Introduction to drug target Mendelian randomization

Toinét Cronjé & Dipender Gill

CHARGE Mendelian Randomization Workshop

9 May 2023

Agenda

- What is Mendelian randomization?
- Application of Mendelian randomization for studying drug effects
- Instrument selection for drug target perturbation
- Interpretation of drug target Mendelian randomization
- Example
- Questions and comments

What is Mendelian randomization?

Mendelian randomization

$$GY = GX \times XY$$

$$XY = \frac{GY}{GX}$$

Key instrumental variable assumptions

1. Relevance

Strong GX (testable)

2. Independence

Not fully testable

3. Exclusion-restriction

Not fully testable

Comparison with Randomized Clinical Trials

Randomized Clinical Trial
• Therapy or placebo randomized upon initiation of trial
Could be multiple confounding factors
Not fixed even during the trial
• Design does not necessarily enable one to determine causation
• Safety and efficacy assessed for duration of trial (3 to 5 yrs)
Invariably costs millions
• Invariably 3 to 5 yrs

Application of Mendelian randomization for studying drug effects

How is MR used to investigate drug effects?

Where the exposure under study is perturbation of a drug target, MR can be used to explore drug effects

Why MR is useful for studying drug effects

Genetic variants to proxy drug target perturbation can be leveraged to facilitate all stages of drug development

MR to investigate drug effects?

	Conventional MR	MR investigating drug effects
Aim of the analysis	To investigate the effect of an exposure on an outcome	To investigate the effect of perturbing a drug target on an outcome
Genomic location of instruments	Genome-wide	Often restricted to the locus of the gene encoding the drug target under study
Selection of genetic instruments	Variants associated with the exposure under study	Variants associated with perturbation of the drug target under study
Statistical analysis	Typically uses uncorrelated variants; higher risk of pleiotropic effects on the outcome through pathways unrelated to the exposure	More frequent use of methods to account for correlation between instrument variants; lower risk of pleiotropic effects on the outcome through pathways unrelated to the drug target

Genetic variants to proxy drug target perturbation identified through relational to functionally relevant traits

Phenotypes that can be used to weight the effect of a genetic proxy for a drug target

Gene Expression Levels

eQTLs in disease-relevant tissue

ease-

Protein Levels

pQTLs in disease-relevant tissue

IL1RA: inflammatory cytok<u>i</u>ne

Downstream Biomarkers

Molecular measures of target engagement

IL6R: Serum CRP levels

Clinical Outcomes

Disease **risk factors** and **outcomes**

Selection of instrumental variables

Public resources for data access

Explore variant-gene-trait associations from UK Biobank and GWAS Catalog

Brief example

Genetic variation as instrumental variables

Gene to genetic proxy: example of CETP

Thank you!