

- 1. Redes Sociais: Em uma rede social, os vértices podem representar pessoas, enquanto as arestas representam as relações entre elas. Por exemplo, no Facebook, uma aresta pode representar uma "amizade".
- Mapas: Em um mapa, os vértices podem representar cidades ou locais, e as arestas podem representar estradas ou caminhos que conectam esses locais. Isso é útil para encontrar a rota mais curta ou mais rápida entre dois locais.
- 3. Internet: Na internet, os vértices podem representar páginas da web e as arestas podem representar links entre as páginas. Isso é útil para entender como as páginas da web estão interconectadas.
- 4. Jogos: Em um jogo como o xadrez, os vértices podem representar posições no tabuleiro e as arestas podem representar movimentos válidos. Isso é útil para analisar o jogo e desenvolver estratégias.
- 5. Problemas de Otimização: Em problemas de otimização, como o problema do caixeiro-viajante, os vértices podem representar cidades e as arestas podem representar o custo de viajar entre as cidades. O objetivo é encontrar o caminho mais curto que visita todas as cidades.

A: $V = \{A, B, C, D, E, F\}$ (ordem do grafo = 6)

0	А	В	С	D	Е	F
Α	0	1	0	1	0	0
В	1	0	1	0	1	1
С	0	1	0	1	0	0
D	1	0	1	0	1	0
E	0	1	0	1	0	1
F	0	1	0	0	1	0

3

B: 3

C: Sim, o grafo é conexo. Um grafo é dito conexo se existe um caminho entre todos os pares de vértices. No grafo fornecido, podemos ver que cada vértice está conectado a pelo menos um outro vértice e que é possível viajar de qualquer vértice a qualquer outro vértice através das arestas do grafo.

D: Sim, Grafos simples são grafos sem laços ou arestas múltiplas E:t odas as arestas estão contidas em um ciclo, portanto, não existem pontes. Uma ponte é uma aresta que, se removida, aumenta o número de componentes conectados do grafo.

F: Não

 $H: V = \{A, B, C, D, E, F, G\}$

0	a = 1	b = 2	c = 3	d = 4	e = 5	f = 6
a = 1	0	1	1	1	1	0
b = 2	1	0	0	0	1	1
c = 3	1	0	0	0	0	0
d = 4	1	0	0	0	1	0
e = 5	1	1	0	1	0	1
f = 6	0	1	0	0	1	0

Exercícios

 Desenhe todos os grafos simples que são possíveis construir com 1, 2, 3, e 4 vértices.

Possui 64 formas de fazer, seguindo os modelos abaixo e alterando as ordens

Clique para adicionar um título

Desenhe o grafo a partir da matriz de adjacência

0	e1	e2	e3	e4	e5	e6
1	1	0	0	-1	1	0
2	-1	1	0	0	0	-1
3	0	0	-1	1	0	1
4	0	-1	1	0	-1	0

saída
$$(x -> y) = 1$$

entrada $(x -> y) = -1$

A resposta correta é isolado. Um vértice é chamado de isolado se não possui arestas conectadas a ele, ou seja, seu grau é zero. As outras opções na imagem não se aplicam a essa definição

A resposta correta é pendente. Um vértice é chamado de pendente se possui apenas uma aresta conectada a ele, ou seja, seu grau é um. As outras opções na imagem não se aplicam a essa definição.

A resposta correta é paralelas. Duas ou mais arestas são chamadas de paralelas se elas conectam o mesmo par de vértices.