11 L^p 空間

• 偏微分方程式論などで最も重要な関数空間である L^p 空間について学ぶ.

11.1 ノルム空間としての L^p 空間

• (X, \mathcal{F}, μ) を測度空間とする. $A \subset X$ は $A \in \mathcal{F}$ とする. このとき $1 \leq p < \infty$ に対して

$$L^p(A) = \left\{ f: A \to \overline{\mathbb{R}}: f \text{ は } A \text{ 上可測で } \int_A |f|^p d\mu < \infty
ight\}$$

とおく. まずこの $L^p(A)$ が \mathbb{R} 上のベクトル空間となることを示そう.

• $f, g \in L^p(A)$ とすると

$$|f(x) + g(x)|^p \le (|f(x)| + g(x)|)^p \le 2^p (|f(x)|^p + |g(x)|^p)$$

であるので $|f+g|^p$ も A 上積分可能である,つまり $f \in L^p(A)$ である.定数倍については明らかである.

• 次に $L^p(A)$ はノルム空間となることを示す. $f \in L^p(A)$ に対して

$$||f|| = \left(\int_{A} |f|^{p} d\mu\right)^{\frac{1}{p}} \tag{11.1}$$

と定義する.このとき ||f|| がノルムの3つの条件

- (N1) $||f|| \ge 0$, $||f|| = 0 \Leftrightarrow f = 0$
- (N2) $\alpha \in \mathbb{R}$ に対して $\|\alpha f\| = |\alpha| \|f\|$
- (N3) $||f + g|| \le ||f|| + ||g||$

を示さなければならない.

• (N1) の前半は明らかである.次に ||f|| = 0 としよう.このとき

$$\int_{A} |f|^p d\mu = 0$$

であるから命題 8.12 より f=0 a.a. $x\in A$ が成り立つ。しかし f=0 とは言えない。実際 $N\subset A,\,\mu(N)=0$ なる N の上で $f\neq 0$ であっても $\|f\|=0$ となってしまうのである。

• そこで $L^p(A)$ においては f = g a.a. $x \in A$ である 2 つの可測関数は同一視することによりこの不都合を回避する.

• 以前, f = g a.a. $x \in A$ なる 2 つの関数を $f \sim g$ と表し, $f \sim g$ は A 上で定義 された可測関数全体における同値関係になることを述べた。 そこで厳密には

$$V = \left\{ f: A o \overline{\mathbb{R}}: f$$
 は A 上可測で $\int_A |f|^p d\mu < \infty
ight\}$

とおいて、この同値類による商集合 V/\sim を $L^p(A)$ と定義するのである。f の同値類を [f] で表す:

$$[f] = \{g \in V : f = g \text{ a.a. } x \in A\}$$

として

$$||[f]|| = \left(\int_A |f|^p d\mu\right)^{\frac{1}{p}}$$

と定義するのである。しかし記号の煩雑化を避けるため, $L^p(A)$ は同値類を考えず,ほとんど至るという等しい関数は同じ関数とみなす」というルールで進めていき, $\|[f]\|$ を $\|f\|$ と表すことにする。そうすれば $\|f\|=0$ であれば f は 0 という関数と同一視できるので f=0 とみなすことにより (N1) が成り立つことがわかる。

• 次に (N2) を示す. $\alpha \in \mathbb{R}$ とすると

$$\|\alpha f\| = \left(\int_A |\alpha f|^p d\mu\right)^{\frac{1}{p}} = \left(|\alpha|^p \int_A |f|^p d\mu\right)^{\frac{1}{p}}$$
$$= |\alpha| \left(\int_A |f|^p d\mu\right)^{\frac{1}{p}} = |\alpha| \|f\|$$

を得る。

• 次に (N3) であるが,p=1 のときは $|f+g| \le |f| + |g|$ から明らかである.p>1 についてはいくつかの準備が必要である.

補題 11.1(Young の不等式) -

p, q > 0 は $\frac{1}{p} + \frac{1}{q} = 1$ を満たす数とする。このとき

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \quad (a, b \ge 0)$$

が成り立つ (p, q > 1) に注意).

命題 11.2(Hölder の不等式) -

 $p,\,q>0$ は $\frac{1}{p}+\frac{1}{q}=1$ を満たす数とする。 $f\in L^p(A),\,g\in L^q(A)$ とすると

$$\int_{A} |fg| d\mu \le \left(\int_{A} |f|^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{A} |g|^{q} d\mu \right)^{\frac{1}{q}}$$

が成り立つ.

命題 11.3(Minkowski の不等式) -

p は $1 \le p < \infty$ を満たす数, $f, g \in L^p(A)$ とするとき

$$\left(\int_{A} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leq \left(\int_{A} |f|^{p} d\mu\right)^{\frac{1}{p}} + \left(\int_{A} |g|^{p} d\mu\right)^{\frac{1}{p}}$$

が成り立つ.

これらの証明は補足にて行う.

11.2 Banach 空間としての L^p 空間

• $\mathscr X$ を $\|\cdot\|$ をノルムとするノルム空間とする. $\mathscr X$ の点列 $\{x_n\}$ が $x\in\mathscr X$ に**収束する**とは

$$\lim_{n \to \infty} ||x_n - x|| = 0$$

が成り立つことである.厳密には任意の $\varepsilon>0$ に対してある $n_0\in\mathbb{N}$ が存在して

$$n \ge n_0 \implies ||x_n - x|| < \varepsilon$$

が成り立つことである.

• $\mathscr X$ の点列 $\{x_n\}$ が Cauchy **列**であるとは、任意の $\varepsilon > 0$ に対してある $n_0 \in \mathbb{N}$ が 存在して

$$m, n \ge n_0 \quad \Rightarrow \quad ||x_m - x_n|| < \varepsilon$$

が成り立つことである.

• ノルム空間 $\mathscr X$ の任意の Cauchy 列が必ず X のある点に収束するとき, $\mathscr X$ は Banach 空間であるという。

定理 11.4 -

 $1 \le p < \infty$ に対して $L^p(A)$ は (11.1) をノルムとして Banach 空間となる.

証明

• $\{f_n\}$ を $L^p(A)$ の Cauchy 列とする:任意の $\varepsilon > 0$ に対して $n_0 \in \mathbb{N}$ が存在して

$$m, n \ge n_0 \quad \Rightarrow \quad \|f_m - f_n\| < \frac{\varepsilon}{2}$$
 (11.2)

が成り立つ.

ある n₁ ∈ N が存在して

$$m, n \ge n_1 \quad \Rightarrow \quad \|f_m - f_n\| < \frac{1}{2}$$

• 次に $n_2 > n_1$ なるある $n_2 \in \mathbb{N}$ が存在して

$$m, n \ge n_2 \quad \Rightarrow \quad \|f_m - f_n\| < \frac{1}{2^2}$$

が成り立つ.

• このように $n_1 < n_2 < \dots < n_{k-1} < n_k < \dots$ なる自然数の列 $\{n_k\}$ が存在し

$$m, n \ge n_k \quad \Rightarrow \quad \|f_m - f_n\| < \frac{1}{2^k}$$

が成り立つ. 特に $\|f_{n_{k+1}} - f_{n_k}\| < \frac{1}{2^k}$ が成り立つ.

• $g_k(x) = |f_{n_1}(x)| + \sum_{i=1}^k |f_{n_{i+1}}(x) - f_{n_i}(x)|$ とおく. $|f_{n_1}| \in L^p(A), |f_{n_{k+1}} - f_{n_k}| \in L^p(A)$ より $g_k \in L^p(A)$ であり,

$$||g_k|| \le ||f_{n_1}|| + \sum_{i=1}^k ||f_{n_{i+1}} - f_{n_i}|| \le ||f_{n_1}|| + 1$$

が成り立つ、また

$$0 \le g_1(x) \le g_2(x) \le \dots \le g_k(x) \le g_{k+1}(x) \le \dots$$

が成り立つので $g(x) = \lim_{k \to \infty} g_k(x)$ は各 $x \in A$ に対して存在する.

単調収束定理より

$$\int_{A} |g|^{p} d\mu = \lim_{k \to \infty} \int_{A} |g_{k}|^{p} d\mu,$$
$$||g|| = \lim_{k \to \infty} ||g_{k}|| \le ||f_{n_{1}}|| + 1$$

を得る. したがって $|g|^p$ つまり |g| は $|g|<\infty$ a.a. $x\in A$ を満たす. さらに $g\in L^p(A)$ である.

• $\lim_{k\to\infty}g_k=|f_{n_1}|+\sum_{i=1}^\infty|f_{n_{i+1}}-f_{n_i}|$ は a.a. $x\in A$ で存在するので $f_{n_k}=f_{n_1}+\sum_{i=1}^\infty(f_{n_{k+1}}-f_{n_k})$ は a.a. $x\in A$ に対して絶対収束することになる.つまり a.a. $x\in A$ に対して $f(x):=\lim_{k\to\infty}f_{n_k}(x)$ が存在する(収束しない場所では f(x)=0 とすればよい).さらに

$$|f_{n_k}(x)| \le g_k(x) \le g(x)$$

そして $|f(x)| \leq g(x)$ (a.a. $x \in A$) が成り立つ。 よって

$$|f_{n_k}(x) - f(x)| \le 2g(x)$$

が成り立つ.

• Lebesgue の収束定理により

$$\int_{A} |f(x) - f_{n_k}(x)|^p d\mu = 0 \quad \text{if} \quad \lim_{k \to \infty} ||f - f_{n_k}|| = 0$$

が成り立つ. これより $\varepsilon > 0$ にある $k_0 \in \mathbb{N}$ が存在して

$$k \ge k_0 \quad \Rightarrow \quad \|f - f_{n_k}\| < \frac{\varepsilon}{2}$$

が成り立つ.

• $\{f_n\}$ は Cauchy 列であるからある $n_0 \in \mathbb{N}$ が存在して $m, n \geq n_0$ ならば (11.2) が 成り立つ.ここで $k \geq k_0$ を $n_k \geq n_0$ となるようにとれば $n \geq n_0$ ならば

$$||f - f_n|| \le ||f - f_{n_k}|| + ||f_{n_k} - f_n|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

が成り立つ. これは $\lim_{n\to\infty} \|f_n - f\|$ を意味する. \square

11.3 L^{∞} 空間

• $f: A \to \mathbb{R}$ を A 上の可測関数とする. ある $M \in \mathbb{R}$ があって

$$f(x) \le M$$
 a.a. $x \in A$

が成り立つとき f は**本質的に上に有界**であるといい

$$\inf\{M: f(x) \le M \text{ a.a.} x \in A\}$$

を f の本質的上限といい $\operatorname*{ess\,sup}_{x\in A}f(x)$ あるいは $\operatorname*{ess\,sup}_{A}f$ と表す。本質的に下に有界,本質的下限 $\operatorname*{ess\,inf}_{x\in A}f(x)$, $\operatorname*{ess\,inf}_{A}f$ も同様に定義される。

V を

$$V = \{f: A \to \overline{\mathbb{R}}: f$$
 は A 上可測で $\operatorname{ess\,sup} |f| < \infty\}$

とおく. V において $L^p(A)$ の定義で述べた同値関係 \sim を考え、商集合 V/\sim を $L^\infty(A)$ と表し、 $[f]\in L^\infty(A)$ に対し

$$||[f]|| = \operatorname{ess\,sup}_{A} |f| \tag{11.3}$$

で定義する. 以後, f=g a.a. $x\in A$ である関数は同一視するという約束の下, $L^{\infty}(A)$ の元を f で表す. 定義から

$$|f(x)| \le ||f||$$
 a.a. $x \in A$

が成り立つ. 実際, 任意の $n\in\mathbb{N}$ に対してある $N_n\subset A$ かつ $\mu(N_n)=0$ なる N_n が存在して

$$|f(x)| \le ||f|| + \frac{1}{n} \ x \in A \cap N_n^c$$

が成り立つ.
$$N=\bigcup_{n=1}^{\infty}N_n$$
 とすると $\mu(N)=0$ であり

$$x \in A \cap N^c \quad \Rightarrow \quad |f(x)| \le ||f|| + \frac{1}{n} \quad \forall n \in \mathbb{N}$$

を得る. $n \to \infty$ とすればよい.

- ||f|| がノルムの条件 (N1), (N2), (N3) を満たすことを見よう.
- (N1) は明らか.
- (N2)を示す. $\alpha = 0$ ならば明らかである. $\alpha \neq 0$ とする. このとき

$$|\alpha f(x)| = |\alpha||f(x)| \le |\alpha|||f||$$
 a.a. $x \in A$

である.よって $\|\alpha f\| \leq |\alpha| \|f\|$ が成り立つ.逆に $|f| = \left|\frac{1}{\alpha}\alpha f\right|$ であるから先に示したことから

$$||f|| \le \frac{1}{|\alpha|} ||\alpha f||$$

つまり $|\alpha| ||f|| \le ||\alpha f||$ を得る.

• (N3) を示す. $f, g \in L^{\infty}(A)$ とする. このとき $N_1, N_2 \subset A, \mu(N_1) = \mu(N_2) = 0$ なる N_1, N_2 が存在して

$$|f(x)| \le ||f|| \quad x \in A \cap N_1^c,$$

$$|g(x)| \le ||g|| \quad x \in A \cap N_2^c$$

を得る. $N = N_1 \cup N_2$ とすると $\mu(N) = 0$ であり $x \in A \cap N^c$ ならば

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||$$

よって $||f + g|| \le ||f|| + ||g||$ を得る.

定理 11.5 -

 $L^{\infty}(A)$ は (11.3) をノルムとして Banach 空間となる.

証明

• $\{f_n\}$ を $L^{\infty}(A)$ の Cauchy 列とする:任意の $\varepsilon > 0$ に対し,ある $n_0 \in \mathbb{N}$ が存在して

$$m, n \ge n_0 \quad \Rightarrow \quad \|f_m - f_n\| < \varepsilon$$

• $k \in \mathbb{N}$ に対して、ある $n_k \in \mathbb{N}$ が存在して

$$m, n \ge n_k \quad \Rightarrow \quad \|f_m - f_n\| \le \frac{1}{2^k}$$

が成り立つ. このことから、任意の $k\in\mathbb{N}$ に対して、ある $n_k\in\mathbb{N}$ が存在して、 $m,n\geq n_k$ に対して $\mu(N_{k,m,n})=0$ なる $N_{k,m,n}\subset A$ が存在して

$$m, n \ge n_k \Rightarrow |f_m(x) - f_n(x)| < \frac{1}{2^k} \quad x \in A \cap N_{k,m,n}^c$$

が成り立つ.

• $N=\bigcup_{k\in\mathbb{N}}\bigcup_{m,n\geq n_k}N_{k,m,n}$ とすれば $\mu(N)=0$ であり、任意の $x\in A\cap N^c,\ k\in\mathbb{N},$ $m,n\geq n_k$ に対して

$$|f_m(x) - f_n(x)| \le \frac{1}{2^k}$$

が成り立つ. 任意に $\varepsilon > 0$ をとれば $\frac{1}{2^k} < \varepsilon$ となる k が定まり、そこから n_k が定まり、

$$m, n \ge n_k \quad \Rightarrow \quad |f_m(x) - f_n(x)| < \varepsilon \quad (x \in A \cap N^c)$$
 (11.4)

が成り立つ。これは、任意の $x \in A \cap N^c$ に対して実数列 $\{f_n(x)\}$ は Cauchy 列であることを意味する。

• したがって各 $x \in A \cap N^c$ に対して $f(x) = \lim_{n \to \infty} f_n(x)$ が定まる $(x \in N)$ に対してはf(x) = 0 とする). (11.4) で $m \to \infty$ とすれば

$$n \ge n_k \quad \Rightarrow \quad |f(x) - f_n(x)| < \varepsilon \quad (x \in A \cap N^c)$$
 (11.5)

が成り立つ、このとき

 $|f(x)| \le |f(x) - f_{n_k}(x)| + |f_{n_k}(x)| \le \varepsilon + \|f_{n_k}\| \quad (x \in A \cap N^c)$ つまり a.a. $x \in A$ である. よって $f \in L^{\infty}(A)$ である. また (11.5) より $\lim_{n \to \infty} \|f_n - f\| = 0$ もわかる.

11.4 補足:種々の不等式の証明

証明

- ab = 0 のときは明らかなので ab > 0 とする.
- ・まず

$$x \le \frac{x^p}{p} + \frac{1}{q} \quad (x \ge 0) \tag{11.6}$$

が成り立つことを示す。そのためには

$$f(x) = \frac{x^p}{p} + \frac{1}{q} - x$$

とおいて増減表を書けばわかる(演習).

• (11.6) において $x = ab^{-\alpha}$ $(\alpha > 0)$ とおくと

$$ab^{-\alpha} \le \frac{a^p b^{-p\alpha}}{p} + \frac{1}{q}$$

• 上式両辺に $b^{1+\alpha} > 0$ をかけると

$$ab \le \frac{a^p b^{1+\alpha-p\alpha}}{p} + \frac{b^{1+\alpha}}{q}$$

• ここで $1+\alpha=q$ とおくと (1/p)+(1/q)=1 より $p=(\alpha+1)/\alpha$ つまり $\alpha+1-p\alpha=0$. したがって

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

が成り立つ. □

命題 11.2 の証明

- $\alpha = \left(\int_A |f|^p d\mu\right)^{1/p}, \beta = \left(\int_A |g|^q d\mu\right)^{1/q}$ とおく.
- $\alpha = 0$ ならば f = 0 (a.a. $x \in A$) であり $\beta = 0$ ならば g = 0 (a.a. $x \in A$) であるから, $\alpha = 0$ または $\beta = 0$ のときは明らか.よって $\alpha \neq 0$ かつ $\beta \neq 0$ とする.
- Young の不等式において $a = \frac{|f|}{\alpha}, b = \frac{|g|}{\beta}$ とおくと

$$\frac{|fg|}{\alpha\beta} \le \frac{|f|^p}{p\alpha^p} + \frac{|g|^q}{q\beta^q}$$

である。 $|f|^p$, $|g|^q$ は積分可能であるから |fg| も積分可能であり

$$\frac{1}{\alpha\beta}\int_A |fg|d\mu \leq \frac{1}{p\alpha^p}\left(\int_A |f|^p d\mu\right) + \frac{1}{q\beta^q}\left(\int_A |g|^q d\mu\right) = \frac{1}{p} + \frac{1}{q} = 1$$

よって

$$\int_{A} |fg| d\mu \le \alpha\beta = \left(\int_{A} |f|^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{A} |g|^{q} d\mu \right)^{\frac{1}{q}}$$

が得られる。□

命題 11.3 の証明

- p=1 のときは三角不等式 $|f+g| \le |f| + |g|$ から明らかであるので p>1 とする。このとき $\frac{1}{p} + \frac{1}{q} = 1$ となる q>1 が存在する。実際 $q=\frac{p}{p-1}$ である。
- また $\int_A |f+g|^p d\mu = 0$ のときは明らかなので $\int_A |f+g|^p > 0$ とする.
- ・まず

$$|f+g|^p = |f+g||f+g|^{p-1} \le |f||f+g|^{p-1} + |g||f+g|^{p-1}$$
(11.7)

• $22\% h = |f + q|^{p-1} \$ 25% 2

$$|h|^q = |f + g|^{q(p-1)} = |f + g|^p$$

であるので $\int_A |f+g|^q d\mu < \infty$ である.ここで $f,g \in L^p(A)$ ならば $f+g \in L^p(A)$ であることを用いた.

● Hölder の不等式より

$$\int_A |f| |h| d\mu \leq \left(\int_A |f|^p d\mu \right)^{\frac{1}{p}} \left(\int_A |h|^q d\mu \right)^{\frac{1}{q}} = \left(\int_A |f|^p d\mu \right)^{\frac{1}{p}} \left(\int_A |f+g|^p d\mu \right)^{\frac{1}{q}}$$

同様に

$$\int_A |g||h|d\mu \leq \left(\int_A |g|^p d\mu\right)^{\frac{1}{p}} \left(\int_A |h|^q d\mu\right)^{\frac{1}{q}} = \left(\int_A |g|^p d\mu\right)^{\frac{1}{p}} \left(\int_A |f+g|^p d\mu\right)^{\frac{1}{q}}$$

• $\frac{1}{q} = 1 - \frac{1}{p}$ に注意して (11.7) より

$$\int_A |f+g|^p d\mu \leq \left\{ \left(\int_A |f|^p d\mu \right)^{\frac{1}{p}} + \left(\int_A |g|^p d\mu \right)^{\frac{1}{p}} \right\} \left(\int_A |f+g|^p d\mu \right)^{1-\frac{1}{p}}$$

• 両辺を $\left(\int_A |f+g|^p d\mu\right)^{1-\frac{1}{p}} > 0$ で割ると

$$\left(\int_A |f+g|^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_A |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int_A |g|^p d\mu\right)^{\frac{1}{p}}$$

を得る. □