Consigne simple, basique. Calculer les limites des suites suivantes : $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{$

1. $(a_n)_{n \in \mathbb{N}^*}$ avec $a_n =$	$(3-\sqrt{n})\left(-3+\frac{1}{n}\right)$	2. $(b_n)_{n\in\mathbb{N}^*}$ définie par : $b_n = \frac{\sin x}{x}$	$\frac{(n)+3}{n^2}.$

s. $(c_n)_{n\in\mathbb{N}}$ definie par : $c_n=4^n+(-1)^n$	4. $(d_n)_{n\in\mathbb{N}}$ definie par : $d_n = \cos(n^2) - n^2$.	

5.	$(e_n)_{n\in\mathbb{N}}$ définie par : $e_n=\frac{7^n}{6^n}$	6. $(f_n)_{n\in\mathbb{N}}$ définie par : $f_n = 0, 9^n \cos(n+1)$.

7.	$(g_n)_{n\in\mathbb{N}}$ définie par : $g_n = \frac{2n+1}{3n^2+6n+1}$	8. $(h_n)_{n\in\mathbb{N}}$ définie par : $h_n = \frac{-2n^2 + 1}{n^2 + 5n + 4}$.