

Horizontal and vertical lines are transformed into circles tangent the u and v axes respectively

Example:

Find the image of the line y = 1/2 under the transformation w = 1/zthe regions graphically.

Solution:

$$w = 1$$

$$z \Rightarrow \left(z = \frac{1}{w}\right) = \frac{1}{(u+iv)}$$

$$= \frac{1}{u+iv} \times \frac{u-iv}{u-iv}$$

$$= \frac{u}{u^2 + v^2} + i \frac{-v}{u^2 + v^2}$$

$$+i\frac{1}{u^2+v^2} \equiv x+$$

$$\Rightarrow x = \frac{u}{u^2 + v^2} \quad \& \quad y = \frac{-v}{u^2 + v^2}$$

$$\Rightarrow y = 1/2 \Rightarrow \frac{-v}{u^2 + v^2} = \frac{1}{2} \Rightarrow u^2 + v^2 + 2v = 0 \Rightarrow u^2 + (v+1)^2 = 1$$

$$v + v^2 = 2(-v)$$

general equation inclus ax+by+(=0)+

Example:

Show that straight lines or circles are transformed into straight lines or circles under the reciprocal

transformation.

Solution:

Consider the following equation

$$\Rightarrow \frac{A}{u^{2} + v^{2}} + \frac{Bu}{u^{2} + v^{2}} - \frac{Cv}{u^{2} + v^{2}} + D = 0$$

$$\Rightarrow D(u^2 + v^2) + Bu - Cv + A = 0$$

Under the reciprocal transformation, $x^2 + y^2 = \frac{1}{u^2 + v^2}$, $x = \frac{u}{u^2 + v^2}$ & $y = \frac{-v}{u^2 + v^2}$ $\Rightarrow \frac{A}{u^2 + v^2} + \frac{Bu}{u^2 + v^2} - \frac{Cv}{u^2 + v^2} + D = 0$ $\Rightarrow D(u^2 + v^2) + Bu - Cv + A = 0$

previouse
$$(x^{3} + ax^{2} + by^{2} + cx + dy = 0)$$

$$[A(x^{2} + y^{2}) + Bx + Cy + D] = 0$$

$$\Rightarrow D(u^{2} + v^{2}) + Bu - Cv + A = 0$$

$$A(x^2 + y^2) + Bx + Cy + D = 0$$

$$\Rightarrow D(u^2 + v^2) + Bu - Cv + A = 0$$

Remar Ks!

(a) a circle $(A \neq 0)$ not passing through the origin $(D \neq 0)$ in the z plane is transformed into a circle not passing through the origin in the w plane;

(b) a circle $(A \neq 0)$ through the origin (D = 0) in the z plane is transformed into a line that does not pass through the origin in the w plane;

(c) a line (A = 0) not passing through the origin (D ≠ 0) in the z plane is transformed into a circle through the origin in the w plane;

(d) a line (A = 0) through the origin (D = 0) in the z plane is transformed into a line through the origin in the w plane.

Functions of Complex Variables

neighborhood

open circular disk

set of all
$$3.5$$
 $(z-3)=3$

boundary

closed set

connected set

bounded set

Limits

a along the x-axis"

Differentiable

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{\Delta x}{\Delta x}$$

$$\lim_{X\to X_0}\frac{f(X)-f(X_0)}{X-X_0}$$

Differentiable

Theorem:

The function f(z) = u(x,y) + i v(x,y) is differentiable if and only if t satisfies

Cauchy – Riemann equations $u_x = v_y$ and $u_y = -v_x$ at which the derivative is

$$f'(z) = (u_x + iv_x) = (v_y - iu_y)$$

Note that the existence of the derivative thus implies the existence of the four partial derivatives Uz, Uy, Vz, Vy

Example 1:

Show that $f(z) = z^2$ is differentiable everywhere and f'(z) = (2z)

Solution:

$$f(z) = z^2 = (x + iy)^2 = (x^2 - y^2) + i(2xy) \Rightarrow u = (x^2 - y^2) & v = 2xy$$

$$u_x = 2 x$$
, $v_y = 2x$ $\Rightarrow u_x = v_y$ $\forall z$

$$u_x = 2x$$
, $v_y = 2x$ $\Rightarrow u_x = v_y$ $\forall z$
 $u_y = -2y$, $v_x = 2y$ $\Rightarrow u_y = -v_x$ $\forall z$ $\Rightarrow f(z)$ is differentiable everywhere.
 $f'(z) = 0 + i \forall x = 2x + i 2y = 2z = 7$

DX+1DY (2+02)-f(2)

$$\Rightarrow f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z$$

Example 2:

Show that $f(z) = \overline{z}$ is not differentiable anywhere.

Solution:

$$f(z) = x - iy \qquad \Rightarrow u = x & v = -y$$

$$u_x = 1 & v_y = -1 \qquad \forall y = 0 \qquad \forall x = 0$$

: It is impossible to equate u_x and v_y

 $\Rightarrow f(z) = \overline{z}$ is not differentiable anywhere.

Example 3:

Show that $oldsymbol{W} = oldsymbol{e}^{oldsymbol{Z}}$ is differentiable everywhere and $rac{dw}{dz} = e^{oldsymbol{z}}$

Solution:

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

$$u(x, y) = e^x \cos y \qquad v(x, y) = e^x \sin y$$

$$u_{x} = e^{x} \cos y, v_{y} = e^{x} \cos y \Rightarrow u_{x} = v_{y} \quad \forall z$$

$$u_{y} = -e^{x} \sin y, v_{x} = e^{x} \sin y \Rightarrow u_{y} = -v_{x} \quad \forall z$$

$$\frac{dw}{dz} = \int_{0}^{\infty} (z) = \int_{0$$

Similarly, we can find the derivatives of all the known functions

$$\frac{d}{dz}(z^n) = n z^{n-1}$$

$$\frac{d}{dz}((f(z))^n) = n(f(z))^{n-1} \times f'(z)$$

$$\frac{d}{dz}(\cos z) = -\sin z$$

$$\frac{d}{dz}(\tan z) = \sec^2 z$$

$$\frac{d}{dz}(\cot z) = -\csc^2 z$$

$$\frac{d}{dz}(\sec z) = \sec z \tan z$$

$$\frac{d}{dz}(\csc z) = -\csc z \cot z$$

$$\frac{d}{dz}(e^z) = e^z \qquad \frac{d}{dz}(\ln z) = \frac{1}{z}$$

$$\frac{d}{dz}(\ln z) = \frac{1}{z}$$

$$\begin{cases} \frac{d}{dz}(f g) = f g' + f' g \\ \frac{d}{dz}\left(\frac{f}{g}\right) = \frac{g f' - f g'}{g^2} \end{cases}$$

$$\frac{d}{dz}\left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}$$

Example 4:

Show where the function $f(z) = (x^2 + y) + i(y^2 - x)$ is differentiable.

Solution:

Solution:

$$u_x = (2x), v_y = (2y) \text{ for } u_x = v_y \Rightarrow x = y$$

$$u_x = (2x), v_y = (2y) \text{ for } u_x = v_y \Rightarrow x = y$$

$$u_x = (2x), v_y = (2y) \text{ for } u_x = v_y \Rightarrow x = y$$

$$u_x = (2x), v_y = (2y) \text{ for } u_x = v_y \Rightarrow x = y$$

$$u_x = (2x), v_y = (2y) \text{ for } u_x = v_y \Rightarrow x = y$$

②
$$u_y = 1$$
, $v_x = -1$ $\Rightarrow u_y = -v_x \ \forall \ z$

This function is differentiable only on the line y = x

Analytic and Harmonic Functions

Definition:

A function f(z) is called analytic at a point z_{θ} if it is differentiable at z_{θ} and on a neighborhood of z_{θ} .

Definition:

A neighborhood of a point z_{θ} is the set of all points z_{θ} such that $|z-z_{\theta}|<\varepsilon$ where $\varepsilon>0$

Definition:

A function is called Entire function if it is analytic everywhere and this happens if it is differentiable everywhere

We can show that the functions z^n , sin z, cos z, e^z are entire and their composite functions e^{z^n} , $sin e^z$, $e^{sin z}$, ... Caushy-Rione are satisfied z^n and z^n are entire and their composite z^n are entire and z^n

Example 5:

For the function $f(z) = (x^2 + y) + i(y^2 - x)$ which is given in example 4, state where the function is analytic.

Solution:

$$u_x = 2 x$$
, $v_y = 2 y$ for $u_x = v_y \Rightarrow x = y$

$$u_y = 1$$
, $v_x = -1$ $\Rightarrow u_y = -v_x \ \forall \ z$

This function is differentiable only on the line y = x

Hence, it is not analytic anywhere.

Harmonic Functions

Definition:

A function u(x,y) is called harmonic on a certain domain "D" if it satisfies Laplace's equation $u_{xx} + u_{yy} = 0$ on D

Theorem:

 $\frac{v}{v}$ If f(z)=u+iv is analytic on a certain domain "D" then both u and v are harmonic functions on the same domain "D" where u is called the harmonic conjugate of v and also v is called the harmonic conjugate of u.

Proof:

: f(z) is analytic, : it is differentiable $\Rightarrow (u_x = v)$ & $(u_y = -v_x)$

$$\Rightarrow u_{xx} = v_{yx} \& u_{yy} = -v_{xy} \Rightarrow u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$$
 : u is harmonic

Similarly, we can prove that v is also harmonic.

Uxx+ Uyy =0 Example 6:

Show that $u(x,y) = y^3 - 3x^2y$ is harmonic and find its conjugate "v" hence, find the analytic function f(z) = u + i v in terms of z.

Solution:

$$u_x = -6xy$$

$$u_{xx} = -6y$$

$$u_y = 3y^2 - 3x^2$$

$$u_{yy} = 6y$$

$$u_{yy} = 6y$$

$$u_{xx} + u_{yy} = -6y + 6y = 0$$

$$u_{xx} + u_{yy} = -6y + 6y = 0$$

$$u_{xx} + u_{yy} = -6y + 6y = 0$$

$$u_{xx} + u_{yy} = -6y + 6y = 0$$

:. u is harmonic

$$u_x = v_y \implies v_y = -6 x y$$

$$u_y = -v_x \implies v_x = 3x^2 - 3y^2$$
 (2) $\Rightarrow f(z) = i(z^3 + k)$

Integrating (1) w. r. t. y
$$\Rightarrow v = -3xy^2 + h(x)$$

Using (2)
$$\Rightarrow v_x = -3y^2 + h'(x) = 3x^2 - 3y^2$$

$$h'(x) = 3x^2 \Rightarrow h(x) = x^3 + k$$

$$v = x^3 - 3xy^2 + k$$

$$v = x^{3} - 3x y^{2} + k$$

$$f(z) = (y^{3} - 3x^{2}y) + i(x^{3} - 3x y^{2} + k)$$

$$y = \frac{z^{2} + z}{2}$$
Putting $y = 0$

$$y = z - z$$

Putting
$$y = 0$$

(1)
$$f(x) = i(x^3 + k) \quad \nearrow \rightarrow \mathbb{Z}$$

$$\Rightarrow f(z) = i(z^3 + k)$$

$$j = \frac{2i}{2i}$$