Stærðfræðimynstur í tölvunarfræði

Vika 10

Kafli 9: Vensl

Vensl (relations)

- Vensl og eiginleikar þeirra
 - Sjálfhverf (reflexive) vensl
 - Samhverf (symmetric) og andsamhverf (antisymmetric) vensl
 - Gegnvirk (transitive) vensl
 - Samsetningar (combinations) vensla
- Táknun vensla
 - ► Fylki (matrices), stefnd net (digraphs=directed graphs)
- Jafngildisvensl (equivalence relations)
 - ► Sjálfhverf, samhverf og gegnvirk
 - Jafngildisflokkar
- Hlutraðanir (partial ordering), hlutröðuð mengi
 - Sjálfhverf, andsamhverf og gegnvirk
 - Stafrófsröð (lexicographic ordering)
 - Hasse rit (Hasse diagram)

Tvíundarvensl

- Skilgreining: Tvíundarvensl frá mengi A til mengis B eru undirmengi $A \times B$
- **Dæmi:** Látum $A = \{0,1,2\}$ og $B = \{a,b\}$
 - ► {(0, a), (0, b), (1, a), (2, b)} eru vensl frá A til B
 - ▶ Við getum táknað venslin myndrænt eða í töflu
 - ► Vensl eru almennari en föll, fall $f: A \rightarrow B$ er vensl þar sem nákvæmlega eitt stak í B er venslað við hvert stak A
 - Föll eru því vensl, en ekki endilega öfugt

R	а	b
0	×	×
1	×	
2		×

Tvíundarvensl á mengi

- Skilgreining: Tvíundarvensl R á mengi A er undirmengi $A \times A$, þ.e. vensl frá A til A
- Dæmi:
 - ▶ G.r.f. að $A = \{a, b, c\}$, þá er $R = \{(a, a), (a, b), (a, c)\}$ tvíundarvensl á A
 - ▶ G.r.f. að $A = \{1,2,3,4\}$, þá eru tvenndirnar í venslunum $R = \{(a,b) \in A \times A \mid a \text{ gengur upp } i \ b \}$: (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3) og (4,4)
- Spurning: Hvað eru mörg vensl á mengi A?
- Svar: Jafn mörg og stökin í $\mathbb{P}(A \times A)$, þ.e. $|\mathbb{P}(A \times A)| = 2^{|A \times A|} = 2^{|A|^2}$

Tvíundarvensl

Dæmi: Íhugum þessi vensl á heiltölurnar:

$$R_1 = \{(a,b)|a \le b\}$$
 $R_4 = \{(a,b)|a = b\}$ $R_2 = \{(a,b)|a > b\}$ $R_5 = \{(a,b)|a = b+1\}$ $R_3 = \{(a,b)|a = b \ e \delta a \ a = -b\}$ $R_6 = \{(a,b)|a + b \le 3\}$

- Venslin eru á óendanlegt mengi og sérhver venslanna eru óendanlegt mengi
- Hver þessara vensla innihalda pörin (1,1), (1,2), (2,1), (1,-1) og (2,2)?
- Lausn: Við sjáum að

$$(1,1)$$
 er í R_1 , R_3 , R_4 og R_6
 $(1,2)$ er í R_1 og R_6
 $(2,1)$ er í R_2 , R_5 og R_6
 $(1,-1)$ er í R_2 , R_3 og R_6
 $(2,2)$ er í R_1 , R_3 og R_4

Sjálfhverf (reflexive) vensl

- Skilgreining: Tvíundarvensl R á mengi A eru sjálfhverf (reflexive) þþaa $(a, a) \in R$ fyrir sérhvert $a \in A$
- Dæmi: Eftirfarandi vensl á heiltölurnar eru sjálfhverf

$$R_1 = \{(a, b) | a \le b \}$$

 $R_3 = \{(a, b) | a = b \text{ eða } a = -b \}$
 $R_4 = \{(a, b) | a = b \}$

Eftirfarandi eru ekki sjálfhverf

```
R_2 = \{(a,b)|a > b\}

R_5 = \{(a,b)|a = b + 1\}

R_6 = \{(a,b)|a + b \le 3\}
```

Samhverf (symmetric) vensl

Skilgreining: Tvíundarvensl R á mengi A eru samhverf þþaa í sérhverju tilviki þegar $(a,b) \in R$ þá gildi einnig $(b,a) \in R$. Sem sagt, R eru samhverf þþaa

$$\forall x \forall y [(x, y) \in R \to (y, x) \in R]$$

Dæmi: Eftirfarandi vensl á heiltölurnar eru samhverf

$$R_3 = \{(a,b)|a = b \text{ eða } a = -b \}$$

 $R_4 = \{(a,b)|a = b\}$
 $R_6 = \{(a,b)|a + b \le 3 \}$

Eftirfarandi eru ekki samhverf

$$R_1 = \{(a, b) | a \le b \}$$

 $R_2 = \{(a, b) | a > b \}$
 $R_5 = \{(a, b) | a = b + 1 \}$

Andsamhverf (antisymmetric) vensl

Skilgreining: Tvíundarvensl R á mengi A eru andsamhverf þþaa í sérhverju tilviki þegar $(a,b) \in R$ og $(b,a) \in R$ þá gildi a=b. Sem sagt, R eru andsamhverf þþaa

$$\forall x \forall y [(x, y) \in R \land (y, x) \in R \rightarrow x = y]$$

Dæmi: Eftirfarandi vensl á heiltölurnar eru andsamhverf

$$R_1 = \{(a,b)|a \le b\}$$

$$R_2 = \{(a,b)|a > b\}$$

$$R_4 = \{(a,b)|a = b\}$$

$$R_5 = \{(a,b)|a = b+1\}$$

Eftirfarandi eru ekki andsamhverf

$$R_3 = \{(a,b)|a = b \text{ eða } a = -b \}$$

 $R_6 = \{(a,b)|a+b \le 3 \}$

Gegnvirk (transitive) vensl

Skilgreining: Tvíundarvensl R á mengi A eru gegnvirk þþaa í sérhverju tilviki þegar $(a,b) \in R$ og $(b,c) \in R$ þá gildi $(a,c) \in R$. Sem sagt, R eru gegnvirk þþaa

$$\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$$

Dæmi: Eftirfarandi vensl á heiltölurnar eru gegnvirk

$$R_1 = \{(a,b)|a \le b\}$$

 $R_2 = \{(a,b)|a > b\}$
 $R_3 = \{(a,b)|a = b \text{ eða } a = -b\}$
 $R_4 = \{(a,b)|a = b\}$

Eftirfarandi eru ekki gegnvirk

$$R_5 = \{(a,b)|a=b+1\}$$
 $R_6 = \{(a,b)|a+b \le 3\}$

 $(4,3), (3,2) \in R_5$, en $(4,2) \notin R_5$

 $(2,1), (1,2) \in R_6$, en $(2,2) \notin R_6$

Mengjaaðgerðir á vensl

- ▶ Gefin tvenn vensl R_1 og R_2 getum við fengið önnur vensl með mengjaaðgerðum, svo sem $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$ og $R_2 R_1$
- ▶ Dæmi: Látum $A = \{1,2,3\}$ og $B = \{1,2,3,4\}$. Úr venslunum $R_1 = \{(1,1),(2,2),(3,3)\}$ og $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ má reikna venslin $R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$ $R_1 \cap R_2 = \{(1,1)\}$ $R_1 R_2 = \{(2,2),(3,3)\}$ $R_2 \cup R_1 = \{(1,2),(1,3),(1,4)\}$

Samsetning vensla

- ▶ **Skilgreining:** G.r.f. að R_1 séu vensl frá mengi A til mengis B og að R_2 séu vensl frá mengi B til mengis C. Þá skilgreinum við samsettu venslin $R_2 \circ R_1$ sem vensl frá mengi A til mengis C með eftirfarandi:
 - $(x,z) \in R_2 \circ R_1$ þá og því aðeins að til sé $y \in B$ þannig að $(x,y) \in R_1$ og $(y,z) \in R_2$

Samsetning vensla

$$R_2 \circ R_1 = \{(b, x), (b, z)\}$$

Veldi vensla

- Skilgreining: G.r.f. að R séu tvíundarvensl á mengi A. Þá skilgreinum við veldi R^n venslanna endurkvæmt með:
 - ▶ Grunnskref: $R^1 = R$
 - ▶ Prepunarskref: $R^{n+1} = R^n \circ R$
- Ef venslin eru gegnvirk þá eru veldi venslanna undirmengi venslanna. Þetta er ein afleiðing eftirfarandi setningar.
- ▶ Setning: Tvíundarvensl R á mengi A eru gegnvirk þá og því aðeins að $R^n \subseteq R$ fyrir n = 1,2,3,...

Táknun vensla með fylkjum

- Vensl milli endanlegra mengja má tákna með núll-eitt fylkjum
- ▶ G.r.f. að R séu vensl frá $A = \{a_1, a_2, ..., a_m\}$ til $B = \{b_1, b_2, ..., b_n\}$
 - ▶ Telja má upp stökin í hvaða röð sem er, en ef A = B þá notum við sömu röð fyrir A og B, af ástæðum sem verða ljósar
- Venslin R má þá tákna með fylkinu $M_R = [m_{ij}]$, þar sem

$$m_{ij} = \begin{cases} 1 & \text{ef } (a_i, b_j) \in R \\ 0 & \text{ef } (a_i, b_j) \notin R \end{cases}$$

Fylkið sem stendur fyrir R hefur því 1 í sæti (i,j) þegar a_i er venslað við b_j og 0 í sæti (i,j) ef a_i er ekki venslað við b_j

Dæmi um fylki vensla

- ▶ **Dæmi:** Látum $A = \{1,2,3\}$ og $B = \{1,2\}$. Látum R vera venslin frá A til B, skilgreind með $R = \{(a,b) \in A \times B \mid a > b\}$. Hvaða fylki samsvarar R (miðað við vaxandi röð staka í upptalningunni)?
- **Svar:** Par eð $R = \{(2,1), (3,1), 3,2)\}$ fáum við fylkið

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Dæmi um vensl fylkis

Dæmi: Látum $A = \{a_1, a_2, a_3\}$ og $B = \{b_1, b_2, b_3, b_4, b_5\}$. Hvaða tvenndir í $A \times B$ eru í venslunum R sem táknaðar eru af eftirfarandi fylki?

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Svar:

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}$$

Fylki tvíundarvensla á mengi

Arr eru sjálfhverf (reflexive) vensl á mengi A þá og því aðeins að öll gildi á skálínu M_R séu jöfn 1:

$$egin{bmatrix} 1 & & & & & \ & 1 & & & & \ & & \ddots & & & \ & & & 1 & & \ & & & 1 & & \ \end{pmatrix}$$

- ightharpoonup R eru samhverf (symmetric) vensl þá og því aðeins að $m_{ij}=m_{ji}$
- R eru andsamhverf (antisymmetric) vensl ef $m_{ij} = 1 \rightarrow m_{ji} = 0$

(a) Symmetric

(b) Antisymmetric

Fylki (tvíundar)vensla á mengi

▶ **Dæmi:** G.r.f. að vensl R á mengi $A = \{a_1, a_2, a_3\}$ séu táknuð með fylkinu

$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- Eru venslin R sjálfhverf? samhverf? andsamhverf?
- Svar: Venslin eru sjálfhverf því hornalínan inniheldur aðeins 1. Venslin eru samhverf því fylkið er samhverft. Venslin eru ekki andsamhverf því $m_{1,2}=m_{2,1}$

Táknun vensla með stefndum netum (digraph, directed graph)

- Skilgreining: Stefnt net er mengi V af hnútum (vertices, nodes) ásamt mengi E af tvenndum hnúta sem við köllum stikur eða örvar (edges, arcs). Hnúturinn a er kallaður byrjunarhnútur stikunnar (örvarinnar) (a,b) og hnúturinn b er kallaður endahnútur stikunnar.
 - ightharpoonup Stika á sniðinu (a, a) er kölluð lykkja.
- ▶ Dæmi: Hér er teikning af stefndu neti með hnúta a, b, c og d, og stikum (a, b), (a, d), (b, b), (b, d), (c, a), (c, b) og (d, b)

Dæmi um stefnd net vensla

- Dæmi: Hverjar eru tvenndirnar í venslunum sem þetta net stendur fyrir?
- > Svar: Tvenndirnar eru (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,1) og (4,3)

Berum kennsl á einkenni vensla út frá stefndu neti þeirra

- Sjálfhverf: Það þarf að vera lykkja á sérhverjum hnút
- Samhverf: Ef (x, y) er stika þá er (y, x) einnig stika
- ► Andsamhverf: Ef (x, y) er stika og $x \neq y$ þá er (y, x) ekki stika
- ► **Gegnvirk:** Ef (x, y) og (y, z) eru stikur þá er (x, z) stika

- Sjálfhverf? Nei, sumir hnútar hafa ekki lykkju
- Samhverf? Já, á augljósan hátt því engin stika liggur milli mismunandi hnúta
- Andsamhverf? Já, einnig á augljósan hátt
- Gegnvirk? Já, á augljósan hátt

- Sjálfhverf? Nei, engar lykkjur
- Samhverf? Nei, það er stika frá *a* til *b* en engin til baka
- Andsamhverf? Nei, það er stika frá *b* til *d* og önnur til baka
- Gegnvirk? Nei, það eru stikur frá a til b og frá b til d en engin frá a til d

- Sjálfhverf? Nei, engar lykkjur
- Samhverf? Nei, það er stika frá *a* til *b* en engin til baka
- Andsamhverf? Já, fyrir sérhverja stiku er engin til baka
- Gegnvirk? Já, allt sem hægt er að komast í tveimur skrefum er hægt að komast í einu skrefi

- Sjálfhverf? Nei, engar lykkjur
- Samhverf? Nei, það er stika frá *a* til *d* en engin til baka
- Andsamhverf? Já, fyrir sérhverja stiku er engin til baka
- Gegnvirk? Já, á augljósan hátt því ekki er hægt að fara tvö skref

Veldi vensla

Tvenndin (x,y) er í \mathbb{R}^n ef það er til vegur af lengd n frá x til y í \mathbb{R}

Jafngildisvensl (equivalence relation)

- Skilgreining: Vensl á mengi A kallast jafngildisvensl ef þau eru sjálfhverf, samhverf og gegnvirk
- ▶ Skilgreining: Ef tvö stök, a og b, eru vensluð með jafngildisvenslum, þá segjum við að stökin séu *jafngild*. Rithátturinn $a \sim b$ (lesið "a jafngildir b") er oft notaður til að tákna að a og b séu jafngild með tilliti til tiltekinna jafngildisvensla

Strengir

- ▶ **Dæmi:** Látum R vera vensl á strengi yfir íslenska stafrófið þannig að $(a,b) \in R$ þá og því aðeins að strengirnir a og b séu af sömu lengd. Eru R jafngildisvensl?
- Svar: Já. Til að sanna það þurfum við að sanna að venslin séu sjálfhverf, samhverf og gegnvirk
 - > Sjálfhverf: Strengur er af sömu lengd og hann sjálfur
 - ▶ Samhverf: Ef strengur a er af sömu lengd og strengur b þá er strengurinn b af sömu lengd og a
 - ▶ **Gegnvirk:** Ef strengur a er af sömu lengd og strengur b og strengur b er af sömu lengd og strengur c þá er strengurinn a af sömu lengd og strengurinn c

Jafngildi mátað við m

- ▶ Dæmi: Látum m > 1 vera heiltölu. Sýnið að venslin $R = \{(a,b) | a \equiv b \pmod{m}\}$ séu jafngildisvensl
- ▶ Lausn: Munum að $a \equiv b \pmod{m}$ þá og því aðeins að a b sé margfeldi af m
 - Sjálfhverf: a a = 0 og 0 er margfeldi af m þar eð $0 = 0 \cdot m$
 - ► Samhverf: ...
 - ► Gegnvirk: ...

Gengur upp i

- Sýnið að venslin "gengur upp í" á jákvæðar heiltölur eru ekki jafngildisvensl
- Lausn: Venslin eru sjálfhverf og gegnvirk en þau eru ekki samhverf. Hvernig sönnum við það?

Jafngildisflokkar

- Skilgreining: Látum R vera jafngildisvensl á mengi A. Mengi allra þeirra staka A sem eru jafngild tilteknu staki $a \in A$ er kallað jafngildisflokkur a. Jafngildisflokkurinn er táknaður með $[a]_R$
 - ightharpoonup Pegar aðeins ein jafngildisvensl eru til umræðu getum við skrifað [a]
 - ► Takið eftir að $[a]_R = \{s | (a, s) \in R\}$
 - ▶ Ef $b \in [a]_R$ þá segjum við að b sé fulltrúi (represenative) þessa jafngildsflokks. Hvaða stak sem er í jafngildisflokknum má nota sem fulltrúa jafngildisflokksins

Jafngildisflokkar

- ▶ **Setning:** Látum R vera jafngildisvensl á mengi A. Þá eru eftirfarandi fullyrðingar jafngildar
 - 1. aRb (sama og $(a,b) \in R$)
 - [a] = [b]
 - 3. $[a] \cap [b] \neq \emptyset$
- Sönnun (að hluta): Látum nægja að sanna (að hluta) að 1. leiði til 2. Gerum ráð fyrir að aRb. Við viljum þá sanna að að [a] = [b]. Gerum fyrst ráð fyrir að $c \in [a]$. Þá gildir samkvæmt skilgreiningu á [a] að aRc. Vegna þess að R eru samhverf vensl gildir bRa og vegna gegnvirkni gildir þá bRc sem leiðir til þess að $c \in [b]$. Við sjáum því að $[a] \subseteq [b]$. Svipuð röksemdafærsla sýnir að $[b] \subseteq [a]$

Sundurlæg skipting (partition) mengis

- Skilgreining: Sundurlæg skipting mengis S er safn (mengi) sundurlægra ekki-tómra undirmengja S þannig að sammengi undirmengjanna er S. Með öðrum orðum þá gildir um safn undirmengjanna A_i , þar sem $i \in I$ (I er þá mengi vísa), að
 - $ightharpoonup A_i \neq \emptyset$, fyrir $i \in I$
 - $A_i \cap A_j = \emptyset \text{ ef } i \neq j$
 - $\triangleright \bigcup_{i \in I} A_i = S$

Jafngildisvensl skilgreina sundurlæga skiptingu

- ▶ **Setning:** Ef tvíundarvensl R eru jafngildisvensl á mengi S þá skilgreina þau sundurlæga skiptingu á S
- ▶ Látum $I = \{[a]_R \mid a \in S\}$ og látum $A_i = i$ fyrir $i \in I$, þá er
 - 1. $A_i \neq \emptyset$ fyrir $i \in I$
 - 2. $A_i \cap A_j = \emptyset$ ef $i \neq j$
 - $S = \bigcup_{i \in I} A_i$

og því er $\{A_i \mid i \in I\}$ sundurlæg skipting á S

Sundurlæg skipting skilgreinir jafngildisvensl

Setning: Ef $P = \{A_i \mid i \in I\}$ er sundurlæg skipting á mengi S þá skilgreinir skiptingin jafngildisvensl R á S, þar sem R er skilgreint með

 $a \sim b$ þá og því aðeins að til sé $A_i \in P$ þannig að $a \in A_i$ og $b \in A_i$

Hlutraðanir (partial ordering)

▶ **Skilgreining:** Tvíundarvensl *R* á mengi *S* eru kölluð *hlutröðun* ef þau eru sjálfhverf, andsamhverf og gegnvirk. Mengi *S* með slíkum venslum *R* er kallað *hlutraðað mengi* eða einfaldlega hlutröðun (poset, partially ordered set) og er táknað með (*S*, *R*). Við segjum að stök í *S* séu stök í hlutröðuninni

Hlutraðanir

Dæmi: Sýnið að venslin "stærra en eða jafnt" (≥) á heiltölurnar séu hlutröðun

Lausn:

- ightharpoonup Sjálfhverf: $a \ge a$ fyrir sérhverja heiltölu a
- Andsamhverf: Ef $a \ge b$ og $b \ge a$ þá er a = b
- ▶ Gegnvirk: Ef $a \ge b$ og $b \ge c$ þá er $a \ge c$
- $ightharpoonup (\mathbb{Z}, \geq)$ er því hlutröðun

Hlutraðanir

- Dæmi: Sýnið að venslin "gengur upp í" (|) á jákvæðu heiltölurnar séu hlutröðun
- Lausn:
 - ► Sjálfhverf: a|a fyrir sérhverja heiltölu a
 - ► Andsamhverf: Ef a|b og b|a þá er a=b
 - ► Gegnvirk: Ef a|b og b|c þá gildir að a|c
- $ightharpoonup (\mathbb{Z}^+,|)$ er því hlutröðun

Hlutraðanir

- ▶ Dæmi: Sýnið að venslin "er hlutmengi í" (\subseteq) á veldismengi mengis S séu hlutröðun
- Lausn:
 - ► Sjálfhverf: $A \subseteq A$ fyrir sérhvert $A \in \mathbb{P}(S)$
 - ► Andsamhverf: Ef $A \subseteq B$ og $B \subseteq A$ þá er A = B
 - ▶ Gegnvirk: Ef $A \subseteq B$ og $B \subseteq C$ þá gildir að $A \subseteq C$
- $ightharpoonup (\mathbb{P}(S), \subseteq)$ er því hlutröðun

Samanburðarhæfi

- Skilgreining: Tvö stök a og b í hlutröðun (S, \leq) eru samanburðarhæf ef annað hvort $a \leq b$ eða $b \leq a$. Ef hvorki $a \leq b$ né $b \leq a$ gildir þá segjum við að stökin a og b séu ósamanburðarhæf (eða ekki samanburðarhæf)
 - ► Táknið ≤ er oft notað til að tákna venslin í hlutröðun
- ▶ **Skilgreining:** Ef (S, \leq) er hlutröðun og sérhver tvö stök í S eru samanburðarhæf þá segjum við að S sé *línulega raðað* (totally ordered, linearly ordered) og að \leq sé línuleg röðun (total order, linear order). Línulega raðað mengi er einnig kallað *keðja* (chain)
- ▶ Skilgreining: (S, \leq) er *velraðað* (well-ordered) ef það er línulega raðað og sérhvert hlutmengi S hefur minnsta stak

Stafrófsröð (lexicographic ordering)

- ▶ **Skilgreining:** Ef (A_1, \leq_1) og (A_2, \leq_2) eru hlutraðanir þá skilgreinum við stafrófsröðunina á $A_1 \times A_2$ með því að tilgreina að (a_1, a_2) sé minna en (b_1, b_2) , þ.e. að $(a_1, a_2) < (b_1, b_2)$, þá og því aðeins að annað hvort gildi $a_1 < b_1$ eða bæði gildi $a_1 = b_1$ og $a_2 < b_2$
- Þessa skilgreiningu má útvíkka á augljósan hátt yfir á strengi (sjá í bókinni)
- Athugið að þegar við höfum skilgreiningu á ≤ þá er skilgreiningin á < augljós, þ.e.:</p>

$$a < b \leftrightarrow a \leq b \land a \neq b$$

Einnig í hina áttina:

$$a \le b \leftrightarrow a < b \lor a = b$$

Hasse rit (Hasse diagram)

Skilgreining: Hasse rit er stefnt net sem stendur fyrir hlutröðunarvensl, þar sem búið er að fjarlægja allar stikur sem eru afleiðingar af því að venslin eru sjálfhverf og gegnvirk

Net (graph) (Kafli 10)

- Sérstakar gerðir neta, flokkun neta
- Orðfæri (terminology) tengt netum
- ► Einsmótuð (isomorphic) net
- ► Samhangandi (connected) net
- ► Euler net og Hamilton net

Net

- Skilgreining: Net G = (V, E) samanstendur af ekki-tómu mengi V af hnútum (vertices, nodes) og mengi E af stikum. Hver stika tengist annað hvort einum hnút eða tveimur. og kallast þeir endahnútar eða endapunktar stikunnar. Við segjum að stikan tengi saman endahnúta hennar
- Dæmi: Hér er net með fjórum hnútum og fimm stikum:

Orðfæri (terminology)

- l einföldu neti (simple graph) liggur sérhver stika milli tveggja mismunandi hnúta og aldrei er fleiri en ein stika milli tveggja hnúta
- Í fjölneti (multigraph) má vera fleiri en ein stika milli sömu hnúta
- Stika sem tengir hnút við sjálfan sig kallast lykkja (loop)

Athugið: Orðfæri í netafræði (graph theory) er ekki staðlað

Stefnd net (directed graphs, digraphs)

- Skilgreining: Stefnt net G = (V, E) samanstendur af ekki-tómu mengi hnúta V og mengi V af stefndum stikum (eða örvum). Sérhver stika tengist tvennd hnúta, (u, v), og við segjum að stikan byrji í hnúti u og endi í hnúti v
- Net sem ekki eru stefnd eru sögð vera *óstefnd* (*undirected graphs*).

Orðfæri

- Skilgreining: Tveir hnútar, u og v, í óstefndu neti G eru sagðir vera tengdir (adjacent) ef það er stika e milli u og v. Við segjum að stikan e tengi u og v.
- > Skilgreining: Gráða hnútar v í óstefndu neti er fjöldi stika sem tengjast v. Gráða v er táknuð með $\deg(v)$
- ▶ Setning (handabandssetningin): Ef G = (V, E) er óstefnt net með m stikur og engar lykkjur þá er

$$2m = \sum_{v \in V} \deg(v)$$