Model of Computation and Runtime Analysis

Model of Computation

Model of Computation

Specifies

- Set of operations
- Cost of operations (not necessarily time)

Examples

- ▶ Turing Machine
- Random Access Machine (RAM)
- PRAM
- ► Map Reduce(?)

Random Access Machine

Word

- Group of constant number of bits (e.g. byte)
- ► ≥ log(input size)
- Usually integers or floats

Memory

- Big array of words
- Access by address

Operations

- Read and write a word from or into memory
- ► Arithmetic +, -, *, /, mod, | |
- Logic (can be bitwise) ∧, ∨, xor, ¬
- Comparison based decisions

Each operation cost 1 unit of time.

Asymptotic Complexity

Goal

Determine runtime of an algorithm.

Depends on

- ► Input
- Hardware
- Programming language, compiler, and runtime environment

Solution

- Asymptotic Complexity
- \blacktriangleright How does the runtime behave based on the input size n?

Asymptotic Complexity

Hardware

Raspberry Pi 2B 0.9 GHz
 Nexus 5 2.3 GHz
 Intel i7 4.0 GHz

Same for other components (e.g. memory)

Runtime Environment

- ► Machine code (e.g. C++)
- Managed code (e. g. C# / Java)
- Interpreted code (e. g. Python)
- Virtual Machines (e. g. VirtualBox)

Conclusion

Ignore constant factors.

Asymptotic Complexity

Consider two algorithms

$$T_1(n) = n^2 + 5n + 5$$

$$T_2(n) = n^2$$

n	4	16	64	256	1024	4096
$\overline{T_1(n)}$	41	341	4,421	66,821	1,053,701	16,797,701
$T_2(n)$	16	256	4,096	65,536	1,048,576	16,777,216
T_1/T_2	2.5625	1.332	1.0793	1.0196	1.0049	1.0012

Conclusion

▶ Only keep strongest part. (n^2 in this case)

Example

Consider two algorithms and two computers

- Fast computer and slow algorithm 10^7 operations per second $T_1(n) = n^2$
- ► Slow computer and fast algorithm 10^4 operations per second $T_2(n) = n \lceil \log_2 n \rceil$
- ▶ Input size: 10⁶

Runtime

$$T_1 = \frac{\left(10^6\right)^2}{10^7} \,\mathrm{s} = 10^5 \,\mathrm{s} \approx 27.8 \,\mathrm{h}$$

►
$$T_2 = \frac{10^6 \lceil \log_2 10^6 \rceil}{10^4} \text{ s} = 2,000 \text{ s} \approx 33.3 \text{ min}$$

Conclusion

First lower complexity, then constant factors.

Big-O Notation

Based on complexity, $3n^2 - \log_2 n$, and $n^2 + 5n + 5$ are the same as n^2 .

How do we write this?

Big-O Notation

- $\mathcal{O}(g) = \{ f \colon \mathbb{N} \to \mathbb{N} \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 \colon f(n) \le c \cdot g(n) \}$
- ▶ $f \in \mathcal{O}(g)$ means g is an upper bound for f.
- $\mathcal{O}(3n^2 \log n) = \mathcal{O}(n^2 + 5n + 5) = \mathcal{O}(n^2)$

If an algorithm has runtime $n^2 + 5n + 5$, we say it runs in $\mathcal{O}(n^2)$ time.

Note that $\mathcal{O}(n) \subset \mathcal{O}(n \log n) \subset \mathcal{O}(n^2)$

Common Examples

Complexity		Example
$\mathcal{O}(1)$	constant	basic operations
$\mathcal{O}(\log n)$	logarithmic	binary search
$\mathcal{O}(\mathit{n})$	linear	counting, linear search, DFS/BFS
$\mathcal{O}(n \log n)$		sorting, finding doubles, convex hull
$\mathcal{O}(\mathit{n}^2)$	quadratic	checking all pairs
$\mathcal{O}\!\left(2^{\log^c n}\right)$	quasi polynomial	Graph Isomorphism [†]
$\mathcal{O}(2^n)$	exponential	SAT
$\mathcal{O}(\mathit{n}!)$		checking all permutations

[†] Preliminary result, not peer reviewed yet.

Big-O Notation — $f \in \mathcal{O}(g)$

 $f \in \mathcal{O}(g)$: g is an upper bound for f.

 $\exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 \colon f(n) \leq c \cdot g(n)$

Big-O Notation — $f \in \Omega(g)$

 $f \in \Omega(g)$: g is a lower bound for f.

- $\exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
- $\blacktriangleright \ f \in \Omega(g) \leftrightarrow g \in \mathcal{O}(f)$

Big-O Notation — $f \in \Theta(g)$

 $f \in \Theta(g)$

- ▶ $\exists c_1, c_2 > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$
- $ightharpoonup \Theta(g) = \mathcal{O}(g) \cap \Omega(g)$

Big-O Notation — $f \in o(g)$

 $f \in o(g)$: f is dominated by g.

▶ $\forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)$ (This includes $c \le 1$.)

Big-O Notation

 $f \in \mathcal{O}(g)$: g is an upper bound for f.

 $\exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n)$

 $f \in \Omega(g)$: g is a lower bound for f.

- $\exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
- $\blacktriangleright \ f \in \Omega(g) \leftrightarrow g \in \mathcal{O}(f)$

$$f \in \Theta(g)$$

- $\exists c_1, c_2 > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 \colon c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$
- $\blacktriangleright \ \Theta(g) = \mathcal{O}(g) \cap \Omega(g)$

 $f \in o(g)$: f is dominated by g.

▶ $\forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)$ (This includes $c \le 1$.)

Questions

True or False? Explain your answer.

a)
$$f \in \mathcal{O}(g)$$
 implies $g \in \mathcal{O}(f)$

b)
$$f + g \in \Theta(\min(f, g))$$

c)
$$f \in \mathcal{O}(g)$$
 implies $\log f \in \mathcal{O}(\log g)$

d)
$$f \in \mathcal{O}(g)$$
 implies $2^f \in \mathcal{O}(2^g)$

e)
$$f \in \mathcal{O}(f^2)$$

f)
$$f \in \mathcal{O}(g)$$
 implies $g \in \Omega(f)$

g)
$$f(n) \in \Theta(f(n/2))$$

h)
$$g \in o(f)$$
 implies $f + g \in \Theta(f)$

Questions

Rank the following functions by order of growth. Partition your list into equivalence classes such that functions f_i and f_j are in the same class if and only if $f_i \in \Theta(f_j)$.

2^{2^n}	$n^{1/\log n}$	$\log \log n$	$n \cdot 2^n$	$\log n$
$n^{\log \log n}$	n^3	1	$2^{\log n}$	$(\log n)^{\log n}$

Questions

Joe claims he can prove that $2^n \in \mathcal{O}(1)$. His proof goes by induction on n.

Base case

▶
$$2^1 = 2$$
, i. e., $2^1 \in \mathcal{O}(1)$.

Inductive step

- Assume now that $2^{n-1} \in \mathcal{O}(1)$ (Inductive Hypothesis).
- $2^n = 2 \cdot 2^{n-1}$
- ▶ Because $2f(n) \in \mathcal{O}(f(n))$, $2^n \in \mathcal{O}(1)$.

What is wrong with Joe's "proof"?

Runtime Analysis for Recurrences

Divide and Conquer

Idea

- Split problem into smaller sub-problems.
- Solve sub-problems recursively.
- ▶ Combine solutions of sub-problems to solve original problem.

Examples

- Binary Search
- Merge sort, Quicksort
- Matrix multiplication
- Drawing binary trees

Runtime of Divide and Conquer

General Formula

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ a \cdot T(\frac{n}{b}) + f(n) & \text{if } n > 1 \end{cases}$$

For simplicity, we ignore the case n = 1.

Binary Search

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

Merge sort

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Solving Recurrence

Substitution Method

- Guess a (upper or lower) bound
- Prove it using induction

Recursion Tree

- Convert recurrence to tree.
- ► Each node represents a function call.
- Add cost of each layer and of all layers.

Master Theorem

General solution (for some cases)

Substitution Method

Example:
$$T(n) = 2T(\frac{n}{2}) + n$$

Hypothesis: $T(n) \in \mathcal{O}(n \log n)$, i. e. $T(n) \leq c \, n \log n$

$$T(n) = 2T(n/2) + n$$

$$\leq 2c(n/2)\log(n/2) + n$$

$$= c n \log n - c n \log 2 + n$$

$$= c n \log n - n(c \log 2 - 1)$$

$$\leq c n \log n$$

Substitution Method

Example:
$$T(n) = 4T(\frac{n}{2}) + n$$

Hypothesis: $T(n) \in \mathcal{O}(\mathit{n}^{2})$, i. e. $T(n) \leq \mathit{c}\,\mathit{n}^{2}$

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n^2/4) + n$$

$$= c n^2 + n$$

Does not work.

General advise for induction: Make your hypothesis stronger.

Substitution Method

Example:
$$T(n) = 4T(\frac{n}{2}) + n$$

Hypothesis: $T(n) \le c n^2 - n$

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n^2/4) - 4(n/2) + n$$

$$= cn^2 - 2n + n$$

$$= cn^2 - n$$

Recursion Tree

Example:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

Recursion Tree

Example:
$$T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{8}) + n$$

$$\sum_{i=0}^{\log n} \left(\frac{7}{8}\right)^i n \le 8n$$

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ for } 0 < x < 1$$

Recursion Tree

Example:
$$T(n) = 3T(\frac{n}{2}) + n$$

$$\frac{1}{\sum_{i=0}^{\log n} \left(\frac{3}{2}\right)^i n}$$

Example: T(n) = 3T(n/2) + n

We know,
$$\sum_{i=0}^{m} r^{i} = \frac{r^{m+1} - 1}{r - 1}$$

Thus,

$$n \sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i = n \frac{1.5 \cdot 1.5^{\log n} - 1}{1.5 - 1}$$

$$= 3n \cdot 1.5^{\log n} - 2n$$

$$= 3n \cdot (2^{\log 1.5})^{\log n} - 2n$$

$$= 3n \cdot (2^{\log n})^{\log 1.5} - 2n$$

$$\approx 3n \cdot n^{0.58} - 2n$$

$$= 3n^{1.58} - 2n$$

$$\in \Theta(n^{1.58})$$

Master Theorem

Consider a recurrence in the form (with $a \ge 1$, b > 1)

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

$$(1) \quad f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon}) \Rightarrow \ T(n) \in \Theta(n^{\log_b a})$$

(2)
$$f(n) \in \Theta(n^{\log_b a}) \implies T(n) \in \Theta(n^{\log_b a} \log n)$$

(3)
$$f(n) \in \Omega(n^{\log_b a + \varepsilon}) \Rightarrow T(n) \in \Theta(f(n))$$

For (1) and (3), $\varepsilon > 0$.

For (3), 0 < c < 1 and $af(\frac{n}{b}) \le cf(n)$.

Master Theorem

$$T(n) = 3T(\frac{n}{2}) + n$$
 (from recursion tree: $\Theta(n^{1.58})$)
$$a = 3, b = 2$$

$$\log_b a = \log_2 3 \approx 1.58$$

•
$$f(n) = n$$
, $f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon})$ (Case 1)

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{1.58})$$

$$T(n) = 4T(\frac{n}{2}) + n^2$$
 (from recursion tree: $\Theta(n^2 \log n)$)

- a = 4, b = 2
- ▶ $\log_b a = \log_2 4 = 2$
- $f(n) = n^2$, $f(n) \in \Theta(n^{\log_b a})$ (Case 2)
- $T(n) \in \Theta(n^{\log_b a} \log n) = \Theta(n^2 \log n)$

Master Theorem