2014 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY NIST SP 959 (Aug 2015)

See: P. J. Mohr, D. B. Newell, and B. N. Taylor, arxiv.org/pdf/1507.07956v1.pdf (2015). A more extensive listing of constants is available in the reference given above and on the NIST Physical Measurement Laboratory Web site: physics.nist.gov/constants.

Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c, c_0	299 792 458 (exact)	$\mathrm{m}\;\mathrm{s}^{-1}$
magnetic constant	μ_0	$4\pi \times 10^{-7}$ (exact)	${ m N~A^{-2}}$
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times 10^{-12}$	${ m F~m^{-1}}$
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	${ m m}^{3}~{ m kg}^{-1}~{ m s}^{-2}$
Planck constant	h	$6.626070040(81) \times 10^{-34}$	Jѕ
$h/2\pi$	\hbar	$1.054571800(13) \times 10^{-34}$	Jѕ
elementary charge	e	$1.6021766208(98)\times10^{-19}$	C
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525664(17) \times 10^{-3}$	
inverse fine-structure constant	α^{-1}	137.035999139(31)	
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10973731.568508(65)	m^{-1}
Bohr radius $\alpha/4\pi R_{\infty}$	a_0	$0.52917721067(12) \times 10^{-10}$	m
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.4009994(57) \times 10^{-26}$	$ m J~T^{-1}$

Quantity	Symbol	Numerical value	Unit
electron mass	$m_{ m e}$	$9.10938356(11)\times 10^{-31}$	kg
proton mass	$m_{ m p}$	$1.672621898(21) \times 10^{-27}$	kg
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267389(17)	
Avogadro constant	$N_{ m A}, L$	$6.022140857(74)\times10^{23}$	mol^{-1}
Faraday constant $N_{\rm A}e$	F	96 485.332 89(59)	$C \text{ mol}^{-1}$
molar gas constant	R	8.314 4598(48)	$\mathrm{J} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-1}$
Boltzmann constant $R/N_{\rm A}$	k	$1.38064852(79) \times 10^{-23}$	$ m J~K^{-1}$
Stefan-Boltzmann const. $\pi^2 k^4/60\hbar^3 c^2$	σ	$5.670367(13) \times 10^{-8}$	${ m W} { m m}^{-2} { m K}^{-4}$
magnetic flux quantum $h/2e$	Φ_0	$2.067833831(13)\times 10^{-15}$	Wb
Josephson constant $2e/h$	$K_{ m J}$	$483597.8525(30) \times 10^9$	$\mathrm{Hz}\ \mathrm{V}^{-1}$
von Klitzing constant h/e^2	$R_{ m K}$	25 812.807 4555(59)	Ω
electron volt (e/C) J	eV	$1.6021766208(98) \times 10^{-19}$	J
(unified) atomic mass unit $\frac{1}{12}m(^{12}C)$	u	$1.660539040(20)\times10^{-27}$	kg

The number in parentheses is the one-sigma (1 σ) uncertainty in the last two digits of the given value.

