Álgebra Lineal - LCC, LM, PM - 2024

Práctica 6: Teorema de Descomposición Espectral (segunda parte)

- 1. Hallar la matriz en la base canónica de las siguientes transformaciones ortogonales:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, rotación de ángulo π .
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, simetría respecto de la recta de ecuación $x_1 x_2 = 0$.
 - (c) $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$, simetría respecto del plano de ecuación $x_1 + x_2 x_3 = 0$.
 - (d) $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$, rotación de ángulo $\frac{\pi}{4}$ y eje span $\{(1,0,1)\}$.
- 2. Sea $T:\mathbb{R}^3\mapsto\mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix}.$$

Decidir si T es una rotación, una simetría o una composición de una rotación y una simetría. Encontrar la rotación, la simetría o ambas.

3. Sea $T:\mathbb{R}^3\mapsto\mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{7}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}.$$

- (a) Probar que T es una rotación.
- (b) Hallar $S: \mathbb{R}^3 \mapsto \mathbb{R}^3$ tal que $S \circ S = T$.