# Scanning Near-field Microwave microscopy

Yutong Zhao

Nov 19th 2018









#### Why do need to study the microwave microscopy?

| <b>Detecting element</b>          | Spatial resolution | Operating<br>Frequency | Detecting type     | Method    | Feature        | Resolution<br>Ratio (λ) |
|-----------------------------------|--------------------|------------------------|--------------------|-----------|----------------|-------------------------|
| Open ended coaxial                | >3mm               | 0.3-12 GHz             | Surface/subsurface | Boardband | Contact        | $\sim \frac{1}{10}$     |
| Coaxial probe with sharpened tip  | ~1µm               | 1.2 GHz                | Surface            | Resonant  | AFM additional | $\sim \frac{1}{250000}$ |
| Coaxial resonator probe           | ~1µm               | 1.5-2.7 GHz            | Surface            | Resonant  | SFM additional | $\sim \frac{1}{150000}$ |
| Microstripline with sharpened tip | 0.4μm              | 1 GHz                  | Surface            | Resonant  | AFM additional | $\sim \frac{1}{10^6}$   |
| Waveguide slit                    | 0.1mm              | 80 GHz                 | Surface            | Resonant  | Non contact    | $\sim \frac{1}{40}$     |
| Coupled planar spiral inductors   | 0.4 mm             | 10–500 MHz             | Surface            | Boardband | Non contact    | $\sim \frac{1}{1000}$   |
| Metamaterial element              |                    |                        |                    |           |                |                         |
| SRR single ring                   | 2mm                | 1-3 GHz                | Surface            | Resonant  | Contact        | $\sim \frac{1}{100}$    |
| Microstripline SRR                | 0.7mm              | 9-10 GHz               | Surface            | Resonant  | Contact        | $\sim \frac{1}{50}$     |
| Microstripline SRR unit           | 3mm                | 2-4 GHz                | Bulk material      | Resonant  | Contact        | $\sim \frac{1}{30}$     |
| Active microstripline SRR         | 0.1mm              | 1.6 GHz                | Surface/subsurface | Resonant  | Non contact    | $\sim \frac{1}{1800}$   |

Penetration depth: 0.5 mm with 2.0 mm resolution

Great advantage for NDT for subsurface testing

#### DRDC project: imaging on dielectric powers



## DRDC project: imaging on dielectric powers

Evaluating the dielectric constant of chemical powders:

$$\epsilon_{\mathrm{eff}} \propto \delta f$$

→ Combination of sample and air

$$\epsilon_{\mathrm{eff}} = \frac{V_{air} \epsilon_{air} + V_{sample} \epsilon_{sample}}{V_{air} + V_{sample}}$$

$$V_{\mathrm{sample}} = \frac{m_{\mathrm{sample}}}{\rho_{\mathrm{sample}}}$$

$$V_{\text{sample}} = \frac{m_{\text{sample}}}{\rho_{\text{sample}}}$$
  $\epsilon_{air} \approx 1$ 

$$V_{air} + V_{sample} = V_{tester}$$

$$\epsilon_{sample} = \frac{\left(V_t \cdot \epsilon_{eff}\right) - \left(V_t - m_s/\rho_s\right)}{m_s/\rho_s}$$

## On long-distance coupling

Will the extra transmission line influence?

$$M_t = \begin{pmatrix} \cos(kl) & i \cdot Z_0 \sin(kl) \\ i \cdot Z_0^{-1} \sin(kl) & \cos(kl) \end{pmatrix} \qquad M_{SSR} = \begin{pmatrix} 1 & 0 \\ 1/Z_{SRR} & 1 \end{pmatrix}$$

SRR 
$$S_{21} = 1 - \frac{i\Delta\omega_{ext}}{\omega - \omega_c + i(\Delta\omega_{int} + \Delta\omega_{ext})}$$

$$S_{21} = e^{2ikl} \left( 1 - \frac{i\Delta\omega_{ext}}{\omega - \omega_c + i(\Delta\omega_{int} + \Delta\omega_{ext})} \right)$$

# On long-distance coupling (2)

4.5 4.5



5.5

 $\omega_2/2\pi(\text{GHz})$ 

-15

-20

5.05

 $ω_2/2π(GHz)$ 

4.95 4.95

# On long-distance coupling (3)



$$S_{21} = 1 - \frac{i\Delta\omega_e}{\omega - \omega_c + i(\Delta\omega_i + \Delta\omega_e) - \frac{\Delta\omega_e^2}{\omega - \omega_c + i(\Delta\omega_i + \Delta\omega_e)}}$$

$$R_1 \qquad \mathbf{k}l = \frac{\pi}{2} \qquad \qquad R_2$$

$$S_{21} = 1 - \frac{i\Delta\omega_{e1}}{\omega - \omega_2 + i(\Delta\omega_{i2} + \Delta\omega_{e2}) - \frac{\Delta\omega_{e1}\Delta\omega_{e2}}{\omega - \omega_1 + i(\Delta\omega_{i1} + \Delta\omega_{e1})}} - \frac{i\Delta\omega_{e2}}{\omega - \omega_1 + i(\Delta\omega_{i1} + \Delta\omega_{e1}) - \frac{\Delta\omega_{e1}\Delta\omega_{e2}}{\omega - \omega_2 + i(\Delta\omega_{i2} + \Delta\omega_{e2})}}$$

Interaction between  $R_1$  and  $R_2$ 



Calculation:  $\Delta \omega_e \gg \Delta \omega_i$ 



#### Simulation setup:



Substrate : RO5880 ; thickness = 0.8 mm



#### **Guiding Waves Along an Infinitesimal Line between Impedance Surfaces**

Dia'aaldin J. Bisharat<sup>1,2,\*</sup> and Daniel F. Sievenpiper<sup>2,†</sup> <sup>1</sup>Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, China <sup>2</sup>Electrical and Computer Engineering Department, University of California, San Diego, California 92093, USA (Received 19 January 2017; published 8 September 2017)

Port 2



#### CST simulation:









