ЛАБОРАТОРНАЯ РАБОТА № 13

СТАБИЛИЗАТОРЫ

1. Исследование стабилитрона (Zener Diode)

1.1. Соберите схему. Тип стабилитрона \mathcal{I} должен соответствовать варианту задания. Приборы должны быть в режиме **DC** (**Mode: DC**).

- 1.2. Определите в режиме Models/Library/stab/Model/S1XX/Edit номинальное напряжение стабилизации стабилитрона $U_{\text{ст. ном}}$ (Zener test voltage at IZT (VZT)) и номинальный ток стабилизации стабилитрона $I_{\text{ст. ном}}$ (Zener test current (IZT)).
 - 1.3. Установите E примерно в 3 раза больше $U_{\text{ст. ном}}$.
 - 1.4. Рассчитайте:

$$U_{\text{ct. MAKC}} = 1,01 U_{\text{ct. HOM}};$$

 $U_{\text{ct. MUH}} = 0,99 U_{\text{ct. HOM}}.$

- 1.5. Изменяя балластное сопротивление R_6 , установите $U_{\text{ст. макс}}$ с точностью \pm 0,01 В и определите с помощью амперметра максимальный ток стабилизации стабилитрона $I_{\text{ст. макс}}$.
- 1.6. Изменяя балластное сопротивление R_6 , установите $U_{\text{ст. мин}}$ с точностью $\pm 0{,}01\,\mathrm{B}$ и определите с помощью амперметра минимальный ток стабилизации стабилитрона $I_{\text{ст. мин}}$.
- 1.7. Сравните относительное изменение тока стабилизации стабилитрона $(I_{\text{ст. макс}} / I_{\text{ст. мин}})$ с относительным изменением напряжения стабилизации стабилитрона $(U_{\text{ст. макс}} / U_{\text{ст. мин}})$. Сделайте выводы.

2. Параметрический стабилизатор напряжения

2.1. Соберите схему. Тип стабилитрона \mathcal{J} , сопротивление нагрузки $R_{\text{н}}$ и напряжение питания $U_{\text{вх}}(E)$ должны соответствовать варианту задания. Приборы должны быть в режиме **DC** (**Mode: DC**).

2.2. Рассчитайте балластное сопротивление R_6 по формуле

$$R_6 = \frac{U_{R6}}{I_{BX}} = \frac{U_{BX} - U_{BMX}}{I_{CT} + I_{H}}$$

где U_{R6} – напряжение на балластном сопротивлении;

 $I_{\text{вх}}$ – входной ток;

 $U_{\text{вх}}$ – входное напряжение;

 $U_{\text{вых}} = U_{\text{ст. ном}}$ – выходное напряжение;

 $I_{\text{ст}} = I_{\text{ст. ном}}$ – ток стабилитрона;

 $I_{\text{H}} = U_{\text{ст. ном}} / R_{\text{H}} - \text{ток нагрузки};$

 $R_{\rm H}$ – сопротивление нагрузки.

- 2.3. Измерьте приборами $U_{\text{вых}}$ и $I_{\text{ст}}$ и сравните соответственно с $U_{\text{ст. ном}}$ и $I_{\text{ст. ном}}$. Сделайте выводы.
- 2.4. Установите $R_{\rm H}$ в соответствии с вариантом задания. Измерьте $I_{\rm BX}$, $I_{\rm CT}$, $I_{\rm H}$ и $U_{\rm Bbix}$ при $U_{\rm BX.\ Makc}=1,5U_{\rm BX}$ и при $U_{\rm BX.\ Muh}=0,8U_{\rm BX}$ (напряжения $U_{\rm BX.\ Makc}$ и $U_{\rm BX.\ Muh}$ устанавливаются при изменении E). Результаты измерений занесите в таблицу.

	$R_{\scriptscriptstyle \mathrm{H}}$, Om	I_{BX} , MA	I_{ct} , MA	$I_{\scriptscriptstyle \mathrm{H}}$, MA	$U_{\scriptscriptstyle m BMX},{f B}$
$U_{\text{BX. Makc}} = 1,5U_{\text{BX}}$					
$U_{\text{BX. MUH}} = 0.8 \text{U}_{\text{BX}}$					

Сделайте выводы.

2.5. Установите $U_{\text{вх}}$ в соответствии с вариантом задания. Измерьте $I_{\text{вх}}$, $I_{\text{ст}}$, $I_{\text{н}}$ и $U_{\text{вых}}$ при $R_{\text{н. макс}} = 2R_{\text{н}}$ и при $R_{\text{н. мин}} = 0.5R_{\text{н}}$. Результаты измерений занесите в таблицу.

	$U_{\scriptscriptstyle \mathrm{BX}},\mathbf{B}$	$I_{\scriptscriptstyle \mathrm{BX}}$, MA	$I_{\rm ct}$, MA	$I_{\scriptscriptstyle m H}$, mA	$U_{\scriptscriptstyle m BMX},{f B}$
$R_{\scriptscriptstyle \mathrm{H.\ MAKC}}=2R_{\scriptscriptstyle \mathrm{H}}$					
$R_{\text{H. MUH}} = 0.5R_{\text{H}}$					

Сделайте выводы.

3. Стабилизатор последовательного типа с однокаскадным усилителем постоянного тока

3.1. Соберите схему. Тип стабилитрона \mathcal{J} , сопротивление нагрузки $R_{\text{н}}$ и напряжение питания $U_{\text{вх}}(E)$ должны соответствовать варианту задания. Транзисторы используйте идеальные (Models/Library/default/Model/ideal). Приборы должны быть в режиме DC (Mode: DC).

- 3.2. Изменяя R_6 , установите номинальный ток стабилизации стабилитрона $I_{\text{ст}} = I_{\text{ст. ном}}$ с точностью ± 0.1 мА.
- 3.3. Изменяя или только R_1 или только R_2 , установите в соответствии с вариантом задания выходное напряжение $U_{\text{вых}}$ (увеличение R_1 приводит к увеличению $U_{\text{вых}}$, увеличение R_2 приводит к уменьшению $U_{\text{вых}}$).
 - 3.4. Изменяя E, установите $U_{\text{вх. макс}} = 1,1 U_{\text{вх}}$ и измерьте $U_{\text{вых. макс}}$.
 - 3.5. Изменяя E, установите $U_{\text{вх. мин}} = 0.9 U_{\text{вх}}$ и измерьте $U_{\text{вых. мин}}$.
 - 3.6. Вычислите коэффициент стабилизации стабилизатора

$$m{K}_{ ext{ct}} = rac{m{U}_{ ext{BX. MAKC}} - m{U}_{ ext{BX. MUH}}}{m{U}_{ ext{BX}}} : rac{m{U}_{ ext{BMX. MAKC}} - m{U}_{ ext{BMX. MUH}}}{m{U}_{ ext{BMX}}} \, .$$

Варианты заданий

Вариант	Д Models/Library/	<i>R</i> _н , Ом	Параметрический стабилизатор	Стабилизатор последовательного типа	
1	S101	224	11,2	13,2	6,2
2	S102	244	12,2	14,2	7,2
3	S103	264	13,2	15,2	8,2
4	S104	284	14,2	16,2	9,2
5	S105	304	15,2	17,2	10,2
6	S106	324	16,2	18,2	11,2
7	S107	344	17,2	19,2	12,2
8	S108	364	18,2	20,2	13,2
9	S109	384	19,2	21,2	14,2
10	S110	404	20,2	22,2	15,2
11	S111	424	21,2	23,2	16,2
12	S112	444	22,2	24,2	17,2
13	S113	464	23,2	25,2	18,2
14	S114	484	24,2	26,2	19,2
15	S115	504	25,2	27,2	20,2
16	S116	524	26,2	28,2	21,2
17	S117	544	27,2	29,2	22,2
18	S118	564	28,2	30,2	23,2
19	S119	584	29,2	31,2	24,2
20	S120	604	30,2	32,2	25,2
21	S121	228	11,4	13,4	6,4
22	S122	248	12,4	14,4	7,4
23	S123	268	13,4	15,4	8,4
24	S124	288	14,4	16,4	9,4
25	S125	308	15,4	17,4	10,4
26	S126	328	16,4	18,4	11,4
27	S127	348	17,4	19,4	12,4
28	S128	368	18,4	20,4	13,4
29	S129	388	19,4	21,4	14,4
30	S130	408	20,4	22,4	15,4
31	S131	428	21,4	23,4	16,4
32	S132	448	22,4	24,4	17,4
33	S133	468	23,4	25,4	18,4
34	S134	488	24,4	26,4	19,4
35	S135	508	25,4	27,4	20,4
36	S136	528	26,4	28,4	21,4
37	S137	548	27,4	29,4	22,4
38	S138	568	28,4	30,4	23,4
39	S139	588	29,4	31,4	24,4
40	S140	608	30,4	32,4	25,4
41	S141	232	11,6	13,6	6,6