- Basic Idea
 - A simplest example: Fibonacci numbers
- Case Study
 - Longest common subsequences
 - 0/1 Knapsack
 - Weighted-interval Scheduling
 - Bellman-Ford
 - Warshall-Floyd
 - Most probable path

Basic Idea

Fibonacci numbers - recursion

```
FibR (n)
{
    if n<2 return n;
    return FibR(n-2)+FibR(n-1)
}</pre>
```

Exponential - Duplicate calls

Fibonacci numbers - iterative

```
Fibl(n)
  int values[n+1];
                         //list to store the results
  values[0] = 0;
                         //former terminal values (now initial)
  values[1] = 1;
  for (i=2; i< n+1; ++i) { //former recursion
    values[i] = values[i-2] + values[i-1]; //former main logic
  return values[n];
```

What is the idea of dyn-programming?

Eliminates duplicate calls by

Changing directions so that iteration can be enabled

Memorizing previously calculated values

Longest Common Subsequences

Problem Statement

- Given 2 strings, find a longest sequence that is a subsequence of both.
 - subsequences are not required to occupy consecutive positions within the original sequences
- AxBxC
- zAzzBzzC
- LCS is ABC

Optimal substructure

• a problem is said to have **optimal substructure** if an optimal solution can be constructed from optimal solutions of its subproblems.

(From wiki: optimal substructure)

Subproblem of LCS

- String
 - Prefix
 - Suffix
 - Arbitrary

- LCS(AxBxC, AyyyyBC) equivalent to
 - LCS(AxBx,AyyyyB) + 1
 - Case 1: Prefix end in the same character
- LCS(AxBx,AyyyyB) equivalent to
 - Longest(LCS(AxBx, Ayyyy), LCS(AXB, AyyyyB))
 - Case2: Prefixs don't have a common end character

Recursion Algorithm

```
LCS_R(s1,s2) {
  i = s1.size()-1; //last index in the first string
  i = s2.size()-1; //last index in the second string
  if (i==0 \text{ or } i==0) \text{ return } 0;
  if (s1[i] == s2[i]) return 1+LCS_R(s1[0..i-1],s2[0..i-1]);
  return longest( LCS_R(s1[0..i-1],s2[0..i]) ,
                     LCS R(s1[0..i],s2[0..i-1]));
```

Duplicate calls

. . .

Iterative Algorithm

Initial

	Ø	a	d	С	b
Ø	Ø	Ø	Ø	Ø	Ø
b	Ø				
a	Ø				
С	Ø				
d	Ø				

```
if ( s1[i] == s2[j] )
   values[i][j] = 1 + values[i-1][j-1]);
else
   values[i][j] = max( values[i-1][j], values[i][j-1] );
```

	Ø	a	d	С	b
Ø	Ø	Ø	Ø	Ø	Ø
b	Ø	Ø	Ø	Ø	1
a	Ø	1	1	1	1
С	Ø	1	1	2	2
d	Ø	1	2	2	2

O(|s1||s2|)

Iterative Algorithm - traceback

	Ø	a	d	С	b
Ø	Ø	Ø	Ø	Ø	Ø
b	Ø	Ø	Ø	Ø	1
a	Ø	\1	←1	1	1
С	Ø	1	1	^2	←2
d	Ø	1	_2	← ↑2	← ↑ 2

0/1 knapsack

Problem Statement

- M is a set of m items with values $\{v_1, v_2, \cdots v_m\}$ and weights $\{w_1, w_2, \cdots w_m\}$
- A bag with maximum weight W
- Load k(k<=m) items into the bag, such that the total weight <= W, and the total value is as large as possible

Example

- 5 items, i.e. m = 5
- With a bag, W = 10
- Values {6 3 5 4 6}
- Weight {2 2 6 5 4}

- Consider the last item
 - Put it into the bag
 - The value of original problem (5 items) turns to 6+optimal(4 items and a bag with weight 10-4 = 6)
 - Not put it into the bag
 - The value of original problem turns to 0+optimal(4 items and a bag with weight 10)

Optimal substructure – 5 items

- For each item, select or not select
- KS(m, W) denotes the original problem
 - the optimal solution of m items and a bag with W.

Considering 5-th item:

• KS(5, 10) =
$$\max \begin{cases} 6 + KS(4,6) & 6 + 9 \\ 0 + KS(4,10) & 0 + 14 \end{cases}$$

Optimal substructure – 4 items

• KS(4, 6) =
$$\max_{\beta} \begin{cases} 4 + KS(3,1) & 4 \neq 0 \\ 0 + KS(3,6) & 0 \neq 9 \end{cases}$$

• KS(4, 10) =
$$\max_{14} \begin{cases} 4 + KS(3,5) & 4+9 \\ 0 + KS(3,10) & 5+14 \end{cases}$$

Considering 4-th item:

V₄: 4

w₄: 5

Optimal substructure – 3 items

•
$$KS(3, 1) = KS(2,1)$$

•
$$KS(3, 5) = KS(2,5)$$

• KS(3,6) =
$$\max_{g} \begin{cases} 5 + KS(2,0) & 5+8 \\ 0 + KS(2,6) & 0+5 \end{cases}$$

• KS(3,10) =
$$\max_{14}$$

$$\begin{cases} 5 + KS(2,4) & 5+9 \\ 0 + KS(2,10) & 0+9 \end{cases}$$

Considering 3-rd item:

v₃: 5 w₃: 6

Optimal substructure – 2 items

•
$$KS(2,0) = KS(1,0)$$

•
$$KS(2,1) = KS(1,1)$$

• KS(2,4) =
$$\max_{e_j} \begin{cases} 3 + KS(1,2) \\ 0 + KS(1,4) \end{cases}$$

• KS(2,5) =
$$\max_{9} \begin{cases} 3 + KS(1,3) \\ 0 + KS(1,5) \end{cases}$$

Considering 2-nd item:

•
$$KS(2,4) = \max_{e_f} \begin{cases} 3 + KS(1,2) \\ 0 + KS(1,4) \end{cases}$$

• $KS(2,5) = \max_{e_f} \begin{cases} 3 + KS(1,4) \\ 0 + KS(1,3) \\ 0 + KS(1,5) \end{cases}$
• $KS(2,6) = \max_{e_f} \begin{cases} 3 + KS(1,4) \\ 0 + KS(1,6) \end{cases}$
• $KS(2,10) = \max_{e_f} \begin{cases} 3 + KS(1,4) \\ 0 + KS(1,8) \\ 0 + KS(1,10) \end{cases}$

Optimal substructure – 1 item

•
$$KS(1,0) = KS(0,0) = 0$$

•
$$KS(1,1) = KS(0,1) = 0$$

• KS(1,2) =
$$\max \begin{cases} 6 + KS(0,0) \\ 0 + KS(0,2) \end{cases} = 6$$

•
$$KS(1,3) = \cdots = 6$$

•
$$KS(1,4) = \cdots = 6$$

•
$$KS(1,5) = \cdots = 6$$

Considering 1-st item:

•
$$KS(1,6) = \cdots = 6$$

•
$$KS(1,8) = \cdots = 6$$

•
$$KS(1,10) = \cdots = 6$$

Optimal substructure

• KS(i, w) =
$$\max$$

$$\begin{cases} value_i + KS(i-1, w-weighti) \\ 0 + KS(i-1, w) \end{cases}$$

W=10 Values {6 3 5 4 6} Weight {2 2 6 5 4}

Data structure

ltem i

W

	0	1	2	3	4	5	6	7	8	9	10
0	V +E	0	nex 10	0	0	0	0	0	0	0	0
1	0	Ö	46								
2	0										
3	0										
4	0						7+1	6		Ma>	
5	0										V 2

if (w >= weight_i) table[i][w] = max(table[i-1][w], table[i-1][w-weight_i] + value_i; O(mw) else table[i][w] = table[i-1][w];

Data structure

Item i

W

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	6	6	6	6	6	6	6	6	6
2	0	0	6	6	9	9	9	9	9	9	9
3	0	0	6	6	9	9	9	9	11	11	14
4	0	0	6	6	9	9	9	10	11	13	14
5	0	0	6	6	9	9	12	12	15	15	15

if ($w \ge weight_i$) table[i][w] = max(table[i-1][w], table[i-1][w-weight_i] + value_i; else table[i][w] = table[i-1][w];

O(mw)

Weighted Interval-scheduling

Problem Statement

- Job j starts at s_j, finishes at f_j, and has weight/value v_j
- Two jobs compatible if they don't overlap
- Goal: find maximum weight subset of mutually compatible jobs

Input: {(3,8), (0,6), (6,10), (4,7), (1,4), (3,5), (8,11), (5,9)}

Example

Input: {(3,8), (0,6), (6,10), (4,7), (1,4), (3,5), (8,11), (5,9)}

Sort it basing on their **finish** time

j	start	finish
1	1	4
2	3	5
3	0	6
4	4	7
5	3	8
6	5	9
7	6	10
8	8	11

Example

j	weight(j)	p(j)
0		
1	3	0
2	1	0
3	6	0
4	5	1
5	1	0
6	2	2
7	4	3
8	2	5

p(j) is the largest index i<j such that job i is compatible with j

Optimal substructure

• For each job, select or not select

$$opt(0) = 0$$

$$opt(j) = \max \begin{cases} weight_j + opt(p(j)) & select \\ opt(j-1) & not select \end{cases}$$

0	1	2	3	4	5	6	7	8
0	3	3	6	8	8	8	10	10

opt[j] = max(opt[j-1], weight[j] + opt[p[j]]);

j	weight(j)	p(j)
0		
1	3	0
2	1	0
3	6	0
4	5	1
5	1	0
6	2	2
7	4	3
8	2	5

Optimal Substructure

Longest common subsequences

Optimal substructure of LCS

Two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$

$$\begin{split} LCS(X,Y) &= LCS(x_1x_2...x_{m-1}\,,\,y_1y_2...\,y_{n-1}) \,+\,1 & \text{if } x_m == \,y_n \\ LCS(X,Y) &= \text{longer}(\,\,LCS(x_1x_2...x_m\,,\,y_1y_2...\,y_{n-1}), \\ LCS(x_1x_2...x_{m-1}\,,\,y_1y_2...\,y_n)) & \text{if } x_m \,!= \,y_n \end{split}$$

Not all problem have optimal substructure. We need to prove it.

What to prove …

Two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$

Suppose
$$Z = LCS(X,Y) = z_1z_2...z_k$$

case 1: if $x_m == y_n$ then $z_k == x_m == y_n$ and $LCS(x_1x_2...x_{m-1}, y_1y_2... y_{n-1}) = z_1z_2... z_{k-1}$ case 2: if $x_m != y_n$ then Z == longer ($LCS(x_1x_2...x_m, y_1y_2... y_{n-1}),$ $LCS(x_1x_2...x_{m-1}, y_1y_2... y_n)$)

What to prove

Two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$

Suppose
$$Z = LCS(X,Y) = z_1z_2...z_k$$

case 1: if $x_m == y_n$ then $z_k == x_m == y_n$ and $LCS(x_1x_2...x_{m-1}, y_1y_2... y_{n-1}) = z_1z_2... z_{k-1}$ case 2: if $x_m != y_n$, $z_k != x_m \rightarrow Z = LCS(x_1x_2...x_{m-1}, y_1y_2... y_n))$ case 3: if $x_m != y_n$, $z_k != y_n \rightarrow Z = LCS(x_1x_2...x_m, y_1y_2... y_{n-1}))$

Prove – case 1

1) if
$$x_m == y_n$$
 $z_k == x_m == y_n$

Contradiction

We assume $z_k != x_m$, then $z_1 z_2 ... z_k x_m$ is the common sequence of X and Y, which is longer than Z, reach the contradiction.

2) LCS(
$$x_1x_2...x_{m-1}$$
, $y_1y_2...y_{n-1}$) = $z_1z_2...z_{k-1}$

Contradiction

We assume there is a W which is also a common sequence of $(x_1x_2...x_{m-1}, y_1y_2...y_{n-1})$, and |W| > k-1

Consider $W+x_m$, is a common sequence longer than k. it contradict with Z is the LCS of X and Y

Prove – case 2

if
$$x_{m \mid =} y_n$$
 and $z_{k \mid =} x_m \rightarrow Z = LCS(x_1x_2...xm_{-1}, y_1y_2...yn)$

Contradiction

again we assume there is another W which is also a common sequence of $(x_1x_2...x_{m-1}, y_1y_2... y_n)$, and |W| > k,

then W is also a common sequence of X and Y, it contradict with Z is the LCS of X and Y

Proof of case 3 is similar to case 2

problem without optimal substructure

Longest path from A to C: A-E-D-C

According to optimal substructure:

$$A-E-D-C == (A-E-D + D-C)$$

And A-E-D should be the longest path from A to D

But

The longest path form A to D is: A-B-C-D

So this is a problem has no optimal substructure

Bellman-ford

For computing shortest paths from a single source vertex to all of the other vertices in a weighted directed graph with positive or negative weights.

Example – ini

A directed graph with 5 vertices

Source: A

(B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example – first iteration

Suppose the edge (u,v) processing sequence is: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D) if (d[u] + w(u,v) < d[v]) d[v] = d[u] + w(u,v);

Example – second iteration

Suppose the edge processing sequence is: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

```
if (d[u] + w(u,v) < d[v]) d[v] = d[u] + w(u,v);
```

Example – · · Detect negative cycles

negative cycle,

Suppose the edge processing sequence is: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

```
if (d[u] + w(u,v) < d[v]) d[v] = d[u] + w(u,v);
```

Bellman-ford Algorithm

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i \leftarrow 1 to |V[G]| - 1

3 do for each edge (u, v) \in E[G]

4 do RELAX(u, v, w)

5 for each edge (u, v) \in E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE
```

O(|V||E|)

Optimal substructure

```
1-st iteration: from u to v through at most 0 vertex
```

2-nd iteration: from u to v through at most 1 vertex

. . .

n-1 th iteration: from u to v through at most n-2 vertices

$$d[v] = \min(d[v], d[u] + w(u,v))$$

Floyd-Warshall

For finding shortest paths between *all* pairs of vertices in a weighted graph with positive or negative edge weights (but with no negative cycles)

Optimal substructure

- $C_k[i][j]$: the minimum cost of a directed path from i to j WHICH does not use nodes with indices higher than k
- $C_0[1][3]$: ∞
- *C*₄[1][3]: 28
- The shortest path from 1 to 3 is $C_{10}[1][3]$
- $C_k[i][j] = \min(C_{k-1}[i][j], C_{k-1}[i][k] + C_{k-1}[k][j])$

K=0

	1	2	3	4
1	0	6	ω	3
2	5	0	1	ω
3	3	ω	0	2
4	8	2	ω	0

	1	2	3	4
1				
2				
3				
4				

K=0

	1	2	3	4
1	0	6	ω	3
2	5	0	1	∞
3	3	ω	0	2
4	8	2	∞	0

	1	2	3	4
1	0	6	∞	3
2	5	0	1	8
3	3	9	0	2
4	8	2	∞	0

K=1

	1	2	3	4
1	0	6	ω	3
2	5	0	1	8
3	3	9	0	2
4	8	2	∞	0

	1	2	3	4
1				
2				
3				
4				

K=1

	1	2	3	4
1	0	6	ω	3
2	5	0	1	8
3	3	9	0	2
4	8	2	ω	0

	1	2	3	4
1	0	6	7	3
2	5	0	1	8
3	3	9	0	2
4	7	2	3	0

K=2

	1	2	3	4
1	0	6	7	3
2	5	0	1	8
3	3	9	0	2
4	7	2	3	0

	1	2	3	4
1				
2				
3				
4				

K=2

	1	2	3	4
1	0	6	7	3
2	5	0	1	8
3	3	9	0	2
4	7	2	3	0

	1	2	3	4
1	0	6	7	3
2	4	0	1	3
3	3	9	0	2
4	6	2	3	0

K=3

	1	2	3	4
1	0	6	7	3
2	4	0	1	3
3	3	9	0	2
4	6	2	3	0

	1	2	3	4
1				
2				
3				
4				

	1	2	3	4
1	0	6	7	3
2	4	0	1	3
3	3	9	0	2
4	6	2	3	0

	1	2	3	4
1	0	5	6	3
2	4	0	1	3
3	3	4	0	2
4	6	2	3	0

Algorithm

```
for (k=0; k< n; k++)
     for (i=0; i<n; i++)</pre>
           for (j=0; j<n; j++)</pre>
                   if(A[i][j] > (A[i][k] + A[k][j]))
                         A[i][j]=A[i][k]+A[k][j];
                         path[i][j]=k;
```

	1	2	3	4
1				
2				
3				
4				

 $O(n^3)$

Detect Negative Cycle

```
A \xrightarrow{\Gamma} B
A \xrightarrow{\Gamma} C
```

```
// If distance of any verex from itself
// becomes negative, then there is a negative
// weight cycle.
for (int i = 0; i < V; i++)
    if (dist[i][i] < 0)
        return true;
return false;</pre>
```

	Α	В	С	D
А				
В				
С				
D				

Most probable path [optional]

Viterbi

Problem Statement

Find path that has the highest success probability

	A1	B1	C1
Left	1/2	1/3	1/4

Jumping layer from 4 to the right bank is always 1

	A2	B2	C2
A1	1/4	1/5	1/4
B1	1/3	1/4	1/2
C1	1	1/2	1/2

	A3	В3	C 3
A2	1/2	1/4	1/2
B2	1/2	1/3	1/2
C2	1/2	1/3	2/3

	A4	B4	C4
A3	1/3	1/3	1/4
В3	1/2	2/3	1
C3	1/3	1/3	1/5

	A1	B1	C1
Left	1/2	1/3	1/4

	A2	B2	C2
A1	1/4	1/5	1/4
B1	1/3	1/4	1/2
C1	1	1/2	1/2

	A3	В3	C3
A2	1/2	1/4	1/2
B2	1/2	1/3	1/2
C2	1/2	1/3	2/3

	A4	B4	C4
A3	1/3	1/3	1/4
В3	1/2	2/3	1
C3	1/3	1/3	1/5

Jumping layer from 4 to the right bank is always 1

Optimal subproblem

```
• 4→right bank: best= max (MPP(A4) * P(A4,right bank),
```

MPP(B4) * P(B4,right bank),

MPP(C4) * P(C4, right bank))

• Best⁽ⁱ⁻¹⁾ = maxarg α (MPP(α) * P(α ,C_i))

Application of Viterbi Alg.

Day1	Day2	Day3
Walk	Shop	Clean

The question is:

What is the most likely weather for the three days?

