MECH4480 CFD EILMER3 PART I

Fabian Zander (f.zander@uq.edu.au)

26th April 2013

Eilmer3 Structure

3prep.py

Initial General
Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control Parameters

i. Creating a Sketch

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 1 / 18

EILMER3 STRUCTURE

► e3prep.py

- You should already be familiar with this from Herr Dr. Jahn's grid generation lectures
- Now need to extend the options and settings configured in your input script

► e3shared.exe

▶ The 'running' program. This executes the simulation

► e3mpi.exe

- Multiprocessor 'running' program
- Not required for this course

► e3post.py

- ▶ You should also be familiar with this
- ► The post-processing program to extract all of the important data
- You will need to know lots of the options from here refer to Eilmer3 User Guide

Eilmer3 Structure

e3prep.py

- Initial General
 Parameters Geometry
- Flow States
- 3. Block Creation
- 4. Boundary Conditions
- 5. Simulation Control Parameters
- 6. Creating a Sketch

unning Eilmer3

Tutorial

Configuring a Simulation

THE P.J SETUP

- 1. Set up some general parameters
- 2. Configure the gas model and flow states
- 3. Create the grid
- 4. Initialise the boundary conditions
- 5. Simulation control parameters
- 6. Creating a sketch

Eilmer3 Structure

e3prep.pv

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control Parameters

6. Creating a

lunning Eilmer3

Futorial

F. Zander MECH4480 CFD 3 / 18

1. Initial General Parameters - Geometry

Within the job.py script

- gdata.title = 'name'
- ▶ gdata.dimensions = 2 (or 3)
- ▶ gdata.axisymmetric_flag = 0 (or 1)

GDATA OBJECT

- Python based 'object'
- Global data object for the simulation
- Allows you to set simulation parameters

Eilmer3 Structure

3prep.py

Initial General
Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

> 5. Creating a Sketch

lunning Eilmer3

Tutorial

F. Zander MECH4480 CFD 4 / 18

2. Gas Models and Flow States

GAS MODELS

select_gas_model(model='ideal gas', species=['air'])

MODEL

- ▶ 'ideal gas'
 - Perfect elastic collisions and constant specific heats
- 'thermally perfect gas'
 - Perfect elastic collisions but specific heat a function of temperature
- 'two temperature gas'
 - Thermally perfect gas with temperature composed of a translation/rotation and a vibration/electronic component
- ▶ 'real gas Bender'
- ▶ 'real gas MBWR'
- ▶ 'real gas REFPROP'

Filmer3 Structure

e3prep.py

Initial General
Parameters Geometry

2. Gas Models and Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

6. Creating a Sketch

Running Eilmer3

Futorial

SPECIES

- ▶ This defines 'what' is in the flow field
- 'air' is a standard definition
- Otherwise can select any gas species available
- ► Available species can be found in \$HOME/e3bin/species
- ► This can be added to as required
- ▶ Air
 - species = ['air']
- Dissociating Nitrogen
 - o species = ['N2', 'N']
- Hydrogen Combustion

Eilmer3 Structure

3prep.py

- Initial General
 Parameters Geometry
- 2. Gas Models and Flow States
 - 3. Block Creation
- 4. Boundary Conditions
- 5. Simulation Control
- 6. Creating a Sketch

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 6 / 18

Extra options

REACTION SCHEMES

- This is also where you can specify a reaction model
- More about this later

Energy Exchange

- For two-temperature models (or greater) can specify energy exchange mechanism
- set_energy_exchange_update('exchange_file.lua')
- Not going to be discussing this any further

Eilmer3 Structure

e3prep.py

 Initial Genera Parameters -Geometry

2. Gas Models and Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

5. Creating a Sketch

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 7/18

FLOW STATES

- ► Eilmer uses flow 'objects' to specify different flow states
- ► These can be initialised in various ways
- ► flow1 = FlowCondition(p=5955.0, u=0.0, v=0.0, T=304.0)
 - Can also add extra values: massf, tke, omega
 - massf must match the species specified earlier
- ▶ flow2 = ExistingSolution('old_sln', ".", 2, 1, 2)
 - (rootName, solutionWorkDir, nblock, tindx, dimensions=2)

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

2. Gas Models and Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

> 6. Creating a Sketch

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 8 / 18

BLOCK CREATION

- ▶ blk = Block2D(psurf=None, nni=2, nnj=2, cf_list=[None,]*4, bc_list=[SlipWallBC(),]*4, fill_condition=None, hcell_list=[], xforce_list=[0,]*4, label="", active=1)
- ▶ I'm assuming you know most of this already from earlier lectures on grid generation
- Nodes → Lines → Surfaces
- Surfaces
 - Usually constructed using make_patch(N,E,S,W)
 - Other options also exsist; CoonsPatch(S,N,W,E), AOPatch(S,N,W,E)
- nni/nnj = i/j discretisation
- cf_list = list of cluster functions; N, E, S, W
 - Have you done cell clustering in Eilmer3?

Parameters -

3. Block Creation

4. Boundary

MECH4480 CFD 9 / 18

BLOCK CREATION

- bc_list = list of boundary conditions (if specifying this way)
- fill_condition = a flow state as discussed earlier
- hcell_list and xforce_list not required at this stage
- ▶ label = for identification in your 'sketches'
- ▶ active = 1; default is 1, i.e. on

- ► There are also extra options available
- ► Check the user guide for full details

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

5. Creating a

inning Eilmer3

Tutorial

F. Zander MECH4480 CFD 10 / 18

SuperBlocks

Two different options

- my_block_list = SuperBlock2D(psurf=None, nni=2, nnj=2,
 nbi=1, nbj=1, cf_list=[None,]*4,
 bc_list=[SlipWallBC(),]*4, fill_condition=None,
 hcell_list=[], label="sblk")
- my block list = MultiBlock2D(psurf=None, nni=None,
 nnj=None, bc list=[SlipWallBC(),]*4, nb_w2e=1, nb_s2n=1,
 nn_w2e=None, nn_s2n=None, cluster_w2e=None,
 cluster_s2n=None, fill_condition=None, label="blk")

FULL DETAILS IN USER GUIDE

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

i. Creating a Sketch

Running Eilmer3

Futorial

F. Zander MECH4480 CFD 11 / 18

BCs Available

THERE ARE MANY 'STANDARD' BCS IN EILMER

- Block-to-block connections; identify_block_connections()
 - This automatically joins blocks same as specifying AdjacentBC()
- 2. Common BCs used
 - SupInBC(flow_state), ExtrapolateOutBC(), SlipWallBC(), FixedTBC(Twall)
- 3. User Defined Boundary Condition (UDF)
 - A lua script can be used to create customised BCs if desired

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control Parameters

5. Creating a Sketch

unning Eilmer3

Tutorial

F. Zander MECH4480 CFD 12 / 18

Specifying BCs

Multiple methods of defining BCs

- 1. Specify a bc_list during the block creation
 - If doing this you must specify a list of BCs in order (N,E,S,W)

ALWAYS WORTH CHECKING THE SKETCH FOR BC DEFINITIONS WITH THE --DO-SVG OPTION IN E3PREP.PY (SEE SECTION 6)

Eilmer3 Structure

e3prep.py

Initial General
Parameters Geometry

2. Gas Models and Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control Parameters

> 6. Creating a Sketch

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 13 / 18

SIMULATION CONTROL PARAMETERS

NEED TO SPECIFY SIMULATION DETAILS

- gdata.max_time = n
 - Simulation time abs. min. 3 flow lengths
- gdata.max_step = n
 - Max. number of steps make this big enough!
- ▶ gdata.dt = n
 - Initial time step if you get a CFL error you can try reducing this. This does increase the computation time though.
- gdata.dt_plot = n
 - How often to write out data files (in simulation time)
- gdata.dt_history = n
 - The time stepping to write out history data points (if specified)

- Parameters -

- 4. Boundary
- 5. Simulation Control Parameters

MECH4480 CFD 14 / 18

Extra Settings

- gdata.sequence_blocks = 1
 - Active the block marching solver, caution required when using this...no 'data' can go upstream
- gdata.viscous_flag = 1
 - Activate viscous terms
- gdata.turbulence_flag = 1
 - Activate turbulence
- gdata.turbulence_model = 'name'
 - Name options are "k_omega" and "baldwin_lomax"
- cfl_count = n
 - Number of time steps between CFL checks. Default is 10, can be reduced if you are getting stability problems

Parameters -

4. Boundary

5. Simulation Control Parameters

MECH4480 CFD 15 / 18

2D SKETCH OF MODEL

- sketch.window(xmin=0.0, ymin=0.0, xmax=1.0, ymax=1.0,
 page xmin=0.05, page ymin=0.05, page xmax=0.17,
 page ymax=0.17)
 - This sets up the 'page' used for the sketch
- sketch.xaxis(x0, x1, xtic, y offset)
- sketch.yaxis(y0, y1, ytic, x offset)
 - Configure the axes
- ► See the user guide for full details (Section I.11)

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control Parameters

6. Creating a Sketch

unning Eilmer3

Tutorial

F. Zander MECH4480 CFD 16 / 18

Running Eilmer3

EASY FROM THE COMMAND LINE

- ▶ Prepare the job
 - >> e3prep.py --job=name --do-svg
- ► Run the job
 - >> e3shared.exe --job=name --run
- Post-processing
 - >> e3post.py --job=name --tindx=all --vtk-xml

- ► The Eilmer3 examples often have shell scripts to do these things. This is fine, but you have to have a good grasp of what they are doing, in particular e3post.py
- There are plenty more options!

Eilmer3 Structure

e3prep.py

Initial General
 Parameters Geometry

Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

6. Creating a

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 17 / 18

TUTORIAL

CONE 20-SIMPLE

- ► Start by copying the cone20-simple folder from /cfcfd3/examples/eilmer3/2D/ to your working directory
- ► Have a look at the *cone20.py* script and identify some of the settings I've been talking about
- ► Change the inflow velocity to 6000m/s
- ▶ What will this new velocity change in the simulation?
 - Think about mesh, max_time (how many flow lengths), dt (CFL problem?), are viscous effects required?
- ► There are run scripts there but make sure you can also run the programs from the command line
- ► When you finish this, have a look around at the other examples

Filmer3 Structure

e3prep.py

Initial General
Parameters Geometry

2. Gas Models and Flow States

3. Block Creation

4. Boundary Conditions

5. Simulation Control

. Creating a

Running Eilmer3

Tutorial

F. Zander MECH4480 CFD 18 / 18