Assignment Project Exam Help

https://powcoder.com

The University of Manchester

Add WeChat powcoder

Outline of this lecture

Linear regression model

Assignment Project Exam Help

- https://powcoder.com
- Ordinary Least Squares
- Add We Chiat powcoder
- Interpretation of OLS coefficients the Frisch-Waugh-Lovell Theorem

Examples of econometric models

• asset returns: $R - R_f = \beta_0(R_m - R_f) + error$ Assignment Project Exam Help $In(w) = \beta_{0.1} + \beta_{0.2} * ed + \beta_{0.3} * exp + \beta_{0.4} * exp^2 + error$

- letter story to the coder. Com $ln(Q) = \beta_{0,1} + \beta_{0,2} * ln(L) + \beta_{0,3} * ln(K) + error$
- · changlin influence that powcoder powcoder

All have common structure: linear in the parameters, and additive error

Data types and notation

Economic data typically comes in four types:

Cross-section - covered in course

Assignment Project Exam Help

- Panel data
- nttps://powcoder.com
 - Cross-section: i = 1, 2, ..., N
 - Add Des: We Chat powcoder

For first part of course, results apply equally to both types of data and use (default) of t notation.

When discuss large sample properties arguments are different and will i or t notation as reminder of sample structure.

Linear regression model

Assume:

Wish to model relationship between y_t ("dependent variable") and Assignment Project Exam Help

https://powcoder.com

- y_t , x_t are observable but the error term u_t is not.
- Bo is an unknown k * tweetor of "regression coefficients" (paradeters). We Chat powcoder

Observe $\{y_t, x_t; t = 1, 2 \dots T\} \rightarrow \text{estimate of } \beta_0.$

Linear regression model

Assignment Project Exam Help $v = X \beta_0 + u$

"https://powcoder.com

- v is $T \times 1$ with t^{th} element y_t
- $\overset{\mathsf{X}}{\underset{u}{\mathsf{is}}} \overset{\mathsf{A}}{\underset{t}{\mathsf{is}}} \overset{\mathsf{A}}{\underset{t}{\mathsf{is}}} \overset{\mathsf{A}}{\underset{\mathsf{with}}{\mathsf{it}}} \overset{\mathsf{in}}{\underset{\mathsf{element}}{\mathsf{it}}} \overset{\mathsf{th}}{\underset{\mathsf{u}}{\mathsf{t}}} \overset{\mathsf{th}}{\underset{\mathsf{element}}{\mathsf{u}}{\mathsf{t}}} powcoder$

Classical assumptions

• *CA1*: true model is: $y = X\beta_0 + u$.

Assignment Project Exam Help

- CA6: $u \sim Normal$.

Add WeChat powcoder

• $y \sim N(X\beta_0, \sigma_0^2 I_T)$.

Estimation problem

Consider here estimation of β_0 based on sample (y, X) using Ordinary Least Squares (OLS).

Assignment Project Exam Help

OLS minimand is:

$$https://powcoder.com = \sum_{t=1}^{n} (y_t - x_t'\beta)^2$$

(Note Add We Chat powcoder

OLS estimator of β_0 is:

$$\hat{\beta}_T = \operatorname{argmin}_{\beta \in \mathcal{B}} Q_T(\beta)$$

Assignment Project Exam Help $\frac{\partial Q_{\tau}(\beta)}{\partial \beta}|_{\beta=\hat{\beta}_{\tau}}=0$

https://powcoder.com
Second order conditions (SOC):

Add Chatipoweoder

OLS

We have

$$Q_{\mathcal{T}}(\beta) = y'y - 2y'X\beta + \beta'X'X\beta$$

Assignment Project Exam Help $\frac{\partial Q_{\mathcal{T}}(\beta)}{\partial \beta} = -2X'y + 2X'X\beta$

and flattens: 2/2 powcoder.com

$$\hat{\beta}_{\mathcal{T}} = (X'X)^{-1}X'y$$

and (using CA3) SOC satisfied.

Alastair R. Hall

Model involves decomposition of *y*:

$$y = E[y] + u$$

Assignmente Project Exam Help

wher https://powcoder.com

• $e = y - X\hat{\beta}_T$, vector of OLS residuals.

 $\underset{\mathsf{Note}\ \mathsf{FOC} \Rightarrow X'e}{\mathsf{Add}} \underset{\mathsf{E}=0}{\mathsf{MeChat}}\ powcoder$

$$\hat{y}'e = 0$$

OLS affects a similar decomposition of the variation of y in models that include an intercept. So now set: $X = [\iota_T, X_2]$.

The decomposition of the variation of y is as follows:

Assignment Project Exam Help

where:

- Ittps://suppow/equiv.com
 ESS = "Explained sum of squares" = $\sum_{t=1}^{T} (\hat{y}_t \bar{y})^2$
- RSS = "Residual sum of squares" = $\sum_{t=1}^{T} e_t^2 = e'e$.

Add We Chat powcoder

eads to the multiple correlation coefficient, R2

$$R^2 = \frac{ESS}{TSS}$$

which is proportion of variation in y explained by linear regression on X.

The OLS coefficients

We now develop a useful interpretation of OLS coefficients based on the Frisch-Waugh-Lovell (FWL) Theorem.

Assignment Project Exam Help coefficient vector conformably:

$$\underset{(\mathcal{T}\times k)}{\underbrace{\text{https://powcoder.com}}} \underset{(\mathcal{T}\times k_1)}{\underbrace{\text{https://powcoder.com}}}, \underset{(\mathcal{T}\times k_2)}{\underbrace{\text{https://powcoder.com}}}, \underset{(\mathcal{T}\times k_1)}{\underbrace{\text{https://powcoder.com}}}, \underset{(\mathcal{T}\times k_1)}{\underbrace{\text{http$$

and write model WeChat powcoder

$$y = X\beta_0 + u = X_1\beta_1 + X_2\beta_2 + u$$

Let $\hat{\beta}_{T,2}$ be the OLS estimator of β_2 in this model.

FWL Thm

Now consider the alternative strategy for estimation of β_2 (here Assident the hour Project Exam Help

Step 1: Regress y on X_1 via OLS and denote the associated vector of OLS residuals by w.

of OLS residuals by w. https://powcoder.com

Step 2: For each $\ell=1,2,\ldots,k_2$, regress $x_{2,\ell}$ on X_1 via OLS and denote the associated vector of OLS residuals by d_{ℓ} .

Step 5: Regres won probability ($\mathbf{p}, \mathbf{p}, \mathbf{w}, \mathbf{c}, \mathbf{p}, \mathbf{der}$ and denote the resulting vector of coefficient estimators by \hat{b} that is, $\hat{b} = (D'D)^{-1}D'w$.

FWL Thm

FWL Theorem: $\hat{\beta}_{T,2} = \hat{b}$.

Assignment Project Exam Help

- Consider case where $X_1 = [x_1, x_2, \dots, x_{k-1}]$, and $X_2 = x_k$.
- https://powcoder.com w and D = d replesent the parts of y and x_k that cannot be linearly explained by X_1 .
- Step 3 (a) turns the clation of the between Ward \times One They have both been purged of any linear dependence they have on X_1 .

FWL Thm

• $\hat{b} = 0 \Rightarrow$ any relationship between y and x_k can be accounted for by their joint dependence on X_1 .

Assignment a range of the property of the pro

• \hat{f}_{k} captures partial effect = the unique contribution (relative to the other regressors in the model) of f_{k} to the (linear) explanation of y.

Termi Aced We Chat powcoder

- Steps 1 and 2 are often referred to as "partialling out" the effect of X_1 .
- The regression in *Step 3* is said to capture the relationship between y and x_k controlling for X_1 .

Example

Assignment Project Exam Help

- Jan 1986: seat belt law passed
- http Ssiates poetwors hereby free lint from 55mph to 65mph

McCarrhy (1994) investigates whether these changes affected the number of raffic ratalities in California DOWCOTCI

Analysis uses: monthly data, Jan 1981 - Dec 1989.

Assignment: Porpjectidets warm te Help one or more fatality.

Explainting variables powcoder.com

- $belt_t$: dummy variable equal to 1 for $t \ge 1986.1$
- · Maddin Wree ednat 1 poweroder

Example

• $\hat{y}_t = 0.914 - 0.064 * belt_t$

Now Introduce Sont/olspowcoder.com

• Linear time trend and monthly dummies:

Add WeChat powcoder

 Plus state unemployment rate and number of weekends in month:

$$\hat{y}_t = \text{controls} - 0.030 * belt_t + 0.0671 * mph_t$$

However...

Sometimes the inclusion of controls can undermine the inference of interest.

Assangenment Protecto Examinity Lelp

https://powcoder.com

Suppose include controls (institutional measures, population etc)

Add WeChat powcoder

If controls depend on climate then their inclusion masks the impact of climate on economic activity \rightarrow problem known as over-controlling, (Dell, Jones & Olken, 2014).

Assignment Project Exam Help

- Lecture Notes Sections 1.1-1.3, 2.1-2.3
- Freene Segressip Oder Chot Chiscussic Insumptions more general than Lecture 1 but does match Lecture 3)

OLS - Chapter 3 (Material in Section 3.4 not covered in Section 3.4 not cov