CS & IT ENGINEERING

Computer Network

Introduction

By - Abhishek Sir

Lecture No. - 05

Recap of Previous Lecture

Topic Physical Layer

Topic Network Topology

Topic Framing

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

Topic: Physical Layer

- => Responsible for transmission of "bit"
 - → Copper Cable
 - → Fiber Cable
 - → Wireless

=> Encoding / Signaling

Topic: Physical Layer

–> Physical Layer Networking Device : "Repeater and Hub" [Layer - 1 device]

-> Hub: Multi-port Repeater

Topic: Protocol Data Unit

Layer	PDU
Application	Message
Transport	Segment
Network	Datagram
Data Link	Frame
Physical	bit

Topic : Layer Services

Layer	Provide Services (to its upper layer)
Transport	Process-to-Process [end-to-end]
Network	Host-to-Host
Data Link	Node-to-Node

Topic: Networking Devices

Layer-7 Layer-2 Layer-1

Layer	Networking Device	
Application	Gateway /	
Network	Router	
Data Link	Switch or Bridge	
Physical	Hub, Repeater	

Routing between
Adifferent type
Of networks
> Protocol Converter

> Routing between
Similar type of
Networks

Topic: Line Configuration

-> Attachment of communication devices to a link.

1. Point-to-Point

-> Dedicated link between two device [One sender and one receiver]

Multipoint (Multidrop)

- -> More than two devices share a single link
- -> Broadcast medium [One sender and all are receiver]
- -> e.g. Bus topology

Topic: Transmission Mode

- —> Define the direction of signal flow between two linked devices.
 - 1. Simplex mode
 - -> One-way communication
 - 2. Half-Duplex mode
 - -> Either side communication at a time
 - 3. Full-Duplex (Duplex) mode
 - -> Both side communication is possible at same time

Topic: Network Topology

- -> Arrangement of hosts inside a network.
- -> Different types of topology are :
 - 1. Mesh
 - 2. Star
 - 3. Bus
 - 4. Ring

Topic: Mesh Topology

-> Every device has dedicated point-to-point link to every other device.

Total number of nodes = n

Total number of links = ${}^{n}C_{2}$

$$=\frac{5}{104(n-1)}=0(N_5)$$

Topic: Mesh Topology

Advantages:-

-> Faster Communication

Disadvantages:-

- –> Installation cost is very high [Preferable for small area network]
- -> Inefficient utilization of links
- -> (n 1) input-output (I/0) port per device

-> Every device has dedicated point-to-point link only to a central controller.

Total number of nodes = n

Total number of links = n

Central Controller: Hub, Switch or Router

Pw

Advantages :-

- -> Insertion / removal of devices are easy
- -> Easy to extend the topology

Disadvantages:-

-> If central controller fails then all communication stop

#Q. Consider that 11 machines need to be connected in a LAN using 6-port Ethernet switches. The minimum number of switches needed is _____.

Ans:3

[GATE 2019]

TIT-M

H.W.

Topic: Bus Topology

→ Every host connected to centralized backbone media (coaxial cable).

Total number of nodes = n

Total number of links = 1

- → Multipoint [Multidrop]
- → Access Control Method

Advantages :-

–> Installation cost is very low [Preferable for long area network]

Disadvantages:-

-> If backbone media fails then all communication stop

Topic: Ring Topology

→ Every host connected to two adjacent hosts using point-to-point link in cyclic fashion.

Total number of nodes = n

Total number of links = n

- → Simplex Communication
- → Access Control Method

Problem: How receiver identify frame boundaries while receiving multiples frames?

[Variable length frames and transmitted without time-gap]

Problem: How receiver identify frame boundaries while receiving multiples frames?

[Variable length frames and transmitted without time-gap]

Solution:

- 1. Byte (Character) Count
- 2. Byte (Character) Stuffing
- 3. Bit Stuffing [2004, 2014]

THANK - YOU