

Overview of Presentation

- What is SKARAB?
- Designing/manufacturing SKARAB
- Demo of SKARAB platform
- Extreme scale intelligent storage (a SKARAB enabler)
- Data Acquisition Prototype

What is the "SKARAB"?

peralex the sense of signals

- SKARAB is an energy-efficient, agile, extreme scale, networked, FPGA-centric cluster computing node, with 19" 1U dimension
- SKARAB = Square Kilometre Array Reconfigurable Application Board
- SKARAB is the next generation/successor to the ROACH2 platform, conceptualised by SKA-SA
- Peralex won the nationwide tender to design and manufacture 300 SKARAB units for the MeerKAT precursor to the SKA radiotelescope in South Africa
- SKARAB is not application-specific

SKARAB Block Diagram

SKARAB: Under The Hood

SKARAB Compute: Virtex 7 FPGA

- 693120 Logic Cells
- 80 x SERDES
 - 64 used for I/O mezzanine sites @ 10 Gbps
 - 1 used for PCI-E to COM-E module site
- 1470 x 36Kb RAM Blocks (~52 Mb)
- 3600 DSP Slices
- 1927 pins

		Part Number	XC7VX690T					
	EasyPath™ (Cost Reduction Solutions (1)	XCE7VX690T					
Logic		Slices	108,300					
		693,120						
Resources		CLB Flip-Flops	866,400					
	Maxim	um Distributed RAM (Kb)	10,888					
Memory	Block RAM/	1,470						
Resources		Total Block RAM (Kb)	52,920					
Clocking		20						
	N	1aximum Single-Ended I/O						
I/O Resources		mum Differential I/O Pairs						
		DSP Slices	3,600					
		_						
		PCIe Gen3	3					
Integrated IP	Analog N							
Resources	Configu	1						
	GTX Transceive	_						
	GTH Transceive	80						
	GTZ Transceive	_						
		-1, -2						
Speed Grades		-2L, -3						
		Industrial	-1, -2					
	Package ⁽⁶⁾	Dimensions (mm)	GTH)					
•	FFG1157 / FFV1157 ⁽⁷⁾	35 x 35	0, 600 (0, 20)					
Footprint	FFG1761 / FFV1761 ⁽⁷⁾	42.5 x 42.5	0, 850 (0, 36)					
Compatible	FHG1761	45 x 45						
•	FLG1925	45 x 45						
	FFG1158 / FFV1158 ⁽⁷⁾	35 x 35	0, 350 (0, 48)					
Footprint	FFG1926	0, 720 (0, 64)						
Compatible	FLG1926	45 x 45	, ,					
	FFG1927 / FFV1927 ⁽⁷⁾	45 x 45	0, 600 (0, 80)					
Footprint	FFG1928	45 x 45						
Compatible	FLG1928	45 x 45						
Footprint	FFG1930	45 x 45	0, 1000 (0, 24					
Compatible	FLG1930	45 x 45						

SKARAB: FPGA Configuration

- Requirement to boot in under 1 second
- On power-up, FPGA boots from NV onboard boot flash (boot image and backup image)
- After power-up FPGA can be rebooted over 1GbE network interface using SDRAM-based high-speed boot mode

SKARAB Mezzanine Sites

- Four 400 pin FCI Megarray connector (28 Gbps capable)
- 16 x ~10 Gbps SERDES from FPGA
- 1-Wire Interface (Configuration PROM)
- Low speed I2C Management interface, PD, Fault
- JTAG interface (test)
- 12V (bulk), 5V, 3.3V
- High speed Clocks (in/out)

						P	HY22_LAI	IE1		P	HY22_LAI	IE3		PH	IY21_LAN	IE1		PI	HY21_LAI	IE3		PI	HY12_LAN	IE1		PI	IY12_LAN	E3		PH	IY11_LAN	IE1		PE	N11_LAR	VE3			
40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
A VCC	GND	12V	5V	GND	GND	GND	GND	GND	Tm	SCL	SDA A																												
B VCC	GND	12V	5V	GND	RXP	GND	RXP	GND	AD2	TCK	TMS B																												
C VCC	GND	12V	5V	GND	RXN	GND	RXN	GND	AD1	TDO	TDI C																												
D VCC	GND	12V	5V	GND	GND	GND	GND	GND	AD0	IRQ	1W D																												
E VCC	GND	12V	5V	GND	OPT	GND	OPT	GND	Hn	RST_N	Fn_E E																												
F VCC	GND	12V	5V	GND	OPT	GND	OPT	GND	GND	GND	GND F																												
G SD	GND	12V	5V	GND	GND	GND	GND	GND	CKloN	CKloP	GND G																												
H Vsen	GND	12V	5V	GND	TXP	GND	TXP	GND	GND	GND	GND H																												
J Vsen	GND	12V	5V	GND	TXN	GND	TXN	GND	CKliN	CKTP	GND J																												
K VCCr	GND	12V	5V	GND	GND	GND	GND	GND	GND	GND	GND K																												
40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
				P	HYZZ_LAI	NE0		PI	HYZZ_LAN	NEZ		PI	HY21_LAN	E0		Pi	HY21_LAN	NE2		PE	IY1Z_LAN	Eθ		PI	HY1Z_LAN	(EZ		PE	IY11_LAI	IE0		PI	IY11_LAN	IEZ .					

SKARAB Mezzanine: 4 x 40 GbE QSFP+

- Two variants (direct vs retimed)
- 4 x QSFP+ interfaces (16 x 10 Gbps)
 - Support for Copper, AOC, SR, LR fibre cables
- 32-bit ARM uC (management, PHY boot)
- Thermal sensor
- Configuration PROM
- Clock generation

SKARAB Mezzanine: Hybrid Memory Cube

- Mezzanine designed by SKA-SA, manufactured by Peralex
- 10 Gbps x 16 SERDES interface to FPGA
- 2 or 4 GB Micron HMC devices
- Energy efficient (relative to DDR3/4)
- High bandwidth (relative to DDR3/4)

Skarab Mezzanine: SKARAB ADC32RF45X2 (New Kid On The Block)

SKARAB ADC32RF45X2 Features

- Four 14-Bit, 3.0 GSPS ADC channels
- On-chip dither, on-board PGA (optional)
- On-board digital down-converters:
 - Up to 8 DDCs (two per ADC; dual-band mode)
 - 3 independent NCOs per DDC
- High performance 3 GHz sample clock generator
- External trigger and GPIO
- Dedicated ADC sub-system management processor
- Phase-synchronous data acquisition across multiple channels/boards
- Power consumption: 22 W @ 3 GSPS, 600 MHz BW

SKARAB ADC32RF45X2 Block Diagram

SKARAB ADC32RF45X2 Performance

Test Case 1:

- Input Frequency: 942.5 MHz
- Input amplitude: -10 dBFS
- ☐ Sample rate: 3.0 GSPS☐ Full Scale: 9.375 dBm
- DDC: Decimate-by-4
- FFT: 16384
- Average: 5

Result:

Single-tone spurious: -71.725 dBc

IMD3: 76.435 dBc @ -8dBFS FFT Noise Level: -94.125 dBm

Test Case 2:

- Input Frequency: 1842 MHz
- ☐ Input amplitude: -1 dBFS
- ☐ Sample rate: 3.0 GSPS
- ☐ Full Scale: 12.525 dBm
- DDC: Decimate-by-4
- ☐ FFT: 16384
- Average: 5

Result:

Single-tone spurious: -63.125 dBc

IMD3: 68.375 dBc @ -8dBFS FFT Noise Level: -81.025 dBm

Zooming in: ADC32RF45 Dual ADC Features

14-Bit, Dual-Channel, 3.0-GSPS ADC		On-Chip Input Clamp for Overvoltage Protection
Noise Floor: -155 dBFS/Hz		Programmable On-Chip Power Detectors with
RF Input Supports Up to 4.0 GHz		Alarm Pins for AGC Support
Aperture Jitter: 90 fS		On-Chip Dither
Channel Isolation: 95 dB at Fin = 1.8 GHz		On-Chip Input Termination
Spectral Performance (Fin = 900 MHz, -2 dBFS)	: 🗖	Input Full-Scale: 1.35 VPP
□ - SNR: 60.9 dBFS□ - SFDR: 67-dBc HD2, HD3		Support for Multi-Chip Synchronization
□ - SFDR: 77-dBc Worst Spur		JESD204B Interface:
Spectral Performance (fIN = 1.78 GHz, -2 dBFS) - SNR: 58.8 dBFS	:	 □ - Subclass 1-Based Deterministic Latency □ - 4 Lanes Per Channel at 12.5 Gbps
 □ - SFDR: 66-dBc HD2, HD3 □ - SFDR: 75-dBc Worst Spur 		Power Dissipation: 3.2 W/Ch at 3.0 GSPS

On-Chip Digital Down-Converters:

— Up to 4 DDCs (Dual-Band Mode)

— Up to 3 Independent NCOs per DDC

ADC32RF45 Dual ADC Applications

Applications

- Multi-Band, Multi-Mode 2G, 3G, 4G Cellular Receivers
- □ Phased Array Radars
- Electronic Warfare
- Cable Infrastructure
- Broadband Wireless
- ☐ High-Speed Digitizers
- Software-Defined Radios
- □ Communications Test Equipment
- Microwave and Millimeter Wave Receivers

ADC32RF45 Dual ADC Block Diagram

Copyright © 2016, Texas Instruments Incorporated

SKARAB ADC32RF45X2

Configuration Options:

- Programmable Gain Amplifier (PGA) vs balun-coupled input
 - PGA gain range: ~ -6 to +15 dBm
 - PGA lowers required full scale drive strength (at the expense of noise figure)
 - Balun coupling recommended when operating at higher analogue input frequencies e.g. 2.0 GHz

ADC

- ADC32RF45 (\$2500) Full 1.5 GHz Nyquist bandwidth using DDC bypass (at 3.0 GSPS, this requires Skarab FPGA speed grade bump)
- ADC32RF80 (\$1250) DDC not bypassable maximum bandwidth of 600 MHz

SKARAB Platform Management

Consists of:

- FPGA configuration
- Autonomous/programmable fan control
- Autonomous voltage, current and fan protection/monitoring (automatic shutdown on fault)
- Blackbox recording of faults
- Diagnostic "always-on" USB interface allows access to fault logs even when unit is off.

Network Platform Management

- DHCP, PING available on ALL Ethernet interfaces
- Health monitoring functions available on ALL Ethernet interfaces
- High speed (<1s) FPGA configuration (through 1 GbE interface only)

Diagnostics

- USB/JTAG access to JTAG-compliant devices on motherboard and mezzanines
- Serial port interface to Microblaze processor

SKARAB Board Support Package

Consists of:

- FPGA firmware infrastructure (HDL) required for remote platform/cluster management and standard interfaces (I/O, memory)
- Windows/Linux C++ host library and executables for platform management (health monitoring, FPGA reconfiguration over LAN etc)

SKARAB Board Support Package Firmware

- 1 Gb Ethernet core (health monitoring, control)
 - MAC only (external PHY)
- 40 Gb Ethernet core (high speed data)
 - MAC
 - PHY (XLAUI/XLPPI to external PHY/QSFP+)
- Hybrid Memory Cube controller core (SKA-SA)
- Management microcontroller
 - MicroBlaze uC with Wishbone peripheral bus
 - 1-Wire Configuration PROM access
 - Voltage/current monitors (12 rails)
 - Fan control/status
 - High speed network-based FPGA boot
 - Network setup/management for 1 GbE and 40 GbE interfaces (PING, DHCP, etc)

SKARAB BSP Firmware Block Diagram (1)

SKARAB BSP Firmware Block Diagram (2)

SKARAB Firmware Footprint

Resource	Utilization	Available	Utilization %
LUT	81084	433200	18.72
LUTRAM	10163	174200	5.83
FF	99707	866400	11.51
BRAM	176	1470	11.97
IO	184	600	30.67
GT	17	80	21.25
BUFG	12	32	37.50
MMCM	5	20	25.00
PLL	4	20	20.00

SKARAB: Some Interesting Platform Features

- FPGA-centric (FPGA-only!) compute platform
 - Low power consumption (relative to GPU/CPU) = low operational cost ~45W (100-125W with memory)
 - Reduced product complexity = simpler development (software layering/configuration management)

Flat architecture

- Uniform, highly scalable networked processing cluster
- Easy adoption, "bite-size" unit scaling
- Scalable platform management
- Fault tolerance through over-provisioning/network traffic rerouting

Configurable Memory versus I/O Bandwidth

- Mezzanine tile architecture
- Semi-independent upgrade path (memory vs I/O vs compute)

Designing a SKARAB

- MTBF analysis fed back into design to maximise reliability
- Thermal analysis (CFD and real-world models)
- Extensive Signal Integrity analysis and verification (IBIS-AMI, TDR, eye diagrams, BER) to meet 10.3125 Gbps over >7m on 128 links.
- Thorough environmental qualification (EMC/RFI, temperature, shock and vibration)

Manufacturing a SKARAB

- Internal and supply chain quality management
- PCB delamination stressing
- X-RAY/AOI of all boards
- Thermal stress screening (eliminate infant mortality)
- Automated ATP
- Optimised assembly and test harnesses.

Data Storage Pods

- Hardware developed by Peralex under a joint venture between Peralex (HW) and SKA-SA Science Data Processing (SDP) group
- Specific configurations tailored to SKA-SA MeerKAT SDP requirements:
 - High speed recording
 - High speed buffering to tape drive arrays
 - High capacity network-centric bulk storage of SDP visibility data

Data Storage Pods

- Building block: Cost-optimised 4U, 48-drive intelligent "Storage Pods"
 - Loosely based on Backblaze open source design more performance-focussed.
 - Configurations to supports high capacity 3.5" SAS/SATA HDDs (up to 384 TB) or high speed 2.5" SSDs (up to 96 TB)
 - Extreme performance and redundancy scaling through Ceph object store protocol.
 - Aim to provide near-40 Gbps streaming to/from disk array (record/replay)
 - Stream to tape store at 160 MB/s x 8 = 1.28 GB/s
- Possible applications:
 - Wideband recording/replay
 - Large digital delays/buffering
 - Bulk storage

SP4000C (High Speed Buffer)

peralex the sense of signals

- Storage: 48 x 2.5" SATA bays
 - E.g. SSD storage 2TB x 48 = 96TB

External Interfaces:

- 1 x 40 Gb Ethernet
- 16 x external SAS (storage extension, tape drive interface)
- IPMI network management interface

Internals:

- Xeon E5-1630V3 processor
- 32GB DDR4-2133 SDRAM
- 3 x 16i SAS controllers

Applications:

- High speed buffer (up to 38 Gbps)
- Data recorder

SP4000C Block Diagram

SP4000L (High Capacity)

Storage:

- 48 x 3.5" HDDs
- E.g. $48 \times 8 TB = 384 TB$

External Interfaces:

- 1 x 10 Gb Ethernet
- IPMI network management interface

Internals:

- Xeon E5-1630V3 processor
- 64GB DDR4-2133 SDRAM
- 40 + 5 SATA controllers

Applications:

- High capacity, scalable network data store
- Ceph Object Storage Daemon (OSD) node

SP4000L Block Diagram

Ceph

 Ceph is a software storage platform designed to present object, block, and file storage to network attached clients from a distributed storage cluster. Ceph's main goals are to be completely distributed without a single point of failure, scalable to the exabyte level, and freely-available.

Bringing it all together (2016): ADC32RF45 Data Acquisition Proof of Concept

- 3 GSPS sample rate
- 600 MHz BW (ADC internal DDC)
- ~23 Gbps raw data rate over 40 GbE (using Skarab 40 GbE core)
- Continuous streaming to SP4000C storage pod (SSD array).

ADC32RF45 Data Acquisition Proof of Concept: ADC First Light (2016)

- Performance was encouraging.
- Full real-time
 acquisition to storage
 path demonstrated
 (continuous storage for
 >1 hour @ 600 MHz
 BW)
- Precursor to SKARAB ADC32RF45X2 mezzanine

Conclusion

- SKARAB volume production (including HMC and 40 GbE mezzanines) is in full swing. To date, ~100 Skarab units deployed.
- ADC32RF45 proof-of-concept (2016) demonstrated full Skarab data acquisition infrastructure integration (ADC32RF45 + Virtex 7 FPGA + SP4000C). This is now application-ready as Skarab (with integrated ADC32RF45X2) + SP4000C.
- SKA-SA "CasperFPGA" Radio Astronomy tool suite is in active use by SKA-SA and early adopters (Harvard Smithsonian CfA).
- Both Storage Pod variants are verified and in series production.
 To date, ~4.6PB deployed in a Ceph test cluster of 12 x SP4000L (SKA-SA MeerKAT project) that will soon scale out to ~23PB.

Thank You For Listening!

