

## الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018



وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

المدة: 04 سا و 30 د

# على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

## التمرين الأول: (04 نقاط)

الدالة العددية المعرّفة والمتزايدة تماما على المجال  $\infty = \frac{2x}{e.x+1}$  بالدالة العددية المعرّفة والمتزايدة تماما على المجال f

$$u_{n+1} = f\left(u_n
ight)$$
 :  $n$  يعدد طبيعي  $u_n = \frac{5}{4e}$  ومن أجل كل عدد طبيعي  $u_n = \frac{5}{4e}$ 

.  $u_n > \frac{1}{e}$ : n وهن بالتراجع أنه من أجل كل عدد طبيعي (أ (1

, 
$$u_{n+1} - u_n = \frac{e.u_n(\frac{1}{e} - u_n)}{e.u_n + 1}$$
 :  $n$  عدد طبیعي  $e.u_{n+1} - u_n = \frac{e.u_n(\frac{1}{e} - u_n)}{e.u_n + 1}$ 

ثم استنتج اتجاه تغير المتتالية  $(u_n)$  و برّر أنها متقارية.

 $v_n = \frac{e.u_n}{e.u_n-1}$ : لتكن المنتالية  $\binom{e.u_n}{e.u_n-1}$  المعرفة من أجل كل عدد طبيعي n كما يلي (2

n بدلالة  $v_n$  متتالية هندسية أساسها 2 ، يطلب تعيين حدها الأول  $v_0$  و عبارة  $v_n$  بدلالة  $v_n$ 

.  $\lim_{n\to +\infty} u_n$  من  $u_n$  من  $u_n$  من  $v_n=1+\dfrac{1}{e.u_n-1}$ :  $\mathbb N$  من n من أجل كل n من أجل كل n من أجل كل n من أجل كل أحسب أحسب  $v_n=1+\dfrac{1}{e.u_n-1}$ 

 $S_n = v_0 + v_1 + \dots + v_n$  : حيث  $S_n = v_0 + v_1 + \dots + v_n$  المجموع  $S_n = v_0 + v_1 + \dots + v_n$  الحسب بدلالة

4) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 2" على 7.

ب) عين قيم العدد الطبيعي n التي من أجلها S, يقبل القسمة على 7.



#### اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

## التمرين الثاني: (04 نقاط)

B(0;3;-1)، A(0;0;2) الفضاء منسوب إلى المعلم المتعامد المتجانس  $\left(o;\vec{i},\vec{j},\vec{k}\right)$  نعتبر النقطتين المعلم المتعامد المتجانس المتحانب و $\left(o;\vec{i},\vec{j},\vec{k}\right)$ 

والمستوي (p) المعرف بالتمثيل الوسيطي: x=t+m حيث y=4t-2m+1 عددان حقيقيان. z=t-2m-2

- له. اكتب معادلة بيكارتية للمستوي (Q) الذي يشمل النقطة A و (2;2;-1) شعاع ناظمي له.
  - (Q) اكتب تمثيلا وسيطيا للمستقيم ( $\Delta$ ) الذي يشمل النقطة A و يعامد المستوي (Q).
    - (p) أ) تحقق أنّ: 2x-y+2z+5=0 معادلة ديكارتية للمستوي ((p)).
    - (Q) بيّن أنّ المستوي (p) يشمل النقطة B و يعامد المستوي (Q).
    - لتكن M نقطة احداثياتها (2t;2t;-t+2) حيث tعدد حقيقي (4
- d(M;(P)) = d(M;(Q)) عين قيم t بحيث تكون d(M;(P)) = d(M;(Q)) ( ترمز d الى المسافة بين نقطة و مستوي ).
- A النقطنين (p) مركز سطح الكرة (S) الني تمس كل من المستويين (Q) و (p) في النقطنين (P) و (P) و

## التمرين الثالث: (05 نقاط)

- .  $z^2-2\sqrt{2}z+4=0$ : z المعادلة ذات المجهول الأعداد المركبة المعادلة ذات المجهول (z
  - .  $(o; \overline{u}, \overline{v})$  المستوي المركب منسوب إلى المعلم المتعامد المتجانس المركب منسوب إلى المعلم المتعامد المتجانس

 $\left(z_{A}\right)$  لتكن النقطتين A و B لاحقتاهما  $z_{A}=\sqrt{2}+i\sqrt{2}$  و  $z_{A}=\sqrt{2}+i\sqrt{2}$  لتكن النقطتين  $z_{A}=\sqrt{2}+i\sqrt{2}$ 

- . على الشكل الأستي كل من العددين المركبين  $z_R$  و  $\frac{1}{z_B}$ ، ثم بيّن أنّ العدد  $\left(\frac{2}{z_B}\right)^{2018}$  تخيلي صرف (1
  - . (~3) مسورة  $z_{\omega}=\frac{\sqrt{2}}{2}$  مركزه  $\omega$  ذات اللاحقة  $z_{\omega}=\frac{\sqrt{2}}{2}$  ونسبته (2 مركزه  $z_{\omega}=-\sqrt{2}+i3\sqrt{2}$  هي  $z_{\omega}=-\sqrt{2}+i3\sqrt{2}$  هي النقطة  $z_{\omega}=-\sqrt{2}+i3\sqrt{2}$ 
    - $-\frac{\pi}{2}$  احسب  $z_D$  لاحقة النقطة D صورة B بالدوران r الذي مركزه D و زاويته (3
      - . ACD ثم أستنتج طبيعة المثلث  $\frac{z_C-z_A}{z_D-z_A}=-i$  ثم أستنتج طبيعة المثلث (1 (4
      - ب) اوجد لاحقة النقطة E بحيث يكون الرباعي ACED مربعا.

## التمرين الرابع: (07 نقاط)

.  $f(x) = \frac{x}{x-1}e^{-x}$  بالدالة العددية المعرفة على المجال  $f(x) = \frac{x}{x-1}e^{-x}$ 

.  $(O; \vec{i}, \vec{j})$  سنجانس البياني في المعلم المتعامد المتجانس  $(C_f)$  و



#### اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2018

- .  $\lim_{x\to -\infty} f(x)$  احسب النتيجة بيانيا و احسب  $\lim_{x\to -\infty} f(x)$  أ
- ين أنّه من أجل كل x من  $f^*(x) = \frac{(-x^2+x-1)e^{-x}}{(x-1)^2}$  :  $f^*(x) = \frac{(-x^2+x-1)e^{-x}}{(x-1)^2}$  :  $f^*(x) = \frac{(-x^2+x-1)e^{-x}}{(x-1)^2}$  .  $f^$ 
  - . يند النَّقَطَة ذات الفاصلة صفر (T) للمنحنى (T) عند النَّقَطَة ذات الفاصلة صفر (T) اكتب معادلة المماس
  - ب)  $h(x) = e^{-x} + x 1$  [ب:  $h(x) = e^{-x} + x 1$  .

    المجال  $h(x) \ge 0$  :  $h(x) \ge 0$  .  $h(x) \ge 0$  . h(
  - $(C_f)$  بين أنّه من أجل كل x من  $[-\infty;1]$  بين أنّه من أجل كل x من  $[-\infty;1]$  من أجل كل x من  $f(x)+x=\frac{x\ h(x)}{x-1}$  بين أنّه من أجل كل x من x من أجل كل أخل كل أ
  - الذي يشمل مبدأ المعلم O و النقطة  $A\left(-2;\frac{2}{3}e^2\right)$  ثم ارسم المستقيمين  $A\left(-2;\frac{2}{3}e^2\right)$  . [-2;1] على المجال  $(C_f)$  على المجال  $(D_f)$  على المجال المح
    - $\frac{x}{x-1} \le f(x) < e^{-x} : [-1;0]$  من أخه من أجل كل x من أجل كل x من (6)
- f(x) = mx : عدد حلول المعادلة m وسيط حقيقي ، ناقش بيانيا و حسب قيم الوسيط الحقيقي m عدد حلول المعادلة  $x \in [-2;1]$



#### أختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

## الموضوع الثاني

# يحتوي الموضوع الثاني على (02) صفحات (من الصفحة 4 من 5 إلى الصفحة 5 من 5) المتمرين الأول: (04 نقاط)

.  $u_n=2(3)^n$  منتالية عددية معرّفة على  $\mathbb N$  بحدها العام كما يلي منتالية عددية معرّفة على

 $v_{n+1} = 5v_n + u_n$ :  $\mathbb{N}$  متتالية عددية معرّفة بحدها الأول  $v_0 = 4$  و من أجل كل n من  $v_n = 5v_n + u_n$ 

 $w_n = \frac{v_n}{u_n} + \frac{1}{2} : \mathbb{N}$  من أجل كل n من أجل (1)

- اثبت أنّ  $(w_n)$  متتالية هندسية أساسها  $\frac{5}{3}$  ، يطلب تعيين حدّها الأوّل.

 $v_n = 5^{n+1} - 3^n$  :  $\mathbb{N}$  من n من n من n بدلالة n ثم استنتج أنّه من أجل كل n من n بدلالة n بدلالة n ثم استنتج أنّه من أجل كل n من

ادرس حسب قيم العدد الطبيعي n ، بواقي القسمة الاقليدية للعددين "3 و "5 على 8.

عين حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد  $\nu_n$  على 8 .

## التمرين الثاني: (04 نقاط)

كيس به 7 كريات متماثلة، لا نفرق بينها باللمس ، منها 3 بيضاء و 4 خضراء.

نسحب عشوائيا و في آن واحد كريتين من الكيس.

ا) الحسب احتمال الحادثة A: "سحب كريتين مختلفتين في اللون ".

." احسب احتمال الحادثة B " سحب كريتين من نفس اللون ."

 $\alpha$  نقترح اللعبة التانية : للمشاركة يدفع اللاعب  $\alpha$   $\alpha$  (حيث  $\alpha$  عدد طبيعي معطى و  $\Delta$  تعني دينار جزائري) . فإذا سحب كريتين بيضاوين يتحصل على  $\alpha$   $\alpha$  المتغيّر العشوائي الذي يمثل ربح أو خسارة اللاعب بدلالة  $\alpha$  . وإذا سحب كريتين خضراوين يخسر ما دفعه. وليكن  $\alpha$  المتغيّر العشوائي الذي يمثل ربح أو خسارة اللاعب بدلالة  $\alpha$  .

1) بزر أنّ قيم المتغير العشوائي هي lpha, -lpha, -lpha, -lpha ثم عرَف قانون احتماله.

 $E(X) = -\alpha + \frac{300}{7}$  . هو  $\alpha$  هو  $\alpha$  الأمل الرياضياتي للمتغيّر العشوائي  $\alpha$  بدلالة  $\alpha$  هو  $\alpha$  هو  $\alpha$  الأمل الرياضياتي للمتغيّر العشوائي  $\alpha$  متى تكون اللعبة في صالح اللاعب.

## التمرين الثالث: ( 55 نقاط )

(E) ...  $4z^2-2z+1=0$  : المعادلة ذات المجهول z التالية z المعادلة z المعادلة z المعادلة z المعادلة z على الشكل الأسي حيث z و z حلا المعادلة z . z

المستوي المركب منسوب إلى المعلم المتعامد المتجانس  $O;\overrightarrow{u},\overrightarrow{v}$ ). نعتبر النقط B ، A و B الحقاتها C الحقاتها  $z_B=1+i\sqrt{3}$  ،  $z_A=4$ 



#### اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

- . ABC ثم حدد طبیعة المثلث  $\frac{z_B-z_A}{z_C-z_A}$  بمبا (أ (1
- ب استنتج أن B هي صورة C بدوران مركزه A يطلب تعيين زاويته .
- وجد لاحقة النقطة D صورة النقطة A بالانسحاب الذي شعاعه  $\overline{CB}$  و استنتج بدقة طبيعة الرياعي (2 ACBD
  - 3) حدّد طبيعة z التي تُحقق ما يلي: z مجموعة النقط z من المستوي المركب ذات اللاحقة z التي تُحقق ما يلي:  $|iz+\sqrt{3}-i|=|z-1+i\sqrt{3}|$ 
    - $(\gamma)$  بين أنّ النقطة G مركز الدائرة المحيطة بالمثلث ABC نتتمي إلى  $(\gamma)$ .

## التمرين الرابع: (07 نقاط)

- .  $g(x)=2-x+\ln x:$  بعتبر الدالة العددية g المعرّفة على المجال  $g(x)=2-x+\ln x$  با
  - أ) ادرس انجاه تغيّر الدالة g على المجال [1;0]
- $-0,15 < \alpha < 0,16$  جيث:  $\alpha = 0$  تقبل حلا وحيدا  $\alpha = 0$  حيث:  $\alpha = 0$ 
  - . ]0;1[ على المجال g(x) على المجال g(x) على المجال (2
- .  $f(x) = \frac{1-2x+\ln x}{x-1}$ : بالدالة العددية المعرّفة على المجال  $[1;+\infty[$  بالمجال المعرّفة على المجال ([1]
- .  $\left(O;\overrightarrow{i},\overrightarrow{j}
  ight)$  تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس  $\left(C_{f}
  ight)$
- ، (  $f(x) = \frac{1-2x}{x-1} + \frac{\ln x}{x-1}$  على الشكل f(x) على الشكل  $\lim_{x \to +\infty} f(x)$  ويمكن كتابة (1) على الشكل (1) احسب (1) ثم فسر النتيجتين بيانيا.
  - $f'(x) = \frac{g\left(\frac{1}{x}\right)}{(x-1)^2}$  : ]i;+∞[ من المجال x من المجال عدد حقیقي x من المجال عدد عقیقي (1)
  - . بين أن f متزايدة تماما على  $\left[rac{1}{lpha};+\infty
    ight]$ و متناقصة تماما على  $\left[rac{1}{lpha};+\infty
    ight]$ ، ثم شكّل جدول تغيّراتها f
    - y=-2 ادرس الوضع النسبي لـ  $(C_{f^\perp})$  و المستقيم ( $\Delta$ ) ذي معادلة (3
    - . (  $f\left(rac{1}{lpha}
      ight)$   $\simeq$  -1.8 يعطى )  $\left(C_{f}
      ight)$  ارسم المستقيمين المقاربين و المنحنى و المنحنى ( 4
    - 5) عين بيانيا قيم الوسيط الحقيقي m حتى تقبل المعادلة  $m=\left| f\left( x\right) \right| -$  حلين متمايزين.