

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Tópicos Avanzados en Teoría de la Computación - IIC3810 Programa de Curso $2^{\rm er}$ semestre - 2025

Horario cátedra : Martes módulos 5 y 6, sala Javier Pinto

Horario ayudantía : Jueves módulo 5, sala AP502 Profesor : Marcelo Arenas (marenas@uc.cl)

URL: https://github.com/marceloarenassaavedra/IIC3810-2-25

1. Descripción

Durante este curso, los alumnos conocerán algunas problemáticas actuales en teoría de la computación, estudiando algunas de las herramientas modernas en el área. Los alumnos conocerán las ventajas y limitaciones de estas herramientas, y estudiaran algunas de sus aplicaciones en distintas áreas de la computación.

2. Objetivos

Al finalizar el curso el alumno será capaz de:

- Comprender algunas de las problemáticas actuales en teoría de la computación.
- Identificar herramientas modernas de teoría de la computación, y comprender la forma en que son utilizadas para estudiar y resolver distintos tipos de problemas.
- Identificar ventajas y desventajas, según el problema a resolver, de distintas herramientas modernas de teoría de la computación.
- Utilizar herramientas modernas de teoría de la computación para estudiar y resolver problemas de distintas características.

3. Metodología

El curso tendrá dos módulos semanales de cátedra. Si es necesario, se utilizarán las sesiones de ayudantía para reforzar algunos de los conceptos vistos en el curso.

4. Contenidos

- 1. Motivación.
- 2. La jerarquía polinomial.
 - a) La clase DP, y algunos problemas completos para esta clase.
 - b) La noción de Máquina de Turing con oráculo, y la definición de la jerarquía polinomial.
 - c) Problemas completos para la jerarquía polinomial.
 - d) Caracterizaciones de la jerarquía polinomial, y teoremas de colapso.
- 3. Complejidad probabilística.
 - a) La noción de Máquina de Turing probabilística.
 - b) Las clases de complejidad RP, co-RP y BPP.
 - c) Amplificación en BPP.
 - d) El teorema de Gács-Sipser-Lautemann: BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$.
- 4. Clases de complejidad sintácticas y semánticas.
 - a) La no existencia de problemas completos para $NP \cap co-NP$ y BPP.
- 5. Sistemas de demostración interactivos.
 - a) Demostraciones interactivas con un verificador determinista.
 - b) Demostraciones interactivas con un verificador probabilista y la clase IP.

- c) La clase IP y la verificación de que dos grafos no son isomorfos.
- d) La clase AM y su relación con IP.
- e) La relación de AM con la jerarquía polinomial, y una versión más fuerte del teorema de Gács-Sipser-Lautemann.
- f) Teorema de Shamir: IP = PSPACE.
- 6. El problema de isomorfismo de grafos.
 - a) La equivalencia entre verificación, computación y conteo.
 - b) El test de Weisfeiler-Leman.
 - c) Minor de grafos, y el Teorema de Grohe con garantías para el test de Weisfeiler-Leman.
 - d) La clase GI, y algunos problemas completos para esta clase.
- 7. La jerarquía baja para NP.
 - a) Definición y su relación con la jerarquía polinomial.
 - b) La relación de las clases BPP y co-AM con la jerarquía baja.
 - c) Demostración de que el problema de isomorfismo de grafos está en el segundo nivel de la jerarquía baja.
 - d) Los lenguajes aceptados por circuitos de tamaño polinomial y su ubicación en la jerarquía baja.

5. Evaluación

Los alumnos serán evaluados mediante tareas individuales. La nota final del curso será el promedio de las notas en estas tareas.

6. Bibliografía

- Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
- \blacksquare Lectura complementarias que serán entregadas durante el desarrollo del curso.