第二、三次作业答案

1.58

The fundamental period of the sinusoidal signal x[n] is N = 10. Hence the angular frequency of x[n] is

$$\Omega = \frac{2\pi m}{N}$$
 m: integer

The smallest value of Ω is attained with m = 1. Hence,

$$\Omega = \frac{2\pi}{10} = \frac{\pi}{5}$$
 radians/cycle

1.60

Real part of x(t) is

$$Re\{x(t)\} = Ae^{\alpha t}cos(\omega t)$$

Imaginary part of x(t) is

$$Im\{x(t)\} = Ae^{\alpha t}\sin(\omega t)$$

1.64(a, c, f, g)

	memoryless	stable	causal	linear	Time-invariant
(a)	√	٧	٧	х	٧
(c)	٧	х	٧	х	٧
(f)	х	х	٧	٧	٧
(g)	х	٧	х	х	٧

(a)	memoryless	stable	causal	Nonlinear	Time-invariant
(c)	memoryless	Nonstable	causal	Nonlinear	Time-invariant
(f)	memory	Nonstable	causal	linear	Time-invariant
(g)	memory	stable	Noncausal	Nonlinear	Time-invariant

积分器与微分器均不稳定。

1.76

若认为是一个系统:

若认为是三个系统:

	causal	Time invariant	memoryless
H1	√	√	х
H2	х	x/ √	х
Н3	√	√	х

H1	causal	Time invariant	memory
H2	Noncausal	都行	memory
Н3	causal	Time invariant	memory

(d)

Response of H_1 to x(t):

Response of H_2 to x(t):

Response of H_3 to x(t):

(a)
$$x[n] = 3\delta[n] - 2\delta[n-1]$$

$$\begin{array}{lcl} y[n] & = & 3h[n] - 2h[n-1] \\ & = & 3\delta[n+1] + 7\delta[n] - 7\delta[n-2] + 5\delta[n-3] - 2\delta[n-4] \end{array}$$

n	-1	0	2	3	4
y[n]	3	7	-7	5	-2

(b) 答案有误,正确答案如下

$$x[n] = \delta(n+1) + \delta(n) + \delta(n-1) + \delta(n-2)$$

$$y[n] = h(n+1) + h(n) + h(n-1) + h(n-2)$$

$$= \delta(n+2) + 4\delta(n+1) + 6\delta(n) + 5\delta(n-1) + 5\delta(n-2) + 2\delta(n-3) + \delta(n-5)$$

n	-2	-1	0	1	2	3	5
y[n]	1	4	6	5	5	2	1

(c) x[n] as given in Fig. P2.32 (b)

.

$$\begin{split} x[n] &= 2\delta[n-3] + 2\delta[n] - \delta[n+2] \\ y[n] &= 2h[n-3] + 2h[n] - h[n+2] \\ &= -\delta[n+3] - 3\delta[n+2] + 7\delta[n] + 3\delta[n-1] + 8\delta[n-3] + 4\delta[n-4] - 2\delta[n-5] + 2\delta[n-6] \end{split}$$

	n	-3	-2	0	1	3	4	5	6
У	[n]	-1	-3	7	3	8	4	-2	2

2.34(a,c,d)

(a)
$$m[n] = x[n] * z[n]$$

n	-5	-4	-3	-2	-1	0	1	2
m[n]	1	2	3	4	6	8	10	11
n	3	4	5	6	7	8	9	10
m[n]	12	11	10	8	6	4	2	0

(c)
$$m[n] = x[n] * f[n]$$

$$\begin{aligned} & n < -10 \\ & m[n] = 0 \\ & for \ n-1 < -5 \\ & m[n] = 0 \\ & m[n] = \frac{1}{2} \sum_{k=-5}^{n+5} k = -5n - 55 + \frac{1}{2}(n+10)(n+11) \\ & for \ n+5 < 6 \\ & -4 \le n < 1 \\ & m[n] = \frac{1}{2} \sum_{k=n-1}^{n+5} k = \frac{7}{2}(n-1) + \frac{21}{2} \\ & for \ n-1 < 6 \\ & 1 \le n < 7 \\ & m[n] = \frac{1}{2} \sum_{k=n-1}^{5} k = \frac{1}{2}(7-n) \left[(n-1) + \frac{1}{2}(6-n) \right] \\ & for \ n-1 \ge 6 \\ & n \ge 7 \end{aligned}$$

$$m[n] = 0$$

$$m[n] = \begin{cases}
0 & n < -10 \\
-5n - 55 + \frac{1}{2}(n+10)(n+11) & -10 \le n < -4 \\
\frac{7}{2}(n-1) + \frac{21}{2} & -4 \le n < 1 \\
\frac{1}{2}(7-n)\left[(n-1) + \frac{1}{2}(6-n)\right] & 1 \le n < 7 \\
0 & n \ge 7
\end{cases}$$

注意:

$$m[n] = -2.5n - 27.5 + 0.25(n+10)(n+11)$$
$$= \frac{n^2 + 11n}{4}, -10 \le n < -4$$

n	-10	-9	-8	-7	-6	-5	-4	-3	-2
m[n]	-2.5	-4.5	-6	-7	-7.5	-7.5	-7	-3.5	0
n	-1	0	1	2	3	4	5	6	7
m[n]	3.5	7	7.5	7.5	7	6	4.5	2.5	

(d)
$$m[n] = x[n] * g[n]$$

$$\begin{aligned} & \text{for } n+5< -8 & & n < -13 \\ & & m[n] = 0 \\ & \text{for } n-1 < -7 & -14 \le n < -6 \\ & & m[n] = \sum_{k=-8}^{n+5} 1 = n+14 \\ & \text{for } n+5 < 4 & -6 \le n < -1 \\ & & m[n] = \sum_{k=n-1}^{-2} 1 = -n \\ & \text{for } n-1 < -1 & -1 \le n < 0 \\ & & m[n] = \sum_{k=n-1}^{-2} 1 + \sum_{k=4}^{n+5} 1 = -2 \\ & \text{for } n-1 < 4 & 0 \le n < 5 \\ & & m[n] = \sum_{k=4}^{n+5} 1 = n+2 \end{aligned}$$

$$\begin{aligned} & \text{for } n-1 < 11 & 5 \le n < 12 \\ & m[n] = \sum_{k=n-1}^{10} 1 = 12 - n \end{aligned}$$

$$\begin{aligned} & \text{for } n-1 \ge 11 & n \ge 12 \\ & m[n] = 0 \end{aligned}$$

$$\begin{aligned} & m[n] = 0 \\ & 0 & n < -13 \\ & n + 14 & 13 \le n < -6 \\ & -n & -6 \le n < -1 \\ & -2 & -1 \le n < 0 \\ & n + 2 & 0 \le n < 5 \\ & 12 - n & 5 \le n < 12 \\ & 0 & n \ge 12 \end{aligned}$$

n	-13	-12	-11	-10	-9	-8	-7	-6	-5
M[n]	1	2	3	4	5	6	7	6	5
n	-4	-3	-2	-1	0	1	2	3	4
M[n]	4	3	2	2	2	3	4	5	6
n	5	6	7	8	9	10	11		
M[n]	7	6	5	4	3	2	1		

五、2.35

Figure P2.35. Graph of x[k] and h[n-k]

for
$$n=-1$$

$$y[-1] = \sum_{k=-1}^{-1} 10000(1.05)^{n-k} = 10000(1.05)^{n+1}$$
 \$1000 is invested annually, similar to example 2.5 for $n \ge 0$
$$y[n] = 10000(1.05)^{n+1} + \sum_{k=0}^{n} 1000(1.05)^{n-k}$$

$$y[n] = 10000(1.05)^{n+1} + 1000(1.05)^{n} \sum_{k=0}^{n} (1.05)^{-k}$$

$$y[n] = 10000(1.05)^{n+1} + 1000(1.05)^{n} \frac{1 - \left(\frac{1}{1.05}\right)^{n+1}}{1 - \frac{1}{1.05}}$$

$$y[n] = 10000(1.05)^{n+1} + 20000 \left[1.05^{n+1} - 1\right]$$

The following is a graph of the value of the account.

n从0算起也算对,即

$$y[n] = 10000, n = 0$$

 $y[n] = 10000(1.05)^n + 20000[1.05^n - 1], n \ge 1$

