HOOFSTUK 5: HET CYTOSKELET

Introductie

Het cytoskelet voorziet de cel van vorm en interne structuur

- functies: interne organisatie, celvorm, organelbeweging, celbeweging en celdeling
- ontstaan door **polymerisatie van subunits**, associëren met eiwitten → diversiteit
 - o snelle **turnover** door (de)polymerisatie: sterkte en aanpasbaarheid
 - o cel is in staat snel te reageren op prikkels
- tensionele integriteit: dingen kunnen bestaan dankzij de spanning
- skelet: rigide connotatie ↔ allesbehalve! → dynamische aard is net essentieel
- 3 types van cytoskeletaire structuren
 - o **microtubuli** (24 nm) vangen hoofdzakelijk druk (stutten)
 - staan ook in voor organelbeweging en intracellulair transport
 - o **microfilamenten** (7-9 nm) hebben grote trekweerstand (draden)
 - staan ook in voor celvorm en celbeweging
 - o **intermediaire filamenten** (10-15 nm) qua krachtweerstand groot dynamisch bereik = trekresistentie (veren)

Microtubuli

Microtubuli vormen de grootste groep cytoskeletaire structuren. Onderscheid in twee types:

- 1. **cytoplasmatische** microtubuli: staan in voor vorm van axonen, gepolariseerde cellen, spoelfiguur van delende cel, transport vesikels/organel
- 2. axonemale microtubuli: deel van het axonema van cilia en flagellen

Structuur

Cytoplasmatische microtubuli MT: holle cilinders van 24 nm uit 13 parallelle protofilamenten

– **protofilament**: heterodimeer van α-tubuline en β-tubuline die beide GDP/GTP kunnen binden

o alle protofilamenten in dezelfde richting

→ gepolariseerd (+ en – uiteinde)

singlet MT: één volledig protofilament

o ook **doublet**, **triplet**: protofilament + 1 of 2 incomplete MT

Polymerisatie

MT worden gevormd door **reversibele polymerisatie** van tubuline dimeren

- polymerisatie gaat gepaard met hydrolyse van GTP
- nucleatie: vorming van MT oligomeren als kiem voor MT groei (traag)
- **elongatie**: daaropvolgende additie van subunits (snel)

tubulin heterodimer = microtubule subunit)

Kritieke concentratie (C_c)

- in de **plateau fase**: concentratie subunits wordt limiterend: laat MT groei op zijn einde komen
 - → opbouw staat hier in evenwicht met afbraak
 - → MT groei als C>Cc en depolymerisatie als C< Cc
- C_c is hoger voor het uiteinde dan voor het + uiteinde \rightarrow + zijde groeit sneller aan
 - o **treadmilling**: als C_c > C > C_c + aanwas aan +, afbraak aan − → het lijkt alsof MT beweegt

Dynamische instabiliteit

- elk heterodimeer bindt twee GTP moleculen: GTP op β-subunit wordt gehydrolyseerd
- het gevormde GDP-gebonden tubuline is te zwak voor polymerisatie
 - een eindstandige cap van GTP gebonden tubulines verschaft het filament stabiliteit
 - o als concentratie van GTP tubulines vermindert
 - → groei vertraagt, maar hydrolyse van GTP gaat gewoon verder
 - → als enkel GDP gebonden tubulines overblijven: **catastrofe**: snelle depolymerisatie
 - → als er terug voldoende GTP-dimeren zijn: herstel: groei kan terug beginnen

anti-mitotische drugs: verstoren de spoelfiguren van delende cellen en blokkeren de mitose

Microtubuli-organiserende centra MTOC

Polymerisatie wordt sterk gecoördineerd en gelimiteerd tot bepaalde domeinen: de MTOC

- MTOC initieert polymerisatie en dient als verankeringsplaats
 - o uiteinde is verankerd: + uiteinde richting plasmamembraan
 - → meeste dynamiek gebeurt aan de periferie van de cel
- **centrosoom**: dierlijk MTOC, 2 loodrecht op elkaar staande centriolen
 - o errond zit **pericentriolair materiaal**: bevat prote $\ddot{\eta}$ prote $\ddot{\eta}$ nucleatie van nieuwe MT = **γ-tubuline ring complex** (γ-TuRC) die zorgt voor nucleatie van nieuwe MT
 - o **centriool**: 9 paar triplet MT, ook in basaal lichaam van ciliën en flagellen

Distributie van MT wordt bepaald door MTOC & hangt samen met de celfunctie

- **Zenuwcellen**: axonale MT met uiteinde vast aan centrosoom
 - dendritische MT: niet gehecht aan centrosoom en gemengde polariteit
- **Gecilieerde epitheelcellen**: hebben verschillende MTOC's: de basale lichaampjes
- Rode bloedcellen: geen kern, noch MTOC → circulaire band van MT met gemengde polariteit
- Mitotische cel: centrosoom ontdubbelt → vorming van spoelfiguur met MT
 - → correcte verdeling van de chromosomen

Microtubuli-bindende proteïnen

Naast stabilisatie in MTOC's is er ook regulatie door regulatorische proteïnen

- stabiliserend: langere maar minder dynamische MT destabiliserend: kortere, maar dynamischere MT
- MAP's microtubuli-geassocieerde proteïnen (stabiliserend)
 - o binden op regelmatige plaatsen
 - o faciliteren de interactie met andere filamenten en cellulaire structuren
 - o bvb. **Tau-proteïne** bundelt de microtubuli in axonen
 - → overexpressie in niet-neuronale cellen: axon-achtige extensies
 - → neurogeneratieve aandoeningen in verband met dysfunctionele Tau's
 - → accumulatie van warrige neurofibrillaire draden (vb. Alzheimer)
- **+TIP proteïnen**: alternatieve stabilisatie: bindt de + uiteinden
- destabiliserende proteïnen
 - o **stathmine**: bindt de heterodimeren en weerhoudt hen van depolymerisatie
 - o catastrofines: werken in op de uiteindes van reeds gevormde MT
 - o katanines: verknippen MT

Microfilamenten

Microfilamenten zijn met hun diameter van 7 nm de fijnste cytoskeletaire filamenten

- gekend voor spiercontractie, ook essentieel in celvorm en -beweging
 - o migratie via lamellipodia en filopodia, amoeboïde beweging en cytopl. stroming
 - o celvorm via cortex vlak onder plasmamembraan, ook microvilli

Structuur en voorkomen

Microfilamenten zijn polymeren van actine, klein U-vormig moleculen dat ATP/ADP kan binden

- → actine: individueel (**G-actine**, globulair) of gepolymeriseerd (**F-actine**, filamenteus)
 - o F-actine: twee lineaire strengen rond elkaar gedraaid in een helix
 - gepolariseerd: monomeren in dezelfde richting (- pointed end, + barbed end)
 - o twee groepen van actine
 - spier-specifieke α-actines
 - niet-spier β en γ -actines
 - \rightarrow β vooral in voorste periferie of **leading edge**
 - \rightarrow β vormt de filopodia, lamellipodia en ruffles
 - \rightarrow γ is gelokaliseerd in **stress fibers**: contractiele bundels

<u>Polymerisatie</u>

G-actine monomeren **polymeriseren** op reversibele wijze in microfilamenten

- eveneens gekenmerkt door C_c, lag-fase, exponentiële fase en plateau fase
- versnelde dynamiek aan het + uiteinde
- inbouw van ATP G-actine monomeren leidt tot **hydrolyse** van ATP naar ADP
 - → het **groeiende** uiteinde bevat **ATP**-gebonden monomeren
 - → ATP is hier geen vereiste voor polymerisatie (ADP G-actine kan ook MF vormen)
- **Treadmilling** is hier de dominante dynamiek

Actine-bindende proteïnen reguleren stabiliteit en organisatie

Vorm van de protrusie (lamellipodia, filopodia) bepaald door type beweging en organisatie MF

- lamellopodium: actineprojectie op leading edge van de kruipende cel
- **filopodium**: zijn een extensie voorbij de leading edge in kruipende cellen
- **stress fibers**: vezels die cellen vastmaken aan onderliggend substraat (actine bundels)
- cortex: gelachtige substantie bestaande uit los actinenetwerk
- → gemeenschappelijk kenmerk: allemaal gevormd door **inwerking actine-bindende prote**ïnen

Tabel van regulerende proteïnen

Polymerisatie		zonder uitwendige factoren: groei MF enkel bepaald door cc. ATP G-actine	
Thymosine	Inhibitie	thymosine bindt groot deel van G-actine → niet beschikbaar voor incorporatie	
Profiline	Promotie	profiline werkt effect thymosine tegen en bevordert polymerisatie	
Cofiline	Vrijstelling	cofiline zorgt voor versnelde vrijstelling van G-actine aan – uiteinde	
MF afschermen (cappen)		capping proteïns voorkomen additie & verlies aan uiteinde → stabiliseren MF	
CapZ	Capping	capZ is capping proteïne aan + uiteinde	
Tropomodulines	Capping	tropomoduline is capping proteïne aan – uiteinde	
MF crosslinken		actine filamenten vormen vaak een netwerk van onderling verbonden MF	
Filamine of	Crosslinken	filamine/spectrine zorgen dat cross-linking tot stand komt door eerst het netwerk	
Spectrine		te verbreken. Komt voor in RBC: donutvorm tot stand door celcortex	
		→ spectrine deficiëntie leidt to spherocytose (ipv donut een bolvorm)	
MF knippen		sommige proteïnes verbreken netwerk om zachtere structuur te verkrijgen	
Gelsolin	Knippen	gelsolin verknipt netwerk en schermt + uiteindes af → niet beschikbaar voor	
		polymerisatie	
Bundelen		sommige MF (zoals in stress fibers) zijn sterk geordend in bundels	
α-actinine		α-actinine stimuleert bundelvorming in focale adhesiepunten	
Fascin	Bundeling	fascin stimuleert bundelvorming in filopodia	
Fimbrin, Villin		fimbrin en villin stimuleert bundelvorming in microvilli van darmmucosa	
MF met membranen verbinden		celbeweging: nood aan verbinding MF-membraan om kracht uit te oefenen	
ERM Membraan- ezrine, radixine en moesine ERM zorgen voor de verankering		ezrine, radixine en moesine ERM zorgen voor de verankering van spectrine-actine	
	aanhechting	netwerk in cortex van RBC	
Stimulatie van MF vertakking		boomachtige dendritische vertakkingen	
en groei			
ARP2/3	Vertakking	ARP2/3 vormt door binding dendritische vertakkingen in lamellipodia	
WASP	ASP Vertakking Wiskott-Aldrich Syndrome Protein activeert ARP2/3, heeft invloed op		
		hervormingen in bloedplaatjes	
Formine Nucleatie vormen dimeren die relatief tov elkaar kunnen verschuiven en pe		vormen dimeren die relatief tov elkaar kunnen verschuiven en polymerisatie	
		bespoedigen → lange en onvertakte filamenten	

Regulerende proteïnes

- complementaire functies voor verschillende eiwitten
- tegengestelde invloed op turnover snelheid

Celsignalisatie stuurt MF polymerisatie

→ **Signaaltransductie** bepaalt de activiteit van de regulerende proteïnen

Inositol fosfolipiden

- rekruteren actine-bindende proteïnen naar het membraan
- bv CapZ zal verwijderd worden van MF-uiteindes → terug polymeriseren → turnover verhoogt

Rho GTP-asen

- groeifactoren induceren dramatischer cytoskeletaire wijzigingen
- familie Rho GTP-asen (Rho, Rac en Cdc42)
 - o Rho induceert stress fibers, Rac lamellipodia en Cdc42 filopodia

Intermediaire filamenten

Intermediaire filamenten IF (10-15 nm) zorgen voor verdeling van trekkrachten binnen de cel Unieke eigenschappen die hen onderscheiden van MT en MF

- biochemisch veel heterogener

- geen transportfunctie

vezelachtig in plaats van globulair

- geen specifieke interactie met motoreiwitten

- grote trekweerstand

- lagere uitwisselingssnelheid → stabieler

geen intrinsieke polariteit

Structuur en voorkomen

Het **intermediair filament** bestaat uit

- een goed geconserveerd **centraal staaf-domein** uit **4** segmenten van opgewonden **helices**
 - → helices verbonden door **linkers**
- basiseenheid: **coiled coil** van 2 IF proteïnen parallel gealigneerd
 - → 2 coiled coils aligneren <u>lateraal</u> en <u>antiparallel</u> → vormen **tetrameer protofilament**
 - → protofilamenten interageren <u>lateraal</u> en <u>longitudinaal</u> → **vezelachtige structuur**
 - → vezelachtige structuur bestaat uit 8 protofilamenten in beide richtingen

Grote weefselspecificiteit: laat toe ze te gebruiken als merker, bv. voor tumordiagnostiek

Kl.	Type IF	Weefsel	Functie
I	Zure keratines*	Epitheelcellen	Mechanische sterkte
II	Basische keratines*	Epitheelcellen	Mechanische sterkte
	Vimentine	cellen van mesenchymale oorsprong, fibroblasten, ooglens	celvorm
III	Desmine	sommige neuronen	structurele ondersteuning voor spiercontractie apparaat
	GFA proteïne	Gliacellen en astrocyten	celvorm
IV	Neurofilament proteïnes (NF-L,-M, -H)	neuronen	axon grootte en sterkte
V	Nucleaire lamines Lamin A/C, B1 en B2	binnenzijde van kernmembraan van gedifferentieerde cellen	kernvorm, genregulatie
VI	Nestine*	neurale stamcellen & ooglensproteïne	?

^{*} **keratine**: tonofilamenten in epitheelcellen die lichaamsopp. bedekken en –holtes aflijnen

IF geven weefsels en cellen mechanische sterkte

IF komen vaak voor in cellulaire regio's die onder mechanische stress staan

→ spanningsdragende rol (dit kan ook met de grote trekweerstand van IF)

mutatie in keratines → ernstige blaarziekten

→ cellen scheuren door mechanisch trauma en keratine klontering

nucleaire lamines: filamenteus netwerk aan de lamina van de interfase celkern (weerstand)

- \rightarrow A-type lamines geeft kern rigiditeit: afwezigheid \rightarrow afwijkende vorm (bv. in granulocyten)
- → lamines ondergaan additie van farnesyl: B1 en B2 behouden deze, maar A niet
 - → **Progeria**: mutatie in LMNA-gen → knipregio verdwijnt en farnesylgroep blijft bewaard

^{*} **nestine**: speciaal neurofilament in embryonaal zenuwweefsel

Cytoskelet is een mechanisch geïntegreerd geheel

plakines: deze 'linker proteins' regelen de mechanische integratie van de drie (MT, MF en IF)

→ **integratie**: cel moet weerstaan aan buigkrachten (MT), moet spanning kunnen verschaffen via contractiele elementen (MF) en moet elastisch zijn & weerstaan aan trekkrachten (IF)

Take-home messages

- Er zijn 3 types cytoskeletaire structuren met kenmerkende diameter, intracellulaire distributie en mechanische eigenschappen: microtubuli, microfilamenten en intermediaire filamenten.
- Alle cytoskeletaire structuren ontstaan door polymerisatie.
- Microtubuli en microfilamenten zijn gepolariseerd en heel dynamisch. Dynamische instabiliteit komt vaakst voor bij microtubuli, treadmilling vaker bij microfilamenten. (De-)polymerisatie kinetiek wordt gemoduleerd door regulatorische proteïnen.
- · Microtubuli worden georganiseerd vanuit een MTOC en staan in voor organelbeweging en intracellulair transport.
- Microfilamenten staan in voor celvorm en -beweging. Lokale reorganisatie van het actine cytoskelet wordt onder meer gestuurd door Rho GTPasen.
- Intermediaire filamenten hebben een grote trekweerstand, zijn weefselspecifiek en zeer stabiel. Ze geven cellen mechanische sterkte.
- · Alle cytoskeletaire filamenten zijn met elkaar verbonden via linkers.