Master MVA 2019

Feuille d'exercices : Analyse Spectrale - correction

Exercice 1 (Spectre de la loi de Marčenko–Pastur)

Rappelons que la mesure de probabilité $\mathbb{P}_{\check{\mathbf{M}}\mathbf{P}}$ de Marčenko–Pastur (de rapport c) est définie par sa transformée de Stieltjes $g_{\check{\mathbf{M}}\mathbf{P}}(z)$, unique solution dans \mathbb{C}^+ pour $z\in\mathbb{C}^+$ de l'équation d'inconnue g

$$g = \frac{1}{1 - c - z - czq}.$$

Nous allons décrire $\mathbb{P}_{\check{\mathbf{M}}\mathbf{P}}$ à partir de $g_{\check{\mathbf{M}}\mathbf{P}}$.

- 1. Démontrez que $\mathbb{P}_{\mathsf{MP}}(\{0\}) = \max(0, 1 1/c)$. Pour cela, on s'aidera de (i) $\lim_{y \to 0} iyg_{\mathsf{MP}}(iy) = \mathbb{P}_{\mathsf{MP}}(\{0\})$ et (ii) du fait que $zg_{\mathsf{MP}}(z) \in \mathbb{C}^+$ pour $z \in \mathbb{C}^+$.
- 2. Démontrez que \mathbb{P}_{MP} admet une densité f sur \mathbb{R}^* définit pour x>0 par

$$f(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)^+ ((1 + \sqrt{c})^2 - x)^+}.$$

3. En déduire l'expression de $\mathbb{P}_{\mathsf{MP}}([a,b])$ pour tout $a, b \in \mathbb{R}, a < b$.

Correction

1. au premier ordre pour y faible, on obtient

$$iyg_{ ext{MP}}(iy) = rac{1-c}{2c} \pm rac{1-c}{2c} + rac{1}{2c}iy\left(rac{1+c}{1-c} \mp 1
ight) + o(y).$$

En se rappelant que $zg_{\text{MP}}(z) \in \mathbb{C}^+$ pour $z \in \mathbb{C}^+$, on trouve alors le signe correct en fonction de c. Le résultat vient alors.

2. En résolvant l'équation en m, on trouve

$$g_{\text{MP}}(z) = \frac{1-c}{2cz} - \frac{1}{2c} \pm \frac{\sqrt{(1-c-z)^2 - 4cz}}{2cz}$$

où le signe est pris de manière à ce que $g_{\mathsf{MP}}(z) \in \mathbb{C}^+$ pour $z \in \mathbb{C}^+$.

3. Pour x > 0,

$$\frac{1}{\pi}\Im[g_{\text{MP}}(\boldsymbol{i}y)] = -\frac{1}{\pi}\frac{(1-c)y}{2c|z|^2} \pm \frac{1}{\pi}\Im\left[\frac{x-\boldsymbol{i}y}{2c|z|^2}\sqrt{(1-c-x)^2-4cx}\sqrt{1-\frac{2(1+c-x)y-y^2}{(1-c-x)^2-4cx}}\right]$$

où $\sqrt{(1-c-x)^2-4cx}$ est réel si $(1-c-x)^2-4cx\geq 0$ et imaginaire pur sinon. En prenant $y\to 0$, on remarque alors que $\frac{1}{\pi}\Im[g_{\check{\mathbf{M}}\mathbf{P}}(iy)]\to 0$ si $(1-c-x)^2-4cx\geq 0$ et sinon

$$\frac{1}{\pi}\Im[g_{\mathrm{MP}}(\boldsymbol{i}y)] \to \pm \frac{1}{\pi} \frac{1}{2\pi x} \sqrt{4cx - (1-c-x)^2}.$$

En remarquant que $4cx - (1 - c - x)^2 = (x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)$, on conclut.

4 On a finalement

$$\mathbb{P}_{\text{MP}}([a,b]) = (1-1/c)^{+} \mathbb{1}_{\{0 \in [a,b]\}} + \int_{a}^{b} \frac{1}{\pi} \frac{1}{2\pi x} \sqrt{(x-(1-\sqrt{c})^{2}))^{+} ((1+\sqrt{c})^{2}-x)^{2}} dx.$$

Exercice 2 (Preuve d'un lemme du cours)

Démontrez que, pour tout $z \in \mathbb{C}$ et tout $t \in \mathbb{R}$,

$$\frac{1}{|1+tz|^2} \le 1 + \left(\frac{\Re[z]}{\Im[z]}\right)^2$$

(borne prise égale à $+\infty$ si $\Im[z] = 0$).

Master MVA 2019

Correction

En dénotant z = R + iI avec $R, I \in \mathbb{R}$, il suffit d'écrire

$$|1 + tz|^2 = (1 + tR)^2 + t^2I^2 = t^2(R^2 + I^2) + 2tR + 1$$

qui est minimal en $-R/(I^2+R^2)$ et donc toujours supérieur à $I^2/(R^2+I^2)$ qui est ce que l'on souhaite.

Exercice 3 (Identités spectrales du cas mono-corrélé)

On considère le cas mono-corrélé de loi limite \mathcal{F} (ou $\tilde{\mathcal{F}}$) associée au spectre limite L_{∞}^{R} de la matrice de covariance, et un rapport c des dimensions. Démontrez précisément les affirmations suivantes et en déduire les conséquences sur le graphe de la fonction $x(\tilde{t}), \tilde{t} \in \mathbb{R}$.

- 1. Si $\tilde{t}_1 \neq \tilde{t}_2$ et $x'(\tilde{t}_1), x'(\tilde{t}_2) > 0$ alors $x(\tilde{t}_1) \neq x(\tilde{t}_2)$.
- 2. Si $\tilde{t}_1 < \tilde{t}_2$, $\tilde{t}_1\tilde{t}_2 > 0$, $\tilde{t}_1,\tilde{t}_2 \in D \triangleq \{m \in \mathbb{R}^* | -1/m \notin \operatorname{supp}(L_\infty^R)\}$, et $x'(\tilde{t}_1),x'(\tilde{t}_2) > 0$ alors $x(\tilde{t}_1) < x(\tilde{t}_2)$. On pourra calculer ici $\tilde{t}_1 \tilde{t}_2$ à partir des identités qui lient \tilde{t}_1,\tilde{t}_2 à $x(\tilde{t}_1),x(\tilde{t}_2)$.
- 3. Si $(-\infty, b) \subset D$, alors $x(\tilde{t}) \to 0$ lorsque $\tilde{t} \to -\infty$. De manière similaire, si $(b, \infty) \subset D$, alors $x(\tilde{t}) \to 0$ lorsque $\tilde{t} \to \infty$.
- 4. Si $(-b,0) \subset D$, alors $x(\tilde{t}) \to \infty$ lorsque $\tilde{t} \nearrow 0$.

A partir de ces constatations, tracez des réalisations possibles de $x(\tilde{t})$ et les spectres $\tilde{\mathcal{F}}$ associés. De plus, montrez que supp (L_{∞}^R) est compact si et seulement si supp (\mathcal{F}) est compact (le résultat 4. donne une partie du résultat; pour l'autre, on pourra utiliser $r(-1/\tilde{t}) = \tilde{t} \cdot (1 - c\tilde{t} \cdot (z(\tilde{t}) - 1))$).

Correction

- 1. Comme $x'(\tilde{t}_1) > 0$, $x_1 = x(\tilde{t}_1) \notin \operatorname{supp}(\tilde{\mathcal{F}})$ et ainsi $\tilde{t}^{\circ}(x_1)$ est l'unique solution réelle \tilde{t}_1 de $x(\tilde{t}) = \tilde{t}_1$. La même chose est valable pour \tilde{t}_2 . Donc si $x(\tilde{t}_1) = x(\tilde{t}_2)$, $\tilde{t}_1 = \tilde{t}_2$.
- 2. On a, avec la formule habituelle

$$(\tilde{t}_1 - \tilde{t}_2) \left(1 - c \int \frac{\tilde{t}_1 \tilde{t}_2 u^2}{(1 + u\tilde{t}_1)(1 + u\tilde{t}_2)} L_{\infty}^R(du) \right) = \tilde{t}_1 \tilde{t}_2(x(\tilde{t}_1) - x(\tilde{t}_2)).$$

D'où, en particulier,

$$x'(\tilde{t}) = \frac{1}{\tilde{t}^2} \left(1 - c \int \frac{\tilde{t}^2 u^2}{(1 + u\tilde{t})^2} L_{\infty}^R(du) \right).$$

Comme $x'(\tilde{t}_1), x'(\tilde{t}_2) > 0$, on a $\int \frac{\tilde{t}^2 u^2}{(1+u\tilde{t})^2} L_{\infty}^R(du) < 1/c$ pour $\tilde{t} \in {\{\tilde{t}_1, \tilde{t}_2\}}$. D'après Cauchy–Schwarz, par ailleurs,

$$\left| \int \frac{\tilde{t}_1 \tilde{t}_2 u^2}{(1 + u \tilde{t}_1)(1 + u \tilde{t}_2)} L_{\infty}^R(du) \right| \leq \sqrt{\int \frac{\tilde{t}_1^2 u^2}{(1 + u \tilde{t}_1)^2} L_{\infty}^R(du)} \sqrt{\int \frac{\tilde{t}_2^2 u^2}{(1 + u \tilde{t}_2)^2} L_{\infty}^R(du)} < \frac{1}{c}.$$

Ainsi

$$\frac{\tilde{t}_1 \tilde{t}_2}{\tilde{t}_1 - \tilde{t}_2} (x(\tilde{t}_1) - x(\tilde{t}_2)) > 0.$$

Comme \tilde{t}_1, \tilde{t}_2 sont dans le même intervalle de D qui exclue zéro, ils sont de même signe et donc $x(\tilde{t}_1) - x(\tilde{t}_2)$ est de même signe que $\tilde{t}_1 - \tilde{t}_2$.

- 3. Cela suit immédiatement du théorème de convergence dominée.
- 4. Même chose.

Master MVA 2019

Si supp (L_{∞}^R) est compact, alors D contient (-b,0) pour un certain b>0. D'après 4., cela implique que x(m) est croissant a des parties croissantes à toutes les ordonnées x>A pour un certain A>0. Ainsi supp (\mathcal{F}) doit être compact.

Si supp (\mathcal{F}) est compact, alors pour tout x_0 réel suffisamment large $\tilde{t}(z) \to \tilde{t}^{\circ}(x_0) = \tilde{t}_0$ réel négatif arbitrairement petit lorsque $z \in \mathbb{C}^+ \to x_0$. De plus $\tilde{t}^{\circ}(x_0)' > 0$, donc par le théorème d'inversion, $z(\tilde{t})$ s'étend analytiquement autour de \tilde{t}_0 . En utilisant $r(-1/\tilde{t}) = \tilde{t} \cdot (1 - c\tilde{t} \cdot (z(\tilde{t}) - 1))$, on déduit que $r(-1/\tilde{t})$ admet une limite réelle lorsque $\tilde{t} \to \tilde{t}_0$. Ceci est vrai pour tout \tilde{t}_0 suffisamment proche de zéro, ce qui permet de conclure.

Exercice 4 (Analyticité du spectre)

Dans le même cas d'étude que l'Exercice 3, nous allons montrer que la densité f associée à la mesure $\tilde{\mathcal{F}}$ est (réelle) analytique sur l'intérieur \mathcal{I} de son support, i.e. $f(x) = \sum_{n=0}^{\infty} a_n x^n$ pour une certaine séquence $(a_n)_{n=1}^{\infty}$ telle que la série converge au moins sur \mathcal{I} . Ceci indique en particulier que f est extrêmement lisse.

- 1. Montrez que $z(\tilde{t})$ est analytique dans un voisinage de $\tilde{t}_0 = \tilde{t}^{\circ}(x_0)$ pour tout $x_0 \in \mathcal{I}$.
- 2. En utilisant le fait que $|\mathbb{E}X| \leq \mathbb{E}|X|$ avec égalité si et seulement si pour tout $X, X = \alpha |X|$ pour un certain $\alpha \in \mathbb{C}$ fixe, montrez que $z'(\tilde{t}_0) \neq 0$.
- 3. En déduire que $\tilde{t}(z)$ s'étend analytiquement au voisinage de x_0 .
- 4. Conclure sur l'analyticité (réelle) de f.

Correction

- 1. Comme $x_0 \in \mathcal{I}$, $\tilde{t}_0 \in \mathbb{C}^+$ et donc $z(\tilde{t})$ est analytique sur un voisinage de \tilde{t}_0 .
- 2. On a

$$z'(\tilde{t}_0) = \frac{1}{\tilde{t}_0^2} \left(1 - c \int \frac{\tilde{t}_0^2 u^2}{(1 + u\tilde{t}_0)^2} L_{\infty}^R(du) \right).$$

Pour que $z'(\tilde{t}_0)=0$, on doit se trouver dans le cas d'égalité de Cauchy–Schwarz (en utilisant l'inégalité habituelle), ce qui n'est vrai que si $|\tilde{t}_0|^2u^2/|1+u\tilde{t}_0|^2=\alpha \tilde{t}_0^2u^2/(1+u\tilde{t}_0)^2$ pour un certain $\alpha\in\mathbb{C}$ et pour tout u. Mais, hormis pour $L_\infty^R=\delta_a$ que l'on exclut, ceci impose $\tilde{t}_0\in\mathbb{R}$, ce qui est contradictoire.

- 3. Par le théorème d'inversion analytique, $z(\cdot)$ s'inverse donc localement au voisinage B de \tilde{t}_0 . Sur $B \cap \mathbb{C}^+$, l'inverse vaut $\tilde{t}(z)$ et est donc sur B une extension de cette fonction.
- 4. On a que $\tilde{t}(z)$ s'étend au voisinage de x_0 en une fonction analytique qui vaut pour x réel $\tilde{t}^{\circ}(x) = \sum_{n} a_n x^n$, $a_n \in \mathbb{C}$, et ainsi $f(x) = \frac{1}{\pi} \Im[\tilde{t}^{\circ}(x)] = \frac{1}{\pi} \sum_{n} \Im[a_n] x^n$ est analytique réelle.