Obsah

1. Číselné soustavy, binární aritmetické operace, převody mezi soustavami, doplňkový a aditiv	vní
kód, přečteníkód, přečtení	5
Číselné soustavy	5
Binární aretmetické operace	6
Doplňkový kód	7
Aditivní kód	7
Přečtení	7
2. Logické funkce NON, OR, AND, XOR, pravdivostní tabulka, ÚNDF, ÚNKF, Booleova alg	ebra,
poloviční a úplná sčítačka, de-multiplexor, provnávací obvod	
NOT, OR, AND, XOR	
ÚNDF, ÚNKF	
Boolova algebra	10
Poloviční a úplná sčítačka	
De-multiplexor	
Porovnávací obvod	
3. Sekvenční obvody, D klopný obvod, registr, konečný automat typu Meally a Moore, vnitřní	í stavy,
přechodová a výstupní funkce, graf přechodů	-
4. Von Neumanova Architektura, Harvardská Architektura, RISC a CISC, Taxonomie sběrnic.	
Von Neumanova Architektura	
Harvardská architektura	13
CISC	14
RISC	15
Taxonomie	15
5. Paměti	17
Rozdělení pamětí	
Podle schopnosti zápisu	
Paměť RAM (Random access memory)	
Paměť ROM (Read only memory)	
Paměť PROM (Programmable read only memory)	
Paměť EPROM (Eresable programmable read only memory)	
EEPROM (Electrically eresable programmable ROM)	
FLASH paměť	21
Statická paměť RAM	
Čtení z paměti	
Zápis do paměti	
DRAM (Dynamic random access memory)	
Paměť Double Data Rate (DDR)	
6. Pevné disky	
Fyzická a ľogická struktura pevného disku	
Princip magnetického zápisu a čtení	
Parametry pevných disků	
RAID (Redundant Array of Independent Disks)	
SSD disky	
Princip zápisu a čtení optických disků	
7. Základní deska - formáty AT a ATX, čipová sada, BIOS, program CMOS SETUP, skříně AT	
zdroje napájení, záložní zdroje	
Základní informace	
Formát AT	33

Formát ATX	34
Čipová sada (Chipset)	34
BIOS (Basic input outpu system)	35
UEFI (Unifield Extensible Firmware Interface)	
CMOS setup	
Skříně ATX	
Zdroje napájení a záložní zdroje	
Zdoje napájeníZdoje napájení	
Záložní zdroje	
8. I/O Rozhraní - RS232-c, CENTRONICS, USB, IrDA, Bluetooth	
RS232-c	
CENTRONICS	
USB (Universal Serial Bus)	
IrDA	
Bluetooth	
9. Grafické karty - princip, grafická rozhraní, GPU, parametry	
Princip	
Grafická rozhraní	
VGA (Video Graphics Array)	
HDMI (High Definition Multimedia Interface)	
Display Port	
GPU (Graphics Processing Unit)	
Parametry	
10. Zobrazovací jednotky - CRT, LCD, PDP, OLED (princip parametry), norma TCO, ICC pr	
CRT	
LCD (Liquid Crystal Diplay)	
Plazmové displeje	
OLED	
TCO	51
ICC profil (International Color Consortium)	
11. Zvukový podsystém PC - zvukové karty, mikrofony, reprodoktury, zvoké formáty, vzorko	vací
frekvence, datový tok, bitová hloubka, Shannonův-Nyguistův-Kotělnikův teorém	52
12. Tiskárny - jehličkové, inkoustové, laserové (princip, vlastnosti), barevné modely RGB, Cl	MYK,
jazyky POSTSCRIPT a PCL, DPI, CPI	
13. Skenry, princip skenování, OCR programy, snímání obrazu, kamery, fotoaparáty	54
14. Ovládací zařízení - klávesnice, myš, trackpoint, touchpad (druhy, ergonomie)	55
15. Dělení OS - prostředky výpočetního systému, funkce OS, struktura OS	
Základní rozdělení OS	
Dělení OS	
Prostředky výpočetního systému	
Funkce OS.	
Struktura OS	
16. Přidělování paměti - absolutní a relativní adresa, metody přidělování paměti	
Absolutní adresa	
Relativní adresa	
Metody přidělování paměti	
17. Stránkování, segmentace, stránkování a segmentace, Reálný a chráněný režim - rozlišení	
stránky a segmentů, popis, vysvětlení, použití reálného chráněného režimu, jejich porovnání,	e o
adresace, přerušeníStránkování	
Segmentace	
Stránkování a segmentace	65

Rozlišení stránkování a segmentace	66
Stránkování	66
Segmentace	66
Reálný režim	66
Chráněný režim	67
Přerušení	67
18. POST, Multitasking a systém přerušení - průhěb POSTu, BIOS, UEFI, secure boot, dru	hy
přerušení, druhy multitaskingu	
POST	
UEFI	69
Multitasking	
Kooperativní	
Preemptivní	
Systém přerušení	
19. Synchronizace procesů - kritická sekce, producent - konzument, čtenáři a písaři, 5 hlad	
filozofů	
Kritická sekce	
Producent-Konzument	
Čtenáři a písaři	
Pět hladových filozofů	
20. Souborové systémy - vlastnostim omezení, druhy souborových systémů, žurnálování, k	
Souborové systémy	
Druhy souborových systémů	
Síťové souborové systémy	
Žurnálování	
Druhy	
Kvóta	
21. Struktura OS - jádro MS DOS, Linuxu, MS Windows, systémové proměné	
22. Příkazy a práva OS - cd, dir, ls, chmod, echo, cat, touch, přístupová práva k souborům	
22. I Tikuzy u pravu 00 ° ca, an, 15, chinoa, ceno, cat, toach, pristapova prava k souboran	
23. Definuj pojem SŘBD - druhy databází, databázové modely (3 vrstvý model, ERD), roz	
databáze (uživatelská a programátorská část), práva a odpovědnost v databázích, operace s	aciciic
	79
SŘBD	
Rozdělení databáze (uživatelská a programátorská část)	
Druhy databází	
Předrelační	
Relační	
Postrelační	
Databázové modely	
3 vrstvová architektura	
Entitně relační diagram (ERD)	
24. DB pojmy - datový tok, normální formy, konstrukty relační databáze (včetně příkladů a	
vlastností. definujte pojmy a použití číselníků a klíčů), datové typy, doba odezvy	
25. Bezpečnostní politika - druhy, základní časti a pojmy, auditní postup	
Certifikace	
Role a autorita	
Akreditace	
Monitorování a audit	
Auditní postup	
Evaluce	
EVALUEC	00

Řízení rizik	86
26. Risk managment - rozdělení rizik, metodiky hodnocení a řízení rizik	87
Rozdělení rizik (Identifikace)	87
Metodiky hodnocení rizik (Klasifikace)	
Metodiky rízení rizik (Analýzi rizik)	88
27. Elektronický podpis (popis, použité funkce, získání, použití, omezení), certifikáty, zabezp	pečení
dat před zneužitím a před ztrátou. Definujte a uveďte příklad využití redundace dat	89
Vlastnosti elektronického podpisu	89
Využití elektronického podpisu	89
Postup získání elektronického podpisu	90
HASH funkce	90
Ochrana dat před ztrátou	91
Ochrana dat před zneužitím	91
Redundance dat	92
Datová schránka	92
28. Biometrie - pojmy, druhy, hlediska hodnocení, možnosti využití	
Rozdělení biometrie	93
Hodnocení biometrií	93
29. Návrhové vzory - uveďte příklad a příklad využití minimálně 6 návrhovách vzorů. Uveď	te a
popište různé oblasti a druhy aplikace jednotlivých vzorů	
30. Archetypy - uveďte příklad a využití minimálně 5 archetypů. Na grafech a příkladech vys	
vynaložené "úsilí" v závislosti na čase u jednotlivých archetypů	95

1. Číselné soustavy, binární aritmetické operace, převody mezi soustavami, doplňkový a aditivní kód, přečtení

Číselné soustavy

- Jedničková
- Dvojková
 - Číselná soustava používá pouze symboly 0 a 1
 - o Mocniny čísla 2
 - Používá se ve všech moderních digitálních zařízeních, protože její dva symboly 0 a 1 odpovídají dvoum jednoduše rozlišitelným stavům
 - zapnuto x vypnuto
 - pravda x nepravda
- Osmičková
 - Číselná soustava o základu čísla 8
 - Snadno se dá převést do binární, jelikož je 8 mocninou 2
 - Využívá se např. pro nastavení přístupových práv v Unixových systémech
- Desítková
 - Číselná soustava o základu čísla 10
 - Umožňuje přesný zápis libovolného celého čísla
 - Pomocí desetinné čárky lze v desítkové soustavě zapsat jakékoliv reálné číslo
 - Matematiky byla založena na desítkové soustavě
- Šestnáctková
 - Číselná soustava o základu čísla 16
 - Hexadecimální čísla se zapisují pomocí čísel 0,1,2,3,4,5,6,7,8,9 a písmen A,B,C,D,E,F
 - Využívá se například pro zápis adresy v operační paměti

Binární aretmetické operace

Sčítání

-	1	1	0	1		13	
			100	D			
1	0	0	1	1	=	19	

Odčítání

	1	1	0	0	1		25
-	O	1	0	1	0	-	10
	0	1	1	1	1	=	15

• Násobení

Převody mezi 10, 2, 16 soustavami

Doplňkový kód

• číslo záporné převedeme na klasickou negaci a pak ho zvětšíme o 1

'				N	64	32	16	8	4	2	1
~>	12	!3	=	0	1	1	1	1	O	1	1
				1							0
			+		O		0			0	1
				1	9	0	д	0	1	0	1
				128	64	32	16	8	4	L	1
	6	3	=	U	0	1	1	1	1	1	1
1	6	3	۲	Λ	1	0	D	0	0	0	ò
			+	0	0	0	0	0	0	0	1
				1	1	д	O	0	0	O	1

Aditivní kód

- kód s posunutou nulou
- aditivní kód dostaneme tak, že k binárnímu vyjádření čísla přičteme obraz nuly

				27	76	8	4	2	1																					
~>	5	3	-	1	1	0	1	0	1																					
بد 1.								1		М	05	3/	w	me	, 1	ra	1	Z	11/1	u										
2	> 0	1	1	1	1	1	1	1		N																				
3. ~	7 O	0	1	1	0	1	O	1		Se		,							,											
			1							M	re	-e	24	١ ـ ١	,														,	
6>	> 1	0	1	1	0	1	D	0		N	751	re	lek	j	P. C	ŽÍ Á	lo	5	3	10	m	rei'	ov	N	1	vi	ím	r 1	sod	n
6> 5. %	Dai/	yon	ne	- ` ₍	-12	slo	1	reve	le	8	Sei	m	·	a	h_{c}	vic	iL	/	er	re,	n	'n	٤	ſν	w	w	(c	is	lo	
	na										0												4							
	20					1	0	0																						

 aditivní kód se používá pro záporné čísla v paměti PC, protože nejsou nutné obvody pro testování čísla, lze s ním normálně počítat

Přečtení

- k přečtění dojde, když pro 8 bitů, kde je maximální hodnota 255 nastane přesah rozsahu
- => přečtení, takže by se číslo 256 rovnalo 0

2. Logické funkce NON, OR, AND, XOR, pravdivostní tabulka, ÚNDF, ÚNKF, Booleova algebra, poloviční a úplná sčítačka, de-multiplexor, provnávací obvod

NOT, OR, AND, XOR

1.	Označení	NOT	OR	AND	XOR
2.	Název logické funkce	Negace	Logický součet Disjunkce	Logický součin Konjunkce	Nonekvivalence
3.	Pravdivostní tabulka	X ₀ Y ₀	X ₁ X ₀ Y ₀	x ₁ x ₀ y ₀ 0 0 0 0 0 0 1 0 1 1	x1 x6 y6 0 0 0 0 1 1 1 0 1 1 1 0
4.	Matematický výrok	y ₀ = "1", když x = "0"	y ₀ = "1", když alespoň jedno x = "0"	y ₀ = "1", když všechna x = "0"	y ₀ = "1", když x jsou rozdílná
5.	Algebraický výraz	$y_0 = \overline{x_0}$	$y_0 = x_{1+} x_0$	$y_0 = x_1 * x_0$	$y_0 = \overline{x_1} * x_0 + x_1 * \overline{x_0}$
6.	Schématické značky	xx04	xx32	*	xx86
7.	Grafické průběhy	*	20 E1 F	2c 21 7 7	x ₀
8.	Vennovy diagramy	20	x1	x1	x1
9.	Spínačová realizace	×0 × +	× × × ×		
10.	Karnaughova mapa	1 0	x ₀ x ₀	x ₀ x ₀	$egin{array}{c c} x_0 \\ \hline 0 & 1 \\ x_1 & 1 & 0 \\ \hline \end{array}$

ÚNDF, ÚNKF

ÚNDF

o součet všech mintermů

ÚNKF

součet všech maxtermů

$$y = \left(x_2 + X_1 + X_0\right) \cdot \left(x_2 + \overline{x_1} + \overline{x_0}\right) \cdot \left(\overline{x_2} + x_1 + x_0\right) \cdot \left(\overline{x_2} + \overline{x_1} + \overline{x_0}\right)$$

Boolova algebra

A	В	C
1. Komutativní zákon – KO $y = x_1 + x_0 = x_0 + x_1$ $y = x_1 \cdot x_0 = x_0 \cdot x_1$	1. Zákon dvojité negace – DN $= y = x_0 = x_0$	1. Demorganovy zákony – DM $y = \overline{x_1 \cdot x_0} = \overline{x_1} + \overline{x_0}$ $y = \overline{x_1} + \overline{x_0} = \overline{x_1} \cdot \overline{x_0}$
2. Asociativní zákon – AS $y = (x_2 + x_1) + x_0 = x_2 + (x_1 + x_0)$ $y = (x_2 \cdot x_1) \cdot x_0 = x_2 \cdot (x_1 \cdot x_0)$	2. Zákon vyloučení třetího – VT $y = x_0 + \overline{x_0} = 1$ $y = x_0 \cdot \overline{x_0} = 0$	2. Zákon absorpce negace – AN $y = x_1 * (\overline{x_1} + x_0) = x_1 * x_0$ $y = x_1 + \overline{x_1} * x_0 = x_1 + x_0$
3. Distributivní zákon – DI $y = x_2 \cdot (x_1 + x_0) = x_2 \cdot x_1 + x_2 \cdot x_0$	3. Zákon neutrality nuly a jedničky – NE $y = x_0 \cdot 1 = x_0$ $y = x_0 + 0 = x_0$	
	4. Zákon agresivity nuly a jedničky – AG $y = x_0 + 1 = 1$ $y = x_0 \cdot 0 = 0$	
	5. Zákon absorpce – AB $y = x_0 + x_0 = x_0$ $y = x_0 * x_0 = x_0$	

Poloviční a úplná sčítačka

De-multiplexor

- je to kombinační logický obvod
- má 1 informační vstup
- *n* adresních vstupů
- 2\n výstupů

Porovnávací obvod

3. Sekvenční obvody, D klopný obvod, registr, konečný automat typu Meally a Moore, vnitřní stavy, přechodová a výstupní funkce, graf přechodů

4. Von Neumanova Architektura, Harvardská Architektura, RISC a CISC, Taxonomie sběrnic

Von Neumanova Architektura

- používá jednu sběrnici
- společná paměť pro instrukce i data
- struktura PC je nezávislá na typu řešení úloh a je řízena obsahem paměti

• ALU

o kombinační obvod, který provádí nejdůležitější operace

Operační paměť

- o paměťový blok
- o Bytově adresovatelná

Řadič

- sekvenční obvod
- generuje řídící signály (ŘS) pro ostatní bloky
- o řídí přenosy po sběrrnicích
- počítač čte instrukce z operační paměti -> řadič je dekóduje -> generuje příslušné řídíci signály

• Princip činnosti

- 1. Do operační paměti se pomocí vstupních zařízení přes ALU dostane program, který bude provádět výpočet
- 2. Stejným způsobem se do operační paměti dostanou data, která bude program zpracovávat
- 3. Proběhne vlastní výpočet, jehož jednotlivé kroky provádí ALU. Tato jednotka je v průběhu výpočtu spolu s ostatními moduly řízena řadičem PC. Mezivýsledky výpočtu jsou ukládány do operační paměti
- 4. Po skončení výpočtu jsou výsledky poslány přes ALU na výstupní zařízení

Harvardská architektura

 Harvardská architekrua narozdíl od Von Neumanovy má oddělený paměťový prostor pro data a program

· Paměť programu

- o typ FLASH
- o instrukce programu jsou uchovány i v době vypnutí

Paměť dat

- typ statická RAM
- o data se ztratí po vypnutí

Základní princip

- paměť je rozdělena na paměť programu a dvě paměti dat, tak aby mohli dva operandy současně vstupovat do ALU
- součin dvou operandů v jednou instrukčním cyklu proveda hardwarová násobička a výsledek součinu je přičten k akumulátoru (operace typu MAC)
- pro zvýšení výpočetní rychlosti se používá pipelining (zřetětené zpracování instrukcí)
- je zvýšen počet samostatných datovách a adresových sběrnic a přímý vstup do paměti je prováděn vícenásobným kanálem DMA
- řízení jádra procesoru je odděleno od řízení vstupních a výstupních jednotek
- architektura typu 1X a 2X znamená, že instrukce je provedena v jednou nebo ve dvou hodinových cyklech (taktech)

CISC

- počítač s rozsáhlym souborem instrukcí
- Instrukční sada obsahuje
 - Složité instrukce
 - Instrukcí je hodně
 - Typicky různá délka instrukcí

Původní snaha

 urychlit vykonávání instrukcí realizovat stále složitější instrukce pro jejich samostatné provední

Pozitiva

- snížená četnost načítání instrukcí
- možnost vícenásobného využití funkčních jednotek v různých fázích vykonávání instrukce
- o přítomnost mikroprogramovatelného řadiče dává možnost změnit instručkní repertuár

Negativa

- o složité instrukce jsou specializované, nutnost různých variant, aby skládačka byla úplná
- velký počet instrukcí => složitý dekódér instrukcí => dekódóvání jednotlivých a obvykle nejčetnějších instrukcí trvá dlouho
- nutnost mikroprogramovatelných řadičů
- instrukce obvykle trvají různě dlouho

RISC

redukována instrukční sada

Instrukce

- o jen jednoduché
- typicky kódóvání stejným počtem bitů
- o typicky vykonávány v jednom, nebo několika málo taktech hodinového signálu
- instrukce mají pevnou délku a jednotný formát, který vymezuje význam jednotlivých bitů
- je použit vyšší počet registrů propojených přímo s ALU

Pozitiva

- jednoduché malé možství instrukcí
- jednoduchý dekódér instrukcí => rychlé dekódóvání instrukcí
- umožňuje proudové zpracování instrukcí
- rychlý obvodový řadič

Taxonomie

• Taxonomie dle účelu

- o adresová
- datová
- řídící
- systémová
- periferní

• Taxonomie dle směru přenosu dat

Jednosměrná

- typicky adresová sběrnice
- např, cache
- umožňuje přenos z jednoho místa navíce míst současně (broadcast)

Obousměrná

- přenos jedním s druhým směrem se multiplexuje v čase
- mluvíme často o half duplexu
- data můžeme současně přenášet na více míst

pro vyloučení kolize - atribace sběrnice

• Taxonomie sběrnice dle způsobu přenášení dat

- Paralelní sběrnice
 - přenos probíhá paralelně po více vodičích např. 32 bitů
 - data musí dorazit do cíle současně
- Sériová sběrnice
 - přenost dat probíhá postupně
 - přenos bitů je rozložen v čase
 - bity jsou přenášeny v pravidelných časových intervalech

Paralelní

o přenos dat probíhá parelelně po více vodičích

Sériový

o přenost dat prohíhá postupně

Synchronní

o přijímač a vysílač jsou řízeny zdrojem stejého hodinového signálu

Asynchronní

o prvně zkontrolujeme zda je přijímač schopen přijmout data a potom je až pošleme

5. Paměti

Rozdělení pamětí

- Podle materiálu
 - feritová
 - o optická
 - o magnetická
 - o magnetickooptická
 - o polovodičová
- Podle řízení činnosti polovodičových materiálů
 - Statická
 - o Dynamická
- Podlě závislosti na napětí
 - o paměťově závislé
 - o paměťově nezávislé
- Podle přístupu
 - sériové
 - o sekvenční
 - o RAM

Podle schopnosti zápisu

Paměť RAM (Random access memory)

- polovodičová paměť s přímým přístupem, která umožňuje čtění z zápis
- paměť si lze představi jako pole paměťových prvků, které je indexované adresou

- paměť RAM se používá hlavně jako operační paměť PC
 - o paměť, ve které jsou uloženy běžijící programy a jejich data
- obash paměti se po odpojení z napájení vymaže

Rozdělení RAM

- volatilní
 - při vypnutí z napájení se paměť smaže
- nevolatilní
 - informace vydrží i po vypnutí z napájení tuto vlastnost mají magnetické paměti

Paměť ROM (Read only memory)

- je to elektronická paměť jejíž obsah je dán při výrobě
- je nevolatilní
- používá se pro uložení firmware v elektronických přístrojích

Paměť PROM (Programmable read only memory)

- elektricky jednorázově programovatelná paměť typu ROM
- paměť umožňuje jen jeden zápis do každé paměťové buňky
- většinou je nahrazena paměti FLASH
- zápis hodnoty "0" probíhá destruktivně přepálením pojistky NiCr

Paměť EPROM (Eresable programmable read only memory)

- · historicky první semipernamentní typ paměť i ROM
- obsah je mazatelný pomocí UV
- před novým naprogramováním je nutné paměť smazat
- k programování se používá několika násobně větší napětí než ke čtení

EEPROM (Electrically eresable programmable ROM)

- elektricky mazatelná semipernamentní paměť typu ROM
- omezenější počet zápisů než paměť typu FLASH
- před naprogramováním je nutné smazat celý její obsah elektrickým signálem
- princip tunelování el náboje na řídící elektrodu speciálního tranzistoru MNOS

Zápis dat

- o na adresový vodič se přivede záporné napětí -U
- o datový vodič buněk, do kterého se má zaznamenat hodnota 1 se uzemní
- o tranzistor se otevře a vznikne na něm velké podprahové napětí

Čtení dat

- o na adresový vodič se přivede záporný impuls
- tranzistor s malým prahovým napětí se otevře a vede el proud do datového vodiče
- tranzistor s velkým prohovým napětím zůstane uzavřen

Vymazání paměti

- provádí se kladným napětím +U, které se přivede na adresové vodiče
- tunelový náboj se tím zmenší a prahové napětí poklesne, čímž je paměť vymazána

FLASH paměť

- nevolatilní (semipernamentní) elektricky programovatelná paměť s libovolným přístupem
- vnitřně je organizována po blocích a (narozdíl od pamětí typu EEPROM) lze programovat každý blok samostatně
- data jsou ukládáná v poli unipolárních tranzistorů s plovoucímí hradly, zvaných buňky, každá z nich obvykle uchovává 1 bit informace
- jedno hradlo je ovládací (CG control gate), druhé plovoucí (FG floating gate), izolované od okolí vrstvou oxidu
- protože je FG izolované všechny elektrony jsou na něm "uvězněny", tím je uložena informace

Statická paměť RAM

- SRAM udržuje informaci pokud je přítomno napíjecí napětí
- paměťová buňka je klopný obvod
- Použití

- menší počítačové systémy
- volatilní paměť

Čtení z paměti

- Vystavení adresy na adresovou sběrnici (s časovým předstihem access time – tac, doba od změny adresy do platnosti dat na datové sběrnici)
- Aktivace čtecího impulsu (připojení výstupních budičů na datovou sběrnici)
- · Na datové sběrnici se objeví data
- Ukončení čtecího impulsu (odpojení od datové sběrnice, předtím se musí zajistit přečtení dat ze sběrnice)

t_{rc} – read cycle time
 (celková přístupová doba do paměti)
 t_{ac} – přístupová doba od změny adresy

Zápis do paměti

DRAM (Dynamic random access memory)

- uchovává data v podobě el. náboje v kondenzátoru, který odpovídá parazitní kapacitě řídící elektrody (Gate) tranzistoru typu MOS
- dochází k vybíjení náboje, DRAM vyžaduje opětovné nabíjení parazitní kapacity tzv. refresh, obnovuje se po řádcíh - adresaci řídí řadič paměti

- velká hustota zaznamenává informace nižší cena než SRAM
- stálé obnovování spotřeba energie i kdž nedochází k zápisu ani ke čtení

Paměť Double Data Rate (DDR)

- DDR operační RAM v PC(číslo uvává generaci rychlosti např. DDR4)
- QDR InfiniBand a PCI express

6. Pevné disky

Fyzická a logická struktura pevného disku

- · Fyzická struktura pevného disku
 - magnetická paměť
 - o uchování dat s nimiž CPU momentálně nepracuje, ale může si je načíst
 - o při vypnutí PC jsou data uložena v paměti
 - Části disku:
 - médium pro uložení dat
 - magnetické hlavy (čtení, zápis)
 - mechanika pro pohyb raménka s hlavou
 - motorek točící diskem
 - elektronika řídící práci disku
 - rozhraní disku pro připojení k základní desce
 - rozdělení na stopy, sektory a cylindry
 - řadič čísluje stopy a sektory
 - o hlavy zapisují a čtou data
 - o proces magnetického dělení disku = fyzické formátování
 - o umístění hlav je na jednou rameni (stejná stopa na každém povrchu cylindr)
 - sektor = nejmenší adresovatelná jednotka disku (512 B)
 - o adresa sektoru = číslo stopy (cylindru) + číslo povrchu + číslo sektoru (CHS)

· Logická struktura pevného disku

- zorganizování uložených údajů pro rychlé nalezení dat
- o informace uloženy v navazujících tabulkách

2 soustavy tabulek:

- FAT pro starší OS
- NTFS standard pro Windowsové OS
- FAT souborový systém (diskety a flash disky)
- o FAT lze instalovat na Windos XP, Visty vyšší OS nikoli

Master Boot Record

- základní logické struktury disku
- umístěn v nultém sektoru nulté stopy
- 2 části:
 - Zaváděcí záznam
 - program spuštěný při startu PC
 - úkolem je načíst tabulku oblastí a najít aktivní oblasti
 - Tabulka oblastí
 - dělení disku na oblasti
 - jedna oblast s jedním OS
 - obsahuje max. 4 záznamy

File alocation table (FAT)

- představuje jádro celé logické struktury
- přiděluje diskový prostor ukládaným souborům, pro praktickou práci je ze všech tabulek nejdůležitější
- alokační jednotka (cluster)
 - fyzickou datovou jednotkou disku je jeden sektor
 - počet sektorů závisí na kapacitě disku
 - čím větší je kapacita tím více je sektorů
 - velikost clusteru od 522B do 32 kB4

• Princip FAT

- rozdělení na clustery
- číslování alokačních jednotek v šestnáckové soustavě

- údaje v tabulce:
 - číslo clusteru
 - FFFF koncové clustery
 - 0000 prázdný cluster
 - FFF7 vadný cluster

NTFS

- vyvinut pro Windos
- základní vlastnosti:
 - obnovitelnost
 - přemapování clusteru
 - komprese
 - oprávnění
 - připojení bodu svazku
 - · diskové kvóty
 - šifrování
- nevýhody:
 - svazky nejsou přístupné z prostředí založených na FAT
 - Linux umí číst, ale nezapisuje

Princip magnetického zápisu a čtení

 zápis a čtení dat mají na starosti hlavičky, což jsou cívky navinuté na jádrech a na ramenech se vznášejí těsně nad povrchem ploten

Zápis

- o pokud cívkou prochází el. proud dojde k vytvoření magnetického toku
- tok se uzavírá ve štěrbině mezi hlavičkou a plotnou a tím ovlivňuje i záznamovou vrstvu pevného disku
- dochází k zmagnetizování daného místa
- o mezi dvěma zmagnetisovanými místy vznikají tzv. magnetické rezervace
- magnetické rezervace = jsou místa v nichž se mění směr magnetizace a právě ona jsou zodpovědna za vlastní funkčnost zápisu

Čtení

- o čtení probíhá opačnám zbůsobem než zápis
- cívky reagují na magnetické rezervace
- ty vyvolají magnetický tok, který je zpracován na el. impuls a dále řídící elektroniky disku

Parametry pevných disků

kapacita: 128 GB - 10 TB

otáčky za minutu: 5 400, 7 200, 10 000, 15 000

• velikost: 3,5"; 2,5"; 1,8"

rozhraní: SAS, SATA, IDE, ESDI

• seek time: cca 8 ms

vyrovnávací paměť: 120 MB

RAID (Redundant Array of Independent Disks)

zabezpečení dat proti selhání pevného disku

RAID 0

- o nejedná se o skutečný RAID
- žádné redundantí informace
- žádná ochrana

RAID 1

- o nejjednodušší ale efektivní ochrana dat
- o mirroring obsahu disku na druhý
- nevýhoda:
 - dvojnásobná disková kapacita

RAID 5

- vyžaduje alespoň 3 členy diskového pole
- kapacitu jednoho členu zabírají samoopravné kódy, které jsou uloženy na členech sřídavě
- o lze využít paralelního přístupu k datům
- pomalejší zápis

RAID 6

- používá dva paritní disky
- o na každém z nich je samoopravný kód vypočten jiným způsobem
- rychlost čtení srovnatelné s RAID 5
- o zápis pomalejší než u RAID 5

Víceúrovňový RAID 01

- RAID 01 je je vlastně RAID 0 + 1
- o data uložená prokládaně (stripováním) ne dvě dvojice disků, tyto dvojice jsou zrcadleny
- o rozložení zátěže mezi více disků při čtení i zápisu

Nevýhody:

- využití pouze 50 % celkové diskové kapacity pro data
- pří výpadu disku ztráta redundance dat

Víceúrovňový RAID 10

- RAID 10 je RAID 1 + 0
- o data uložené zrcadlově na dvě dvojice disků a tyto dvojice jsou stripovány
- o rychlejší obnova dat než u RAID 10

• Nevýhody:

 využití pouze 50 % celkové diskové kapacity

• Víceúrovňový RAID 50

- o dvouúrovňové pole, vytvořené prokládáním několika RAID 5 polí
- o zvýšena rychlost oproti RAID 5
- ∘ kapacita = (n 1) * c * P, (n počet disků, c kapacita disku, P počet podřazených polí)

Víceúrovňový RAID 60

- o dvouúrovňové pole, vytvořené prokládáním několika RAID 6 polí
- větší rychlost a zabezpečení než RAID 6
- minimálně 8 disků
- ∘ velikost = (n 2) * c * P, (n počet disků, c kapacita disku, P počet podřazených polí)

Víceúrovňový RAID 100

- RAID 100 je RAID 10 + 0
- tříúrovňové pole, vytvořené dvouúrovňovým prokládáním dat na zrcadlené podpole (RAID 1)
- minámálně 8 disků
- větší přenosové rychlosti
- odolnost proti výpadku

Nevýhody:

- využití pouze 50 % kapacity celkové kapacity disku
- velikost = (n * c) / 2, (n počet disků, c kapacita disku)

SSD disky

- zařízení pro čistě elektronické ukládání
- neobsahuje pohyblivé mechanické části
- SATA, M.2, PCI-Express
- omezená životnost maximálním počtem zápisů do jednoho místa
- implementace příkazu TRIM OS informuje SSD, které datové bloky obsahují dále nepoužitelná data
- mezivrstva FTL (Flash Translation Layer) rovnoměrné opotřebávání datových buněk
- Části:
 - o datový a napájecí konektor
 - řadič disku
 - o paměti NAND

Paměťové buňky:

- SLC (Single level cell)
 - nejjednodušší
 - nejrychlejší
 - nejdražší
 - nejměnší opotřebení
- MLC (Multi level cell)
 - vyšší počet hradel
 - větší paměťová hustota
 - nižší cena
 - nižší výkon
 - menší trvanlivost
- eMLC
 - vyšší výdrž
- TLC (Triple level cell)
 - nejsložitější
 - menší trvanlivost
 - nižší výkon
 - nejlevnější

Princip zápisu a čtení optických disků

• Čtení

- o je založeno na adrazu laserového paprsku
- na základě intenzity odraženého světla detektor pozná zda se v daném místě nachází pit (světlo je pohlceno) nebo land (silný odraz světla)
- o změna z landu na pit je logická "1"
- o posloupnost dvou pitů nebo landů je logická "0"

Zápis

- pomocí silného laseru se vytvoří buď bublina(pit) nebo se přepálí povrch až na odrazovou vrstvu (land)
- DAO (Disc at once, Single session)
 - zápis najednou
 - výroba master disků
- TAO (Track at once)
 - po každém dokončení stopy se laser vypne
- SAO (Sessioni at once)
 - první session obsauje více stop nahraných v jedné session
 - pak se laser vypne ale disk neni uzavřen
 - poté se nahraje druhá session s daty a ta disk uzavře

7. Základní deska - formáty AT a ATX, čipová sada, BIOS, program CMOS SETUP, skříně ATX, zdroje napájení, záložní zdroje

Základní informace

je to plošný spoj, který spojuje všechny součásti do jednoho funkčního celku

• integruje:

- o chipset
- o BIOS
- časovací obvody
- o patice na procesor, paměť a přídavné karty
- vtuspně výstupní obvody

- zvukovou a síťovou kartu
- baterie
- o řadič USB, SATA, EIDE
- M.2 řadič

zapojuje se do ní:

- o procesor
- o paměť RAM
- grafická karta
- o optická mechanika
- rozšiřující karty
- vstupně výstupní zařízení
- o zdroj
- o chlazení

Formát AT

- velikost 351 x 305 mm
- nevejde se do mini desktop ani do minitower
- používán do roku 1997

Formát ATX

- vytvořen společností Intel v roce 1995
- velikost 305 x 244 mm
- zdroj neni spojen přímo se zapínacím tlačítkem
 - o to umožnuje zapínámí PC i jinými zbůsoby
- napájecí zdroj se připojuje přes jeden velký konektor narozdíl od AT
- nový konektor obsahuje i napětí 3,3 V, takže si toto napětí nemusí základní deska stabilizovat sama
- používá 20 pinový konektor

Čipová sada (Chipset)

- tento termín označuje dav čipy
 - nortbridge
 - southbridge
- v dnešní době se oba tyto čipy implementují jako jeden čip
- je většinou navrhnut tak aby fungoval se specifickou značkou procesoru

- o AMD
- Intel
- hraje zásadní roli v určování výkonu systému
- je to jeden nebo více integrovaných obvodů

• funkce:

 komunikace mezi procesorem, sběrnicemi, sloty, řadiči a dalšími součástmi na základní desce

BIOS (Basic input outpu system)

- procesor řady x86 startuje do reálného módu
 - v něm má k dispozici 16 bit registry a může vytvářet 20 bit adresu mechanismem posunutí segmentového registru oproti offsetu o 4 bity
 - o k dispozici je pouze 1 MiB paměti

hlavní funkce:

- o rozpoznat HW
- o poskytnout potřebné rozhraní pro snadné zavádění OS
- POST test (Power-On Self-Test)
- základní ovladače
- kontrola prvních 512 bajtů každého připojeného disku (MBR)

UEFI (Unifield Extensible Firmware Interface)

- chráněný mód procesoru
- potřebuje pro svůj chod chráněný režim
- před přepnutím do chráněného je nutné:
 - o povolit linku A20
 - načíst tabulku globálních deskriptorů, deskriptory segmentů vhodných pro kód, data a zásobník
 - o CPU přepnutí do chráněného režimu je určeno
- firmware se načte z paměti (ROM, EEPROM, nebo modernější FLASH), spolupracuje s
 oblastí na externím úložišti

CMOS setup

 málá paměť, kam si BIOS ukládá všechna svá nastavení a kterou napájí málá baterie umístěna na základní desce

Skříně ATX

- hardware pro počítače, který slouží k mechanickému upevnění všechn ostatních vnitřních dílů a částí PC
- umístění upevňovacích otvorů, otvorů na konektory, upevňující lišty a pro rozšiřující karty odpovídá danému formátu

Zdroje napájení a záložní zdroje

Zdoje napájení

- napájení jednotlivých komponent pc je realizováno podle jejich umístění:
 - o komponenty na základní desce jsou napájeny hlavním napájecím konektorem
 - samostatné komponenty
- Požadavky na napájecí zdroj:
 - o je to měnič střídavého napětí ze sítě na požadované hodnoty
 - spolehlivost a výkon
 - komponenty jsou napájeny stejnosměrným napětím v několika větvích (3,3V, 5V, 12V)
 - pro některé komponenty na základní desce upravují napětí stabilizátory na základní desce (jádra procesoru, paměť, 1,2V - 1,5V)
- Vlastnosti pulsního zdroje:
 - Výhody:
 - vysoká účinnost
 - kolísání vstupního napětí nemá vliv
 - nízká hmotnost
 - nižší cena
 - Nevýhody:
 - vysokofrekvenční rušení při spínání výkonových tranzistorů

Princip a schéma pulsního zdroje

Záložní zdroje

- Uninterruptible Power Supply (UPS)
- Úloha UPS:
 - o ochrana dat pře poškozením vlivem:
 - ztráty napětí
 - krátkodobý pokles napětí
 - napěťové špičky
 - rušení v síti

• Typy UPS:

- Off Line standby při přerušení napájení se přepne, nestabilizuje napájení ze sítě (výpadek 20 ms)
- Line-interactive regulační transformátor vyrovnává kolísání napájecího napětí, při výpadku se přepne (výpadek 2-5 ms)
- On Line napětí ze sítě se usměrní a následně střídačem mění na výstupní napětí, frekvence výstupního napětí je nezávislí na vstupní frekvenci, nedochází k výpadku má ale nižší účinnost

8. I/O Rozhraní - RS232-c, CENTRONICS, USB, IrDA, Bluetooth

- Definice rozhraní
 - I/O = input/outpu
 - I/O rozhraní umožňují:
 - propojení PC s periferními obvody
 - přímé propojení 2 PC popřípadě více PC (počítačová síť)
 - o rozhraní musí být schopno zparovávat fyzikální tvar signálů

Rozdělení obvodů rozhraní

- Podle způsobu připojení:
 - drátové
 - bezdrátové
- o Podle druhu signálu:
 - analogové
 - digitální
- o Podlě směru komunikace
 - jednosměrné
 - obousměrné
- Podle účelu:
 - univerzální
 - grafické
 - zvukové
 - síťové

RS232-c

- starší rozhraní
- používalo se pro připojení klávesnice a myši
- rozhraní není implementováno na většině současných základních desek

• Úrovně napětí:

Datové signály				
Úroveň	Vysílač	Přijímač		
Log. 0 (Space)	+5 V to +15 V	+3 V to +25 V		
Log. 1 (Mark)	-5 V to -15 V	-3 V to -25 V		
Nedefinovaný	-3 V až +3 V			

- příjem RxD
- vysílání TxD
- společná zem GND

- vstupní elektronika je vybavena ochranou proti zkratu
 - o po překročení 20 mA proud dál neroste

• Použité konektory:

- o CANNON 9
- o CANNON 25
- **samec** je na straně počítače
- **samice** je součástí připojovacího kabelu
- nepodporuje funkci "Plug and Play" (automatická detekce připojeného zařízení)
- nepodporuje "Hot Plug" (připojování/odpojování zařízení za provozu)

• Přenosová rychlost:

- 9600 b/s
- o na kratší vzdálenost 115 200 b/s

CENTRONICS

- parelelní rozhraní (LPT port)
- má 17 linek
 - 8 datových vodičů
 - 9 vodičů pri řízení komunikace

- původní účel byla komunikace s tiskárnou
 - =jednosměrný přenos dat z PC
- Konektory a kabely:
 - 2 typy konektorů:
 - 25-pinový konektro = samice (základní deska)
 - 36-pinový konektro = samec (tiskárna, jíné periferie)
- LAPLINK = přímé propojení 2 PC
- Výstupní signály:

USB (Universal Serial Bus)

- univerzální sériová sběrnice
- USB lze připojit téměř každou periferii
- USB využívá vrstevnou hvězdicovou topologii
 - o v centru každé hvězdice je USB Hub
 - k USB Hubu můžeme připojit buď koncové zařízení nebo další USB Hub
 - obsahuje jeden Root Hub (nejvyšší úroveň)
 - ten je umístěn buď na základní desce nebo přídavné kartě
 - max 7. úrovní

• Specifikace USB rozhraní:

- USB 1.1 (resp. 1.0) 12 Mb/s (resp. 1,5 Mb/s)
- o USB 2.0 480 Mb/s
- o USB 3.0 4,7 Gb/s (600 Mb/s)
- jednotvlivé standardy jsou vzájemě kompatibilní (vyjma USB 3.0)
 - o přenosová rychlost pak odpovídá nejpomalejšímu řadiči

Wireless USB

- o pro přenos využívá rádiových vln (3,1 GHz 10,6 GHz)
- o rychlost závisí na vzdálenosti
 - do 3 m = 480 Mb/s
 - do 10 m = 110 Mb/s

• Elektrické paramtery:

Pin	Jméno	Barva	Popis
1	VBus	Red	+5V
2	D-	White	Data -
3	D+	Green	Data +
4	GND	Black	Zem

- o USB 1.1
 - 4 vodiče
 - napájecí napětí 5V
- USB 2.0
 - 4 vodiče
 - napájecí napětí 5V
- USB 3.0
 - 8 vodičů
 - napájecí napětí 5V

Konektory:

- typ A
 - v každém novém PC
 - v minimálně 2 konektorech
 - základní desky mají integrovaný USB Hub, který obsahuje 8-10 portů přímo v PC

- o typ B
 - je určen pro periferní zařízení
 - standart propojovacího zařízení

Vlastnosti USB:

- vysoková přenosová rychlost
- 100% kompatibilita mezi specifikacemi (až na 3.0)
- garantovaná komunikační vzdálenost 5 m
- o možnost připojit až 127 zařízení v 7 úrovních
- o podpora technologií Plug and Play, Hot Plug
- široká nabídka periferních zařízení
- přenos dat je řízen procesorem

IrDA

- bezdrátový přenos pomocí infračerveného zářezení
- IrDa zařízení komunikují pomocí infračervených LED
- přijímače jsou příslušné fotodiody
- dopadem IR zařízení do oblasti PN přechodu dojde k uvolnění nosičů náboje z vazby
 - => přechodem začne téct el. proud

• Přenosové rychlosti:

- o IrDA 1.0
 - od 2400 do 115 200 Kb/s
- IrDA 1.1
 - navíc definuje přenosové rychlosti 576 Kb/s a 1152 Kb/s
- v součastnosti je toto rozhraní nahrazeno Bluetooth

Bluetooth

Zajímavost:

- technologie se jmenuje podle dánského krále Haralda II přezdívaného Blåtand ("modrý zub"), který chtěl sjednodil skandinávský lid
- technologie Bluetooth ma za cíl také sjednodit (propojit) různá zařízení mezi sebou,
 jméno bylo původně zvoleno dočasně nakonec zůstalo
- komunikační rozhraní, sloužící k bezdrátovému propojení mezi dvěma a více elektronickými zařízeními
- je definováno síťovým standardem IEEE 802.15 a spadá do kategorie PAN (Personal Area Network)

Jak funguje?

- každé zařízení je vybaveno transcieverem
- propojená zařízení vytváří tzv. pikosíť
- o v rámci jedné pikosítě může komunikovat max. 8 zařízení
- zařízení, které iniciovalo spojení pracuje jako master
 - zajišťuje identifikaci účastníků v síti, synchronizaci komunikace
- ostatní zařízení pracují jako slave
- Bluetooth pracuje v nelicencovaném frekvenčním pásmu 2,4 GHz
- pásmo je rozděleno na 79 komunikačních kanálů (1 kánál = šířka pásma 1 MHz)

- pro zvýšení bezpečnosti a odolnosti na určité frekvenci se provádí 1600 přeskoků mezi
 79 kanály za 1 sekundu
 - toto je v režii zařízení které pracuje jako master
- o z bezpečnostních důvodů se před prvím spojení zařízení musí spárovat
- v téže lokalitě nebo v jejím okolí mohou být další zařízení převyšující 8, nebo další pikosítě
 - pro propojení více zařízení než 8 nebo pro propojení více pikosítí je použita struktura scatternet (rozptýlená síť)
 - v této struktuře jsou některé zařízení součástí více pikosítích a zajišťují tak jejich propojení

• Bluetooth rozdělujem do tří tříd (Class):

- o Class 1 (10 mW) dosah cca 100 m
- o Class 2 (2,5 mW) dosah cca 50 m
- o Class 3 (1 mW) standartní specifikace dosah cca 10 m

Přesonová rychlost

- o okolo 720 Kb/s
- symetrický/ asymetrický datový spoj

Typ přenosu	Rychlost v obou směrech
symetrický	432.6 kb/s
asymetrický	721 / 57,6 kb/s

Novější specifikace Bluetooth:

- o Bluetooth 1.2
 - podpora technologie QoS (Quality Of Service) = co nejmenší zpoždění při doručování datových paketů předevšim hlasových zpráv
- Bluetooth 2.0, 2.1 EDR (Edhanced Data Rate)
 - zvýšená rychlost
 - snižuje nároky na napájení zařízení
- Bluetooth 3.0 HS (High Speed)
 - je zpetně kompatibilní s předešlími specifikacemi
 - založen na protokolu 802.11 a standardu Wi-Fi
 - umožňuje přenosovou rychlost až 24 Mb/s
 - lepší zabezpečení komunikace

9. Grafické karty - princip, grafická rozhraní, GPU, parametry

Princip

- Funkce grafického výstupu
 - o zajišťuje tvorbu obrazu z určité aplikace, který vidíme na zobrazovací jednotce
 - o spolu se zobrazovací jednotkou tvoří zobrazovací soustavu PC
- Režim grafického výstupu
 - Pracuje ve dvou základních režimech:
 - 1. textový režim:
 - zobrazuje pouze předem definované znakové sady uložené v paměti grafiky
 - 2. grafický režim:
 - informace zobrazovány po pixelech
 - z jednotlivých pixelů vykreslíme jakýkoliv obraz v daném rozlišení a hloubce barev

Pixel

- nejmenší jednotka digitální bitmapové grafiky
- představuje jeden svítící bod na monitoru
- charakterizovaná jasem a barvou
- splynutí 3 subpixelů základních barev RGB do jedné barvy vznikne pixel
- Texel
 - základní jednotka textury používané v počítačové grafice
- Voxel
 - částice objemu představující hodnotu v pravidelné mřížce 3D

Grafická rozhraní

- Výstupy grafického rozhraní na zobrazovací jednotku:
 - Analogový (např. CRT monitor, LCD s analogovým vstupem)
 - Digitální (např. LCD s digitálním vstupem, plazmový monitor)

VGA (Video Graphics Array)

- standart pro analogové grafické zobrazení určené předevšém pro CRT monitory
- využívá analogový signál 3 základních barev RGB
- horizontální a vertikální synchronizaci
- vykreslování obrazu je bod po bodu pomocí půlsnímku v lichých a sudých řádcích
- Konektor:
 - o 3 řady po 5 pinech

HDMI (High Definition Multimedia Interface)

- nekomprimovaný obrazový digitální signál ve standartním rozšířením nebo v HD kvalitě
- 8 kanálů digitálního zvuku
- Transition Minimized Different Signaling - TMDS
- Consumer Electronics Control Display Data Chanel - DDC

HDMI typ A, B, C, D

- o typ A
 - 19 pin
 - HDTV režim
 - kompatibilní s rozhraním single link DVI
- o typ B
 - 29 pinů
 - dvonásobná šířka pásma
 - nepoužívá se
- o typ C mini, 19 pinů
- o typ D -micro, 19 pinů

Display Port

- primárně přenos obrazu pro displeje
- může být použito i pro přenos zvuku
- kompatibilní s HDMI (obraz zvuk) směrem k zobrazovači (PC-DisplayPort-Display-HDMI)
 - o opačně s pasivním adaptérem nefunguje

Parametry:

• hloubka barev: 30bit

o rozlišení 8K

o barevné schéma: 4:4:4

rozměr obrazu: 7680x4320

- frekvence 60 Hz
- o Více monitorů Multi-Stream
- HD audio formát, 32 kanálů se vzorkovací frekvencí 1536 kHz
- Display Stream Compression 1.2 DSC

GPU (Graphics Processing Unit)

- je to specializovaný mikroprocesor
- zajišťuje rychlé grafické výpočty a změny obsahu videopaměti
- moderní grafické procesory mohou být používáné i k jiným výpočtům, než pro zobrazování dat (např. kryptoanalýza)
- je buď v grafické kartě nebo na základní desce, kde je integrován s mikroprocesorem do jednoho čipu (tzv. APU)
- vysoce výkonná GPU obsahuje miliony tranzistrorů => intenzivní chlazení a výkonný el. zdroj
- GPU se vůči CPU chová jako další paralelní koprocesor
- je určen především na vektorové výpočty (jsou potřeba pro vytvoření grafických scén)
- GPU vykresluje grafické procesy rychleji než CPU
- urychlovací techniky se označují jako grafická akcelerace
- z počátku byly nejběžnější 2D operace (BitBLT)
 - o obykle realizováné zařízením blitter
- moderní GPU mají podpru 3D, obsahují funkce pro renderování, podporu digitálního videa a další

• Typy GPU:

- o dedikované
- integrované
- hybridní
- o externí

Parametry

Rozlišení

- počet pixelů v jedné řádce x počet řádek
- o poměr stran monitoru

Barevná hloubka

- počet bitů pro vyjádření barvy pixelu
- 1 bitová barva = 2^1 = 2 barvy (MonoColor)
- 4 bitová barva = 16 barev
- 24 bitová barva = 3x8 bit RGB (TrueColor)
- 32 bitová barva = 3x8 bit RGB, alfa kanál průhlednost
- s větším počtem barev vzrůstají nároky na výkon grafické karty

Velikost videopaměti

- o primárně je v ní uložen vytvořený obraz
- velikost je dáná počtem bodů a barevnou hloubkou
- pro výpočty v grafickém akcelerátoru uchová mezivýsledek, doplňující informace a textury
- záleží na složitosti objektů, způsobu vykreslování, stínování a dalších paremetrech použité v 2D a 3D akcelerátoru

Obnovovací frekvence

- určuje kolikrát za vteřinu je grafická karta (spolu s monitorem) schopna aktualizovat obraz
- udává se:
 - progressive (značeno "p") pro zobrazení úplných snímků
 - interlace (značeno "i") pro zobrazení lichých a sudých půlsnímků
- o při vyšším rozlišení je vyšší počet vykreslovaných bodů a tím je vyšší datový tok
- levnější karty při vyšším rozlišení nepodporují vyšší obnovovací frekvence

10. Zobrazovací jednotky - CRT, LCD, PDP, OLED (princip parametry), norma TCO, ICC profil

CRT

- na přední části (stínítku) se vytváří obraz pomocí proudu elektronů
- uvnitř skleněné obrazovky je vakuum
- na stínítku je vrstva luminoforu
 - o tato vrstva po dopadu elektronu vytváří viditelné světlo
- obrazovka je z fyzikálního hlediska urychlovač elektronů
- černobílé obrazovky používají pouze jediný paprsek elektronů
- bravené obrazovky používají 3 paprsky, ty pomcí sčítání RGB barev vytvoří jakoukoliv barvu
- 1. elektronové dělo
- 2. svazky elektornů
- 3. zaostrovací cívky
- 4. vychylovací cívky
- 5. připojení anody
- část pro oddělení paprsků pro RGB část zobrazovaného obrazu
- 7. luminoforová vrstva s RGB oblastmi
- 8. detail luminoforové vrstvy, nanesené z vnitřní stany obrazovky

LCD (Liquid Crystal Diplay)

- Displej z tekutých krystalů je tenké a ploché zobrazovací zařízení, které vytlačilo technologii CRT
- Každý pixel se zde zkládá z molekul tekutých krystalů uložených mezi dvěma průhlednými elektrodami a mezi dvěma polarizačními filtry, přičemž osy polarizace jsou na sebe kolmé
 - Molekuly tekutých krystalů jsou bez proudu chaotické, proud způsobí, že se molekuly srovnají s drážkami na elektrodách do spirálové struktury

- Světlo procházející filtrem je rotováno, což mu umožňuje projíit i druhým filtrem
- Když se vpustí proud do elektrod, molekuly jsou taženy rovnoběžně
- Pokud nejsou tekuté krystaly stočené, bude světlo kolmé k druhému filtru a tudíž zablokováno

Plazmové displeje

- Obraz se vytváří vybuzením fosforové vrstvy
 - K exitaci (předání energie jádru atomu, kterí přejde do vyššího energetického stupně) dochází působením UV světla, které vzniká v plazmatu
 - Zobrazovací plocha rozdělena na komůrky, které mají základní barvy
 - V komůrkách vzniká díky vzácným plynům UV záření, díky kterému vzniká viditelný obraz

OLED

- Chemická látka po přivedení napětí k elektrodám začne svítit
- U pasivních displejů se používá souřadný systém vodičů jako u LED
- U aktivních displejů je každý zobrazovaný bod řízen vlastním rezistorem

TCO

• Označuje šetrnost osobních počítačů (původně jen monitorů) k životnímu prostředí

ICC profil (International Color Consortium)

- Charakterizuje bravový gamut (dasažitelná oblast barev v určitém prostoru) a vlastnosti reprodukčního zařízení či média
- Tyto informaci použity pro zobrazení barev např. v tiskárně, monitoru, skeneru, TV

11. Zvukový podsystém PC - zvukové karty, mikrofony, reprodoktury, zvoké formáty, vzorkovací frekvence, datový tok, bitová hloubka, Shannonův-Nyguistův-Kotělnikův teorém

12. Tiskárny - jehličkové, inkoustové, laserové (princip, vlastnosti), barevné modely RGB, CMYK, jazyky POSTSCRIPT a PCL, DPI, CPI

13. Skenry, princip skenování, OCR programy, snímání obrazu, kamery, fotoaparáty

14. Ovládací zařízení - klávesnice, myš, trackpoint, touchpad (druhy, ergonomie)

15. Dělení OS - prostředky výpočetního systému, funkce OS, struktura OS

Základní rozdělení OS

- Windows
- Mac OS
- Linux
- Android
- ISO
- Bada
- Symbian
- MS DOS

Dělení OS

- Podle ovládaných procesorů:
 - jednoprocesorové
 - víceprocesorové
 - Asymetrický processing (ASMP)
 - na jednom procesoru běží procesy systému
 - na dalších uživatelské procesy
 - Symetrický multiprocessing (SMP)
 - kterýkoliv proceš může běžet, na kterémkoliv procesoru

• Podle složitosti správy uživatelů:

- o jednouživatelské
- víceuživatelské
 - více uživatelů pracuje současně v realném čase
 - musí zajistit rozdělení a oddělení prostředků (paměti) mezi uživateli

• Podle počtu provozovaných programů:

- o jednoprogramové
- víceprogramové
 - preemptivní multitasking = pravidelné střídání úloh

- nepreemptivní multitasking = lze sputit více úloh, ale úloha opustí procesor pouze při ukončení anebo čekání na I/O operaci
- kooperativní = jako preemptivní, ale o předání procesoru se starají samostatné úlohy (starý Windows a Mac)

Podle schopnosti práce v sítí:

- o lokální
 - nedokáží pracovat v síti bez přídavných modulů
- sítové
 - mají klientskou i serverovou verzi

• Podle míry specializace:

- o speciální
- univerzální

• Podle času a umístění:

- o realtime
 - pracuje v reálném čase a má vysoké požadavky na interaktivitou stanovený maximální čas obsluhy
- distribuovaný
 - pracuje na více než jednom procesoru, program je rozdělen tak, že každá část může být zpracována na jiným procesoru

Prostředky výpočetního systému

- fyzické prostředky:
 - o CPU
 - Řadič paměti
 - Paměť
 - Řadič disků
 - Disky
 - Řadič I/O
 - Myš
 - Klávesnice
 - Tiskový řadič
 - Tiskárna

- Bus (sběrnice)
- HW propojující jednotlivé HW moduly za účelem přenosů dat (adresy, řídící instrukce, data) ve formě el. signálů, 8-128 bitové

logické prostředky:

- procesy
- úloha
- krok úlohy
- o uživatel

Procesor

- vykonává zadané instrukce
- o intergrovaný obvod s vysokou mírou integrace
- o miliardy tranzistorů

Počítač

 stroj na zpracování informací, pracující podle programů uložených v paměti

Instrukční cyklus

 čas na provedení jedné instrukce

Strojní cyklus

 čas potřebný k provedené základní operace s pamětí nebo I/O obvody

takt to Me Me Me

Takt

o jedna perioda hodinového signálu

Taktovací frekvence

o počet taktů za jednotku času

Funkce OS

• Správa paměti:

- vedení evidence vnitřní paměti
- o přidělování paměti procesům

- řešení situací při nedostatku paměti
- o správa virtuální paměti

Správa procesů:

- evidence
- spouštění procesů
- plánování
- přidělování procesoru
- sledování stavu procesů
- o zajišťování komunikace mezi procesy

• Správa periferií:

- o zahrnuje vytvoření rozhraní mezi I/O zařízení a procesy
- sledování stavu zařízení
- o přidělování zařízení procesům a řešení možných kolizí s tím souvisejících

• Správa systému:

- určování funkčních režimů (uživatelský, privilegovaný)
- o může udržovat ochranu proti škodlivým kódům
- ochrana proti poruchám a neoprávněným uživatelů

• Správá uživatelů:

- o udržuje informace o uživatelích a jejich činnosti
- o zajišťuje odhlašování a přihlašování

Správa úloh:

- o udržuje informace o úlohách a jejich průběhu
- Uživatelské rozhraní
 - GUI
 - CLI

Programové rozhraní

- rozhraní mezi procesy a výpočetním OS
- označováno jako API

Struktura OS

• Monolitická struktura

- o systém se skládá z jádra a rozhraní, které zprostředkovává komunikaci
- o jádro představováno jako jediný soubor a funkcionalita je rozšiřována

Vrstevnatá struktura

- o části systému uspořádána do vrstev
- o každá vrstva využívá služby nižších vrstev
- o min. počet vrstev jsou 2

Modulární systém

- o systém členěn do modulů
- o předpokládá se unifikované rozhraní modulů

• Model klient-server

- o systém má co nejmenší jádro, které má jen základní funkce
- o ostatní funkce provádějí speciální systémové procesy
- ∘ procesy = servery = démoni = služby
- o procesy spuštění uživatelem se nazývají klienti (využívají služeb serveru)

16. Přidělování paměti - absolutní a relativní adresa, metody přidělování paměti

Absolutní adresa

- odkazuje na část paměti v rámci celé paměti
- jedná se o fyzickou adresu paměti

Relativní adresa

- odkazuje na část paměti v rámci procesu
- jedná se o logickou adresu paměti

Metody přidělování paměti

- Přidělení jedné souvislé oblasti
 - přidělení veškerého paměťového prosoru procesu kromě oblasti OS
 - pro ochranu paměti je vhodné použít mezní registr
 - Výhody:
 - jednoduchost správy
 - nevelké nároky na technické vybavené
 - Nevýhody:
 - možnost spustit jeden proces
 - část paměti může zůstat nevyužita

• Přidělení bloku pevné velikosti

- pří spuštění OS se rozdělí paměť na bloky pevné délky
- počet bloků a jejich délka je konstantní po celou dobu běho systému
- potřeba dvou oddělovacích registrů
- Výhody:
 - možnost implementace multitaskingu
 - jednoduchos zprávy
- Nevýhody:
 - velká pravděbodobnost fragmentace
 - proces, který potřebuje víc paměti než je velikost bloku se nespustí

Dynamické přidělení bloku paměti

- při žádosti procesu o paměť správce paměti vyhledá blok s větší délkou než je požadavek procesu
- o procesy by měli používat relativní adresy v rámci svého přiděleného bloku
- v každém bloku se vytvoří hlavička, ve které je informace o vlastníkovy a adresa následujícího bloku

Stránkování

- Stránka = pěvně daný blok paměti s přesným počtem řádků
- délka stránky se v celé paměti nemění

17. Stránkování, segmentace, stránkování a segmentace, Reálný a chráněný režim - rozlišení stránky a segmentů, popis, vysvětlení, použití reálného chráněného režimu, jejich porovnání, adresace, přerušení

Stránkování

- stránka = pevně daný blok paměti s přesným počtem řádků
- délka stránky se v celé paměti nemění
- tabulka stránek obsahuje počáteční adresy rámců přidělených stránkám
- Logická adresa:
 - číslo stránky (index do tabulky stránek)
 - offset ve stránce (relativní adresa)

Segmentace

- tabulka segmentů (Segment Table = ST) je uložena v paměti
- procesu je vytvořen virtuální adresní prostor
 - o začátek na adrese 0
- strojové procesy používají logické adresy (offset)

Fyzická adresa:

o je to součet segmentu registru a offsetu

Dva registry

- segment
- offset
- strojové instrukce pracují s offsetem to vyjadřuje vzdálenost od segmentu

Výhody:

- segment má délku podle skutečné potřeby
- lze detekovat přístup mimo segment (segmentation fault)
- lze nastavovat práva k přístupům do segmentů
- o lze pohybovat s daty i s programem ve fyzické paměti

Nevýhody:

- alokace segmentů v paměti je komplikované
- problém s externí fragmentací
- režie přístupu do paměti

Stránkování a segmentace

- vylepšení obou těchto technik
- proces přistupuje k paměti přes adresy
- každý proces má přidělen paměťový prostor v rozsahu určitách adres = adresový prostor
- fyzická (absolutiní) a logická (relativní) adresa
- segmenty obsahují stránky

Rozlišení stránkování a segmentace

Stránkování

- STRÁNKA = pevně daný blok paměti s pevným počtem řádků, délka stránky se v celé paměti nemění
- paměť je rozdělena na segmenty stejné velikosti
- adresový prostor je rozdělen na stránky stejné velikosti
- stránkování neposkytuje zabezpečení jako segmentace

Segmentace

- SEGMENT = velikosti segmentů jsou určeny podle adresního prostoru vyžadovaného procesem
- segmenty paměti se mohou lišit velikostí (length)
- velikosti segmentů jsou určeny podle adresního prostoru vyžadovaného procesorem
- poskytuje zabezpečení spojené se segmenty

Reálný režim

- základní režim mikroprocesorů x86
- pracuje v něm BIOS (v minulosti MS-DOS)
- od Windows 3.0 běží v chráněném režimu
- Vlastnosti:
 - o segmentace paměti s 20 bitovou adresací
 - o nefunguje multitaskin

Adresace:

- určena dvěma registry (segmentový, offsetovy)
- fyzická adresa = součet hodnoty v segmentovém registru * 16 (posunoto a 4 bity doleva)
 a hodnoty offsetového registru
- výsledek může být až 21 bitové číslo

Chráněný režim

- speciální operační režim mikroprocesorů x86
- zajišťuj že proces nemůže zasahovat mimo svůj vymezený prostor

• Vlastnosti:

- o spolehlivý běh PC
- o podpora multitaskingu
- o spuštěné procesy se nemohou navzájem ovlivňovat
- o jádro OS má plnou kontrolu nad činností PC
- umožňuje procesu přidělit určitý úsek paměti a znemožnit zasahování mimo daný prostor = možnost multitaskingu
- umožňuje zajistit aby neprivilegované procesy nemohli měnit nastavení, která byla provedena v privilegovaném režimu
- podpora virtualizace paměti
- podpora virtualizace systému

Přerušení

- metoda pro asynchroní obsluhu událostí => procesor přeruší vykonávaní sledu instrukcí => vykoná obsluhu přerušení => pokračuje v předchozí činnosti
- Typy:
 - Vnější přerušení (Hardwarové přerušení)
 - přichází z I/O zařízení
 - jsou doručováná pomocí řadiče přerušení

Vnitřní přerušení

 vyvolává sám procesor, který tak signalizuje problémy při zpracování strojových instrukcí a umožňuje OS na tyto události nejvhodnějším způsobem zareagovat

Softwarové přerušení

- je speciální strojová instrukce
- tento typ přerušení je na rozdíl od druhých dvou typů synchronní
 - je tedy vyvoláno zcela záměrně umístěním příslušné strojové instrukce přímo do prováděného programu

18. POST, Multitasking a systém přerušení - průhěb POSTu, BIOS, UEFI, secure boot, druhy přerušení, druhy multitaskingu

POST

- Startovací sekvece počítače:
 - o po stisku tlačítka se odešle signál PSU (power suply unit) na základní desku (samé 1)
 - základní deska ho odešle zpět ve stejném tvaru
 - signál odesílá zdroj
 - začne fungovat čítač a časovač
 - o časovač pošle procesoru resetovací signál SYSRESET
 - FFFFOH je programovací kód POSTu
 - na této adrese se nachází příkaz skoku na BIOS
 - zakázána maskovatelná přerušení a procesor nepřijímá žádné příkazy
 - BIOS kontroluje sám sebe pomocí kontrolního součtu -> spustí se kontrola uložených dat na flash paměti a současně proběhne test součtu a čtení
 - o flash paměť napájená z baterie (na základní desce)
 - obsahuje základní konfiguraci PC a nastavení pomocí programu SETUP BIOS
 - procesor, paměť, graf. karta, zvuk. Karta, pevné disky
 - POST předá nashromážděné informace programu SETUP BIOS

- Ten veme uživatelem nastavená data a vyprodukuje soupis a předá OS
- nastaví registr CS = FFFFH
 - vynuluje ostatní registry
- o první adresa programu CS+IP= FFF0H
- CS = code segment
- IP = instruction pointer

UEFI

- podporuje secure boot
- nejde vyměnit procesor (není to jednoduché)
- ukončení zpětné kompatibility s 16bit. procesory
- umožňuje bootování z disků většího jak 2TB
- secure boot:
 - metoda, které umožňuje zajistit start PC s použitím pouze certifikovaných komponentů
 - o nutnost elektronického podpisu jádra systému
 - pro nepodepsané systémy, vyvinut vlastní UEFI, které obchází secure boot (linux Foundation)

Multitasking

Kooperativní

- vyžaduje aktivní účast běžících úloh (používáno ve W98 a Mac OS)
- každá úloha je povinná předat řízení zpět OS
- · výhody:
 - o jednoduchá implementace
- nevýhody:
 - o při každé naprogramované chybě se zastaví činnost celého sys.

Preemptivní

přidělování a odebírání procesoru jednotlivým úlohám zajišťuje OS

Systém přerušení

• vnitřní:

- o vyvolané procesem (stav Halt TF) důvod chyba nebo přehřátí
- o vyvolané programem uložení paměti do zásobníku a změna registru SP

vnější:

- o maskovatelné (Int; interact) při stisku klávesy, požadavek tiskárny
- nemaskovatelné (NMI; non maskable interupt) chyba paritního součtu, vyšší priorita než INT

19. Synchronizace procesů - kritická sekce, producent - konzument, čtenáři a písaři, 5 hladových filozofů

 Synchronizace procesů označuje situaci, kdy se více procesů má v určitém okamžíku sejít (tzv. handshake) kvůli vzájemné dohodě nebo společné akci

Kritická sekce

řeší problém výlučného přístupu kde sdílenému prostředku

- aby proces mohl provést součást kódu součástí kritické sekce, musí být v kritickém místě
- kdyby další proces chtěl vstoupit do kritické sekce, musí počkat, dokud pracující proces neopustí strážné místo (kritickou sekci)
- zajišťuje konzistenci dat ve všech časových intervalech

Producent-Konzument

- **Producent** = proces produkující data
- Konzument = proces, který data přijímá a dále zpracovává

• **Účel** = aby každý mohl pracovat jinou rychlostí (nezávisle na sobě)

Čtenáři a písaři

Pět hladových filozofů

- u kulatého stolu sedí 5 filozofů a každý potřebuje 2 hůlky aby se mohl najíst
- pokud nemá hůlku po pravé a levé ruce tak se nenají
- filozof jehož hůlku stále berou, zůstane hladový, nedostane se k jídlu
- tím dochází ke **stárnutí procesu**
- Řešení:
 - ubrat filozofa
 - přidat hůlku

20. Souborové systémy - vlastnostim omezení, druhy souborových systémů, žurnálování, kvóty

Souborové systémy

- určuje způsob organizace dat na části datového média (oddíl, partition)
- definuje soubory a metody pro jejich další čtení a úpravu
- eviduje metadata = typ souboru (přípona), kódování ID, pozice na HDD, datum úpravy, vzniku, jméno souboru, oprávnění, **atributy:**
 - A archive
 - S systém
 - o R restart
 - o H hidden
- hiearchicky organizuje soubory do složek (složka = adresář)
- vždy existuje kořenový adresář (root folder, např. C:)
- v jednom adresáři nesmít být dvě složky se stejným názvem
- omezení paměťového média
- velikost souboru
- počet zamořených podadresářů
- velikost prázdného souboru
- zakázané znaky: / " ? ! < >

Druhy souborových systémů

- Podle umístění:
 - lokální
 - síťové
 - databázové
- Podle OS:
 - **Unix** file system
 - **UFS** unix file system
 - \circ DOS
 - FAT 12

- FAT 16
- FAT 32

Windows

- FAT 32
- NTFS
- EXFAT

• Linux

- Ext 2 (vychází z UFS)
- Ext 3 (podporuje žurnálování, je zpetně kompatibilní s Ext 2)
- Ext 4 (podporuje online defragmentování)
- o OS X
 - MFS Mac File System (bez adresáře)
 - HFS podporuje adresáře
- Solaris
- Novel

Síťové souborové systémy

- SMB(Server Manager Block)
 - o d firmy IBM
 - o pracuje s tiskovýmy a souborovými serveremi v Linuxu CIFS
- Samba
 - o svobodná implementace SMB
- NFS(Network File System)
- CODA
 - o podpora offline provozu

Žurnálování

- předchází nekonzestinci dat na HDD
- do žurnálu se zapíše informace o budoucí změně
- změna se provede a následně se zapíše do žurnálu úspěšné provedení změny
- v případě neočekávaného restartu se můžeme vrátit

Druhy

- Write Back
 - o ukládá do žurnálu jen metadata, bez obsahuje souboru
- Žurnál
 - o ukládá jak metadata tak obsah souboru
- Ordered
 - ukládá jen metadata a označí záznam za zapsaný (po zkontrolování souboru)
 - (nejlepší)

Kvóta

- pomocí kvót můžeme omezovat uživatelům přístup ke zdroji
- Hranice velikosti
 - Hard limit
 - hranice velikosti pevného disku
 - Soft limit
 - překročitelná hranice
 - Grace period
 - počet dní než se ze soft limitu stane hard limit
 - Počet bloků
 - počet souborů, které můžeme nahrát

21. Struktura OS - jádro MS DOS, Linuxu, MS Windows, systémové proměné

22. Příkazy a práva OS - cd, dir, ls, chmod, echo, cat, touch, přístupová práva k souborům v Linuxu

- 23. Definuj pojem SŘBD druhy databází, databázové modely (3 vrstvý model, ERD), rozdělené databáze (uživatelská a programátorská část), práva a odpovědnost v databázích, operace s databázemi (rozdělení, kopie, replika,...) (aplikační software)
 - **Databáza** = ustálený soubor pojmů, technických prostředků a sofistikovaných metod sloužící k hromadnému zpracování dat
 - Báze dat = datové úložistě a technické prostředky pro uložení a uchování strukturovaných dat

SŘBD

- balík softwarového vybavení řídící bázi dat umožňující tvorbu informace
- rozhraní mezi daty a APS
- Zajišťuje:
 - Definici dat
 - Vytváření slovníku dat
 - o Manipulace s daty
 - Zajištění bezpečnosti a integrity dat
 - Zotavení po chybách
 - Souběžný přístup transakční zpracování
 - Zajištění co největší výkonnosti

Rozdělení databáze (uživatelská a programátorská část)

- **Kopie** = nezávislá na originálu
- **Replika** = závislá na originálu

Druhy databází

Předrelační

- souborové databáze (excel)
- síťové databáze
- stále se opakující podrobně popsané záznamy v jednotlivých souborech
- Výhody:
 - jednoduchost tvorby
- Nevýhody:
 - redundance dat
 - nebezpečí nekonzistence

- problém integrity dat
- bezpečnost dat
- o izolace dat

Relační

- soubor tabulek včetně jejich atributů a jejich vztahů
- Výhody:
 - o odstanění nevýhod předrelačních databází
- Nevýhody:
 - o složitější návrh
 - o nutnost existence SŘBD

Postrelační

- multidimenzionální databáze
- tabulka faktů a popis tabulek
- objektově orientované databáze
- · Výhody:
 - o možnost aplikace datových skladů
 - OLAP = online analytic processing
- Nevýhody:
 - složitost tvorby

Databázové modely

- **Model** = idealizovaná zjednodušený obraz reálného světa
- **Simulace** = dynamický model

3 vrstvová architektura

- 4 vrstvy:
 - o Reálný svět
 - stálé vlastnosti objektů

popisem je objekt

o Konceptuální úroveň

implemetačně nezávislé

slouží pro:

- chápání objektů prjektanty, managery a programátory
- zobrazení uživatelským pohledem a fyzickým uložením
- integrace uživatelských pohledů

Databázová (logika) vrstva

popis SŘBD a jeho přístupu k fyzickým datům

Fyzická vrstva

- popis souborů a způsobu uložení strukturovaných dat
- u každého modelu se obykle řeší komponenty:
 - strukturální
 - · manipulace dat
 - specifikace integritních omezení

Entitně relační diagram (ERD)

- nezabývá se samotnými záznamy, ale popisem jejich obecných dat
- obsah záznamů se používá jen jako příklad užití USE CASE pro analýzu dat

Konstrukty ERD

- Entita = objekt reálného světa, který je schopen nezávislé existence a je unikátní (člověk, stroj)
 - většinou vyjádřeno podst. jménem
- Vztah = vazba mezi min. dvěma entitama (př. jakou činnost člověk dělal)
 - vyjádřeno slovesem

24. DB pojmy - datový tok, normální formy, konstrukty relační databáze (včetně příkladů a jejich vlastností. definujte pojmy a použití číselníků a klíčů), datové typy, doba odezvy

25. Bezpečnostní politika - druhy, základní časti a pojmy, auditní postup

 Bezpečnostní politika = soubor zásad a pravidel, s jejichž pomocí organizace chrání svá aktiva

- Rozdělení v závislosti na počtu uživatelů, kritičnosti systému, interaktivitě práce:
 - o Promiskuitní
 - vše je povoleno (domácí PC)
 - Liberální
 - vše je povoleno kromě vypsaných vyjímek
 - Konzervativní
 - co je povoleno je výslovně uvedeno
 - Paranoidní
 - nikdo nic nesmí kromě přesně daných akcí

Certifikace

- proces ohodnocení, zkoušení, atestace, testování jakosti i způsobilosti autorizovaným subjektem
- **CA** = certifikační autorita = důvěryhodná instrukce

Role a autorita

- 1) Bezpečnostní rada
- 2) Bezpečnostní manažer
- 3) Bezpečnostní správce
- 4) Bezpečnostní auditor

Akreditace

• proces formálního uznání, že systím splňuje požadavky

Dozor

- kontrolní orgán, dodržování bezpečnostní politiky
- může být i externí

Monitorování a audit

- Nepřetržitý proces který:
 - kontroluje dodržování přijatých opatření
 - aktualizuje dokument
 - vyhodnocuje záznamy v auditních a logovacích souborech

Auditní postup

- 1) **Detekce** = zjištění události mající vliv
- 2) Rozlišení = určuje prioritu opatření, zapsání nebo spuštění poplachu
- 3) **Zpracování bezpečnostního poplachu** = vysvětlení a opatření událostí
- **4) Analýza** = posouzení v kontextu přechozího
- **5) Agregace** = součet, min, max
- 6) **Generování zprávy** = zpracování zprávy z auditních záznamů
- 7) **Archivace** = uchování záznamů o události a přijatých opatření

Evaluce

- periodické, pravidělné hodnocení IS (min. každé 3. roky)
- základ pro změnu BP

Řízení rizik

- procesy zabývající se identifikací, minimalizací, eliminací a řízením rizik
- **Riziko** = možnost, že se stane událost, která bude mít dopad na výsledek projektu, je to potenciální hrozba
- **Hrozba** = aktuální neodvratitelná akce s dopady

• Identifikace rizik

- o ohrožení životů, zdraví a životního prostředí
- komerřní a smluvní vztahy
- ekonomické okolnosti
- politické hrozby
- přírodní hrozby
- envirtomentální hrozby
- fyzické hrozby
- technické hrozby
- technologické hrozby

26. Risk managment - rozdělení rizik, metodiky hodnocení a řízení rizik

Rozdělení rizik (Identifikace)

- ohrožení životů, zdraví a životního prostředí
- komerřní a smluvní vztahy
- ekonomické okolnosti
- politické hrozby
- přírodní hrozby
- envirtomentální hrozby
- fyzické hrozby
- technické hrozby
- technologické hrozby

Metodiky hodnocení rizik (Klasifikace)

- Cena dopadu
- Pravděpodobnost výskytu
- Matice rizik

Mapa rizik

Metodiky rízení rizik (Analýzi rizik)

- Check List
 - o kontrolní seznam
- Analýza změn
 - o rozdíl mezi normální stavem a realitou příspívající k riziku
- What-if analýza
 - o co dělat když
- Strom událostí
 - o FTA
- HAZOP
 - Hazard & Operability study
- HACCP
 - $\circ \quad \text{Hazard Analysis \& Critical Points} \\$

27. Elektronický podpis (popis, použité funkce, získání, použití, omezení), certifikáty, zabezpečení dat před zneužitím a před ztrátou. Definujte a uveďte příklad využití redundace dat

- označení specifických dat, které v počítači nahrazují vlastnoruční podpis, ověřený podpis
- slouží k ověření totožnosti odesílatele v anonymním světe
- ověření el. podpisu zahrnuje kromě matematických operací i přenos důvery z důvěryhodné třetí strany na tvůrce podpisu a následně na důvěryhodnost elektricky podepsaného dokumentu
 - o Digitální certifikát
 - Síť důvěry

Vlastnosti elektronického podpisu

Autenticita

o lze ověřit identitu subjektu, kterému patří el. podpis pomocí přenosu důvery

Integrita

 lze prokázat, že od vytvoření el. podpisu nedošlo k žádné změně v podepsaném dokumentu, že není dokument poškozen

Nepopirnatelnost

o autor nemůže tvrdit, že el. podpis k dokumentu nevytvořil

Časové ukotvení

- el. podpis může obsahovat časové razítko, které prokazuje datum a čas podepsání dokumentu
- časové razítko vydává důvěryhodná třetí strana

Využití elektronického podpisu

- datová schránka
- podepisování faktur
- žádosti o dotace, soc. dávky
- komunikace se státní správou

Postup získání elektronického podpisu

- 1) vygenerování žádosti na PC a žádost odešleme
- 2) uložení např. na flash disk
- 3) CzechPoint či jiná cerifikovaná autorita
- 4) ověření totožnosti (občanský průkaz)
- 5) přehrání ověřeného klíče do PC
- 6) pravidelné obnovování (každý rok)

HASH funkce

- asymetrická a jednosměrná funkce
- stejný výstup dat jak vstup (otisk)
- z hashe je možné rekonstruovat původní text zprávy
- v praxi lze identifikovat právě jednu zprávu

Ochrana dat před ztrátou

- zálohování (zrcadlení disku)
- distrubuované báze dat (data uložena na více místech)
- centralizované báze dat (data uložene na jednom zabezpečeném místě)

Ochrana dat před zneužitím

- zníčení
- BP firmy
- hesla
- biometrické prvky

Redundance dat

- nadbytečnost dat, přenášení více symbolů než u optimálního kódu
- někdy je schálně (zabezpečující kódy)
- maximální redundance 100 % (opakování celé zprávy)

Datová schránka

- každá právnická osoba a dobrovolně zapojená fyzická osoba má svou vlastní datovou schránku
- el. úložiště zřízené státem roku 2009
- zabezpečená šifrofacím protokolem SSC
- možnost přihlášení (jméno, heslo, SMS)
- Využití:
 - o zabezpečení odesílání digitalizované pošty
 - o k nepopiratelnosti původu
 - o nepopiratelnost celistvosti
 - nepopiratelnost doručení

28. Biometrie - pojmy, druhy, hlediska hodnocení, možnosti využití

• **Biometrie** = identifikace, autorizace či autentizace biologické entity, rozpoznání

Rozdělení biometrie

- Statická = vzorek porovnávám v jednom časovém okamžiku
 - 1) rozpoznání obličeje
 - 2) otisk prstu
 - 3) oči
 - 4) dlaně
 - 5) krevní řečiště
 - 6) tvary orgánů
 - 7) podpis
 - 8) DNA
- Dynamická = na vzorkovaní je potřeba víc než jeden časový okamzík
 - 1) chůze
 - 2) psaní na klávesnici
 - 3) podpis
 - 4) dech

Hodnocení biometrií

- Cena
 - o z ceny vychází kvalita
 - o neoprávněné schválení promilé
 - o neoprávnění zamítnutí %
- Čas na zpracování
- Ergonomie
- Hygiena
- Anonymizace a pseudoanonymizace

29. Návrhové vzory - uveďte příklad a příklad využití minimálně 6 návrhovách vzorů. Uveďte a popište různé oblasti a druhy aplikace jednotlivých vzorů

30. Archetypy - uveďte příklad a využití minimálně 5 archetypů. Na grafech a příkladech vysvětlete vynaložené "úsilí" v závislosti na čase u jednotlivých archetypů