目录

1	集群部	『署介绍	2
	1. 1	Hadoop 简介	2
	1.2	环境说明	2
	1.3	安装 CentOS 虚拟机	4
	1.4	网络配置	4
		1.4.1 修改当前机器名称	4
		1.4.2 修改当前机器 IP	5
		1.4.3 配置 hosts 文件	6
	1.5	所需软件	7
		1.5.1 JDK 软件	7
		1.5.2 Hadoop 软件	7
2	SSH 无	[密码验证设置	8
	2. 1	安装和启动 SSH 协议	8
		2.1.1 安装 gcc	8
		2.1.2 安装 ssh	9
	2. 2	引入 RSA 公钥认证,实现无密码登录	10
3	Java 3	环境安装	15
	3. 1	安装 JDK	15
	3. 2	配置环境变量	16
	3.3	验证安装成功	16
4	Hadoop	p 集群安装	18
	4. 1	安装 Hadoop	18
	4. 2	配置 Hadoop	19
		4.2.1 配置 hadoop-env. sh	19
		4.2.2 配置 core-site.xml	19
		4.2.3 配置 hdfs-site.xml	20
		4.2.4 配置 mapred-site.xml	20
		4.2.5 配置 masters 文件	21
		4.2.6 配置 slaves 文件	21
	4.3	启动并验证	23
		4.3.1 关闭防火墙	23
		4 2 9 枚 式	
		4.3.2 格式化 HDFS 文件系统	23
		4.3.3 启动 Hadoop	
			24
		4. 3. 3 启动 Hadoop	24 24
5	实验部	4.3.3 启动 Hadoop	24 24 25
5		4. 3. 3 启动 Hadoop. 4. 3. 4 验证 Hadoop. 4. 3. 5 关闭 Hadoop.	24 24 25 27
5		4. 3. 3 启动 Hadoop	24 24 25 27 27
5		4. 3. 3 启动 Hadoop	24 25 27 27 27
5		4. 3. 3 启动 Hadoop	24 24 25 27 27 27 28
5	5. 1	4. 3. 3 启动 Hadoop	24 24 25 27 27 27 28 28

	5.2.2 MapReduce 执行过程显示信息	28
5. 3	查看结果	28
	5.3.1 查看 HDFS 上 output 目录内容	28
	5.3.2 查看结果输出文件内容	28

1 集群部署介绍

1.1 Hadoop 简介

Hadoop 是 Apache 软件基金会旗下的一个开源分布式计算平台。以 Hadoop 分布式文件系统 (HDFS, Hadoop Distributed Filesystem)和 MapReduce (Google MapReduce 的开源实现)为核心的 Hadoop 为用户提供了系统底层细节透明的分布式基础架构。Hadoop 系统分布式存储与并行计算构架如图所示: [3]

对于 Hadoop 的集群来讲,可以分成两大类角色: Master 和 Salve。一个 HDFS 集群是由一个 NameNode 和若干个 DataNode 组成的。其中 NameNode 作为主服务器,管理文件系统的命名空间和客户端对文件系统的访问操作;集群中的 DataNode 管理存储的数据。MapReduce 框架是由一个单独运行在主节点上的 JobTracker 和运行在每个集群从节点的 TaskTracker 共同组成的。主节点负责调度构成一个作业的所有任务,这些任务分布在不同的从节点上。主节点监控它们的执行情况,并且重新执行之前的失败任务;从节点仅负责由主节点指派的任务。当一个 Job 被提交时,JobTracker 接收到提交作业和配置信息之后,就会将配置信息等分发给从节点,同时调度任务并监控 TaskTracker 的执行。

从上面的介绍可以看出,HDFS 和 MapReduce 共同组成了 Hadoop 分布式系统体系结构的核心。HDFS 在集群上实现分布式文件系统,MapReduce 在集群上实现了分布式计算和任务处理。HDFS 在 MapReduce 任务处理过程中提供了文件操作和存储等支持,MapReduce 在 HDFS 的基础上实现了任务的分发、跟踪、执行等工作,并收集结果,二者相互作用,完成了 Hadoop 分布式集群的主要任务。^[4]

1.2 环境说明

集群中包括 3 个节点: 1 个 Master, 2 个 Salve, 节点之间局域网连接,可以相互 ping 通。节点 IP 地址分布如下:

机器名称	IP 地址
Master. Hadoop	192. 168. 1. 2
Slavel. Hadoop	192. 168. 1. 3
Slave2. Hadoop	192. 168. 1. 4

3个节点上均是 CentOS 6.5 系统,并且有一个相同的用户 jjabc。Master 机器主要配置 NameNode 和 JobTracker 的角色,负责总管分布式数据和分解任务的执行;2个 Salve 机器配置 DataNode 和 TaskTracker 的角色,负责分布式数据存储以及任务的执行。其实应该还应该有1个 Master 机器,用来作为备用。假设 Master 服务器宕机,还有一个备用可以马上启用。后续经验积累一定阶段后补上一台备用 Master 机器。

1.3 安装 CentOS 虚拟机

我的实验环境如下表所示:

操作系统	Windows 10, 64-bit
虚拟机软件	VMware Workstation 11.1.0
光盘镜像	CentOS-6.5-x86_64-bin-DVD1.iso

CentOS 6.5 的安装镜像文件有两个 DVD,安装系统只用到第一个镜像文件,即 DVD1 另外一个镜像文件是附带的软件包。^[5]

我在安装虚拟机时采用了"最小化安装",如图所示:

1.4 网络配置

下面的例子我们将以 Master 机器为例(它的主机名为"Master. Hadoop",IP 为"192. 168. 1. 2")进行一些主机名配置的相关操作。其他的 Slave 机器以此为参照进行修改。

1.4.1 修改当前机器名称

执行以下命令查看主机名,如果跟规划的不一致,要进行修改。

hostname

hostname 为"localhost.localdomain",如图所示:

[root@localhost ~1# hostname
localhost.localdomain

因使用"hostname"命令查得的"Master"的主机名不为"Master. Hadoop",与我们预先规划的不一致,故要修改主机名。

当主机名与我们的预先规划不一致,则应将"/etc/sysconfig/network"文件中的"HOSTNAME"的值改成我们预先规划的名称。

用下面命令进行修改当前机器的主机名。(注:修改系统文件一般用 root 用户)

vi /etc/sysconfig/network

使用 vi 编辑器编辑 "/etc/sysconfig/network" 文件, 如图所示:

[root@localhost ~1# vi /etc/sysconfig/network_

修改"HOSTNAME"为"Master. Hadoop",如图所示:

<u>M</u>ETWORKING=yes HOSTNAME=Master.Hadoop

重启系统后可以发现,主机名变成了"Master. Hadoop",如图所示:

[root@Master ~1# hostname
Master.Hadoop
[root@Master ~1# _

1.4.2 修改当前机器 IP

使用 vi 编辑器查看"/etc/sysconfig/network-scripts/ifcfg-eth0"内容,如果 IP 与原规划不符,则执行修改。如图所示:

[root@Master ~1# vi /etc/sysconfig/network-scripts/ifcfg-eth0_

修改结果如图所示:

DEVICE=eth0
HWADDR=00:0C:29:D3:32:F0
TYPE=Ethernet
UUID=dc540269-ea5d-481e-bbaf-f5b21748848a
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static
IPADDR=192.168.1.2
GATEWAY=192.168.1.1
DNS1=202.113.112.55

在修改后重启网络服务,如图所示:

[root@Master ~]# service net $\underline{\omega}$ ork restart

执行"ifconfig"命令查看 IP, 如图所示:

```
Iroot@Master "I# ifconfig
eth@ Link encap:Ethernet HWaddr 00:0C:29:D3:32:F0
inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fed3:32f0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 b) TX bytes:566 (566.0 b)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr:::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
```

注: Slave1、Slave2 的配置方法与 Master 相同。

1.4.3 配置 hosts 文件

"/etc/hosts"这个文件是用来配置主机将用的 DNS 服务器信息,是记载 LAN 内接续的各主机的对应[HostName 和 IP]用的。当用户在进行网络连接时,首先查找该文件,寻找对应主机名(或域名)对应的 IP 地址。

我们要测试两台机器之间知否连通,一般用"ping 机器的 IP",如果想用 "ping 机器的主机名"发现找不到该名称的机器,解决的办法就是修改 "/etc/hosts"这个文件,通过把 LAN 内的各主机的 IP 地址和 HostName 的一一对应写入这个文件的时候,就可以解决问题。

例如,机器"Master. Hadoop"的 IP 地址为"192.168.1.2"。执行命令"ping"进行连接测试。测试结果如图所示:

```
[root@Master ~ ]# ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.094 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.058 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.062 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.060 ms
64 bytes from 192.168.1.2: icmp_seq=5 ttl=64 time=0.064 ms
64 bytes from 192.168.1.2: icmp_seq=6 ttl=64 time=0.064 ms
64 bytes from 192.168.1.2: icmp_seq=7 ttl=64 time=0.058 ms
```

[root@Master ~]# ping Master.Hadoop ping: unknown host Master.Hadoop

直接对 IP 地址进行测试,能够 ping 通,但是对主机名进行测试,发现不能 ping 通,提示"unknown host",这时查看"Master. Hadoop"的"/etc/hosts"文件内容。

发现里面没有"192.168.1.2 Master. Hadoop"这一内容,故本机器无法对机器的主机名为"Master. Hadoop"解析。

在进行 Hadoop 集群配置中,需要在"/etc/hosts"文件中添加集群中所有机器的 IP 与主机名,这样 Master 与所有的 Slave 机器之间不仅可以通过 IP 进行通信,而且还可以通过主机名进行通信。所以在所有的机器上的"/etc/hosts"文件末尾中都要添加如下内容:

```
192.168.1.2 Master.Hadoop
192.168.1.3 Slavel.Hadoop
192.168.1.4 Slave2.Hadoop
```

使用 vi 编辑器编辑"/etc/hosts"文件,如图所示:

[root@Master usr]# vi /etc/hosts_

添加结果如图所示:

```
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 localhost localhost localdomain localhost6 localhost6.localdomain6

192.168.1.2 Master.Hadoop
192.168.1.3 Slave1.Hadoop
192.168.1.4 Slave2.Hadoop
192.168.1.5 Slave3.Hadoop
```

执行命令 "ping Master. Hadoop" 的结果如图所示:

```
[root@Master usr]# ping Master.Hadoop
PING Master.Hadoop (192.168.1.2) 56(84) bytes of data.
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=2 ttl=64 time=0.048 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=3 ttl=64 time=0.052 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=4 ttl=64 time=0.053 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=5 ttl=64 time=0.054 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=6 ttl=64 time=0.054 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=7 ttl=64 time=0.052 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=8 ttl=64 time=0.053 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=9 ttl=64 time=0.048 ms
64 bytes from Master.Hadoop (192.168.1.2): icmp_seq=9 ttl=64 time=0.047 ms
```

由图可知,我们已经能用主机名进行 ping 通了,说明我们刚才添加的内容,在局域网内能进行 DNS 解析了,那么现在剩下的事儿就是在其余的 Slave 机器上进行相同的配置。然后进行测试。(备注:当设置 SSH 无密码验证后,可以"scp"进行复制,然后对原来的"hosts"文件执行覆盖即可。)

至此,3台机器可以通过主机名互相 ping 通。

1.5 所需软件

1.5.1 JDK 软件

软件版本: idk-7u25-linux-x64.tar.gz

下载地址: http://vdisk.weibo.com/s/BJD8pmDP8CUsN

1.5.2 Hadoop 软件

软件版本: hadoop1.0.0. tar.gz

下载地址: http://download.csdn.net/detail/link200809/5585821

2 SSH 无密码验证设置

Hadoop 运行过程中需要管理远端 Hadoop 守护进程,在 Hadoop 启动以后,NameNode 是通过 SSH (Secure Shell)来启动和停止各个 DataNode 上的各种守护进程的。这就必须在节点之间执行指令的时候是不需要输入密码的形式,故我们需要配置 SSH 运用无密码公钥认证的形式,这样 NameNode 使用 SSH 无密码登录并启动 DataName 进程,同样原理, DataNode 上也能使用 SSH 无密码登录到 NameNode。

2.1 安装和启动 SSH 协议

2.1.1 安装 gcc

因 CentOS 虚拟机采用了最小化安装,故尚未安装 ssh 和 gcc。因 ssh 的安装依赖于 gcc,所以首先进行 gcc 的安装。

执行命令"gcc"验证 gcc 是否已经安装好,如图所示:

```
[root@Slave1 ~]# gcc
-bash: gcc: command not found
[root@Slave1 ~]# _
```

因系统提示 "command not found",故应该安装 gcc。现修改 yum 的更新源,如图所示:

```
[root@Slave1 ~1# vi /etc/yum.repos.d/CentOS-Media.repo
```

文件 "/etc/yum. repos. d/CentOS-Media. repo"的内容如图所示:

删除 "file:///media/CentOS/"和 file:///media/cdrom 两行,如图所示:

```
[c6-media]
name=CentOS-$releasever - Media
baseurl=file:///media/
gpgcheck=1
enabled=0
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6
```

设置虚拟机的光驱的镜像文件为 "CentOS-6.5-x86_64-bin-DVD1.iso",并将 cdrom 设备挂载到 "media"文件夹,如图所示:

[root@Slave1 "]# mount /dev/cdrom /media
mount: block device /dev/sr0 is write-protected, mounting read-only

进行 gcc 的安装,如图所示:

[root@Slave1 ~]# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6
root@Slave1 ~]# yum --disablerepo=* --enablerepo=c6-media install gcc_

在安装后执行"gcc"命令时,系统不再提示"command not found",如图所示:

Complete!
[root@Slave1 ~1# gcc
gcc: no input files
[root@Slave1 ~1# _

至此, "gcc"已经安装成功。

2.1.2 安装 ssh

在 media 文件夹中查找名称中包含"libedit"的文件,如图所示:

```
[root@Master ~]# find /media | grep libedit
/media/Packages/libedit-2.11-4.20080712cvs.1.el6.x86_64.rpm
[root@Master ~]# _
```

执行"rpm"命令安装"libedit",如图所示:

lroot@Master "1# rpm -ivh /media/Packages/libedit-2.11-4.20080712cvs.1.el6.x86_6
4.rpm _

使用同样的方式,安装"openssh-clients"和"openssh-server",如图所示:

```
[root@Master "1# rpm -ivh /media/Packages/openssh-clients-5.3p1-94.el6.x86_64.rpm _

Lroot@Master "1# rpm -ivh /media/Packages/openssh-server-5.3p1-94.el6.x86_64.rpm
```

在安装后执行"ssh"命令时,系统不再提示"command not found",如图所示:

至此, ssh 已经安装完毕。(要为集群的每台机器都安装 ssh。)

2.2 引入 RSA 公钥认证,实现无密码登录

Hadoop 运行过程中需要管理远端 Hadoop 守护进程,在 Hadoop 启动以后, NameNode 是通过 SSH (Secure Shell)来启动和停止各个 DataNode 上的各种守护进程的。这就必须在节点之间执行指令的时候是不需要输入密码的形式,故我们需要配置 SSH 运用无密码公钥认证的形式,这样 NameNode 使用 SSH 无密码登录并启动 DataName 进程,同样原理, DataNode 上也能使用 SSH 无密码登录到 NameNode。

在 Master、Slave1、Slave2 结点均创建用户"jjabc"(密码为"654321"), 如图所示:

```
[root@Master ~ ]# useradd jjabc
[root@Master ~ ]# passwd jjabc
Changing password for user jjabc.
New password:
BAD PASSWORD: it is too simplistic/systematic
BAD PASSWORD: is too simple
Retype new password:
passwd: all authentication tokens updated successfully.
[root@Master ~ ]# ____
```

切换到"jjabc"用户,如图所示:

[root@Master ~]# su jjabc

生成秘钥对,如图所示:

```
Ljjabc@Master root1$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/jjabc/.ssh/id_rsa): Created directory '/home/jjabc/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/jjabc/.ssh/id_rsa.
Your public key has been saved in /home/jjabc/.ssh/id_rsa.pub.
The key fingerprint is:
03:41:a8:c5:9a:39:cf:a0:cc:93:17:85:3b:72:44:50 jjabc@Master.Hadoop
The key's randomart image is:
+--[ RSA 2048]----+
1 .+E.00
   0+. .
  , ×0 .
.B=
0.+=0
   0
```

查看秘钥对(公钥和私钥),如图所示:

```
[jjabc@Master root]$ ls ~/.ssh
id_rsa id_rsa.pub
```

到 Slavel 机器的"jjabc"用户目录下产生密钥对。借助 ssh 把 jjabc@Slavel 的 公 钥 " ~/. ssh/id_rsa. pub " 的 内 容 追 加 到 jjabc@Master 的 " ~/. ssh/authorized keys"中,如图所示:

[jjabc@Slave1 root]\$ ssh-keygen -t rsa_

```
[jjabc@Slave1 "1$ cd "/.ssh/
[jjabc@Slave1 .ssh1$ ls
id_rsa id_rsa.pub
[jjabc@Slave1 .ssh1$ cat "/.ssh/id_rsa.pub | ssh jjabc@Master.Hadoop "cat - >> "
/.ssh/authorized_keys"
The authenticity of host 'master.hadoop (192.168.1.2)' can't be established.
RSA key fingerprint is 58:79:d4:08:e4:5b:10:87:39:76:0d:46:85:c9:ef:94.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'master.hadoop,192.168.1.2' (RSA) to the list of know n hosts.
jjabc@master.hadoop's password:
[jjabc@Slave1 .ssh1$ _
```

注:也在 Slave2 机器执行与 Slave1 机器的相同的操作,将 jjabc@Slave1 的公钥追加到 jjabc@Master 的 "~/. ssh/authorized_keys"中。 ^[6] 此时,authorized keys 的内容如图所示:

[jjabc@Master .ssh]\$ vi authorized_keys _

 $ssh-rsa-AAAAB\underline{6}NzaC1yc2EAAAABIwAAAQEAqqY/S37d8pb72sUUMSWdKZ0p+VYKvstXbTEArRTghIy2\\ HFpaGYjUGkd4oYA7cMfs7tv6TwEENZ3BcbMRFPzpFkss8Iu15dck5DLAyT6a3h0yF4tx7asQluAebATC\\ Xwy98kmzteaErEVo4A9ZRaYeqgRKxdAv3u/I6i+LJhfWPPY0qo58M1K+qEyMrkfciFlyFEo18dC3FY4KfYkMesn/HhEiK6LqmMZdLv3kbJ0IjxqaQ83k3xEXXUI7rIN9KIQm48HbSDpAWiqvt6UepIIazwsv86AcZg7Xq3zXQ6XjyBC5txyGr4JnZEmQQ84g9RTNOVD0Dg7ySoDhUIfhLClp9Q== jjabc6Slave1.Hadoopsrrrsh-rsa-AAAAB3NzaC1ycZEAAAABIwAAAQEAugmsK6tD+GNzafhkRZnjcFa+dTwCSsNCSUR5Sd9noYLSnNae8wiAkze0+tLpGipLL8iDUyYLPwSbe+Y9xdaUdYGkyUEEdVL3Ws6zSlejEBkSM/FiAcQDZg9yIBVEW8uJoxqbY5TjYypxDQcX6wKppqEBPTnhQvyvehTJnPS1pI/yAXFZ74yvscuBLFen8M08Qa8P7N+Dc+Wx8NvoqltR5HHS1jaq5YIzvWklPGF0Gy41eYxImTAMM3605tsNydPXQ9PwQd9kCx54PUt8hYADVxJoVE5yqfcRAcVWLCIgoONOaKGKhkboBNE96e8uXFwcyvoSEKrMPUGPzHUZrHK5Rw== jjabc@Slave2.Hadoop$

此时,再将 jjabc 的"id_rsa. pub"的文件内容追加到"authorized_keys"中,如图所示:

[jjabc@Master .ssh] cat id_rsa.pub >> authorized_keys _

ssh-rsa AAAABZNzaClycZEAAAABIwAAAQEAqqy/S37d8pb7ZsUUMSWdKZOp+VYKvstXbTEArRTghIy2
HFpaGY jUGkd4oYA7cMf s7tvØTwEENZ3BcbMRFPzpFkss8lu15dck5DLAyT6a3hOyF4tx7asQluAebATC
Xwy90kmzteaErEVo4A9ZRaYeqgRKxdAv3u/I61+LJhfWPPYOqo58M1K+qEyMrkfciFlyFEoI8dC3FY4K
fYkMesn/HhEiK6LqmMZdLv3kbJOI jxqaQ83k3xEXXUI7rIN9KIQm48HbSDpAWlqvt8UepIlazwsv86Ac
Zg7Xq3zXQ6X jyRC5txyGr4JnZEmQQ84g9RTNOVDODg7ySoDhUIFLCIp9Q== jjabc@SlaveI.Hadoop
ssh-rsa AAAAB3NzaClycZEAAAABIwAAAQEAuymsK6tD+6NzafhkR2njcFa+dTwCSsNCSUR5Sd9noYLS
nNae8wiAkze0+tLpGipLL8iDUyYLPwSbe+Y9xdaUdYGkyUEEdVL3Ws6zSlejEBkSM/FiacQDZg9y1BVE
W8uJoxqbY5TjYypxDQcX6wKppqEBPTnhQvyvehTJnPS1pl/yAXFZ74yvscuBLFen8M08Qa8P7N+Dc+Wx
8NvoqltR5HHS1jaq5YlzvWklP6FDGy41eYxlmTAMM368tsNydPXQPWQd9kCx54PUt0hYADVxJoVE5y
qfcRAcVWLCIgoONOaKGKhkbo8NE96e8uXFwcyvoSEKrMPUGPZHUZHKSRw== jjabc@SlaveZ.Hadoop
ssh-rsa AAAAB3NzaClycZEAAAABIwAAAQEA1XAYvNoyrqqsSiDBYxlYgvg8XZS8MPy/BthcPwk/HH7i
ovbILru8RuvDEuipf7HTsqLy787ZciFK+ZTZootPFqC73HkL18NLS971JAD1fRoqD7sekzBzLTyr3sZp
hINRFFmDSgWBcnqvweJ7Gxwxkq98KefgtCJTpLuLzE3LVSMWL4+fsefpok/zj976ADcwjCD1rClp8ny
biYkHBah3Rthoa5meIOdHUTbo5GnPPoe5vuclCjSckZ5f5RaMZWtXi5rRdcwQjfUtgB44OAmPQdCoeXN
ZhIRIHvZsZwDki6Lt76KZ4f/8egtQ/8IGdQLDJJvy8P88uxSdqAxCGvkQQ== jjabc@Master.Hadoop

修改 "authorized_keys" 文件的权限为 "600", 如图所示:

"authorized_keys" 3L, 1203C

[jjabc@Master .ssh1\$ chmod 600 authorized_keys

把"jjabc@Master"的"authorized_keys"文件传输给"jjabc@Slave1"和"jjabc@Slave2",这样 Master、Slave1 和 Slave2 共同拥有了"authorized_keys",如图所示:

[jjabc@Master .ssh]\$ scp 7.ssh/authorized_keys jjabc@Slave1.Hadoop: 7.ssh/_

Ljjabc@Master .sshl\$ scp "/.ssh/authorized_keys jjabc@SlaveZ_Hadoop:"/.ssh/

[J]abc@Master .ssh1\$ scp ~/.ssh/authorized_keys jjabc@Slave1.Hadoop:~/.ssh/ jjabc@slave1.hadoop's password: authorized_keys 188% 1293 1.2KB/s 88:88

在 Master、Slave1、Slave2 结点中,均登录 root 用户,通过 vi 编辑器编辑 "/etc/ssh/sshd_config"文件,去掉"RSAAuthentication yes"、 "AuthorizedKeysFile .ssh/authorized keys"和

"PubkeyAuthentication yes"和这三行的"#"注释,如图所示:

vi /etc/ssh/sshd_config .

#MaxSessions 10

RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys
#AuthorizedKeysCommand none
#AuthorizedKeysCommandRunAs nobody

For this to work you will also need host keys in
#RhostsRSAAuthentication no

分别在 Master、Slave1、Slave2 机器中测试连接,如图所示:

[root@Master ~1# su jjabc
[jjabc@Master root]\$ ssh Slave1.Hadoop
Last login: Fri Feb 26 21:49:40 2016 from master.hadoop
[jjabc@Slave1 ~1\$ ^C
[jjabc@Slave1 ~1\$ exit
logout
Connection to Slave1.Hadoop closed.
[jjabc@Master root]\$ ssh Slave2.Hadoop
Last login: Fri Feb 26 21:47:13 2016 from master.hadoop
[jjabc@Slave2 ~1\$ exit
logout
Connection to Slave2.Hadoop closed.
[jjabc@Master root]\$ __

```
[root@Slave1 ~1# su jjabc
[jjabc@Slave1 rootl$ ssh Master.Hadoop
Last login: Fri Feb 26 21:49:34 2016 from slave2.hadoop
[jjabc@Master ~1$ exit
logout
Connection to Master.Hadoop closed.
[jjabc@Slave1 rootl$ ssh Slave2.Hadoop
Last login: Sat Feb 27 01:03:36 2016 from master.hadoop
[jjabc@Slave2 ~1$ exit
logout
Connection to Slave2.Hadoop closed.
[jjabc@Slave1 rootl$ _

[jjabc@Slave2 rootl$ ssh Master.Hadoop
Last login: Sat Feb 27 01:05:22 2016 from slave1.hadoop
[jjabc@Master ~1$ exit
logout
Connection to Master.Hadoop closed.
[jjabc@Slave2 rootl$ ssh Slave1.Hadoop
Last login: Sat Feb 27 01:00:18 2016 from master.hadoop
Last login: Sat Feb 27 01:00:18 2016 from master.hadoop
```

至此, SSH 免密码登陆远程服务器已经安装完毕。

Connection to Slave1.Hadoop closed.

[jjabc@Slave2 root1\$ _

logout

3 Java 环境安装

所有的机器上都应安装 JDK, 现在就先在 Master 服务器安装, 然后其他服务器按照步骤重复进行即可。安装 JDK 以及配置环境变量, 需要以"root"的身份进行。

3.1 安装 JDK

首先将所使用的 JDK——"jdk-7u25-linux-x64. tar. gz"使用 ultraiso 做成 iso 镜像,并将之设置为虚拟机的光驱镜像文件,如图所示:

以 root 身份登录"Master. Hadoop"。接着在"/usr"下创建"java"文件夹。接着挂载 cdrom 设备到"media"文件夹下,如图所示:

```
[root@Master /]# mount /dev/cdrom /media/
mount: block device /dev/sr0 is write-protected, mounting read-only
[root@Master /]# cd /media
[root@Master media]# ls
jdk-7u25-linux-x64.tar.gz
```

将 media 文件夹里的"jdk-7u25-linux-x64. tar. gz"复制到"/usr/java/"文件夹里,如图所示:

```
[root@Master media]# cp jdk-7u25-linux-x64.tar.gz /usr/java/_
```

进入"/usr/java"目录解压 jdk 的压缩文件,如图所示:

```
[root@Master java]# cd /usr/java
[root@Master java]# ls
jdk-7u25-linux-x64.tar.gz
```

[root@Master java]# tar -zxvf jdk-7u25-linux-x64.tar.gz

解压结果如图所示:

```
jdk1.7.0_25/man/man1/java.1
jdk1.7.0_25/man/man1/jcmd.1
jdk1.7.0_25/man/man1/xjc.1
jdk1.7.0_25/man/man1/jarsigner.1
jdk1.7.0_25/man/man1/appletviewer.1
jdk1.7.0_25/man/man1/javafxpackager.1
jdk1.7.0_25/man/man1/pack200.1
jdk1.7.0_25/man/man1/keytool.1
jdk1.7.0_25/man/man1/extcheck.1
jdk1.7.0_25/man/man1/jstatd.1
jdk1.7.0_25/man/man1/jstatd.1
jdk1.7.0_25/man/man1/jstatd.1
jdk1.7.0_25/man/man1/jstatd.1
jdk1.7.0_25/THIRDPARTYLICENSEREADME.txt
jdk1.7.0_25/COPYRIGHT
[root@Master java]#_
```

3.2 配置环境变量

使用 vi 编辑器编辑文件 "/etc/profile",如图所示:

[root@Master /]# vi /etc/profile_

在文件"/etc/profile"的末尾配置 Java 环境变量,如图所示:

```
unset i
unset -f pathmunge

# set java environment
export JAVA_HOME=/usr/java/jdk1.7.0_25
export CLASSPATH=.:$CLASSPATH:JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin
```

执行命令 "source /etc/profile" 使环境变量生效,如图所示:

[root@Master java]# source /etc/profile

3.3 验证安装成功

执行命令"java -version"验证 Java 环境是否配置成功,如图所示:

```
[root@Master ~]# java -version
java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)
[root@Master ~]# _
```

因 Java 的版本信息被打印出来,由此我们可以判断 Master 机器上的 Java 环境变量已经配置成功。应执行同样的操作为 Slaval 和 Slave2 机器配置 Java 环境变量。

4 Hadoop 集群安装

4.1 安装 Hadoop

首先将所使用的"hadoop1. 0. 0. tar. gz"做成 iso 镜像,并将之设置为虚拟机的光驱镜像文件,如图所示:

接着挂载 cdrom 设备到"media"文件夹,如图所示:

mount: block device /dev/sr0 is write-protected, mounting read-only 将 hadoop. tar. gz 复制到/usr/文件夹下,如图所示:

[root@Master media]# cp hadoop.tar.gz /usr

进入"/usr/"目录解压"hadoop.tar.gz",如图所示:

[root@Master usr]# tar -zxvf hadoop.tar.gz _

```
[root@Master usr]# |s hadoop.tar.gz | two | two | tmp
```

修改 hadoop 文件夹的 owner 为"jjabc. jjabc",如图所示:

[root@Master usr]# chown -R jjabc.jjabc hadoop

```
[root@Master usr]# 11
total 68
dr-xr-xr-x.
              2 root
                       root
                             12288 Feb 26 05:42
drwxr-xr-x. 2 root
                              4096 Sep 23
                                            2011
                       root
drwxr-xr-x. 2 root
                              4096 Sep 23
                       root
                                            2011
drwxrwxrwx. 16 jjabc jjabc
                              drwxr-xr-x. 32 root
                       root
drwxr-xr-x. 3 root root
dr-xr-xr-x. 10 root root
dr-xr-xr-x. 25 root root
drwxr-xr-x. 10 root root
drwxr-xr-x. 12 root root
                              4096 Mar 14 16:28
4096 Feb 25 23:57
                             12288 Feb 26 05:41
                              4096 Feb 25 23:57
                              4096 Feb 25 19:04
dr-xr-xr-x. 2 root root
                              4096 Feb 25 19:09
drwxr-xr-x. 61 root root
                              4096 Feb 25 19:09
drwxr-xr-x. 4 root root
                              4096 Feb 25 19:04
lrwxrwxrwx. 1 root root
                                [root@Master usr]# _
```

将 hadoop 的环境变量添加到 "/etc/profile" 文件末尾,如图所示:

```
# set java environment
export JAVA_HOME=/usr/java/jdk1.7.0_25
export CLASSPATH=.:$CLASSPATH:JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin

# set hadoop path
export HADOOP_HOME=/usr/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
"/etc/profile" 88L, 2060C written
```

4.2 配置 Hadoop

4.2.1 配置 hadoop-env. sh

修改配置文件"/usr/hadoop/conf/",将"JAVA_HOME"添加到该文件的末尾。如图所示:

```
| Croot@Master hadoop!# cd conf
| Croot@Master confl# ls
| capacity-scheduler.xml | hadoop-policy.xml | slaves
| configuration.xsl | hdfs-site.xml | ssl-client.xml.example
| core-site.xml | log4j.properties | ssl-server.xml.example | ssl-server.xml.example | taskcontroller.cfg | hadoop-env.sh | mapred-site.xml | hadoop-metrics2.properties | masters | Croot@Master confl# vi hadoop-env.sh | mapred-site.xml | masters | confl# vi hadoop-env.sh | mapred-site.xml | masters | confl# vi hadoop-env.sh | mapred-site.xml | confl# vi hadoop-env.sh | confl# vi hadoop-env
```

```
# set java environment
export JAVA_HOME=/usr/java/jdk1.7.0_25
"hadoop-env.sh" 57L, 2339C written
[root@Master conf]# _
```

4.2.2 配置 core-site.xml

修改配置文件 "/usr/hadoop/conf/core-site.xml", 配置 HDFS 的地址和端口号。如图所示:

4.2.3 配置 hdfs-site.xml

使用 vi 编辑器修改配置文件"/usr/hadoop/conf/hdfs-site.xml"。如图所示:

[root@Master conf]# vi hdfs-site.xml _

4.2.4 配置 mapred-site.xml

使用 vi 编辑器修改"mapred-site.xml"文件,配置 JobTracker 的地址和端口,如图所示:

[root@Master conf]# vi mapred-site.xml _

4.2.5 配置 masters 文件

使用 vi 编辑器配置 masters 文件,如图所示:

[root@Master conf]# vi masters _

[root@Master conf]# more masters
192.168.1.2

4.2.6 配置 slaves 文件

使用 vi 编辑器配置 slaves 文件,如图所示:

[root@Master conf]# vi slaves _

192.168.1.3 192.168.1.4

现在在 Master 机器上的 Hadoop 配置就结束了,剩下的就是配置 Slave 机器上的 Hadoop。

将 Master 上配置好的 hadoop 所在文件夹"/usr/hadoop"复制到所有的 Slave 的"/usr"目录下(实际上 Slave 机器上的 slaves 文件是不必要的, 但复制了也没问题)。用以下命令格式进行。(备注:此时用户可以为 hadoop 也可以为 root。)如图所示:

```
[root@Slave1 "l# cd /
[root@Slave1 / ]# 1s
[root@Slave1 / 1# cd usr/
[root@Slave1 usr]# 1s
                                             tmp
[root@Slave1 usr]# 11
total 68
            2 root root 12288 Feb 26 18:11
dr-xr-xr-x.
drwxr-xr-x. 2 root root
                         4096 Sep 23
                                      2011
drwxr-xr-x. 2 root root
                         4896 Sep 23
                                     2011
drwxrwxrwx. 16 root root 4096 Feb 27 22:35 middlen
drwxr-xr-x. 32 root root 4096 Feb 26 18:10
drwxr-xr-x. 3 root root 4096 Feb 27 19:53
dr-xr-xr-x. 10 root root 4096 Feb 26 18:10
dr-xr-xr-x. 25 root root 12288 Feb 26 18:11
drwxr-xr-x. 10 root root 4096 Feb 26 18:10
                         4096 Feb 25 21:03
drwxr-xr-x. 12 root root
                         4096 Feb 25 21:10
dr-xr-xr-x. 2 root root
drwxr-xr-x. 61 root root 4096 Feb 25 21:10
drwxr-xr-x. 4 root root 4096 Feb 25 21:03
lrwxrwxrwx. 1 root root
                           10 Feb 25 21:03 tmp -> -> -> tmp
[root@Slave1 usrl# _
```

修改 hadoop 文件夹的 owner 为"jjabc.jjabc",如图所示:

```
[root@Slave1 usr]# Is
     hadoop
[root@Slave1 usr]# 11
total 68
dr-xr-xr-x. 2 root
                       root
                              12288 Feb 26 18:11
                               4096 Sep 23
drwxr-xr-x. 2 root
                       root
                                              2011
drwxr-xr-x. 2 root
                               4096 Sep 23
                       root
                                              2011
drwxrwxrwx. 16 jjabc jjabc
                              4096 Mar 14 17:33 hadoon
drwxr-xr-x. 32 root
                               4096 Feb 26 18:10
                       root
drwxr-xr-x. 3 root
dr-xr-xr-x. 10 root
                       root
                               4096 Mar 14 16:32
                               4096 Feb 26 18:10
                       root
dr-xr-xr-x. 25 root
drwxr-xr-x. 10 root
drwxr-xr-x. 12 root
                              12288 Feb 26 18:11
                       root
                               4096 Feb 26 18:10
                       root
                               4096 Feb 25 21:03
                       root
                               4096 Feb 25 21:10
dr - xr - xr - x. 2
                root
                       root
drwxr-xr-x. 61 root
                       root
                               4096 Feb 25 21:10
                               4096 Feb 25 21:03
drwxr-xr-x. 4 root
                       root
              1 root
                                 10 Feb 25 21:03 tmp -> ... var/tmp
lrwxrwxrwx.
                       root
[root@Slave1 usr]#
```

接着在"Slavel. Hadoop"上修改"/etc/profile"文件(配置 java 环境变量的文件),将以下语句添加到末尾,并使其有效(source/etc/profile):

set hadoop environment

export HADOOP_HOME=/usr/hadoop

export PATH=\$PATH :\$HADOOP_HOME/bin

如图所示:

set hadoop environment export HADOOP_HOME=/usr/hadoop export PATH=\$PATH:\$HADOOP_HOME/bin "/etc/profile" 87L, 2066C written

注:对 Slave2 也执行同样操作。

4.3 启动并验证

4.3.1 关闭防火墙

在 Master、Slave1、Slave2 结点均要切换到 root 用户关闭防火墙,如图所示:

```
[root@Master conf]# service iptables stop
iptables: Setting chains to policy ACCEPT: filter [ OK ]
iptables: Flushing firewall rules: [ OK ]
iptables: Unloading modules: [ OK ]
[root@Master conf]# _____
```

4.3.2 格式化 HDFS 文件系统

在 Master 机器格式化 namenode 结点,如图所示:

[jjabc@Master usr]\$ hadoop namenode -format_

4.3.3 启动 Hadoop

在 Master 机器执行"start-all.sh"命令,如图所示:

```
[jjabc@Master usrl$ start-all.sh
Warning: $HADOOP_HOME is deprecated.

starting namenode, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-namenode-Master.Hadoop.out
192.168.1.4: starting datanode, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-datanode-Slave2.Hadoop.out
192.168.1.3: starting datanode, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-datanode-Slave1.Hadoop.out
192.168.1.2: starting secondarynamenode, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-secondarynamenode-Master.Hadoop.out
starting jobtracker, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-jobtracker-Master.Hadoop.out
192.168.1.4: starting tasktracker, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-tasktracker-Slave2.Hadoop.out
192.168.1.3: starting tasktracker, logging to /usr/hadoop/libexec/../logs/hadoop-jjabc-tasktracker-Slave1.Hadoop.out
193.168.1.3: starting tasktracker.
```

可以通过以上启动日志看出,首先启动 namenode 接着启动 datanode1、datanode2, ···然后启动 secondarynamenode。再启动 jobtracker, 然后启动 tasktracker1、tasktracker2, ···。

4.3.4 验证 Hadoop

(1) 验证方法一: 使用"jps"命令

在 Master 上执行"jps"命令查看进程,如图所示:

```
[jjabc@Master root]$ jps
3423 Jps
2300 JobTracker
2217 SecondaryNameNode
3258 SecondaryNameNode
3104 NameNode
[jjabc@Master root]$ _
```

在 Slavel 上执行"jps"命令查看进程,如图所示:

```
[jjabc@Slave1 root1$ jps
1821 DataNode
1578 TaskTracker
1903 TaskTracker
1946 Jps
[jjabc@Slave1 root1$ _
```

在 Slave2 上执行"jps"命令查看进程,如图所示:

```
[jjabc@Slave2 root]$ jps
1854 DataNode
1611 TaskTracker
1936 TaskTracker
1989 Jps
[jjabc@Slave2 root]$ _
```

(2) 验证方法二: 使用"hadoop dfsadmin -report"命令查看 Hadoop 集群的状态,如图所示:

Datanodes available: 2 (2 total, 0 dead) Name: 192.168.1.3:50010 Decommission Status : Normal Configured Capacity: 18569568256 (17.29 GB) DFS Used: 28687 (28.01 KB) Non DFS Used: 2233339889 (2.08 GB) DFS Remaining: 16336199680(15.21 GB) DFS Usedx: 0% DFS Remaining: 87.97% Last contact: Tue Mar 15 12:04:09 CST 2016 Name: 192.168.1.4:50010 Decommission Status : Normal Configured Capacity: 18569568256 (17.29 GB) DFS Used: 28672 (28 KB) Non DFS Used: 2329710592 (2.17 GB) DFS Remaining: 16239828992(15.12 GB) DFS Usedx: 0% DFS Remaining: 87.45% Last contact: Tue Mar 15 12:04:09 CST 2016 Ljjabc@Master root1\$

注:如果发现 datanode 没有起来,可能要在 Master、Slave1、Slave2 结点执行这 3 步操作。

1) 先删除"/usr/hadoop/tmp"

<mark>rm -rf /usr/hadoop/tmp</mark>

2) 创建"/usr/hadoop/tmp"文件夹 mkdir /usr/hadoop/tmp

3) 删除"/tmp"下以"hadoop"开头文件

<mark>rm -rf /tmp/hadoop*</mark>

最后在 Master 结点执行以下命令

hadoop namenode - format

4.3.5 关闭 Hadoop

执行"stop-all.sh"命令进行关闭,如图所示:

[jjabc@Master conf]\$ stop-all.sh
Warning: \$HADOOP_HOME is deprecated.

no jobtracker to stop
192.168.1.3: stopping tasktracker
192.168.1.4: stopping tasktracker
stopping namenode
192.168.1.4: stopping datanode
192.168.1.3: stopping datanode
192.168.1.3: stopping datanode
192.168.1.3: stopping datanode

5 实验部分

5.1 准备工作

利用搭建好的 Hadoop 环境,使用其中的统计词频的程序 wordcount,利用程序统计莎士比亚文章 "Shakespheare. txt"的词频。该文件的大小为 9.70 MB。该文件的内容如图所示:

5.1.1 创建本地示例文件

[root@Master file]# ls

file1.txt file2.txt Shakespeare.txt

首先在"/home/jjabc"目录下创建文件夹"file"。

[jjabc@Master /1\$ mkdir /home/jjabc/file

执行"cp"命令,将"Shakespheare.txt"文件放入/home/jjabc/file 目录下,如图所示:

```
[root@Master media]# ls
Shakespeare.txt
[root@Master media]# cp Shakespeare.txt /home/jjabc/file_
[root@Master media]# cd /home/jjabc/file
```

将 "Shakespheare. txt"的 owner 设置为 jjabc. jjabc, 如图所示:

```
[root@Master file]# 11
total 9948
-rw-rw-r--. 1 jjabc jjabc 12 Mar 15 00:40 file1.txt
-rw-rw-r--. 1 jjabc jjabc 13 Mar 15 00:41 file2.txt
-r-xr-xr-x. 1 jjabc jjabc 10175778 Mar 15 12:27 Shakespeare.txt
[root@Master file]# _
```

5.1.2 在 HDFS 上创建输入文件夹

在 HDFS 上创建输入文件夹"input",如图所示:

5.1.3 上传本地 file 中文件到集群的 input 目录下

上传本地 file 中的 "Shakespeare. txt" 到集群的 input 目录下,如图所示:

[jjabc@Master file]\$ hadoop fs -put ~/file/Shakespeare.txt input_

```
[jjabc@Master file]$ hadoop fs -ls input Warning: $HADOOP_HOME is deprecated.

Found 1 items
-rw-r--r- 1 jjabc supergroup 10175778 2016-03-15 12:31 /user/jjabc/input/Sh akespeare.txt
[jjabc@Master file]$ _
```

5.2 运行例子

5.2.1 在集群上运行 WordCount 程序

在集群上运行 WordCount 程序,如图所示:

[jjabc@Master file]\$ hadoop jar /usr/hadoop/hadoop-examples-1.0.0.jar wordcount input ouput_

5.2.2 MapReduce 执行过程显示信息

MapReduce 执行过程显示信息,如图所示:

```
[jjabc@Master file]$ hadoop jar /usr/hadoop/hadoop-examples-1.0.0.jar wordcount input output
Warning: $HADOOP_HOME is deprecated.

16/03/15 12:37:56 INFO input.FileInputFormat: Total input paths to process: 1
16/03/15 12:37:56 INFO mapred.JobClient: Running job: job_201603151155_0002
16/03/15 12:37:57 INFO mapred.JobClient: map 0% reduce 0%
16/03/15 12:38:21 INFO mapred.JobClient: map 49% reduce 0%
16/03/15 12:38:24 INFO mapred.JobClient: map 100% reduce 0%
16/03/15 12:38:48 INFO mapred.JobClient: map 100% reduce 100%
```

5.3 查看结果

5. 3. 1 查看 HDFS 上 output 目录内容

生成了三个文件,统计结果在"part-r-00000"文件中,如图所示:

5.3.2 查看结果输出文件内容 单词的词频被统计出来了,如图所示:

[jjabc@Master file]\$ hadoop fs -cat output/part-r-00000_

```
Yare,
         2
Yaughan:
                   1
Ye
Ye're
Ye?
         49
         3
         2
Yea
         4
         232
Yea,
Yea.
         2
Yea;
         4
         2
Yead
Yearly
         4
Yedward:
                   2
         2 2
Yerk
Yes
Yes,
         275
Yes.
         13
Yes:
         3
         15
Yes:
Yesterday
                   2
Yet
         527
Yet,
         103
Yet, --
         4
         14
Yield
Yield,
         9
Yield: 1
```

参考文献

- [1]刘赫男,罗霄,高晓东.并行计算的现状与发展[J].煤 2001.
- [2]刘鹏. 云计算[M]. 北京:电子工业出版社, 2010. 7.
- [3]黄宜华. 深入理解大数据: 大数据处理与编程实践[M]. 北京: 机械工业出版社, 2014. 8.
- [4] pointsand. centos 安装配置 hadoop 超详细过程[EB/OL]. [2014-11-21].

http://www.centoscn.com/image-text/install/2014/1121/4158.html

[5] qihang01. CentOS 6.2 最小化 Minimal 安装图解教程[EB/OL]. [2012-08-19].

http://www.dedecms.com/knowledge/servers/linux-bsd/2012/0819/8398.html

[6] marsprj. SSH 无密码登录[EB/OL]. [2013-02-26].

http://www.cnblogs.com/marsprj/archive/2013/02/26/2933839.html

[7] 虾皮工作室. Hadoop 集群(第 6 期)_WordCount 运行详解[EB/OL]. [2013-02-26].

http://www.cnblogs.com/marsprj/archive/2013/02/26/2933839.html