Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 6, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 3. Insurance, Collars, and Other Strategies

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- \S 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

\S 3.1 Basic insurance strategies

§ 3.2 Put-call parity

§ 3.3 Spreads and collars

§ 3.4 Speculating on volatility

§ 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- \S 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- Written against asset positions (selling insurance Covered call writing Covered put writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance) Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

Four positions

positions w.r.t. asset	put option	call option
long	purchased (floor)	written
short	written	purchased (cap)

Buying insurance	Selling insurance
floor = buying a put option	Covered put writing
cap = buying a call option	Covered call writing

We will work under the following setup

${\rm S\&S}$ index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
premium for 1000-strike 6-month put	\$74.201

Insuring a long position – Floors

```
owning a home owning a stock index insuring the house buying a put (floor)
```

Goal: to insure against a fall in the price of the underlying asset.

2

Example 3.1-1 Under the following scenario, compute the combined profit of insuring a long position via buying a put for the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution

$$\underbrace{\$900 - \$1,000 \times 1.02}_{\$900} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{\$900} = -\$95.68$$

ofit on S&R index profit on

Example 3.1-1 Under the following scenario, compute the combined profit of insuring a long position via buying a put for the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution.

$$\underbrace{\$900 - \$1,000 \times 1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{\text{profit on put}} = -\$95.68.$$

Insuring a short position — Caps

If we have a short position in the S&R index, we experience a loss when the index rises.

We can insure a short position by purchasing a call option (cap) to protect against a higher price of repurchasing the index.

Example 3.1-2 Under the following scenario, compute the combined profit for insuring a short position via buying a call of the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution

$$$1,000 \times 1.02$$$
 - $$93.809 \times 1.02$$ - $$1,000$ = -\$75.685

Example 3.1-2 Under the following scenario, compute the combined profit for insuring a short position via buying a call of the following S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution.

$$$1,000 \times 1.02$$$
 - $$93.809 \times 1.02$$ - $$1,000$ = -\$75.685. future value of short S&R index FV of premium for call exercise the call option

13

500 1000 1500 2000

S&R Index at Expiration

-1000

-2000

Long S&R Call

500 1000 1500 2000

S&R Index at Expiration

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

- Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset
- Naked writing is writing an option when the writer does not have a

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying

Naked writing is writing an option when the writer does not have a

ror	every	insurance	buyer	tnere	must	be an	insurance	sene

Strategies used to sell insurance

- ► Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- Naked writing is writing an option when the writer does not have a position in the asset.

COL	every	msurance	buyer	tnere	must	bе	ап	msurance	sen

Strategies used to sell insurance

- ► Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- ▶ Naked writing is writing an option when the writer does not have a position in the asset.

Covered call writing

Long position of the asset + Sell a call option

Covered put writing

Short position of the asset + Sell a put option

Covered call writing

Example 3.1-3 Under the following scenario, compute the combined profit for writing a covered call for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution

$$\underbrace{\$1,100-\$1,000\times1.02}_{\text{profit on }\$\text{-}P\text{-}index} + \underbrace{\$1,000-\$1,100+\$93.809\times1.02}_{\text{profit on written call}} = \$75.68$$

4

Covered call writing

Example 3.1-3 Under the following scenario, compute the combined profit for writing a covered call for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution.

$$\underbrace{\$1,100-\$1,000\times1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000-\$1,100+\$93.809\times1.02}_{\text{profit on written call}} = \$75.68.$$

Covered put writing

Example 3.1-4 Under the following scenario, compute the combined profit for writing a covered put for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution

$$\$1,000 \times 1.02 - \$900 + \$900 - \$1,000 + \$74.201 \times 1.02 = \$95.685$$

profit on selling S&R inde

profit on written pu

Covered put writing

Example 3.1-4 Under the following scenario, compute the combined profit for writing a covered put for S&R index.

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution.

$$\underbrace{\$1,000\times 1.02 -\$900}_{\text{profit on selling S&R index}} + \underbrace{\$900 -\$1,000 +\$74.201\times 1.02}_{\text{profit on written put}} = \$95.685.$$

§ 3.1 Basic insurance strategies

\S 3.2 Put-call parity

§ 3.3 Spreads and collars

§ 3.4 Speculating on volatility

§ 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

It is possible to mimic a long forward position on an asset by

buying a call + selling a put,

with each option having the same strike price and expiration time.

Ш

A synthetic forward

Example 3.2-1 Working with the S&R index. Suppose that

6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
premium for 1000-strike 6-month put	\$74.201

Draw profit digram for the combined position of a purchased call with a written put, namely,

Solution.

A synthetic long forward contract

We pay the net option premium

We pay the strike price

The actual forward

We pay zero premium

We pay the forward price

Basic Assumption

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

NO ARBITRAGE!

Basic Assumption

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

NO ARBITRAGE!

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}\left(F_{0,T} - K\right)$$

- K: strike pric
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call
- ightharpoonup Put (\cdot, \circ) : the premium for pu
- ▶ F_{0,7}: the lorward price at time I if one enters at time 0 into a long forward position.
- ▶ PV(·): the present value function

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}\left(F_{0,T} - K\right)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- \triangleright PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call(\cdot , \circ): the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- $ightharpoonup F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- \triangleright PV(·): the present value function.

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call(\cdot , \circ): the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- $ightharpoonup F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T} - K)$$

- ► K: strike price
- ightharpoonup T: expiration date
- ightharpoonup Call (\cdot, \circ) : the premium for call.
- ightharpoonup Put(\cdot , \circ): the premium for put.
- ▶ $F_{0,T}$: the forward price at time T if one enters at time 0 into a long forward position.
- ightharpoonup PV(·): the present value function.

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$

$$= PV(1,000 \times 0.02)$$

$$= \frac{1,000 \times 0.02}{1.02}$$

$$= \$19.61.$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$\begin{aligned} \text{PV}(\$1,000 \times 1.02 - \$1,000) &= \text{PV} (1,000 \times (1.02 - 1)) \\ &= \text{PV} (1,000 \times 0.02) \\ &= \frac{1,000 \times 0.02}{1.02} \\ &= \$19.61. \end{aligned}$$

Solution. We need to check:

$$\$93.809 - \$74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS = \$19.61. On the other hand, the RHS is equal to

$$\begin{aligned} \text{PV}(\$1,000 \times 1.02 - \$1,000) &= \text{PV} (1,000 \times (1.02 - 1)) \\ &= \text{PV} (1,000 \times 0.02) \\ &= \frac{1,000 \times 0.02}{1.02} \\ &= \$19.61. \end{aligned}$$

$$\begin{split} \operatorname{Call}(K,T) - \operatorname{Put}(K,T) &= \operatorname{PV}\left(F_{0,T} - K\right) \\ &\updownarrow \\ \operatorname{PV}\left(F_{0,T}\right) + \operatorname{Put}(K,T) &= \operatorname{Call}(K,T) + \operatorname{PV}\left(K\right) \end{split}$$

Buying the index and buying the put

generate the same payoff as

buying the call and buying a zero-coupon bond (i.e. lending) $\mathrm{PV}(K)$

$$\begin{split} \operatorname{Call}(K,\mathcal{T}) - \operatorname{Put}(K,\mathcal{T}) &= \operatorname{PV}\left(F_{0,\mathcal{T}} - K\right) \\ & \updownarrow \\ \operatorname{PV}\left(F_{0,\mathcal{T}}\right) - \operatorname{Call}(K,\mathcal{T}) &= \operatorname{PV}\left(K\right) - \operatorname{Put}(K,\mathcal{T}) \end{split}$$

Writing a covered call has the same profit as lending PV(K) and selling a put

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)		
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(\textit{K},\textit{T}) - \operatorname{Put}(\textit{K},\textit{T}) = \operatorname{PV}\left(\textit{F}_{0,\textit{T}}\right) - \operatorname{PV}\left(\textit{K}\right)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)		
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing		
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	
Covered put writing		

$$\operatorname{Call}(K,T) - \operatorname{Put}(K,T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound – Put
Covered put writing		

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound – Put
Covered put writing	−Index − Put	

$$\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0,T}) - \operatorname{PV}(K)$$

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	-Index + Call	-Bound + Put
Covered call writing	Index - Call	Bound — Put
Covered put writing	-Index - Put	- Bound - Call

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\S~3.3$ Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- \S 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

By combining two or more options, we find many well-known strategies.

- ▶ Bull and bear spreads
- ► Box spreads
- ► Ratio spreads
- ► Collars

- ▶ Bull and bear spreads
- ► Box spreads
- ▶ Ratio spreads
- ► Collars

- ▶ Bull and bear spreads
- ▶ Box spreads
- ► Ratio spreads
- Collars

- ▶ Bull and bear spreads
- ► Box spreads
- ► Ratio spreads
- ► Collars

Example for this section

Black-Scholes option prices

 $Stock\ price = \$40$ Volatility = 30% $Effective\ annual\ risk-free\ rate = 8.33\%$ $Dividend\ yield = \$0$ $Expriation\ days = 91\ days$

Strike	Call	Put
35	6.13	0.44
40	2.78	1.99
45	0.97	5.08

Bull and bear spreads

A position in which you buy a call and sell an otherwise identical call with a higher strike price is an example of a bull spread. Bull spreads can also be constructed using puts.

The opposite of a bull spread is a bear spread.

Example 3.3-1 Draw profit diagram for a 40-45 bull spread, namely, buying a 40-strike call and selling a 45-strike call.

Example 3.3-1 Draw profit diagram for a 40-45 bull spread, namely, buying a 40-strike call and selling a 45-strike call.

Solution.

Box spreads

A **box spread** is accomplished by using options to create a synthetic long forward at one price and a synthetic short forward at a different price.

This strategy guarantees a cash flow in the future.

Hence, it is an option spread that is purely a means of borrowing or lending money. It is costly but has no stock price risk.

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram.

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram.

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram.

Ratio spreads

A **ratio spread** is constructed by buying m options at one strike and selling n options at a different strike, with all options having the same type (call or put), same time to maturity, and same underlying asset.

- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

Solution. Homework.

- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls.
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

Solution. Homework.

- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls.
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

Solution Homework

- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls.
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

Solution Homework

- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls.
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

Solution.	Homework.		

Collars

A **collar** is the purchase of a put option and the sale of a call option with a higher strike price, with both options having the same underlying asset and having the same expiration date.

If the position is reversed, i.e., sale of a put and purchase of a call, the collar is written.

The collar width is the difference between the call and put strikes.

Solution

Example 3.3-4 Draw the profit diagram for a purchased collar: selling a 45-strike call + buying a 40-strike put.

Solution.

It is possible to find strike prices for the put and call such that the two premiums exactly offset one another. This position is called a **zero-cost collar**.

Example 3.3-5 Consider XYZ:

Strike	Call	Put
35	6.13	0.44
40	2.78	1.99
41.72	1.99	
45	0.97	5.08

Show that the following gives a zero-cost collar

buying XYZ at \$40 +buying a 40 -strike put + selling a 41.72 -strike call Draw the profit diagram.

Example 3.3-5 Consider XYZ:

Strike	Call	Put
35	6.13	0.44
40	2.78	1.99
41.72	1.99	
45	0.97	5.08

Show that the following gives a zero-cost collar

buying XYZ at \$40 + buying a 40-strike put + selling a 41.72-strike call Draw the profit diagram.

Solution. Check book p. 77.

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- \S 3.4 Speculating on volatility
- § 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- \S 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems