# The holomorphic $\sigma$ -model and its symmetries

#### Brian Williams

Northwestern University
Advisors: John Francis and Kevin Costello

May 1, 2018

## Outline of this talk

- 1. Rapid overview of the BV formalism.
- 2. Holomorphic theories, in general. One-loop finiteness and a formula for the general chiral anomaly.
- 3. The holomorphic  $\sigma$ -model and its factorization algebra.

## The BV formalism

The Batalin-Vilkovisky formalism is a technique used to study quantization in field theory. A generalization of the usual problem of deformation quantization.

$$SympMfld \xrightarrow{\quad \circlearrowleft \quad} Alg_{Poiss} \xleftarrow{\quad \ \ \, \hbar \to 0 \quad } Alg_{C[[\hbar]]}$$

$$(M,\omega) \longmapsto (\mathcal{O}(M),\Pi_{\omega}) \longleftrightarrow (\mathcal{O}(M)[[\hbar]],\star).$$

In field theory, one works on a smooth manifold X (the spacetime).

$$BV - Theory(X) \xrightarrow{Obs} FactAlg(X)_{P_0} \xleftarrow{\tau h \to 0} FactAlg(X)_{BV}.$$

Given a classical BV theory we study lifts of the  $P_0$  factorization algebra of classical observables to the BV factorization algebra of quantum observables.

In the one-dimensional case  $X=\mathbb{R}$  there exists a classical BV theory associated to a symplectic manifold  $(M,\omega)$ . In this case, BV quantization recovers ordinary deformation quantization.

# The BV formalism (cont.)

In QFT, BV algebras provide a mathematical model for the path integral (see Costello's book on renormalization).

### Definition

A BV algebra is a triple  $(A,Q,\Delta)$  where (A,Q) is a commutative dg algebra, and  $\Delta:A\to A$  is a degee one linear map such that

- (a)  $\Delta^2 = [\Delta, Q] = 0;$
- (b) the degree one bilinear map

$$\{a,b\} := \Delta(ab) - \Delta(a)b \pm a\Delta(b)$$

satisfies graded Jacobi, and is a graded biderivation with respect to the commutative product.

Thus  $\{-,-\}$  behaves like a Poisson bracket, except with a weird shift. We say an element  $I=I_0+\hbar I_1+\cdots\in A[[\hbar]]$  satisfies the *quantum master equation* (QME) if

$$(Q + 7 \Delta)e^{I/7h} = 0.$$

We call  $\hbar$  the *perturbation* parameter.

# The BV formalism (cont.)

When we set  $\hbar = 0$ , the QME reduces to condition

$$QI_0 + \frac{1}{2}\{I_0, I_0\} = 0.$$

We call this the classical master equation (CME).

## Example

Suppose  $A=\mathcal{O}(V)=\operatorname{Sym}(V^*)$  for some graded vector space V. Then a functional  $I_0$  satisfying the CME is equivalent to an data of an  $L_\infty$  structure on the graded vector space V[-1].

Most important example of BV algebras in QFT come from (-1)-shifted geometry. Suppose  $(V,\omega)$  is a (-1)-shifted symplectic vector space.

Then, the symmetric tensor  $K_0 := \omega^{-1} \in \operatorname{Sym}^2(V)$  defines an operator (of order two)

$$\Delta_0 = \partial_{\mathcal{K}_0} : \mathcal{O}(V) \to \mathcal{O}(V)$$

by contraction. This operator defines a BV algebra  $(\mathcal{O}(V), Q, \Delta_0)$ , where Q is the internal differential of V.

# The BV formalism (cont.)

Suppose that  $P \in \operatorname{Sym}^2(V)$  is a symmetric tensor of degree zero, and define  $K_P = K_0 + QP$ . One checks that  $K_P$  defines another BV algebra based on  $\mathcal{O}(V)$ .

Given  $I \in \mathcal{O}^+(V)$  (at least cubic), define  $W(P,I) \in \mathcal{O}(V)[[\hbar]]$  formally by

$$e^{W(P,I)/\hbar} = e^{\hbar \partial_P} e^{I/\hbar}$$

#### Lemma

The functional I satisfies the QME relative to  $K_0$  if and only if W(P, I) satisfies the QME relative to  $K_P$ .

The functional W(P, I) decomposes as a sum over connected graphs

$$W(P,I) = \sum_{\Gamma} \frac{\hbar^{g(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} W_{\Gamma}(P,I),$$

where  $W_{\Gamma}$  is the weight of the graph  $\Gamma$ .

# Field theory

A classical field theory on a smooth manifold M is:

- (i) a graded vector bundle E whose sections we denote  $\mathcal{E}$ ;
- (ii) a differential operator  $Q:\mathcal{E} \to \mathcal{E}$  of degree one;
- (iii) a graded antisymmetric bundle map  $(-,-)_E: E\otimes E\to \mathrm{Dens}_X$  of degree (-1) that is fiberwise nondegenerate.
- (iv) a local functional  $I_0 \in \mathcal{O}_{loc}(\mathcal{E})$  satisfying the CME.

We require that  $(\mathcal{E},Q)$  is an elliptic complex. The pairing  $(-,-)_E$  defines a (-1)-shifted symplectic structure via integration

$$\omega = \int_X \circ (-,-)_E.$$

The sheaf of sections  $\mathcal{E}$  evaluated on an open set U returns the graded space  $\mathcal{E}(U)$  which we refer to as the space of fields supported on U.

## Holomorphic field theory

In the world of complex geometry we have the following definition of a holomorphic field theory on a complex manifold X:

- (i) a graded holomorphic vector bundle V on X whose sheaf of holomorphic sections we denote  $\mathcal{V}^{hol}$ ;
- (ii) a holomorphic differential operator  $Q^{hol}:\mathcal{V}^{hol}\to\mathcal{V}^{hol}$  of degree one;
- (iii) a graded antisymmetric bundle map  $(-,-)_V:V\otimes V\to K_X$  of degree (d-1) that is fiberwise nondegenerate.
- (iv) a holomorphic Lagrangian  $\mathfrak{I}_0^{hol}$  satisfying the CME.

| Holomorphic theory                            | BV theory                                                                           |
|-----------------------------------------------|-------------------------------------------------------------------------------------|
| Holomorphic bundle V                          | Space of fields $\mathcal{E}_V = \Omega^{0,*}(X,V)$                                 |
| Holomorphic differential operator $Q^{hol}$   | Linear BRST operator $\overline{\partial} + Q^{hol}$                                |
| Non-degenerate pairing $(-,-)_V$              | $(-1)$ -symplectic structure $\omega_{V}$                                           |
| Holomorphic Lagrangian $\mathfrak{I}_0^{hol}$ | Local functional $I_0^{\Omega^{0,*}} \in \mathcal{O}_{\mathrm{loc}}(\mathcal{E}_V)$ |

Table: From holomorphic to BV

# Regularization

Let  $(\mathcal{E}, Q, \omega, I_0)$  be a classical BV theory. The first thing to do is define the BV operator  $\Delta_0 = \omega^{-1}$ .

▶ **Problem:** The tensor  $\omega^{-1}$  is *distributional*, thus  $\Delta_0$  is not well-defined on functionals.

The solution is to find a homotopy replacement for  $K_0$ 

$$\widetilde{K} = K_0 + QP$$
,

so that its BV operator is well-defined. (By elliptic regularity, one always exists). Such a regularization is parametrized by a length scale L>0. For each L< L' a regularization scheme prescribes a *propagator*  $P_{L< L'}$  such that

$$K_{L'} = K_L + QP_{L < L'}$$

where  $K_L$ ,  $K_{L'}$  are both smooth and  $\lim_{L\to 0} K_L = K_0$ .

## The definition of a QFT

By definition, a quantization is a family of functionals  $\{I[L]\}$  with  $I_0 = \lim_{L \to 0} I[L] \mod \hbar$  satisfying the following two conditions:

1. the collection of functionals  $\{I[L]\}$  are related by *renormalization* group flow

$$I[L'] = W(P_{L < L'}, I[L]).$$

2. for each *L*, the functional solves the *scale L* quantum master equation

$$(Q + \hbar \Delta_L) e^{I[L]/\hbar} = 0.$$

For abstract reasons, proved by Costello, one can always find a family such that (1) is satisfied. In general, the answer is not constructive and involves choosing counterterms with respect to a renormalization scheme. There may be unavoidable obstructions to solving problem (2).

The naı̈ve definition of I[L] is to apply the operator  $P_{0 < L}$  to the classical interaction

$$I[L] = W(P_{0 < L}, I_0)$$

The problem is that the right-hand side is rarely well-defined (same issue as above). A solution to this, which always exists, is to find counterterms.

#### **Theorem**

There is a regularization scheme for **holomorphic theories** on  $\mathbb{C}^d$  such that the limit

$$I[L] = \lim_{\epsilon \to 0} W(P_{\epsilon < L}, I_0) \mod \hbar^2$$

exists. In other words, holomorphic theories on  $\mathbb{C}^d$  are one-loop finite.

The main ingredient is in the existence of the gauge fixing operator  $\overline{\partial}^*$ .

ightharpoonup Studying the quantizations of holomorphic theories on  $\mathbb{C}^d$  reduces to solving the quantum master equation. This is essentially an algebraic problem.

A corollary of this result is a characterization of the *anomaly*, or obstruction, for a holomorphic theory to solve the QME.

## Corollary

The obstruction for a classical holomorphic theory on  $\mathbb{C}^d$  to admit a one-loop quantization is given by the following expression:

$$\Theta = \lim_{\epsilon, L \to 0} \sum_{\Gamma \in \text{Wheel}_{d+1}} W_{\Gamma}(P_{\epsilon < L}, K_{\epsilon}, I_0).$$

### Pictorially PICTURE

This gives a holomorphic characterization, and generalization, of the Adler-Bell-Jackiw anomaly for four-dimensional gauge theory.

# The holomorphic $\sigma$ -model

The holomorphic  $\sigma$ -model is a prototypical holomorphic theory. Let X, Y be complex manifolds and consider the mapping space:

$$\operatorname{Map}^{hol}(Y, X) = \{f : Y \to X \text{ holomorphic}\}.$$

There are a few issues:

1. a classical theory involves a shifted symplectic pairing. The theory we study is of the form

$$T^*[-1]\left(\operatorname{Map}^{hol}(Y,X)\right).$$

In degree zero, the fields consist of a map  $\gamma:Y\to X$  together with a class  $\beta\in\Omega^{d,d-1}(Y,\gamma^*T^{*1,0}X)$ . The action functional is

$$S(\beta, \gamma) = \int_{Y} \beta \wedge \overline{\partial} \gamma.$$

Notice when we vary  $\gamma$ ,  $\beta$  we obtain  $\overline{\partial}\gamma = 0 = \overline{\partial}\beta$ .

2. To make this into a BV theory, we must perturb around a fixed holomorphic map; we look at the formal neighborhood of constant maps  $\operatorname{Map}(Y,X)^{\wedge}_{const}$ .

## Local-to-global

Our construction of the holomorphic  $\sigma$ -model is local-to-global on the target manifold. We phrase the theory in the style of *formal geometry* due to Gelfand, Kazhdan, Fuks. To every n-dimensional manifold X (smooth, complex, symplectic, etc..) there exists a universal bundle of coordinates:



 $X^{coor}$  is a principal  $\mathrm{Aut}_n$ -bundle together with a transitive action of the Lie algebra of *formal vector fields* in n-dimensions  $\mathrm{W}_n$ . There is

$$\omega^{coor} \in \Omega^1(X^{coor}, W_n)^{\operatorname{Aut}_n} \xrightarrow{\sigma^*} \Omega^1(\operatorname{Fr}_X, W_n)^{\operatorname{GL}_n}$$

satisfying the Maurer-Cartan equation  $d\omega^{coor} + \frac{1}{2}[\omega^{coor}, \omega^{coor}] = 0$ .

### Gelfand-Kazhdan descent

Define a category of "formal vector bundles" on the formal n-disk. In particular, these are  $(W_n, GL_n)$ -modules. For each X, there is a functor

$$\begin{array}{ccc} \mathcal{V} & \longmapsto & \left(\operatorname{Fr}_{X} \times^{\operatorname{GL}_{n}} \mathcal{V}, \nabla^{\operatorname{coor}}\right) \\ & & & & & & & \\ \operatorname{VB}_{\widehat{D}^{n}} & & & & & \\ \downarrow & & & & \downarrow \\ \operatorname{Mod}_{(\operatorname{W}_{n}, \operatorname{GL}_{n})} & & & & \operatorname{Mod}_{D_{X}}. \end{array}$$

Moreover, there are "formal characteristic classes" that live in the Gelfand-Fuks cohomology. The descent functor determines a transformation of cohomology theories and hence a map of complexes

$$\operatorname{char}_X: C^*_{\operatorname{Lie}}(W_n, \operatorname{GL}_n; \mathcal{V}) \to \Omega^*(X, \operatorname{desc}_X(\mathcal{V})).$$

When  $\mathcal{V} = \widehat{\mathcal{O}}_n$  formal power series,  $\mathrm{desc}_X(\widehat{\mathcal{O}}_n) = J^\infty \mathcal{O}_X$  equipped with its natural flat connection. Recover all natural bundles in this way.

# The formal holomorphic $\sigma$ -model

Consider the formal disk  $\widehat{D}^n$  as a ringed space whose ring of functions is formal power series  $\widehat{\mathcal{O}}_n$ .

$$Y \longrightarrow \widehat{D}^n \supset (W_n, GL_n).$$

**Key idea:** study the free theory equivariant for the action of the pair  $(W_n, GL_n)$ . Get global target  $\sigma$ -model via descent.

Quantization: holomorphic theory  $\implies$  renormalization is simple.

Obstruction is controlled by an element in Gelfand-Fuks cohomology.

### **Theorem**

There is an obstruction to quantizing the formal holomorphic  $\sigma$ -model of maps  $\mathbb{C}^d \to \widehat{D}^n$  given by the class

$$\mathrm{ch}_{d+1}^{\mathrm{GF}}(\widehat{\mathcal{T}}_n) \in C_{\mathrm{Lie}}^{d+1}(W_n,\mathrm{GL}_n;\widehat{\Omega}_{n,cl}^{d+1}).$$

Under characteristic map, this returns the ordinary Chern class. Determines an  $L_{\infty}$ -extension

$$0 \to \widehat{\Omega}_{n,cl}^{d+1} \to \widetilde{W}_{n,d} \to W_n \to 0.$$

## Extended descent

Given any trivialization  $\alpha$  of  $\mathrm{ch}_{d+1}(T_X)$  we can lift the structure of the coordinate bundle.



Can find flat connection  $\widetilde{\omega}_{\alpha} \in \Omega^1(\operatorname{Fr}_X, \widetilde{W}_{n,d})$ . Descent functor

$$\widetilde{\operatorname{desc}}_{X,\alpha}:\operatorname{Mod}_{(\widetilde{W}_{n,d},\operatorname{GL}_n)}\to\operatorname{Mod}_{D_X}.$$

Theorem implies quantization is equivariant for  $(\widetilde{W}_{n,d},GL_n)$ . This says that for any trivialization  $\alpha$  we obtain a global quantization.

## Main result

Explicit GF calculation shows there is a unique  $(\widetilde{W}_{n,d}, GL_n)$ -quantization for the formal theory. Extended descent implies the following main result.

### **Theorem**

Suppose  $\operatorname{ch}_{d+1}(T_X)=0$ . Then, the space of quantizations respecting certain natural symmetries of the holomorphic  $\sigma$ -model of maps  $\mathbb{C}^d \to \widehat{D}^n$  is a torsor for the abelian group  $H^d(X, \Omega_X^{d+1, hol})$ .