Example: Poker Test

A sequence of 1000 four-digit numbers has been generated and an analysis indicates the following combinations & frequencies:

Combination Distribution (i)	Observed Frequency (O_i)	
4 different digits	540	
3 like digits	50	
4 like digits	20	
1 pair	320	
2 pairs	70	

Use Poker's test to determine if these random numbers are independent, $\alpha = 0.05$.

Solution:

In 4-digit numbers, there are only five possibilities- four different, 3 of a kind, 4 of a kind, 1 pair and 2 pairs. Let's calculate the probabilities for each of these cases:

Case-I: P(4 different digits)

=
$$P(2^{nd} \text{ diff. from } 1^{st}) * P(3^{rd} \text{ diff. from } 1^{st} & 2^{nd}) * P(4^{th} \text{ diff. from } 1^{st}, 2^{nd} & 3^{rd})$$

$$= 0.9 * 0.8 * 0.7 = 0.504$$

Case-II: P(3 like digits)

=
$$P(2^{nd}$$
 digit same as 1^{st}) * $P(3^{rd}$ digit same as 1^{st}) * $P(4^{th}$ digit diff. from 1^{st}) * 4C_3

$$= 0.1 * 0.1 * 0.9 * 4 = 0.036$$

Case-III: P(4 like digits)

$$= P(2^{nd} \text{ digit same as } 1^{st}) * P(3^{rd} \text{ digit same as } 1^{st}) * P(4^{th} \text{ digit same as } 1^{st})$$

$$= 0.1 * 0.1 * 0.1 = 0.001$$

Case-IV: P(1 pair)

= No. of possible combinations for a pair from 4 digits * $P(2^{nd}$ digit same as 1^{st} in the pair) * $P(3^{rd}$ digit diff. from 1^{st}) * $P(4^{th}$ digit diff. from 1^{st} & 3^{rd})

$$= {}^{4}C_{2} * 0.1 * 0.9 * 0.8 = 0.432$$

Case-V: P(2 pairs)

$$= 1 - 0.504 - 0.036 - 0.001 - 0.432 = 0.027$$

With N = 1000, let's summarize the results for Poker's test in the following table:

Combination	Observed Frequency	Expected Frequency	$(O_i-E_i)^2/E_i$
Distribution (i)	O_i	$E_i = Prob.*N$	
4 different digits	540	504	2.571
3 like digits	50	36	5.44
4 like digits	20	1	361
1 pair	320	432	29.037
2 pairs	70	27	68.48

Downloaded From: http://www.codeplustech.blogspot.com

1000 1000 466.528

Calculated χ^2 value = 466.528

Degree of freedom = n - 1 = 5 - 1 = 4

At $\alpha = 0.05$, acceptable value of χ^2 from table = 9.49

Since, the calculated value of χ^2 is greater than the acceptable value at four degree of freedom, the independence of the random numbers is rejected on the basis of this test.

Downloaded From: http://www.codeplustech.blogspot.com