2021-2022 **学年度第一学期伯苓班抽象代数** 期末考试

回忆人: xyc

- 一 (20 分) 判断下列命题是否正确, 如果正确请给出证明, 不正确请举出反例.
 - 1 如果二元关系 R 满足对称性和传递性,那么它一定满足反身性。
 - **2** 群 G 中所有有限阶元素组成的集合 H 构成 G 的正规子群。
 - $\bf 3$ 如果 $\bf A$ 是环 $\bf R$ 的素理想, $\bf P$ 是 $\bf A$ 的素理想,那么 $\bf P$ 是 $\bf R$ 的素理想。
 - 4 对任意无限整环 R,都 $\exists u,v \in R,\ u,v \neq 0$,使得 $\{ku+lv|k,l \in \mathbb{Z}\}$ 是无限集。
- 二 $(20 \ \mathcal{G})$ 幺环 R 中,证明: $\forall a,b \in R, e-ab$ 可逆当且仅当 e-ba 可逆。
- 三 $(20 \, \mathcal{G})$ 设群 G 满足 |G|=120, H < G, |H|=24。证明: 如果 $\exists g \in G-H,$ 使得 $gHg^{-1}=H,$ 那么 $H \lhd G.$
- 四 $(15 \, \mathcal{G})$ 证明如果无零因子环 R 满足 |R| 是偶数,那么环 R 的特征为 2.
- 五 (15 分) 设 G_1 是 { \mathbb{Q} ; +} 的真子群, 证明存在 G_2 , 其为 { \mathbb{Q} ; +} 的真子群 且 $G_1 \subset G_2$, $G_1 \neq G_2$.
- 六 (10 分) 交换环 R 无非零幂零元。证明: 对于 $u, v \in R$, 如果 $\exists a, b \in \mathbb{N}$, (a,b) = 1 使得 $u^a = v^a, u^b = v^b$, 则 u = v.