ИССЛЕДОВАНИЕ ВЛИЯНИЯ КВАНТОВАНИЯ НА РЕЗУЛЬТАТЫ СЖАТИЯ ПИЛОТНЫХ СИГНАЛОВ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ¹

Иванов И.С., магистрант кафедры проблемно-ориентированных вычислительных комплексов ГУАП, ilusha.51@yandex.ru

Аннотация

В статье приведено исследование методов рассогласованного сжатия фазоманипулированных последовательностей. Определены целевые метрики сжатия. Составлено математическое описание алгоритма минимизации суммарной энергии боковых лепестков в сжатой фазоманипулированной последовательности. Описана процедура поиска импульсных характеристик фильтров сжатия. Путем моделирования оценено влияние эффектов квантования на метрики сжатия пилотных сигналов.

Введение

В телекоммуникационных системах при установлении синхронизации приемной и передающей станций, а также для оценки импульсной характеристики канала связи широко применяются сложные сигналы [1]. Сжатие сложных сигналов осуществляется, как правило, с помощью согласованных фильтров. Сигнал на выходе согласованного фильтра совпадает с автокорреляционной функцией сложного сигнала, уровень боковых лепестков которой может превышать уровень, необходимый в рамках решаемой задачи [2]. Тогда используются рассогласованные фильтры подавления боковых лепестков [3].

Для количественной оценки эффективности применения таких фильтров актуальной задачей является создание программного средства, моделирующего существующие алгоритмы подавления боковых лепестков с учетом квантования коэффициентов фильтра сжатия и ограниченной разрядности вычислений.

¹ Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №16-37-00197 мол а.

Алгоритм минимизации суммарной энергии боковых лепестков

В настоящем разделе рассмотрен метод поиска коэффициентов цифровых фильтров с конечной импульсной характеристикой (КИХ), которые предназначены для сжатия наиболее распространенного класса сложных сигналов — фазоманипулированных последовательностей [4]. Целевой метрикой сжатия является суммарная энергия боковых лепестков (БЛ).

Алгоритм минимизации энергии боковых лепестков описан. Пусть задана фазоманипулированная последовательность длины N, которая записывается как вектор-строка $\mathbf{s} = \begin{bmatrix} s_1, s_2, ..., s_M \end{bmatrix}$, где s_i - отсчеты последовательности, принимающие значения из множества $\{1,-1\}$. Необходимо найти коэффициенты фильтра сжатия длины M, которые представляют вектор-строку $\mathbf{c}_{ME} = \begin{bmatrix} c_1, c_2, ..., c_M \end{bmatrix}$.

Задача минимизации суммарной энергии боковых лепестков может быть формализована как задача поиска минимума целевой матричной функции представленной далее:

$$(\mathbf{PSc}_{ME})^{T}(\mathbf{PSc}_{ME}) \rightarrow \min.$$

Где $\, {f P} \, - \,$ перфорационная матрица, размера $\, \left[N + M - 1 \! \times \! N + M - 1 \right] .$ Пример формирования данной матрицы представлен далее:

Пример заполнения матрицы S описан далее. Строки матрицы содержат векторы-строки отсчетов фазового кода, который последовательно проходит через фильтр сжатия. Пример формирования матрицы S при M=7 и N=5 представлен ниже:

$$\mathbf{S}^T = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & s_1 & s_2 & s_3 & s_4 & s_5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & s_1 & s_2 & s_3 & s_4 & s_5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s_1 & s_2 & s_3 & s_4 & s_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & s_1 & s_2 & s_3 & s_4 & s_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & s_1 & s_2 & s_3 & s_4 & s_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & s_1 & s_2 & s_3 & s_4 & s_5 \end{bmatrix}$$

Импульсная характеристика фильтра сжатия должна обеспечивать единичный отклик на исходную фазоманипулированную последовательность в положении $\frac{M+N}{2}$. Поэтому целевая функция дополняется ограничением, представленным далее:

Преобразуя целевую функцию и ограничение, получаем систему (1):

$$\begin{cases}
\mathbf{c}_{ME}^{T} \mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S} \mathbf{c}_{ME} \to \min \\
\mathbf{e} \mathbf{S} \mathbf{c}_{ME} - 1 = 0
\end{cases}$$
(1)

Решение данной системы может быть сведено к задаче поиска условного экстремума функции с использованием множителей Лагранжа (2):

$$f(\mathbf{c}_{ME}, \lambda) = \mathbf{c}_{ME}^{T} \mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S} \mathbf{c}_{ME} + \lambda (\mathbf{e} \mathbf{S} \mathbf{c}_{ME} - 1)$$
 (2)

По признаку экстремума функции нескольких переменных и по свойству положительно определенной матрицы $S^T P^T P S$ выпишем условие минимума функции (3):

$$\begin{cases}
\frac{\partial f\left(\mathbf{c}_{ME}, \lambda\right)}{\partial \mathbf{c}_{ME}} = \left[\left(\mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S}\right)^{T} + \mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S}\right] \mathbf{c}_{ME} = 0 \\
\frac{\partial f\left(\mathbf{c}_{ME}, \lambda\right)}{\partial \lambda} = \mathbf{e} \mathbf{S} \mathbf{c}_{ME} - 1 = 0
\end{cases} \tag{3}$$

Совместное решение системы получено на основе алгебраических

преобразований (4):

$$\mathbf{c}_{ME} = \left(\mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S}\right)^{-1} \left[\left(\mathbf{e} \mathbf{S} \left(\mathbf{S}^{T} \mathbf{P}^{T} \mathbf{P} \mathbf{S} \right)^{-1} \left(\mathbf{e} \mathbf{S} \right)^{T} \right)^{-1} \mathbf{e} \mathbf{S} \right]^{T}$$
(4)

Анализ эффектов квантования на характеристики алгоритма.

В современных системах приёма пилотных сигналов процедура сжатия зондирующей последовательности производится с помощью блока цифровой обработки сигналов (см. Рис. 1).

Рисунок 1: Типовая структура приемника пилотных сигналов

Наиболее эффективным с точки зрения практического применения является использование программируемой логики с применением IP – ядер. Характеристики современных программно-аппаратных комплексов фирмы Altera приведены в Таблице 1.

IP – ядро	Отводы	Выход, бит	Вход, бит	Коэффициенты, бит
FIR1	128	64	32	32
FIR2	128	64	32	16
FIR3	128	32	16	16
FIR4	128	16	8	16

Таблица 1: Характеристики ІР-ядер, реализующих процедуру свертки

Исследовалось влияние машинной арифметики с фиксированной точкой на характеристики алгоритма сжатия для последовательности Баркера длины N=13. Увеличение разрядности вычислений позволяет достигать более глубокого подавления боковых лепестков пилотных сигналов (см. Рис. 2).

Рисунок 2: Зависимость суммарной энергии боковых лепестков от разрядности вычислений

На практике подавления боковых лепестков до уровня -80 дБ достаточно для решения задачи оценки импульсной характеристики канала связи. Данный уровень подавления достигается при использовании

Рисунок 3: Зависимость порога избыточной разрядности от требуемого уровня подавления БЛ

Заключение

- 1. Составлен алгоритм минимизации суммарной энергии боковых лепестков в фазоманипулированной последовательности.
- 2. Осуществлен анализ влияния машинной арифметики на характеристики алгоритма сжатия.
- 3. Установлено, что разрядности вычислений в **16 бит** достаточно для эффективного применения рассмотренного алгоритма.

Литература

- 1. Кук, Ч. Радиолокационные сигналы / Ч. Кук, М. Бернфельд; пер. с англ. В.С. Кельзона. М: Советское радио, 1971. 568 с.
- 2. Скляр, Б. Цифровая связь. Теоретические основы и практическое применение / Б. Скляр; пер. с англ. Е.Г. Грозы, В.В. Марченко, А.В. Назаренко, О.М. Ядренко. М: Вильямс, 2003, 1104 с.
- 3. Levanon, N. Radar signals / N. Levanon, E. Mozeson. N.J.: Wiley-

- Interscience, 2004. 411 p.
- 4. Финкельштейн, М.И. Основы радиолокации / М.И. Финкельштейн. М: Радио и связь, 1983. 536 с.
- 5. Boris, U. Matched and mismatched pulse compressionin medical ultrasound imaging / Boris U. Zejak, Igor S. Simic, Aleksa J. Zejak. Beograd: Institute IMTEL, 1989. 8 p.
- Daniels, R. Code inverse filtering for complete sidelobe removal in binary phase coded pulse compression systems / Robert C. Daniels, V. Gregers-Hansen. Washington DC: Radar Division, Naval Research Laboratory, 1980. 10 p.
- 7. Norman, J. Minimum Peak Range Sidelobe Filters for Binary Phase-Coded Waveforms / J. Norman, B. Miller, R. Frank, W. Symons. IEEE, 1980. 7 p.
- 8. Тихонов, В.И. Статистическая радиотехника / В.И Тихонов. М: Радио и связь, 1982. 624 с.