Exploratory Data Analysis

Dr. Ilkay Altintas

Terms to Describe Data

Terms to Describe Data

Terms to Describe Data

Other Names for 'Sample'

instance

observation

record

		ID	Date	MinTemp	MaxTemp	Rainfall
		1	2010-06-17	55	75	0.1
Samples		2	2010-06-18	52	78	0.0
Sam		3	2010-06-19	50	78	0.0
	L	4	2010-06-20	54	77	0.0

row

Other Names for 'Variable'

Data Types

Most common

Numeric Categorical

Others

Numeric Variables

- Values are numbers
- Also called 'quantitative'

1

7x10⁵

163.92

-0.4902

Examples of Numeric Variables

- Height
- Score on an exam
- Number of transactions per hour
- Change in stock price

Categorical Variables

- Values are labels, names, or categories
- Also called 'qualitative' or 'nominal'

Examples of Categorical Variables

- Gender
- Marital status
- Type of customer
- Product categories
- Color of an item

Why Explore Data?

Goal: To understand your data

Exploratory Data Analysis (EDA)

Ways to Explore Data

Summary Statistics Visualization

Summary Statistics

Information that summarizes dataset

standard deviation

Data Visualization

Look at data graphically

Some Things to Look For

Correlations

Correlations

• Provide information about relationship between variables

Trends

• Indicate general characteristics of data

Outliers

• Indicate potential problems with data

Data Exploration

Informed Analysis

Data Exploration

Exploring Data through Summary Statistics

- Define what a summary statistic is
- List common summary statistics
- Explain how summary statistics are useful in exploring data

What are summary statistics?

- Quantities that summarize and describe a set of data values
- Measures of
 - Location: mean, median
 - Spread: standard deviation
 - Shape: skewness

Measures of Location

Describe central or typical value of dataset

Measures of Location - Example

Age
35
42
78
22
56
50
42
78
21
87

Age (sorted)
21
22
35
42
42
50
56
78
78
87

Mean = 51.1

Median = (42+50)/2 = 46

Mode = 42 & 78

Measures of Spread

Describe how dispersed or varied data is

minimum standard deviation maximum variation range

Measures of Spread – Example

Age	Age (sorted)
35	21
42	22
78	35
22	42
56	42
50	50
42	56
78	78
21	78
87	87

Range = 87 - 21 = 66

Variance = 548.767

Standard deviation = 23.426

Measures of Shape

Negatively skewed distribution or Skewed to the left Skewness <0

Normal distribution Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

skewness

kurtosis

Measures of Shape – Example

Age
35
42
78
22
56
50
42
78
21
87

Skewness = 0.2995

Kurtosis = -1.2028

Measures of Dependence

Describe relationship between variables

Measures of Dependence – Example

68
70
84
44
81
53
40
50
64
72

Correlation = 0.8906

Statistics on Categorical Variables

Describe number of categories and frequency of each category

Color/Pet	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

contingency table

Contingency Table - Example

Color/Pet	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

Check Dimensions

• Check number of rows and columns

columns = # variables ?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	0.1
2	2016-06-18	52	78	0.0
3	2010-06-19	50	78	0.0
4	2010-06-20	54	77	0.0

" # rows = # samples ?

Check Values

• Check values in some samples

Should temperature values in F or C?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	24	0.1
2	2016-06-18	52	26	3,678.9
3	2010-06-19	50	26	0.0
4	2010-06-20	54	25	0.0

Is this date or timestamp?

Is this correct?

Check Missing Values

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	4
2	2016-06-18	52	78	
3	2010-06-19	K	78	0.1
4	2010-06-20	54	77	

How many samples have missing values?

Does feature have mostly missing values?

Summary Statistics

- Measures of
 - Location, spread, shape, dependence
- Contingency table
 - For categorical variables
- Data validation
 - Dimensions, missing values

Exploring Data through Plots

- Discuss how plots can be useful in exploring data
- Describe how you would use a scatter plot
- Summarize what a boxplot shows

Visualizing Data

Types of Plots

- Histogram
- Line plot
- Scatter plot
- Bar plot
- Box plot
- others

Histogram

• Shows distribution of numeric variable

What a Histogram Shows

Line Plot

• Shows change in data over time

What a Line Plot Shows

Trend

Cyclical pattern

Compare variables

Scatter Plot

• Shows relationship between two variables

What a Scatter Plot Shows

Positive Correlation

Negative Correlation

Non-Linear Correlation

No Correlation

Bar Plot

• Shows distribution of categorical variable

What a Bar Plot Shows

Grouped Bar Chart

Stacked Bar Chart

Box Plot

Compares distributions of variables

Components of a Box Plot

What a Box Plot Shows

What a Box Plot Shows

Distribution Shape and The Boxplot

Data Visualization

- Provides intuitive way to look at data
- Should be used with summary statistics for data exploration
- Are also useful for communicating results

