MULTIPERCEPTRÓN

ALGORITMO BACKPROPAGATION

Con una sola neurona no se puede resolver el problema del XOR porque no es linealmente separable.

 $w_{11}=1$ $w_{12}=1$ $b_1=-0.5$; $w_{21}=1$ $w_{22}=1$ $b_2=-1.5$; $w_{31}=1$ $w_{32}=-1.5$ $b_3=-0.5$

рl	p2	I1 (or)	I2 (AND)	a
Ī	0		0	
I	I		I	0
0	0	0	0	0
0	l		0	Ī

PROBLEMA NO SEPARABLE LINEALMENTE

Se busca obtener un algoritmo más general que permita integrar el aprendizaje entre las dos capas.

ANIMACIÓN DE UNA RN

Tinker With a Neural Network Right Here in Your Browser

PROBLEMA NO SEPARABLE LINEALMENTE

oculta

salida

entrada

 X_{l}

¿Cuál es el tamaño de cada capa?

PROBLEMA NO SEPARABLE LINEALMENTE

- La idea es aplicar un descenso en la dirección del gradiente sobre la superficie de error expresada como una función de los pesos.
- Deberán tenerse en cuenta los pesos que unen AMBAS capas.
- Dado que el aprendizaje es supervisado, para los nodos de salida se conoce la respuesta esperada a cada entrada (regla delta).
- Es preciso definir una manera de medir la participación de las neuronas ocultas en el valor de salida para determinar cómo corregir los pesos que llegan a ellas.

MULTIPERCEPTRÓN - ARQUITECTURA

ALGORITMO BACKPROPAGATION

Dado el siguiente conjunto de vectores

$$\{(x_1,t_1), \ldots, (x_p,t_p)\}$$

que son ejemplos de correspondencia funcional

$$t = \varphi(x)$$
 $x \in R^N, t \in R^M$

se busca entrenar la red para que aprenda una aproximación

$$y = \varphi'(x)$$

BACKPROPAGATION. CAPA OCULTA

Ejemplo de entrada

$$x_p = (x_{p1}, x_{p2}, ..., x_{pN})^t$$

Entrada neta de la j-ésima neurona de la capa oculta

$$neta_{pj}^{h} = \sum_{i=1}^{N} w_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

Salida de la j-ésima neurona de la capa oculta

$$i_{pj} = f_j^h(neta_{pj}^h)$$

BACKPROPAGATION. CAPA DE SALIDA

Entrada neta de la k-ésima neurona de la capa de salida

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

Salida de la k-ésima neurona de la capa de salida

$$y_{pk} = f_k^o(neta_{pk}^o)$$

ACTUALIZACIÓN DE PESOS

Error en una sola unidad de la capa de salida

$$\delta_{pk} = (t_{pk} - y_{pk})$$

salida esperada para el vector de entrada p en la neurona de salida k

salida obtenida para el vector de entrada p en la neurona de salida k

ACTUALIZACIÓN DE PESOS

Se busca minimizar

$$E_p = \frac{1}{2} \sum_{k=1}^{M} \delta_{pk}^2$$

$$E_p = \frac{1}{2} \sum_{k=1}^{M} (t_{pk} - y_{pk})^2$$

$y_{pk} = f_k^o(neta_{pk}^o)$

ACTUALIZACIÓN DE PESOS

$$\frac{\partial E_p}{\partial w_{kj}^o} = -(t_{pk} - y_{pk}) \underbrace{\frac{\partial f_k^o}{\partial (neta_{pk}^o)}}_{\frac{\partial (neta_{pk}^o)}{\partial w_{kj}^o}} \underbrace{\frac{\partial (neta_{pk}^o)}{\partial w_{kj}^o}}_{\frac{\partial w_{kj}^o}{\partial w_{kj}^o}}$$

$$f_k^{o\prime}(neta_{pk}^o)$$

$$\frac{\partial}{\partial w_{kj}^o} \left(\sum_{j=1}^L w_{kj}^o i_{pj} + h_k^o \right) = i_{pj}$$

$$\frac{\partial E_p}{\partial w_{k,i}^o} = -(t_{pk} - y_{pk}) f_k^{o'}(net a_{pk}^o) i_{pj}$$

Salida de la neurona oculta j

Peso del arco que une la neurona j de la capa oculta y la neurona k de la capa de salida

ACTUALIZACIÓN DE PESOS

Por lo tanto, para la capa de salida se tiene

$$\delta_{pk}^o = (t_{pk} - y_{pk}) f_k^{o\prime} (net a_{pk}^o)$$

$$w_{kj}^o(t+1) = w_{kj}^o(t) + \alpha \delta_{pk}^o i_{pj}$$

ACTUALIZACIÓN DE PESOS

 Corrección para los pesos de los arcos entre la capa de entrada y la oculta

$$\Delta_p w_{ji}^h(t) = \alpha \delta_{pj}^h x_{pi}$$

serán de la forma:

$$\delta_{pj}^{h} = f_j^{h\prime}(neta_{pj}^{h}) \sum_{k} \delta_{pk}^{o} w_{kj}^{o}$$

ALGORITMO BACKPROPAGATION

Recalcular la función de costo

```
Definir alfa, MAX_ITE y COTA
Inicializar los pesos de forma aleatoria
Mientras ( la variación de la función de costo supere cierta COTA ):
Para cada ejemplo
- propagar el ejemplo hacia adelante
- calcular los gradientes para cada capa (parte común)
- corregir todos los pesos
```

Problema de clasificación en 2 clases

Propagar el ejemplo de entrada a través de la capa oculta

$$neta_{pj}^h = \sum_{i=1}^h w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

Propagar las salidas de la capa oculta hacia la capa de salida

Se obtienen los valores de salida

Corrección que se realizará a los pesos de cada neurona de salida

Corrección que se realizará a los pesos de cada neurona de salida

Corrección que se realizará a los pesos que llega a cada neurona oculta

Corrección que se realizará a los pesos que llega a cada neurona oculta

Se actualizan ambas matrices de pesos

Aplicar el vector de entrada

$$x_p = (x_{p1}, x_{p2}, ..., x_{pN})^t$$

Calcular los valores netos de las unidades de la capa oculta

$$neta_{pj}^{h} = \sum_{i=1}^{n} w_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

Calcular las salidas de la capa oculta

$$i_{pj} = f_j^h(neta_{pj}^h)$$

Calcular los valores netos de las unidades de la capa de salida

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

Calcular las salidas

$$y_{pk} = f_k^o(neta_{pk}^o)$$

 Calcular la parte del gradiente común a cada neurona de la capa de salida

$$\delta_{pk}^o = (t_{pk} - y_{pk}) f_k^{o\prime} (net a_{pk}^o)$$

 Calcular la parte del gradiente común a cada neurona de la capa oculta

$$\delta_{pj}^{h} = f_j^{h\prime}(neta_{pj}^h) \sum_k \delta_{pk}^o w_{kj}^o$$

Se actualizan los pesos de la capa de salida

$$w_{kj}^{o}(t+1) = w_{kj}^{o}(t) + \alpha \, \delta_{pk}^{o} \, i_{pj}$$

Se actualizan los pesos de la capa oculta

$$w_{ji}^{h}(t+1) = w_{ji}^{h}(t) + \alpha \delta_{pj}^{h} x_{i}$$

Repetir mientras la reducción del ECM supere cierta COTA

рl	p2	II (or)	I2 (AND)	a
I	0	I	0	
I	I	I	I	0
0	0	0	0	0
0			0	l

MLP_XOR.ipynb

PROBLEMA DEL XOR

```
import numpy as np
from graficaMLP import dibuPtos y 2Rectas
from Funciones import evaluar, evaluarDerivada
X = np.array([ [-1, -1], [-1, 1], [1, -1], [1, 1]))
T = np.array([-1, 1, 1, -1]).reshape(-1,1)
entradas = X.shape[1]
                                         X
ocultas = 2
salidas = Y.shape[1]
```

MLP_XOR.ipynb

PESOS INICIALES

```
W1 = np.random.uniform(-0.5,0.5,[ocultas, entradas])
b1 = np.random.uniform(-0.5,0.5, [ocultas,1])
W2 = np.random.uniform(-0.5,0.5,[salidas, ocultas])
b2 = np.random.uniform(-0.5,0.5, [salidas,1])
```

MLP_XOR.ipynb

GRAFICAR WIYBI

ph = dibuPtos_y_2Rectas(X,T, W1, b1, ph)


```
alfa = 0.15
CotaError = 0.001
MAX ITERA = 300
ite = 0
while ( abs(ErrorAVG-ErrorAnt)>Cota) and ( ite < MAX ITERA ):</pre>
    for p in range(len(X)): #para cada ejemplo
        # propagar el ejemplo hacia adelante
        # calcular los errores en ambas capas
        # corregir los todos los pesos
    # Recalcular AVGError
    ite = ite + 1
    print(ite, AVGError)
    # Graficar las rectas
```

Ver MLP_XOR.ipynb

EJEMPLO: CLASIFICACIÓN DE FLORES DE IRIS

ld	sepallength	sepalwidth	petallength	petalwidth	class
1	5, I	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
•••	•••	•••	•••	•••	•••
95	5,6	2,7	4,2	1,3	Iris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
•••	•••	•••	•••	•••	•••
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

https://archive.ics.uci.edu/ml/datasets/lris

EJEMPLO: CLASIFICACIÓN DE FLORES DE IRIS

X

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]

X

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]

X

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]

b2

W2

FunH='tanh' ; FunO='sigmoid'

Ingresar el primer ejemplo a la red y calcular

su salida

CALCULANDO LA SALIDA DE LA CAPA OCULTA

$$\begin{bmatrix} [-1.73, -0.05, -1.38, -1.31], & & [[1,0,0], \\ [-0.37, -1.62, 0.22, 0.18], & [0,1,0], \\ [1.11, -0.05, 0.93, 1.54], & [0,0,1], \\ [-0.99, 0.39, -1.44, -1.31], & [1,0,0], \\ [1.73, 1.29, 1.46, 1.81]] & [0,0,1]]$$

Salida de la capa oculta

netasH = W1 * x.T + b1

X

WI

[[-1.73],[-0.05], [[-0.45],[-1.38], [-0.10]][-1.31]bl

 \mathbf{x}^{T}

[[-0.4309]

[0.199711

FunH='tanh' ; FunO='sigmoid'

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

CALCULANDO LA SALIDA DE LA CAPA OCULTA

X

$$\begin{bmatrix} [-1.73, -0.05, -1.38, -1.31], & & [[1,0,0], \\ [-0.37, -1.62, 0.22, 0.18], & [0,1,0], \\ [1.11, -0.05, 0.93, 1.54], & [0,0,1], \\ [-0.99, 0.39, -1.44, -1.31], & [1,0,0], \\ [1.73, 1.29, 1.46, 1.81]] & [0,0,1]]$$

Salida de la capa oculta

$$netasH = W1 * x.T + b1$$

 \mathbf{x}^{T}

* [-0.05], * - 1.001, + [-1.38], [-1.31]

[[-1.73],

$$+ \begin{bmatrix} [-0.45], \\ [-0.10]] \end{bmatrix} = \begin{bmatrix} [-0.4309] \\ [0.1997]] \end{bmatrix}$$

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

salidasH =
$$2.0/(1+np.exp(-2*netasH))-1 = [[-0.40607318] [0.19708699]]$$

FunH='tanh' ; FunO='sigmoid'

$$neta_{pj}^h = \sum_{i=1}^h w_{ji}^h x_{pi}^h + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

CALCULANDO LA SALIDA DE LA RED (CAPA DE SALIDA)

X

Salida de red

$$netas0 = W2 * salidasH + b2$$

W₂

salidasH

b2

FunH='tanh' ; FunO='sigmoid'

netas0

$$[-0.29]$$
, $= [[1.4599744]$
 $[-0.17]$, $= [-0.30656998]$
 $[-0.27]$] $[-1.31946868]$]

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$y_{pk} = f_k^o(neta_{pk}^o)$$

CALCULANDO LA SALIDA DE LA RED (CAPA DE SALIDA)

X [[1,0,0], [[-1.73, -0.05, -1.38, -1.31],[0,1,0], [-0.37, -1.62, 0.22, 0.18],[1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39, -1.44, -1.31],[1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]

Salida de red

W₂

salidasH

salidasO = 1 /
$$(1+np.exp(-netasO))$$
 = [[0.81152876] [0.42395219] [0.2109067]]

FunH='tanh' ; FunO='sigmoid'

netas0

b2

[-0.27]]

[[-0.29],

[-0.17],

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$y_{pk} = f_k^o(neta_{pk}^o)$$

ERROR DE LA RED PARA ESTE EJEMPLO

Error en la respuesta de la red para este ejemplo

```
ErrorSalida = t.T - salidasO
```


FunH='tanh' ; FunO='sigmoid'

T [[-1.73,-0.05,-1.38,-1.31], [-0.37,-1.62, 0.22, 0.18], [1.11,-0.05, 0.93, 1.54], [-0.99, 0.39,-1.44,-1.31], [1.73, 1.29, 1.46, 1.81]] T [[1,0,0], [0,0,1]]

Factores para corregir W2 y b2

$$\delta^o_{pk} = (t_{pk} - y_{pk}) f^{o\prime}_k (neta^o_{pk})$$

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]]

Factores para corregir WI y bI

$$\delta_{pj}^h = f_j^h!(neta_{pj}^h) \sum_k \delta_{pk}^o w_{kj}^o$$

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]]

[[-0.21851662]

[-0.02356619]]

deltaH =

Factores para corregir WI y bI


```
FunH='tanh' ; FunO='sigmoid'
```

Note que las derivadas de ambas funciones de activación sigmoides (derivada_FunO y deriv_FunH) son siempre positivas y actúan como factor de escala

CORRECCIÓN DE LOS PESOS

X

Modificación de W2 y b2

FunH='tanh' ; FunO='sigmoid'

$$W2 = W2 + alfa * delta0 @ salidasH.T$$

$$W2 = \begin{bmatrix} [-4.79, -0.99], \\ [0.38, 0.09], + alfa * \begin{bmatrix} [-0.10353622] & [-0.406073], [0.197087] \end{bmatrix} = \begin{bmatrix} [-4.79, -0.99] \\ [-0.03510016] \end{bmatrix} = \begin{bmatrix} [0.38, 0.09] \\ [2.40, -0.38] \end{bmatrix}$$

$$b2 = b2 + alfa * delta0 = \begin{bmatrix} [-0.29], \\ [-0.18], + alfa * [-0.10353622] \end{bmatrix} = \begin{bmatrix} [-0.29], \\ [-0.27] \end{bmatrix} = \begin{bmatrix} [-0.29], \\ [-0.27] \end{bmatrix}$$

CORRIGIENDO DE LOS PESOS

MLP_IRIS_algBPN.ipynb

X

Modificación de W I y b I

$$W1 = W1 + alfa * deltaH @ x$$

$$\mathbf{W1} = \begin{bmatrix} [0.15, -0.13, 0.23, -0.45], \\ [-0.29, -0.41, -0.19, 0.37] \end{bmatrix} + \mathbf{alfa} * \begin{bmatrix} [-0.21851662] \\ [-0.02356619] \end{bmatrix} @ [[-1.73, -0.05, -1.38, -1.31]$$

$$\mathbf{W1} = \begin{bmatrix} [0.19 & -0.13 & 0.26 & -0.42] \\ [-0.29 & -0.41 & -0.19 & 0.37] \end{bmatrix}$$

b1 = b1 + alfa * deltaH =
$$\begin{bmatrix} [-0.45] \\ [-0.10] \end{bmatrix}$$
 + alfa * $\begin{bmatrix} [-0.21851662] \\ [-0.02356619] \end{bmatrix}$ = $\begin{bmatrix} [-0.47] \\ [-0.1] \end{bmatrix}$

SI SE INGRESA EL MISMO EJEMPLO LUEGO DE MODIFICAR LOS PESOS DE LA RED ...

```
netasH = W1 @ xi.T + b1
salidasH = 2.0/(1+np.exp(-2*netasH))-1
netasO = W2 @ salidasH + b2
salidas0 = 1.0/(1+np.exp(-netas0))
print("salida0 = \n", salidas0)
ErrorSalidaNew = Ti.T-salidasO
print("ErrorSalida = \n", ErrorSalidaNew)
salida0 =
 [[0.89080126]
 [0.40850633]
 [0.16423515]]
ErrorSalida =
 [[ 0.10919874]
 [-0.40850633]
 [-0.16423515]]
print("Error inicial = ", np.sum(ErrorSalida**2))
print("Error luego de la correccion = ", np.sum(ErrorSalidaNew**2))
Error inicial = 0.25973850457967945
Error luego de la correccion = 0.2057749693024508
```

Antes de modificar los pesos de la red

```
salida0 =
  [[0.81152876]
  [0.42395219]
  [0.2109067 ]]

ErrorSalida =
  [[ 0.18847124]
  [-0.42395219]
  [-0.2109067 ]]
```

Ver MLP_IRIS_algBPN.ipynb

X

[[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [0,1,0], [1.11,-0.05, 0.93, 1.54], [0,0,1], [-0.99, 0.39,-1.44,-1.31], [1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]


```
T

[[-1.73,-0.05,-1.38,-1.31],  [[1,0,0],
[-0.37,-1.62, 0.22, 0.18],
[1.11,-0.05, 0.93, 1.54],
[-0.99, 0.39,-1.44,-1.31],
[1.73, 1.29, 1.46, 1.81]]

[0,0,1],
[0,0,1]]
```

FunH='tanh' ; FunO='softmax'

Ingresar el primer ejemplo a la red y calcular su salida

CALCULANDO LA SALIDA DE LA CAPA OCULTA

$$\begin{bmatrix} [-1.73, -0.05, -1.38, -1.31], & & [[1,0,0], \\ [-0.37, -1.62, 0.22, 0.18], & [0,1,0], \\ [1.11, -0.05, 0.93, 1.54], & [0,0,1], \\ [-0.99, 0.39, -1.44, -1.31], & [1,0,0], \\ [1.73, 1.29, 1.46, 1.81]] & [0,0,1]]$$

Salida de la capa oculta

netasH = W1 * x.T + b1

X

[[-1.73],[-0.05], [[-0.45],[-1.38], [-0.10]][-1.31]bl

 \mathbf{x}^{T}

Capa de entrada Capa de salida Capa oculta sepallength Iris-Setosa sepalwidth Iris-Versicolor petallength Iris-Virginica petalwidth

FunH='tanh' ; FunO='softmax'

[[-0.4309]

[0.199711

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

CALCULANDO LA SALIDA DE LA CAPA OCULTA

X

Salida de la capa oculta

$$netasH = W1 * x.T + b1$$

WI

 \mathbf{x}^{T}

[-0.40607318]salidasH = 2.0/(1+np.exp(-2*netasH))-1=[0.1970869911

[0.1997]]

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

CALCULANDO LA SALIDA DE LA RED (CAPA DE SALIDA)

X

Salida de red

$$netas0 = W2 * salidasH + b2$$

[[-4.79, -0.99],[0.38, 0.09], [2.40, -0.38]

W₂

salidasH

$$\begin{bmatrix} [-0.40607318] \\ [0.19708699]] \end{bmatrix} + \begin{bmatrix} [-0.29], \\ [-0.17], \\ [-0.27]] \end{bmatrix} = \begin{bmatrix} [1.4599744, \\ [-0.3065699, \\ [-1.3194686, \\ [-1.3194686, \\ [-1.3194686, \\ [-1.3194686, \\ [-1.3194686, \\ [-0.27]] \end{bmatrix}$$

b2

FunH='tanh' ; FunO='softmax'

netas0

[[1.4599744]
[-0.30656998]
$$neta_{pk}^o = \sum_{i=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$y_{pk} = f_k^o(neta_{pk}^o)$$

CALCULANDO LA SALIDA DE LA RED (CAPA DE SALIDA)

T [[-1.73,-0.05,-1.38,-1.31], [-0.37,-1.62, 0.22, 0.18], [1.11,-0.05, 0.93, 1.54], [-0.99, 0.39,-1.44,-1.31], [1.73, 1.29, 1.46, 1.81]] [[0,0,1]]

sepallength
sepalwidth
petallength
petalwidth

FunH='tanh' ; FunO='softmax'

Salida de red

$$netas0 = W2 * salidasH + b2$$

W2

salidasH

b2

Capa de entrada

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

Capa de salida

$$y_{pk} = f_k^o(neta_{pk}^o)$$

ERROR DE LA RED PARA ESTE EJEMPLO

```
T

[[-1.73,-0.05,-1.38,-1.31],
[-0.37,-1.62, 0.22, 0.18],
[1.11,-0.05, 0.93, 1.54],
[-0.99, 0.39,-1.44,-1.31],
[1.73, 1.29, 1.46, 1.81]]

[0,0,1],
[0,0,1]]
```

Valor de la función de costo para este ejemplo

```
ErrorSalida = Ti.T * (- np.log(salidasO+EPS))
```



```
FunH='tanh' ; FunO='softmax'
```

```
[[1.0] [[-0.20944672] [[ 0.20944672] [[ 0.20944672] [ 0.0] * (-1) [-1.9759911 ] = [-0. ] [ 0.0]] [-2.9888898 ]] [-0. ]
```

T [[-1.73,-0.05,-1.38,-1.31], [-0.37,-1.62, 0.22, 0.18], [1.11,-0.05, 0.93, 1.54], [-0.99, 0.39,-1.44,-1.31], [1.73, 1.29, 1.46, 1.81]] [0,0,1]

Factores para corregir W2 y b2

delta0 = (Ti.T - salidas0)

FunH='tanh' ; FunO='softmax'

$$\delta_{pk}^o = (t_{pk} - y_{pk})$$

[[-1.73, -0.05, -1.38, -1.31], [[1,0,0],[-0.37, -1.62, 0.22, 0.18], [0,1,0],[1.11,-0.05, 0.93, 1.54], [0,0,1],[-0.99, 0.39, -1.44, -1.31], [1,0,0],[1.73, 1.29, 1.46, 1.81] [0,0,1]]

Factores para corregir WI y bI

```
(1-salidasH**2)
  deltaH = deriv FunH .* (W2.T @ deltaO)
         deltaH =
         [[-0.90078858]
  deltaH =
          [-0.1734149511
```


$$\delta_{pj}^h = f_j^h!(neta_{pj}^h) \sum_k \delta_{pk}^o w_{kj}^o$$

CORRECCIÓN DE LOS PESOS

X T

[1.73, 1.29, 1.46, 1.81]] [0,0,1]]

Modificación de W2 y b2

FunH='tanh' ; FunO='softmax'

[-0.28]]

[-0.2711]

[-0.0503433 11

CORRIGIENDO DE LOS PESOS

MLP_IRIS_algBPN_softmax.ipynb

X

Modificación de W I y b I

$$W1 = W1 + alfa * deltaH @ x$$

$$W1 = \begin{bmatrix} [0.15, -0.13, 0.23, -0.45], \\ [-0.29, -0.41, -0.19, 0.37] \end{bmatrix} + alfa * \begin{bmatrix} [-0.90078858] \\ [-0.17341495] \end{bmatrix} @ [[-1.73, -0.05, -1.38, -1.31] \\ \end{bmatrix}$$

$$\mathbf{W1} = \begin{bmatrix} [0.31 & -0.13 & 0.35 & -0.33] \\ [-0.26 & -0.41 & -0.17 & 0.39]] \end{bmatrix}$$

b1 = b1 + alfa * deltaH =
$$\begin{bmatrix} [-0.45] \\ [-0.10] \end{bmatrix}$$
 + alfa * $\begin{bmatrix} [-0.90078858] \\ [-0.17341495] \end{bmatrix}$ = $\begin{bmatrix} [-0.54] \\ [-0.12] \end{bmatrix}$

SI SE INGRESA EL MISMO EJEMPLO LUEGO DE MODIFICAR LOS PESOS DE LA RED ...

```
netasH = W1 @ xi.T + b1
salidasH = 2.0/(1+np.exp(-2*netasH))-1
netasO = W2 @ salidasH + b2
salidas0 = np.exp(netas0)/(np.sum(np.exp(netas0)))
print("salida0 = \n", salidas0)
ErrorSalidaNew = Ti.T-salidasO
print("ErrorSalida = \n", ErrorSalidaNew)
salida0 =
 [[0.97937129]
 [0.01757216]
 [0.00305655]]
ErrorSalida =
 [[ 0.02062871]
 [-0.01757216]
 [-0.00305655]]
print("Error inicial = ", np.sum(ErrorSalida**2))
print("Error luego de la correccion = ", np.sum(ErrorSalidaNew**2))
Error inicial = 0.04386792904265554
Error luego de la correccion = 0.0007436667531155563
```

Antes de modificar los pesos de la red

```
salidaO =
  [[0.81103285]
  [0.13862385]
  [0.0503433 ]]
  ErrorSalida =
  [[ 0.18896715]
  [-0.13862385]
  [-0.0503433 ]]
```

Ver MLP_IRIS.ipynb

SKLEARN - MLPCLASSIFIER

```
from sklearn.neural network import MLPClassifier
clf = MLPClassifier( solver='sqd',
                     learning rate init=0.15,
                     hidden layer sizes=(5),
                     max iter=700, verbose=False,
                     tol=1.0e-09, activation = 'tanh')
clf.fit(X train,T train)
y pred= clf.predict(X train)
Y prob = clf.predict proba(X_train)
```

MLPClassifier.html

SKLEARN - MLPCLASSIFIER

```
clf.fit(X_train,T_train)
y_pred= clf.predict(X_train)
```

Ver MLP_IRIS_RN.ipynb

DESCENSO DE GRADIENTE CON MINI-LOTE

- En lugar de ingresar los ejemplos de a uno, ingresamos N a la red y buscamos minimizar el error cuadrático promedio del lote.
- La función de costo será

$$C = \frac{1}{N} \sum_{i=1}^{N} (t_i - f(neta_i))^2$$

N es la cantidad de ejemplos que conforman el lote.

DESCENSO DE GRADIENTE

Batch	Mini-batch	Stochastic
Ingresa TODOS los ejemplos y luego actualiza los pesos.	Ingresa un LOTE de N ejemplos y luego actualiza los pesos	Ingresa UN ejemplo y luego actualiza los pesos
$C = \frac{1}{M} \sum_{i=1}^{M} (t_i - f(neta_i))^2$	$C = \frac{1}{N} \sum_{i=1}^{N} (t_i - f(neta_i))^2 N \ll M$	$C = (t - f(neta))^2$
0.24 -	0.24 -	0.30 -

RECONOCEDOR DE DÍGITOS ESCRITOS A MANO

 Se desea entrenar un multiperceptrón para reconocer dígitos escritos a mano. Para ello se dispone de los mapas de bits correspondientes a 3823 dígitos escritos a mano por 30 personas diferentes en el archivo

"optdigits_train.csv".

 El desempeño de la red será probado con los dígitos del archivo "optdigits_test.csv" escritos por otras 13 personas.

"OPTDIGITS_TRAIN.CSV" Y "OPTDIGITS_TEST.CSV"

□ Cada dígito está representado por una matriz numérica de 8x8

"OPTDIGITS_TRAIN.CSV" Y "OPTDIGITS_TEST.CSV"

□ Cada dígito está representado por una matriz numérica de 8x8

RN PARA RECONOCER DÍGITOS MANUSCRITOS

```
In [90]: print("ite = %d %% aciertos X_train : %.3f" % (ite,
metrics.accuracy_score(Y_train,Y_pred)))
ite = 200 % aciertos X train : 0.982
In [91]: MM = metrics.confusion_matrix(Y_train,Y_pred)
   ...: print("Matriz de confusión TRAIN:\n%s" % MM)
Matriz de confusión TRAIN:
[[375
                                    0
   7 382
                                    0]
              0 0 0 0 0 0 0]
       0 378
          0 380
                                    0]
              0 383 0 1 0 0 0]
                                    0]
                  0 369
       2 0 0 0 0 373 0 0
                                    0
                         0 386
                                    0]
                         0 0 361
                                    0]
                         0
                                0 366]]
```

El tiempo de entrenamiento es menor si se usa mini-lote

MLP_MNIST_8x8.ipynb MLP_MNIST_8x8_miniLote.ipynb

SKLEARN - MLPCLASSIFIER

clf.fit(X_train,T_train)
y_pred= clf.predict(X_train)

MLPClassifier.html

SOBREAJUSTE

SKLEARN - MLPCLASSIFIER

clf.fit(X train,T train)

y pred= clf.predict(X train)

Ver

MLP_MNIST_RN.ipynb

SKLEARN - MLPREGRESSOR

y pred= clf.predict(X train)

```
from sklearn.neural network import MLPRegressor
clf = MLPRegressor( solver='sgd',
                    learning rate init=0.15,
                    hidden layer sizes=(50),
                    max iter=700, verbose=False,
                    tol=1.0e-09, activation = 'relu')
clf.fit(X train, T train)
```

MLPRegressor.html

MLPRegressor_hiperparam.ipynb

MLPREGRESSOR – ARQUITECTURAS CONTAMAÑO DIFERENTE

MLPRegressor_hiperparam.ipynb

MLPREGRESSOR – DISTINTAS FUNCIONES DE ACTIVACIÓN

