

# UNIVERSITY OF GHANA (All rights reserved)

B.Sc ENGINEERING FIRST SEMESTER EXAMINATION: 2017/2018

#### SCHOOL OF ENGINEERING SCIENCES

FAEN 205: THERMODYNAMICS I (3 credits)

### **INSTRUCTIONS**

TIME: 2HRS

### Please read the following INSTRUCTIONS carefully

- [1] Answer TWO questions in SECTION A
- [2] Answers to SECTION A must be written in an Answer Booklet
- [3] Answer ALL questions in SECTION B
- [4] Answers to SECTION B must be written on the question paper
- [5] Write your STUDENT ID NUMBER on all the applicable question sheets and tie them inside the Answer Booklet

**EXAMINER: GEORGE AFRANE** 

# SECTION A

# Answer TWO questions in this Section

- 1. A steam turbine operates adiabatically at a power level of 4,000 kW. Steam enters the turbine at 2,500 kPa and 500°C and exhausts from the turbine as saturated vapour at 20 kPa.
  - a) What is the steam rate through the turbine?
  - b) What is the turbine efficiency?
- 2. Propylene (assumed to be an ideal gas) is compressed adiabatically from 12.0 bar and 30 °C to 18 bar at the rate of 1 kg mol s<sup>-1</sup>. If the compressor efficiency is 0.8, what is the power requirement of the compressor and what is the discharge temperature of the propylene? (R = 8.314 J/mol-K)
  - a) What is the power requirement of the compressor?
  - b) What is the discharge temperature of the propylene?

[Take 
$$\frac{\langle C_P^{lg} \rangle_S}{R} = \frac{\langle C_P^{lg} \rangle_H}{R} = \frac{C_P}{R} = 5$$
]

3. Carbon dioxide gas of upstream conditions  $T_1 = 456.3 \, K$ ,  $P_1 = 59.04 \, \text{bar}$  is throttled to a downstream pressure of 1.0 bar. Use the Lee/Kesler generalized method to estimate the downstream temperature to a first approximation. (R = 8.314 J/mol-K).

## For carbon dioxide:

$$T_C = 394.2 \, K; \ P_C = 73.8 \, \text{bar}; \ \omega = 0.224$$
  
 $\frac{C_p^{ig}}{R} = A + BT + DT^{-2}$   
 $A = 5.457$   
 $10^3 B = 1.045$   
 $10^{-5} D = -1.157$ 

| STUDENT ID: |  |
|-------------|--|
|             |  |

# **SECTION B:**

| Answer ALL questions in this Section 0                                                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Write down an equation for the first law of thermodynamics for a closed system                                                                                                                          |  |
| <ul><li>2. Two types of experimental data are needed for thermodynamic analysis; namely:</li><li>a)</li><li>b)</li></ul>                                                                                |  |
| 3. Write down the defining expression for the compressibility factor, Z                                                                                                                                 |  |
| 4. A gas has a temperature of 50°C and vapour pressure of 45kPa, if the critical temperature and is 150°C what is the reduced temperature?                                                              |  |
| 5. Water flows over a waterfall 80 m in height. For 2 kg of water what is the potential energy of the water at the top of the falls if acceleration due to gravity is 10 m/s <sup>2</sup> .             |  |
| 6. If the heat capacity of gas is 20.785 J mol <sup>-1</sup> K <sup>-1</sup> , what is the enthalpy change if 2 moles go from 70°C to 150°C?                                                            |  |
| 7. Write down the phase rule? How many degrees of freedom has a mixture of ice block in equilibrium with liquid water?                                                                                  |  |
| 8. If air at 1 bar and 25°C is compressed to 4 bar at the same temperature, calculate the change in internal energy U, if the heat capacity at constant volume, C <sub>v</sub> is given by 20.8 J/mol-K |  |

**EXAMINER: GEORGE AFRANE** 

| STUDENT ID:                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9. State the mathematical definition of the Second law of Thermodynamics.                                                                                         |
| 10. Write down the energy balance equation for steady-state flow processes for one entrance and one exit                                                          |
| 11. Write down the mathematical expression for isothermal compressibility, $\kappa_T$                                                                             |
| 12. Write down the first three terms of the virial equation of state in volume                                                                                    |
| 13. On a PV diagram, the critical isotherm exhibits a horizontal inflection at the critical point leading to two derivative expressions. Write them down.         |
| 14. Write down the celebrated van der Waals equation of state.                                                                                                    |
| 15. The principle that correlates reduced temperature T <sub>r</sub> and reduced pressure P <sub>r</sub> of gases to their compressibility factor Z, is known as? |
| 16. What is the compressibility factor of an ideal gas:                                                                                                           |

EXAMINER: GEORGE AFRANE

Z =

- 17. Write down the equation relating the heat capacities,  $C_v$  and  $C_p$  with the universal gas constant R for an ideal gas
- 18. If the hot and cold reservoir temperatures of a Carnot cycle are 500°C and 200°C respectively, what is the efficiency of the cycle?
- 19. Write down the defining equation for Helmholtz free energy, A.
- 20. Write down the Maxwell relation resulting from the following fundamental property relation: dA = -PdV SdT
- 21. What are the *canonical* variables for the Gibbs free energy, G?
- 22. Write down the defining expression for the residual property of a generic thermodynamic function M. What is the residual entropy of an ideal gas,  $S^R$ ?
- 23. State two methods for calculating residual properties of a gas
  - a)
  - b)
- 24. Write down the names of two cubic equations of state:
  - a)
  - b)

| STUDENT ID:                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25. If the quality of a system with saturated-liquid and saturated-vapour coexisting in equilibrium is $x^{\nu}$ , write down an expression for the enthalpy of the system.                                                 |
| 26. If a process takes place reversibly and adiabatically in a system of 2kg mass, and the temperature changes from 100°C to 300°C, what is the change in its entropy $\Delta S$ ?                                          |
| 27. Write down the equation that defines the efficiency of a turbine, in terms of enthalpies:                                                                                                                               |
| 28. On a T-S diagram, draw the four steps of a Carnot cycle.                                                                                                                                                                |
| 29. On a T-S diagram, draw the stages of a Rankine cycle.                                                                                                                                                                   |
| <ul><li>30. a) For the same compression ratio, the Otto engine has a higher efficiency than the Diesel engine (True / False)</li><li>b) Otto engines use spark plugs, while Diesel engines do not. (True / False)</li></ul> |

EXAMINER: GEORGE AFRANE Page 6 of 6