AULA 6 – ZEROS REAIS DE FUNÇÕES REAIS (PARTE 3)

Prof. Gustavo Resque gustavoresqueufpa@gmail.com

- No estudo do MPF, vimos que:
 - Condição de convergência: $|\varphi'(x)| \leq M < 1, \forall x \in I$
 - A convergência será mais rápida quanto menor for $|\varphi'(\xi)|$
- lacksquare O método de Newton tenta escolher a função $\varphi(x)$ tal que $\varphi'(\xi)=0$
- Adotando a forma geral para $\varphi(x)$ $\varphi(x) = x + A(x)f(x)$
- Então tenta-se encontrar A(x) tal que $\varphi'(\xi) = 0$

■ Então tenta-se encontrar A(x) tal que $\varphi'(\xi) = 0$

$$\begin{split} &\phi(x) = x + A(x)f(x) \Rightarrow \\ &\Rightarrow \phi'(x) = 1 + A'(x)f(x) + A(x)f'(x) \\ &\Rightarrow \phi'(\xi) = 1 + A'(\xi)f(\xi) + A(\xi)f'(\xi) \Rightarrow \phi'(\xi) = 1 + A(\xi)f'(\xi). \end{split}$$

Assim,
$$\varphi'(\xi) = 0 \Leftrightarrow 1 + A(\xi)f'(\xi) = 0 \Rightarrow A(\xi) = \frac{-1}{f'(\xi)}$$
, donde tomamos $A(x) = \frac{-1}{f'(x)}$.

Então, dada f(x), a função de iteração $\phi(x) = x - \frac{f(x)}{f'(x)}$ será tal que $\phi'(\xi) = 0$, pois como podemos verificar:

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

Exemplo 12

Consideremos $f(x) = x^2 + x - 6$, $\xi_2 = 2 e x_0 = 1.5$

$$\varphi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 + x - 6}{2x + 1}$$

Temos, pois,

$$x_0 = 1.5$$

 $x_1 = \varphi(x_0) = 2.0625$
 $x_2 = \varphi(x_1) = 2.00076$
 $x_3 = \varphi(x_2) = 2.00000$.

Assim, trabalhando com cinco casas decimais, $\bar{x} = x_3 = \xi$. Observamos que no MPF com $\phi(x) = \sqrt{6 - x}$ (Exemplo 8) obtivemos $x_5 = 2.00048$ com cinco casas decimais.

Estudo da convergência

TEOREMA 3

Sejam f(x), f'(x) e f''(x) contínuas num intervalo I que contém a raiz $x = \xi$ de f(x) = 0. Supor que $f'(\xi) \neq 0$.

Então, existe um intervalo $\overline{I} \subset I$, contendo a raiz ξ , tal que se $x_0 \in \overline{I}$, a sequência $\{x_k\}$ gerada pela fórmula recursiva $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ convergirá para a raiz.

Estudo da convergência

Exemplo 13

Comprovaremos neste exemplo que uma escolha cuidadosa da aproximação inicial é, em geral, essencial para o bom desempenho do método de Newton.

Consideremos a função $f(x) = x^3 - 9x + 3$ que possui três zeros: $\xi_1 \in I_1 = (-4, -3)$ $\xi_2 \in I_2 = (0, 1)$ e $\xi_3 \in I_3 = (2, 3)$ e seja $x_0 = 1.5$. A seqüência gerada pelo método é

Iteração	x	f(x)		
1	-1.6666667	0.1337037×10^{2}		
2	18.3888889	0.6055725×10^4		
3	12.3660104	0.1782694×10^4		
4 8.4023067		0.5205716×10^{3}		
5	5.83533816	0.1491821×10^{3}		
6	4.23387355	0.4079022×10^{2}		
7	3.32291096	0.9784511×10		
8 2.91733893		0.1573032×10		
9	2.82219167	0.7837065×10^{-1}		
10	2.81692988	0.2342695×10^{-3}		

Exemplo 14

$$f(x) = x^3 - 9x + 3;$$
 $x_0 = 0.5;$ $\epsilon_1 = \epsilon_2 = 1 \times 10^{-4};$ $\xi \in (0,1).$

Os resultados obtidos ao aplicar o método de Newton são:

teração	x	f(x)	
0	0.5	-0.1375 × 10	
1	.333333333	0.3703703×10^{-1}	
2	.337606838	0.1834054×10^{-4}	

Assim, $\bar{x} = 0.337606838$ e $f(\bar{x}) = 1.8 \times 10^{-5}$.

ALGORITMO 4

Seja a equação f(x) = 0.

Supor que estão satisfeitas as hipóteses do Teorema 3.

- 1) Dados iniciais:
 - a) x₀: aproximação inicial;
 - b) ε_1 e ε_2 : precisões
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $\overline{x} = x_0$. FIM.
- 3) k = 1
- 4) $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$

5) Se
$$|f(x_1)| < \varepsilon_1$$

ou se $|x_1 - x_0| < \varepsilon_2$ faça $\overline{x} = x_1$. FIM.

- 6) $x_0 = x_1$
- 7) k = k + 1Volte ao passo 4.

Como a principal desvantagem do método de Newton é obter f'(x), o método secante usa a aproximação numérica da derivada.

$$f'(x) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Substituindo na fórmula do método de Newton temos:

$$\varphi(x_k) = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

Ou ainda,
$$\varphi(x_k) = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Graficamente

Exemplo 16

Consideremos
$$f(x) = x^2 + x - 6$$
; $\xi_2 = 2$; $x_0 = 1.5$ e $x_1 = 1.7$. Então,

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_2) - f(x_1)} = \frac{1.5(-1.41) - 1.7(-2.25)}{-1.41 + 2.25} = 2.03571$$

$$x_3 = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)} = \frac{1.7(0.17983) - (2.03571)(-1.41)}{0.17983 + 1.41} = 1.99774$$

$$x_4 = \frac{x_2 f(x_3) - x_3 f(x_2)}{f(x_3) - f(x_2)} = \frac{(2.03571)(-0.01131) - (1.99774)(0.17983)}{-0.01131 - 0.17983} =$$

.

ALGORITMO 5

Seja a equação f(x) = 0.

- Dados iniciais:
 - a) x₀ e x₁: aproximações iniciais;
 - b) ε_1 e ε_2 : precisões.
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $\overline{x} = x_0$. FIM.

3) Se
$$|f(x_1)| < \varepsilon_1$$

ou se $|x_1 - x_0| < \varepsilon_2$ faça $\overline{x} = x_1$. FIM.

4)
$$k = 1$$

5)
$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0)$$

6) Se
$$|f(x_2)| < \varepsilon_1$$

ou se $|x_2 - x_1| < \varepsilon_2$ então faça $\overline{x} = x_2$. FIM.

- $\begin{array}{cc} x_0 = x_1 \\ x_1 = x_2 \end{array}$
- 8) k = k + 1Volte ao passo 5.

COMPARAÇÃO

Exemplo 18

$$f(x) = e^{-x^2} - \cos(x);$$
 $\xi \in (1, 2);$ $\epsilon_1 = \epsilon_2 = 10^{-4}$

	Bissecção	Posição Falsa	MPF $\varphi(x) = \cos(x) - e^{-x^2} + x$	Newton	Secante
Dados Iniciais	[1, 2]	[1, 2]	x ₀ = 1.5	$x_0 = 1.5$	$x_0 = 1; x_1 = 2$
x	1.44741821	1.44735707	1.44752471	1.44741635	1.44741345
f(x)	2.1921×10^{-5}	-3.6387 × 10 ⁻⁵	7.0258×10^{-5}	1.3205×10^{-6}	-5.2395 × 10 ⁻⁷
Erro em x	6.1035 × 10 ⁻⁵	.552885221	1.9319 × 10 ⁻⁴	1.7072×10^{-3}	1.8553 × 10 ⁻⁴
Número de Iterações	14	6	6	2	5

COMPARAÇÃO

Exemplo 21

$$f(x) = x\log(x) - 1; \quad \xi \in (2, 3); \quad \epsilon_1 = \epsilon_2 = 10^{-7}$$

	Bissecção	Posição Falsa	MPF $\varphi(x) = x-1.3(x \log x - 1)$	Newton	Secante
Dados Iniciais	[2, 3]	[2, 3]	$x_0 = 2.5$	$x_0 = 2.5$	$x_0 = 2.3; x_1 = 2.7$
x	2.506184413	2.50618403	2.50618417	2.50618415	2.50618418
f(x)	1.2573 × 10 ⁻⁸	-9.9419 × 10 ⁻⁸	2.0489 × 10 ⁻⁸	4.6566×10^{-10}	2.9337×10^{-8}
Erro em x	5.9605 × 10 ⁻⁸	.49381442	3.8426 × 10 ⁻⁶	3.9879 × 10 ⁻⁶	8.0561×10^{-5}
Número de Iterações	24	5	5	2	3

EXERCÍCIO

- Implemente 3 métodos de refinamento para encontrar raízes reais de funções reais.
- Teste esses algoritmos em 5 funções que misturam:
 - Polinômios de graus > 5
 - Logaritmos
 - Exponenciais
 - Senos e cossenos
 - Divisões e raízes
- Escolha os parâmetros iniciais. Use o algoritmo de testagem do sinal de f(x) para encontrar o intervalo I. Mostre as tabelas testadas.
- Monte uma tabela semelhante a dos exemplos anteriores.