Transfer Learning-Based Classification of Poultry Diseases for Enhanced Health Management

Prepared By: K.Vaishnavi

Team ID: LTVIP2025TMID36090

Date: 04-07-2025

Table of Contents:

- 1. Introduction
 - 1.1 Overview
 - 1.2 Objectives
- 2. Problem Context and Use Cases
 - 2.1 Problem Statement
 - 2.2 Scenario 1: Rural Outbreak Control
 - 2.3 Scenario 2: Commercial Farm Health Monitoring
 - 2.4 Scenario 3: Veterinary Education and Training
- 3. Solution Design
 - 3.1 System Goals
 - 3.2 Functional Components
 - 3.3 System Architecture
- 4. Development & Planning
 - 4.1 Methodology and Tools
 - 4.2 Project Workflow
 - 4.3 Technology Stack
- 5. Model Performance
 - 5.1 Dataset and Training
 - 5.2 Accuracy and Evaluation
 - 5.3 Limitations
- 6. Advantages and Challenges
 - 6.1 Benefits to Stakeholders
 - 6.2 Challenges and Constraints
- 7. Conclusion
- 8. Future Enhancements
- 9. Results

1. Introduction

1.1 Overview

Poultry farming is a critical livelihood source in many regions and plays a major role in the global food economy. However, disease outbreaks among poultry continue to threaten this sector's productivity and profitability. To address this, our project introduces an intelligent, transfer learning-based classification system designed to identify poultry diseases using minimal input.

This system leverages a mobile application where farmers can input observable symptoms, environmental conditions, or upload images. It then provides real-time diagnosis for four disease categories:

- Coccidiosis
- Newcastle Disease
- Salmonella
- Healthy

Key Features:

- Image-based disease identification
- Multimodal data input (symptoms, environmental factors)
- Treatment suggestions and health logs
- Mobile-first interface for accessibility

2. Problem Context and Use Cases

2.1 Problem Statement

Many poultry farmers lack timely access to veterinary services, leading to delayed treatment and increased losses. There is a pressing need for a fast, reliable, and user-friendly diagnostic tool that reduces dependency on traditional vet care.

2.2 Real-World Scenarios

Scenario 1: Rural Outbreak Control

In a rural setting with limited veterinary access, farmers notice symptoms like diarrhea and lethargy. Using the app, they receive a diagnosis of Coccidiosis and implement control measures swiftly, minimizing losses.

Scenario 2: Commercial Farm Health Monitoring

A commercial poultry farm uses the system for daily health checks. It detects early signs of Newcastle Disease in one area, enabling immediate containment and avoiding a full-scale outbreak.

Scenario 3: Veterinary Education

Vet students use the app to simulate real-world cases, diagnose diseases, and learn about treatment protocols. This interactive learning enhances diagnostic skills and prepares them for fieldwork.

3. Solution Design

3.1 System Goals

- Facilitate early disease detection
- Empower farmers with AI-based tools
- Reduce economic impact of disease outbreaks
- Provide education on poultry health

3.2 Functional Components

- Data Input: Image and/or symptoms entered by user
- Model Processing: Transfer learning model classifies the disease
- Output Interface: Disease name, treatment advice, emergency contacts
- History Log: Tracks previous diagnoses and outcomes

3.3 Architecture Summary

- 1. User uploads image or enters data
- 2. Flask backend processes input
- 3. CNN-based model predicts disease
- 4. App displays results and advice

4. Development & Planning

4.1 Methodology

- Development Frameworks: Flask (Backend), TensorFlow (Model), HTML (Frontend)
- Tools: Google Colab , VS Code
- **Deployment:** Localhost

4.2 Project Phases

Sprint	Tasks
Sprint 1	Data preparation, initial model training
Sprint 2	Backend development and UI prototyping
Sprint 3	Model integration and testing
Sprint 4	Final deployment and documentation

5. Model Performance

Total Parameters: 2.1 million

• Training Accuracy: 98.2%

• Validation Accuracy: 94.6%

• Post Fine-Tuning Accuracy: 95.3%

Performance evaluation confirms the model's suitability for real-world application.

6. Advantages and Challenges

Advantages	Challenges
Quick diagnosis	Model limited to trained diseases
Minimizes loss	Requires good image quality
Reduces vet dependency	Some digital literacy needed
Scalable for large farms	Needs periodic updates

7. Conclusion

This project demonstrates how AI and transfer learning can transform disease management in poultry farming. The mobile-integrated tool empowers users with diagnostic capabilities, streamlines health management, and has the potential to revolutionize agricultural healthcare services.

8. Future Enhancements

- Expansion to detect additional poultry diseases
- Integration with prescription APIs for dosage suggestions
- Multilingual app support for regional use
- · Adaptive learning for model improvement over time

9. Results

