# **Backtesting Project**

### A-B-G-I

### May 4, 2018

- Factors
  - o 12 JKKL Factors
  - o The Factors We Picked
- Model
  - o Data/Factors
  - Results:
- Correlation
- Improvements?
  - o Graphs and fitted stats
- · What are we doing next?
  - o ML/ RF modeling

### **Factors**

### **12 JKKL Factors**

| Number | Factors | Category         | Descriptions                                                     | Effect |
|--------|---------|------------------|------------------------------------------------------------------|--------|
| 1      | RETP    | Momentum         | Cumulative Market Adjusted Return for the Preceding 6 Months     | pos    |
| 2      | RETP2   | Momentum         | Cumulative Market Adjusted Return for the 2nd Preceding 6 Months | pos    |
| 3      | TURN    | Trading Volume   | Average Daily Volume Turnover                                    | neg    |
| 4      | SIZE    | Size             | Market Cap (Natural Log)                                         | neg    |
| 5      | FREV    | Earning Surpirse | Analyst earnings forecast revisions to price                     | pos    |
| 6      | LTG     | Growth           | Long-term growth forecast                                        | neg    |
| 7      | SUE     | Earning Surprise | Standardized unexpected earnings                                 | pos    |
| 8      | SG      | Growth           | Sales Growth                                                     | neg    |
| 9      | TA      | Earning Quality  | Total Accruals to total assets                                   | neg    |
| 10     | CAPEX   | Growth           | Capital expenditures to total assets                             | neg    |
| 11     | BP      | Growth           | Book to Price                                                    | pos    |
| 12     | EP      | Growth           | Earnings to Price                                                | pos    |

### The Factors We Picked

Number Factors Descriptions Research

| Number | Factors                              | Descriptions                                                                                                                                                                                                                                                    | Research                                   |
|--------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 13     | DP                                   | Historically, there has a been a positive relation between Dividend/Price or Dividend Yield and future returns                                                                                                                                                  | Litzenberger<br>and<br>Ramaswamy<br>(1982) |
| 14     | Volume                               | Firms with larger amounts of volume subsequently have lower furture returns                                                                                                                                                                                     | Ang et al.<br>(2006)                       |
| 15     | total Q                              | Total Q is a new proxy for Tobin's Q. Tobin's Q is traditionally Market Equity value + Market value of liabilities divided by equity book value + liabilities book value. Total Q includes intangible capital in the denominator.                               | Peters and<br>Taylor<br>(2016)             |
| 16     | Off Balance<br>Sheet<br>Asset(OffBS) | what degree intangible capital is kept off of or not listed on the balance sheet                                                                                                                                                                                | Peters and<br>Taylor<br>(2016)             |
| 17     | M-Score                              | Attempts to encapsulate likelihood of firm-level earnings manipulation. This factor uses eight sub-factors calculated with compustat data; additionally, Beneish finds that firms with a score greater than -1.78 are more often than not earnings manipulators | Beneish's<br>paper                         |

## Model

### Data/Factors

In-Sample 1985-1998

Out-sample 1985-2013

Here's what the Datatable looks like:

```
head(Data,5)
```

```
year permno ind yearlyRet
                                 retp
                                           ret2p
                                                    turn lagsize
## 1: 1993 10010
               ## 2: 1993 10074
               20 0.5494987 -0.13162166 0.40484643 57.700921 10.55641
## 3: 1993 10138
                   ## 4: 1993 10138
               35
                   ## 5: 1993 10147
               22 1.7789487 0.63323234 0.57894882 5.163551 13.57594
          FREV
                  LTG
                           SUE
                                    SG
## 1: -0.04944709 28.9375 -1.6160340 1.352598
                                       0.03519428 0.06290010
## 2 •
     0.00000000 28.9375 -0.3994654 1.419220 -0.04426388 0.12948991
     0.00000000 13.2500 0.5658795 1.244849 -0.06458850 0.04420138
     0.00000000 13.2500
                      0.5658795 1.244849 -0.06458850 0.04420138
## 4:
## 5:
     0.00000000 28.9375
                      1.1973422 1.515659 0.12660722 0.10516545
          bp
                         V0L
                                q_tot K_int_offBS
## 1: 0.2784134 -0.03462688 12407
                             0.9440737
                                       33.051460 0.000000000
## 2: 0.2093319 0.06666672
                         853 1.2400050
                                        5.678446 0.004545455
## 3: 0.2780287 0.06231292 11920 10.6024800
                                        0.000000 0.004482759
## 4: 0.2780287 0.06231292 11920 10.6024800
                                        0.000000 0.000000000
## 5: 0.2712372 0.04047619 44671 7.8852210 199.970300 0.000000000
```

### Results:

```
## Simple return: 13.7745046230993
## Annulized raw return: 12.1075815461762
## Geometric average of annulized raw: 12.7213471657791
## Geometric average of annulized excess returns: 11.0542713167365
## Monthly sharpe ratio: 0.824325805586877
```

```
## CAPM
```

```
##
## Call:
## lm(formula = r_excess ~ `Mkt-RF`, data = Res)
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -9.6666 -2.3837 0.0694 2.4514 14.4634
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15994 0.31431 3.69 0.00031 ***
                         0.06806 -5.32 3.6e-07 ***
## `Mkt-RF`
             -0.36211
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.91 on 154 degrees of freedom
## Multiple R-squared: 0.1553, Adjusted R-squared: 0.1498
## F-statistic: 28.3 on 1 and 154 DF, p-value: 3.597e-07
```

```
## FF 3 factor, time series regression
```

```
##
## Call:
## lm(formula = r_excess ~ `Mkt-RF` + SMB + HML, data = Res)
## Residuals:
##
     Min
             1Q Median
                           30
                                 Max
## -9.168 -2.050 -0.096 2.259 15.546
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                          0.31178 3.632 0.000384 ***
## (Intercept) 1.13244
              -0.32599
                          0.07124 -4.576 9.79e-06 ***
## `Mkt-RF`
## SMB
              -0.18750
                          0.12793 -1.466 0.144814
## HMI
               0.31195
                          0.11006 2.834 0.005216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.81 on 152 degrees of freedom
## Multiple R-squared: 0.2083, Adjusted R-squared: 0.1927
## F-statistic: 13.33 on 3 and 152 DF, p-value: 9.031e-08
```

#### ## Carhart 4 factor

```
##
## Call:
## lm(formula = r_excess ~ `Mkt-RF` + SMB + HML + Mom, data = Res)
## Residuals:
               1Q Median
##
                               3Q
                                     Max
## -8.1821 -1.9129 -0.0666 1.9665 16.3721
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.06983 0.29944 3.573 0.000474 ***
## `Mkt-RF`
              -0.19311
                          0.07683 -2.514 0.013003 *
## SMB
              -0.16647
                         0.12280 -1.356 0.177245
## HML
              0.25796
                          0.10650 2.422 0.016615 *
               0.22740
                          0.06015
                                  3.780 0.000225 ***
## Mom
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.653 on 151 degrees of freedom
## Multiple R-squared: 0.2767, Adjusted R-squared: 0.2576
## F-statistic: 14.44 on 4 and 151 DF, p-value: 5.214e-10
```

## Monthly information ratio under Fama French 3 factor model: 0.300166650697856

```
## Annualized FF3 IR: 1.03980777949293
```

```
## Monthly information ratio under Corhart 4 factor model: 0.296688571496051
```

```
## Annualized C4 IR: 1.02775935971238
```

# **Correlation**

### **Correlation Matrix**

|              | zretp | zret2p | zturn | zlagsize | zFREV | zLTG  | zSUE  | zSG   | zta   | zCAPEX | zbp   | zEP   | zVOI | zq_   | tot | zK_ir | t_offI | 3SzDP |
|--------------|-------|--------|-------|----------|-------|-------|-------|-------|-------|--------|-------|-------|------|-------|-----|-------|--------|-------|
| zretp        | 1     |        |       |          |       |       |       |       |       |        |       |       |      |       |     |       |        |       |
| zret2p       | 0.04  | 1      |       |          |       |       |       |       |       |        |       |       |      |       |     |       |        |       |
| zturn        | 0.01  | -0.12  | 1     |          |       |       |       |       |       |        |       |       |      |       |     |       |        |       |
| zlagsize     | 0.13  | 0.05   | -0.15 | 1        |       |       |       |       |       |        |       |       |      |       |     |       |        |       |
| zFREV        | 0.43  | 0.27   | 0.07  | 0.17     | 1     |       |       |       |       |        |       |       |      |       |     |       |        |       |
| zLTG         | 0.07  | 0.15   | -0.22 | -0.07    | 0.07  | 1     |       |       |       |        |       |       |      |       |     |       |        |       |
| zSUE         | 0.32  | 0.22   | 0.02  | 0.16     | 0.4   | 0.25  | 1     |       |       |        |       |       |      |       |     |       |        |       |
| zSG          | 0.12  | 0.22   | -0.18 | О        | 0.2   | 0.43  | 0.3   | 1     |       |        |       |       |      |       |     |       |        |       |
| zta          | -0.08 | О      | -0.02 | -0.06    | o     | 0.11  | О     | 0.16  | 1     |        |       |       |      |       |     |       |        |       |
| zCAPEX       | -0.05 | 0.02   | -0.08 | 0.07     | 0.01  | 0.21  | 0.02  | 0.16  | -0.08 | 1      |       |       |      |       |     |       |        |       |
| zbp          | -0.18 | -0.19  | 0.06  | -0.37    | -0.33 | -0.39 | -0.34 | -0.27 | -0.04 | -0.2   | 1     |       |      |       |     |       |        |       |
| zEP          | 0.01  | 0.02   | 0.06  | -0.07    | 0.2   | -0.09 | 0.11  | 0.12  | 0.12  | -0.08  | 0.09  | 1     |      |       |     |       |        |       |
| zVOL         | 0.02  | 0.04   | -0.29 | 0.7      | 0.04  | 0.04  | 0.08  | 0.06  | -0.03 | 0.09   | -0.2  | -0.06 | 1    |       |     |       |        |       |
| zq_tot       | 0.19  | 0.12   | 0.01  | 0.14     | 0.16  | 0.28  | 0.25  | 0.23  | -0.01 | -0.07  | -0.32 | 0.04  | 0.05 | 1     |     |       |        |       |
| zK_int_offBS | 0.05  | 0.01   | -0.09 | 0.64     | 0.05  | -0.09 | 0.05  | -0.05 | -0.04 | 0.02   | -0.15 | -0.02 | 0.77 | -0.0  | 7 1 |       |        |       |
| zDP          | -0.12 | -0.15  | 0.11  | О        | -0.15 | -0.31 | -0.18 | -0.22 | -0.04 | -0.07  | 0.17  | 0.03  | 0.04 | -0.10 | 6 ( | 0.07  |        | 1     |

### Corrgram



# Improvements?

# **Graphs and fitted stats**

### standardized yearly return



| term         | estimate   | std.error | statistic   | p.value   |
|--------------|------------|-----------|-------------|-----------|
| (Intercept)  | -8.4193153 | 2.9302435 | -2.8732477  | 0.0040814 |
| year         | 0.0043250  | 0.0014711 | 2.9400459   | 0.0032980 |
| zretp        | 0.0282914  | 0.0066914 | 4.2280050   | 0.0000240 |
| zret2p       | 0.0150185  | 0.0062253 | 2.4125054   | 0.0158822 |
| zturn        | 0.0002136  | 0.0064600 | 0.0330723   | 0.9736184 |
| zlagsize     | -0.0479979 | 0.0093157 | -5.1523547  | 0.0000003 |
| zFREV        | 0.0092893  | 0.0073189 | 1.2692160   | 0.2044282 |
| zLTG         | -0.0264486 | 0.0075392 | -3.5081253  | 0.0004556 |
| zSUE         | -0.0124399 | 0.0068979 | -1.8034411  | 0.0713844 |
| zSG          | 0.0005290  | 0.0068700 | 0.0769964   | 0.9386297 |
| zta          | -0.0299439 | 0.0059741 | -5.0122540  | 0.0000006 |
| zCAPEX       | -0.0092563 | 0.0061737 | -1.4993136  | 0.1338609 |
| zbp          | 0.0402549  | 0.0075579 | 5.3261728   | 0.0000001 |
| zEP          | -0.0163874 | 0.0061765 | -2.6531845  | 0.0080010 |
| zDP          | -0.0828134 | 0.0062132 | -13.3285435 | 0.0000000 |
| zVOL         | -0.0026452 | 0.0108538 | -0.2437145  | 0.8074628 |
| zq_tot       | 0.1023892  | 0.0065961 | 15.5226415  | 0.0000000 |
| zK_int_offBS | 0.0617827  | 0.0098131 | 6.2959456   | 0.0000000 |

#### residuals vs. year



# What are we doing next?

## ML/ RF modeling

Dividing the training and testing randomly 80-20

```
set.seed(1234)
  test_df <- final_df %>%
  group_by(Direction) %>%
  sample_frac(.2) %>%
  ungroup()

training_df <- final_df %>%
  anti_join(test_df, by="RegionID")

training_df
```

#### Training the rf model

```
rf <- randomForest(Direction~., data=training_df %>% select(-RegionID), ntree = 100)
rf
```

10-fold Crossvalidation: Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training set to train the model, and a test set to evaluate it.

Note: In k-fold cross-validation, the original sample is randomly partitioned into k equal size subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k-1 subsamples are used as training data. The cross-validation process is then repeated k times (the folds), with each of the k subsamples used exactly once as the validation data. The k results from the folds can then be averaged (or otherwise combined) to produce a single estimation. The advantage of this method is that all observations are used for both training and validation, and each observation is used for validation exactly once.

```
result df <- createFolds(final df$Direction, k=10) %>%
  purrr::imap(function(test_indices, fold_number) {
    train_df <- final_df %>%
      select(-RegionID) %>%
      slice(-test_indices)
    test_df <- final_df %>%
      select(-RegionID) %>%
      slice(test_indices)
    # fit the two models
    rf <- randomForest(Direction~., data=train_df, ntree=100)</pre>
    dt <- randomForest(Direction~., data=train_df, ntree=10)</pre>
}) %>%
  purrr::reduce(bind rows)
result_df
result_df %>%
  mutate(error_rf = observed_label != predicted_label_rf,
         error dt = observed label != predicted label dt) %>%
  group_by(fold) %>%
  summarize(rf = mean(error_rf), dt = mean(error_dt)) %>%
  tidyr::gather(model, error, -fold) %>%
  lm(error~model, data=.) %>%
  broom::tidy()
```