נוי

标准梯形图功能说明

1 地址定义

CN61	PLC地址	地址符号	地址定义的功能	备 注	
1	X0.0	TDEC	刀盘回零到位检测	BT40圆盘型/斗笠	
2	X0.1	SP	外接进给保持信号		
3	X0.2	TPCH	气缸压力检测	BT40圆盘型/斗笠	
4	X0.3				
5	X0.4	TCOT	刀位计数	BT40圆盘型/斗笠	
6	X0.5	ESP	外接急停信号	固定地址	
7	X0.6	ТНСН	刀套水平到位检测/刀盘后退到位 检测	BT40圆盘型/斗笠	
8	X0.7	TVCH	刀套垂直到位检测/刀盘前进到位 检测	BT40圆盘型/斗笠	
9	X1.0	THSP	圆盘刀库换刀臂停止检测	BT40圆盘型	
10	X1.1	THGT	圆盘刀库换刀臂抓刀检测	BT40 圆盘型	
11	X1.2	THZP	圆盘刀库换刀臂原点检测	BT40 圆盘型	
12	X1.3				
13	X1.4	ST	外接启动信号		
14	X1.5	JOGT	外接主轴松紧刀输入	BT40圆盘型/斗笠	
15	X1.6	SAGT	防护门信号/润滑液位低信号		
16	X1.7	TRCH	主轴松刀到位检测	BT40圆盘型/斗笠	
29	X2.0	TGCH	主轴紧刀到位检测	BT40圆盘型/斗笠	
30	X2.1	THOV	圆盘刀库换刀臂电机过载	BT40圆盘型	
31	X2.2	TTOV	刀盘电机过载	BT40圆盘型/斗笠	
32	X2.3				
33	X2.4				
34	X2.5				
35	X2.6				
36	X2.7	LTXN	X轴负向限位		
37	X3.0	LTXP	X轴正向限位		
38	X3.1	LTYN	Y轴负向限位		
39	X3.2	LTYP	Y轴正向限位		
40	X3.3	DTLO	分度台松开到位		
41	X3.4	DTCL	分度台夹紧到位		
42	X3.5	SKIP	跳转信号	固定地址	
43	X3.6	LTZN	Z轴负向限位		

ı	_	_	

44	X3.7	LTZP	Z轴正向限位	
17~20	悬空			
21~24	0V			
25~28	悬空			

CN62	PLC地址	地址符号	地址定义的功能	备注
1	Y0.0	COOL	冷却信号	
2	Y0.1	LUBR	润滑输出信号	
3	Y0.2	SRDY	抱闸释放信号	
4	Y0.3	SRV	主轴逆时针转信号	
5	Y0.4	SFR	主轴顺时针转信号	
6	Y0.5	BLOW	工件吹气	
7	Y0.6	WLIGHT	工作灯	
8	Y0.7	SPZD	主轴制动信号	
9	Y1.0	GEAR1	主轴机械档位信号1	
10	Y1.1	GEAR2	主轴机械档位信号2	
11	Y1.2	GEAR3	主轴机械档位信号3	
12	Y1.3	GEAR4	主轴机械档位信号4	
13	Y1.4	THOR	刀套垂直	BT40 圆盘型/斗笠
14	Y1.5	TVER	刀套水平	BT40 圆盘型/斗笠
15	Y1.6	TCW	刀盘电机顺时针转	BT40 圆盘型/斗笠
16	Y1.7	TCCW	刀盘电机逆时针转	BT40 圆盘型/斗笠
29	Y2.0	TROT	主轴松紧刀输出	BT40圆盘型/斗笠
30	Y2.1	THOT	圆盘刀库换刀臂输出电机	BT40圆盘型
31	Y2.2	CLPY	三色灯-黄灯	
32	Y2.3	CLPG	三色灯-绿灯	
33	Y2.4	CLPR	三色灯-红灯	
34	Y2.5	TKNOUT	排屑反转输出	MDi-H下有效
35	Y2.6	TKOUT	排屑正转输出	
36	Y2.7	ALTO	翻转输出信号	
37	Y3.0			
38	Y3.1	ITLS	分度台松开信号	
39	Y3.2	ITCP	分度台夹紧信号	
40	Y3.3			
41	Y3.4			
42	Y3.5	SPZD2	第二主轴制动	第二主轴控制
43	Y3.6			
44	Y3.7			
17~19	0V			
20~25	24V			
26~28	0V			

CN31	PLC地址	地址符号	地址定义的功能	备注
5	X6.0	EHDX	外接手轮X轴选	
6	X6.1	EHDY	外接手轮Y轴选	
8	X6.2	EHDZ	外接手轮Z轴选	
25	X7.5	EHD4	外接手轮4th轴选	
7	X7.1	EHD5	外接手轮5th轴选	
9	X6.3	EMP0	外接X1倍率	
22	X6.4	EMP1	外接X10倍率	
23	X6.5	EMP2	外接X100倍率	
1	HA+			
2	HA-			
3	HB+			
4	HB-			
7	悬空			
10~13	0V			
14~16	5V			
17~18	24V			
19~21	悬空			
24、26	悬空			

CN15	PLC地址	地址符号	地址定义的功能	备注
8	X5.0	SPAL	主轴1报警输入信号	
9	X5.1			
6	Y5.0	SRV	主轴1逆时针旋转	
7	Y5.1	SFR	主轴1顺时针旋转	
3	Y5.2			
4	GND			
5	SVC			
2	0V			
1	+24V			

CN16	PLC地址	地址符号	地址定义的功能	备注
8	X8.0	SPAL2	主轴2报警输入信号	
9	X8.1			
6	Y8.0	SRV2	主轴2逆时针旋转	
7	Y8.1	SFR2	主轴2顺时针旋转	
3	Y8.2			
4	GND			
5	SVC			
2	0V			
1	+24V			

其他地址定义请参考第三篇-安装连接

2 功能配置

2.1 第一主轴旋转控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
		机床面板主轴顺时针转键		X21.7	
输入信号		机床面板主轴逆时针转键		X21.3	
棚八百分		机床面板主轴停止键		X21.5	
	SPAL	主轴报警信号		X5.0	
	CDV	主轴逆时针转信号	CN62.4	Y0.3	
	SRV	土相翅的 打 校 信 与		Y5.1	
	SFR	主轴顺时针转信号	CN62.5	Y0.4	
输出信号		土神顺时打构信与		Y5.0	
棚山頂与	SPZD	主轴制动信号	CN62.8	Y0.7	
		机床面板主轴逆时针转指示灯		Y23.1	
		机床面板主轴顺时针转指示灯		Y19.1	
		机床面板主轴停止指示灯		Y18.0	
	M03	主轴顺时针转指令信号			
指令输入	M04	主轴逆时针转指令信号			
	M05	主轴停止指令信号			

● 控制参数

3712

主轴类型(0: 开关量主轴; 1: 模拟主轴; 2: 串行主轴)

ı							
	K0010		MTSS			RSJG	

RSJG =1: 复位时, CNC不关闭主轴、冷却、润滑输出信号;

=0: 复位时, CNC关闭主轴、冷却、润滑输出信号;

MTSS =1: 执行M30时不停止主轴;

=0: 执行M30时停止主轴。

DT0021	
DT0022	
DT0023	

M代码执行持续时间
主轴停止到制动输出的延迟时间
主轴制动输出时间

● 动作时序

主轴动作时序如下图所示:

注: DT022 为从发出主轴停止信号到发出主轴制动信号的延迟时间; DT023 为主轴制动保持时间。

录

● 控制逻辑

CNC 上电后,SSTP 输出有效。在 SSTP 输出有效时,执行 M03 或 M04,对应的 SRV 或 SFR 输出有效并保持,同时关闭 SSTP 输出; SFR 或 SRV 输出有效时,执行 M05,关闭 SFR 或 SRV 的输出,SSTP 输出有效并保持; 主轴制动 SPZD 信号输出延时由 PLC 数据 DT022(主轴停止指令输出到主轴制动 SPZD 信号输出之间的延时时间)设定,制动信号保持的时间由 PLC 数据 DT023(主轴制动输出时间)设定;

如当前主轴处于顺时针转或逆时针转状态,则执行 M04 或 M03 时,产生 PLC 报警 A0.3: M03、M04 指定错误。

注 1: CNC 外部急停或主轴报警时,关闭主轴旋转输出信号,同时输出 SSTP 信号;

注 2: CNC 复位时, 由 PLC 状态 K0010 的 RSJG 位设置是否取消 SFR、SRV 的输出;

当 RSJG=0 时, CNC 复位关闭 SFR、SRV 的输出;

当 RSJG=1 时, CNC 复位, SFR、SRV 的输出状态保持不变。

注 3: 执行 M30 时,由 PLC 状态 K0010 的 MTSS 位设置是否取消 SFR、SRV 的输出;

注 4: CNC 检测到主轴报警信号 SPAL 后,产生 3036 号报警:主轴驱动器未准备就绪,同时 F35.0 置 1;

注5: 主轴模拟量控制时, 当输出的电压>0时, 主轴使能信号有效。

注 6: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯 (主轴正转信号: G70.5, 珠主轴反转信号: G70.4)。

2.2 第二主轴旋转控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SPAL2	第二主轴报警信号		X8.0	
	SRV2	第二主轴逆时针转信号		Y8.0	
输出信号	SFR2	第二主轴顺时针转信号		Y8.1	
	SPZD	第二主轴制动信号	CN62.42	Y3.5	
	M73	第二主轴顺时针转指令信号			
指令输入	M74	第二主轴逆时针转指令信号			
	M75	第二主轴停止指令信号			

注:第一主轴相关信号参照主轴旋转控制说明

● 参数控制

2244—14	
3710	系统主轴数
3712	主轴类型(0: 开关量主轴;1: 模拟主轴;2: 串行主轴)
DT0021	M代码执行持续时间
DT0022	主轴停止到制动输出的延迟时间
DT0023	主轴制动输出时间
K0013	EMS EMS

EMS

=0: 多主轴功能无效

=1: 多主轴功能有效

● 多主轴功能说明

S 代码作为指定选定主轴速度旋转,如果一个主轴对应的选择信号没有选通,它将以之前的速度继续旋转。这样就能实现多个主轴在同一时间内以不同的速度旋转。

● 多主轴控制说明

- ▶ 多主轴功能只有主轴处于模拟电压方式控制下才有效
- ▶ M03/M04 S□□□□ 切换为第一主轴且主轴正反转
- ▶ M73/M74 S□□□□ 切换为第二主轴且主轴正反转
- ➤ M05/M75 第一主轴/第二主轴停止正反转
- ▶ 操作面板逆时针转按键灯、主轴停止按键灯、顺时针转按键灯只反应第一主轴的旋转状态,不反映 第二主轴的旋转状态

● 时序图

● 控制逻辑

CNC 上电后,系统当前处于第一主轴状态。系统通过 M03、M04 控制第一主轴的正反转输出。M73、M74 为切换到第二主轴进行主轴正反转输出。完成切换后,对当前主轴的控制逻辑跟主轴旋转中的主轴控制逻辑一致。

如当前第二主轴处于顺时针转或逆时针转状态,则执行 M74 或 M73 时,产生 PLC 报警 A0.7: M73、M74 指定错误。

- 注1: 输入 S 值为指定主轴下的速度变更
- 注 2: 切换主轴时,如果将要切换的主轴正在旋转,则切换时,必须输入跟将要切换主轴旋转方向一致的 M 指令或者先停止将要切换的主轴旋转,否则将产生 PLC 报警:主轴旋转方向指定错误。
 - 注 3: CNC 外部急停或者主轴报警时,关闭多主轴旋转输出信号,同时输出停止信号
- 注 4: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯 (主轴正转信号: G74.5, 珠主轴反转信号: G74.4)。

2.3 第三主轴旋转控制

-> +ID V					
信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SPAL	第三主轴报警信号		X5.0	
输出信号	SRV1	第三主轴逆时针转信号		Y5.0	
棚山頂与	SFR1	第三主轴顺时针转信号		Y5.1	
指令输入	M83	第三主轴顺时针转指令信号			

	M84	第三主轴逆时针转指令信号		
	M85	第三主轴停止指令信号		

● 参数控制

	_		
3710		系统主轴数	
3712]	主轴类型(0: 开关量主轴;1: 模拟主轴;2: 串行主轴)	

K0013 EMS SP3

EMS =0: 多主轴功能无效;

=1: 多主轴功能有效;

SP3 =0: 第3主轴无效;

=1: 第3主轴有效。

● 多主轴控制说明

- ▶ 多主轴功能只有主轴处于模拟电压方式控制下才有效
- ▶ M03/M04 S□□□□ 切换为第一主轴且主轴正反转
- ▶ M73/M74 S□□□□ 切换为第二主轴且主轴正反转
- ▶ M83/M84 S□□□□ 切换为第三主轴且主轴正反转
- ▶ M05/M75/M85 第一主轴/第二主轴/第三主轴停止
- ▶ 操作面板逆时针转按键灯、主轴停止按键灯、顺时针转按键灯只反应第一主轴的旋转状态,不反映 第三主轴的旋转状态

● 控制逻辑

第三主轴旋转控制逻辑跟第二主轴旋转控制逻辑一致。当第三主轴设为有效时, X5.0、Y5.0、Y5.1 为第三主轴控制信号, 第三主轴类型设为模拟主轴时使用模拟主轴 1(CN15)输出端口。

注1: 输入 S 值为指定主轴下的速度变更

注 2: 切换主轴时,如果将要切换的主轴正在旋转,则切换时,必须输入跟将要切换主轴旋转方向一致的 M 指令或者先停止将要切换的主轴旋转,否则将产生 PLC 报警:主轴旋转方向指定错误。

注 3: CNC 外部急停或者主轴报警时,关闭多主轴旋转输出信号,同时输出停止信号

注 4: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯 (主轴正转信号: G78.5, 珠主轴反转信号: G78.4)。

2.4 T型自动换挡

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	ASP1	第一档主轴到位信号	CN61.7	X0.6	
输入信号	ASP2	第二档主轴到位信号	CN61.8	X0.7	
棚八百 5	ASP3	第三档主轴到位信号	CN61.9	X1.0	
	ASP4	第四档主轴到位信号	CN61.10	X1.1	
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
输出信号	GEAR2	主轴机械档位信号2	CN62.10	Y1.1	
制田口ユ	GEAR3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR4	主轴机械档位信号4	CN62.12	Y1.3	
指令输入	M41	主轴自动换挡第一档			

ı		=	
k	حَ	•	
ĸ	~		

M42	主轴自动换挡第二档		
M43	主轴自动换挡第三档		
M44	主轴自动换挡第四档		

● 功能描述

主轴自动换挡功能用于控制自动切换机械档位,CNC执行S□□□□代码时,根据当前M指令控制对应参数(M41~M44 分别控制数据参数 NO3741~NO3744)计算输出给主轴伺服或者变频器的模拟电压,控制主轴实际转速与S代码的转速一致。

● 参数控制

K 参数:

K13 SPCD SPCH SPSE

SPCD =1: 主轴自动换挡功能有效

=0: 主轴自动换挡功能无效

SPCH =1: 主轴自动换挡到位检测信号无效

=0: 主轴自动换挡到位检测信号有效

SPSE =1: 主轴自动换挡输出档位信号保持

=0: 主轴自动换挡输出档位信号不保持

数据参数:

3741 S1	GRMAX1(第一主轴第一档的主轴最高转速)
3742 S1	GRMAX2(第一主轴第二档的主轴最高转速)
3743 S1	GRMAX3(第一主轴第三档的主轴最高转速)
3744 S1	GRMAX4(第一主轴第四档的主轴最高转速)

PLC 参数:

	_
DT32	主轴自动换挡速度设置(0~4095)
DT33	主轴自动换挡关闭原档位时间
DT34	主轴自动换挡到位以后,延时结束时间
DT35	自动换挡检测时间
DT50	换挡摆动间隔时间
DT51	换挡摆动输出时间

DT33: 初始化为5秒,用户根据需要调整该参数,应避免设置时间过短而主轴未能切换到低速换挡导致主轴损坏;该参数设置过长,则时间性相对较低,影响加工效率;

DT34: 初始化为 5 秒,用户根据需要调整,该参数设置过短则在 M 指令完成时间内不能到达指定档位速度,设置过长则影响加工效率。

● 动作时序

1.到位检测信号有效(K13.1=0)时: 控制逻辑描述下的动作时序如下:

2. 到位检测信号无效(K13.1=1)时:

● 控制逻辑

- ▶ 将 K13.7 参数设置为 1 的时候, 主轴自动换挡功能有效;
- ▶ 执行 M41、M42、M43、M44 中任意一个代码,判断输入档位跟当前档位是否一致,一致则不进行 换挡;
- ▶ 换挡开始时,按参数 DT30 设置值输出模拟电压给主轴伺服或者变频器;
- ▶ 延时参数 DT33 (换挡时间 1) 后,关闭原档位输出信号同时输出新的换挡信号;
- ▶ 检测换挡是否到位,如果不到位则等待到位信号;
- ▶ 在 DT35 设置时间内,如果换挡未到位则提示报警 A1.0;

换挡到位后,延时参数 DT34 (换挡时间 2),根据当前档位按参数 NO3741~NO3744 设置值输出模拟电压,换挡结束。

- 注 1: 必须在选择主轴转速是模拟电压控制方式下,主轴自动换挡功能才有效;
- 注 2: 主轴功能无效时, 执行 M41~M44 将报警;
- 注 3: 主轴换挡功能转换需检测到位信号,检测到位信号后换挡功能才完成。

2.5 M型自动换挡

틌
\overline{x}

	ASP1	第一档主轴到位信号	CN61.7	X0.6	
输入信号	ASP2	第二档主轴到位信号	CN61.8	X0.7	
	ASP3	第三档主轴到位信号	CN61.9	X1.0	
	ASP4	第四档主轴到位信号	CN61.10	X1.1	
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
输出信号	GEAR2	主轴机械档位信号2	CN62.10	Y1.1	
加山口了	GEAR3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR4	主轴机械档位信号4	CN62.12	Y1.3	
	M41	主轴自动换挡第一档			
指令输入	M42	主轴自动换挡第二档			
	M43	主轴自动换挡第三档			
	M44	主轴自动换挡第四档			

● 功能描述

选择 M 型换档时,根据数据参数的设定值和 S 指令值, CNC 作出判断是否进行换挡,并输出给 PLC,指定主轴转速所需的齿轮级数。

● 参数控制

K 参数:

	K13		SPCD	EMS	SPMT				SPCH	SPSE
--	-----	--	------	-----	------	--	--	--	------	------

SPCD =1: 主轴自动换挡功能有效

=0: 主轴自动换挡功能无效

EMS =1: 多主轴功能有效

=0: 多主轴功能无效

SPMT =1: 主轴自动换挡类型为 M型

=0: 主轴自动换挡类型为T型

SPCH =1: 主轴自动换挡到位检测信号无效

=0: 主轴自动换挡到位检测信号有效

SPSE =1: 主轴自动换挡输出档位信号保持

=0: 主轴自动换挡输出档位信号不保持

数据参数:

3735	
3736	
3741 S1	
3742 S1	
3743 S1	
3744 S1	

M型换挡时,	主轴电机最小钳制速度(12位代码值)
M型换挡时,	主轴电机最大钳制速度(12位代码值)
GRMAX1	(第一主轴第一档的主轴最高转速)
GRMAX2	(第一主轴第二档的主轴最高转速)
GRMAX3	(第一主轴第三档的主轴最高转速)
GRMAX4	(第一主轴第四档的主轴最高转速)

PLC 参数:

DT32	主轴自动换挡速度设置(0~4095)				
DT33	主轴自动换挡关闭原档位时间				
DT34	主轴自动换挡到位以后,延时结束时间				
DT35	自动换挡时间				
DT50	换挡摆动间隔时间				
DT51	换挡摆动输出时间				

DT33: 初始化为5秒,用户根据需要调整该参数,应避免设置时间过短而主轴未能切换到低速换挡

导致主轴损坏; 该参数设置过长,则时间性相对较低,影响加工效率;

DT34: 初始化为 5 秒,用户根据需要调整,该参数设置过短则在 M 指令完成时间内不能到达指定档位速度,设置过长则影响加工效率。

● 动作时序

控制逻辑描述下的动作时序如下:

● 控制逻辑

- ▶ 将 K13.7 和 K13.5 参数设置为 1 的时候, M 型自动换挡功能有效;
- ▶ 执行 S 指令,判断是否需要换挡,需要换挡时输出对应档位信号(F34.0~F34.3);
- ▶ 换挡开始时,按参数 DT30 设置值输出模拟电压给主轴伺服或者变频器;
- ▶ 延时参数 DT33 (换挡时间 1) 后,关闭原档位输出信号同时输出新的换挡信号;
- ▶ 检测换挡是否到位,如果不到位则等待到位信号;
- ➤ 在 DT35 设置时间内,如果换挡未到位或者未完成,则提示报警 A1.0;

换挡到位后,延时参数 DT34(换挡时间 2),根据当前档位按参数 NO3741 \sim NO3744 设置值输出模拟电压,换挡结束。

- 注 1: 必须在选择主轴转速是模拟电压控制方式下,主轴自动换挡功能才有效;
- 注 2: M型自动换挡只能在单模拟主轴下才有效;
- 注 3: 主轴换挡功能转换需检测到位信号,检测到位信号后换挡功能才完成。

2.6 主轴转速开关量控制

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
输出信号	GEAR 2	主轴机械档位信号 2	CN62.10	Y1.1	
	GEAR 3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR 4	主轴机械档位信号 4	CN62.12	Y1.3	
	S01	主轴档位信号1指令信号			
	S02	主轴档位信号2指令信号			
指令输入	S03	主轴档位信号3指令信号			
	S04	主轴档位信号4指令信号			
	S00	主轴档位信号取消指令信号			

● 控制参数

0)	0	1			ACS		
Ž	对应F地址		.址			F200.4		

ACS =1: 主轴转速模拟电压或总线控制;

=0: 主轴转速开关量控制。

1	7	3					ESCD
对应F地址						F211.4	

ESCD =0: 急停时不关S代码;

=1: 急停时关S代码。

DT0019	S代码执行时间
DT0024	档位主轴换档延迟时间

● 控制逻辑

CNC上电时,GEAR1~GEAR4输出无效。执行S01、S02、S03、S04中任意一个指令,对应的S信号输出有效并保持,同时取消其余3个S信号的输出。执行S00指令时,取消GEAR1~GEAR4的输出,GEAR1~GEAR4同一时刻仅一个有效。

2.7 循环启动和进给保持

● 相关信号

信号类型	信号	信号意义	对应引脚	PLC状态	C NC诊断
	符号				
			CN78.7	X9.0	MDi-H下无效
		外接循环启动信号	CN65	X28.0	只在MDi-H有效
				X1.4	
输入信号			CN78.6	X9.1	MDi-H下无效
棚八百分		外接进给保持信号	CN65	X28.1	只在MDi-H有效
				X0.1	
		机床面板循环启动键信号		X23.0	MDi-H是X22.5
		机床面板进给保持键信号		X22.7	
		机床面板循环启动指示灯		Y20.0	
		机床面板进给保持指示灯		Y21.0	
输出信号		外接循环启动指示灯	CN78.2	Y9.0	MDi-H下无效
棚田宿夕 			CN65	Y29.0	只在MDi-H有效
		外接进给保持指示灯	CN78.1	Y9.1	MDi-H下无效
			CN65	Y29.1	只在MDi-H有效
指令输入	M00	进给保持信号		F9.7	

● 控制参数

1	7	2		MST	MSP
对	应F地	址		F210.6	F210.5

MST =1: 外接循环启动信号无效;

- =0: 外接循环启动信号有效;
- MSP =1: 外接进给保持信号无效;
 - =0: 外接进给保持信号有效,此时必须外接暂停开关,否则 CNC 显示"暂停"报警。

2.8 冷却控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板冷却键信号		X21.4	
於山岸里		机床面板冷却启动指示灯		Y23.0	
输出信号	COOL	冷却输出信号	CN62.1	Y0.0	
比么於)	M08	冷却开启指令信号			
指令输入	M09	冷却关闭指令信号			

● 控制参数

K0010	MTCC RSJG
-------	-----------

RSJG =1: 复位时, CNC不关闭主轴、冷却、润滑输出信号;

=0: 复位时, CNC关闭主轴、冷却、润滑输出信号;

MTCC =1: 执行M30时不关闭冷却输出信号; =0: 执行M30时关闭冷却输出信号。

● 功能描述

CNC 上电后, COOL 输出无效。执行 M08 指令, COOL 输出有效, 冷却泵开; 执行 M09 指令, 取消 COOL 输出, 冷却泵关。

注 1: CNC 复位时,由 PLC 状态 K10 的 RSJG 位设置是否关闭冷却输出;

注 2: MO9 无对应的输出信号, 执行 MO9 取消 MO8 的输出;

注 3: 执行 M30 时,由 PLC 状态 K10 的 MTCC 位设置是否关闭冷却输出。

2.9 润滑控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板润滑键信号		X21.6	
输出信号		机床面板润滑启动指示灯		Y20.7	
1111日日日	LUBR	润滑输出信号	CN62.2	Y0.1	
比 众 於)	M32	润滑开启指令信号			
指令输入	M33	润滑关闭指令信号			

● 控制参数

DT0016
DT0017
DT0018

自动润滑间隔时间
润滑输出时间
上电润滑时间 >0:上电润滑有效

● 功能描述

GSK980MDi 标准梯形图定义的润滑功能有两种,非自动润滑和自动润滑,通过 PLC 数据进行设置:

DT0017=0: 非自动润滑和翻转润滑;

>0: 自动润滑和翻转润滑,可设置 DT16 和参数 K19 的 BIT0

DT0018 =0: 上电润滑无效

>1: 上电润滑有效

1、翻转润滑

当 DT17 设置大于 0, DT16 等于 0, 为系统翻转润滑控制, 翻转润滑是指:手动启动润滑后,在 DT17 设置的时间内进行润滑,当到达时间以后,系统结束润滑。下一次启动润滑,必须再次手动启动润滑按键。

2、自动润滑:

系统上电后经过 DT0016 设置的时间后,开始润滑 DT0017 设置的时间,然后停止输出,再重复经过 DT0016 设置的时间然后输出润滑,依次循环。自动润滑时,M32、M33 指令无效;

当处于自动润滑期间,当前润滑没有启动时,按面板手动润滑键,也可以启动润滑输出,输出时间为 DT17,输出结束后,重新开始自动润滑循环;若当前润滑启动了,按面板手动润滑键可以结束当前润滑输出,重新开始自动润滑循环。

2.10 程序段选跳

在程序中不想执行某一段程序段而又不想删除该程序段时,可选择程序段选跳功能。当程序段段首具有"/"号且程序段选跳开关打开(机床面板跳段按键输入有效)时,在自动运行时此程序段跳过不运行。

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板程序选跳键		X18.7	
输出信号		机床面板程序跳选指示灯		Y18.6	

功能描述

- 1、 当程序跳段信号有效时, 段首带 "/"标记的程序段被跳过不执行;
- 2、程序选跳功能只在自动方式、录入方式、DNC方式下才有效。

2.11 机床锁

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板机床锁键		X19.0	
输出信号		机床面板机床锁指示灯		Y18.5	

● 功能描述

1、 机床锁在任何方式下都有效;

侨

2、程序运行时,不可切换机床锁状态。

2.12 辅助锁

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板辅助锁键		X19.1	
输出信号		机床面板辅助锁指示灯		Y18.4	

● 功能描述

辅助锁在自动方式、录入方式或 DNC 方式下有效。

2.13 程序单段

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板单段键		X18.6	
输出信号		机床面板程序单段指示灯		Y18.7	

● 功能描述

程序单段在自动方式、录入方式或 DNC 方式下有效。

2.14 程序空运行

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板空运行键		X19.2	
输出信号		机床面板程序空运行指示灯		Y18.3	

● 功能描述

- 1、程序空运行在自动方式、录入方式或 DNC 方式下有效;
- 2、程序运行时,不可以切换空运行状态。

2.15 选择停

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板选择停键		X20.0	
指令输入	M01	选择停指令		F9.6	
输出信号		机床面板选择停指示灯		Y21.7	

● 功能描述

在自动、录入、DNC操作方式下,按 维特 键使选择停按键指示灯亮,则表示进入选择停状态;

此时程序运行到M01指令时,将被"暂停"。需再次按证标题划键,程序才继续往下执行。

2.16 行程限位与急停

● 相关信号

1、正负超程信号独立处理:

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	ESP	外接急停信号	CN61.6	X0.5	
	LTXN	X轴负向限位	CN61.36	X2.7	
	LTXP	X轴正向限位	CN61.37	X3.0	
	LTYN	Y轴负向限位	CN61.38	X3.1	
	LTYP	Y轴正向限位	CN61.39	X3.2	
输入信号	LTZN	Z轴负向限位	CN61.43	X3.6	
棚八百 5	LTZP	Z轴正向限位	CN61.44	X3.7	
	LT4N	4 th 轴负向限位	CN61.40	X3.3	
	LT4P	4 th 轴正向限位	CN61.41	X3.4	
	LT5N	5 th 轴负向限位	CN61.30	X2.1	
	LT5P	5 th 轴正向限位	CN61.31	X2.2	

2、正负超程信号合用处理时超程信号:

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	LTXP	X轴限位	CN61.37	X3.0	
	LTYN	Y轴限位	CN61.38	X3.1	
	LTYP	Z轴限位	CN61.39	X3.2	
	LT4N	4 th 轴限位	CN61.40	X3.3	
	LT4P	5 th 轴限位	CN61.41	X3.4	

● 控制参数

1	7	2			MESP		
对	应F地	址			F210.3		

MESP=0: 外接急停功能有效;

=1: 外接急停功能无效。

B	 -					
K15	LTEN1	LTEN2	LT5	LT4		LTHL

LTHL =1: 超程信号与+24V断开报警;

=0: 超程信号与+24V导通报警;

LT4 =1: 4th轴外接超程信号有效;

=0: 4th轴外接超程信号无效; LT5 =1: 5th轴外接超程信号有效;

=0:5th轴外接超程信号无效;

LTEN1, LTEN2 =10: 正负超程信号独立处理;

=01: 正负超程信号合用处理;

=00: 超程无效; =11: 超程无效。

● 机床外部连接

当 LTEN 为 0 (不检测轴外接超程信号时), 外接急停、行程开关连接方式推荐如下图所示(以三轴为例):

● 控制逻辑

急停控制: 当急停开关的触点断开时, ESP 信号与+24V 断开, CNC 急停报警。此时, CNC 停止脉冲输出。除上述处理的功能外, 急停报警时也可由梯形图定义其它功能。

- 超程控制: 1、当出现外接超程报警时,将工作方式切换到手动或者手脉方式下,反方向移动报警轴直到 超程信号翻转后,按复位键报警解除。
 - 2、使用正负超程信号合用处理方式时,每个轴只有一个超程触点,通过轴的移动方向来判断正负超程报警。

2.17 三色灯

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	CLPY	三色灯-黄灯	CN62.31	Y2.2	
输出信号	CLPG	三色灯-绿灯	CN62.32	Y2.3	
	CLPR	三色灯-红灯	CN62.33	Y2.4	

● 功能说明

黄灯(常态,非运行非报警),绿灯(自动运行中),红灯(系统报警)。

2.18 复位时光标返回

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		MDI 面板复位键		X24.0	

整 控制参数

|--|

RESB =1: 复位时光标返回功能有效;

=0: 复位时光标返回功能无效。

● 功能说明

当 K10 的 RESB 设置为 1 时,在自动方式下按复位键(X24.0)时,系统复位且光标返回程序开头。

2.19 刚性攻丝

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
------	------	------	------	-------	-------

输入指令	M29	刚性攻丝指定信号		
	F76.3	位置方式切换信号		
CE信息	F45.6	伺服刚性攻丝状态		
GF信号	G70.3	伺服刚性攻丝参数切换信号		
	G61.0	刚性攻丝切换成功		

● 功能说明

执行 M29 时,输出 F76.3 信号,伺服主轴从速度向位置切换,并发出刚性攻丝参数切换信号 G70.3 来调用攻丝参数,切换完成后,伺服主轴发出 F45.6 信号,PLC 接收到此信号后,置 G61.0 为 1,然后 M29 执行完毕。执行过程如下:

M29->F76.3=1->G70.3=1->F45.6=1->G61.0=1->G4.3

当执行 M29, 进行刚性攻丝切换时, 若在 DT15 时间内没有检测 F45.6, 则报警 A0.2:执行 M29 后, 执行 M29 后,检测刚性攻丝反馈信号超时。

2.20 主轴准停/主轴定向

● 相关信号`

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
<i>t</i> 公) <i>仁</i> 日		面板主轴定向按键		X25.7	
输入信号		主轴定向按键指示灯		Y21.3	
输入指令	M19	定向位置1指令			
和八佰学	M20	定向位置2指令			
GF信号	G70.2	定向启动信号			
の作品写	F45.2	定向完成信号			

● 功能描述

伺服主轴在速度方式时,可以实现主轴定向功能。当主轴定向时,取消主轴旋转输出;当主轴旋转输出时,取消主轴定向输出。当输出主轴定向信号 G70.2 后,若在 DT14 时间内没有检测到定向完成信号 F45.2,则报警 A0.4:主轴定向时,检测定向反馈信号超时。

驱动器相关参数:

PA103: 定向位置 1 低位

PA104: 定向位置 1 高位

PA105: 定向位置 2 低位

PA106: 定向位置 2 高位

2.21 外接手轮控制

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	EHDX	外接手轮 X 轴选择	CN31.5	X6.0	
	EHDY	外接手轮 Y 轴选择	CN31.6	X6.1	
输入信号	EHDZ	外接手轮Z轴选择	CN31.8	X6.2	
間八百分	EHD4	外接手轮 4th 轴选择	CN31.25	X7.5	
	EHD5	外接手轮 5th 轴选择	CN31.7	X7.1	
	EMP0	外接手轮/增量 0.001	CN31.9	X6.3	

EMP1	外接手轮/增量 0.01	CN31.22	X6.4	
EMP2	外接手轮/增量 0.1	CN31.23	X6.5	
EMP3	外接手轮/增量1	CN31.20	X7.2	

● 相关参数

K0016 NMAX EMKJ BLFD

BLFD =1: 外接手轮倍率放大 10 倍有效;

=0: 外接手轮倍率放大 10 倍无效。

EMKJ =1: 外接手轮使能按键一直按住时有效,系统面板上的手轮轴选和倍率按键无效 (× 1000 倍率键除外);

=0: 外接手轮使能按键点按时有效;

NMAX =1: 手轮方式下,×1000 倍率键有效;

=0: 手轮方式下,×1000 倍率键无效。

● 功能描述

支持 5 轴的外接手轮,可以适配 PSG-100-05E/L、ZSSY2080 外接手轮,具体接线请参照手轮的相关资料。

2.22 CS 轴切换

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
控制指令	M14	CS 轴从速度到位置切换			
1空前1日令	M15	CS 轴从位置到速度切换			
GF信号	G27.7	速度/位置切换信号			
	F44.1	位置方式切换完成信号			

功能说明

旋转轴 CS 功能有效时,执行 M14 可以从速度方式切换到位置方式,M15 可以从位置方式切换到速度方式。当执行 M14/M15 进行切换时,关闭主轴旋转输出;

当 CS 轴从速度到位置切换时,若在 DT29 的时间内没有收到位置状态信号 F44.1,则报警 A0.5: 执行 M14 后,检测位置方式反馈信号超时;

当 CS 轴从位置到速度切换时,若在 DT30 的时间内没有取消位置状态信号 F44.1,则报警 A0.6: 执行 M15 后,检测速度方式反馈信号超时。

2.23 分度台松紧控制

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	DTLO	分度台松开到位信号	CN61.40	X3.3	
	DTCL	分度台夹紧到位信号	CN61.41	X3.4	
输入信号		机床面板分度台松紧按键		X26.4	
	BUCLP	分度台松开信号		F61.0	
	BCLP	分度台夹紧信号		F61.1	
输出信号		分度台松开输出	CN62.38	Y3.1	
		分度台夹紧输出	CN62.39	Y3.2	
		第4轴使能关闭信号		G126.3	

		第 5 轴使能关闭信号	G126.4	
		机床面板分度台松紧按键指示灯	Y26.4	
	BEUCL	分度台松开完成反馈信号	G38.0	
	BECLP	分度台夹紧完成反馈信号	G38.1	
比么炒)	M22	分度台松开		
指令输入	M23	分度台夹紧		

● 相关参数

K0017	ITI	SVOFF			DAAN	ADHL

ADHL =1: 分度台输出信号保持;

=0: 分度台输出信号不保持;

DAAN =1: 分度台控制轴为第5轴;

=0: 分度台控制轴为第4轴;

SVOFF =1: 夹紧和松开时, 伺服断开功能有效;

=0: 夹紧和松开时, 伺服断开功能无效。

ITI =1: 分度台分度功能有效;

=0: 分度台分度功能无效。

注: K17.1 号参数要与系统 NO.1030 数据参数设置一致,才能正确进行分度轴的手动移动和回零操作。

DT0012

分度台松开/夹紧超时时间,默认为10000ms。

分度台执行松开时,如果在 DT12 设置时间内,不能检测到 X3.3 松开到位信号,系统报警;分度台执行夹紧时,如果在 DT12 设置时间内,不能检测到 X3.4 夹紧到位信号,系统报警。

DT0013

0: 需检测分度台松紧到位信号; >0: 不检测到位信号, 分度台松紧执行时 间

默认值为 0, 分度台松开夹紧需要检测到位信号。

DT0038
DT0039

分度台松开时,延时输出伺服使能的时间 分度台夹紧时,延时关闭伺服使能的时间

动作时序图

 A轴位置控制伺服接通G126.3

 A轴松开信号
 F61#0

 A轴松开输出
 Y3.1

 A轴松开完成信号
 X3.3

 A轴松开完成反馈信号G38.6
 A轴钳制信号

 F61#1
 A轴钳制完成信号

 A轴钳制完成信号
 X3.4

 A轴钳制完成反馈信号G38.7
 A轴钳制完成反馈信号G38.7

侨

录

● 控制逻辑

分度台松开: 执行分度轴移动指令或M22时,输出Y3.1。收到分度台松开到位信号X3.3时,停止Y3.1输出,同时输出分度台伺服使能信号。

分度台夹紧:分度台旋转完成或执行M23时,输出Y3.2,同时关闭分度台伺服使能信号。收到分度台夹紧到位信号X3.4时,停止Y3.2输出。

手动移动分度轴时,需要分度台松开到位后,才能移动,否则报警。

2.24 防护门功能

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SAGT	防护门打开/关闭反馈信号	CN61.15	X1.6	

● 相关参数

 , ,, ,,,	-					
K0014				SGSP	SPB	SDR

SDR =1: 防护门功能有效;

=0: 防护门功能无效;

SPB =1: SAGT 与+24V 导通防护门关闭;

=0: SAGT 与+24V 断开防护门关闭;

SGSP =1: 运行中打开防护门不关主轴和冷却;

=0: 运行中打开防护门关主轴和冷却。

● 功能说明

980MDi 标准梯形图提供防护门功能, 当防护门参数 K14.0 设置有效的时候, 打开防护门, 系统将产生提示信息: 防护门未关闭:

系统在自动方式下,点按循环启动,防护门未关闭则提示报警:防护门未关闭,禁止自动运行;

系统在自动运行的途中打开防护门,系统立即启动暂停,并且产生提示信息:防护门未关闭。这个时候是否关闭主轴和冷却,则由参数 K14.2 决定。当设置不关闭系统主轴和冷却的时候,关上防护门后启动系统,系统将继续之前的状态运行。当设置关闭系统主轴和冷却和主轴以后,关上防护门后启动系统,需重新打开主轴和冷却。

2.25 抱闸控制

● 相关信号

信号类型	地址符号	信号意义	CNC引脚	PLC地址	CNC诊断
输出信号	SRDY	抱闸控制信号输出	CN62.3	Y0.2	

● 相关参数

K0018 SRID SRID

SRID =1: 系统控制抱闸功能有效;

=0: 系统控制抱闸功能无效。

DT37

系统上电后松开抱闸的延时时间。初始化为4s

● 功能描述

系统上电后延时 DT37 设定的时间输出抱闸松开信号 Y0.2。当产生急停报警或驱动报警时,关闭 Y0.2输出,使 Z 轴电机抱闸,直到报警消除后再输出 Y0.2。

2.26 主轴松紧刀

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	JOGT	手动主轴松紧刀控制	CN61.14	X1.5	
输入信号	TACT	主轴松刀到位检测	CN61.16	X1.7	
	TGGH	主轴紧刀到位检测	CN61.29	X2.0	
输出信号	TROT	主轴松紧刀输出	CN62.29	Y2.0	
控制指令	M54	主轴松刀			
	M55	主轴紧刀			

● 控制参数

K0011				ELHA					
-------	--	--	--	------	--	--	--	--	--

ELHA =1: 主轴松紧刀功能有效:

=0: 主轴松紧刀功能无效。

DT0031

主轴松紧刀检测延时时间

主轴执行紧刀时,如果在 DT31 设置时间内,不能检测到 X2.0 紧刀到位信号,系统报警;主轴执行松刀时,如果在 DT31 设置时间内,不能检测到 X1.7 松刀到位信号,系统报警。

● 功能说明

主轴松紧刀功能跟主轴旋转有着严格的互锁的关系,以避免使用中损坏主轴,互锁关系如下:

主轴松刀时,禁止启动主轴旋转,否则报警;

主轴旋转时,禁止启动主轴松紧刀,否则报警;

手动主轴松紧刀在任何方式下均可执行。手动松紧刀为长按有效,按住松刀按钮不放则表示主轴松刀, 松开则主轴夹紧。

2.27 BT40 圆盘刀库

● 适用范围

该梯形图适用于 BT40(20 把刀)以及与其类似刀库的逻辑使用。

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
输入信号	TPCH	气缸压力检测	CN61.3	X0.2	
 	TCOT	刀位计数	CN61.5	X0.4	
	THCH	刀套水平到位	CN61.7	X0.6	

KG

쿬

8	١

١	ľ		
	Ę	Ļ	
•	١	5	

	TVCH	刀套垂直到位	CN61.8	X0.7	
	THSP	圆盘刀库换刀臂停止检测	CN61.9	X1.0	
	THGT	圆盘刀库换刀臂抓刀检测	CN61.10	X1.1	
	THZP	圆盘刀库换刀臂原点检测	CN61.11	X1.2	
	JOGT	主轴松紧刀控制	CN61.14	X1.5	
	TRCH	主轴松刀到位检测	CN61.16	X1.7	
	TGCH	主轴紧刀到位检测	CN61.29	X2.0	
	THOV	换刀臂电机过载	CN61.30	X2.1	
	TTOV	刀盘电机过载	CN61.31	X2.2	
	THOR	刀套垂直输出	CN62.13	Y1.4	
	TVER	刀套水平输出	CN62.14	Y1.5	
输出信号	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
制出信亏	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	
	TROT	松刀输出	CN62.29	Y2.0	
	THOT	换刀臂输出电机	CN62.30	Y2.1	

相关参数

K0011 HALT1 HALT2 APCH DBUG

> =1: 开启刀库调试模式 DBUG

> > =0: 关闭刀库调试模式

APCH =1: 不检测气缸压力过低

=0: 检测气缸压力过低

HALT1、HALT2参数设置如下:

	BT40型刀库	斗笠式刀库	刀库功能无效	炮塔刀库			
HALT1	1	0	0	1			
HALT2	0	1	0	1			

K0012 TCCH **TCHL** TKEY

> =1: 刀位计数信号低电平有效; **TCHL**

> > =0: 刀位计数信号高电平有效;

TCCH =1: 刀位计数信号检测功能有效;

=0: 刀位计数信号检测功能无效;

=1: 系统面板刀库相关按键屏蔽; **TKEY**

=0: 系统面板刀库相关按键不屏蔽:

DT40
DT41
DT42

一0. 水丸面板为汗相尺以及一加板,	
刀库计数信号感应有效时间,默认100ms	_
刀库计数信号间隔时间最小值,默认500ms	
刀库计数信号间隔时间最大值,默认1000ms	

系统状态参数:

173 **TMANL**

> TMANL =0: 自动换刀 =1: 手动换刀

数据参数:

最大刀位号 5026

6044	
6045	
6046	调

调用子程序的其实M代码
调用子程序的其实M代码对应的起始程序号(0-9999)
调用子程序的M代码允许个数(0-8000; 0:表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9001
6046	1

设置完成后,可以通过 M6 来调用换刀宏程序 P9001,而无须用 M98 来调用宏程序。

● M 功能指令

M54: 主轴刀具松开

M55: 主轴刀具夹紧

M62: 主轴定向和刀套倒下同时进行

M65: 刀套倒下

M66: 刀套抬起

M68: 换刀臂抓刀(换刀马达第一次启动)

M69: 换刀臂换刀(换刀马达第二次启动)

M70: 换刀臂回原位(换刀马达第三次启动)

M19: 主轴定向

M1000: 初始化刀号。设置D409~D442为初始值。

● PMC 数据表

1. D地址(一字节二进制数):

D400-403: 设置 1~4 把大刀刀号,设置后需要把相邻的刀具号设为-1。

D408: 为目标刀套号, 初始值为 0。

D409: 为当前刀套号, 初始设定值 0。

D410: 主轴上的刀具号,默认为0

D411-442: 为刀套 1-32 内的刀具号, 初始设定值为 1-32。

2. C 地址: C21: 刀库手动、刀盘回零计数器

C22: 刀库顺时针旋转计数器

C23: 刀库逆时针旋转计数器

● 操作说明

在将 K 参数 K11.7=1 和状态参数 No173.6=0 设置完以后,可以对 BT50 类型 20 工位及以下的刀库进行操作。(BT50 刀库逻辑兼容 BT40 刀库逻辑)

■ 刀盘机械回零

在回零方式下,按顺时针选刀按键,刀盘旋转,当检测到零点信号(X0.0)信号以后,刀盘停止旋转。 该功能可用于系统调试以及重新更换刀具时使用。

■ 手动方式下换刀

在手轮、手动、单步方式下,设置 K21.2=0,按系统顺时针/逆时针选刀按键,刀盘将顺时针/逆时针旋转一个刀位,完成手动换刀。

■ 自动方式下换刀流程

係

■ 预选刀功能

程序运行时,输入T指令进行换刀。刀盘立即旋转寻找目标刀套,同时T辅助功能结束, 程序继续运行。在调用 M6 换刀宏程序后,如果刀盘旋转未结束,则等待刀盘运行结束,再进行刀套动作。 编程时,如果在 M6 调用宏程序前完成刀盘旋转,则能减少换刀时间,提高加工效率。

■ 换刀臂动作

K11.0=0时,需主轴定向和回参考点完成,才能对换刀臂进行动作。 K11.0=1 开启刀库调试模式时,则可以直接对换刀臂进行动作。

■ 异常处理

当刀盘出现乱刀的时候处理如下:

- 1: 当前刀套处于正确的刀具倒下的位置上,则只需在录入方式下,打开参数开关,将正确的对应刀具一一输入到 D411-D430 当中,并最后将当前刀套号输入 D409 内即完成调整;
- 2: 当前刀套未到位且产生刀套错乱时,则需要手动或者自动移动当前刀套到正确的刀具倒下位置上,再在录入方式下,输入对应的刀具信息到 D411-D430 当中,最后将当前刀套号输入 D409 内则完成刀具调整。

■ 相关报警和限制

SK"			1,, 4 =, 1
报警地址	报警号	报警内容	互锁逻辑
F45.2	A0.4	主轴定向时,检测定向反馈信号超时	检查主轴定向超时,停止定向
		(F45.2)	
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
X0.6	A1.4	刀盘旋转时,刀套必须水平到位	防止损坏刀盘
X2.1	A1.5	换刀臂电机过载	电机过载停止操作刀库
X1.7	A2.0	松刀检测超时报警	松刀没到位松刀时间过长
X2.0	A2.1	紧刀检测超时报警	紧刀没到位紧刀时间过长
X1.7	A2.2	松刀状态下不能主轴旋转	松刀下不能旋转
X1.5	A2.3	主轴旋转下不能主轴松紧刀	主轴旋转不能松紧刀
	A3.7	K11.3 设为 0,圆盘刀库在刀具夹紧	防止刀具夹紧时进行换刀会损坏机床
		时不能进行刀臂动作	
X0.7	A4.0	圆盘刀库刀套倒下超时,请检查完	没检查到倒下完成信号, 刀套倒下动作时
		成信号(X0.7)	间过长
X0.6	A4.1	圆盘刀库刀套抬起超时,请检查完	没检查到抬起完成信号,刀套抬起动作时
		成信号(X0.6)	间过长
X1.0	A4.2	圆盘刀库换刀臂换刀检测信号超	没检测到抓刀和停止信号,换刀臂动作超
X1.1		时,请检查信号(X1.0、X1.1)	时
X1.2	A4.3	圆盘刀库换刀臂回原位检测信号超	没检测到刀臂回原点信号,换刀臂动作超
		时,请检查完成信号(X1.2)	时
X1.0	A4.4	圆盘刀库手动换刀臂旋转检查完成	手动下没检查到倒下完成, 刀套倒下动作
X1.1		信号超时,请检查信号(X1.0、X1.1、	时间按过长
X1.2		X1.2)	

■ 注意事项

- 1、CNC 界面显示的 T 代表当前主轴上使用的刀号,并不是当前刀盘的刀盘号;
- 2、在自动、录入、DNC 方式下指定的 T 指令代表刀号,并不是刀盘号;
- 3、刀盘选刀时,只是旋转刀盘,预选对应的刀,CNC界面的T显示不变;
- 4、刀库回零时,刀盘旋转到刀套号为1的位置,CNC界面的T显示不变;
- 5、执行 M69 时,当前主轴上的刀号和当前刀套里面的刀具互换并更新当前刀具显示;
- 6、数据参数 5026 的设置值要和刀盘的刀套数一致。

● 宏程序相关

■ 宏变量

- 1. #1000 (G54.0) 刀盘旋转、主轴定向、刀套倒下完成信号
- 2. #1002 (G54.2) T 代码等于主轴上刀号, 换刀结束

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T01

G00 X□ //预选刀可以在加工同时完成刀盘旋转

00000

M6 //通过 M 指令来调用换刀子程序,不用 M98 调用

T05

录

M6

M30

换刀子程序: O9001(O9001)

N1 #501=#4003 //保存 G90/G91 信息

N2 IF[#1002EQ1] GOTO 12 //换刀目标刀等于当前主轴上的刀,则跳转

N3 M62 //主轴定向和刀套倒下同时进行

N4 G91 G30 Z0 //回到换刀参考点

N7 M68 //换刀臂马达第一次启动(换刀臂抓刀)

N8 M54 //主轴刀具松开

N9 M69 //换刀臂马达第二次启动(换刀臂换刀)

N10 M55 //主轴刀具夹紧

N11 M70 //换刀臂马达第三次启动(换刀臂回原位)

N12 G#501 //恢复保存 G90/G91 的值

M99

2.28 斗笠式刀库

● 相关信号

信号类型	地址符号	信号意义	CNC引脚	PLC地址	CNC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
	TPCH	气缸压力检测	CN61.3	X0.2	
	TCOT	刀位计数	CN61.5	X0.4	
	THCH	刀盘后退到位	CN61.7	X0.6	
输入信号	TVCH	刀盘前进到位	CN61.8	X0.7	
	JOGT	主轴松紧刀控制	CN61.14	X1.5	
	TRCH	主轴松刀到位检测	CN61.16	X1.7	
	TGCH	主轴紧刀到位检测	CN61.29	X2.0	
	TTOV	刀盘电机过载	CN61.31	X2.2	
	THOR	刀盘前进输出	CN62.13	Y1.4	
	TVER	刀盘后退输出	CN62.14	Y1.5	
	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
输出信号	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	
	TROT	主轴松紧刀输出	CN62.29	Y2.0	

● 相关参数

K0011	HALT1	HALT2			APCH	DEBG

DBUG =1: 开启刀库调试模式

=0: 关闭刀库调试模式

APCH =1: 检测气缸压力过低

=0: 不检测气缸压力过低

HALT1、HALT2参数设置如下:

		BT40型刀库	斗笠式刀库	刀库功能无效	炮塔刀库
--	--	---------	-------	--------	------

HALT2 0 1 0 1	HALI1	1	0	U	1
		0	1	0	1

K0012 TKEY ARSE TCCH TCHL

TCHL =1: 刀位计数信号低电平有效;

=0: 刀位计数信号高电平有效;

TCCH =1: 刀位计数信号检测功能有效;

=0: 刀位计数信号检测功能无效;

ARSE =1: 刀库进退输出信号保持;

=0: 刀库进退输出信号不保持;

TKEY =1: 系统面板刀库相关按键屏蔽;

=0: 系统面板刀库相关按键不屏蔽;

DT40	
DT41	
DT42	

44 74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
刀库计数信号感应有效时间,默认100ms
刀库计数信号间隔时间最小值,默认500ms
刀库计数信号间隔时间最大值,默认1000ms

系统状态参数:

173 TMANL

TMANL =0: 自动换刀

=1: 手动换刀

数据参数:

5026 最大刀位号

6044
6045
6046

调用子程序的其实M代码
调用子程序的其实M代码对应的起始程序号(0-9999)
调用子程序的M代码允许个数(0-8000; 0:表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9000
6046	1

设置完成后,可以通过 M6来调用换刀宏程序 P9000,而无效用 M98来调用宏程序。

● M 功能指令

M54: 主轴刀具松开

M55: 主轴刀具夹紧

M65: 刀盘向右(靠近主轴)

M66: 刀盘向左(离开主轴)

M60: 启动刀库旋转

M61: 换刀完成, 更新系统刀具信息

M19: 主轴定向

M1000: 初始化刀号。D409、D410设为1。

● PMC 数据表

1. D地址(一字节二进制数):

D407 为当前机床刀库刀套数目,初始化为 20,用户可根据机床的刀套数实时修改

KG

雰

D409 为当前刀套号,初始设定值 0。 D408 为目标刀套号,初始设定值 0

2. C 地址: C21: 刀库手动、刀盘回零计数器

C22: 刀库顺时针旋转计数器 C23: 刀库逆时针旋转计数器

● 操作说明

在将 K 参数 K11.6=1 和状态参数 No173.6=0 设置完以后,可以对斗笠式刀库进行操作。

■ 刀盘机械回零

在回零方式下,按顺时针选刀按键,刀盘旋转,当检测到零点信号(X0.0)信号以后,刀盘停止旋转。 该功能可用于系统调试以及重新更换刀具时使用。

■ 手动选刀

在手轮、手动、单步方式下,设置 K21.2=0,按系统面板顺时针/逆时针选刀按键,刀盘将顺时针/逆时针旋转一个刀位,完成手动换刀。

■ 宏程序调用换刀流程

■ 异常处理

当刀盘出现乱刀的时候处理如下:

当前刀套处于正确的刀具倒下的位置上,则只需在录入方式下,打开参数开关,将当前刀套号输入 D409、D410 内即完成调整。

■ 相关报警和限制

报警地址	报警号	报警内容	互锁逻辑
F45.2	A0.4	主轴定向时,检测定向反馈信号超时	检查主轴定向超时,停止定向
		(F45.2)	
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
X0.6	A1.6	斗笠刀库启动刀盘旋转时,	防止损坏刀盘
		Z 轴未离开第 2 参考点	
X1.7	A2.0	松刀检测超时报警	松刀没到位松刀时间过长
X2.0	A2.1	紧刀检测超时报警	紧刀没到位松刀时间过长
X1.7	A2.2	松刀状态下不能主轴旋转	松刀下不能旋转
X2.0	A2.3	主轴旋转下不能主轴松紧刀	主轴旋转不能松紧刀
X0.7	A4.5	斗笠刀库刀盘进检查信号超时,	没能检测到刀盘前进到位信号,超时
		请检查完成信号(X0.7)	
X0.6	A4.6	斗笠刀库刀盘退检查信号超时,	没能检测到刀盘后退到位信号超时
		请检查完成信号(X0.6)	

■ 注意事项

- 1、CNC 界面显示的 T 代表当前主轴上使用的刀号,并不是当前刀盘的刀盘号;
- 2、在自动、录入、DNC 方式下指定的 T 指令代表刀号,并不是刀盘号;
- 3、刀盘选刀时,只是刀盘旋转刀相应刀位,CNC界面的T显示不变;
- 4、在回零方式下,按面板换刀键(980MDi 竖式),刀盘旋转到刀套号为1的位置,CNC 界面的 T 显示不变;
- 5、数据参数 5025、5026 的设置值要和刀盘的刀套数一致。

● 宏程序相关

■ 宏变量

1. #1000 (G54.0) T 代码等于主轴上刀号, 换刀结束

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T01 //刀盘会旋转到主轴上刀具号的刀套位置

M6 //通过 M 指令来调用换刀子程序,不用 M98 调用

..... T05

M6

M30

换刀子程序:

O9000(O9000)

N1 #501=#4003 //保存 G90/G91 信息 N2 #502=#4002 //保存 G17/G18/G19 信息

N3 IF[#1000EQ1] GOTO 14 //换刀目标刀等于当前主轴上的刀,则跳转

N4 G17 G91 G30 Z0//回到第二参考点N5 M19//主轴定向完成N6 M65//刀盘向右推进

录

N7 M54 //刀具松开

N8 G30 Z0 P3//回到第三参考点N9 M60//启动刀盘旋转N10 G30 Z0 P2//回到第二参考点

N11 M55 //刀具夹紧 N12 M66 //刀盘向左推进

N13 M61 //换刀完成,更新刀具信息

N14 G#501 G#502 //恢复保存的 G90/G91 与 G17/G18/G19 的值

M99

特别说明:程序中 G30 Z0 P3 设置第三参考点的目的为: 1、减少行程,提高效率; 2、避免经常撞击回零开关,减少回零开关的元器件损耗。建议将该位置设置在回零开关之下但不影响刀盘旋转的位置。

2.29 炮塔刀库

● 相关信号

信号类型	地址符号	信号意义	CNC引脚	PLC地址	CNC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
	TPCH	气缸压力检测	CN61.3	X0.2	
输入信号	TCOT	刀位计数	CN61.5	X0.4	
	TTOV	刀盘电机过载	CN61.31	X2.2	
输出信号	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	

● 相关参数

K0011	HALT1	HALT2			APCH	DEBG
	,				, O	

DBUG =1: 开启刀库调试模式

=0: 关闭刀库调试模式

APCH =1: 检测气缸压力过低

=0: 不检测气缸压力过低

HALT1、HALT2参数设置如下:

	BT40型刀库	斗笠式刀库	刀库功能无效	炮塔刀库
HALT1	1	0	0	1
HALT2	0	1	0	1

K0012 TCHL

TCHL =1: 刀位计数信号低电平有效;

=0: 刀位计数信号高电平有效;

系统状态参数:

173	[TMANL			

TMANL =0: 自动换刀 =1: 手动换刀

546 EXLI

EXLM =0: 第二组软限位无效;

=1: 第二组软限位有效。

数据参数:

5026 最大刀位号

6044 6045 6046

调用子程序的其实M代码 调用子程序的其实M代码对应的起始程序号(0-9999) 调用子程序的M代码允许个数(0-8000; 0: 表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9002
6046	1

设置完成后,通过 M6 来调用换刀子程序 O9002。

1270 第二组软限位正向位置机床坐标

换刀时Z轴软限位会切换到第二组正向限位。

● M 功能指令

M60: 启动刀库旋转

M1000: 初始化刀号。D409、D410设为1。

● PMC 数据表

1. D地址(一字节二进制数):

D409 为当前刀套号,初始设定值 0。 D408 为目标刀套号,初始设定值 0

● 操作说明

在将 K 参数 K11.7=1、K11.6=1 和状态参数 No173.6=0 设置完以后,可以对炮塔刀库进行操作。

■ 刀盘机械回零

在回零方式下,按刀库回零按键,刀盘旋转,当同时检测到零点信号(X0.0)信号及刀位计数信号(X0.4)以后,刀盘停止旋转。系统更新刀号为1号刀。

■ 手动选刀

在手轮、手动、单步方式下,按系统面板顺时针/逆时针选刀按键,刀盘将顺时针/逆时针旋转一个刀位, 完成手动换刀。

■ 相关报警和限制

报警地址	报警号	报警内容	互锁逻辑
F45.2	A0.4	主轴定向时,检测定向反馈信号超时	检查主轴定向超时,停止定向
		(F45.2)	
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
	A6.2	主轴没定向,不能进入换刀区	防止损坏刀盘
	A6.3	Z 轴不在第 2 参考点,不能旋转刀	防止损坏刀盘
		盘	
	A6.4	Z 轴不在第 2 参考点,不能进行刀	防止损坏刀盘
		库回零	

侨

	A6.5	在换刀区内不能启动程序,	避免撞	防止损坏刀盘
		刀		

■ 注意事项

- 1、刀盘旋转时, Z轴需先返回第二参考点(G91 G30 Z0)
- 2、单独执行 T 指令时系统不进行刀盘旋转,执行 M60 后进行刀盘旋转控制。

● 宏程序相关

■ 宏变量

1、#1000 (G54.0) T 代码等于主轴上刀号, 换刀结束

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T** M06 //调用换刀子程序换刀

..... M30

换刀子程序:

O9002(O9002)

N1 #501=#4003 //保存 G90/G91 信息 N2 #502=#4002 //保存 G17/G18/G19 信息

N3 IF[#1000EQ1] GOTO 10 //换刀目标刀等于当前主轴上的刀,则跳转

N4 G17 G91 G28 Z0 //回到第一参考点

N5 M19 //主轴定向

N6 G30 Z0 //回到第二参考点,由机械完成刀具与主轴脱扣

N7 M60 //启动刀盘旋转

N8 G28 Z0 //回到第一参考点,由机械完成主轴与刀具扣合

N9 M05 //取消定向

N10 G#501 G#502 //恢复保存的 G90/G91 与 G17/G18/G19 的值

M99

● 调试步骤

- 1) 设好 5026、6044~6046、K11 号参数。
- 2) K11.0=1, 打开调试模式。
- 3)设置好主轴定向位置。
- 4)移动 Z 轴到使刀具与主轴脱扣位置,把此位置设为 Z 轴第二参考点位置(1241号参数)。
- 5)移动 Z轴回到机床零点位置。
- 6) 按下单段按键, 执行 T** M6 进行换刀。
- 7)调试完成后把 K11.0 设为 0,关闭调试模式。

2.30 M10/M11 翻转控制

10/410	•				
信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输出信号	ALTO	M10M11 翻转输出信号	CN62.36	Y2.7	
控制指令	M10	Y2.7 输出			
1年前1日令	M11	Y2.7 取消输出			

2.31 主轴倍率

通过 K10.7 可以设置主轴倍率的范围.

K0010 SPDR

SPDR =0:主轴倍率范围为 50%~120%

=1:主轴倍率范围为 0%~150%

主轴倍率范围为 50%~120%时的编码如下:

十进制	Gn30.3∼Gn30.0	主轴倍率
7	0111	50%
6	0110	60%
2	0010	70%
3	0011	80%
1	0001	90%
0	0000	100%
4	0100	110%
5	0101	120%

主轴倍率范围为0%~150%时的编码如下:

十进制	Gn30.3∼Gn30.0	主轴倍率
7	0111	50%
6	0110	60%
2	0010	70%
3	0011	80%
1	0001	90%
0	0000	100%
4	0100	110%
5	0101	120%
8	1000	130%
9	1001	140%
11	1011	150%
10	1010	0%
14	1110	10%
15	1111	20%
13	1101	30%
12	1100	40%

注: K19.0 设为 1 使用附加面板主轴倍率时主轴倍率范围固定为 50%~120%。

2.32 工作灯

● 相关信号

	TH/ CIH	•				
	信号类型 信号符号 信号意义		对应引脚	PLC状态	C NC诊断	
	输入信号		机床面板工作灯按键		X19.5	
箱	松山岸县		机床面板工作灯按键指示灯		Y19.6	
	输出信号	WKLT	工作灯输出信号	CN62.35	Y0.6	

外

相

2.33 排屑

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
输入信号		机床面板排屑按键		X19.6	
捌八信与		MDi-H 机床面板排屑反转按键		X24.5	只MDi-H有效
		机床面板排屑按键指示灯		Y19.5	
输出信号	± □.	MDi-H 机床面板排屑反转指示灯		Y27.5	只MDi-H有效
棚田宿与	TKOUT	排屑输出信号	CN62.35	Y2.6	
	TKNOUT	MDi-H 排屑反转输出信号	CN62.34	Y2.5	只MDi-H有效

M38: 排屑正转输出有效; M39: 排屑正转输出无效;

2.34 附加面板信号

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
		主轴倍率旋钮	CN66	X29.4~X29.7	MDi-H下无效
		MDi-H 机床面板,主轴倍率旋钮		X23.4~X23.7	只MDi-H有效
		进给倍率旋钮	CN67	X29.0~X29.3	MDi-H下无效
		MDi-H 机床面板,进给倍率旋钮		X23.0~X23.3	只MDi-H有效
		循环启动	CN78.7	X9.0	MDi-H下无效
		MDi-H 机床面板,循环启动	CN65	X28.0	只MDi-H有效
输入信号		进给保持	CN78.6	X9.1	MDi-H下无效
		MDi-H 机床面板,进给保持	CN65	X28.1	只MDi-H有效
		急停信号	CN78.4	X9.3	
		三位开关进给停	CN66	X29.7	MDi-H下无效
		MDi-H 机床面板,三位开关进给停	CN63	X27.1	只MDi-H有效
		三位开关主轴停	CN78	X9.2	MDi-H下无效
		MDi-H 机床面板,三位开关主轴停	CN63	X27.0	只MDi-H有效
输出信号		循环启动按键灯	CN78.2	Y9.0	MDi-H下无效
		MDi-H 机床面板,循环启动按键灯	CN65	Y29.0	只MDi-H有效
		进给保持按键灯	CN78.1	Y9.1	MDi-H下无效
		MDi-H 机床面板,循环启动按键灯	CN65	Y29.1	只MDi-H有效

参数

 <i>-</i>	_					
K0019				SWI	APESP	APRI

APRI =0: 附加面板倍率开关无效;

=1: 附加面板倍率开关有效。

APESP =0: 附加面板急停信号无效;

=1: 附加面板急停信号有效。

SWI =0: 附加面板三位开关无效;

=1: 附加面板三位开关有效。

● 功能说明

bl.

1)当系统连接附加面板时,设置 K19.0=1 才能使用附加面板的主轴倍率和进给倍率波段开关。 附加面板倍率开关设为有效时,主机面板上的主轴倍率和进给倍率调节按键无效。

2)在程序运行时,三位开关拨到进给停位置时,程序暂停。重新拨到进给允许位置时,程序继续运行。 在程序运行时,三位开关拨到主轴停位置时,主轴停止。重新拨到主轴允许位置时,主轴重新启动。 主轴定向、换档摆动和程序不运行状态下主轴不受三位开关控制。

2.35 手轮试切

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
		K2 按键		X19.7	
输入信号		手脉试切按键(980MDi_V)		X27.7	
		手脉试切按键(980MDi-H)		X26.2	

● 功能说明

在自动方式下,按手轮试切按键,切换到手轮试切状态,然后再按循环启动,通过摇手轮来运行加工程序。手轮试切速度通过系统数据参数 790 号设置。

2.36 工件吹气

1/CIH J	CIH J						
信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断		
输出信号	BLOW	工件吹气输出信号		Y0.5			
指令输入	M07	工件吹气开启指令					
1日 文 刊 八	M09	工件吹气关闭指令					