# Linear Model for Regression

CSCC11 - Topic 01



### **Topics**

- Linear Regression
  - Univariate Linear Regression
  - Multiple Linear Regression
  - Multivariate Linear Regression
- Basis Function Regression
  - Polynomials
  - Radial Basis Function (RBF)

- Regularization
  - Conditioning of a matrix
  - Overfitting and underfitting
  - Bias and Variance Tradeoff
- KNN Regression

# Linear Regression

## Problem 1: f(x): $\mathbb{R} \to \mathbb{R}$

### • Predict C11 mark

| Example | MATB41 | C11 |  |
|---------|--------|-----|--|
|         | x      | у   |  |
| 1       | 90     | 85  |  |
| 2       | 71     | 68  |  |
| 3       | 92     | 95  |  |
| 4       | 60     | 61  |  |
| 5       | 85     | 78  |  |
| 6       | 60     | 45  |  |

| 65 | <b>?</b> ?? |
|----|-------------|
|    |             |



- What function (i.e. hypothesis) fits the data well?
- How to measure the quality of the fit?

## **Notations and Terminologies**

- $x \in \mathbb{R}$ : input, feature, independent variable, regressor,
- $y \in \mathbb{R}$ : output, target, dependent variable, response
- $\hat{y} \equiv f(x) \in \mathbb{R}$ : predicted output given x
- $\{(x_i, y_i)\}_{i=1}^N$ : training data
  - Training data index: i
  - Number of examples: N
- Input vector  $\vec{\mathbf{x}} \equiv \mathbf{x} \equiv [x_1, x_2, \dots, x_N]^T$
- Output vector  $\vec{y} \equiv \mathbf{y} \equiv [y_1, y_2 ..., y_N]^T$
- Augmented input record  $\tilde{\mathbf{x}} = [1 \ x]^T$
- Augmented input matrix  $\widetilde{\mathbf{X}} = [\mathbf{1} \ \mathbf{x}]$

$$\widetilde{\mathbf{X}} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{bmatrix} \qquad \widetilde{\mathbf{x}} = \begin{bmatrix} 1 \\ \chi \end{bmatrix}$$

$$\widetilde{\mathbf{x}}_i = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \qquad \widehat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_N \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N) \end{bmatrix}$$

## $f \colon \mathbb{R} \to \mathbb{R} \mathsf{Model}$

| Example | MATB41 | C11 |
|---------|--------|-----|
|         | x      | у   |
| 1       | 90     | 85  |
| 2       | 71     | 68  |
|         | ::     |     |
| N       | 60     | 45  |

$$\hat{y} \equiv f(x) = wx + b$$
$$= b + wx$$

$$\hat{y} = f(\tilde{\mathbf{x}}) = [b, w] \begin{bmatrix} 1 \\ \chi \end{bmatrix} = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

$$\hat{y} = f(\tilde{\mathbf{x}}) = [1, x] \begin{bmatrix} b \\ w \end{bmatrix} = \tilde{\mathbf{x}}^T \tilde{\mathbf{w}}$$

$$\hat{y}_i = f(\tilde{\mathbf{x}}_i) = \tilde{\mathbf{x}}_i^T \tilde{\mathbf{w}}$$

• Each row of the matrix  $\widetilde{\mathbf{X}}$  is an augmented input record

$$\widetilde{\mathbf{w}} = \begin{bmatrix} b \\ w \end{bmatrix} \qquad \widetilde{\mathbf{x}} = \begin{bmatrix} 1 \\ \chi \end{bmatrix} \qquad \widehat{\mathbf{y}} = f(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{x}}^T \widetilde{\mathbf{w}}$$

$$\widetilde{\mathbf{X}} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix} = \begin{bmatrix} --\tilde{\mathbf{x}}_1^T - - \\ -\tilde{\mathbf{x}}_2^T - - \\ \vdots & \vdots \\ -\tilde{\mathbf{x}}_N^T - - \end{bmatrix}$$

$$\hat{\mathbf{y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

**Entire Data Set** 

## $f \colon \mathbb{R} \to \mathbb{R}$ Loss Function

$$\hat{y} = f(x) \colon \mathbb{R} \to \mathbb{R}$$

$$\hat{y} = wx + b$$



### Residual

measures the difference between the predicted value and the true value

$$e_i = y_i - (wx_i + b) = y_i - \hat{y}_i$$

### Loss Function

measures the distance between the predicted value and the true value

$$\mathcal{L}(y_i, f(x_i)) = e_i^2 = (y_i - (wx_i + b))^2 = (y_i - \hat{y}_i)^2$$

## $f \colon \mathbb{R} \to \mathbb{R}$ Cost Function

$$\|\mathbf{v}\|_2^2 = \mathbf{v}^T \mathbf{v} = \sum_i v_i^2$$

#### Model

- predicts the output
- *x* is the unknown
- w, b are given

$$\hat{y} = f(x) = wx + b = \tilde{\mathbf{x}}^T \tilde{\mathbf{w}}$$

$$\widehat{\mathbf{y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

### Cost Function (Objective Function)

- measures errors over all training data
- w, b are the unknowns
- $\{(x_i, y_i)\}_{i=1}^{N}$  are given

$$E(\widetilde{\mathbf{w}}) = E(\mathbf{w}, b)$$

$$= \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - (wx_i + b))^2$$

$$= (\mathbf{y} - \widehat{\mathbf{y}})^T (\mathbf{y} - \widehat{\mathbf{y}})$$

$$= ||\mathbf{y} - \widehat{\mathbf{y}}||_2^2$$

$$= ||\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}||_2^2$$

### **Model vs Cost Function**

$$f(x) = wx + b$$



$$f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

$$E(w,b) = \sum_{i=1}^{N} (y_i - (wx_i + b))^2$$



$$E(\widetilde{\mathbf{w}}) = \left\| \mathbf{y} - \widetilde{\mathbf{X}} \widetilde{\mathbf{w}} \right\|_{2}^{2}$$

### Cost Function in 2-D





Note: Check the python\_output.ipynb for the 3D plot of a two-dimensional quadratic function.

## Solution of Weights

• Let  $\frac{\partial E}{\partial b} = 0$ , we get

$$b^* = \bar{y} - w\bar{x}$$
, where  $\bar{y} = \frac{\sum_i y_i}{N}$ ,  $\bar{x} = \frac{\sum_i x_i}{N}$ 

• Let  $\frac{\partial E}{\partial w} = 0$  with b set to  $b^*$ , we obtain

$$w^* = \frac{\sum_{i} (y_{i} - \bar{y})(x_i - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

## Vectorized Solution of optimal weights

Pseudoinverse of A

$$\mathbf{A}^+ = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$$

Find the weights to minimize the cost function

$$\widetilde{\mathbf{w}}^* = \underset{\widetilde{\mathbf{w}}}{\operatorname{argmin}} \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_2^2$$

$$E(\widetilde{\mathbf{w}}) = \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_{2}^{2}$$

$$= (\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}})^{T}(\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\widetilde{\mathbf{w}}^{T}\widetilde{\mathbf{X}}^{T}\mathbf{y} + \mathbf{w}^{T}\widetilde{\mathbf{X}}^{T}\widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathsf{constant} \qquad \mathsf{Linear\ Term} \qquad \mathsf{Quad\ ratio\ Term}$$

Note: 
$$\widetilde{\mathbf{w}}^T \widetilde{\mathbf{X}}^T \mathbf{y} = (\widetilde{\mathbf{w}}^T \widetilde{\mathbf{X}}^T \mathbf{y})^T = \mathbf{y}^T \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}$$

$$\widetilde{\mathbf{w}}^* = (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y} = \widetilde{\mathbf{X}}^+ \mathbf{y}$$

• Assume  $(\widetilde{\mathbf{X}}^T\widetilde{\mathbf{X}})$  is non-singular

# Problem 2: f(x): $\mathbb{R}^D \to \mathbb{R}$

• Predict C11 mark

$$= 4$$

| MATB41 | MATB24                                                                                                    | STAB52                                                                                                | CGPA                                                                                                                                                  | C11                                                                                                                                                                                                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$  | $x_2$                                                                                                     | $x_3$                                                                                                 | $x_4$                                                                                                                                                 | у                                                                                                                                                                                                                                                         |
| 90     | 87                                                                                                        | 82                                                                                                    | 3.6                                                                                                                                                   | 85                                                                                                                                                                                                                                                        |
| 71     | 67                                                                                                        | 85                                                                                                    | 3.0                                                                                                                                                   | 68                                                                                                                                                                                                                                                        |
| 92     | 96                                                                                                        | 93                                                                                                    | 3.8                                                                                                                                                   | 95                                                                                                                                                                                                                                                        |
| 60     | 62                                                                                                        | 71                                                                                                    | 2.8                                                                                                                                                   | 61                                                                                                                                                                                                                                                        |
| 85     | 81                                                                                                        | 74                                                                                                    | 3.1                                                                                                                                                   | 78                                                                                                                                                                                                                                                        |
| 60     | 61                                                                                                        | 60                                                                                                    | 2.7                                                                                                                                                   | 45                                                                                                                                                                                                                                                        |
|        |                                                                                                           |                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                                                                                           |
| 65     | 73                                                                                                        | 82                                                                                                    | 3.1                                                                                                                                                   | ???                                                                                                                                                                                                                                                       |
|        | <ul> <li>x<sub>1</sub></li> <li>90</li> <li>71</li> <li>92</li> <li>60</li> <li>85</li> <li>60</li> </ul> | $x_1$ $x_2$ 90     87       71     67       92     96       60     62       85     81       60     61 | $x_1$ $x_2$ $x_3$ 90     87     82       71     67     85       92     96     93       60     62     71       85     81     74       60     61     60 | $x_1$ $x_2$ $x_3$ $x_4$ 90       87       82       3.6         71       67       85       3.0         92       96       93       3.8         60       62       71       2.8         85       81       74       3.1         60       61       60       2.7 |

## $f: \mathbb{R}^D \to \mathbb{R} \text{ Model}$

| Exampl | MATB41 | <br>C11 |
|--------|--------|---------|
| е      | x      | У       |
| 1      | 90     | <br>85  |
| 2      | 71     | <br>68  |
| •••    |        | <br>    |
| N      | 60     | <br>45  |

$$\hat{y} \equiv f(x) = b + w_1 x_1 + \dots + w_D x_D$$

$$\hat{y} = f(\tilde{\mathbf{x}}) = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

$$\hat{y} = f(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T \tilde{\mathbf{w}}$$

$$\widehat{y}_i = f(\widetilde{\mathbf{x}}_i) = \widetilde{\mathbf{x}}_i^T \widetilde{\mathbf{w}}$$

$$\tilde{\mathbf{x}}_{i} = \begin{bmatrix} 1 \\ (x_{i})_{2} \\ \vdots \\ (x_{i})_{D} \end{bmatrix} = \begin{bmatrix} 1 \\ x_{2i} \\ \vdots \\ x_{Di} \end{bmatrix}$$

$$\widetilde{\mathbf{w}} = \begin{bmatrix} b \\ w_1 \\ \vdots \\ w_D \end{bmatrix} \quad \widetilde{\mathbf{x}} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_D \end{bmatrix} \quad \begin{array}{c} \text{Per sample} \\ \widehat{\mathbf{y}} = f(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{x}}^T \widetilde{\mathbf{w}} \end{array}$$

$$\widetilde{\mathbf{X}} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1D} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{N1} & \cdots & x_{ND} \end{bmatrix}$$

$$\hat{\mathbf{y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widehat{\mathbf{w}}$$

**Entire Data Set** 

## $f: \mathbb{R}^D \to \mathbb{R}$ Loss Function

$$\hat{y} = f(x) \colon \mathbb{R}^D \to \mathbb{R}$$

$$\hat{y} = b + w_1 x_1 + \dots + w_D x_D$$



### Residual

measures the difference between the predicted value and the true value

$$e_i = y_i - (b + w_1 x_{i1} + \dots + w_D x_{iD}) = y_i - \hat{y}_i$$

### Loss Function

measures the distance between the predicted value and the true value

$$\mathcal{L}(y_i, f(\mathbf{x}_i)) = e_i^2 = (y_i - (b + w_1 x_{i1} + \dots + w_D x_{iD}))^2 = (y_i - \hat{y}_i)^2$$

## $f: \mathbb{R}^D \to \mathbb{R}$ Cost Function

$$\|\mathbf{v}\|_2^2 = \mathbf{v}^T \mathbf{v} = \sum_i v_i^2$$

### Model

- predicts the output
- *x* is the unknown
- $w_i$ , b are given

$$\hat{y} = f(\mathbf{x}) = b + \sum_{j=1}^{D} w_j x_{ij}$$
$$= \tilde{\mathbf{x}}^T \tilde{\mathbf{w}}$$

$$\widehat{\mathbf{y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

### Cost Function (Objective Function)

measures errors over all training data

 $= \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_{2}^{2}$ 

- $w_i$ , b are the unknowns
- $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$  are given

$$E(w_{j}, b) = \sum_{i=1}^{N} e_{i}^{2} = \sum_{i=1}^{N} (y_{i} - (b + \sum_{j=1}^{D} w_{j} x_{ij}))^{2}$$

$$= (\mathbf{y} - \hat{\mathbf{y}})^{T} (\mathbf{y} - \hat{\mathbf{y}})$$

$$= ||\mathbf{y} - \hat{\mathbf{y}}||_{2}^{2}$$

Note that  $\mathbf{x}_i$  is multi-dimensional

## Solution of optimal weights

• Find the weights to minimize the cost function

$$\widetilde{\mathbf{w}}^* = \underset{\widetilde{\mathbf{w}}}{\operatorname{argmin}} \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_2^2$$

Pseudoinverse of A

$$\mathbf{A}^+ = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$$

$$E(\widetilde{\mathbf{w}}) = \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_{2}^{2}$$

$$= (\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}})^{T}(\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\widetilde{\mathbf{w}}^{T}\widetilde{\mathbf{X}}^{T}\mathbf{y} + \mathbf{w}^{T}\widetilde{\mathbf{X}}^{T}\widetilde{\mathbf{X}}\widetilde{\mathbf{w}}$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$\text{constant} \qquad \text{Linear Term} \qquad \text{Quadratic Term}$$

$$\frac{\partial E}{\partial \widetilde{\mathbf{w}}} = -2\widetilde{\mathbf{X}}^T \mathbf{y} + 2\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \widetilde{\mathbf{w}} = \mathbf{0}$$

$$\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \widetilde{\mathbf{w}} = \widetilde{\mathbf{X}}^T \mathbf{y}$$

$$\widetilde{\mathbf{w}}^* = (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y} = \widetilde{\mathbf{X}}^+ \mathbf{y}$$

• Assume  $(\widetilde{\mathbf{X}}^T\widetilde{\mathbf{X}})$  is non-singular

## Multiple Regression Summary

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \quad \mathbf{x}_i = \begin{bmatrix} x_{1i} \\ x_{2i} \\ \vdots \\ x_{Di} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \quad \hat{\mathbf{y}} = \begin{bmatrix} y_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_N \end{bmatrix}$$

$$\widetilde{\mathbf{w}} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \qquad \widetilde{\mathbf{x}} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \qquad \widetilde{\mathbf{x}}_i = \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix} \qquad \widetilde{\mathbf{X}} = \begin{bmatrix} 1 & \mathbf{x}_1^I \\ 1 & \vdots \\ 1 & \mathbf{x}_N^T \end{bmatrix} \qquad = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1D} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{N1} & \cdots & x_{ND} \end{bmatrix}$$

$$\hat{y} = f(\widetilde{\mathbf{x}}) = \widetilde{\mathbf{w}}^T \widetilde{\mathbf{x}} = \widetilde{\mathbf{x}}^T \widetilde{\mathbf{w}}$$

$$\hat{\mathbf{y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}$$

$$E(\widetilde{\mathbf{w}}) = \|\mathbf{y} - \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}\|_2^2$$

$$\widetilde{\mathbf{w}}^* = \underset{\widetilde{\mathbf{w}}}{\operatorname{argmin}} \|\mathbf{y} - \widetilde{\mathbf{x}} \widetilde{\mathbf{w}}\|_2^2$$

$$= (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y}$$

$$= \widetilde{\mathbf{X}}^+ \mathbf{y}$$



$$\widetilde{\mathbf{w}}^* = \underset{\widetilde{\mathbf{w}}}{\operatorname{argmin}} \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_{2}^{2}$$
$$= (\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^T \mathbf{y}$$
$$= \widetilde{\mathbf{X}}^+ \mathbf{y}$$

## Problem 3: f(x): $\mathbb{R}^D \to \mathbb{R}^K$

Predict C11 marks

D = 4

K = 2

|         | Y I    |        |        |       |       |       |
|---------|--------|--------|--------|-------|-------|-------|
| Example | MATB41 | MATB24 | STAB52 | CGPA  | C11   | Final |
|         | $x_1$  | $x_2$  | $x_3$  | $x_4$ | $y_1$ | $y_2$ |
| 1       | 90     | 87     | 82     | 3.6   | 85    | 80    |
| 2       | 71     | 67     | 85     | 3.0   | 68    | 70    |
| 3       | 92     | 96     | 93     | 3.8   | 95    | 92    |
| 4       | 60     | 62     | 71     | 2.8   | 61    | 56    |
| 5       | 85     | 81     | 74     | 3.1   | 78    | 72    |
| 6       | 60     | 61     | 60     | 2.7   | 45    | 40    |
|         |        |        |        |       |       |       |
| 7       | 65     | 73     | 82     | 3.1   | ???   | ???   |

## Matrix Multiplication

$$AB = A \begin{bmatrix} | & \cdots & | \\ b_1 & \cdots & b_K \\ | & \cdots & | \end{bmatrix} = \begin{bmatrix} | & \cdots & | \\ Ab_1 & \cdots & Ab_K \\ | & \cdots & | \end{bmatrix}$$

$$A \in \mathbb{R}^{N \times p}$$

$$B \in \mathbb{R}^{p \times K}$$

## Multivariate Regression Matrix Form

$$\widetilde{\mathbf{w}}_j = \begin{bmatrix} b_j \\ w_{1j} \\ \vdots \\ w_{Dj} \end{bmatrix}$$

$$\widetilde{\mathbf{X}} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1D} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{N1} & \cdots & x_{ND} \end{bmatrix}_{N \times (D+1)} \qquad \widetilde{\mathbf{W}} = \begin{bmatrix} b_1 & \cdots & b_K \\ w_{11} & \cdots & w_{1K} \\ \vdots & \vdots & \vdots \\ w_{D1} & \cdots & w_{DK} \end{bmatrix}_{(D+1) \times K} \qquad \mathbf{y}'_j = \begin{bmatrix} y_{1j} \\ y_{2j} \\ \vdots \\ y_{Nj} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_{11} & \cdots & y_{1K} \\ \vdots & \cdots & \vdots \\ y_{N1} & \cdots & y_{NK} \end{bmatrix}_{N \times K}$$
$$= \begin{bmatrix} | & \cdots & | \\ \mathbf{y}'_1 & \cdots & \mathbf{y}'_K \\ | & \cdots & | \end{bmatrix}_{N \times K}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_{11} & \cdots & \mathbf{y}_{1K} \\ \vdots & \cdots & \vdots \\ \mathbf{y}_{N1} & \cdots & \mathbf{y}_{NK} \end{bmatrix}_{N \times K}$$

$$\hat{\mathbf{y}}_{ij} = f_{j}(\widetilde{\mathbf{x}}_{i}) = \widetilde{\mathbf{w}}_{j}^{T} \widetilde{\mathbf{x}}_{i} = \widetilde{\mathbf{x}}_{i}^{T} \widetilde{\mathbf{w}}_{j}, \quad \hat{\mathbf{y}}_{j}' = f_{j}(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}_{j}$$

$$\hat{\mathbf{Y}} = f(\widetilde{\mathbf{X}}) = \widetilde{\mathbf{X}} \widetilde{\mathbf{W}} \qquad \qquad \widetilde{\mathbf{W}}^{*} = \underset{\widetilde{\mathbf{w}}}{\operatorname{argmin}} \|\mathbf{Y} - \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}_{j}\|_{F}^{2}$$

$$E(\widetilde{\mathbf{W}}) = \sum_{j=1}^{K} \|\mathbf{y}_{j}' - \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}_{j}\|_{2}^{2} \qquad \qquad = (\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^{T} \mathbf{Y}$$

$$E(\widetilde{\mathbf{W}}) = \|\mathbf{Y} - \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}_{j}\|_{F}^{2} \qquad \qquad = \widetilde{\mathbf{X}}^{+} \mathbf{Y}$$

# Basis Function Regression

## Problem: Non-linear Relationship

- Some training data are poorly represented by a straight line
  - Weight is not a linear function of Height
  - Area of a circle is not a linear function of the radius
- A curve is better suited to fit the data for these cases
- The least squares method can readily be extended to fit the data to different non-linear models

    $y_3$   $y_5$

$$w_2 x^2 + w_1 x + w_0$$



### **Basis Function**

- The basic idea
  - Do not regress directly from the input x.
  - Transform  $\mathbf{x}$  into a set of new features  $b_j(\mathbf{x})$ , where  $b_j(\mathbf{x})$  is non-linear
  - Regress from the new features.
  - The model is nonlinear in the input variable, but linear in the model parameters
- The case when  $x \in \mathbb{R}$

$$\hat{y} = f(x) = \sum_{j=1}^{M} w_j b_j(x) + b = \sum_{j=0}^{M} w_j b_j(x), \quad w_0 = b, \ b_0(x) = 1$$

- The  $b_i(\mathbf{x})$  can be learned, in this course, we manually specify them.
- We will focus on learning the weights  $w_i$  in this course

### Basis Functions Cont'd

Monomial basis functions for polynomials

$$b_j(x)=x^j, \qquad j=0,1,\ldots,M$$
 
$$\hat{y}=f(x)=\sum_{j=0}^M w_j x^j=w_0+w_1 x+w_2 x^2+\cdots+w_M x^M$$
 bias

Radial basis functions (RBF)

$$b_{j}(x) = e^{-\frac{(x-c_{j})^{2}}{2\sigma_{j}^{2}}}, \qquad \hat{y} = f(x) = w_{0} + \sum_{j=1}^{M} w_{j}b_{j}(x) = w_{0} + \sum_{j=1}^{M} w_{j}e^{-\frac{(x-c_{j})^{2}}{2\sigma_{j}^{2}}}$$

$$i = 1, ..., K$$

### **RBF** Properties

- RBFs are unnormalized Gaussian Functions
- The location parameter is  $c_i$
- The width/bandwidth parameter is  $\sigma_i$
- 2-D RBF  $b_j(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}$

$$b_{j}(\mathbf{x}) = e^{-\frac{(\mathbf{x} - \mathbf{c}_{j})^{T}(\mathbf{x} - \mathbf{c}_{j})}{2\sigma_{j}^{2}}}, \qquad \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \qquad \mathbf{c}_{j} = \begin{bmatrix} c_{1j} \\ c_{2j} \end{bmatrix}$$
$$= e^{-\frac{\|\mathbf{x} - \mathbf{c}_{j}\|_{2}^{2}}{2\sigma_{j}^{2}}}$$

### **Basis Function Selection**

- Other basis functions commonly used
  - Sinusoidal functions
  - Sigmoid functions
- Keep the number of basis functions needed small.
- Example
  - If the underlying relation between x and y is sinusoidal, then we just need one sinusoidal function.
  - If the underlying relation between x and y is cubic, then we just need a polynomial of degree 3.

## Polynomials vs RBFs

### Polynomials

- Great for very simple polynomial relationship between x and y.
- Good for extrapolation
  - Predict at a location which is quite different from the locations where we have made the measurements for
- Polynomial provides fits that are global.
  - Every weight  $w_i$  is influenced by all the training points throughout the entire domain of x.
- Not good for problems that need local domain support

#### • RBFs

- Good for smooth functions where local correlation length are very limited in the local scope
- Examples: wave forms, speeches and images.

## Cost Function for Basis Function Regression

Model:

$$\hat{y}_i = f(x_i) = \mathbf{b}_j(x_i)^T \mathbf{w} = \sum_{j=1}^M w_j b_j(x_i)$$

Cost Function:  $E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(x_i))^2 = \sum_{i=1}^{N} (y_i - \sum_{j=1}^{M} w_j b_j(x_i))^2 = \|\mathbf{y} - \mathbf{B}\mathbf{w}\|_2^2$ 

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{bmatrix} \quad \mathbf{B} \equiv \mathbf{B}(\mathbf{x}) = \begin{bmatrix} B_{ij} \end{bmatrix} = \begin{bmatrix} b_1(x_1) & \cdots & b_M(x_1) \\ b_1(x_2) & \cdots & b_M(x_2) \\ \vdots & \vdots & \vdots \\ b_1(x_N) & \cdots & b_M(x_N) \end{bmatrix}$$

## The optimal weight w\*

$$E(\mathbf{w}) = \|\mathbf{y} - \mathbf{B}\mathbf{w}\|_{2}^{2}$$

$$= (\mathbf{y} - \mathbf{B}\mathbf{w})^{T}(\mathbf{y} - \mathbf{B}\mathbf{w})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{w}^{T}\mathbf{B}^{T}\mathbf{y} + \mathbf{w}^{T}\mathbf{B}^{T}\mathbf{B}\mathbf{w}$$
constant Linear Term Quadratic Term

$$\frac{\partial E}{\partial \mathbf{w}} = -2\mathbf{B}^T \mathbf{y} + 2\mathbf{B}^T \mathbf{B} \mathbf{w} = \mathbf{0}$$

$$\mathbf{B}^T \mathbf{B} \mathbf{w} = \mathbf{B}^T \mathbf{y}$$

$$\mathbf{w}^* = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{y}$$

• Assume  $(\mathbf{B}^T\mathbf{B})$  is non-singular

## Hyperparameters of RBF

- The  $c_i$  and  $\sigma_i$  in RBF functions need to be estimated
- It is a much harder problem
- We determine them heuristically
- Method 1
  - Space all the centers  $c_i$  uniformly
  - choose all the widths  $\sigma_i$  so that they overlaps with their neighbors
  - Works well in one dimension
  - $K^D$ , the number of basis functions grows exponentially.

## Hyperparameters of RBF

#### Method 2

- Put one RBF at each data point
- Set the width equal to the distance to near neighbors
- Set width equal to the median distance of all nearest neighbors when we want to use the same width for all basis functions.

### Method 3

- Cluster data to groups according to some similarity measure. Use clusters to determine the width (later in the course we will talk about clustering)
- Avoid setting widths too small and produce many small RBF bumps.

# Overfitting and Regularization

## **Underfitting and Overfitting**

### Underfitting

- The model fits the training data itself poorly. That is the model is too simple and not expressive enough.
- Example: fitting a quadrative curve using a line

### Overfitting

- The model fits the training data too well.
- The model does the prediction on unseen data poorly
- The model is extremely sensitive to noise and data
- Example: fitting a line using a higher order polynomial. The curve oscillates wildly.

## Overfitting

- The big challenge in ML is to separate noise from the signal
- Common reasons for this challenge
  - Too many parameters, not enough data
  - Data are too noisy
  - We failed to model uncertainty in the models.
    - When very expressive models are used, there are many models that will fit the data reasonably well.
    - How certain are we that the one we use is the right class of model?

### Regularization

- Regularization is a family of methods to control overfitting
  - Smooth model is preferred over models fluctuate widely from point to point.
  - Simple models have smaller number of parameters and do not fit the noise that well.
- Hard Constraint
  - Restrict family of models we fit in the first place
  - Avoid models that fit noise too well
  - Example: only allow small degree polynomials in the polynomial regression.
- Soft Constraint
  - Encourage smoothness with a penalty function during the estimation
  - Penalize the expressiveness of the models
  - Allow more expressive models if the benefits to have them in terms of residual errors outweighs the penalties to have them.

### Regularized Least Squares

AKA Ridge Regression in Statistics, weight decay in deep learning



- $\lambda$  is the regularization parameter. It controls the balance between the smoothness and the data fit
- Small weights (i.e. small  $\|\mathbf{w}\|_2^2$ ) imply smoothness. Why?

### Polynomial Example

$$f(x) = w_0 + w_1 x + w_2 x^2$$

- Smaller weights tend to give smoother functions
- The first derivative describes how fast the function changes

$$\frac{df}{dx} = w_1 + 2w_2x$$

The second derivative describes how fast the slope changes

$$\frac{d^2f}{dx^2} = 2w_2$$

### Solution for Regularized LS

$$E(\mathbf{w}) = \|\mathbf{y} - \mathbf{B}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

$$= (\mathbf{y} - \mathbf{B}\mathbf{w})^{T}(\mathbf{y} - \mathbf{B}\mathbf{w}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{w}^{T}\mathbf{B}^{T}\mathbf{y} + \mathbf{w}^{T}\mathbf{B}^{T}\mathbf{B}\mathbf{w} + \lambda \mathbf{w}^{T}\mathbf{I}\mathbf{w}$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{w}^{T}\mathbf{B}^{T}\mathbf{y} + (\mathbf{w}^{T}(\mathbf{B}^{T}\mathbf{B})\mathbf{w} + \mathbf{w}^{T}(\lambda \mathbf{I})\mathbf{w})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{w}^{T}\mathbf{B}^{T}\mathbf{y} + \mathbf{w}^{T}(\mathbf{B}^{T}\mathbf{B} + \lambda \mathbf{I})\mathbf{w}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -2\mathbf{B}^T \mathbf{y} + 2(\mathbf{B}^T \mathbf{B} + \lambda \mathbf{I})\mathbf{w} = \mathbf{0}$$

$$(\mathbf{B}^T\mathbf{B} + \lambda \mathbf{I})\mathbf{w} = \mathbf{B}^T\mathbf{y}^T$$



$$(\mathbf{B}^T\mathbf{B} + \lambda \mathbf{I})\mathbf{w} = \mathbf{B}^T\mathbf{y}^T \qquad \Longrightarrow \qquad \mathbf{w}^* = (\mathbf{B}^T\mathbf{B} + \lambda \mathbf{I})^{-1}\mathbf{B}^T\mathbf{y}$$

## Conditioning of Linear System

**Supplementary Materials** 

## Ill-Conditioned Systems

Consider the System

$$\mathbf{y} = \begin{pmatrix} 5 \\ 9 \\ 10 \end{pmatrix} \qquad \mathbf{A} = \begin{pmatrix} 4 & -3 & 4 \\ 2 & 4 & 3 \\ 3 & 3 & 4 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

• If 
$$\mathbf{y}' = \begin{pmatrix} 4.99 \\ 8.99 \\ 10.01 \end{pmatrix}$$
, the solution to  $\mathbf{A}\mathbf{w}' = \mathbf{y}'$  is  $\mathbf{w}' = \begin{pmatrix} 0.44 \\ 0.91 \\ 1.49 \end{pmatrix}$ 

• A relative error of  $\frac{\|\mathbf{y} - \mathbf{y}'\|_2}{\|\mathbf{y}\|_2} \approx 0.0012$  in the target vector

result in the relative error of  $\frac{\|\mathbf{w} - \mathbf{w}'\|_2}{\|\mathbf{w}\|_2} \approx 0.43$  in the solution

### Regularization and Conditioning of Matrix

- The condition number is the ratio of the largest singular value and the smallest singular value.
- Large condition number means the matrix significantly magnifies the errors of the vector it acts on.
  - A slight perturbation of the input will change the output drastically
- If  $\mathbf{B}^T\mathbf{B}$  is nearly singular, its condition number is very large.
  - In Machine Learning, this is a sign of overfitting
- By adding the regularization diagonal matrix to the  $\mathbf{B}^T\mathbf{B}$ , it improves the condition of the matrix to be inverted.
- See Tutorial for a detailed numerical example

# K-Nearest Neighbors Regression

Non-parametric regression model

#### **KNN Method**

- Given  $\mathbf{x}$ , predict  $\mathbf{y}$  by using K similar training samples
- We will need to define a similarity measure
- We will need to define how to combine the K training outputs to make the prediction given  $\mathbf{x}$
- Let  $N_K(\mathbf{x})$  be the set of indices of K training points closest to  $\mathbf{x}$
- The simplest way is to compute the average of the training points

$$\mathbf{y} = \frac{\sum_{i \in N_K(\mathbf{x})} \mathbf{y}}{K}$$

#### Weighted KNN Method

- Given points closer to x a higher influence factor
- Compute the weighted average of K training points

$$\mathbf{y} = \frac{\sum_{i \in N_K(\mathbf{x})} w(\mathbf{x}_i) \mathbf{y}}{\sum_{i \in N_K(\mathbf{x})} w(\mathbf{x}_i)} \qquad w(\mathbf{x}_i) = e^{-\frac{\|\mathbf{x}_i - \mathbf{x}\|_2^2}{2\sigma^2}}$$

• We need to decide parameters of K and  $\sigma$ .

#### KNN Methods

- Nearest Neighbor methods is a family of non-parametric models
- It provides a nice baseline for many problems in machine learning.
- It keeps around all training data. The training data themselves are our learning model.
- The representation cost of the model increase as the data size increases
- KNN can solve both classification and regression problems

# Quadratics

**Vector Calculus** 

#### Vector Norm and Inner Product

$$\sum_{i=1}^{N} v_i^2 = [v_1, v_2, \dots, v_N] \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix}$$
$$= \mathbf{v}^T \mathbf{v} = \|\mathbf{v}\|_2^2$$

$$v_i \equiv e_i = y_i - \hat{y}_i = y_i - \widetilde{\mathbf{w}}^T \mathbf{x}_i$$

$$\mathbf{v} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_N \end{bmatrix} \qquad \leftarrow \text{Residual Vector}$$

$$E(\widetilde{\mathbf{w}}) = \sum_{i=1}^{N} e_i^2 = \|\mathbf{v}\|_2^2$$
$$= \|\mathbf{y} - \widehat{\mathbf{y}}\|_2^2$$
$$= \|\mathbf{y} - \widetilde{\mathbf{X}}\widetilde{\mathbf{w}}\|_2^2$$

### **Quadratic Vector Form**

**S** is symmetric

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \qquad \nabla f = \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_D} \end{bmatrix} \qquad \frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$$
$$\frac{\partial \mathbf{b}^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{b}}{\partial \mathbf{x}} = \mathbf{b}$$

$$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$$

$$\frac{\partial \mathbf{b}^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{b}}{\partial \mathbf{x}} = \mathbf{b}$$

$$\frac{\partial \mathbf{x}^T \mathbf{S} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{S} \mathbf{x}$$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{S} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$
$$= \mathbf{x}^T \mathbf{S} \mathbf{x} + \mathbf{x}^T \mathbf{b} + c$$

$$\nabla f = 2\mathbf{S}\mathbf{x} + \mathbf{b} = \mathbf{0}$$



$$\mathbf{x}^* = -\mathbf{S}^{-1}\mathbf{h}$$

Assume **S** is non-singular

#### Quadratic Matrix Form for LS

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \quad \widetilde{\mathbf{w}} = \begin{bmatrix} b \\ w_1 \\ \vdots \\ w_D \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{bmatrix} \qquad \mathbf{S} \text{ is symmetric and non-singular.}$$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{S} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = \mathbf{x}^T \mathbf{S} \mathbf{x} + \mathbf{x}^T \mathbf{b} + c = \mathbf{0}$$
  $\Rightarrow$   $\mathbf{x}^* = -\mathbf{S}^{-1} \mathbf{b}$ 

$$\rightarrow$$
  $\mathbf{x}^*$ 

$$\mathbf{x}^* = -\mathbf{S}^{-1}\mathbf{b}$$

$$E(\widetilde{\mathbf{w}}) = \mathbf{y}^T \mathbf{y} - 2\widetilde{\mathbf{w}}^T \widetilde{\mathbf{X}}^T \mathbf{y} + \mathbf{w}^T \widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \widetilde{\mathbf{w}}$$

$$\mathbf{S} = \widetilde{\mathbf{X}}^T \widehat{\mathbf{X}}$$

$$\mathbf{b} = -2\widetilde{\mathbf{X}}^T \mathbf{v}$$

$$\mathbf{c} = \mathbf{y}^T \mathbf{y}$$

$$E(\widetilde{\mathbf{w}}) = \mathbf{y}^T \mathbf{y} - 2\widetilde{\mathbf{w}}^T \widetilde{\mathbf{X}}^T \mathbf{y} + \mathbf{w}^T \widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \widetilde{\mathbf{w}} \qquad \mathbf{S} = \widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \qquad \mathbf{b} = -2\widetilde{\mathbf{X}}^T \mathbf{y}$$

$$\mathbf{c} = \mathbf{y}^T \mathbf{y}$$

$$E(\mathbf{w}) = \mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{B}^T \mathbf{y} + \mathbf{w}^T \mathbf{B}^T \mathbf{B} \mathbf{w} \qquad \mathbf{S} = \mathbf{B}^T \mathbf{B} \qquad \mathbf{b} = -2\mathbf{B}^T \mathbf{y}$$

$$S = B^T E$$

$$\mathbf{b} = -2\mathbf{B}^T\mathbf{y}$$

### Acknowledgement

- Prof. David Fleet developed the course. He made his notes and courseware available to all of us.
- Prof. Francisco (Paco) shared his assignments with fellow colleagues.
- Prof. Rawad A. Assi shared past assignments with me