DEVOIR À LA MAISON N°: CORRIGÉ

SOLUTION 1.

- **1.** Soit $x \in [0, 1]$. Alors $\sqrt{x} \in [0, 1]$ donc $f(x) = 1 \sqrt{x} \in [0, 1]$.
- 2. On procède par récurrence. Tout d'abord, $u_0 \in [0,1]$. Supposons que $u_n \in [0,1]$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+1} = f(u_n) \in [0,1]$ d'après la question précédente.
- 3. f est clairement décroissante sur [0,1] à valeurs dans [0,1]. On en déduit que $f \circ f$ est croissante sur [0,1].
- **4.** Pour $x \in [0, 1]$,

$$f(x) = x$$

$$\iff \qquad \sqrt{x} = 1 - x$$

$$\iff \qquad x = (1 - x)^2 \qquad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \qquad x^2 - 3x + 1 = 0$$

Les racines du trinôme précédent sont $\frac{3-\sqrt{5}}{2}$ et $\frac{3+\sqrt{5}}{2}$. La première racine appartient à l'intervalle [0,1] puisque $1 \le \sqrt{5} \le 3$ mais la seconde racine n'appartient pas à l'intervalle [0,1] car $\sqrt{5} > 1$.

Finalement, l'unique point fixe de f sur [0, 1] est $\alpha = \frac{3-\sqrt{5}}{2}$.

- **5.** Puisque $20 \leqslant 25$, $5 \leqslant \frac{25}{4}$ puis $\sqrt{5} \leqslant \frac{5}{2}$ puis $\alpha = \frac{3-\sqrt{5}}{2} \geqslant \frac{1}{4} = u_0$.
- **6.** On procède par récurrence. Tout d'abord, $u_0 \leqslant \alpha$. Supposons $u_{2n} \leqslant \alpha$ pour un certain $n \in \mathbb{N}$. Alors par croissance de $f \circ f$ sur [0,1],

$$f\circ f(u_{2n})\leqslant f\circ f(\alpha)$$

c'est-à-dire

$$u_{2n+2} \leqslant \alpha$$

On en déduit que $\mathfrak{u}_{2\mathfrak{n}}\leqslant \alpha$ pour tout $\mathfrak{n}\in\mathbb{N}.$

- 7. On a $u_0 = \frac{1}{4}$ puis $u_1 = \frac{1}{2}$ et enfin $u_2 = 1 \frac{1}{\sqrt{2}}$. Puisque $8 \leqslant 9$, $\frac{1}{2} \leqslant \frac{9}{16}$ puis $\frac{1}{\sqrt{2}} \leqslant \frac{3}{4}$ et enfin $u_2 = 1 \frac{1}{\sqrt{2}} \geqslant \frac{1}{4} = u_0$. Supposons maintenant que $u_{2n} \leqslant u_{2n+2}$ pour un certain $n \in \mathbb{N}$. Par croissance de $f \circ f$, $u_{2n+2} = f \circ f(u_{2n}) \leqslant f \circ f(u_{2n+2}) = u_{2n+4}$. Par récurrence, on a donc $u_{2n} \leqslant u_{2n+2}$ pour tout $n \in \mathbb{N}$. Ainsi (u_{2n}) est croissante. La suite (u_{2n}) est croissante et majorée par α donc elle converge.
- **8.** Soit $x \in [0, 1]$.

$$f \circ f(x) = x$$

$$\iff 1 - \sqrt{1 - \sqrt{x}} = x$$

$$\iff 1 - x = \sqrt{1 - \sqrt{x}}$$

$$\iff (1 - x)^2 = 1 - \sqrt{x} \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \sqrt{x} = 1 - (1 - x)^2$$

$$\iff \sqrt{x} = x(2 - x)$$

$$\iff x = x^2(2 - x)^2 \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff x^2(2 - x)^2 - x = 0$$

$$\iff x (x(2 - x)^2 - 1) = 0$$

$$\iff x(x^3 - 4x^2 + 4x - 1) = 0$$

$$\iff x(x - 1)(x^2 - 3x + 1) = 0$$

Or on a vu précédemment que α est la seule racine du trinôme $x^2 - 3x + 1$ dans l'intervalle [0, 1]. On en déduit que les points fixes de $f \circ f$ sur [0, 1] sont [0, 1] sont

9. f est continue sur [0,1] à valeurs dans [0,1] donc $f \circ f$ est continue sur [0,1]. De plus, $\mathfrak{u}_{2n+2} = f \circ f(\mathfrak{u}_{2n})$ et $\mathfrak{u}_{2n} \in [0,1]$ pour tout $n \in \mathbb{N}$ donc la suite (\mathfrak{u}_{2n}) converge vers un point fixe de $f \circ f$ sur [0,1], à savoir $0, \alpha$ ou 1.

Or (\mathfrak{u}_{2n}) est croissante et majorée par α donc $\mathfrak{u}_0 \leqslant \mathfrak{u}_{2n} \leqslant \alpha$ pour tout $\mathfrak{n} \in \mathbb{N}$. Sa limite ℓ vérifie donc $\mathfrak{u}_0 \leqslant \ell \leqslant \alpha$. A fortiori, $0 < \ell \leqslant \alpha$. Puisque ℓ est un point fixe de $f \circ f, \ell = \alpha$.

Enfin, $u_{2n+1} = f(u_{2n})$ pour tout $n \in \mathbb{N}$ et f est continue sur [0,1] donc (u_{2n+1}) converge vers $f(\alpha) = \alpha$.

Puisque les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers α , la suite (u_n) converge également vers α .

SOLUTION 2.

1. a. $H \cap K \subset G$ puisque $H \subset G$ et $K \subset G$.

 $e \in H$ et $e \in K$ car H et K sont des sous-groupes de G. Ainsi $e \in H \cap K$.

Soit $(x,y) \in (H \cap K)^2$. Alors $(x,y) \in H^2$ donc $xy^{-1} \in H$ puisque H est un sous-groupe de G. De même, $(x,y) \in K^2$ donc $xy^{-1} \in K$ puisque K est un sous-groupe de G. Ainsi $xy^{-1} \in H \cap K$.

On a donc bien montré que $H \cap K$ était un sous-groupe de G.

- **b.** Soit $(x,h) \in G \times (H \cap K)$. A fortiori, $(x,h) \in G \times H$ donc $x^{-1}hx \in H$ et $xhx^{-1} \in H$ car H est distingué dans G. De même, $(x,h) \in G \times K$ donc $x^{-1}hx \in K$ et $xhx^{-1} \in K$ puisque K est distingué dans G. Ainsi $x^{-1}hx \in H \cap K$ et $xhx^{-1} \in \cap K$. Ceci prouve que $H \cap K$ est distingué dans G.
- **2.** a. Clairement $Z(G) \subset G$.

Pour tout $x \in G$, ex = xe = x donc $e \in Z(G)$.

Soit $(a, b) \in Z(G)^2$. Alors pour tout $x \in G$

$$abx = axb$$
 $car b \in Z(G)$
= xab $car a \in Z(G)$

Ainsi $ab \in Z(G)$.

Soit $a \in Z(G)$. Alors pour tout $x \in G$, ax = xa et donc $xa^{-1} = a^{-1}x$ en multipliant chaque membre de l'inégalité précédente à gauche et à droite par a^{-1} . Ainsi $a^{-1} \in Z(G)$.

On a bien prouvé que Z(G) est un sous-groupe de G.

- $\textbf{b. Soit } (x,\alpha) \in G \times Z(G). \text{ Alors, puisque } \alpha \in Z(G), \ x^{-1}\alpha x = x^{-1}x\alpha = \alpha \in Z(G) \text{ et } x\alpha x^{-1} = \alpha xx^{-1} = \alpha \in Z(G). \\ Z(G) \text{ est donc bien distingué dans } G.$
- **3.** a. Pour tout $h \in H$, $e^{-1}he = ehe^{-1} = h \in H$ donc $e \in N_H$.

Soient $(x,y) \in N_H^2$ et $h \in H$. Tout d'abord, $x^{-1}hx \in H$ car $x \in N_H$ et donc $y^{-1}x^{-1}hxy \in H$ puisque $y \in N_H$. Ainsi $(xy)^{-1}hxy \in H$. De même, $yhy^{-1} \in H$ car $y \in N_H$ et donc $xyhy^{-1}x^{-1} \in H$ puisque $x \in N_H$. Ainsi $xyh(xy)^{-1} \in N_H$. On en déduit que $xy \in N_H$.

Soient $x \in N_H$ et $h \in H$. Alors $x^{-1}h(x^{-1})^{-1} = x^{-1}hx \in H$ et $(x^{-1})^{-1}hx^{-1} = xhx^{-1} \in H$ car $x \in N_H$. Ainsi $x^{-1} \in N_H$.

On a donc bien prouvé que N_H est un sous-groupe de G.

- **b.** Puisque H est distingué dans G, alors pour tout $x \in G$ et tout $h \in H$, $x^{-1}hx \in H$ et $(x^{-1})^{-1}hx^{-1} = xhx^{-1} \in H$ donc $x \in N_H$. Ainsi $G \subset N_H$. Puisqu'on a clairement $N_H \subset G$, $N_H = G$.
- c. Soit $x \in H$. Alors pour tout $h \in H$, $x^{-1}hx \in H$ et $(x^{-1})^{-1}hx^{-1} = xhx^{-1} \in H$ car H est un sous-groupe de G. Ainsi $x \in N_H$. Ceci prouve que $H \subset N_H$.
- **d.** Soit $(x,h) \in N_H \times H$. Par définition de N_H , $x^{-1}hx \in H$. Ceci prouve que H est distingué dans N_H .
- **4. a.** Soient $((x,y),(x',y')) \in G^2$. Comme $(x,x') \in (\mathbb{C}^*)^2$, $xx' \in \mathbb{C}^*$ et il est évident que $xy' + y \in \mathbb{C}$. Donc $(x,y)*(x',y') \in G$.

Soit $((x,y),(x',y'),(x'',y'')) \in G^3$. On voit facilement que :

$$((x,y)*(x',y'))*(x'',y'') = (x,y)*((x',y')*(x'',y''))$$

= $(xx'x'',xx'y'' + xy' + y)$

On vient donc de prouver que * est une loi interne associative sur G.

Pour tout $(x,y) \in G$, (1,0)*(x,y) = (x,y)*(1,0) = (x,y) donc (1,0) est élément neutre.

Pour tout $(x,y) \in G$,

$$(x,y)*\left(\frac{1}{x},-\frac{y}{x}\right) = \left(\frac{1}{x},-\frac{y}{x}\right)*(x,y) = (1,0)$$

donc (x, y) est inversible.

En conclusion, (G, *) est bien un groupe.

b. Soit $(x, y) \in Z(G)$.

En particulier, (x, y) * (1, 1) = (1, 1) * (x, y) i.e. (x, x + y) = (x, y + 1) d'où x + y = y + 1 puis x = 1. De même, (x, y) * (2, 0) = (2, 0) * (x, y) i.e. (2x, y) = (2x, 2y) d'où y = 2y puis y = 0. Ainsi (x, y) = (1, 0).

Réciproquement, $(1,0) \in Z(G)$ puisque (1,0) est l'élément neutre de G et que Z(G) est un sous-groupe de G. Finalement, $Z(G) = \{(1,0)\}$.

c. Vérifions d'abord que $\mathbb{U} \times \mathbb{C}$ est un sous-groupe de \mathbb{G} .

Tout d'abord $H \subset G$ puisque $\mathbb{U} \subset \mathbb{C}^*$.

Ensuite, $(1,0) \in H$ puisque $1 \in \mathbb{U}$.

Soit $((x,y),(x',y')) \in G^2$. Alors $(x,x') \in \mathbb{U}^2$ puis $xx' \in \mathbb{U}$ puisque \mathbb{U} est un sous-groupe de (\mathbb{C}^*,\times) . De plus,

$$(x,y)*(x',y') = (xx',xy'+y)$$

donc $(x,y) * (x',y') \in H$.

Soit $(x,y) \in G$. Alors $x \in \mathbb{U}$ puis $\frac{1}{x} \in \mathbb{U}$ puisque \mathbb{U} est un sous-groupe de (\mathbb{C}^*,\times) . De plus, on a vu précédemment que

$$(x,y)^{-1} = \left(\frac{1}{x}, -\frac{y}{x}\right)$$

Ainsi $(x, y)^{-1} \in H$.

On a donc bien prouvé que H est un sous-groupe de G.

d. Soit $(x,y) \in G$ et $(h,k) \in H$. Alors la première composante de $(x,y)^{-1}*(h,k)*(x,y)$ sera $\frac{1}{x}.h.x = h$ (la seconde composante ne nous intéresse pas). Puisque $(h,k) \in H$, $h \in \mathbb{U}$ de sorte que $(x,y)^{-1}*(h,k)*(x,y) \in H$. On a donc bien prouvé que H est distingué dans G.