Boston University CS 506 - Lance Galletti

DECISION RULE:IF P(Y=1 | X) > ½ THEN 1 ELSE 0

DECISION RULE:IF P(Y=1 | X) > ½ THEN 1 ELSE 0

$$\max \prod_{i=1}^{n} P(y_i|x_i) = \prod_{i} (\log it^{-1}(w^T x_i + b))^{y_i} (1 - \log it^{-1}(w^T x_i + b))^{1-y_i}$$

$$= \min -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\sigma(-w^T x_i + b)) + (1 - y_i) \log(1 - \sigma(-w^T x_i + b)) \right]$$

$$i=1$$
 n
 i

 $= \min \operatorname{Cost}(w, b)$

$$i=1$$
 n
 i

Gradient Descent

X ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

x ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

X ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

Recall, the **OR** function is linearly separable:

X ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	1

XOR
$$(x_1, x_2) =$$
OR $($ **AND** $(x_1 = 0, x_2 = 1),$ **AND** $(x_1 = 1, x_2 = 0))$
$$= (x_1 = 0 \land x_2 = 1) \lor (x_1 = 1 \land x_2 = 0)$$

x ₁	x ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

XOR(
$$x_1, x_2$$
) = **OR**(**AND**($x_1 = 0, x_2 = 1$), **AND**($x_1 = 1, x_2 = 0$))
= ($x_1 = 0 \land x_2 = 1$) \lor ($x_1 = 1 \land x_2 = 0$)
= $h_1 \lor h_2$

$$h_1 = AND(x_1 = 0, x_2 = 1)$$

$$h_2 = AND(x_1 = 1, x_2 = 0)$$

x ₁	\mathbf{x}_2	h ₁	h ₂	у
0	0	0	0	0
1	0	0	1	1
0	1	1	0	1
1	1	0	0	0

But, the **AND** function is also linearly separable:

X ₁	X ₂	у
0	0	0
1	0	0
0	1	0
1	1	1

Since we can learn h₁ and h₂ automatically through logistic regression

Since we can learn h₁ and h₂ automatically through logistic regression

$$h_1 = \sigma(w^{(1)}_{00} x_1 + w^{(1)}_{01} x_2 + b^{(1)}_1)$$

$$h_2 = \sigma(w_{10}^{(1)} x_1 + w_{11}^{(1)} x_2 + b_2^{(1)})$$

$$y = \sigma(w^{(2)}_0 h_1 + w^{(2)}_1 h_2 + b^{(2)}_1)$$

Input layer

Hidden layer

Output layer

It's all about learning features (created in the hidden layer(s)) automatically

We need to define:

- 1. How input flows through the network to get the output (forward propagation)
- 2. How the weights and biases gets updated (Backpropagation)

Neural Networks - Forward Propagation

Neural Networks - Forward Propagation

$$h_1 = \sigma(w^{(1)}_{00} x_1 + w^{(1)}_{01} x_2 + b^{(1)}_1)$$

$$h_2 = \sigma(w^{(1)}_{10} x_1 + w^{(1)}_{11} x_2 + b^{(1)}_2)$$

$$y = \sigma(w^{(2)}_0 h_1 + w^{(2)}_1 h_2 + b^{(2)}_1)$$

Using matrix notation:

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{00}^{(1)} & w_{01}^{(1)} \\ w_{10}^{(1)} & w_{11}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_{1}^{(1)} \\ b_{2}^{(1)} \end{bmatrix} \right)$$

$$y = \sigma(\begin{bmatrix} w_{00}^{(2)} \\ w_{01}^{(2)} \end{bmatrix}^{T} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} + b^{(2)})$$

Q: if all the weights and biases are initialized to 0, what will be the output of the network?

Recall in Logistic Regression

Decision Boundary is where

$$\sigma(wx+b) = \frac{1}{2}$$

which is exactly where

$$wx+b=0$$

Q: what happens if we don't have σ in the hidden layer here? What will the decision boundary look like? What will our features be?

If we don't, we just end up with normal logistic regression on x_1 and x_2 .

$$h_1 = w_{00}^{(1)} x_1 + w_{01}^{(1)} x_2 + b_{1}^{(1)}$$

$$h_2 = w_{10}^{(1)} x_1 + w_{11}^{(1)} x_2 + b_{2}^{(1)}$$

Then

$$y = \sigma(w^{(2)}_{0}h_{1} + w^{(2)}_{1}h_{2} + b^{(2)}_{1})$$

$$= \sigma(w^{(2)}_{0}(w^{(1)}_{00}x_{1} + w^{(1)}_{01}x_{2} + b^{(1)}_{1}) + w^{(2)}_{1}(w^{(1)}_{10}x_{1} + w^{(1)}_{11}x_{2} + b^{(1)}_{2}) + b^{(2)}_{1})$$

$$= \sigma(w_{1}x_{1} + w_{2}x_{2} + b_{2})$$

How do weights and biases get updated?

This is the same update from logistic regression except relative to the learned features **h**

Cost(w, b)

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i} + b)) \right]$$

$$\nabla \text{Cost}(w, b) = \left[\frac{\partial}{\partial w} \text{Cost}, \frac{\partial}{\partial b} \text{Cost} \right]$$

$$\frac{\partial}{\partial w} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} h_i (y_i - \sigma(-w^T h_i + b))$$

$$\frac{\partial}{\partial b} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} \sigma(-w^T h_i + b) - y_i$$

Using the chain rule:

$$\frac{\partial C}{\partial W^{(2)}} = \frac{\partial C}{\partial u^{(2)}} \frac{\partial u^{(2)}}{\partial W^{(2)}} \quad \text{where} \quad u^{(2)} = W^{(2)}h + b^{(2)}$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot h = \frac{1}{n} \sum_{i=1}^{n} h(y_i - \sigma(u^{(2)}))$$

$$h = \sigma(W^{(1)} X + b^{(1)})$$

Similarly:

$$\frac{\partial C}{\partial b^{(2)}} = \frac{\partial C}{\partial u^{(2)}} \frac{\partial u^{(2)}}{\partial b^{(2)}} = \frac{1}{n} \sum_{i=1}^{n} y_i - \sigma(u^{(2)})$$

So we can update $W^{(2)}$ and $b^{(2)}$ as follows:

$$\begin{bmatrix} W_{new}^{(2)} \\ b_{new}^{(2)} \end{bmatrix} = -\alpha \begin{bmatrix} \frac{\partial C}{\partial W^{(2)}} \\ \frac{\partial C}{\partial b^{(2)}} \end{bmatrix} + \begin{bmatrix} W^{(2)} \\ b^{(2)} \end{bmatrix}$$

So far this is identical to logistic regression. But how do we update $W^{(1)}$ and $b^{(1)}$

How do weights and biases get updated?

$$h_1 = \sigma(w_{00}^{(1)} x_1 + w_{01}^{(1)} x_2 + b_{1}^{(1)})$$

$$h_2 = \sigma(w_{10}^{(1)} x_1 + w_{11}^{(1)} x_2 + b_{2}^{(1)})$$

$$y = \sigma(w_{01}^{(2)} h_1 + w_{11}^{(2)} h_2 + b_{1}^{(2)})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i} + b)) \right]$$

Cost(w, b)

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i} + b)) \right]$$

Cost(w, b)

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}h_{i}) + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}h_{i}) + b)) \right]$$

$$h_{i} = \sigma(w^{(1)}_{i0} x_{1} + w^{(1)}_{i1} x_{2} + b^{(1)}_{i})$$

Using the chain rule:
$$\frac{\partial C}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} \quad \text{where} \quad u^{(1)} = w^{(1)}x + w^{(1)} \otimes b^{(1)}$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot \frac{\partial u^{(2)}}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)}) \cdot x$$

 $u^{(1)} = w^{(1)}x + b^{(1)}$ where $W^{(1)} & b^{(1)}$

WR)

 $w^{(1)}$

Similarly:

$$\frac{\partial C}{\partial b^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)})$$

Already computed

Backpropagation: update $W^{(1)}$ and $b^{(1)}$ without recomputing values that are computed when getting the gradients of the previously updated layer.

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Important Note:

$$\frac{\partial C}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial W^{(1)}} = \frac{\partial C}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} \quad \text{where} \quad u^{(1)} = w^{(1)}x + b^{(1)}$$

$$= \frac{\partial C}{\partial u^{(2)}} \cdot \frac{\partial u^{(2)}}{\partial h} \cdot \frac{\partial h}{\partial u^{(1)}} \cdot \frac{\partial u^{(1)}}{\partial W^{(1)}} = \frac{\partial C}{\partial u^{(2)}} \cdot W^{(2)} \cdot \sigma'(u^{(1)}) \cdot x$$

Depends on both data and weights Initializing all weights to zero then is not a good idea

The hope:

Image from 3b1b

The reality:

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

	Before	After
Trusted the bad model	10 out of 27	3 out of 27
Snow as a potential feature	12 out of 27	25 out of 27

Table 2: "Husky vs Wolf" experiment results.

Image from "Why Should I Trust You?": Explaining the Predictions of Any Classifier (2016)Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

The scary reality:

(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n

Figure 8. (a) FGM results; (b) Three discriminative features ρ , d and θ .

from "Automated Inference on Criminality using Face Images", Xiaolin Wu, Xi Zhang

According to this model, if you don't smile, you're a criminal

Neural Networks

Can do both **Classification** and **Regression**

Neural Networks - Tuning Parameters

- 1. Step size α
- 2. Number of BackPropagation iterations
- 3. Batch Size
- 4. Number of hidden layers
- 5. Size of each hidden layer
- 6. Activation function used in each layer
- 7. Cost function
- 8. Regularization (to avoid overfitting)

Activation Functions

Identity -> >

Sigmoid \rightarrow $\sigma(x)$

Tanh -> tanh(x)

ReLU -> $\max(0, x)$

Note: can use any function you want in order to introduce non-linearity. These are just the popular ones that have been shown to work in practice.

Tuning the activation function is equivalent to feature engineering.

Demo

Universal Approximation Theorem

Neural Networks - Challenges

- 1. High risk of overfitting as you're optimizing on the training set.
- 2. As the dimensionality of the input increases:
 - a. So does the number of weights
 - b. The gradients typically get smaller: Vanishing gradient problem
- 3. Doesn't do well for computer vision where the object of detection can be anywhere in the image
- 4. Doesn't handle sequences of inputs (i.e. providing context for data)

Neural Networks - Regularization

Two main ways:

1. Early termination of weight / bias updates

2. Dropout - kill neurons (by setting them to 0) randomly

Neural Networks

First: Normalize your data

https://medium.com/mlearning-ai/tuning-neural-networks-part-i-normalize-your-data-6821a28b2cd8

Neural Networks - Initialization Gotchas

Divide and conquer

https://medium.com/mlearning-ai/tuning-neural-networks-part-ii-considerations-for-initialization-4f82e525da69

Neural Networks - Activation Functions

https://medium.com/@gallettilance/tuning-neural-networks-part-iii-43dfd0c86 00f

Neural Networks - Auto Encoders

Given a 2 x 2 grid where each cell a_{ij} can take on one of two colors c_1 and c_2 , find a function that can identify the following diagonal pattern:

$$= c_2 = 1$$

That is, find **f** such that

We can define: \checkmark = 1 and × = 0

We can assign weights to each cell

w ₁	W ₂
W_3	W ₄

w ₁	W ₂	\Diamond	a ₀₀	a ₀₁	_
w_3	W ₄	\bigcirc	a ₁₀	a ₁₁	$= w_1 a_{00}$

W ₁	W ₂
W_3	W ₄

$$= w_1 a_{00} + w_2 a_{01}$$

$$= w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11}$$

We can assign weights to each cell

W ₁	W_2
W_3	W ₄

such that:

$$w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11} = b$$
 if diagonal pattern found

\mathbf{W}_1	l	W ₂	a ₀₀	a ₀₁
W ₃	3	W ₄	a ₁₀	a ₁₁

For example:

$$\begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

What value b do we get when applied to the diagonal pattern?

Any other pattern will have a value lower:

Equivalently we can decide to move the value b to the left of the equation in order for the weighted sum to reveal a diagonal pattern at 0:

$$w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11} + b = 0$$
 if diagonal pattern found

We could then find a function σ to apply to the result of this sum in order to get probabilities of being diagonal:

$$\sigma(w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11} + b) > \frac{1}{2} \text{ if } w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11} + b > 0$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

When σ is the logit⁻¹ (also called sigmoid) function, this is Logistic Regression.

So for each cell we're looking to learn a weight w_i that makes σ larger for diagonal patterns. The bias term b lets us account for systemic dimming or brightening of cells (i.e. when the data is not normalized).

.68

.99

Recall: Our network learns weights for each cell

W ₁	W ₂
W_3	W ₄

W ₁	W ₂	a ₀₀	a ₀₁	_
W ₃	W ₄	a ₁₀	a ₁₁	$= w_1 a_{00}$

W ₁	W ₂
W ₃	W ₄

$$= w_1 a_{00} + w_2 a_{01}$$

$$= w_1 a_{00} + w_2 a_{01} + w_3 a_{10} + w_4 a_{11}$$

/	×	

~	×	×

/	×	×
×		

✓	×	×
×	•	

/	×	×
X	✓	×

•	×	×
×	•	×
×		

Knowing this, what happens if we slide this filter across the larger diagonal?

✓	×	x
×	•	×
×	×	

Knowing this, what happens if we slide this filter across the larger diagonal?

✓	×	x
×	•	×
×	×	•

Creating such a filter allows us to:

- 1. Reduce the number of weights
- 2. Capture features all over the image

The process of applying a filter (or kernel) is called a convolution

To reduce the weights even further, another phase is done after convolution called Pooling:

Image from https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Main application: Computer vision

Recurrent Neural Networks

Handling sequences of input.

Intuition: What a word is / might be in a sentence is easier to figure out if you know the words around it.

Applications:

- 1. Predicting the next word
- 2. Translation
- 3. Speech Recognition
- 4. Video Tagging

Recurrent Neural Networks

Intro to Neural Networks

https://medium.com/@gallettilance/list/introducing-neural-networks-d74f0dc2 5400

EXTRA

Logistic Regression Revisited

Given a 2 x 2 grid where each cell a_{ij} can take on one of two colors c_1 and c_2 , find a function that can identify the following diagonal pattern:

$$= c_2 = 1$$

Let's apply this to our diagonal problem to find the weights and bias for logistic regression.

Assume we have the following dataset:

 $[0\ 1\ 1\ 0]^{\mathsf{T}}$

Recall:

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[yi \log(\sigma(-w^{T}x_{i} + b)) + (1 - y_{i}) \log(1 - \sigma(-w^{T}x_{i} + b)) \right]$$

We need to compute $\nabla \text{Cost}(w, b)$:

$$\nabla \text{Cost}(w, b) = \left[\frac{\partial}{\partial w} \text{Cost}, \frac{\partial}{\partial b} \text{Cost} \right]$$

$$\frac{\partial}{\partial w} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \sigma(-w^T x_i + b))$$

$$\frac{\partial}{\partial b} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} \sigma(-w^T x_i + b) - y_i$$

1. Start with random w and b:

$$W = [0 \ 0 \ 0 \ 0]^T, b = 0$$

Note: $\sigma(0) = 0.5$

$$-\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\sigma(-w^T x_i + b)) + (1 - y_i) \log(1 - \sigma(-w^T x_i + b)) \right]$$

2. Compute the Cost(w, b)

 $Cost([0\ 0\ 0\ 0]^T,\ 0) = -1\ log(\sigma(0)) = -log(0.5)$

$$\frac{\partial}{\partial w} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \sigma(-w^T x_i + b))$$

3. Compute the gradient ∇ Cost at (w, b)

$$\frac{\partial}{\partial w} \text{Cost} = \frac{1}{1} \sum_{i=1}^{1} \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} (1 - \sigma(0)) = \begin{bmatrix} 0\\1/2\\1/2\\0 \end{bmatrix}$$

Recall we only have one data point

$$\frac{\partial}{\partial b} \text{Cost} = \frac{1}{n} \sum_{i=1}^{n} \sigma(-w^T x_i + b) - y_i$$

3. Compute the gradient ∇ Cost at (w, b)

$$\frac{\partial}{\partial b} \text{Cost} = \frac{1}{1} \sum_{i=1}^{1} (\sigma(0) - 1) = -\frac{1}{2}$$

Recall we only have one data point

4. Adjust w & b by taking α steps in the direction of $\neg \nabla \mathsf{Cost}_{(\mathsf{w}, \mathsf{b})}$

$$w_{\text{new}} = -\alpha \begin{vmatrix} 0 \\ 1/2 \\ 1/2 \\ 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ -\alpha/2 \\ -\alpha/2 \end{vmatrix}$$
 $b_{\text{new}} = \alpha \frac{1}{2} + 0 = \frac{\alpha}{2}$

5. Compute the updated Cost

$$\operatorname{Cost}\left(\begin{bmatrix} 0\\ -\alpha/2\\ -\alpha/2\\ 0 \end{bmatrix}, \frac{\alpha}{2}\right) = -\log(\sigma(\alpha + \frac{1}{2}))$$

For what values of α is the Cost reduced?