## **DSSE - Drone Swarm Search Environment**



**Alunos:** Jorás Oliveira, Pedro Andrade, Ricardo Rodrigues, Renato Laffranchi.

Professor: Dr. Fabrício Barth.

## **Ambientes**

 Ambiente feito para missões de SAR marítimas.

 Feito para uso de drones multi-agente.

Rewards esparsas e densas.

#### **Search Environment**

X

## **Coverage Environment**

| Action Space  | Discrete (9)                           |
|---------------|----------------------------------------|
| Action Values | [0, 1, 2, 3, 4, 5, 6, 7, 8]            |
| Observations  | {droneN: ((x, y), probability_matrix)} |



## **Ambiente**

## Search



## Coverage



# Hipóteses Formuladas



Algoritmos de RL podem **superar** a política greedy em ambientes mais complexos?



Algoritmos com redes independentes **convergem mais rápido**?



A comunicação da trajetória dos agentes aumenta o sucesso da missão de SAR?



Agentes conseguem cobrir uma área no **menor tempo** e priorizar áreas de maior probabilidade?



Como o padrão de busca dos agentes **muda** quando há **mais de um náufrago**?



#### PPO com incremento de dispersão 0.05





## PPO com incremento de dispersão 0.1









#### Incremento de dispersão de 0.1

#### Algoritmo Greedy PPO Métrica Search Taxa de sucesso (%) 35.84 75.44 Média do número de 77.48 42.47 ações Mediana do número 23 100 de ações Reward média 1.34 0.59

#### Incremento de dispersão de 0.05

| Algoritmo<br>Métrica          | PPO   | Greedy<br>Search |
|-------------------------------|-------|------------------|
| Taxa de sucesso (%)           | 83.0  | 50.18            |
| Média do número de<br>ações   | 35.91 | 65.07            |
| Mediana do número<br>de ações | 22.0  | 94               |
| Reward média                  | 1.48  | 0.86             |









# Resultados H2 - Redes independentes convergem mais rápido?





# Resultados H3 - Saber a trajetória impacta no sucesso?





# Resultados H3 - Saber a trajetória impacta no sucesso?





# Resultados H3 - Saber a trajetória impacta no sucesso?

Comparação de PPOs com diferentes abordagens de comunicação da trajetória.

| Algoritmo<br>Métrica          | PPO normal | PPO com<br>trajetória na<br>matriz | PPO com<br>LSTM |
|-------------------------------|------------|------------------------------------|-----------------|
| Taxa de sucesso (%)           | 75.44      | 75.98                              | 76.46           |
| Média do número de<br>ações   | 42.47      | 41.99                              | 41.57           |
| Mediana do número<br>de ações | 23         | 23                                 | 23              |
| Reward média                  | 1.34       | 1.35                               | 1.36            |



## Resultados H4 - Agentes podem cobrir áreas rápido e com prioridade?





## Resultados H4 - Agentes podem cobrir áreas rápido e com prioridade?



#### **Detalhes dos Resultados**

- Busca feita com 2 agentes (drones).
- Experimentos do estado da arte foram com 30¹ e 19²
   células.
- 58 células foram distribuídas em 34 passos, equivalente a
   58.6% do tempo necessário.
- Priorização de células com maior probabilidade.



- "Coverage path planning for maritime search and rescue using reinforcement learning,"
- 2. "An Autonomous Coverage Path Planning Algorithm for Maritime Search and Rescue of Persons-In-Water Based on Deep Reinforcement Learning."

# Resultados H5 - Como muda a busca com múltiplos náufragos?





# Resultados H5 - Como muda a busca com múltiplos náufragos?

#### Avaliação dos resultados do PPO para 4 náufragos:

| Algoritmo<br>Métrica                                      | PPO   |
|-----------------------------------------------------------|-------|
| <b>Encontrou todos</b> os náufragos (% dos testes)        | 21.54 |
| <b>Média</b> do <b>número de náufragos</b><br>encontrados | 2.3   |
| Média do <b>número</b> de <b>ações</b>                    | 86.81 |



# **Resultados H5**



# Resultados H5 - Como muda a busca com múltiplos náufragos?



#### Descrição dos Resultados

• Criam uma estratégia de **cercar** os targets (náufrago)



# **Obrigado**

Q & A

## Hyperparâmetros PPO

| Parâmetro | Valor                   | Descrição                                         |
|-----------|-------------------------|---------------------------------------------------|
| В         | 8192                    | Training batch size                               |
| Lr        | <b>10</b> <sup>-5</sup> | Learning rate                                     |
| γ         | 0.999999                | Discount factor                                   |
| М         | 300                     | Stochastic<br>Gradient Descent<br>(SGD) minibatch |
| K         | 10                      | Number of SGD iterations                          |



## Hyperparâmetros DQN

| Parâmetro               | Valor            | Descrição                                                                            |
|-------------------------|------------------|--------------------------------------------------------------------------------------|
| В                       | 8192             | Training batch size                                                                  |
| Lr                      | 10 <sup>-5</sup> | Learning rate                                                                        |
| γ                       | 0.999999         | Discount factor                                                                      |
| U                       | 500              | Update target network every U steps.                                                 |
| $\varepsilon_{_{ m O}}$ | 1                | Initial epsilon for ε-greedy.                                                        |
| $arepsilon_{f}$         | 0.1              | Final epsilon for ε-greedy.                                                          |
| Т                       | 400000           | T timesteps for epsilon to decay from $\varepsilon_{\rm o}$ to $\varepsilon_{\rm f}$ |



Configurações do ambiente de search para os testes.

| Parâmetro                                | Valor         |
|------------------------------------------|---------------|
| Incremento de dispersão                  | 0.1 (0.05 H1) |
| Número de PIW                            | 1 (4 H5)      |
| Tamanho do grid                          | 40x40         |
| Número de drones                         | 4             |
| Número máximo de timesteps por simulação | 100           |



Configurações do ambiente de coverage para os testes.

| Parâmetro                                | Valor                                               |
|------------------------------------------|-----------------------------------------------------|
| Horas da simulação de partículas         | 2                                                   |
| Posição naufrágio                        | -24.04 lat, -46.17 long (oceano próximo ao guarujá) |
| Tamanho do grid                          | 9x9                                                 |
| Número de drones                         | 4                                                   |
| Número máximo de timesteps por simulação | 200                                                 |



# **Appendix B:**

# Modelos - RL



#### DQN

