2024 届高三第一次学业质量评估(T8 联考)数学试卷

	学校:	姓名:	班级:	考号:
	、选择题		ar) muc v	
1,	已知集合 $A = \{x\}$	$\left \log_2 x < 1\right\} , B = \left\{y\right\}$	$y=2^x$, 则()	
A.	$A \cap B = \emptyset$	$B. A \cap B = A$	$C. A \bigcup B = \mathbf{R}$	$D. A \bigcup B = A$
2,	已知复数 z 满足	$\frac{1}{2}(z+2)i = 2z-1$,则	复数 =()	
A.i	i	B. –i	$C.\sqrt{5}i$	$D\sqrt{5}i$
3、	已知 $\{a_n\}$ 为等差	数列 , $m,n,p,q \in \mathbf{N}$	* ,则 " $m+n=p+q$	"是" $a_m + a_n = a_p + a_q$ "
的	()			
Α.	充分不必要条件	B.必要不充分条件	C.充要条件	D.既不充分也不必要条件
4、	直线 x-y-1=0	将圆 $(x-2)^2+(y-3)$	2=8分成两段,这两	两段圆弧的弧长之比为()
A.	1:2	B.1:3	C.1:5	D.3:5
5、	设 F 为抛物线 y	$v^2 = 2x$ 的焦点,A,A	B , C 为抛物线上的 \overline{B}	三个点,若
\overline{F}	$\vec{A} + \vec{FB} + \vec{FC} = \vec{0}$,	则 $ \overrightarrow{FA} + \overrightarrow{FB} + \overrightarrow{FC} $	c ⊨()	
Α.	6	B.4	C.3	$D.\frac{3}{2}$
6,	秋冬季节是某呼	吸道疾病的高发期,	,为了解该疾病的发	病情况,疾控部门对该地区
居	民进行普查化验	, 化验结果阳性率为	1.97%, 但统计分析	行结果显示患病率为 1%.医
学	研究表明化验结织	果是有可能存在误差	的,没有患该疾病的	居民其化验结果呈阳性的
概	率为 0.01 , 则该	地区患有该疾病的居	民化验结果呈阳性的	勺概率为()
Α.(0.96	B.0.97	C.0.98	D.0.99
7、	已知正数 a , b	, c 满足 $ae^a = b \ln b =$	$e^{c} \ln c = 1$, \mathbb{M} a , b	, c 的大小关系为 $()$
A.	c < a < b	B. c < b < a	C. a < b < c	D. $a < c < b$
8,	一只蜜蜂从蜂房	; A 出发向右爬,每	次只能爬向右侧相邻	的两个蜂房(如图),例
如	: 从蜂房 <i>A</i> 只能	爬到 1号或 2号蜂	房,从 1 号蜂房只能	に爬到 2号或 3号蜂房

以此类推,用 $a_{\scriptscriptstyle n}$ 表示蜜蜂爬到 $\,n$ 号蜂房的方法数,则 $a_{\scriptscriptstyle 2022}a_{\scriptscriptstyle 2024}$ – $a_{\scriptscriptstyle 2023}^2$ = ($\,$)

二、多项选择题

9、小明上学有时坐公交车,有时骑自行车,他各记录了 10次坐公交车和骑自行车所花的时间,10次坐公交车所花的时间分别为 7,11,8,12,8,13,6,13,7,15 (单位:min),10次骑自行车所花时间的均值为 15min,方差为 1.已知坐公交车所花时间 X 与骑自行车所花时间 Y 都服从正态分布,用样本均值和样本方差估计 X, Y 分布中的参数,并利用信息技术工具画出 X 和 Y 的分布密度曲线如图所示.若小明每天需在早上 8点之前到校,否则就迟到,则下列判断正确的是()

A.坐公交车所花时间的均值为 10, 方差为 3

B.若小明早上 7:50 之后出发,并选择坐公交车,则有 50%以上的可能性会迟到

C.若小明早上 7:42 出发,则应选择骑自行车

D.若小明早上 7:47 出发,则应选择坐公交车

10、如图,在四边形 ABCD中, $\angle DAB = 60^{\circ}$, $\angle DCB = 120^{\circ}$,AB = 2, $BC = \sqrt{2}$, $\overrightarrow{BA} \cdot \overrightarrow{BC} = 2$,则下列结果正确的是()

A. $\angle ABC = 45^{\circ}$ B. $AC = \sqrt{3}$ C. $BD = \sqrt{3}$ D. $\triangle ADC$ 的面积为 $\frac{\sqrt{3}-1}{4}$

11、已知函数 f(x) 的定义域为 **R**,则下面判断正确的是()

A.若 $\forall x \in \mathbf{R}$, f(x+1) > f(x) , 则函数 f(x) 在 \mathbf{R} 上是增函数

B.若 $\forall x_1$, $x_2 \in \mathbf{R}$, $\left| f(x_1) + f(x_2) \right| \le \left| \sin x_1 + \sin x_2 \right|$, 则函数 f(x) 是奇函数

C.若 $\forall x_1$, $x_2 \in \mathbf{R}$, $\left| f(x_1) - f(x_2) \right| \le \left| \sin x_1 - \sin x_2 \right|$, 则函数 f(x) 是周期函数

D.若 $\forall x_1$, $x_2 \in (-1,1)$ 且 $x_1 \neq x_2$, $|f(x_1) - f(x_2)| < |\sin x_1 - \sin x_2|$, 则函数 $f(x) + \sin x$ 在

区间(-1,1)上单调递增,函数 $f(x) - \sin x$ 在区间(-1,1)上单调递减

12、如图,已知正三棱台 $ABC - A_iB_iC_i$ 的上、下底面边长分别为 2 和 6,侧棱长为

4,点 P 在侧面 BCC_1B_1 内运动(包含边界),且 AP 与平面 BCC_1B_1 所成角的正切值为

 $2\sqrt{2}$,点 Q 为 CC_1 上一点 ,且 $\overrightarrow{CQ} = 3\overrightarrow{QC_1}$,则下列结论中正确的有()

A.正三棱台 $ABC - A_1B_1C_1$ 的高为 $2\sqrt{6}$

B.点 P 的轨迹长度为 $\sqrt{3}\pi$

C.高为 $\frac{4\sqrt{6}}{3}$,底面半径为 $\frac{\sqrt{3}}{6}$ 的圆柱可以放进棱台内

D.过点 A, B, Q 的平面截该棱台内最大的球所得的截面面积为 $\frac{3}{2}\pi$

三、填空题

13、已知单位向量 \vec{a} , \vec{b} 的夹角为 60° , $\vec{c} = t\vec{a} + (1-t)\vec{b}$, 若 $\vec{b} \cdot \vec{c} = 0$, 则 $t = \underline{\qquad}$

14、 已知 $(1+x)^5 = a_0 + a_1 x + a_2 x^2 + \dots + a_5 x^5$,则

 $a_5 + 2a_4 + 4a_3 + 8a_2 + 16a_1 + 32a_0 = \underline{\hspace{1cm}}$

15、三棱锥 P-ABC 的每一个面都是边长为 1 的正三角形,以它的高 PH 所在直线为旋转轴,将其旋转 60° 得到三棱锥 P-A'B'C',则两个三棱锥公共区域的体积为

16、已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ (a>0, b>0)的左、右焦点分别为 F_1 , F_2 , 若过点 F_2 的直线与双曲线的左、右两支分别交于 A, B 两点,且 $AF_1=BF_1=2\sqrt{5}$.又以双曲线的顶点为圆心,半径为 $2\sqrt{2}$ 的圆恰好经过双曲线虚轴的端点,则双曲线的离心率为

四、解答题

17、已知函数 $f(x) = A\sin(\omega x + \varphi)$ ($\omega > 0$, $0 < \varphi < \pi$) 及其导函数的图象如图所示.

- (1) 求函数 f(x) 的解析式;
- (2) 若函数 f(x) 在区间 (0,m) 上恰有 2 个极值点和 2 个零点,求实数 m 的取值范围. 18、如图,直四棱柱 $ABCD-A_1B_1C_1D_1$ 的底面为菱形, AB=AC=2, $AA_1=2\sqrt{3}$.

- (1)证明:平面 *A₁C₁B* ⊥ 平面 *BDD₁B₁*;
- (2) 求直线 DC_1 与平面 A_1C_1B 所成角的正弦值.
- 19、为应对全球气候变化,我国制定了碳减排的国家战略目标,采取了一系列政策措施积极推进碳减排,作为培育发展新动能、提升绿色竞争力的重要支撑,节能环保领

域由此成为全国各地新一轮产业布局的热点和焦点.某公司为了解员工对相关政策的了解程度,随机抽取了 180 名员工进行调查,得到如下表的数据:

了解程度	性别		合计
עובריוניו נ	男性	女性	
比较了解	60	60	
不太了解	20	20	
合计			

- (1)补充表格,并根据小概率值 $\alpha = 0.025$ 的独立性检验,分析了解程度与性别是否有关?
- (2)用分层抽样的方式从不太了解的人中抽取 12 人,再从这 12 人中随机抽取 6 人,用随机变量 X 表示这 6 人中男性员工人数与女性员工人数之差的绝对值,求 X 的分布列和数学期望.

附表及公式:

$$a$$
0.10
0.05
0.025
0.010
0.001

 x_a
2.706
3.841
5.024
6.635
10.828

$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}.$$

20、已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦点为 F , 点 P 是椭圆与 x 轴正半轴的交点,点 Q 是椭圆与 y 轴正半轴的交点,且 $|FQ|=\sqrt{2}$, $|PF|=\sqrt{2}-1$.直线 l 过圆 $O:x^2+y^2=1$ 的圆心,并与椭圆相交于 A ,B 两点,过点 A 作圆 O 的一条切线,与椭圆的另一个交点为 C ,且 $S_{\triangle ABC}=\frac{4}{3}$.

- (1) 求椭圆的方程;
- (2) 求直线 AC 的斜率.

- 21、已知数列 $\{a_n\}$ 为等差数列,公差 d>0,等比数列 $\{b_n\}$ 满足: $b_1=2a_1=2$, $b_2=a_1+a_3$, $b_1b_3=5a_3+1$.
- (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式;
- (2) 若将数列 $\{a_n\}$ 中的所有项按原顺序依次插入数列 $\{b_n\}$ 中,组成一个新数列: b_1 , a_1 , b_2 , a_2 , a_3 , b_3 , a_4 , a_5 , a_6 , a_7 , b_4 ,…,在 b_k 与 b_{k+1} 之间插入 2^{k-1} 项 $\{a_n\}$ 中的项,新数列中 b_{n+1} 之前(不包括 b_{n+1})所有项的和记为 T_n ,若 $d_n = \frac{a_n^2}{a_{n+1}} \left(\frac{2^{n-1}}{T_n+2}+2\right)$,求使得 $[d_1]+[d_2]+[d_3]+\dots+[d_n] \le 2023$ 成立的最大正整数 n 的值.(其中符号 [x] 表示不超过 x 的最大整数)
- 22、已知函数 $f(x) = 3a x (x + 1)\ln(x + 1)$, $g(x) = a^2 e^x + \frac{1}{2}(2 a)x^2 3ax(x > -1)$, $1 \le a \le 6$, g(x) 的导函数记为 g'(x) , e 为自然对数的底数 , 约为 2.718.
- (1) 判断函数 f(x) 的零点个数;
- (2)设 $_{x_1}$ 是函数 $_{f(x)}$ 的一个零点, $_{x_2}$ 是函数 $_{g(x)}$ 的一个极值点,证明:
- ① $-1 < x_2 < 1 < x_1$; ② $f(x_2) < g'(x_1)$.

参考答案

1、答案:B

解析: $: A = \{x | \log_2 x < 1\} = \{x | 0 < x < 2\}$, $B = \{y | y = 2^x\} = \{y | y > 0\}$, $:: A \cap B = A$, $A \cup B = B$, 故正确选项为 B.

2、答案:B

解析:由
$$(z+2)i=2z-1$$
可得 $(2-i)z=1+2i$, $\therefore z=\frac{1+2i}{2-i}=\frac{(1+2i)(2+i)}{(2-i)(2+i)}=i$, $\therefore z=-i$,

故正确选项为 B.

3、答案:A

解析:设 $\{a_n\}$ 的公差为 d,由 $a_m+a_n=a_p+a_q$ 可得

 $2a_1 + (m+n-2)d = 2a_1 + (p+q-2)d$, $\therefore (m+n-2)d = (p+q-2)d$, $\therefore m+n=p+q$ 或 d=0 , \therefore " m+n=p+q " 不是 " $a_m+a_n=a_p+a_q$ " 的必要条件;若 m+n=p+q ,则 一定有 $a_m+a_n=a_p+a_q$, \therefore " m+n=p+q " 是 " $a_m+a_n=a_p+a_q$ " 的充分条件,故正确选项为 A.

4、答案: A

解析:设直线与圆的两个交点为 A、B,圆心为 C, $\angle ACB = 2\alpha(0 < \alpha < \pi)$,:圆心到

直线的距离为
$$\frac{|2-3-1|}{\sqrt{2}} = \sqrt{2}$$
 , $\cos \alpha = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$, $\because 0 < \alpha < \pi$, $\therefore \alpha = \frac{\pi}{3}$,

 $\therefore \angle ACB = \frac{2\pi}{3}$, 两段圆弧的弧长之比等于两段弧所对圆心角的弧度数之比,等于

$$\frac{2\pi}{3}$$
: $\left(2\pi - \frac{2\pi}{3}\right) = 1:2$, 故正确选项为 A.

5、答案: C

解析:设
$$A(x_1,y_1)$$
, $B(x_2,y_2)$, $C(x_3,y_3)$,则 $\left(x_1-\frac{1}{2}\right)+\left(x_2-\frac{1}{2}\right)+\left(x_3-\frac{1}{2}\right)=0$,

$$\therefore x_1 + x_2 + x_3 = \frac{3}{2} \quad ,$$

$$\exists \overrightarrow{FA} \mid + \mid \overrightarrow{FB} \mid + \mid \overrightarrow{FC} \mid = \left(x_1 + \frac{1}{2}\right) + \left(x_2 + \frac{1}{2}\right) + \left(x_3 + \frac{1}{2}\right) = x_1 + x_2 + x_3 + \frac{3}{2} = 3$$

故正确选项为 C.

6、答案:C

解析:设A = "患有该疾病", B = "化验结果呈阳性".由题意可知P(A) = 0.01,

$$P(B) = 0.0197$$
 , $P(B \uparrow A) = 0.01$... $P(B) = P(A)P(B \uparrow A) + P(\overline{A})P(B \uparrow \overline{A})$,

 $\therefore 0.0197 = 0.01 \times P(B h A) + 0.99 \times 0.01$,解得 P(B h A) = 0.98.

:患有该疾病的居民化验结果呈阳性的概率为 0.98 , 故正确选项为 C.

7、答案:D

解析:易知b>1,c>1,0<a<1,∴排除选项 A和 B.当x>1时,函数 $y=x\ln x$ 和 函数 $y=e^x\ln x$ 均单调递增,且 $x\ln x<e^x\ln x$... 由 $b\ln b=e^c\ln c$ 可得 c<b .综上所述, a<c<b .故正确选项为 D.

8、答案:A

解析:由题意可得 $a_1=1$, $a_2=2$, $a_3=3$, $a_4=5$, $a_{n+1}=a_n+a_{n-1}$ ($n\in {\bf N}^*$, $n\geq 2$) .

$$\therefore n \ge 2 \text{ ft} \text{ , } a_n a_{n+2} - a_{n+1}^2 = a_n \left(a_{n+1} + a_n \right) - a_{n+1}^2 = a_n a_{n+1} + a_n^2 - a_{n+1}^2 = a_n^2 + a_{n+1} \left(a_n - a_{n+1} \right)$$

$$= a_n^2 - a_{n+1}a_{n-1} = -(a_{n-1}a_{n+1} - a_n^2).$$

 $: a_1 a_3 - a_2^2 = -1$, .. 数列 $\{a_n a_{n+2} - a_{n+1}^2\}$ 是以 -1 为首项 , -1 为公比的等比数列.

$$\therefore a_{2022}a_{2024} - a_{2023}^2 = (-1) \times (-1)^{2021} = 1 ,$$

故正确选项为 A.

9、答案:BCD

解析: 坐公交车所花时间的均值为 $\frac{7+11+8+12+8+13+6+13+7+15}{10}$ =10,方差为

$$\frac{1}{10} \left(3^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 3^2 + 3^2 + 5^2 \right) = 9 ,$$

故选项 A 错误.

根据题意,可以得到 $X \sim N\left(10,3^2\right)$, $Y \sim N\left(15,1^2\right)$, $\therefore 7:50$ 之后出发,并选择坐公交车,有 50% 以上的可能性会超过 $10\min$,即 8 点之后到校,会迟到,故选项 B 正确. 由图可知, $P(X \le 18) < P(Y \le 18)$, $P(X \le 13) > P(Y \le 13)$, 应选择在给定的时间内不迟到的概率大的交通工具.

.. 小明早上 7:42 出发,有18min 可用,则应选择骑自行车,故选项 C 正确. 小明早上 7:47 出发,只有13min 可用,则应选择坐公交车,故选项 D 正确.故正确选项为 BCD.

10、答案: ACD

解析:由 $\overrightarrow{BA} \cdot \overrightarrow{BC} = 2$ 可得 $2\sqrt{2} \cos B = 2$,

$$\therefore \cos B = \frac{\sqrt{2}}{2}$$
 , $\because 0 < \angle ABC < 180^{\circ}$, $\therefore \angle ABC = 45^{\circ}$, 故选项 A 正确.

连接 AC ,在 $\triangle ABC$ 中 , $AC^2=2^2+(\sqrt{2})^2-2\times2\times\sqrt{2}\cos45^\circ=2$, $\therefore AC=\sqrt{2}$,故选项 B 错误.

$$\therefore AC = BC = \sqrt{2}$$
, $AB = 2$, $\therefore \angle ACB = 90^{\circ}$,

在四边形 ABCD 中, $: \angle DAB + \angle DCB = 180^{\circ}$, : A , B , C , D 四点共圆.

连接 BD , $\therefore \angle ADB = 90^{\circ}$, $\therefore AD = AB\cos A = 1$, $BD = AB\sin A = \sqrt{3}$, 故选项 C 正确.

$$\triangle ADC$$
的面积 $S = \frac{1}{2}AD \cdot AC \cdot \sin 15^\circ = \frac{1}{2} \times 1 \times \sqrt{2} \times \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{3} - 1}{4}$.故正确选项为 ACD.

11、答案:BCD

解析: $\diamondsuit f(x) = \sin(2\pi x) + x$, 满足 f(x+1) > f(x) ,

但 f(x) 在 R 上不是增函数, 故选项 A 错误.

即 f(x) = -f(-x) , .. 函数 f(x) 是奇函数 , 故选项 B 正确.

 $\because \forall x_1$, $x_2 \in \mathbf{R}$, 都有 $\left| f(x_1) - f(x_2) \right|$ 型版 $\inf x_1 - \sin x_2 \mid$,

 $|f(x) - f(x + 2\pi)| \le \sin x - \sin(x + 2\pi) = 0$, $|f(x) - f(x + 2\pi)| = 0$,

即 $f(x) = f(x+2\pi)$, f(x) 是周期函数 , 故选项 C 正确.

任取 $-1 < x_1 < x_2 < 1$, $y = \sin x$ 在区间(-1,1) 上单调递增, $\sin x_1 < \sin x_2$,

$$|\sin x_1 - \sin x_2| = \sin x_2 - \sin x_1 , : |f(x_1) - f(x_2)| < \sin x_2 - \sin x_1 ,$$

$$\therefore \sin x_1 - \sin x_2 < f(x_1) - f(x_2) < \sin x_2 - \sin x_1 ,$$

∴
$$f(x_2) - \sin x_2 < f(x_1) - \sin x_1 \coprod f(x_1) + \sin x_1 < f(x_2) + \sin x_2$$
,

 \therefore 函数 $f(x) + \sin x$ 在区间 (-1,1) 上单调递增,函数 $f(x) \sin x$ 在区间 (-1,1) 上单调递减,故选项 D 正确.故正确选项为 BCD.

12、答案:CD

解析: 依题意,如图,延长正三棱台侧棱相交于点O,:OA = OB = OC.

在等腰梯形 BCC_1B_1 中,由 BC=6 , $B_1C_1=2$, $BB_1=CC_1=4$, 易知 $\angle B_1BC=\angle C_1CB=60^\circ \, .$

 $:\triangle OBC$ 为等边三角形, 三棱锥 O-ABC 为正四面体, $OB_1=2$.

如图,设H为等边 $\triangle OBC$ 的中心,易证 $AH \perp$ 侧面OBC,

$$\therefore AH = \sqrt{6^2 - \left(\frac{6}{\sqrt{3}}\right)^2} = 2\sqrt{6} ,$$

 $\therefore O$ 点到底面 ABC 的距离为 $2\sqrt{6}$,又 $OB_1=2$, $BB_1=4$, \therefore 正三棱台 $ABC-A_1B_1C_1$ 的高为 $\frac{2}{3}\times 2\sqrt{6}=\frac{4\sqrt{6}}{3}$,故选项 A 错误.

 $\therefore AP$ 与平面 BCC_1B_1 所成角的正切值为 $2\sqrt{2}$,即 $\tan \angle APH = \frac{AH}{HP} = \frac{2\sqrt{6}}{HP} = 2\sqrt{2}$,

 $\therefore HP = \sqrt{3}$.正好为等边 $\triangle OBC$ 的内切圆半径 , \therefore 点 P 的轨迹长度为 $2\sqrt{3}\pi$, 故选项 B错误.

:: 正三棱台 $ABC-A_1B_1C_1$ 的高 $\frac{4\sqrt{6}}{3}$, $\triangle A_1B_1C_1$ 的内切圆半径为 $\frac{\sqrt{3}}{3}>\frac{\sqrt{3}}{6}$,:: 可以放入,故选项 C 正确.

设正四面体O-ABC的内切球半径 r , 则 $\frac{1}{3}S_{\triangle ABC} \times 2\sqrt{6} = 4 \times \frac{1}{3}S_{\triangle ABC} \cdot r$, 解得 $r = \frac{\sqrt{6}}{2}$

 $\therefore 2r < \frac{4\sqrt{6}}{3}$, ... 该棱台内最大的球即为正四面体O-ABC的内切球.

 $\because \overrightarrow{CQ} = 3\overrightarrow{QC_1}$, $CC_1 = 4$, OC = 6 , $\therefore Q$ 为 OC 的中点 , 过点 A , B , Q 的平面正好过该

内切球的球心,故截面面积为 $\left(\frac{\sqrt{6}}{2}\right)^2\pi=\frac{3}{2}\pi$,故选项 D 正确.故正确选项为 CD.

13、答案:2

解析:依题意, $\vec{b} \cdot \vec{c} = \vec{b} \cdot [t\vec{a} + (1-t)\vec{b}] = t\vec{a} \cdot \vec{b} + (1-t)\vec{b}^2 = \frac{1}{2}t + 1 - t = 0$,解得t = 2.

14、答案:243

解析: $(x+1)^5 = C_5^0 + C_5^1 x + C_5^2 x^2 + \dots + C_5^5 x^5$, $a_0 = a_5 = C_5^0$, $a_1 = a_4 = C_5^1$,

$$a_2 = a_3 = C_5^2$$
 ,

$$\therefore (1+x)^5 = a_5 + a_4 x + a_3 x^2 + a_2 x^3 + a_1 x^4 + a_0 x^5 , \Leftrightarrow x = 2 \ \mbox{9}$$

$$a_5 + 2a_4 + 4a_3 + 8a_2 + 16a_4 + 32a_0 = 3^5 = 243.$$

15、答案:
$$\frac{\sqrt{2}}{18}$$

解析:如图,依题意可得,绕高旋转60°后,与原底面重合部分为正六边形.

 \because 正三角形的边长为 1 , \therefore 正六边形的边长为 $\frac{1}{3}$, 面积为 $\frac{\sqrt{3}}{6}$.

又易知各棱长均为 1 的三棱锥的高为 $\frac{\sqrt{6}}{3}$, .. 公共区域的体积为 $\frac{1}{3} \times \frac{\sqrt{3}}{6} \times \frac{\sqrt{6}}{3} = \frac{\sqrt{2}}{18}$.

16、答案:2

解析:如图 , $:AF_1 = BF_1 = 2\sqrt{5}$, $AF_2 - AF_1 = 2a = BF_1 - BF_2$,

$$\therefore AF_2 = 2\sqrt{5} + 2a \quad , \quad BF_2 = 2\sqrt{5} - 2a \quad , \quad \therefore AB = AF_2 - BF_2 = 4a \ .$$

: 以双曲线的顶点为圆心,半径为 $2\sqrt{2}$ 的圆恰好经过双曲线虚轴的端点,

$$\therefore a^2 + b^2 = (2\sqrt{2})^2 = c^2 , \therefore c^2 = 8 , \therefore F_1F_2 = 4\sqrt{2}.$$

在△
$$BF_1F_2$$
中, $\cos \angle F_1BF_2 = \frac{(2\sqrt{5})^2 + (2\sqrt{5} - 2a)^2 - (4\sqrt{2})^2}{2 \times 2\sqrt{5} \times (2\sqrt{5} - 2a)} = \frac{8 - 8\sqrt{5}a + 4a^2}{4\sqrt{5}(2\sqrt{5} - 2a)}$,

在
$$\triangle AF_1B$$
中, $\cos \angle ABF_1 = \frac{2a}{2\sqrt{5}} = \frac{\sqrt{5}}{5}a$.

$$\therefore \angle F_1 B F_2 = \pi - \angle A B F_1$$
, $\therefore \cos \angle F_1 B F_2 = -\cos \angle A B F_1$,

$$\therefore \frac{8 - 8\sqrt{5}a + 4a^2}{4\sqrt{5}(2\sqrt{5} - 2a)} = -\frac{\sqrt{5}}{5}a \text{ , 解得 } a^2 = 2 \text{ , } \therefore e = \sqrt{\frac{c^2}{a^2}} = 2.$$

17、答案: (1)
$$f(x) = \sin\left(2x + \frac{\pi}{3}\right)$$

$$(2)\left(\frac{5}{6}\pi,\frac{13}{12}\pi\right]$$

解析: (1) $:: f(x) = A\sin(\omega x + \varphi)$, $:: f'(x) = \omega A\cos(\omega x + \varphi)$.

根据 f'(0) > 0 ,函数 f(x) 在区间 $\left(0, \frac{\pi}{12}\right)$ 上单调递增,由图可知 $\begin{cases} A = 1, \\ \omega = 2. \end{cases}$

$$\therefore \frac{\pi}{6} + \varphi = \frac{\pi}{2} + 2k\pi , k \in \mathbb{Z} \therefore 0 < \varphi < \pi , \therefore \varphi = \frac{\pi}{3}.$$

此时
$$f(x) = \sin\left(2x + \frac{\pi}{3}\right)$$
.

(2) 当
$$x \in (0,m)$$
 时, $2x + \frac{\pi}{3} \in \left(\frac{\pi}{3}, 2m + \frac{\pi}{3}\right)$.

:: f(x) 在区间(0,m) 上恰有 2 个极值和 2 个零点,

$$\therefore 2\pi < 2m + \frac{\pi}{3} \le \frac{5}{2}\pi$$
 , $\therefore \frac{5}{6}\pi < m \le \frac{13}{12}\pi$, $\therefore m$ 的取值范围为 $\left(\frac{5}{6}\pi, \frac{13}{12}\pi\right]$.

18、答案: (1)证明见解析

$$(2) \frac{\sqrt{15}}{5}$$

解析: (1) :: 四边形 $A_1B_1C_1D_1$ 是菱形 , $\therefore A_1C_1\perp B_1D_1$.

又 $BB_1 \perp$ 平面 $A_1B_1C_1D_1$, $A_1C_1 \subset$ 平面 $A_1B_1C_1D_1$, $\therefore BB_1 \perp A_1C_1$.

 $:: B_1D_1 \cap BB_1 = B_1 B_1D_1$, $BB_1 \subset \overline{\Psi}$ in BDD_1B_1 , $A_1C_1 \perp \overline{\Psi}$ in BDD_1B_1 ,

 $:: A_1C_1 \subset$ 平面 A_1C_1B , :: 平面 $A_1C_1B \perp$ 平面 BDD_1B_1 .

(2)方法一:如图,连接 AC ,设菱形对角线交点分别为 O , O_1 ,连接 BO_1 , OO_1 , 过 D 点作 $DH \perp BO_1$ 于点 H ,连接 HC_1 .

:: 平面 $BDD_1B_1 \cap$ 平面 $A_1C_1B = BO_1$, $:: DH \subset$ 平面 BDD_1B_1 ,

由(1)知, $A_1C_1 \perp$ 平面 BDD_1B_1 , $A_1C_1 \perp DH$,

 $::BO_1 \subset$ 平面 A_1C_1B , $A_1C_1 \subset$ 平面 A_1C_1B ,

 $:: DH \perp$ 平面 A_1C_1B ,则 $\angle DC_1H$ 为直线 DC_1 与平面 A_1C_1B 所成的角.

$$\therefore AA_1 = 2\sqrt{3}$$
, $AB = AC = 2$, $\therefore BO = \sqrt{3}$, $\therefore BD = 2\sqrt{3}$,

$$\therefore \sin \angle DBH = \frac{DH}{BD} = \frac{DH}{2\sqrt{3}}.$$

$$\therefore BO = \sqrt{3}$$
 , $OO_1 = AA_1 = 2\sqrt{3}$, $\therefore BO_1 = \sqrt{15}$,

$$\therefore \sin \angle DBO_1 = \frac{2\sqrt{3}}{\sqrt{15}} = \frac{2\sqrt{5}}{5} , \therefore DH = \frac{4\sqrt{15}}{5}.$$

:
$$DC_1 = \sqrt{DC^2 + CC_1^2} = 4$$
, : $\sin \angle DC_1 H = \frac{DH}{DC_1} = \frac{\sqrt{15}}{5}$,

 \therefore 直线 DC_1 与平面 A_1C_1B 所成角的正弦值为 $\frac{\sqrt{15}}{5}$.

方法二:连接 AC,设菱形对角线交点分别为 O,O, 连接 OO, 依题意可知,

 $OO_1 \perp$ 平面 ABCD ,以 O 为原点 ,OC ,OD , OO_1 所在直线为 x 轴、y 轴、z 轴 ,建

立如图所示的空间直角坐标系.

$$AA_1 = 2\sqrt{3}$$
, $AB = AC = 2$, $BO = \sqrt{3} = DO$,

$$B(0,-\sqrt{3},0)$$
 , $A_1(-1,0,2\sqrt{3})$, $C_1(1,0,2\sqrt{3})$, $D(0,\sqrt{3},0)$,

$$\vec{B}\vec{C_1} = (1, \sqrt{3}, 2\sqrt{3})$$
 , $\vec{B}\vec{A_1} = (-1, \sqrt{3}, 2\sqrt{3})$, $\vec{C_1}\vec{D} = (-1, \sqrt{3}, -2\sqrt{3})$.

设平面 A_1C_1B 的法向量为 $\vec{n} = (x, y, z)$,

$$\operatorname{IVI} \begin{cases} \vec{n} \cdot \overrightarrow{BC_1} = 0, \\ \vec{n} \cdot \overrightarrow{BA_1} = 0, \end{cases} \therefore \begin{cases} x + \sqrt{3}y + 2\sqrt{3}z = 0, \\ -x + \sqrt{3}y + 2\sqrt{3}z = 0, \end{cases} \operatorname{IV} \vec{n} = (0, 2, -1) ,$$

设直线 DC_1 与平面 A_1C_1B 的夹角为 θ ,

则
$$\sin \theta = \left|\cos\left\langle \overline{C_1 D}, \vec{n} \right\rangle \right| = \frac{\left|\overline{C_1 D} \cdot \vec{n}\right|}{\left|\overline{C_1 D}\right| \left|\vec{n}\right|} = \frac{2 \times \sqrt{3} + 1 \times 2\sqrt{3}}{4 \times \sqrt{5}} = \frac{\sqrt{15}}{5}$$
,

- \therefore 直线 DC_1 与平面 A_1C_1B 所成角的正弦值为 $\frac{\sqrt{15}}{5}$.
- 19、答案: (1)了解程度与性别无关
- (2) X 的分布列见解析,数学期望为 $\frac{70}{33}$

解析:(1)补充表格如下:

了解程度	性别		合计
3 79.12.2	男性	女性	
比较了解	60	60	120
不太了解	20	20	60

合计	80	100	180

零假设为 H_0 :了解程度与性别无关.

根据列联表中的数据,经计算得到
$$\chi^2 = \frac{180 \times (60 \times 40 - 60 \times 20)^2}{120 \times 60 \times 80 \times 100} = \frac{9}{2} = 4.5 < 5.024$$
 ,

根据小概率值 $\alpha = 0.025$ 的独立性检验,没有充分证据推断 $H_{\scriptscriptstyle 0}$ 不成立,

因此可以认为 H_0 成立,即了解程度与性别无关.

(2)用分层抽样在不太了解的 60 人中抽取 12 人,抽得女性 8 人,男性有 4 人. X的可能取值为 0,2,4,6.

$$\mathbb{P}(X=0) = \frac{C_8^3 C_4^3}{C_{12}^6} = \frac{8}{33} , P(X=2) = \frac{C_8^4 C_4^2 + C_8^2 C_4^4}{C_{12}^6} = \frac{16}{33} ,$$

$$P(X=4) = \frac{C_8^5 C_4^1}{C_{12}^6} = \frac{8}{33}$$
, $P(X=6) = \frac{C_8^6 C_4^0}{C_{12}^6} = \frac{1}{33}$.

X的分布列为:

X	0	2	4	6
P	8 33	$\frac{16}{33}$	$\frac{8}{33}$	$\frac{1}{33}$

$$\therefore E(X) = 0 \times \frac{8}{33} + 2 \times \frac{16}{33} + 4 \times \frac{8}{33} + 6 \times \frac{1}{33} = \frac{70}{33}.$$

20、答案: (1)
$$\frac{x^2}{2}$$
 + y^2 = 1

(2)1或-1

解析:(1) 由题意可得 $a=\sqrt{2}$, $a-c=\sqrt{2}-1$,

$$\therefore c=1$$
 , $\therefore b=1$, \therefore 椭圆的方程为 $\frac{x^2}{2} + y^2 = 1$.

(2) 若圆 O 的切线 $AC \perp x$ 轴,则 $|AC| = \sqrt{2}$, $S_{\triangle ABC} = \sqrt{2}$,不满足题意.

设直线 AC 的方程为 y = kx + m,

$$\therefore$$
 直线 AC 与圆 O 相切 , $\therefore \frac{|m|}{\sqrt{1+k^2}} = 1$, $\therefore m^2 = k^2 + 1$,

联立
$$y = kx + m = \frac{x^2}{2} + y^2 = 1$$
 ,

消 y 得 $(1+2k^2)x^2+4kmx+2m^2-2=0$.

设
$$A(x_1, y_1)$$
 , $C(x_2, y_2)$, 则 $x_1 + x_2 = -\frac{4km}{1 + 2k^2}$, $x_1 x_2 = \frac{2m^2 - 2}{1 + 2k^2}$.

:: O到直线 AC 的距离为 1,则 $S_{\triangle ABC} = 2S_{\triangle AOC} = 2 \times \frac{1}{2} |AC| \times 1$

$$\begin{split} &= \sqrt{1+k^2} \left| x_1 - x_2 \right| \\ &= \sqrt{1+k^2} \cdot \sqrt{\left(x_1 + x_2\right)^2 - 4x_1 x_2} \\ &= \sqrt{1+k^2} \cdot \sqrt{\left(-\frac{4km}{1+2k^2}\right)^2 - 4 \cdot \frac{2m^2 - 2}{1+2k^2}} \\ &= \sqrt{1+k^2} \cdot \frac{2\sqrt{2} \cdot \sqrt{2k^2 - m^2 + 1}}{1+2k^2} = \frac{4}{3} , \end{split}$$

将
$$m^2 = k^2 + 1$$
代入消 m 可得 $\sqrt{1+k^2} \cdot \frac{2\sqrt{2}|k|}{1+2k^2} = \frac{4}{3}$,

化简可得 $k^4 + k^2 - 2 = 0$,解得 $k^2 = 1$ (负值舍去),

∴ $k = \pm 1$, 故直线 AC 的斜率为 1 或 -1 .

21、答案:(1)
$$a_n = n$$
 , $b_n = 2^n$

(2) n = 45

解析: (1) 设等比数列 $\{b_n\}$ 的公比为 $q(q \neq 0)$,依题意可得 $a_1 = 1$, $b_1 = 2$,

$$\begin{cases} 2q = 1 + 1 + 2d, \\ 2 \times 2q^2 = 5(1 + 2d) + 1, \end{cases}$$
解得
$$\begin{cases} d = 1, \\ q = 2, \end{cases}$$
或,
$$\begin{cases} d = -\frac{1}{2}, \\ q = \frac{1}{2} \end{cases}$$
(舍去).

 $\therefore a_n = n , b_n = 2^n.$

(2)新数列中 b_{n+1} 之前的所有项中,含有 $\{a_n\}$ 中的项共有 $2^0+2^1+2^2+\cdots+2^{n-1}=2^n-1$

项,

$$\therefore T_n = \frac{(1+2^n-1)(2^n-1)}{2} + \frac{2(1-2^n)}{1-2} = 2^{2n-1} + 3 \cdot 2^{n-1} - 2 ,$$

$$\therefore d_n = \frac{n^2}{n+1} \left(\frac{1}{2^n + 3} + 2 \right) = \frac{n^2}{(n+1)(2^n + 3)} + \frac{2n^2}{n+1} = \frac{n^2}{(n+1)(2^n + 3)} + \frac{2}{n+1} + 2(n-1)$$

$$=\frac{n^2+2(2^n+3)}{(n+1)(2^n+3)}+2(n-1).$$

下证当
$$n \ge 2$$
时, $0 < \frac{n^2 + 2(2^n + 3)}{(n+1)(2^n + 3)} < 1$.

$$(n+1)(2^n+3)-n^2-2(2^n+3)=(n-1)2^n-n^2+3n-3$$
,

$$\therefore 2^n = C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n$$
, ∴ $\exists n \ge 2$ 时, $2^n \ge n + 2$,

$$\therefore (n-1)2^n - n^2 + 3n - 3 \ge (n-1)(n+2) - n^2 + 3n - 3 = 4n - 5 > 0.$$

∴ 当
$$n \ge 2$$
 时 , $0 < \frac{n^2 + 2(2^n + 3)}{(n+1)(2^n + 3)} < 1$, 故 $[d_n] = 2(n-1)$;

当
$$n=1$$
时, $d_1=\frac{11}{10}$, $\therefore [d_1]=1$.

$$\therefore [d_1] + [d_2] + [d_3] + \dots + [d_n] = 1 + 2[1 + 2 + 3 + \dots + (n-1)] = n^2 - n + 1 \le 2023$$

$$\therefore n^2 - n = n(n-1) \le 2022$$
 ,满足不等式的最大正整数 $n = 45$.

22、答案: (1)1

(2)证明见解析

解析: (1)
$$f'(x) = -\ln(x+1) - 2$$
, 令 $f'(x) = 0$, 解得 $x = -1 + \frac{1}{e^2}$,

当
$$x \in \left(-1, -1 + \frac{1}{e^2}\right)$$
时, $f'(x) > 0$,

当
$$x \in \left(-1 + \frac{1}{e^2}, +\infty\right)$$
时, $f'(x) < 0$,

 $m(x) = x \ln x$,

∴ $x \to 0$ 时,可令 $x = e^{-t}$, $t \to +\infty$.

此时 $m(x) = -te^{-t}$,易知 $t \to +\infty$ 时, $m(x) \to 0$.

$$\therefore$$
 当 $x \rightarrow -1$ 时, $y = (x+1)\ln(x+1) \rightarrow 0$, $\therefore f(x) \rightarrow 3a+1$,

$$\because 1 \le a \le 6$$
 , $\therefore 3a+1>0$, 即 $f(x)$ 在区间 $\left(-1,-1+\frac{1}{e^2}\right)$ 上无零点.

 $\nabla f(1) = 3a - 1 - 2\ln 2 \ge 3 \times 1 - 1 - 2\ln 2 > 0$,

$$f(e^2-1)=3a-(e^2-1)-2e^2=3a+1-3e^2 \le 3\times 6+1-3e^2 < 0$$
,

 $\therefore \exists x_1 \in (1, e^2 - 1) 使得 f(x_1) = 0 ,$

即 f(x) 在区间 $\left(-1+\frac{1}{\mathrm{e}^2},+\infty\right)$ 上有一个零点 , .. 函数 f(x) 的零点个数为 1.

(2) ①由(1) 可知,函数 f(x) 有唯一零点 x_1 ,且 $x_1 > 1$.下面判断函数 g(x) 的极值点情况,

$$g'(x) = a^2 e^x + (2-a)x - 3a(x > -1)$$
,

$$\Rightarrow h(x) = g'(x)$$
, $\bigcup h'(x) = a^2 e^x + 2 - a(x > -1)$,

当 $1 \le a \le 2$ 时,h'(x) > 0, $\therefore h(x)$ 在区间 $(-1,+\infty)$ 上单调递增,

当
$$2 < a \le 6$$
 时 , $h'(x) > a^2 e^{-1} + 2 - a > \frac{2^2}{e} + 2 - 2 = \frac{4}{e} > 0$,

 $\therefore h(x)$ 在区间 $(-1,+\infty)$ 上单调递增.

综上,当 $1 \le a \le 6$ 时,h(x)在区间($-1,+\infty$)上单调递增.

$$h(-1) = \frac{a^2}{e} - 2a - 2$$
, $\Rightarrow r(a) = \frac{a^2}{e} - 2a - 2$, $r'(a) = \frac{2a}{e} - 2$,

令r'(a) = 0,解得a = e.

 $\because 1 \leq a \leq 6$, $\therefore r(a)$ 在区间[1,e) 上单调递减 , 在区间[e,6] 上单调递增 ,

$$\nabla h(1) = a^2 e - 4a + 2 > 1^2 \times e - 4 \times 1 + 2 = e - 2 > 0$$

 $\therefore \exists x_2 \in (-1,1)$ 使得 $h(x_2) = 0$,

即
$$g'(x_2)=0$$
 , 且当 $x \in (-1,x_2)$ 时 , $h(x_2)=g'(x_2)<0$,

当 $x \in (x_2,1)$ 时, $h(x_2) = g'(x_2) > 0$,

 $\therefore g(x)$ 在区间 $(-1,x_2)$ 上单调递减,在区间 $(x_2,1)$ 上单调递增,

 \therefore 当 $x \in (-1,+\infty)$ 时,函数 g(x) 存在唯一的极值点 x_2 ,且 $-1 < x_2 < 1$.

综上, −1 < *x*₂ < 1 < *x*₁.

②::
$$f(x_1) = g'(x_2) = 0$$
,要证 $f(x_2) < g'(x_1)$,

即证 $f(x_2)+g'(x_2) < f(x_1)+g'(x_1)$,

下证 $\varphi(x)$ 在区间 $(-1,+\infty)$ 上单调递增,即证 $\varphi'(x) \ge 0$ 恒成立,

$$\varphi'(x) = a^2 e^x - a - \ln(x+1) = a^2 e^x + 1 - 1 - a - \ln(x+1) \ge 2\sqrt{a^2 e^x \times 1} - 1 - a - \ln(x+1)$$

$$=2ae^{\frac{x}{2}}-1-a-\ln(x+1)=a\left(2e^{\frac{x}{2}}-1\right)-1-\ln(x+1) ,$$

$$\therefore x > -1$$
, $\therefore 2e^{\frac{x}{2}} - 1 > 2e^{-\frac{1}{2}} - 1 > 0$,

故v(x)在区间(-1,0)上单调递减,在区间 $(-1,+\infty)$ 上单调递增,

$$\therefore v(x) \ge v(0) = 0$$
 , $\therefore \exists x > -1$ 时 , $\varphi'(x) \ge 0$ 恒成立 ,

 $\therefore \varphi(x)$ 在区间 $(-1,+\infty)$ 上单调递增,

$$\because -1 < x_2 < 1 < x_1$$
 , $\therefore \varphi(x_2) < \varphi(x_1)$, 原命题得证.