Automatic Acquisition of Gender Information for Anaphora Resolution

Shane Bergsma May 9, 2005

Department of Computing Science

University of Alberta

Outline of Presentation

- Explanation of Anaphora Resolution
- 2. Gender/number as resolution constraints
- 3. Gathering gender information automatically
- 4. Testing learned gender on a list of <noun,gender>
- 5. Incorporating learned gender into a Support Vector Machine Anaphora Resolution system

Anaphora Resolution Example

"In 2004, Exxon Mobil paid its Chairman Lee Raymond a total of \$38.1 million."

- Question: "Who is the chairman of Exxon Mobil?"
- Terminology:
 - Anaphor: "its"
 - Antecedent: "Exxon Mobil"
- Goal: Resolve the anaphor to the correct antecedent. -- Establish Coreference
- Get: "Exxon Mobil's Chairman Lee Raymond"

Scope

- Third-person anaphoric pronouns, including reflexives:
 - He, his, him, himself (masculine)
 - She, her, herself (feminine)
 - It, its, itself (neutral)
 - They, their, them, themselves (plural)

Resolving Anaphora

"In 2004, Exxon Mobil paid its Chairman Lee Raymond a total of \$38.1 million."

Resolving an anaphora typically involves:

- 1. Parse the text to determine the noun phrases
- Building a list of previous nouns as potential candidates
- 3. Filtering candidates based on gender/number agreement, grammar violations, etc.
- 4. Selecting most likely candidate of remaining noun based on frequency, emphasis, etc.

Gender/Number Constraints

- Provides useful constraints for resolution:
 - "John never saw the car. He arrived late."
 - Resolve "He" to "John"
 - "John never saw the car. It arrived late."
 - Resolve "It" to "car"

Acquiring Gender/Number Info

 Some parsers provide number information from morphology:

```
"files" = "file" + "s" => "files" is plural.
```

- Designators: "Mr. Bean" masculine.
- Suffixes: "Chairman," "Actor," etc... not really reliable
- WordNet: Current standard if word is subset of a person/object class, enforce restrictions

Automatic Acquistion of Gender

- Determine probability a given noun is a given gender
- Store info in gender lexicon. Use this lexicon for learning / classifying of Anaphora Resolution

The Probabilistic Approach

- Ge, Hale, and Charniak (1998) A statistical approach to Anaphora Resolution
 - Resolve anaphora with a simple algorithm, get gender as proportion of times noun resolved to pronoun of that gender
- Very good idea, but only 70% performance
- "Husband" found to be feminine occurs frequently with feminine pronouns

Pattern-matching

- Example: "The president explained himself."
 - Score one for president as masculine (reflexive)
- Also pretty likely coreference:

```
"The president explained his plans" (possesive)
```

- "The *president* said *he* would explain." (nominative)
- "He is the president." (predicate)
- "Happy birthday, *Mr*. *President*." (designator)
- Use a parser (Dekang Lin's Minipar) to identify these generic situations, with any verb fillers

Parsed Corpus, Collect & Count:

1. Reflexives (himself, herself, itself, themselves):

E.g. John explained himself...

2. Possessives (his, her, its, their):

E.g. John bought his car...

3. Nominatives in *finite* sub-clauses (he, she, it, they):

E.g. John thought he should...

4. Predicates: pronouns are subjects and nouns are in the predicate position:

E.g. He is a father.

5. Designators: The noun is accompanied by a gendered designator:

E.g. Mr. Johnson.

Web-Mining Gender

- Pattern match on the biggest corpus (the web!)
- Use the Google API
- Count number of pages returned, e.g.:
- "John * himself" "John * herself" "John * itself" "John * themselves"
- The Wildcard operator "*" substitutes for a verb
- Noisy, but effective
- 1. Reflexives: himself, herself, itself, and themselves in "noun * reflexive"
- 2. Possessives: his, her, its, and their in "noun * possessive"
- 3. Nominatives: he, she, it, and they in "noun * nominative"
- 4. Predicates: he, she, it, and they in "nominative is/are [a] noun"
- 5. Designators: Mr. and Mrs. in "designator noun"

Modelling Gender Information

 For each of the ten sources, maximum likelihood formulation:

P(gender = masculine) =
$$\frac{N(masculine)}{N(total)}$$

Parsed-Corpus Reflexive Count for "doctor":

	himself	herself	itself	themselves
Count	224	126	0	14
Probability	61.5%	34.6%	0%	3.9%

Gender Usage Example

"John used the computer to access the company's files on his purchases."

- Resolve his.
- Candidates: John, computer, company, [files]
- WordNet contains the following senses:
 - "He provided company for her."
 - (Company is a person)
 - "He computes faster than me. He's a good computer."
 - (Computer is a person)

WordNet vs. Probabilistic Gender

Noun	WordNet: Masculine acceptable?	Corpus Reflexives: P(Masculine)
John	OK	99.7%
Company	OK	0% (93% neutral)
Computer	OK	0% (99.2% neutral)

Modelling Gender Information

- Have gender counts from 5 parsed corpus sources and 5 web-mined sources... how can these be combined?
- Combine the ten sources as dimensions in an feature space, learn a classifier

f !			*		
ifier			Fem	Neut	Plural
Corpus	Refl	0.00	0.00	1.00	0.00
	Pos	0.03	0.00	0.86	0.11
	Nom	0.05	0.00	0.86	0.09
	Pred	0.00	0.00	0.99	0.01
	Des	0.00	1.00	0.00	0.00
Web	Refl	0.12	0.08	0.59	0.11
	Pos	0.11	0.05	0.66	0.18
	Nom	0.18	0.05	0.61	0.16
	Pred	0.05	0.02	0.28	0.65
	Des	0.70	0.30	0.00	0.00

h Matrix

Camarda ishe ...

Further Considerations

What about sparse data?

 Use add-one smoothing to deal with low counts, that is, initially assume each gender was seen once

What about confidence in counts?

- Quantify that 25% for a noun never seen is less confident than 25% for a noun seen six thousand times – i.e. want variance measure
- Add-one smoothing + variance measure = Beta distribution

Outline of Presentation

Explanation of Anaphora Resolution

Gender/number as resolution constraints

Gathering gender information automatically

- 4. Testing learned gender on a list of <noun,gender>
- 5. Incorporating learned gender into a Support Vector Machine Anaphora Resolution system

Data Sets

 Labelled 2779 pronouns from news articles in the American National Corpus (data set is available):

"the dog likes <coref ante=dog>its</coref> toy"

- Divided into Training Set / Test Set
- Also use these tags to extract within-context gender of nouns:
 - "<coref ante=dog>its</coref>" => <dog, neutral>
- Build a gendered-noun list

Task#1: Guess Noun Gender

- For each word in gendered noun list, use probabilities to guess gender
- 5 corpus and 5 web-mined Beta-distribution means (i.e. probability guesses) and variances provide a 20-element feature vector.
- Support Vector Machines (SVM^{light}, linear kernel) learn separate classifiers for masc/fem/neut/plural
- Learn on Training Set nouns, test on Test set

One List, Four Gender Classifiers

Masc					
SVM	Word	Masc	Fem	Neut	Plural
Fem					
SVM	buffett	T	F	F	F
Fem					
Fem	stock	F	F	T	F
Fem	wife	F	Т	F	F
SVM	magazines	F	F	F	Т
	tripp	F	Т	F	F

Overall Classification Performance

Special Classification Performance

Test#2 Full Anaphora Resolution

"Bob had wine with his supper."

Five systems for comparison:

- Baseline Choose previous noun
- 2. Baseline with hard gender constraints
- Baseline with hard + probabilistic gender constraints
- 4. Full SVM system with hard gender constraints
- 5. Full SVM system with hard gender constraints + probabilistic gender constraints

Machine Learning

- ML approach to Anaphora Resolution:
 - Each instance is a candidate noun/anaphor pair, and classifier decides if corefent.
 - Apply classifier backward incrementally until antecedent is accepted

Feature vectors

- A number of features made available to SVM
- Features for the Pronoun, the Antecedent, the pair, and Gender

Table 4. Features for Pronoun Resolution

Type	Feature	Description
Pronoun	Masculine	1: pronoun masculine; else 0
Features	Feminine	1: pronoun feminine; else 0
1 00000100	Neutral	1: pronoun neutral; else 0
	Plural	1: pronoun plural; else 0
Antecedent		Number of Occurrences / 10.0
Features	Subject	1: subject of clause; else 0
	Object	1: object of clause; else 0
	Predicate	1: predicate of clause; else 0
	Pronominal	1: pronoun; else 0
	Prepositional	1: prepositional complement; else 0
	Head-Word Emphasis	1: parent not noun; else 0
	Conjunction	1: not part of conjunction; else 0
	Prenominal modifier	1: noun is a prenominal modifier; else 0
	Org	1: an organization; else 0
	Person	1: a person; else 0
	Time	1: has time units; else 0
	Date	1: a date; else 0
	Money	1: a monetary denomination; else 0
	Price	1: a price; else 0
	Amount	1: ante has measurement units; else 0
	Number	1: number; else 0
	Definite	1: has definite article; else 0
	His/Her	1: ante first word of his/her pattern; else 0
	He/His	1: ante first word of he/his pattern; else 0
Gender	Std. Gender Match	1: gender known and matches; else 0
Features	Std. Gender Mismatch	0 if gender known and mismatches; else 1
	Pronoun Mismatch	0 if both pronouns and mismatch; else 1
	Web/Corpus Genders	mean/std. dev. of Beta distributions (20X)
Pronoun-	Binding Theory	1: satisfies Principles B,C; else 0
Antecedent	Reflexive Subj. Match	1: ante subj. of reflexive pron's GC; else 0
Features	Same Sentence	1: ante/pron in same sentence; else 0
	Intra-Sentence Diff.	Within-sentence difference/50.0
	In Previous Sentence	1: ante in previous sentence; else 0
	Inter-Sentence Diff.	Sentence distance/50.0
	Prepositional Parallel	
	Relation-Match	1: ante/pron have same gramm. rel.; else 0
	Parent Relation Match	1: parents have same gramm. rel.; else 0
	Parent Cat. Match	
	Parent Word Match	1: parents same word; else 0
	Quotation Situation	1: ante/pron both in/out of quotes; else 0
	Singular Match	1: both singular; else 0
	Plural Match MI Value	1: both plural; else 0
		Mutual Information between ante and pron
	MI Available	1: MI value available; else 0

Learn: Gender Lexicon training set TO THE RESERVE OF THE PROPERTY (1885년 1955년 1957년 - 1955년 1957년 1955년 1958년 - 1958년 Feature SVM Labelled Vector SVM Model Learning Anaphora Creation Frank Commence of the Commence **Classify:** SVM Model Gender Lexicon test set and the second s · 보통 15 등의 보이면 이 15 등 등의 기기 (기기 등의 15 등) - 15 등 등의 기기 (기기 등의 15 등의 기기 등 Feature SVM Labelled Results Vector Classification Anaphora Creation san filipina filipina dan kalendar dan dan besar bera

Pronoun Resolution Performance

Conclusions

- 73.3% competitive with other systems with automatic noun-identification, parsing (Kennedy & Boguraev, 75%, Mitkov, 62%)
- Gender-guessing outperforms humans
- Parsed corpus and web features work together
- Learned gender shown to result in significant performance improvements over standard gender approach

Future Work

- Better parsing on more text, larger world wide web – all will automatically help our approach
- Recent developments:
 - using EM to learn gender and make resolutions in a large text completely unsupervised
 - Mining other information from text including likelihood of coreference across syntactic relations

Gratitude

- Thank you very much for your time and attention
- Thank you to my supervisor, Dr. Dekang Lin
- Thanks to NSERC and iCORE for funding
- Questions

