Lecture 21 **Bayesian Networks:** Structure and Variable Elimination

Lecture Overview

- Recap
 - Final Considerations on Network Structure
 - Variable Elimination
 - Factors
 - Algorithm (time permitting)

Belief (or Bayesian) networks

Def. A Belief network consists of

- a directed, acyclic graph (DAG) where each node is associated with a random variable X_i
- A domain for each variable X_i
- a set of conditional probability distributions for each node X_i given its parents Pa(X_i) in the graph

$$P(X_i | Pa(X_i))$$

- The parents Pa(X_i) of a variable X_i are those X_i directly depends on
- A Bayesian network is a compact representation of the JDP for a set of variables (X₁, ..., X_n)

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

How to build a Bayesian network

- 1. Define a total order over the random variables: (X₁, ...,X_n)
- 2. Apply the chain rule Predecessors of X_i in the total order defined $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_1, ..., X_{i-1}) \text{ over the variables}$
- 3. For each X_i, select the smallest set of predecessors

Pa(X_i) such that

X_iis conditionally independent from all its

 $P(X_i \mid X_1, ..., X_{i-1}) = P(X_i \mid Pa(X_i))$ other predecessors given $Pa(X_i)$

4. Then we can rewrite

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

 This is a compact representation of the initial JPD • factorization of the JPD based on existing conditional independencies among the variables

How to build a Bayesian network (cont'd)

- 5. Construct the Bayesian Net (BN)
 - Nodes are the random variables
 - Draw a directed arc from each variable in Pa(Xi) to Xi
 - Define a conditional probability table (CPT) for each variable X_i:

P(X_i | Pa(X_i))

Example for BN construction: Fire Diagnosis

You want to diagnose whether there is a fire in a building

- You can receive reports (possibly noisy) about whether everyone is leaving the building
- If everyone is leaving, this may have been caused by a fire alarm
- If there is a fire alarm, it may have been caused by a fire or by tampering
- If there is a fire, there may be smoke

Start by choosing the random variables for this domain, here all are Boolean:

- Tampering (T) is true when the alarm has been tampered with
- Fire (F) is true when there is a fire
- Alarm (A) is true when there is an alarm

- Smoke (S) is true when there is smoke
- Leaving (L) is true if there are lots of people leaving the building
- Report (R) is true if the sensor reports that lots of people are leaving the building

Next apply the procedure described earlier

Example for BN construction: Fire Diagnosis

- 1. Define a total ordering of variables:
 - Let's chose an order that follows the causal sequence of events
 - Fire (F), Tampering (T), Alarm, (A), Smoke (S) Leaving (L) Report
 (R)
- 2. Apply the chain rule

```
P(F,T,A,S,L,R) =

P(F)P(T|F)P(A|F,T)P(S|F,T,A)P(L|F,T,A,S)P(R|F,T,A,S,L)
```

- We will do steps 3, 4 and 5 together, for each element $P(X_i \mid X_1, ..., X_{i-1})$ of the factorization
- 3. For each variable (X_i) , choose the parents Parents (X_i) by evaluating conditional independencies, so that

$$P(X_i | X_1, ..., X_{i-1}) = P(X_i | Parents(X_i))$$

4. Rewrite

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

5. Construct the Bayesian network

Fire Diagnosis Example

P(F)P(T)P(A|F,T)P(S|F)P(L|A)P(R|L)

The result is the Bayesian network above, and its corresponding, very compact factorization of the original JPD

P(F,T,A,S,L,R) = P(F)P(T)P(A|F,T)P(S|F)P(L|A)P(R|L)

Defining CPTs

- We are not done yet: must specify the Conditional Probability Table (CPT) for each variable. All variables are Boolean.
- How many probabilities do we need to specify for this Bayesian network?

• For instance, how many probabilities do we need to explicitly specify for

Fire?

Only P(Fire): 1 probability -> P(Fire = T)
Because P(Fire = F) = 1 - P(Fire = T)

Fire F	P(Smoke=t F)
t	0.9
f	0.01

P(Tampering=t)
0.02

P(Fire=t)	
0.01	

Tampering T	Fire F	P(Alarm=t T,F)
t	t	0.5
t	f	0.85
f	t	0.99
f	f	0.0001

Alarm	P(Leaving=t A)
t	0.88
f	0.001

Leaving	P(Report=t L)
t	0.75
f	0.01

Specifying CPTs

Leaving

Report

- We need to
 12 probabilities
 to the 2⁶-1= 63
 P(T,F,A,S,L,R)
- Each row in probability
- The tables above column for P(X=f)

Values for these columns are derivable as 1 - P(X= t |Pa(X)).

Tampering Fire explicitly specify in total, compared of the JPD for

each CPT is a distribution.

are all missing the |Pa(X)|.

Example for P(Alarm Fire, Tampering)

_				
	Tampering T	Fire F	P(Alarm=t T,F)	P(Alarm=f T,F)
Ī	t	t	0.5	0.5
Ī	t	f	0.85	0.15
Ī	f	t	0.99	0.01
	f	f	0.0001	0.9999

We don't need to speficy explicitly P(Alarm=f|T,F) since probabilities in each row must sum to 1

Each row of this table is a conditional probability distribution

Computing JPD entries

t	t	0.5
t	f	0.85
f	t	0.99
f	f	0.0001

Leaving	P(Repo
t	0.7
f	0.0

Once we have the CPTs in the network, we can compute any entry of the JPD

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t) =

 $P(Tampering=t) \times P(Fire=f) \times P(Alarm=t | Tampering=t, Fire=f) \times P(Smoke=f | Fire=f) \times P(Leaving=t | Alarm=t) \times P(Report=t | Leaving=t) =$

 $= 0.02 \times (1-0.01) \times 0.85 \times (1-0.01) \times 0.88 \times 0.75 = 0.126$

In Summary

 In a Belief network, the JPD of the variables involved is defined as the product of the local conditional distributions

$$P(X_1, ..., X_n) = \prod_{i} P(X_i | X_1, ..., X_{i-1}) = \prod_{i} P(X_i | Parents(X_i))$$

Any entry of the JPD can be computed given the

CPTs in the network

Once we know the JPD, we can answer any query about any subset of the variables - (see Inference by Enumeration topic)

Thus, a Belief network allows one to answer any query on any subset of the variables

Predictive Intercausal Mixed Diagnostic Person smokes There is no fire Fire happens Fire next to sensor P(F=t)=1F=f P(F|L=t)=?S=tP(F|A=t,T=t)=?Fire Fire Alarm **Smoking** Alarm Fire Alarm Sensor P(A|F=f,L=t)=?Leaving Leaving People are leaving **Alarm** Leaving P(L=t)=1Alarm goes off P(L|F=t)=?People are leaving P(A=T) = 1P(L=t)=1

There are algorithms that leverage the Bnet structure to perform query answer efficiently

- For instance variable elimination, which we will cover soon
- First, however, we will think a bit more about network structure

Compactness

- A CPT for a Boolean variable X_iwith kBoolean parents has 2^krows for the combinations of parent values
- Each row requires one number pfor X_i = true (the number for X_i = falseis just 1-p)
- If each variable has no more than kparents, the complete network requires to specify O(n · 2^k) numbers
- For k<< n, this is a substantial improvement,
- the numbers required grow linearly with n, vs. $O(2^n)$ for the full joint distribution

- E.g., if we have a Bnets with 30 boolean variables, each with 5 parents
- Need to specify 30*2⁵probability
- But we need 2³⁰ for JPD

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

~ 60 nodes, max 4 parents per node

Need ~ $60 \times 2^4 = 15 \times 2^6$ probabilities instead of 2^{60} probabilities for the JPD

Compactness

- What happens if the network is fully connected?
- Or k ≈ n
- Not much saving compared to the numbers needed to specify the full JPD
- Bnets are useful in sparse(or locally structured) domains
- Domains in with each component interacts with (is related to) a small fraction of other components

 What if this is not the case in a domain we need to reason about?

May need to make simplifying assumptions to reduce the dependencies in a domain

"Where do the numbers (CPTs) come from?"

From experts

- Tedious
- Costly
- Not always reliable

From data => Machine Learning

- There are algorithms to learn both structures and numbers (CPSC 340, CPSC 422)
- Can be hard to get enough data

Still, usually better than specifying the full JPD

What if we use a different ordering?

- What happens if we use the following order:
- Leaving; Tampering; Report; Smoke; Alarm; Fire.

 We end up with a completely different network structure! (try it as an exercise)

Which Structure is Better?

- Non-causal network is less compact: 1+2+2+4+8+8 = 25 numbers needed
- Deciding on conditional independence is hard in non-causal directions
 Causal models and conditional independence seem hardwired for humans!

- Specifying the conditional probabilities may be harder than in causal direction
- For instance, we have lost the direct dependency between alarm and one of its causes, which essentially describes the alarm's reliability (info often provided by the maker)

Example contd.

 Other than that, our two Bnets for the Alarm problem are equivalent as long as they represent the same probability distribution

Variable ordering: L,T,R,S,A,F

Variable ordering: T,F,A,S,L,R

$$P(T,F,A,S,L,R) = P(T) P(F) P(A | T,F) P(L | A) P(R|L) =$$

$$= P(L)P(T|L)P(R|L)P(S|L,T)P(A|S,L,T) P(F|S,A,T)$$

i.e., they are equivalent if the corresponding CPTs are specified so that they satisfy the equation above

Lecture Overview

- Recap
- Final Considerations on Network Structure
 - Variable Elimination
 - Factors
 - Algorithm
 - VE example

 Given an order of variables, a network with arcs in excess to those required by the direct dependencies implied by that order are still ok

P(L)P(T|L)P(R|L) P(S|L,R,T) P(A|S,L,T) P(F|S,A,T) = P(L)P(T|L)P(R|L)P(S|L,T)P(A|S,L,T) P(F|S,A,T)

 One extreme: the fully connected network is always correct but rarely the best choice

• It corresponds to just applying the chain rule to the JDP, without leveraging conditional independencies to simplify the factorization

P(L,T,R,S,A,L) = P(L)P(T|L)P(R|L,T)P(S|L,T,R)P(A|S,L,T,R) P(F|S,A,T,L,R) P(L,T,R,S,A,L) = P(L)P(T|L)P(R|L,T)P(S|L,T,R)P(A|S,L,T,R) P(F|S,A,T,L,R)

- It corresponds to just applying the chain rule to the JDP, without leveraging conditional independencies to simplify the factorization
- How can a network structure be wrong?
- If it misses directed edges that are required
- E.g. an edge is missing below, making Fire conditionally independent of Alarm given Tampering and Smoke

But they are not:

for instance, P(Fire = t| Smoke = f, Tampering = F, Alarm = T) should be

higher than P(Fire = t | Smoke = f, Tampering = f),

- How can a network structure be wrong?
- If it misses directed edges that are required E.g. an edge is missing below: Fire is not conditionally independent of Alarm | {Tampering, Smoke}

But remember what we said a few slides back. Sometimes we may need to make simplifying assumptions - e.g. assume conditional independence when it does not actually hold - in order to reduce complexity

Summary of Dependencies in a Bayesian Network

In 1, 2 and 3, X and Y are dependent (grey areas represent existing evidence/observations)

- In 3, X and Y become dependent as soon as there is evidence on Z or on any of its descendants.
- This is because knowledge of one possible cause given evidence of the effect explains away the other cause

Dependencies in a Bayesian Network: summary

In 1, 2 and 3, X and Y are dependent (grey areas represent existing evidence/observations)

In 3, X and Y become dependent as soon as there is evidence on Z or on any
of its descendants.

 This is because knowledge of one possible cause given evidence of the effect explains away the other cause

Or Conditional Independencies

Or, blocking paths for probability propagation. Three ways in which a path between Y to X (or viceversa) can be blocked, given evidence E

 In 3, X and Y are independent if there is no evidence on their common effect (recall fire and tampering in the alarm example

Or Conditional Independencies

Or, blocking paths for probability propagation. Three ways in which a path

between Y to X (or viceversa) can be blocked, given evidence E

• In 3, X and Y are independent if there is no evidence on their common effect (recall fire and tampering in the alarm example

Practice in the AlSpace Applet

Open the Belief and Decision Networks applet

- Load the problem: Conditional Independence Quiz
- Click on Independence Quiz

Practice in the AlSpace Applet

Answer Quizzes in the Conditional Independence Quiz Panel

Learning Goals so Far

- Given a JPD
- Marginalize over specific variables
- Compute distributions over any subset of the variables
- Use inference by enumeration
- to compute joint posterior probability distributions over any subset of variables given evidence
- Define and use marginal and conditional independence
- Build a Bayesian Network for a given domain (structure)
- Specify the necessary conditional probabilities
- Compute the representational savings in terms of number of probabilities required
- Identify dependencies/independencies between nodes in a Bayesian

Network

Now we will see how to do inference in BNETS Inference Under Uncertainty

- Y: subset of variables that is queried (e.g. Temperaturein example next)
- E: subset of variables that are observed . E = e (W = yesin example)
- Z₁, ..., Z_k remaining variables in the JPD (Cloudyin example)

- Given P(W,C,T) as JPD below, and evidence e: "Wind=yes"
- What is the probability that it is cold? I.e., P(T=cold | W=yes)
- Step 1: condition to get distribution P(C, T| W=yes)

Windy W	Cloudy C	Temperature T	P(W, C, T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hot	0.06
no	no	mild	0.11
no	no	cold	0.03
no	yes	hot	0.04
no	yes	mild	0.25
ñô	yes	cold	0.08

Cloudy C	Temperature T	P(C, T W=yes)
no	hot	
no	mild	
no	cold	
yes	hot	
yes	mild	
yes	cold	

```
PP(CC \land TT | WW = yyyyyy)
= PP(CC \land TT \land WW = yyyyyyy)
= PP(WW = yyyyyyy)
```

As per definition of conditional probability

Given P(W,C,T) as JPD below, and evidence e : "Wind=yes"

Windy W	Cloudy C	Temperature T	P(W, C, T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hot	0.06
no	no	mild	0.11
			0.00
no	no	cold	0.03
no	yes	hot	0.04
	,	mild	0.25
no	yes	mild	0.25
no	yes	cold	0.08
110	y 0 0		

- What is the probability that it is cold? I.e., P(T=cold | W=yes)
- Step 1: condition to get distribution
 P(C, T| W=yes)

Cloudy C	Ten	Temperature T	
	hot	0.04/0.43 ≅ 0.10	
	mild	0.09/0.43 ≅ 0.21	
	cold	0.07/0.43 ≅ 0.16	
	hot	0.01/0.43 ≅ 0.02	
	mild	0.10/0.43 ≅ 0.23	
	cold	0.12/0.43 ≅ 0.28	

```
PP(CC \land TT | WW = yyyyyy)
= PP(CC \land TT \land WW = yyyyyy)
= PP(WW = yyyyyyy)
```

Windy W	Cloudy C	Temperature T	P(W, C, T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
200	200	hot	0.06
no	no		
no	no	mild	0.11
		cold	0.03
no	no	Colu	0.03
no	VAS	hot	0.04
110	yes		
no	yes	mild	0.25
		cold	0.08
110	yes		

Cloudy C	Temperature T	P(C, T W=yes)
no	hot	0.04/0.43 _{\sigma} 0.10
no	mild	0.09/0.43 _{\sigma} 0.21
no	cold	0.07/0.43 _{\u2229} 0.16
yes	hot	0.01/0.43 _{\u2220} 0.02
yes	mild	0.10/0.43 _{\u2229} 0.23
yes	cold	0.12/0.43 _{\(\perp}\) 0.28}

$$\frac{P(C \land T \land W = yyy)}{P(W = yyy)}$$

P(W = yes) is the sum of all these probabilities

 Obtained by marginalizing over Cloudy and As per definition of conditional

probability Temperature

P(W = yes) is essentially a normalization factor that makes the new conditional probabilities sum to 1

- Given P(W,C,T) as JPD below, and evidence e: "Wind=yes"
- What is the probability that it is cold? I.e., P(T=cold | W=yes)
- Step 2: marginalize over Cloudy to get distribution P(T | W=yes)

Cloudy C	Temperature T	P(C, T W=yes)
sunny	hot	0.10
sunny	mild	0.21
sunny	cold	0.16
cloudy	hot	0.02
cloudy	mild	0.23
cloudy	cold	0.28

Temperature T	P(T W=yes)
hot	0.10+0.02 = 0.12
mild	0.21+0.23 = 0.44
cold	0.16+0.28 = 0.44

We get the same result if we

- first marginalize over Cloudy in the original P(W,C,T), for the entries consistent with the evidence Wind = yes
- and then normalized

We get the same result if we

• first marginalize over Cloudy in the original P(W,C,T), for the entries consistent with Wind = yes

Windy W	Cloudy C	Temperature T	P(W,C,T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
-no	no	hot	0.06
no	no	mild	0.11
no	ПО	cold	0.03
-no	yes	hot	0.04
no	yes	mild	0.25
no	yes	cold	0.08

and then normalized

$PP(TT \land WW = yyyyyy)$

Inference in General

Temperature T	P(T W=yes)
hot	0.05/0.43 = ~0.12
mild	0.19/0.43= ~0.44
cold	0.19/0.43 = ~0.44

- Y: subset of variables that is queried (e.g. Temperaturein previous example)
- E: subset of variables that are observed . E = e (W = yesin previous example)
- Z₁, ..., Z_k remaining variables in the JPD (Cloudyin previous example)

We need to compute this numerator for each value of Y, yi

We need to marginalize over all the variables $Z_1,...Z_k$ not involved in the query P(Y)

$$= y_i, E = e) = \sum_{Z_1} P(Z_1, ..., Z_k, Y = y_i, E = e)$$

$$P(Y, E=e) = E=e) \text{Def of conditional probability}$$

$$P(E=e) = P(E=e)$$

$$P(Y,E=e) = P(Y,E=e)$$

$$P(Y,E=e)$$

$$P(Y,E=e) = P(Y,E=e)$$

$$P(Y,E=e)$$

$$P(Y,$$

- All we need to compute is the numerator: joint probability of the query variable(s) and the evidence!
- Variable Elimination is an algorithm that efficiently performs this operation by casting it as operations between factors - introduced next

Lecture Overview

- Recap
- Final Considerations on Network Structure
- Variable Elimination
 - Factors
- Algorithm (time permitting)

Factors

- A factor is a function from a tuple of random variables to the real numbers R
- We write a factor on variables X₁,... ,X_jas f(X₁,... ,X_j)

 A factor denotes one or more (possibly partial) distributions over the given tuple of variables, e.g.,

Operation 1: assigning a variable

We can make new factors out of an existing factor

 Our first operation: we can assign some or all of the variables of a factor.

Χ	Y	Z	val
t	t	t	0.1
t	t	f	0.9
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4

f	t	f	0.6
f	f	t	0.3
f	f	f	0.7

f(X,Y,Z):

What is the result of assigning X= t?

$$f(X=t,Y,Z) = f(X, Y, Z)_{X=t}$$

_	Υ	Z	val
	t	t	0.1
	t	f	0.9
	f	t	0.2
	f	f	0.8

Factor of Y,Z

More examples of assignment

		ı	1	ı				_			
	X	Υ	Z	val							
	t	t	t	0.1		t t	t f	0.1			
	t	t	f	0.9		, L	ı	0.9			
	t	f	t	0.2		f	t	0.2			
f(X,Y,Z):	t	f	f	0.8	\	f	f	0.8			
, ,	f	t	t	0.4		f(X:	=t,Y,	Z)	Facto	r of Y	' , Z
	f	t	f	0.6							
	f	f	t	0.3							
	f	f	f	0.7				, f/V_	+ V 7	f\·	
f(X=t,Y,Z=f):											
Y val											
f(X=t,Y=f,Z=f): 0.8											
Niversia au				t C).9						
Number					f C	8.0					

Recap

If we assign variable A=a in factor f(A,B), what is the correct form for the resulting factor?

Recap

If we assign variable A=a in factor f(A,B), what is the correct form for the resulting factor? • f(B).

When we assign variable A we remove it from the factor's domain

Operation 2: Summing out a variable

- Our second operation on factors: we can marginalize out (or sum out) a variable
- Exactly as before. Only difference: factors don't have to sum to 1
- Marginalizing out a variable X from a factor f(X₁,...,X_n) yields a new factor defined on {X₁,...,X_n} \ {X}

В	Α	С	val
t	t	t	0.03
t	t	f	0.07
f	t	t	0.54
f	t	f	0.36
t	f	t	0.06
t	f	f	0.14

$$\Box \sum_{X_n} f \qquad f \qquad f \qquad t \qquad 0.48$$

$$f \qquad f \qquad f \qquad 0.32$$

$$\Box X_1 \Box \qquad \qquad x \in dom(X_1)$$

 $(\sum_B f_3)(A,C)$

 $f_3=$

Α	С	val
t	t	0.57
t	f	0.43
f	t	0.54
f	f	0.46

Operation 2: Summing out a variable

 Our second operation on factors: we can marginalize out (or sum out) a variable

- Exactly as before. Only difference: factors don't sum to 1
- Marginalizing out a variable X from a factor f(X₁,...,X_n) yields a new factor defined on {X₁,...,X_n} \ {X}

Recap

If we assign variable A=a in factor f(A,B), what is the correct form for the resulting factor?

f(B).
 When we assign variable A we remove it from the factor's domain

If we marginalize variable A out from factor f(A,B), what is the correct form for the resulting factor?

Operation 3: multiplying factors

The product of factors $f_1(A, B)$ and $f_2(B, C)$, where B is the variable (or set of variables) in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

$$(f_1 \times f_2)(A,B,C) = f_1(A,B) \times f_2(B,C)$$

Recap

If we assign variable A=a in factor f(A,B), what is the correct form for the resulting factor?

f(B).
 When we assign variable A we remove it from the factor's domain

If we marginalize variable A out from factor f(A,B), what is the correct form for the resulting factor?

f(B).
 When we marginalize out variable A we remove it from the factor's domain

If we multiply factors $f_4(X,Y)$ and $f_6(Z,Y)$, what is the correct form for the resulting factor?

Recap

If we assign variable A=a in factor f(A,B), what is the correct form for the resulting factor?

f(B).
 When we assign variable A we remove it from the factor's domain

If we marginalize variable A out from factor f(A,B), what is the correct form for the resulting factor?

f(B).
 When we marginalize out variable A we remove it from the factor's domain

If we multiply factors $f_4(X,Y)$ and $f_6(Z,Y)$, what is the correct form for the resulting factor?

- f(X,Y,Z)
- When multiplying factors, the resulting factor's domain is the union of the multiplicands' domains

Lecture Overview

- Recap
- Final Considerations on Network Structure
- Variable Elimination
- Factors
 - Algorithm (time permitting)

Inference in General

- Y: subset of variables that is queried
- E: subset of variables that are observed . E = e
- Z₁, ...,Z_k remaining variables in the JPD

We need to compute this numerator for each value of Y, yi

We need to marginalize over all the variables $Z_1,...Z_k$ not involved in the query P(Y)

=
$$y_i, E = e$$
) = $\sum_{Z_1} P(Z_1, ..., Z_k, Y = y_i, E = e)$

$$P(Y | E=e) = P(Y, E=e)$$
 Def of conditional probability $P(E=e)$

- All we need to compute is the numerator: joint probability of the query variable(s) and the evidence!
- Variable Elimination is an algorithm that efficiently performs this operation by casting it as operations between factors

Variable Elimination: Intro (1)

We can express the joint probability as a factor

observed Other variables not involved in the query

•
$$f(Y, E_{1..., E_j, Z_k})$$

- We can compute P(Y, E₁=e₁, ..., E_j=e_j) by
- Assigning E₁=e₁, ..., E_j=e_j
- Marginalizing out variables Z₁, ..., Z_k, one at a time
 ✓ the order in which we do this is called our elimination ordering

$$P(Y,E_1 = e_1,...,E_j = e_j) = \sum_{Z_k} ... \sum_{Z_1} f(Y,E_1,...,E_j,Z_1,...,Z_k)_{E_1=e_1,...,E_j=e_j}$$

Are we done?

No, this still represents the whole JPD (as a single factor)! Need to exploit the compactness of Bayesian networks

n

Variable Elimination Intro (2)

$$P(Y,E_1 = e_1,...,E_j = e_j) = \sum_{Z_k} f(Y,E_1,...,E_j,Z_1,...,Z_k)_{E_1=e_1,...,E_j=e_j}$$

Recall the JPD of a Bayesian network

$$P(X_1, ..., X_n) = \prod_{i=1} P(X_i | X_1, ..., X_{i-1}) = \prod_{i=1} P(X_i | pa(X_i))$$

We can express the joint factor as a product of factors, one for each conditional probability

$$P(X_i | pa(X_i)) = f(X_i, pa(X_i)) = f_i$$

$$P(Y,E_1 = e_1,...,E_j = e_j) = \sum_{Z_k} ... \sum_{Z_1} f(Y,E_1,...,E_j,Z_1,...,Z_k)_{E_1=e_1,...,E_j=e_j}$$

n

$$= \sum_{Z_k} \cdots \sum_{i=1} \prod_{j=1}^{n} (f_i)_{E_1 = e_1, \dots, E_j = e_j}$$

Computing sums of products

Inference in Bayesian networks thus reduces to computing the sums of products ⁿ

$$\sum \cdots \sum \prod (f)_{E_1=e_1,\ldots,E_{j-1}} i=1$$

$$Z_k$$
 Z

To compute efficiently *n*

$$\sum_{Z_k} \prod_{i=1}^{k} f_i$$

• Factor out those terms that don't involve Zk, e.g.:

$$\sum_{A} f(C,D) \times f$$

$$(A,B,D) \times f(E,A) \times f(D)$$

$$f(C,D) \times f(D) \sum_{A} f(A,B,D) \times f(E,A)$$

$$Af(C,D) \times f'(B,D,E)$$

Summing out a variable efficiently

To sum out a variable Z from a product $f_1 \times ... \times f_k$ of factors

- Partition the factors into
 - √ Those that do not contain Z, say f₁,..., f_i
 - √ Those that contain Z, say f_{i+1},..., f_k

Rewrite

$$\sum_{Z} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \Box \sum_{i=1}^{n} f_{i+1} \times \cdots \times f_k \Box \Box$$

• We thus have New factor **f** obtained by

$$\sum_{f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f' \text{ then summing out}} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f'$$

Zmultiplying f_{i+1} ,..., f_k and Z

Now we have summed out Z

 Z_k

$$= \sum \cdots \sum$$

Simplify Sum of Product: General Case

Factors that do not contain Z_1 Factors that contain Z_1

$$\sum_{k} \cdots \sum_{l} f_{1} \times \cdots \times f_{h} = \sum_{k} \cdots \sum_{l} (f_{1} \times \cdots \times f_{l})$$

$$= \sum_{l} \cdots \sum_{l} f_{1} \times \cdots \times f_{l} \times f'$$

$$= \sum_{l} \cdots \sum_{l} f_{1} \times \cdots \times f_{l} \times f'$$

Factors that contain \mathbb{Z}_2

$$(f_{m} \times \cdots \times f_{j}) \sum_{2} (f_{Z_{2}1} \times \cdots \times f_{Z_{2}k})$$

Factors that do not contain Z

$$= \sum_{k} \cdots \sum_{3} f_{m} \times \cdots \times f_{j} \times f''$$

Etc., continue given a predefined simplification ordering of the variables: variable elimination ordering

Analogy with "Computing sums of products"

This simplification is similar to what you can do in basic algebra with multiplication and addition

Example: it takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh.

How can this expression be evaluated efficiently?

- Factor out the a and then the h giving a(b + c + d
 + h(e + f + g))
- This takes only 7 operations