Matemática 1

Regra da Cadeia

(solução da tarefa)

Utilizando a equação $x^2 + y^2 = 16$ podemos isolar o y para obter $y = \pm \sqrt{16 - x^2}$. Como o número y é positivo (veja desenho ao lado) concluímos que $y = \sqrt{16 - x^2}$. Deste modo, como o retângulo da figura acima tem lados medindo x e y, e ele representa a quarta parte do retângulo inscrito, concluímos que

$$A(x) = 4x\sqrt{16 - x^2}, \quad x \in (0, 4).$$

Observe que excluímos os pontos x = 0 e x = 4 do domínio da função porque, nestes casos, o retângulo se degenera em uma linha, que teria portanto área igual a zero.

Para calcular a derivada de A(x) vamos primeiro utilizar a regra do produto

$$A'(x) = (4x)'\sqrt{16 - x^2} + 4x(\sqrt{16 - x^2})' = 4\sqrt{16 - x^2} + 4x(\sqrt{16 - x^2})'.$$

Para calcular a derivada $(\sqrt{16-x^2})'$, vamos primeiro notar que este termo é uma composição de funções. De fato, para verificar isso, basta que tentemos calcular a função em algum ponto, digamos x=2. Note que, primeiro, precisamos calcular $16-2^2=12$ e, depois, tomar a raiz quadrada do resultado para obter $\sqrt{12}$. Como foi necessário mais de um passo temos uma composição de funções. Mais especificamente, se $f(y)=\sqrt{y}$ e $g(x)=16-x^2$, então $\sqrt{16-x^2}=\sqrt{g(x)}=f(g(x))$. Deste modo, da Regra da Cadeia obtemos que

$$(\sqrt{16-x^2})' = (f \circ g)'(x) = f'(g(x))g'(x) = \frac{1}{2\sqrt{g(x)}}(16-x^2)' = \frac{1}{2\sqrt{16-x^2}}(-2x),$$

em que usamos o fato de que $f'(y) = (\sqrt{y})' = 1/(2\sqrt{y})$.

Substituindo na expressão de A'(x) obtemos

$$A'(x) = 4\sqrt{16 - x^2} - \frac{4x^2}{\sqrt{16 - x^2}} = \frac{64 - 8x^2}{\sqrt{16 - x^2}}, \quad x \in (0, 4).$$

Note que a derivada acima só se anula se o seu numerador for igual a zero. Isto ocorre quando $x = \pm \sqrt{8}$. O valor negativo deve ser descartado porque o domínio da derivada é (0,4). O outro ponto é válido porque $0 < \sqrt{8} < \sqrt{9} = 3 < 4$, isto é, o ponto $x_0 = \sqrt{8}$ está no domínio da derivada.

O ponto x_0 divide o intervalo (0,4) em dois intervalos disjuntos, a saber $(0,\sqrt{8})$ e $(\sqrt{8},4)$. Para estudar o sinal da derivada em cada um deles vamos escolher um ponto qualquer do intervalo e calcular a derivada neste ponto.

Uma vez que $1 \in (0, \sqrt{8})$ e $A'(1) = 56/\sqrt{15} > 0$, concluímos que A' é positiva no intervalo $(0, \sqrt{8})$. Analogamente, como $A'(3) = -8/\sqrt{7} < 0$, a derivada é negativa intervalo $(\sqrt{8}, 4)$. O quadro abaixo resume a situação.

	$x \in (0, \sqrt{8})$	$x \in (\sqrt{8}, 4)$
sinal da derivada A'	positivo	negativo
comportamento de A	crescente	decrescente

As informações acima mostram que o gráfico da função A tem o aspecto ilustrado ao lado. O maior valor da função A ocorre exatamente no ponto $x=x_0=\sqrt{8}$ e vale

$$A(x_0) = A(\sqrt{8}) = 4\sqrt{8}\sqrt{16 - (\sqrt{8})^2} = 32.$$