Colle L2PR-3 A1

1 Question de cours

Donner la formule de Taylor pour les polynomes. Démontrez la.

2 Exercice

On suppose ici que la suite de terme générale sin(n) est convergente de limite l.

- a) Montrer que la suite de terme général cos(n) est convergente. On note l' sa limite.
- b) Exprimer de deux manières manières différentes la limite des suites sin(2n) et cos(2n).
- c) En déduire les valeurs possibles pour l' et donc que l=0 et l'=1
- d) Conclure.
- e) Que peut on dire de la série de terme général sin(n)? Et de celle de terme général $sin(\frac{1}{n^2})$?

Colle L2PR-3 A2

1 Question de cours

Donner le critère de convergence pour les séries alternées. Démontrer le.

2 Exercice

Cet exercice traite des polynomes de Legendre. Pour $n\in\mathbb{N}$ et $x\in\mathbb{R}$ on pose :

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 - 1)^n)$$

- a) Déterminer le degré et le coefficient dominant de L_n .
- b) Calculer $L_n(1)$ et $L_n(-1)$
- c) Calculer de deux manières différentes $L_n(0)$.

Colle L2PR-3 B1

1 Question de cours

- 1. Donner la définition de suites adjacentes.
- 2. Énoncer le théorème d'Abel pour la convergence des séries.

2 Exercice

On définit une suite de polynomes $(T_n)_{n\in\mathbb{N}}$ comme suit :

$$T_0=1,\ T_1=X$$
 , pour $n\in\mathbb{N}$ $T_{n+2}=2XT_{n+1}-T_n.$

- a) Déterminer le degré et le coefficient dominant de T_n .
- b) Soit $n \in \mathbb{N}$, montrer que T_n est l'unique polynome vérifiant :

$$\forall x \in \mathbb{R}, T_n(cos(x)) = cos(nx).$$

- c) Déterminer ses racines
- d) Déduire des relations analogues à (1) vérifiées par T_n' et T_n'' .
- e) Déduire une équation différentielle du second ordre vérifiée par \mathcal{T}_n

Colle L2PR-3 B2

1 Question de cours

Soit $P \in \mathbb{K}[X]$ un polynôme quelconque et $A \in M_n(\mathbb{K})$ une matrice carrée. Vérifier que $P(Q.A.Q^{-1}) = Q.P(A).Q^{-1}$ quelle que soit la matrice inversible Q.

2 Exercice

Soient $\sum_{n=1}^{+\infty} a_n$ et $\sum_{n=1}^{+\infty} b_n$ deux séries à termes strictement positifs telles que $\exists n_0 \in \mathbb{N}$ tel que pour $n \in \mathbb{N}, n \geqslant n_0$:

$$\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}.$$

- 1. Montrer que la convergence de la série des b_n entraine celle de la série des a_n .
- 2. Montrer que la divergence de la série des a_n entraine celle de la série des b_n .

Colle L2PR-3 C1

1 Question de cours

Donner la définition des termes suivants pour un polynome $A\in\mathbb{K}[X]$ de degré n :

- a) monome dominant de ${\cal A}$
- b) $B \in \mathbb{K}[X]$ divise A.
- c) A est scindé simple sur \mathbb{K} .

2 Exercice

Étudier la convergence des séries suivantes :

- a) $\sum_{n=1}^{+\infty} \frac{n^3+1}{n+7}$
- b) $\sum_{n=1}^{+\infty} \frac{n+1}{n+7}$
- c) $\sum_{n=1}^{+\infty} \sin(\frac{1}{n^2})$
- d) $\sum_{n=1}^{+\infty} (-1)^n \frac{n^3}{n!}$
- e) $\sum_{n=1}^{+\infty} \left(\frac{n}{n+1}\right)^{n^2}$

Colle L2PR-3 C2

1 Question de cours

En justifiant, donner deux exemples de séries divergentes, deux exemples de séries convergentes, deux exemples de suites équivalentes et un exemple de suites adjacentes

2 Exercice

- 1. Montrer que les racines complexes de X^3-X+1 sont simples sans les calculer. On les note a,b et c. Calculer :
 - i) a + b + c
 - ii) $a^2 + b^2 + c^2$
 - iii) $a^3 + b^3 + c^3$
 - iv) $a^{-1} + b^{-1} + c^{-1}$
- 2. Trouver les solutions du système suivant :

$$x + y + z = 11 \tag{1}$$

$$x^2 + y^2 + z^2 = 49 (2)$$

$$x^{-1} + y^{-1} + z^{-1} = 1 (3)$$

AUTRES EXERCICES

Exercice 1

Soit n un entier naturel, montrer que le polynome $\sum_{k=0}^{n} \frac{X^k}{k!}$ n'a pas pas de racine multiple dans \mathbb{C} .

Exercice 2

On considère l'équation d'inconnue $P \in \mathbb{C}[X]$:

$$P(X^{2}) + P(X)P(X+1) = 0.$$

Dans la suite, on se fixe une solution $P \neq 0$.

- a) Soit a une racine de P. Montrer que a^2 et $(a-1)^2$ sont également des racines de P.
- b) Soit a une racine de P. Montrer que $a\in \left\{0,1,-j,-j^2\right\}$ avec $j=\exp(\frac{2i\pi}{3})$