Seyone Chithrananda

seyonec@berkeley.edu | seyonechithrananda.com | Google Scholar | Linkedin EDUCATION

UC Berkeley Berkeley, CA Bachelor's in Computer Science (Bioengineering minor)

August 2021-May 2025

• *Coursework*: Discrete Math & Probability Theory, Convex Optimization, Computational Functional Genomics, Structure and Interpretation of Computer Programs, Designing Information Devices and Systems I & II (linear algebra, circuit analysis, ML), Data Structures, Single + Multivariable Calculus. *Activities and societies*: Machine Learning at Berkeley, open source developer for DeepChem project (3K stars).

EXPERIENCE

Broad Institute of MIT and Harvard Research Intern

Cambridge, MA August 2022-present

 Visiting student working with <u>Eeshit Dhaval Vaishnav</u>, advised by <u>Prof. Eric Lander</u> (Institute founding director, former WH Science Advisor), studying gene expression programs using single-cell data and variational deep learning methods.

Dyno Therapeutics ML Research Intern

Cambridge, MA May 2022-Sept 2022

- Researching methods for <u>viral protein AAV capsid design</u>, using sequence-to-function graph and sequence-based models (transformers, GNNs, etc). a16z, Google Ventures backed Church Lab startup, with ~\$120M Series A (<u>blog post</u>).
- Developed generative structure-to-sequence models to propose high-scoring variant sequences, and examined performance at standard protein redesign, handling epistatic interactions, indels, and at predicting binding on experimentally-validated and in silico fitness landscapes. Preprint accepted at <u>Machine Learning in Structural Biology</u> Workshop, NeurIPS 2022.
- Built and grew internal package containing simulated fitness landscapes for benchmarking models on biological sequence design problems. Implemented statistical models for mapping epistatic interactions in progressively rugged landscapes.

Nurix Therapeutics ML Research Intern

San Francisco, CA May 2021-September 2021

- Developing computational strategies for DNA-encoded library design, accounting for multiple sources of experimental variation. Developed graph generative models and genetic algorithms for scaffold-based molecular design, using multi-objective optimization.
- Deployed multiple classification and regression models for screening molecules within core DEL-ML platform. Implemented message-passing, graph convolutional neural networks for binding affinity, ADME-tox modeling.

University of Toronto Research Intern - Matter Lab (advised by Alan-Aspuru Guzik)

Toronto, ON *Apr. 2020-May 2021*

- Co-developer of <u>SELFIES v1.0</u>, a 100% robust molecular string representation for machine learning models. Developed depth-first graph traversal algorithm and dearomatization code for v1.0 release. Downloaded 9K times to date.
- Published <u>paper</u> at NeurIPS 2020 <u>workshop</u> (lead author) on pre-training strategies for large-scale language modeling of molecules. Implemented transformer models and tokenizers, led integration of NLP-style models into library (600,000 model API calls to date).
- Published a review paper, highlighting statistical methods for uncertainty estimation in ML for property prediction.
- Developed pipeline using genetic algorithm, graph-attention ensemble to screen 30,000 small molecules for 3CL-protease binding.

PUBLICATIONS

A Benchmark Framework for Evaluating Structure-to-Sequence Models for Protein Design. Chan, J., Chithrananda, S., Brookes, D.

& Sinai, S., NeurIPS ML for Structural Biology Workshop (2022). Preprint to be released soon.

ChemBER Ta-2: Towards Chemical Foundation Models. Ahmad, W., Simon, E., Chithrananda, S., Grand, G., & Ramsundar, B.,

ELLIS ML for Molecules Workshop (December, 2021). arXiv:2209.01712

ChemBER Ta: Large-Scale Self-Supervised Pre-training for Molecular Property Prediction. Chithrananda, S., Grand, G., &

Ramsundar, B. (NeurIPS 2020 ML for Molecules workshop). arXiv:2010.09885

Assigning Confidence to Molecular Property Prediction. Nigam, A., Pollice, R., Hurley, M.F., Hickman, R.J., Aldeghi, M.,

Yoshikawa, N., Chithrananda, S., Voelz, V., & Aspuru-Guzik, A. (Expert Opinions in Drug Discovery, Taylor and Francis) 2021.

SKILLS & INTERESTS

Programming: Python, Tensorflow, Keras, PyTorch, Pandas, RDKit, sklearn, Spark. **Infra**: AWS, Google Cloud, Docker. **Talks:** Delivered research talks at CMU, Baylearn, NeurIPS, Royal Society of Chemistry and Re-Work to audiences of 200+.

AWARDS, GRANTS AND FUNDING

Masason Foundation Fellow - Softbank: Support for my research and education from Masayoshi Son's <u>foundation</u>
Emergent Ventures Fellowship: Recipient of research <u>fellowship</u>, supported by the Thiel Foundation. (<u>Press Release</u>)
Re-Work Young Researcher: Delivered <u>talk</u> at conference in front of over 1000 attendees on independent research in comp. biology
Tensorflow Research Cloud Fellowship: <u>Grant</u> offered by Google to use TPU graphics processing pods for ML research