Esercizi sui sistemi formali

Tutorato di Fondamenti di Informatica 20/03/2024

Martin Gibilterra

Università di Catania

github.com/w8floosh

in linkedin.com/in/w8floosh

Derivabilità e ammissibilità

Si consideri il seguente sistema formale \mathcal{D} i cui giudizi sono stringhe sull'alfabeto $\{a,b\}$.

$$(Ax)$$
 $\frac{w}{aaa}$
 (R) $\frac{w}{waa}$, $w \in \{a\}^+$
 (R') $\frac{b}{waa}$

Discutere la derivabilità e l'ammissibilità di R' in \mathfrak{D} .

È cambiato qualcosa?

Posto CL' uguale a CL con l'aggiunta della regola in basso, cosa possiamo dire sugli insiemi dei teoremi di CL' e CL?

$$(CONG)$$
 $\frac{M=N}{MP=NO}$ $\frac{P=Q}{MP=NO}$

2.2 CL: un esempio di sistema formale

Definizione 2.11 (Il sistema formale CL) Chiamiamo sistema formale CL il sistema formale così definito:

- S = {k, s, (,), =} (alfabeto);
- $W = \{P = Q | P, Q \in \tau\}$ dove τ è l'insieme dei termini così definito:
 - 1. $k \in \tau, d \in \tau$;
 - 2. se $P,Q \in \tau$ allora $(PQ) \in \tau$;
- 3. nient'altro è un termine;
- Ax: per ogni $P,Q,R \in \tau$ i seguenti sono schemi di assioma:
 - ((kP)Q) = P (Axk);
 - P = P (assioma di riflessività);
 - $-\ (((sP)Q)R) = ((PR)(QR)) \quad (Axs);$
 - nient'altro è un assioma. (Si noti che uno schema di assioma è un modo per descrivere un numero eventualmente infinito di assiomi con un'unica espressione).
- $R = \{R_1, R_2, R_3, R_4\}$ dove:
 - $R_1 = \{(P = Q, Q = P)|P, Q \in \tau\} \subseteq W^2$ $ovvero: P = Q \cap Q = P$
 - $-R_2 = \{(P = Q, Q = R, P = R)|P, Q, R \in \tau\} \subseteq W^3$ ovvero: P = Q = R Q = R Q = R Q = R Q = RQ = R
 - $-R_3 = \{(R = R', (PR) = (QR), (PR) = (QR')) | P, Q, R, R' \in \tau\}$ $ovvero: \frac{R = R'}{(PR) = (QR')} \frac{(PR) = (QR)}{(PR) = (QR')}$ (CONGR1);
 - $R_4 = \{(R = R', (RP) = (RQ), (RP) = (R'Q)) | P, Q, R, R' \in \tau\}$ $ovvero: \frac{R = R'}{(RP) = (R'Q)} \frac{(RP) = (RQ)}{(RP) = (R'Q)}$ (CONGR2).

Regole derivate

Posto CL' uguale a CL con l'aggiunta della regola in basso, cosa possiamo dire sugli insiemi dei teoremi di CL' e CL?

$$(CONG)$$
 $\frac{M=N}{MP=NQ}$ $\frac{P=Q}{MP=NQ}$

2.2 CL: un esempio di sistema formale

Definizione 2.11 (Il sistema formale CL) Chiamiamo sistema formale CL il sistema formale così definito:

- S = {k, s, (,), =} (alfabeto);
- W = {P = Q|P, Q ∈ τ} dove τ è l'insieme dei termini così definito:
- 1. $k \in \tau, d \in \tau$;
 - 2. se $P,Q \in \tau$ allora $(PQ) \in \tau$;
- 3. nient'altro è un termine;
- Ax: $per\ ogni\ P,Q,R\in \tau\ i\ seguenti\ sono\ schemi\ di\ assioma$:
 - ((kP)Q) = P (Axk);
 - P = P (assioma di riflessività);
 - -(((sP)Q)R) = ((PR)(QR)) (Axs);
 - nient'altro è un assioma. (Si noti che uno schema di assioma è un modo per descrivere un numero eventualmente infinito di assiomi con un'unica espressione).
- $R = \{R_1, R_2, R_3, R_4\}$ dove:
 - $R_1 = \{(P = Q, Q = P)|P, Q \in \tau\} \subseteq W^2$ $ovvero: P = Q \cap Q = P$
 - $-R_2 = \{(P = Q, Q = R, P = R)|P, Q, R \in \tau\} \subseteq W^3$ ovvero: P = Q = R Q = R Q = R Q = R Q = RQ = R
 - $-R_3 = \{(R = R', (PR) = (QR), (PR) = (QR')) | P, Q, R, R' \in \tau\}$ $ovvero: \frac{R = R'}{(PR) = (QR')} \frac{(PR) = (QR)}{(PR) = (QR')}$ (CONGR1);
 - $-R_4 = \{(R = R', (RP) = (RQ), (RP) = (R'Q)) | P, Q, R, R' \in \tau\}$ $ovvero: \frac{RR' - (RP) = (RQ)}{(RP) = (R'Q)}$ (CONGR2).

Aggiungi un posto a tavola

Dimostrare (ksk)(kkk) = sk aggiungendo la seguente regola a CL:

$$(CONG)$$
 $\frac{M=N}{MP=NQ}$ $\frac{P=Q}{MP=NQ}$

2.2 CL: un esempio di sistema formale

Definizione 2.11 (II sistema formale CL) Chiamiamo sistema formale CL il sistema formale così definito:

- S = {k, s, (,), =} (alfabeto);
- W = {P = Q|P, Q ∈ τ} dove τ è l'insieme dei termini così definito.
 - $l. \ k \in \tau, d \in \tau;$
 - 2. se $P,Q \in \tau$ allora $(PQ) \in \tau$;
- 3. nient'altro è un termine;
- Ax: per ogni P, Q, R ∈ τ i seguenti sono schemi di assioma:
 - -((kP)Q) = P(Axk);
 - P = P (assioma di riflessività);
 - (((sP)Q)R) = ((PR)(QR)) (Axs);
 - nient'altro è un assioma. (Si noti che uno schema di assioma è un modo per descrivere un numero eventualmente infinito di assiomi con un'unica espressione).
- R = {R₁, R₂, R₃, R₄} dove:
 - $-R_1 = \{(P = Q, Q = P) | P, Q \in \tau\} \subseteq W^2$ oevero: $\frac{P = Q}{P = P}$;

 - $P_{RR} = \{(R = R', (PR) = (QR), (PR) = (QR'))|P, Q, R, R' \in \tau\}$ $P_{RR} = \{(R = R', (PR) = (QR), (PR) = (QR'))|P, Q, R, R' \in \tau\}$ $P_{RR} = P_{RR} = P_{R$
 - (PR) = (QR') $-R_4 = \{(R = R', (RP) = (RQ), (RP) = (R'Q))|P, Q, R, R' \in \tau\}$ $overo: \frac{R = R' - (RP) = (RQ)}{(RP) = (R'Q)}$ (CONGR2).

Completa la dimostrazione

La seguente sequenza di fbf dimostra $\{k = sk\} \vdash_{CL} P = Q$.

1. ??	(ipotesi)	Assiom	i e regole:
2. ??	(Axr)	(Axk)	$\overline{kMN=M}$
3. kP = skP	(Axr)		
4. kPQ = kPQ	(Axr)	(Axs)	$\overline{sMNR=MR(NR)}$
5. kPQ = skPQ	(CONGR2)(3. e 4.)		
6. ??	(Axk)	(Axr)	$\overline{M=M}$
7. ??	(SYM)(5.)		
8. skPQ = P	??	(CONGR2)	$\frac{R=R'}{RM=RN}$
9. skPQ = kQ(PQ)	(Axs)		KWI—K IV
10. kQ(PQ) = Q	(Axk)	(SYM)	$\frac{M=N}{N=M}$
11. $skPQ = Q$	(TRANS)(9. e 10.)	,	N=M
12. $P = skPQ$??	(TRANS)	$\underline{M=N}$ $\underline{N=R}$
13. ??	??	()	M=R

Completa la dimostrazione

Soluzione

La seguente sequenza di fbf dimostra $\{k = sk\} \vdash_{CL} P = Q$.

1.
$$k = sk$$
 (ipotesi)
 Assiomi e regole:

 2. $kP = kP$
 (Axr)
 (Axk)
 $kMN = M$

 3. $kP = skP$
 $(CONGR2)(1. e 2.)$
 (Axr)
 (Axs)
 $kMN = M$

 4. $kPQ = kPQ$
 (Axr)
 (Axs)
 (Axs)
 $sMNR = MR(NR)$

 5. $kPQ = skPQ$
 $(CONGR2)(3. e 4.)$
 (Axr)
 <

Pensa! Che cosa possiamo dire sull'insieme di ipotesi $\{k = sk\}$?

Il sistema formale di Garfield

Garfield il gatto vuole creare un sistema formale che gli permetta di comporre le sue lasagne preferite, perciò ha inventato il sistema formale 9 che permette di creare delle lasagne complesse a partire da una singola fetta di pasta.

$\Sigma = \{f, r, p, b\}$ (alfabeto degli ingredienti)	Assiomi e (Axf)	
$S = \left\{ frX \mid X \in \Sigma / \{f, r\} \right\}$	(ADDr)	$\frac{f-r}{fr}$
(insieme degli strati possibili)	(ADDX)	$\frac{X fr}{frX}$
$W = \left\{ L f L \in \bigcup_{i=1}^n W_i, W_i = \{ Y Y \in S^i \}, n \in \mathbb{N} \right\}$	(ADDS)	$\frac{X}{LX}$
(insieme delle fbf)	(END)	$\frac{L f}{Lf}$

Il sistema formale di Garfield

Riflessioni

Il sistema formale creato da Garfield può essere semplificato? Ci sono delle regole eliminabili?

Nella regola END, viene usato f come ipotesi. E' possibile rimuovere questa ipotesi? Giustificare la risposta.

Una lasagna vuota (solo due fette di pasta una sopra l'altra) è valida secondo questo sistema formale?