Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot

R. Bruce Weisman* and Sergei M. Bachilo

Department of Chemistry, Center for Nanoscale Science and Technology, and Center for Biological and Environmental Nanotechnology, Rice University, 6100 Main Street, Houston. Texas 77005

Received June 20, 2003; Revised Manuscript Received July 16, 2003

ABSTRACT

Spectrofluorimetric data for identified single-walled carbon nanotubes in aqueous SDS suspension have been accurately fit to empirical expressions. These are used to obtain the first model-independent prediction of first and second van Hove optical transitions as a function of structure for a wide range of semiconducting nanotubes. To allow for convenient use in support of spectral studies, the results are presented in equation, graphical, and tabular forms. These empirical findings differ significantly from Kataura plots computed using a simple tight-binding model. It is suggested that the empirically based results should be used in preference to conventional model-based predictions in spectroscopic nanotube research.

Introduction. One of the most intriguing and potentially useful features of single-walled carbon nanotubes (SWNT) is the sensitivity of their electronic and optical properties to physical structure. A nanotube's diameter (d_t) and chiral angle (α) are uniquely related to a pair of integers (n, m) that describe its construction as a rolled-up graphene sheet. Except for very small diameter nanotubes, it is well known that structures for which n - m is evenly divisible by 3 display metallic or semimetallic behavior, whereas other tubes only slightly different in structure have significant band gaps and show semiconducting behavior.2 The quasi-onedimensionality of SWNT gives sharp van Hove peaks in the density of electronic states. Optical properties of SWNT are dominated by transitions between corresponding van Hove peaks on opposite sides of the Fermi level. Knowing the energies of these E_{ii} van Hove transitions for specific (n, m)structures is important not only for absorption spectroscopy but also for the widely used method of resonance Raman spectroscopy in which matches between the incident or scattered light frequencies and van Hove transitions expose vibrational frequencies of selected nanotubes.3-5 Nanotube investigators using optical methods are commonly guided by Kataura plots of E_{ii} transition energies vs tube diameter.⁶ In the absence of detailed experimental data, these have been generated from parametrized model calculations of SWNT electronic structure.

Recent breakthroughs in SWNT spectroscopy now allow the construction of experimentally based Kataura-type plots. In semiconducting SWNT, the lowest-energy van Hove transition (at E_{11}) corresponds to absorption or luminescence directly across the band gap. Since the discovery of bandgap photoluminescence from isolated SWNT in bulk aqueous suspensions, it has become possible to use spectrofluorimetry to explore the E_{11} and E_{22} transitions of a sizable number of semiconducting SWNT species. As was reported earlier from this laboratory, distinct first and second van Hove transition wavelengths have been observed for 33 semiconducting SWNT in a surfactant-suspended bulk sample, and each of these species has been assigned specific (n, m)structural indices.8 Spectral transitions of six additional SWNT species were reported by Lebedkin et al. in a study of slightly larger diameter nanotubes in a different surfactant.⁹ Because the identified nanotubes span a rather wide range of structures (ranging from 0.62 to 1.41 nm in diameter and from 3 to 28° in chiral angle), their measured transition frequencies can be used to anchor a robust empirical fitting function that allows extrapolation beyond the set of measured data. This provides the basis for a model-independent, empirically based Kataura plot that gives reliable predictions of optical transition frequencies versus (n, m) for semiconducting SWNT in aqueous surfactant suspensions. To enable easy use of the new predictions, we present them below as empirical functions of diameter and chiral angle, as graphs, and as tabulated values for more than 100 (n, m) structures.

^{*} Corresponding author. E-mail: weisman@rice.edu.

Table 1. Structures and First and Second van Hove Optical Transitions^a for Semiconducting SWNT Structures with Diameters between 0.48 and 2.0 nm

between	$\frac{d_{t}}{d_{t}}$	α	, 11111	λ11	$\bar{\nu}_{11}$	E_{11}	λ ₂₂	$\bar{\nu}_{22}$	E_{22}		d_{t}	α		λ ₁₁	$\bar{\nu}_{11}$	E_{11}	λ_{22}	$\bar{\nu}_{22}$	E_{22}
(n, m)	(nm)		mod^b	(nm)	(cm ⁻¹)	$(eV)^c$	(nm)	(cm ⁻¹)	(eV)	(n, m)	(nm)	(deg)	mod^b	(nm)	(cm ⁻¹)	$(eV)^c$	(nm)	(cm ⁻¹)	(eV)
(4, 3)		25.28	1		14 283			25 147		(14, 12)			2	2059	4856	0.602	1181		1.050
(5, 3)		21.79	2		13 884			19 147			1.857		1	2141	4672	0.579	1208		1.026
(5, 4) $(6, 1)$	0.520	26.33 7.59	1 2		11 974 15 323			20 697 15 828		(15, 1) $(15, 2)$	1.232 1.278	3.20 6.18	2 1	1426 1622	7011 6165	0.869 0.764	920 822	10 864 12 163	
(6, 1)		13.90	1		11 183			23 900		(15, 2) $(15, 4)$		11.52	2	1589	6294	0.780		10 140	
(6, 4)		23.41	2		11 452			17 312		(15, 5)		13.90	1	1752	5708	0.708		10 858	
(6, 5)		27.00	1		10 244			17 667		(15, 7)			2	1779	5621	0.697	1064		1.165
(7, 0) $(7, 2)$	0.556	0.00 12.22	1 2		10 397 12 468			25 318 15 977		(15, 8) (15, 10)	1.606	20.03 23.41	1 2	1907 1987	5245 5032	$0.650 \\ 0.624$	1035 1156		1.198 1.072
(7, 3)	0.706	17.00	1		10 083			19 820		(15, 11)		24.92	1	2086	4793	0.594	1158		1.071
(7, 5)		24.50	2	1024		1.211		15 496		(15, 13)			2	2207	4532	0.562	1259		0.985
(7, 6) (8, 0)	$0.895 \\ 0.635$	27.46 0.00	1 2	1120	8930 12 886	1.107		15 441 15 146		(15, 14) (16, 0)	1.994	28.86	1 1	2287 1623	4373 6163	$0.542 \\ 0.764$	1288 815	7767 12 264	0.963
(8, 0)	0.633	5.82	1	1041		1.191		21 226		(16, 0)	1.357	5.82	2	1561	6405	0.794	984	10 162	
(8, 3)		15.30	2		10 508			15 029		(16, 3)	1.405	8.44	1	1746	5728	0.710	898	11 139	
(8, 4)		19.11	1	1111		1.116		16 981		(16, 5)	1.508	13.17	2	1732	5775	0.716	1055		1.175
(8, 6) (8, 7)		25.28 27.80	2 1	1173 1265		1.057 0.981		13 928 13 727		(16, 6) (16, 8)		15.30 19.11	1 2	1884 1925	5307 5194	0.658 0.644	1000 1138		1.240 1.090
(0, 7) $(9, 1)$	0.757	5.21	2		10 964			14 466		(16, 8)	1.741		1	2046	4887	0.606	1115		1.112
(9, 2)	0.806	9.83	1	1138		1.090		18 155		(16, 11)			2	2134	4685	0.581	1233		1.006
(9, 4)		17.48	2	1101		1.126		13 843		(16, 12)	1.932	25.28	1	2231	4483	0.556	1238		1.001
(9, 5)	0.976	20.63	1	1241		0.999		14 883		(17, 0)	1.350	0.00	2	1552	6443	0.799 0.711	984	10 167	
(9, 7) (9, 8)		25.87 28.05	2 1	1322 1410		0.938 0.879		12 610 12 362		(17, 1) (17, 3)	1.391 1.483	2.83 7.99	1 2	1744 1699	5733 5886	0.711	886 1050	11 289 9525	1.400
(10, 0)	0.794	0.00	1	1156		1.073		18 606		(17, 4)		10.33	1	1873	5340	0.662		10 263	
(10, 2)	0.884	8.95	2	1053		1.177		$13\ 574$		(17, 6)	1.641		2	1875	5332	0.661	1125		1.102
(10, 3)		12.73	1	1249		0.993		15 834		(17, 7)		16.47	1	2019	4952	0.614			1.149
(10, 5) $(10, 6)$		19.11 21.79	2 1	1249 1377		0.993 0.900		12 695 13 262		(17, 9) (17, 10)	1.816 1.877		2 1	2072 2188	4827 4571	0.599 0.567	1212 1195		1.023 1.037
(10, 0) $(10, 8)$		26.33	2	1470		0.844		11 502		(18, 1)	1.470	2.68	2	1682	5944	0.737	1048		1.183
(10, 9)	1.307	28.26	1	1556	6428	0.797	889	11 248	1.395	(18, 2)	1.515	5.21	1	1868	5353	0.664	958	10 433	1.294
(11, 0)	0.873	0.00	2	1037		1.196		13 431		(18, 4)	1.611	9.83	2	1838	5439	0.674			1.109
(11, 1) (11, 3)	0.916	4.31 11.74	1 2	1265 1197		0.980 1.036		16 388 12 617		(18, 5) (18, 7)	1.663 1.773	11.93 15.75	1 2	2003 2020	4993 4952	0.619 0.614	1052		1.179 1.035
(11, 3) $(11, 4)$	1.068	14.92	1	1371		0.904		14 036		(18, 8)	1.831	17.48	1	2156	4638	0.575	1159		1.033
(11, 6)	1.186	20.36	2	1397		0.887		11 661		(18, 10)	1.951	20.63	2	2218	4509	0.559	1288		0.963
(11, 7)		22.69	1	1516		0.818		11 968		(19, 0)	1.508	0.00	1	1867	5357	0.664	953	10 492	
(11, 9) (11, 10)	1.377 1.444		2 1	1617 1702		0.767 0.729		10 564 10 320		(19, 2) (19, 3)	1.594 1.641	4.95 7.22	2 1	1816 1994	5507 5015	0.683 0.622	1114 1033		1.113 1.201
(11, 10) $(12, 1)$	0.995	3.96	2	1170		1.060		12 516		(19, 5)		11.39	2	1979	5052		1187		1.044
(12, 2)	1.041	7.59	1	1378		0.900		14 575		(19, 6)		13.29	1	2135	4684	0.581	1130	8853	1.098
(12, 4)		13.90	2	1342		0.924		11 693		(19, 8)	1.907	16.76	2	2164	4621	0.573	1271		0.976
(12, 5) $(12, 7)$		16.63 21.36	1 2	1499 1545		0.827 0.803		12 605 10 751		(19, 9) (20, 0)	1.966 1.588	18.35 0.00	1 2	2295 1808	4358 5531	0.540 0.686	1238		1.001 1.114
(12, 7) $(12, 8)$		23.41	1	1657		0.748		10 910		(20, 0)	1.629	2.42	1	1990	5024	0.623	1023		1.212
(12, 10)			2	1765	5666	0.703	1024		1.210	(20, 3)	1.719	6.89	2	1952	5124	0.635	1181		1.050
(12, 11)			1	1848		0.671	1049		1.182	(20, 4)	1.768	8.95	1	2122	4712		1108		1.119
(13, 0) (13, 2)	1.032 1.120	0.00 7.05	1 2	1384 1307		0.896 0.949		14 770 11 661		(20, 6) (20, 7)		12.73 14.46	2 1	2121 2269	4715 4406	0.585 0.546	1258		$0.985 \\ 1.027$
(13, 2) $(13, 3)$	1.170		1	1498		0.828		13 095			1.708		2	1938		0.640			1.052
(13, 5)	1.278	15.61	2	1487		0.834		10 843			1.752	4.50	1	2116	4727	0.586		9134	1.132
(13, 6)		17.99	1	1632		0.760		11 441		(21, 4)	1.847	8.57	2	2090	4786	0.593			0.992
(13, 8)		22.17	2	1692		0.733			1.234	(21, 5)		10.44	1	2253	4439	0.550			1.047
(13, 9) (13, 11)	1.521		1 2	1799 1912		0.689 0.648		10 027 9071	1.125	(22, 0) $(22, 2)$	1.747 1.831	$0.00 \\ 4.31$	1 2	2114 2070	4731 4830	0.587 0.599			1.137 0.996
(13, 11) $(13, 12)$			1	1994		0.622	1128		1.099	(22, 3)	1.877	6.31	1	2243	4459	0.553			1.061
(14, 0)	1.111	0.00	2	1295	7721	0.957	859	11 640	1.443	(22, 5)	1.975	10.02	2	2229	4487	0.556	1320	7575	0.939
(14, 1)	1.153	3.42	1	1502		0.826		13 364		(23, 0)	1.826	0.00	2	2064	4845	0.601			0.997
(14, 3) $(14, 4)$	1.248	9.52 12.22	2 1	1447 1623		0.857 0.764		10 867 11 875		(23, 1) (23, 3)	1.867 1.956	2.11 6.05	1 2	2238 2205	4467 4535	0.554 0.562			$1.069 \\ 0.944$
(14, 4) $(14, 6)$		17.00	2	1633		0.759		10 078		(24, 1)	1.946	2.02	2	2193	4560	0.565			0.946
(14, 7)	1.470	19.11	1	1768	5655	0.701	955	10 476	1.299	(24, 2)	1.990	3.96	1	2365	4229	0.524	1231	8121	1.007
(14, 9)		22.85	2	1840		0.674			1.148		1.985	0.00	1	2362	4233	0.525	1228	8146	1.010
(14, 10)	1.658	24.50	1	1942	5148	0.638	1078	9279	1.150	I									

 a As predicted by the empirical formulas in the text. b The value of mod(n-m, 3). c E_{11} values represent emission peaks; to obtain absorption peak energies, add ca. 0.004 eV.

We suggest that these empirically based spectral predictions should be used in preference to model-based results because of their significantly higher accuracy.

Methods and Results. In our prior report, spectral transitions for 33 semiconducting species were fit semiquan-

titatively using simple functions of d_t and α to illustrate systematic structural trends. By allowing the exponents of $\cos(3\alpha)$ and d_t to vary from their original values of 1 and 2, respectively, in the second term, we have now deduced expressions that reproduce the experimental data much more

1236 Nano Lett., Vol. 3, No. 9, 2003

closely. As before, different parameters apply according to whether mod(n-m, 3) equals 1 or 2 (mod 1 or mod 2 species, respectively). The refined empirical functions for first and second van Hove transition frequencies are (for d_t in nm)

$$\begin{split} \bar{\nu}_{11}(\text{mod }1) &= \frac{1\times 10^7\,\text{cm}^{-1}}{157.5 + 1066.9d_{\text{t}}} - 771\,\text{cm}^{-1}\frac{[\cos(3\alpha)]^{1.374}}{d_{\text{t}}^{2.272}} \\ \bar{\nu}_{11}(\text{mod }2) &= \frac{1\times 10^7\,\text{cm}^{-1}}{157.5 + 1066.9d_{\text{t}}} + 347\,\text{cm}^{-1}\frac{[\cos(3\alpha)]^{0.886}}{d_{\text{t}}^{2.129}} \\ \bar{\nu}_{22}(\text{mod }1) &= \frac{1\times 10^7\,\text{cm}^{-1}}{145.6 + 575.7d_{\text{t}}} + 1326\,\text{cm}^{-1}\frac{[\cos(3\alpha)]^{0.828}}{d_{\text{t}}^{1.809}} \\ \bar{\nu}_{22}(\text{mod }2) &= \frac{1\times 10^7\,\text{cm}^{-1}}{145.6 + 575.7d_{\text{t}}} - 1421\,\text{cm}^{-1}\frac{[\cos(3\alpha)]^{1.110}}{d_{\text{t}}^{2.497}} \end{split}$$

These expressions mimic our experimental findings with average errors of 10 cm^{-1} (1.3 meV) for $\bar{\nu}_{11}$ and 40 cm^{-1} (5 meV) for $\bar{\nu}_{22}$. Compared to the previous fit with integer exponents, these expressions eliminate systematic fitting discrepancies and reduce average errors by approximately 70 and 40%. It seems likely that this accuracy will be retained on extrapolation to larger-diameter tubes, for which trigonal warping and curvature exert smaller spectral effects. Although extrapolation to smaller tube diameters is less secure, we expect the expressions to be useful down to ca. 0.5 nm.

Table 1 lists all 127 semiconducting nanotube structures having diameters between 0.48 and 2.00 nm (assuming a C-C distance of 0.144 nm) in order of increasing n and m values. Following the columns that show the diameter, chiral angle, and mod(n-m,3) values, we give the wavelengths, frequencies, and photon energies for first van Hove emission and second van Hove absorption as predicted by the equations above. Note that first van Hove absorption energies will be ca. 4 meV higher than the listed emission values.

In Figure 1, we plot the predicted and measured E_{11} and E_{22} values for semiconducting SWNT with diameters between 0.48 and 2.5 nm. A small set of measured values for E_{33} and E_{44} are also plotted. Empirical expressions for the energies of E_{33} and E_{44} transitions, which can also be important in resonance Raman studies of larger-diameter nanotubes, await further experimental measurements and analysis.

Discussion. Equations 1 and 2 are intended only as empirical fitting functions, and we do not suggest that the deduced parameters have any simple meaning within SWNT electronic structure models. Instead, the peculiar exponents deduced from fitting the data may reflect combinations of effects such as trigonal warping, curvature, and exciton binding.^{10–14} Our fits and predictions apply to samples of individual SWNT in aqueous SDS suspension. Data measured by Lebedkin et al.⁹ and in our laboratory suggest that small systematic spectral shifts of less than 2% can be

Figure 1. Optical transition energies vs diameter for semiconducting SWNT. Solid symbols are experimental data; open squares and circles are predictions of E_{11} and E_{22} , respectively, from the empirical fitting functions.

Figure 2. Comparison between model-based and empirical values of optical transition energies for semiconducting SWNT. Open symbols were computed using a simple tight binding (TB) model with $\gamma_0 = 2.90$ eV, and solid symbols were obtained from the empirically based fitting functions.

expected for individual SWNT suspended in other aqueous surfactants. Note, however, that our spectral fits are not applicable to bundled suspended nanotubes, for which strong perturbations between tubes lead to significantly broadened and red-shifted absorption spectra and quenched band-gap luminescence.⁷

Although Figure 1 qualitatively resembles model-based results, there are significant quantitative differences. To illustrate these, Figure 2 shows plots of E_{11} and E_{22} computed from a simple tight-binding model (as commonly used for Kataura plots) overlaid with the empirically based values from Figure 1. Both for E_{11} and E_{22} transitions, the tight-

Nano Lett., Vol. 3, No. 9, 2003

binding model badly underestimates the apparent scatter arising from chiral variations at a given diameter. Empirically, these chiral variations in transition energy are at least twice as large as predicted by the tight-binding model for tube diameters of 1.5 nm or less. It is also clear that the tight-binding model (with $\gamma_0 = 2.90 \text{ eV}$) underestimates E_{11} transition energies by up to 25% relative to the empirical values. Tight-binding E_{22} predictions are ca. 15% below the empirical values for 2.5-nm diameter tubes but as much as 25% above empirical values for some of the smallestdiameter species. Thus, adjusting γ_0 cannot bring the simple model predictions into accord with the empirically based transition energies. In our view, these deficiencies in modelbased Kataura plots appear large enough to cause serious interpretation problems in some optical nanotube investigations. We therefore recommend that researchers performing optical experiments with surfactant suspensions of SWNT instead rely on the findings reported here to guide their work.

Acknowledgment. This research has been supported by the NSF (grants CHE-9900417 and CHE-0314270), the NSF Center for Biological and Environmental Nanotechnology (grant EEC-1008007), and the Robert A. Welch Foundation (grant C-0807). We thank the Carbon Nanotechnology Laboratory at Rice University for assistance in sample preparation and C. Kane for tight-binding model calculations.

Supporting Information Available: We present as Supporting Information a version of Table 1 extended to include nanotube structures through (25, 24) and the E_{ii}

values measured to date in room-temperature aqueous SDS suspensions. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. *Physical Properties of Carbon Nanotubes*; Imperial College Press: London, 1998.
- (2) Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579–1581.
- (3) Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Science 1997, 275, 187–191.
- (4) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Acc. Chem. Res. 2002, 35, 1070–1078.
- (5) Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, Ch.; Gruneis, A.; Pichler, Th.; Peterlik, H.; Kataura, H.; Achiba, Y. Eur. Phys. J. B 2001, 22, 307–320.
- (6) Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Synth. Met. 1999, 103, 2555–2558.
- (7) O'Connell, M.; Bachilo, S. M.; Huffman, C. B.; Moore, V.; Strano, M. S.; Haroz, E.; Rialon, K.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593–596.
- (8) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361–2366.
- (9) Lebedkin, S.; Hennrich, F. H.; Skipa, T.; Kappes, M. M. J. Phys. Chem. B 2003, 107, 1949–1956.
- (10) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 2000, 61, 2981–2990.
- (11) Reich, S.; Thomsen, C. Phys. Rev. B 2000, 62, 4273-4276.
- (12) Ichida, M.; Mizuno, S.; Tani, Y.; Saito, Y.; Nakamura, A. J. Phys. Soc. Jpn. 1999, 68, 3131–3133.
- (13) Ando, T. J. Phys. Soc. Jpn. 1997, 66, 1066-1073.
- (14) Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2003, 90, 207401/1-4. NL034428I

1238 Nano Lett., Vol. 3, No. 9, 2003