S.-T. Yau College Student Mathematics Contest, 2018 Applied Mathematics, team

1. Given a set of column vectors $y_1, \dots, y_n \in \mathcal{R}^m$, we set $\mathcal{V} = \operatorname{span}\{y_1, \dots, y_n\} \subset \mathcal{R}^m$. How to find $\ell \leq \dim \mathcal{V}$ orthonormal vectors $\{\psi_i\}_{i=1}^{\ell}$ in \mathcal{R}^m that minimize

$$J(\psi_1, \dots, \psi_{\ell}) = \sum_{j=1}^{n} ||y_j - \sum_{i=1}^{\ell} (y_j^T \psi_i) \psi_i||^2$$

with the Euclidean norm $||y|| = \sqrt{y^T y}$.

- 2. Suppose there are n hyper-planes in the d dimensional Euclidean space \mathbb{R}^d , the planes partition the space into convex cells, the maximal number of cells is denoted as $f_d(n)$,
 - 1. Find the formula for d=2 case, namely, the plane is partitioned by n lines, prove it.
 - 2. Find the formula for general d and n and prove.

