

Signal Processing in the ProtoDUNE-SP LArTPC

Wenqiang Gu Brookhaven National Laboratory

For the DUNE collaboration

ProtoDUNE Single Phase (SP)

- A 0.77-kt LArTPC at the CERN Neutrino Platform (NP)
 - World largest monolithic single-phase LArTPC
- Prototypes DUNE far detector (FD) components design at 1: 1 scale
- Started operation in late 2018
 - Exposed to cosmic & a dedicated charged particle beam (0.3 7 GeV) $\rightarrow \frac{v's\ interaction\ in}{DUNE}$

similar energy to

ProtoDUNE-SP Overview

6 Anode Plane Assemblies (APAs)

Total 15,360 TPC sense wires/channels with ~
 5mm pitch

99.74%: active channels

3 Cathode Plane Assemblies (CPA)

- Resistive Kapton laminated on dielectric panels
- 180 kV nominal (2 x 3.6 m drift @ 500 V/cm)

Highest voltage in all LArTPCs to date

60 Photon Detectors

- Light collecting bars read out by SiPMs installed in the APA frame (10 detectors/APA)
- 3 distinct versions installed → testing solutions for DUNE

ProtoDUNE: How does it work?

- Ionization electrons drifted and induced current read out by three wire planes
- Scintillation light collected by photon detection system
 - Providing event t₀

General Overview of LArTPC Reconstruction

fitting

Main focus of today's talk

2D Matching / 3D Recon.

Imaging, pattern recognition, clustering, etc.

T17.00007, Heng-Ye Liao **ProtoDUNE Proton Analysis**

Noise Filtering

- Filter out external noise properly
- Correct additional hardware effect/distortion

Noise Filtering (cont')

evidence in ~3% of total channels

- Fix some residual electronics issues
- Overall performance of noise filtering is good

ENC of collection (X) plane 565 ± 60 e⁻ ENC of induction (V) plane 662 ± 56 e⁻ ENC of induction (U) plane 651 ± 54 e⁻

Field response: Garfield drift simulation

Induced current Long-range induction

Field response: Garfield drift simulation

Ramo's theorem
$$i = e\vec{v} \cdot \vec{E}_v = e\vec{v} \cdot (-\nabla \phi)$$

Field response in the central wire

Field response: Garfield drift simulation

Ramo's theorem
$$i = e\vec{v} \cdot \vec{E}_v = e\vec{v} \cdot (-\nabla \phi)$$

 Central wire field response ⊗ electronics response (preamp etc.)

•
$$\mathbf{M}(t_0) = \int R(t - t_0) \cdot S(t) \cdot dt$$

Long-range Induction: 2-D deconvolution

• It is natural to include the long-range induction effect in the

deconvolution kernel

$$M_{i}(t_{0}) = \int_{t}^{t} (R_{0}(t_{0} - t) \cdot S_{i}(t) + R_{1}(t_{0} - t) \cdot S_{i+1}(t) + \dots) \cdot dt$$

$$t: time, \alpha: wire$$

$$M_{i}(t_{0}) = \iint_{t}^{t} R(t_{0} - t, i - \alpha) \cdot S(t, \alpha) \cdot dt \, d\alpha$$

- "2D" deconvolution (time + wire direction): M(t) -> S(t) through FFT
- Equivalently, recover ionization charges from induced current from all wires

Signal Processing Example

- Bipolar signal deconvolved into an unipolar charge distribution
- Long tracks in drift direction are obscure in the induction waveform
 - cancellation of successive bipolar signals ⇒ recovered via the 2D deconvolution

Track Reconstruction Example

Three-plane "matching" solves the degeneracies inherent from wire readout ambiguity

2 EM showers and a pion interaction with 4 outgoing particles

Summary

- ProtoDUNE-SP has been successfully operated since late 2018
 - Full-scale component design of the DUNE FD
- The "2D" signal processing technique has been developed and successfully applied to the wire readouts
 - High-quality noise filtering
 - Field response kernel: *Garfield* electron drift simulation
 - Long-range induction handled in the deconvolution
- High-performance signal processing is essential to the downstream event reconstruction and physics analysis

Backup Slides

Goals and challenges

ProtoDUNE-SP goals:

- Validate the prototype production and installation procedures
- Confirmation of the design and suggest improvements
- Test-beam data to calibrate the detector response to different particle species and to measure argon-hadrons cross sections
- Demonstration of the long term stability of the detector

Challenges (not exhaustive list):

- Size and modularity: all components full size for DUNE-SP
- Cryostat: warm structure, passive insulation, LNG technology
- Purity: non-evacuable volume, piston purge, purification, ...
- HV: highest voltage TPC ever operated, resistive cathode
- Stability: light scintillation, HV, purity, cold electronics, ...

Basics of (1D) Signal Processing

$$M(t_0) = \int_t R(t - t_0) \cdot S(t) \cdot dt$$

$$Fourier transform$$

$$M(\omega) = R(\omega) \cdot S(\omega)$$

$$Deconvolution + Filter$$

$$S(\omega) = \frac{M(\omega)}{R(\omega)} \cdot F(\omega)$$

$$Inverse Fourier transform$$

$$S(t)$$

- Principal method to extract wire charge S(t) is deconvolution
- By given a response function R(t), signal S(t) can be easily derived via Fourier transform
- A filter function $F(\omega)$ introduced to suppress the big fluctuation after deconvolution

Liquid Argon TPC Signal Formation, Signal Processing and Hit ReconstructionBruce Baller, *JINST 12 (2017) no.07, P07010*

02/10/2018: First event seen from beam! (1 GeV electron)

Beam halo (high energy) muon with bremsstrahlung initiated E.M. shower

A BNL contribution to ProtoDUNE SP: Cold Readout Electronics

Integrated LAr-TPC Readout

