

Introdução à Inteligência Artificial

2023-2024

Questões Sobre Algoritmos de Agrupamento(Clustering)

Perguntas Teóricas

- 1. Diga o que entende por:
 - a. Aprendizagem não supervisionada
 - b. Algoritmo de Clustering
 - c. Centroide
 - d. Métrica de Semelhança no contexto de Clustering.
- 2. Distinga Clustering Hierárquico de Clustering de Partição (Partition).
- 3. Diga o que entende por "linkage" no contexto de algoritmos de clustering hierárquico.
- 4. Distinga Clustering de Partição por densidade e por centroide.
- 5. Comente a seguinte afirmação: O algoritmo de DBSCAN não define um número fixo de clusters antes da sua execução.
- 6. Comente a seguinte frase: No algoritmo DBSCAN, os clusters são formados apenas por pontos centrais (core).
- 7. Comente a seguinte frase: Utilizando o algoritmo k-means para um k predefinido e mantendo o mesmo conjunto de pontos, a cada iteração do algoritmo iremos obter sempre clusters constituídos de pontos diferentes independentemente do número de iterações que efectuarmos.

Perguntas Teórico-Práticas

1. Considerando a distribuição de dados (pontos) e a posição inicial dos centroides (triângulos) apresentada na Figura 1.

Figura 1.

- a) Enumere os passos da aplicação do algoritmo K-means Clustering.
- b) Aproxime, justificando, a solução final.

2. Considerando a distribuição de dados (pontos) e a posição inicial dos centroides (triângulos) apresentada na Figura 2. Aproxime, justificando a solução final.

Figura 2.

3. Considere a seguinte tabela de pontos. Aplique o algoritmo de K-means até estabilizar, considerando K = 2 com centroides a começar na posição do A e C e utilizando a distância euclidiana.

Ponto	х	у		
Α	1	1		
В	1	0		
С	0	3		
D	3	4		
E	4	5		

4. Considerando a distribuição de dados (pontos) da Figura 3, um de épsilon equivalente ao raio da circunferência e um número mínimo de pontos = 3). Aplicando o DBSCAN, identifique, justificando, os pontos alcançáveis (reachable), centrais (core) e *outliers* do cluster.

Figura 3.

5. Considere a seguinte tabela de pontos. Utilize o algoritmo DBSCAN com número mínimo de pontos = 2 e épsilon de 1 em distância de Chebysheve.

Point	Х	у
Α	0	1
B C	1	2
С	1	0
D	3	1
D E F G	5	2
F	5	1
G	5 5 5	0
Н	6	1

- a. Indique os clusters que se formam, que pontos são centrais, alcançáveis e outliers.
- b. Repita a) mas considere um épsilon de 2 em distância Chebysheve
- 6. Considere a distribuição de pontos das figuras abaixo a. e b. . Aplique de forma rigorosa o algoritmo K-means até estabilizar a © Ernesto Costa, Penousal Machado, João Correia, Nuno Lourenço, Tiago Martins, Tiago Baptista, Sérgio Rebelo, Pedro Silva, João Macedo, Luís Gonçalo, Jessica Parente, Marcio Lima, Luís Torres 2008-2024

cada uma delas separadamente, considerando K=2 com centros iniciais C1 e C2 que estão representados pelos triângulos na figura. Deverá indicar as coordenadas finais de cada um dos centros bem como a que cluster é que cada um dos pontos irá pertencer. Deverá considerar a distância Euclidiana para o cálculo de distâncias entre pontos.

a.

7. Considerando a distribuição de dados (pontos) da Figura 3, um de épsilon equivalente ao raio da circunferência e um número mínimo de pontos = 3). Aplicando o DBSCAN, identifique, justificando, os

pontos alcançáveis (reachable), centrais (core) e *outliers* do(s) cluster(s).

8. Aplique de forma rigorosa o algoritmo K-means até estabilizar a cada uma delas separadamente, considerando K=2 com centros iniciais C1 e C2 que estão representados pelos triângulos na figura. Deverá indicar as coordenadas finais de cada um dos centros bem como a que cluster é que cada um dos pontos irá pertencer. Deverá considerar a distância Euclidiana para o cálculo de distâncias entre pontos.

9. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 4. Considere que um ponto conta para a sua propria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A

de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como os ``outliers''.

Classifique como verdadeira ou falsas as seguintes afirmações:

Afirmação	Verd.	Falso
Só há um outlier.		
Há exatamente dois clusters.		
O ponto B é um outlier.		
Os pontos C e M pertencem ao mesmo cluster.		
A e G pertencem a ao mesmo cluster.		

10. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 4. Considere que um ponto conta para a sua própria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como os ``outliers".

11. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 3. Considere que um ponto conta para a sua própria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A

de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como os ``outliers''.

12. Considerando a distribuição de pontos, ondes os dados são representados por pontos, os centroides por circunferências e as arestas ligam os pontos ao centroide mais próximo.

Classifique como verdadeira ou falsas as seguintes afirmações:

Afirmação	Verd.	Falso
O centroide C desloca-se para cima e direita		
O centroide B desloca-se para o ponto intermédio entre		
os dois pontos mais próximos de si.		
O centroide B acaba por morrer devido a ter poucos		
pontos e no final ficamos com 2 clusters.		
No k-means não há outliers.		

13. Considere a distribuição de dados (pontos) da figura abaixo. Aplique de forme rigorosa o algoritmo K-Means até estabilizar, considerando K=2 com os centros iniciais C1 e C2, e que estão representados pelos triângulos na figura. Deverá indicar as coordenadas finais de cada um dos centros bem como a que cluster é que cada um dos pontos irá pertencer. Deverá considerar

como métrica a distância Euclideana.

14. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 3. Considere que um ponto conta para a sua própria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como os ``outliers"

15. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 3. Considere que um ponto conta para a sua própria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como

os ``outliers"

16. Considere a distribuição de dados (pontos) da figura abaixo. Aplique de forme rigorosa o algoritmo K-Means até estabilizar, considerando K=2 com os centros iniciais C1 e C2, e que estão representados pelos triângulos na figura. Deverá indicar as coordenadas finais de cada um dos centros bem como a que cluster é que cada um dos pontos irá pertencer. Deverá considerar como métrica a distância Euclideana.

