13.6 DIRECTIONAL DERIVATIVES AND GRADIENTS

The partial derivatives $f_x(x, y)$ and $f_y(x, y)$ represent the rates of change of f(x, y) in directions parallel to the x- and y-axes. In this section we will investigate rates of change of f(x, y) in other directions.

■ DIRECTIONAL DERIVATIVES

In this section we extend the concept of a *partial* derivative to the more general notion of a *directional* derivative. We have seen that the partial derivatives of a function give the instantaneous rates of change of that function in directions parallel to the coordinate axes. Directional derivatives allow us to compute the rates of change of a function with respect to distance in *any* direction.

Suppose that we wish to compute the instantaneous rate of change of a function f(x, y) with respect to distance from a point (x_0, y_0) in some direction. Since there are infinitely many different directions from (x_0, y_0) in which we could move, we need a convenient method for describing a specific direction starting at (x_0, y_0) . One way to do this is to use a unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$

that has its initial point at (x_0, y_0) and points in the desired direction (Figure 13.6.1). This vector determines a line l in the xy-plane that can be expressed parametrically as

$$x = x_0 + su_1, \quad y = y_0 + su_2$$
 (1)

Since u is a unit vector, s is the arc length parameter that has its reference point at (x_0, y_0) and has positive values in the direction of \mathbf{u} . For s = 0, the point (x, y) is at the reference point (x_0, y_0) , and as s increases, the point (x, y) moves along l in the direction of \mathbf{u} . On the line l the variable $z = f(x_0 + su_1, y_0 + su_2)$ is a function of the parameter s. The value of the derivative dz/ds at s = 0 then gives an instantaneous rate of change of f(x, y) with respect to distance from (x_0, y_0) in the direction of \mathbf{u} .

▲ Figure 13.6.1

13.6.1 DEFINITION If f(x, y) is a function of x and y, and if $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is a unit vector, then the *directional derivative of f in the direction of* \mathbf{u} at (x_0, y_0) is denoted by $D_{\mathbf{u}} f(x_0, y_0)$ and is defined by

$$D_{\mathbf{u}}f(x_0, y_0) = \frac{d}{ds} \left[f(x_0 + su_1, y_0 + su_2) \right]_{s=0}$$
 (2)

provided this derivative exists.

Slope in \mathbf{u} direction = rate of change of z with respect to s z = f(x, y) c $(x_0, y_0) \mathbf{u}$ (x, y)

▲ Figure 13.6.2

Geometrically, $D_{\bf u} f(x_0, y_0)$ can be interpreted as the **slope of the surface** z = f(x, y) in **the direction of u** at the point $(x_0, y_0, f(x_0, y_0))$ (Figure 13.6.2). Usually the value of $D_{\bf u} f(x_0, y_0)$ will depend on both the point (x_0, y_0) and the direction $\bf u$. Thus, at a fixed point the slope of the surface may vary with the direction (Figure 13.6.3). Analytically, the directional derivative represents the **instantaneous rate of change of** f(x, y) **with respect to distance in the direction of u** at the point (x_0, y_0) .

Example 1 Let f(x, y) = xy. Find and interpret $D_{\mathbf{u}} f(1, 2)$ for the unit vector

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

▲ Figure 13.6.3

Solution. It follows from Equation (2) that

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) \right]_{s=0}$$

Since

$$f\left(1 + \frac{\sqrt{3}s}{2}, 2 + \frac{s}{2}\right) = \left(1 + \frac{\sqrt{3}s}{2}\right)\left(2 + \frac{s}{2}\right) = \frac{\sqrt{3}}{4}s^2 + \left(\frac{1}{2} + \sqrt{3}\right)s + 2$$

we have

$$D_{\mathbf{u}}f(1,2) = \frac{d}{ds} \left[\frac{\sqrt{3}}{4} s^2 + \left(\frac{1}{2} + \sqrt{3} \right) s + 2 \right]_{s=0}$$
$$= \left[\frac{\sqrt{3}}{2} s + \frac{1}{2} + \sqrt{3} \right]_{s=0} = \frac{1}{2} + \sqrt{3}$$

Since $\frac{1}{2} + \sqrt{3} \approx 2.23$, we conclude that if we move a small distance from the point (1, 2) in the direction of \mathbf{u} , the function f(x, y) = xy will increase by about 2.23 times the distance moved.

The definition of a directional derivative for a function f(x, y, z) of three variables is similar to Definition 13.6.1.

13.6.2 DEFINITION If $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ is a unit vector, and if f(x, y, z) is a function of x, y, and z, then the *directional derivative of f in the direction of* \mathbf{u} at (x_0, y_0, z_0) is denoted by $D_{\mathbf{u}} f(x_0, y_0, z_0)$ and is defined by

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \frac{d}{ds} \left[f(x_0 + su_1, y_0 + su_2, z_0 + su_3) \right]_{s=0}$$
 (3)

provided this derivative exists.

Although Equation (3) does not have a convenient geometric interpretation, we can still interpret directional derivatives for functions of three variables in terms of instantaneous rates of change in a specified direction.

For a function that is differentiable at a point, directional derivatives exist in every direction from the point and can be computed directly in terms of the first-order partial derivatives of the function.

13.6.3 THEOREM

(a) If f(x, y) is differentiable at (x_0, y_0) , and if $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is a unit vector, then the directional derivative $D_{\mathbf{u}} f(x_0, y_0)$ exists and is given by

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2 \tag{4}$$

(b) If f(x, y, z) is differentiable at (x_0, y_0, z_0) , and if $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ is a unit vector, then the directional derivative $D_{\mathbf{u}} f(x_0, y_0, z_0)$ exists and is given by

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = f_x(x_0, y_0, z_0)u_1 + f_y(x_0, y_0, z_0)u_2 + f_z(x_0, y_0, z_0)u_3$$
 (5)

PROOF We will give the proof of part (a); the proof of part (b) is similar and will be omitted. The function $z = f(x_0 + su_1, y_0 + su_2)$ is the composition of the function z = f(x, y) with the functions

$$x = x(s) = x_0 + su_1$$
 and $y = y(s) = y_0 + su_2$

As such, the chain rule in Formula (5) of Section 13.5 immediately gives

$$D_{\mathbf{u}}f(x_0, y_0) = \frac{d}{ds} \left[f(x_0 + su_1, y_0 + su_2) \right]_{s=0}$$
$$= \frac{dz}{ds} \Big|_{s=0} = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

We can use Theorem 13.6.3 to confirm the result of Example 1. For f(x, y) = xy we have $f_x(1, 2) = 2$ and $f_y(1, 2) = 1$ (verify). With

$$\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$$

Equation (4) becomes

$$D_{\mathbf{u}}f(1,2) = 2\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2} = \sqrt{3} + \frac{1}{2}$$

which agrees with our solution in Example 1.

Recall from Formula (13) of Section 11.2 that a unit vector \mathbf{u} in the *xy*-plane can be expressed as $\mathbf{u} = \cos \phi \, \mathbf{i} + \sin \phi \, \mathbf{j} \tag{6}$

where ϕ is the angle from the positive *x*-axis to **u**. Thus, Formula (4) can also be expressed as

 $D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)\cos\phi + f_y(x_0, y_0)\sin\phi$ (7)

Example 2 Find the directional derivative of $f(x, y) = e^{xy}$ at (-2, 0) in the direction of the unit vector that makes an angle of $\pi/3$ with the positive x-axis.

Solution. The partial derivatives of f are

$$f_x(x, y) = ye^{xy},$$
 $f_y(x, y) = xe^{xy}$
 $f_x(-2, 0) = 0,$ $f_y(-2, 0) = -2$

The unit vector **u** that makes an angle of $\pi/3$ with the positive x-axis is

$$\mathbf{u} = \cos(\pi/3)\mathbf{i} + \sin(\pi/3)\mathbf{j} = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$$

Thus, from (7)

$$D_{\mathbf{u}}f(-2,0) = f_x(-2,0)\cos(\pi/3) + f_y(-2,0)\sin(\pi/3)$$
$$= 0(1/2) + (-2)(\sqrt{3}/2) = -\sqrt{3} \blacktriangleleft$$

Note that in Example 3 we used a *unit vector* to specify the direction of the directional derivative. This is required in order to apply either Formula (4) or Formula (5).

Example 3 Find the directional derivative of $f(x, y, z) = x^2y - yz^3 + z$ at the point (1, -2, 0) in the direction of the vector $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Solution. The partial derivatives of f are

$$f_x(x, y, z) = 2xy$$
, $f_y(x, y, z) = x^2 - z^3$, $f_z(x, y, z) = -3yz^2 + 1$
 $f_x(1, -2, 0) = -4$, $f_y(1, -2, 0) = 1$, $f_z(1, -2, 0) = 1$

Since a is not a unit vector, we normalize it, getting

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{\sqrt{9}}(2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}$$

Formula (5) then yields

$$D_{\mathbf{u}}f(1,-2,0) = (-4)\left(\frac{2}{3}\right) + \frac{1}{3} - \frac{2}{3} = -3$$

■ THE GRADIENT

Formula (4) can be expressed in the form of a dot product as

$$D_{\mathbf{u}} f(x_0, y_0) = (f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot (u_1\mathbf{i} + u_2\mathbf{j})$$

= $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$

Similarly, Formula (5) can be expressed as

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = (f_x(x_0, y_0, z_0)\mathbf{i} + f_y(x_0, y_0, z_0)\mathbf{j} + f_z(x_0, y_0, z_0)\mathbf{k}) \cdot \mathbf{u}$$

In both cases the directional derivative is obtained by dotting the direction vector \mathbf{u} with a new vector constructed from the first-order partial derivatives of f.

13.6.4 DEFINITION

(a) If f is a function of x and y, then the **gradient of f** is defined by

$$\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j}$$
 (8)

(b) If f is a function of x, y, and z, then the **gradient** of f is defined by

$$\nabla f(x, y, z) = f_x(x, y, z)\mathbf{i} + f_y(x, y, z)\mathbf{j} + f_z(x, y, z)\mathbf{k}$$
(9)

The symbol ∇ (read "del") is an inverted delta. (It is sometimes called a "nabla" because of its similarity in form to an ancient Hebrew ten-stringed harp of that name.)

Formulas (4) and (5) can now be written as

$$D_{\mathbf{u}} f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{u}$$
 (10)

and

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \nabla f(x_0, y_0, z_0) \cdot \mathbf{u}$$
(11)

respectively. For example, using Formula (11) our solution to Example 3 would take the form

$$\begin{array}{l} D_{\mathbf{u}}f(1,-2,0) = \nabla f(1,-2,0) \cdot \mathbf{u} = (-4\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot \left(\frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right) \\ & \quad \text{sqrt}((2/3)^2 + (1/3)^2 + (2/3)^2) \\ & \quad = 1 \text{ because u is unit vector.} \end{array} \\ = (-4)\left(\frac{2}{3}\right) + \frac{1}{3} - \frac{2}{3} = -3 \end{array}$$

Formula (10) can be interpreted to mean that the slope of the surface z = f(x, y) at the point (x_0, y_0) in the direction of **u** is the dot product of the gradient with **u** (Figure 13.6.4).

Remember that ∇f is not a product of ∇ and f. Think of ∇ as an "operator" that acts on a function f to produce the gradient ∇f .

▲ Figure 13.6.4

 ${f u}$ is a unit vector whose magnitude is 1 no matter what ${f u}_1,\,{f u}_2,...{f u}_n$ combinations are. See examples above as in pg. 963

direction of gradient = normal to level curve.

PROPERTIES OF THE GRADIENT

The gradient is not merely a notational device to simplify the formula for the directional derivative; we will see that the length and direction of the gradient ∇f provide important information about the function f and the surface z = f(x, y). For example, suppose that $\nabla f(x, y) \neq \mathbf{0}$, and let us use Formula (4) of Section 11.3 to rewrite (10) as

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = ||\nabla f(x,y)|| ||\mathbf{u}|| \cos \theta = ||\nabla f(x,y)|| \cos \theta$$
 (12)

where θ is the angle between $\nabla f(x, y)$ and \mathbf{u} . Equation (12) tells us that the maximum value of $D_{\mathbf{u}}f$ at the point (x, y) is $\|\nabla f(x, y)\|$, and this maximum occurs when $\theta = 0$, that is, when \mathbf{u} is in the direction of $\nabla f(x, y)$. Geometrically, this means:

At (x, y), the surface z = f(x, y) has its maximum slope in the direction of the gradient, and the maximum slope is $\|\nabla f(x, y)\|$.

That is, the function f(x, y) increases most rapidly in the direction of its gradient (Figure 13.6.5).

Similarly, (12) tells us that the minimum value of $D_{\bf u}f$ at the point (x,y) is $-\|\nabla f(x,y)\|$, and this minimum occurs when $\theta=\pi$, that is, when $\bf u$ is oppositely directed to $\nabla f(x,y)$. Geometrically, this means:

At (x, y), the surface z = f(x, y) has its minimum slope in the direction that is opposite to the gradient, and the minimum slope is $-\|\nabla f(x, y)\|$.

That is, the function f(x, y) decreases most rapidly in the direction opposite to its gradient (Figure 13.6.5).

Finally, in the case where $\nabla f(x, y) = \mathbf{0}$, it follows from (12) that $D_{\mathbf{u}} f(x, y) = 0$ in all directions at the point (x, y). This typically occurs where the surface z = f(x, y) has a "relative maximum," a "relative minimum," or a saddle point.

A similar analysis applies to functions of three variables. As a consequence, we have the following result.

13.6.5 THEOREM Let f be a function of either two variables or three variables, and let P denote the point $P(x_0, y_0)$ or $P(x_0, y_0, z_0)$, respectively. Assume that f is differentiable at P.

- (a) If $\nabla f = \mathbf{0}$ at P, then all directional derivatives of f at P are zero.
- (b) If $\nabla f \neq \mathbf{0}$ at P, then among all possible directional derivatives of f at P, the derivative in the direction of ∇f at P has the largest value. The value of this largest directional derivative is $\|\nabla f\|$ at P.
- (c) If $\nabla f \neq \mathbf{0}$ at P, then among all possible directional derivatives of f at P, the derivative in the direction opposite to that of ∇f at P has the smallest value. The value of this smallest directional derivative is $-\|\nabla f\|$ at P.

Example 4 Let $f(x, y) = x^2 e^y$. Find the maximum value of a directional derivative at (-2, 0), and find the unit vector in the direction in which the maximum value occurs.

$$\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j} = 2xe^y\mathbf{i} + x^2e^y\mathbf{j}$$

the gradient of f at (-2, 0) is

$$\nabla f(-2,0) = -4i + 4j$$

By Theorem 13.6.5, the maximum value of the directional derivative is

$$\|\nabla f(-2,0)\| = \sqrt{(-4)^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$$

This maximum occurs in the direction of $\nabla f(-2,0)$. The unit vector in this direction is

$$\mathbf{u} = \frac{\nabla f(-2,0)}{\|\nabla f(-2,0)\|} = \frac{1}{4\sqrt{2}}(-4\mathbf{i} + 4\mathbf{j}) = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$

What would be the minimum value of a directional derivative of

$$f(x, y) = x^2 e^y$$

at (-2, 0)?

■ GRADIENTS ARE NORMAL TO LEVEL CURVES

We have seen that the gradient points in the direction in which a function increases most rapidly. For a function f(x, y) of two variables, we will now consider how this direction of maximum rate of increase can be determined from a contour map of the function. Suppose that (x_0, y_0) is a point on a level curve f(x, y) = c of f, and assume that this curve can be smoothly parametrized as x = x(s), y = y(s) (13)

where s is an arc length parameter. Recall from Formula (6) of Section 12.4 that the unit tangent vector to (13) is

$$\mathbf{T} = \mathbf{T}(s) = \left(\frac{dx}{ds}\right)\mathbf{i} + \left(\frac{dy}{ds}\right)\mathbf{j}$$

Since **T** gives a direction along which f is nearly constant, we would expect the instantaneous rate of change of f with respect to distance in the direction of **T** to be 0. That is, we would expect that $D_{\mathbf{T}} f(x, y) = \nabla f(x, y) \cdot \mathbf{T}(s) = 0$

To show this to be the case, we differentiate both sides of the equation f(x, y) = c with respect to s. Assuming that f is differentiable at (x, y), we can use the chain rule to obtain

$$\frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} = 0$$

which we can rewrite as

$$\left(\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}\right) \cdot \left(\frac{dx}{ds}\mathbf{i} + \frac{dy}{ds}\mathbf{j}\right) = 0$$

or, alternatively, as

$$\nabla f(x, y) \cdot \mathbf{T} = 0$$

Therefore, if $\nabla f(x, y) \neq \mathbf{0}$, then $\nabla f(x, y)$ should be normal to the level curve f(x, y) = c at any point (x, y) on the curve.

It is proved in advanced courses that if f(x, y) has continuous first-order partial derivatives, and if $\nabla f(x_0, y_0) \neq \mathbf{0}$, then near (x_0, y_0) the graph of f(x, y) = c is indeed a smooth curve through (x_0, y_0) . Furthermore, we also know from Theorem 13.4.4 that f will be differentiable at (x_0, y_0) . We therefore have the following result.

Show that the level curves for

$$f(x, y) = x^2 + y^2$$

are circles and verify Theorem 13.6.6 at $(x_0, y_0) = (3, 4)$.

13.6.6 THEOREM Assume that f(x, y) has continuous first-order partial derivatives in an open disk centered at (x_0, y_0) and that $\nabla f(x_0, y_0) \neq \mathbf{0}$. Then $\nabla f(x_0, y_0)$ is normal to the level curve of f through (x_0, y_0) .

When we examine a contour map, we instinctively regard the distance between adjacent contours to be measured in a normal direction. If the contours correspond to equally spaced