Lecture 1: Course Overview

Kehuan Zhang © All Rights Reserved

IERG4130 2022

Brief introduction to the course

- Topics to be covered in this course
- Student Evaluations
- Landscape of Cyber Security

Brief self-introduction

- Joined CUHK in 2012
- Focus on system security research
 - Mobile device security
 - Embedded system security
 - ★ E.g., Internet of Things (IoT)
 - ► Machine Learning Security, Web, Cloud computing, Operating System, etc.
 - Recent work got accepted on top international conference in security area
 - Also got wide media coverage:
 - * Mobile Payment
 - ★ Face Flashing
- More information at lab home page:
 - ► LASR: Lab for Applied Security Research
 - http://lasr.ie.cuhk.edu.hk
 - Or my personal web site https://staff.ie.cuhk.edu.hk/~khzhang
- Office hour:
 - ► Thursday 2:30pm 3:30pm, or by appointment

Tutors

- Zirui Song
 - ▶ office: SHB726
 - email: sz019@ie.cuhk.edu.hk
- Ke Zhang
 - office SHB 726
 - email: zk019@ie.cuhk.edu.hk
- Jiuqin Zhou
 - office SHB 726
 - email: zj021@ie.cuhk.edu.hk
- Yikang Chen
 - ▶ office SHB 826B
 - email: cy021@ie.cuhk.edu.hk
- Office hour: To be determined

Teaching Activity

Lecture

- Twice a week, on Tuesday and Thursday
- Mainly Face-to-Face mode
- Given the COVID-19, will also provide ZOOM and recorded videos
 - https://cuhk.zoom.us/j/99456640851
 - ★ Meeting ID: 994 5664 0851
 - * Passcode: lasr
 - ★ NOTE:: you need to log into ZOOM with CUHK account first
 - ★ However, it is hard to have interactions via ZOOM
 - ★ So if you may need to talk tutors or me offline if you have any questions

Tutorial

- You need to attend one and only one session
- Provide extra material, helping on assignments, etc.
- ▶ The time will be decided later
- Office hours
- Assignments & Labs
- Mid-term and final-term exams

Evaluation

- Assignments 30%
 - ▶ Three assignments
- Labs 15%
 - ► Two hands-on experiments (offline, do it on your own computer)
- Mid-term 15%
 - ▶ Date is schduled on Oct 20 (Thursday), 9:30am 11:15am
- Final-term 40%

Interactions and Communication Channel

- You can get basic course information and schedule from course web
 - https://course.ie.cuhk.edu.hk/~ierg4130/
- Lecture notes, assignments, announcements, tutorials, etc., will still use Blackboard
 - Blackboard System: https://elearn.cuhk.edu.hk
- For Q&A, we use piazza.com:
 - You can enroll with the URLs later (to be activated)
 - https://piazza.com/cuhk.edu.hk/fall2022/ierg4130
 - An extra three

Topics to be covered

- Part I: Basic Concepts and Tools
 - CIA Triangle, Security Principles
- Part II: Software Security
 - Buffer overflow and defenses, malicious code, secure coding
- Part III: Cryptographic Algorithms
 - ► Encryption algorithms: concepts, symmetric key encryption, asymmetric key encryption, stream cipher vs. block cipher, etc.
 - Message integrity: Hash, Message Authentication Code, Digital Signature, certificate, etc.
- Part IV: Network Security
 - Basic concepts, typical attacks
 - ► Firewall, Intrusion Detection Systems, De-militarized Zone, etc.
 - ► Web Security: Same-Origin-Policy, Cross-Site-Scripting (XSS), Cross-Site-Request-Forgery (CSRF), SQL Injection, etc.
 - Wireless Security: WEP/WPA/WPA2 Protocols, Sniffing Attack, etc.
 - Secure Networking Protocols (IPSec, TLS, PGP, etc.)
- Part V: System Security
 - Access Control, Adversary Model, etc.
 - Mobile Security, etc.

Tentative Teaching Schedule

- Please refer to our course home page
 - https://course.ie.cuhk.edu.hk/~ierg4130/
- The schedule may be changed based on our learning progress
- Pay attention to the date of mid-term start to prepare early
- Assignments and Lab instructions will be announced later (through Black-board system)

Expected Learning Outcome

- Acquire the ideas and concepts of common cyber security problems
 - ▶ Be able to understand common attack and defense techniques
 - ▶ Be able to perform security analysis on some real world cases
 - ▶ Be able to deploy necessary defense technologies

Acknowledgements

- Slides in this course have used materials following sources
 - ▶ Most are adapted from slides by Prof. Wing C Lau in previous years
 - Others
 - ★ William Stallings, "Cryptography and Network Security, 3rd Edition"
 - * Simon Garfinkel, Gene Spafford, "Web Security, Privacy and Commerce"
 - ★ Charlie Kaufman, Radia Perlman, Mike Spenciner, "Network Security"
 - ★ Prof. Vern Paxson, UC Berkeley
 - ★ Prof. Vincent Costa, Hofstra University
 - ★ Prof. Henning Schurzinne of Columbia University
 - ★ Prof. Felix Wu, UC Davis
 - Prof. Dan Boneh, Stanford
 - ★ Prof. Wenke Lee of Georgia Tech
 - ★ Prof. Yehuda Afek, Tel Aviv Univeristy
 - * Prof. Giovanni Vigna, UC Santa Barbara

Textbook and References

- We mainly rely on the lecture notes
 - Since none single textbook satisfy our requirements
- Any copy of following textbooks will be helpful (but not mandatory):
 - ► Computer Security: Principles and Practice (3rd ed. or later)
 - ★ by William Stallings and Lawrie Brown, Prentice Hall, 2014.
 - * both Chinese and English version are available in mainland China
 - E.g., https://item.jd.com/12682948.html
 - ▶ Introduction to Computer Security, 1st Edition
 - ★ by Michael Goodrich, Roberto Tamassia
 - Cryptography and Network Security Principles and Practice (6th ed. or later)
 - ★ by William Stallings, Prentice Hall, 2013.
- Old versions are also OK

The landscape of Cyber Security

- Study the security problems related to Cyber Space
 - What is Cyber Space? A digital world within interconnected computing devices
- Cyber Security is important
 - ► At country level, it is a new (the 5th) battle ground besides traditional land, sea, air, and space
 - ► For company and organizations, it means economic and reputation gain and loss
 - Also big influence on each individuals (e.g., privacy, digital assets, metaverse . . .)
- Cyber Security is challenging
 - No perfect technology
 - Always make trade-offs among multiple constrains: cost, market share, usability, . . .
 - ★ Example: history of Android
 - Law and policy will always lag behind
 - Example: 2018 European Union's General Data Protection Regulation (GPDR)
 - ▶ Weakness of human natures: e.g., curiosity, love free things, . . .

The landscape of Cyber Security - My understanding

- The Science, technology, and Engineering of attacking and defending computing systems
 - What is Science?
 - ★ Science is to find existing but unknown laws and patterns
 - * A typical element of science in cyber security is crypto algorithms
 - ► What is **Technology**?
 - Technology is to create new methods and things that were not existing before
 - Many technologies in cyber security, e.g., encryption, authentication, firewall, . . .
 - What is Engineering?
 - Engineering is to apply or deploy technologies in larger scale and lower cost
- A question: why cyber security should also include attack, why not only defense?
 - Defending is not the whole story of cyber security
 - Attacking is the driving force for cyber security
 - $lackbox{ No attack}
 ightarrow$ no defense ightarrow no existence (or improvement) of security

Why Do People Want to Attack?

- For fun
 - Hackers in old days
 - Amateur hackers
- For profit
 - Hackers in modern days
 - Especially for professional and organized hackers
- For national security
 - Cyber war
 - Critical infrastructure
 - ► Another meaning of "the best defense is to attack" Benign attacks can find vulnerabilities before the been exploited by adversaries.
- Attacking techniques are evolving in cyber space
 - Steal money:
 - ★ Traditional: Pick-up wallet from someone's pocket or bag
 - ★ Cyber version: pick-up the mobile wallet
 - Door access:
 - ★ Traditional: open a door with paper clip
 - ★ Cyber version: hack into a smart lock

How Many Attacks Are There?

- Unlimited, and more to come everyday
 - ▶ Hackers are really innovative
 - ► Why?
- But fundamentally, most attacks are similar
 - ► E.g., malware families, virus variants, vulnerability exploits, etc.
 - Except some really new ones
- Open Discussion
 - What kind of Attacks you may know or have even experienced?

How to Protect Ourselves in Cyber Space

- Take this course :)
 - So you will know potential security risks
- Thinking through the phenomenon
 - Try to link what would have learned in this course with real world cases
 - ▶ Try to understand the hidden reasons, principles and technologies
- Apply the techniques learned in this course
- Pray!
 - There are many things we cannot control
 - ▶ E.g., companies may leaked our personal information
 - ▶ An real world incident: Cathay Pacific data leakage

Summary

- Brief introduction of this course
 - topics, evaluations, etc.
- My thoughts on the cyber security at high level
- Next time:
 - Basic Concepts and Tools for Cyber Security