Passeio Aleatório: Comentário Curto

André Plancha 105289, CDC2

João Botas 104782, CDC1

Andre_Plancha@iscte-iul.pt

Joao_Botas@iscte-iul.pt

O Passeio Aleatório (PA) é um método de MCCM de classe de algoritmos *Metropolis-Hastings*, onde o próximo valor na cadeia X_t é igual a $X_{t-1}+\varepsilon_t$, sendo e_t uma pertubação aleatória com distribuição G simétrica; e.g. $X_{t+1} \sim \mathcal{U}(X_t-\lambda,X_t+\lambda) \text{ ou } X_{t+1} \sim \mathcal{N}(X_t,\sigma^2).$

O algoritmo do PA consiste no seguinte:

- 1. Escolher x_0 de $D(f(x)), f(x) \propto P(x)$,
- 2. Escolher uma distribuição candidata G com $D(g(x_t \mid x_{t-1})) = D(f(x))$.
- 3. Gerar um $x_t^* \sim G$.
- 4. Gerar $u \sim \mathcal{U}(0,1)$ (Monte Carlo).
- 5. Calcular $\alpha = \frac{f(x_t^*)}{f(x_{t-1})} \frac{g(x_{t-1}|x_t^*)}{g(x_t^*|x_{t-1})}$. Como a distribuição candidata é simétrica, $\frac{g(x_{t-1}|x_t^*)}{g(x_t^*|x_{t-1})} = 1 \Rightarrow \alpha = \frac{f(x_t^*)}{f(x_{t-1})}$.
- 6. Se $\alpha>u$, então $x_t=x_t^*$ Se não, $x_t=x_{t-1}$
- 7. t é incrementado, e o algoritmo repete a partir de 3.

Como isto é uma CM, há uma convergência para a distribuição f(x).

Podemos observar que embora G não terá influência em α , terá influência na velocidade de convergência e na autocorrelação dos pontos. A calibração das propriedades de G são importantes para chegar à aproximação de f, como refletido na Figura 1. Ela apresenta evolução de várias cadeias geradas com o PA com uma χ^2_2 como distribuição objetivo, usando uma $\mathcal{N}(0,\sigma^2)$ como distribuição candidata, sendo a principal diferença entre as cadeias o σ escolhido.

Nas cadeias rw.1 e rw.2 ($\sigma=0.05$ e $\sigma=0.5$), podemos observar que embora os pontos sejam quase todos aceites, elas não se aproximam a χ^2_2 , principalmente em rw.1 que nem parece convergir. Isto é porque σ tem um valor demasiado baixo, tornando todos os valores de α demasiado altos. A cadeia rw.4 parece observar-se o contrário, onde embora a cadeia se aproxima ao alvo, demasiados pontos são rejeitados devido ao número elevado de baixos α , devido a $\sigma=16$. Finalmente, rw.3 parece um bom compromisso, levando a uma aproximação à distribuição alvo que raramente rejeita pontos.

 $^{^1}$ Robert, C. P., & Casella, G. (2010). Introducing Monte Carlo Methods with R. Em *Springer eBooks*. https://doi.org/10.1007/978-1-4419-1576-4