Mathématiques Préparatoires II

Les charmes enchanteurs de cette sublime science ne se décèlent dans toute leur beauté qu'à ceux qui ont le courage de l'approfondir

> Carl Friedrich Gauss Quelques années plus tôt

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Merci à Kellian pour les heures de discussion et pour sa relecture attentive.

Merci à mes professeurs Laurent Germa et Jean-François Mallordy pour leur enseignement et leur soutient.

mile and

Chapitres

1	Suites et séries	5
2	Limites et continuité	19
3	Dérivation et intégration	39
4	Suites de fonctions	51
5	Intégrales généralisées	59

Chapitre 1

Suites et séries

On considèrera comme acquis en sup les cas réel et complexe : Notament :

-> Théorème des gendarmes

-> Théorème de la limite monotone

Contenu

Content			
1.1	Norme	e	ó
	1.1.1	Généralités	5
		Norme	5
		Distance	5
		Boule ouverte et fermée	5
		Segment et ensemble convexe	7
	1.1.2	Normes euclidiennes	7
	1.1.3	Exemple de normes	7
		Norme N_{∞} :	7
		Norme $N_1:\ldots$ 7	7
		Norme N_2 :	7
1.2	Suites		3
		Suite convergente	3
		Suite bornée)
		Suite extraite)
		Valeur d'adhérence)
1.3	Norme	es équivalentes)
	1.3.1	Définition)
	1.3.2	Cas de espaces de dimension fini)
1.4	Comp	araisons asymptotiques	Ĺ
		Négligeabilité	Ĺ
		Domination	Ĺ
		Équivalence	2
1.5	Séries	dans un K espace vectoriel de dimension finie	2
		Sommes partielles	2
		Série convergente	3
		Divergence grossière	3
		Convergence absolue	
1.6	-	lément sur les séries numériques	
	1.6.1	Règle de <u>Dalembert</u>	ł

	1.6.2	Séries alternées	14		
		Défnition	15		
	1.6.3	Sommation des relations de comparaisons	15		
1.7	Produit de deux séries absolument convergentes				
		Produit de Cauchy	16		
1.8	Duali	té série-suite	16		

1.1 Norme

1.1.1 Généralités

Norme Une <u>norme</u> sur E est une application $N: E \to \mathbf{R}$ vérifiant :

- $-\forall x \in E, \overline{N(x)} = 0_{\mathbf{R}} \Leftrightarrow x = 0_{E}$
- $\forall x \in E, \ \forall \lambda \in \mathbf{K}, \ N(\lambda \cdot x) = |\lambda| \ N(x)$
- $\forall x, y \in E$, $N(x+y) \leq N(x) + N(y)$

Lemme 1.1.1.

```
Soit (E, N) un espace vectoriel normé,
On a N \ge 0 (i.e. \forall x \in E, N(x - y) \ge 0)
```

Distance Une distance sur *X* est une application $d: X^2 \to \mathbf{R}$ vérifiant :

- $\forall x, y \in E$, $d(x,y) = 0 \Leftrightarrow x = y$
- $\forall x, y \in E, d(x, y) = d(y, x)$
- $\forall x, y, z \in E, \ d(x, z) \le d(x, y) + d(y, z)$

Lemme 1.1.2.

```
Soit (E, N) un espace vectoriel normé.
Si \forall (x,y) \in E^2, d(x,y) = N(x-y) alors d est une distance sur E.
```

Boule ouverte et fermée Soient $a \in E$, $r \in \mathbf{R}$ On pose

$$B(a,r) = \{x \in E \mid d(x,a) < r\}$$
 $B_f(a,r) = \{x \in E \mid d(x,a) \le r\}$

Les boules ouverte et fermée de centre a et de rayon r.

1.1. NORME 7

Segment et ensemble convexe Soit *E* un **K** espace vectoriel quelconque

-> Pour
$$(a,b) \in E^2$$
 on défini le segment : $[a,b] = \{(1-t)a + tb \mid t \in [0,1]\}$
-> $C \subset E$ est dit convexe si $\forall (a,b) \in C^2$, $[a,b] \subset C$

Lemme 1.1.3.

Dans E un EVN quelconque les boules sont convexes

1.1.2 Normes euclidiennes

Ici E est un **R** espace vectoriel muni d'un produit scalaire¹

$$\Phi: \left(\begin{array}{ccc} E^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \langle x \rangle y \end{array}\right)$$

On a alors par théorème 2 , $x\mapsto \sqrt{\langle x\rangle\,x}$ est une norme sur E. On notera

$$||x||_2 = N_2(x) = \sqrt{\langle x \rangle x}$$

Note. L'inégalité triangulaire pour $\|.\|_2$ est dite inégalité de Minkovsky

Lemme 1.1.4.
$$Si E = \mathbf{C}^n, \ z = (z_1, \dots, z_n) \ , \ N(z) = \sqrt{\sum\limits_{k=1}^n |z_k|^2} \ est \ une \ norme$$

Lemme 1.1.5.

1.1.3 Exemple de normes

Norme N_{∞} :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_\infty(x) = \max_{i \in [\![1,n]\!]} |x_i|$
Dans $E = \mathcal{C}^0([a,b],K)$ soit $f \in E$, $N_\infty(f) = \sup_{x \in [a,b]} |f(x)|$

Norme N_1 :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_1(x) = \sum_{i=1}^n |x_i|$
Dans $E = C^0([a, b], K)$ soit $f \in E$, $N_1(f) = \int_a^b |f(x)| dx$

Norme N_2 :

Dans
$$E = K^n$$
 soit $x = (x_1, ..., x_n)$, $N_2(x) = \sqrt{\sum_{i=1}^n x_i^2}$
Dans $E = \mathcal{C}^0([a, b], K)$ soit $f \in E$, $N_2(f) = \sqrt{\int_a^b (f(x))^2 dx}$

^{1.} Un produit scalaire est une forme bilinéaire symétrique définie positive

^{2.} Voir cours de sup

1.2 **Suites**

Suite convergente Soit $u = (u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $\ell \in E$. On dit que u converge vers ℓ et on

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \text{ ssi } \forall \varepsilon > 0, \ \exists n_0 \in \mathbf{N} \ : \ \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon$$

$$\begin{vmatrix} u_n \to \ell_1 & \in E \\ Si & u_n \to \ell_2 & \in E \end{vmatrix} Alors \ \ell_1 = \ell_2$$

Démonstration. Par l'absurde, on suppose
$$\ell_1 \neq \ell_2$$
.
Soit $\varepsilon = \frac{1}{2}d(\ell_1,\ell_2) > 0$ On a alors $\begin{array}{l} n_1 \in \mathbf{N} \ : \ \forall n \geq n_1, \ d(u_n,\ell_1) < \varepsilon \\ n_2 \in \mathbf{N} \ : \ \forall n \geq n_2, \ d(u_n,\ell_2) < \varepsilon \end{array}$ et soit $p = max(n_1,n_2)$

$$d(\ell_1, \ell_2) \le d(\ell_1, u_v) + d(\ell_2, u_v) < 2\varepsilon = d(\ell_1, \ell_2)$$
 impossible

Soit
$$(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$$
, $\ell\in E$ Alors $u_n\to \ell \Leftrightarrow \|u_n-\ell\|\to 0$

Démonstration. Notons $v_n = \|u_n - \ell\|$ et $\lambda = 0$ Alors $d(u_n, \ell) = \|u_n - \ell\| = v_n = 0$ $||v_n - \lambda|| = d(v_n, \lambda)$ or $u_n \to \ell \text{ ssi} : \forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N} : \forall n \geq n_0$, $d(u_n, \ell) < \varepsilon \Rightarrow d(v_n, \lambda) < \varepsilon \Rightarrow v_n \to 0$

Soient
$$u_n$$
, $v_n \in E^{\mathbf{N}}$ et $\lambda \in K$ si on a $u_n \xrightarrow{n} \alpha$ et $v_n \xrightarrow{n} \beta$
Alors $\lambda u_n + v_n \xrightarrow{n} \lambda \alpha + \beta$

Lemme : Inégalité triangulaire renversée.

| Soit
$$x, y \in E$$
 alors $|N(x) - N(y)| \le N(x - y)$

Démonstration.
$$N(x) \le N(x-y) + N(y) \Rightarrow \underbrace{N(x) - N(y)}_{t \in \mathbf{R}} \le N(x-y)$$

On conclut alors par agument de symétrie.

Lemme 1.2.3.

Soit
$$u_n \in E^{\mathbf{N}}$$
, $\alpha \in K$ on a $u_n \xrightarrow{n} \alpha \Rightarrow ||u_n|| \xrightarrow{n} ||\alpha||$

Attention! La réciproque est fausse!

1.2. SUITES 9

Suite bornée Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ on dit que (u_n) est bornée si $\exists M\in\mathbb{R}: \forall n\in\mathbb{N}, \|u_n\|\leq M$.

Lemme 1.2.4.

Toute suite $(u_n)_{n\geq 0}\in E^{\mathbf{N}}$ convergente est bornée

Lemme 1.2.5.

On suppose
$$\begin{cases} \lambda_n \to \mu \in K \\ u_n \to v \in E \end{cases}$$
 Alors $\lambda_n u_n \to \mu v$

Suite extraite Soit $u \in E^{\mathbf{N}}$ on appelle <u>suite extraite</u> (ou sous-suite) de u toute suite $\left(u_{\varphi(n)}\right)_{n\in\mathbf{N}}$ où $\varphi:\mathbf{N}\to\mathbf{N}$ est une extractrice (injection croissante)

NB: en fait
$$(v_n)_{n\geq 0} = (u_{\varphi(n)})_{n\geq 0} \Leftrightarrow v = u \circ \varphi$$

Valeur d'adhérence $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Théorème 1.2.6.

Soit $u \in E^{\mathbf{N}}$ si u converge vers $\ell \in K$ alors toute suite extraite de u converge vers ℓ

Démonstration. Soit $\varphi: \mathbf{N} \to \mathbf{N}$ une extractrice et $(v_n)_{n \geq 0} = (u_{\varphi(n)})_{n \geq 0}$ Soit $\varepsilon > 0$ et $n_0 \in \mathbf{N}: \forall n \geq n_0, \ d(u_n, \ell) < \varepsilon$ donc $\varphi(n) \geq n_0$ et ainsi $d(u_{\varphi(n)}, \ell) < \varepsilon$ et $v_n \underset{n}{\to} \ell$

Corollaire.

Toute suite admettant au moins 2 valeurs d'adhérence est divergente

1.3 Normes équivalentes

1.3.1 Définition

Soit *E* un *K* espace vectoriel, *N* et *N'* deux normes sur *E*. *N* et *N'* sont dites équivalentes ($N \sim N'$) si $\exists \alpha, \beta \in \mathbf{R} : \alpha N \leq N' \leq \beta N$

Note. On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha}N'$

Lemme 1.3.1.

Soit N, N' des normes équivalentes sur $E, u \in E^{\mathbf{N}}, \ \ell \in E$ alors 1) $u_n \underset{n}{\to} \ell$ dans $(E, N) \Leftrightarrow u_n \underset{n}{\to} \ell$ dans (E, N') 2) u est bornée dans (E, N')

Lemme 1.3.2.

| Sur K^n , N_1 , N_2 et N_∞ sont équivalentes et plus précisément $N_\infty \le N_1 \le \sqrt{n} N_2 \le n N_\infty$

1.3.2 Cas de espaces de dimension fini

Rappel. Un espace vectoriel E est de dimension finie s'il existe une famille d'éléments de E libre et génératrice, c'est alors une base de E.

Théorème 1.3.3.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Sera démontré ultérieurement.

Corollaire.

Dans un K espace vectoriel de dimension finie, la notion de converne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Lemme 1.3.4.

Soit E de dimension finie et
$$e=(e_1,\ldots,e_p)$$
 une base de E.
Soit $(x_n)_{n\geq 0}\in E^{\mathbf{N}}$ et $\alpha\in E$. On écrit
$$\begin{cases} x_n=x_{1,n}e_1+\cdots+x_{p,n}e_p\\ \alpha=\alpha_1e_1+\cdots+\alpha_pe_p\\ On \ a \ alors \ x_n \xrightarrow{n} \alpha \ \Leftrightarrow \ \forall k\in [\![1,p]\!], \ x_{k,n}\xrightarrow{n} \alpha_k \end{cases}$$

Forème 1.3.5.
$$\begin{vmatrix}
Soient & p,q,r & \in \mathbf{N}^* \\
A_nB_n \xrightarrow{n} AB
\end{vmatrix} AB \begin{vmatrix}
A_n \xrightarrow{n} A & dans & \mathcal{M}_{p,q}(\mathbf{R}) \\
B_n \xrightarrow{n} B & dans & \mathcal{M}_{q,r}(\mathbf{R})
\end{vmatrix} Alors$$

Démonstration. Soit
$$(i,j) \in [1,p] \times [1,r]$$

 $(A_n B_n)_{i,j} = \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \xrightarrow{n} \sum_{k=1}^q a_{i,k} b_{k,j} = (AB)_{i,j} \operatorname{donc} A_n B_n \xrightarrow{n} AB$

Comparaisons asymptotiques **1.4**

Soient
$$(u_n)_{n\geq n_0}$$
, $(v_n)_{n\geq n_0}\in \mathbf{C}^{\mathbf{N}}$

Négligeabilité On dit que u_n est négligeable devant v_n quand $n \to +\infty$ noté $u_n = \sum_{n \to +\infty} u_n$ $\circ(v_n)$ s'il existe $n_0 \in \mathbf{N}$ et $(\delta_n)_{n \geq n_0}$ tel que

Domination On dit que u_n est dominée par v_n quand $n \to +\infty$ noté $u_n = \bigcap_{n \to +\infty} (v_n)$ s'il existe $n_0 \in \mathbb{N}$ et $(B_n)_{n \geq n_0}$ tel que

$$- \forall n \ge n_0, \ u_n = B_n v_n - (B_n)_{n \ge n_0} \text{ est bornée}$$

Équivalence On dit que u_n est équivalent à v_n , noté $u_n \sim v_n$ si :

$$u_n - v_n \underset{n \to +\infty}{=} \circ (v_n)$$

Note. $u_n \sim v_n \iff u_n = v_n + \circ (v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

Note. On note par abus " $dimE < \infty$ "

Le cas scalaire est abordé en MPSI.

Soit $u = (u_n) \in E^{\mathbf{N}}$; pour $n \in \mathbf{N}$ on pose $U_n = \sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des sommes partielles associée à u.

Série convergente On dit que la série de terme général u_n converge si (U_n) converge.

Dans ce cas on pose $\sum_{0}^{+\infty} = \lim_{n \to +\infty} U_n \in E$

Lemme 1.5.1.

$$\left(\sum u_n \text{converge}\right) \Rightarrow \left(u_n \underset{n}{\rightarrow} 0\right)$$

Attention! La réciproque est fausse! (ex : (H_n))

Divergence grossière Lorsque $u_n \not\to 0$, la série $\sum u_n$ est dite grossièrement divergente " $\sum u_n$ DVG" ainsi : ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente.

On suppose
$$\sum u_n$$
 converge, on note $S = \sum_{n=0}^{\infty} u_n$ la "limite de la somme" et $R_n = \sum_{k=n+1}^{+\infty} u_k$ le "reste d'ordre n".

Alors $\begin{vmatrix} \forall n \in \mathbf{N}, S = U_n + R_n \\ R_n \to 0 \end{vmatrix}$

Démonstration. bien-fondé?

Soit $n \in \mathbb{N}$ pour $m \ge n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \xrightarrow{m} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S = U_n + R_n$ puis $R_n = S - U_n \to S - S = 0$

Lemme 1.5.2.

Soit
$$(u_n)$$
, $(v_n) \in E^{\mathbf{N}}$ et $\lambda \in K$
On suppose que $\sum u_n$ et $\sum v_n$ convergent alors :
 $-> \sum \lambda u_n + v_n$ converge
 $-> \sum_{n=0}^{\infty} \lambda u_n + v_n = \lambda \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$

Convergence absolue Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ converge absolument si $\sum ||u_n||$ converge.

Note. Vu $dimE < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3.

Dans un K espace vectoriel de dimension finie, toute série absolument convergente est convergente " $\overline{CVA} \Rightarrow \overline{CV}$ "

Sera démontré ultérieurement. ¹

Attention! Faux dans un EVN quelconque!

Lemme 1.5.4.

Soit
$$(E, N)$$
 un K espace vectoriel normé de dimension finie
On supposons que $\sum u_n$ CVA. Alors $\|\sum_{n=0}^{\infty} u_n\| \le \sum_{n=0}^{\infty} \|u_n\|$

1.6 Complément sur les séries numériques

Rappel. Soit $z \in \mathbf{C}$ alors $\sum z^n \text{ CV} \Rightarrow |z| < 1$

-> Lorsque
$$|z|<1$$
 on a $\sum_{n=0}^{\infty}z^n=\frac{1}{1-z}$ -> On définie $\exp(z)=\sum_{n=0}^{\infty}\frac{z^n}{n!}$

1.6.1 Règle de Dalembert

Théorème : Règle de Dalembert.

Soit
$$(u_n) \in (\mathbf{C}^*)^{\mathbf{N}}$$

On suppose l'existence de $\ell \in \mathbf{R} \cup \{+\infty\}$ tel que $\left|\frac{u_{u+1}}{u_n}\right| \to \ell$

Alors: 1) $\ell < 1 \Rightarrow \sum u_n \ CVA$

2) $\ell > 1 \Rightarrow \sum u_n \ DVG$

Démonstration. 1) On suppose $\ell < 1$ et on note $r_n = \left| \frac{u_{u+1}}{u_n} \right|$. On pose $\theta \in [\ell, 1]$ et $\varepsilon = \theta - \ell$ On a alors

 $\exists n_0 \in \mathbf{N} : \forall n \ge n_0, \ |r_n - \ell| < \varepsilon$ soit en particulier $r_n < \ell + \varepsilon = \theta$ Ainsi $\forall n \ge n_0, \ |u_{n+1}| < \theta \ |u_n|$

et
$$|u_n| \le \theta^{n-n_0} |u_{n_0}|$$
 (REC) On a alors $\forall n \ge n_0$, $|u_n| \le \underbrace{\theta^{-n_0} |u_{n_0}|}_{\text{cte}} \theta^n$ or $\sum \theta^n$ converge car

 $\theta \in]0,1[$

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose $\ell > 1$ et on fixe $\theta \in \mathbf{R}$ tel que $1 < \theta < \ell$, on a alors $\exists n_0 \in \mathbf{N} : \forall n \ge n_0, r_n > \theta$ (...) on obtient $|u_n| \to +\infty$ donc $u_n \to 0$ donc $\sum u_n$ DVG

1.6.2 Séries alternées

Défnition La série réelle $\sum u_n$ est dite <u>alternée</u> si $\left\{\begin{array}{l} \forall n \in \mathbf{N}, \ u_n = (-1)^n \ |u_n| \\ \forall n \in \mathbf{N}, \ u_n = (-1)^{n+1} \ |u_n| \end{array}\right.$

Théorème : Critère spécial des série alternées.

Soit
$$(u_n)$$
 une suite, on suppose
1) $\sum u_n$ est alternée
2) $u_n \to 0$
3) $(|u_n|)_{n\geq 0}$ décroit.
alors $\sum u_n$ converge et de plus, $\forall n \in \mathbf{N}$
 $-> |R_n| \leq |u_{n+1}|$
 $-> R_n$ et u_{n+1} ont le même signe
 $-> S$ est compris entre U_n et U_{n+1}

1.6.3 Sommation des relations de comparaisons

Théorème : Cas convergent.

Soit
$$(u_n)$$
, $(v_n) \in \mathbf{R^N}$ et $v_n \ge 0$, $\forall n \ge n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge et on pose $R_n = \sum_{k=n+1}^{+\infty} u_n$ et $R'_n = \sum_{k=n+1}^{+\infty} v_n$ Alors:

1) $u_n = o_{n \to +\infty}(v_n) \Rightarrow R_n = o_{n \to +\infty}(R'_n)$
2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow R_n = \bigcirc_{n \to +\infty}(R'_n)$
3) $u_n \underset{n \to +\infty}{\sim} v_n \Rightarrow R_n \underset{n \to +\infty}{\sim} R'_n$

Théorème: Cas divergent.

Soit
$$(u_n)$$
, $(v_n) \in \mathbf{R}^{\mathbf{N}}$ et $v_n \geq 0$, $\forall n \geq n_0$. On suppose que $\sum u_n$ et $\sum v_n$ diverge et on note $U_n = \sum_{k=0}^n u_n$ et $V_n = \sum_{k=0}^n v_n$ Alors:

1) $u_n = \circ_{n \to +\infty}(v_n) \Rightarrow U_n = \circ_{n \to +\infty}(V_n)$
2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow U_n = \bigcirc_{n \to +\infty}(V_n)$
3) $u_n \underset{n \to +\infty}{\sim} v_n \Rightarrow U_n \underset{n \to +\infty}{\sim} V_n$

Théorème de Cesàro.

Soit
$$(u_n)$$
 $\in \mathbb{R}^{\mathbb{N}}$
1) $Si \ u_n \to \lambda \ avec \ \lambda \in \mathbb{R}, \ alors \ \frac{1}{n+1} \sum_{k=0}^n u_k \to \lambda$
2) $Si \ u_n \to +\infty \ alors \ \frac{1}{n+1} \sum_{k=0}^n u_k \to +\infty$

Démonstration. 1) Supposons $u_n \to \lambda$ alors $u_n - \lambda = o(1)$, on pose ensuite $v_n = 1$ alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent

$$\sum_{k=0}^{n} u_k - \lambda = o(\sum_{k=0}^{n} 1) \implies \frac{1}{n+1} (\sum_{k=0}^{n} u_k) - \lambda \to 0$$

2) Supposons $u_n \to +\infty$ et posons $a_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ Soit $A \in \mathbf{R}$ et A' = A+1 Soit $n_0 \in \mathbf{N}$: $\forall n \geq n_0$, $u_n > A'$, puis pour $n \geq n_0$:

$$a_{n} = \frac{1}{n+1} \left(\sum_{k=0}^{n_{0}-1} u_{k} + \sum_{k=n_{0}}^{n} u_{k} \right) \operatorname{donc} a_{n} > \frac{C}{n+1} + A' \frac{n+1-n_{0}}{n+1} = A' + \frac{C-n_{0}A'}{n+1}$$

$$= C \longrightarrow_{>A'(n-n_{0}+1)} A'(n-n_{0}+1)$$
Soit $n_{1} \ge n_{0}$ tel que $\forall n \ge n_{1}$, $\left| \frac{C-A'n_{0}}{n+1} \right| < 1$ alors $\forall n \ge n_{1}$, $a_{n} > A$ d'où $a_{n} \to +\infty$

1.7 Produit de deux séries absolument convergentes

Produit de Cauchy Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (convergentes ou non) de nombres complexes.

On pose
$$\forall n \in \mathbf{N} : w_n = \sum_{i+j=n} u_i v_j = \sum_{k=0}^n u_k v_{n-k}$$
 (somme finie!)

La série $\sum w_n$ est appelée <u>produit de Cauchy</u> de $\sum u_n$ et $\sum v_n$.

Attention!

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément $(\sum u_n) \times (\sum v_n) = \sum w_n$

Théorème 1.7.1.

Si
$$\sum u_n$$
 et $\sum v_n$ convergent absolument alors
1) $\sum w_n$ CVA
2) $(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$

Signalé:

Théorème de Mertens

Si
$$\left\{\begin{array}{l} \sum u_n \text{ CVA} \\ \sum v_n \text{ converge} \\ alors \sum w_n \text{ converge et } (\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n \end{array}\right.$$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série Ici (E, N) est un EVN de dimension finie.

On pose
$$\forall n \in \mathbf{N}^*$$
 $\begin{cases} b_0 = a_0 \\ b_n = a_n - a_{n-1} \end{cases}$ On a alors pour $n \in \mathbf{N}$
$$\sum_{k=0}^n b_k = b_0 + \sum_{k=1}^n (a_k - a_{k-1}) = a_0 + a_n - a_0 = a_n \quad \text{soit} \quad a_n = \sum_{k=0}^n b_k$$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge $\Leftrightarrow \sum a_n - a_{n-1}$ converge

Chapitre 2

Limites et continuité

Cadre:(E,N) est un espace vectoriel normé quelconque et $A\subset E$

Contenu			
2.1	Ouve	rts et fermés	
	2.1.1	Intérieurs	
		Point intérieur	
		Intérieur	
	2.1.2	Ouverts	
		Définition	
	2.1.3	Fermés	
		Lois de <u>Morgan</u> :	
		Définition	
	2.1.4	Adhérence	
		Point adhérent	
		Adhérence	
		Frontière	
		Densité	
		Exemple	
2.2	Limit	es	
	2.2.1	Cas général	
		Définition	
		Limite en $\pm \infty$	
		Limite infinie	
		Voisinage	
	2.2.2	Produit fini d'espaces vectoriels normés	
		Norme produit	
2.3	Conti	nuité	
	2.3.1	Cas général	
		Continuité en un point	
		Continuité	
		Fonction lipschitzienne	
		Distance à un ensemble	
	2.3.2	Cas des applications linéaires	
		Norme subordonnée	

2.4	Image	e réciproque et continuité	32
		Voisinage relatif	33
		Ouvert relatif	33
		Fermé relatif	33
2.5	Comp	pacité	34
	2.5.1	Compacité dans un espace vectoriel normé quelconque	34
		Partie compacte	34
		Continuité uniforme	35
	2.5.2	Compacité en dimension finie	35
	2.5.3	Applications aux séries en dimension finie	36
		Séries de matrices	37
2.6	Conn	exité par arcs	37
		Chemin	37
		Composantes connexes	38
		Connexité par arcs	38
		Partie étoilée	38

2.1 Ouverts et fermés

On considère ici $A \subset E$ et $\alpha \in E$

2.1.1 Intérieurs

Point intérieur

-> α est un dit un point intérieur à A s'il existe un réel r > 0 tel que $B(\alpha, r) \subset A$

Intérieur

-> On pose $\mathring{A} = \{x \in E \mid x \text{ est intérieur à } A\}$ dit intérieur de A

Lemme 2.1.1.

Soit $A \subset E$ alors $\mathring{A} \subset A$

Lemme : Croissance de l'intérieur.

| Soit $A, B \in E$ alors $A \subset b \Rightarrow \mathring{A} \subset \mathring{B}$

2.1.2 Ouverts

Définition Dans (E, N) on appelle <u>ouvert</u> (ou <u>partie ouverte</u>) **toute** réunion de boules ouvertes.

Théorème : Caractérisation des ouverts.

| Soit
$$U \subset E$$
 alors
| $(U \text{ ouvert}) \Leftrightarrow (\forall x \in U, \exists r > 0 : B(x,r) \subset U)$

Démonstration.

 \Leftarrow Pour chaque $x \in U$, on choisit r_x tel que $B(x, r_x) \subset U$ alors $U = \bigcup_{x \in U} B(x, r_x)$ donc par définition, U est un ouvert.

Soit
$$r = r_{i_0} - d(x, x_{i_0}) > 0$$
 alors $B(x, r) \subset B(x_{i_0}, r_{i_0})$
Soit $y \in B(x, r)$ c'est-à-dire $d(x, y) < r$ alors $d(y, x_{i_0}) \leq d(y, x) + d(x, x_{i_0}) < r_{i_0}$
Ainsi $\forall x \in U$, $\exists r > 0 : B(x, r) \subset U$

Corollaire.

$$|$$
 Soit $U \subset E$ alors U ouvert $\Leftrightarrow U \subset \mathring{U} \Leftrightarrow U = \mathring{U}$

Note. $\mathcal{T} = \{U \subset E \mid U \text{ est ouvert}\}\$ est appelé Topologie de (E, N)

Théorème 2.1.2.

- 1) Toute réunion d'ouvert est un ouvert.
- 2) Toute intersection finie d'ouvert est un ouvert.

Démonstration. On démontre la deuxième assertion

- -> Cas de l'intersection vide : $\bigcap \emptyset = E$
- -> Cas de 2 ouverts : Soit A, B deux ouverts de E, soit $x \in A \cap B$, on a $\exists r_1, r_2 > 0$ tels que $B(x, r_1) \subset A$ et $B(x, r_2) \subset B$ alors soit $r = \min(r_1, r_2)$, $B(x, r) \subset A \cap B$ et par le théorème de caractérisation des ouverts, $A \cap B$ est un ouvert
- -> Cas de p ouverts, $p \in \mathbb{N}^*$: par récurrence sur p avec le cas p=2

2.1.3 Fermés

Lois de Morgan :
$${}^{c}\left(\bigcap_{i\in I}A_{i}\right) = \bigcup_{i\in I}{}^{c}A_{i}$$
 et ${}^{c}\left(\bigcup_{i\in I}A_{i}\right) = \bigcap_{i\in I}{}^{c}A_{i}$

Définition On appelle <u>fermé</u> tout complémentaire d'un ouvert de E Ainsi A est fermé $\Leftrightarrow {}^cA$ est ouvert avec ${}^cA = C_EA$

Théorème 2.1.3.

- 1) Toute intersection de fermés est fermée.
- 2) Toute réunion finie de fermés est fermée.

Démonstration. 1) Soit $(\Phi_i)_{i\in I}$ une famille de fermés de E on a $^c(\bigcap_I \Phi_i) = \bigcup_I ^c \Phi_i$ est un ouvert donc l'intersection des Φ_i est fermée.

2.1.4 Adhérence

Point adhérent α est dit adhérent à A si $\forall r > 0$, $B(\alpha, r) \cap A \neq \emptyset$

Adhérence On pose $\overline{A} = \{x \in E \mid x \text{ est adhérent à } A\}$ dit adhérence de A.

Lemme : Croissance de l'adhérence. | *Soit* A, $B \in E$ alors $A \subset b \Rightarrow \overline{A} \subset \overline{B}$

Théorème 2.1.4.

Soit
$$\alpha \in E$$
 alors $\alpha \in \overline{A} \Leftrightarrow \exists (a_n) \in A^{\mathbf{N}} : a_n \xrightarrow[n]{} \alpha$

Démonstration.

Soit
$$r > 0$$
 et $n_0 \in \mathbb{N}$ tels que $\forall n \ge n_0$, $d(a_n, \alpha) < r$ alors $B(\alpha, r) \cap A \ne \emptyset$ donc $\alpha \in \overline{A}$
Soit $n \in \mathbb{N}$, $\exists a_n \in B(\alpha, \frac{1}{n+1}) \cap A$ d'où $(a_n) \in A^{\mathbb{N}}$ vérifie $a_n \xrightarrow{n} \alpha$

Théorème: Caractérisation des fermés.

Soit $A \subset E$, A est fermé si et seulement si A est stable par passage à la limite.

Démonstration. \Longrightarrow Soit $B = {}^{c}A$ et $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \underset{n}{\to} \alpha \in E$

Si $\alpha \in B$, $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0$, $a_n \in B(\alpha, r)$ soit $a_{n_0} \in B(\alpha, r) \Rightarrow a_{n_0} \notin A$ (impossible!) d'où $\alpha \in A$

Far contraposée, on suppose que $B = {}^c A$ n'est pas un ouvert donc $\exists \alpha \in B : \forall r > 0$, $\exists x \in B(\alpha, r)$ tel que $x \notin B$. On a alors $\alpha \in \overline{A}$ et $\alpha \in B$ soit $\alpha \notin A$ d'où $\exists (a_n) \in A^{\mathbb{N}}$ avec $a_n \to \alpha$. On a donc trouvé une suite convergente d'éléments de A dont la limite n'est pas dan A.

Corollaire.

Soit
$$A \subset E$$
, on a : A femré $\Leftrightarrow \overline{A} \subset A \Leftrightarrow \overline{A} = A$

Lemme 2.1.5.

Soit
$$A \subset E$$
 alors $c(\overline{A}) = \widehat{cA}$ et $c(A) = \overline{cA}$

Lemme 2.1.6.

- 1) Å est un ouvert
- igl| 2) \mathring{A} est le plus grand ouvert de E inclu dans A

Lemme 2.1.7.

- 1) \overline{A} est un fermé
- 2) \overline{A} est le plus petit fermé de E contenant A

Théorème 2.1.8.

Les notions suivantes, (notions topologiques) :

- point intérieur
- ouvert
- point adhérent
- fermé

sont invariants par passage à une norme équivalente.

Démonstration. On sait que la convergence d'une suite est invariante par norme équivalente donc on a l'invariance des notions "point adhérent" et "adhérence" ainsi que "point intérieur" par le complémentaire de l'adhérence (Page 23) puis par caractérisation séquentielle des fermés on a l'invariance de la notion "fermé" ainsi que "ouvert" par le complémentaire.

Lemme 2.1.9.

- Toute boule fermée est fermée
 Toute sphère est fermée

Frontière Soit $A \subset E$ on définie sa <u>frontière</u> comme $F_r(A) = \overline{A} \setminus \mathring{A}$

2.2. LIMITES 25

Lemme 2.1.10.
$$\forall A \subset E$$
, $F_r(A)$ est fermée et $F_r(A) = \overline{A} \cap \overline{{}^c A}$

Densité Soit $D \subset A \subset E$ on dit que D est <u>dense</u> dans A si tout élément de A est limite d'une suite d'éléments de D soit

$$\forall a \in A, \exists (d_n) \in D^{\mathbf{N}} : d_n \xrightarrow{n} a$$

Lemme 2.1.11.

Soit $D \subset A$ *alors on a* : D *dense dans* $A \Leftrightarrow A \subset \overline{D}$

Exemple Soit $n \in \mathbb{N}^*$ alors $GL_n(K)$ dense dans $\mathcal{M}_n(K)$

Démonstration. Soit
$$M \in \mathcal{M}_n(K)$$
 et $r = \operatorname{rg}(M) \in \llbracket 1, n \rrbracket$
Par théorème $^1 \exists U, V \in GL_n(K) : M = UJ_rV$ posons alors pour $p \in \mathbf{N}^*$ $J_r(\frac{1}{p}) = \operatorname{Diag}(\underbrace{1, \ldots, 1}_{p}, \frac{1}{p}, \ldots, \frac{1}{p})$ puis $M_p = UJ_r(\frac{1}{p})V$ alors $M_p \in GL_n(K) \underset{p \to +\infty}{\longrightarrow} M$

2.2 Limites

2.2.1 Cas général

Dans toute cette partie, F est un K espace vectoriel et $f: A(\subset E) \to F$

Définition Soit $\alpha \in \overline{A}$, $b \in F$. On dit que f admet b comme limite au point α , noté $f(x) \xrightarrow[x \to \alpha]{} b$ si

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ tel que $\forall x \in A$, $d(x, \alpha) < \delta \Rightarrow d(f(x), b) < \varepsilon$

Lemme 2.2.1.

Soit
$$A(\subset E) \xrightarrow{f} B(\subset F) \xrightarrow{g} G$$
 et $\alpha \in \overline{A}$, $\beta \in \overline{B}$, $c \in G$
Si on a $f(x) \xrightarrow[x \to \alpha]{} \beta$ et $g(y) \xrightarrow[y \to \beta]{} c$ alors $g(f(x)) \xrightarrow[x \to \alpha]{} c$

Lemme 2.2.2.

Soit
$$\alpha \in \overline{A}$$
, $b \in F$, $(a_n) \in A^{\mathbb{N}}$ avec
$$\begin{cases} f(x) \xrightarrow[x \to \alpha]{} b \\ a_n \xrightarrow[n]{} \alpha \end{cases}$$

^{1.} Voir cours de sup

Théorème : Caractérisation séquentielle d'une limite.

Soit
$$\alpha \in \overline{A}$$
, $b \in F$
 $Alors\left(f(x) \xrightarrow[x \to \alpha]{} b\right) \Leftrightarrow \left(\forall (a_n) \in A^{\mathbf{N}}, (a_n \xrightarrow[n]{} \alpha) \Rightarrow (f(a_n) \xrightarrow[n]{} b)\right)$

Démonstration. \Rightarrow Lemme

Par contraposée on fixe
$$\varepsilon_0 > 0$$
 tel que $\forall n \in \mathbb{N}$, $\exists a_n$ tel que
$$\begin{cases} d(a_n, \alpha) < \frac{1}{n+1} \\ d(f(a_n), b) \ge \varepsilon_0 \end{cases}$$
 D'où $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \xrightarrow[n]{} \alpha$ et $f(a_n) \xrightarrow[n]{} b$

Lemme : Unicité de la limite.

Soit
$$\alpha \in \overline{A}$$
, $b_1 \in F$, $b_2 \in F$
Si $f(x) \xrightarrow[x \to \alpha]{} b_1$ et $f(x) \xrightarrow[x \to \alpha]{} b_2$ alors $b_1 = b_2$

Lemme 2.2.3.

Soit $\alpha \in \overline{A}$ *et* $b \in F$

- On suppose que $f(x) \underset{x \to \alpha}{\longrightarrow} b$ alors ceci reste vrai si

 On remplace $\|\dot{\|}_E$ par une une norme équivalente

 On remplace $\|\dot{\|}_F$ par une une norme équivalente

Limite en $\pm \infty$ On dit que $f(x) \xrightarrow[\|x\| \to +\infty]{} b$ si $\forall \varepsilon > 0$, $\exists M \in \mathbb{R}$ tel que $\|x\| > M \Rightarrow$ $d(f(x),b) < \varepsilon$

Limite infinie Ici $f : A(\subset E) \to \mathbf{R}$ et $\alpha \in \overline{A}$ On dit que $f(x) \xrightarrow[x \to \alpha]{} + \infty$ si $\forall M \in \mathbb{R}, \ \exists \delta > 0 \text{ tel que } \forall x \in A, \ d(x, \alpha) < \delta \Rightarrow f(x) > M$

Voisinage Soit (E, N) un espace vectoriel normé quelconque et $\alpha \in E$ Soit $V \subset E$ alors V est un voisinage de α si $\exists r > 0$ tel que $B(\alpha, r) \subset V$ On peut noter $\mathcal{V}_{\alpha} = \{V \subset \overline{E \mid V \text{ est } v(\alpha)}\}$

Note. $V \in \mathcal{V}_{\alpha} \iff \alpha \in \mathring{V}$

Lemme 2.2.4.

On suppose que $f(x) \xrightarrow[x \to \alpha]{} b \in F$ Alors f est bornée localement au voisinage de α (noté v(a))

2.2.2 Produit fini d'espaces vectoriels normés

2.3. CONTINUITÉ 27

Norme produit Soient $(E_1, N_1), \dots, (E_r, N_R)$ des K espaces vectoriels normés.

On note
$$W = \prod_{i=1}^{r} E_i = E_1 \times \cdots \times E_r$$
 et $x = (x_1, \dots, x_r) \in W$

On pose
$$\forall x \in W$$
, $N(x) = \max_{1 \le i \le r} \{N_i(x_i)\}$ alors $\begin{cases} N \text{ est dite } \frac{\text{norme produit}}{(E, N) \text{ est } \frac{\text{dit } EVN \text{ produit}}{(E, N)} \end{cases}$

Lemme 2.2.5.

Soient
$$U_1$$
 ouvert de (E_1, N_1)
 \vdots
 U_r ouvert de (E_r, N_r)
alors $U_1 \times \cdots \times U_r$ est un ouvert de W
Un produit fini d'ouvert est un ouvert

Lemme 2.2.6.

Un produit fini de fermé est un fermé

Lemme 2.2.7.

Soit
$$u = (u_n) \in W^{\mathbf{N}}$$
, $b \in W$ où $W = \prod_{i=1}^r E_i$
On note $u_n = (u_{1,n}, \dots, u_{r,n})$ et $b = (b_1, \dots, b_r)$
 $\underline{alors} \ u_n \xrightarrow{n} b \Leftrightarrow \forall i \in [1,r], \ u_{i,n} \xrightarrow{n} b_i$

Lemme 2.2.8.

Soit
$$f: A(\subset E) \to W = \prod_{i=1}^r E_i$$
, $\alpha \in \overline{A}$ et $b = (b_1, \dots, b_r) \in W$
On note $\forall x \in A$, $f(x) = (f_1(x), \dots, f_r(x))$
 $\underline{alors}\left(f(x) \xrightarrow[x \to \alpha]{} b\right) \Leftrightarrow \left(\forall i \in \llbracket 1, r \rrbracket, f_i(x) \xrightarrow[x \to \alpha]{} b_i\right)$

Lemme 2.2.9.

In the 2.2.9.
$$\begin{cases}
f_1: A \to F \\
f_2: A \to F
\end{cases}, \ \alpha \in \overline{A}, \lambda \in K \ et \ b_1, b_2 \in F$$

$$On suppose que \begin{cases}
f_1(x) \xrightarrow[x \to \alpha]{x \to \alpha} b_1 \\
f_2(x) \xrightarrow[x \to \alpha]{x \to \alpha} b_2
\end{cases} \ alors (\lambda f_1 + f_2)(x) \xrightarrow[x \to \alpha]{x \to \alpha} (\lambda b_1 + b_2)$$

Lemme 2.2.10.

Soit
$$f: A(\subset E) \to F$$
 avec $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de F
On écrit $f(x) = \sum_{i=1}^p f_i(x)\varepsilon_i$ et $b = \sum_{i=1}^p b_i\varepsilon_i$
 $\underline{alors}\ f(x) \xrightarrow[x \to \alpha]{} b \Leftrightarrow \forall i \in [1, p], \ f_i(x) \xrightarrow[x \to \alpha]{} b_i$

2.3 Continuité

2.3.1 Cas général

Continuité en un point Soit $f: A(\subset E) \to F$ et $a \in A$ alors f est dite C^0 en a si $\forall \varepsilon > 0$, $\exists \delta > 0$: $\forall x \in A$, $d(a,x) < \delta \Rightarrow d(f(x),f(a)) < \varepsilon$

Lemme 2.3.1.

$$\int f\mathcal{C}^0 \ en \ a \Leftrightarrow f(x) \xrightarrow[x \to a]{} f(a)$$

Lemme 2.3.2.

 $| f C^0$ en $a \Leftrightarrow (f$ admet une limite finie ai point en a)

Théorème : Caractérisation séquentielle de la continuité.

Soit
$$f: A(\subset E) \to F$$
 et $a \in A$ alors f est continue au point a si et seulement si $\left(\forall (a_n) \in A^{\mathbf{N}}, \ a_n \xrightarrow[n]{} a \Rightarrow f(a_n \xrightarrow[n]{} f(a)\right)$

Démonstration. Caractérisation séquentielle d'une limite Page 26 et Lemme.

2.3. CONTINUITÉ 29

Continuité f est dite continue si $\forall a \in A$, f est continue au point a.

Fonction lipschitzienne Soit $f : A(\subset E) \to F$ et $k \in \mathbb{R}^+$

- • f est dite k-lipschitzienne si $\forall (x,y) \in A^2$, $d(f(x),f(y)) \leq k.d(x,y)$
- • f est dite lipschitzienne s'il existe $k \in \mathbb{R}^+$ tel que f est k-lipschitzienne.

Lemme 2.3.3.

| f est lipschitzienne \Rightarrow f est continue

Attention! La réciproque est fausse!

Lemme 2.3.4.

 $A(\subset E) \stackrel{f_1}{\to} B(\subset F) \stackrel{f_2}{\to} G.$ On suppose f_1 k_1 -lipschitzienne et f_2 k_2 -lipschitzienne <u>alors</u> $f_2 \circ f_1$ est $k_1 \times k_2$ -lipschitzienne

Distance à un ensemble Soit $A \subset E$, $a \neq \emptyset$ et $x \in E$

$$d(x, A) = \inf\{d(x, \alpha) \mid \alpha \in A\}$$

Théorème 2.3.5.

Toute partie de **R** non vide et minorée admet une borne inférieure

Théorème 2.3.6. Soit
$$A \subset E$$
, $A \neq \emptyset$ alors δ : $E \to \mathbb{R}$ $x \mapsto d(x,A)$ est 1-lipschitzienne

Démonstration. Soit $(x,y) \in E^2$ Soit $\alpha \in A$, $d(x,\alpha) \leq d(x,y) + d(y,\alpha)$ ainsi $\forall \alpha \in A$, $\underbrace{d(x,A) - d(x,\alpha)}_{y}$ $d(y, \alpha)$ donc μ est un minorant de $\{d(y, \alpha) \mid \alpha \in A\}$ donc $\mu \leq d(y, A)$ d'où $\underbrace{d(x, A) - d(y, A)}_{\theta} \leq d(y, A)$ d(x,y) et on a de même pour le couple (y,x), $-\theta \le d(y,x) = d(x,y)$ En bref : $|d(x, A) - d(y, A)| \le d(x, y)$

Lemme 2.3.7.

La composée de deux applications continues est continue

Lemme 2.3.8.

Pour
$$f:A(\subset E)\to F$$
 et $B\subset F$ on note $f|_B$ la restriction $B\to F$ $x\mapsto f(x)$ Alors f continue $\Rightarrow f|_B$ continue

Lemme 2.3.9.

- Une combinaison linéaire d'applications continues est continue Soit $a \subset E$ et $\begin{cases} f: A \to F \ \mathcal{C}^0 \\ \lambda: A \to K \ \mathcal{C}^0 \end{cases}$ Alors $\begin{cases} A \to F \\ x \mapsto \lambda(x) f(x) \end{cases}$ est \mathcal{C}^0

Lemme 2.3.10.

Soit
$$f,g \in C^0(A,F)$$
, E, F des espaces vectoriels normés
Soit $D \subset A$ dense dans A et $f|_D = g|_D$ alors $f = g$

Cas des applications linéaires

Théorème 2.3.11.

Soit
$$u \in \mathcal{L}(E, F)$$
 alors $u \in \mathcal{C}^0(E, F) \Leftrightarrow \exists C \in \mathbf{R}^+ : \forall x \in E$, $||u(x)|| \le C||x|| \Leftrightarrow u$ est lipschitzienne.

Démonstration. (1) \Rightarrow (2) : Si $u \in \mathcal{C}^0(E,F)$ alors u est \mathcal{C}^0 en 0 et avec $\varepsilon = 1$, soit $\delta > 0$ tel que $\forall x \in E$, $\|x\| < \delta \Rightarrow \|u(x)\| < 1$. Soit alors $x \in E \setminus \{0\}$, on pose $x' = \frac{\delta}{2} \frac{x}{\|x\|}$ donc ||u(x')|| < 1 et ainsi $||u(x)|| \le \frac{2}{\delta} ||x||$

(2)
$$\Rightarrow$$
 (3) : On suppose $\forall x \in E$, $||u(x)|| \le C||x||$ puis soit $(x,y) \in E^2$ on a $||u(x-y)|| \le C||x-y||$ donc u est C -lipschitzienne

Notation On note $\mathcal{L}_c(E,F) = \{u \in \mathcal{L}(E,F) \mid u \text{ est continue }\}$

Norme subordonnée

- Soit (E,N) et (F,N') des K espaces vectoriels normés et $u \in \mathcal{L}_c(E,F)$ on pose $|||u||| = \sup\{N'(u(x)) \mid x \in E \text{ et } N(x) \le 1\} = \sup_{X \in \mathcal{X}} N'(u(x))$
- $\mathcal{L}_c(E,F)$ est un K espace vectoriel et |||.||| est une norme sur $\mathcal{L}_c(E,F)$. On l'appelle <u>nome subordonnée</u> à N et N' ou encore <u>norme d'opérateur</u> notée $\|.\|_{op}$

2.3. CONTINUITÉ 31

Démonstration.

- Si u=0 alors |||u|||=0, réciproquement si |||u|||=0, $\forall x \in B_f(0,1), u(x)=0$ Soit $x \in E \setminus \{0\}$ en posant $x' = \frac{x}{\|x\|}$ on a $\frac{1}{\|x\|}u(x) = 0$ donc u(x) = 0
- $\forall u \in \mathcal{L}_c(E, F), \ \forall k \in K \text{ on a } |||\lambda u||| = |\lambda| |||u|||$
- Soit $(u,v) \in \mathcal{L}_c(E,F)$ on pose w = u + v, soit $x \in B_f(0,1)$ on a $||w(x)|| \le ||u(x)|| + v$ $||v(x)|| \le |||u||| + |||v|||$ et ainsi |||u||| + |||v||| est un majorant de $X = \{||w(x)|| \mid x \in V\}$ $B_f(0,1)$ or |||w||| est le plus petit majorant de X donc $|||w||| \le |||u||| + |||v|||$

Lemme 2.3.12.

Note. Soit $u \in \mathcal{L}_c(E, F)$ Si $E \neq \{0\}$, |||u||| est le plus petit $k \in \mathbb{R}^+$ tel que $\forall x \in E$, $||u(x)|| \le$ $k \|x\|$ (c'est vrai même si $E = \{0\}$) ainsi $\underline{|||u|||}$ est la plus petite constante de Lipschitz de uOn a donc $\forall u \in \mathcal{L}_c(E, F), \ \forall x \in E, \ \|u(x)\| \le \|\|u\|\| \|x\|\|$

Théorème 2.3.13.

```
(E,N), (F,N'), (G,n'') des espaces vectoriels normés quelconques
avec E \xrightarrow{u} F \xrightarrow{v} G et u \in \mathcal{L}_c(E,F), v \in \mathcal{L}_c(F,G)
Alors v \circ u \in \mathcal{L}_c(E,G) et |||v \circ u||| \le |||u|||.|||v|||
```

Démonstration. $v \circ u \in \mathcal{L}_c(E,G)$ car linéaire et continue puis u est |||u|||-lipschitzienne et v est |||v|||-lipschitzienne donc $v \circ u$ est |||u|||.|||v|||-lipschitzienne du coup $|||v \circ u||| \le$ |||u|||.|||v|||

Note. $\forall u, v \in \mathcal{L}_c(E), \ v \circ u \in \mathcal{L}_c(E) \text{ et } |||v \circ u||| \le |||u||| \times |||v|||$ On dit aussi que |||.||| est une norme sous-multiplicative ou une norme d'algèbre

Lemme 2.3.14.

```
Lorsque E \neq \{0\}, \forall u \in \mathcal{L}_c(E, F)
 u \in \mathcal{C}^0(E, F) \quad \Leftrightarrow u \text{ born\'ee sur } B_f(0, 1)
                             \Leftrightarrow u est bornée sur S(0,1)
```

Lemme 2.3.15.

```
Soit X \subset \mathbf{R} non vide et majorée et \mu \in \mathbf{R}^+ Alors \sup(\mu X) =
\mu(\sup X)
```

Théorème 2.3.16.

```
E_1, \ldots, E_n des espaces vectoriels normés
\varphi: E_1 \times \cdots \times E_n \to F une application n-linéaire,

W = E_1 \times \cdots \times E_n muni de la norme produit

Alors (\varphi est continue) \Leftrightarrow (\exists M \in \mathbf{R}^+ : \forall (x_1, \dots, x_n) \in
W, \|\varphi(x_1,\ldots,x_n)\| \leq M \times \|x_1\| \times \cdots \times \|x_n\|
```

```
\begin{array}{lll} \textit{D\'{e}monstration.} & \begin{tabular}{l} \blacksquare \textit{On fixe } M \geq 0 \textit{ v\'{e}rifiant la propriét\'e}. \\ & \textit{Soit } x = (x_1, \dots, x_n) \in W \textit{ et } y \in W \cap B_f(x, 1) \\ & \varphi(y) - \varphi(x) & = \varphi(y_1, \dots, y_n) - \varphi(x_1, \dots, x_n) \\ & = \varphi(y_1, y_2, \dots, y_n) - \varphi(x_1, y_2, \dots, y_n) + \varphi(x_1, y_2, \dots, y_n) \\ & - \varphi(x_1, x_2, y_3, \dots, y_n) + \\ & \vdots \\ & + \varphi(x_1, \dots, x_{n-1}, y_n) - \varphi(x_1, \dots, x_n) \\ & = \sum_{i=1}^n \varphi(x_1, \dots, x_{i-1}, y_i - x_i, y_{i+1}, \dots, y_n) \\ & \text{ainsi } \| \varphi(y) - \varphi(x) \| \leq \sum_{i=1}^n M \| x_1 \| \cdots \| x_{i-1} \| \cdot \| y_i - x_i \| \cdot \| y_{i+1} \| \cdots \| y_n \| \\ & \text{or } \forall i \in \llbracket 1, n \rrbracket, \ \| y_i - x_i \| \leq \| y - x \| \textit{ et } \forall j, \ \| y_j \| \leq \| x_j \| + \| y_j - x_j \| \leq \| x \| + 1 \\ & \text{donc } \| \varphi(y) - \varphi(x) \| \leq nM(\|x\| + 1)^{n-1} \cdot \| y - x \| \textit{ du coup } \varphi(y) \xrightarrow{y \to x} \varphi(x) \textit{ donc } \varphi \textit{ est continue} \\ & \Longrightarrow \text{Si } \varphi \in \mathcal{C}^0(W, F) \textit{ alors } \varphi \textit{ est } \mathcal{C}^0 \textit{ en } 0 \textit{ donc soit } \delta > 0 \textit{ tel que } \forall x \in B(0, \delta), \ \| \varphi(x) \| < 1 \\ & \text{Soit } x \in W \\ & \bullet \textit{ Si } \forall i, \ x_i \neq 0, \textit{ posons } x_i' = \frac{x_i}{\|x_i\|} \frac{\delta}{2} \textit{ et } x' = (x_1', \dots, x_n') \textit{ donc } \| \varphi(x') \| < 1 \textit{ or } \varphi(x') = \frac{\delta^n}{2^n} \frac{1}{\|x_1 \| \cdots \|x_n \|} \varphi(x) \\ & \text{donc } \| \varphi(x) \| \leq \left(\frac{2}{\delta}\right)^n \prod_{i=1}^n \|x_i\| = M \prod_{i=1}^n \|x_i\| \\ & \bullet \textit{ Si } \exists i_0 \textit{ tel que } x_{i_0} = 0 \textit{ alors } \varphi(x) = 0 \textit{ donc } \| \varphi(x) \| \leq M \prod_{i=1}^n \|x_i\| \end{aligned}
```

2.4 Image réciproque et continuité

L'idée générale est ici de travailler dans A munie de la distance induite par la norme de E.

Note. Soit $a \in A$ et $r \in \mathbb{R}+$ alors on note $B^A(a,r) = \{x \in A, d(x,a) < r\} = A \cap B(a,r)$

Voisinage relatif Soit $a \in A$ et $V \subset A$ alors V est dit voisinage relatif de a s'il existe r > 0 tel que $B^A(a,r) \subset V$ Ouvert relatif Soit $U \subset A$ alors U est dit ouvert relatif de A s'il est voisinage relatif de i.e. $\forall x \in U, \exists r > 0 : B^A(x,r) \subset U$ chacun de ses points. Théorème: Caractérisation des ouverts relatifs. *Soit* $U \subset A$ *alors* : U ouvert relatif de $A \Leftrightarrow \exists U'$ ouvert de E tel que $U = A \cap U'$ Démonstration. \subseteq Soit U' ouvert de E tel que $A \cap U' = U$ alors Soit $x \in U = A \cap U'$ alors $\exists r > 0$ tel que $A \cap B(x,r) \subset U$ donc *U* est un voisnage relatif de *x* Par définition, U est un ouvert relatif sur A $\Rightarrow \forall x \in U$ ouvert relatif $\exists r_x > 0$ tel que $A \cap B(x, r_x) \subset U$, alors $U' = \bigcup B(x, r_x)$ est un ouvert de E et $U = A \cap U'$ **Fermé relatif** Soit $\Phi \subset A$ alors Φ est dit fermé relatif de A si $A \setminus \Phi$ est un ouvert relatif de A. Théorème : Caractérisation des fermés relatifs. *Soit* $\Phi \subset A$ *alors* : Φ fermé relatif de $A \Leftrightarrow \exists \Phi'$ fermé de e tel que $\Phi = A \cap \Phi'$ *Démonstration.* Clair en considérant $U = A \setminus \Phi$ Théorème 2.4.1. Soit $X \subset A$ alors X est un fermé relatif de $A \Leftrightarrow$ Pour toute suite $(x_n) \in X^{\mathbf{N}}$ qui converge vers $a \in A$ on $a \in X$ Démonstration. \Longrightarrow Soit $(x_n) \in X^{\mathbf{N}}$ avec $x_n \underset{n}{\rightarrow} a \in A$ Si $a \in A \setminus X$ alors $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall \geq n_0, \ x_n \in B(x_n, a) \cap A$ du coup $x_{n_0} \in A \setminus X$ (impossble !) donc $a \in X$. \models Par contraposée on suppose $\exists \xi_0 \in A \setminus X : \forall r > 0 \exists x \in A \cap B(\xi_0, r)$ tel que $x \in X$. On a alors $\forall n \in \mathbb{N}$, $\exists x_n \text{ tel que } d(x_n, \xi_0) < \frac{1}{n+1} \text{ d'où } (x_n) \in X^{\mathbb{N}} \text{ avec } x_n \xrightarrow{n} \xi_0 \text{ mais } \xi_0 \notin X \quad \square$

Théorème 2.4.2.

Soit
$$A \subset E$$
 et E, F des espaces vectoriels normés $f \in \mathcal{C}^0(A, F)$ et $Y \subset F$ alors

1) Y fermé $\Rightarrow f^{-1}(Y)$ fermé relatif de A
2) Y ouvert $\Rightarrow f^{-1}(Y)$ ouvert relatif de A

Démonstration.

1) Soit $f^{-1}(Y) = \{x \in A , f(x) \in Y\}$ et soit $(x_n) \in (f^{-1}(Y))^{\mathbb{N}}$ tel que $x_n \to a \in A$ Comme f est C^0 on a $f(x_n) \to f(a) \in A$ car $a \in f^{-1}(Y)$ donc par théorème $f^{-1}(Y)$ est un fermé relatif.

2) Clair avec
$$F \setminus Y$$
 ouvert de F

Cas particulier Lorsque
$$A = E$$
 alors $\forall Y \subset F$, $\begin{cases} Y \text{ ferm\'e} \Rightarrow f^{-1}(Y) \text{ ferm\'e} \\ Y \text{ ouvert} \Rightarrow f^{-1}(Y) \text{ ouvert} \end{cases}$

2.5 Compacité

2.5.1 Compacité dans un espace vectoriel normé quelconque

Partie compacte On dit que *A* est une partie compacte de *E* (ou compact de *E*) si toute suite d'éléments de *A* admet une sous-suite qui converge vers un élément de *A*.

Lemme 2.5.1.

A est compacte \Rightarrow A est fermée et bornée

Lemme 2.5.2.

Soit A un compact et X fermé alors A \cap *X est compact*

Théorème 2.5.3.

```
Soit A un compact et (a_n) \in A^{\mathbb{N}} alors : (a_n) converge \Leftrightarrow (a_n) admet au plus une valeur d'adhérence
```

 $\textit{D\'{e}monstration.} \ \ \overleftarrow{\longleftarrow} \ \text{Vu A compact, } \exists \left(a_{\varphi(n)}\right)_{n \geq 0} \text{ qui converge vers } \alpha \in A.$

Supposons $\exists \varepsilon_0 > 0 : \forall n \in \mathbb{N}, \ \exists n \geq n_0 : d(a_n, \alpha) \geq \varepsilon_0 \text{ ainsi } \{n \in \mathbb{N} | | d(a_n, \alpha) \geq \varepsilon_0 \}$ est infini donc $\exists \varphi : \mathbb{N} \to \mathbb{N}$ telle que $\forall k \in \mathbb{N}, \ d(a_{\varphi'(k)}, \alpha) \geq \varepsilon_0$ donc par compacité $\exists \psi : \mathbb{N} \to \mathbb{N}$ telle que $a_{\varphi'(\psi(n))} \xrightarrow[n]{} \beta \in A$ et comme (a_n) admet au plus une valeur d'adhérence, $\beta = \alpha$ impossible !

Donc
$$a_n \xrightarrow[n]{} \alpha$$

Théorème 254

Soit
$$E_1, \ldots, E_r$$
 des espaces vectoriels normés et $A_1 \subset E_1, \ldots, A_r \subset E_r$ des compacts Alors $A_1 \times \cdots \times A_r$ est un compact de $E_1 \times \cdots \times E_r$

2.5. COMPACITÉ 35

Continuité uniforme Si E, F est un espace vectoriel normé et $f: A \to F$ alors f est dite uniformément continue si $\forall \varepsilon > 0$, $\exists \delta > 0: \forall (x,y) \in A^2$, $d(x,y) < \delta \Rightarrow d(f(x),f(y)) < \varepsilon$

Théorème 2.5.5.

Soit $f \in C^0(A, F)$ alors si A est compact f(A) est compact. "L'image continue d'un compact est un compact."

Démonstration. Soit
$$a_{\varphi(n)} \xrightarrow{n} \alpha \in A$$
 alors $f(a_{\varphi(n)}) \xrightarrow{n} f(\alpha) \in f(A)$

Théorème de Heine.

Toute application continue sur un compact est uniformément continue.

Démonstration. Par l'absurde :

On suppose
$$\exists \varepsilon_0 > 0 : \forall \delta > 0, \exists (x,y) \in A^2 : d(x,y) < \delta \text{ et } d(f(x),f(y)) \ge \varepsilon_0$$

On pose alors (x_n) et (y_n) vérifiant ces propriétés avec $\delta_n = \frac{1}{n+1}$ et $x_{\varphi(n)} \xrightarrow[n]{} \alpha \in A$ puis on a $||f(x_n) - f(y_n)|| \xrightarrow[n]{} 0$ d'où la contradiction.

Lemme 2.5.6.

Soit $X \subset \mathbf{R}$ *non vide et majoré alors* $\sup(X) \in \overline{X}$

Théorème 2.5.7.

Soit
$$f \in C^0(A, \mathbb{R})$$

Si A est un compact non vide alors f admet un maximum sur A

Note. PG -> On dit que "f est bornée et atteind ses bornes"

Démonstration. Soit $B = f(A) \neq \emptyset$, B est borné comme image continue d'un compact. Soit alors $\beta = \sup(B)$. On a donc $\beta \in \overline{B} = B$ donc $\begin{cases} \beta \text{ majore } B \\ \beta \in B \end{cases}$ d'où $\beta = \max(B)$

2.5.2 Compacité en dimension finie

Rappel:

Théorème de Bolzano-Weierstrass.

Dans \mathbf{R} , tout segment [a,b] est compact.

Corollaire.

| Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Démonstration. Voir la fin du chapitre.

Théorème 2.5.8.

Soit E un espace vectoriel normé de dimension finie et $A \subset E$ alors A compact $\Leftrightarrow A$ fermé et borné

Démonstration. On démontre le cas où $K = \mathbf{R}$ avec N_{∞} pour se ramener à [-M, M] puis on en déduit le cas où $K = \mathbf{C}$ □

Théorème 2.5.9.

Soit E un espace vectoriel normé quelconque si $F \subset E$ est un sousespace vectoriel avec $\dim F < \infty$ alors F est fermé

Démonstration. On montre la stabilité par passage à la limite en considérant M un majorant des x_n et le compact Bf(0, M)

Théorème 2.5.10.

Soit E, F des espaces vectoriels normé avec E de dimension finie, si $u \in \mathcal{L}(E, F)$ alors u est continue.

Démonstration. Soit $e=(e_1,\ldots,e_p)$ base de E, on choisit $\|x\|=\max_{1\leq k\leq p}|x_k|$ où $x=\sum_{k=1}^px_ke_k$. Soit $x\in E$, $\|u(x)\|=\left\|\sum_{k=1}^px_ku(e_k)\right\|\leq \sum_{k=1}^p|x_k|\|u(e_k)\|$ Posons alors $C=\sum_{k=1}^p\|u(e_k)\|$ alors $\|u(x)\|\leq C\|x\|$ et comme u est linéaire, $u\in \mathcal{C}^0(E,F)$

Corollaire.

E est un K espace vectoriel de dimension $p \in \mathbf{N}^*$ et $e = (e_1, \dots, e_p)$ une base de E. Pour $i \in [1, p]$ on pose $e_i^* : E \to K$ $x \mapsto x_i$ alors e_i^* est linéaire donc C^0

Théorème 2.5.11.

 E_1, \ldots, E_r , F des espaces vectoriels de dimensions finies et $\varphi: E_1 \times \cdots \times E_r \to F$ r-linéaire alors $\varphi \in \mathcal{C}^0(E_1 \times \cdots \times E_r, F)$

2.5.3 Applications aux séries en dimension finie

Théorème 2.5.12.

En dimension finie, la convergence absolue entraine la convergence

Démonstration. Soit E un K espace vectoriel normé de dimension finie et $(u_n) \in E^{\mathbf{N}}$. On note $U_n = \sum_{k=0}^n u_k$ et $a_n = \|u_n\|$. On suppose alors que $\sum a_n$ converge en on note $\alpha = \sum_{n=0}^{\infty} a_n$

- $\forall n \in \mathbb{N}, \|U_n\| \leq \sum_{k=0}^n a_k \leq \alpha \text{ donc } U_n \in Bf(0, \alpha) \text{ compact}$
- •(U_n) admet au plus 1 valeur d'adhérence car $\forall (n, p) \in \mathbb{N}^2$,

$$||U_p - U_n|| \le |A_p - A_n| \operatorname{donc} ||U_{\varphi(n)} - U_{\psi(n)}|| \le |A_{\varphi(n)} - A_{\psi(n)}| \xrightarrow{n} 0$$

Séries de matrices Soit $E = \mathcal{M}_p(K)$ muni d'une <u>norme d'algèbre</u> $(\operatorname{tq} \forall (A, B) \in E^2, \|AB\| \le \|A\|.\|B\|)$

- Si $A \in E$ alors $\sum \frac{1}{n!} A^n$ converge et on pose $\exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n$
- Si $A \in E$ telle que ||A|| < 1 alors $\sum A^n$ converge et $\sum_{n=0}^{+\infty} A^n = (I_p A)^{-1}$

2.6 Connexité par arcs

Chemin Pour $A \subset E$,

- Soit $x, y \in A$ on appelle <u>chemin</u> (ou chemin continu) de x à y <u>dans A</u> toute application $\gamma \in C^0([u,v],A)$ où u < v réels tels que $\gamma(u) = x$ et $\gamma(v) = y$.
- cation $\gamma \in \mathcal{C}^0([u,v],A)$ où u < v réels tels que $\gamma(u) = x$ et $\gamma(v) = y$.

 On définit une relation binaire \mathcal{R} sur A par $\forall (x,y) \in A^2 : x\mathcal{R}y \Leftrightarrow \text{il existe un chemin de } x \text{ à } y$.

Lemme 2.6.1.

 $\mid \mathcal{R}$ est une relation d'équivalence sur A

Composantes connexes On appelle <u>composante connexes par arcs</u> les classes d'équivalences dans A par \mathcal{R} .

Rappel.
$$\forall x \in A$$
, $Cl\{x\} = \{y \in A \mid x\mathcal{R}y\}$

Connexité par arcs A est dite <u>connexe par arcs</u> si $\forall (x,y) \in A^2$, $x \mathcal{R} y$ A est connexe par arcs si pour tout $x, y \in A$ il existe un chemin de x à y dans A.

Lemme 2.6.2.

 $A convexe \Rightarrow A connexe par arcs$

Partie étoilée $A \subset E$ est dite étoilée s'il existe $\alpha \in A$ tel que $\forall b \in A$, $[\alpha, b] \subset A$

Lemme 2.6.3.

| A étoilée $\Rightarrow A$ connexe par arcs

Cas de \mathbf{R} : $\forall A \subset \mathbf{R}$, A convexe $\Leftrightarrow A$ intervalle

Théorème 2.6.4.

| Dans \mathbf{R} , les parties connexes par arcs sont exactement les intervalles.

Démonstration. \implies Soient $a,b \in A$ avec $a \le b$ et $c \in [a,b]$ alors par TVI $\exists \theta \in [0,1]$ et $\gamma \in C^0([0,1],A)$ tels que $c = \gamma(\theta)$ donc $c \in A$. □

Théorème 2.6.5.

L'image continue d'un connexe par arcs est connexe par arcs Autrement dit soit $f \in C^0(A, F)$ avec F un espace vectoriel normé alors A connexe par arcs $\Rightarrow f(A)$ connexe par arcs

Démonstration. Soit $x,y \in f(A)$ avec $x' \in A$ tel que x = f(x') on pose $\tilde{\gamma} = f \circ \gamma$: $[0,1] \to f(a)$ alors $\tilde{\gamma}$ est \mathcal{C}^0 et $\tilde{\gamma}(0) = x$ et $\tilde{\gamma}(1) = y$ donc par définition f(A) est connexe par arcs. \square

Chapitre 3

Dérivation et intégration

<u>Cadre</u>: Soit $f: I \to E$ une fonction à valeur dans E un K espace vectoriel de dimension finie et I un intervalle réel non trivial (i.r.n.t.)

Contenu

Contenu		
3.1	Dérivée	
	Défnition	
	Fonction dérivable	
	Fonction continuement dérivable 40	
3.2	Dérivées successives	
	Classe C^k	
	Classe C^{∞}	
3.3	Fonctions convexes	
	Barycentre	
	Fonction convexe	
	Épigraphe	
	Fonction concave	
3.4	Intégration sur un segment	
	3.4.1 Fonctions continues par morceaux	
	Subdivision	
	Intégrale	
	3.4.2 Propriétés de l'intégrale	
	Notations	
	3.4.3 Inégalités	
3.5	Théorème fondamental	
3.6	Formules de <u>Taylor</u>	
	Négligeabilité	

3.1 Dérivée

Défnition Soit $a \in I$, f est <u>dérivable</u> en a s'il existe $\ell \in E$ tel que $\underbrace{\frac{f(x)-f(a)}{x-a}}_{x\to a; x\leqslant a} \ell$. On pose alors

$$f'(x) = \lim_{x \to a; x \leqslant a} \frac{f(x) - f(a)}{x - a}$$

Note. On note $\mathcal{T}_f(x,a) = \frac{f(x) - f(a)}{x - a}$ le "taux d'acroissement"

$$\operatorname{Rq}: \mathcal{T}_f(x,a) = \mathcal{T}_f(a,x)$$

Lemme 3.1.1.

Soit $a \in I$, (f dérivable au point a) \Rightarrow (f continue au point a)

Fonction dérivable $f: I \to E$ est dite dérivable (sur I) si $\forall a \in I$, f est dérivable au point

Dans ce cas on pose f': $A \mapsto E$ la dérivée de $A \mapsto f'(a)$ la dérivée de $A \mapsto f'(a)$

Fonction continuement dérivable $f:I\to E$ est dite continuement dérivable ou de classe C^1 si f est dérivable et $f' \in C^0(I, E)$. On note $C^1(I, E)$ l'ensemble de ces fonctions.

Lemme 3.1.2.

Foit deux fonctions $f,g:I\to E,\ \lambda\in K,\ a\in I.$ Si f et g sont dérivables au point a <u>alors</u>
(1) $\lambda f + g$ est dérivable au point a
(2) $(\lambda f + g)'(a) = \lambda f'(a) + g'(a)$

$$(2) (\lambda f + g)'(a) = \lambda f'(a) + g'(a)$$

Lemme 3.1.3.

On considère la composition $I \xrightarrow{f} E \xrightarrow{u} F$ et $a \in I$ avec E et Fdes espaces vectoriels normés de dimensions finies. On suppose $u \in$ $\mathcal{L}(E,F)$ et f dérivable au point a <u>alors</u>

(1) $u \circ f$ est dérivable au point a (2) $(u \circ f)'(a) = u(f'(a))$

(2)
$$(u \circ f)'(a) = u(f'(a))$$

Lemme 3.1.4.

Soit $a \in I$ et $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de E. Notons f(x) = $\sum_{k=1}^{p} f_k(x) \varepsilon_k. \text{ On a alors}$ $f \text{ est dérivable en } a \Leftrightarrow \forall k \in [1, p], f_k \text{ est dérivable en a}$ $Dans \text{ ce cas } f'(a) = \sum_{k=1}^{p} f'_k(a) \varepsilon_k$

Lemme 3.1.5.

 $C^{1}(I, E)$ est un K espace vectoriel comme sous-espace vectoriel de E^{I}

Théorème 3.1.6.

Soit
$$\Phi: E_1 \times \cdots \times E_p \to F$$
 p-linéaire avec E_1, \ldots, E_p de dimensions finies et $a \in I$. Soit $f_1: I \to E_1, \ldots, f_p: I \to E_p$ dérivables au point a

On pose $g: I \to F$
 $x \mapsto \Phi(f_1(x), \ldots, f_p(x))$

(1) g dérivable au point a
(2) $g'(a) = \sum_{i=1}^p \Phi(f_1(x), \ldots, f_i'(x), \ldots, f_p(x))$

Démonstration. Cas p = 2 scalaire : Soit $x \in I \setminus \{a\}$

$$\mathcal{T}_{g}(x,a) = \frac{1}{x-a} \left[B(f_{1}(x), f_{2}(x)) - B(f_{1}(a), f_{2}(a)) \right]$$
$$= B(\mathcal{T}_{f_{1}}(x,a), f_{2}(x)) + B(f_{1}(a), \mathcal{T}_{f_{2}}(x,a))$$

Puis comme B est bilinéaire, B est \mathcal{C}^0 donc $\mathcal{T}_g(x,a) \underset{x \to a; x \leqslant a}{\longrightarrow} B(f_1'(a), f_2(a)) + B(f_1(a), f_2'(a))$ donc g est dérivable au point g

On a ensuite le résultat pour une application p-linéaire par récurrence puis dans le cas vectoriel en décomposant selon toute les bases.

Théorème 3.1.7.

Soit la composition $I \xrightarrow{u} J \xrightarrow{v} \mathbf{K}$ avec I, J des i.r.n.t. et $a \in I$, $b = u(a) \in J$. Si u dérivable au point a et v dérivable au point b alors

(1) $v \circ u$ est dérivable au point a(2) $(v \circ u)'(a) = v'(u(a)) \times u'(a)$

Composition vers un espace vectoriel de dimension finie :

Corollaire.

Soit $I \xrightarrow{\varphi} J \xrightarrow{f} E$ avec I, J des i.r.n.t. et E un K espace vectoriel de dimension finie, $a \in I$, $b = \varphi(a) \in J$. Si φ dérivable au point a et f dérivable au point b alors

(1) $f \circ \varphi$ est dérivable au point a(2) $(f \circ \varphi)'(a) = f'(\varphi(a)) \times \varphi'(a)$

3.2 Dérivées successives

- On définit $f^{(0)} = f$
- Si f' est dérivable sur I on pose $f^{(1)} = f'$
- Pour $k \in \mathbb{N}$, si $f^{(k)}$ est bien définie et dérivable sur I on pose $f^{(k+1)} = (f^{(k)})'$

Classe C^k Soit $k \in \mathbb{N}$, f est dite k fois dérivable si $f^{(k)}$ existe.

Dans ce cas f est dite de <u>classe</u> \mathcal{C}^k si $\left\{ \begin{array}{l} f^{(k)} \text{ existe} \\ f^{(k)} \in \mathcal{C}^0(I, E) \end{array} \right.$

Classe \mathcal{C}^{∞} f est dite de classe \mathcal{C}^{∞} si $\forall k \in \mathbb{N}$ on a f est de classe \mathcal{C}^k

Lemme 3.2.1.

| Soit
$$f: I \to E$$
 alors $f \in \mathcal{C}^{\infty} \Leftrightarrow \forall k \in \mathbf{N}$, f est k fois dérivable

Théorème: Formule de Leibniz.

Soit
$$f, g: I \to E$$
 de classe C^n
alors fg est de classe C^n et $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$

Démonstration. Rappel : voir cours de sup

Plus généralement, si $B: E_1 \times E_2 \to F$ est bilinéaire avec E_1, E_2, F de dimensions finies et $(f,g) \in \mathcal{C}^n(I,E_1) \times \mathcal{C}^n(I,E_2)$ alors la formule à l'ordre n avec B reste vraie.

Lemme 3.2.2.

Soit
$$f: I \to E$$
 et $e = (e_1, ..., e_n)$ une base de E
Soit $f(x) = f_1(x)e_1 + \cdots + f_n(x)e_n$, $\forall x \in I$
alors $f \in C^k(I, E) \Leftrightarrow \forall j \in [\![1, p]\!]$, $f_j \in C^k(I, E)$

Lemme 3.2.3.

Soit
$$I \xrightarrow{\varphi} J \xrightarrow{f} F$$
, I, J i.r.n.t.
Si φ et f sont de classe C^k alors $\varphi \circ f \in C^k(I, F)$

3.3 Fonctions convexes

Barycentre Soit E un espace vectoriel et $x_1, \ldots, x_p \in E$ Soit $\alpha_1, \ldots, \alpha_p \in \mathbf{R}$ tels que $\sum_{k=1}^p \alpha_k \le 0$. On note $S = \sum_{k=1}^p \alpha_k$ On appelle <u>barycentre du système</u> $((x_1, \alpha_1), \ldots, (x_p, \alpha_p))$ le point $\sum_{k=1}^p \frac{\alpha_k}{S} x_k$ On parle d'isobarycentre si $\alpha_1 = \cdots = \alpha_k$

Note. On peut se ramener à $\sum_{k=1}^{p} \alpha_k = 1$ en posant $\alpha_k' = \frac{\alpha_k}{S}$

Théorème 3.3.1.

Tout ensemble convexe est stable par barycentration à <u>coefficients</u> positifs

Démonstration. Soit $X \subset E$ convexe. On démontre la propriété par récurrence avec $\mathcal{A}(n)$ le prédicat correspondant à la propriété pour n vecteurs de X.

On a A(1) et A(2). On suppose A(n) et on considére n+1 vecteurs de X et n+1 scalaires quelconques. On pose x le barycentre du système.

- Si $S = \sum_{k=1}^{n} \alpha_k \le 0$ alors on pose y le barycentre du système composé des n premiers termes et on a $x = \text{Bar}((y, S), (x_{n+1}, \alpha_{n+1})) \in X$ d'après $\mathcal{A}(2)$
- Si S = 0 alors $\alpha_{n+1} = 1$ et $x = x_{n+1} \in X$ D'où $\mathcal{A}(n+1)$

Fonction convexe Soit $f: I \to \mathbb{R}$ avec I i.r.n.t. alors f est dites convexe si

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1] f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$$

Interprétation géométrique : "L'arc reste sous la corde"

Épigraphe Soit $f: I \to \mathbf{R}$ on appelle épigraphe de f l'ensemble

$$E(f) = \{(x,y) \in I \times \mathbf{R} ; f(x) \leq y\}$$

Théorème 3.3.2.

Soit
$$f: I \to \mathbf{R}$$
 alors f est convexe $\Leftrightarrow E(f)$ est convexe

Démonstration.

Si f est convexe, on vérifie avec la définition que E(f) l'est aussi.

Réciproquement, si E(f) est convexe, alors pour $x, y \in I$ et $\lambda \in [0,1]$ avec $x \leq y$ on pose $z = (1 - \lambda)x + \lambda y \in [x,y]$ et on a $(x,f(x)),(y,f'y)) \in E(f)$ donc $c = (z,(1 - \lambda)f(x) + \lambda f(y)) \in E(f)$ ainsi $f(z) \leq (1 - \lambda)f(x) + \lambda f(y)$

Théorème : Inégalité de Jensen.

Si
$$f: I \to \mathbf{R}$$
 est convexe alors pour $x_1, \ldots, x_n \in I$ et $\lambda_1, \ldots, \lambda_n \in \mathbf{R}^+$ tels que $\sum_{i=1}^n \lambda_i = 1$ on a $f(\sum_{i=1}^n \lambda_i x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$

Démonstration. On pose $a_i = (x_i, f(x_i)) \in E(f)$ donc $\sum_{i=1}^n \lambda a_i \in E(f)$ car E(f) est stable par barycentration donc $\sum_{i=1}^n \lambda_i x_i \in I$ et finallement $f(\sum_{i=1}^n \lambda_i x_i) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$

Lemme des pentes.

Soit
$$f: I \to \mathbf{R}$$
 une application alors avec $p(a,b) = \frac{f(a) - f(b)}{a - b}$
 f convexe $\Leftrightarrow (\forall (a,b,c) \in I^3$ tels que $a < b < c$, $p(a,b) \leqslant p(a,c) \leqslant p(b,c)$

Théorème 3.3.3.

Soit $f: I \to \mathbf{R}$ dérivable sur I alors f est convexe sur I si et seulement si f' est croissante sur I

Démonstration. \implies Si f est convexe, soient $x,y \in I$ alors $\forall t \in]x,y[$, $p(x,t) \leqslant p(x,y)$ puis en passant à la limite $f'(x) \leqslant p(x,y)$ d'où $f'(x) \leqslant f'(y)$ par symétrie \implies On suppose f' croissante et $a < b < c \in I$. Par le théorème des accroissements finis on a p(a,b) = f'(x) et p(b,c) = f'(y) avec x et y dans les segments respectifs]a,b[et]b,c[ainsi $f'(x) \leqslant f'(y)$ d'où f est convexe avec le Lemme des pentes. □

Corollaire.

Soit
$$f \in \mathcal{D}^2(I, \mathbf{R})$$
 alors f est convexe $\Leftrightarrow f'' \geqslant 0$

Fonction concave Soit $f: I \to \mathbb{R}$ avec I un i.r.n.t. alors f est dite <u>concave</u> si -f est convexe.

Théorème 3.3.4.

| Soit
$$f: I \to \mathbf{R}$$
 dérivable et convexe alors
| $\forall x_0, x \in I$, $f(x) \ge f(x_0) + (x - x_0)f'(x_0)$

"Le graphe de f est au dessus de ses tangentes"

Démonstration. Soit $x, x_0 \in I$

- Si $x = x_0$ on a bien le résultat.
- Si $x > x_0$ alors $p(x, x_0) = f'(\theta)$ où $\theta \in]x, x_0[$ donc $f'(\theta) \ge f'(x_0)$
- Si $x < x_0$ même raisonnement.

3.4 Intégration sur un segment

<u>Cadre</u>: $f: I \to E$ avec I intervalle réel non trivial et E de dimension finie.

3.4.1 Fonctions continues par morceaux

Subdivision Soit a < b réels et $f : [a,b] \to E$ On appelle subdivision de [a,b] toute suite finie $(\alpha_0,\ldots,\alpha_n) = \sigma$ telle que $a = \alpha_0 < \cdots < \alpha_n = b$ **Continuité par morceaux** Soit a < b réels et $f : [a, b] \rightarrow E$

f est dite continue par morceaux si il existe une subdivision $\sigma = (\alpha_0, \dots, \alpha_n)$ de [a, b] telle que $\forall k \in [0, n-1]$ la restriction $f|_{]\alpha_k,\alpha_{k+1}[}$ est prolongeable en une fonction continue sur le segment $[\alpha_k, \alpha_{k+1}]$

Définition bis Soit *I* i.r.n.t. et $f: I \rightarrow E$

On dit que f est continue par morceaux (\mathcal{C}_{pm}^0) si sa restriction à tout segment de I est continue par morceaux

$$C_{pm}^{0}([a,b],E)$$
 et $C_{pm}^{0}(I,E)$ sont des K espaces vectoriels

Soit
$$\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$$
 une base de E. On note $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$ alors f est continue par moreceaux $\Leftrightarrow \forall k \in [1, p], f_k \in \mathcal{C}^0_{pm}(I, K)$

Intégrale Soit a < b réels et $f \in C^0_{pm}([a, b], E)$

On fixe $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de E et on note $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$, $\forall x \in [a,b]$ On a alors

$$\int_{a}^{b} f = \sum_{k=1}^{p} \left(\int_{a}^{b} f_{k} \right) \varepsilon_{k}$$

Propriétés de l'intégrale

Démonstration. On se ramène au cas scalaire en écrivant $f(x) = \sum_{k=1}^{p} f_k(x) \varepsilon_k$

Lemme 3.4.4.

Soit
$$a < b$$
 réels et $f, g \in C^0_{pm}([a,b], E)$ tels que $\{x \in [a,b] \mid f(x) \leq g(x)\}$ est \underline{fini} alors $\int_a^b f = \int_a^b g$

Notations Soit *I* i.r.n.t. , $f \in C_{vm}^0(I, E)$ et $(a, b) \in I^2$

- Si a < b on a $\int_a^b f(t)dt \in E$
- Si a > b on pose $\int_a^b f(t)dt = -\int_b^a f(t)dt$
- Si a = b on pose $\int_a^b f(t)dt = 0$

Théorème : Relation de Chasles.

Soit
$$f \in C^0_{pm}(I, E)$$
 $(a, b, c) \in I^3$ alors
$$\int_a^b f(t)dt + \int_b^c f(t)dt = \int_a^c f(t)dt$$

Démonstration. Connu sur les coordonnées.

3.4.3 Inégalités

Théorème 3.4.5.

Soit
$$a \leqslant b$$
, $f \in \mathcal{C}^0_{pm} \big([a,b], E \big)$ avec E un espace vectoriel normé de dimension finie alors $\left\| \int_a^b f(x) dx \right\| \leqslant \int_a^b \|f(x)\| dx$

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \ \text{Vu} \ \left\| \sum_{k=0}^{n-1} \frac{b-a}{n} f(a+k\frac{b-a}{n}) \right\| \ \leqslant \ \sum_{k=0}^{n-1} \frac{b-a}{n} \left\| f(a+k\frac{b-a}{n}) \right\|, \ \text{d'après les r\'esultats sur les sommes de } \underline{\text{Riemann}} \ \text{comme les inegalit\'es larges passent à la limite on a} \\ \left\| \int_a^b f \right\| \leqslant \int_a^b \|f\| \end{array}$

Théorème de positivité amélioré.

Soit
$$f:[a,b] \to \mathbf{R}$$
 telle que $f \in C^0([a,b],E)$, $f \geqslant 0$ sur $[a,b]$ et $a < b$
Alors $\int_a^b f(x) dx = 0 \iff \forall x \in [a,b]$, $f(x) = 0$

Corollaire.

Sous les même hypothèse on a si f n'est pas identiquement nulle sur [a,b] alors $\int_a^b f(x)dx > 0$

3.5 Théorème fondamental

Théorème fondamental de l'analyse.

Soit I i.r.n.t.,
$$a \in I$$
 et $f \in C^0(I, E)$ on pose $\forall x \in I$, $F(x) = \int_a^b f(t)dt$
Alors $F \in C^1(I, \mathbf{R})$ et $\forall x \in I$, $F'(x) = f(x)$

Démonstration. Soit $x_0 \in I$ et $x \in I \setminus \{x_0\}$

Posons
$$\Delta(x) = \frac{1}{x-x_0} \left(F(x) - F(x_0) \right)$$
 alors si $x_0 < x$, $\|\Delta(x) - f(x_0)\| \le \frac{1}{|x-x_0|} \int_{x_0}^x \|f(t) - f(x_0)\|$
Soit $\varepsilon > 0$, soit $\delta > 0$ tel que $\forall x \in I$, $|x - x_0| < \delta \Rightarrow \|f(x) - f(x_0)\| < \varepsilon$ alors $\|\Delta(x) - f(x_0)\| \le \frac{1}{x-x_0} \int_{x_0}^x \varepsilon dt = \varepsilon$
On a de même pour $x_0 > x$

Ainsi
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ tel que $\forall x \in I \setminus \{x_0\}$, $|x - x_0| < \delta \Rightarrow ||f(x) - f(x_0)|| \leqslant \varepsilon$ c'est à dire $\delta(x) \underset{x \to x_0, x \leqslant x_0}{\longrightarrow} f(x_0)$ donc F est dérivable au point x_0 avec $F'(x_0) = f(x_0)$

Corollaire.

Soit
$$h \in C^1(I, E)$$
 et $(a, b) \in I^2$ Alors $\int_a^b h'(x) dx = [h]_a^b$

Note. Si $f \in \mathcal{C}^0_{vm}(I, E)$, $a \in I$ alors $F(x) = \int_a^x f(t)dt$ bien définie $\forall x \in I$ et $F \in \mathcal{C}^0(I, E)$

Théorème : Inégalité des accroissements finis.

Soit
$$f \in C^1([a,b], E)$$
, $a < b$ et $M \in \mathbb{R}^+$, on suppose $\forall x \in [a,b]$, $||f'(x)|| \leq M$
Alors $||f(b) - f(a)|| \leq M |b-a|$

Démonstration.
$$f(b) - f(a) = \int_a^b f'(t)dt$$
 car f est \mathcal{C}^1 donc $||f(b) - f(a)|| \le \int_a^b ||f'(t)|| dt \le M(b-a)$

Théorème 3.5.1.

Soit
$$a < b$$
 réels et $f \in C^0_{pm}([a,b],E)$
Soit $u \in \mathcal{L}(E,F)$ avec E,F de dimension finie. Alors $\int_a^b u \circ f = u \left(\int_a^b f \right)$

$$\begin{array}{l} \textit{D\'{e}monstration.} & \underline{\text{Cas } 1 : \text{soit } f \in \mathcal{C}^0\big([a,b], E\big)} \text{ Posons } \forall [a,b] \\ G(x) = \int_a^x u \circ f \text{ , } \Phi(x) = \int_a^x f \text{ et } \Delta(x) = G(x) - u(\Phi(x)) \\ \Delta \text{ est d\'{e}rivable et } \forall x \in [a,b], \ \Delta'(x) = (u \circ f)(x) - u(\Phi'(x)) = 0 \text{ donc } \Delta(x) = \text{cte} = \Delta(a) = 0 \\ \underline{\text{Cas } 2 : \text{soit } f \in \mathcal{C}^0_{pm}\big([a,b], E\big)} \text{ Soit } \sigma = (\alpha_0, \dots, \alpha_p) \text{ une subdivision adapt\'{e}} \\ \forall i \in [0,p-1], f|_{]\alpha_i,\alpha_{i+1}[} = \varphi_i|_{]\alpha_i,\alpha_{i+1}[} \text{ où } \varphi_i \in \mathcal{C}^0\big([\alpha_i,\alpha_{i+1}], E\big) \\ \text{alors } u\left(\int_a^b f\right) = \sum_{k=0}^{p-1} u\left(\int_{\alpha_i}^{\alpha_{i+1}} \varphi_i\right) = \sum_{k=0} p-1 \int_{\alpha_i}^{\alpha_{i+1}} u \circ \varphi_i = \sum_{k=0}^{p-1} \int_{\alpha_i}^{\alpha_{i+1}} u \circ f = \int_a^b u \circ f d' \text{ où le r\'{e}sultat.} \end{array}$$

Formules de Taylor 3.6

Théorème : Formule de Taylor avec reste intégral.

Soit
$$n \in \mathbb{N}$$
, $f \in \mathcal{C}^{n+1}(I, E)$ et $(a, x) \in I^2$ avec I i.r.n.t. et dim $E < \infty$
Alors $f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \mathcal{R}_n(a, x)$
où $\mathcal{R}_n(a, x) = \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) dt$

Démonstration. On montre T(n) le théorème au rang n par récurrence :

•
$$T(0)$$
 : Soit $f \in C^1(I, E)$ alors $f(x) = f(a) + \int_a^x f'(t)dt$
• Soit $n \in \mathbb{N}$ On suppose $T(n)$ et on considère $f \in C^{n+2}(I, E)$
d'après $T(n)$: $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \mathcal{R}_n(a, x)$
avec $R_n(a, x) = \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a)$ d'où $T(n+1)$

Corollaire : Inégalité de Taylor-Lagrange.

Sous les mêmes hypothèses on a
$$f(x) \leqslant \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{|x-a|^{n+1}}{(n+1)!} \sup_{x \in [x,a]} \left\| f^{(n+1)}(x) \right\|$$

Négligeabilité Soit $f: I \to E$; $\varphi: I \to \mathbf{R}$; $a \in \overline{I}$, on dit que $f(x) = \circ_{x \to a}(\varphi(x))$ s'il existe r > 0 et $\delta : V = I \cap]a - r, a + R[\setminus \{a\} \rightarrow \mathbf{R} \text{ tels que}]$

$$\forall x \in V, \ \|f(x)\| = \delta(x) \times \varphi(x) \text{ et } \delta(x) \xrightarrow[r \to a]{} 0$$

Théorème d'intégration des DL.

Soit
$$f \in C^0(I, E)$$
; $x_0 \in I$; I i.r.n.t.
 E un EVN de dimension finie. On suppose que f admet un DL en x_0
 $f(x) = a_0 + (x - x_0)a_1 + \dots + (x - x_0)^n a_n + \circ_{x \to x_0} ((x - x_0)^n)$
Soit g une primitive de f sur I . Alors
 $g(x) = g(x_0) + (x - x_0)a_0 + \frac{(x - x_0)^2}{2}a_1 + \dots + \frac{(x - x_0^{n+1})^n}{n+1}a_n + \circ_{x \to x_0} ((x - x_0)^{n+1})$
où $a_0, a_1, \dots, a_n \in E$

$$\begin{array}{l} \textit{D\'{e}monstration.} \ \ \text{On note} \ r(x) = f(x) - \sum_{k=0}^n (x-x_0)^k a_k \left(\in \mathcal{C}^0(I,E) \right) \\ g(x) - g(x_0) = \int_{x_0}^x f(t) dt = \sum_{k=0}^n \frac{(x-x_0)^{k+1}}{k+1} a_k + R(x) \ \text{où} \ R(x) = \int_{x_0}^x r(t) dt \\ \text{Soit} \ \varepsilon > 0 \ ; \text{soit} \ \delta > 0 \ \text{tel que} \ \forall t \in I, \ |t-x_0| < \delta \Rightarrow \|r(t)\| \leqslant \varepsilon |t-x_0|^n \\ \text{Soit} \ x \in I, \text{ on suppose} \ |x-x_0| < \delta \ \text{et} \ x \leqslant x_0 \ \text{alors} \ \|R(x)\| \leqslant \int_{x_0}^x \varepsilon (t-x_0)^n dt = \varepsilon \frac{(x-x_0)^{n+1}}{n+1} \leqslant \varepsilon (x-x_0)^{n+1} \\ \text{Ainsi} \ \forall x \in I \backslash \{x_0\}, \ |x-x_0| < \delta \Rightarrow \frac{\|R(x)\|}{|-x_0|^{n+1}} \leqslant \varepsilon \ \text{donc} \ R(x) = \circ_{x \to x_0} \left((x-x_0)^{n+1} \right) \end{array}$$

Théorème : Développement limité de Taylor-Young.

Soit
$$f \in C^n(I, E)$$
; $x_0 \in I$ alors
$$f(x) = \sum_{k=0}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + \circ_{x \to x_0} ((x - x_0)^n)$$

Démonstration. On démontre T(n) le théorème au rang n par récurrence :

on a
$$f'(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} (f')^{(k)}(x_0) + \circ_{x \to x_0} ((x-x_0)^n)$$

Demonstration. On demontre
$$I(n)$$
 le theoreme au rang n par recurrence :

• $T(0): \forall f \in \mathcal{C}^0(I, E), \ f(x) = f(x_0) + \circ_{x \to x_0}(1)$

• : Soit $n \in \mathbb{N}$, on suppose $T(n)$ et on considère $f \in \mathcal{C}^{n-1}(I, E)$ on a $f'(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} (f')^{(k)}(x_0) + \circ_{x \to x_0} ((x-x_0)^n)$ On applique alors le théorème précédent à f' qui est bien continue sur I $f(x) = f(x_0) + \sum_{k=0}^n \frac{(x-x_0)^{k+1}}{(k+1)!} f^{(k+1)}(x_0) + \circ_{x \to x_0} ((x-x_0)^{n+1})$

Chapitre 4

Suites de fonctions

Cadre : *E*, *F des espaces vectoriels normés de dimensions finies* ; $A \subset E$.

 $et f_n : A \longrightarrow F ; f : A \longrightarrow F$

Contenu

002202202		
4.1	Convergences	51
	Convergence simple	51
	Convergence uniforme	51
	Norme infinie	53
4.2	Série de fonctions	54
	Convergence normale	54
4.3	Intégration et dérivation	56
	4.3.1 Cas général	56
	4.3.2 Application aux matrices	57
4.4	Approximations uniformes	58

4.1 Convergences

Convergence simple Soit $f \in (F^A)$ et $(f_n) \in (F^A)^{\mathbf{N}}$ On dit que (f_n) converge simplement vers f sur A si $\forall x \in A$, $f_n(x) \underset{n \to +\infty}{\longrightarrow} f(x)$

Convergence uniforme

Soit $f \in (F^A)$ et $(f_n) \in (F^A)^{\mathbf{N}}$ On dit que (f_n) converge uniformément vers f sur A si $\forall \varepsilon > 0$, $\exists n_0 \in \mathbf{N}$ tel que $\forall n \geqslant n_0$; $\forall x \in A$; $||f_n(x) - f(x)|| \leqslant \varepsilon$

Lemme 4.1.1.

La convergence uniforme entraine la convergence simple.

Attention! La convergence simple ne préserve pas la continuité!

Théorème 4.1.2.

- On suppose $a \in A$; $f: A \to F$; $\forall n \in \mathbb{N}$, $f_n: A \to F$ et

 $\forall n \in \mathbb{N}$, f_n est C^0 au point a

 (f_n) CVU sur A vers f

Démonstration. Soit $\varepsilon > 0$

Vu la CVU, soit $n_0 \in \mathbb{N}$ tel que $\forall x \in A$, $||f_n(x) - f(x)|| \leq \frac{\varepsilon}{3}$ Vu f_{n_0} est \mathcal{C}^0 au point a, soit $\delta > 0$ tel que $\forall x \in A$, $||x - a|| < \delta \Rightarrow ||f_{n_0}(x) - f_{n_0}(a)|| < \frac{\varepsilon}{3}$ On a alors $d(f(x), f(a)) \leq d(f(x), f_{n_0}(x)) + d(f_{n_0}(x), f_{n_0}(a)) + d(f_{n_0}(a), f(a)) < \varepsilon$ Ainsi f est C^0 au point a

Corollaire.

Toute limite uniforme sur A d'une suite de fonctions continues sur A est continue sur A.

Corollaire.

- Soit $f: A \to F$; $f_n: A \to F$, $\forall n \in \mathbb{N}$. Soit $a \in A$ On suppose que $\bullet \ \forall n \in \mathbb{N}$, f_n est \mathcal{C}^0 au point a $\bullet \ (f_n)$ converge uniformément vers f sur un voisinage relatif de a dans A Alors f est \mathcal{C}^0 au point a

Le Lemme suivant permet d'établir l'absence de convergence uniforme

Lemme 4.1.3.

Théorème de la double limite.

- Soit $f, f_n : A \to F$; $a \in A$ On suppose que $\forall n \in \mathbb{N}$, $\exists b_n \in F$ tel que $f_n(x) \xrightarrow[x \to a]{} b_n$ (f_n) converge uniformément sur A vers fAlors $\exists \beta \in F$ tel que $b_n \xrightarrow[n]{} \beta$ avec $f(x) \xrightarrow[x \to a]{} \beta$

Note. En particulier, on a $\lim_{x\to a} \left(\lim_{n\to +\infty} f_n(x)\right) = \lim_{n\to +\infty} \left(\lim_{x\to a} f_n(x)\right)$

Attention! C'est faux sans la convergence uniforme!

4.1. CONVERGENCES 53

Démonstration. On suppose tout d'abord que $b_n \to \beta$. Soit alors $\varepsilon > 0$ puis $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \ d(f(x), f_n(x)) < \frac{1}{3}\varepsilon$ et $d(b_n, \beta) < \frac{1}{3}\varepsilon$ On peut alors considérer $\delta > 0$ tel que $\forall x \in B(a, \delta)$, on a $d(f_{n_0}(x), b_{n_0}) < \frac{1}{3}\varepsilon$. Ainsi, pour un tel x on a $d(f(x), \beta) < \varepsilon$ donc $f(x) \xrightarrow[x \to \alpha]{} \beta$

Avec la convergence uniforme on a $p \in \mathbb{N}$ tel que $\forall n \geqslant p, \ \forall x \in A, \ \|f_n(x) - f(x)\| \leqslant 1$ ainsi $\|f_n(x) - f_p(x)\| \leqslant 2$ et par passage à la limite $b_n \in B(b_p,2)$ est compact car F est de dimension finie. Il suffit alors de montrer que (b_n) admet au plus une valeur d'adhérence : Si $b_{\varphi(n)} \xrightarrow{n} \beta_1$ et $b_{\psi(n)} \xrightarrow{n} \beta_2$ pour φ et ψ deux extractrices, alors en appliquant le début de la démo on a $f(x) \xrightarrow{x \to a} \beta_1$ et $f(x) \xrightarrow{x \to a} \beta_2$ donc $\beta_1 = \beta_2$ et par théorème $b_n \xrightarrow{n} \beta$.

Norme infinie Soit φ : A(\subset E) \to F, $a \neq \emptyset$ et φ bornée alors on pose

$$\|\varphi\|_{\infty} = \sup_{x \in A} \|\varphi(x)\|$$

Lemme 4.1.4.

Soit
$$f, f_n : A \to F$$
 alors
$$(f_n) \ CVU \ sur \ A \ vers \ f \Leftrightarrow \begin{cases} \|f_n - f\|_{\infty} \ est \ bien \ définie \ APCR \\ \|f_n - f\|_{\infty} \xrightarrow[x \to +\infty]{} 0 \end{cases}$$

Cas des fonctions bornées :

Soit
$$\mathscr{B}(A,F) = \{f : A \to F ; f \text{ est born\'ee } \}$$
 alors $\begin{cases} 1) \mathscr{B}(A,F) \text{ est un } K \text{ espace vectoriel} \\ 2) \|.\|_{\infty} \text{ est une norme sur } \mathscr{B}(A,F) \end{cases}$

Note. On dit que $\|.\|_{\infty}$ est la norme de la convergence uniforme.

4.2 Série de fonctions

Soit
$$(g_n) \in (F^A)^{\mathbb{N}}$$
 on pose $f_n = g_0 + g_1 + \dots + g_n \ (: A \to F)$

Étudier la série de fonction $\sum_{n\geqslant 0} g_n$ revient à étudier la suite de fonction (f_n) .

On dit alors que $\sum g_n$ converge simplement (resp. uniformément) sur A si (f_n) converge simplement (resp. uniformément) sur A.

Lorsque $\sum g_n$ converge simplement sur A, on peut considérer les résultats suivants :

$$\begin{cases} \forall x \in A, \ f_n(x) = \sum_{k=k}^n g_k(x) \xrightarrow{n} f(x) \text{ ainsi } \sum g_n(x) \text{ converge et } \sum_{n=0}^\infty g_k(x) = f(x) \\ \text{On pose } \sum_{n=0}^\infty g_k : \ \frac{A \to F}{x \mapsto \infty g_k(x)} \text{ et on pose } R_n = \sum_{k=n+1}^{+\infty} g_k \end{cases}$$

Lemme 4.2.1.

 $\sum g_n$ converge uniformément sur A $\Leftrightarrow \sum g_n$ converge simplement sur A et (R_n) converge uniformément sur A

Convergence normale Soit $g_n : A \to F$, $\forall n \in \mathbb{N}$ $\sum g_n$ est dite normalement convergente sur A si

- 1) $||g_n||_{\infty}$ existe à partir d'un certain rang n_0
- 2) $\sum \|g_n\|_{\infty}$ converge

Théorème : Caractérisation de la convergence normale.

$$\sum_{n} converge \ normalement \ sur \ A$$

$$\Leftrightarrow Il \ existe \ n_0 \in \mathbf{N} \ et \ (\alpha_n) \ une \ suite \ r\'eelle \ tels \ que$$

$$\stackrel{\scriptscriptstyle{(1)}}{\bowtie} \forall n \geqslant n_0, \ \forall x \in A, \ \|g_n(x)\| \leqslant \alpha_n$$

$$\stackrel{\scriptscriptstyle{(2)}}{\bowtie} \sum_{n \geqslant n_0} \alpha_n \ converge$$

Théorème 4.2.2.

La convergence normale entraine la convergence uniforme et la convergence absolue en tout point.

Démonstration. Soient n_0 et (a_n) qui vérifient la caractérisation de la convergence normale . Soit $x \in A$

 $\forall n \geqslant n_0, \ 0 \leqslant \|g_n(x)\| \leqslant a_n \text{ or } \sum a_n \text{ converge donc } \sum \|g_n(x)\| \text{ converge }$ Donc $\sum g_n(x)$ converge absolument et vu la dimension finie de F, $\sum g_n(x)$ converge Ainsi $\sum g_n$ converge simplement.

Soit
$$n \ge n_0$$
; soit $x \in A$, on a $R_n(x) = \sum_{k=n+1}^{+\infty} g_k(x)$ donc $||R_n(x) - 0|| \le \sum_{k=n+1}^{+\infty} ||g_k(x)||$ leq $\sum_{k=n+1}^{+\infty} a_k$

Or $\rho_n \underset{n}{\to} 0$ donc $||R_n - 0||_{\infty} \underset{n}{\to} 0$ ainsi par théorème (R_n) converge uniformément sur A vers 0

On a alors $\sum g_n$ converge uniformément sur A.

Théorème 4.2.3.

Soit
$$g_n: A \to F$$
, $\forall n \in N$; $a \in A$ On suppose que $\bullet \forall n \in N$, g_n est \mathcal{C}^0 en a $\bullet \sum g_n$ converge uniformément sur A alors $\sum_{n=0}^{\infty} g_k$ est \mathcal{C}^0 au point a

Démonstration. $f_n = \sum_{k=0}^n g_k$ est \mathcal{C}^0 au point a et $f_n \to f$ uniformément sur A où $f = \sum_{n=0}^\infty g_k$ Alors par théorème , f est \mathcal{C}^0 au point a.

Théorème de la double limite (Séries).

Soit
$$g_n: A \to F$$
, $\forall n \in \mathbb{N}$; $a \in \overline{A}$
On suppose que $\forall n \in \mathbb{N}$, $g_n(x) \xrightarrow[x \to a]{} c_n \in F$ et $\sum g_n$ converge uniformément sur A

$$\underbrace{alors}_{(2)} \sum_{n=0}^{\infty} g_n(x) \xrightarrow[x \to a]{} \sum_{n=0}^{\infty} c_n$$

En particulier $\lim_{x\to a} \sum_{n=0}^{\infty} g_k(x) = \sum_{n=0}^{\infty} \lim_{x\to a} f_n(x)$

Démonstration. On pose $f_n = \sum_{k=0}^n g_k$ et $f = \sum_{n=0}^\infty g_k$ Ainsi $f_n \underset{n}{\to} f$ uniformément sur A et $\forall n \in \mathbb{N}$, $f_n \underset{x \to a}{\longrightarrow} \sum_{k=0}^n c_k = b_n$

Par théorème de la double limite pour les suites

Far théorème de la double limite pour les suites
$$(1) \ \exists \beta \in F : b_n \underset{n}{\rightarrow} \beta$$

$$(2) \ f(x) \underset{x \rightarrow a}{\longrightarrow} \beta$$

$$(3) \ donc \ \sum c_k \ converge \ et \ \beta = \sum_{n=0}^{\infty} c_k$$

$$(2) \ donc \ \sum_{n=0}^{\infty} g_k(x) \underset{x \rightarrow a}{\longrightarrow} \sum_{n=0}^{\infty} c_k$$

4.3 Intégration et dérivation

Cas général 4.3.1

Question: Si
$$\forall t \in [a,b]$$
, $f_n(t) \xrightarrow{n} f(t)$, a-t-on $\int_a^b f_n(t) dt \xrightarrow{n} \int_a^b f(t) dt$?

 $\underline{\text{non!}}$ Exemple:
 $\overline{f_n : \mathbf{R}^+} \to \mathbf{R}$ telle que si $0 \leqslant x \leqslant \frac{1}{n}$, $f_n(x) = n^2x$; si $\frac{1}{n} \leqslant x \leqslant \frac{2}{n}$, $f_n(x) = 2n - n^2x$; si $x \geqslant \frac{2}{n}$, $f_n(x) = 0$

Théorème 4.3.1.

Soit
$$a < b$$
 réels; $dimF < \infty$. On suppose $\forall n \in \mathbb{N}^*$, $f_n \in \mathcal{C}^0([a,b],F)$ et (f_n) converge uniformément sur $[a,b]$ vers f

Alors
$$abla_{(a)} f \in \mathcal{C}^0([a,b],F)$$

$$abla_{(a)} \int_a^b f_n(x) dx \xrightarrow{n} \int_a^b f(x) dx$$

Formellement $\lim_{n \to +\infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to +\infty} f_n(x) dx$

Démonstration. (1) Connu. (2) On note
$$u_n = \int_a^b f_n \in F$$
 et $l = \int_a^b f \in F$ Alors $||u_n - l|| \ leq \int_a^b ||f_n(x) - f(x)|| \ dx \le \int_a^b ||f_n - f||_\infty \ dx = (b-a) \ ||f_n - f||_\infty \xrightarrow{n} 0$ Par théorème des gendarmes $||u_n - l|| \xrightarrow{n} 0$ soit $u_n \xrightarrow{n} l$

Lemme 4.3.2.

Soit
$$\varphi_n \in C^0(I, F)$$
, $\forall n \in \mathbf{N}$; I i.r.n.t.; dim $F < \infty$; $a \in I$
On suppose que $\varphi_n \xrightarrow{n} \varphi$ uniformément sur tout segment de I et on pose
$$\Phi_n(x) = \int_a^x \varphi_n(t) dt ; \Phi(x) = \int_a^x \varphi(t) dt$$
Alors $\Phi_n \xrightarrow{n} \Phi$ uniformément sur tout segment de I .

On suppose
$$\mid \bullet \forall n \in \mathbb{N}, f_n \in \mathcal{C}^1(I, F) \mid \bullet (f_n) \text{ converge simplement sur } I \text{ vers } f \mid \bullet (f'_n) \text{ converge vers } h \text{ uniformément sur tout segment de } I$$

Alors $\mid \bullet (f_n) \mid \bullet$

Démonstration. Soit $a \in I$, $\forall x \in I$, $f_n(x) - f_n(a) = \int_a^x f_n'(t)dt = \Phi_n(x)$, $\forall n \in \mathbb{N}$ D'où $f(x) - f(a) = \int_a^x h dt = \Phi(x)$ vu la CVU sur [a, x] (éventuellement [x, a]) et Φ est \mathcal{C}^1 avec $\Phi' = h$

donc $f = f(a) + \Phi$ est C^1 et f' = h

Soit S un segment inclu dans I, vu (Φ_n) converge vers Φ uniformément sur tout segment

$$\forall n \in \mathbf{N}, \ 0 \leqslant \|f_n - f\|_{\infty, S} \leqslant \|f_n(a) - f(a)\| + \|\Phi_n - \Phi\|_{\infty, S} \underset{n}{\to} 0$$

Attention : La convergence uniforme ne conserve pas la dérivabilité!

Tollaire.

On suppose
$$\begin{vmatrix}
\bullet & \forall n \in \mathbf{N}, g_n \in \mathcal{C}^1(I, F) \\
\bullet & \sum g_n \text{ converge simplement sur } I \\
\bullet & \sum g'_n \text{ converge uniformément sur tout segment de } I
\end{vmatrix}$$
Alors
$$\frac{(1)}{(2)} \sum_{n=0}^{\infty} g_n \in \mathcal{C}^1(I, F) \text{ et } \left(\sum_{n=0}^{\infty} g_n\right)' = \sum_{n=0}^{\infty} g'_n$$

4.3.2 Application aux matrices

Lemme 4.3.4.

Soit
$$A \in \mathcal{M}_n(K)$$
, on pose ϕ $\begin{pmatrix} \mathbf{R} & \longrightarrow & \mathcal{M}_p(K) \\ t & \longmapsto & \exp(At) \end{pmatrix}$

Alors $\phi \in \mathcal{C}^1(\mathbf{R}, \mathcal{M}_p(K))$ et $\forall t \in \mathbf{R}$, $\phi'(t) = A.e^{tA} = e^{tA}.A$

On suppose
$$\begin{cases} \sum U_n \text{ converge dans } \mathcal{M}_p(K) \\ M \in \mathcal{M}_p(K) \\ Alors \sum M.U_n \text{ converge et } \sum_{n=0}^{\infty} M.U_n = M. \sum_{n=0}^{\infty} U_n \end{cases}$$

Lemme 4.3.6.

$$\phi: t \to e^{tA} \ est \ \mathcal{C}^{\infty} \ sur \ \mathbf{R}$$

Soit
$$u \in \mathcal{L}(E)$$
 avec $\dim(E) < \infty$, on pose $\varphi \begin{pmatrix} \mathbf{R} & \longrightarrow & \mathcal{L}(E) \\ t & \longmapsto & \exp(tu) \end{pmatrix}$
Alors $\varphi \in \mathcal{C}^1(\mathbf{R}, \mathcal{L}(E))$ et $\forall t \in \mathbf{R}$, $\varphi'(t) = u \circ e^{tu} = e^{tu} \circ u$

4.4 Approximations uniformes

Théorème de Weierstrass.

Toute fonction $f \in C^0([a,b],K)$ <u>continue</u> sur un <u>segment</u> y est limite uniforme

d'une suite de fonctions polynomiales.

Démonstration. Sera vu dans le cours de probabilité

On note $\mathcal{E}([a,b],\mathbf{R})([a,b],F)$ l'ensemble des fonctions en escalier sur [a,b].

Lemme 4.4.1.

$$\left| \begin{array}{l} f \ est \ limite \ uniforme \ d'une \ suite \ de fonctions \ en \ escalier \Leftrightarrow \\ \forall \varepsilon > 0, \ \exists \varphi \in \mathcal{E} \big([a,b], \mathbf{R} \big) \ telle \ que \ \| \varphi - f \|_{\infty} \leqslant \varepsilon \end{array} \right.$$

Théorème 4.4.2.

Toute fonction continue par morceaux sur un segment y est limite uniforme d'une suite de fonctions en escalier.

Démonstration. Soit a < b des réels.

 $\underline{1^{\circ} \text{ cas}}$: Soit $f \in \mathcal{C}^0([a,b],F)$; soit $\varepsilon > 0$, on sait que f est uniformément continue sur [a,b], soit donc $\delta > 0$ tel que $\forall (x,y) \in [a,b]^2$, $|x-y| < \delta \Rightarrow \|f(x) - f(y)\| < \varepsilon$. Soit $n \in \mathbb{N}$ tel que $\frac{b-a}{n} < \delta$.

Posons alors
$$x_k = a + k \frac{b-a}{n}$$
, $k \in [0, n-1]$ et φ $\left(\begin{array}{ccc} [a,b] & \longrightarrow & F \\ x & \longmapsto & \left\{\begin{array}{ccc} f(x_k) & \text{si } x \in [x_k, x_{k+1}] \\ f(b) & \text{si } x = b \end{array}\right)$

Ainsi $\varphi \in \mathcal{E}([a,b],\mathbf{R})$ et $\|\varphi - f\|_{\infty} \leqslant \varepsilon$ d'où cqfd

<u>Cas général</u>: Soit $f \in \mathcal{C}^0_{pm}([a,b],F)$; soit donc (a_0,\ldots,a_p) une subdivision de [a,b] telle que $\forall i \in [0,p-1]$, $f|_{]a_i,a_{i+1}[} = f_i|_{]a_i,a_{i+1}[}$ où $f_i \in \mathcal{C}^0([a,b],F)$.
On a alors le résultat en itérant le cas précédant.

$$\mathcal{E}\big([a,b],\mathbf{R}\big)\big([a,b],F\big)$$
 est dense dans $\mathcal{C}^0_{pm}\big([a,b],F\big)$

Chapitre 5

Intégrales généralisées

Contenu		
5.1	Intégrale convergente	59
	Définition	59
	Exemples de référence	60
	Intégrale généralise sur un intervalle ouvert	61
5.2	Convergence absolue	62
	Définition	62
5.3	Espace des fonctions intégrables sur <i>I</i>	62
	Notation	63
5.4	Calculs	63
5.5	Comparaison série-intégrale	64
5.6	Intégration des relations de comparaison	64

5.1 Intégrale convergente

Définition Soit $f \in C^0_{pm}([a,b[,K], l'intégrale <math>\int_a^b f(t)dt$ est dite convergente s'il existe $\lambda \in K$ tel que

$$\int_{a}^{x} f(t)dt \xrightarrow[x \to b^{-}]{} \lambda$$

La définition est analogue pour $f \in C^0_{pm}(]a,b],K)$

<u>Dans ce cas</u> on a $\int_a^b f(t)dt = \lim_{x \to b^-} \int_a^x f(t)dt$, <u>dans le cas contraire</u> on dit que l'intégrale est divergente.

Exemples de référence

- Soit $\alpha \in \mathbf{R}$, alors $\int_0^1 \frac{dt}{t^{\alpha}}$ converge $\Leftrightarrow \alpha < 1$ et $\int_1^{+\infty} \frac{dt}{t^{\alpha}}$ converge $\Leftrightarrow \alpha > 1$ $\heartsuit \heartsuit$
- On a $\int_0^1 \ln t dt$ converge $\int_0^1 \ln t dt = -1 \, \heartsuit$
- Soit $\alpha \in \mathbf{R}$, alors $\int_0^{+\infty} e^{-\alpha t}$ converge $\Leftrightarrow \alpha > 0$

Lemme 5.1.1.

Soit
$$f \in C^0_{pm}([a,b[,\mathbf{R}^+]))$$
 on note $F(x) = \int_a^x f(t)dt$, alors

— F est croissante.

— $\int_a^{\underline{b}} f(t)dt$ converge $\Leftrightarrow F$ est majorée.

— Lorsque $\int_a^{\underline{b}} f(t)dt$ diverge on a $F(x) \xrightarrow[x \to b]{} +\infty$.

Lemme 5.1.2.

Soit
$$f \in \mathcal{C}^0_{pm}(]a,b]$$
, $\mathbf{R}^+)$ on note $F(x) = \int_x^b f(t)dt$, alors

— F est décroissante.

— $\int_{\underline{a}}^b f(t)dt$ converge $\Leftrightarrow F$ est majorée.

— Lorsque $\int_{\underline{a}}^b f(t)dt$ diverge on a $F(x) \xrightarrow[x \to b]{} +\infty$. 1

Théorème de comparaison des fonctions positives.

Soient
$$f,g \in \mathcal{C}^0_{pm}[a,b[,\mathbf{R}^+)]$$
, on suppose que $0 \le f \le g$, on a alors
$$\int_a^b g \ converge \ \Rightarrow \ \int_a^b f \ converge$$

Démonstration. On note
$$\forall x \in [a,b[,\ F(x)=\int_a^x f(t)dt\ \text{et}\ G(x)=\int_a^x g(t)dt$$

$$\left|\begin{array}{c} \text{Supposons}\ \int_a^b g\ \text{converge},\ \text{soit}\ \text{donc}\ \mu \in \mathbf{R}\ \text{tel}\ \text{que}\ G \le \mu\\ \hline \text{Alors}\ \forall x \in [a,b[,\ F(x)=\int_a^x f(t)dt \le \int_a^x g(t)dt = G(x) \le \mu \end{array}\right|$$
Ainsi F est majorée et par le Lemme 5.1.2 $\int_a^b f$ converge

Théorème 5.1.3.

Soient
$$f, g \in \mathcal{C}^0_{pm}([a, b[, \mathbf{R}^+]). Si \ f(x) = \mathcal{O}_{x \to b}(g(x)), alors$$

$$\int_a^{\underline{b}} g \ converge \ \Rightarrow \int_a^{\underline{b}} f \ converge$$

^{1.} On écrira dans ce cas $\int_a^b f(t)dt = +\infty$

Théorème 5.1.4

Soient
$$f, g \in C^0_{pm}([a, b[, \mathbf{R}^+). Si \ f(x) \underset{x \to b}{\sim} g(x) \ alors$$

$$\int_a^{\underline{b}} f \ converge \ \Leftrightarrow \int_a^{\underline{b}} g \ converge$$

Démonstration. Si
$$f(x) \underset{x \to b}{\sim} g(x)$$
 alors $f(x) = \mathcal{O}_{x \to b} \big(g(x) \big)$ et $g(x) = \mathcal{O}_{x \to b} \big(f(x) \big)$

Lemme d'indépendance de la borne fixe.

Corollaire.

Soit
$$f \in \mathcal{C}^0_{pm}([a,b[,\mathbf{K}) \ telle \ que \ \int_a^{\underline{b}} f \ converge.$$
 On a alors
$$\int_x^{\underline{b}} f \xrightarrow[x \to b]{} 0$$

Lemme 5.1.5.

Pour
$$f, g \in C^0_{pm}([a, b[, \mathbf{K}) \text{ et } \lambda \in K \text{ avec } \int_a \underline{b} f \text{ et } \int_a^{\underline{b}} g \text{ convergentes,}$$

$$- \int_a^{\underline{b}} \lambda f + g \text{ converge}$$

$$- \int_a^{\underline{b}} \lambda f + g = \lambda \int_a^{\underline{b}} f + \int_a^{\underline{b}} g$$

Lemme 5.1.6.

$$Si f \in C^0_{pm}([a,b[,\mathbf{C}) \ alors \\ - \int_a^{\underline{b}} f \ converge \Leftrightarrow \int_a^{\underline{b}} \Re(f) \ et \int_a^{\underline{b}} \Im(f) \ convergent. \\ - \int_a^{\underline{b}} f = \int_a^{\underline{b}} \Re(f) + i \int_a^{\underline{b}} \Im(f)$$

Lemme 5.1.7.

Soit
$$f \in C^0([a,b[,\mathbf{K}) \text{ telle que } \int_a^{\underline{b}} \text{ converge}]$$

$$Pour \ x \in [a,b[, \text{ on pose } G(x) = \int_x^{\underline{b}} f, \text{ alors }]$$

$$-G \in C^1([a,b[,K)]$$

$$-G' = -f$$

Intégrale généralise sur un intervalle ouvert Soit $f \in C^0_{pm}(]a,b[,K)$; $c \in]a,b[$

- On dit que $\int_{\underline{a}}^{\underline{b}} f$ converge si $\int_{\underline{a}}^{\underline{c}} f$ et $\int_{\underline{c}}^{\underline{b}} f$ converge.
- Dans ce cas on pose $\int_{\underline{a}}^{\underline{b}} f = \int_{\underline{a}}^{\underline{c}} f + \int_{\underline{c}}^{\underline{b}} f$

$$\rightarrow \underline{\mathrm{ex}}: \int_{-\infty}^{+\infty} e^{-t^2} dt \text{ converge et } \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

5.2 Convergence absolue

Définition Soit
$$f \in \mathcal{C}^0_{pm}[a,b[,K) \ a < b \text{ on dit que}$$

$$\begin{cases} \int_a^{\underline{b}} f & \text{converge absolument} \\ \underline{f} & \text{est intégrablle sur } [a,b[& \text{si} \end{bmatrix} & \text{si} \int_a^{\underline{b}} |f| & \text{converge.} \end{cases}$$

Formule importante :
$$\max(\alpha, \beta) = \frac{\alpha + \beta}{2} + \frac{|\alpha - \beta|}{2}$$

Théorème 5.2.1.

La convergence absolue implique la convergence.

$$\begin{array}{ll} \textit{D\'{e}monstration.} & \boxed{\text{Cas r\'{e}el}} \; \text{Soit} \; f \in \mathcal{C}^0_{pm_b} ig([a,b[,\textbf{R}) \; \text{telle que } \int_a^{\underline{b}} |f| \; \text{converge on a} \\ 0 \leq f^+ \leq |f| \; \text{donc} \; \int_a^{\underline{b}} f^+ \; \text{converge} \; \left(\text{de m\'{e}me} \; \int_a^{\underline{b}} f^- \; \text{converge} \; \right) \\ \text{Donc} \; \int_a^{\underline{b}} f^+ - f^- = \int_a^{\underline{b}} f \; \text{converge}. \\ \boxed{\text{Cas complexe}} \; \text{Soit} \; f \in \mathcal{C}^0_{pm} \big([a,b],\textbf{C} \big) \; \text{telle que } \int_a^{\underline{b}} |f| \; \text{converge avec} \; f = u + \imath v \; \text{alors} \\ \text{On a} \; 0 \leq |u| \leq |f| \; \text{donc} \; \int_a^{\underline{b}} |u| \; \text{converge et d'après le cas r\'{e}el} \; \int_a^{\underline{b}} u \; \text{converge}. \\ \text{De m\'{e}me} \; \int_a^{\underline{b}} v \; \text{converge et avec le Lemme 5.1.6 on a} \; \int_a^{\underline{b}} f \; \text{converge} \end{array} \quad \Box$$

Espace des fonctions intégrables sur *I*

Soit I un i.r.n.t avec a < b ses bornes, on pose

$$L^1(I,K) = \{ f \in \mathcal{C}^0_{pm}(I,K) ; f \text{ est intégrable sur } I \}$$

Théorème 5.3.1.

$$\begin{array}{ccc} L^1(I,K) \ est \ un \ K \ espace \ vectoriel \ et \\ \Delta \left(\begin{array}{ccc} L^1(I,K) & \longrightarrow & K \\ f & \longmapsto & \int_I f \end{array} \right) \ est \ linéaire \end{array}$$

Démonstration. Soit I = [a, b]

 $L^1(I,K)$ est un sev de $\mathcal{C}^0_{pm}(I,K)$:

- $0 \in L^1(I, K)$ Soient $f, g \in L^1(I, K)$ et $\lambda \in K$ on pose $h = \lambda f + g$ avec $|h| \le |\lambda| |f| |g| = w$ Comme $\int_a^b w$ cv, par théorème de comparaison (??) on a $h \in L^1(I, K)$

La linéarité de Δ est connue.

Théorème 5.3.2.

Soit
$$f \in \mathcal{C}^0_{pm}(I, \mathbf{C})$$
 alors $f \in L^1(I, \mathbf{C}) \Leftrightarrow (\Re(f), \Im(f)) \in (L^1(I, \mathbf{R}))^2$

63 5.4. CALCULS

Démonstration.
$$\sqsubseteq f = \Re(f) + i\Im(f)$$
 $\Longrightarrow 0 \le |\Re(f)| \le |f|$ et $0 \le |\Im(f)| \le |f|$

Lemme 5.3.3.

Soit
$$f \in L^1(I, K)$$
, alors $f \ge 0 \Rightarrow \int_I f \ge 0$

Théorème: Inégalité triangluaire.

Soit
$$f \in L^1(I, K)$$
 alors $\left| \int_I f \right| \le \int_I |f|$

Démonstration. Soit I = [a, b[; soient $f ∈ L^1(I, K)$ et x ∈ [a, b[On a $\left|\int_a^x f\right| \leq \int_a^x |f|$ puis en passant à la limite on a le résultat vu l'intégrabilité de f. \square

Théorème de positivité amélioré.

Soit I un intervalle réel non trivial et
$$f \in L^1(I, \mathbf{R}^+) \cap \underline{C}^0(I, K)$$

Alors $\int_I f = 0 \implies \forall x \in I, f = 0$

Démonstration. Avec I = [a,b[on note $\forall x \in I, F(x) = \int_a^x f \text{ donc } F(x) \xrightarrow[x \to b]{} \int_a^{\underline{b}} f \text{ et } F \text{ est}$ croissante par le Lemme 5.1.1 donc $F(x) \le \int_I f = 0$ or $F(x) \ge 0$ donc $\forall x \in [a, b[, F(x) = 0$ donc F' = f = 0

Notation Si $f \in \mathcal{C}^0_{pm}(I,K)$ avec $\int_I f$ converge et $\int_I |f|$ diverge alors on dit que *f* est semi-convergente

5.4 **Calculs**

Théorème : Changement de variable.

Soit $]\alpha,\beta[\stackrel{\varphi}{\to}]a,b[\stackrel{f}{\to}K$ On suppose que f est \mathcal{C}^0 et φ est \mathcal{C}^1 avec φ bijective de $]\alpha,\beta[$ sur]a,b[et strictement croissante alors : $-\int_a^b f(t)dt \ et \int_\alpha^\beta f(\varphi(u)) \times \varphi'(u)du \ ont \ la \ m\hat{e}me \ nature.$ - Elles sont égales en cas de convergence.

Démonstration. On a $\lim_{u \to \alpha} \varphi(u) = a$ et $\lim_{u \to \beta} \varphi(u) = b$. Soit $\gamma \in]\alpha, \beta[$ et $c = \varphi(\gamma)$. On pose $G(x) = \int_{\gamma}^{x} g(u) du$ et $F(y) = \int_{c}^{y} f(t) dt$, alors $\forall x \in]\alpha, \beta[$, on a $G(x) = F(\varphi(x))(*)$

• On suppose $\int_c^b f$ converge, alors par passage à la limite dans (*) on a la convergence et l'égalité.

• La réciproque est clair en considérant φ^{-1}

On a de même $\int_{\alpha}^{\gamma} g$ converge $\Leftrightarrow \int_{a}^{c} f$ converge.

Théorème: Intégration par parties.

Soit
$$f,g \in C^1(]a,b[,K)$$
 alors la formule
$$\int_a^b f' \times g = [f \times g]_a^b - \int_a^b f \times g'$$
 est légitime dès que • $f \times g$ admet des limites finies en a et en b • L' une des deux intégrales est convergente

Démonstration. On suppose $\int_a^b f' \times g$ converge. Si on pose A et B les limites respectives du produit en a et en b puis c un point de l'intervalle ouvert alors $\forall x \in]a,b[$ on a $\int_c^x fg' = [fg]_c^x - \int_c^x f'g$ puis $\int_c^b fg' = -(fg)(c) + B - \int_c^b f'g$ On a alors alors de même le résultat en a puis f et g jouent un rôle symétrique d'où

5.5 Comparaison série-intégrale

Le théorème suivant ne figure plus au programme. (2023-2024)

Théorème 5.5.1.

Soit
$$f \in \mathcal{C}^0_{pm}(\mathbf{R}^+, \mathbf{R})$$
 avec $f \ge 0$ décroissante, on pose $\forall n \in \mathbf{N}^*$, $w_n = \int_n^{n+1} f(t) dt - f(n)$. On a alors $\sum_{n \ge 1} w_n$ converge.

Démonstration. Soit $n \in \mathbb{N}^*$, vu la décroissance on a $f(n) \le f(t) \le f(n-1)$ pour $n-1 \le t \le n$ donc $0 \le w_n \le f(n-1) - f(n)$ Ainsi pour tout $N \in \mathbb{N}^*$ on a $\sum_{k=1}^N w_k \le \sum_{k=1}^N f(n-1) - f(n) \le f(0)$ d'où la convergence vu la positivité. □

Corollaire.

Sous les mêmes hypothèses,
$$\sum_{n\geq 1} f(n) \ converge \ \Leftrightarrow \int_0^{+\infty} f(t) dt \ converge$$

5.6 Intégration des relations de comparaison

Théorème 5.6.1.

Soit
$$f, g \in C^0_{pm}([a, b[, \mathbf{R}]), g \ge 0 \text{ avec } \int_a^b f \text{ et } \int_a^b g \text{ convergent.}$$

$$\begin{vmatrix}
1) f(x) = \circ_{x \to b}(g(x)) &\Rightarrow \int_x^b f = \circ_{x \to b}(\int_x^b g) \\
Alors: &2) f(x) = \mathcal{O}_{x \to b}(g(x)) &\Rightarrow \int_x^b f = \mathcal{O}_{x \to b}(\int_x^b g) \\
3) f(x) \sim_b g(x) &\Rightarrow \int_x^b f \sim_b \int_x^b g
\end{vmatrix}$$

Démonstration. On notera $F(x) = \int_x^b f$ et $G(x) = \int_x^b g$, on considère alors $\varepsilon > 0$ et un voisinage de b sur lequel $|f(x)| \le \varepsilon g(x)$, on a alors $|F(x)| \le \varepsilon G(x)$. La domination se démontre selon le même principe.

Théorème 5.6.2.

Soit
$$f, g \in C^0_{pm}([a, b[, \mathbf{R}), g \ge 0 \text{ avec } \int_a^b f \text{ et } \int_a^b g \text{ divergent.}$$

$$| 1) f(x) = \circ_{x \to b}(g(x)) \Rightarrow \int_a^x f = \circ_{x \to b}(\int_a^x g)$$

$$| Alors : | 2) f(x) = \mathcal{O}_{x \to b}(g(x)) \Rightarrow \int_a^x f = \mathcal{O}_{x \to b}(\int_a^x g)$$

$$| 3) f(x) \sim_b g(x) \Rightarrow \int_a^x f \sim_b \int_a^x g$$

Démonstration. En notant, $F(x) = \int_a^x f$ et $G(x) = \int_a^x g$, le reésultat se démontre en séparant l'intégrale : $\left|\frac{F(x)}{G(x)}\right| = \frac{|F(x)|}{G(x)} \le \frac{C}{G(x)} + \frac{\varepsilon}{2} \xrightarrow[x \to b]{} 0$; $C = \left|\int_a^\beta f\right|$

Exercices

Comparaison

5C1 Donner les natures de $\left| \int_0^1 \frac{1+t^3}{\sqrt{1-t^3}} dt \right|$ et de $\left| \int_0^{\frac{\pi}{2}} \frac{t}{\cos t} dt \right|$.

Convergence absolue

5C2 Montrer que
$$\left| \int_{\pi}^{+\infty} \frac{\sin t}{t} dt \right|$$
. CVA?

5C3 Étudier la nature des intégrales de Bertrand
$$\left| \left(\int_2^{+\infty} \frac{dt}{t^{\alpha} (\ln t)^{\beta}} \right) \right|$$

5C4 Connaissant le **5C3**, avec
$$(\alpha, \beta) \in \mathbb{R}^2$$
, quelle est la nature de $\left| \int_0^{\frac{1}{2}} \frac{dt}{t^{\alpha}(\ln t)^{\beta}} \right|$?

Calculs

5C5 Calculer
$$\left|\lambda = \int_{\mathbb{R}} f\right|$$
 où $\left|f: t \mapsto \frac{1}{1+t+t^2}\right|$ et $\left|I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt\right|$.

5C6 Montrer l'existence de γ la constante d'Euler.

5C7 Trouver un équivalent de
$$\left| R_n = \sum_{n=1}^{+\infty} \frac{1}{k^2} \right|$$
.

Intégration des relations de comparaisons

5C8 Trouver un équivalent de $\left| F(x) = \int_2^x \frac{e^{-1/t}}{\sqrt{t(t+\cos t)}} \right|$.

Table des matières - Première année

Table des matières - Deuxième année

1	Suit	uites et séries		
1.1 Norme			e	6
		1.1.1	Généralités	6
		1.1.2	Normes euclidiennes	7
		1.1.3	Exemple de normes	7
	1.2	Suites		8
	1.3	Norm	es équivalentes	10
		1.3.1	Définition	10
		1.3.2	Cas de espaces de dimension fini	10
	1.4		araisons asymptotiques	11
	1.5	Séries	dans un K espace vectoriel de dimension finie	12
	1.6	Comp	lément sur les séries numériques	14
		1.6.1	Règle de Dalembert	14
		1.6.2	Séries alternées	14
		1.6.3	Sommation des relations de comparaisons	15
	1.7	Produ	it de deux séries absolument convergentes	16
	1.8	Dualit	té série-suite	16
2	Lim	ites et	continuité	19
	2.1	Ouver	ts et fermés	20
		2.1.1	Intérieurs	20
		2.1.2	Ouverts	20
		2.1.3	Fermés	21
		2.1.4	Adhérence	22
	2.2 Limites		es	25
		2.2.1	Cas général	25
		2.2.2	Produit fini d'espaces vectoriels normés	26
	2.3	Conti	nuité	27
		2.3.1	Cas général	27
		2.3.2	Cas des applications linéaires	30
	2.4	Image	réciproque et continuité	32
	2.5	Comp	acité	34
		2.5.1	Compacité dans un espace vectoriel normé quelconque	34
		2.5.2	Compacité en dimension finie	35
		2.5.3	Applications aux séries en dimension finie	36 37

3	Dérivation et intégration		
	3.1	Dérivée	39
	3.2 Dérivées successives		
	3.3	Fonctions convexes	42
	3.4	Intégration sur un segment	44
		3.4.1 Fonctions continues par morceaux	44
		3.4.2 Propriétés de l'intégrale	45
		3.4.3 Inégalités	46
	3.5	Théorème fondamental	47
	3.6	Formules de <u>Taylor</u>	48
4 Suites de fonctions		es de fonctions	51
	4.1	Convergences	51
	4.2	Série de fonctions	54
	4.3	Intégration et dérivation	56
		4.3.1 Cas général	56
		4.3.2 Application aux matrices	57
	4.4	Approximations uniformes	58
5	Inté	grales généralisées	59
	5.1	Intégrale convergente	59
	5.2	Convergence absolue	62
	5.3	Espace des fonctions intégrables sur <i>I</i>	62
	5.4	Calculs	63
	5.5	Comparaison série-intégrale	64
	5.6	Intégration des relations de comparaison	64