Geometría de curvas y superficies 2 CC. Mat.-3 Doble Grado CC. Mat.-Ing.Inf. Curso 2021-2022

Hoja 1 (Curvas)

SOBRE CURVAS Y PARAMETRIZACIONES

1. Consideramos las siguientes curvas regulares:

- $\alpha(t) = (\operatorname{senh} t, \operatorname{cosh} t, t), \quad t \in \mathbb{R}.$
- $\beta(t) = (t, \frac{1}{\sqrt{2}}t^2, \frac{1}{3}t^3), \quad t \in \mathbb{R}.$
- $\gamma(t) = (\cos t, \sin t, \cosh t), \quad t \in \mathbb{R}$

Dibuja sus trazas. Parametrízalas por longitud de arco.

- 2. Dibuja las trazas de las siguientes curvas (planas), y calcula su función de longitud de arco.
- a) Catenaria: $\gamma(t) = (t, \cosh t), t \in \mathbb{R}.$
- b) Espiral logarítmica: $\gamma(t) = (ae^{-bt}\cos(t), ae^{-bt}\sin(t))$, para $t \in \mathbb{R}$, donde $a \neq b$ son constantes positivas.
- c) Parábola semicúbica, o cuspidal: $\gamma(t) = (\frac{1}{3}t^3, \frac{1}{2}t^2), t \in \mathbb{R}$.

Calcula, en b), lím $_{T\to\infty}\int_0^T\|\boldsymbol{\gamma}'(u)\|du$ e interpreta el resultado.

- **3.** Da parametrizaciones regulares que tracen los conjuntos del plano definidos por las ecuaciones siguientes. Dibuja esas trazas.
- a) (Elipse): $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
- b) (Hipérbola): $x^2 9y^2 = 1$ (Indicación: senos y cosenos hiperbólicos).
- c) (Cúbica nodal): $y^2 = x^2(x+1)$ (Indicación: usa el parámetro t = y/x).
- d) (Ocho de Lissajous): $y^2 = 4x^2(1-x^2)$ (*Indicación*: usa $t = \arcsin x$).
- 4. Una rueda, de radio R y situada en el plano Y-Z, gira con velocidad de 1 radián por segundo en torno a su eje, que está fijo en el origen. En tiempo t=0, uno de los radios de la rueda, pintado de rojo, está alineado en el eje Y positivo. Un punto verde se va a ir moviendo a lo largo de ese radio, empezando en t=0 en el origen, con velocidad de 1 unidad de longitud por segundo, hasta llegar al extremo de la rueda. Escribe una fórmula para la posición r(t) del punto en tiempo t.
- 5. Da una parametrización regular que trace el conjunto siguiente:

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 9, y + z = 2\}.$$

_____ Curvas espaciales: curvatura, torsión y triedro de Frenet

- 6. Para las curvas del ejercicio 1 calcula la curvatura y la torsión de las tres, y para α y γ ponlas en función de la longitud de arco. Calcula el triedro de Frenet y el plano osculador de β .
- 7. Considera la curva $\gamma(t)=(\cos t,\sin t,e^t)$. Calcula su triedro de Frenet, $\kappa(t)$ y $\tau(t)$, y estudia el comportamiento de κ y τ cuando $t\to\pm\infty$.

- 8. Halla todas las funciones f(t) que hacen que $\gamma(t) = (\cos t, \sin t, f(t))$ sea una curva plana. (Comentario: es posible que tengas que resolver una EDO lineal aquí).
- **9.** Escribe las condiciones que ha de cumplir un punto $(x, y, z) \in \mathbb{R}^3$ para que pertenezca al plano normal de la curva $\gamma(t) = (\cos(t), \sin(t), e^{t/\pi}), t \in \mathbb{R}$, en el punto $\gamma(\pi/2)$.
- **10.** Escribe las condiciones que ha de cumplir un punto $(x, y, z) \in \mathbb{R}^3$ para que pertenezca al plano osculador de la curva $\gamma(t) = (\cosh(t), \sinh(t), t), t \in \mathbb{R}$, en el punto $\gamma(0) = (1, 0, 0)$.
- 11. Sea γ una curva y sea $v = \|\gamma'\|$ su rapidez. Prueba que la curvatura κ satisface

$$\kappa^2 v^4 = \|\gamma''\|^2 - \left(\frac{dv}{dt}\right)^2.$$

(Sugerencia: calcula $\frac{d}{dt}v(t)$ y usa que $\|\mathbf{a} \times \mathbf{b}\|^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 - |\mathbf{a} \cdot \mathbf{b}|^2$).

Curvas planas y curvatura

- 12. Halla la curvatura escalar para cada una de las curvas (planas) del ejercicio 2.
- 13. Considera la curva $y=e^x, x\in\mathbb{R}$. Dibuja la función de curvatura asociada, y comprueba que tiene un único máximo. ¿En qué valor está?

(Nota: este punto se conoce como el "codo" de la exponencial. En ese punto, la exponencial parece "dispararse" definitivamente hacia arriba).

14. Una curva regular plana está definida en polares. Es decir, $\gamma(\theta) = (r(\theta)\cos(\theta), r(\theta)\sin(\theta))$, para cierta función $r(\theta)$.

Se pide obtener fórmulas para la función longitud de arco y la curvatura de la curva regular, y aplicarlas al caso de la espiral logarítmica, que está dada por $r(\theta) = ae^{-b\theta}$, con a, b > 0.

- **15.** Supongamos que la curva regular plana γ es la gráfica de cierta función. Es decir, para $t \in I$, $\gamma(t) = (t, f(t))$, donde f es una cierta función diferenciable.
 - (a) Halla una fórmula para la curvatura de γ en t en términos de f.
- (b) Digamos ahora que la curva γ viene dada implícitamente por F(x,y)=0. Halla una fórmula para la curvatura en un punto dado de la curva en términos de F.

(Sugerencia: el hecho de que, localmente, la curva es gráfica de una función, más el apartado (a)).

16. Sea γ una curva regular plana y sea $\beta = T \circ \gamma$ la composición de γ y T, donde T es una cierta aplicación $\mathbb{R}^2 \to \mathbb{R}^2$.

Halla la relación entre las curvaturas de γ y β :

- a) si T es una transformación ortogonal (conserva productos escalares),
- b) si T es una dilatación de parámetro $\mu > 0$ (es decir, $T(x,y) = (\mu x, \mu y)$).
- 17. Viajamos por el plano, partiendo del origen (0,0), siguiendo la traza de la curva $\gamma(t)=(t,t^2)$, donde el parámetro $t\geq 0$ es el tiempo (en segundos). Tras dos segundos, cambiamos la trayectoria y nos vamos por la circunferencia tangente ("por dentro") a $\gamma(2)$ y que tiene radio $1/\kappa_{\gamma}(2)$. Recorremos (en sentido horario) media circunferencia. ¿En qué punto del plano nos encontraremos? ¿Y si sólo recorremos un cuarto de circunferencia?
- **18.** Sea $\gamma: I \to \mathbb{R}^2$ una curva regular y sea $t_0 \in I$ tal que la función $\|\gamma(t)\|^2$ tiene un máximo relativo en t_0 . Prueba que $|\kappa(t_0)| \ge 1/\|\gamma(t_0)\|$, donde κ es la curvatura de γ .

19. Halla curvas planas con las siguientes curvaturas, donde s es la longitud de arco:

a)
$$\kappa(s) = \frac{1}{s}$$
, $s > 0$. b) $\kappa(s) = \frac{1}{\sqrt{1 - s^2}}$, $-1 < s < 1$. c) $\kappa(s) = \frac{1}{1 + s^2}$.

d)
$$\kappa(s) = \frac{2}{1+s^2}$$
 e) $\kappa(s) = 2s$.

20. Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ una curva birregular parametrizada por longitud de arco con torsión positiva. Denotamos por $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ su triedro de Frenet. Definimos la curva

$$\gamma(s) = \int_0^s \mathbf{b}(u) \, du.$$

- Calcula el triedro de Frenet, la curvatura y la torsión de γ .
- Halla una curva parametrizada por longitud de arco que tenga $\kappa(s) = s/(1+s^2)$ y $\tau(s) = \sqrt{2}/(1+s^2)$, con s > 0. (Indicación: puedes dejar la parametrización indicada como una integral; consulta también los resultados de la tercera curva tratada en los ejercicios 1 y 6).
- 21. Halla una curva parametrizada por longitud de arco cuyo vector binormal sea

$$\mathbf{b}(s) = \left(\frac{3}{5} \operatorname{sen} s, \frac{3}{5} \cos s, \frac{4}{5}\right).$$

Cuando tengas la expresión de la curva, comprueba que efectivamente su binormal tiene la expresión de arriba. ¿Y si fuera $\mathbf{b}(s) = (\frac{3}{5} \sin s, \frac{3}{5} \cos s, -\frac{4}{5})$?

- 22. Determina las curvas regulares del espacio
- a) cuyas rectas tangentes pasan por un punto fijo;
- b) cuyos planos normales pasan por un punto fijo. En el caso de que sea birregular, ¿qué ecuaciones satisfacen la curvatura y la torsión?
- 23. Determina las curvas birregulares del espacio
- a) cuyos planos osculadores pasan por un punto fijo;
- b) cuyas rectas normales pasan por un punto fijo.
- c) ¿Es posible en una curva birregular del espacio todas las rectas binormales concurran en un punto? Si es posible, ¿qué tipo de curva será?
- 24. ¿Qué curvas regulares γ satisfacen que $\gamma'' = \gamma' \times \mathbf{a}$, donde \mathbf{a} es un vector fijo?