Матанализ 1 семестр ПИ, Лекция, 11/03/21

Собрано 5 ноября 2021 г. в 10:22

Содержание

	0.1. О-символика	1
1.	Дифференциальное исчисление	3
	1.1. Связь с физикой	4
	1.2. Связь с геометрией	4
	1.3. Бесконечные произволные	4

0.1. О-символика

Def. 0.1.1. Пусть $f \sim g, f \sim h, x \rightarrow x_0$. Если f - h = o(f - g), то говорят асимптотическое равенство $f \sim h$ точнее, чем $f \sim g$.

Пусть $f: D \to \mathbb{R}, D \in \mathbb{R}, x_0$ — предельная точка D. Пусть задана система функций $\{g_k\}_{k=0}^N : \forall k \in [0, N-1] \cap \mathbb{Z}_+ \to g_{k+1}(x) = o(g_k(x)), x \to x_0$

$$f(x) = \sum_{k=0}^{N} c_k \cdot g_k(x) + o(g_N(x))$$

Многочлены получаются, если $g_k(x) = (x - x_0)^k$.

Если $f(x) \sim C \cdot (x - x_0)^k (C \neq 0)$, то $C \cdot (x - x_0)^k$ – главная степенная часть.

Теорема 0.1.2 (О единственности асимптотического разложения). $D \in \mathbb{R}, x_0$ – предельная точка $D, n \in \mathbb{Z}_+; f, g_k : D \to \mathbb{R}, g_{k+1}(x) = o(g_k(x)), x \to x_0 \ \forall k = 0, ..., n-1 \ \text{и} \ \forall V(x_0) \ \exists$ точка в $\dot{V}(x_0)$: в нкй g_n не ноль. Тогда если существует асимптотическое разложение f по системе функций $\{g_k\}$, то оно единственно.

Доказательство. Пусть не единственное. Тогда $\exists c_k, d_k, k = 0, ..., n : \exists i \ c_i \neq d_i$.

 $f(x) = \sum_{k=0}^{n} c_k \cdot g_k(x) + o(g_n(x))$ и $f(x) = \sum_{k=0}^{n} d_k \cdot g_k(x) + o(g_n(x))$ при $x \to x_0$.

Т.к. $g_{k+1}(x) = o(g_k(x))$, то $g_{k+1}(x) = o(g_l(x)) \ \forall l \leq k$ при $x \to x_0$.

Обозначим $E_k = \{x : g_k(x) \neq 0, k = 0, ..., n\}$. Если $g_k = 0$ на $V(x_0)$, то $g_{k+1} = 0$ на $V(x_0)$, $g_n = 0$ на $V(x_0)$.

$$g_{k+1} = o(g_k) \Leftrightarrow \exists \varphi : g_{k+1} = \varphi \cdot g_k$$

Если x_0 – предельная точка E_{k_0} , то она предельная точка всех E_k . Пусть m – наименьший номер $: c_m \neq d_m$. Тогда

$$f(x) = \sum_{k=0}^{m} c_k g_k(x) = o(g_m(x)), f(x) = \sum_{k=0}^{m} d_k g_k(x) + o(g_m(x))$$

Вычтем: $0 = (c_m - d_m)g_m(x) + o(g_m(x))$. Поделим на $g_m(x)$

$$0 = (c_m - d_m) + \frac{o(g_m(x))}{g_m(x)} \xrightarrow[x \to x_0]{} c_m - d_m \Rightarrow c_m = d_m$$

Def. 0.1.3. $x_0 \in \mathbb{R}$, f задана хотя бы на (a, x_0) или (x_0, b) и действует в \mathbb{R} . Тогда прямая $x = x_0$ называется вертикальной асимптотой функции f, если

$$\lim_{x \to x_0+} f(x) = \pm \infty \lor \lim_{x \to x_0-} f(x) = \pm \infty$$

Def. 0.1.4. $(a, +\infty) \subset D \subset \mathbb{R}, f : D \to \mathbb{R}, \alpha, \beta \in \mathbb{R}$. Прямая $y = \alpha x + \beta$ — наклонная асимптота f при $x \to +\infty$, если $f(x) = \alpha x + \beta + o(1)$ при $x \to +\infty$.

Def. 0.1.5. При $x \to -\infty$ аналогично.

Теорема 0.1.6 (Уравнение наклонной асимптоты). $(a, +\infty) \subset D \subset \mathbb{R}, f: D \to \mathbb{R}. \ \alpha, \beta \in \mathbb{R}.$

Прямая $y = \alpha x + \beta$ является асимптотой f при $x \to +\infty \Leftrightarrow \alpha = \lim_{x \to +\infty} \frac{f(x)}{x}, \beta = \lim_{x \to +\infty} (f(x) - \alpha x)$

Доказательство. " \Rightarrow ". По определению $f(x) = \alpha x + \beta + \varphi(x), \varphi \xrightarrow[x \to +\infty]{} 0$. Тогда $\frac{f(x)}{x} = \alpha + \frac{\beta}{x} + \frac{\varphi(x)}{x}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \alpha$$

$$f(x) - \alpha x = \beta + \varphi(x)$$

$$\lim_{x\to+\infty} (f(x) - \alpha x) = \beta$$

"←". Проделаем те же рассуждения "в обратную сторону".

Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}, a$ — предельная точка $E, n \in \mathbb{Z}_+$. Хотим найти многочлен степени не выше n $(P(x) = \sum_{k=0}^{n} c_k (x - x_0)^k)$

$$f(a) = P(a), f(x) = P(x) + o((x-a)^n), x \to a$$
 (1)

Замечание 1.0.1. Если такой многочлен существует, то он единственный.

Доказательство. Пусть $\exists P(x), Q(x)$, удовлетворяющие условию (1). Тогда

$$0 = P(x) - Q(x) + o((x - a)^n)$$

Если $P(x) \neq Q(x)$, то $P(x) - Q(x) = \sum_{k=0}^{n} r_k (x-a)^k = r(x)$

$$\Rightarrow r(x) = o((x-a)^n), x \to a$$

 $r(x) = r_m(x-a)^m + ... + r_n(x-a)^n, m \le n, r_m \ne 0$

$$\Rightarrow \frac{r(x)}{(x-a)^m} = o((x-a)^{n-m}) \Rightarrow r_m \neq 0 = 0$$

Def. 1.0.2. Многочлен, удовлетворяющий условию (1) называется многочленом Тейлора функции f в точке а порядка п $T_{a,n}f$

Def. 1.0.3. Функция f называется дифференцируемой в точке a ($\langle A, B \rangle \to \mathbb{R}, a \in (A, B)$), если $\exists k \in \mathbb{R}$:

$$f(x) = f(a) + k(x - a) + o(x - a), x \rightarrow a$$

Def. 1.0.4. $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), ecnu \exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a} = K\in \mathbb{R}, mo \ K$ называется производной функции f в точке a. (Обозначение $f'(a), \frac{df}{dx}(a), Df(a)$) $\Delta_a f = f(x) - f(a)$ – приращение функции f в точке a. $x-a=\Delta_a x.$

$$f'(a) = \lim_{\Delta_a x \to 0} \frac{\Delta_a f}{\Delta_a x}$$

Теорема 1.0.5. $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B)$. Тогда равносильны три утверждения:

- 1. f дифференцируема в точке a
- 2. $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ существует и равен k
- 3. $\exists F(x): F: \langle A,B \rangle \to \mathbb{R}, F$ непрерывна в точке a, F(a) = k и $f(x) f(a) = F(x)(x-a), x \in \langle A,B \rangle$

Доказательство. 1) \Rightarrow 2). $\exists k : f(x) - f(a) = k(x - a) + o(x - a), x \rightarrow a$

$$\frac{f(x) - f(a)}{x - a} = k + \frac{o(x - a)}{x - a} \to k$$

 $2) \Rightarrow 3$).

$$F(x) = \begin{cases} \frac{f(x) - f(a)}{x - a}, & x \neq a \\ k, & x = a \end{cases}$$

из 2) следует непрерывность F в точке a

 $3) \Rightarrow 1$). $\Pi o 3$) $\exists F$:

$$f(x) - f(a) = F(x)(x-a) = \Leftrightarrow f(X) = f(a) + F(x)(x-a) = f(a) + k(x-a) + (F(x)-k) \cdot (x-a)$$

$$F(x) \xrightarrow[x \to a]{} F(a) = k \Rightarrow (F(x) - k)(x - a) = o((x - a))$$

1.1. Связь с физикой

$$\lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t}$$
 — мгновенная скорость

1.2. Связь с геометрией

Рассмотрим функции: $l_k(x) = f(a) + k(x-a)$, графики – прямые, проходящие через точку (a; f(a))

$$f(x) - l_k(x) = f(x) - f(a) - k(x - a)$$

Если f(x) дифференцируема в точке a

$$f(x) = f(a) + f'(a)(x-a) + o(x-a) \Leftrightarrow f(x) - l_k(x) = (x-a) \cdot (f'(a) - k) + o(x-a)$$

При k = f'(a) разность есть o(x - a).

$$y = f(a) + f'(a)(x - a)$$

касательная в точке a к функции f. $\operatorname{tg} \alpha = f'(a)$.

1.3. Бесконечные производные

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = +\infty \Rightarrow f'(a) = +\infty$$

В таком случае f не является дифференцируемой в точке a.

Односторонняя производная:

$$\exists \lim_{x \to a \pm} \frac{f(x) - f(a)}{x - a}$$