Amy Seo 505 328 863

Example	Input Attributes			Class	#
	Α	В	С	D	#
\mathbf{x}_1	t	t	t	Yes	1
\mathbf{x}_2	t	t	f	Yes	6
\mathbf{x}_3	t	f	t	No	3
\mathbf{x}_4	t	f	f	No	1
\mathbf{x}_5	f	t	t	Yes	1
\mathbf{x}_6	f	t	f	No	6
\mathbf{x}_7	f	f	t	Yes	2
\mathbf{x}_8	f	f	f	No	2

• initial entropy:
ENT(D) =
$$-\frac{1}{2}$$
 Fr(x) log₂(x)
= $-\left(\frac{10}{22}$ log₂ $\left(\frac{10}{22}\right) + \frac{12}{22}$ log₂ $\left(\frac{12}{22}\right)$)
= 0.994

· chousing first attribute to split:

- attribute A:
ENT (DIA) =
$$\frac{2}{4}$$
 Pr(a) ENT (DIA)
= $\left(\frac{11}{22}$ ENT (DIA) + $\left(\frac{11}{22}$ ENT (DIA))
= $\left(\frac{11}{22} \times \left(-\left(\frac{7}{11} \log_2 \frac{7}{11} + \frac{4}{11} \log_2 \frac{4}{11}\right)\right)\right) + \left(\frac{11}{22} \times \left(-\left(\frac{3}{11} \log_2 \frac{7}{11} + \frac{8}{11} \log_2 \frac{8}{11}\right)\right)\right)$
A=t

A=f

$$ENT(D|B) = \sum_{b} P_{1}(b) ENT(D|b)$$

$$= \left(\frac{14}{22} ENT(D|b)\right) + \left(\frac{8}{22} ENT(D|b)\right)$$

$$= \left(\frac{14}{22} \times \left(-\frac{8}{14} log_{2} \frac{8}{14} + \frac{6}{14} log_{2} \frac{6}{14}\right)\right) + \left(\frac{8}{22} \times \left(-\left(\frac{2}{8} log_{2} \frac{6}{8} + \frac{6}{8} log_{2} \frac{6}{8}\right)\right)\right)$$

$$= B = t$$

$$\approx 0.9220$$

ENT(DIC) =
$$\frac{5}{22}$$
 Pr(C) ENT(DIC)
= $(\frac{7}{22}$ ENT(DIC) + $(\frac{15}{22}$ ENT(DIC))
= $(\frac{7}{22} \times (-(\frac{4}{7} \log_2 \frac{4}{7} + \frac{3}{7} \log_2 \frac{3}{7}))) + (\frac{15}{22} \times (-(\frac{15}{15} \log_2 \frac{6}{15} + \frac{9}{15} \log_2 \frac{9}{15})))$
C=t

C=f

 ≈ 0.9755

based on conditional entropies, affibute A is the most discriminating since its value was the lovest.

· choosing second attribute to split:

- for A=t: { X, , X2, X3, X4 }
-> attribute B:
ENT (D|B) =
$$\sum_{b} P_{r}(b) \in NT(D|b)$$

= $\frac{7}{11} \in NT(D|b) + \frac{4}{11} \in NT(D|b)$
= $\left(\frac{7}{11} \times (1 \log 1)\right) + \left(\frac{4}{11} \times (1 \log 1)\right)$
= 0

-) affiliante C:

B is the rext most discriminating attribute as its conditional entury is O.

Cis the vext most discriminating attribute as its conditional entropy is 0.

2. (A V 7B) @ (7C V D)

p \oplus q can be rewritten as $(p \land 7q) \lor (7p \land q)$ letting $p = A \lor 7B$ and $q = 7C \lor D$, we can rewrite the original expression as: $((A \lor 7B) \land (7(7C \lor D))) \lor ((7(A \lor 7B)) \land (7C \lor D))$ $((A \lor 7B) \land (C \land 7D)) \lor ((7A \land B) \land (7C \lor D))$ $(A \land C \land 7D) \lor (7B \land C \land 7D) \lor (7A \land B \land 7C) \lor (7A \land B \land D)$

b) The 2 circuit outputs $P^*(b)$ and $P^*(\bar{b})$ represent the probability of b and evidence ei happening, and the probability of not b and evidence ei happening respectively:

P*(6) means P(b,e) p*(6) means P(b,e)

c)
$$P_{r}(\bar{b}|e_{1}) = \underbrace{\frac{P_{r}(\bar{b}_{1}e_{1})}{P_{r}(e_{1})}}_{P_{r}(e_{1})} = \underbrace{\frac{P_{r}(\bar{b}_{1}e_{1})}{P_{r}(b_{1}e_{1})+P_{r}(\bar{b}_{1}e_{1})}}_{P_{r}(b_{1}e_{2})} = \underbrace{\frac{0.02}{0.0240.02}}_{0.0240.02} = \underbrace{\frac{1}{2}}_{0.0240.02}$$

$$P_{r}(\bar{b}_{1}e_{2}) = \underbrace{\frac{P_{r}(\bar{b}_{1}e_{2})}{P_{r}(b_{1}e_{2})+P_{r}(\bar{b}_{1}e_{2})}}_{P_{r}(b_{1}e_{2})} = \underbrace{\frac{0.03}{0.0240.02}}_{0.0240.02} = \underbrace{\frac{1}{2}}_{0.0240.02}$$

$$P_{r}(\bar{b}_{1}e_{2}) = \underbrace{\frac{P_{r}(\bar{b}_{1}e_{2})}{P_{r}(b_{1}e_{2})+P_{r}(\bar{b}_{1}e_{2})}}_{P_{r}(b_{1}e_{2})} = \underbrace{\frac{0.03}{0.0240.02}}_{0.0240.02} = \underbrace{\frac{1}{2}}_{0.0240.02}$$