Determinants of Inflation in Denmark and a Panel Data analysis of Denmark and 4 other countries.

Section I: Introduction

Inflation is defined as the sustained rise in the general price level (Blanchard, Amighini, & Giavazzi, 2021, p. 577).

The negative effects of inflation are well documented. One such cost of inflation is the "shoe leather cost" (Mishkin & Posen, 1997, p. 3) – the extra cost needed to conduct day-to-day transactions rises to >1% of GDP when inflation rates rise above 100%. Another cost is that inflation induces overinvestment in the financial sector: as price instability increases, arbitrage opportunities grow (*ibid*, p. 4); the rise in the financial sector share of GDP increases by 1pp for every 10pp rise in inflation (English, 1999). This transfer of resources out of the productive sector can be "as large as a few percentage points of GDP and can even be seen at relatively low or moderate rates of inflation." (Mishkin & Posen, 1997, p. 4) Inflation is passed onto the population not only through increased prices – which reduce the purchasing power of an individual's income – but also through fiscal drag. Fiscal drag occurs when nominal income rises while real income and tax brackets remain frozen; as a result, income after tax decreases in real terms; Fischer (1994, p. 14) estimates that an inflation rate of 10% could put the social cost of fiscal drag at 2-3% of GNP.

Due to the misallocation of resources and damage to the standard of living caused by inflation, governments around the world have decided to specifically target low and stable inflation as a policy objective of their monetary authorities (Mishkin & Posen, 1997). To succeed, these monetary authorities must have a clear model for producing inflation forecasts (Masson, Savastano, & Sharma, 1997, p. 9), and must consequently understand the determinants of inflation. This paper will contribute to this understanding by estimating the relationship between inflation and past inflation, money supply, exchange rates, and global energy prices. I have chosen first to conduct a timeseries analysis of inflation, from Q1 2001 to Q4 2023, in Denmark, and then a panel data analysis of inflation in Denmark, Sweden, Iceland, Norway and the UK.

Section II will review existing evidence on the determinants of inflation and examine the models and specifications used. Section III will cover a timeseries summary and analysis of Denmark, estimating inflation as an ARMA model and then as an ARDL model. Section IV will cover a panel data analysis of inflation in the five countries. Section V will use a probit model to estimate the average marginal effects (AME) and marginal effects at average (MEA) of a change in energy price on the probability of a country achieving their inflation target.

Section II: Literature Review

Among economists, there are competing explanations for the fundamental causes of inflation. Friedman provides the well-known monetarist explanation where inflation is the result of money supply rising faster than output (Leeson & Palm, 2012, p. 3). This view is popular and the relationship between money supply growth and inflation has been examined by a number of studies.

Holod (2000) uses a VEC model to investigate the relationship between price level, exchange rate and money supply in Ukraine; a VEC rather than VAR model is used because evidence of

cointegration between the variables exists at a 5% significance level. Holod (2000) finds that the influence of money supply on inflation is not very strong, which he explains is due to concurrent fluctuations in the money demand.

Lim & Sek (2015) explore panel data on 28 countries by estimating inflation as an ARDL model against money supply (M4) and a number of other regressors. In high inflation countries, every 1% increase in the money supply is found to induce a 0.77% increase in inflation, in the long-run. In low-inflation countries, increased money supply does not have a significant effect in the long-run and decreases inflation in the short-run in low inflation countries.

Money growth leads to inflation by increasing aggregate demand, known as demand-pull inflation. On the other hand, cost-push inflation, which follows a reduction in aggregate supply, has also been examined in the literature. Cost-push inflation is typically caused by high factor prices (Ellahi, 2017, p. 3). Global energy prices are one example of a variable which should have such an effect on factor prices, and this view is supported by existing evidence.

Jatuporn (2024) and Liang & Long (2018) both estimated the impacts of global oil price changes on CPI and PPI using ARDL and NARDL models to analyse Thailand and China, respectively. Both found evidence of cointegration using the bounds cointegration methodology introduced by Perasan at al. (2001). Both studies find that ARDL models do not find evidence of long-run effects of oil price shocks on inflation, however NARDL models can capture the effects at a 1% significance level. Jatuporn (2024) finds: +1% change in oil price led to +0.147% CPI change; -1% change in oil price led to -0.115% CPI change. Liang & Long (2018) did not find significant long-run effects due to a drop in oil prices, but found a +1% change in oil price led to a +0.143% CPI change.

Finally, there is also a lot of evidence examining the effects of a currency's exchange rate on domestic prices. Movements in the exchange rate influence domestic prices through various channels, from direct effects on energy prices (discussed above) to indirect effects on import prices (Ha et al., 2019); this raises the price of inputs and thus the price of capital, reducing aggregate supply. The marginal effect of a 1% depreciation in the exchange rate on inflation is known as the exchange rate pass-through ratio (Ha et al., 2019, p. 271).

The exchange rate pass-through varies across countries and time (Ha, Kose, Ohnsorge, & Yilmazkuday, 2019, p. 284). Choudhri & Hakura (2001) estimated inflation as an ARDL model, using panel data of 71 countries. The explanatory variables were the nominal exchange rate and foreign CPI. No evidence of cointegration was found however the stationarity of the error term has not been settled (Choudhri & Hakura, 2001, p. 14). They find that the long-run pass-through rates in Denmark, Sweden, Norway, and the UK are 0.24, 0.03, 0.13, and 0.03, respectively – Iceland did not form part of the panel. They also determine that the main reason for cross-country variation in the pass-through rate is due to the different inflationary regimes between countries.

Section III: Timeseries variables, data and models

A. Data sources

The databases utilised are the IMF, OECD, Bank for International Statistics (BIS), and Federal Reserve Economic Data (FRED). CPI data was obtained from the IMF, money supply (M3) data from OECD, the exchange rate from BIS and global energy prices from FRED. The literature varies between using real effective exchange rates (Deniz, Tekce, & Yilmaz, 2016) and nominal effective exchange rates (Choudhri & Hakura, 2001; Campa & Goldberg, 2005) – in this paper I will use the nominal exchange rate following from Campa & Goldberg's (2005) model where it is the nominal rate that influences decision-makers at the microlevel. Any monthly data was converted into quarterly data by taking the value for the last month of each quarter.

B. Presenting and transforming the data

Table I contains the summary statistics for Denmark in the studied period (2000:1-2023:4). This includes the consumer price index (cpi) in 2015=100, money supply aggregate M4 (m), nominal effective exchange rate index (xr) in 2020=100, and the global energy price index (gep) in 2016=100.

Table I				
Statistic	cpi	m	xr	gep
Mean	94.527	1271726.000	96.050	153.268
Median	96.967	1394929.000	96.120	148.764
S.D.	10.845	377165.800	3.815	64.919
Min	75.429	507134.000	85.430	61.703
Max	117.867	1922206.000	103.240	350.124
Obs	96	96	96	96

Figure I represents the variables visually in the studied period (2000:1-2023:4).

To reduce data variability and find elastic relationships (Jatuporn, 2024), all variables have been transformed into logarithmic functions (lcpi, lm, lxr, lgep).

C. Stationarity Testing

The Augmented Dickey-Fuller (ADF) test will be used to test for stationarity.

Each variable is first estimated as:

$$\Delta z_t = \gamma z_{t-1} + \sum_{i=1}^{i=p} \phi_i \Delta z_{t-i} + X + e_t$$

Where Z = [lcpi, lm, lmxr, lgep], p is the number of lagged, differenced, dependent variables to include to eliminate serial correlation, X is an array of variables that may or may not be added if the variable is exhibiting drifting or trending behaviour, and e_t is a stochastic error term.

To find the value of p, the Breusch-Godfrey (BG) test is used which to indicate how many lagged, differenced, dependent variables should be included to eliminate serial correlation. As all variables have non-zero means, they must have a drift/constant component. All variables – except lgep – appear to be increasing over time, and thus will also be testing with trend components.

First, all variables – other than lgep – are estimated using the ADF test with a trend term and then tested for serial correlation. *lgep* is only estimated with a drift. Once p was found¹, an ADF test with lags p and a trend (drift for lgep) term was estimated². Table II displays the value of p for each variable the BG test recommends to eliminate serial correlation, as well as the test statistic, 5% critical value and the MacKinnon approximate p-value from the ADF test.

Table .	II
---------	----

Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
lcpi	5	-2.131	-3.460	0.5289
lm	0	-1.616	-3.455	0.7861
lxr	3	-3.271	-3.458	0.0712
lgep*	1	-2.743	-1.662	0.0059***

*** denotes the 1% significance level

 H_0 : Random walk with or without drift

 $*H_0$: Random walk with drift

We do not accept the alternate hypothesis that *lcpi*, *lm*, *lxr* are trend-stationary. We accept the alternate hypothesis that *lgep* stationary with drift.

¹ Appendix 1

² Appendix 2

lcpi, lm, and lxr are then re-estimated using the ADF test with a drift constant and tested for serial correlation³. Table III contains the new p, test statistic, 5% critical value and MacKinnon approximate p-value for this new estimation⁴.

	140le 111			
Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
lcpi	5	-0.286	-1.663	0.3879
lm	0	-1.937	-1.661	0.0279**
lxr	4	-2.095	-1.663	0.0196**

** denotes the 5% significance level

 H_0 : Random walk with drift

We accept the null hypothesis that *lcpi* is a random walk with drift, and accept the alternative hypothesis that *lm* and *lxr* are drift-stationary processes due to their non-zero means.

As *lcpi* is non-stationary, it is differenced (=dlcpi) and tested again for stationarity. Like before, serial correlation is tested⁵ and then an ADF test is used⁶. As *dlcpi* has a non-zero mean, tests are conducted using a drift constant. Results are shown in Table IV.

Table IV				
Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p-value
dlcpi	4	-4.114	-1.663	0.0000***

*** denotes the 1% significance level

We accept the alternate hypothesis that *dlcpi* is drift-stationary.

All stationary variables are displayed in Figure II.

^{***} denotes the 1% significance level

³ Appendix 3

⁴ Appendix 4

⁵ Appendix 5

⁶ Appendix 6

D. Estimating inflation as an ARMA model

dlcpi will be estimated as an ARMA(p,q) model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i} dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i} \epsilon_{t-i} + \epsilon_{t}$$

To select lags (p and q), I will be using the AIC and BIC up to a maximum of p = q = 2.

Table V			
Model	ARMA Specification	AIC	BIC
1	(0,1)	-706.9376	-701.8299
2	(0,2)	-706.9988	-699.3292
3	(1,0)	-707.9764	-702.8686
4	(1,1)	-706.2838	-698.6222
5	(1,2)	-704.5892	-694.3737
6	(2,0)	-706.2211	-698.5594
7	(2,1)	-704.2863	-694.0708
8	(2,2)	-713.3489	-700.5795

Shown in Figure III and Table V, AIC selects model 8, ARMA(2,2), whereas SIC/BIC selects model 3, ARMA(1,0), i.e., a pure AR(1) model⁷. The regression results are given as:

Model 3:8

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \epsilon_t$$

Variable	Coefficient (Robust Std. Err)	p-value
$dlcpi_{t-1}$	0.380355 (0.1405789)	0.000***

^{***} denotes the 1% significance level

Model 8:9

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \beta_2 dlcpi_{t-2} + \gamma_1 \epsilon_{t-1} + \gamma_2 \epsilon_{t-2} + \epsilon_t$$

Variable	Coefficient (Robust Std. Err)	p-value
$dlcpi_{t-1}$	-0.899534 (0.2194136)	0.000***
$dlcpi_{t-2}$	0.076611 (0.221312)	0.688
ϵ_{t-1}	1.427597 (0.1399993)	0.000***
ϵ_{t-2}	0.5024687 (0.1556634)	0.006***

^{***} denotes the 1% significance level

I will exercise discretion and choose model 8 to estimate *dlcpi* for two reasons. First, the extra parameters which it adds are mostly very significant and make theoretical sense;

```
<sup>8</sup> Appendix 8
^9 Appendix 9. arima dlcpi, ar(1) robust
(setting optimization to BHHH)
Iteration 0: Log pseudolikelihood =
Iteration 1: Log pseudolikelihood =
Iteration 2: Log pseudolikelihood =
Iteration 3: Log pseudolikelihood =
                                              355.98812
355.98816
Iteration 4: Log pseudolikelihood =
ARIMA regression
Sample: 2000q2 thru 2023q4
                                                           Wald chi2(1)
Prob > chi2
                                                                                           7.32
Log pseudolikelihood = 355.9882
                                 Semirobust
dlcpi
         _cons
                     .0046215
                                  .0009386
                                                  4.92
                                                          0.000
                                                                        .0027819
                                                                                      .0064611
ARMA
          L1.
                      . 380355
                                  . 1405789
                                                  2.71
                                                          9.997
                                                                       .1048253
                                                                                      .6558846
```

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

11.20

0.000

.0047036

.0005091

Appendix 9

/sigma |

.0057014

⁷ Appendix 7

second, while the extra autoregressive term is insignificant, it decreases overall autocorrelation. This can be seen when estimating the correlogram for each model:

For these reasons, model 8, i.e., ARMA(2,2) is preferred for inflation estimation.

E. Estimating inflation as an ARDL model

dlcpi will be estimated as an ARDL model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i}dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i}lm_{t-i} + \sum_{i=0}^{i=r} \delta_{i}lxr_{t-i} + \sum_{i=0}^{i=s} \kappa_{i}lgep_{t-i} + \epsilon_{t}$$

Specification selection, i.e., choosing p, q, r, s, will be done on the basis of AIC/BIC testing and prevalence of autocorrelation. All 54 possible specification combinations will be checked and the entire table of results is available in Appendix 10.

Model 11 is selected by both AIC and BIC, shown in Figure IV and Figure V.

This model does suffer from autocorrelation which can be eliminated by adjusting the model to ARDL(5,1,0,1). However, this is an overspecification beyond the specified constraint (maximum of 2 lags) and will not be considered. Instead, autocorrelation is compared between ARDL(2,1,0,1) and ARDL(1,1,0,1) in Figure VI.

Because the extra autoregressive term does not appear to decrease autocorrelation in any way, I will retain model 11, ARDL(1,0,1,1).

Model 11:

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \gamma_1 lm_t + \gamma_2 lm_{t-1} + \delta_1 lxr_t + \kappa_1 lgep_t + \kappa_2 lgep_{t-1} + \epsilon_t$$

Table VI			
Variable	Coefficient	p-value	
	(Robust Std. Err)	_	
$dlcpi_{t-1}$	0.250	0.046**	
	(0.124)		
lm_t	0.0249	0.016**	
	(0.0102)		

lm_{t-1}	-0.0265	0.006***
	(0.00943)	
lxr_t	-0.0105	0.572
	(0.0185)	
$lgep_t$	0.0176	0.000***
	(0.00316)	
$lgep_{t-1}$	-0.0134	0.000***
	(0.00277)	

^{**} denotes the 5% significance level

Section IV: Panel Data Estimation

Inflation will be modelled using the Fixed Effect, Random Effect, and Pooled OLS Models (FEM, REM, POLS). Then I will test each model against each other to decide which provides the most consistent, efficient and unbiased estimators. The units and their corresponding time periods are shown in Table VII.

Table VII		
Unit	Time Period	
Denmark	2000Q1-2023Q4 [no omissions]	
Sweden	2000Q1-2023Q4 [no omissions]	
Norway	2000Q1-2023Q4 [no omissions]	
Iceland	2000Q1-2023Q4 [no omissions]	
United Kingdom	2000Q1-2023Q4 [no omissions]	

A. Defining and testing each model

In the POLS, inflation is modelled as:

$$dlcpi_{it} = \beta_1 lm_{it} + \beta_2 lxr_{it} + \beta_3 lgep_{it} + \epsilon_{it}$$

In the FEM, inflation is modelled as:

$$d\ddot{l}\dot{c}pi_{it} = \beta_1 \ddot{l}\ddot{m}_{it} + \beta_2 \ddot{l}\ddot{x}r_{it} + \beta_3 l\ddot{g}\dot{e}p_{it} + \epsilon_{it}$$

Where $\ddot{z}_{it} = z_{it} - \bar{z}_i$, i.e., the variable has been de-meaned. It can also be modelled as:

$$dlcpi_{it} = \beta_1 lm_{it} + \beta_2 lxr_{it} + \beta_3 lgep_{it} + \sum_{j=1}^{j=N-1} \delta_j f_j + \epsilon_{it}$$

Where *N* is the total number of units.

In the REM, inflation is modelled as:

$$dlcpi_{it}^* = \beta_1 lm_{it}^* + \beta_2 lxr_{it}^* + \beta_3 lgep_{it}^* + \epsilon_{it}$$

Where $z_{it}^* = z_{it} - \lambda \bar{z}_{it}$ and $\lambda = 1 - \frac{\sigma_{\epsilon}}{\sqrt{T\sigma_u^2 + \sigma_{\epsilon}^2}}$, i.e., the variable has been de-meaned to a

certain degree λ .

i. FEM and POLS (F-test)

^{***} denotes the 1% significance level

The F-test for FEM and POLS tests to see if the coefficients $\delta_1, \dots, \delta_{N-1}$ of the fixed effect dummies f_1, \dots, f_{N-1} in the FEM are jointly statistically significant.

$$H_0$$
: All $\delta_i = 0$

The null hypothesis is rejected at the 1% significance level: Prob > F = 0.0000. The FEM is preferred to the POLS.

ii. REM and POLS (Breusch-Pagan test)

The Breusch-Pagan test for REM and POLS tests for heterogeneity between units. If there is no heterogeneity, i.e., if $\sigma_u = 0$, then $\lambda = 0$ and the REM is the same as POLS.

$$H_0$$
: $\sigma_u = 0$

The null hypothesis is rejected at the 1% significance level: $Prob > \bar{\chi}^2 = 0.0000$. The REM is preferred to the POLS.

iii. FEM and REM (Hausman test)

The Hausman test for FEM and REM tests if $Cov(X_{it}, f_i) = 0$. If there is covariance, the variables must be fully de-meaned to preserve consistency and thus the FEM is preferred.

$$H_0$$
: $Cov(X_{it}, f_i) = 0$

The null hypothesis is not rejected at any conventionally significance level: $Prob > \chi^2 = 0.1085$. The REM is preferred to the FEM.

B. Results of the REM

After tests have concluded the model is re-estimated with cluster-robust standard errors. 13

Coefficient (Robust Std. Error)	p-value
-0.0012355	0.318
-0.0031661	0.446
0.005667	0.000***
	(Robust Std. Error) -0.0012355 (0.0012365) -0.0031661 (0.0041577)

*** denotes the 1% significance level

Section V: Inflation Targeting Probit Estimation

¹¹ Appendix 12

¹⁰ Appendix 11

¹² Appendix 13

¹³ Appendix 14

Appendix

Appendix 1

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been split into two columns to reduce pagination. The ADF test includes a **trend term**.

	.`v' trend 4) nomiss0 `lags'" D.`v' L(1/`lags') lags(1/4) nomiss0	D.`V' L.`v' trend	Lags: 1		l correlation	0.3428
stat bgodfrey, lags(1/ orvalues lags = 1/5 (display "Lags: quietly regress estat bgodfrey, isplay "*	4) nomiss0 `lags'" D.`v' L(1/`lags') lags(1/4) nomiss0	D.`v' L.`v' trend	-	M test for autocorn		
quietly regness estat bgodfrey, isplay "*	D.`v' L(1/`lags') lags(1/4) nomiss0	D.`v' L.`v' trend		. cest for autocolin	elation	
estat bgodfrey,	lags(1/4) nomiss0		lags(p)	chi2	df	Prob > chi2
	*"		1	1.045	1	0.3065
y IM test for autocorn			2	1.908	2	0.3851
v IM test for autocorn			3 4	2.318 2.432	3 4	0.5091 0.6568
/ IM test for autoconn			Lags: 2	H0: no seria	l correlation	
			Breusch-Godfrev LI	M test for autocorr	elation	
chi2	df	Prob > chi2				Prob > chi2
15.522	1	0.0001				
16.469 18.263	2 3	0.0003 0.0004	1 2	0.487 0.954	1 2	0.4852 0.6205
28.871	4	0.0000	3	1.118	3	0.7728 0.7442
v IM test for autocorr	elation		Lags: 3	H0: no seria	l correlation	
			lags(p)	chi2	df	Prob > chi2
0.112 2.358	1 2	0.7378 0.3076	1	0.674	1	0.4115
15.398	3	0.0015	2	0.680	2	0.7117
22.773	4	0.0001				0.6953 0.7278
H0: no seria	l correlation					
y LM test for autocorr	elation		Lags: 4			
		Proh > chi2				
			lags(p)	chi2	df	Prob > chi2
			1	0.048	1	0.8259
14.431	3	0.0024	2	0.884	2	0.6429
21.716			4	7.039	4	0.5358 0.1338
H0: no seria	l correlation		Logge E	H0: no seria	l correlation	
				M tost fon autoconn	olation	
chi2	df	Prob > chi2				Prob > chi2
13.099	1	0.0003				
						0.3668 0.3903
19.510	4	0.0006	3	6.664	3	0.0834 0.1010
H0: no seria	l correlation					
	-1-44				1 00.1 014010	
, 			Lags: 0			
			Breusch-Godfrev LI	M test for autocorr	elation	
10.241	1	0.0014				De-b112
9.600 9.516	3	0.0082 0.0232	lags(p)	ch12 	d †	Prob > chi2
13.602	4	0.0087	1	0.349	1	0.5548 0.5654
H0: no seria	l correlation		3	7.332	3	0.0620
	-1-+4		4			0.0393
			Lags: 1	no no seria	i connetation	
chi2	d f 	Prob > chi2				
0.712 0.758	1 2	0.3989 0.6844			df	Prob > chi2
4.798	3	0.1872				
5.159 			1 2	0.524 6.704	1 2	0.4692 0.0350
	l correlation		3	9.631	3	0.0220
*			4			0.0622
	-1-4:		Lags: 2	H0: no seria	ı correlation	
				M test for autocorr		
chi2	df 	Prob > chi2	lags(p)	chi2	df	Prob > chi2
			-o-\r/ I			
	H0: no seria y LM test for autocorr chi2 0.112 2.358 15.398 22.773 H0: no seria y LM test for autocorr chi2 2.284 15.294 14.431 21.716 H0: no seria y LM test for autocorr chi2 13.099 20.590 19.580 19.510 H0: no seria y LM test for autocorr chi2 13.602 H0: no seria y LM test for autocorr chi2 10.241 9.600 9.516 13.602 H0: no seria y LM test for autocorr chi2 10.712 0.758 4.798 5.159 H0: no seria	#0: no serial correlation chi2	LM test for autocorrelation	H8: no serial correlation Chi2 Of	H8: no serial correlation	H8: no serial correlation

	10.641 10.119	2 3 4	0.0085 0.0138 0.0385	lags(p)	chi2	df	Prob > chi2
Lags: 3		al correlation		1 2 3	0.261 0.293 0.235	1 2 3	0.6093 0.8636 0.9718
	LM test for autocor	relation		4	0.340	4	0.9871
	chi2		Prob > chi2	Lags: 2	H0: no seria	l correlation	
1	3.419	1	0.0644		tost fon autoconn	olation	
2	6.294	2	0.0430		1 test for autocorr		
3	6.598 9.300	3 4	0.0859 0.0540	lags(p)	chi2	df 	Prob > chi2
	H0: no seri	al correlation		1 2	0.039 0.099	1 2	0.8443 0.9517
Lags: 4 Breusch-Godfrev	LM test for autocor	relation		3 4	0.266 0.548	3 4	0.9664 0.9687
lags(p)	chi2	df	Prob > chi2	Lags: 3	H0: no seria	l correlation	
1	3.080	1	0.0792		1 test for autocorr	elation	
2	3.800	2	0.1496				
3 4	7.488 8.155	3 4	0.0579 0.0861	lags(p)	chi2	df 	Prob > chi2
	H0: no seri	al correlation		1	0.050 0.200	1 2	0.8237 0.9049
Lags: 5				3 4	0.441 1.328	3 4	0.9316 0.8566
	LM test for autocor						
lags(p)	chi2	df	Prob > chi2	Lags: 4	n⊎. No seria	l correlation	
1	1.058	1	0.3036	Breusch-Godfrey LM	1 test for autocorr	elation	
2	3.835 4.354	2 3	0.1470 0.2257	lags(p)	chi2	df	Prob > chi2
4	4.601	4	0.3308	1	0.104	1	0.7469
		al correlation		2	0.271	2	0.8732
* lgep	*			3 4	0.899 0.923	3 4	0.8257 0.9213
Lags: 0					H0: no seria	l correlation	
	LM test for autocor			Lags: 5			
lags(p)	chi2	df	Prob > chi2	Breusch-Godfrey LM	1 test for autocorr	elation	
1	14.588 14.576	1 2	0.0001 0.0007	lags(p)	chi2	df	Prob > chi2
3	14.406	3	0.0024	1	0.123	1	0.7254
4	14.619	4	0.0056 	2 3	0.876 1.435	2 3	0.6452 0.6974
		al correlation		4	2.940	4	0.5679
Lags: 1	H0: no seri	ai correlación		4	2.540		
Breusch-Godfrey	LM test for autocor	relation		*endix 2	H0: no seria *	l correlation	
Breusch-Godfrey ADF test u. variable se . dfuller lcp:	sing trend terctions. i, lags(5) trend	relation In for lcpi, ln	Appe n, lxr and drift ter	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se dfuller lcp:	LM test for autocor sing trend ter ctions. i, lags(5) trend key-Fuller test	relation m for lcpi,lm for unit root	n,lxr and drift ter.	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se dfuller lcp: Augmented Dick	LM test for autocor sing trend ter ctions. i, lags(5) trend key-Fuller test	relation 'm for lcpi,lm for unit root Nu Nu	n, lxr and drift ter	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se defuller lcp: Augmented Dick	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i	relation m for lcpi,lm for unit root Nu Nu ut drift	n,lxr and drift ter mber of obs = 90 mber of lags = 5	*endix 2	H0: no seria *	l correlation	output into
ADF test unvariable se dfuller lcpi Augmented Dick Variable: lcpi H0: Random wai	sing trend ter ctions. i, lags(5) trend key-Fuller test i	relation 'm for lcpi,lm for unit root Nu Nu ut drift Dickey	n,lxr and drift ter.	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se . dfuller lcp: Augmented Dick Variable: lcp: H0: Random wal	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i Lk with or witho Test statistic -2.131	for unit root Nu ut drift Dickey critica 1% -4.062 -3	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%460 -3.156	*endix 2	H0: no seria *	l correlation	output into
ADF test u. Variable se dfuller lcp: Augmented Dick Variable: lcp: H0: Random wal	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i Lk with or witho Test statistic -2.131 roximate p-value	for unit root Nu ut drift Dickey critica 1% -4.062 -3	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%460 -3.156	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se defuller lopi Augmented Dick Variable: lopi H0: Random wal	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i Lk with or witho Test statistic -2.131 roximate p-value	for unit root Nu ut drift Dickey critica 1%	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%460 -3.156	*endix 2	H0: no seria *	l correlation	output into
ADF test use variable se defuller lcp: Augmented Dickey-Fuller lm, Dickey-Fuller	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i Lk with or witho Test statistic -2.131 roximate p-value	for unit root Nu ut drift Dickey	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%460 -3.156	*endix 2	H0: no seria *	l correlation	output into
ADF test us. Variable se dfuller lcp: Augmented Dick Variable: lcp: Augmented Nariable: lcp: Augmented Dick Variable: lm	sing trend ter ctions. i, lags(5) trend key-Fuller test i lk with or witho Test statistic -2.131 roximate p-value trend	for unit root Nu ut drift Dickey	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	*endix 2	H0: no seria *	l correlation	output into
ADF test us variable se defuller lcp: Augmented Dick variable: lcp: Augmented Dick variable: lcp: Augmented Dick variable: lcp: Augmented Dick variable: lcp: Augmented Dickey-Fuller variable: lm	LM test for autocor Sing trend ter Ctions. i, lags(5) trend Rey-Fuller test i Lk with or witho Test Statistic -2.131 roximate p-value trend test for unit r	for unit root Nu the dift for Z(t) = 0.52 Nu ut drift Dickey The dift Nu ut drift Dickey The dift Dickey Dickey Dickey	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10% 89 mber of obs = 95 mber of lags = 0	*endix 2	H0: no seria *	l correlation	output into
ADF test us. Variable se dfuller lcp: Augmented Dick Variable: lcp: HØ: Random wal Z(t) MacKinnon appr dfuller lm, Dickey-Fuller Variable: lm HØ: Random wal	LM test for autocor Sing trend ter Ctions. i, lags(5) trend Key-Fuller test i lk with or witho Test statistic -2.131 roximate p-value trend test for unit r lk with or witho	for unit root Nu the difft for Z(t) = 0.52 Oot Nu ut drift Dickey Oot Nu ut drift Dickey Oot Dickey Dickey Dickey Dickey Dickey Dickey	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10% 89 mber of obs = 95 mber of lags = 0	*endix 2	H0: no seria *	l correlation	output into
ADF test u. variable se dfuller lcp: Augmented Dick Variable: lcp: H0: Random wal Z(t) MacKinnon approduction approaches	LM test for autocor Sing trend ter ctions. i, lags(5) trend key-Fuller test i Lk with or witho Test statistic -2.131 reximate p-value trend test for unit r Lk with or witho Test statistic	for unit root for unit root Nu Nu ut drift -4.062 -3 for Z(t) = 0.52 oot Nu ut drift Dickey -2.064	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	*endix 2	H0: no seria *	l correlation	output into
ADF test use variable se defuller lops augmented Dick variable: lops augmented Dick variable variab	LM test for autocor Sing trend ter Ctions. i, lags(5) trend Key-Fuller test i Lk with or witho Test Statistic -2.131 roximate p-value trend test for unit r Lk with or witho Test statistic -1.616	relation rm for lcpi, lm for unit root Nu Nu ut drift Dickey	mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	*endix 2	H0: no seria *	l correlation	output into

Augmented Dickey-Fuller test for unit root

Variable: lxr

Number of obs = 92 Number of lags = 3

			Dickey-Fuller	
	Test		critical value	
	statistic	1%	5%	10%
Z(t)	-3.271	-4.058	-3.458	-3.155
MacKinnon	approximate p-valu	ue for Z(t)	= 0.0712.	

. dfuller lgep, lags(1) drift

Augmented Dickey-Fuller test for unit root

Variable: lgep Number of obs = 94 Number of lags = 1

HO: Random walk with drift, d = 0

Breusch-Godfrey LM test for autocorrelation

Test critical value -----statistic 1% 5% 10%

Z(t) -2.568 -2.368 -1.662 -1.291

p-value for Z(t) = 0.0059

Appendix 3

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been columnated to reduce pagination. The ADF test includes a **drift term**

				lags(p)	chi2	df	Prob > chi2
	varlist lcpi lm lxr l	lgep {					
	isplay "`v'"			1	15.204	1	0.0001
	isplay "Lags: 0"			2	15.393	2	0.0005
	uietly regress D.`v' l			3	15.608	3	0.0014
	stat bgodfrey, lags(1/	/4) nomiss0		4	18.000	4	0.0012
	orvalues lags = 1/5 {						
7.	display "Lags:				H0: no seria	al correlation	
8.		s D.`v' L(1/`lags'		Lags: 5			
9.		, lags(1/4) nomiss	ð				
10. }					M test for autocori	relation	
	isplay "*	*"					
12. }				lags(p)	chi2	df	Prob > chi
cpi							
ags: 0				1	1.482	1	0.2235
				2	1.910	2	0.3847
reusch-Goatre	y LM test for autocorr	relation		3 4	4.187 5.560	3 4	0.2420 0.2345
lags(p)	chi2	df	Prob > chi2	4	5.560	4	0.2345
	CIIIZ	ur			HO: no seri:	al correlation	
1	13.451	1	0.0002	*		31 (011(14(10))	
2	14.315	2	0.0002	lm			
3	15.226	3	0.0016	Lags: 0			
4	21.778	4	0.0002	Lags. 0			
'				Breusch-Godfrey L	M test for autocor	relation	
ags: 1	H0: NO Seria	al correlation		lags(p)	chi2	df	Prob > chi
reusch-Godfre	y LM test for autocorr	relation		1	2.122	1	0.1452
				2	2.793	2	0.2474
lags(p)	chi2	df	Prob > chi2	3 4	3.303 3.642	3 4	0.3472 0.4566
1	0.300	1	0.5839	4		4	
2	1.331	2	0.5139		HO: no seri:	al correlation	
з і	9.225	3	0.0264	Lags: 1			
4	22.072	4	0.0002				
					M test for autocor		
ags: 2	H0: NO Seria	al correlation		lags(p)	chi2	df	Prob > chi
3reusch-Godfre	y LM test for autocorr	relation		1	0.715	1	0.3977
				2	1.701	2	0.4272
lags(p)	chi2	df	Prob > chi2	3	1.824	3	0.6096
+				4	2.000	4	0.7357
1	0.992	1	0.3193				
2	8.887	2	0.0118		H0: no seria	al correlation	
3	21.834	3	0.0001	Lags: 2			
4	21.661	4	0.0002	Breusch-Godfrey I	M test for autocori	celation	
_	H0: no seria	al correlation					
.ags: 3				lags(p)	chi2	df 	Prob > chi
	y LM test for autocorr			1	0.674	1	0.4118
	chi2	df	Prob > chi2	2 3	0.850	2	0.6538
lags(p)	CN1Z			4	1.059 2.289	4	0.7870
1	7.893	1	0.0050	4	2.289		0.6827
2	20.768	2	0.0000				
3	20.768	3	0.0001	1205: 3	no. no seria	al correlation	
3 4	20.442	4	0.0001	Lags: 3			
				•	M test for autocor		
ags: 4	H0: no seria	al correlation		lags(p)	chi2	df	Prob > chi
-				O /			

4	1.657 2.587	3 4	0.6464 0.6292
A	H0: no seria	al correlation	
ags: 4			
	M test for autocorr		
lags(p)	chi2	df 	Prob > chi2
1	0.115	1	0.7350
2 3	1.354 2.863	2 3	0.5082 0.4132
4 İ	6.626	4	0.1570
	H0: no seria	al correlation	
ags: 5			
	M test for autocorr	relation	
lags(p)	chi2	df	Prob > chi2
1	1.232	1	0.2671
2	2.450	2	0.2938
3 4	6.109 9.148	3 4	0.1064 0.0575
		l connolation	
	-* Ho: no seria	al correlation	
xr ags: 0			
	M test for autocorr		
lags(p)	chi2	df	Prob > chi2
1	0.143	1	0.7049
2 3	0.873 5.573	2 3	0.6464 0.1343
4	9.625	4	0.0472
	H0: no seria	al correlation	
ags: 1			
reusch-Godfrey L	M test for autocorr	relation	
lags(p)			Prob > chi2
+			
1 2	0.484 5.191	1 2	0.4866 0.0746
3	9.390	3	0.0245
4	8.767	4	0.0672
	110		
2	HØ: NO SEria	al correlation	
ags: 2			
reusch-Godfrey L	M test for autocorr		
reusch-Godfrey L	M test for autocorr chi2	relation df	Prob > chi2
reusch-Godfrey L	M test for autocorr	relation df	
reusch-Godfrey L lags(p)	M test for autocorr chi2 4.962 9.383	df	Prob > chi2 0.0259 0.0092
lags(p) 1 2 3	M test for autocorr chi2 4.962	df	Prob > chi2 0.259
lags(p) 1 2 3	chi2 4.962 9.383 11.411 10.156	df 1 2 3 4	Prob > chi2 0.0259 0.0092 0.0097
lags(p) 1 2 3	chi2 4.962 9.383 11.411 10.156	df 1 2 3	Prob > chi2 0.0259 0.0092 0.0097
lags(p) 1 2 3 4 ags: 3	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 sl correlation	Prob > chi2 0.0259 0.0092 0.0097
1 2 3 4 4 4 4 4 4 4 4 4	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 sl correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379
lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735	df 1 2 3 4 sol correlation df df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296
lags(p)	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2	df 1 2 3 4 sl correlation df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2
lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
Teusch-Godfrey L	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126 H0: no seria	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
lags(p)	M test for autocorr	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df df df df df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2
reusch-Godfrey L lags(p) 1	M test for autocorr	relation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126 H0: no seria M test for autocorr chi2 3.883 4.222 7.269	df	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
reusch-Godfrey L lags(p) 1	M test for autocorr	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211
Treusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
reusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
lags(p)	M test for autocorr	df 1 2 3 4 correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
Teusch-Godfrey L	M test for autocorr	1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107
Teusch-Godfrey L	M test for autocorr	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107
lags(p)	M test for autocorr	### Telation ### T	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107
reusch-Godfrey L lags(p) 1	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107 Prob > chi2 0.0638 0.1107
reusch-Godfrey L lags(p) 1	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
reusch-Godfrey L lags(p) 1	M test for autocorr	### Telation ### T	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
lags(p)	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
Teusch-Godfrey L	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105

1		13.833	1	0.0002
2		13.977	2	0.0009
3	ĺ	13.824	3	0.0032
4	ĺ	14.161	4	0.0068

H0: no serial correlation

Lags: 1

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)	chi2	df	Prob > chi2
1	0.466	1	0.4950
2	0.453	2	0.7972
3	0.350	3	0.9503
4	0.449	4	0.9783
	H0: no seria	al correlation	
Lags: 2			

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.004	1	0.9503
2	0.076	2	0.9625
3	0.277	3	0.9642
4	0.451	4	0.9781

H0: no serial correlation Lags: 3

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)	chi2	df	Prob > chi2
1 2	0.058 0.249	1 2	0.8101 0.8831
3 4	0.401 1.012	3 4	0.9400 0.9080

H0: no serial correlation

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

1 2 3	0.6956 0.8714 0.8080 0.8051
	1 2 3 4

H0: no serial correlation Lags: 5

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1 2 3 4	0.096 0.839 1.488 3.106	1 2 3 4	0.7564 0.6572 0.6850 0.5402

H0: no serial correlation

Appendix 4

ADF test using drift term for lcpi, lm, lxr. Horizontal lines added to split output into variable sections.

```
. dfuller lcpi, lags(5) drift
Augmented Dickey-Fuller test for unit root
Variable: lcpi
                                 Number of obs = 90
                                 Number of lags = 5
H0: Random walk with drift, d = 0
                    τ-aıstribution
------ critical value -------
                            t-distribution
statistic 1% 5% 10%
Z(t) -0.286 -2.372 -1.663 -1.292
p-value for Z(t) = 0.3879
. dfuller lm, drift
Dickey-Fuller test for unit root
                                 Number of obs = 95
Variable: lm
                                 Number of lags = 0
H0: Random walk with drift, d = 0
t-distribution

Test ------ critical value ------
statistic 1% 5% 10%
          -1.937
                      -2.367 -1.661
                                          -1.291
-----
p-value for Z(t) = 0.0279
. dfuller lxr, lags(4) drift
Augmented Dickey-Fuller test for unit root
Variable: lxr
                                  Number of obs = 91
                                 Number of lags = 4
H0: Random walk with drift, d = 0
                            t-distribution
Test ------ critical value -------
statistic 1% 5% 10%
        -2.095 -2.371 -1.663 -1.292
p-value for Z(t) = 0.0196
                                                 Appendix 5
Estimated using a foreach loop in Stata. The ADF test includes a drift term
10.
        display "*----*"
```

```
11.
12. }
D.lcpi
```

Breusch-Godfrey LM test for autocorrelation			
lags(p)	chi2	df	Pr
1	0.261	1	

lags(p)	chi2	df	Prob > chi2		
1	0.261	1	0.6092		
2	1.283	2	0.5265		
3	8.876	3	0.0310		
4	22.001	4	0.0002		

H0: no serial correlation Lags: 1

Breusch-Godfrey LM test for autocorrelation

lags(p)	 :	chi2	df	Prob > chi2
1 2 3	 	0.920 8.535 21.670	1 2 3	0.3374 0.0140 0.0001
4		21.553	4	0.0002

H0: no serial correlation

Breusch-Godfrev LM test for autocorrelation

Di Cu.			,	 		uu coco.					
:	lags ((p)	!	 	chi	2	 df	 Prob	>	chi2	2

1	7.627	1	0.0058
2	20.688	2	0.0000
3	20.412	3	0.0001
4	20.398	4	0.0004

H0: no serial correlation

Lags: 3

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p) chi2 df Prob > c	chi2
1 15.287 1 0.0001 2 15.647 2 0.0004 3 15.757 3 0.0013 4 18.242 4 0.001	.3

H0: no serial correlation

Lags: 4

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)		chi2	df	Prob > chi2
1	į	1.411	1	0.2348
2	1	1.737 4.249	3	0.4197 0.2358
4	İ	5.497	4	0.2400

Lags: 5

H0: no serial correlation

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)		chi2	df	Prob > chi2
1 2		0.349 3.125	1 2	0.5547 0.2096
3 4	İ	4.429 5.378	3 4	0.2187 0.2507

H0: no serial correlation

Appendix 6

ADF test using drift term for dlcpi.

. dfuller d.lcpi, lags(4) drift

Augmented Dickey-Fuller test for unit root

Variable: D.lcpi

Number of obs = 90 Number of lags = 4

H0: Random walk with drift, d = 0

		t-	distribution	
	Test	cr	itical value	
	statistic	1%	5%	10%
Z(t)	-4.114	-2.372	-1.663	-1.292

p-value for Z(t) = 0.0000

Appendix 7

. eststo ARMA: arimasel d.lcpi, ar(2) ma(2)

Model1: AR(0) MA(1) Model2: AR(0) MA(2) Model3: AR(1) MA(0) Model4: AR(1) MA(1) Model5: AR(1) MA(2) Model6: AR(2) MA(0) Model7: AR(2) MA(0) Model8: AR(2) MA(2)

	AR	MA	Nparm	LLF	AIC	SIC
Model1 Model2	0 0	1 2	2	355.4688 356.4954	-706.9376 -706.9908	-701.8299 -699.3292
Model3 Model4	1	0	2	355.9882 356.1419	-707.9764 -706.2838	-702.8686 -698.6222
Model4 Model5	1 1	1 2	4	356.1419	-706.2838 -704.5892	-698.6222
Model6	2	0	3	356.1105	-706.2211	-698.5594
Model7	2	1	4	356.1431	-704.2863	-694.0708
Model8	2	2	5	361.6745	-713.3489	-700.5795

7.32

```
Appendix 8
. arima dlcpi, ar(1) robust
(setting optimization to BHHH)
Iteration 0: Log pseudolikelihood = 355.98779
Iteration 1: Log pseudolikelihood = 355.98812
Iteration 2: Log pseudolikelihood = 355.98816
Iteration 3: Log pseudolikelihood = 355.98817
Iteration 4: Log pseudolikelihood = 355.98818
ARIMA regression
Sample: 2000q2 thru 2023q4
                                                               Number of obs
                                                                Wald chi2(1)
                                                               Prob > chi2
Log pseudolikelihood = 355.9882
                                                                                               0.0068
         | Semirobust dlcpi | Coefficient std. err.
                                                           P>|z| [95% conf. interval]
dlcpi
_cons | .0046215 .0009386 4.92 0.000 .0027819 .0064611
```

.380355 .1405789 2.71 0.007 .1048253 .6558846 L1. .0047036 .0066993 /sigma| .0057014 .0005091 11.20 0.000 Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 9

. arima dlcpi, ar(1/2) ma(1/2) robust

(setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 347.23067 Iteration 1: Log pseudolikelihood = 352.68152 Iteration 2: Log pseudolikelihood = 353.68017 Iteration 3: Log pseudolikelihood = 355.04277 Iteration 4: Log pseudolikelihood = 359.79432 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 361.0122 Iteration 6: Log pseudolikelihood = 361.10737
Iteration 7: Log pseudolikelihood = 361.39219 Iteration 8: Log pseudolikelihood = 361.61468
Iteration 9: Log pseudolikelihood = 361.65691
Iteration 10: Log pseudolikelihood = 361.65801 Iteration 11: Log pseudolikelihood = 361.67609
Iteration 12: Log pseudolikelihood = 361.67379
Iteration 13: Log pseudolikelihood = 361.67444
Iteration 14: Log pseudolikelihood = 361.67445

ARIMA regression

ARMA

Sample: 2000q2 thru 2023q4 Number of obs Wald chi2(4) 680.78 Log pseudolikelihood = 361.6745 Prob > chi2 0.0000

			Semirobust				
	dlcpi	Coefficient	std. err.	z	P> z	[95% conf.	interval]
dlcpi							
	_cons	.0045876	.0008768	5.23	0.000	.0028691	.0063061
ARMA		 					
	ar	İ					
	L1.	8995348	.2194136	-4.10	0.000	-1.329578	4694921
	L2.	.076611	.221312	0.35	0.729	3571526	.5103746
	ma						
	L1.	1.427597	.1399993	10.20	0.000	1.153203	1.701991
	L2.	.5024687	.1556634	3.23	0.001	.197374	.8075633
	/sigma	.0053414	.0005515	9.68	0.000	.0042605	.0064224

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 10

bic	aic N	cons	L2.lm	L.lm	L2.lxr	Llxr	L2.lgep	L.lgep	lgep	lxr	Ħ	L2.Dlcpi	L.Dle	
-689.1	-701.8	0.00164 (0.0782)					p		0.00495	0.00884 (0.0207)	-0.00451 (0.00236	cpi	L.Dlcpi 0.278* (0.136)	Dlcpi
-695.1	-710.4	0.0273 (0.0769)						-0.0129* (0.00283	** 0.0166** 7) (0.00312	0.00884 -0.00258 (0.0207) (0.0198)	-0.00451 -0.00219 (0.00236) (0.00220)		0.284 [*] (0.129)	Dlcpi
-692.0	-709.8	0.0202 (0.0755)					0.00536 (0.00352)	-0.0129*** -0.0197*** (0.00283) (0.00525)	0.00495^{**} 0.0166^{***} 0.0185^{***} 0.00495^{**} 0.0168^{***} 0.0188^{***} 0.00464^{**} 0.0163^{***} 0.0183^{***} 0.00550^{**} 0.0176^{***} 0.0191^{***} 0.00552^{**} 0.0182^{**} 0.0194^{***} 0.00520^{**} $0.00169)$ $0.00318)$	0.00119	-0.00310) (0.00230)		0.317* (0.132)	Dlcpi
-684.5	-699.8	0.00196 (0.0844)				-0.00056 (0.0477)	J	· ;	0.00495 0.00169	0.00930 (0.0429)			0.278 [*] (0.137)	Dlcpi
-690.7	-708.5	0.0386 (0.0802)				-0.000564 -0.0192 (0.0477) (0.0450)		-0.0131*** (0.00283)	* 0.0168***) (0.00318)	0.00930 0.0130 (0.0429) (0.0416)	-0.00450 -0.00182 (0.00259) (0.00245)		0.283 [*] (0.130)	Dlcpi
-687.6	-708.0	0.0309 (0.0786)				-0.0181 (0.0459)	0.00532 (0.00354)	-0.0131*** -0.0198*** (0.00283) (0.00519)	(0.00350)	0.0158 (0.0425)	-0.00274 (0.00253)		0.316 [*] (0.133)	Dlcpi
-681.1	-698.9	-0.0330 (0.0889)			0.0534 (0.0418)	-0.0460 (0.0596)		*	0.00464**(0.00168)	0.0121 (0.0429)	-0.00541* -0.00252 (0.00258) (0.00249)		0.280 [*] (0.137)	Dlcpi
-686.8	-707.2	0.0133 (0.0867)			0.0375 (0.0410)	-0.0506 (0.0564)		-0.0128*** -0.0199** (0.00277) (0.00507)	0.0163***	0.0148 (0.0416)			0.285 [*] (0.131)	Dlcpi
-683.9	-706.8	0.00164 (0.0860)			0.0424 (0.0410)	-0.0536 (0.0572)	0.00565 (0.00349)	-0.0128*** -0.0199*** (0.00277) (0.00507)	0.0183*** (0.00345)	0.0181 (0.0424)	-0.00359 (0.00257)		0.321* (0.134)	Dlcpi
-688.1	-703.4	0.0240 (0.0768)		-0.0241* (0.00982)				•	0.00550**(0.00173)	0.00200 (0.0203)	0.0200 (0.0106)		0.247 (0.130)	Dlcpi
-695.4	94 -713.2	0.0529 (0.0723)		-0.0241* -0.0265** -0.0250* (0.00982) (0.00943) (0.00957				-0.0134*** (0.00277)	0.0176*** (0.00316)	-0.0105 (0.0185)	0.0249 [*] (0.0102)		0.250* (0.124)	Dlcpi
-691.8	-712.2	0.0459 (0.0714)		-0.0250* (0.00957)			0.00418 (0.00343)	-0.0134*** -0.0187*** (0.00277) (0.00506)	0.0191*** (0.00345)	-0.00715 (0.0186)	0.0227* (0.0105)		0.278* (0.127)	Dlcpi
-683.6	-701.4	0.0273 (0.0821)		-0.0242* (0.00980)		-0.00556 (0.0462)			0.00552**	0.00653 (0.0421)	0.0202 (0.0106)		0.246 (0.131)	Dlcpi
-691.2	-711.5	0.0684 (0.0753)		-0.0269** (0.00959)		-0.0256 (0.0428)		-0.0137*** -0.0188** (0.00279) (0.00500)	0.0180*** (0.00325)	0.0101 (0.0393)	0.0258* (0.0104)		0.249* (0.124)	Dlcpi
-687.6	-710.4	0.0607 (0.0744)		-0.0254* (0.00970)		-0.0243 (0.0438)	0.00411 (0.00345)	*-0.0188**** (0.00500)	0.0183*** 0.00550** 0.0176*** 0.0191*** 0.00552** 0.0180*** 0.0194*** 0.00520** (0.00345) (0.00173) (0.00316) (0.00345) (0.00174) (0.00325) (0.00348) (0.00173)	0.0124 (0.0401)	0.0236* (0.0107)		0.276 [*] (0.127)	Dlcpi
-680.6	-700.9	-0.0109 (0.0866)		-0.0253* (0.0101)	0.0602 (0.0408)	-0.0569 (0.0591)			0.00520**	0.00953 (0.0421)	0.0203 (0.0107)		0.248 (0.132)	Dlcpi
-687.6	-710.5	0.0393 (0.0822)		-0.0276** -0.0261* (0.00989) (0.01000)	0.0442 (0.0399)	-0.0628 (0.0554)		-0.0133*** -0.0189** (0.00275) (0.00488)	0.0174*** (0.00325)	0.0122 (0.0392)	0.0257° (0.0105)		0.250* (0.125)	Dlcpi
-684.1	-709.5	0.0286 (0.0816)			0.0477 (0.0403)	-0.0644 (0.0566)	0.00445 (0.00338)	-0.0133*** -0.0189*** (0.00275) (0.00488)	0.0189*** (0.00344)	0.0148 (0.0400)	0.0233 [*] (0.0108)		0.280* (0.128)	Dlcpi
	-701.9	0.0339 (0.0781)	-0.00990 (0.0114)						0.00584** (0.00175)	-0.000623 -0.0145 (0.0206) (0.0186)	0.0192 (0.0107)		0.227 (0.141)	Dlcpi
	94 -712.5	0.0675 (0.0734)	-0.0138 (0.0107)	-0.0117 (0.0155)				-0.0138*** -0.0186*** (0.00279) (0.00510)	0.0184*** (0.00319)		0.0239* (0.0102)		0.223 (0.133)	Dlcpi
-688.4	94 -711.3	0.0602 (0.0727)	-0.0131 (0.0107)	-0.0111 (0.0155)			0.00388 (0.00345)	-0.0186*** (0.00510)	0.0198*** (0.00345)	-0.0112 (0.0187)	0.0219 [*] (0.0105)		0.250 (0.137)	Dlcpi
-679.6	-700.0	0.0374 (0.0836)	-0.00992 (0.0115)	-0.0135 (0.0164)		-0.00597 -0.0267 (0.0473) (0.0439)			0.00587** (0.00177)	0.00423 (0.0432)	0.0194 (0.0107)		0.227 (0.142)	Dlcpi
	-710.8	0.0838 (0.0771)	-0.0139 (0.0108)	-0.0119 (0.0157)				-0.0140*** -0.0188*** (0.00278) (0.00504)	0.0188*** (0.00327)	0.00692 (0.0397)	0.0249* (0.0104)		0.221 (0.133)	Dlcpi
-684.2	-709.6	0.0760 (0.0766)	-0.0132 (0.0108)	-0.0113 (0.0157)		-0.0255 (0.0448)	0.00380 (0.00348)	-0.0188*** (0.00504)	0.0201*** (0.00347)	0.00922 (0.0405)	0.0228 [*] (0.0107)		0.248 (0.138)	Dlcpi
-676.5	-699.4	-0.000359 0.0565 (0.0893) (0.0853	-0.00874 (0.0117)	-0.0158 (0.0171)	0.0576 (0.0413)	-0.0551 (0.0592)		200	0.00551** (0.00177)	0.00738 (0.0429)	0.0196		0.231 (0.143)	Dlcpi
-684.2	-709.6	3	-0.0130 (0.0111)	-0.0136 · (0.0163)	0.0399 (0.0405)	-0.0603 (0.0551)	9.0	-0.0137*** -0.0188*** (0.00273) (0.00491)	0.0182*** (0.00326)	0.00904 (0.0394)	0.0249* (0.0106)		0.224 (0.134)	Dlcpi
	-708.5	0.0455 (0.0851)	-0.0122 (0.0112)	-0.0131 (0.0164)	0.0435 (0.0410)	-0.0620 (0.0567)	0.00414 (0.00341)	-0.0188*** (0.00491)	0.0174*** 0.0189*** 0.00584** 0.0184*** 0.0198*** 0.00587** 0.0188*** 0.0201*** 0.00551** 0.0182*** 0.0196*** 0.00526** (0.00325) (0.00344) (0.00175) (0.00319) (0.00345) (0.00177) (0.00327) (0.00347) (0.00347) (0.00177) (0.00326) (0.00342) (0.00173)	0.0117 (0.0403)	0.0226* (0.0109)	\$7.5\$m \$2.00	0.254 (0.139)	Dlcpi
-678.1	-693.3	0.0236 (0.0813)							0.00526	0.00501 (0.0213)	-0.00492* (0.00241)	-0.107 (0.0847)	0.327* (0.145)	Dlcpi

93 -701.7 -684.0	0.0599 (0.0776)						-0.0135**** (0.00310)	0.0171*** (0.00329)	-0.0102 (0.0204)	-0.00199 (0.00229)	0.00320 (0.0884)	0.301 [*] (0.131)	Dlcpi
93 -701.3 -681.1	0.0529 (0.0752)					0.00559 (0.00352)	-0.0135*** -0.0205*** (0.00310) (0.00548)	0.0171*** 0.0190*** 0.00524** 0.0171*** 0.0191*** 0.00493** 0.0166*** 0.0186*** 0.0186*** 0.00561** 0.0185*** 0.0198*** 0.00561** 0.0186*** 0.00261** 0.0186*** 0.0200*** 0.00529** 0.0181*** 0.0195*** 0.00601** 0.0192*** 0.00601** 0.0193*** 0.00601** 0.0193*** 0.00661** 0.0193*** 0.00601** 0.00340) (0.00340) (0.00356) (0.00181) (0.00340) (0.00357) (0.00356) (0.00176) (0.00337) (0.00356) (0.00178) (0.00356) (0.00178) (0.00359) (0.00181) (0.00340) (0.00181) (0.00340) (0.00356)	-0.00618 (0.0199)		-0.00731 (0.0904)	0.340 [*] (0.134)	Dlepi
93 -691.3 -673.6	0.0211				0.00531 (0.0487)		•	0.00524	0.00054	-0.00501 (0.00264	-0.106 (0.0861)	0.327* (0.145)	Dlcpi
93 -699.7 -679.5	0.0633 (0.0811)				-0.00693 (0.0451)		-0.0136**** (0.00310) (0.00524** 0.0171*** (0.00175) (0.00333)	0.000544 -0.00440 (0.0445) (0.0420)	-0.00300 -0.00501 -0.00186 (0.00240) (0.00264) (0.00253)	0.00238	0.301 [*] (0.133)	Dlepi
93 -699.3 -676.5	0.0557				-0.00555 (0.0460)	0.00557	-0.0136*** -0.0205*** (0.00310) (0.00548)	0.0191*** 0.00368)	-0.00157 (0.0427)	-0.00290 (0.00262)	-0.00795 (0.0910)	0.339* (0.135)	Dlepi
93 -690.5 -670.2	-0.0135 (0.0913)			0.0530 (0.0418)	-0.0397 (0.0604)		0 ;	0.00493		-0.00590*) (0.00266)	-0.106 (0.0869)	0.329* (0.147)	Dlcpi
93 -698.3 -675.5	0.0382			0.0368 (0.0413)	-0.0379 (0.0572)		-0.0132*** (0.00304)	0.00493** 0.0166*** (0.00174) (0.00333)	0.00328 -0.00237 (0.0447) (0.0422)	-0.00590* -0.00256 (0.00266) (0.00260)	0.000231	0.303* (0.134)	Dlepi
93 -698.1 -672.8	0.0264 (0.0865)			0.0421 (0.0415)	-0.0409 (0.0582)	0.00591	-0.0132*** -0.0205*** (0.00304) (0.00532)	* 0.0186***) (0.00363)	0.000922 (0.0429)	-0.00376) (0.00271	-0.0110 (0.0920)	0.344 [*] (0.138)	Dlcpi
93 -693.8 -676.1	0.0386 (0.0817)		-0.0208* (0.0104)			9	9 :	* 0.00561) (0.00176		-0.00376 0.0164 (0.00271) (0.0112)	-0.0692 (0.0887)	0.284 [*] (0.140)	Dlepi
93 -704.3 -684.0	0.0821 (0.0754)		-0.0266* (0.0101)				-0.0146*** (0.00297)	0.00561** 0.0185*** (0.00176) (0.00330)	-0.000310 -0.0182 (0.0214) (0.0198)	0.0255* (0.0110)	0.0611	0.245 (0.124)	Dlcpi
93 -703.2 -680.4	0.0752 (0.0741)		-0.0247* (0.0102)			0.00419 (0.00353)	-0.0146*** -0.0198*** (0.00297) (0.00525)	* 0.0198 ^{***}) (0.00357)	-0.0146 (0.0198)	0.0228* (0.0114)	0.0490 (0.0924)	0.278 [*] (0.128)	Dlepi
93 -691.8 -671.5	0.0385		-0.0208* (0.0104)		0.000225 (0.0480)	0	· ;	* 0.00561) (0.00178		0.0164 (0.0113)	-0.0692 (0.0896)	0.284 [*] (0.141)	Dlepi
93 -702.4 -679.6	0.0895		-0.0269* (0.0103)		0.000225 -0.0146 (0.0480) (0.0438)		-0.0148*** (0.00298) (0.00561** 0.0186*** (0.00178) (0.00336)	-0.000497 -0.00618 (0.0450) (0.0414)	0.0261* (0.0113)	0.0600	0.244 (0.125)	Dlcpi
93 -701.3 -675.9	0.0819		-0.0250* (0.0104)		-0.0130 (0.0447)	0.00415	-0.0148*** -0.0198*** (0.00298) (0.00523)	* 0.0200***) (0.00359)	-0.00394 (0.0420)	0.0233* (0.0116)	0.0481 (0.0923)	0.277* (0.130)	Dlepi
93 -691.3 -668.5	0.000912		-0.0220* (0.0107)	0.0590 (0.0410)	-0.0502 (0.0608)	9	•	* 0.00529) (0.00176	0.00249 (0.0453)	0.0166 (0.0114)	-0.0661 (0.0904)	0.285* (0.142)	Dlcpi
93 -701.2 -675.9	0.000912 0.0609 (0.0904) (0.0854)		-0.0276* (0.0105)	0.0429 (0.0395)	-0.0509 (0.0561)		-0.0144*** (0.00293) (0.00529** 0.0181*** (0.00176) (0.00337)	-0.00386 (0.0416)	0.0260* (0.0114)	0.0590 (0.0907)	0.245 (0.126)	Dlcpi
93 -700.3 -672.4	0.0502 (0.0848)		-0.0256* (0.0106)	0.0465 (0.0402)	-0.0522 (0.0575)	0.00449 (0.00348	-0.0144*** -0.0198*** (0.00293) (0.00508)	0.0195*** (0.00356)	-0.00124 (0.0421)	0.0230 (0.0117)	0.0461 (0.0923)	0.281 [*] (0.132)	Dlcpi
93 -692.5 -672.2	0.0485 (0.0828)	-0.0107 (0.0114)	-0.00908			0	· ;	* 0.00601) (0.00178	-0.00287 (0.0217)	0.0153 (0.0114)	-0.0780 (0.0891)	0.266 (0.149)	Dlcpi
93 -703.4 -680.6	0.0950 (0.0760)	-0.0131 (0.0107)	(0.0123				-0.0149* (0.00300	** 0.0192 ^{**} 8) (0.00334	-0.0216 (0.0197)	0.0243* (0.0111)	0.0523 (0.0916)	0.222 (0.132)	Dlcpi
93 -702.2 -676.9	0.0879 (0.0750)	-0.0124 (0.0107)	-0.0112 (0.0163)			0.00394 (0.00353)	-0.0149*** -0.0197*** (0.00300) (0.00531)	* 0.0204**) (0.00359	-0.0181 (0.0197)	0.0218 (0.0115)	0.0414 (0.0932)	0.255 (0.138)	Dlepi
93 -690.5 -667.7	0.0489 (0.0869)	-0.0107 (0.0115)			-0.0007; (0.0493)	3	5 ‡	0.00601 0.0018			-0.0781 (0.0899)	0.266 (0.151)	Dlcpi
93 -701.5 -676.2	0.103	-0.0132) (0.0109)	-0.00909 -0.0125 (0.0169) (0.0164)		-0.000725 -0.0160 (0.0493) (0.0449)		-0.0150* (0.00299	** 0.0193** 1) (0.00340	-0.00226 -0.00845 (0.0463) (0.0418)	0.0153 0.0249* (0.0114) (0.0113)	0.0511	0.221 (0.134)	Dlepi
93 -700.3 -672.5	0.0954 (0.0786)	-0.0125 (0.0108)	-0.0114 (0.0164)		-0.0144 (0.0459)	0.00389 (0.00357)	-0.0150*** -0.0197*** (0.00299) (0.00528)	0.0192*** 0.0204*** 0.00601** 0.0193*** 0.0206*** 0.00566** 0.0188*** 0.0201*** (0.00334) (0.00359) (0.00181) (0.00340) (0.00351) (0.00181) (0.00359)		0.0224 (0.0117)	0.0404 (0.0929)	0.253 (0.140)	Dlcpi
93 -689.8 -664.5	0.0119 (0.0926)		-0.0115 (0.0176)	0.0562 (0.0414)	-0.0486 (0.0609)	9	Ŭ .	** 0.00566) (0.0018)	(0.0462)		-0.0742 (0.0908)	0.269 (0.152)	Dlcpi
93 -700.2 -672.4	0.0762	-0.00946 -0.0123 (0.0116) (0.0111)	-0.0141) (0.0169)	0.0390	-0.0489) (0.0559)		-0.0146 [*] (0.00294	** 0.0188** 1) (0.00340	-0.00624 0.000787 -0.00619 (0.0424) (0.0462) (0.0418)	0.0157 0.0249* (0.0117) (0.0115)	0.0507	0.223 (0.135)	Dlcpi
93 -699.2 -668.8	0.0653	-0.0115 (0.0112)	-0.0130 (0.0169)	0.0426	-0.0503) (0.0576)	0.00422 (0.00350)	-0.0146*** -0.0198*** (0.00294) (0.00513)	** 0.0201)) (0.003	9 -0.00358) (0.0424)	0.0222	0.0391 (0.0929)	0.258 (0.142)	Dlepi

Appendix 11

```
R-squared:
                                                   Obs per group:
     Within = 0.0915
                                                                 min =
                                                                                 95
                                                                              95.0
     Between = 0.0248
                                                                  avg =
     Overall = 0.0718
                                                                  max =
                                                   F(3, 467)
                                                                              15.68
corr(u_i, Xb) = -0.0684
                                                   Prob > F
                                                                              0.0000
     dlcpi | Coefficient Std. err.
                                            t P>|t| [95% conf. interval]
                                                   0.264 -.0035382
0.184 -.0105385
         lm | -.0012838 .0011473 -1.12
lxr | -.004254 .0031981 -1.33
                                                                           .0009707
        lxr |
                                                                           .0020305
                .0056259 .0009738 5.78 0.000 .0037124
.0172206 .0264191 0.65 0.515 -.0346944
       lgep |
_cons | .0172206 .0264191 0.65 0.515 -.0346944
                                                                          .0691355
    sigma_u | .00311715
                .00727819
     sigma_e |
   rho | .15499753 (fraction of variance due to u_i)
F test that all u_i=0: F(4, 467) = 14.31
                                                                Prob > F = 0.0000
                                                                 Appendix 12
. reg dlcpi lm lxr lgep
                                   df MS
     Source |
                    SS
                                                      Number of obs =
                                                                                475
                                                     F(3, 471)
Prob > F
                                                                              16.06
       Model | .002840985
                                    3 .000946995
    Residual | .027770526
                                  471 .000058961
                                                      R-squared
                                                                             0.0928
                                                      Adj R-squared =
                                                                             0.0870
       Total | .03061151 474 .000064581 Root MSE
______
     dlcpi | Coefficient Std. err. t P>|t| [95% conf. interval]

        lm
        -.001447
        .0008487
        -1.70
        0.889

        lxr
        .0029066
        .0024725
        1.18
        0.240

        lgep
        .0061984
        .0009348
        6.63
        0.000

        _cons
        -.0169459
        .0191463
        -0.89
        0.377

                                                           -.0031148
                                                                           .0002207
                                                            -.0019518
                                                                           .0077651
                                                            -.0545686
                                                                          .0206768
. xtreg dlcpi lm lxr lgep, re
                                                                           475
Random-effects GLS regression
                                                   Number of obs
Group variable: countryID
                                                   Number of groups =
R-squared:
                                                   Obs per group:
     Within = 0.0912
                                                                 min =
    Between = 0.0021
Overall = 0.0769
                                                                  avg =
                                                                                95.0
                                                                  max =
                                                                                95
                                                   Wald chi2(3)
                                                                              46.33
corr(u_i, X) = 0 (assumed)
                                                   Prob > chi2
                                                                             0.0000
       dlcpi | Coefficient Std. err.
                                             z P>|z| [95% conf. interval]
-----+-----
         lm | -.0012355 .0010923 -1.13 0.258
lxr | -.0031661 .003064 -1.03 0.301
lgep | .005667 .000961 5.90 0.000
cons | .0112128 .0250962 0.45 0.655
                                                          -.0033764
-.0091715
        lxr |
                                                                           .0028393
                                                           .0037835
-.0379748
       lgep
                                                                           .0075505
                                                                           .0604005
       cons
     sigma_u | .00222592
     sigma_e |
                .00727819
        rho | .08553384 (fraction of variance due to u_i)
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects
        dlcpi[countryID,t] = Xb + u[countryID] + e[countryID,t]
        Estimated results:
                                            SD = sqrt(Var)
                 -----
                   dlcpi | .0000646 .0080362
                                .000053
                                               .0072782
                        u | 4.95e-06
                                             .0022259
        Test: Var(u) = 0
                           chibar2(01) = 151.19
Prob > chibar2 = 0.0000
                                                                 Appendix 13
. eststo fixed: qui xtreg dlcpi lm lxr lgep, fe
. xtreg dlcpi lm lxr lgep, re
{\tt Random-effects\ GLS\ regression}
                                                   Number of obs
                                                                                475
```

Number of groups =

Group variable: countryID

R-squared:				Obs per g	roun:	
Within =	= 0.0912			6	min =	95
Between =	= 0.0021				avg =	95.0
Overall =	0.0769				max =	95
				Wald chi2	(3) = i2 =	46.33
corr(u_i, X) =	= 0 (assumed)			Prob > ch	12 =	0.0000
dlcpi	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lm	0012355	.0010923	-1.13	0.258	0033764	.0009053
lxr	0031661 .005667 .0112128	.003064	-1.03	0.301	0091715	.0028393
lgep	.005667	.000961	5.90	0.000	.0037835	.0075505
_cons	.0112128	.0250962	0.45	0.655	0379748	.0604005
	h					
	.00222592					
sigma_e	.00727819	/ (+	r			
rno	.08553384	(fraction o	r varıar	ice due to	u_1)	
. hausman fixe	-d					
	Coeff:	icients				
	(b)	(B)		(b-B)	sart(diag(\	/ b-V B))
	fixed	`.'	Di	fference	Std. er	r.
	}					
lm	0012838 004254 .0056259	0012355	-	.0000482	.00035	808
lxr	004254	0031661	-	.0010879	.00091	.65
lgep	.0056259	.005667		.0000411	.00015	73
	· 					
	b	= Consisten	t under	H0 and Ha;	obtained fr	om xtreg.
В =	= Inconsistent	under Ha, e	fficient	under H0;	obtained fr	om xtreg.
Test of H0: Di	ifference in co	pefficients	not syst	ematic		
	(b-B)'[(V_b-V	_B)^(-1)](b-	3)			
= 6.07						
Prob > chi2 = 0.1085						
(V_b-V_B is no	ot positive de	finite)				
					Appen	dix 14
. xtreg dlcpi	lm lxr lgep,	re robust				
	s GLS regression	on			obs =	
Group variable	e: countryID			Number of	groups =	5
_						
R-squared:				Obs per g		
Within =					min =	95
Between =					avg = max =	95.0
Overall =	= 0.0769				max =	95
				11-14 -1 10	(2)	1200 00
/ :	0 (1)			waid chi2	(3) =	
corr(u_i, X) =	= ປ (assumed)			Prob > ch	i2 =	0.0000
(Std. enn. adjusted for 5 clustons in countryID)						
(Std. err. adjusted for 5 clusters in countryID)						
		Robust				
dleni	 Coefficient		7	P> z	[95% conf.	intervall

z

-1.00

-0.76 4.52 0.56

sigma_u | .00222592 sigma_e | .00727819 rho | .08553384 (fraction of variance due to u_i)

0.318

0.446 0.000

0.576

P>|z| [95% conf. interval]

.0011879

.0049828 .0081255

.0505354

-.003659

-.011315

.0032086 -.0281097

dlcpi | Coefficient std. err.

-.0031661 .005667 .0112128

.0041577 .0012543 .0200629

lm | lxr |

lgep | _cons |