IA pour la robotique

- Contenu de la séance
- Méthodes d'apprentissage
 - supervisé
 - par renforcement
 - non supervisé
 - Outils : Représentation, paramètres, critères

Méthodes d'apprentissage

 Trois grandes techniques (bien connues) d'apprentissage : Supervisé, par renforcement et non supervisé

App. Supervisé:

Objectif : prédire à partir d'entrées, le résultat est <u>un modèle</u>

Prédire quoi ? Labels, valeurs, ...

Entrées : caractéristiques

App. supervisé

- Types de prédictions :
- Régression
- Ex. Combien de temps est nécessaire pour faire l'itinéraire Paris-Nantes ?

 Combien de chiens apparaissent dans une photo ?
- L'objectif du processus d'apprentissage est celui de minimiser l'écart entre les prédictions et les valeurs attendues
- Critères : $\sum_i |y_i y_i'| \qquad \sum_i (y_i y_i')^2$

App. supervisé

- Types de prédictions :
- Classification

Ex. Reconnaissance de texte / vocale

Classification binaire / multi-classes

- L'objectif du processus d'apprentissage est celui d'optimiser le modèle afin d'effectuer une assignation de classes
- Critère : entropie-croisée (critère probabiliste)

App. supervisé

- Autres types de prédictions :
- Labélisation
- Ex. Classification où les classes prédites ne sont pas exclusives
- Recherche et classement
- Ex. Classement des résultats de recherche les plus pertinents
- Systèmes de recommandation
- Ex. Prédiction d'objets à acheter

App. non supervisé

- Méthodes capables d'inférer à partir des données :
- Clustering : Un regroupement de données partageant une ou plusieurs caractéristiques
- Analyse en Composantes Principales : les caractéristiques essentielles à départager les données en groupes
- Apprentissage de représentations : établir de relations entre les données
- Cartes auto-organisatrices (Self-Organizing Maps)

App. non supervisé

- Méthodes capables d'inférer à partir des données :
- Clustering : Un regroupement de données partageant une ou plusieurs caractéristiques
- Analyse en Composantes Principales : les caractéristiques essentielles à départager les données en groupes
- Apprentissage de représentations : établir de relations entre les données
- Cartes auto-organisatrices (Self-Organizing Maps)

Visualiser des données complexes dans un espace bidimensionnel (la carte) tout en préservant les relations topologiques entre les données.

App. par renforcement

- Objectif : déterminer une bonne « politique » (policy) d'échange entre les observations et les actions
- Critère : défini par une stratégie de récompense
- Ex. Conduire une voiture
- Nécessité d'un environnement pour déterminer si les actions sont adéquates.

Outils : Représentation, paramètres, critères

DES SCIENCES D'ORSAY

- Bibliothèque **Scikit-Learn**
- Trois instances seront abordées:

Perceptron (un seul neurone)

Perceptron multicouche (MLP)

Classifieur (Classification binaire)

- Regressor (Régression)
 - Méthodes :
 - Fit : apprentissage
 - Coeffs_: poids
 - Intercepts : biais
 - Activation : fonction d'activation
 - out activation : fonction d'activation en sortie
 - Score: précision moyenne (classif: match/samples) / (regr: R2)

(X)

Résultats attendus : application

- Dataset : proximètres et consignes de vitesse
- Modèle : Script faisant la lecture du modèle et le test avec le dataset
- Vidéo de validation