

Desarrollo de un programa de computador para el análisis de estructuras en tres dimensiones tipo pórtico sometidas a cargas estáticas

Cristian Danilo Ramirez Vargas

Desarrollo de un programa de computador para el análisis de estructuras en tres dimensiones tipo pórtico sometidas a cargas estáticas

Cristian Danilo Ramirez Vargas

Tesis presentada como requisito parcial para optar al título de:

Magister en Estructuras

Director(a): Ph. D. Martín Estrada Mejia

Línea de Investigación:
Análisis de estructuras
Grupo de Investigación:
Análisis, diseño y materiales - GIES

Universidad Nacional de Colombia Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola Bogotá D. C., Colombia 2020

Hombres inteligentes gran pensantes Hemos creado un monstruo Las bombas radiactivas y nucleares Que descompondrán la humanidad Quien totalmente se autodestruirá

Ya creador no hay para volver a comenzar Como dijo la sagrada maldición El universo en siete días lo creo

Razas de todos los colores Tomemos una reacción Potencias monopolizadoras Analicen esta situación Países tercermundistas De brazos no nos crucemos Acabemos pronto con esto

Futuro nunca habrá
Futuro nunca ha habido
Este en mundo que esta perdido
Dependiendo de un botón
Y de la decisión
De un idealista cabrón

La tercera guerra mundial Será un estruendo nuclear Donde historiadores no podrán narrarla Y los humanos no podremos resistirla

Las invenciones científicas Lejos de liberar de la ignorancia Y del trabajo envilecedor Lo aumentan Y hacen más refinada la servidumbre

—La ciencia de la autodestrucción, La Pestilencia (1989)

Agradecimientos

No habría podido hacer este trabajo sin la dirección del profesor Martín Estrada. Su conocimiento del mundo de la programación me ayudó en momentos decisivos durante el desarrollo del código. Gracias a él trabajé con la librería three.js. No sé como hacer para agradecerle por su paciencia.

Este trabajo también se debe al curso *Computación Visual* del profesor Jean Pierre Charalambos. Su descripción del *grafo* y como trabajar con la *escena* fue lo que me permitió hacer *FEM.js*.

Adicionalmente, apliqué el concepto de *cuaternión* en el problema de la rotación de los ejes de referencia tiempo después de haberlo estudiado en una de sus clases, lo que me permitió implementar el método de análisis matricial de manera innovadora. Gracias a su curso ahora creo entender muchas cosas que de adolescente siempre quise saber.

También quiero agradecer a la profesora Maritzabel Molina ya que mi entendimiento del método de análisis matricial proviene de su curso análisis estructural básico. A ella nos debemos muchos ingenieros estructurales.

Así mismo, quiero agradecer al profesor Fernando Ramírez, de la Universidad de los Andes, por enseñarme el *método de los elementos finitos*, y al profesor Dorian Linero por enseñarme a implementarlo. A ellos gracias por haberme permitido ganar confianza con el método.

Finalmente, quiero agradecer la ayuda de la Coordinación Curricular del Posgrado en Estructuras, especialmente a la profesora Caori Takeuchi quien no tuvo reparos en dejarme ver el curso Computación Visual. Ese día comenzó la verdadera tesis.

Resumen

El resumen es una presentación abreviada y precisa (la NTC 1486 de 2008 recomienda revisar la norma ISO 214 de 1976). Se debe usar una extensión máxima de 12 renglones. Se recomienda que este resumen sea analítico, es decir, que sea completo, con información cuantitativa y cualitativa, generalmente incluyendo los siguientes aspectos: objetivos, diseño, lugar y circunstancias, pacientes (u objetivo del estudio), intervención, mediciones y principales resultados, y conclusiones. Al final del resumen se deben usar palabras claves tomadas del texto (mínimo 3 y máximo 7 palabras), las cuales permiten la recuperación de la información.

Palabras clave: (máximo 10 palabras, preferiblemente seleccionadas de las listas internacionales que permitan el indizado cruzado).

A continuación se presentan algunos ejemplos de tesauros que se pueden consultar para asignar las palabras clave, según el área temática:

Artes: AAT: Art y Architecture Thesaurus.

Ciencias agropecuarias: 1) Agrovoc: Multilingual Agricultural Thesaurus - F.A.O. y 2)GEMET: General Multilingual Environmental Thesaurus.

Ciencias sociales y humanas: 1) Tesauro de la UNESCO y 2) Population Multilingual Thesaurus.

Ciencia y tecnología: 1) Astronomy Thesaurus Index. 2) Life Sciences Thesaurus, 3) Subject Vocabulary, Chemical Abstracts Service y 4) InterWATER: Tesauro de IRC - Centro Internacional de Agua Potable y Saneamiento.

Tecnologías y ciencias médicas: 1) MeSH: Medical Subject Headings (National Library of Medicine's USA) y 2) DECS: Descriptores en ciencias de la Salud (Biblioteca Regional de Medicina BIREME-OPS).

Multidisciplinarias: 1) LEMB - Listas de Encabezamientos de Materia y 2) LCSH- Library of Congress Subject Headings.

También se pueden encontrar listas de temas y palabras claves, consultando las distintas bases de datos disponibles a través del Portal del Sistema Nacional de Bibliotecas¹, en la sección Recursos bibliográficos.ºpción "Bases de datos".

Abstract

Es el mismo resumen pero traducido al inglés. Se debe usar una extensión máxima de 12 renglones. Al final del Abstract se deben traducir las anteriores palabras claves tomadas del

¹ver: www.sinab.unal.edu.co

texto (mínimo 3 y máximo 7 palabras), llamadas keywords. Es posible incluir el resumen en otro idioma diferente al español o al inglés, si se considera como importante dentro del tema tratado en la investigación, por ejemplo: un trabajo dedicado a problemas lingüísticos del mandarín seguramente estaría mejor con un resumen en mandarín.

Keywords: palabras clave en inglés(máximo 10 palabras, preferiblemente seleccionadas de las listas internacionales que permitan el indizado cruzado)

Contenido

	Agradecimientos	VI
	Resumen	IX
1	Introducción	1
2	pyFEM	4
	Bibliografía	6

Lista de Figuras

1-1	Ventana del programa ETABS ejecutandose en Windows 10	2
2-1	Elemento tipo pórtico en coordenadas locales	4

Lista de Tablas

1 Introducción

Los programas de computador comerciales para el análisis y diseño de estructuras que se encuentran vigentes a la fecha cuentan, en general, con un entorno gráfico que le permite al usuario describir el modelo de forma interactiva, procesarlo y visualizar los resultados de manera conveniente.

En Escamilla, 1995 se presenta una lista de algunos de estos programas de uso común en América Latina, entre los cuales se encuentra *ETABS* (Three Dimensional Analysis of Building Systems - Extended Version).

ETABS es un programa de computador creado por Edward Wilson, Jeffery Hollings y Henry Dovey en 1975. Según Wilson et al, 1975, este programa de computador fue desarrollado para el análisis estructural lineal de edificios de pórticos y muros a cortante sujetos tanto a cargas estáticas como sísmicas. El edificio es idealizado como un sistema de elementos tipo pórticos y muros a cortante independientes interconectado por losas de entrepiso las cuales son rígidas en su propio plano.

Este programa es una extensión de *TABS* (Three Dimensional Analysis of Building Systems) para permitir analizar pórticos en tres dimensiones. Según Wilson y Dovey, 1972, una de las razones para desarrollar TABS fue darle una retroalimentación a los usuarios de los programas *FRMSTC* (Static Load Analysis of High-Rise Buildings), *FRMDYN* (Dynamic Analysis of Multistory Buildings), *LATERAL* y *SOLID SAP* (Static Analysis Program for Three-Dimensional Solid Structures).

FRMSTC permitía analizar edificios simétricos con pórticos y muros a cortante paralelos sujetos a cargas estáticas y evaluar los modos y las frecuencias. FRMDYN era similar a FRMSTC con la excepción que la carga era la aceleración del terreno debido a un desplazamiento dependiente del tiempo. LATERAL fue una extensión de FRMSTC que permitía analizar linealmente pórticos y muros a cortante que no eran necesariamente paralelos con tres grados de libertad en cada piso. SOLID SAP era un programa general de elementos finitos y tenía una opción que permitía introducir la aproximación de piso rígido. Este programa también tenía la opción de realizar análisis dinámico.

En la actualidad, ETABS se encuentra en la versión 18.1.1 y según Computers y Structures,

2 1 Introducción

2020, puede ser ejecutado en computadores con sistema operativo Windows 7, Windows 8 o Windows 10 con arquitectura de 64 bits que cuenten como mínimo con un procesador Intel Pentium 4 o AMD Athlon 64, una resolución de 1024x768 pixeles con 16 bits por canal, 8 GB de RAM y 6 GB de espacio en el disco duro. En la figura **1-1** se presenta la ventana del programa ETABS ejecutandose en un computador con Windows 10.

Figura 1-1: Ventana del programa ETABS ejecutandose en Windows 10.

A través de múltiples cuadros de diálogo, los cuales son accesibles ya sea a través de la barra de menús, las barras de herramientas, el explorador del modelo, las vistas del modelo o con atajos de teclado, el usuario es capaz de modelar la estructura que desea analizar al describir los materiales, las secciones transversales, los elementos estructurales, las condiciones de apoyo, los diafragmas y las cargas.

Según Computers y Structures, 2017, ETABS analiza el modelo usando el motor de análisis SAPFire, el cual es común a otros programas de la misma compañia (SAP2000, SAFE y CSiBridge). SAPFire es la última versión de la serie de programas SAP y ofrece las siguientes herramientas:

- Análisis estático y dinámico,
- Análisis lineal y no lineal,
- Análisis sísmico y análisis incremental no lineal (pushover),
- Análisis de cargas móviles,
- No linealidad geométrica, incluyendo efectos P-delta y grandes desplazamientos,
- Etapas constructivas,

- Fluencia lenta (creep), retracción (shrinkage) y envejecimiento,
- Análisis de pandeo,
- Análisis de densidad espectral de potencia y estado estacionario,
- Elementos tipo pórtico y laminares, incluyendo el comportamiento de vigas, columnas, cerchas, membranas y placas,
- Elementos tipo cable y tendón,
- Elementos bidimensionales planos y elementos sólidos asimétricos,
- Elementos sólidos tridimensionales,
- Resortes no lineales y apoyos,
- Propiedades de los resortes y apoyos dependientes de la frecuencia,

Con los resultados del análisis del modelo, el posprocesador de ETABS puede diseñar los elementos estructurales de acuerdo a uno de varios códigos de diseño de diferentes países. ETABS es capaz de diseñar pórticos en acero, pórticos en concreto, vigas compuestas, columnas compuestas, vigas en acero de alma abierta (steel joist), muros a cortante y losas de concreto.

Adicionalmente, según Computers y Structures, 2019, ETABS cuenta con la posibilidad de generar dibujos estructurales esquemáticos de las plantas estructurales, los despieces de vigas, columnas y muros a cortante, y detalles de las conexiones de acero.

En términos generales, estos programas de computador comerciales cuenta con características similares a las de ETABS. Actualmente, dichos programas están innovando para permitirle al usuario trabajar con modelos *BIM* (Building Information Modeling) con la intención de centralizar toda la información del proyecto y así obtener los beneficios que trae este esquema de trabajo.

2 pyFEM

En la figura 2-1 se presenta un elemento i tipo p'ortico con sus nodos j y k empotrados. El sistema de coordenadas locales del elemento tiene como origen el nodo j. El eje x coincide con el eje centroidal del elemento y es positivo en el sentido del nodo j al nodo k. Los ejes y y z son los ejes principales del elemento de manera que los planos xy y zx son los planos principales de flexión. Se asume que el centro de cortante y el centroide del elemento coinciden de tal forma que la flexión y la torsión se presentan una independiente de la otra. Los grados de libertad se numeran del 1 al 12, empezando por las translaciones y las rotaciones del nodo j, tomados en orden x, y, z respectivamente.

Figura 2-1: Elemento tipo pórtico en coordenadas locales.

Según el teorema de rotación de Euler (véase Akademiia nauk SSSR., 1763), siempre es posible encontrar un diámetro de una esfera cuya posición es la misma después de rotarla alredor de su centro, por lo que cualquier secuencia de rotaciones de un sistema coordenado tridimensional es equivalente a una única rotación alrededor de un eje que pase por el origen.

El ángulo θ y el vector n que definen la rotación del eje x del sistema de coordenadas global hacia el eje x_m del sistema de coordenadas de un elemento se puede calcular como

$$\mathbf{n} = (1, 0, 0) \times \mathbf{x_m}$$

$$\theta = \arcsin((1, 0, 0) \cdot \mathbf{x_m})$$
(2-2)

Según Dunn, 2002, la rotación de un sistema de coordenadas tridimensionales alrededor del eje \mathbf{n} una cantidad θ se puede describir mediante un cuaternión como

$$\mathbf{q} = \begin{bmatrix} \cos(\theta/2) & \sin(\theta/2)\mathbf{n} \end{bmatrix} \tag{2-3}$$

y se puede obtener la matriz de rotación a partir de un cuaternión de la siguiente manera

$$\mathbf{R} = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$
(2-4)

donde w es la parte escalar y x, y y z la parte vectorial del cuaternión.

Bibliografía

- Akademiia nauk SSSR. (1763). Novi comementarii Academiae scientiarum imperialis petropolitanae. Typis Academiae Scientarum.
- Computers & Structures. (2017). CSi Anlysis Reference Manual.
- Computers & Structures. (2019). Welcome to ETABS.
- Computers & Structures. (2020). ETABS System Requirements [Accedido: 2020-09-29].
- Dunn, F. (2002). 3D math primer for graphics and game development. Plano, Tex, Wordware Pub.
- Escamilla, J. (1995). Microcomputadores en ingeniería estructural. Santafé de Bogotá, ECOE Universidad Nacional de Colombia. Facultad de Ingeniera.
- Weaver, W. J. & Gere, J. (1990). *Matrix analysis of framed Structures*. New York, Van Nostrand Reinhold.
- Wilson, E. L. & Dovey, H. H. (1972). Three dimensional analysis of building systems TABS. Earthwake engineering research center.
- Wilson, E. L., Hollings, J. P. & Dovey, H. (1975). Three dimensional analysis of building systems (extended version). *Earthwake engineering research center*.