Data Science amb Python

Sprint 12

S12 T01: Supervised Learning - Regressions

Cristiane de Souza da Silva

June 2021

Dataset Description

Airline2008Nov Dataset Variable definition

Name	Description
1.Year	2008
2.Month	11
3.DayofMonth	1-31
4.DayOfWeek	1 (Monday) - 7 (Sunday)
5.DepTime	actual departure time (local, hhmm)
6.CRSDepTime	scheduled departure time (local, hhmm)
7.ArrTime	actual arrival time (local, hhmm)
8.CRSArrTime	scheduled arrival time (local, hhmm)
9.UniqueCarrier	unique carrier code
10.FlightNum	flight number
11.TailNum	plane tail number
12.ActualElapsedTime	in minutes
13.CRSElapsedTime	CRS Elapsed Time of Flight (estimated elapse time), in minutes
14.AirTime	Flight Time, in Minutes, in minutes
15.ArrDelay	Difference in minutes between scheduled and actual arrival time. Early arrivals show negative numbers, in minutes
16.DepDelay	Difference in minutes between scheduled and actual departure time. Early departures show negative numbers, in minutes
17.Origin	origin IATA airport code
18.Dest	destination IATA airport code
19.Distance	Distance between airports (miles)
20.TaxiIn	Wheels down and arrival at the destination airport gate, in minutes

about:srcdoc Página 1 de 16

21.TaxiOut	The time elapsed between departure from the origin airport gate and wheels off, in minutes
22.Cancelled	was the flight cancelled?
23.CancellationCode	reason for cancellation (A = carrier, B = weather, C = NAS, D = security)
24.Diverted	1 = yes, 0 = no
25.CarrierDelay	minutes. Carrier delay is within the control of the air carrier. Examples:: aircraft cleaning, aircraft damage, etc
26.WeatherDelay	munutes. Weather delay is caused by extreme or hazardous weather conditions
27.NASDelay	minutes. Delay that is within the control of the National Airspace System (NAS) Ex:airport operations,heavy traffic volume,etc
28.SecurityDelay	minutes. caused by evacuation of a terminal or concourse, re-boarding of aircraft because of security breach,etc
29.LateAircraftDelay	minutes. Arrival delay at an airport due to the late arrival of the same aircraft at a previous airport.

More information about flights delay can be seen in Federal Aviation Administration site.

Exercise 1

Create at least three different regression models to try to best predict DelayedFlights.csv flight delay (ArrDelay).

1. Load the dataset

I'll import the dataset cleaned from the previous sprint 11.

```
In [1]: # import the needed libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: # Load the dataframe

df_flights = pd.read_csv('DelayedFlights_clean.csv')
df flights.head()
```

Out[2]:		Month	DayofMonth	DayOfWeek	DepTime	ArrTime	UniqueCarrier	ActualElapsedTime
	0	1	3	4	2003.0	2211.0	WN	128.0
	1	1	3	4	754.0	1002.0	WN	128.0
	2	1	3	4	628.0	804.0	WN	96.0
	3	1	3	4	1829.0	1959.0	WN	90.0
	4	1	3	4	1940.0	2121.0	WN	101.0

about:srcdoc Página 2 de 16

```
df_flights.info()
In [3]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1928371 entries, 0 to 1928370
        Data columns (total 14 columns):
         #
             Column
                                Dtype
             _____
         0
             Month
                                int64
             DayofMonth
                                int64
         1
         2
             DayOfWeek
                                int64
         3
             DepTime
                                float64
         4
             ArrTime
                                float64
         5
                                object
            UniqueCarrier
         6
             ActualElapsedTime float64
                                float64
         7
            CRSElapsedTime
         8
             AirTime
                                float64
                                float64
         9
             ArrDelay
         10 DepDelay
                                float64
         11 Origin
                                object
         12 Dest
                                object
         13 Distance
                                int64
        dtypes: float64(7), int64(4), object(3)
        memory usage: 206.0+ MB
```

Exploratory Data Analysis

```
In [4]: # average of arrive delay by month
month_mean = pd.DataFrame(df_flights.groupby('Month')['ArrDelay'].mean())...
month_mean
```

Out[4]:	Mont	h	ArrDelay
	0	1	42.801492
	1	2	45.006123
:	2	3	41.914769
;	3	4	38.835305
4	4	5	37.593572
!	5	6	46.532728
(6	7	45.995136
	7	8	41.434409
	8	9	35.168126
•	9 1	0	31.385769
10	0 1	11	37.705510
1	1 1	2	49.481435

about:srcdoc Página 3 de 16

```
In [5]: # Month
plt.figure(figsize=(10,5))
sns.barplot( x='Month', y='ArrDelay',data=month_mean)
plt.title('Arrive Delay (min) by Months');
```


The month where the average delay is higher is December whereas the lower mean is Octobre

```
In [6]: day_mean = pd.DataFrame(df_flights.groupby('DayOfWeek')['ArrDelay'].mean()
    day_mean
```

```
DayOfWeek
                          ArrDelay
Out[6]:
         0
                         41.731356
          1
                        43.806679
         2
                      3 40.438229
                        41.071599
         3
                      4
         4
                        43.493618
         5
                      6 39.393828
                        44.697413
         6
```

```
In [7]: # Day
   plt.figure(figsize=(10,5))
   sns.barplot( x='DayOfWeek', y='ArrDelay',data=day_mean)
   plt.title('Arrive Delay (min) by Day Of Week');
```

about:srcdoc Página 4 de 16

Arrive Delay (min) by Day Of Week


```
In [8]: #Data Transforming

from sklearn import preprocessing
le = preprocessing.LabelEncoder()

df_cat = df_flights[['UniqueCarrier','Origin', 'Dest']]
df_cat.head()
```

```
UniqueCarrier Origin Dest
Out[8]:
         0
                     WN
                            IAD
                                 TPA
         1
                     WN
                            IAD
                                 TPA
         2
                     WN
                            IND
                                 BWI
         3
                     WN
                            IND
                                 BWI
         4
                     WN
                            IND
                                 JAX
```

about:srcdoc Página 5 de 16

Out[9]:		Month	DayofMonth	DayOfWeek	DepTime	ArrTime	UniqueCarrier	ActualElapsedTime
	0	1	3	4	2003.0	2211.0	17	128.0
	1	1	3	4	754.0	1002.0	17	128.0
	2	1	3	4	628.0	804.0	17	96.0
	3	1	3	4	1829.0	1959.0	17	90.0
	4	1	3	4	1940.0	2121.0	17	101.0
Tn []:								

Correlation

plt.show()

Let's check the features that better met with the target.

For this case, let' use the correlation (Pearson's) between the **ArrDelay** target and the other attributes.

```
# using the corr() method
In [10]:
          corr matrix = df transform.corr()
          # How much each attribute correlates with the Arrival Delay
          corr_matrix['ArrDelay'].sort_values(ascending=False)
Out[10]: ArrDelay
                              1.000000
         DepDelay
                              0.952927
         DepTime
                              0.127017
         ActualElapsedTime
                              0.068130
         DayOfWeek
                              0.006123
         DayofMonth
                              0.004129
         AirTime
                             -0.000189
         Month
                             -0.000897
         Origin
                             -0.001597
                             -0.014805
         Dest
         CRSElapsedTime
                             -0.015676
         Distance
                             -0.029853
         UniqueCarrier
                             -0.037337
                             -0.050948
         ArrTime
         Name: ArrDelay, dtype: float64
         # Matrix correlation
In [11]:
          plt.figure(figsize=(12,8))
          sns.heatmap(corr matrix, annot=True)
          plt.title('Delayes Flights Correlation Matrix')
```

about:srcdoc Página 6 de 16

3. Model Development

Training and Test

```
In [12]: from sklearn.model_selection import train_test_split
    y = df_transform['ArrDelay']
    X = df_transform.drop('ArrDelay',axis=1)

In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, :
    print("number of test samples :", X_test.shape[0])
    print("number of training samples:",X_train.shape[0])

number of test samples : 578512
    number of training samples: 1349859
```

Linear Regression

Fit a linear regression model using the DepDelay feature, which have the biggest correlation coefficient

```
In [14]: sns.regplot(x="DepDelay", y="ArrDelay", data=df_transform)
plt.title('Arrive Delay x Departure Delay regression');
```

about:srcdoc Página 7 de 16


```
In [15]:
          from sklearn.pipeline import Pipeline
          from sklearn.preprocessing import StandardScaler,PolynomialFeatures
          from sklearn.linear model import LinearRegression
In [16]:
          lr=LinearRegression()
          lr.fit(X_train[['DepDelay']], y_train)
Out[16]: LinearRegression()
In [17]:
          #Calculate the R^2 on the test data:
          r2_lr = lr.score(X_test[['DepDelay']], y_test)
          r2_lr
Out[17]: 0.9089131986650585
          yhat_test_lr = lr.predict(X_test[['DepDelay']])
In [18]:
          yhat test lr
Out[18]: array([38.04535139, 7.56674327, 7.56674327, ..., 37.02939779,
                 6.55078967,
                              9.59865048])
          MSE_lr = np.square(np.subtract(yhat_test_lr,y_test)).mean()
In [19]:
          MSE lr
Out[19]: 296.24644740741746
```

Multiple linear regression

I choose the features most correlated with the ArrDelay

about:srcdoc Página 8 de 16

```
In [20]:
          lrm=LinearRegression()
          lrm.fit(X_train[['DepDelay', 'DepTime', 'ActualElapsedTime', 'DayOfWeek',
          #Prediction using test data:
          yhat_test_lrm = lrm.predict(X_test[['DepDelay', 'DepTime', 'ActualElapsedT'
          yhat_test_lrm[0:5]
Out[20]: array([36.63418163, 4.76897249, 6.55394339, 27.57827137, 9.94032713])
         #Calculate the R^2 on the test data:
In [21]:
          r2_lrm = lrm.score(X_test[['DepDelay', 'DepTime', 'ActualElapsedTime', 'Day
Out[21]: 0.9114066193226147
In [22]:
          MSE_lrm = np.square(np.subtract(yhat_test_lrm,y_test)).mean()
          MSE_lrm
Out[22]: 288.13696281838975
         Polynomial Regression
         from sklearn.preprocessing import PolynomialFeatures
In [23]:
          pr1=PolynomialFeatures(degree=2)
          X train prl=prl.fit transform(X train)
         X_pr1 now contains the original feature of X plus the square of this feature.
         X_train_pr1.shape
In [24]:
Out[24]: (1349859, 105)
In [25]:
         lr_poly = LinearRegression()
          train_y_ = lr_poly.fit(X_train_pr1, y_train)
In [26]:
         from sklearn.metrics import r2_score
          X test pr1 = pr1.fit transform(X test)
          test y = lr poly.predict(X test pr1)
         MSE_poly = np.mean((test_y - y_test) ** 2)
In [27]:
          r2 poly = r2 score(y_test,test_y_)
         MSE poly
In [28]:
```

about:srcdoc Página 9 de 16

Out[28]: 5.183904349632293e-06

```
In [29]:
          r2 poly
Out[29]: 0.999999984061065
          yhat test poly=lr poly.predict(X test pr1)
In [30]:
          yhat_test_poly
Out[30]: array([43.00001036, 0.99999422, -0.9999964, ..., 39.9999916,
                10.99998558, 31.00000917])
         r2 poly = lr poly.score(X test pr1, y test)
In [31]:
          r2 poly
Out[31]: 0.9999999984061065
In [32]:
          MSE poly = np.square(np.subtract(yhat test poly,y test)).mean()
          MSE poly
Out[32]: 5.183904349632293e-06
         Ridge regression
         from sklearn.linear_model import Ridge
In [33]:
          RidgeModel = Ridge(alpha=0.1)
          RidgeModel.fit(X train, y train)
          r2 rdg = RidgeModel.score(X test, y test)
          r2 rdg
Out[33]: 0.999999984056435
In [34]:
          yhat_test_rdg=RidgeModel.predict(X_test)
In [35]:
          MSE_rdg = np.square(np.subtract(yhat_test_rdg,y_test)).mean()
          MSE_rdg
Out[35]: 5.185410412183048e-06
         Decision Tree Regression
In [36]:
         from sklearn.tree import DecisionTreeRegressor
          regressor = DecisionTreeRegressor(random state=0)
          regressor.fit(X_train, y_train)
Out[36]: DecisionTreeRegressor(random_state=0)
          yhat_tree = regressor.predict(X_test)
In [37]:
          r2_tree = regressor.score(X_test, y_test)
          r2_tree
```

about:srcdoc Página 10 de 16

```
Out[37]: 0.9957803518058488
```

```
In [38]: MSE_tre = np.square(np.subtract(yhat_tree,y_test)).mean()
    MSE_tre
```

Out[38]: 13.723786196310535

Exercises 2

Compare them based on MSE and R2.

Out[39]:	Measure		easure Lin_Reg Mult_Lin_Re		Poly_Reg Ridge_Reg		Decision_Tree
	0	R2	0.908913	0.911407	1.000000	1.000000	0.995780
	1	MSE	296.246447	288.136963	0.000005	0.000005	13.723786

Exercises 3

Train them using the different parameters they support.

Grid.fit(X_train, y_train)

The term Alfa is a hyperparameter Let's import GridSearchCV from the module model_selection.

about:srcdoc Página 11 de 16

Exercises 4

Compare your performance using the traint / test approach or using all data (internal validation)

I'll use the Multiple Linear Regression as a example, using all the X and y data instead of split them in train and test ones.

Multiple Linear Regression- Using all data

With all data used, the r-squared in Multiple Linear Regression was 0.999. This value is less that 0.911, when there was the splitted of the original dataset (X and y).

The r2 increased because I evaluated the predictived performance of the model with the same data I used for training. Although the r2 is higher, that doesn't mean it's better, after all, it was a biased evaluation.

Exercises 5

Perform some variable engineering process to improve prediction.

about:srcdoc Página 12 de 16

Let's create a attribute to see if the weekend influences the flight delay.

```
In [48]: # Create 'weekend' attribute
df_new = df_transform.copy()

df_new['weekend'] = np.where(df_new['DayOfWeek']>=6, 1, 0)
df_new.head()
```

Out[48]:		Month	DayofMonth	DayOfWeek	DepTime	ArrTime	UniqueCarrier	ActualElapsedTime
	0	1	3	4	2003.0	2211.0	17	128.0
	1	1	3	4	754.0	1002.0	17	128.0
	2	1	3	4	628.0	804.0	17	96.0
	3	1	3	4	1829.0	1959.0	17	90.0
	4	1	3	4	1940.0	2121.0	17	101.0

```
In [49]: df_new['weekend'].value_counts()
```

```
Out[49]: 0 1421230
1 507141
```

Name: weekend, dtype: int64

New Correlation

New correlation considering the new attribute 'weekend'

```
In [50]: corr_matrix = df_new.corr()

# How much each attribute correlates with the Arrival Delay
corr_matrix['ArrDelay'].sort_values(ascending=False)
```

```
Out[50]: ArrDelay
                               1.000000
         DepDelay
                               0.952927
         DepTime
                               0.127017
         ActualElapsedTime
                               0.068130
         DayOfWeek
                               0.006123
         DayofMonth
                               0.004129
         weekend
                               0.001828
         AirTime
                              -0.000189
         Month
                              -0.000897
         Origin
                              -0.001597
         Dest
                              -0.014805
         CRSElapsedTime
                              -0.015676
         Distance
                              -0.029853
         UniqueCarrier
                              -0.037337
         ArrTime
                              -0.050948
         Name: ArrDelay, dtype: float64
```

The attribute 'weekend' has a small and positive correlation with the target 'ArrDelay'.

That's confirm that on weekends the arrive delays are a little bigger.

about:srcdoc Página 13 de 16

Exercises 6

Do not use the DepDelay variable when making predictions

New Train and Test

```
# Create new dataset for attributes and target
In [51]:
          y_new = df_new['ArrDelay']
          X new = df new.drop(['ArrDelay', 'DepDelay'],axis=1)
         # New split
In [52]:
          X_train_new, X_test_new, y_train_new, y_test_new = train_test_split(X_new,
          print("number of test samples :", X_test_new.shape[0])
          print("number of training samples:",X_train_new.shape[0])
         number of test samples : 674930
         number of training samples: 1253441
```

Multiple Linear Regression - No 'DepDelay'

Now, I'll consider all attributes but 'DepDelay'

```
In [53]:
         lrm2=LinearRegression()
          lrm2.fit(X train new, y train new)
          #Prediction using test data:
          yhat_test_new = lrm2.predict(X_test_new)
          yhat_test_new[0:5]
Out[53]: array([ 3.78296201, 39.92019647, 40.8348433 , 26.46675383, 36.65337127])
In [54]:
         #Calculate the R^2 on the test data:
          r2_lrm_new = lrm2.score(X_test_new, y_test_new)
          r2_lrm_new
Out[54]: 0.1634381956858456
         MSE 1rm new = np.square(np.subtract(yhat test new, y test new)).mean()
In [55]:
          MSE_lrm_new
Out[55]: 2707.245460974804
         Polynomial Regression - No 'DepDelay'
```

```
In [56]: pr2=PolynomialFeatures(degree=2)
          X_train_pr2=pr2.fit_transform(X_train_new)
```

about:srcdoc Página 14 de 16

```
In [57]:
         lr poly2 = LinearRegression()
          new train y = lr poly2.fit(X train pr2, y train new)
          X test pr2 = pr1.fit transform(X test new)
In [58]:
          new_test y = lr_poly2.predict(X_test pr2)
         MSE_poly2 = np.mean((new_test_y_ - y_test_new) ** 2)
In [59]:
          r2_poly2 = r2_score(y_test_new,new_test_y_)
In [60]:
         MSE_poly2
Out[60]: 2574.0157370475217
In [61]:
          r2 poly2
Out[61]: 0.20460731013944933
        Ridge regression - No 'DepDelay'
         from sklearn.linear model import Ridge
In [62]:
          RidgeModel2 = Ridge(alpha=0.1)
          RidgeModel2.fit(X_train_new, y_train_new)
          r2_rdg_new = RidgeModel2.score(X_test_new, y_test_new)
          r2 rdg new
Out[62]: 0.16343819571681495
In [63]:
         yhat test rdg2=RidgeModel.predict(X test new)
          MSE_rdg2 = np.square(np.subtract(yhat_test_rdg2, y_test_new)).mean()
          MSE rdg2
Out[63]: 19866.179321959396
         Decision Tree - No 'DepDelay'
         regressor new = DecisionTreeRegressor(random state=5)
In [64]:
          regressor new.fit(X train new, y train new)
Out[64]: DecisionTreeRegressor(random_state=5)
         yhat_tree_new = regressor_new.predict(X_test_new)
In [65]:
          r2 tree new = regressor new.score(X test new, y test new)
          r2 tree new
Out[65]: -0.18697835393844664
```

about:srcdoc Página 15 de 16

'DepDelay'.

The r2 score is **negative** because the model is arbitrarily worse without the attribute

Out[67]:		Measure_new	Mult_Lin_Reg	Poly_Reg	Ridge_Reg	Decision_Tree
	0	R2	0.163438	0.204607	0.163438	-0.186978
	1	MSE	2707.245461	2574.015737	19866.179322	3841.248482

about:srcdoc Página 16 de 16