REDHOTELERA

Axel Kalid Lopéz Miguel
Jessica Sofia Bartolo Atanasio
Brenda Anahi Balanzar Lopéz
Zabdi Berenica Barragan Garcia

Ficha Técnica: Cableado Estructurado

1. Componentes Principales:

- Cableado Horizontal:
 - o Conecta los dispositivos de trabajo (PCs, impresoras, etc.) con los puntos de distribución.
 - o Puede ser en categoría 5e, 6, 6a, 7, dependiendo de la velocidad y capacidad de la red.
- Cableado Vertical (Backbone):
 - Conecta los diferentes armarios de telecomunicaciones entre sí (por ejemplo, desde el rack principal hasta los pisos).
 - Generalmente se usan cables de mayor capacidad, como los de categoría 6a, 7, o fibra óptica.
- Conectores:
 - o RJ45: Para cables de cobre (Cat 5e, 6, 6a, 7).
 - o SC, LC, ST: Para conexiones de fibra óptica.
- Paneles de conexión (Patch Panels):
 - o Organizan las conexiones de los cables de forma ordenada y accesible.
- Tomas de usuario (Conectores de pared):
 - o Se instalan en las paredes para permitir la conexión de dispositivos finales a la red.
- Armarios o racks:
 - Utilizados para alojar equipos activos y pasivos de telecomunicaciones (routers, switches, servidores, etc.).

2. Normas y Estándares:

- TIA/EIA 568: Estándares de cableado para redes comerciales.
 - o TIA/EIA 568A y TIA/EIA 568B son las dos configuraciones principales de cableado para cables UTP (Unshielded Twisted Pair).
- ISO/IEC 11801: Norma internacional para sistemas de cableado estructurado.
- IEEE 802.3: Estándar para Ethernet (incluye 10BASE-T, 100BASE-TX, 1000BASE-T, etc.).
- IEC 61156: Especificaciones para cables de telecomunicaciones.

3. Tipos de Cables:

- UTP (Unshielded Twisted Pair): Cables sin blindaje, utilizados para distancias cortas (hasta 100m en redes Ethernet).
 - o Ejemplo: Cable Cat 5e, 6, 6a.
- STP (Shielded Twisted Pair): Cables apantallados que ofrecen mayor protección contra interferencias electromagnéticas.
- Fiber Optic (Fibra Óptica): Utilizada en enlaces de mayor distancia o donde se requiere mayor ancho de banda. Se utiliza principalmente en el cableado backbone.

4. Categorías de Cables de Par Trenzado (UTP/STP):

- Cat 5e: Hasta 100 Mbps, distancia máxima de 100m.
- Cat 6: Hasta 1 Gbps, distancia máxima de 100m.
- Cat 6a: Hasta 10 Gbps, distancia máxima de 100m.
- Cat 7: Hasta 10 Gbps, distancia máxima de 100m, apantallado.

5. Velocidades de Transmisión:

- 100BASE-TX: 100 Mbps (utiliza Cat 5e o superior).
- 1000BASE-T (Gigabit Ethernet): 1 Gbps (requiere Cat 5e o superior).
- 10GBASE-T (10 Gigabit Ethernet): 10 Gbps (requiere Cat 6a o superior).

6. Especificaciones de Instalación:

- Distancia Máxima:
 - Para cables UTP/STP, la distancia recomendada es de 100 metros para un rendimiento óptimo.
 - Para fibra óptica, la distancia puede superar los 500 metros dependiendo del tipo de fibra (monomodo o multimodo).
- Radio de Curvatura:
 - o **No debe ser inferior a** 4 veces el diámetro del cable.
- Separación de cables de alimentación: Se recomienda una distancia mínima de 15 cm entre cables de energía eléctrica y cables de red.

Ficha Técnica: Teléfono IP

- 1. Generalidades
 - Modelo: Depende de la marca y modelo (Ej. Cisco 8800, Yealink T54W, Grandstream GXP2170, etc.).
 - Tipo de dispositivo: Teléfono de escritorio IP
 - Tecnología: Protocolo VoIP (Voice over IP)
 - Protocolos compatibles: SIP (Session Initiation Protocol), H.323 (dependiendo del modelo), IAX, etc.
- 2. Especificaciones Técnicas
 - Pantalla:
 - o Tamaño de pantalla: 2.5" a 7" (depende del modelo).
 - o Resolución: 240x320 píxeles (en algunos modelos puede ser más alta).
 - o Tipo de pantalla: LCD o TFT a color.
 - o Características adicionales: Pantalla táctil en modelos avanzados.
 - Audio:
 - Codificadores soportados:
 - G.711 (alaw, ulaw), G.729, G.723, G.722 (alta definición), Opus.
 - o Ancho de banda: Puede variar según el códec utilizado, de 64 kbps a 8 kbps por llamada.
 - o Atenuación de ruido: Reducción activa de ruido (dependiendo del modelo).
 - o Ecualización acústica: Sí, en modelos avanzados.
 - o Soporte para auriculares: Entrada RJ9 o Bluetooth (si es compatible).
 - Conectividad:
 - Puertos Ethernet:
 - Al menos 1 puerto 10/100/1000 Mbps (Gigabit Ethernet).
 - En algunos modelos, varios puertos Ethernet para conectar otros dispositivos (puertos daisy-chain).
 - o Wi-Fi: Integración opcional, dependiendo del modelo (Wi-Fi 802.11a/b/g/n/ac).

• PoE (Power over Ethernet): Compatible con IEEE 802.3af o IEEE 802.3at (dependiendo del modelo).

3. Características de Funcionalidad

- Soporte de múltiples líneas:
 - o Generalmente soporta entre 2 y 16 cuentas SIP (dependiendo del modelo).
 - Gestión de múltiples llamadas y conferencias.
- Marcación rápida y directorios:
 - o Marcación de uno a un contacto preconfigurado.
 - o Directorio telefónico local y remoto (LDAP o de servidor).
- Conferencia de audio: Soporte para llamadas en conferencia de múltiples participantes.
- Transferencia de llamadas: Transferencias de llamadas directas o asistidas (con consulta previa).
- Desvío de llamadas: Opciones de desvío hacia otro número.
- Música en espera: Soporte para música en espera configurable.
- Redirección de llamadas: Permite redirigir automáticamente las llamadas entrantes.

4. Funciones Avanzadas

- Soporte para videollamadas: En modelos de gama alta (requiere cámara y pantalla compatibles).
- Videoconferencias: Algunas versiones soportan soluciones de videoconferencia integradas.
- Botones programables: Teclas que pueden configurarse para funciones específicas como intercomunicador, acceso a líneas rápidas, etc.
- Integración con otros sistemas: Posibilidad de integrarse con plataformas de colaboración como Microsoft Teams, Skype for Business, y sistemas PBX basados en la nube.

Ficha Técnica: Servidor IoT

1. Generalidades

- Tipo de servidor: Servidor especializado para el Internet de las Cosas (IoT).
- Modelo: **Dependiendo del fabricante**, **por ejemplo**, Raspberry Pi, Intel NUC, AWS IoT Core, Google Cloud IoT, Microsoft Azure IoT Hub, **entre otros**.
- Propósito: Administrar, procesar, almacenar y analizar datos provenientes de dispositivos IoT, como sensores, actuadores, cámaras, etc.
- Aplicaciones típicas: Monitoreo en tiempo real, automatización del hogar y de la industria, gestión de energía, salud conectada, logística y trazabilidad.

2. Especificaciones Técnicas

- Procesador (CPU):
 - o Arquitectura: ARM, x86 o plataformas especializadas.
 - Modelo: Cuatro o más núcleos, dependiendo del modelo (Ej. Intel Core i5, ARM Cortex-A53).
 - o Frecuencia: Desde 1.2 GHz hasta 2.5 GHz o más (según modelo y propósito).
 - Capacidad de procesamiento paralelo: Capacidad de manejar múltiples flujos de datos en tiempo real.

• Memoria RAM:

- o Capacidad: Desde 1 GB hasta 64 GB, dependiendo de la aplicación y el volumen de datos.
- o Tipo de memoria: **DDR3, DDR4.**
- Almacenamiento:
 - o Disco Duro (HDD) o Unidad de Estado Sólido (SSD).
 - o Capacidad: Desde 16 GB hasta 4 TB, dependiendo del modelo y la cantidad de datos a almacenar.
 - Sistema de almacenamiento: Local (directamente en el servidor) o en la nube (integración con plataformas como AWS, Google Cloud, etc.).
 - Almacenamiento en caché: Para procesamiento de datos en tiempo real.
- Puertos de red:
 - Ethernet: 1 o 2 puertos 10/100/1000 Mbps para conexiones locales.

- Wi-Fi: Compatible con estándares 802.11 a/b/g/n/ac, para entornos donde no se pueda utilizar cableado.
- o LTE/4G/5G: Para conectividad móvil (en algunos modelos de IoT).
- Interfaz de Comunicación:
 - o Bluetooth (4.0, 4.2, 5.0): Para comunicación de corto alcance con dispositivos IoT.
 - o Zigbee: Para dispositivos de bajo consumo, como sensores.
 - o LoRaWAN: Para IoT de largo alcance y baja potencia.
 - o Z-Wave: Para dispositivos domésticos inteligentes.
 - o NB-IoT: Red de área amplia de baja potencia (para aplicaciones industriales).

3. Software y Plataforma de Gestión

- Sistema Operativo:
 - Linux: Dispositivos IoT generalmente utilizan sistemas operativos como Ubuntu, CentOS, Raspbian, etc.
 - Windows IoT: Para servidores IoT de gama empresarial.
 - Tiempo real: En algunos servidores de IoT, se usan sistemas operativos en tiempo real (RTOS) para garantizar respuestas rápidas a eventos.
- Plataforma de Gestión IoT:
 - o AWS IoT Core: Amazon Web Services, compatible con MQTT y HTTP.
 - Microsoft Azure IoT Hub: Plataforma que permite la gestión y procesamiento de datos IoT en la nube.
 - Google Cloud IoT: Para integrar y procesar grandes cantidades de datos IoT en tiempo real.
 - o Home Assistant: Plataforma de código abierto para automatización del hogar IoT.
 - o Node-RED: Plataforma de flujo de trabajo visual para gestionar dispositivos IoT.
- Protocolo de Comunicación:
 - MQTT (Message Queuing Telemetry Transport): Protocolo ligero y eficiente para transmitir mensajes entre dispositivos IoT.

- CoAP (Constrained Application Protocol): Protocolo ligero para dispositivos de baja capacidad.
- o HTTP/HTTPS: Para aplicaciones basadas en la web y servicios RESTful.
- o WebSockets: Comunicación bidireccional en tiempo real.
- o AMQP: Protocolo orientado a mensajes para sistemas de mensajería IoT.
- Base de Datos:
 - o SQL: MySQL, PostgreSQL para almacenamiento estructurado.
 - NoSQL: MongoDB, InfluxDB para almacenar grandes volúmenes de datos no estructurados.
 - Tiempo real: Cassandra, Apache Kafka o TimescaleDB (ideal para datos de sensores en tiempo real).
- Análisis de Datos:
 - Edge Computing: Procesamiento de datos en el borde de la red (en el dispositivo) para reducir latencias y uso de ancho de banda.
 - Análisis en la nube: Servicios de análisis de datos en tiempo real, como AWS Lambda,
 Google Dataflow, Azure Stream Analytics.

4. Seguridad

- Autenticación y Autorización:
 - o Soporte para OAuth, JWT (JSON Web Tokens), y autenticación basada en certificados digitales.
- Cifrado:
 - o TLS/SSL para asegurar la transmisión de datos entre dispositivos y el servidor.
 - o Cifrado AES para almacenamiento seguro de datos sensibles.
- Firewalls y VPN:
 - o Integración con VPN para la comunicación segura entre dispositivos IoT distribuidos.
 - IDS/IPS (Intrusion Detection System/Intrusion Prevention System) para proteger el servidor IoT.
- Seguridad en la red:

- o Segmentación de red y firewalls para aislar dispositivos críticos.
- o Actualizaciones automáticas y gestión de parches de seguridad.

5. Escalabilidad y Rendimiento

- Escalabilidad:
 - Capacidad para manejar desde decenas de dispositivos hasta millones de dispositivos IoT (según modelo).
 - o Integración con plataformas de nube como AWS, Google Cloud, o Azure para expandir el procesamiento y almacenamiento de datos.
- Rendimiento en tiempo real:
 - Capacidad de procesar datos en tiempo real con baja latencia, utilizando técnicas de procesamiento distribuido y edge computing.
 - o Análisis de datos IoT en tiempo real para la toma de decisiones inmediatas.

6. Consumo Energético

- Consumo de energía:
 - Servidores de IoT diseñados para operar en ambientes de bajo consumo, desde 5 W a 250 W, dependiendo del hardware.
- Modo de bajo consumo: Algunos servidores tienen modos de bajo consumo para ahorrar energía cuando no están en uso activo.

7. Conectividad y Red

- Redes soportadas:
 - Ethernet: Conexiones físicas a través de cable.
 - o Wi-Fi: Para redes inalámbricas.
 - o Móvil (LTE/5G): Soporte para redes móviles para comunicación remota.
 - o Redes LPWAN (Low Power Wide Area Network): Como LoRaWAN, Sigfox, NB-IoT para aplicaciones IoT distribuidas a gran escala.

8. Dimensiones y Peso

• Dimensiones:

Varía según el tipo de servidor IoT. Puede ser un dispositivo compacto como una Raspberry Pi (10x10 cm) o un servidor rack de 1U o 2U.

• Peso:

Depende del modelo, generalmente de 0.5 kg (dispositivos compactos) a 20 kg o más (servidores de rack).

9. Certificaciones

- Certificación CE, FCC: Para cumplir con los estándares de emisión y seguridad.
- RoHS: Certificación que garantiza la ausencia de materiales peligrosos.

Ficha Técnica: Dispositivos de Comunicación en una Red

1. Tipos de Dispositivos de Comunicación en una Red

Los dispositivos de comunicación en una red pueden ser de diferentes tipos, dependiendo de la función que desempeñen:

- Router: Encargado de dirigir el tráfico entre diferentes redes (por ejemplo, entre la red local y la red de Internet).
- Switch: Conmutador de paquetes que conecta varios dispositivos dentro de la misma red local (LAN) y gestiona el tráfico interno.
- Hub: Dispositivo de conmutación simple que distribuye el tráfico entre dispositivos en una red local, pero sin control sobre el tráfico (obsoleto por los switches).
- Access Point (Punto de Acceso): Conecta dispositivos inalámbricos a una red cableada.
- Firewall: Dispositivo de seguridad que controla el tráfico entrante y saliente de una red según reglas preestablecidas.
- Modem: Modula y demodula señales para permitir la comunicación entre una red local y una red pública, como la de un proveedor de servicios de Internet.
- Bridge: Conecta y filtra el tráfico entre dos redes, segmentando una red en subredes.
- Gateway: Conecta redes que utilizan protocolos diferentes y permite la comunicación entre ellas.
- Repeaters: Amplificadores de señal que permiten extender el alcance de una red.
- Network Interface Card (NIC): Tarjeta de interfaz de red que permite la comunicación entre un dispositivo y la red.

2. Especificaciones Técnicas Comunes

1. Router

- Función: Redirige el tráfico de datos entre diferentes redes (como LAN a Internet).
- Puertos: Al menos 4 puertos Ethernet (10/100/1000 Mbps) y 1 puerto WAN (para conexión a Internet).
- Protocolos:
 - o IPv4/IPv6
 - o OSPF, RIP, BGP

- Seguridad: NAT (Network Address Translation), firewall integrado, VPN (Virtual Private Network).
- Velocidad: Hasta 10 Gbps (dependiendo del modelo).
- Wi-Fi: 802.11ac o 802.11ax (Wi-Fi 6).
- Funcionalidades adicionales:
 - Calidad de servicio (QoS)
 - DHCP (Dynamic Host Configuration Protocol)
 - Control de acceso.
- Dimensiones: Generalmente 25 x 20 x 5 cm.
- Consumo energético: 10-40W.

2. Switch

- Función: Conecta dispositivos dentro de una red local (LAN) y gestiona el tráfico entre ellos.
- Puertos: Desde 5 hasta 48 puertos Ethernet (10/100/1000 Mbps o 10 Gbps en modelos avanzados).
- Tipo de Switch:
 - o Unmanaged: Para redes simples, sin configuración avanzada.
 - Managed: Permite configuraciones avanzadas, como VLANs (Virtual LAN), QoS y monitoreo de tráfico.
- Seguridad: Control de acceso MAC, port security.
- Capacidad: Entre 1 y 10 Gbps por puerto, dependiendo del modelo.
- Switching Fabric: 10 Gbps a 200 Gbps (según modelo y tipo de uso).
- Consumo energético: 20W 250W, dependiendo del tamaño y tipo de switch.

3. Hub

- Función: Distribuye los paquetes de datos a todos los dispositivos de la red (sin control de tráfico).
- Puertos: 4, 8, 12, 24, 48 puertos Ethernet (10/100 Mbps).
- Velocidad: 10 Mbps o 100 Mbps (obsoleto por switches).

- Consumo energético: Bajo, entre 5W y 15W.
- Uso: Se usa en redes pequeñas y en desuso debido a la ineficiencia comparado con switches.

4. Access Point (Punto de Acceso)

- Función: Permite la conexión de dispositivos inalámbricos (Wi-Fi) a la red cableada.
- Estándares: 802.11b/g/n/ac/ax (Wi-Fi 6).
- Frecuencia: 2.4 GHz y 5 GHz.
- Puertos: 1 o 2 puertos Ethernet para conexión a la red local.
- Velocidad: Hasta 10 Gbps (Wi-Fi 6).
- Seguridad: WPA3, WPA2, WEP.
- Capacidad: Soporta múltiples dispositivos conectados simultáneamente.
- Consumo energético: 5W 30W.
- Dimensiones: 20 x 20 x 3 cm.

5. Firewall

- Función: Controla el tráfico de red según reglas de seguridad preestablecidas.
- Puertos: Depende del modelo, generalmente varios puertos Ethernet.
- Seguridad: Filtrado de paquetes, control de acceso, detección y prevención de intrusiones (IDS/IPS).
- Protocolos soportados: TCP/IP, UDP, ICMP, HTTP, HTTPS, VPN, NAT.
- Tipos de firewall:
 - Hardware (dispositivo físico).
 - Software (instalado en servidores).
- Consumo energético: 30W 150W, dependiendo de la capacidad.

6. Modem

- Función: Modula y demodula las señales entre una red local y un proveedor de servicios de Internet.
- Puertos: 1 puerto WAN para conectividad a Internet, 1 o 4 puertos Ethernet para la LAN.

- Velocidad: 10/100/1000 Mbps o hasta 1 Gbps para conexiones de fibra óptica.
- Tipos: Cable, DSL, fibra óptica, satélite.
- Consumo energético: 5W 15W.

7. Bridge

- Función: Conecta y filtra el tráfico entre dos redes.
- Puertos: Depende del modelo, generalmente Ethernet.
- Seguridad: Control de tráfico entre dos redes.
- Consumo energético: Bajo, entre 5W y 20W.

8. Gateway

- Función: Conecta redes que usan protocolos diferentes, como una red local y la red de Internet.
- Protocolos soportados: HTTP, TCP/IP, UDP, etc.
- Velocidad: Varía, generalmente hasta 1 Gbps o más.
- Consumo energético: 15W 100W.

9. Repeater (Repetidor)

- Función: Amplifica y retransmite señales de red para extender su alcance.
- Frecuencia: Depende de la red (Wi-Fi 2.4 GHz o 5 GHz).
- Consumo energético: Bajo, entre 5W y 15W.
- Capacidad de cobertura: Hasta 100 metros en entornos libres de obstáculos.

10. Network Interface Card (NIC)

- Función: Tarjeta que permite a un dispositivo (como una computadora o servidor) conectarse a una red.
- Puertos: 1 o 2 puertos Ethernet o inalámbricos.
- Velocidad: 10/100/1000 Mbps (Ethernet) o hasta 10 Gbps (en modelos de alta gama).
- Protocolos soportados: TCP/IP, PPPoE.
- Consumo energético: 5W 20W.