

Identificación y Discretización

SERGIO ANDRES CASTAÑO GIRALDO

Selección del Periodo de Muestreo

Cuando se están muestreando señales debemos tomar especial cuidado a la hora de la selección del periodo de muestreo.

El tiempo de cálculo del procesador: Cuanto menor sea el periodo más potente debe ser el procesador, y por lo tanto más caro.

Obtención de Datos

Generalmente tenemos un proceso al cual deseamos controlar y tenemos la posibilidad de obtener datos del sistema, vamos a proceder a aplicar pequeños desvíos en la entrada que NO alejen demasiado el sistema de su punto de operación y que me permitan identificar el sistema.

Cuando los sistemas son muy no lineales y se desea tener una base de datos mucho más rica en información, aplicamos una señal PRBS que permita ver el comportamiento del sistema en altas y bajas frecuencias.

FUNCIÓN DE TRANSFERENCIA DE PULSO (FTP)

Para un sistema continuo, la función de transferencia se define como la relación entre la Transformada de Laplace de la salida y la Transformada de Laplace de la entrada, asumiendo las condiciones iniciales iguales a cero.

FUNCIÓN DE TRANSFERENCIA DE PULSO (FTP)

Para un **sistema discreto**, la función de transferencia de pulso (FTP), se define como la relación entre la Transformada z de la salida y la Transformada z de la entrada, asumiendo las condiciones iniciales iguales a cero.

PROCEDIMIENTO PARA HALLAR LA FTP

Conocida la función f(t), la F(z) se puede calcular utilizando tablas de transformadas y las propiedades de la transformada

Conocida la función F(S), la F(z) se puede calcular utilizando tablas de transformadas, las propiedades de la transformada y expansión en fracciones parciales

Método computacional, con un software especializado.

FTP PARA SISTEMAS CON RETENEDOR DE ORDEN CERO (ZOH)

La figura muestra un sistema en el cual se incluye, además del muestreador, un retenedor de orden cero precediendo a la función continua GP(S).

$$HG(z) = \frac{Y(z)}{X(z)} = \Im\{H(S)G_p(S)\}$$

$$\frac{x(t)}{X(S)} \qquad \frac{x^*(t)}{X^*(S)} \qquad H(S) \qquad G_P(S) \qquad y(t)$$
Retenedor Planta

La función de transferencia del retenedor de orden cero es

$$H(S) = \frac{1 - e^{-ST}}{S}$$

$$\begin{split} HG(z) &= \frac{Y(z)}{X(z)} = \Im\left\{\frac{1 - e^{-ST}}{S}G_p(S)\right\} = \Im\left\{(1 - e^{-ST})\frac{G_p(S)}{S}\right\} \\ HG(z) &= \Im\left\{\frac{G_p(S)}{S}\right\} - \Im\left\{\frac{G_p(S)}{S}e^{-ST}\right\} = \Im\left\{\frac{G_p(S)}{S}\right\} - z^{-1}\Im\left\{\frac{G_p(S)}{S}\right\} \\ HG(z) &= (1 - z^{-1})\Im\left\{\frac{G_p(S)}{S}\right\} \end{split}$$

c2d

sysd = c2d(sysc,Ts, method)

Método de discretización, especificado como una de las siguientes opciones:

- 1. gbt: generalized bilinear transformation
- bilinear: Tustin's approximation ("gbt" with alpha=0.5)
- 3. euler: Euler (or forward differencing) method ("gbt" with alpha=0)
- 4. backward_diff: Backwards differencing ("gbt" with alpha=1.0)
- 5. zoh: zero-order hold (default)
- 6. foh: first-order hold (versionadded: 1.3.0)
- 7. impulse: equivalent impulse response (versionadded: 1.3.0)

Matlab c2d

Discretice la siguiente función de transferencia con retardo utilizando una retención de orden cero en la entrada y una tasa de muestreo de 10 Hz.

$$H(s) = \frac{10}{s^2 + 3s + 10}$$

Ecuaciones en Diferencia

Los sistemas de tiempo discreto, son sistemas dinámicos en los cuales una o más variables pueden variar únicamente en ciertos instantes. Estos instantes, llamados de muestreo y que se indican por kT (k=0,1,2...) pueden especificar el momento en el cual se realiza una medición física o el tiempo en el cual se lee la memoria del computador.

Los sistemas de tiempo continuo, se describen o modelan mediante un conjunto de ecuaciones diferenciales, los sistemas de tiempo discreto se describen mediante un conjunto de **ecuaciones de diferencias**.