Álgebra Linear e Geometria Analítica

Exame de recurso - Grupo	- Grupo I
--------------------------	-----------

 23/01/2013

Nome:			Cotação Classificação			50	
N.º mecanográfico:				1000111	iouguo		
	$E \setminus C$	0	1	2	3	4	5
Esta folha será recolhida após 45 minutos.	0	00	10	20	30	40	50
•	$\begin{vmatrix} 1\\2 \end{vmatrix}$	-2,5 -05	7,5	17,5	27,5	37,5	
Uma resposta correta é cotada com 10 pontos,	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	-7,5	$05 \\ 2,5$	15 $12,5$	25		
uma resposta em branco com 0 pontos e	4	-10	00	12,0			
uma resposta errada com -2,5 pontos.	5	-12,5					
Este grupo é constituído por 5 questões de escolha correta que deve assinalar com uma \times no \square corresp	_		ques	tão te	em uma	a só c	pç
1. Se $A \in M_{3\times 4}$ com car $A = 3$ e $B \in M_{3\times 1}$, então o sist	ema $AX =$	= <i>B</i> de	matri	z ampl	iada $[A]$	B é	
\square possível e determinado;							
\square possível e indeterminado;							
\Box tal que car $[A B] > 3$;							
\square impossível.							
2. O determinante da matriz $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$ é igual a \Box 9; \Box -15; \Box 12; \Box -3. Seja A uma matriz 3×3 tal que A (adj A) = 5 I_3 . Entertial contents and I_3 is a separate of I_3 .	tão 5 é o d	etermir	nante	de			
		.000111111	Idilio	ac			
\Box adj A ;							
$\Box A (\operatorname{adj} A);$							
$\Box A^{-1};$							
\Box A.							
4. Se S é o subespaço de \mathbb{R}^3 gerado por $X=(1,0,2),Y$	=(0,1,0)	e Z =	(1, 1, 2)	$2)$, ent \hat{a}	ão		
5. Seja $L:\mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação linear definida por L	(x,y) = (x	+ y, 0,	-x –	<i>y</i>). Er	ntão		
\Box $(0,0) \in \ker L \ e \ (0,1,0) \in \operatorname{im} L;$							
\Box $(1,-1) \in \ker L \in (0,0,0) \in \operatorname{im} L;$							