Human Computer Interaction

Internet-of-Things (IoT)

COCOS20

Smart Objects

Objects that are able to sense the environment, interpret the environment, self-configure, interact with other objects and exchange information with people

Traditional Computing System: HCI

"Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them." -- Association for Computing Machinery.

(Bad) Examples of User Interfaces

(Bad) Examples of User Interfaces

File : C:\TMP\V10L17.FIF Not Exists

File Object : V10L17.FIF Removed From Library

(Bad) Examples of User Interfaces

(Bad) Examples of User Interfaces

Why is HCI Important?

- It can affect
 - Effectiveness
 - Productivity
 - Morale
 - Safety
- Bad interfaces:
 - Confusing
 - Cumbersome
 - Time-consuming
 - Uninformative
 - Lead to errors
 - ...

Interfaces

- Keyboard/mouse/screen/speakers
- Pen input
- Touch
- Speech/audio/sound
- Gesture, eye movement
- Tangible interfaces
- Virtual/augmented reality (VR, AR)
- Wearable computing
- Multi-modal interactive interfaces: more than just one input/output channel

Interface Discussion

- Ease-of-Use?
- Flexibility?
- Accuracy?
- Safety?
- Privacy?

Touch as Input

Gesture/Motion as Input

Eye Movement as Input

Haptic Interfaces

Augmented Reality

Wearable Computing

Computation devices accompany you, rather than you seeking them out

"Hey Siri, what's the best sushi place in town?"

Speech Input

- Human beings have a great and natural mastery of speech
 - makes it difficult to appreciate the complexities
 - but it's an easy medium for communication

Windows Speech Recognition

- Supplied with every Windows machine
 - From '98 on
 - Almost no one used it
- What was the problem?
 - Need to "train" users to use early virtual assistants (VAs)
 - Microphone expense determines quality
 - No app buy-in.

And Then There Was Siri

A Technical Success

- Consistent microphone gives predictable quality
- Inclusion on every iPhone made it mainstream

And Then There Was Siri

- Misunderstandings
- Limited skills
- What Apple wants isn't always what users want
- No 3rd parties; limited innovation and evolution

Current Incarnations

What these look like now

- Specialized hardware
- Domestic setting
- Initially aimed at home automation
- Mostly used for home entertainment
- •All open to 3rd parties

Voice "Explodes" into Mainstream

Seven Design Principles

1. Equitable use

• same means for all users, do not segregate/stigmatize users, make design appealing

2. Flexibility in use

provide choice of methods & adapt to user's pace

3. Simplicity and intuitiveness of use

- support user's expectations
- accommodate different languages and literacy skills
- provide prompting and feedback

Seven Design Principles

4. Perceptible information

- redundancy of information: use different forms/modes
- emphasize essential information

5. Tolerance for error

- minimize impact caused by mistakes
- remove potentially dangerous situations
- hazards should be shielded by warnings

Seven Design Principles

6. Low physical effort

- comfort; minimize fatigue and effort
- repetitive or sustained actions should be avoided

7. Size and space for approach and use

- placement of system should be reachable by all users
- consider line of sight for standing and sitting user
- allow for variation in hand size
- provide room for assistive devices

Disabilities

- Federal law to ensure access to IT, including computers and web sites.
 - Vision (low vision, blind, color blind)
 - Hearing (deaf, limited hearing)
 - Mobility
 - Learning (dyslexia, attention deficit)

Disabilities

- Keyboard and mouse alternatives
- Color coding
- Font size
- Contrast
- Text descriptors for web images
- Magnification
- Text-to-speech; speech recognition
- Head-mounted optical mice
- Eye gaze control

System Structure

Context as Implicit Input

What is Context?

Examples of Context

- Identity (user, others, objects)
- Location
- Date/Time
- Environment
- Emotional state
- Focus of attention
- Orientation
- User preferences
- Calendar (events)
- Browsing history
- Behavioral patterns
- Relationships (phonebook, call history)
- ... the elements of the user's environment that the computer knows about...

Relevance of Context Information

- Trying to arrange lunch meeting
- Going to a job interview
- Going home after work and making evening plans
- Shopping
- Tourist
- ...

Definitions of Context

 "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves" [Dey et al. 2001]

Classification

External (physical)

- Context that can be measured by hardware sensors
- Examples: location, light, sound, movement, touch, temperature, air pressure, etc.

Internal (logical)

- Mostly specified by the user or captured monitoring the user's interaction
- Examples: the user's goal, tasks, work context, business processes, the user's emotional state, etc.

Context?

Context?

- Smartphone adjusts the screen to the orientation of the device
- Apple Watch turns on display if arm lifted/rotated
- Orientation is determined by using both a gyroscope and an accelerometer

- Phone display adjusts the brightness of the display based on the surrounding area
- Uses a light sensor

- Device displays user's location, shows route to a desired destination, find nearby stores, geotag images on social media, etc.
- Uses location sensor

- The time is displayed on the phone
 - Time zone change
 - Daylight savings time

- Device disables touch screen when the user speaks on the phone
- Uses a proximity sensor (infrared signal travel time)

Challenges

- Lack of self-awareness
 - Knowing when to do or not to do something is hard
- Complexity
 - More rules do not necessarily yield more intelligence
 - But will become harder to maintain and understand
- Human-in-the-loop vs. automation
 - Loss of control vs. risk of human error
- Development
 - Sensing, aggregation, rules, etc., are complex issues
- Privacy
- User preferences
- Information overload

Contact me:

gauravsingal789@gmail.com

Gaurav.singal@nsut.ac.in

www.gauravsingal.in

LinkedIn:

https://www.linkedin.com/in/gauravsingal789/

Twitter: https://twitter.com/gaurav_singal