Constants

Permittivity of Free Space:

Permeability of Free Space:

Velocity of Light:

Boltzman Constant:

Stefan-Boltzman-Constant of heat

Universal gravitational constant

Mass of Earth

Standard gravitational parameter

Radius Earth

Escape Velocity

Orbital Mechanics

Orbital period

semi-major-axis

Perigee Distance

Apogee Distance

Instantaneous velocity at distance r

Instantaneous distance at velocity v

Escape velocity

$$\varepsilon_0 = 8.854 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}} \qquad \text{Perigee velocity}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}} \qquad \text{Apogee distance}$$

$$c = 2.998 \cdot 10^8 \frac{\text{m}}{\text{S}} \qquad \text{Perigee distance}$$

$$k = 1.381 \cdot 10^{-23} \frac{\text{J}}{\text{K}} \qquad \text{Circular orbit vel}$$

$$\sigma = 56, 7E - 9\text{W}/\text{K}^4\text{m}^2 \qquad \text{Mean motion}$$

$$G = 6.6730 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2} \qquad \text{Mean anomaly}$$

$$M_E = 5.9742 \cdot 10^{24} \text{kg}$$

$$\mu = GM_E = 3.986 \cdot 10^{14} \frac{\text{m}^3}{\text{S}^2}$$

$$R_E = 6378135\text{m}$$

$$v_{esc} = 11.2 \text{km/s}$$
 Sideral day

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

$$a = \frac{r_a + r_p}{2}$$

$$r_p = a(1 - e)$$

$$r_a = a(1 + e)$$

$$v = \sqrt{\frac{2\mu}{r} - \frac{\mu}{a}}$$

$$r = \sqrt{\frac{2a\mu}{(av^2 + \mu)}}$$

$$v = \sqrt{\frac{2\mu}{r}}$$

where t_p is the instant of passing through the perigee.

Eccentric anomaly
$$M=E-e\sin E$$

Distance from anomalies
$$r = a(1 - e \cos E)$$

Sideral day
$$T_{sid}=23 \mathrm{h}\, 56\, \mathrm{min}\, 4.1\, \mathrm{s}=86164.1\mathrm{s}$$

Solar day
$$T_{solar} = 24 \mathsf{h} = 86400 \mathsf{s}$$

Latitude of sub-sat point
$$\varphi = \arcsin \left[\sin(i) \cdot \sin(\omega + \nu) \right]$$

Longitude of sub-sat point

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

$$a = \frac{r_a + r_p}{2}$$

$$r_p = a(1 - e)$$

$$r_a = a(1 + e)$$

$$v = \sqrt{\frac{2\mu}{r} - \frac{\mu}{a}}$$

$$distance observer-satellite$$

$$r_a = \frac{2a\mu}{r}$$

$$distance observer-satellite$$

$$r_b = \frac{2\mu}{r} - \frac{\mu}{a}$$

$$R = \sqrt{R_E^2 + r^2 - 2R_E r \cos \phi}$$

with R_E being the radius of the Earth and

$$\cos \phi = \cos L \cdot \cos \varphi \cos l + \sin \varphi \cdot \sin l$$

$$\cos \psi = \cos L \cdot \cos \varphi \cos t + \sin \varphi \cdot \sin t$$

$$E = \arccos(rac{r}{R}\sin\phi)$$
 where $\sin\phi = \sqrt{1-\cos^2\phi}$.

$$\sin a = \frac{\sin L \cos \varphi}{\sin \phi}$$

Equations ASC Prof. S. Peik

Pertubations

The drag force

F_D	=	$\frac{1}{2}C_D\rho$	v^2A
ν		2 - Dr	

Shape	Drag Coefficient	Shape	Drag Coefficient
Sphere → ○	0.47	$\underset{Cube}{Angled} \longrightarrow \bigotimes$	0.80
Half-sphere —	0.42	Long Cylinder	0.82
Cone -	0.50	Short Cylinder	1.15
Cube	1.05	$\underset{Body}{Streamlined} \longrightarrow \bigcirc$	0.04

Propulsion

Specific impulse

is the ratio of Thrust T to rate of fuel ejection

$$I_{sp} = \frac{T}{\frac{dm}{dt}g_0} = \frac{v_{ex}}{g_0}$$

Thrust

 $T = v_{ex} \cdot rac{dm}{dt}$ Th

Tsiolkovsky's rocket equation, M_0 : Start Mass, M_1 :End Mass $\Delta v = v_{\sf ex} \ln \frac{M_0}{M_1}$

Thermal Management

Heat absorption $Q_{in} = A_{ill} \cdot G \cdot \alpha$ Radiated power $Q_{out} = Q_{rad} = \epsilon \sigma A_{sur} T^4$ sun incident power density $G_s = 1367 \frac{\text{W}}{\text{m}^2}$ Albedo incident power density $G_a = G_s \cdot 0,34$ earth IR incident power density $G_{earth} = 237 \frac{\text{W}}{\text{m}^2}$

	Measurement Temperature	Surface Condition	Solar Absorptivity (VIS/NIR)	Infrared Emissivity (TIR)	Absorptivity/ Emissivity Ratio	Eqilibrium Temp.
Material	T (K)		alpha	epsilon	a/e	T (K)
Gold	294	As Received	0,299	0,023	13,00	749
Alu (6061-T6 @22°C)	294	As Received	0,379	0,0346	10,95	717
Alu (6061-T6 @150°C)	422	As Received	0,379	0,0393	9,64	695
Alu polisched (6061-T6 @22°C)	294	Polished	0,2	0,031	6,45	628
Alu polisched (6061-T6 @150°C)	422	Polished	0,2	0,034	5,88	614
Black Paint	295	Al. Substrate	0,975	0,874	1,12	405
Solar Cell-Fused Silica Cover	295		0,805	0,825	0,98	392
White Epoxy (@150°C)	422	Al. Substrate	0,248	0,888	0,28	287
White Epoxy (@22°C)	294	Al. Substrate	0,248	0,924	0,27	284
Aluminized Teflon	295		0,163	0,8	0,20	265
Silvered Teflon	295		0,08	0,66	0,12	233
OSR	295		0,077	0,79	0,10	220

Thermal Noise

Noise Power

$$P_n = \frac{V_n^2}{4R} = kTB$$

with $k=1.38\cdot 10^{-23} rac{\mathrm{J}}{\mathrm{K}}$ (Boltzman's constant) and B bandwidth of System

Spectral noise power density

$$S_n(\omega) = \frac{P_n}{2B} = \frac{kT}{2} = \frac{n_0}{2}$$

with

$$n_o = kT$$

Gaussian Distribution

$$f_n(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-n^2/2\sigma^2}$$

where σ is the effektive noise voltage

Bandlimited Noise

$$P_n = \Delta f n_o$$

 T_a is the Temp. T of a black body

Antenna Noise Temperature

Noise temperature at ground

 $T_A = 290 {\rm K}$

Noise Figure

$$F = \frac{S_i/N_i}{S_o/N_o} \ge 1$$

with the condition: antenna noise temperature $T_a=T_0=290 {\rm K}$

Noise Temperature

$$T_e = (F - 1)T_0$$

Noise Temperature of passive components with loss $LF=1+\frac{T_e}{T_0}=1+(L-1)\frac{T}{T_0}$

at room temperature:

Cascaded Two-Ports

$$F_{tot} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \cdots$$

using noise temperature

$$T_{e,tot} = T_{e1} + rac{T_{e2}}{G_1} + rac{T_{e3}}{G_1G_2} + \cdots$$
 Friis' Formula:

Gain

$$G_{tot} = G_1 \cdot G_2 \cdot G_3$$

G over T

$$G_{tot} = G_1 \cdot G_2 \cdot G_3$$

$$G/T = \frac{\text{Antenna Gain}}{\text{System Noise}} = \frac{G_{ant}}{T_a + T_e}$$
 with Path Loss

$$SNR = \frac{S_0}{N_0} = \frac{EIRP \cdot \frac{1}{L_p} \cdot G_{ant}}{k \left(T_a + T_e \right) B} = EIRP \frac{1}{L_p} \frac{1}{k} \frac{1}{B} \frac{G}{T}$$

$$SNR_{dB} = EIRP_{dBW} - L_{p,dB} \underbrace{-10 \log(k)}_{} - 10 \log(B) + \frac{G}{T} \Big|_{dB}$$

Antennas

Power flux density

$$S_0(r)=rac{G_tP_t}{4\pi\,r^2}$$
 or $ec{S}(r)=ec{E} imesec{H}=rac{|E|^2}{\eta_0}rac{ec{r}}{|r|}$

EIRP

$$EIRP = G_t P_t$$

Antenna gain

$$G(\phi, \theta) = \frac{S(r, \phi, \theta)}{S_0(r)}$$

in Decibel

$$G_{dB} = 10 \log G$$

 $D = G/\eta$

Directivity

$$D = G$$
 for loss-less antennas

Krauss' Equation

$$D = \frac{4\pi}{\Theta_{BW}\Phi_{BW}}$$

Effective Antenna area

$$A_e = \frac{P_e}{S_e}$$

Effective Antennenarea using Gain

$$A_e = \frac{G_{max} \cdot \lambda^2}{4\pi}$$

Antenna Efficiency

$$\eta_{Ant} = \frac{A_e}{A_{phy}}$$

Available Power

$$P_r = S_r A_r = S_r G_{\frac{\lambda^2}{4\pi}}$$

Wireless Link

Transmit Power P_t generates power flux density

$$S_e = \frac{P_t G_t}{4\pi r^2}$$

 $L_p = 20 \log \frac{4\pi r}{\lambda}$

$$P_r = P_t G_t G_r \frac{\lambda^2}{(4\pi r)^2}$$

$$P_{r,dBm} = P_{t,dBm} + G_{t,dBi} + G_{r,dBi} - L_p$$

Version: 29. Januar 2024

Attenuation from Atmosphere

Rain Attenuation

Digital Transmission

Symbol	Quantity	Unit		
m	Bits per Symbol			
M	States per Symbol $M=2^m$			
R_b	Bit Rate in	bits/s		
R_s	Symbol Rate	sym/s		
T_b	Duration per Symbol	S		
T_s	Duration per Bit	S		
E_b	Energy per Bit	W/bit		
n_0	Noise Power per 1 Hz Bandwidth	W/Hz		
SNR	Signal to noise Ratio	1		
В	Bandwidth of Channel	Hz		
Γ	Spectral Efficiency	Bits s∙Hz		

Channel Capacity	$C = B \log_2(1 + SNR)$
Symbol Rate	$R_s = \frac{R_b}{m} = \frac{R_b}{\log_2 M}$
Bit Energy per Noise	$E_c/n_o = SNR\frac{B}{R_b}$
Spectral Efficiency	$\Gamma = \frac{R_b}{B} = \frac{R_b T_S}{1+\alpha} = \frac{\log_2(M)}{1+\alpha}$
BER for BPSK, QPSK	$BER = rac{1}{2} erfc\left(\sqrt{rac{E_b}{n_0}} ight)$
BER for 8PSK	$BER = \frac{1}{3} erfc \left(\sqrt{3 \frac{E_b}{n_0}} \sin \frac{\pi}{8} \right)$
BER for D-QPSK	$BER = \frac{1}{2} \exp(-E_b/N_o)$

Power Management

Solar Cell Types

	Efficiency, BOL 28 °C		Efficiency, EOL 1E15, 60 °C		Cell weight
Cell type	%	KW/m^2	%	KW/m^2	(kg/m²)
Si (200 μm)	12.6	0.170	8.7	0.118	0.464
Si (67 μm)	15.0	0.203	9.2	0.124	0.156
Si (100 µm) with diode	17.3	0.234	12.5	0.169	0.230
GaAs/Ge (137 μm)	19.6	0.265	14.7	0.199	0.720
DJ cascade (137 µm)	21.8	0.295	18.1	0.245	0.720
TJ standard (140 µm)	26.0	0.352	21.0	0.284	0.840
TJ improved (140 µm)	29.9	0.393	25.1	0.340	0.840
Thin film	12.6	0.170	9.5	0.128	0.100

 $BOL = beginning \ of \ life, EOL = end \ of \ life (for 1E151 \ MeV \ equivalent \ electron \ fluence), DJ = double junctions, TJ = triple junctions, solar \ flux = 135.3 \ mW/cm^2.$

Batteries

Secondary Cell Types

	U			v
	NiCd	NiH ₂	Li-ion	System impact of Li-ion
Energy density (Wh/kg)	30	70	165	Weight saving
Energy efficiency (%)	72	70	96	Reduction of charge power
Thermal power (on a scale of 1–10)	8	10	3	Reduction of radiator, heat pipe sizes
Self discharge (%/day)	1	10	0.3	No trickle and simple management at launch pad
Temperature range (°C)	0 to 40	-20 to 30	0 to 40	Easy management
Memory effect	Yes	Yes	No	No reconditioning
Energy gauge/monitor	No	Pressure	Voltage	Better observation for states of charge
Charge management	Constant current	Constant current	Constant current then constant voltage	Weight saving
Modularity	No	No	Yes	Ability to put cells in parallel

Equations ASC Prof. S. Peik

V_d	discharge voltage	normal Voltage while discharging
V_{low}	low end voltage	minimum allowed voltage while discharging
V_{high}	high end voltage	maximum allowed voltage while charging
I_d	discharge current	discharge current
E_d	discharge energy	total energy that can be recovered
C	Capacity	Capacity of cell, $E_d = C \cdot V_d$
E_{st}	stored energy	stored energy in cell
η_d	discharge efficiency	ratio of recovered energy to stored energy $= rac{E_{st}}{E_d}$
DOD	depth of discharge	percentage of used energy in cell
SOC	state of charge	"fill level" of cell often in percent
I_c	charging current	charging current
V_c	charging voltage	charging voltage
E_c	charging energy	energy required for charging
η_d	charging efficiency	ratio of stored energy to charging energy $= rac{E_c}{E_{st}}$

Stored energy
Discharge energy
Energy required for charging

$$E_{st} = C V_d$$

$$E_d = C V_d DOD \cdot \eta_d$$

$$E_c = E_{st}/\eta_c$$

Cell Degradation

$$L_d = (1 - degradation/yr)^{T_d}$$
 $\eta_{EOL} = \eta_{BOL}L_d$

$$S_{sol} = 1370 \text{Wm}^{-2}$$

$$T_{ecl} = T_{orb} \frac{2\lambda}{2\pi} = T_{orb} \frac{1}{\pi} \arcsin \frac{R_e}{R_{orb}}$$