

Cupuyc.Line

Система видеоаналитики для управления очередью в подразделениях Университета «Сириус»

Авторы: Чижиков Владимир, Чертан Арсений, Слынчук Максим

г. Кемерово

1/2 Team «Spirit»

Чертан Арсений Александрович участник Data-Scientist ИЭ-72

Чижиков Владимир
Сергеевич
капитан
Васк-End разработчик
ИИ-71

Слынчук Максим Дмитриевич участник Front-End разработчик ИИ-71

Почему именно такой проект?

Проект реализовался в рамках дистанционного тура Всероссийской научно-технологической программы по решению проектных задач в области искусственного интеллекта и смежных дисциплин «Сириус.ИИ»

О программе

Выбранный кейс: Система видеоаналитики для управления очередью в подразделениях Университета «Сириус»

Описание кейса

Постановка проблемы

Проблема:

В Университете «Сириус»
Одна из самых часто-посещаемых точек — ресторан «Вега».
В час пик ожидание в очереди длится до 20-30 минут

Решение:

Разработать прототип системы, которая с помощью анализа видеопотока с камер видеонаблюдения на территории ресторана поможет посетителям эффективно спланировать время посещения

Анализ области

Готовые модели для видеоанализа

Сириус.Line

Счетчик людей в очереди онлайн и оффлайн + оптимальное время выхода

IPEYE.Smart

Счетчик людей в помещении (камера)

Центр2М

Счетчик людей в помещении

Оценка модели

Описание предлагаемого решения. Back-End

С камер видеонаблюдения в режиме реального времени передается видео с потоком посетителей

Модель считает количество посетителей (учитывая тех, кто занял очередь через приложение) и на основе данных считает загруженность, подбирая оптимальное время посещения для нескольких групп пользователей (группы делятся в зависимости от количества человек в очереди)

На основе вашего местоположения приложение учитывает ваше положение в очереди (офлайн/онлайн)

Описание предлагаемого решения. Front-End

Приложение отображает главные параметры, а именно:

- 1) Место в очереди
- 2) Оптимальное время посещения

На данный момент продуманы функции:

- 1) Заказа места
- 2) Просмотр меню
- 3) Перемещение в онлайн/оффлайн очередь

^{*}Подробнее об интерфейсе на слайдах 13 и 14

Описание предлагаемого решения. Стек технологий

Высокоуровневый план реализации

Подготовка данных

Для разметки данных используется Roboflow

Создание модели

Для написания нейронной сети используется библиотека TensorFlow и язык программирования Python

Интеграция модели

Приложение является веб интерфейсом для удобства интеграции модели и кроссплатформенности приложения

Описание отдельных шагов плана. Подготовка данных

База данных взята из поисковых источников (Kaggle, Google, Яндекс), но в дальнейшем модель нейросети будет дообучаться за счет постоянного видеопотока с камер видеонаблюдения

Для разметки данных используется программа Roboflow. Данная программа позволяет легко размечать объекты на снимках, выгружая исходный результат в json. Такая конструкция позволит нам легко классифицировать объекты для представления их модели нейросети, привязывая ее к отдельным точкам снимка

Описание отдельных шагов плана. Создание модели

Модель написана на языке программирования Python, с использованием библиотеки TensorFlow (обучение и создание модели), а также OpenCV (машинное зрение) для анализа видеопотока с камер видеонаблюдения

Модель классифицирует людей на видео и проводит подсчет количества человек в онлайн и оффлайн очереди, после чего разбивает людей на условные группы и предлагает им наиболее оптимальное время посещения ресторана

Описание отдельных шагов плана. Интеграция модели

Приложение будет являться веб интерфейсом, что поможет нам легко интегрировать модель нейросети. Также будет реализована функция, позволяющая модели дообучаться за счет видеопотока с камер видеонаблюдения в определенные периоды

В дальнейшем разработка именно веб интерфейса поможет нам оптимизировать работу модели и добавлять новые функции в приложение Сириус. Line без каких либо проблем с оптимизацией

Макет интерфейса приложения. Главный экран

У приложения есть связь с вашей геопозицией, поэтому если вы находитесь в пределах ресторана «Вега», приложение переставляет вас в оффлайн или онлайн очередь, чтобы корректно посчитать количество человек в очереди и распределить время посещения

Также на главном экране вы можете увидеть в какое время вам лучше всего посетить ресторан, меню и ваше место в очереди

Макет интерфейса приложения. Заказ места

На экране заказа места можно посмотреть количество человек в очереди, а также время начала посещений и те события, на которые мы можем зарегистрироваться в данный момент

На стадии проектирования продумана простая настройка профиля (модель нейросети никак не связана с именем и аватаркой человека)

*Концепт-дизайн может отличаться от дизайна финального решения

Репозиторий GitHub

Ознакомиться подробнее с кодом проекта Сириус. Line можете наведя камеру своего смартфона на QR-Код

Модели превышают максимально допустимый размер для GitHub, тоже QR-Код

Модели нейросети

https://github.com/razzikz/SiriusAl

Спасибо за внимание!

Команда «Spirit»