Домашнее задание №5 по МДО

Задание:

Решить классическую задачу линейного программирования: найти минимальное возможное значение функции f(x) на множестве X допустимых значений переменных, заданном неравенствами x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0, x5 >= 0, и уравнениями (У).

Для этого (1) найти первую угловую точку методом искусственного базиса,

- (2) с помощью модифицированного симплекс метода найти угловую точку, на которой достигается точная нижняя грань целевой функции. Выписать последовательные симплекс таблицы, угловые точки и их базисы. Записать координаты итоговой угловой точки значение целевой функции в ней.
- 4. Белоусов Евгений Александрович f = -2 x1 3 x2 + 7 x3 3 x4 + 7 x5;

$$(y)$$
: -3 x1 + 24 x2 + 20 x3 + 10 x4 - 2 x5 = -10,18 x1 - 3 x3 + 11 x4 + 2 x5 = 14.

$$f(x) = -2x^{1} - 3x^{2} + 7x^{3} - 3x^{4} + 7x^{5}$$

$$\begin{cases}
-3x^{1} + 24x^{2} + 20x^{3} + 10x^{4} - 2x^{5} = -10 \\
18x^{1} - 3x^{3} + 11x^{4} + 2x^{5} = 14
\end{cases}$$

$$g(y) = u^{1} + u^{2}$$

$$y = (u, x) = (u^{1}, u^{2}, x^{1}, x^{2}, x^{3}, x^{4}, x^{5}) \ge 0$$

$$u^{1} - 3x^{1} + 24x^{2} + 20x^{3} + 10x^{4} - 2x^{5} = -10$$

$$u^{2} + 18x^{1} - 3x^{3} + 11x^{4} + 2x^{5} = 14$$

$$z_0 = (-10, 14, 0, 0, 0, 0, 0)$$

	В	٧	U1	U2	X1	X2	Х3	X4	X5
Γ1	U1	10.00	1.00	0.00	3.00	-24.00	-20.00	-10.00	2.00
Γ2	U2	14.00	0.00	1.00	18.00	0.00	-3.00	11.00	2.00
Δ		24.00	0.00	0.00	21.00	-24.00	-23.00	1.00	4.00

Разрешающий элемент γ_{21}

	В	V	U1	U2	X1	X2	Х3	X4	X5
Γ1	U1	7.67	1.00	-0.17	0.00	-24.00	-19.50	-11.83	1.67
Γ2	X1	0.78	0.00	0.06	1.00	0.00	-0.17	0.61	0.11
Δ		7.67	0.00	-1.17	0.00	-24.00	-19.50	-11.83	1.67

Разрешающий элемент γ_{15}

	В	V	U1	U2	X1	X2	Х3	X4	X5
Γ1	X5	4.60	0.60	-0.10	0.00	-14.40	-11.70	-7.10	1.00
Γ2	X1	0.27	-0.07	0.07	1.00	1.60	1.13	1.40	0.00
Δ		0.00	-1.00	-1.00	0.00	0.00	0.00	0.00	0.00

$$z = (0.27, 0, 0, 0, 4.6)$$

$$f(z) = -2 \times 0.27 + 7 \times 4.6 \approx 31.67$$

$$\Delta_j = \langle (7, -2)\gamma_j \rangle - c_j$$

	В	V	X1	X2	Х3	X4	X5
Γ1	X5	4.60	0.00	-14.40	-11.70	-7.10	1.00
Γ2	X1	0.27	1.00	1.60	1.13	1.40	0.00
Δ		31.67	0.00	-101.00	-91.17	-49.50	0.00

Т.к. все $\Delta_j \leq 0$, эта угловая точка есть искомая

$$z = (0.27, 0, 0, 0, 4.6)$$
$$f(z) \approx 31.67$$