Reciprocity Theorem

Department of Electrical Engineering Indian Institute of Technology Kharagpur

Autumn 2020

Objective: Verification of Reciprocity Theorem.

1 Theory

Consider 2-Port (4-terminal) linear bilateral passive networks as shown in Figures 1 and 2. Apply a voltage V_S across terminals 1-1' and I_3 flows through the ammeter connecting terminals 2-2'. Next interchange the positions of the ammeter and the source voltage. The magnitude of the source voltage in this new position is set to V'_s . Measure the corresponding current I'_1 . The reciprocity theorem states that for passive bilateral network,

$$\frac{V_S}{I_3} = \frac{V_S'}{I_1'}. (1)$$

2 Procedure

Connect the resistive network as given in Figure 1. Apply 220V, single phase phase 50 Hz AC voltage at 1-1' and measure the ammeter current I_3 through 2-2'. Check the ratio V_S/I_3 . Now apply the AC voltage across 2-2' with $V_s'=110$ V as in Figure 2 and measure the current I_1' through 1-1' by ammeter. Find the ratio V_S'/I_1' . These two ratios should be identical and calculate branch currents and node voltages for the two circuit configurations.

Figure 1: Circuit 1.

Figure 2: Circuit 2.

Enter the data in the following table:

V_S	I_3	V_S/I_3	$V_{S'}$	$I_{1'}$	$V_{S'}/I_{1'}$

Table 1: Experiment observation table.