Московский государственный университет имени М. В. Ломоносова Физический факультет

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

III CEMECTP

3-й поток, лектор А.В.Кравцов

Автор: $Kepu\kappa$ Проект на Github

Содержание

1	Teo	ретический минимум	3
	1.1	Запишите неравенства треугольника для комплексных чисел	3
	1.2	Дайте определение функции однолистной на некотором множестве	3
	1.3	Дайте определение показательной функции e^z	3
	1.4	Дайте определения тригонометрических функций $\sin z,\cos z,\mathrm{tg}z,\mathrm{ctg}z$	3
	1.5	Дайте определения гиперболических функций $\sh z, \ch z, \th z, \th z$	3
	1.6	Дайте определение логарифмической функции Lnz	3
	1.7	Дайте определение общей степенной функции $z^a (a \neq 0)$	3
	1.8	Запишите формулу вычисления интеграла от непрерывной функции ком-	
		плексной переменной вдоль кусочно гладкой кривой через определённый	
		интеграл	3
	1.9	Запишите неравенство для модуля интеграла	3
	1.10	Дайте определение функции комплексной переменной, дифференцируемой	
		в точке. Приведите пример	3
	1.11	Сформулируйте необходимое и достаточное условие дифференцируемости	
		функции в точке	3
	1.12	Дайте определение функции, аналитической в области, не содержащей точку	
		$z=\infty$. Приведите пример	3
	1.13	Дайте определение функции, аналитической в точке $z_0 \neq \infty$. Приведите	
		пример	3
	1.14	Дайте определение функции, аналитической в точке $z=\infty$. Приведите пример	3
	1.15	Запишите условия Коши–Римана в случае, когда $z=x+iy,\ w=f(z)=$	
		u(x,y) + iv(x,y)	4
	1.16	Запишите условия Коши-Римана в случае, когда $z=re^{i\varphi},\; w=f(z)=$	
		$U(r,\varphi)+iV(r,\varphi)$	4
	1.17	Запишите условия Коши–Римана в случае, когда $z=x+iy,w=f(z)=(x,$	
		y)ei (x,y)	4
	1.18	Запишите условия Коши–Римана в случае, когда $z={ m re}\; i$, $w={ m f}(z)={ m R}(r,$	
		$)\mathrm{ei}(\mathrm{r,})$	4
	1.19	Дайте определение отображения $w=f(z),$ конформного в точке $z0=\dots$	4
	1.20	Дайте определение функции, гармонической в некоторой области	4
	1.21	Дайте определение сопряжённых гармонических в некоторой области функций	4
	1.22	Сформулируйте теорему Коши для односвязной области	4
	1.23	Сформулируйте теорему Коши для ограниченной области	4
	1.24	Сформулируйте теорему Коши для многосвязной области	4

 $\Phi\Phi$ МГУ, лето 2023

1.25	Сформулируйте теорему об аналитичности интеграла с переменным верх-	
	ним пределом	4
1.26	Запишите интегральную формулу Коши для односвязной области	4
1.27	Дайте определение интеграла типа Коши	4

 $\overline{\Phi\Phi}$ МГУ, лето 2023

1 Теоретический минимум

1.1 Запишите неравенства треугольника для комплексных чисел

$$|z_1+z_2| \leqslant |z_1|+|z_2|$$
 или $|z_1-z_2| \geqslant |z_1|-|z_2|$

1.2 Дайте определение функции однолистной на некотором множестве

Однолистной в некоторой области называется такая функция w=f(z), что любым двум различным значениям $z_1\neq z_2$ из этой области отвечают различные значения функции.

- 1.3 Дайте определение показательной функции e^z
- 1.4 Дайте определения тригонометрических функций $\sin z,\ \cos z,\ \operatorname{tg} z,\ \operatorname{ctg} z$
- 1.5 Дайте определения гиперболических функций $\sh z, \, \ch z, \, \th z, \, \ch z$
- 1.6 Дайте определение логарифмической функции Lnz
- 1.7 Дайте определение общей степенной функции $z^a (a \neq 0)$
- 1.8 Запишите формулу вычисления интеграла от непрерывной функции комплексной переменной вдоль кусочно гладкой кривой через определённый интеграл
- 1.9 Запишите неравенство для модуля интеграла
- 1.10 Дайте определение функции комплексной переменной, дифференцируемой в точке. Приведите пример
- 1.11 Сформулируйте необходимое и достаточное условие дифференцируемости функции в точке
- 1.12 Дайте определение функции, аналитической в области, не содержащей точку $z=\infty.$ Приведите пример
- 1.13 Дайте определение функции, аналитической в точке $z_0 \neq \infty$. Приведите пример
- 1.14 Дайте определение функции, аналитической в точке $z=\infty$. Приведите пример

- 1.15 Запишите условия Коши–Римана в случае, когда z=x+iy, w=f(z)=u(x,y)+iv(x,y)
- 1.16 Запишите условия Коши–Римана в случае, когда $z=re^{i\varphi},$ $w=f(z)=U(r,\varphi)+iV(r,\varphi)$
- 1.17 Запишите условия Коши–Римана в случае, когда z=x+iy, $w=f(z)=\rho(x,y)e^{i\Phi(x,y)}$
- 1.18 Запишите условия Коши–Римана в случае, когда $z=re^{i\varphi},$ $w=f(z)=R(r,\varphi)e^{i\Phi(r,\varphi)}$
- 1.19 Дайте определение отображения w=f(z), конформного в точке $z_0 \neq \infty$
- 1.20 Дайте определение функции, гармонической в некоторой области
- 1.21 Дайте определение сопряжённых гармонических в некоторой области функций
- 1.22 Сформулируйте теорему Коши для односвязной области
- 1.23 Сформулируйте теорему Коши для ограниченной области
- 1.24 Сформулируйте теорему Коши для многосвязной области
- 1.25 Сформулируйте теорему об аналитичности интеграла с переменным верхним пределом
- 1.26 Запишите интегральную формулу Коши для односвязной области
- 1.27 Дайте определение интеграла типа Коши