RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA BHOPAL

Credit Based Grading System Mechanical Engg, VI-Semester ME- 6002 Thermal Engineering and gas dynamics

Unit I

Steam generators: classification, conventional boilers, high-pressure boilers-Lamont, Benson, Loeffler and Velox steam generators, performance and rating of boilers, equivalent evaporation, boiler efficiency, heat balance sheet, combustion in boilers, super critical boilers, fuel and ash handling, boiler draught, overview of boiler codes.

Unit II

Phase Change Cycles: Vapor Carnot cycle and its limitation, Rankin cycle, effect of boiler and Condenser pressure and superheat on end moisture and efficiency of ranking cycle, modified Rankin cycle, reheat cycle, perfect regenerative cycle, Ideal and actual regenerative cycle with single and multiple heaters, open and closed type of feed water heaters, regenerative-reheat cycle, supercritical pressure and binary-vapor cycle, work done and efficiency calculations.

Unit III

Gas dynamics: speed of sound, in a fluid mach number, mach cone, stagnation properties, onedimensional isentropic flow of ideal gases through variable area duct-mach number variation, area ratio as a function of mach number, mass flow rate and critical pressure ratio, effect of friction, velocity coefficient, coefficient of discharge, diffusers, normal shock.

Unit IV

Air compressors: working of reciprocating compressor, work input for single stage compression different, compression processes, effect of clearance, volumetric efficiency real indicator diagram, isentropic & isothermal and mechanical efficiency, multi stage compression, inter-cooling, condition for minimum work done, classification and working of rotary compressors.

Unit V (a) Steam nozzles: isentropic flow of vapors, flow of steam through nozzles, condition for maximum discharge, effect of friction, super-saturated flow. (b) Steam condensers, cooling towers: introduction, types of condensers, back pressure and its effect on plant performance air leakage and its effect on performance of condensers, various types of cooling towers.

References:

- 1. Arasu Valan A; Thermal Engineering; TMH
- 2. Nag PK; Basic and applied Thermo-dynamics; TMH
- 3. Nag PK; Power plant Engineering; TMH
- 4. Rathakrishnan E; Gas Dynamics; PHI Learning
- 5. Balachandran P; Gas Dynamics for Engineers; PHI Learning
- 6. Yahya SM; Fundamentals of Compressible flow; New Age
- 7. Gordon J. Van Wylen; Thermodynamics
- 8. R.Yadav Thermal Engg.
- 9. Kadambi & Manohar; An Introduction to Energy Conversion Vol II. Energy conversion cycles

List of Experiments (Please Expand it) (Thermal Engg and gas dynamics):

- 1. Study of working of some of the high pressure boilers like Lamont or Benson
- 2. Study of Induced draft/forced and balanced draft by chimney
- 3. Determination of Calorific value of a fuel
- 4. Study of different types of steam turbines
- 5. Determination of efficiencies of condenser
- 6. Boiler trail to chalk out heat balance sheet
- 7. Determination of thermal efficiency of steam power plant
- 8. Determination of Airflow in ducts and pipes.
- 9. To find out efficiencies of a reciprocating air compressor and study of multistage Compressors
- 10. Find Out heat transfer area of a parallel flow/counter flow heat exchanger