TRIGONOMETRY Chapter 9

Aplicaciones gráficas de los triángulos rectángulos notables

MOTIVATING STRATEGY

NO ERES LO QUE LOGRAS ... ERES LO QUE SUPERAS.

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

Veamos:

Resumiendo:

R.T	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{1}{\sqrt{2}}$
cos	$ \begin{array}{c c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \hline \frac{1}{\sqrt{3}} \end{array} $	$\frac{\overline{2}}{\frac{1}{2}}$	4 5	$\frac{3}{5}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$		$\frac{3}{4}$	1
sec	$\frac{2}{\sqrt{3}}$	2	4 -3 -5 -4 -5	4 3 3 4 5 3 5 4	$\sqrt{2}$
CSC	2	$\frac{2}{\sqrt{3}}$	5 - 3	5 4	$\sqrt{2}$

De los triángulos mostrados, efectúe

$$F = a + b + m$$

Resolución:

En el ABC (Notable de 37° y 53°)

Se observa:
$$5k = 20 \implies k = 4$$

Luego:
$$a = 4k = 4(4) \implies a = 16$$

$$b = 3k = 3(4)$$
 \Rightarrow $b = 12$

En el AMNO (Notable de 45°)

Se observa:
$$k\sqrt{2} = 8\sqrt{2} \implies k = 8$$

Luego:
$$\mathbf{m} = \mathbf{k} \implies \mathbf{m} = 8$$

Calculamos:

$$F = 16 + 12 + 8$$

$$\therefore F = 36$$

Calcule a + b+ c en los siguientes triángulos:

Resolución:

En el ABC (Notable de 30° y 60°)

Se observa:
$$3\sqrt{3} = \sqrt{3}k \implies k = 3$$

Luego:
$$a = 2k = 2(3)$$
 \Rightarrow $a = 6$

$$\mathbf{b} = \mathbf{k} = \mathbf{1}(\mathbf{3}) \Longrightarrow b = 3$$

En el AMNO (Notable de 45°)

Se observa:
$$7\sqrt{2} = \sqrt{2}k$$
 \implies $k = 7$

Luego:
$$\mathbf{c} = \mathbf{k} \implies \mathbf{c} = 7$$

Calculamos:

$$P = 6 + 3 + 7$$

La imagen muestra la ruta que debe tomar Juan para visitar a sus compañeros Thomas y María. Si Juan solo cuenta con tiempo suficiente para visitar a uno de ellos. ¿A quién

visitará Juan y por qué?

Resolución:

En el ABC (Notable 30° Y 60°)

Se observa:

$$2\sqrt{3} = \sqrt{3}h \implies h = 2$$

Luego:

$$AC = 2h = 2(2) \implies AC = 4km$$

$$BC = h = 1(2) \implies BC = 2km$$

¿A quién visitará Juan y por qué?

: Visitará a María por estar más cerca

Resolución:

En el ABC (Notable de 45°)

Se observa:

$$k = 6$$

Luego:

$$\mathbf{n} = \sqrt{2}\mathbf{k} \implies \qquad \mathbf{n} = 6\sqrt{2}$$

$$n^2 = \left(6\sqrt{2}\right)^2$$

$$n^{2} = \left(6\sqrt{2}\right)^{2}$$

$$n^{2} = \left(6\right)^{2} \times \left(\sqrt{2}\right)^{2}$$

$$n^2 = 36 \times 2$$

 $\therefore n^2 = 72$

Del gráfico, calcule el valor de x

Resolución:

En el ABC (Notable de 30° y 60°)

Se observa:

$$5\sqrt{3} = \sqrt{3}k \implies k = 5$$

Luego:

$$3x + 1 = 2k$$

$$3x + 1 = 2(5)$$

$$3x + 1 = 10$$

$$3x = 9$$

Emma Damaris, todos los días recorre el trayecto de su casa a la panadería como se muestra en la figura para comprar el pan para su desayuno, según las características de la figura determine el recorrido de Emma cuando vuelve a casa con el pan, si el recorrido solo es posible si se pasa por la iglesia.

Resolución:

En el ABH (Notable de 37° y 53°)

Se observa: $5k = 50 \implies k = 10$

Luego: 3k = 3(10) = 30

En el \(\Delta BHC \) (Notable de 30° y 60°)

Se observa: $a = 3k \Rightarrow a = 30u$

Luego: BC = 2a \Rightarrow BC = 60u

Calculamos: AB + BC = 50 + 60

= 110u

Se realiza un concurso trigonométrico entre los estudiantes de primer año, para llegar al último nivel conocido como "Heroico" se debe resolver la siguiente consigna: Encuentre el área de la figura que se muestra. ¿Cuál es su respuesta?.

Resolución:

En el ABH (Notable de 53° y 37°)

Se observa:
$$5k = 50 \implies k = 10$$

Luego:
$$4k = 4(10) = 40$$

En el ABHC (Notable de 45°)

Se observa:
$$HC = BH \implies HC = 3k$$

$$HC = 30$$

Área
$$\triangle$$
ABC = (AC)(BH)/2 = (70)(30)/2
= 1050

 $= 1050u^2$