Block Cipher

October 7, 2019

1 Attacks on the Implementation

- 1. Side Channel Attacks:
 - Measure time to do enc/dec, measure power for enc/dec
- 2. Fault Attacks:
 - Computing errors in the last round expose the secret key k.

2 Linear and Differential Attacks

Given many input/output pairs, we can recover the key with time less than 2^{56} . Linear Cryptanalysis (overview): let c = DES(k, m) Suppose for random k, m:

$$Pr\left[m\left[i_{1}\right] \oplus \ldots \oplus m\left[i_{r}\right] \bigoplus c\left[j_{j}\right] \oplus \ldots \oplus c\left[j_{v}\right] = k\left[l_{1}\right] \oplus \ldots \oplus k\left[l_{u}\right]\right] = \frac{1}{2} + \mathcal{E}$$

$$(1)$$

For some \mathcal{E} . For DES, this exists with $\mathcal{E} = \frac{1}{2^{21}} \approx 0.0000000477$.

First part is the subset of message bits, second part is the subset of cipher text bits, third part is the subset of key bits.

2.1 Linear Attacks

Theorem: given $\frac{1}{\mathcal{E}^{2}}$ random $\left(m,c=DES\left(k,m\right)\right)$ pairs then

$$k\left[l_{1,u}\right] = MAJ\left[m\left[i_{1},\ldots,i_{r}\right] \oplus c\left[j_{j},\ldots,j_{v}\right]\right]$$
 with probability $\geq 97.7\%$

 \implies with $\frac{1}{\mathcal{E}^2}$ input/output pairs we can find $k[l_1,\ldots,l_u]$ in time $\approx \frac{1}{\mathcal{E}^2}$. For DES, $\mathcal{E} = \frac{1}{2^{21}} \implies$ with 2^{24} input/output pairs can find $k[I_1,\ldots,I_u]$ in time 2^{24} .

Roughly speaking: can find 14 key "bits" this way in time 2^{24} . Brute force remaining 56-14=42 bits in time 2^{24} . Total attack time $\approx 2^{43} \left(\ll_2^{56} \right)$ with 2^{24} random input/output pairs.

A tiny bit of linearity in S_5 lead to a 2^{42} time attack.

2.2 Quantum Attacks

Generic search problem: Let $f: X \to \{0,1\}$ be a function. Goal: find $x \in X$

- ${\bf 3} \quad {\bf Exploiting \ the \ DRAM \ Rowhammer \ Bug \ to \ Gain} \\ {\bf Kernel \ Privileges}$
- 3.1 The DRAM subsystem