Package 'RespirAnalyzer'

July 8, 2023

Type Package
Title Analysis Functions of Respiratory Data
Version 1.0.2
Date 2023-6-7
Author Xiaohua Douglas Zhang [aut, cph], Teng Zhang [aut], Xinzheng Dong [aut, cre]
Maintainer Xinzheng Dong <dong.xinzheng@foxmail.com></dong.xinzheng@foxmail.com>
Description Provides functions for the complete analysis of respiratory data. Consists of a set of functions that allow to preprocessing respiratory data, calculate both regular statistics and nonlinear statistics, conduct group comparison and visualize the results. Especially, Power Spectral Density ('PSD') (A. Eke (2000) <doi:10.1007 s004249900135="">), 'MultiScale Entropy(MSE)' ('Madalena Costa(2002)' <doi:10.1103 physrevlett.89.068102="">) and 'MultiFractal Detrended Fluctuation Analysis(MFDFA)' ('Jan W.Kantelhardt' (2002) <doi:10.1016 s0378-4371(02)01383-3="">) were applied for the analysis of respiratory data.</doi:10.1016></doi:10.1103></doi:10.1007>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports Rcpp (>= 1.0.2), signal, pracma
LinkingTo Rcpp
RoxygenNote 7.1.1
Depends R ($>= 3.5.0$)
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-07-08 12:20:02 UTC
R topics documented:
RespirAnalyzer-package
1

	find.peaks	5
	fit.model	
	GroupComparison.fn	7
	Groupplot.fn	8
	HqData	10
	Individualplot.fn	10
	LowPSD	12
	MFDFA	13
	MFDFAplot.fn	14
	MovingAverage	15
	MSE	16
	Seriesplot.fn	17
Index		19
Resp	rAnalyzer-package	

Analysis Functions of Respiratory Data

Description

Provides functions for the complete analysis of respiratory data. Consists of a set of functions that allow to preprocessing respiratory data, calculate both regular statistics and nonlinear statistics, conduct group comparison and visualize the results. Especially, Power Spectral Density ('PSD') (A. Eke (2000) <doi:10.1007/s004249900135>), 'MultiScale Entropy(MSE)' ('Madalena Costa(2002)' <doi:10.1103/PhysRevLett.89.068102>) and 'MultiFractal Detrended Fluctuation Analysis(MFDFA)' ('Jan W.Kantelhardt' (2002) <doi:10.1016/S0378-4371(02)01383-3>) were applied for the analysis of respiratory data.

Details

The R package RespirAnalyzer contains functions for analyzing respiratory data.

Author(s)

Xiaohua Douglas Zhang [aut, cph], Teng Zhang [aut], Xinzheng Dong [aut, cre]

Maintainer: Xinzheng Dong <dong.xinzheng@foxmail.com>

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

```
# load Data from TestData dataset
data("TestData")
Seriesplot.fn(Data[1:2000,1],Data[1:2000,2],points=FALSE,
              xlab="Time(s)",ylab="Respiratory")
Fs=50 ## sampling frequency is 50Hz
Peaks <- find.peaks(Data[,2],Fs,lowpass=TRUE,freq=1,MovingAv=FALSE,
                     W=FALSE, filter=TRUE, threshold=0.05)
points(Data[Peaks[2:13,1],1],Data[Peaks[2:13,1],2],col=2)
PP_interval <- diff(Peaks[,1])/Fs
Seriesplot.fn(1:length(PP_interval),PP_interval,points=FALSE,xlab="Count",
          ylab="Inter-breath Interval(s)")
#### Moving Average
W <- FS <- 50
Data[,3] <- MovingAverage(Data[,2],W)</pre>
Seriesplot.fn(Data[1:2000,1],Data[1:2000,2],points=FALSE,
              xlab="Time(s)",ylab="Respiratory")
lines(Data[1:2000,1],Data[1:2000,3],col=2)
#### Low pass filter
bf <- signal::butter(2, 2/Fs, type="low")</pre>
Data[,4] <- signal::filtfilt(bf,Data[,2])</pre>
Seriesplot.fn(Data[1:2000,1],Data[1:2000,2],points=FALSE,
              xlab="Time(s)",ylab="Respiratory")
lines(Data[1:2000,1],Data[1:2000,4],col=2)
#### entropy of rawdata
scale_raw \leftarrow seq(1,90,2)
MSE <- MSE(Data$V2[seq(1,100000,2)], tau=scale_raw, m=2, r=0.15, I=40000)
Seriesplot.fn(MSE$tau ,MSE$SampEn,points=TRUE,
              xlab="Scale",ylab="Sample entropy")
#### entropy of IBI
scale_PP <- 1:10
MSE <- MSE(PP_interval, tau=scale_PP, m=2, r=0.15, I=40000)
Seriesplot.fn(MSE$tau ,MSE$SampEn,points=TRUE,
              xlab="Scale",ylab="Sample entropy")
#### PSD analysis
LowPSD(PP_interval, plot=TRUE,min=1/64, max=1/2)
#### MFDFA
exponents=seq(3, 9, by=1/4)
scale=2^exponents
q=-10:10
m=2
Result <- MFDFA(PP_interval, scale, m, q)</pre>
MFDFAplot.fn(Result,scale,q,model = TRUE)
#### fit.model
Coeff <- fit.model(Result$Hq,q)</pre>
Coeff
Para<- -log(Coeff)/log(2);Para[3]=Para[1]-Para[2]
names(Para)<-c("Hmax","Hmin","i÷H")</pre>
Para
#### Individualplot
```

4 Data

```
data("HqData")
PP_Hq <- HqData
filenames <- row.names(PP_Hq)</pre>
q=-10:10
ClassNames <- c(substr(filenames[1:19], start = 1, stop = 3),</pre>
                 substr(filenames[20:38], start = 1, stop = 5))
Class <- unique(ClassNames)</pre>
col_vec <- rep(NA, nrow(PP_Hq) )</pre>
pch_vec <- rep(16, nrow(PP_Hq) )</pre>
for( i in 1:length(Class) ) { col_vec[ ClassNames == Class[i] ] <- i }</pre>
Individualplot.fn(q,PP_Hq,Name=Class,col=col_vec,pch=pch_vec, xlab="q",ylab="Hurst exponent")
legend("topright", legend=paste0(Class, "(N=", table( ClassNames ), ")"),
      col=1:4, cex=1, lty=1, pch=16)
#### Groupplot
data("HqData")
PP_Hq <- HqData
filenames <- row.names(PP_Hq)</pre>
q <- -10:10
ClassNames <- c(substr(filenames[1:19], start = 1, stop = 3),</pre>
                 substr(filenames[20:38], start = 1, stop = 5))
Class <- unique(ClassNames)</pre>
for (i in 1:length(q)){
 Data <- GroupComparison.fn(PP_Hq[,i],ClassNames)</pre>
 Result_mean_vec <- Data[,"Mean"]</pre>
 Result_sd_vec <- Data[,"SE"]</pre>
 if(i == 1) {
    Result_mean_mat <- Result_mean_vec</pre>
    Result_sd_mat <- Result_sd_vec</pre>
 } else {
    Result_mean_mat <- rbind(Result_mean_mat, Result_mean_vec)</pre>
    Result_sd_mat <- rbind(Result_sd_mat, Result_sd_vec)</pre>
}
Groupplot.fn (q[1:10],Result_mean_mat[1:10,],Class,errorbar = Result_sd_mat[1:10,],
              xRange = NA, yRange = NA, col = NA, pch = rep(16,4), Position = "topright",
              cex.legend = 1, xlab="q",ylab="Hurst exponent",main = "")
Groupplot.fn (q[11:21],Result_mean_mat[11:21,],Class,errorbar = Result_sd_mat[11:21,],
              xRange = NA, yRange = NA, col = NA, pch = rep(16,4), Position = "topright",
              cex.legend = 1, xlab="q",ylab="Hurst exponent",main = "")
```

Data

An example of respiratory data

Description

The respiratory data of a healthy people.

find.peaks 5

Details

This is an data to be included in my package

Source

Fantasia Database, PhysioNet

References

"https://doi.org/10.13026/C2RG61"

find.peaks

Function to find the peak-to-peak intervals of a respiratory signal.

Description

function to find the peak-to-peak intervals of a respiratory signal.

Usage

```
find.peaks(
  y,
  Fs,
  lowpass = TRUE,
  freq = 1,
  MovingAv = FALSE,
  W = FALSE,
  filter = TRUE,
  threshold = 0.2
)
```

Arguments

y a numeric vector, with respiratory data for a regularly spaced time series...

Fs a positive value. sampling frequency of airflow signal.

lowpass logical. Whether to use low-pass filtering to preprocess the airflow signal.

freq an optional values. Cut-off frequency of low-pass filter. The default value is 1.

MovingAv logical. Whether to use Moving Average to preprocess the airflow signal.

an optional values. the windows of Moving Average. The default value is equal

to the sampling frequency Fs.

filter logical. Whether to filter the points of peaks.

threshold an optional value. A threshold is the minimum height difference between the

wave crest and wave trough. The default value is 0.2.

6 fit.model

Value

a dataframe for the information of peaks. "PeakIndex" is the position of the peaks and "PeakHeight" is the height of the peaks

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

Examples

fit.model

Function to fit the MFDFA result with the extended binomial multi-fractal model.

Description

function to fit the result of Multifractal detrended fluctuation analysis (MFDFA) with the extended binomial multifractal model. Return the results as a vector which contain the parameters of the model and the goodness of fit

Usage

```
fit.model(Hq, q)
```

Arguments

Hq a nurmeric vector for the generalized Hurst exponent.

q a vector of integers, q-order of the moment.

Value

a vector for fitting parameters."a" and "b" is the coefficients of the extended binomial multifractal model. "Goodness" is the goodness of fit

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

GroupComparison.fn 7

Examples

```
data("TestData") # load Data from TestData dataset
Fs=50 ## sampling frequency is 50Hz
Peaks=find.peaks(Data[,2],Fs)
PP_interval=diff(Peaks[,1])/Fs
exponents=seq(3, 8, by=1/4)
scale=2^exponents
q=-10:10
m=2
Result <- MFDFA(PP_interval, scale, m, q)
Coeff <- fit.model(Result$Hq,q)</pre>
Coeff
```

GroupComparison.fn

Function to calculate the statistics for each Group

Description

function to calculate the statistics for each Group: Number of Samples, mean, standard deviation (SD), standard error (SE), median, confident interval, p-value of ANOVA

Usage

```
GroupComparison.fn(Data, GroupName, na.rm = TRUE, conf.level = 0.95)
```

Arguments

Data vector for response values
GroupName vector for group names

na.rm whether to remove value for calculation

conf.level confidence level

Value

a dataframe for the statistics for each Group. Number of Samples, mean standard deviation (SD), median, upper and lower bounds of CI, p-value of ANOVA

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

8 Groupplot.fn

Examples

Groupplot.fn

Function to plot the mean and error bar by group

Description

function to plot the mean and error bar of sample entropy or the MFDFA results by group

Usage

```
Groupplot.fn(
    x,
    Average,
    GroupName,
    errorbar = NA,
    xRange = NA,
    yRange = NA,
    col = NA,
    pch = NA,
    pch = NA,
    Position = "topright",
    cex.legend = 0.75,
    xlab = "",
    ylab = "",
    main = ""
)
```

Arguments

```
x a vector for x axis.

Average Matrix for average in each group

GroupName a vector of names for each group

errorbar matrix for value of erorr bar

xRange range for the x-axis

yRange range for the y-axis

col a vector for the colors to indicate groups
```

Groupplot.fn 9

pch a vector for points types to indicate groups

Position position for the legend

cex.legend cex for legend

xlab a title for the x axis

ylab a title for the y axis

main main title for the plot

Value

No value returned

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

```
data("HqData")
PP_Hq <- HqData
filenames <- row.names(PP_Hq)</pre>
q <- -10:10
ClassNames <- c(substr(filenames[1:19], start = 1, stop = 3),</pre>
                 substr(filenames[20:38], start = 1, stop = 5))
Class <- unique(ClassNames)</pre>
for (i in 1:length(q)){
  Data <- GroupComparison.fn(PP_Hq[,i],ClassNames)</pre>
  Result_mean_vec <- Data[,"Mean"]</pre>
  Result_sd_vec <- Data[,"SE"]</pre>
  if(i == 1) {
    Result_mean_mat <- Result_mean_vec</pre>
    Result_sd_mat <- Result_sd_vec</pre>
  } else {
    Result_mean_mat <- rbind(Result_mean_mat, Result_mean_vec)</pre>
    Result_sd_mat <- rbind(Result_sd_mat, Result_sd_vec)</pre>
 }
Groupplot.fn (q[1:10],Result_mean_mat[1:10,],Class,errorbar = Result_sd_mat[1:10,],
              xRange = NA, yRange = NA, col = NA, pch = rep(16,4), Position = "topright",
              cex.legend = 1, xlab="q",ylab="Hurst exponent",main = "")
Groupplot.fn (q[11:21],Result_mean_mat[11:21,],Class,errorbar = Result_sd_mat[11:21,],
              xRange = NA, yRange = NA, col = NA, pch = rep(16,4), Position = "topright",
              cex.legend = 1, xlab="q",ylab="Hurst exponent",main = "")
```

10 Individual plot. fn

HqData

The Hurst exponent of respiratory data

Description

The Hurst exponent extracted from the MFDFA result of respiratory data.

Details

This is an data to be included in my package

Source

Fantasia Database, PhysioNet

References

"https://doi.org/10.13026/C2RG61"

Individualplot.fn

Function to plot multiscale entropy or MFDFA results by individual.

Description

function to plot multiscale entropy or MFDFA results by individual.

Usage

```
Individualplot.fn(
    x,
    y,
    Name = NA,
    xRange = NA,
    yRange = NA,
    col = NA,
    pch = NA,
    Position = "topright",
    cex.legend = 0.75,
    xlab = "",
    ylab = "",
    main = ""
)
```

Individual plot.fn 11

Arguments

x a vector for x-axis coordinate.
 y Matrix for response values.
 Name vector of names for each line.

xRange range for the x-axis. yRange range for the y-axis.

col vector for the colors to indicate groups.

pch vector for points types to indicate groups.

Position position for the legend.

cex.legend cex for legend.

xlab a title for x axis.

ylab a title for y axis.

main main title for the picture.

Value

No value returned

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

12 LowPSD

LowPSD	Function to calculate the power spectral density (PSD)

Description

function to calculate the power spectral density (PSD) of a time series. Methods derived from A. Eke (2000) "Physiological time series: distinguishing fractal noises from motions" <doi:10.1007/s004249900135>.

Usage

```
LowPSD(series, plot = TRUE, min = 1/8, max = 1/2)
```

Arguments

series a numeric vector, with data for a regularly spaced time series.

plot logical. whether to draw the plot of log power vs. log frequency

min, max the optional values. Frequency range of power spectral density. The default value is 1/2 and 1/8 and cannot be set to a negative number

Value

a value of spectral exponent(beta) which the slope of the of the fitting line on plot of log power vs. log frequency

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

MFDFA 13

М	ΙF	n	F	۸

MultiFractal Detrended Fluctuation Analysis

Description

Applies the MultiFractal Detrended Fluctuation Analysis (MFDFA) to time series.

Usage

```
MFDFA(tsx, scale, m, q)
```

Arguments

tsx Univariate time series (must be a vector).
scale Vector of scales.

m An integer of the polynomial order for the detrending.

q q-order of the moment.

Value

A list of the following elements:

- Hq q-order Hurst exponent.
- tau_q Mass exponent.
- hq Holder exponent.
- Dq singularity dimension.
- Fqi q-order fluctuation function.
- line linear fitting line of fluctuation function.

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

14 MFDFAplot.fn

```
Result <- MFDFA(PP_interval, scale, m, q)
Coeff <- fit.model(Result$Hq,q)
print(Coeff)
Para<- -log(Coeff)/log(2)
Para[3]=Para[1]-Para[2]
names(Para)<-c("Hmax","Hmin","DeltaH")
Para

PP_Hq <- Result$Hq
PP_hq <- Result$hq
PP_Dq <- Result$Dq
PP_Para <-Para</pre>
```

MFDFAplot.fn

Function to plot the results of MFDFA analysis

Description

function to plot the results of MFDFA analysis: q-orde fluctuation function, Hurst exponent,mass exponent and multifractal spectrum. The fitting result of binomial multifractal model can be also shown by the fitting line

Usage

```
MFDFAplot.fn(
   Result,
   scale,
   q,
   cex.lab = 1.6,
   cex.axis = 1.6,
   col.points = 1,
   col.line = 1,
   lty = 1,
   pch = 16,
   lwd = 2,
   model = TRUE,
   cex.legend = 1
)
```

Arguments

Result a list of the MFDFA results.

scale a vector of scales used to calculate the MFDFA results.

q a vector, q-order of the moment used to calculate the MFDFA results.

cex.lab the size of the tick label numbers/text with a numeric value of length 1.The default value is 1.6.

MovingAverage 15

cex.axis	the size of the axis label text with a numeric value of length 1.The default value is 1.6.
col.points	color of the and point.
col.line	color of the line
lty	line types.
pch	points types.
lwd	line width.
model	whether to use the model to fit the results and draw a line of fit.
cex.legend	the size of the legend text with a numeric value of length 1. The default value is 1.

Value

No value returned

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

Examples

MovingAverage

Function to calculate Moving Average of a series

Description

function to calculate Moving Average of a series

Usage

```
MovingAverage(y, W)
```

16 MSE

Arguments

y a numeric vector, with respiratory data for a regularly spaced time series.

W a Positive integer, the windows of Moving Average.

Value

A new numeric vector after calculate the moving average.

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

Examples

```
data("TestData")
W <- 50
y <- MovingAverage(Data[,2],W)</pre>
```

MSE

Function to compute the multiscale entropy(MSE)

Description

function to perform a multiscale entropy (MSE) analysis of a regularly spaced time series. Return the results as an R data frame. Methods derived from Madalena Costa(2002) "Multiscale entropy analysis of complex physiologic time series" <doi:10.1103/PhysRevLett.89.068102>.

Usage

```
MSE(x, tau, m, r, I)
```

Arguments

Х	a numeric vector, with data for a regularly spaced time series. NA's are not allowed (because the C program is not set up to handle them).
tau	a vector of scale factors to use for MSE. Scale factors are positive integers that specify bin size for the MSE algorithm: the number of consecutive observations in 'x' that form a bin and are averaged in the first step of the algorithm. Must be a sequence of equally-spaced integers starting at 1. The largest value must still leave a sufficient number of bins to estimate entropy.
m	a positive integers giving the window size for the entropy calculations in the second step of the algorithm, Typical values are 1, 2, or 3.
r	a positive value of coefficients for similarity thresholds, such as r=0.15, r*sd(y) must be in the same units as 'x'. Averages in two bins are defined to be similar if they differ by 'r*sd(y)' or less. NOTE: Currently only a single threshold is allowed per run; i.e.,'r' must be a scalar.
Ι	the maximal number of points to be used for calculating MSE

Seriesplot.fn 17

Value

A data frame with with one row for each combination of 'tau', 'm' and 'rSD'. Columns are "tau", "m", "rSD", and "SampEn" (the calculated sample entropy). The data frame will also have an attribute "SD", the standard deviation of 'x'. rSD = r*sd(y)

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

Examples

Seriesplot.fn

Function to plot series data

Description

function to plot series data. including Respiration data and Peak-to-Peak intervals series.

Usage

```
Seriesplot.fn(
 х,
 у,
  xRange = NA,
 yRange = NA,
 points = TRUE,
 pch = 1,
  col.point = 1,
  cex.point = 1,
  line = TRUE,
  lty = 1,
  col.line = 1,
  lwd = 1,
 xlab = "x",
 ylab = "y",
 main = ""
)
```

18 Seriesplot.fn

Arguments

x a vector for the x-axis coordinate of a sequence.
y a vector for the y-axis coordinates of a sequence.

xRange range for the x-axis. yRange range for the y-axis.

points whether to draw the points of the sequence. If points = TRUE, a sequence of

points will be plotted. otherwise, will not plot the points.

pch points types.

col.point color code or name of the points.

cex.point cex of points

line whether to draw a line of the sequence. If line = TRUE, a line of sequence will

be plotted. otherwise, will not plot the line.

lty line types.

col.line color code or name of the line.

lwd line width.

xlab a title for the x axis.
ylab a title for the y axis.
main main title for the picture.

Value

No value return

References

Zhang T, Dong X, Chen C, Wang D, Zhang XD. RespirAnalyzer: an R package for continuous monitoring of respiratory signals.

Index

```
* data
    Data, 4
    HqData, 10
* package
    RespirAnalyzer-package, 2
Data, 4
find.peaks, 5
fit.model, 6
GroupComparison.fn, 7
Groupplot.fn, 8
HqData, 10
Individual plot. fn, 10
LowPSD, 12
MFDFA, 13
MFDFAplot.fn, 14
MovingAverage, 15
MSE, 16
RespirAnalyzer
        (RespirAnalyzer-package), 2
RespirAnalyzer-package, 2
Seriesplot.fn, 17
```