ЛАБОРАТОРНАЯ РАБОТА №2 ОПЕНКА КАЧЕСТВА ПИТЬЕВОЙ ВОЛЫ.

1. ОБЩИЕ ТРЕБОВАНИЯ.

Вода — один из важнейших компонентов биосферы и необходимый фактор существования живых организмов. В настоящее время антропогенное воздействие на гидросферу значительно возросло. Открытые водоемы и подземные водоисточники относятся к объектам Государственного санитарного надзора. Требования к качеству воды регламентируются соответствующими нормативными документами.

В соответствии с нормативными требованиями качество питьевой воды оценивают по трем показателям: бактериологическому, содержанию токсических веществ и органолептическим свойствам.

Основные источники загрязнения водоемов – бытовые сточные воды и стоки промышленных предприятий. Поверхностный сток (ливневые воды) – непостоянный по времени, количеству и качеству фактор загрязнения водоемов. Загрязнение водоемов происходит также в результате работы водного транспорта и лесосплава.

Различают водоиспользование двух категорий:

- 1. к первой категории относится использование водного объекта в качестве источника хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности;
- 2. ко второй категории относится использование водного объекта для купания, спорта и отдыха населения, а также использование водных объектов, находящихся в черте населенных мест.

В качестве гигиенических нормативов принимают предельно допустимые концентрации (ПДК) – максимально допустимые концентрации, при которых содержащиеся в воде вещества не оказывают прямого или опосредованного влияния на организм человека в течение всей жизни и не ухудшают гигиенические условия водопользования. ПДК вредных веществ в водных объектах первой и второй категорий водопользования приведены в табл. 3.1.

Таблица 3.1.ПДК веществ в водных объектах хозяйственно-питьевого и культурно-бытового назначения.

назначения.					
Вещество	лпв	ПДК, мг/л	Класс опасности		
Алюминий	С-т	0,5	2		
Ацетальдегид	Орг.	0,2	4		
Ацетон	Общ.	2,2	3		
Барий	С-т	0,1	2		
Бенз(а)пирен	С-т	0,000005	1		
Бензин	Орг.	0,1	3		
Бензол	С-т	0,5	2		
Бериллий	С-т	0,0002	1		
Бор	С-т	0,5	2		
Бром	С-т	0,2	2		
Бутилбензол	Орг.	0,1	3		
Бутилен	Орг.	0,2	3		
Ванадий	С-т	0,1	3		
Винилацетат	С-т	0,2	2		
Висмут	С-т	0,1	2		
Вольфрам	С-т	0,05	2		
Гидрохинон	Орг.	0,2	4		
Глицерин	Общ.	0,5	4		
Диметилфталат	С-т	0,3	3		
Диэтиламин	С-т	2,0	3		
Железо	Орг.	0,3	3		
Кадмий	С-т	0,01	2		

Кальция фосфат	Общ.	3,51	4
Капролактам	Общ.	1,0	4
Керосин технический	Орг.	0,01	4
Кобальт	С-т	0,1	2
Кремний	С-т	10,0	2
Литий	С-т	0,03	2
Марганец	Орг.	0,1	3
Медь	Орг.	1,0	3
	·	·	Продолжение табл. 3.1.
Метилмеркаптан	Орг.	0,0002	4
Молибден	С-т	0,25	2
Мышьяк	С-т	0,05	2
Натрий	С-т	200,0	2
Натрия хлорат	Орг.	20,0	3
Нафталин	Орг.	0,01	4
Нефть многосернистая	Орг.	0,1	4
Никель	С-т	0,1	3
Ниобий	С-т	0,01	2
Нитраты	С-т	45,0	3
Нитриты	С-т	3,3	2
Пропилбензол	Орг.	0,2	3
Пропилен	Орг.	0,5	3
Ртуть	С-т	0,0005	1
Свинец	С-т	0,03	2
Селен	С-т	0,01	2
Сероуглерод	Орг.	1,0	4
Скипидар	Орг.	0,2	4
Стирол	Орг.	0,1	3
Стрептоцид	Общ.	0,5	4
Стронций (стабильный)	С-т	7,0	2
Сульфаты	Орг.	500,0	4
Сульфиды	Общ.	Отсутствие	3
Таллий	С-т	0,0001	1
Натрия тиосульфат	Общ.	2,5	3
Фенол	Орг.	0,001	4
Формальдегид	С-т	0,05	2
Фосфор элементарный	С-т	0,0001	1
Фтор	С-т	1,5	2

Примечание. К лимитирующим показателям вредности (ΠB) относятся: санитарнотоксикологический (c-m); общесанитарный ($o \delta u$).; органолептический (o p z.).

Общ.

В соответствии с действующей классификацией химические вещества по степени опасности подразделяют на четыре класса: 1-й класс – чрезвычайно опасные; 2-й класс – высокоопасные; 3-й класс – опасные; 4-й класс – умеренно опасные.

В основу классификации положены показатели, характеризующие степень опасности для человека веществ, загрязняющих воду, в зависимости от их общей токсичности, кумулятивности, способности вызывать отдаленные побочные действия.

Если в воде присутствуют несколько веществ 1-го и 2-го классов опасности, сумма отношений концентраций (C_1, C_2, C_n) каждого из веществ в водном объекте к соответствующим значениям ПДК не должна превышать единицы:

$$C_1 / \Pi \coprod K_1 + C_2 / \Pi \coprod K_2 + ... + Cn / \Pi \coprod Kn \le 1$$
 (3.1.)

Отсутствие

3

2. ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ.

Хлор активный

- 2.1. Ознакомиться с методикой
- 2.2. Выбрать вариант (табл. 3.2.)
- 2.3. Дать классификацию нормативных требований к питьевой воде.
- 2.4. Дать классификацию категорий водопользования.
- 2.5. Перечислить лимитирующие показатели вредности.
- 2.6. Привести гигиенические нормативы для вредных веществ, содержащихся в пробах питьевой воды по варианту.
- 2.7. Сравнить фактические значения концентраций вредных веществ по варианту (табл. 3.2.) с нормативными (табл. 3.1.).
- 2.8. При наличии веществ 1-го и 2-го классов опасности провести оценку качества питьевой воды по формуле (3.1.).
 - 2.9. Подписать отчет и сдать преподавателю.

3. *Таблица 3.2.* ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ ПО ТЕМЕ «ОЦЕНКА КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ».

Вариант	Вредное вещество	Фактическая концентрация, мг/л
1.	2.	3.
01	Алюминий Бериллий Бутилен Ацетон Хлор активный	0,4 0,0001 0,15 2,0 0,0001
02	Свинец Висмут Скипидар Нитраты Фенол	0,02 0,08 0,1 40,0 0,0002
03	Медь Ниобий Селен Нафталин Натрия хлорат	0,8 0,005 0,002 0,02 10,0
04	Бензин Ртуть Фосфор элементарный Диметилфталат Нефть многосернистая	006 0,0001 0,0001 1,0 0,001
05	Фтор Глицерин Кадмий Диэтиламин Бутилбензол	1,0 0,3 0,01 1,0 0,01
06	Ванадий Железо Кобальт Кальция фосфат таллий	0,05 0,04 0,1 3,0 0,0001
07	Бенз(а)пирен Кремний Гидрохинон Ацетальдегид	0,00001 1,0 0,1 0,05

	Стирол	0,01
	Марганец	0.04
	Сульфаты	50,0
08	Литий	0,01
	Нитриты	3,5
	Формальдегид	0,03
	Капролактам	0,7
	Метилмеркаптан	0,00001
09	Бром	0,15
	Вольфрам	0,04
	Натрий	150,0

Продолжение табл. 3.2.

	T	Τ
	Молбден	0,4
	Керосин технический	0,005
10	Стронций стабильный	2,5
	Никель	0,1
	Стрептоцид	0,4
	Барий	0,07
	Алюминий	0,45
11	Фенол	0,0008
	Нитриты	3,0
	Скипидар	0,2
	Стронций стабильный	5,0
	Нитриты	2,5
12	Медь	0,9
	Нафталин	0,01
	Литий	0,02
	Мышьяк	0,01
	Натрия тиосульфат	1,5
13	Фтор	1,0
13	Алюминий	0,35
	Марганец	0,01
	Бензин	0,1
	Никель	0,1
14	Селен	0,1
14		
	Барий	0,01
	Литий	0,02
	Сульфиды	0,00002
1.5	Винилацетат	0,15
15	Сероуглерод	1,2
	Бензол	0,4
	Натрия тиосульфат	2,0
	Мышьяк	0,003
	Бор	0,3
16	Пропилен	0,4
	Сульфиды	0,00001
	Глицерин	0,6
	Фтор	1,0
	Пропилен	0,45
17	Ниобий	0,008
	Натрий	150,0
	Никель	0,4
	Кадмий	0,001
	Ванадий	0,1
18	Бутилен	0,17
10	Бром	0,1
	Стирол	0,1
	1	_ ~,~

	Стирол	0,09
	Капролактам	0,5
19	Ртуть	0,0004
	Таллий	0,00005
	Кремний	6,7
	Формальдегид	0,04
	Вольфрам	0,04
20	Кобальт	0,05
20	Скипидар	0,2
	Диметилфталат	1,5
	Селен	0,005
	Алюминий	0,1
21	Фтор	1,3
	Винилацетат	0,16
	Нитраты	35,0

Продолжение табл. 3.2.

	Ацетальдегид	0,1
22	Формальдегид	0,02
	Сульфид	0,0001
	Ртуть	0,0001
	Стронций стабильный	1,0
	Натрия тиосульфат	0,5
	Никель	0,1
23	Медь	0,1
23	Барий	0,05
	Висмут	0,03
	Бензин	0,1
	Нитриты	1,0
24	питриты Мышьяк	0,01
24		
	Бром	0,15 2,5
	Кальция фосфат	0,04
	Вольфрам	
25	Марганец	0,15
25	Глицерин	0,4
	Натрий	150,0
	Кобальт	0,1
	Хлор активный	0,00001
	Кадмий	0,0005
26	Таллий	0,00006
	Диэтиламин	2,2
	Фенол	0,0001
	Стирол	0,1
	Бенз(а)пирен	0,000001
27	Свинец	0,01
	Бор	0,3
	Сероуглерод	0,5
	Скипидар	0,1
	Ацетон	1,0
28	Литий	0,01
	Железо	0,1
	Бензол	0,3
	Фосфор элементарный	0,0001
	Сульфаты	6,0
29	Кремний	1,0
	Бутилен	0,1
	Нафталин	0,02
	Ниобий	0,01
30	Молибден	0,2
30	Бериллий	0,0001

Натрий	150,0
Стрептоцид	0,4
Гидрохинон	0,01

4. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ «ОЦЕНКА КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ»

1. Исходные данные:

Вариант	Вредное вещество	Фактическая концентрация, мг/л
1.	2.	3.
	Бор	0,5
	Ацетон	0,0001
	Алюминий	0,4
No	Сероуглерод	0,3
	Бериллий	0,0001
	Бутилен	0,15
	Хлор активный	2,0

- 2. Цель работы: дать оценку качеству питьевой воды по данным варианта.
- 3. Ход работы:

В соответствии с нормативными требованиями качество питьевой воды оценивают по трем показателям: бактериологическому, содержанию токсических веществ и органолептическим свойствам.

Основные источники загрязнения водоемов – бытовые сточные воды и стоки промышленных предприятий. Поверхностный сток (ливневые воды) – непостоянный по времени, количеству и качеству фактор загрязнения водоемов. Загрязнение водоемов происходит также в результате работы водного транспорта и лесосплава.

Различают водоиспользование двух категорий: к первой категории относится использование водного объекта в качестве источника хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности; ко второй категории относится использование водного объекта для купания, спорта и отдыха населения, а также использование водных объектов, находящихся в черте населенных мест. В качестве гигиенических нормативов принимают предельно допустимые концентрации (ПДК) — максимально допустимые концентрации, при которых содержащиеся в воде вещества не оказывают прямого или опосредованного влияния на организм человека в течение всей жизни и не ухудшают гигиенические условия водопользования.

В соответствии с действующей классификацией химические вещества по степени опасности подразделяют на четыре класса: 1-й класс – чрезвычайно опасные; 2-й класс – высокоопасные; 3-й класс – опасные; 4-й класс – умеренно опасные.

По таблице 3.1.«ПДК веществ в водных объектах хозяйственно-питьевого и культурнобытового назначения» находим данные ПДК, ЛПВ и классы опасности веществ, которые даны в варианте (см. табл. 3.2) и заполняем таблицу:

Вариант	Вредное вещество	Фактическая концентрация, мг/л	ЛПВ	ПДК, мг/л	Класс опасности	Данные для расчета
1.	2.	3.	4.	5.	6.	7.
	Бор	0,5	С-т	0,5	2	2
	Ацетон	0,0001	Общ.	2,2	3	
	Алюминий	0,4	С-т.	0,5	2	2
No	Сероуглерод	0,3	Орг.	1	4	
	Бериллий	0,0001	С-т.	0,0002	1	1
	Бутилен	0,15	Орг.	0,2	3	
	Хлор активный	2,0	Общ.	Отсутствие	3	

Сравним фактические значения концентраций вредных веществ с нормативными:

Бор - не превышена ПДК; ацетон – концентрация в воде намного меньше ПДК; алюминий – концентрация меньше ПДК; сероуглерод – меньше ПДК; бериллий – меньше ПДК; бутилен – меньше ПДК; хлор активный – ПДК не установлена.

Из табл. 3.2. видно, что по данным варианта в воде находятся 7 веществ различных классов опасности, но только 3 из них относятся к 1-му и 2-му классам опасности.

Если в воде присутствуют несколько веществ 1-го и 2-го классов опасности, сумма отношений концентраций (C_1 , C_2 , C_n) каждого из веществ в водном объекте к соответствующим значениям ПДК не должна превышать единицы (согласно формуле 3.1.):

$$C_1 / \Pi \coprod K_1 + C_2 / \Pi \coprod K_2 + ... + Cn / \Pi \coprod Kn \le 1$$

0,5 /0,5 + 0,4/0,5 + 0,0001/0,0002 = 1 + 0,8 + 0,5 = 2,3

Вывод: По результатам расчета сумма отношений концентраций (C_1 , C_2 , C_n) веществ 1-го и 2-го классов опасности в водном объекте к соответствующим значениям ПДК превышает единицу и равна 2.3, следовательно, вода не относится к 1-ой категории водопользования и не является питьевой. Концентрации остальных веществ, находящихся в воде не превышают предельно допустимых значений. Вода относится ко 2-ой категории водопользования.

ЛИТЕРАТУРА

1. Справочник помощника санитарного врача и помощника эпидемиолога/Под ред. Д.П. Никитина, А.И. Зайченко. – 2-е изд. – М.: Медицина, 1990 - 512 с.