Машинное обучение. Обзорная лекция

Алексей Колесов

Белорусский государственный университет

10 ноября 2019 г.

Содержание

- Обзор пройденного материала
 - Теория
 - Алгоритмы
- Избранные главы ML
 - Кластеризация
 - Понижение размерности
 - Алгоритмы
 - Другие направления
- Избранные главы NN

Что такое машинное обучение

Том Митчелл

A computer program is said to learn from experience E, with respect to some task T, and some performance measure P, if its performance on T as measured by P improves with experience E.

Некоторые понятия

Обобщающая способность — качество программы показывать хорошее качество на примерах, которые она не видела раньше

Inductive bias — набор предположений (априорных знаний), который используется для предсказания неизвестных значений

Для успешного обучения использование априорных знаний неизбежно (No Free Lunch theorem).

Зачем нужно машинное обучение

- задачи, которые сложно запрограммировать
 - сложноформализуемые задачи (например, распознавание символов, речи, вождение автомобиля)
 - задачи неподвластные человеку (анализ астрономических данных, ранжирование веб-страниц)
- задачи, для которых нужна адаптация

Минимизация эмпирического риска

Модель: алгоритм принимает S, полученный из распределения D и размеченный функцией f. Его задача найти гипотезу $h_S: X \to Y$, который минимизирует ошибку $L_{D,f}(h_S)$ по отношению к неизвестным D и f.

- ullet D и f неизвестны $\Rightarrow L_{D,f}(h_s)$
- давайте использовать ошибку на тренировочной выборке (empirical risk, empirical error):

$$L_{S}(h) = \frac{|\{i \in [m] : h(x_{i}) \neq y_{i}\}|}{m}$$

Минимизация эмпирического риска — парадигма обучения, заключающаяся в выборе гипотезы, минимизирующей ошибку на тренировочной выборке

ERM with inductive bias

- ERM-правило приводит к переобучению
- Вместо того, чтоб не использовать его, найдём случаи, когда это правило работает достаточно хорошо
- Хороший способ ограничить набор гипотез
- H семейство гипотез из X в Y;

$$\mathsf{ERM}_H(S) \in \operatorname*{argmin}_{h \in H} L_S(h)$$

• Один из важных вопросов машинного обучения: «для каких $H \ {\sf ERM}_H$ не переобучается»

Agnostic PAC-leanable for generalized loss functions

Класс гипотез H называют агностически вероятно приблизительно верно изучаемым (agnostic PAC-learnable) по отношению к множеству Z и функции потерь $I: H \times Z \to \mathbb{R}_+$, если существует такая функция $m_H: (0,1)^2 \to \mathbb{N}$ и алгоритм, такой что

- ullet для любых $\epsilon,\delta\in(0,1)$
- ullet для любого распределения D над Z

если мы выполним алгоритм на выборке из $m\geqslant m_H(\epsilon,\delta)$ независимых одинаково распределённых элементов из D, то алгоритм вернёт гипотезу $h\in H$ такую, что с вероятностью как минимум $1-\delta$, выполняется $L_D(h)\leqslant \min_{h'\in H}L_D(h')+\epsilon$, где

$$L_D(h) = \underset{z \sim D}{\mathbb{E}}[I(h, z)]$$

Неравномерная изучаемость

Гипотеза h называется (ϵ,δ) -конкурентной с гипотезой h' $((\epsilon,\delta)$ -competitive), если $\mathbb{P}[L_D(h)\leqslant L_D(h')+\epsilon]>1-\delta$

Класс гипотез H называют **неравномерно изучаемым** (nonuniform learnable) если существует такая функция $m_H^{NUL}: (0,1)^2 \times H \to \mathbb{N}$ и алгоритм, такой что

- ullet для любых $\epsilon, \delta \in (0,1)$
- ullet для любой $h' \in H$
- ullet для любого распределения D над X

если мы выполним A на выборке из $m\geqslant m_H^{NUL}(\epsilon,\delta,h')$ независимых элементов из D, то с вероятностью как минимум $1-\delta$, выполняется $L_D(A(S))\leqslant L_D(h')+\epsilon$

Характеризация классов с неравномерной изучаемостью

Критерий неравномерной изучаемости

Класс гипотез H является неравномерно изучаемым, тогда и только тогда, когда H — объединение не более чем счётного множества РАС-изучаемых классов H_i .

Теорема о связи равномерной сходимости и неравномерной изучаемости

Пусть $H = \bigcup_{n \in \mathbb{N}} H_n$, где каждый H_n обладает свойством равномерной сходимости. Тогда H — неравномерно изучаемый

Будем искать решение вот так:

$$\operatorname{argmin}_{w}(L_{S}(w) + R(w))$$

- R(w) может отражать «сложность» гипотезы
- $H = \bigcup_{i} \{w : R(w) \leqslant i\}$ (cm. SRM)
- $R(w) = \lambda ||w||^2$ регуляризация Тихонова
- гребневая регрессия использует регуляризацию
- выбор регуляризации наложение prior distribution на w

Алгоритм Perceptron

Алгоритм 1 Batch perceptron

```
Вход: Разделимая тренировочная
                                                                          S
                                                         выборка
     \{(x_1, y_1), \ldots, (x_m, y_m)\}\
Выход: w, такой что y_i \langle w, x_i \rangle > 0 \ \forall i = 1, \ldots, m
 1: w^{(1)} = (0, \dots, 0)
 2: for t = 1, 2, ... do
     if \exists i, т.ч. y_i \langle w^{(t)}, x_i \rangle \leq 0 then
 3:
              w^{(t+1)} = w^{(t)} + v_i x_i
 4:
 5.
     else
              return w^{(t)}
 7:
         end if
 8: end for
```

МНК = ММП для линейной регрессии

Теорема о ММП оценке в случае гауссовского шума

Пусть разметочная функция f имеет вид:

$$f(x_i) = h_{\alpha}(x_i) + \epsilon_i$$

где ϵ_i — независимые нормальные случайные величины с нулевым средним и дисперсией σ_i^2 . Тогда МНК-решение и ММП-оценка для α совпадает, в случае, если веса объектов w_i обратно пропорциональны дисперсии шума σ_i^2

Алгоритм

Алгоритм 2 AdaBoost

```
Вход: S = ((x_1, y_1), \dots, (x_m, y_m)); y_i \in \{-1, +1\}
 1: for i = 1, ..., m do
 2: D_1 = \frac{1}{m}
 3: end for
 4: for t = 1, ..., T do
 5:
          h_t = базовая гипотеза с ошибкой \epsilon_t = \mathbb{P}_{D_t}[h_t(x_i) \neq y_i]
      \alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}
 6:
 7: Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}
 8: for i = 1, ..., m do
               D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{7}
 g.
          end for
10:
11: end for
```

Алгоритм

Алгоритм 3 Stochastic gradient descent для минимизации f(w)

Вход: $\eta > 0$, T > 0

- 1: $w^{(1)} = 0$
- 2: **for** t = 1, ... T **do**
- 3: v_t случайный вектор, т.ч. $\mathbb{E}[v_t|w^{(t)}]\in\partial f(w^{(t)})$
- 4: $w^{(t+1)} = w^{(t)} \eta v_t$
- 5: end for
- 6: **return** $\overline{w} = \sum_{t=1}^{T} w^{(t)}$

SGD для Soft-SVM

Алгоритм 4 SGD для Soft-SVM

```
Вход: T > 0
 1. \theta^{(1)} = 0
 2: for t = 1, ..., T do
           w^{(t)} = \frac{1}{\lambda t} \theta^{(t)}
 3:
           выбрать i равновероятно из [m]
 4:
         if y_i \langle w^{(t)}, x_i \rangle < 1 then
 5:
                \theta^{(t+1)} = \theta^{(t)} + v_i x_i
 6:
 7:
           else
                \theta(t+1) = \theta(t)
 8:
           end if
 9:
10: end for
11: return \overline{w} = \sum_{t=1}^{T} w^{(t)}
```

Содержание

- 1 Обзор пройденного материал
 - Теория
 - Алгоритмы
- Избранные главы ML
 - Кластеризация
 - Понижение размерности
 - Алгоритмы
 - Другие направления
- Избранные главы NN

Кластеризация

- кластеризация группировка множества объектов таким образом, чтоб похожие объекты были в одной группе (кластере), а непохожие — в разных
- применяется в анализе данных, как один из первых этапов
- магазины кластеризуют покупателей по покупкам; астрономы — звёзды по близости друг к другу; биологи гены по их показателям в экспериментах

Сложность кластеризации

- кластеризация преследует две цели:
 - близкие объекты в одном классе
 - далёкие в разных
- близость не транзитивное понятие
- разбиение на кластеры отношение эквивалентности
- можно предложить последовательность x_1, \ldots, x_m , что x_i близка к соседям, но x_1 далёк от x_m

Кластеризация Понижение размерности Алгоритмы Другие направления

Пример

- вторая проблема отсутствие ground truth
- в supervised learning мы можем оценить качество решения по тренировочной выборке
- в кластеризации нет чёткого критерия успеха (что такое «правильная» кластеризация?)

Пусть хотим кластеризовать:

.

Какой вариант выбрать?

Проблема встречается и в приложениях:

- как кластеризовать речь: по акценту или по содержанию?
- как кластеризовать фильмы: по жанру или по рейтингу?

Алгоритмы кластеризации

- linkage-based
- минимизация стоимости кластеризации
- спектральные методы

k-means

- в k-means каждый кластер C_i представляется своим центроидом: μ_i
- ullet предполагается, что $\mu_i \in X'$, $X \subseteq X'$, d расширяется на X'
- $\mu_i(C_i) = \underset{\mu \in X'}{\operatorname{argmin}} \sum_{x \in C_i} d(x, \mu)^2$
- $G_{k-means}((X,d),(C_1,\ldots,C_k)) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x,\mu_i(C_i))^2$
- можно переписать:

$$G_{k-means}((X,d),(C_1,\ldots,C_k)) = \min_{\mu_1,\ldots,\mu_k \in X'} \sum_{i=1}^k \sum_{x \in C_i} d(x,\mu_i)^2$$

Часто применяемые стоимости

- $G_{k-means}(...) = \min_{\mu_1,...,\mu_k \in X'} \sum_{i=1}^k \sum_{x \in C_i} d(x,\mu_i)^2$
- $G_{k\text{-medoids}}(\ldots) = \min_{\mu_1,\ldots,\mu_k \in X} \sum_{i=1}^k \sum_{x \in C_i} d(x,\mu_i)^2$
- $G_{k\text{-medians}}(\ldots) = \min_{\mu_1,\ldots,\mu_k \in X} \sum_{i=1}^k \sum_{x \in C_i} d(x,\mu_i)$
- $G_{SOD}(...) = \min_{\mu_1,...,\mu_k \in X} \sum_{i=1}^k \sum_{x,y \in C_i} d(x,y)$

Алгоритм k-means

А π **горитм 5** k-means

Вход: $X \subset \mathbb{R}^n$,

Вход: k — количество кластеров

- 1: Случайно выбрать начальные центроиды: μ_1, \dots, μ_k
- 2: while не сошлось do

3:
$$C_i = \{x \in X : i = \operatorname{argmin}_i ||x - \mu_i||\}, \ \forall i \in [k]$$

4:
$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}, \ \forall i \in [k]$$

- 5: end while
- 6: **return** центроиды: μ_1, \ldots, μ_k

Методы понижения размерности

Понижение размерности — отображение данных высокой размерности в низкоразмерное пространство

- уменьшение вычислительной сложности
- улучшения обобщения (например, k-NN)
- повышение интерпретируемости данных

Рассматриваемые методы

- ullet будем отображать данные из \mathbb{R}^d в \mathbb{R}^n (n < d)
- наиболее распространены линейные методы: $x\mapsto Wx$, где $W\in\mathbb{R}^{n\times d}$
- выбирать W стоит так, чтоб можно было «восстановить» x из Wx
- точное восстановление не всегда возможно

Задача РСА

Давайте решим:

$$\underset{W \in \mathbb{R}^{n \times d}, U \in \mathbb{R}^{d \times n}}{\operatorname{argmin}} \sum_{i=1}^{m} ||x_i - UWx_i||_2^2$$

Полученный метод носит название **Principal Component Analysis** (метод главных компонент). Изобретён Карлом Пирсоном в 1901-м году.

Решение РСА

Решение РСА

Пусть x_1, \ldots, x_m вектора из \mathbb{R}^d , $A = \sum_{i=1}^m x_i x_i^T$, пусть $u_1, \ldots, u_n - n$ собственных векторов A, соответствующие n наибольшим собственным значениям A. Тогда решение задачи PCA — взять U матрицу, колонки которой — вектора u_1, \ldots, u_n , а $W = U^T$

Другие методы

- случайные проекции
- Linear Discriminative Analysis
- Autoencoders
- t-SNE

Метод ближайших соседей

- обучение: запомнить выборку
- классификация: найти ближайший объект из выборки ответить тем же классом
- можно находить k ближайших (k-NN) и выбирать мажоритарный класс
- можно применять для задач регрессии

Decision trees

Boostrap aggregating (Bagging)

- пусть есть выборка размера п
- получим из неё сэмплингом k выборок размера n' (с повторениями)
- на каждом научим классификатор
- объединим выходы классификаторов

Random forest

- ullet зададимся числом k
- получим k выборок из исходной выборки путём сэмплинга объектов и признаков
- обучим decision tree на каждом подмножестве
- объединим деревья

Ансамблирование

- методы голосования
- стекинг моделей (обучаем одну модель на выходах другой)

Онлайн-обучение

- что делать, если данные приходят по одному и сразу нужен ответ?
- SGD!
- Online Convex Optimization

Transduction

Ещё теория

- Radamacher complexity
- Feature selection
- Multiclass learning
- Learning to rank!
- Transfer learning
- Federative learning

Содержание

- Обзор пройденного материала
 - Теория
 - Алгоритмы
- Избранные главы ML
 - Кластеризация
 - Понижение размерности
 - Алгоритмы
 - Другие направления
- Избранные главы NN

Segmentation

NLP

- задачи: машинный перевод, языковое моделирование, саммаризация
- word embeddings
- beam search

GAN

Generative adversarial networks (conceptual)

CycleGan

CycleGan

Adversarial attacks

57.7% confidence

99.3% confidence

Reinforcement learning

Reinforcement learning: selfdriving car

Reinforcement learning: starcraft

Содержание

- Обзор пройденного материала
 - Теория
 - Алгоритмы
- Избранные главы ML
 - Кластеризация
 - Понижение размерности
 - Алгоритмы
 - Другие направления
- Избранные главы NN

Что делать дальше?

- join ODS ods.ai
- применяйте kaggle.com
- читайте книги http://www.deeplearningbook.org,
 «Pattern Recognition and Machine Learning» (Bishop)
- слушайте подкасты https://lexfridman.com/ai/