Theorem 1. Any Pocal event that

Can Rappen in any anditrony state

of a field can also Rappen in

the Vacuum.

Theorem 2 In the Nacuum along

me as we ment focated at x is

maximally correlated with some

simultaneous measurement focated

of y, however for apart x and

y may 20.

Theorem 3 Every local measurement is infinitely am viguous, i. local in finitely many quotions unansubres in finitely many quotions unansubres

NON-RELATIVISTIC BUANTUM FIELD THEORY (NRBFT) Guentization of the Schrödinger field: At t=0, 4(x) = 1/(2x)3/2 (a(k))e(k-x/3x 4 (2) = to 3/2 (2) e - ch-2 32 [a(k), a\*(k!)] = S[k-k!). [4(x), 4(x)]= s(2-x) Define N(B) = a(B) da) N(X) = 4 (X) 24(x) N= \ N(R) d3 R = \ \ N(Z) d3 X NV= JVN(2)d3x. Then: [NV, N21]=0, for disjoint Vondy Ny has eigen values 0, 1,2 --N=0 = D Nv =0 for all subsolumes V so global Vacuum & local stacum

RELATIVISTIC QUANTUM FIELD
THEORY (R&FT) Consider eRanged tilein-Gordon field 立 (21) 3h (a(R) e (大文) + 2\*(R) e (大文) w(k) = Vm2+ R2 [a(k), a'(k')]= w(k) S(k-k')  $N^{\dagger} = \int \frac{d^3k}{w(k)} a(k) a(k)$  Partidos N = (d3k lx(k)2(k) - - Antipantides But it we write NV= SN(2) 132 we find [NV, NV] to for digint VadV Similarly for NV. So Not don not commute with N=N+N and the global Nacuum N=0 ANV = 0.

Two ways out 1) Not is not a Cocal observable We need quantities like BV, Ite change in Volume V, for which [Qv, Qvi]=0 for disjoint Vands But again N=0 \$ BV=0 (ginco [Qv, N] to) local charge fluctuations. a) Write NY = SNNW (\$) d 5 New fm-wigner where Now (5)= 4 mm (5) 4 mm (5)

and 2 mm (5) = (211)3/2 (d3/2 a(12)e<sup>(2.5</sup>) July) [ 2 mw (\$), 4 mw (\$)] = S(\$-\$)

and hence  $[N_{v, Nw}, N_{v', Nw}] = 0$ for disjoint V and V. But 4 mu (5) connot 20 virtenpreted as creating a particle localized at the point 5, because we also have L 4 mw (5) SZ ) B (X) ] 4 mw (5) SZ) for 5 + x. (Ris she Nacuum state) NW localization is spread out in physical x- space. This arises because NW states are nonlocalized on melined hyposplans diagram explains Hegerfeldt's Paradot (1974)

## ALCEBRAIC QUANTUM FIELD THEORY

 $O \mapsto R(O)$ Von Weimmen algebra of Lounded open set in space line or servasion R acts or AilPart space \$

R(0+9)= U(a) R(0) U\*(a) L'reprentation of translation X > X+ d

For time like translations U(d) is exponentiated to obtain a Hamiltonian sponator which is non-negative.

 $\frac{950tony}{50ts0}$  For any two founded often  $\frac{50ts0}{50ts0}$ ,  $0, \leq 0_2 \Rightarrow R(0_1) \subseteq R(0_2)$ 

Locality % 0, and  $O_2$  are opposite related, then VA,  $ER(O_1)$ ,  $VA_2ER(O_2)$  EA, A2 = O

The Global algebra R is the smallest von W. algebra Containing all the local algebras. We are unto short it is voieducible and generated by the translates of RLO) for any D.

The Vacuum I is the unique state which is invariant under all translations

The Reeh- schlieder Thesem

The is cyclic work respect to to

for any R(0)

This just means {AS: A = R(0)} is

dense in B.

Collary R(0) This just means  $\forall A \in R(0), A = 0$ . I am now going to proof the R-S theorem and its Corallary for a very simple. andoque of a field theory in which spectime collapses to two which spectime collapses to dead the von N. algabras points and the von N. algabras of operators are just the algebras of operators on a 2- dimensional Hilbert Space. This is just the familian 2 spin 1/2 Particle Dystem, and for the analogue of the Vacuum we shall take unitially

Finilarly 
$$\sqrt{p}$$
  $\mathbb{F}_{1}$   $\mathbb{F}_{2}$   $\mathbb{F}_{1}$   $\mathbb{F}_{2}$   $\mathbb{F}_{2}$   $\mathbb{F}_{3}$   $\mathbb{F}_{4}$   $\mathbb{F}_{4}$   $\mathbb{F}_{5}$   $\mathbb{F$ 

Conallary A, 12 singlet > = 0 Proof: = 0 By the baby R-5 theorem VØ E H, O Hz, we can unite 14>= A2/24 singlet>, so  $A, |\phi\rangle = A, A_2 | \mathcal{L}_{singlet}\rangle$   $= A_2 A, |\mathcal{L}_{singlet}\rangle$ Since of is any Neeton in 16, 8 Az, it follows that A, = 0, Q. F.D. So Sysinglet ) is a cyclic North and a soparating vector for R, (and similarly for R2). We now prove a baby version of Theorem)

Define p = 1202 ( $P \in R_1 = 1$ )

Parjoetan. then p= 11? 12 Fright >112 So p=0 =D P, I I singler >= 0  $= P_1 = o \left( ly R - s \right)$ :. 1, +0 =D p + 0. SED. We now turn to a valey vorsion of Theorem 2 We want to prove. YPa, IP, S.t. (P,Pa) et surject = (P) utsunglet

(19. Prob 45 singlet (12=1/13=1)=1

Proof Write 4 singler = 45 Write 10>= 52/45>/11/2/45>1) Then by construction  $2l_2\rangle_{\phi}=1$  (1) But, by the boby R-S skerom 14)= (4) where C, is some spenator on to, (extended To H, 20 Hz) Substituting (2) in (1) gives 145/9,82/45>=1 -- (3) where Q = c \* c is a positive
Hermitian Spenator on 19,. so we can expand. Q,= 2, P, + 2, P, - - - (4) where 2, 1, are the positive real eigenvalues of Q, and J, J' are outrogonal projections in to.

Substituting (4) in (3) yields (4) W, (1, P2) 45 + W2 (1, P2) 45 L1,745 = | - - (5) where wi = 2, 41, 245 Wr = 2,1 (11) But we know  $\langle Q \rangle_{245} = ||C,|245>||$  = ||10>||= |W, + W2 = ) - - - (6)
with W, 7,0, W27,0. Hence LHS (5) & Max (LT,P2) 45 (T,P2) 45 and (5) can only be sortistic IT. Tess \ IT! >451

ib I, or I, (or loth) sortisty to condition

to Three ? for Theorem 2 O.F.D.

Now Theorems I and 2 del trivially true for Esmylet. Theorem 1 just Days, all spin Components have non-vanishing probability for results I on either Particle (indeed for 25 inglet all the probabilités are aqual to 1/2: while Thoman 2 Days all spin components are on one particle are maximally correlated with ofin components on do other particle. ( undered there are just to missonimage correlations of Esmith! But the proofs of those well-basen results for 4 singlet only used the R-S theorem; so they can be lifted the Arraight fach to QFT, with the Vacuum replacing 4 simplet!

In the OFT case, Theorem 2 Can be formulated more accurately For any two space like soparated founded span regions 0, and 02 and YE70, YB2 ER(02) ] P, ERLOi) 5.t. LP, 12/2 > (1-E) (P) We can also express the maximality of the correlations specified in Thonormal

We can also express the in Thoromal to correlations operated in Thoromal on terms of correlation coefficients.

In terms of correlation coefficients.

For any two projectors P, and P2 hologing to R[Oi) and R(On) respectively, we have  $C(P,P_1) = \frac{LP_1P_2}{LP_1 > (1-LP_1 > ) \cdot LP_2 > \frac{LP_1}{LP_2 > (1-LP_2 > )}$ 

So, for fixed < P, > , LP2> the mosmum value of C(S, S2) is given Try  $(P_1, P_2) = \left[ \frac{\langle P_1 \rangle \cdot (1 - \langle P_2 \rangle)}{\langle P_2 \rangle \cdot (1 - \langle P_1 \rangle)} \right]^{1/2}$ This only attains the value ! when '21, > = 282> This condition is satisfied for [45 singles], but Thorsem 2 m no way depends on this condition. We now west to compare (1) with the well-known Fredonkagen bound on conelation coefficients (Freder Ragen 1985). This roads me [- LPizz). (1-LB2)z)

C(P, B2) = e [1- LPizz). (1-LB2)z)

where m is mass-gap, and the minimum - (2)

Comparing (1) and (2), consistency requires LPin = = 2ml LP2/2 (1- LPa)2 i.e. the for a fixed value of Long, the maximally correlated?,
must have a probability of
securing that falls off et ponentially with the distance beloved O, and Or. This result shows how difficult it would be to observe the long-range correlations in the vacuum. But, of Course, it does not show dat they don't

Turning to Thorsem 3, to. ambiguity referred to arises in the Ysunget case from the fact dot the local projectors are all two-dimensional (i.e. of the form P, WIz ote) In QFT do tochnical femulation of Theorem 3 is: YPERLO), Pio unfuniter-1'rod by Driessler's Theorem (1975) the Von N. algebra associated with an untrunded wedge in spacetial is a type III factor. But every founded ofen region is contained in some wedge. so, by isotony, R(v) is always a sob-algebra of a type III factor. But in a type III factor all the projectors are infinite - dimensioner.

Hono all the projectors in R/O) are infinite-dimensional Q.F.D.

N.B. This result does not demonstrate that every local algebra is type III - this still remains an open question.

As a corallary of Theorem 3 we can state:

gt is never a local question

to dop

"Are we in the Vacuum state
or indeed in an N-particle

state (10 orthogonal to the Vacuum)?

This raises the fundamental question: What do (Rocal) partido detectors detect? He answer is they cannot strictly speaking be detecting partides. They defect certain fuper of field excitation, which for all Mactical purposes may resemble particles. But in reality (if you will exeuse to phrase!) AFT is not a thony of particles, but a thony of fields and their local excitations, and that is all those is to it.