Geometria Simplética 2024, Lista 5

Prof. H. Bursztyn

Entrega dia 11/10

Problem 1: Let G be a Lie group. Let $X: G \to TG$ be a section of the projection $TG \to G$, not necessarily smooth. Show that if X is left invariant (i.e., $dL_g(X) = X \circ L_g$ for all $g \in G$), then X is automatically smooth.

Conclude that an analogous result holds for differential forms: if a section $\eta: G \to \wedge^k T^*G$ is left invariant $(L_g^*\eta = \eta)$, then η is a smooth k-form. Check that an analogous result holds for G-invariant forms on a homogeneous manifold.

Problem 2: (a) Prove that any connected Lie group G is generated (as a group) by any open neighborhood U of the identity element (i.e., $G = \bigcup_{n=1}^{\infty} U^n$). (b) Suppose that two Lie group homomorphisms $\varphi, \psi : G \to H$ are such that $d\varphi|_e = d\psi|_e$. Show that φ and ψ coincide on the connected component of G containing the identity e.

Problem 3: Consider the Lie groups $SU(2) = \{A \in M_2(\mathbb{C}) \mid AA^* = \mathrm{Id}, \det(A) = 1\}$ and $SO(3) = \{A \in M_3(\mathbb{R}) \mid AA^t = \mathrm{Id}, \det(A) = 1\}.$

a) Show that

$$SU(2) = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}, a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \right\}.$$

Conclude that, as a manifold, SU(2) is diffeomorphic to S^3 (hence it is simply connected).

Recall the definition of the quaternions \mathbb{H} . Show that the sphere S^3 , seen as quaternions of norm 1, inherits a Lie group structure, with respect to which it is isomorphic to SU(2).

b) Verify that

$$\mathfrak{su}(2) = \left\{ \begin{pmatrix} i\alpha & \beta \\ -\overline{\beta} & -i\alpha \end{pmatrix}, \ \alpha \in \mathbb{R}, \beta \in \mathbb{C} \right\}.$$

Consider the identification $\mathfrak{su}(2) \cong \mathbb{R}^3$, that takes the element in $\mathfrak{su}(2)$ determined by α, β to the vector $(\alpha, \operatorname{Re}\beta, \operatorname{Im}\beta)$ in \mathbb{R}^3 . Observe that, with respect to this identification, det in $\mathfrak{su}(2)$ corresponds to $\|\cdot\|^2$ in \mathbb{R}^3 .

- c) Verify that each element $A \in SU(2)$ defines a linear transformation on the vector space $\mathfrak{su}(2)$ by conjugation: $B \mapsto ABA^{-1}$. Show that, with the identification $\mathfrak{su}(2) \cong \mathbb{R}^3$, we obtain a representation (i.e., a linear action) of SU(2) on \mathbb{R}^3 that is norm preserving. Conclude that we have a homomorphism $\phi : SU(2) \to O(3)$, verifying that its image is SO(3) and its kernel is $\{\mathrm{Id}, -\mathrm{Id}\}$.
- d) Conclude that $SU(2) \cong S^3$ is a double cover of SO(3) (hence it is its universal cover, since it's simply connected), and the covering map identifies antipodal points of S^3 . Hence, as manifolds, SO(3) is identified with $\mathbb{R}P^3$.

Problem 4: Let \mathfrak{g} be the Lie algebra of a Lie group G, and let $k: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ be a symmetric bilinear form that is Ad-invariant (i.e., $k(\mathrm{Ad}_q(u), \mathrm{Ad}_q(v)) = k(u, v)$ for $g \in G$).

a) Show that the map $k^{\sharp}: \mathfrak{g} \to \mathfrak{g}^*, k^{\sharp}(u)(v) = k(u,v)$, is G-equivariant:

$$k^{\sharp} \circ \operatorname{Ad}_{g} = (\operatorname{Ad}^{*})_{g} \circ k^{\sharp}, \ \forall g \in G.$$
 (1)

[recall: $(Ad^*)_g := (Ad_{g^{-1}})^*$]. In particular, when k is nondegenerate (i.e., k^{\sharp} is an isomorphism), the adjoint and coadjoint actions are equivalent.

b) Verify that (1) implies that $k([w, u], v) = -k(u, [w, v]), \forall u, v, w \in \mathfrak{g}$, and that both conditions are equivalent when G is connected.

Problem 5: For a Lie algebra \mathfrak{g} , there is always a canonical bilinear form $k: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$, called *Killing form*, given by:

$$k(u, v) = \operatorname{tr}(\operatorname{ad}_u \operatorname{ad}_v).$$

(recall: $ad_u : \mathfrak{g} \to \mathfrak{g}, ad_u(v) = [u, v].$)

- a) Note that k is symmetric, and check that it is Ad-invariant.
- b) A Lie algebra is called *semi-simple* if k is nondegenerate. Show that $\mathfrak{so}(3)$ is semi-simple.

Problem 6: Consider the linear isomorphism $\mathbb{R}^3 \to \mathfrak{so}(3)$, given by

$$v = (x, y, z) \mapsto \widehat{v} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

- a) Describe the Lie bracket on \mathbb{R}^3 induced by the commutator in $\mathfrak{so}(3)$, and the inner product in $\mathfrak{so}(3)$ that corresponds to the canonical inner product in \mathbb{R}^3 .
- b) Describe the SO(3)-action on \mathbb{R}^3 corresponding to the adjoint action, its orbits, as well as its infinitesimal generators. Find (without any calculation!) a description of the coadjoint action on \mathbb{R}^3 (identified with $(\mathbb{R}^3)^*$ through the canonical inner product).

Problem 7: Let (V, Ω) be a symplectic vector space, and consider $H := V \times \mathbb{R} = \{(v, t)\}$. This space H, with the multiplication

$$(v_1, t_1) \cdot (v_2, t_2) = (v_1 + v_2, \frac{1}{2}\Omega(v_1, v_2) + t_1 + t_2),$$

is a Lie group, called the *Heisenberg group* (find the identity elements and inverses in H).

- (a) Show (directly from the conjugation formula in H) that $\mathrm{Ad}_{(v,t)}(X,r) = (X,r+\Omega(v,X))$, for $(X,r) \in \mathfrak{h} = \mathrm{Lie}(H) = V \times \mathbb{R}$. Describe the adjoint orbits, verifying that their possible dimensions are zero and one.
- (b) Verify that $ad_{(Y,s)}(X,r) = (0,\Omega(Y,X))$. [Recalling that $ad_{(Y,s)}(X,r) = [(Y,s),(X,r)]$, we obtain a formula for the Lie bracket in \mathfrak{h} .]
- (c) Describe the coadjoint action of H on $\mathfrak{h}^* = V^* \times \mathbb{R}^*$ and its orbits, analyzing the possible dimensions.