CS 124 Programming Assignment 3

Curren Iyer & Paul Lisker April 25, 2016

1 Dynamic Programming Solution for Number-Partition

Let A be a sequence of n integers that sums up to some number b. Let us construct an n by b matrix M. Here M(i,j) will be used to determine whether a subset of i terms from the sequence $A(s_1,...s_i)$ sums up to j, in which case the value of M(i,j) will be 1, and 0 otherwise. We can summarize this property with the following recurrence equation:

$$M(i, j) = \max(M(i - 1, j), M(i - 1, j - s_i))$$

Once the table has been filled in, we can then limit our scope to the last row, $M(n, b_s)$, which denotes whether it is possible to reach some sum b_s using at most all of the n terms in the sequence. We then check to see if $M(n, \frac{b}{2}) = 1$ (this is the case where it is possible to create a sequence summing to $\frac{b}{2}$, in which case there is 0 residue since there would exist two equally summing partitions). If this is true, then we return the residue (0). Otherwise, iterate backwards from $\frac{b}{2}$ for all $x \leq \frac{b}{2}$, stopping at the first value of x such that M(n, x) = 1. Finally, return the residue, which is equal to x - (b - x) = 2x - b.

In terms of running time, creating the array takes time O(nb), finding the value x takes at most time O(b), and backtracking to find the elements in each subset takes time O(n). Thus the total algorithmic running time is O(nb).

2 Implementing Karmarkar-Karp Algorithm in $O(n \log n)$ Steps

Before we describe the solution let us make the assumption that the values in sequence A are small enough that arithmetic operations take one step. We can implement KK in $O(n \log n)$ steps by transforming the input array containing the sequence A into a max-heap, an algorithm that has a running time of $O(n \log n)$. We then go through the differencing process as described in the problem spec, with the only difference being that the two largest elements a_i and a_j are

popped off the heap $(O(2 \log n))$, and their difference $|a_i - a_j|$ is inserted back into the heap $O(\log n)$. Thus at most this process is run $\frac{n}{2}$ times, making the total algorithmic running time on the order of $O(n \log n)$ overall.

3 Discussion of Results

As can be seen in the tables found at the end of this section, there is a significant difference in both residues calculated and running time of the various algorithms. Overall, however, two general conclusions can be derived:

- 1. Pre-Partitioning consistently returns significantly better residues than Random
- 2. Random is consistently faster in running time than Pre-Partitioning

Table 1: Residues of Algorithms

	KK Repeated Random			Hill Clin		Simulated Annealing	
	_	Random Solution	Pre-Partition	Random Solution	Pre-Partition	Random Solution	Pre-Partition
1	92468	126767794	340	192763984	696	40894316	364
2	67336	576168954	168	51437702	730	41436818	136
3	386590	51334430	26	257323932	512	132055062	186
4	44376	39937528	292	111233184	408	482838262	42
5	43404	14767428	24	106050972	232	146761806	224
6	4773	29101283	1	1053263161	483	238159113	1979
7	685323	591427349	183	187749373	421	67587629	55
8	159703	3169689	245	271782181	53	38979105	601
9	118384	720881738	8	460355474	682	385550650	158
10	125768	344659834	44	321743746	688	16517560	332
11	91814	152180948	64	544223036	574	251018090	134
12	75352	315924360	30	740878158	416	981606876	206
13	584562	104704806	400	2084864	526	15529826	46
14	282627	301518893	161	68643519	409	517428657	71
15	93787	226703193	291	141474963	111	5485521	217
16	9353	74772903	335	150849079	1423	419158697	31
17	234769	454171193	221	225596129	1003	31068953	31
18	107000	62900010	350	58078076	1158	636062166	358
19	643448	142758952	8	122650148	558	72666022	460
20	167887	21939941	81	130416247	519	789114943	301
21	18833	496652521	221	214623647	453	165260553	189
22	22047	40347767	121	1273399013	49	499193463	347
23	8076	580036046	114	9671768	208	666986900	108
24	48193	11050617	167	465907959	689	28562841	125
25	155324	71648884	120	403402374	824	29221524	564
26	40600	638825052	36	4615402	268	1169465050	70
27	34801	116381983	39	36239955	543	67487995	117
28	37767	443882223	309	28883573	3263	102738995	183
29	467420	445971314	50	156378880	98	70279766	164
30	736825	319585073	129	85443211	511	74260525	59
31	117929	1185309299	331	901367949	35	522442917	419
32	556744	113609978	222	663760080	1028	178587600	250
33	82811	173870329	177	642811099	993	336841041	273
34	19491	75034761	103	768327447	1115	126868735	1
35	77468	216556444	316	75716328	426	160576888	22
36	1100	106433984	82	202636430	82	380721464	252
37	126661	37386413	217	511737345	235	53804937	455
38	213455	571636187	279	439425125	135	138682931	21
39	1214	686821004	124	94534658	70	490599160	40
40	784405	52548873	427	70242679	1021	29156967	1055
41	61858	355692892	238	15325588	288	111801460	6
42	730473	392055243	285	187834339	113	289063445	81
43	229368	629303700	178	96861678	1506	1021582262	38
44	78379	9678801	49	616778051	347	47950631	13
45	89000	683836354	300	182132136	148	655792064	612
46	24901	114405869	107	227156101	1755	484360413	187
47	43419	129413855	271	280115103	395	93769359	201
48	151337	6882309	5	685620899	987	574204267	277
49	148460	215414888	462	340729066	1662	1985738	528
50	66196	530343560	40	5158498	1242	78772590	200
Average	183865.58	276128149	175.82	297708686.2	641.82	279218851.1	255.78

Table 2: Timing of Algorithms

Randon Solution		Table 2: Timing of Algorithms									
1 1			Random Hill Climbing								
1.683							9				
3 1.810 15.245 1.478 7.191 3.621 18.439 4 1.713 12.066 1.232 6.43 3.388 23.799 5 2.261 14.322 1.373 6.852 3.337 18.802 6 1.862 12.754 1.142 6.511 3.240 18.002 7 1.701 12.180 1.312 6.660 3.270 18.002 8 1.644 12.055 1.275 6.691 3.337 18.166 9 1.764 13.270 1.413 7.793 3.724 17.966 10 1.919 13.523 1.283 6.033 3.174 19.029 11 1.845 14.133 1.147 6.467 3.339 18.03 12 1.672 12.714 1.289 7.085 4.541 17.986 13 1.877 1.2457 1.206 6.806 4.015 1.670 14 1.549 1.2496 <											
4 1.713 12.066 1.328 6.243 3.388 23.799 5 2.261 14.322 1.373 6.852 3.337 18.882 6 1.862 12.754 1.142 6.511 3.240 18.093 7 1.701 12.180 1.312 6.600 3.270 18.092 8 1.644 12.055 1.275 6.691 3.337 18.166 9 1.764 13.270 1.413 7.793 3.724 17.906 10 1.919 13.523 1.283 6.033 3.174 19.029 11 1.845 14.133 1.147 6.667 3.339 18.053 12 1.672 12.714 1.289 7.085 4.541 17.982 13 1.837 12.467 1.206 6.806 4.015 16.798 14 1.549 12.486 1.306 7.470 3.345 19.184 14 1.549 12.496											
5 2201 14.322 1.373 6.852 3.337 18.892 6 1.802 12.764 1.142 6.611 3.20 18.003 7 1.701 12.180 1.312 6.660 3.270 18.002 8 1.644 12.055 1.275 6.601 3.377 18.06 9 1.764 13.270 1.413 7.793 3.724 17.966 10 1.919 13.523 1.283 6.493 3.174 19.029 11 1.845 14.133 1.147 6.467 3.339 18.03 12 1.672 12.714 1.289 7.085 4.541 17.98 13 1.837 12.457 1.206 6.966 4.015 16.708 14 1.549 12.496 1.306 7.470 3.345 19.88 15 1.630 12.842 1.244 6.170 3.345 19.88 15 1.630 12.842 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>											
6 1.862 12.754 1.142 6.511 3.240 18.003 7 1.701 12.180 1.312 6.660 3.270 18.002 8 1.644 12.055 1.275 6.691 3.337 18.166 9 1.764 13.270 1.413 7.793 3.724 17.966 10 1.919 13.523 12.88 6.633 3.174 19.029 11 1.845 14.133 1.147 6.667 3.339 18.053 12 1.672 12.714 1.289 7.085 4.541 17.988 13 1.837 12.457 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.757 19.678 15 1.630 12.842 1.244 6.170 3.345 19.188 16 1.700 11.484 1.124 7.638 3.18 18.199 17 1.845 12.175											
7 1.701 12.180 1.312 6.660 3.270 18.092 8 1.644 12.055 1.275 6.661 3.337 18.166 9 1.764 13.270 1.413 7.793 3.724 17.966 10 1.1919 13.523 1.283 6.493 3.174 19.029 11 1.845 14.133 1.147 6.467 3.339 18.033 12 1.672 12.714 1.289 7.085 4.541 17.988 13 1.837 12.457 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.787 19.678 15 1.630 12.842 1.244 6.10 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.04 17.900 18 1.686 12.292											
8 1.644 12.055 1.275 6.691 3.337 18.166 9 1.764 13.270 1.413 7.793 3.724 17.996 10 1.919 13.523 1.283 6.493 3.174 19.029 11 1.845 141.33 1.147 6.467 3.339 18.053 12 1.672 12.714 1.289 7.085 4.541 1.7198 13 1.837 12.457 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.345 19.187 15 1.630 12.842 1.244 6.170 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.307 3.034 17.90 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.166 15.772											
9											
10											
11 1.845 1.4133 1.147 6.467 3.339 18.053 12 1.672 12.714 1.289 7.085 4.541 17.988 13 1.837 12.457 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.787 19.678 15 1.630 12.845 1.244 6.170 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.555 3.235 20.844 20 1.864 11.986 1.069 6.084 3.184 16.727 21 1.546 11.600 1.122 5.774 3.124 16.747 21 1.546 11.600											
12 1.672 12.714 1.289 7.085 4.541 17.988 13 1.837 12.457 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.787 19.678 15 1.630 12.842 1.244 6.170 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.086 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.535 3.235 2.084 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.833 2.984 17.577 22 1.546 11.600 1.122 5.774 3.124 16.745 23 1.629 1.344											
13 1.837 12.487 1.206 6.806 4.015 16.708 14 1.549 12.496 1.306 7.470 3.787 19.678 15 1.630 12.842 1.244 6.170 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.335 3.235 2.084 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.511 1.439 1.100 5.835 2.984 17.577 21 1.561 1.1439 1.100 5.835 2.984 17.577 22 1.546 1.1660 1.122 5.774 3.124 16.745 23 1.629 1.1.440											
14 1.549 12.496 1.306 7.470 3.787 19.678 15 1.630 12.842 1.244 6.170 3.345 19.88 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.535 3.235 2.834 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.737 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339											
15 1.630 12.842 1.244 6.170 3.345 19.188 16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.244 6.535 3.235 2.984 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 21 1.591 1.1439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339											
16 1.760 11.484 1.124 7.638 3.188 18.199 17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.535 3.235 20.834 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.745 23 1.629 11.440 1.219 5.730 2.964 16.745 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.722 26 1.571 12.168											
17 1.845 12.175 1.173 6.367 3.084 17.990 18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.355 3.235 20.884 20 1.864 11.966 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.757 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.336 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 7.212 27 1.718 12.169 1.088 5.973 3.017 17.262 29 1.783 12.275											
18 1.686 12.092 1.573 6.774 3.109 19.195 19 2.165 15.772 1.214 6.535 3.235 2.834 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.757 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.122 29 1.783 12.275											
19 2.165 15.772 1.214 6.535 3.235 20.834 20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.745 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.933 30 1.699 12.287											
20 1.864 11.986 1.069 6.084 3.184 16.772 21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 17.215 32 1.629 11.842							19.195				
21 1.591 11.439 1.100 5.835 2.984 17.577 22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 1.9382 33 1.787 12.568											
22 1.546 11.660 1.122 5.774 3.124 16.745 23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568											
23 1.629 11.440 1.219 5.730 2.964 16.797 24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258											
24 1.574 11.427 1.087 6.018 3.236 17.676 25 1.627 11.339 1.204 6.687 3.371 17.676 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.737 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982											
25 1.627 11.339 1.204 6.687 3.371 17.972 26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.873 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087							16.797				
26 1.571 12.169 1.088 5.973 3.017 17.212 27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 29.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484											
27 1.718 12.124 1.187 6.220 3.146 17.377 28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.580 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.504 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799											
28 1.601 11.768 1.245 6.105 2.920 17.126 29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
29 1.783 12.275 1.329 6.542 3.016 17.973 30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1										
30 1.699 12.287 1.159 6.610 3.108 16.850 31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
31 1.597 12.003 1.104 6.108 3.108 17.215 32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
32 1.629 11.842 1.142 6.877 3.481 19.382 33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
33 1.787 12.568 1.179 7.114 3.540 20.375 34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
34 1.769 12.258 1.101 7.279 3.550 20.576 35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1										
35 1.755 11.982 1.300 6.302 3.164 17.508 36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
36 1.688 12.087 1.286 6.499 3.427 18.410 37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>17 508</th>							17 508				
37 1.724 12.484 1.272 6.727 3.297 18.729 38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
38 1.833 12.799 1.501 12.022 4.902 23.656 39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
39 1.877 15.128 1.409 6.935 3.657 19.142 40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056											
40 1.729 13.128 1.193 6.874 4.116 21.917 41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
41 1.943 12.272 1.238 6.322 3.326 18.204 42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
42 1.890 12.289 1.042 6.268 3.535 21.559 43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
43 1.948 14.638 1.230 7.010 3.400 18.319 44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
44 1.759 12.039 1.126 8.983 3.536 17.950 45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
45 1.781 12.742 1.230 6.369 3.206 18.557 46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
46 1.761 11.987 1.106 6.165 3.196 19.090 47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
47 1.571 11.459 1.262 6.113 3.270 17.434 48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
48 1.613 12.167 1.262 6.323 3.127 17.755 49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
49 1.705 11.707 1.082 6.170 3.175 18.026 50 1.837 12.056 1.310 6.163 3.206 18.448											
50 1.837 12.056 1.310 6.163 3.206 18.448	49										

4 Using the Karmarkar-Karp Solution as a Starting Point

As per our results, the Karmarkar-Karp (KK) algorithm provided a residue that was consistently lower than the random algorithms. As such, the KK algorithm's residue could be used as an upper bound when creating