RIGID BODY DYNAMICS

1. **RIGID BODY:**

If the above body is rigid

$$V_{A} \cos \theta_{1} = V_{B} \cos \theta_{2}$$

 $V_A \cos \theta_1 = V_B \cos \theta_2$ $V_{BA} = \text{relative velocity of point B with respect to point A.}$

2. MOMENT OF INERTIA (I):

Definition: Moment of Inertia is defined as the capability of system to oppose the change produced in the rotational motion of a body.

Moment of Inertia is a scalar positive quantity.

$$I = mr_1^2 + m_2^2 + \dots$$

= $I_1 + I_2 + I_3 + \dots$

SI units of Moment of Inertia is Kgm².

Moment of Inertia of :

A single particle : $I = mr^2$ 2.1

where m = mass of the particle

r = perpendicular distance of the particle from the axis about which moment of Inertia is to be calculated

2.2 For many particles (system of particles):

$$I = \sum_{i=1}^{n} m_i r_i^2$$

2.3 For a continuous object:

$$I = \int dmr^2$$

where dm = mass of a small element r = perpendicular distance of the particle from the axis

2.4 For a larger object:

$$I = \int dI_{element}$$

where dI = moment of inertia of a small element

3. TWO IMPORTANT THEOREMS ON MOMENT OF INERTIA:

3.1 Perpendicular Axis Theorem [Only applicable to plane lamina (that means for 2-D objects only)].

$$I_z = I_x + I_y$$
 (when object is in x-y plane).

3.2 Parallel Axis Theorem (Applicable to any type of object):

$$I_{AB} = I_{cm} + Md^2$$

List of some useful formula:

Object Moment of Inertia

$$\frac{2}{5}$$
 MR² (Uniform)

Solid Sphere

$$\frac{2}{3}$$
 MR² (Uniform)

Hollow Sphere

MR² (Uniform or Non Uniform)

Ring.

$$\frac{MR^2}{2}$$
 (Uniform)

Disc

MR² (Uniform or Non Uniform)

Hollow cylinder

$$\frac{MR^2}{2}$$
 (Uniform)

Solid cylinder

$$\frac{ML^2}{3}$$
 (Uniform)

$$\frac{ML^2}{12}$$
 (Uniform)

$$\frac{2m\ell^2}{3}$$
 (Uniform)

$$I_{AB} = I_{CD} = I_{EF} = \frac{Ma^2}{12}$$
 (Uniform)

Square Plate

$$\frac{Ma^2}{6}$$
 (Uniform)

Square Plate

$$I = \frac{M(a^2 + b^2)}{12}$$
 (Uniform)

Rectangular Plate

$$\frac{M(a^2+b^2)}{12}$$
 (Uniform)

4. RADIUS OF GYRATION:

$$I = MK^2$$

5. TORQUE:

$$\rightarrow \rightarrow \rightarrow \rightarrow \tau = r \times F$$

5.5 Relation between ' τ ' & ' α ' (for hinged object or pure rotation)

$$\vec{\tau}_{\text{ext}}$$
)_{Hinge} = I_{Hinge} $\vec{\alpha}$

Where $\vec{\tau}_{ext}$)_{Hinge} = net external torque acting on the body about Hinge point

I_{Hinge} = moment of Inertia of body about Hinge point

$$F_{1t} = M_1 a_{1t} = M_1 r_1 \alpha$$

$$F_{2t} = M_2 a_{2t} = M_2 r_2 \alpha$$

$$\tau_{resultant} = F_{1t} r_1 + F_{2t} r_2 + \dots$$

$$= M_1 \alpha r_1^2 + M_2 \alpha r_2^2 + \dots$$

$$\tau_{resultant} = I \alpha$$

Rotational Kinetic Energy = $\frac{1}{2}$. I. ω^2

$$\vec{P} = M\vec{v}_{CM}$$
 \Rightarrow $\vec{F}_{external} = M\vec{a}_{CM}$

Net external force acting on the body has two parts tangential and centripetal.

$$\Rightarrow F_{C} = ma_{C} = m\frac{v^{2}}{r_{CM}} = m\omega^{2} r_{CM} \Rightarrow F_{t} = ma_{t} = m\alpha r_{CM}$$

6. ROTATIONAL EQUILIBRIUM:

For translational equilibrium.

$$\Sigma F_x = 0$$
(i)

$$\Sigma F_{y} = 0$$
 (ii)

The condition of rotational equilibrium is

$$\Sigma\Gamma_z = 0$$

7. ANGULAR MOMENTUM (L)

7.1 Angular momentum of a particle about a point.

$$\vec{L} = \vec{r} \times \vec{P}$$

$$\Rightarrow$$

$$L = rpsin\theta$$

$$|\vec{L}| = r_{\perp} \times F$$

$$|\vec{L}| = P_{\perp} \times r$$

7.3 Angular momentum of a rigid body rotating about fixed axis:

$$\overrightarrow{\mathsf{L}}_{\mathsf{H}} = \mathsf{I}_{\mathsf{H}} \overrightarrow{\omega}$$

 L_{H} = angular momentum of object about axis H.

 I_{II} = Moment of Inertia of rigid object about axis H.

 ω = angular velocity of the object.

7.4 Conservation of Angular Momentum

Angular momentum of a particle or a system remains constant if $\tau_{\rm ext}$ = 0 about that point or axis of rotation.

7.5 Relation between Torque and Angular Momentum

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Torque is change in angular momentum

7.6 Impulse of Torque:

$$\int \tau dt = \Delta J \qquad \qquad \Delta J \to \text{Change in angular momentum}.$$

For a rigid body, the distance between the particles remain unchanged during its motion i.e. $r_{P/Q}$ = constant For velocities

$$V_{P} = \sqrt{V_{Q}^{2} + (\omega r)^{2} + 2 V_{Q} \omega r \cos \theta}$$

For acceleration:

 θ , ω , α are same about every point of the body (or any other point outside which is rigidly attached to the body).

Dynamics:

$$\vec{\tau}_{cm} = I_{cm} \, \vec{e} \, , \, \, \vec{F}_{ext} = M \vec{a}_{cm}$$

$$\vec{P}_{system} = M \vec{v}_{cm}$$
 ,

Total K.E.
$$= \frac{1}{2} \text{Mvcm}^2 + \frac{1}{2} I_{\text{cm}} \omega^2$$

Angular momentum axis $AB = \bar{L}$ about $C.M. + \bar{L}$ of C.M. about AB

$$\vec{L}_{AB} = I_{cm} \vec{\omega} + \vec{r}_{cm} \times M\vec{v}_{cm}$$