Exploratory Data Analysis (EDA)

Outline

- Types of data
- Data objects and attributes
- Types, properties, and sources of datasets
- Data exploration
- Issues of data quality
- Handling data quality issues

Variable

- A variable or a feature is any characteristic, number, or quantity that can be measured or counted
- E.g.,
 - Age (21, 35, 62, ...)
 - Gender (male, female)
 - Income (\$25000, \$35000, \$50000, ...)
 - House price (\$450000, \$980000, ...)
 - Country of birth (Qatar, Australia, Saudi, ...)
 - Eye colour (blue, brown, green, ...)
 - Vehicle make (Toyota, Kia, ...)

Variable Types

Туре	Subtype	Examples	
Nominal		Product type, name	
Categorical (Qualitative)	Ordinal	Size measured as small < medium < large	
(Quantative)	Binary	Spam email (yes/no, true/false, 0/1)	
	Date / Time	Job start date	
Numerical Discrete		Number of students in a class	
(Quantitative)	Continuous	Height, weight	

Understanding the type of variables is crucial for selecting appropriate statistical methods, visualization techniques, and ML algorithms

Categorical Variables

- Categorical data are strings that represent qualitative data
 - Often selected from a group of categories, also called labels
- Nominal, e.g., country of birth, gender, eye color, etc.
 - No inherent order or ranking

- 1:1 transformation permissible, e.g. ID: $974 \Rightarrow Qatar$
- Ordinal, e.g. grade (A, B, C, D, F), degree (bachelor, master, PhD), height (tall, medium, short), etc.
 - Represent categories that can be meaningfully ordered
 - Operator applicable: =, \neq , <, >, \geq , \leq
 - Order-preserving transformation permitted,
 - e.g. height (tall, medium, short) to (1, 2, 3)

Numerical Variables

Discrete

- Whole numbers (counts) typically integers
- E.g., The number of cars in a parking lot, the number of students in a class, or the count of items in a basket.

Continuous

- Measurable numeric variable that may contain any value within a range
- Typically represented decimal numbers and fractions
- E.g., Height, weight, temperature, or distance

Data Objects and Attributes

Objects

- Data object: (also known as record, sample, or entity) individual object/event
 - Characterized by its recorded values on a fixed set of features
- **Feature or attribute:** (also known as variable, field, or characteristic) a specific property or characteristic of the data object
 - Raw Features:
 - Collected or measured value of an attribute according to an appropriate measurement scale
 - Derived Features
 - Constructed from data in one or more raw features

Attributes

	1				1
_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
_	10	No	Single	90K	Yes

Derived Features

- **Aggregates:** defined over a group or period, e.g., count, sum, average, minimum, or maximum of the values
- **Flags:** indicate presence or absence of some characteristic within a dataset, e.g., a flag indicating whether or not a bank account has ever been overdrawn
- **Ratios:** capture relationship between two or more raw data values, e.g., a ratio between a loan applicant's salary and the amount for which they are requesting
- **Mappings:** convert continuous features into categorical features, e.g., map the salary values to low, medium, and high
- **Others:** no restrictions to the ways in which we can combine data to make derived features, e.g., use satellite photos to count the number of cars in the parking lots and use this as a proxy measure of activity within a competitor's stores!

Goals for Derived Features

 To improve the accuracy and performance of machine learning models by transforming the raw data into a more meaningful representation that can better capture the underlying relationships in the data

 To help to reduce the dimensionality of a dataset and make it easier to visualize and understand the relationships between variables

Types of datasets

Age Group	Own Car	Income Band	Class
young	yes	low	risky
young	no	low	risky
middle aged	yes	middle	risky
middle aged	no	high	safe
middle aged	yes	low	risky
young	yes	high	risky
middle aged	no	low	safe
retired	yes	middle	safe
retired	no	middle	safe
retired	yes	high	safe

Relational Table

TID	Items			
100	apple, milk, newspaper			
200	apple, beef, milk, newspaper, potato			
300	beef, potato			
400	beef, noodles			
500	beef, potato			

Transaction Data

No.	studentID Numeric	Homework1 Numeric	Homework2 Numeric	Homework3 Numeric	Final Exam Numeric
1	1.0		94.0	34.0	42.0
2	2.0	35.0	94.0	85.0	45.0
3	3.0	31.0	46.0	22.0	48.0
4	4.0	46.0	90.0	60.0	50.0
5	5.0	52.0	94.0	49.0	50.0
6	6.0	58.0	94.0	30.0	51.0
7	7.0	47.0	90.0		52.0
В	8.0	37.0	94.0	25.0	52.0
9	9.0	35.0	94.0	45.0	54.0
10	10.0	57.0	94.0	100.0	54.0
11	11.0	51.0	94.0	5.0	54.0
12	12.0	45.0	94.0	33.0	55.0
13	13.0	44.0	0.0	35.0	55.0
14	14.0	52.0	95.0	56.0	56.0
15	15.0	35.0	94.0		57.0
16	16.0	57.0	97.0	57.0	57.0
17	17.0	45.0	90.0	71.0	57.0
18	18.0	39.0	94.0	54.0	57.0
19	19.0	31.0	94.0	63.0	57.0
20	20.0	45.0	94.0		59.0
21	21.0	35.0	90.0	84.0	59.0
22	22.0	37.0	90.0	40.0	61.0
23	23.0	83.0	97.0	26.0	61.0
24	24.0	68.0	97.0	55.0	62.0
25	25.0	50.0	95.0	56.0	62.0
26	26.0	77.0	93.0		63.0
27	27.0	84.0	48.0	18.0	63.0

Data Matrix

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Document-term Matrix

Types of data sets (cont.)

GGTTCCGCCTTCAGCC CCGCGCCCGCAGGG...

Data Sequence

Types of data sets (cont.)

Chemical Data

Spatio-Temporal Data

Average Monthly Temperature of land and ocean

Benzene Molecule: C₆H₆

Data Matrix

• Data can often be represented or abstracted as an $n \times d$ data matrix, with n rows and d columns, given as

$$D = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ x_1 & X_{11} & X_{12} & \cdots & X_{1d} \\ x_2 & X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n & X_{n1} & X_{n2} & \cdots & X_{nd} \end{pmatrix}$$

 Rows: Also called instances, examples, records, transactions, objects, points, feature-vectors, etc. Given as a d-tuple

$$x_i = (x_{i 1}, x_{i 2}, \dots, x_{id})$$

• **Columns:** Also called *attributes*, *properties*, *features*, *dimensions*, *variables*, *fields*, etc. Given as an *n*-tuple

$$X_j = (x_{1j}, x_{2j}, \dots, x_{nj})$$

Iris Dataset Extract

Data to quantify
the <u>morphologic</u> variation
of <u>Iris</u> flowers
<u>Wikipedia</u>

	Sepal length	Sepal width	Petal length	Petal width	Class
	X_1	X_2	X_3	X_4	X_5
\boldsymbol{x}_1	5.9	3.0	4.2	1.5	Iris-versicolor
x ₂	6.9	3.1	4.9	1.5	Iris-versicolor
x ₃	6.6	2.9	4.6	1.3	Iris-versicolor
X 4	4.6	3.2	1.4	0.2	Iris-setosa
x ₅	6.0	2.2	4.0	1.0	Iris-versicolor
x ₆	4.7	3.2	1.3	0.2	Iris-setosa
X 7	6.5	3.0	5.8	2.2	Iris-virginica
x ₈	5.8	2.7	5.1	1.9	Iris-virginica
:	:	:	i.	:	
X 149	7.7	3.8	6.7	2.2	Iris-virginica
χ_{150}	5.1	3.4	1.5	0.2	Iris-setosa /

Scatterplot: 2D Iris Dataset sepal length versus sepal width

Dataset Properties

Size:

Measured in terms of the total number of records or total number of bytes, e.g. Small (MB), medium (GB) and large (TB)

Dimensionality:

Number of attributes

Sparsity:

- Values are skewed to some extreme or sub-ranges
- Asymmetric values (some are more important than others)

Resolution:

- Right level of data details
- Related to the intended purpose

Data Sources

Public data

- Data hubs https://www.kaggle.com/datasets
- Machine learning challenges
- Data conferences
- Many others...

Enterprise/Organisational data warehouse

- An organisational database for decision making
- A central data repository separate from operational systems
- Equipped with data analysis and reporting tools
- Your own generated/collected data

Data Exploration

• Purpose:

- Better understanding of the characteristics of data
- Better decision over data pre-processing tasks
- Categories of data exploration techniques
 - Summary statistics: using a small set of descriptors to describe the characteristics of a large data set
 - Data visualisation: using graphical or tabular forms to reveal hidden data patterns

Summary Statistics - Central Tendency

• Mean and Median for continuous attributes:

- Mean
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- **Median** (Middle value if odd number of values, or average of the middle two values otherwise)

Median is a better indication of "average" when data distribution is skewed, or outliers are present

 Trimmed Mean and Median (after trimming top and bottom p%)

Summary Statistics - Central Tendency

- Mode for categorical attributes:
 - Frequency counts of values that a feature takes
- Proportion: Frequency count for a value divided by the total sample size
- Mode: the most frequently occurred value

Summary Statistics - Measures of Spread

Range

 $range(x) = \max(x) - \min(x)$

• Variance (σ^2)

 $\sigma^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \bar{x})^2$

Standard Deviation (σ)

 $\sigma = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (x_i - \bar{x})^2}$

- Percentiles continuous attributes:
 - Given an attribute x and an integer p ($0 \le p \le 100$), the percentile x_p is a value of x such that p% observed values of x are less than x_p . Q_1 (25^{th} percentile), Q_3 (75^{th} percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$

Summary Statistics using Pandas

```
df.describe()
```

```
df[['DepTime', 'DepDelay', 'ArrTime',
'ArrDelay']].agg(['mean', 'min', 'max'])
```

```
price_mean = df['price'].mean()
```

Measures of Spread - Example

```
print( "Mean: {:.2f}".format(df['price'].mean()))
print( "Median: {:.2f}".format(df['price'].median()))
print( "Std: {:.2f}".format(df['price'].std()))
print( "Var: {:.2f}".format(df['price'].var()))
print( "Quantiles: \n",df['price'].quantile([0.25,0.5,0.75]))
```

Multivariate Summary Statistics

- Measures relationship between pairs of continues features
 - Covariance

$$\sigma_{xy} = \text{covarianc}(x, y) = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - x)(y_i - y)$$

- a measure of the linear relations
- measures the extent to which the variables change together.
- The covariance matrix is a d x d (square) symmetric matrix

$$\begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \cdots & \cdots & \cdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

- Correlation (Pearson's Correlation Coefficient) $\rho_{x,y} = \operatorname{correlation}(x,y) = \frac{\operatorname{covariance}(x,y)}{\sigma_x \sigma_y}$
 - a measure of the linear relations
 - Between -1 and +1
 - If >0 or < 0, positively/negatively correlated (x's values increase/decrease as y's).
 - The closer to +1 or -1, the stronger correlation.
 - If = 0: independent.
- The correlation matrix is a d x d (square) symmetric matrix

$$\begin{pmatrix} \boldsymbol{\rho}_1^2 & \boldsymbol{\rho}_{12} & \cdots & \boldsymbol{\rho}_{1d} \\ \boldsymbol{\rho}_{21} & \boldsymbol{\rho}_2^2 & \cdots & \boldsymbol{\rho}_{2d} \\ \cdots & \cdots & \cdots & \cdots \\ \boldsymbol{\rho}_{d1} & \boldsymbol{\rho}_{d2} & \cdots & \boldsymbol{\rho}_d^2 \end{pmatrix}$$

Pearson's correlation coefficient

- Pearson's correlation coefficient is a parametric measure of the linear relationship between two continuous variables. As a parametric method, it makes certain assumptions about the data, including:
 - Linearity: there is a linear relationship between the two variables. If the relationship between the variables is not linear, Pearson's correlation may not accurately reflect the relationship.
 - Normality: the data is normally distributed. This means that the distribution of the residuals (the difference between the values) should follow a normal distribution.
 - Independence: the observations are independent of one another. This
 means that the value of one observation does not influence the value
 of another observation.

If these assumptions are not met, Pearson's correlation may not accurately reflect the relationship between the variables. In these cases, non-parametric methods, such as Spearman's rank correlation, may be more appropriate.

Spearman's Rank Correlation

Spearman's Rank Correlation

- non-parametric: does not assume a specific distribution of the data
- measure of the monotonic relations: the variables tend to move in the same direction, but not necessarily at a constant
- measure the degree of correlation between two variables
- calculated based on the ranks of the data points instead of the actual values.

Example:

Students	Maths	Science
Α	35	24
В	20	35
С	49	39
D	44	48
E	30	45

Students	Maths	Rank	Science	Rank	d	d square
Α	35	3	24	5	2	4
В	20	5	35	4	1	1
С	49	1	39	3	2	4
D	44	2	48	1	1	1
E	30	4	45	2	2	4
						14

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

P = Spearman's rank correlation coefficient

 d_i = difference between the two ranks of each observation

n = number of observations

$$1 - (6 * 14) / 5(25 - 1) = 0.3$$

The Spearman's Rank Correlation for the given data is 0.3. The value is near 0, which means that there is a weak correlation between the two ranks.

Data Exploration (Visualization)

Summary statistics give us some sense of the data:

- Mean vs. Median.
- Standard deviation
- Quartiles, Min/Max
- Correlations between variables.

Summary(data) x y Min. :-3.05439 Min. :-3.50179 1st Qu.:-0.61055 1st Qu.:-0.75968 Median : 0.04666 Median : 0.07340 Mean :-0.01105 Mean : 0.09383 3rd Qu.: 0.56067 3rd Qu.: 0.88114 Max. : 2.60614 Max. : 4.28693

Why Visualize?

Visualization gives us a more holistic sense

Anscombe's Quartet

4 data sets, characterized by the following. Are they the same, or are they different?

Property	Values
Mean of x in each case	9
Exact variance of x in each case	11
Exact mean of y in each case	7.5 (to 2 d.p)
Variance of Y in each case	4.13 (to 2 d.p)
Correlations between x and y in each case	0.816
Linear regression line in each case	Y = 3.00 + 0.500x (to 2 d.p and 3 d.p resp.)

i	i
Х	У
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.84
7.00	4.82
5.00	5.68

ii	
Х	У
10.00	9.14
8.00	8.14
13.00	8.74
9.00	8.77
11.00	9.26
14.00	8.10
6.00	6.13
4.00	3.10
12.00	9.13
7.00	7.26
5.00	4.74

iii					
X	У				
10.00	7.46				
8.00	6.77				
13.00	12.74				
9.00	7.11				
11.00	7.81				
14.00	8.84				
6.00	6.08				
4.00	5.39				
12.00	8.15				
7.00	6.42				
5.00	5.73				
,					

iv					
Х	У				
8.00	6.58				
8.00	5.76				
8.00	7.71				
8.00	8.84				
8.00	8.47				
8.00	7.04				
8.00	5.25				
19.00	12.50				
8.00	5.56				
8.00	7.91				
8.00	6.89				
	-				

Moral: Visualize Before Analyzing!

Visualizing Your Data

- Examining the distribution of a single variable
- Analyzing a single variable over time
- Analyzing the relationship between two variables
- Establishing multiple pair wise relationships between variables

Data visualization for a single feature

Bar plot

A dataset showing the positions and monthly training expenses of a basketball team.

ID	Position	TRAINING EXPENSES	ID	Position	TRA INING EXPENSES
1	center	56.75	11	center	550.00
2	guard	1,800.11	12	center	223.89
3	guard	1,341.03	13	center	103.23
4	forward	749.50	14	forward	758.22
5	guard	1,150.00	15	forward	430.79
6	forward	928.30	16	forward	675.11
7	center	250.90	17	guard	1,657.20
8	guard	806.15	18	guard	1,405.18
9	guard	1,209.02	19	guard	760.51
10	forward	405.72	20	forward	985.41

Frequency bar plot for for the POSITION feature

Density bar plot. (Probability distribution)

Order density bar plot.

Data visualization for a single feature

Frequency histograms (200/500-unit intervals) for the continuous TRAINING EXPENSES feature

Data visualization for a single feature

- Histogram to probability distribution
 - divide the count for each interval by the total number of observations in the dataset multiplied by the width of the interval

Density histograms (200/500-unit intervals) for the continuous TRAINING EXPENSES feature

Normal Distribution

- Many natural phenomena follow a normal distribution
 - Height, blood pressure, etc.
- Symmetric:
 - Most of the observations occur around the central peak
 - Probabilities for values further away from the centre decrease equally in both directions.
 - Extreme values in both tails of the distribution are similarly unlikely.

Skewed distributions

- A distribution is skewed if one of its tails is longer than the other
- A left-skewed distribution has a long left tail.
 Also called negatively-skewed distributions.
- A right-skewed distribution shows a long right tail. Also called positive-skew distributions.

Gaussian vs Skewed distributions

- In Normal distributions, the mean, median and mode are the same
- For skewed distributions, the mean is influenced by the tail

Spread Properties of Normal Distribution Curve

- The 68-95-99.7 rule:
 - From μ – σ to μ + σ : contains about 68% of the measurements
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it

Symmetric vs. Skewed Data

- Central measures can indicate level of symmetry in data
- Median, mean and mode of symmetric, positively and negatively skewed data

Symmetric

Positive (right) Skew

Negative (left) Skew

Mode larger than median

What are we looking for?

A sense of the data range

If it's very wide, or very skewed, try computing the log

Outliers, anomalies

Possibly evidence of dirty data

Shape of the Distribution

- Unimodal? Bimodal?
- Skewed to left or right?
- Approximately normal? Approximately lognormal?

Example - Distribution of purchase size (\$)

- Range from 0 to > \$10K, right skewed
- Typical of monetary data
- Plotting log of data gives better sense of distribution
- Two purchasing distributions
 - **~** \$55
 - ~ \$2900

Ouliers

- An outlier is a data point which is significantly different from the remaining data.
- "An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." [D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.]

Detecting Outliers - Extreme Value Analysis

Normal Distribution

- ~99% of the observations of a normally distributed variable lie within the mean ± 3 × standard deviations.
- Values outside mean ± 3 × standard deviations are considered outliers

Skewed distributions

- The general approach is to calculate the quantiles, and then the inter-quantile range (IQR), as follows:
- IQR = 75th Quantile 25th Quantile
- Upper limit = 75^{th} Quantile + IQR × 1.5
- Lower limit = 25th Quantile IQR × 1.5

Visualizing outliers -Boxplots

Images taken from pro.arcgis.com and wiki.commons

Visualizing outliers -Boxplots

Images taken from pro.arcgis.com and wiki.commons

Data visualization for a single feature

- Box plot
- Five-number summary of a distribution:
 Min, Q1, Med, Q3, Max
- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e.,
 the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend (usually) to
 Minimum and Maximum

Quartiles, outliers and boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: $IQR = Q_3 Q_1$
- Five number summary: min, Q₁, Med, Q₃, max
- Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually
- Outlier: usually, a value higher/lower than Q3/Q1 by 1.5 x IQR
- Example:

Grade:

Jiaac	•
65	
70	
80	
90	
65	
100	
60	
75	

60	Min
65	Q1
72.5	Med
85	Q3
100	MAX
20	IQR

Outlier Grades: Higher than: 85 + 1.5*20 = 115, and Lower than: 65 - 1.5*20 = 35

Quartiles, outliers and boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: IQR = Q₃ − Q₁
- Five number summary: min, Q₁, Med, Q₃, max
- Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually
- Outlier: usually, a value higher/lower than Q3/Q1 by 1.5 x IQR
- Example:

Grade:

75

Min
Q1
Med
Q3
MAX
IQR

Outlier Grades: Higher than: Q3 + 1.5 * IQR85 + 1.5*20 = 115,

and Lower than: Q1 - 1.5 * IQR 65 - 1.5*20 = 35

Analyzing a Single Variable over Time

What?

- Looking for ...
 - Data range
 - Trends
 - Seasonality

How?

Use time series plot

_Example

- •International air travel (1949-1960)
- Upward trend: growth appears superlinear
- Seasonality
 - Peak air travel around Nov. with smaller peaks near Mar. and June

Scatter Plot: Visualizing Pairs of Continuous Features

Not Correlated Data

Visualizing Pairs of Continuous Features

olris Characteristics: Strong linear relationship between petal length and width

H		ort seabor		k" font se	alo_1 E r	c-("14n	s.linewidth": 2.5})
							a dataframe
ы	iri	s.head()					
3]:							
٠, .		sepal_length	sepal_width	petal_length	petal_width	species	
٠,,	0	sepal_length		petal_length	petal_width	species setosa	
,5,1.			3.5				
.5].		5.1	3.5 3.0	1.4	0.2	setosa	
٠,٠	0	5.1 4.9	3.5 3.0 3.2	1.4	0.2	setosa setosa	

- Visualizing Pairs of Continuous Features: Iris Characteristics
 - Scatter Plot matrix
 - Strong linear relationship between petal length and width
 - Petal dimensions discriminate species more strongly than sepal dimensions

- Visualizing Pairs of Continuous Features
 - Correlation values

- Visualizing Pairs of Categorical Features
 - Collection of bar plots

(a) Career Stage and Shoe Sponsor

- Visualizing Pairs of Categorical Features
 - Stacked bar plots

- Visualizing a Categorical Feature and a Continuous **Feature**
 - **Collection of bar plots**

- Visualizing a Categorical Feature and a Continuous Feature
 - Collection box plots

- Quality issues due to invalid data
 - Caused by errors in the process to generate the features.
 - Fix: correct or regenerate them.

- Quality issues due to valid data
 - Exist because of domain-specific reasons.
 - Fix: correct in some cases or do not correct unless required by the trained models, e.g., models cannot be training with missing values or outliers.

Measurement & Data Collection Issues w.r.t. Quality

- **Precision:** the closeness of measurements to one another, represented by the standard deviation of the measurements, e.g. repeated measure of body temperature
- Bias: a systematic variation of measurements from the intended quantity
 measurement, only known when external reference available, e.g. bias in weight
 measure instrument
- Noise: modification of original values, e.g. distortion of a person's voice when talking on a poor phone, salary="-10".
- **Outliers:** considerably different from most values in the dataset or unusual with respect to the typical values.
- Irregular values: feature values do not match what we expect, e.g., features with the same value for every instance, (0, 1, m, f, M, and F) to for Male/Female.
- **Missing values** (Null values): Not measured or Not available, e.g. people decline to give their age and weight, and annual income is not applicable to children.

Main Quality Indicators

- Accuracy: data recorded with sufficient precision and little bias
- Correctness: data recorded without error and spurious objects
- Completeness: any parts of data records missing
- Consistency: compliance with established rules and constraints
- Redundancy: unnecessary duplicates

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources, e.g., e.g., one rating "1,2,3", another rating "A, B, C"
- Duplicate records

Why Quality is Important?

- No quality data, no quality results; "Garbage in, garbage out!"
- Total data quality control requires a cultural change
- For most ML projects, tackling the quality issue at the data source cannot be always expected; workaround?
 - By cleaning the data as much as possible
 - By developing and using more tolerate ML solutions
- Data quality is relevant to the intended purpose of the ML project, e.g. Does spelling errors in student names really matter when the increase/decrease of student numbers in subject areas over the years are of interest only?

Handling Data Quality Issues

Missing Values:

- Remove features that are missing in excess of 60% of their values.
- Replace missing values with an indicator (flag).
- Impute with mean, median or mode features that < 30% of their values missing.
- build a ML model that estimates a replacement for a missing value based on the other features.

Outliers

 Clamp values above an upper threshold and below a lower threshold to these threshold values.