BTS CIEL

Physique

LES GRANDEURS PÉRIODIQUES : GÉNÉRALITÉS

Chapitre 3

I- LES GRANDEURS VARIABLES

1-Introduction

La plupart des grandeurs physiques sont variables au cours du temps.

Donnons quelques exemples :

- la pression atmosphérique (P en mbar) mesurée sur plusieurs jours,
- l'éclairement (E en lux) dû au soleil sur une journée,
- la tension électrique fournie par EDF en quelques millisecondes,

2- Représentation

Les grandeurs variables dépendent du temps, on les notera en lettres minuscules.

La grandeur variable sera représentée sur l'ordonnée d'un graphique dont l'abscisse est le temps.

Notations :

Remarque:

Les lois des nœuds et des mailles sont valables quelque soit le régime, si on les applique aux valeurs instantanées.

II- LES GRANDEURS PÉRIODIQUES

1- La période

Beaucoup de grandeurs ont des variations qui se reproduisent identiquement entre deux instants consécutifs.

Définition: Un signal est dit périodique lorsqu'il se répète à l'identique avec un motif de durée constante qu'on appelle période T

Remarque : L'étude d'un signal périodique pourra donc se faire sur une seule période.

2- La fréquence :

Définition: La fréquence f, exprimée en Hertz (Hz), d'une grandeur périodique est le nombre de périodes contenues dans une durée égale à une seconde.

En une seconde, on aura f périodes de durée T donc f xT = 1s ce qui donne :

avec f en Hertz (Hz) et T en secondes (s)

Les multiples pour l'unité de fréquence sont :

le kilohertz : $1 \text{ kHz} = 10^3 \text{ Hz} (T=1 \text{ms});$

le mégahertz : $1 \text{ MHz} = 10^6 \text{ Hz} (T=1 \mu \text{s})$; le térahertz : $1 \text{ THz} = 10^{12} \text{ Hz} \text{ (T=1ps)}.$ le gigahertz : $1 \text{ GHz} = 10^9 \text{ Hz} \text{ (T=1ns)};$

On peut citer quelques fréquences utilisées en électricité et électronique :

Réseau EDF: $f = 50 \, Hz \, (T = 0.02 \, s \, ou \, 20 ms)$; Bande radio FM: de 88 MHz à 108 MHz;

France Inter en grandes ondes: f = 162 kHz; Téléphone cellulaire: 900 MHz et 2,6 GHz.

3- Loi d'Ohm en régime variable :

 $u(t) = R \cdot i(t)$ tension proportionnelle au courant. u(t) $v(t) = L \cdot \frac{di(t)}{dt} = L \cdot i^{-t}$ tension proportionnelle à la dérivée du courant.

3.2 Bobine parfaite

ilt)= C. dult) courant proportionnelle à la dérivée de la tension

3.3 Condensateur

4- La valeur moyenne

<u>Définition :</u> La valeur moyenne d'un signal périodique s(t), notée Smoy ou < s(t) > ou S, est définie par la relation :

Pour les signaux « simples », l'intégrale se ramène à un calcul d'aire, on obtient la relation : .

avec A surface entre la courbe s(t) et l'axe des abscisses.

b-xh = Guangle cxc = rectangle

Méthode de calcul:

- Repérer une période du signal (motif)
- Calculer la surface A en faisant la somme algébrique de toutes les surfaces pour une période T (si la courbe est en dessous de l'axe, la surface sera négative);

Finir par le calcul Smoy =

Exemple:

Calculer la valeur moyenne de la tension u(t) représentée sur l'oscillogramme ci-contre :

At=6x2.60-3=12.10-3 Az=(-2x3.10-3 $A = A_1 + A_2 = 12.16^{-3} + (-6).16^{-3}$

Voie 2: Inactive

Remarques importantes:

- La valeur moyenne est toujours indépendante de la période.
- Un signal ayant une valeur moyenne nulle est appelé un signal .a....en naul

3(t) = 3a+(3(t))

- La valeur moyenne est aussi appelée "composante continue".
- Si $s(t) = s_1(t) + s_2(t)$ alors $< s(t) > = < s_1(t) > + < s_2(t) >$
- Si s(t) = $s_1(t) \times s_2(t)$ alors $< s(t) > \neq < s_1(t) > \times < s_2(t) >$

Mesure de la valeur moyenne

La valeur moyenne d'une grandeur se mesure avec un appareil numérique en position "DC"

Composition d'un signal périodique

Tout signal périodique s(t) peut se décomposer en la somme d'un signal alternatif sæ(t) et d'un signal continu égal à sa valeur moyenne <s(t)>.

La valeur efficace

Expérience

Alimentons une ampoule d'éclairage supposée "résistive" avec la tension u sinusoïdale alternative.

Nous constatons que l'ampoule brille; elle reçoit donc de l'énergie bien que $U_{moy} = 0V$.

Alimentons cette même ampoule avec une tension continue U que l'on règlera jusqu'à avoir le même éclairement qu'avec la tension alternative. On remarque alors que la tension continue a été réglée à U = 25...V.

On va donc définir une grandeur appelée "valeur efficace" qui sera utile pour caractériser les notions de puissances et énergies.

Définition: La valeur efficace d'une tension périodique u est la tension constante U qui fournirait la même puissance à une résistance.

Cette définition est aussi valable pour un courant i.

Relation générale :

La valeur efficace S (lettre majuscule) d'une grandeur périodique s(t) est définie par la relation :

Méthode de calcul:

- On repère une période du signal
- ➢ On élève le signale au carré → s(t)²
- On calcule la valeur moyenne de ce "carré". \rightarrow < s(t)² >
- On calcule la racine carrée de la moyenne du "carré" $\rightarrow S = \sqrt{\langle s(t)^2 \rangle}$

Remarque

Si on note <u> la valeur moyenne (composante continue); uac la valeur efficace de la composante variable (sanà la composante continue) et Ueff la valeur efficace du signal complet alors on a la relation :

$$U^{2}_{eff} = \langle u \rangle^{2} + U^{2}_{ac}$$

Mesure de la valeur efficace U

L'appareil de mesure à utiliser pour obtenir la valeur efficace d'un signal dépend de la nature de ce signal :

- Si le signal est sinusoïdal, n'importe quel appareil avec une position AC convient.
- Si le signal est quelconque, mais <u>alternatif</u>, il faut utiliser un appareil numérique de type RMS (Root Mean Square) en position AC.
- Si le signal est quelconque, il faut utiliser un appareil numérique de type TRMS (True Root Mean Square : vrai radine carrée de la valeur moyenne du carré) en position AC+DC.

. signal au carré (dessin) v · moyenne (U2) = A . Veffe = 5(v2)

III- APPLICATION:

- cette valeur (appareil + couplage)

→ Décomposer u(t) en représentant l'allure de sa composante continue <u> et de sa composante alternative uac

→ Calculer la valeur moyenne <uac> de uac(t). Ce signal est-il alternatif ?... Q. U.I......

(Vac) = 0

→ Calculer la valeur efficace Uac de uac(t) Comment mesurer cette valeur (appareil + couplage) .Volume Tre....

(4c2) A = 0,5° × (3, T) + (-1,5)° × (3, T) = 0,75 RHS

20,871

→ Calculer la valeur efficace U de u(t). Comment mesurer cette valeur (appareil couplage):

(U) = 22x3-T+02x-T- = 3. (

VI- PROPRIETE ENERGETIQUES

1- Puissance instantanée p(t)

Un signal transporte à chaque instant une puissance instantanée p(t): p(t) = u(t) x i(t)

En convention récepteur :

Si p(t) > 0 : on dit que le dipôle consomme de la puissance

Si p(t) < 0 : on dit que le dipôle fourni de la puissance au reste du montage

En convention générateur :

Si p(t) > 0 : on dit que le dipôle fourni de la puissance au reste du montage

Si p(t) < 0 : on dit que le dipôle consomme de la puissance

2- Puissance active P

La valeur moyenne P de la puissance instantanée est appelée puissance active et s'exprime en watt (W)

 $P = \langle p(t) \rangle = \langle u(t)xi(t) \rangle$

En régime continu :

 $P = U \times I$ (W) (V) (A) $P = E \times \langle i \rangle$

Si la tension E est constante et si le courant · i(t) est variable

En régime sinusoïdal

 $P = U \times I \times cos\phi$

U : valeur efficace de u(t)

1 : valeur efficace de i(t) cosφ: facteur de puissance du

dipôle considéré