AMU - L3 Informatique Logique - 2019

TD nº 7

Premier ordre - Techniques de preuves

Quelques preuves d'échauffement

Exercice 7.1. Démontrez les séquents suivants :

- 1. $\forall x (A(x) \land B(x)) \vdash \forall y A(y)$:
- 2. $\exists x \exists y P(x, y) \vdash \exists y \exists x P(x, y)$
- 3. $t_1 = t_2 \vdash t_2 = t_1$

Introduction d'un théorème dans une preuve

La règle de coupure du calcul des séquent correspond à l'utilisation d'un théorème auxiliaire au cours d'une preuve. Ses deux utilisations principales sont les suivantes :

1. on dispose d'un théorème $\overline{\varphi \vdash \psi}$ et on souhaite prouver le séquent $\Gamma, \varphi \vdash \Delta$. Pour cela, il suffit de montrer que $\Gamma, \psi \vdash \Delta$ comme le montre la dérivation suivante :

$$\frac{\overline{\varphi \vdash \psi} \quad \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \vdash \Delta}$$
Cut

"Pour montrer que φ implique Δ , il suffit de montrer que φ implique ψ et ψ implique Δ ."

2. on dispose d'un théorème $\overline{\overline{\phi \vdash \psi}}$ et on souhaite prouver le séquent $\Gamma \vdash \psi, \Delta$. Pour cela, il suffit de montrer que $\Gamma \vdash \phi, \Delta$ comme le montre la dérivation suivante :

$$\frac{\overline{\varphi \vdash \psi} \quad \Gamma \vdash \varphi, \Delta}{\Gamma \vdash \psi, \Delta}$$
Cut

"Pour montrer que Γ implique ψ , il suffit de montrer que φ implique ψ et Γ implique φ ."

Exercice 7.2. Démontrez le théorème suivant $\forall x \neg \phi \vdash \neg \exists x \phi$ et déduisez en la règle dérivée

$$\frac{\vdash \forall x \neg \varphi}{\vdash \neg \exists x \varphi} \exists_{conv}$$

Exercice 7.3. La règle du Modus Ponens (MP) a un peu la même fonction que la règle de coupure mais permet d'utiliser des théorèmes de la forme $\vdash \varphi \Rightarrow \psi$. On rappelle la règle du Modus Ponens prouvée dans le cours :

$$\frac{\Gamma \vdash \varphi \Rightarrow \psi \qquad \Gamma \vdash \varphi}{\vdash \psi} MP$$

Démontrez le théorème suivant $\vdash \exists x \neg \varphi \Rightarrow \neg \forall x \varphi$, puis en utilisant le modus ponens, déduisez la règle dérivée

$$\frac{\vdash \exists x \neg \boldsymbol{\varphi}}{\vdash \neg \forall x \boldsymbol{\varphi}} \, \forall_{conv}$$

La contraposition

La preuve par contraposition consiste à prouver un énoncé du type $\varphi \Rightarrow \psi$ en prouvant que $\neg \psi \Rightarrow \neg \varphi$.

Exercice 7.4. Montrez que la règle de contraposition suivante est bien une règle dérivée.

$$\frac{\vdash \neg \psi \Rightarrow \neg \varphi}{\vdash \varphi \Rightarrow \psi} Contr$$

Exercice 7.5. Démontrez l'implications suivante par contraposition (on suppose que x et y sont des réels).

$$xy \neq 0 \Rightarrow (x \neq 0 \land y \neq 0)$$

Vous ferez d'abord une preuve mathématique, puis une preuve par le calcul des séquent. Vous vous aiderez des deux axiomes d'absorption : $\frac{1}{1-0 \times y=0} 0_{abs-G}$ et $\frac{1}{1-y \times 0=0} 0_{abs-D}$. Pour simplifier, pour pourrez également supposer disponible une règle de De Morgan que vous préciserez.

Preuve par cas

Les preuves par cas reposent sur le principe du tiers exclu : $\vdash \phi \lor \neg \phi$. Voici un exemple de preuve par cas : on veut prouver que $(n \neq 2 \text{ et } n \text{ est pair}) \Rightarrow n$ n'est pas premier. Supposons que $n \neq 2 \text{ et } n$ est pair. On a deux cas selon la valeur de n :

- soit $n \le 2$: dans ce cas, puisque $n \ne 2$, on a n = 0 et n'est pas premier
- soit n > 2: dans ce cas, comme $n \neq 2$, $\exists k \geq 2$, n = 2k, et donc n n'est pas premier.

Vous voyez que cette preuve repose sur le fait que soit $n \le 2$, soit $\neg (n \le 2)$.

Exercice 7.6. Démontrez le principe du tiers exclu et déduisez en la règle dérivée de la preuve par cas :

$$\frac{\Gamma,\neg\varphi\vdash\psi\qquad\Gamma,\varphi\vdash\psi}{\Gamma\vdash\psi}\mathit{Cas}$$

Exercice 7.7. On se propose de prouver le paradoxe du buveur : dans un bar, il existe une personne telle que : si cette personne boit, alors tout le monde boit. On peut exprimer cet énoncé par la formule *buveur* donnée par $\exists x (Boit(x) \Rightarrow \forall y Boit(y))$.

- 1. Proposez une preuve (informelle) par cas de cet énoncé selon la valeur de $\forall x Boit(x)$. En d'autre mots : traitez le cas où tous les occupants boivent, et celui où il est faux que tout le monde boit.
- 2. Prouvez le séquent $\forall x Boit(x) \vdash \exists x (Boit(x) \Rightarrow \forall y Boit(y))$.
- 3. Prouvez le séquent $\neg(\forall x Boit(x)) \vdash \exists x (Boit(x) \Rightarrow \forall y Boit(y))$. Vous pourrez utiliser l'axiome de conversion :

$$\overline{\neg \forall x \boldsymbol{\varphi} \vdash \exists x \neg \boldsymbol{\varphi}} \ \forall_{conv}$$

- 4. Déduisez en une preuve de ⊢ *buveur* dans le calcul des séquents.
- 5. Donnez une preuve de $\vdash buveur$ n'utilisant ni la règle de coupure, ni des règles dérivées.

Preuves par l'absurde

La preuve par l'absurde découle de la propriété (vu en cours) suivante : $\Gamma \models \varphi$ ssi $\Gamma \cup \{\neg \varphi\}$ est inconsistant. Il s'agit donc, pour prouver $\Gamma \vdash \varphi$, de prouver que si on suppose $\neg \varphi$, on arrive à une contradiction : $\Gamma, \neg \varphi \vdash$.

Il peut se formuler par la règle suivante :

$$\frac{\Gamma,\neg\varphi\vdash}{\Gamma\vdash\varphi}Abs$$

Exercice 7.8. Vérifiez que la règle Abs est bien une règle dérivée.

Exercice 7.9. En raisonnant par l'absurde, montrer que si un entier q > 1 divise l'entier n > 0, alors q ne divise pas n + 1. Faites une preuve mathématique, puis une preuve en calcul des séquents (vous pourrez ajouter les axiomes dont vous aurez besoin pour traiter les calculs et résultats sur les entiers).

Involutions

On se propose de démontrer l'énoncé suivant : les involutions sont des bijections.

Formalisons cet énoncé en logique du premier ordre : soit f un symbole de fonction unaire :

- In j est la formule $\forall x, y (f(x) = f(y) \Rightarrow x = y)$ qui signifie que f est injective
- Surj est la formule $\forall y \exists x (f(x) = y)$ qui signifie que f est surjective
- Bij est la formule $Inj \land Surj$ qui signifie que f est bijective
- *Inv* est la formule $\forall x f(f(x)) = x$ qui signifie que f est une involution.

Il s'agit donc ici de prouver $Inv \vdash Bij$. Vous pourrez commencer par en faire une preuve mathématique, puis en déduire une preuve dans le calcul des séquents égalitaire.