Solar Panel Efficiency Prediction

A Machine Learning Approach for Predicting Photovoltaic Performance

1. Project Overview

This project focuses on predicting solar panel efficiency using a wide range of environmental and technical parameters. It integrates a sophisticated machine learning pipeline encompassing:

- Advanced feature engineering
- Ensemble learning strategies
- Hyperparameter optimization
- Model explainability using SHAP

The goal is to enable proactive maintenance and optimize energy yield in solar energy infrastructure.

2. Tools and Technologies

Language: Python 3.x

Core Libraries and Frameworks:

- pandas, numpy Data manipulation and numerical operations
- scikit-learn ML algorithms and utilities
- XGBoost, LightGBM Gradient boosting with GPU support
- Optuna Hyperparameter optimization
- SHAP Model interpretability
- matplotlib, seaborn Data visualization

3. Feature Engineering

Implemented in: src/feature_engineering.py

a) Data Cleaning

- Handle missing values using median (numerics) and mode (categoricals)
- Convert string numerics to appropriate types
- Treat outliers using IQR and Z-score

b) Advanced Feature Creation

Power-Based Features:

- $power_output = voltage \times current$
- $power_per_area = \frac{power_output}{irradiance}$

Temperature Efficiency Features:

- $temp_efficiency_ratio = \frac{module_temperature}{temperature+273.15}$
- $temp_difference = module_temperature temperature$

Environmental Interactions:

- \bullet irradiance \times module_temperature
- \bullet humidity \times temperature
- cloud_coverage

Degradation Indicators:

- $\bullet \ \ \frac{panel_age}{maintenance_count}$
- $\bullet \ soiling_ratio \times panel_age$

Cooling Effect:

 $\bullet \ \, \frac{wind_speed}{module_temperature}$

Efficiency Indicators:

• $irradiance \times (1 - soiling_ratio) \times (1 - \frac{cloud_coverage}{100})$

Polynomial Features:

 $\bullet \ temperature^2, irradiance^2, humidity^2$

4. Model Architecture

Implemented in: src/model_training.py

Base Models:

- XGBoost (GPU)
- LightGBM (GPU)
- Random Forest

Meta-Learner:

• Ridge Regression

Optimization Strategy:

- Hyperparameter tuning using Optuna
- 5-fold cross-validation
- GPU-accelerated training

5. Training Workflow

- 1. Data preprocessing and feature engineering
- 2. Hyperparameter optimization
- 3. 5-fold cross-validation
- 4. Ensemble model training
- 5. SHAP-based feature importance analysis
- 6. Model evaluation and predictions

6. Source Files

- src/feature_engineering.py Feature creation and preprocessing
- src/model_training.py Training pipeline and optimization
- src/data_exploration.py Exploratory analysis and visualization
- requirements.txt Project dependencies
- README.md Project overview and instructions

7. Performance Metrics

- Root Mean Squared Error (RMSE)
- R^2 Score (Coefficient of Determination)
- Custom Score: $100 \times (1 RMSE)$

8. Key Features

- GPU-accelerated training
- Advanced feature engineering
- Automated hyperparameter tuning
- SHAP-based interpretability
- Robust cross-validation
- Stacking ensemble modeling

9. Future Enhancements

- Implement advanced feature selection techniques (e.g., Boruta)
- Explore deep learning models (e.g., TabNet, DNN)
- Enhance ensemble methods (e.g., blending, voting)
- Create an automated retraining pipeline
- Develop real-time prediction APIs