Геометрия и ко

Задача 1. На рис. 1 AB = CD и BC = AD. Докажите, что $BC \parallel AD$.

Задача 2. В четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O так, что AO = OC и BO = OD. Докажите, что $AB \parallel CD$.

 ${f 3aдaчa}$ 3. В четырёхугольнике ABCD стороны AB и CD, что $AB \parallel CD$ и AB = CD. Докажите, что $AD \parallel BC$.

Задача 4. На рис. 2 $AC \mid\mid BD$ и AC = AB, $\angle MAC = 40^\circ$. Найдите $\angle CBD$.

Задача 5. На рис. З $BA \mid\mid DE, \angle CBA = 140^{\circ}, \angle CDE = 130^{\circ}$. Докажите, что $BC \perp CD$.

Задача 6. На рис. $4\,AB = CD$ и BC = DE, $\angle ABC = \angle BCD = \angle CDE$. Докажите, что точки A,C и E лежат на одной прямой.

Задача 7. Сломанный калькулятор умеет только складывать и вычитать числа. Докажите, что с помощью него можно найти остаток от деления числа a на число b.

Задача 8. Делится ли на 3 количество упорядоченных троек натуральных чисел (a_1,a_2,a_3) таких, что $\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}=\frac{1}{100}$?

Задача 9. У Васи есть трехзначное число A и двузначное число В. Если к В справа приписать A, то полученное пятизначное число будет на 88011 больше пятизначного числа, которое получится, если к A справа приписать В. Найдите эти числа.

Задача 10. В гандбольном турнире в один круг участвовали несколько студенческих команд и две школьных. Каждая команда сыграла с каждой ровно один матч. За победу давалось 2 очка, за ничью — 1, за проигрыш — 0. Известно, что все студенческие команды набрали одинаковое число очков, а обе школьные — по 14 очков. Сколько студенческих команд могло участвовать в турнире (найдите все возможные ответы и докажите, что других нет)?

Задача 11. Степень каждой вершины графа меньше d. Докажите, что его вершины можно покрасить в d цветов npasunьным образом (т.е. так что вершины одного цвета не были соединены ребром)

Задача 12. Докажите, что для любого n существует набор различных натуральных чисел $a_1,a_2,\ldots a_n$, что сумма $\frac{1}{a_1}+\ldots+\frac{1}{a_n}=1$.