东南大学电工电子实验中心 实验报告

课程名称:	模拟电子电路实验
◇ ◇ -	

第八次实验

实验	金 名	称:	波形	产生电	路设计	实验	
院	(}	系):	电气工程学	<u>院</u> 专	业: 」	电气工程及	其自动化
姓		名:		学	号:_	16022	627
实	验	室:	401	实验	组别:		
同纟	且人	.员:		实验	时间:	2024年 5	5月21日
评点	计成	结 :		宙阅	教师:		

一、实验目的

- (1) 了解运放在非正弦波产生电路方面的各种应用;
- (2) 掌握矩形波产生电路的基本结构和工作原理;
- (3) 掌握波形产生电路的输出幅度、周期等测量方式;
- (4) 掌握非正弦波产生电路的设计调试方法。

二、实验原理

1. 基本概念

在工程应用中,经常用到各种不同类型的信号波形,从波形特征可以分为两大类,即正弦波和非正弦波,其中非正弦波常用的有方波、矩形波、三角波、锯齿波等,如图 2-7-1 所示。

图 2-7-1 几种常用的非正弦波

方波:如图 2-7-1 (a)所示,指波形具有高电平和低电平两个值,一般所说的方波是指波形的高、低电平为正负幅值相同的波形,否则需要说明其高、低电平的取值,或者说明有多大的直流偏移量。方波的高电平与低电平之差为信号的峰峰值,高电平时间与低电平时间之和为信号的周期。定义高电平时间与信号周期之比为"占空比",方波的占空比为 50%。

矩形波:如图 2-7-1(b)所示,矩形波与方波相比基本类似,区别是矩形波的占空比不等于 50%,即方波是矩形波的特例。

三角波:如图 2-7-1 (c)所示,信号幅度随着时间周期线性上升与线性下降,上升与下降的斜率绝对值相同,信号的最高点到最低点之间的差值为三角波的峰峰值,一般所说的三角波信号的最高点电压和最低点电压值是正负对称的,否则需要说明最高点和最低点的电压值,或者说明有多大的直流偏移量。

锯齿波:如图 2-7-1(d)所示,锯齿波与三角波基本类似,区别是锯齿波的线性上升与线性下降的斜率绝对值不同,所以三角波是锯齿波的一个特例。

2. 方波产生电路

图 2-7-2(a)所示为运放构成的方波产生电路,其工作原理为: 当接通电源时,电容电压为零,运放工作在非线性区,其输出端电压为 $+U_Z$ 或 $-U_Z$ 。 假设 $\mathbf{u_o}=+U_Z$,则运放同相输入端电压 $\mathbf{u_+}$ 的数值为 U_{TH} ,

$$u_{+} = +U_{Z} \frac{R_{1}}{R_{1} + R_{2}} = U_{TH}$$

由于 $\mathbf{u_o}$ 为正电+ U_Z ,将通过电阻 R 对电容 C 进行充电,使 C 两端电压按指数规律上升。如果将运放当作理想器件,忽略其反向输入端电流,则其充电时间常数 $\tau_1=RC$ 。

随着电容按指数规律充电,其电压逐渐升高,当电容电压 \mathbf{u}_{C} 升高到同相端参考电压 U_{TH} 时,比较器输出将发生翻转,输出 \mathbf{u}_{o} 产生负跳变,使 $\mathbf{u}_{\mathrm{o}} = -U_{Z}$ 。而输出的跳变也导致 同相输入端电压产生负跳变,即

$$u_{+} = -U_{Z} \frac{R_{1}}{R_{1} + R_{2}} = U_{TL}$$

在 $\mathbf{u}_{\mathbf{o}}$ 跳变瞬间,由于电容 C 两端电压不能突变, $\mathbf{u}_{\mathbf{c}}$ 将保持原有数值,且大于 U_{TL} ,使输出端能稳定在 $-U_{Z}$ 上。此时,电容 C 通过 R 放电并在 $-U_{Z}$ 的作用下反向充电, $\mathbf{u}_{\mathbf{c}}$ 按指数规律下降,时间常数 $\tau_{2}=\tau_{1}=RC$ 。 $\mathbf{u}_{\mathbf{c}}$ 下降到同相端参考电压 U_{TL} 时,比较器又一次发生翻转,回到 $\mathbf{u}_{\mathbf{o}}=+U_{Z}$ 状态,电容又在 $+U_{Z}$ 的作用下开始充电,完成一个周期的充放电过程,并在此后周而复始地重复这一过程,产生了稳定的矩形波输出。电路输出电压 $\mathbf{u}_{\mathbf{o}}$ 与电容两端电压 $\mathbf{u}_{\mathbf{c}}$ 的波形如图 2-7-2(b)所示,由于电容充放电时间常数相同,故输出波形高电平与低电平时间相等,是一个方波。

利用电路的一阶 RC 充放电规律可以得到:

方波的周期为:

$$T = 2RCln(1 + 2\frac{R_1}{R_2})$$

波形的频率为

$$f = \frac{1}{T} = \frac{1}{2RCln\left(1 + 2\frac{R_1}{R_2}\right)}$$

3. 占空比可调的矩形波产生电路

图 2-7-3 所示为占空比可调的矩形波产生电路原理图,其工作原理如下:

(1) 当 $\mathbf{u}_{\mathbf{o}} = +U_{\mathbf{z}}$ 时,二极管 $D_{\mathbf{1}}$ 导通, $D_{\mathbf{2}}$ 截止,电容C充电,充电回路为: $u_{\mathbf{o}} \to \mathbf{c}$

 $R_{W1} \to D_1 \to R \to C \to$ 地;电容 C 充电的时间常数为: $\tau_1 = (R_{W1} + R_{D1} + R)C$ (2)当 $\mathbf{u_o} = -U_Z$ 时,二极管 D_2 导通, D_1 截止,电容C放电,放电回路为:地 $\to C \to C$

 $R \to D_2 \to R_{W2} \to u_o$,电容 C 放电的时间常数为: $\tau_2 = (R_{W2} + R_{D2} + R)C$ 。

图 2-7-3 占空比可调的矩形波产生电路

三、预习思考

1. 如何调节振荡波形的频率?

思考:通过调节充电回路中的等效 R_{eq} C_{eq} 相关参数值来调节频率。

四、实验内容

1.实验要求

以运放 μ A741 为核心构成的方波产生电路如图 2-7-5 所示,稳压管可以选择稳定电压在 4~8V 左右的型号,如 $1N4730\sim1N4738$ 等。

由实验原理分析可知,该电路输出的方波峰峰值由输出的稳压二极管 D_1 、 D_2 稳压值确定,可变电阻 R_W 可以改变输出方波的周期。

由式

$$T = 2RCln(1 + 2\frac{R_1}{R_2})$$

可知,当 $R_1=R_2=10k\Omega$ 时,可得方波的周期为 T=2. 2RC,其中 R 为 R_0 与 R_W 左边部分电阻的串联,随着 R_W 的调整,输出方波的周期应该在 2. 2ms 到 24. 2ms 之间变化。

2.仿真实验

利用 Multisim 软件,通过添加元器件、连线等操作,把电路先连接好,选择电源电压为+12V。

(1) 观察波形并测量参数

仿真实验波形如图 2-7-6 所示,利用双通道示波器分别观察输出波形与电容 C 的充放电波形,测量输出方波的幅度、电容两端电压的变化规律以及翻转点电压值,测量输出周期与可变电阻 Rw 的变化规律。

注意: 仿真运行开始时没有波形输出,需要等待一段时间后才能正常,尤其是周期比较大的时候。

电路原理图如下。

对 u_o 、 u_c 的仿真结果如下:

可以得到以下几个结论。

- 1. u_o 的高低电平数值为 5.566V、-5.562V,这是稳压管的稳压数值。
- 2. u_c 的跳变点电压为 2.778V、2.786V,约为 u_o 的一半。这是因为运放共模端两个 $10k\Omega$ 电阻分压,振荡器门限电压为 $\pm \frac{u_o}{2}$ 。
 - 3. 周期长度为T=26ms=2.2RC。

增大 R_W 至100 $k\Omega$:

观察可得:周期变为 24.194ms \approx 2.2RC= 2.2 \times 110 $k \times$ 0.2 μ , 电压数值不变。

由仿真波形图 2-7-6 可以看出,输出的方波周期随着可变电阻的变化而变化,且与理论分析基本一致:当可变电阻为 0 Ω 时,输出波形的周期约为 2. 277ms,当可变电阻为 100k Ω 时,输出方波的周期为 24. 257ms。输出方波的幅度由选用的稳压二极管确定,而电容充放电变化规律的翻转点也正好是输出幅度的一半,与理论分析也基本一致。

(2) 电容值的变化对波形的影响

由理论分析可知,输出方波的周期与电容的充放电时间常数成正比,实验(1)说明了改变电阻,输出波形的周期随可变电阻的变化规律,如果将电容 C 由原来的 0. 1μF 加大到 0. 2μF,输出方波的周期会发生如何变化呢?图 2-7-7 (a) (b) 所示分别为 C=0. 2μF,可变电阻为 0Ω 和 $100k\Omega$ 时的输出波形,方波的周期分别为 4. 480ms 和 48. 327ms,与电容为 0.1μ F 时对应的输出方波周期满足两倍的关系。

改变C为0.1μF:

观察可得: 周期变为 12.258ms \approx 24.194/2,电压数值不变。这与理论分析是相符的($\tau = RC$,周期与 C 恰成正比例关系)。

(3) 翻转点电压对波形的影响

通过改变电阻 R_1 或 R_2 的阻值,运行仿真软件后观察输出波形,进一步验证方波产生电路的输出波形与电路参数的关系,加深对方波产生电路的理解。

电容用 0.1μ F,可变电阻统一调整到 0Ω ,分别设置电阻在 $R_1=10k\Omega$ 、 $R_2=5k\Omega$ 及 $R_1=5k\Omega$ 、 $R_2=10k\Omega$ 两种情况下,测量方波和电容两端的波形,如图 2-7-8 所示。

由图 2-7-8 (a) 可知,由于翻转点电压值升高,导致输出波形的周期也变大,测量出周期为 3. 290ms;图 2-7-8 (b)表示了翻转点电压变低,方波的周期也相应变小,仿真测量周期为 1. 468ms,与理论分析对应的规律一致。

由图 2-7-8 (b) 也可以看出,当翻转点电压值比较低时,电容两端的充放电波形近似 为线性规律,在要求不高的场合,也可以把电容两端的波形当作三角波使用。

$$R_1 = 10k\Omega$$
, $R_2 = 5k\Omega$:

 $R_1 = 5k\Omega$, $R_2 = 10k\Omega$:

3.电路实验

按图 2-7-5 接好电路,确认连接无误后打开电源开始实验,记录波形和数据。

(1) 示波器测量波形及参数

利用双通道示波器,一个通道固定接输出端,另外一个通道分别测量电容电压、运放的同相端对地电压,当可变电阻 Rw 从一端调整到另一端时,记录相应的波形和参数于表 2-7-1 中,标记出每个波形的电压、时间等相关信息,并与理论计算值分析比较。

电路搭接如下。

 $R_W = 100k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

 $R_W = 0\Omega$: (从上至下分别为 u_o, u_c, u_+)

CH1-X1: -589.58us	CH1-Y1: 2.94V
CH1-X2: 1.65ms	CH1-Y2:-2.94V
ΔX: 2.24ms	ΔΥ: -5.87V

易派测量数据		
	$R_W = 0\Omega$ 时的波形及参数	$R_W=100k\Omega$ 时的波形及参数
u_o	11.75	11.82
$u_{\mathcal{C}}$	5.87	5.81
u_+	5.87	5.81

实验室测量数据如下。

 $R_W = 100k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

 $R_W = 0\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

实验室测量数据		
	$R_W = 0\Omega$ 时的波形及参数	$R_W=100k\Omega$ 时的波形及参数
u_o	11.8	11.8
$u_{\it C}$	5.88	5.88
u_+	5.80	5.80

该部分对应的理论值

理论值		
	$R_W = 0\Omega$ 时的波形及参数	$R_W=100k\Omega$ 时的波形及参数
u_o	$2U_z = 11.6V$	$2U_z = 11.6V$
$u_{\mathcal{C}}$	$U_z = 5.8V$	$U_z = 5.8V$
u_+	$U_z = 5.8V$	$U_z = 5.8V$

其中,对**输出端的稳压数据**进行说明。同上一实验,本实验中采用的稳压管稳压数值 U_Z 为 5.1V,取其导通压降为 $U_D=0.7V$,则输出端理论稳压数值

$$U_{OZ} = U_Z + U_D = 5.8V$$

对比理论值与实验值,数据符合理论分析。这部分实验说明,改变R来影响周期 T 的机理为:通过改变 R_W 的值来改变R的值,从而改变时间常数 τ ,直接影响周期。此时**跳变点对应的电压并未发生改变,而是直接改变了充放电的周期(波形)**。

(2) 调整电容值测量波形与参数的变化

将可变电阻 Rw 调整到 $0\,\Omega$,电容由原来的 $0.1\,\mu$ F 调整到 $0.2\,\mu$ F(可以在原来 $0.1\,\mu$ F 电容的边上并联一个 $0.1\,\mu$ F 电容),测量波形并记录参数。再将电容调整到 $0.01\,\mu$ F,观测和记录参数于表 2–7–2 中,并与理论计算值分析对比。

$C = 0.2 \mu F$:

$C = 0.01 \mu F$:

易派测量数据		
$R_W = 0\Omega$,C 的取值为	$0.2\mu F$	$0.01 \mu F$
输出波形的周期	4.46ms	132.36μs
理论计算值	4.39ms	219.72μs

可以发现,当电容取 $0.2\mu F$ 时,容值增大至原来的两倍,时间常数 τ 增大至原来的两倍,其达到同一电压(即*正负门限电压*)所需的时间也增大为原来的两倍,即*周期增大为原来的两倍*。对比数据: $4.46ms \approx 2.24ms \times 2$,大致符合两倍关系。

而当电容取0.01μF时,容值偏小,时间常数τ偏小,充电较快。因而,由于运放实际输出电压具有一定压摆率,其电压在两状态转换点之间并未完成建立,呈现示波器显示的类三角波波形。(从上次实验可以知道,本运放的压摆率约为30μs,一上一下则为60μs,与周期近似相符)受此影响,电容实际输出波形为类似正弦波的波形。(*经过实验室测量,此波形可能不可靠*)

精确计算

除了与原电路数据对比,还可以直接进行计算得到理论值:

$$T_{0.2\mu F} = 2 \times 10k\Omega \times 0.2\mu F \times ln3 = 4.39ms$$

 $T_{0.01\mu F} = 2 \times 10k\Omega \times 0.01\mu F \times ln3 = 219.72\mu s$

实验室测量数据如下。

$C = 0.2 \mu F$:

 $C = 0.01 \mu F$:

由于 $292\mu s$ 与理论值差距较大,多次测量并精确电阻值后确认此数据无误,现对此数据进行分析。

由于电容充放电电压是由输出电平提供的,观察输出波形可发现,实际输出波形会由于运放*压摆率*的存在而存在一段*线性区*。我们可以对线性区产生的影响作近似处理:其相对于 U=0V 对称,视其对电容的充放电影响正负面积相抵消。即:线性区电容近似不充电也不放电。

按此近似分析,则输出波形的实际周期 \mathbf{T} ,应为电容充放电的时间 T_c ,与两段线性区延时 T_{linear} 的时间之和。即

$$T = T_C + 2T_{linear}$$

取 T_C 为理论值 220 μ s、 T_{linear} 为上次实验压摆率数据 30 μ s,则近似模型得出的周期

$$T = 280 \mu s$$

与实测结果相差不大(相对误差 $\Delta_r = 4.29\%$,模型可靠)。

该模型推测可以*用电压极值来佐证*。观察到实验中电容的电压极值实际为

$$\begin{cases} U_M = 3.32V \\ U_L = 3.36V \end{cases}$$

是高/低于 $U_{th} = \frac{U_Z}{2}$ 的。这说明,实际在越过阈值电压 U_{th} 后,**输出电压并未第一时间跳变**,此时给电容充/放电的仍是原电平,电容继续向极性方向增长,**直到输出电压压摆至0**。利用游标竖线的标示可以看出,电容波形达到负向最大时,其对应的输出波形近似处于零点。上述推测得到佐证。

实验室测量数据

$R_W = 0\Omega$,C 的取值为	0.2μF	$0.01 \mu F$
输出波形的周期	4.36ms	292.0μs
理论计算值	4.39ms	219.72μs

 $C = 0.2 \mu F$ 的实验室数据结果与易派测量及理论推算差异不大,能够佐证理论分析。这部分实验说明,改变C来影响周期 Γ 的机理为:通过改变C的值来改变时间常数 τ ,直接影响周期。此时*跳变点对应的电压并未发生改变,而是直接改变了充放电的周期(波形)*。

(3) 同相端电压值对波形的影响

可变电阻 Rw 调整为 0Ω ,电容恢复到 0.1μ F,改变输出到同相端之间的分压关系,使电容充放电的翻转点电压发生变化,测量相关点处的波形与参数,记录于表 2-7-3 中,并与理论计算值分析对比。

 $R_1 = 10k\Omega$ 、 $R_2 = 5k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

ΔY: -7.84V

ΔX: 3.35ms

 $R_1 = 5k\Omega$ 、 $R_2 = 10k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

易派测量数据		
电阻取值	$R_1 = 10 \mathrm{k}\Omega$, $R_2 = 5 \mathrm{k}\Omega$	$R_1 = 5k\Omega$, $R_2 = 10k\Omega$
u_o/V	11.75	11.84
u_C/V	7.84	4.01
u_+/V	7.86	3.97
测量周期/ms	3.35	1.42
理论计算周期	3.22	1.39

实验室测量数据如下。

 $R_1 = 10k\Omega$ 、 $R_2 = 5k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

 $R_1 = 5k\Omega$ 、 $R_2 = 10k\Omega$: (从上至下分别为 u_o 、 u_c 、 u_+)

理论计算

$$T_{R_1=10\text{k}\Omega, R_2=5\text{k}\Omega} = 2 \times 10k\Omega \times 0.1\mu F \times ln5 = 3.22ms$$

 $T_{R_1=5\text{k}\Omega, R_2=10\text{k}\Omega} = 2 \times 10k\Omega \times 0.1\mu F \times ln2 = 1.39ms$

记输出端稳压数值为 U_Z ,则理论电压值(数值计算时取 6V)

$$u_o = 2U_Z = 12V$$

$$u_c = u_+ = 2U_Z \cdot \frac{R_1}{R_1 + R_2} = \begin{cases} 8V & R_1 = 10\text{k}\Omega, \ R_2 = 5\text{k}\Omega\\ 4V & R_1 = 5\text{k}\Omega, \ R_2 = 10\text{k}\Omega \end{cases}$$

	12 (17 1	ti onus, ng ronus
实验室测量数据		
电阻取值	$R_1 = 10 \mathrm{k}\Omega$, $R_2 = 5 \mathrm{k}\Omega$	$R_1=5\mathrm{k}\Omega$, $R_2=10\mathrm{k}\Omega$
u_o/V	11.8	11.7
$u_{\mathcal{C}}/V$	7.92	3.94
u_+/V	7.92	3.88
测量周期/ms	3.26	1.35
理论计算周期	3.22	1.39

实验室数据结果与易派测量及理论推算差异不大,能够佐证理论分析。这部分实验说明,改变 R_1 、 R_2 来影响周期 T 的机理为:通过改变 R_1 、 R_2 的比例关系来改变阈值电压 U_{TH} 、 U_{TL} 。此时**充放电的波形并未发生改变,只是跳变点对应的电压改变了**,周期从而产生对应改变。

五、实验总结

本次实验我们进一步研究了波形发生器,主要是方波的实践。由于我最近在学习电赛相关知识,其实更感兴趣的是 PWM 波的产生,不过要完全探究其产生的控制涉及到微机的知识,那就太过复杂了,单是探讨其模电的产生又与方波发生器无异。