Exercici 6.

- (a) Siguin $a, m, n \in \mathbb{N}$ i $n \neq m$. Calculeu $\operatorname{mcd}(a^{2^m} + 1, a^{2^n} + 1)$
- (b) Siguin $m, n \in \mathbb{N}$ i $d := \operatorname{mcd}(m, n)$. Demostreu que $\operatorname{mcd}(2^m 1, 2^n 1) = 2^d 1$

Solució 8.

(a) Siguin $a, m, n \in \mathbb{N}$ i $n \neq m$. Calculeu $mcd(a^{2^m} + 1, a^{2^n} + 1)$

Lema: Sigui a,b,d $\in \mathbb{N}$ i d|a i d|b i $a > b \Rightarrow d|a - b$

Sigui $a=d\times m$ on $m\in\mathbb{N}$ i $b=d\times n$ on $n\in\mathbb{N}$, com a>b tenim què m>n $\Rightarrow a-b=d(m-n)$ on $(m-n)\in\mathbb{N}$

DEMOSTRACIÓ DE L'ENUNCIAT:

Sigui $p \in \mathbb{N}$ tal què $p|(a^{2^m}+1)$, aplicant l'algorisme de la divisió $a^{2^m}+1=p\times c+r$ on c és el quocient i r és el residu que serà $0 \Rightarrow a^{2^m}+1=p\times c+0 \Leftrightarrow a^{2^m}=p\times c-1 \Rightarrow a^{2^m}\equiv -1 \pmod{p}$

Sense perdre la generalitat podem suposar què n>m, ja què si és al revés es poden intercambiar els termes d'ordre.

Per tant, (n-m) > 0

Agafant l'expresió $a^{2^m} \equiv -1 \pmod{p}$

- $\Rightarrow (a^{2^m})^{2^{n-m}} \equiv (-1)^{2^{n-m}} \pmod{p}$, entrem l'exponent multiplicant
- $\Rightarrow (a^{2^m \times 2^{n-m}}) \equiv (-1)^{2^{n-m}},$ sumem els exponenets i 2^{n-m} és un nombre parell
- $\Rightarrow a^{2^n} \equiv 1 \pmod{p} \Rightarrow a^{2^n} = p \times c + 1 \Leftrightarrow a^{2^n} 1 = p \times c + 0 \Rightarrow p|a^{2^n} 1$
- \Rightarrow p divideix a $a^{2^n} 1$

Ara bé, si p també divideix a $a^{2^n} + 1$, aplicant el lema p també dividirà a $(a^{2^n} + 1) - (a^{2^n} - 1)$. Per tant:

$$p|((a^{2^n}+1)-(a^{2^n}-1))\Rightarrow p|(a^{2^n}+1-a^{2^n}+1)\Rightarrow p|2\Rightarrow p=1 \text{ o } p=2$$

Estudiem els casos:

- 1. Si a és parell $\forall x \in \mathbb{N}, a^{2^x}$ serà parell. Per tant $a^{2^n}+1$ i $a^{2^m}+1$ seràn imparell $\Rightarrow \text{mcd}(a^{2^m}+1,a^{2^n}+1)=1$
- 2. Si a és imparell $\forall x \in \mathbb{N}, a^{2^x}$ serà imparell. Per tant $a^{2^n}+1$ i $a^{2^m}+1$ seràn parells $\Rightarrow \text{mcd}(a^{2^m}+1,a^{2^n}+1)=2$