Stopping Criterian

• Objective function Stops changing significantly $\left| f(x^{(u)}) - f(x^{(u)}) \right| \leq \varepsilon \quad \text{for } \varepsilon \text{ small}$

6.8.1 E= 10.8

. Iterates Stop Changing Significantly

//x(w) - x(k-1)// = & for & Smill

· Finction gradient evaluated at the iteration becomes

1 77 (c/s) / < E for & Small

Descent Optimization Methods

Lowlow two296 so bearingt 2: bookson roikos: initgo ra

 $\chi(u) = \chi^{*}$. $\chi(x^{(u+1)}) \sim \chi(x^{(u+1)}) \sim \chi(x$

when we initialize at x(0)

All iterates x (2) for a descent mothed Stay with

the Set

0 (., 0 , 00) {

We will from on all continuously differentiable functions

@ Make use of Taylor's theorem

Since & E C', we have that

 $2(z) = 2(x) + \nabla^2(x)(z-x) + h(x)||z-x||$

where h(x) - 0 as z -> x faster than 1/2-x1/2

\$(z) = \$(x) + Y\$(x) (z-x) + 0(11z-x112)

-(24E)

e. 9; 3(n) = n $||x-x||_2$ 8(N) = 0(U_5) x = x $Z = X = X + t \Delta X$ & (x(n)) = &(x(n) + D&(x(n)) + O(||t(n) Dx(n)||2) = 2(xm) + fm) 4 f(xm) T DX + o(fm) || Dx (m) ||2) (llens you) of the fall 2(x(un)) = 2(x(u)) + tu) 72(x(u)) 1x 8(x((1))) 2 & (x((1)) ⇒ ¬ f(x(u)) T Dx < 0
</p> $\iff \left[- \forall 2(x^{(u)}) \right]^{1} \Delta x^{(v)} > 0$ Dx 18 a descent it and only if It makes an acute angle with $-72(x^{(m)})$

In particular, $\Delta x = -\nabla \xi(x^{(u)})$ is a descent In a desent method, the optimization method might not be able to reduce function value further when $\Delta \mathcal{E}(x_{(p)}) = 0$ Strict use of a descent wethod mens that any x for which $\nabla f(x^{(u)}) \geq 0$ is a fixed bant of the method. Any x Edim & For which $\nabla f(x) = 0$ is called a stationary point of f. 6499 = 839918 = 839Ceneral form of deseast direction Da is a descent direction when $\Delta x = -B \nabla x(x) - x$ where $B(x) = -B \nabla x(x) - x$ where $B(x) = -B \nabla x(x) - x$ where $B(x) = -B \nabla x(x) - x$

Descent mathods => x = x - t B T P(x) [-28(m)] Dx(m) $= - \Delta \delta(x_{(a)})^{\perp} \left(- \beta_{(a)} \Delta \delta(x_{(a)}) \right)$ 77(x) 7 (x) 77(x(v)) >0 D/C B(W) is PD. Based on the Choice of B; we have different names for descent mothods. O Crodient descent: B(e) = I $\chi = \chi(x) - \chi(x) + \chi(x)$ leation 2 notwold (3) B = Hessian motors at 20 = 72(x(v)) Hessian matrix => matrix of second-order portral · seritorines. S Another type is alled Quasi- Newton wethod, in which Ben is built from TR(xen), but is munt

in replicy Ban is prest from Larger of ing the standing of the
3) Steepest descent Bu is chosen based on the geometry Ef the function.
Issue: The previous analysis quanantees a descent direction,
Can un use descent mothede with a larger step size? Sure an, but we need to assume additional regularity on the sunction.
C'(R') =
$C \subseteq C$
The Gradients TP(x) of P(x) are called L-Lipschitz continous it and only if
$ \nabla \mathcal{Z}(x) - \nabla \mathcal{Z}(y) _{2} \leq $

