# The Markov/CCMT Methodology and Its Application to the Reliability Modeling of Digital Control Systems

Diego Mandelli, Jason Kirshenbaum, Paolo Bucci, Tunc Aldemir

The Ohio State University
Nuclear Engineering Program



## **Outline**

- 1. Introduction
- 2. The Markov/CCMT methodology
  - Modeling of Type I interactions
  - Modeling of Type II interactions
  - Markov/CCMT analysis
- 3. Markov/CCMT methodology and the reliability modeling of digital I&C systems
- 4. Conclusion



## The Markov/CCMT methodology

Methodology for the reliability modeling of systems which, due to their intrinsic nature, require dynamic tools.

Stochastic description of the system evolution:

- Type I Interactions Dynamic interactions between physical process variables (e.g., temperature, pressure, etc.) and the I&C systems that monitor and manage the process
- Type II Interactions Dynamic interactions within the I&C system itself due to the presence of software/firmware (e.g., multi-tasking and multiplexing)



## A reference case: PWR Feedwater System

Digital Feedwater Control System (DFWCS) Components:

- ✓ Main Feedwater Valve (MFV)
- ✓ Bypass Flow Valve (BFV)





# The Markov/CCMT methodology



# The Markov/CCMT methodology

Two steps:

System Modeling

Markov/CCMT approach

For each of these steps, the following are analyzed separately:

- Type I Interactions
- Type II Interactions

The system analysis merges the information for both Type I and II Interactions.



#### **Dynamic and control laws**



- Possible implementations:
- Java/C/C++ (simple systems)
- Simulink models (more elaborate systems)



# Type I interactions modeling

#### Simulink model of a Digital Feedwater Control System



#### **Cell-to-Cell Mapping Technique**



Dynamics of the system described in terms of probability of transitions between process variable magnitude intervals (cells) that partition the state space (CVSS)



## Cell-to-Cell Mapping Technique

- CVSS is divided into cells (Possibility to capture uncertainties and errors in the monitoring phase of the process)
- Through the set of dynamic and control laws it is possible to determine:

g(j|j',n',t)

Probability at time t to transit from cell j' to j given component state combination n'.



#### Interaction among controllers components



Two Steps:

- FMEA: Failure Modes and Effect Analysis
- Finite State Machine Description



#### **DFWCS Finite State Machine**

- MFV Controller
- BFV Controller
- FP Controller
- Main and Backup
- Computers
- PDI Controller



#### **Markov Modeling**

- Markov Models deducted from the Finite State Machine description
- The goal is to determine:



$$h(n|n',j'\rightarrow j)$$

Probability that a component state combination change from n to n during a transition from j to j.



#### **Markov Modeling**

In general,  $h(n|n',j'\rightarrow j)$  can depend on both:

- Time: failure rates may depend on time  $\lambda = \lambda(t)$
- Process status: failure rates may depend on process variables like temperature, pressure....



## **System Analysis**

#### **System Analysis**

- Markov:  $h(n|n',j'\rightarrow j)$
- CCMT: *g*(*j*|*j*',*n*',*t*)





$$q(n, j|n', j',t) = h(n|n',j'\rightarrow j) \cdot g(j|j',n',t)$$

$$p_{nj}(t+1) = \sum_{n'=1}^{N} \sum_{j'=1}^{J} q(n, j \mid n' j', t) p_{nj}(t)$$



## **System Analysis**

#### **Local Analysis**

- Event Trees are generated
- Trajectory of each point correspond to a single branch of the overall Event Tree (i.e. a possible scenario)
- Possibility to graphically visualize each scenario





# **System Analysis**

## **Global Analysis**

| Time (in seconds)<br>(Depth of DET) | Number of LOW failure scenarios | Number of HIGH failure scenarios | Ī                 | Number of scenarios<br>without failure |
|-------------------------------------|---------------------------------|----------------------------------|-------------------|----------------------------------------|
| 1                                   | 0 (0.0%)                        | 0 (0.0%)                         | П                 | 243 (100.0%)                           |
| 2                                   | 0 (0.0%)                        | 0 (0.0%)                         | $\prod$           | 1,242 (100.0%)                         |
| 3                                   | 530 (10.8%)                     | 0 (0.0%)                         | $\prod$           | 4,384 (89.2%)                          |
| 4                                   | 1,480 (9.3%)                    | 0 (0.0%)                         | $\prod$           | 14,439 (90.7%)                         |
| 5                                   | 4,999 (10.2%)                   | 186 (0.4%)                       |                   | 43,727 (89.4%)                         |
| 6                                   | 14,811 (10.2%)                  | 2,518 (1.7%)                     |                   | 127,292 (88.0%)                        |
| 7                                   | 47,881 (11.5%)                  | 6,531 (1.6%)                     |                   | 362,153 (86.9%)                        |
| 8                                   | 140,644 (11.9%)                 | 18,559 (1.6%)                    |                   | 1,022,695 (86.5%)                      |
| 9                                   | 411,240 (12.3%)                 | 50,259 (1.5%)                    |                   | 2,871,468 (86.2%)                      |
| 10                                  | 1,126,498 (12.0%)               | 143,922 (1.5%)                   | $\prod_{i=1}^{n}$ | 8,091,530 (86.4%)                      |



## Conclusion

- Markov/CCMT can be used to analyze elaborate communication systems
- Coupling between components can be take into account
- Possibility to couple Markov/CCMT with exiting PRAs
- Uncertainties in the monitoring and process modeling can be taken into account through cell definitions
- Uncertainty in the initial conditions can be accounted for

