计算方法第三次编程作业

PB20511896 王金鑫

1 题目

给定两个矩阵如下:

1.

$$A_{1} = \begin{bmatrix} \frac{1}{9} & \frac{1}{8} & \frac{1}{7} & \frac{1}{6} & \frac{1}{5} \\ \frac{1}{8} & \frac{1}{7} & \frac{1}{6} & \frac{1}{5} & \frac{1}{4} \\ \frac{1}{7} & \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & \frac{1}{1} \end{bmatrix}$$

2.

$$A_2 = \begin{vmatrix} 4 & -1 & 1 & 3 \\ 16 & -2 & -2 & 5 \\ 16 & -3 & -1 & 7 \\ 6 & -4 & 2 & 9 \end{vmatrix}$$

用带规范方法的反幂法求得上述两个矩阵的按模最小特征值和特征向量。

要求按照课本上的反幂法流程实现,即使用 LU 分解(Doolittle 分解)解迭代方程 $X^{k+1} = A^{-1}Y^k$ (可使用第二次上机实验的实现代码)。初始向量取全 1 向量,应计算每次迭代时特征值的估计值,并在相邻两次迭代的特征值的差的绝对值小于 10^{-5} 时停止迭代。

2 算法

带规范方法的反幂法,其中迭代方程 $X^{k+1}=A^{-1}Y^k$,即 $AX^{k+1}=Y^k$ 通过 Doolittle 分解来求解。

当相邻两次迭代的特征值之差的绝对值小于 10-5 时停止迭代。

3 结果

迭代过程如图 1,图 2 所示。求解结果如图 3,图 4 所示。

k	Lambda	X(k)					Y(k)				
0							1	1	1	1	1
1	9.749976	9.749976	8.636252	-9.198278	1.761107	-0.7117	1	0.885772	-0.94342	0.180627	-0.073
2	94.935676	8.020228	94.935676	-79.53338	6.08086	-7.0483	0.084481	1	-0.83776	0.064052	-0.07424
3	114.06646	-9.387841	114.06646	-91.41177	7.808143	-6.86633	-0.0823	1	-0.80139	0.068453	-0.0602
4	114.18668	-12.32358	114.18668	-90.58665	7.832214	-6.75384	-0.10793	1	-0.79332	0.068591	-0.05915
5	114.10782	-12.77123	114.10782	-90.39081	7.837361	-6.72816	-0.11192	1	-0.79215	0.068684	-0.05896
6	114.09637	-12.84117	114.09637	-90.35986	7.837884	-6.72467	-0.11255	1	-0.79196	0.068695	-0.05894
7	114.09426	-12.85207	114.09426	-90.35482	7.837976	-6.7241	-0.11264	1	-0.79193	0.068697	-0.05894
8	114.09394	-12.85378	114.09394	-90.35403	7.837989	-6.72401	-0.11266	1	-0.79193	0.068698	-0.05893
9	114.09389	-12.85405	114.09389	-90.35391	7.837991	-6.72399	-0.11266	1	-0.79193	0.068698	-0.05893
10	114.09388	-12.85409	114.09388	-90.35389	7.837991	-6.72399					

图 1: 求解 A1 的迭代过程

k	Lambda	X(k)				Y(k)			
0						1	1	1	1
1	-6.27074	-0.80835	-6.27074	0.527111	-0.85482	0.128909	1	-0.08406	0.136318
2	-4.43048	-0.71382	-4.43048	0.248785	-0.56503	0.161115	1	-0.05615	0.127532
3	-4.42758	-0.70627	-4.42758	0.261916	-0.56776	0.159517	1	-0.05916	0.128233
4	-4.42628	-0.70642	-4.42628	0.261137	-0.56741	0.159597	1	-0.059	0.12819
5	-4.42635	-0.70641	-4.42635	0.261177	-0.56742	0.159593	1	-0.05901	0.128192
6	-4.42634	-0.70641	-4.42634	0.261175	-0.56742				

图 2: 求解 A2 的迭代过程

图 3: A1 的求解结果

图 4: A2 的求解结果

4 结果分析

- (a) A1 的按模最小特征值比 A2 的更接近 0,但是迭代次数比 A2 更多。故 "A 的按模最小特征值越接近 0,收敛越快"不成立。
 - (b) "估计每次迭代的特征值"中未遇到问题。