Дискретная математика первый модуль 1 курса Задачи И.В.Артамкин

11 октября 2021 г.

Содержание

Листок 4

1.1 1

Сопоставим тройке чисел (a;b;c) числу $\frac{(\frac{(a+b)(a+b-1)}{2}+b+c-1)(\frac{(a+b)(a+b-1)}{2}+b+c)}{2}+c$. Заметим, что отображение (a;b) \rightarrow $\frac{(a+b-1)(a+b)}{2}+b$ – биекция, так как для фиксированного a+b выражение принимает значения от $(1+2+...+(b-1)\tilde{)}+1$ до (1+2+...+(b-1))+b. Если $a_2+b_2>a_1+b_1$, то очевидно, что образ $(a_2; b_2) >$ образа $(a_1; b_1)$.

Так мы сопоставляем каждой тройке (a;b;c) пару $(\frac{(a+b-1)(a+b)}{2}+b;c)$, а каждой такой паре - число $\frac{(\frac{(a+b)(a+b-1)}{2}+b+c-1)(\frac{(a+b)}{2}+b+c-1)}{2}$

1.2 2

Заметим, что отрезок [0,1] равномощен прямой с дополнительной точкой I(это можно доказать через проецированиае отрезка на прямую, тогда $0 \to 0, 1 \to \infty$ (I) $= \infty$). Заметим, что каждая прямая пересекает каждую ось (если нет, считаем, что проходит через I) в какой то точке. Таким образом, прямая задаётся парой расширенных вещественных чисел, кроме (I;I) (что равномощно R^2), при этом любой паре можно сопоставить прямую (проходящие через соотв. 2 точки). Покажем, что R^2 равномощно R: считаем R – последовательностью счётной длины из 0 и 1. Заметим, что каждой паре $(r_1; r_2)$, где $r_1 = [a_1, a_2, a_3, ...], r_2 = [b_1, b_2, b_3, ...]$ можем сопоставить $r_3 = [a_1, b_1, a_2, b_2, a_3, b_3, ...]$. При этом аналогично можно сопоставить каждому r_3 пару $(r_1; r_2)$. Откуда множество прямых равномощно R.

1.3 3

A)

Рассмотрим одноэлементные подмножества, заметим что если рассмотреть два одноэлементных множества, то можно однозначно определить отношение элементов из этих множеств(т.е. что единственный элемент множества A больше единственного элемента множества B). Тогда сопоставим одноэлементному множеству с наименьшим элементом первое простое число(т.е. 2), следующему по величине элемента множеству сопоставим следующее простое число(т.е. 3) и т.д. Так мы сопоставили одноэлементные множества простым числам. Далее рассмотрим множество из n элементов(пусть это $\{a_1, a_2, ..., a_n\}$) Рассмотрим одноэлементные множества с этими элементами, пусть они сопоставлены числам $p_1, p_2, ..., p_n$, тогда сопоставим множеству $\{a_1, a_2, ..., a_n\}$ число $p_1 \cdot p_2 \cdot ... \cdot p_n$. Очевидно, что разным множества сопоставлены разные числа(так как если двум множества сопоставлено одно и то же число, то элементы этих множест совпали). Так мы показали, что множество всех конечных подмножеств равномощно \mathbb{N} , т.е. множество всех конечных подмножеств счетно, что и требовалось доказать.

Сопоставим каждой последовательности из задачи (множество A) паре 2 конечных последовательностей: предпериод и сам период (множество B). Заметим, что $A \leq B$. При этом $A \geqslant C$, где C м ножество из пункта $a.\ ($ а именно можем сопоставить каждому множеству из C последовательность упорядоченно записанных элементов, после которой идёт период из 1). При этом $B=D^2$, где D – множество конечных последовательностей натуральных чисел. Покажем, что D – счётно. Заметим, что D – объединение счётного количества счётного количества конечных множеств, а именно: множеств последовательностей фиксированной длины с фиксированной суммой. Откуда D – счётно $\Rightarrow B$ счётно, при этои C тоже счётно, откуда A – счётно

1.4

Заметим, что если корней (алгебраических чисел) конечное количество, то трансцендентных континуум, так как всего чисел континуум.

Заметим, что алгебраические числа – подмножество описываемых чисел, то есть тех, которым можно сопоставить хотя бы одну конечную строку символов, которая бы "означала"это число.

Докажем, что множество описываемых чисел счётно:

Заметим, что их "меньше" чем возможных конечных последовательностей из конечного набора символов, что очевидно счётно, но любое рациональное число можно обозначить/описать(записав p/q). При этом алгебраических хотя бы счётно, так как все рациональные числа - алгебраические (являются корнями уравнений вида $x - \alpha = 0$). Откуда алгебраических чисел счётно.

5 1.5

A)

Заметим, что последовательностей из действительных чисел столько же, сколько последовательностей из

наборов 0 и 1. Докажем, что последовательностей из наборов 0 и 1 столько же, сколько и наборов 0 и 1: Пусть $a_{i\ j}$ – j-тый символ i-той последовательности. Тогда сопоставим последовательности из бесконечных наборов следующую последовательность: $\{a_{1\ 1},\ a_{1\ 2},\ a_{2\ 1},\ a_{1\ 3},\ a_{2\ 2},\ a_{3\ 1},\ ...\}$, то есть будем последовательно записывать символы с фиксированной суммой индексов. Заметим, что если взять 2 различные последовательности наборов, то у них будут различные образы, при этом любая последовательность из 0 и 1 имеет прообраз. Так мы доказали, что последовательностей действительных континуум.

Заметим, что отображений столько же, сколько и последовательностей из натуральных чисел. (сопоставляем отображению последовательность такую, что на i-той позиции - образ i). Заметим, что таких последовательностей столько же, сколько счётных последовательностей из 0 и 1, а именно запишем число n в виде n-1 подряд идущих единиц, и разделим числа между собой нулями $(1, 2, 3, 4, 5, ... \to 0010110111011110...)$.

1.6 6

A)

Предположим есть биекция из \mathbb{R} в $\mathbb{R} \to \mathbb{R}$ (сопоставляющаяя i функцию $f_i(x)$). Тогда рассмотрим следующий элемент из $\mathbb{R}^{\mathbb{R}}$: каждому i сопоставим $1 + f_i(i)$. Заметим, что этот элемент из $\mathbb{R}^{\mathbb{R}}$ не имеет прообраза, откуда следует, что биекции нет. $\mathbb{R}^{\mathbb{R}}$

C*)

1.7 7*

Если одна из частей квадрата содержит отрезок, то можно воспользоваться теоремой Кантора-Бернштейна. Допустим первая часть не содержит отрезков, тогда в каждом горизонтальном сечении квадрата есть точка второй части, тогда с помощью аксиомы выбора во второй части можно найти подмножество, равномощное отрезку – после чего снова можно сослаться на теорему Кантора – Бернштейна.

1.8 8*

Заметим, что если $\mathbb{R}^{\mathbb{R}}$ равномощно $2^{\mathbb{R}}$, то $\mathbb{N}^{\mathbb{R}}$ равномощно $\mathbb{R}^{\mathbb{R}}$ и $2^{\mathbb{R}}$.

Заметим, что множество $\mathbb{R}^{\mathbb{R}}$ можно разбить на континуальное количество счётных множеств, а именно: фактор-множество отношения эквивалентности: $a \blacklozenge b \Leftrightarrow (a-b) \in \mathbb{Z}$. Теперь покажем, что $\mathbb{R}^{\mathbb{R}} \sim 2^{\mathbb{R}}$. Это эквивалентно $[0,1)^{[0,1)} \sim 2^{\mathbb{R}}$. Рассмотрим X принадлежащий первому множеству, оно - множество пар (i,a_i) , где i принадлежит отрезку [0,1). Теперь скажем, что если есть пара (x,a_x) , то представим a_x в виде последовательности 0 и 1, и классу эквивалентности x сопоставим нули и единицы соответсвенно их позиции. Таким образом показана биекция $[0,1)^{[0,1)} \to 2^{\mathbb{R}}$, что и требовалось.

1.9 9

A)

Заметим, что выполнены рефлексивность (то есть существует тождественная биекция), симметричность (если есть биекция, то есть и обратная биекция) и транзитивность (если есть биекция из A в B: $a_i \to b_i$ и есть биекция из B в C: $b_i \to c_i$, то есть биекция из A в C: $a_i \to c_i$.

B)

Рассмотрим множество из двух элементов: [a,b]. Тогда $[a] \prec [b]$ и $[b] \prec [a]$ но $[a] \neq [b]$.

 \mathbf{C}

Заметим, что если между a и b есть биекция, то есть и инъекция, откуда любые 2 элемента из одного класса эквивалентности "равны"с точки зрения \prec . Если же биекции нет, но есть инъекция (без ограничения общности инъекция $a \to b$), то для любых элементов a_i из A (класс эквивалентности $a \in A$) и b_j из B верно, что есть инъекция $a_i \to b_j$ ($a_i \in a; b \in b_j$).

Проверим, что это отношение частичного порядка:

Рефлексивность (наличие тождественной биекции доказывает рефлексивность)

Антисимметричность (если есть инъекция из $c \in C$ в $d \in D$ и наоборот, то из Т. Кантора-Бернштейна следует, что есть биекция, то есть $d \in C$)

Транзитивность (переносится из основного отношения, то есть, если $\overline{\prec}$ обладает транзитивностью, то и \prec обладает транзитивностью).

1.10 10

Теорема Кантора-Бернштейна утверждает, что если существуют инъективные отображения $f:A\to B$ и $g:B\to A$, то |A|=|B|

Докажем это.

Пусть $f:A\to A_2$ биекция и $A_3=f(A_1)\subset A_2,\ A_4=f(A_2)\subset A_3$ и т.д. Тогда мы получили систему из множеств: $A_0\supset A_1\supset A_2\supset\dots$

В которой A_{2n} есть результат n-кратного применения отображения f к множеству A_0 , а A_{2n+1} есть результат n-кратного применения отображения f к множеству A_1 .

Представим множество A_0 в виде объединения непересекающихся слоев $C_k = A_k \backslash A_{k+1}$ с центром в $C = \bigcap_k A_k$

Так как $f(C) = C_2$, $f(C_2) = C_4$ и т.д. то C, C_2 , C_4 , ... равномощны(так как f биекция)

Поэтому мы можем построить биекцию между множествами A_0 и A_1 :

$$A_0 = C_0 \cup C_1 \cup C_2 \cup C_3 \cup C_4 \cup \dots \cup C$$

$$A_1 = C_1 \cup C_2 \cup C_3 \cup C_4 \cup \dots \cup C$$

$$A_1 = C_1 \cup C_0 \cup C_3 \cup C_2 \cup \dots \cup C$$

Если элемент a множества A принадлежит слою с четным номером $(a \in C_{2k})$, сопоставим ему элемент f(a), если же элемент a в слое с нечетным номером или в сердцевине $(a \in C_{2k+1})$, то оставим его на месте (поставив ему в соответствие его же, но как элемент множества A_1). Тогда множества $A = A_0$ и A_1 равномощны.

1.11 11

Заметим, что не меньше, так как есть биекция из наборов принадлежащих $2^M(2^M$ мы считаем набором из 0 и 1, где мы ставим 1, если рассматриваемый элемент принадлежит подмножеству M, и 0, если не принадлежит), содержащих ровно одну 1 в M.

Покажем, что нет биекции из M в 2^M . Предположим, что есть(назовем ее f). Тогда рассмотрим следующий набор(назовем его m) из 2^M : i-тый элемент противоположен i-тому элементу образа i (где $i \in M$). Заметим, что у этого набора нет прообраза (по построению для каждого i-элемента верно, что $m \neq f(i)$). Откуда следует, что мощность 2^M больше M.

1.12 12**