コンピュータグラフィクス論

- モデリング(2) -

2019年4月25日 高山 健志

サブディビジョン曲面

その理論的土台となる

Bスプライン曲線

Basis, 基底

例:2Dの折れ線を関数として表現

1次の基底関数を用いた折れ線の表現

de Boor の n次基底関数

• 再帰的な定義:

•
$$B_0(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

•
$$B_n(t) = \frac{t}{n}B_{n-1}(t) + \frac{n+1-t}{n}B_{n-1}(t-1)$$

• 性質:

- n次区分多項式
- [0, n+1] の外では常にゼロ (local support)
- Cⁿ⁻¹連続

2次の基底関数を使う → 2次Bスプライン

3次の基底関数を使う → 3次Bスプライン

基底関数の大事な性質:partition-of-unity

- Bスプライン曲線のX座標: $x(t) = \sum_i x_i B_n(t-i)$
- すべての制御点の座標 x_i を定数 c だけ平行移動することを考える:

•
$$x(t) = \sum_{i} (x_i + c) B_n(t - i)$$

$$= \sum_{i} x_i B_n(t-i) + c \sum_{i} B_n(t-i)$$

• partition-of-unityを満たせば、曲線全体もcだけ平行移動したものになる

3次Bスプライン曲線と3次Catmull-Rom曲線

Bスプラインからサブディビジョンへ

基底関数のもう一つの重要な性質

• 同じ基底関数の local support を半分にしたものの重み付け和に分解可能

サブディビジョンによる2次曲線の生成

• 各頂点を、2個の頂点に分裂させる (= 各エッジについて、2個の頂点を生成)

サブディビジョンによる2次曲面の生成

双2次基底関数 $B_{2,2}(s,t) = B_2(s) B_2(t)$

各頂点を、4個の頂点に分裂させる (= 各面について、4個の頂点を生成)

トーラス形状への適用結果

3次Bスプラインの場合

サブディビジョンによる3次曲線の生成

- 各エッジについて、その中点に新しい頂点を生成
- 各頂点を、周囲の頂点と重み付け平均した位置に動かす

サブディビジョンによる3次曲面の生成

双3次基底関数 $B_{3,3}(s,t) = B_3(s) B_3(t)$

• 各面について、その重心に1個の頂点を生成

サブディビジョンによる3次曲面の生成

• 各エッジについて、周囲の頂点を重み付き平均した位置に新しい頂点を生成

サブディビジョンによる3次曲面の生成

双3次基底関数 $B_{3,3}(s,t) = B_3(s) B_3(t)$

"vertex point" ステンシル

• 各頂点を、周囲の頂点を重み付き平均した位置に動かす

トーラス形状への適用結果

サブディビジョンの一般化

先述の定式化の前提条件

- サーフェスを「きれいな」四角形メッシュに分割できること
 - 「きれいな」頂点:隣接する面の数 (valence) が4つ
 - valence が4でない頂点:特異点
- ・特別な場合(トーラス)を除き、
 - 一般には成り立たない

• Bスプラインから導出されるステンシルを、 幾何的な解釈から一般化

2次曲面ステンシルの一般化 (Doo-Sabin法)

$$P = \frac{1}{16}(9A + 3B + 3C + D)$$

$$= \frac{A + B + C + D}{4} + \frac{A + B}{2} + \frac{A + C}{2} + A$$

各ポリゴンの各頂点について、それに隣接する2個のエッジの中点と、ポリゴンの重心と、それ自身の平均を取った位置に頂点を生成

→ 一般のポリゴンメッシュに適用できる

Doo-Sabin法の適用例

Doo-Sabin法の適用例

3次曲面ステンシルの一般化 (Catmull-Clark法)

$$P = \frac{A_1 + A_2 + A_3 + A_4}{4}$$

各ポリゴンについて、その重心に頂点を生成

→ 一般のポリゴンメッシュに適用できる

3次曲面ステンシルの一般化 (Catmull-Clark法)

$$P = \frac{3}{8}(A_1 + A_2) + \frac{1}{16}(B_1 + B_2 + B_3 + B_4)$$

$$= \frac{\frac{1}{A_1 + A_2 + B_1 + B_2}}{\frac{4}{4} + \frac{A_1 + A_2 + B_3 + B_4}{2}} + \frac{\frac{1}{A_1 + A_2}}{\frac{A_1 + A_2}{2}} + \frac{\frac{1}{A_1 + A_2}}{2}$$

各エッジについて、それを共有する両側のポリゴンの重心の平均と、 それ自身の中点の平均を取った位置に頂点を生成

→ 一般のポリゴンメッシュに適用できる

3次曲面ステンシルの一般化 (Catmull-Clark法)

比較

Catmull-Clark = 3次曲面

Doo-Sabin = 2次曲面

三角形メッシュのサブディビジョン (Loop法)

• 三角形格子上のBスプライン に基づいて設計

• 特異点以外ではC²連続な3次曲面

頂点のvalenceが6でない場合

→難解な理論に基づいた式 (Loopの論文を参照)

Catmull-Clark法とLoop法の比較

- CG業界ではCatmull-Clark法が圧倒的にポピュラー
 - 四角形メッシュだと二つの主曲率方向を自然に表せる

その他のサブディビジョン手法

- four-point法
 - ・制御点を通る (interpolating)
 - ←→ approximating
 - 多項式として表現できない(?)
 - C¹連続
 - 曲面バージョン:Butterfly法

- Kobbelt法
- √3法
- etc...

Geri's Game (Pixar, 1997)

- サブディビジョンを 使った最初の映画
 - それ以前 (Toy Story) は Bスプラインで多大な 労力をかけていた

https://www.youtube.com/watch?v=9IYRC7g2ICg

滑らかさの制御

• サブディビジョンのルールを少し変えると、鋭いエッジを表現できる

滑らかさの制御

• サブディビジョンのルールを少し変えると、鋭いエッジを表現できる

サブディビジョンの解説資料

- Smooth Subdivision Surfaces Based on Triangles [Loop, MSc. Thesis 87]
 - Doo-Sabin法やCatmull-Clark法を含め、考え方を丁寧に図解
 - 間違いがあるので注意: http://www.cs.berkeley.edu/~sequin/CS284/TEXT/LoopErrata.txt
- Subdivision for Modeling and Animation [SIG00 Course]
 - サブディビジョンの概説としては最も有名。でも微妙に難解
 - http://www.cs.nyu.edu/~dzorin/sig00course/
- OpenSubdiv from research to industry adoption [SIG13 Course]
 - ・最新の話題など
 - http://dx.doi.org/10.1145/2504435.2504451

ハーフエッジデータ構造

頂点リストと面リストによるメッシュ表現

OFF file format

```
OFF
-0.5 -0.5 0.5
0.5 -0.5 0.5
-0.5 0.5 0.5
0.5 0.5 0.5
-0.5 0.5 -0.5
0.5 0.5 -0.5
-0.5 -0.5 -0.5
0.5 -0.5 -0.5
```

- ← 頂点数、面数
- ← 0番目の頂点の xyz 座標

•

- ← 7番目の頂点の xyz 座標
- ← 0番目の面の頂点数と頂点インデックスリスト

•

← 6番目の面の頂点数と頂点インデックスリスト

頂点リストと面リストによるメッシュ表現

- ・メッシュ処理 (サブディビジョン等) で使う情報
 - ・ある頂点に隣接する頂点の集合
 - ・ある面に隣接する面の集合
 - あるエッジの両端の頂点
 - あるエッジの両側の面
 - etc...

・「配列の配列」で保持しても良いが、メモリ消費が大きい ⊗

ハーフエッジデータ構造

- ・リンク情報を保持:
 - (1) 頂点→その頂点から出るハーフエッジの一つ
 - (2) 面→その面を構成するハーフエッジの一つ
 - (3) ハーフエッジ→行き先の頂点
 - (4) ハーフエッジ→それが構成する面
 - (5) ハーフエッジ**→**次のハーフエッジ
 - (6) ハーフエッジ**→**反対側のハーフエッジ
- ある面の周りの要素をループ:
 - $(2) \rightarrow (5) \rightarrow (5) \rightarrow \dots$
- ある頂点の周りの要素をループ:
 - $(1) \rightarrow (6) \rightarrow (5) \rightarrow (6) \rightarrow (5) \rightarrow \dots$

http://www.openmesh.org/

面を追加する際の処理

- ハーフエッジを生成
- 頂点→ハーフエッジをリンク (1)
- ハーフエッジ→頂点をリンク (3)
- 次のハーフエッジをリンク (5)
- ハーフエッジ→面をリンク (4)
- 面→ハーフエッジをリンク (2)
- ハーフエッジ→反対向きのハーフエッジを探してリンク (6)

論文

- Recursively generated B-spline surfaces on arbitrary topological meshes [Catmull,Clark,CAD78]
- A 4-point interpolatory subdivision scheme for curve design [Dyn,Levin,CAGD87]
- A butterfly subdivision scheme for surface interpolation with tension control [Dyn,Levine,Gregory,TOG90]
- Sqrt(3)-subdivision [Kobbelt,SIGGRAPH00]
- Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values [Stam,SIGGRAPH98]
- Interactive multiresolution mesh editing [Zorin,Schroder,Sweldens,SIGGRAPH97]
- Interpolating subdivision for meshes with arbitrary topology [Zorin,Schroder,Sweldens,SIGGRAPH96]