多路径方法在神经网络验证中的 研究与应用

郑烨

导师: 刘嘉祥

目录

- 问题: 神经网络验证
- 背景: 界限传播方法
- 本文: 多路径界限传播
- 本文: GPU 并行化
- 贡献和工作量

神经网络验证

- 神经网络容易受到人为或非人为的攻击
- 安全攸关场景下神经网络的安全性需要得到可靠保证
- 基于测试的方法无法提供安全性保证(样本空间是无穷集)

自动驾驶系统事故

对抗路标

神经网络验证

- 验证给定的输入集合是否导致不安全输出
- 输入: 无穷集(包含扰动阈值内的所有图片)
- 输出: 安全或不安全(需要计算无穷集输入下的输出范围)

Image source: https://www.businessinsider.com/why-are-stop-signs-red

神经网络验证

• 困难: 非线性激活函数的复合(例如 ReLU) (NP-hard)

• 方法: 约束求解、上近似+优化、界限传播

• 本文: 将界限传播方法扩展(一般化)到多路径界限传播

Image source: https://www.businessinsider.com/why-are-stop-signs-red

- 沿神经网络传播界限函数
- 界限函数是关于输入变量的线性上下界

- 沿神经网络传播界限函数
- 界限函数是关于输入变量的线性上下界

- 沿神经网络传播界限函数
- 界限函数是关于输入变量的线性上下界

- 沿神经网络传播界限函数
- 界限函数是关于输入变量的线性上下界

- 沿神经网络传播界限函数
- 界限函数是关于输入变量的线性上下界

本文: 界限传播路径

•传播过程确定了一条"传播路径"

本文: 界限传播路径

本文: 双路径界限传播

优势:精度积累

- 每个节点的上下界均更精确(相比已有方法)
- 带来更精确的 ReLU 上近似

优势:精度积累

- 每个节点的上下界均更精确(相比已有方法)
- 带来更精确的 ReLU 上近似

本文: 双路径界限传播

• 一维输入 (x_1) 示例 (此时每个节点 $x_{i,j}$ 是关于 x_1 的一维曲线)

• 更好的上下界 → 更准确的输出范围 → 更高的验证精度

路径选择

• DeepPoly / CROWN 路径 (baseline, 1-path)

$$z \le \frac{\mathbf{u}}{\mathbf{u} - \mathbf{l}} (\hat{z} - \mathbf{l})$$

$$z \ge \alpha \hat{z}$$
 $\alpha = 0$ if $\mathbf{u} \le |\mathbf{l}|$ else 1

路径选择

- DeepPoly / CROWN 路径 (baseline, 1-path)
- 零下界(2-path), 平行下界(3-path), 以及...

$$0 \le z \le \frac{\mathbf{u}}{\mathbf{u} - \mathbf{l}} (\hat{z} - \mathbf{l})$$

$$\frac{\mathbf{u}}{\mathbf{u}-\mathbf{l}}\hat{z} \leq z \leq \frac{\mathbf{u}}{\mathbf{u}-\mathbf{l}}(\hat{z}-\mathbf{l})$$

路径选择

- DeepPoly / CROWN 路径 (baseline, 1-path)
- 零下界(2-path), 平行下界(3-path), 以及...
- 理论上路径数目越多越好,但提升并非可持续的

精度优势

•验证安全的数目对比,越大表示精度越高(黑体标出)

工具		模型和扰动大小 δ				
		MNIST FFNN				
		0.0014	0.0018	0.0022	0.0026	
FBP	→ МРВР	73	62	51	40	
	LiRPA	69	59	48	33	
FBBP	→ МРВР	86	78	69	58	
	LiRPA	83	77	66	56	
	-		CIFAR-10 CNN		Tiny ImgNet CNN	
		0.0010	0.0014	0.0010	0.0014	
BBP	→MPBP	61	38	27	22	
	LiRPA	56	36	25	19	
	GPUPoly	56	36	-	-	

贡献:多路径界限传播

- 提出界限传播路径的概念
- 将界限传播方法扩展到多路径界限传播
 - 现有方法是单条传播路径的特例
 - 包括反向界限传播、前向、前向+反向等
 - 形式化说明了上述方法,理论上证明其可靠性和精度优势
- •实验上说明其验证精度提升(相对于SOTA)

GPU 并行化

- 每条路径之间独立,可并行化
- 使得多路径界限传播的时间代价降低到与单条路径相当
- 在 PyTorch 上实现为 MpBP 工具

PyTorch	MpBP
$(x_{i,j})$	$(x_{i,j})$
点值	界限函数 数值上下界

GPU 并行化

• 界限函数表示为高维张量

(batch 大小,路径数目,本层节点数,输入层节点数)

GPU 并行化

• 界限函数表示为高维张量

(batch 大小,路径数目,本层节点数,输入层节点数)

Tensor 1

• 界限函数逐层传播

Tensor 1 \times Tensor 2 \times Tensor 3

• 乘法:沿用 PyTorch 的高效张量乘法(包括 CUDA 并行)

贡献: MpBP工具

- •基于 GPU 并行的多路径界限传播工具
 - 高效验证、支持 CNN 网络结构、类 PyTorch 用法
 - 完善"训练-验证"流程

时间消耗对比

精度更高

&

时间相当

工作量

- 提出界限传播路径的概念,将界限传播方法扩展到多路径界限传播
- 并行化多条路径,开发了领先于 SOTA 的工程实现
- 两个开源工具(AbstraCMP 和 MpBP)*

- 两篇已发表论文
 - 郑烨、施晓牧、刘嘉祥、基于多路径回溯的神经网络验证方法、软件学报(CCF-T1)
 - Ye Zheng, Jiaxiang Liu, and Xiaomu Shi. MpBP: Verifying Robustness of ... FSE (CCF-A)

多路径方法在神经网络验证中的 研究与应用

Thank you!

