

	Page No.
	Suppose if a downward force is applied on the oil to
	more it downwords by an intinitesimal distance dx.
	: 1 >1, bottery will have to do work to bush
	charge do so as to maintain a potential difference
	of V between the two tubes at all points.
	If the force that the capacitors was applying on
	the oil at this point in time was F, the total work.
	done will be given by,
	$dW = -Fdx + Vd\theta$
	: F = - dw + vda
	dx dx
	$: F = -1 V^2 dC + V^2 dC = 1 V^2 dC$
	: for a cylindrical capacitor, (= 2TT & (xehtl)
	h (b/a)
	: the net upward force on oil will be, $F = 1 V^2 dC = 1 V^2 2TF 20 Xe$
	F= 1 V2 dC = 1 V2 211 20 2e
	2 dh 2 (h (b/9)
	Downwoods gravitational force, F= mg= 8TT (b2-a2)hg
_	$\frac{1}{s} = \frac{\epsilon_0 \times e^{\sqrt{2}}}{s(b^2 - a^2)q \ln(b/a)}$
_	9 (b-a') q ln(b/a)