

Universidade Federal do Rio Grande do Norte Centro de Ensino Superior do Seridó Departamento de Computação e Tecnologia Prof. Dr. Francisco Márcio Barboza

Avaliação 02 de Álgebra Linear

[M] In Exercises 41 and 42, use as many columns of A as possible to construct a matrix B with the property that the equation $B\mathbf{x} = \mathbf{0}$ has only the trivial solution. Solve $B\mathbf{x} = \mathbf{0}$ to verify your work.

41.
$$A = \begin{bmatrix} 3 & -4 & 10 & 7 & -4 \\ -5 & -3 & -7 & -11 & 15 \\ 4 & 3 & 5 & 2 & 1 \\ 8 & -7 & 23 & 4 & 15 \end{bmatrix}$$

$$\mathbf{42.} \ \ A = \begin{bmatrix} 12 & 10 & -6 & 8 & 4 & -14 \\ -7 & -6 & 4 & -5 & -7 & 9 \\ 9 & 9 & -9 & 9 & 9 & -18 \\ -4 & -3 & -1 & 0 & -8 & 1 \\ 8 & 7 & -5 & 6 & 1 & -11 \end{bmatrix}$$

- 43. [M] With A and B as in Exercise 41, select a column v of A that was not used in the construction of B and determine if v is in the set spanned by the columns of B. (Describe your calculations.)
- 44. [M] Repeat Exercise 43 with the matrices A and B from Exercise 42. Then give an explanation for what you discover, assuming that B was constructed as specified.

19. [M] Certain dynamical systems can be studied by examining powers of a matrix, such as those below. Determine what happens to A^k and B^k as k increases (for example, try k = 2,..., 16). Try to identify what is special about A and B. Investigate large powers of other matrices of this type, and make a conjecture about such matrices.

$$A = \begin{bmatrix} .4 & .2 & .3 \\ .3 & .6 & .3 \\ .3 & .2 & .4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & .2 & .3 \\ .1 & .6 & .3 \\ .9 & .2 & .4 \end{bmatrix}$$

20. [M] Let A_n be the n × n matrix with 0's on the main diagonal and 1's elsewhere. Compute A_n⁻¹ for n = 4, 5, and 6, and make a conjecture about the general form of A_n⁻¹ for larger values of n.

 [M] Consider the heat plate in the following figure (refer to Exercise 33 in Section 1.1).

The solution to the steady-state heat flow problem for this plate is approximated by the solution to the equation $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (5, 15, 0, 10, 0, 10, 20, 30)$ and

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 & -1 \\ & -1 & -1 & 4 & 0 & -1 \\ & & -1 & 0 & 4 & -1 & -1 \\ & & & -1 & -1 & 4 & 0 & -1 \\ & & & & -1 & 0 & 4 & -1 \\ & & & & & -1 & -1 & 4 \end{bmatrix}$$

WEB

The missing entries in A are zeros. The nonzero entries of A lie within a band along the main diagonal. Such band matrices occur in a variety of applications and often are extremely large (with thousands of rows and columns but relatively narrow bands).

- a. Use the method in Example 2 to construct an LU factorization of A, and note that both factors are band matrices (with two nonzero diagonals below or above the main diagonal). Compute LU A to check your work.
- b. Use the LU factorization to solve $A\mathbf{x} = \mathbf{b}$.
- c. Obtain A^{-1} and note that A^{-1} is a dense matrix with no band structure. When A is large, L and U can be stored in much less space than A^{-1} . This fact is another reason for preferring the LU factorization of A to A^{-1} itself.

38. [M] Determine whether w is in the column space of A, the null space of A, or both, where

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad A = \begin{bmatrix} -8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0 \end{bmatrix}$$

39. [M] Let $\mathbf{a}_1, \ldots, \mathbf{a}_5$ denote the columns of the matrix A, where

$$A = \begin{bmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$$

- Explain why a₃ and a₅ are in the column space of B.
- b. Find a set of vectors that spans Nul A.
- c. Let T: R⁵ → R⁴ be defined by T(x) = Ax. Explain why T is neither one-to-one nor onto.
- **40.** [M] Let $H = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$ and $K = \operatorname{Span} \{\mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ -12 \\ -28 \end{bmatrix}.$$

Then H and K are subspaces of \mathbb{R}^3 . In fact, H and K are planes in \mathbb{R}^3 through the origin, and they intersect in a line through $\mathbf{0}$. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To build \mathbf{w} , solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's.]

36. [M] Let
$$A = \begin{bmatrix} -25 & -9 & -27 \\ 536 & 185 & 537 \\ 154 & 52 & 143 \end{bmatrix}$$
. Find the second and

third columns of A^{-1} without computing the first column.

35. [M] Let
$$A = \begin{bmatrix} 7 & -9 & -4 & 5 & 3 & -3 & -7 \\ -4 & 6 & 7 & -2 & -6 & -5 & 5 \\ 5 & -7 & -6 & 5 & -6 & 2 & 8 \\ -3 & 5 & 8 & -1 & -7 & -4 & 8 \\ 6 & -8 & -5 & 4 & 4 & 9 & 3 \end{bmatrix}$$
.

- a. Construct matrices C and N whose columns are bases for Col A and Nul A, respectively, and construct a matrix R whose rows form a basis for Row A.
- b. Construct a matrix M whose columns form a basis for Nul A^T, form the matrices S = [R^T N] and T = [C M], and explain why S and T should be square. Verify that both S and T are invertible.
- 36. [M] Repeat Exercise 35 for a random integer-valued 6 × 7 matrix A whose rank is at most 4. One way to make A is to create a random integer-valued 6 × 4 matrix J and a random integer-valued 4 × 7 matrix K, and set A = JK. (See Supplementary Exercise 12 at the end of the chapter; and see the Study Guide for matrix-generating programs.)
- 37. [M] Let A be the matrix in Exercise 35. Construct a matrix C whose columns are the pivot columns of A, and construct a matrix R whose rows are the nonzero rows of the reduced echelon form of A. Compute CR, and discuss what you see.
- 38. [M] Repeat Exercise 37 for three random integer-valued 5 × 7 matrices A whose ranks are 5, 4, and 3. Make a conjecture about how CR is related to A for any matrix A. Prove your conjecture.

- 25. A large apartment building is to be built using modular construction techniques. The arrangement of apartments on any particular floor is to be chosen from one of three basic floor plans. Plan A has 18 apartments on one floor, including 3 three-bedroom units, 7 two-bedroom units, and 8 one-bedroom units. Each floor of plan B includes 4 three-bedroom units, 4 two-bedroom units, and 8 one-bedroom units. Each floor of plan C includes 5 three-bedroom units, 3 two-bedroom units, and 9 one-bedroom units. Suppose the building contains a total of x1 floors of plan A, x2 floors of plan B, and x3 floors of plan C.
 - a. What interpretation can be given to the vector $x_1 \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix}$?
 - Write a formal linear combination of vectors that expresses the total numbers of three-, two-, and onebedroom apartments contained in the building.
 - c. [M] Is it possible to design the building with exactly 66 three-bedroom units, 74 two-bedroom units, and 136 onebedroom units? If so, is there more than one way to do it? Explain your answer.

[M] In Exercises 37–40, let T be the linear transformation whose standard matrix is given. In Exercises 37 and 38, decide if T is a one-to-one mapping. In Exercises 39 and 40, decide if T maps \mathbb{R}^5 onto \mathbb{R}^5 . Justify your answers.

37.
$$\begin{bmatrix} -5 & 6 & -5 & -6 \\ 8 & 3 & -3 & 8 \\ 2 & 9 & 5 & -12 \\ -3 & 2 & 7 & -12 \end{bmatrix}$$
 38.
$$\begin{bmatrix} 7 & 5 & 9 & -9 \\ 5 & 6 & 4 & -4 \\ 4 & 8 & 0 & 7 \\ -6 & -6 & 6 & 5 \end{bmatrix}$$

$$\mathbf{39.} \begin{bmatrix} 4 & -7 & 3 & 7 & 5 \\ 6 & -8 & 5 & 12 & -8 \\ -7 & 10 & -8 & -9 & 14 \\ 3 & -5 & 4 & 2 & -6 \\ -5 & 6 & -6 & -7 & 3 \end{bmatrix}$$

40.
$$\begin{bmatrix} 9 & 43 & 5 & 6 & -1 \\ 14 & 15 & -7 & -5 & 4 \\ -8 & -6 & 12 & -5 & -9 \\ -5 & -6 & -4 & 9 & 8 \\ 13 & 14 & 15 & 3 & 11 \end{bmatrix}$$