51 单片机特殊功能寄存器与串行通讯

一、IE(中断允许控制寄存器)

IE(字节地址 A8H)寄存器格式:

		D7	D6	D5	D4	D3	D2	D1	D0
II		EA	X	ET2	ES	ET1	EX1	ET0	EX0
仓	立地址	AFH		ADH	ACH	ABH	AAH	А9Н	A8H

IE 各位功能说明

EA	(IE.7)	中断允许总控制位
X	(IE.6)	保留位
ET2	(IE.5)	定时器/计数器 T2 中断响应控制位
ES	(IE.4)	串口中断响应控制位
ET1	(IE.3)	定时器/计数器 T1 中断响应控制位
EX1	(IE.2)	外部中断 INT1 中断响应控制位
ET0	(IE.1)	定时器/计数器 T0 中断响应控制位
EX0	(IE.0)	外部中断 INTO 中断响应控制位

中断优先级控制(1为高级;0位低级)

默认顺序:

INTO TO INT1 T1 Ri Ti

中断号n	中断源	中断向量 8n+3
0	外部中断 0 (INT0)	0003H
1	定时器 0 (T0)	000BH
2	外部中断 1(INT1)	0013H
3	定时器 1(T1)	001BH
4	串行口(Ri,Ti)	0023Н

二、TMOD(定时器方式控制寄存器)

TMOD (字节地址: 89H, 不可位寻址)寄存器格式:

	定时器、	计数器 1			定时器、计数器 0			
	D7	D6	D5	D4	D3	D2	D1	D0
TMOD	GATE	C/T	M1	M0	GATE	C/T	M1	M0

1、GATE---门控制

GATE=1,由外部中断引脚 INT1、INT0 和控制寄存器的 TR0,TR1 来启动定时器

当 INT0 引脚为高电平时 TR0 置位, 启动定时器 T0

当 INT1 引脚为高电平时 TR1 置位,启动定时器 T1

2、C/T---功能选择位

为 0: 作为定时器

为1:作为计数器

3、M0、M1---方式选择功能 4 种工作方式

M1	M0	工作方式	计数器模式	TMOD(设置定时器 0 模式)
0	0	方式 0	13 位计数器	TMOD=0x00
0	1	方式 1	16 位计数器	TMOD=0x01
1	0	方式 2	自动重装8位计数器	TMOD=0x02

1	1	方式 3	T0分为2个8位计数器T1	TMOD=0x03
			为波特率发生器	

三、TCON(定时, 计数器控制寄存器)

TCON (字节地址: 88H) 寄存器格式

	D7	D6	D5	D4	D3	D2	D1	D0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
位地址	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H

TCON 各位功能说明

TF1,TF0	定时器、计数器1(0)回0一出中断请求标志位				
TR1,TR0	定时器、计数器1(0)启动、停止控制位				
IE1,IE0	外部中断 INT0、INT1 中断请求标志位				
IT1,IT0	外部中断模式选择位(0:低电平。1:下降沿)				

四、SCON(串口控制寄存器)

SCON (字节地址: 98H) 寄存器格式

	D7	D6	D5	D4	D3	D2	D1	D0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H

SCON 各位功能说明

SM0,SM1 确定串行通讯工作方式

SM0	SM1	工作方式	功能说明	波特率
0	0	方式 0	移位寄存器方式	Fosc/12
0	1	方式1	8位 UART 方式	可变
1	0	方式 2	9位 UART 方式	Fosc/64 或 Fosc/32
1	1	方式3	9位 UART 方式	可变

SM2	方式 0 时,应置 0; 方式 1 时,如 SM2=0,表明 RB8 是接收到的停止位;如
	SM2=1,表明只有接收到有效停止位才能激活 RI,将 RI 置 1; 方式 2,3 时如
	SM2=1,则接收到的第9位数据 RB8 必须是 1,接收中断才有效
REN	串行接受允许位.0 为进制。1 接收
TB8	方式 2、3 中发送端发送的第9位数据,可用指令置0或者1
RB8	方式 2、3 时,是接收到的第 9 位数据;方式 1 时,若 SM2=0,则 RB8 是接收到
	的停止位;方式 0 不用 RB8
TI	发送中断请求标志,串口每发送完一帧串行数据后,硬件自动置1;必须在中断
	服务程序中用软件对 TI 标志清 0
RI	接收中断请求标志,串口接受完一个数据帧,硬件自动置1;必须在中断服务程
	序中用软件对 RI 清 0

五、PCON(电源控制器及波特率选择寄存器)

字节地址 87H 不可位寻址

SMOD	POF GF	1 ((P () P()	IDL
------	--------	---------------------------------	-----

SMOD: 波特率倍增位

GF1、GF0: 用户通用标记

PD: 掉电方式控制位 =1 为掉电模式 IDL: 空闲方式控制位 =1 为空闲方式

在 AT89S51 中, 电源断电标记为 POF, 上电为 1

六、IP(优先级寄存器)

字节地址(B8H)格式

	D7	D6	D5	D4	D3	D2	D1	D0
IP	X	X	PT2	PS	PT1	PX1	PT0	PX0
位地址			BDH	ВСН	BBH	BAH	В9Н	B8H

中断优先级设置位,某位置1表示将该位响应中断设为高优先级中断

PT2: 定时器 2 PS: 串行通讯 PT1: 定时器 1 PX1: 外部中断 1 PT0: 定时器 0 PX0:外部中断 0

七、PSW (程序状态字寄存器)

字节地址 D0H

	D7	D6	D5	D4	D3	D2	D1	D0
PSW	CY	AC	F0	RS1	RS0	OV	X	P
位地址	D7	D6	D5	D4	D3	D2		D0

CY: 进位标记 AC: 半进位标记

F0: 用户设定标记

RS1、RS0: 4个工作寄存器区的选择位

VO: 溢出标记 P: 奇偶校验标记

串口通讯方法解析

一、工作方式0

- (1) 发送: TI=0, 启动发送, mov sbuf A,8 位数据, 由低到高从 RXD 送出, TXD 发送同步脉冲, 发送完后, TI 硬件置 1.
- (2) 接收: RI=0, REN=1, 启动接收,数据从 RXD 输入,TXD 发送同步脉冲 接收完 RI 置 1,
- (3) 应当指出:方式 0 并非是同步通信方式。它的主要用途是外接同步移位寄存器,以扩展并行 I/O 口。
- 二、工作方式1

共10位

起始位0 D0 D1 D2 D3 D4 D5 D6 D7 停止位1

1、数据发送

当 TI=0 时,执行"MOV SBUF, A"指令后开始发送,由硬件自动加入起始位和停止位,构成一帧数据,然后由 TXD 端串行输出。发送完后,TXD 输出线维持在"1"状态下,并将 SCON 中的 TI 置 1,表示一帧数据发送完毕。

2、数据接收

RI=0, REN=1 时,接收电路以波特率的 16 倍速度采样 RXD 引脚,如出现由"1"变"0"跳变,认为有数据正在发送。在接收到第 9 位数据(即停止位)时,必须同时满足以下两个条件: RI=0 和 SM2=0 或接收到的停止位为"1",才把接收到的数据存入 SBUF 中,停止位送 RB8,同时置位 RI。若上述条件不满足,接收到的数据不装入 SBUF 被舍弃。在方式 1下,SM2 应设定为 0。

波特率的计算

波特率=
$$\frac{2^{SMOD} \cdot fosc}{32 \cdot 12 \cdot (M-T_{in})}$$

三、工作方式2和方式3

方式 2: 波特率=2SMOD • fosc/64(SMOD=0 或 1)

方式3: 波特率=
$$\frac{2^{SMOD} \cdot fosc}{32 \cdot 12 \cdot (M-T_{in})}$$

(1) 数据发送

TI=0, 发送数据前, 先由软件设置 TB8, 可使用如下指令完成:

SETB TB8 ; 将 TB8 位置 1 CLR TB8 ; 将 TB8 位置 0

然后再向 SBUF 写入 8 位数据,并以此来启动串行发送。一帧数据发送完毕后,CPU 自动将 TI 置 1,其过程与方式 1 相同。

- (2) 数据接收
- ①若 SM2=0,接收到的 8 位数据送 SBUF,第 9 位数据送 RB8。
- ②若 SM2=1,接收到的第9位数据为0,数据不送 SBUF;接收到的第9位数据为1,数据送 SBUF,第9位送 RB8。

TB8: 在方式 2 和方式 3 中要发送的第 9 位数据,该位由软件置位或复位,在多机通讯中,TB8 位的状态表示主机发送的是地址还是数据 1 表示地址, 0 表示数据,TB8 还可以做奇偶校验位

RB8:接收数据第9位,在方式2和3中,存放接收的第9位数据, RB8 也可作为奇偶校验位,方式1中若 SM2=0,则 RB8 是接收到的停止位。在方式0中,该位没用。 TI: 发送中断标志位, TI=1 表示已结束一帧数据发送

RI:接收中断标志位,RI=1表示一帧数据接收结束,