

Sost, -. L-13: - Set of 1 intensity levels. for grayscale 2= 256+ mindred and So, 1. . . 255 3 intensities. MN: - total pixels in the image (shape of image) mi .- no of pixels with intensity 1. ie 50,1... L-13 mo of pixe's : MN= # zero + # one + - - # L-1 MN = mo + m1 + - - - m1-1 Pi:- given image, what is the prob of finding pixel with i intensity (probot chooses a fixel and it's i intensity) We will use frequentist probability formula α' MN : Since all these events are my trally exclusive and exhaustive Scanned with CamScanner

Pa(K): - Probability that a pixel chosen at

Probability Concepts befor boing further !-

Expected value;

Expected value of a gardom variable is a long-run average value of the random variable. It is long run mean in a sense that if more and more values are collected for a variable, the sample mean will eventually reach the enpected value.

E(X)

E(x)= [X P(x=x)] (for clistrate random ver).

ol:- possible values of x

the pixal is in.

NOUS)(1=12+1 1=0 m 1+3/=i m2=

 $-ic^{2}\beta = P_{1}\left(\frac{m}{P_{1}}\right)^{2} + P_{2}\left(\frac{m6-m}{P_{2}}\right) - m6^{2}$ $6^2\beta = \frac{m^2 + (mb - m)^2}{1^2} - mb^2$ $\frac{6^{2}B=m^{2}+m^{2}b+m^{2}-2mbm-m_{6}^{2}}{P_{1}}$ 62B= P2. m2 + P, m26+ Pim - 2P, m6.m - m5 oa = (1-P1)m2 + P1m2 + P1m2 - 2 P1 m6.m - mb2 (Pi) (1-Pi) P1 (1-P1) = m2-Pin + Pin62 + Pin - 2 Pim6.m - Plante + P12 m 62 P,2mb2 - 2P, mb. m + m2 6 B = (P, mb-m) Scanned with CamScanner

	Classmate Date Page
Alson	110000000000000000000000000000000000000
2-11-11-1	
e B = 6165 (w1 - ws)	I was been been been been been been been bee
11).	
Farter both moons o	ine I max mill
be between- class ve	rejane.
endoute my morning of the	
So, we want to maximi	Le it.
$M = G^{2}B$ $G^{2}G \Rightarrow Constant$	dota was
6 6 => (onstant	
31 × (64 ×) + +1	
1) d = 0.	collo a persamo to
nd 52. (:: mi	
17/ = (2, p) 1 +1	1
Objective: - War Find a value	ot K, such
17/ = (2, p) 1 +1	ot K, such
Objective: - War Find a value	ot K, such
Objective: - Mer Find a value mat 62 p or n is m	ationized.
Objective: - Mer Find a value mat 62 p or n is m	ationized.
Objective: - War Find a value	ationized.
Objective: - Prod a value max 62 B or n is m $\pi(K) = 6^2 B(K)$	ot 10, such ationized.
Objective: - Place Find a value mat 62 b or n is m M(K) = 62 b (K) 62 b (K) = (mbP,(K) - m	ationized. (1c))
Objective: - Prod a value max 62 B or n is m $\pi(K) = 6^2 B(K)$	ationized. (Ic))
Objective: - Plan Find a value $M(K) = 6^2 B(K)$ $6^2 b$ $(P_1(K) = P_1$	ationized. (1c))
Objective: - Place Find a value mat 62 b or n is m M(K) = 62 b (K) 62 b (K) = (mbP,(K) - m	ationized. (Ic))
Objective: - Place Find a value Mat 62 B or n is m M(K) = 62 B(K) 62 b (P1(K) (1-P1 optimal threshold K	ationized. (Ic))
Objective: - Place Find a value Mat 62 B or n is m M(K) = 62 B(K) 62 b (P1(K) (1-P1 optimal threshold K	ationized. (Ic))
Objective: - Plan Find a value $M(K) = 6^2 B(K)$ $6^2 b$ $(P_1(K) = P_1$	ationized. (Ic))
Objective: - Place Find a value Mat 62 B or n is m M(K) = 62 B(K) 62 b (P1(K) (1-P1 optimal threshold K	ationized. (Ic))
Objective: - Place Find a value Mat 62 B or n is m M(K) = 62 B(K) 62 b (P1(K) (1-P1 optimal threshold K	ationized. (Ic))

To find IC', we iterate over all value
of IC. (such mut OCP, (K)<1), and select
value of K which give max 5° B (IC)

If awar of (IC) is same (max) for many

11/1, we need to average for all value

(of 11 for which of (IC) is mertimum.)

Segmentation +

* it f(xxx) > 1 , it f(xxx) > 1x*

0, if $f(x,y) \leq 10$.

Additional 1-

Formula for blu class variance is.

otal Potar Caro

SS(B)= 57 m (50 - XGM)2

SSB7 sum of equores blu group.

X6n: - Group mean,

(x-x6m)=(x6m-5c)

	classmate Dote
	broups in our case are below 11 and above it.
	:. 6 B = \(P; (mi - m6)^2
	$\int_{B}^{2} = P_{1}(m_{1}-m_{6})^{2} + P_{2}(m_{2}-m_{6})^{2}$
3	
	·
	Scanned with CamScanner