1 Aufgabe D1 - ER-Modellierung

1.1 Teilaufgabe a)

	Richtig	Falsch
Es kann Gutachter geben, die keiner Konferenz zugewiesen sind		abla
Es ist sichergestellt, dass eine Publikation von mehreren Gutachtern bewertet wird.	abla	
Jede Konferenz besitzt zugewiesene Gutachter		abla
Jeder Autor steht über seine Publikationen mit mindestens drei Gutachtern in Verbindung	g. 🗸	
Es kann auch Konferenzen geben, auf denen nichts veröffentlicht wird.	abla	
Es gilt immer: $N(Publikationen) \ge N(Autor)$		abla
Es gilt immer: $N(Konferenz) \ge N(Publikation)$		abla
Es gilt immer: $N(Gutachter) \ge N(Publikation)$	Ø	

1.2 Teilaufgabe b)

ER-Modelierung ist kapazitätserhöhend? (Beispiel? TODO)

2 Aufgabe D2 - Normalformen

2.1 Teilaufgabe a)

A ist Schlüsselkandidat.

2.2 Teilaufgabe b)

$$R = \{\,\underline{A}, B, C, D\,\}$$
hat

- $\bullet\,$ 1NF, da jedes Attribut atomar ist
- $\bullet\,$ 2NF, da es bein einem einzelnen Attribut als Schlüssel niemals ein Nicht-Schlüssel von einer Teilmenge abhängig sein kann
- $\bullet\,$ nicht 3NF, da $A\to B\to C.$ Der Nicht-Schlüssel Cist also vom Schlüssel Atransitiv abhängig.

2.3 Teilaufgabe c)

Zerlegung	3NF	verbundtreu	abhängigkeitstreu	Bemerkung
$S_1 = \{ \underline{ABC}, \underline{CD} \}$	Х	Х	Х	nur 2NF, da $A \to B \to C$
				Im Schnitt ist nur C , aber $C \nrightarrow$
				$ABC \text{ und } C \nrightarrow CD$
				$C \to D$ ist nicht in F
$S_2 = \{ \underline{AB}, \underline{BC}, \underline{CD} \}$	✓	X	X	$C \to D$ ist nicht in F
				Gegenbeispiel für verbundtreue ge-
				funden
$S_3 = \{ \underline{AB}, \underline{BCD} \}$	✓	✓	✓	
$S_4 = \{ \underline{AB}, \underline{CD} \}$	✓	X	×	$C \to D$ nicht in F
				nicht verbundtreu, da beide Relati-
				on nur per Natural Join verbunden
				werden können

3 Aufgabe D3 - SQL

3.1 Teilaufgabe a)

3.2 Teilaufgabe b)

```
1 CREATE TABLE Kunden2Berater (
2 kunden_id INTEGER,
3 berater_id INTEGER,
4 PRIMARY KEY (kunden_id, berater_id),
5 FOREIGN KEY (berater_id) REFERENCES Berater (berater_id),
6 FOREIGN KEY (kunden_id) REFERENCES Kunden (kunden_id)
7 );
8
9 ALTER TABLE Kunden
DROP COLUMN berater_id;
```

Problem: Nun kann es auch Kunden geben, die gar nicht beraten werden!

3.3 Teilaufgabe c)

```
SELECT name FROM Berater
JOIN Kunden, Kunden2Berater, Berater
WHERE Kunden.name = "Müller"
```

3.4 Teilaufgabe d)

```
1 CREATE VIEW Beratungsanzahl AS (
2 SELECT berater_id, count(DISTINCT Berater.berater_id) AS Anzahl
3 FROM Berater
4 FULL OUTER JOIN Kunden ON Berater.berater_id = Kunden.berater_id
5 GROUP BY berater_id
6 )
```

3.5 Teilaufgabe e)

```
1 SELECT berater_id, name, anzahl
2 FROM Beratungsanzahl
3 JOIN Berater ON Berater.berater_id = Beratungsanzahl.berater_id
4 WHERE anzahl = MAX(anzahl)
5 ORDER BY anzahl DESC
```

4 D4 - Transaktionen und Histories

4.1 Teilaufgabe a)

TODO: Keine Ahnung wie man das lesen muss. Kann mir jemand das auf Papier machen und ein Foto schicken?

4.2 Teilaufgabe b) und c)

	RC	ACA	ST
T_4 reads d from T_3	1	1	1
T_4 reads c from T_2	1	✓	✓
T_1 reads a from T_2	1	✓	1

4.3 Teilaufgabe d)

Eine History H ist $ST \Leftrightarrow w_j(x) < o_i(x) : i \neq j \Rightarrow a_j < o_i(x) \lor c_j < o_i(x)$, wobei $o_i(x) \in \{r_i(x), w_i(x)\}$

4.4 Teilaufgabe e)

Es muss nichts geändert werden?!?