QAGC submission

Team name: qumonkey

Members : Kazuki Matsumoto

Srijan Srivastava

OUTLINE

Our algorithm is based on this paper [1]

Contents:

- What is VQE Algorithm
- Motivation for Project
- Ansatz

^[1] Stasja Stanisic, Jan Lukas Bosse, Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer, 2022, nature communications

VQE algorithm

- VQE algorithm is a quantum algorithm to solve grand state of Hamiltonian $\widehat{H} = \sum_i \alpha_i \, \widehat{P}_i \, (\widehat{P}_i \text{ is subset of Pauli operator}).$
- This algorithm is based on fractional sampling.

$$\langle \psi | H | \psi \rangle \ge E_0$$

VQE algorithm

- 1. Create quantum state $|\psi(\theta)\rangle$ on quantum computer.
- 2. Measure the expectation value $\langle H(\theta) \rangle = \langle \psi(\theta) | H | \psi(\theta) \rangle$.
- 3. Determine θ such that $\langle \psi(\theta)|H|\psi(\theta)\rangle$ is small on classical computer

Repeat until $\langle \psi(\theta)|H|\psi(\theta)\rangle$ converges to get an approximate ground state.

Motivation for project

 To search algorithm to solve Fermi-Hubbard model with efficient, low depth and few parameters.

The main motivation is to make ansatz scale down without loss of accuracy.

We referred paper [1] to meet this requirement.

^[1] Stasja Stanisic, Jan Lukas Bosse, Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer, 2022, nature communications

Ansatz

We designed following ansatz:

The gates named G, H and O are parameterized gats.

Thank you!!