MATH 2023 – Multivariable Calculus

Lecture #10 Worksheet March 12, 2019

Problem 1. Sketch the region of integration, and interchange the order:

$$\int_0^3 x^{9-y} dx dy,$$

(b)
$$\int_0^1 \int_{\tan^{-1} x}^{\pi/4} dy dx$$

$$(c) \qquad \int_1^2 \int_0^{\ln x} dy dx,$$

(d)
$$\int_0^1 \int_0^{2y} dx dy + \int_1^3 \int_0^{3-y} dx dy$$

Problem 2. Set up the two types of integrations of the following regions D bounded

(a)
$$y = 2x^2 \text{ and } y = 1 + x^2$$

$$(b) y = 2x \text{ and } y = x^2$$

(c)
$$y = (x+1)^2, x = y - y^3, x = -1 \text{ and } y = -1$$
 (d) $x^2 + y^2 = 1 \text{ and } x^2 + y^2 = 4$

(d)
$$x^2 + y^2 = 1$$
 and $x^2 + y^2 = 4$

Problem 2. Set up the two types of integrations of the following regions D bounded by:

(a)
$$y = 2x^2 \text{ and } y = 1 + x^2$$
 (b) $y = 2x \text{ and } y = x^2$

Problem 2. Set up the two types of integrations of the following regions D bounded by:

(a) $y = 2x^2 \text{ and } y = 1 + x^2$

 $(b) y = 2x \text{ and } y = x^2$

Type I:

Type I:

(c)
$$y = (x+1)^2, x = y - y^3, x = -1 \text{ and } y = -1$$

(d)
$$x^2 + y^2 = 1$$
 and $x^2 + y^2 = 4$

Z= XTV

Problem 3. Use geometry or symmetry to evaluate the following integrals:

(a) $\iint_D (x+2)dA$, $D = \{(x,y) : 0 \le y \le \sqrt{9-x^2}\}$

(c)
$$\iint_D (ax^3 + by^3 + \sqrt{a^2 - x^2}) dA$$
, $D = [-a, a] \times [-b, b]$

Problem 3. Use geometry or symmetry to evaluate the following integrals:

