Goal: To define Weil Pairing and discuss its properties Recoll: C/K Divisor is a formal sum ZnpP Principal ie divisor of the form div(f)
divisor
for some fek(c) [Set of all Principal divisors] C Set of all sero?

divisors l'Set of all ? Livisons Let & be an elliptic Curve défined over K. Define: Pic (E) = (Group of all degree o ? divisors on & [Group of all Principal }

Thm:

Pic (E)
$$\cong$$
 E

De Pic (E)

D \vee (P) - (O)

Point at infinity

Pic Degree O

Observation:

D is principal \cong D \vee O

degree

O

 $(=) = (D) = (D)$
 $(=) =$

(=) ZmpP=Q

Setup: E/K Elliptic Curve defined over K

N is coprime to char(K)

E[N] = {PEE(K) | NP = Q}

N-torsion points

Weil Pairing En: E[N] X E[N] -> UN
is a function

Recipe: Let QE ETN].

div(f) = NQ-NO

(NQ-NO is principal, hence there exists a)
function f s+ div(f) = NQ-NO

let Q' be sit NQ'=Q.

Using Q' we will construct another divisor.

$$\sum (Q'+R) - (R)$$
, this is a degree of divisor

$$E[N] = N^2$$
 $N^2Q^1 = N(NQ^1) = NQ = Q$

Thus is also a principal divisor.

So, there exists a function g s.t.

 $div(g) = \sum_{R \in E[N]} (Q^1+R) - R$

Some more observations

$$d^{n}v(g^{N}) = Ndiv(g)$$

$$= \sum_{R \in E[N]} N(Q+R) - N(R)$$

div
$$(f \circ EN)$$
 $(x) = f(Nx)$
div $(f) = NQ - NO$
 $NX = Q$
 $[V(Q'+R) = NQ'+NR = Q]$
 $d^{\circ}v(f \circ EN) = N(\sum (Q'+R) - (R))$
 $REE[N]$
 \Rightarrow div $(f \circ EN) = div (g^{N})
 \Rightarrow $f \circ EN = g^{N}$ (up to a constant)
By adjusting f with this constant, assume
 $f \circ EN = g^{N}$
Let $P \in E[N]$, then for any $X \in E$$

 $g(x+P)^N = f_{Q} \circ [N](x+P)$

$$= f_{Q}(NX+NP)$$

$$= f_{Q}(NX)$$

$$= f_{Q}(NX)$$

$$= f_{Q}(NX)$$

$$\Rightarrow \left(\frac{g_{Q}(X+P)}{g_{Q}(X)}\right)^{N} = 1$$

$$\Rightarrow \lambda_{iS} \text{ Some } N-\text{th (not of unity.}$$

$$\text{This does not depend on choice of } X.$$

$$E \to IP^{1} \longrightarrow \text{marphism}$$

$$X \mapsto g_{Q}(X+P)$$

$$\overline{S_{Q}(X)}$$

Weil Pairing en: EIN] X EIN] > MN

(PRQ) +> 9Q(X+P)

PQ(X)

Properties of weil Pairing

1) Bilineas in both vouidbles

$$e_{N}(P_{1}+P_{2},Q)=e_{N}(P_{1},Q)$$
 $e_{N}(P_{2},Q)$

en (P, Q, +Q2) = en (P,Q1) en (P,Q2)

2) Alternating

$$e_N(P_1P) = 1$$

$$\Rightarrow$$
 $e_N(P,Q) = e_N(Q,P)^{-1}$

3) Non-degenerate

 $\frac{P}{P} = 0$ $\Rightarrow P = 0$

To en (P,Q)=1 for all PE ECN)

=> Q=0

4) Galoic- invoyant oe Gal (K/K) $\sigma(e_N(P,Q)) = e_N(\sigma P, \sigma Q)$ 5) Compatibility among CN'S TH SEE[NN] PE E[N] C E[NN'] $e_{NN'}(S,P) = e_N(N'S,P)$

Next time: D See a proof of these properties

2 Explicit applications in Cryptography