1179: Probability Lecture 17 — Joint Distributions

Ping-Chun Hsieh (謝秉均)

November 12, 2021

This Lecture

1. Joint Distributions of Two Random Variables

2. Joint PMF and Marginal PMF

Reading material: Chapter 8.1

Joint CDF of Two Random Variables

Joint CDF

Joint CDF: Let X and Y be two random variables defined on the same sample space Ω . The joint CDF

$$F_{XY}(t,u)$$
 is defined as

$$F_{XY}(t,u) = P(X \le t, Y \le u), \forall t, u \in \mathbb{R}$$

$$F_{XY}(t,u) \le 1?$$

$$F(X) \le t, Y \le u, \forall t, u \in \mathbb{R}$$

$$F(X) \le t, Y \le u, \forall t, u \in \mathbb{R}$$

$$F(X) \le t, Y \le u, \forall t, u \in \mathbb{R}$$

$$F(X) \le t, Y \le u, \forall t, u \in \mathbb{R}$$

$$b 0 \le F_{XY}(t, u) \le 1?$$

Suppose
$$t_1 \le t_2$$
 and $u_1 \le u_2$, then $F_{XY}(t_1, u_1) \le F_{XY}(t_2, u_2)$?

• What is
$$F_{XY}(\infty, \infty)$$
? How about $F_{XY}(-\infty, -\infty)$?

Event Probabilities and Joint CDF (I)

$$F_{XY}(t,u) = P(X \le t, Y \le u), \ \forall t, u \in \mathbb{R}$$

$$P(X \le t) = P(X \le t, Y \le u) = F_{XY}(t,u)$$

$$P(Y \le u) = ? P(\chi \le \infty, \chi \le u) = F_{\chi \chi}(\infty, u)$$

Marginal CDF

Marginal CDF: Let X and Y be two random variables defined on the same sample space Ω , and the joint

defined on the same sample space
$$\Omega$$
, and the joint CDF is $F_{XY}(t,u)$. The marginal CDF of X and Y are marginal CDF of $F_{XY}(t,\infty)$
$$F_{Y}(t) = P(X \leq t) = F_{XY}(t,\infty)$$
 marginal CDF of Y and Y are marginal CDF

Event Probabilities and Joint CDF (II)

$$F_{XY}(t,u) \neq P(X \leq t, Y \leq u), \forall t, u \in \mathbb{R}$$

$$P(t_1 < X \le t_2) = ? P(X \le t_2) - P(X \le t_1)$$

$$= F_{X}(t_{2}) - F_{X}(t_{1}) = F_{XY}(t_{2}, y_{0}) - F_{XY}(t_{2}, y_{0})$$

$$P(u_1 < Y \le u_2) = ? \qquad P(Y \le u_2) - P(Y \le u_1)$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\infty, U_2 \right) - \frac{1}{\sqrt{2}} \left(\infty, U_1 \right)$$

$$\rightarrow$$

Event Probabilities and Joint CDF (III)

Example: A Random Point in a Unit Square

Joint PMF and Marginal PMF

Joint PMF of 2 Discrete Random Variables

$$P(X=X)=p(X)$$

Joint PMF: Let X and Y be two discrete random variables defined on the same sample space Ω . The joint PMF $p_{XY}(x,y)$ is defined as

$$p_{XY}(x,y) = P(X = x, Y = y)$$

Let the sets of possible values of X and Y be S_X and S_Y

$$P(X = x) = P(X = x, Y \in S_Y) = \sum_{X \in S_X} P(X, y)$$

$$P(Y = y) = P(X \in S_X, Y = y) = \sum_{X \in S_X} P(X, y)$$

Marginal PMF

Marginal PMF: Let X and Y be two discrete random variables defined on the same sample space Ω , and the joint PMF is $p_{XY}(x,y)$. The marginal PMF of X and Y are

$$P(X = x) = \sum_{y \in S_Y} p_{XY}(x, y)$$

$$P(Y = y) = \sum_{x \in S} p_{XY}(x, y)$$

where S_X and S_Y are the sets of possible values of X and Y

Example: From Joint PMF to Marginals

ightharpoonup Example: Let the joint PMF of X and Y be

$$p_{XY}(x,y) = \begin{cases} \frac{1}{25}(x^2 + y^2) & \text{, if } x = 1,2, y = 0,1,2\\ 0 & \text{, otherwise} \end{cases}$$

• What is the marginal PMF of X and Y?

Example: Bernoulli and Poisson

- Example: Consider $X \sim \text{Bernoulli}(p), Z_0 \sim \text{Poisson}(\lambda_0, T)$ and $Z_1 \sim \text{Poisson}(\lambda_1, T)$ (all are independent). Suppose $Y = Z_0$ if X = 0, and $Y = Z_1$ if X = 1.
 - What is the joint PMF of X and Y?
 - What is the marginal PMF of Y?

Revisit: Two Independent Geometric Random Variables

- Example: Consider $X_1 \sim \text{Geometric}(p), X_2 \sim \text{Geometric}(p),$ and X_1, X_2 are independent.
 - What is the joint PMF of X_1 and X_2 ?
 - What is the PMF of $X = \min(X_1, X_2)$?

1-Minute Summary

