Exercice. Une partie bornée.

On note A la partie de $\mathbb R$ ci-dessous :

$$A = \left\{ \sqrt{n} - \lfloor \sqrt{n} \rfloor \mid n \in \mathbb{N} \right\}.$$

- 1. Justifier que A possède un minimum et donner sa valeur.
- 2. Justifier que A possède une borne supérieure et que $\sup(A) \leq 1$.
- 3. Pour $p \in \mathbb{N}$, $p \geq 2$, montrer que

$$\lfloor \sqrt{p^2 - 1} \rfloor = p - 1.$$

4. En déduire que

$$\sqrt{p^2 - 1} - \lfloor \sqrt{p^2 - 1} \rfloor = \frac{2}{1 + \sqrt{\frac{p+1}{p-1}}}.$$

5. Démontrer enfin que $\sup(A) = 1$.

Problème Suites sous-additives.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que

$$\forall (m,n) \in \mathbb{N}^2$$
 : $u_{m+n} \le u_m + u_n$.

On définit la suite $(v_n)_{n\in\mathbb{N}^*}$ par

$$\forall n \in \mathbb{N}^{\star} : v_n = \frac{u_n}{n}.$$

Le but de l'exercice est d'étudier la nature de la suite (v_n) .

1. (a) Soit $q \in \mathbb{N}^*$ et $a \in \mathbb{N}$. Montrer que

$$u_{qa} \le qu_a$$
.

(b) Pour $q \in \mathbb{N}^*$, $r \in \mathbb{N}$ et $a \in \mathbb{N}$, montrer que

$$u_{qa+r} \le qu_a + u_r.$$

2. On se donne $a \in \mathbb{N}^*$.

Si $n \in \mathbb{N}$, on note q_n et r_n le quotient et le reste de la division euclidienne de l'entier n par l'entier a. On admettra que cela signifie que

$$n = aq_n + r_n$$
 $(q_n, r_n) \in \mathbb{N}^2$ $r_n \in [0, a[$

(a) Montrer que

$$q_n = \left| \frac{n}{a} \right|$$
.

Déterminer

$$\lim_{n \to +\infty} \frac{q_n}{n}.$$

(b) Montrer que

$$\lim_{n \to +\infty} \frac{u_{r_n}}{n} = 0.$$

(c) Soit $\varepsilon > 0$. Montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que

$$\forall n \ge n_0 : \frac{u_n}{n} \le \frac{u_a}{a} + \frac{1}{2}\varepsilon.$$

3. Si la suite $(v_n)_n$ est minorée

On suppose que la suite $(v_n)_{n\in\mathbb{N}^{\star}}$ est minorée. On définit

$$\ell = \inf \left\{ \frac{u_n}{n} \mid n \in \mathbb{N}^* \right\}.$$

- (a) Justifier l'existence de la borne inférieure définissant ℓ .
- (b) Soit $\varepsilon > 0$.

Justifier l'existence de $a \in \mathbb{N}^*$ tel que $\frac{u_a}{a} < \ell + \frac{1}{2}\varepsilon$.

(c) Conclure que

$$\lim_{n \to +\infty} v_n = \ell.$$

4. Si la suite (v_n) n'est pas minorée

On suppose que la suite $(v_n)_{n\in\mathbb{N}^*}$ n'est pas minorée.

(a) Soit $\varepsilon > 0$ et $A \in \mathbb{R}$.

Justifier l'existence de $a \in \mathbb{N}^{\star}$ tel que $\frac{u_a}{a} < A - \frac{1}{2}\varepsilon$.

(b) Conclure que

$$\lim_{n \to +\infty} v_n = -\infty.$$

5. Soit $(w_n)_{n\in\mathbb{N}}$ une suite strictement positive telle que

$$\forall (m,n) \in \mathbb{N}^2 : w_{m+n} \le w_m w_n.$$

Montrer que la suite $(\sqrt[n]{w_n})_{n\in\mathbb{N}^*}$ est convergente.