Questions

Physics

Sanjeev*

1. If the charge on a capacitor is doubled, the value of its capacitance C will be :

a) Doubled

b) Halved

c) Remains Unchanged

d) None of these

2. The maximum electric field that a dielectric medium of a capacitor can withstand without breakdown (of its insulating property) is called its:

a) Polarization

b) Capacitance

 ${\bf c)} \;\; Dielectric \; strength$

- d) Dielectric constant
- 3. Consider a parallel plate capacitor of 10 μ F (microfarad) with air filled in the gap between the plates. Now, exactly one-half of the space between the plates is filled with a dielectric of dielectric constant 4, as shown in the figure. The capacity of the capacitor changes to:

a) $25 \mu F$

b) $20 \,\mu\text{F}$

c) $40 \, \mu F$

- d) $5 \mu F$
- 4. Two large metal plates are placed parallel to each other. The inner surfaces of plates are charged by $+\sigma$ and $-\sigma$ C/m^2 . The electric field between the plates and outside the plates:

a) $\sigma/2\varepsilon_o$, σ/ε_o

b) σ/ε_o , 0

c) $\sigma/2\varepsilon_o$, 0

d) $2\sigma/\varepsilon_o$, σ/ε_o

^{*}Academy Of Physics.

- 5. Two identical capacitors C_1 and C_2 (equal in value) are connected in series with a battery of $e.m.f\ V_o$. They are fully charged. Now, a dielectric slab is inserted between the plates of C_2 . The potential diff. across C_1 will :
 - a) Increase

b) Decrease

c) Remains Same

- d) Depends on internal resistance of the cell
- 6. A smooth parabolic wire track lies in the vertical plane $(x y \ plane)$. The shape of track is defined by the equation $y = x^2/a$ (where a is constant). A bead of mass m which can slide freely on the wire track, is placed at the position A(a, a). The track is rotated with constant angular speed ω about y axis, such that there is no relative slipping between the ring and the track. Then ω is equal to:
 - a) $\sqrt{g/a}$

b) $\sqrt{2g/a}$

c) $\sqrt{g/2a}$

- d) $\sqrt{\sqrt{2}g/a}$
- 7. A uniform circular ring of mass per unit length λ and radius R is rotating with angular velocity ω about its own axis in a gravity free space. Tension in the ring is:
 - a) Zero

b) $\lambda \omega^2 R^2/2$

c) $\lambda \omega^2 R^2$

- d) $2\lambda \omega^2 R^2$
- 8. A chain of mass per unit length λ and length 1.5 m rests on a fixed smooth sphere of radius $R = (2/\pi) m$ such that end A of chain is at the top of sphere while the other end is hanging freely as shown. The chain is held stationary by a horizontal thread PA. The tension in this thread is:

a) $\lambda g \left(\frac{1}{2} + \frac{2}{\pi} \right)$

b) $\lambda g \left(\frac{\pi}{2} + \frac{2}{\pi} \right)$

c) $\lambda g\left(\frac{2}{\pi}\right)$

- d) None of These
- 9. An ideal gas with adiabatic exponent $\gamma=2$ goes through a cycle as shown in figure, in which absolute temperature varies $\tau=4$ times. Find efficiency of this cycle:

a) $\frac{1}{6}$

b) $\frac{1}{6}$

c) $\frac{1}{c}$

d)

- 10. The potential energy of a 4 kg particle free to move along the x axis is given by $U(x) = \frac{x^3}{3} \frac{5x^2}{2} + 6x + 3$. Total mechanical energy of the particle is 17J. Then the maximum kinetic energy is:
 - a) 10 J

b) 2 J

c) 9.5 J

- d) 0.5 J
- 11. If a mercury droplet of radius R and surface tension S is broken into 8 smaller droplets of equal size. Then the work done by the external agency is :
 - a) $\frac{4}{3}\pi R^3 S$

b) $\pi R^2 S$

c) $8\pi R^2 S$

- d) $4\pi R^2 S$
- 12. If n drops of a liquid, each with surface energy E, join to form a single drop then:
 - a) energy released in the process will be $E(n-n^{1/3})$ b) energy absorbed in the process will be $E(n-n^{1/3})$
 - c) energy released in the process will be $E(n-n^{2/3})$ d) energy absorbed in the process will be $E(n-n^{2/3})$
- 13. A soap bubble of radius R is surrounded by another soap bubble of radius 2R, as shown. If surface tension = S, then the pressure inside the smaller soap bubble, in excess of the atmospheric pressure, will be :

Atmosphere

a) 4S/R

b) 3S/R

c) 6S/R

d) None of these