Modelos estocásticos

Prueba de evaluación continua, modelo 10

Abril 2021

Dr. Víctor Hernández

Universidad Nacional de Educación a distancia Departamento de Estadística e Investigación operativa

PEC Modelos estocásticos 2021. Modelo 10

Instrucciones: Responde razonada y rigurosamente a las cuestiones planteadas. Las respuestas debes enviarlas en un único archivo .pdf, con tu nombre en la primera página. Cada una de las tres cuestiones se puntúa de 0 a 10. La puntuación total de esta prueba equivale a 2 puntos de la nota final.

Enunciados

Enunciado 1 Un sistema tiene dos componentes C_1 , C_2 . La vida útil de una componente C_i es el periodo de tiempo durante el cual funciona correctamente. El sistema funciona hasta que alguna de las componentes llega a final de su vida útil y, entonces, se detiene. La vida útil de la componente C_i , i=1,2, es aleatoria y tiene distribución uniforme en el intervalo $(0,a_i)$, con $0 < a_1 < a_2$. El sistema comienza a funcionar en el instante t=0.

Cuestión 1. (1 punto) Si el sistema se ha detenido en el instante t > 0 y la parada se debe a que la componente C_2 ha llegado al final de su vida útil, ¿cuál es la distribución del tiempo de vida útil que le restaba a la componente C_1 ?

Enunciado 2 Nuestra empresa de ingeniería ofrece a sus clientes unas condiciones de acuerdo con las cuales, en el momento de la contratación, se valora la ejecución del proyecto en una cantidad determinada V y el precio que realmente paga el cliente es V-cT, donde T es el tiempo transcurrido desde que se firmó el contrato hasta que se entregó la obra. El parámetro c es el mismo en todos los contratos, mientras que V depende del proyecto y T es un tiempo aleatorio que depende de su ejecución.

Supongamos que acabamos de firmar tres contratos, C_1 , C_2 y C_3 , y que sólo disponemos de dos equipos de ingenieros. Los equipos de ingenieros pueden iniciar dos proyectos, uno cada equipo y el primero que finalice su tarea se encargará de realizar el tercer proyecto.

Cuestión 2. (0.5 puntos) Supongamos que el tiempo estimado de ejecución de cada uno de esos contratos, desde su inicio hasta su terminación, tiene distribución exponencial con parámetro λ_i , para i = 1, 2, 3.

¿Depende la cantidad esperada de dinero que recibiremos por los tres contratos del orden en que se ejecuten? En tal caso, ¿qué dos proyectos deben iniciarse primero a fin de que la cantidad esperada que recibamos sea máxima?

Cuestión 3. (0.5 puntos) Supongamos que el tiempo estimado de ejecución del proyecto i-ésimo es uniforme en el intervalo $(0, t_i), t_i > 0$.

¿Depende la cantidad esperada de dinero que recibiremos por los tres contratos del orden en que se ejecuten? En tal caso, ¿qué dos proyectos deben iniciarse primero a fin de que la cantidad esperada que recibamos sea máxima?