Généralités

$$\frac{\partial u}{\partial x} = u_x$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

1.1 Dérivée

$$u'(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = \lim_{h \to 0} \frac{u(x) - u(x-h)}{h}$$

EDO du premier ordre 1.2

$$\boxed{\frac{dy}{dt} = ky \longrightarrow y = Ce^{kt}}$$

EDP du premier ordre

$$\begin{split} F\Big(x,y,u(x,y),u_x(x,y),u_y(x,y)\Big)\\ &=F\Big(x,y,u,u_x,u_y\Big)=0 \end{split}$$

1.3.1 Résolution

$$a(x,y)u_x + b(x,y)u_y = 0 \longrightarrow \frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$$

 $au_x + bu_y$ est la dérivée directionnelle dans le sens du vecteur $\mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix}$

Tout ce qui suit à vérifier (ok pour les coefficients constants mais peut-être quelques modificiations pour les coefficients variables)

Coefficients constants Droite caractéristique : bx - ay = c (solution constante sur ces droites)

$$u(x,y) = f(\frac{bt}{a}x)$$

Puis appliquer les conditions données.

Coefficients variables Trouver les courbes car- 1.5.1 Homogénéité (seulement si linéaire) actéristiques (solution constante sur les courbes) en résolvant l'équation $\frac{dy}{dx} = \frac{b}{a}$ avec, par exemple :

$$\underbrace{\int \frac{dy}{dx} dx}_{y} = \underbrace{\int \frac{b(x,y)}{a(x,y)} dx}_{\cdots + c} \longrightarrow u(x,t) = f("c")$$

OU

si
$$\frac{dy}{dx} = y \longrightarrow y = Ce^x$$

 $u(x,t) = f("C") = f(ye^{-x})$

Autres cas: par exemple $3u_y + u_{xy}$ on effectue une substitution $v = u_y$ pour simplifier le problème. Combinaison linéaire de plusieurs solutions est aussi une solution

1.4 EDP du deuxième ordre

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

Parabolique : $B^2 - 4AC = 0$

Hyperbolique : $B^2 - 4AC > 0$

Elliptique : $B^2 - 4AC < 0$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

1.5**Opérateurs**

Linéarité

$$\mathcal{L}(u+v) = \mathcal{L}u + \mathcal{L}v$$
 et $\mathcal{L}(cu) = c\mathcal{L}u$

linéaire

non linéaire

$$u_{tt} - u_{xx} + u^3 = 0$$
 $u_t + uu_x + u_{xxx} = 0$

$$u_x + u_y = 0$$
 $u_x + yu_y = 0$ $u_{xx} + u_{yy} = 0$ $u_t + u_{xxx} = 0$ $u_t - ju_{xx} = 0$

Équation linéaire homogène $\mathcal{L}u=0$

Équation linéaire non-homogène $\mathcal{L}u=q$

$$u_x + u_y + 1 = 0 \longrightarrow \text{ inhomogène}$$

solution homogène + solution inhomogène = solution inhomogène

Conditions initiales

$$u(x,t_0) = \phi(x)$$

OU

$$u(x, t_0) = \phi(x) \qquad u_t(x, t_0) = \psi(x)$$

Conditions aux bords

Dirichlet: u est spécifié

Neumann : $\frac{\partial u}{\partial n}$ est spécifié

Robin : $\frac{\partial u}{\partial n} + au$ est spécifié

Problèmes bien posés

Les problèmes bien posés (au sens d'Hadamard) sont constitués d'une EDP dans un domaine et avec les propriétés suivantes :

Existence: il existe au moins une solution u(x,t)qui satisfait toutes les conditions

Unicité : il existe au plus une solution

Stabilité : La solution unique u(x,t) dépende de manière stable des données (peu de changement \rightarrow peu de variation)

1.9 Exemples

1.

$$au_x + bu_y = 0$$
 $u(x, y) = f(bx - ay)$

Avec bx - ay = c les droites caractéristiques

2.

$$u_t + cu_x = 0$$

Au temps t + h, déplacement de $c \cdot h$

3.

$$u_{xx} = 0 \xrightarrow{\int dx} u_x = f(y) \xrightarrow{\int dx} u = g(y) + xf(y)$$

$$u(x,y) = f(y)x + g(y)$$

4.

$$u_{xx} + u = 0 \rightarrow u(x, y) = f(y)\cos(x) + g(y)\sin(x)$$

5.

$$u_{xy} = 0 \longrightarrow u(x, y) = f(y) + g(x)$$

A noter que f(y) et g(x) sont les intégrales de fonctions intermédiaires.

6.

$$u_x + yu_y = 0 \longrightarrow u(x,y) = f(e^{-x}y)$$

1.10 Séparation de variables

$$u(x,y) = X(x)Y(y)$$
 ou $u(x,t) = X(x)T(t)$

2 Équation d'onde

$$u_{tt} = c^2 u_{xx}$$

 \boldsymbol{c} est la vitesse de l'onde. Pour une corde on a

$$c = \sqrt{\frac{T}{\rho}}$$

Avec T la tension et ρ la densité

$2.1 ext{ } 1D$

Modèle ressorts-masses

$$F_{\text{newton}} = ma(t) = m \frac{\partial^2}{\partial t^2} u(x, t)$$

et.

$$F_{\text{hooke}} = k \left(u(x+h), t \right) - u(x,t) \right) - k \left(u(x,t) - u(x-h,t) \right)$$

$$F_{\text{newton}} = F_{\text{hooke}}$$

Avec $N \to \infty$ et donc $h \to 0$ (L = Nh)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{KL^2}{M} \frac{\partial^2 u(x,t)}{\partial x^2}$$

Solution générale:

$$u(x,t) = f(x+ct) + g(x-ct)$$

avec f et g des fonctions quelconques à une seule variable

2.1.1 Propriétés

Deux familles de droites caractéristiques $x\pm ct=$ constante. Somme de deux fonctions : g(x-ct) qui va à droite et f(x+ct) qui va à gauche. La vitesse est c.

2.1.2 Conditions initiales, pas de conditions aux bords

$$u_{tt} = c^2 u_{xx} \qquad -\infty < x < \infty$$

$$u(x,0) = \phi(x) \qquad u_t(x,0) = \psi(x)$$

$$u(x,t) = \frac{1}{2} \left(\phi(x+ct) + \phi(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

2.2 Conditions aux bords

La solution est de la forme (séparation de variable)

$$u(x,t) = X(x)T(t)$$

$$\frac{X''}{X} = \frac{T''}{c^2T} = -\lambda$$

$$\begin{cases} X(x) &= C\cos(\beta x) + D\sin(\beta x) \\ T(t) &= A\cos(\beta ct) + B\sin(\beta ct) \end{cases}$$
(1)

 λ est une constante tel que $\lambda = \beta^2$ $\beta > 0$

2.3 Conditions aux bords de Dirichlet

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin(\beta x) = \phi(x)$$

$$u_t(x,0) = \sum_{n=1}^{\infty} \beta c \sin(\beta x) = \psi(x)$$

Les fréquences sont $\frac{n\pi c}{l}$ avec la fondemantale en n=1

2.3.1 Conditions aux bords = 0

$$u_n(x,t) = \left(A_n \cos\left(\frac{n\pi c}{l}t\right) + B_n \sin\left(\frac{n\pi c}{l}t\right)\right) \sin\left(\frac{n\pi c}{l}x\right)$$

2.4 Conditions aux bords de Neumann

Solution générale pour un problème avec conditions aux bords de Neumann $u_x(0,t)=u_x(l,t)=0$ (à utiliser dans l'examen) :

$$u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi c}{l}t\right) + B_n \sin\left(\frac{n\pi c}{l}t\right)\right) \cos\left(\frac{n\pi}{l}x\right)$$

Avec les conditions initiales

$$\phi(x) = u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right)$$

$$\psi(x) = u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right)$$

2.5 Conditions aux bords mixtes

Appliquer les conditions à l'équation 1 $u(0,t) = u_x(l,t) = 0$ par exemple.

$$\lambda_n = \frac{\left(n + \frac{1}{2}\right)^2 \pi^2}{l^2}$$

$$X_n(x) = \sin\left(\frac{\left(n + \frac{1}{2}\right)\pi}{l}x\right)$$

3 Équation de diffusion

$$u_t = u_{xx}$$

Plus difficile à résoudre que l'équation d'ondes

3.1 Principe du maximum

Valeur maximale de u(x,t) atteinte à t=0 ou sur les côtés (x=0 ou x=l). Pareil pour la valeur minimale

3.2 Résolution

- 1. Résoudre l'équation pour une solution $\phi(x)$ particulière
- 2. Construire la solution générale

3.3 Propriétés

1. Une **translation** de la solution est aussi une solution

$$u(x-n,t) \equiv u(x,t)$$

2. Dérivée d'une solution est aussi une solution

$$u_t \equiv u_x \equiv u_{xx} \equiv u$$

- 3. Une **combinaison linéaire** de solutions est une solution
- 4. Une **intégrale** est aussi une solution

$$\int S(x-n,t)g(y)dy \equiv u(x,t)$$

5. Une solution dilatée est aussi une solution

$$u(\sqrt{a}x, at) \equiv u(x, t)$$

3.4 Résolution sans conditions aux bords

On résout le problème simplifié avec

$$Q(x,0) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

$$Q(x,t) = g(p)$$
 $p = \frac{x-y}{\sqrt{4kt}}$

Solution générale:

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

- 1. Remplacer la condition initiale $\phi(x)$
- 2. Développer l'intégrale et effectuer un changement de variable si nécessaire (voir 9)
- 3. Exprimer en fonction de erf(...) si c'est nécessaire

Si nécessaire, on utilise la fonction d'erreur

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

$$\operatorname{erf}(x) = -\operatorname{erf}(-x)$$
 (impaire)

Si $\phi(y)=e^{...}$ alors on peut utiliser la fonction suivante (à adapter) pour mettre tous les y dans le ()²

$$(y+2kt-x)^2 = y^2 + 4k^2t^2 + x^2 + 4kty - 2xy - 4ktx$$

3.4.1 Notes

$$\int_{-\infty}^{\infty} e^{-p^2} dp = \sqrt{\pi}$$

Si on a deux intégrales (chacune avec un $\phi(y)$ différent, par exemple un ϕ par morceaux), alors on fait deux changements de variables différents : une fois $p = \frac{x-y}{\sqrt{Akt}}$ et une fois $p = \frac{y-x}{\sqrt{Akt}}$

3.5 Résolution avec conditions aux bords

Par séparation de variables on a

$$u(x,t) = X(x)T(t)$$

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda$$

$$\begin{cases} T(t) = Ae^{-\lambda kt} \\ X(x) = B\cos(\beta x) + C\sin(\beta x) \end{cases} \qquad \lambda = \beta^2$$

Résoudre en appliquant les conditions aux bords à l'équation ci-dessus.

Si il est possible d'exprimer $u_{n=0}(x,t)$ avec une constante, on la nomme $\frac{A_0}{2}$

4 Séries de Fourier

4.1 Séries de Fourier en sinus

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{l}x\right)$$

$$A_n = \frac{2}{l} \int_0^l \phi(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

4.2 Séries de Fourier en cosinus

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right)$$

$$A_n = \frac{2}{l} \int_0^l \phi(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

Le 1/2 dans la série pour A_0 vient de la Important : Si la fonction $\phi(x)$ est paire, on peut se concentrer sur la moitié uniquement (la valeur de l est ce nouvel intervalle). Ceci permet de beaucoup simplifier le problème.

4.3 Séries de Fourier

Sur]-l.l[

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi x}{l}\right) + B_n \sin\left(\frac{n\pi x}{l}\right) \right)$$

$$A_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos\left(\frac{n\pi}{l}x\right) dx$$
$$B_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin\left(\frac{n\pi}{l}x\right)$$

5 Fonctions harmoniques

Laplacien

$$\Delta_2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

En coordonnées polaires on a

$$u_{xx} + u_{yy} = u_{rr} + \frac{1}{r}u_r$$

5.1 Principe du maximum / minimum

Le maximum et le minimum de la fonction sont atteints sur les bords du domaine

5.2 Procédure

1. Séparation des variables

$$u(x,y) = X(x)Y(y) \longrightarrow \frac{X''}{X} + \frac{Y''}{Y} = 0$$

$$\begin{cases} X'' + \lambda X &= 0 \\ Y'' - \lambda Y &= 0 \end{cases}$$

- 2. Insertion des conditions aux bords
- 3. Somme de la série
- 4. Ajout du terme inhomogène ou conditions aux bords

5.3 Autres

Polynôme quadratique en x et y:

$$u(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F$$

6 Transformée de Laplace

$$H(t) = \begin{cases} 0 & \text{si } t < 0\\ 1 & \text{si } t \ge 0 \end{cases}$$

$f(t) = \mathcal{L}^{-1}[F(s)]$	$\mathcal{L}[f(t)] = F(s)$
H(t)	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n (n \in \mathbb{N})$	$\frac{n!}{s^{n+1}}$
\sqrt{t}	$\frac{1}{2}\sqrt{\pi}s^{-3/2}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\pi}s^{-1/2}$
e ^{at}	$\frac{1}{s-a}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$f(t) = \mathcal{L}^{-1}[F(s)]$	$\mathcal{L}[f(t)] = F(s)$
sinh(<i>at</i>)	$\frac{a}{s^2-a^2}$
cosh(at)	$\frac{s}{s^2-a^2}$
H(t-b)	$\frac{1}{s}e^{-bs}$
$\delta(t-b)$	e^{-bs}
$a(4\pi t^3)^{-1/2}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$
$(\pi t)^{-1/2} e^{-a^2/4t}$	$\frac{1}{\sqrt{s}}e^{-a\sqrt{s}}$
$1-\mathcal{E}$ rf $\left(rac{a}{\sqrt{4t}} ight)$	$\frac{1}{s}e^{-a\sqrt{s}}$

6.1 Propriétés

	Fonction	Transformée
(i)	af(t) + bg(t)	aF(s) + bG(s)
(ii)	df dt	sF(s)-f(0)
(iii)	$\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0) - f'(0)$
(iv)	$e^{bt}f(t)$	F(s-b)
(v)	$\frac{f(t)}{t}$	$\int\limits_{s}^{\infty}F(s')ds'$
(vi)	tf(t)	$-\frac{dF}{ds}$
(vii)	H(t-b)f(t-b)	$e^{-bs}F(s)$
(viii)	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
(ix)	$\int\limits_0^t g(t-t')f(t')dt'$	F(s)G(s)

6.2 Méthode

7 Différences finies

7.1 Différences finies progressives (downwind)

7.1.1 f'(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	1					
2	-3/2	2	-1/2				
3	-11/6	3	-3/2	1/3			
4	-25/12	4	-3	4/3	1/4		
5	-137/60	5	-5	10/3	-5/4	1/5	
6	-49/20	6	-15/2	20/3	-15/4	6/5	-1/6

$$n=2$$

$$f'(x) = \frac{-\frac{3}{2}f(x) + 2f(x+h) - \frac{1}{2}f(x+2h)}{h} + \mathcal{O}(h^2)$$

7.1.2 f''(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	1	-2	1				
2	2	-5	4	-1			
3	35/12	-26/3	19/2	-14/3	11/12		
4	15/4	-77/6	107/6	-13	61/12	-5/6	
5	203/45	-87/5	117/4	-254/9	33/2	-27/5	137/180

n=3

$$f''(x) = \frac{-\frac{26}{3}f(x+h) + \frac{19}{2}f(x+2h)}{h^2} + \mathcal{O}(h^3) \qquad n = 2$$

$$f''(x) = \frac{-\frac{14}{3}f(x+3h) + \frac{11}{12}f(x+4h)}{h^2} + \mathcal{O}(h^3) \qquad f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

7.1.3 f'''(x)

Ordre	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)	f(x+6h)
1	-1	3	-3	1			
2	-5/2	9	-12	7	-3/2		
3	-17/4	71/4	-59/2	49/2	-41/4	7/4	
4	-49/8	29	-461/8	62	-307/8	13	-15/8

n = 1

$$f'''\left(x\right) = \frac{-f\left(x\right) + 3f\left(x+h\right)}{-3f\left(x+2h\right) + f\left(x+3h\right)} + \mathcal{O}(h^{1})$$

Différences finies rétrogrades (upwind)

- 1. Remplacer x + kh par x kh
- 2. Si dérivée paire : Pas de changement de coefficient
- 3. Si dérivée impaire : Changement du signe

Différences finies centrées

7.3.1f'(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2				-1/2	0	1/2			
4			1/12	-2/3	0	2/3	-1/12		
6		-1/60	3/20	-3/4	0	3/4	-3/20	1/60	
8	1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280

n=2

$$f'(x) = \frac{-\frac{1}{2}f(x-h) + \frac{1}{2}f(x+h)}{h^1} + \mathcal{O}(h^2)$$

7.3.2 f''(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2				1	-2	1			
4			-1/12	4/3	-5/2	4/3	-1/12		
6		1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90	
- 8	-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$

7.3.3 f'''(x)

Ordre	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
2			-1/2	1	0	-1	1/2		
4		1/8	-1	13/8	0	-13/8	1	-1/8	
6	-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240

n=2

$$f'''(x) = \frac{-\frac{1}{2}f(x-2h) + f(x-h)}{-\frac{f(x+h) + \frac{1}{2}f(x+2h)}{h^3} + \mathcal{O}(h^2)}$$

Différences finies pour EDP elliptiques + Dirichlet

$$-u''(x) = f(x)$$
 $u(0) = \alpha$ $u(L) = \beta$

$$u''(x_j) \approx \frac{u(x_j - h) - 2u(x_j) + u(x_j + h)}{h^2}$$

Ce qui donne un système d'équations linéaires

$$\frac{1}{h^{2}}\begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & -1 \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix}\begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{pmatrix} = \begin{pmatrix} f(x_{1}) + \frac{\alpha}{h^{2}} \\ f(x_{2}) \\ \vdots \\ f(x_{n}) + \frac{\beta}{h^{2}} \end{pmatrix}$$
7.7 Relation entre le pas de temps et le pas temporel

$$A_h \vec{x} = \vec{f}$$

les valeurs sont inversées car -u''(x).

7.4.1 2D

$$u_{xx}(x_i, y_j) \approx \frac{u(x_i - h, y_j) - 2u(x_i, y_j) + u(x_i + h, y_j)}{h^2}$$

$$u_{yy}(x_i, y_j) \approx \frac{y(x_i, y_j - h) - 2u(x_i, y_j) + u(x_i, y_j + h)}{h^2}$$

Différences finies EDPpour paraboliques

- 1. Discrétiser l'espace (sous-intervalles de largeur h
- 2. Application des conditions aux bords puis recherche des valeurs aux nœuds en fonction du temps

$$x_i \to u_i(t)$$

$$u_i(t) \approx u(x_i, t)$$

3. On applique les conditions initiales

$$u_i(0) = u_0(x_i)$$

4. Résoudre le problème de Cauchy $\left(\frac{du}{dt} = g(x,t)\right)$ en matrices)

7.6 Méthode d'Euler explicite

$$\frac{du}{dt} = F(t_0, u_0)$$

Vu d'un autre angle, on veut approcher

$$\frac{d}{dt}\vec{u}(t) \approx \frac{u(t_i + \tau) - u(t_i)}{\tau}$$

$$\tau \le \frac{h^2}{2u}$$

Avec μ la constante de l'équation $u_t - \mu u_{xx} = f(x,t)$

7.8 Équation de transport

$$v \le \frac{h}{\tau} \longleftrightarrow \frac{v\tau}{h} = r \le 1$$

C'est la condition CFL : avec downwind c'est impossible de résoudre le problème. Avec les upwind on peut y arriver parce qu'on utilise les valeurs précédentes (la condition sur v reste valable).

L'analyse de Von Neumann montre que le schéma centré n'est pas stable (même si la condition CFL est vérifiée).

7.9 Exemple Différences finies

$$-u''(x) = f(x) = (3x + x^2)e^x$$
Avec CB (D) = 0
$$h = 1/5 \to 0\frac{1}{5}\frac{2}{5}\frac{3}{5}\frac{4}{5}1$$

7.10 méthode d'Euler

$$\vec{u}_{k+1} = \vec{u}_k + \tau \left(-A\vec{u}_k + \vec{b}(t_k) \right)$$

7.11 Méthode d'Euler implicite

$$\vec{u}_{k+1} = \vec{u}_k + \tau \left(-A\vec{u}_{k+1} + \vec{b}(t_{k+1}) \right)$$

Vérifier les formules... c'est illisible sur le polycop

8 Éléments finis

8.1 Forme forte

$$-u''(x) = f(x)$$

8.2 Forme faible / variationnelle (Ritz-Galerkin)

$$-u''(x)v(x) = f(x)v(x)$$

On multiplie des deux côtés par une fonction v(x) qui respecte

$$v(0) = v(l) = 0$$
$$\int_{0}^{l} -u''(x)v(x)dx = \int_{0}^{l} f(x)v(x)$$

8.2.1 Exemple

Avec $-u''(x) = x^2$. On aura un problème de la forme

$$A_h c = b_h$$

Avec les c qui correspondent au poids de chaque fonction de base.

Calcul de A (matrice de rigidité)

$$a_{ij} = \int_0^L N_i'(x)N_j'(x)dx$$

Calcul de b \vec{b} est le reste de l'équation (partie droite)

$$\int_{0}^{L} -u''(x)v(x) = \int_{0}^{1} f(x)v(x)$$

La plupart du temps on aura

$$b_i = \int_0^l f(x) N_i(x)$$

8.3 Maillage

Il ne doit pas y avoir de chevauchement d'éléments ou de points qui ne sont pas connectés ensembles.

9 Autres

9.1 Intégration par partie

$$\int_{a}^{b} u'v = uv \Big|_{a}^{b} - \int_{a}^{b} uv'$$

9.1.1 exemple

$$\begin{split} \int_{0}^{1} x^{2} \cdot \sin(n\pi x) dx &= \int_{0}^{1} f dg = fg \Big|_{0}^{1} - \int_{0}^{1} g df \\ f &= x^{2}, dg = \sin(n\pi x) dx \\ df &= 2x \cdot dx, g = -\frac{\cos(n\pi x)}{n\pi} \\ &= -\frac{x^{2} \cdot \cos(n\pi x)}{n\pi} \Big|_{0}^{1} + \int_{0}^{1} \frac{2x \cdot \cos(n\pi x)}{n\pi} \end{split}$$

9.2 Changement de variable

9.2.1 Méthode 1

Lorsque la dérivée $\varphi'(t)$ est présente

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

9.2.2 Méthode 2

Si $\varphi'(t) = \varphi' = \text{constante}$

$$\int_{a}^{b} f(\varphi(t))dt = \frac{1}{\varphi'} \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

9.3 Solutions générales

$$\begin{split} X'' &= -\beta^2 X & \longrightarrow X(x) = A\cos(\beta x) + B\sin(\beta x) \\ X'' &= \beta^2 X & \longrightarrow X(x) = A\cosh(\beta x) + B\sinh(\beta x) \\ X' &= aX & \longrightarrow X(x) = ce^{ax} \\ X'' &= 0 & \longrightarrow X(x) = Ax + B \end{split}$$

9.4 Équation d'euler

$$e^{jx} = \cos(x) + j\sin(x)$$

Séparation en éléments simples

9.6 Matrices

$$\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a} & -\frac{b}{ad} & \frac{be-cd}{adf} \\ 0 & \frac{1}{d} & -\frac{e}{fd} \\ 0 & 0 & \frac{1}{f} \end{pmatrix}$$

Même principe si on renverse

$$\left(M^T\right)^{-1} = \left(M^{-1}\right)^T$$

$$\begin{pmatrix} a & 0 & 0 \\ b & d & 0 \\ c & e & f \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & 0 \\ -\frac{b}{ad} & \frac{1}{d} & 0 \\ \frac{be-cd}{adf} & -\frac{e}{fd} & \frac{1}{f} \end{pmatrix}$$

9.6.1 Inverses

$$f(x) = \frac{x(x+1)}{(x-1)(x-0.25)(x-0.5)} \qquad \begin{array}{ll} \text{Attention ! Pas de ()}^n \\ \text{dans le dénominateur.} \\ \text{Sinon résolution à la main} \\ R_1 = \frac{1(1+1)}{(1-0.25)(1-0.5)} \\ \text{f}(x) = \frac{x(x+1)}{(x-1)(x-0.25)(x-0.5)} \\ \text{ } \end{array} \qquad \begin{array}{ll} R_2 = \frac{0.25(0.25+1)}{(0.25-1)(0.25-0.5)} \\ \text{f}(x) = \frac{R_1}{(x-1)} + \frac{R_2}{(x-0.25)} + \frac{R_3}{(x-0.5)} \\ \end{array} \qquad \begin{array}{ll} \text{Attention ! Pas de ()}^n \\ \text{dans le dénominateur.} \\ \text{Sinon résolution à la main} \\ R_1 = \frac{1(1+1)}{(1-0.25)(1-0.5)} \\ \text{Resultion in the experiment of the experime$$

$$R_1 = \frac{1(1+1)}{(1-0.25)(1-0.5)}$$

$$R_2 = \frac{0.25(0.25+1)}{(0.25-1)(0.25-0.5)}$$

$$R_3 = \frac{0.5(0.5+1)}{(0.5-1)(0.5-0.2)}$$

Pour une matrice 2×2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

9.7 A faire attention

- \bullet Dès qu'on utilise n on doit directement écrire la série de Fourier
- Ne pas oublier des termes (duh), genre devant des parenthèses
- Écrire les sin et cos lorsqu'on demande "les x premiers termes"
- Les +c

10 Exercices

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

10.1 Série 2 - Exercice 1

1. Résoudre $u_{tt} = c^2 u_{xx}$, $u(x, 0) = e^x$, $u_t(x, 0) = \sin(x)$.

On utilise la fonction générale

$$u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \sin(s)ds = \frac{1}{2} \left(e^{x+ct} + e^{x-ct}\right) + \frac{1}{2c} \left(-\cos(x+ct) + \cos(x-ct)\right)$$

On peut simplifier un peu les expressions

$$\frac{1}{2} \left(e^{x+ct} + e^{x-ct} \right) + \underbrace{\frac{1}{2c} \left(-\cos(x+ct) + \cos(x-ct) \right)}_{\frac{1}{2} (\sin(x)\sin(ct))} = \underbrace{e^x \underbrace{\frac{1}{2} \left(e^{ct} + e^{-ct} \right)}_{\cosh(ct)} + \underbrace{\frac{1}{2} \sin(x)\sin(ct)}_{\cosh(ct)}$$

10.2 Série 3 - Exercice 2

2. Résoudre l'équation de diffusion avec la condition initiale

$$\phi(x) = 1$$
, pour $|x| \le \ell$ et $\phi(x) = 0$, pour $|x| > \ell$.

Ecrire la réponse en utilisant la fonction $\mathcal{E}rf(x)$.

On utilise la fonction de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On applique la fonction $\phi(x)$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-l}^{l} e^{-\frac{(x-y)^2}{4kt}} dy$$

Puis on effectue un changement de variable $p(y) = \frac{x-y}{\sqrt{4kt}}$

$$dy = -\sqrt{4kt}dp$$
 $l \to \frac{x-l}{\sqrt{4kt}}$ $-l \to \frac{x+l}{\sqrt{4kt}}$

$$u(x,t) = \frac{-\sqrt{4kt}}{2\sqrt{\pi kt}} \int_{\frac{x+l}{\sqrt{4kt}}}^{\frac{x-l}{\sqrt{4kt}}} e^{-p^2} dp = \frac{-1}{\sqrt{\pi}} \int_{\frac{x+l}{\sqrt{4kt}}}^{\frac{x-l}{\sqrt{4kt}}} e^{-p^2} dp$$

On inverse les bornes (et le signe devant l'intégrale)

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{\frac{x-t}{\sqrt{4kt}}}^{\frac{x+t}{\sqrt{4kt}}} e^{-p^2} dp$$

On utilise la fonction erf

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

$$u(x,t) = \frac{1}{\sqrt{\pi}} \left(\frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{x+l}{\sqrt{4kt}}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{x-l}{\sqrt{4kt}}\right) \right)$$

$$u(x,t) = \frac{1}{2} \left(\operatorname{erf}\left(\frac{x+l}{\sqrt{4kt}}\right) - \operatorname{erf}\left(\frac{x-l}{\sqrt{4kt}}\right) \right)$$

(même chose que le corrigé)

10.3 Série 3 - Exercice 3

3. Résoudre l'équation de diffusion avec la condition initiale $\phi(x)=e^{3x}$.

On commence par poser l'équation de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On remplace par l'expression de $\phi(y)$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} e^{3y} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt} + 3y} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2 - 12kty}{4kt}} dy$$

On doit enlever le terme 12kty qui empêche de faire la simplification avec erf. On s'intéresse à la puissance de e et on utilise $(y + 2kt - x)^2$ (dans le résumé)

$$-\frac{(x-y)^2 - 12kty}{4kt} = -\frac{x^2 - 2xy + y^2 - 12kty}{4kt}$$

$$(y + 2kt - x)^2 = y^2 + 4k^2t^2 + x^2 + 4kty - 4ktx - 2xy$$

ça ressemble un peu mais on aimerait -12kty au lieu de 4kty, on inverse x et y et on multiplie le terme central par 3

$$(x + 6kt - y)^2 = y^2 + 36k^2t^2 + x^2 + 12ktx - 12kty - 2xy$$

C'est parfait, on a plus qu'à adapter l'équation de base pour utiliser ce terme

$$-\frac{(x+6kt-y)^2-36k^2t^2-12ktx}{4kt} = -\frac{x^2-2xy+y^2-12kty}{4kt}$$

Maintenant qu'on a le bon terme, il suffit de séparer pour garder les y d'un seul côté

$$-\frac{(x+6kt-y)^2}{4kt} + \frac{36k^2t^2 + 12ktx}{4kt} = -\frac{(x+6kt-y)^2}{4kt} + 9kt + 3x$$

On a plus qu'à remettre tout ça dans l'équation de base et résoudre

$$\frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x+6kt-y)^2}{4kt} + 9kt + 3x} dy = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\left(\frac{x+6kt-y}{\sqrt{4kt}}\right)^2} e^{9kt + 3x} dy$$

Comme le dernier terme ne dépend pas de y, on le sort

$$e^{9kt+3x}\frac{1}{2\sqrt{\pi kt}}\int_{-\infty}^{\infty}e^{-\left(\frac{x+6kt-y}{\sqrt{4kt}}\right)^2}dy$$

On effectue le changement de variable

$$p(y) = \frac{x + 6kt - y}{\sqrt{4kt}} \longrightarrow \begin{cases} \infty \to -\infty \\ -\infty \to \infty \\ dy \to -\sqrt{4kt}dp \end{cases}$$

$$e^{9kt+3x} \frac{-\sqrt{4kt}}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-p^2} dy = e^{9kt+3x} \frac{-1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^2} dy$$

On inverse les bornes (et le signe au début)

$$u(x,t) = e^{9kt+3x} \frac{1}{\sqrt{\pi}} \underbrace{\int_{-\infty}^{\infty} e^{-p^2} dy}_{\sqrt{\pi}}$$

On a donc finalement

$$u(x,t) = e^{9kt + 3x}$$

10.4 Série 3 - Exercice 4

4. Faire de même pour $\phi(x) = 1$ pour x > 0 et $\phi(x) = 3$ pour x < 0.

On commence par poser l'équation de base

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y) dy$$

On applique la fonction $\phi(y)$ et on trouve deux intégrales

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \left(3 \int_{-\infty}^{0} e^{-\frac{(x-y)^2}{4kt}} dy + \int_{0}^{\infty} e^{-\frac{(x-y)^2}{4kt}} dy \right)$$

Important! : on va effectuer deux changements de variables différents pour simplifier les calculs par la suite (voir le résumé)

$$p = \frac{x - y}{\sqrt{4kt}} \qquad q = \frac{y - x}{\sqrt{4kt}}$$

$$u(x,t) = \frac{1}{2\sqrt{\pi kt}} \left(-3\sqrt{4kt} \int_{-\infty}^{\frac{x}{\sqrt{4kt}}} e^{-p^2} dp + \sqrt{4kt} \int_{-\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp \right)$$

$$u(x,t) = \frac{\sqrt{4kt}}{2\sqrt{\pi kt}} \left(3 \underbrace{\int_{\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp}_{-\int_{0}^{\infty} -\int_{0}^{x}} + \underbrace{\int_{-\frac{x}{\sqrt{4kt}}}^{\infty} e^{-p^2} dp}_{-\frac{x}{\sqrt{4kt}}} \right)$$

$$u(x,t) = \frac{1}{\sqrt{\pi}} \left(4 \underbrace{\int_{0}^{\infty} e^{-p^2} dp}_{-\frac{x}{\sqrt{4kt}}} - 2 \underbrace{\int_{0}^{\frac{x}{\sqrt{4kt}}} e^{-p^2} dp}_{-\frac{x}{\sqrt{4kt}}} \right)$$

$$u(x,t) = 2 - \operatorname{erf}\left(\frac{x}{\sqrt{4kt}}\right)$$

10.5 Série 4 - Exercice 4

 Résoudre le problème de diffusion u_t = ku_{xx} sur 0 < x < ℓ, avec les conditions aux bords mixtes u(0, t) = u_x(ℓ, t) = 0.

On pose l'équation séparée

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda$$

$$T(t) = Ae^{-\lambda kt}$$

$$X(x) = A\cos(\beta x) + B\sin(\beta x)$$

$$X(0) = A + 0 = 0 \longrightarrow A = 0$$

$$X'(l) = B\beta \cos(\beta l) = 0 \longrightarrow \begin{cases} B = 0 \\ \beta = 0 \\ \beta l = n\pi + \frac{\pi}{2} \end{cases}$$

On va choisir la dernière option pour éviter que le problème soit trop facile

$$\beta = \frac{n\pi + \frac{\pi}{2}}{l} = \frac{\pi \left(n + \frac{1}{2}\right)}{l}$$

$$X(x) = B \sin\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$

$$u(x,t) = T(t)X(x) = Ce^{-\left(\frac{n\pi + \frac{\pi}{2}}{l}\right)^2 kt} \sin\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$
 $C = AB$

10.6 Série 4 - Exercice 5

- 5. Considérons l'équation $u_{tt} = c^2 u_{xx}$ pour $0 < x < \ell$, avec les conditions aux bords $u_x(0,t) = 0$, $u(\ell,t) = 0$ (Neumann à gauche, Dirichlet à droite).
 - (a) Montrer que les fonctions propres sont

$$\cos\left(\frac{(n+1/2)\pi}{\ell}x\right).$$

(b) Donner le développement en série de la solution.

10.6.1 (a)

$$\frac{X''}{X} = \frac{T''}{c^2 T} = -\lambda$$

$$\lambda = \beta^{2}$$

$$\begin{cases} T(t) = A\cos(\beta ct) + B\sin(\beta ct) \\ X(x) = C\cos(\beta x) + D\sin(\beta x) \end{cases}$$

$$X'(0) = D\beta = 0 \longrightarrow \begin{cases} D = 0 \\ \beta = 0 \end{cases}$$

On va supposer que D=0, sinon le problème n'est pas intéressant

$$X(l) = C\cos(\beta l) = 0 \longrightarrow \begin{cases} C = 0\\ \beta l = n\pi + \frac{\pi}{2} \end{cases}$$

On va supposer que c'est la deuxième option, sinon le problème n'est pas intéressant

$$\beta = \frac{n\pi + \frac{\pi}{2}}{l}$$

On a donc

$$X(x) = C\cos\left(\frac{n\pi + \frac{\pi}{2}}{l}x\right)$$

10.6.2 (b)

$$u(x,t) = \sum_{n=0}^{\infty} \left(A \cos \left(\frac{n\pi + \frac{\pi}{2}}{l} ct \right) + B \sin \left(\frac{n\pi + \frac{\pi}{2}}{l} ct \right) \right) C \cos \left(\frac{n\pi + \frac{\pi}{2}}{l} x \right)$$

10.7 Série 5 - Exercice 1

1. Résoudre $u_{xx} + u_{yy} = 0$ dans le rectangle $0 < x < a, \ 0 < y < b$ avec les conditions aux bords:

$$u_x = -a \operatorname{sur} x = 0$$
 $u_x = 0 \operatorname{sur} x = a$
 $u_y = b \operatorname{sur} y = 0$ $u_y = 0 \operatorname{sur} y = b$

Aide: Un raccourci consiste à supposer que la solution est un polynôme quadratique en x et $y.\,$

On sais que la solution sera de la forme

$$u(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F$$

On applique les conditions aux bords de manière successive. D'abord sur \boldsymbol{x} :

$$u_x(0,y) = -a \qquad u_x(a,y) = 0$$

$$u_x(0,y) = C_y + D = -a \longrightarrow \boxed{C = 0} \boxed{D = -a}$$

$$u_x(a,y) = 2Aa - a = 0 \longrightarrow \boxed{A = \frac{1}{2}}$$

Ensuite sur y

$$u_y(x,0) = b$$
 $u_y(x,b) = 0$
$$u_y(x,0) = C_x + E = b \longrightarrow \boxed{E = b}$$

$$u_y(x,b) = 2Bb + b \longrightarrow \boxed{B = -\frac{1}{2}}$$

On a directement la solution finale

$$u(x,y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 - ax + by + C_1$$
 $C_1 \in \mathbb{R}$

10.8 Série 6 - Exercice 2

2. Soit

$$\phi(x) \equiv x^2$$
 pour $0 \le x \le 1 = \ell$.

- (a) Calculer sa série de Fourier en sinus (impaire).
- (b) Calculer sa série de Fourier en cosinus (paire).

10.8.1 (a)

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{l}x\right)$$
$$A_n = \frac{2}{l} \int_{-l}^{l} x^2 \sin\left(\frac{n\pi x}{l}\right) dx$$

On utilise l'intégration par parties pour supprimer le x^2

$$A_{n} = \frac{2}{l} \int_{0}^{1} \underbrace{x^{2}}_{v} \underbrace{\sin(n\pi x)}_{v'} dx = \frac{2}{l} \left(\left(-x^{2} \frac{1}{n\pi} \cos(n\pi x) \right)_{0}^{1} + \int_{0}^{1} 2x \frac{1}{n\pi} \cos(n\pi x) dx \right)$$

On refait une intégration par parties

$$A_n = \frac{2}{l} \left(\frac{-1}{n\pi} \cos(n\pi) + \underbrace{\left(2x \frac{1}{n^2 \pi^2} \sin(n\pi x)\right)_0^1}_{0} - \int_0^1 2 \frac{1}{n^2 \pi^2} \sin(n\pi x) dx \right)$$

on effectue l'intégrale

$$A_n = \frac{2}{l} \left(\frac{-1}{n\pi} \cos(n\pi) + \frac{2}{n^2 \pi^2} \left(\frac{1}{n\pi} \cos(n\pi x) \right)_0^1 \right) = \frac{-2}{n\pi} \cos(n\pi) + \frac{4}{n^3 \pi^3} \left(\cos(n\pi) - 1 \right)$$

$$A_n = \frac{(4 - 2n^2 \pi^2)(-1)^n - 4}{n^3 \pi^3}$$

On obtient donc l'équation finale

$$\phi(x) = \sum_{n=1}^{\infty} \frac{(4 - 2\pi^2 n^2)(-1)^n - 4}{\pi^3 n^3} \sin(n\pi x)$$

10.8.2 (b)

Comme avant on pose les équations de base

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\pi x)$$

$$A_n = 2 \int_0^1 \phi(x) \cos(n\pi x) dx$$

On commence par déterminer A_0 qui est facile

$$A_0 = 2 \int_0^1 x^2 dx = 2 \left(\frac{x^3}{3}\right)_0^1 = \frac{2}{3}$$

On fait une intégration par parties

$$A_{n} = 2 \int_{0}^{1} \underbrace{x^{2}}_{v} \underbrace{\cos(n\pi x)}_{u'} dx = 2 \left(\underbrace{\left(x^{2} \frac{1}{n\pi} \sin(n\pi x)\right)_{0}^{1}}_{0} - \int_{0}^{1} 2x \frac{1}{n\pi} \sin(n\pi x) dx \right)$$

On peut simplifier puis on refait une intégration par parties

$$A_{n} = \frac{-4}{n\pi} \int_{0}^{1} \underbrace{x}_{v} \underbrace{\sin(n\pi x)}_{n'} dx = \frac{-4}{n\pi} \left(\left(-x \frac{1}{n\pi} \cos(n\pi x) \right)_{0}^{1} + \int_{0}^{1} \frac{1}{n\pi} \cos(n\pi x) dx \right)$$

$$A_{n} = \frac{-4}{n^{2}\pi^{2}} \left(\underbrace{(-x\cos(n\pi x))_{0}^{1}}_{-\cos(n\pi)} + \underbrace{\left(\frac{1}{n\pi}\sin(n\pi x)\right)_{0}^{1}}_{0} \right)$$

On a donc finalement

$$A_n = \frac{4(-1)^n}{n^2 \pi^2}$$

Et l'équation finale

$$\phi(x) = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2 \pi^2} \cos(n\pi x)$$

10.9 Série 6 - Exercice 5

5. Résoudre

$$u_{tt} = c^2 u_{xx}$$
 pour $0 < x < \pi$

avec les conditions aux bords

$$u_x(0,t) = u_x(\pi,t) = 0$$

et les conditions initiales

$$u(x, 0) = 0$$
 et $u_t(x, 0) = \cos^2(x)$.

Utiliser le fait que $\cos^2(x) = 1/2 + \cos(2x)/2$.

On utilise la solution générale de l'équation d'onde pour un problème avec conditions aux bords de Neumann $(u_x(0,t)=u_x(l,t)=0)$

$$u(x,t) = \frac{1}{2}A_0 + \frac{1}{2}B_0t + \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{n\pi c}{l}t\right) + B_n \sin\left(\frac{n\pi c}{l}t\right) \right) \cos\left(\frac{n\pi}{l}x\right)$$

Avec les conditions initiales

$$\phi(x) = u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right)$$

$$\psi(x) = u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right)$$

On applique les conditions initiales

$$u(x,0) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{l}x\right) = 0 \longrightarrow \begin{cases} A_0 = 0\\ A_n = 0 \end{cases}$$

$$u_t(x,0) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right) = \frac{1}{2} + \frac{\cos(2x)}{2}$$

$$\frac{1}{2}B_0 = \frac{1}{2} \longrightarrow \boxed{B_0 = 1}$$

$$\sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \cos\left(\frac{n\pi}{l}x\right) = \frac{\cos(2x)}{2}$$
On a $n = 2$ et $l = \pi$

$$\frac{2\pi c}{\pi} B_2 \cos\left(\frac{2\pi}{\pi}x\right) = \frac{\cos(2x)}{2}$$

$$2cB_2 \cos(2x) = \frac{\cos(2x)}{2}$$

$$2cB_2 = \frac{1}{2}$$

$$4cB_2 = 1$$

On écrit donc la solution finale

$$u(x,t) = \frac{1}{2}t + \frac{1}{4c}\sin(2ct)\cos(2x)$$

 $B_2 = \frac{1}{4\pi}$

10.10 Série 7 - Exercice 4

4. Faire appel à la transformée de Laplace pour résoudre l'équation différentielle $y'' - k^2 y = 0$ satisfaisant les conditions initiales y(0) = A et y'(0) = B, où k, A et B sont des constantes.

$$s^{2}Y(s) - sy(0) - y'(0) - k^{2}Y(s) = 0$$

$$Y(s)(s^{2} - k^{2}) = sy(0) + y'(0)$$

$$Y(s) = \frac{sy(0)}{s^{2} - k^{2}} + \frac{y'(0)}{s^{2} - k^{2}} = A\frac{s}{s^{2} - k^{2}} + \frac{B}{k}\frac{k}{s^{2} - k^{2}}$$

$$y(t) = A\cosh(kt) + \frac{B}{k}\sinh(kt)$$