DISPLAY OF QUANTUM ENTANGLEMENT

MERMIN-GHZ GAME

PREREQUISITE FOR QUANTUM PSEUDO-TELEPATHY GAMES

Qubit: analogous of bit in classical computer

THE GAME

- 3 players Alice, Bob, Charlie
- 3 bit inputs, 3 bit outputs
- Promise on the inputs: even parity
- Condition to win:

$$\sum_{i=1}^n a_i \equiv \frac{\sum_{i=1}^n x_i}{2^\ell} \pmod{2}.$$

$$a \oplus b \oplus c \equiv x \lor y \lor z$$

CLASSICAL STRATEGY

- Cannot win 100% of time
- optimal: 75%

$$a_0 + b_0 + c_0 \equiv 0$$

 $a_0 + b_1 + c_1 \equiv 1$
 $a_1 + b_0 + c_1 \equiv 1$
 $a_1 + b_1 + c_0 \equiv 1$

1 HIDDEN LAYER NEURAL NETWORK

- By the Universal Approximation Theorem:
 - 1 hidden layer can approximate any binary function
 - Xor works!
 - But cannot learn our game
 - Reach the randomized strategy

QUANTUM STRATEGY

$$\frac{1}{\sqrt{2}}|0^n\rangle + \frac{1}{\sqrt{2}}|1^n\rangle$$

1. apply to his share of the entangled state the unitary transformation S defined by

$$|0\rangle \mapsto |0\rangle \tag{3.2}$$

$$|1\rangle \mapsto e^{\pi \iota x_i/2^{\ell}}|1\rangle \,, \tag{3.3}$$

2. apply the Walsh-Hadamard transform, H, defined as usual by

$$|0\rangle \mapsto \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \tag{3.4}$$

$$|1\rangle \mapsto \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle; \tag{3.5}$$

- 3. measure the qubit in the computational basis to obtain a_i ;
- 4. output a_i .

QUANTUM CIRCUIT

CLASSICAL STRATEGY

- random: each output bit: 0/1 with prob 1/2
- optimal: (1 instance) flip input bit
 - Wins 3/4 of the time

DEMO

Let's see for yourself!