

Machine Learning with Edge Systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Learning objectives

- Understand and analyze the relationship between edge computing and ML
- Explore and study basic concepts and issues when engineering ML in edge systems
- Identify and work on ML optimization problems across levels of abstraction in edge systems

IoT-Edge-Cloud

"Edge" is just an abstraction view

Edge computing

- Edge computing paradigm focuses on distributed computing at the edge and end devices
 - many distributed low-end as well as a limited number of highend devices/machines for different purposes
- Leveraging common technologies like in the cloud and specific ones
 - e.g., virtualization, messaging systems, storage/database, Web services
- But with different constraints

Edge computing

- Computation/analytics can be done at the edge
 - where data is generated, close to the data sources
 - next to IoT devices and sensing equipment,
 - many distributed (moving) locations, e.g., in the shopping center, in the car
- Near real-time processing is needed in most situations
- Very heterogeneity w.r.t system models, hardware architectures, network connectivity, protocols

Example: Predictive maintenance

Move to the edge

Example: Industrial Internet of Things

Figures source: http://www.windpowerengineering.com/design/electrical/controls/wind-farm-networks/talking-turbines-internet-things/

Example: video analytics at the edge

Use Case 3: Video Analytics

Figure 4: Example of video analytics

Figure source:

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

Why do we have to support ML/data analytics at the edge?

What kind of benefits?

Machine learning/big data analytics in the edge

- Many applications can benefit from ML/data analytics capabilities
 - Inferencing/classification in mobile devices
 - Realtime ML-based steering (autonomous cars, speech control, traffic controls)
 - Realtime detection: fraud detection, anomaly detection, accidents
 - Manufacturing (Industrial Internet of Things)

Machine learning/big data analytics in the edge

- Close to data sources → "data locality" benefits
 - Security & privacy
 - Performance
 - Customization/Personalization
 - Cost saving

Basic concepts/issues when engineering ML in edge systems

Very new area! a lot of ongoing research and development!

What do we need to consider when supporting ML in the edge?

- Network problems
 - High latency, low-bandwidth, unreliable connectivity
- Computation capabilities
 - Constrained processing power, a lot of specific chips and accelerators, and limited memory
- Storage is not enough for big data
- V* issues in data
 - Out of distribution data, unlabeled data, time series data, streaming data
- Energy/power usage of devices/machines

What do we need to consider when supporting ML in the edge?

- Edge with hardware heterogeneity
 - common hardware (e.g., AMD, Intel, ARM), SoC and microcomputers, microcontrollers
 - with/without common and AI-based accelerators like FPGA, GPU, and TPU
- → Requirements for certain types of ML might not be fulfilled: computation-intensive ML (e.g., video analytics)

Pervasive embedded edge devices

- Raspberry PI4
- Google Coral
- Jetson Nano
- Xilinx
- A huge number of MCUs (Microcontroller Units)

Interaction models in edge ML systems

Which components do what and where are they?

Standalone/in-device ML capabilities within independent devices

Common client-server model without local processing

Software systems for ML in the edge

What are key features for ML runtime and programming frameworks?

 What are key features for resource management for running ML?

Suitable ML and runtime for the edge: key requirements

- Energy consumption
- Resource constraints
 - less computation capabilities → precision and accuracy?
- Latency and uncertainty
- Interfaces with different networks capabilities
- Support accelerators
 - E.g., FPGA, AI Accelerators (e.g. Intel® Movidius Myriad X VPU)
- Trade-offs between generic versus specific features

Examples of ML frameworks and Runtime for the edge

- TF-lite (https://www.tensorflow.org/lite)
- https://github.com/Microsoft/EdgeML
- uTensor: https://github.com/uTensor/uTensor
- Androi NN (https://developer.android.com/ndk/guides/neuralnetworks)
- CoreML (https://developer.apple.com/machine-learning/core-ml/)
- PyTorch mobile (https://pytorch.org/mobile/home/)
- Snapdragon Neural Processing Engine SDK
 - https://developer.qualcomm.com/docs/snpe/overview.html

Changes in MLOps

MLOps (ML DevOps)

- DevOps principles for ML
- In ML engineering processes: key artefacts are ML models, data and runtime libs
- New areas, still a lot of ongoing research work

Changes in ML with edge systems

- DevOps and DataOps activities in the edge
- Optimization and training activities
- Tests and benchmarks
- Monitoring

Example of MLOps

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Is it the same in the edge?

What would be MLOps for ML in the edge?

MLOps in edge systems

Train in clouds/on-premise but edge deployment

- Training in cloud and/or on-premise, and inferences in the edge
 - Issues of optimization, loss in transferring/conversion
 - Accuracy loss due to the conversion
- Training and inferences in the edge
 - Difficult with tools
 - Accuracy loss due to the training (limited)

Training in cloud and inference in the edge

https://blogs.gartner.com/paul-debeasi/files/2019/01/Train-versus-Inference.png

Can you guess some issues that we need to deal in this case?

Examples

https://developer.qualcomm.com/docs/snpe/overview.html

Some optimization problems

Multiple levels of optimization

Scope/level of abstraction

Cross edge machines
ML platforms/infrastructures
In-device/-machine ML
platform

Research issues

ML serving, ML elasticity

ML function partitioning, orchestration, deployment, observability ..

Device-machine specific optimization

Our focus: to understand and practice engineering analytics during ML development

Selected problems: transfer learning

Transfer learning

- Repurpose a model trained for a task for another task
- Basically it is an optimization of an existing model for a new task
- Need model selection, reuse and model retraining

Transfer learning for the edge

- Conversion/Translation: transforming typical models in common environments to edge models
- Symbiotic engineering: learning with simulations and inference with real data
- Application domains adaptation: adapt models among application domains

Selected problems: model selection and conversion

Model management and selection

- Precision and time tradeoffs with computational requirements
- Work with microcontrollers and accelerators

Transforming

- A model can be supported by different frameworks
- How will these issues affect Robustness and Reliability?

Example: model conversion

Conversion

- just a simple form of "transforming"
- A model fits into a single device/machine or into a set of machines?
- Single device/machine: no distributed computing
 - focus on ML service and in-device optimization levels
- A set of machines:
 - which are distributed computing models for ML across machines

Selected problems: model optimization

Pruning

 Prune graphs for training, remove features in ML models which are not significant

Quantization

- Reduce precision representation, storage, bandwidth
- Conditional computation/Regularization
 - Activate certain units of the model
- How will these issues affect Robustness, Reliability and Elasticity?

Tools/frameworks

- ONNX (Open Neural Network Exchange) format
 - Can be used as an intermediate representation compiled by tools to specific targets
- Nvidia TensorRT
 - JetPack SDK
- OpenVINO (https://docs.openvinotoolkit.org/latest/index.html)
- Apache TVM (https://tvm.apache.org/)
 - VTA (Versatile Tensor Accelerator)

Example of ³ Quantificatio n by reducing floating point

32 bit floating point 16 bit floating point

Conversion: the case of distributed models

Goal:

• if you have a model, now how to split it into edge/cloud?

Possible approaches

- partitioned model: split a model into different sub models
- distributed ML networks: distribute the model graph across edge/cloud systems
- federated learning: distributed training parts
- chain of distributed ML models
- Not a simple task need to combine many techniques

Partitioned models

- A kind of "function partitioning" problems
- Training many partition/sub models, each for a partition data
 - e.g., network operations in a city versus in country sides
 - a partitioned model consists of multiple sub models
 - Work as a single model
- Slice input data into partitions, data in a suitable partition will be mapped into partition models (e.g., data partition)
- We can have a partitioned model running in multiple edges (each edge, e.g., host a partition model)

Partitioned models

- How to manage sub models for a partitioned model
- How to slice data for training and for inferences
- How to encapsulate complex runtime aspects to enable "virtualized" partitioned model serving

Distributed ML graph

Assume that you can partition a complex ML graph, what could be possible issues?

How to partition? What would be the exchanges among subsystems

Selected problems: federated training with edges

Machine learning is decentralized with a distributed set of devices holding data and carrying out (sub) training/inferencing

- What about Reliability and Resilience?
 - Consensus in updates, secured aggregation protocols, dynamicity and elasticity

Selected problems: ML Serving

ML Serving (and R3E)

Which types of dynamic service models we could have?

How to distribute tasks in model serving?

How to partition ML tasks in both edge and cloud?

Study log

- No study log but read papers and do the hands-on tutorial
- You can pickup some points mentioned as the topic for your individual project
 - Or incorporate some ideas into your individual project
- We expect ML with edge systems will increasingly been developed for many advanced software systems!
 - Good areas for master theses/research projects.

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io