Analyse I – Corrigé de la Série 2

Remarque générale:

Les Exercices 1, 4 et 8 sont des questions de type Vrai ou Faux (V/F) – ce type de questions réapparaîtra tout au long du semestre. Pour chaque question, répondre par VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Exercice 1.

Q1: FAUX.

Prendre par exemple A = [0, 2] et B = [1, 3]. Dans ce cas on a

$$\mathbb{R} \setminus (A \cap B) = \mathbb{R} \setminus [1, 2]$$

et

$$(\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B) = (\mathbb{R} \setminus [0, 2]) \cap (\mathbb{R} \setminus [1, 3]) = \mathbb{R} \setminus [0, 3].$$

Q2: VRAI.

 \subset : Soit $x \in A \cap (B \cup C)$. Donc $x \in A$ et $x \in (B \cup C)$. Puisque $x \in (B \cup C)$, alors $x \in B$ ou (au sens logique du terme) $x \in C$. Deux cas se présentent :

- $x \in B$: Alors $x \in (A \cap B)$ et a fortiori $x \in (A \cap B) \cup (A \cap C)$.
- $x \in C$: Alors $x \in (A \cap C)$ et a fortiori $x \in (A \cap B) \cup (A \cap C)$.

 \supset : Soit $x \in (A \cap B) \cup (A \cap C)$. Alors $x \in (A \cap B)$ ou(au sens logique du terme) $x \in (A \cap C)$. Ainsi, dans tous les cas, $x \in A$.

Puisque $x \in A$ et que $x \in (A \cap B) \cup (A \cap C)$. Alors $x \in B$ ou (toujours au sens logique du terme) $x \in C$. Dans tous les cas on a $x \in (B \cup C)$ et donc $x \in A \cap (B \cup C)$.

Nous venons de démontrer la distributivité de \cap sur \cup .

Q3: FAUX.

Prendre par exemple $A = \mathbb{R}$, B = [1, 3] et C = [0, 2]. Dans ce cas on a

$$(A\cap B)\setminus C=[1,3]\setminus [0,2]=]2,3]$$

et

$$A\cap (C\setminus B)=\mathbb{R}\cap [0,1[=[0,1[$$

Q4: VRAI.

 \subset : Trivial car $C \supset (B \cap C)$.

 \supset : Si $x \in (A \cap B) \setminus (B \cap C)$, alors $x \in A$ et $x \in B$. L'information $x \notin (B \cap C)$ se réduit alors en $x \notin C$. On obtient alors le résultat désiré.

Q5: FAUX.

Prendre par exemple $A = \{0\}$, $B = \{0, 1, 2\}$ et $C = \{0, 1, 3\}$. Dans ce cas on a

$$A \cap (B \cup C) = \{0\}$$

 et

$$(A \cup B) \cap (A \cup C) = \{0, 1\}$$

Exercice 2.

On raisonne par l'absurde. Supposons que $\sqrt{6} = \frac{p}{q}$ avec p, q des entiers naturels tels que $\operatorname{pgcd}(p,q)=1$. Il s'en suit que $p^2=6q^2$, c.-à-d. que p^2 est donc un multiple de 6, ce qui n'est possible que si p est un multiple de 6 (Supposons que p n'est pas multiple de 6. Alors p=6k+r où $k\in\mathbb{N}$ et $r\in[1,5]$, donc $p^2=6(6k^2+2kr)+r^2$ où r^2 ne peut prendre qu'une valeur dans $\{1,4,9,16,25\}$. Aucune de ces valeurs n'est divisible par 6, donc p^2 n'est pas divisible par 6. Absurde). On a donc p=6a pour un entier naturel a. Par conséquent, $6^2a^2=6q^2$ et donc $q^2=6a^2$. Ainsi q^2 est un multiple de 6, ce qui n'est possible que si q est un multiple de 6. Mais ceci implique que le plus grand commun diviseur de p et de q n'est pas égal à 1, ce qui est en contradiction avec l'hypothèse de départ. Donc $\sqrt{6}$ est irrationnel.

Exercice 3.

Q1: On a

$$r^2 = 7 + \sqrt{17} ,$$

ou

$$\sqrt{17} = r^2 - 7$$
.

Si r est un nombre rationnel, il s'en suit que $r^2 - 7$ en est aussi un et donc $\sqrt{17}$ aussi, ce qui est une contradiction. (La preuve que $\sqrt{17}$ est un nombre irrationnel se fait comme pour 2 ou 3 ou tout autre nombre premier, voir notes du cours). Donc r est irrationnel.

Q2: On a

$$\left(r - \sqrt{2}\right)^3 = 3 \; ,$$

et donc

$$r^3 - 3r^2\sqrt{2} + 3r \cdot 2 - 2\sqrt{2} - 3 = 0 ,$$

d'où on obtient

$$\sqrt{2} = \frac{r^3 + 6r - 3}{3r^2 + 2} \ .$$

Cette égalité implique que $\sqrt{2}$ est un nombre rationnel si r est un nombre rationnel, ce qui est une contradiction. Donc r est irrationnel.

Exercice 4.

Q1: VRAI.

Par le théorème du cours, si A est majoré, alors il existe sup A. ([DZ], Section 1.2.5). Puisque sup A n'existe pas, alors A n'est pas majoré et donc il n'est pas borné.

Q2: FAUX.

Soit $A =]0, 1[\subset \mathbb{R}$. Alors on a $\sup A = 1$ (voir les notes du cours). Donc $\sup A \notin A$, mais A est borné.

Q3: FAUX.

Le supremum de A est $\sqrt{4} = 2$ qui appartient bien à \mathbb{Q} .

Q4: FAUX.

Soit $A = \{-2, -1, 0, 1, 2\}$ et B = [-1, 1]. Alors $\inf A = -2 < \inf B = -1$ et $\sup A = 2 > \sup B = 1$, mais $B \not\subset A$.

Exercice 5.

i)
$$A =]-\infty, 1[$$

$$ii) A =]-\infty,1]$$

$$iii)$$
 $A = [-1, \infty[$

$$iv)$$
 $A = \left[-\sqrt{2}, \sqrt{2}\right]$

$$v) A = \left] -\infty, -\sqrt{2} \right] \cup \left[\sqrt{2}, \infty \right[$$

$$vi)$$
 $A = \left]-\infty, -\sqrt[3]{3}\right]$

Exercice 6.

Q1: Axiome de la borne inférieure \implies la proposition donnée.

Soient $A \subset \mathbb{R}$ et $B \subset \mathbb{R}$ deux ensembles non vides tels que $A \cup B = \mathbb{R}$, $A \cap B = \emptyset$ et pour tout $a \in A, b \in B$ on a a < b. Alors l'ensemble B est minoré par tout élément de l'ensemble A. Donc l'axiome de la borne inférieure implique qu'il existe $c = \inf(B)$ (voir les notes du cours). Par la définition de la borne inférieure, $c \leq b$ pour tout $b \in B$ et $c \geq a$ pour tout $a \in A$. (Supposons qu'il existe $x \in A$ tel que c < x, et soit $\varepsilon = (a - c)/2$. Alors $c + \varepsilon < x < b$ pour tout $b \in B$, ce qui contredit la définition de $c = \inf(B)$.)

Q2: La proposition donnée \implies l'axiome de la borne inférieure.

Soit $S \subset \mathbb{R}_+^*$ un sous-ensemble non vide des nombres réels positifs. Soit $A \subset \mathbb{R}$ le sous-ensemble des nombres $a \in \mathbb{R}$: a < s pour tout $s \in S$. Alors $0 \in A$ et donc A n'est pas vide. Soit $B = \mathbb{R} \setminus A$, alors $S \subset B$ et donc B n'est pas vide. Par la définition de B on a de plus $A \cup B = \mathbb{R}$ et $A \cap B = \emptyset$. Alors par la proposition donnée, il existe un nombre $c \in \mathbb{R}$ tel que $a \le c$ pour tout $a \in A$ et $c \le b$ pour tout $b \in B$. Il est facile à voir que c est la borne inférieure de S. On a déjà $c \le b$ pour tout $b \in B$ et donc $c \le s$ pour tout $s \in S$, car $S \subset B$. Soit s > 0 tel que pour tout $s \in S$ on a $s \in S$ et donc $s \in S$ et donc $s \in S$ tel que $s \in S$ et definition de $s \in S$ tel que $s \in S$ et de que $s \in S$ et est effectivement la borne inférieure de $s \in S$.

Exercice 7.

Q1: Il suffit de s'apercevoir que la suite (u_n) telle que $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n+3}$ est strictement décroissante, de 1^{er} terme $\frac{1}{4}$ et tout les termes sont positifs. On en déduit donc que $E \subset [0, \frac{1}{4}]$ et donc que E est borné.

Q2: • Prouvons que 0 est la borne inférieure de (u_n) :

La borne supérieure est donc $\frac{1}{4}$.

D'une part, on a $\forall n \in \mathbb{N}^*$, $u_n > 0$. D'autre part, prenons $\epsilon > 0$, en prenant $n = \max(\lfloor \frac{1}{\epsilon} \rfloor - 2, 1)$, nous avons $u_n = \frac{1}{n+3} = \frac{1}{\lfloor \frac{1}{\epsilon} \rfloor + 1} < \epsilon$. (La notation $\lfloor x \rfloor$ signifie la partie entier du nombre réel positif x). Ainsi, il n'y a pas de minorant de (u_n) supérieur à 0. La borne inférieure (infimum) est donc 0.

• Prouvons que $\frac{1}{4}$ est la borne supérieure de (u_n) : L'argument utilisé en Q1 suffit : (u_n) est strictement décroissante et de 1^{er} terme $\frac{1}{4}$.

3

Q3: On a avec la suite définie précédemment $u_1 = \frac{1}{4}$ et donc sup $E \in E$. De plus, $\forall n \in \mathbb{N}^*, u_n > 0$ et donc inf $E \notin E$.

Exercice 8.

- i) sup $A = \sqrt{2} \in A$, inf $A = -1 \notin A$ (voir les notes du cours).
- (ii)B n'est pas majoré dans \mathbb{R} , inf $B=\sqrt{2}\notin B$.
- iii) Soit $x \in C$, alors $|2x 1| \le 1$, ce qui équivaut à $-1 \le 2x 1 \le 1$, soit encore $0 \le x \le 1$. Par conséquent, 0 est le plus grand minorant de C, et 1 est le plus petit majorant de C. $\sup C = 1 \in C$, inf $C = 0 \in C$.
- iv) De la même manière qu'à la question précédente, $|x^2-2|<1$ équivaut à $-1< x^2-2<1$, soit $1< x^2<3$. Pour les solutions positives, on peut passer à la racine carrée (comme la fonction racine carrée est croissante, l'ordre des inégalités est gardé) et obtenir $1< x<\sqrt{3}$. Pour les solutions négatives (x<0), le même raisonnement peut être appliqué à -x et conduit à $1< -x<\sqrt{3}$, soit $-\sqrt{3}< x<-1$. Par conséquent, $D=\left]-\sqrt{3},-1\right[\cup\left]1,\sqrt{3}\right[$, donc $D=\sqrt{3}\notin D$, inf $D=-\sqrt{3}\notin D$.
- v) Cette question consiste essentiellement en l'étude de la suite (u_n) telle que $\forall n \in \mathbb{N}, u_n = \frac{n}{n+1}$. On remarque que la suite est bornée:

$$\forall n \in \mathbb{N}, \quad 0 \le u_n < 1.$$

Comme $u_0=0$ et $\forall n\in\mathbb{N},\ 0\leq u_n$, il est clair que inf $E=0\in E$. Démontrons que 1 est la borne supérieure de E. Soit $\epsilon>0$, cherchons des éléments de E à une distance de moins de ϵ de 1. $|u_n-1|<\epsilon$ équivaut à $1-u_n<\epsilon$ puisque $u_n<1$. Si $\epsilon>1$, l'inégalité est satisfaite pour tout $n\in\mathbb{N}$. Soit $\epsilon<1$. On a donc $|u_n-1|<\epsilon\Leftrightarrow 1-\frac{n}{n+1}<\epsilon\Leftrightarrow \frac{1}{n+1}<\epsilon\Leftrightarrow n>\frac{1}{\epsilon}-1$. En prenant $n=\lfloor\frac{1}{\epsilon}\rfloor$, nous avons donc bien $|u_n-1|<\epsilon$, donc la borne supérieure de E est 1. sup $E=1\notin E$, inf $E=0\in E$.

Remarque: Pour démontrer que 1 est le supremum du sous-ensemble E, il suffit de démontrer que (1) $1 \ge u_n$ pour tout $u_n \in E$, et (2) qu'il existe $n \in \mathbb{N}$ tel que pour tout $\varepsilon > 0$ on a $1 - u_n < \varepsilon$. Il est souvent plus facile à démontrer l'existence que de trouver explicitement un tel n. Par exemple, dans le cas donné cela revient à la proposition que pour tout $\varepsilon > 0$ il existe $n \in \mathbb{N}$ tel que $n > \frac{1}{\varepsilon} - 1$, ce qui suit du fait que le sous-ensemble des nombres naturels n'est pas borné dans \mathbb{R} (voir les notes du cours).

- vi) Pour cette question, il nous faut découper l'ensemble F en 3 sous-ensembles. Posons (u_n) telle que $\forall n \in \mathbb{N}$, $u_n = \frac{n(-1)^n}{n+1}$ et découpons F en $\{u_0, u_{2n+2} \text{ et } u_{2n+1}\} \ \forall n \in \mathbb{N}$. On remarque que $u_0 = 0$, $\forall n \in \mathbb{N}$, $u_{2n+2} > 0$ et $\forall n \in \mathbb{N}$, $u_{2n+1} < 0$. Chercher la borne supérieure de F revient donc à chercher la borne supérieure de F revient à chercher la borne inférieure de F revient de F revient F revient de F revient de F revient de F revient de F r
 - Prouvons que la borne inférieure de (u_{2n+1}) est -1 : On a $\forall n \in \mathbb{N}, u_{2n+1} = -1 + \frac{1}{2(n+1)}$. -1 est un minorant de (u_{2n+1}) car $\forall n \in \mathbb{N}, \frac{1}{2(n+1)} > 0$. Prenons $\epsilon > 0$, alors il nous faut trouver $n \in \mathbb{N}$ tel que $|-1 + \frac{1}{2(n+1)} - (-1)| < \varepsilon \Leftrightarrow \frac{1}{2(n+1)} < \varepsilon \Leftrightarrow n > \frac{1}{2\varepsilon} - 1$. En posant $n = \lfloor \frac{1}{2\varepsilon} \rfloor$, nous avons $u_{2n+1} + 1 < \epsilon$. Ainsi, la borne inférieure de F est donc -1.
 - Prouvons que la borne supérieure de (u_{2n+2}) est 1 : On a $\forall n \in \mathbb{N}, u_{2n+2} = 1 - \frac{1}{2n+3}$. 1 est un majorant de (u_{2n+2}) car $\forall n \in \mathbb{N}, \frac{1}{2n+3} > 0$. Prenons $\epsilon > 0$, en posant $n = \lfloor \frac{1}{2\epsilon} \rfloor$, nous avons $1 - u_{2n+2} < \epsilon$. Ainsi, la borne supérieure de F est donc 1.

vii)G n'est ni majoré ni minoré puisqu'il contient l'ensemble des entiers relatifs.

viii) En plaçant les angles de valeur $\frac{1}{n+1}$ sur un cercle trigonométrique, il est facile de voir que la suite constituée de leurs sinus, $u_n = \sin\left(\frac{1}{n+1}\right)$ est décroissante. Ainsi, $\sup H = u_0 = \sin(1) \in H$. Comme $0 < \frac{1}{n+1} \le 1$ et que le sinus est croissant sur $\left[0, \frac{\pi}{2}\right]$, on a $0 < u_n \le \sin(1)$. Pour un quelconque réel positif x, $\sin(x) \le x$. Ainsi, $\forall n \in \mathbb{N}$, $u_n \le \frac{1}{n+1}$. Or nous avons vu en v) que pour $\epsilon > 0$ et $n = \lfloor \frac{1}{\epsilon} \rfloor$, nous avions $\frac{1}{n+1} < \epsilon$, et donc $|u_n - 0| < \epsilon$. Donc $\inf H = 0 \notin H$. En conclusion, $\sup H = \sin(1) \in H$ et $\inf H = 0 \notin H$. ix) $\sup I = 1 \notin I$, $\inf I = 0 \notin I$.

Exercice 9.

- Q1: FAUX. Prendre par exemple f(x) = x et $g(x) = x^2$ qui satisfont $(f \circ g)(x) = x^2 = (g \circ f)(x)$ avec $f \neq g$.
- Q2: VRAI. Soient $x_1, x_2 \in \mathbb{R}$ tels que $f(g(x_1)) = f(g(x_2))$. Comme f est injective, on a $g(x_1) = g(x_2)$, et par l'injectivité de g, il suit que $x_1 = x_2$. Ainsi $f \circ g$ est bien injective.
- Q3: VRAI. Soient $x_1, x_2 \in \mathbb{R}$ tels que $f(x_1) = f(x_2)$. Donc on a $f(f(x_1)) = f(f(x_2))$. Comme $f \circ f$ est injective, on conclut que $x_1 = x_2$ et donc f est injective.
- Q4: VRAI. Soient $x_1, x_2 \in \mathbb{R}$ tels que $g(x_1) = g(x_2)$. Donc on a $f(g(x_1)) = f(g(x_2))$. Comme $f \circ g$ est injective, on conclut que $x_1 = x_2$ et donc g est injective.
- Q5: FAUX. Prendre par exemple $f(x) = x^2$ et $g(x) = e^x$ qui sont définies sur \mathbb{R} . Alors f n'est pas injective mais $(f \circ g)(x) = e^{2x}$ est injective.
- Q6: VRAI. Soit $y \in \mathbb{R}$. Comme $f \circ g$ est surjective, il existe $x \in \mathbb{R}$ tel que $(f \circ g)(x) = y$. En posant z = g(x) on a trouvé un $z \in \mathbb{R}$ tel que f(z) = y. Ainsi f est surjective.