

Nombre de la práctica	EXPRESIONES REGULARES -	No.	1		
Asignatura:	LENGUAJES Y AUTÓMATAS I	Carrera:	INGENIERÍA EN SISTEMAS COMPUTACIONALES- 3501	Duración de la práctica (Hrs)	5 horas

NOMBRE DEL ALUMNO: Ana Edith Hernández Hernández

GRUPO: 3501

I. Competencia(s) específica(s):

Crea y reconoce Expresiones Regulares para solucionar problemas del entorno.

Encuadre con CACEI: Registra el (los) atributo(s) de egreso y los criterios de desempeño que se evaluarán en la materia.

No. atributo	Atributos de egreso del PE que impactan en la asignatura	No. Criterio	Criterios de desempeño	No. Indicador	Indicadores
2	El estudiante diseñará esquemas de trabajo y	CD1	Identifica metodologías y procesos empleados en la resolución de problemas	11	Identificación y reconocimiento de distintas metodologías para la resolución de problemas
	procesos, usando metodologías congruentes en la	CD2	Diseña soluciones a problemas, empleando metodologías apropiadas	11	Uso de metodologías para el modelado de la solución de sistemas y aplicaciones
	resolución de problemas de Ingeniería en Sistemas Computacionales		al área	12	Diseño algorítmico (Representación de diagramas de transiciones)
3	El estudiante plantea soluciones basadas en tecnologías	CD1	Emplea los conocimientos adquiridos para el desarrollar soluciones	I 1	Elección de metodologías, técnicas y/o herramientas para el desarrollo de soluciones
	empleando su juicio ingenieril para valorar			12	Uso de metodologías adecuadas para el desarrollo de proyectos
	necesidades, recursos y resultados esperados.			13	Generación de productos y/o proyectos
	,	CD2	Analiza y comprueba resultados	11	Realizar pruebas a los productos obtenidos
				12	Documentar información de las pruebas realizadas y los resultados

- II. Lugar de realización de la práctica (laboratorio, taller, aula u otro): Laboratorio de cómputo y equipo de cómputo personal.
- III. Material empleado:

☐ Equipo de cómputo

Software para desarrollo

IV. Desarrollo de la práctica:

EJERCICIO 1

ALFABETO:

 $\vee = \{\$, _, \lambda, \text{ letra, digito}\}\$

CONJUNTOS:

letra = $\{[A - Z], [a - z]\}$ digito = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

EXPRESION REGULAR:

ER = (letra+ | _) (\$) (letra*) digito (letra+ | digito)*

LENGUAJE POR COMPRENSION:

 $L = \{w \in \{\$, _, \lambda, \text{ letra, digito}\}^* \mid w \text{ cumple con la propiedad de (letra+ | _) (\$) (letra*) digito (letra+ | digito)*}\}$

DIAGRAMA DE TRANSICION:

T1

		letra	digito	S		palabra vacia
inicial	q0	q1,q0	q3	q1	q1	q3
aceptacion	q1	q1	q2			
aceptacion	q2	q2	q2			
	q3	q3	q3			

EJERCICIO 2

ALFABETO:

∨ = {letraMayus, letraMinus}

CONJUNTOS:

letraMayus ={[A-Z]}
letraMinus = {[a-z]}

EXPRESION REGULAR:

ER = letraMayus letraMinus⁺

LENGUAJE POR COMPRENSION:

L = {w ∈ {letraMayus, letraMinus }* | w cumple con la propiedad de letraMayus letraMinus⁺}

T2

		letraMayus	letraMinus
inicial	q0	q1	
	q1		q2
aceptacion	q2		q2

EJERCICIO 3

ALFABETO:

 $\lor = \{digito, igual, \lambda, signo, operadorArit\}$

CONJUNTOS:

signo = $\{\#, \&, i, !, \&, \$\}$

digito = $\{0,1,2,3,4,5,6,7,8,9\}$

operadorArit = { /, -, *,+}

EXPRESION REGULAR:

ER = (signo (digito+) operacionArit λ signo digito+)* igual

LENGUAJE POR COMPRENSION:

L = $\{w \in \{digito, igual, \lambda, signo, operadorArit\} \mid w cumple con la propiedad de (signo (digito+) operacionArit \lambda signo digito+)* igual$

T3

		signo	digito	operadorArit	igual	palabra vacia
inicial	q0	q1				
	q1		q2			
	q2		q2	q3	q4	
	q3					q0
aceptacion	q4					

EJERCICIO 4

ALFABETO:

 \vee = {operador, igual, digito, punto, λ }

CONJUNTOS:

digito = {0,1,2,3,4,5,6,7,8,9}

operador = {/, -, *, +}

EXPRESION REGULAR:

ER = digito⁺ ((operador λ | punto) digito⁺)* igual

LENGUAJE POR COMPRENSION:

 $L = \{w \in \{\text{operador, igual, digito, punto, } \lambda\}^* \mid w \text{ cumple con la propiedad de digito((operador } \lambda \mid \text{punto }) \text{ digito}^*)^* \text{ igual}\}$

TABLA DE TRANSICION:

T4

inicial

	digito	punto	operador	igual	palabra vacia
q0	q1				
q1	q1	q0	q2	q3	
q2					q0
a3					

aceptacion

EJERCICIO 1, 2 (UNIÓN)

UNION DE T1 CON T2

ALFABETO:

V = {\$, _, λ, letra, digito, , letraMinus, letraMayus }

CONJUNTOS:

 $\label{letra} \begin{tabular}{l} \textbf{letra} &= \{[a-z], [A-Z]\} \\ \textbf{digito} &= \{0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9\} \\ \textbf{letraMayus} &= \{[A-Z] \ \} \\ \textbf{letraMinus} &= \{[a-z]\} \\ \end{tabular}$

EXPRESION REGULAR:

ER = ((letra+ | _) (\$) (letra*) digito (letra+ | digito)* U (letraMayus letraMinus*)

LENGUAJE POR COMPRENSION:

L = $\{w \in \{\text{letra, digito, \$, _, λ, letraMayus, letraMinus}\}^* \mid w \text{ cumple con la propiedad de ((letra+ | _) (\$) (letra*) digito (letra+ | digito)* <math>U$ (letraMayus letraMinus*)

DIAGRAMA DE TRANSICION:

		letra	digito	\$	_	λ	letraMayus	letraMinus
inicial	q0	q2, q1	q4	q2	q2	q4, q5	q6	
	q1	q1, q2	q4	q2	q2	q4		
aceptacion	q2	q2	q3					
aceptacion	q3	q3	q3					
	q4	q4	q4					
	q5						q6	
	q6							q7

UNION DE T3 CON T4

ALFABETO:

 $V = \{signo, \lambda, punto, operador, digito, operadorArit, igual \}$

CONJUNTOS:

```
signo = {#, &, j, !, ¿, $}
digito = {0,1,2,3,4,5,6,7,8,9}
operadorArit = {/, -, *, +}
operador = {/, -, *, +}
```

EXPRESION REGULAR:

ER = [(signo) digito⁺ (operadorArit λ signo digito⁺)* igual) U (digito⁺ ((operador λ | punto) digito⁺)* igual]

LENGUAJE POR COMPRENSION:

L = { w \in { signo, digito, operadorArit, igual, λ , punto, operador}* | w cumple con la propiedad de [(signo) digito⁺ (operadorArit λ signo digito⁺)* igual) U (digito⁺ ((operador λ | punto) digito⁺)* igual]

)}

		signo	digito	operadorArit	igual	λ	punto	Operador
inicial	q0	q2	q7			q1, q6		
	q1	q2						
	q2		q3					
	q3		q3	q4	q5			
	q4		-			q1		
aceptacion	q5							

	q6	q7				
	q7	q7	q9		q6	q8
	q8			q6		
aceptacion	q9					

TABLA DE TRANSICION:

EJERCICIO 3, 4 (CONCATENACION)

CONCTENACION DE T3 CON T4

ALFABETO:

 $V = \{signo, digito, operador, operadorArit, igual, \lambda, punto \}$

CONJUNTOS:

```
signo = {#, &, j, !, ¿, $}
digito = {0,1,2,3,4,5,6,7,8,9}
operadorArit = {/, -, *, +}
operador = {/, -, *, +}
```

EXPRESION REGULAR:

ER = (signo digito⁺ (operadorArit λ signo digito⁺)* igual) U (digito⁺ ((operador λ | punto) digito⁺)* igual)

LENGUAJE POR COMPRENSION:

L = { w \in { signo, digito, operadorArit, igual, λ , punto, operador}* | w cumple con la propiedad de (signo digito* (operadorArit λ signo digito*)* igual) U (digito* (((operador λ | punto) digito*)* igual) }

		signo	digito	operadorArit	igual	λ	punto	operador
inicial	q0	q1						
	q1		q2					
	q2		q2	q3	q4			
	q3					q0		
	q4					q5		
	q5		q6					
	q6		q6		q8		q5	q7
	q7					q5		
aceptacion	q8							

CONCATENACION DE T4 CON T3

ALFABETO:

 $V = \{signo, digito, operadorArit, igual, \lambda, punto, operador\}$

CONJUNTOS:

EXPRESION REGULAR:

ER = (signo digito⁺ (operadorArit λ signo digito⁺)* igual) U (digito⁺ ((operador λ | punto) digito⁺)* igual) digito⁺ ((operador λ | punto) digito⁺)* igual

LENGUAJE POR COMPRENSION:

L = { w \in { signo, digito, operadorArit, igual, λ , punto, operador}* | w cumple con la propiedad de (signo digito* (operadorArit λ signo digito*)* igual) U (digito* ((operador λ | punto) digito*)* igual) digito* ((operador λ | punto) digito*)* igual }

		signo	digito	operadorArit	igual	λ	punto	operador
inicial	q0		q1					
	q1		q1		q3		q0	q2
	q2					q0		
	q3					q4		
	q4	q5						
	q5		q6					
	q6		q6	q7	q8			
	q7					q4		
aceptacion	q8							

EJERCICIO 5, 6 (ESTRELLA DE KLEENE)

ESTRELLA DE KLEENE DE T4

ALFABETO:

 \vee = {digito, punto, λ , operador, igual }

CONJUNTOS:

digito = $\{0,1,2,3,4,5,6,7,8,9\}$

operador = {/, -, *, +}

EXPRESION REGULAR:

ER = $(digito^{+}[(operador \lambda | punto) digito^{+}]^{*} igual)^{*}$

LENGUAJE POR COMPRENSION:

L = {w \in {operador, igual, digito, punto, λ }* | w cumple con la propiedad de (digito⁺ [(operador λ | punto) digito⁺]* igual)*}

		digito	punto	operador	igual	λ
inicial	q0	q2				q1
aceptacion	Ч	42				41
	q1	q2				
	q2	q2	q1	q3	q4	
	q3					q1
aceptacion	q4	q2				q1

ESTRELLA DE KLEENE DE T3

ALFABETO:

 $V = \{signo, digito, operadorArit, igual, \lambda\}$

CONJUNTOS:

signo = $\{\#, \&, j, !, \&, \$\}$

digito = $\{0,1,2,3,4,5,6,7,8,9\}$

operadorArit = { /, -, *,+}

EXPRESION REGULAR:

ER = $((signo digito^+) [operadorArit \lambda signo digito^+]^* igual)^*$

LENGUAJE POR COMPRENSION:

L = {w \in {signo, digito, operadorArit, igual, λ }* | w cumple con la propiedad de ER = ((signo digito⁺⁾ [operadorArit λ signo digito⁺]* igual)*}

		signo	digito	operadorArit	Igual	λ
Inicial aceptacion	q0	q2				q1
	q1	q2				
	q2		q3			
	q3		q3	q4	q5	
	q4					q1
aceptacion	q5	q2				q1

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRÁCTICAS

V. Conclusiones:

Las expresiones regulares son una herramienta poderosa utilizada para la manipulación y búsqueda de patrones dentro de cadenas de texto. Estas expresiones permiten realizar operaciones como la búsqueda, validación y modificación de texto a partir de patrones predefinidos. Utilizan una combinación de caracteres normales y especiales, que definen patrones y permiten realizar búsquedas avanzadas de coincidencias en grandes volúmenes de texto. Además, se basan en conceptos fundamentales de la teoría de lenguajes formales, como la unión, la concatenación y la estrella de Kleene, lo que las convierte en una herramienta muy versátil.

- La operación de unión se utiliza para crear una expresión que coincida con una de varias alternativas. Se representa mediante el símbolo `|` (barra vertical). Por ejemplo, una expresión que defina un patrón que coincida con "gato" o "perro" podría expresarse mediante la unión de ambas palabras en el patrón `gato|perro`.
- La concatenación es una operación que permite encadenar secuencias de caracteres, donde el patrón resultante debe coincidir con una secuencia específica de estos. En expresiones regulares, esta operación suele aplicarse de manera implícita. Por ejemplo, la expresión `abc` implica la concatenación de los caracteres "a", "b" y "c", lo que coincide con esa secuencia exacta en el texto.
- La estrella de Kleene es una operación que permite repetir un patrón cero o más veces. Se denota con el símbolo `*`. Esta operación es fundamental para expresar patrones repetitivos de forma compacta. Por ejemplo, el patrón `a*` coincidirá con cualquier número de ocurrencias de la letra "a", incluyendo ninguna. Esta operación es especialmente útil para buscar secuencias variables en textos, permitiendo adaptarse a entradas de diferentes longitudes.

En resumen, las expresiones regulares no solo son una herramienta para buscar y manipular texto, sino que, gracias al uso de operaciones como la unión, la concatenación y la estrella de Kleene, permiten describir patrones extremadamente flexibles y complejos. Esto las convierte en una herramienta muy potente en tareas como la validación de formatos, el procesamiento de grandes volúmenes de datos y la edición automatizada de texto en lenguajes de programación y entornos de análisis de datos.