Statistical Inference - Peer Assessment Part 1

 $Deb \ \textit{Griffin}$

Thursday, February 12, 2015

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda λ is the rate parameter. The mean of exponential distribution is $1/\lambda$ and the standard deviation is also $1/\lambda$. For this simulation, we set $\lambda = 0.2$. In this simulation, we investigate the distribution of averages of 40 numbers sampled from exponential distribution with $\lambda = 0.2$.

We've used a thousand simulated averages of 40 exponentials.

```
set.seed(3)
lambda <- 0.2
num_sim <- 1000
sample_size <- 40
sim <- matrix(rexp(num_sim*sample_size, rate=lambda), num_sim, sample_size)
rmeans <- rowMeans(sim)</pre>
```

The distribution of sample means:

Distribution of sample averages from an exponential distribution with lambda=0.2

The distribution of sample means is centered at 4.9866197 and the theoretical center of the distribution is $\lambda^{-1} = 5$. The variance of sample means is 0.6257575 where the theoretical variance of the distribution is $\sigma^2/n = 1/(\lambda^2 n) = 1/(0.04 \times 40) = 0.625$.

With regard to the central limit theorem, the averages of samples follow normal distribution. The above figure shows the density computed using a histogram and the normal density plotted with theoretical mean and variance values. The q-q plot below suggests the normality.

qqnorm(rmeans); qqline(rmeans)

Normal Q-Q Plot

Finally, to evaluate the confidence interval for $1/\lambda = \bar{X} \pm 1.96 \frac{S}{\sqrt{n}}$

The 95% confidence intervals for the rate parameter (λ) estimate ($\hat{\lambda}$) are $\hat{\lambda}_{low} = \hat{\lambda}(1 - \frac{1.96}{\sqrt{n}})$ agnd $\hat{\lambda}_{upp} = \hat{\lambda}(1 + \frac{1.96}{\sqrt{n}})$. As evident from the above plot, for selection of $\hat{\lambda}$ around 5, the average of the sample mean falls within the confidence interval around 95% of the time.