Università di Pisa - Corso di Laurea in Ingegneria Chimica Parte B - presenza - Pisa, 22 luglio 2021

(Cognome) (Nome) (Numero di matricola)

Esercizio 1. Sia $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z+1)^2 \le 9, z \ge 0\}.$

(a). Si calcoli il volume di S.

Risp. Integrando per strati abbiamo che $\operatorname{Vol}(S) = \int_0^2 \left(\iint_{B(z)} 1 dx dy \right) dz$, dove $B(z) = \{x^2 + y^2 \le 9 - (z+1)^2\}$. Quindi, ricordando la formula dell'area del cerchio otteniamo

$$Vol(S) = \int_0^2 \pi (9 - (z+1)^2) dz = \pi \left[9z - \frac{(z+1)^3}{3} \right]_0^2 = \frac{28}{3} \pi.$$

(b). Si calcoli la circuitazione di $V=(y^2,x,\sin(z))$ lungo la curva $\gamma=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=8,\ z=0\}$, percorsa in senso antiorario. (È possibile calcolare l'integrale direttamente o applicando uno dei teoremi sui campi vettoriali).

Risp. Applichiamo il teorema del rotore su

$$D = \{x^2 + y^2 \le 8, \ z = 0\},\$$

che ha come bordo γ . Parametrizziamo D in modo banale come $\Phi(u,v)=(u,v,0)$ e $(u,v)\in\{(u,v)\in\mathbb{R}^2:u^2+v^2\leq 8\}$. Otteniamo come versore normale (orientato coerentemente con il bordo di S) n=(0,0,1). Quindi

$$\begin{split} \oint_{\gamma} V \cdot ds &= \iint_{D} \operatorname{rot} V \cdot n d\sigma = \iint_{u^{2}+v^{2} \leq 8} (\operatorname{rot} V)_{3} du dv = \\ &= \iint_{u^{2}+v^{2} \leq 8} (1-2v) du dv = \iint_{u^{2}+v^{2} \leq 8} 1 du dv = 8\pi. \end{split}$$

Esercizio 2. Si consideri l'equazione differenziale $y' = -e^x y^3$.

(a). Si determinino le eventuali soluzioni costanti e si studino le zone di crescita e decrescita delle soluzioni.

Risp. L'unica soluzione costante è y=0. Dallo studio del segno del secondo membro si ha che la soluzione è decrescente se il dato iniziale y_0 è positivo e crescente se y_0 è negativo

(b). Si calcoli l'integrale generale della soluzione con dato iniziale $y(x_0) = y_0$.

Risp. L'equazione è a variabili separabili. Integrando abbiamo

$$\int_{y_0}^{y(x)} y^{-3} dy = \int_{x_0}^{x} -e^s ds \text{ ovvero } -\frac{1}{2y^2} + \frac{1}{2y_0^2} = -e^x + e^{x_0}$$

Quindi se $y_0 > 0$ prendiamo la radice positiva e abbiamo $y(x) = \sqrt{\frac{1}{2\left(e^x - e^{x_0} + \frac{1}{2y_0^2}\right)}}$. Con $y_0 < 0$ bisogna prendere la radice negativa.

(c). Si dica per quali dati iniziali (x_0, y_0) con $y_0 > 0$ si può essere sicuri che la soluzione abbia intervallo massimale $(-\infty, +\infty)$

Risp. PPossiamo essere sicuri che per ogni dato iniziale (x_0, y_0) l'intervallo massimale arrivi fino a $+\infty$ perché la soluzione è limitata dal basso e decrescente. Per fare in modo che l'intervallo massimale sia $(-\infty, +\infty)$, prendiamo l'espressione trovata al punto precedente e verifichiamo che sia sempre definita. Basta che $e^x - e^{x_0} + \frac{1}{2y_0^2} > 0$ per ogni x, ovvero che

$$\frac{1}{2y_0^2} - e^{x_0} \ge 0$$
 o, più esplicitamente, che $y_0 \le \sqrt{\frac{1}{2e^{x_0}}}$.

Università di Pisa - Corso di Laurea in Ingegneria Chimica Parte B - distanza - Pisa, 22 luglio 2011

(Cognome) (Nome) (Numero di matricola)

Esercizio 1. Sia $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z+1)^2 \le 9, z \ge 0\}.$

(a). Si calcoli il volume di S.

Risp. Integrando per strati abbiamo che $\operatorname{Vol}(S) = \int_0^2 \left(\iint_{B(z)} 1 dx dy \right) dz$, dove $B(z) = \{x^2 + y^2 \leq 9 - (z+1)^2\}$. Quindi, ricordando la formula dell'area del cerchio otteniamo

$$Vol(S) = \int_0^2 \pi (9 - (z+1)^2) dz = \pi \left[9z - \frac{(z+1)^3}{3} \right]_0^2 = \frac{28}{3} \pi.$$

(b). Si calcoli la circuitazione di $V=(y^2,x,z^3)$ lungo la curva $\gamma=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=8,\ z=0\}$, percorsa in senso antiorario. (È possibile calcolare l'integrale direttamente o applicando uno dei teoremi sui campi vettoriali).

Risp. Calcoliamo direttamente. Parametrizziamo $\gamma(t) = (2\sqrt{2}\cos t, 2\sqrt{2}\sin t, 0)$ con $t \in (0, 2\pi)$. Ovviamente $\gamma' = (-2\sqrt{2}\sin t, 2\sqrt{2}\cos t, 0)$. Abbiamo

$$\oint_{\gamma} V \cdot ds = \int_{0}^{2\pi} 8\sin^{2}t(-2\sqrt{2}\sin t) + 2\sqrt{2}\cos t(2\sqrt{2}\cos t)dt =
= \int_{0}^{2\pi} [8 - 8\cos^{2}t](-2\sqrt{2}\sin t) + 8\cos^{2}tdt = 0 + 8\pi = 8\pi.$$

Esercizio 2. Si consideri l'equazione differenziale $y' = -e^x y^5$.

(a). Si determinino le eventuali soluzioni costanti e si studino le zone di crescita e decrescita delle soluzioni.

Risp. L'unica soluzione costante è y=0. Dallo studio del segno del secondo membro si ha che la soluzione è decrescente se il dato iniziale y_0 è positivo e crescente se y_0 è negativo

(b). Si calcoli l'integrale generale della soluzione con dato iniziale $y(x_0) = y_0$.

Risp. L'equazione è a variabili separabili. Integrando abbiamo

$$\int_{y_0}^{y(x)} y^{-5} dy = \int_{x_0}^{x} -e^s ds \text{ ovvero } -\frac{1}{4y^4} + \frac{1}{4y_0^4} = -e^x + e^{x_0}$$

Quindi se $y_0 > 0$ prendiamo la radice positiva e abbiamo $y(x) = \sqrt[4]{\frac{1}{4\left(e^x - e^{x_0} + \frac{1}{4y_0^4}\right)}}$. Con $y_0 < 0$ bisogna prendere la radice negativa.

(c). Si dica per quali dati iniziali (x_0, y_0) con $y_0 > 0$ si può essere sicuri che la soluzione abbia intervallo massimale $(-\infty, +\infty)$

Risp. Possiamo essere sicuri che per ogni dato iniziale (x_0, y_0) , l'intervallo massimale arrivi fino a $+\infty$ perché la soluzione è limitata dal basso e decrescente. Per fare in modo che l'intervallo massimale sia $(-\infty, +\infty)$, prendiamo l'espressione trovata al punto precedente e verifichiamo che sia sempre definita. Basta che $e^x - e^{x_0} + \frac{1}{4y_0^4} > 0$ per ogni x, ovvero che

$$\frac{1}{4y_0^4} - e^{x_0} \ge 0$$
 o, più esplicitamente, che $y_0 \le \sqrt[4]{\frac{1}{4e^{x_0}}}$.