

Universidade do Minho Escola de Ciências

Miguel José de Melo Alves

On the mechanisation of the multiary lambda calculus and subsystems

Dissertação de Mestrado Mestrado em Matemática e Computação Área de especialização de Computação

Trabalho efetuado sob a orientação dos **Professor Doutor Luís Filipe Ribeiro Pinto Professor Doutor José Carlos Soares do Espírito Santo**

Acknowledgments

I feel blessed to write this, as I contemplate so many people that I have to thank, as I see so many people that I love and love me back.

First and foremost, I must thank my family for allowing me to pursue what I love and for unconditionally supporting my passions.

Second, I want to deeply thank my girlfriend Inês for being my companion throughout this year of confusion, tiredness and grumpiness. I still owe you a complete explanation of what λ -calculus is.

Third, I want to thank all my friends...should I name them? To Nando, Marco and David, as you are a second kind of girlfriend to me. To Gaspar, Rodrigo and Kiko, as you have known me for a long time and part of who I am today is because of you. To Pepa, as you may not understand how much of a help you were to me throughout this year. To Gui, Zé, Bruno, Sofia, Manada, Gonçalo, Jason, Jonny and to every algebra class that made us closer. To Faustino, Ricardo, Guilherme and Filipa, for making me feel more at home in Braga. To my long time friends, Couves e Beterrabas, for being with me in such an important and playful time in my life. To my CVX group, VitaminaC, for walking with me. To CREU, Missão País, Fonte da Prata and to every friend that I have made in those special places - a piece of my heart lies with each of you.

Fourth and last, I want to thank everyone who I feel had a part in my logical education, from Rola and Rita to professor Filipe and professora Alice Viveiros. And, of course, to my kind supervisors. Thank you, Professor Luís, for your patience and for your focused, optimistic and close help throughout this joyful process. Thank you, Professor José Carlos, for your enthusiasm and for every exciting conversation we have shared.

To everyone that casually asked what I was studying in my dissertation and kept their attention at my explanation - because attention without distraction is a prayer - I thank you.

Statement of Integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have not used plagiarism or any form of undue use of information or falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Resumo

Abstract em português.

Palavras-chave 3 a 5 palavras-chave, ordenadas alfabeticamente e separadas por vírgulas

Abstract

Your abstract here.

Keywords 3-5 keywords alphabetically ordered and comma-separated.

"We adore chaos because we love to produce order."

M. C. Escher

Contents

1	Intro	oduction	2
	1.1	Motivation	2
	1.2	Objectives	3
	1.3	Document structure	4
2	Background		
	2.1	Simply typed $\pmb{\lambda}$ -calculus	5
	2.2	$\pmb{\lambda}$ -calculus with de Bruijn syntax \ldots	8
	2.3	Mechanising meta-theory in <i>Rocq</i>	10
3	Multiary λ -calculus and its canonical subsystem		
	3.1	The system λm	18
	3.2	The canonical subsystem	20
	3.3	Mechanisation in <i>Rocq</i>	24
4	Canonical λ -calculus		
	4.1	The system $ec{\lambda}$	35
	4.2	$ec{\lambda}$ vs the canonical subsystem of λm	38
	4.3	Conservativeness	42
	4.4	Mechanisation in <i>Rocq</i>	45
5	The isomorphism $\lambda\cong ec{\lambda}$		
	5.1	Mappings $ heta$ and ψ	51
	5.2	Mechanisation in <i>Rocq</i>	55
6	Conclusions 5		
	6.1	Contributions	57
	6.2	Future work	57

Chapter 1

Introduction

1.1 Motivation

Looking at the title for this dissertation, we can explain what motivated the following dissertation by asking ourselves: "Why mechanise?" and "Why the multiary λ -calculus?".

Before addressing these questions formally, we could just say that mechanising mathematics is an enjoyable task. And for what matters, this could be all we say about our motivation. All I intend to say is that even if our work in mathematics had no application or direct consequences, the fun of doing it would be a good enough motivation. Mechanising mathematics is like a computer game for a mathematician.

Why mechanise? By mechanisation we mean a well-founded description of a mathematical object using a proof assistant. Such proof assistants have attracted the attention of mathematicians because of the reliability and automation they provide for writing computer verified proofs [12]. There has also been an increasing interest by engineers in the use of such tools for the security guarantees achieved when formally proving properties about computer programmes [17].

One could even argue that any work of mechanisation is useful, because it will:

- 1. result in a computer verified work,
- 2. expose the difficulties behind any mathematical formalisation,
- 3. provide automation for routine and tedious parts,
- 4. potentially allow some theory to be extended with less cost.

All of the latter are perfectly good motivations for the work done in this dissertation.

Then, the question of *Why mechanise metatheory?* arises. From the reasons given above, some are highlighted by the task of mechanising metatheory. For example, it is often argued that metatheoretical proofs "are long, contain few essential insights, and have a lot of tedious but error-prone cases" [19]. This provides fertile ground for computer verification and automation of proofs. Furthermore, the mechanisation of metatheory has also gained some attention in the past 20 years [4, 2].

In our case, mechanising theoretical results related to the multiary λ -calculus could enable new ways of continuing the work being done in this topic. Curiously, our work with an unusual version of the λ -calculus could even suggest some improvements in already mature tools for mechanising metatheory (as is the case with the used *Autosusbt* library for the *Rocq Prover*).

Why the multiary λ -calculus? In the begining of [20, Chapter 7.3], one is confronted with a natural question: "Natural deduction proofs correspond to λ -terms with types, and Hilbert style proofs correspond to combinators with types. What do sequent calculus proofs correspond to?". This question has its starting point in the well-known Curry-Howard isomorphism, that relates natural deduction proofs with λ -terms with types, as said above.

Many (naive) alternatives are given in the aforementioned book, but none that can match the process of cut-elimination with normalisation. In the novel paper of Herbelin [13], a multiary version of the λ -calculus (with explicit substitutions) is introduced, whose typing rules correspond to a fragment of the sequent calculus. Furthermore, the corresponding reduction rules for this system behave as cut elimination.

Considering a slightly different multiary version of the λ -calculus (and excluding explicit substitutions), one gets a system that was studied in detail in CMAT [10, 11], here named λm . The study of the computational meaning behind the sequent calculus is one of the main motivations for considering such systems, as they provide meaningful extensions for the ordinary λ -calculus.

1.2 Objectives

The theoretical objectives for this dissertation are the study of:

- 1. system λm , reduction rules, typing rules and standard results like subject reduction;
- 2. the canonical subsystem of λm ;
- 3. the conservativeness of the canonical subsystem over λm ;
- 4. the isomorphism between the canonical subsystem and λ .

We say theoretical objectives because the complete objective is to mechanise in the *Rocq Prover* each of the mentioned items. The practical (in the sense of the mechanisation task) objectives of this dissertation are first to understand the proof assistant in order to fully develop a mechanisation of the definitions and proofs that were studied using pen-and-paper. More concretely, we have the objective of understanding how one can use the *Rocq Prover* to define systems that deal with variable binding, to define subsystems, to define typing rules, to prove isomorphisms and so on.

A last objective related to the mechanisation is to implement every definition and proof as close as possible to the pen-and-paper versions, but also to present clean and simple implementations. Of course this may be challenging and conflictuous, but it is in general the objective behind any mechanisation of mathematics.

1.3 Document structure

This dissertain is structured in six chapters.

The second chapter serves as an introduction to the ordinary λ -calculus, also containing a second style of λ -calculus presentation, without variable names (also called de Bruijn representation). This chapter also includes a mechanisation of this system as a way to introduce many proof-assistant concepts used in further chapters.

The third chapter introduces the system λm and its canonical subsystem, along with some simple results. It also includes a last chapter that provides a walkthrough of the mechanised definitions and proofs.

The fourth chapter independently introduces a new system called $\vec{\lambda}$, that is isomorphic to the introduced canonical subsystem of λm . This system will help clarify the mechanisation of the result of conservativeness that can be found in this chapter. The last section also provides a mechanisation overview, similar to the previous chapter.

The fifth chapter is only about the isomorphism between the ordinary λ -calculus and system $\vec{\lambda}$.

A last (sixth) chapter with the title of "Discussion" lists our contributions and some possible further work.

Chapter 2

Background

This chapter introduces essential background for the reading of this dissertation. First, we introduce the well-known simply typed λ -calculus. Then, we delve into a known variation of the introduced λ -calculus theory using de Bruijn indices, that has known facilities when it comes to mechanisation. Lastly, we present and explain a mechanisation of the simply typed λ -calculus in the *Rocq Prover*.

2.1 Simply typed λ -calculus

For the basic concepts and basic theory of the untyped λ -calculus we refer to [5]. For what types and the simply typed lambda calculus is about we refer to [6] and [14].

2.1.1 Syntax

Definition 1 (λ -terms). The λ -terms are defined by the following grammar:

$$M, N ::= x \mid (\lambda x.M) \mid (MN),$$

where x denotes a variable.

Remark.

- 1. A denumerable set of variables is assumed and letters x, y, z range over this set.
- 2. An abstraction is a λ -term of the kind $(\lambda x.M)$, that will bind occurrences of x in the term M (also called scope of the abstraction), much like a function $x\mapsto M$.
- 3. An application is a λ -term of the kind (M_1M_2) , where M_1 has the role of function and M_2 has the role of argument.

Notation. We shall assume the usual notational conventions on λ -terms:

- 1. Outermost parentheses are omitted.
- 2. Multiple abstractions can be abbreviated as $\lambda xyz.M$ instead of $\lambda x.(\lambda y.(\lambda z.M))$.
- 3. Multiple applications can be abbreviated as MN_1N_2 instead of $(MN_1)N_2$.

Now we may define some syntactic notions.

Definition 2 (Bound/free occurrence). We say that the variable x occurs bound when it occurs in the scope of an abstraction λx and say that it occurs free otherwise.

As an illustration of the previous concept, consider the term $M=x(\lambda x.x)$. The variable x occurs both free and bound in this term.

We can easily calculate the set of free variables for a given term.

Definition 3 (Free variables). For every λ -term M, we recursively define the set of free variables in M, FV(M), as follows:

$$FV(x) = \{x\},$$

$$FV(\lambda x.M) = FV(M) - \{x\},$$

$$FV(MN) = FV(M) \cup FV(N).$$

Now, we will consider a sequence of steps taken from [5], in order to define a substitution operation that avoids the capture of free variables. This is, a substitution operation that does not swap free variables for bound variables.

Definition 4 (Renaming of bound variables). A renaming of bound variables in a λ -term M is the replacement of a part $\lambda x.N$ of M by $\lambda y.N\langle x:=y\rangle$, where y does not occur at all in N and $N\langle x:=y\rangle$ denotes the naive substitution operation.

Observe that $N\langle x:=y\rangle$ is capture-avoiding as y is carefully chosen to not occur in N.

Definition 5 (α -congruence). Given λ -terms M, N, we say that M is α -congruent with N, namely $M \equiv_{\alpha} N$, when they are equal up to a series of renamings of bound variables.

As an example, we can see that $\lambda x.\lambda y.x \equiv_{\alpha} \lambda z.\lambda y.z \equiv_{\alpha} \lambda z.\lambda x.z \equiv_{\alpha} \lambda y.\lambda x.y.$

Given this notion, we will prefer to identify α -congruent λ -terms. Moreover, we are now able to introduce the variable convention that is proposed in [5].

Convention. If some λ -terms M, M', \ldots occur in a certain mathematical context (of a definition, or proof, etc...), then all bound variables in these terms are chosen to be different from the free variables.

Definition 6 (Substitution). For every λ -term M, we recursively define the substitution of N for the free occurrences of x in M, M[x:=N], as follows:

$$x[x:=N] = N;$$
 $y[x:=N] = y, \text{ with } x \neq y;$ $(\lambda y.M_1)[x:=N] = \lambda y.(M_1[x:=N]);$ $(M_1M_2)[x:=N] = (M_1[x:=N])(M_2[x:=N]).$

In the third equation, there is no need to say that $y \neq x$ and that $y \notin FV(N)$ as this is the case by the variable convention.

At last, we introduce some standard notions related to the β -reduction.

Definition 7 (Compatible Relation). Let R be a binary relation on λ -terms. We say that R is compatible if it satisfies:

$$\frac{(M_1, M_2) \in R}{(\lambda x. M_1, \lambda x. M_2) \in R} \qquad \frac{(M_1, M_2) \in R}{(NM_1, NM_2) \in R} \qquad \frac{(M_1, M_2) \in R}{(M_1N, M_2N) \in R}$$

Notation. Given a binary relation R on λ -terms, we define:

 \rightarrow_R as the compatible closure of R;

 \rightarrow_R as the reflexive and transitive closure of \rightarrow_R .

Definition 8 (β -reduction). *Consider the following binary relation on* λ *-terms:*

$$\beta = \{((\lambda x.M)N, M[x := N]) \mid \text{ for every variable } x \text{ and } \lambda \text{-terms } M, N\}.$$

We call one step β -reduction to the relation \rightarrow_{β} and multistep β -reduction to the relation \rightarrow_{β} .

Definition 9 (β -normal form). We say that a λ -term t is in β -normal form (or irreducible by \rightarrow_{β}) when there exists no λ -term t' such that

$$t \to_{\beta} t'$$
.

Definition 10. We inductively define the sets of λ -terms NF and NA as follows:

$$\frac{}{x \in \mathit{NA}} \qquad \frac{M_1 \in \mathit{NA} \qquad M_2 \in \mathit{NF}}{M_1 M_2 \in \mathit{NA}} \qquad \frac{M \in \mathit{NA}}{M \in \mathit{NF}} \qquad \frac{M \in \mathit{NF}}{\lambda x. M \in \mathit{NF}}$$

Claim 1. Given a λ -term M, the following are equivalent:

- (i) $M \in NF$.
- (ii) M is in β -normal form.

We leave this claim here, but we will show the mechanised proof for $(i) \Rightarrow (ii)$ in the last section of this chapter. The proof for $(ii) \Rightarrow (i)$ is also mechanised in the script repository of our development.

2.1.2 Types

Definition 11 (Simple Types). The simple types are defined by the following grammar:

$$A, B, C ::= p \mid (A \supset B),$$

where p denotes a type variable.

Remark.

- 1. A denumerable set of atomic variables is assumed and letters p, q, r range over this set.
- 2. Notice that we use the symbol ⊃, coming from logic, to denote implication. This is motivated by the well-known correspondence between function types and implicational proposition, through the Curry-Howard isomrphism.

Notation. We will assume the usual notational conventions on simple types.

- Outermost parentheses are omitted.
- 2. Types associate to the right. Therefore, the type $A\supset (B\supset C)$ may often be written simply as $A\supset B\supset C$.

Definition 12 (Type-assignment). A type-assignment M:A is a pair of a λ -term and a simple type. We call subject to the λ -term M and predicate to the simple type A.

Definition 13 (Context). A context Γ, Δ, \ldots is a finite (possibly empty) set of type-assignments whose subjects are variables of λ -terms and which is consistent. By consistent we mean that no variable is the subject of more than one type-assignment.

Notation. We may simplify the set notation of contexts as follows:

$$x:A,\ldots,y:B\quad \text{for}\quad \{x:A,\ldots,y:B\}$$

$$x:A,\ldots,y:B,\Gamma\quad \text{for}\quad \{x:A,\ldots,y:B\}\cup\Gamma.$$

Definition 14 (Sequent). A sequent $\Gamma \vdash M : A$ is a triple of a context, a λ -term and a simple type.

Definition 15 (Typing rules for λ -terms). The following typing rules inductively define the notion of derivable sequent.

$$\frac{x:A,\Gamma \vdash x:A}{\Gamma \vdash \lambda x.M:A\supset B} \text{ Abs } \frac{\Gamma \vdash M:A\supset B}{\Gamma \vdash MN:B} \text{ App}$$

A sequent is derivable when it is at the root of a tree constructed by the successive application of the typing rules and whose leaves are instances of the Var-rule.

2.2 λ -calculus with de Bruijn syntax

In the 1970s, de Bruijn started working on the *Automath* proof assistant and proposed a simplified syntax to deal with generic binders [8]. This approach is claimed by the author to be good for meta-lingual

discussion and for implementation in computer programmes. In contrast, this syntax is further away from the human reader. This section will serve as an intermediate step to the mechanised version of the simply typed λ -calculus described in the next section.

The main idea behind de Bruijn syntax (or sometimes called de Bruijn indices) is to treat variables as natural numbers (or indices) and to interpret these numbers as the distance to the respective binder. Therefore, we will call these terms *nameless*.

Definition 16 (Nameless λ -terms). The nameless λ -terms are defined by the following grammar:

$$M, N ::= i \mid \lambda.M \mid MN$$
,

where i ranges over the natural numbers.

Remark. Nameless λ -terms have no α -conversion since there is no freedom to choose the names of bound variables.

We show below some examples that illustrate the connection of ordinary and nameless syntax for λ -terms.

$$\lambda x.x \leadsto \lambda.0$$
$$\lambda x.\lambda y.x \leadsto \lambda.\lambda.0$$
$$\lambda x.\lambda y.x \leadsto \lambda.\lambda.1$$

Now, we will present a different formulation for the concept of substitution, adequate to deal with nameless λ -terms.

Definition 17 (Substitution). A substitution σ, τ, \ldots over nameless λ -terms is a function mapping natural numbers (indices) to nameless λ -terms.

Here are some examples of useful substitutions.

$$id(k) = k$$

$$\uparrow(k) = k + 1$$

$$(M \cdot \sigma)(k) = \begin{cases} M & \text{if } k = 0 \\ \sigma(k - 1) & \text{if } k > 0 \end{cases}$$

Definition 18 (Instantiation and composition). The operation of instantiating a nameless λ -term M

under a substitution σ , $M[\sigma]$, is recursively defined by the following equations:

$$i[\sigma] = \sigma(i);$$

$$(\lambda . M_1)[\sigma] = \lambda . (M_1[0 \cdot (\uparrow \circ \sigma)]);$$

$$(M_1 M_2)[\sigma] = (M_1[\sigma])(M_2[\sigma]);$$

where the composition of two substitutions is mutually defined as $(\tau \circ \sigma)(k) = \sigma(k)[\tau]$.

This definition for instantiation describes a capture-avoiding substitution operation that replaces all free variables simultaneously. Thus, we may also refer to these substitutions as parallel substitutions. It is based on the ideas introduced in [19] and is very close to the actual mechanisation done using the *Autosubst* library.

Another variation we may encounter when formalising λ -terms using a nameless syntax is the typing system. A similar approach to our modification of the typing system can be found in [3, Chapter 7]. We formulate the definition of context and derivable sequents in the nameless setting as follows.

Definition 19 (Nameless context). A nameless context Γ, Δ, \ldots is a finite (possibly empty) sequence of simple types.

Notation.

 $|\Gamma|$ is used to denote the length of context Γ ;

 Γ_i is used to denote the *i*th element of a context Γ , given $i < |\Gamma|$.

Definition 20 (Typing rules for nameless λ -terms).

$$\frac{\Gamma_i = A}{\Gamma \vdash i : A} \ \textit{Var} \qquad \frac{A, \Gamma \vdash M : B}{\Gamma \vdash \lambda . M : A \supset B} \ \textit{Abs} \qquad \frac{\Gamma \vdash M : A \supset B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \ \textit{App}$$

Claim 2. Structural rules of weakening, contraction and exchange are admissible in this setting.

We look at the particular case of the weakening rule that corresponds to the incrementation of every index of the nameless λ -term.

$$\frac{\Gamma \vdash M : A}{B, \Gamma \vdash M[\uparrow] : A} \text{ Weakening}$$

2.3 Mechanising meta-theory in Rocq

In this section we discuss basic questions arising in the formalisation of syntax with binders, and introduce a Rocq library that helps with such task. Additionally, we illustrate how to formalise basic concepts of the simply typed lambda calculus. This will help to understand our main decisions on the mechanisation of meta-theory developed in this dissertation. The multiary versions of the λ -calculus that we are going to introduce will follow closely the basic approach described here with the corresponding adaptations.

2.3.1 The Rocq Prover

The Rocq Prover (former Coq Proof Assistant) [16] is an interactive theorem prover based on the expressive formal language called the Polymorphic, Cumulative Calculus of Inductive Constructions. This is a tool that helps in the formalisation of mathematical results and that can interact with a human to generate machine-verified proofs. Rocq encode propositions as types and proofs for these propositions as programs in λ -calculus, in line with the Curry-Howard isomorphism.

It is arguably a great tool for mechanising meta-theory as it was widely used in the *POPLmark* challenge [4]. Also, this proof assistant provides many libraries to deal with the issue of variable binding, like *Autosubst*, as we will see in the next sections.

We illustrate two examples of simple inductive definitions in *Rocq*: the natural numbers and polymorphic lists.

a) Natural numbers

The natural numbers can be inductively defined as either zero or a successor of a natural number.

```
Inductive nat : Type :=
| 0
| S (n: nat).
```

For example, the number 0 is represented by the constructor 0 and number 2 is represented as S (S 0). Of course this serves as an internal representation and we will not refer to natural numbers using these constructors. We can also check the induction principle that Rocq generates for the natural numbers.

Therefore, if we want to prove that the sum of natural numbers is associative, we can do it using this induction principle as follows.

```
Theorem sum_associativity :
    ∀a b c, a+(b+c) = (a+b)+c.
Proof.
    intros.
    induction a.
    - (* O+(b+c) = O+b+c *)
    simpl. (* simplify equation *)
```

```
reflexivity. (* now both sides are equal *)
- (* (a+1)+(b+c) = (a+1)+b+c *)
simpl. (* simplify equation *)
rewrite IHa. (* rewrite with induciton hypothesis *)
reflexivity. (* now both sides are equal *)
Qed.
```

b) Polymorphic lists

Polymorphic lists are lists whose items have no predefined type. The inductive definition for these lists is available in the *Rocq* standard library (Library Stdlib.Lists.List) along with many operations and properties. Their definition is as follows:

```
Inductive list (A: Type) : Type :=
| nil
| cons (u: A) (1: list A).
```

For example, if we wanted to have a type for lists of natural numbers, we could just invoke the type list nat. The list [0,2,1] is then represented as cons 0 (cons 2 (cons 1 nil)).

Here is an useful lemma on lists provided by the Rocq library:

```
Lemma map_app f : \forall1 l', map f (1++l') = (map f 1)++(map f l').
```

This lemma relates two operations on lists:

- 1. app (abreviated as ++): appends two lists (ex: [1,2,3]++[4,5] = [1,2,3,4,5]);
- 2. map: applies a function to every element on the list (ex: map f[x,y] = [fx, fy]).

Given their widespread utility, these operations will be often used in parts of our mechanisation.

2.3.2 Syntax with binders

A direct formalisation of the grammar of λ -terms in *Rocq* results in an inductive definition like:

```
Inductive term : Type :=
| Var (x: var)
| Lam (x: var) (t: term)
| App (s: term) (t: term).
```

The question that this and any similar definition raises is: how do we define the var type? Following the usual pen-and-paper approach, this type would be a subset of a "string type", where a variable is just a placeholder for a name.

Of course this is fine when dealing with proofs and definitions in a paper. To simplify this, we can even take advantage of conventions, like the one referenced above (by Barendregt). However, this approach to define the var type becomes rather exhausting when it comes to rigorously define the required syntactical ingredients, including substitution operations.

There are several alternative approaches described in the literature of mechanisation of meta-theory. The *POPLmark* challenge [4] points to the topic of binding as central for discussing the potential of modern-day proof assistants. From the many alternatives, we chose to follow the nameless syntax proposed by de Bruijn. This is because this approach seemed widely used in the mechanisation of meta-theory.

2.3.3 Autosubst library

The *Autosubst* library [19, 18] for the *Rocq Prover* facilitates the formalisation of syntax with binders. It provides the *Rocq Prover* with two kinds of tactics:

- 1. derive tactics that automatically define substitution (and boilerplate definitions for substitution) over an inductively defined syntax;
- asimpl and autosubst tactics that provide simplification and direct automation for proofs dealing with substitution lemmas.

The library makes use of some ideas we have already covered up: de Bruijn syntax and parallel substitutions. There is also a more subtle third ingredient: the theory of explicit substitution [1]. This theory is particularly relevant to the implementation of the asimpl and autosubst tactics and we will not digress much on it. Essentially, our calculus with parallel substitutions forms a model of the σ -calculus and we may simplify our terms with substitutions using the convergent rewriting equations described by this theory.

Taking the naive example of an inductive definition of the λ -terms in Rocq, we now display a definition using Autosubst.

```
Inductive term: Type :=
| Var (x: var)
| Lam (t: {bind term})
| App (s: term) (t: term) .
```

In the above definition, there are two different annotations: the var and {bind term} types. We write these annotations to mark our constructors with variables and binders, respectively, in the syntax we

want to mechanise. They play an important role in the internal development of the automated derive tactics.

We invoke the Autosubst classes, automatically deriving the desired instances as follows.

```
Instance Ids_term : Ids term. derive. Defined.
Instance Rename_term : Rename term. derive. Defined.
Instance Subst_term : Subst term. derive. Defined.
Instance SubstLemmas_term : SubstLemmas term. derive. Defined.
```

The first three lines derive the operations necessary to define the (parallel) substitution over a term.

- 1. Defining the ids function that maps every index into the corresponding variable term ($i \mapsto$ (Var i)).
- 2. Defining the rename function that instantiates a term under a variable renaming.
- 3. Defining the subst function that instantiates a term under a parallel substitution over (making use of the already rename and ids).

Finally, there is also the proof for the substitution lemmas. Here, we see the power of this library, as the proofs for these lemmas (for fairly simple syntaxes) can be generated automatically through the derive tactic.

2.3.4 Mechanising the simply typed λ -calculus

For this dissertation, we provide our own mechanisation of the simply typed λ -calculus, as we will need it in chapter 5. The mechanisation is very straightforward and follows closely the examples given in [18, 19].

a) SimpleTypes.v

This module only contains the definition for simple types using a unique base type for simplicity. This definition is isolated because it will be used by multiple modules.

```
Inductive type: Type :=
| Base
| Arr (A B: type): type.
```

b) Lambda.v

This module contains the definitions we need for the formalisations dealing with the simply typed λ -calculcus. The syntax for terms and *Autosubst* definitions were already presented and explained in the prior subsection.

The module then includes the definition for the one step β -reduction (recall Definition 8). This inductive definition mechanises the β -reduction altogether with the compatibility closure steps (\rightarrow_{β}).

```
Inductive step : relation term :=
| Step_Beta s s' u : s' = s.[u.:ids] →
step (App (Lam s) t) s'
| Step_Abs s s' : step s s' →
step (Lam s) (Lam s')
| Step_App1 s s' t: step s s' →
step (App s t) (App s' t)
| Step_App2 s t t': step t t' →
step (App s t) (App s t').
```

In this definition we already give use to the substitution operation defined using *Autosubst* (found in the Step_Beta constructor). The syntax s. [u.:ids] is just notation for the defined instantiation of term s under a parallel substitution u.:ids. This substitution corresponds to the example of substitution shown in the previous section $(u \cdot id)$.

The type for step is relation term (an alias for term—term—Prop), as we are using the Relations library found in the *Rocq* standard library containing definitions and lemmas for binary relations.

We also have a definition for the mutually inductive predicate mechanising β -normal forms (recall Definition 10).

```
Inductive normal: term \rightarrow Prop :=
| nLam s : normal s \rightarrow normal (Lam s)
| nApps s : apps s \rightarrow normal s
with apps: term \rightarrow Prop :=
| nVar x : apps (Var x)
| nApp s t : apps s \rightarrow normal t \rightarrow apps (App s t).
```

As before, we do not define directly a set NF of λ -terms, but rather an inductive predicate that λ -terms $t \in \text{NF}$ satisfy. This will be our standard approach when mechanising subsets, as the subset itself is the extension of the defined predicate.

However, we have to be careful using mutually inductive predicates (we refer to [7, Chapter 14.1] for a detailed overview on mutually inductive types and their induction principles). If we want to prove certain propositions that proceed by induction on the structure of a normal term, we need to have a simultaneous induction principle and prove two propositions simultaneously.

```
Scheme sim normal ind := Induction for normal Sort Prop
```

```
with sim_apps_ind := Induction for apps Sort Prop.
Combined Scheme mut_normal_ind from sim_normal_ind, sim_apps_ind.
```

We can generate two new induction principles using the **Scheme** command. Then, we can combine both induction principles using the Combined **Scheme** command. We will often use the combined induction principles in our proofs, as mutually inductive types will appear often.

Here follows an example of the proof for Claim 1 using the combined induction principle. We will prove not only the desired claim but also a proposition over the set of normal applications, NA.

```
Theorem nfs are irreducible :
  (\forall s, normal s \rightarrow \sim exists t, step s t)
  (\forall s, apps s \rightarrow \sim exists t, step s t).
Proof.
  apply mut normal ind; intros.
  (* applying the combined induction principle *)
  - intro.
    apply H.
    destruct HO as [t Ht].
    inversion Ht.
    now exists s'.
  - intro.
    apply H.
    destruct HO as [t Ht].
    now exists t.
  - intro.
    now destruct H.
  - intro.
    destruct H1 as [t0 Ht0].
    inversion Ht0 ; subst.
    + inversion a.
    + apply H. now exists s'.
    + apply HO. now exists t'.
Qed.
```

The proof uses a couple of tactics that we will not cover in detail. It serves more of an example of how we easily prove a result using the mechanised concepts of one step β -reduction and normal forms.

The last thing our module contains is the typing rules for the λ -terms (recall Definition 15 and Defini-

tion 20).

```
Inductive sequent (\Gamma: var\rightarrowtype) : term \rightarrow type \rightarrow Prop := 
| Ax (x: var) (A: type) : 
| \Gamma x = A \rightarrow sequent \Gamma (Var x) A 
| Intro (t: term) (A B: type) : 
| sequent (A.:\Gamma) t B \rightarrow sequent \Gamma (Lam t) (Arr A B) 
| Elim (s t: term) (A B: type) : 
| sequent \Gamma s (Arr A B) \rightarrow sequent \Gamma t A \rightarrow sequent \Gamma (App s t) B.
```

We directly mechanise the derivability of a sequents using an inductively defined predicate (instead of defining sequents *a priori*).

Furthermore, following the approach in [18], we use infinite contexts (contexts as infinite sequences). That way we can mechanise contexts as functions $var \rightarrow type$ (the type of a parallel substitution object over type) and take more advantage of the *Autosubst* definitions and tactics. Of course, in any typing derivation, only a finite part of the (infinite) context is used.

A small illustration of the versatility of this option is in the Intro rule, where one can find the context $(A.:\Gamma)$. This is the same function we encountered when defining the substitution operation for the β -contractum s. [u.:ids].

As claimed (Claim 2) upon the definition of the typing rules for the nameless terms, we can show admissibility for the structural rules of weakening, contraction and exchange. We do this by proving the preservation of renamings (also an idea from [18]), as the mentioned structural rules can be seen as a particular case of index renaming (as we have illustrated with the weakening case).

```
Lemma type_renaming : \forall \Gamma t A, sequent \Gamma t A \rightarrow \forall \Delta \xi, \Gamma = (\xi >>> \Delta) \rightarrow sequent \Delta t.[ren \xi] A
```

Chapter 3

Multiary λ -calculus and its canonical subsystem

This chapter introduces the main system that was studied in this dissertation: the multiary λ -calculus (λm) . We introduce this system as the system $\lambda \mathcal{P}h$ studied in [10, Chapter 3]. This system can also be found as λ^m in [11, Section 3], as a subsystem of λJ^m .

We provide an alternative description for a subsystem of h-normal forms of λm (corresponding to the system $\lambda \mathcal{P}$ found in [10, Chapter 3]). At the end of this chapter one can find a detailed overview of the mechanisation done in this dissertation of the multiary λ -calculus and subsystems.

3.1 The system λm

First, we introduce some standard definitions for our system, like the grammar for λm -terms, a typical append operation on lists and substitution operation.

Definition 21 (λm -expressions). The λm -terms are simultaneously defined with λm -lists by the following grammar:

$$\begin{array}{ll} (\pmb{\lambda m}\text{-terms}) & t,u,v ::= \ x \mid \lambda x.t \mid t(u,l) \\ \\ (\pmb{\lambda m}\text{-lists}) & l ::= \ [] \mid u :: \ l. \end{array}$$

We will refer to the union of λm -terms and λm -lists as λm -expressions.

Definition 22 (Append). The append of two λm -lists, l + l', is defined recursively on l as follows:

$$[] + l' = l',$$

 $(u :: l) + l' = u :: (l + l').$

Definition 23 (Substitution for λm -expressions). The substitution of a variable x by a λm -term v is mutually defined by recursion over λm -expressions as follows:

$$\begin{split} x[x := v] &= v; \\ y[x := v] &= y, \textit{ with } x \neq y; \\ (\lambda y.t)[x := v] &= \lambda y.(t[x := v]); \\ t(u,l)[x := v] &= t[x := v](u[x := v], l[x := v]); \\ [][x := v] &= []; \\ (u :: l)[x := v] &= u[x := v] :: l[x := v]. \end{split}$$

Definition 24 (Reduction rules for λm -terms). Consider the following reduction rules for λm -terms.

$$(\beta_1)$$
 $(\lambda x.t)(u, []) \to t[x := u]$

$$(\beta_2)$$
 $(\lambda x.t)(u,v::l) \to t[x:=u](v,l)$

(h)
$$t(u, l)(u', l') \to t(u, l + (u' :: l'))$$

Of course, one may also interpret the given rules as binary relations on λm -terms. That way, we can define a relation β as the relation $\beta_1 \cup \beta_2$ and analogously a relation βh as the relation $\beta \cup h$.

Definition 25 (Compatible Relation). Let R and R' be two binary relations on λm -terms and λm -lists respectively. We say they are compatible when they satisfy:

$$\frac{(t,t') \in R}{(\lambda x.t, \lambda x.t') \in R} \qquad \frac{(t,t') \in R}{(t(u,l),t'(u,l)) \in R} \qquad \frac{(u,u') \in R}{(t(u,l),t(u',l)) \in R} \qquad \frac{(l,l') \in R'}{(t(u,l),t(u,l)) \in R}$$

$$\frac{(u,u') \in R}{(u::l,u'::l) \in R'} \qquad \frac{(l,l') \in R'}{(u::l,u::l') \in R'}$$

Notation. We will use the same notation for relations introduced in chapter 2. As the compatible closure induces two relations, one on terms and the other on lists, we will use the already familiar notation \rightarrow_R for both these relations as we can get out of the context which one is being referenced.

Then, we will have the induced relations \rightarrow_{β} and $\rightarrow_{\beta h}$ on λm -expressions. We may also refer to the multistep analogous relations $\twoheadrightarrow_{\beta}$ and $\twoheadrightarrow_{\beta h}$.

We turn now our attention to the typing system of λm . Given that λm has two syntactic categories of expressions, its typing system will deal with two different kinds of sequents.

Definition 26 (Sequent). A sequent on terms $\Gamma \vdash t : A$ is a triple of a context, a λm -term and a simple type. A sequent on lists Γ ; $A \vdash l : B$ is a quadruple of a context, a simple type, a λm -list and another simple type.

Definition 27 (Typing Rules for λm -terms).

As usual a sequent derivation is a tree-like structure, with root being the derived sequent and leaves being instances of the axioms (Var-rule or Nil-rule).

Now follow two necessary lemmas for the result of subject reduction that state the admissibility of substitution and append operations.

Lemma 1 (Substitution is admissible). The following rules are admissible:

$$\frac{\Gamma, x: B \vdash t: A \quad \Gamma \vdash u: B}{\Gamma \vdash t[x:=u]: A} \qquad \qquad \frac{\Gamma, x: B \ ; C \vdash l: A \quad \Gamma \vdash u: B}{\Gamma; C \vdash l[x:=u]: A}.$$

Proof. The proof proceeds by simultaneous induction on the structure of the term t and list l.

Lemma 2 (Append is admissible). *The following rule is admissible:*

$$\frac{\Gamma; C \vdash l : B \qquad \Gamma; B \vdash l' : A}{\Gamma; C \vdash l + l' : A}.$$

Proof. The proof proceeds by induction on the structure of l.

Subject reduction then states that any given term preserves its type upon βh reduction.

Theorem 1 (Subject reduction). Given λm -terms t and t', the following holds:

$$\Gamma \vdash t : A \land t \rightarrow_{\beta h} t' \implies \Gamma \vdash t' : A.$$

Proof. The proof proceeds by induction on the structure of the relation $\rightarrow_{\beta h}$.

Lemma 1 is used to prove the case where $(t, t') \in \beta$.

Lemma 2 is used to prove the case $(t, t') \in h$.

Corollary 1 (Multistep subject reduction). Given λm -terms t and t', the following holds:

$$\Gamma \vdash t : A \land t \rightarrow_{\beta h} t' \implies \Gamma \vdash t' : A.$$

Other classical results from λ -calculus like confluency and strong normalisation could also be proved for system λm , but are not covered in this dissertation.

3.2 The canonical subsystem

The canonical subsystem is a system within λm containing only terms in h-normal form. In this section we see how to equip canonical terms with an appropriate notion of β -reduction and appropriate typing rules.

Definition 28 (h-normal form). We say that a λm -term t is in h-normal form when there exists no λm -term t' such that

$$t \to_h t'$$
.

Definition 29 (Canonical expressions). We inductively define the subsets of λm -terms and λm -lists, respectively Can and CanList, as follows:

$$\frac{t \in Can}{\lambda x.t \in Can} \quad \frac{u \in Can \quad l \in CanList}{x(u,l) \in Can} \quad \frac{t \in Can \quad u \in Can \quad l \in CanList}{(\lambda x.t)(u,l) \in Can}$$

$$\frac{u \in Can \quad l \in CanList}{u :: l \in CanList}$$

 λm -terms $t \in Can$ are also called canonical terms. Analogously, λm -lists $l \in CanList$ are called canonical lists. Canonical expressions will refer to the set $Can \cup CanList$.

Similar to what was done in chapter 2, we leave a claim stating that the canonical terms are exactly the λm -terms in h-normal form.

Claim 3. Given a λm -term t, the following are equivalent:

(i) $t \in Can$.

(ii) t is in h-normal form.

Now, we will describe how the canonical terms generate a subsystem.

First, we define the function $app: Can \times Can \times Can List \rightarrow Can$ that will behave as a multiary application constructor closed for the canonical terms.

Definition 30. Given $t, u \in Can$ and $l \in CanList$, the operation app(t, u, l) is defined by the following equations:

$$app(x, u, l) = x(u, l),$$

$$app(\lambda x.t, u, l) = (\lambda x.t)(u, l),$$

$$app(x(u', l'), u, l) = x(u', l' + (u :: l))$$

$$app((\lambda x.t)(u', l'), u, l) = (\lambda x.t)(u', l' + (u :: l)).$$

Lemma 3. Given $t, u \in Can$ and $l \in CanList$,

$$t(u, l) \rightarrow_h app(t, u, l)$$
 (in λm).

Proof. The proof proceeds easily by inspection of term t.

For the cases where t is not an application, we have an equality.

Then, we can define a function that collapses λm -terms to their h-normal form.

Definition 31. Consider the following map $h: \lambda m$ -terms $\to Can$, recursively defined as follows:

$$h(x) = x$$

$$h(\lambda x.t) = \lambda x.h(t)$$

$$h(t(u, l)) = app(h(t), h(u), h(l))$$

$$h([]) = []$$

$$h(u :: l) = h(u) :: h(l).$$

Proposition 1 (Map h performs $\rightarrow h$). For every λm -term t,

$$t \rightarrow_h h(t)$$
,

and also, for every λm -list l,

$$l \rightarrow h h(l)$$
.

Proof. The proof proceeds easily by simultaneous induction on the structure of λm -expressions.

As h is defined using app, Lemma 3 is crucial for the case where t is an application.

The following theorem states that the canonical terms are invariant or fixpoints for map h. Another way to look at this result is by saying that h is surjective.

Proposition 2 (Invariance of canonical terms by h). For every $t \in Can$,

$$h(t) = t$$
,

and also, for every $l \in CanList$,

$$h(l) = l$$
.

Proof. The proof proceeds easily by simultaneous induction on the structure of canonical expressions. \Box

For the purpose of defining a subsystem of λm , we will see how to induce a reduction relation for these canonical expressions given a reduction relation on λm -expressions.

Definition 32 (Canonical relation closure). Let R and R' be two binary relations on λm -terms and λm -lists respectively. We inductively define the relations R_c and R'_c , on canonical terms and lists respectively, as follows:

$$\frac{(t,t') \in R}{(h(t),h(t')) \in R_c} \qquad \qquad \frac{(l,l') \in R'}{(h'(l),h'(l')) \in R'_c}.$$

We call canonical relation closure of R and R' to the induced relations R_c and R'_c .

This definition allows us to define a concept of β -reduction for the canonical terms, namely $(\rightarrow_{\beta})_c$, derived from the relation \rightarrow_{β} in λm . But this definition tells us little about the relation itself ...an interesting question is: how does a β -reduction (as in the previous definition) behave on the canonical terms?

Given $t,u\in Can$, lets see how to reduce $(\lambda x.t)(u,[])$. The definition of $(\to_{\beta})_c$ stipulates:

$$\frac{(\lambda x.t)(u,[]) \to_{\beta} t[x:=u]}{h((\lambda x.t)(u,[])) (\to_{\beta})_{c} h(t[x:=u])}$$

Given that $t,u\in Can$, we get that $(\lambda x.t)(u,[])\in Can$. Therefore, from Proposition 2, we get $(\lambda x.t)(u,[])$ $(\to_{\beta})_c$ h(t[x:=u]).

Furthermore, from this definition, we could even prove certain properties of $(\rightarrow_{\beta})_c$, such as:

$$\frac{t (\to_{\beta})_c t'}{\lambda x.t (\to_{\beta})_c \lambda x.t'}$$

This follows from "inverting" t $(\rightarrow_{\beta})_c$ t'. Firstly, one observes that there exist λm -terms u, u' such that h(u) = t and h(u') = t' and $u \rightarrow_{\beta} u'$. Then,

$$\frac{u \to_{\beta} u'}{\lambda x.u \to_{\beta} \lambda x.u'} \text{ (compatibility of } \to_{\beta}\text{)}$$

$$\frac{h(\lambda x.u) (\to_{\beta})_c h(\lambda x.u')}{h(\lambda x.u) (\to_{\beta})_c h(\lambda x.u')} \text{ (Definition 32)}$$

Lastly, simplifying h and rewriting h(u) and h(u'), we conclude that $\lambda x.t \ (\rightarrow_{\beta})_c \ \lambda x.t'$.

We now conclude the presentation of the canonical subsystem in λm , by equiping canonical expressions with a typing relation, in the same spirit of Definition 32.

Definition 33 (Canonical typing closure). *We define the derivable sequents for canonical expressions as follows:*

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash_c h(t) : A} \qquad \frac{\Gamma; A \vdash_l : B}{\Gamma; A \vdash_c h'(l) : B}$$

Also, from the previous definition, we may ask similar questions to those asked above about β -reduction for canonical expressions. For example, given $t \in Can$, is the following rule admissible?

$$\frac{x:A,\Gamma\vdash_{c}t:B}{\Gamma\vdash_{c}\lambda x.t:A\supset B}$$

By inverting our assumption of $x:A,\Gamma \vdash_c t:B$, we get that there exists t', such that h(t')=t and $x:A,\Gamma \vdash t':B$ is derivable in $\pmb{\lambda m}$. Then,

$$\frac{x:A,\Gamma\vdash t':B}{\Gamma\vdash \lambda x.t':A\supset B} \text{ Lam} \\ \frac{\Gamma\vdash \lambda x.t':A\supset B}{\Gamma\vdash_c h(\lambda x.t'):A\supset B} \text{ (Definition 33)}$$

And again, simplifying and rewriting h, we have derived the sequent $\Gamma \vdash_c \lambda x.t : A \supset B$.

Our presentation of the canonical subsystem of λm does not exactly coincide with system $\lambda \mathcal{P}$ from [10, Chapter 3.1]. We define a subsystem of λm by restricting our syntax of expressions via a map h. Then, we introduce reduction and a typing relation by exclusively using map h. Trivially, we get a subsystem with appropriate notions of reduction and typing but still preserving their expected behaviour (as seen above).

In our work, motivated by the task of mechanisation, we distinguish between a subsystem of λm in the sense we have described before and an isomorphic system with its own syntax, substitution, reduction and typing rules (this is the system $\vec{\lambda}$ that will be covered in chapter 4). We explain some details and motivations for this at the end of the next section.

3.3 Mechanisation in Rocq

The mechanisation of the system λm also crucially relies on the *Autosubst* library, and essentially follows the style adopted for the mechanisation of the simply typed λ -calculus we have seen in chapter 2.

3.3.1 LambdaM.v

This module contains the necessary definitions for the various aspects of the formalisation of system λm performed in this dissertation. The inductive type for the syntax of λm -terms is as follows.

```
Inductive term: Type :=
| Var (x: var)
| Lam (t: {bind term})
| mApp (t: term) (u: term) (1: list term).
```

Note that the definition for λm -lists is hidden under the polymorphic list type list term. We explain the reason for more details for this option at the end of this section.

To mechanise the reduction relations, we first defined the notion of compatibility for binary relations on λm -expressions (as in Definition 25) and then define the base step relations β_1 , β_2 and h separately. That way we can distinguish between the notions of compatible closure of a base relation and of a relation being compatible. This approach is more elaborated than the one presented for the simply typed λ -calculus and we also get into more details about these decisions at the end of this section.

```
Inductive \beta_1: relation term :=

| Step_Beta1 (t: {bind term}) (t' u: term) :

| t' = t.[u .: ids] \rightarrow \beta_1 (mApp (Lam t) u []) t'.

Inductive \beta_2: relation term :=
```

```
| Step_Beta2 (t: {bind term}) (t' u v: term) 1 :  t' = t.[u : ids] \rightarrow \beta_2 \text{ (mApp (Lam t) u (v::1)) (mApp t' v 1)}. 

Inductive H: relation term :=  | \text{ Step_H (t u u': term) 1 1' 1'' :} 
 | 1'' = 1 + + (u'::1') \rightarrow \text{H (mApp (mApp t u 1) u' 1') (mApp t u 1'')}. 

Definition step := comp (union _ (union _ \beta_1 \beta_2) H).

Definition multistep := clos_refl_trans_1n _ step.

Definition multistep' := clos refl trans 1n _ step'.
```

Here, comp and comp' are the polymorphic relations on λm -expressions that induce the compatibility closure. We also note the use of the clos_refl_trans_1n polymorphic relation provided by the *Rocq Prover* libraries that induces the reflexive and transitive closure of a given binary relation.

In this module, we also find the formalisation of the typing relation for λm , through an inductively defined relation, much in the style of what was done for the simply typed λ -calculus.

```
Inductive sequent (Γ: var→type) : term → type → Prop :=
| varAxiom (x: var) (A: type) :
| Γ x = A → sequent Γ (Var x) A |
| Right (t: term) (A B: type) :
| sequent (A .: Γ) t B → sequent Γ (Lam t) (Arr A B) |
| HeadCut (t u: term) (1: list term) (A B C: type) :
| sequent Γ t (Arr A B) → sequent Γ u A → list_sequent Γ B 1 C → sequent Γ (mApp t u 1) C
with list_sequent (Γ:var→type) : type → (list term) → type → Prop :=
| nilAxiom (C: type) : list_sequent Γ C [] C
| Lft (u: term) (1: list term) (A B C:type) :
| sequent Γ u A → list_sequent Γ B 1 C → list_sequent Γ (Arr A B) (u :: 1) C.
```

3.3.2 TypePreservation.v

This module contains the proof of the subject reduction theorem (Theorem 1) and necessary lemmas to prove it (recall Lemma 1).

```
Theorem type_preservation :  (\forall \texttt{t} \texttt{ t'}, \texttt{ step } \texttt{t} \texttt{ t'} \to \forall \Gamma \texttt{ A}, \texttt{ sequent } \Gamma \texttt{ t} \texttt{ A} \to \texttt{ sequent } \Gamma \texttt{ t'} \texttt{ A})   \land \\ (\forall \texttt{l} \texttt{ l'}, \texttt{ step'} \texttt{ l} \texttt{ l'} \to \forall \Gamma \texttt{ A} \texttt{ B}, \texttt{ list\_sequent } \Gamma \texttt{ A} \texttt{ l} \texttt{ B} \to \\ \texttt{ list sequent } \Gamma \texttt{ A} \texttt{ l'} \texttt{ B}).
```

Using *Autosubst*, we have to prove not only the preservation of types by the substitution operation but also by renamings. We prove these results using the techniques in the tutorial [18].

```
Lemma type_renaming : \forall \Gamma, (\forall t \ A, \ sequent \ \Gamma \ t \ A \rightarrow \\ \forall \Delta \ \xi, \ \Gamma = (\xi >>> \Delta) \rightarrow sequent \ \Delta \ t. [ren \ \xi] \ A) \land \qquad (\forall A \ 1 \ B, \ list\_sequent \ \Gamma \ A \ 1 \ B \rightarrow \\ \forall \Delta \ \xi, \ \Gamma = (\xi >>> \Delta) \rightarrow \ list\_sequent \ \Delta \ A \ 1... [ren \ \xi] \ B). ... Lemma type_substitution : \forall \Gamma, (\forall t \ A, \ sequent \ \Gamma \ t \ A \rightarrow \\ \forall \sigma \ \Delta, \ (\forall x, \ sequent \ \Delta \ (\sigma \ x) \ (\Gamma \ x)) \rightarrow \ sequent \ \Delta \ t. [\sigma] \ A) \land \qquad (\forall A \ 1 \ B, \ list\_sequent \ \Gamma \ A \ 1 \ B \rightarrow \\ \forall \sigma \ \Delta, \ (\forall x, \ sequent \ \Delta \ (\sigma \ x) \ (\Gamma \ x)) \rightarrow \ list \ sequent \ \Delta \ A \ 1... [\sigma] \ B).
```

For what is worth, we could prove a simpler statement (similar to Lemma 1) to formalise the subject reduction theorem. Such lemma would look like (without the proposition for lists):

```
Lemma weak_type_substitution \Gamma t A : sequent (B.:\Gamma) t A \rightarrow sequent \Gamma u B \rightarrow sequent \Gamma t.[u.:\sigma] A).
```

The used *Autosubst* approach takes this notion of well-typed substitutions or context morphisms (see [19, Chapter 4]) to generalise these lemmas.

As already mentioned, we use the combined induction principles (for λm -expressions) to prove the statements that are declared using a conjunction on terms and lists.

3.3.3 IsCanonical.v

This module contains the necessary definitions for the formalisation of the canonical subsystem of λm .

First, we define a predicate is_canonical that constructively defines the canonical expressions in the style of Definition 29.

```
Inductive is canonical: term \rightarrow Prop :=
| cVar (x: var) :
  is canonical (Var x)
| cLam (t: {bind term}) :
  is canonical t \rightarrow is canonical (Lam t)
| cVarApp (x: var) (u: term) (1: list term) :
  is_canonical u 
ightarrow is_canonical_list 1 
ightarrow
  is_canonical (mApp (Var x) u 1)
| cLamApp (t: {bind term}) (u: term) (1: list term) :
  is_canonical t 	o is_canonical u 	o is_canonical_list 1 	o
  is_canonical (mApp (Lam t) u 1)
with is_canonical_list: list term \rightarrow Prop :=
| cNil : is_canonical_list []
| cCons (u: term) (1: list term) :
  is_canonical u 
ightarrow is_canonical_list 1 
ightarrow
  is_canonical_list (u::1).
```

The module then contains defintions for the app operation (called capp because append of lists in Rocq is already called app) and map h.

In our definition, map h (which calls the map function from the List library) behaves exactly as the

intended map h when applied to lists.

In the *Rocq Prover*, we need to formally prove that the app operation and map h are closed for canonical terms. Note that in the case of our description of the subsystem in the previous section, it is easy to informally argue about this. For example, in our mechanisation, we have the following lemma.

```
Lemma capp_is_canonical t u l :  \mbox{is\_canonical t} \rightarrow \mbox{is\_canonical u} \rightarrow \mbox{is\_canonical\_list l} \rightarrow \mbox{is\_canonical (capp t u l)}.
```

Then, we prove all the lemmas, propositions and theorems presented in the description of the canonical subsystem. As an example, we show the mechanisation of Proposition 2.

In this proof we use the **auto** tactic to facilitate our work. For routine proofs, we often found success when using these automated tactics.

The module ends with definitions for the reduction relation (recall Definition 32) and typing rules (recall Definition 33) for the canonical subsystem.

```
Inductive canonical_relation

(R: relation term) : relation term :=

| Step_CanTerm t t' : R t t' \rightarrow canonical_relation R (h t) (h t').

Inductive canonical_list_relation

(R: relation (list term)) : relation (list term) :=

| Step_CanList l l' : R l l' \rightarrow canonical_list_relation R (map h l) (map h l').

Definition step_can := canonical_relation step_beta.

Definition step_can' := canonical_list_relation step_beta'.

...

Inductive canonical_sequent (\Gamma: var\rightarrowtype) :

term \rightarrow type \rightarrow Prop :=

| Seq_CanTerm t A : sequent \Gamma t A \rightarrow canonical_sequent \Gamma (h t) A.
```

```
Inductive canonical_list_sequent (\Gamma: var\totype) : type \to list term \to type \to Prop := | Seq_CanList 1 A B : list_sequent \Gamma A 1 B \to canonical_list_sequent \Gamma A (map h 1) B.
```

3.3.4 A closer look at the mechanisation

In this part we take a closer look at some particular aspects of the mechanisation that deserve more attention. The purpose is to show how some other options could arise and justify aspects of our approach that may look unusual.

a) Mutually inductive types vs nested inductive types

Creating a mutually inductive type for the syntax of λm in Rocq would be a simple task:

```
Inductive term: Type :=
| Var (x: var)
| Lam (t: {bind term})
| mApp (t: term) (u: term) (1: list)
with list: Type :=
| Nil
| Cons (u: term) (1: list).
```

However, as reported in the final section of [19], *Autosubst* offers no support for mutually inductive definitions. The derive tactic would not generate the desired instances for the Rename and Subst classes, failing to iterate through the customized list type.

As we tried to keep the decision of using Autosubst, there were two possible directions:

- 1. manually define every instance required and prove substitution lemmas;
- 2. remove the mutual dependency in the term definition.

The first formalisation attempts followed the first option. This meant that everything *Autosubst* could provide automatically was done by hand. For this, we closely followed the definitions given in [19].

After some closer inspection of the library source code, we found that there was native support for the use of types depending on polymorphic lists. This way, there was no need of having a mutual inductive type for our terms.

The downside of using nested inductive types in the *Rocq Prover* is the generated induction principles. This issue is already well documented in [7, Chapter 14.3]. With this approach, we need to provide the dedicated induction principles to the proof assistant, presented below.

```
Section dedicated induction principle.
  Variable P : term \rightarrow Prop.
  Hypothesis HVar : \forall x, P (Var x).
  Hypothesis HLam : \forall t: {bind term}, P t \rightarrow P (Lam t).
  \textbf{Hypothesis} \ \texttt{HmApp} \ : \ \forall \ \texttt{t} \ \texttt{u} \ \texttt{l}, \ \texttt{P} \ \texttt{t} \ \rightarrow \ \texttt{P} \ \texttt{u} \ \rightarrow \ \texttt{Q} \ \texttt{l} \ \rightarrow \ \texttt{P} \ (\texttt{mApp} \ \texttt{t} \ \texttt{u} \ \texttt{l}) \, .
  Hypothesis HNil : Q [].
  \textbf{Hypothesis} \ \ \textbf{HCons} \ : \ \forall \ \textbf{u} \ \textbf{1,} \ \ \textbf{P} \ \textbf{u} \ \rightarrow \ \textbf{Q} \ \textbf{1} \ \rightarrow \ \textbf{Q} \ \ \textbf{(u::1)} \, .
  Proposition sim_term_ind : ∀t, P t.
  Proof.
      fix rec 1. destruct t.
      - now apply HVar.
      - apply HLam. now apply rec.
      - apply HmApp.
        + now apply rec.
        + now apply rec.
         + assert (\forall1, Q 1). {
                  fix rec' 1. destruct 10.
                  - apply HNil.
                  - apply HCons.
                     + now apply rec.
                     + now apply rec'. }
           now apply H.
   Qed.
  Proposition sim_list_ind : \forall l, Q l.
  Proof.
      fix rec 1. destruct 1.
      - now apply HNil.
      - apply HCons.
         + now apply sim_term_ind.
         + now apply rec.
   Qed.
End dedicated_induction_principle.
```

b) Formalising a compatible closure

Defining reduction relations in λ -calculi like systems always involve the notion of compatibility closure, as we want to allow reduction to happen at the level of subterms.

We took inspiration from the definitions in the Relations libraries of the *Rocq Prover*. This library provides many definitions on binary relations. For example, there is a predicate that transitive relations satisfy (in Relation_Definitions) and there is also a higher order relation that constructs the transitive closure of a given relation (in Relation Operations).

```
Definition transitive : Prop := \forall x y z:A, R x y \rightarrow R y z \rightarrow R x z. ...

Inductive clos_trans (x: A) : A \rightarrow Prop := | t_step (y:A) : R x y \rightarrow clos_trans x y | t_trans (y z:A) : clos_trans x y \rightarrow clos_trans x z.
```

We followed these definitions to define compatibility notions for the system λm in a modular way. We define the compatible closure from a given base relation on λm -terms as follows:

```
Section Compatibilty.
  Variable base : relation term.
  Inductive comp : relation term :=
  | Comp Lam (t t': \{bind term\}) : comp t t' \rightarrow
                                       comp (Lam t) (Lam t')
  | Comp mApp1 t t' u l : comp t t' \rightarrow
                            comp (mApp t u l) (mApp t' u l)
  | Comp_mApp2 t u u' l : comp u u' \rightarrow
                             comp (mApp t u 1) (mApp t u' 1)
  | Comp_mApp3 t u l l' : comp' l l' \rightarrow
                             comp (mApp t u 1) (mApp t u 1')
  | Step Base t t' : base t t' \rightarrow comp t t'
  with comp' : relation (list term) :=
  | Comp Head u u' l : comp u u' \rightarrow comp' (u::1) (u'::1)
  | Comp_Tail u l l' : comp' l l' \rightarrow comp' (u::1) (u::1').
  Scheme sim comp ind := Induction for comp Sort Prop
    with sim_comp_ind' := Induction for comp' Sort Prop.
  Combined Scheme mut_comp_ind from sim_comp_ind, sim_comp_ind'.
```

End Compatibilty.

Section IsCompatible.

Then, we also define a record type that contains the necessary predicates to be satisfied by a compatible relation.

```
Variable R : relation term.
  Variable R' : relation (list term).
  Record is_compatible := {
       comp lam : \forall t t': {bind term}, R t t' \rightarrow R (Lam t) (Lam t') ;
       comp mApp1 : \forallt t' u l, R t t' \rightarrow R (mApp t u l) (mApp t' u l) ;
       comp mApp2 : \forallt u u' 1, R u u' \rightarrow R (mApp t u 1) (mApp t u' 1) ;
       comp mApp3 : \forallt u l l', R' l l' \rightarrow R (mApp t u l) (mApp t u l') ;
       <code>comp_head</code> : \forall \, u \, \, u' \, \, 1, R u u' \rightarrow R' (u :: 1) (u' :: 1) ;
       comp tail : \forallu 1 1', R' 1 1' \rightarrow R' (u :: 1) (u :: 1')
    }.
End IsCompatible.
  From these modular definitions, we can prove some interesting (yet bureaucratic) results, like:
Theorem comp_is_compatible B : is_compatible (comp B) (comp' B).
Proof.
  split ; autounfold ; intros ; constructor ; assumption.
Qed.
Theorem clos_refl_trans_pres_comp :
  \forall R R', is compatible R R' \rightarrow
     is compatible (clos refl trans 1n R) (clos refl trans 1n R').
Proof.
  intros R R' H. destruct H.
  split ; intros ; induction H ; econstructor ; eauto.
Qed.
```

This theorem states that if we have a compatible relation, its reflexive and transitive closure is still compatible.

An advantage of these modular definitions is that we can use them to increase automation in our proofs. In the main theorem that we prove in the next chapter (bellow is part of it, named conservativeness2), our proof starts by adding every compatibility step to our context. As the auto tactic tries to match hypoth-

esis in the context with the goal, the compatibility steps are then covered automatically.

c) Formalising a subsystem

A relevant part of our work was to find simple representations for subsystems in the proof assistant.

As we pointed out, the formalisation we have done for the canonical subsystem of λm is non standard. These ideas were motivated by the task of mechanising such subsystem.

Formalising the subset of terms using a predicate is an obvious way to proceed. But we would also like to have a dedicated type for the extension of that predicate rather than just the predicate itself. The *Rocq Prover* provides such types, known as subset types (we refer to [7, Chapter 9.1]). Although these subset types are exactly what we wanted, they do not give us a great advantage on mechanisation tasks. Using subset types rapidly becomes exhausting because of the need to always provide proof objects in every definition.

As an example, trying to define the one step β -relation as in [10, Chapter 3.1] for the canonical subsystem mechanised using subset types, we would get (supposing we had a mechanised substitution operation):

```
Definition canonical := { u: term | is_canonical u }.

Definition canonical_list := { l: list term | is_canonical_list l }.

...

Inductive can_step : canonical → canonical → Prop :=
| cStep_Beta1 (t u: term) (it: is_canonical t) (iu: is_canonical u)
    (t': canonical) i:
    i = (cLamApp t u []) it iu cNil →
    t' = (exist _ t it).[(exist _ u iu) .: ids] →
```

```
can_step (exist _ (mApp (Lam t) u []) i) t'
...
| cStep_Lam t t' it it' i1 i2 :
    i1 = (cLam t) it →
    i2 = (cLam t') it' →
    can_step (exist _ t it) (exist _ t' it') →
    can_step (exist _ (Lam t) i1) (exist _ (Lam t') i2)
```

So far, our approach on the formalisation of the canonical subsystem of λm was to view it according to map h, that it, defining reduction and typification using this map. However, we may also define a self-contained version of the canonical subsystem with its own syntax and definitions (in the spirit of [10, Chapter 3.1]). Then, we may prove that both representations are in fact isomorphic. That is the goal for chapter 4.

Chapter 4

Canonical λ -calculus

In this chapter we present a system that we give the name of canonical λ -calculus ($\vec{\lambda}$). The naming of this system is motivated by two reasons. On the one hand, it is isomorphic to the canonical subsystem of λm seen in the previous chapter. On the other hand, it is also isomorphic to the simply typed λ -calculus.

The system $\vec{\lambda}$ is a self-contained representation of the canonical subsystem (one can notice the similarities between the definitions for system λm). We will give a complete proof for this isomorphism in the second section of this chapter. In the third section we give the proof for the theorem of conservativeness, stating that λm is a conservative extension of $\vec{\lambda}$. The isomorphism between system $\vec{\lambda}$ and the simply typed λ -calculus is left for chapter 5.

4.1 The system $\vec{\lambda}$

Definition 34 ($\vec{\lambda}$ -expressions). The $\vec{\lambda}$ -terms are simultaneously defined with $\vec{\lambda}$ -lists by the following grammar:

$$(\vec{\pmb{\lambda}}\text{-terms})$$
 $t,u::=var(x)\mid \lambda x.t\mid app_v(x,u,l)\mid app_\lambda(x.t,u,l)$ $(\vec{\pmb{\lambda}}\text{-lists})$ $l::=[]\mid u::l.$

We will refer to the union of $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists as $\vec{\lambda}$ -expressions.

Remark. The $\vec{\lambda}$ -terms have two different binding constructors: $\lambda x.t$ and $app_{\lambda}(x.t,u,l)$. In both constructors, every occurrence of the variable x in subterms var(x) of the term t is bound (and not free). System $\vec{\lambda}$ has in $app_{\lambda}(x.t,u,l)$ a dedicated constructor for the multiary application $(\lambda x.t)(u,l)$ of system λm .

Definition 35. Given $\vec{\lambda}$ -terms t, u and a $\vec{\lambda}$ -list l, the operation t@(u, l) calculates a $\vec{\lambda}$ -term defined by the following equations:

$$var(x)@(u,l) = app_{v}(x,u,l),$$

$$(\lambda x.t)@(u,l) = app_{\lambda}(x.t,u,l),$$

$$app_{v}(x,u',l')@(u,l) = app_{v}(x,u',l'+(u::l))$$

$$app_{\lambda}(x.t,u',l')@(u,l) = app_{\lambda}(x.t,u',l'+(u::l)),$$

where the list append, l + l', has the expected bahaviour (as in λm).

Now follows a "strange" definition for the substitution operation, which needs to be careful when dealing with a substitution over a constructor app_v .

Definition 36 (Substitution for $\vec{\lambda}$ -expressions). The substitution of a variable x by a $\vec{\lambda}$ -term u is mutually defined by recursion over $\vec{\lambda}$ -expressions as follows:

$$\begin{split} var(x)[x := u] &= u; \\ var(y)[x := u] &= var(y), \text{ with } x \neq y; \\ (\lambda y.t)[x := u] &= \lambda y.(t[x := u]); \\ app_v(x, u', l)[x := u] &= u@(u'[x := u], l[x := u]); \\ app_v(y, u', l)[x := u] &= app_v(y, u'[x := u], l[x := u]), \text{ with } x \neq y; \\ app_\lambda(y.t, u', l)[x := u] &= app_\lambda(y.t[x := u], u'[x := u], l[x := u]); \\ [][x := u] &= []; \\ (v :: l)[x := u] &= v[x := u] :: l[x := u]. \end{split}$$

Definition 37 (Reduction rules for $\vec{\lambda}$ -terms).

$$(\beta_1)$$
 $app_{\lambda}(x.t, u, []) \to t[x := u]$

$$(\beta_2)$$
 $app_{\lambda}(x.t, u, v :: l) \rightarrow t[x := u]@(v, l)$

As before, we look at the previous rules as binary relations on $\vec{\lambda}$ -terms and define a relation $\beta = \beta_1 \cup \beta_2$.

Now, we make a small detour dedicated to compatible relations in the context of this system.

Definition 38 (Compatible relation). Let R and R' be two binary relations on $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists respectively. We say they are compatible when they satisfy:

$$\frac{(t,t') \in R}{(\lambda x.t,\lambda x.t') \in R} \quad \frac{(t,t') \in R}{(app_{\lambda}(x.t,u,l),app_{\lambda}(x.t',u,l)) \in R}$$

$$\frac{(u,u') \in R}{(app_{\lambda}(x.t,u,l),app_{\lambda}(x.t,u',l)) \in R} \quad \frac{(l,l') \in R'}{(app_{\lambda}(x.t,u,l),app_{\lambda}(x.t,u,l')) \in R}$$

$$\frac{(u,u') \in R}{(app_{v}(x,u,l),app_{v}(x,u',l)) \in R} \quad \frac{(l,l') \in R'}{(app_{v}(x,u,l),app_{v}(x,u,l')) \in R}$$

$$\frac{(u,u') \in R}{(u::l,u'::l) \in R'} \quad \frac{(l,l') \in R'}{(u::l,u::l') \in R'}$$

Notation. Again, we will be using the same notation for relations that was used in the previous chapters. The compatible closure of a binary relation on $\vec{\lambda}$ -terms R is denoted as \rightarrow_R . The reflexive transitive closure of \rightarrow_R is denoted as \rightarrow_R .

Lemma 4 (Compatibility lemmas). Let R and R' be two binary relations on $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists respectively. If R and R' are compatible, then they satisfy:

$$\begin{split} \frac{(l_1,l_1') \in R'}{(l_1+l_2,l_1'+l_2) \in R'} & \frac{(l_2,l_2') \in R'}{(l_1+l_2,l_1+l_2') \in R'} \\ \\ \frac{(t,t') \in R}{(t@(u,l),t'@(u,l)) \in R} & \frac{(u,u') \in R}{(t@(u,l),t@(u',l)) \in R} & \frac{(l,l') \in R'}{(t@(u,l),t@(u,l')) \in R} \end{split}$$

Proof. The proof proceeds easily by induction on lists for the append cases. For the compatibility cases of @ operation, proof follows by inspection of the principle argument and application of the append cases.

We now make some considerations about β -normal forms in this system.

Definition 39 (β -normal form). We say that a $\vec{\lambda}$ -term t is in β -normal form when there exists no $\vec{\lambda}$ -term t' such that

$$t \to_{\beta} t'$$
.

Definition 40. We inductively define the sets of $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists, respectively NT and NL, as follows:

$$\frac{t \in \mathit{NT}}{\lambda x. t \in \mathit{NT}} \qquad \frac{u \in \mathit{NT} \quad l \in \mathit{NL}}{app_v(x, u, l) \in \mathit{NT}} \qquad \frac{u \in \mathit{NT} \quad l \in \mathit{NL}}{u :: l \in \mathit{NL}}.$$

Claim 4. Given a $\vec{\lambda}$ -term t, the following are equivalent:

(i) $t \in NT$.

(ii) t is in β -normal form.

Remark. One could simply describe the β -normal forms of $\vec{\lambda}$ as the terms and lists with no occurrences of the constructor app_{λ} . This description is similar to idea of cut-elimination from sequent calculus (where the normal forms are the expressions not using cuts) and is one of the motivations for working with such systems. This system offers thus an advantage in comparison to the λ -calculus, where a description of β -normal forms is more elaborated.

We will not prove this claim here. However, we will come back to this claim in the next chapter to provide an alternative argument for the bijection between β -normal forms of λ -terms and $\vec{\lambda}$ -terms.

We conclude the description of system $\vec{\lambda}$ by presenting its typing system.

Definition 41 (Sequent). A sequent on terms $\Gamma \vdash t : A$ is a triple of a context, a $\vec{\lambda}$ -term and a simple type. A sequent on lists $\Gamma; A \vdash l : B$ is a quadruple of a context, a simple type, a $\vec{\lambda}$ -list and another simple type.

Definition 42 (Typing rules for $\vec{\lambda}$ -expressions).

4.2 $\vec{\lambda}$ vs the canonical subsystem of λm

In this section we prove an isomorphism between $\vec{\lambda}$ and the canonical subsystem in λm . We start by defining two functions that play a key role in this isomorphism.

Definition 43. Consider the following map $i: \vec{\lambda}$ -terms $\rightarrow Can$, recursively defined as follows:

$$i(var(x)) = x$$

$$i(\lambda x.t) = \lambda x.i(t)$$

$$i(app_v(x, u, l)) = x(i(u), i(l))$$

$$i(app_{\lambda}(x.t, u, l)) = (\lambda x.i(t))(i(u), i(l))$$

$$i([]) = []$$

$$i(u :: l) = i(u) :: i(l).$$

Definition 44. Consider the following map $p: \lambda m$ -terms $\to \vec{\lambda}$ -terms, recursively defined as follows:

$$p(x) = var(x)$$

$$p(\lambda x.t) = \lambda x.p(t)$$

$$p(t(u, l)) = p(t)@(p(u), p(l))$$

$$p([]) = []$$

$$p(u :: l) = p(u) :: p(l).$$

The following diagram summarizes the connection between the defined maps and map h defined in chapter 3.

We begin by proving that the diagram shown is commutative. This will require the following auxiliary result.

Lemma 5. Given $\vec{\lambda}$ -terms t, u and $\vec{\lambda}$ -list l,

$$i(t@(u,l)) = app(i(t),i(u),i(l)).$$

Proof. The proof proceeds easily by inspection of the $\vec{\lambda}$ -term t.

Theorem 2.

$$i \circ p = h$$

Proof. The equality is proved easily by induction on the structure of λm -expressions, using Lemma 5 in the application case.

4.2.1 Bijection at the level of terms

Corollary 2.

$$i \circ p|_{Can} = id_{Can}$$

Proof. The equality is obtained via rewriting with Proposition 2 and then using Theorem 2.

Theorem 3.

$$p \circ i = id_{\vec{\pmb{\lambda}}\text{-terms}}$$

Proof. The proof proceeds easily by induction on the structure of the $\vec{\lambda}$ -expressions.

4.2.2 Isomorphism at the level of reduction

In our subsytem of canonical terms, the substitution is not closed for the substitution operation. We have the following result that relates the two notions of substitution.

Lemma 6. For every $\vec{\lambda}$ -term t,

$$i(t[x := u]) = h(i(t)[x := i(u)]).$$

Proof. The proof proceeds by induction on the structure of the $\vec{\lambda}$ -term t.

For the case where $t=app_v(x,u,l)$, we use Lemma 5 to rewrite the term i(t[x:=v])=i(v@(u,l)) as app(i(v),i(u),i(l)).

Lemma 7. For every λm -terms t,

$$p(t[x := u]) = p(t)[x := p(u)].$$

Proof. The proof proceeds easily by induction on the structure of the λm -term t.

The following technical lemma says that we can derive the compatibility rules of the system $\vec{\lambda}$ given the canonoical closure of a compatible relation on λm .

Lemma 8. Let R and R' be two binary relations on λm -terms and λm -lists respectively.

The following binary relations are compatible in $\vec{\lambda}$:

$$I = \{(t,t') \mid i(t) \; (\rightarrow_R)_c \; i(t'), \text{ for } \vec{\pmb{\lambda}}\text{-terms } t,t'\}$$

$$I' = \{(l,l') \mid i(l) \; (\rightarrow_{R'})_c \; i(l'), \text{ for } \vec{\pmb{\lambda}}\text{-lists } l,l'\}$$

Proof. We detail the proof of one of the compatibility cases:

$$\frac{(t,t') \in I}{(app_{\lambda}(x.t,u,l), app_{\lambda}(x.t',u,l)) \in I}.$$

From the definition of I, $(t,t') \in I \implies i(t) (\rightarrow_R)_c i(t')$.

Then, from the definition of the canonical closure relation, we have that there exist λm -terms t_1 and t_2 such that $h(t_1) = i(t)$ and $h(t_2) = i(t')$ and $t_1 \to_R t_2$.

We have:

$$\frac{t_1 \to_R t_2}{\lambda x.t_1 \to_R \lambda x.t_2} \text{ (compatibility of } \to_R \text{)} \\ \frac{(\lambda x.t_1)(i(u),i(l)) \to_R (\lambda x.t_2)(i(u),i(l))}{(\lambda x.t_1)(i(u),i(l)))} \text{ (compatibility of } \to_R \text{)} \\ \frac{h((\lambda x.t_1)(i(u),i(l))) (\to_R)_c h((\lambda x.t_2)(i(u),i(l)))}{h((\lambda x.t_1)(i(u),i(l)))} \text{ (canonical closure definition)}$$

Computing h, we get $(\lambda x.h(t_1))(h(i(u)), h'(i(l))) (\rightarrow_R)_c (\lambda x.h(t_2))(h(i(u)), h'(i(l)))$.

As $i(u) \in Can$, h(i(u)) = i(u). And also, because $i(l) \in CanList$, we get that h'(i(l)) = i(l). Hence,

$$(\lambda x.h(t_1))(i(u), i(l)) = (\lambda x.i(t))(i(u), i(l)) = i(app_{\lambda}(x.t, u, l))$$
$$(\to_R)_c (\lambda x.h(t_2))(i(u), i(l)) = (\lambda x.i(t'))(i(u), i(l)) = i(app_{\lambda}(x.t', u, l))$$

Therefore, by definition of I, we get that $(app_{\lambda}(x.t, u, l), app_{\lambda}(x.t', u, l)) \in I$.

Theorem 4. For every $\vec{\lambda}$ -terms t, t',

$$t \to_{\beta} t' \implies i(t) (\to_{\beta})_c i(t').$$

Proof. The proof proceeds by induction on the relation \rightarrow_{β} of $\vec{\lambda}$ -expressions.

Lemma 6 deals with substitution preservation in the β -reduction cases.

Lemma 8 deals with all the compatibility cases.

Theorem 5. For every $t, t' \in Can$,

$$t (\rightarrow_{\beta})_c t' \implies p(t) \rightarrow_{\beta} p(t').$$

Proof. The proof starts by inverting our hypothesis t $(\to_{\beta})_c$ t'. The inversion provides that there exist λm -terms t_0, t'_0 such that $t_0 \to_{\beta} t'_0$ and $t = h(t_0)$ and $t' = h(t'_0)$. The proof then proceeds by induction on the relation step $t_0 \to_{\beta} t'_0$.

Lemma 7 deals with substitution preservation in the β -reduction cases.

Lemma 4 is useful in some compatibility cases.

4.2.3 Isomorphism at the level of typed terms

We start by establishing admissibility of the typing rules for the append and @ operations.

Lemma 9 (Append admissibility). The following rule is admissible in $\vec{\lambda}$:

$$\frac{\Gamma;A\vdash l:B \qquad \Gamma;B\vdash l':C}{\Gamma;A\vdash l+l':C}.$$

Proof. The proof proceeds easily by induction on the list l.

Lemma 10 (@ admissibility). The following rule is admissible in $\vec{\lambda}$:

$$\frac{\Gamma \vdash t : A \supset B \qquad \Gamma \vdash u : A \qquad \Gamma; B \vdash l : C}{\Gamma \vdash t@(u,l) : C}.$$

Proof. The proof proceeds easily by inspection of t, using Lemma 9 when t is an application.

We are now ready to prove the two theorems that provide the isomorphism of the canonical subsystem of λm and system $\vec{\lambda}$ at the typing level.

Theorem 6 (*i* admissibility). For every $\vec{\lambda}$ -term t and $\vec{\lambda}$ -list l, the following rules are admissible:

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash_c i(t) : A} \qquad \frac{\Gamma; A \vdash l : B}{\Gamma; A \vdash_c i(l) : B}.$$

Proof. The proof proceeds easily by simultaneous induction on the typing derivations of the premises. \Box

Theorem 7 (p admissibility). For every $t \in Can$ and $l \in CanList$, the following rules are admissible:

$$\frac{\Gamma \vdash_c t : A}{\Gamma \vdash p(t) : A} \qquad \frac{\Gamma; A \vdash_c l : B}{\Gamma; A \vdash p(l) : B}.$$

Proof. From Proposition 2 we have that h(t) = t and h'(l) = l. Then, inverting Definition 33, we have (in λm):

$$\Gamma \vdash t : A$$
 $\Gamma; A \vdash l : B.$

Thus, the proof proceeds easily by simultaneous induction on the above typing derivations of λm . Lemma 10 is crucial for the application case.

Our argument for the isomorphism between the canonical subsystem in λm and $\vec{\lambda}$ ends here. From now on, we will use the self contained representation, system $\vec{\lambda}$, to talk about canonical terms.

4.3 Conservativeness

The result of conservativeness establishes the connection between reduction in $\vec{\lambda}$ and in λm . We start by proving a auxiliary result that connects the @ operation with list append.

Lemma 11. For every $\vec{\lambda}$ -terms $t, u, \lambda m$ -term v and λm -lists l, l', the following equality holds.

$$(t@(u,p(l)))@(p(v),p(l'))=t@(u,p(l+(v::l')))$$

Proof. The proof proceeds by inspection of $\vec{\lambda}$ -term t and uses the simple fact that p(l+(v::l'))=p(l)+p(v)::p(l').

Theorem 8 (Conservativeness). For every $\vec{\lambda}$ -terms t and t', we have:

$$t \rightarrow_{\beta} t' \iff i(t) \rightarrow_{\beta h} i(t').$$

Proof. \Longrightarrow Let t and t' be $\vec{\lambda}$ -terms.

For this implication it suffices to mimic β steps of the system $\vec{\lambda}$ in the system λm .

Case $t \rightarrow_{\beta_1} t'$:

Case $t \rightarrow_{\beta_2} t'$:

 $(in \vec{\lambda})$

(in λm)

 \longleftarrow Let t and t' be λm -terms.

For this implication, we first show how a reduction $t \to_{\beta h} t'$ in λm is directly translated into a reduction $p(t) \to_{\beta} p(t')$ in $\vec{\lambda}$.

Case $t \rightarrow_{\beta_1} t'$:

Case $t \rightarrow_{\beta_2} t'$:

$$(\operatorname{in} \boldsymbol{\lambda m})$$
 $(\operatorname{in} \boldsymbol{\vec{\lambda}})$

Case $t \rightarrow_h t'$:

(in λm)

 $(in \vec{\lambda})$

From the shown base cases, an easy induction on the relation $\rightarrow_{\beta h}$ proves for every λm -terms t,t':

$$t \twoheadrightarrow_{\beta h} t' \implies p(t) \twoheadrightarrow_{\beta} p(t').$$

Thus, for every $\vec{\lambda}$ -terms u, u',

$$i(u) \twoheadrightarrow_{\beta h} i(u') \implies p(i(u)) = u \twoheadrightarrow_{\beta} p(i(u')) = u'.$$

As an immediate application of the conservativeness result just proved, we can derive subject reduction for $\vec{\lambda}$ from λm (already proved as Theorem 1).

Corollary 3 (Subject Reduction for $\vec{\lambda}$). Given $\vec{\lambda}$ -terms t and t', the following holds:

$$\Gamma \vdash t : A \land t \rightarrow_{\beta} t' \implies \Gamma \vdash t' : A.$$

Proof. The proof is shown in a derivation-like style. We use dashed lines for derivations that do not follow from typing rules or rules already proven admissible.

Theorem 6
$$\frac{\Gamma \vdash t : A}{\Gamma \vdash_{c} i(t) : A} \qquad t_{0} \twoheadrightarrow_{h} h(t_{0})$$
 Proposition 1
$$\frac{\Gamma \vdash t_{0} : A}{\Gamma \vdash_{c} i(t) : A} \qquad t_{0} \twoheadrightarrow_{h} h(t_{0}) \qquad t \to_{\beta} t'$$
 Theorem 8
$$\frac{\Gamma \vdash_{c} i(t) : A}{\Gamma \vdash_{c} i(t') : A} \qquad \text{Definition 33}$$
 Proposition 2
$$\frac{\Gamma \vdash_{c} i(t') : A}{\Gamma \vdash_{c} i(t') : A} \qquad \text{Definition 33}$$
 Proposition 2
$$\frac{\Gamma \vdash_{c} i(t') : A}{\Gamma \vdash_{c} i(t') : A} \qquad \text{Theorem 7}$$
 Theorem 7
$$\frac{\Gamma \vdash_{c} i(t') : A}{\Gamma \vdash_{c} i(t') : A} \qquad \text{Theorem 3}$$

*Definition 33: inverting this definition with $\Gamma \vdash_c i(t) : A$ we get that there exists a λm -term t_0 such that $h(t_0) = i(t)$ and that $\Gamma \vdash t_0 : A$.

4.4 Mechanisation in Rocq

The mechanisation for the system $\vec{\lambda}$ also uses the *Autosubst* library, and follows the same style of the mechanisation of the system λm , except for the nonstandard substitution operation (that we cover in more detail by the end of the chapter).

4.4.1 Canonical.v

Most definitions for the canonical self-contained subsystem follow from the definitions for the system λm with small adaptations. In particular, this applies to the definitions of terms, lists, reduction and the typing relation.

```
(* syntax *)
Inductive term: Type :=
| Vari (x: var)
| Lamb (t: {bind term})
| VariApp (x: var) (u: term) (1: list term)
| LambApp (t: {bind term}) (u: term) (1: list term).
(* reduction relations *)
Inductive \beta_1: relation term :=
| Step_Beta1 (t: {bind term}) (t' u: term) :
  t' = t.[u : ids] \rightarrow \beta_1 (LambApp t u []) t'.
Inductive \beta_2: relation term :=
| Step_Beta2 (t: {bind term}) (t' u v: term) 1 :
  t' = t.[u : ids]@(v,1) \rightarrow \beta_2 (LambApp t u (v::1)) t'.
Definition step := comp (union \beta_1 \beta_2).
Definition step' := comp' (union \beta_1 \beta_2).
Definition multistep := clos_refl_trans_1n _ step.
Definition multistep' := clos_refl_trans_1n _ step'.
(* typing rules *)
Inductive sequent (\Gamma : \text{var} \rightarrow \text{type}) : \text{term} \rightarrow \text{type} \rightarrow \text{Prop} :=
| varAxiom (x: var) (A: type) :
  \Gamma x = A \rightarrow sequent \Gamma (Vari x) A
| Right (t: term) (A B: type) :
  sequent (A .: \Gamma) t B \rightarrow sequent \Gamma (Lamb t) (Arr A B)
| Left (x: var) (u: term) (1: list term) (A B C: type) :
  \Gamma x = (Arr A B) 	o sequent \Gamma u A 	o list_sequent \Gamma B 1 C 	o
  sequent \Gamma (VariApp x u 1) C
| KeyCut (t: {bind term}) (u: term) (1: list term) (A B C: type) :
  sequent (A .: \Gamma) t B 	o sequent \Gamma u A 	o list_sequent \Gamma B 1 C 	o
  sequent \Gamma (LambApp t u 1) C
with list_sequent (\Gamma:var	otype) : type 	o (list term) 	o type 	o Prop :=
```

```
| nilAxiom (C: type) : list_sequent \Gamma C [] C | Lft (u: term) (1: list term) (A B C:type) : sequent \Gamma u A \rightarrow list_sequent \Gamma B 1 C \rightarrow list_sequent \Gamma (Arr A B) (u :: 1) C.
```

The formalisation of the step relations works as shown for the system λm using a comp meta-relation for compatibility closure. In the next subsection we describe in more detail the approach used to define the substitution operation for this system.

This module also contains proofs for every compatibility lemma (recall Lemma 4).

```
Section CompatibilityLemmas.
Lemma step_comp_append1 :
    ∀11 11', step' 11 11' → ∀12, step' (11 ++ 12) (11' ++ 12).
Proof.
    intros 11 11' H.
    induction H ; intros.
        - repeat rewrite<- app_comm_cons.
        now constructor.
        - repeat rewrite<- app_comm_cons.
        constructor. now apply IHcomp'.
Qed.
    ...
Lemma step_comp_app2 :
    ∀v u u' 1, step u u' → step v@(u,1) v@(u',1).
    ...
End CompatibilityLemmas.</pre>
```

4.4.2 CanonicalIsomorphism.v

This module contains every proof related to the isomorphism of the canonical subsystem in λm and the system $\vec{\lambda}$.

Let us see the statement of Lemma 8:

```
Lemma step_can_is_compatible :
   Canonical.is_compatible
    (fun t t' \Rightarrow step_can (i t) (i t'))
    (fun l l' \Rightarrow step_can' (map i l) (map i l')).
Proof.
```

```
split ; intros ; asimpl ; inversion H.
...
```

We prove every compatibility step by inverting first the definition of step_can. Despite being a bureocratic result, it helps simplifying further proofs (such as Theorem 4 shown below) and reveals some benefits of formalising the general predicate of compatibility is compatible.

The mechanised proof shown above makes use of the automation provided by the **auto** tactic by strategically adding relevant lemmas to the proof context. More specifically, the line pose step_can_is_compatible as adds to the proof context the fact that step can is a compatible relation for $\vec{\lambda}$ -terms.

4.4.3 Conservativeness.v

This module is only about the proof for the conservativeness theorem. The mechanised theorem follows exactly the proof given diagramatically in Theorem 8, divided into two parts, conservativeness1 and conservativeness2, for each of the two concerned implications.

```
Theorem conservativeness :
    ∀t t', Canonical.multistep t t' ↔ LambdaM.multistep (i t) (i t').
Proof.
split.
    intro H.
    induction H as [| t1 t2 t3].
    + constructor.
    + apply multistep_trans with (i t2); try easy.
    * now apply conservativeness1.
```

```
- intro H.
  rewrite<- (proj1 inversion2) with t.
  rewrite<- (proj1 inversion2) with t'.
  induction H as [| t1 t2 t3].
  + constructor.
  + apply multistep_trans with (p t2); try easy.
  * now apply conservativeness2.</pre>
Qed.
```

4.4.4 A closer look at the mechanisation

a) Autosubst and a nonstandard substitution operation

One of the most peculiar definitions in system $\vec{\lambda}$ is the substitution operation (Definition 36). As referred before, we have an unusual behaviour for the constructor app_v . In practice, on a substitution $app_v(x,u,l)[x:=t]$, there occurs an inspection of the term t that dictates the result of the substitution operation.

As we are working with the *Autosubst* library, we tried to automatically generate the substitution operation for our case. But as expected, the derive tactic failed to give us the desired operation:

```
Subst_term =  (\text{fix dummy } (\sigma : \text{var} \rightarrow \text{term}) \text{ (s : term) } \{\text{struct s}\} : \text{term :=} \\ \text{match s as t return (annot term t) with} \\ | \text{Vari } \mathbf{x} \Rightarrow (\text{fun } \mathbf{x}0: \text{var} \Rightarrow \sigma \text{ x}0) \text{ x} \\ | \text{Lamb t} \Rightarrow (\text{fun t0: } \{\text{bind term}\} \Rightarrow \text{Lamb t0.}[\text{up } \sigma]) \text{ t} \\ | \text{VariApp x u l} \Rightarrow (\text{fun } (\mathbf{x}0: \text{var}) \text{ (_: term) (_: list term)} \Rightarrow \sigma \text{ x}0) \text{ x u l} \\ | \text{LambApp t u l} \Rightarrow \\ (\text{fun (t0: } \{\text{bind term}\}) \text{ (s0: term) (l0: list term)} \Rightarrow \\ \text{LambApp t0.}[\text{up } \sigma] \text{ s0.}[\sigma] \text{ l0..}[\sigma]) \text{ t u l} \\ \text{end)}
```

Therefore, we gave the proof assistant our dedicated definition (directly as a proof object, as seen below).

```
Definition app (t u: term) (1: list term): term :=
  match t with
  | Vari x ⇒ VariApp x u l
  | Lamb t' ⇒ LambApp t' u l
```

```
| VariApp x u' 1' ⇒ VariApp x u' (1' ++ u::1)

| LambApp t' u' 1' ⇒ LambApp t' u' (1' ++ u::1)

end.

Notation "t '@(' u ',' 1 ')'" := (app t u 1) (at level 9).

...

Instance Ids_term : Ids term. derive. Defined.

Instance Rename_term : Rename term. derive. Defined.

Instance Subst_term : Subst term.

Proof.

unfold Subst. fix inst 2. change _ with (Subst term) in inst.

intros σ s. change (annot term s). destruct s.

- exact (σ x).

- exact (Lamb (subst (up σ) t)).

- exact ((σ x)@(subst s, mmap (subst σ s) (mmap (subst σ) 1)).

Defined.
```

The downside to our approach was the need to manually prove every substitution lemma required by the *Autosubst* instance SubstLemmas. However, proving such lemmas was crucial to enjoy the automation provided from the library for the mechanised inductive type of the $\vec{\lambda}$ -terms.

Chapter 5

The isomorphism $\lambda\cong \vec{\lambda}$

In chapter 2, the simply typed λ -calculus was introduced. Now, we show an isomorphism between the system $\vec{\lambda}$ introduced in the previous chapter and the simply typed λ -calculus. This isomorphism will come at the level of terms, reduction, β -normal forms and typing rules.

This isomorphism is of great interest as $\vec{\lambda}$ typing rules resemble a sequent calculus style. In this sense, the isomorphism studided in this chapter establishes a correspondence between natural deduction system (the simply typed λ -calculus) and a fragment of sequent calculus (the system $\vec{\lambda}$). The chapter is inspired in the works [9] and [10, Chapter 4] and is summarized by the following diagram:

In this diagram: the horizontal arrows symbolize the inverse maps underlying the isomorphism; the down arrows symbolize (partial) maps associating expressions to the respective beta-normal form (when existing). Also recall the sets NF $\subset \lambda$ -terms and NT $\subset \vec{\lambda}$ -terms of the respective β -normal forms.

5.1 Mappings θ and ψ

We start by defining the maps between expressions of λ and $\vec{\lambda}$ underlying the isomorphism.

Definition 45 (Maps θ and θ'). The map $\theta: \vec{\lambda}$ -terms $\to \lambda$ -terms is defined simultaneously with the map $\theta': (\lambda$ -terms $\times \vec{\lambda}$ -lists) $\to \lambda$ -terms by recursion on $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists respectively, as follows:

$$\theta(var(x)) = x$$

$$\theta(\lambda x.t) = \lambda x.\theta(t) \qquad \theta'(M, []) = M$$

$$\theta(app_v(x, u, l)) = \theta'(x, u :: l) \qquad \theta'(M, u :: l) = \theta'(M \theta(u), l).$$

$$\theta(app_\lambda(x.t, u, l)) = \theta'(\lambda x.\theta(t), u :: l)$$

Definition 46. Maps ψ and ψ' The map ψ' : $(\lambda$ -terms \times $\vec{\lambda}$ -lists $) \to \vec{\lambda}$ -terms is defined by recursion on

 λ -terms as follows:

$$\psi(x, []) = var(x)$$

$$\psi(x, u :: l) = app_v(x, u, l)$$

$$\psi(\lambda x. M, []) = \lambda x. \psi(M)$$

$$\psi(\lambda x. M, u :: l) = app_{\lambda}(x. \psi(M), u, l)$$

$$\psi(MN, l) = \psi'(M, \psi(N) :: l),$$

where $\psi(M)$ is easily defined as $\psi'(M, [])$.

5.1.1 Bijection at the level of terms

Now, we will establish that θ and ψ are indeed inverse maps, and thus, λ -terms and $\vec{\lambda}$ -terms are in bijection.

Lemma 12.

$$\theta \circ \psi' = \theta'$$

Proof. The proof proceeds by induction on the structure of λ -terms and proper inspection of the $\vec{\lambda}$ -list in the variable and abstraction cases.

Theorem 9 (θ is left inverse of ψ).

$$\theta \circ \psi = id_{\lambda \text{-terms}}$$

Proof. Immediate using Lemma 12.

Theorem 10 (ψ is left inverse of θ).

$$\psi \circ \theta = id_{\vec{\lambda}\text{-terms}}$$
 $\psi \circ \theta' = \psi'$

Proof. The proof proceeds by simultaneous induction on the structure of $\vec{\lambda}$ -terms and $\vec{\lambda}$ -lists, respectively.

5.1.2 Isomorphism at the level of reduction

Now we turn our attention to reduction, showing that the reduction relations \to_{β} of λ -calculus and $\vec{\lambda}$ are isomorphic.

First, introduce some lemmata, in order to relate the mappings θ' and ψ' with the @ operation and list append.

Lemma 13. For every $\vec{\lambda}$ -terms t, u and $\vec{\lambda}$ -list l,

$$\theta(t@(u,l)) = \theta'(\theta(t) \ \theta(u), l)$$

and also, for every λ -term M, $\vec{\lambda}$ -term u' and $\vec{\lambda}$ -lists l, l',

$$\theta'(M, l + (u' :: l')) = \theta'(\theta'(M, l) \theta(u'), l').$$

Proof. The proof proceeds easily by simultaneous induction on the structure of the $\vec{\lambda}$ -term t and $\vec{\lambda}$ -list l, respectively.

Corollary 4. For every λ -term M, $\vec{\lambda}$ -term u and $\vec{\lambda}$ -list l,

$$\psi'(M, u :: l) = \psi(M)@(u, l).$$

Proof. The result follows as a corollary of Lemma 13, using Theorem 10 and Lemma 12 to rewrite the left-hand side of the equality. \Box

Using the previous lemmas, the preservation of the substitution operations by θ and ψ follow.

Lemma 14. For every $\vec{\lambda}$ -terms t, u,

$$\theta(t[x := u]) = \theta(t)[x := \theta(u)]$$

and also, for every $\pmb{\lambda}$ -term M , $\vec{\pmb{\lambda}}$ -term u and $\vec{\pmb{\lambda}}$ -list l ,

$$\theta'(M[x:=\theta(u)], l[x:=u]) = \theta'(M,l)[x:=u].$$

Proof. The proof follows by simultaneous induction on the structure of t and l, using Lemma 13.

Lemma 15. For every λ -terms M,N and $\vec{\lambda}$ -list l,

$$\psi'(M[x := N], l[x := \psi(N)]) = \psi'(M, l)[x := \psi(N)].$$

Proof. The proof follows by induction on the structure of λ -term M, using Corollary 4.

Now, we are essentially ready to obtain the isomorphism at the level of reduction.

Lemma 16. For every λ -terms M, N and $\vec{\lambda}$ -list l,

$$M \to_{\beta} N \implies \theta'(M, l) \to_{\beta} \theta'(N, l).$$

Proof. The proof follows easily by induction on the structure of the $\vec{\lambda}$ -list l.

Theorem 11 (Preservation of reduction by θ). For every $\vec{\lambda}$ -terms t, t',

$$t \to_{\beta} t' \implies \theta(t) \to_{\beta} \theta(t')$$

and also, for every λ -term M and $\vec{\lambda}$ -lists l, l',

$$l \to_{\beta} l' \implies \theta'(M, l) \to_{\beta} \theta(M, l').$$

Proof. The proof proceeds by simultaneous induction on the structure of the step relation on $\vec{\lambda}$ -expressions. Lemma 13 is useful for the cases of compatibility steps.

Lemma 14 is crucial for cases dealing with β steps.

Theorem 12 (Preservation of reduction by ψ'). For every λ -terms M, N and $\vec{\lambda}$ -list l,

$$M \to_{\beta} N \implies \psi'(M, l) \to_{\beta} \psi'(N, l).$$

Proof. The proof proceeds by induction on the structure of the step relation on λ -terms.

Lemma 15 is crucial for cases dealing with β steps.

Of course that the previous theorem gives us the preservation of reduction for map ψ , as it is a particular case of map ψ' when l=[].

5.1.3 Isomorphism at the level of β -normal forms

Now, we will argue that the bijection between λ -terms and $\vec{\lambda}$ -terms still holds when we restrict to β -normal forms. For this, is convenient to recall both Definition 10 and Definition 40.

Theorem 13 (θ preserves β -nfs).

$$t \in NT \implies \theta(t) \in NF$$

Proof. Given $t \in NT$, by Claim 4, there exists no t' such that $t \to_{\beta} t'$ (or t is a β -nf).

Now let us prove that $\theta(t)$ is a β -nf.

Suppose there exists a λ -term N such that $\theta(t) \to_{\beta} N$. From Theorem 12, it is also true that $\psi(\theta(t)) \to_{\beta} \psi(N)$. And, using Theorem 10, we may rewrite $\psi(\theta(t))$ as t, obtaining a contradiction as $t \to_{\beta} \psi(N)$ while t is a β -nf.

Therefore, such N cannot exist and $\theta(t)$ is a β -nf (consequently, from Claim 1, $\theta(t) \in NF$).

We can prove an analogous result for ψ .

Theorem 14 (ψ preserves β -nfs).

$$M \in \mathit{NF} \implies \psi(M) \in \mathit{NT}$$

Proof. Analogous to proof of Theorem 13.

5.1.4 Isomorphism at the level of typed terms

Finally, we complete the proof of our isomorphism by showing a 1-1 correspondence between typed terms of the simply typed λ -calculus and system $\vec{\lambda}$.

Theorem 15 (θ admissibility). The following rules are admissible in the simply typed λ -calculus:

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \theta(t) : A} \qquad \frac{\Gamma \vdash M : A \quad \Gamma; A \vdash l : B}{\Gamma \vdash \theta'(M, l) : B}$$

Proof. The proof proceeds easily by simultaneous induction on the structure of the typing derivations in the system $\vec{\lambda}$.

Theorem 16 (ψ' admissibility). The following rule is admissible in system $\vec{\lambda}$:

$$\frac{\Gamma \vdash M : A \quad \Gamma; A \vdash l : B}{\Gamma \vdash \psi'(M, l) : B}$$

Proof. The proof proceeds easily by induction on the structure of the typing derivations in the simply typed λ -calculus.

5.2 Mechanisation in Rocq

In this section we provide a brief description of the mechanisation of the concepts and results described in the previous section. Essentially, we just defined maps θ and ψ and mechanised each of the results provided.

One detail that should be highlighted is the definition for maps θ and θ' .

```
Fixpoint \theta (t: Canonical.term) : Lambda.term := match t with 
| Vari x \Rightarrow Var x 
| Lamb t \Rightarrow Lam (\theta t) 
| VariApp x u l \Rightarrow fold_left (fun s v \Rightarrow App s (\theta v)) (u::1) (Var x) 
| LambApp t u l \Rightarrow fold_left (fun s v \Rightarrow App s (\theta v)) (u::1) (Lam (\theta t)) end.
```

```
Definition \theta' (s: Lambda.term) (1: list Canonical.term) : Lambda.term := fold_left (fun s v \Rightarrow App s (\theta v)) 1 s.
```

The mechanised object that represents map θ' uses a higher order function on lists called fold_left that behaves exactly as θ' , given the function (fun s v \Rightarrow App s (θ v)) which folds the $\vec{\lambda}$ -list into a λ -term.

Such representation of map θ was an undesired consequence of the use of polymorphic lists in the definition for $\vec{\lambda}$ -terms. We could not define mutually recursive functions on the structure of the term and list because the proof assistant fails to recognise their termination [15]. Instead, we have to define these maps using higher order functions. In this specific case, we could even enjoy the generality of the fold_left function. Unfortunately, with such definition for θ' , we had to repeatedly fold the definition for θ' in our proofs to make the goal more readable (hiding the calls to the fold_left). This necessity of "folding" a definition can be seen in the mechanisation of Lemma 16:

```
Lemma \theta'_step_pres 1 : \foralls s', Lambda.step s s' \rightarrow Lambda.step (\theta' s 1) (\theta' s' 1). Proof.

induction 1 as [| u 1]; intros ; asimpl ; try easy.

- fold (\theta' (App s (\theta u)) 1).

fold (\theta' (App s' (\theta u)) 1).

apply IH1. now constructor.

Qed.
```

Chapter 6

Conclusions

In this chapter, we first describe our contributions and then discuss possible directions for future work.

6.1 Contributions

We list below the contributions achieved with this dissertation.

First and more important, we used the *Rocq Prover* and the *Autosubst* library to mechanise the following systems introduced in this work:

- 1. the multiary λ -calculus (system λm);
- 2. the canonical subsystem of λm ;
- 3. the canonical λ -calculus (system $\vec{\lambda}$).

Taking the formalisations of these systems on the proof assistant, we also obtained computer verified proofs for results such as:

- 1. subject reduction for systems λm and $\vec{\lambda}$;
- 2. isomorphism between the canonical subsystem of λm and system $\vec{\lambda}$;
- 3. conservativeness of $\vec{\lambda}$ over λm :
- 4. isomorphism between the simply typed λ -calculus and system $\vec{\lambda}$.

Second, we gave an exhaustive definition for the concept of subsystem, separating two isomorphic representations of the canonical subsystem of λm . This helped us clarify the loose idea of subsystem and simplify some of the result proven (for example, using the self-contained system $\vec{\lambda}$ for proving the theorem of conservativeness). From this idea, we could even propose a standard approach to formalise any subsystem.

Third and last, through this document, a detailed exposition of the mechanised systems and proofs using the *Rocq Prover* along with some digressions over formalisation choices.

6.2 Future work

In this dissertation, we did not focus so much on results such as the confluency of reduction in our systems. We suspect that these could easily be added with the help of the *Autosubst* library (one can found a case study of confluence of reduction in [19, Section 2.2]).

Furthermore,

• Could we have more automation?

Could we only provide proofs for the hard cases proved in paper (easy results should be done automatically)?

Could we have more *Autosubst* automation available for our systems? Discuss this here? What about *Autosubst2*?

Could we have simpler formalisations? How so?

- System λJm is still not formalised.
- Our modular definitions allow us to use the *Autosubst* library to enrich our typing systems (dependent types, intersection types, SystemF, Lambda Cube and so on).

Bibliography

- [1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In *Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 31–46, 1989.
- [2] A. Abel, G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schäfer, and K. Stark. Poplmark reloaded: Mechanizing proofs by logical relations. *Journal of Functional Programming*, 29:e19, 2019. doi: 10.1017/S0956796819000170.
- [3] A. Adams. *Tools and techniques for machine-assisted meta-theory*. PhD thesis, The University of St Andrews, 1997.
- [4] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: the POPLMark challenge. In *Theorem Proving in Higher Order Logics: 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005. Proceedings 18*, pages 50–65. Springer, 2005.
- [5] H. Barendregt. *The lambda calculus*. Studies in Logic and the Foundations of Mathematics. Elsevier Science, London, England, 2 edition, Oct. 1987.
- [6] H. Barendregt, W. Dekkers, and R. Statman. *Perspectives in logic: Lambda calculus with types*. Perspectives in logic. Cambridge University Press, Cambridge, England, June 2013.
- [7] Y. Bertot and P. Castéran. *Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions*. Texts in Theoretical Computer Science. Springer Verlag, 2004.
- [8] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. *Indagationes Mathematicae (Proceedings)*, 75(5):381–392, 1972. ISSN 1385-7258. doi: https://doi.org/10.1016/1385-7258(72)90034-0.
- [9] R. Dychkoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. *Studia Logica*, 60:107–118, 1998.
- [10] J. Espírito Santo. *Conservative extensions of the lambda-calculus for the computational interpretation of sequent calculus.* PhD thesis, University of Edinburgh, 2002.
- [11] J. Espírito Santo and L. Pinto. A calculus of multiary sequent terms. *ACM Transactions on Computational Logic (TOCL)*, 12(3):1–41, 2011.
- [12] G. Gonthier. A computer-checked proof of the Four Color Theorem. Technical report, Inria, Mar. 2023. URL https://inria.hal.science/hal-04034866.

- [13] H. Herbelin. A Lambda-calculus Structure Isomorphic to Gentzen-style Sequent Calculus Structure. In L. Pacholski and J. Tiuryn, editors, *Computer Science Logic, 8th International Workshop, CSL '94, Kazimierz, Poland, September 25-30, 1994, Selected Papers*, volume 933 of *Computer Science Logic, 8th International Workshop, CSL '94, Kazimierz, Poland, September 25-30, 1994, Selected Papers*, pages 61–75, Kazimierz, Poland, Sept. 1994. URL https://inria.hal.science/inria-00381525.
- [14] J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, Cambridge, July 1997.
- [15] Y. (https://stackoverflow.com/users/1809211/yves). Mutualy recursive function and termination checker in coq. Stack Overflow. URL https://stackoverflow.com/questions/13286198/mutualy-recursive-function-and-termination-checker-in-coq/13288907#13288907. Accessed: September, 2025.
- [16] Rocq Prover Reference Manual. Inria and CNRS and contributors, 2025. URL https://rocq-prover.org/doc/V9.0.0/refman/index.html. Version 9.0.0.
- [17] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363-446, Dec. 2009. doi: 10.1007/s10817-009-9155-4. URL https://inria.hal.science/inria-00360768.
- [18] Autosubst Manual. Saarland University, 2016. URL https://www.ps.uni-saarland.de/autosubst/.
- [19] S. Schäfer, T. Tebbi, and G. Smolka. Autosubst: Reasoning with de bruijn terms and parallel substitutions. In C. Urban and X. Zhang, editors, *Interactive Theorem Proving*, pages 359–374, Cham, 2015. Springer International Publishing. ISBN 978-3-319-22102-1.
- [20] P. Urzyczyn, M. H. S. Rensen, and M. H. Sorensen. *Lectures on the Curry-Howard Isomorphism*. Studies in Logic and the Foundations of Mathematics. Elsevier Science & Technology, July 2006.