

AMENDMENT TO THE CLAIMS

The listing of the claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS

Please amend the claims as follows:

1. (Original) A method comprising:
receiving content for transmission from a plurality of transmit antennae; and
generating a rate-one, space-frequency code matrix from the received content for transmission via the plurality of transmit antennae.
2. (Cancelled) A method according to claim 1, wherein the received content is a vector of input symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel.
3. (Cancelled) A method according to claim 2, the element of generating a rate-one space frequency code matrix comprising:
dividing the vector of input symbols into a number G of groups to generate subgroups;
and
multiplying at least a subset of the subgroups by a constellation rotation precoder to produce a number G of pre-coded vectors (v_g).

4. (Cancelled) A method according to claim 3, further comprising:
dividing each of the pre-coded vectors into a number of $LM \times 1$ subvectors; and
creating an $M \times M$ diagonal matrix $D_{s_k,k} = diag\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \dots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where $k=1\dots L$
from the subvectors.
5. (Cancelled) A method according to claim 4, further comprising:
interleaving the L submatrices from the G groups to generate an $M \times Nc$ space-frequency
matrix.
6. (Cancelled) A method according to claim 5, wherein the space-frequency matrix
provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit
antenna(s) M , receive antenna(s) N and channel tap(s) L .
7. (Cancelled) A method according to claim 1, wherein the space-frequency matrix
provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit
antenna(s) M , receive antenna(s) N and channel tap(s) L .
8. (Cancelled) A storage medium comprising content which, when executed by an
accessing communications device causes the communications device to implement a method
according to claim 1.
9. (Cancelled) An apparatus comprising:

a diversity agent to receive content for transmission via a multicarrier wireless communication channel, and to generate a rate-one, space-frequency code matrix from the received content for transmission on the multicarrier wireless communication channel from a plurality of transmit antennae.

10. (Cancelled) An apparatus according to claim 9, wherein the received content is a vector of input symbols (\mathbf{s}) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel.

11. (Cancelled) An apparatus according to claim 10, the diversity agent further comprising:

a pre-coder element, to divide the vector of input symbols into a number G of groups to generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation pre-coder to produce a number G of pre-coded vectors (\mathbf{v}_g).

12. (Cancelled) An apparatus according to claim 11, the diversity agent further comprising:

a space-frequency encoding element, responsive to the pre-coder element, to divide each of the pre-coded vectors into a number of $LM \times 1$ subvectors, and to create an $M \times M$ diagonal matrix $D_{\mathbf{s}_g,k} = diag\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \dots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where $k=1 \dots L$ from the subvectors.

13. (Cancelled) An apparatus according to claim 12, wherein the space-frequency encoding element interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.

14. (Cancelled) An apparatus according to claim 13, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M , receive antenna(s) N and channel tap(s) L .

15. (Cancelled) An apparatus according to claim 9, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M , receive antenna(s) N and channel tap(s) L .

16. (Cancelled) A system comprising:
a number M of omnidirectional antennas; and
a diversity agent, to receive content for transmission via a multicarrier wireless communication channel, and to generate a rate-one, space-frequency code matrix from the received content for transmission on the multicarrier wireless communication channel from at least a subset of the M omnidirectional antennas.

17. (Cancelled) A system according to claim 16, wherein the received content is a vector of input symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel.

18. (Cancelled) A system according to claim 17, the diversity agent further comprising:
a pre-coder element, to divide the vector of input symbols into a number G of groups to generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation pre-coder to produce a number G of pre-coded vectors (\mathbf{v}_g).

19. (Cancelled) A system according to claim 18, the diversity agent further comprising:
a space-frequency encoding element, responsive to the pre-coder element, to divide each of the pre-coded vectors into a number of $LM \times 1$ subvectors, and to create an $M \times M$ diagonal matrix $D_{\mathbf{s}_g,k} = \text{diag}\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \dots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where $k=1 \dots L$ from the subvectors.

20. (Cancelled) A system according to claim 19, wherein the space-frequency encoding element interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.

21. (Cancelled) A system according to claim 20, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M , receive antenna(s) N and channel tap(s) L .

22. (Cancelled) A system according to claim 16, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M , receive antenna(s) N and channel tap(s) L .