Reversing firmware using radare2 [H2HC]

A. Kochkov October, 2014

Motives

- ► Implement FOSS alternative (coreboot, OpenEC)
- ▶ Figure out possible attack vectors via firmware trojans

We will take only case of modern PC/Laptop/Server firmware(s).

Why?

Because it is a HUGE work!

Simple old computer diagram

CPU

Nothing really new. Usual $\times 86/\times 86_{-}64$. But we just talking about early boot stages. As in the very ancient times CPU still starts in the 16bit emulation mode. Instead of old good 386 modern processors (like Intel ones) can check signature of the reset vector. But all after that can be tampered very easy.

Intel Laptop booting process (simplified)

CPU uCode

Main purpose - to fix hardware bugs. Sometimes you can see interesting erratas. Modern CPU microcode firmware is signed for both AMD and Intel (2048 bits) (PKCS#1 v1.5 padding, SHA-1, later SHA-2) 1 There is no public reversing of the microcode, while it possibly (speculation?) allow to patch MOV instruction behaviour to copy important data somewhere

¹Ben Hawker (2012-2013). Notes on Intel Microcode Updates.

Intel ME/AMT/vPro

A lot of research, ARC4 was 'broken'² and can be exploited. ARC5 research is in progress³, problems with unpacking (huffman tables, etc).⁴

Table: ARC hardware

Name	Generation 1	Generation 2	Generation 3
ME versions	1.x - 5.x	6.x - 10.x	BayTrail
Core	ARCTangent-A4	ARCTangent-A5	SPARC
ISA	ARC (32 bit)	ARCompact (both 32 and 16 bit)	SPARC v8
Manifest tag	\$MAN	\$MN2	\$MN2
Module header tag	\$MOD	\$MME	\$MME
Code compression	None, LZMA	None, LZMA, Huffman	None, LZMA

Table from Intel ME secrets talk⁵

²lurii Bystrov Patrick Stewin (2013). "Persistent, Stealthy, Remote-controlled Dedicated Hardware Malware". In: 30C3. Hamburg, Germany.

³MEre project (2013-2014).

⁴Intel ME 6.x Huffman algorithm (2014).

⁵Igor Skochinsky (2014). "Intel ME Secrets". In: REcon.

AMD IMC

- Various peripheral and power management tasks
- ► Experimental open firmware is available from Rudolf Marek
- ▶ An embedded controller of sorts in the southbridge. The controller is either enabled by hardware strap option. Or if you provide a firmware, the controller is enabled via soft strapping the chipset. It is 8051 controller.

AMD SMU

Another embedded controller, The SMU seems to be handling PCIe power management stuff in AMD northbridges (from RS880 onwards?) the firmware is loaded during system boot. It is unknown if the firmware has to be loaded. The SMU is most likely Altera LM32 CPU.

Intel GB NIC

Intel 82574L ethernet controller has had at least a few problems. Including, but not necessarily limited to, EEPROM issues, ASPM bugs, MSI-X quirks, etc. 6 Sometimes internal CPU is so powerful that allows to run custom code on it, like e.g. SSH server. 7

L.Duflot Y-A Perez (2010). "Can you still trust your network card?" In: CanSecWest.

⁶Kristian Kielhofner (2013). Packets of Death.

⁷Arrigo Triulzi (2008). "A SSH server in your NIC". . In: PacSec;

USB3 (AMD)

Formerly NEC V850 architecture, now Renesas Electronics V850.8 32-bit RISC, gcc toolchain available. This firmware can modified, placed inside UEFI

⁸Luddy Harrison (2005). *NEC - V850 RISC Microcontroller*. University of Illinois, CS433.

HDD/SSD

ARM and MIPS are most common controllers. Part of firmware stored in embedded flash chip and rest of it - on the hidden sectors of disk.

- ► Seagate HDDs firmware research⁹
- ▶ Western Digital HDDs firmware research¹⁰
- ▶ Only Toshiba HDD firmware is not reversed (yet).

⁹Jonas Zaddach (2014). "Exploring the impact of a hard drive backdoor". In: REcon.

¹⁰Jeroen Domburg (2013). Hard disk hacking. OHM.

Mouse

ATmega32u2 in Logitech $G600^{11}$ This is an AVR architecture ("r2 -a avr")

¹¹ Jacob Maskiewicz et al. (2014). "Mouse Trap: Exploiting Firmware Updates in USB Peripherals". In: 8th USENIX Workshop on Offensive Technologies (WOOT 14). San Diego, CA: USENIX Association.

Keyboard

KBT Poker ${\sf II^{12}}$ - mechanical keyboard Nuvoton NUC122SC1AN ARM Cortex-M0 CPU

See firmware here: Extracted Poker II binary. gist.github.com

¹² Finding the actual Thumb code in firmware. RE stackechange.

EC (Embedded Controller)¹⁴

Keyboard controller, SPI/FWH flash access I2C bus master access

Table: Available vendors

Manufacturer	Туре	
ENE	8051 (8-bit)	
Futjitsu	F2MC-16LX (16-bit)	
ITE 8051	(8-bit)	
Nuvoton (including former Winbond)	CR16 (16-bit), 8051 (8-bit)	
Renesas	8051 (8-bit), H8S (16-bit), 740 (8-bit)	
NSC	CR16 (16-bit), 8051 (8-bit)	
SMSC	8051 (8-bit)	
SST	8051 (8-bit)	

You can get dump of your EC registers using ectool. 13

¹³ECtool. coreboot project.

¹⁴Embedded Controller. coreboot project.

TouchPad

AVR or PIC architecture 1516

¹⁵Synaptics RMI3 Interfacing Guide (2008).

¹⁶ Synaptics TouchPad Interfacing Guide (2001).

WebCam

Full featured computer, including CPU and video processor. Very often 8051, H8, AVR or ARM based For example Vimicro VC0343¹⁷ 8051 based one. Can be exploited using the Device Firmware Update (DFU) standard. It allows to start the update without administrator privilegies (for Windows systems).¹⁸

¹⁷ Vimicro VS0343 - USB 2.0 Camera Processor (2011).

¹⁸Robert Graham (2013). How to disable webcam light on Windows.

SD/MMC cards

8051 and H8 processors 192021

^{19 &}quot;The Exploration and Exploitation of an SD Memory Card" (2013). In: 30C3.

²⁰xobs (2013). Disassembler and Debugger for AX211 and AX215 8051-based CPU.

[.] https://github.com/xobs/ax2xx-code.

²¹Phison microcontroller firmwares and flashers. usbdev.ru.

BMC

The baseboard management controller is the implementation of IPMI. It is a specialised microcontroller embedded on the mainboard of the server. There are a few various vendors of BMC/IPMI:

- ► HP iLO
- ▶ Dell iDRAC
- ► IBM RSA
- ► Intel AMT
- DTMF DASH
- ▶ and less common

BMC and IPMI

IPMI Block Diagram

HP iLO

- ▶ iLO 2 66 MHz NEC v850
- ▶ table iLO 3/4 ARM cpu + NAND flash to store firmware (up to 4Gb)

Dell iDRAC

Table: Available versions

Family	Туре
DRAC II - 5 ²²	External PCI/PCIe card
iDRAC 6 - 7	Integrated on motherboard

²²Ruben (2011). Reversing Dell's DRAC Firmware.

BadUSB - USB Flash sticks

8051 and H8 controllers (similar to SD/MMC cards) Alcor Micro, CION, Etron, Hisun, ITE, JMicron, KTC, Netac, OTi, Phison²³, Prolific, SanDisk, TM, Winyatek and many others.

²³Phison 2251-03 (2303) Custom Firmware and Existing Firmware Patches.

PCI/PCIe Option Roms

Each PCI/PCIe device can provide its firmware to start on the main CPU, in the BIOS/UEFI environment, as a driver. So we can just use the same tools and techniques as for BIOS/UEFI reverse engineering. A lot of research has been done here already.²⁴²⁵²⁶

²⁴Darmawan Salihun. Building a Kernel in PCI Expansion ROM. .

²⁵Darmawan Salihun (2006). *BIOS Disassembly Ninjutsu Uncovered*. A-List Publishing. ISBN: 1931769605.

²⁶Shikhin Sethi (2014). "Option ROMs: A Hidden (But Privileged) World". In: H2HC.

What is radare2

This is reverse engineering framework and toolset. Main tool (r2) have two modes of work: command line and visual (V* commands). Also there is a bokken GTK GUI. But we'll use r2 tool instead.

```
00406066 145 /bin/lsl> pd $r 0 fcn.00406066
(fcn) fcn.00406066 96
                       662e0f1f840, o16 nop [cs:rax+rax]
                       8b87a0000000 mov eax, [rdi+0xa0]
                       8b8ea00000000 mov ecx, [rsi+0xa0]
                                    cmp eax, 0x9
                                     sete dl
        0x0040608a
        0x0040608d
                       38c2
                                     cmp dl. al
        0x0040609a
                                     mov eax. 0x1
                                     repe ret
                       660f1f84000, o16 nop [rax+rax]
        : JMP XREF from 0x004060a3 (fcn.00406066)
                       488b36
                                     mov rsi, [rsi]
                                     mov rdi, [rdi]
                       488b3f
                       e9e5430000
                                     nop [rax+rax]
        : JMP XREF from 0x0040609c (fcn.00406066)
                                     mov eax. 0xffffffff : -1
        0x004060c5
                                     ret
```

Simplest options

Important commands:

- pd print disassembly
- ► f set/show flag
- s seek
- ▶ af add function
- ► CC add comment
- Cd mark as data
- ▶ w* write back to the file
- ▶ Vp visual modes (note pressing 'p' to switch between them)

x86 radare

Here we do:

- ▶ Open legacy BIOS file to reverse
- ▶ Open modern system UEFI firmware
- ▶ Open PCIe device option rom

Demo 1

DEMO 1

ARM

Used for iLO and iDRAC. You need to properly manage loading adress.

- S sections command
- ▶ io.va virtual addresses evaluation

```
r2 —a arm —b 32 —e io.va=true some—arm—firmware.bin [0000000]> S 0 0x10000 0x2000 0x2000 load rwx
```

Demo 2

DEMO 2

8051

Using as part of:

- ► EC (Embedded Controller)
- Webcam controller
- ► SD/MMC card controller
- USB Flash sticks controller
- AMD IMC controller
- ► HDD servo control

Demo 3

DEMO 3

ARC

- ▶ Using as part of Intel ME/AMT
- ▶ We will open both ARC4 and ARC5 examples

Demo 4

DEMO 4

CR16/CR16+ (CompactRISC16)

Using as part of EC (Embedded Controller)

Demo 5

DEMO 5

Reversing HP Omnibook 500 EC firmware

UEFI

UEFITool²⁷

This tool have both GUI and CLI versions

²⁷Nicolaj Shlej (2013). https://github.com/LongSoft/UEFITool.

Rest of tools

- ▶ bios_extract²⁸
- dump from memory
- dump from device (using some equipment)
- copy file from the linux sources (for uploadable firmwares)

 $^{^{28}}Bios_extract.$

Emulation

- ► SerialICE²⁹
- ► S2E/Avatar³⁰
- ► PANDA³¹

We can use these tools with r2, due to support of gdb:// protocol

²⁹ SerialICE.. Tracing PC firmware using patched QEMU.

³⁰Avatar - dynamic firmware analysis framework. based on QEMU.

³¹PANDA - Platform for Architecture-Neutral Dynamic Analysis. based on QEMU.

BIOS/UEFI

- ▶ UEFI Tool
- ► + flashrom³²
- + external programmer (rpi/buspirate)

³² flashrom - crossplatform PC firmware flashing tool.

Embedded Controller

- external programmer
- ▶ + patched flashrom or
- ▶ + some custom tools

END OF STORY

Thanks for your attention!

Questions?

A lot of them I

- Bios_extract.
- Domburg, Jeroen (2013). Hard disk hacking. OHM.
- ECtool. coreboot project.
- Embedded Controller. coreboot project.
- Extracted Poker II binary. gist.github.com.
- Finding the actual Thumb code in firmware. RE stackechange.
- flashrom crossplatform PC firmware flashing tool.
- Graham, Robert (2013). How to disable webcam light on Windows.
- Harrison, Luddy (2005). *NEC V850 RISC Microcontroller*. University of Illinois, CS433.
- Hawker, Ben (2012-2013). Notes on Intel Microcode Updates.
- Intel ME 6.x Huffman algorithm (2014).
- Kielhofner, Kristian (2013). Packets of Death.

A lot of them II

- *MEre project* (2013-2014).
- PANDA Platform for Architecture-Neutral Dynamic Analysis. based on QEMU.
- Patrick Stewin, Iurii Bystrov (2013). "Persistent, Stealthy, Remote-controlled Dedicated Hardware Malware". In: 30C3. Hamburg, Germany.
- Phison 2251-03 (2303) Custom Firmware and Existing Firmware Patches.
- Phison microcontroller firmwares and flashers, usbdev.ru.
- Ruben (2011). Reversing Dell's DRAC Firmware.
- Salihun, Darmawan. Building a Kernel in PCI Expansion ROM.
 - (2006). BIOS Disassembly Ninjutsu Uncovered. A-List Publishing. ISBN: 1931769605.

A lot of them III

Sethi, Shikhin (2014). "Option ROMs: A Hidden (But Privileged) World". In: H2HC.

Shlej, Nicolaj (2013). https://github.com/LongSoft/UEFITool.

Skochinsky, Igor (2014). "Intel ME Secrets". In: REcon.

Synaptics RMI3 Interfacing Guide (2008).

Synaptics TouchPad Interfacing Guide (2001).

"The Exploration and Exploitation of an SD Memory Card" (2013). In: 30C3.

Triulzi, Arrigo (2008). "A SSH server in your NIC". In: PacSec.

Vimicro VS0343 - USB 2.0 Camera Processor (2011).

xobs (2013). Disassembler and Debugger for AX211 and AX215 8051-based CPU. https://github.com/xobs/ax2xx-code.

Y-A Perez, L.Duflot (2010). "Can you still trust your network card?" In: CanSecWest.

A lot of them IV

Zaddach, Jonas (2014). "Exploring the impact of a hard drive backdoor". In: REcon.