Module 3 Part 1

Arithmetic Algorithms

Array Multiplier

- Binary multiplication can be implemented in a combinational two-dimensional logic array called array multiplier.
- The main component in each in each cell is a full adder, FA.
- The AND gate in each cell determines whether a multiplicand bit mj, is added to the incoming partial product bit based on the value of the multiplier bit, qi.
- Each row i, where 0<= i <=3, adds the multiplicand (appropriately shifted) to the incoming parcel product, PPi, to generate the outgoing partial product, PP(i+1), if qi .=1
- If qi .=0, PPi is passed vertically downward unchanged. PPO is all 0's and PP4 is the desired product. The multiplication is shifted left one position per row by the diagonal signal path.

- For implementation of array multiplier with a combinational circuit, consider the multiplication of two 2-bit numbers as shown in figure.
- The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, and the product is

_	C2	C2	C1	
•	C3	LZ	しエ	LU

		b1	b0
		a1	a0
		a0b1	a0b0
	a1b1	a1b0	
с3	c2	c1	c0

 Assuming A = a1a0 and B= b1b0, the various bits of the final product term P can be written

- 1. P(0) = a0b0
- 2. P(1)=a1b0 + b1a0

- 3. P(2) = a1b1 + c1 where c1 is the carry generated during the addition for the P(1) term.
- 4. P(3) = c2 where c2 is the carry generated during the addition for the P(2) term.

For j multiplier bits and k multiplicand we need j*k AND gates and (j-1) k-bit adders to produce a product of j+k bits.

(a) Array multiplication of positive binary operands

(b) Multiplier cell

Disadvantages:

- (1) An n bit by n bit array multiplier requires n2 AND gates and n(n-2) full adders and n half adders.(Half aders are used if there are 2 inputs and full adder used if there are 3 inputs).
- (2) The longest part of input to output through n adders in top row, n -1 adders in the bottom row and n-3 adders in middle row. The longest in a circuit is called critical path.

Sequential Circuit Multiplier

- Multiplication is performed as a series of (n) conditional addition and shift operation such that if the given bit of the multiplier is 0 then only a shift operation is performed, while if the given bit of the multiplier is 1 then addition of the partial products and a shift operation are performed.
- The combinational array multiplier uses a large number of logic gates for multiplying numbers.
- Multiplication of two n-bit numbers can also be performed in a sequential circuit that uses a single n bit adder.

(a) Register configuration

Multiplication

- Find partial product for each digit of multiplier
- Add partial products

Algorithm for Multiplication

С	А	Q	М	Steps
0	0000	1101	1011	Initialize
		11111		

Algorithm for Multiplication

С	А	Q	M	Steps
0	0000	110 <mark>1</mark>	1011	Initialize
0	1011 0101	1101 111 <mark>0</mark>	1011 1011	Add Right shift

Algorithm for Multiplication

С	А	Q	М	Steps
0	0000	110 <mark>1</mark>	1011	Initialize
0	1011	1101	1011	Add
	0101	111 <mark>0</mark>	1011	Right shift
0	0010	111 <mark>1</mark>	1011	Right shift
0	1101	1111	1011	Add
	0110	111 <mark>1</mark>	1011	Right shift
1	0001	1111	1011	Add
	1000	1111	1011	Right shift

BOOTH'S ALGORITHM

- Possible arithmetic actions:
 - 00 → no arithmetic operation
 - 01 -> add multiplicand to left half of product
 - 10 → subtract multiplicand from left half of product
 - 11 → no arithmetic operation

STE PS	A	Q	Q-1	OPERAT ION	
0	0000	0011	0		
1	1001	0011 1001	1	10- >A=A-M A=A+M' +1 ASHR	0+1=10
2	1110	0100	1	11-> SHIFT	
3	1110+ 0111 0101 0010	0100 0100 1010	1 1 0	01- >A=A+ M ASHR	
4	0010 0001	1010 0101	0	00- >SHIFT	

MULTIPLICAND -7: 0111(M) MULTIPLIER – 3: 0011(Q)

Booth: (7) x (-3)

```
Q
Α
         Q-1 M
          (-3)
0000
      1101 0
                0111
                0111 A <- (A - M) 1st cycle
1001 1101 0
1100
                0111
      1110
                       Shift
0011 1110
              0111
            1
                       A \leftarrow (A + M) 2nd cycle
0001
                0111
                       Shift
      1111
             0
                       A \leftarrow (A - M) 3rd cycle
1010 1111
              0111
             0
                0111
1101
      0111
                       Shift
1110
      1011 1 0111
                       Shift
```

BINARY DIVISION

Circuit arrangement for binary division.

BINARY DIVISION(RESTORING METHOD)

DIVIDEND: 7 0111

DIVISOR: 3 0011

Algorithm for Division

Count	A	Q	М	Operation
4	0000	0111	0011	Intialization
	0000 1101	1110 1110	0011 0011	Left Shift A ← A- M
3	0000	1110	0011	Restore (A \leftarrow A +M) and $Q_0 \leftarrow 0$

Algorithm for Division

Count	A	Q	М	Operation
4	0000	0111	0011	Intialization
	0000	1110	0011	Left Shift
	1101	1110	0011	A ← A- M
3	0000	1110	0011	Restore (A \leftarrow A +M) and $Q_0 \leftarrow 0$
	0001	1100	0011	Left shift
	1110	1100	0011	A ← A-M
2	0001	1100	0011	Restore (A \leftarrow A +M) and $Q_0 \leftarrow 0$
	0011	1000	0011	Left Shift
	0000	1000	0011	A ← A-M
1	0000	1001	0011	Set Q ₀ ← 1
	0001	0010	0011	Left Shift
	1110	0010	0011	A ← A- M
	0001	0010	0011	Restore (A←A+M)
0	Remainder	Quotient		and Q ₀ ← 0

Non-Restoring Division Algorithm

- Input:
 - M positive divisor (n-bit)
 - Q positive dividend (n-bit)
- · Output:
 - Q Quotient
 - A Remainder
- Begin
 - · A ← 0
 - · Do n times
 - · If the sign of A is 0
 - Shift A and Q left one bit position and A ← A M
 - else
 - N Shift A and Q left one bit position and A ← A + M
 - If Sign of A is 0
 - q₀ ← 1
 - Else
 - q₀ ← 0
 - . If sign of A is 1
 - A ← A + M
- End

EG: DIVIDEND -Q:7 DIVISOR -M:3

$$M = 0011, \overline{M} + 1 = 1101$$

Α	Q	SC
0000	0111	4
0000	1110	
1101		
1 101		3
1011	1100	
0011		
1110		2
1101	1000	
0011		
0000	1001	1
	0000 0000 1101 1101 1011 0011 1101 0011	0000 0111 0000 1110 1101 1101 1011 1100 0011 1101 1000 0011

Comment	Α	Q	SC
Shl	0001	0010	
A = A - M	1101		
	1110	0010	0
A = A + M	0011		
	0001		

