• Applications examples :

1) Nonreflective coatings for solar cells:

Reflective losses from a silicon solar cell are minimized by coating the surface of the cell with a thin film of silicon monoxide (SiO).

2) Anti-reflectance coating making an airplane invisible to radar.

(3) CD

[2] Interference in Newton's rings

The combination of rays reflected from the flat plate and the curved glass gives rise to an interference pattern known as Newton's rings.

Ray 1 : 180° phase change upon reflection.

Ray 2 : 0° phase change upon reflection.

[3] Interference in wedge-shaped film.

37.6 The Michelson Interferometer

 \Rightarrow An optical interferometer analogous to the acoustical interferometer.

Chapter 38. Diffraction and Polarization

38.1 Diffraction → Divergence of light from its initial line of travel.

Diffraction in water wave

• Fresnel's bright spot (1819)

38.2 Diffraction from narrow slits

38.2.1. Geometrical analysis

Huygen's principle:

The wavelets from each point on the initial wave front overlap and interfere, creating a diffraction pattern on the screen.

• <u>Fraunhofer diffraction</u>: Assuming that parallel rays (plane waves) of light fall on the slit, and pass through to a viewing screen very far away.

$$\sin\theta_{dark} = m \, \lambda / a$$

with
$$m = \pm 1, \pm 2, \pm 3, \dots$$