Building meaningful machine learning models for disease prediction

Dr Shirin Glander

Dep. of Genetic Epidemiology Institute of Human Genetics University of Münster

shirin.glander@wwu.de

https://shiring.github.io https://github.com/ShirinG

Friday, 31st March 2017

About me

since 2015 Bioinformatics Postdoc Next Generation Sequencing autoinflammatory diseases & innate immunity

2011 - 2015 PhD in Biology
Is the immune system of plants required to adapt to flowering time change?

2005 - 2011 BSc and MSc of Science in Biology evolutionary genetics, immune memory in Drosophila

Table of contents

Building meaningful machine learning models for disease prediction

- Machine Learning (ML) in disease modeling
- What makes a model meaningful?
- A quick recap of ML basics
- 4 How to build ML models in R
- Evaluating model performance

ML in disease modeling

- tools that can interpret "big medical data"
- and provide fast, accurate and actionable information
- for precision or personalized medicine

Examples:

- computer-aided diagnosis of breast cancer from mammograms¹
- identifying gene defects with facial recognition software²
- identifying signatures of Brain Cancer from MRSI³
- ... and many more ...

[[] Roc]

¹Doi 2007.

²Levenson 2014.

³Sadja 2006.

What makes a model meaningful?

- most ML algorithms model high-degree interactions between variables
- ML models are hard (or impossible) to interpret!
- we often don't know WHY they make decisions
- therefore, it is crucial that our models are meaningful

Image source: Pixabay

What makes a model meaningful?

- creating ML models is relatively easy
- creating good or meaningful models is hard

Meaningful models

- are generalizable
- answer the question(s) posed...
- ... with sufficient accuracy to be trustworthy

Accuracy depends on the problem!

A quick recap of ML basics

Machine learning

- artificial intelligence (AI)
- data-driven
- algorithms learn by being trained on observed data...
- ... and predict unknown data
- the increase in computational capacity has made ML more accessible

Supervised vs Unsupervised learning

Supervised

Unsupervised

Classification vs Regression

Classification vs Regression

Regression e.g. weight loss

Classification e.g. healthy vs disease

Features

- variables used for model training.
- using the right features is crucial.

- More is not necessarily better (overfitting)!
- feature selection
- feature extraction/ engineering

Image Source: Wikipedia

Training, (cross-) validation and test data

Webinar for ISDS R Group

14/37

Take home messages:

- ML models learn on observed data
- and predict unknown data
- creating ML models is easy
- creating good models is hard

Meaningful models

- answer specific questions
- are able to generalize to unseen data
- can be trusted

How to build ML models in R

Session setup

Breast Cancer Wisconsin Dataset⁴

17/37

- caret⁵
- h2o⁶

Dr Shirin Glander

Code will be available on my website and on Github

Webinar for ISDS R Group Friday, 31st March 2017

⁴W. H. Wolberg and O. L. Mangasarian (1990). "Multisurface method of pattern separation for medical diagnosis applied to breast cytology." In: *Proceedings of the National Academy of Sciences* 87.23, pp. 9193–9196.

⁵M. Kuhn et al. (2016). *caret: Classification and Regression Training.* R package version 6.0-71.

⁶H2O.ai (2017). *h2o: R Interface for H2O*. R package version 3.10.3.6.

Response variable

Is it balanced?

Missing data

- Is there missing data?
- Can we afford to loose data points?
- Or do we use imputation (and introduce additional uncertainty)?

Principal Component Analysis (PCA)

Features

- factors or numeric
- pre-processing

Correlation

Correlation graphs

Training, validation and test data

We need to split the data into training and test sets - ideally stratified by response class.

Density distribution

Model examples

Regression with Linear Models

- e.g. Generalized Linear Models
- with caret

Tree-based classification

- Random Forest or Gradient boosting trees
- with caret

Hyper-parameter tuning

- Grid Search
- with h2o

Classification with tree-based models

Decision trees

e.g. Random Forest and gradient boosting trees

Evaluating model performance

Never use the same data

for evaluation that you used

for training!

Predictions on test data

Regression

• RMSE: 1.97

• R²: 0.50

Predictions on test data

Classification

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction benign malignant
##
     benign
                  133
##
     malignant
                             70
##
##
                  Accuracy: 0.9713
##
                    95% CI: (0.9386, 0.9894)
       No Information Rate: 0.6555
##
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.9369
    Mcnemar's Test P-Value: 0.6831
##
##
##
               Sensitivity: 0.9708
               Specificity: 0.9722
##
##
            Pos Pred Value : 0.9852
            Neg Pred Value: 0.9459
##
##
                Prevalence: 0.6555
##
            Detection Rate: 0.6364
      Detection Prevalence: 0.6459
##
##
         Balanced Accuracy: 0.9715
##
          'Positive' Class : benign
##
##
```


Area Under the Curve (AUC)

True Positive Rate vs False Positive Rate

Hyper-parameter tuning with grid search

- h2o.grid()
- Random Grid Search (RGS) or Cartesian Grid

Define a set of hyper-parameters:

- number of trees
- maximum tree depth
- fewest allowed (weighted) observations in a leaf
- etc.

Choose best model from grid:

- h2o.getGrid()
- AUC, error, accuracy, etc.

AUC and mean squared error (MSE)

Predictions on test data

Predictions on test data

Choosing a prediction threshold

Take home messages:

- there is no 'one-size-fits-all' approach to ML
- We want to create meaningful models that we can trust to answer our specific questions!
- know your data well before modeling
- take time to think about pre-processing & features
- test different models & hyper-parameters
- evaluate model performance on independent data
- choose performance measure based on your specific problem
- choose prediction threshold based on your specific problem

Outlook

- 'Big Data' needs to be big!
- the more data, the more accurate the models will be

• for really meaningful models, data needs to be shared

- ML could make health care more cost-effective by reducing the energy required for interpretation
- issues: privacy, platform, quality standards

Thank you for your attention!

Questions?

Slides and code will be available on Github: https://github.com/ShirinG/Webinar_ML_for_disease/share

Code will also be on my website: https://shiring.github.io

You can contact me via shirin.glander@wwu.de

