- ▶ 1.空气质量指数(AQI)评价模型
- ▶ 3.单污染源空气污染扩散模型(高斯烟羽模型)

1.空气质量指数(AQI)评价模型

(1)总结EPA AQI 和 GB 3095计算过程

Step1: 选定污染物

国标(GB3095)和美标(EPA AQI)均选定PM2.5, PM10, O3, CO, SO2, NO2

Step2: 用线性插值公式计算IAQI

对于第 i 种污染物,其浓度为 C_i ,确定其所在浓度区间 [$C_{i,low}$, $C_{i,high}$] 及对应AQI区间 [$I_{i,low}$, $I_{i,high}$](国家标准GB 3095和EPA AQI各有不同阈值)。

$$ext{IAQI}_i \ = \ rac{I_{i, ext{high}} - I_{i, ext{low}}}{C_{i, ext{high}} - C_{i, ext{low}}} \left(C_i - C_{i, ext{low}}
ight) \ + \ I_{i, ext{low}}$$

Note

核心假设:单污染物分指数(IAOI)计算中、污染物浓度与健康危害在分段区间内呈线性关系

HJ 633-2012

表 1 空气质量分指数及对应的污染物项目浓度限值

					污染物项目	目浓度限值				
空气质量 分指数 (IAQI)	二氧化硫 (SO ₂) 24 小时 平均/ (µg/m³)	二氧化硫 (SO ₂) 1 小时 平均/ (µg/m³)	二氧化氮 (NO ₂) 24 小时 平均/ (µg/m³)	二氧化氮 (NO ₂) 1 小时 平均/ (µg/m³)	颗粒物 (粒径小 于等于 10 μm) 24 小时 平均/ (μg/m³)	一氧化碳 (CO) 24 小时 平均/ (mg/m³)	一氧化碳 (CO) 1 小时 平均/ (mg/m³)	臭氧(O ₃) 1 小时 平均/ (μg/m³)	臭氧(O ₃) 8 小时滑 动平均/ (μg/m³)	颗粒物 (粒径小 于等于 2.5 μm) 24 小时 平均/ (μg/m³)
0	0	0	0	0	0	0	0	0	0	0
50	50	150	40	100	50	2	5	160	100	35
100	150	500	80	200	150	4	10	200	160	75
150	475	650	180	700	250	14	35	300	215	115
200	800	800	280	1 200	350	24	60	400	265	150
300	1 600	(2)	565	2 340	420	36	90	800	800	250
400	2 100	(2)	750	3 090	500	48	120	1 000	(3)	350
500	2 620	(2)	940	3 840	600	60	150	1 200	(3)	500
	(1) 二氧化	$^{1)}$ 二氧化硫(SO_2)、二氧化氮(NO_2)和一氧化碳(CO)的 1 小时平均浓度限值仅用于实时报,在日报中								
		应污染物的					正 坐 仁 廿 d			一层儿欢

说明:

- (2) 二氧化硫 (SO_2) 1 小时平均浓度值高于 $800 \, \mu g/m^3$ 的,不再进行其空气质量分指数计算,二氧化硫 (SO_2) 空气质量分指数按 24 小时平均浓度计算的分指数报告。
- $^{(3)}$ 臭氧 (O_3) 8 小时平均浓度值高于 800 μ g/m³ 的,不再进行其空气质量分指数计算,臭氧 (O_3) 空气质量分指数按 1 小时平均浓度计算的分指数报告。

Table 6. Breakpoints for the AQI

These Brea	These Breakpoints							and this category
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 – 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070	-	9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy
0.201-(²)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴

 $^{^{1}}$ Areas are generally required to report the AQI based on 8-hour O_3 values. However, there are a small number of areas where an AQI based on 1-hour O_3 values would be more precautionary. In these cases, in addition to calculating the 8-hour O_3 index value, the 1-hour O_3 value may be calculated, and the maximum of the two values reported.

Step3: 计算AQI

国标和美标均采用

 $AQI = max(IAQI_i)$

 $^{^2}$ 8-hour O₃ values do not define higher AQI values (≥ 301). AQI values of 301 or higher are calculated with 1-hour O₃ concentrations.

³ 1-hr SO₂ concentrations do not define higher AQI values (≥200). AQI values of 200 or greater are calculated with 24-hour SO₂ concentration.

 $^{^4}$ AQI values between breakpoints are calculated using equation 1 to this appendix. For AQI values in the hazardous category, AQI values greater than 500 should be calculated using equation 1 and the concentration specified for the AQI value of 500. The AQI value of 500 are as follows: O₃ 1-hour—0.604 ppm; PM_{2.5} 24-hour—325.4 μg/m³; PM10 24-hour—604 μg/m³; CO ppm—50.4 ppm; SO₂ 1-hour—1004 ppb; and NO₂ 1-hour—2049 ppb.

```
\begin{table}[htbp]
\centering
\caption{AQI 标准对照表}
\label{tab:aqi_standard}
\begin{tabular}{|c|c|c|}\\
\hline
\textbf{AQI范围} & \textbf{EPA描述} & \textbf{GB 3095描述} \\
\hline
0-50 & Good & 优 \\
\hline
51-100 & Moderate & 良 \\
\hline
151-200 & Unhealthy & 中度污染 \\
201-300 & Very Unhealthy & 重度污染 \\
301+ & Hazardous & 严重污染 \\
\hline
\end{tabular}
\end{table}
```

AQI范围	EPA描述	GB 3095描述
0-50	Good	优
51-100	Moderate	良
101-150	Unhealthy for Sensitive Groups	轻度污染
151-200	Unhealthy	中度污染
201-300	Very Unhealthy	重度污染
301+	Hazardous	严重污染

(2)创新与改进

GB 3095和EPA AQI均直接采用 $max(IAQI_i)$ 作为最终AQI,网上查阅**江浙沪地区AQI**,发现基本为 $PM_{2.5}$ 的IAQI,不能充分反映污染的程度. 因此,我们尝试用层次分析法AHP优化计算,为便于区分,我们将这种做法计算所得的空气质量指数称为**EAQI**

AHP

1. 原理

通过构建污染物重要性判断比较矩阵,将专家知识转化为定量权重。进而综合反映各污染物对AQI的影响

2. 构造判断矩阵

专家对污染物两两比较重要性(1-9标度法)

标度	含义
1	表示两个元素相比,具有同样的重要性
3	表示两个元素相比,前者比后者稍重要
5	表示两个元素相比,前者比后者明显重要
7	表示两个元素相比,前者比后者极其重要
9	表示两个元素相比,前者比后者强烈重要
2,4,6,8	表示上述相邻判断的中间值
1~9 的倒数	表示相应两因素交换次序比较的重要性

```
\begin{table}[htbp]
\centering
\caption{AHP 判断矩阵标度含义}
\label{tab:ahp_scale}
\begin{tabular}{|c|p{10cm}|}
\hline
\textbf{标度} & \textbf{含义} \\
1 & 表示两个元素相比, 具有同样的重要性 \\
\hline
3 & 表示两个元素相比, 前者比后者稍重要 \\
\hline
5 & 表示两个元素相比,前者比后者明显重要 \\
7 & 表示两个元素相比,前者比后者极其重要 \\
9 & 表示两个元素相比, 前者比后者强烈重要 \\
2,4,6,8 & 表示上述相邻判断的中间值 \\
1~9 的倒数 & 表示相应两因素交换次序比较的重要性 \\
\end{tabular}
\end{table}
```

查阅资料,结合江浙沪地区实际情况,得出比较判断矩阵如下表

	SO ₂	CO	NO ₂	Оз	PM2.5	PM10
SO ₂	1	4	1/2	1/3	1/3	1/2
CO	1/4	1	1/3	1/4	1/4	1/3
NO ₂	2	3	1	1/2	1/2	1
Оз	3	4	2	1	1	2
PM2.5	3	4	2	1	1	2
PM10	2	3	1	1/2	1/2	1

```
\begin{table}[htbp]
\centering
\caption{比较判断矩阵}
\label{tab:agi matrix}
 \begin{tabular}{c|ccccc}
                                \hline
\label{eq:condition} $$\left(1\right_{4}$ & 1 & \frac{1}{3}$ & \frac{1}{4}$ & \frac{1
\label{locality} $$ \text{$1$ & $\frac{1}{2}$ & $1$ }
\textbf{0\textsubscript{3}} & 3 & 4 & 2 & 1 & 1 & 2
                                                                                                                                                                                                                                                                                        \\
\textbf{PM\textsubscript{2.5}} & 3 & 4 & 2 & 1 & 1 & 2 \\
\\
\end{tabular}
\end{table}
```

3. 计算权重向量

- 求矩阵最大特征值 λ_{\max} 对应的特征向量 $W = [w_1, w_2, ..., w_n]^T$
- 归一化: $w_i = rac{w_i}{\sum w_i}$

计算得 $\lambda_{\text{max}} = 6.15\overline{4}, W = [0.684, 0.335, 1, 1.780, 1.780, 1]^T$,归一化为 $[0.104, 0.051, 0.152, 0.271, 0.271, 0.152]^T$

4. 一致性检验

- 计算一致性指标 $CI = \frac{\lambda_{\max} n}{n-1}$
- 查随机一致性指标 RI
- 要求 $CR = \frac{CI}{RI} < 0.1$ (否则调整判断矩阵)

计算得CI=0.038,查表得RI(6)=1.24,则CR=0.0306<0.1

通过一致性检验

5. 得出权重 w_i

SO ₂	СО	NO ₂	Оз	PM2.5	PM10
0.104	0.051	0.152	0.271	0.271	0.152

优化结果

- $1. EAQI = max(w_i * IAQI_i), IAQI$ 加权后取最大值
- 2. 重新划定EAQI阈值如下:

EAQI范围	EPA描述	GB 3095描述
0-13.5	Good	优
13.5-27	Moderate	良
27-40.5	Unhealthy for Sensitive Groups	轻度污染
40.5-54	Unhealthy	中度污染
54-81	Very Unhealthy	重度污染
81+	Hazardous	严重污染

3. 优点:可结合实际情况(季节、政策、最新研究等)动态调整判断矩阵,进而优化各种污染物的权重,使AQI能充分反映空气污染情况.

3.单污染源空气污染扩散模型(高斯烟羽模型)

核心假设

- (1) 污染源(本题即为烟囱)均匀稳定连续排放污染物
- (2) 区域风向风速稳定
- (3) 污染物在水平和垂直方向上的浓度分布呈正态分布
- (4) 污染物在输送过程中质量守恒

大气点源污染物的实际扩散中,由于大气污染物的密度很小,地面对其有很大的反射作用。为简化问题,以下认为地面对污染物的反射系数为1,因此污染物没有耗散,满足(4)

核心方程

以污染点源在地面的投影为坐标原点,x轴沿风向,y,z分别为风向切向、地表水平面垂向,建立高斯模型坐标系

C(x,y,z,H):位置 (x,y,z) 的污染物浓度 (mg/m^3) ; (H为参数)

Q: 污染物质量排放率(mg/s);

u: 风速(m/s);

H: 污染源有效高度(m);

 $\sigma_y(x), \sigma_z(x)$: 横向扩散参数和垂直扩散参数(m),随下风距离x而变化

$$C(x,y,z,H) = rac{Q}{2\pi\,u\,\sigma_y(x)\,\sigma_z(x)} \exp\!\left[-rac{y^2}{2\sigma_y^2(x)}
ight] \left[\exp\!\left(-rac{(z-H)^2}{2\sigma_z^2(x)}
ight) + \exp\!\left(-rac{(z+H)^2}{2\sigma_z^2(x)}
ight)
ight]$$

问题求解

1.初步求解

(1) 高架点源地面浓度公式, 令z=0, 得

$$C(x,y,0,H) = rac{Q}{\pi\,u\,\sigma_y(x)\,\sigma_z(x)} \exp\!\left[-rac{1}{2}(rac{y^2}{\sigma_y^2(x)} + rac{H^2}{\sigma_z^2(x)})
ight]$$

(2) 在(1)的基础上,进一步令y=0,可得下风轴线(沿x轴方向)上的浓度分布公式

$$C(x,0,0,H) = rac{Q}{\pi\,u\,\sigma_y(x)\,\sigma_z(x)} \exp(-rac{H^2}{2\sigma_z^2(x)})$$

(3) 扩散参数经验公式

用 Pasquill-Gifford 曲线拟合表达式(单位:m):

$$\sigma_y(x) = \gamma_1\,x^{lpha_1}, \quad \sigma_z(x) = \gamma_2\,x^{lpha_2},$$

其中 $(\gamma_1, \alpha_1, \gamma_2, \alpha_2)$ 依大气稳定度类别 A-F 选取。 中国国家标准GB/T 3840-91中对大气稳定度划分的规定如下:

表 B2 大气稳定度的等级

地面风速"。			太 阳 辐	射 等 级		
m·s 1	+ 3	. + 2	+-1	0	-1	-2
.1 %	Λ	A-B	В	D	Е	F
2~2.9	A~B	В	C	1)	Е	F
3~4.9	В	B∼C	С	D	D	E
5~5.9	С	C~D	D	D	D	D
. ≥6	D	D	D	D	D	D

注:1) 地面风速(m·s·)系指离地面10 m 高度处10分钟平均风速,如使用气象台(站)资料,其观测规则与中央气象局编定的《地面气象观测规范》第八章相同。

表 D1 横向扩散参数幂函数表达式系数值 $\sigma_y = \gamma_1 x^{\alpha_1}$ (取样时间0.5 b)

	(取样时)	ы∪.5 b)	
稳定度	α_i	γ,	下风距离,m
	0.901 074	0.425 809	0~1 000
Α	0.850 934	0.602 052	>1 000
В	0.914 370	0.281 846	0~1 000
ь	0. 865 014	0.396353	>1 000
В С	0. 919 325	6, 229 500	0~1 000
БС	0.875 086	0.314 238	>1 000
С	0. 924 279	0.177 154	1~1 000
C	0. 885 157	0. 232 123	>1 000
CD	0. 926 849	0.143 940	1~1 000
CD	0.886 940	0.189 396	>1 000
Γ.	0. 929 418	0.110 726	1~1 000
D	0. 888 723	0.146 669	>1 000
D P	0. 925 118	0. 098 563 1	1~1 000
DE	0. 892 794	0.124 308	>1 000
1.5	0. 920 818	0.086 400 1	1~1 000
Е	0.896 864	0.101 947	>1 000
F.	0. 929 418	0.055 363 4	0~1 000
г	0. 888 723	. 0.073 334 8	>1 000
	表 D2 垂直扩散参数幂函	数表达式系数值 σ _z = γ ₂ x ^{e2}	
稳定度	α_2	7,,	下风距离,m
	1. 121 54	0.079 990 4	0~300
A	1.513 60	0.008 547 71	300~500
	. 2. 108 81	0.000 211 545	>500
ъ	0.961 435	0. 127 190	0~500
В	1.093 56	0. 057 025	>500
D . C	0. 941 015	0.114 682	0~500
B · C	1.007 70	0.075 718 2	>500
С	0.917 595	0. 106 803	>0
	0.838 628	0. 126 152	0~2 000
C D	0.756 410	0. 235 667	2 000~10 000
		1	

0.136 659

>10 000

0.815 575

纽	表	D2
沙	1x	12

稳定度	α_2	γ_2	下风距离,m
	0. 826 212	0.104 634	1~1 000
D	0.632 023	0.400 167	1 000~10 000
	0.555 36	0.810 763	>10 000
DE	0.776 864	0.111 771	0~2 000
	0.572 347	0.528 992 2	2 000~10 000
	0.499 149	.1.038 10	>10 000
***************************************	0.788 370	0.092 752 9	0~1 000
E	0.565 188	0. 433 384	1 000~10 000
	0.414 743	1.732 41	>10 000
	0.784 400	0.062 076 5	0~1 000
· F	0.525 969	0.370 015	1 000~10 000
	0.322 659	2. 406 91	>10 000

分析查得参数应用于高斯烟羽模型

2.模型修正

(1)风速较小时修正

以上分析在风速u>1.5m/s时能得到较好的结果,但在风速u<1.5m/s时没有明显的风向,而且烟囱出风口处的风速可能大于u,与模型的假设不符.

此时有经验公式:

$$C_r = \sqrt{rac{2}{\pi}} rac{q}{2\pi u r \sigma_z(x)} \exp\left(-rac{H^2}{2\sigma_z^2(x)}
ight)$$

其中 C_r 表示距污染点源距离为 \mathbf{r} (单位:m)处的污染物浓度

(2)烟气抬升高度修正

烟囱排出的烟气一开始主要受到热力和动力作用上的抬升,然后才会以扩散作用为主。烟气到达一定高度后趋于稳定,此高度为烟气抬升高度,用 ΔH 表示。

- 有风,中性或不稳定时
 - ① 当烟气热释放率 $Q_h \geq 2100\,\mathrm{KJ/s}$ 且 $\Delta T \geq 35\mathrm{K}$ 时:

$$\Delta H=n_0Q_h^{n_1}H^{n_2}/u$$

 ΔH : 烟气抬升高度 (m)

 n_0 : 烟气热状况及地表状况系数

 n_1 :烟气热释放率指数 n_2 :排气筒烟气高度指数

② 当 1700KJ/s $\leq Q_h \leq$ 2100KJ/s 且 $\Delta T \geq$ 35K 时:

$$\Delta H = \Delta H_1 + (\Delta H_2 - \Delta H_1) rac{Q_h - 1700}{400}$$

其中:

$$\Delta H_1 = rac{2(1.5 V_s D + 0.01 Q_h)}{U} - rac{0.048 (Q_h - 1700)}{U}$$

 V_s : 烟囱出口处烟气排放速度(m/s)

D: 烟囱出口直径(m) ΔH_2 : 按①中公式计算

③ 当 $Q_h \leq 1700 \mathrm{KJ/s}$ 或 $\Delta T < 35 \mathrm{K}$ 时:

$$\Delta H = \frac{2(1.5V_sD + 0.01Q_h)}{U}$$

• 有风且稳定

$$\Delta H = Q_h^{1/3} \left(rac{dT_a}{dZ} + 0.0098
ight)^{-1/3} U^{-1/3}$$

其中 $\frac{dT_a}{dZ}$:烟囱几何高度以上的大气温度梯度(K/m)

• 静风和小风时

$$\Delta H = 5.50 Q_h^{1/4} \left(rac{dT_a}{dZ} + 0.0098
ight)^{-3/8}$$

- 。 其中 $\frac{dT_a}{dZ}$ 取值宜小于0.01K/m。 当 $-0.0098 < \frac{dT_a}{dZ} < 0.01 \mathrm{K/m}$ 时,取 $\frac{dT_a}{dZ} = 0.01 \mathrm{K/m}$ 。 当 $\frac{dT_a}{dZ} \leq -0.0098 \mathrm{K/m}$, ΔH 按①中计算