# **MAT5007 – Applied Statistical Methods**

## **Embedded Lab** – R Statistical Software

FALL SEMESTER - 2022~2023 L25+L26 SLOT

### **E-RECORD**

Assignment No.: 2

Submitted By
KAMRAN ANSARI

22MCA0223

MCA- I Year SITE



DEPARTMENT OF MATHEMATICS
SCHOOL OF ADVANCED SCIENCES
VELLORE INSTITUTE OF TECHNOLOGY
VELLORE – 632 014
TAMIL NADU
INDIA

Date: 01/12/2022

# **Experiment 1:**

The following table gives the weight (x) (in 1000 lbs.) and highway fuel efficiency (y) (in miles/gallon) for a sample of 13 cars.

| X     | Y                                                                                 |
|-------|-----------------------------------------------------------------------------------|
| 3.545 | 30                                                                                |
| 2.6   | 32                                                                                |
| 3.245 | 30                                                                                |
| 3.93  | 24                                                                                |
| 3.995 | 26                                                                                |
| 3.115 | 30                                                                                |
| 3.235 | 33                                                                                |
| 3.225 | 27                                                                                |
| 2.44  | 37                                                                                |
| 3.24  | 32                                                                                |
| 2.29  | 37                                                                                |
| 2.5   | 34                                                                                |
| 4.02  | 26                                                                                |
|       | 3.545<br>2.6<br>3.245<br>3.995<br>3.115<br>3.235<br>3.225<br>2.44<br>3.24<br>2.29 |

```
> carWeight = c(3.545, 2.6, 3.245, 3.93, 3.995, 3.115, 3.235, 3.225, 2.44, 3.24, 2.29, 2.5, 4.02)
```

<sup>&</sup>gt; carWeight

<sup>&</sup>gt; carWeight = c(3.545, 2.6, 3.245, 3.93, 3.995, 3.115, 3.235, 3.225, 2.44, 3.24, 2.29, 2.5, 4.02)
> carWeight
[1] 3.545 2.600 3.245 3.930 3.995 3.115 3.235 3.225 2.440 3.240 2.290 2.500 4.020

```
> fuelEfficiency = c(30, 32, 30, 24, 26, 30, 33, 27, 37, 32, 37, 34, 26)
> fuelEfficiency
> fuelEfficiency = c(30, 32, 30, 24, 26, 30, 33, 27, 37, 32, 37, 34, 26)
> fuelEfficiency
[1] 30 32 30 24 26 30 33 27 37 32 37 34 26

Karl Pearson's Coefficient of Correlation
> cor(carWeight, fuelEfficiency, method="pearson")
> cor.test(carWeight, fuelEfficiency, method="pearson")

> cor(carWeight, fuelEfficiency, method="pearson")
[1] -0.8977642
> cor.test(carWeight, fuelEfficiency, method="pearson")

Pearson's product-moment correlation
```

data: carWeight and fuelEfficiency
t = -6.7598, df = 11, p-value = 3.116e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9692870 -0.6862219
sample estimates:
 cor
-0.8977642

<u>Interpretation</u>: Since the Karl Pearson's coefficient of correlation is -0.8977642, it means that there is a negative correlation between the Car's weight and Car's fuel efficiency i.e. as car's weight increases the fuel efficiency goes down.

#### Spearman's Rank Correlation Coefficient

```
> cor(carWeight, fuelEfficiency, method="spearman")
> cor.test(carWeight, fuelEfficiency, method="spearman")
```

<u>Interpretation:</u> Since the Spearman's Rank Correlation Coefficient is -0.8488611, it means that there is a negative correlation between the Car's weight and Car's fuel efficiency i.e. as car's weight increases the fuel efficiency goes down.

# **Experiment 2:**

Find the Correlation between below data

| ENJOY | BUY      | READ                   |
|-------|----------|------------------------|
| 4     | 16       | 6                      |
| 15    | 19       | 13                     |
| 1     | 0        | 1                      |
| 11    | 19       | 13                     |
| 13    | 25       | 12                     |
| 19    | 24       | 11                     |
| 6     | 22       | 7                      |
| 10    | 22<br>21 | 8                      |
| 15    | 13       | 12                     |
| 3     | 7        | 4                      |
| 11    | 28       | 15                     |
| 20    | 31       | 14                     |
| 7     | 4        | 7                      |
| 11    | 26       | 14                     |
| 10    | 11       | 9                      |
| 6     | 12       | 9                      |
| 7     | 14       | 7                      |
| 18    | 16       | 7                      |
| 8     | 20       | 10                     |
| 7     | 13       | 6                      |
|       | 12       | 9                      |
| 12    | 23       | 13                     |
| 13    | 22       | 9                      |
| 15    | 19       | 13                     |
| 4     | 12       | 9                      |
| 3     | 10       | 13<br>9<br>5<br>7<br>8 |
| 9     | 7<br>22  | 7                      |
|       | 22       | 8                      |
| 10    | 7        | 8<br>2<br>7            |
| 2     | 0        | 2                      |
| 15    | 16       |                        |
| 1     | 17       | 6                      |

> enjoy = c(4, 15, 1, 11, 13, 19, 6, 10, 15, 3, 11, 20, 7, 11, 10, 6, 7, 18, 8, 2, 7, 12, 13, 15, 4, 3, 9, 7, 10, 2, 15, 1)

> buy = c(16, 19, 0, 19, 25, 24, 22, 21, 13, 7, 28, 31, 4, 26, 11, 12, 14, 16, 20, 13, 12, 23, 22, 19, 12, 10, 7, 22, 7, 0, 16, 17)

> read = c(6, 13, 1, 13, 12, 11, 7, 8, 12, 4, 15, 14, 7, 14, 9, 5, 7, 12, 10, 6, 9, 13, 9, 13, 9, 5, 7, 8, 8, 2, 7, 6)

> enjoy = c(4, 15, 1, 11, 13, 19, 6, 10, 15, 3, 11, 20, 7, 11, 10, 6, 7, 18, 8, 2, 7, 12, 13, 15, 4, 3, 9, 7, 10, 2, 15, 1) > buy = c(16, 19, 0, 19, 25, 24, 22, 21, 13, 7, 28, 31, 4, 26, 11, 12, 14, 16, 20, 13, 12, 23, 22, 19, 12, 10, 7, 22, 7, 0, 16, 17) > read = c(6, 13, 1, 13, 12, 11, 7, 8, 12, 4, 15, 14, 7, 14, 9, 5, 7, 12, 10, 6, 9, 13, 9, 13, 9, 5, 7, 8, 8, 2, 7, 6)

```
> df = data.frame(enjoy, buy, read)
> df
> df = data.frame(enjoy, buy, read)
    enjoy buy read
1
         4
             16
                    6
2
        15
             19
                   13
 3
         1
              0
                    1
4
             19
                   13
        11
5
        13
             25
                   12
6
        19
             24
                   11
7
         6
             22
                    7
8
        10
             21
                    8
9
        15
             13
                   12
10
         3
             7
                    4
11
        11
             28
                   15
12
        20
             31
                   14
13
         7
              4
                    7
14
        11
             26
                   14
15
        10
             11
                    9
                    5
16
             12
         6
17
             14
                    7
18
        18
             16
                   12
19
         8
             20
                   10
         2
20
             13
                    6
21
             12
                    9
22
        12
             23
                   13
23
        13
             22
                    9
                   13
24
        15
             19
25
         4
             12
                    9
                    5
26
         3
             10
                    7
27
         9
             7
                    8
28
         7
             22
                    8
29
        10
              7
                    2
 30
         2
              0
                    7
 31
        15
             16
 32
         1
             17
                    6
```

#### Karl Pearson's Coefficient of Correlation

<u>Interpretation:</u> The above matrix shows the correlations coefficients between the possible pairs of variables. We observe in this that buying a book is positively correlated to both enjoying (0.5936016) and reading (0.7638331) the book but reading more correlated to buying than enjoying.

#### Spearman's Rank Correlation Coefficient

```
> cor(df, method="spearman")
```

<u>Interpretation:</u> The above matrix shows the correlations coefficients between the possible pairs of variables. We observe in this that buying a book is positively correlated to both enjoying (0.5779296) and reading (0.7056140) the book but reading more correlated to buying than enjoying.