

Fig. 7.5: Comparing semi-supervised forests with SVM and transductive SVM. (a) Input partially labelled data points. (b) Semi-supervised forest classification posterior. The probabilistic output captures prediction uncertainty (mixed-colour pixels in the central region). (c) Unsurprisingly, conventional SVM produces a vertical separating surface and it is not affected by the unlabelled set. (d) Transductive SVM follows regions of low density, but still does not capture uncertainty. (a') As in (a) but with larger noise in the point positions. (b') The increased input noise is reflected in lower overall confidence in the forest prediction. (c',d') as (c) and (d), respectively, but run on the noisier training set (a').

Handling multiple classes. Being tree-based models semisupervised forests can natively handle multiple (> 2) classes. This is demonstrated in fig. 7.6 with a four-class synthetic experiment. The input points are randomly drawn from four bi-variate Gaussians. Out of hundreds of points only four are labelled with their respective classes (shown in different colours). Conventional one-v-all SVM classification results in hard class assignments (fig. 7.6b). Tree-based transductive label propagation (for a single tree) is shown in fig. 7.6c. Note that slightly different assignments are achieved for different trees. The forest-based