X-ENS PSI 2018

On note $\mathcal{C}([0,1],\mathbb{R})$ l'ensemble des fonctions continues de [0,1] dans \mathbb{R} et pour tout $k \in \mathbb{N}^*$, on note $\mathcal{C}^k([0,1],\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^k de [0,1] dans \mathbb{R} . On dit qu'une fonction $f \in \mathcal{C}([0,1],\mathbb{R})$ est positive si :

$$\forall x \in [0,1], \ f(x) \ge 0$$

Pour toute fonction $f \in \mathcal{C}([0,1],\mathbb{R})$, on définit sa norme infinie par :

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

Etant donné un entier $n \in \mathbb{N}^*$, on note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n. On définit également I_n la matrice identité de taille n. Si $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, on note :

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Si X est une variable aléatoire réelle, on note, sous réserve d'existence, $\mathbb{E}(X)$ et $\mathbb{V}(X)$ son espérance, respectivement sa variance.

Enfin, si $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$, alors $\binom{n}{k}$ désigne le nombre de parties à k éléments d'un ensemble de cardinal n.

On étudie ici l'équation différentielle avec conditions aux limites suivantes :

$$\begin{cases} -u''(x) + c(x)u(x) = f(x), \ x \in [0, 1] \\ u(0) = u(1) = 0 \end{cases}$$
 (1)

où $c \in \mathcal{C}([0,1],\mathbb{R}), f \in \mathcal{C}([0,1],\mathbb{R})$ et c positive

Après avoir montré l'existence et l'iunicité d'une solution $u \in \mathcal{C}^2([0,1],\mathbb{R})$ au problème (1), on s'intéressera à la construction d'une suite d'approximations de u.

Les parties 1,2 et 5 sont indépendantes. Les parties 3 et 4 nécessitent d'utiliser certains résultats établis dans les parties 1 et 2.

1 Existence et unicité des solutions de (1)

1. Soit $\lambda \in \mathbb{R}$. Montrer que le problème

$$\begin{cases}
-v_{\lambda}''(x) + c(x)v_{\lambda}(x) = f(x), & x \in [0, 1] \\
v_{\lambda}(0) = 0 \\
v_{\lambda}'(0) = \lambda
\end{cases}$$
(1bis)

admet une unique solution $v_{\lambda} \in \mathcal{C}^2([0,1],\mathbb{R})$.

2. Montrer que pour tout $\lambda \in \mathbb{R}$, v_{λ} peut s'exprimer sous la forme :

$$v_{\lambda} = \lambda w_1 + w_2$$

avec $w_1 \in \mathcal{C}^2([0,1],\mathbb{R})$ l'unique solution du système

$$\begin{cases}
-w_1''(x) + c(x)w_1(x) = 0, & x \in [0, 1] \\
w_1(0) = 0 \\
w_1'(0) = 1
\end{cases}$$

et w_2 une fonction indépendante de λ à caractériser.

- 3. Montrer que $w_1(1) \neq 0$.
- 4. En déduire qu'il existe une solution $u \in C^2([0,1],\mathbb{R})$ du problème (1). Montrer que cette solution est unique.
- 5. Montrer que si f est positive, alors u est également positive.

2 Une matrice de discrétisation

Soit $n \in \mathbb{N}^*$. On considère A_n la matrice carrée de taille n, constante par diagonale :

$$A_n = \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & \ddots & & \vdots \\ 0 & -1 & 2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{pmatrix}$$

6. Soit $V = {}^t(v_1, \ldots, v_n)$ un vecteur propre de A_n associé à une valeur propre complexe λ . Montrer que λ est nécessairement réelle et que les composantes v_i de V vérifient la relation :

$$v_{i+1} - (2 - \lambda)v_i + v_{i-1} = 0, \ 1 \le i \le n$$

où on pose $v_0 = v_{n+1} = 0$.

- 7. Montrer que toute valeur propre de A_n est dans l'intervalle]0,4[.
- 8. Soit λ une valeur propre de A_n .
 - (a) Montrer que les racines complexes r_1, r_2 du polynôme

$$P(r) = r^2 - (2 - \lambda)r + 1$$

sont distinctes et conjuguées.

- (b) On pose $r_1 = \overline{r_2} = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$. Montrer qu'on a nécessairement $\sin((n+1)\theta) = 0$ et $\rho = 1$.
- 9. Déterminer l'ensemble des valeurs propres de A_n ainsi qu'une base de vecteurs propres.
- 10. On considère la famille de matrices $B = [b_{i,j}]_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ vérifiant les trois propriétés suivantes (appelées M-matrices) :

$$\forall i \in \{1, \dots, n\}, \begin{cases} b_{i,i} > 0 \\ b_{i,j} \le 0 \text{ pour tout } j \ne i \\ \sum_{j=1}^{n} b_{i,j} > 0 \end{cases}$$

Montrer que si B est une M-matrice, alors on a

- (a) B est inversible
- (b) Si $F = {}^{t}(f_1, \ldots, f_n)$ a des coordonnées toutes positives, alors $B^{-1}F$ aussi,
- (c) tous les coefficients de B^{-1} sont positifs.
- 11. En appliquant les résultats précédents à $A_n + \varepsilon I_n$ avec $\varepsilon > 0$, montrer que tous les coefficients de A_n^{-1} sont positifs.

3 Une suite d'approximations de la solution de (1)

Soit $n \in \mathbb{N}^*$ fixé. On note $h = \frac{1}{n+1}$ et on considère les réels $(x_i)_{0 \le i \le n+1}$ définis par $x_i = ih$ pour tout $i \in \{0, \dots, n+1\}$.

12. Montrer que pour toute fonction $v \in \mathcal{C}^4([0,1],\mathbb{R})$, il existe une constante $C \geq 0$, indépendante de n, telle que

$$\forall i \in \{1, \dots, n\}, \ |v''(x_i) - \frac{1}{h^2}(v(x_{i+1}) + v(x_{i-1}) - 2v(x_i))| \le Ch^2$$

13. Montrer qu'il existe une unique famille de réels $(u_i)_{0 \le i \le n+1}$ vérifiant

$$\begin{cases}
-\frac{1}{h^2}(u_{i+1} + u_{i-1} - 2u_i) + c(x_i)u_i = f(x_i), & \text{pour } 1 \le i \le n \\
u_0 = u_{n+1} = 0
\end{cases}$$
(2)

14. On suppose (dans cette question seulement) que c(x) = 0 et f(x) = 1 pour tout $x \in [0, 1]$. On note u la solution exacte du problème (1). Montrer que pour tout $i \in \{0, ..., n+1\}$, on a

$$u_i = u(x_i) = \frac{1}{2}x_i(1 - x_i)$$

15. Montrer que si f est positive, alors $u_i \geq 0$ pour tout $i \in \{0, \dots, n+1\}$.

4 Un premier résultat de convergence

Dans toute cette partie, on supposera de plus que $c \in C^2([0,1],\mathbb{R})$ et que $f \in C^2([0,1],\mathbb{R})$ (c est toujours positive également).

16. Soit $n \in \mathbb{N}^*$. On définit l'application N de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} par la relation :

$$N(A) = \sup\{ ||Ax||_{\infty}, ||x||_{\infty} \le 1 \}$$

Montrer que N est une norme sur $\mathcal{M}_n(\mathbb{R})$ et que si $A = [a_{i,j}]_{1 \leq i,j \leq n}$, alors

$$N(A) = \max_{i \in \{1, \dots, n\}} \sum_{j=1}^{n} |a_{i,j}|$$

- 17. Soit $n \in \mathbb{N}^*$.
 - (a) En utilisant les résultats des questions 14 et 15, montrer que pour la matrice A_n définie au début de la partie 2, on a :

$$N(((n+1)^2 A_n)^{-1}) \le \frac{1}{8}$$

(b) En déduire que pour toute matrice diagonale $D_n = [d_{i,j}]_{1 \le i,j \le n}$ telle que $d_{i,i} \ge 0$ pour tout $i \in \{1,\ldots,n\}$, on a également

$$N(((n+1)^2A_n + D_n)^{-1}) \le \frac{1}{8}$$

18. Soit u l'unique solution du problème (1) et $(u_i)_{0 \le i \le n+1}$ la famille définie par la relation (2) pour $n \in \mathbb{N}^*$. Montrer qu'il existe une constante $\tilde{C} > 0$, indépendante de n, telle que

$$\max_{0 \le i \le n+1} |u(x_i) - u_i| \le \frac{\tilde{C}}{n^2}$$

Indication: on pourra introduire le vecteur $X = {}^{t}(\varepsilon_1, \dots, \varepsilon_n)$ où on a posé $\varepsilon_i = u(x_i) - u_i$ et calculer $A_n X$.

5 Un second résultat de convergence

On suppose dans cette partie que $f \in \mathcal{C}([0,1],\mathbb{R})$ est telle que :

$$\exists \alpha \in]0,1], \ \exists K \geq 0, \ \forall (y,z) \in [0,1]^2, \ |f(y) - f(z)| \leq K|y - z|^{\alpha}$$

On suppose également que :

$$\forall x \in [0, 1], \ c(x) = 0$$

On note u la solution associée au système (1).

Pour tout $n \in \mathbb{N}^*$, on définit les deux polynômes :

$$B_n f(X) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} X^k (1-X)^{n-k}$$

$$\hat{B}_{n+1}u(X) = \sum_{k=0}^{n} u_k \binom{n+1}{k} X^k (1-X)^{n+1-k}$$

où u_0, \ldots, u_n sont solutions du système (2), avec c = 0.

19. Soit $x \in]0,1[$ et $n \in \mathbb{N}^*$. On considère X_1,\ldots,X_n des variables aléatoires mutuellement indépendantes et suivant toutes la même loi de Bernoulli de paramètre x. on pose

$$S_n = \frac{X_1 + \dots + X_n}{n}$$

- (a) Exprimer $\mathbb{E}(S_n)$, $\mathbb{V}(S_n)$ et $\mathbb{E}(f(S_n))$ en fonction de x, n et du polynôme $B_n f$.
- (b) En déduire les inégalités :

$$\sum_{k=0}^{n} \left| x - \frac{k}{n} \right| \binom{n}{k} x^{k} (1-x)^{n-k} \le \mathbb{V}(S_{n})^{\frac{1}{2}} \le \frac{1}{2\sqrt{n}}$$

20. Montrer que $\lambda^{\alpha} \leq 1 + \lambda$ pour tout réel $\lambda > 0$ et en déduire l'inégalité :

$$\left| x - \frac{k}{n} \right|^{\alpha} \le n^{-\alpha/2} \left(1 + \sqrt{n} \left| x - \frac{k}{n} \right| \right)$$

pour tous $x \in]0,1[, n \in \mathbb{N}^* \text{ et } k \in \{0,\ldots,n\}.$

21. Soit $n \in \mathbb{N}^*$. Montrer que

$$||f - B_n f||_{\infty} \le \frac{3K}{2} \frac{1}{n^{\alpha/2}}$$

Indication: On pourra dans un premier temps exprimer $f(x) - B_n f(x)$ en fonction de $\mathbb{E}(f(x) - f(S_n))$.

22. Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in]0,1[$ on a :

$$(\hat{B}_{n+1}u)''(x) = -\frac{n}{n+1} \sum_{\ell=0}^{n-1} f\left(\frac{\ell+1}{n+1}\right) \binom{n-1}{\ell} x^{\ell} (1-x)^{n-1-\ell}$$

- 23. Soit $n \in \mathbb{N}^*$ tel que $n \geq 2$. On pose $\chi_{n+1} = \hat{B}_{n+1}u u$.
 - (a) Montrer que

$$\|\chi_{n+1}''\|_{\infty} \le \|f - B_{n-1}f\|_{\infty} + \frac{1}{n+1}\|f\|_{\infty} + K\frac{1}{(n+1)^{\alpha}}$$

(b) Montrer que pour tout $x \in [0,1]$ il existe $\xi \in [0,1]$ tel que

$$\chi_{n+1}(x) = -\frac{1}{2}x(1-x)\chi_{n+1}''(\xi)$$

Indication : on pourra pour $x \in]0,1[$ considérer la fonction

$$h(t) = \chi_{n+1}(t) - \frac{\chi_{n+1}(x)}{x(1-x)}t(1-t), \ t \in [0,1]$$

24. En déduire qu'il existe une constante $M \geq 0$ telle que pour tout $n \in \mathbb{N}^*$, on a

$$||u - \hat{B}_{n+1}u||_{\infty} \le \frac{M}{n^{\alpha/2}}$$