⑩ 日本国特許庁(JP) ⑩ 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平1-257058

®Int. Cl. ⁴

識別記号

庁内監理番号

❸公開 平成1年(1989)10月13日

B 41 J 3/04

103

A -7513-2C

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称

インクジエツトヘツド

②特 頤 昭63-85811 願 昭63(1988) 4月7日 ②出

@発 明 者 北 原 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

セイコーエブソン株式

東京都新宿区西新宿2丁目4番1号

会社

四代 理 人 弁理士 鈴木 喜三郎 外1名

1. 発明の名称 インクジェットヘッド

2、特許請求の範囲

少なくとも1つ以上のノズル関口を有するノズ ル形成部材と、前記ノズル関口に対向して配置さ れ、1層の圧電素子と少なくとも1層以上の箔部 材との積層からなり、前記圧電素子に電圧を印加 することにより内部に曲げモーメントが発生する 圧電変換器と、該圧電変換器と前記ノズル形成部 材間の空隙と前記圧電変換器の周辺を充たすイン クを具備し、100∨の電圧を印加したときに発 生する曲率が少なくとも1m~以上になるように 前記圧電変換器を構成したことを特徴とするイン クジェットヘッド。

3. 発明の詳細な説明

〔産菜上の利用分野〕

本発明は、インク滴を飛翔させ記録紙等の媒体 上にインク滴を形成するブリンタ等インクジェッ ト方式の記録装置に関しさらに詳細にはインクジェ ットプリントヘッドに関する。

〔従来の技術〕

従来のインクジェットヘッドの構成としては被 数のノズル関口を有するノズル板とこの背後にイ ンクと直接接触する圧電変換器を有する構造が知 られている。(特公昭60-8953号公報)こ の構造では圧電変換器を構成する振動子がノズル 板と摂ね直行する方向に変位するごとく振動する ことと各ノズル間のインク流路が短い距離で通じ ていることによりインク滴吐出効率および安定性 が高くインク中にガス・ゴミ等異物が混入した場 合でもこの影響を受けず正常操作が可能であると いう特徴を有する。更に振動子はノズル板と微小 な空隙を保って配された片持ち梁状または両支持 端を軟構造にした両持ち梁の振動子が用いられて いる。

(発明が解決しようとする課題)

上記では、振動子を用いたインクジェットへッドでは、振動子の持つ剛性及び固有振動周に と単位電圧に対する変形 母がインク滴吐出特性に 及ぼす影響は大きく、満足のいく特性を 理得を元に 投源する におり という はい という問題点を できる いいっか 大きくない という はらつき が大きくない という はい ない という はい ない という 間 題点を できる にない という 間 題点を する にない という 間 題点を 有している。

本発明の目的はこれらの問題点を解決して、製造ばらつきの影響を受け難い、低駆動電圧で安定 したインク荷を吐出可能なインクジェットヘッド を実現することにある。

〔課題を解決するための手段〕

本発明のインクジェットヘッドは、少なくとも

視図である。同図において記録紙10はプラテン11に捲き回され送りローラ12、13によって押圧される。ガイド軸14、17に案内されブラテン軸に平行な方向に移動可能なキャリッジ15上にインクジェットへッド16が搭載されてインクジェットへッド16は独立にインク満を吐出制御可能な複数のノズルを育的にでインク満を吐出し記録紙10上にインク像を形成でフンカ流を吐出し記録紙10上にインク像を形成でする。記録紙10はプラテン11、送りローラ12、13の回転により走査方向と直行する副走査方向に搬送され記録紙面上への印字が行われる。

類 2 図は本発明の実施例を示すインクジェットへッドの断面図である。フレーム 2 8 とノズルプレート 2 1 の間にスペーサ 2 2 とシール部材 2 7 、3 1 を積層し、固定ネジ 2 9 、3 0 を用いてインク室を固定形成する。圧電変換器 3 2 は厚さ 1 0 0 μ m の P 2 T よりなる圧電素子 2 4 を接合することにより構成され、圧電素子 2 4 と N 1 箱 2 3 より

1つ以上のノズル間口を有するノズル形成部材と、前記ノズル間口に対向して配置され、1階の圧電業子と少なくとも1層以上の箔部材との積層からなり、前記圧電器子に電圧を印加することにより内部に曲げモーメントが発生する圧電変換器と、該圧電変換器の周辺を充たすインクを具備し、10Vの電圧を印加したときに発生する曲率が少なくとも1mつ以上になるように前記圧電変換器を構成したことを特徴とする。

(作用)

本発明の上記構成では、圧電変換器を構成する 圧電素子に選択的電気信号を印加することにより 圧電変換器に曲げモーメントを発生させノズル開 口上部の振動子可動部分をノズルプレートと略直 交する方向に振動させる。上記振動により近傍の インクを押し出しインク滴として飛翔させる。

(実施例)

次に実施例に基づいて本発明を説明する。 第1図は本発明の一実施例を示すプリンタの斜

なる積層部の一端を固定し、他端を自由端とした 片持ち梁構造をとる。インク室内は記録用インク 33で充たされており圧電変換器32はインク3 3中に存在している。圧電変換器32の片側には パターン電極26がパターニングされている。圧 電変換器32のパターン電缸26を有する片面に は配線25が接続されている。ノズル板21は役 数のノズル20を有する金属箔板から構成される。 また、スペーサ22はノズルプレート21と独立 している必要性はなくノズルプート21と一体化 した構造をもとり得る。フレーム28は予備イン ク室40を有しておりインク中へのゴミ、紙ケバ 等の侵入防止を目的としたフタ34を備えている。 また本実施例で扱った圧電変換器32は片持ち梁 構造であるが、本発明は片持ち梁精造に限定する ものではなく、両持ち梁構造をも取り得る。

次に動作について説明する。予億インク室40からインクがノズル近傍に供給されて充たされる。 スペーサ22を用いた共通電極とパターン電極2 6の間には待機状態電圧が印加されることにより

特開平1-257058(3)

圧電効果により圧電 祭子24は収縮する。一方N1箱23の個は高い弾性率を有するため寸法変化が規制され圧電 祭子24の側に曲がるごとく曲モーメントが発生し圧電 変換器32がノズルプレート21とは反対の方向に変形静止する。定常的に印加されている上記電圧が選択的に解除されると圧電変換器32はノズルプレート21の方向に変形変位し近傍のインクをノズル隅口20から吐出させる。

圧電素子2.4に単位電圧を印加したことにより発生する圧電変換器3.2の変形及びそれに伴う振動は、インクジェットヘッドを構成する上で要求される基本特性であり、特にインク滴速度、インク重量、駆動電圧に影響を与える。

また、圧電変換器32の持つ別性コンプライアンスはインクジェットへッドの固有振動周期に影響を与える。 厳密に言えば圧電変換器32のみならずノズルメニスカス、インクの持つ圧縮性等による振動成分も存在するが、インク吐出に深く関係するのは圧電変換器

32の刚性コンプライアンスにより決定される振動成分であるといえる。前記固有振動周期の僅かな大小によりインク滴の吐出速度及びインク滴の吐出体積が変化する。また前記インク滴の吐出体度及びインク滴の吐出体積は、圧電変換器32とノズル固有振動周期のみならず圧電変換器32とノズルアレート21間の空皺の間隔、ノズル関ロ20の形状及び径、インクの粘度、駆動電圧等の各要因によっても決められている。

実際問題として別性コンプライアンスと単位電圧に対する変形量はある関係を持って推移しており、この事実が最適化設計において重要な問題となっているのも事実である。

第3図は圧電素子24・Ni箱23で構成された片持ち操状圧電変換器32とNi箱23の代わりとして半田箔で構成された片持ち操状圧電変換器32について電圧100Vに対する曲率(1/R)とNi箱23・半田箔の厚さの関係を表したグラフである。

第4図も上記2構成で全長2mmの片持ち梁状

圧電交換器32に関する空気中での固有振動周期(T)とNi箔23・半田箔の厚さの関係を表したグラフである。但し、第3図、第4図ともに圧電素子24は厚み100μm,ヤング率6.06×10゚゚のN/㎡,比重7850㎏/㎡。D定数290×10゚゚ュールで、Niはヤング率2.2×10゚゚、N/㎡、比重8900㎏/㎡、半田はヤング率1.98×10°、N/㎡、比重8915㎏/㎡として計算した結果をグラフに表したものである。また本発明者は上記2種類の圧電変換器32についての実験も行い、その実験結果が第3図、第4図に示すグラフと良く一致することを確認済みである。

第3図より圧電祭子24・Ni箱23で構成された片持ち操状圧電変換器32ではNi箱23厚さ30μmの時最大の曲率を示す、即ち圧電変換器32内部に最大曲げモーメントが発生する。また圧電索子24・半田箱で構成された片持ち深状圧電変換器32では半田箱厚さが200μmの時最大の曲率を示すことがわかる。また、本発明者

ちは実験により100 Vの電圧を圧電素子24に印加したときに曲率1m゚゚以上の変形を生じる圧電変換器32ならば他の要因の設定状第では重量0.1μg以上、飛翔速度3m/ѕ以上のインク滴を吐出可能であることを確認した。また、100Vの電圧を圧電素子24に印加したときに曲率1m゚゚以下の変形を生じる圧電変換器32を使用して前記条件のインク滴を得るためには他の要因をどのように設定しても駆動電圧を250 V以上必要とする。

持期平1-257058(4)

圧電変換器32を、また全長2mm、固有振動周期95μsecの圧電変換器32を必要とする場合には、圧電素子24・半田箔で構成された片持ち深状圧電変換器32を採用することが望ましいことを意味している。また、本発明者らは実験により空気中での固有振動周期が30μsecから100μsecの圧電変換器32ならば他の要因の設定次第では重量0.1μg以上、飛翔速度3m/s以上のインク滴を吐出可能であることを確認した。

以上述べてきたのは、圧電索子24とN1箱23または半田箱の2層で構成された圧電変換器32の実施例であるが、2層構造のみならず3層構造以上の圧電変換器32及び箱部材としてステンレスや高分子材料を用いた圧電変換器32も第3図、第4図に示したような特性を持っており、最大曲げモーメントを発生する近傍の構造で設計使用することによりインク減吐出特性のばらつきの少ない、低電圧での駆動が可能なインクジェットヘッドを実現することができる。

ットヘッドの断面図

第3回は圧電変換器に100Vの電圧を印加したときの、曲率半径と箱部材の厚さの関係を表したグラフ。

第4図は全長2mmの圧電変換器における、空 気中での固有振動周期と箱部材の厚さを表したグ ラフ。

- 10 記録紙
- 13 ローラ
- 16 インクジェットヘッド
- 21 ノズルプレート
- 23 Ni箔
- 2.4 压氧素子
- 32 圧電変換器

以上

出願人 セイコーエブリン株式会社 代理人 弁理士 鈴木喜三郎 他1名

(発明の効果)

4. 図面の簡単な説明

第1図は本発明による一実施例を示すインクジェットヘッドを具備したプリンタの斜視図。

第2回は本発明による一実施例を示すインクジェ

16.12752-10-4

特閒平1-257058 (5)

第2図

第3図

第4図

