A goodness-of-fit metric for integrated step-selection analyses

Brian J. Smith¹, Johannes Signer², John Fieberg³, Tal Avgar¹

¹Department of Wildland Resources & Ecology Center, Utah State University, USA ²Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Germany ³Department of Fisheries, Wildlife, Conservation Biology, University of Minnesota, USA

What is iSSA?

- Parameterizes discrete-time biased correlated random walk (BCRW) [1]
- Habitat selection & movement processes
- Conditional logistic regression: used vs available steps

The Problem

iSSA uses conditional logistic regression as a fitting "trick" to approximate the underlying model. Model evaluation should be based on the model of interest, not the conditional logistic regression.

Approach

Use simulation to compare the performance of 3 different types of metrics under various selection strengths and model formulas:

- 1. Simulate habitat
- 2. Simulate movement data with 4 different selection strengths (β)
- 3. Fit iSSA with 5 different model formulas
- 4. Calculate fit metrics
- 5. Compare

Simulated Habitat

Results

Conclusions

All metrics except RSS v Top rank models in terms of correctness

Only the occurrence distribution metrics decrease with selection strength

> OOS-C performs well and is relatively computationally efficient.

Simulated Data

Model Formulas

Most Computational

Intensity

Full: ~ forage + pred + cover + dist_to_cent Rdcd1: ~ forage + pred + dist_to_cent Rdcd2: ~ forage + dist_to_cent

Rdcd3: ~ dist_to_cent

Wrong: ~ sham

Least Computational Intensity

Conditional Logistic Regression Metrics

Typical metrics in the CLR literature

Concordance (Concord)

Generalization of ROC AUC to stratified models

Measure of Explained Randomness (MER)

Cox-Snell pseudo-R² N is total of only used steps

Metrics

Resampled Available Step Metrics

Numerically approximate redistribution kernel

Out-of-Sample Concordance (OOS-C)

Rank all steps in a stratum using fitted model risk prediction Divide rank of used step by total steps per stratum Take average across all strata

RSS vs Top Step (RSS v Top)

Calculate ratio of risk prediction for used step/top ranked step How many times more likely the model is to select the top step over the used step

Occurrence Distribution Metrics

Compare emergent distribution for observed vs simulated

Bhattacharyya's Affinity (ODBA)

Calculate occurrence distribution for observed data [2] Simulate tracks under fitted model and calculate occurrence distribution for simulated data [3] Compare using BA [4]

Spearman's R (ODR)

Calculate occurrence distribution for observed data [2] Simulate tracks under fitted model and calculate occurrence distribution for simulated data [3] Compare using Spearman's R

Acknowledgements

Support for travel was provided to BJS by the Utah State University Graduate

More Information

Literature Cited

- 1. Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619-630 (2016).
- 2. Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. *Ecology* **97**, 576–582 (2016).
- 3. Schlägel, U. E. et al. Estimating interactions between individuals from concurrent animal movements. Methods Ecol. Evol. 10, 1234–1245 (2019).
- 4. Potts, J. R., Börger, L., Strickland, B. K. & Street, G. M. Assessing the predictive power of step selection functions: how social and environmental interactions affect animal space use. Methods Ecol. Evol. 1–39 (2022) doi:10.1111/2041-210x.13904.