Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ"

Отчёт по лабораторной работе 6

Компьютерная графика

Тема:

"МНОГОСЛОЙНЫЙ ПЕРЦЕПТРОН"

Работу выполнил: Кутдусов Р. К.

Группа: А-13а-19

Вариант: 10

Лектор дисциплины: Бартеньев О. В.

1. Постановка задачи.

Дополнить полученную программу следующим образом:

- 1. Предусмотреть загрузку и классификацию EMNIST (MNIST остается). Загрузка выполняется из полученных бинарных файлов.
- 2. Предусмотреть использование слоя Reshape вместо слоя Flatten.
- 3. Предусмотреть отказ от слоев Reshape и Flatten.
- 4. Вывод изображений цифр и букв снабдить заголовками (см. рис.).
- 5. Добавить слой Dropout.

Создать, используя методы противодействия переобучению, нейронную сеть (НС) со сверточными слоями.

Обучить HC для классификации примеров набора данных, объединяющего MNIST и EMNIST (36 классов).

2. Описание наборов данных.

- MNIST 70'000 рукописных цифр; из них 60'000 входят в обучающую выборку, а 10'000 в тестовую; размер каждого образа 28*28 пикселей; рисунки выполнены в оттенках серого цвета;
- EMNIST-letters 145'600 рукописных букв английского алфавита; из них 124'800 входят в обучающую выборку, а 20'800 в тестовую; размер каждого образа 28*28 пикселей; рисунки выполнены в оттенках серого цвета.
- 3. Примеры изображений наборов с указанием имени класса над изображением.

MNIST:

EMNIST:

4. Описание слоев исходной нейронной сети.

Model: "MNIST"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28, 28)]	0
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 32)	25120
dense_1 (Dense)	(None, 10)	330

Total params: 25,450 Trainable params: 25,450 Non-trainable params: 0

Model: "EMNIST"

Layer (type)	Output Shape	Param # 0	
input_1 (InputLayer)	[(None, 28, 28)]		
flatten (Flatten)	(None, 784)	0	
dense (Dense)	(None, 32)	25120	
dense_1 (Dense)	(None, 26)	858	
Total params: 25,978 Trainable params: 25,978 Non-trainable params: 0			

Model: "MNIST+EMNIST"

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	[(None, 28, 28, 1)]	0	
flatten (Flatten)	(None, 784)	0	
dense (Dense)	(None, 32)	25120	
dense_1 (Dense)	(None, 36)	1188	

Total params: 26,308 Trainable params: 26,308 Non-trainable params: 0

> 5. Таблица с результатами использованных вариантов НС (EMNIST и MNIST+EMNIST)

Набор	Символьное описание НС	Имя оптимиза тора	Имя функции потерь	Число эпох	Размер обучающе го пакета	Время обучения	Точность на обучающем множестве	Точность на оценочном множестве
EMNIST	I(28, 28)-F- DR32-DS26	Adam	MSE	20	128	59.46 с	84.79 %	82.48 %
EMNIST	I(28, 28)- RS(784)- DR256-0.5- DS26	Adam	MSE	30	128	195.13 c	87.86 %	90 %
EMNIST	I(28, 28)- RS(784)- DR256-0.3- DS26	Adam	MSE	25	128	161.63 c	91.05 %	90.7 %
EMNIST	I(28, 28)- RS(784)- DR256-0.15- DS26	Adam	MSE	35	128	225.65 c	93.79 %	91.12 %
MNIST + EMNIST	I(28, 28, 1)-F- DR32-DS36	Adam	CCE	20	128	48.65 c	84.55 %	83.55 %
MNIST + EMNIST	CR32_3*3- MP_2*2- RS(6272)- DR256-DS36	Adam	CCE	5	256	929.49 c	95.33 %	93.48 %
MNIST + EMNIST	CR32_3*3- MP_2*2- RS(6272)- DR256-0.5- DS36	Adam	CCE	5	256	956.9 с	91.14 %	93.79 %

MNIST +	CR32_3*3-	Adam	CCE	5	256	1652.98 с	96.04 %	94.86 %
EMNIST	MP_2*2-							
	CR64_3*3-							
	MP_2*2-F-							
	DR256-DS36							

6. Графики обучения лучшего и худшего по точности на оценочном множестве варианта нейронной сети.

EMNIST

Худший:

Лучший:

MNIST + EMNIST

Худший:

Потери и точность

Лучший:

Потери и точность

7. Примеры ошибочно классифицированных изображений.

Формат: {что распознала обученная сеть} | {корректное значение}

EMNIST:

MNIST + EMNIST:

Для цифр: 0 – 'A' 1 – 'B' ... 8 – 'I' 9 – 'J'

8. Точность по классам (на оценочном множестве набора).

EMNIST:

A 91.5	N 93.125
B 93.0	O 96.5
C 94.125	P 96.375
D 90.875	Q 82.125
E 94.125	R 93.875
F 92.375	S 95.125
G 72.875	T 94.25
H 92.0	U 91.5
I 72.625	V 93.375
J 91.75	W 95.875
K 92.375	X 93.25
L 76.25	Y 94.0
M 96.125	Z 96.0

MNIST + EMNIST:

0 98.3	F 96.625
1 98.5	G 86.625
2 97.4	H 93.75
3 98.3	I 85.0
4 98.6	J 94.375
5 99.2	K 93.25
6 99.1	L 64.125
7 99.9	M 97.125
8 99.6	N 97.25
9 98.9	O 98.25
A 93.125	P 96.5
B 95.375	Q 79.125
C 97.75	R 95.375
D 92.875	S 96.875
E 91.125	T 97.75

U 90.75 V 95.375 W 98.625 X 95.625 Y 96.375 Z 98.5