In [3]: #import libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns #loading the data df = pd.read_csv('data.csv') df.head(7)Out[3]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean con-842302 0 М 17.99 10.38 122.80 1001.0 0.11840 0.27760 842517 20.57 17.77 132.90 1326.0 0.08474 0.07864 **2** 84300903 19.69 21.25 130.00 1203.0 0.10960 0.15990 M **3** 84348301 386.1 0.14250 0.28390 11.42 20.38 77.58 **4** 84358402 20.29 14.34 135.10 1297.0 0.10030 0.13280 843786 М 12.45 15.70 82.57 477.1 0.12780 0.17000 844359 M 18.25 19.98 119.60 1040.0 0.09463 0.10900 7 rows × 33 columns In [4]: #Counting number of rows and columns in the dataset df.shape Out[4]: (569, 33) In [5]: #Count the number of empty values(NaN) in each column df.isna().sum() Out[5]: id 0 0 diagnosis 0 radius_mean texture_mean perimeter_mean 0 area_mean 0 smoothness_mean compactness_mean concavity_mean 0 concave points_mean 0 symmetry_mean fractal_dimension_mean radius_se texture_se 0 perimeter_se 0 area_se 0 smoothness_se 0 0 compactness_se concavity_se concave points_se symmetry_se 0 fractal_dimension_se 0 radius_worst 0 texture_worst 0 perimeter_worst 0 0 area_worst 0 smoothness_worst compactness_worst concavity_worst 0 concave points_worst 0 symmetry_worst 0 fractal_dimension_worst 0 Unnamed: 32 569 dtype: int64 In [6]: #Drop the column with all missing values df = df.dropna(axis=1) #Get the new count of number of rows and columns df.shape Out[6]: (569, 32) In [8]: #Get a count of number of Malignant(M) or Benign(B) cells df['diagnosis'].value_counts() Out[8]: B 357 212 Name: diagnosis, dtype: int64 In [9]: #Visualize the count sns.countplot(df['diagnosis'],label = 'count') Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x24c4c3c1a88> 350 300 250 달 200 150 100 50 В diagnosis In [10]: #Look at the datatypes to see which columns need to be encoded df.dtypes Out[10]: id int64 diagnosis object radius_mean float64 texture_mean float64 perimeter_mean float64 area_mean float64 float64 smoothness_mean compactness_mean float64 concavity_mean float64 concave points_mean float64 float64 symmetry_mean fractal_dimension_mean float64 radius_se float64 texture_se float64 float64 perimeter_se float64 area_se smoothness_se float64 compactness_se float64 concavity_se float64 concave points_se float64 symmetry_se float64 float64 fractal_dimension_se radius_worst float64 float64 texture_worst perimeter_worst float64 float64 area_worst float64 smoothness_worst compactness_worst float64 concavity_worst float64 float64 concave points_worst symmetry_worst float64 fractal_dimension_worst float64 dtype: object In [11]: #Encode the categorical data values from sklearn.preprocessing import LabelEncoder labelencoder_Y = LabelEncoder() labelencoder_Y.fit_transform(df.iloc[:,1].values) df.iloc[:,1] = labelencoder_Y.fit_transform(df.iloc[:,1].values) df.iloc[:,1] Out[11]: 0 1 1 3 564 565 566 567 Name: diagnosis, Length: 569, dtype: int32 In [12]: #Create a pairplot using seaborn sns.pairplot(df.iloc[:,1:6], hue = 'diagnosis') Out[12]: <seaborn.axisgrid.PairGrid at 0x24c4c5c4808> 25 20 15 10 40 35 30 25 20 15 10 diagnosis • 0 175 듄 150 125 100 75 50 2500 2000 1500 g 1000 500 200 texture_mean area_mean radius_mean perimeter_mean In [13]: #Printing the first 5 rows of new data df.head(5)Out[13]: id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean con-842302 17.99 122.80 1001.0 0.11840 0.27760 1 842517 20.57 132.90 1326.0 0.08474 0.07864 1 17.77 **2** 84300903 19.69 21.25 130.00 1203.0 0.10960 0.15990 **3** 84348301 1 11.42 20.38 77.58 386.1 0.14250 0.28390 0.10030 0.13280 **4** 84358402 20.29 14.34 135.10 1297.0 5 rows × 32 columns In [14]: #Get the correlation of columns df.iloc[:,1:12].corr() Out[14]: diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_ 0.5 diagnosis 1.000000 0.730029 0.415185 0.742636 0.708984 0.358560 0.730029 1.000000 0.323782 0.997855 0.987357 0.170581 radius_mean 0.5 texture_mean 0.415185 0.323782 1.000000 0.329533 0.321086 -0.023389 0.2 0.742636 0.997855 0.329533 1.000000 0.986507 0.207278 0.5 perimeter_mean 1.000000 area_mean 0.708984 0.987357 0.321086 0.986507 0.177028 0.4 0.358560 0.170581 -0.023389 0.207278 0.177028 1.000000 0.6 smoothness_mean 0.659123 compactness_mean 0.596534 0.506124 0.236702 0.556936 0.498502 1.0 0.696360 0.676764 0.302418 0.716136 0.685983 0.521984 8.0 concavity_mean concave points_mean 0.822529 0.293464 0.553695 0.776614 0.850977 0.823269 0.8 0.330499 0.147741 0.071401 0.183027 0.151293 0.557775 symmetry_mean 0.6 -0.311631 -0.283110 fractal_dimension_mean -0.012838 -0.076437 -0.261477 0.584792 0.5 In [32]: #Visualize the correlation plt.figure(figsize=(8,8)) sns.heatmap(df.iloc[:,1:12].corr(), annot = True) Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x1b80ca3ba88> - 1.0 diagnosis - 1 1 0.99 0.17 0.51 0.68 0.82 0.15 -0.31 radius_mean - 0.73 - 0.8 texture mean - 0.42 0.32 0.33 0.32 -0.023 0.24 0.3 0.29 0.071 -0.076 - 0.6 0.33 1 0.99 0.21 0.56 0.72 0.85 0.18 -0.26 perimeter mean - 0.74 1 0.18 0.5 0.69 0.82 0.15 -0.28 area_mean - 0.71 0.99 0.32 0.99 1 - 0.4 smoothness mean - 0.36 0.17 -0.023 0.21 0.18 0.66 0.52 0.55 0.56 0.58 0.6 0.51 0.24 0.56 0.5 0.66 1 0.88 0.83 compactness_mean -- 0.2 0.3 0.72 0.69 0.52 0.88 1 0.92 0.5 0.34 - 0.0 symmetry mean - 0.33 0.15 0.071 0.18 0.15 0.56 0.6 0.5 0.46 -0.2 fractal dimension mean -0.013 -0.31 -0.076 -0.26 -0.28 0.58 0.57 0.34 0.17 0.48 In [15]: #Split the dataset into independent(X) and dependent(Y) datasets X = df.iloc[:,2:31].valuesY = df.iloc[:,1].values In [17]: #Split the dataset into 75% training and 25% testing from sklearn.model_selection import train_test_split X_train ,X_test ,Y_train ,Y_test = train_test_split(X ,Y ,test_size = 0.25 ,random_state = 0 In [18]: #Scale the data (Feature Scaling) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.fit_transform(X_test)

In [19]: #Create a function for models

#Decision Tree

return log, tree

In [20]: #Getting all models

def models(X_train, Y_train):

#Logistic Regression

log.fit(X_train, Y_train)

tree.fit(X_train,Y_train)

model = models(X_train , Y_train)

[1]Decisiontree Classifier Accuracy: 1.0

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

#Print the models accuracy on training data

[0]Logistic Regression Accuracy: 0.9906103286384976

tree = DecisionTreeClassifier(criterion = 'entropy' , random_state = 0)

print('[0]Logistic Regression Accuracy:',log.score(X_train ,Y_train))
print('[1]Decisiontree Classifier Accuracy:',tree.score(X_train ,Y_train))

log = LogisticRegression(random_state = 0)