

Domain Adaptable Self-supervised Representation Learning on Remote Sensing Satellite Imagery

Muskaan Chopra^{1,*}, Prakash Chandra Chhipa^{2,*}, Gopal Mengi^{1,*}, Varun Gupta¹ and Marcus Liwicki²

¹Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India ²Machine Learning Group, EISLAB, Lulea° Tekniska Universitet, Lulea°, Sweden

*first – co-authors with equal contributions

Self-supervised Learning on Natural Scenes

- ✓ No direct human supervision
- ✓ Effective representations
- ✓ Improved downstream tasks performance

But

- o Need large data
- Learn invariance by geometric (crop, flip, etc.) and color (contrast, saturate, etc.) transformations

Common Schema of Self-supervised Representation Learning^{1,2,3} (SSL) Approach

Figure Inspired : Chhipa, Prakash Chandra. "Self-supervised Representation Learning for Visual Domains Beyond Natural Scenes."

Licentiate Thesis, Luleå tekniska universitet (2023).

¹Contrastive - Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020

²Distillation- Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." Advances in neural information processing systems 33 (2020).

³Information Maximization- Zbontar, Jure, et al. "Barlow twins: Self-supervised learning via redundancy reduction." International Conference on Machine Learning. PMLR, 2021.

Visual Concepts in Remote Sensing Imagery

coastal mansions

difference is obvious and discriminative in nature

difference is neither significant nor easily explainable

Hypothesis 👺

Self-supervised representation learning (SSL) can be adapted to remote sensing imagery without much customizations.

- SSL often needs large data to learn on natural scenes (Ref: ImageNet), does it require massive amount in remote sensing also?
- Can same set of transformations be used to learn invariant features in remote sensing?
- How effective domain adaptation and knowledge transfer it can deliver?

Investigation Protocol

- 1. Identify multiple remote sensing imagery datasets
- 2. Chose self-supervised learning method
- 3. Examine SSL domain adaptation in round-robin fashion
 - ✓ perform self-supervised pretraining on one (source) dataset
 - ✓ evaluate knowledge transfer through downstream task on remaining (target) datasets
 - ✓ repeat until round-robin finishes

Investigation Protocol

contrastive learning and dataset description come soon

Datasets

MLSRNet¹ Dataset Net

46 classes and 109,161 examples

Classes - beach, baseball diamond, bridge, golf course, freeway, industrial area, forest, etc.

UCMD² Dataset UCMD

21 classes and 2100 examples

Classes - airplane, dense residential, harbor, freeway, parking lot, forest, river, etc.

SIRI-WHU³ Dataset

12 classes and 2400 examples

Classes - agriculture, commercial, harbor, idle land, industrial, meadow, overpass, park, pond, residential, river, and water

¹MLSRNet, https://data.mendeley.com/datasets/7j9bv9vwsx/2 ²UCMD, http://weegee.vision.ucmerced.edu/datasets/landuse.html ³SIRI-WHU, ttp://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html

Adapting SSL on Diabetic Retinopathy

✓ Contrastive SelfSupervision

○ SimCLR¹

○ learn similarity for positive pair

○ learn dissimilarity otherwise

○ ResNet-50 backbone

Figure Inspired : Chhipa, Prakash Chandra. "Self-supervised Representation Learning for Visual Domains Beyond Natural Scenes."

Licentiate Thesis, Luleå tekniska universitet (2023).

Evaluations on Domain Adaptable SSL and Knowledge Transfer

1. Downstream Tasks

- Multi-class classification
- SSL domain adaptation
 - Distinct pretraining and downstream RSI datasets
- SSL same domain/dataset
 - Same pretraining and downstream RSI datasets

2. Label Efficiency Vs. SSL Domain Adaptation

- o 10%, 50%, 100% labels
- Same RSI domain Vs. cross RSI domain SSL
- Supervised ImageNet knowledge transfer

3. Qualitative Analysis

Class Activations

Multiclass classification Task

- Compares result with previous works
- 46 classes

Dataset - MLRSNet

Author	Method	Accuracy
[30]	DenseNet201-SR-Net	87.87
[30]	ResNet101-SR-Net	87.48
[17]	Self-Supervised Learning	96.00
Our Results	Self-supervised Domain Adaptation ¹	96.34
	Self-supervised Domain Adaptation ²	97.87
	Self-supervised Same Domain ³	96.59

Multiclass classification Task

- Compares result with previous works
- 25 classes

Dataset - UCMD

Author	Method	Accuracy
[25]	ResNet 50	98.00
[26]	DCNN	93.48
[23]	GoogleNet	97.10
[14]	Semisupenised ensemble projection	66.49
Our Results	Self-supervised Domain Adaptation ¹	98.50
	Self-supervised Domain Adaptation ²	98.75
	Self-supervised Same Domain ³	99.68

Multiclass classification Task

- Compares result with previous works
- 12 classes

Dataset - SIRI-WHU

Author	Method	Accuracy
[27]	AlexNet SPP SS	95.07
[28]	MCNN	93.75
[29]	Inception-LSTM	99.73
Our Results	Self-supervised Domain Adaptation ¹	96.87
	Self-supervised Domain Adaptation ²	97.50
	Self -supervised Same Domain ³	99.68

Label Efficiency Vs. SSL Domain Adaptation 🔀

- Classification performance on MLRSNet Dataset
- SSL pretrained models consistently outperforms
- Knowledge transfer in SSL cross domain and SSL same domain are comparable

Label Efficiency Vs. SSL Domain Adaptation 🥂

Classificationperformance on UCMDDataset

LULEÅ

UNIVERSITET

TEKNISKA

- SSL pretrained models consistently outperforms over supervised ImageNet
- Knowledge transfer in SSL cross domain and SSL same domain are close

Label Efficiency Vs. SSL Domain Adaptation N

- Classification performance on SIRI-WHU Dataset
- SSL pretrained models consistently outperforms over supervised **ImageNet**
- Knowledge transfer in SSL cross domain and SSL same domain are close

Qualitative Analysis (**)

SSL representations are robust and attend the visual concept rightly

Example from UCMD dataset

Qualitative Analysis (**)

SSL representations are robust and attend the visual concept rightly

Example from SIRI-WHU dataset

Qualitative Analysis (**)

SSL representations are robust and attend the visual concept rightly

Example from MLRSNet dataset ImageNet + ImageNet + **MLRSNet UCMD** SIRI-WHU original image linear evaluation finetuned pretrained pretrained pretrained SSL domain adaption SSL same dataset Supervised knowledge transfer

Conclusions

Contribution

Adapting contrastive selfsupervised representation learning to remote sensing satellite imagery domain and verifying the domain adaptation by formulating and examining robust hypothesis

Achievements

Achieved efficient domain adaptable knowledge transfer and shown performance improvement in downstream tasks over supervised knowledge transfer, supported by qualitative analysis

Future Work

Further investigation on adapting other SSL approaches and evaluating challenging downstream tasks including segmentations and detections

Thank you prakash.chandra.chhipa@ltu.se

GitHub

