WHAT IS CLAIMED IS:

1	1. An oligomeric para-phenylene compound having the formula:
2	R^1 - $(Ar^i)_n$ - R^2
3	wherein
4	the subscript n is an integer of from 5 to 15;
5	the superscript i is an integer of from 1 to n and denotes the position downstream from
6	\mathbf{R}^{1} ;
7	each Ar is a substituted or unsubstituted aryl group;
8	R^1 and R^2 are each substituents that increase the solubility of the para-phenylene
9	compound in nonpolar organic solvents relative to the solubility of the
10	corresponding compound wherein R ¹ and R ² are hydrogen;
11	with the proviso that the Ar groups are linked together in a 1,4-paraphenylene
12	manner.
1	2. A compound of claim 1, wherein n is an integer of from 5 to 9.
1	3. A compound of claim 1, wherein said Ar ⁱ groups are independently
2	selected from unsubstituted phenylene and phenylene having from 1 to 4 fluoro substituents.
1	4. A compound of claim 1, wherein said Ar ⁱ groups are independently
2	selected from unsubstituted phenylene, phenylene having from 1 to 4 fluoro substituents; and
3	substituted or unsubstituted fused polycyclic aryl with the proviso that any fused polycyclic
4	aryl groups are linked in the compound in a manner that maintains a coplanar orientation
5	relative to the adjacent Ar ⁱ groups.
1	√ 5. A compound of claim 4, wherein said fused polycyclic aryl groups are
2	selected from the group consisting of 2,6-naphthylene, 2,7-phenanthrylene, 2,6-anthrylene,
3	and 2,6-carbazolylidene.
1	\checkmark -6. A compound of claim 1, wherein the subscript n is 7 and Ar ³ and Ar ⁵
2	are substituted or unsubstituted 2,6-naphthylene.
1	A compound of claim 1 wherein the subscript m is 7 and 4-4 because two
1 2	7. A compound of claim 1, wherein the subscript n is 7 and Ar ⁴ bears two substituted or unsubstituted phenyl ring substituents other than the remaining Ar ⁱ groups.

- A compound of claim 1, wherein R¹ and R² are each independently 1 8. 2 substituents having the formula:
- R^3 - $(Ar^j)_m$ -3
- wherein 4
- 5 the subscript m is an integer of from 1 to 5;
- each Ar^j is selected from the group consisting of 6
 - a) a 1,4-phenylene group having the formula:

8 ġ

7

- 10 11 11 12
- <u></u> 18
 - 19 20
 - 21
 - 22
 - 23
 - 24 25
 - 26
 - 27
 - 1
 - 1

wherein each R⁴ is a member independently selected from the group consisting of H, substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-C₁₂)alkoxy, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or

unsubstituted (C₁-C₁₂)alkylthio, substituted or unsubstituted di(C₁-

- C₁₂)alkylamino, substituted or unsubstituted arylamino, substituted or unsubstituted diarylamino and halogen, with the proviso that at least two of the four R⁴ substituents are independently selected from substituted or unsubstituted (C₁-C₁₂)alkyl and substituted or unsubstituted (C₁-C₁₂)alkoxy, and
- b) an aryl biradical selected from the group consisting of 1,4-naphthylene, 1,4anthrylene, 9,10-anthrylene, 5,6,7,8-tetrahydronaphth-1,4-ylene, 9,9',10,10'tetra(C₁-C₁₂)alkyl-9,10-dihydroanthr-1,4-ylene, 9,9'10,10'-tetraaryl-9,10dihydroanthr-1,4-ylene, 9,9'10,10'-tetra(C₁-C₁₂)alkyl-9,10-dihydroanthr-2,6ylene, 9,9'10,10'-tetraaryl-9,10-dihydroanthr-1,4-ylene; and
- R³ is selected from the group consisting of H, substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-C₁₂)alkoxy, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or unsubstituted (C₁- C_{12})alkylthio, substituted or unsubstituted di (C_1-C_{12}) alkylamino, substituted or unsubstituted arylamino, substituted or unsubstituted diarylamino and halogen.
 - 9. A compound of claim 8, wherein m is an integer of from 1 to 3.
 - A polymer of the formula: **10**.

2	R^{11} - $(Q^i)_p$ - R^{12}
3	wherein
4	each R ¹¹ and R ¹² is independently selected from the group consisting of H,
5	substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 -
6	C_{12}) alkoxy, substituted or unsubstituted (C_1 - C_{12}) alkylamino, substituted or
7	unsubstituted (C ₁ -C ₁₂)alkylthio, substituted or unsubstituted di(C ₁ -
8	C ₁₂)alkylamino, substituted or unsubstituted arylamino, substituted or
9	unsubstituted diarylamino and halogen;
10	the subscript p is an integer of from 5 to 200;
11	the superscript i is an integer of from 1 to p and indicates the position downstream
12	from R ¹ of each Q;
1.3	each_Qi_is_a_benzoquinone_or_hydroquinone_subunit_selected_from the formulae:
	$ \begin{array}{c cccc} X & OH \\ \hline HO & X \end{array} $ and $ \begin{array}{c cccc} X & O \\ \hline O & X \end{array} $
14	
15	wherein
16	each X is independently selected from the group consisting of H, substituted or
17	unsubstituted (C ₁ -C ₁₂)alkyl, substituted or unsubstituted (C ₁ -C ₁₂)alkoxy,
18	substituted or unsubstituted (C ₁ -C ₁₂)alkylamino, substituted or
19	unsubstituted (C ₁ -C ₁₂)alkylthio, substituted or unsubstituted di(C ₁ -
20	C_{12}) alkylamino, substituted or unsubstituted arylamino, substituted or
21	unsubstituted diarylamino and halogen.
1	11. A polymer of claim 10, wherein said hydroquinone and benzoquinone

- A polymer of claim 10, wherein said hydroquinone and benzoquinone . subunits alternate in said polymer so that no two hydroquinone subunits are adjacent and no
- two benzoquinone subunits are adjacent.

subunits are present in about a 50:50 ratio.

A polymer of claim 10, wherein two adjacent hydroquinone subunits . alternate with one benzoquinone subunit.

- 14. A polymer of claim 10, wherein two adjacent benzoquinone subunits 1 2 alternate with one hydroquinone subunit. **15**. A block copolymer having the formula: 1 R^{21} - $(O^{j})_{k}$ - R^{22} 2 wherein 3 each R²¹ and R²² is independently selected from the group consisting of H, 4 substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-5 C_{12})alkoxy, substituted or unsubstituted (C_1 - C_{12})alkylamino, substituted or 6 7 unsubstituted (C₁-C₁₂)alkylthio, substituted or unsubstituted di(C₁-C₁₂)alkylamino, substituted or unsubstituted arylamino, substituted or 8 9 -unsubstituted-diarylamino-and-halogen; 10 11 12 13 14 the subscript k is an integer of from 2 to 20; the superscript j is an integer of from 1 to k and indicates the position downstream from R²¹ of each Q; each Qi is a para-phenylene block subunit or a solubility-enhancing subunit, said subunits selected from the formulae: 15 16 17 $-(Ar^{i})_{n}$ and $-(Ar^{j})_{m}$ wherein the subscript n is an integer of from 5 to 15; the subscript m is an integer of from 1 to 5: each Arⁱ is a substituted or unsubstituted aryl group linked in a manner that 19 maintains a coplanar orientation relative to adjacent Arⁱ groups; 20
 - R²³ R²³

each Ar is selected from the group consisting of

a) a 1,4-phenylene group having the formula:

21

22

23

24

2526

27

28

wherein each R²³ is a member independently selected from the group consisting of H, substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or unsubstituted di(C₁-C₁₂)alkylamino, substituted or unsubstituted arylamino, substituted or

12

manner.

- 20. A branched polymeric aromatic compound of claim 19, wherein the subscript n is 3; each Ar¹ and each Ar³ is 1,4-phenylene; and each Ar² is a substituted or unsubstituted 1,4-phenylene.
- 21. A method of preparing a polymeric OLED material on a solid support, said method comprising:
- (a) contacting a solid support-bound aryl diazonium salt with 3,6 dichloroquinone under conditions sufficient to form a solid support-bound aryl quinone
 derivative; and
 - (b) contacting said solid support-bound aryl quinone derivative with a diazonium compound having the formula:

$$CI^{-1}N_2$$
 N_2^{-1} N_2^{-1} N_2^{-1} N_2^{-1} N_2^{-1}

wherein each X^1 is a blocking group and the subscript n is an integer of from 0 to 4; under conditions sufficient to form an intermediate poly OLED material;

- (c) repeating steps (a) and (b) from 2 to 70 times; and
- (d) terminating the polymeric OLED material by contacting the product of step (c) with a terminating diazonium compound having the formula:

$$R = \begin{bmatrix} X^2 & O \\ & & \\$$

15 wherein

1

2

3

1 2

6

7

14

17

18 19

20

21

22

each X² is a blocking group,

R is a member selected from the group consisting of H, substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-C₁₂)alkoxy, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or unsubstituted di(C₁-C₁₂)alkylamino, substituted or unsubstituted arylamino and substituted or unsubstituted diarylamino; and m is an integer of from 0 to 3.

2 OLED material is produced having the formula:

4 wherein

3

6

7 8

9

2

2

4

5 6

7

1

2

5 L is a linking group;

the shaded sphere is a solid support; and

X¹ is a member selected from the group consisting of halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted alkylamino.

- 23. A method in accordance with claim 21, wherein said solid support is selected from the group consisting of glass, tin oxide, indium oxide, and mixtures thereof.
- 24. A solid support-bound poly OLED material formed by the method of claim 21.
 - **25**. A polyfurano ladder oligomer having the formula:

3 wherein

the subscript z is an integer of from 2 to 7;

each of R^{31} , R^{32} , R^{33} , R^{34} , R^{35} , R^{36} is independently selected from the group consisting of H, substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 - C_{12})alkoxy and halogen.

26. A polyfurano ladder oligomer of claim 25, wherein R³² and R³⁵ are each H.

1 2

3

- 1 27. A polyfurano ladder oligomer of claim 25, wherein z is an integer of 2 from 2 to 4; and R³² and R³⁵ are each H.
- 28. A method of forming a light emitting polymer, said method comprising exposing an oligomeric para-phenylene compound of claim 1 having attached acrylate ester groups to sufficient ultraviolet light to form a light emitting polymer comprising a plurality of said oligomeric para-phenylene compound covalently attached to each other via ester and ether linkages.
 - 29. A method of forming a light emitting polymer, said method comprising exposing a polyfurano ladder oligomer of claim 25 having attached acrylate ester groups to sufficient ultraviolet light to form a light emitting polymer comprising a plurality of said polyfurano ladder oligomers covalently attached to each other via ester and ether linkages