A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis

Tong Si¹, Zackary Hopkins², John Yanev², Jie Hou², Haijun Gong^{1*}

- 1 Department of Mathematics and Statistics, Saint Louis University, St. Louis, MO, USA
- 2 Department of Computer Science, Saint Louis University, St. Louis, MO, USA

Theoretical Analysis of sc-fGAIN Algorithm

In this section, we will identify specific f-divergence functions that can be used for the generative adversarial imputation network, and provide mathematical proof for the Algorithm ??. We adopt some notations and assumptions in Yoon $et\ al$'s work [?], and assume that \mathbf{X} is independent of \mathbf{M} , where $p(\mathbf{x}, \mathbf{m}, \mathbf{h})$ denotes the joint distribution for the random variables $(\hat{\mathbf{X}}, \mathbf{M}, \mathbf{H})$, and $\hat{p}(\mathbf{x}), p(\mathbf{m}), p(\mathbf{h})$ are corresponding marginal distributions.

Theorem 1. Let $S_{\phi}(\mathbf{x}, \mathbf{h})$ be a function: $\chi \to \mathcal{R}$, where $x \in \chi$, $\mathbf{h} \in \mathcal{H}$ (hint space), and $p(\mathbf{x}, \mathbf{h}) > 0$, D be a function: $\chi \to [0, 1]^d$. If the f-divergence based objective function is defined by the Eq. $\ref{eq:condition}$, then, given a fixed generator G, there always exists one optimal discriminator $D^*(\mathbf{x}, \mathbf{h})$ if f = CE, FKL, RKL, JS, PC.

Proof. The f-divergence based objective function Eq. $\ref{eq:condition}$ can be rewritten as

$$\mathcal{L}_{DG,f}(\hat{\mathbf{X}}, \mathbf{M}, \mathbf{H}) = \mathbb{E}_{\hat{X}, M, H}[\mathbf{M}^T g_f(S_{\phi}(\mathbf{x}, \mathbf{h})) - (1 - \mathbf{M})^T f^*(g_f(S_{\phi}(\mathbf{x}, \mathbf{h})))]$$

$$= \int_{\mathcal{X}} \int_{\mathcal{H}} \sum_{i=1}^d g_f(S_{\phi}(x, h))_i p(\mathbf{x}, \mathbf{h}, m_i = 1)$$

$$+ f^*(g_f(S_{\phi}(x, h)))_i p(\mathbf{x}, \mathbf{h}, m_i = 0) dh dx.$$

Given a fixed Generator G, the optimal Discriminator D^* is obtained by solving the equation $\frac{\partial \mathcal{L}_{DG,f}}{\partial S_{\phi}} = 0$, that is

$$\frac{\partial}{\partial g_f(S_\phi)_i} f^*(g_f(S_\phi))_i = \frac{p(\mathbf{x}, \mathbf{h}, m_i = 1)}{p(\mathbf{x}, \mathbf{h}, m_i = 0)}.$$
 (1)

After inserting the f-divergence's output activation functions and conjugate functions given in Table 1, and applying the sigmoid function $D_{\phi}(x) = \frac{1}{1 + \exp^{-S_{\phi}(x)}}$ on the output of the discriminator network $S_{\phi}(x)$, we identified five f-divergences, including CE, FKL, RKL, JS, and PC, that always have an optimal discriminator D^* given a fixed G, for $i \in \{0,1\}^d$,

$$D^*(\mathbf{x}, \mathbf{h})_i = \begin{cases} p(m_i = 1 | \mathbf{x}, \mathbf{h}), & \text{if } f = \text{CE, RKL, JS} \\ \frac{p(m_i = 1 | \mathbf{x}, \mathbf{h})e}{p(m_i = 0 | \mathbf{x}, \mathbf{h}) + p(m_i = 1 | \mathbf{x}, \mathbf{h})e}, & \text{if } f = \text{FKL} \\ \frac{1}{exp(2 - 2p(m_i = 1 | \mathbf{x}, \mathbf{h})/p(m_i = 0 | \mathbf{x}, \mathbf{h})) + 1}, & \text{if } f = \text{PC.} \end{cases}$$

For a more detailed proof of Theorem 1, please refer to ??.

July 30, 2023 1/3

^{*} haijun.gong@slu.edu

Table 1. f-divergence's output activation function, conjugate function, and the optimal discriminator D^* for a given generator G, $p = p(x, h, m_i = 1)$, and $q = p(x, h, m_i = 0)$.

f-Divergence	Output activation $g_f(s)$	Conjugate $f^*(t)$	Optimal D^*
CE	$-\log\left(1+\exp(-s)\right)$	$-\log\left(1-\exp(t)\right)$	$\frac{p}{p+q}$
FKL	s	$\exp(t-1)$	$\frac{p+q}{pe}$
RKL	$-\exp(-s)$	$-1 - \log\left(-t\right)$	$rac{\overline{pe+q}}{\displaystyle rac{p}{p+q}}$
JS	$\log(2) - \log(1 + \exp(-s))$	$-\log\left(2-\exp(t)\right)$	p+q
PC	s	$\frac{1}{4}t^2 + t$	$\frac{exp(2(p-q)/q)}{1+exp(2(p-q)/q)}$

If we substitute the optimal discriminator D^* derived in Theorem 1 into the objective function Eq. ??, we obtain the loss function of the generator G as follows:

$$\mathcal{L}_{G,f}(D^*) = \mathbb{E}_{\hat{X},M,H}[\mathbf{M}^T g_f(S_\phi(D^*)) - (1 - \mathbf{M})^T f^*(g_f(S_\phi(D^*)))]. \tag{2}$$

Then, by minimizing $\mathcal{L}_{G,f}(D^*)$, we derived the second theorem.

Theorem 2. The f-divergence based loss function $\mathcal{L}_{G,f}(D^*)$ has a global minimum if and only if the density p satisfies:

$$\hat{p}(\mathbf{x}, \mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}, \mathbf{h}, m_i = 0), \tag{3}$$

$$\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0) = \hat{p}(\mathbf{x}|\mathbf{h}), \tag{4}$$

for each $i \in \{1, ..., d\}$, $x \in \mathbf{X}$ and $h \in \mathcal{H}$ such that $p(\mathbf{h}|m_i = t) > 0$. And this theorem is true only if f = CE, FKL, RKL, JS.

Yoon et al's work [?] proved the validity of this theorem for the cross-entropy based loss function. We will prove that this theorem is also valid for the forward KL, reverse KL, and Jensen-Shannon divergence based loss functions described by Eq. 2, but it does not hold for the Pearson χ^2 divergence.

Proof. We will present a concise proof of this theorem, focusing on the KL-divergence case, which is more intricate compared to the cross-entropy scenario. After substituting D^* , using the Eq. 2 and objective function in the Table \ref{Table} , the KL-divergence based loss function can be simplified as

$$\mathcal{L}_{G,f}(D^*) = \int_{\chi} \int_{\mathcal{H}} \sum_{i=1}^{d} p(\mathbf{x}, \mathbf{h}, m_i = 1) \log \frac{p(\mathbf{x}, \mathbf{h}, m_i = 1)}{p(\mathbf{x}, \mathbf{h}, m_i = 0)} dh dx.$$

It follows that $\mathcal{L}_{G,f}(D^*)$ is minimized if and only if $p(\mathbf{x}, \mathbf{h}, m_i = 1) = p(\mathbf{x}, \mathbf{h}, m_i = 0)$ for any $i \in \{1, ..., d\}$.

The above loss function can also be rewritten as

$$\mathcal{L}_{G,f}(D^*) = \int_{\mathcal{X}} \int_{\mathcal{H}} \sum_{i=1}^{d} p(\mathbf{x}, \mathbf{h}, m_i = 1) (\log p(\mathbf{x}, \mathbf{h}, m_i = 1) - \log p(\mathbf{x}, \mathbf{h}, m_i = 0)) dh dx$$

$$= \sum_{t \in \{0,1\}} \sum_{i=1}^{d} \int_{\mathcal{H}} p(\mathbf{h}, m_i = t) D_{KL}(p(\mathbf{x}|\mathbf{h}, m_i = t)||p(\mathbf{x}|\mathbf{h})) dh$$

$$+ \sum_{i=1}^{d} \int_{\mathcal{H}} p(h) D_{KL}(p(\mathbf{x}|\mathbf{h})||p(\mathbf{x}|\mathbf{h}, m_i = 0)) dh$$

$$+ \sum_{i=1}^{d} \int_{\mathcal{H}} \left(\sum_{t \in \{0,1\}} p(\mathbf{h}, m_i = t) \log p(m_i = t|\mathbf{h}) - p(\mathbf{h}) \log p(m_i = 0|\mathbf{h}) \right) dh.$$

July 30, 2023 2/3

Since KL divergence D_{KL} is non-negative, so the loss function $\mathcal{L}_{G,f}(D^*)$ is minimized if and only if $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = t) = \hat{p}(\mathbf{x}|\mathbf{h})$ for any $i \in \{1, ..., d\}$. The detailed proof for different f-divergence cases are given in the ??.

In comparison to [?], our work in Theorem 1-2 offers a more general proof based on the f-divergence functions, establishing that the optimal discriminator and generator can be attained using the sc-fGAIN algorithm when the loss function is formulated using four distinct f-divergence functions: cross-entropy, KL, reverse KL, and JS divergence. Theorem 2 demonstrates the independence of \mathbf{x} from the mask variable \mathbf{M} given the hint variable \mathbf{H} . The amount of information contained in \mathbf{H} directly influences the learning capability of the generator G. If \mathbf{H} contains less informative hints or lacks important information, the learning ability of the generator may be compromised, which is discussed in the Theorem 3.

Theorem 3. In the sc-f GAIN algorithm, for f = CE, FKL, RKL, and JS, if the hint variable **H** is independent of mask variable **M**, then the density \hat{p} in the Theorem 2 is not unique.

Proof. Theorem 2 has proved that, $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0) = \hat{p}(\mathbf{x}|\mathbf{h})$ is valid for f = CE, FKL, RKL, and JS. If **H** is independent of **M**, and **H** is conditionally independent of **X** given **M**, it is easy to verify that $\hat{p}(\mathbf{x}|m_i = 1) = \hat{p}(\mathbf{x}|m_i = 0)$, for all $i \in \{1, ..., d\}$. Follow the same argumentation as [?] for the cross-entropy case, there are more parameters than the number of equations, so the density \hat{p} is not unique.

To get a unique density solution, a hinting mechanism is needed such that \mathbf{H} reveals some information of \mathbf{M} to the discriminator D, which means that they are not independent. In the last section, we adopt the method proposed in [?] to sample the hint variable using the Eq. ??, and assume \mathbf{B} and \mathbf{M} are independent. This hinting mechanism can ensure that the generator is capable of replicating the desired distribution of the data, that is the Theorem 4.

Theorem 4. If the hint variable **H** is sampled according to Eq. ??, then the density \hat{p} in Theorem 2 is unique and satisfies $\hat{p}(\mathbf{x}|\mathbf{m}) = \hat{p}(\mathbf{x}|\mathbf{1})$ for any vector $\mathbf{m} \in \{0,1\}^d$ and f = CE, FKL, RKL, JS, where $\hat{p}(\mathbf{x}|\mathbf{1})$ is the density of **X**. That is, the distribution of imputed data is same as the distribution of original data.

Proof. The proof is similar to the CE scenario [?]. Theorem 2 has shown that $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0)$ holds for the f-divergence of CE, FKL, RKL and JS. Because of Eq. ??, $\hat{p}(\mathbf{x}|\mathbf{h}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{b}, m_i = 1) = \hat{p}(\mathbf{x}|\mathbf{h}, m_i = 0) = \hat{p}(\mathbf{x}|\mathbf{b}, m_i = 0)$ is valid. Since **B** and **M** are independent, it is easy to prove $\hat{p}(\mathbf{x}|m_i = 1) = \hat{p}(\mathbf{x}|m_i = 0)$. It means, for any two vectors $\mathbf{m_1}, \mathbf{m_2} \in \{0, 1\}^d$ that differ only on one component, we have $\hat{p}(\mathbf{x}|\mathbf{m_1}) = \hat{p}(\mathbf{x}|\mathbf{m_2})$.

This equation also holds true for any two vectors $\mathbf{m_1}$ and $\mathbf{m_2}$ in $\{0,1\}^d$, because we can always find a sequence of vectors between $\mathbf{m_1}$ and $\mathbf{m_2}$, such that all the adjacent vectors differ from each other in only one component. Consequently, the imputed data distribution $\hat{p}(\mathbf{x}|\mathbf{m})$ is the same for all possible vectors $\mathbf{m} \in \{0,1\}^d$. This unique imputed data density, denoted by $\hat{p}(\mathbf{x}|\mathbf{1})$, corresponds to the true data \mathbf{X} 's density $p(\mathbf{x})$, that is, $\hat{p}(\mathbf{x}|\mathbf{m}) = \hat{p}(\mathbf{x}|\mathbf{1}) = p(\mathbf{x})$. The proof is based on the Theorem 2, so it is true for f = CE, FKL, RKL, JS.

Theorem 1-4 theoretically confirm that the generative adversarial imputation network method remains valid if and only if the loss function is defined using four f-divergence, including CE, FKL, RKL, and JS divergence. The flexibility offered by the f-divergence formulation allows sc-fGAIN to accommodate various types of data and distributions, making it a more universal approach for imputing missing values.

July 30, 2023 3/3