Mathématiques discrètes

Sceance 9

Exercice 1 & 2

Voir sceance 8

Exercice 3

$$D_n = 2D_{n-1} + D_{n-2}$$

Exercice 4

1. cas 1: mot commençant par la lettre A

cas 2: mot commençant par B ou C

pour a_n , le nombre de mots de n lettres commençant par la lettre A, et b_n , c_n , le nombre de mots de n lettres commençant par la lettre B et C respectivement:

 $a_n=b_{n-1}+cn-1$, puisque qu'un mot commençant par A ne peut contenir qu'un mot de n-1 lettres de cas 2.

$$b_n = c_n = a_{n-1} + b_{n-1} + c_{n-1}$$

Pour m_n , le nombre de mots de n lettres:

$$\begin{split} m_n &= a_n + b_n + c_n \\ &= b_{n-1} + c_{n-1} + 2m_{n-1} \\ &= 2m_{n-1} + 2m_{n-2} \end{split}$$

On résout ensuite la récurrence:

solution générale: $m_n = A(1+\sqrt{3})^n + B(1-\sqrt{3})^n$

$$m_n = (\frac{1}{2} + \frac{1}{\sqrt{3}})(1 + \sqrt{3})^n + (\frac{1}{2} - \frac{1}{\sqrt{3}})(1 - \sqrt{3})^n$$

2.
$$a_n = b_{n-1} + cn - 1$$

 $b_n = a_{n-1} + c_{n-1}$

 $c_n = a_{n-1} + b_{n-1} + c_{n-1}$

Pour m_n , le nombre de mots de n lettres:

 $m_n = 2m_{n-1} + m_{n-2}$

On résout ensuite la récurrence:

solution générale: $m_n = A(1+\sqrt{2})^n + B(1-\sqrt{2})^n$

$$m_n = \frac{1}{2} \left[(1 + \sqrt{2})^{n+1} + (1 - \sqrt{2})^{n+1} \right]$$

3.
$$a_n = b_{n-1} + cn - 1$$

$$b_n = a_{n-1} + c_{n-1}$$

$$c_n = a_{n-1} + b_{n-1}$$

Pour m_n , le nombre de mots de n lettres:

$$m_n = 2m_{n-1}$$

On résout ensuite la récurrence:

solution générale: $m_n = A2^n$

$$m_n = 3(2)^{n-1}$$

Exercice 5

1.
$$\alpha = 2, \beta = 2, f(n) = n^2$$

$$\log_{\beta} \alpha = 1$$

$$f(n) \in \Omega(n^{\log_{\beta} \alpha + \epsilon})$$
, pour $\epsilon = 1$.

$$2f(\frac{n}{2}) \le Cf(n)$$
, pour $C < 1$

$$2 \times \frac{1}{4} n^2 \leq C n^2$$

$$\frac{1}{2} \le C$$

Donc $T(n) \in \Theta(n^2)$.

2.
$$\alpha = 1, \beta = \frac{10}{9}, f(n) = n$$

$$\log_{\beta} \alpha = 0$$

$$f(n) \in \Omega(n^{\log_{\beta} \alpha + \epsilon})$$
, pour $\epsilon = 1$.

$$f(\frac{9n}{10}) \le Cf(n), \text{ pour } C < 1$$

$$\frac{9}{10} \le C$$

Donc $T(n) \in \Theta(n)$.

3.
$$\alpha = 16, \beta = 4, f(n) = n^2$$

$$f(n) \in \Theta(n^{\log_{\beta} \alpha})$$

Donc $T(n) \in \Theta(n^2 \log_2 n)$.

4.
$$\alpha = 7, \beta = 2, f(n) = n^2$$

$$\log_{\beta} \alpha = \log_2 7$$

$$f(n) \in O(n^{\log_{\beta} \alpha - \epsilon}), \text{ pour } \epsilon = \log_2 7 - 2.$$

$$\text{Donc } T(n) \in \Theta(n^{\log_2 7}).$$

5.
$$\alpha = 2, \beta = 4, f(n) = \sqrt{n}$$

$$\log_{\beta} \alpha = \frac{1}{2}$$

$$f(n) \in \Theta(n^{\frac{1}{2}})$$
Donc $T(n) \in \Theta(n^{\frac{1}{2}}\log_{2} n)$.

6.
$$T(n)-T(n-1)=n$$
 EHA: $x-1=0$, donc solution: $A1^n$ si $\tilde{T}(n)=Bn^2+C$, alors $2An--A+B=n$, soit $A=B=\frac{1}{2}$ donc $T(n)=\frac{1}{2}(n^2+n)+A$.

Donc
$$T(n) \in \Theta(n^2)$$
.

Exercice 6

$$\begin{split} a_n &= 2^{b_n}, \, \text{pour } b_n = \frac{1}{2}(b_{n-1} + b_{n-2}) \\ Ici, \, b\hat{e}te \, \, observation \, \, si \, \, vous \, \, essayez \, \, de \, \, a_0 \, \, \grave{a} \, \, a_4 \\ b_n &- \frac{1}{2}b_{n-1} - \frac{1}{2}b_{n-2} = 0 \end{split}$$

$$\text{EHA: } x^2 - \frac{1}{2}x - \frac{1}{2} = 0, \, \, \text{donc solution: } A + B(-\frac{1}{2})^n \\ \text{donc } b_n &= \frac{2}{3} \left[1 - (-\frac{1}{2})^n \right]. \end{split}$$

Donc
$$a_n = 2^{\frac{2}{3}\left[1 - \left(-\frac{1}{2}\right)^n\right]}$$
.

Exercice 7

Prenons S_n , le nombre de potentielles 2ndes lignes si la première est dans l'ordre: alors $S_n = S_{n-1} + S_{n-2}$

donc $S_n = F_{n+1}$

Quand la 1ere ligne n'est pas dans l'ordre, elle est simplement une permutation possible de celle-ci, soit n!.

On a donc $n!F_{n+1}$ matrices possibles.