《信号与系统》

並

Chapter 1 信号与系统基本概念

1、信号的分类

奇信号与偶信号

奇信号: $x_o(t) = \frac{1}{2}[x(t) - x(-t)]$ $x_o[n] = \frac{1}{2}[x[n] - x[-n]]$

偶信号: $x_e(t) = \frac{1}{2}[x(t) + x(-t)]$ $x_e[n] = \frac{1}{2}[x[n] + x[-n]]$

任何一个信号都可以分解为奇信号与偶信号的和

能量信号与功率信号

能量信号:
$$E = \begin{cases} \int_{-\infty}^{+\infty} \mid x(t) \mid^2 dt \\ \sum\limits_{n=-\infty}^{+\infty} \mid x[n] \mid^2 \end{cases}$$
 功率信号: $P = \begin{cases} \frac{1}{2T} \int_{-T}^{+T} \mid x(t) \mid^2 dt \\ \lim\limits_{N \to \infty} \frac{1}{2N+1} \sum\limits_{n=-N}^{+N} \mid x[n] \mid^2 \end{cases}$

周期信号是功率信号,除了具有无限能量与无限功率的信号外,

时限的或 $t \to \infty$, f(t) = 0 的非周期信号就是**能量信号**;

 $t \to \infty$, $f(t) \neq 0$ 的就是**功率信号**。

2、基本连续时间信号

阶跃函数 u(t) 冲激函数 $\delta(t)$ 抽样函数 Sa(t)

$$\delta(t) = rac{du(t)}{dt}$$
 $u(t) = \int_{-\infty}^t \delta(t) dt$

$$\int_{-\infty}^{+\infty}x(t)\delta^{(n)}(t-t_0)dt=(-1)^nx(t_0)$$
 $x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$ (冲激函数筛选性)

$$\delta(t) = \delta(-t)$$
 $\delta'(t) = -\delta'(-t)$

$$x(t)\delta'(t) = x(0)\delta'(t) - x'(0)\delta(t) \, \int_{-\infty}^{+\infty} x(t)\delta^{(n)}(t-t_0)dt = (-1)^n x(t_0)$$

$$\delta[f(t)] = \sum rac{1}{|f'(t_i)|} \delta(t-t_i)$$
 (其中 t_i 为 $f(t)$ 的零点)

$$Sa(t) = rac{sint}{t}$$
 $\int_0^\infty Sa(t)dt = \pi/2$ $\int_{-\infty}^{+\infty} Sa(t)dt = \pi$

$$Sinc(t) = Sa(\pi t)$$

3、基本离散时间信号

阶跃序列 u[n] 脉冲序列 $\delta[n]$

$$\delta[n] = u[n] - u[n-1] \qquad u[n] = \sum_{i=-\infty}^n \delta[i]$$

4、系统的基本性质

(这里考虑连续时间信号, 离散同理)

系统	性质	通俗语言	举例
线 性	叠加性、齐次性	多项式中,每一项都有 x ,且 每一个 x 都是一次项	y(t)=x(t)+x(t+1)
时 不 变 性	特性不随时间变化	t 只在括号里,且 t 的系数为 1	y(t)=2x(t-1)
无 记 忆 性	输出仅取决于当前输入	括号里是且只是 t	$y(t)=e^{x(t)}$
因 果 性	任何时刻的输出仅取决于现在或之前的输入,与之后的输入无关	任意 $x(t_1)$ 、 $y(t_2)$ $t_1 < t_2$	y(t)=x(t-1)+x(t-2)
可 逆 性	不同的输入对应不同的输出	单射	/
稳 定 性	若输入有界,输出一定有界	/	/

Chapter 2 LTI系统的时域分析

1、连续时间LTI系统的时域分析

信号的脉冲分解

$$\forall \ x(t) \qquad x(t) = x(t) * \delta(t)$$

单位冲激响应

若
$$\delta(t) \longrightarrow h(t)$$
 则 $x(t) \longrightarrow y(t) = x(t) * h(t)$

卷积积分图示法

对于 y(t) = x(t) * h(t)。**翻转、平移、相乘、积分**。

卷积的性质

1、交换律、结合律、分配律

2,
$$x(t)*h(t) = \frac{dx(t)}{dt}*\int_{-\infty}^{t}h(\lambda)d\lambda$$

3.
$$x(t) * \delta^{(n)}(t - t_0) = x^{(n)}(t - t_0)$$

4,
$$x(t) * u(t) = \int_{-\infty}^{t} x(\lambda) d\lambda$$

2、离散时间LTI系统的时域分析

信号的脉冲分解

$$\forall \ x[n] \qquad x[n] = x[n] * \delta[n]$$

单位冲激响应

若
$$\delta[n] \longrightarrow h[n]$$
 则 $x[n] \longrightarrow y[n] = x[n] * h[n]$

卷积积分图示法

对于
$$y([n] = x[n] * h[n]$$
。翻转、平移、相乘、求和。

卷积的性质

1、交换律、结合律、分配律

2,
$$x[n] * \delta[n - n_0] = x[n - n_0]$$

3,
$$x[n]*u[n] = \sum_{i=-\infty}^n x[i]$$

3、单位冲激/脉冲响应与LTI系统性质

可逆性

$$h(t)*h_1(t)=\delta(t)$$
 / $h[n]*h_1[n]=\delta[n]$ h_1 : 逆响应

稳定性

$$\int_{-\infty}^{+\infty}\mid h(t)\mid dt<\infty$$
 / $\sum\limits_{n=-\infty}^{+\infty}\mid h[n]\mid<\infty$

因果性

$$t < 0$$
 时, $h(t) = 0$

单位阶跃响应

$$u(t)\longrightarrow s(t)$$
 / $u[n]\longrightarrow s[n]$
$$f \begin{cases} s(t)=u(t)*h(t)=\int_{-\infty}^t h(au)d au$$
 / $s[n]=u[n]*h[n]=\sum\limits_{k=-\infty}^n h[k] \\ h(t)=rac{ds(t)}{dt}$ / $h[n]=s[n]-s[n-1]$

$$\text{constant} \begin{cases} y(t) = x(t) * h(t) = x(t) * \frac{ds(t)}{dt} = \frac{dx(t)}{dt} * s(t) \\ \\ y[n] = x[n] * h[n] = x[n] * (s[n] - s[n-1]) = (x[n] - x[n-1]) * s[n] \end{cases}$$

4、LTI系统的框图表示

对于 f(y(t))=g(x(t)) 考虑 f(w(t))=x(t) 与 y(t)=g(w(t)) 将前式最高次项单独移到等式一侧,即可画出框图

例如: 4y''(t) + 2y'(t) = -3x''(t) + x(t)

考虑
$$4w''(t)+2w'(t)=x(t)$$
 与 $y(t)=-3w''(t)+w(t)$ 且 $w''(t)=rac{x(t)-2w'(t)}{4}$

则框图如下

Chapter 3 连续时间信号与系统的频域分析

1、连续时间周期信号的傅里叶级数

$$a_k(t)=\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t} \qquad a_k=rac{1}{T_0}\int_{T_0}x(t)e^{-jk\omega_0t}dt \qquad (\omega_0=2\pi/T_0)$$

存在收敛条件, 也存在吉布斯现象。

典型周期信号的傅里叶展开

	函数	傅里叶级数
三角函数	$x(t)=sin(\omega_0 t)=rac{e^{j\omega_0 t}-e^{-j\omega_0 t}}{2j}$	$a_1 = rac{1}{2j} a_{-1} = -rac{1}{2j} a_k = 0, \mid k \mid eq 1$
周期方波信号	$x(t) = \left\{ egin{array}{ll} 1 & t < T_1 \ & \ 0 & T_1 < t < T_2 \end{array} ight.$	$a_k = \left\{egin{array}{ll} 2T_1/T & k=0 \ rac{2sin(k\omega_0T_1)}{k\omega_0T} & k eq 0 \end{array} ight.$
周期三角脉冲信号	周期为 T	$a_k=rac{1}{2}Sa^2(rac{\pi}{2}k)$

2、连续时间非周期信号的傅里叶变换

$$x(t)=rac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\omega)e^{j\omega t}d\omega \stackrel{F}{\longleftrightarrow} X(j\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}dt=|X(j\omega)|e^{j heta(\omega)}$$

存在收敛条件,也存在吉布斯现象。

典型傅里叶变换对

	函数	傅里叶变换
单边指数信号	$e^{-at} \cdot u(t)$	$rac{1}{a+j\omega}$
	$te^{-at}\cdot u(t)$	$\frac{1}{(a\!+\!j\omega)^2}$
双边指数信号	$e^{-a t }$	$\frac{1}{a+j\omega} + \frac{1}{a-j\omega} = \frac{2a}{a^2+\omega^2}$
单位冲激信号	$\delta(t)$	1
抽样函数	$rac{sin\omega_c t}{\pi t}$	$\left\{ egin{array}{ll} 1 & \omega < \omega_c \ \ 0 & else \end{array} ight.$
矩形窗函数	$\left\{ egin{array}{ll} 1 & t < T \ 0 & else \end{array} ight.$	$2TSa(\omega T)=rac{2sin\omega T}{\omega}$

3、连续时间周期信号的傅里叶变换

$$egin{aligned} e^{j\omega_0 t} & \stackrel{F}{\longleftrightarrow} 2\pi\delta(\omega-\omega_0) \ x(t) &= \sum\limits_k a_k e^{jk\omega_0 t} & \stackrel{F}{\longleftrightarrow} X(j\omega) = 2\pi\sum\limits_k a_k \delta(\omega-k\omega_0) \end{aligned}$$

	函数	傅里叶变换
余弦信号	$cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
正弦信号	$sin(\omega_0 t)$	$rac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
周期冲激串	$\delta_T(t) = \sum\limits_k \delta(t-kT)$	$\omega_0 \delta_{\omega_0}(\omega) = \omega_0 \sum\limits_k \delta(\omega - k \omega_0)$

4、连续时间傅里叶变换的性质

线性性质

$$ax_1(t)+bx_2(t) \overset{F}{\longleftrightarrow} aX_1(j\omega)+bX_2(j\omega)$$

时移性质

$$x(t-t_0) \stackrel{F}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)$$

频移性质

$$x(t)e^{j\omega_0 t} \overset{F}{\longleftrightarrow} X(j(\omega - \omega_0))$$

$$= \begin{cases} x(t)cos(\omega_0 t) \overset{F}{\longleftrightarrow} \frac{1}{2}[X(j(\omega - \omega_0)) + X(j(\omega + \omega_0))] \\ x(t)sin(\omega_0 t) \overset{F}{\longleftrightarrow} \frac{1}{2j}[X(j(\omega - \omega_0)) - X(j(\omega + \omega_0))] \end{cases}$$

共轭性与共轭对称性

若
$$x(t) \overset{F}{\longleftrightarrow} X(j\omega)$$
 则 $x^*(t) \overset{F}{\longleftrightarrow} X^*(-j\omega)$ (共轭性) 若 $x(t) = x^*(t)$ 则 $X(j\omega) = X^*(-j\omega)$ (共轭对称性)

易得:若 x(t) 为偶函数,则 $X(j\omega)$ 为实值函数;若 x(t) 为奇函数,则 $X(j\omega)$ 为纯虚函数。 (这里 x(t) 为实值函数)

微分特性

$$x^{(n)}(t) \stackrel{F}{\longleftrightarrow} (j\omega)^n X(j\omega)$$

积分特性

$$\int_{-\infty}^t x(t)dt \overset{F}{\longleftrightarrow} rac{1}{i\omega} X(j\omega) + \pi X(0)\delta(\omega)$$

时间与频率尺度变换

$$\left\{ \begin{aligned} x(at) & \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X(j\frac{\omega}{a}) \\ \frac{1}{|a|} x(\frac{t}{a}) & \stackrel{F}{\longleftrightarrow} X(ja\omega) \end{aligned} \right.$$

对偶性

若
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$
 则
$$\begin{cases} X(t) \stackrel{F}{\longleftrightarrow} 2\pi x(-\omega) \\ -jtx(t) \stackrel{F}{\longleftrightarrow} \frac{dX(j\omega)}{d\omega} \end{cases}$$

帕斯瓦尔定理

若
$$x(t) \overset{F}{\longleftrightarrow} X(j\omega)$$
 则 $\int_{-\infty}^{+\infty} \left| x(t) \right|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left| X(j\omega) \right|^2 d\omega$

时域卷积性质

$$x(t)*h(t) \stackrel{F}{\longleftrightarrow} X(j\omega) \cdot H(j\omega)$$

调制性质

$$x(t) \cdot h(t) \stackrel{F}{\longleftrightarrow} \frac{1}{2\pi} X(j\omega) * H(j\omega)$$

5、连续时间LTI系统的频域分析

$$Y(j\omega) = X(j\omega) \cdot H(j\omega) \Longrightarrow H(j\omega) = Y(j\omega)/X(j\omega)$$

线性常微分方程表征的LTI系统

$$\sum a_m y^{(m)}(t) = \sum b_n x^{(n)}(t) \Longrightarrow \sum a_m (j\omega)^m Y(j\omega) = \sum b_n (j\omega)^n X(j\omega) \Longrightarrow H(j\omega) = \sum b_n (j\omega)^n / \sum a_m (j\omega)^m Y(j\omega) = \sum b_n (j\omega$$

6、信号的滤波与理想低通滤波器

频域特性与冲激响应

$$H(j\omega) = \left\{ egin{aligned} e^{-j\omega t_0} &, |\omega| < \omega_c \ & & \ 0 &, else \end{aligned}
ight.$$

$$h(t)=rac{sin[\omega_c(t-t_0)]}{\pi(t-t_0)}$$

阶跃响应

$$u(t) \overset{F}{\longleftrightarrow} rac{1}{j\omega} + \pi \delta(\omega)$$

则可得
$$s(t)=rac{1}{2}+rac{1}{\pi}Si[\omega_c(t-t_0)]$$
 其中 $Si(t)=\int_0^trac{sinx}{x}dx$

对矩形脉冲的响应

若
$$x(t) = u(t) - u(t-\tau)$$
则 $y(t) = \frac{1}{\pi} \{ Si[\omega_c(t-t_0)] - Si[\omega_c(t-t_0-\tau)] \}$

Chapter 4 离散时间信号与系统的频域分析

1、离散时间周期信号的傅里叶级数

$$x[n] = \sum_{k=< n>} a_k e^{jk\omega_0 n} \qquad a_k = rac{1}{N} \sum_{n=< N>} x[n] e^{-jk\omega_0 n} \qquad (\omega_0 = rac{2\pi}{N})$$

没有收敛条件,也不存在吉布斯现象。

2、离散时间非周期信号的傅里叶变换

$$x[n] = rac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \overset{F}{\longleftrightarrow} X(e^{j\omega}) = \sum\limits_{n} x[n] e^{-j\omega n}$$

存在收敛条件, 但不存在吉布斯现象。

典型傅里叶变换对

	函数	傅里叶变换
单边指数信号	$a^n \cdot u[n]$	$rac{1}{1-ae^{-j\omega}}$
双边指数信号	$a^{ n }$	$rac{1}{1-ae^{-j\omega}} + rac{1}{1-ae^{j\omega}} = rac{1-a^2}{1-2acos\omega + a^2}$
单位脉冲信号	$\delta[n]$	1
常数信号	1	$2\pi\sum_{k}\delta(\omega-2k\pi)$
矩形脉冲信号	$\left\{egin{array}{ll} 1 & n \leq N_1 \ & & \ 0 & n > N_1 \end{array} ight.$	$\frac{sin(N_1+\frac{1}{2})\omega}{sin(\frac{1}{2}\omega)}$
矩形窗函数	$\frac{sin\omega_c n}{\pi n}$	$egin{cases} 1 & \omega < \omega_c \ 0 & else \end{cases}$

3、离散时间周期信号的傅里叶变换

$$egin{aligned} e^{j\omega_0 n} & \stackrel{F}{\longleftrightarrow} 2\pi \sum_{l} \delta(\omega - \omega_0 - 2l\pi) \ & \ x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n} & \stackrel{F}{\longleftrightarrow} 2\pi \sum_{k} a_k \delta(\omega - k\omega_0) \end{aligned}$$

	函数	傅里叶变换
余弦信号	$cos(\omega_0 n)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
正弦信号	$sin(\omega_0 n)$	$rac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
周期冲激串	$\delta_T[n] = \sum\limits_k \delta[n-kN]$	$\omega_0 \delta_{\omega_0}(\omega) = \omega_0 \sum_k \delta(\omega - k \omega_0)$

4、离散时间傅里叶变换的性质

线性性质

$$ax_1[n] + bx_2[n] \stackrel{F}{\longleftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega})$$

时移性质

$$x[n-n_0] \overset{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$

频移性质

$$\begin{split} x[n]e^{j\omega_0n} & \stackrel{F}{\longleftrightarrow} X(e^{j(\omega-\omega_0)}) \\ & = \begin{cases} x[n]cos\omega_0n & \stackrel{F}{\longleftrightarrow} \frac{1}{2}[X(e^{j(\omega-\omega_0)}) + X(e^{j(\omega+\omega_0)})] \\ \\ x[n]sin\omega_0n & \stackrel{F}{\longleftrightarrow} \frac{1}{2j}[X(e^{j(\omega-\omega_0)}) - X(e^{j(\omega+\omega_0)})] \end{cases} \end{split}$$

共轭性与共轭对称性

若
$$x[n] \overset{F}{\longleftrightarrow} X(e^{j\omega})$$
则 $x^*[n] \overset{F}{\longleftrightarrow} X^*(e^{-j\omega})$ (共轭性)若 $x[n] = x^*[n]$ 则 $X(e^{j\omega}) = X^*(e^{-j\omega})$ (共轭对称性)

易得: 若x[n] 为偶函数,则 $X(e^{j\omega})$ 为实值函数;若x[n] 为奇函数,则 $X(e^{j\omega})$ 为纯虚函数。 (这里x[n] 为实值函数)

时域差分性

$$x[n] - x[n-1] \stackrel{F}{\longleftrightarrow} (1 - e^{-j\omega})X(e^{j\omega})$$

累加性

$$y[n] = \sum\limits_{m=-\infty}^{n} x[m] \overset{F}{\longleftrightarrow} rac{1}{1-e^{j\omega}} x(e^{j\omega}) + \pi X(e^{j0}) \sum\limits_{k} \delta(\omega - 2\pi k)$$

时域扩展

定义内插
$$x_{(k)}[n] = \left\{egin{array}{ll} x[n/k] & n
ightarrow k$$
的整倍数 $0 & else \end{array}
ight.$

有
$$x_{(k)}[n] \stackrel{F}{\longleftrightarrow} X(e^{jk\omega})$$

频域微分

$$-jnx[n] \overset{F}{\longleftrightarrow} rac{dX(e^{j\omega})}{d\omega}$$

帕斯瓦尔定理

$$\sum_{n} |x[n]|^2 = rac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega \qquad rac{1}{N} \sum_{n=< N>} |x[n]|^2 = \sum_{k=< N>} |a_k|^2$$

时域卷积性质

$$x[n]*h[n] \overset{F}{\longleftrightarrow} X(e^{j\omega}) \cdot H(e^{j\omega}) \qquad x[n]*h[n] \overset{FS}{\longleftrightarrow} Na_k b_k$$

调制性质

$$x[n] \cdot h[n] \overset{F}{\longleftrightarrow} rac{1}{2\pi} \int_{2\pi} X(e^{j heta}) \cdot H(e^{j(\omega- heta)}) d heta \qquad x[n] \cdot h[n] \overset{FS}{\longleftrightarrow} a_k * b_k = \sum_{l=c,N} a_l \cdot b_{k-l}$$

5、对偶性

离散傅里叶级数的对偶性

若
$$x[n] \overset{FS}{\longleftrightarrow} a[k]$$
 则 $a[n] \overset{FS}{\longleftrightarrow} \frac{1}{N} x[-k]$

离散时间与连续时间傅里叶级数的对偶性

若
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$
则 $X(e^{jt}) \stackrel{FS}{\longleftrightarrow} x[-k]$ 若 $x(t) \stackrel{FS}{\longleftrightarrow} a_k$ 则 $a[n] = a_n \stackrel{F}{\longleftrightarrow} x(-\omega)$

6、离散时间LTI系统的频域分析

$$Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega}) \Longrightarrow H(e^{j\omega}) = Y(e^{j\omega})/X(e^{j\omega})$$

线性常微分方程表征的LTI系统

$$\sum_k a_k y[n-k] = \sum_k b_k x[n-k] \Longrightarrow \sum_k a_k (e^{-jk\omega}) Y(e^{j\omega}) = \sum_k b_k (e^{-jk\omega}) X(e^{j\omega}) \Longrightarrow H(e^{j\omega}) = \sum_k b_k e^{-jk\omega} / \sum_k a_k e^{-jk\omega}$$

7、信号的滤波与理想滤波器

频率响应

$$H(e^{j\omega}) = egin{cases} 1 & |\omega| \leq \omega_c \ \ 0 & \omega_c < |omega| \leq \pi \end{cases}$$

$$h[n] = rac{sin\omega_c n}{\pi n}$$

图 4-19 离散时间理想低通滤波器的单位脉冲响应($\omega_c = \frac{\pi}{4}$)

单位阶跃响应

$$s[n] = \sum\limits_{m=-\infty}^n h[m]$$

图 4-20 离散时间理想低通滤波器的单位阶跃响应

Chapter 5 采样与调制

1、连续信号的时域采样定理

冲激串采样

采样函数
$$p(t) = \sum_{n} \delta(t - nT) \stackrel{F}{\longleftrightarrow} P(j\omega) = \frac{2\pi}{T} \sum_{k} \delta(\omega - k\omega_s)$$
 其中 T 为采样周期 $\omega_s = \frac{2\pi}{T}$ 则 $x_p(t) = x(t) \cdot p(t) = \sum_{n} x(t) \delta(t - nT) = \sum_{n} x(nT) \delta(t - nT) = \sum_{n} x_d[n] \delta(t - nT)$ $X_p(j\omega) = \frac{1}{2\pi} X(j\omega) * P(j\omega) = \frac{1}{T} \sum_{k} X(j(\omega - k\omega_s)) \qquad X_d(e^{j\omega}) = X_p(j\frac{\omega}{T}) = \frac{1}{T} \sum_{k} X(j(\omega - 2k\pi)/T)$

信号最高频率的两倍 $\omega_n = 2\omega_{max}$

采样定理

采样频率必须大于奈奎斯特率,此时 x(t) 唯一由样本值序列 x[n] = x(nT) 确定且可恢复,否则会发生混叠。 欠采样

若采样频率小于奈奎斯特率,则会发生混叠,经带限内插后所得 $x_r(t)$ 满足 $x_r(t)|_{t=nT}=x(nT)$ 若为正弦信号,则可获得 $x_r(t)$ 但会从高频变成低频,且相位倒置

2、离散信号的时域采样定理

脉冲串采样

$$\begin{split} p[n] &= \sum_k \delta[n-kN] \overset{F}{\longleftrightarrow} P(e^{j\omega}) = \frac{2\pi}{N} \sum_k \delta(\omega-k\omega_s) \qquad \text{其中 T 为采样周期} \quad \omega_s = \frac{2\pi}{T} \\ \mathbb{U}[x_p[n]] &= x[n] \cdot p[n] = \sum_k x[kN] \delta[n-kN] = \begin{cases} x[n] & n=kN \\ 0 & else \end{cases} \\ X_p(e^{j\omega}) &= \frac{1}{2\pi} \int_{2\pi} P(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\omega-k\omega_s)}) \end{split}$$

采样定理

采样频率必须大于奈奎斯特率,此时 x[n] 唯一由样本值序列 x[kn] 确定且可恢复,否则会发生混叠。 抽取/减采样

$$X_s[n]=x[nN]=x_p[nN] \qquad X_s(e^{j\omega})=X_p(e^{j\omega/N})=rac{1}{N}\sum_{k=0}^{N-1}X(e^{j(\omega-2\pi k)/N})$$

内插/增采样

$$x[n] = \left\{ egin{array}{ll} x_s[n/N] & n = kN \ & & X(e^{j\omega}) = X_s(e^{j\omega N}) \ & & \end{array}
ight.$$

3、连续时间的离散信号处理

原理框图如下

连续时间信号的离散时间处理,其中 $x_d[n]=x(nT)$, $y_d[n]=y(nT)$

$$X_d(e^{j\omega}) = X_p(jrac{\omega}{T}) = rac{1}{T}\sum_k X(j(\omega-2k\pi)/T) \Longleftrightarrow X(j\omega) = TX_d(e^{j\omega T}) \quad |\omega| < \omega_s/2$$

由图可得
$$Y(j\omega) = TY_d(e^{j\omega T})$$
 $|\omega| < \omega_s/2 \Longrightarrow Y(j\omega) = \begin{cases} TX_d(e^{j\omega T})H_d(e^{j\omega T}) & |\omega| < \omega_s/2 \\ 0 & else \end{cases}$ 定义 $H_c(j\omega) = \begin{cases} H_d(e^{j\omega T}) & |\omega| < \omega_s/2 \\ 0 & else \end{cases}$ 则 $Y(j\omega) = X(j\omega) \cdot H_c(j\omega)$

定义
$$H_c(j\omega) = \left\{egin{array}{ll} H_d(e^{j\omega T}) & |\omega| < \omega_s/2 \ 0 & else \end{array}
ight.$$
 则 $Y(j\omega) = X(j\omega) \cdot H_c(j\omega)$

$$H_d(e^{j\omega}) = \sum\limits_k H_c(j(\omega-2k\pi)/T) = rac{1}{T}\sum\limits_k TH_c(j(\omega-2k\pi)/T) \Longrightarrow h_d[n] = Th_c(nT)$$

Chapter 6 信号与系统的复频域分析

1、拉普拉斯变换

收敛域 ROC

使得 x(t) 的拉氏变换存在的 s 的值的范围,若 ROC 包含 $j\omega$ 轴,则 F[x(t)] 一定收敛 $\mathbf{x}(t)$ 时域特性与 $\mathbf{X}(s)$ 收敛域关系

- (1) X(s) 收敛域一定呈带状区域
- (2) 若 x(t) 为有理函数,则 ROC 不应包含任何极点;若 X(s) 为有理函数,则 ROC 的边界由极点限定或无穷远且不包含任何极点
 - (3) 若 x(t) 时限且绝对可积,则 ROC 为整个 s 平面
- (4) 若 x(t) 为右边信号,则 ROC 为最右极点的右边;若 x(t) 为左边信号,则 ROC 为最左极点的左边;若 x(t) 为双边信号,则 ROC 为带状区域。

典型拉普拉斯变换对

函数	拉普拉斯变换	ROC
$\delta(t)$	1	整个平面
u(t)	1/s	Res>0
-u(-t)	1/s	Res < 0
$rac{t^{n-1}}{(n-1)!}u(t)$	$1/s^n$	Res>0
$cos\omega_0 t \cdot u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Res>0
$sin\omega_0 t \cdot u(t)$	$\frac{\omega_0}{s^2\!+\!\omega_0^2}$	Res>0

2、双边拉普拉斯变换性质

性质	信号	拉普拉斯变换	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
线性	$ax_1(t)+bx_2(t)$	$aX_1(s)+bX_2(s)$	至少包含:R1∩R2
时移	$x(t-t_0)$	$e^{-st_0}X(s)$	R
S城平移	$e^{i_0t}x(t)$	$X(s-s_0)$	$R + \operatorname{Re}\{s_0\}$
时域尺度变换	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Ra
共轭	x*(t)	X*(s*)	R
卷积	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	至少包含:R ₁ ∩R ₂
时域微分	$\frac{\mathrm{d}}{\mathrm{d}t}x(t)$	sX(s)	至少包括 R
S域微分	-tx(t)	$\frac{\mathrm{d}}{\mathrm{d}s}X(s)$	R
时域积分	$\int_{0}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	至少包括:R ∩ {Re(s}>0

初值和终值定理

若 t < 0,x(t) = 0 且在 t = 0 不包括任何冲激或高阶奇异函数,则

 $x(0^+) = \lim sX(s)$

 $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} sX(s)$

3、周期信号与抽样信号的拉氏变换性质

周期信号

前提:
$$t < 0$$
 时, $x(t) = 0$

$$X(s) = X_1(s) \sum\limits_{n=0}^{+\infty} e^{-nsT} = X_1(s) rac{1}{1-e^{-sT}} \quad Re\{s\} > 0$$

抽样信号

$$\delta_T(t) \cdot u(t) \overset{L}{\longleftrightarrow} \sum_{n=0}^{+\infty} e^{-nsT} = rac{1}{1-e^{-sT}} \quad Re\{s\} > 0$$

$$x(t)\cdot \delta_T(t)\cdot u(t) \overset{L}{\longleftrightarrow} X_s(s) = \sum\limits_{n=0}^{+\infty} x(nT)e^{-nsT}$$

4、拉氏反变换

考虑
$$X(s) = (b_0 + b_1 s + \cdots + b_m s^m)/(a_0 + a_1 s + \cdots + a_n s^n)$$

分母有n个互异实根

例:
$$X(s)=rac{10(s+2)(s+5)}{s(s+1)(s+3)}$$
 $Re\{s\}>0$

解: 令分母的3个互异实根分别为
$$p_1=0$$
 $p_2=-1$ $p_3=-3$

$$X(s)=rac{c_1}{s}+rac{c_2}{s+1}+rac{c_3}{s+3}$$
 其中 $c_i=(s-p_i)X(s)|_{s=p_i}$ 可得 $c_1=rac{100}{3}$ $c_2=-20$ $c_3=-rac{10}{3}$

则
$$X(s) = rac{rac{100}{3}}{s} + rac{-20}{s+1} + rac{-rac{10}{3}}{s+3}$$

则
$$x(t) = (rac{100}{3} - 20e^{-t} - rac{10}{3}e^{-3t}) \cdot u(t)$$

分母有k重根

例:
$$X(s) = \frac{s-2}{s(s+1)^3}$$
 $Re\{s\} > 0$

解: 令分母的2个互异实根分别为
$$p_1 = -1$$
 $p_2 = 0$

$$X(s)=rac{k_{11}}{\left(s+1
ight)^3}+rac{k_{12}}{\left(s+1
ight)^2}+rac{k_{13}}{s+1}+rac{k_2}{s}$$
 其中 $k_{1i}=rac{1}{(i-1)!}\cdotrac{d^{i-1}((s+1)^3X(s))}{ds^{i-1}}|_{s=p_i}$ 可得

$$k_{11}=3$$
 $k_{12}=2$ $k_{13}=2$ $k_{2}=-2$

则
$$X(s) = rac{3}{(s+1)^3} + rac{2}{(s+1)^2} + rac{2}{s+1} - rac{2}{s}$$

则
$$x(t) = (rac{3}{2}t^2e^{-t} + 2te^{-t} + 2e^{-t} - 2) \cdot u(t)$$

5、单边拉氏变换性质

$$ilde{X}(s) = \int_0^{+\infty} x(t) e^{-st} dt$$
 记为 $x(t) \stackrel{uL}{\longleftrightarrow} ilde{X}(s)$

时域微分

$$rac{dx(t)}{dt} \overset{uL}{\longleftrightarrow} s ilde{X}(s) - x(0) \quad \Longrightarrow \quad rac{d^{(n)}x(t)}{dt^n} \overset{uL}{\longleftrightarrow} s^n ilde{X}(s) - s^{n-1}x(0) - s^{n-2}x'(0) - \cdots - x^{(n-1)}(0)$$

时域积分

$$\int_{-\infty}^t x(t)dt \stackrel{uL}{\longleftrightarrow} rac{1}{s} ilde{X}(s) + \int_{-\infty}^{0^-} x(au)d au/s$$

卷积

当
$$t<0$$
 $x_1(t)=x_2(t)=0$ 时, $x_1(t)*x_2(t) \stackrel{uL}{\longleftrightarrow} \tilde{X}_1(s)\cdot \tilde{X}_2(s)$

6、连续时间LTI系统的S域分析

系统函数

$$y(t) = H(s)e^{st}$$

若
$$\sum a_m y^{(m)}(t) = \sum b_n x^{(n)}(t)$$
 则 $Y(s) \sum a_m s^m = X(s) \sum b_n s^n$

可得
$$H(s)=rac{Y_{zs}(s)}{X(s)}=\sum a_m s^m/\sum b_n s^n=H_\infty\cdotrac{\prod(s-z_i)}{\prod(s-p_i)}$$
 其中 H_∞ 为 b 的最高项除以 a 的最高项

H(s)与H(jw)

$$H(s) = H_{\infty} \cdot \frac{\prod s \overset{
ightarrow}{
ightarrow z_i}}{\prod s \overset{
ightarrow}{
ightarrow} p_i} \overset{s=j\omega}{\Longrightarrow} H_{\infty} \cdot \frac{\prod j\overset{
ightarrow}{
ightarrow z_i}}{\prod j\omega - p_i} = H_{\infty} \cdot \frac{N_1 N_2 \ldots N_m}{M_1 M_2 \ldots M_n} \cdot e^{j[(\phi_1 + \phi_2 + \cdots + \phi_m) - (\theta_1 + \theta_2 + \cdots + \theta_n)]}$$

稳定性

ROC 包含 $j\omega$ 轴

因果性

ROC 为右边平面

全响应求解

例:
$$y'' + 3y' + 2y = 5e^{-3t}u(t)$$
 $y(0^-) = 1$ $y'(0^-) = 2$

解: 两边同求单边拉氏变换,得
$$[s^2Y(s)-sy(0)-y'(0)]+3[sY(s)-y(0)]+2Y(s)=rac{5}{s+3}$$

移项得
$$Y(s)=rac{rac{5}{s+3}+(s+3)y(0)+y'(0)}{s^2+3s+2}$$
 则 $Y_{zs}(s)=rac{rac{5}{s+3}}{s^2+3s+2}$ $Y_{zi}(s)=rac{(s+3)y(0)+y'(0)}{s^2+3s+2}$

数值代入即可

Chapter 7 Z变换

1、双边Z变换

收敛域

(1) 有限长序列:
$$X(z)=\sum\limits_{n=n_1}^{n_2}x[n]z^{-n}$$
 $ROC: \left\{egin{array}{ll} |z|>0 & n_1>0 \ \\ |z|<\infty & n_2<0 \ \\ 0<|z|<\infty & n_1<0,n_2>0 \end{array}
ight.$

(2) 右边序列:
$$X(z) = \sum\limits_{n=n_1}^{\infty} x[n]z^{-n} \quad ROC: R_x^- < |z| (< \infty) \quad (n_1 < 0)$$

(3) 左边序列:
$$X(z) = \sum\limits_{n=-\infty}^{n_2} x[n]z^{-n} \quad ROC: (0<)|z| < R_x^+ \quad (n_2>0)$$

2、Z变换性质与常用Z变换

性质

性质名称	时域	2 变换	收敛域
	x[n]	X(z)	$ROC = R_x : R_x - \langle z \langle R_x + z \rangle$
	y[n]	Y(z)	$ROC = R_y : R_y = \langle z \langle R_y + z \rangle$
线性	$a_1x[n]+a_2y[n]$	$a_1X(z)+a_2Y(z)$	至少 R _x ∩ R _y
移位	x[n-m]	$z^{-m}X(z)$	$R_x < z < R_x^+$
线性加权	$nx[n]$ $n^mx[n]$	$-z \frac{\mathrm{d}}{\mathrm{d}z} X(z)$ $\left(-z \frac{\mathrm{d}}{\mathrm{d}z}\right)^{(m)} X(z)$	$R_{x^-} < z < R_{x^+}$
时间扩展	$x_{(k)} = \begin{cases} x[n/k], n = rk \\ 0, & n \neq rk \end{cases}$ r 为整数	X(z ^k)	$R_x^{1/k}$
时间反转	x[-n]	X(z-1)	R_x^{-1}
差分	x[n]-x[n-1]	$(1-z^{-1})X(z)$	至少 R _x ∩ z >0
2 域尺度变换	$e^{j\omega_0} {}^n x [n]$ $z_0^n x [n]$	$X(e^{-j\omega_0}z)$ $X(z/z_0)$	R_r $z_0 R_r$
卷积定理	x[n] * y[n]	X(z)Y(z)	至少 $R_x \cap R_y$
共轭	x • [n]	X*(z*)	R _r
累加	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	至少 R₁∩ z >1
初值定理	$x[0] = \lim_{z \to \infty} X(z)$		$x[n]$ 为因果序列, $ z >R_x^-$
终值定理	$x[\infty] = \lim_{z \to 1} (z - 1) X(z)$		$x[n]$ 为因果序列,且当 $ z \ge 1$ 时, $(z-1)X(z)$ 收敛

常用Z变换

序列	2 变换	收敛域
δ[n]	1	整个2平面
u [n]	$\frac{1}{1-z^{-1}}$	z >1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z <1
$\delta \lceil n-m \rceil$	z ^{-m}	除去 0(若 m>0)或 ∞(若 m<0)的所有 z
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
-a ⁿ u[-n- 1]	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos\omega_0 n \cdot u[n]$	$\frac{1-\cos\omega_0\cdot z^{-1}}{1-2\cos\omega_0\cdot z^{-1}+z^{-2}}$	z >1
$\sin \omega_0 n \cdot u[n]$	$\frac{\sin\omega_0 \cdot z^{-1}}{1 - 2\cos\omega_0 \cdot z^{-1} + z^{-2}}$	z >1
$r^n\cos\omega_0 n \cdot u[n]$	$\frac{1-r\cos\omega_0\cdot z^{-1}}{1-2r\cos\omega_0\cdot z^{-1}+r^2z^{-2}}$	z >r
$r^n \sin \omega_0 n \cdot u[n]$	$\frac{r\sin\omega_0 \cdot z^{-1}}{1 - 2r\cos\omega_0 \cdot z^{-1} + r^2 z^{-2}}$	z >r

3、Z反变换

幂级数展开法 (长除法)

将
$$X(z)$$
 展开为 $x[0] + x[1]z^{-1} + \cdots + x[n]z^{-n}$ 的形式

部分分式展开法

例:
$$X(z) = \frac{z-2}{1-2z}$$
 $|z| > |\frac{1}{2}|$

解:转化为以
$$z^{-1}$$
 为变量,即 $X(z)=rac{z^{-1}-rac{1}{2}}{1-rac{1}{2}z^{-1}}=rac{z^{-1}}{1-rac{1}{2}z^{-1}}-rac{rac{1}{2}}{1-rac{1}{2}z^{-1}}$

可得
$$x[n]=(rac{1}{2})^{n-1}u[n-1]-(rac{1}{2})^{n+1}u[n]$$

围线积分法 (留数法)

$$x[n] = rac{1}{2\pi j} \oint X(z) z^{n-1} dz \quad \Longrightarrow \quad \left\{ egin{align*} x[n] = \sum\limits_m Res[X(z) z^{n-1}]|_{z=p_m} &$$
 有 边 $\\ x[n] = -\sum\limits_m Res[X(z) z^{n-1}]|_{z=p_m} &$ 走 边

其中
$$Res[X(z)z^{n-1}]|_{z=p_m}=rac{1}{(L-1)!}[rac{d^{L-1}}{dz^{L-1}}(z-p_m)^LX(z)z^{n-1}]|_{z=p_m}$$
 P_m 为 L 阶极点

例:
$$X(z)=rac{1-rac{1}{2}z^{-1}}{1-rac{1}{4}z^{-2}} \quad |z|>rac{1}{2}$$

解:右边信号,且
$$p_1=\frac{1}{2}$$
 $p_2=-\frac{1}{2}$ 均为二阶极点

$$\left.Res[X(z)z^{n-1}]
ight|_{z=p_1}=rac{1}{(2-1)!}[rac{d^{2-1}}{dz^{2-1}}(z-p_1)^2X(z)z^{n-1}]
ight|_{z=p_1}=(-rac{1}{2})^n$$

$$Res[X(z)z^{n-1}]|_{z=p_2}=rac{1}{(2-1)!}[rac{d^{2-1}}{dz^{2-1}}(z-p_2)^2X(z)z^{n-1}]|_{z=p_2}=0$$

$$\mathop{\mathrm{I\!P}}\nolimits x[n] = Res[X(z)z^{n-1}]|_{z=p_1} + Res[X(z)z^{n-1}]|_{z=p_2} = (-\tfrac{1}{2})^n u[n]$$

4、单边Z变换

$$X(z) = \sum\limits_{n=0}^{\infty} x[n] z^{-n}$$
 记为 $x[n] \stackrel{uZ}{\longleftrightarrow} X(z)$

移位性质

$$x[n+m] \stackrel{\mathit{uZ}}{\longleftrightarrow} z^m[X(z) - \sum\limits_{k=0}^{m-1} x[k]z^{-k}]$$

$$x[n-m] \overset{uZ}{\longleftrightarrow} z^{-m}[X(z) + \sum\limits_{k=-m}^{-1} x[k]z^{-k}]$$

5、离散时间LTI系统的Z域分析

因果性

$$ROC$$
包含 $z=\infty$

稳定性

ROC 包含单位圆, 且极点都在单位圆内

全响应求解

例:
$$y[n] + y[n-1] - 6y[n-2] = x[n] = 4^n u[n]$$
 $y[-2] = 0$ $y[-1] = 1$

解: 两边同求单边
$$Z$$
 变换,得 $Y(z)+z^{-1}[Y(z)+y[-1]z]-6z^{-2}[Y(z)+y[-2]z^2+y[-1]z]=rac{1}{1-4z^{-1}}$

代入条件,移项得
$$Y(z)=rac{1}{(1+z^{-1}-6z^{-2})(1-4z^{-1})}+rac{-1+6z^{-1}}{1+z^{-1}-6z^{-2}}$$

则
$$Y_{zs}(z)=rac{1}{(1+z^{-1}-6z^{-2})(1-4z^{-1})}$$
 $Y_{zi}(z)=rac{-1+6z^{-1}}{1+z^{-1}-6z^{-2}}$