```
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
                                                x^2 + x + 1 = (x - \omega)(x - \omega^2);
```

$$a^3 - b^3 = (a - b) (a - \omega b) (a - \omega^2 b)$$
; $x^2 + a^3 + b^3 = (a + b) (a + \omega b) (a + \omega^2 b)$;

- $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$ if p is not an integral multiple of n = n if p is an integral multiple of n
- $(1 \alpha_1) (1 \alpha_2) \dots (1 \alpha_{n-1}) = n$ & $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd. $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{n-1} = 1$ or -1 according as n is odd or even.

THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED:

i)
$$\cos \theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)}\cos\left(\frac{n+1}{2}\right)\theta.$$

(ii)
$$\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)}\sin(\frac{n+1}{2})\theta.$$

STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS:

- If $z_1 & z_2$ are two complex numbers then the complex number $z = \frac{nz_1 + mz_2}{m+n}$ divides the joins of z_1
- where a + b + c = 0 and a,b,c are not all simultaneously zero, then the complex numbers z_1 , $z_2 \& z_3$
 - If the vertices A, B, C of a Δ represent the complex nos. z_1, z_2, z_3 respectively, then:

 $z_1 \tan A + z_2 \tan B + z_3 \tan C$ $\tan A + \tan B + \tan C$

- $(Z_1 \sin 2A + Z_2 \sin 2B + Z_3 \sin 2C) \div (\sin 2A + \sin 2B + \sin 2C)$.
- $amp(z) = \theta$ is a ray emanating from the origin inclined at an angle θ to the x-axis.
- |z-a| = |z-b| is the perpendicular bisector of the line joining a to b.

- $z = z_1 (1 + it)$ where t is a real parameter is a line through the point z_1 & perpendicular to oz_1 .
- The equation of a line passing through $z_1 & z_2$ can be expressed in the determinant form as

$$\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0.$$
 This is also the condition for three complex numbers to be collinear.

- Complex equation of a straight line through two given points $z_1 & z_2$ can be written as $z(\overline{z}_1 - \overline{z}_2) - \overline{z}(z_1 - z_2) + (z_1\overline{z}_2 - \overline{z}_1z_2) = 0$, which on manipulating takes the form as $\overline{\alpha}z + \alpha\overline{z} + r = 0$

$$|z-z_0| = \rho$$
 or $z\overline{z} - z_0\overline{z} - \overline{z}_0z + \overline{z}_0z_0 - \rho^2 = 0$ which is of the form

The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is:

(i)
$$\arg \frac{z - z_2}{z - z_1} = \pm \frac{\pi}{2}$$
 or $(z - z_1)(\overline{z} - \overline{z}_2) + (z - z_2)(\overline{z} - \overline{z}_1) = 0$

Condition for four given points z_1 , z_2 , z_3 & z_4 to be concyclic is, the number (\mathbf{J})

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

 $\frac{z_3-z_1}{z_1}$. $\frac{z_4-z_2}{z_1}$ is real. Hence the equation of a circle through 3 non collinear points $z_1, z_2 \& z_3$ can be

taken as
$$\frac{\overline{z_3 - z_2}}{(z - z_1)(z_3 - z_2)} \text{ is real. There the equation of a circle through 3 horizonthead taken as } \frac{(z - z_2)(z_3 - z_1)}{(z - z_1)(z_3 - z_2)} \text{ is real.} \Rightarrow \frac{(z - z_2)(z_3 - z_1)}{(z - z_1)(z_3 - z_2)} = \frac{(\overline{z} - \overline{z}_2)(\overline{z}_3 - \overline{z}_1)}{(\overline{z} - \overline{z}_1)(\overline{z}_3 - \overline{z}_2)}$$

Get Solution of These Packages & Learn by Video $\frac{z_3-z_1}{z_3-z_2}.\frac{z_4-z_2}{z_4-z_1} \text{ is real. Hence the equation of a circle } \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ taken as } \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ taken as } \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ taken as } \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ taken as } \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_2)}{(z-z_1)(z_3-z_2)} \text{ taken as } \frac{(z-z_2)(z_3-z_2)}{(z-z_1)(z_3-z_2)} \text{ is real} \Rightarrow \frac{(z-z_2)(z_3-z_2)}{(z-z_1)(z_3-z_2)} \text{ to since the themopoints on the star is the themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1-\alpha z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1-\alpha z_1+\alpha z_1+r} \text{ themopoints of the straight line } \frac{z}{z_1-\alpha z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1-\alpha z_1+\alpha z_1+\alpha z_2+r} \text{ themopoints of the straight line } \frac{z}{z_1-\alpha z_1+\alpha z_2+r} \text{ themopoints of themopoints represents a set of positive real numbers given } \frac{z}{z_1-\alpha z_1+\alpha z_2+z} \text{ themopoints represents a set of positive real numbers given } \frac{z}{z_1-z_1-z_1+\alpha z_2+z} \text{ themopoints represents a set of positive real numbers given } \frac{z}{z_1-z_1-z_1+\alpha z_1+\alpha z_$ Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers $z_1 \& z_2$ will be the reflection points for the straight line $\overline{\alpha} z + \alpha \overline{z} + r = 0$ if and only if; $\overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$, where r is

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if:

(i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ^2 . Note that the two points $z_1 & z_2$ will be the inverse points w.r.t. the circle

 $z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$ if and only if $z_1\overline{z}_2+\overline{\alpha}z_1+\alpha\overline{z}_2+r=0$.

PTOLEMY'S THEOREM: It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of its opposite sides. i.e. $|z_1-z_3| |z_2-z_4| = |z_1-z_2| |z_3-z_4| + |z_1-z_4| |z_2-z_3|$. **LOGARITHM OF A COMPLEX QUANTITY:**

i)
$$Log_e(\alpha+i\ \beta) = \ \frac{1}{2} Log_e(\alpha^2+\beta^2) + i \Bigg(2n\pi + tan^{-1}\frac{\beta}{\alpha} \Bigg) \quad \text{where} \ \ n \in I.$$

 i^i represents a set of positive real numbers given by $e^{-\left(2n\pi + \frac{\pi}{2}\right)}$, $n \in I$.

VERY ELEMENTARY EXERCISE

(a)
$$\left(\frac{1+2i}{2+i}\right)^2$$
 (b) $-i(9+6i)(2-i)^{-1}$ (c) $\left(\frac{4i^3-i}{2i+1}\right)^2$ (d) $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$ (e) $\frac{(2+i)^2}{2-i} - \frac{(2-i)^2}{2+i}$ Given that $x, y \in \mathbb{R}$, solve: (a) $(x+2y)+i(2x-3y)=5-4i$ (b) $(x+iy)+(7-5i)=9+4i$ (c) $x^2-y^2-i(2x+y)=2i$ (d) $(2+3i)x^2-(3-2i)y=2x-3y+5i$ (e) $4x^2+3xy+(2xy-3x^2)i=4y^2-(x^2/2)+(3xy-2y^2)i$ Find the source root of x (a) x^2+40i (b) x^2+40i (c) x^2+40i

- Find the square root of: (a) 9 + 40i (b) -11 60i (a) If $f(x) = x^4 + 9x^3 + 35x^2 x + 4$, find f(-5 + 4i)
- - If $g(x) = x^4 x^3 + x^2 + 3x 5$, find g(2 + 3i)
- Among the complex numbers z satisfying the condition $|z + 3 \sqrt{3}i| = \sqrt{3}$, find the number having the
 - Solve the following equations over C and express the result in the form a + ib, $a, b \in R$.
- (b) $2(1+i)x^2-4(2-i)x-5-3i=0$ Locate the points representing the complex number z on the Argand plane:

(a)
$$|z+1-2i| = \sqrt{7}$$
; (b) $|z-1|^2 + |z+1|^2 = 4$; (c) $\left|\frac{z-3}{z+3}\right| = 3$; (d) $|z-3| = |z-6|$

If a & b are real numbers between 0 & 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ & $z_3 = 0$ form an

(ii) $-2 (\cos 30^{\circ} + i \sin 30^{\circ})$

- For what real values of x & y are the numbers $-3 + ix^2y & x^2 + y + 4i$ conjugate complex?
- Find the modulus, argument and the principal argument of the complex numbers. (iii) $\frac{2+i}{4i+(1+i)^2}$
- If $(x + iy)^{1/3} = a + bi$; prove that $4(a^2 b^2) = \frac{x}{a} + \frac{y}{b}$.
- (b) Let z_1, z_2, z_3 be the complex numbers such that $z_1 + z_2 + z_3 = z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$. Prove that $|z_1| = |z_2| = |z_3|$.

 Q.13 Let z be a complex number such that $z \in c \setminus R$ and $\frac{1 + z + z^2}{1 z + z^2} \in R$, then prove that |z| = 1.

 Q.14 Prove the identity, $|1 z_1 \overline{z}_2|^2 |z_1 z_2|^2 = (1 |z_1|^2)(1 |z_2|^2)$

- For any two complex numbers, prove that $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2[|z_1|^2 + |z_2|^2]$. Also give the geometrical interpretation of this identity.
- Find all non-zero complex numbers Z satisfying $\overline{Z} = i Z^2$. (a)
 - If the complex numbers z_1, z_2, \dots, z_n lie on the unit circle |z| = 1 then show that $|z_1 + z_2 + \dots, z_n| = |z_1^{-1} + z_2^{-1} + \dots, z_n^{-1}|$. (b)
- Find the Cartesian equation of the locus of 'z' in the complex plane satisfying, |z-4|+|z+4|=16.
- If ω is an imaginary cube root of unity then prove that :
 - (a) $(1 + \omega \omega^2)^3 (1 \omega + \omega^2)^3 = 0$
- (b) $(1 \omega + \omega^2)^5 + (1 + \omega \omega^2)^5 = 32$

page 18 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

- (c) If ω is the cube root of unity, Find the value of, $(1 + 5\omega^2 + \omega^4)(1 + 5\omega^4 + \omega^2)(5\omega^3 + \omega + \omega^2)$.
- If ω is a cube root of unity, prove that; (i) $(1 + \omega \omega^2)^3 (1 \omega + \omega^2)^3$
- (iii) $(1 \omega) (1 \omega^2) (1 \omega^4) (1 \omega^8) = 9$
- (ii) $\frac{a + b\omega}{c + a\omega + b\omega^2} = \omega$ If x = a + b; $y = a\omega + b\omega^2$; $z = a\omega^2 + b\omega$, show that (i) $xvz = a^3 + b^3$ (ii) $x^2 + y^2 + z^2 = 6ab$ (iii) $x^3 + y^3 + z^3 = 3$ ($a^3 + b^3$)
- If $(w \ne 1)$ is a cube root of unity then |1-i|-i+w-1(A) 0(B) 1 (D) w
- Q.22(a) $(1 + w)^7 = A + Bw$ where w is the imaginary cube root of a unity and A, B \in R, find the ordered pair
 - (b) The value of the expression; 1. $(2 - w) (2 - w^2) + 2$. $(3 - w) (3 - w^2) + \dots + (n - 1)$. $(n - w) (n - w^2)$, where w is an imaginary cube root of unity is ____
- If $n \in \mathbb{N}$, prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1}$. $\cos \frac{n\pi}{4}$
- Show that the sum $\sum_{k=1}^{2n} \left(\sin \frac{2\pi k}{2n+1} i \cos \frac{2\pi k}{2n+1} \right)$ simplifies to a pure imaginary number.
- If $x = \cos \theta + i \sin \theta & 1 + \sqrt{1 a^2} = na$, prove that $1 + a \cos \theta = \frac{a}{2n} (1 + nx) (1 + a \cos \theta)$ Q.25
- The number t is real and not an integral multiple of $\pi/2$. The complex number x_1 and x_2 are the roots of Q.26 the equation, $\tan^2(t) \cdot x^2 + \tan(t) \cdot x + 1 = 0$

Show that $(x_1)^n + (x_2)^n = 2 |\cos x|$

- Simplify and express the result in the form of a + bi:
 - (a) -i (9 + 6 i) (2 i)⁻¹
- (c) $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$

- (d) $\frac{(2+i)^2}{2-i} \frac{(2-i)^2}{2+i}$ (e) $\sqrt{i} + \sqrt{-i}$ Find the modulus, argument and the principal argument of the complex numbers.
 - (i) $z = 1 + \cos\left(\frac{10\pi}{9}\right) + i\sin\left(\frac{10\pi}{9}\right)$
- (ii) $(\tan 1 i)^2$
- (iii) $z = \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} \sqrt{5-12i}}$
- (iv) $\frac{i-1}{i\left(1-\cos\frac{2\pi}{5}\right)+\sin\frac{2\pi}{5}}$
- Given that $x, y \in R$, solve:
 - (a) (x + 2y) + i(2x 3y) = 5 4i
- (b) $\frac{x}{1+2i} + \frac{y}{3+2i} = \frac{5+6i}{8i-1}$ (d) $(2+3i) x^2 (3-2i) y = 2x 3y + 5i$

- (c) $x^2 y^2 i(2x + y) = 2i$
- (e) $4x^2 + 3xy + (2xy 3x^2)i = 4y^2 (x^2/2) + (3xy 2y^2)i$
- Q.4(a) Let Z is complex satisfying the equation, $z^2 (3+i)z + m + 2i = 0$, where $m \in \mathbb{R}$.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Suppose the equation has a real root, then find the value of m.

- (b) a, b, c are real numbers in the polynomial, $P(Z) = 2Z^4 + aZ^3 + bZ^2 + cZ + 3$ If two roots of the equation P(Z) = 0 are 2 and i, then find the value of 'a'.

(a) is solve the following for
$$z = (a) z^2 - (3-2i)z = (5i-5)$$
 (b) $|z| + z = 2 + i$

- - (c) Let $z_1 = 10 + 6i$ & $z_2 = 4 + 6i$. If z is any complex number such that the argument of, $\frac{z z_1}{z z_2}$ is $\frac{\pi}{4}$, then

$$\left[1 + \left(\frac{1+i}{2}\right)\right] \left[1 + \left(\frac{1+i}{2}\right)^2\right] \left[1 + \left(\frac{1+i}{2}\right)^{2^2}\right] \dots \left[1 + \left(\frac{1+i}{2}\right)^{2^n}\right] \text{ is equal to } \left(1 - \frac{1}{2^{2^n}}\right) \ (1+i) \quad \text{where } n \geq 2 \ .$$

- - Show that Z is divisible by, z + b + i. (ii) Find all complex numbers z for which Z = 0.
 - Find all purely imaginary numbers a & b when z = 1 + i and Z is a real number.
- - Arg $(z a) = \pi/3$ where a = 3 + 4i.
- Prove that the complex numbers z_1 and z_2 and the origin form an isosceles triangle with vertical angle
- Get Solution of These Packages & Learn by Video Tutorials on we Suppose the equation has a real root, then find the value of m.

 (b) a, b, c are real numbers in the polynomial, $P(Z) = 2Z^4 + aZ^3 + bZ^2 + c$. If two roots of the equation P(Z) = 0 are 2 and i, then find the value of x = 2.5, and x = 2.5. Find the real values of $x \le y$ for which $z_1 = 9y^2 4 10$ ix and $z_2 = 8y^2 20$ i are conjugate complex of each other.

 (b) Find the value of $x^4 x^3 + x^2 + 3x 5$ if x = 2 + 3i.

 (c) Find the value of $x^4 x^3 + x^2 + 3x 5$ if x = 2 + 3i.

 (d) Find the value of $x^4 x^3 + x^2 + 3x 5$ if x = 2 + 3i.

 (e) Let $z_1 = 10 + 6i$ & $z_2 = 4 + 6i$. If z is any complex number such that the argument $|z 7 9i| = 3\sqrt{2}$. Show that the product, |z| = |z| = |z| = |z| = |z| = |z|Q. P. Let z = |z| = |z| = |z| = |z| = |z|. Show that the product, |z| = |z| = |z| = |z| = |z|Q. P. Let z = |z| = |z| = |z|. Show that z = |z| = |z| is equal to z = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. Show that z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find all complex z = |z| = |z| = |z|. The find z = |z| = |z| = |z|. The find z = |z| = |z| = |z|. The find all z = |z| = |z| = |z|. The find z = |z| = |z| = |z|. The find z = |z| = |z| is z = |z| = |z| =P is a point on the Aragand diagram. On the circle with OP as diameter two points Q & R are taken such that $\angle POQ = \angle QOR = \theta$. If 'O' is the origin & P, Q & R are represented by the complex numbers
 - Let z_1, z_2, z_3 are three pair wise distinct complex numbers and t_1, t_2, t_3 are non-negative real numbers such that $t_1 + t_2 + t_3 = 1$. Prove that the complex number $z = t_1 z_1 + t_2 z_2 + t_3 z_3$ lies inside a triangle with
 - If a CiS α , b CiS β , c CiS γ represent three distinct collinear points in an Argand's plane, then prove

 - (a CiS α) $\sqrt{b^2 + c^2 2bc\cos(\beta \gamma)} \pm (b \text{ CiS } \beta) \sqrt{a^2 + c^2 2ac\cos(\alpha \gamma)}$

 - Let $A = z_1$; $B = z_2$; $C = z_3$ are three complex numbers denoting the vertices of an acute angled triangle.

$$\mathbf{z}_1\,\overline{\mathbf{z}}_2\,+\,\overline{\mathbf{z}}_1\,\mathbf{z}_2\,{=}\,\mathbf{z}_2\,\overline{\mathbf{z}}_3\,+\,\overline{\mathbf{z}}_2\,\mathbf{z}_3\,{=}\,\mathbf{z}_3\,\overline{\mathbf{z}}_1\,+\,\overline{\mathbf{z}}_3\,\mathbf{z}_1$$

- hence show that the \triangle ABC is a right angled triangle \Leftrightarrow $z_1 \overline{z}_2 + \overline{z}_1 z_2 = z_2 \overline{z}_3 + \overline{z}_2 z_3 = z_3 \overline{z}_1 + \overline{z}_3 z_1 = 0$
- If the complex number P(w) lies on the standard unit circle in an Argand's plane and $z = (aw+b)(w-c)^{-1}$ then, find the locus of z and interpret it. Given a, b, c are real.

$$\begin{vmatrix} 4i & 8+i & 4+3i \\ -8+i & 16i & i \\ -4+Ki & i & 8i \end{vmatrix}$$
 has purely imaginary value

(b) If A, B and C are the angles of a triangle

page 20 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

$$D = \left| \begin{array}{ccc} e^{-2iA} & e^{iC} & e^{iB} \\ e^{iC} & e^{-2iB} & e^{iA} \\ e^{iB} & e^{iA} & e^{-2iC} \end{array} \right| \ \, \text{where} \, \, i = \sqrt{-1} \quad \, \text{then find the value of } D.$$

- Q.19 If w is an imaginary cube root of unity then prove that:
 - (a) $(1 w + w^2)(1 w^2 + w^4)(1 w^4 + w^8)$ to 2n factors = 2^{2n} .
 - (b) If w is a complex cube root of unity, find the value of $(1+w)(1+w^2)(1+w^4)(1+w^8)$ to n factors.
- Q.20 Prove that $\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right)$. Hence deduce that $\left(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5}\right)^5+i\left(1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5}\right)^5=0$
- Q.21 If $\cos(\alpha \beta) + \cos(\beta \gamma) + \cos(\gamma \alpha) = -3/2$ then prove that :
- (a) $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$ (b) $\Sigma \sin (\alpha + \beta) = 0 = \Sigma \cos (\alpha + \beta)$ (c) $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$
- (d) $\Sigma \sin 3\alpha = 3 \sin (\alpha + \beta + \gamma)$ (e) $\Sigma \cos 3\alpha = 3 \cos (\alpha + \beta + \gamma)$
- (f) $\cos^3(\theta + \alpha) + \cos^3(\theta + \beta) + \cos^3(\theta + \gamma) = 3\cos(\theta + \alpha) \cdot \cos(\theta + \beta) \cdot \cos(\theta + \gamma)$ where $\theta \in \mathbb{R}$.
- Q.22 Resolve $Z^5 + 1$ into linear & quadratic factors with real coefficients. Deduce that : $4 \cdot \sin \frac{\pi}{10} \cdot \cos \frac{\pi}{5} = 1$.
- Q.23 If $x = 1 + i\sqrt{3}$; $y = 1 i\sqrt{3}$ & z = 2, then prove that $x^p + y^p = z^p$ for every prime p > 3.
- Q.24 If the expression $z^5 32$ can be factorised into linear and quadratic factors over real coefficients as $(z^5 32) = (z 2)(z^2 pz + 4)(z^2 qz + 4)$ then find the value of $(p^2 + 2p)$.
- Q.25(a) Let z = x + iy be a complex number, where x and y are real numbers. Let A and B be the sets defined by $A = \{z \mid |z| \le 2\}$ and $B = \{z \mid (1-i)z + (1+i)\overline{z} \ge 4\}$. Find the area of the region $A \cap B$.
 - (b) For all real numbers x, let the mapping $f(x) = \frac{1}{x-i}$, where $i = \sqrt{-1}$. If there exist real number a, b, c and d for which f(a), f(b), f(c) and f(d) form a square on the complex plane. Find the area of the square.

EXERCISE-2

Q.1 If $\begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix} = 0$; where p, q, r are the moduli of non-zero complex numbers u, v, w respectively,

prove that,
$$\arg \frac{w}{v} = \arg \left(\frac{w-u}{v-u}\right)^2$$

- The equation $x^3 = 9 + 46i$ where $i = \sqrt{-1}$ has a solution of the form a + bi where a and b are integers. Find the value of $(a^3 + b^3)$.
- Show that the locus formed by z in the equation $z^3 + iz = 1$ never crosses the co-ordinate axes in the

Argand's plane. Further show that
$$|z| = \sqrt{\frac{-Im(z)}{2\,Re(z)\,Im(z) + 1}}$$

- Q.4 If ω is the fifth root of 2 and $x = \omega + \omega^2$, prove that $x^5 = 10x^2 + 10x + 6$.
- Q.5 Prove that, with regard to the quadratic equation $z^2 + (p + ip')z + q + iq' = 0$ where p, p', q, q' are all real.
 - (i) if the equation has one real root then $q'^2 pp' q' + qp'^2 = 0$.
 - (ii) if the equation has two equal roots then $p^2 p'^2 = 4q \& pp' = 2q'$.

State whether these equal roots are real or complex.

- If the equation $(z + 1)^7 + z^7 = 0$ has roots $z_1, z_2, ..., z_7$, find the value of
 - (a) $\sum_{r=1}^{7} \text{Re}(Z_r) \quad \text{and} \quad \text{(b)} \quad \sum_{r=1}^{7} \text{Im}(Z_r)$
- Q.7 Find the roots of the equation $Z^n = (Z + 1)^n$ and show that the points which represent them are collinear on the complex plane. Hence show that these roots are also the roots of the equation

$$\left(2\sin\frac{m\pi}{n}\right)^2\overline{Z}^2 + \left(2\sin\frac{m\pi}{n}\right)^2\overline{Z} + 1 = 0.$$

Q.8 Dividing f(z) by z-i, we get the remainder i and dividing it by z+i, we get the remainder

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

1 + i. Find the remainder upon the division of f(z) by $z^2 + 1$.

$$|z_1 + z_2| \ge \frac{1}{2} (|z_1| + |z_2|) \frac{|z_1|}{|z_1|} + \frac{|z_2|}{|z_2|}$$

$$Z^{2m} + Z^{2m-1} + Z^{2m-2} + \dots + Z + 1 = 0 \text{ then prove that } \sum_{r=1}^{2m} \frac{1}{Z_r - 1} = -m$$

$$\text{(a) } C_0 + C_4 + C_8 + \ldots = \frac{1}{2} \bigg[2^{n-1} + 2^{n/2} \, \cos \frac{n \, \pi}{4} \bigg] \quad \text{(b) } C_1 + C_5 + C_9 + \ldots = \frac{1}{2} \bigg[2^{n-1} + 2^{n/2} \, \sin \frac{n \, \pi}{4} \bigg]$$

(c)
$$C_2 + C_6 + C_{10} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \cos \frac{n\pi}{4} \right]$$
 (d) $C_3 + C_7 + C_{11} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \sin \frac{n\pi}{4} \right]$

(e)
$$C_0 + C_3 + C_6 + C_9 + \dots = \frac{1}{3} \left[2^n + 2 \cos \frac{n \pi}{3} \right]$$

Q.12 Let z_1, z_2, z_3, z_4 be the vertices A, B, C, D respectively of a square on the Argand diagram taken in anticlockwise direction then prove that:

(i)
$$2z_2 = (1+i)z_1 + (1-i)z_3$$

$$2z_4 = (1-i)z_1 + (1+i)z_2$$

(a)
$$\cos x + {}^{n}C_{1}\cos 2x + {}^{n}C_{2}\cos 3x + \dots + {}^{n}C_{n}\cos (n+1) x = 2^{n} \cdot \cos^{n} \frac{x}{2} \cdot \cos \left(\frac{n+2}{2}\right) x$$

(b)
$$\sin x + {}^{n}C_{1} \sin 2x + {}^{n}C_{2} \sin 3x + \dots + {}^{n}C_{n} \sin (n+1) x = 2^{n} \cdot \cos^{n} \frac{x}{2} \cdot \sin \left(\frac{n+2}{2}\right) x$$

$$(c) \ \cos\left(\frac{2\pi}{2n+1}\right) + \cos\left(\frac{4\pi}{2n+1}\right) + \cos\left(\frac{6\pi}{2n+1}\right) + \ldots + \cos\left(\frac{2n\pi}{2n+1}\right) = -\frac{1}{2} \ \text{When} \ n \in N.$$

The points A, B, C depict the complex numbers z_1 , z_2 , z_3 respectively on a complex plane & the angle

$$(z_2 - z_3)^2 = 4(z_3 - z_1)(z_1 - z_2)\sin^2\frac{\alpha}{2}$$
.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.co. 1+i. Find the remainder upon the division of f(z) by z^2+1 . Let z_1 & z_2 be any two arbitrary complex numbers then prove that: $|z_1+z_2| \geq \frac{1}{2}(|z_1|+|z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$ Let z_1 & z_2 be any two arbitrary complex numbers such prove that: $|z_1+z_2| \geq \frac{1}{2}(|z_1|+|z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$ The points of the equation $z^{2m} + z^{2m-1} + z^{2m-1} + z^{2m-2} + \dots + z^{2m-1} + z^{2m-1} + z^{2m-2} + \dots + z^{2m-1} + z^{2m-1} + z^{2m-2} + z^{2m-2} + z^{2m-1} + z^{$

Let a, b, c be distinct complex numbers such that $\frac{a}{1-b} = \frac{b}{1-c} = \frac{c}{1-a} = k$. Find the value of k.

$$|z - \alpha|^2 + |z - \beta|^2 = k.$$

Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle.

- C is the complex number. $f: C \to R$ is defined by $f(z) = |z^3 z + 2|$. What is the maximum value of f on
- Let $f(x) = \log_{\cos 3x}(\cos 2i \, x)$ if $x \neq 0$ and f(0) = K (where $i = \sqrt{-1}$) is continuous at x = 0 then find
- $z_1 \in third$ quadrant; $z_2 \in second$ quadrant in the argand's plane then, show that

page 22 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

$$\arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$$

- Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $\arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $\arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $\arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $3 + \sin^2\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $3 + \sin^2\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $4 + \cos^2\left(\frac{b^2}{4ac}\right)^{1/2}$ $4 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $4 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $6 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $6 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$ $6 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right)^{1/2}$ $6 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right)$ $6 + \cos^2\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2}{2ac}\right) = 2\cos^{-1}\left(\frac{b^2$

Q.9(a) The complex numbers z_1 , z_2 and z_3 satisfying are the vertices of a triangle which is

(A) of area zero (B) right-angled isosceles (C) equilateral (D) obtuse – angled isosceles (b) Let z_1 and z_2 be nth roots of unity which subtend a right angle at the origin. Then n must be of the form

[JEE 2001 (Scr) 1 + 1 out of 35]

[REE 2000, 3 out of 100]

page 23 of 38

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

- Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuh (b) Let z_1 and z_2 be nth roots of unity which subtend a right angle at the origin. Then n must be α (D) 4k (D) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k (D) 4k + 1 (D) 4k +

- (b) For all complex numbers z_1 , z_2 satisfying $|z_1| = 12$ and $|z_2 3 4i| = 5$, the minimum value of

[JEE 2002 (Scr) 3+3]

- Show that either $1 + \alpha + \alpha^2 + \dots + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + \dots + \alpha^{q-1} = 0$, but not both together. [JEE 2002, (5)]
- Q.12(a) If z_1 and z_2 are two complex numbers such that $|z_1| < 1 < |z_2|$ then prove that $\left| \frac{1 z_1 \overline{z}_2}{z_1 z_2} \right| < 1$.
 - (b) Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$ where $|a_r| < 2$.

Q.13(a) ω is an imaginary cube root of unity. If $(1+\omega^2)^m = (1+\omega^4)^m$, then least positive integral value of m is

[JEE 2004 (Scr)]

[JEE 2004, 2 out of 60]

- (b) If a, b, c are integers not all equal and w is a cube root of unity $(w \ne 1)$, then the minimum value of

- [JEE 2005 (Scr), 3 + 3]
- (c) If one of the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}i$. Find the other
- If $w = \alpha + i\beta$ where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\frac{w \overline{w}z}{1 z}$ is purely real, then the set of

- (D) $\{z : |z| = 1, z \neq 1\}$ [JEE 2006, 3]

- (a) $\frac{7}{25} + \frac{24}{25}i$; (b) $\frac{21}{5} \frac{12}{5}i$; (c) 3 + 4i; (d) $-\frac{8}{29} + 0i$; (e) $\frac{22}{5}i$
- (a) x = 1, y = 2; (b) (2, 9); (c) (-2, 2) or $\left(-\frac{2}{3}, -\frac{2}{3}\right)$; (d) $(1, 1) \left(0, \frac{5}{2}\right)$ (e) $x = K, y = \frac{3K}{2}, K \in \mathbb{R}$ **Q.2**

Q.3 (a)
$$\pm (5+4i)$$
; (b) $\pm (5-6i)$ (c) $\pm 5(1+i)$

Q.4 (a)
$$-160$$
; (b) $-(77+108 i)$

$$\frac{1}{2}$$
 Q.5 $-\frac{3}{2} + \frac{3\sqrt{3}}{2}$ i

Q.6 (a)
$$-i$$
, $-2i$ (b) $\frac{3-5i}{2}$ or $-\frac{1+i}{2}$

(a) on a circle of radius $\sqrt{7}$ with centre (-1, 2); (b) on a unit circle with centre at origin

Q.8
$$a = b = 2 - \sqrt{3}$$
;

Q.9
$$x = 1$$
, $y = -4$ or $x = -1$, $y = -4$

(i) Modulus = 6, Arg = $2 k \pi + \frac{5\pi}{18}$ (K \in I), Principal Arg = $\frac{5\pi}{18}$ (K \in I)

(iii) Modulus = $\frac{\sqrt{5}}{6}$, Arg = $2 \text{ k} \pi - \tan^{-1} 2$ (K \in I), Principal Arg = $-\tan^{-1} 2$

Q.17
$$\frac{x^2}{64} + \frac{y^2}{48} = 1$$
; **Q.18** (c) 64

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

Q.1 (a) $\frac{21}{5} - \frac{12}{5}i$ (b) 3 + 4i (c) $-\frac{8}{29} + 0i$ (d) $\frac{22}{5}i$ (e) $\pm \sqrt{2} + 0i$ or $0 \pm \sqrt{2}i$

Q.2 (i) Principal Arg $z = -\frac{4\pi}{9}$; $|z| = 2\cos\frac{4\pi}{9}$; Arg $z = 2k\pi - \frac{4\pi}{9}$ $k \in I$ (ii) Modulus = $\sec^2 1$, Arg = $2n\pi + (2-\pi)$, Principal Arg = $(2-\pi)$

(iii) Principal value of Agr $z = -\frac{\pi}{2} \& |z| = \frac{3}{2}$; Principal value of Arg $z = \frac{\pi}{2} \& |z| = \frac{2}{3}$

(iv) Modulus = $\frac{1}{\sqrt{2}}$ cos ec $\frac{\pi}{5}$, Arg z = $2n\pi + \frac{11\pi}{20}$, Principal Arg = $\frac{11\pi}{20}$

Q.3(a) x = 1, y = 2; **(b)** x = 1 & y = 2; **(c)** (-2, 2) or $\left(-\frac{2}{3}, -\frac{2}{3}\right);$ **(d)** $(1, 1) \left(0, \frac{5}{2}\right);$ **(e)** $x = K, y = \frac{3K}{2}K \in \mathbb{R}$

Q.5 (a) [(-2, 2); (-2, -2)] (b) -(77+108i)

(ii) z = -(b+i); -2i, -a (iii) $\left(-\frac{2ti}{3t+5}, ti\right)$ where $t \in R - \left\{-\frac{5}{3}\right\}$

(a) The region between the co encentric circles with centre at (0,2) & radii 1 & 3 units

(c) semi circle (in the 1st & 4th quadrant) $x^2 + y^2 = 1$ (d) a ray emanating from the point (3+4i) directed away from the origin & having equation $\sqrt{3}x - y + 4 - 3\sqrt{3} = 0$

Q.17 $(1-c^2) |z|^2 - 2(a+bc) (Re z) + a^2 - b^2 = 0$

Q.19 (b) one if n is even; $-w^2$ if n is odd

35 **Q.6** (a) $-\frac{7}{2}$, (b) zero **Q.8** $\frac{iz}{2} + \frac{1}{2} + i$ **Q.18** $-\omega \text{ or } -\omega^2$

 $k > \frac{1}{2} |\alpha - \beta|^2$ Q.20 | f(z) | is maximum when z = ω , where ω is the cube root unity and | f(z) | = $\sqrt{13}$

Q.21 $K = -\frac{4}{9}$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com required set is constituted by the angles without their boundaries, whose sides are the straight lines

$$y = (\sqrt{2} - 1)$$
 x and $y + (\sqrt{2} + 1)$ x = 0 containing the x – axis
Q.24 198 **Q.25** 51

ERCISE-3

$$Q.1 48(1-i)$$
 $Q.3 (a)$

$$\begin{array}{c} \text{EXERCISE-3} \\ \text{Q.24} & 198 \\ \text{Q.25} & 51 \\ \end{array} \\ \text{Q.14} & 198 \\ \text{Q.25} & 51 \\ \end{array} \\ \text{Q.26} & \text{Q.15} & \text{$$

Q.6
$$7 A_0 + 7 A_7 x^7 + 7 A_{14} x^{14}$$
 Q.7 (a) A (b) A **Q.8** $z^2 + z + \frac{\sin^2 n \theta}{\sin^2 \theta} = 0$, where $\theta = \frac{2 \pi}{2n+1}$

Q.10
$$\pm 1 + i\sqrt{3}, \frac{(\pm\sqrt{3} + i)}{\sqrt{2}}, \sqrt{2}i$$

Q.13 (a) D; (b) Centre
$$\equiv \frac{k^2\beta - \alpha}{k^2 - 1}$$
, Radius $= \frac{1}{(k^2 - 1)} \sqrt{|\alpha - k^2\beta|^2 - (k^2 \cdot |\beta|^2 - |\alpha|^2)(k^2 - 1)}$

Q.14 (a) A, (b) B, (c)
$$z_2 = -\sqrt{3}i$$
; $z_3 = (1-\sqrt{3})+i$; $z_4 = (1+\sqrt{3})-i$

Part: (A) Only one correct option

 $\frac{z-1}{z+1}$ (where $z \neq -1$), the Re(ω) is

[IIT - 2003, 3]

(B)
$$-\frac{1}{|z+1|^2}$$

(C)
$$\frac{z}{z+1} \cdot \frac{1}{|z+1|^2}$$

(D)
$$\frac{\sqrt{2}}{|z+1|^2}$$

The locus of z which lies in shaded region (excluding the boundaries) is best represented by

[IIT - 2005, 3]

(A) z:
$$|z + 1| > 2$$
 and $|arg(z + 1)| < \pi/4$
(C) z: $|z + 1| < 2$ and $|arg(z + 1)| < \pi/2$

(B)
$$z : |z - 1| > 2$$
 and $|arg(z - 1)| < \pi/4$
(D) $z : |z - 1| < 2$ and $|arg(z + 1)| < \pi/2$

If $w = \alpha$, + $i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that is purely real, then the set of values of z is [IIT - 2006, (3, -1)]

(A) $\{z : |z| = 1\}$

(B)
$$\{z : z = \overline{z}\}$$

(C)
$$\{z : z \neq 1\}$$

(D)
$$\{z : |z| = 1, z \neq 1\}$$

If $(\sqrt{3} + i)^{100} = 2^{99}$ (a + ib), then b is equal to

(A)
$$\sqrt{3}$$

(B)
$$\sqrt{2}$$

If $Re\left(\frac{z-8i}{z+6}\right) = 0$, then z lies on the curve

(A)
$$x^2 + y^2 + 6x - 8y = 0$$
 (B) $4x - 3y + 24 = 0$

If n_1 , n_2 are positive integers then: $(1+i)^{n_1} + (1+i^3)^{n_1} + (1-i^5)^{n_2} + (1-i^7)^{n_2}$ is a real number if and only if (B) $n_1 + 1 = n_2$

(D) n, n, are any two positive integers

The three vertices of a triangle are represented by the complex numbers, 0, z, and z₂. If the triangle is

equilateral, then
(A)
$$z_1^2 - z_2^2 = z_1 z_2$$

(B)
$$z_2^2 - z_1^2 = z_1 z_2$$

(C)
$$Z_1^2 + Z_2^2 = Z_1 Z_2$$

(D)
$$z^2 + z^2 + zz = 0$$

8.

(A) 8

(C) 12

(D) none of these

(D) none of these

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa.l Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

```
If z = x + iy and z^{1/3} = a - ib then \frac{x}{a} - \frac{y}{b} = k\left(a^2 - b^2\right) where k = a - ib
                                                                                                                       (D) 4
```

$$\left[\frac{-1+i\sqrt{3}}{2}\right]^6 + \left[\frac{-1-i\sqrt{3}}{2}\right]^6 + \left[\frac{-1+i\sqrt{3}}{2}\right]^5 + \left[\frac{-1-i\sqrt{3}}{2}\right]^5 \text{ is equal to :}$$
(A) 1 (B) -1 (C) 2 (D) none

Expressed in the form $r(\cos \theta + i \sin \theta)$, -2 + 2i becomes:

(A)
$$2\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$$
 (B) $2\sqrt{2}\left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right]$

(C)
$$2\sqrt{2}\left[\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right]$$
 (D) $\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$

The number of solutions of the equation in z, $z\overline{z} - (3 + i)z - (3 - i)\overline{z} - 6 = 0$ is : (A) 0 (B) 1 (C) 2 (D) infini

If $|z| = \max\{|z - 1|, |z + 1|\}$ then

(A)
$$|z + \overline{z}| = \frac{1}{2}$$
 (B) $z + \overline{z} = 1$ (C) $|z + \overline{z}| = 1$ (D) none of these

If P, P' represent the complex number z, and its additive inverse respectively then the complex equation of the circle with PP' as a diameter is

(A)
$$\frac{z}{z_1} = \left(\frac{z_1}{z}\right)$$
 (B) $z\overline{z} + z_1\overline{z}_1 = 0$ (C) $z\overline{z}_1 + \overline{z}z_1 = 0$ (D) none of these

The points $z_1 = 3 + \sqrt{3}$ i and $z_2 = 2\sqrt{3} + 6$ i are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z₁ and z₂ is:

(A)
$$z = \frac{(3+2\sqrt{3})}{2} + \frac{\sqrt{3}+2}{2}i$$

(B) $z = 5 + 5i$
(C) $z = -1 - i$
(D) none

when simplified reduces to :

(A) zero (B)
$$2 \sin n \alpha$$
 (C) $2 \cos n \alpha$ (D) none

All roots of the equation, $(1 + z)^6 + z^6 = 0$:

lie on a unit circle with centre at the origin (B) lie on a unit circle with centre at (-1, 0) lie on the vertices of a regular polygon with centre at the origin (D) are collinear

Points z_1 & z_2 are adjacent vertices of a regular octagon. The vertex z_3 adjacent to z_2 ($z_3 \neq z_1$) is represented by:

(A)
$$z_2 + \frac{1}{\sqrt{2}} (1 \pm i) (z_1 + z_2)$$
 (B) $z_2 + \frac{1}{\sqrt{2}} (1 \pm i) (z_1 - z_2)$

(C)
$$z_2 + \frac{1}{\sqrt{2}} (1 \pm i) (z_2 - z_1)$$
 (D) none of these

If z = x + iy then the equation of a straight line Ax + By + C = 0 where A, B, $C \in R$, can be written on the complex plane in the form $\overline{a}z + a\overline{z} + 2C = 0$ where 'a' is equal to :

(A)
$$\frac{(A+iB)}{2}$$
 (B) $\frac{A-iB}{2}$ (C) $A+iB$ (D) none

The points of intersection of the two curves |z-3|=2 and |z|=2 in an argand plane are:

(A)
$$\frac{1}{2} \left(7 \pm i\sqrt{3} \right)$$
 (B) $\frac{1}{2} \left(3 \pm i\sqrt{7} \right)$ (C) $\frac{3}{2} \pm i\sqrt{\frac{7}{2}}$ (D) $\frac{7}{2} \pm i\sqrt{\frac{3}{2}}$

The equation of the radical axis of the two circles represented by the equations. |z-2|=3 and |z-2-3i|=4 on the complex plane is:

(A)
$$3iz - 3i\overline{z} - 2 = 0$$
 (B) $3iz - 3i\overline{z} + 2 = 0$ (C) $iz - i\overline{z} + 1 = 0$ (D) $2iz - 2i\overline{z} + 3 = 0$

 $e^{ip\theta}$ = 1 where Π denotes the continued product, then the most general value of θ is :

(A)
$$\frac{2n\pi}{r(r-1)}$$
 (B) $\frac{2n\pi}{r(r+1)}$ (C) $\frac{4n\pi}{r(r-1)}$ (D) $\frac{4n\pi}{r(r+1)}$

The set of values of $a \in R$ for which $x^2 + i(a - 1)x + 5 = 0$ will have a pair of conjugate imaginary roots is 24. (C) $|a| a^2 - 2a + 21 > 0$ (D) none of these (A) R (B) {1}

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com If $|z_1 - 1| < 1$, $|z_2 - 2| < 2$, $|z_3 - 3| < 3$ then $|z_1 + z_2 + z_3|$ (A) is less than 6 (B) is (C) is less than 12 (D) li 25.

(D) lies between 6 and 12

If z_1 , z_2 , z_3 ,, z_n lie on the circle |z| = 2, then the value of

27. If
$$z_1$$
 lies on $|z| = 1$ and z_2 lies on $|z| = 2$, then
(A) $3 \le |z_1 - 2z_2| \le 5$
(B) $1 \le |z_1 + z_2| \le 3$
(C) $|z_1 - 3z_2| > 5$
(D) $|z_2 - z_1| > 1$

 $\begin{array}{l} \text{(A) } 3 \leq |z_1-z_2| \leq 5 \\ \text{(C) } |z_1-3z_2| \geq 5 \\ \text{(D) } |z_1-z_2| \geq 1 \\ \text{If } z_1, z_2, z_3, z_4 \text{ are root of the equation } a_0z^4+z_1z^3+z_2z^2+z_3z+z_4=0, \text{ where } a_0, a_1, a_2, a_3 \text{ and } a_4 \text{ are real,} \\ \end{array}$

- \overline{z}_1 , \overline{z}_2 , \overline{z}_3 , \overline{z}_4 are also roots of the equation (B) z_1 is equal to at least one of \overline{z}_1 , \overline{z}_2 , \overline{z}_3 , \overline{z}_4
- $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are also roots of the equation (D) none of these
- If $a^3 + b^3 + 6$ abc = $8c^3 \& \omega$ is a cube root of unity then: (B) a, c, b are in H.P. (D) a + $b\omega^2 - 2c\omega = 0$
- The points z_1 , z_2 , z_3 on the complex plane are the vertices of an equilateral triangle if and only if : (A) $\Sigma (z_1 z_2) (z_2 z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2 (z_1 z_2 + z_2 z_3 + z_3 z_1)$ (C) $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ (D) $2(z_1^2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_1$

(B) $|\operatorname{amp} z_1 - \operatorname{amp}_2| = \pi$

is purely imaginary

- Given that x, y \in R, solve : $4x^2 + 3xy + (2xy 3x^2)i = 4y^2 (x^2/2) + (3xy 2x^2)i = 4y^2 (x^2/2) + (x^2/2)$
- If $\alpha \& \beta$ are any two complex numbers, prove that

$$\left|\alpha - \sqrt{\alpha^2 - \beta^2}\right| + \left|\alpha + \sqrt{\alpha^2 - \beta^2}\right| = \left|\alpha + \beta\right| + \left|\alpha - \beta\right|.$$

- If α , β are the numbers between 0 and 1, such that the points $z_1 = \alpha + i$, $z_2 = 1 + \beta i$ and $z_3 = 0$ form an
 - ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and 2 - i respectively, then find the complex number corresponding
 - Show that the sum of the pth powers of nth roots of unity:
 - is zero, when p is not a multiple of n. (b) is equal to n, when p is a multiple of n.
 - If $(1 + x)^n = p_0 + p_1 x + p_2 x^2 + p_3 x^3 + \dots$, then prove that :

(a)
$$p_0 - p_2 + p_4 - \dots = 2^{n/2} \cos \frac{n \pi}{4}$$
 (b) $p_1 - p_3 + p_5 - \dots = 2^{n/2} \sin \frac{n \pi}{4}$

Prove that,
$$\log_{e} \left(\frac{1}{1 - e^{i \theta}} \right) = \log_{e} \left(\frac{1}{2} \csc \frac{\theta}{2} \right) + i \left(\frac{\pi}{2} - \frac{\theta}{2} \right)$$

= A + i B, principal values only being considered, prove that

(a)
$$\tan \frac{1}{2} \pi A = \frac{B}{A}$$
 (b) $A^2 + B^2 = e^{-\pi B}$

- Prove that the roots of the equation, $(x 1)^n = x^n$ are $\frac{1}{2} \left(1 + i \cot \frac{r \pi}{r} \right)$, where
- - If $\cos{(\alpha \beta)} + \cos{(\beta \gamma)} + \cos{(\gamma \alpha)} = -3/2$ then prove that :
 - $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$ (b) $\Sigma \sin (\alpha + \beta) = 0 = \Sigma \cos (\alpha + \beta)$
 - $\Sigma \sin 3\alpha = 3 \sin (\alpha + \beta + \gamma)$ (d) $\Sigma \cos 3 \alpha = 3 \cos (\alpha + \beta + \gamma)$ (c)
 - $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$ (e)

 $\cos^3(\theta + \alpha) + \cos^3(\theta + \beta) + \cos^3(\theta + \gamma) = 3\cos(\theta + \alpha).\cos(\theta + \beta).\cos(\theta + \gamma)$ (f) where $\theta \in R$.

11. If α , β , γ are roots of $x^3 - 3x^2 + 3x + 7 = 0$ (and ω is imaginary cube root of unity), then find the value

of
$$\frac{\alpha-1}{\beta-1}$$
 + $\frac{\beta-1}{\gamma-1}$ + $\frac{\gamma-1}{\alpha-1}$

- Given that, |z-1| = 1, where 'z' is a point on the argand plane. Show that $\frac{z-2}{}$ = i tan (arg z).
- P is a point on the Argand diagram. On the circle with OP as diameter two points Q & R are taken such that $\angle POQ = \angle QOR = \theta$. If 'O' is the origin & P, Q & R are represented by the complex numbers Z_1 , Z_2 & Z_3 respectively, show that : $Z_2^2 \cos 2\theta = Z_1$, $Z_3 \cos^2 \theta$.
- Find an expression for tan 7θ in terms of tan θ , using complex numbers. By considering $\tan 7\theta = 0$, show that $x = \tan^2(3\pi/7)$ satisfies the cubic equation $x^3 - 21x^2 + 35x - 7 = 0$.
- If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ $(n \in N)$, prove that $C_2 + C_6 + C_{10} + \dots = \frac{1}{2} \left| 2^{n-1} 2^{n/2} \cos \frac{n \pi}{4} \right|$
- Prove that : $\cos\left(\frac{2\pi}{2n+1}\right) + \cos\left(\frac{4\pi}{2n+1}\right) + \cos\left(\frac{6\pi}{2n+1}\right) + \dots + \cos\left(\frac{2n\pi}{2n+1}\right) = -\frac{1}{2}$ When $n \in \mathbb{N}$. Show that all the roots of the equation $a_1z^3 + a_2z^2 + a_3z + a_4 = 3$, where $|a_i| \le 1$, i = 1, 2, 3, 4 lie outside the
- circle with centre origin and radius 2/3.
- Prove that $\sum_{k=0}^{\infty} (n-k) \cos \frac{2k\pi}{n} = -\frac{n}{2}$, where $n \ge 3$ is an integer
- Show that the equation $\frac{A_1^2}{x-a_1} + \frac{A_2^2}{x-a_2} + \dots + \frac{A_n^2}{x-a_n} = k$ has no imaginary root, given that :
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com a_1 , a_2 , a_3 a_n & A_1 , A_2 , A_3 A_n , k are all real numbers. Let z_1 , z_2 , z_3 be three distinct complex numbers satisfying, $1/2z_1 - 11/2 = 1/2z_2 - 11/2 = 1/2z_3 - 11/2$. Let A, B & C be the points represented in the Argand plane corresponding to z_1 , z_2 and z_3 resp. Prove that $z_1 + z_2 + z_3 = 3$ if and only if D ABC is an equilateral triangle.
 - Let α , β be fixed complex numbers and z is a variable complex number such that,

$$|z-\alpha|^2 + |z-\beta|^2 = k.$$

Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the

If 1, α_1 , α_2 , α_3 ,....., α_{n-1} are the n, nth roots of unity, then prove that

Hence prove that
$$\sin\frac{\pi}{n}$$
. $\sin\frac{2\pi}{n}$. $\sin\frac{3\pi}{n}$ $\sin\frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}$.

- Find the real values of the parameter 'a' for which at least one complex number z = x + iy satisfies both the equality |z - ai| = a + 4 and the inequality |z - 2| < 1.
- Prove that, with regard to the quadratic equation $z^2 + (p + ip')z + q + iq' = 0$; where p, p', q, q' are all
 - if the equation has one real root then $q'^2 pp' q' + qp'^2 = 0$. (a)
 - if the equation has two equal roots then $p^2 p'^2 = 4q \& pp' = 2q'$. State whether these equal roots are real or complex.
- The points A, B, C depict the complex numbers z_1, z_2, z_3 respectively on a complex plane & the angle

B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi - \alpha)$. Show that

$$(z_2 - z_3)^2 = 4 (z_3 - z_1) (z_1 - z_2) \sin^2 \frac{\alpha}{2}$$

- If z_1 , z_2 & z_3 are the affixes of three points A, B & C respectively and satisfy the condition $|z_1 - z_2| = |z_1| + |z_2|$ and $|(2 - i)z_1 + iz_3| = |z_1| + |(1 - i)z_1 + iz_3|$ then prove that \triangle ABC in a right angled.
- If 1, α_1 , α_2 , α_3 , α_4 be the roots of $x^5 1 = 0$, then prove that

$$\frac{\omega-\alpha_1}{\omega^2-\alpha_1}\cdot\frac{\omega-\alpha_2}{\omega^2-\alpha_2}\cdot\frac{\omega-\alpha_3}{\omega^2-\alpha_3}\cdot\frac{\omega-\alpha_4}{\omega^2-\alpha_4}=\omega.$$

If one the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}$ i. Find the other vertices of [IIT - 2005, 4]the square.

EXERCISE-4

Α	2.	С	3.	D	4.	Α

Α D 7. С 6. 8. Α

11. D 12. Α 13. В

D 15. D 16. Α 17. В

19. D 20. С 21. С

В 23. В 24. D 25. В

С 27. ABCD29. 28. AB

30. ACD 31. AC 10. AD

EXERCISE-5

1.
$$x = K, y = \frac{3K}{2} K \in R$$

 $2-\sqrt{3}$, $2-\sqrt{3}$

page 29 of 38

4.
$$3 - \frac{i}{2}$$
 or $1 - \frac{3}{2}i$

21.
$$k > \frac{1}{2} |\alpha - \beta|^2$$

 $k > \frac{1}{2} |\alpha - \beta|^2$ 23. $\left(-\frac{21}{10}, -\frac{5}{6}\right)$

28.
$$-i\sqrt{3}$$
, $1-\sqrt{3}+i$, $1+\sqrt{3}-i$

For 38 Years Que. from IIT-JEE(Advanced) & 14 Years Que. from AIEEE (JEE Main) we distributed a book in class room