Math 525, Spring 2018. Homework 8 Due: Thursday, April 5, 2018

(1) Fix a space Z. Given any pair of topological spaces (X,A) with $A \subseteq X$, define a sequence of Abelian groups

$$H_k^Z(X, A) = H_k(X \times Z, A \times Z).$$

Show that this sequence satisfies many of the same properties as the singular homology of a pair, namely:

- a) A map $f:(X,A) \longrightarrow (Y,B)$ induces a map $f_*:H_k^Z(X,A) \longrightarrow H_k^Z(Y,B)$ in such a way that $(gf)_*=g_*f_*$.
- b) If $f, g: (X, A) \longrightarrow (Y, B)$ are homotopic through maps $X \longrightarrow Y$ that send A to B, then $f_* = g_*$.
- c) If $V \subseteq A$ is such that $\overline{V} \subseteq A^{\circ}$ then the map

$$H_n^Z(X \setminus V, A \setminus V) \longrightarrow H_n^Z(X, A)$$

is an isomorphism.

- d) If we define $H_k^Z(M) = H_k(M \times Z)$, there are connecting maps $\delta: H_k^Z(X,A) \longrightarrow H_{k-1}^Z(A)$ such that the sequence of maps
- $\dots \longrightarrow H_n^Z(A) \longrightarrow H_n^Z(X) \longrightarrow H_n^Z(X,A) \longrightarrow H_{n-1}^Z(A) \longrightarrow \dots$ is exact. Moreover, for any $f:(X,A) \longrightarrow (Y,B)$ we have $\delta f_* = f_*\delta$.
 - e) If X is a disjoint union of connected spaces X_{α} then $H_n^Z(X) = \bigoplus_{\alpha} H_n^Z(X_{\alpha})$.

(These properties show that H^Z_* is a 'generalized homology theory'.)

- (2) Hatcher §2.2 exercise 1
- (3) Hatcher §2.2 exercise 2
- (4) Hatcher §2.2 exercise 7
- (5) Hatcher §2.2 exercise 8