Exercise 5. Which of the following subsets of \mathbb{R}^{ω} can be expressed as the cartesian product of subsets of \mathbb{R} ?

- (a) $\{\mathbf{x} \mid x_i \text{ is an integer for all } i\}$
- (b) $\{\mathbf{x} \mid x_i \geq i \text{ for all } i\}$
- (c) $\{\mathbf{x} \mid x_i \text{ is an integer for all } i \geq 100\}$
- (d) $\{\mathbf{x} \mid x_2 = x_3\}$

Proof.

- (a) Let $A = \{ \mathbf{x} \mid x_i \text{ is an integer for all } i \}$; then for all $i, x_i \in \mathbb{Z}_+$ so that $A \subset \mathbb{Z}_+^{\omega}$. Conversely, for $x \in \mathbb{Z}_+^{\omega}$, x_i is an integer by definition of \mathbb{Z}_+^{ω} , so $A = \mathbb{Z}_+^{\omega}$.
- (b) Let $A = \{\mathbf{x} \mid x_i \geq i \text{ for all } i\}$, and let $B = \prod_{i \in \mathbb{Z}_+} [i, +\infty)$. Then for all i and $y \in [i, +\infty)$, $y \geq i$, so we can take $x_i \in [i, +\infty)$ to satisfy the condition in A. Therefore $B \subset A$. Conversely, for all $\mathbf{x} \in A$ and all $i \in \mathbb{Z}_+$, we have $x_i \geq i$, so that $x_i \in [i, +\infty)$, from which we conclude that B = A.
- (c) Let $A = \{\mathbf{x} \mid x_i \text{ is an integer for all } i \geq 100\}$, and let $B = \mathbb{R}^{99} \times \mathbb{Z}_+^{\omega}$. For all $\mathbf{x} \in B$, x_i is an integer if $i \geq 100$, so $B \subset A$. Conversely, for all $\mathbf{x} \in A$, the first 99 coordinates of \mathbf{x} are only required to be real numbers, so that $\mathbf{x} \in B$, and B = A.
- (d) Let $A = \{\mathbf{x} \mid x_2 = x_3\}$, and suppose there exist A_1, A_2, \ldots subsets of \mathbb{R} such that $A = A_1 \times A_2 \times \cdots$. For all $\mathbf{x} \in A$, we have $x_2 = x_3$, so that $A_2 = A_3$. Suppose that A_2 contains at least 2 elements a and b. Then the ω -tuple (x_1, a, b, x_4, \ldots) is an element of $A_1 \times A_2 \times \cdots$, but is not an element of A. So A_2 has at most 1 element. Suppose there exists $a \in A_2$. Let $\mathbf{x} = (x_1, a, a, x_4, \ldots)$ and $\mathbf{y} = (x_1, a + 1, a + 1, x_4, \ldots)$ for some x_1, x_4, \ldots elements of \mathbb{R} . Then both \mathbf{x} and \mathbf{y} are elements of A, but \mathbf{y} is not an element of $A_1 \times A_2 \times \cdots$. So A_2 must be empty, in which case (because of the axiom of choice), $A_1 \times A_2 \times \cdots = \emptyset$. Last, note that $(0,0,0,\ldots) \in A$ so $A \neq \emptyset$. Therefore, $A \neq A_1 \times A_2 \times \cdots$ for any subsets A_1, A_2, \ldots of \mathbb{R} .