CHAPTER - 2 FUNCTIONS LIMITS AND CONTINUITY

81. Complex variable:

D. U. H. S. T. 85

Let S be a set of complex numbers.

If z denotes any one of the numbers of S, then z is called a complex variable.

If x and y are real variables, then $z = \tau + iy$ is called a complex variable.

82. Function: Let S_1 and S_2 be two sets of complex numbers. Now if for each complex variable z of S_1 there corresponds one or more values of a complex variable w of S_2 , then w is called a function of z and it is denoted by w = f(z) or w = F(z)-or w = g(z) or w = G(z) etc.

Here the set S_1 is called a *domain* of definition of the function w = f(z) and S_2 is called the *range* of the function w.

N. B. In this book all functions will be considered; complex functions unless otherwise any other functions stated.

83. Independent and dependent variable of a function

Let w - f z) be a function, then the variable z is called an independent variable and the variable w is called a dependent variable.

84. Value of a function:

Let w=f(z) be a function, then the value of this function at z=a is written f(a).

Function, Limits and Continuity 55. Single-valued function:

A function w = f(z) is called a single-valued in a domain S of only one value of w corresponds to each value of z in S.

86. Multiple-valued function:

A function w = f(z) is called a multiple valued in a domain S if more than one value of w corresponds to each value of z in S.

Any multiple valued function can be considered as a collection of single-valued functions where each single-valued member is called a branch of the function.

Example 64: If $w=f(z)=z^2+2$, then w is called a single valued function of z since to each value of z there is only one value of w.

Example 65: If $w = f/z = z^{1/2}$, then w is called a multiple-valued function of z since to each value of z there are two values of w.

Example 66: If $w = f(z) = z^2$, then $f(1+i) = (1+i)^2$ = $1+2i+i^2=1+2i-1=2i$.

87. Even function: A function f(z) is called an even function if f(-z) = f(z).

Example 67: The function $f(z) = z^2$ is an even function since $f'(-z) = (-z)^2 = z^2 = f(z)$. Similarly, $\cos z$, $z^4 + z^2 + c$, etc are even functions.

88. Odd function: A function f(z) is called an odd function if f(-z) = -f(z).

Example 68: The function f(z)=z3 is an odd function since $f(-z) = (-z)^3 = -z^3 = -f(z)$. Similarly, sin z, tan z, $z^3 + z$, etc are odd functions.

Example 69: The functions cos z+sin z, z4+z3+5, etc are neither even nor odd.

N. B. Next we will consider all functions are single-valued function unless otherwise stated.

89. Inverse function: Let w-f(z) be a function, then we can consider z as a function of w and it is denoted by z=g (w)=f-1 (w). Here the function f-1 is called the inverse function of f. The functions w = f(z) and $w = f^{-1}(z)$ are inverse functions of each other.

>90. Real and imaginary parts of w = f z) corresponding to the complex variable z=x+iy.

Let w = f(z) = u + iv be a single-valued function of z = x + iy. Now replacing x+iy for z, we have u+iv=f(x+iy).

Then equating real and imaginary parts we have u=u'x, yand v = v(x, y).

Example 70: If w=c2, then u+iv -cx+iy $=e^{x}(\cos y+i\sin y) \Rightarrow u=e^{x}\cos y=u(x, y)$ and $v=e^{x}\sin y=v(x, y)$ ✓91. The polynomial function: A function of the form $P(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$ is called a polycomial fu. tior of degree n where a050, a1, a2 ..., a are complex constant: .nd n is a positive integer.

92. The rational algebraic function; A function of the form $w = \frac{P(z)}{Q(z)}$ is called a rational algebraic function where P(z) and Q(z) are polynomials.

93. The exponential function:

R. U. 76.

A function of the form w-cz-c x+iy -cz ciy = ex(cos y + i sln y) is called an exponential function where c=2.71828 ··· is the natural base of logarithm.

It is clear that ez1 ez2 -ez1+z2 and

$$\frac{c^{Z_1}}{c^{Z_2}}=c^{Z_1-Z_2}.$$

94. Definition of at: If a is real and positive, then a' can be defined as follows:

az = c In a = z log a where In a or log a is the natural logarithm of a.

N. B. In this book in and log have the identical meaning but log, is not a natural logarithm if a = e.

95. Natural logarithm of z:

If z=e w = ln z, which is called the natural logarithm of z. The natural logarithm function is the inverse of the exponential function and it can be defined by

 $w=\ln z = \log r + i(2k\pi + \theta)$ where

 $z=re^{i\theta}=re^{i(2k\pi+\theta)}$ and $k=0,\pm 1,\pm 2,...$ It is clear that ln z is a multiple-valued function.

Functions, Lim'ts and Continuity

71

96. The principal value of log 7:

The principal value or principal branch of $\ln z$ is defined as $\ln r + i0$ where $z = r e^{i0}$ and $0 \in [0, 2\pi[\text{ or } 0 \in] - \pi, \text{or }]$ etc where the interval must be a length of 2π .

97. Definition of a if a is real:

If a is real, then if $z = a^{W} \implies w = \log_{a} z$ where a > 0, $a \ne 0$, 1 and $a \ne c$. Also in this case we have $z = c^{W \ln a}$ and $w = \log_{a} z = \frac{\ln z}{\ln a}$.

98. Trigonometric or circular functions in terms of exponential functions:

The trigonometric or circular functions can be defined by the following:

(f)
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 R. U. 76. (ii) $\cos z = \frac{e^{iz} + e^{-iz}}{2i}$

(iii)
$$\sec z = \frac{1}{\cos z} = \frac{2}{e^{iz} + e^{-iz}}$$
, (iv) $\csc z = \frac{1}{\sin z}$

$$= \frac{2i}{e^{iz} - e^{-iz}}, \quad (v) \quad \tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}$$

(vi)
$$\cot z = \frac{\cos z}{\sin z} = \frac{i(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}}$$

Example 71: Show that:

(i) $\sin^2 z + \cos^2 z - 1$, (ii) $\sec^2 z = 1 + \tan^2 z$, (iii) $\csc^2 z = 1 + \cot^2 z$, (iv) $\sin(-z) = -\sin z$, (v) $\cos(-z) = \cos z$,

(vi)
$$\tan (-z) = -\tan z$$
, (vii) $\cot (-z) = -\cot z$,

(viii $\sec(-z) = \sec z$, (ix) $\csc(-z) = -\csc z$,

(x) $\sin (z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$, (xi) $\cos (z_1 \pm z_2)$ $= \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$, (xii) $\tan (z_1 \pm z_2)$ $= \frac{\tan z_1 \pm \tan z_2}{1 \mp \tan z_2}$, (xiii) $\cot (z_1 \pm z_2) = \frac{\cot z_1 \cot z_1}{\cot z_2 \pm \cot z_1}$

99. Hyperbolic function: The hyperbolic functions are defined by the following:

(i)
$$\sinh z = \frac{e^z - e^{-z}}{2}$$
, R. U. 76; (ii) $\cosh z = \frac{e^z + e^{-z}}{2}$

(iii)
$$\operatorname{sech} z = \frac{1}{\cosh z} = \frac{2}{e^z + e^{-z}}$$
, (iv) $\operatorname{cosech} z = \frac{1}{\sin z}$

$$\frac{2}{e^{z}-e^{-z}}$$
, (v) $\tanh z = \frac{\sinh z}{\cosh z} = \frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$,

(vi) coth
$$z = \frac{e^z + e^{-z}}{e^z - e^{-z}}$$

Solution: Try yourself.

Example 72: Show that:

(i) $\cosh^2 z - \sinh^2 z = 1$, (ii) $\operatorname{sech}^2 z = 1 - \tanh^2 z$,

(iii) $\operatorname{cosech}^2 z = \coth^2 z - 1$, (iv) $\sinh(-z) = -\sinh z$,

(v) $\cosh(-z) = \cosh z$, (vi) $\tanh(-z) = -\tanh z$,

(vii) $\operatorname{sech}(-z) = \operatorname{sech} z$, (viii) $\operatorname{cosech}(-z) = -\operatorname{cosech} z$,

(ix) coth $(-z) = -\coth z$,

(x) $\sinh (z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \cosh z_1 \sinh z_2$

(xi) $\cosh (z_1 \pm z_2) = \cosh z_1 \cosh z_2 \pm \sinh z_1 \sinh z_2$

(xii)
$$\tanh (z_1 \pm z_2) = \frac{\tanh z_1 \pm \tanh z_2}{1 \pm \tanh z_1 \tanh z_2}$$

(xw)
$$\coth z_1 \pm z_2$$
) = $\frac{\cosh z_2 \coth z_1 \pm 1}{\coth z_2 \pm \coth z_1}$,

Solution: Try yourself.

Functions, Limits and Continuity

100. Relation between the trigonometric or circular functions and the hyperbolic functions:

- (1) $\sin iz = i \sinh z \Rightarrow \sinh z = -i \sin iz$,
- (ii) $\cos iz = \cosh z$, (iii) $\tan iz = i \tanh z$ $\Rightarrow \tanh z = -i \tan iz$, (iv) $\csc iz = -i \operatorname{cosech} z \Rightarrow$ $\operatorname{cosech} z = i \operatorname{cosec} iz$, (vi) $\operatorname{sec} iz = \operatorname{sech} z$,
- (vii) $\cot iz -i \coth z \Rightarrow \coth z = i \cot iz$,
- (ix) $\sinh iz = i \sin z \Rightarrow \sin z = -i \sinh iz$
- (x) $\cosh iz = \cos z$, (xi) $\tanh iz = i \tan z \Rightarrow \tan z = -i \tanh iz$.

Example 73: Show that: (i) sin z = sin;

(ii)
$$\cos z = \cos z$$
; (iii) $\tan z = \tan z$;

(Iv)
$$= \overline{\operatorname{cosec} z} = \operatorname{cosec} z$$
. (v) $= \operatorname{sec} z$.

(vi) $\cot z = \cot z$.

Solution: (1) We have $\sin z = \sin (x + iy)$

= $\sin x \cosh y + i \cos x \sin hy \Rightarrow \sin z = \sin (x - iy) = \sin z$.

Others: Try yourself.

Example 74: Find all, the roots of sin h z = i.

D. U. M. SC. P. 88.

Solution: We have $\sinh z = i \Rightarrow \frac{e^z - e^{-z}}{2} = i$ $\Rightarrow e^{2z} - 2ie^z - 1 = 0 \Rightarrow e^z = \frac{2i + \frac{1}{4}i^2 + 4}{2} = i = e^{\pi i/2}$ $= e^{\pi i/2} e^{2n\pi i} = e^{(2n+1/2)\pi i} \Rightarrow z = (2n+\frac{1}{2}) \pi i \text{ where } n = 0, \pm 1, \pm 2, \pm 3, \dots$

Example 75: Show that $\ln z = 2n\pi i + \frac{1}{2} \ln (x^2 + y^2) + i \tan^{-1} y/x$ where $n = 0, \pm 1, \pm 2, \pm 3, \cdots$ and the principal value = $\frac{1}{2} \ln (x^2 + y^2) + i \tan^{-1} y/x$.

Solution 75: Try yourself.

101. Inverse trigonometric functions in terms of natural logarithms:

The inverse trigonometric functions are multiplevalued functions which can be expressed in terms of natural logarithms as follows;

(i)
$$\sin^{-1}z = \frac{1}{i} \ln (iz + \sqrt{1-z^2}) + 2n\pi$$
;

(ii)
$$\cos^{-1} z = \frac{1}{i} \ln (z + \sqrt{(z^2 - 1)} + 2n\pi)$$
;

(iii)
$$\tan^{-1} z = \frac{1}{2i} \ln \left(\frac{1+iz}{1-iz} \right) + n\pi$$
;

(iv)
$$\csc^{-1} z = \frac{1}{i} \ln \left(\frac{i + \sqrt{z^2 - 1}}{z} \right) + 2n\pi i$$
;

(v)
$$\sec_1^{-1} z = \frac{1}{i} \ln \left(\frac{1 + \sqrt{1 - z^2}}{z} \right) + 2n\pi$$
;

(vi)
$$\cot^{-1} z = \frac{1}{2r} \ln \left(\frac{z+i}{z-i} \right) + n\pi$$
,

where in each case $n=0, \pm 1, \pm 2, \pm 3, \dots$,

N. B. If n =0, then the proncipal value can be obtained.

102. Inverse hyperbolic functions in terms of natural logarithms:

The inverse hyperbolic functions are multiple valued functions which can be expressed interms of natural logarithms as follows:

- (i) $\sinh^{-1} z = \ln (z + \sqrt{z^2 + 1}) + 2n\pi i$;
- (ii) $\cosh^{-1} z = \ln (z + \sqrt{z^2 1}) + 2n\pi i$;
- (iii) $\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) + n\pi i$;
- (iv) cosech⁻¹ z = ln $\left(\frac{1 + \sqrt{z^2 + 1}}{z}\right) + 2n\pi i$;
- (v) $\operatorname{sech}^{-1} z = \ln \left(\frac{1 + \sqrt{1 z^2}}{z} \right) + 2\pi \pi i$;
- (vi) $\coth^{-1} z = \frac{1}{2} \ln \left(\frac{z+1}{z-1} \right) + n \pi i$,

where in each case $n = 0, \pm 1, \pm 2, \pm 3$,

N B. If n=0, then the principal value can be obtained.

103. The functions of the forms z and f(z) g(z)

The function z^{α} is defined as $z^{\alpha} = e^{\alpha \ln z}$, where α may be complex. Again if f(z) and g(z) are two functions then the function f(z) is defined as f(z) and g(z) are multiple-valued functions, the functions e^{z} and f(z) are multiple-valued functions.

101. Algebraic functions:

The function w = f(z) is called an algebraic function of z if w is a solution of the polynomial equation $P_0(z)$ $w^n + P_1(z)$ $w^{n-1} + \cdots + P_{n-1}(z)$ $w + P_n(z) = 0$. (1) where $P_0(z) \neq 0$, $P_1(z)$, ... $P_n(z)$ are polynomial in z and n is a positive integer.

Example 76: The function $w = f_1 z_1 - z_1/2$ is an algebraic function since it is a solution of the polynomial equation $w^2 - z = 0$.

105. Transcendental functions:

The function which is not algebraic is called transcendental i. c. any function which can not be expressed as a solution of (1).

Example 77: All trignometric, hyperbolic, logarithomic, inverse trigonometric, inverse hyperbolic etc functions are transcendental functions.

106. Limit at a finite point:

Let f(z) be a single valued function which is defined in a neighbourhood of $z = z_0$ with the possible exception of $z = z_0$ itself.

Then $f \cdot z$) is said to tend to the limit l as z tends to the value z_0 if corresponding to any positive number \in however small) a positive number δ (which usually depends on \in) can be found such that $|f(z)-l| < \in$ whenever $0 < |z-z_0| < \delta$ and it is denoted by $\lim_{z \to 0} f(z) = l$.

 $z \rightarrow z_0$

N. B. In above the limit l is independent of the path by which z tends to z_0 .

Also, the limit l has not necessarily the same value as $\{c_0\}$.

107. Theorem 38: If $\lim_{z\to z_0} f(z)$ exists, then it must be unique.

Proof: Try yourself.

108. Limit at infinity:

The single valued function f(z) is said to tend to the limit l as z tends to infinity if corresponding to any positive number \in (however small) a positive number N can be found such that

| f(z)-l| <6 whenever | z | > N and it is denoted by $\lim_{n\to\infty} f(z)=l$.

109. Infinite limit:

The single valued function f(z) is said to tend to the limit sufficient as z tends to z_0 if corresponding to any positive number N (however large) a positive number δ can be found such that |f(z)| > N whenever $|z-z_0| < \delta$ and it is denoted by $\lim_{z\to z_0} |z| = \infty$.

110. Four fundamental theorems on limit:

Theorems 39, 40, 41 and 42:

If $\lim_{z \to z_0} f(z)$ and $\lim_{z \to z_0} g(z)$ are exist, then

39.
$$\lim_{z \to z_0} \{f(z) + g(z)\} = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z),$$

40.
$$\lim_{z \to z_0} \{f(z) - g(z)\} = \lim_{z \to z_0} \{f(z) - \lim_{z \to z_0} g(z),$$

41.
$$\lim_{z \to z_0} \{f(z) g(z)\} - \{\lim_{z \to z_0} f(z)\} \{\lim_{z \to z_0} g(z)\},$$

 $\lim_{z \to z_0} \{f(z) g(z)\} - \{\lim_{z \to z_0} \{f(z)\}\} \{\lim_{z \to z_0} \{f$

42.
$$\lim_{z \to z_0} \{f(z)/g'z\} = \frac{z \to z_0}{\lim_{z \to z_0} g(z)}$$
 where $\lim_{z \to z_0} g(z) \neq 0$.

Proofs: Try yourself.

Example 78: Show that $\lim_{z\to 0} \frac{z}{z}$ does not exist.

Solution: We have z=x+iy and z=x-iy. If z >0, then

along the x-axis: y=0 and x-0, so the required limit is.

$$\lim_{z\to 0} \frac{z}{z} = \lim_{x\to 0} \frac{x}{x} = 1.$$

Again if z-0, then along the y-axis: x-0 and y-0.

so the required limit is $-\lim_{z\to 0} \frac{z}{z} = \lim_{y\to 0} \frac{-iy}{iy} = -1$.

Thus the two approaches are not equal and the limit does not exist.

111. Cotinuity;

D. U. H. 30

77

The single valued function f(z) is said to be continuous at the point $z=z_0$ if $f(z_0)$ has a definite value and if $\lim_{z\to z_0} f(z_0)$.

Second definition: The single-valued function f(z) is said to be continuous at the point $z-z_0$ if for any $\epsilon>0$ we can finil $\delta>0$ such that $|f(z)-f(z_0)| <\epsilon$ whenever $|z-z_0| <\delta$.

- 112. Discontinuity: The function f(z) is said to be discontinuous at $z = z_0$ if f(z) is fails to be continuous at $z = z_0$.
- 113. Removal discontinuity: The function f(z) is said to be removal discontinuous at $z = z_0$ if f(z) has a definite limit at $z = z_0$ but is not equal to $f(z_0)$.
- 114. Continuity at infinity: The continuity of f(z) at $z = \infty$ can be examined by the continuity of f(1/w) at w = 0 by replacing z = 1/w in f(z).

115. Continuity in a region:

A function f (2) is said to be continuous in a region R if it is continuous at 21 points of the region R.

116. Four fundamental theorems on continuity:

Theorems 43, 44, 45 and 46: If f(z) and g(z) are continuous at $z = z_0$, then the following functions are continuous at Z - Zo.

(43) f(z) + g(z); (44) f(z) - g(z); (45) f(z) g(z) and

(46) f(z)/g(z) where $g(z_0) \neq 0$.

Proofs: Try yourself.

78

117. Theorem 47: Every polynomial functions are continuous in a finite region.

Proof: Try yourself.

118. Theorem 48: If f(z) is continuous and has the value $f(z_1)$ at $z=z_1$. Again if $\phi(z)$ is continuous at $z=f(z_1)$, then $\phi(f(z))$ is continuous at $z = z_1$.

Proof: Try yourself.

119. Theorem 49: If w=f (z) is continuous at the point $z = z_0$ and $z = g(\xi)$ is continuous at $\xi = \xi_0$ and if $\xi_0 = f(z_0)$ then the composite function or the function of function w = g(f(z)) is continuous at $z = z_0$.

Proof: Try yourself.

120. Theorem 50: If f(z) is continuous in aclosed region R and if it is bounded in R. i. e. if there exists a real constanst M such that |f(z)| < M for all points z in the region R.

Proof: Try yourself.

121. Theorem 51: The real and imaginary parts of a continuous function f (z) are continuous.

Proof: Try yourself

Example 79: The functions et, sin z and co; z are continuous in every finite region

Solution: Try yourself:

122. Uniform continuity: A function f(z) is said to be uniformly continuous in a region R if corresponding to any e>0 we can find $\delta > 0$ (which is a function of ϵ only) such that $||f(z)-f(z_0)|| < \epsilon$ whenever $||z-z_0|| < \delta$ for every point z_0 in the

N. B. In continuity, & depend on both ∈ and the particular point zo. But in uniform continuity, & depends only on E.

Second definition: A function f (z) is said to be uniformly continuous in a region R f for any 6>0 we can fint 8>0 such that $|f(z_1) - f(z_0)| \le \text{ whenever } |z_1 - z_2| < \delta \text{ for every points } z_1$ and z₂ in the region R.

123. Theorem 52: If f z) is continuous in a closed region R, then it is uniformly continuous in R.

Proof: Try yourself.

Example 80: If $f(z) = z^2$ then show that

(i) $\lim_{z \to a^2} f(z) = a^2$; $z \rightarrow a$

D U. M. SC. P. 89.

(ii) f (z) is continuous at z =a;

(iii) f (z) is uniformly continuous in the region | z ! < 1.

D U M SC. p. 89

Solution: (i: We have to show that given any E>0, we can find $\delta > 0$ such that $|z^2 - a^2| \le$ whenever $0 < |z - a| < \delta$. Now if $8 \le 1$, then $1 < 1 < 1 < 3 \Rightarrow 1 < 2 - 2 = 1 = 1 < -2 = 1$ = | z-a | | (z-a)+2a | < | z-a | (| z-a | + | 2a |) < 8(1+2 | a |). Now taking 8 15 1 or €/(1+2+2 1) which over is smaller. Thus | z2-a2 | < whenever 0< | z-a | <8 and wehave Lim f(z) = a2.

(II): By (I), $\lim_{x \to a} f(z) = a^2$. Again we have $f(a) = a^2$. Thus.

 $\lim_{z \to 0} f(z) = f(z) \Rightarrow f(z)$ is continuous at z = 0.

iii) We have to show that given any 6>0, we can find $z \rightarrow a$ \$>0 such that | z2-a2 | < E when | z-a | < 8 where 8 in a function of e only.

Suppose z and a are any two point in | z | <1, then $|z^2-a^2| - |z-a|z+a| \le |z-a|(|z|+|a|)$ < 2|z-a| ... (1). Now if $|z-a| < \delta$, then (1) $\Rightarrow |z^2-a^2| < 2\delta \Rightarrow |z^2-a^2| < \epsilon \text{ choosing } \delta = \epsilon/2.$ Thus $|z^2-z^2| < \epsilon$ when $|z-a| < \delta$.

Hence the given function is uniformly continuous in the region | E | <1.

Example 81: Show that f(z) = 1/z is not uniformly continuous. in the region | z | < 1.

Solution: We consider f z) is uniformly continuous in the region |z| <1.

Then for any € > 0 it is possible to find 8 which lies between 0 and 1 such that $|f(z)-f(a)| < \epsilon$ when |z-a| < 8for all z and a in the region | z | < 1.

Let
$$z=\delta$$
 and $a=\frac{\delta}{1+\epsilon}$ then $|z-a|=\left|\delta-\frac{\delta}{1+\epsilon}\right|$

$$=\left|\frac{\delta+\delta\in-\delta}{1+\epsilon}\right|=\frac{\epsilon}{1+\epsilon}\delta<\delta.$$
But $\left|\frac{1}{z}-\frac{1}{a}\right|=\left|\frac{1}{\delta}-\frac{1+\epsilon}{\delta}\right|=\left|\frac{-\epsilon}{\delta}\right|=\frac{\epsilon}{\delta}>\epsilon$ since we have considered $0<\delta<1$.

Thus we have a contradiction and the given function is not uniformly continuous in | z 1 < 1.

Functions, Limits and Continuity

124 Complex sequence:

A complex sequence < f (n) > or <u_o> is a function whose domain is the set of natural numbers N and range is the subset of the set of complex numbers C In this book, by a sequence we will mean the complex sequence.

The nth term of the sequence $\langle f(n) \rangle$ or $\langle u_n \rangle$ is f(n) or u_n . Example 82: <i a> = <i i i i, i, ... > is a sequence. 125. Limit of a sequence:

A number l is said to be the limit of the sequence $< u_a >$ if for any positive number ∈ we can determine a positive number N (depending on \in) such that $|u_n-l| < \in$ for all n>N and it is denoted by $\lim_{n \to \infty} u_n = l$.

126. Convergent sequence:

If the limit of the sequence <un> exists, then the sequence is called convergent.

127. Divergent sequence: If the limit of the sequence <un> does not exist, then the sequence is called divergent.

128 Theorem 53: If lim un = l, where l is finite then it $n \rightarrow \infty$

must be unique

Proof: Try yourself.

129 Four fundamental theorems on limits of sequences;

Complex - 6

Functions, Limits and Continuity

83

Theorems 54, 55, 56 and 57: If the sequences $< a_n >$

and <bo>both are convergent, then

54. $\lim (a_n + b_n) = \lim a_n + \lim b_n$ $n \rightarrow \infty$ $n \rightarrow \infty$

55. $\lim_{a \to b_a} (a_a - b_a) = \lim_{a \to b_a} a_a - \lim_{a \to b_a} b_a$ $n \rightarrow \infty$

56. $\lim_{a_n \to a} (a_n b_n) = (\lim_{a_n \to a}) (\lim_{a_n \to a})$ $n \rightarrow \infty$ $n \rightarrow \infty$

lim an $\lim \quad a_n = n \to \infty \quad \text{where } \lim \quad b_n \neq 0.$ $n \rightarrow \infty$ $n \rightarrow m$

Proofs: Try yourself.

130. Infinite series: Let <u_n> be a sequence, then.

 $\sum u_n = u_1 + u_2 + u_3 +$ is called an infinite series.

Example 83: $1+z+z^2+z^3+\cdots$ is an afinite series.

131. nth partial sum .

Let $\langle u_a \rangle$ be a sequence. Suppose $S_1 = u_1, S_2 = u_1 + u_2$, $S_3 = u_1 + u_2 + u_3$,, S_n $u_1 + u_2 + u_3 +$ where So is called the 11th partial sum of the first 11 terms of the sequence $< u_n >$.

If $1 = S_1 = S$ exists, then the series $\sum u_1 = S$ called conv-

ergent and a s called its sum. If it is not convergent, then it is called divergent

132. Theorem 58: If the series $u_1+u_2+u_3+\cdots$ is convergent, then $\lim u_n = 0$.

Proof: Try yourself.

Example 84: Show that $1+z+z^2+z^3+\cdots$

$$=\frac{1}{1-z}$$
 if $|z| < 1$.

Solution: Try yourself.

.133. Theorem 59: If $\lim_{n \to \infty} z_n = l$, then show that

lim Re $\{z_n\}$ = Re $\{l\}$ and lim Im $\{z_n\}$ = Im $\{l\}$. $1 \rightarrow \infty$ $n \rightarrow \infty$

Proof: Try yourself.

Example 85: Show that if | a | < 1, then

(i)
$$\sum_{n=0}^{\infty} a^n \cos n\theta = \frac{1 - a \cos \theta}{1 - 2a \cos \theta + a^2};$$

(ii)
$$\sum_{n=1}^{\infty} a^n \sin n\theta = \frac{a \sin \theta}{1-2a \cos \theta+a^2}.$$

Solution: Try yourself.