Anderson Compalas Cindy Wong Caleb Cho

Concept

Pytorch model to predict winners in NBA games

Using both teams' rolling averages and who is playing home or away

Sports Betting

Types of Bets

Crypto Sports Betting

Straight Bets

Point Spreads

Total Line Bets

Moneyline

Teasers

Prop bets

Head-to-head bets

Parlays

Resources

- Website: <u>Basketball Reference</u>
- What: Comprehensive data of 17,000 different games from 2015 - 2022
- Why: Train and test model

- API: nba api
- What: Live data for 2023
- Why: Make predictions on upcoming matches

Preprocessing

Basketball Reference

- Sorted games by date
- Removed irrelevant columns
- Removed columns with null values
- Added target column
- Calculated rolling averages

NBA_API

- Removed irrelevant columns
- Formatted team names with abbreviations
- Added columns for season, date, and time
- Concatenated most recent rolling averages for each team

Model

Training Process

Feature Selection:

Extracted relevant numerical columns or features from the processed data frame as training features

Data splitting:

Separated data by season into training and testing sets

Data Transformation:

Convert selected data into pytorch tensors

Training Loop

```
Epoch 1/20, Loss: 0.6431, Accuracy: 62.73%,
Epoch 2/20, Loss: 0.6302, Accuracy: 64.09%,
Epoch 3/20, Loss: 0.6243, Accuracy: 64.90%,
Epoch 4/20, Loss: 0.6212, Accuracy: 65.79%,
Epoch 5/20, Loss: 0.6176, Accuracy: 65.73%,
Epoch 6/20, Loss: 0.6123, Accuracy: 66.55%,
Epoch 7/20, Loss: 0.6081, Accuracy: 66.67%,
Epoch 8/20, Loss: 0.6034, Accuracy: 67.19%,
Epoch 9/20, Loss: 0.5981, Accuracy: 67.77%,
Epoch 10/20, Loss: 0.5966, Accuracy: 67.58%
Epoch 11/20, Loss: 0.5909, Accuracy: 68.37%
Epoch 12/20, Loss: 0.5862, Accuracy: 69.13%
Epoch 13/20, Loss: 0.5839, Accuracy: 68.57%
Epoch 14/20, Loss: 0.5782, Accuracy: 69.67%
Epoch 15/20, Loss: 0.5750, Accuracy: 69.81%
Epoch 16/20, Loss: 0.5725, Accuracy: 69.83%
Epoch 17/20, Loss: 0.5690, Accuracy: 70.24%
Epoch 18/20, Loss: 0.5609, Accuracy: 71.00%
Epoch 19/20, Loss: 0.5566, Accuracy: 71.59%
Epoch 20/20, Loss: 0.5548, Accuracy: 71.57%
```

BCE LOSS

- Well suited for binary classification (0 or 1)
- Quantifies the difference between the predicted probabilities (after applying a sigmoid activation)

Optimizer

- Adam()
- The default optimizer for ML engineers is Adam() as it is quick to converge.

Hyperparameters

- Epochs: 20
- Lr: 0.001

Training Loss and Accuracy

Testing and Validation

Testing

Backtest Function:

Checks the accuracy of each season and visualizes using confusion matrices

Testing

2019

Challenges

Loss not decreasing while accuracy increasing

Great training accuracy but poor test accuracy

Both are signs of model overfitting

Overcoming Challenges

Hyperparameter tuning

- Learning rate scheduling:
- Updated learning rate based off of average loss.
- Epoch adjustment:
- Found that fewer epochs led to higher accuracy.

Batch Normalization Layer:

- Normalizes the input to each neuron (or activation) within a layer.
- Acts as a regularizer introducing slight noise during training.
- Stabilizes training and accelerates convergence.

Dropout Layer

- Prevents overfitting by randomly setting a fraction of input units to zero during each training iteration.
- By introducing randomness, dropout encourages the network to be more robust and less prone to memorizing training data.

Improving Accuracy

- Simplifying model:
 - Applied Occam's Razor,
 - Simpler model led to higher test accuracy.
- Outperformed other attempted techniques to improve accuracy and prevent overfitting.

Architecture

Hidden

Fully Connected Layer (fc1):

Number of Neurons: 128

Function: Linear(input_size, 128)

This layer performs a linear transformation on the input features.

Hidden

Relu Activation function:

This layer introduces non-linearity by applying the Rectified Linear Unit (ReLu) activation element_wise to the output

Output

Fully Connected Layer 2:

self.fc2 = nn.Linear(128, 1)

Sigmoid Activation Function: Sigmoid()

Squashes the output to a range between 0 and 1 to make it appropriate for binary classification.

Home	Away		Home Win %	Away Lose %
Select Team +	Select Team \$	Submit		
Home	Away	Date		Winner
POR	UTA	2023-12-03		POR
SAC	DEN	2023-12-03		SAC
LAL	HOU	2023-12-03		LAL
GSW	LAC	2023-12-02		GSW
CHA	MIN	2023-12-02		CHA
BKN	ORL	2023-12-03		BKN
DET	CLE	2023-12-03		DET
MIA	IND	2023-12-03		MIA
СНІ	NOP	2023-12-03		СНІ

Home	Away		Home Win %	Away Lose %
Select Team +	Select Team \$	Submit		7777.
Select Team				
POR	Away	Date		Winner
LAL	UTA	2023-12-03		POR
GSW CHA	DEN	2023-12-03		SAC
BKN	HOU	2023-12-03		LAL
DET MIA	LAC	2023-12-02		GSW
CHI	MIN	2023-12-02		CHA
MIL DAL	ORL	2023-12-03		BKN
DET	CLE	2023-12-03		DET
MIA	IND	2023-12-03		MIA
СНІ	NOP	2023-12-03		СНІ

Home	Away	Hon	me Win % Away Lose %
SAC \$	Select Team ÷	Submit -	
	Select Team		
Home	DEN	Date	Winner
POR	HOU	2023-12-03	POR
SAC	LAC MIN	2023-12-03	SAC
LAL	ORL	2023-12-03	LAL
GSW	CLE	2023-12-02	GSW
CHA	NOP	2023-12-02	СНА
BKN	ATL OKC	2023-12-03	BKN
DET	CLE	2023-12-03	DET
MIA	IND	2023-12-03	MIA
СНІ	NOP	2023-12-03	СНІ

Home	Away	Home Win	% Away Lose %
SAC \$	DEN \$	Submit	
Home	Away	Date	Winner
POR	UTA	2023-12-03	POR
SAC	DEN	2023-12-03	SAC
LAL	HOU	2023-12-03	LAL
GSW	LAC	2023-12-02	GSW
CHA	MIN	2023-12-02	СНА
BKN	ORL	2023-12-03	BKN
DET	CLE	2023-12-03	DET
MIA	IND	2023-12-03	MIA
СНІ	NOP	2023-12-03	СНІ

Home	Away	Home Win	% Away Lose %
SAC ÷	DEN \$	Submit 51.07%	48.93%
Home	Away	Date	Winner
POR	UTA	2023-12-03	POR
SAC	DEN	2023-12-03	SAC
LAL	HOU	2023-12-03	LAL
GSW	LAC	2023-12-02	GSW
CHA	MIN	2023-12-02	CHA
BKN	ORL	2023-12-03	BKN
DET	CLE	2023-12-03	DET
MIA	IND	2023-12-03	MIA

2023-12-03

CHI

NOP

CHI

Future Plans

Connect website with backend instead of manually entering in data after running code

Fix website code so that it doesn't become warped on different screens

Include training data up to 2023.

Thank you for listening

Public repo: https://github.com/acompalas/SCAI Hedge your bets