Module Interface Specification for Stoichiometry Mass-Mass Program

Deemah Alomair

December 20, 2019

1 Revision History

Date	Version	Notes
1/12/2019	1.0	First version of document
20/12/2019	2.0	Second version of document

2 Symbols, Abbreviations and Acronyms

See SRS Documentation here

Contents

1	Rev	vision H	listory						
2	Symbols, Abbreviations and Acronyms								
3	Introduction								
4	Not	ation							
5	Mo	dule De	ecomposition						
6	MIS	MIS of Input Module							
	6.1	Module	9						
	6.2	Uses .							
	6.3	Syntax							
		6.3.1	Exported Constants						
		6.3.2	Exported Access Programs						
	6.4	Semant	tics						
		6.4.1	State Variables						
		6.4.2	Environment Variables						
		6.4.3	Assumptions						
		6.4.4	Access Routine Semantics						
		6.4.5	Local Functions						
7	MIS	S of Ato	omic Mass Module						
	7.1	Module	3						
	7.2	Uses .							
	7.3	•							
		7.3.1	Exported Constants						
		7.3.2	Exported Types						
		7.3.3	Exported Access Programs						
	7.4	Semant	tics						
		7.4.1	State Variables						
		7.4.2	Environment Variables						
		7.4.3	Assumptions						
		7.4.4	Access Routine Semantics						
		7.4.5	Local Functions						
8	MIS	S of Re	actionT Module						
	8.1	Templa	ate Module						
	8.2	Uses .							
	8.3	Syntax							
		8.3.1	Exported Constants						

		8.3.2	Exported Types	7
		8.3.3	Exported Access Programs	7
	8.4	Seman	ntics	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	7
		8.4.3	Assumptions	7
		8.4.4	Access Routine Semantics	8
		8.4.5	Local Functions	8
9	MIS	of M	ass Calculation Module 1	0
	9.1	Modu	l <mark>e</mark>	0
	9.2	Uses		0
	9.3	Syntax	x	0
		9.3.1	Exported Constants	0
		9.3.2	Exported Access Programs	0
	9.4	Seman	ntics	0
		9.4.1	State Variables	0
		9.4.2	Environment Variables	0
		9.4.3	Assumptions	1
		9.4.4	Access Routine Semantics	1
		9.4.5	Local Functions	1
10	MIS	of G	UI Module 1	2
	10.1	Modu	l <mark>e</mark>	12
	10.2	Uses		12
	10.3	Syntax	x	2
		10.3.1	Exported Constants	2
		10.3.2	Exported Access Programs	2
	10.4	Semar		2

3 Introduction

The following document details the Module Interface Specifications for Stoichiometry Mass-Mass Program

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found here

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SMMP.

Data Type	Notation	Description	
character	char	a single symbol or digit	
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$	
natural number	N	a number without a fractional component in $[1, \infty)$	
real	\mathbb{R}	any number in $(-\infty, \infty)$	
element	ElementT	set consists of all chemical elements.	
Molecule	MoleculeT	tuple of (element : ElementT, atomValue : N).	
Compound	CompoundT	set of MoleculeT.	
Stoichiometric	StoichiometricT	$\begin{array}{ll} \text{tuple of (coefficient : N , Compound :} \\ \text{CompoundT)} \end{array}$	
one reaction side	${\it Chemical Eq T}$	set of StoichiometricT	
chemical reaction	ReactionT	sequence [2] of ChemicalEq.	

The specification of SMMP uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, SMMP uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification. Since chemical reaction is central to SMMP, the following notation is introduced in an attempt to simplify the presentation of the MIS.

Chemical reaction:

$$c_1R[0]_1 + c_2R[0]_2 = d_1R[1]_1 + d_2R[1]_2$$

where $R[0]_1$ is reactant with known mass, c_1 is the coefficient number associated to this reactant, $R[0]_2$ is reactant with unknown mass, c_2 is the coefficient number associated to this reactant, $R[1]_i$ is a product and d_i is he coefficient number associated to this product.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding	
Behaviour-Hiding	Input Module Atomic Mass Module Balancing Chemical Reaction Module Mass Calculation Module
Software Decision	GUI Module

Table 1: Module Hierarchy

6 MIS of Input Module

6.1 Module

Input

6.2 Uses

GUI (Section 10)

6.3 Syntax

6.3.1 Exported Constants

None.

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
$\overline{input_1}$	elements :ElementT	-	$\overline{ ext{Mismatched}}$ Input
	atoms Value : \mathbb{N}		
$input_2$	Mass-Value : \mathbb{R}	-	${\bf Negative Mass Exception}$

6.4 Semantics

6.4.1 State Variables

element : Element T atoms Value : \mathbb{N}

 $Mass: \mathbb{R}$

6.4.2 Environment Variables

scr: 13.3-inch (1440 x 900) MacBook Air screen .

bk: keyboard input.

6.4.3 Assumptions

None.

6.4.4 Access Routine Semantics

 $input_1$ (Chemical-Reaction):

• transition: ReactionT := element, atomsValue

• output: None.

• exception: exc := (element \notin Element \top v atomsValue \notin $\mathbb{N} \Rightarrow$ MismatchedInput) $input_2$ (Mass-Value):

• transition: Mass := Mass-Value

• output: None.

• exception: exc := (Mass-Value $\leq 0 \Rightarrow$ NegativeMassException)

6.4.5 Local Functions

None.

7 MIS of Atomic Mass Module

7.1 Module

Atomic Mass

7.2 Uses

Reaction (Section 8)

7.3 Syntax

7.3.1 Exported Constants

None.

7.3.2 Exported Types

None.

7.3.3 Exported Access Programs

Name	In	Out	Exceptions
Atomic-	e: ElementT	AtomicMass: \mathbb{R}	-
Mass			

7.4 Semantics

7.4.1 State Variables

None.

7.4.2 Environment Variables

None.

7.4.3 Assumptions

None.

7.4.4 Access Routine Semantics

Atomic-Mass(e):

• transition: None.

• output: out := AtomicMass(e)

• exception: None.

7.4.5 Local Functions

None

8 MIS of ReactionT Module

8.1 Template Module

Reaction

8.2 Uses

Input (Section 6)

8.3 Syntax

8.3.1 Exported Constants

None.

8.3.2 Exported Types

ReactionT = ?

8.3.3 Exported Access Programs

Name	In	Out	Exceptions
ReactionT	ElementT, MoleculeT,	-	-
	CompoundT,		
	StoichiometricT		
	ChemicalEqT.		
IsBalanced-	-	B: Boolean	-
Reaction			
Balanced-	Reaction:	Reaction*:	\Box
Reaction	ReactionT	ReactionT	IsBalanced-
			Reaction(Reaction*)

8.4 Semantics

8.4.1 State Variables

R : ReactionT

8.4.2 Environment Variables

None.

8.4.3 Assumptions

None.

8.4.4 Access Routine Semantics

IsBalanced-Reaction():

• transition: None.

• output: out := True \vee False

• exception: None.

Balanced-Reaction(Reaction):

• transition: Reaction $^* := Reaction$

• output: None.

• exception: $exc := (\neg IsBalanced-Reaction(Reaction^*) \Rightarrow not-balanced)$

The program will transfer unbalanced reaction to balanced one by counting the number of atoms used for each element in reactants side and in the products side then compare them together. if the total is not the same, it will add an appropriate coefficient which is belong to natural number before each reactant and product to make the number of atoms in each side equal. it will repeat this process for all element involved in the reaction until it end up with a balance reaction(Reaction*). where Reaction* = coefficient1 * Reactant1 + coefficient2 * Reactant2 = coefficient3 * Product1 + coefficient4 * Product2. If the reaction is already balanced no coefficient will be needed.

8.4.5 Local Functions

- 1. Number-of-Atoms-in-Molecule: MoleculeT X ElementT $\to \mathbb{N}$ Number-of-Atoms-in-Molecule(m,e) \equiv (m.element = e \to m.number \mid m.element \neq e \to 0)
- 2. Number-of-Atoms-in-Compound: Compound T X Element T $\to \mathbb{N}$ Number-of-Atoms-in-Compound (C,e) \equiv + (m : Molecule T| m \in C \cdot Number-of-Atoms-in-Molecule (m,e))
- 3. Number-of-Atoms-in-Stoichiometric: Stoichiometric
T \times Element $T\to\mathbb{N}$ Number-of-Atoms-in-Stoichiometric
(S,e) \equiv (S.coefficient \cdot Number-of-Atoms-in-Compound (S.Compound,e))
- 4. Number-of-Atoms-in-ChemicalEq: ChemicalEqT X ElementT $\rightarrow \mathbb{N}$ Number-of-Atoms-in-ChemicalEq (Ce,e) \equiv + (S : StoichiometricT | S \in Ce · Number-of-Atoms-in-Stoichiometric(S,e))
- 5. ElementsInCompoundT : CompoundT \rightarrow set of ElementT. ElementsInCompound(C) $\equiv \cup \{ m : MoleculeT \mid m \in C \cdot m.element \}$

- 6. ElementsInChemicalEq: ChemicalEqT \rightarrow set of ElementT. ElementsInChemicalEq(Ce) $\equiv \cup \{ C : CompoundT \mid C \in Ce \cdot ElementsInCompound(C) \}$
- 7. IsBalancedReactionForElement : ReactionT x ElementT \rightarrow B IsBalancedReactionForElement (R, e) \equiv Number-of-Atoms-in-ChemicalEq(R[0],e) = Number-of-Atoms-in-ChemicalEq (R[1],e)
- 8. IsBalanced-Reaction : Reaction T \to B IsBalanced-Reaction(R) $\equiv \forall$ (e : Element T | e \in ElementsInChemical Eq(R[0]) \cdot IsBalanced-ReactionForElement (R, e))

9 MIS of Mass Calculation Module

9.1 Module

Mass

9.2 Uses

Input (Section 6), Atomic Mass (Section 7), Reaction (Section 8)

9.3 Syntax

9.3.1 Exported Constants

None.

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
Get-	Number-of-Atoms-in-	Molecular-Weight:ℝ	
Molecular-	Compound: \mathbb{N}		
weight			
Convert-	Mass1: \mathbb{R}	Mole1: \mathbb{R}	$Mass \leq 0$
Mass-to-	Molecular-Weight 1: \mathbb{R}		
Mole1			
Get-Mole-	Coefficient $1: \mathbb{N}$	Mole-Ratio: N	-
Ratio	Coefficient $2: \mathbb{N}$		
Convert-	Mole1: R	Mole2: \mathbb{R}	_
MoleRatio-	Mole-Ratio: \mathbb{R}		
to-Mole2			
Convert-	Mole2: ℝ	$Mass2:\mathbb{R}$	_
Mole-to-	Molecular-Weight 2: \mathbb{R}		
Mass			

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

None

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

 ${\it Get-Molecular-weight (Number-of-Atoms-in-Compound):}$

- transition: None
- \bullet output: out := Atomic-Mass × Number-of-Atoms-in-Compound
- exception: None

Convert-Mass-to-Mole(Mass1, Molecular-Weight1):

- transition: None
- output: Mole1 := $\frac{Mass1}{Molecular-Weight1}$
- exception: $exc := (Mass1 \le 0 \Rightarrow NegativeMassException)$

Get-Mole-Ratio(Coefficient2, Coefficient1):

- transition: None
- output: out $\coloneqq \frac{Coefficient2}{Coefficient1}$
- exception: None

Convert-MoleRatio-to-Mole(Mole1, Mole-Ratio):

- transition: None
- output: Mole2 := $\frac{Mole1}{Mole-Ratio}$
- exception: None

 ${\bf Convert\text{-}Mole\text{-}to\text{-}Mass(Mole2,\,Molecular\text{-}Weight2\,\,):}$

- transition: None
- output: Mass2 := $\frac{Mole2}{Molecular-weight2}$
- exception: None

9.4.5 Local Functions

None

10 MIS of GUI Module

10.1 Module

GUI

10.2 Uses

Reaction (Section 8), Mass (Section 9)

10.3 Syntax

10.3.1 Exported Constants

None.

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
GUI	-	Mass: \mathbb{R}	_
		Reaction*: ReactionT	

10.4 Semantics

Not Applicable.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995.