matters=T) is n! / (n-k)!, i.e. the number of ordered subsets of length k from a set with n distinct elements. choose.multinomial(n, m) is n!/ prod(m!), the multinomial coefficients.
```

ឧទាហរណ៏

```
factorial(5)
choose(5, 2)
choose(5, -1:6)
choose.multinomial(6, c(3,1,2))
choose(5, 2, order=T)
```


manggangsishdigie

១- ប្រមាណវិធីបូក

• បើ A និង B ជាព្រឹត្តិកាណ៏ពីរមិនចុះសំរុងគ្នា (disjoint) នោះ :

$$P(A+B) = P(A) + P(B)$$

ជាទូទៅបើ A1,A2,.....,An ជាព្រឹត្តិការណ៏មិនចុះសំរុងគ្នានោះ :

$$P(\bigcup_{i=1}^{n} A_i) = \bigcup_{i=1}^{n} A_i$$

- ullet បើ ${
 m A1,A2,.....,An}$ ជាព្រឹត្តិការណ៏ឯកធាតុដែលបង្កើតបានជាសាកល Ω នោះ :
- ព្រឹត្តិការណ៍ពីរជាព្រឹត្តិការណ៍ផ្ទុយគ្នាកាលណា ព្រឹត្តិការណ៍ទាំងពីរនេះបង្កើតបានជាសាកល Ω ។ គេ តែងតាងព្រឹត្តិការណ៍ផ្ទុយគ្នាដោយ \overline{A} ។ ដូច្នេះបើ \overline{A} និង A ជាព្រឹត្តិការណ៍ពីរផ្ទុយគ្នានោះ :

$$P(A) + P(\overline{A}) = 1$$

២- ស្វ័យសត្យនៃប្រូបាប៊ីលីតេ :

$$\tilde{n}$$
 - $\forall A \subset \Omega \Rightarrow 0 \leq P(A) \leq 1$

$$2 - P(\Omega) = 1$$

$$\mathfrak{F} - \forall A, B \subset \Omega, A \cap B = \varphi \Longrightarrow P(A \cup B) = P(A) + p(B) \quad \mathsf{I}$$

៣- ប្រមាណវិធីគុណនៃព្រឹត្តិការណ៍ :

ផលគុណព្រឹត្តិការណ៏ពីរ A និង B គឺជាព្រឹត្តិការណ៏ដែលកើតឡើងរួមគ្នារវាងព្រឹត្តិការណ៏ទាំងពីរ ។ **ឧទាហរណ៏ៈ**

បើ A ជាលោហៈធាតុប្រភេទលេខមួយ ហើយ B ជាលោហៈធាតុដែលលាបពណ៌ នោះលោហៈធាត AB ជាលោហៈធាតុប្រភេទលេខមួយហើយលាបពណ៌ ។

៤-<u>ប្រ្</u>ពាប៊ីលីតេមានលក្ខខ័ណ្ឌ (conditional probability):

ប្រូប្ប៊ីលីតេមានលក្ខខណ្ឌ $P(A \setminus B)$ គឺជា ប្រូប្ប៊ីលីតេនៃព្រឹត្តិការណ៍ A ដែលបានកើតឡើងក្នុងស្ថានភាព មួយនៅពេលដែលព្រឹត្តិការណ៍ B បានកើតរួច មកហើយ m 1

ឧទាហរណ៍ :

នៅក្នុងថង់មួយមានប៊ូលពណ៌ស 3 និងប៊ូលពណ៌ខ្មៅ 3 ។ គេយកប៊ូលចេញពីក្នុងថងម្ដងមួយៗចំនួនពីរ លើកដោយមិនដាក់ចូលទៅវិញ ។ រកប្រូបាប៊ីលីតេដើម្បីអោយការដកចេញប៊ូលពីក្នុងថង់លើកទីពីរជាប៊ូល ពណ៌ស បើសិនណាការដកចេញលើកទីមួយជាប៊ូលពណ៌ខ្មៅ ។

បើ A ជាព្រឹត្តិការណ៍នៃប៊ូលពណ៌ខ្មៅ

B ជាព្រឹត្តិការណ៏នៃប៊ូលពណ៌ ស

$$\P P(A) = \frac{3}{6} = \frac{1}{2}; P(A * B) = P(A \cap B) = \frac{3 * 3}{A_6^2} = \frac{9}{30} = \frac{3}{10} \ \P$$

P(B ដោយស្គាល់ A) =
$$\frac{\frac{3}{10}}{\frac{1}{2}} = \frac{3}{5}$$

ប្រូប្រ៊ីលីតេនេះហៅថាប្រូប្រ៊ីលីតេ B មានលក្ខខណ្ឌ A ហើយគេច្រើនតែតាងដោយ $P(B \backslash A)$ ឬ

$$P_{\scriptscriptstyle A}{}^{(B)}$$
 $^{\mathsf{q}}$

និយមន័យ :

ប្រូប្បចិ៍លីតេមានលក្ខខ័ណ្ឌនៃព្រឹត្តិការណ៏ B ក្រោមលក្ខខ័ណ្ឌដែលព្រឹត្តិការណ៏ A បានកើតឡើងរួចមកហើយ កំណត់ដោយ:

$$P(B \setminus A) = \frac{P(AB)}{P(A)}, 0 < P(A) \le 1$$

$$P(AB) = P(B \setminus A) * P(A)$$

ចំណាំ:

$$P(AB) = P(BA) \Leftrightarrow P(A) * P(B \setminus A) = P(B)P(A \setminus B)$$

វិបាក:

$$P(A_1 \cdot A_2 \cdot ... A_n) = P(A_1)P(A_2 \setminus A_1)P(A_3 \setminus A_1 A_2)...P(A_n \setminus A_1 A_2 \cdot ... A_{n-1})$$

ឧទាហរណ៍ :

១-អ្នកលេងកូនឃ្លីម្នាក់មានឃ្លីស 3 គ្រាប់ និងឃ្លីក្រហម 7 គ្រាប់ ។ គាត់បានដកឃ្លីចេញពីហោប៉ៅ 1 គ្រាប់ ដោយមិនដាក់ទៅវិញ) បន្ទាប់មកដកមួយគ្រាប់ឡើត ។ រកប្រូបាប៊ីលីតេដើម្បីអោយកូនឃ្លីដែលគាត់ដក ចេញលើកទីមួយជាឃ្លីពណ៌ស និងលើកទីពីរជាឃ្លីពណ៌ក្រហម ។

ចំលើយ: 7/30

- ២- គេបោះគ្រាប់ឡុកឡាក់ពីរគ្រាប់ គ្រាប់ឡូកឡាក់ទីមួយធ្វើអំពីភ្លុកនិងគ្រាប់ឡុកឡាក់ទីពីរធ្វើអំពីស្នែង។
 - ក- កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយផលបូកគ្រាប់ឡូកឡាក់ទាំងពីរស្ទើ 8 ។
 - ខ- កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយផលបូកគ្រាប់ឡុកឡាក់តូចជាង 10 ។

g: Hughagggglandugg

១-ទ្រឹស្តីបទ១

បើ A និង B ជាព្រឹត្តិការណ៍ចៃដន្យពីរ នោះ:

$$P(A+B) = P(A) + P(B) - P(AB)$$

សំរាយបំភ្លឺះ

A+B កើតមានឡើងនៅពេលណាដែលមានការកើតឡើងនៃព្រឹត្តិការណ៏ណាមួយក្នុងចំណោមព្រឹត្តិការណ៏ ទាំងពីរ:

$$A\overline{B}, \overline{A}B, AB$$

ដូច្នេះ
$$P(A+B) = P(A\overline{B}) + P(\overline{AB}) + P(AB)$$
 (1)
$$P(A) = P(A\overline{B}) + P(AB) \Rightarrow P(A\overline{B}) = P(A) - P(AB), (2)$$

$$P(B) = P(\overline{AB}) + P(AB) \Rightarrow P(\overline{AB}) = P(B) + P(AB), (3)$$

ជំនួស (2) និង (3) ក្នុង(1) យើងបាន:

$$P(A+B) = P(A) + P(B) - P(AB)$$

២-លក្ខណៈសំគាល់មួយចំនួនៈ

• បើ A និង B ជាព្រឹត្តិការណ៏មិនទាក់ទងគ្នា (independent events)

$$P(A + B) = P(A) + P(B) - P(A) * P(B)$$

• បើ A និង B ជាព្រឹត្តិការណ៏ទាក់ទងគ្នា (dependent events)

$$P(A+B) = P(A) + P(B) - P(A)P(B \setminus A)$$

• បើ A និង B ជាព្រឹត្តិការណ៏មិនចុះសំរុងគ្នា (disjoint)

$$P(A+B) = P(A) + P(B)$$
 signs $P(AB) = 0$

៣-ទ្រឹស្តីបទ ២:

ប្រូបាប៊ីលីតេនៃព្រឹត្តិការណ៍ A ដែលកើតឡើងក្រោមលក្ខខ័ណ្ឌនៃការកើតឡើងព្រឹត្តិការណ៍ណាមួយក្នុង ចំណោមព្រឹត្តិការណ៍មិនចុះសំរុងគ្នា B1,B2,...,Bn ដែលបង្កើតជាសាកលកំណត់ដោយ:

$$P(A) = P(B_1)P(A \setminus B_1) + P(B_2)P(A \setminus B_2) + \dots + P(B_n)P(A \setminus B_n)$$
$$= \sum_{i=1}^{n} P(B_i)P(A \setminus B_i)$$

<u> ឧទាហរ</u>ណ៍់១:

នៅក្នុងកេសទីមួយមានចង្កៀង 20 គ្រឿងដែលក្នុងនោះមាន 18 គ្រឿងអាចប្រើប្រាស់បាន ។ នៅក្នុងកេស ទីពីរមានចង្កៀង 10 គ្រឿងដែលក្នុងនោះមាន 9 គ្រឿងអាចប្រើប្រាស់បាន ។ គេយកចង្កៀងមួយពីកេស ទីពីរដាក់ទៅក្នុងកេសទីមួយ ។ រកប្រូបាប៊ីលីតេដើម្បីអោយចង្កៀងមួយដែលយកចេញពីកេសទីមួយជា ចង្កៀងអាចប្រើប្រាស់បាន ។

ចំលើយ:

តាង A ជាព្រឹត្តិការណ៍ "ចង្ក្យេងដែលយកចេញពីកេសទីមួយជាចង្ក្យេងដែលអាចប្រើប្រាស់បាន" ហើយ B_1 ជាព្រឹត្តិការណ៍ "ចង្ក្យេងដែលយកចេញពីកេសទីពីរដាក់ចូលកេសទីមួយអាចប្រើប្រាស់បាន" និង B_2 ជា ព្រឹត្តិការណ៍ "ចង្ក្យេងដែលយកចេញពីកេសទីពីរដាក់ចូលកេសទីមួយមិនអាចប្រើប្រាស់បាន" ។

$$P(B_1) = \frac{9}{10}; P(B_2) = \frac{1}{10}$$

ដូច្នេះប្រូបប៊ីលីតេដើម្បីអោយចង្ក្បងដែលយកចេញពីកេសទីមួយអាចប្រើប្រាស់បានជាប្រូបប៊ីលីតេមាន លក្ខខ័ណ្ឌដែលកំណត់ដោយ $P(A \setminus B_1) = \frac{19}{21}$ (ក្រោមលក្ខខណ្ឌ $B_1 \to 1$ ដូចគ្នានេះដែរប្រូបប៊ីលីតេដើម្បី អោយចង្ក្បងដែលយកចេញពីកេសទីមួយអាចប្រើប្រាស់បានក្រោមលក្ខខណ្ឌ B_2 កំណត់ដោយ:

$$P(A \setminus B_2) = \frac{18}{21}$$

ນູ້ເຫຼືະ
$$P(A) = P(B_1)P(A \setminus B_1) + P(B_2)P(A \setminus B_2)$$

= $\frac{9}{10} * \frac{19}{21} + \frac{1}{10} * \frac{18}{21} = 0.9$

ឧទាហរណ៏ះ

មានមនុស្សចំនួន 6 នាក់បានចូលលេងល្បែងដ៏សាហាវ មួយ ឈ្មោះថា "Roulette Russe" ។ អ្នកទាំង 6 នោះមានឈ្មោះ A,B,C,D,E,F ដែលត្រូវលេងតាមលំដាប់នេះ ។ នៅក្នុងល្បែងនេះគេយកកាំភ្លើង "revolver" ដែលអាចដាក់បាន 6 គ្រាប់ ។ អ្នកទីមួយត្រូវដាក់គ្រាប់កាំភ្លើងមួយគ្រាប់ហើយ បង្វិលដុំកាំភ្លើង ដោយ ថៃដន្យរួចបាញ់ខ្លួនឯង ។ បើអ្នកទីមួយមិនស្លាប់ អ្នកទីពីវត្រូវដាក់បន្ថែមមួយគ្រាប់ទៀតរួចបាញ់ខ្លួនឯង ។ បើអ្នកទីមួយគ្រាប់ទៀត ហើយបើគ្មានអ្នកស្លាប់ទេគេ បន្តធ្វើរបៀបនេះ រហូតដល់អ្នកទី 6 ។ តើអ្នកមានលេខរៀងទីប៉ុន្មានដែលមានសំណាងជាងគេនៅក្នុងទង្វើ នេះ?

ចំលើយ :

តាង A ជាព្រឹត្តិការណ៍ ៉បុគ្គល A ត្រូវស្លាប់៉

 \overline{A} ជាព្រឹត្តិការណ៍ "បុគ្គល A មិនស្លាប់"

ទីតាំងទី ១:

$$P(A) = \frac{1}{6}$$

ទីតាំងទី ២:

$$P(\overline{A} \cap B) = P(\overline{A})P(B \setminus \overline{A}) = \frac{5}{6} * \frac{2}{6} = \frac{5}{18}$$

ទីតាំងទី៣:

$$P(\overline{A} \cap \overline{B} \cap C) = P(\overline{A})P(\overline{B} \setminus \overline{A})P(C \setminus \overline{A} \cap \overline{B}) = \frac{5}{6} * \frac{4}{6} * \frac{3}{6} = \frac{5}{18}$$

ទីពាំងទី៤:

$$P(\overline{A} \cap \overline{B} \cap \overline{C} \cap D) = P(\overline{A})P(\overline{B} \setminus \overline{A})P(\overline{C} \setminus \overline{A} \cap \overline{B})P(D \setminus \overline{A} \cap \overline{B} \cap \overline{C})$$

$$P(\overline{A} \cap \overline{B} \cap \overline{C} \cap D) = \frac{5}{6} * \frac{4}{6} * \frac{3}{6} * \frac{4}{6} = \frac{5}{27}$$

ទីពាំងទី៥:

$$P(\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap E) = P(\overline{A})P(\overline{B} \setminus \overline{A})P(\overline{C} \setminus \overline{A} \cap \overline{B})P(\overline{D} \setminus \overline{A} \cap \overline{B} \cap \overline{C})P(E \setminus \overline{A}\overline{B}\overline{C}\overline{D})$$

$$= \frac{5}{6} * \frac{4}{6} * \frac{3}{6} * \frac{2}{6} * \frac{5}{6} = \frac{5^{2}}{18^{2}}$$

ទីពាំងទី៦:

$$P(\overline{ABCDEF}) = P(\overline{A})P(\overline{B} \setminus \overline{A})P(\overline{C} \setminus \overline{AB})P(\overline{D} \setminus \overline{ABC})P(\overline{E} \setminus \overline{ABCD})P(F \setminus \overline{ABCDE})$$

$$= \frac{5}{6} * \frac{2}{3} * \frac{1}{2} * \frac{1}{3} * \frac{1}{6} * \frac{6}{6} = \frac{5}{18^2}$$

យើងសង្កេតឃើញថាទីតាំងដែលល្អបំផុតចំពោះអ្នកលេងទាំងនេះគឺជាទីតាំងចុងក្រោយបំផុត ។ យើងក៏ អាច ផ្ទៀងផ្ទាត់ផងដែរថាក្នុងចំណោមអ្នកលេងទាំង 6 នាក់នេះត្រូវមានម្នាក់ជាអ្នកស្លាប់ បានសេចក្តីថា:

$$P(A \cup B \cup C \cup D \cup E \cup F) = P(A) + P(B) + P(C) + P(D) + P(E) + P(F) = 1$$

```
S-plus:
  function()
   { b<-1
    z<-1/6
    VeryLuck<-z
     for(i in 2:6)
         \{ a < -i/6 \}
            b < -b*((6-i+1)/6)
            z[i] < -a*b
            if( VeryLuck>z[i])
                 VeryLuck <-z[i]
                  Num<-i
             }
           }
      Person<-c(1,2,3,4,5,6)
      z<-cbind(Person,z)
       VeryLuck<-cbind(Num,VeryLuck)
       return(z,VeryLuck)
Result:
     Person
[1,]
                    0.16666667
      1
[2,]
      2
                    0.2777778
[3,]
      3
                    0.2777778
      4
[4,]
                    0.18518519
[5,]
      5
                    0.07716049
[6,]
                    0.01543210
$VeryLuck:
   Num
          VeryLuck
          0.0154321
[1,] 6
```

រូបមន្ត Bayes

9- <mark>ទ្រឹស្តី Bayes</mark>

នៅក្នុងក្រុមហ៊ុន SIMCO មានបុគ្គលិក 20% មានសញ្ញាប័ត្រ Management ។ ក្នុងចំណោមបុគ្គលិកទាំង 20% នេះ មាន 70% មានប៉ុស្តិ៍អចិន្ត្រៃយ៍ ។ យើងដឹងឡើតថាក្នុងចំណោមបុគ្គលិកដែល គ្មានសញ្ញាប័ត្រ Management 15% មានប៉ុស្តិ៍អចិន្ត្រៃយ៍ ។ បើសិនណាបុគ្គលិកម្នាក់ដែលមានប៉ុស្តិ៍អចិន្ត្រៃយ៍ត្រូវបានជ្រើស រើសដោយចែដន្យពីក្រុមហ៊ុននេះ តើប្រូបាប៊ីលីតេដើម្បីអោយគាត់មាន សញ្ញាប័ត្រខាង Management ស្ញើប៉ុន្មាន ?

ចំលើយ :

បុគ្គលិកទាំងអស់ត្រូវចែកជាពីរផ្នែកមិនចុះសំរុងគ្នា (disjoints) គឺ:

E1: បុគ្គលិកដែលមានសញ្ហាប់ត្រ Management

E2: បុគ្គលិកដែលគ្មានសញ្ហាប់ត្រ Management

$$P(E_1) = 0.20, P(E_2) = 0.80$$

A: បុគ្គលិកម្នាក់ដែលបានជ្រើសរើសដោយថៃដន្យមានប៉ុស្តិ៍អចិន្ត្រៃយ៍

$$P(A \setminus E_1) = 0.70, P(A \setminus E_2) = 0.15$$

អ្វីដែលយើងចង់រកនៅពេលនេះគឺ $P(E_1 \setminus A)$:

$$P(E_1 \setminus A) = \frac{P(E_1 \cap A)}{P(A)} \Longrightarrow P(E_1 \cap A) = P(A)P(E_1 \setminus A)$$

ម្យ៉ាងវិញឡេត A បង្កឡើងពីព្រឹត្តិការណ៏ពីរដែលមិនចុះសំរុងគ្នា:

$$A = (E_1 \cap A) \cup (E_2 \cap A)$$

ដូច្នេះ:

ដោយ

 $\Rightarrow P(E_1 \setminus A) = \frac{P(E_1)P(A \setminus E_1)}{P(E_1)P(A \setminus E_1) + P(E_2)P(A \setminus E_2)}$

រូបមន្តនេះហៅថា រូបមន្ត Bayes ។

ដូច្នេះ
$$P(E_{\scriptscriptstyle 1} \setminus A) = \frac{0.20*0.70}{0.20*0.70+0.80*0.15} = 0.5384$$

ជាទូទៅ :

$$P(E_i \setminus A) = \frac{P(E_i)P(A \setminus E_i)}{\sum_{i=1}^{n} P(E_i)P(A \setminus E_i)}$$

រូបមន្តនេះអោយឈ្មោះថា រូបមន្ត Bayes ។

២-លំហាត់អនុវត្តន៏:

- 9- ប្រូបប៊ីលីតេដើម្បីអោយយន្តហោះចេញតាមពេលកំណត់ដែលបានព្រឿងនៅលើតារាងពេលវេលា (scheduled flight departs) P(D)=0.83 ។ ដូចគ្នានេះដែរប្រូបប៊ីលីតេដើម្បីអោយយន្តហោះនេះ មកដល់តាមពេលកំណត់ P(A)=0.82 ហើយប្រូបប៊ីលីតេដើម្បីអោយយន្តហោះនេះចេញតាមពេល កំណត់ និងមកដល់តាមពេលកំណត់ P(DA)=0.78 ។ កំណត់ប្រូបប៊ីលីតេ:
 - a) $P(A \setminus D)$; b) $P(D \setminus A)$
- ២- នៅក្នុងភូមិដ៏តូចមួយមាននិស្សិតមួយចំនួនដែលបានបញ្ចប់ការសិក្សាថ្នាក់មធ្យមផ្នែកបច្ចេកទេសកសិកម្ម ហើយដែលមាននៅក្នុងតារាងស្ថិតិដូចខាងក្រោម:

	មានការងារធ្វើ	<u> </u>	សរុប
បុរស	460	40	500
ត្ត្រី	140	260	400
សរុប	600	300	900

និស្សិតម្នាក់ត្រូវបានជ្រើសរើសពីក្នុងភូមិនេះដោយថៃដន្យដើម្បីទៅសិក្សាបន្តនៅបរទេសសិក្សាស្វែងយល់ពី បច្ចេកវិជ្ជាមួយចំនួនក្នុងការបង្កើតរោងចក្រមួយក្នុងភូមិនេះ ។ កំណត់ប្រូបាប៊ីលីតេះ

- ក- និស្សិតម្នាក់នេះជាបុរសក្រោមលក្ខខ័ណ្ឌដែលគាត់មានការងារធ្វើ?
- ខ- និស្សិតម្នាក់នេះជាស្ត្រីក្រោមលក្ខខ័ណ្ឌដែលគាត់មានការងារធ្វើ?

ចំលើយ:

តាង M ជាបុរសដែលបានជ្រើសរើស

- F ជាស្ត្រីដែលបានជ្រើសរើស
- E និស្សិតម្នាក់នេះមានការងារធ្វើ

$$P(M \setminus E) = \frac{P(E \cap M)}{P(E)} = \frac{\frac{460}{900}}{\frac{600}{900}} = \frac{23}{30}; P(F \setminus E) = \frac{P(E \cap F)}{P(E)}$$

៣- អ្នកទទួលខុសត្រូវនៃការិយាល័យធុនធានមនុស្សមួយកន្លែងបានតំកល់ទុកប្រវត្តិរូបសង្ខេបរបស់បញ្ឈីវិន្ត ចំនួន 16,000 នាក់ ។ គេបានធ្វើការសិក្សាទៅលើអាយុនិងភេទរបស់បញ្ហវិន្តទាំងនេះដូចខាងក្រោមៈ

អាយុ ភេទ	ប្រុស(M)	ស្រី(F)	សរុប
ក្រោម 30 ឆ្នាំ (A)	1200	1700	2900
ចន្លោះ 30 ទៅ 40 ឆ្នាំ (B)	2600	4200	6800
ច្រើនជាង 40 ឆ្នាំ (C)	4000	2300	6300
សរុប	7800	8200	16000

- ក-បើប្រវត្តិរូបសង្ខេបរបស់បញ្ហវ័ន្ត ម្នាក់ត្រូវបានជ្រើសរើសដោយថៃដន្យ តើប្រូបប៊ីលីតេដើម្បីអោយ មនុស្សម្នាក់នេះមានអាយុតិចជាង 30 ឆ្នាំស្ទើប៉ុន្មាន ?
- ខ- ប្រូបាប៊ីលីតេដើម្បីអោយមនុស្សស្រីម្នាក់ដែលត្រូវបានជ្រើសរើសដោយថៃដន្យមានអាយុតិចជាង 30ឆ្នាំ ស្ញើប៉ុន្មាន ?
- គ- ប្រូបាប៊ីលីតេដើម្បីអោយមនុស្សម្នាក់ដែលត្រូវបានជ្រើសរើសដោយថៃដន្យជាមនុស្សប្រុសនិងមានអាយុ ច្រើនជាង 40 ឆ្នាំ ស្ញើប៉ុន្មាន ?
- ឃ- ប្រូបាប៊ីលីតេដើម្បីអោយមនុស្សម្នាក់ដែលត្រូវបានជ្រើសរើសដោយចែងន្យជាមនុស្សស្រីនិងមានអាយុ តិចជាង 40 ឆ្នាំ ស្នើប៉ុន្មាន?

ចំលើយ :

$$\text{fi- } P(A) = \frac{2900}{16000} = 0.1813$$

$$2 - PA \setminus F) = \frac{P(A \cap F)}{P(F)} = \frac{\frac{1700}{16000}}{\frac{8200}{16000}} = 0.2073$$

$$\mathfrak{F} - P(M \cap C) = \frac{4000}{16000} = 0.25 \quad \mathfrak{Y} \quad P(M \cap C) = P(M)P(C \setminus M) = \frac{7800}{16000} * \frac{4000}{7800} = 0.25$$

11.
$$P(F \cap (A \cup B)) = P(F \cap A) + P(F \cap B) = 0.36875$$

៣- **ឧទាហរណ៍ Splus**:

ដោយអនុវត្តទៅលើតារាង ទិន្នន័យ sales នៅក្នុង SPSS ចូរសរសេរ Program Splus បង្កើតតារាង វាយតំលៃ Probability , conditional probability ដូចខាងក្រោម:

Table1

	Government	Commercial	Academic	Total
North	P(G\N)	P(C\N)	$P(A \setminus N)$	100%
South	P(G\S)	P(C\S)	P(A\S)	100%
East	P(G\E)	P(C\E)	P(A\E)	100%
West	P(G\W)	P(C\W)	P(A\W)	100%
Total	P(G)	P(C)	P(A)	100%

Table2

	Government	Commercial	Academic	Total
North	P (N \ G)	P(N\C)	P(N\A)	P(N)
South	P (S \ G)	P(S\C)	P(S\A)	P(S)
East	P(E\G)	P(E\C)	P(E\A)	P(E)
West	P(W\G)	P(W\C)	P(W\A)	P(W)
Total	100%	100%	100%	100%

Table3

	Government	Commercial	Academic	Total
North	P(G*N)	P(C*N)	P(A*N)	P(N)
South	P(G*S)	P(C*S)	P(A*S)	P(S)
East	P(G*E)	P(C*E)	P(A*E)	P(E)
West	P(G*W)	P(C*W)	P(A*W)	P(W)
Total	P(G)	P(C)	P(A)	100%

साद्राद्वराधी गुठायकारियाद्वात्र्यः

(Random variables and probability distribution)

១- អថេរថៃដន្យៈ

នៅក្នុងការបោះគ្រាប់ឡុកឡាក់យើងពុំអាចកំណត់បានជាមុនថា លេខមួយណាកើតមុនទេ ព្រោះវាទាក់ទង ទៅនឹងលក្ខខ័ណ្ឌជាច្រើន។ នៅក្នុងន័យនេះលេខ 1,2,3,4,5,6 ជាតំលៃលេខដែលអាចកើតឡើងដោយ ចៃដន្យ។

និយមន័យទី១:

អថេរ ចៃដន្យ (random variable) គឺជាអថេរដែលនៅក្នុងលទ្ធផលនៃវិញ្ញាសានីមួយៗ អាចទទួលបានតំលៃ តែមួយគត់ដែលជាតំលៃមួយពុំអាចកំណត់បានជាមុន ហើយដែលទាក់ទងទៅនឹងលក្ខខ័ណ្ឌចៃដន្យជាច្រើន។

ឧទាហរណ៍ :

ក្នុងការបោះគ្រាប់ឡុកឡាក់បើសិនណាយើងទទួលបានលេខ 1 ក្នុងការបោះលើកទីមួយ យើងនិយាយថា លេខ 1 ជាអថេរ ចែងន្យក្នុងការពិសោធលើកទីមួយ ។ ការបោះគ្រាប់ឡូកឡាក់បន្តទ្យេតអាចទទួលបានតំលៃ លេខជាហូរហែ តំលៃទាំងនេះអោយឈ្មោះថា **អថេរ ចែងន្យ** ។ ដូច្នេះក្នុងការបោះគ្រាប់ឡុកឡាក់ អថេរ ចៃងន្យអាចមាន 6កណើះ {1,2,3,4,5,6} ។

និយមន័យទី២:

អថេរចៃដន្យដាច់ (discrete random variable) គឺជាអថេរចៃដន្យដែលអាចទទួលតំលៃដាច់ ដោយឡែក ពីគ្នា ហើយមានប្រូបាប៊ីលីតេមួយកំណត់។ ចំនួនតំលៃលេខដែលអាចនៃអថេរចៃដន្យដាច់ជា ចំនួនអាចរាប់ អស់ ឬជាចំនួនរាប់មិនអស់ ។

ឧទាហរណ៍ :

ចំនួនក្មេងប្រុសដែលទើបនឹងកើតក្នុងចំណោមក្មេងដែលទើបនឹងកើត 200នាក់ ជាអថេរ ចៃដន្យដែលតាង ដោយ ${f X}$ ហើយអថេរ ចៃដន្យអាចទទួលតំលៃ 0,1,2,3,...,200 ។

និយមន័យទី៣:

អថេរ ចៃដន្យជាប់ (continuous random variables) គឺជាអថេរ ចៃដន្យដែលអាចទទួលនូវគ្រាប់តំលៃនៅ ក្នុងចន្លោះមួយកំណត់ ឬមួយក្នុងចន្លោះមួយមិនកំណត់។ ចំនួនតំលៃនៃអថេរថៃដន្យជាប់ ជាចំនួនរាប់មិន អស់។

ឧទាហរណ៍ំះ

ចំងាយចរនៃការបាញ់គ្រាប់កាំភ្លើងមួយគ្រាប់គឺជាអថេរ ចែដន្យជាប់ ។ ជាការពិតណាស់ចំងាយចរនៃគ្រាប់ កាំភ្លើងនេះវាទាក់ទងទៅនឹងលក្ខខណ្ឌជាច្រើន: កំលាំងធាក់នៃកាំភ្លើង ទិសដៅនៃខ្យល់ និងសម្ពាធ បរិយាកាសផ្សេងៗឡេត ដែលយើងពុំអាចគិតទុកជាមុន។ តំលៃដែលអាចនៃអថេរ ចែងន្យនេះស្ថិតនៅ ក្នុងចន្លោះ (a,b) ។ យើងឃើញថាគ្រាប់កាំភ្លើងអាចធ្លាក់ដោយ ចៃដន្យនូវគ្រាប់ចំនុចនៃចន្លោះ (a,b) ។

២- ឧទាហរណ៏ នៃរបាយប្រ្ពបាប៊ីលីតេ (probability distribution) នៃចំនួនអាំងខែរួបទ័រ (switch) ដែលខូច:

សហគ្រាស Microtek បានផលិត switch ដែលមានពន្លឺ ។ សំរង់ស្ថិតិមួយបានបង្ហាញមាន 5% នៃ switch ដែលផលិតដោយ Microtek ត្រូវខូចប្រើប្រាស់ពុំបាន ។ សន្មតិថាគេជ្រើសរើសដោយចៃដន្យនូវ switch ចំនួន 2 ។ សន្មតថាអថេរ ចៃដន្យតាងដោយ $\mathbf X$ ចំនួន $\mathbf s$ witch ដែលខូចនៅក្នុងគំរូស្ថិតិដែលគេធ្វើការដកស្រង់ នេះ ។ ដើម្បីបង្កើតរបាយប្រូបាប៊ីលីតេ នៃអថេរចែងន្យនេះយើងត្រូវស្គាល់:

- ក- តំលៃអថេរ ចែដន្ទទាំងនេះ
- ខ- តំលៃប្រូបាប៊ីលីតេនៃអថេរនីមួយៗ

ជាដំបូងយើងត្រូវកំណត់នូវគ្រប់ព្រឹត្តិការណ៏ឯកធាតុនៃវិញ្ញាសានេះ ដោយតាង D ជា "switch ដែលខូច" និង B ជា switch ដែលល្អ ដូច្នេះព្រឹត្តិការណ៍ទាំងនេះគឺ:

22 -	$S_{2} = \{DD, DD, DD, DD\}$		
ព្រឹត្តិការណ៏ឯកធាតុ	តំលៃ $ X $ ដែលទាក់ទងទៅនឹងព្រត្តេិការណ៏ទាំងនេះ		
BB	0		
BD	1		
DB			
DD —	→ 2		

 $O = \{RR \ RD \ DR \ DD\}$

យើងដឹងថាមាន switch ចំនួន 5% ខូច (95% អាចប្រើប្រាស់បាន) ដូច្នេះប្រូបាប៊ីលីតេនៃ switch ដែល ខូចស្នើ 0.05 និងប្រូបាប៊ីលីតេនៃ switch ដែលអាចប្រើប្រាស់បានស្នើ 0.95 ។ ដោយសន្មតិព្រឹត្តិការណ៏ខាង លើមិនទាក់ទងគា :

```
P(BB)=P(B)*P(B)=0.95*0.95=0.9025
P(BD)=P(B)*P(D)=0.95*0.05=0.0475
P(DB)=P(D)*P(B)=0.05*0.95=0.0475
P(DD)=P(D)*P(D)=0.05*0.05=0.0025
```

ដូច្នេះយើងអាចសង្ខេបតារាងរបាយប្រូប្បាប៊ីលីតេដូចខាងក្រោម :

ព្រឹត្តិការណ <u>៏</u> ឯកធាតុ	តំលៃ x_i នៃអថេរចៃដន្យ X	ប្រូបាច៊ីលីតេ P(X=xi)
BB	→ x ₁ =0	P(X=0)=0.9025
BD	x ₂ =1	P(X=1)=0.0950
DB	→	
DD	→ x ₃ =2	P(X=2)=0.0025
		ផលបូក =1

ដូច្នេះអថេរ ចែដន្យទាំងនេះជាអថេរ ចែដន្យដាច់ដែល :

៣- ក្រាហ្វិចនិងច្បាប់របាយនៃប្រូប្ប៊ីលីតេ (Graphics and probability distribution) ដ្យាក្រាមដំបង (bar chart) :

គេអាចតាងរបាយប្រូបាប៊ីលីតេនៃអថេរចែដន្យដាច់ដោយដ្យាក្រាមដំបង។ ដោយអនុវត្តលើឧទាហរណ៍ខាង លើយើងអាចបានដ្យាក្រាមដំបងដូចខាងក្រោម ដោយច្រើកម្មវិធី S-plus:

```
function()
  \{ x < -c(0,1,2) \}
    probability<-c(0.9025,0.0950,0.0025)
    barplot(probability,names=levels(factor(x)))
    return()
```


៤-អនុគមន៍របាយ (Distribution function)

អនុគមន៍របាយកំណត់ដោយ: $F(x_i) = P(X \le x_i)$

នៅក្នុងករណីនៃអថេរ ចែដន្យដាច់:

$$F(x_i) = P(X \le x_i) = P(X = x_1) + P(X = x_2) + \dots + P(X = x_i)$$

ក្រាហ្វិចនៃអនុគមន៍របាយជាអនុគមន៍កាំជណ្តើរ (step function) ។

ឧទាហរណ៏ះ

នៅក្នុងក្រុមហ៊ុន sangamex គេបានសិក្សាទៅលើកំហុសនៃការតំឡើងឧបករណ៏ electronic ដែលកំណត់ ក្នុងតារាងខាងក្រោម:

ចំនួននៃកំហុស Xi	P(X=x _i)
0	0.30
1	0.25
2	0.18
3	0.14
4	0.10
5	0.03

ក- កំណត់អនុគមន៍របាយ និងសង់ក្រាហ្វិច :

ក្នុងន័យនេះយើងត្រូវកំណត់ $P(X \leq x_i) = F(x_i)$ នៃអថេរ ចែងន្យ ចំនួនកំហុសទៅតាមឧបករណ៍

electronic នីមួយៗ"។

ចំនួនកំហុស Xi	$F(x_i) = P(X \le x_i)$
0	0.30
1	0.55
2	0.73
3	0.87
4	0.97
5	1.00

ខ- កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយចំនួនកំហុសនៃការតំឡើងឧបករណ៏ electronic នេះតូចជាង ឬ ស្នើ 2?

$$F(2) = P(X \le 2) = 0.73$$

គ- កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយចំនួនកំហុសនៃការតំឡើងឧបករណ៏ electronic នេះធំជាង 1?

$$P(X > 1) = 1 - P(X \le 1)$$

$$= 1 - F(1)$$

$$= 1 - 0.55$$

$$= 0.45$$

Graph នៃអនុគមន៍របាយខាងលើអាចទទួលបានដោយប្រើកម្មវិធី S-plus:

```
function()
{ x<-c(0,1,2,3,4,5)
    dist.fun<-c(0.30,0.55,0.73,0.87,0.97,1)
    plot(stepfun(x,dist.fun),type="l")
    return()
}</pre>
```

លំហាត់ៈ

នៅក្នុងការអង្កេតមួយដែលធ្វើឡើងនៅក្នុងហាងលក់ទំនិញដ៏ធំមួយបានអោយដឹងថា ក្នុងចំណោម អតិថិជន 200នាក់ មាន120នាក់បានបញ្ជាក់ថាគាត់មកហាងលក់ទំនិញនេះដោយសារគាត់ឃើញការផ្សាយ ពាណិជ្ជកម្ម ។ មួយចំនួនឡើតមកទីនេះដោយពុំបានឃើញការផ្សាយពាណិជ្ជកម្មទេ ។ ក្នុងចំណោមអតិថិជន ទាំង 200 នាក់នេះដែលត្រូវបានចោទសូរមាន 60 នាក់បានទិញសម្ភារៈមួយចំនួន ហើយក្នុងចំណោមអ្នកទាំង 60 នាក់នេះ មាន 20 នាក់បានឃើញការផ្សាយពាណិជ្ជកម្ម ។

- ក- ចូរបង្កើតតារាង two-way table
- ខ- កំណត់ប្រូបាប៊ិលីតេដើម្បីអោយអតិថិជន ដែលពុំបានឃើញការផ្សាយពាណិជ្ជកម្ម បានទិញសម្ភារៈមួយ ចំនួនក្នុងហាងនេះ ។
- គ- កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយអតិថិជន ដែលបានឃើញការផ្សាយពាណិជ្ជកម្ម បានទិញសម្ភារៈមួយ ចំនួនក្នុងហាងនេះ ។

ប្រការិសីតេនៃអថេរ ថែងឡូជា^វ

(Probability of continuous random variables)

បើ Xជាអថេរ ចែងឡជាប់ (continuous random variables) នោះវាមានរបាយដង់ស៊ីតេ (density distribution) $f(x), x \in \mathfrak{R}$ ដែល $F(x) = \int\limits_{-\infty}^{+\infty} f(t) dt$ ហើយ F(x) ជា អនុគមន៍របាយ (distribution function) 4

១-លក្ខណៈសំគាល់នៃដង់ស៊ីតេរបាយ:

ក- $f(x) \ge 0 \forall x \in \Re$ បានន័យថាខ្សែកោងរបាយដង់ស៊ីតេជានិច្ចកាលស្ថិតនៅខាងលើខ្សែអក្ស័ អាប់ស៊ីស។

ខ $-\int\limits_{-\infty}^{+\infty}f(t)dt=1$ បានន័យថាក្រលាផ្ទៃដែលខ័ណ្ឌដោយខ្សែកោងរបាយដង់ស៊ីតេ នឹងអ័ក្សអាប់ស៊ីស ស្ចើមួយ។

គ – $P(a \le X \le b)$ ជាក្រលាផ្ទៃដែលបង្កើតឡើងដោយខ្សែកោងរបាយដង់ស៊ីតេនឹងអ័ក្សអាប់ស៊ីស

ខ័ណ្ឌដោយបន្ទាត់ឈរកាត់តាមចំនុចអាប់ស៊ីស a និង b។

 $\dot{\mathbf{e}}$ នៅក្នុងករណីដែល X ជាអថេរ ចែដន្យជាប់ នោះ :

$$\tilde{n}$$
 - $P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b) = F(b) - F(a)$

2-
$$P(X = a) = P(a \le X \le a) = F(a) - F(a) = 0$$

២-សង្ឃឹមគណិត វ៉ារ្យង់ និង គំលាតស្តង់ដា នៃអថេរថៃដន្យដាច់ :

ក- សង្ឃឹមគណិត (Expectation):

 ${f X}$ ជាអថេរ ចៃដន្យដាច់ដែលអាចទទួលតំលៃ ${f x}_1, {f x}_2, \ldots, {f x}_n$ ហើយដែលមានប្រុក្ខាប៊ីលីតេអ្វេង $P(X=x_i)=p_i$, i=1,2,3,...,n ។ សង្ឃឹមគណិតនៃអថេរ ថែដន្យ X កំណត់ដូចខាងក្រោម :

$$E(X) = \sum_{i=1}^{n} x_i p_i$$

តំលៃសង្ឃឹមគណិតជាចំនួនពិត lpha ។ នៅក្នុងស្ថិតិគេច្រើនច្រើនិមិត្តសញ្ញា μ ជំនួសតំលៃ $\mathbf{E}(\mathbf{X})$ ។

ខ-វ៉ារ្យង់ (Variance)និងគំលាឥស្លង់ដា (Standard deviation) :

បើ X ជាអថេរ ចែងន្យូដាច់ដែលអាចទទួលតំលៃ x_1, x_2, \ldots, x_n នោះវ៉ារ្យូង់នៃ X កំណត់ដោយ:

$$V(x) = \sum_{i=1}^{n} (x_i - E(X))^2 p_i$$

ដែល
$$p_i = P(X = x_i), i = 1, 2, ..., n$$
 ។

ិរិសការេនៃវ៉ារ្យង់អោយឈ្មោះថា standard deviation ដែលតាងដោយ $\sigma(X)$:

$$\sigma(X) = \sqrt{V(X)}$$

ជាទូទៅវ៉ារ្យង់នៃអថេរចែងន្យ X កំណត់ដោយ:

$$V(X)=E(X-E(X))^2=E(X^2)-E^2(X)$$

៣-សង្ឃឹមគណិត និងវ៉ារ្យង់នៃអថេរថៃដំន្យជាប់ (continuous random variables)

នៅក្នុងករណីដែល ${f X}$ ជាអថេរ ចៃដន្យជាប់ នោះសង្ឃឹមគណិតនិងវ៉ារ្យង់នៃ ${f X}$ កំណត់ដោយ :

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$V(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$$

ដែល f(x) ជាដង់ស៊ីតេរបាយនៃ X ។

ចំណាំ:

ក្នុងករណីដែលយើងធ្វើការស្រង់ទិន្នន័យក្នុងគំរូតាង (sample) សំរាប់ការវាយតំលៃ នោះតំលៃ Expectation Variance និង Standard deviation ត្រូវបានគណនាតាមរូបមន្តបំលែងដូចខាងក្រោម:

$$E(X) \approx \overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 sample mean
$$\sigma(X) \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2} = S$$
 sample standard deviation

ឧទាហរណ៍ :

យើងមានទិន្ន័យដូចខាងក្រោម

profit(\$)	probability
25000	0.25
30000	0.30
35000	0.20
40000	0.15
45000	0.10

E(profit)=?

$$\sum_{i=1}^{5} x_i p_i = 25000 * 0.25 + 30000 * 0.30 + 35000 * 0.20 + 40000 * 0.15 + 45000 * 0.10$$

=32750 ដោយគណនាតាមតារាងរបាយប្រូបាប៊ីលីតេ។

ក្នុងករណីដែលតារាងរបាយប្រូបាប៊ីលីតេពុំស្គាល់ $\mathrm{E}(\mathrm{X})$ កំណត់ដោយ:

$$\mathbf{E(profit)} = \frac{1}{5} \sum_{i=1}^{5} x_i = \frac{25000 + 30000 + 35000 + 40000 + 45000}{5} = 35000$$

ក្នុងករណីដែល \mathbf{n} ធំ $\sum_{i=1}^n x_i p_i \cong \frac{1}{n} \sum_{i=1}^n x_1$ ។

Sdandard deviation(profit)=?

Std.deviation=
$$\sqrt{\sum_{i=1}^{5} (x_i - E(X))^2 * p_i} = 6417.749$$

ក្នុងករណីដែលពុំស្គាល់តារាងរបាយប្រូបាប៊ីលីតេ std.deviation កំណត់ដោយ:

std.deviation=
$$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{X})^2=7905.694$$
ក្នុងកណីដែល \mathbf{n} ធំ $\sqrt{\sum_{i=1}^{n}(x_i-E(X))^2*p_i}\cong \frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{X})^2$

៤-<u>មេគុណបំរំរបំរួល (coefficient of variation)</u>:

ជាទូទៅមេគុណបំរែបំរួលកំណត់ដោយ:

$$c.v\% = \frac{\sigma}{E(X)} *100$$

នៅក្នុងការអនុវត្តផ្នែកសេដ្ឋកិច្ច coefficient of variation គឺជា Risk ។ កាលណា តំលៃ coefficient of variation ធំបានសេចក្ដីថាតំលាតពីអថេរ ចែងន្យនីមួយ១មានតំលៃធំ។ កាលណា coefficient of variation មានតំលៃតូចជាង 15% បានសេចក្ដីថា Risk តូច របាយអថេរ នៃការអង្កេតមានលក្ខណៈស្មើ សាច់ (មានភាពប្រែប្រូលតិចពីអថេរមួយទៅអថេរមួយ) យើងក៏អាចនិយាយផងដែរថា standard deviation តូច ។

<u> ឧទាហរណ៏</u>ះ

សហគមន៍ "optigestion" មានគំរោងទិញភាគហ៊ុននៅក្នុងសហគ្រាសមួយកន្លែងដែលផលិត microinformatics ។ គេបានពិនិត្យមើលលើតារាងលិទ្ធផលក្នុងរយៈពេលមួយឆ្នាំ ដែលមាន ស្រាប់នៅក្នុង សហគ្រាសនេះ ។

Output %	Probability p _i
28.0	0.05
23.0	0.21
18.6	0.34
15.0	0.22
12.0	0.10
8.0	0.08

ក-តើសហគមន៍ optigestion អាចនឹងសង្ឃឹមថាទទួលបាន output ប៉ុន្មានដែរ ?

- ខ-គណនាគំលាតគំរូ (standard deviation) និងមេគុណបំរែបំរួល (cv) នៃទិន្នផល (output) ។
- គ- សហគមន៍នេះបានសិក្សាផងដែរទៅលើការទិញកំចីប័ណ្ណរដ្ឋាភិបាល (Government obligation) ដែល មានទិន្នផល12% ថេរ ។ គណនាមេគុណបំរែបំរួល (C.V) ។
- ឃ-តើការទិញច័ណ្ណភាគហ៊ុនប្រភេទណាដែលមាន Risk ធំជាងគេ?

ចំលើយ:

```
ដោយប្រើ program S-plus ដូចខាងក្រោម:
          function()
          output <- c(28, 23.4, 18.6, 15, 12, 8)
          prob <- c(0.05, 0.21, 0.34, 0.22, 0.1, 0.08)
          output.square <- output^2
          prod <- (output^2) * prob</pre>
              Table <- cbind(output, output.square, prob, prod)
         expectation <- sum(output * prob)</pre>
              std.dev <- sqrt(sum((output - expectation)^2 * prob))</pre>
         C.V <- (std.dev/expectation) * 100
         return(Table, expectation, std.dev, C.V)
យើងទទួលបានចំលើយដូចខាងក្រោម:
                           $Table:
           output output.square prob prod
        [1,] 28.0
                     784.0
                                 0.05 39.2000
        [2,] 23.4
                     547.56
                                 0.21 114.9876
        [3,] 18.6 345.96
                                 0.34 117.6264
        [4,] 15.0
                     225.00
                                 0.22 49.5000
                     144.00
64.00
        [5,] 12.0
                                 0.10 14.4000
        [6,] 8.0
                                 0.08 5.1200
```

\$expectation:

[1] 17.778

\$std.dev:

[1] 4.977622

\$C.V:

[1] 27.99877

យោងទៅលើចំលើយខាងលើយើងបាន:

$$\begin{split} & \tilde{\mathbf{n}} - E(X) = \sum_{i=1}^{6} x_i p_i = 17.778 \\ & 2 - V(X) = E(X - E(X))^2 = E(X^2) - E^2(X) \Rightarrow \sigma(X) = 4.977622 \\ & \tilde{\mathbf{n}} - C.V\% = \frac{\sigma(X)}{E(X)} * 100 = 27.998 \end{split}$$

ឃ-ដោយ Government obligation មានទិន្នផលជាក់លាក់ 12% ថេរ នោះ

Investment	Risk
Investment នៅក្នុងសហក្រាស	C.V=28.998%
Micro-informatics	
Government obligation	C.V=0%

៥-លក្ខណៈសំពាល់នៃសង្ឃឹមពណិត និង វ៉ារ្យង់ :

ក- សង្ឃឹមគណិតៈ

E(X+c)=E(X)+c ដែល c ជាតំលែថេរ

ដែល a ជាតំលៃថេរ E(aX)=aE(X)

E(aX+c)=aE(X)+c

ខ- វ៉ារ្យង់:

V(X+c)=V(X) ដែល c ជាចំនួនថេរ

 $V(aX) = a^2V(X)$

 $V(aX+c)=a^2V(X)$

គ- កំលាតស្គង់ដា (standard deviation)

$$\sigma(X+c) = \sigma(X)$$

$$\sigma(aX) = a\sigma(X)$$

$$\sigma(aX+c)=a\sigma(X)$$

៦- វិសមភាព Tchebychev:

សន្មតថា X ជាអថេរ ចែដន្យ ដែលមានច្បាប់ប្រូបាប៊ីលិតេមួយកំណត់ មានសង្ឃឹមគណិត $\mathrm{E}(X)$ និង វ៉ារ្យង់ $V(X) = \sigma^2(X)$ ។

វិសមភាព Tchebychev កំណត់ដូចខាងក្រោម:

$$P[E(X) - k\sigma(X) \le X \le E(X) + k\sigma(X)] \ge 1 - \frac{1}{k^2}$$

ដែល k ជាចំនួនថេរ ។

វិសមភាពនេះផ្ទៅងផ្ទាត់នូវគ្រប់ច្បាប់ប្រូបាប៊ីលីតេនៃអថេរចែងន្យ (ដាច់ ឬ ជាប់) ក្នុងលក្ខខណ្ឌដែល យើងអាចកំណត់បាននូវតំលៃ $\mathrm{E}(\mathrm{X})$ និង តំលៃ $\sigma(X)$ ។

Splus និងការវិភាពទិន្ន័យ(data analysis)

Splus ជា software មួយប្រភេទដូច SPSS ដែរ ប៉ុន្តែវាមានលក្ខណៈវិភាគស៊ីជំរៅជាង SPSS និង ជា programming language ។ Splus ជាប្រភេទ software ដែលផ្តល់លក្ខណៈងាយស្រួលក្នុងការបង្កើត graphics 4

១- <u>ការញូលទិន្ន័យ (data input)</u> :

ដើម្បីបញ្ចូល ទិន្ន័យ យើងត្រូវហៅ data editor window:

ចុចទៅលើ Tool ដែលមានឈ្មោះថា new data frame យើងទទួលបាន data editor window ដែលមាន រាងដូចខាងក្រោម:

ចុច់ពីរដង់ទៅលើ ថតខាងលើដើម្បីបញ្ចូល variable name ។

ដូចគ្នានេះដែរចុចពីរដងទៅលើថតនៃជួរដេកនេះដើម្បីបញ្ចូល name of observation ។

នៅពេលបញ្ចូលទិន្ន័យចប់ ចូរសង្កេតមើលឈ្មោះទិនន្ន័យនៅផ្នែកខាងលើនៃ data editor window ដែល អោយដោយ default របស់ computer ។ យើងអាចដូរឈ្មោះទិន្ន័យនេះដោយ គ្រាន់តែ select data editor window ហើយចុច mouse ខាងស្ដាំ select យក properties ហើយដូរឈ្មោះដែលយើងចង់បាន:

ពេលនេះយើងអាចប្តូរឈ្មោះ data editor window នៅក្នុងថត Name តាមដែលយើងចង់បាន។

២-លក្ខណៈ នៃទិន្នន័យ (Data type) :

ទិន្នន័យដែលយើងប្រើប្រាស់ញឹកញាប់មានលក្ខណៈជា numeric, string, dates,...និងមានមួយ ចំនួនទៀត ដែលយើងអាចប្រើបាននៅក្នុង change data type tool ដែលមានរូបរាងដូចខាងក្រោម:

មុននឹងបញ្ចូលទិន្នន័យយើងត្រូវសង្កេតទៅលើ data type សិន តើ វាជា numeric , string ឬប្រភេទ ទិន្នន័យបែបណា។ ឧទាហរណ៍នៅក្នុងតារាងខាងលើនៅ column ទីមួយទិន្នន័យមានលក្ខណៈ ជា string ដូច្នេះនៅ ក្នុងការបញ្ចូលទិន្នន័យយនេះ យើងត្រូវបញ្ចូល variable name រួច change data type:

បន្ទាប់មក select យក factor ព្រោះថាទិន្នន័យរបស់យើងមាន factor ពីរ គឺ Female និង Male ។ ដូចគ្នានេះដែរចំពោះ column ទីពីរ ប៉ុន្តែ column ទី 3 ទិន្នន័យមានលក្ខណៈជា numerical data ដូច្នេះ ការបញ្ចូលពុំត្រូវបានឆ្លងកាត់ការ change data type ទេ។

៣- ស្ថិតិពិពណ៌នា (Descriptive analysis):

ការវិភាគទិន្ន័យមានលក្ខណៈស្មុគស្មាញទៅតាមប្រធានបទផ្សេងៗគ្នា ។ នៅពេលនេះយើងលើកយកតែ ការវិភាគដែលមានលក្ខណៈជា Descriptive analysis ។ ឧទាហរណ៏យើងមានទិន្នន័យដូចខាងក្រោម:

CUSTOMER	REVENUE	REGION	INDUSTRY
 Regular customer 	3786.8670	West	Government
2 Regular customer	1733.6005	South	Commercial
3 Preferred customer	2125.7356	West	Government
4 Preferred customer	2259.1379	West	Commercial
5 Preferred customer	1586.6104	North	Government
6 Regular customer	NA	West	Academic
7 Preferred customer	1838.4591	South	Government
8 Regular customer	1846.7495	West	Government
9 Regular customer	1714.1120	East	Academic
10 Preferred customer	1717.5371	South	Academic
11 Preferred customer	4388.0708	West	Government
12 Preferred customer	12346.0000	North	Commercial
13 Preferred customer	3833.5526	West	Government
14 Preferred customer	2290.6734	North	Commercial
15 Preferred customer	4139.7650	South	Commercial
16 Preferred customer	2193.9056	South	Academic
17 Preferred customer	2938.3083	South	Government
18 Regular customer	3313.3158	East	Commercial
19 Preferred customer	3327.0176	East	Academic
20 Regular customer	1449.3379	East	Government
21 Preferred customer	2695.6158	North	Academic
22 Preferred customer	3272.2086	South	Commercial
23 Regular customer	4096.3530	North	Academic
24 Regular customer	4339.9974	South	Academic
25 Regular customer	2462.3752	West	Government
26 Preferred customer	3629.5420	East	Commercial
27 Preferred customer	465.1717	West	Academic
28 Preferred customer	1870.9232	North	Commercial
29 Preferred customer	1376.5828	West	Academic
30 Regular customer	3796.7922	South	Government
31 Preferred customer	4253.4813	North	Academic
32 Preferred customer	3057.0979	South	Government
33 Preferred customer	3394.7124	West	Government
34 Regular customer	1387.3440	West	Government
35 Preferred customer	2148.4856	North	Commercial
36 Preferred customer	2204.7234	West	Commercial
37 Preferred customer	2021.8557	South	Academic
38 Regular customer	123.0000	East	Government
39 Preferred customer	3301.1004	West	Academic

_				
4	10 Regular customer	1855.5423	South	Government
	11 Preferred customer	2885.1827	East	Government
	12 Preferred customer	3353.5838	East	Academic
	13 Preferred customer	2263.7547	East	Commercial
	14 Regular customer	1620.7525	West	Government
4	Franchiscopie 15 Regular customer	3398.7307	East	Academic
4	16 Preferred customer	3987.9912	West	Government
4	17 Preferred customer	3808.7805	East	Academic
4	48 Preferred customer	3605.4659	West	Academic
4	19 Regular customer	3226.4753	West	Commercial
5	Negular customer	4356.6054	South	Commercial
5	Regular customer	2120.6041	East	Academic
5	52 Preferred customer	3943.9258	North	Government
5	Regular customer	3689.8859	West	Commercial
	54 Regular customer	430.1497	West	Commercial
	55 Preferred customer	2267.0971	North	Government
	56 Preferred customer	1123.1291	South	Academic
_	77 Preferred customer	2384.9484	West	Commercial
	8 Regular customer	5011.5981	West	Academic
	59 Preferred customer	34566.0000	West	Commercial
	60 Preferred customer	2742.6422	West	Commercial
	51 Preferred customer	2608.7393	North	Commercial
	52 Preferred customer			
		2261.5493	West	Commercial
	Regular customer	2744.7494	West	Academic
	64 Regular customer	4024.3463	North	Commercial
	55 Preferred customer	4728.5242	South	Commercial
	66 Preferred customer	3185.4868	North	Academic
	7 Regular customer	2406.9697	East	Commercial
	68 Preferred customer	5417.3652	East	Commercial
	69 Regular customer	3875.5855	East	Government
	70 Preferred customer	1902.2245	East	Commercial
	71 Regular customer	836.1970	East	Government
	72 Regular customer	3750.3950	South	Academic
7	73 Preferred customer	3418.8871	East	Government
7	74 Regular customer	2068.3873	North	Commercial
7	75 Regular customer	3810.8523	West	Commercial
7	76 Preferred customer	432.0000	South	Academic
7	77 Preferred customer	430.4231	South	Academic
	78 Preferred customer	718.5732	North	Commercial
	79 Preferred customer	2570.7565	North	Commercial
	30 Preferred customer	2671.3214	West	Commercial
	31 Preferred customer	2241.6868	South	Academic
	Regular customer	2409.5362	South	Government
	Regular customer	54322.0000	West	Government
	_	1547.8898	East	Academic
	Regular customer			
	35 Preferred customer	2233.1350	West	Government
	Regular customer	1283.8048	South	Government
	37 Preferred customer	2658.7289	North	Government
	Regular customer	2823.8458	East	Government
	39 Preferred customer	336.6098	East	Commercial
	90 Preferred customer	2120.1780	East	Academic
	Preferred customer	2917.7317	East	Government
9	92 Preferred customer	2370.9864	North	Commercial
9	Regular customer	2696.9629	East	Academic
	94 Regular customer	1975.5370	East	Academic
	-			

95	Regular customer	2704.2350	East	Government
96	Regular customer	3658.2319	North	Government
97	Regular customer	3501.6697	East	Government
98 I	Preferred customer	2895.8984	North	Government
99	Regular customer	1429.5769	East	Commercial
100	Regular customer	3913.8769	South	Academic

ដោយ column ទី 1,3,4 ទិន្នន័យមានលក្ខណៈជា string (factor) ដូច្នេះយើងធ្វើ descriptive analysis ទៅលើ columns ទាំងនេះដូចខាងក្រោម:

យើងទទួលបានតារាងដូចខាងក្រោម:

ជ្រើសរើសយក variable names ដែលយើងចង់ធ្វើការវិភាគ ហើយរក្សាទុកនូវផ្នែកខាងក្រោមគឺ Result នូវី summarize Categorical Variables និង Print Results ព្រោះមិន្ន័យមានលក្ខណៈដា string ដូច្នេះការវិភាគត្រូវធ្វើឡើងតាម frequency analysis ។ នៅក្នុងតារាងខាងលើយើង select Costumer បន្ទាប់មក select Region and Industry រួចចុច OK យើងទទួលបានចំលើយដូចខាងក្រោម:

CUSTOMER

*** Summary Statistics for data in: sales ***

Preferred customer:58 Regular customer:42

*** Summary Statistics for data in: sales ***

REGION **INDUSTRY East:28** Academic:31 Commercial:34 North:20 South:22 Government:35 West:30

ដូច្នេះយើងឃើញថា summary statistics បានរាប់ចំនួន factor និមួយ១ នៅក្នុង variable names ដែល យើងធ្វើការវិភាគ ។

៤- វិភាគក្រាហ្វិច (Graphical analysis):

ដោយអនុវត្តទៅលើទិន្នន័យខាងលើហើយដោយប្រើកម្មវិធី S-plus (programming) យើងអាចធ្វើ data summary និង graphical analysis ដូចខាងក្រោម:

```
function(sales)
{
       i <- 1:3
       analysis <- summary(sales[, i])</pre>
       par(mfg = c(1, 1, 2, 2))
       graph1 <- hist(sales[, 1], nclass = 30, xlab =
              "REVENUE", ylab = "NUMBER OF PERSON",
              main = "Descriptive analysis of revenue",
       par(mfg = c(1, 2, 2, 2))
       graph2 <- barplot(summary(sales[, 2]), names =
              levels(factor(sales[, 2])), xlab =
              "Region", ylab = "Number of person",
              main = "Descriptive analysis of region"
       text(graph2, summary(sales[, 2]) + 1, paste(
              "n=", summary(sales[, 2])))
       par(mfg = c(2, 1, 2, 1))
       graph3 <- pie(summary(sales[, 3]), names =
              levels(factor(sales[, 3])), col = 2:4,
              explode = 1:3, size = 1.3, rotate = F,
              main = "Descriptive analysis of person's job"
       return(analysis)
}
```

output of data analysis:

```
REVENUE
                           INDUSTRY
              REGION
Min.: 123
             East:28
                         Academic:31
1st Qu.: 1890
             North:20
                         Commercial:34
Median: 2670
              South:22
                         Government:35
Mean: 3570
              West:30
3rd Qu.: 3640
Max.:54300
```


អថេរ ថៃដន្យជាប់ ${f X}$ គោរពតាមច្បាប់ណរម៉ាល់កាលណាវាមានរបាយដង់ស៊ីតេដូចខាងក្រោម:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < +\infty$$

ច្បាប់ណរម៉ាល់អាស្រ័យទៅនឹងតំលៃ μ និង σ ។

ចំណាំ:

 ${
m X}$ ពោរពតាមច្បាប់ណ័រម៉ាល់ដែលមានសង្ឃឹមគណិត ${
m E}({
m X})=\mu$ និង វ៉ារ្យង់ $\sigma(X)=\sigma$ សរសេរ $N(\mu,\sigma^2)$ ។

១- លក្ខណៈសំពាល់អនុគមន៍របាយដង់ស៊ីតេ Normal:

ក-ដោយច្បាប់ណ័រម៉ាល់ជាច្បាប់ប្រូប្បាប៊ីលីតេនោះក្រលាផ្ទៃដែលខ័ណ្ឌដោយខ្សែកោងណរម៉ាល់និងអ័ក្ស អាប់ស៊ីសស្ញើ 1 ។

ខ- ខ្សែកោងណ័រម៉ាល់មានលក្ខណៈឆ្លុះធ្យេបនឹងតំលៃសង្ឃឹមគណិត $\mathrm{E}(\mathrm{X})$ ។


```
គ- ដោយសារខ្សែកោងណ័រម៉ាល់មានលក្ខណៈឆ្លុះនោះ :
```

mean(X)=Median(X)=Mode(X)

ចំណាំ:

Median:

Median(X) គឺជាតំលៃដែលចែក population ជាពីរផ្នែកស្មើគ្នា (X ត្រូវបានរ្យេបតាមលំដាប់កើន ឬ ចុះ) ។

ឧទាហរណ៍:

គេមានរបាយទិន្នន័យដូចខាងក្រោម:

X: 270 240 150 600 450 500 670

រ្យេបទិន្នន័យតាមលំដាប់កើន:

X: 150 240 270 **450** 500 600 670

Median(X) = 450

នៅក្នុង S-plus គេសរសេរ:

>X<-c(270,240, 150, 600, 450, 500, 670)

> median(X)

[1] 450

ក្នុងករណីដែល X មានរបាយទិន្នន័យដែលមានបរិមាណជាចំនួនគូ

X: 150 240 270 **450 500** 600 670 700

Median(X)=(450+500)/2

នៅក្នុង S-plus សរសេរ:

>median(X)

[1] 475

Mode:

Mode(X) គឺជាតំលៃអថេរ ចែដន្យ X ដែលមានប្រេកង់ (frequency) ខ្ពស់ជាងគេ ។

ឧទាហរណ៏ះ

គេមានរបាយទិន្នន័យ X ដូចខាងក្រោម:

X: 20 30 25 20 30 20 20 15 20 35 20 54 28

Mode(X)=20

$$\mathbf{U} - P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

ឧទាហរណ៏ះ

លទ្ធផលនៃការអង្កេតនៅក្នុងទីក្រុងភ្នំពេញបានអោយដឹងថា ការចំណាយប្រចាំខែជាមធ្យមរបស់គ្រួសារ នីមួយ១ មានរបាយទិន្នន័យ Normal N(\$250,(\$100)²) ។ តើមានគ្រួសារប៉ុន្មានភាគរយដែលរស់នៅក្នុង ទីក្រុងភ្នំពេញដែលមានការចំណាយប្រចាំខែជាមធ្យមប្រែប្រួលនៅក្នុងចន្លោះ[\$180,\$320]?

បើ X ជាអថេរនៃការចំណាយជាមធ្យមប្រចាំខែរបស់គ្រួសារនីមួយៗ នោះ:

$$P(\$180 \le X \le \$320) = \int_{180}^{320} \frac{1}{100\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-250}{100}\right)^2} dx$$

ចំលើយនៃអាំងតេក្រាលនេះតំណាងអោយភាគរយនៃគ្រួសារដែលមានការចំណាយជាមធ្យមប្រចាំខែនៅ ក្នុងចន្លោះពី \$180 ទៅ \$320 ។

S-plus:

pnorm(x,mean,std.dev) អាចប្រើជំនួយសំរាប់ការគណនាអាំងតេក្រាលនៃរបាយទិន្នន័យ Normal ដែលមានទំរង់ដូចខាងក្រោម:

$$P(X \le x) = \int\limits_{-\infty}^{x} f(x) dx$$
 , ដែល $f(x)$ ជាអនុគមនឹងង់ស៊ីតេ Normal

ដោយអនុវត្តទៅលើឧទាហរណ៍ខាលលើ យើងអាចសរសេរៈ

$$P(\$180 \le X \le 320) = 0.5160 = 51.60\%$$

ង- បើ X ជាអថេរនៃរបាយទិន្នន័យជាប់ នោះ :

២-ច្បាប់ណរម៉ាល់បង្រមកណ្ដាល (Standard normal distribution)

គ្រប់អថេរ ចៃដន្យ ${f x}$ នៃច្បាប់ណរម៉ាល់ដែលមានតំលៃមធ្យម ${m \mu}$ និង វ៉ារ្យង់ ${m \sigma}^2$ អាចបំលែងទៅជា អថេរណរម៉ាល់បង្រមកណ្ដាល (Standard random variable of normal distribution) ដែលកំណត់ ដោយប្រមាណវិធីដូចខាងក្រោម:

$$Z = \frac{X - \mu}{\sigma}$$

ដែល $\mathbf{E}(\mathbf{Z}) = \mathbf{0}$ និង $\mathbf{V}(\mathbf{Z}) = \mathbf{1}$ ។

ដូច្នេះរបាយដង់ស៊ីតេនៃច្បាប់ណរម៉ាល់បង្រមកណ្ដាលកំណត់ដោយ:

ឧទាហរណ៏

សន្នតិថា Z ~N(0,1) ចូរកំណត់ P(0<Z<0.5)?

ដើម្បីគណនាតំលៃប្រូបប៊ីលីតេ នេះយើងអាចប្រើតារាងណរម៉ាល់បង្រួមកណ្ដាលដែលមានស្រាប់ ឬក៏ប្រើ S-plus ដើម្បីសំរួលក្នុងការគណនា ។តារាង ណរម៉ាល់បង្រួមកណ្ដាលអាចអនុញ្ញាតអោយយើងគណនា ក្រលាផ្ទៃ ដែល Z ប្រែប្រួលពីតំលៃ 0 ទៅតំលៃ Z ណាមួយដែលមានរូបភាពដូចខាងក្រោម:

S-plus:

នៅក្នុង S-plus យើងអាចប្រើ command **pnorm(z)** ដែលអនុញ្ញាតអោយគណនាក្រឡាផ្ទៃដែល Z ប្រែប្រួលពី -∞ មកតំលៃ Z ណាមួយ ។

>pnorm(0.5, 0, 1)- 0.5 [1] 0.1914625

P(0 < Z < 0.5) = 0.1915

ដោយប្រើតារាង Normal standard ចូរគណនា P(-2.24<Z<1.12)?

Z	0.00 0.01 0.02 0.03 0.04 0.050.09
0.0	
0.1	
0.2	
1.0	
1.1—	$\rightarrow 0.3686 = P(0 < Z < 1.12)$
1.2	
2.0	
2.1	
2.2	→ 0.4875=P(0 <z<2.24)< th=""></z<2.24)<>
2.2	0.4073-I (0\Z\2.24)

Splus:

> pnorm(1.12)-pnorm(-2.24)

>[1] 0.8560977

ក្នុងករណីដែលយើងស្គាល់ក្រលាផ្ទៃដែលខ័ណ្ឌដោយខ្សែកោងណរម៉ាល់បង្រួមកណ្តាលនិងអ័ក្សអាប់ស៊ីស យើង អាចកំណត់តំលៃ z នៅលើអ័ក្ស Z ដេយេប្រើតារាងឬ ដោយអនុវត្តតាម s-plus programming ដូចខាងក្រោម:

ឧទាហរណ៍: ចូរគណនា z ដែល P(0 < Z < z) = 0.4750 ។ ដោយប្រើតារាងណរម៉ាល់បង្រួមកណ្ដាលនាំអោយ z = 1.96

S-plus:

qnorm= quantile of normal distribution qnorm(prob,mean,std.dev) >qnorm(0.475,0,1) [1] 1.959964

ដោយប្រើ S-plus programming យើងបង្កើតតារាងណរម៉ាល់បង្រួមកណ្ដាលដែលអនុញ្ញាតអោយយើង អាចគណនា P(0 < Z < z) ដែល Z ជាអថេរណរម៉ាល់បង្រួមកណ្ដាល:

```
Standard of Normal Distribution P(0<Z<z)= \int_{0}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}} dz
                           0.00
                                                                 0.01
                                                                                                                                                                                                                                                                                                                                              0.09
                                                                                                                                          0.03
0.0 \quad 0.0000 \quad 0.00399 \quad 0.00798 \quad 0.0120 \quad 0.0160 \quad 0.0199 \quad 0.0239 \quad 0.0279 \quad 0.0319 \quad 0.0359
0.1 \quad 0.0398 \quad 0.04380 \quad 0.04776 \quad 0.0517 \quad 0.0557 \quad 0.0596 \quad 0.0636 \quad 0.0675 \quad 0.0714 \quad 0.0753
0.2 \quad 0.0793 \quad 0.08317 \quad 0.08706 \quad 0.0910 \quad 0.0948 \quad 0.0987 \quad 0.1026 \quad 0.1064 \quad 0.1103 \quad 0.1141 \quad 0.08706 \quad 0.0910 \quad 0.0948 \quad 0.0987 \quad 0.0948 \quad 0
0.3 \quad 0.1179 \quad 0.12172 \quad 0.12552 \quad 0.1293 \quad 0.1331 \quad 0.1368 \quad 0.1406 \quad 0.1443 \quad 0.1480 \quad 0.1517 \quad 0.1480 \quad 0.
0.4 \quad 0.1554 \quad 0.15910 \quad 0.16276 \quad 0.1664 \quad 0.1700 \quad 0.1736 \quad 0.1772 \quad 0.1808 \quad 0.1844 \quad 0.1879
0.5 \quad 0.1915 \ \ 0.19497 \ \ 0.19847 \ \ 0.2019 \ \ 0.2054 \ \ 0.2088 \ \ 0.2123 \ \ 0.2157 \ \ 0.2190 \ \ 0.2224
0.6 \ 0.2257 \ 0.22907 \ 0.23237 \ 0.2357 \ 0.2389 \ 0.2422 \ 0.2454 \ 0.2486 \ 0.2517 \ 0.2549
0.7 \quad 0.2580 \quad 0.26115 \quad 0.26424 \quad 0.2673 \quad 0.2704 \quad 0.2734 \quad 0.2764 \quad 0.2794 \quad 0.2823 \quad 0.2852
0.8 0.2881 0.29103 0.29389 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 \quad 0.3159 \quad 0.31859 \quad 0.32121 \quad 0.3238 \quad 0.3264 \quad 0.3289 \quad 0.3315 \quad 0.3340 \quad 0.3365 \quad 0.3389
1.0 \quad 0.3413 \quad 0.34375 \quad 0.34614 \quad 0.3485 \quad 0.3508 \quad 0.3531 \quad 0.3554 \quad 0.3577 \quad 0.3599 \quad 0.3621
1.1 \quad 0.3643 \quad 0.36650 \quad 0.36864 \quad 0.3708 \quad 0.3729 \quad 0.3749 \quad 0.3770 \quad 0.3790 \quad 0.3810 \quad 0.3830
 1.2 0.3849 0.38686 0.38877 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
 1.3 0.4032 0.40490 0.40658 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
 1.4 0.4192 0.42073 0.42220 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.43448 0.43574 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6\ 0.4452\ 0.44630\ 0.44738\ 0.4484\ 0.4495\ 0.4505\ 0.4515\ 0.4525\ 0.4535\ 0.4545
1.7 0.4554 0.45637 0.45728 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
 1.8 0.4641 0.46485 0.46562 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
 1.9 0.4713 0.47193 0.47257 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 \quad 0.4772 \quad 0.4778 \quad 0.47831 \quad 0.4788 \quad 0.4793 \quad 0.4798 \quad 0.4803 \quad 0.4808 \quad 0.4812 \quad 0.4817 \quad 0.4818 \quad 0.4
2.1 \quad 0.4821 \quad 0.48257 \quad 0.48300 \quad 0.4834 \quad 0.4838 \quad 0.4842 \quad 0.4846 \quad 0.4850 \quad 0.4854 \quad 0.4857 \quad 0.4859 \quad 0.
2.2 0.4861 0.48645 0.48679 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.48956 0.48983 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.49202 0.49224 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.49396 0.49413 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.49547 0.49560 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.49664 0.49674 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 \quad 0.4974 \quad 0.49752 \quad 0.49760 \quad 0.4977 \quad 0.4977 \quad 0.4978 \quad 0.4979 \quad 0.4979 \quad 0.4980 \quad 0.4981
2.9 0.4981 0.49819 0.49825 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.49869 0.49874 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 \quad 0.4990 \quad 0.49906 \quad 0.49910 \quad 0.4991 \quad 0.4992 \quad 0.4992 \quad 0.4992 \quad 0.4992 \quad 0.4993 \quad 0.4993
3.2 0.4993 0.49934 0.49936 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.49953 0.49955 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996
 3.4 0.4997 0.49968 0.49969 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.49978 0.49978 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.49985 0.49985 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.49990 0.49990 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
 3.8 0.4999 0.49993 0.49993 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
 3.9 0.5000 0.49995 0.49996 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
```

៣-លំហាត់អនុវត្តន៏ៈ

- 9- លទ្ធផលនៃការសិក្សាវិភាគទៅលើពិន្ទុនិស្សិត ដែលសិក្សាមុខវិជ្ជា "Introduction to computer " ដែលមកពី department ផ្សេងៗ បានអោយដឹងថាពិន្ទុនេះគោរពតាមច្បាប់ណរម៉ាល់ ដែលមាន សង្ឃឹមគណិតស្ញើ 70 និងវ៉ារ្យង់ ស្នើ 100 ។
 - ក- កំណត់មេគុណបំរែបំរួល (coefficient of variation) នៃពិន្ទនិស្សិតទាំងនេះ ។
 - ខ- បើ ${f X}$ ជាពិន្ទុនិស្សិតទាំងនេះ តើមាននិស្សិតប៉ុន្មានភាគរយដែលមានពិន្ទុខ្ពស់ជាង 82?
 - គ- តើគេត្រូវជ្រើសរើសពិន្ទតូចជាងប៉ុន្មានដើម្បីអោយបាននិស្សិត 25% ?
- f D- ជណ្តើរយន្តនៃអាការមួយកន្លែងអាចផ្ទុកទំងន់បានតែ 800 kg ។ សន្មតថាទំងន់នៃអ្នកប្រើប្រាសជណ្តើរ នេះគោរពតាមច្បាប់ន័រម៉ាល់ដែលមាន មធ្យមស្មើ 80 kg និង វ៉ារ្យង់ 100 kg ។ តើគេត្រូវអនុញ្ញាត អោយមនុស្សយ៉ាងច្រើនប៉ុន្មាននាក់ជិះជណ្តើរនេះ បើសិនណាគេចង់អោយប្រូបាប៊ីលីតេនៃការលើស បន្ទុកក្នុងជណ្តើរនេះមិនលើសពី 10^{-4} ?

ចំណាំ:

ប៊ើ
$$X_1 \sim N(\mu_1, \sigma_1^{\ 2}), X_2 \sim N(\mu_2, \sigma_2^{\ 2}), \dots, X_n \sim N(\mu_n, \sigma_n^{\ 2})$$
 ហើយ X_1, X_2, \dots, X_n មិនអាស្រ័យគ្នា នោះ $Y = X_1 + X_2 + \dots + X_n$ $Y \sim N(\mu_1 + \mu_2 + \dots + \mu_n, \sigma_1^{\ 2} + \sigma_2^{\ 2} + \dots + \sigma_n^{\ 2})$ ។

- ៣– ក្រុមហ៊ុនមួយនៅទីក្រុងភ្នំពេញមានបំណងចង់នាំចូលនូវប្រភេទម៉ូតូ YAMAHA មួយចំនួន។ ដើម្បី អោយទីផ្សារនេះមានលក្ខណៈល្អប្រសើរសំរាប់ក្រុមហ៊ុននេះ លុះត្រាតែ 18% នៃអ្នករស់នៅក្នុងទីក្រុង ភ្នំពេញមានប្រាក់ចំណូលប្រចាំខែ យ៉ាងតិច \$300 ។ សន្មត់ ថានៅក្នុងទីក្រុងភ្នំពេញ ចំណូលប្រចាំខែរបស់ គ្រួសារនីមួយ ៗគោរពតាមច្បាប់ណរមាល់ដែលមានតំលៃមធ្យម \$250 និងតំលាតស្តង់ដា (standard deviation) \$100 ។ តើ ភ្នំពេញអាចក្លាយទៅជាទីផ្សាល្អប្រសើររបស់ ក្រុម ហ៊ុននេះ ដែរ ឬទេ?
- ៤- ក្រុមហ៊ុនមួយមានបំណងចង់បញ្ចេញផលិតផលរបស់ខ្លួននៅក្នុងទីផ្សារមួយកន្លែង។ ដើម្បីអោយទីផ្សារ នេះជាតំបន់មួយដែលមានលក្ខណៈល្អប្រសើរសំរាប់ក្រុមហ៊ុននេះលុះត្រាតែ 55% នៃគ្រសារដែលរស់

នៅក្នុងតំបន់នេះមានប្រាក់ចំណូលប្រចាំឆ្នាំ \$12500 យ៉ាងតិច ។ សន្លតថានៅក្នុងដំបន់នេះប្រាក់ចំណូល ប្រចាំ ឆ្នាំជាមធ្យមរបស់គ្រួសារនីមួយ ១ ស្ទើ \$12000 ហើយដែលមានគំលាតស្តង់ដា (standard deviation) ស្ទើ \$2500 ។ តើតំបន់នេះជាទីផ្សារលួប្រសើរសំរាប់ក្រុមហ៊ុននេះដែរឬទេ ? បើសិនណាប្រាក់ចំណូលប្រចាំឆ្នាំរបស់ គ្រួសារនីមួយៗគោរពតាមច្បាប់ ណរម៉ាល់ (normal) ។

៤- ក្រុមហ៊ុនសាងសង់មួយបានបញ្ជាក់ថាដើម្បីសាងសង់អាគារមួយដែលមាន 10 ល្វែង កំពស់ 4 ជាន់ ព្រងទាំងមាន ក្បាច់រចនាល្អប្រណីតត្រូវចំណាយពេលជាមធ្យម 50 សប្តាហ៍ និងតំលាតគំរូ (standard deviation) 5 សប្តាហ៍ ។ ឥឡូវនេះក្រុមហ៊ុននេះមានបំនងចង់ដេញថ្លៃលើតំរោងសាង សង់មួយដែលមានលក្ខណៈដូចខាងលើ ដោយបញ្ជាក់ពីពេលវេលាច្បាស់លាស់ក្នុងការសាងសង់នៅក្នុង កិច្ចសន្យាហើយដែលមានប្រូបាប៊ីលីតេនៃការគោរពកិច្ចសន្យាស្នើ 90% ។ តើក្រុមហ៊ុននេះត្រូវបញ្ជាក់ក្នុងកិច្ចសន្យាចំនួនប៉ុន្មានសប្តាហ៍ដើម្បីសំរេចការសាងសង់នេះបើសិនណាគេ សន្មតថាពេលវេលាចាំបាច់ក្នុងការសាងសង់គោរពតាមច្បាប់ណរម៉ាល់(normal) ។

^{'ಪು}ಣಚ್ಚಿತ್ವಣಣಿಣಣ್ಣಿತಿ

១-ច្បាប់ទ្វេធា (The Binomial distribution)

ច្បាប់នេះអនុវត្តតែចំពោះបាតុភូតទាំងឡាយណាដែលមានលទ្ធផលតែពីរ: ជោគជ័យ (success) ឬ បរាជ័យ (failure) ; បាន ឬមិនបាន ; អាច ឬមិនអាច ; វត្តមាន ឬអវត្តមាន។ ល។

អឋេរថៃដន្យ Bernoulli :

និយមន័យ: អថេរ ចៃដន្យដាច់ (Discrete random variables) ទាំងឡាយណាដែលទទួល តំលៃ 1 និង 0 ហើយដែលមានប្រូប្ប៊ីលីតេវ្យេង p និង 1-p ហៅថាអថេរ ចៃដន្យ **Bernoulli** ។

ក- X ជាអថេវថៃដន្យ Bernoulli X អាចទទួលតំលៃដូចខាងក្រោម:

$$X = \begin{cases} 1, (sucess) \\ 0, (failure) \end{cases}$$

ខ-តារាងរបាយប្រូបាប៊ីលីតេនៃអថេរថៃដន្យ Bernoulli :

ក- សង្ឃឹមកណិតនិងវ៉ារ្យង់នៃអថេរ Bernoulli:

$$\begin{split} E(X) &= \sum_{i=1}^n x_i p_i \quad \text{fin} \quad p_i = P(X = x_i) \\ E(X) &= 1 * p + 0 * (1 - p) = p \\ V(X) &= \sum_{i=1}^n (x_i - E(X))^2 p_i = (1 - p)^2 * p + (0 - p)^2 * (1 - p) \\ &= (1 - p)[(1 - p)p + p^2] = p(1 - p) \end{split}$$

ដូច្នេះ:

$$E(X)=p$$

$$V(X)=p(1-p)$$

២-វិញ្ញាសា Bernoulli និងច្បាប់ទ្វេធា :

សន្មតថាគេធ្វើការអង្កេត $\mathbf n$ ដងនៃវិញ្ញាសា $\mathbf B$ ernoulli ។ កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយមានការកើត ឡើងនៃ $\mathbf X$ ព្រឹត្តិការណ៏ក្នុងគំរូស្ថិតិ (sample) $\mathbf n$ បើសិនណាប្រូបាប៊ីលីតេនៃការកើតឡើងនៃព្រឹត្តិការណ៏ ក្នុងការសាកល្បងម្ដងៗ ស្ញើ $\mathbf p$ ។ ការគណនាប្រូបាប៊ីលីតេបែបនេះអោយឈ្មោះថា "ច្បាប់ទ្វេធា (Binomial) ។

៣-រួមខ្ពស់រាប់ការគណនាប្រូប្ប៊ីលីតេនៃច្បាប់ទ្វេធាៈ

សន្មតិថាយើងមាន n វិញ្ញាសា Bernoulli (មិនអាស្រ័យនឹងគ្នា) ដែលនៅលទ្ធផលនៃវិញ្ញាសានីមួយៗ n ការកើតឡើងនៃព្រឹត្តិការណ៏មានប្រូប្រ៊ីលីតេ p និងផ្ទុយពីនេះមានប្រូប្ប៊ីលីតេ 1-p ដូច្នេះប្រូប្ប៊ីលីតេនៃ n វិញ្ញាសា Bernoulli កំណត់ដោយ :

$$P(X = x) = C_n^x p^x (1-p)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, x = 0,1,2,....,n; 0 \le p \le 1$$

ច្បាប់ Binomial អាស្រ័យទៅតាមតំលៃ n និង p ។

ឧទាហរណ៍ទី១:

និស្សិតម្នាក់ត្រូវឆ្លងកាត់ការប្រលងមួយដែលមាន 120 សំនួរ ដែលនៅក្នុងសំនួរនីមួយ១មាន 4 ចំលើយ ក្នុង នោះចំលើយដែលត្រឹមត្រូវមានតែមួយប៉ុណ្ណោះ ។ ដោយសារនិស្សិតរូបនេះពុំមានពេលវេលាគ្រប់គ្រាន់សំរាប់ ការសិក្សា គាត់សំរេចចិត្តទៅប្រលងដោយជ្រើសរើសយកចំលើយនៅក្នុងសំនួរនីមួយ១ដោយចៃដន្យ ។ និស្សិតរូបនេះអាចប្រលងជាប់ ដរាបណាគាត់អាចឆ្លើយត្រូវយ៉ាងតិច្ច 50% នៃសំនួរទាំងអស់ ។

- ក- កំណត់រកប្រូបាប៊ីលីតេដើម្បីអោយនិស្សិតរូបនេះប្រលងជាប់។
- ខ- តើនិស្សិតរូបនេះអាចឆ្លើយត្រូវជាមធ្យមប៉ុន្មានសំនួរ?
- គ- តើគំលាតស្តង់ដានៃសំនូវដែលអាចឆ្លើយត្រូវស្មើប៉ុន្មាន?

ចំលើយ:

ក- សន្មតិថា X ជាអថេរ នៃចំនួនសំនួរដែលអាចឆ្លើយត្រូវ

$$P(X \ge 60) = \sum_{x=60}^{120} {120 \choose x} (0.25)^{x} (1 - 0.25)^{120 - x}$$

S-plus:

```
{ x<- 60:120
n<-120
p<-1/4
prob<-sum(dbinom(x,n,p))
return(prob)
}
```

ចំលើយ: [1] 3.423767e-009 = 0

ដូច្នេះយើងអាចសន្និដ្ឋានបានថានិស្សិតរូបនេះពុំអាចមានលទ្ធភាពប្រលងជាប់នោះទេ ។ ទោះបីជា និស្សិតនេះពុំអាចប្រលងជាប់យ៉ាងណាក្ដី ក៏គាត់អាចឆ្លើយត្រូវខ្លះដែរ ចំនួនសំនួរជាមធ្យម ដែលអាចឆ្លើយត្រូវ និងត្រូវគណនានៅក្នុង Expectation ខាងក្រោម។

៤-សង្ឃឹមគណិត និង វ៉ារ្យង់នៃអថេរទ្វេធា :

បើ
$$X \sim B(x,n,p)$$
 នោះ :
$$E(X) = np$$

$$V(X) = np(1-p), \sigma(X) = \sqrt{np(1-p)}$$

ដោយអនុវត្តទៅលើឧទាហរណ៍ខាងលើ ចំនួនសំនួរជាមធ្យម ដែលអាចឆ្លើយត្រូវគឺ :

ចំណែកឯគំលាតស្តង់ដានៃសំនូវដែលការឆ្លើយត្រូវ គឺ :

$$V(X) = \sqrt{n*p*(1-p)} = 120*1/4*3/4 = 4.743416 \cong 5$$
 សំនួរ

ខុទាហរណ៍ ទី ២ :

ក្រោយពីការវិភាគទៅលើចារឹកលក្ខណៈនៃអតិថិជនតាមរយៈនៃការធ្វើ questionnaire បានអោយដឹងថា ក្នុងចំណោមអ្នកទិញ 5 នាក់មាន 3 នាក់ (p=0.60) បានរងឥទ្ធិពលនៃម៉ាកពាណិជ្ជកម្ម ។ នាយក Marketing នៃ ហាងទំនិញដ៏ធំមួយ បានធ្វើប្រជាមតិទៅលើអ្នកទិញសម្ភារៈចំនួន 20 នាក់ដោយ ចៃដន្យ ។ កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយមានអ្នកទិពាតិចជាង 10នាក់រងឥទ្ធិពលនៃម៉ាក់ពាណិជ្ជកម្ម។

ចំលើយ:

សន្មតថា ${f x}$ ជាចំនួនអ្នកទិញ្យដែលរងឥទ្ធិពលនៃម៉ាក់ពាណិជ្ជកម្មក្នុងការទិញសម្ភារៈប្រើប្រាស់ ។ ដូច្នេះ ${f x}$ អាចទទួលតំលៃ ពី 0 ទៅ 20 ។ ដោយអនុវត្តច្បាប់ទ្វេធា យើងបាន:

$$P(X = x) = {20 \choose x} (0.60)^{x} (0.4)^{20-x}$$
$${20 \choose x} = C_{20}^{x}$$

ដូច្នេះប្រូបាប៊ីលីតេដើម្បីអោយអ្នកទិញតិចជាង 10នាក់រងឥទ្ធិពលនៃម៉ាក់ពាណិជ្ជកម្មកំណត់ដោយ:

$$P(X \le 9) = \sum_{x=0}^{9} {20 \choose x} (0.60)^{x} (1 - 0.40)^{20-x}$$

$$= C_{20}^{0} (0.60)^{0} (0.40)^{20} + C_{20}^{1} (0.60)^{1} (0.40)^{19} + \dots + C_{20}^{9} (0.60)^{9} (0.40)^{11}$$

$$= 0.1273$$

```
function()
     x < -0:9
     proba <- sum(dbinom(x, 20, 0.6))
     return(proba)
solution: proba=0.1273
```

៥-លំហាត់អនុវត្តន៏ :

- 9- ក្នុង College មួយកន្លែង ក៏រិតនៃការប្រលងធ្លាក់មុខវិជ្ជា " Introduction to computer" ស្ទើ 40% ។ ក្នុងចំណោមនិស្សិត 15 នាក់ដែលចុះឈ្មោះរ្យេនមុខវិជ្ជានេះ កំណត់:
- ក- ប្រហ្មប៊ីលីតេដើម្បីអោយមាននិស្សិតម្នាក់គត់ប្រលងធ្លាក់មុខវីជ្ជានេះ ។
- ខ- ប្រូបាប៊ីលីតេដើម្បីអោយក្នុងចំណោមនិស្សិតទាំងនេះមានលើសពាក់កណ្តាលប្រលងធ្លាក់មុខវិជ្ជា នេះ។
- គ- កំណត់ចំនួននិស្សិតក្នុងចំណោមនិស្សិតទាំង 15 នាក់នេះដើម្បីអោយប្រូប្ប៊ីលីតេដើម្បីធ្លាក់មាន តំលៃ អតិបរមា។

```
ចំលើយ: ក-p=0.0047, ខ-p=0.2131, គ-n=6
```

២- អ្នកទទួលខុសត្រូវនៃក្រុមហ៊ុនយន្តហោះ " swiss air" បានបញ្ជាក់ថា 10% នៃភ្ញៅវរបស់គាត់ កក់ សំបុត first class ។ ក្នុងចំណោមភ្ញៅវ 5 នាក់ ដែលនឹងមកកក់ សំបុត្រយន្តហោះ ចូរកំណត់:

ក-ប្រូបាប៊ីលីតេដើម្បីអោយគ្មាននរណាម្នាក់កក់ first class ។

ខ-ប្រូបាប៊ីលីតេដើម្បីអោយមានពីរនាក់គត់កក់ first class ។

ក-ក្នុងចំណោមភ្ញៅវ 5 នាក់ដែលនឹងមកកក់ សំបុត្រ កំណត់ចំនួនអតិថិជនដែលកក់ first class ហើយ ដែលប្រូបាប៊ីលីតេមានតំលៃអតិបរមា។

ចំលើយ: ក-0.5905, ខ-0.0729, គ-n=0

&&&&&&&

(Hypergeometric distribution)

១- របាយទិន្នន័យ អ៊ីពែធរណីមាត្រ

សន្ទតិថានៅក្នុង Population មួយដែលមាន N ធាតុមាន a ធាតុដែលត្រូវកំណត់ថាជាជោគជ័យ (sucess) និង b ធាតុបរាជ័យ (failure) ហើយដែល N=a+b ។ គេធ្វើការជ្រើសរើសនូវគំរូស្ថិតិ(sample) ដែលមាន n ធាតុ (n តូចជាងឬស្នើ N) ពីក្នុង population នេះ ។ កំណត់តំលៃប្រូបប៊ីលីតេដើម្បីអោយ មាន x ជោគជ័យនៅក្នុងគំរូស្ថិតិនេះ ។ តំលៃប្រូបប៊ីលីតេនេះត្រូវបានកំណត់ដោយច្បាប់អ៊ីពែរធរណីមាត្រ ដែលកំណត់ដូចខាងក្រោម:

$$P(X = x) = \frac{C_a^x * C_b^{n-x}}{C_N^n}$$

វិដល $x = \begin{cases} 0,1,2,....,n; n \le a \\ 0,1,2,....,a; n > a \end{cases}$
 $\mathbf{A} = \mathbf{N} * \mathbf{p}$ និង $\mathbf{b} = \mathbf{N} (\mathbf{1} - \mathbf{p})$

ដែល p ជាផលធ្យើបនៃជោគជ័យក្នុង **p**opulation នេះ ។

២- សង្ឃឹមគណិត និង វ៉ារ្យង់

បើ X ជាអថេរ ចៃដន្យអ៊ីពែធរណីមាត្រ (hypergeometric random variable) នោះ:

$$E(X) = np$$

$$V(X) = np(1-p) * \frac{N-n}{N-1}$$

<u> ឧទាហរណ៍១:</u>

អ្នកទទួលខុសត្រូវ នៃមន្ទីរពិសោធមួយកន្លែងមានបុគ្គលិក 18 នាក់ដែលក្នុងនោះមានមនុស្សស្រី 10នាក់ និងមនុស្សប្រុស 8 នាក់ ។ គាត់ត្រូវជ្រើសរើសបុគ្គលិករបស់គាត់ចំនួនពីរនាក់ដើម្បីចូលរួមក្នុងគណៈ កម្មការការពារសន្តិសុខក្នុងមន្ទីរពិសោធនេះ ។ ការជ្រើសរើសត្រូវធ្វើឡើងដោយចៃដន្យ ។ ក-តើគេអាចជ្រើសរើសមនុស្សពីរនាក់នេះបានប៉ុន្មានរប្បើប ព្រមទាំងកំណត់ប្រូបាប៊ីលីតេនៃការជ្រើស រើសនេះ?

```
ខ-សន្មតថា {f x} ជាចំនួនមនុស្សស្រីដែលគេជ្រើសរើសក្នុងគំរូស្ថិតិនេះ តើ {f x} អាចទទួលតំលៃណាខ្លះ ហើយ
កំណត់របាយប្រូបាប៊ីលីតេនៃ X?
គ-កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយមនុស្សពីរនាក់ដែលត្រូវបានជ្រើសរើសជាមនុស្សស្រី។
```

ចំលើយ: ១- n=153 រប្បើប ; ២- x : 0,1,2 និង
$$P(X = x) = \frac{C_{10}^x * C_8^{2-x}}{C_{18}^2}$$

m-p=0.2941

M-S-plus function:

```
dhyper: density of hypergeometric distribution
                dhyper(x,a,b,n)
 អនុវត្តលើឧទាហរណ៍ខាងលើ:
                function()
                #Question 1
                   n < -choose(18, 2)
                   proba1 <- 1/n
                # Ouestion 2
                   x < -0:2
                   proba2 <- dhyper(x, 10, 8, 2)
                   Table <- rbind(x, proba2)
                #Question 3
                   proba3 <- dhyper(2, 10, 8, 2)
                   return(n, proba1, Table, proba3)
 solution:
        $n:
        [1] 153
        $proba1:
        [1] 0.006535948
        $Table:
                  0.0000000 1.0000000 2.0000000
         proba2 0.1830065 0.5228758 0.2941176
        $proba3:
        [1] 0.2941176
ឧទាហរណ៏២:
```

អ្នកលក់ទំនិញនៃហាងមួយកន្លែងបានបញ្ជាក់ថា 10% នៃ printer ដែលគាត់ទទួលយកមកលក់ត្រូវបាន ជួសជុលមុននឹងលក់អោយអតិថិជនរបស់គាត់ ។ បើសិនណាគេជ្រឹសរើសដោយចែងន្យនូវ printer ចំនួន 5 ពីក្នុងចំណោម printer ចំនួន 20 គ្រឿង កំណត់ប្រូបាប៊ីលីតេដើម្បីអោយគ្មាន printer ដែលខូចទាល់តែ សោះ ?

ច្បាប់ព័រសុងត្រូវបានគេអនុវត្តយ៉ាងញឹកញាប់នៅក្នុងបណ្តាក្រុមហ៊ុនសហគ្រាសនានាដូចជាៈ នៅក្នុងការគ្រប់ គ្រងក្នុងរោងចក្រឧស្សាហកម្ម (ចំនួនអ្នករងគ្រោះថ្នាក់នៅក្នុងពេលបំពេញការងារ, ការផ្ទៀងផ្ទាត់នូវបញ្ជី គណនេយ្យ ។ល។), operation research (ការសិក្សាអំពីការបញ្ជូនពត៌មានដែលមានលក្ខណៈ បន្តបន្ទាប់គ្នា), ការធ្វើចរាចរនៅលើផ្លូវសាធារណៈ (ចំនួនយានយន្តដែលត្រូវកកស្ទះនៅចំនុចណាមួយ), ប្រជាសាស្ត្រ (ការផ្តល់កំណើតដែលធ្វើអោយមានការកើនឡើងនៃប្រជាជន, ការស្លាប់នៅក្នុង population មួយដែលគេសិក្សា), ការស្រាវជ្រាវអំពីវេជ្ជសាស្ត្រ (ការសិក្សាទៅលើកំណកំណើត នៃបាក់តេរី),...។

នៅក្រោមលក្ខខ័ណ្ឌខ្លះច្បាប់ព័រសុងមានកំហិតទៅរកច្បាប់ខ្វេធា ។

១-ច្បាប់ព័រសុង:

អថេរ ថៃដន្យ X ដែលអាចទទួលតំលៃ 0,1,2,3,...,n,... ហើយដែលមានប្រូប្ប៊ីលីតេ $P(X=x)=\frac{e^{-\lambda}*\lambda^x}{x!}, \lambda>0 \ \text{ ពោរពទៅតាមច្បាប់ព័រសុង } P(X=x\setminus\lambda)$ ដែលមានប៉ារ៉ាម៉ែត្រ λ ។

២-<u>សង្ឃឹមគណិត វ៉ារ្យង់ និង គំលាតស្តង់ដា</u>(Expectation, variance and Standard deviation)

បើ X ជាអថេរ ចៃដន្យព័រសុង នោះ:

$$E(X)=\lambda$$

$$V(X) = \lambda$$

$$\sigma(X) = \sqrt{\lambda}$$

ចំណាំ:

X គោរពតាមច្បាប់ព័រសុងអាចសរសេរ:

$$X \sim P(X = x \setminus \lambda)$$

$$X \sim P(x; \lambda)$$

$$X \sim P(\lambda)$$

$$X \sim P(x, n, p)$$

លំហាត់ៈ

អ្នកទទួលខុសត្រូវនៃគណៈកម្មការសន្តិសុខសហគ្រាស NICOM បានសិក្សាទៅលើចំនួនគ្រោះថ្នាក់ការងារ ដែលបានកើតឡើងក្នុងរយៈពេល 2 ឆ្នាំកន្លងទៅ ។ តាមរបាយការណ៏នៃការសិក្សានេះបានអោយ ដឹងថាចំនួន មធ្យមនៃគ្រោះថ្នាក់ការងារមាន 1.6 ក្នុងមួយថ្ងៃ ។

ក- ដោយសន្មតិថាចំនួនគ្រោះថ្នាក់នៅក្នុងមួយថ្ងៃគោរពទៅតាមច្បាប់ព័រសុង កំណត់រូបមន្តមួយដែលអាច អោយយើងគណនានូវប្រូបាប៊ីលីតេនៃ x គ្រោះថ្នាក់ការងារក្នុងមួយថ្ងៃ ។

$$E(X) = \lambda = 1.6 \Rightarrow P(X = x \setminus \lambda = 1.6) = \frac{e^{-1.6} * (1.6)^x}{x!}, x = 0,1,2,...$$

ខ- គំលាតស្ទង់ដានៃ x:

$$\sigma(X) = \sqrt{1.6} = 1.2625$$
 ព្រោះថ្នាក់ការងារ/ 1 ថ្ងៃ

គ- ប្រុបាប៊ីលីតេនៃការមានគ្រោះថ្នាក់ការងារលើសពី 2 ដងក្នុងមួយថ្ងៃ

$$P(X > 2) = 1 - P(X \le 2)$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - \left[\frac{e^{-1.6} (1.6)^{0}}{0!} + \frac{e^{-1.6} (1.6)^{1}}{1!} + \frac{e^{-1.6} (1.6)^{2}}{2!} \right]$$

$$= 0.2167 = 21.67\%$$

ឃ- គណនាប្រូប្ប៊ីលីតេនៃចំនួនគ្រោះថ្នាក់ការងារនៅក្នុងចន្លោះ $[E(X)-\sigma(X),E(X)+\sigma(X)]$

$$E(X) - \sigma(X) = 1.6 - 1.265 = 0.335$$

$$E(X) + \sigma(X) = 1.6 + 1.265 = 2.865$$

$$P(E(X) - \sigma(X) \le X \le E(X) + \sigma(X)) = P(0.335 \le X \le 2.865)$$

```
ដោយអថេរ ចែងឡូព័រសុងជាអថេរ ចែងឡូដាច់ដែលអាចទទួលតំលៃ 0,1,2,3,...,n,... ដូច្នេះ
```

```
P(0.335 \le X \le 2.865) = P(0 \le X \le 2)
= P(X = 0) + P(X = 1) + P(X = 2)
= 0.7833
```

S-plus:

dpois : density of poisson distribution $dpois(x, \lambda)$

ដោយអនុវត្ត S-plus លើឧទាហរណ៍ខាងលើ យើងអាចសរសេរ program ដូចខាងក្រោម :

```
function()
#Question 1
       lambda <- 1.6
       print(" Poisson(x,lambda)=(exp(-lambda)*lambda^x)/factorial(x); lambda=1.6;
               x=0,1,2,....")
#Question 2
       sigma <- sqrt(lambda)</pre>
#Question 3
       x < -0:2
       proba3 < -1 - sum((exp(-lambda) * lambda^x)/factorial(x))
#Question 4
       born.inf <- as.integer(lambda - sigma)
       born.sup <- as.integer(lambda + sigma)</pre>
       x <- born.inf:born.sup
       proba4 <- sum((exp( - lambda) * lambda^x)/factorial(x))</pre>
#Question 5
       x < -0:10
       proba5<-(exp(-lambda)*lambda^x)/factorial(x)</pre>
       barplot(proba5,names=factor(levels(x)),xlab="work accidence per day",ylab=
               "probability",main="Poisson distribution")
       return(sigma, proba3, proba4)
}
```

output

\$proba3:
[1] 0.2166415

\$proba4:
[1] 0.7833585

ឧទាហរណ៍ : ការអនុវត្តច្បាប់ **Poisson** ទៅលើការលក់ប្រចាំថ្ងៃនៃក្រុមហ៊ុន **Computer** ។ការលក់ប្រចាំថ្ងៃ X_1 នៃក្រុមហ៊ុន computer មួយកន្លែងគោរពតាមច្បាប់ Poisson ដែលមានតំលៃ មធ្យម λ_1 =4.2 គ្រឿង ។

ក- កំណត់ វ៉ារ្យង់នៃអថេរ \mathbf{X}_1 ?

ដោយការលក់ប្រចាំថ្ងៃ \mathbf{X}_1 គោរពតាមច្បាប់ Poisson ដូច្នេះ :

$$E(X_1)=Var(X_1)=4.2 (ព្រឹង)^2$$

ខ- កំណត់សមមាត្រធ្យេប (proportion) នៃថ្ងៃដែលលក់បាន:

-មួយគ្រឿង:

$$P(X = 1, \lambda = 4.2) = \frac{4.2^{1} * e^{-4.2}}{1!} = 0.0630$$

-ពី4 ទៅ5 គ្រឿង:

$$P(4 \le X \le 6) = P(X = 4) + P(X = 5) + P(X = 6) = 0.1944 + 0.1633 + 0.1143 = 0.472$$

គ- នៅក្នុងរយៈពេល 250 ថ្ងៃដែលបើកលក់តើមានប្រហែលប៉ុន្មានថ្ងៃដែលការលក់ប្រចាំថ្ងៃដាច់បាន 3 ក្រៅង ?

$$\lambda \approx n * p = 250 * P(X = 3) = 250 * 0.1852 \approx 46$$
 ig

ចំណាំះ

-បើ \mathbf{X}_1 និង \mathbf{X}_2 ជាអថេរ ចែដន្យព័រសុងដែលមិនអាស្រ័យនឹងគ្នា ហើយដែលមានប្រូប្ប៊ីលីតេវ្យេង $P(X_1, \lambda_1)$ និង $P(X_2, \lambda_2)$ នោះ :

$$Y = X_1 + X_2 \sim P(Y, \lambda_1 + \lambda_2)$$

- ជាទូទៅបើ $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$ ជាអថេរព័រសុងមិនអាស្រ័យនឹងគ្នាហើយដែលមានប្រូបប៊ើលីតេវ្យេង

$$P(X_1,\lambda_1),P(X_2,\lambda_2),....,P(X_n,\lambda_n)$$
 is:

$$Y = X_1 + X_2 + \dots + X_n \sim P(Y, \lambda = \lambda_1 + \lambda_2 + \dots + \lambda_n)$$

៣-កំហិតនៃច្បាប់ ទ្វេធាទៅរកច្បាប់ព័រសុង :

សន្មតិថាលក្ខខ័ណ្ឌនៃការអនុវត្តទៅលើច្បាប់ទ្វេធាត្រូវបានបំពេញ ប៉ុន្តែនៅ ក្នុងករណីនេះទំហំ sample នៃការ សាកល្បង ${\bf n}$ មានទំហំធំហើយប្រុហ្គប៊ីលីតេ ${\bf a}$ មានតំលៃតូចដែលធ្វើអោយ ${\bf n}^*{\bf p}$ មានតំលៃមួយ តូចធ្យេបទៅនឹងតំលៃ n ដូច្នេះយើងអាចធ្វើកំហិតពីច្បាប់ ទ្វេធាទៅច្បាប់ព័រសុងដូចខាង

ក្រោម:
$$b(x;n;p) \approx p(x;\lambda), \lambda = np$$

នៅក្នុងការអនុវត្តកំហិតពីច្បាប់ទ្វេធា ទៅរកច្បាប់ព័រសុងអាចអនុវត្តបានលុះត្រា :

$$n > 20, p \le 0.10$$
 និង $np \le 5$

$$\lim_{n \to +\infty} \binom{n}{x} p^x (1-p)^{n-x} = \frac{(np)^x e^{-np}}{x!} = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$p \to 0$$

យើងនឹងលើកយកឧទាហរណ៍មួយដើម្បីបញ្ជាក់អំពីកណើខាងលើ ដោយប្រើ S-plus programming language ដូចខាងក្រោម:

```
function(n, p)
```

kam2 <- function(n, p)

```
x < -0:10
               binomial \leftarrow dbinom(x, n, p)
               lambda <- n * p
               poisson <- dpois(x, lambda)</pre>
               table <- cbind(x, binomial, poisson)
               par(mfrow = c(2, 2))
               y1 <- plot(binomial, pch = 9, xlab =
                       "Variable x", ylab =
                       "Probability", main =
                       "Comparison of Binomial with Poisson distribution"
               y2 <- points(poisson, col = 5, pch = 12
               lines(binomial)
               lines(poisson, col = 5)
               legend(4.2, 0.3, c("values of binomial",
                       "values of poisson"), mark = c(
                       9, 12))
               barplot(binomial, xlab = "Variable X",
                       ylab = "Probability", main =
                       "Binomial distribution")
               barplot(poisson, xlab = "Variable X",
                       ylab = "Probability", main =
                       "Poisson distribution")
               return(table, y1, y2)
       result.1 <- kam2(10, 0.2)
       result.2 <- kam2(20, 0.1)
       result.3 <- kam2(30, 0.05)
       return(result.1, result.2, result.3)
}
```

ក-ករណីដែល n=10, p=0.20, b(x,10,0.20) :

```
        x
        binomial
        poisson

        0
        0.1073741824
        0.13533528324

        1
        0.2684354560
        0.27067056647

        2
        0.3019898880
        0.27067056647

        3
        0.2013265920
        0.18044704432

        4
        0.0880803840
        0.09022352216

        5
        0.0264241152
        0.03608940886

        6
        0.0055050240
        0.01202980295

        7
        0.0007864320
        0.00343708656

        8
        0.0000737280
        0.00085927164

        9
        0.0000040960
        0.00019094925
```


ខ- <u>ការណីដែល n=20, p=0.10, b(x,20,0.10)</u>

	X	binomial	poisson	
	0	1.215767e-001	0.13533528324	
	1	2.701703e-001	0.27067056647	
	2	2.851798e-001	0.27067056647	
	3	1.901199e-001	0.18044704432	
	4	8.977883e-002	0.09022352216	<u> </u>
ប្រវេង្ហ	5	3.192136e-002	0.03608940886	
ט ט	6	8.867045e-003	0.01202980295	
	7	1.970454e-003	0.00343708656	
	8	3.557765e-004	0.00085927164	

ក-ករណី ដែល n=30,p=0.05, b(x,30,0.05):

Г				
	X	binomial	poisson	
	0	2.146388e-001	2.231302e-001	
	1	3.389033e-001	3.346952e-001	
	2	2.586367e-001	2.510214e-001	
. ಇರೇ ಇ ಇನ್ನೆ ಡಿ. ಇನ್ನಿ ಗಿ. ಇ	3	1.270496e-001	1.255107e-001	
រ្យើបរ្យេងដោយ	4	4.513605e-002	4.706652e-002	
	5	1.235302e-002	1.411996e-002	
	6	2.708997e-003	3.529989e-003	

៥-លំហាត់អនុវត្តន៏:

- ១- ដោយប្រើកម្មវិធី S-plus ចូរបង្ហាញនិងពន្យល់ពីតួនាទីនីមួយ ១ នៃ command ខាងក្រោម: dbinom(x,30,0.10) , x<- 0:12
 - ខ-Plot(data)
 - \mathfrak{m} par(mfrow=c(3,2))

ឃ- តើ points ខុស ពី plot យ៉ាងដូចម្ដេច?

- ង- return()
- \mathfrak{v} par(mfg=c(1,2,1,2))
- ២- ដោយប្រើកម្មវិធី S-plus ចូរសង់ program ដើម្បីដោះស្រាយបញ្ហាខាងក្រោម:
 និស្សិតម្នាក់ត្រូវឆ្លងកាត់ការប្រលងមួយដែលមាន 15 សំនួរ ។ វិធីសាស្ត្រនៃការឆ្លើយសំនួរ គី ពិតឬ
 មិនពិត ។ ដោយសារនិស្សិតនេះពុំបានរៀបចំមេរៀនបានល្អ គាត់សំរេចចិត្តបោះកាក់ក្នុងការឆ្លើយ
 បើកាក់ចេញផ្នែកខាងរូប គាត់ឆ្លើយ ពិត បើកាក់ចេញផ្នែកខាងលេខ គាត់ឆ្លើយ មិនពិត ។
 និស្សិតនេះប្រលងជាប់ លុះត្រាតែគាត់ ទទួលបានពិន្ទុ 60% ។ កំណត់ប្រូបប៊ីលីតេដើម្បីអោយនិស្សិត
 រូបនេះប្រលងជាប់ ។
- ៣- ក្រុមហ៊ុនសាងសង់មួយបានបញ្ជាក់ថាដើម្បីសាងសង់អាគារមួយដែលមាន 10 ល្វែង កំពស់ 4 ជាន់ព្រម ទាំងមានក្បាច់រចនាល្អប្រណីតត្រូវចំណាយពេលជាមធ្យម 50 សប្តាហ៍ និងគំលាតស្តង់ដា (standard deviation) 5 សប្តាហ៍ ។ ឥឡូវនេះក្រុមហ៊ុននេះមានបំណងចង់ដេញថ្លៃលើគំរោងសាងសង់មួយដែលមានលក្ខណៈដូចខាងលើដោយ បញ្ជាក់ពីពេលវេលាច្បាស់លាស់ក្នុងការសាងសង់នៅក្នុងកិច្ចសន្យាហើយដែលមានប្រូបាប៊ីលីតេនៃការ គោរព កិច្ចសន្យាស្មើ 90% ។ តើក្រុមហ៊ុននេះត្រូវបញ្ជាក់ក្នុងកិច្ចសន្យាចំនួនប៉ុន្មាន សប្តាហ៍ដើម្បីសំរេច ការសាងសង់នេះ? បើសិនណាគេសន្មតិថាពេលវេលាចាំបាច់ក្នុងការសាងសង់គោរពតាមច្បាប់ណរមាល់ (normal) ។

៤- គេមានតារាងទិន្នន័យដូចខាងក្រោម :

Output(\$)	Probability
27000	0.11
23000	0.14
20000	0.24
22000	0.21
16000	0.30

ដោយប្រើកម្មវិធី S-plus ចូរបង្កើត table នៃទិន្នន័យខាងលើនេះ និងគណនាមធ្យមនៃ output ដែល នឹងអាចទទួលបានព្រមទាំងគំលាតគំរូ (standard deviation) និង risk ។

៥- ដោយប្រើកម្មវិធី S-plus ចូរសង់ program ដើម្បីដោះស្រាយបញ្ហាខាងក្រោម:

តាមការអង្កេតមួយដែលបានធ្វើឡើងដោយទស្សនាវិដ្តី "Gestion" បានអោយដឹងថា 28% នៃបុគ្គលិក របស់ក្រុមហ៊ុន " AT&T " មានសញ្ញាប័ត្រ "Master in management" ។ សន្មតិថាបុគ្គលិក 15នាក់ត្រូវ បានជ្រើសរើសដោយចៃដន្យ ។

- ក- តើជាមធ្យមមានបុគ្គលិកប៉ុន្មាននាក់ដែលមានសញ្ញាប័ត្រ "Master in management" ក្នុងចំណោម គំរូស្ថិតិខាងលើ?
- ខ- ប្រូបាប៊ីលីតេដើម្បីអោយ បុគ្គលិក 5 នាក់មានសញ្ញាប័ត្រ "Master in management" ក្នុងចំណោម គំរូស្ថិតិខាងលើ ។

៦-បុរសម្នាក់មានបំណងចង់វិនិយោគថវិកាមួយចំនួនដោយការទិញប័ណ្ណភាគហ៊ុន ។ គាត់សង្កេតឃើញថា ក្រុមហ៊ុន A អាចផ្ដល់ទិន្នផល 16% បើគា្មនការធ្លាក់ចុះ នៃសេដ្ឋកិច្ច ផ្ទុយទៅវិញគាត់អាចទទួលបាន10% បើ មានការធ្លាក់ចុះ នៃសេដ្ឋកិច្ច ។ គាត់សង្កេតឃើញផងដែរក្រុមហ៊ុន B ផ្ដល់ទិន្នផលថេរ 12% ។ តើការធ្លាក់ចុះ នៃសេដ្ឋកិច្ចត្រូវតូចជាងប៉ុនា្មនភាគរយ ដើម្បីអោយការទិញប័ណ្ណភាគហ៊ុន នៃក្រុមហ៊ុន A ទទួលបានទិន្នផលខ្ពស់ជាងក្រុមហ៊ុន B?

- ៧-Security Alarm System អាចដំណើរការបានឬមិនបានអាស្រ័យនឹងការវាយបញ្ចូល 3-digits numerical code ត្រឹមត្រូវនៅក្នុង digital panel នៃប្រព័ន្ធនេះ ។
 - ក- តើចំនួនលេខ code ទាំងអស់ដែលអាចមានចំនួនប៉ុន្មាន បើក្នុងចំណោមលេខ code នីមួយៗ ក្ញាន numerical digit ណាមួយដែលត្រូវបានប្រើពីរដងនោះទេ?
 - ខ-តើចំនួនលេខ code ទាំងអស់ដែលអាច មានចំនួនប៉ុន្មាន បើក្នុងចំណោមលេខ code នីមួយ១ numerical digit នីមួយ១អាចប្រើលើសពី 1 ដង?

(លេខ code ខាងលើនេះត្រូវបានសរសេរនៅក្នុងប្រព័ន្ធរបាប់គោល 10)

៨- គេមានតារាងទិន្នន័យ DATA ដែលស្រង់បានពីការអង្កេតទៅលើ Salary/year របស់បុគ្គលិកមួយចំនួន នៅក្នុងក្រុមហ៊ុនមួយកន្លែងទៅតាម ភេទ តូនាទី និងក៏រិតការសិក្សា ហើយដែលមាននៅក្នុង object explorer នៃ S-plus ដែល:

- ជួរឈរទី១ តាងអោយ Gender (Male, Female)
- ជួរឈរទី២ តាងអោយ Jobcategories (Manager, Custodial, Clerical)
- ជួរឈរទី៣ តាងអោយ Level of education (<HS, HS, BA, MBA)
- ជួរឈរទី៤ តាងអោយ Salary/year (Numerical Data)

ដោយផ្ដាច់យកតែ Records នៃបុគ្គលិកដែលមានក៏រិតការសិក្សាមិនលើសពី HS និងមានតួនាទីជាClerical ចូរសសេរ function S-plus បង្កើតតារាង Crosstabs ដែលវាយតំលៃជាលក្ខណៈខ្វែងគ្នារវាង Variable "Jobcategories" និង "Gender" ដោយយក "Jobcategories" ជាជួរដេកនៃ Crosstabs ។

៩-ដោយអនុវត្តទៅលើតារាងទិន្នន័យនៃ **លំហាត់ទី** 8 ហើយសន្មតថា variable Salary/year មានរបាយ ទិន្នន័យ Normal, ចូរដក 10% នៃទិន្នន័យដែលតូចជាងគេចេញពី Salary/year ហើយសរសេរ function S-plus វាយតំលៃជាមធ្យមទៅលើ Salary/year របស់បុគ្គលិកនីមួយៗដែលមានទំរង់:

N	Mean	Variance	Std deviation

ខំពូនព:

តារទាយតំំល

(Estimation)

ការវាយតំលៃ

9. រង្វាស់នៃទិន្នន័យ(Measurement of Data):

ជាទូទៅនៅក្នុងការស្រាវជ្រាវ ទិន្នន័យចែកចេញជាពីរផ្នែនធំៗ៖ Quantitative data និង Qualitative data

n. Quantitative data:

Quantitative data គឺជាប្រភេទទិន្នន័យដែលសំគាល់បរិមាណ ហើយដែលអាចធ្វើ

ប្រមាណវិធីពិជគណិត(+,-,*,/) បាន។

ឧទាហរណ៍៖

ការចំណាយជាមធ្យមប្រចាំសប្ដាហ៍របស់និស្សិតនីមួយៗ រយះពេលជាមធ្យមនៃការធ្វើកិច្ចការរបស់និស្សិតនីមួយៗ

2. Qualitative data:

ជាប្រភេទទិន្នន័យដែលសំគាល់សភាពលក្ខណះនៃអ្វីមួយហើយដែលមិនអាចធ្វើ

ប្រមាណវិធីពិជគណិតបាន។

<u>ឧទាហរណ៍៖</u>

ភេទរបស់និស្សិតនីមួយៗ ៖ Male or Female

Size of T-shirt: Small Medium Large Extra-Large

យ៉ាងណាម៉េញ Qualitative data ចែកចេញជាពីវផ្នែក៖ Nominal & Ordinal ។

Nominal data: ជាប្រភេទ Qualitative data ដែលគ្មានលំដាប់នៃការប្រៀប ធៀប។

ឧទាហរណ៍៖ Male or Female: Yes or No

Ordinal data: ជាប្រភេទទិន្នន័យ Qualitative ដែលមានលំដាប់នៃការប្រៀប ព្យេប្រា

ឧទាហរណ៍៖ កំរិតការសិក្សា <HS , HS, Bachelor, Master, Ph.D ។

សំគាល់៖ នៅក្នុង software SPSS ឬក៏ Software ផ្សេងទៀត រង្វាស់នៃទិន្នន័យ ប៉ែក ចេញជា ៣ ៖ scale, Nominal & Ordinal ។

២. <u>ពាក្យបច្ចេកទេសស្ថិតិ(Statistics Terminology):</u>

Population:

ជាសាកលនៃពត៌មានទាំងអស់ដែលអាចកើតមាននៅក្នុងការសិក្សា ស្រាវជ្រាវ។

Sample

(គំរូតាង ឬ សំណាក) ៖ ជាផ្នែកមួយនៃ populationដែលត្រូវដកស្រង ដោយចៃដន្យសំរាប់ ការសិក្សា ។

Sample size:

ជាទំហំនៃការអង្គត។

Parameter of population:

ជាលក្ខណះសំគាល់អ្វីមួយនៃ populationដែលត្រូវសិក្សាវាយតំលៃ។

Estimator

ជារង្វាស់ទទួលបាននៅក្នុងសំណាក ដែលប្រើសំរាប់វាស់ parameter។

Unbiased estimator

ជារង្វាស់ទទូលបាននៅក្នុងសំណាក ដែលវាស់ parameter បានល្អប្រសើរ បំផុតៗ

Std.error (លំអៀងស្តង់ដា) ៖

ជាលំអៀងជាមធ្យមដែលកើតឡើងនៅក្នុងការវាយតំលៃ។

Margin of error:

ជាលំអៀងធំបំផុតដែលកើតឡើងក្នុងការវាយតំលៃ។

Level of confidence:

កំរិតជឿជាក់។

Level of significance:

កំរិតភាគរយនៃ populationដែលខុសនឹងការវាយតំលៃ ហើយដែល

Level of confidence + Level of significance=1 1

Outliers:

តំលៃមិនប្រក្រតីដែលមាននៅក្នុងទិន្នន័យ។

៣. <u>ការវាយតំលៃដោយចំនុច(Point estimates):</u>

គឺជាសិក្សាវាយតំលៃទៅលើប៉ារ៉ាម៉ែត្រ នៃ population heta តាមរយះតំលៃ estimator $\hat{ heta}$ ដែល ទទួលបានពីការសំយោគពីទិន្នន័យស្រង់បាននៅក្នុង សំណាកតែមួយ។

 θ in parameter of population

 $\hat{\theta}$ ជា estimator

គេនិយាយថា $\hat{ heta}$ ជា unbiased estimator (រង្វាស់ដែលវាស់បានប្រសើរបំផុត) នៃheta, កាលណា $\mathsf{E}(\hat{ heta})$ - heta= 0 ។

ទោះបី $\hat{ heta}$ វាយតំលៃ heta បានល្អប្រសើរយ៉ាងណាក៏ដោយ ក៏នៅលទ្ធផលនៃការវាយ តំលៃ នៅតែមានលំអៀងដដែល ហើយ លំអៀងនោះ អោយឈ្មោះថា លំអៀង ស្តង់ដាតាងដោយ $S(\hat{\theta})$ ។

$$\hat{\theta}$$
 វាយតំលៃ θ , $S(\hat{\theta})$ ជាលំអៀងស្ដង់ដា $S(\hat{\theta})$

π. ការវាយតំលៃជាមធ្យម (μ)៖

នៅក្នុងករណីនៃការវាយតំលៃជាមធ្យម, ទិន្នន័យដែលស្រង់នៅក្នុងសំណាកដាច់ ខាតត្រូវតែជាប្រភេទ Quantitative ។

ប៉ារ៉ាមែត្រនៃ population តំណាងដោយតំលៃមធ្យម μ ហើយ unbiased estimator តំណាងដោយតំលៃ $ar{x}$ ដែលជាតំលៃមធ្យមដែលទទួលបានពី សំណាក (sample mean)។

ក្នុងករណីនេះ លំអៀងស្ដង់ដានៃការវាយតំលៃកំណត់ ដោយ $S(\bar{x}) = \frac{S(X)}{\sqrt{n}}$ ។

<u>ចំណាំ៖</u> \bar{x} ជា unbiased estimator នៃ μ , ព្រោះ $\mathsf{E}(\bar{X})$ - μ = $\mathbf{0}$ (យោងតាម

Central limit theorem) 1

បើ X~ $N(\mu, \sigma^2)$, នោះ $\bar{X} \sim N(\mu, \sigma^2/n)$ ។ក្នុងករណីនេះ $E(\overline{X}) = \mu$ \Rightarrow $E(\overline{X})$ - μ =0 , គេ្រាចនិយាយថា \overline{X} ជា unbiased estimator នៃ μ ។

២.១.១- ឧទាហរណ៍នៃការវាយតំលៃជាមធ្យមនៅក្នុង SPSS

នៅក្នុង SPSS ដើម្បីធ្វើការវាយតំលៃជាមធ្យម គេអនុវត្តទៅលើ Tool "Descriptive analysis" ។ Descriptive analysis គឺជាការសិក្សាវិភាគដែលអនុវត្តទៅលើប្រភេទទិន្នន័យដែលជា Quantitative ហើយដែលក្នុងនោះអាចផ្ដល់នូវតំលែមធ្យម (Sample Mean) គំលាតស្ដង់ដា (Standard deviation) កំហុសនៃការវាយតំលៃទៅលើតំលៃមធ្យម (Standard error mean) និងតំលៃមួយចំនួន ឡេត។

ឧទាហរណ៍ះ

សន្មតថាគេមានបំណងធ្វើការវាយតំលៃទៅលើប្រាក់ចំណូលជាមធ្យមរបស់គ្រួសារដែលរស់នៅក្នុងតំបន់មួយ កន្លែង ។ ក្នុងករណីនេះគេធ្វើការអង្កេតទៅលើគ្រួសារមួយចំនួនដែលរស់នៅក្នុងតំបន់នេះដោយចៃដន្យមាន នយ័ថាគេជ្រើសរើសនូវគំរូតាងស្ថិតិមួយសំរាប់ការវាយតំលៃ ។

ទិន្នន័យដែលទទួលបានពីការអង្កេតនេះមានឈ្មោះថា "sales"ដែលកំណត់ទុកនៅក្នុង data file នៃ SPSS ។ ដើម្បីធ្វើការវាយតំលៃទៅលើលទ្ធផលនៃការអង្កេតនេះ គេអនុវត្តដូចខាងក្រោម:

Analyze Descriptive statistics Descriptives

លទ្ធផលដែលទទួលបានពីការវិភាគនេះមានដូចខាងក្រោម:

Descriptive Statistics								
	N	Minimum	Maximum	Me	an	Std.		
	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic		
Revenue	1461	\$500	\$6,213	\$2,557.53	\$25.02	\$956.334		
Valid N (listwise)	1461							

ការបកស្រាយៈ

ការវិភាគនេះបានបង្ហាញអោយឃើញថាក្នុងចំណោម 1461 គ្រួសារដែលយើងបាន ធ្វើការអង្កេត នេះ គ្រួសារដែលមានប្រាក់ចំណូលទាបជាងគេគឺទទួលបាន \$500នឹងគ្រួសារដែលទទួលបានប្រាក់ចំណូលខ្ពស់ ជាងគេគឺ \$6213 ។

តាមរយៈនៃលទ្ធផលនេះផងដែរយើងអាចវាយតំលៃថានៅក្នុងតំបន់នេះគ្រួសារនីមួយៗមានប្រាក់ ចំណូលជា មធ្យមប្រចាំឆ្នាំ \$2557.53 ហើយដែលមានគ្រួសារខ្លះទទួលបានលើសនេះ ឬ ទាបជាង នេះដោយគំលាតមធ្យម \$956.334 ។ យើងសង្កេតឃើញថា កំហុសជាមធ្យមនៃការវាយគំលៃទៅ លើ មធ្យមនៃប្រាក់ចំណូលរបស់គ្រួសារនីមួយៗគឺ \$25.02

Graphics:

មាន Graphics ពីរប្រភេទដែលគេប្រើញឹកញាប់ក្នុងការបកស្រាយទៅលើលទ្ធផលនៃ ការវិភាគតាម រយៈDescriptive analysis គឺ Histogram ឬ Boxplot ។

Histogram:

Graphic នេះបានបង្ហាញអោយឃើញថាភាគច្រើននៃអ្នករស់នៅក្នុងតំបន់នេះមានប្រាក់ចំណូលប្រចាំ ឆ្នាំប្រែប្រូលពី \$1500 ទៅ \$3600 ។ ចំណែកឯអ្នកមានប្រាក់ចំណូលប្រចាំឆ្នាំក្រោម \$1500 ឬ ខ្ពស់ ជាង \$3600 មានមិនជាច្រើនប៉ុន្មានទេ។

Boxplot:

ចំណាំះ

គេអាចធ្វើការវិភាគវ៉ាយតំលៃជាមធ្យមនៅក្នុង SPSS តាមរយៈ Syntax:

DESCRIPTIVES

/ Variable=Revenue

/ Statistics= Min Max Mean Stddev SEmean.

២.១.២- ឧទាហរណ៍នៃការវាយតំលៃដោយប្រេវូបធ្វេបជាមធ្យមៈ

ក្នុងករណីដែលគេមានបំណងវាយតំលៃដោយប្រេវបធ្យេប តំលៃមធ្យមទៅតាមក្រុម (ក្នុង ឧទាហរណ៍ខាងលើ គីប្រេវបធ្យេបទៅតាមតំបន់) នោះគេអាចវិភាគតាមរយៈ Syntax ខាងក្រោមៈ

MEANS

/ Table= Revenue BY Region

/Cells= Min Max Mean Stddev SEmean.

Report

Revenue

110101100					
Territory	Minimum	Maximum	Mean	Std. Deviation	Std. Error of Mean
TOTTIOLY	IVIIIIIIIIIIIII	Maximum	IVICALI	Ota. Deviation	or wicari
North	\$509	\$6,024	\$2,476.90	\$963.195	\$49.806
South	\$545	\$6,213	\$2,575.66	\$981.426	\$53.701
East	\$500	\$5,417	\$2,560.01	\$932.849	\$48.694
West	\$500	\$5,012	\$2,617.59	\$948.074	\$48.256
Total	\$500	\$6,213	\$2,557.53	\$956.334	\$25.020

យើងក៏អាចប្រើការវិភាគតាមរយៈ Tool ដូចខាងក្រោមៈ

ដោយ Click ទៅលើ button options ដើម្បីជ្រើសរើសយកតំលៃដែលយើងត្រូវការៈ

២.១.៣- អនុវត្តនៅក្នុង S-plus:

```
នៅក្នុង S-plus យើងមាន Command ជាច្រើនសំរាប់ជំនួយក្នុងការវាយតំលៃជាមធ្យម:
mean(X,na.rm=T) សំរាប់កំណត់រកតំលៃមធ្យម
var(X,na.method="available") សំរាប់កំណត់រកត់លៃវ៉ារ្យង់
stdev(X,na.rm=T) ប្រើសំរាប់កំណត់រកតំលៃ Standard deviation
function(sales)
  Revenue<- sales[,3][!is.na(sales[,3])]
  Min<- min(Revenue)
  Max<- max(Revenue)
  Mean<- mean(Revenue, na.rm=T)
  Variance <- var(Revenue, na. method = "available")
  Stddev<- stdev(Revenue,na.rm=T)
  SE.mean<-Stddev/sqrt(length(Revenue))
  Result<-c(Min,Max,Mean,Variance, Stddev, SE.mean)
  names(Result)<-c("Min","Max","Mean","Variance","Stddev",
                     "SE.mean")
 return(Result)
```

```
ក្នុងករណីដែលយើងមានបំណងក្នុងការប្រេវបផ្សេបតំលៃមធ្យមនៃ Revenue ទៅតាមតំបន់
(Region) នីមួយ១ យើងសរសេរៈ
  function(sales)
       PROG<-function(sales,Region)
          Revenue <- sales[,3][!is.na(sales[,3]) & sale[,5]==Region]
          Min<- min(Revenue)
          Max<- max(Revenue)
          Mean<- mean(Revenue, na.rm=T)
          Variance<- var(Revenue,na.method="available")
          Stddev<- stdev(Revenue,na.rm=T)
          SE.mean<-Stddev/sqrt(length(Revenue))
          Result<-c(Min,Max,Mean,Variance, Stddev, SE.mean)
          return(Result)
        Res1<- PROG(sales,"North")
        Res2<- PROG(sales, "South")
        Res3<- PROG(sales,"East")
        Res4<- PROG(sales,"West")
        Table<-rbinnd(Res1,Res2,Res3,Res4)
        Rowname<-c("North","South","East","West")
        Colname<- c("Min","Max","Mean","Variance","Stddev",
                     "SE.mean")
        dimnames(Table)<-list(Rowname, Colname)</pre>
        return(Table)
    }
```

២.២- ការវាយតំលៃជាភាគរយ (Point estimates for proportion)

ក្នុងករណីនៃការវាយតំលៃជាភាគរយ ទិន្នន័យដែលស្រង់នៅក្នុងគំរូតាងស្ថិតិត្រូវតែជាប្រភេទ ទិន្នន័យបែបសភាពលក្ខណៈ (Qualitative data) ។

បើ P ជាប៉ារ៉ាម៉ែត្រនៃប៉ូពុយឡាស្យុងដែលត្រូវវាយតំលៃ នោះអេស្ចីម៉ាទ័រង៏ប្រសើរបំផុតក្នុង \hat{p} ដែលបំពេញលក្ខខណ្ឌ៖

$$E(\stackrel{\wedge}{p})-P=0$$

<u>បំណកស្រាយ៖</u>

យោងតាមទ្រឹះស្ដី Binomial គេមាន ៖ បើ X ជាអថេរ Binomial នោះ E(X)=n*p \Rightarrow

$$\frac{E(X)}{n}=p$$
 \Rightarrow $E(X/n)=p;$ ដោយ $p=\frac{X}{n}$, នោះ $E(p)=p$ \Rightarrow $E(p)-p=0$ \Rightarrow p ជា unbiased estimator នៃ p ។

នៅក្នុងការវាយតំលៃនេះ លំអៀងស្ដង់ដា (Std. Error) ត្រូវបានកំណត់ដោយរូបមន្ដដូចខាង ក្រោម៖ $S(\widehat{p}) = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$ ។

២.២.១- ឧទាហរណ៍នៃការវាយតំលៃជាភាគរយនៅក្នុង SPSS:

ការវាយតំលៃជាភាគរយនៅក្នុង SPSS ធ្វើឡើងតាមរយ: Frequency analysis ។ FREQUENCY ANALYSIS:

Frequency analysis: គឺជាការសិក្សាវិភាគវាយតំលៃជាភាគរយឬការរាប់ចំនួនដែលអនុវត្ត ទៅលើ qualitative data ។

ឧទាហរណ៍ៈ

សន្មតថាគេមានបំណងវាយតំលៃទៅលើភាគរយនៃអាយុអ្នកដែលនឹងចូលរួមទៅក្នុងការបោះឆ្នោតនៅ ក្នុងតំបន់ដ៏ធំមួយ ដោយធ្វើការបែងចែកទៅតាមថ្នាក់នៃអាយុ: "Lt 35", "35-44", "45-64" & "65+" ក្នុងករណីនេះគេបានធ្វើការអង្កេតទៅលើមនុស្សមួយចំនួនដែលមានសិទ្ធិបោះឆ្នោតដោយចែដន្យនៅក្នុងតំបន់ នេះ ហើយទិន្នន័យដែលស្រង់បានកំណត់ទុកនៅក្នុង data file នៃ SPSS ដែលមានឈ្មោះថា voter ។ ដោយធ្វើ "frequencies analysis" យើងបាន:

Analyze→ Descriptive statistics→ Frequencies

គេទទួលបានលទ្ធផលដូចខាងក្រោម:

age categories								
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	It 35	438	23.7	23.7	23.7			
	35 - 44	444	24.0	24.0	47.8			
	45 - 64	617	33.4	33.4	81.2			
	65 +	348	18.8	18.8	100.0			
	Total	1847	100.0	100.0				

ការបកស្រាយៈ

Frequency គឺជាបរិមាណនៃការអង្កេតដែលកើតឡើងនៅក្នុងគំរូស្ថិតិដែលយើងសិក្សា ហើយដែល បង្ហាញអំពីបរិមាណនៃអ្នកដែលនឹងចូលរួមនៅក្នុងការបោះឆ្នោតទៅតាមថ្នាក់នៃអាយុនីមួយៗ។

$$Percent = \frac{Frequency}{Total}$$

$$Valid percent = \frac{Frequency}{Total - Mis \sin g}$$

ក្នុងករណីខាងលើនេះ Missing ស្មើ 0, ដូច្នេះ Percent និង Valid percent មានតំលៃដូចគ្នា ។
ក្នុងករណីនៃការវាយតំលៃទៅលើការអង្កេត ជាទូទៅគេប្រើ Valid percent ។
តាមរយៈ នៃការអង្កេតខាងលើគេអាចវាយតំលៃបានថាក្នុងចំណោមអ្នកដែលនឹងចូលរួមបោះឆ្នោត
នាពេល ខាងមុខក្នុងតំបន់នេះនឹងមានអ្នកដែលមានអាយុ:

" ក្រោម 35 ឆ្នាំ " ចំនួន 23.7%

" 35-44 ឆ្នាំ " ចំនួន 24%

" 45-64 ឆ្នាំ " ចំនួន 33.4%

" 65 ឆ្នាំឡើងទៅ " ចំនួន 18.8%

យ៉ាងណាមិញ តំលៃ Cumulative percent ផ្ដល់លទ្ធភាពអោយយើងអាចវាយតំលៃជាបណ្ដុំពីលើ ចុះក្រោម ។

ខ្មទាហរណ៍ :

Cumulative percent=47.8% មានន័យថាជាភាគរយអ្នកដែលមានអាយុ ៤៤ ឆ្នាំចុះ Graphics ដែលប្រើ ប្រាស់សំរាប់សំរួលការពន្យល់ទៅលើលទ្ធផលនៃ Frequencies analysis មាន Piechart y Barchart y

Graphics:

BARCHART

២.២.២- ការវិភាគតាមរយៈ S-plus:

នៅក្នុង S-plus ការវាយតំលៃជាភាគរយធ្វើឡើងតាមរយៈនៃការបង្កើត function ដោយខ្លួន ឯងដោយគោរពទៅតាមទ្រឹះស្ដីនៃការកំណត់រក Frequency, Valid percent, Cumulative

```
percent 4
         function(voter)
            Age < -voter[,3][!is.na(voter[,3])]
            Frequency<-summary(Age)
            Percent<-Frequency/length(Age)
            Table<-cbind(Frequency,Percent)
            return(Table)
          }
Output
Age
        Frequency
                        Percent
Lt 35
         438
                       0.2371413
35 - 44 444
        444
617
                       0.2403898
45 - 64
                       0.3340552
 65 +
        348
                       0.1884136
```

២.២.៣- ការវាយតំលៃជាភាគរយតាមរយៈ Crosstabs

Crosstabs ជាបច្ចេកទេសដែលអាចវាយតំលៃជាភាគរយជាលក្ខណះខ្វែងគ្នារវាងអថេរពីរ ដែល ប្រភេទទិន្នន័យជា Qualitative ។ នៅលទ្ធផលនៃការវិភាគ យើងអាចទទួលបានតំលៃភាគរយដែលគណនា តាមគោលការណ៍នៃ Probability និងតាមរយះទ្រឹស្តីនៃប្រូបាប៊ីលីតេមានលក្ខខណ្ឌ (Conditional probability) ។

ឧទាហរណ៍ះ

សន្មតថាគេមានបំណងវាយតំលៃទៅលើអ្នកដែលនឹងចូលរួមទៅក្នុងការបោះឆ្នោតនៅក្នុងតំបន់ដ៏ធំ មួយតាមរយៈសំនួរខាងក្រោម:

ដោយធ្វើការអង្កេតទៅលើមនុស្សមួយចំនួនដែលមានសិទ្ធិបោះឆ្នោតនៅក្នុងតំបន់នេះដោយថៃដន្យ ហើយទិន្នន័យដែលស្រង់បានកំណត់ទុកនៅក្នុង data file នៃ SPSS ឈោះ "voter" ។ ដោយប្រើ SPSS ក្នុងការវិភាគ:

Analyze→**Descriptive statistics**→**crosstabs**

ដោយចុចទៅលើ button "cell" នៃប្រអប់ Crosstabs យើងបាន:

តាមរយៈនៃការវិភាគនេះយើងអាចទទួលបានតារាងរបាយការណ៏ 4 ខុសៗគ្នាៈ

• **ពារាងរបាយការណ៍ទី១**: គឺជាតារាងសង្ខេបនូវចំនួន Frequency ជាលក្ខណៈខ្វែងគ្នារវាង អថេរទាំងពីរ ។ ក្នុងករណីនេះយើងជ្រើសរើសយកតែ "observed" តែប៉ុណ្ណោះ យើងទទួលបាន:

R	ESPONDE	:NTS SEX * a	age categorie	es Crosstabu	lation	
Count						
			age cate	egories		
		lt 35	35 - 44	45 - 64	65 +	Total
RESPONDENTS	male	181	199	287	137	804
SEX	female	257	245	330	211	1043
Total		438	444	617	348	1847

• តារាងរបាយការណ៍ទី2:

គឺជាតារាងប្រើប្រាស់សំរាប់ការវាយតំលៃជាភាគរយធ្យេបទៅនឹងជួរដេកនៃតារាងរបាយការណ៍។ ដើម្បីទទួលបានតារាងរបាយការណ៍នេះយើងជ្រើសរើសនៅក្នុងប្រអប់ "cell" នូវពាក្យ "ROW" យើងបាន:

RESPONDENTS SEX * age categories Crosstabulation % within RESPONDENTS SEX								
70 WIGHT REOT OIL	DEIVIO GE	χ	age cat	egories				
		lt 35	35 - 44	45 - 64	65 +	Total		
RESPONDENTS	male	22.5%	24.8%	35.7%	17.0%	100.0%		
SEX	female	24.6%	23.5%	31.6%	20.2%	100.0%		
Total		23.7%	24.0%	33.4%	18.8%	100.0%		

ក្នុងតារាងនេះយើងអាចប្រៅបធ្យើបបានតែភាគរយធ្យើបនឹងជួរដេកតែប៉ុណ្ណោះ មិនអាចប្រៅបធ្យើប ភាគរយធ្យើបនឹងជួរឈរទេ។

ការបកស្រាយ:

- 22.5% មានន័យថាក្នុងចំណោមមនុស្សប្រុសទាំងអស់ដែលនឹងចូលរួមក្នុងការបោះឆ្នោត មាន
- 22.5% មានអាយុក្រោម 35 ឆ្នាំ។

ដូចគ្នានេះដែរយើងអាចនិយាយថាក្នុងចំណោមមនុស្សប្រុសទាំងអស់ដែលនឹងចូលរួមក្នុងការ

បោះឆ្នោតមាន 22.5% មានអាយុក្រោម 35 ឆ្នាំ 24.8% មានអាយុនៅចនោះពី 35 ទៅ 44 ឆ្នាំ 35.7% មានអាយុនៅចន្លោះពី 45 ទៅ 64 ឆ្នាំ និង 17% មានអាយុចាប់ពី 65 ឆ្នាំ ឡើងទៅ ។ ដូចេនះយើងអាច សន្និដ្ឋានបានថាក្នុងចំណោមមនុស្សប្រុសដែលនឹងចូលរួមក្នុងការបោះឆ្នោត មានមនុស្សប្រុសដែលមាន អាយុ "45-64" ច្រើនជាងគេរហូតដល់ 37.5% ។ ចំណែកជួរដេក "Female" ក៏យើងធ្វើការសន្និដ្ឋានដូចខាងលើ ដែរ ។

ចំណែកឯភាគរយដែលស្ថិតនៅជួរដេក "Total" ជាភាគរយដែលពន្យល់ទៅលើ ភាគរយអ្នកដែល នឹងចូលរួមនៅក្នុងការបោះឆ្នោត តាមថ្នាក់នៃ អាយុនីមួយៗ។

• តារាងរបាយការណ៍ទី៣:

គឺជាតារាងច្រើប្រាស់សំរាប់ការវាយតំលៃជាភាគរយធ្យេបទៅនឹងជួរឈរនៃ តារាងរបាយការណ៍ ។ ដើម្បីទទួលបានតារាងរបាយការណ៏នេះយើង ជ្រើសរើសនៅក្នុងប្រអប់ "cell" នូវពាក្យ "Column" យើងបាន:

F	RESPONDE	NTS SEX * a	ige categorie	es Crosstabu	lation	
% within age categ	ories					
			age cate	egories		
		lt 35	35 - 44	45 - 64	65 +	Total
RESPONDENTS	male	41.3%	44.8%	46.5%	39.4%	43.5%
SEX	female	58.7%	55.2%	53.5%	60.6%	56.5%
Total		100.0%	100.0%	100.0%	100.0%	100.0%

ក្នុងតារាងនេះយើងអាចប្រៅបធៀបបានតែភាគរយធៀបនឹងជួរឈរតែប៉ុណ្ណោះ មិនអាចប្រៀបធៀប ភាគរយធៀបនឹងជួរដេកទេ។

<u>ការបកស្រាយៈ</u>

យើងអាចនិយាយថាក្នុងចំណោមអ្នកដែលមានអាយុក្រោម 35 ឆ្នាំទាំងអស់ដែលនឹងចូលរួមក្នុងការបោះ ឆ្នោតមាន 41.3% ជាមនុស្សប្រុស និង 58.7% ជាមនុស្សស្រី ចំណែកជួរឈរផ្សេងទៀតក៏យើងធ្វើ ការសន្និដ្ឋានដូចគ្នានេះដែរ ។ ចំណែកឯភាគរយដែលស្ថិតនៅជួរឈរ "Total" ជាភាគរយដែលអាចពន្យល់ ថានឹងមានមនុស្សប្រុស 43.5% និងមនុស្សស្រី 56.5% ដែលនឹងចូលរួមនៅក្នុងការបោះឆ្នោតនាពេលខាង មុខ ។

• តារាងរបាយការណ៍ទី៤:

គឺជាតារាងប្រើប្រាស់សំរាប់ការវាយតំលៃជាភាគរយធ្យេបទៅចំនួនសរុបនៃការអង្កេត។ ដើម្បីទទួល បានតារាងរបាយការណ៏នេះយើងជ្រើសរើសនៅក្នុងប្រអប់ "cell" នូវពាក្យ "Total" យើងបាន:

% of Total	RESPONDENTS SEX * age categories Crosstabulation % of Total							
				age cat	egories			
			lt 35	35 - 44	45 - 64	65 +	Total	
RESPONDE	NTS r	male	9.8%	10.8%	15.5%	7.4%	43.5%	
SEX	f	emale	13.9%	13.3%	17.9%	11.4%	56.5%	
Total			23.7%	24.0%	33.4%	18.8%	100.0%	

ក្នុងករណីនេះភាគរយទាំងអស់ដែលជាប្រសព្វរវាងជួរដេកនិងជួរឈរគឺជាភាគរយដែលវាយតំលៃធ្យេប នឹងបរិមាណនៃការអង្កេតទាំងអស់ ។

ការបកស្រាយ:

ក្នុងចំណោមអ្នកដែលនឹងចូលរួមនៅក្នុងការបោះឆ្នោតខាងមុខមាន:

- 9.8% ជាមនុស្សប្រុសដែលមានអាយុក្រោម 35 ឆ្នាំ
- 10.8% ជាមនុស្សប្រុសដែលមានអាយុ 35-44 ឆ្នាំ
- 15.5% ជាមនុស្សប្រុសដែលមានអាយុ 45-64 ឆ្នាំ
- 7.4% ជាមនុស្សប្រុសដែលមានអាយុ 65 ឆ្នាំឡើងទៅ
- 13.9% ជាមនុស្សស្រីដែលមានអាយុ ក្រោម 35 ឆ្នាំ
- 13.3% ជាមនុស្សស្រីដែលមានអាយុ 35-44 ឆ្នាំ
- 17.9% ជាមនុស្សស្រីដែលមានអាយុ 45-64 ឆ្នាំ
- 11.4% ជាមនុស្សស្រីដែលមានអាយុ 65 ឆ្នាំឡើងទៅ

ចំណែកឯអ្នកដែលនឹងចូលរួមក្នុងកាបោះឆ្នោតនាពេលខាងមុខមានមនុស្សប្រុសចំនួន 43.5% និង មនុស្សស្រីចំនួន 56.5% ។ ដូចគ្នានេះគេអាចធ្វើការបកស្រាយទៅលើភាគរយសរុបនៃថ្នាក់អាយុរបស់ អ្នកដែលចូលរួមនៅក្នុងការបោះឆ្នោត:

- 23.7% មានអាយុក្រោម 35 ឆ្នាំ
- 24% មានអាយុ 35-44 ឆ្នាំ

- 33.4% មានអាយុ 45-64 ឆ្នាំ
- 18.8% មានអាយុចាប់ពី 65 ឆ្នាំឡើងទៅ

GRAPHICS:

Graphic ដែលបកស្រាយធ្យើបនឹងភេទនៃអ្នកចូលរួមក្នុងការបោះឆ្នោត:

២.២.៤- Function S-plus សំរាប់ការវាយតំលៃជាភាគរយតាមរយៈ Crosstabs

ដើម្បីបង្កើតការវិភាគវាយតំលៃជាភាគរយជាលក្ខណៈខ្វែងគ្នាតាមរយៈនៃ Crosstabs យើងមាន Command បញ្ជាដូចខាងក្រោម:

crosstabs(~Variable1+ Variable2, na.action=na.exclude)

ដែល:

Variable 1 ជា qualitative variable ដែលមានតួនាទីជា factor row
Variable 2 ជា qualitative variable ដែលមានតួនាទីជា factor column
na.action=na.exclude ប្រើសំរាប់លុបតំលៃ NAពី គូនៃអថេរ

```
function(voter)
{
    Age<- voter[,3]
    Gender<- voter[,6]
    Table<-crosstabs(~Age+Gender,na.action=na.exclude)
    return(Table)
}</pre>
```

នៅក្នុងថត (Cell) នីមួយៗនៃតារាង Crosstabs ដែលជាលទ្ធផលនៃ function ខាងលើមាន 4 តំលៃក្នុងនោះមាន:

- ចំនួន (Observed frequency)
- ប្រូបាប៊ីលីតេមានលក្ខខណ្ឌធ្យេបនឹងជួរដេក
- ្យូប្រាប៊ីលីតេមានលក្ខខណ្ឌផ្យេបនឹងជួរឈរ
- ប្រូបាប៊ីលីតេនៃផលគុណ

output:

Call:

crosstabs(~ Age + Gender, na.action = na.exclude) 1847 cases in table

age categories * RESPONDENTS SEX Crosstabulation

		RESPOND	ENTS SEX	
		male	female	Rowtotal
age	lt 35	181	257	438
categories		41.3%	58.7%	100.0%
		22.5%	24.6%	23.7%
		9.8%	13.9%	23.7%
	35 - 44	199	245	444
		44.8%	55.2%	100.0%
		24.8%	23.5%	24.0%
		10.8%	13.3%	24.0%
	45 - 64	287	330	617
		46.5%	53.5%	100.0%
		35.7%	31.6%	33.4%
		15.5%	17.9%	33.4%
	65 +	137	211	348
		39.4%	60.6%	100.0%
		17.0%	20.2%	18.8%
		7.4%	11.4%	18.8%
ColTotal		804	1043	1847
		43.5%	56.5%	100.0%
		100.0%	100.0%	100.0%
		43.5%	56.5%	100.0%

២.២.៥- ការ Recode ទិន្នន័យសំរាប់ការវិភាគ

នៅពេលខ្លះទិន្នន័យពុំមានលក្ខណៈសមប្រកបសំរាប់ការវាយតំលៃជាភាគរយ ដែលតំរូវអោយយើង ធ្វើ Recode នៃទិន្នន័យនេះជាចាំបាច់ដើម្បីតំរូវការវិភាគដែលយើងចង់បាន។

ឧទាហរណ៍:

ដោយអនុវត្តទៅលើតារាងទិន្នន័យ sales នៃ SPSS ដែលទទួលបានពីការអង្កេតទៅលើបុគ្គលមួយ ចំនួន ចូរធ្វើការវាយតំលៃជាភាគរយទៅលើ Revenue/year របស់បុគ្គលនីមួយៗដែលរស់នៅក្នុងតំបន់ ផ្សេងៗគ្នា ទៅតាមទំរង់តារាងដូចខាងក្រោម:

	Revenue/year								
	<\$1800	\$1800-\$2200	\$2200-\$2600	>\$2600	Total				
North									
South									
East									
West									
Total									

ដោយសារទិន្នន័យនៅក្នុងជួរឈរ Revenue ជាប្រភេទ Quantitative ដែលតំរូវអោយយើងធ្វើការ បំប្លែងទៅជា Qualitative តាមរយៈ នៃការធ្វើ Recode នៅក្នុង SPSS:

Transform→Recode→Into different variable

ដើម្បីផ្តល់ code អោយទិន្នន័យថ្មីនៅក្នុងជួរឈរ Revenue1 ចុចទៅលើ Button "Old & New value" យើងទទួលបាន:

ដោយចុចទៅលើ Continue យើងទទួលបាន Code នៃទិន្នន័យថ្មីនៅក្នុង variable "Revenuel" ។ ដោយផ្តល់ Value label អោយ code នៃទិន្នន័យក្នុង Variable Revenuel យើងបាន:

ក្រោយពីទទួលបានទិន្នន័យដែលយើងត្រូវការសំរាប់ការវីភាគសមស្រប យើងអាចទទួលបានតារាងវាយ តំលៃជាភាគរយដែលមានទំរង់ជាតារាង Crosstabs ដែលមាន 4 ប្រភេទ ។ តាមរយៈ Syntax ខាងក្រោម យើងអាចទទលបានតារាង 4 ខុសៗគ្នាៈ **Syntax:**

CROSSTABS

/Tables= Region BY Revenue1

/Format= avalue Tables

/Cells=Count Row Column Total.

Count : Frequency table **Row :** Percent within row **Column :** Percent within column

Total: Percent of total

៣.ការវាយតំលៃដោយចន្លោះជឿជាក់ (Confidence interval estimates)

ទោះបី $\hat{\theta}$ ជា unbiased estimator ក្នុងការវាយតំលៃទៅលើប៉ារ៉ាម៉ែត្រនៃប៉ូពុយឡាស្យុង θ យ៉ាង ណាក៏ដោយក៏នៅតែមានលំអ្យេង (Error) រវាងតំលៃអង្កេតនិងតំលៃពិតដែលគេអោយឈ្មោះ ថា "Margin of Error" ដែលតាងដោយ \mathbf{E} , $\mathbf{E} = |\hat{\theta} - \theta|$ ជាលំអៀងធំបំផុតនៃការវាយតំលៃ ។ ដោយសារ $\hat{\theta}$ វាយតំលៃអោយ θ មានលំអ្យេង ធំបំផុត \mathbf{E} នោះវាអាចមានលំអ្យេង ខាងឆ្វេងនៃ តំលៃ θ ឬខាងស្ដាំតំលៃ θ ដូច្នេះ :

$$\hat{\theta} - E \le \theta \le \hat{\theta} + E$$

ចន្លោះនេះអាចជឿជាក់បាន លុះត្រាតែ ៖

$$P(\hat{\theta} - E \le \theta \le \hat{\theta} + E) = (1 - \alpha)$$
 ជាតំលៃដែលខិតទៅរក 1 ។

ក្នុងករណីនេះ $(1-\alpha)$ ជា ក៏វិតជឿជាក់ (level of Confidence)

 $\stackrel{\circ}{ heta}$ -E អោយឈ្មោះថា Lower Bound (LB)

 $\stackrel{\hat{}}{ heta}$ +E អោយឈ្មោះថា Upper Bound (UB)

ដូច្នេះដើម្បីបង្កើត ចន្លោះជឿជាក់សំរាប់ការវាយតំលៃជាមធ្យម ឬ ភាគរយ យើងត្រូវចាំបាច់កំណត់រក Margin of Error E :

E = ?

៣.១- ការវ៉ាយតំលៃជាមធ្យមដោយចន្លោះជឿជាក់ (Confidence interval estimates for mean)

ក្នុងករណីនេះ ទិន្នន័យដែលទទួលបានពីការអង្កេតជាប្រភេទ Quantitative data ដូច្នេះ មធ្យមនៃគំរួ តាង (sample) \overline{X} ជា unbiased estimator សំរាប់ការវាយតំលៃទៅលើប៉ារ៉ាម៉ែត្រនៃប៉ូពុយឡាស្យង μ ។

$$P(\overline{X} - E \le \mu \le \overline{X} + E) = (1 - \alpha)$$

ច្ចរកំណត់រក E:

បំប្លែងពីរបាយទិន្នន័យ Normal មករបាយទិន្នន័យ Normal Standard យើងបាន:

យោងតាមទ្រឹះស្ដី Central Limit Theorem គេមាន៖

$$\overline{X} \sim N(\mu, \sigma^2/n) \rightarrow Z = \frac{\overline{X} - E(\overline{X})}{\sigma(\overline{X})} \rightarrow Z \sim N(0,1)$$

$$P(\overline{X} - E \le \mu \le \overline{X} + E) = (1 - \alpha), (1)$$

$$P(-Z_{\alpha/2} \le \frac{\overline{X} - E(\overline{X})}{\sigma(\overline{X})} \le Z_{\alpha/2}) = (1 - \alpha)$$

ដោយ៖

$$\overline{X} \sim N(\mu, \sigma^2 / n)$$

$$E(\overline{X}) = \mu, \qquad V(\overline{X}) = \frac{\sigma^2}{n}$$

$$\Rightarrow \sigma(\overline{X}) = \frac{\sigma}{\sqrt{n}} \approx S(\overline{X}) = \frac{S}{\sqrt{n}}$$

$$P(-Z_{\alpha/2} \le \frac{\overline{X} - \mu}{S / \sqrt{n}} \le Z_{\alpha/2}) = (1 - \alpha)$$

$$P(-Z_{\alpha/2}S / \sqrt{n} \le \overline{X} - \mu \le Z_{\alpha/2}S / \sqrt{n}) = (1 - \alpha)$$

$$P(-\overline{X} - Z_{\alpha/2}S / \sqrt{n} \le -\mu \le -\overline{X} + Z_{\alpha/2}S / \sqrt{n}) = (1 - \alpha)$$

$$P(\overline{X} + Z_{\alpha/2}S / \sqrt{n} \ge \mu \ge \overline{X} - Z_{\alpha/2}S / \sqrt{n}) = (1 - \alpha)$$

ដូច្នេះ ៖ $P(\overline{X} - Z_{\alpha/2} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + Z_{\alpha/2} \frac{S}{\sqrt{n}}) = (1 - \alpha)$, (2)

ដោយប្រៀបធៀប *(1) & (2)* គេបាន៖

$$E = \chi_{\alpha/2} \frac{S}{\sqrt{n}},$$

 $Z_{lpha/}$ អាចកំណត់តំលៃបានកាលណា យើងស្គាល់តំលៃ (1-lpha)

ក្នុងករណីនេះ Confidence interval កំណត់

Lower bound =
$$\overline{X} - Z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

Upper bound=
$$\overline{X} + Z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$$

ចំណាំ៖

តាមការស្រាយបញ្ជាក់ខាងលើ រូបមន្តទូទៅនៃតំលៃ Margin of Error ត្រូវបានកំណត់ ដោយ៖

Margin of Error (E)=
$$\mathbb{Z}_{\alpha/2}^*$$
 Std.error

៣.១.១- ការកំណត់រក Confidence interval for mean នៅក្នុង SPSS

ជាទូទៅការវាយតំលៃជាមធ្យម ឬដោយចន្លោះជឿជាក់គឺធ្វើឡើងតាមរយ: "Explore analysis" tool ដែលមានលក្ខណៈវិភាគលំអិតជាង Descriptives analysis tool ។

Explore analysis គឺជាការសិក្សាវិភាគវាយតំលៃដូច Descriptive analysis ដែរតែ Explore មានលក្ខណៈលំអិតជាងដោយវាអាចបញ្ចេញនូវតំលៃ Descriptive ជាច្រើនដូចជា: Mean, Std error, confidence interval, range, inter-quartile range,... ម្យ៉ាងវិញឡេត Explore អាចសិក្សាវិភាគ វាយតំលៃទៅលើ Quantitative variable ដោយបំបែកការសិក្សានេះតាម Levels (Categories) ដែលមាន នៅក្នុង qualitative variable មួយផ្សេងឡេត ។

ឧទាហរណ៏ះ

ដោយអនុវត្តទៅលើតារាងទិន្នន័យ "sales" នៃ SPSS, ចូរធ្វើ Explore analysis ទៅលើ Variable "Revenue" ដែលទទួលបានពីការអង្កេតទៅលើគ្រួសារមួយចំនួនដែលរស់នៅក្នុងតំបន់មួយកន្លែង។ Analyze→ Descriptive Statistic → Explore

Descriptives

			Statistic	Std. Error
Revenue	Mean		\$2,557.53	\$25.020
	95% Confidence	Lower Bound	\$2,508.45	
	Interval for Mean	Upper Bound	\$2,606.61	
	5% Trimmed Mean		\$2,542.49	
	Median		\$2,508.07	
	Variance		914575.3	
	Std. Deviation		\$956.334	
	Minimum		\$500	
	Maxim um		\$6,213	
	Range		\$5,713	
	Interquartile Range		\$1,327.62	

Interpretation:

* Mean=\$2557.53 មានន័យថាគ្រួសារនីមួយៗដែលរស់នៅក្នុងតំបន់នេះមាន Revenue ជាមធ្យម \$2557.53

$$Std.error = \frac{Std.deviation}{\sqrt{Sample}} = \$25.020$$

មានន័យថា ERROR ដែលកើតឡើងក្នុងការវាយតំលៃទៅលើ Revenue ជាមធ្យមរបស់គ្រួសារ នីមួយៗមានជាមធ្យម \$25.020 ។

* 95% Confidence interval

Lower bound: Mean-1.96*Std.deviation/ $\sqrt{sample \, size}$ =\$2508.45 **Upper Bound**: Mean+1.96*Std.deviation/ $\sqrt{sample \, size}$ =\$2606.61 មានន័យថា 95% នៃក្រួសារដែលរស់នៅក្នុងតំបន់នេះមាន Revenue ជាមធ្យមប្រចាំឆ្នាំប្រែប្រួល ពី \$2508.45 ទៅ \$2606.61.15 ។

* 5% trimmed mean

គេអាចប្រើតំលៃ 5% trimmed mean ជំនួសតំលៃ Mean ក្នុងការវាយតំលៃជាមធ្យមទៅលើ Revenue របស់គ្រួសារនីមួយ១ ក្នុងករណីដែលគេសង្កេតឃើញថា នៅក្នុងទិន្នន័យ សំបូរទៅដោយ តំលៃ "Outliers" ។

មាន 50% នៃគ្រួសារដែលយើងធ្វើការអង្កេត មាន Revenue ទាបជាង \$2508.07 និង 50% ទ្យេត ខ្ពស់ជាង ។

- Range = Maximum Minimum = \$5713 គំលាតរវាងគ្រួសារដែល Revenue ខ្ពស់ជាងគេនិងទាបជាងគេនៅក្នុងការអង្កេតនេះគឺ \$5713
- Inter-quartile range= 3rd Qu 1st Qu, Qu.=Quartile=1/4

ឧទាហរណ៍ះ

ដោយអនុវត្តទៅលើខ្មទាហរណ៍ខាងលើ ចូរធ្វើ Explore Analysis ទៅលើ Variable Revenue ដដែលដោយបំបែកការសិក្សានេះ ទៅតាមតំបន់នីមួយៗ (North, South, East & West) នៃ Variable "Region"?

រូបភាព Barchart ដែលពន្យល់ការប្រៀបធៀបតំលៃមធ្យមទៅតាមតំបន់នីមួយៗ។

Descriptives

	Territory			Statistic	Std. Error
Revenue	North	Mean		\$2,476.90	\$49.806
		95% Confidence	Lower Bound	\$2,378.97	
		Interval for Mean	Upper Bound	\$2,574.84	
		5% Trimmed Mean		\$2,460.48	
		Median		\$2,416.78	
		Variance		927743.8	
		Std. Deviation		\$963.195	
		Minimum		\$509	
		Maximum		\$6,024	
		Range		\$5,515	
		Interquartile Range		\$1,358.61	
	South	Mean		\$2,575.66	\$53.701
		95% Confidence	Lower Bound	\$2,470.02	, , , ,
		Interval for Mean	Upper Bound	\$2,681.30	
		5% Trimmed Mean		\$2,548.34	
		Median		\$2,536.03	
		Variance		963197.0	
		Std. Deviation		\$981.426	
		Minimum		\$545	
		Maximum		\$6,213	
		Range		\$5,669	
		Interquartile Range		\$1,317.22	
	East	Mean		\$2,560.01	\$48.694
	Last	95% Confidence	Lower Bound	\$2,464.26	ψ40.034
		Interval for Mean	Upper Bound	ψ2,404.20	
			Opper Bound	\$2,655.77	
		5% Trimmed Mean		\$2,550.21	
		Median		\$2,565.10	
		Variance		870207.4	
		Std. Deviation		\$932.849	
		Minimum		\$500	
		Maximum		\$5,417	
		Range		\$4,917	
		Interquartile Range		\$1,247.68	
	West	Mean		\$2,617.59	\$48.256
		95% Confidence	Lower Bound	\$2,522.71	
		Interval for Mean	Upper Bound	\$2,712.47	
		5% Trimmed Mean		\$2,610.33	
		Median		\$2,532.37	
		Variance		898844.3	
		Std. Deviation		\$948.074	
		Minimum		\$500	
		Maximum		\$5,012	
		Range		\$4,511	
		Interquartile Range		\$1,384.27	

លទ្ធផលខាងលើនេះត្រូវបកស្រាយពន្យល់ដូចឧទាហរណ៏ខាងលើដែរក៏ប៉ុន្តែវិភាគទៅតាមតំបន់ នីមួយៗ ។ Graphic ដែលងាយពន្យល់ទៅលើការប្រៀបធ្យើបលទ្ធផលនេះគឺប្រភេទ boxplot:

៣.១.២- ការកំណត់ Confidence interval for mean នៅក្នុង S-plus

នៅក្នុង S-plus ការកំណត់ Confidence interval សំរាប់ការវាយតំលៃជាមធ្យមធ្វើឡើងតាមរយៈ

Command ខាងក្រោម:

 $t.test(variable,conf.level=(1-\alpha))$conf.int$ ដែល:

variable ជា Quantitative

(1-lpha) ជា confidence level ដែលត្រូវផ្តល់តំលៃ

\$conf.int ប្រើសំរាប់កំណត់ Lower Bound និង Upper Bound នៃ Confidence interval

ដោយអនុវត្តទៅលើឧទាហរណ៍ខាងលើ យើងបង្កើត function S-plus សំរាប់ការគណនាតំលៃ

Quartiles និង Confidence interval សំរាប់ការវាយតំលៃទៅលើ variable "Revenue" នៃតារាង
ទិន្នន័យ "sales" ។

```
function(sales)
               PROG<-function(sales,Region)
                   Revenue<- sales[,3][!is.na(sales[,3])& sales[,5]==Region]
                   Report<-summary(Revenue)
                   Confint<-t.test(Revenue,conf.level=0.95)$conf.int
                   return(Report,Confint)
            North<-PROG(sales,"North")
            South<-PROG(sales,"South")
            East<-PROG(sales,"East")
            West<-PROG(sales,"West")
            return(North, South, East, West)
            }
Output:
$North:
$North$Report:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
273.6 1752
                2409
                         2449
                                 3101
                                          6024
$North$Confint:
[1] 2349.392
                2548.718
attr($North$Confint, "conf.level"):
[1] 0.95
$South:
$South$Report:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
34.05 1789
                  2497
                                   3159 6213
                          2521
$South$Confint:
               2630.615
[1] 2410.814
attr($South$Confint, "conf.level"):
[1] 0.95
$East:
$East$Report:
Min. 1st Qu. Median Mean 3rd Qu. Max.
12.6 1905
                  2542
                          2529 3148
                                          5417
$East$Confint:
              2627.169
[1] 2430.479
attr($East$Confint, "conf.level"):
[1] 0.95
```

\$West:

\$West\$Report:

Min. 1st Qu. Median Mean 3rd Qu. Max. 127.6 1886 2505 2566 3276

\$West\$Confint:

[1] 2467.734 2664.776 attr(\$West\$Confint, "conf.level"):

[1] 0.95

៣.២ -ការវាយតំលៃជាភាគរយដោយ Confidence interval

យើងដឹងថា $\stackrel{\hat{}}{P}$ ជា Unbiased estimator of P មានន័យថា $\stackrel{\hat{}}{P}$ វ៉ាយតំលៃអោយ Pមាន លក្ខណៈប្រសើរ ។ ក្នុងករណីនៃការវាយតំលៃ ដោយ Confidence interval ទៅលើ P យើងត្រូវកំនត់រក Lower bound & Upper bound ធ្វើយ៉ាងណាអោយ:

 $P(Lowerbound \le P \le Upperbound) = (1-\alpha)$

$$P(\hat{p}-E \le P \le \hat{p}+E) = (1-\alpha)$$

ដែល (1-α)ជា Confidence Level ។

យើងដឹងថា ៖ Margin of Error, $E=Z_{\alpha/2}$ * Std.Error

ដោយ $\stackrel{\hat{}}{P}$ វ៉ាយតំលៃអោយ ${
m P}$ មានការកើតឡើងនូវ ${
m Std.error}$ ${
m S}(\stackrel{\hat{}}{P})$ ដូច្នេះ

Lower bound=
$$\hat{p} - z_{\alpha/2} s(\hat{p})$$

Upper bound =
$$\hat{p} + z_{\alpha/2} s(\hat{p})$$

កំនត់រក $S(\hat{P})$?

ដោយការសិក្សាទៅលើការវាយតំលៃជាភាគរយមានទំនាក់ទំនងនឹង របាយទិន្នន័យ Binomial ដូច្នេះ យើងអាចប្រើគោលការណ៍នៃ Binomial ក្នុងការគណនា $S(\hat{P})$ ។

ប៊េី X ជាអថេរ Binomial, នោះ

$$V(X) = n * p * (1-p)$$

$$\frac{V(X)}{n} = p * (1-p)$$

$$V\left(\frac{X}{n}\right) = \frac{p * (1-p)}{n}$$

$$\hat{P} = \frac{X}{n}$$

ដូច្នេះ

$$V(\hat{P}) = \frac{\hat{p}^*(1-\hat{p})}{n}$$

$$\sigma(\hat{P}) = \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}} \approx S(\hat{P}) = \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}}$$

 $\stackrel{\circ}{P}$ ដោយ វាយតំលៃ P មានលំអៀងជាមធ្យម (Std. Error) កំណត់៖

$$S(\hat{P}) = \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}} \Rightarrow E = Z_{\alpha/2} \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}}$$

ដូច្នេះ Confidence interval សំរាប់ការវាយតំលៃទៅលើ P កំនត់:

$$Lower_bound = \hat{P} - Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}}$$

$$Upper_bound = \hat{P} + Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}^*(1-\hat{p})}{n}}$$

<u>ឧទាហរណ៍៖</u>

ការសិក្សាមួយបានធ្វើឡើងនៅក្នុងទីក្រុងមួយ ក្នុងគោលបំណងវាយតំលៃទៅលើភាគរយនៃ បុគ្គលដែលកំពុងបំពេញការងារនៅក្នុងទីក្រុងនេះដែលមកពីភាគខាងជើងនៃប្រទេសតាង ដោយប៉ារ៉ាម៉ែត្រ P_{North} ។ ក្នុងករណីនេះ គេបានធ្វើការអង្កេតទៅលើបុគ្គលដែលកំពុងបំពេញ ការងារនៅក្នុងទីក្រុងនេះចំនូន n=1500 នាក់ដោយប្រព័ន្ធចៃដន្យហើយទិន្នន័យដែលទទូល បានកំណត់នៅក្នុង SPSS មានឈ្មោះថា "sales"។ ចូរធ្វើការវាយតំលៃទៅលើប៉រ៉ាម៉ែត្រ P_{North} ព្រមទាំងគណនា Confidence interval នៃការវាយតំលៃនេះ?

• ជំហានទី១៖ Recode variable "Region" ទៅជា Binary code 0 ឬ 1 ដោយរក្សាលេខមួយសំរាប់ តំបន់ North និង លេខ ០ សំរាប់តំបន់ផ្សេងៗ ។

• ជំហានទី២ ៖ ប្រើ SPSS Analysis tool ទៅលើ អថេរ Binary

Analyze ------→ Non-parametric test ------→ One sample

ជ្រើសរើសយក Button Fields ហើយរក្សាអថេរ Region នៅក្នុង Test fields

ជ្រើសរើសយក Button Settings ហើយអនុវត្តដូចរូបភាពខាងក្រោម៖

Click ទៅលើ button OK ហើយ click Run យើងទទួលបាន output ដូចខាងក្រោម៖

<u>ការបកស្រាយ៖</u>

ឆ្លងកាត់ការសិក្សានេះ យើងអាចធ្វើសេចក្ដីសន្និដ្ឋានថា នៅក្នុងទីក្រុងនេះមានបុគ្គលដែលមក ពីភាគខាងជើងនៃប្រទេសចំនូន 25.50% ដែលកំពុងបំពេញការងារនៅក្នុងទីក្រុងនេះ ហើយ ភាគរយនេះអាចនឹងមានការប្រែប្រូលក្នុងគំលាតពី 23.30% ទៅ 27.80% នៅក្នុងកំរិតជឿជាក់

95% ป

S-plus:

prop.test(x,n, conf.level= $(1-\alpha)$)\$conf.int

ដែល:

X ជាំចំនួនព្រឹត្តិការណ៍ជោគជ័យក្នុងការអង្កេត n ដង

n ជាចំនួននៃការអង្កេត

៣.៣ - ការប្រើប្រព័ន្ធ Missing នៅក្នុងការវាយតំលៃ

នៅពេលខ្លះការវាយតំលៃបង្កឡើងដោយភាពស្មុគស្វាញដែលទាមទាអោយយើងយល់ដឹងពីការប្រើ ប្រាស់ប្រព័ន្ធ Missing ដើម្បីគ្រប់គ្រងទិន្នន័យអោយចូលរួម ឬមិនអោយចូលរួមនៅក្នុងការវិភាគ ។ នៅក្នុង SPSS Variable នីមួយ១មានប្រព័ន្ធ Missing រឿង១ខ្លួន។

Missing System

{ No missing value Discrete missing value Rang plus one optional discrete missing value

a. No missing value:

កាលណាយើងជ្រើរើសយក "No missing value" នៅក្នុងប្រអប់ Missing នៃ Variable ណា មួយ នោះមានន័យថារាល់ទិន្នន័យទាំងអស់ដែលមាននៅក្នុង Variable នេះចូលរួមទាំងស្រុងទៅក្នុងការ វិភាគ ឬ មានន័យថាប្រព័ន្ធ Missing មិនដំណើរការ (Default system) ។

b- Discrete missing value

កាលណាយើងជ្រើសរើសយកទីតាំងទី២ នៃប្រព័ន្ធ Missing មានន័យថាយើងអាចបិទទិន្នន័យ (code) បាន 3 តំលៃដាច់ (Discrete) យ៉ាងច្រើនមិនអោយចូលរួមក្នុងការវិភាគ។

ប្រអប់ខាងលើបានបង្ហាញអោយឃើញថា code លេខ 1 និងលេខ 2 មិនចូលរួមទៅក្នុងការវិភាគ នៃទិន្នន័យទេ ។

c-Ranges plus one optional discrete missing value

លេខ 1, 2, 3, 4 និង 8 មិនចូលរួមទៅក្នុងការវិភាគនៃទិន្នន័យ ។

នៅត្រង់ទីតាំងទី 3 នៃប្រអប់ Missing ផ្ដល់លទ្ធភាពអោយយើងអាចបិទទិន្នន័យ (Code)
មួយចន្លោះរឿងគ្នា មិនអោយចូលរួមទៅក្នុងការវិភាគ ហើយព្រមទាំអាចបិទបាន 1 តំលៃដាច់ (Code)
មួយផ្សេងទៀត ។

ឧទាហរណ៍ៈ

ដោយអនុវត្តទៅលើតារាងទិន្នន័យនៃ SPSS ចូរធ្វើ Descriptive analysis ទៅលើ Variable "Revenue" ដោយចាត់ទុកថា រាល់តំលៃទាំងឡាយណាដែលតូចជាង \$500 តំលៃជាតំលៃ "Outliers" ដែលត្រូវដកចេញពីការវិភាគនេះ ។

ជំហានទី១: រុំប្រ៊ី Missing system នៃ variable "Revenue"

ជំហ៊ានទី២: Descriptive analysis

Syntax

DESCRIPTIVES

/Variable=Revenue

/Statistics=Min Max Mean SEmean.

ឧទាហរណ៍ៈ

ដោយអនុវត្តទៅលើតារាងទិន្នន័យនៃ SPSS ចូរធ្វើ Description analysis ទៅលើ Variable "Reve--nue" ដោយចាត់ទុកថារាល់តំលៃទាំងឡាយណាដែលតូចជាង \$500 ធំជាង \$5000ជាប្រភេទ "Outliers" ដែលត្រូវដកចេញពីការវិភាគនេះ?

ជំហានទី១: ដោយប្រើ Recode ទៅលើ Variable Revenue:

Transform→ Recode → Into different variable

ជំហានទី៣: ប្រើប្រព័ន្ធ Missing នៃ Variable "New"

Label	Values	Missing	Columns	Align			
RESPONDEN	None	None	8	Right			
Customer Stat	{1, Regular cu	None	8	Right			
Revenue	None	\$0 - \$459	8	Right			
Time on Hold	{1, < 1 Minute}	None	8	Right			
Territory	{1, North}	None	8	Right			
Industry	{1, Governmen	None	8	Right			
Kith Sophal	None	None	8	Right			
Miss	Missing Values ? X						
0	No missing values Discrete missing va 1 2 Range plus one op Low: Discrete value:		OK Cancel Help ng value				

ជំហានទី ៤: Descriptive analysis

DESCRIPTIVES

/Variable=New

/Statistics=Min Max Mean Stddev SEmean.

Descriptive Statistics

	N	Minimum	Maximum	Mean	
	Statistic	Statistic	Statistic	Statistic	Std. Error
Kith Sophal	1452	500.11	4946.12	2539.3164	24.4138
Valid N (listwise)	1452				

នេះជាលទ្ធផលចុងក្រោយដែលយើងចង់បាន ។

ខំពុក៤: ការឡៀខផ្ទាត់សម្មតិគម្ភ

(Hypothesis testing)

I. <u>One-sample test:</u>

9-ការបង្កើតសម្មតិកម្មនៅក្នុងសំណាកតែមួយ:

នៅក្នុងការផ្ទៀងផ្ទាត់សម្មតិកម្មក្នុងការវិភាគស្ថិតិ គេបង្កើតសម្មតិកម្មពីរ ${
m H}_0$ & ${
m H}_a$ ដែល:

Ho អោយឈ្មោះថាសម្មតិកម្មសូន្យ (Null hypothesis)

Ha អោយឈ្មោះថាសម្មតិកម្មប្រឆាំងឬផ្ទុយ (Alternative hypothesis)

សម្មតិកម្ម \mathbf{H}_0 & \mathbf{H}_a ជាសម្មតិកម្មពីរដែលប្រឆាំងគ្នា ឬផ្ទុយគ្នា ។

នៅលទ្ធផលនៃការផ្ទៀងផ្ទាត់សម្មតិកម្ម ជាទូទៅ បើយើងទទួលយកសម្មតិកម្មសូន្យ H_0 នោះយើងត្រូវ បដិសេធជាដាច់ខាតនូវសម្មតិកម្មប្រឆាំង H_a ហើយបើយើងទទួលយកសម្មតិកម្មប្រឆាំង H_a នោះយើង បដិសេធជាដាច់ខាតនូវសម្មតិកម្មសូន្យ H_0 ។

ចំណាំ ៖ សម្មតិកម្មទាំងឡាយណាដែលលើកឡើងសំរាប់ការផ្ទៀងផ្ទាត់មានផ្ទុកសញ្ញា = , ≥ $or \le$, នោះសម្មតិកម្ម ទាំងនេះមានតូនាទីជាសម្មតិកម្មស្វន្យ Ho ។ សម្មតិកម្មទាំងឡាយណាដែល មានផ្ទុកសញ្ញា ≠,> or < , នោះវាដើរតូនាទីជាសម្មតិកម្មប្រឆាំង Ha ។ សម្មតិកម្មដែលលើកឡើងសំរាប់ការផ្ទៀងផ្ទាត់អាចដើរតូរនាទីជាសម្មកម្មស្វន្យ ឬ សម្មតិកម្ម ប្រឆាំង។

២-ទំរង់ទូទៅសម្មតិកម្ម

ជាទូទៅសម្មតិកម្មសំរាប់ការផ្ទៀងផ្ទាត់ក្នុងការវិភាគស្ថិតិ ចែកចេញជាពីរទំរង់:

ក-Two-tailed: (ការផ្ទៅងផ្ទាត់តាមទិសដៅពីរ)

គឺជាការផ្ទៀងផ្ទាត់សម្មតិកម្មដោយគ្រាន់តែចង់ដឹងថា ប៉ារ៉ា ម៉ែត្រ θ នៃលក្ខណៈសំគាល់ណា មួយ នៅក្នុង population មានតំលៃស្ទើ ឬខុសពីតំលៃដែលយើងលើកឡើងក្នុងសម្មតិកម្ម θ_0 (test proportion or test value) ។

ឧទាហរណ៍ៈ

$$\mathbf{VS} \qquad \mathbf{H}_0: \ \theta = \theta_0$$

ខ-One-tailed: (ការផ្ល្លេងផ្ទាត់តាមទិសដៅតែមួយ)

គឺជាការផ្ទៅងផ្ទាត់សម្មតិកម្មដោយគ្រាន់តែចង់ដឹងថា ប៉ារ៉ាម៉ែត្រ θ នៃលក្ខណៈសំគាល់ណាមួយ នៃ population មានតំលៃធំជាង ឬតូចជាង តំលៃដែលយើងលើកឡើងក្នុងសម្មតិកម្ម θ_0 (test proportion or test value) ដែលក្នុងនោះមាន **Left-tailed** (**less**) ឬ **Right-tailed**(**greater**)

Left-tailed Right-tailed

$$H_0: \theta = \theta_0$$
 (>) $H_0: \theta = \theta_0$ (<) VS VS $H_a: \theta < \theta_0$ $H_a: \theta > \theta_0$

៣. តំលៃ t-statistics ៖

ដើម្បីធ្វើការសំរេចចិត្តនៅក្នុងការផ្ទៀងផ្ទាត់សម្មតិកម្ម ថា H_0 ឬ H_a ពិត ឬ មិនពិត, គេត្រូវ ការ កំណត់ជាចាំបាច់នូវតំលៃ t-statistics ។ តំលៃ t-statistics ជាមេគុណណ៍រម៉ាល់ស្តង់ដា ដែលបង្ហាញអំពីការប្រៀបធៀបតំលៃដែលរកឃើញក្នុងសំណាក ទៅនឹងតំលៃដែលលើក ឡើង ក្នុងសម្មតិកម្មធៀបនឹងលំអៀងស្តង់ដាក្រោមលក្ខខណ្ឌ H_0 , កំណត់៖ $t=\frac{\widehat{\theta}-\theta_0}{S_{H_0}(\widehat{\theta})}$,

ដែល $heta_{\scriptscriptstyle 0}$ ជា test value ឬ test proportion

 $S_{H_0}(\widehat{ heta})$ ជា លំអៀងស្តង់ដាក្រោមលក្ខខ័ណ្ឌ H_0 ; $\widehat{ heta}$ ជា unbiased estimator;

៤. តារាងនៃការសំរេចចិត្ត៖

	Hypothesis testing & Decision				
Formulation	R	ule		Decision	
of Hypotheses					
2-tailed test	Rejection	Acceptance	Rejection		
$H_0: \theta = \theta_0$	Region	Region	Region	If $-Z_c \le t \le Z_c$ then we do not reject H_0	
VS	$\alpha/2$	(1-α)	$\alpha/2$	if $t < -Z_c$ or $t > Z_c$ then we reject H_0	
$H_a: \theta \neq \theta_0$	$\overline{Z_c}$		Z _c		
Left-tailed test	Rejection	Acceptano	ce		
$H_0: \theta = \theta_0(>)$	Region	Region		If $t \ge -Z_c$ then we do not reject H_0	
VS	α	(1-\alpha)		If $t < -Z_c$ then we reject H_0	
$H_a: \theta < \theta_0$	-2	Z _c			
Right-tailed test	Acce	ptance	Rejection		
$H_0: \theta = \theta_0$ (<)	Re	gion	Region	If $t \leq Z_c$ then we do not reject H_0	
VS	(1-	α)	α	If $t > Z_c$ then we reject H_0	
$H_a: \theta > \theta_0$			Z _c		

<u>ចំណាំ៖</u>

- Rejection region មានន័យស្មើ Critical region
- Z_{c} ជា critical value ដែលខណ្ឌចែក Rejection region ពី Acceptance region
- នៅក្នុង 2-tailed test $\mathsf{Z}_{\mathtt{c}}$ មានតំលៃស្មើ $Z_{\alpha/2}$ ប្រែប្រួលតំលៃទៅតាមកំរិតជឿជាក់
- នៅក្នុង 1-tailed test $Z_{\rm c}$ មានតំលៃស្មើ $Z_{\scriptscriptstyle lpha}$ ប្រែប្រូលតំលៃទៅតាមកំរិតជឿជាក់

<u>វិធីសាស្ត្រសំរាប់កំណត់តំលៃ Zc:</u>

បើតំលៃ level of confidence $(1-\alpha)$ =95% ឬ កំរិតលំអៀងនៃ population (level of significance) α =5%, នោះ Z_c ត្រូវបានគណនាតាមរយះ SPSS Syntax ដូចខាងក្រោម៖

■ Two-tailed test:

$$Z_c = IDF.NORMAL(0.975, 0, 1) = 1.96 (Z_{\alpha/2})$$

One-tailed:

$$Z_c = IDF.NORMAL(0.95, 0, 1) = 1.64 (Z_{\alpha})$$

៥ - One sample t-test (Test for mean):

នៅក្នុងករណីនេះទិន្នន័យដែលស្រង់នៅក្នុងសំណាក ឬ គំរូតាងស្ថិតិត្រូវតែជាប្រភេទ Quantitative ហើយប៉ារ៉ាម៉ែត្រនៃ population តំណាងអោយតំលៃមធ្យមដែលសម្មតិកម្មអាច មាន 3 ទំរង់ដូចខាងក្រោម៖

ទំរង់នៃសម្មតិកម្ម				
2-tailed test	Left-tailed test	Right-tailed test		
H_0 : $\mu = \mu_0$ VS H_a : $\mu \neq \mu_0$	$H_0: \mu = \mu_0 (>)$ $H_a: \mu < \mu_0$	$H_0: \mu = \mu_0 (<)$ $H_a: \mu > \mu_0$		

 μ_0 ជា test value

តំលៃ t-statistics:

$$t = \frac{\overline{X} - \mu_o}{S/\sqrt{n}}$$
, $S_{H_0}(\overline{X}) = \frac{S}{\sqrt{n}}$

ដែល:

 \overline{X} \overline{X} sample mean

 μ_0 ជា test value

S ជា std. deviation

n ជាទំហំនៃការអង្កត

៥.១ -**ឧទាហរណ៏អនុវត្តន៏នៅក្នុង** SPSS:

ដោយអនុវត្តទៅលើតារាងទិន្នន័យ "sales" នៃ SPSS ដែលទទួលបានពីការអង្កេតទៅលើ Revenue ប្រចាំឆ្នាំរបស់គ្រួសារមួយចំនួននៅក្នុងតំបន់ដ៏ធំមួយ ។ ចូរធ្វើការផ្ទៀងផ្ទាត់សម្មតិកម្មដែលលើកឡើងថា គ្រួសារនីមួយៗ ដែលរស់ នៅក្នុងតំបន់មាន Revenue ជាមធ្យមប្រចាំឆ្នាំយ៉ាងតិច \$2000 ។ កំណត់យក Significance level $\alpha=5\%$ ។

ទំរង់នៃ test of hypothesis:

$$H_0: \mu = 2000\$(>) , Claim$$
 $H_a: \mu < 2000\$$

 μ ជាប្រាក់ចំណូលជាមធ្យមប្រចាំឆ្នាំរបស់គ្រូសារនីមួយៗ

វិភាគ:

Syntax:

t-test

/Testval=2000

/Variable=Revenue

/Criteria=Cin(0.95).

Application tool:

Analyze→Compare mean →One-sample t-test

One-Sample Test

Help

	Test Value = 2000					
						ence Interval ifference
	4	alf.	Cir. (O toiled)	Mean	1	Unner
	τ	df	Sig. (2-tailed)	Difference	Lower	Upper
Revenue	20.035	1487	.000	\$516.58	\$466.00	\$567.15

Interpretation:

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = 20.035$$

Exclude cases listwise

$$\alpha = 5\% \Rightarrow Z_{\alpha} = 1.64$$

ដើម្បីកំណត់រកតំលៃ critical value យើងអាចប្រើ Syntax ខាងក្រោម:

COMPUTE Z=IDF.NORMAL(0.95,0,1). EXECUTE.

$$t = 20.035 > -Z_{\alpha} = -1.64 \Rightarrow Accept$$
 H_0

មានន័យថា 95% នៃគ្រួសារដែលរស់នៅក្នុងតំបន់នេះមាន Revenue ជាមធ្យមប្រចាំឆ្នាំយ៉ាងតិច \$2000 ដូច្នេះសម្មតិកម្មដែលលើកឡើងជាសម្មតិកម្មដែលត្រឹមត្រូវ ។

- *df=degree of freedom
 - =sample size-1
 - =1487
- * sig(2-dailed) = significance probability of 2-tailed test = 0.000

ចំណាំ:

sig.(2-tailed) តំលៃនេះអាចប្រើជំនួសតំលៃ t-.statistic ក្នុងការសំរេចិត្តនៃ 2-tailed test ។ ម្យ៉ាងវិញ ទ្យើត តំលៃ sig(2-tailed) ប្រើសំរាប់ដោះស្រាយបញ្ហាក្នុងករណីដែលយើង Accept "≥" ឬ "≤" ។

Rule:

 $t\vec{v}$ sig(2-tailed) \geq significance level $\alpha \Rightarrow$ Accept "="

 $t\tilde{v}$ sig(2-tailed)< significance level $\alpha \Rightarrow$ Reject "="

ដោយ
$$sig(2\text{-tailed}) = 0.000 < \alpha = 0.05 \Rightarrow Reject "="$$

ដូច្នេះគេអាចនិយាយយ៉ាងច្បាស់ថា 95% នៃគ្រួសារដែលរស់នៅក្នុងតំបន់នេះមាន Revenue ជាមធ្យម ខ្ពស់ជាង \$2000/Year ។

*Mean Difference =Mean-test value = \$516.18

គេអាចធ្វើការសន្និដ្ឋានថា គ្រួសារនីមួយៗដែលរស់នៅក្នុងតំបន់នេះមាន Revenue/Year ជាមធ្យម ខ្ពស់ ជាង \$2000 ក្នុងតំលាតជាមធ្យម \$516.18 ។

*95% Confidence Interval of the Difference $(\bar{X} - \mu_0)$

Lower bound:
$$(\overline{X} - \mu_0) - Z_{\alpha/2} \frac{S}{\sqrt{n}} = $466.00$$

Upper bound:
$$(\overline{X} - \mu_0) - Z_{\alpha/2} \frac{S}{\sqrt{n}} = $567.15$$

95% នៃគ្រួសារដែលរស់នៅក្នុងតំបន់សិក្សានេះមាន Revenue/Year ជាមធ្យមខ្ពស់ជាង \$2000 ក្នុងគំលាតជាមធ្យមប្រែប្រួលពី \$466 ទៅ \$567.15 ។

ការបកស្រាយៈ

តាមរយៈ នៃការជ្រាវស្រាវទៅលើប្រាក់ចំណូលជាមធ្យមប្រចាំឆ្នាំរបស់គ្រួសារនីមួយ១ ដែលរស់នៅក្នុង តំបន់នេះបានបង្ហាញអោយឃើញថាគ្រួសារនីមួយ១មានប្រាក់ចំនូលជាមធ្យមប្រចាំឆ្នាំខ្ពស់ជាង \$2000 ក្នុងគំលាតជាមធ្យម \$516.58 ។ យើងអាចនិយាយបានឡើតថា 95% នៃគ្រួសារដែលរស់ក្នុងតំបន់នេះ មានប្រាក់ចំណូលជាមធ្យមប្រចាំឆ្នាំខ្ពស់ ជាង \$2000 ក្នុងគំលាតជាមធ្យមប្រែប្រួលពី \$466 ទៅ \$567.15 ។

៥.២ - ការអនុវត្ត t-test ក្នុង S-plus:

Output:

One-sample t-Test

```
data: Revenue

t = 20.0353, df = 1487, p-value = 1

alternative hypothesis: true mean is less than 2000

95 percent confidence interval:

NA = 2559.015

sample estimates:

mean of x

2516.57
```

<u>ឧទាហរណ៍៖</u>

ការសិក្សាមួយធ្វើឡើងក្នុងគោលបំណងផ្ទៀងផ្ទាត់ទៅលើប្រសិទ្ធភាពនៃម៉ាស៊ីនស្វ័យប្រវត្តិ ដែលបានដាក់អោយដំណើរការនៅក្នុចង្វាក់ផលិតកម្មនៃការច្រកនំស្រួយ (Cereal) ក្នុងប្រអប់ ដោយកំណត់កម្មវិធីអោយច្រកចូលប្រអប់ក្នុងទំងន់ជាមធ្យម 1000 g ។ ដើម្បីផ្ទៀងផ្ទាត់ប្រសិទ្ធិភាពនៃម៉ាស៊ីននេះ គេបាននជ្រើសរើសយក Cereal ប្រអប់ដោយ ចៃដន្យចំនូន 30 ប្រអប់ពីក្នុងចំណោមផលិតផលដែលផលិតដោយម៉ាស៊ីននេះ រួចថ្លឹងទង្ងន់នំ នៅក្នុងប្រអប់និមួយៗ។ ទិន្នន័យដែលទទួលបានមានដូចខាងក្រោម៖

990 980 1000 950 970 1050 1000 990 1100 970 985 1000 1010 1020 975 985 970 1010 995 1000 990 995 980 1020 970 960 1010 985 960 1020 យោងលើទិន្នន័យនេះតើម៉ាស៊ីនស្វ័យប្រវត្តិនេះមានប្រសិទ្ធភាពនៅក្នុងដំណើរការផលិតកម្ម នេះដែរឬទេ ក្នុងកំរិត level of significace 5%?

<u>ចមើយ៖</u>

ទំរង់សម្មតិកម្មដែលសមស្រប៖

$$H_{_0}$$
: μ = $1000g$, $Claim$ $H_{_a}$: μ eq $1000g$ μ ជាទម្ងន់ជាមធ្យមនៃ Cereal ប្រអប់

វិភាគ៖ ដោយវិភាគតាមរយះ SPSS គេទទូលបានលទ្ធផលដូចខាងក្រោម៖

One-Sample Test

		Test Value = 1000				
	t	df	Sig. (2-tailed)	Mean	95% Confidence Interval of	
				Difference	the Diff	erence
					Lower	Upper
Weight of Cereal box	997	29	.327	-5.33333	-16.2742	5.6076

ដោយការផ្ទៀងផ្ទាត់សម្មតិកម្មរបស់យើងជាប្រភេទ 2-tailed test នោះយើងអាចប្រើតំលៃ Sig.(2-tailed) ជំនួសតំលៃ t-statistics សំរាប់ការសំរេចចិត្ត។ ដោយ Sig.(2-tailed)=0.327 > α =0.05 នោះយើងទទួលយកសម្មតិកម្មស្វន្យ មានន័យថា ម៉ាស៊ីនស្វ័យប្រវត្តិនេះមានដំណើរការប្រក្រតីក្នុងដំណើរការនៃចង្វាក់ផលិតកម្មនេះ ។

ចំណាំ៖ ក្នុងករណីដែលយើងទទូលយកសញ្ញា "=" នោះតំលៃផ្សេងៗនៅក្នុងតារាង លទ្ធផលគ្មានន័យក្នុងការបកស្រាយទេ។

S-plus:

ដោយសន្មតថា នៅក្នុង DataFrame នៃ Object explorer នៃ S-plus មានតារាងទិន្នន័យ *Weight" ដែលជាទំងន់ Cerealទាំង 30 ប្រអប់ ដូច្នេះគេអាចសរសេរ S-plus syntax ដូចខាងក្រោម៖

- > X<-Weight[,1]
- > t.test(X, alternative="two.sided", conf.level=0.95, mu=1000)

One-sample t-Test

data: X

t = -0.997, df = 29, p-value = 0.327

alternative hypothesis: mean is not equal to 1000

95 percent confidence interval:

983.7258 1005.6076

sample estimates:

c c

mean of x

994.6667

៦. One-sample test for proportion (Binomial test):

គឺជាការសិក្សាផ្ទៀងផ្ទាត់ទៅលើសម្មតិកម្ម ដែលប៉ារ៉ាម៉ែត្រ p នៃ population តំណាង ដោយភាគរយ តាមរយះតំលៃ unbiased estimator \hat{p} ទទូលបានពីទិន្នន័យបែប Qualitative ស្រង់ក្នុងសំណាក ឬ គំរូតាងស្ថិតិតែមួយ។

៦.១ <u>ទំរង់សម្មតិកម្</u>ន៖

ទំរង់នៃសម្មតិកម្ម				
2-tailed test	Left-tailed test	Right-tailed test		
$H_0: p = p_0$	$H_0: p = p_0(>)$	$H_0: p = p_0(<)$		
$H_a: p \neq p_0$	H_a : $p < p_0$	$H_a: p > p_0$		

po ជាតំលៃ test proportion

៦.២ <u>តំលៃ t-statistics</u> :

$$t = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$
 , ដែល \hat{p} ជា unbiased estimator

 p_0 ជាតំលៃ test value n ជាទំហំនៃការអង្កេត

៦.៣ <u>ឧទាហរណ</u>៍៖

អ្នកនយោបាយម្នាក់មានការចាប់អារម្មណ៍ទៅលើអាយុនៃអ្នកដែលត្រូវចូលរួម នាពេល បោះឆ្នោតខាងមុខ ហើយបានលើកជាអំណះអំណាងមួយថា នឹងមានអ្នកបោះឆ្នោតដែលមាន អាយុមិនលើស 35 ឆ្នាំដែលនឹងចូលរួមការបោះឆ្នោតនាពេលខាងមុខមានកំរិតទាបជាង30%។ ដើម្បីផ្ទៀផ្ទាត់ទៅនឹងអំណះអំណាងនេះ គេបានធ្វើការអង្កេតទៅលើអ្នកមានសិទ្ធបោះឆ្នោត មួយចំនូននៅក្នុងតំបន់ហើយទិន្នន័យដែលស្រង់បានកំណត់នៅក្នុង SPSS (V.13.0) មានឈ្មោះថា "voter" ។ ចូរធ្វើការផ្ទៀងផ្ទាត់អំណះអំណាងនេះក្នុងកំរិត level of significance $\alpha = 5\%$?

<u>ចម្លើយ៖</u>

• លើកសម្មតិកម្មដែលសមស្រម៖

$$H_0: p \ge 30\%$$
 $V.S$ $H_a: p < 30\%$

ដែល p ជាភាគរយអ្នកដែលមានអាយុមិនលើស 35 ឆ្នាំ

• ក្បូននៃការសំរេចចិត្ត៖

• ការវិភាគតាមរយះ SPSS :

Analyze ------ Non-parametric test ------ Legacy dialogs ----- Binomial

កំណត់យក **"Cut point "** ស្មើនឹង 35 ក្នុងគោលបំណងបែងចែកអាយុជាពីរក្រុម៖ ក្រុមអាយុ 35 ចុះ និង អាយុច្រើនជាង 35 ឆ្នាំ។ ចូរចំណាំថា Binomial test ជានិច្ចជាកាលធ្វើការផ្ទៀងផ្ទាត់តែ ចំពោះក្រុម ទី1 តែប៉ុណ្ណះ។

ក្នុងករណីនេះ Output ដែលទទួលបានពីការវិភាគមានដូចខាងក្រោម៖

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (1-
						tailed)
	Group 1	<= 35	478	.3	.3	.000ª
AGE OF RESPONDENT	Group 2	> 35	1369	.7	1:	
	Total		1847	1.0		

a. Alternative hypothesis states that the proportion of cases in the first group < .3.

<u>ចំណាំ៖</u>

នៅក្នុងលទ្ធផលនៃ Binomial test គេប្រើតំលៃ Exact Sig. ដើម្បីធ្វើការផ្ទៀងផ្ទាត់សម្មតិកម្ម ។ Exact Sig. = Exact Significance Probability Value

Rule: If Exact Sig. \geq Level of significance α then "Do not reject H₀"

If Exact Sig. < Level of significance $\,\alpha\,$ then " Reject H₀ "

Exact Sig. មាន 2 ករណី ខុសគ្នា៖ Exact Sig.(2-tailed) , Exact Sig.(1-tailed) , ដែល ៖

ខាងលើ។

ចំពោះ Exact Sig.(Left-tailed) ឬ Exact Sig.(Right-tailed),គេអាចដឹងដោយចែកដាច់ពីគ្នាតាម រយះ Message នៅក្រោមតារាង Output :

- ប៉ើមាន Message "a. Alternative hypothesis states that the proportion of the cases in the first group < test proportion "(ក្នុងករណីរបស់យើង test proportion=0.3) នោះវាជា Exact Sig.(Left-tailed) ។
- ក្នុងករណីផ្ទុយពីនេះ ជាប្រភេទ Exact Sig.(Right-tailed) ហើយដែល Exact Sig.(Left-tailed) + Exact Sig.(Right-tailed)=1 ។

ដោយតំលៃ Exact Sig.(1-tailed) ជាប្រភេទ Exact Sig.(Left-tailed) ហើយសម្មតិកម្មដែល យើងលើកឡើងជាប្រភេទ Left-tailed test នោះយើងអាចប្រើ "Rule of Exact Sig." បាន ។

<u>សនិដ្ឋាន៖</u>

ក្នុងករណីនៃឧទាហរណ៍ខាងលើ តំលៃ Exact Sig.(Left-tailed)=0.000 និងតំលៃ lpha =0.05 នោះយើង Reject H₀ មានន័យឋា៖

ភាគរយអ្នកបោះឆ្នោតដែលមានអាយុ 35 ចុះដែលនឹងចូលរួមក្នុងការបោះឆ្នោតនាពេល ខាងមុខមានកំរិតទាបជាង 30% ដូច្នេះអំណះអំណាងរបស់អ្នកនយោបាយនេះពិតជាត្រឹម ត្រូវ ។

S-plus: ជាទូទៅនៅក្នុង S-plus គេមាន Syntax ដូចខាងក្រោម៖
prop.test(x,n,alternative="......", conf.level=(1-\alpha), p=p0)
ដែល x ជាចំនួនករណីជោគជ័យក្នុងការអង្កេត
n ជាទំហំនៃការអង្កេត
Alternative អាចទទូលយកតំលក្ខណ: "two.sided" or "less" or "greater"
(1-\alpha) ជា confidence level ដែលត្រូវផ្ដល់តំលៃ
p0 ជាតំលៃដែលលើកឡើងក្នុងសម្មតិកម្ម
ក្នុងករណីនេះ យើងអាចសរសេរ ៖
prop.test(478,1847,alternative= "less", conf.level=0.95, p= 0.30)

1-sample proportions test with continuity correction

data: 478 out of 1847, null probability 0.3

X-square = 14.7352, df = 1, **p-value = 0.0001**

alternative hypothesis: P(success) in Group 1 is less than 0.3

95 percent confidence interval:

0.000000 0.276181

sample estimates:

prop'n in Group 1

0.2587981

II - Two-sample test

9. Independent sample t-test

គេមាន population ពីរមិនអាស្រ័យគ្នា។ គេមានបំណងប្រៀបធៀបប៉ារ៉ាម៉ែត្រនៃ population ទាំងពីរ ។

 μ_1 ជាតំលៃមធ្យមដែលតំណាងអោយប៉ារ៉ាម៉ែត្រនៃ population ទី1 μ_2 ជាតំលៃមធ្យមដែលតំណាងអោយប៉ារ៉ាម៉ែត្រនៃ population ទី2 គេមានបំណងប្រៀបធៀប μ_1 និង μ_2 តាមរយះនៃការប្រៀបធៀប $ar{X_1} \& ar{X_2}$ ដែលជាមធ្យមនៃសំណាក (sample mean) ដកស្រង់ចេញពីpopulation ទាំងពីររៀងគ្នា។

ដូច្នេះ គេអាចសរសេរបានឋា៖

 $(ar{X}_{\!_1}\!-ar{X}_{\!_2})$ វាយតំលៃ $(\mu_{\!_1}\!-\!\mu_{\!_2})$ មានលំអៀងស្តដ់ដា $S_{\!_{H_0}}(ar{X}_{\!_1}\!-\!ar{X}_{\!_2})$

ដូច្នេះតំលៃ t-statistics សរសេរ៖

$$t = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{S_{H_{0}}(\overline{X}_{1} - \overline{X}_{2})}$$
$$t = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

ដែល:

 \overline{X}_1 ជា Sample mean នៅក្នុង Sample 1

 $S_{_{1}}$ ជា Std.deviation នៃ data នៅក្នុង Sample 1

 S_2 ជា Std.
deviation នៃ data នៅក្នុង Sample
2

 n_1 ជា Sample Size ំ នៃ Sample 1

n₂ ជា Sample Size ំនៃ Sample2

ទំរង់នៃ test of hypothesis:

ទំរង់នៃសម្មតិកម្ម				
2-tailed test	Left-tailed test	Right-tailed test		
$H_0: \mu_1 = \mu_2$	$H_0: \mu_1 = \mu_2 (>)$	$H_0: \mu_1 = \mu_2(<)$		
$H_a: \mu_1 \neq \mu_2$	$H_a: \mu_1 < \mu_2$	$H_a: \mu_1 > \mu_2$		

Confidence interval for $(\mu_1 - \mu_2)$?

ដោយ
$$S(\overline{X}_1 - \overline{X}_2) = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

នោះ condidence interval for $(\mu_{\scriptscriptstyle 1}-\mu_{\scriptscriptstyle 2})$ កំណត់:

Lower bound:
$$(\overline{X}_1 - \overline{X}_2) - Z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$
Upper bound: $(\overline{X}_1 - \overline{X}_2) + Z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$

9.9.-ឧទាហរណ៏អនុវត្តន៏នៅក្នុង SPSS:

ការសិក្សាធ្វើឡើងដើម្បីផ្ទៅងផ្ទាត់ សម្មតិកម្ម ដែលលើកថានិស្សិតដែលបញ្ចប់ការសិក្សាផ្នែក Engineering ទទួលបាន Salary ជាមធ្យមប្រចាំឆ្នាំខ្ពស់ជាងនិស្សិតដែលបានបញ្ចប់ការសិក្សាផ្នែក Business Administration ។ ទិន្នន័យដែលស្រង់បានពីការអង្កេតលើបញ្ហានេះកំណត់ទុកនៅក្នុងតារាង ទិន្នន័យ "University of Florida graduate Salaries" នៃ SPSS (V.13.0) ។ ចូរធ្វើការផ្ទៅងផ្ទាត់ក្នុងក៏រិត Significance level $\alpha = 5\%$ ។

test of hypothesis

$$H_0: \mu_E = \mu_{BA}(<)$$
 $H_a: \mu_E > \mu_{BA}$

 μ_E : Salary ជាមធ្យមប្រចាំឆ្នាំរបស់និស្សិតដែលបញ្ចប់ការសិក្សាផ្នែក Enginnering

 $\mu_{\scriptscriptstyle BA}$: Salary ជាមធ្យមប្រចាំឆ្នាំរបស់និស្សិតដែលបញ្ចប់ការសិក្សាផ្នែក "Business Administration"

Analyze → Compare mean → Independent-Sample t-test

Click ទៅលើ button * Define group" ដើម្បីកំណត់លេខ codeនៃ Category ដែលត្រូវ ប្រៀបធៀប៖

លេខ code 7 តាងអោយ Engineering

លេខ code 4 តាងអោយ Business Administration

			Starting Salary
			Equal variances assumed
t-test for Equality	t		13.787
of Means	df		601
	Sig. (2-tailed)		.000
	Mean Difference		6062.82
	Std. Error Difference		439.750
	95% Confidence Interval	Lower	5199.181
	of the Difference	Upper	6926.450

Group Statistics

	Callana	N	Mana	Otal Davistica	Std. Error
College		N	Mean	Std. Deviation	Mean
Starting Salary	Engineering	281	30876.87	5189.219	309.563
	Business Administration	322	24814.05	5553.360	309.477

Interpretation:

on:

$$t = \frac{\overline{X}_E - \overline{X}_{BA}}{\sqrt{\frac{S_E^2}{n_E} + \frac{S_{BA}^2}{n_{BA}}}} = 13.787$$

Acceptance Critical Region Z_{α} $\alpha = 5\% \Rightarrow Z_{\alpha} = 1.64$

$$t = 13.787 > Z_{\alpha} = 1.64 \Rightarrow \text{Re } ject \quad H_{O}$$

មានន័យថា និស្សិតដែលបានបញ្ចប់ការសិក្សាផ្នែក Engineering ហើយដែលកំពុងបំពេញការងារនៅក្នុង សង្គមទទូលបាននូវ Salary ជាមធ្យមប្រចាំឆ្នាំខ្ពស់ជាងនិស្សិតផ្នែក Business Administration ។ ដូច្នេះ អំណះអំណាងដែលលើកឡើងជាអំណះអំណាងដែលត្រឹមត្រូវ ។

*Mean difference= 6062.82 មានន័យថានិស្សិតផ្នែក Engineering ទទួលបាន salary ខ្ពស់ជាងនិស្សិតផ្នែក Business Administration ក្នុងគំលាតជាមធ្យម 6062.82 ។

*Std error difference=439.750 មានន័យថា error ដែលកើតឡើងនៅក្នុងការវាយ តំលៃទៅ លើ Mean difference មាន 439.750 ។

* 95% confidence interval of the difference

Lower bound:
$$(\overline{X}_1 - \overline{X}_2) - Z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = 5199.181\$$$
Upper bound: $(\overline{X}_1 - \overline{X}_2) + Z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = 6926.45\$$

យើងអាចនិយាយបានថា 95% នៃនិស្សិតដែលបានបញ្ចប់ការសិក្សាផ្នែក Engineering ទទួលបាន salary ជាមធ្យមប្រចាំឆ្នាំខ្ពស់ជាងនិស្សិតដែលបានបញ្ចប់ការសិក្សាផ្នែក Business Administration ក្នុងគំលាតជាមធ្យមប្រែប្រូលពី 5199.181 ទៅ 6926.45 ។

ය.ඉ.២- S-plus application

ដើម្បីធ្វើការប្រៅបធ្យើបតំលៃមធ្យមតាមរយៈ Independent-sample t-test នៅក្នុង S-plus គេមាន Command ដូចខាងក្រោម:

t.test(data1,data2, alternative="....",conf.level=(1-α),var.equal=T) ដែល data1 ជា quantitative variable ស្រង់នៅក្នុង sample1 data2 ជា quantitative variable ស្រង់នៅក្នុង sample2

var.equal=T មានន័យថា "Assumed variance are equal" var.equal=F មានន័យថា "Assumed variance are not equal" សន្មតថា Data តំណាងអោយតារាងទិន្នន័យ University of Florida graduate salaries នៅក្នុង S-plus) 4 function(Data) Sal.Eng<-Data[,4][!is.na(Data[,4]) & Data[,3]=="Engineering"] Sal.Bus<- Data[,4][!is.na(Data[,4]) & Data[,3]=="Business Administration"] Report<-t.test(Sal.Eng,Sal.Bus,alternative="greater",conf.level=0.95,var.equal=T) return(Report) } **Output: Pooled variance Two-Sample t-Test** data: Sal.Eng and Sal.Bus t = 13.7869, df = 601, p-value = 0 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: 5338.374 NA sample estimates: mean of x mean of y 30876.87 24814.05 <u>ឧទាហរ</u>ណ៍៖ អំណះអំណាងមួយដែលបានលើកឡើងនៅក្នុងសង្គមការងារបានអះអាងថាអ្នកដែលបំពេញ

អំណះអំណាងមួយដែលបានលើកឡើងនៅក្នុងសង្គមការងារបានអះអាងថាអ្នកដែលបំពេញ ការងារនៅក្នុងស្ថាប័ន "Commercial" ទទួលបានប្រាក់ចំណូលប្រចាំខែជាមធ្យមខ្ពស់ជាងអ្នក ដែលបំពេញការងារនៅក្នុងស្ថាប័ន "Academic " ។ ផ្ទៀងផ្ទាត់ទៅនឹងអំណះអំណាងនេះ គេ បានសិក្សាទៅលើបុគ្គលមួយចំនួននៅក្នុងតំបន់នេះដោយចៃដន្យហើយទិន្នន័យដែលស្រង់ បាន កំណត់នៅក្នុង SPSS (V.13.0) មានឈ្មោះថា "sales" ។ ចូរផ្ទៀងផ្ទាំត់អំណះអំណាង នេះក្នុងកំរិត level of significance α =5% ?

```
ទំរង់សម្មតិកម្មសមស្រប៖ H_{0}\!:\!\mu_{C}=\mu_{A}\left(<\right) H_{a}\!:\!\mu_{C}>\!\mu_{A}
```

 μ_c ជាប្រាក់ចំណូលជាមធ្យមនៃបុគ្គលដែលបំពេញការងារក្នុងស្ថាប័ន Commercial $\mu_{\scriptscriptstyle A}$ ជាប្រាក់ចំណូលជាមធ្យមនៃបុគ្គលដែលបំពេញការងារក្នុងស្ថាប័ន Academic

Output:

Independent Samples Test

			Revenue
			Equal variances
			assumed
	t		-1.010
	df		990
	Sig. (2-tailed)		.313
t-test for Equality of Means	Mean Difference		-\$64.429
Means	Std. Error Difference		\$63.822
	95% Confidence Interval of the	Lower	-\$189.670
	Difference	Upper	\$60.812

 $lpha = 5\% \Rightarrow Z_c = 1.64$, ដូច្នេះ ៖

t=-1.010 < Z_c = 1.64 នោះយើងទទូលយកសម្មតិកម្មស្វន្យ ។ គេអាចសន្និដ្ឋានបានថា៖ អ្នកដែលបំពេញការងារនៅក្នុងស្ថាប័ន Commercial មិនទទូលបានប្រាក់ចំណូលជាមធ្យម ប្រចាំខែខ្ពស់ជាងអ្នកដែលបំពេញការងារក្នុងស្ថាប័ន Academic នោះទេ។ ដូច្នេះអំណះ អំណាង ដែលលើកឡើងពិតជាមិនត្រឹមត្រូវទេ។

ដោយតំលៃ sig.(2-tailed)=0.313 > lpha =0.05 នោះ យើងទទូលយកសញ្ញា " = " មានន័យថា អ្នកដែលបំពេញការងារនៅក្នុងស្ថាប័នទាំងពីរមានកំរិតប្រាក់ចំណូលជាមធ្យមប្រចាំខែដូចគ្នា ។ S-plus:

Output:

```
Pooled-Variance Two-Sample t-Test

data: Rev.C and Rev.A

t = -1.0095, df = 990, p-value = 0.8435

alternative hypothesis: difference in means is greater than 0

95 percent confidence interval:

-169.5043 NA

sample estimates:

mean of x mean of y

2481.21 2545.639
```

G.D- Dependent sample t-test(paired-sample t-test)

ក្នុងករណីនៃ Paired sample t-test ទិន្នន័យដែលជ្រើសរើសសិរាប់ការផ្ទៀងផ្ទាត់ស្ថិតក្នុង Sample ដែលអាស្រ័យគ្នា ។ ខាងក្រោមនេះជាទិន្នន័យដែលស្រង់បានពីការអង្កេត:

Obs	X_1	X_2	$D=X_2-X_1$
1	X ₁₁	X_{21}	d1
2	X_{12}	X_{22}	d2
3	X ₁₃	X_{23}	d3
			•
n	X_{1n}	X_{2n}	dn

 $X_1,\,X_2$: quantitative variable D ជាគំលាតរវាង $X_2 \& X_1$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
 mean of the difference

កំណត់រកតំលៃ t-statistic:

$$t = \frac{\overline{D}}{S(\overline{D})},$$
 ដែល $S(\overline{D})$ ជា std.error

$$S(\overline{D}) = \frac{S(D)}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (d_i - \overline{D})^2}$$

ដូច្នេះតំលៃ t-statistic កំណត់:

$$t = \frac{\overline{D}}{\sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (d_i - \overline{D})^2}}$$

ទំរង់សម្មតិកម្ម៖

ទំរង់សម្មតិកម្ម				
2-tailed test	Left-tailed test	Right-tailed test		
$H_0: \mu_D = 0$	$H_0: \mu_D \geq 0$	$H_0: \mu_D \leq 0$		
$H_1: \mu_D \neq 0$	$H_1: \mu_D < 0$	$H_1: \mu_D > 0$		

 $\mu_{\scriptscriptstyle D}$ ជាមធ្យមនៃគំលាតនៃប៉្ងុពុយឡាស្យុង (Mean of the difference of the population)

Confidence interval for μ_D (Paired difference)

ដោយ \overline{D} វ៉ាយតំលៃអោយ μ_D មាន std error $S(\overline{D})$ នោះ confidence interval for μ_D កំណត់:

Lower bound:
$$\overline{D} - Z_{\alpha/2} \cdot \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (d_i - \overline{D})^2}$$

Upper bound:
$$\overline{D} + Z_{\alpha/2} \cdot \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (d_i - \overline{D})^2}$$

៤.២.១-លំហាត់អនុវត្តន័នៅក្នុង SPSS:

ខាងក្រោមនេះជាតារាងទិន្នន័យដែលជាពិន្ទុរបស់និស្សិតមួយក្រុមដែលស្ថិតនៅក្នុងកម្មវិធីសិក្សាតែមួយដូច គ្នា ហើយដែលត្រូវបានធ្វើ Test មុននិងក្រោយវគ្គ "training of developing knowledge" ទៅលើ C++ programming Language ។

Before	60	50	45	35	80	85	75	65	55	90	95	55	
After	65	90	50	50	80	90	85	80	85	90	95	75	

តើវគ្គ "Training" នេះមានប្រសិទ្ធិភាពដែរឬទេ ក្នុងក៏រិត Significance Level $\alpha=5\%$? Test of hypothesis:

$$H_0: \mu_D = 0 \ (>)$$

$$H_1: \boldsymbol{\mu}_D < 0$$

 μ_D ពីជាកំលាតជាមធ្យមនៃពិន្ទុរបស់និស្សិតមុននិងក្រោយវគ្គ "training" Analyze ightharpoonup Compare mean ightharpoonup Paired-Sample t-test

			Pair 1
			Before the
			Training - After
			the training
	Mean		-12.083
	Std. Deviation		12.695
Paired Differences	Std. Error Mean		3.665
	05% Confidence Interval of the Difference	Lower	-20.150

Paired Samples Test

Interpretation:

Sig. (2-tailed)

$$t = \frac{\overline{D}}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (d_i - \overline{D})}} = -3.29$$

$$\frac{\text{Critical Region Region}}{-Z_{\alpha} = -1.64}$$

 $t=-3.29 \prec -1.64 \Rightarrow {
m Reject~H}_0$ ក្នុងក៏វិត 95% ពិតយើងអាចសន្និដ្ឋានថា វិគ្គ Training មានប្រសិទ្ធភាពក្នុងការបង្កើន ចំណេះដឹងដល់និស្សិតទាំងនោះ ។

$$Mean = \frac{1}{n} \cdot \sum_{i=1}^{n} d_i = -12.08$$
 ក្រោយពីឆ្លងកាត់វគ្គ "Training of Developing

Knowledge" in C++ Programming Language" និស្សិតនីមួយ១ មានកំនើនពិន្ទុជាមធ្យម 12.08 ។

$$std.deviation = \sqrt{\frac{1}{n-1}.\sum_{u=1}^{n} (d_i - \overline{D})^2} = 12.695$$

$$std.error.mean = \sqrt{\frac{1}{n(n-1)}.\sum_{u=1}^{n} (d_i - \overline{D})^2} = 3.664$$

ការវាយតំលៃទៅលើ កំនើនពិន្ទុរបស់និស្សិតនីមួយៗមាន ERROR ជាមធ្យម 3.664

95% Confidence interval of the difference:

Lower Bound :
$$\overline{D} - Z_{\alpha/2} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (d_i - \overline{D})^2} = -20.149$$

Upper Bound : $\overline{D} + Z_{\alpha/2} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (d_i - \overline{D})^2} = -4.017$

ក្រោយពីការឆ្លងកាត់វគ្គ "training of developing Knowledge in C++ Programming Language", យើងសង្កេតឃើញថា 95% នៃនិស្សិតបានទទួលនូវកំនើនចំណេះដឹងគិតជាពិន្ទុជាមធ្យម ប្រែប្រូលពី 4.017 ទៅ 20.149 ។

៤.២.២-លំហាត់អនុវត្តន៏នៅក្នុង S-plus:

Output

Paired t-Test

```
data: data1 and data2

t = -3.2971, df = 11, p-value = 0.0036

alternative hypothesis: true mean of differences is less than 0

95 percent confidence interval:

NA -5.50167

sample estimates:

mean of x - y

-12.08333
```

ចំណាំ

```
ក្នុងករណីដែលយើងមានបំណងកំណត់រក Confidence interval of the difference នោះយើងគ្រាន់
តែកំណត់យក alternative="two.sided" យើងនឹងទទួលបាននូវចំលើយ។
ឧទាហរណ៍៖
function()
       data1<-c(60, 50, 45, 35, 80, 85, 75, 65, 55, 90, 95, 55)
       data2<-c(65, 90, 50, 50, 80, 90, 85, 80, 85, 90, 95, 75)
       report<- t.test(data1,data2,alternative="two.sided",conf.level=0.95,paired=T)
       return(report)
}
Output:
            Paired t-Test
data: data1 and data2
t = -3.2971, df = 11, p-value = 0.0071
alternative hypothesis: mean of differences is not equal to 0
95 percent confidence interval:
-20.149632
                -4.017034
sample estimates:
  mean of x - y
    -12.08333
```

ខំពុត៥: Chi-square

9- Chi-square as goodness-of-fit test

Chis-quare(Goodness-of-Fit) ប្រើសំរាប់សិក្សាផ្ទៀងផ្ទាត់របាយនៃទិន្នន័យដែលទទួលបានពីការ អង្កេតទៅនឹងរបាយទិន្នន័យណាមួយ ដោយធ្វើការប្រៀបធ្យើប observed frequency ទៅនឹង expected frequency នៃរបាយទិន្នន័យដែលយើងចង់បាន។

ទំរង់នៃសម្មតិកម្ម (Hypothesis testing)

 \mathbf{H}_0 : របាយទិន្នន័យដែសទទួលបានពីការអង្កេតគោរពទៅតាមច្បាប់នៃរបាយទិន្នន័យណាមួយ \mathbf{V}_S

 \mathbf{H}_1 : របាយទិន្នន័យដែសទទួលបានពីការអង្កេត មិនគោរពទៅតាមច្បាប់នៃរបាយទិន្នន័យណាមួយ

កំលៃ Chi-square

$$\chi^{2} = \sum_{i=1}^{n} \frac{(fo_{i} - fe_{i})^{2}}{fe_{i}}$$

ដែល foi ជា observed frequency

fei น่า expected frequency

ការសំរេចចិត្ត

$$\mathfrak{i} \overline{\mathfrak{i}} \chi^2 \leq \chi^2_{\alpha;df} \Rightarrow$$
 Do not reject H₀ (Accept H₀)

ប៊ើ
$$\chi^2 > \chi^2_{\alpha:df} \Rightarrow \text{Reject H}_0$$

<u>ចំណាំះ</u>

តំលៃ $\chi^2_{lpha:df}$ អោយឈ្មោះថា critical value of Chi-square ដែល :

 α ជា significance level

df ជា degree of freedom ដែល df=(Number of group) – 1

តំលៃ $\chi^2_{\alpha:df}$ អាចគណនាតាមរយៈ Syntax ដូចខាងក្រោមៈ

Compute Chi=IDF.CHISQ(1- α , df). Execute.

ឧទាហរណ៍ំះ

គេមានបំណងសិក្សាទៅលើគ្រាប់ឡុកឡាក់មួយដើម្បីចង់ដឹងថាទ្រង់ទ្រាយនៃគ្រាប់ឡុកឡាក់នេះមាន លក្ខណ:ស្នើសាច់ល្អដែរឬទេ នៅលើផ្ទៃមុខខាង មានន័យថាលទ្ធផលនៃគ្រាប់ឡូកឡាក់នេះចេញដោយ គោរពទៅតាមច្បាប់នៃភាពចៃដន្យ (Random) ដែរឬទេក្នុងក៏រិត α =5%?

ខាងក្រោមនេះជាលទ្ធផលនៃការសាកល្បងបោះគ្រាប់ឡកឡាក់ចំនួន 120 ដង:

លេខ	ចំនួន
	(Observed
	Frequency)
1	18
2	22
3	15
4	25
5	20
6	20

ទំរង់សម្មតិកម្ម:

 \mathbf{H}_0 : លទ្ធផលនៃការបោះគ្រាប់ឡុកឡាក់គោរពទៅតាមច្បាប់នៃភាពថៃដន្យ \mathbf{V}_S

H₁: លទ្ធផលនៃការបោះគ្រាប់ឡកឡាក់មិនគោរពទៅតាមច្បាប់នៃភាពចៃដន្យ

Syntax:
NPAR TEST
/CHISQUARE=res
/EXPECTED=EQUAL

/MISSING ANALYSIS.

Application tool:

Analyze-→Non-parametric-→ legacy dialogs → Chi-square

Output:

res

	Observed N	Expected N	Residual
1	18	20.0	-2.0
2	22	20.0	2.0
3	15	20.0	-5.0
4	25	20.0	5.0
5	20	20.0	.0
6	20	20.0	.0
Total	120		

Test Statistics

	res
Chi-Square ^a	2.900
df	5
Asymp. Sig.	.715

- a. 0 cells (.0%) have expected frequencies less than
 - 5. The minimum expected cell frequency is 20.0.

កំណត់រកតំលៃ Critical value ក្នុងក៏វិត significance level 5%:

$$\chi^2_{0.95;5}$$
 =11.07

ដោយតំលៃ $\chi^2 = 2.90 < \chi^2_{\alpha;df} = 11.07$ នាំអោយយើងទទួលយកសម្មតិកម្មសូន្យ មានន័យថា លទ្ធផលនៃការបោះគ្រាប់ឡូកឡាក់នេះចេញដោយគោរពទៅតាមច្បាប់នៃភាពចៃដន្យ ។

ដូចគ្នានេះដែរ គេអាចប្រើតំលៃ Asymp.sig ជំនួសយំលៃ χ^2 ក្នុងការសំរេចចិត្តក្នុងការផ្ទៀង ផ្ទាត់នេះ ដោយគោរពទៅតាមគោលការណ៍នៃតំលៃ Sig. ។

ដោយ Asymp.sig = 0.715 > α =0.05 នោះ គេទទូលយកសម្មតិកម្មស្វន្យ ។ ចំណាំ៖ Asymp.sig មានន័យថា Asymptotic Significance Probability Value ។

b- Chi-square as independent test

ក្នុងករណីនេះ Chi-square សិក្សាអំពីទំនាក់ទំនងដែលកើតឡើងរវាងអថេរពីរ ដែលជាប្រភេទ Qualitative data ។ តាមរយៈនៃការសិក្សានេះយើងអាចដឹងថាអថេរមួយអាចមានឥទ្ធិពលទៅលើការប្រែ ប្រូលនៃអថេរមួយឡើតដែរឬទេ ហើយដែលការសិក្សានេះធ្វើឡើងតាមរយៈនៃ Crosstabs analysis ។

ទំរង់នៃសម្ពតិកម្ម:

Ho: A និង B មិនអាស្រ័យគ្នា

Vs

H1: A និង B អាស្រ័យគ្នា

តំលៃ Chi-square ត្រវិបានគណនាតាម រូបមន្ត :

$$\chi^{2} = \sum_{i,j} \frac{(fo_{ij} - fe_{ij})^{2}}{fe_{ij}}$$

ដែល $f_{O_{ij}}$ ជា observed frequency នៅក្នុងតារាង Crosstab

 $fe_{_{ij}}$ ជា expected frequency ដែលបានគណនាក្នុងតារាង Crosstabs តាមរូបមន្តខាង ក្រោម:

 fe_{ij} =(Total in row i) * (Total in column j)/(Total of observation)

ក្នុងករណីនេះ degree of freedom (df) ត្រូវបានគណនាតាមរូបមន្ត:

df=(Number of rows-1)(Number of Column -1)

ការសំរេចនៃ Test of hypothesis ធ្វើឡើងដូចនៅក្នុងចំនុចខាងលើដែរ ។

ឧទាហរណ៍

គេមានបំណងចង់ដឹងថាតើកត្តាអាយុ (agecat) នៃអ្នកដែលនឹងចូលរួមក្នុងការបោះឆ្នោតមានឥទ្ធិពល ទៅលើជំរើសបេក្ខភាពគណបក្ស នយោបាយ(Party) ដែរឬទេ? ក្នុងករណីនេះការអង្កេតមួយបានធ្វើនៅ ក្នុងតំបន់ហើយទិន្នន័យដែលទទួលបានឈ្មោះ voter នៅក្នុង SPSS ។

<u>ទំរង់សម្មតិកម្មសមស្រប៖</u>

H₀: ជំរើសបេក្ខភាពគណបក្សនយោបាយ **មិនអាស្រ័យ**នឹងវ័យនៃអ្នកចូលរួមក្នុងការបោះឆ្នោត v.s

Ha: ជំរើសបេក្ខភាពគណបក្សនយោបាយ **អាស្រ័យ**នឹងវ័យនៃអ្នកចូលរួមក្នុងការ បោះឆ្នោត

Analyze-→ Descriptives statistics-→ Crosstabs

Output:

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	56.531 ^a	6	.000
Likelihood Ratio	63.654	6	.000
Linear-by-Linear Association	3.689	1	.055
N of Valid Cases	1847		

 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 52.38.

តំលៃ Chi-square

កំណត់រកតំលៃ Critical value of chisquare ក្នុងករណីដែល df=6 និង α =5%

$$\chi^2_{0.95;6} = 12.59$$

Acceptance Region Region
$$\chi^{2}_{0.956} = 12.59$$

ដោយតំលៃ $\chi^2=56.531>\chi^2_{0.95,6}=12.59$ នោះបានសេចក្តីថាជំរើសបេក្ខភាពគណបក្សនយោបាយ អាស្រ័យនឹងអាយុនៃអ្នកចូលរួមនៅក្នុងការបោះឆ្នោត។ ដូចគ្នានេះដែរ យើងអាចប្រើតំលៃ Asymp.sig(2-sided) សំរាប់ការសំរេចចិត្តក្នុងការផ្ទៀងផ្ទាត់ សម្មតិកម្ម។ ដោយ Asymp.sig(2-sided)=0.000 < α =0.05 នោះគេបដិសេធសម្មតិកម្មស្ងន្យ ។

Crosstabs ខាងក្រោម:

Party * age categories Crosstabulation

% within age categories

			Total			
		It 35	35 - 44	45 - 64	65 +	
	Party A	34.9%	35.1%	35.5%	38.2%	35.8%
Party	Party B	22.6%	18.2%	13.3%	4.6%	15.1%
	Party C	42.5%	46.6%	51.2%	57.2%	49.2%
Total		100.0%	100.0%	100.0%	100.0%	100.0%

ក្នុងតារាងនេះបានបង្ហាញអោយឃើញថា ការគាំទ្រទៅលើបេក្ខភាព Party C មានការកើន ឡើង កាលណាវ័យនៃអ្នកចូលរួមក្នុងការបោះឆ្នោតកាន់តែមានវ័យចំណាស់។ ចំណែកឯ បេក្ខភាព Party B កំរិតភាគរយនៃការគាំទ្រកាន់តែថយចុះកាលណាវ័យ របស់អ្នកបោះឆ្នោត កាន់តែមានវ័យចំណាស់។ ចំពោះ Party A ភាគរយនៃការគាំទ្រមិនអាស្រ័យទៅនឹងវ័យនៃអ្នក បោះឆ្នោតទេ។

ខ្មីតួគ៦: Correlation and simple linear regression

1). Correlation:

Correlation គឺជាការសិក្សាកំណត់នូវក៏វិតទំនាក់ទំនង (ក៏វិតសហព័ន្ធ)និងទិសដៅបំរែបំរូល ដែល កើតឡើងរវាងអថេរពីរដែល ជា quantitative(Scale) data ។

ឧទាហរណ៍ៈ

- គេនិយាយថាមាន Correlation ដែលកើតឡើងរវាង "Income Sales" & Advertising expenditure ។
- •មាន Correlation ដែលកើតឡើងរវាងចំនូនអវត្តមានរបស់និស្សិតទៅលទ្ធផលរបស់ គាត់ ក្នុងការសិក្សាទៅលើមុខវិជ្ជានិមួយៗ ។

គេអាចសិក្សាអំពី Correlation តាមរយៈ Graphic ដែលមានឈ្មោះថា Scatter diagram សន្ទិតថាគេមានគូទិន្នន័យ X & Y ដែលជាប្រភេទ Quantitative :

Obs.	X	Y
1	X1 X2	Y1
2	X2	Y2
3	X3	Y3
•		•
		•
•		•
n	Xn	Yn

(a) **Positives Correlation** មានន័យថា X & Y ប្រែប្រួល តាមទិសដៅ ស្របគ្នា ដែល តម្រឹម ទៅតាម ទិសនៃបន្ទាត់វិជ្ជមាន ៖

$$\vec{v} X$$
 កើន $==> Y$ កើន $\vec{v} X$ ចុន $==> Y$ ចុន

(b) **Negatives Correlation** មានន័យថា X & Y ប្រែប្រួលតាមទិសដៅ ផ្ទុយគ្នាហើយតិ៍រឹមស្របតាម ទិសនៃបន្ទាត់អវិជ្ជមាន៖

$$\vec{v}$$
 \vec{v} \vec{v}

(c) No Correlation រវាង X & Y មានន័យថា (X,Y) នៅរាយបា យពេញប្លង់ដោយមិនបានបង្ហាញ អំពីទិសដៅនៃការប្រែប្រួលណាមួយនោះទេ, Correlation=0 ។

(d) មានការកើតឡើងនូវ Perfect Positive Correlation មានន័យថាទិន្នន័យទាំងអស់តិ៍រឹមនៅលើបន្ទាត់ ដែលមានទិសវិជ្ជមាន ។

$$100\%$$
 នៃ X កើន ==> 100% នៃ Y កើន
$$100\%$$
 នៃ X ចុះ ==> 100% នៃ Y ចុះ

Correlation=+1

(e) មានការកើតឡើងនូវ Perfect Negatives Correlation មានន័យថាទិន្នន័យទាំងអស់តិ៍រឹមនៅលើ បន្ទាត់ដែលមានទិស អវិជ្ជមាន ។

$$100\%$$
 នៃ X កើន $==>100\%$ នៃ Y ចុះ 100% នៃ X ចុះ $==>100\%$ នៃ Y កើន

Correlation = -1

ដូច្នេះ តំលៃ Correlation រវាង X & Y ដែលតាងដោយ R_{XY} ឬ Corr(X,Y) កំណត់:

$$-1 \le R_{xy} \le +1$$

នៅក្នុង SPSS ឬ S-plus តំលៃ Correlation ត្រូវបានគណនាតាមរូបមន្ត:

$$R_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} * \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

ដែល:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 Mean of X

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 Mean of Y

ឧទាហរណ៍ំះ

ខាងក្រោមនេះជាទិន្នន័យដែលស្រង់ក្នុងរយៈពេល ១០ឆ្នាំ បន្តបន្ទាប់គ្នាដែលបង្ហាញអំពីការប្រែប្រួលនៃ Annual profit & Spent on Research and development ទៅតាមឆ្នាំនីមួយៗរបស់ក្រុមហ៊ុនដ៏ធំ មួយ។

Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Annual Profit	5	4	7	8	10	9	4	11	12	13
(Millions dollars)										
Spent on R & D	15	12	20	19	22	21	13	25	30	32
(Millions dollars)										

ក-សង់ Sactter diagram & គណនាត់លៃ Correlation ព្រមទាំងធ្វើការបកស្រាយ។

ខ-បង្កើត Model regression(Model of prediction) ទៅលើ Annual Profit ។

ចំលើយ

ក- សង់ Scatter diagram

Graphs → Scatter → Simple → Define

ចុចពីរដងទៅ diagram

ចុចទៅលើ Point id tool ហើយចុចទៅលើចំនុចនីមួយៗ :

ចុចពីរដងទៅលើ diagram

ជ្រើសរើសយក Chart→ Option

ជ្រើសរើសយក 🗹 Total

ការបកស្រាយៈ

កំនត់រកត់លៃ Correlattion:

តាមរយៈនៃ Scatter diagram យើងសង្កេតឃើញថា "Annual profit" & "Spent on R & D" ប្រែប្រួលតាមទិសដៅស្របគ្នា មានន័យថាកាលណា "Spent on R & D" មានក៏រិតកាន់តែខ្ពស់នោះ Annual profit ក៏កាន់តែកើនដែរ ។ ដូច្នេះយើងអាចនិយាយថា Annual profit ដែលក្រុមហ៊ុនទទួលបាន អាស្រ័យទៅនឹង "Spent on R & D" ។

Analyze → Correlate → Bivariate

Correlations

_								
С		rr	\sim	2	ŧ i	^	n	c
·	u		⊂ :	а	u	u	•	3

		Annual profit in	Spent on R & D
		million dollars	in million dollars
Annual profit in million	Pearson Correlation	1	.975 ^{**}
	Sig. (2-tailed)	i	.000
uoliais	N	10	10
	Pearson Correlation	.975**	1
Spent on R & D in million dollars	Sig. (2-tailed)	.000	
uoliais	N	10	10

^{**.} Correlation is significant at the 0.01 level (2-tailed).

តំលៃ Correlation:

$$R_{xy} = 0.975 = 97.50\%$$

ដោយតំលៃ Correlation មានក៏រិតរហូតដល់ 97.5% មានន័យថា Annual profit"មានទំនាក់ ទំនងយ៉ាងខ្លាំងទៅនឹង "Spent on R & D"។ គេអាចនិយាយថាបើគេបន្ថយការចំណាយទៅលើ R & D នោះ Annual profit ក៏មានការថយចុះដែរ ផ្ទុយទៅវិញបើគេបង្កើន R & D នោះគេនឹង សង្ឃឹមថា Annual profit ក៏កាន់តែកើនឡើងដែរ។

Test of Signification:

$$H_0: R_{xy} = 0$$

VS

$$H_1: R_{xy} \neq 0$$

Sig (s - tailed) =
$$0.000 < \alpha = 0.01 \Rightarrow \text{Reject H}_0$$

មានន័យថា Correlation is significant at the 0.01 Level ។

កំនត់រក Regression model (Model of prediction)

Model:

Annual profit =
$$b_0 + b_1 * (Spend on R&D)$$

Analysis:

Analyze → Regression → Linear

Coefficients(a)

Model		Unstanda Coeffic		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant) SPENT	-1.626 .475	.838 .038	.975	-1.939 12.376	.088

a Dependent Variable: PROFIT

$$b_0 = -1.626$$

$$b_1 = 0.475$$

Annual profit = -1.626 + 0.475 * (Spent on R & D) (Millions dollars)

តាមរយៈនៃ Model ខាងលើយើងអាចនិយាយបានថាក្នុងការប្រែប្រូលមួយឯកតានៃការចំណាយ ទៅលើ ការស្រាវជ្រាវ និងការអភិវឌ្ឍ (Spent on R&D) របស់ក្រុមហ៊ុន នោះប្រាក់ចំណេញប្រចាំឆ្នាំ (Annual profit) នឹងមានការកើនឡើង 0.475 millions ។

ខំពុក៦: លំខារគំអនុទត្តន៍

ອຶຕຸກຸາສາຂຶ້ວ:

គេបានធ្វើការអង្កេតទៅទៅលើក៏រិតជីវភាពរស់នៅប្រចាំឆ្នាំរបស់គ្រួសារមួយចំនួនដែលរស់នៅក្នុងតំបន់ ៣ កន្លែងខុសៗគ្នា ហើយតាមរយៈនៃការវិភាគ គេទទួលបាននូវក្រាហ្វិច Boxplot ដូចរូបភាពខាងក្រោម ចូរធ្វើការពន្យល់និងបកស្រាយអោយបានក្បោះក្បាយ។

ខ្ពុញ្ញាសាន្ទី២

គេបានធ្វើការអង្កេតទៅលើបុគ្គលមួយចំនួនដែលមានសិទ្ធិបោះឆ្នោតនៅក្នុងតំបន់មួយកន្លែងដើម្បីធ្វើការវាយ តំលៃទៅលើភាគរយនៃអ្នកគាំទ្រគណៈបក្ស A,B,C ទៅតាមថ្នាក់នៃអាយុនៃបុគ្គលទាំងនោះ ។ លទ្ធផលនៃការវិភាគនេះមានដូចក្នុងតារាងខាងក្រោមៈ

PARTY * age categories Crosstabulation % within PARTY age categories Less than35 35 - 44 45 - 64 More than 64 Total PARTY Party A 23.1% 23.6% 33.1% 20.1% 100.0% Party B 35.6% 29.5% 100.0% 29.1% 5.8% Party C 20.5% 22.8% 34.8% 21.9% 100.0% Total 23.7% 24.0% 33.4% 18.8% 100.0%

ចូរធ្វើការពន្យល់ទៅលើលទ្ធផលវិភាគក្នុងតារាងខាងលើ ។

ອຶຕຸກຸລາຍາຂຶ້ດເ

គេបានធ្វើការអង្កេតទៅលើគ្រួសារមួយចំនួនដែលរស់នៅតំបន់ដាច់ស្រយ៉ាលមួយកន្លែងដោយធ្វើការស្រង់ ពត៌មានទៅលើបរិមាណស្រូវដែលគាត់ប្រមូលផលបានក្នុងរយៈពេលពេញមួយឆ្នាំ ។ ដោយសង្កេតឃើញថា ប្រជាជនមានកង្វះខាតស្បៀងដោយសារភាពរាំងស្ងួត រាជរដ្ឋាភិបាលបានធ្វើការអភិវឌ្ឍវិស័យធារាសាស្ត្រ នៅតំបន់នេះ ។ រយៈពេលមួយឆ្នាំក្រោយមកគេបានធ្វើការអង្កេតទៅលើគ្រួសារមួយចំនួននេះម្ដងទៀតហើយ លទ្ធផលនៃការវិភាគទិន្នន័យមានដូចខាងក្រោម:

			Pair 1
		·	After(Tonne) - Before(Tonne)
Paired Differences	Mean		1.5333
	Std. Deviation		
			.78571
	Std. Error Mean		
			.17146
	95% Confidence Interval	Lower	1.1757
	of the Difference	Upper	1.8910
t			8.943
df			20
Sig. (2-tailed)			
,			.000

តើក្រោមការជួយដោះស្រាយរបស់រាជរដ្ឋាភិបាលគ្រួសារដែលរស់នៅតំបន់នេះទទួលបាននូវទិន្នផលស្រូវ ប្រសើរជាងមុនដែរឬទេ ដោយធ្វើការសន្និដ្ឋានក្នុងក៏រិតកំហុស (significance level) 5% ? ចូរធ្វើការបកស្រាយអោយ បានក្បោះក្បាយ។

<u>ទឹញ្ញាសានី៤</u>

គេបានធ្វើការសិក្សាទៅលើប្រជាជនមួយចំនួនដែលមានសិទ្ធិចូលរួមការបោះឆ្នោតនាពេលខាងមុខដើម្បីចង់ ដឹងថាការជ្រើសរើសយកគណបក្សនយោបាយណាមួយអាស្រ័យទៅនឹងថ្នាក់ នៃអាយុអ្នកចូលរួមក្នុងការ បោះឆ្នោតដែរឬទេ? លទ្ធផលនៃការវិភាគទៅលើទិន្នន័យដែលទទួលបានពីការអង្កេតមានដូចខាងក្រោមៈ

age categories '	* Election	Crosstabulation
------------------	------------	-----------------

% within age cate	egories
-------------------	---------

	Ĭ		Election		
		PARTY A	PARTY B	PARTY C	Total
age	lt 35	34.9%	22.6%	42.5%	100.0%
categories	35 - 44	35.1%	18.2%	46.6%	100.0%
	45 - 64	35.5%	13.3%	51.2%	100.0%
	65 +	38.2%	4.6%	57.2%	100.0%
Total		35.8%	15.1%	49.2%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	56.531 ^a	6	.000
Likelihood Ratio	63.654	6	.000
Linear-by-Linear Association	3.689	1	.055
N of Valid Cases	1847		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 52.38.

ចូរធ្វើការបកស្រាយពន្យល់អោយបានក្បោះក្បាយ ។ (significance level=0.05)

อ็ตูฏาษาลี๕

យើងសង្កេតឃើញថានៅខេត្តស្យេមរាបជីវភាពប្រជាជនមួយភាគធំអាស្រ័យទៅនឹងវិស័យទេសចរណ៍។ ដោយនៅចុងឆ្នាំ២០០៥នេះគេសង្កេតឃើញថាបរិមាណនៃភ្សេវទេសចរណ៍មានការកើនឡើង ដូច្នេះគេបាន ធ្វើការសិក្សាចង់ដឹងអំពីកំណើនជីវភាពប្រជាជននៅក្នុងតំបន់នោះ ធ្យេបនឹងឆ្នាំ ២០០៤ ដោយធ្វើការ ប្រេបធ្វេបប្រាក់ចំណូលរបស់គ្រួសារនីមួយៗដែលបានអង្កេត ដោយចៃដន្យនៅក្នុងឆ្នាំ ២០០៤ និង ឆ្នាំ ២០០៥ ។ លទ្ធផលវិភាគមានដូចខាងក្រោម:

Group Statistics					
	College	N	Mean	Std. Deviation	Std. Error Mean
Revenue/year	Year 2005	281	\$30,876.87	\$5,189.219	\$309.563
	Year 2004	415	\$23,780.00	\$7,678.715	\$376.933

	Independent Samp	nes rest	
			Revenue/year
			Equal variances assumed
t-test for Equality	t		13.539
of Means	df		694
	Sig. (2-tailed)		.000
	Mean Difference		\$7,096.87
	Std. Error Difference		\$524.186
	95% Confidence Interval	Lower	\$6,067.687
	of the Difference	Upper	\$8,126.050

ចូរធ្វើការពន្យល់និងបកស្រាយអោយបានក្បោះក្បាយ ។ (significance level=5%)

ಭಜಳುಚಾಣ

- 1- **Mendenhall, William** (1988), Statistics for the engineering and computer science.
- 2- Richard I. Levin & David S. Rubin (1998), Statistics for Management.
- 3- Andy Field(2000), Discovering Statistics using SPSS for window.