

Yap 470 Paper Presentation GloVe: Global Vectors or Word Representation

191101027 Selin Mergen 201101018 Tar**ı**k Saraç

1. Introduction

What is the meaning of the word "meaning"?

How can we represent words and how can we analyze words?

Previous algorithms

Word2Vec

Male-Female

Verb tense

Country-Capital

2. Related Works

Shallow Window-Based Methods Matrix Factorization
Methods

Global Matrix Factorization - LSA

	Quick	Brown	Fox	Jumps	Over	Lazy	Dog
The quick brown fox jumps over the lazy dog	1	1	1	1	1	1	1
If the fox is quick he can jump over the dog.	1	0	1	0	1	0	1
Foxes are quick. Dogs are lazy.	0	1	1	0	0	1	1
Can a fox jump over a dog?	0	0	1	1	1	0	1

Local Context Window (Skip Gram)

Source Text

quick brown fox jumps over the lazy dog. \Longrightarrow

The quick brown fox jumps over the lazy dog. \Longrightarrow (quick, the)

fox jumps over the lazy dog. \Longrightarrow quick brown

quick brown fox jumps over the lazy dog. -

Training Samples

(the, quick) (the, brown)

(quick, brown) (quick, fox)

(brown, the) (brown, quick) (brown, fox) (brown, jumps)

(fox, quick) (fox, brown) (fox, jumps)

(fox, over)

Drawbacks

Count based vs direct prediction

- LSA, HAL (Lund & Burgess), COALS (Rohde et al),
- Hellinger-PCA (Lebret & Collobert)
- Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance given to large counts

- NNLM, HLBL, RNN, Skip-
- gram/CBOW, (Bengio et al; Collobert & Weston; Huang et al; Mnih & Hinton; Mikolov et al; Mnih & Kavukcuoglu)
- Scales with corpus size
- Inefficient usage of statistics
- Generate improved performance on other tasks
- Can capture complex patterns beyond word similarity

Terminology

word

word

$$P_{ij} = P(j|i) = \frac{X_{ij}}{X_i}$$

= the probability of word i appeared in the context of word i.

3. The GloVe Model

Co-occurrence Probabilities

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

The Glove Model and the Math behind

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}, \qquad (1)$$

$$F(w_i - w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}.$$
 (2)

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{P_{ik}}{P_{ik}}, \qquad (3)$$

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_i^T \tilde{w}_k)}, \qquad (4)$$

$$F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}.$$
 (5)

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i)$$
. (6)

$$w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik}). \tag{7}$$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2,$$
(8)

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$
 (9)

Figure 1: Weighting function f with $\alpha = 3/4$.

Relationships with the Other Models and the Complexity of The Model

$$|X| = \begin{cases} O(|C|) & \text{if } \alpha < 1, \\ O(|C|^{1/\alpha}) & \text{if } \alpha > 1. \end{cases}$$
 (22)

4.1 Experiments - Evaluation Methods

- Word Anologies
- Word Similarity
- Named Entity Recognition

Model	Dim.	Size	Sem.	Syn.	Tot.
ivLBL	100	1.5B	55.9	50.1	53.2
HPCA	100	1.6B	4.2	16.4	10.8
GloVe	100	1.6B	<u>67.5</u>	<u>54.3</u>	<u>60.3</u>
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	<u>64.8</u>	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	<u>70.3</u>
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	<u>67.4</u>	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	<u>77.4</u>	67.0	<u>71.7</u>
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	<u>81.9</u>	<u>69.3</u>	<u>75.0</u>

4.2 Experiments - Model training

- Wiki dump of 2010 with 1 billion tokens.
- Wiki dump of 2014 with 1.6 billion tokens.
- Gigaword 5 with 4.3 billion tokens.
- Combination of Gigaword 5 and Wiki dump of 2014 with 6 billion tokens.
- Common crawl web data with 42 billion tokens.

4.3 Experiments - Results

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG^\dagger	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	65.8	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

4.4 Experiments – Model Analysis

Figure 3: Accuracy on the analogy task for 300-dimensional vectors trained on different corpora.

5. Conclusion

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

Thank you for listening

