Árvore de recorrência T(n) = 4T(n/2) + n

David Pierre Mateus Fittipaldi Otávio Alves

Use a árvore de recorrência para T(n) = 4T(n/2) + n e obtenha a classe Θ a qual a solução pertence

Passos:

- Construir a árvore de recursão.
- 2. Determinar:
 - a. Número de níveis.
 - b. Custo por nível.
 - c. Número de nós no último nível.
 - d. Custo do último nível.
- 3. Faça o somatório do custo de todos os níveis para achar o custo de T(n).

Construir a árvore de recursão

Considerando T(n) = 4T(n/2) + n:

$$T(n/2) = 4T(n/4) + n/2$$
:

T(n/4) = 4T(n/8) + n/4:

Determinar: número de níveis, custo por nível, número de nós no último nível e custo do último nível

Nível	Num. de nós	Árvore de recursão			Custo do nível
0	1	n			n
1	4 1	n/2 n/2	n/2	n/2	4(n/2) = 2n
2	4 2	n/4 n/4 n/4 n/4			$4^{2}(n/4) = 4n$
3	4 3	n/8 n/8			$4^{3}(n/8) = 8n$
i	4 ⁱ	n/2 ⁱ			4 ⁱ (n/2 ⁱ) = 2 ⁱ n
h	4 ^h	T(1) T(1) T(1) T(1)	Γ(1) T(1) T(1)	T(1)	4 ^h

Somatório do custo de todos os níveis para achar o custo de T(n)

$$T(n) = 4^{h} T(1) + (n + 2n + 4n + 8n + ... + 2^{i}n)$$

$$T(n) = 4^{h} T(1) + \sum_{i=0}^{h-1} 2^{i} n \longrightarrow (Eq.1^{*})$$

$$T(n) = 4^{og_{2}^{n}} T(1) + \sum_{i=0}^{h-1} 2^{i} n$$

$$Eq.1: n/2^{h} = T(1) = 1$$

$$n = 2^{h}$$

$$h = log_{2} n$$

$$Eq.2: \sum_{i=0}^{h-1} 2^{i} n = n \sum_{i=0}^{h-1} 2^{i}$$

$$= n^{\log_2 4} T(1) + \sum_{i=0}^{h-1} 2^i n$$

 $T(n) = n^2 T(1) + n (n - 1)$

 $T(n) = n^2 \cdot 1 + n^2 - n$

 $T(n) = 2n^2 - n = \Theta(n^2)$

$$T(n) = n^{\log_2 4} T(1) + \sum_{i=0}^{h-1} 2^{i} n$$

$$+\sum_{i=0}^{n-1} 2^{i} n$$

$$T(n) = n^2 T(1) + \sum_{i=0}^{h-1} 2^i n \longrightarrow (Eq.2^*)$$

$$i = 0$$

$$h = 1$$

$$\sum_{i=1}^{h-1} a_i = \sqrt{F} a_i = 2*$$

$$\sum_{i=0}^{h-1} 2^i n =$$

 $\frac{1(2^{h}-1)}{2} = 2^{h}-1$

 $2^{h} - 1 = 2^{\log_2 n} - 1$

 $n^{\log_2 2} - 1 = n - 1 => n (n - 1)$

Série:

$$r = 2$$
, $a = 1$, $r > 1$
 $S = a + ar + ar^2 + ... + ar^{k-1} = \frac{a(r^k - 1)}{r - 1}$

Exercício:

$$T(n) = 5T(n/5) + n^3$$

Obrigado!