COMPUTER SCIENCE 349A

Handout Number 3

Two methods of representing a real number p in floating-point: **rounding** and **chopping**.

Example

Let
$$b = 10$$
, $k = 4$ and $p = 2/3$.

	floating - point approximation to <i>p</i>	absolute error	relative error
chopping	$+0.6666 \times 10^{0}$	0.0000666	0.0001
rounding	$+0.6667 \times 10^{0}$	0.0000333	0.00005

Note that the above absolute errors are **round-off errors** (that is, they are the difference between a real number p and a floating-point approximation to p).

Question: What is the maximum possible relative error in the k-digit, base b, floating-point representation p^* of a real number p?

With chopping:

Every real number p lies in some interval $[b^{t-1}, b^t)$ for some integer t.

The distance between 2 floating-point numbers in this interval is b^{t-k} .

Therefore, the absolute error satisfies

$$|p-p*| < b^{t-k}.$$

Thus, the relative error satisfies

$$\frac{\left|p-p^*\right|}{\left|p\right|} < \frac{b^{t-k}}{b^{t-1}} \text{ since } p \ge b^{t-1}$$

which implies that

$$\frac{\left|p-p\right|^{*}}{\left|p\right|} < b^{1-k}.$$

See (3.9) on page 68 of the 6^{th} edition (page 71 of the 7^{th} edition). The quantity b^{1-k} is called the **unit round-off** (or the **machine epsilon**). Note that it is independent of t and the magnitude of p. The number k-1 indicates approximately the number of significant base t digits in a floating-point approximation to a real number t.

Example

$$b = 2, k = 24$$
 (a 32 bit word)

The unit round-off is $b^{1-k} = 2^{-23} \approx 10^{-7}$, implying that in such a floating-point system, a real number has about 23 correct binary digits or 7 correct decimal digits.

With rounding

Similar to above, except now the absolute error satisfies

$$|p-p*|\leq \frac{1}{2}b^{t-k}.$$

Thus, the relative error satisfies

$$\frac{|p-p^*|}{|p|} \le \frac{0.5b^{t-k}}{b^{t-1}} = \frac{1}{2}b^{1-k},$$

which is the **unit round-off** in this case. See (3.10) on page 68 of the 6^{th} ed. or page 71 of the 7^{th} ed.

FLOATING-POINT ARITHMETIC (pages 70-73 of the 6^{th} ed. or pages 73-76 of the 7^{th} ed.)

- -- a simulation of real arithmetic
- -- **Notation**: we'll use the symbol $f\ell$. For example, if x denotes a real number, then $f\ell(x)$ denotes its floating-point representation. Similarly, if a and b are floating-point numbers, then

$$f\ell(a+b)$$
, $f\ell(a-b)$, $f\ell(a \times b)$, $f\ell(a/b)$

denote the floating-point sum, difference, product and quotient, respectively, of a and b.

The implementation of these floating-point operations (in either software or hardware) depends on several factors, and includes, for example, a choice regarding

- -- rounding or chopping
- -- the number of significant digits used for floating-point addition and subtraction.

For simplicity, we'll consider only "idealized" floating-point arithmetic, which is defined as follows. Let \bullet denote any one of the basic arithmetic operations $+ - \times /$, and let x and y denote floating-point numbers. $f\ell(x \bullet y)$ is obtained by performing exact arithmetic on x and y, and then rounding or chopping this result to k significant digits.

<u>Note 1</u>: although no actual digital computers or calculators implement floating-point arithmetic this way (it's too expensive, as it requires a very long accumulator for doing addition and subtraction), idealized floating-point arithmetic

- -- behaves very much like any actual implementation
- -- is very simple to do in hand computations, and
- -- has accuracy almost identical to that of any actual implementation.

<u>Note 2</u>. If $f\ell$ is applied to an arithmetic expression containing more than one arithmetic operation, then each of the arithmetic operations must be replaced by its corresponding floating-point operation. For example,

$$f\ell(x+y-z)$$
 means $f\ell(f\ell(x+y)-z)$

and

$$f\ell(xy+z/\cos(x))$$
 means $f\ell(f\ell(x\times y)+f\ell(z/f\ell(\cos(x)))$.

Each $f\ell$ operation is computed according to the rules of idealized floating-point arithmetic, that is, the exact value of the result is rounded or chopped to k significant digits before proceeding with the rest of the computation. Note that we'll compute $f\ell(\cos x)$, $f\ell(\sqrt{x})$, $f\ell(e^x)$ and so on this way.

Note 3: with idealized floating-point arithmetic, the maximum relative error in $f\ell(x \bullet y)$ is the same as the maximum relative error in converting a real number z to floating-point form. Thus, for a <u>single</u> floating-point $+ - \times /$, the <u>relative error is very small</u>: it is $< b^{1-k}$ (with chopping) or $< \frac{1}{2}b^{1-k}$ (with rounding). However, the relative error in a floating-point computation <u>might be large</u> if more than one floating-point operation is performed. For example, compute $f\ell(x+y+z)$ when

$$x = +0.1234 \times 10^{0}$$
, $y = -0.5508 \times 10^{-4}$, $z = -0.1232 \times 10^{0}$

using base b = 10, precision k = 4, rounding idealized floating-point arithmetic.

$$f\ell(x+y) = +0.1233 \times 10^{0}$$
 since $x+y = 0.12334492$
 $f\ell(x+y+z) = +0.1000 \times 10^{-3}$ since $.1233 - .1232 = 0.0001$

Since the exact value x + y + z = 0.00014492, the relative error is

$$\left| \frac{0.00014492 - 0.0001}{0.00014492} \right| = 0.31 \text{ or } 31\%.$$

Note, however, that this large relative error can be avoided by changing the order in which these 3 numbers are added together. Consider the evaluation of

$$f\ell(x+z+y) = f\ell(f\ell(x+z)+y).$$

We obtain

$$f\ell(x+z) = 0.0002$$
 or 0.2000×10^{-3}
 $f\ell(f\ell(x+z)+y) = 0.1449 \times 10^{-3}$ since $0.0002 - 0.00005508 = 0.00014492$,

which has a relative error of only 0.000138 or 0.0138%.