HAS101X - Outils mathématiques 1

Feuille TD 5: Intégration

Exercice 1. Calculer les primitives des fonctions suivantes:

a)
$$a(x) = (x^4 + 2x + 2)(x^5 + 5x^2 + 10x + 1)^{1/4}$$
 b) $b(x) = \frac{x+3}{x+2}$ c) $c(x) = \frac{1}{x \ln(x)}$ d) $d(x) = \frac{x^3 + 3x^2 + 5x + 1}{x+2}$ f) $f(x) = \frac{e^x}{e^x - 1}$ g) $g(x) = \frac{1}{e^x - 1}$ h) $h(x) = xe^{x^2}$ i) $i(x) = \frac{\ln x}{x}$ j) $j(x) = \frac{\sin x}{1 + \cos^2 x}$ k) $k(x) = \frac{2x + 1}{\sqrt{x^2 + x + 1}}$ l) $l(x) = \frac{1}{1 + e^{-x}}$ m) $m(x) = \frac{1}{x^2 + 4}$ n) $n(x) = \frac{1}{\sqrt{4 - x^2}}$ o) $o(x) = \frac{1}{\sqrt{3 - 2x - x^2}}$ p) $p(x) = \frac{1}{\cos x}$ q) $q(x) = \frac{1}{2 + \sqrt{x}}$

d)
$$d(x) = \frac{x^3 + 3x^2 + 5x + 1}{x + 2}$$

f)
$$f(x) = \frac{e^x}{e^x - 1}$$

g)
$$g(x) = \frac{1}{e^x - 1}$$

h)
$$h(x) = xe^{x^2}$$

$$i(x) = \frac{\ln x}{x}$$
 j) $j(x)$

k)
$$k(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$$

1)
$$l(x) = \frac{1}{1+e^{-1}}$$

n)
$$m(x) = \frac{1}{x^2+4}$$

n)
$$n(x) = \frac{1}{\sqrt{4-x^2}}$$

o)
$$o(x) = \frac{1}{\sqrt{3-2x-x}}$$

p)
$$p(x) = \frac{1}{\cos x}$$

q)
$$q(x) = \frac{1}{2+\sqrt{3}}$$

Exercice 2. Calculer les primitives des fonctions suivantes:

$$\mathbf{a)} \ a(x) = x \ln x$$

$$b(x) = x(\ln x)^2$$

c)
$$c(x) = x(2x+3)^{1/3}$$

d)
$$d(x) = x^3 e^{3x^2 + 1}$$

a)
$$a(x) = x \ln x$$
 b) $b(x) = x(\ln x)^2$ c) $c(x) = x(2x+3)^{1/3}$ d) $d(x) = x^3 e^{3x^2+1}$ f) $f(x) = x^3 \sqrt{x^2+1}$ g) $g(x) = xe^{3x}$ h) $h(x) = (\ln x)^2$ i) $i(x) = \frac{x \arcsin x}{\sqrt{1-x^2}}$

g)
$$g(x) = xe^{3x}$$

h)
$$h(x) = (\ln x)^2$$

i)
$$i(x) = \frac{x \arcsin x}{\sqrt{1-x^2}}$$

Exercice 3. Une voiture se déplace à une vitesse $v(t) = 80 - 30e^{-t} \text{ km.h}^{-1}$ (t est exprimé en heures). Quelle est la distance parcourue entre t=0 et t=2?

Exercice 4.

a) Trouver des réels a et b tels que $\frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$, puis calculer

$$\int_{2}^{3} \frac{dx}{x(x+1)}$$

b) En utilisant le changement de variable $t = \sqrt{x}$, calculer $\int_1^{e^2} \frac{dx}{x(1+2\sqrt{x})}$.

Exercice 5. Calculer les intégrales suivantes:

a)
$$A = \int_1^2 \frac{dx}{(2x+3)^2}$$

$$B = \int_{-1/2}^{-1/2 + \sqrt{5/2}} \frac{1}{2x}$$

a)
$$A = \int_{1}^{2} \frac{dx}{(2x+3)^2}$$
 b) $B = \int_{-1/2}^{-1/2+\sqrt{5}/2} \frac{dx}{2x^2+2x+3}$ c) $C = \int_{-1}^{2} \frac{2x+1}{2x^2+2x+3} dx$

d)
$$D = \int_0^1 x e^{x^2} dx$$
 e) $E = \int_1^{e^2} \frac{\ln x}{x} dx$ **f)** $F = \int_e^{e^2} \frac{dx}{x \ln x}$ **g)** $G = \int_1^2 x \ln x dx$

$$E = \int_1^e \frac{\ln x}{x} dx$$

$$\mathbf{f)} \ F = \int_{e}^{e^{2}} \frac{dx}{x \ln x}$$

$$\mathbf{g)} \ G = \int_{1}^{2} x \ln x dx$$

h)
$$H = \int_0^{\ln(3/2)} \frac{e^x}{1 + e^x} dx$$
 i) $I = \int_0^1 x^2 \arctan(x) dx$ j) $J = \int_0^{\pi/4} x^2 \cos(x) dx$

i)
$$I = \int_0^1 x^2 \arctan(x) dx$$

j)
$$J = \int_0^{\pi/4} x^2 \cos(x) dx$$

k)
$$K = \int_0^{\pi/3} \sin^3 x \cos^2 x dx$$

2023-24 Exercise 6. Soit $a, b \in \mathbb{R}$ tels que a < b, et soit $f : [a, b] \longrightarrow \mathbb{R}_+$ une fonction continue sur

- a) Montrer que le volume de \mathbb{R}^3 (muni d'un repère orthonormé) délimité par:
 - le plan d'équation x = a,
 - le plan d'équation x = b,
 - \bullet la surface de révolution obtenue par rotation autour de l'axe Ox de la courbe d'équations y = f(x), z = 0,

est $V = \int_a^b \pi f(x)^2 dx$.

- b) Calculer V dans le cas $f(x) = 2 x^2$, a = 0, $b = \sqrt{2}$.
- c) Retrouver la formule qui donne le volume d'un cône de hauteur h, de base de rayon R.

Exercice 7. Calculer l'aire de la surface délimitée par les courbes d'équations $y=x^2$ et $y = \sqrt{x}$.

Exercice 8. Calculer les primitives suivantes, en précisant l'intervalle de travail:

- a) $\int x^{\alpha} dx$, où $\alpha \in \mathbb{R}$.
- b) $\int \ln(x) dx$, $\int \ln(x)^2 dx$, $\int \ln(x)^3 dx$, $\int \ln(x)^4 dx$, $\int \ln(x)^5 dx$, $\int x \ln(x)^2 dx$, $\int x^2 \ln(x)^3 dx$ (on pourra utiliser l'intégration par parties)
- c) $\int \frac{1}{x+2} dx$, $\int \frac{x+1}{x+3} dx$, $\int \frac{x-1}{x+2} dx$, $\int \frac{x+a}{x+b} dx$, où $a, b \in \mathbb{R}$.
- d) $\int \frac{1}{x^2+1} dx$, $\int \frac{x}{x^2+1} dx$, $\int \frac{x^2}{x^2+1} dx$, $\int \frac{x^3}{x^2+1} dx$. e) $\int \operatorname{Arctan}(x) dx$, $\int x \operatorname{Arctan}(x) dx$, $\int x^2 \operatorname{Arctan}(x) dx$.
- f) $\int \sin(x)^2 dx$, $\int \cos(x)^2 dx$.
- g) $\int \sin(x)^3 dx$ (on pourra utiliser $\sin(x)^2 = 1 \cos(x)^2$).
- h) $\int \tan(x)^2 dx$, $\int \tan(x)^3 dx$ (on pourra utiliser $\tan^2 = \tan^2 + 1$)
- i) $\int x \sin(x) dx$, $\int x^2 \sin(x) dx$, $\int x^3 \sin(4x) dx$, $\int x^2 \sin(x)^3 dx$ (on pourra utiliser l'intégration par parties)
- j) $\int e^x \sin(x) dx$, $\int e^x \cos(x) dx$, $\int e^{3x} \sin(2x) dx$, $\int e^{nx} \sin(mx) dx$, où m et n sont des entiers (on pourra utiliser deux fois l'intégration par parties)
- k) $\int \sqrt{1-x^2} dx$ (on pourra faire le changement de variable $x = \sin(y)$)
- 1) $\int \frac{1}{(x-1)(x+2)} dx$, $\int \frac{x+1}{(x-1)(x+2)} dx$ (on pourra écrire $\frac{1}{(x-1)(x+2)}$, puis $\frac{x+1}{(x-1)(x+2)}$ sous la forme
- m) $\int \frac{x^3}{x^2+3x+2} dx$, $\int \frac{x^3}{x^2+2x+2} dx$. n) $\int \frac{\sin(x)-\cos(x)}{\sin(x)+\cos(x)} dx$, $\int \frac{\sin(x)}{\sin(x)^2-2\cos(x)-2} dx$.
- o) $\int e^{e^x+x}dx$.
- \mathbf{p}) $\int \sin(x)^5 dx$, $\int \cos(x)^5 dx$, $\int \sin(x) \cos(x)^{200} dx$, $\int \sin(x)^3 \cos(x)^{200} dx$, $\int \sin(x)^{13} dx$.
- q) $\int \tan(x)dx$, $\int \tan(x)^4 dx$, $\int \tan(x)^5 dx$, $\int \tan(x)^6 dx$.