

Introduction to E2DISP

- Examples

Example 5.1

UEM

A bottle opened to reaeration and filled with polluted water has the following characteristics:

$$\ell_0 = 17.98 \text{ mg/L}$$
 $c_0 = 6.681 \text{ mg/L}$ $c_s = 8.418 \text{ mg/L}$

$$\beta = 0.97 \text{ d}^{-1}$$
 $\alpha = 0.40 \text{ d}^{-1}$

Find $\ell(t)$ and c(t) after

Segment 1

0.0000

2.0010

2.0010

2.0010

2.0010

0.000

0.125 0.250

0.375

0.500 0.625

0.750

(a)
$$1/3 \times 10^4$$
 s; (b) $5/3 \times 10^4$ s; (c) $1/3 \times 10^5$ s.

Also, find the critical time t_c , critical DO deficit D_c and critical DO c_c .

Example 5.1 – Analytical Solution

(a) After 86400 s

$$\ell = 17.98 \times \exp\left(\frac{-0.4 \times 8.64 \times 10^4}{86400}\right) = 12.05 \text{ mg/L}$$

$$D_1 = 1.737 \times \exp\left(\frac{-0.97 \times 8.64 \times 10^4}{86400}\right) = 0.658 \text{ mg/L}$$

$$D_2 = 17.98 \times \left(\frac{0.4}{0.57}\right) \times \left[\exp\left(\frac{-0.4 \times 8.64 \times 10^4}{86400}\right) - \exp\left(\frac{-0.97 \times 8.64 \times 10^4}{86400}\right)\right]$$

= 3.67 mg/L

 $\therefore D = D_1 + D_2 = 0.658 + 3.67 = 4.33 \text{ mg/L}$

and c = 8.418 - 4.33 = 4.085 mg/L

Example 5.1 – E2DISP

Segment 2 17.9800

17.1031

15.4755

14.7208

14.0028

13.3199

River Example

Simulate BOD-DO of a river receiving BOD waste from a factory at the rate of $Q_e = 0.5 \text{ m}^3\text{/s}$ with $\ell_e = 50 \text{ mg/L}$ and $c_e = 5 \text{ mg/L}$

This river has the following characteristics:

$$Q = 1.5 \text{ m}^3/\text{s}$$
 $c = 7 \text{ mg/L}$

$$\beta = 0.97 \text{ d}^{-1}$$

$$\ell = 2 \text{ mg/L}$$
 $c_s = 8.42 \text{ mg/L}$

$$\alpha = 0.4 \, d^{-1}$$

$$v = 0.1 \text{ ms}^{-1}$$

River Example

Effluent:

$$Q_e = 0.5 \text{ m}^3/\text{s}$$
 $c_e = 5 \text{ mg/L}$ $\ell_e = 50 \text{ mg/L}$

River: $v = 0.1 \text{ ms}^{-1}$

$$Q = 1.5 \text{ m}^3/\text{s}$$
 $c = 7 \text{ mg/L}$

$$\beta = 0.97 \text{ d}^{-1}$$

$$_{\text{stream}}\ell = 2 \text{ mg/L}$$
 $c_s = 8.42 \text{ mg/L}$

