Билет 1

Определение. Упорядоченный набор - функция, которая ставит в соответствие каждому элементому множества $\{1, \ldots, n\}$ элемент из множества $\{a_1, \ldots, a_n\} : 1 \to a_1, \ldots, n \to a_n$.

Декартовое произведение множеств $A_1 \times \ldots \times A_n = (a_1, \ldots, a_n) : a_i \in A_i$.

Определение. Пусть функция f определена на $A_1 \times \ldots \times A_n$, тогда f - n-местная функция.

Определение. Множество $B_n = E_2 \times ... \times E_n$, где $E_i = \{0, 1\}$, называется n-мерным булевым кубом.

Определение. Функция $f: B_n \to E_2$ называется функцией алгебры логики. Множество всех таких функций обозначим P_2 .

Представление функции $f(x_1,\ldots,x_n)$ в виде таблицы, имеющей n+1 столбец:

```
x_1 \dots x_{n-1} x_n f
0 \dots 0 0 0
0 \dots 0 1
0 \dots 0 1 0
\vdots \vdots \vdots \vdots
1 \dots 1 1 1
```

Так как число различных первых n столбцов 2^n , так как в каждой ячейке одного столбца может быть либо 0, либо 1. \Longrightarrow число функций будет 2^{2^n} , так как для каждого набора значение функции может быть либо 0, либо 1.

Определение. Переменная x_i называется существенной, если существуют наборы $\alpha_1, \ldots, \alpha_{i-1}, 1, \alpha_{i+1}, \ldots, \alpha_n$ и $\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n$, на которых функция принимает различные значения. В противном случае переменная x_i называется несущественной (фиктивной).

Определение. Пусть x_i - фиктивная переменная, тогда если функция $f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$, то функция g называется полученной из f добавлением фиктивной переменной. Функция удаления фиктивной переменной определяется аналогично.

Определение. Функция называется симметрической, если при любых перестановках переменных x_{i_1}, \ldots, x_{i_n} значение функции не меняется.

Элементарные функции в алгебре логики:

- 1. константы 0, 1
- 2. тождественный x
- 3. отрицание \overline{x}
- 4. конъюнкция $x \wedge y$
- 5. дизъюнкция $x \lor y$
- 6. имплекация $x \to y$
- 7. штрих Шеффера x|y
- 8. стрелка Пирса $x \downarrow y$

- 9. сложение по модулю 2
- 10. эквивалентность

Билет 2

Определение. Формула - слово в некотором алфавите A.

Определение. Алфавит - конечное или бесконечное множество.

Определение. Слово - произвольная функция, определённая на начальном отрезке натурального ряда и принимающая на нём значения из A.

Определение. Пусть F - множество функций алгебры логики, S - множество символов, обозначающих функции из F, тогда отображение $\Sigma: S \to F$ - сигнатура для F.

Определение. Пусть $X = \{x_1, \ldots\}$ - символы переменных.

База индукция: если x_i - символ переменной, то однобуквенное слово, состоящее из x_i - формула в сигнатуре Σ .

Пусть $s \in S$, $f = \Sigma(s)$ - функция от n переменных, Φ_1, \ldots, Φ_n - формулы в сигнатуре Σ , тогда слово $s(\Phi_1, \ldots, \Phi_n)$ - формула в сигнатуре Σ .

Определение. Пусть Φ - формула, \tilde{x} - упорядоченный набор $(x_{i_1}, \ldots, x_{i_n})$, содержащий все переменные формулы Φ , $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ - двоичный набор.

База индукции: Φ - однобуквенное слово x_{i_j} , тогда $\Phi[\tilde{x},\tilde{\alpha}]=\alpha_j$ - значение формулы на наборе $\tilde{\alpha}$.

Пусть F - $s(\Phi_1, ..., \Phi_n)$, $f = \Sigma(s)$, причём $\Phi_1[\tilde{x}, \tilde{\alpha}] = \beta_1, ..., \Phi_n[\tilde{x}, \tilde{\alpha}] = \beta_n$, тогда $f(\beta_1, ..., \beta_n)$ - значение функции на наборе значений переменных.

Определение. Формула, определяющая функцию алгебры логики, определённую на B_n такую, что \forall набора $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n) \in B_n$ $f(\tilde{\alpha}) = F[\tilde{x}, \tilde{\alpha}].$

Определение. Формулы в сигнатуре, представляющие собой переменные, называются вырожденными, остальные - невырожденными. Если функция определяется невырожденной формулой в сигнатуре $\Sigma: S \to F$, то она получена суперпозициями над F, где F - множество функций.

Определение. (Другое определение суперпозиции) Если одну функцию можно получить с помощью конечного числа применений следующих трёх операций, то данная функция называется функцией, полученной суперпозициями над F. Операции:

- 1. Операция подстановки переменных. Пусть $f(x_1, ..., x_n) \in P_2, g(x_1, ..., x_n)$ функция, определённая на B_n такая, что $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$, где набор $(i_1, ..., i_n)$ набор элементов (1, ..., n) (они необязательно различны). Тогда g получена из f операцией подстановки переменных.
- 2. Операция подстановки функции в функцию. Пусть $f(x_1, \ldots, x_n), g(x_1, \ldots, x_m), h$ определена на B_{n+m-1} и $h(x_1, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, тогда функция h получена из функций f и g операцией подстановки одной функции в другую.
- 3. Операция добавления или удаления фиктивных переменных. Пусть x_i фиктивная переменная, тогда если функция $f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$, то функция g называется полученной из f добавлением фиктивной переменной. Функция удаления фиктивной переменной определяется аналогично.

Билет 3

Определение. Формулы F_1 и F_2 называются эквивалентными, если они определяют равные функции относительно объединения их переменных. Функции называются равными, если их области определения равны и $\forall x \in D_f(x) \ f(x) = g(x)$. Слово $F_1 = F_2$, если формулы F_1 и F_2 эквивалентны, называется тождеством.

Основные тождества:

- 1. Ассоциативность операций: \land , \lor , \neg , \leftrightarrow .
- 2. Дистрибутивности:

(a)
$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$

(b)
$$(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z)$$

(c)
$$(x+y) \cdot z = x \cdot z + y \cdot z$$

- 3. Тождества для отрицания:
 - (a) $\overline{\overline{x}} = x$
 - (b) $\overline{x \wedge y} = \overline{x} \vee \overline{y}$
 - (c) $\overline{x \vee y} = \overline{x} \wedge \overline{y}$
 - (d) $x \cdot \overline{x} = 0$
 - (e) $x \vee \overline{x} = 1$
 - (f) $\overline{x \to y} = x \cdot \overline{y}$
- 4. Тождества для эдентичных операндов
- 5. Тождества с константным операндом

Определение. Функция g называется двойственной к f, если $g(x_1, \ldots, x_n) = \overline{f}(\overline{x_1}, \ldots, \overline{x_n})$. Обозначение $g = f^*$.

Определение. Если функция двойственна к самой себе, то она называется самодвойственной.

Теорема. (принцип двойственности) Если Φ - формула в сигнатуре $\Sigma:S\to F$, определяющая некоторую функцию g, то эта формула в сигнатуре $\Sigma^*:S\to F^*$ определяет двойственную функцию g^* .

Доказательство. База индукции: пусть x_i - символ переменной, тогда однобуквенное слово, состоящее из x_i - формула в сигатуре Σ , определяющая одноместную функцию g. Эта формула в сигнатуре Σ^* имеет вид $\overline{x_i}$, то есть она определяет функцию, двойственную к g. Пусть $s \in S$, $f = \Sigma(s)$ - формула от n переменных, Φ_1, \ldots, Φ_n - формулы в сигнатуре Σ , тогда слово $s(\Phi_1, ..., \Phi_n)$ - формула в сигнатуре Σ . В $\Sigma^*(s) = (\Sigma(s))^* = (\Sigma(s(\Phi_1, ..., \Phi_n)))^* = f^*$, то есть данная формула определяет в двойственной сигнатуре двойственную функцию.

Билет 4

Определение. Выражение $f(x_1, \ldots, x_n) = \bigvee_{(\sigma_1, \ldots, \sigma_n): f(\sigma_1, \ldots, \sigma_n) = 1} x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n}$ называется совершенной дизъюнктивной нормальной формой. $x_i^{\sigma_i} = \begin{cases} x_i, \sigma_i = 1 \\ \overline{x_i}, \sigma_i = 0 \end{cases}$.

Теорема. Для любой функции $f(x_1, ..., x_n)$ алгебры логики верно равенство: $f(x_1, ..., x_n) = \bigvee_{(\sigma_1, ..., \sigma_m) \in B_m} x_1^{\sigma_1} \cdot ... \cdot x_m^{\sigma_m} \cdot f(\sigma_1, ..., \sigma_m, \sigma_{m+1}, ..., \sigma_n).$

 \mathcal{A} оказательство. Рассмотрим прозвольный набор $(\alpha_1,\ldots,\alpha_m)$, если $(\alpha_1,\ldots,\alpha_m)\neq (\sigma_1,\ldots,\sigma_m)$, то $\exists \alpha_i \neq \sigma_i \Longrightarrow \alpha_i^{\sigma_i} = 0 \Longrightarrow$ данное слагаемое будет равно нулю. Тогда единственным не нулевым членом будет $(\alpha_1^{\alpha_1}\cdot\ldots\cdot\alpha_m^{\alpha_m})\cdot f(\alpha_1,\ldots,\alpha_m,\alpha_{m+1},\ldots,\alpha_n) = f(\alpha_1,\ldots,\alpha_n)$.

Теорема. Любую функцию алгебры логики можно представить с помощью суперпозиций конъюнкции, дизъюнкции и отрицания.

Доказательство. Так как любая функция алгебры логики, кроме тождественного нуля, реализуется совершенной д.н.ф., значит она представима суперпозициями конъюнкции, дизьюнкции и отрицания. Тождественный ноль можно представить так: $x \wedge \overline{x} = 0$.

Теорема. Любая функция алгебры логики, кроме тождественной единицы, представима в виде совершенной конъюнктивной нормальной формы.

Доказательство. Так как любая функция алгебры логики, кроме тождественного нуля, представима в виде совершенной д.н.ф., тогда по принципу двойственности

$$f(x_1, \ldots, x_n) = \bigwedge_{\substack{(\sigma_1, \ldots, \sigma_n): f^*(\sigma_1, \ldots, \sigma_n) = 1\\ (\delta_1, \ldots, \delta_n): f(\delta_1, \ldots, \delta_n) = 1}} x_1^{\overline{\delta_1}} \vee \ldots \vee x_n^{\overline{\delta_n}} \Longrightarrow$$

$$f(x_1, \ldots, x_n) = \bigwedge_{\substack{(\delta_1, \ldots, \delta_n): f(\delta_1, \ldots, \delta_n) = 1}} x_1^{\overline{\delta_1}} \vee \ldots \vee x_n^{\overline{\delta_n}}.$$

Билет 5

Определение. Система функций называется полной в P_2 , если через них выражаются все функции в P_2 .

Примеры. 1. \wedge и \neg

- $2. \lor \mu \lnot$
- 3. x|y
- 4. $x \downarrow y$

Определение. Полиномы по модулю 2 вида: $\sum_{\{i_1,\dots,i_s\}\subseteq 1,\dots,n} a_{i_1,\dots,i_s}\cdot x_{i_1}\cdot\dots\cdot x_{i_s}$ называются полиномами Жегалкина.

Теорема. (Жегалкина)

Любая функция алгебры логики представима полиномом Жегалкина, причём единственным образом.

Доказательство. Так как в каждом мономе полинома Жегалкина n перменных, каждая из которых может быть либо 0, либо 1, а коэффициент перед каждым мономом может принимать значение 0 или $1 \Longrightarrow$ всего есть 2^{2^n} различных полиномов Жегалкина.

Пусть два различных полинома Жегалкина задают одну функцию, тогда мы получим ненулевой полином, задающий нулевую константу ⇒ противоречие ⇒ Любая функция алгебры логики представима полиномом Жегалкина, причём единственным образом. □

Билет 6

Определение. Множество функций, кторые можно пулучить из данного множества M функций алгебры логики, называется замыканием множества M и обозначается [M].

Примеры. 1.
$$P_2 = [P_2]$$

1, x + y - множество линейных функций

Свойства. 1. $M \subseteq [M]$

- 2. [[M]] = [M]
- 3. Ecau $M_1 \subseteq M_2$, mo $[M_1] \subseteq [M_2]$
- 4. $[M_1] \cup [M_2] \subseteq [M_1 \cup M_2]$

Доказательство. 1. По определению замыкания.

- 2. Из первого следует, что $[M] \subseteq [[M]]$, а $[[M]] \subseteq [M]$, так как в противном случае существовала бы функция, которая не выражается суперпозициями функций из M, но выражается суперпозициями функций, которые выражаются суперпозициями функций из M, а значит она выражается суерпозициями из $M \Longrightarrow$ противоречие.
- 3. Если функция получается суперепозициями из M_1 , то её можно получить суперпозициями из M_2 , так как все функции M_1 являются функциями M_2 .
- 4. Пусть функция $f \in [M_1] \cap [M_2]$, тогда она получается суперпозициями из M_1 или из M_2 , пусть для определённости она выражается суперпозициями из M_1 , но тогда её можно получить суперпозициями из $M_1 \cap M_2$, то есть $f \in [M_1 \cap M_2]$

Определение. Класс функций M называется замкнутым, если [M] = M.

Примеры. 1.
$$P_2 = [P_2]$$

2. L = [L], L - множество линейных функций.

Билет 7

Определение. Функция f называется функцией, сохраняющей ноль, если на наборе из нулей она принимает значение 0.

Определение. Функция f называется функцией, сохраняющей единицу, если на наборе из единиц она принимает значение 1.

Класс функций, сохраняющих ноль, обозначим T_0 , а класс функций, сохраняющих единицу, обозначим T_1 .

Теорема. *Классы* T_0 *и* T_1 *замкнуты.*

Доказательство. 1. Операция подстановки переменных:

 $g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$, если функция f сохраняла ноль, то и функция g будет сохранять ноль, если функция f сохраняла единицу, то и функция g будет сохранять единицу.

- 2. Операция подстановки одной функции в другую: $h(x_1, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, если функции f и h сохраняли ноль, то и функция g будет сохранять ноль, если функции f и g сохраняли единицу, то и функция h будет сохранять единицу.
- 3. Операция добавления или удаления фиктивной переменной, не влияют на способность функции сохранять ноль или сохранять единицу.

Следовательно суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \longrightarrow классы T_0 и T_1 - замкнуты.

Билет 8

Класс самодвойственных функций обозначим S.

Теорема. Kласс S замкнут.

Доказательство. 1. Операция подстановки переменных:

Пусть $f(x_1, ..., x_n) \in S$, $g(x_1, ..., x_n) = f(x_{i_1}, ..., x_{i_n})$, тогда $\overline{g}(\overline{x}_1, ..., \overline{x}_n) = \overline{f}(\overline{x}_{i_1}, ..., \overline{x}_{i_n}) = f(x_{i_1}, ..., x_{i_n}) = g(x_1, ..., x_n) \Longrightarrow g$ - самодвойственная функция.

- 2. Операция подстановки функции в функцию: Пусть $f(x_1, \ldots, x_n) \in S$, $g(x_1, \ldots, x_m) \in S$, $h(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m-1}) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{n+m-1}))$, тогда $\overline{h}(\overline{x}_1, \ldots, \overline{x}_n, \overline{x}_{n+1}, \ldots, \overline{x}_{m+n-1}) = \overline{f}(\overline{x}_1, \ldots, \overline{x}_{n-1}, g(\overline{x}_n, \ldots, \overline{x}_{m+n-1})) = \overline{f}(\overline{x}_1, \ldots, \overline{x}_{n-1}, \overline{g}(x_n, \ldots, x_{m+n-1})) = f(x_1, \ldots, x_{n-1}, g(x_n, \ldots, x_{m+n-1})) = h(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{m+n-1}) \Longrightarrow h$ самодвойственная функция.
- 3. Операция добавления или удаления фиктивных переменных: Пусть $f(x_1, \ldots, x_n) \in S, g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n),$ тогда $\overline{g}(\overline{x}_1, \ldots, \overline{x}_{i-1}, 1, \overline{x}_{i+1}, \ldots, \overline{x}_n) = f(x_1, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) \Longrightarrow g$ самодвойственная функция.

Теорема. Если функция f не является самодвойственной, то с помощью неё и функции отрицания можно получить константу.

Доказательство. Пусть $f(x_1,\ldots,x_n)\notin S$, тогда существует набор $(\alpha_1,\ldots,\alpha_n)$:

$$f(\alpha_1, \ldots, \alpha_n) = f(\overline{\alpha}_1, \ldots, \overline{\alpha}_n).$$

Пусть $\varphi_i = x^{\alpha_i}, \, \varphi(x) = f(\varphi_1(x), \, \ldots, \, \varphi_n(x)),$

тогда
$$\varphi(0)=f(0^{\alpha_1},\ldots,0^{\alpha_n})=f(\overline{\alpha}_1,\ldots,\overline{\alpha}_n)=f(\alpha_1,\ldots,\alpha_n)=f(1^{\alpha_1},\ldots,1^{\alpha_n})=\varphi(1)\Longrightarrow$$
 $\Longrightarrow \varphi(x)$ - константа, полученная из несамодвойственной функции и отрицания.

Билет 9

Определение. Пусть $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n), \ \tilde{\beta} = (\beta_1, \ldots, \beta_n)$ - двоичные наборы, тогда $\tilde{\alpha} \leqslant \tilde{\beta}$, если $\forall i = \overline{1, n} \ \alpha_i \leqslant \beta_i$.

Определение. Функция алгебры логики называется монотонной, если \forall двоичных наборов $\tilde{\alpha}$ и $\tilde{\beta}$ таких, что $\tilde{\alpha} \leqslant \tilde{\beta}, f(\tilde{\alpha}) \leqslant f(\tilde{\beta})$.

Теорема. *Класс* M *монотонных* функций - замкнут.

Доказательство. 1. Операция подстановки переменных:

$$g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$$
, если функция f монотонна, то $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ и $\tilde{\beta} = (\beta_1, \ldots, \beta_n) : \tilde{\alpha} \leqslant \tilde{\beta}, f(\tilde{\alpha}) \leqslant f(\tilde{\beta}) \Longrightarrow \alpha_1 \leqslant \beta_1, \ldots, \alpha_n \leqslant \beta_n \Longrightarrow \alpha_i \leqslant \beta_{i_1}, \ldots, \alpha_{i_n} \leqslant \beta_{i_n} \Longrightarrow f(\alpha_{i_1}, \ldots, \alpha_{i_n}) \leqslant f(\beta_{i_1}, \ldots, \beta_{i_n}) \Longrightarrow \Longrightarrow g(\alpha_1, \ldots, \alpha_n) = f(\alpha_{i_1}, \ldots, \alpha_{i_n}) \leqslant f(\beta_{i_1}, \ldots, \beta_{i_n}) = g(\beta_{i_1}, \ldots, \beta_{i_n}) \Longrightarrow g$ - монотонна.

- 2. Операция подстановки одной функции в другую:
 - $f(x_1,\,\ldots,\,x_n),\,g(x_1,\,\ldots,\,x_m)$ монотонные функции, $h(x_1,\,\ldots,\,x_{n+m-1})=f(x_1,\,\ldots,\,x_{n-1},\,g(x_n,\,\ldots,\,x_{n+m-1}))$, так как функции f и g монотонны, $\forall \tilde{\alpha}=(\alpha_1,\,\ldots,\,\alpha_{m+n-1})$ и $\tilde{\beta}=(\beta_1,\,\ldots,\,\beta_{m+n-1}):\tilde{\alpha}\leqslant\tilde{\beta},\,f(\tilde{\alpha})\leqslant f(\tilde{\beta})$ и $g(\alpha_n,\,\ldots,\,\alpha_{m+n-1})=g(\beta_n,\,\ldots,\,\alpha_{m+n-1})\Longrightarrow$ $(\alpha_1,\,\ldots,\,\alpha_{n-1},\,g(\alpha_n,\,\ldots,\,\alpha_{m+n-1}))\leqslant(\beta_1,\,\ldots,\,\beta_{n-1},\,g(\beta_n,\,\ldots,\,\beta_{n+m-1}))\Longrightarrow h(\alpha_1,\,\ldots,\,\alpha_{m+n-1})=f(\alpha_1,\,\ldots,\,\alpha_{n-1},\,g(\alpha_n,\,\ldots,\,\alpha_{m+n-1}))\leqslant f(\beta_1,\,\ldots,\,\beta_{n-1},\,g(\beta_n,\,\ldots,\,\beta_{n+m-1}))=h(\beta_1,\,\ldots,\,\beta_{m+n-1}).$
- 3. Операция добавления или удаления фиктивных переменных:

```
f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = g(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n), так как f монотонна \Longrightarrow \forall \tilde{\alpha} = (\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) и \tilde{\beta} = (\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n) : \tilde{\alpha} \leqslant \tilde{\beta}, верно f(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) \leqslant f(\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n).

Тогда \tilde{\alpha}, с добавленной фиктивной переменной; \leqslant \tilde{\beta}, с добавленной фиктивной переменной \Longrightarrow g(\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n) = f(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n) \leqslant f(\beta_1, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_n) = g(\beta_1, ..., \beta_{i-1}, 0, \beta_{i+1}, ..., \beta_n).
```

Следовательно суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \Longrightarrow класс M замкнут. \square

Теорема. Если f - немонотонная функция, то из неё и констант можно получить отрицание.

Доказательство. Пусть $f(x_1, ..., x_n)$ - немонотонная функция, тогда $\exists \tilde{\alpha}$ и $\tilde{\beta}: \tilde{\alpha} \leqslant \tilde{\beta}$ и $f(\tilde{\alpha}) = 1$, а $f(\tilde{\beta}) = 0$. Так как наборы различны, то $\exists \alpha_{i_1} = ... = \alpha_{i_k} = 0$ и $\beta_{i_1} = ... = \beta_{i_k} = 1$, а $\forall j \in (1, ..., n) \setminus (i_1, ..., i_k)$.

Пусть наборы $\tilde{\gamma}_0, \ldots, \tilde{\gamma}_k$ на позициях $(1, \ldots, n) \setminus (i_1, \ldots, i_k)$ совпадает со значениями набора $\tilde{\alpha}$, на позициях i_1, \ldots, β_j набор $\tilde{\gamma}_j = 1$, а на наборах i_{j+1}, \ldots, i_k принимает значение 0, тогда $\tilde{\gamma}_0 = \tilde{\alpha}$, а $\tilde{\gamma}_k = \tilde{\beta} \Longrightarrow f(\tilde{\gamma}_0) = 1$, $f(\tilde{\gamma}_k) = 0 \Longrightarrow \exists \tilde{\gamma}_j : f(\tilde{\gamma}_j) = 0$, а $f(\tilde{\gamma}_{j-1}) = 1 \Longrightarrow \tilde{\gamma}_{j-1} = (\delta_1, \ldots, \delta_{i_j-1}, 0, \delta_{i_j+1}, \ldots, \delta_n)$, $\tilde{\gamma}_j = (\delta_1, \ldots, \delta_{i_j-1}, 1, \delta_{i_j+1}, \ldots, \delta_n)$.

Тогда функция $\varphi(f(\delta_1, \ldots, \delta_{i_j-1}, x, \delta_{i_j+1}, \ldots, \delta_n))$, при x=0 функция равна 1, а при x=1, функция равна 0, то есть $\varphi=\overline{x}$, а так как она получена с помощью функции f и констант, значит это искомая функция.

Билет 10

Определение. Функция f называется линейной, если она представима полиномом Жегалкина степени 1.

Теорема. *Класс* L линейных функций замкнут.

Доказательство. 1. Операция подстановки переменных:

$$g(x_1, \ldots, x_n) = f(x_{i_1}, \ldots, x_{i_n})$$
, если функция f линейна, то $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_n) \ f(\tilde{\alpha}) = c_0 + c_1 \alpha_1 + \ldots + c_n \alpha_n$, тогда $g(\alpha_1, \ldots, \alpha_n) = c_0 + c_1 \alpha_{i_1} + \ldots + c_n \alpha_{i_n} \Longrightarrow g$ - линейная функция.

2. Операция подстановки одной функции в другую: $f(x_1, ..., x_n), g(x_1, ..., x_m)$ - линейные функции, $h(x_1, ..., x_{n+m-1}) = f(x_1, ..., x_{n-1}, x_{n-1})$

 $g(x_n, \ldots, x_{n+m-1})$), так как функции f и g линейны, $\forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_{m+n-1})$ $f(\alpha_1, \ldots, \alpha_n) = c_0 + c_1\alpha_1 + \ldots + c_n\alpha_n$, $g(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_n \Longrightarrow b(\alpha_1, \ldots, \alpha_m) = c_0' + c_1'\alpha_1 + \ldots + c_n'\alpha_1 +$

- $\Rightarrow h(\alpha_1, \ldots, \alpha_{n+m-1}) = c_0 + c_1\alpha_1 + \ldots + c_{n-1}\alpha_{n-1} + c_ng(\alpha_n, \ldots, \alpha_{m+n-1}) =$
- $=c_0+c_1\alpha_1+\ldots+c_{n-1}\alpha_{n-1}+c_n(c_1'\alpha_n+\ldots+c_m'\alpha_{m+n-1})\Longrightarrow$ функция h является линейной.
- 3. Операция добавления или удаления фиктивных переменных: $f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n), \text{ так как } f \text{ линейна} \Longrightarrow \forall \tilde{\alpha} = (\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n) \ f(\tilde{\alpha}) = c_0 + c_1\alpha_1 + \ldots + c_{i-1}\alpha_{i-1} + c_{i+1}\alpha_{i+1} + \ldots + c_n\alpha_n,$ тогда очевидно, что $g(\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n)$ тоже линейная функция.

Следовательно суперпозициями мы не сможем получить функцию, не принадлежащую данному классу \Longrightarrow класс L замкнут.

Теорема. Eсли функция f нелинейна, то из не \ddot{e} , констант и отрицания можно получить котонкцию.

Доказательство. Пусть $f(x_1, \ldots, x_n)$ - нелинейная функция, тогда в полином Жегалкина без ограничения общности имеет вид: $x_1x_2f_1(x_3, \ldots, x_n) + x_1f_2(x_3, \ldots, x_n) + x_2f_3(x_3, \ldots, x_n) + f_4(x_3, \ldots, x_n)$. Так как f не является тождественно нулевой функцией, существует набор $(\alpha_3, \ldots, \alpha_n)$: $f_1(\alpha_3, \ldots, \alpha_n) = 1$, тогда $f = x_1x_2 + \alpha x_1 + \beta x_2 + \gamma \Longrightarrow f(x_1 + \alpha, x_2 + \beta) = (x_1 + \alpha)(x_2 + \beta) + \alpha(x_1 + \alpha) + \beta(x_2 + \beta) + \gamma = x_1x_2 + \alpha\beta\gamma$, если $\alpha\beta\gamma = 1$, то возьмём $\overline{f}(x_1 + \alpha, x_2 + \beta) = x_1x_2$, так как данная функция получена из f с помощью констант и отрцания, значит это искомая функция.

Билет 11

Теорема. Система функций полна тогда и только тогда, когда она не содержится ни в одном из классов T_0, T_1, S, M, L .

Доказательство. \Longrightarrow Если ситсема F функций алгебры логики полна, то $[F] = P_2$. Предположим, что $F \subseteq K$, где K - один из этих классов, тогда $[F] \subseteq [K] \neq P_2$ - противоречие. \Longrightarrow Пусть F не лежит ни в одном из этих классов, тогда $\exists f_1, f_2, f_3, f_4, f_5: f_1 \notin T_0, f_2 \notin T_1, f_3 \notin S, f_4 \notin M, f_5 \notin L$.

Рассмотрим $f_1 \notin T_0$, тогда $f_1(0, ..., 0) = 1$. Есть два случая:

- 1. Пусть $f_1 \notin T_1$, тогда $\varphi(x) = f_1(x, ..., x) = \overline{x}$, то есть мы получили из f_1 функцию отрицания. Тогда по лемме о несамодвойственной функции из f_3 и \overline{x} можно получить константы.
- 2. Пусть $f_1 \in T_1$, тогда $\varphi(x) = f_1(x, ..., x) = 1$, то есть $\varphi(x)$ константа 1. Рассмотрим $f_2 \notin T_1$, тогда $f_2(f_1(x, ..., x)) = 0$, то есть мы получили константу 0.

Тогда по лемме о немонотонной функции из f_4 и констант можно получить \overline{x} , а по лемме о нелинейной функции из f_5 , \overline{x} и констант можно получить $x \wedge y$, то есть мы получим полную систему $x \wedge y$, \overline{x} .

Билет 12

Определение. Класс K функций алгебры логики называется предполным, если $[K] \neq P_2$ и если $f \in P_2 \setminus K$, то $[\{f\} \cup K] = P_2$.

Теорема. В P_2 нет предполных классов, отличных T_0 , T_1 , S, M, L.

Доказательство. Пусть класс K - предполный класс, отличный от данных пяти классов. Этот класс замкнут, так как в противном случае можно было бы выбрать функцию f: $f \in [K]$ и $f \notin K$, тогда $[\{f\} \cup K] = [K]$, но так как класс K является предполным, то $[K] = P_2 \Longrightarrow$ противоречие с тем, что класс K не является полным.

Так как класс K замкнут, то он содержится в одном из классов T_0, T_1, S, M, L (обозначим этот класс Q), иначе по теореме Поста он был бы полным, а он по условию таким не является. Пусть класс K не совпадает с классом Q, тогда $\exists f \in Q \setminus K \Longrightarrow [\{f\} \cap K] \subseteq [Q] \neq P_2$ противоречие.

Пусть $f \in P_2 \setminus Q$, тогда если $[Q \cap \{f\}] = [Q'] \neq P_2$, то Q' содержится в одном из оставшихся классов, что невозможно, а значит, класс Q является предполным.