Applied category theory, 18.S097 at MIT.

Pawan Sasanka Ammanamanchi November 2019

Contents

I.	Cha	apter 1	3
	1.1	Lecture 1	3
		1.1.1 Generative/ Cascade effects	3
	1.2	Lecture 2	5
	1.3	Additional Chapter Notes	5

I. Chapter 1

1.1 Lecture 1

Category theory is a fundamental part of mathematics, it has branched out into a variety of subjects like computer science and physics. Applied category theory is a relatively new field.

1.1.1 Generative/ Cascade effects

A set of different objects while might be observed to not have any common interactions, but when looked at differently might interact with each. Eg: contagion.

Definition I..1 A set is a bag of dots.

$$A = \{a, b, c\}$$
 where, $a, b, c \in A$

Similarly, there are different sets of numbers:

 \mathbb{N} , the set of natural numbers

 \mathbb{Z} , the set of integers

 \mathbb{R} , the set of real numbers

 \mathbb{B} , the set of booleans

Definition I..2 Product Sets: Suppose A, B are sets then,

$$A * B = \{(a, b) \mid a \in A, b \in B\}$$

In category theory, we think of objects in terms of the roles they play.

Definition I..3 A relation, R, on sets A and B is defined by

$$R \subset A * B$$

Every function is a relation. Properties like order, equivalence and tolerance are relations as well.

Definition I..4 A function, f, from A to B, denoted $f: A \to B$ is a relation on A and B. $R \subset A * B$, satisfying

- For all $a \in A$, there exists an element $b \in B$ such that $(a, b) \in R$.
- For all a, b1, b2, if $(a, b1) \in R$ and $(a, b2) \in R$, then b1 = b2.

Definition of injective (no two x'es are mapped to the same y) and surjective (for every y there exists an x in the mapping) functions.

We can order partitions, Say we have two partitions P1 and P2, then we say $P1 \le P2$ if there is a function $P1 \to P2$ making the diagram commute.

Figure 1: When is a partition lesser than another partititon

Figure 2: Can be thought of as a lattice theory structure/ poset

A pre-order is

- 1. a set S
- 2. a relation " \leq " $\subset S * S$

and also satisfying two properties i.e its reflexive and transitive. Order creates join.

1.2 Lecture 2

1.3 Additional Chapter Notes