

Quality Aware Generative Adversarial Networks

NeurIPS 2019

Parimala Kancharla, Sumohana S. Channappayya

Department of Electrical Engineering, IIT Hyderabad

Outline

- Background
 - Generative Adversarial Network
 - Wasserstein Generative Adversarial Network (WGAN).
 - WGAN-GP
 - Banach WGAN
- Image Quality Assessment
 - Structural Similarity Index (SSIM).
 - Natural Image Quality Evaluator (NIQE)
- Proposed QAGANs
 - QAGAN based on SSIM
 - QAGAN based on NIQE
- References

Generative Adversarial Network ¹

- Suppose the data points (x) are coming from some distribution $p_{data}(x)$ and z is the random noise vector drawn from standard Normal distribution $p_z(z)$.
- $G(z; \theta_g)$: Generator with parameters θ_g .
- $D(x; \theta_d)$: Discriminator with parameters θ_d .

¹I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

[&]quot;Generative adversarial nets ", NIPS-2014

Generative Adversarial Network ¹

- Suppose the data points (x) are coming from some distribution $p_{data}(x)$ and z is the random noise vector drawn from standard Normal distribution $p_z(z)$.
- $G(z; \theta_g)$: Generator with parameters θ_g .
- $D(x; \theta_d)$: Discriminator with parameters θ_d .

Objective function

• D and G play the following two player min-max game with value function V(G; D):

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[log(D(x))] + E_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

¹I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

[&]quot;Generative adversarial nets ", NIPS-2014

Wasserstein Generative Adversarial Networks [Arjovsky et al., 2017]

The primal form:
$$W(p_r, p_\theta) = \inf_{\gamma \in \Gamma(p_r, p_\theta)} E_{(x,y) \sim \gamma}[||x - y||_2]$$

$$W(p_r, p_\theta) = \max_{w \in W} E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))], \ w \in [-c, c].$$

Wasserstein Generative Adversarial Networks [Arjovsky et al., 2017]

The primal form:
$$W(p_r, p_\theta) = \inf_{\gamma \in \Gamma(p_r, p_\theta)} E_{(x, y) \sim \gamma}[||x - y||_2]$$

$$W(p_r, p_\theta) = \max_{w \in W} E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))], \ w \in [-c, c].$$

WGAN-GP [Gulrajani et al., 2017]

$$|D_w(x) - D_w(y)| \le ||x - y||_2 \implies ||\nabla D_w(x)||_2 \le 1 \quad \forall x \in R^n.$$

$$L = E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))] + \lambda E_{\hat{x}}(||\nabla D_w(\hat{x})||_2 - 1)^2$$

Wasserstein Generative Adversarial Networks [Arjovsky et al., 2017]

The primal form:
$$W(p_r, p_\theta) = \inf_{\gamma \in \Gamma(p_r, p_\theta)} E_{(x,y) \sim \gamma}[||x - y||_2]$$

$$W(p_r, p_\theta) = \max_{w \in W} E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))], \ w \in [-c, c].$$

WGAN-GP [Gulrajani et al., 2017]

$$|D_w(x) - D_w(y)| \le ||x - y||_2 \implies ||\nabla D_w(x)||_2 \le 1 \quad \forall x \in \mathbb{R}^n.$$

$$L = E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))] + \lambda E_{\hat{x}}(||\nabla D_w(\hat{x})||_2 - 1)^2$$

Banach WGAN [Adler and Lunz, 2018]

Generalized the theory of WGAN-GP to Banach spaces.

$$L = \lambda E_{x \sim p_r}[D_w(x)] - E_{z \sim p_z}[D_w(g_\theta(z))] + \lambda E_{\hat{x}}\left(\frac{1}{\gamma}||\nabla D_w(\hat{x})||_{B^*} - 1\right)^2$$

3

Challenges

Challenges in Generative Adversarial Networks:

- Low visual quality.
- Mode collapse.
- Generalization.
- Disentanglement.
- Stability in training.

Major contributions

- We make explicit use of objective image quality assessment (IQA)
 metrics and their variants for regularizing WGAN with gradient
 penalty (WGAN-GP), and propose Quality Aware GANs (QAGANs).
- Specifically we have used a full reference image quality assessment algorithm (SSIM) and natural image quality evaluator (NIQE).

$$(WGAN - GP) + {SSIM' \choose NIQE} \Longrightarrow {QAGAN - SSIM \choose QAGAN - NIQE}$$

 We demonstrated state-of-the-art performance on CIFAR-10, STL10 and CelebA datasets for non-progressive GANs.

What is Quality Assessment?

Why Quality Assessment?

All distorted images have same mean squared error (MSE)! L^p norms fail! ²

²Z. Wang, and A. C. Bovik. "Mean squared error: love it or leave it? A new look at signal fidelity measures." IEEE Signal Processing Magazine 26.1 (2009): 98-117.

The Structural Similarity Index (SSIM) ³

$$SSIM(P_{(i,j)}, T_{(i,j)}) = L(P_{(i,j)}, T_{(i,j)}).C(P_{(i,j)}, T_{(i,j)}).S(P_{(i,j)}, T_{(i,j)}),$$

where P, T refer to the pristine and test image respectively. $L(P_{(i,j)}, T_{(i,j)})$, $C(P_{(i,j)}, T_{(i,j)})$, $S(P_{(i,j)}, T_{(i,j)})$ are the local luminance, contrast and structure scores at pixel (i,j) respectively. Further,

$$L(P_{(i,j)}, T_{(i,j)}) = \frac{2\mu_P(i,j)\mu_T(i,j) + C_1}{\mu_P^2(i,j) + \mu_T^2(j) + C_1}$$

$$C(P_{(i,j)}, T_{(i,j)}) = \frac{2\sigma_P(i,j)\sigma_T(i,j) + C_2}{\sigma_P^2(i,j) + \sigma_T^2(i,j) + C_2}$$

$$S(P_{(i,j)}, T_{(i,j)}) = \frac{\sigma_{PT}(i,j) + C_3}{\sigma_P(i,j)\sigma_T(i,j) + C_3}$$

³ Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing , 13(4):600âĂ\$612

Metric form of SSIM 4

The constants C_1 , C_2 , C_3 are used to avoid division-by-zero issues. For simplicity, $C_3 = C_2/2$ in the standard implementation which leads to

$$SSIM(P_{(i,j)}, T_{(i,j)}) = L(P_{(i,j)}, T_{(i,j)}).CS(P_{(i,j)}, T_{(i,j)}),$$

where

$$CS(P_{(i,j)}, T_{(i,j)}) = \frac{2\sigma_{PT}(i,j) + C_2}{\sigma_{P}^2(i,j) + \sigma_{T}^2(i,j) + C_2}.$$

The valid distance metric can be derived from the components of the SSIM index.

$$d^{Q}(P_{(i,j)}, T_{(i,j)}) = \sqrt{2 - L(P_{(i,j)}, T_{(i,j)}) - CS(P_{(i,j)}, T_{(i,j)})}$$

⁴ Brunet, Dominique, Edward R. Vrscay, and Zhou Wang. "On the mathematical properties of the structural similarity index."IEEE Transactions on Image Processing 21.4 (2011): 1488-1499

The statistics of natural images ⁵

 Natural images are distinctive because they contain unique statistical signature.

Mean subtracted contrast normalization coefficients (MSCN)

$$\hat{I}(i,j) = \frac{I(i,j) - \mu(i,j)}{\sigma(i,j)}$$

Natural Image Quality Evaluator (NIQE) ⁶

 NIQE builds a statistical model for MSCN coefficients of the class of pristine natural scenes and uses the model's parameters for quality estimation.

⁶Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. âĂIJMaking a âĂIJcompletely blindâĂİ image quality analyzerâĂİ. In: IEEE Signal Processing Letters 20.3 (2013), pp. 209âĂŞ212

Natural Image Quality Evaluator (NIQE) ⁶

 NIQE builds a statistical model for MSCN coefficients of the class of pristine natural scenes and uses the model's parameters for quality estimation.

⁶Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. âĂIJMaking a âĂIJcompletely blindâĂİ image quality analyzerâĂİ. In: IEEE Signal Processing Letters 20.3 (2013), pp. 209âĂŞ212

Natural Image Quality Evaluator (NIQE) ⁶

 NIQE builds a statistical model for MSCN coefficients of the class of pristine natural scenes and uses the model's parameters for quality estimation.

Natural Image Quality Evaluator (NIQE)

$$D(\mu_P, \mu_T, \Sigma_P, \Sigma_T) = \sqrt{(\mu_P - \mu_T)^T \left(\frac{\Sigma_P + \Sigma_T}{2}\right)^{-1} (\mu_P - \mu_T)}.$$

⁶ Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. âĂIJMaking a âĂIJcompletely blindâĂi image quality analyzerâĂi. In: IEEE Signal Processing Letters 20.3 (2013), pp. 209âĂŞ212

QAGAN-SSIM

- We propose to use the perceptually correlated SSIM derived metric as the underlying image metric in the wasserstein distance.
- This implies that the discriminator should be lipschitz with respect to SSIM metric $(d^Q(x, y))$.
- As this is a bounded metric between $0 \le d^Q(x, y) \le \sqrt{2}$.

$$|D(X) - D(Y)| \le d^{Q}(X, Y)$$

SSIM gradient penalty term makes the discriminator quality aware.

QAGAN-SSIM

$$\begin{aligned} \text{SSIM GP} &= E_{X \sim P_r, Y \sim P_G} \left[\left(\frac{|D(X) - D(Y)|}{d^Q(X, Y)} \right) - 1 \right]^2. \\ L_d &= \min_{D \in \mathcal{D}} \left(E_{z \sim P_z} D(G(z)) - E_{X \sim P_r} D(X) \right) + \lambda_1 E_{\hat{x} \sim P_{\hat{x}}} (||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2 + \\ \lambda_2 E_{X \sim P_r, G(z) \sim P_G} \left[\left(\frac{|D(X) - D(G(z))|}{d^Q(X, G(z))} \right) - 1 \right]^2, \end{aligned}$$

where λ_1 and λ_2 are empirically chosen. where $d^Q(x,y)$ is the metric SSIM, that is

$$d^{Q}(X,Y) = \sqrt{2 - L(X,Y) - CS(X,Y)}$$

Motivation to impose Quality aware gradient penalty

Figure: Real images and their corresponding discriminator gradient maps

Motivation to impose Quality aware gradient penalty

MSCN coefficients of the discriminator gradient maps.

Estimating the pristine model:

- The core idea of enforcing statistical signature onto the discriminator gradient map remains the same as the gradient maps are computed from the smooth function.
- The reference model parameters μ_P, Σ_P are estimated from the real discriminator gradient maps.

Quality aware gradient penalty

The naturalness of a test discriminator gradient map (T)

$$||(T|\mu_P,\Sigma_P)||_{\mathsf{NIQE}} := \sqrt{(\mu_P - \mu_T)^T \bigg(rac{\Sigma_P + \Sigma_T}{2}\bigg)^{-1} (\mu_P - \mu_T)},$$

where μ_T, Σ_T are the model parameters of the test image's multivariate gaussian model.

Discriminator Loss Function

$$L_d = \min_{D \in \mathcal{D}} \left(E_{z \sim P_z} D(G(z)) - E_{X \sim P_r} D(X) \right) + \lambda_1 E_{\hat{x} \sim P_{\hat{x}}} (||\nabla_{\hat{x}} D(\hat{x})||_2 - 1)^2 +$$
$$\lambda_2 E_{\hat{x} \sim P_{\hat{x}}} (||(\nabla_{\hat{x}} D(\hat{x})|\mu_P, \Sigma_P)||_{\mathsf{NIQE}}),$$

where λ_1 and λ_2 are hyper parameters chosen empirically. As before, \hat{x} is sampled from a line joining the real and fake image distributions.

Results - CelebA dataset

Table1: FID scores on the **CelebA** dataset (64×64) .

Model	FID
Real Faces (CelebA)	1.09
WGAN-GP	12.89
Banach WGAN	10.5
MMD GAN-rep-b	6.79
QAGAN (SSIM)	6.421
QAGAN (NIQE)	6.504

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(SSIM) for CelebA dataset (64 \times 64).

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(NIQE) for CelebA dataset (64 \times 64).

Results - STL10 dataset

Table2: IS and FID on the **STL-10** dataset (48×48).

Model	IS	FID
Real Data (48 × 48)	26.08 ± 0.26	7.9
WGAN-GP	$9.05 \pm\ 0.12$	55.1 ± 0.0
SNGAN	9.10 ± 0.04	40.10 ± 0.50
MMD GAN-rep	9.36 ± 0.0	36.67 ± 0.0
QAGAN (SSIM)	$\textbf{9.29}\pm\textbf{0.05}$	19.77 ± 0.0091
QAGAN (NIQE)	$\textbf{9.1720} \pm \textbf{0.08}$	19.45 ± 0.0013

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(SSIM) for STL10 dataset (64 \times 64).

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(NIQE) for STL10 dataset (64 \times 64).

Results - CIFAR-10 dataset

Table1: Inception Score (IS) and Fréchet Inception Distance (FID) computed from 50,000 samples of the **CIFAR-10** dataset (32×32). Scores that are unavailable are marked with a '-'.

Model	IS	FID
Real data	11.24 ± 0.12	7.80
DCGAN	6.16 ± 0.07	-
WGAN-GP	7.86 ± 0.10	40.2 ± 0.0
CTGAN	8.12 ± 0.12	-
SNGAN	8.12 ± 0.12	21.5 ± 0.21
$W^{-\frac{3}{2},2}$ - Banach WGAN	8.26 ± 0.07	-
L ¹⁰ - Banach WGAN	8.31 ± 0.07	-
MMD GAN-rep-b	8.29 ± 0.0	16.21 ± 0.0
QAGAN (SSIM)	$\textbf{8.37}\pm\textbf{0.04}$	$\textbf{13.91} \pm \textbf{0.105}$
QAGAN (NIQE)	$\textbf{7.87} \pm \textbf{0.027}$	12.4697± 0.068

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(SSIM) for CIFAR10 dataset (32 \times 32).

Qualitative Results

Figure: Randomly sampled images generated using QAGAN(NIQE) for CIFAR10 dataset (32 \times 32).

Conclusions

- Based on insights from both FR and NR IQA metrics, we have proposed two novel regularization approaches for the WGAN-GP framework.
- The key takeaway from our work is that the unique local structural and statistical signature of pristine natural images must be preserved in the generated images.
- We believe that this work opens up new and exciting directions in image and video generative modeling, given the plethora of excellent QA metrics.

References

- code : https://www.iith.ac.in/ lfovia/downloads.html
- P. Kancharla, S. S. Channappayya, Quality Aware Generative Adversarial Networks, accepted to the Thirty-third Conference on Neural Information Processing Systems (NeurIPS) 2019, Vancouver, Canada.

References I

Adler, J. and Lunz, S. (2018).

Banach wasserstein gan.

In Advances in Neural Information Processing Systems, pages 6754–6763.

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein generative adversarial networks.

In International Conference on Machine Learning, pages 214–223.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved training of wasserstein gans.

In Advances in Neural Information Processing Systems, pages 5767–5777.