AQUÁRIO VIRTUAL Simulador de ecossistema utilizando Interface de Usuário Tangível

Aluno(a): Flávio Omar Losada

Orientador: prof. Dalton S. dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Requisitos e Especificação
- Implementação
- Operacionalidade
- Resultados
- Conclusões

Introdução

- Tecnologia na educação
 - Tecnologia mais presente no cotidiano
 - Interesse e curiosidade
- Interface de Usuário Tangível IUT
 - Conectar ambiente real e virtual
 - Possibilidade de instigar tato, audição e visão
- Simuladores
 - Dinamismo
 - Motivação e comparação ao mundo real

Introdução

Aquário

- Possui um ecossistema
- Possui um ciclo de vida
- Possui dinamismo (necessidade de manter o equilíbrio do ecossistema)

Objetivos

- Construir um simulador de ecossistema baseado aquário, utilizando recursos de IUT
 - Aprimorar aquário virtual desenvolvido em Unity
 - Interações do usuários e comportamentos reativos
 - Desenvolver kit de IUT com sensores e atuadores
 - Facilitar a comunicação entre o simulador e o kit IUT
 - Mudanças dinâmicas, instigando percepção e reação por meio das interações com o simulador

Fundamentação Teórica

• INTERFACE DE USUÁRIO TANGÍVEL:

- Interagir com o ambiente virtual a partir de ações no ambiente real
- Ambiente palpável para interação com a máquina
- Instiga sentidos do corpo humano (tato, audição, visão)

Fundamentação Teórica

SIMULADORES NA EDUCAÇÃO:

- Aprendizado de forma dinâmica
- Simulação de ambiente real associação com atividades já conhecidas
- Entretenimento no ensino

Fundamentação Teórica

• COMPONENTES ELETRÔNICOS:

- Módulo NodeMCU e microcontrolador ESP8266
- Sensores e atuadores: Sensor de luz, botão, potenciômetro
- Interface de Usuário Tangível

- Aquário Virtual: Simulador de ecossistema utilizando Animação Comportamental. Piske (2015)
 - Simulador de ecossistema; Animação comportamental;
 Dinamismo
- TaPrEC: Tangible Programming Environment for Children. Carbajal e Baranauskas (2015)
 - Interface de Usuário Tangível; Ensino de programação;
 Componentes eletrônicos
- Nintendo Labo: Variety Kit. Nintendo (2019)
 - Interface de Usuário Tangível; Do It Yourself

Aquário Virtual (PISKE, 2015)

TaPrEC.
 (CARBAJAL;
 BARANAUSKAS,
 2015)

Bloco de inicio, bloco de ação e bloco de fim

Blocos de controle

Blocos de deslocamento

Blocos para funções

Blocos para repetições

Blocos de números

Nintendo Labo. (NINTENDO, 2019)

Requisitos

- Os principais requisitos funcionais e não funcionais são:
 - possuir sensores e atuadores para interação com o aquário virtual (Requisito Funcional - RF)
 - possuir um aquário virtual disponibilizado em forma de jogo para plataforma móvel (smartphones e tablets) (RF)
 - permitir que o usuário altere configurações do aquário virtual a partir dos atuadores e sensores (RF)
 - conter um módulo de controle responsável pelos atuadores e sensores (Requisito Não Funcional -RNF)

Especificação

- Módulo IUT Interface de Usuário Tangível
- Comunicação
- Simulador

Módulo IUT

- A) Módulo NodeMCU
- B) Botão (push-button)
- C) LEDs indicação
- D) Potenciômetro
- E) Sensor de luz
- F) Fonte de energia

Comunicação

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

Comunicação

Simulador

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

Simulador

Implementação - Comunicação

- Estratégias para comunicação
 - Utilização do protocolo Multicast
 - Token de Identificação
 - Socket TCP
 - Exemplo de mensagem:

Implementação - Simulador

- Balanceamento do Aquário Virtual
 - Definição de valor mínimo e máximo de temperatura aceitável
 - Definição de valor mínimo e máximo de luminosidade
 - Cálculos para redução da saúde dos peixes
 - Quanto maior a diferença, maior a redução

Implementação - Simulador

```
private void atualizaCoeficienteReducaoSaude() {
   float coeficienteTemperatura = 0;
   float coeficienteLuminosidade = 0;
   float multiplicadorTemp = 0.3;
   float multiplicadorLuz = 0.2;
   if (tempAquario > tempMaxSuportada) {
      coeficienteTemperatura = (tempAquario - tempMaxSuportada) * multiplicadorTemp;
   } else if (tempAquario < tempMinSuportada) {
      coeficienteTemperatura = (tempMinSuportada - tempAquario) * multiplicadorTemp;
   }
   if (luzAquario > luzMaxSuportada) {
      coeficienteLuminosidade = (luzAquario - luzMaxSuportada) * multiplicadorLuz;
   } else if (luzAquario < luzMinSuportada) {
      coeficienteLuminosidade = (luzMinSuportada - luzAquario) * multiplicadorLuz;
   }
   coeficienteReducaoSaude = coeficienteTemperatura + coeficienteLuminosidade;
}</pre>
```


TecEdu - tecedu.inf.furb.br

Simulador

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

Aquário Virtual

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

- Porque utilizar ESP8266?
 - Custo
 - Compatibilidade com Arduino
 - Bibliotecas (AsyncUDP)

- Porque utilizar Socket TCP?
 - Troca de mensagens simples
 - Não há necessidade de dois servidores
 - Maior controle da conexão comparado ao UDP

- Testes efetuados
 - Turma da disciplina de Dispositivos Móveis
 - Aplicação de questionário
 - Respostas com avaliação de 1 a 5

Pergunta

Resposta

Você conseguiu concluir os objetivos dessa pesquisa com facilidade?

100% responderam 5

Quantas tarefas você concluiu sem nenhum auxílio externo?

88,9% responderam 5 11,1% responderam 4

Como você classifica a experiência de utilizar um equipamento de Interface de Usuário Tangível?

77,8% responderam 5 22,2% responderam 4

Como você classifica a usabilidade do Aquário Virtual?

44,4% responderam 5 55,6% responderam 4

Pergunta

Você acha que o Aquário Virtual cumpriu seu objetivo de desenvolver um simulador de ecossistemas utilizando Interface de Usuário Tangível?

Resposta

100% responderam 5

Opiniões/Sugestões

Seria interessante uma legenda indicando a barra de temperatura. A barra verde que indica a temperatura ideal não está totalmente claro.

Melhorar o menu inicial.

Muito bem implementado, único possível ponto de melhoria seria o aumento da complexidade do meio e das interações.

Trabalhos Caracterís- ticas	Aquário Virtual (PISKE, 2015)	TaPrEC (CARBAJAL; BARANAUSK AS, 2015)	Nintendo Labo (NINTENDO, 2019)	Aquário Virtual – Projeto Atual
Interface de Usuário Tangível	Não	Sim	Sim	Sim
Dinâmico	Sim	Não	Sim	Sim
Equipamentos necessários	Computador pessoal ou Notebook	Raspberry Pi, teclado, mouse	Nintendo Switch, papelão	Tablet, Kit Interface Usuário Tangível
Ambiente educacional	Sim	Sim	Não	Sim

Conclusões e Sugestões

- Objetivos atingidos
 - Dinamismo do simulador
 - Utilização da ferramenta Unity3D
 - Construção do kit de IUT Interface de Usuário Tangível
 - Disponibilidade de reutilização das classes de comunicação

Conclusões e Sugestões

Sugestões

- incluir atuadores e sensores no módulo IUT (sensor de temperatura, sensor de proximidade)
- inteligência artificial para o comportamento dos peixes, baseando-se no trabalho de Piske (2015)
- trabalhar com os sensores do próprio dispositivo móvel (toque na tela e temperatura obtida pela localidade)
- trabalhar o ecossistema incluindo novas variações (poluição)
- entender as espécies de peixes para trabalhar as propriedades de cada um de forma individual (temperatura suportada, luminosidade)
- morte dos peixes por tempo e geração de novos peixes, por reprodução;
- recurso de som do dispositivo móvel
- experiência de usuário, indicação das informações em tela

Apresentação Prática

