Cognitive Speech Anomaly Detection - Project Report

Project Title: Cognitive Speech Anomaly Detection

using Machine Learning

Author: Sabesh Krishnan N

Date: April 2025

1. Introduction

Cognitive disorders like Alzheimer's disease can often be detected through subtle changes in speech patterns. This project aims to develop a lightweight anomaly detection system that analyzes audio recordings of speech and identifies potential indicators of cognitive decline, using acoustic features and unsupervised learning techniques.

2. Objectives

- To extract key audio features indicative of cognitive changes.
- To apply unsupervised anomaly detection to identify at-risk samples.
- To visualize and interpret feature-based differences.

3. Dataset

• Total audio files analyzed: 9

Format: WAV

• Source: Custom/test dataset manually compiled

Files analyzed:

- astronaut-says-game-over-73039.wav
- counting-2-139468.wav
- didyouhearthatisanybodythere-61210.wav
- maybe-next-time-huh.wav
- nice-work.wav
- seriously-right.wav
- thats-the-loveliest-thing.wav
- this-is-sc-v1-106448.wav
- youll-see-very-soon.wav

4. Methodology

4.1 Feature Extraction

Extracted features include:

- Pauses per second
- Average pause duration
- Pitch standard deviation
- Speech density (voiced vs unvoiced segments)

Tools used:

- Librosa (audio analysis)
- NumPy, Pandas
- scikit-learn (modeling)
- Seaborn (visualization)

4.2 Anomaly Detection

• Model: Isolation Forest

• **Reason:** Works well for high-dimensional data and unsupervised anomaly detection

5. Results

Anomalies Detected: 2 out of 9 files

Filename	Anomaly Score
thats-the-loveliest-thing.wav	-0.075420
astronaut-says-game-over- 73039.wav	-0.020644

Key Feature Differences

Feature	Normal (mean)	Anomalous (mean)
Pauses per sec	0.926	0.419
Avg pause duration	0.76 sec	1.45 sec
Pitch std	83.07	71.42
Speech density	0.75	0.64

6. Visualizations

• Boxplot generated for pitch standard deviation to visually distinguish between normal and anomalous

- samples.
- FutureWarning regarding sns.boxplot() was encountered but did not affect results.

7. Conclusion

This project successfully demonstrates a proof-of-concept anomaly detection system for speech-based cognitive assessment. The tool identified 2 potential atrisk recordings based on speech irregularities.

8. Future Work

- Apply on larger, clinical datasets
- Incorporate semantic/NLP features
- Build an interactive dashboard (e.g., Streamlit or Gradio)
- Improve model robustness with additional classifiers

9. Files Included

- index.py Main script
- cognitive_analysis_results.csv Output results
- Audio files (9 WAV samples)
- Visualizations folder (optional)