Otto Cycle	
	was the first part in prior years)
· Between 1 -> 2 we h	ave
7	
DU = Q + W12	
see next item	
50	>
W = (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T2 (1-1)
Mow 1 → 2 is adiabatic	
7-1	
$T_2 = T, \left(\frac{\vee}{\nabla} \right)$	$S_0 \Delta T = T_1(r^{8-1}-1)$
2	
€ Then for 1->3	$\left(\frac{T_2}{T_1}\right) = r^{\gamma}-1$ so
	,
C _ DT 23 = Q + y	$\Delta T_{12} = T_{2} \left(1 - \underline{1} \right)$
$\Delta T = Q_{in}$	
$\Delta T_{23} = Q_{2n}$	
Then similarly for 3 -> 1	
	V
DU = W	$T_{4} = T_{3} \left(V_{3} \right)^{1-1} = T_{3} \perp V_{3}$
DU = ((T4-T3)	
$\Delta M = - C_V T_3 \left(2 - \underline{I}_{8-1} \right)$	= \/
C 8-1	34

So
$$= Q_{10}$$

$$W_{net} = W_{34} + W_{12} = -C_{V}(T_{3} - T_{2})(1 - L_{1})$$

$$The lly$$

$$The lly$$

$$The lly$$

$$The location of the cylinder is 2.5L
$$S_{0}$$

$$2.5L = n_{ml}$$

$$2.5L = 1_{mel}$$

$$N_{mel} = 0.1$$$$

C) We use

$$T_{f} = T_{1} \left(\frac{V_{T}}{V_{f}} \right)^{N-1}$$
 $T_{g} = T_{1} \left(\frac{V_{T}}{V_{f}} \right)^{N-1}$
 $T_{g} = T_{1} \left(\frac{V_{T}}{V_{f}} \right)^{N-1}$
 $T_{g} = T_{1} \left(\frac{V_{T}}{V_{f}} \right)^{N-1}$
 $T_{g} = R_{1} \left(\frac{V_{T}}{V_{f}} \right)^{N-1}$
 $R_{g} =$

$$P_{3} = \frac{T_{3}}{V}$$

$$P_{3} = \frac{T_{3}}{T_{2}}$$

$$P_{3} = P_{1} \cdot \frac{T_{3}}{T_{2}} = \frac{40.5 \text{ b}}{T_{2}}$$

$$V_{3} = 0.3 \text{ L}$$

$$V_{3} = 0.3 \text{ L}$$

$$V_{4} = C_{1} \cdot C_{$$

As a quick check we note W = W12 + W34 = -12425 Q = 22005 $\gamma = |W| = 0.56$ which should be compared with 1-1=1-1=0.56

a)
$$\frac{1}{1+x} = 1-x+x^2-x^3+...$$

Integrating

$$\int_{0}^{x} \frac{dx'}{(1+x')} = \log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4}$$

6)

$$\frac{1}{e^{\times}-1}=\frac{e^{-\times}}{1-e^{-\times}}$$

$$\frac{1}{e^{x}-1} = \frac{u}{(1-u)} - u(1+u+u^{2}+...)$$

$$\frac{1}{e^{x}-1} = e^{-x} (1 + e^{-x} + e^{-2x} + O(e^{-3x}))$$

d)
$$e^{x} - 1$$
we expand $e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$

$$e^{x} - 1 = \frac{1}{x + x^{2}/2 + x^{3}/6} = \frac{1}{x + \frac{x^{2}}{2} + \frac{x^{3}}{6}}$$

$$\frac{1}{e^{x} - 1} = \frac{1}{x + \frac{x^{2}}{2} + \frac{x^{2}}{6}} = \frac{1}{x + \frac{x^{2}}{2} + \frac{x^{3}}{6}} = \frac{1}{x + \frac{x^{2}}{2} + \frac{x^{2}}{6}} = \frac{1}{x + \frac{x^{2}}{2} + \frac{x^{2}}{2}} = \frac{1}{x + \frac{x^{2$$

So

Call it u

Setting
$$u = -\frac{x}{2} + \frac{x^2}{6}$$
 we have

$$\log(1+u) = u - u^2 + O(u^3)$$
 with x of order

$$\log(1-e^{-x}) \approx \log(x) + \left(-\frac{x}{2} + \frac{x^2}{2}\right) - \frac{1}{2}\left(-\frac{x}{2}\right)^2 + O(x^3)$$

$$\log (1-e^{-x}) \approx \log x - \frac{x}{2} + \frac{x^2}{24} + O(x^3)$$

Energy of SHO a We have Z = 1 1-e-Btwo Then (E) = -2 log Z = +2 log (1-e-Bhw) = 1 e-Btwo two (E) = two b) Then two etw/kt-1 _ < ^ > Then Then from graph < N> 1 <n> = 1 when kBT/tw KBT/tw=1.45

kgT = 1.45 two c) Then a vice plot of (E) is given in the problem statement. d) Using the series of problem 1 with x = tw/kT at low temperature kT << two then x>>1, and $\frac{1}{e^{\times} - 1} = \frac{e^{-\times}}{1 - e^{-\times}} \sim e^{-\times} (1 + e^{-\times} + \dots)$ And (E) = two e-Btwo (1 te-Btwo. At high temperature X << I $\langle E \rangle = \pm \omega_o \left(\frac{k_B T}{\hbar \omega} - \frac{1}{2} \right) \simeq k_B T \left(I - \frac{1}{\hbar \omega_o} \right)$

(e) At high temperature the number of quanta (n) is very large. In this regime (n) >> 1 quantum mechanics becomes continuous, DE « I and it approaches classical mechanics E

This is the Bohr correspondence principle

f) We have

i)
$$U = N \left[\frac{8}{2} kT + \frac{\hbar w_0}{e^{8\hbar w_0} - 1} \right]$$
this is $f_0(T)$

Then

(ii)
$$C_V = \left(\frac{dU}{dt}\right)_V = N\left[\frac{5k}{2} + \frac{-k\omega_0}{e^{\beta k\omega_0}} + \frac{2}{\delta T kT}\right]$$

$$= N \left[\frac{5k}{2} + \frac{(\beta \hbar \omega)^2}{(e^{\beta \hbar \omega_0} - 1)} e^{\beta \hbar \omega_0} k \right]$$

$$C_{V} = Nk \left[\frac{5}{2} + \frac{(\beta + \omega)^{2}}{(e^{+\beta + \omega_{0}} - 1)^{2}} e^{\beta + \omega_{0}} \right]$$

$$C_{p} = Nk_{B} \left[\frac{7}{2} + \frac{(\beta \hbar \omega_{o})^{2}}{(e^{\beta \hbar \omega_{o}} - 1)^{2}} \right]$$

iii) So we see that the model nicely captures the transition from
$$C_p = 7 = 3.5 + 0.9 = 4.5$$

but misses the transition to 5 at low temperatures