Optimización de flujo en redes

1455175: Angel Moreno Tarea #1

12 de febrero de 2019

1. Grafo simple no dirigido acíclico

Este primer grafo es el mas sencillo, como ejemplo aplicado se utiliza para la representación de ubicaciones de localidades ó ciudades para tener representación gráfica.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "c"), ("a", "e"), ("d", "e")]

G = nx.Graph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)

nx.draw(G, with_labels = True)
plt.show()
```


2. Grafo simple no dirigido cíclico

El metro o sistema de transporte es un ejemplo aplicado.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e")]
```

```
7 G = nx.Graph()
8 G.add_nodes_from(nodos)
9 G.add_edges_from(vertices)
10
11 nx.draw(G, with_labels = True)
12 plt.show()
```


3. Grafo simple no dirigido reflexivo

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e")]
reflexivo = [("a", "a"), ("b", "b"), ("c", "c"), ("d", "d"), ("e", "e")]

G = nx.Graph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)
G.add_edges_from(reflexivo)

nx.draw(G, with_labels = True)
plt.show()
```


4. Grafo simple dirigido acíclico

Las tuberías de agua y drenaje se puede representar ya que tienen un flujo hacia una dirección.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "c"), ("a", "e"), ("d", "e")]

G = nx.DiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)

nx.draw(G, with_labels = True)
plt.show()
```


5. Grafo simple dirigido cíclico

Como ejemplo aplicado se toma la pista de carreras de vehículos donde tiene un circuito.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e")]

G = nx.DiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)

nx.draw(G, with_labels = True)
plt.show()
```


6. Grafo simple dirigido reflexivo

Las tuberías de petroleo, donde la reflexividad de los nodos es donde el petroleo se puede quedar como un punto de extracción.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e")]
reflexivo = [("a", "a"), ("b", "b"), ("c", "c"), ("d", "d"), ("e", "e")]

G = nx.MutiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)
G.add_edges_from(reflexivo)

nx.draw(G, with_labels = True)
plt.show()
```


7. Multigrafo no dirigido acíclico

La red total de las tuberías de agua de drenaje representa un ejemplo para esta sección.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
aristas = [("a", "b"), ("b", "a"), ("b", "c"), ("a", "e"), ("d", "e")]
```

```
G = nx.MultiDiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(aristas)

nx.draw(G, with_labels = True)
plt.show()
```


8. Multigrafo no dirigido cíclico

La red de autopistas de una ciudad.

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e"), ("e", "d")]

G = nx.MultiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)

nx.draw(G, with_labels = True)
plt.show()
```


9. Multigrafo no dirigido reflexivo

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e"), ("d", "b")]
reflexivo = [("a", "a"), ("b", "b"), ("c", "c"), ("d", "d"), ("e", "e")]

G = nx.MultiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)
G.add_edges_from(reflexivo)

nx.draw(G, with_labels = True)
plt.show()
```


10. Multigrafo dirigido acíclico

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
saristas = [("a", "b"), ("b", "c"), ("a", "e"), ("d", "e")]

G = nx.MultiDiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(aristas)

nx.draw(G, with_labels = True)
plt.show()
```

11. Multigrafo dirigido cíclico

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e"), ("e", "d"),
")]
```



```
7 G = nx. MultiDiGraph()
8 G. add_nodes_from(nodos)
9 G. add_edges_from(vertices)
10
11 nx.draw(G, with_labels = True)
12 plt.show()
```


12. Multigrafo dirigido reflexivo

```
import networkx as nx
import matplotlib.pyplot as plt

nodos = ["a", "b", "c", "d", "e"]
vertices = [("a", "b"), ("b", "d"), ("a", "c"), ("c", "d"), ("d", "e"), ("d", "b")

reflexivo = [("a", "a"), ("b", "b"), ("c", "c"), ("d", "d"), ("e", "e")]

G = nx.MultiDiGraph()
G.add_nodes_from(nodos)
G.add_edges_from(vertices)
G.add_edges_from(reflexivo)

nx.draw(G, with_labels = True)
plt.show()
```

