Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Probabilidad y Estadística

Práctica 10: Confiabilidad

Objetivos de la práctica

Objetivo general

Al finalizar la práctica, el estudiante deberá conocer los conceptos fundamentales de confiabilidad, la función de confiabilidad, la tasa de fallas, la función de densidad de confiabilidad y la función acumulada, y como se relacionan. Además de estudiar la confiabilidad en sistemas.

Objetivos específicos

- 1. Objetivos específicos:
- 2. Manejar el concepto de confiabilidad.
- 3. Conocer la función de confiabilidad R(t), la tasa de fallas, la función de densidad f(t) y la función acumulada F(t).
- 4. Conocer la relación de las funciones anteriores.
- 5. Identificar sistemas en serie, en paralelo y mixtos.
- 6. Calcular la confiabilidad en sistemas con distintas distribuciones.

Desarrollo de la práctica

Parte Teórica

- ¿Que significa confiabilidad?
- ¿Cómo se relacionan la tasa de fallas λ(t) con la función de densidad de de fallas f(t) y la función de confiabilidad R(t)?
- Complete las siguientes frases:
 - En un sistema en serie ______ para que el sistema funcione.
 - En un sistema en paralelo ______ para que el sistema funcione.

Ejercicio 0

Calcule la confiabilidad de los siguientes sistemas.

Donde cada componente tiene confiabilidad de 0.9, 0.95 y 0.8 respectivamente. ¿Que puede concluir?

Ejercicio 1

Dado los siguientes sistemas.

Donde cada componente tiene las tasas de fallas $\lambda 1, \lambda 2, \lambda 3$ constantes.

- 1. Calcule la confiabilidad del cada sistema.
- 2. Calcule el tiempo esperado de falla de cada sistema.
- 3. Si la tasa de falla de la componente 1 y 2 del sistema 1 cambian despues de 10 y 20 horas respectivamente $\lambda 1', \lambda 2'$, calcule la confiabilidad del sistema.

Ejercicio 2

Calcule la confiabilidad del siguiente sistema, dado que cada componente puede fallar con probabilidad p y de manera independiente.

Ejercicio 3

En el circuito anterior si p=0.05 calcule la confiabilidad del sistema.

Ejercicio 4

Se considera un circuito electrónico que consta de 2 transistores de silicio 1 diodos de silicio, 2 resistencias compuestas y 2 condensadores de cerámica en una operación continua en serie. Suponiendo que bajo ciertas condiciones de esfuerzo (es decir voltaje prefijado, corriente y temperatura) cada uno de estos artículos tiene la siguiente tasa constante de fallas:

Diodos de silicio 0.000002 Transistores de silicio 0.00001 Resistencias compuestas 0.000001 Condensadores de cerámica 0.000002

Calcule la confiabilidad del circuito en 10 horas y el tiempo esperado para que el circuito falle.

Ejercicio 5

Suponiendo que la distribución de probabilidad de falla de un componente tenga la siguiente fdp:

$$\frac{e^{(-\sqrt{(t)})}}{2\sqrt{(t)}}$$

con t > 0

- 1. Obtener una expresión para R(t)
- 2. Obtener una expresión para la tasa de riesgo
- 3. Como es la tasa de riesgo en t (creciente, decreciente o constante) e interprete su significado.

Ejercicio 6

Supóngase que n componentes que están funcionando independientemente son conectados en serie. Suponiendo que el tiempo para fallar de cada una de las componentes se distribuye normalmente con esperanza 50 horas y desviación estándar 5 horas.

- 1. Sí n = 4, ¿Cual es la probabilidad de que el sistema funcione después de 52 horas de operaciones?
- 2. Sí n componentes se conectan en paralelo, cual debería ser su valor (el valor de n) para que la probabilidad de fallar durante las primeras 55 horas, sea aproximadamente igual a 0.01

Ejercicio 7

Considere un sistema de 5 componentes etiquetados 1, 2, 3, 4,5. El sistema puede funcionar de manera satisfactoria siempre y cuando al menos una de las siguientes combinaciones de componentes tiene todas las componentes en esa combinación funcionando satisfactoriamente:

```
Componentes 1 y 4
Componentes 2 y 5
Componentes 2, 3 y 4
```

Para un tiempo dado t, sea $R_i(t)$ la confiabilidad conocida de la componente (i = 1, 2, 3, 4, 5), es decir la probabilidad de que esta componente funcione satisfactoriamente durante este tiempo. Suponga que los tiempos hasta el fracaso de las componentes individuales, tienten distribuciones independientes. Sea $R_s(t)$ confiabilidad conocida del sistema completo.

- 1. Dibuje una representación de redes de flujo para este sistema (grafo)
- 2. Desarrolle una expresión explicita para la función de estructura ø(x) de este sistema
- 3. Encuentre R_s(t) como una función de R_i(t)

Ejercicio 8

En muchos casos se sabe que el comportamiento de un componente puede afectar el comportamiento de otro. Suponiendo que dos componentes C1 y C2 siempre fallan juntos, es decir: C1 falla si y solo si C2 falla.

a) Muestre usando las nociones básicas de probabilidad condicional, que en el caso antes señalado:

Prob(C1 falle) = Prob(C1 falle y C2 falle) = Prob(C2 falle)

Ahora, con la misma entre C1 y C2:

b) Si C1 y C2 están conectados en serie y la tasa de fallas (riesgo) $\lambda(t)$ de C1 es m (constante), encuentre la confiabilidad $R_s(t)$ de este sistema en serie:

Considere la conexión de las componentes anteriores (C1 y C2 en serie con la misma tasa de riesgo $\lambda(t)$ de antes) con otras componentes C3 y C4, que son independientes respecto a sus fallas entre ellas con el resto de las componentes de la sigiuente manera:

c) Exprese cual es la confiabilidad de este sistema suponiendo que las probabilidades de fallas de las componentes C3 y C4 son constantes e iguales a p.