ÇEV903 KÜRESEL İKLİM DEĞİŞİKLİĞİ

Doç. Dr. Özgür ZEYDAN

https://www.ozgurzeydan.com/

Sera Etkisi, Sera Gazları ve Karbon Döngüsü

- Sera Etkisi
- > Sera Gazları
 - Doğal sera gazları
 - Sentetik sera gazları
 - Dolaylı sera gazları
- Biyojeokimyasal döngüler
 - Karbon döngüsü

Sera Etkisi

Sera etkisi, ısının "sera gazları" olarak bilinen maddeler tarafından Dünya yüzeyinin yakınında hapsedildiği süreçtir.

Sera gazları gezegeni saran bir battaniye gibi düşünülebilir.

Sera etkisi hiç olmasaydı Dünya'nın ortalama sıcaklığı -33 °C daha soğuk olacak ve Dünya yaşam için elverişsiz olacaktı.

Sera Etkisi

İnsanlar Sera Etkisini Nasıl Değiştiriyor?

- Kömür, petrol ve doğalgaz gibi fosil yakıtların yakılması havadaki CO₂ miktarını artırır. Bu yakıtları neden yakıyoruz? Elektrik üretimi, ısıtma, ulaşım ve endüstriyel faaliyetler için.
- Gübre uygulaması gibi hayvancılık ve tarım faaliyetleri havadaki sera gazı miktarını artırır.
- Ormansızlaşma: Ormanlar CO₂ yutaklarıdır. Ormanların yok edilmesi havada daha fazla CO₂ kalmasına neden olur.
- Düzensiz atık depolama alanları.

Doğal – Kuvvetlenmiş Sera Etkisi

Doğal Sera Gazları

- Karbondioksit (CO₂)
- Metan (CH₄)
- Diazot monoksit (N₂O)
- Su buharı (H₂O)
- \triangleright Ozon (O₃)

Sentetik Sera Gazları

- 1930'lu yıllardan sonra sanayi faaliyetleri sonucu atmosfere gönderilen gazlardır.
- Kloroflorokarbonlar (CFC'ler)
- Hidroflorokarbonlar (HFC'ler)
- Perflorokarbonlar (PFC'ler)
- Kükürt hegzaflorür (SF₆)

Dolaylı Sera Gazları

- Kendi başlarına sera etkisi göstermezler.
- Yer seviyesinde ozon
 oluşumuna sebep oldukları için
 dolaylı sera gazı olarak
 bilinirler.
- Yer seviyesi ozonu azot oksitlerin uçucu organik bileşikler ile güneş ışığı altındaki reaksiyonu sonucu oluşur.

- Azot oksitler (NOx)
- Metan dışı uçucu organik bileşikler (NMVOC)
- Karbon monoksit (CO)
- CO, ozon oluşumunda katalizör görevi görür.

Küresel Isınma Potansiyeli

- Sera gazı emisyonlarını ölçmek için ortak bir ölçeğe ihtiyaç vardır.
- Genellikle CO₂ referans gazı olarak alınır.
- Diğer gazların miktarları ise Küresel Isınma Potansiyeli (GWP) değerleri sayesinde "CO₂ eşdeğerine" dönüştürülür.

Küresel Isınma Potansiyeli

Global warming potential (GWP) values relative to CO₂

	Chemical formula	GWP values for 100-year time horizon		
Industrial designation or common name		Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)
Carbon dioxide	CO ₂	1	1	1
Methane	CH ₄	21	25	28
Nitrous oxide	N_2O	310	298	265

Detaylı liste için:

https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf

Global greenhouse gas emissions by gas

Greenhouse gas emissions are converted to carbon dioxide-equivalents (CO₂eq) by multiplying each gas by its 100-year 'global warming potential' value: the amount of warming one tonne of the gas would create relative to one tonne of CO₂ over a 100-year timescale. This breakdown is shown for 2016.

Our World in Data

F-gases (HFCs, CFCs, SF₆) 2.1%

Carbon dioxide (CO₂) 74.4%

Methane (CH₄) 17.3%

Nitrous oxide (N₂O)
6.2%

OurWorldinData.org – Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020).

Licensed under CC-BY by the author Hannah Ritchie.

Global greenhouse gas emissions by sector

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Source: Climate Watch, the World Resources Institute (2020).

Licensed under CC-BY by the author Hannah Ritchie (2020).

Sera Gazı Emisyon Miktarları (Ülkelere Göre)

http://www.globalcarbonatlas.org/en/CO2-emissions

Sera Gazı Emisyon Miktarları (Ülkelere Göre)

Rank	Country	MtCO ₂
1	China	11472
2	United States of America	5007
3	India	2710
4	Russian Federation	1756
5	Japan	1067
6	Iran	749
7	Germany	675
8	Saudi Arabia	672
9	Indonesia	619
10	South Korea	616
11	Canada	546
12	Brazil	489
13	Turkey	446
14	South Africa	436
15	Mexico	407
16	Australia	391
17	United Kingdom	347
18	Italy	329

Türkiye'nin Sera Gazı Emisyonları

Atmosferdeki Sera Gazı Konsantrasyonları (IPCC, 2021)

Eylül 2023'te CO₂

konsantrasyonu: 418.51 ppm

https://www.co2.earth/

Biyojeokimyasal Döngüler

- Organik moleküllerin yapısında bulunan 6 temel element (karbon, oksijen, hidrojen, azot, fosfor, kükürt) çeşitli kimyasal formlarda hava kürede (atmosfer), su kürede (hidrosfer) ve taş kürede (litosfer) yer alır.
- Maddelerin bu kürelerde ve canlı varlıklar içerisindeki hareketi döngüsel olarak gerçekleşir.
- Bu döngülerde biyolojik ve kimyasal reaksiyonlar ile jeolojik süreçler rol oynar.

Karbon Döngüsü

Karbon

- Atmosferde karbondioksit formunda
- Hidrosferde karbondioksit ve bikarbonat halinde
- Litosferde kömür, doğalgaz, petrol ve kireçtaşı olarak
- Biyosferde organik maddelerin temel yapıtaşı halinde yer alır.

Karbon Döngüsü

https://sutema.org/karbon-dongusu-ve-su

Karbon Döngüsü

Özetle

- Atmosferdeki sera gazlarının miktarının artması bir hava kirliliği problemidir ve sera etkisini kuvvetlendirmektedir.
- Fosil yakıtların tüketilmesi taş kürede bulunması gereken karbonu, karbondioksit olarak hava küreye göndermektedir.
- Karbon döngüsünün bozulması sera etkisini kuvvetlendirmektedir.

Kaynaklar

- https://climate.nasa.gov/faq/19/what-is-the-greenhouseeffect/
- https://www.teriin.org/article/qa-what-are-hfcs
- https://webdosya.csb.gov.tr/db/cevreselgostergeler/haberle r/c-evresel-go-stergeler-2022-20230904154545.pdf
- https://www.co2.earth/
- https://sutema.org/karbon-dongusu-ve-su