$$Z_{
m in}$$
 desired input impedance in Ω
 $Z_{
m out}$ desired output impedance in Ω
 a attenuation in dB
 $L=10^{rac{a}{10}}$ (the loss)
 $A=(L+1)/(L-1)$

Pi attenuator
 $R2=rac{L-1}{2}\cdot\sqrt{rac{Z_{
m in}\cdot Z_{
m out}}{L}}$
 $R1=rac{1}{rac{A}{Z_{
m in}}-rac{1}{R2}}$
 $R3=rac{1}{rac{A}{Z_{
m out}}-rac{1}{R2}}$