







## MANCHESTER Masking contour "in quiet" • Power of sine-wave (A2/2) ∞ pressure variation (loudness of sound) • Sine-waves of power below threshold will not be heard. • Can save bits by not transmitting them. • Ear most sensitive in frequency range 2-4 kHz • Two tones of equal power & different frequencies will not sound equally loud • Sensitivity of ear decreases at low & high frequencies. • Performing Expt 1 would be possible, but tedious. · Fortunately a formula exists. • Taking reference as 20 μPascals we get dB\_SPL • SPL stands for "Sound pressure level" 3 Mar'15 Workshop 3 COMP28512: Mobile Systems



## Callibration of volume control • Choose A<sub>0</sub> to be a small value, say 16. • Generate a 2 kHz sine-wave of amplitude A<sub>0</sub> • Then set volume control so you can just hear it. • Amplitude A<sub>0</sub> corresponds to 20 μP pressure variation. • We have now set the volume control so that sound level is 0 dB\_SPL when sine-wave amplitude is A<sub>0</sub>. • If we change the volume control, or A<sub>0</sub>, must re-callibrate • With 16-bit A-D converter, largest amplitude ≈ 2<sup>15</sup>. • This is 2<sup>11</sup> times larger than A<sub>0</sub>. ∴ ≈ 66 dB louder than threshold; i.e ≈ 66 dB\_SPL. ∴ To generate sine-wave at 60 dB\_SPL, set A ≈ 2<sup>14</sup> = 16384 (Actually it is 60.2 dB\_SPL)

































































