Университет ИТМО, факультет программной инженерии и компьютерной техники Двухнедельная отчётная работа по «Информатике»: аннотация к статье

Дата	Номер	Название статьи/главы книги/видеолекции	Дата публикации	Размер	Дата
прошедшей	прошедшей		(не старше 2021	статьи (от	сдачи
лекции	лекции		года)	400 слов)	
11.09.2024	1	Этимон цифры и числа	30.08.2023	~2150	25.09.2024
25.09.2024	2	Модификация алгоритма на основе сети	2021, точная дата	~2450	09.10.2024
		Фейстеля с добавлением элемента	не найдена		
		случайности в ключ шифрования			
	3				
	4				
	5				
	6				
	7				

Выполнил(а)_	Снагин С. М.	_, № группы _	P3115	_, оценка	
`	Фамилия И.О. студента			не	заполнять

Прямая полная ссылка на источник или сокращённая ссылка (bit.ly, tr.im и т.п.) https://bit.ly/4dDxNry

Теги, ключевые слова или словосочетания (минимум три слова) криптография, сеть Фейстеля, коды Хэмминга, блочные шифры

Перечень фактов, упомянутых в статье (минимум четыре пункта)

- 1. Сеть Фейстеля (далее СФ) актуальный метод построения блочных шифров, используется в DES, Blowfish, «Магме» и др. криптоалгоритмах.
- 2. Суть С Φ в разбиении данных на несколько частей, одна из которых оборачивается некой функцией (чаще с использованием Φ или сложением по 2^n) и накладывается на другие части.
- 3. В СФ при каждой итерации меняется обрабатываемый блок.
- 4. СФ прост в реализации при ограниченности ресурсов, шифр использует простые функции (\oplus) и алгоритмы шифратора и дешифратора совпадают.
- 5. СФ уязвим к частотному криптоанализу; неполнота обработанных блоков (=> больше итераций и блоков).
- 6. Модификация заключается в использовании числа раундов, : 4, каждый из которых это СФ.
- 7. Модифицированный алгоритм СФ медленнее обычного в среднем в 1.61 раз
- 8. Значение энтропии у модиф. алгоритма чуть больше (± 0.1) , т. к. в нем присутствует элемент случайности.
- 9. Модиф. алгоритм все равно устойчив к сдвиговым атакам за счет инвертирования случайного бита исходного ключа при формировании раундовых ключей.
- 10. С.А. Демин «Вероятностное шифрование»: из-за рандома одному исходному тексту может соответствовать несколько шифротекстов, т. е. по сравнению классическим СФ алгоритм более устойчив к криптоанализу.
- 11. Для модиф. СФ необходимо применять ГПСЧ, что является недостатком.
- 12. Основа для модиф СФ внесение в шифруемый блок данных случайной ошибки, которую можно исправить проверочными битами кода Хэмминга.

Позитивные следствия и/или достоинства описанной в статье технологии (минимум три пункта)

- 1. Повышенная стойкость алгоритма шифрования
- 2. Устойчив к основным видам криптоатак (сдвиговая, грубая сила, диф. анализ,
- 3. Возможность распараллелить шифрования отдельных блоков, т. е. уменьшить время выполнения.

Негативные следствия и/или недостатки описанной в статье технологии (минимум три пункта)

- 1. Несмотря на параллельные вычисления, из-за рандомизации, время шифрования отдельного блока увеличено
- 2. Генерация псевдослучайных чисел повышает сложность реализации алгоритма.
- 3. Размер зашифрованного блока увеличен (хранение контрольных битов того же кода Хэмминга)

Ваши замечания, пожелания преподавателю или анекдот о программистах¹

Сколько пользователей дискорда нужно, чтобы поменять лампочку? — Ноль, ведь они предпочитают Dark Mode!

¹ Наличие этой графы не влияет на оценку