Feuille d'exercices 5

Exercice 1. Soient p un nombre premier, $f \in \mathbb{F}_p[X]$ un polynôme irréductible de degré d et k un corps fini de cardinal $q = p^d$. Montrer que f est scindé sur k.

Exercice 2. Soit p un nombre premier. Montrer que pour tout entier $d \geq 1$, il existe un polynôme irréductible de degré d dans $\mathbb{F}_p[X]$. (Indication: on pourra utiliser le fait que le groupe multiplicatif d'un corps fini est cyclique.)

Exercice 3. Soient p un nombre premier impair et Ω une clôture algébrique de \mathbb{F}_p .

- 1. Rappeler pourquoi $\mathbb{F}_p = \{x \in \Omega, x^p = x\}.$
- 2. Montrer qu'il existe $\zeta\in\Omega$ tel que $\zeta^2=-1$. En déduire que -1 est un carré dans \mathbb{F}_p si et seulement si

$$p \equiv 1 \mod 4$$
.

3. Montrer qu'il existe $\zeta \in \Omega$ tel que $\zeta^4 = -1$. En considérant l'élément $\zeta + \zeta^{-1}$, montrer que 2 est un carré dans \mathbb{F}_p si et seulement si

$$p \equiv \pm 1 \mod 8$$
.

Exercice 4. Soient p un nombre premier et $P \in \mathbb{F}_p[X]$ un polynôme de degré d.

- 1. Montrer que P est irréductible dans $\mathbb{F}_p[X]$ si et seulement si P n'a pas de racine dans \mathbb{F}_{p^r} pour tout $r \leq \frac{d}{2}$.
- 2. Montrer que $\mathbb{F}_4 = \{0, 1, j, j^2\}$ avec $j^2 = 1 + j$.
- 3. En déduire que les polynômes

$$1 + X^2 + X^5 , 1 + X^3 + X^5 , 1 + X + X^2 + X^3 + X^5 , 1 + X + X^2 + X^4 + X^5 ,$$

$$1 + X + X^3 + X^4 + X^5 , 1 + X^2 + X^3 + X^4 + X^5$$

sont les polynômes irréductibles de degré 5 de $\mathbb{F}_2[X]$.

Exercice 5. Soient p un nombre premier, Ω une clôture algébrique de \mathbb{F}_p et $x \in \Omega$.

- 1. Montrer que le degré de l'extension $[\mathbb{F}_p[x]:\mathbb{F}_p]$ est le plus petit entier $d\geq 1$ tel que $\mathrm{Frob}_p^d(x)=x.$
- 2. On suppose $x \neq 0$ et on désigne par N l'ordre de x dans Ω^{\times} . Montrer que N est premier à p, puis que $[\mathbb{F}_p[x] : \mathbb{F}_p]$ est l'ordre de p dans $(\mathbb{Z}/N\mathbb{Z})^{\times}$.
- 3. Montrer que les \mathbb{F}_p -conjugués de x dans Ω sont exactement les $\operatorname{Frob}_p^n(x)$ avec $0 \leq n < d$.

4. En déduire que pour tout $a \in \mathbb{F}_p^{\times}$, le polynôme (d'Artin-Schreier) $X^p - X - a$ est irréductible dans $\mathbb{F}_p[X]$.

Exercice 6. Soit p un nombre premier.

1. Rappeler pourquoi

$$\Phi_p(X) = X^{p-1} + \dots + X + 1$$

est irréductible dans $\mathbb{Q}[X]$.

La suite de cet exercice est consacrée à l'étude de la réduction $\Phi_{p,l}$ de Φ_p modulo un nombre premier $l \neq p$.

- 2. Montrer que $\Phi_{p,l} \in \mathbb{F}_l[X]$ se factorise en $P_1 \cdots P_g$, où tous les P_i sont des irréductibles unitaires distincts de même degré, égal à l'ordre de l dans \mathbb{F}_p^{\times} .
- 3. En déduire que $\Phi_{p,l}$ est irréductible sur \mathbb{F}_l si et seulement si l engendre \mathbb{F}_p^{\times} .
- 4. Montrer que $\Phi_{p,l}$ admet une racine dans \mathbb{F}_l si et seulement si $l \equiv 1 \mod p$.
- 5. Déduire du (iv) qu'il existe une infinité de nombres premiers l tels que $l \equiv 1 \mod p$. (Indication: on pourra s'inspirer de la preuve d'Euclide de l'infinité des nombres premiers.)

Exercice 7.

- 1. Trouver le plus petit nombre premier p tel que $\sum_{i=0}^{22} T^i$ soit irréductible dans $\mathbb{F}_p[T]$.
- 2. Trouver les dix plus petits nombres premiers p tels que $\sum_{i=0}^{p-1} T^i$ soit irréductible dans $\mathbb{F}_2[T]$.

Exercice 8. Soit p un nombre premier fixé. Quelle est la probabilité qu'un polynôme unitaire $f \in \mathbb{F}_p[T]$ de degré d soit un produit de polynômes irréductibles de degrés 1 ou 2 ? Évaluer ces nombres (rationnels) pour p = 2 et $d \leq 7$.