SAT and Its Variants

Sunghyeon Jo

Seoul National University

Project-Hardness Sep 27, 2022

We will look...

- many variants of SAT
 - classify which is P or NP-complete (or else?)
- use these variants of SAT to prove many problems NP-complete

Definitions

- Let φ be a Boolean formula.
 - ① The terms x_i , $\neg x_i$ are called **literals**. x_i is **postive** and $\neg x_i$ is **negative** literal.
 - ② φ is in Conjunctive Normal Form(CNF) if $\varphi = C_1 \wedge ... \wedge C_k$ where C_j 's are ORs of literals.
 - **1** if φ is a CNF formula, C_j 's are called **clauses**.
 - $\ \ \varphi$ is in **Disjunctive Normal Form(DNF)** if $\varphi = D_1 \lor ... \lor D_k$ where D_j 's are ANDs of literals.
 - **4** A Boolean circuit is a circuit with inputs $x_1, ..., x_n$ and one output. it can has three type of gates, AND, OR, and NOT.

Famous results

problem $X\mathsf{SAT}$: given a formula of the form X. is it satisfable? (ex. CNF SAT)

Theorem

CNF SAT is NP-complete. (Cook71)

Corollary

Circuit SAT is NP-complete.

Famous results

Theorem

DNF SAT is in P.

Given DNF formula φ , consider each conjunction of φ .

If there is a conjuction does not include both x and $\neg x$ for every variable x, then the conjunction can have the value **TRUE** hence φ is satisfiable. Otherwise, φ is not satisfiable.

Relation between CNF and DNF

Question

Given a CNF formula φ . Is there a DNF formula ψ which is equivalent to φ ?

Since \land and \lor satisfies distributive property, we can unfold the CNF formula and make it in DNF form like below example:

$$(x_1 \lor x_2) \land (x_3 \lor x_4) = (x_1 \land (x_3 \lor x_4)) \lor (x_2 \land (x_3 \lor x_4)) = (x_1 \land x_3) \lor (x_1 \land x_4) \lor (x_2 \land x_3) \lor (x_2 \land x_4)$$

Then why CNF SAT is NP-complete while DNF SAT is P?

Relation between CNF and DNF

Theorem

Any DNF formula that is equivalent to

 $(x_1 \vee y_1) \wedge (x_2 \vee y_2) \wedge ... \wedge (x_n \vee y_n)$ requires at least 2^n clauses.

Suppose DNF formula φ is equivalent to above CNF.

Then, each clause of φ should have one of x_i and y_i for each i since each clause should be false when $x_i=y_i=$ FALSE and $x_j=y_j=$ TRUE for all $j\neq i$.

On the other hand, the original CNF is equivalent to $\phi = (x_1 \wedge x_2 \wedge \wedge x_n) \vee (x_1 \wedge x_2 \wedge \wedge y_n) \vee \vee (y_1 \wedge y_2 \wedge \wedge y_n)$ (total 2^n clauses). For any two clauses A, B of ϕ , they do not have a relation $A \Rightarrow B$. And for any clause A of φ , we can find a clause B_A of ϕ such that $A \Rightarrow B_A$.

Therefore, any DNF formula equivalent to original CNF has at least same clauses as ϕ .

From now, we will use SAT to mean CNF-SAT.

There are many variants of SAT, which are based on SAT but adding some restriction on formula or solutions.

Definition

 $a\mathsf{SAT}$: every clause(of given formula) has $\leq a$ literals.

Theorem

2SAT is in P.

3SAT is in NP-complete.

- EaSAT: every clause has **exactly** a literals.
- EUaSAT: EaSAT, every variable within a clause occurs **uniquely**.
- aSAT-b: aSAT, every variable occurs **at most** b times.
- aSAT-Eb: aSAT, every variable occurs **exactly** b times.
- EaSAT-b, EUaSAT-b, EaSAT-Eb, EUaSAT-Eb, etc..

Theorem

3SAT-3 is in NP-complete.

Claim: 3SAT \leq_p 3SAT-3.

For each variable x occurs k>3 times, change last k-1 occurrence of x to $y_1,y_2,..,y_{k-1}$ and add clauses $x\vee \neg y_1$, $y_i\vee \neg y_{i+1}$, $y_{k-1}\vee \neg x$ at last of the formula.

Then new formula is equivalent to original formula and occurrences of x and y_i are at most 3. By repeating this operation, we can make formula in right form of 3SAT-3.

Theorem

EU3SAT-3 \in P, And all formulas of this form is satisfiable.

Consider a bipartite graph with clauses on the left and variables on the right. clause C and variable x is connected by edge if x or $\neg x$ is contained in C.

$$deg(C_i) = 3, deg(x_i) \le 3.$$

By Hall's theorem, there is a matching covers all clauses. Therefore, if C_i is matched with x_{p_i} , we can manipulate x_{p_i} 's value to make all C_i TRUE.

Definition

GAP aSAT-b: Given formula in the form of aSAT-b which is guaranteed to be either satisfiable or at most $1-\epsilon$ fraction of its clauses can be simultaneously satisfied.

Determine which is the case.

Theorem

GAP 3SAT-5 is NP-hard.

- NAE-: For each clause, there should be a literal with value TRUE and a literal with value FALSE.
- 1-IN-: For each clause, exactly one literal should be TRUE.
- Monotone: For each clause, all of its literals are positive or all of its literals are negative.
- Positive: For each clause, all of its literals are positive.

Note that NAE- and 1-IN- restriction is restriction for the solution, **not** for the given CNF.

Example

Monotone 1-IN-3SAT

Instance: A CNF φ is form of 3SAT and Monotone.

Task: Find a solution s.t. every clause of φ have exactly one literal of value TRUE.

- Monotone 3SAT is NP-Complete.
- Monotone 3SAT-E4 is NP-Complete. (solved in 2018)

MAX 2SAT: Given 2CNF φ , find maximum number of clauses that can be simultaneously satisfied.

Theorem

MAX 2SAT is NP-Complete.

Corollary

Following problem is NP-Complete: Given 3CNF formula φ . Is there a satisfying assignment s.t. majority of clauses have all three literals TRUE?

Proof: Exercise.

Theorem

Those 4 Variants of SAT are NP-Complete.

- 1-IN-3SAT
- Positive 1-IN-3SAT
- NAE-3SAT
- Positive NAE-3SAT

For a clause $(x \lor y \lor z)$,

 $(\neg x \lor a \lor b) \land (b \lor y \lor c) \land (c \lor d \lor \neg z)$ is 1-IN-3SAT satisfiable iff at least one of x, y, z is TRUE.

Therefore, 3SAT \leq_p 1-IN-3SAT.

Definition

A **relation** on m variables are a formula on those variables. i.e. a function from $\{0,1\}^m$ to $\{0,1\}$.

Assume that we have an instance of 1-IN-3SAT,

$$\varphi = (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_3 \vee \neg x_4).$$

Since there is a clause $(x_1 \lor x_2 \lor x_3)$, one out of three should be TRUE and other two should be FALSE.

it is equivalent to a relation

$$R_1(x_1,x_2,x_3)=(x_1\wedge\neg x_2\wedge\neg x_3)\vee(\neg x_1\wedge x_2\wedge\neg x_3)\vee(\neg x_1\wedge\neg x_2\wedge x_3).$$
 Similarly, Define a relation

$$R_2(x_1, x_2, x_3) = (x_1 \wedge \neg x_2 \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3).$$

Then, the instance φ can be rewritten as $R_1(x_1, x_2, x_3) \wedge R_2(x_1, x_3, x_4)$.

Definition

A SAT-type problem is a set of relations $R_1, R_2, ..., R_k$.

Let's consider previous example.

For two relations R_1, R_2 ,

1-IN-3SAT for $\varphi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor \neg x_4)$ is an instance of SAT-type problem $\{R_1, R_2\}$. However, it is not an instance of $\{R_1\}$.

We will assume none of the R_i are constant in a SAT-type problem.

Theorem (Schaefer's Dichotomy Theorem)

Let $R_1, R_2, ..., R_k$ be relations. If any of the following occur, then the SAT-type problem $\{R_1, R_2, ..., R_k\}$ is P. Otherwise, it is NP-Complete.

- $\forall R_i, R_i (TRUE, TRUE, ..., TRUE) = TRUE. (1-valid relation)$
- $\forall R_i, R_i (FALSE, FALSE, ..., FALSE) = TRUE. (0-valid relation)$
- $\forall R_i, R_i$ is equivalent to a conjunction of clauses with ≤ 2 variables. (bijunctive relation)
- $\forall R_i, R_i$ is equivalent to a conjunction of clauses with ≤ 1 positive literal (Horn clauses): weakly negative relation.
- $\forall R_i, R_i$ is equivalent to a conjunction of clauses with ≤ 1 negative literal (Dual-Horn clauses): weakly positive relation.
- $\forall R_i, R_i$ is equivalent to an **affine** formula. That is, conjunction of xor-clauses e.g. $(x_1 \oplus \neg x_2 \oplus x_3) \wedge (x_2 \oplus x_4)$.

Note: the book is wrong

It's easy to see each 6 cases are trivially included in P. (Exercise)

...Why all the other cases are in NP-Complete?

.....And why there are only P and NP-Complete problems in SAT-type problems?

Lemma

Let

$$\begin{array}{l} R(x_1,x_2,x_3) = (x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3) \\ \textit{Then 3SAT} \leq_p \textit{(SAT-type problem \{R\})}. \end{array}$$

R is TRUE when exactly one out of three is TRUE.

Let

$$A = R(x, u_1, u_4) \land R(y, u_2, u_4) \land R(u_1, u_2, u_5) \land R(u_3, u_4, u_6) \land R(z, u_3, 0),$$

$$B = R(x, y, 0),$$

$$C = R(x, x, u)$$

 $\exists_{(u_i)}\ A$ is equivalent to $(x\lor y\lor z)$ and B is equivalent to $x\ne y$, $\exists_u\ C$ is equivalent to x=0. Therefore, we can make all kinds of clauses with 3 literals by adding additional variables.

Let $Rep(R_1,..,R_k)$ be set of relations that can be represented by only $R_1,..,R_k$.

For example, for R in the last slide, $[x \vee y \vee z], [x \neq y], [\neg x] \in Rep(R)$.

Lemma

Let $S = \{R_1, R_2, ..., R_k\}$ be set of relations that is not all of them are 0-valid, and not all of them are 1-valid.

Then, It is guaranteed that $[x \neq y] \in Rep(S)$ or $[x], [\neg x] \in Rep(S)$. Moreover, If $[x], [\neg x] \notin Rep(S)$, then Rep(S) is complementive (For all $R \in Rep(S)$, $R(x_1,...,x_m) = R(\neg x_1,...,\neg x_m)$)

if every relation in S is 0-valid or 1-valid, then there is $R_0, R_1 \in S$ s.t. R_0 is 0-valid and not 1-valid, R_1 is 1-valid and not 0-valid. then $[x], [\neg x] \in Rep(S)$.

Let R be a relation in S that is neither 0-valid nor 1-valid. Choose some $(x_1,...,x_m)$ satisfies R. Then replace all variables with value 0 to y_0 , value 1 to y_1 . Then set of (y_0,y_1) satisfies R can be $\{(0,1)\}$ or $\{(0,1),(1,0)\}$ since it is not 0,1-valid. Former case, $[x],[\neg x]\in Rep(S)$. Latter case, $[x\neq y]\in Rep(S)$.

Exercise: Prove the additional claim in lemma : If $[x], [\neg x] \notin Rep(S)$, then Rep(S) is complementive.

Note that $[x], [\neg x] \in Rep(S)$ is equivalent to allowing using 0, 1 in relation.

Lemma

If $S = \{R_1, R_2, ..., R_k\}$ contains both **not** weakly negative relation and **not** weakly positive relation and $[x], [\neg x] \in Rep(S)$, then $[x \neq y] \in Rep(S)$.

Lemma

If R is not bijunctive, then $Rep(\{R,[x \neq y],[x \vee y]\})$ contains the relation "exactly one of x,y,z"

Lemma

If R is not affine, $[x \vee y], [\neg x \vee y], [\neg x \vee \neg y] \in Rep(\{R, [x \neq y], [x]\}).$

The proof of above lemmas are exercise: similar to the proof for NP-Completeness of "exactly one of x,y,z" relation.

Now we are ready to prove Schaefer's Dichotomy Theorem.

Suppose that $S = \{R_1, R_2, ..., R_k\}$ is not included to six P cases.

Then it has non-affine relation, non-weakly negative relation, non-weakly positive relation, non-bijunctive relation.

Therefore, if $[x], [\neg x] \in Rep(S)$, then $[x \neq y] \in Rep(S)$, hence $[x \vee y] \in Rep(S)$, thus "exactly one of x,y,z" is in Rep(S). As a result, 3SAT $\leq_p S$.

Otherwise, Rep(S) is complementive. If we can use 0, 1 in relations, then it is the same to $[x], [\neg x] \in Rep(S)$ and it results in that we can make every 3-literal clauses by building "exactly one of x,y,z" relation. For any 3-literal clause C, it is possible to make equivalent relation consists of relations in S and using additional variable 0, 1. Instead of using 0 and 1, use y_0, y_1 and add clause $\wedge (y_0 \neq y_1)$. Since Rep(S) is complementive, it is equivalent to C. In consequence, 3SAT $\leq_p S$.

A Dichotomy Theorem for Graph Formulas

Definition

A **graph formula** is a Boolean formula where all literals are of the form E(x,y) or x=y.

A graph formula $\varphi(x_1,...,x_n)$ is **satisfiable** if there exists a graph G of vertex set $\{v_1,v_2,...,v_n\}$ such that $\varphi(v_1,...,v_n)$ is true in G.

$$\left(\bigwedge_{1 \le i < j \le 6} \neg(x_i = x_j)\right) \bigwedge \left(\bigwedge_{1 \le i \ne j \le 6} \neg E(x_i, x_j) \land E(x_j, x_i)\right) \bigwedge$$
$$\left(\bigwedge_{1 \le i < j < k \le 6} \neg(E(x_i, x_j) \land E(x_j, x_k) \land E(x_k, x_i))\right)$$

:An undirected (2nd term) graph with 6 vertices with no three edges form triangle(3rd term).

A Dichotomy Theorem for Graph Formulas

Let $\Psi = \{\psi_1, \dots, \psi_n\}$ be a finite set of propositional (Boolean) formulas.

Boolean-SAT (Ψ)

INSTANCE: Given a finite set of variables W and a propositional formula of the form $\Phi = \phi_1 \wedge \cdots \wedge \phi_l$ where each ϕ_i for $1 \leq i \leq l$ is obtained from one of the formulas ψ in Ψ by substituting the variables of ψ by variables from W.

QUESTION: Is there a satisfying Boolean assignment to the variables of W (equivalently, those of Φ)?

Above is rewritten version of defining SAT-type problem $\Psi.$ Let's think about graph formula version.

A Dichotomy Theorem for Graph Formulas

$Graph-SAT(\Psi)$

INSTANCE: Given a set of variables W and a graph formula of the form $\Phi = \phi_1 \wedge \cdots \wedge \phi_l$ where each ϕ_i for $1 \leq i \leq l$ is obtained from one of the formulas ψ in Ψ by substituting the variables from ψ by variables from W.

QUESTION: Is Φ satisfiable?

Theorem (BP15)

For all Ψ , Graph-SAT(Ψ) is either in P or NP-Complete. Moreover, the problem of determining Graph-SAT(Ψ) is in P or NP-Complete is decidable.

- Variable gadget, clause gadget, wire gadget
- binary logic proof, dual-rail logic proof
- split gadget, NOT gadget, terminator gadget
- ...?

Gadgets are just a tool for (polynomial time) reduction and it varies for the problem uses it. Let's see some example.

Definition (2-Color Perfect Matching)

Given graph G. Is there a 2-coloring of the vertices s.t. every vertex has exactly 1 neighbor of the same color?

Theorem (Sch78)

2-Color Perfect matching is NP-Complete. Moreover, it remains NP-Complete when restricted to planar 3-regular graphs.

Theorem (Sch78)

2-Color Perfect Matching is NP-Complete.

Positive NAE-E3SAT is NP-Complete by Schaefer's Dichotomy Theorem. (Positive NAE-E3SAT: all clauses are form of $x_i \vee x_j \vee x_k$. is it possible to make all clauses have both TRUE and FALSE literals?)

Enough to show: Given φ , can find graph G s.t. $\varphi \in \mathsf{Positive} \ \mathsf{NAE-E3SAT} \Leftrightarrow G$ has 2-Color Perfect Matching

For every clause $X \vee Y \vee Z$ of φ , Figure 1(a) is a clause gadget for it since it guarantees color of X,Y,Z is not all same.

Since one variable can be used many time in φ , we need to separate one variable to multiple vertices in graphs. Figure 1(b) is a variable gadget which guarantees color of vertex n_1 and n_2 to be same.

Figure 1(c) represents a graph corresponds to $A = (X \vee X \vee Y) \wedge (Y \vee Z \vee U)$ composed of two kinds of gadgets. Since building graph by gadgets takes polynomial time,

Positive NAE-E3 \leq_p 2-Color Perfect Matching.

How variable gadget works?

Figure 4: Planar clause gadget K.

 ...Maybe too complicated to show NP-Completeness of planar graph case

Cryptarithms is NP-Complete, there is a polynomial reduction from Positive 1-IN-3SAT.

Definition (Cryptarithms)

Instance:

- $B, m \in \mathbb{N}$. Let Σ be an alphabet of B letters.
- $x_0, ..., x_{m-1}, y_0, ..., y_{m-1} \in \Sigma$.
- $z_0,...,z_m \in \Sigma$. The symbol z_m is optional.
- Duplication is allowed within those symbols.

Question:

Is there an injection of Σ into $\{0,1,...,B-1\}$ so that satisfies below equation?

Theorem

Positive 1-IN-3SAT \leq_p Cryptarithms. Hence Cryptarithms is NP-Complete.

$$\begin{array}{cccc} 0 & p & 0 \\ 0 & p & 0 \\ \hline 1 & q & 0 \\ \end{array}$$

If the equation's right end is ApA+ApA=BqA, then it guarantees that if there is a solution ϕ , $\phi(A)=0$ and $\phi(B)=1$. From now, replace A and B to 0 and 1.

Left equation guarantees that $v\equiv 0$ or $v\equiv 1$ modulo 4.

We'll make Cryptarithm such that satisfiability is equivalent and boolean variable FALSE \Leftrightarrow Cryptarithm variable $\equiv 0$ modulo 4, TRUE \Leftrightarrow 1 modulo 4.

Theorem

Positive 1-IN-3SAT \leq_p Cryptarithms. Hence Cryptarithms is NP-Complete.

Above equation is a clause gadget of $x\vee y\vee z$. Since the problem is Positive 1-IN-3SAT, we need to guarantee $x+y+z\equiv 1$ modulo 4. We can see $d=4a+1\equiv 1$ modulo 4 and x+y+z=I+z=d, Therefore $x+y+z\equiv 1$ modulo 4.

Exercise

Write formal proof of Positive 1-IN-3SAT \leq_p Cryptarithms.

More problems in the book

There are more proofs of NP-Completeness of problems I did not include in this slides.

- Grid Coloring
- Pushing 1x1 block
- PushPush
- Super Mario Brothers

I'll recommend read this if you are interested in reduction of real games.

Thank you!