一、概述

8002A 是一颗带关断模式的音频功放 IC。在 5V 输入电压下工作时,负载(3 Ω)上的平均功率为 3W,且失真度不超过 10%。而对于手提设备而言,当 VDD 作用于关断端时,8002A 将会进入关断模式,此时的功耗极低,IQ 仅为 0.6uA。

8002A 是专为大功率、高保真的应用场合所设计的音频功放 IC。所需外围元件少且在 2.0V~5.5V 的输入电压下即可工作。

二、功能特点

- ▶ 无需输出耦合电容或外部缓冲电路。
- ▶ 稳定的增益输出。
- ▶ 外部增益设置。
- ▶ 封装形式: SOP8、SOP8-PP、DIP8、MSOP8。

三、应用

▶ 可应用于手提设备,台式电脑及低电压工作的音频设备。

四、管脚排列及说明

管脚排列图		名称	类型	说明
	1	SHUTDOWN	I	关断端口
SHUTDOWN 1 8 V02	2	BYPASS	I	电压基准端
	3	+IN	I	正向输入端
BYPASS 2 7 GND	4	-IN	I	反向输入端
+ IN 3 6 VDD	5	VO1	О	音量输出端 1
-IN 4 5 V01	6	VDD	POWER	电源端
	7	GND	POWER	接地端
	8	VO2	О	音量输出端 2

注: I: 输入: O: 输出: POWER: 电源。

五、功能说明

▶ 桥路设置

8002A 内部共有 2 个运放工作,但 2 个运放的设置却有所不同。

第一个运放增益可在外部用 RF 和 RJ 两个电阻进行设置(+IN 和-IN 端口),而第二个运放的增益则固定不变。第一个运放的输出信号实际上是第二个运放的输入信号,而且两个运放产生的信号数量相同,相位相反。因此 8002A 增益如下: $A_{VD}=2\times(Rf/Ri)$

为驱动负载,运放设置成桥接方式。桥接方式不同于一些常见的运放电路把负载的一边接到地,在同等条件下能使负载产生4倍的输出功率。

▶ 功耗

使用桥接的运放电路,负载上产生的功耗也比较大,因此在规定电压的条件下,负载功耗如下:

$$P_{DMAX} = 4 \times (V_{DD})^2 / (2\pi^2) R_L$$

因此在 5V 输入, 8Ω 负载情况下,输出最大功耗为 625mW。 但是此算法得出的结果如下:

 $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$

注: SOP 封装 θ_{JA} =140° C/W,DIP 封装 θ_{JA} =107° C/W,MSOP 封装 θ_{JA} =210° C/W

▶ 基准电压

电压基准端的外接电容应尽可能的靠近 8002A, 0.1μ F 的电容提高了内部偏置电压的稳定性并且减少了 PSRR 的影响。可以通过加大 BYPASS 端的对地电容值来改善 PSRR。CB 值的大小取决于对 PSRR 的要求。

▶ 关断功能

为了减少功耗,8002A的关断端可以关闭外部的偏置电路。当关断端为高电平时,运放关闭,8002A不工作,这时8002A的工作电流降低到0.6uA。当关断端电压略低于VDD时,8002A工作状态不稳定。所以,关断端应置于一个稳定的电压值,以免IC进入错误的工作状态。

在很多应用场合,关断端的电平转换都是由处理器来完成的。当使用单向闸刀开关实现电平转换时,可以在 关断端加上拉电阻,这样当开关关断时,因上拉电阻的作用,使得 8002A 关断端的电平处于一个正确的状态,以 保证 8002A 不会进入错误的工作状态。

六、极限参数(Ta=25℃)

特性	符号	范围	单位
工作电压	V_{DD}	6	V
输入电压	V_{IN}	-0.3~V _{DD} +0.3	V
工作温度	T_{OPR}	-65∼+150	$^{\circ}$
环境温度	T _A	-40~+85	$^{\circ}$
节点温度	T_{J}	150	${\mathbb C}$

七、电气参数(VDD=5V, RL=8Ω, Ta=25℃)

名称	符号	最小值	典型值	最大值	单位	测试条件
工作电压	$V_{ m DD}$	2.0		5.5	V	
静态电流	I_{DD}		6.5	10	mA	$V_{IN}=0V$, $I_O=0mA$
关断电流	I_{SD}		0.6	2	uA	$V_{PINI}=V_{DD}$
输出偏压	V_{OS}		5.0	50	mV	$V_{IN}=0V$
输出功率	P_{O}		1.2		W	THD=1%, f=1KHz, R_L =8 Ω
			1.5			THD=10%, f=1KHz, R_L =8 Ω
总谐波失真+噪音	THD+N		0.25		%	20Hz≤f≤20KHz, A_{VD} =2, RL=8 Ω , P_{O} =1W
电源抑制比			60		dB	V _{DD} =4.9V~5.1V

八、特性参数

九、电路原理图

十、封装尺寸图

SOP-8

SOP8-PP (带散热片)

0.25

0~15⁰

DIP-8

