

INTRODUCTION TO ETHYLBENZENE PRODUCTION	01
OBJECTIVES OF THE STUDY	02
• FLOW SHEET AND BLOCK DIAGRAM OVERVIEW	03
• FEED PREPARATION PROCESS	04
REACTION KINETICS ANALYSIS	05
ENERGY CONSUMPTION BREAKDOWN	06
SEPARATION AND RECYCLE PROCESSES	07
ASPEN SIMULATION SETUP	08
RESULTS: PROCESS PERFORMANCE ANALYSIS	09
CONCLUSION AND KEY FINDINGS	10
REFERENCES AND CITATIONS	11

INTRODUCTION TO ETHYLBENZENE PRODUCTION

Objectives of Ethylbenzene **Role of ASPEN** Ethylbenzene Production Importance of **Process** Overview Ethylbenzene Software Production **Fundamentals** Ethylbenzene (EB) is a Essential for Utilized for modeling, Maximize ethylbenzene Liquid-phase reaction key component in the manufacturing styrene, simulation, and yield. between ethylene petrochemical industry. used in plastics, rubber, optimization of the 02 01 03 and benzene. 04 05 Minimize by-product production system. and resins. Produced through the formation. Key reactions involve reaction of ethylene and Demand for Enables precise control ethylbenzene Optimize reactor benzene, focusing on ethylbenzene continues over reactor parameters formation and bymaximizing yield and parameters and recycle to grow in various and energy consumption product minimization. minimizing by-products. industrial applications. flows for efficiency. assessment.

OBJECTIVES OF THE STUDY

MAXIMIZE ETHYLBENZENE YIELD

FOCUS ON INCREASING THE PRODUCTION OF ETHYLBENZENE IN THE PROCESS.

MINIMIZE BYPRODUCTS

REDUCE THE FORMATION AND ACCUMULATION OF BYPRODUCTS LIKE DIETHYLBENZENE.

ADJUST REACTOR PARAMETERS

ADJUST REACTOR
PARAMETERS AND RECYCLE
FLOWS FOR BETTER SYSTEM
PERFORMANCE.

FLOW SHEET AND BLOCK DIAGRAM OVERVIEW

FEED PREPARATION PROCESS

Purification of Benzene and Ethylene

Remove impurities from benzene and ethylene.

Ensure high-quality feed for the reaction process.

Compression of Feed

Compress benzene and ethylene for optimal conditions.

Increase pressure to enhance reaction efficiency.

Heating for Reaction Conditions

Heat the compressed feed to the required temperature.

Achieve optimal conditions for the reactor operation.

Feed Preparation Conclusion

Critical step to ensure purity and efficiency.

Sets the foundation for successful ethylbenzene production.

REACTION KINETICS ANALYSIS

Key Reactions in Reaction Rate Factors Affecting Define Reaction Ethylbenzene Importance of Constants and Reaction Kinetics Reaction Rates Temperature, **Kinetics** Production rimary reactions **Activation Energies** Reaction kinetics Reaction rate involve the conversion reaction kinetics is pressure, constants and refers to the study of ethylene and crucial for optimizing concentration of activation energies are of the rates at which benzene to 02 05 01 03 04 chemical processes, reactants, and essential parameters chemical reactions ethylbenzene, with side that dictate the speed such as catalysts play reactions leading to the occur and the and selectivity of ethylbenzene significant roles in formation of difactors that reactions in the determining the production, to ethylbenzene and influence these ethylbenzene speed and efficiency enhance efficiency regeneration production system. rates. of chemical reactions. and yield. processes.

ENERGY CONSUMPTION BREAKDOWN

10 kWh

Compression

Compression of feed mixture.

15 kWh

Distillation

Separation of products and unreacted feed.

8 kWh

Heating

Heating to reaction temperature.

12 kWh

Reactor Operation

Operation of CSTR.

SEPARATION AND RECYCLE PROCESSES

ASPEN SIMULATION SETUP

Define Thermodynamic Properties

Utilize the Peng-Robinson equation of state for property calculations.

Implement Reactor Modeling

Employ a convergent reactor system to ensure precise control over temperature and pressure during the reaction process.

Utilize Distillation Modeling

Apply a rigorous stage-by-stage method in distillation columns for efficient separation of components.

Analyze Process Performance

Study the impact of operating conditions like temperature, pressure, and feed composition on conversion, selectivity, and yield.

Evaluate Energy Consumption

Summarize energy consumption for major unit operations including compression, heating, reactor operation, and distillation.

RESULTS: PROCESS PERFORMANCE ANALYSIS

85%

Ethylbenzene Selectivity

Process Performance Analysis

100%

Di-ethylbenzene Recycle

Process Performance Analysis

CONCLUSION AND KEY FINDINGS

45 kWh

Total Energy Consumption

The total energy consumed during the process.

99%

Maximum Ethylbenzene Yield

The highest yield of ethylbenzene achieved.

Achieved

By-Product Minimization

Successful minimization of by-products in the process.

REFERENCES AND CITATIONS

Introduction to Chemical Engineering Thermodynamics

Smith, J. M. Van Ness, H. C. Abbott, M. M. 2001 McGraw-Hill

Perry's Chemical Engineers Handbook

Perry, R. H. Green, D. W. 2008 McGraw-Hill

Aspen Plus User Guide

AspenTech 2023 Aspen Technology

Design and Control of the Ethylbenzene Process

William L. Luyben
AIChE Journal
Link to article

Contributing Members

Om Jee Singh Vishesh Vishwakarma Om Singh Peeyush Sahu Yadav Ankit Harshit Anand Yash Upadhyay Nithin D H.