## Feuille d'exercice n° 26 : Séries numériques

**Exercice 1** On considère deux séries  $\sum_{n\geqslant 0}u_n$  et  $\sum_{n\geqslant 0}v_n$ , à termes positifs.

- 1) Démontrer que si les deux séries  $\sum u_n$  et  $\sum v_n$  convergent, alors la série de terme général  $\sqrt{u_n v_n}$  converge aussi.
- 2) On suppose maintenant que, pour tout  $n \in \mathbb{N}$ ,  $v_n = \frac{1}{1 + n^2 u_n}$ .
  - a) Exprimer  $\sqrt{u_n v_n}$  en fonction de  $v_n$  et de n.
  - b) En déduire que  $\sum v_n$  et  $\sum u_n$  ne peuvent pas converger toutes les deux.

**Exercice 2** ( $\circlearrowleft$ ) Comment choisir deux réels a et b tels que  $\sum_{n\geqslant 1} u_n$  converge, avec  $u_n = \ln n + a \ln(n + 1) + b \ln(n + 2)$ ? Dans le cas de convergence, donner la valeur de la somme.

**Exercice 3** Soit  $(u_n)_{n\geqslant 1}$  une suite réelle décroissante de limite nulle. On suppose que la suite  $(v_n)_{n\geqslant 1}$  de terme général  $v_n = \binom{n}{k-1} u_k - nu_n$  est bornée. On veut montrer que la série  $\sum u_n$  converge.

- 1) Montrer que  $(v_n)$  est croissante, puis convergente. On note  $\ell$  sa limite.
- 2) Exprimer  $u_k u_{k+1}$  en fonction de  $v_k$  et  $v_{k+1}$ .
- 3) En sommant l'égalité précédente de  $n \ a + \infty$ , montrer que pour tout  $n \ge 1$ ,  $u_n \le \frac{1}{n}(\ell v_n)$ .
- 4) En déduire que  $nu_n \xrightarrow[n \to +\infty]{} 0$ , et enfin que la série  $\sum u_n$  converge.

**Exercice 4** ( $\mathfrak{D}$ ) On étudie la suite  $(u_n)$  définie par  $: u_0 \in ]0, \pi/2[$  et  $u_{n+1} = \sin(u_n)$ .

- 1) Montrer que  $(u_n)$  est une suite à termes positifs, et qu'elle est convergente.
- 2) Déterminer la limite de  $(u_n)$ .
- 3) a) Donner un DL à l'ordre 3 de  $u_{n+1}$  en fonction de  $u_n$ , quand n tend vers  $+\infty$ . En déduire un équivalent de  $u_n^3$  en fonction de  $(u_n u_{n+1})$ .
  - b) Déterminer la nature de la série de terme général  $u_n^3$
- 4) Déterminer la nature de la série de terme général  $\ln \left( \frac{u_{n+1}}{u_n} \right)$ .
- 5) a) Donner un équivalent de  $\ln\left(\frac{u_{n+1}}{u_n}\right)$  en fonction de  $u_n$ , quand n tend vers  $+\infty$ .
  - b) En déduire la nature des séries de termes généraux  $u_n^2$  et  $u_n$ .

Exercice 5 Déterminer la nature de la série de terme général  $u_n = \begin{cases} 1/n \text{ si } n \text{ est un carré} \\ 1/n^2 \text{ sinon} \end{cases}$ 

Exercice 6 ( ) Déterminer la nature des séries dont les termes généraux sont les suivants.

$$1) \ u_n = \frac{\operatorname{ch} n}{\operatorname{ch} 2n}$$

$$\mathbf{4)} \ \alpha_n = \left(\frac{n}{n+1}\right)^{n^2}$$

7) 
$$a_n = \frac{2^n n}{n!}$$

1) 
$$u_n - \frac{1}{\cosh 2n}$$
 4)  $\alpha_n = \left(\frac{1}{n+1}\right)$   
2)  $v_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$  5)  $\beta_n = \frac{1}{n\cos^2 n}$   
3)  $w_n = e - \left(1 + \frac{1}{n}\right)^n$  6)  $\gamma_n = \frac{1}{(\ln n)^{\ln n}}$ 

$$\mathbf{5)} \ \beta_n = \frac{1}{n\cos^2 n}$$

$$\mathbf{8)} \ b_n = \left(\frac{\sqrt{n}}{1+\sqrt{n}}\right)^n$$

**3)** 
$$w_n = e - \left(1 + \frac{1}{n}\right)^n$$
 **6)**  $\gamma_n = \frac{1}{(\ln n)^{\ln n}}$ 

$$6) \ \gamma_n = \frac{1}{(\ln n)^{\ln n}}$$

9) 
$$c_n = \frac{3n^3 + 2n - 1}{(n+1)(n^2 + n + 1)}$$

Calculer  $\sum_{n=0}^{+\infty} \ln\left(1-\frac{1}{n^2}\right)$ , après avoir montré son existence. Exercice 7

Sachant  $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$ , calculer  $\sum_{n=0}^{+\infty} \frac{n+1}{n!}$  et  $\sum_{n=0}^{+\infty} \frac{n^2-2}{n!}$ . Exercice 8

Exercice 9 ( ) Calculer  $\sum_{n=1}^{+\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$ , après avoir montré son existence.

Exercice 10 ( ) - Transformation d'Abel -

Soit  $(a_n)$  une suite positive décroissante de limite nulle et  $(S_n)$  une suite bornée.

- 1) Montrer que la série  $\sum (a_n a_{n+1})S_n$  est convergente.
- 2) En déduire que la série  $\sum a_{n+1}(S_{n+1}-S_n)$  est convergente.
- 3) Établir que, pour tout  $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ , la série  $\sum_{n=0}^{\infty} \frac{\cos(nx)}{n}$  est convergente.

Déterminer la nature de la série de terme général  $u_n = \frac{1}{(\ln 2)^2 + \dots + (\ln n)^2}$ . Exercice 11

Exercice 12 ( Soit  $\alpha > 1$ . Pour tout  $N \in \mathbb{N}^*$  on pose  $S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}}$  et  $R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^{\alpha}}$ .

Étudier, selon  $\alpha$ , la nature de la série  $\sum_{N>1} \frac{R_N}{S_N}$ .

Soit  $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ , telle que f(0) = 0 et |f'(0)| < 1. On considère la suite  $(u_n)_{n \in \mathbb{N}}$ Exercice 13 (%) définie par  $u_0 \in \mathbb{R}$  et  $\forall n, u_{n+1} = f(u_n)$ . Démontrer qu'il existe  $\alpha > 0$  tel que si  $|u_0| < \alpha$ , la série de terme général  $u_n$  converge absolument.



2