Deterministic Polynomial-Time Primality Testing The AKS Primality Testing Algorithm

Kumar Sannidhya Shukla

Department of Mathematics

Wednesday 28th June, 2023

Math 9171L - Mathematical Computation

Outline

- Pre AKS: Eratosthenes, Fermat
- @ Generalized Fermat's Theorem
- The AKS Primality Test
- Proof of Correctness
- Time Complexity
- 6 Epilogue
- Source Code
- References

An algorithm to generate all primes up to n.

• Start with a list of numbers $\{2, \ldots, n\}$

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	0.000		104		106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

• Add 2 to the list of primes.

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	2
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

• Drop all multiples of 2.

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	2
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

5 / 28

• Add 3 to the list of primes.

	2	3	4	5	6	7	8	9	10	Prime numbers
_		3	4	5	ь	/	0	9	10	
11	12	13	14	15	16	17	18	19	20	2 3
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

• Drop all multiples of 3.

	2	3	4	5	6	7	8	9	10	Prim	e numbers
11	12	13	14	15	16	17	18	19	20	2	3
21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	40		
41	42	43	44	45	46	47	48	49	50		
51	52	53	54	55	56	57	58	59	60		
61	62	63	64	65	66	67	68	69	70		
71	72	73	74	75	76	77	78	79	80		
81	82	83	84	85	86	87	88	89	90		
91	92	93	94	95	96	97	98	99	100		
101	102	103	104	105	106	107	108	109	110		
111	112	113	114	115	116	117	118	119	120		

• Add 5 to the list of primes.

	2	3	4	5	6	7	8	9	10	Pri	me nu	ımbers
11	12	13	14	15	16	17	18	19	20	2	3	5
21	22	23	24	25	26	27	28	29	30			
31	32	33	34	35	36	37	38	39	40			
41	42	43	44	45	46	47	48	49	50			
51	52	53	54	55	56	57	58	59	60			
61	62	63	64	65	66	67	68	69	70			
71	72	73	74	75	76	77	78	79	80			
81	82	83	84	85	86	87	88	89	90			
91	92	93	94	95	96	97	98	99	100			
101	102	103	104	105	106	107	108	109	110			
111	112	113	114	115	116	117	118	119	120			

• Drop all multiples of 5.

	2	3	4	5	6	7	8	9	10	Prime numbers			
11	12	13	14	15	16	17	18	19	20	2	3	5	
21	22	23	24	25	26	27	28	29	30				
31	32	33	34	35	36	37	38	39	40				
41	42	43	44	45	46	47	48	49	50				
51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70				
71	72	73	74	75	76	77	78	79	80				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
11	112	113	114	115	116	117	118	119	120				

• ...

	2	3	4	5	6	7	8	9	10	Prim	e nur	nbers	
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13	17	19
	Comment of the Commen									23	29	31	37
31	32	33	34	35	36	37	38	39	40	41	43	47	53
41	42	43	44	45	46	47	48	49	50	59	61	67	71
51	52	53	54	55	56	57	58	59	60	73	79	83	89
61	62	63	64	65	66	67	68	69	70	97	101	103	10
71	72	73	74	75	76	77	78	79	80	109	113		
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

An algorithm to generate all primes up to n.

Algorithm 1 Seive of Eratosthenes

```
1: Input. n
```

2:
$$L = [1, n]$$

3:
$$i = 1$$

4: while
$$i < len(L)$$
 do

5: **for**
$$j = 2 \to |n/i|$$
 do

- 7: end for
- 8: end while
- 9: return L

Runtime: $\mathcal{O}(2^{\log n})$

Theorem (Fermat's little theorem)

Let p be a prime then $a^p \equiv a \mod p$

This can theorem can be used to devise a primality test as follows:

- Given a number n
- Pick a random a, 1 < a < n
- Test whether $a^n \equiv a \mod n$
- If false, return Composite
- Otherwise, return Prime

Theorem (Fermat's little theorem)

Let p be a prime then $a^p \equiv a \mod p$

This can theorem can be used to devise a primality test as follows:

- Given a number n
- 2 Pick a random a, 1 < a < n
- **3** Test whether $a^n \equiv a \mod n$
- Q Run the above steps multiple times
- If the congruence in step 3 is false even once, return Composite
- Otherwise, return Prime

Algorithm 2 Fermat's Primality Test

```
1: Input. n
```

2: for $i = 1 \rightarrow 10$ do

3: Generate random a, 1 < a < n.

4: if $a^n \not\equiv a \mod n$ then

5: return Composite

6: end if

7: end for

8: return Prime

Definition (Carmichael numbers)

A Carmichael number is a composite number n, such that $a^n \equiv a \mod n$ for all 1 < a < n.

Example. 561, 1729, 2465, etc.

Definition (Carmichael numbers)

A Carmichael number is a composite number n, such that $a^n \equiv a \mod n$ for all 1 < a < n.

Example. 561, 1729, 2465, etc.

Carmichael numbers will fool Fermat's test 100% of the times!

Definition (Carmichael numbers)

A Carmichael number is a composite number n, such that $a^n \equiv a \mod n$ for all 1 < a < n.

Example. 561, 1729, 2465, etc.

Carmichael numbers will fool Fermat's test 100% of the times!

There are infinitely many Carmichael numbers!!

Generalized Fermat's Theorem

Theorem

Let n > 1 and $a \in \mathbb{Z}_n^*$. Then n is a prime if and only if

$$(x+a)^n = x^n + a$$

in $\mathbb{Z}_n[x]$.

Generalized Fermat's Theorem

Theorem

Let n > 1 and $a \in \mathbb{Z}_n^*$. Then n is a prime if and only if

$$(x+a)^n = x^n + a$$

in $\mathbb{Z}_n[x]$.

Proof.

If n is a prime, then $n \mid \binom{n}{k}$ for all k.

Generalized Fermat's Theorem

Theorem

Let n > 1 and $a \in \mathbb{Z}_n^*$. Then n is a prime if and only if

$$(x+a)^n = x^n + a$$

in $\mathbb{Z}_n[x]$.

Proof.

If n is a prime, then $n \mid \binom{n}{k}$ for all k. If n is a composite, suppose $n = p^k.m$, $p \nmid m$. Then, $p^k \nmid \binom{n}{p} a^{n-p}$.

Examples

Example

The number 5 is a prime. So,

$$(x+1)^5 = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1 = x^5 + 1$$
 in $\mathbb{Z}_5[x]$.

Examples

Example

The number 5 is a prime. So,

$$(x+1)^5 = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1 = x^5 + 1$$
 in $\mathbb{Z}_5[x]$.

Example

The number 4 is not a prime. So,

$$(x+1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$$

= $x^4 + 2x^2 + 1$
 $\neq x^4 + 1$ in $\mathbb{Z}_4[x]$.

Reduction mod $x^r - 1$

- If we naively try to turn the generalized Fermat's little theorem into a primality test, then we get exponential runtime.
- The idea is to reduce the number of coefficients by modding out by $x^r 1$.
- The ring to consider: $\mathbb{Z}_n[x]/(x^r-1)$.
- $x^n + a = x^n \mod r + a$

Wednesday 28th June, 2023 18 / 28

How to choose r?

• r should be small so that enough coefficients of $(x + a)^n$ get killed but not so small that composite numbers don't satisfy the congruence.

Theorem

There exist an r, $3 \le r \le \lceil \log^5 n \rceil$, such that $o_r(n) > \lfloor \log^2 n \rfloor$.

Proof.

Suppose for all $r \leq R$, we have $o_r(n) \leq \lfloor \log^2 n \rfloor$. Then, $r | (n-1)(n^2-1) \dots (n^{\lfloor \log^2 n \rfloor}-1) = P$. So, LCM $\{r: 1 \leq r \leq R\} | P$. By LCM bound, $2^R \leq P$. Thus, $R < \log^5 n$.

The AKS Algorithm

Algorithm 3 AKS Primality Test

```
1: Input. n
2: if n = a^b, a, b > 1 then
        return Composite
4. end if
5: Find r, such that o_r(n) > \log^2 n
6: if \exists a \in [r], 1 < (a, n) < n then
        return Composite
8: end if
9: for a = 1 \rightarrow \lceil 2\sqrt{r} \log n \rceil do
        if (x + a)^n \neq x^n + a in \mathbb{Z}_n[x]/(x^r - 1) then
10:
11:
             return Composite
        end if
12:
13: end for
```

14: return Prime

Proof of Correctness

Theorem

The AKS test returns Prime if and only if then input n is prime.

Proof.

 (\longleftarrow) Obvious.

(\Longrightarrow) Suppose conversely that the algorithm returns Prime. In particular this means, that all congruences in line 10 hold true. Suppose the n has a prime factor p. We will show that n=p.

Define a group,

$$I := \langle p, n \mod r \rangle$$

$$t:=|I|\geq o_r(n)>\log^2 n$$

Proof of Correctness

Proof.

(Continued.) Let h(x) be an irreducible factor of $(x^r - 1)/(x - 1)$. Then, $\mathbb{Z}_p[x]/(h(x))$ is a field. Define another group,

$$J := \langle x + 1, x + 2, \dots, x + r \mod(p, h) \rangle$$

$$|J| > n^{2\sqrt{t}}$$

J is a cyclic group, let f be a generator of J.

Proof of Correctness

Proof.

(Continued.) There exist $(i,j) \neq (i',j')$, $0 \leq i,j,i',j' \leq \sqrt{t}$ such that $n^i p^j = n^{i'} p^{j'}$. Then,

$$f(x^{n^i p^j}) = f(x^{n^{i'} p^{j'}}) \text{ in } \mathbb{Z}_p[x]/(h(x))$$

$$f(x)^{n^i p^j} = f(x)^{n^{i'} p^{j'}} \text{ in } \mathbb{Z}_p[x]/(h(x))$$

$$n^i p^j = n^{i'} p^{j'} \mod |J|$$

So n is a prime power, but we already rejected all higher powers, so n must be a prime.

Arithmetic in \mathbb{Z}_p and $\mathbb{Z}_p[x]/(q(x))$

- Notation. $\widetilde{\mathcal{O}}(f(n)) = \mathcal{O}(f(n) \cdot \operatorname{poly}(\log f(n)))$
- Multiplication in \mathbb{Z}_p : $\mathcal{O}(\log p \cdot (\log \log p)^2) = \widetilde{\mathcal{O}}(\log p)$
- Multiplication in $\mathbb{Z}_p[x]/(q(x))$: $\widetilde{\mathcal{O}}(r \log r \log p)$ where $r = \deg q(x)$.

Time Complexity

- Perfect power test: $\widetilde{\mathcal{O}}(\log^3 n)$
- Finding appropriate value of $r: \widetilde{\mathcal{O}}(R \log^2 n) = \widetilde{\mathcal{O}}(\log^7 n)$.
- GCD step: $\widetilde{\mathcal{O}}(r \log n) = \widetilde{\mathcal{O}}(\log^6 n)$
- Generalized FLT step: $(\sqrt{r} \log n) \widetilde{\mathcal{O}}(r \log^2 n) = \widetilde{\mathcal{O}}(\log^{21/2} n)$
- Total complexity: $\widetilde{\mathcal{O}}(\log^{21/2} n)$

Epilogue

• Recall the language PRIMES of all prime numbers.

$$\mathtt{PRIMES} = \{ p \in \mathbb{N} : p \text{ is a prime} \}$$

 Then the existence of a deterministic polynomial time algorithm proves that

Theorem (Agrawal-Kayal-Saxena, 2002)

PRIMES is in P.

Source code available on https://github.com/feynhat/math9171.

References

🐚 Ivan Niven, Herbert Zuckerman, Hugh Montgomery An Introduction to the Theory of Numbers. John Wiley & Sons, 1991.

Manindra Agrawal, Neeraj Kayal, Nitin Saxena PRIMES is in P. Annals of Mathematics, 2004.

