Университет ИТМО

Мой прекрасный диплом «сверхбыстрая динамика носителей заряда в полупроводниковых нитевидных нанокристаллах.»

Студент: Елисеев А.

Группа: V3400

Научрук: Валерий Николаевич

Санкт-Петербург 2017

КИДАТОННА

СОДЕРЖАНИЕ

	Стр.
АННОТАЦИЯ RNJATOHHA	2
ГЛАВА 1 Введение	5
1.1 Актуальность темы работы	5
1.2 Транспорт, генерация и рекомбинация носителей в ННК 1.2.1 Время жизни и длинна свободного пробега носителей за-	6
ряда	7
1.2.2 Время релаксации электронов по импульсу	7
заряда	7 7
ГЛАВА 2 Основная часть	8
2.1 Схема установки, описание метода	9
2.2 Исследование ННК на основе <i>GaAs</i>	10
2.2.1 Описание образцов и метода их получения	10
от времени при возбуждении плазмы в образцах	11
2.2.3 Спад эффективности - экранировка встроенного поля	
2.2.4 Восстановление эффективности	
2.3 Исследование ННК на основе $GaAs/AlGaAs$	11
2.3.1 Описание образцов и метода их получения	11
2.3.2 Зонные диаграммы ННК $GaAs$ и $GaAs/AlGaAs$	12
2.3.3 Зависимость эффективности генерации ТГц излучения	
от времени при возбуждении плазмы в образцах	12
2.3.4 Спад эффективности	12
2.3.5 Восстановление эффективности	12
2.4 Исследование неупорядоченных массивов ННК на основе $GaAs$	12
2.4.1 Описание образцов и метода их получения	12
2.4.2 Зависимость эффективности генерации ТГц излучения	
от времени при возбуждении плазмы в образцах	13
2.4.3 Спад эффективности - экранировка встроенного поля	13
2.4.4 Восстановление эффективности	13
2.5 Сравнение и анализ динамики носителей в разных образцах	13

ГЛАВА 3 Заключение	14
3.1 Положения дипломной работы	14
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	15
СПИСОК ТЕРМИНОВ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17
ПРИЛОЖЕНИЯ	18

ГЛАВА 1

Введение

1.1 Актуальность темы работы.

Полупроводниковые наноструктуры в виде свободно стоящих полупроводниковых нитевидных нанокристаллов (ННК), а так же отдельные ННК, являются одними из наиболее перспективных объектов для применения в наноэлектронике, нанофотонике, а так же во многих других областях науки и техники. Так ННК используются для создания сверхчувствительных фотодиодов [1], транзисторов сверхвысокой плотности [2], эмиттеров излучения видимого диапазона волн [3] и ТГц диапазона [4].

Огромная перспективность таких нанообъектов и структур на их основе обусловлена рядом уникальных электрических и оптических свойств. При создании метаповерхностей на основе свободно стоящих ННК, характерные размеры которых порядка 100 нм в диаметре и 1 мкм по высоте, получаются структуры с огромным по сравнению с объемными материалами соотношением площади поверхности к объему. В работе [4] было показано, что генерация ТГц излучения от упорядоченного массива ННК на основе GaAs может быть практически в два раза эффективнее, чем от InAs - объемного полупроводникового материала, который обладает наибольшей эффективностью генерации ТГц излучения. Такая высокая эффективность обусловлена именно тем, что соотношение площади поверхности к объему у таких структур значительно выше, чем у объемных материалов.

При создании структур описанных в предыдущем параграфе, первостепенную важность занимает изучение вопроса влияния формы материала и ее размеров на динамику носителей заряда. Например, при значительном увеличении отношения площади поверхности к объему увеличивается вклад поверхностной рекомбинации носителей в материале. Таким образом время жизни электронов и дырок в наноструктурах на основе свободно стоящих полупроводниковых ННК может существенно отличаться от времени жизни в соответствующем объемном полупроводнике. Исследование этих отличий является основной задачей, которую необходимо решить перед тем, как использовать подобные материалы

в качестве основы для базовых элементов наноэлектроники и нанофотоники.

Кроме того необходимо учитывать, что в полупроводниковых ННК при диаметрах порядка десятка нанометров и меньше и при концентрации $\geqslant 10^{17} {\rm cm}^{-3}$ процессы переноса в статических внешних полях описываются только продольной составляющей квазиимпульса, как это имеет место в чисто одномерном (1D)случае. Динамика носителей заряда в таких структурах существенно отличается от динамики в объемных материалах. Например, в таких низкоразмерных системах как тонкие ННК, экранирование внешнего электромагнитного поля носит качественно иной характер, чем в объемных полупроводниках. Заряды, которые экранируют внешнее электромагнитное поле во всем пространстве, сами ограничены в своем движении одной линией. В связи с этим, эффективность экранирования в одномерных и квазиодномерных ННК значительно ниже, чем в случае трехмерных систем. Кроме того, как показано в [5], в одномерных структурах процессы релаксации происходят по диффузионному закону, а дрейф носителей вносит лишь небольшую поправку в эффективный коэффициент диффузии. В то же время в трехмерном случае релаксация заряда в основном определяется дрейфовыми процессами.

1.2 Транспорт, генерация и рекомбинация носителей в ННК.

В связи с высокой значимостью изучения динамики носителей в полупроводниковых ННК для различных областей науки и техники, на текущий момент представлено немало работ, посвященных этой тематике.

- 1.2.1 Время жизни и длинна свободного пробега носителей заряда.
- 1.2.2 Время релаксации электронов по импульсу.
- 1.2.3 Особенности процессов диффузии и дрейфа носителей заряда.
- 1.3 Генерация ТГц от массива полупроводниковых ННК

Коротко, о том, от чего зависит ТГц излучение от ННК. Определяющие процессы.

ГЛАВА 2

Основная часть

Коротко о том, что я напишу в этой главе.

2.1 Схема установки, описание метода

Ссылочка На статью, где впервые описан этот метод и его описание Схема, ссылка на приложение, в котором описаны характеристики элементов, используемых в схеме.

- 2.2 Исследование ННК на основе GaAs
- 2.2.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

2.2.2 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.2.3 Спад эффективности экранировка встроенного поля
- 2.2.4 Восстановление эффективности
- 2.3 Исследование ННК на основе GaAs/AlGaAs
- 2.3.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

- 2.3.2 Зонные диаграммы ННК GaAs и GaAs/AlGaAs
- 2.3.3 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.3.4 Спад эффективности.
- 2.3.5 Восстановление эффективности.
- 2.4 Исследование неупорядоченных массивов ННК на основе GaAs
- 2.4.1 Описание образцов и метода их получения

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

2.4.2 Зависимость эффективности генерации ТГц излучения от времени при возбуждении плазмы в образцах.

Типичный вид динамики

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

- 2.4.3 Спад эффективности экранировка встроенного поля
- 2.4.4 Восстановление эффективности
- 2.5 Сравнение и анализ динамики носителей в разных образцах

Объяснение разницы в динамике

ГЛАВА 3

Заключение

3.1 Положения дипломной работы

Все что удалось узнать, но в виде выражений и емких утверждений.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

СПИСОК ТЕРМИНОВ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Agarwal R., Lieber C. M. Semiconductor nanowires: optics and optoelectronics //Applied Physics A. − 2006. − T. 85. − №. 3. − C. 209.
- 2. Tomioka K., Yoshimura M., Fukui T. A III-V nanowire channel on silicon for high-performance vertical transistors //Nature. − 2012. − T. 488. − №. 7410. − C. 189-192.
- 3. Duan X. et al. Single-nanowire electrically driven lasers //Nature. 2003. T. $421. N_0. 6920.$ C. 241-245.
- 4. Trukhin V. N. et al. Generation of terahertz radiation in ordered arrays of GaAs nanowires //Applied Physics Letters. 2015. T. 106. №. 25. C. 252104.
- 5. Аверкиев Н.С., Шик А.Я. Контактные явления в квантовых нитях и пористом кремнии//Физика и техника полупроводников. 1996. №.2 С. 199

ПРИЛОЖЕНИЯ