BA865 Crowd Counting

Keshuo Liu, Qianru Ai, Zheming Xu

Table of Content

- Background
- Motivation
- Dataset
- Pre-processing
- Self-trained Model

- Pre-trained Models
 - Img2Vec, MCNN,CSRNet
- Comparison
- Test Dataset
- Conclusion

Background

Smart City

To improve the efficiency of city governance, regarding public transportation, utility services, parking and vehicles, public art, etc.

Go Boston 2030

To expand access, improve safety, and ensure liability.

Top Projects

- Walking and Bicycle Friendly Main Street Districts
- Mattapan to LMA Rapid Bus
- North Station to South Boston Waterfront Rapid Bus and Ferry
- Fairmount Indigo Line Service Improvements and Urban Rail
- Columbia Road Greenway
- 9 Smart Signal Corridors and Districts
- Neighborhood Mobility microHUBS

Top Policies

- State of Good Repair-Particularly Bridges
- Restructure All Bus Routes
- Autonomous Vehicles
- Vision Zero Safety Initiatives (Corridors, Crossings, Slow Streets)

Action Plan Highlights

Motivation

- To build deep learning algorithms about crowd counting
 - o a fundamental algorithm for broad application

- To count people in different images.
 - automated public monitoring such as surveillance and traffic control
 - Under the current pandemic situation, crowd counting is a more heating topic because it could be used to monitor the risk of disease transmission
 - more complex since each person has different features

Dataset

Train + Validation:

Original Source: http://personal.ie.cuhk.edu.hk/~ccloy/downloads mall dataset.html

- 2000 RGB images of frames in a video (as inputs) & the number of pedestrians in the image (as target variable)
- 640x480 pixels at 3 channels
- The label of this dataset is the 'count' of people in each frame which is an existing feature in the dataset.

Test (34): Public Transportation

We took 34 pictures of the crowd waiting for the green line or traffic lights for testing. The label of this dataset is also 'count'.

Pre-processing

- Reshape images to 256x256 pixels
- Augmentation
- Target values (people count) vary between 13 and 53 with a mean of 31.16. Values are normally distributed with the median value close to the mean.

Self-trained Model

- Residual Block (Conv+ Relu Activation)
- Dense $(128 \rightarrow 8)$
- Loss function: MAE
- Optimizer: Adam

Input 3	3@256×256					
Data Augmen	tation 3@256×256					
Conv 3	3@256×256					
Conv 32@254×254						
Conv 32@254×254	Residual (Conv 32@254×254)					
MaxPooling 32@254×254						
Add 3	32@85×85					
Conv 32@85×85						
Conv 64@85×85	Residual (Conv 32@85×85)					
MaxPooling 64@85×85						
Add (64@29×29					
Conv 64@29×29	Pasidual (Carry 64@20×20)					
Conv 128@29×29	Residual (Conv 64@29×29)					
Add 1	28@29×29					
GlobalMaxPo	ooling 128@29×29					
Dro	pout 128					
Dens	se 128→8					
Ot	utput 1					

Self-trained Model: Hyper-parameters

kernal_size	[<mark>3</mark> ,5]
strides	[2, <mark>3</mark>]
units	[16, <mark>32</mark>]
batch_size	[10, <mark>20</mark>]
epochs	[20, <mark>30</mark>]

${\sf GridSearchCV}$

```
scoring='neg_mean_absolute_error'
```

cv=5

Best Score : -5.6352673482894895

Pre-trained Models: Img2Vec: Image Embedding

Default Resnet-18 → vector length: 512

Pre-trained Models:

MCNN: Multi-Column CNN

Figure 3: The structure of the proposed multi-column convolutional neural network for crowd density map estimation.

Pre-trained Models:

CSRNet: CNN2D frond-end + Dilated CNN back-end

Configurations of CSRNet							
A	В	С	D				
inp	out(unfixed-reso	lution color imag	ge)				
	front	t-end					
	(fine-tuned fr	om VGG-16)					
	conv3	3-64-1					
	conv3	3-64-1					
	max-p	ooling					
	conv3						
	conv3	-128-1					
	max-pooling						
	conv3-256-1						
	conv3	-256-1					
	conv3						
		ooling					
	conv3						
	conv3	SACRED SA					
	conv3-512-1						
back-end (four different configurations)							
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4				
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4				
conv3-512-1	conv3-512-2	conv3-512-2	conv3-512-4				
conv3-256-1	conv3-256-2	conv3-256-4	conv3-256-4				
conv3-128-1	conv3-128-2	conv3-128-4	conv3-128-4				
conv3-64-1	conv3-64-2	conv3-64-4	conv3-64-4				
	conv	1-1-1					

Comparison: 5-CV MAE

Model	Avg Validation MAE
Self_trained	6.240
Pre_trained_Img2vec	5.936
Pre_trianed_MCNN	<mark>5.654</mark>
Pre_trained_CSRNet	6.052

Test Dataset

	count	mean	std	min	25%	50%	75%	max
crowd_num	34.0	8.176471	5.07203	2.0	5.0	6.5	9.75	20.0

Test Dataset: Performance

- 34 images around Boston University
- Reshape images to 256x256 pixels
- Sparse distribution
- Target values (people count) vary between 2 and 20 with a mean of 8.18
- MAE = 23.97

Conclusion

- The MCNN pretrained model performed the best (lowest Validation MAE: 5.654)
- Model performance on the test dataset is bad
 - Different angles, backgrounds...
 - People in some of the images were so close to other people and objects

Next Steps

- Training models using images of different scenarios
- Try thermograms
 - Protect privacy
 - Not limited by different backgrounds

Reference

Mall Dataset: http://personal.ie.cuhk.edu.hk/~ccloy/downloads mall dataset.html

Img2Vec: https://github.com/christiansafka/img2vec

MCNN: http://people.eecs.berkeley.edu/~yima/psfile/Single-Image-Crowd-Counting.pdf

https://github.com/svishwa/crowdcount-mcnn

CSRNet: https://arxiv.org/pdf/1802.10062.pdf

https://github.com/leeyeehoo/CSRNet-pytorch