Differentiation

Basic Rules: f diff'ble \Rightarrow continuous. (f+g)' = f'+g' (fg)' = f'g+fg'Figure 1. Since the second state of the secon

Extrema: If f has a local min/max at θ and is diff'ble, then $f'(\theta) = 0$ Global Lipschitz: $|f'(x)| \le M \Rightarrow |f(t) - f(x)| \le M|t - x|$; if $f' \equiv 0 \Rightarrow f$ is

Ratio MVT: f, g cont. on [a, b], diff'ble on $(a, b) \Rightarrow \exists \theta : \Delta f \cdot g'(\theta) = \Delta g \cdot f'(\theta)$

L'Hôpital's Rule: If $\lim f(x) = \lim g(x) = 0$, $\lim \frac{f'}{g'} = L \Rightarrow \lim \frac{f}{g} = L$ Derivative Properties: f' has intermediate value property (no jump disc.)

 $f^{(r)} \Rightarrow f^{(r-1)}$ cont. Smooth \Rightarrow all $f^{(n)}$ exist and cont.

Taylor Approximation: f(x+h) = P(h) + R(h) where $R(h)/h^r \to 0$ as $h \to 0$ $R(h) = \frac{f^{(r+1)}(\theta)}{(r+1)!} h^{r+1}, \ \theta \in (x, x+h)$

Inverse Function Thm (1D): If f diff'ble, f' never $0 \Rightarrow f^{-1}$ diff'ble, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

Riemann Integration

Definition (Partition): A partition P of [a, b] is a finite set $\{x_0, x_1, \ldots, x_n\}$

such that $a = x_0 < x_1 < \cdots < x_n = b$. Mesh of a Partition: $||P|| = \max_{1 \le i \le n} (x_i - x_{i-1})$

Refinement: Q is a refinement of \overline{P} if $P \subseteq Q$ (i.e., Q adds more points to

Partition Pair: Two interlaced sets $P = \{x_0, \ldots, x_n\}$ and $T = \{t_1, \ldots, t_n\}$

Effect of Refinement:

- Refining P increases L(f, P) and decreases U(f, P).
- If f is Riemann integrable, then for sufficiently fine partitions, U(f, P) –

Definition (Riemann Sum): Given $f:[a,b] \to \mathbb{R}$, a partition P= $\{x_0,\ldots,x_n\}$ with $a=x_0<\cdots< x_n=b$, and sample points $T=\{t_1,\ldots,t_n\}$ such that $t_i \in [x_{i-1}, x_i]$, the Riemann sum is:

$$R(f, P, T) = \sum_{i=1}^{n} f(t_i) \Delta x_i, \quad \Delta x_i = x_i - x_{i-1}$$

Definition (Riemann Integrability): f is Riemann integrable if $\exists I$ such that $\forall \epsilon > 0, \; \exists \delta > 0$:

$$\operatorname{mesh}(P) < \delta \Rightarrow |R(f, P, T) - I| < \epsilon$$

Denoted as $\int_a^b f(x) dx = I$.

Definition (Darboux Sums):

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i, \quad m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

$$U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i, \quad M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

Definition (Lower and Upper Integrals):

$$\int_a^b f(x)\,dx = \sup_P L(f,P), \quad \overline{\int_a^b} f(x)\,dx = \inf_P U(f,P)$$

f is Darboux integrable if the lower and upper integrals are equal.

Theorems and Properties

- Riemann Integrability Criterion: f is Riemann integrable iff $\forall \epsilon > 0$,
- $\exists P$ such that $U(f,P)-L(f,P)<\epsilon$.
 Refinement Principle: Refining P increases L(f,P) and decreases U(f,P).
- Linearity: If f, g are integrable, so are f+g and cf; $\int (f+g) = \int f + \int g$, $\int cf = c \int f.$
- Monotonicity: If f ≤ g, then ∫_a^b f ≤ ∫_a^b g.
 Absolute Bound: If |f(x)| ≤ M then |∫ f| ≤ M(b a).
- Equivalence Theorem: Riemann integrability \Leftrightarrow Darboux integrabil-
- Riemann-Lebesgue Theorem: f is Riemann integrable $\Leftrightarrow f$ is bounded and its discontinuities form a measure zero set.
- Fundamental Theorem of Calculus: If f is integrable on [a, b], then $F(x) = \int_a^x f(t) dt$ is continuous; if f is continuous at x, then F'(x) = f(x).
- Antiderivative Theorem: If F' = f and f is Riemann integrable, then F differs from the indefinite integral by a constant.

• Integration by Parts: If f, g differentiable and $f', g' \in R$, then:

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx$$

• Substitution Rule: If $g:[c,d]\to [a,b]$ is C^1 with g'>0 and $f\in R$,

$$\int_a^b f(y) \, dy = \int_c^d f(g(x))g'(x) \, dx$$

- Continuity Implies Integrability: Every continuous function is Riemann integrable.
- Other corollaries: If f, g are integrable then:
 - fg is integrable.
 - -|f| is integrable.
 - Monotone functions are integrable.
 - $\phi \circ f$ is integrable if ϕ is continuous.
 - -f integrable on [a, c] and [c, b] implies integrable on [a, b].

Series

Series and Convergence

A series is a formal sum $\sum_{k=0}^{\infty} a_k$ of real numbers. The *n*-th partial sum is $A_n = \sum_{k=0}^n a_k$. Convergence: The series $\sum a_k$ converges to A if $A_n \to A$ as $n \to \infty$. Divergence: If the limit does not exist, the series diverges.

Cauchy Criterion for Series: $\sum a_k$ converges \iff for every $\epsilon > 0$, $\exists N$ such that for all $m, n \geq N$:

$$\left| \sum_{k=m}^{n} a_k \right| < \epsilon$$

Necessary Condition: If $\sum a_k$ converges, then $a_k \to 0$. Geometric Series: $\sum_{k=0}^{\infty} \lambda^k$ converges if $|\lambda| < 1$, and its sum is $1/(1-\lambda)$. Harmonic Series: $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges even though $a_k \to 0$. Convergence Tests:

• Comparison Test (40): If $|a_k| \leq b_k$ for all large k, and $\sum b_k$ converges,

then $\sum a_k$ converges.

• Integral Test (41): If f is positive, decreasing, and $f(k) = a_k$, then $\sum a_k$ and $\int f(x) dx$ converge or diverge together.

• Root Test (42): Let $\alpha = \limsup_{k \to \infty} \sqrt[k]{|a_k|}$.

 $\alpha < 1 \Rightarrow$ converges, $\alpha > 1 \Rightarrow$ diverges, $\alpha = 1 \Rightarrow$ inconclusive.

• Ratio Test (43): Let $r_k = |a_{k+1}/a_k|$, and define $\rho = \limsup r_k$,

 $\rho < 1 \Rightarrow$ converges, $\lambda > 1 \Rightarrow$ diverges, otherwise inconclusive.

Alternating Series Test: If $a_k \geq 0$, decreasing, and $a_k \rightarrow 0$, then $\sum (-1)^{k+1} a_k$ converges.

Radius of Convergence (44): For a power series $\sum c_k x^k$, the radius of convergence is

$$R = \frac{1}{\limsup_{k \to \infty} |c_k|^{1/k}}.$$

Converges absolutely for |x| < R, diverges for |x| > R.

Uniform Convergence and C0

Pointwise and Uniform Convergence

A sequence of functions $f_n:[a,b]\to\mathbb{R}$ converges **pointwise** to a function f if for each $x \in [a, b]$,

$$\lim_{n \to \infty} f_n(x) = f(x).$$

It converges $\mathbf{uniformly}$ to f if:

$$\forall \varepsilon > 0, \exists N \text{ such that } n \geq N \Rightarrow |f_n(x) - f(x)| < \varepsilon \text{ for all } x \in [a, b].$$

Notation: $f_n \Rightarrow f$, or $\lim_{n\to\infty}^{\text{unif}} f_n = f$

Key Theorems and Properties

- 1. If $f_n \Rightarrow f$ and each f_n is continuous at x_0 , then f is continuous at x_0 .
- Convergence in the supremum norm $d(f_n, f) = \sup_{x \in [a,b]} |f_n(x) f(x)|$ is equivalent to uniform convergence.
- $C_b([a,b])$, the space of bounded continuous functions on [a,b], is a complete metric space under the sup norm.
- The subspace $C_0([a,b])$, the set of continuous functions vanishing at the boundary (or some similar condition), is closed in C_b and therefore also
- 5. If a series $\sum f_k$ converges uniformly, and $\sum |f_k(x)|$ converges for all x, then it converges absolutely.
- 6. Weierstrass M-test: If $||f_k||_{\infty} \leq M_k$ and $\sum M_k$ converges, then $\sum f_k$
- converges uniformly and absolutely.

 7. If $f_n \in R[a, b]$ and $f_n \Rightarrow f$, then $f \in R[a, b]$, and:

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$$

8. Indefinite integrals also converge uniformly

$$\int_{a}^{x} f_n(t) dt \Rightarrow \int_{a}^{x} f(t) dt.$$

9. Term-by-Term Integration: If $\sum f_k \Rightarrow f$ uniformly and each f_k is in-

$$\int_a^b \sum_{k=0}^\infty f_k(x) dx = \sum_{k=0}^\infty \int_a^b f_k(x) dx.$$

10. If $f_n \Rightarrow f$ and each f_n is differentiable, and if $f'_n \Rightarrow g$, then f is differentiable.

$$f'(x) = \lim_{n \to \infty} f'_n(x) = g(x).$$

11. **Term-by-Term Differentiation:** If $\sum f_k \Rightarrow f$ uniformly and $\sum f'_k \Rightarrow g$,

$$\left(\sum_{k=0}^{\infty} f_k(x)\right)' = \sum_{k=0}^{\infty} f_k'(x).$$

Power Series

- 12. If r < R, then a power series converges uniformly and absolutely on the interval [-r, r], where R is the radius of convergence.
- A power series can be integrated and differentiated term-by-term within its interval of convergence.
- 14. Analytic functions are smooth: $C^{\omega} \subset C^{\infty}$. That is, every analytic function is infinitely differentiable.

Compactness and Equicontinuity

A closed and bounded set in \mathbb{R}^m is compact by the **Heine-Borel Theorem**. However, closed and bounded sets in C^0 are rarely compact. A sequence of functions (f_n) in C^0 is **equicontinuous** if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that} \; |s - t| < \delta \; \text{and} \; n \in \mathbb{N} \Rightarrow |f_n(s) - f_n(t)| < \varepsilon.$$

To distinguish, pointwise equicontinuity requires:

$$\forall \varepsilon > 0, \ \forall x \in [a, b] \ \exists \delta > 0 \ \text{such that} \ |x - t| < \delta \ \text{and} \ n \in \mathbb{N} \Rightarrow |f_n(x) - f_n(t)| < \varepsilon.$$

These definitions extend naturally to sets of functions. A set $E \subset C^0$ is equicontinuous if:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that} \ |s - t| < \delta \ \text{and} \ f \in E \Rightarrow |f(s) - f(t)| < \varepsilon.$$

The key is that δ is uniform across all $f \in E$.

- 15. **Arzelà-Ascoli Theorem:** Every bounded, equicontinuous sequence of functions in $C^0([a,b],\mathbb{R})$ has a uniformly convergent subsequence.
- **Subsequence Lemma:** If (f_k) is a subsequence of (g_n) , then for each k
- there exists $r \ge k$ such that $f_k = g_r$. 17. **Arzelà-Ascoli Propagation Theorem:** Pointwise convergence of an equicontinuous sequence on a dense subset of the domain implies uniform convergence on the entire domain.
- 18. Heine-Borel Theorem in Function Spaces: A subset $E \subset C^0$ is compact if and only if it is closed, bounded, and equicontinuous.

Critical Point: A point θ is a critical point of f if $f'(\theta) = 0$ or f'(x) does not exist at θ .

Inflection Point: A point θ is an inflection point of f if $f''(\theta) = 0$ and the concavity of f changes around θ .

Cauchy Mean Value Theorem: If f and g are differentiable on (a, b) and continuous on [a, b], then there exists a point $\theta \in (a, b)$ such that:

$$\frac{f'(\theta)}{g'(\theta)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Generalized Mean Value Theorem (MVT): If f is differentiable on (a, b)and continuous on [a, b], then there exists $\theta \in (a, b)$ such that:

$$\frac{f'(\theta)}{g'(\theta)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Darboux's Theorem: Every function that is Riemann integrable has the Darboux property, meaning the infimum of the upper sums equals the supremum of the lower sums.

Improper Integral: If f is integrable on an unbounded interval or has an infinite discontinuity, then the integral is called improper. It is defined as a

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

Absolute Convergence: A series $\sum a_k$ converges absolutely if $\sum |a_k|$ con-

Conditional Convergence: A series $\sum a_k$ converges conditionally if it converges, but $\sum |a_k|$ does not.

Monotone Convergence Theorem: If a sequence of functions f_n is increasing and converges pointwise to a function f, then:

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx = \int_a^b f(x) \, dx.$$

Fatou's Lemma: If f_n is a sequence of non-negative measurable functions, then:

$$\int_{a}^{b} \liminf_{n \to \infty} f_n(x) dx \le \liminf_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Heine's Theorem on Uniform Convergence: If a sequence of continuous functions (f_n) converges uniformly to f on a closed interval [a,b], then f is continuous.

Arzelà-Ascoli Theorem (Uniform Convergence): A family of functions $\{f_n\}$ is uniformly bounded and equicontinuous if and only if it has a uniformly convergent subsequence on a compact set.

Uniform Convergence of Differentiable Functions: If $f_n \to f$ uniformly on [a,b] and each f_n is differentiable, then f is differentiable and $f'_n \to f'$ uniformly formly on [a, b].

Compactness in Function Spaces: A set of functions is compact in the space of continuous functions if it is bounded, closed, and equicontinuous.

Pointwise Convergence of Power Series: If a power series converges at a point x_0 , it converges uniformly on any closed interval within its radius of convergence.

Test questions

1. A continuous function is differentiable (F, f(x) = |x|) 2. A differentiable function is continuous (T) 3. If a function is differentiable on an interval, its derivative is a continuous function (F, $f(x) = x^2 \sin(\frac{1}{x})$) 4. Derivative cannot have jump discontinuities (T) 5. If a function is Riemann integrable it is also Darboux integrable (T) 6. If a function is Darboux integrable it is also Riemann integrable (T) 7. Every Riemann integrable function has finite number of points of discontinuity (f(x) = 1, x is rational, 0 otherwise))Every Riemann integrable function is bounded (T) 9. Antiderivative is always a continuous function (T) 10. Antiderivative of a continuous function is a differentiable function (T) 11. Every convergent series is absolutely convergent (F, $\sum (-1)^n \frac{1}{n}$) 12. Every absolutely convergent series is convergent (T) 13. Terms of every convergent series tend to zero (T) 14. If terms of a series tend to zero, it is convergent (F, $\sum \frac{1}{n}$) 15. Every convergent sequence of continuous functions converges to a continuous function (F, $f_n(x) = x^n$ on [0,1]) 16. If a sequence of continuous functions converges to a continuous function, the convergence is uniform (F, x^n on [0,1]) 17. Any sequence of bounded and uniformly equicontinuous functions on a compact interval has a uniformly convergent subsequence (T) a. Continuous instead of equicontinuous (F, equicontinuity required) b. Closed instead of compact interval (F, consider something not bounded)