

SESSION ANIMEE PAR
JEAN-BAPTISTE & PAUL

SESSION D'APPROFONDISSEMENT

GENERATIVE ADVERSARIAL NETWORKS

JEUDI 05 NOVEMBRE 2020 | 18H30 | LE MANS INNOVATION

Sommaire

- Rappel principes des GAN
- Entrainement d'un GAN
- Evaluation d'un GAN
- StyleGAN

rappel

de quoi s'agit-il?

- GAN = type de modèle de DL
 - illo production de données fausses qui semblent réelles

 la particularité : entraînement non supervisé entre <u>deux réseaux de</u> neurones :

un générateur contre un discriminateur.

architecture d'un GAN

Discriminateur

un réseau de neurones de type classifieur

$$P(\text{\tiny Fake} \mid \text{\tiny Features}) = 0.85 \longrightarrow \text{\tiny Fake}$$

Générateur

Training Data

Discriminator

1 (Real)

Latent Sample

Generator

0 (Fake)

entrainement

Étapes d'un entraînement d'un GAN

• 1/ pré-entrainement du discriminateur

• 2/ entraînement du discriminateur

• 3/ entraînement du générateur

Feedback transmis au Générateur : Tu n'as pas su tromper le Discriminateur sur tel design

2/ entraînement du discriminateur

 on fournit au réseau discriminateur les données contrefaites générées par le réseau générateur et il doit déterminer lesquelles sont vraies et lesquelles ne le sont pas.

Entrainement du discriminateur

3/ entraînement du générateur

le réseau **générateur** s'améliore avec les résultats issus du deuxième entraînement du réseau discriminateur.

Le réseau **générateur** apprend à reconnaitre les failles du discriminateur et cherche à les utiliser pour générer des ensembles de données contrefaites encore plus réalistes.

Entrainement du générateur

Objectif pour:

- le Générateur : Ŷd = [1, 0]
- le Discriminateur : Ŷd =[0, 1]

challenge

- le challenge :
 - les 2 réseaux doivent apprendre progressivement ensemble
 - trouver un équilibre

- si Discriminateur trop fort (prédiction 100% faux)
 - le Générateur n'apprend pas (pas de mise à jour des poids)
- si Générateur trop fort (prédiction 100% réel)
 - L'apprentissage est terminé

DCGAN

pour améliorer les performances d'un modèle de génération d'image, le
 Deep Convolutional GAN est souvent utilisé

• Le discriminateur : un réseau à convolution

le générateur : un réseau à convolution transposée ou "déconvolution"

Réseaux à convolution (discriminateur)

Réseaux à déconvolution (générateur)

DCGAN - exemple d'implémentation

- avec Pytorch
- dataset de chiffres manuscrits de MNIST
- objectif : générer une image synthétique d'un chiffre


```
DCGAN -
le
générate
ur
```

```
class Generator(nn.Module):
   Generator Class
   Values:
       z dim: the dimension of the noise vector, a scalar
       im chan: the number of channels in the images, fitted for the dataset used, a scalar
             (MNIST is black-and-white, so 1 channel is your default)
       hidden dim: the inner dimension, a scalar
   111
   def init (self, z dim=10, im chan=1, hidden dim=64):
       super(Generator, self). init ()
       self.z dim = z dim
       # Build the neural network
       self.gen = nn.Sequential(
           self.make gen block(z dim, hidden dim * 4),
           self.make gen block(hidden dim * 4, hidden dim * 2, kernel size=4, stride=1),
           self.make gen block(hidden dim * 2, hidden dim),
           self.make gen block(hidden dim, im chan, kernel size=4, final layer=True),
   def make gen block(self, input channels, output channels, kernel size=3, stride=2, final layer=False):
       Function to return a sequence of operations corresponding to a generator block of DCGAN,
       corresponding to a transposed convolution, a batchnorm (except for in the last layer), and an activation.
       Parameters:
           input channels: how many channels the input feature representation has
           output channels: how many channels the output feature representation should have
           kernel size: the size of each convolutional filter, equivalent to (kernel size, kernel size)
           stride: the stride of the convolution
           final layer: a boolean, true if it is the final layer and false otherwise
                      (affects activation and batchnorm)
       1.1.1
       # Build the neural block
       if not final layer:
           return nn.Sequential(
               nn.ConvTranspose2d(input channels, output channels, kernel size, stride=stride),
               nn.BatchNorm2d(output channels),
               nn.ReLU(inplace=True)
```

```
DCGAN
- le
discrim
inateur
```

```
class Discriminator(nn.Module):
   Discriminator Class
    Values:
        im chan: the number of channels in the images, fitted for the dataset used, a scalar
              (MNIST is black-and-white, so 1 channel is your default)
   hidden dim: the inner dimension, a scalar
   def init (self, im chan=1, hidden dim=16):
        super(Discriminator, self). init ()
        self.disc = nn.Sequential(
            self.make disc block(im chan, hidden dim),
            self.make disc block(hidden dim, hidden dim * 2),
            self.make disc block(hidden dim * 2, 1, final layer=True),
   def make disc block(self, input channels, output channels, kernel size=4, stride=2, final layer=False):
        Function to return a sequence of operations corresponding to a discriminator block of DCGAN,
        corresponding to a convolution, a batchnorm (except for in the last layer), and an activation.
        Parameters:
           input channels: how many channels the input feature representation has
           output channels: how many channels the output feature representation should have
            kernel size: the size of each convolutional filter, equivalent to (kernel size, kernel size)
            stride: the stride of the convolution
            final layer: a boolean, true if it is the final layer and false otherwise
                      (affects activation and batchnorm)
        1.1.1
        # Build the neural block
        if not final layer:
           return nn.Sequential(
                nn.Conv2d(input channels, output channels, kernel size, stride=stride),
                nn.BatchNorm2d(output channels),
                nn.LeakyReLU(0.2)
        else: # Final Layer
            return nn.Sequential(
                nn.Conv2d(input channels, output channels, kernel size, stride=stride)
```

DCGAN - parametre entrainement

```
criterion = nn.BCEWithLogitsLoss()
z \dim = 64
display step = 500
batch size = 128
# A learning rate of 0.0002 works well on DCGAN
lr = 0.0002
# These parameters control the optimizer's momentum, which you can read more about here:
# https://distill.pub/2017/momentum/
beta 1 = 0.5
beta 2 = 0.999
device = 'cuda'
# You can tranform the image values to be between -1 and 1 (the range of the tanh activation)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,),(0.5,)),
1)
dataloader = DataLoader(
    MNIST('.', download=False, transform=transform),
    batch size=batch size,
    shuffle=True)
```

DCGAN - initialisation

```
gen = Generator(z dim).to(device)
gen opt = torch.optim.Adam(gen.parameters(), lr=lr, betas=(beta 1, beta 2))
disc = Discriminator().to(device)
disc opt = torch.optim.Adam(disc.parameters(), lr=lr, betas=(beta 1, beta 2))
# You initialize the weights to the normal distribution
# with mean 0 and standard deviation 0.02
def weights init(m):
    if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
        torch.nn.init.normal (m.weight, 0.0, 0.02)
    if isinstance(m, nn.BatchNorm2d):
        torch.nn.init.normal (m.weight, 0.0, 0.02)
        torch.nn.init.constant (m.bias, 0)
gen = gen.apply(weights init)
disc = disc.apply(weights init)
```

DCGAN - entraine ment

```
n = 50
cur step = 0
mean generator loss = 0
mean discriminator loss = 0
for epoch in range(n epochs):
    # Dataloader returns the batches
    for real, _ in tqdm(dataloader):
        cur batch size = len(real)
        real = real.to(device)
        ## Update discriminator ##
        disc opt.zero grad()
        fake noise = get noise(cur batch size, z dim, device=device)
        fake = gen(fake noise)
        disc fake pred = disc(fake.detach())
        disc fake loss = criterion(disc fake pred, torch.zeros like(disc fake pred))
        disc real pred = disc(real)
        disc real loss = criterion(disc real pred, torch.ones like(disc real pred))
        disc loss = (disc fake loss + disc real loss) / 2
        # Keep track of the average discriminator loss
        mean discriminator loss += disc loss.item() / display step
        # Update gradients
        disc loss.backward(retain graph=True)
        # Update optimizer
        disc opt.step()
```

DCGAN - entraine

```
ment (suite)
```

```
# Keep track of the average discriminator loss
mean discriminator loss += disc loss.item() / display step
# Update gradients
disc loss.backward(retain graph=True)
# Update optimizer
disc opt.step()
## Update generator ##
gen opt.zero grad()
fake noise 2 = get noise(cur batch size, z dim, device=device)
fake 2 = gen(fake noise 2)
disc fake pred = disc(fake 2)
gen loss = criterion(disc fake pred, torch.ones like(disc fake pred))
gen loss.backward()
gen opt.step()
# Keep track of the average generator loss
mean generator loss += gen loss.item() / display step
## Visualization code ##
if cur_step % display_step == 0 and cur step > 0:
    print(f"Step {cur step}: Generator loss: {mean generator loss}, discriminator loss: {mean discriminator loss}"
    show tensor images(fake)
    show tensor images(real)
    mean generator loss = 0
    mean discriminator loss = 0
cur step += 1
```

DCGAN résultat (suite)

Step 1000: Generator loss: 2.0383475271463407, discriminator loss: 0.24150314955413335

Step 23000: Generator loss: 0.6993783376812931, discriminator loss: 0.6958930463790896

Remarques pour l'amélioration du modèle

- Utilisation de tanh pour la couche output du générateur (Scale the image pixel value between -1 and 1.)
- Batch Normalization aide à la stabilisation de l'entraînement
- Eviter le max pooling
- utiliser la fonction d'optimisation Adam

Problème de l'effet damier

 Problème courant pour les déconvolutions

 l'utilisation d'un upsampling suivi d'une convolution est une technique de plus en plus populaire aujourd'hui pour éviter ce problème de damier.

Mode collapse

- problème fréquemment rencontré
- observable ici par une représentation d'un sous-ensemble des chiffres (ici 9, 7, 1)

```
99799777779719
   99799997997
  797779777999
  997199799979
    9799799179
 79997979779
  997999977979
99999197197779
  999991999999
    9779997979
 997797799979
```


Problème Vanishing gradient

- c'est un problème lié à l'utilisation la fonction de coût BCE (Binary Cross Entropy)
- c'est un problème qui survient quand le Discriminateur s'améliore trop vite

Problème Vanishing gradient (suite)

objectif du générateur : tendre vers la distribution réelle

Problème Vanishing gradient (suite)

gradient non-zero = le générateur s'améliore

Problème Vanishing gradient (suite)

gradient proche de zéro = le générateur ne peut plus s'améliorer

W-loss

- fonction de coût alternative : Wasserstein loss
- approximatisation de la Earth mover's distance

W-loss

- résout les problèmes :
 - mode collapse
 - vanished gradient

 implique souvent la mise en place de pénalités sur les poids lors de la rétropropagation Exemples de programme illustrant des modèles instables :

https://www.aiproblog.com/index.php/2019/07/07/how-to-identify-and-diagnose-gan-failure-modes/

Évaluation

Évaluation

- Inception-v3 and Embeddings
- Fréchet Inception Distance (FID)

Inception-v3 architecture

Image Embeddings

Fréchet distance

Fréchet distance 2 dimensions

Fréchet distance 2 dimension to multidimension

$$(\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2$$

$$\|\mu_X - \mu_Y\|^2 + \operatorname{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

Fréchet inception distance (FID)

FID =
$$\|\mu_X - \mu_Y\|^2 + \text{Tr}\left(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X \Sigma_Y}\right)$$

X : Reel image Embeddings

(ex: 50 000 vecteurs de dimension 2048)

Y : Fake image Embeddings

(ex: 50 000 vecteurs de dimension 2048)

Conclusion:

Plus FID est petit plus les images sont proches donc plus FID est petit meilleur est notre générateur.

FID limits

- Utilisation d'un modèle inception pré-entraîné qui ne va pas forcément récupérer toutes les features des images. (dépend de la proximité de son dataset d'entraînement avec les images à évaluer)
- A besoin d'un large échantillon d'image pour éviter un maximum le bruit. (Au moins 50 000 images)
- Lent à exécuter

Pour résumer

- FID calcule la distance entre les image réelles et fakes
- FID utilise inception et la distance de Fréchet
- FID a besoin d'un large échantillon pour bien fonctionner

StyleGAN

Et Aujourd'hui, quel est l'état de l'art?

2017

2018

StyleGAN

StyleGAN

- Objectifs de StyleGAN
 - Plus grande fidélité
 - Plus grande diversité
 - Plus de contrôle sur les features
- Composants de StyleGAN :
 - Progressive Growing
 - Adaptive Instance Normalization (AdaIN)
 - Noise mapping network
 - Style mixing

Progressive growing

Progressive growing: Generator

Progressive growing: Discriminator

Progressive growing in context

Progressive growing Implementation

```
class MicroStyleGANGeneratorBlock(nn.Module):
   Micro StyleGAN Generator Block Class
       in chan: the number of channels in the input, a scalar
       out chan: the number of channels wanted in the output, a scalar
       w dim: the dimension of the intermediate noise vector, a scalar
       kernel size: the size of the convolving kernel
       starting_size: the size of the starting image
   def init (self, in chan, out chan, w dim, kernel size, starting size, use upsample=True):
       super(). init ()
       self.use upsample = use upsample
       # 1. Upsample to the starting size, bilinearly (https://pytorch.org/docs/master/generated/torch.nn.Upsample.html)
       # 2. Create a kernel size convolution which takes in
       # an image with in chan and outputs one with out chan (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
       # 3. Create an object to inject noise
       # 4. Create an AdaIN object
       # 5. Create a LeakyReLU activation with slope 0.2
       if self.use upsample:
           self.upsample = nn.Upsample((starting size, starting size), mode='bilinear')
       self.conv = nn.Conv2d(in chan, out chan, kernel size, padding=1) # Padding is used to maintain the image size
       self.inject noise = InjectNoise(out chan)
       self.adain = AdaIN(out chan, w dim)
       self.activation = nn.LeakyReLU(0.2)
   def forward(self, x, w):
       Function for completing a forward pass of MicroStyleGANGeneratorBlock: Given an x and w.
       computes a StyleGAN generator block.
       Parameters:
           x: the input into the generator, feature map of shape (n samples, channels, width, height)
           w: the intermediate noise vector
       if self.use upsample:
           x = self.upsample(x)
       x = self.conv(x)
       x = self.inject_noise(x)
       x = self.activation(x)
       x = self.adain(x, w)
       return x
```

```
class MicroStyleGANGenerator(nn.Module):
   Micro StyleGAN Generator Class
       z dim: the dimension of the noise vector, a scalar
       map hidden dim: the mapping inner dimension, a scalar
       w dim: the dimension of the intermediate noise vector, a scalar
       in chan: the dimension of the constant input, usually w dim, a scalar
       out chan: the number of channels wanted in the output, a scalar
       kernel size: the size of the convolving kernel
       hidden chan: the inner dimension, a scalar
   def init (self, z dim, map hidden dim, w dim, in chan, out chan, kernel size, hidden chan):
       super().__init__()
       self.map = MappingLayers(z dim, map hidden dim, w dim)
       # Typically this constant is initiated to all ones, but you will initiate to a
       # Gaussian to better visualize the network's effect
       self.starting constant = nn.Parameter(torch.randn(1, in chan, 4, 4))
       self.block0 = MicroStyleGANGeneratorBlock(in_chan, hidden_chan, w_dim, kernel_size, 4, use_upsample=False)
       self.block1 = MicroStyleGANGeneratorBlock(hidden chan, hidden chan, w dim, kernel size, 8)
       self.block2 = MicroStyleGANGeneratorBlock(hidden chan, hidden chan, w dim, kernel size, 16)
       # You need to have a way of mapping from the output noise to an image,
       # so you learn a 1x1 convolution to transform the e.g. 512 channels into 3 channels
       # (Note that this is simplified, with clipping used in the real StyleGAN)
       self.block1 to image = nn.Conv2d(hidden chan, out chan, kernel size=1)
       self.block2 to image = nn.Conv2d(hidden chan, out chan, kernel size=1)
       self.alpha = 0.2
   def upsample_to_match_size(self, smaller_image, bigger_image):
       Function for upsampling an image to the size of another: Given a two images (smaller and bigger),
       upsamples the first to have the same dimensions as the second.
       Parameters:
            smaller image: the smaller image to upsample
           bigger image: the bigger image whose dimensions will be upsampled to
       return F.interpolate(smaller image, size=bigger image.shape[-2:], mode='bilinear')
   def forward(self, noise, return intermediate=False):
       Function for completing a forward pass of MicroStyleGANGenerator: Given noise,
       computes a StyleGAN iteration.
       Parameters:
           noise: a noise tensor with dimensions (n samples, z dim)
            return intermediate: a boolean, true to return the images as well (for testing) and false otherwise
       x = self.starting constant
       w = self.map(noise)
       x = self.block0(x, w)
       x small = self.block1(x, w) # First generator run output
       x small image = self.block1 to image(x small)
       x_big = self.block2(x_small, w) # Second generator run output
       x big image = self.block2 to image(x big)
       # Upsample first generator run output to be same size as second generator run output
       x small upsample = self.upsample to match size(x small image, x big image)
       # Interpolate between the upsampled image and the image from the generator using alpha
       interpolation = torch.lerp(x small upsample, x big image, self.alpha)
       if return intermediate:
            return interpolation, x_small_upsample, x_big_image
       return interpolation
```

En résumé

- Progressive growing double progressivement la taille des images générées
- Progressive growing entraîne un entraînement plus rapide, plus stable et une meilleur résolution d'image

Noise Mapping Network

Noise Mapping Network

More possible to control single output features

Noise Mapping Network + Progressive Growing

Noise Mapping Network implementation

```
class MappingLayers(nn.Module):
   Mapping Layers Class
   Values:
        z dim: the dimension of the noise vector, a scalar
       hidden dim: the inner dimension, a scalar
        w dim: the dimension of the intermediate noise vector, a scalar
    def init (self, z dim, hidden dim, w dim):
        super(). init ()
        self.mapping = nn.Sequential(
           nn.Linear(z dim, hidden dim),
           nn.ReLU(),
           nn.Linear(hidden dim, hidden dim),
           nn.ReLU(),
           nn.Linear(hidden dim,w dim)
    def forward(self, noise):
        Function for completing a forward pass of MappingLayers:
       Given an initial noise tensor, returns the intermediate noise tensor.
        Parameters:
           noise: a noise tensor with dimensions (n samples, z dim)
        return self.mapping(noise)
```

En résumé

- Noise Mapping permet de mieux contrôler les features
- W le vecteur de bruit intermédiaire est injecté à différents niveau dans le générateur

Adaptive Instance Normalization (AdaIN)

Adaptive Instance Normalization (AdaIN)

Etape 1 : Normaliser la sortie des couches de convolution en utilisant l'Instance Normalisation

Adaptive Instance Normalization (AdaIN)

Etape 2 : Appliquer l'Adaptive Style en utilisant W le vecteur de bruit intermédiaire

AdaIN implementation

```
class AdaIN(nn.Module):
    AdaIN Class
   Values:
        channels: the number of channels the image has, a scalar
       w dim: the dimension of the intermediate noise vector, a scalar
   def init (self, channels, w dim):
       super(). init ()
        # Normalize the input per-dimension
        self.instance norm = nn.InstanceNorm2d(channels)
        # You want to map w to a set of style weights per channel.
        # Replace the Nones with the correct dimensions - keep in mind that
        # both linear maps transform a w vector into style weights
        # corresponding to the number of image channels.
        self.style scale transform = nn.Linear(w dim, channels)
        self.style shift transform = nn.Linear(w dim, channels)
   def forward(self, image, w):
        Function for completing a forward pass of AdaIN: Given an image and intermediate noise vector w,
        returns the normalized image that has been scaled and shifted by the style.
        Parameters:
            image: the feature map of shape (n samples, channels, width, height)
           w: the intermediate noise vector
        normalized image = self.instance norm(image)
        style scale = self.style scale transform(w)[:, :, None, None]
        style shift = self.style shift transform(w)[:, :, None, None]
        # Calculate the transformed image
        transformed image = style scale * normalized image + style shift
        return transformed image
```

En résumé

- Instance Normalization est utilisé pour normaliser individuellement les exemples avant de leur appliquer un style
- AdalN transfère les informations de style du vecteur de bruit intermédiaire w vers l'image générée.

Style Mixing

Style Mixing

Available from: https://arxiv.org/abs/1812.04948

Merci!

Annexe

collection of implementation gan

https://github.com/eriklindernoren/Keras-GAN

Real image
$$x$$

$$z \sim \mathcal{N}(0, 1)$$
or
$$z \sim U(-1, 1)$$
Generator
$$-\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right)$$
or
$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right)$$
or
$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(D\left(G\left(z^{(i)}\right)\right)\right)$$

Binary cross-entropy cost function

