Supporting Materials of "Identifying regime transitions for water governance at a basin scale"

Shuang Song¹, Shuai Wang¹, Xutong Wu¹, Yongping Wei², Graeme S. Cumming³, Yue Qin⁴, Xilin Wu⁵ and Bojie Fu^{1,5*}

^{1*}State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University., Beijing, 100875, Beijing, China.

²School of Earth and Environmental Sciences, The University of Queensland, Brisbane, 4067, QLD, Australia.

³ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia.

⁴College of Environmental Sciences and Engineering Peking University, Beijing, 100875, Beijing, China.

⁵State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100875, Beijing, China.

*Corresponding author(s). E-mail(s): bfu@rcees.ac.cn;
Contributing authors: songshgeo@mail.bnu.edu.cn; shuaiwang@bnu.edu.cn; wuxutong@bnu.edu.cn;
yongping.wei@uq.edu.au; graeme.cumming@jcu.edu.au; qinyue@pku.edu.cn;
wuxilin20@mails.ucas.ac.cn;

1 YRB Regions

We divide the YRB into four regions to calculate the indicators considering both socio-economic and natural conditions. The division aligns with the customary schema from publications and the YRCC [1–3], so four important hydrological stations can distinguish the regions (see Figure 1).

• Source Region (SR): Over 50% of natural runoff originates from this region. The most ecological function here is water yield, as sparsely populated and less economically developed.

- Upper Region (UR): With the highest per capita irrigated land area, there are numbers of large irrigation lands in this region. However, irrigation efficiency is relatively much lower than its lower reaches.
- Middle Region (MR): Crossing Loess Plateau, a famous rich-sand area, Yellow River loads most of its sediments here with the highest soil erosion risk. The "grain for the green" project changed the water utilization here strikingly to reverse this situation [4].
- Lower Region (LR): With a dense population and the traditional agricultural trajectory, the lower region used to be the largest water use region. However, as the industrial transformation going, the proportion of agriculture keeps decreasing, but LR is still the largest water use region in each aspect.

Fig. 1 The study area. A. Diagram of the YRB and the subdivision of the basin (SR: Source Region, UR: Upper Region, MR: Middle Region, DR: Downstream region). B. Profile of the main channel of the Yellow River. The hydrological stations control the SR, UR, MR and DR. C. Typical landscapes in different regions in the YRB.

2 SFV-index

By taking water flexibility and variability into account, the scarcity-flexibility-variability (SFV) index focus more on dynamic responses to water resources in a developing perspective, which is a valid metric of temporal changes in water stresses [5]. To apply this method, we need to combine three metrics following:

First, for scarcity, $A_{i,j}$ is the total water consumption as a proportion of regional multi-year average runoff volume in year j and region i (in this study, four regions in the YRB, Appendix 1):

$$A_{i,j} = \frac{WU_{i,j}}{R_{i,avg}} \tag{1}$$

Second, for flexibility, $B_{i,j}$ is the inflexible water use $WU_{inflexible}$ (i.e. for thermal power plants or humans and livestock) as a proportion of average multi-year runoff, in year i and region j:

$$B_{i,j} = \frac{WU_{i,j,inflexible}}{R_{i,avg}} \tag{2}$$

Finally for variability, the capacity of the reservoir and the positive effects of storage on natural runoff fluctuations are also considered.

$$C_i = C1_i * (1 - C2_i) \tag{3}$$

$$C1_{i,j} = \frac{R_{i,std}}{R_{i,avg}} \tag{4}$$

$$C2_i = \frac{RC_i}{R_{i,avg}}, ifRC < R_{i,avg}$$
 (5)

$$C2_i = 1, ifRC >= R_{i,avq} \tag{6}$$

In all the equations above, $R_{i,avg}$ is the average runoff in region i, RC_i is the total storage capacities of reservoirs in the region i, $R_{i,std}$ is the standard deviation of runoff in the region i.

Finally, assuming three metrics (scarcity, flexibility and variability) have the same weights, we can calculate the SFV index after normalizing them:

$$V = \frac{A_{normalize} + B_{normalize} + C_{normalize}}{3}$$

$$a = \frac{1}{V_{max} - V_{min}};$$
(8)

$$a = \frac{1}{V_{max} - V_{min}};\tag{8}$$

$$b = \frac{1}{V_{min} - V_{max}} * V_{min} \tag{9}$$

Fig. 2 Numbers of new reservoirs in each year.

$$SFV = a * V + b \tag{10}$$

3 Datasets

Descriptions

This study used multiple types of data (see Table 1): statistical datasets, hydrological datasets, and political datasets.

Statistical datasets

The water resources use dataset was published by Zhou et al. [6], which records water utilization in different sectors along with social-economic situations at the Prefectures level. 2nd National Water Resources Assessment Program mainly extracted this dataset launched in 2002, led by the National Development and Reform Commission and the Ministry of Water Resources (see ref (1) and http://www.mwr.gov.cn/english/publs/ for more details). Since then, the statistics from the survey using the same criteria have been supplemented and harmonized with the 2013 administrative divisions.

Fig. 3 Sensitivity analysis of the threshold of p-values. A. number of breakpoints in different p-values, the scheme with two-breakpoints are the dominant situation. B. Threshold of p-values $\alpha = 0.0005$. C. Threshold of p-values $\alpha = 0.05$.

The data covers a total of subcategories of water use under four broad categories: agriculture (IRR), industry (IND), urban (URB) and rural (RUR) water use (see Zhou et al., for details [6]).

Hydrological datasets

The reservoir dataset was collected by Wang et al. [2], which introduced includes the significant new reservoirs built in the YRB since 1949 (Figure 2). YRCC labelled the regulation-oriented reservoirs among them, see http://www.yrcc.gov.cn/hhyl/sngc/). In addition, annual runoff data derived from hydrological station measurements are the same as the datasets used in [2] and [3].

Political datasets

The policy dataset collects laws and policies listed in the book [1], which are related to the Yellow River basin promulgated and implemented by departments at (such as YRCC) and above (such as national institutions) at the Basin's level (Table 2). In addition, some are difficult to categorize; not a landmark, but numerous water governance practices in the YRB had been recorded in "Yellow River Events" by the YRCC; we collected them from http://www.yrcc.gov.cn/hhyl/hhjs/.

Methods S3. Harmonization

Due to the wide sources of our data set and the different spatial scales, we need to harmonize them into a practical scale.

- 1. Datasets at watersheds scales: We directly divided the annual hydrological data and measured runoff data according to their watersheds' corresponding hydrological stations (see Figure 1 A and B).
- 2. Prefecture: We calculate the area of each prefecture to determine whether they belong to a region, with the threshold of 95%:

$$S_{ij} = MAX(S_i j/S_i) \tag{11}$$

Where i refers to a specific prefecture and j refers to a region within YRB, i.e. SR, UR, MR, or DR. S_i refers to the area of perfect i, and S_{ij} refers intersecting area between perfect i and region j. We define perfecture i belongs to region j if their intersecting area S_{ij} over 95% of S_i , i.e.:

$$MAX(S_{ij}) > 0.95 * S_i \tag{12}$$

- 3. Province: According to the major provinces contained in different regions, we determine which region the data of that province is merged into by referring to the traditional division practice:
 - SR: Qinghai Gansu and Sichuan,
 - UR: Ningxia and Inner Mongolia,
 - MR: Shanxi and Shaanxi,
 - DR: Shandong, Hebei and Henan.

Finally, when we process the location data (i.e., the location data of the reservoirs), we judge the province it belongs to according to its location and then fit it to the regional scale.

Table 1 Used datasets and their sources.

Dataset	Type	Spatial scale	Time scale	Source
1. Administrative water use	Statistical	Prefectures	1965-2013	2nd National Water Resources Assessment Program [6]
2. GDP	Statistical	Province	1949-2019	Wind database
3. Streamflow withdrawals	Statistical	Watershed	2003-2019	Yearbooks http://www.yrcc.gov.cn/other/hhgb/
4. Reservoirs	Hydrological	Location	1949-2015	Publication [2]
5. Measured runoff	Hydrological	Location	1949-2019	Measured data [2, 3]
6. Laws	Political	Documents	1949-2013	YRCC [1]
7. History of YRCC	Political	Documents	1949-2002	YRCC [7]
8. YRB Events	Political	Documents	1949-2015	YRCC: http://www.yrcc.gov.cn/hhyl/hhjs/

References

- [1] Commission, Y. R. C. Yellow River Basin Comprehensive Plan (2012-2030) 1 edn (Yellow River Water Conservancy Press). URL http://www.yrcp.com/wssd/bkjc/sll_bkjc/201811/t20181113_44020.html.
- [2] Wang, Y., Zhao, W., Wang, S., Feng, X. & Liu, Y. Yellow River water rebalanced by human regulation 9 (1), 9707. https://doi.org/10.1038/s41598-019-46063-5.
- [3] Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes 9 (1), 38–41. https://doi.org/10.1038/ngeo2602.
- [4] Wu, X. et al. Evolution and effects of the social-ecological system over a millennium in China's Loess Plateau 6 (41), eabc0276. https://doi.org/10.1126/sciadv.abc0276.
- [5] Qin, Y. et al. Flexibility and intensity of global water use $\mathbf{2}$ (6), 515–523. https://doi.org/10.1038/s41893-019-0294-2.
- [6] Zhou, F. et al. Deceleration of China's human water use and its key drivers $\mathbf{117}$ (14), 7702–7711. https://doi.org/10.1073/pnas.1909902117.
- [7] Archives, Y. R. Organizational History of the Yellow River Conservancy Commission (Yellow River Water Conservancy Press).

 $\textbf{Table 2} \ \ \text{Policies and regulations above YRB level which affected the whole basin in water utilization}$

Name	Year	Agency
1. Water Law of PRC	1988	National People's Congress of the PRC
2. Water Law of PRC -revised 1		National People's Congress of the PRC
3. Water Law of PRC -revised 2		National People's Congress of the PRC
4. Regulations on the Administration of Water Drawing Licences and The		State Council of the PRC
Collection of water resource fees		
5. Regulations on the Administration of Water Drawing Licences and The	2017	State Council of the PRC
Collection of water resource fees -revised 1		
6. Regulations on the Allocation of Water in the Yellow River	2006	State Council of the PRC
7. Yellow River water supply distribution scheme		State Council of the PRC
8. Measures for the Administration of Water Drawing Permits	2008	Ministry of Water Resources of the PRC
9. Measures for the Administration of Water Drawing Permits -revised 1		Ministry of Water Resources of the PRC
10. Measures for the Administration of Water Drawing Permits -revised 2		Ministry of Water Resources of the PRC
11. Regulations on the Allocation of Water in the Yellow River		State Council of the PRC
12. Annual distribution of available water supply of the Yellow River and		Ministry of Water Resources of the PRC
mainstream water dispatching scheme		
13. The Yellow River water dispatching management measures	1998	Ministry of Water Resources
14. Measures for the Implementation of the Yellow River Water Rights		Ministry of Water Resources
Conversion Management		
15. Regulations on the Administration of Water Drawing Licences and The	2006	State Council of the PRC
Collection of water resource fees		
16. Measures for the implementation of the water drawing Permit system	1993	
State Council of the PRC		
17. Measures for the demonstration and management of water resources in		Ministry of Water Resources of the PRC
construction projects		
18. Implementation Opinions on the Reform of Water Conservancy Project		State Council of the PRC
Management System		

 $^{[\}overline{1}]$ If a policy was proposed by multiple legacies, we only show the highest one.