Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

12. Dezember 2020

TU Dortmund

Inhalt

- 1. Einleitung
- 2. Taskl

XGboost

ARIMA

Validierung

 Task II - Handover Vorhersage und Link Lifetime Lösungsansatz Task II

Einleitung

Einleitung

- Motivation: Verbesserung mobiler Kommunikation von Endgäten
 - \rightarrow Vermeiden von z.B. "packet loss" und als Folge auch Retransmission
- Wie kann das erreicht werden?
 - \rightarrow Datenratenprädiktion um optimalen Zeitpunkt zum Senden von Daten zu ermitteln

Datenbeschreibung

Situation:

- echt Welt Messungen im öffentlichen LTE Netzwerk der 3 deutschen Mobilfunkanbieter o2, T-Mobile und Vodafone
- Aufteilung in mehrere Szenarien: "campus", "urban", "suburban" und "highway"
- pro Mobilfunkanbieter und Szenario wurden 10 Testfahrten durchgeführt

Datenbeschreibung

- "context": passive Messungen 1s
 - \rightarrow RSRP
 - ightarrow RSRQ
 - $\to \textbf{CQI}$
 - ightarrow TA
 - \rightarrow velocity
 - \rightarrow Cell ID
 - \rightarrow payload size
- "ul" / "dl": aktive Messungen 10s
 - \rightarrow throughput Datenrate
- ullet "cells": ightarrow RSRP / RSRQ der Nachbarzellen

Taskl

frame

hallo

frame

hallo

Aufgabenstellung Task I: Vorhersage der Datenrate

- weitere Ansätze zur Vorhersage der Zielgröße "throughput"
- Aussagekraft der Einflussvariablen

Lösungsansätze

- XGboost
- ARMA Modell mit Regressionsfehlern

ARMA Modell mit Regressionsfehlern

Lineares Modell: $y = \beta \cdot X + \epsilon$, wobei ϵ Störfaktor und ϵ_i i.i.d.

- Problem: Autokorrelation
- Lösung: Anwendung des ARMA Modells auf die Regressionsfehler

ARMA Modell mit Regressionsfehlern

ARMA(p,q): zusammengesetzes Modell aus

- AR(p) (Auto Regressive): basiert auf vergangenen Werten ϵ_i des Response
- MA(q) (Moving Average): basiert auf Fehlern e_i zwischen vergangenen Vorhersagen und wahrem Wert des Response
- Modellgleichung des ARMA Modells:

$$\epsilon_{i} = \underbrace{\phi_{1}\epsilon_{i-1} + \ldots + \phi_{p}\epsilon_{i-p}}_{AR(p)} \underbrace{-\theta_{1}e_{i-1} - \ldots - \theta_{q}e_{i-q}}_{MA(q)} + \eta_{i},$$

mit η_i als Störfaktor

Wahl der Parameter p, q

- ACF (Autocorrelationfunktion) und PACF (partial Autocorrelationfunction) beschreiben die Korrelation der Lags mit dem aktuellen Zeitpunkt
- PACF beinhaltet nur direkte Einflüsse
- ACF dagegen betrachtet auch solche Einflüsse die indirekt sind
- die Funktionen legen damit die Wahl der Parameter p und q der Modell fest

hier könnte ein Bild sein

Modellgleichung ARMA mit Regressionsfehlern

Insgesamt ist die Modellgleichung gegeben durch

$$y_{i} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p} + \phi_{1}\epsilon_{i-1} + \dots + \phi_{p}\epsilon_{i-p} \\ -\theta_{1}e_{i-1} - \dots - \theta_{q}e_{i-q} + \eta_{i}$$

frame

hallo

Task II - Handover Vorhersage

und Link Lifetime

Aufgabenstellung Task II

Vorhersage des Handovers und Link Lifetime

- Vergleich des RSRP Wertes zur verbundenen Zelle sowie zu den Nachbarzellen
- Vorhersage des Handovers durch Angabe der Link Lifetime

Lösungsansatz Task II

Idee: Prädiktionsmodell für Link Lifetime mit Einfluss des RSRP der verbunden sowie der Nachbarzellen

- ightarrow Datentransformation nötig
 - Anpassen der RSRP Messwerte in "Cells" an RSRP Werte in "Context"
 - Cell Id \rightarrow eNodeB
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

time_s [‡]	rsrp_dbm [‡]	ci [‡]	scenario [‡]	provider [‡]	enodeb [‡]	drive_id [‡]	rsrp_neighbor	link_lifetime
0.06	-98	13828122	campus	02	54016	1	-99	18.01
1.07	-101	13828122	campus	02	54016	1	-104	17.00
2.07	-101	13828122	campus	02	54016	1	-104	16.00
3.07	-94	13828122	campus	02	54016	1	-100	15.00
4.07	-94	13828122	campus	02	54016	1	-100	14.00

Prädiktionsmodell Task II

- Anwendung des Prädiktionsmodells XGBoost um Link Lifetime vorherzusagen
- Validierung analog zu Task I mit Zeitreihenkreuzvalidierung

Literatur i

P. Erdős.

A selection of problems and results in combinatorics.

In Recent trends in combinatorics (Matrahaza, 1995), pages 1–6. Cambridge Univ. Press, Cambridge, 1995.

R. Graham, D. Knuth, and O. Patashnik.

Concrete mathematics.

Addison-Wesley, Reading, MA, 1989.

G. D. Greenwade.

The Comprehensive Tex Archive Network (CTAN). *TUGBoat*, 14(3):342–351, 1993.

D. Knuth.

Two notes on notation.

Amer. Math. Monthly, 99:403-422, 1992.

Literatur ii

H. Simpson.

Proof of the Riemann Hypothesis.

preprint (2003), available at

http://www.math.drofnats.edu/riemann.ps, 2003.