Contrastive Learning on Abstractive Summarization

Qi Jia

Contents

- Contrastive learning
- Abstractive summarization
- Contrastive learning on abstractive summarization
- Conclusion

Contrastive Learning

Contrastive learning is a machine learning technique used to learn the general features of a dataset without labels by teaching the model which pairs of data points are similar or different.

Basic Steps for Contrastive Learning

Step-1: **Define** positive pairs [and negative pairs]

POS:

Two dogs are running.

A man surfing on the sea.

A kid is on a skateboard.

NEG:

Basic Steps for Contrastive Learning

Step-2: Extract features and get embedded **representations** for pairs by a model.

Basic Steps for Contrastive Learning

Step-3: Train the model to maximize the **similarity** of representations for similar inputs, and minimize the similarity of representations for dissimilar inputs with **a contrastive loss**.

• Distance/Similarity (

Contrastive Loss

e.g. ranking loss

Pairwise/Triplet Ranking Loss

Anchor

Anchor Sample
$$r_a$$

$$L = \begin{cases} d(r_a, r_p) & positive \ pair \\ \max(0, m - d(r_a, r_n)) & negative \ pair \end{cases}$$

Positive Sample

$$\mathbf{r}_{p}$$

$$L = \max(0, m + d(r_a, r_p) - d(r_a, r_n))$$

Negative Sample

m: a margin

Other Names used for Ranking Losses

Ranking Loss

• The *information retrieval* field, where we want to train models to rank items in a specific order.

Margin Loss

• Use a *margin* to compare the distances between sample representations.

Contrastive Loss

• The losses are computed contrasting two data point representations.

Hinge Loss

• A similar formulation in the sense it optimizes until a margin.

• Triplet Loss

• When triplet training pairs are employed

Take-aways

• Contrastive learning is a **self-supervised**, **task-independent** deep learning technique.

• The model learns general features by comparing pairs of data points.

• It can be used as an auxiliary task when labelled data is scarce.

Abstractive Summarization

Source document

justin timberlake and jessica biel, welcome to parenthood . the celebrity couple announced the arrival of their son, silas randall timberlake, in statements to people. `` silas was the middle name of timberlake 's maternal grandfather bill bomar, who died in 2012, while randall is the musician 's own middle name, as well as his father 's first," people reports. the couple announced the pregnancy in january, ...

Abstractive Summary

timberlake and biel welcome son silas randall timberlake. the couple announced the pregnancy in january.

Abstractive Summarization Model

Abstractive Summarization Model

Take-aways

• **Abstractive summarization** is the task of creating a **short**, accurate, and informative **summary** from a **long** text **document** without using the exact sentences from the source.

 Abstractive Summarization Model: Seq-to-Seq Encoder-decoder Model Architecture

• Pretrained Language Model: BART, PEGASUS

Contrastive Learning on Abstractive Summarization

- [2021ACL] SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization
- [2021] Alleviating Exposure Bias via Contrastive Learning for Abstractive Text Summarization
- [2021]Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization
- [2021] Sequence Level Contrastive Learning for Text Summarization
- [2021EMNLP]Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization

- Train the summarization model as usual.
- Generate multiple candidate summaries during generation with diverse beam search. (intuition: find the best one)

- Train an evaluation model to rank the generated candidates with contrastive learning.
- The final output summary is the candidate with the highest score.

Define pos&neg

Anchor Text document

Positive Text reference summary/generated summary

(rank by ROUGE/Human)

Negative Text

generated summary

- Extract representations
 RoBERTa, cosine similarity
- Loss

• Loss $\frac{\text{Generated}}{\text{summary}} \frac{\text{Reference}}{\text{summary}}$ $L = \sum_{i} \max(0, h(D, \tilde{S}_i) - h(D, \hat{S}))$ $+ \sum_{i} \sum_{j>i} \max(0, h(D, \tilde{S}_j) - h(D, \tilde{S}_i) + \lambda_{ij})$

- $\tilde{S}_1, \dots, \tilde{S}_n$ is descending sorted by evaluation metric (Rouge)
- $\lambda_{ij} = (j-i)*\lambda$ the corresponding margin

		CNNDM			XSum	
Model	R-1	R-2	R-L	R-1	R-2	R-L
BART	44.16	21.28	40.90	45.14	22.27	37.25
Pegasus	44.17	21.47	41.11	47.21	24.56	39.25
Prophet	44.20	21.17	41.30	-	-	-
GSum	45.94	22.32	42.48	45.40	21.89	36.67
Origin	44.39	21.21	41.28	47.10	24.53	39.23
Min	33.17	11.67	30.77	40.97	19.18	33.68
Max	54.36	28.73	50.77	52.45	28.28	43.36
Random	43.98	20.06	40.94	46.72	23.64	38.55
SimCLS	46.67	22.15	43.54	47.61	24.57	39.44

• Intuition: solving the discrepancy between training and inference

- Silver summary: the generated summary without beam search.
- Use contrastive learning as an auxiliary task during general training.

• Define pos&neg

Anchor Text

Positive Text

Negative Text

• Extract representations

PEGASUS

• Loss

source document

gold summary

silver summary

• Loss

Pos score:
$$S(Y|X) = \frac{1}{n^{\beta}} \sum_{i=1}^{n} f(y_i|X, y_{< i})$$
 The predicted log-likelihood
$$S(\widehat{Y}|X) = \frac{1}{m^{\beta}} \sum_{i=1}^{m} f(\widehat{y_i}|X, \widehat{y_{< i}})$$

$$L_{con} = \max(0, S(\widehat{Y}|X) - S(Y|X) + \gamma)$$

$$L = L_{con} + L_{nll}$$

	CNNDM			XSum		
Model	R-1	R-2	R-L	R-1	R-2	R-L
BERTSUM	41.72	19.39	38.76	38.76	16.33	31.15
MASS	42.12	19.50	39.01	39.75	17.24	31.95
BART	44.16	21.28	40.90	45.14	22.27	37.25
ConSum	44.53	21.54	41.57	47.34	24.67	39.40

Contrastive Learning on Abstractive Summarization

- [2021ACL] SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization
- [2021] Alleviating Exposure Bias via Contrastive Learning for Abstractive Text Summarization
- [2021]Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization
- [2021] Sequence Level Contrastive Learning for Text Summarization
- [2021EMNLP]Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization

• Enhance the robustness of the model on noisy input documents

sentence-level document augmentation:

Random Insertion;

Random Swap;

Random Deletion;

Document Rotation

• Define pos/neg pairs

Pos: if and only if two instances are from the same original input document.

Neg: two different document

• Extract representations

The final hidden vector of the first input token of BART's encoder.

• Loss

$$l(i,j) = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2K} \mathbb{1}_{[k\neq i]} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

		CNNDM		XSUM			
	R-1	R-2	R-L	R-1	R-2	R-L	
Lead-3	40.07	17.68	36.33	16.30	1.60	11.95	
BERTSUM	42.13	19.60	39.18	38.81	16.50	31.27	
PGNet	36.44	15.66	33.42	29.70	9.21	23.24	
BART	44.16	21.28	40.90	45.14	22.27	37.25	
PEGASUS	44.17	21.47	41.11	47.21	24.56	39.25	
Distil-BART	41.23	19.38	38.11	44.41	21.40	36.50	
ESACL	44.24	21.06	41.20	44.64	21.62	36.73	

	CNNDM			XSUM			
	R-1	R-2	R-L	R-1	R-2	R-L	
Lead-3	40.07	17.68	36.33	16.30	1.60	11.95	
BERTSUM	42.13	19.60	39.18	38.81	16.50	31.27	
PGNet	36.44	15.66	33.42	29.70	9.21	23.24	
BART	44.16	21.28	40.90	45.14	22.27	37.25	
PEGASUS	44.17	21.47	41.11	47.21	24.56	39.25	
Distil-BART	41.23	19.38	38.11	44.41	21.40	36.50	
ESACL	44.24	21.06	41.20	44.64	21.62	36.73	

	CNNDM			XSUM			
	R-1	R-2	R-L	R-1	R-2	R-L	
Lead-3	40.07	17.68	36.33	16.30	1.60	11.95	
BERTSUM	42.13	19.60	39.18	38.81	16.50	31.27	
PGNet	36.44	15.66	33.42	29.70	9.21	23.24	
BART	44.16	21.28	40.90	45.14	22.27	37.25	
PEGASUS	44.17	21.47	41.11	47.21	24.56	39.25	
Distil-BART	41.23	19.38	38.11	44.41	21.40	36.50	
ESACL	44.24	21.06	41.20	44.64	21.62	36.73	

ALL	44.42	44.64	21.40	21.61	36.51	36.72
Least Abstractive	49.92	50.15	26.64	26.84	41.02	40.95
Most Abstractive	40.47	40.75	19.44	19.77	34.50	34.89
Least Distilled	47.37	47.03	24.21	24.13	40.13	39.76
Most Distilled	36.32	36.90	15.71	16.15	29.64	30.06
Earliest Position	45.18	45.32	22.22	22.40	37.77	37.93
Latest Position	39.17	39.57	17.30	17.60	31.24	31.58
Longest Articles	36.98	37.11	15.89	15.96	29.08	29.23
Shortest Articles	45.39	45.24	23.35	23.14	39.23	39.15
	0 20 40	0 20 40	0 10 20	0 10 20	0 20 40	0 20 40
	BART-R1	ESACL-R1	BART-R2	ESACL-R2	BART-RL	ESACL-RL

- Abstractiveness
- Distillation
- Position
- Length

Sequence Level Contrastive Learning for Text Summarization

Sequence Level Contrastive Learning for Text Summarization

- Define pos&neg
 POS: a document, its gold summary
 and its generated summary
- Extract representations
 Encoder & Decoder
- Loss

Sequence Level Contrastive Learning for Text Summarization

	CNNDM				XSUM			
	R-1	R-2	R-L	R-1	R-2	R-L		
Lead-3	40.07	17.68	36.33	16.30	1.60	11.95		
BERTSUM	42.13	19.60	39.18	38.81	16.50	31.27		
PGNet	36.44	15.66	33.42	29.70	9.21	23.24		
BART	44.16	21.28	40.90	45.14	22.27	37.25		
PEGASUS	44.17	21.47	41.11	47.21	24.56	39.25		
SeqCo(x-y)	44.66	21.57	41.38	45.65	22.41	37.04		
SeqCo(x-y')	44.94	21.82	41.68	45.60	22.36	36.94		
SeqCo(y-y')	45.02	21.80	41.75	45.52	22.24	36.90		

Comparisons between above methods

SimCLS

ConSum

ESACL

SeqCo

A lack of representing similarities with NLL

Deal with noisy document input

Narrow down the gap between NLL and Rouge

Narrow down the gap between traning and testing

	CNNDM			XSUM		
	R-1	R-2	R-L	R-1	R-2	R-L
Lead-3	40.07	17.68	36.33	16.30	1.60	11.95
BERTSUM	42.13	19.60	39.18	38.81	16.50	31.27
PGNet	36.44	15.66	33.42	29.70	9.21	23.24
Distil-BART	41.23	19.38	38.11	44.41	21.40	36.50
BART	44.16	21.28	40.90	45.14	22.27	37.25
PEGASUS	44.17	21.47	41.11	47.21	24.56	39.25
SimCLS	46.67	22.15	43.54	47.61	24.57	39.44
ConSum	44.53	21.54	41.57	47.34	24.67	39.40
ESACL	44.24	21.06	41.20	44.64	21.62	36.73
SeqCo	45.02	21.80	41.75	45.65	22.41	37.04

```
Julia: Where are you?
Hania: That's a good question, haha
Hania: Don't even tell me, I have been on the road
for 3 hours already
Julia: I know how you feel love, I am sick of trains
already:(
Hania: I will be there around 7pm I guess:(
Julia: I will be waiting! :*
                                                      S
Hania: Great!
Julia: You must be starving, I am gonna make
some food. What would you like?
Hania: Or actually maybe we will order some
                                                      S3
takeaway?
Julia: Sounds like a plan:) pizza or burgers?
Hania: Pizza always :D
. . . . . .
```

- coherence detection
- sub-summary generation objectives

(t₁) Hania has been traveling for 3 hours already. (t₂) She will get there around 7pm. (t₃) Julia will order takeaway pizza for her.

- coherence detection
- sub-summary generation objectives

Coherence Detection Objective

• Define pos&neg

pos: a snippet

neg: a shuffled snippet

• Extract representations

last hidden state of Encoder

- + linear transformation
- Loss

$$[co(\mathcal{S}_k^{\mathcal{D}}), co(\widetilde{\mathcal{S}_k^{\mathcal{D}}})] = softmax([y_{\mathcal{S}_k^{\mathcal{D}}}, y_{\widetilde{\mathcal{S}_k^{\mathcal{D}}}}])$$

$$S_4 \begin{cases} \text{Julia: I know how you feel love, I am sick of trains} \\ \text{already:}(\\ \text{Hania: I will be there around 7pm I guess:}(\\ \text{Julia: I will be waiting!:*} \end{cases}$$

$$\text{Julia: Where are you?} \\ \text{Hania: That's a good question, haha} \\ \dots \\ \text{Hania: Don't even tell me, I have been on the road} \\ \text{for 3 hours already} \\ \text{Julia: I know how you feel love, I am sick of trains} \\ \text{already:}(\\ \mathcal{L}_{co}^{\mathcal{D}} = \\ \frac{1}{N_{co}} \sum_{m=1}^{N_{co}} \max(0, \delta_{co} - (co(S_{k,n}^{\mathcal{D}}) - co(\widetilde{S_{k,n}^{\mathcal{D}}})))$$

Sub-summary Generation Objective

• Define pos&neg

pos: the most related snippet (compared with sub-summary)

neg: a random snippet from the rest

• Extract representations

$$\mathcal{L}_{pos}^{t_i} = -\log(\prod_{j=1}^{|t_i|} p(t_j^i | t_{1:j-1}^i, \mathcal{S}_{pos}^i; \theta)) \qquad \qquad \mathcal{L}_{neg}^{t_i} = -\log(\prod_{j=1}^{|t_i|} p(t_j^i | t_{1:j-1}^i, \mathcal{S}_{neg}^i; \theta))$$

• Loss

$$[su(S_{\text{pos}}^{i}), su(S_{\text{neg}}^{i})] = softmax([\mathcal{L}_{pos}^{t_{i}}, \mathcal{L}_{neg}^{t_{i}}])$$

$$\frac{1}{N_{su}} \sum_{n=1}^{N_{su}} \max(0, \delta_{su} - (su(S_{\text{neg}}^{n}) - su(S_{\text{pos}}^{n})))$$

Model	R-1	R-2	R-L	BERTS
*Lead3	31.4	8.7	29.4	-
*PTGen	40.1	15.3	36.6	=
*DynamicConv + GPT-2	41.8	16.4	37.6	-
*FastAbs-RL	42.0	18.1	39.2	-
*DynamicConv + News	45.4	20.7	41.5	-
Multiview BART	53.9	28.4	44.4	53.6
*BART _{BASE}	46.1	22.3	36.4	44.8
*BART	52.6	27.0	42.1	52.1
$*BART_{ORI}$	52.6	27.2	42.7	52.3
CONDIGSUM _{BASE}	48.1	24.0	39.2	48.0
CONDIGSUM	54.3	29.3	45.2	54.0
w/o Sub-summary	53.8	28.3	44.1	53.5
w/o Coherence	53.9	28.6	44.2	53.5

- > Motivation
 - ✓ Summary quality on a specific aspect
 - ✓ Model robustness
 - ✓ Exposure bias

- Construct Positive Pairs and Negative Pairs (Within a batch)
 - ✓ Word level, Sentence level, Discourse level
 - ✓ Document-only, Summary-only, Document-Summary
 - ✓ Insertion, Replacement, Delete, Rotate

- > Extract Representations
 - ✓ Encoder hidden states: the first, the last, all
 - ✓ Decoder hidden states
 - ✓ + linear/non-linear/multi-head attention
 - ✓ Decoder loss

- > Similarity:
 - ✓ Cosine similarity
 - ✓ Softmax between (pos, neg)
- > Loss
 - ✓ Weighted-sum with NLL
 - ✓ Alternating Update Strategy

Algorithm 2 Alternating Updating Strategy

Input: A batch of dialogue-summary instances \mathcal{B} Coherence Task

1:
$$\mathcal{L}_{co}^{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{\langle \mathcal{D}, T_{\mathcal{D}} \rangle \in \mathcal{B}} \mathcal{L}_{co}^{\mathcal{D}}$$

2:
$$\theta \leftarrow \theta - \alpha w_{co} \frac{\partial L_{co}^{\mathcal{B}}}{\partial \theta}$$

Sub-summary Task

3:
$$\mathcal{L}_{su}^{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{\langle \mathcal{D}, T_{\mathcal{D}} \rangle \in \mathcal{B}} \mathcal{L}_{su}^{\mathcal{D}, T_{\mathcal{D}}}$$

4:
$$\theta \leftarrow \theta - \alpha w_{su} \frac{\partial \mathcal{L}_{su}^{\mathcal{B}}}{\partial \theta}$$

Main Task

5:
$$\mathcal{L}_{main}^{\mathcal{B}} = -\frac{1}{|\mathcal{B}|} \sum_{\langle \mathcal{D}, T_{\mathcal{D}} \rangle \in \mathcal{B}} \mathcal{L}^{\mathcal{D}, T_{\mathcal{D}}}$$

6:
$$\theta \leftarrow \theta - \alpha w_{main} \frac{\partial \mathcal{L}_{main}^{\mathcal{B}}}{\partial \theta}$$

$$\mathcal{L} = \alpha \mathcal{L}_{cl} + (1 - \alpha) \mathcal{L}_{generate}$$

Thank you!