Aufgabe 1 (Herbst 1984). Man zeige, dass keine Gruppe der Ordnung 200 einfach ist. (2 Punkte)

Lösung. Sei G eine Gruppe der Ordnung $200 = 2^3 5^2$. Sei s_5 die Anzahl der 5-Sylow-Untergruppen von G. Dann ist $s_5 \equiv 1 \mod 5$ und $s_5 \mid 2^3 = 8$. Also ist $s_5 = 1$ und G hat genau eine 5-Sylowuntergruppe. Insbesondere ist sie normal und G ist nicht einfach.

Aufgabe 2 (Frühjahr 2014). Sei $r \in \mathbb{Z}$ Summe zweier Quadrate. Dann ist auch $2r \in 2\mathbb{Z}$ Summe zweier Quadrate. (2 Punkte)

Lösung. Sei $r = a^2 + b^2$. Dann ist

$$2r = 2a^{2} + 2b^{2}$$

$$= 2a^{2} + 2b^{2} + (2ab - 2ab)$$

$$= (a^{2} + 2ab + b^{2}) + (a^{2} - 2ab + b^{2}) = (a + b)^{2} + (a - b)^{2}$$

Aufgabe 3 (Herbst 2016). Sei N ein auflösbarer Normalteiler einer endlichen Gruppe G und H eine weitere auflösbare Untergruppe von G. Zeigen Sie, dass

$$NH = \{ nh \mid n \in N, h \in H \}$$

eine weitere auflösbare Untergruppe von G ist.

(3 Punkte)

 $L\ddot{o}sung$. Nach Definition ist NH eine Untergruppe von G. Wir müssen noch zeigen, dass sie auflösbar ist. Wir werden folgendes verwenden:

(*) Eine Gruppe G_1 mit einem Normalteiler N_1 ist genau dann auflösbar, wenn sowohl die Faktorgruppe G_1/N_1 als auch der Normalteiler N_1 auflösbar sind.

Nach dem Isomorphiesatz für Gruppen ist $N \cap H$ ein Normalteiler von H, und es gibt einen Isomorphismus

$$H/(N \cap H) \cong NH/N$$
.

Da H auflösbar ist, ist also nach obiger Aussage (*) auch $H/(N\cap H)$ auflösbar. Wegen des Isomorphismus ist dann auch NH/N auflösbar.

Aus der Auflösbarkeit von N und NH/N folgt die Auflösbarkeit von NH.

Aufgabe 4 (Frühjahr 2000). Zeigen Sie, dass eine endliche Gruppe mit einem Normalteiler, dessen Ordnung gleich dem kleinsten Primteiler der Gruppenordnung ist, ein nichttriviales Zentrum hat. HINWEIS: Man betrachte die Operation der Gruppe auf dem Normalteiler durch Konjugation. (3

Hinweis: Man betrachte die Operation der Gruppe auf dem Normalteiler durch Konjugation. (3 Punkte)

Lösung. Sei $N \triangleleft G$ Normalteiler einer endlichen Gruppe, |G| = m und |N| = p | m der kleinste Primteiler. Betrachte die Konjugation

$$\kappa: G \times N \to N, (q, n) \mapsto qnq^{-1}.$$

Dies ist wohldefiniert, da für $n \in N$ und $g \in G$ das Element gng^{-1} wieder in N ist, da N Normalteiler ist. Weiterhin gilt für das neutrale Element $e \in G$ und für alle $g, h \in G$ und $n \in N$, dass

$$\kappa(e, n) = ene^{-1} = n$$

$$\kappa(h, \kappa(q, n)) = h(qnq^{-1})h^{-1} = (hq)n(hq)^{-1} = \kappa(hq, n).$$

Also definiert die Konjugation eine Operation auf N. Insbesondere definiert κ einen Homomorphismus $\varphi: G \to \operatorname{Aut}(N), g \mapsto \kappa(g)$ von G in die Automorphismengruppe des Normalteilers N.

Da N zyklisch von der Ordung p ist, ist $\operatorname{Aut}(N)$ zyklisch von der Ordnung p-1. Weiterhin ist $\varphi(G)$ eine Untergruppe von $\operatorname{Aut}(N)$. Es gilt aber

$$(|G|, p-1) = 1$$

dh. die Ordnung von G und p-1 sind Teilerfremd, da p der kleinste Primteiler von |G| ist. Damit ist die Abbildung φ trivial, sendet also alle Elemente von G auf die Identitätsabbidung. Es folgt, daß $G = \ker(\varphi)$. In anderen Worten $N \subset Z(G)$

Zusatzaufgabe (Frühjahr 2012). Geben Sie für Ihre Antwort auf die folgenden Fragen jeweils eine kurze Begründung an.

- (a) Sind die Gruppen $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ und $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$ isomorph?
- (b) Ist die alternierende Gruppe A_4 einfach?
- (c) Sind sämtliche Elemente der Ordnung 2 in S_5 zueinander konjugiert?

(3 Punkte)

Lösung. Zu (a): Ja. Nach dem Chinesischen Restsatz (oder dem Hauptsatz für endliche abelsche Gruppen) sind $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ und $\mathbb{Z}/ab\mathbb{Z}$ mit $a,b \in \mathbb{N}$ isomorph falls a,b teilerfremd sind. Also

$$\mathbb{Z} \, / 6 \, \mathbb{Z} \times \mathbb{Z} \, / 10 \, \mathbb{Z} \cong \mathbb{Z} \, / 2 \, \mathbb{Z} \times \mathbb{Z} \, / 3 \, \mathbb{Z} \times \mathbb{Z} \, / 10 \, \mathbb{Z} \cong \mathbb{Z} \, / 2 \, \mathbb{Z} \times \mathbb{Z} \, / 30 \, \mathbb{Z}$$

Zu (b): Nein. Die Klein'sche Vierergruppe $V = \{id, (12)(34), (13)(24), (14)(23)\}$ ist ein Normalteiler von A_4 .

Zu (c): Nein. Zwei Elemente σ, τ in der symmetrischen Gruppe S_n sind genau dann konjugiert (dh. es gibt $\rho \in S_n$ mit $\rho \sigma \rho^{-1}$), wenn sie denselben Typ haben, das heißt, wenn in der disjunkten Zykelzerlegung alle Zykellängen gleichoft vorkommen. Damit sind zum Beispiel die Elemente (12) und (12)(34), die beide Länge 2 haben, nicht zueinander konjugiert.