Chapitre 2 : Modèle microscopique du gaz parfait, pression et température cinétique

I Modèle du gaz parfait

Enceinte de volume V, N molécules identiques de masse m.

Constitue un gaz parfait si, et seulement si :

• Il n'y a pas d'interactions entre les molécules

Force entre deux molécules choisies au hasard, distantes de d, nulle, quelle que soit la distance d. ou : $U_{\text{interaction}} = \text{cte} = 0$, $\forall d$ (énergie potentielle d'interaction)

Les molécules sont assimilables à des sphères rigides de rayon R. Donc $d \ge 2R$. Pour $d \ge qqsR$, il y a une partie attractive : forces de Van der Waals.

Pour un gaz dilué, le gaz parfait constitue une assez bonne approximation ($d_{\text{moy}}>d_{\text{vdw}}$, on peut donc négliger les interactions). Les molécules ont donc des mouvements indépendants les uns des autres.

• Il n'y a pas d'interaction avec l'extérieur.

Pas de forces extérieures (poids, forces électromagnétiques...) agissant sur les molécules. On ne peut pas supprimer le poids. Quand peut-on le négliger ?

Relation entre d et v:

Rappel : $d \approx \frac{v_0^2}{g}$. Les molécules ont une vitesse $v_0 \approx 300 \text{m.s}^{-1}$. Donc $d \approx 10 \text{km}$. Donc si l'échelle est très inférieure à d, le mouvement n'est pas ou peu perturbé par le poids. $(V^{1/3} \approx 10 \text{m})$

• Il n'y a pas d'échange de matière avec l'extérieur L'enceinte est un système fermé.

Exemple d'enceinte non fermée (il y a échange de matière entre les phases) :

II Calcul de la pression cinétique

A) Hypothèse du chaos moléculaire

1) Agitation thermique

Les molécules sont animées de mouvements désordonnés et incessants.

2) Homogénéité de la densité moléculaire

Définition : $n_v(M,t)$ densité moléculaire ou volumique de particules.

 δV mésoscopique

Nombre de molécules dans δV mésoscopique : δN

$$n_V(M,t) = \frac{\delta N}{\delta V}$$
. Pour une répartition homogène : $n_V(t) = \frac{N}{V}$.

3) Homogénéité et isotropie de la distribution des vitesses

- Isotropie (de la distribution des vitesses) :

 Toutes les directions de l'espace sont équivalentes (en particulier, pas de mouvement d'ensemble des particules, c'est-à-dire pas d'écoulement)
 - Homogénéité de la distribution des vitesses :
 Les vitesses sont indépendantes de la position des particules dans l'enceinte

Variante simplifiée de l'homogénéité et de l'isotropie de la distribution des vitesses : une molécule i dans l'enceinte a une vitesse \vec{v}_i telle que $\forall i, \|\vec{v}_i\| = v_0$, et, dans un repère $(O, \vec{i}, \vec{j}, \vec{k})$, $\vec{v}_i = \pm v_0 \vec{i}$ ou $\pm v_0 \vec{j}$ ou $\pm v_0 \vec{k}$. On a donc un même module de vitesse pour toute molécule, constant où qu'elle soit (homogénéité), et la probabilité d'une des vitesses est de 1/6 (isotropie).

B) Calcul de la pression cinétique

1) Interprétation microscopique de la pression

Les chocs incessants entre les molécules et la paroi se traduisent par l'existence d'une force (de pression) exercée par ces molécules sur la paroi.

2) Force pressante et percussion

(Avec variante simplifiée)

Seules les molécules ayant une vitesse $+v_0\vec{i}$ pourront avoir un choc avec la paroi et auront alors une vitesse $-v_0\vec{i}$ après le choc.

D'après la relation fondamentale de la dynamique (dans R_{lab} galiléen): $m\frac{d\vec{v}_i}{dt} = \vec{F}_{dS/i}$ (seule force appliquée à la molécule)

$$\int_{t_{\text{debut}}}^{t_{\text{fin}}} \vec{F}_{dS/i} dt = m \int_{t_{\text{debut}}}^{t_{\text{fin}}} d\vec{v}_i = m(\vec{v}_i(t_{\text{fin}}) - \vec{v}_i(t_{\text{debut}})) = -2mv_0 \vec{i}$$

La molécule exerce sur dS une force $\vec{F}_{i/dS} = -\vec{F}_{dS/i}$. Donc $\int_{t_{\text{debut}}}^{t_{\text{fin}}} \vec{F}_{i/dS} dt = 2mv_0 \vec{i}$ (percussion individuelle de la molécule i).

$$t < t_{\text{début}} < t_{\text{fin}} < t + \Delta t \cdot \text{Donc} \int_{t}^{t+\Delta t} \vec{F}_{i/dS} dt = 2mv_{0}\vec{i} .$$

$$\text{Donc} \sum_{\substack{i \text{ qui ont un } \\ \text{choc entre t et}}} \left(\int_{t}^{t+\Delta t} \vec{F}_{i/dS} dt \right) = \int_{t}^{t+\Delta t} \sum_{t} \vec{F}_{i/dS} dt = \int_{t}^{t+\Delta t} \vec{F}_{\text{pression}} dt = \int_{t}^{t+\Delta t} P dS \times \vec{i} dt$$

$$= P dS \times \Delta t \times \vec{i}$$

$$= 2 \times \Delta N \times mv_{0} \vec{i}$$

(où ΔN est le nombre de chocs entre t et $t + \Delta t$), soit donc $PdS \times \Delta t = 2 \times \Delta N \times mv_0$.

3) Evaluation de ΔN .

$$\begin{array}{ccc}
 & v_0 \vec{i} \\
M(t) & M(t + \Delta t)
\end{array}$$

$$\begin{array}{ccc}
 & dS \\
M(t + \Delta t) & M(t + \Delta t)
\end{array}$$

Les molécules avec une vitesse $+v_0\vec{i}$ qui pourront avoir un choc avec dS entre t et $t+\Delta t$ sont celles contenues dans le cylindre de base dS et de longueur $v_0\Delta t$. Volume du cylindre : $\Delta V = dS \times v_0 \times \Delta t$. Nombre de molécules dans ce cylindre qui vont dans le bon sens : $\Delta N = \frac{1}{6}n_V\Delta V = \frac{1}{6}n_V\times dS \times v_0 \times \Delta t$.

Donc $PdS \times \Delta t = 2mv_0 \times \frac{1}{6}n_V dS \times v_0 \times \Delta t$. $P = \frac{1}{3}m \times n_V v_0^2$. Ceci est valable pour une distribution plus réaliste (admis): $P = \frac{1}{3}m \times n_V v^{*2}$.

C) Température cinétique

On définit la grandeur d'état $T_{\text{cinétique}}$ du système par la relation :

$$\frac{3}{2}kT_{\text{cinétique}} = \frac{1}{2}mv^{*2}. m : \text{masse d'une molécule.}$$

k: constante de Boltzmann = R/N_a ($R = 8.314 \text{K}^{-1}.\text{mol}^{-1}$, $N_a = 6.022.10^{23} \text{mol}^{-1}$).

Pour une molécule
$$i$$
, $E_{C,\text{translation},i} = \frac{1}{2} m v_i^2$. Donc $\left\langle E_{C,\text{translation},i} \right\rangle_i = \left\langle \frac{1}{2} m v_i^2 \right\rangle_i = \frac{1}{2} m v^{*2}$.

 $\frac{1}{2}kT_{\text{cinétique}}$: Énergie thermique associée à chaque degré de liberté de translation (mouvement dans l'espace \rightarrow 3 degrés de liberté).

Donc
$$T_{\text{cinétique}} = \frac{m \times v^{*2}}{3k} = \frac{M/N_a \times v^{*2}}{3 \times R/N_a} = \frac{M \times v^{*2}}{3R}$$
 ou $v^* = \sqrt{\frac{3kT_{\text{cinétique}}}{m}}$.

D) Equation d'état du gaz parfait

On a :
$$P = \frac{1}{3} m \times n_V v^{*2}$$

Donc
$$T_{\text{cinétique}} = \frac{m \times v^{*2}}{3k} = \frac{3P/n_V}{3k} \Leftrightarrow P = n_V k T_{\text{cinétique}} \Leftrightarrow PV = N \times \frac{R}{N_a} T_{\text{cinétique}}$$

$$\Leftrightarrow PV = n.R.T_{\text{cinétique}}$$

Et
$$n = \frac{m_{\text{gaz}}}{M}$$
.

Donc $PV = m_{\text{gaz}} r T_{\text{cinétique}}$ avec $r = \frac{R}{M}$: constante massique des gaz parfaits.

III Energie interne du gaz parfait

A) Gaz parfait monoatomique

Définition:

gaz parfait dont les molécules sont réduites à un seul atome = particule ponctuelle.

Energie d'une molécule :
$$E_i = E_{c,i} + E_{p,\text{interaction}} + E_{p,\text{extérieur}}$$
 .

Comme le gaz est parfait,
$$E_{p,\text{interaction}} = E_{p,\text{extérieur}} = 0$$
. Donc $E_i = E_{c,i} = \frac{1}{2} m v_i^2$.

B) Gaz parfait polyatomique

Définition:

C'est un gaz parfait dont les molécules sont constituées de plusieurs atomes.

Donc $E_{c,i} = E_{c,\text{translation}} + E_{c,\text{rotation}} + E_{c,\text{vibration}}$

C) Energie interne du gaz parfait

1) Gaz parfait monoatomique

Définitions:

- Energie interne :
$$U = \sum_{i=1}^{N} E_i = N \times \frac{1}{2} m \left(\frac{1}{N} \sum_{i=1}^{N} v_i^2 \right) = N \times \frac{1}{2} m v^{*2}$$
Donc $U = N \times \frac{3}{2} k T_{\text{cinétique}} = \frac{3}{2} n R T_{\text{cinétique}}$

Donc
$$U = N \times \frac{3}{2} kT_{\text{cinétique}} = \frac{3}{2} nRT_{\text{cinétique}}$$

- Energie interne molaire :
$$U_m = \frac{U}{n} = \frac{3}{2}RT_{\text{cinétique}}$$

- Energie interne massique :
$$u = \frac{U}{m_{\text{gaz}}} = \frac{m_{\text{gaz}}}{M} RT_{\text{cinétique}} \times \frac{1}{m_{\text{gaz}}} = \frac{3}{2} rT_{\text{cinétique}}$$

Capacité thermique ou calorifique ou isochore (à
$$V$$
 constant) :
$$C_V = \frac{\partial U}{\partial T}\Big|_V$$
 Chaleur

Pour le gaz parfait, U ne dépend que de T (indépendant de V)

On a:
$$C_V = \frac{dU}{dT} = \frac{3}{2}nR$$
, $[C_V] = J.K^{-1}$

-
$$C_{m,V} = \frac{dU_m}{dt} = \frac{3}{2}R$$
, $[C_{m,V}] = J.K^{-1}.mol^{-1}$

-
$$c_V = \frac{du}{dt} = \frac{3}{2}r$$
, $[c_V] = J.K^{-1}.kg^{-1}$

Remarque : pour un gaz parfait, $U = C_V T = nC_{m,V} T = m_{gaz} c_V T$

2) Gaz parfait polyatomique

$$U = \sum_{i=1}^{N} E_i = nU_m$$
 (*U* est un paramètre extensif, U_m intensif)

 $1^{\text{ère}}$ Loi de Joule : U_m ne dépend que de T (pas de V)

$$C_V = \frac{dU}{dT}, \ C_{m,V} = \frac{dU_m}{dt}, \ c_V = \frac{du}{dt}.$$

Pour un gaz parfait diatomique:

(Pour les deux degrés de liberté de la vibration, assimiler les interactions entre molécules à des ressorts...)

$$U_m(T) = \int_0^T C_{m,V}(T') \times dT' \neq C_{m,V} \times T$$

Attention : l'égalité $U_m = C_{m,V} \times T$ n'est valable que pour un gaz parfait monoatomique.