<JP2000-111900>

Application No.: 1998-281678
Application Date: October 2, 1998

Applicant:

SONY CORP, STANLEY ELECTRIC CO LTD

Inventors:

YOU EIHO, ISHIGE OSAMU, ОКІ YOЛ

Title: REFLECTIVE DISPLAY DEVICE

<Abstract>

PROBLEM TO BE SOLVED: To provide a reflective display device with little inconvenience even if provided with front light.

SOLUTION: This reflective display device has a panel 10 which is provided with a 1st substrate arranged on the incident side of external light, a 2nd substrate arranged on the opposite side of incident side thereto and joined with the 1st substrate, an electrooptical substance held in a gap, and an electrode 3d composing pixels 5 repeatedly arranged at a 1st pitch along a 1st direction, a plate-form light transmission plate 20 which is the one 20 arranged outside of the incident side to the 1st substrate and having a prism plane 12 opposed to a flat plane arranged on the side of the 1st substrate as a pair of opposing main planes and composing many prisms 12 repeatedly arranged at a 2nd pitch different from the 1st pitch is the 1st direction, and a linear polarizing plate and a quarter-wavelength plate 22 arranged on the flat plane side of the light transmission plate.

1/1335

1/29

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-111900

(P2000-111900A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int.Cl.7

識別記号

ΡI

520

テーマコート。(参考)

G02F

520

G 0 2 F 1/1335

520

2H091

1/29

2K002

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特罰平10-281678

(71)出版人 000002185

ソニー株式会社

(22) 出頭日 平成10年10月2日(1998.10.2)

東京都品川区北品川6丁目7番35号

(74)上記1名の代理人 100091340

弁理士 高橋 敬四郎 (外1名)

(71) 出資人 000002303

スタンレー電気株式会社

東京都目風区中目風2丁目9番13号

(74)上記1名の代理人 100091340

弁理士 高橋 敬四郎

(72) 発明者 楊 映保

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

最終頁に続く

(54) 【発明の名称】 反射型表示装置

(57) 【要約】

(修正有)

【課題】 フロントライトを備えても不都合の少ない反射型表示装置を提供する。

【解決手段】 外光の入射側に配置された透明な第1基板、に対して入射側の反対側に配置され、第1基板に接合された第2基板、間隙内に保持された電気光学物質、及び電気光学物質に電界を印加するため、第1の方向に沿って第1のピッチで繰り返し配置される画素5を構成する電極3を備えたパネル10と、第1基板に対して入射側外側に配置された板状導光板20であって、対向する1対の主面として第1基板側に配置された平坦面に対向するプリズム面12を有し、第1の方向に第1のピッチと異なる第2のピッチで繰り返し配置された多数のプリズム12を構成する板状導光板20と、導光板の平坦面側に設けられた直線偏光板と入/4板22とを有する。

2

.....

8

【特許請求の範囲】

【請求項1】 外光の入射側に配置された透明な第1基板、該第1基板に対して入射側の反対側に配置され、所定の間隙を介して該第1基板に接合された第2基板、該間隙内に保持された電気光学物質、及び該電気光学物質に電界を印加するため、該第1基板と該第2基板の少なくとも一方に形成され、第1の方向に沿って第1のピッチで繰り返し配置される国素を構成する電極を備えたパネルと

該第1基板に対して入射側外側に配置された板状導光板であって、光を導入する光入力部を有し、対向する1対の主面として該第1基板側に配置された平坦面と該平坦面に対向するプリズム面を有し、プリズム面は該平坦面に対して約0.5度~約3.5度の角度をなし、該平坦面に対して約40度~約60度の角度をなし、該平坦部に対して約40度~約60度の角度をなし、該平力部から離れるに従って降下する斜面部との交互配置を有し、該第1の方向に該第1のピッチと異なる第2のピッチで繰り返し配置された多数のプリズムを構成する板状準を

該導光板の該平坦面側に設けられた直線偏光板と $\lambda / 4$ 板とを有する反射型表示装置。

【請求項2】 前記板状導光板は、1対の平行な主表面を有する透明基板と該透明基板上に配置された可塑材層とを有し、該可塑材層の表面に前記準平坦部と前記斜面部とが形成され、各斜面部とその光入力部側に隣接する準平坦部との交線が形成する各プリズム頂点の透明基板表面からの高さは全面でほぼ一定である請求項1記載の反射型表示装置。

【請求項3】 前記準平坦部の各々とその光入力部側に 隣接する斜面部との交線が形成するプリズム底部の前記 プリズム頂点に対する深さは、前記光入力部から離れる に従って深くなる請求項2記載の反射型表示装置。

【請求項4】 斜面部で反射して該平坦面から垂直に出射する光の強度が、該光入力部から最も離れた位置で、 光入力部に最も近い位置の1.3倍~2倍の範囲になるように、前記深さが設定されている請求項3記載の反射型表示装置。

【請求項5】 前記深さは1ミクロン~15ミクロンの 範囲にある請求項3記載の反射型表示装置。

【請求項6】 前記多数のプリズムのピッチは100ミクロン~500ミクロンの範囲にある請求項1~5のいずれかに記載の反射型表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、反射型表示装置に 関し、特にフロントライトを備えた反射型表示装置に関 する。

[0002]

【従来の技術】以下、電界の有無によって光学的性質を

変化させる電気光学物質を用いた表示装置の例として、 液晶表示装置を説明するが、制限的意味は有さない。

【0003】液晶表示装置の1種として反射型液晶表示 装置が知られている。反射型液晶表示装置は低い消費電力で動作し、情報端末用ディスプレイ等として期待されている。

【0004】しかし、光源を備えない反射型液晶表示装置は暗い環境では見ることができない。そこで観察面側にフロントライトを備えた反射型表示装置が提案されている。例えば、反射型液晶表示装置の観察面上に側面に光源を備えた楔形導光板を設置する。楔形導光板は、平坦な底面と、平坦部と斜面部とが交互に配置された上プリズム面とを有する。

【0005】導光板の側部から光を導入し、斜面部で反射させて液晶表示装置に照明光を導入する。液晶表示装置からの反射光は、導光板を透過して観察者に向かう。 即ち、楔形導光板は、光反射装置と光透過装置の機能を併せ有するものである。

【0006】光透過装置としての機能を保証するためには、上プリズム面の平坦部は底面に対しほぼ平行に配置されることが要求される。上プリズム面の平坦部が底面に対し大きな角度を形成すると、液晶表示装置から反射した光がプリズム作用により屈折し、液晶表示装置の表示性能に影響を与えてしまう。

【0007】導光板内を横方向に進向する光を反射させ、液晶表示装置にほぼ垂直入射させるためには、斜面部は約45度の角度を有することが望まれる。

【0008】このような平坦部と斜面部とを交互を繰り返すと、導光板の厚さは次第に薄くなり、楔型形状となる。例えば、導光板の入射側と反対側とにおいて厚さに2~3mm程度の差が生じてしまう。このような楔形導光板は、液晶表示装置の機能上好ましくない。例えば、液晶表示装置の上にタッチパネルを配置する場合、液晶表示装置とタッチパネルとの間の楔型空隙により、視差が生じてしまう。

[0009]

【発明が解決しようとする課題】フロントライトを備えた反射型液晶表示装置は、必要な時のみ光源を用いて低い消費電力で動作することができる。しかしながら、フロントライトを採用することにより、種々の不都合も生じてしまう。

【0010】本発明の目的は、フロントライトを備えることにより、不都合を生じることの少ない反射型表示装置を提供することである。

[0011]

【課題を解決するための手段】本発明の1観点によれば、外光の入射側に配置された透明な第1基板、該第1基板に対して入射側の反対側に配置され、所定の間隙を介して該第1基板に接合された第2基板、該間隙内に保持された電気光学物質、及び該電気光学物質に電界を印

加するため、該第1基板と該第2基板の少なくとも一方に形成された電極を備えたパネルと、該第1基板に対して入射側外側に配置された板状導光板であって、光を第1基板側に配置された板状導光板であってして、対向する1対の主面として設第1基板側に配置された平坦面と該平坦面に対向するプリズム面を有し、プリズム面は該平坦面に対して約0.5度~約3.5度の角度をなし、該平坦面に対して約40度~約60度の角度をなし、該平坦面に対して約40度~初60度の角度をなし、該半人力部から離れるに度~た多数のプリズムを構成する板状導光板と、該導光板の該平坦面側に設けられた直線偏光板と入/4板とを有する反射型表示装置が提供される。

【〇〇12】導光板の形状を工夫することにより、フロントライトの採用による不都合を低減することができる。

【0013】導光板の上面をプリズム面とし、プリズム面を光源から離れるに従い徐々に隆起する準平坦部と、 光源から離れるに従い降下する斜面部との繰り返しと し、プリズムの頂点を底面とほぼ同一高さに形成することにより、平板型導光板が形成される。

【0014】プリズム頂点から底部への深さを調整することにより、光源から離れるに従いプリズムの反射率を向上させることができる。このようにして、導光板全面でほぼ同一の輝度を有する導光板を形成することができる。

[0015]

【発明の実施の形態】図1は、本発明の実施例による反射型液晶表示装置の構成を示す断面図である。図1

(A)は、反射型液晶表示装置全体の構成を示す断面図であり、図1(B)は、図1(A)に示す反射型液晶表示装置の導光板の構成を拡大して示す1部拡大断面図である。

【0016】図1(A)において、1対のガラス基板 1、6の間に液晶層4を挟み、液晶パネルが形成されて いる。ガラス基板1の表面には、カラーフィルター2お よび透明電極層3が形成され、他方のガラス基板6の表 面上には、面素5が形成されている。面素5は、例えば 絶縁ゲート型トランジスタと回案電極とを備えたアクティブマトリクス型面素である。液晶パネル10の下部に は、反射板8が配置されている。

【0017】なお、反射板8を液晶パネル10内に形成することもできる。例えば、画素5の下に、反射鏡を形成してもよい。ガラス基板6の下面上に反射面を形成することもできる。

【0018】図1(A) 左方には、冷陰極管で形成された光源32と、光源から発する光を導光板20の方向に反射させるリフレクタ34が配置されている。導光板20の図中左側側面が、光入力部となる。

【0019】液晶パネル10の上方には、導光板20及

び反射光遮断用の偏光調整器30が配置されている。導 光板20は、1対の平行な主面を有する透明アクリル板 11と、アクリル板11の表面上に配置され、紫外線硬 化樹脂で形成されたプリズム部材12を含む。プリズム 部材12は、平坦な下面13と、光源から離れるに従い 次第に隆起する準平坦部14と、光源から離れるに従い 降下する傾斜部15との繰り返しからなる上面を有す る。この導光板20の構成を、図1(B)に拡大して概 略的に示す。

【0020】偏光調整器30は、直線偏光子21と、入 /4板22の積層を含む。直線偏光子21は、等しい強 度の×成分とy成分とを含む直線偏光を形成する。入/ 4板22は、×成分およびy成分の1方に入/4の位相 差を与える。この結果、偏光調整器30に入射した光 は、円偏光となって出射する。

【0021】偏光調整器30から出射した光が下方で偏光状態を維持したまま反射され偏光調整器30に戻ると、 λ /4板22を通過した時点で偏光軸が90度回転された状態となる。このため、直線偏光器21がそのような反射光を遮断する。従って、偏光調整器30から出射し、下方で鏡面反射されて戻る光は偏光調整器30で遮断され、導光板20には戻らない。

【0022】図1(B)において、導光板20を左から右に進向する光は、斜面部15で反射され下方に向かう。斜面部15が、図中水平面に対しほぼ45度の角度を有するため、左から右にほぼ水平に進行する光は、液晶表示装置に対しほぼ垂直に入射するように反射される。なお、光源からの光の進行方向は完全に水平ではないので、斜面部15の角度も約40度~約60度の範囲で選択される。

【0023】液晶パネル10を通過し、反射鏡8で反射された光は、下方より上方に向かい、偏光調整器30、 導光板20に向かう。導光板20においては、ほぼ水平な面を形成する準平坦部14が、出力光の出射面を形成する。斜面部15に入射する光は、入射角が大きなため、ほぼ全反射されて導光板内に進む。

【0024】表示装置の機能から導光板20は全面でほぼ均一な輝度を有することが望まれる。光源32は導光板の1辺に沿って配置され、光源32からの光は導光板20内を左から右に進む。導光板20のプリズム部12に形成するプリズム形状を均一にすると、各プリズムに入射する光の立体角は左に向かうほど小さくなってしまう。導光板全面で均一な輝度を得るためには、同一形状のプリズムを形成するのでは足りない。

【0025】図2は、導光板のプリズム部12を拡大して示す。底面13は平坦な平面である。上面は、準平坦部14と斜面部15の繰り返しによって形成される。準平坦部14と斜面部15との交線が、頂点17と底部18を形成する。準平坦部14は、出射光をなるべく忠実に観察者に伝達するため、平坦面に対し大きな角度を形

成することができない。準平坦部14は、底面13に対してほぼ平行に配置することが必要である。

【0026】しかしながら、準平坦部14を底面13と 平行に配置すると、プリズムを形成するためのプリズム 部12の形状は、左に向かうに従い次第に薄くなってし まう。この場合、導光板が楔型となり、種々の不都合を 生じてしまう。

【0027】そこで、準平坦部14が、底面13とほぼ平行な状態を保ちつつ、光源から離れるに従い次第に隆起するように設定する。例えば、水平面に対し約1.5 度の角度をなすように準平坦部14を形成する。斜面部15は、導光板20内を左から右に進行する光を反射させ、反射型液晶表示装置に向かわせる部分である。

【0028】各プリズムに入射する光の単位面積当たり 光量は、導光板を右に向かうに従い小さくなる。従っ て、斜面部15は、右に向かうほど大きくなるように設 定することが望まれる。斜面部15の面積を増大するた めには、プリズムの頂点17と底部18との高さの差 d (以下深さと定義する)を導光板中左から右に向かうに 従って次第に増加するように設定することが好ましい。 【0029】なお、斜面部15に入射する光の平均方向 も、導光板を左から右に向かうに従い次第に減少する。 従って、斜面部15が水平面となす角度γも変化させて もよい。例えば、角度γを約40.5度から約44.5 度の範囲で変化させる。なお、平坦部14が水平面とな す角度αと、斜面部15が水平面となす角度γの和であ る角度βは、約42.5度から約46度の範囲で変化す る。斜面部15から液晶パネルに向かう光は垂直方向か ら若干(たとえば±5度程度)はずれていた方が画面が 明るくなり、コントラストが高い。

【0030】プリズムのピッチは、100ミクロン~500ミクロン、好ましくは200ミクロン~300ミクロンの範囲に設定することが望ましい。プリズムの深さは、1ミクロンから15ミクロンの範囲に設定することが好ましい。また、斜面部で反射して平坦面から垂直に出射する光の強度が、光入力部から最も遠い位置で、光入力部に最も近い位置の1.3倍~2倍の範囲になるように、プリズム深さdを設定することが好ましい。

【0031】導光板20全体をアクリル等の透明材料で形成することもできるが、プリズム形状を成形するためには、プリズム部12をより可塑性に優れた材料で形成することが好ましい。上述のように、アクリル板と紫外線硬化樹脂との組み合わせを用いると、紫外線硬化樹脂をスタンパー等により容易に成形することができる。

【0032】図3は、導光板に形成するプリズムに左から右に向かって増加するプリズム番号を与えた時、プリズム深さの変化を示すグラフである。この図においては、プリズム深さは約3μから約10μにほぼ指数関数的に変化している。このようにプリズム深さを変化させることにより、導光板全面にほぼ均一な輝度を与えるこ

とが容易になる。

【0033】図4は、深さを徐々に変化させたプリズムを有する導光板の各プリズムの反射率を測定した結果を示す。左側のプリズムから右側のプリズムに向かうに鋭い、反射率はほぼリニアに増大している。プリズムに対している。プリズムに対している。プリズムにはり、入射光の減少を補償しなり、海水板全面でほぼ均一な輝度を与えることが可能となる。【0034】なお、反射型液晶表示装置に導光板を設める。とにより、モアレ縞が発生することがある。とにより、モアレ縞が発生することがある。とにより対策を循減することができる。しかしなが発生するにより対策を行うことができる。このようなモアレ縞の発生に対して、画素とプリズムの配置を調整することにより対策を行うことができる。

【0036】 国素PXのピッチとプリズムPRのピッチが僅かに異なるため、表示面を図中左から右に向かうに従い、国素PXとプリズムPRとの相対的位置(位相)関係は徐々に変化する。国素PXとプリズムPRが同一の位相状態を実現するまでの距離が十分長ければ、周期構造の発生を防止し、モアレ絡発生防止に有効であろう。

【0037】このような関係を達成するためには、国案PXとプリズムPRの最小公倍数が十分大きなものとなればよい。 画案PXのピッチとプリズムPRのピッチを僅かにずらすことは、このための有効な方法の1つである。 画案PXとプリズムPRとが同一の位相関係を実現するピッチは、表示画面の約2/3以上の面積となるようにすることが好ましい。

【0038】以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、液晶表示装置の代わりに、写真等の他の反射型表示装置を用いることもできる。また、導光板を形成する材料はアクリル及び紫外線硬化樹脂に限らない。透明平板とプリズム部とを異なる材料で形成する場合は、透明平板は十分な強度を有する材料で形成し、プリズム部は塑性変形の容易な材料で形成することが好ましい。その他種々の変更、改良、組み合わせが可能なことは当業者に自明であろう。

[0039]

【発明の効果】以上説明したように、本発明によれば、 導光板を備えたフロントライトを有する反射型表示装置

. . . .

を提供することができる。導光板を用いることによる不 5 画素

を提供することができる。導光板を用いることによる不 都合を生じることが少ない。

【図面の簡単な説明】

【図1】本発明の実施例による反射型液晶表示装置の構成を示す概略断面図である。

【図2】プリズム部の拡大断面図である。

【図3】 プリズム深さの変化を示すグラフである。

【図4】 プリズムの反射率の変化を示すグラフである。

【図5】 画素とプリズムのピッチの関係を示す概略平面 図である。

【符号の説明】

1、6 ガラス基板

2 カラーフィルタ

3 透明電極

4 液晶層

5 画素

8 反射板

10 液晶パネル

11 アクリル板

12 プリズム部

13 プリズム部の底面

14 準平坦部

15 傾斜部

17 プリズムの頂点

18 プリズムの底部

20 導光板

21 直線偏光器

22 λ/4板

30 偏光調整器

[图1]

【図2】

【図4】

フロントページの続き

(72) 発明者 石毛 理

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72) 発明者 沖 庸次

神奈川県横浜市南区大ツ川2-48-1

Fターム(参考) 2H091 FA02Y FA08Z FA14Z FA17Z

FA21Z FA42Z FB02 FD06

GA13 LA16

2K002 AA07 AB03