- 1. Ein dünnwandiger Stahlring (Elastizitätsmodul $E = 2,06 \cdot 10^5$ MPa, Zerreißfestigkeit $\sigma_B = 675$ MPa, linearer Ausdehnungskoeffizient $\alpha = 12 \cdot 10^{-6}$ K⁻¹) soll auf eine Welle von 40 mm Durchmesser aufgeschrumpft werden. Dabei soll die im Ring auftretende Zugspannung den Wert von $0,3\sigma_B$ nicht überschreiten.
 - a) Wie groß muss der Innendurchmesser d_0 des kalten Ringes vor dem Aufschrumpfen mindestens sein? (*Lösung*: 3,996 cm)
 - b) Wie groß muss die Mindesttemperaturdifferenz zwischen Ring und Welle sein, damit sich ein Ring mit dem in Punkt (a) berechneten Mindestdurchmesser aufschrumpfen läßt? (*Lösung*: 82 K)
- **2.** Ein Bimetallstreifen (Länge l_0) besteht aus je zwei 0.5 mm starken Metallblechen mit den Ausdehnungskoeffizienten $\alpha_1 = 8 \cdot 10^{-6} \text{ K}^{-1}$ und $\alpha_2 = 16 \cdot 10^{-6} \text{ K}^{-1}$ bei $0 \text{ }^{\circ}\text{C}$.

- → Wie groß muß lo sein, damit bei 100 °C seine seitliche Auslenkung am freien Ende 1 mm beträgt? (Lösung: 5 cm)
- 3. Ein leeres Glasgefäß ($\alpha = 1 \cdot 10^{-5} \text{ K}^{-1}$) hat die Masse $m_0 = 0,1 \text{ kg}$. Mit Hg gefüllt, hat es bei einer Temperatur von 0 °C die Masse $m_1 = 1,431 \text{ kg}$. Wenn wir das Gefäß auf eine Temperatur von 40 °C erwärmen, fließt ein Teil des darin enthaltenen Quecksilbers aus, sodaß das Gefäß mit dem darin verbleibenden Quecksilber nur noch 1,423 kg wiegt. Man berechne daraus den tatsächlichen Volumsausdehnungskoeffizienten von Quecksilber. (<u>Lösung</u>: 1,8 · 10⁻⁴ K⁻¹)

Bitte Seite wenden!

4. Zur Messung der Wärmeleitfähigkeit λ₁ einer Keramikplatte wird folgende Anordnung benutzt: Zwischen zwei Kupferbehältern, von denen der eine mit siedendem Wasser (θ_s) der andere mit einem Eis/Wasser-Gemisch (θ₀) gefüllt ist, befindet sich ein seitlich durch Glaswolle von der Umgebung isolierter Wärmeleiter, der aus drei Schichten gleicher Querschnittsfläche *A* aufgebaut ist. Diese Schichten sind die zu untersuchende Keramikplatte (d₁ = 20 mm), ein Kupferblech (λ₂ = 384 WK⁻¹ m⁻¹) auf der Temperatur θ₂ = 24,3 °C, sowie eine Porzellanplatte (d₃ = 12 mm) mit λ₃ = 1,44 WK⁻¹m⁻¹. Die Wärmeübergangszahl zwischen Kupfer und jedem anderen Material ist κ = 5,5 kWK⁻¹m⁻².

<u>Hinweis</u>: Die Temperaturdifferenzen an den Übergängen zwischen Wasser und Kupfer können vernachlässigt werden.

- a) Man bestimme λ_1 unter Vernachlässigung der Temperaturdifferenz im Kupferblech. (*Lösung*: 0,75 WK⁻¹m⁻¹)
- b) Das Kupferblech zwischen Keramik- und Porzellanplatte hat die Dicke $d_2 = 2,0$ mm. Welche Temperaturdifferenz $\Delta \theta$ entsteht im Kupferblech, wenn θ_2 an der dem Porzellan zugewandten Seite gemessen wird. (*Lösung*: 0,015 K)
- 5. Die Luft in einem Raum hat die Temperatur $\vartheta_i = 20$ °C und weist eine *relative Feuchtigkeit* von $\phi_{rel} = 0.8$ auf, was einem *Taupunkt* von 16.5 °C entspricht. Die Wärmeübergangszahl für die *Innenseite* der Wand beträgt $\kappa = 8.14$,WK⁻¹m⁻², die *Außentemperatur* ist $\vartheta_a = -15$ °C. Die *Außenwand* hat eine Dicke von 38 cm ($k_W = 1.56$ WK⁻¹m⁻²). Die Wärmeübergangszahl für die Außenseite ist vernachlässigbar. Um eine **Schwitzwasserbildung** zu vermeiden, soll die Wand durch eine *Heraklithplatte* ($\lambda_H = 0.072$ WK⁻¹m⁻¹) verstärkt werden.
 - → Man berechne die Dicke der Heraklithplatte! (Lösung: 3,35 cm)
- 6. Mit einer nach dem Carnot-Prozeß laufenden Wärmepumpe soll eine Stadtheizungsanlage auf der Temperatur 9 = 80 °C gehalten werden. Zur Verfügung stehen die elektrische Antriebsleistung P = 30 MW und ein Fluß, durch dessen Profil Wasser der Stromstärke I = 400 m³s¹ und der Temperatur 9 = 5 °C fließt.
 - a) Welche Wärmemenge Q_1 wird je Sekunde an die Stadtheizung abgegeben? (<u>Lösung</u>: 141 MJ)
 - **b)** Um wieviel wird der Fluss abgekühlt? (Lösung: 0,066 K)