In [20]:	#Add other libraries as you see fit import tifffile as tif
111 [30].	<pre>#Start coding here #Import IHC image and split it to RGB #IHC2 img_ihc = tif.imread("IPQDA_23_ASS_E_DATA\IHC2.tif") #H_E #img_ihc = tif.imread("IPQDA_23_ASS_E_DATA\H_E.tif")</pre>
	<pre>#RGB channels img_ihc_r = img_ihc[:, :, 0] img_ihc_g = img_ihc[:, :, 1] img_ihc_b = img_ihc[:, :, 2] #Import cropped stain1, stain2 and background ROI images, OR import RGB vectors of the ROIS #IHC2 img_stain1 = tif.imread("IPQDA_23_ASS_E_DATA\IHC2_stain1.tif") img_stain2 = tif.imread("IPQDA_23_ASS_E_DATA\IHC2_stain2.tif") img_background = tif.imread("IPQDA_23_ASS_E_DATA\IHC2_back.tif")</pre>
Out[38]:	##_E #img_stain1 = tif.imread("IPQDA_23_ASS_E_DATA\H_E_stain1.tif") #img_stain2 = tif.imread("IPQDA_23_ASS_E_DATA\H_E_stain2.tif") #img_background = tif.imread("IPQDA_23_ASS_E_DATA\H_E_back.tif") #End coding here array([[[241, 239, 242],
	[253, 253, 253], [255, 255, 255], [255, 255, 255]], [[240, 238, 241], [239, 237, 240], [243, 241, 244],, [254, 254, 254], [255, 255, 255],
	[255, 255, 255]], [[245, 243, 246], [244, 242, 245], [248, 246, 249],, [254, 252, 253], [254, 252, 253], [252, 250, 251]],
	[[255, 255, 255], [255, 255, 255], [255, 255, 255], [255, 255, 255],, [252, 252, 252], [253, 253, 253], [251, 251, 251]],
	[[255, 255, 255], [255, 255, 255], [255, 255, 255],, [253, 253, 253], [254, 254, 254], [253, 253, 253]], [[255, 255, 255],
	[255, 255, 255], [255, 255, 255],, [252, 252, 252], [254, 254, 254], [254, 254, 254]]], dtype=uint8) img_ihc.shape (2107, 3310, 3)
In [40]:	#Inspect imported IHC image plt.title("Raw IHC image") plt.axis('off') plt.imshow(img_ihc) <matplotlib.image.axesimage 0x20280089d50="" at=""> Raw IHC image</matplotlib.image.axesimage>
In [41]:	#Start coding here #Calculate mean of image for each RGB channels. If you use RGB vectors, assign them directly to the variables here mean_img_stain1 = np.mean(img_stain1, axis=(0, 1)) mean_img_stain2 = np.mean(img_stain2, axis=(0, 1)) mean_img_background = np.mean(img_background, axis=(0, 1))
	#End coding here print(mean_img_stain1) print(mean_img_stain2) print(mean_img_background) [127.08518519 54.66666667 4.56296296] [144.20061728 173.73765432 214.93518519] [249.68632783 250.90106902 251.8132033]
In [42]:	<pre>Inspect ROIs of stains and background to ensure correct stain color selection #Convert RGB values to Hex color values for visualization hex_img_stain1 = '#%02x%02x%02x' % tuple(mean_img_stain1.astype(int)) hex_img_stain2 = '#%02x%02x%02x' % tuple(mean_img_stain2.astype(int)) hex_img_background = '#%02x%02x%02x' % tuple(mean_img_background.astype(int))</pre> print(hex_img_stain1)
	<pre>print(hex_img_stain2) print(hex_img_background) #Visualization of RGB mean of cropped images fig, axs = plt.subplots(1,3) fig.suptitle('RGB mean of cropped images') rectangle_stain1 = patches.Rectangle((0, 0), 1, 1, facecolor=hex_img_stain1) rectangle_stain2 = patches.Rectangle((0, 0), 1, 1, facecolor=hex_img_stain2)</pre>
	<pre>rectangle_background = patches.Rectangle((0, 0), 1, 1, facecolor=hex_img_background) axs[0].add_patch(rectangle_stain1) axs[1].add_patch(rectangle_stain2) axs[2].add_patch(rectangle_background) axs[0].set_title('Stain 1') axs[1].set_title('Stain 2') axs[2].set_title('Background') axs[0].axis('off')</pre>
7	axs[1].axis('off') axs[2].axis('off') plt.show() #7f3604 #90add6 #f9fafb RGB mean of cropped images Stain 1 Stain 2 Background
	Color Deconvolution Calculate transmittance, T and convert it to absorbances, OD according to Beer–Lambert law
	#Calculate transmittances, T for each stain T_stain1 = mean_img_background/mean_img_stain1 T_stain2 = mean_img_background/mean_img_stain2 OD_stain1 = np.log10(T_stain1) OD_stain2 = np.log10(T_stain2) print(OD_stain1) print(OD_stain2) [0.29329984 0.66177992 1.74183155] [0.23842764 0.15960856 0.06877098]
	[0.23842764 0.15960856 0.06877098] Normalize the absorbances to vector lengths #Start coding here #Normalize the absorbances #Normalize by the squared of the sum of the vector values to the power of 2 OD_stain1_norm = OD_stain1 / np.max(OD_stain1) OD_stain2_norm = OD_stain2 / np.max(OD_stain2)
	OD_stain2_norm = OD_stain2 / np.max(OD_stain2) #End coding here print(OD_stain1_norm) print(OD_stain2_norm) [0.16838588 0.37993336 1.
In [45]:	<pre>#Start coding here #Combine OD_stain1_norm and OD_stain2_norm to form a normalized OD matrix M M = np.column_stack((OD_stain1_norm, OD_stain2_norm)) #Calculate the deconvolution matrix according to Linear regression MT = np.transpose(M) MT_M = np.dot(MT, M)</pre>
	<pre>inversed_MT_M = np.linalg.inv(MT_M) D = np.dot(inversed_MT_M, MT) D=D.T #End coding here print("M") print(M)</pre>
ŗ	<pre>print("M transposed") print(MT) print("Inversed M transposed multiplied with M") print(inversed_MT_M) print("Deconvolution matrix, D") print(D) M [[0.16838588 1.] [0.37993336 0.66942137]</pre>
:	[1. 0.28843544]] M transposed [[0.16838588 0.37993336 1.] [1. 0.66942137 0.28843544]] Inversed M transposed multiplied with M [[1.18703318 -0.55126738] [-0.55126738 0.90904422]] Deconvolution matrix, D [[-0.35138776 0.81621858] [0.08196334 0.39908875]
In [46]:	<pre>[1.02802813 -0.28906681]] Calculate the coefficient for each stain #Convert pixel intensity to transmittance to absorbance according to Beer-Lambert Law on the IHC image #Calculate the transmittance T_img_ihc = mean_img_background/img_ihc #Because of the logarithmic function in the next step, we assign all transmittance value less than 1 to 1</pre>
In [47]:	<pre>T_img_ihc[T_img_ihc<1] = 1 #Start coding here #Calculate the absorbance OD_img_ihc = np.log10(T_img_ihc) #Coefficient matrix coeffs = np.dot(OD_img_ihc, D)</pre>
	<pre>#Extracting the individual coefficients from the coefficient matrix #Which are essentially the orthogonal representation of the stains of the IHC image coeff_stain1 = coeffs[:,:, 0] coeff_stain2 = coeffs[:,:, 1] #End coding here print(coeff_stain1.shape) print(coeff_stain2.shape)</pre>
	(2107, 3310) (2107, 3310) Separate stains Multiply the coefficients with the stain absorbance to get the image absorbance per stain
	<pre>OD_img_ihc array([[[0.03190678, 0.01929127, 0.</pre>
	[[0.03003884, 0.02110461, 0.], [0.0263269 , 0.01748547, 0.], [0.03945992, 0.02843465, 0.00140478],, [0.01537772, 0.04925449, 0.14339992], [0.00822868, 0.04156766, 0.14100711], [0.00645966, 0.04156766, 0.14580599]], [[0.0263269 , 0.01748547, 0.], [0.03190678, 0.02292555, 0.],
	[0.04328632, 0.03214659, 0.00487915],, [0.02448276, 0.0590584, 0.15556583], [0.01178849, 0.04731999, 0.14822547], [0.00469781, 0.04539407, 0.14822547]],, [[0. , 0. , 0.], [[0. , 0. , 0.],
	[0.
	[0.
In [49]:	<pre>#Initialize the image absorbance container per stain OD_img_ihc_stain1 = np.zeros((img_ihc.shape[0], img_ihc.shape[1], img_ihc.shape[2])) OD_img_ihc_stain2 = np.zeros((img_ihc.shape[0], img_ihc.shape[1], img_ihc.shape[2])) #Start coding here print(OD_img_ihc_stain1.shape) print(coeff_stain1.shape) #Multiply the coefficients with the stain absorbance per stain. Do it independently for each RGB layer""" """for i in range(3): OD_img_ihc_stain1[:, :, i] = OD_img_ihc[:, :, i] * coeff_stain1</pre>
	<pre>OD_img_ihc_stain2[:, :, i] = OD_img_ihc[:, :, i] * coeff_stain2""" OD_img_ihc_stain1 = np.reshape(coeff_stain1, img_ihc_r.shape)[:, :, np.newaxis] * OD_stain1 OD_img_ihc_stain2 = np.reshape(coeff_stain2, img_ihc_r.shape)[:, :, np.newaxis] * OD_stain2 #End coding here (2107, 3310, 3) (2107, 3310) array([[[8.04498575e-03, 5.38548534e-03, 2.32045900e-03],</pre>
	[7.14767914e-03, 4.78480913e-03, 2.06164397e-03], [1.11465026e-02, 7.46170698e-03, 3.21504637e-03], , [-1.54454695e-03, -1.03395273e-03, -4.45502077e-04], [-2.36977500e-03, -1.58637801e-03, -6.83527092e-04], [-1.92726496e-03, -1.29015234e-03, -5.55891516e-04]], [[7.85401468e-03, 5.25764523e-03, 2.26537617e-03], [6.78726220e-03, 4.54353833e-03, 1.95768695e-03], [1.02881028e-02, 6.88707582e-03, 2.96745345e-03],
	1 1.020010200-02, 0.007073020-03, 2.307433430-031,
	[-2.20394502e-03, -1.47536788e-03, -6.35695848e-04], [-4.16172797e-03, -2.78594962e-03, -1.20038983e-03], [-4.83674214e-03, -3.23781852e-03, -1.39508784e-03]], [[6.78726220e-03, 4.54353833e-03, 1.95768695e-03], [8.39080171e-03, 5.61698193e-03, 2.42020457e-03], [1.11465026e-02, 7.46170698e-03, 3.21504637e-03],,
	[-2.20394502e-03, -1.47536788e-03, -6.35695848e-04], [-4.16172797e-03, -2.78594962e-03, -1.20038983e-03], [-4.83674214e-03, -3.23781852e-03, -1.39508784e-03]], [[6.78726220e-03, 4.54353833e-03, 1.95768695e-03], [8.39080171e-03, 5.61698193e-03, 2.42020457e-03], [1.11465026e-02, 7.46170698e-03, 3.21504637e-03],
	[-2.20394502e-03, -1.47536788e-03, -6.35695848e-04], [-4.16172797e-03, -2.78504062e-03, -1.2093893e-03], [-4.83674214e-03, -3.23781852e-03, -1.39508784e-03]], [[6.78726220e-03, 4.5435383a-03, 1.95768695e-03], [8.39080171e-03, 5.61698193e-03, 2.42620457e-03], [1.11465026e-02, 7.46176698e-03, 3.21504637e-03],, [-3.37635932e-04, -2.26020767e-04, -9.73861683e-05], [-3.41910973e-03, -2.2881908e-03, -9.8618982e-04], [-4.98227000e-03, -3.33523798e-03, -1.43766323e-03]],, [[0.00000000e+00, 0.0000000e+00, 0.00000000e+00], [0.00000000e+00, 0.0000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.0000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.000000000e+00, 0.00000000e+00, 0.00000000e+00], [0.000000000e+00, 0.00000000e+00, 0.00000000e+00], [0.000000000e+00, 0.00000000e+00, 0.00000000e+00], [0.000000000e+00, 0.000000000e+00, 0.000000000e+00], [0.000000000e+00, 0.000000000e+00, 0.000000000e+00],
	[-2, 20394502e-03, -1, 47536788e-03, -6, 35695848e-04], [-4, 16172797e-03, -2, 78594962e-03, -1, 20038983e-03], [-4, 63674214e-03, -3, 23781852e-03, -1, 39588784e-03]], [[6, 78726220e-03, 4, 54535383e-03, 2, 47020457e-03], [8, 39080171e-03, 5, 61698193e-03, 2, 42020457e-03], [1, 1, 11465026e-02, 7, 46176698e-03, 3, 21504637e-03], [-3, 37635932e-04, -2, 26020707e-04, -9, 73861683e-05], [-3, 41910073e-03, -2, 28881998e-03, -1, 43706328e-03]], [-4, 98227000e-03, -3, 33523798e-03, -1, 43706328e-03]], [
	[2.2.2934502e-03, -1.4733788e-03, -6.3569548e-04], [4.4.16172797e-03, -2.78304002e-03, -1.2003903a-03], [4.30742e-03, -3.7381850e-03, -1.2003903a-03], [6.5.7872622e-03, 4.5433333a-03, -1.2003903e-03], [8.39808171e-03, 5.1690315e-03, -3.1506978e-03], [1.1146862e-02, 7.4617063e-03, -3.2156437e-03], [-3.4763532e-04, -2.062078re-04, -0.7880185a-08], [-3.4763532e-04, -2.062078re-04, -0.7880185a-08], [-3.4763532e-04], -2.062078re-04, -0.7880185a-08], [-3.4763532e-04], -2.062078re-04, -0.7880185a-08], [-3.4763532e-04], -3.3523798e-03, -3.4570832e-04], [-3.4822780e-03, -3.3523798e-03, -3.4770832e-04], [-3.68008000e-09, 0.08008000e-00], [-0.08008000e-00], [-0.
	[-2.203844024-03, -1.4738788-03, -6.3805648-04], [-4.56177976-03, -2.73584022-03, -1.20056438-04], [-4.56177976-03, -2.73584022-03, -1.20056438-03], [-4.66177976-03, -2.73584022-03, -1.20056438-03], [-5.8752220-03, -3.45433332-03, -1.4756850-03], [-5.8752220-03, -3.454333320-03, -2.2005403-03], [-5.8752200-03, -2.2005400-03, -2.2005403-03], [-5.8752200-03, -2.2005400-03, -3.2006457-03], [-5.8752200-03, -2.2005400-03, -3.2006457-03], [-5.8752000-03, -2.2005400-03, -3.0006000-03], [-5.875200000-03, -3.00000000-03, -3.00000000-03], [-5.8752000000-03, -3.00000000-03, -3.00000000-03], [-5.8752000000-03, -3.00000000-03, -3.00000000-03], [-5.8752000000-03, -3.00000000-03, -3.00000000-03], [-5.8752000000-03, -3.00000000-03, -3.000000000-03], [-5.87520000000-03, -3.00000000-03, -3.000000000-03], [-5.87520000000-03, -3.00000000-03, -3.000000000-03], [-6.87520000000-03, -3.00000000-03, -3.000000000-03], [-7.875200000000-03, -3.00000000-03, -3.0000000000-03], [-7.875200000000-03, -3.00000000-03, -3.00000000000000-03], [-7.875200000000-03, -3.00000000-03, -3.0000000000000000], [-7.87520000000-03, -3.00000000-03, -3.000000000000000], [-7.875200000000-03, -3.000000000-03, -3.0000000000000000000], [-7.87520000000-03, -3.000000000-03, -3.000000000000000000000000000000000000
	[2.3.032344020
	1
	1.000000000000000000000000000000000000
Out[50]: In [51]:	
Out[50]: In [51]:	Controlled Con
Out[50]: In [51]:	Contract
Out[50]: In [51]:	Convertible in registrocardinal in the control of t
Out[50]: In [51]:	Comment
Out[50]: In [51]:	
Out[50]: In [51]: Out[52]:	
Out[50]: In [51]: Out[52]:	
<pre>In [51]: Out[52]:</pre>	Consequence of the control of the co
<pre>In [51]: Out[52]:</pre>	Consequence of the control of the co
Out[50]: In [51]: Out[52]:	Consideration of a constraint
Out[50]: In [51]: Out[52]:	Consideration of a constraint
Out[50]: In [51]: Out[52]:	Construction of Control of Contro
<pre>In [51]: In [52]: In [53]:</pre>	Executive risk and a second of secon
In [51]: In [53]:	Constitution of the control of the c
In [51]: In [53]:	Executive rate in manufacture recommendation in the control of the
<pre>In [52]: In [53]:</pre>	Executive rate in manufacture recommendation in the control of the
<pre>In [51]: In [52]: In [53]:</pre>	Executive rate in manufacture recommendation in the control of the
<pre>In [52]: In [53]:</pre>	Executive risk and a second of secon

Assignment E - Brightfield histology color deconvolution

• Teacher and TAs: Marten Postma, Aaron Lin, Aoming Sun, Catherine Chia

• Use ImageJ to crop and export images: Stain 1, Stain 2, Background, OR

• Use ImageJ to export the RGB vectors for the same images

from matplotlib import pyplot as plt, patches
import numpy as np

• Author: Catherine Chia and Aoming Sun

• Date: 21st June, 2023

Outline of workflow

1. Prerequisites:

2. Preprocessing

4. Separate stains

In [37]: #Libraries

3. Color Deconvolution