Прототипы задания №10

1. Задание 10 (№ 41117)

При температуре $0^{\circ}C$ рельс имеет длину $l_o=10$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^{\circ})=l_o(1+\alpha\cdot t^{\circ})$, где $\alpha=1,2\cdot 10^{-5}(^{\circ}C)^{-1}$ — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой температуре рельс удлинится на 7,5 мм? Ответ выразите в градусах Цельсия.

2. Задание 10 (№ 41177)

Некоторая компания продает свою продукцию по цене $p=400\,$ руб. за единицу, переменные затраты на производство одной единицы продукции составляют $v=200\,$ руб., постоянные расходы предприятия $f=500000\,$ руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле $\pi(q)=q(p-v)-f$. Определите наименьший месячный объем производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет не меньше $10000000\,$ руб.

3. Задание 10 (№ 41197)

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле $h = 5t^2$, где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 1,5 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,1 с? Ответ выразите в метрах.

4. Задание 10 (№ 41313)

Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены p (тыс. руб.) задаётся формулой q=120-10p. Выручка предприятия за месяц r (в тыс. руб.) вычисляется по формуле $r(p)=q\cdot p$. Определите наибольшую цену p, при которой месячная выручка r(p) составит не менее 350 тыс. руб. Ответ приведите в тыс. руб.

5. Задание 10 (№ 41341)

Высота над землёй подброшенного вверх мяча меняется по закону $h(t) = 1,4 + 14t - 5t^2$, где h – высота в метрах, t – время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 8 метров?

6. Задание 10 (№ 41361)

Если достаточно быстро вращать ведерко с водой на веревке в вертикальной плоскости, то вода не будет выливаться. При вращении ведерка сила давления воды на дно не остается постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила ее давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней

точке сила давления, выраженная в ньютонах, равна $P = m \left(\frac{v^2}{L} - g \right)$, где m — масса воды в килограммах, v —

скорость движения ведерка в м/с, L — длина веревки в метрах, g — ускорение свободного падения (считайте g = 10м/с 2). С какой наименьшей скоростью надо вращать ведерко, чтобы вода не выливалась, если длина веревки равна 230,4 см? Ответ выразите в м/с.

7. Задание 10 (№41369)

В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нем, выраженная в метрах, меняется по закону

$$H(t) = H_0 - \sqrt{2gH_0}kt + \frac{g}{2}k^2t^2$$
, где t – время в секундах, прошедшее с момента открытия крана, $H_0 = 20$ м –

начальная высота столба воды, $k = \frac{1}{800}$ — отношение площадей поперечных сечений крана и бака, а g —

ускорение свободного падения (считайте $g=10 \text{ м/c}^2$). Через сколько секунд после открытия крана в баке останется четверть первоначального объема воды?

8. Задание 10 (№ 41421)

В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нем, выраженная в метрах, меняется по закону $H(t) = at^2 + bt + H_0$, где $H_0 = 9$ м — начальный уровень воды, $a = \frac{1}{196}$ м/мин², и $b = -\frac{3}{7}$ м/мин — постоянные, t — время в минутах, прошедшее с момента открытия крана. В течение какого времени вода будет вытекать из бака? Ответ приведите в минутах.

9. Задание 10 (№ 41471)

Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полета камня описывается формулой $y = ax^2 + bx$, где $a = -\frac{1}{110}$ м⁻¹, $b = \frac{13}{11}$ — постоянные параметры, x (м) — смещение камня по горизонтали, y (м) — высота камня над землей. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 19 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?

10. Задание 10 (№ 41497)

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры (в кельвинах) от времени работы: $T(t) = T_0 + bt + at^2$, где t – время в минутах, $T_0 = 1320\,$ K, $a = -20\,$ K/мин 2 , $b = 200\,$ K/мин. Известно, что при температуре нагревателя свыше 1800 K прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

11. Задание 10 (№ 41525)

Для сматывания кабеля на заводе используют лебедку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону $\varphi = \omega t + \frac{\beta t^2}{2}$, где t – время в минутах, $\omega = 45^\circ$ / мин — начальная угловая скорость вращения катушки, а $\beta = 6^\circ$ / мин 2 – угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки φ достигнет 4050 $^\circ$. Определите время после начала работы лебедки, не позже которого рабочий должен проверить ее работу. Ответ выразите в минутах.

12. Задание 10 (№ 41569)

Мотоциклист, движущийся по городу со скоростью $v_0 = 15$ км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением a = 120 км/ч². Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением $S = v_0 t + \frac{at^2}{2}$. Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее, чем в 45 км от города. Ответ выразите в минутах.

13. Задание 10 (№ 41635)

Автомобиль, движущийся в начальный момент времени со скоростью $v_0 = 30$ м/с, начал торможение с постоянным ускорением a = 4 м/с². За t секунд после начала торможения он прошёл путь $S = v_0 t - \frac{at^2}{2}$ (м). Определите время, прошедшее от момента начала торможения, если известно, что за это время автомобиль проехал 112 метров. Ответ выразите в секундах.

14. Задание 10 (№ 41691)

Деталью некоторого прибора является вращающаяся катушка. Она состоит из трех однородных соосных цилиндров: центрального массой m=13 кг и радиуса R=4 см, и двух боковых с массами M=9 кг и с радиусами R+h. При этом момент инерции катушки относительно оси вращения, выражаемый в кг·см², дается формулой $I=\frac{(m+2M)R^2}{2}+M(2Rh+h^2)$. При каком максимальном значении h момент инерции катушки не превышает предельного значения 545 кг·см²? Ответ выразите в сантиметрах.

15. Задание 10 (№ 41741)

На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: $F_A = \rho g l^3$, где l- длина ребра куба в метрах, $\rho = 1000 \, \kappa z \, / \, m^3 -$ плотность воды, а g- ускорение свободного падения (считайте g=9,8 H/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем 321126,4 H? Ответ выразите в метрах.

16. Задание 10 (№ 41791)

На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: $F_A = \alpha \rho g r^3$, где $\alpha = 4,2$ — постоянная, r — радиус аппарата в метрах, $\rho = 1000 \, \kappa z / m^3$ — плотность воды, а g — ускорение свободного падения (считайте $g = 10 \, \text{H/kr}$). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 2491398 H? Ответ выразите в метрах.

17. Задание 10 (№ 41845)

Для определения эффективной температуры звезд используют закон Стефана—Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвертой степени температуры: $P = \sigma S T^4$, где $\sigma = 5.7 \cdot 10^{-8}$ — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что площадь поверхности некоторой звезды равна $S = \frac{1}{81} \cdot 10^{21} \text{ m}^2$, а излучаемая ею мощность P не менее $9.12 \cdot 10^{26}$ Вт.

Найдите температуру этой звезды в Кельвинах.

18. Задание 10 (№ 41895)

Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием $f=80\,$ см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 330 до 350 см, а расстояние d_2 от линзы до экрана – в пределах от 80 до 105 см.

Изображение на экране будет четким, если выполнено соотношение $\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$. Укажите, на каком

наименьшем расстоянии от линзы можно поместить лампочку, чтобы ее изображение на экране было четким. Ответ выразите в сантиметрах.

19. Задание 10 (№ 41955)

Перед отправкой тепловоз издал гудок с частотой $f_0=593$ Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону $f(v)=\frac{f_0}{1-\frac{v}{c}}$ (Гц), где c – скорость звука в звука (в м/с). Человек, стоящий на

платформе, различает сигналы по тону, если они отличаются не менее чем на 7 Γ ц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а c = 300 м/с. Ответ выразите в м/с.

20. Задание 10 (№ 41987)

По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $I=\frac{\varepsilon}{R+r}$, где $\varepsilon-\Im$ ДС источника (в вольтах), r=3 Ом — его внутреннее сопротивление, R — сопротивление цепи (в Омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 25% от силы тока короткого замыкания $I_{\kappa_3}=\frac{\varepsilon}{r}$? (Ответ выразите в Омах.)

21. Задание 10 (№ 41999)

Сила тока в цепи I (в амперах) определяется напряжением в цепи и сопротивлением электроприбора по

закону Ома: $I = \frac{U}{R}$, где U — напряжение в вольтах, R — сопротивление электроприбора в Омах. В электросеть включен предохранитель, который плавится, если сила тока превышает 2,5 А. Определите, какое минимальное сопротивление должно быть у электроприбора, подключаемого к розетке в 220 вольт, чтобы сеть продолжала работать. Ответ выразите в Омах.

22. Задание 10 (№ 42049)

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле

$$A(\omega) = \frac{A_0 \omega_p^2}{\left|\omega_p^2 - \omega^2\right|}$$
, где ω — частота вынуждающей силы (в c^{-1}), A_0 — постоянный параметр, $\omega_p = 338c^{-1}$ —

резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 5,625%. Ответ выразите в c^{-1} .

23. Задание 10 (№ 42113)

В розетку электросети подключены приборы, общее сопротивление которых составляет $R_1=72~{\rm Om.}$ Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями $R_1~{\rm Om}$ и $R_2~{\rm Om}$ их общее сопротивление дается формулой $R_{oбщ}=\frac{R_1R_2}{R_1+R_2}$ (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 18 Ом. Ответ выразите в Омах.

24. Задание 10 (№ 54796)

Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой $\eta = \frac{T_1 - T_2}{T_1} \cdot 100\%$,

где T_1 — температура нагревателя (в градусах Кельвина), T_2 — температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя T_1 КПД этого двигателя будет не меньше 50%, если температура холодильника T_2 = 250 К? Ответ дайте в кельвинах.

25. Задание 10 (№ 42219)

Коэффициент полезного действия (КПД) кормозапарника равен отношению количества теплоты, затраченного на нагревание воды массой $m_{\rm B}$ (в килограммах) от температуры t_1 до температуры t_2 (в градусах Цельсия) к количеству теплоты, полученному от сжигания дров массы $m_{\rm др}$ кг. Он определяется формулой $\eta = \frac{c_B m_B \left(t_2 - t_1\right)}{q_{\partial p} m_{\partial p}} \cdot 100\%$, где $c_B = 4.2 \cdot 10^3 \, \text{Дж/(кг·К)}$ – теплоёмкость воды, $q_{\partial p} = 8.3 \cdot 10^6 \, \text{Дж/кг}$ –

удельная теплота сгорания дров. Определите наименьшее количество дров, которое понадобится сжечь в кормозапарнике, чтобы нагреть m=166 кг воды от $10^{\circ}C$ до кипения, если известно, что КПД кормозапарника не больше 14%. Ответ выразите в килограммах.

26. Задание 10 (№ 42255)

Опорные башмаки шагающего экскаватора, имеющего массу m=1400 тонн представляют собой две пустотелые балки длиной l=14 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой $p=\frac{mg}{2ls}$, где m- масса экскаватора (в тоннах), l-

длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10 м/c²). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 250 кПа. Ответ выразите в метрах.

27. Задание 10 (№ 42311)

К источнику с ЭДС $\varepsilon=75~\mathrm{B}$ и внутренним сопротивлением $r=0.4~\mathrm{Om}$, хотят подключить нагрузку с сопротивлением $R~\mathrm{Om}$. Напряжение на этой нагрузке, выражаемое в вольтах, дается формулой $U=\frac{\varepsilon R}{R+r}$. При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее $60~\mathrm{B}$? Ответ выразите в омах.

28. Задание 10 (№ 42381)

При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу, частота звукового сигнала, регистрируемого приёмником, не совпадает с частотой исходного сигнала $f_0 = 110~\Gamma$ ц и определяется следующим выражением: $f = f_0 \frac{c+u}{c-v}$ (Γ ц), где c – скорость распространения сигнала в среде (в м/с), а u = 9~м/c и v = 15~м/c – скорости приёмника и источника относительно среды соответственно. При какой максимальной скорости c (в м/с) распространения сигнала в среде частота сигнала в приёмнике f будет не менее $120~\Gamma$ ц?

29. Задание 10 (№ 42439)

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 745 МГц. Скорость спуска батискафа, выражаемая в м/с, определяется по формуле $v = c \frac{f - f_0}{f + f_0}$,

где c=1500 м/с – скорость звука в воде, f_0 – частота испускаемых импульсов (в МГц), f – частота отраженного от дна сигнала, регистрируемая приемником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 10 м/с.

30. Задание 10 (№ 42483)

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч 2 . Скорость v вычисляется по формуле $v = \sqrt{2la}$, где l – пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,7 километра, приобрести скорость 105 км/ч. Ответ выразите в км/ч 2 .

31. Задание 10 (№ 42519)

При движении ракеты ее видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону $l=l_0\sqrt{1-\frac{v^2}{c^2}}$, где $l_0=85$ м – длина покоящейся ракеты, $c=3\cdot 10^5$ км/с – скорость света, а v – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы ее наблюдаемая длина стала не более 68 м? Ответ выразите в км/с.

32. Задание 10 (№ 42569)

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где R = 6400 км – радиус Земли. На какой высоте находится наблюдатель, если он видит линию горизонта на расстоянии 8 километров? Ответ выразите в метрах.

33. Задание 10 (№ 42665)

Расстояние от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где $R = 6400\,$ км – радиус Земли.

Человек, стоящий на пляже, видит горизонт на расстоянии 12 км. К пляжу ведет лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 44 километров?

34. Задание 10 (№ 42635)

Расстояние от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$, где $R = 6400\,$ км – радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4 км. На сколько метров нужно подняться человеку,

35. Задание 10 (№ 28395)

чтобы расстояние до горизонта увеличилось до 48 километров?

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a=5000 км/ч². Скорость v вычисляется по формуле $v=\sqrt{2la}$, где l – пройденный автомобилем путь. Найдите, сколько километров проедет автомобиль к моменту, когда он разгонится до скорости 100 км/ч.

36. Задание 10 (№ 42689)

Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле $P = \frac{4mg}{\pi D^2}$, где m = 1350 кг – общая масса навеса и колонны, D – диаметр колонны (в метрах). Считая ускорение свободного падения $g = 10 \text{ м/c}^2$, а $\pi = 3$, определите наименьший возможный диаметр колонны, если давление, оказываемое на

37. Задание 10 (№ 42739)

опору, не должно быть больше 200000 Па. Ответ выразите в метрах.

Автомобиль, масса которого равна $m=1500\,$ кг, начинает двигаться с ускорением, которое в течение t секунд остается неизменным, и проходит за это время путь $S=300\,$ метров. Значение силы (в ньютонах), приложенной в это время к автомобилю, равно $F=\frac{2mS}{t^2}$. Определите наибольшее время после начала движения автомобиля, за которое он пройдет указанный путь, если известно, что сила F, приложенная к автомобилю, не меньше $1440\,$ H. Ответ выразите в секундах.

38. Задание 10 (№ 42787)

При адиабатическом процессе для идеального газа выполняется закон $pV^k = 1,2 \cdot 10^8 \, \text{Па} \cdot \text{м}^5$, где p- давление в газе в паскалях, V- объем газа в кубических метрах k=5/3 Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном $3,75 \cdot 10^6 \, \text{Па}$?

39. Задание 10 (№ 42837)

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \cdot 2^{-\frac{t}{T}}$, где $m_0(\text{мг})$ – начальная масса изотопа, t (мин.) – время, прошедшее от начального момента, T(мин.) – период полураспада. В начальный момент времени масса изотопа 188 мг. Период его полураспада составляет 3 мин. Найдите, через сколько минут масса изотопа будет равна 47 мг.

40. Задание 10 (№ 42869)

Уравнение процесса, в котором участвовал газ, записывается в виде $pV^a = const$, где p (Па) – давление в газе, V – объем газа в кубических метрах, a – положительная константа. При каком наименьшем значении константы a увеличение в 3 раза объёма газа, участвующего в этом процессе, приводит к уменьшению давления не менее, чем в 27 раз?

41. Задание 10 (№ 42963)

Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объем и давление связаны соотношением $p_1V_1^{1,4} = p_2V_2^{1,4}$, где p_1 и p_2 – давление газа (в атмосферах) в начальном и конечном состояниях, V_1 и V_2 – объём газа (в литрах) в начальном и конечном состояниях. Изначально объём газа равен 243,2 л, а давление газа равно одной атмосфере. До какого объёма нужно сжать газ, чтобы давление в сосуде стало 128 атмосфер? Ответ дайте в литрах.

42. Задание 10 (№ 42999)

В телевизоре емкость высоковольтного конденсатора $C = 4 \cdot 10^{-6}$ Ф. Параллельно с конденсатором подключен резистор с сопротивлением $R = 8 \cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0 = 14$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением $t = \alpha RC \log_2 \frac{U_0}{U}$ (c), где $\alpha = 1,3$ – постоянная. Определите наибольшее возможное напряжение на конденсаторе, если после выключения телевизора

43. Задание 10 (№ 43049)

прошло не менее 83,2 с. Ответ дайте в киловольтах.

Для обогрева помещения, температура в котором равна $T_{\Pi} = 15^{\circ}C$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора воды m = 0.6 кг/с. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_{\rm B} = 91^{\circ}C$ до температуры T, причем $x = \alpha \frac{cm}{\gamma} \log_2 \frac{T_B - T_H}{T - T_H}$

(м), где $c=4200\frac{\mathcal{J}\mathcal{M}c}{\kappa_{\mathcal{C}}\cdot{}^{\circ}C}$ — теплоемкость воды, $\gamma=28\frac{B_{\mathrm{T}}}{\mathcal{M}\cdot{}^{\circ}C}$ — коэффициент теплообмена, а $\alpha=0,8$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 144 м.

44. Задание 10 (№ 43097)

Водолазный колокол, содержащий в начальный момент времени $\upsilon=4$ моля воздуха объемом $V_1=14$ л, медленно опускают на дно водоема. При этом происходит изотермическое сжатие воздуха до конечного объема V_2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha\upsilon T\log_2\frac{V_1}{V_2}$, где $\alpha=11,6$ постоянная, а T=300 К – температура воздуха. Какой объем V_2 (в литрах) станет занимать воздух, если при сжатии газа была совершена работа в 27840 Дж?

45. Задание 10 (№ 43145)

Водолазный колокол, содержащий $\upsilon=5$ молей воздуха при давлении $p_1=1,75$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха. Работа, совершаемая водой при сжатии воздуха, определяется выражением $A=\alpha\upsilon T\log_2\frac{p_2}{p_1}$ (Дж), где $\alpha=9,7$ $\frac{\mathcal{J}\mathcal{K}}{\mathit{моль}\cdot K}$ – постоянная, T=300 К – температура воздуха, p_1 (атм.) – начальное давление, а p_2 (атм.) – конечное давление воздуха в колоколе. Найдите, какое давление p_2 (в атм.) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 29100 Дж.

46. Задание 10 (№ 43175)

Мяч бросили под углом α к плоской горизонтальной поверхности земли. Время полета мяча (в секундах) определяется по формуле $t=\frac{2v_0\sin\alpha}{g}$. При каком наименьшем значении угла α (в градусах) время полёта составит 2,6 секунды, если мяч бросают с начальной скоростью $v_0=13\,$ м/с? Считайте, что ускорение свободного падения $g=10\,$ м/с².

47. Задание 10 (№ 43231)

Деталью некоторого прибора является квадратная рамка с намотанным на нее проводом, через который пропущен постоянный ток. Рамка помещена в однородное магнитное поле так, что она может вращаться. Момент силы Ампера, стремящейся повернуть рамку, (в $H\cdot m$) определяется формулой $M=NIBl^2\sin\alpha$, где I=8 A – сила тока в рамке, $B=7\cdot 10^{-3}$ Тл – значение индукции магнитного поля, I=0,3 м – размер рамки, N=250 — число витков провода в рамке, α — острый угол между перпендикуляром к рамке и вектором индукции. При каком наименьшем значении угла α (в градусах) рамка может начать вращаться, если для этого нужно, чтобы раскручивающий момент M был не меньше 0,63 $H\cdot m$?

48. Задание 10 (№ 28565)

Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону $U=U_0\sin\left(\omega t+\phi\right)$, где t – время в секундах, амплитуда $U_0=2$ В, частота $\omega=240^\circ/c$, фаза $\varphi=-120^\circ$. Датчик настроен так, что если напряжение в нем не ниже чем 1 В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?

49. Задание 10 (№ 432732)

Очень легкий заряженный металлический шарик зарядом $q = 8 \cdot 10^{-6}$ Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет v = 3 м/с, на него начинает действовать постоянное магнитное поле, вектор индукции B которого лежит в той же плоскости и составляет угол α с направлением движения шарика. Значение индукции поля $B = 5 \cdot 10^{-3}$ Тл. При этом на шарик действует сила Лоренца, равная $F_n = qvB\sin\alpha$ (H) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла $\alpha \in [0^\circ; 180^\circ]$ шарик оторвется от поверхности, если для этого нужно, чтобы сила F_n была не менее, чем $6 \cdot 10^{-8}$ H? Ответ дайте в градусах.

50. Задание 10 (№ 43297)

Небольшой мячик бросают под острым углом α к плоской горизонтальной поверхности земли. Максимальная высота полета мячика, выраженная в метрах, определяется формулой $H=\frac{v_o^2}{4g}(1-\cos 2\alpha)$, где $v_0=8$ м/с – начальная скорость мячика, а g – ускорение свободного падения (считайте $g=10\,$ м/с²).

где $v_0 = 8$ м/с – начальная скорость мячика, а g – ускорение свободного падения (считайте $g = 10\,$ м/с²). При каком наименьшем значении угла α (в градусах) мячик пролетит над стеной высотой 0,6 м на расстоянии 1 м?

51. Задание 10 (№ 43333)

Небольшой мячик бросают под острым углом α к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле $L=\frac{v_o^2}{g}\sin 2\alpha$ (м), где $v_0=12$ м/с – начальная скорость мячика, а g – ускорение свободного падения (считайте g=10 м/с²). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 14,4 м?

52. Задание 10 (№ 43355)

Плоский замкнутый контур площадью S=0,625 м находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой $\varepsilon_i = aScos\alpha$ где α — острый угол между направлением магнитного поля и перпендикуляром к контуру, $a=16\cdot 10^{-4}$ Тл/с — постоянная, S — площадь замкнутого контура, находящегося в магнитном поле (в м 2). При каком минимальном угле α (в градусах) ЭДС индукции не будет превышать $5\cdot 10^{-4}$ В?

53. Задание 10 (№ 43473)

Трактор тащит сани с силой F = 30 кH, направленной под острым углом α к горизонту. Работа трактора (в килоджоулях) на участке длиной S = 160м вычисляется по формуле $A = FS \cos \alpha$. При каком максимальном угле α (в градусах) совершенная работа будет не менее 2400 кДж?

54. Задание 10 (№ 43495)

Двигаясь со скоростью v=5 м/с, трактор тащит сани с силой F=90 кH, направленной под острым углом α к горизонту. Мощность, развиваемая трактором, вычисляется по формуле $N=Fv\cos\alpha$. Найдите, при каком максимальном угле α (в градусах) эта мощность будет равна 225 кВт (кВт – это $\frac{\kappa H \cdot M}{c}$).

55. Задание 10 (№ 43525)

При нормальном падении света с длиной волны $\lambda = 600$ нм на дифракционную решетку с периодом d нм наблюдают серию дифракционных максимумов. При этом угол ϕ (отсчитываемый от перпендикуляра к решетке), под которым наблюдается максимум, и номер максимума k связаны соотношением $d\sin\phi = k\lambda$. Под каким минимальным углом ϕ (в градусах) можно наблюдать 3-й максимум на решётке с периодом, не превосходящим 1800 нм?

56. Задание 10 (№ 43741)

Два тела массой m=2 кг каждое, движутся с одинаковой скоростью v=10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением $Q=mv^2\sin^2\alpha$. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 100 джоулей?

57. Задание 10 (№ 43795)

Катер должен пересечь реку шириной $L=49\,$ м и со скоростью течения $u=0,7\,$ м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением $t=\frac{L}{u}ctg\alpha$, где α – острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом α (в градусах) нужно плыть, чтобы время в пути было не больше 70 с?

58. Задание 10 (№ 43825)

Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью v = 3.6 м/с под острым углом α к рельсам. От толчка платформа начинает ехать со скоростью $u = \frac{m}{m+M} v \cos \alpha$ (м/c), где m=70 кг – масса скейтбордиста со скейтом, а M = 350 кг – масса платформы. Под каким максимальным углом α (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,3 м/с?

59. Задание 10 (№ 43873)

Груз массой 0,8 кг колеблется на пружине. Его скорость v меняется по закону $v = v_0 \sin \frac{2\pi t}{T}$, где t – время с момента начала колебаний, T = 12 с — период колебаний, $v_0 = 0.9$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле $E = \frac{mv^2}{2}$, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 10 секунд после начала колебаний. Ответ дайте в джоулях.

60. Задание 10 (№ 43921)

Груз массой 0,25 кг колеблется на пружине со скоростью, меняющейся по закону $v = v_0 \cos \frac{2\pi t}{T}$, где t - tвремя с момента начала колебаний, T = 2 с — период колебаний, $v_0 = 1,6$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле $E = \frac{mv^2}{2}$, где m — масса груза в килограммах, v — скорость груза в м/с. Найдите кинетическую энергию груза через 56 секунд после начала колебаний. Ответ дайте в джоулях.

61. Задание 10 (№ 43971)

Скорость колеблющегося на пружине груза меняется по закону $v = 6 \sin \frac{\pi t}{3}$ (см/с), где t – время в секундах. Какую долю времени из первой секунды скорость движения превышала 3 см/с? Ответ выразите десятичной дробью, если нужно, округлите до сотых.

62. Задание 10 (№ 317189)

Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Op и объективности Tr публикаций. Каждый показатель оценивается целыми числами от -3 до 3.

Аналитик, составляющий формулу, считает, что информативность публикаций ценится втрое, а объективность – вдвое дороже, чем оперативность. В результате, формула примет вид $R = \frac{2In + Op + 3Tr}{A}.$

$$R = \frac{2In + Op + 3Tr}{A}$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило бы рейтинг 20.

63. Задание 10 (№ 317097)

Рейтинг R интернет-магазина вычисляется по формуле

$$R = r_{no\kappa} - rac{r_{no\kappa} - r_{_{9KC}}}{\left(K+1
ight)^m}$$
, где $m = rac{0.02K}{r_{no\kappa} + 0.1}$

где $r_{no\kappa}$ – средняя оценка магазина покупателями (от 0 до 1), $r_{_{\!\scriptscriptstyle 9K\!C}}$ – оценка магазина и K – число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина, если число покупателей, оценивших магазин, равно 24, их средняя оценка равна 0,86, а оценка экспертов равна 0,11.

64. Задание 10 (№ 319959)

Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности In, оперативности Op, объективности публикаций Tr, а также качества сайта Q. Каждый отдельный показатель – целое число от 0 до 4.

Составители рейтинга считают, что объективность ценится вчетверо, а информативность публикаций – втрое дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

$$R = \frac{2In + Op + 4Tr + Q}{A}.$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило бы рейтинг 1.

65. Задание 10 (№ 319995)

Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности In, оперативности Op, объективности публикаций Tr, а также качества сайта Q. Каждый отдельный показатель — целое число от 1 до 5.

Составители рейтинга считают, что объективность ценится вчетверо, а информативность публикаций – втрое дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

$$R = \frac{3In + Op + 4Tr + Q}{A}.$$

Если по всем четырём показателям какое-то издание получило одну и ту же оценку, то рейтинг должен совпадать с этой оценкой. Найдите число A, при котором это условие будет выполняться.

66. Задание 10 (№ 324467)

На рисунке изображена схема вантового моста. Вертикальные пилоны связаны провисающей цепью. Тросы, которые свисают с цепи и поддерживают полотно моста, называются вантами. Введём систему координат: ось Oy направим вертикально вдоль одного из пилонов, а ось Ox направим вдоль полотна моста, как показано на рисунке. В этой системе координат линия, по которой провисает цепь моста, задаётся формулой $y = 0.005x^2 - 0.74x + 25$, где x и y измеряются в метрах. Найдите длину ванты, расположенной в 30 метрах от пилона. Ответ дайте в метрах.

	Ответы	
1. 62,5	23. 24	45. 7
2. 7500	24. 500	46. 90
3. 1,45	25. 0,54	47. 30
4. 7	26. 2	48. 62,5
5. 1,6	27. 1,6	49. 30
6. 4,8	28. 279	50. 45
7. 800	29. 755	51. 45
8. 42	30. 7875	52. 60
9. 110	31. 180000	53. 60
10. 4	32. 5	54. 60
11. 25	33. 700	55. 90
12. 45	34. 178,75	56. 90
13. 7	35. 1	57. 45
14. 3	36. 0,3	58. 60
15. 3,2	37. 25	59. 0,243
16. 3,9	38. 8	60. 0,32
17. 6000	39. 6	61. 0,5
18. 336	40. 3	62. 0,9
19. 3,5	41. 7,6	63. 0,71
20. 9	42. 3,5	64. 32
21. 88	43. 34	65. 9
22. 78	44. 3,5	66. 7,3