Aula 02: Análise de algoritmos — introdução

David Déharbe

Programa de Pós-graduação em Sistemas e Computação Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Departamento de Informática e Matemática Aplicada

Plano da aula

Introdução

Considerações iniciais

Medição do tamanho da entrada

Medição do tempo de execução

Ordens de crescimento

Notação Θ

Contexto

Análise de algoritmos

analysis detailed examination of the elements or structure of something, typically as a basis for discussion or interpretation: statistical analysis — an analysis of popular culture.

— Dictionary Apple 2.2.3

Análise de algoritmos

analysis detailed examination of the elements or structure of something, typically as a basis for discussion or interpretation: statistical analysis — an analysis of popular culture.

- Dictionary Apple 2.2.3
- correção
- simplicidade
- generalidade
- recursos necessários para ser aplicado
 - tempo de processador
 - quantidade de memória

Análise de algoritmos

analysis detailed examination of the elements or structure of something, typically as a basis for discussion or interpretation: statistical analysis — an analysis of popular culture.

- Dictionary Apple 2.2.3
- correção
- simplicidade
- generalidade
- ▶ recursos necessários para ser aplicado ←
 - tempo de processador
 - quantidade de memória

Estrutura da apresentação

- 1. arcabouço de análise, noção de crescimento asintótico;
- 2. notações asintóticas; O, Ω , Θ ;
- 3. análise de algoritmos não recursivos;
- 4. análise de algoritmos recursivos.

Bibliografia usada

Terminologia

- eficácia temporal, complexidade temporal:
 - quão rápido o algoritmo se executa?
 - quantos ciclos de processadores s\u00e3o necess\u00e1rios para executar o algoritmo?
- eficácia espacial, complexidade espacial:
 - quanta memória o algoritmo requer para armazenar os dados que manipula?
 - quantas unidades de memória precisam ser alocadas?

Motivação

- recursos computacionais escassos;
- computação móvel, computação ubíqua: computação = energia;
- geralmente a velocidade é um recurso mais crítico;
- tempo de execução tem sido o aspecto onde ganhos são maiores

Motivação

- recursos computacionais escassos;
- computação móvel, computação ubíqua: computação = energia;
- geralmente a velocidade é um recurso mais crítico;
- tempo de execução tem sido o aspecto onde ganhos são maiores

Foco na complexidade temporal

Parâmetro da complexidade

Observação

Para quase todos os algoritmos, quanto maior for o tamanho da entrada, maior é o número de computações necessárias.

É natural querer definir a complexidade de um algoritmo em função do tamanho da entrada.

Exemplos

- processamento de uma lista: o número de elementos na lista;
- processamento de uma matriz: o número de linhas e colunas da matriz;
- processamento em grafo: número de vértices, número de arestas;
- ▶ processamento de números: número de bits usados para representar os números ($\lfloor \log_2 n \rfloor + 1$).
- verificar se uma fórmula de lógica Booleana é válida: número de variáveis proposicionais.

Exercícios

- 1. calcular a soma de *n* números;
- 2. calcular *n*!;
- 3. encontar o maior elemento em uma lista de *n* elementos;
- 4. algoritmo para multiplicar dois inteiros decimais de *n* dígitos cada;
- 5. crivo de Eratóstenes;
- 6. algoritmo de Euclides.

Unidade de medição do tempo de execução de um algoritmo

Abordagem ingénua

- implementar o algoritmo na sua linguagem de programação favorita;
- medir o tempo de execução da implementação para diferentes entradas é ingénua

Problemas:

- características do hardware tem influência;
- compilador tem influência;
- dificuldade de medição precisa.

Não é satisfatório

Unidade de medição do tempo de execução de um algoritmo

Precisamos de uma abordagem que não dependa de fator externos ao algoritmo.

contar quantas vezes cada comando do algoritmo é executado.

Exemplo (Cormen et al.)

Exemplo

INSERTION-SORT(A)

```
for i = 2 to length[A]
                                                                     c_1 \cdot n
             do
3
                   key \leftarrow A[j]
                                                                     c_2 \cdot (n-1)
4
                   i \leftarrow i - 1
                                                                     c_3 \cdot (n-1)
5
                   while i > 0 \land A[i] > key
                                                                    c_4 \cdot \sum_{i=2}^n t_i
6
                          do
                               A[i+1] \leftarrow A[i]
                                                                    c_5 \cdot \sum_{i=2}^{n} (t_i - 1)
8
                               i \leftarrow i - 1
                                                                    c_6 \cdot \sum_{i=2}^n (t_i - 1)
9
                   A[i+1] \leftarrow key
                                                                     c_7 \cdot (n-1)
```

- c_i: custo de executar cada linha
- ▶ t_j: número de vezes que o teste é efetuado para o elemento A[j].
- ▶ custo total: $c_1.n + c_2.(n-1) + c_3.(n-1) + c_4.\sum_{j=2}^{n} t_j + c_5.\sum_{j=2}^{n} (t_j 1) + c_6.\sum_{j=2}^{n} (t_j 1) + c_7.(n-1)$

Exemplo

$$T(n) = c_1.n + c_2.(n-1) + c_3.(n-1) + c_4. \sum_{j=2}^{n} t_j + c_5. \sum_{j=2}^{n} (t_j - 1) + c_6. \sum_{j=2}^{n} (t_j - 1) + c_7.(n-1)$$

$$= (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7) + c_4. \sum_{j=2}^{n} t_j + (c_5 + c_6). \sum_{j=2}^{n} (t_j - 1)$$

Observamos que a complexidade do algoritmo depende de n, dos t_i e dos c_i .

Exemplo

$$T(n) = c_1.n + c_2.(n-1) + c_3.(n-1) + c_4. \sum_{j=2}^{n} t_j + c_5. \sum_{j=2}^{n} (t_j - 1) + c_6. \sum_{j=2}^{n} (t_j - 1) + c_7.(n-1)$$

$$= (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7) + c_4. \sum_{j=2}^{n} t_j + (c_5 + c_6). \sum_{j=2}^{n} (t_j - 1)$$

Observamos que a complexidade do algoritmo depende de n, dos t_i e dos c_i .

Exercício

Os c_i dependem da plataforma de execução, não de A.

- 1. Qual o menor valor possível para os t_i ? Corresponde a qual situação?
- 2. Qual o maior valor possível para os t_i? Corresponde a qual situação?
- 3. Qual a complexidade do algoritmo nestas duas situações?


```
Insertion-Sort(A)
     for j = 2 to length[A]
                                                                  c_1 \cdot n
             do
                  key \leftarrow A[j]
                                                                  c_2 \cdot (n-1)
                  i \leftarrow i - 1
                                                                  c_3 \cdot (n-1)
                  while i > 0 \land A[i] > key
                                                                  c_4 \cdot \sum_{i=2}^n t_i
5
6
                         do
                              A[i+1] \leftarrow A[i]
                                                                  c_5 \cdot \sum_{j=2}^n (t_j - 1)
                              i \leftarrow i - 1
                                                                  c_6 \cdot \sum_{i=2}^{n} (t_i - 1)
8
9
                  A[i+1] \leftarrow key
                                                                  c_7 \cdot (n-1)
```

- O teste do laço é avaliado uma vez apenas.
- $ightharpoonup t_j = 1$ para $j = 2, \cdots n$

$$\sum_{j=2}^{n} 1 = n - 1 \text{ e } \sum_{j=2}^{n} 1 - 1 = 0.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7) \cdot n - (c_2 + c_3 + c_7) + c_4 \cdot \sum_{j=2}^{n} t_j + (c_5 + c_6) \cdot \sum_{j=2}^{n} (t_j - 1)$$

$$\sum_{j=2}^{n} 1 = n - 1 e \sum_{j=2}^{n} 1 - 1 = 0.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7) \cdot n - (c_2 + c_3 + c_7) + c_4 \cdot \sum_{j=2}^{n} t_j + (c_5 + c_6) \cdot \sum_{j=2}^{n} (t_j - 1)$$

$$= (c_1 + c_2 + c_3 + c_7) \cdot n - (c_2 + c_3 + c_7) + c_4 \cdot (n - 1)$$

$$\sum_{j=2}^{n} 1 = n - 1 e \sum_{j=2}^{n} 1 - 1 = 0.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7) \cdot n - (c_2 + c_3 + c_7) + c_4 \cdot \sum_{j=2}^{n} t_j + (c_5 + c_6) \cdot \sum_{j=2}^{n} (t_j - 1) = (c_1 + c_2 + c_3 + c_7) \cdot n - (c_2 + c_3 + c_7) + c_4 \cdot (n - 1)$$

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

```
Insertion-Sort(A)
     for j = 2 to length[A]
                                                                  c_1 \cdot n
             do
                  key \leftarrow A[j]
                                                                  c_2 \cdot (n-1)
                                                                 c_3 \cdot (n-1)
                  i \leftarrow i - 1
                  while i > 0 \land A[i] > key
                                                                 c_4 \cdot \sum_{i=2}^n t_i
5
6
                         do
                              A[i+1] \leftarrow A[i]
                                                                 c_5 \cdot \sum_{j=2}^n (t_j - 1)
8
                              i \leftarrow i - 1
                                                                  c_6 \cdot \sum_{i=2}^{n} (t_i - 1)
9
                  A[i+1] \leftarrow key
                                                                  c_7 \cdot (n-1)
```

- O teste do laço é avaliado j vezes.
- $ightharpoonup t_j = j$ para $j = 2, \cdots n$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1. \text{ e } \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7) + c_4. \sum_{j=2}^{n} t_j + (c_5 + c_6). \sum_{j=2}^{n} (t_j - 1)$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1. \text{ e } \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7) + c_4. \sum_{j=2}^{n} t_j + (c_5 + c_6). \sum_{j=2}^{n} (t_j - 1)$$

$$= (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7)$$

$$c_4. (\frac{n(n+1)}{2} - 1) + (c_5 + c_6). \frac{n(n-1)}{2}$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1. \text{ e } \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

$$T(n) = (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7) + c_4. \sum_{j=2}^{n} t_j + (c_5 + c_6). \sum_{j=2}^{n} (t_j - 1)$$

$$= (c_1 + c_2 + c_3 + c_7).n - (c_2 + c_3 + c_7)$$

$$c_4. (\frac{n(n+1)}{2} - 1) + (c_5 + c_6). \frac{n(n-1)}{2}$$

$$T(n) = \frac{c_4 + c_5 + c_6}{2}.n^2 + (c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7).n$$

$$-(c_2 + c_3 + c_4 + \frac{c_5}{2} + \frac{c_6}{2} + c_7)$$

O conceito de operação básica

- ► Esta forma de análise é demasiadamente detalhista;
- ► Estes detalhes são inúteis, pois os *c_i* são fatores externos ao algoritmo.
- Ao invés disto, deve-se identificar a operação predominante na execução do algoritmo: a operação básica.
- A operação básica é aquela operação mais executada pelo algoritmo.
- Basta contar quantas vezes o algoritmo executa a operação básica.

Ponto chave

O arcabouço clássico de análise de complexidade de algoritmos é contar quantas vezes a operação básica é executada, em função do tamanho da entrada *n*.

Identificação da operação básica

Dica

Em algoritmos iterativos, é a operação que fica no laço mais aninhado.

Identificação da operação básica

Dica

Em algoritmos iterativos, é a operação que fica no laço mais aninhado.

```
INSERTION-SORT(A)
```

```
for i = 2 to length[A]
                                                                     c_1 \cdot n
              do
                   key \leftarrow A[j]
                                                                     c_2 \cdot (n-1)
                   i \leftarrow i - 1
                                                                     c_3 \cdot (n-1)
                                                                     c_4 \cdot \sum_{i=2}^n t_i
                   while i > 0 \land A[i] > key
5
6
                          do
                               A[i+1] \leftarrow A[i]
                                                                    c_5 \cdot \sum_{i=2}^{n} (t_i - 1)
                                                                     c_6 \cdot \sum_{i=2}^{n} (t_i - 1)
8
                               i \leftarrow i - 1
                   A[i+1] \leftarrow kev
9
                                                                     c_7 \cdot (n-1)
```

Em outras palavras: quantas comparações são necessárias para ordenar n elementos com o algoritmo de ordenação por inserção?

Exercício

Qual a operação básica do algoritmo de busca linear?

```
LINEAR-SEARCH(A, v)

1 j \leftarrow 1

2 while A[j] \neq v and j \leq length(A)

3 do j \leftarrow j + 1

4 if j \leq length(A)

5 then return j

6 else return NIL
```


Exercício

- 1. Considere o algoritmo de soma de duas matrizes $N \times M$. Qual a operação básica? Quantas vezes é executada?
- 2. Considere o algoritmo de multiplicação de uma matriz $N \times M$ por uma matriz $M \times P$. Qual a operação básica? Quantas vezes é executada?

Considerações

- Considere um algoritmo qualquer.
- ▶ Seja *c* o custo da execução da operação básica.
- ▶ Seja C(n) o número de vezes que esta operação é executada pelo algoritmo.
- ▶ O tempo de execução do algoritmo T(n), para uma entrada de tamanho n é tal que $T(n) \approx c \times C(n)$.
- ▶ Atenção T(n) é aproximado:
 - ▶ c é aproximado,
 - as operações básicas não são contabilizadas.
 - é uma estimativa razoável menos no caso de *n* ser muito pequeno ou muito grande.

Perguntas

$$T(n) \approx c \times C(n)$$
.

- Quantas vezes mais rápido será executado o algoritmo em um computador 10 vezes mais rápido?
- Assumindo $C(n) = \frac{1}{2}.n.(n-1)$: quantas vezes mais tempo levará a execução do algoritmo se multiplicarmos o tamanho da entrada por dois?

Perguntas

$$T(n) \approx c \times C(n)$$
.

- Quantas vezes mais rápido será executado o algoritmo em um computador 10 vezes mais rápido? 10
- Assumindo $C(n) = \frac{1}{2}.n.(n-1)$: quantas vezes mais tempo levará a execução do algoritmo se multiplicarmos o tamanho da entrada por dois?

Perguntas

$$T(n) \approx c \times C(n)$$
.

- Quantas vezes mais rápido será executado o algoritmo em um computador 10 vezes mais rápido? 10
- Assumindo $C(n) = \frac{1}{2}.n.(n-1)$: quantas vezes mais tempo levará a execução do algoritmo se multiplicarmos o tamanho da entrada por dois?

$$T(2n)/T(n) = \frac{c \times C(2n)}{c \times C(n)} = \frac{C(2n)}{C(n)}$$
$$= \frac{2n \cdot (2n-1)}{n \cdot (n-1)} = \frac{4n^2 - 2n}{n^2 - n}$$
$$\approx 4 \text{ se } n \text{ for grande}$$

Observações

Para responder a pergunta:

Assumindo $C(n) = \frac{1}{2}.n.(n-1)$: quantas vezes mais tempo levará a execução do algoritmo se multiplicarmos o tamanho da entrada por dois?

Observações

Para responder a pergunta:

Assumindo $C(n) = \frac{1}{2}.n.(n-1)$: quantas vezes mais tempo levará a execução do algoritmo se multiplicarmos o tamanho da entrada por dois?

Observe que:

- 1. Não precisamos saber o valor de *c* para responder: ele foi simplificado.
- 2. O fator multiplicativo $\frac{1}{2}$ também foi simplificado.
- 3. Em C(n) apenas o monômio de maior coeficiente foi determinante para calcular o resultado (assumindo n é grande o suficiente).

Ponto chave

A análise de algoritmos desconsidera os fatores multiplicativos, e concentra-se no *crescimento asintótico* considerando entradas de grande tamanho.

Crescimento asintótico

- ► O custo do algoritmo para entradas pequenas é geralmente irrelevante.
- ► A diferença entre algoritmos se faz com entradas de grande tamanho.
- ▶ Para entradas de grande tamanho, a crescimento asintótico do custo de computação é o aspecto mais importante.

Valores (aproximados) de funções significativas

n	log ₂ n	n	$n \log_2 n$	n^2	n ³	2 ⁿ	n!
10	3,3	10	$3, 3 \times 10^{1}$	10^{2}	10^{3}	10^{3}	$3,6 \times 10^{6}$
10^{2}						$1, 3 \times 10^{30}$	$9,3 \times 10^{157}$
10^{3}	10	10^{3}	$1,0 \times 10^4$	10^{6}	10^{9}		
10^{4}	13		$1,3 \times 10^5$		10^{9}		
10^{5}	17	10^{5}	$1,7 \times 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2,0 \times 10^{7}$	10^{12}	10^{18}		

Valores (aproximados) de funções significativas

n	log ₂ n	n	$n \log_2 n$	n^2	n ³	2 ⁿ	n!
10	3,3	10	$3, 3 \times 10^{1}$	10 ²	10^{3}	10 ³	$3,6 \times 10^{6}$
10^{2}						$1,3 \times 10^{30}$	$9,3 \times 10^{157}$
10^{3}	10	10^{3}	$1,0 \times 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1,3 \times 10^5$	10^{6}	10^{9}		
10^{5}	17	10^{5}	$1,7 imes 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2,0 \times 10^{7}$	10^{12}	10^{18}		

A função logaritmo é a que cresce mais devagar.

- Algoritmos de complexidade logarítmica tem custo imperceptível.
- A base do logaritmo é irrelevante: $\log_a n = \log_b n \times \log_a b$. As funções só são diferentes por uma constante multiplicativa.

Valores (aproximados) de funções significativas

n	$\log_2 n$	n	$n \log_2 n$	n^2	n ³	2 ⁿ	<i>n</i> !
10			$3, 3 \times 10^{1}$				$3,6 \times 10^{6}$
10^{2}	6,6	10^{2}	$6,6 \times 10^{2}$	10^{4}	10^{6}	$1, 3 \times 10^{30}$	$9,3\times10^{157}$
10^{3}	10	10^{3}	$1,0 \times 10^4$	10^{6}	10^{9}		
10^{4}	13		$1,3 \times 10^5$				
10^{5}	17	10^{5}	$1,7 \times 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2,0 \times 10^{7}$	10^{12}	10^{18}		

As funções 2^n e n! tem crescimento muito rápido.

- Para qualquer entrada n\u00e3o pequena, o valor \u00e9 astron\u00f3mico;
- ▶ O tempo de execução para entradas grandes excede a idade estimada do universo ∞.
- Não são práticos para entradas que não sejam pequenas.

Exercício

Como reagem essas funções quando n é duplicado? quadruplicado?

- ▶ $log_2 n$
- n
- $ightharpoonup n \log_2 n$
- $\rightarrow n^2$
- \rightarrow n^3
- ▶ 2ⁿ
- ▶ n!

Exercício

Para cada par de funções, indique se a primeira tem maior crescimento asintótico que a segunda, menor crescimento asintótico, ou se os crescimentos asintóticos são iguais:

- ▶ n.(n+1) e 2000. n^2 ;
- ▶ $\log_2 n$ e $\ln n$;
- \triangleright 2ⁿ⁻¹ e 2ⁿ;
- ► $100.n^2$ e $0,01.n^3$;
- ▶ (n-1)! e n!.

Exemplo: crescimento asintótico

$$T(n) = \frac{c_4 + c_5 + c_6}{2} \cdot n^2 + (c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7) \cdot n - (c_2 + c_3 + c_4 + \frac{c_5}{2} + \frac{c_6}{2} + c_7)$$

$$T(n) = a.n^2 + b.n + c$$

onde a, b, c são constantes que dependem da plataforma de execução.

Quando n é grande, o fator predominante é $a.n^2$. Diz se que

- $ightharpoonup T(n) \in \Theta(n^2).$
- ▶ O crescimento asintótico do tempo de execução é n^2 .
- O algoritmo é quadrático.

Síntese

- tamanho da(s) entrada(s)
- operação básica
- crescimento asintótico
- funções tipicamente encontradas

```
logarítmica \log n, linear n, quase-linear n \log n, quadrática n^2, polinomial n^k, onde k > 1 exponencial k^n, onde k > 1 fatorial n!
```