

planetmath.org

Math for the people, by the people.

quotient category, additive

Canonical name QuotientCategoryAdditive

Date of creation 2013-03-22 18:29:06 Last modified on 2013-03-22 18:29:06

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 32

Author bci1 (20947)
Entry type Definition
Classification msc 18E05
Classification msc 18-00

Synonym additive quotient category

Related topic QuotientCategory2

Related topic Subobject

Related topic CategoryOfAdditiveFractions

Related topic CongruenceRelationOnAnAlgebraicSystem

Related topic Regular Category
Related topic Categorical Sequence
Related topic Quotient Category 2
Defines dense subcategory

Defines additive quotient category

0.1 Essential data: Dense subcategory

Definition 0.1. A full subcategory \mathcal{A} of an Abelian category \mathcal{C} is called *dense* if for any exact sequence in \mathcal{C} :

$$0 \to X' \to X \to X'' \to 0$$
.

X is in \mathcal{A} if and only if both X' and X'' are in \mathcal{A} .

Remark 0.1: One can readily prove that if X is an object of the *dense subcategory* \mathcal{A} of \mathcal{C} as defined above, then any subobject X_Q , or quotient object of X, is also in \mathcal{A} .

0.1.1 System of morphisms Σ_A

Let \mathcal{A} be a *dense subcategory* (as defined above) of a locally small Abelian category \mathcal{C} , and let us denote by Σ_A (or simply only by Σ – when there is no possibility of confusion) the system of all morphisms s of \mathcal{C} such that both kers and cokers are in \mathcal{A} . One can then prove that the category of additive fractions \mathcal{C}_{Σ} of \mathcal{C} relative to Σ exists.

Definition 0.2. The quotient category of C relative to A, denoted as C/A, is defined as the category of additive fractions C_{Σ} relative to a class of morphisms $\Sigma := \Sigma_A$ in C.

Remark 0.2 In view of the restriction to additive fractions in the above definition, it may be more appropriate to call the above category \mathcal{C}/\mathcal{A} an additive quotient category. This would be important in order to avoid confusion with the more general notion of http://planetmath.org/QuotientCategory2quotient category—which is defined as a category of fractions. Note however that Remark 0.1 is also applicable in the context of the more general definition of a http://planetmath.org/QuotientCategory2quotient category.