LAB-04

陳培殷

國立成功大學 資訊工程系

Outline

- Video preview for 晶片實現+HDL介紹(Parts I~II)
- Quartus II tutorial
- Introduction to DE0-CV
- Programming DE0-CV
- Lab I--full adder implement
- Lab II full adder to DE0-CV
- Appendix- Quartus II simulation

Quartus II Tutorial (1/10)

- Getting Started
 - Start the Quartus II software

Quartus II Tutorial (2/10)

- Create a New Project
 - □ Open New Project Wizard (File → New Project Wizard...)

Quartus II Tutorial (3/10)

Specify the working directory and the name of the project

Quartus II Tutorial (4/10)

- Select "Empty project". Then, click "Next".
- Select design files. Or click "Next" to skip this step.

Quartus II Tutorial (5/10)

■ Specify device settings - (DE0-CV Device family are used). Click "Next."

5CEFA4F23C7

Quartus II Tutorial (6/10)

■ Specify EDA Tool – (Modelsim-Altera is selected for simulation). Click "Finish."

Quartus II Tutorial (7/10)

- Edit a new file by opening a Verilog HDL file
 - □ (File \rightarrow New \rightarrow Verilog HDL File \rightarrow OK)

Quartus II Tutorial (8/10)

Write Verilog code

Top module name 一定要跟 Project name 相同!!

1:	//File Name : Half_Adder.v			
2:	module	Half_Adder(a, b, sum, carry);		
3:	input	a, b;		
4:	output	sum, carry;		
5:				
6:	assign sum = a ^ b;			
7:	assign carry = a & b;			
8:				
9:	endmodule			

輸入(input)	輸出(output)		
被加數(a)	加數(b)	和(sum)	進位(carry)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Quartus II Tutorial (9/10)

- Compiling the Designed Circuit (synthesis 合成)
 - □ (Processing → Start Compilation)

Quartus II Tutorial (10/10)

Successful compilation

Half Adder

a\b	0	1
0	0	1
1	1	0

a\b	0	1
0	0	0
1	0	1

Introduction to DE0-CV(1/3)

- 1. DE0-CV is a FPGA simulation board used to simulate the user-defined circuit.
- 2. You can program you circuit into the FPGA in the board for simulation.

User-defined circuit

Introduction to DE0-CV (2/3)

Introduction to DE0-CV (3/3)

Programming DE0-CV (1/13)

```
module Half_Adder(a, b, sum, carry);
input a,b;
output sum, carry;
and(carry,a,b);
xor(sum,a,b);
endmodule
```

Programming DE0-CV (2/13)

Start compilation

Programming DE0-CV (3/13)

Open Pin Planner

Programming DE0-CV (4/13)

Pin assignment

Programming DE0-CV (5/13)

Assign pin location to all inputs and outputs

Please refer to DE0_pin.xls for pin location assignment

Programming DE0-CV (6/13)

Start compilation

Programming DE0-CV (7/13)

Programming DE0-CV (8/13)

Programming DE0-CV (9/13)

Programming DE0-CV (10/13)

Programming DE0-CV (11/13)

Programming device

Programming DE0-CV (12/13)

Hardware setup: add USB-Blaster

Programming DE0-CV (13/13)

Programming device

Lab I

- Using Verilog (gate level model) to implement a 1-bit Full Adder (2 half adder + 1 or gate)
- Successfully compile the circuit

Lab I-Hint Structural (gate-level) description

Verilog allows three kinds of descriptions for circuits:

Structural description:

1. module OR_AND_STRUCTURAL(IN,OUT);

- 2. input [3:0] IN;
- 3. output OUT;
- 4. wire [1:0] TEMP;
- or u1(TEMP[0], IN[0], IN[1]);
- or u2(TEMP[1], IN[2], IN[3]);
- 7. and (OUT, TEMP[0], TEMP[1]);
- 8. endmodule

Full Adder (1/2)

ab\c_in	0	1
00	0	1
01	1	0
11	0	1
10	1	0

ab\c_in	0	1
00	0	0
01	0	1
11	1	1
10	0	1

sum $= abc_in + abc_in + abc_in + abc_in$ $= (ab + ab)c_in + (ab + ab)c_in$ $= (a \oplus b)c_in + (a \oplus b)c_in$ $= (a \oplus b) \oplus c_in$

Full Adder (2/2)

You can implement a full adder with (2 half adder and 1 or gate).

Lab II

Use the result of Lab I to implement on the DE0-CV

SW2 SW1 SW0 LED0 LED1

■ There are three 1 bit input C_in, X , Y and two output S and C

C_in	X	Y	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Notice

- 請勿命名中文資料夾
- Device family 請確認與 FPGA Chip 符合 (5CEBA4F23C7)
- Top module name & Project name 需要一致
- 確認 module ... endmodule 為keyword 變成藍色字體

Appendix

Quartus II Simulation (1/12)

- Simulating/Verifying the designed Circuit (half adder)
 - Using the Waveform Editor(File → New → Vector Waveform File)

Quartus II Simulation (2/12)

- Simulating the Designed Circuit
 - Use node finder to find all the I/O pins (Edit → Insert → Insert Node or Bus…)

Quartus II Simulation (3/12)

- Simulating the Designed Circuit
 - Selecting nodes to insert into the Waveform Editor

Quartus II Simulation (4/12)

- Simulating the Designed Circuit
 - Selecting nodes to insert into the Waveform Editor

Quartus II Simulation (5/12)

- Simulating the Designed Circuit
 - Select and edit waveform

Quartus II Simulation (6/12)

- Performing the Simulation
 - Modify default settings (Tools → Opions →)

Quartus II Simulation (7/12)

- Performing the Simulation
 - $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \hline \end{$

Quartus II Simulation (8/12)

- Performing the Simulation
 - Modify default settings (Select "C:\altera_lite\16.0\modelsim_ase\win32aloem")

Quartus II Simulation (9/12)

- Performing the Simulation
 - Modify default settings (→ OK)

Quartus II Simulation (10/12)

- Simulating the Designed Circuit
 - Setting of test values
 - Click "Functional Simulation"

Quartus II Simulation (11/12)

Save the Waveform setting.

Quartus II Simulation (12/12)

The result of functional simulation

