MATH 136 LINEAR ALGEBRA

Professor M. Rubinstein • Winter 2014 • University of Waterloo

Last Revision: February 18, 2015

Table of Contents

Todo list		i
	Vectors1.1 Vector Properties1.2 Subspaces1.3 Projections	3
2	Systems of Linear Equations	4
	Matrices 3.1 Linear Mapping	6 7

Future Modifications

1 Vectors

Linear Algebra

- Systems of linear equations
- Related geometry
- Matrices
- Vector spaces, \mathbb{R}^n

 \mathbb{R}^n consists of n-tuples of real numbers, where $n \in \mathbb{N}$.

1.1 Vector Properties

Definition 1.1. Points/vectors are elements of \mathbb{R}^n .

Notation

$$\mathbb{R}^{n} = \{ (x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \}$$

$$x_{1} + x_{2} = 3$$

$$2x_{1} + 5x_{2} = 4$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Two vectors in \mathbb{R}^n are equal if all coordinates are equal.

Vector Operations

Let $\vec{x} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$

Addition

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \in \mathbb{R}^n$$

Scalar Multiplication

$$\alpha \vec{x} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix} \in \mathbb{R}^n$$

Definition 1.2. $\vec{0}$ is the additive identity

Definition 1.3. Given a vector $\vec{x} \in \mathbb{R}^n$, $-\vec{x}$ is the **additive inverse**.

Definition 1.4. A sum of scalar multiples of a combination of vectors is a **linear combination**

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_k\vec{v}_k : c_1 \dots c_k \in \mathbb{R}$$

Theorem 1.1. If $\vec{x}, \vec{y}, \vec{w} \in \mathbb{R}^n$, and $c, d \in \mathbb{R}$, then

- $\vec{x} + \vec{y} \in \mathbb{R}^n$
- $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + vw)$
- $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- $\exists \vec{0} \in \mathbb{R}^n$ such that $\vec{x} + \vec{0} = \vec{x}$ $\forall \vec{x} \in \mathbb{R}^n$
- $\forall \vec{x} \in \mathbb{R}^n$, there exists a vector $(-\vec{x}) \in \mathbb{R}^n$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- $c\vec{x} \in \mathbb{R}^n$
- $c(d\vec{x}) = (cd)\vec{x}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{y}$
- $c(\vec{x} + vy) = c\vec{x} + c\vec{y}$
- $1\vec{x} = \vec{x}$

Definition 1.5. The set S of all possible linear combinations of a set of vectors $B = (\vec{v}_1, \dots, \vec{v}_k)$ in \mathbb{R}^n is called the **span** of the set B and we write

$$S = \text{Span B} = \{t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k\}$$

S is **spanned** by B and that B is a spanning set for *S*.

For a set

$$\{t_1\vec{v}_1 + \dots + t_k\vec{v}_k + \vec{b}|t_1,\dots,t_k \in \mathbb{R}\}\$$

can be written as

$$\vec{x} = t_1 \vec{v}_1 + \dots + t_k \vec{v}_k + \vec{b}, t_1, \dots, t_k \in \mathbb{R}$$

In \mathbb{R}^n , two linearly independent vectors \vec{x}_1 and \vec{x}_2 generate a plane.

Definition 1.6. A set of vectors in \mathbb{R}^n is said to be **linearly dependent** if there exists coefficients c_1, \ldots, c_k , not all 0, such that

$$\vec{0} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$$

Either 0 vector or two or more vectors are colinear (scalar multiple).

Definition 1.7. A set of vectors is **linearly independent** if the only solution is $c_1 = c_2 = \cdots = c_k = 0$ (**trivial solution**)

Definition 1.8. If a subset of \mathbb{R}^n can be written as a span of vectors $\vec{v}_1, \ldots, \vec{v}_k$ where $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly independent, then $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a **basis** for S. The basis of the set $\{\vec{0}\}$ is the empty set.

Theorem 1.2. If $\beta = \{\vec{v}_1, \dots, \vec{v}_k\}$ is a basis for a subset S of \mathbb{R}^n , then every vector $\vec{x} \in S$ can be written as unique linear combination of $\vec{v}_1, \dots, \vec{v}_k$.

Definition 1.9. The **standard basis** in \mathbb{R}^n is a set of vectors where each vector's ith component is 1, and all other components are 0.

Definition 1.10. Let $\vec{x}, vy \in \mathbb{R}^n$. The set with vector equation $\vec{w} = c_1\vec{x} + \vec{y}$ with $c_1 \in \mathbb{R}$ is a **line** in \mathbb{R}^n that passes through \vec{y} .

Definition 1.11. Let $\vec{v}_1, \vec{v}_2, \vec{y} \in \mathbb{R}^n$ with $\{\vec{v}_1, \vec{v}_2\}$ being a linearly independent set. The set with the vector equation $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \vec{y}$ with $c_1, c_2 \in \mathbb{R}$ is a **plane** in \mathbb{R}^n which passes through \vec{y} .

Definition 1.12. Let $\vec{v}_1, \dots, \vec{v}_k, \vec{y} \in \mathbb{R}^n$ with the set being linearly independent. The set with the vector equation $\vec{x} = c_1 v_1 + \dots + c_k \vec{v}_k + \vec{y}$ with c_1, \dots, c_k is a **k-plane** in \mathbb{R}^n with passes through \vec{y} .

Definition 1.13. A **hyperplane** is a subspace of one dimension less than its ambient space.

1.2 Subspaces

Theorem 1.3. Subspace Test: Let $\mathbb S$ be a non-empty subset of $\mathbb R^n$. If $\vec x + \vec y \in \mathbb S$ and $c\vec x \in \mathbb S$ for all $\vec x, \vec y \in \mathbb S$ and $c \in \mathbb R$, then $\mathbb S$ is a subspace of $\mathbb R^n$

Quote. If $\vec{0}$ is not in the set, definitely not subset. If it is, further investigation needed.

Definition 1.14. $S \in \mathbb{R}^n$ is closed under scalar multiplication if for all $\vec{x} \in S$ and $\alpha \in \mathbb{R}$, $\alpha \vec{x} \in S$.

Theorem 1.4. If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then span $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a subspace of \mathbb{R}^n .

Theorem 1.5. If $\vec{x}, \vec{y} \in \mathbb{R}^2$, and θ is the angle between them, then

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| \, ||\vec{y}|| \, \cos \theta$$

Theorem 1.6. Given two vectors \vec{x} , vy, their dot product is defined by

$$\vec{x}\dot{\vec{y}} = x_1y_1 + x_2 + y_2 + \dots + x_ny_n = \sum_{i=1}^n x_iy_i$$

Theorem 1.7. If $\vec{x} \cdot \vec{y} = 0$, then \vec{x} and \vec{y} are **orthogonal**.

Quote. The zero vector $\vec{0} \in \mathbb{R}^n$ is orthogonal to every vector in \mathbb{R}^n .

Theorem 1.8. The **cross product** of $\vec{x}, \vec{y} \in \mathbb{R}^3$ is given by

$$\vec{x} \times \vec{y} = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ -(x_1 y_3 - x_3 y_1) \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

Quote. Cross product is not associative. $\vec{v} \times (\vec{w} \times \vec{x}) \neq (\vec{v} \times \vec{w}) \times \vec{x}$.

Theorem 1.9. Let $\vec{v}, \vec{w}, \vec{b} \in \mathbb{R}^3$ with $\{\vec{v}, \vec{w}\}$ being a linear independent set, and define $\vec{n} = \vec{v} \times \vec{w}$. If P is a plane with the vector equation

$$\vec{x} = c\vec{v} + d\vec{w} + \vec{b}, \qquad c, d \in \mathbb{R}$$

then an alternate equation for the plane is

$$(\vec{x} - \vec{b}) \cdot \vec{n} = 0$$

n is a normal vector to the plane P. Rearranging: $n_1x_1 + n_2x_2 + n_3x_3 = n_1a_1 + n_2a_2 + n_3a_3$.

1.3 Projections

Definition 1.15. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$. The projection of \vec{u} onto \vec{v} is

$$\operatorname{proj}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2} \vec{v}$$

The **perpendicular of** \vec{u} **onto** \vec{v} is

$$\operatorname{perp}_{\vec{v}}(\vec{u}) = \vec{u} - \operatorname{proj}_{\vec{v}}(\vec{u})$$

Quote. To project a vector onto a plane, take the perpendicular of the vector projected onto the normal of the plane.

2 Systems of Linear Equations

Definition 2.1. A system of linear equations in n variables

$$cx_1 + cx_2 + \dots + cx_n = b_1 \tag{1}$$

$$cx_1 + cx_2 + \dots + cx_n = b_2 \tag{2}$$

$$cx_1 + cx_2 + \dots + cx_n = b_3 \tag{3}$$

 $\vec{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^n$ is a solution to the system if all the equations are satisfied when x_i is set to s_i .

If a system has a solution, it is **consistent**. If not, it is **inconsistent**.

Definition 2.2. A **solution set** is the set of all solutions of a system of linear equations. Two systems of equations are equivalent if they have the same solution set.

Definition 2.3. The **coefficient matrix** of a system is denoted by $A = \begin{bmatrix} a_{11} & a_{21} & \cdots \\ a_{21} & a_{22} & \cdots \end{bmatrix}$.

Definition 2.4. The **augment matrix** is

$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}$$

Theorem 2.1. If two augmented matrices are row equivalent, then the system of linear equations associated with each matrix are equivalent.

Method 2.1. The three **elementary row operations** for solving a system of linear equations are:

- 1. Multiplying a row by a scalar
- 2. Adding a multiple of one row to another
- 3. Swapping two rows

Definition 2.5. A matrix is said to be in **reduced row echelon form** if:

- 1. All rows containing a non-zero entry are above rows which only contain zeroes.
- 2. The first non-zero entry in each row is 1. (leading one).
- 3. Leading one on each zero row is to the right of the leading one on any row above it.
- 4. Leading one is the only non-zero entry in its column.

Definition 2.6. Let R be the RREF of a coefficient matrix of a system of linear equations. If the jth column does not contain a leading one, x_j is a **free variable**.

Definition 2.7. The **rank** of a matrix is the number of leading ones in the RREF of the matrix.

Theorem 2.2. Let A be the $m \times n$ coefficient matrix of a system of linear equations.

- 1. IF the rank of *A* is less than the rank for the augmented matrix, then the system is inconsistent.
- 2. If the system is inconsistent, then the system contains n- rank A free variables. A consistent system has a unique solution if and only if rank A=n.
- 3. rank A=m if and only if the system is consistent for every $\vec{b} \in \mathbb{R}^m$

Definition 2.8. A system of linear equations is said to be **homogeneous system** if the right-hand side only contains zeroes. It has the form $\begin{bmatrix} A & \vec{0} \end{bmatrix}$.

Theorem 2.3. The solution set of a homogeneneous systesm of M linear equations in n variables is a subspace of \mathbb{R}^n .

3 Matrices

Definition 3.1. A $m \times n$ **matrix** is a rectangular array with m rows and n columns.

Definition 3.2. The **zero matrix**, denoted as $O_{m,n}$ is the matrix whose entries are all 0.

Definition 3.3. The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose ij-th entry is the ji-th entry of A.

$$(A^T)_{ij} = (A)_{ji}$$

Theorem 3.1. For any $m \times n$ matrices A and B and scalar $c \in \mathbb{R}$,

- $\bullet \ (A^T)^T = A$
- $\bullet (A+B)^T = A^T + B^T$
- $(cA)^T = cA^T$

Definition 3.4. Matrix-Vector multiplication: Let A be an $m \times n$ matrix whose rows are denoted \vec{a}_i^T for $1 \le i \le m$. Then, for any $\vec{x} \in \mathbb{R}^n$, we define

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 \cdot \vec{x} \\ \vdots \\ \vec{a}_m \cdot \vec{x} \end{bmatrix}$$

An alternate form is

$$A\vec{x} = x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Method 3.1. Matrix Multiplication: Let A be an $m \times n$ matrix and let $B = [\vec{b}_1 \cdots \vec{b}_p]$ be an $n \times p$ matrix. Then, AB is the $m \times p$ matrix

$$AB = [A\vec{b}_1 \cdot \cdot \cdot A\vec{b}_p]$$

Note. The number of columns of A must equal to the number of rows of B for this to be defined. The resulting matrix will have the same rows as A and same columns as B.

Quote. Matrix Multiplication is NOT commutative. $AB \neq BA$., if AB = AC, $B \neq C$.

Definition 3.5. The $n \times n$ **identity matrix**, denoted as I, is the matrix containing a diagonal row of 1s and everything else set to 0. The columns of I_n are the standard basis vectors of \mathbb{R}^n .

For every $n \times n$ matrix, A, AI = A.

Definition 3.6. Block matrix:

Example 3.1. Let $A = \begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 2 \end{bmatrix}$. By reducing A into blocks, we can write

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

with
$$A_{11} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$, $A_{21} = \begin{bmatrix} 0 & 3 \end{bmatrix}$, $A_{22} = \begin{bmatrix} 1 & 2 \end{bmatrix}$.

These are useful to distribute matrix multiplication over multiple computers to speed up the process.

3.1 Linear Mapping

Definition 3.7. A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is said to be a **linear mapping** if for every $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $b, c \in \mathbb{R}$, we have

$$L(b\vec{x} + c\vec{y}) = bL(\vec{x}) + cL(\vec{y})$$