

Programa de Mestrado em Computação Módulo 10 - Processamento Digital de Imagens- Segmentação de Imagens

Autor: Prof. Dr. Alan Salvany Felinto email: alan@uel.br (2017)

- •Segmentação de imagens: Separa parte(s) da imagem.
- •Segmentação de pontos, linhas e bordas
- •Segmentação por limiar, crescimento de regiões, divisão e fusão de regiões.
- •A segmentação pode ser feita tanto em imagens quanto em vídeo (imagens que variam com o tempo).

Segmentação de Imagens

Considere o processo de convolução de uma máscara com uma imagem:

$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9$$
$$= \sum_{i=1}^{9} w_i z_i$$

W ₁	w ₂	w ₃
W ₄	w ₅	w ₆
w ₇	w ₈	W ₉

Onde: w é a máscara e z são os pixeis da imagem

a) Detectar pontos:

-1	-1	-1
-1	8	-1
-1	-1	-1

b) Detectar linhas:

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

1	2	-1
-1	2	-1
-1	2	-1
Vertical		

2	-1	-1
-1	2	-1
-1	-1	2
450		

Horizontal

R1 F

R3

R4

A máscara que obtiver a maior resposta indica que o ponto pertence a uma linha na direção desta máscara.

Segmentação de Images Claro **Escuro**

Modelo

A magnitude da primeira derivada é Primeira utilizada para derivada detectar bordas

Borda

Segunda

derivada

O cruzamento por zero da segunda derivada também é utilizada para detectar bordas

c) Detectar bordas:

- Positiva se a borda é uma transição de escuro para claro.
- Negativa se a borda é uma transição de claro para escuro.

Caso a derivada primeira seja positiva:

- valor positivo da segunda derivada representa parte
- escura.
- valor negativo da segunda derivada representa parte clara.

Caso a derivada primeira seja negativa o que acontece com a segunda derivada?

Detectar Bordas

Imagem

Gx

$$\mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \text{mag}(\nabla f) = [G_x^2 + G_y^2]^{1/2}$$

$$\nabla f \approx \left|G_x\right| + \left|G_y\right|$$

$$\alpha(x, y) = \tan^{-1} \left(\frac{G_y}{G_x} \right)$$

(a)
$$z_1$$
 z_2 z_3 z_4 z_5 z_6 z_7 z_8 z_9

2

1

$$G_x = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

$$G_y = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

Ângulo de direção da borda em relação ao eixo x

Laplaciano:

0	-1	0
-1	4	-1
0	-1	0

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$$

Gaussiana

$$h(x, y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Derivada Segunda da gaussiana

$$\nabla^2 h = \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right).$$

$$r^2 = x^2 + y^2$$

- Cruzamento com zero detecta bordas
- $\nabla^2 f = 4z_5 (z_2 + z_4 + z_6 + z_8)$ Borra (retira ruído) quanto maior o sigma mais borra

Pontos alinhados

- Considera a relação global entre os pixeis.
- Como calcula os subconjuntos de n pontos alinhados ? (separa os pontos alinhados).
- Como achar todos os pontos alinhados de uma imagem ?
- A cada dois pontos calcula-se a equação da reta e verifique se existem pontos com a mesma equação da reta (Esta abordagem é proibitiva devido ao custo computacional envolvidos).
- Solução da Transformada de Hough.

Transformada de Hough

- •Técnica de Hough [1062]
- Dado um ponto p(xi,yi)
- •yi = axi + b , Infinitas linhas passam por (xi,yi) que satisfazem a equação.
- •b = -xia+ yi , espaço de parâmetro (a, b). Fixa (xi, yi) e forneça "a" para produzir uma linha neste espaço.

Considerando que a = deltay/deltax temos que o problema com as retas próximas a vertical onde deltax tendem a zero e "a" tende ao infinito.

Transformada de Hough

Solução:

$$x.cos(\theta) + y.sen(\theta) = \rho$$

Fixando x, y e variando θ e ρ

Matriz acumuladora

Obs: Linha na vertical: $\theta = 0$, $x = \rho$

Transforma de Hough

Algoritmo 1:

- Detectar as bordas.
- Definir a matriz acumuladora MA:
 - Definir e quantizar: amin, amax, bmin e bmax.
 - MA[amin .. amax][bmin .. bmax]
- •Com todos os píxels (x,y), obtidos pela filtragem passa alta, faça: For(a= amin; a<= amax; a++){

```
For(a= amin; a<= amax; a-
b=-xa+y;
MA[a][b]++
}</pre>
```

Pesquisar as maiores contagens em MA[a][b] Observe que se MA[a][b] = k então temos k pontos colineares sobre a linha y=ax+b

Transformada de Hough

Algoritmo 2:

- Detectar bordas
- •Definir e quantizar (ρmin, ρmax, θmin e θmax)
 - $MA[\rho][\theta] = matriz acumuladora.$
- •Com todos os píxels de borda faça: For($\theta = \theta$ min; $\theta <= \theta$ max; θ ++){ $\rho = x.cos(\theta) + y.sen(\theta)$; MA[ρ][θ]++

•Pesquisar as maiores contagens em $MA[\rho][\theta]$.

```
Obs: se MA[\rho][\theta] = k então temos k pontos sobre a linha \rho = x.cos(\theta) + y.sen(\theta);
```

Segmentação de Imagens

Figura 6.1. Etapas de um sistema de reconhecimento de padrões Livro: Conci, A; Azevedo, E; Leta, F.R. Computação gráfica- volume 2, editora campus

Segmentação pelo contorno do objeto: Filtragens no domínio do espaço e/ou da freqüência

Segmentação por região: É baseada na caracterização de um grupo de pixeis conectados.

Segmentação por Limiar

Limiar ou "threshold"

Imagem original

Imagem resultante

Histograma

Segmentação por Limiar

Limiar ou "threshold"

Obs: Arvore de decisão – limiar automático

Figura 7.26 (Gonzalez & Woods – Livro texto da disciplina) a) Função de refletância r(x,y) b) Histograma de r(x,y) C) função de iluminação g(x,y) = Ki(x,y)

d) $f(x,y) = i(x,y) \cdot r(x,y)$ (imagem) e) Histograma de f(x,y) de "d"

 $f(x,y)/g(x,y) = r(x,y)/k \rightarrow isso facilita a segmentação$

Otsu

Útil para classificar 2 classes (pode também ser usada para classificar mais que duas classes)

Utiliza o Histograma

Maximiza a variância entre duas classes (média de cada classe afastada)

Minimiza a variância de cada classe (agrupa os dados de cada classe)

Histograma Bimodal

)tsu

Considere: Uma imagem MN

$$p_i = n_i / MN$$

 $p_i = n_i/MN$ Probabilidade de encontrar o nível de cinza i na imagem (n é o histograma) (p é o histograma)

$$\sum_{i=1}^{L-1} p_i = 1, \quad p_i \ge 0 \qquad \qquad \text{Onde L \'e igual a 256}$$

Considere um limiar K que separe o histograma em 2 Classes:

$$P_1(k) = \sum_{i=0}^{k} p_i$$
 Probabilidade do pixel pertencer a classe 1

$$P_2(k) = \sum_{i=k+1}^{L-1} p_i = 1 - P_1(k)$$
 Probabilidade do pixel pertencer a classe 2

$$\begin{array}{ll} \overline{\nabla} & m_1(k) = \sum_{i=0}^k i P(i/C_1) & P(C_1/i) = 1 \text{ , probabilidade de } C1, \text{ dado } i. \\ \overline{\nabla} & \sum_{i=0}^k i P(C_1/i) P(i) / P(C_i) \\ \overline{\nabla} & = \frac{1}{P_1(k)} \sum_{i=0}^k i p_i \\ \end{array}$$

$$m_{2}(k) = \sum_{i=k+1}^{L-1} iP(i/C_{2})$$

$$= \frac{1}{P_{2}(k)} \sum_{i=k+1}^{L-1} ip_{i}$$

Média até o Nível de cinza K:

$$m(k) = \sum_{i=0}^{k} i p_i$$

Média Global
$$m_G = \sum_{i=0}^{L-1} i p_i$$

Métrica é maximizar a equação:

$$\eta = \frac{\sigma_B^2}{\sigma_G^2}$$
 Variância entre classes

Variância global (constante)

Verdades: $P_{1}m_{1} + P_{2}m_{3} = m_{c}$ $P_1 + P_2 = 1$

$$P_{3} = P_{1}(m_{1} - m_{G})^{2} + P_{2}(m_{2} - m_{G})^{2}$$

$$\sigma_{B}^{2} = P_{1}(m_{1} - m_{G})^{2} + P_{2}(m_{2} - m_{G})^{2}$$

$$\sigma_{B}^{2} = P_{1}P_{2}(m_{1} - m_{2})^{2}$$

$$\sigma_{B}^{2}(k) = \frac{\left[m_{G}P_{1}(k) - m(k)\right]^{2}}{P_{1}(k)\left[1 - P_{1}(k)\right]} \quad \sigma_{B}^{2}(k*) = \max_{0 \leq k \leq L-1} \sigma_{B}^{2}(k)$$
Resumo:
1. Calcular para k=0,13
3 Calcular 4 Calcular 5 calcular

Resumo:

1. Calcular o histograma 2. Calcular para k=0,1,...L-1

 $P_1(k)$ m(k) $m_{\scriptscriptstyle G}$

 $\sigma_{\rm\scriptscriptstyle R}^2(k*)$ 5 calcular 6 caso de empate use a média

Canny

- Baixa taxa de erro: detectar somente as bordas (suprimir os ruídos)
- Boa localização: a Borda detectada deve estar na posição real da borda
- Resposta Mínima: A borda deve ser da espessura de um pixel (suprimir ruídos)

Algoritmo:

• Redução de ruído: Utilize um filtro gaussiano.

$$K = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix}$$

Gradiente da Imagem: Aplica-se o filtro Sobel
 Calcule a Magnetude e a direção de cada píxel

$$\nabla f = \text{mag}(\nabla f) = [G_x^2 + G_y^2]^{1/2}$$
$$\alpha(x, y) = \text{tan}^{-1} \left(\frac{G_y}{G_x}\right)$$

Gx		
-1	-2	-1
0	0	0
1	2	1

<i>Gy</i>		
_1	0	1
-2	0	2
-1	0	1

Afinar a borda:

Maior magnetude ao longo da direção normal da borda.

Histerese: Utiliza 2 limiares com a finalidade de preencher pequenas lacunas
 <u>Se</u> o gradiente do píxel for maior que o **limiar superior** <u>então</u> é aceito como borda.
 <u>Se</u> o gradiente do píxel for menor que o **limiar inferior** <u>então</u> é rejeitado como borda.
 <u>Se</u> o gradiente do píxel estiver entre os dois limiares <u>E</u> <u>Se</u> o píxel estiver conectado a um píxel cujo gradiente seja maior que o limiar superior <u>então</u> é aceito como borda

Redução de Ruído

Canny

Gradiente da Imagem

Afina a borda

Histerese

- Canny, J., A Computational Approach to Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/c anny_detector.html

LSegmentação de Imagens

Segmentação Orientada a regiões:

- •Fornece informações espaciais.
- •Regiões possuem características próprias.

Algoritmo

(Exemplo de crescimento de regiões por agregação de pixels)

Plante n sementes em uma imagem,

cada semente irá crescer e formar uma região R.

Considere mi = média da cor (níveis de cinza de uma região R).

Repita para (i =1 ..n)

Para (cada pixel P na borda de Ri)

Para (os pixels vizinhos não rotulados de P)

Se (vizinho não rotulado e $|f(x,y)-mi| \le D$)

Inclua o vizinho a Ri, atualize mi

Até que não haja mais inclusões de pixels em regiões.

Segmentação de Regiões

Formulação Básica:

- •R1 U R2 U .. Rn = R , onde R é a região da imagem a ser segmentada
- •Ri é uma região conexa, i= 1,2,3,...n
- •Ri \cap Rj = vazio para todo i e j, i diferente de j.
- •P(Ri) é um predicado lógico sobre os pontos do conjunto Ri.
- •P(Ri) é a propriedade dos pixeis da região Ri(média entre pixeis, intervalo da cor de pixeis, diferença entre pixeis)
- •P(Ri) = Verdadeiro para i = 1,2,...n.
- •P(Ri U Rj) = FALSO para i diferente de j

Ex: os pixeis das regiões R1 e R2 possuem uma diference absoluta do monos do 3 entre os nívo

diferença absoluta de menos de 3 entre os níveis

de cinza.

K-Média

- 1) Plantar as K sementes (centroides) na imagem: A localização das sementes influenciam no resultado do algoritmo.
- 2) Para cada ponto da imagem classificar no cluster que obtiver a menor distância euclidiana (RGB do ponto com o RGB da semente).
- 3) Calcular a nova semente (nova média da característica do cluster) para cada um dos K clusters.
- 4) Repetir até que não altere os valores das sementes, ou escolher um número fixo de interação, ou que não haja mudança de um pixel de um cluster para outro cluster.

Obs:

Três características para cada semente: R, G, B

Divisão e fusão de regiões

Quadtree

R1	R2
R3	R4.1R4.2 R4.3R4.4

Resumo

- 1. Se P(Ri) = falso então divida por 4 a região Ri
- Se Rj e Rk são regiões adjacentes e P(Rj U Rk) = verdadeiro então junte as regiões Rj e Rk em uma única região.
- 3. Pare quando não for mais possível dividir ou fundir regiões.

Movimentação e Segmentação

Técnica Espacial

- Seja f(x, y,ti) e f(x,y, tj) dois quadros de imagens tomados nos instantes ti e tj.
- •Considere que não há mudanças nas características do ambiente durante as aquisições das imagens e que existam objetos em movimentos.
- •Seja Dij diferenças entre as duas imagens.
- •Dij(x,y) = 1 se |f(x,y,ti)-f(x,y,tj)| > T0 caso contrário.
- •Onde θ é um limiar (calibrar o valo de θ para não pegar pequenas variações).
- •Utilizando Dij temos que os valores 1 estão relacionados aos objetos em movimentos e os valores 0 estão relacionados com os objetos estacionários.
- •E o ruído o que fazer ? (ignorar pequenos agrupamentos de píxels).
- Mudança de iluminação (Normalizar a imagem pela média das intensidades dos pixels)

Diferenças Acumulativas

- •Considere uma sequência de imagens.
- •F(x,y,t1), f(x,y,t2), ...f(x,y,tn)
- •Existem 3 tipos de diferenças acumuladas:
 - Absoluta -AADI Dij(x,y) = 1 se |f(x,y,ti)-f(x,y,tj)| > T0 caso contrário.
 - Positiva –PADI Dij(x,y) = 1 se f(x,y,ti)-f(x,y,tj) > T0 caso contrário.
 - Negativa NADI Dij(x,y) = 1 se f(x,y,ti)-f(x,y,tj) < T0 caso contrário.
- •F(x,y,ti) f(x,y,tj) = negativo ou positivo.
- menor maior = negativo
- maior menor = positivo.

Exercícios

Desenvolvam programas em OpenCV que:

- 1) Implemente um exemplo que utilize o detector de bordas Canny em um processamento de vídeo.
- 2) Implemente um exemplo que utilize o OTSU para binarizar as imagens contidas em um vídeo.
- 5) Apresente uma segmentação de imagens coloridas utilizando o algoritmo k-means com 3, 4, 5 e 6 clusters.

