1 Messergebnisse

Tabelle 1: Gemessene Werte bei der Wheatstoneschen Brücke

		Messung 1	Messung 2	Messung 3
Wert 10	$\begin{array}{c} R_2 \text{ in } \Omega \\ R_3 \text{ in } \Omega \\ R_4 \text{ in } \Omega \end{array}$	1000 196 804	664 268 732	332 422 578
Wert 12	$\begin{array}{c} R_2 \text{ in } \Omega \\ R_3 \text{ in } \Omega \\ R_4 \text{ in } \Omega \end{array}$	1000 284 716	664 373 627	332 543 457

Tabelle 2: Gemessene Werte für die Kapazitätsmessbrücke ohne Wiederstände

		Messung 1	Messung 2	Messung 3
Wert 3	C_2 in nF	450	399	597
	R_3 in Ω	519	490	590
	R_4 in Ω	481	510	410
Wert 1	C_2 in nF	450	399	597
	R_3 in Ω	407	380	478
	R_4 in Ω	593	520	522

Tabelle 3: Gemessene Werte für die Kapazitätsmessbrücke mit Wiederständen

		Messung 1	Messung 2	Messung 3
Wert 8	C_2 in nF	450	399	597
	R_2 in Ω	371	418	278
	R_3 in Ω	606	578	673
	R_4 in Ω	394	422	327
Wert 9	C_2 in nF	450	399	597
	R_2 in Ω	466	524	352
	R_3 in Ω	511	481	581
	R_4 in Ω	489	519	419

Tabelle 4: Gemessene Werte für die Induktivitätmessbrücke

		Messung 1	Messung 2	Messung 3
Wert 10	$\begin{array}{c} L_2 \text{ in mH} \\ R_2 \text{ in } \Omega \\ R_3 \text{ in } \Omega \\ R_4 \text{ in } \Omega \end{array}$	14.6 45 907 83	20.1 57 875 125	27.5 85 837 163
Wert 18	$\begin{array}{c} L_2 \text{ in mH} \\ R_2 \text{ in } \Omega \\ R_3 \text{ in } \Omega \\ R_4 \text{ in } \Omega \end{array}$	14.6 108 775 225	20.1 143 715 285	27.5 197 648 352

Tabelle 5: Gemessene Werte für R-L-Glieder mit der Maxwell-Brücke

		Messung 1	Messung 2	Messung 3
Wert 10	R_2 in Ω	100	664	332
	R_3 in Ω	347	523	1036
	R_4 in Ω	829	829	829
Wert 18	R_2 in Ω	100	664	332
	R_3 in Ω	128	193	382
	R_4 in Ω	347	349	348

Tabelle 6: Gemessene Werte bei der Wien-Robinson-Brücke

$\nu \text{ in } \frac{1}{s}$	U_{Br} in V	U_{Sp} in V
$\frac{\nu \text{ m s}}{20}$	2.480	2.700
100	1.960	2.550
200	1.000	2.200
270	0.524	2.000
320	0.260	1.800
340	0.200 0.172	1.800
360	0.172	1.700
370	0.044	1.700
390	0.044	1.650
395	0.084	1.650
400	0.094	1.650
405	0.136	1.650
410	0.140	1.600
415	0.166	1.600
420	0.184	1.600
430	0.210	1.600
440	0.254	1.550
469	0.328	1.500
480	0.384	1.450
500	0.468	1.400
550	0.590	1.250
600	0.740	1.200
700	1.020	1.100
800	1.150	0.950
1000	1.450	0.750
1200	1.660	0.680
1500	1.860	0.540
2000	2.000	0.410
3000	2.140	0.285
5000	2.180	0.175
10000	2.040	0.090
20000	1.660	0.060
30000	1.180	0.055

2 Auswertung

Die Mittelwerte und Fehler der errechneten Größen in den folgenden Abschnitten errechnen sich mit folgenden Formeln:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

$$\Delta \bar{x} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (2)

2.1 Wheatstonesche Brückenschaltung

Mit den gemessenen Werte aus Tabelle 1 und der Formel ?? lassen sich nun die gesuchten Widerstände berechnen. Dabei ergeben sich folgende Werte:

$$R_{x,10} = (243.1 \pm 0.4) \Omega \tag{3}$$

$$R_{x,12} = (395.4 \pm 0.7) \Omega \tag{4}$$

2.2 Kapazitätsmessbrücke

Mit den Werten aus Tabelle 2 für die Kapazitätsmessbrücke ohne zwischengeschaltete Widerstände und der Formel ?? ergeben sich für die gesuchten Kapazitäten die folgenden Werte:

$$C_{x,1} = (652.9 \pm 1.4) \,\text{nF}$$
 (5)

$$C_{x.3} = (415.7 \pm 0.7) \,\text{nF}$$
 (6)

Mit den Werten aus Tabelle 3 für die Kapazitätsmessbrücke mit Widerständen und den Formen ?? und ?? lassen sich ebenfalls die gesuchten Werte der R-C-Glieder bestimmen:

$$R_{x,8} = (571.8 \pm 0.6) \Omega \tag{7}$$

$$C_{x.8} = (291.3 \pm 0.7) \,\text{nF}$$
 (8)

$$R_{x,9} = (487.6 \pm 0.3) \Omega \tag{9}$$

$$C_{x.9} = (430.0 \pm 0.6) \,\text{nF}$$
 (10)

2.3 Induktivitätsmessbrücke

Mit den Formeln ?? und ?? und den Werten aus der Tabelle 4 ergeben sich für die gesuchten R-L-Glieder folgende Werte:

$$R_{x,16} = (442 \pm 27) \Omega \tag{11}$$

$$L_{x.16} = (147 \pm 6) \,\text{mH}$$
 (12)

$$R_{x,18} = (364 \pm 4) \Omega \tag{13}$$

$$L_{x.18} = (50.5 \pm 0.1) \,\text{mH}$$
 (14)

2.4 Maxwell-Brücke

Die gleichen R-L-Glieder wie bei der Induktivitätsmessbrücke wurden nochmal mithilfe der Maxwell-Brücke gemessen, bei der ein Kondensator mit der Kapazität $C_4=399\,nF$ verwendet wurde. Mit den Werte aus der Tabelle 5 sowie den Formeln ?? und ?? ergeben sich für die beiden R-L-Glieder somit folgende Werte:

$$R_{x.16} = (417.5 \pm 1.3) \Omega \tag{15}$$

$$L_{x.16} = (138.1 \pm 0.4) \,\text{mH}$$
 (16)

$$R_{x.18} = (366.8 \pm 1.3) \Omega \tag{17}$$

$$L_{x.18} = (50.94 \pm 0.17) \,\text{mH}$$
 (18)

2.5 Robinson-Wien-Brücke

Bei der Messung die für Robinson-Wien-Schaltung wurden die folgenden Komponenten verwendet:

$$C = (415.7 \pm 0.7) \,\mathrm{nF} \tag{19}$$

$$R' = 332 \Omega \tag{20}$$

$$2R' = 664\,\Omega\tag{21}$$

$$R = 1000 \Omega \tag{22}$$

In dieser Messreihe wurde die Frequenzabhängigkeit der Brückenspannung untersucht. Dazu wird in dem Graphen ?? das Verhältnis der effektiven Brückenspannung $U_{Br,eff}$ zur Speisespannung U_{Sp} gegen $\Omega = \frac{\nu}{\nu_0}$ aufgetragen. Für $U_{Br,eff}$ gilt dabei:

$$U_{Br,eff} = \frac{U_{Br}}{2\sqrt{2}}.$$
 (23)

Als Frequenz, bei der die Brückenspannung verschwinden sollte, ergibt sich folgender Wert:

$$\omega_0 = \frac{1}{RC} = \frac{1}{1000 \,\Omega \cdot (415.7 \pm 0.7) \cdot 10^{-9} \,\mathrm{F}} = (2406 \pm 4) \,Hz \tag{24}$$

$$\nu_0 = \frac{\omega_0}{2\pi} = (382.9 \pm 0.6) \, Hz \tag{25}$$

Abbildung 1: Vergleich der Messdaten mit einer Theoriekurve im kleineren Bildintervall

Für die Bestimmung des Klirrfaktors wird zunächst genähert, dass die Summe der Oberwellen nur von dem Term der zweiten Oberwelle bestimmt wird. Im Folgendem wird mit der Effektivspannung gerechnet, da diese bereits in Formel (23) bestimmt wurde. Da in den Abbildungen 2 und 1 ziemlich große Abweichungen zu erkennen sind, wird ein realtiv großer Klirrfaktor erwartet.

Abbildung 2: Vergleich der Messdaten mit einer Theoriekurve

Mit Formel ?? werden zu Berechnung noch die Werte für U_2 und U_1 bestimmt, wobei U_1 die 1,65 V von U_{Sp} bei ν_0 sind. Mit ?? und $\Omega=2$ folgt dann:

$$\begin{split} \mathbf{U}_2 &= \frac{\mathbf{U}_{\text{Br,eff}}}{f(2)} \\ &= 4.269 \cdot 10^{-2} \, V. \end{split} \tag{26}$$

$$=4.269 \cdot 10^{-2} V. \tag{27}$$

Der Klirrfaktor ergibt sich damit nun aus dem Quotienten von \mathbf{U}_2 und $\mathbf{U}_1 \colon$

$$k = \frac{U_2}{U_1} = 2.668 \cdot 10^{-2}. \tag{28}$$

3 Diskussion

Auffällig ist, dass bei eigentlich allen Messungen der Fehler der einzelnen Bauteile ziemlich gering ist. Dies lässt auf eine ziemlich gute Messung schließen, die nur durch das Anschaffen neuer Bauteile wirklich verbessert werden kann.

Vergleicht man bei den Messungen die Fehler der Induktivitätsmessbrücke und die der Maxwell-Brücke, sieht man, dass bei letzterem deutlich geringere Fehler auftreten. Dies könnte vor allem an der Annahme liegen, dass die verwendete Spule L_2 bei der Induktivitätsmessbrücke keinen Innenwiderstand besitzt, was in der Messung nicht realisierbar ist. Zwar wurde auch bei der Maxwell-Brücke der Kondensator als verlustfrei angenommen, dies lässt sich jedoch weitaus besser realisieren. Dennoch sind die Abweichungen der gemessenen Werte beider Methoden nicht allzu groß, die Maxwell-Brücke scheint in dieser Messung lediglich genauer zu sein.

Bei der Bestimmung des Klirrfaktors sieht man, dass die gemessenen Werte besonders bei Frequenzen oberhalb des Minimums stark von der Theoriekurve abweichen. Da die Form der Kurve jedoch ähnlich ist, kann man auf einen systematischen Fehler schließen. Dies ist schon in den Messwerten zu erkennen, in denen die Speisespannung eigentlich relativ konstant bleiben sollte, jedoch zwischenzeitlich auf ca. 3 % des ursprünglichen Wertes absinkt. Somit kann der Klirrfaktor als Beurteilung der Güte des Sinusgenerators eigenlich nur bedingt verwendet werden. Dennoch ist der Wert trotz der Messungenauigkeiten ziemlich gering.