Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores

Aula 4

Bloco operacional mono-ciclo

Recapitulação

Processador = Caminho de dados + Controle

- Caminho de Dados: Realiza operações aritméticas. Ex: Somadores, ULAs.

- **Controle:** Parte do processador que controla o Caminho de dados e outros dispositivos.

Recapitulação

Tipos de Elementos Lógicos

- Elementos Combinacionais

Sua saída depende somente das entradas presentes naquele momento.

Ex: Somadores, Multiplexadores.

- Elementos de Estado

Possui algum tipo de memória interna, ou seja, pode armazenar alguma informação. Ex: Registradores.

Recapitulação

Metodologia de Temporização

Implementação Mono-ciclo

 Toda a instrução será executada em um ciclo de clock

O tempo de ciclo será igual ao tempo gasto na instrução mais demorada.

Bloco Operacional Mono-ciclo

- 1. Blocos Básicos da Construção do Caminho de Dados
- 2. Conjunto de Instruções Analisado
 - 2.1. Instruções Aritméticas
 - 2.2. Instruções de Acesso à Memória
 - 2.3. Instruções de Desvio Condicional
 - 2.4. Combinando Instruções
- 3. Bloco Operacional Completo
- 4. Cálculo do Período do Ciclo de Relógio
- 5. Resumo da Aula

Banco de Registradores

Memória de Instruções

1. Blocos Básicos para Construção do Caminho de Dados

Memória de Dados

Controle

 Unidade Lógica e Aritmética (ULA)

INF01113 - Organização de Computadores

2. Conjunto de Instruções

Subconjunto de instruções do MIPS

- Instruções aritméticas e lógicas (R-Tipo)

add rd, rs, rt sub rd, rs, rt

31	26	21	16	11	6	0
	op	rs	rt	rd	shamt	funct
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- Instruções de acesso à memória (I-Tipo)

lw rt, rs, imm16 sw rt, rs, imm16

0		16	21	26	31
	immediate	rt	rs	op	
	16 bits	5 bits	5 bits	6 bits	

- Instruções de desvio (J-Tipo)

beg rs, rt, imm16 31

26 21 16

ор	rs	rt	immediate
6 bits	5 bits	5 bits	16 bits

2. Conjunto de Instruções

Para todas as instruções, é necessário

- 1. Ler a instrução na memória que contém os dados, usando o valor do contador de programa como endereço;
- 2. Ler um ou mais registradores, usando parte da instrução.

Três elementos são necessários para executar uma busca de instrução:

- a memória onde estão armazenadas as instruções
- o contador de programa (PC) para armazenar o endereço da instrução
- um somador para calcular o endereço da próxima

2. Conjunto de Instruções (Busca)

- O contador de programa contém o endereço da instrução em execução
- O endereço da próxima instrução é obtido pela soma de 4 posições ao contador de programa
- A instrução lida é usada por outras porções da parte operativa

INF01113 - Organização de Computadores

2.1. Instruções Aritméticas

Dois elementos são necessários para a execução de operações aritméticas:

- Um banco de registradores para armazenar os operandos e o resultado das operações
- Uma Unidade Lógica/Aritmética (ALU) que será utilizada para realizar as operações

INF01113 - Organização de Computadores

2.1. Instruções Aritméticas

- A instrução (fornecida pelo hardware de busca de instruções) contém o endereço de três registradores
- Dois destes registradores são lidos e passados para a ALU realizar a operação
- O resultado é armazenado em um terceiro registrador
- O controle da ALU determina a operação que será realizada (a partir do campo FNCT da instrução)

2.2. Instruções de Acesso à Memória

Para executar instruções de acesso à memória do tipo load e store são necessários:

- Uma memória de dados
- Um módulo de extensão de sinal (sign extend) para calcular números negativos e positivos em 32 bits a partir de sua versão 16 bits
- Um banco de registradores (já mostrado)
- Uma ALU (já mostrada)

INF01113 - Organização de Computadores

- O endereço de escrita é obtido pela soma de um registrador de base (registrador 1) com um deslocamento de 16 bits estendido para 32 bits
- O registrador 2 é escrito na memória

INF01113 - Organização de Computadores

2.2. Instruções de acesso à memória (Leitura)

- O processo de leitura é semelhante ao de escrita
- A diferença básica é a existência de um caminho para escrever o valor lido no banco de registradores

2.3. Instruções de **Desvio Condicional**

Esquema apenas para a implementação de instruções do tipo beq (branch-onequal)

Destino é calculado pela soma de um deslocamento com o PC

Instrução

Salto é realizado se a diferença entre os registradores 1 e 2 for nula

> Registrador 1 em leitura

Registrador 2

Banco de 32

registradores

16

Sign

em leitura

PC + 4 a partir do

de instrução

hardware de busca

- Os recursos para as instruções aritméticas e para as instruções de acesso à memória são bastante semelhantes. Seria possível combiná-los em um só?
- A segunda entrada da ALU ...
 - é um registrador, no caso de instruções aritméticas
 - é obtida a partir da extensão dos 16 bits inferiores da instrução, no caso de instruções de acesso à memória
- O valor a ser escrito no registrador destino ...
 - vem da saída da ALU no caso de uma operação aritmética
 - vem da memória no caso de uma instrução de acesso à memória
- Uma parte operativa combinada pode ser obtida através da inserção de multiplexadores nestes pontos

Bloco operacional considerando instruções aritméticas e de acesso à

2.4. Combinando Instruções

3. Bloco Operacional Completo

INF01113 - Organização de Computadores

3. Bloco Op. (R-Tipo)

3. Bloco Op. (I-Tipo)

5. Cálculo do Período do Ciclo de Relógio

- Ao final de cada ciclo de relógio o PC é carregado com um novo valor
- mudança no valor do PC se propaga através de uma grande lógica combinacional
- Etapas de uma instrução exemplo:
 memória de instruções => banco de registradores => ALU =>
- memória de instruções => banco de registradores => ALU => memória de dados => banco de registradores
- período do ciclo de relógio deve ser maior do que máximo atraso de propagação através desta lógica combinacional

5. Cálculo do Período do Ciclo de Relógio

- memória de instruções => banco de registradores => ALU
 => memória de dados => banco de registradores
- Supondo os seguintes atrasos:
 - memórias: 1 ns
 - ALU: 0.5 ns
 - banco de registradores: 0.5 ns
 - somadores: 0.3 ns
 - demais componentes: atraso desprezível
- período do ciclo de relógio deve ser maior do que 3.5 ns (cerca de 285 MHz)

6. Resumo da Aula

- Caminho de dados da implementação monociclo para o MIPS;
- Vantagens: Um ciclo por instrução, controle simples;
- Desvantagem: Tempo de ciclo muito grande;
- Usem o livro-texto! Ler e exercícios.
- Próxima Aula: Controle para implementação mono-ciclo

FIM