

Rapport de laboratoire 3

Transmission des ondes électromagnétiques

$\label{eq:main_présenté à M. Dominique Grenier}$ M. Dominique Grenier

matricule	nom
910055897	Daniel Thibodeau
910 097 879	Francis Valois

Université Laval 26 octobre 2012

Chapitre 1

Laboratoire 2

1.1 Projet 1

Nous avons choisi une charge de valeur 100Ω puisque pour cette valeur, on obtient un coefficient de réflexion théorique faible. Pour affirmer cela, on utilise l'expression suivante :

$$\Gamma_g(s) = \frac{Z_g(s) - Z_0(s)}{Z_g(s) + Z_0(s)}$$
(1.1)

Dans le circuit étudié, on cherche à avoir Z_0 (l'impédance mise en parallèle avec la source) $\approx Z_G$ (l'impédance de la ligne)

Afin d'observer de manière pratique le comportement des réflexions du circuit, nous avons essayé chacune des résistance disponible dans les choix en plus de celle de 100Ω . Nous présenterons les courbes obtenus à l'oscilloscope à l'annexe A. Comme seule la courbe pour la résistance de 100Ω est requise selon l'énoncé de laboratoire, elle est présentée ci-dessous :

Figure 1.1 – test

On note dans cette figure que la réflexion est bel et bien faible, mais existante, en utilisant une résistance variable (le potentiomètre), on lit au multimètre une résistance très proche de 93Ω . Cette résistance est très proche de l'impédance intrinsèque de ligne du tableau 1 présenté dans le protocle de laboratoire ($z_0 = 93\Omega$).

- 1.2 Projet 2
- 1.3 Projet 3 : Reproduction des exemples

1.4 Projet 4 : Résultats obtenus selon la géométrie et les diélectriques

Annexe A

Annexes

(a) Courbes de réflexion obtenue pour $R=0\Omega$

(b) Courbes de réflexion obtenue pour $R=27\Omega$

(c) Courbes de réflexion obtenue pour $R=50\Omega$

(d) Courbes de réflexion obtenue pour $R=\infty$