Opérades (session 1)

1 A_{∞} algèbres

On prend le formalisme suivant : un complèxe de chaînes de K-espaces vectoriels est un K-espace vectoriel graduée $C = \bigoplus_{n \in \mathbb{Z}} C_n$ muni de d un endomorphisme gradué de degré -1 et de carré nul.

<u>Lemme</u> 1.1. Si $f: C \to D$ est un isomorphisme de complexe de chaînes, et D est muni d'une structure de \mathbb{K} -algèbre, on munit C d'une structure de \mathbb{K} -algèbre via f^{-1} : on pose $\nu(c,c')=f^{-1}(\mu(f(c),f(c'))$

Ce cas introductif est évidemment très restrictif, et assez peu instructif, par contre il est légitime de se demander quelle est la situation si f n'est plus un isomorphisme, mais un quasi-isomorphisme? On peut essayer de transporter na \ddot{i} vement la structure, mais on n'obtient pas une algèbre associative : l'associativité se fait à homotopie près, situation que nous allons décrire.

On considère $p:(A,d) \leftrightarrows (B,\delta):i$ un rétracte par déformation p:pi=1 et p:p

Considérons $\nu:A^{\otimes 2}\to A$ une structure d'algèbre différentielle graduée sur A (c'est à dire telle que d soit une dérivation de l'algèbre A). On pose alors

$$\mu_2 = p\nu i^{\otimes 2} : B^{\otimes 2} \to B$$

On obtient alors que l'associateur de μ_2 est non nul

Déjà, on peut voir l'associateur de μ_2 dans $\text{Hom}(B^{\otimes 3}, B)$, qui est muni d'une structure de complexe de chaînes via

$$\partial(f) = \delta f - (-1)^{|f|} d_{B^{\otimes 3}} f$$

On a alors un élément $\mu_3: B^{\otimes 3} \to B$ tel que $\partial(\mu_3)$ soit l'associateur de μ_2 , on peut également définir μ_4, μ_5, \cdots^2 , où μ_n est une application n-linéaire de degré n-2, satisfaisant

$$\partial(\mu_n) = \sum_{\substack{k+\ell=n+1\\1\leq j\leq k}} \pm \mu_k (1^{\otimes j-1} \otimes \mu_\ell \otimes 1^{\otimes k-j})$$

Fort de cet exemple, on peut alors définir une A_{∞} algèbre comme un complexe de chaînes (A,d) muni d'une famille $\mu_n:A^{\otimes n}\to A$, de degré n-2 pour $n\geqslant 2$, avec les relations ci-dessus. De sorte qu'on a pu induire une structure de A_{∞} algèbre sur B depuis la structure d'algèbre associative de A.

^{1.} Comme on travaille sur un corps, ceci n'est pas restrictif, tout quasi-isomorphismes s'étend en un rétracte homotopique

^{2.} pour la définition précise, voir [1]

Remarque 1.2. Si $\mu_n = 0$ pour $n \ge 3$, on retrouve une algèbre différentielle graduée, on a en fait une inclusion pleine de la catégorie des algèbres différentielles graduées vers la catégorie des A_{∞} -algèbres (dont il nous reste à définir les morphismes).

Application 1.3. Comme on est sur un corps, si (A, d) est un complexe de chaînes, en posant $B_n = \operatorname{Im} d_n$, on a $A_n \simeq \operatorname{Ker} d_n \oplus \operatorname{Im} d_n \simeq H_n(A) \oplus \operatorname{Im} d_{n+1} \oplus \operatorname{Im} d_n$. On obtient grâce à cette décomposition un rétracte par déformation $i: H_{\bullet}(A) \leftrightarrows A: p$, qui permet de munir $H_{\bullet}(A)$ d'une structure d' A_{∞} -algèbre si A est une algèbre différentielle graduée. On appelle les produits μ_n les **produits de Massey** de $H_{\bullet}(A)$.

Exemple 1.4. Si X est un espace topologique, le cup produit munit $C_{sing}^{\bullet}(X)$ d'une structure d'algèbre différentielle graduée, ce qui permet de définir un produit de Massey pour la cohomologie singulière.

<u>Définition</u> 1.5. Soient $(A, d, \{\mu_n\})$ et $(B, \delta, \{\nu_n\})$ deux A_{∞} -algèbres, un A_{∞} -morphisme de A vers B est la donnée d'une famille $f_n: A^{\otimes n} \to B$ pour $n \geqslant 1$ avec

$$\forall n \in \mathbb{N}, \sum_{\substack{k \geqslant 1 \\ i_1 + \dots + i_k = n}} \pm \nu_k(f_{i_1} \otimes \dots \otimes f_{i_k}) = \sum_{\substack{k + \ell = n + 1 \\ 1 \leqslant j \leqslant k}} \pm f_k(1^{\otimes j - 1} \otimes \mu_\ell \otimes 1^{\otimes k - j})$$

avec la convention $\mu_1 = d$, $\nu_1 = \delta$, on note un tel morphisme par $f: A \rightsquigarrow B$. Étant donné deux morphismes g et f, on définit leur composée par

$$(gf)_n = \sum_{\substack{k \geqslant 1 \\ i_1 + \dots + i_k = n}} \pm g_k(f_{i_1} \otimes \dots \otimes f_{i_k})$$

L'identité de A étant donné par $f_1 = 1_A$, et $f_n = 0$ si $n \ge 2$

<u>Remarque</u> 1.6. Dans les sommes ci-dessus, la condition $k \ge 1$ recouvre en fait un nombre fini de terme : si $k \ge n$, alors il n'existe pas d'indices i_1, \dots, i_k dont la somme soit égale à n.

On admet que l'on forme bien une catégorie (il faut montrer notamment que gf est encore un morphisme de A_{∞} algèbre, et que la composition est associative, ce sont essentiellement des calculs à l'indicage pénible).

Remarquons que f_1 est par définition un morphisme de complexes de A vers B.

<u>Proposition</u> 1.7. Un morphisme de A_{∞} algèbres $f: A \to B$ est inversible si et seulement si f_1 est un isomorphisme de complexes.

Démonstration. Le sens direct est immédiat du fait de la formule de composition :

$$(gf)_1 = g_1 f_1$$

réciproquement, si f_1 est un isomorphisme, de réciproque g_1 , on définit g_n par induction, par exemple on doit avoir $0 = (gf)_2 = g_1(f_2) - g_2(f_1 \otimes f_1)$, comme f_1 est un isomorphisme, cette équation détermine uniquement $g_2,...$

Comme dans le cas des complexes, on peut définir un *quasi-isomorphisme* de A_{∞} algèbres comme un morphisme de A_{∞} algèbres tel que f_1 est un quasi-isomorphisme de complexe.

Alors certes on peut induire une structure de A_{∞} algèbre depuis une structure d'algèbre différentielle graduée, est il possible de faire de même en partant dés le départ d'une structure de A_{∞} algèbre? La réponse est oui!

<u>Théorème</u> 1.8. Soit A une A_{∞} algèbre, le morphisme $\iota: H_{\bullet}(A) \to A$ permet d'induire une structure de A_{∞} algèbre sur $H_{\bullet}(A)$, et ι se relève alors en un quasi-isomorphisme de A_{∞} algèbres entre $H_{\bullet}(A)$ et A.

<u>Remarque</u> 1.9. Il existe une notion de ∞ -homotopie pour les morphismes de A_{∞} algèbres, telle que le quotient de la catégorie des A_{∞} algèbres induit soit équivalent à la catégorie homotopique des algèbres différentielles graduées (localisation pour les quasi-isomorphismes).

2 Opérades

2.1 Opérades non symétriques et alèbres

Pour construire la notion d'opérade, on s'inspire du cas des algèbres : Un exemple très basique d'algèbre associative sur un corps \mathbb{K} est donné par $\mathrm{Hom}\,(V,V)$ où V est un \mathbb{K} -espace vectoriel (le 'produit' de l'algèbre est donné par la composition).

Considérons $(A, \mu, 1)$ une algèbre associative, on peut considérer les représentations de cette algèbre : les morphismes de A vers une algèbre d'endomorphismes $\operatorname{Hom}(V, V)$.

Exemple 2.1. Supposons vouloir encoder la donnée d'un opérateur de carré nul dans une algèbre associative.

On considère un espace vectoriel de dimension $1 \mathbb{K} \delta$ (engendré par un élément formel δ), et $T(\mathbb{K} \delta)$ l'algèbre tensorielle associée ³. On considère l'algèbre $A := T(\mathbb{K} \delta)/\delta^2$ (où $\delta^2 = \delta \otimes \delta$), pour V un \mathbb{K} -espace vectoriel, on a :

$$\operatorname{Hom}_{\mathbb{K}-alg}(A,\operatorname{Hom}_{\mathbb{K}}(V,V)) = \{ f \in \operatorname{Hom}_{\mathbb{K}-alg}(T(\mathbb{K}\delta),\operatorname{Hom}_{\mathbb{K}}(V,V)) \mid f(\delta)^{2} = 0 \}$$
$$= \{ f \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}\delta,\operatorname{Hom}_{\mathbb{K}}(V,V)) \mid f(\delta) \circ f(\delta) = 0 \}$$
$$= \{ \varphi \in \operatorname{Hom}_{\mathbb{K}}(V,V) \mid \varphi^{2} = 0 \}$$

Donc la donnée d'un opérateur de carré nul sur V correspond à la donnée d'une représentation de l'algèbre A.

De cet exemple naïf on tire le projet suivant : encoder certaines structures algèbriques comme représentation d'un nouvel objet : une opérade.

On souhaite maintenant construire un exemple holotypique d'opérade (de la même manière que $\operatorname{Hom}_{\mathbb{K}}(V,V)$ est l'exemple holotypique d'algèbre associative).

Considérons $\operatorname{End}_V = \{\operatorname{Hom}_{\mathbb{K}}(V^{\otimes n}, V)\}_{n\geqslant 0}$, on a une notion de composition des applications multilinéaires : si g est une application k-linéaires, et f_{i_1}, \dots, f_{i_k} sont k applications multilinéaires, on peut considérer l'application $i_1 + \dots + i_k$ linéaire $g \circ (f_{i_1} \otimes \dots \otimes f_{i_k})$, et cette

^{3.} On aurait considéré $\mathbb{K}[\delta]$ si nous étions dans le cas des algèbres commutatives

composition est associative.

Enfin, on a un morphisme particulier: $1_V: V \to V$, qui se comporte bien par la composition:

$$g \circ (1_V \otimes \cdots \otimes 1_V) = g$$
 et $1_v \otimes g = g$

Modelé sur cet exemple, on donne la définition suivante :

<u>Définition</u> 2.2. Une *opérade non symétrique* (ou opérade ns) est la donnée de

- Une famille \mathcal{P}_n de K-espaces vectoriels indexée par \mathbb{N} .
- Pour $k \in \mathbb{N}$, et i_1, \dots, i_k des indices, une application

$$\gamma_{i_1,\dots,i_k}: \mathcal{P}_k \otimes \mathcal{P}_{i_1} \otimes \dots \otimes \mathcal{P}_{i_k} \to \mathcal{P}_{i_1+\dots+i_k}$$

associative (dans le sens de [1]).

- $I \in \mathcal{P}_1$ une 'unité', telle que $\gamma_{1,\dots,1}(g,1,\dots,1) = g$ et $\gamma_k(1,g) = g$.

Exemple 2.3. Un exemple évident d'opérade ns est alors donné par End_V , γ étant la composition et $I = 1_V$.

Si $(A, \mu, 1)$ est une algèbre associative, on définit une opérade ns en posant $\mathcal{A}_1 = A$, $\mathcal{A}_n = 0$ si $n \neq 1$, $I = 1_A$, et $\gamma_1 = \mu$. Réciproquement, on peut voir qu'une opérade ns concentrée en degré 1 est une algèbre associative.

<u>Définition</u> 2.4. Considérons deux opérades ns $(\mathcal{P}, \gamma, I_{\mathcal{P}})$ et $(\mathcal{Q}, \zeta, I_{\mathcal{Q}})$. Un *morphisme* $f: \mathcal{P} \to \mathcal{Q}$ entre deux opérades est la donnée d'une famille de morphismes $f_n: \mathcal{P}_n \to \mathcal{Q}_n$ telle que $f_1(I_{\mathcal{P}}) = I_{\mathcal{Q}}$ et

$$\zeta_{i_1,\dots,i_k}(f_k,f_{i_1},\dots,f_{i_k}) = f_{i_1+\dots+i_k} \circ \gamma_{i_1,\dots,i_k}$$

On peut à présent définir une *représentation* d'une opérade \mathcal{P} comme un morphisme d'opérade $\mathcal{P} \to \operatorname{End}_V$, on dit de manière équivalente que V est alors muni d'une structure de \mathcal{P} -algèbre.

On va maintenant construire une opérade particulière, notée As, de la manière suivante : pour $n \geq 1, As_n = \mathbb{K}\mu_n$ (où μ_n 'représente' le produit de n termes, sans parenthèsage) et $As_0 = \{0\}$. Comme tous les espaces $(As_n)_{n\geq 1}$ sont isomorphes à \mathbb{K} , on peut définir la composition γ comme la multiplication des scalaires $\mathbb{K} \otimes \cdots \otimes \mathbb{K} \to \mathbb{K}$.

<u>Proposition</u> 2.5. On définit ainsi une opérade ns, et une structure d'As-algèbre sur une espace vectoriel V équivaut à la donnée d'une structure de \mathbb{K} -algèbre associative sur V.

Démonstration. On a assez clairement une opérade ns (on sait que la multiplication est multilinéaire et unitaire). Si V est une As-algèbre, on a $\Phi(\mu_2) =: \nu : V \otimes V \to V$, et on a de plus

$$\nu(1\otimes\nu)=\phi(\mu_2)(1\otimes\phi(\mu_2))=\phi(\mu_2(\mu_2\otimes 1))=\nu(\nu\otimes 1)$$

donc V est bien muni d'une structure d'algèbre associative. Réciproquement, si V est une algèbre associative, on peut définir $\Phi(\mu_n)$ comme le produit de n éléments, application n linéaire bien définie $V^{\otimes n} \to V$.

De même, en posant $uAs_0 = \mathbb{K}1$ au lieu de $\{0\}$, on définit une nouvelle opérade ns uAs, qui encode cette fois les algèbres associatives unitaires.

<u>Remarque</u> 2.6. Il faut faire attention au fait que les algèbres associatives unitaires sont apparues deux fois : une fois comme 'modèle à suivre' pour la définition de la notion d'opérade, et ensuite comme algèbre sur une opérade particulière : uAs, ces deux interventions n'ont pas du tout le même rôle, et il ne faut pas les confondre.

2.2 Opérades, quelques exemples

Remarquons que Hom $(V^{\otimes n}, V)$ est muni d'une action à droite du groupe symétrique \mathfrak{S}_n par permutation des variables :

$$f^{\sigma}(v_1, \cdots, v_n) = f(v_{\sigma^{-1}(1)}, \cdots, v_{\sigma^{-1}(n)})$$

et la composition des fonctions multilinéaires admet une propriété d'équivariance pour cette action :

- si g_{i_1}, \dots, g_{i_k} sont des fonctions multilinéaires, $\sigma_1 \in \mathfrak{S}_{i_1}, \dots, \sigma_k \in \mathfrak{S}_{i_k}$, alors

$$f(g_{i_1}^{\sigma_1} \otimes \cdots \otimes g_{i_k}^{\sigma_k}) = (f(g_{i_1} \otimes \cdots \otimes g_{i_k}))^{\sigma}$$

où σ est donné par $(\sigma_1, \dots, \sigma_k)$.

- Si $\tau \in \mathfrak{S}_k$, $i_1 + \cdots + i_k = n$, on a

$$f^{\tau}(g_{i_1} \otimes \cdots \otimes g_{i_k}) = f(g_{i_1} \otimes \cdots \otimes g_{i_k})^{\tau}$$

(on fait agir τ sur $\{1, \dots, n\}$ en permutant des blocs $\{1, \dots, i_1\}, \{i_1+1, \dots, i_1+i_2\}, \dots$)

<u>Définition</u> 2.7. Une *opérade symétrique* (ou plus simplement opérade) est une famille $\{\mathcal{P}(n)\}_{n\in\mathbb{N}}$ de \mathfrak{S}_n modules à droite, munie d'un élément $I\in\mathcal{P}(1)$ et d'une composition associative, unitale et équivariante (dans le sens ci-dessus).

Remarque 2.8. C'est juste une opérade ns où la composition est \mathfrak{S}_n -équivariente.

Considérant une opérade (\mathcal{P}, γ, I) , on a en particulier, pour $m, n \in \mathbb{N}$, une map $\gamma_{1, \cdots, 1, n, 1, \cdots, 1}$: $\mathcal{P}(m) \otimes \mathcal{P}(n) \to \mathcal{P}(m-1+n)$, qui correspond à placer une n-application en i-ème entrée d'une m-application, on obtient bien une m-1+n application. On note \circ_i cette composition, on a alors

- Des propriétés d'équivariance provenant de celle de la composition.
- Pour $\lambda \in \mathcal{P}(\ell), \mu \in \mathcal{P}(m), \nu \in \mathcal{P}(n)$, on a

$$\begin{cases} (\lambda \circ_i \mu) \circ_{i-1+j} \nu = \lambda \circ_i (\mu \circ_j \nu), & \forall i \in [1, \ell], j \in [1, m] \\ (\lambda \circ_i \mu) \circ_{k-1+m} \nu = (\lambda \circ_k \nu) \circ_i \mu, & \forall 1 \leqslant i < k \leqslant \ell \end{cases}$$

- Il existe $I \in \mathcal{P}(1)$ une identité pour la composition partielle.

Il se trouve qu'on a une réciproque : une famille $\{\mathcal{P}(n)\}$ munie d'une famille de composition partielles respectant les propriétés ci-dessus définit une opérade. La composition de l'opérade étant donnée par concaténation successives de compositions partielles.

Exemple 2.9. On peut définir une opérade Com (respectivement uCom) comme on avait défini A_s , c'est à dire à partir d'espaces vectoriels de dimension 1, et cette fois ci avec représentation triviale du groupe symétrique, l'équivariance étant trivialement vérifiée, on a trivialement affaire à une opérade. Et les Com-algèbres sont les algèbres commutatives (en effet, les morphismes d'opérades doivent, en plus des morphismes d'opérades ns, êtres équivariantes pour l'action de \mathfrak{S}_n).

Exemple 2.10. On peut aussi voir les algèbres associatives comme algèbres sur une opérade. Construisons Ass une opérade comme $Ass(n) = \mathbb{K}[\mathfrak{S}_n]$ l'algèbre de groupe de \mathfrak{S}_n (avec Ass(0) = 0). La composition est alors une application

$$\gamma_{i_1,\cdots,i_k}: \mathbb{K}[\mathfrak{S}_k] \otimes \mathbb{K}[\mathfrak{S}_{i_1}] \otimes \cdots \otimes \mathbb{K}[\mathfrak{S}_{i_k}] = \mathbb{K}[\mathfrak{S}_k \times \mathfrak{S}_{i_1} \times \cdots \times \mathfrak{S}_{i_k}] \to \mathbb{K}[\mathfrak{S}_n]$$

où $i_1 + \cdots + i_k = n$, il suffit de définir une telle application sur une base. On a un morphisme naturel du produit $\mathfrak{S}_k \times \mathfrak{S}_{i_1} \times \cdots \times \mathfrak{S}_{i_k}$ vers \mathfrak{S}_n , toujours en voyant \mathfrak{S}_k agissant sur des blocs, eux mêmes munis d'une action de \mathfrak{S}_{i_j} . Ce morphisme donne bien une composition associative équivariante. L'identité est évidemment donnée par $1 \in \mathbb{K}[\mathfrak{S}_1] = \mathbb{K}$.

Comme dans la proposition 2.5, une structure d'algèbre associative sur un espace vectoriel V correspond à une structure de Ass-algèbre : le produit de V est donné par l'image de l'élément neutre de \mathfrak{S}_2 , cette image est à priori différente de celle de la transposition non triviale de \mathfrak{S}_2 , qui est en fait le produit inversé $a, b \mapsto ba$.

Jusqu'ici, nous avons travaillé dans la catégorie k – **Vect** des k-espaces vectoriels, munie du produit tensoriel. On voit rapidement que la définition que nous avons donné d'une opérade peut avoir cours dans n'importe quelle catégorie monoïdale symétrique (on a besoin de la symétrie pour écrire l'associativité).

Catégorie monoïdale symétrique	Type d'opérade
Espaces vectoriels (\mathbf{Vect}, \otimes)	Opérade linéaire
Modules gradués ($\operatorname{\mathbf{gr}} \operatorname{\mathbf{Mod}}, \otimes$)	Opérade graduée
Modules différentiels gradués $(\mathbf{dg} \ \mathbf{Mod}, \otimes)$	Opérade différentielle graduée
Ensembles (\mathbf{Set}, \times)	Opérade ensembliste
Espaces topologiques (\mathbf{Top}, \times)	Opérade topologique
Ensembles simpliciaux $(s\mathbf{Set}, \times)$	Opérade simpliciale

Exemple 2.11. Une opérade ensembliste : Considérons une opérade ns sur Set, définie comme nous avions défini $uAs : Mon_n = \{\mu_n\}$ où μ_n représente un produit formel de n termes, sans parenthésage. La composition est immédiate (le but est toujours un singleton), et les algèbres sur cette opérade sont les monoïdes (on peut alors formuler proprement l'heuristique suivante : les algèbres associatives unitaires sont aux espaces vectoriels ce que les monoïdes sont aux ensembles)

Exemple 2.12. Une opérade topologique : Les petits disques. On construit l'opérade topologique \overline{D}^n comme suit. Les éléments de $D^n(m)$ sont la donnée de la n-boule unité, et de m sous-n-boules d'intérieur disjoints, autrement dit de m applications $f_i: \mathbb{S}^{n-1} \to \mathbb{B}^n$ dont les images ne s'intersectent pas (on note que les numérotations des petites sous-boules sont importantes). La composition est donnée en insérant des sous-boules. Et l'action du groupe symétrique se fait en permutant les numérotation des sous-boules.

Bibliographie

- [1] Bruno Vallette, Algebra + Homotopy = Operad, https://arxiv.org/pdf/1202.3245v1.pdf
- [2] Bernhard Keller, A-INFINITY ALGEBRAS, MODULES AND FUNCTOR CATEGORIES, https://webusers.imj-prg.fr/bernhard.keller/publ/ainffun.pdf