Basics of REGHDFE

June 26, 2022

1 Basics of reghdfe

We are interested in the estimation of a linear model such as

$$y = \mathbf{X}\beta + \mathbf{D}\alpha + \epsilon \tag{1}$$

where $\mathbf{D} = [\mathbf{D}_1 \ \mathbf{D}_2 \ \dots \ \mathbf{D}_F]$ and the generic \mathbf{D}_i is a matrix of dummy variables associated with an indicator variable.

Consider the following dataset:

Variable	Obs	Mean	Std. Dev.	Min	Max
i	100	12.48	5.292419	1	20
j	100	8.37	4.409941	1	15
t	100	3.76	2.283538	1	9
у	100	-1.92123	10.76019	-28.771	27.271
x1	100	.32	2.898554	-5	5
x2	+ 100	.36	2.976406	 -5	5
zi1	100	.4886572	. 2834865	.1086679	.8948932

	l i	j	t	у	x1	x2	zi1
	•						.1369841
2.	2	1	1	-13.734	0	1	.6432207
3.	2	1	2	-11.393	-4	1	.6432207

```
4. | 3 2 1 5.792 3 3 .6047949 |
5. | 3
            3.198
                      1 .6047949 |
                  -5
  |-----|
6. | 4
      2 1
                     -2
           -15.984
                        .1086679
7. | 4 2 2 -1.193 4 4 .1086679 |
8. | 4 2 3 -15.067
                  -4 0 .1086679 |
9. | 4 2 4 -10.596 3 -2 .1086679 |
10. | 5
      2 1
            -4.777 5 0
                        .8714491
```

2 Regression with one fixed effect (F=1)

There are basically three ways to run a regression with one fixed effect in official Stata!

```
[2]: qui regress y x1 x2 i.i
    estimates store reg_1
    qui areg y x1 x2, absorb(i)
    estimates store areg_1
    qui xtset i
    qui xtreg y x1 x2, fe
    estimates store xtreg_1
```

2.1 Estimation with reghdfe

```
[3]: which reghdfe
qui reghdfe y x1 x2 i.i
estimates store reghdfe_1a
qui reghdfe y x1 x2, absorb(i)
estimates store reghdfe_1b
```

C:\Users\eeu257\ado\plus\r\reghdfe.ado

*! version 6.12.2 02Nov2021

```
[4]: estimates table *_1 reghdfe_1a reghdfe_1b, keep(x1 x2) b(%7.4f) se(%7.4f) u stats(N r2 r2_a)
```

```
Variable | reg_1 areg_1 xtreg_1 regh~1a regh~1b

x1 | 1.0659 1.0659 1.0659 1.0659 1.0659

| 0.2885 0.2885 0.2885 0.2885 0.2885
```

ĺ	0.2863	-0.6755 0.2863			
N r2	0.5832	100 0.5832 0.4710	0.1990	0.5832	97 0.5777 0.4803

Coefficients and ses are identical in all regressions but... - **xtreg** reports the "within" R^2 and $AdjR^2$ - **reghdfe** with **absorb** option reports less observations - it drops singletons! - Dropping singletons affects calculation of R^2 and $AdjR^2$

2.2 What if the robust option is included?

```
[5]: qui regress y x1 x2 i.i, vce(robust)
    estimates store reg_2a
    qui areg y x1 x2, absorb(i) vce(robust)
    estimates store areg_2a
    qui xtreg y x1 x2, fe vce(robust)
    estimates store xtreg_2a
    qui reghdfe y x1 x2, absorb(i) vce(robust)
    estimates store reghdfe_2a
    estimates table *_2a, keep(x1 x2) b(%7.4f) se(%7.4f) stats(N)
```

Variable	U _	areg_2a	xtre~2a	regh~2a
x1		1.0659 0.2906 -0.6755 0.3025	1.0659 0.2956 -0.6755 0.3148	1.0659 0.2862 -0.6755 0.2979
N		100	100	97

legend: b/se

- regress and areg produce the same results
- xtreg produces different clustered ses

• reghdfe also produces ses different from all other

What is going on?

- **xtreg** assumes that the data are clustered in **i**. With **xtreg** the option **vce(robust)** is the same as **vce(cluster i)**
- reghdfe produces different results because it drops singletons by default!
- Adding singletons biases your ses! If you want to keep singletons use option keepsingletons

2.3 What if the cluster option is included?

```
[6]: qui regress y x1 x2 i.i, vce(cluster i)
    estimates store reg_2b
    qui areg y x1 x2, absorb(i) vce(cluster i)
    estimates store areg_2b
    qui xtreg y x1 x2, fe vce(cluster i)
    estimates store xtreg_2b
    qui reghdfe y x1 x2, absorb(i) vce(cluster i)
    estimates store reghdfe_2b
    qui reghdfe y x1 x2, absorb(i) vce(cluster i) keepsingletons
    estimates store reghdfe_2ba
    estimates table *_2b *_2ba, keep(x1 x2) b(%7.4f) se(%7.4f) stats(N)
```

WARNING: Singleton observations not dropped; statistical significance is biased > (link)

Variable	U -	U _	xtre~2b	regh~2b	reghd~a
x1 x2	1.0659 0.3296 -0.6755 0.3511	1.0659 0.3296 -0.6755 0.3511	1.0659 0.2956 -0.6755 0.3148	1.0659 0.2971 -0.6755 0.3164	1.0659 0.2956 -0.6755 0.3148
N	+ 100	100	100	97	100

legend: b/se

- **regress** and **areg** produce the same results they adjust the dof by the number of coefficients in the fes
- **xtreg** does not count the fes in the dof this is appropriate if the fixed effects are nested within clusters
- xtreg produces the same results as with the vce(robust) option
- since the fe is nested within the cluster **reghdfe** (with option **keepsingleton**) produces the same ses as **xtreg**
- you can force **xtreg** to use the same correction as **areg** (option **dfadj**)

Now we cluster on the variable j

```
[7]: qui regress y x1 x2 i.i, vce(cluster j)
    estimates store reg_2c
    qui areg y x1 x2, absorb(i) vce(cluster j)
    estimates store areg_2c
    *qui xtreg y x1 x2, fe vce(cluster j)
    *estimates store xtreg_2c
    qui reghdfe y x1 x2, absorb(i) vce(cluster j)
    estimates store reghdfe_2c
    qui reghdfe y x1 x2, absorb(i) vce(cluster j) keepsingletons
    estimates store reghdfe_2ca
    estimates table *_2c *_2ca, keep(x1 x2) b(%7.4f) se(%7.4f) stats(N)
```

WARNING: Singleton observations not dropped; statistical significance is biased > (link)

Variable	0_	areg_2c	regh~2c	reghd~a
x 1		1.0659 0.2562	1.0659 0.2523	1.0659 0.2562
x2	-0.6755 0.1972	-0.6755 0.1972	-0.6755 0.1942	-0.6755 0.1972
N	100	100	97	100

- **xtreg** fails to estimate
- now **reghdfe** produces the same results as **regress** and **areg** (if we keep singletons)

2.4 Other reasons why reghdfe is better!

[8]: clear all use data1fe

(National Longitudinal Survey. Young Women 14-26 years of age in 1968) This is a subset of the dataset nlswork.

[9]: %browse

-	+						+
	idcode	year	birth_yr	age	race	tenure	ln_wage
1.	1	70	51	18	black	.0833333	1.451214
2.	1	71	51	19	black	.0833333	1.02862
3.	1	72	51	20	black	.9166667	1.589977
4.	1	73	51	21	black	.0833333	1.780273
5.	1	75	51	23	black	.1666667	1.777012
6.	 1	77	51	25	black	1.5	1.778681
7.	1	78	51	26	black	.0833333	2.493976
8.	1	80	51	28	black	1.833333	2.551715
9.	1	83	51	31	black	.6666667	2.420261
10.	1	85	51	33	black	1.916667	2.614172
11.	 1	 87	 51	35	black	3.916667	2.536374
12.	2	71	51	19	black	. 25	1.360348
13.	l 2	72	51	20	black	1	1.206198
14.	2	73	51	21	black	.3333333	1.549883
15.	2	75	51	23	black	.6666667	1.832581
16.	 2	 77	 51	 25	 black	2.666667	1.726721
17.	2	78	51	26	black	3.666667	1.68991
18.	2	80	51	28	black	5.583333	1.726964
19.	2	82	51	30	black	7.666667	1.808289
20.	2	83	51	31	black	8.583333	1.863417
21.	 2	 85	 51	 33	 black	1.833333	1.789367
22.	l 2	87	51	35	black	3.75	1.84653
23.	l 2	68	45	22	black	0	1.493561
23.	ا ع	00	45	22	DIACK	U	1.490001

24. 25.	3 3	69 70	45 45	23 24	black black	.3333333	1.702528 1.451214
26. 27. 28. 29.		71 72 73 75	45 45 45 45	25 26 27 29	black black black black black	1.416667 2.416667 3.333333 .4166667	1.54742 1.607294 1.597267 1.53585
30.	3 	77 	45 	31	black	2.416667	1.622841
31. 32. 33. 34. 35.	3 3 3 3	78 80 82 83 85	45 45 45 45 45	32 34 36 37 39	black black black black black	3.416667 5.333333 7.333333 8.333333 10.33333	1.566635 1.559723 1.603419 1.614229 1.730799
36. 37. 38. 39.		87 88 70 71 72	45 45 45 45 45	41 42 24 25 26	black black white white white	.4166667 1.25 1.416667 2.416667 3.416667	1.525765 1.612777 2.2885 2.375578 2.413923
41. 42. 43. 44.	 4 4 4 4	73 75 80 82 83	45 45 45 45 45	27 29 34 36 37	white white white white white white	3.75 3.75 .3333333 2.416667 3.416667	2.280939 2.258814 1.476236 1.280933 1.515855
46. 47. 48. 49.	 4 4 5 5	85 87 68 69 70	45 45 45 45 45	39 41 22 23 24	white white white white white white	5.416667 .3333333 0 .8333333 1.916667	1.93017 1.919034 1.627093 1.787686 1.820858
51. 52. 53. 54.	5 5	71 72 73 75 77	45 45 45 45 45	25 26 27 29 31	white white white white white	.6666667	1.979301 1.990412
56. 57. 58. 59.		78 80 82 68 70	45 45 45 46 46	32 34 36 21 23	white white white white white	3.333333	1.847272
61. 62. 63.	6 6 6	71 72 73	46 46 46	24 25 26	white white white	1.416667	1.607294

64.	l 6	75	46	28	white	4.416667	1.853972
65.	l 6	77	46	30	white	6.416667	1.96311
05.	,	11	40		wiiice	0.410007	1.90311
66.	l 6	78	46	31	white	7.416667	1.982733
67.	l 6	80	46	33	white	9.416667	1.846798
68.	l 6	82	46	35	white	11.41667	1.814825
69.				36		12.41667	
70.	6	83	46		white		1.919913
70.	6 	85	46	38	white	14.41667	1.958377
71.	l 6	 87	46	40	white	16.41667	2.007068 l
72.	I 7	69	49	19	white	1.666667	1.490434
73.	, . I 7	73	49	23	white	4.833333	1.454573
74.	, . I 7	87	49	37	white	.8333333	.4733421
75.	, . I 9	70	51	18	white	.6666667	1.472237
, , ,	,						
76.	9	71	51	19	white	1.583333	1.717023
77.	9	72	51	20	white	2.5	1.747242
78.	9	73	51	21	white	3.583333	1.799792
79.	9	75	51	23	white	5.583333	2.017152
80.	9	77	51	25	white	7.583333	2.091364
	, 						
81.	9	78	51	26	white	8.583333	2.114099
82.	9	80	51	28	white	10.5	2.113776
83.	9	82	51	30	white	12.58333	2.312535
84.	I 9	83	51	31	white	13.5	2.34858
85.	9	85	51	33	white	15.5	2.373487
	, 						
86.	9	87	51	35	white	17.5	2.368899
87.	10	69	51	17	white	.4166667	1.361601
88.	10	70	51	18	white	1.416667	1.461484
89.	10	71	51	19	white	2.416667	1.611663
90.	10	72	51	20	white	3.25	1.301507
91.	10	75	51	23	white	.8333333	1.391349
92.	10	77	51	25	white	0	1.321256
93.	10	78	51	26	white	.0833333	1.416566
94.	10	80	51	28	white	.4166667	1.275272
95.	10	82	51	30	white	.0833333	.7974494
96.		87	47				
97.		88	47	40	white		
98.		70	47	22	white		
99.		71	47	23	white		
100.	13	73	47	25	white	.1666667	1.86433
101.	 13	 75	 47	27	white	2.166667	2.094945
101.	13	78	47	30		.9166667	
102.	_	82	47	34	white	.9100007	2.123634
100.	1 10	UZ.	71	O I	MITT C.C.	1	2.113000

104.	l 13	83	47	35	white	2	2.667868
105.	13 	85 	47 	37	white	2.166667 	3.579129
106.	l 13	87	47	39	white	4	1.678877
107.	13	88	47	40	white	5.5	2.57137
108.	l 14	87	47	39	white	.8333333	2.143405
109.	l 14	88	47	40	white	2.25	2.047121
110.	15	77	48	28	white	2	2.205023
111.	 15	78	 48	29	white	2.833333	2.340595
112.	l 15	80	48	31	white	.0833333	2.383516
113.	15	82	48	33	white	2.083333	2.539237
114.	15	83	48	34	white	3	2.485547
115.	15	85	48	36	white	5	2.307946
116.	 15	87	 48	38	white	 7	2.813745
117.	l 15	88	48	39	white	8.416667	2.82111
118.	l 16	70	48	21	white	.5	2.043247
119.	l 16	71	48	22	white	.6666667	1.984131
120.	l 16	72	48	23	white	1.666667	2.011328
121.	 16	73	 48	24	white	2.833333	2.087474
122.	l 16	75	48	26	white	.5	1.832581
123.	l 16	77	48	28	white	2.416667	1.93536
124.	l 16	78	48	29	white	3.416667	2.01862
125.	16	80	48	31	white	5.416667	1.979646
126.	 16	82	 48	33	white	7.416667	2.128231
127.	16	83	48	34	white	8.416667	2.171384
128.	l 16	85	48	36	white	10.5	2.253929
129.	l 16	87	48	38	white	12.5	2.64418
130.	17	70	48	21	white	.5	2.000029
131.	 17	71	 48	22	white	1.416667	1.954463
132.	17	72	48	23	white	2.333333	2.083182
133.	17	73	48	24	white	3.416667	2.647089
134.	17	77	48	28	white	6.416667	2.039102
135.	17	87	48	38	white	3.333333	
136.	 18	 77	 48	28	white	.9166667	1.237874
137.	18	85	48	36	white	4.333333	1.538907
138.	18	87	48	38	white	6.333333	1.629306
139.	l 19	70	48	21	white	.5	2.01878
140.		71	48	22	white	1.5	
141.	 19	72	 48	23	white	2.416667	1.773027
142.	19	73	48	24			
143.	19	75	48	26	white		

144.	19	78	48	29	white	.9166667	1.780994
145.	19	80	48	31	white	2.833333	1.704118
110.	, 13 						
146.	19	82	48	33	white	4.833333	1.811562
147.	l 19	83	48	34	white	.1666667	2.139105
148.	l 19	85	48	36	white	2.166667	2.192834
149.	l 19	87	48	38	white	4.166667	2.284871
150.	20	70	48	21	white	.5	2.01878
100.	, <u> </u>						
151.	20	71	48	22	white	1.5	2.081666
152.	l 20	72	48	23	white	.3333333	2.117261
153.	l 20	73	48	24	white	1.416667	2.099896
154.	l 20	75	48	26	white	3.416667	2.082393
155.	20	77	48	28	white	5.416667	2.10058
156.	20	78	48	29	white	6.416667	1.990396
157.	20	80	48	31	white	2	1.958695
158.	1 20	82	48	33	white	3.583333	1.927315
159.	l 20	83	48	34	white	.75	2.068818
160.	20	85	48	36	white	1.333333	2.192834
161.	 20	 87	 48	38	white	3.25	2.218913
162.	l 20	88	48	39	white	4.666667	2.268184
163.	l 21	70	48	21	white	.3333333	1.907555
164.	21	72	48	23	white	1.75	2.208345
165.	l 21	73	48	24	white	2.75	2.194083
166.	21	75	48	26	white	1.166667	1.910543
167.	21	85	48	36	white	10	.9855224
168.	l 22	69	47	21	white	.4166667	1.949388
169.	22	70	47	22	white	1.416667	1.971228
170.	22	71	47	23	white	2.416667	2.042001
171.	 22	 72		24		1166667	2 221672
172.	22	73	47 47	2 4 25	white white	.4166667 1.416667	2.321673 2.320567
173.	22	75 75		27			2.320307
	22		47 47	29	white	.0833333	
174.	22	77 70	47 47	30	white	2.083333	2.129515
175.	22 	78 	47 		white 	3.083333 	2.056841
176.	22	80	47	32	white	5.083333	2.160106
177.	22	82	47	34	white	7.083333	2.209372
178.	22	85	47	37	white	10	2.252045
179.	22	87	47	39	white	1.5	2.007068
180.	J 23	75	46	28	white	.1666667	1.910543
101		77	4.0	20		1 666667	1 05/000
181.	23	77	46	30	white	1.666667	1.854699
182.	23	82	46	35	white	1.583333	1.856298
183.	23	83	46	36	white	2.583333	1.873795

184.		23	87	46	40	white	6.666667	1.796486
185.		24	68	46	21	white	.5833333	1.3722
	-							
186.		24	69	46	22	white	.6666667	1.949388
187.		24	70	46	23	white	1.666667	2.000029
188.		24	71	46	24	white	1.75	2.087567
189.		24	72	46	25	white	.75	2.099055
190.		24	73	46	26	white	1.833333	2.038808
	-							
191.		24	75	46	28	white	3.833333	1.880084
192.		24	77	46	30	white	.3333333	1.806148
193.		24	78	46	31	white	1.416667	1.857954
194.		24	80	46	33	white	3.25	1.998605
195.		24	82	46	35	white	5.25	2.162172
	-							
196.		24	83	46	36	white	0	2.119687
197.		24	85	46	38	white	0	2.307946
198.		24	87	46	40	white	2	2.386735
199.	1	24	88	46	41	white	3.416667	2.406495
200.	1	25	77	46	30	white	3.416667	2.109713
	+-							+

```
[10]: qui xtreg ln_wage age tenure i.year, fe
estimates store xtreg_3a
qui areg ln_wage age tenure i.year, absorb(idcode)
estimates store areg_3a
qui xtreg ln_wage age tenure ib(69).year, fe
estimates store xtreg_3b
qui areg ln_wage age tenure ib(69).year, absorb(idcode)
estimates store areg_3b
qui reghdfe ln_wage age tenure, absorb(idcode year)
estimates store reghdfe_3c
estimates table *_3a *_3b *_3c, keep(age tenure) b(%7.4f) se(%7.4f) stats(N)
```

Variable	xtreg_3a	areg_3a	xtreg_3b	areg_3b	reghdf~3c
age	0.0152 0.0008	0.0152 0.0008	0.0114 0.0008	0.0114 0.0008	(omitted)
tenure	0.0219 0.0009	0.0219 0.0009	0.0219 0.0009	0.0219 0.0009	0.0219 0.0009
N	+ 23206	23206	23206	23206	22654

- **xtreg** and **areg** produce estimates of the coefficient for *age* even though the coefficient is not identified
- and the estimate changes when the base for the year fixed effect is changed!

2.5 More reasons

- reghdfe is usually faster than areg or xtreg
- reghdfe can compute ses with multi-way clustering (Note: with large datasets the order in which you introduce the cluster variables affects performance always use the variable with highest number of distinct values first)

2.6 Regression with more than one fixed effect (F>1)

With **reghdfe** you can absorb multiple fixed effects. Just add them to the **absorb** option

```
[11]: clear all use nlswork
```

(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

```
qui reghdfe ln_wage ttl_exp union not_smsa nev_mar i.year, absorb(idcode) estimates store reghdfe_4a qui reghdfe ln_wage ttl_exp union not_smsa nev_mar, absorb(idcode year) estimates store reghdfe_4b estimates table *_4a *_4b, keep(ttl_exp union not_smsa nev_mar) b(%7.4f) se(%7.4f) stats(N)
```

```
Variable | regh~4a regh~4b
```

	+		
ttl_exp		0.0437	0.0437
		0.0016	0.0016
union		0.1010	0.1010
		0.0069	0.0069
not_smsa		-0.0943	-0.0943
		0.0124	0.0124
nev_mar		-0.0209	-0.0209
		0.0102	0.0102
	+		
N		18558	18558
	_		

And we can add a third fixed effect:

[13]: reghdfe ln_wage ttl_exp union not_smsa nev_mar, absorb(idcode year occ_code)

(dropped 665 singleton observations)
(MWFE estimator converged in 17 iterations)

HDFE Linear regression	Number of obs	=	18,486
Absorbing 3 HDFE groups	F(4, 14982)	=	245.28
	Prob > F	=	0.0000
	R-squared	=	0.7636
	Adj R-squared	=	0.7083
	Within R-sq.	=	0.0615
	Root MSE	=	0 2508

ln_wage	 -	Coef.	Std. Erı	r.	t	P> t	[95% Conf.	Interval]
ttl_exp union not_smsa	+- 	.041726 .0922451 0959395	.0015802	5	26.41 13.41 -7.86	0.000 0.000 0.000	.0386286 .0787644 1198672	.0448234 .1057258 0720118
nev_mar _cons	 	0210052 1.443052	.0100888		-2.08 108.27	0.037 0.000	0407804 1.416926	00123 1.469178

Absorbed degrees of freedom:

idcode 3477 0 3477 year 12 1 11	Absorbed FE		Categories	- Redundant			==+ s !
		İ	12	0 1 1	 347 1	7 1	 ?

^{? =} number of redundant parameters may be higher

And it is possible to save the estimates of the fes

[14]: reghdfe ln_wage ttl_exp union not_smsa nev_mar, absorb(fe1=idcode fe2=year

→fe3=occ_code)
reghdfe ln_wage ttl_exp union not_smsa nev_mar fe1 fe2 fe3

(dropped 665 singleton observations)
(MWFE estimator converged in 17 iterations)

HDFE Linear regression	Number of obs	=	18,486
Absorbing 3 HDFE groups	F(4, 14982)	=	245.28
	Prob > F	=	0.0000
	R-squared	=	0.7636
	Adj R-squared	=	0.7083
	Within $R-sq$.	=	0.0615
	Root MSE	=	0.2508

ln_wage		Coef.	St	d. Err.	t	P> t	[95% Conf.	Interval]
ttl_exp union not_smsa nev_mar _cons	 	.041726 .0922451 0959395 0210052 1.443052	.0	0015802 0068775 0122072 0100888 0133288	 26.41 13.41 -7.86 -2.08 108.27	0.000 0.000 0.000 0.037 0.000	 .0386286 .0787644 1198672 0407804 1.416926	.0448234 .1057258 0720118 00123 1.469178

Absorbed degrees of freedom:

Absorbed FE		Categories	- Redundant		fs
idcode year	:	3477 12	0	477 11	
occ_code		13	1	 12	?

^{? =} number of redundant parameters may be higher

(MWFE estimator converged in 1 iterations)

HDFE Linear regression	Number of obs	=	18,486
Absorbing 1 HDFE group	F(7, 18478)	=	8526.45
	Prob > F	=	0.0000
	R-squared	=	0.7636
	Adj R-squared	=	0.7635
	Within R-sq.	=	0.7636
	Root MSE	=	0.2259

ln_wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ttl_exp	.041726	.000517	80.71	0.000	.0407127	.0427393
union	.0922451	.0039496	23.36	0.000	.0845034	.0999868
not_smsa	0959395	.0037683	-25.46	0.000	1033258	0885533
nev_mar	0210052	.0043536	-4.82	0.000	0295386	0124717
fe1	1	.0053665	186.34	0.000	.9894812	1.010519
fe2	1	.0283374	35.29	0.000	.9444561	1.055544
fe3	1	.0268245	37.28	0.000	.9474214	1.052579
_cons	1.443052	.0046049	313.37	0.000	1.434026	1.452078

It is also possible to add interaction terms

[15]: reghdfe ln_wage union not_smsa nev_mar, absorb(idcode i.year##c.ttl_exp)

(dropped 666 singleton observations)
(MWFE estimator converged in 11 iterations)

HDFE Linear regression Number of obs = 18,558 Absorbing 2 HDFE groups F(3, 15048) =85.58 Prob > F 0.0000 R-squared 0.7587 Adj R-squared 0.7024 Within R-sq. 0.0168 Root MSE 0.2535

ln_wage Coef. Std. Err. t P> t [95% Conf. Interva-		
-	ln_wage	
union .0979223 .0068881 14.22 0.000 .0844207 .11142 not_smsa 09025 .0123234 -7.32 0.000 1144054 06609 nev_mar 0123103 .01021 -1.21 0.228 0323231 .00770 _cons 1.764868 .0047174 374.12 0.000 1.755621 1.7741	not_smsa nev_mar	

Absorbed degrees of freedom:

Absorbed FE	 Categories +	- Redundant	= Num. Coefs	+ 3
idcode	l 3484	0	3484	İ
year	12	1	11	-
<pre>year#c.ttl_exp</pre>	12	0	12	?

^{? =} number of redundant parameters may be higher

[16]: reghdfe ln_wage union not_smsa nev_mar, absorb(i.idcode##c.ttl_exp year)

(dropped 666 singleton observations)
(MWFE estimator converged in 11 iterations)

HDFE Linear regression	Number of obs	=	18,558
Absorbing 2 HDFE groups	F(3, 11583)	=	41.30
	Prob > F	=	0.0000
	R-squared	=	0.8601
	Adj R-squared	=	0.7758
	Within R-sq.	=	0.0106
	Root MSE	=	0.2200

Coef. Std. Err. t P>|t| [95% Conf. Interval] ln_wage | -----union | .077019 .0074498 10.34 0.000 .0624162 .0916219 not_smsa | -.061414 .0157465 -3.90 0.000 -.0922799 -.0305481 nev_mar | .0054911 .0134288 0.41 0.683 -.0208317 .0318139 1.758235 .0057018 308.37 0.000 1.747058 1.769411 _cons |

Absorbed degrees of freedom:

Abgorbod FF	 I	Catagoriag	- Redundant	 Num Co	+ ofa
ADSOIDED TE	 +-				 erp
idcode	I	3484	0	3484	i
idcode#c.ttl_exp		3484	7	3477	?
year		12	1	11	I
	_			 	+

? = number of redundant parameters may be higher

There is much more to **reghdfe**. Places to check are:

- Sergio Correia's website
- Sergio Correia's github
- The related packages:
 - ivreghdfe
 - ppmlhdfe
 - sumhdfe