Algorytmy i struktury danych

Lista zadań 3

Zadanie 1

Ile (dokładnie) porównań wykona algorytm insertion_sort w wersji z wartownikiem (liczbą zapisaną pod adresem t[-1]), jeśli dane (a_1,\ldots,a_n) o rozmiarze n zawierają k inwersji. Liczba inwersji to liczba takich par (i,j), że i < j i $a_i > a_j$. Jaka jest maksymalna możliwa liczba inwersji dla danych rozmiaru n? Wylicz "średnią" złożoność algorytmu, jaka średnią z maksymalnej i minimalnej ilości porównań jaką wykona.

Uwaga: Prawdziwą średnią złożoność oblicza się, jako średnią po wszystkich możliwych permutacjach danych wejściowych.

Dokładna ilość porównań: n-1+k

Minimalna ilość porównań: n-1+0=n-1

Maksymalna ilość porównań: $n-1+\frac{n(n-1)}{2}=\frac{n^2+n-2}{2}$

Średnia ilość porównań: $\frac{n-1+\frac{n^2+n-2}{2}}{2}=\frac{n^2+3n-4}{4}$

Zadanie 3

(a) Ile co najwyżej porównań wykona procedura insertion_sort działająca na ostatnim etapie bucket_sort zakładając, że bucket_sort korzysta z k pomocniczych kolejek, i że do każdej z nich wpadła taka sama ilość elementów? Zakładamy wersję z wartownikiem na pozycji t[-1].

$$n-1+k\frac{\frac{n}{k}(\frac{n}{k}-1)}{2}$$

(b) Podaj uproszczony wynik dla k = n/2, k = n/4, k = n/10 oraz $k = \sqrt{n}$. Następnie każdy z tych wyników zapisz też w notacji asymptotycznej O(f(n)).

$$3n/2 - 1 = O(n)$$
 $5n/2 - 1 = O(n)$ $11n/2 - 1 = O(n)$ $\frac{n^{3/2} + n - 2}{2} = O(n^{3/2})$

(c) Jaki będzie wynik, gdy wszystkie klucze wpadną do tego samego kubełka?

$$n-1+\frac{n(n-1)}{2}$$

1