Заметки практики по матанализу (самые разные семестры)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com
Семёнова Ольга Львовна (препод)

10 октября 2022 г.

Содержание

1	Пределы		4
	1.1	Таблица эквивалантности	4
2	Дифференциальное исчисление одной переменной		4
	2.1	Испольозвание первой и второй производной для по-	
		строения картины функции и её поведения у себя в го-	
		лове и последующего её перенесения на бумагу	4
	2.2	Оптимизация функций через поиск и проверку критиче-	
		ских точек с помощью производной, например, парамет-	
		ры геометрических фигур	4
3	Интегральное исчисление одной переменной		4
	3.1	Символьное вычисление неопределённых интегралов	4
	3.2	Определённые интегралы	6
	3.3	Несобственные интегралы	6
4	Чис	ловые ряды	7
5	Функциональные ряды		7
	5.1	Исследуем равномерную сходимость	7
	5.2	Доказывем отсутствие равномерной сходимости	8
	5.3	Свойства равномерно сходящихся	9
	5.4	Степенные ряды	9
6	Функции нескольких переменных		11
	6.1	Берём пределы	11
	6.2	Разница между повторным и двойным пределом	11
	6.3	Дифференцирование, частные производные	13

Здесь можно вспомнить, чем мы всё это время занимались на практи-

«Стенограмма» практик в виде серии фотографий доски (насколько возможно оперативных) есть в телеграм «чатике с домашкамм» начиная с этого сообщения: https://t.me/c/1512041988/198.

В этом же документе содержится список методов, подходов и трюков, которые мы учимся применять на практике.

Крайне полезного освежать его в памяти перед контрольной по отношению к актуальной теме, а также в любой момент по отношению к давнему материалу.

Контрибьютинг всячески приветствуется, благо на Github делать это максимально удобно. Если вы решили, например, в какой-то момент пролистать свой конспект и вспомнить былое — добавьте в этот конспект то, чего нет здесь — помогите товарицам. Или, если что-то написанное здесь настолько вопиюще неверное, что режет ваши глаза и вызывает желание как можно быстрее это пофиксить — вперёд.

Насчёт технических деталей — в README описано по шагам, что надо установить, чтобы компилировать конспект у себя на компьютере, однако ничего не мешает дописать сюда в обычном текстовом редакторе нечто отдалённо напоминающее латех и послать Pull Request — я исправлю, если что-то не будет компилироваться.

Конспект организован по темам, в том порядке, в котором мы их проходим на практиках. Кроме того, примерно расставлены разделения, где заканчивается предыдущая практика и начинается следующая, но могут быть неточности, так как отдаётся приоритет организации по темам.

На данный момент такая картина готовности тем:

- Пределы почти ничего
- Производные совсем мало
- Интегралы довольно полно, но тезисно
- Числовые ряды вообще ничего
- Функциональные ряды подробно
- Функции нескольких переменных сами практики в процессе

1. Пределы

1.1. Таблица эквивалантности

Отличная ссылка на таблицу эквивалентности с нужными доказательствами: http://mathserfer.narod.ru/node22.html

Альтернативный вариант: https://ib.mazurok.com/2013/05/19/table-equ/

2. Дифференциальное исчисление одной переменной

2.1. Испольозвание первой и второй производной для построения картины функции и её поведения у себя в голове и последующего её перенесения на бумагу

А именно:

- Находим область определения
- Смотрим поведение на границах области определения (значения, предел, асимптоты)
- \cdot Первая производная \Longrightarrow делаем вывод о промежутках возрастания/убывания, экстремумах
- Вторая производная \Longrightarrow выпуклость, точки перегиба
- 2.2. Оптимизация функций через поиск и проверку критических точек с помощью производной, например, параметры геометрических фигур

3. Интегральное исчисление одной переменной

3.1. Символьное вычисление неопределённых интегралов

- Таблица интегрирования основных элементарных функций
- Базовые приёмы интегрирования: замена переменной, ингегрирование по частям

- Тригонометрические и гиперболические подстановки
- Интегрирование по индукции, если функция содержит целочисленный параметр
- Сведение интеграла самого к себе, например, $\sqrt{x^2+a^2} o \frac{t}{\sqrt{x^2+a^2}}t+\dots o$ по частям.
- Выделение полного квадрата под корнем или не под корнем в знаменателе, избавление от линейного члена
- \cdot Если есть подвыражения вида x+a, замена переменной $t=rac{1}{x+a}$
- Выделение в числителе производной знаменателя, например, https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0% B3%D1%80%D0%B8%D1%80%D0%BE%D0%BE%D0%B2%D0%B0%D0%B0%D0%B8% D0%B5_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0% B8%D1%8C%D0%BD%D1%8B%D1%85_%D1%84%D1%83%D0%BD%D0%BA% D1%86%D0%B8%D0%B9#%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1% 80%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_ %D0%B4%D1%80%D0%BE%D0%B1%D0%B5%D0%B9_%D0%B2%D0%B8%D0% B4%D0%B0_%7F'%22%60UNIQ--postMath-00000007E-QINU%60% 22'%7F.
- Рациональные функции: разложение на простейшие, далее элементарно, больше второй степени не получится
- Функции вида $R\left(x,\sqrt[N]{\frac{\alpha x+\beta}{\gamma x+\delta}}\right)$ через замену переменной на весь корень.
- Подстановки Эйлера: $R\left(x,\sqrt{ax^2+bx+c}\right)$. В зависимости от коэффициентов нужно выбрать правильное t. Случаи могут быть пересекаться. Для функции подходят все те случаи, под условия которых она подходит:
 - 1. При a>0: $\sqrt{ax^2+bx+c}=\pm t\pm \sqrt{a}x$
 - 2. При c>0: $\sqrt{ax^2+bx+c}=\pm t\pm \sqrt{a}x$
 - 3. При наличии двух вещественных корней: $\sqrt{ax^2+bx+c}=\pm t(x-\lambda)$, где λ один из корней
- Интегрирование дифференциальных биномов

$$\int x^m (a+bx^n)^p \, \mathrm{d}x = \begin{bmatrix} z = x^n \\ \mathrm{d}x = \frac{1}{n} z^{\frac{1-n}{n}} \mathrm{d}z \end{bmatrix} = \frac{1}{n} \int z^{\frac{m}{n} + \frac{1-n}{n}} (a+bz)^p \, \mathrm{d}z \quad \text{(1)}$$

$$q = \frac{m}{n} + \frac{1-n}{n} \tag{2}$$

3 случая интегрируемости:

- 1. $p \in \mathbb{Z}, q = \frac{M}{N}$: $t = z^{\frac{1}{N}}$, выражаем получаем R(t). Профит.
- Тригонометрические подстановки в рациональных функциях $R(\cos x, \sin x)$:
 - Если $R(-\cos x,\sin x)=-R(\cos x,\sin x)$ (нечётно относительно cos), можно $t=\sin x$
 - Если $R(\cos x, -\sin x) = -R(\cos x, \sin x)$ (нечётно относительно sin), можно $t=\cos x$
 - Если $R(-\cos x, -\sin x) = R(\cos x, \sin x)$ (чётно по обеим вместе), можно $t = \operatorname{tg} x$
 - Наконец, универсальное, $t=\tan\frac{x}{2}$ работает всегда, через неё легко выражаются $\sin,\cos,\frac{\mathrm{d}t}{\mathrm{d}x}.$
- \cdot Похожая шняга получается и с $R(\operatorname{ch} x, \operatorname{sh} x)$
- Линейное выражение числителя через знаменатель и его производную, решение системы уравнений

3.2. Определённые интегралы

- Формула Ньютона-Лейбница
- Замена переменной, если особые точки не появляются, ничего не портит
- При интегрировании по частями надо смотреть, чтобы сумма частей имела смысл в $\overline{\mathbb{R}}$.

3.3. Несобственные интегралы

- Взятие предела для несобстыенных интегралов, если получается сделать это в явном виде
- · Рассмотрение «особенных» точек, их может быть несколько
- Анализ сходимости: сначала проверяем абсолютную, потом относительную

- Критерий Коши (если любое значение после некоторого A не превышается ни на каком промежутке в \mathbb{R}).
- Разбиение промежутка на несколько
- Использование асимптотического анализа для определения абсолютной сходимости
- Дирихле и Абель позволяют сделать вывод об абсолютной сходимости функции, представленной произведения
 - Дирихле: первая имеет ограниченную первообразную, вторая монотонно \square 0, тогда сходится
 - Абель: первый интеграл сходится, вторая монотонна и ограничена, тогда тоже сходится
- Разложение подинтегральной функции в ряд Тейлора: спросить у кого-то

4. Числовые ряды

5. Функциональные ряды

Практика 5 сентября 2022

Фотоотчёт за практику: https://t.me/c/1512041988/198

Pro tip: для $\alpha < \frac{\pi}{2} - \sin \alpha > \alpha \frac{2}{\pi}$ за счёт выпуклости.

5.1. Исследуем равномерную сходимость

- Если можем посчитать «колебание» (супремум отколнеиня на всём множестве E при фиксированном n), то проанализируем, стремится ли оно к нулю при $n \to \infty$.
- Признак Вейерштрасса (мажорантная сходимость для рядов): находим равномерную норму каждого члена, если ряд норм сходиться, то анализируемый ряд тоже.
- Критерий Больцано-Коши (равносильно равномерной сходимости). Сходимость в себе, работает для

- Признак Дирихле (равномерная сходимость ряда произведений). У одного частичные суммы равномерно огранчиены, другой стремится к нулю и монотонен по n с некоторого номера при каждом фиксированном x. (Теперь везде не забываем добавлять «равномерно»).
- Признак Абеля (равномерная сходимость ряда произведений). Тут у первого частичные суммы должны быть **не равномерно огранчиены**, а равномерно сходиться, но зато второму достаточно просто быть равномерно ограниченным (и всё ещё монотонным).
- Следствие: Лейбниц сумма знакопеременного, монотонно равномерно сходящегося к 0 ряда со знакочередованием ряда равномерно сходится.

Ещё pro tip:

$$\left| \sum_{k=1}^{N} \sin k\alpha \right| \leqslant \frac{1}{\left| \sin \frac{\alpha}{2} \right|} \tag{3}$$

$$\left| \sum_{k=1}^{N} \cos k\alpha \right| \leqslant \frac{1}{\left| \sin \frac{\alpha}{2} \right|} \tag{4}$$

5.2. Доказывем отсутствие равномерной сходимости

Если не сходится поточечно где-то, рассматривать не интересно.

- Не на компакте: если замыкание не сходится даже поточечно (на границах)
- Если не выполняется хотя бы одно необходимое условие из секции 5.3 при выполнении остальных предпосылок теоремы
- Если можно посчитать в явном виде
- Можно оценить остаток через интеграл, если есть монотонность по n и момент, с которой она начинается, не зависит от x и сказать через него, что найдётся ε , что для любого n найдётся плохой x.
- Можно сделать то же через критерий Больцано-Коши.

Фотоотчёт за практику: <отсутствует>.

5.3. Свойства равномерно сходящихся

При равномерной сходимости можно производить перестановку пределов, из неё получаем возможность заключить непрерывность предела, получаем перестановочность интегрирования и дифференцирования.

Однако это всё получается и при более вольных условиях, но они более сложные, мы их не изучали.

Фотоотчёт за практику: https://t.me/c/1512041988/208.

5.4. Степенные ряды

Ряды вида
$$\sum_{i=1}^{\infty} c_i (z-z_0)^i$$
.

Умеем искать радиус сходимости (это шар, внутри гарантированно сходится, снаружи— не менее гарантированно расходится, а на границе— надо думать, анализировать дальше).

$$\cdot$$
 Коши (база, работает всегда): $R = \frac{1}{\limsup_{n o \infty} \sqrt[n]{|c_n|}}$

- Даламбер (иногда работает и он, если существует):
$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

Потом можем использовать степенные ряды как составные части для анализа произвольных рядов.

Раскладываем в ряд Тейлора:

Разложить можем, чтобы в пределе все производные совпадали, но когда она будет совпадать с самой функцией на каком-то промежутке?

Оказывается, что достаточно комплексной дифференцируемости в $B_R(z_0)$ — тогда существует единственный набор коэффициентов степенного ряда с заданным центром, с пределом которого функция совпадает — и коэффициенты тогда находятся через Тейлора.

Note: для комплексной дифференцироемости выполняются все естественнные свойства обычной: замкнутость относительно арифметических операций, дифференцируемость элементарных функций, производная локальной обратимой функции и т.д.

Разложение элементарных функций в степенной ряд было на доске..

Как раскладывать в степенные ряды?

- Честно, через производные по Тейлору
- Раскладывать в произведение перемножать ряды
- В круге сходимости дифференцировать можно почленно замечаем, что ряд является интегралом чего-то хорошего и дифферегнцирем его ряд.
- Аналогично если является производной чего-то хорошего
- Можно пользоваться тем, что сумма ряда равна функции в круге сходимости. Например,

$$\frac{1}{x - x_0} = \frac{1}{-x_0} \left(\frac{1}{1 - \frac{x}{x_0}} \right) = -\frac{1}{x_0} \sum_{k=0}^{\infty} \left(\frac{x}{x_0} \right)^k \tag{5}$$

Практика 26 сентября 2022

Фотоотчёт за практику: https://t.me/c/1512041988/216

Если у нас уже есть ряд, и надо проанализировать, какую функцию он описывает или его свойства.

- Для анализа схоимости можно посмотреть на коэффициент, как всегда.
- Можно применить метод божественного озарения и, например, продифференцировать, умножить на какую-то сдвигающую скобку и заметить, что получилось нечто содержащее исходный ряд, получив диффуру...

Признак сходимости обычных, положительных рядов, обобщающий признак Д'Аламбера — признак Гаусса:

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + O\left(\frac{1}{n^{1+\varepsilon}}\right), \varepsilon > 0$$
 (6)

Тогда при $\lambda>1$ — сходится, если $\lambda<1$ — расходится, иначе (при $\lambda=1$) — $\mu>1$ — сходится, $\mu\leqslant 1$ — расходится.

6. Функции нескольких переменных

6.1. Берём пределы

Какие механизмы?

- По Коши/окрестностям: для окрестности результатов найдётся окрестность аргументов, такая что каждый студент знает, какая.
- · По Гейне вдоль любой последовательности, стремящейся к x_0 по D $\{x_0\}\ f(x_n) o A$
- Эквивалентно (тривиально про Коши) $\sup_{x\in \dot{V}_{\delta}(x_0)\cap D}|f(x)-A|\underset{\delta\to 0}{\longrightarrow}0$

6.2. Разница между повторным и двойным пределом

У «хороших» функций, конечно, их существование эквивалентно и они равны. Наверное, Липшицевости достаточно. Также, (по теореме о двойном пределе) если существует конечный или бесконенчный двойной предел, а также для каждого фиксированного x' в окрестности существует конечный предел сужения $\varphi(y)=f(x',y)$, то пределы равны. Но вообще могут быть такие варианты:

- Двойной существует, а $\forall x \neq x_0$ не существует даже внутрення часть повторного предела
- Может не сущетствовать двойной, и это можно доказать по Гейне, показав две последовательности, вдоль которых пределы не равны
- Может стремиться к 0 вдоль любого луча от 0 к ∞ , но не быть бесконечно малой на $x,y\to +\infty$. Например, $f(x,y)=x^2e^{-(x^2-y)}$

Рис. 1: Та самая $f(x,y) = x^2 e^{-(x^2 - y)}$

Примеры с разбором есть в фотоотчёте практики 26.09: https://t.me/c/1512041988/216.

Практика 10 октября 2022

Фотоотчёт за практику: ...

Как доказать существование предела функции, например, на $+\inf$, $+\inf$? В определении предела фигурирует окрестность точки $+\inf$, $+\inf$, то есть

$$\begin{cases} x > \varepsilon \\ y > \varepsilon \end{cases} \tag{7}$$

В отличие от просто $||x,y|| \to ||$ inf, когда .

- Нужно оценить супремум отклонения от предела при x>arepsilon,y>arepsilon.
- К полянрым координатам и оценить супремум по некоторой части сферы (для + inf, + inf, казалось бы по $\varphi \in (0,\pi/2)$). Но по идее, это будет корректно, так как там x может быть сколь угодно малым. Наверное, надо сузить угол до компактного подмноже-

ства $[\alpha, \beta] \subset (0, \pi/2)$. И оценить зависимость супремума по φ от r. Особые извращенцы будут искать супремум через Лагранжа.

6.3. Дифференцирование, частные производные

Дифференцируема $\stackrel{\text{def}}{\Longleftrightarrow}$ представима в виде $f(x_0)+Ah+o(|h|)$, где A — линейный оператор. Частная производная — производная направлению вектора-орта.

Иногда вектор частных производных равен вектору производному оператора. Есть необходимое и достаточное условие.

Теорема 1 (Базированная теорема о производных). У нормальных функций всё будет нормально.

Как искать частные производные? Если функция представлена в виде композиций элементарных функций, считаем по формулам. Но они не всегда применимы — производная всё ещё может сущетвовать, тогда считаемм по определению.

Производная композиции выражается через матрицы Якоби, можно найти частные через суммирование.

$$\operatorname{d}(\tfrac{x}{y}) = \operatorname{d}(\tfrac{y\operatorname{d} x - x\operatorname{d} y}{y^2}).$$