MATH 8170, Fall 2016 HW 2 Shuai Wei

1. Let $X_A(t)$ denote the number of organisms in state A at time t.

Let $X_B(t)$ denote the number of organisms in state B.

Then $X = \{X_A, X_B\}$ is a CTMC with sojourn time rate $v_{ij} = \alpha i + \beta j$ for state (i, j).

The state space is

$$E = \{(i, j)\}_{i, j \ge 0, i+j \ge 1},$$

where $i, j \ge 0$ and $i + j \ge 1$.

The sojourn time T_{ij} for the state (i, j) is exponentially distributed with rate $\alpha i + \beta j$. The transition probability is:

$$\begin{split} P_{(i,j)(i+2,j-1)} &= \frac{\beta j}{\alpha i + \beta j}; \\ P_{(i,j)(i-1,j+1)} &= \frac{\alpha i}{\alpha i + \beta j}; \end{split}$$

2. Let X(t) denote the number of customers in the system at time t.

The time until the next entering/birth $\sim exp(\lambda \alpha_i)$.

The time until the next service ending/death $Y \sim exp(\mu)$.

The birth rate $\lambda \alpha_i$, the death rate is μ .

Then X(t) is a CTMC with sojourn time rate $v_i = \mu + \lambda \alpha_i$ for state i.

Since it can only change its state by increasing by one or decreasing by one, it is a birth and death procee.

The state space is

$$E = \{0, 1, 2, 3, \dots\}$$

The transition probability is:

$$P_{ij} = \left\{ \begin{array}{ll} P(X < Y), & j = i+1, i \ge 1 \\ P(Y < X), & j = i-1, i \ge 1 \end{array} \right. = \left\{ \begin{array}{ll} \frac{\lambda \alpha_i}{\mu + \lambda \alpha_i}, & j = i+1, i \ge 1 \\ \frac{\mu}{\mu + \lambda \alpha_i}, & j = i-1, i \ge 1 \end{array} \right.$$

When i = 0, $P_{01} = 1$.