Problems on Boolean query model using incidence matrix

1. Consider the following collection of documents and set of index terms,

D1: Frodo stabbed the orc with the red sword.

D2: Frodo and Sam used the blue lamp to locate orcs.

D3: Sam killed many orcs in Mordor with the blue sword.

K={Frodo, Sam, blue, sword, orc, Mordor}

For the **given Boolean query find the relevant documents using incidence matrix** or inverted file.

Query: (Frodo AND orc AND sword) OR (Frodo AND blue)

Solution:

Construction of Term-document incidence matrix:

Term	D1	D2	D3
Frodo	1	1	0
Red	1	0	0
Sam	0	1	1
Blue	0	1	1
Sword	1	0	1
Orc	1	1	1
Mordor	0	0	1

Query: (Frodo AND orc AND sword) OR (Frodo AND blue)

Term	D1	D2	D3
Frodo	1	1	0
Sword	1	0	1
Orc	1	1	1
Blue	0	1	1

Frodo = [1,1,0]

Orc = [1,1,1]

Sword = [1,0,1]

Blue= [0,1,1]

(Frodo AND orc AND sword) OR (Frodo AND blue)

([1, 1, 0] AND [1,1,1] AND [1,0,1]) OR ([1,1,0] AND [0,1,1])

= [1,0,0] OR [0,1,0] = [1,1.0]

D1, D2 are relevant document for the query.

2.Consider the following corpus:

D1: "The quick brown fox jumps over the lazy dog"

D2: "The brown dog jumps over the quick fox"

D3: "The lazy brown dog jumps over the quick fox"

For the given Boolean query find the relevant documents using incidence matrix or inverted file.

Query: Fox AND lazy

Solution:

Index terms considered after removing stop words like the, over -

K= quick, brown, fox, jumps, lazy dog

Construction of Term-document incidence matrix:

Term	D1	D2	D3
Quick	1	1	1
Brown	1	0	1
Fox	1	1	1
Jumps	1	1	1
Lazy	1	0	1
Dog	1	1	1

Query: Fox AND lazy

Term	D1	D2	D3
Fox	1	1	1
Lazy	1	0	1

Fox: [1,1,1]

Lazy: [1,0,1]

Fox AND lazy = [1,1,1] AND [1,0,1] = [1,0,1]

D1, D3 are relevant document for the query.

3. Consider the following collection of documents and set of index terms,

D1: Mickey Mouse is the mascot of The Walt Disney Company. Mickey generally appears alongside his girlfriend Minnie Mouse, his pet dog Pluto, his friends Donald Duck and Goofy,

D2: Pluto is a cartoon character created by The Walt Disney Company. Pluto is Mickey Mouse's pet dog.

D3: Goofy is a cartoon character created by The Walt Disney Company. He is a tall, anthropomorphic dog. Goofy is a close friend of Mickey Mouse and Donald Duck.

K={Mickey, Mouse, Walt, Disney, Minnie, Pluto, Dog, Donald, Duck, Goofy}

For the given Boolean query find the relevant documents using incidence matrix or inverted file.

Query: Mickey AND (Dog OR Donald)

Solution:

Construction of Term-document incidence matrix:

Term	D1	D2	D3
Mickey	1	1	1
Mouse	1	1	1
Walt	1	1	1
Disney	1	1	1
Minnie	1	0	0
Pluto	1	1	0
Dog	1	1	1
Donald	1	0	1
Duck	1	0	1
goofy	1	0	1

Query: Mickey AND (Dog OR Donald)

Term	D1	D2	D3
Mickey	1	1	1
Dog	1	1	1
Donald	1	0	1

[1,1,1] AND [[1,1,1] OR [1,0,1]]

[1,1,1] AND [1,1,1] = [1,1,1]

D1,D2,D3 are relevant documents.

Problems on vector model using term frequency-inverse document frequency (TF-IDF) weighting

1. Consider the following documents

D1: "The quick brown fox jumps over the lazy dog"

D2: "The brown dog jumps over fox"

D3: "The lazy dog jumps over the quick fox"

Using term frequency-inverse document frequency (TF-IDF) weighting, construct a document-term matrix for this corpus. Now, suppose a user enters the query "lazy dog". Using cosine similarity, find the ranking of documents based on their relevance to the query.

Solution:

Step 1: (If index term not given consider your own set by removing stopwords).

To construct the document-term matrix using TF-IDF weighting, we first create a vocabulary of all unique terms in the corpus. In this case, the vocabulary is: {The, quick, brown, fox, jumps, over, lazy, dog}

Step 2: Calculate frequency count and IDF

$$idf_i = \log \frac{N}{n_i}$$

Docum	Document - Term frequency count									
	The	quick	brown	fox	jumps	Over	Lazy	dog	MAX	
D1	2	1	1	1	1	1	1	1	2	
D2	1	0	1	1	1	1	0	1	1	
D3	2	1	0	1	1	1	1	1	2	
IDF	0	0.176	0.176	0	0	0	0.176	0		

Step3: Calculate term weight for document

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}} \qquad w_{i,j} = freq_{i,j} \times idf_{i}$$

Weight	Weight of index terms in document [wi,j = freqi,j X idf]									
	The	quick	brown	fox	jumps	Over	Lazy	dog		
D1	0	0.088	0.088	0	0	0	0.088	0		
D2	0	0	0.176	0	0	0	0	0		
D3	0	0.088	0	0	0	0	0.088	0		

Step 3: calculate term weight for query.

Query - "lazy dog"

$$w_{i,q} = (0.5 + \frac{0.5 freq_{i,q}}{\max_{l} freq_{l,q}}) \times \log \frac{N}{n_i}$$

	The	quick	brown	fox	jumps	Over	Lazy	dog	MAX
	0	0	0	0	0	0	1	1	1
Freq	0.5	0.5	0.5	0.5	0.5	0.5	1	1	
IDF	0	0.176	0.176	0	0	0	0.176	0	
wiq	0	0.088	0.088	0	0	0	0.176	0	

$$sim(d_{j}, q) = \frac{\vec{d}_{j} \cdot \vec{q}}{|\vec{d}_{j}| \times |\vec{q}|}$$

$$= \frac{\sum_{i=1}^{t} w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \times \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}$$

$$Sim(d1,q) = 0.485$$

$$Sim(d2,q) = 0.205$$

$$Sim(d3,q) = 0.435$$

Based on similarity, documents can be ranked as d1,d3,d2

2. Consider the set of documents,

D1= The Ganga is one of the world's great rivers. Its wide valley stretches across northern India and Bangladesh from the Himalayas to the Bay of Bengal.

D2= The Kaveri River, also spelled Cauvery, sacred river of southern India, is famous as the Ganga of the South. The Kaveri River ultimately drains into the Bay of Bengal.

D3 = The Godavari is India's second longest river after the Ganga River and drains into the Bay of Bengal

K= {Ganga, River, India, Bay, Bengal, Kaveri, Godavari}

Using term frequency-inverse document frequency (TF-IDF) weighting, construct a document-term matrix for this corpus. Now, suppose a user enters the query "River Kaveri India". Using cosine similarity, find the ranking of documents based on their relevance to the query.

Step 1: Calculate frequency count and IDF

$$idf_i = \log \frac{N}{n_i}$$

K= Ganga, River, India, Bay, Bengal, Kaveri, Godavari

	Document – Term frequency count									
	Ganga	River	India	Bay	Bengal	Kaveri	Godavari	MAX		
D1	1	1	1	1	1	0	0	1		
D2	1	3	1	1	1	2	0	3		
D3	1	1	1	1	1	0	1	1		
IDF	0	0	0	0	0	0.477	0.477	-		

Step2: Calculate term weight for document

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}} \qquad w_{i,j} = freq_{i,j} \times idf_{i}$$

	Weight of index terms in document [wi,j = freqi,j X idf]									
	Ganga River India Bay Bengal Kaveri Godavar									
D1	0	0	0	0	0	0	0			
D2	0	0	0	0	0	0.318	0			
D3	0	0	0	0	0	0	0.477			

Step 3: calculate term weight for query.

Query - River Kaveri India

$$w_{i,q} = (0.5 + \frac{0.5 freq_{i,q}}{\max_{l} freq_{l,q}}) \times \log \frac{N}{n_i}$$

Weight of index terms in Query [wi,q = freq X idf]									
	Ganga River India Bay Bengal Kaveri Godavari								
Q	0	1	1	0	0	1	0	1	
Freq	0.5	1	1	0.5	0.5	1	0.5		
IDF	IDF 0 0 0 0 0.477 0.477								
Wiq	0	0	0	0	0	0.477	0.238		

$$sim(d_j, q) = \frac{\vec{d}_j \cdot \vec{q}}{|\vec{d}_j| \times |\vec{q}|}$$

$$= \frac{\sum_{i=1}^{t} w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \times \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}$$

Sim
$$(d1, q) = 0$$

Sim (d2, q) = 0.1516/0.1695 = 0.8944

$$Sim (d3, q) = 0.1135/0.2542 = 0.4464$$

Based on similarity, documents can be ranked as d2, d3,d1

3. Consider the following collection of documents and set of index terms,

D1: Mickey Mouse is the mascot of The Walt Disney Company. Mickey generally appears alongside his girlfriend Minnie Mouse, his pet dog Pluto, his friends Donald Duck and Goofy,

D2: Pluto is a cartoon character created by The Walt Disney Company. Pluto is Mickey Mouse's pet dog.

D3: Goofy is a cartoon character created by The Walt Disney Company. He is a tall, anthropomorphic dog. Goofy is a close friend of Mickey Mouse and Donald Duck.

K={Mickey, Mouse, Walt, Disney, Minnie, Pluto, Dog, Donald, Duck, Goofy}

Using term frequency-inverse document frequency (TF-IDF) weighting, construct a document-term matrix for this corpus. Now, suppose a user enters the query "Mickey Donald Dog". Using cosine similarity, find the ranking of documents based on their relevance to the query.

Step 1: Calculate frequency count and IDF

$$idf_i = \log \frac{N}{n_i}$$

Document - Term frequency count											
	Mickey	Mouse	Walt	Disney	Minnie	Pluto	Dog	Donald	duck	goofy	MAX
D1	2	2	1	1	1	1	1	1	1	1	2
D2	1	1	1	1	0	2	1	0	0	0	2
D3	1	1	1	1	0	0	1	1	1	2	2
IDF	0	0	0	0	0.477	0.176	0	0.176	0.176	0.176	

Step2: Calculate term weight for document

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}} \qquad w_{i,j} = freq_{i,j} \times idf_{i}$$

Weight of index terms in document [wi,j = freqi,j X idf]										
	Mickey	Mouse	Walt	Disney	Minnie	Pluto	Dog	Donald	duck	
D1	0	0	0	0	0.238	0.088	0	0.088	0.088	
D2	0	0	0	0	0	0.176	0	0	0	
D3	0	0	0	0	0	0	0	0.088	0.088	

Step 3: calculate term weight for query.

Query - "Mickey Donald Dog"

$$w_{i,q} = (0.5 + \frac{0.5 freq_{i,q}}{\max_{l} freq_{l,q}}) \times \log \frac{N}{n_i}$$

Weight of index terms in Query [wi,q = freq X idf]											
	Mickey	Mouse	Walt	Disney	Minnie	Pluto	Dog	Donald	duck	goofy	MAX
Q	1	0	0	0	0	0	1	1	0	0	1
freq	1	0.5	0.5	0.5	0.5	0.5	1	1	0.5	0.5	
IDF	0	0	0	0	0.477	0.176	0	0.176	0.176	0.176	
Wi,q	0	0	0	0	0.238	0.088	0	0.176	0.088	0.088	

$$sim(d_{j}, q) = \frac{\vec{d}_{j} \cdot \vec{q}}{|\vec{d}_{j}| \times |\vec{q}|}$$

$$= \frac{\sum_{i=1}^{t} w_{i,j} \times w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^{2}} \times \sqrt{\sum_{i=1}^{t} w_{i,q}^{2}}}$$

Sim(d1,q)=0.0956/(0.2964*0.333)=0.9685

Sim(d2,q)=0.0154/(0.176*0.333)=0.2627

Sim(d3,q) = 0.03872/(0.2155*0.333) = 0.5395

Based on similarity, documents can be ranked as d1,d3,d2