

20th Annual Meeting Crystal City, Arlington, VA Sep 30 – Oct 2, 2022

Orthogonal Neurocomputational Modules that Shape Levels of Rationality in Strategic Interactions

Vered Kurtz-David
NYU Grossman School of Medicine

with Adam Brandenburger, Maria Olifer & Paul Glimcher

Introduction

Research question

Some people think more steps ahead when facing strategic interactions

Theoretical tools to model subjects' levels of reasoning

Understand the neurocomputational cognitive modules that shape levels of rationality

Design concepts from psychophysics and modeling approach from Revealed Preference Theory

Level-k Model (Nagel, 1995) Cognitive Hierarchy Model (Camerer, Ho & Chong, 2004) Epistemic Game Theory (Brandenburger & Dekel, 1993)

Introduction

Orthogonalizing the cognitive modules of strategic interactions

Computational framework

Capacity tradeoffs between social and valuation demands

The Ring Game

Levels of rationality

Exclusion Restriction criterion and identification strategy

Testing the **MENTALIZING** axis

Testing the **VALUATION** axis

Experimental design

A full array of rings to disentangle mentalizing from valuation demands

Experimental design

Procedure

Capacity frontiers: identification of cognitive capacity and trade-offs

A revealed preference approach

Individual level results

Quantifying capacity and trading-off preferences

 $valuation\ score = performance\ index\ 4*4\ matrices$

 $trading \ off \ index = \frac{(mentalizing \ score - valuation \ score)}{valuation \ score}$

Quantifying capacity and trading-off preferences

 $trading\ of\ findex = \frac{(mentalizing\ score\ -valuation\ score)}{valuation\ score}$

Validating the results

Performance on iso-complexity lines

(*) Combined sample

Identification of rationality levels

Frequency

Kneeland (2015)

Psychometric curves of strategic reasoning

 $\beta_{num_players}$ = 0.101 , p<0.0001

 $\beta_{choice_set_size} = 0.044, p=0.661$

 $\beta_{interaction} = -0.1$, p=0.002

NYU sample

CraigsList sample

NYU regressions (with FEs): $\beta_{num_players} = 0.560$, p<0.0001 $\beta_{\text{choice set size}} = -0.177, p < 0.0001$

Chances of being (at least) rational of level 1

CraigsList regressions (logit, with FEs): $\beta_{num_players} = 0.655 \text{ , p} < 0.0001$ $\beta_{interaction} = -0.073 \text{ , p} < 0.0001$

NYU regressions (logit, with FEs): $\beta_{\text{num_players}} = 0.806$, p<0.0001 $\beta_{\text{interaction}} = -0.208$, p<0.0001

Summary

Thank you

Glimcher lab members

Dr. Paul Glimcher

Dr. Kenway Louie

Dr. Candace Raio

Dr. Bo Shen

Dr. Aysu Secmen

Ben Lu

Zih-Yun (Eve) Yan

Duc Nguyen

Aadith Vittala

Oluwatobi (Tobi) Olufeko

Ryan Walters

Hannah Zimmermann

Maria Olifer

Elizabeth Tell

Hannah Hamling

Weiyi Tian

Nourah Boujaber-Diederichs

Collaborators

Dr. Adam Brandenburger

