«Мобильные системы компьютерного зрения»

Лабораторная №1

«Основы создания системы компьютерного зрения на базе платформы Jetson Nano»

Цель работы.

Ознакомиться с основами создания приложения системы компьютерного зрения на платформе Jetson Nano.

Задание.

- 1. Ознакомиться с основами архитектуры аппаратного и программного обеспечения Jetson Nano.
- 2. Выполнить подключение модулей и сенсоров, необходимых для выполнения задания в соответствии с вариантом.
- 3. Разработать программное обеспечение в соответствии с вариантом задания.
- 4. Описанная в задании функциональность должна выполняться в реальном времени, скорость обработки должна выводится на монитор.
- 5. Протестировать разработанное ПО следующим образом:
 - 5.1. Оценить функциональность полученной системы.
 - 5.2. Оценить максимальную скорость видеопотока, при которой видео будет обрабатываться корректно.
 - 5.3. Изменить указанные в задании параметры, объяснить их влияние на работу программы.

Инструментальные средства.

Лабораторная работа выполняется на языке Python 3, в качестве платформы используется одноплатный компьютер Jetson Nano.

Материалы и пособия.

- 1. Гайд по настройке Jetson Nano https://www.pyimagesearch.com/2019/05/06/getting-started-with-the-nvidia-jetson-nano/
- 2. ПО для работы с Jetson от NVIDIA https://developer.nvidia.com/embedded/develop/software
- 3. Richard Szeliski «Computer Vision: Algorithms and Applications» http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

Критерии оценивания выполнения работы.

По результатам работы должен быть подготовлен отчет в электронном виде. Максимальный балл — 10. Работа считается сданной при оценке минимум в 5 баллов. Оценка складывается из следующих составляющих:

- Соответствие заданной функциональности 0-4 баллов;
- Выполнены п. 5.2 и 5.3 задания 0-2 балла;
- Защита работы 0-3 балла;
- Составление отчета 0-1 балл.

Варианты лабораторной работы №1

Заготовки для выполнения заданий по вариантам на языке Python доступны в репозитории: https://github.com/zeanfa/mobileCV

Вариант 1

Заданная	Программа принимает на вход изображение с камеры и
функциональность	выводит его на монитор. В определенной области
	изображения отображается рамка области интереса. Если
	изображение в этой области имеет один из трех цветов (R, G,
	В), то загорается светодиод соответствующего цвета, иначе
	ни один светодиод не горит.
	https://github.com/zeanfa/mobileCV/lab1/src/v1_color.py
Используемые модули	Цифровая камера, блок светодиодов.
11	н с и
Изменяемые параметры	Пороговые значения параметров H, S, V детектирования
	цветов.

Вариант 2

Заданная функциональность	Программа принимает на вход изображение с камеры и выводит его на монитор (в формате grayscale). Одновременно с этим производится расчет гистограммы изображения и его вывод. По сигналу нажатия кнопки программа переходит в режим выравнивания гистограммы, на монитор выводится обработанное изображение и гистограмма. https://github.com/zeanfa/mobileCV/lab1/src/v2_hist.py
Используемые модули	Цифровая камера, кнопка.
Изменяемые параметры	Значение параметра количества корзин гистограммы histSize.

Заданная	Программа принимает на вход изображение с камеры и
функциональность	выводит его на монитор. Производится обработка
	изображения сглаживающим фильтром Гаусса и фильтром
	для выделения границ (в данном случае, фильтром Собеля).
	При нажатии кнопки отфильтрованное изображение на
	мониторе переключается между производными по осям х и у
	и суммой производных.
	https://github.com/zeanfa/mobileCV/lab1/src/v3_sobel.py
Используемые модули	Цифровая камера, кнопка.
Изменяемые параметры	Значение размера ядра фильтра.

Вариант 4

Заданная функциональность	Программа принимает на вход изображение с камеры и выводит его на монитор. Далее производится поиск ключевых точек на изображении с помощью алгоритма ORB. При нажатии кнопки включается или выключается отображение на изображении полученных ключевых точек. https://github.com/zeanfa/mobileCV/lab1/src/v4_orb.py
Используемые модули	Цифровая камера, кнопка.
Изменяемые параметры	Значение количества признаков nfeatures.

Вариант 5

Заданная функциональность Используемые модули	Программа принимает на вход изображение с камеры и выводит его на монитор. Далее производится бинаризация изображения с помощью алгоритма с адаптивным порогом. При нажатии кнопки происходит отображение бинарного изображения. https://github.com/zeanfa/mobileCV/lab1/src/v5_threshold.py Цифровая камера, кнопка.
Изменяемые параметры	Значение размера окружающей области blockSize.

Приложение

Далее приведены примеры работы алгоритмов по вариантам.

Вариант 2

