Assignment -2

Data Visualization and Pre-processing

Assignment Date	30 september 2022
Student Name	Prembabu.C
Student Roll Number	310819104061
Maximum Marks	2 Marks

ASSIGNMENT 2

Importing libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading data set

```
ds=pd.read_csv('Churn_Modelling.csv')
```

ds.shape

(10000, 14)

ds.head()

\	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1

3 93826.63 0 4 79084.10 0

Visualization

1. Univariate

sns.distplot(ds['EstimatedSalary'], hist=True)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f8afae88250>

2. Bivariate

sns.relplot(x='Age', y='Balance', data=ds)

<seaborn.axisgrid.FacetGrid at 0x7f8afaaa3dd0>

sns.catplot(x='Geography',y='CreditScore',data=ds)
<seaborn.axisgrid.FacetGrid at 0x7f8afae83dd0>

3. Multivariate

sns.relplot(x='Age', y='Balance', hue='Geography', data=ds)

<seaborn.axisgrid.FacetGrid at 0x7f8af64e6610>

sns.boxplot(x='Exited',y='CreditScore',hue='Gender',data=ds)
<matplotlib.axes._subplots.AxesSubplot at 0x7f8af64ae810>

Descriptive Statistics ds.describe()

		CustomerId	CreditScore	Age	
	10000.00000	1.000000e+04	10000.000000	10000.000000	
10000.0					
	5000.50000	1.569094e+07	650.528800	38.921800	
5.01280		7.193619e+04	96.653299	10.487806	
2.89217		, • 1300130:01	30.000233	10.10,000	
	1.00000	1.556570e+07	350.000000	18.000000	
0.00000		1 560050 107	F04 00000	20 00000	
25% 3.00000	2500.75000	1.562853e+07	584.000000	32.000000	
	5000.50000	1.569074e+07	652.000000	37.000000	
5.00000					
		1.575323e+07	718.000000	44.000000	
7.00000	•	1.581569e+07	850 000000	92.00000	
10.0000		1.3013096107	030.000000	<i>J</i> 2.000000	
		e NumOfProduct			\
count		0 10000.00000			
mean 76485.889288		8 1.53020	0.7055	0 0.515100	
std 62397.405202		2 0.58165	0.4558	4 0.499797	
min	0.00000	0 1.00000	0.0000	0.00000	
25%	0.0000	0 1.00000	0.0000	0.00000	

50% 75% max	97198.540000 127644.240000 250898.090000	1.000000 2.000000 4.000000	1.00000 1.00000 1.00000	1.000000 1.000000 1.000000
	EstimatedSalary	Exited		
count	10000.000000	10000.000000		
mean	100090.239881	0.203700		
std	57510.492818	0.402769		
min	11.580000	0.000000		
25%	51002.110000	0.00000		
50%	100193.915000	0.00000		
75%	149388.247500	0.000000		
max	199992.480000	1.000000		

Handling the missing(null) values

ds.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False

dtype: bool

ds.isnull().sum()

RowNumber 0 CustomerId 0 0 Surname CreditScore 0 Geography 0 Gender 0 Age 0 0 Tenure Balance 0 NumOfProducts 0 HasCrCard 0 0 IsActiveMember 0 EstimatedSalary Exited 0 dtype: int64

Split the data into dependent and independent variables

```
x=ds.iloc[:,3:13].values
print(x.shape)
y=ds.iloc[:,13:14].values
print(y.shape)

(10000, 10)
(10000, 1)
```

Finding and Replacing Outliers

ds.skew()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

```
RowNumber
               0.000000
CustomerId
               0.001149
              -0.071607
CreditScore
               1.011320
Age
               0.010991
Tenure
Balance
              -0.141109
             0.745568
NumOfProducts
HasCrCard
              -0.901812
IsActiveMember -0.060437
EstimatedSalary 0.002085
               1.471611
Exited
```

dtype: float64

```
sns.boxplot(ds["Age"])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f8af6283850>


```
q0 = ds["Age"].describe()["25%"]
q1 = ds["Age"].describe()["75%"]
iqr=q1-q0

lb = q0 -(1.5*iqr)
ub = q1 + (1.5*iqr)
```

ds[ds["Age"]<1b]

Empty DataFrame

Columns: [RowNumber, CustomerId, Surname, CreditScore, Geography, Gender, Age, Tenure, Balance, NumOfProducts, HasCrCard, IsActiveMember, EstimatedSalary, Exited]

Index: []

ds[ds["Age"]>ub]

_	RowNum	mber	CustomerId	Surname Cred	ditScore Geog	graphy
Gender 58	Age \	\ 59	15623944	T'ien	511	Spain
Female 85	66	86	15805254	Ndukaku	652	Spain
Female	75	0.0	13003234	Ndukaku	032	Spain
104 Female	65	105	15804919	Dunbabin	670	Spain
158	0.5	159	15589975	Maclean	646	France
Female 181	73	182	15789669	Hsia	510	France
Male	65	102	13/39009	11514	310	rrance

```
9753
           9754
                    15705174
                                Chiedozie
                                                     656
                                                           Germany
Male
       68
9765
           9766
                    15777067
                                    Thomas
                                                     445
                                                            France
Male
       64
9832
           9833
                    15814690
                              Chukwujekwu
                                                     595
                                                           Germany
Female
         64
9894
           9895
                    15704795
                                    Vagin
                                                     521
                                                            France
Female
         77
9936
           9937
                    15653037
                                     Parks
                                                     609
                                                            France
Male
       77
                Balance NumOfProducts HasCrCard
                                                     IsActiveMember
      Tenure
58
           4
                    0.00
                                       1
                                                  1
                                       2
85
          10
                    0.00
                                                   1
                                                                   1
                                       1
104
           1
                    0.00
                                                  1
                                                                   1
158
           6
               97259.25
                                       1
                                                  0
                                                                   1
           2
                    0.00
                                       2
                                                  1
                                                                   1
181
. . .
                                     . . .
           7
              153545.11
                                       1
9753
                                                  1
                                                                   1
           2
                                       1
                                                   0
9765
              136770.67
                                                                   1
           2
                                                  1
9832
              105736.32
                                       1
                                                                   1
                                       2
9894
                    0.00
                                                                   1
           6
                                                  1
9936
           1
                    0.00
                                       1
                                                   0
                                                                   1
      EstimatedSalary Exited
58
              1643.11
                             1
85
            114675.75
                             0
104
            177655.68
                             1
                             0
158
            104719.66
181
             48071.61
                             0
9753
            186574.68
                             0
9765
             43678.06
                             0
9832
             89935.73
                             1
             49054.10
                             0
9894
9936
             18708.76
[359 rows x 14 columns]
outlier list = list(ds[ds["Age"] > ub]["Age"])
print(outlier list)
[66, 75, 65, 73, 65, 72, 67, 67, 79, 80, 68, 75, 66, 66, 70, 63, 72,
64, 64, 70, 67, 82, 63, 69, 65, 69, 64, 65, 74, 67, 66, 67, 63, 70,
71, 72, 67, 74, 76, 66, 63, 66, 68, 67, 63, 71, 66, 69, 73, 65, 66,
64, 69, 64, 77, 74, 65, 70, 67, 69, 67, 74, 69, 74, 74, 64, 63, 63,
70, 74, 65, 72, 77, 66, 65, 74, 88, 63, 71, 63, 64, 67, 70, 68, 72,
71, 66, 75, 67, 73, 69, 76, 63, 85, 67, 74, 76, 66, 69, 66, 72, 63,
```

```
71, 63, 74, 67, 72, 72, 66, 84, 71, 66, 63, 74, 69, 84, 67, 64, 68,
66, 77, 70, 67, 79, 67, 76, 73, 66, 67, 64, 73, 76, 72, 64, 71, 63,
70, 65, 66, 65, 80, 66, 63, 63, 63, 63, 66, 74, 69, 63, 64, 76, 75,
68, 69, 77, 64, 66, 74, 71, 67, 68, 64, 68, 70, 64, 75, 66, 64, 78,
65, 74, 64, 64, 71, 77, 79, 70, 81, 64, 68, 68, 63, 79, 66, 64, 70,
69, 71, 72, 66, 68, 63, 71, 72, 72, 64, 78, 75, 65, 65, 67, 63, 68,
71, 73, 64, 66, 71, 69, 71, 66, 76, 69, 73, 64, 64, 75, 73, 71, 72,
63, 67, 68, 73, 67, 64, 63, 92, 65, 75, 67, 71, 64, 66, 64, 66, 67,
77, 92, 67, 63, 66, 66, 68, 65, 72, 71, 76, 63, 67, 67, 66, 67, 63,
65, 70, 72, 77, 74, 72, 73, 77, 67, 71, 64, 72, 81, 76, 69, 68, 74,
64, 64, 71, 68, 63, 67, 63, 64, 76, 63, 63, 68, 67, 72, 70, 81, 67,
73, 66, 68, 71, 66, 63, 75, 69, 64, 69, 70, 71, 71, 66, 70, 63, 64,
65, 63, 67, 71, 67, 65, 66, 63, 73, 66, 64, 72, 71, 69, 67, 64, 81,
73, 63, 67, 74, 83, 69, 71, 78, 63, 70, 69, 72, 70, 63, 74, 80, 69,
72, 67, 76, 71, 67, 71, 78, 63, 63, 68, 64, 70, 78, 69, 68, 64, 64,
77, 77]
outlier dict = {}.fromkeys(outlier list,ub)
print(outlier dict)
{66: 62.0, 75: 62.0, 65: 62.0, 73: 62.0, 72: 62.0, 67: 62.0, 79: 62.0,
80: 62.0, 68: 62.0, 70: 62.0, 63: 62.0, 64: 62.0, 82: 62.0, 69: 62.0,
74: 62.0, 71: 62.0, 76: 62.0, 77: 62.0, 88: 62.0, 85: 62.0, 84: 62.0,
78: 62.0, 81: 62.0, 92: 62.0, 83: 62.0}
ds["Age"] = ds["Age"].replace(outlier dict)
sns.boxplot(ds["Age"])
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43:
```

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f8afae88150>


```
ds[ds["Age"]>ub]
```

Empty DataFrame
Columns: [RowNumber, CustomerId, Surname, CreditScore, Geography,
Gender, Age, Tenure, Balance, NumOfProducts, HasCrCard,
IsActiveMember, EstimatedSalary, Exited]
Index: []

Check for Categorical columns and perform encoding

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct=ColumnTransformer([('oh',OneHotEncoder(),
[1,2])],remainder='passthrough')
x=ct.fit_transform(x)
print(x.shape)

(10000, 13)
import joblib
joblib.dump(ct,"churnct.pkl")
['churnct.pkl']
```

Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.2,random_state=0)
print(x_train.shape)
print(x test.shape)
```

```
(8000, 13)
(2000, 13)

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)
joblib.dump(sc,"churnsc.pkl")
['churnsc.pkl']
```