ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

In situ cascade growth-induced strong coupling effect toward efficient photocatalytic hydrogen evolution of ReS₂/ZnIn₂S₄

Jiachao Xu^a, Wei Zhong^a, Feng Chen^a, Xuefei Wang^{a,*,1}, Huogen Yu^{a,b,**,1}

- ^a State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
- ^b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China

ARTICLE INFO

Keywords: Photocatalysis Hydrogen evolution Cocatalyst ReS_2 $ZnIn_2S_4$

ABSTRACT

Optimizing electron structure of H_2 -evolution active sites to improve their catalytic efficiency is of great significance to develop efficient photocatalysts. Herein, an in situ cascade growth-induced strong coupling interface between ReS_2 and $ZnIn_2S_4$ nanolayers was developed to realize the electron structure optimization of S-active sites in ReS_2 cocatalyst, which can greatly improve the H_2 -evolution efficiency of $ZnIn_2S_4$ photocatalyst. The in situ cascade growth of $ReS_2/ZnIn_2S_4$ includes initial formation of $ZnIn_2S_4$ nanolayers (ca. 200 °C) and their subsequent surface-induced production of ReS_2 (ca. 300–380 °C) in molten system. The resulting $ReS_2/ZnIn_2S_4$ (3 wt%) shows a superior H_2 -production rate, which is ca. 20.6 and 2.0 times higher than that of $ZnIn_2S_4$ and $ZnIn_2S_4$ (physical mixing), respectively. Besides the promoting transfer of photogenerated carriers, the cascade growth-induced strong coupling effect in the $ZnIn_2S_4$ can induce the construction of electron-deficient $ZnIn_2S_4$ causing the optimized binding strength of S-H bond and excellent $ZnIn_2$ -evolution activity.

1. Introduction

Converting solar energy into hydrogen energy through photocatalytic technology is ideal route for solving non-renewable energy and environmental pollution [1–6]. However, the photocatalytic efficiency of monophase photocatalyst remains unsatisfactory, mainly due to the sluggish separation and migration kinetics of the photoinduced charge [7–11]. In order to promote the photoactivity of a single photocatalyst, numerous modification strategies, such as defect engineering, energy band regulation, and cocatalyst decoration, have been extensively investigated [12-14]. Among them, the loading of cocatalysts has been verified to be a promising approach, which not only trap electrons from semiconductors for the inhibition of charge recombination, but also offer sufficient active sites for accelerating catalytic reaction rate [15-18]. Compared to the typical noble metal (Pt, Pd, and Au) [19,20] and other conventional cocatalyst materials (Ni₂P, CoS₂, MoC, etc) [21-23], two-dimensional (2D) materials have attracted increasing interest in photocatalytic fields due to their many excellent characteristics, including that the special layered structure can greatly shorten the carrier transport distance and a larger specific surface area can provide numerous active sites for interfacial reactions [24–27]. Therefore, the integration of 2D cocatalysts can be expected to significantly boost the photoactivity of various photocatalysts and the development of 2D cocatalysts with excellent catalytic activity is highly desired.

In fact, the photoactivity of photocatalysts is also closely related to the interface contact type between the photocatalyst and cocatalyst [28, 29]. Commonly, it is well accepted that the large contact area and intimate coupling at the interface of hybrid photocatalyst can effectively accelerate the migration rate of photo-excited carriers and thus boost photocatalytic activity [30]. Compared with 0D/0D, 0D/1D, 0D/2D and 1D/2D interfaces, the 2D/2D coupled interfaces have drawn wider attention in photocatalysis because both 2D components with wide lateral size and surface area can synchronously maximize the contact area, ensuring the sufficient charge transfer and trapping channels for the separation of photogenerated electron—hole pairs [31–33]. To date, numerous 2D/2D structures were synthesized to enhance the photocatalytic activity of photocatalysts. For instance, Pan's group reported the 2D Ti₂C-modified 2D g-C₃N₄ photocatalyst via hydrochloric acid

^{*} Corresponding author.

^{**} Corresponding author at: State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.

E-mail addresses: xuefei@whut.edu.cn (X. Wang), huogenyu@163.com (H. Yu).

¹ Fax: 0086–27-87879468

etching (24 h) and subsequent high-temperature calcination (550 °C, 4 h), which achieves the significantly enhanced photocatalytic H2-generation activity [34]. Similarly, Zhu et al. prepared thin-layered black phosphorus through organic solvent-assisted ultrasonic stripping (N-Methylpyrrolidone, 4 h), which was further decorated on g-C₃N₄ photocatalyst surface by thermal polymerization process (550 °C, 2 h) to markedly boost the H₂ evolution performance [35]. In addition, few-layer MoS2 nanolayer-modified CuInS2 was prepared by Yuan's group through two-step hydrothermal method (200 °C, 24 h), which realizes the significantly enhanced photocatalytic H2-production rate [36]. Based on the above results, it can be reasonably concluded that the construction of 2D/2D interface between cocatalyst and photocatalyst can greatly facilitate the efficient conversion of water into hydrogen. However, as discussed above, the main synthetic methods of 2D/2D hybrid photocatalyst usually involve complicated liquid phase exfoliation or high-press hydrothermal, and subsequent assembly process of ultrasonic or high-temperature calcination. Undeniably, the above multistep coupling process inevitably causes weak interaction between cocatalyst and photocatalyst, thus greatly impeding the charge transfer and suppressing the subsequent catalytic reaction [37–39]. To achieve a highly efficient photocatalytic system, the spatial integration between photocatalyst and cocatalyst to form the intimate contact interface is of great importance, which can distinctly improve the interfacial migration of photo-generated carriers [40,41]. Collectively, it is highly expected that if the above strong coupling effect between 2D cocatalyst and 2D semiconductor materials can be realized through a simple and efficient synthetic strategy, the H₂-evolution activity can further be enhanced in the fabricated 2D/2D hybrid photocatalyst.

In this work, we design and fabricate the 2D ReS_2 -modified 2D $ZnIn_2S_4$ hetero-nanolayered photocatalyst (2D/2D $ReS_2/ZnIn_2S_4$) with strong coupling effect through an efficient and convenient molten salt method. Herein, with gradually increasing synthetic temperature in molten KSCN system, the 2D ZnIn₂S₄ nanolayers are preferentially produced at low temperature (ca. 200 $^{\circ}$ C), which can further act as a support to induce the in-situ nucleation and growth of 2D ReS2 nanolayer at a higher temperature (ca. 300-380 °C), causing the final formation of strong-coupled 2D/2D ReS₂/ZnIn₂S₄ photocatalyst. The photocatalytic performance test demonstrates that the ReS₂/ZnIn₂S₄(3 wt%) photocatalyst exhibits a maximum H₂-production activity, which is nearly 20.6 and 2.0-fold higher than that of the pristine ZnIn₂S₄ and ReS₂-ZnIn₂S₄ samples (prepared by physical mixing), respectively. The enhanced photocatalytic performance is accounted by the strong coupling interface of ReS₂/ZnIn₂S₄, which not only effectively promotes the directional transfer of photo-excited electrons from ZnIn₂S₄ to ReS₂ cocatalyst, but also efficaciously induces the formation of electrondeficient $S^{\delta+}$ site of ReS₂, thus greatly enhancing the overall H₂-evolution rate. This work presents a facile strategy for the preparation of 2D/ 2D hetero-photocatalyst and provides deep insights to regulate material interfaces for efficient solar H2-evolution.

2. Experimental section

2.1. Synthesis of 2D/2D ReS2/ZnIn2S4

The strong-coupled 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ photocatalyst was prepared by a molten salt method. Typically, the potassium thiocyanate (KSCN) was served as both molten salt and sulfur source, while zinc acetate dihydrate (Zn(CH $_3$ COOH) $_2$ ·2 H $_2$ O, 104 mg), anhydrous indium trichloride (InCl $_3$, 209 mg), and sodium perrhenate (NaReO $_4$, 6.4 mg) were used as the transition metal precursors. First, excessive amounts of KSCN (10 g) were mixed with the above transition metal precursors, and then the mixture was transferred into the quartz and was heated to 380 °C at a rate of 3 °C/min and held for 2 h under an air atmosphere. After that, the product was cooled to room temperature and washed with deionized water to eliminate soluble salts. Finally, the insoluble product was collected via filtration and dried at 70 °C to obtain the strong-

coupled 2D/2D ReS₂/ZnIn₂S₄ photocatalyst.

To explore the influence of 2D ReS_2 nanolayer on the H_2 -production rate of $ZnIn_2S_4$, the theoretical mass ratio of ReS_2 to $ZnIn_2S_4$ was adjusted as 0.5, 1, 3, and 5 wt%, and the obtained photocatalysts were marked as $ReS_2/ZnIn_2S_4$ (X wt%), where x represented the amount of 2D ReS_2 nanolayer.

Synthesis of ReS_2 nanolayer: Pristine 2D ReS_2 nanolayer was also synthesized via the same route as $ReS_2/ZnIn_2S_4$ by only using $NaReO_4$ as the precursor.

Synthesis of pristine $ZnIn_2S_4$: Pristine $2D\ ZnIn_2S_4$ nanolayer was also synthesized via the same route as $ReS_2/ZnIn_2S_4$ by only using zinc acetate dihydrate and anhydrous indium trichloride as the precursors.

Synthesis of physically mixed ReS_2 - $ZnIn_2S_4$: As a comparison, the physically mixed ReS_2 - $ZnIn_2S_4$ sample was fabricated via the traditional mixing method. Briefly, 5 mg of 2D ReS_2 nanolayer was dispersed into 10 mL of ethanol solution and sonicated for 2 h to obtain a homogeneous dispersion. Then, 80 mg of the as-prepared $ZnIn_2S_4$ is ultrasonically dispersed into 50 mL of water, followed by the addition of 4.8 mL ReS_2 -ethanol dispersion drop by drop under stirring. After stirring at 70 °C for two hours, the product was collected by centrifugation and dried in oven to harvest ReS_2 - $ZnIn_2S_4$ (3 wt%) sample.

2.2. Characterization

The crystal information of the photocatalysts was obtained by XRD (Cu Ka radiation, Rigaku). To disclose the morphology and microstructure of the synthesized photocatalysts, the scanning electron microscope (SEM; JSM-7500 F) and transmission electron microscopy (TEM; JEM-2100 F) were applied to study the morphology of photocatalyst. A UV-2450 spectrophotometer was utilized to acquire UV-vis spectra. Contact potential difference (CPD) was measured on a kelvin probe apparatus (Instytut Fotonowy, Poland). An ESCALAB 10 electron spectrometer was used to collect in situ X-ray photoelectron spectroscopy (XPS) spectra. Ex-situ XPS profiles were gathered on a KRATOA XSAM800 system. Photoluminescence spectra (PL) were obtained by Edinburgh LP 980 spectrophotometer. The time-resolved photoluminescence (TRPL) spectra were acquired using an FLS1000 fluorescence lifetime spectrophotometer (Edinburgh, Instruments, UK). In-situ X-ray photoelectron spectroscopic spectra were obtained from an electron spectrometer (ESCALAB 210, VG, UK).

2.3. Photocatalytic activity tests

The 50 mg as-synthesized photocatalyst was dispersed in an aqueous solution (80 mL) containing lactic acid (10 vol%) as a sacrificial electron donor. Then, the reactant solution was degassed with pure N_2 for 20 min to remove air prior, and subsequently irradiated by four 3-W 420 nm LED lamps. Herein, the amount of produced H_2 was analyzed by Shimadzu gas chromatography (GC-2014 C, Japan).

3. Results and discussion

3.1. The in situ cascade growth of ReS₂/ZnIn₂S₄ photocatalyst

In this study, an interfacial S-induced in situ cascade growth was utilized to achieve the orderly growth of ReS_2 on $ZnIn_2S_4$ surface to form a strong-coupled 2D/2D $ReS_2/ZnIn_2S_4$ hybrid photocatalyst in a molten salt system, as illustrated in Fig. 1. Typically, a series of $Zn(CH_3COOH)_2$, $InCl_3$, and $NaReO_4$ metal salt is thoroughly mixed with excessive KSCN power to obtain a mixture percussor in a quartz crucible. Herein, the KSCN as a molten salt can not only serve as S source for ReS_2 and $ZnIn_2S_4$, but also provide an ideal fluid environment to synthesize strong-coupled 2D/2D $ReS_2/ZnIn_2S_4$ photocatalyst during the following molten salt process (Fig. S1 and S2) [42,43]. With increasing calcination temperature to ca. 170 °C, the KSCN is first self-ionized to produce a uniform and fluid molten salt system with massive SCN ions, which can

Fig. 1. (A) Schematic diagram illustrating the in-situ cascade growth of $ReS_2/ZnIn_2S_4$. (B) Detailed cascade growth mechanism of ReS_2 on $ZnIn_2S_4$ surface. (C) The model structure of $ReS_2/ZnIn_2S_4$ with strong coupling effect. (D) The corresponding photographs for pure $ZnIn_2S_4$ and $ReS_2/ZnIn_2S_4$.

tightly combine with Zn²⁺ and In³⁺ to form corresponding [Zn(SCN)₄]²⁻ and [In(SCN)₆]³⁻ complexes in the molten system (Eq. (2)) [44]. As the reaction temperature increases to 200-250 °C, the as-formed [Zn (SCN)₄]²⁻ and [In(SCN)₆]³⁻ complexes can occur self-decomposition reaction to produce thin-layered ZnIn₂S₄ nanolayers (Eq. (3)) (Fig. 1A-I), which can be clearly demonstrated by the color change from colorlessness to bright yellow in Fig. 1D-(a). Considering the typical layered structure of ZnIn₂S₄ nanolayers with massive surface S atoms (Fig. S3), the ReO4 ions in the KSCN molten salt system are preferably and tightly adsorbed on the surface S atom sites of ZnIn₂S₄ nanolayers, which offers an outstanding platform for the following growth of ReS2 nanolayers (Fig. 1A-II). With further increasing calcination temperature to ca. 300–380 $^{\circ}$ C, the adsorbed ReO₄ ions on the ZnIn₂S₄ surface can in-situ react with the free SCN ions to quickly form ReS2 seeds (Eq. (4)) (Fig. 1B and Fig. S4). Benefiting from the interface-induced effect of the layered ZnIn₂S₄ nanolayers, the fabricated ReS₂ seeds can further in-plane grow to form the final ReS2 nanolayers (as illustrated in Fig. 1D-(b)), causing a strong-coupled interface between the layered $ZnIn_2S_4$ nanolayers and ReS_2 nanolayers in the 2D/2D $ReS_2/ZnIn_2S_4$ photocatalyst (Fig. 1C and Fig. S5). To verify the proposed interfacial S-induced in-situ growth mechanism, for comparison, the blank CdS and ReS₂/CdS samples are also fabricated with the similar strategy as ReS₂/ZnIn₂S₄ (Fig. S6). Different from surface S atomic layer of ZnIn₂S₄, the exposed atoms on the CdS surface are usually Cd and S elements [45]. Obviously, it can be observed that the as-synthesized ReS2 nanolayers possess an agglomerated nanoflower-like morphology and randomly load on the hexagonal CdS surface (Fig. S7), which can be ascribed to the absence of interface-induced effect of the hexagonal CdS

surface to supply the planar 2D growth for ReS_2 nanolayers. Therefore, it can be concluded that the interfacial S-induced in situ cascade growth facilitates the in-plane growth of 2D ReS_2 nanolayer onto layered $ZnIn_2S_4$ nanolayers, thereby forming a strong-coupled interface in $2D/2D ReS_2/ZnIn_2S_4$ hybrid photocatalyst.

$$KSCN = K + + SCN - \tag{1}$$

$$10SCN^{-} + Zn^{2+} + In^{3+} \rightarrow [Zn(SCN)_{4}]^{2-} + [In(SCN)_{6}]^{3-}$$
 (2)

$$[Zn(SCN)_4]^{2^-} + 2[In(SCN)_6]^{3^-} \rightarrow ZnIn_2S_4 + 8CN^- + 3(SCN)_2$$
 (3)

$$ReO_4^- + SCN^- \rightarrow ReS_2 + OCN^-$$
 (4)

3.2. The characterization of cascade growth-induced strong coupling $ReS_2/ZnIn_2S_4$ photocatalysts

The morphology and microstructure of the obtained strong-coupled 2D/2D ${\rm ReS_2/ZnIn_2S_4}$ hetero-nanolayers were firstly disclosed by transmission electron microscopy (TEM). As shown in Fig. 2A and B, the ${\rm ReS_2}$ exhibits a typical 2D nanolayer structure with a size of ca. 20 nm, and is uniformly anchored on the ultrathin lamellar ${\rm ZnIn_2S_4}$ surface to form the ultimate 2D/2D hetero-nanolayered property. The select area electron diffraction (SAED) (inset of Fig. 2C) of ${\rm ReS_2}$ nanolayer shows the uniform arrangement of diffraction patterns, proving their single-crystal nature. Meanwhile, a more detailed observation on the 2D ${\rm ReS_2}$ nanolayer (Fig. 2D) corroborates that the ${\rm ReS_2}$ nanolayers present orientational growth on ${\rm ZnIn_2S_4}$ surface, which is mainly attributed to the

Fig. 2. (A-D) TEM/HRTEM images of ReS₂/ZnIn₂S₄ photocatalyst via in-situ cascade growth. (E) Fast Fourier transform (FFT) image of ReS₂. (F) HAADF-STEM and element mapping images.

interfacial S-induced effect as discussed in Fig. 1. Furthermore, the highresolution TEM images of the 2D/2D ReS2/ZnIn2S4 photocatalysts disclose that two characteristic lattice spacings of 0.34 and 0.31 nm could be ascribed to the (100) and (010) planes of 2D ReS₂ nanolayers, respectively [46], and the lattice spacing of 0.33 nm can also be indexed to the (102) plane of ZnIn₂S₄ nanolayers. In this case, the FFT images in Fig. 2E further reveal that the ReS₂ nanolayer presents two major (100) and (010) planes, highlighting its preferential [001] orientation growth in the 2D/2D ReS₂/ZnIn₂S₄ photocatalysts [47]. Thus, owing to the interfacial S-induced effect, the ReS2 can preferentially grow on the surface of layered ZnIn₂S₄ to form anisotropic 2D crystal shapes, which is beneficial to fabricating intimate contact interface in 2D/2D ReS₂/ZnIn₂S₄ hetero-nanolayer photocatalysts. Additionally, for the $2D/2D\,ReS_2/ZnIn_2S_4$ photocatalysts, the signal peaks of Zn, In, Re, and S elements can be observed in EDX spectrum (Fig. S8) and the corresponding elemental mappings further display the same dispersion of Re and S elements (Fig. 2F), fiercely re-evidencing the successful anchor of ${\rm ReS}_2$ nanolayer on lamellar ${\rm ZnIn}_2{\rm S}_4$ surface. The ICP-OES characterization demonstrates that the amount of Re elements is about 2.74 wt% and the atomic ratio of Zn to In is 1:2 in the 2D/2D ${\rm ReS}_2/{\rm ZnIn}_2{\rm S}_4$, which further manifests the effective integration of ${\rm ReS}_2$ and ${\rm ZnIn}_2{\rm S}_4$ via the innovative molten salt method. Obviously, the interfacial S-induced orientation growth of ${\rm ReS}_2$ nanolayer on the ${\rm ZnIn}_2{\rm S}_4$ surface promotes the formation of strong-coupled 2D/2D ${\rm ReS}_2/{\rm ZnIn}_2{\rm S}_4$ photocatalyst.

The constructed strong-coupled interface between ReS $_2$ and ZnIn $_2$ S $_4$ nanolayers can further be determined by XRD, Raman spectra, XPS, and UV–vis spectroscopy. As displayed in Fig. 3A, the XRD patterns of ZnIn $_2$ S $_4$ and ReS $_2$ /ZnIn $_2$ S $_4$ composites present analogous diffraction peaks of hexagonal ZnIn $_2$ S $_4$, while the typical ReS $_2$ peaks (Fig. S9) cannot be identified in the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ photocatalyst due to its relatively low content [48]. However, the characteristic Raman peaks at 151.5 cm $^{-1}$ and 243.7 cm $^{-1}$ are observed (Fig. 3B), which can be

Fig. 3. (A) XRD, (B) Raman spectra, (C) high-resolution XPS spectra of Re 4f and (D) UV-vis spectra of ZnIn₂S₄ and ReS₂/ZnIn₂S₄ samples with different mass of ReS₂.

ascribed to the Eg- and Ag-like models of ReS2 in the 2D/2D ReS₂/ZnIn₂S₄ photocatalyst [49], fiercely confirming the formation of ReS₂ on the ZnIn₂S₄ surface. More importantly, compared with bare ReS₂ (Fig. S10), the E_g- and A_g-like bands of 2D/2D ReS₂/ZnIn₂S₄ reveal a red shift, which can be ascribed to the strong interface coupling between ReS2 and ZnIn2S4 nanolayers. In addition, XPS characterization was employed to further testify the formation of 2D/2D ReS2/ZnIn2S4 hybrid (Fig. 3C). Typically, two dominant peaks of Re $4f_{7/2}$ and Re $4f_{5/2}$ core-level peaks are located at ~41.5 and ~44.2 eV in ReS2/ZnIn2S4 sample [50], respectively, indicating the successful integration of ReS₂ nanolayer on ZnIn₂S₄ surface. In this case, the light-adsorption property of the 2D/2D ReS2/ZnIn2S4 photocatalyst was scrutinized by diffuse reflectance UV-vis spectroscopy, as performed in Fig. 3D. Obviously, the absorption edge of pure ZnIn₂S₄ around 518 nm can be identified, which agrees well with the band gap value of about 2.39 eV. After the integration with ReS2, the resultant 2D/2D ReS2/ZnIn2S4 photocatalysts clearly present a broader visible-light response (450-800 nm). In addition, with increasing the amount of ReS2 nanolayer, the visible-light absorbance can be further strengthened. Meanwhile, the color of various samples presents a gradually deepening trend with increasing ReS₂ loading amount, manifesting the successful and controllable preparation of 2D/2D ReS2/ZnIn2S4 hetero-layered photocatalysts via the effective and convenient molten salt method.

3.3. Photocatalytic performance and mechanism

The photocatalytic activities of in situ cascade growth-induced strong coupled $ReS_2/ZnIn_2S_4$ photocatalysts were tested under visible light using lactic acid as a sacrificial reagent. In this case, the

photocatalyst dosage of 50 mg were applied in our experiments to ensure their typicality, feasibility and effectiveness (Fig. S11). As observed in Fig. 4A and B, it can be found that pure ZnIn₂S₄ exhibits the lowest H2-evolution rate due to the rapid recombination of photoinduced carriers and the lack of catalytic active sites [51,52]. However, after loading 2D ReS₂ nanolayer, the photocatalytic performance of 2D/2D ReS₂/ZnIn₂S₄ with strong-coupled interface is greatly improved. Especially, the H₂-evolution rate of the 2D/2D ReS₂/ZnIn₂S₄(3 wt%) reaches an optimum value as high as 2240 µmol g⁻¹ h⁻¹, which is approximately 20.61-fold higher than that of pure ZnIn₂S₄ nanolayers (a H_2 -evolution rate of 103 μ mol g⁻¹ h⁻¹). Notably, the photocatalytic performance of the obtained 2D/2D ReS₂/ZnIn₂S₄(3 wt%) is obviously superior than that of the physical mixing ReS₂-ZnIn₂S₄(3 wt%) sample (1105 µmol g⁻¹ h⁻¹), which can be attributed to its strong coupling interface via the unique interfacial S-induced synthesis strategy. It should also be mentioned that the boosted photoactivity of 2D/2D ReS₂/ZnIn₂S₄(3 wt%) samples is superior to most reported ZnIn₂S₄-based photocatalysts under visible light (Table S2). Moreover, after five cycles with a total irradiation time of 25 h, the 2D/2D ReS₂/ZnIn₂S₄(3 wt%) photocatalyst still remains a steady H₂-evolution activity (Fig. 4C). After photocatalytic H₂ evolution, the morphology and crystal structure of the resulting 2D/2D ReS2/ZnIn2S4 nanolayers are well maintained (Figs. S12 and 13), displaying its good photostability (with the TON of 569.42). To further verify the above H₂-evolution activity from the photo-absorption of ZnIn₂S₄ semiconductor, the wavelength-dependent apparent quantum efficiency (AQE) of ReS₂/ZnIn₂S₄(3 wt%) was measured, as illustrated in Fig. 4D. It is clear that the change of AQE value over the 2D/2D $ReS_2/ZnIn_2S_4(3\ wt\%)$ photocatalyst keeps the same trend as the

Fig. 4. (A) H₂ evolution amount at different irradiation time and (B) H₂-evolution rate of ZnIn₂S₄ and ReS₂/ZnIn₂S₄ photocatalysts. (C) Cycling stability test and (D) wavelength-dependent apparent quantum yield (AQY) of ReS₂/ZnIn₂S₄(3 wt%).

absorption spectrum of $ZnIn_2S_4$. Therefore, the strong-coupled $ReS_2/ZnIn_2S_4$ photocatalyst prepared by in-situ cascade growth possesses outstanding photocatalytic H_2 -generation activity and stability.

Based on the above photocatalytic results, the hetero-layered 2D/2D ReS₂/ZnIn₂S₄ photocatalyst exhibits a superior H₂-evolution activity, which is mainly caused by in-situ cascade growth induced strong coupling effect between ReS2 and ZnIn2S4 nanolayers, as demonstrated in XPS characterization and density functional theory (DFT) calculation. As displayed in Fig. 5A, compared to blank ZnIn₂S₄ and physically mixed ReS₂-ZnIn₂S₄ samples, it is found that the dominant peaks of Zn 2p at 1022.4 and 1045.5 eV present a remarkably negative shift for the 2D/2D ReS₂/ZnIn₂S₄ photocatalyst, manifesting the migration of free electrons from 2D ReS2 to ZnIn2S4 nanolayers due to the in-situ cascade growth induced strong coupling effect. The above results can be further confirmed by the same shift of binding energy for In 3d in Fig. S14. On the contrary, the binding energy of Re 4f moves towards positive values compared with the ReS_2 - $ZnIn_2S_4$ sample (Fig. 5B), evidently demonstrating the formation of a strong-coupled interface in the 2D/2D ${
m ReS}_2/$ ZnIn₂S₄ photocatalys [53]. To better testify the strong coupling effect in the 2D/2D ReS₂/ZnIn₂S₄ hetero-nanolayer, DFT calculation is further performed. The density of state (DOS) was first conducted and shown in Fig. 5C. Noticeably, the electronic states of Re atoms are overlapped with those of the Zn, In, and S atoms in the 2D/2D ReS₂/ZnIn₂S₄ sample, which can be attributed to the strong coupling effect between ReS2 and ZnIn₂S₄ [54]. The above strong coupling effect in 2D/2D ReS₂/ZnIn₂S₄ can also be directly revealed by the simulated charge distribution and the plots of planar-averaged charge density difference (Fig. 5D). Obviously, the charge redistribution is mainly focused on their contact interface layer and the free electrons on the ReS2 are directly transferred to the ZnIn₂S₄ via their strong-coupled interface. As is known to all, the rate of interfacial catalytic reaction is closely related to the electronic structure of active sites. In this case, it is expected that the electron

migration caused by strong coupling effect in 2D/2D ReS₂/ZnIn₂S₄ can greatly improve the catalytic efficiency of interficial S site in ReS2. Herein, Bader charge analysis (Fig. 5E) is performed to further disclose the change of electron density on S-site in ReS₂ cocatalyst. Evidently, compared to blank ReS2, the electron density of S site in the 2D/2D $ReS_2/ZnIn_2S_4$ hybrid is significantly reduced (from +0.56 to +0.43 e⁻) and thus forming the electron-deficient S site ($S^{\delta+}$) on the surface of ReS₂ nanolayer, which can effectively enhance the adsorption strength of H* to promote H₂-generation activity (Fig. 5F). Subsequently, the adsorption Gibbs free energy of intermediate state H^* (ΔG_{H^*}) was calculated and performed in Fig. 5G [55,56]. It can be seen that the ΔG_{H^*} of surface S sites in ReS₂-ZnIn₂S₄ is 1.76 eV and indicates the weak binding of H* with S sites (Fig. 5G). After forming the 2D/2D ReS₂/ZnIn₂S₄ composite, the corresponding ΔG_{H*} value is optimized to 1.44 eV, which is more satisfied with the theoretical optimum (ΔG_{H^*} = 0 eV), manifesting an enhanced H* adsorption capacity of the S site for the following promoted H₂ formation (Fig. S15). Therefore, all the theoretical and experimental results above illustrate the promotion influence of the in situ cascade growth-induced strong coupling effect in 2D/2DReS₂/ZnIn₂S₄ photocatalyst on the generation of electron-deficient $S^{\delta+}$ site and thus increased catalytic-efficiency of the S

To further explore the promotional effect of strong coupling effect induced by in situ cascade growth on photogenerated carrier transfer for 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$, the Kelvin probe test and in situ irradiated XPS characterization were performed (Fig. 6). First, according to the obtained potential difference (CPD) data from the Kelvin probe test, the work function of ZnIn $_2$ S $_4$ is calculated to be 4.37 eV and that of ReS $_2$ is 4.23 eV (Fig. 6A). Moreover, the performed DFT calculations theoretically prove that the work function of ZnIn $_2$ S $_4$ is higher than that of ReS $_2$ (Fig. S16). As a result, when the 2D ReS $_2$ was in-situ grown onto the 2D ZnIn $_2$ S $_4$ to produce the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ hybrid with a strong-

Fig. 5. (A, B) High-resolution XPS spectra of Zn 2p and Re 4f for $ZnIn_2S_4$, ReS_2 - $ZnIn_2S_4$ and ReS_2 - $ZnIn_2S_4$ and (C) their corresponding calculated density of state. (D) Simulated charge distributions at the interface of ReS_2 / $ZnIn_2S_4$ and its corresponding planar averaged charge-density difference, where the blue and yellow region represents the consumption and accumulation of electrons, respectively. (E) Bader charge analysis, (F) the schematic diagram of improving active site efficiency by strong coupled interface and (G) H_2 absorption free energies for ReS_2 - $ZnIn_2S_4$ and ReS_2 / $ZnIn_2S_4$.

coupled interface, the free electrons would migrate from ReS_2 to $ZnIn_2S_4$ nanolayer through their strong-coupled interface, causing the production of a built-in electric field pointed from $ZnIn_2S_4$ to ReS_2 (Fig. 6E-I) [57,58]. It can be seen from the in-situ XPS data that compared to dark conditions, the binding energy of Zn 2p and In 3d moved to a more positive position (Fig. 6B and C) while the Re 4f shifted to a more negative position (Fig. 6D) in light irradiation, suggesting that the photogenerated electrons on ZD $ZnIn_2S_4$ can effectively transfer to $ZnIn_2S_4$ can effectively transfer to $ZnIn_2S_4$ which effectively inhibits the charge recombination to provide massive photo-excited electrons for subsequent catalytic $ZnIn_2S_4$ could massive photo-excited electrons for subsequent catalytic $ZnIn_2S_4$ could massive photo-excited electrons for subsequent catalytic $ZnIn_2S_4$ could massive $ZnIn_2S_4$ for $ZnIn_2S_4$ could massive photo-excited electrons for subsequent catalytic $ZnIn_2S_4$ could massive $ZnIn_2S_4$ for $ZnIn_2S_4$ could massive photo-excited electrons for subsequent catalytic $ZnIn_2S_4$ could massive $ZnIn_2S_4$ for $ZnIn_2S_4$ could massive $ZnIn_2S_4$ could massive ZnI

Based on the above results, an underlying mechanism is proposed for the largely enhanced photocatalytic activity of in situ cascade growth-induced strong coupled $ReS_2/ZnIn_2S_4$ photocatalysts, as shown in Fig. 7. Herein, owing to the interfacial S-induced in situ cascade growth, the 2D ReS_2 nanolayers are evenly anchored on the lamellar $ZnIn_2S_4$ surface to induce the strong coupling effect, thus endowing the resulting 2D/2D $ReS_2/ZnIn_2S_4$ hybrid with sufficient contact area and electron transfer channels. In addition, a built-in electric field from ReS_2 to $ZnIn_2S_4$ can be created due to the difference in work function, thus

facilitating the subsequent transfer of photoinduced electrons from ${\rm ZnIn_2S_4}$ to ${\rm ReS_2}$. Under visible-light irradiation, the electrons in the valence band of ${\rm ZnIn_2S_4}$ are excited to its conduction band, leaving the positively charged holes in the VB. Afterward, the excited electrons can be further transferred to surface-grown ${\rm ReS_2}$ nanolayer through the strong-coupled interface in the ${\rm 2D/2D}$ ${\rm ReS_2/ZnIn_2S_4}$ photocatalysts, largely suppressing the recombination of charge carriers. It is worth noting that the strong coupling effect in the ${\rm 2D/2D}$ ${\rm ReS_2/ZnIn_2S_4}$ photocatalyst can not only facilitate the migration of photoinduced electrons, but also simultaneously reduce the electron density of the active S site to produce electron-deficient S site on ${\rm ReS_2}$ nanolayers. Therefore, when photoexcited electrons transfer to ${\rm ReS_2}$ cocatalyst, the as-formed electron-deficient S site would efficiently combine with ${\rm H^*}$ and greatly enhance the photocatalytic ${\rm H_2-evolution}$ performance.

To further examine the above proposed photocatalytic mechanism, a series of photoluminescence (PL), photo- and electrochemical characterizations were carried out. As shown in Fig. S17A, the steady-state PL spectra of the 2D/2D ReS₂/ZnIn₂S₄ photocatalysts show obvious quenching than pure ZnIn₂S₄ and ReS₂-ZnIn₂S₄, indicating the efficient charge separation and transfer of photogenerated charges between ReS₂ and ZnIn₂S₄. Besides, compared with pristine ZnIn₂S₄ ($\tau_{ave} = 4.55$ ns)

Fig. 6. (A) Contact potential difference of the ZnIn₂S₄, ReS₂, and ReS₂/ZnIn₂S₄ samples. In-situ XPS spectra of (B) Zn 2p, (C) In 3d, and (D) Re 4f for ReS₂/ZnIn₂S₄ sample before and after visible-light irradiation. (E) The schematic diagram of photogenerated electron transfer before and after light irradiation.

and ReS $_2$ -ZnIn $_2$ S $_4$ ($\tau_{ave}=6.14$ ns), the accelerated decay of time-resolved photoluminescence (TRPL) and significant prolongation of charge-carrier averaged lifetimes ($\tau_{ave}=11.07$ ns) for the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ photocatalysts manifest an effectively improved carrier separation due to the strong-coupled interface (Fig. S17B) [59]. Moreover, the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ hybrid possesses a smaller EIS radius and stronger photocurrent density than the bare ZnIn $_2$ S $_4$ and ReS $_2$ -ZnIn $_2$ S $_4$, reconfirming the fastest interfacial charge migration in the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ sample (Fig. S17C and D). Generally, the photocatalytic H $_2$ -evolution reaction thermodynamically depends on the conductor band (CB) potential. As revealed by the Mott-Schottky plots (Fig. S18), the ReS $_2$ /ZnIn $_2$ S $_4$ photocatalyst exhibits n-type semiconductor and the CB value is calculated to be - 0.58 V (vs. NHE), manifesting the superior capacity for the reduction of H $^+$ to H $_2$. The linear sweep voltammetry results (Fig. S19) show that the 2D/2D ReS $_2$ /ZnIn $_2$ S $_4$ photocatalyst

possesses a larger cathode current than the $ZnIn_2S_4$ and $ReS_2-ZnIn_2S_4$, further suggesting the efficient interfacial H_2 -production due to the elevated catalytic-efficiency of active S sites on 2D ReS_2 nanolayer. Collectively, the systematic photoluminescence, photo- and electrochemical properties clearly demonstrate the efficient separation of electron-hole pair and high surface reaction rate for the 2D/2D $ReS_2/ZnIn_2S_4$ hetero-layered photocatalyst, which can be attributed to the strong-coupled interface between ReS_2 and $ZnIn_2S_4$ component.

4. Conclusions

To summarize, an in situ cascade growth-induced strong coupled $ReS_2/ZnIn_2S_4$ photocatalyst was successfully constructed in KSCN molten salt system. It is found that the ReS_2 nanolayers are orientationally grown on lamellar $ZnIn_2S_4$ surface via an interfacial S-induced

Fig. 7. Proposed photocatalytic H₂-generation mechanism of cascade growth-induced strong coupled ReS₂/ZnIn₂S₄ photocatalyst.

in situ cascade growth, leading to the formation of a strong-coupled interface in the 2D/2D $ReS_2/ZnIn_2S_4$ photocatalysts. Photocatalytic tests demonstrated that the fabricated strong-coupled 2D/2D ReS₂/ ZnIn₂S₄(3 wt%) photocatalyst achieved a high-efficiency photocatalytic hydrogen production rate of 2240 μ mol g $^{-1}$ h $^{-1}$ with an AQE of 11.32% (420 nm). Combining experimental characterizations and theoretical calculations, the outstanding photocatalytic performance of 2D/2D ReS₂/ZnIn₂S₄ photocatalyst can be attributed to the strong coupling effect between ReS2 and ZnIn2S4 nanolayer via in situ cascade growth. Specifically, the strong coupling effect can decrease the charge transfer barrier to accelerate photoinduced charge separation, and more importantly, effectively induces the formation of electron-deficient $S^{\delta+}$ site of ReS2 to boost their catalytic H2-evolution efficiency. This work emphasizes the rational design of the coupling interfaces for highly efficient heterogeneous photocatalyst to regulate electron structure of H₂-evolution active sites and improve their catalytic efficiency.

CRediT authorship contribution statement

Jiachao Xu: Methodology, Validation, Data curation, Writing – original draft. **Wei Zhong**: Investigation, Visualization. **Feng Chen**: Writing – review & editing. **Xuefei Wang**: Supervision, Project administration. **Huogen Yu**: Conceptualization, Resources, Funding acquisition, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U22A20147, 22075220 and 22178276) and the Natural Science Foundation of Hubei Province of China (2022CFA001).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.122493.

References

- R. Kawamura, N.T. Cuong, T. Fujita, R. Ishibiki, T. Hirabayashi, A. Yamaguchi, I. Matsuda, S. Okada, T. Kondo, M. Miyauchi, Photoinduced hydrogen release from hydrogen boride sheets, Nat. Commun. 10 (2019) 4880.
- [2] Y. Guo, Q. Zhou, J. Nan, W. Shi, F. Cui, Y. Zhu, Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution, Nat. Commun. 13 (2022) 2067.
- [3] D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu, J. Yu, Optimizing atomic hydrogen desorption of sulfur-rich NiS_{1+x} cocatalyst for boosting photocatalytic H₂ evolution, Adv. Mater. 34 (2021) 2108475.
- [4] Y. Chen, Q. Qiao, J. Cao, H. Li, Z. Bian, Precious metal recovery, Joule 5 (2021) 3097–3115.
- [5] J. Wang, J. Chen, P. Wang, J. Hou, C. Wang, Y. Ao, Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C₃N₄ nanosheet, Appl. Catal. B: Environ. 239 (2018) 578–585.
- [6] Z. Huang, Q. Zhou, J. Wang, Y. Yu, Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: a key role of pyridine-N-Zn bond, J. Mater. Sci. Technol. 112 (2022) 68–76
- [7] X. Hong, X. Yu, L. Wang, Q. Liu, J. Sun, H. Tang, Lattice-matched CoP/CoS₂ heterostructure cocatalyst to boost photocatalytic H₂ generation, Inorg. Chem. 60 (2021) 12506–12516.
- [8] X. Yue, J. Fan, Q. Xiang, Internal electric field on steering charge migration: modulations, determinations and energy-related applications, Adv. Funct. Mater. 32 (2021) 2110258.
- [9] Y. Lu, X. Ou, W. Wang, J. Fan, K. Lv, Fabrication of TiO₂ nanofiber assembly from nanosheets (TiO₂-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity, Chin. J. Catal. 41 (2020) 209–218.
- [10] J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H₂ evolution of CdS, Chem. Eng. J. 439 (2022), 135758.
- [11] C. Du, S. He, Y. Xing, Q. Zhao, C. Yu, X. Su, J. Feng, J. Sun, S. Dong, Fabricating S-scheme BiOBr/Zn₂ln₂S₅ heterojunction for synergistic adsorption-photocatalytic degradation of tetracycline, Mater. Today Phys. 27 (2022), 100827.
- [12] J. He, L. Hu, C. Shao, S. Jiang, C. Sun, S. Song, Photocatalytic H₂O overall splitting into H₂ bubbles by single atomic sulfur vacancy CdS with spin polarization electric field, ACS Nano 15 (2021) 18006–18013.
- [13] Y. Sheng, W. Li, L. Xu, Y. Zhu, High photocatalytic oxygen evolution via strong built-in electric field induced by high crystallinity of perylene imide supramolecule, Adv. Mater. 34 (2022) 2102354.
- [14] F. Li, Y. Liu, Q. Chen, X. Gu, W. Dong, D. Zhang, H. Huang, B. Mao, Z. Kang, W. Shi, Transient photovoltage study of the kinetics and synergy of electron/hole coextraction in MoS₂/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production, Chem. Eng. J. 439 (2022), 135759.
- [15] B. Qiu, M. Du, Y. Ma, Q. Zhu, M. Xing, J. Zhang, Integration of redox cocatalysts for artificial photosynthesis, Energy Environ. Sci. 14 (2021) 5260–5288.
- [16] W. Wang, S. Zhu, Y. Cao, Y. Tao, X. Li, D. Pan, D.L. Phillips, D. Zhang, M. Chen, G. Li, H. Li, Edge-enriched ultrathin MoS₂ embedded yolk-shell TiO₂ with boosted charge transfer for superior photocatalytic H₂ evolution, Adv. Funct. Mater. 29 (2019) 1901958.
- [17] D. Gao, H. Long, X. Wang, J. Yu, H. Yu, Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe_{2+x} cocatalyst for exceptional H₂ evolution of TiO₂ photocatalyst, Adv. Funct. Mater. 33 (2023) 2209994.
- [18] Z. Jiang, Q. Chen, Q. Zheng, R. Shen, P. Zhang, X. Li, Constructing 1D/2D Schottky-based heterojunctions between Mn_{0.2}Cd_{0.8}S nanorods and Ti₃C₂ nanosheets for boosted photocatalytic H₂ evolution, Acta Phys. Chim. Sin. 37 (2020) 2010059.
- [19] K. Feng, J. Xu, Y. Chen, S. Li, Z. Kang, J. Zhong, Positively charged Pt-based nanoreactor for efficient and stable hydrogen evolution, Adv. Sci. 9 (2022) 2203199.

- [20] J. Xu, D. Gao, H. Yu, P. Wang, B. Zhu, L. Wang, J. Fan, Palladium-copper nanodot as novel H₂-evolution cocatalyst: optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity, Chin. J. Catal. 43 (2022) 215–225.
- [21] D.P. Kumar, J. Choi, S. Hong, D.A. Reddy, S. Lee, T.K. Kim, Rational synthesis of metal-organic framework-derived noble metal-free nickel phosphide nanoparticles as a highly efficient cocatalyst for photocatalytic hydrogen evolution, ACS Sustain. Chem. Eng. 4 (2016) 7158–7166.
- [22] P. Wang, Y. Mao, L. Li, Z. Shen, X. Luo, K. Wu, P. An, H. Wang, L. Su, Y. Li, S. Zhan, Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst, Angew. Chem. Int. Ed. 58 (2019) 11329–11334.
- [23] S. Tao, W. Zhong, Y. Chen, F. Chen, P. Wang, H. Yu, Bifunctional thioacetamide-mediated synthesis of few-layered MoOS_x nanosheet-modified CdS hollow spheres for efficient photocatalytic H₂ production, Catal. Sci. Technol. 12 (2022) 6006–6015.
- [24] P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, S. C. Pillai, 2D nanomaterials for photocatalytic hydrogen production, ACS Energy Lett. 4 (2019) 1687–1709.
- [25] Y.-Y. Han, X.-L. Lu, S.-F. Tang, X.-P. Yin, Z.-W. Wei, T.-B. Lu, Metal-Free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8 (2018) 1702992.
- [26] D.B. Sulas-Kern, E.M. Miller, J.L. Blackburn, Photoinduced charge transfer in transition metal dichalcogenide heterojunctions-towards next generation energy technologies, Energy Environ. Sci. 13 (2020) 2684–2740.
- [27] D. Gao, J. Xu, F. Chen, P. Wang, H. Yu, Unsaturated selenium-enriched MoSe_{2+x} amorphous nanoclusters: one-step photoinduced co-reduction route and its boosted photocatalytic H₂-evolution activity for TiO₂, Appl. Catal. B: Environ. 305 (2022), 121053.
- [28] T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8 (2018) 2253–2276.
- [29] D.A. Reddy, E.H. Kim, M. Gopannagari, Y. Kim, D.P. Kumar, T.K. Kim, Few layered black phosphorus/MoS₂ nanohybrid: a promising co-catalyst for solar driven hydrogen evolution, Appl. Catal. B: Environ. 241 (2019) 491–498.
- [30] Q. Zhang, S. Huang, J. Deng, D.T. Gangadharan, F. Yang, Z. Xu, G. Giorgi, M. Palummo, M. Chaker, D. Ma, Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H₂ evolution, Adv. Funct. Mater. 29 (2019) 1902486.
- [31] J. Su, G.D. Li, X.H. Li, J.S. Chen, 2D/2D heterojunctions for catalysis, Adv. Sci. 6 (2019) 1801702.
- [32] J. Mei, T. Liao, Z. Sun, 2D/2D heterostructures: rational design for advanced batteries and electrocatalysis, Energy Environ. Mater. 5 (2021) 115–132.
- [33] X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Challenges of photocatalysis and their coping strategies. Chem. Catal. 2 (2022) 1315–1345.
- [34] M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang, Z. Wang, M. Yang, W.F. Ip, C.T. Kwok, X. Shi, Z. Lu, S. Wang, X. Wang, H. Pan, Synergistic effect of 2D Ti₂C and g-C₃N₄ for efficient photocatalytic hydrogen production, J. Mater. Chem. A 5 (2017) 16748–16756.
- [35] M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, Metal-free photocatalyst for H₂ evolution in visible to near-infrared region: black phosphorus/ graphitic carbon nitride, J. Am. Chem. Soc. 139 (2017) 13234–13242.
- [36] Y.J. Yuan, D.Q. Chen, Y.W. Huang, Z.T. Yu, J.S. Zhong, T.T. Chen, W.G. Tu, Z. J. Guan, D.P. Cao, Z.G. Zou, MoS₂ nanosheet-modified CuInS₂ photocatalyst for visible-light-driven hydrogen production from water, ChemSusChem 9 (2016) 1003–1009
- [37] Y. Zhao, C. Shao, Z. Lin, S. Jiang, S. Song, Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H₂ fuel evolution, Small 16 (2020) 2000944.
- [38] J. Li, G. Zhan, Y. Yu, L. Zhang, Superior visible light hydrogen evolution of janus bilayer junctions via atomic-level charge flow steering, Nat. Commun. 7 (2016) 11480.
- [39] W. Zhong, B. Zhao, H. Yu, J. Fan, Simultaneously optimizing the number and efficiency of active Se sites in Se-rich a-MoSe_x nanodot cocatalysts for efficient photocatalytic H₂, Evol., Sol. RRL 6 (2022) 2100832.
- [40] L. Li, D. Yu, P. Li, H. Huang, D. Xie, C.-C. Lin, F. Hu, H.-Y. Chen, S. Peng, Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with

- layered MXenes as a new prototype for platinum-like hydrogen evolution, Energy Environ. Sci. 14 (2021) 6419–6427.
- [41] Y. Chen, W. Zhong, F. Chen, P. Wang, J. Fan, H. Yu, Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H₂evolution performance, J. Mater. Sci. Technol. 121 (2022) 19–27.
- [42] D.H. Kerridge, S.J. Walker, Molten potassium thiocyanate: the reactions of some compounds of molybdenum, rhodium and silver, J. Inorg. Nucl. Chem. 39 (1977) 1579–1581.
- [43] D.H. Kerridge, N. Carthey, M. Hassanein, A.E. Eid, Thermogravimetric and spectroscopic studies on Trans-[Co(en)₂Cl₂]Cl and Cis-[Co(en)₂(NCS)Cl]ClO₄ in Molten KSCN and ZnCl₂-KCl Eutectic, Thermochim. Acta 55 (1982) 327–332.
- [44] H. Ou, P. Yang, L. Lin, M. Anpo, X. Wang, Carbon nitride aerogels for the photoredox conversion of water, Angew. Chem., Int. Ed. 56 (2017) 10905–10910.
- [45] W. Zhong, D. Gao, P. Wang, X. Wang, H. Yu, Accelerating hydroxyl desorption by swapping catalytic sites in RuMoS_{2+x} cocatalysts for efficient alkaline photocatalytic H₂ production, Appl. Catal. B: Environ. 319 (2022), 121910.
- [46] G. Ghimire, K.P. Dhakal, W. Choi, Y.A. Esthete, S.J. Kim, T.T. Tran, H. Lee, H. Yang, D.L. Duong, Y.M. Kim, J. Kim, Doping-mediated lattice engineering of monolayer ReS₂ for modulating in-plane anisotropy of optical and transport properties, ACS Nano 17 (2021) 13770–13780.
- [47] Q. Zhang, L. Fu, Novel insights and perspectives into weakly coupled ReS₂ toward emerging applications, Chem 5 (2019) 505–525.
- [48] Y. Lv, W. Lei, S. Liu, W.H. Zhang, Nanosized ReS₂ monolayers embedded in nitrogen-doped carbon nanotubes for high-rate capacitive lithium storage, Adv. Electron. Mater. 5 (2019) 1800830.
- [49] S. Liu, W. Lei, Y. Liu, Q. Qiao, W.H. Zhang, Hierarchical nanosheet-based MS₂ (M = Re, Mo, W) nanotubes prepared by templating sacrificial Te nanowires with superior lithium and sodium storage capacity, ACS Appl. Mater. Interfaces 10 (2018) 37445–37452.
- [50] F. Lai, N. Chen, X. Ye, G. He, W. Zong, K.B. Holt, B. Pan, I.P. Parkin, T. Liu, R. Chen, Refining energy levels in ReS₂ nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production, Adv. Funct. Mater. 30 (2020) 1907376.
- [51] Z. Mei, G. Wang, S. Yan, J. Wang, Rapid microwave-assisted synthesis of 2D/1D ZnIn₂S₄/TiO₂ S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution, Acta Phys. - Chim. Sin. 37 (2020) 2009097.
- [52] M. Xiao-Wei, L. Hai-Feng, L. Yan-Yan, W. Lei, P. Xi-Peng, Y. Xiu-Jie, Dramatically enhanced visible-light-responsive H₂ evolution of Cd_{1-x}Zn_xS via the synergistic effect of Ni₂P and 1T/2H MoS₂ cocatalysts, Chin. J. Struct. Chem. 40 (2021) 7–22.
- [53] Y. Wang, C. Zeng, Y. Zhang, R. Su, D. Yang, Z. Wang, Y. Wu, H. Pan, W. Zhu, W. Hu, H. Liu, R. Yang, Promoted photocarriers separation by straining in 2D/2D van der Waals heterostructures for high-efficiency visible-light photocatalysis, Mater. Today Phys. 22 (2022), 100600.
- [54] A.R. Puente Santiago, T. He, O. Eraso, M.A. Ahsan, A.N. Nair, V.S.N. Chava, T. Zheng, S. Pilla, O. Fernandez-Delgado, A. Du, S.T. Sreenivasan, L. Echegoyen, Tailoring the interfacial interactions of van der Waals 1T-MoS₂/C₆₀ heterostructures for high-performance hydrogen evolution reaction electrocatalvsis. J. Am. Chem. Soc. 142 (2020) 17923–17927.
- [55] D. Wu, Q. Liang, H. Si, X. Yan, H. Huang, Z. Li, Z. Kang, Self-assembly of a heterogeneous microreactor with carbon dots embedded in Ti-MOF derived ZnIn₂S₄/TiO₂ microcapsules for efficient CO₂ photoreduction, J. Mater. Chem. A 10 (2022) 24519–24528.
- [56] Y. Men, Y. Tan, P. Li, X. Cao, S. Jia, J. Wang, S. Chen, W. Luo, Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis, Appl. Catal. B: Environ. 284 (2021), 119718.
- [57] W. Zhong, B. Zhao, X. Wang, P. Wang, H. Yu, Synchronously enhancing water adsorption and strengthening Se-Hads bonds in Se-Rich RuSe_{2+x} cocatalyst for efficient alkaline photocatalytic H₂ production, ACS Catal. 13 (2023) 749–756.
- [58] Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem 6 (2020) 1543–1559.
- [59] Y. Chen, L. Li, Q. Xu, T. Düren, J. Fan, D. Ma, Controllable synthesis of g- G_3N_4 inverse opal photocatalysts for superior hydrogen evolution, Acta Phys. Chim. Sin. $37\ (2020)\ 2009080$.