Tarea N°1 Fisica Computacional II - 2S 2022

Prof. Guillermo Fonseca Kuvacic

Abril 2023

Problema 1 (15 puntos)

Descargue el archivo datos.dat. Este archivo contiene posiciones y velocidades de un sistema coloidal compuesto por 500 partículas.

Columna	Información
id	Identificador de la partícula.
	Tipo de partícula. Las partículas coloidales
type	tiene type=1 y las partículas de solvente
	type=2.
x,y,z	Coordenadas de la partícula.
vx,vy,vz	Componentes de la velocidad de cada partícula

- Escriba un comando bash de una línea que determine el número de partículas de cada tipo que hay en el archivo (4 puntos).
- Escriba un script awk para determinar la velocidad promedio de las partículas del sistema (6 puntos).
- Utilice gnuplot para construir un histograma de distancias al origen de coordenadas. (5 puntos).

Problema 2 (10 puntos)

Suponga que se desea posicionar una partícula en cada uno de los vértices de los cuadrados que componen la malla que se muestra a continuación.

Figure 1: Malla de puntos.

Escriba manualmente las líneas de código C necesarias para almacenar las coordenadas de las partículas en un array multidimensional $N \times 2$, donde N es el número de partículas. Suponga que cada cuadrado tiene lado $a=1[\mathrm{m}]$. (10 puntos)

Problema 3 (20 puntos)

Se desea almacenar la información de un sistema de partículas en una estructura C. La estructura se definirá con memoria dinámica y será referenciada por medio de un puntero (ver figura 2)

Figure 2: Puntero que referencia a la estructura.

Defina una estructura compuesta por los siguientes datos (10 puntos):

- número de partícula: número de partículas que tiene el sistema, es un valor entero.
- \bullet posiciones es un array multidimensional dinámico de 3xN, donde N es el número de partículas.
- velocidades es un array multidimensional dinámico de 3xN, donde N es el número de partículas.
- función: es un puntero a función que recibe las posiciones, velocidades, el número de partículas y calcula la energía cinética y potencial del sistema.
- energía cinética: valor de tipo double que almacena la energía cinética del sistema.
- energía potencial: valor de tipo double que almacena la energía potencial del sistema.

En base a lo anterior defina un módulo que tenga las siguientes funciones (10 puntos):

- Función *init* que reserva memoria para la estructura, las posiciones y velocidades de las partículas del sistema.
- Función *cálculos* que reciba la estructura y la función externa que realizará los cálculos de energía.
- Función liberar que libere la memoria reservada.

No realice cálculos de energía, bastan con llamar a la función dentro de la estructura. Lo importante es que el módulo compile con la reserva de memoria, paso de parámetros y liberación de memoria.