GoogLeNet

Cho Sung Man

Index

- Introduction
- Architecture
- Results

Introduction

Introduction

Introduction

Real Trade-Off Problem

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Sparse Layer & Dense Matrix

(b) Inception module with dimension reductions

Too Much Calculation.. So...

(a) Inception module, naïve version

NIN

(Network In Network)

Network In Network

Conv -> Pooling

(a) Linear convolution layer

Conv -> Mlp

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent concept.

Network In Network

Mlpconv Layer

Average Pooling

Parameter Reduction

Network In Network

AlexNet

Dimension Reductions

Dimension Reductions

So Easy Concept! It's ALL!

NO!

In Early Layer, No Inception!

To prevent Vanishing, There are 3 Soft-max!

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		$1\times1\times1024$	0	2	2 Laye	ers					
linear		1×1×1000	1							1000K	1 M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture.

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Table 2: Classification performance.

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

Table 3: GoogLeNet classification performance break down.

Team	Year	Place	mAP	external data	ensemble	approach
UvA-Euvision	2013	1st	22.6%	none	?	Fisher vectors
Deep Insight	2014	3rd	40.5%	ImageNet 1k	3	CNN
CUHK DeepID-Net	2014	2nd	40.7%	ImageNet 1k	?	CNN
GoogLeNet	2014	1st	43.9%	ImageNet 1k	6	CNN

Table 4: Comparison of detection performances. Unreported values are noted with question marks.

Team	mAP	Contextual model	Bounding box regression
Trimps- Soushen	31.6%	no	?
Berkeley Vision	34.5%	no	yes
UvA- Euvision	35.4%	?	?
CUHK DeepID- Net2	37.7%	no	?
GoogLeNet	38.02%	no	no
Deep Insight	40.2%	yes	yes

Table 5: Single model performance for detection.

Thank You!