```
In [1]: import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
```

In [149]: data_set_name=sns.get_dataset_names() print(data_set_name)

['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diam onds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tip s', 'titanic', 'anagrams', 'anagrams', 'anscombe', 'anscombe', 'attention', 'attention', 'brain_networks', 'brain_networks', 'car_crashes', 'car_crashe s', 'diamonds', 'dots', 'dots', 'dowjones', 'dowjones', 'exercis e', 'exercise', 'flights', 'flights', 'fmri', 'fmri', 'geyser', 'geyser', 'g lue', 'glue', 'healthexp', 'iris', 'iris', 'mpg', 'mpg', 'penguins', 'penguins', 'planets', 'seaice', 'seaice', 'taxis', 'taxis', 'tips', 'titanic', 'titanic', 'anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tips', 'titanic']

In [150]: df=sns.load_dataset("titanic")

In [151]: df

Out[151]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Tr
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fal
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fal
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fal
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Tr
886	0	2	male	27.0	0	0	13.0000	S	Second	man	Tr
887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fal
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	Fal
889	1	1	male	26.0	0	0	30.0000	С	First	man	Tr
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	Tr

891 rows × 15 columns

```
In [152]: | df.head()
```

Out[152]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
4 (>

In [153]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	category
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtyp	es: bool(2),	category(2), flo	at64(2), int64(4), object

t(5)

memory usage: 80.7+ KB

In [154]: df["sex"].value_counts(normalize=True)

Out[154]: sex

male

0.647587

female 0.352413

Name: proportion, dtype: float64

In [155]: df.describe()

Out[155]:

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [158]: df["deck"].value_counts(normalize=True)

Out[158]: deck

C 0.290640

B 0.231527

D 0.162562

E 0.157635

A 0.073892

F 0.064039 G 0.019704

Name: proportion, dtype: float64

In [161]: | df.drop(["deck"], axis=1)

Out[161]:

		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
_	0	0	3	male	22.0	1	0	7.2500	S	Third	man	Tr
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fal
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fal
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fal
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	Tr
	886	0	2	male	27.0	0	0	13.0000	S	Second	man	Tr
	887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fal
	888	0	3	female	NaN	1	2	23.4500	S	Third	woman	Fal
	889	1	1	male	26.0	0	0	30.0000	С	First	man	Tr
	890	0	3	male	32.0	0	0	7.7500	Q	Third	man	Tr

891 rows × 14 columns

In []:

df1=df.drop(["embarked","class","who","adult_male","deck",'embark_town',"alone

In [162]:

```
df1
In [163]:
Out[163]:
                 survived pclass
                                   sex age sibsp parch
                                                             fare alive
              0
                       0
                              3
                                  male 22.0
                                                          7.2500
                                                                   no
              1
                                                       0 71.2833
                       1
                              1 female 38.0
                                                1
                                                                   yes
              2
                                female 26.0
                                                          7.9250
                       1
                              3
                                                0
                                                                   yes
              3
                                        35.0
                                                       0 53.1000
                       1
                              1
                                female
                                                                   yes
                       0
                              3
                                  male
                                        35.0
                                                0
                                                          8.0500
                                                                   no
            886
                              2
                                  male 27.0
                                                       0 13.0000
                                                                   no
            887
                              1 female 19.0
                                                       0 30.0000
                                                                   yes
            888
                              3
                                female NaN
                                                       2 23.4500
                                                                   no
            889
                                  male 26.0
                                                       0 30.0000
                                                                   yes
                                                          7.7500
            890
                       0
                              3
                                  male 32.0
                                                0
           891 rows × 8 columns
In [164]: df1['sex'].mode()[0]
Out[164]: 'male'
In [110]: df1['age'].mode()
Out[110]: 0
                 24.0
           Name: age, dtype: float64
In [111]: df1['age'].mean()
Out[111]: 29.69911764705882
  In [ ]:
 In [78]: df1.loc[:,"sex"].mode()
 Out[78]: 0
                 male
           Name: sex, dtype: object
 In [79]:
           df1.min()
 Out[79]: survived
                              0
                              1
           pclass
                         female
           sex
                           0.42
           age
           sibsp
                              0
           parch
                              0
           fare
                            0.0
           alive
                             no
           dtype: object
```

```
In [81]:
           bool_series = pd.notnull(df1["sex"])
 In [82]:
           df1
 Out[82]:
                survived pclass
                                  sex
                                      age sibsp parch
                                                           fare alive
              0
                      0
                             3
                                 male
                                       22.0
                                                         7.2500
                                                                  no
              1
                      1
                               female
                                      38.0
                                               1
                                                        71.2833
                             1
                                                     0
                                                                 yes
              2
                                      26.0
                             3
                                female
                                                         7.9250
                                                                 yes
              3
                                       35.0
                                                        53.1000
                      1
                                female
                                                                 yes
                      0
                             3
                                 male
                                       35.0
                                                         8.0500
                                                                 no
            886
                      0
                             2
                                 male
                                      27.0
                                                       13.0000
                                                                 no
            887
                             1 female 19.0
                                                     0 30.0000
                                                                 yes
            888
                      0
                             3
                               female NaN
                                                     2 23.4500
                                                                 no
            889
                             1
                                 male 26.0
                                                        30.0000
                                                                 yes
            890
                      0
                             3
                                 male 32.0
                                               0
                                                         7.7500
                                                                  no
           891 rows × 8 columns
In [112]:
           df1.fillna(df1['age'].mean(),inplace=True)
In [113]: df1.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 891 entries, 0 to 890
           Data columns (total 8 columns):
            #
                Column
                           Non-Null Count
                                            Dtype
           ---
                -----
                           -----
                                             ----
            0
                           891 non-null
                                            int64
                survived
            1
                           891 non-null
                                            int64
                pclass
            2
                           891 non-null
                                            object
                sex
            3
                age
                           891 non-null
                                            float64
            4
                           891 non-null
                                            int64
                sibsp
            5
                                            int64
                parch
                           891 non-null
            6
                           891 non-null
                                            float64
                fare
                alive
                           891 non-null
                                            object
           dtypes: float64(2), int64(4), object(2)
           memory usage: 55.8+ KB
In [114]:
           from sklearn import preprocessing
           from sklearn.preprocessing import LabelEncoder
           label_encoder = preprocessing.LabelEncoder()
In [115]: |df1['sex'] = label_encoder.fit_transform(df1['sex'])
           df1['sex'].unique()
Out[115]: array([1, 0])
```

In [116]: df1

Out	Г11	6 1	
out	Гтт	.0]	•

	survived	pclass	sex	age	sibsp	parch	fare	alive
0	0	3	1	22.000000	1	0	7.2500	no
1	1	1	0	38.000000	1	0	71.2833	yes
2	1	3	0	26.000000	0	0	7.9250	yes
3	1	1	0	35.000000	1	0	53.1000	yes
4	0	3	1	35.000000	0	0	8.0500	no
886	0	2	1	27.000000	0	0	13.0000	no
887	1	1	0	19.000000	0	0	30.0000	yes
888	0	3	0	29.699118	1	2	23.4500	no
889	1	1	1	26.000000	0	0	30.0000	yes
890	0	3	1	32.000000	0	0	7.7500	no

891 rows × 8 columns

Out[117]: array([0, 1])

In [118]: df1

Out[118]:

	survived	pclass	sex	age	sibsp	parch	fare	alive
0	0	3	1	22.000000	1	0	7.2500	0
1	1	1	0	38.000000	1	0	71.2833	1
2	1	3	0	26.000000	0	0	7.9250	1
3	1	1	0	35.000000	1	0	53.1000	1
4	0	3	1	35.000000	0	0	8.0500	0
886	0	2	1	27.000000	0	0	13.0000	0
887	1	1	0	19.000000	0	0	30.0000	1
888	0	3	0	29.699118	1	2	23.4500	0
889	1	1	1	26.000000	0	0	30.0000	1
890	0	3	1	32.000000	0	0	7.7500	0

891 rows × 8 columns

```
In [ ]:
```

```
In [119]: x=df1.drop(["alive"],axis=1)
```

In [120]: y=df1["alive"]

In [121]: x

Out[121]:

	survived	pclass	sex	age	sibsp	parch	fare
0	0	3	1	22.000000	1	0	7.2500
1	1	1	0	38.000000	1	0	71.2833
2	1	3	0	26.000000	0	0	7.9250
3	1	1	0	35.000000	1	0	53.1000
4	0	3	1	35.000000	0	0	8.0500
886	0	2	1	27.000000	0	0	13.0000
887	1	1	0	19.000000	0	0	30.0000
888	0	3	0	29.699118	1	2	23.4500
889	1	1	1	26.000000	0	0	30.0000
890	0	3	1	32.000000	0	0	7.7500

891 rows × 7 columns

```
In [122]: y
Out[122]: 0
                 0
          1
                 1
          2
                 1
          3
                 1
          4
          886
          887
                 1
          888
          889
                 1
          890
          Name: alive, Length: 891, dtype: int32
In [123]: from sklearn.model_selection import train_test_split
```

In [124]: train_x, test_x, train_y , test_y =train_test_split(x,y,test_size=0.2,random_s

In [125]: train_x

Out[125]:

	survived	pclass	sex	age	sibsp	parch	fare
301	1	3	1	29.699118	2	0	23.2500
309	1	1	0	30.000000	0	0	56.9292
516	1	2	0	34.000000	0	0	10.5000
120	0	2	1	21.000000	2	0	73.5000
570	1	2	1	62.000000	0	0	10.5000
715	0	3	1	19.000000	0	0	7.6500
767	0	3	0	30.500000	0	0	7.7500
72	0	2	1	21.000000	0	0	73.5000
235	0	3	0	29.699118	0	0	7.5500
37	0	3	1	21.000000	0	0	8.0500

712 rows × 7 columns

```
In [126]: train_y
```

Out[126]: 301

Name: alive, Length: 712, dtype: int32

In [127]: test_x

~ .	F 4 0 = 7	
/ NI IT	1 1 7 7 1	
out	1 1 2 / 1	

	survived	pclass	sex	age	sibsp	parch	fare
862	1	1	0	48.000000	0	0	25.9292
223	0	3	1	29.699118	0	0	7.8958
84	1	2	0	17.000000	0	0	10.5000
680	0	3	0	29.699118	0	0	8.1375
535	1	2	0	7.000000	0	2	26.2500
796	1	1	0	49.000000	0	0	25.9292
815	0	1	1	29.699118	0	0	0.0000
629	0	3	1	29.699118	0	0	7.7333
421	0	3	1	21.000000	0	0	7.7333
448	1	3	0	5.000000	2	1	19.2583

179 rows × 7 columns

```
In [128]:
          test_y
Out[128]: 862
                  1
          223
                  0
          84
                  1
          680
                  0
           535
          796
                  1
          815
                  0
          629
                  0
           421
           448
          Name: alive, Length: 179, dtype: int32
```

```
In [129]: from sklearn.preprocessing import MinMaxScaler
```

```
In [130]: scaler=MinMaxScaler()
scaler
```

Out[130]: MinMaxScaler()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [134]: train_x_scaled=scaler.fit_transform(train_x)
          train_x_scaled
Out[134]: array([[1.
                                          , 1.
                                                      , ..., 0.25
                                                                        , 0.
                             , 1.
                   0.04538098],
                             , 0.
                                                                        , 0.
                  [1.
                                          , 0.
                                                      , ..., 0.
                   0.1111184],
                             , 0.5
                                          , 0.
                                                                        , 0.
                  [1.
                                                      , ..., 0.
                   0.02049464],
                  . . . ,
                                          , 1.
                  [0.
                             , 0.5
                                                      , ..., 0.
                                                                        , 0.
                   0.14346245],
                             , 1.
                                                      , ..., 0.
                  [0.
                                          , 0.
                                                                        , 0.
                   0.01473662],
                                          , 1.
                                                     , ..., 0.
                                                                        , 0.
                   0.01571255]])
In [135]: cols=train_x.columns
          cols
Out[135]: Index(['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare'], dtype
          ='object')
In [137]: train_x_scaled=scaler.fit_transform(train_x)
          train_x_scaled
Out[137]: array([[1.
                                                                        , 0.
                                          , 1.
                                                      , ..., 0.25
                   0.04538098],
                             , 0.
                  [1.
                                          , 0.
                                                      , ..., 0.
                                                                        , 0.
                   0.1111184 ],
                  [1.
                             , 0.5
                                                                        , 0.
                                          , 0.
                                                      , ..., 0.
                   0.02049464],
                  . . . ,
                  [0.
                             , 0.5
                                          , 1.
                                                      , ..., 0.
                                                                        , 0.
                   0.14346245],
                  [0.
                                          , 0.
                                                      , ..., 0.
                                                                        , 0.
                             , 1.
                   0.01473662],
                                                                        , 0.
                                          , 1.
                                                      , ..., 0.
                   0.01571255]])
In [138]: | train_x_scaled=pd.DataFrame(train_x_scaled,columns=cols)
```

In [139]: train_x_scaled

Out[139]:

	survived	pclass	sex	age	sibsp	parch	fare
0	1.0	1.0	1.0	0.367921	0.25	0.0	0.045381
1	1.0	0.0	0.0	0.371701	0.00	0.0	0.111118
2	1.0	0.5	0.0	0.421965	0.00	0.0	0.020495
3	0.0	0.5	1.0	0.258608	0.25	0.0	0.143462
4	1.0	0.5	1.0	0.773813	0.00	0.0	0.020495
707	0.0	1.0	1.0	0.233476	0.00	0.0	0.014932
708	0.0	1.0	0.0	0.377984	0.00	0.0	0.015127
709	0.0	0.5	1.0	0.258608	0.00	0.0	0.143462
710	0.0	1.0	0.0	0.367921	0.00	0.0	0.014737
711	0.0	1.0	1.0	0.258608	0.00	0.0	0.015713

712 rows × 7 columns

In [141]: from sklearn.naive_bayes import GaussianNB

In [168]: gnb=GaussianNB()
 gnb.fit(train_x,train_y)

Out[168]: GaussianNB()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [169]: train_predict=gnb.predict(train_x)
 test_predict=gnb.predict(test_x)

```
In [170]:
         train_predict
Out[170]: array([1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
                 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
                 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1,
                 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
                 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
                       0, 1, 0, 1, 0, 1, 0, 0, 0,
                                                 0, 0, 1, 1, 1, 1,
                                                                   1,
                                                                      1, 1,
                 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
                                                                            1, 1,
                 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
                                                                   1, 0, 1, 1, 1,
                 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0,
                 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
                 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
                 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                                                                            1, 1,
                 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
                         0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,
                 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
                 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
                 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
                 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 0, 1, 0, 0, 0, 0, 0])
In [171]: | test_predict
Out[171]: array([1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
                 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0,
                 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
                 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,
                 0, 0, 1])
In [172]: | from mlxtend.plotting import plot_confusion_matrix
In [173]: from sklearn.metrics import f1_score, confusion_matrix, roc_auc_score, roc_cur
          accuracy = accuracy_score(test_y, test_predict)
          conf_matrix = confusion_matrix(test_y, test_predict)
          accuracy
Out[174]: 1.0
```

```
In [175]: print("Accuracy:", accuracy)
    print("Confusion Matrix:")
    print(conf_matrix)
    print("\nClassification Report:")
    print(classification_report(test_y, test_predict))
```

Accuracy: 1.0 Confusion Matrix: [[106 0] [0 73]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	106
1	1.00	1.00	1.00	73
accuracy			1.00	179
macro avg	1.00	1.00	1.00	179
weighted avg	1.00	1.00	1.00	179

```
In [177]: fig, ax = plot_confusion_matrix(conf_mat=conf_matrix)
    plt.show()
```



```
In [178]: import seaborn as sns
sns.heatmap(conf_matrix, annot=True)
```

Out[178]: <Axes: >

