AUT202 - Automatique : dynamique et contrôle des systèmes

NICOLAS PETIT

Centre Automatique et Systèmes MINES Paris, PSL University nicolas.petit@minesparis.psl.eu

Mercredi 26 janvier 2022 Amphi 2

http://cas.ensmp.fr/~petit/

Plan de l'amphi 2

- Systèmes dynamiques
- Propriétés des solutions
- Stabilité
- 4 Étude locale par le linéarisé tangent
- Moyennisation

Équations différentielles du premier ordre

$$\frac{d}{dt}x_1 = v_1(x_1, ..., x_n, u_1, ..., u_m, t)$$

$$\frac{d}{dt}x_2 = v_2(x_1, ..., x_n, u_1, ..., u_m, t)$$

$$\vdots$$

$$\frac{d}{dt}x_n = v_n(x_1, ..., x_n, u_1, ..., u_m, t)$$

forme d'état, $x = (x_1, ..., x_n)^T$: état, $u = (u_1, ..., u_m)^T$: entrée

$$\frac{d}{dt}x = v(x, u, t)$$

$$y = (y_1, ..., y_q)^T$$
 sortie

$$v = h(x, u, t)$$

Avec feedback

$$u = k(t, x)$$
, ou $u = k(t, y)$

Système libre (instationnaire ou stationnaire)

$$\frac{d}{dt}x = v(x,t), \quad \frac{d}{dt}x = v(x)$$

Système linéaire

$$\frac{d}{dt}x = A(t)x + B(t)u$$

$$y = C(t)x + D(t)u$$

$$u = K(t)x$$

$$\frac{d}{dt}x = (A(t) + B(t)K(t))x$$

Existence et unicité des solutions

Problème de Cauchy

$$\frac{d}{dt}x(t)=v(x(t),t), \quad x(0)=x^0$$

Propriétés importantes

- existence
- unicité
- **o** dépendance continue par rapport à x^0

Existence et unicité

Fonction Lipschitz

Une fonction scalaire $(x,t) \in \mathbb{R}^n \times \mathbb{R} \to v(x,t) \in \mathbb{R}^n$ est Lipschitz en x avec la constante k > 0 si

$$||v(x_1,t)-v(x_2,t)|| \leq k||x_1-x_2||$$

pour tout (x_1, x_2, t)

Existence et unicité *Théorème de Cauchy-Lipschitz*

Soit v(x,t) continue et Lipschitz en x dans la région $R = \{|x-x^0| \le b, |t| \le a\}$. Soit M la borne supérieure de $\|v\|$ sur R. Il existe une unique solution x(t) au problème de Cauchy définie sur l'intervalle $|t| \le \min(a, \frac{b}{M})$

Propriétés avancées

Existence pour tout temps

Si pour tout $x \in \mathbb{R}^n$,

$$||v(x,t)|| \leq M_0(t) + M_1(t)||x||$$

avec $M_0>0$, $M_1>0$ localement intégrables alors la solution (unique) au problème de Cauchy est définie pour $t\in]-\infty,+\infty[$

Propriétés avancées (suite)

Dépendance en la condition initiale

Si $\frac{\partial v}{\partial x_i}$ continues par rapport à x et t, alors la solution du problème de Cauchy est continûment différentiable par rapport à x^0

Stabilité

 \bar{x} est point d'équilibre de $\dot{x} = v(x, t)$, si $v(\bar{x}, t) = 0$ (pour tout t)

Stabilité

L'équilibre $\bar{x} \in \mathbb{R}^n$ est stable si et seulement si $\forall \epsilon > 0, \, \exists \eta > 0$ tel $\forall x^0, \, \|x^0 - \bar{x}\| \leq \eta$, la solution de $\frac{d}{dt}x = v(x,t)$ issue de x^0 à t=0 vérifie

$$||x(t) - \bar{x}|| \le \epsilon, \quad \forall t \ge 0$$

Stabilité asymptotique

L'équilibre $\bar{x} \in \mathbb{R}^n$ est asymptotiquement stable s'il est stable et si, de plus, $\exists \eta > 0$ tel que

$$||x^0 - \bar{x}|| \le \eta$$
, implique $x(t) \longrightarrow \bar{x}$

lorsque $t \longrightarrow +\infty$

Exemple

Pendule amorti ou non amorti

$$\frac{d^2}{dt^2}x + k\frac{d}{dt}x + \frac{g}{R}\sin x = 0$$

 \bar{x} asympt. stable

Portrait de phases d'un système non linéaire

Exemple de plan de phases

$$\frac{d}{dt}x_1 = -a_1x_1 - x_2x_1 + a_2 \frac{d}{dt}x_2 = -x_2 + x_1^2$$

Multiplicité des points d'équilibre, comportement divers autour de ces points

Trajectoires, plan de phase, portrait de phase Multiplicité des points d'équilibre, comportement divers autour de ces points

Étude locale par le linéarisé tangent

Linéarisé tangent

Autour de \bar{x} , le développement au premier ordre d'un système non linéaire stationnaire $\frac{d}{dt}x = v(x)$ donne

$$\frac{d}{dt}x = Ax(t) \triangleq \left(\left(\frac{\partial v_i}{\partial x_j}\right)_{1 \leq i, j \leq n}\right) x(t)$$

A matrice $n \times n$

Solution du système linéaire

$$x(t) = \exp(tA)x^0$$

Exponentielle de matrice

$$\exp(tA) = \left[I + tA + \frac{t^2}{2!}A^2 + \ldots + \frac{t^k}{k!}A^k + \ldots\right]$$

Stabilité asymptotique

L'équilibre 0 est asymptotiquement stable pour $\frac{d}{dt}x = Ax(t)$ si et seulement si toutes les valeurs propres de A sont à partie réelle strictement négative

Cas diagonalisable

$$A = T^{-1}DT$$

$$A^{n} = T^{-1}D^{n}T, \quad \exp(tA) = T^{-1}\exp(tD)T$$

$$\exp(tD) = \begin{pmatrix} \exp(t\lambda_{1}) & 0 \\ \exp(t\lambda_{2}) & \\ & \ddots & \\ 0 & \exp(t\lambda_{n}) \end{pmatrix}$$

Cas général par réduction de Jordan

Portraits de phases en dimension 2

Portraits de phases en dimension 2

Portraits de phases en dimension 3

Polynôme caractéristique

Table de Routh

Soit

$$P(s) = a_0 + a_1 s + ... + a_n s^n$$

Soit la table de Routh définie à partir de ces deux premières lignes par

Critère de Routh (suite)

$$b_{n-1} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}, \quad b_{n-3} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix},$$

$$c_{n-1} = -\frac{1}{b_{n-1}} \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-1} & b_{n-3} \end{vmatrix} \dots$$

Le polynôme P(s) n'a que des racines à partie réelle strictement négative (polynôme Hurwitz) si et seulement si il n'y a pas de changement de signe dans la première colonne de la table de Routh.

Conclusions sur le système non linéaire

Point d'équilibre hyperbolique

L'équilibre \bar{x} est hyperbolique pour $\frac{d}{dt}x = v(x)$ si le Jacobien

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}}(\bar{\mathbf{x}}) = \left(\frac{\partial \mathbf{v}_i}{\partial \mathbf{x}_j}\right)_{1 \le i, j \le n}$$

a toutes ses valeurs propres à partie réelle non nulle

Première méthode le Lyapounov

Le point d'équilibre \bar{x} de $\frac{d}{dt}x = v(x)$ est <u>localement</u> asymptotiquement stable si les valeurs propres de la matrice Jacobienne en \bar{x} sont toutes à partie réelle strictement négative.

Le point d'équilibre \bar{x} est instable si au moins l'une des valeurs propres de la matrice Jacobienne $\frac{\partial v}{\partial x}(\bar{x})$ est à partie réelle strictement positive

Théorème (Critère de Bendixon)

Soit

$$\mathbb{R}^2 \ni x \mapsto v(x) \in \mathbb{R}^2$$

une fonction continue et dérivable. On suppose que

$$div(v)(x) = \frac{\partial v_1}{\partial x_1}(x) + \frac{\partial v_2}{\partial x_2}(x) < 0$$

pour presque tout $x \in \mathbb{R}^2$.

Soit $t \mapsto x(t)$ une solution de $\frac{d}{dt}x = v(x)$ qui reste bornée pour les temps t positifs. Alors, sa limite quand t tend vers $+\infty$ est un point d'équilibre, i.e., une solution $\bar{x} \in \mathbb{R}^2$ de $v(\bar{x}) = 0$.

Théorème (existence d'orbite périodique)

Soit $\mathbb{R}^2 \ni x = v(x) \in \mathbb{R}^2$ une fonction de classe C^1 . On considère le système dynamique $\dot{x} = v(x)$. On suppose qu'il existe dans le plan un ensemble compact Ω tel que

- toute trajectoire ayant sa condition initiale dans Ω reste dans Ω pour les temps t > 0.
- soit Ω ne contient aucun point d'équilibre , soit Ω contient un unique point d'équilibre dont toutes les valeurs propres sont à parties réelles strictement positives.

alors Ω contient une orbite périodique.

Oscillations (cycle limite) en tête de production, TOTAL

Boucle slugging, source IFPEN

Le pendule de Kapitza

P. L. Kapitza, "Dynamic stability of a pendulum when its point of suspension vibrates", Soviet Phys. JETP 21, 588–592 (1951);

Équations du mouvement

 $(m=1, \ell=1)$, équations

$$\frac{d^2}{dt^2}\theta = \left[g + d\omega^2\cos(\omega t)\right]\sin\theta$$

obtenues par méthode Lagrangienne. Le couple apparent découle du déplacement vertical (d'amplitude *d*) du point d'accroche.

Le pendule est instable ($\omega=0$) en boucle ouverte au voisinage de $\theta=0$.

Théorème de moyennisation

$$\frac{d^2}{dt^2}x = a(t,\epsilon)f(x)$$

avec $a(t,\epsilon)$, de période $0(\epsilon) << 1$ signal périodique oscillant rapidement est approché par

$$\frac{d^2}{dt^2}x^0 = \langle a\rangle f(x^0) - \langle v^2\rangle f'(x^0)f(x^0)$$

$$x = x^0 + \circ(\epsilon)$$
 avec $\langle a \rangle$ moyenne de a , $v(t) = \int_0^t (a - \langle a \rangle) dt$

$$\begin{cases} \frac{d^2}{dt^2}x = a(t,\epsilon)f(x), & f(x) = \sin(x) \\ \frac{d^2}{dt^2}x^0 = \langle a\rangle f(x^0) - \langle v^2\rangle f'(x^0)f(x^0) \end{cases}$$

détails des calculs

$$\begin{array}{ll} a(t,\epsilon) = g + d/\epsilon^2 \cos(\frac{t}{\epsilon}), & \langle a \rangle = g \\ v(t) = \int_0^t (g + d/\epsilon^2 \cos(\frac{t}{\epsilon}) - g) dt = d/\epsilon \sin(\frac{t}{\epsilon}), & \langle v^2 \rangle = \frac{d^2}{2\epsilon^2} \end{array}$$

Le système moyen est donc

$$\frac{d^2}{dt^2}x^0 = g\sin(x^0) - \frac{d^2}{2\epsilon^2}\cos x^0 \sin x^0$$

$$\frac{d^2}{dt^2}x^0 = -\frac{d}{dx^0}\left(\underbrace{g\cos x^0 + \frac{d^2}{4\epsilon^2}\sin^2 x^0}_{\text{potential effectif}}\right)$$

Le potentiel a un minimum local en 0 (stable asympt.).

Extension: Paul's trap

Pièges à ions de Paul (champ électrique quadripolaire haute fréquence MHz): stocker des particules chargées pendant une longue durée

Résumé

• Systèmes dynamiques: $\frac{d}{dt}x = v(x)$

Propriétés des solutions: existence et unicité

Stabilité et stabilité asymptotique

Étude locale par le linéarisé tangent: Jacobienne et valeurs propres, point hyperbolique