

Defendr: A Robust Model for Image Classification

Apoorva Dornadula, Ashwini Pokle, Akhila Yerukola

Motivation/Problem Statement

Motivation: Numerous computer vision applications, such as self driving cars, are susceptible to being fooled by adversarial images.

Problem Statement: create a robust model that is able to correctly classify adversarial examples without compromising performance on normal images.

Dataset/Preprocessing

- We used a subset of ImageNet with 201 classes
- 10854 images in the training set, 1206 in validation set and 2010 in test set
- All images were reshaped to 299x299, with the mean subtracted from all three channels.
- The red, green, and blue channels are normalized to have mean 0.485, 0.456, 0.406 and standard deviation 0.229, 0.224, 0.225, respectively
- Data set was augmented with adversarial images generated by using FGSM and PGD

(a) Original Image, (b) Original Image after Normalization, (c) FGSM w/ ϵ = 0.12, (d) FGSM w/ ϵ = 0.3, (e) PGD w/ ϵ = 0.12, (f) PGD w/ ϵ = 0.3

Xie et. al. shows that resizing and zero-padding the image during inference increases model robustness to adversarial examples

Methods

Denoising U-Net (DUNET)

- Uses L1 loss between the original image and denoised image
- Denoised image is input to a ResNet-101

Adversarial Logit Pairing (ALP) & Clean Logit Pairing (CLP)

$$J(M,\theta) + \lambda \frac{1}{m} \sum_{i=1}^{m} L(f(x(i);\theta)f(\tilde{x}^{(i)},\theta))$$

$$J(M,\theta) + \lambda \frac{2}{m} \sum_{i=1}^{m/2} L(f(x(i);\theta)f(x(i+\frac{m}{2}),\theta))$$

- Top: Loss function for ALP encourages logits between normal and corresponding adv. Image to be similar
- Bottom: Loss function for CLP encourages logits of normal images in a batch to be similar

Experiments/Results

Single Architecture Performance (Adv. Ex: FGSM with ϵ = 0.12)					
		No Adv. Ex.	50% Adv. Ex.	100% Adv. Ex.	
BASELINE	No Adv. Train	90.70	78.46	66.22	
	Adv. Train	90.40	80.70	70.00	
CLP	No Adv. Train	90.85	78.66	66.47	
	Adv. Train	-	-	-	
ALP	No Adv. Train	-	-	-	
	Adv. Train	90.75	80.65	70.55	
DUNET	No Adv. Train	-	-	-	
	Adv. Train	92.4	-	86.6	
RANDOMIZATION	No Adv. Train	85.92	75.55	65.82	
	Adv. Train	85.47	76.69	68.01	

Table 1: Effects of Adversarial Training on Single Model Architectures

Attack Effectiveness (Tested on 100% Adv. Ex.)						
	$FGSM(\epsilon = 0.12)$	$FGSM(\epsilon = 0.3)$	$PGD(\epsilon=0.12)$	$PGD(\epsilon = 0.3)$		
BASELINE	70.00	47.81	80.00	63.88		
ALP	70.55	48.91	80.95	62.64		
DUNET	86.6	72.5	85.8	79.0		

Table 2: Attack Type Effectiveness

Experiments/Results (cont'd)

- Models trained on FGSM are more robust to other attacks compared to those trained on PGD.
- Ensemble of DUNET, ALP and CLP performs the best among ensembles and achieves accuracy of 84.86%.
- DUNET outperforms all other models.

Model Robustness					
Tested 100% Adversarial Examples					
	FGSM	PGD			
Baseline FGSM (0.12)	71	80			
Baseline PGD (0.12)	69.35	81			
ALP FGSM (0.12)	69.35	79.40			
DUNET FGSM (0.12)	86.6	82.9			
DUNET FGSM (0.3)	72.5	68.0			
DUNET PGD (0.12)	70.9	85.8			
DUNET PGD (0.3)	49.7	79.0			

Model Ensemble Accuracy				
	Accuracy			
ALP + CLP	66.22			
DUNET + CLP	77.71			
DUNET + ALP	77.71			
DUNET + ALP + CLP	84.86			

- For the most part, class predictions for normal images match to those of the adversarial class
- The bottom right square of noise is present because those labels correspond to dog types which can be easily confused.

Left: dog of breed 1 image, Middle: class activations on original dog breed 1 image, Right: class activations on perturbed dog image; prediction: dog of breed 2

Future Work

- Ensemble adversarial training to decouple generation of adversarial examples from the model being trained. This will further improve the robustness of model against black-box attacks.
- Include techniques to make the model robust against white-attacks.

References

[1] Liao, Fangzhou, et al. "Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser." arXiv preprint arXiv:1712.02976

[2] Kannan, Harini, Alexey Kurakin, and Ian Goodfellow. "Adversarial Logit Pairing." arXiv preprint arXiv:1803.06373(2018). [3] Xie, Cihang, et al. "Mitigating adversarial effects through randomization." arXiv preprint arXiv:1711.01991 (2017).