Exercises PVL LTL

Wishnu Prasetya

October 31, 2018

1. Below you see a Kripke structure; let's call it M. Give its explicit definition in terms of a tuple etc (see the formal definition in the slides).

- (a) Why don't we have final states there?
- (b) How is the notion of 'execution' defined for a Kripke structure? And what is an 'abstract execution'?
- (c) Give an execution of M that satisfies the property \mathbf{X} (busy \mathbf{U} (x=0)). Does M satisfies the property?
- (d) So, given a property Kripke structure M, an (abstract) execution Π , and a property ϕ , and an natural number i, what is the difference between:
 - $M \models \phi$
 - $\Pi \models \phi$
 - $\Pi, i \models \phi$
- 2. Express the following requirements in LTL. Make the necessary assumptions if you have to; but be reasonable.
 - (a) P and Q cannot not use a resource r simultaneously.
 - (b) Whenever P requests access to r, eventually it will get the access.
 - (c) Whenever P requests access to r, eventually it will get the access; but only if P persists on maintaining the request.
 - (d) P cannot access r without first requesting it; and it cannot do so (make a request) without first releasing r (if it was busy using r).
- 3. Construct Buchi automata representing the following LTL formulas:
 - (a) $p \mathbf{W} q$, where p, q are atomic propositions.
 - (b) $\neg (x>0 \ \mathbf{U} \ x=y)$
 - (c) $p \mathbf{U} (q \mathbf{U} r)$, where p, q are atomic propositions.
 - (d) (**X** x>0) **U** x=y
 - (e) $\Diamond \Box (x>0 \to x=y)$
 - (f) $(p \mathbf{U} q) \mathbf{W} r$