TEORÍA DE LA COMPUTACIÓN CC342-A

Duración: 120 min.

Apellidos y Nombres:.....

1. (5 puntos) Dado el AFND- ε N en el que $s^* = s_1; F = \{s_3\}$ y con transiciones:

$$\delta(s_1, \varepsilon) = \{s_2, s_3\} \quad \delta(s_1, a) = \phi \quad \delta(s_1, b) = \{s_2\} \quad \delta(s_1, c) = \{s_3\}$$

$$\delta(s_2, \varepsilon) = \phi$$
 $\delta(s_2, a) = \{s_1\}$ $\delta(s_2, b) = \{s_3\}$ $\delta(s_2, c) = \{s_1, s_2\}$

$$\delta(s_3, \varepsilon) = \phi$$
 $\delta(s_3, a) = \phi$ $\delta(s_3, b) = \phi$ $\delta(s_3, c) = \phi$

Obtener el AFND M equivalente en el que se hayan eliminado todas las transiciones epsilon.

2. (5 puntos) Minimizar el AFD D con $F = \{s_3\}$ $I = \{a, b\}$ y con transiciones:

$$\delta(s_1, a) = s_2 \qquad \delta(s_1, b) = s_6$$

$$\delta(s_2, a) = s_7 \qquad \delta(s_2, b) = s_3$$

$$\delta(s_2, a) = s_7$$
 $\delta(s_2, b) = s_3$
 $\delta(s_3, a) = s_1$ $\delta(s_3, b) = s_3$

$$\delta(s_4, a) = s_3 \qquad \delta(s_4, b) = s_7$$

$$\delta(s_5, a) = s_8 \qquad \delta(s_5, b) = s_6$$

$$\delta(s_6, a) = s_3 \qquad \delta(s_6, b) = s_7$$

$$\delta(s_7, a) = s_7$$
 $\delta(s_7, b) = s_5$

$$\delta(s_8, a) = s_7 \qquad \delta(s_8, b) = s_3$$

Examen Sustitutorio - Teoría de la Computación Apellidos y Nombres:.....

3. (5 puntos) Sea M el PDA definido por:

$$S = \{s_0, s_1, s_2\} \Sigma = \{a, b\} \Gamma = \{A\} F = \{s_1, s_2\}$$

$$\delta(s_0, a, \varepsilon) = (s_0, A)$$

$$\delta(s_0, \varepsilon, \varepsilon) = (s_1, \varepsilon)$$

$$\delta(s_0, b, A) = (s_2, \varepsilon)$$

$$\delta(s_1, \varepsilon, A) = (s_1, \varepsilon)$$

$$\delta(s_2, b, A) = (s_2, \varepsilon)$$

- $\delta(s_2, \varepsilon, A) = (s_2, \varepsilon)$
 - a) Describa el lenguaje aceptado por M.
 - b) Describa el diagrama de estados de M.
 - c) Escriba los pasos computacionales al evaluar las cadenas aab, abb, aba en M.
 - d) Pruebe que $aabb, aaab \in L(M)$.
- 4. (5 puntos) Convertir la siguiente gramática a su Forma Normal de Greibach:

$$G: \begin{cases} S \to CD|a \\ A \to CD|a \\ B \to EF|b \\ C \to a \\ D \to BC \\ E \to b \\ F \to AE \end{cases} \tag{1}$$