lfxxx 出的模拟赛

时间: 2024 年 9 月 11 日 08:00 ~ 12:00

题目名称	团子制作	石樱异变	魔理沙偷走了重	妖魔夜行
			要的东西	
题目类型	传统型	传统型	传统型	传统型
目录	ringo	sayya	iosys	rumia
可执行文件名	ringo	sayya	iosys	rumia
输入文件名	ringo.in	sayya.in	iosys.in	rumia.in
输出文件名	ringo.out	sayya.out	iosys.out	rumia.out
每个测试点时限	1.0 秒	1.5 秒	3.0 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB	64 MB
测试点数目	20	20	25	20
测试点是否等分	是	是	是	是

提交源程序文件名

编译选项

对于 C++ 语言	
-----------	--

注意事项与提醒(请选手务必仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
 - 3. 提交的程序代码文件的放置位置请参照具体要求。
 - 4. 保证题目时空限制都在标算时空的两倍以上。
 - 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
 - 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
 - 7. 只提供 Windows 格式附加样例文件。
 - 8. 评测在 NOI Linux 下进行,各语言的编译器版本以其为准。
 - 9. 是笨蛋。
 - ⑩. 本试题为东方 project 二次创作,纯属虚构,登场人物、团体等均已进入幻想。

团子制作 (ringo)

【题目描述】

清兰和铃瑚正在制作团子。

现在她们已经完成了一些团子,将这些团子放到了一个 $n \times m$ 的矩形中,具体来说,我们输入一个 $n \times m$ 的字符矩形 a,对于矩形的 i 行 j 列,若 $a_{i,j}$ 为字符 '.' 则说明这里放了一个团子,否则 $a_{i,j}$ 为字符 '#',表示这里是空的。

现在,她们会按先后顺序分别使用一根竹签,串起来一些团子,对于一次串团子的操作,会选择横向或竖向连续的一些团子。形式化来说,首先要决定一个方向,是上下或者左右。

如果选择了上下,那么接下来会选择一个二元组集合 A,将 A 中的团子串起来,集合 A 需要满足,对于所有 $(x_i,y_i) \in A$, y_i 均相同, x_i 是连续的,并且 (x_i,y_i) 上是一个团子。

如果选择了左右,那么接下来会选择一个二元组集合 B,将 B 中的团子串起来,集合 B 需要满足,对于所有 $(x_i,y_i) \in B$, x_i 均相同, y_i 是连续的,并且 (x_i,y_i) 上是一个团子。

一次操作之后,对应被串起来的位置上的团子会消失,现在先由清兰操作一次,再 由铃瑚操作一次,你需要保证她们都至少串起来了一个团子,求有多少种不同的操作方 案,答案对 998244353 取模。

注意,两种操作方案不同,当且仅当一个<u>团子被不同的人串起</u>。或者在两个方案中, **存在一个团子在不同的方向被串起**。

本题开启多组测试。

【输入格式】

从文件 ringo.in 中读入数据。

第一行两个正整数 t 和 id,分别表示数据组数和测试点编号。样例中 id = 0。

接下来一共 t 组数据, 每组数据中:

第一行输入两个正整数 n,m 表示矩形的行数和列数。

接下来 n 行,每行 m 个字符,第 i 行 j 列的字符为 $a_{i,j}$ 。

【输出格式】

输出到文件 ringo.out 中。

共 t 行,每行一个正整数,表示不同的操作方案数对 998244353 取模的结果。

【样例1输入】

1 3 0

【样例1输出】

1 8
2 32
76

【样例 2】

见选手目录下的 ringo/ringo2.in 与 ringo/ringo2.ans。

【样例 3】

见选手目录下的 ringo/ringo3.in 与 ringo/ringo3.ans。

【数据范围】

测试点编号	$n,m \leq$	特殊限制
$1 \sim 4$	20	无
$5 \sim 8$	100	无
$9 \sim 12$	1000	A
$\boxed{13 \sim 16}$	1000	В
$\boxed{17 \sim 20}$	1000	无

A: 保证输入不存在字符 '#'。

B: 保证每组输入数据中字符 '.' 的数量不超过 1000 个。 对于所有数据,保证 $1 \le n, m \le 1000, 1 \le t \le 4$ 。

石樱异变 (sayya)

【题目描述】

摩多罗发动了石樱异变, 幻想乡的大部分妖精都变成石头, 三月精察觉了这一点, 出发挑战摩多罗, 解决异变。

但摩多罗并不想和三月精打架,她之用和三月精玩一个游戏,如果三月精胜利了就 结束异变。

具体来说,摩多罗会给出一个字符串 t,然后三月精会生成一个字符串 s,若 t 是 s 的子序列(不要求连续出现,比如 'aa' 是 'aba' 的子序列),则是三月精胜利。

然而三月精智力水平很低,她们只会随机生成字符串,字符串的每一位独立生成字符,并且她们对字母还有偏好,对于一个字符 x,三月精对它的偏好水平为 w_x ,设 $S = \sum_{i='a'}^{'z'} w_i$,则她们会以 $\frac{w_x}{S}$ 的概率生成一个字符 x。

现在三月精给出 n,对于每一个 $1 \le k \le n$,当 s 的长度为 k 时,你都要回答三月精她们获胜的概率。

为了避免精度误差,请你输出最终答案对 998244353 取模的结果。形式化地说,答案一定可以写成一个最简分数 $\frac{p}{q}$,请你输出一个正整数 x 满足 $0 \le x < 99824435,且 <math>qx \equiv p \pmod{998244353}$ 。可以证明在题目条件下这样的 x 是存在的。

【输入格式】

从文件 sayya.in 中读入数据。

第一行 26 个数, 按字母表顺序分别给出每个字母的偏好水平。

第二行输入一个字符串 t。

第三行输入一个正整数 n。

【输出格式】

输出到文件 sayya.out 中。

输出 n 行,第 i 表示 s 的长度为 i 时,三月精获胜的概率对 998244353 取模的结果。

【样例1输入】

2 abc

3 6

【样例1输出】

1 0

2 0

- 3 387318809
- 4 163712074
- 5 688748674
- 6 421131342

【样例 2】

见选手目录下的 sayya/sayya2.in 与 sayya/sayya2.ans。

【样例解释】

对于样例一来说,当 |s|=3 时,s= 'abc',这是唯一可能获胜的情况,这种情况的概率是 $0.3\times0.4\times0.3=0.036$,对 998244353 取模后的结果是 387318809。

【数据范围】

测试点编号	$n, m \leq$	特殊限制
$1 \sim 4$	4	无
$5 \sim 8$	2000	无
$9 \sim 12$	10^{5}	A
$\boxed{13 \sim 16}$	10^{5}	В
$\boxed{17 \sim 20}$	10^{5}	无

- B: 保证所有w相同。

对于所有数据,满足 $1 \le n, m \le 10^5, 0 \le w_i < 998244353$ 。

【说明提示】

以下内容可能在做题过程中帮得到你:

对于两个下标从 0 开始,长度分别为 n, m 的序列 $\{a\}, \{b\}$,定义序列卷积运算 *。它的定义如下:

设 c = a * b,则 $c_i = \sum\limits_{j=0}^{i} [j < n][i-j < m]a_j \times b_{i-j}$,c 是一个长度为 n+m-1 的序列,其中 [A] 为一个布尔表达式,若 A 为真则 [A] 为 1,否则为 0。

比如 $a = b = \{1, 1\}$,则 $c = a * b = \{1, 2, 1\}$ 。

我们在选手目录下发了代码 sayya/convolution.cpp,一份基于快速数论变化算法,可以在 $O((n+m)\log(n+m))$ 的时间复杂度计算在模 998244353 意义两个序列的卷积序列的代码,具体细节参照代码实现。

魔理沙偷走了重要的东西 (iosys)

【题目描述】

「那个人偷走了意想不到的东西。。」

[...?]

「那就是你的 心 啊!|

「是的!」

魔理沙又要在魔法森林行窃了,爱丽丝试图阻止她的行为。

具体来说,魔法森林可以看做一个 n 个节点组成的树 T,魔理沙有 m 次偷窃计划,第 i 次计划可以看做一个二元组 (u_i,v_i) ,设 L_i 为起点终点分别是 u_i,v_i 的树上路径经过的点构成的集合。

爱丽丝会布置一个防御系统,对于树上的 n 个点,她会选一些点(也可以不选)出来,在这些点上分别安装一个侦测人偶起到保护措施。

对于一个防御系统来说,爱丽丝定义它的安全程度为满足以下条件的集合 S 数量:

- 1. 爱丽丝想选出一个点集: S 内的所有元素都是不小于 1, 不大于 n 的整数。
- 2. 爱丽丝要可以防止任何一个 S 中完整的偷窃计划实施:对于任何一个偷窃计划 i, 若 $L_i \subseteq S$,则**至少** 存在一个侦测人偶在 u_i 到 v_i 的路径上(包括起点和终点)。
 - 3. 爱丽丝只想考虑一个连通的区域**:** S 必须是一个**树上连通块**。

提示: S 可以是一个空集。

你需要帮助爱丽丝求出所有防御系统的安全程度之和,由于这个数可能会非常大,你只需要输出它对 998244353 取模后的结果。

【输入格式】

从文件 iosys.in 中读入数据。

第一行一个正整数 id,表示测试点编号,保证对于样例来说,id = 0。

第二行两个正整数 n, m 分别表示树 T 的节点数量和偷窃计划的数量。

接下来 n-1 行,每行两个正整数 x_i, y_i ,表示树有一条连接 x_i, y_i 的边。

最后 m 行,每行两个正整数 u_i, v_i ,描述所有的偷窃计划。

【输出格式】

输出到文件 iosys.out 中。

一行一个正整数,表示所有防御系统的安全程度之和对998244353取模后的结果。

【样例1输入】

L 6

2 3 3

3 | 1 | 2 | 4 | 1 | 3 | 5 | 1 | 1 | 6 | 2 | 2 | 7 | 3 | 3 |

【样例1输出】

1 25

【样例 2 输入】

```
1 0 2 5 2 3 1 2 4 1 3 5 2 4 6 2 5 7 1 5 8 2 4
```

【样例2输出】

1 516

【样例 3】

见选手目录下的 *iosys/iosys3.in* 与 *iosys/iosys3.ans*。

【样例 4】

见选手目录下的 iosys/iosys4.in 与 iosys/iosys4.ans。

【数据范围】

测试点编号	n, m	特殊限制
$1 \sim 3$	$n, m \le 10$	无
$4 \sim 7$	$n \le 20, m \le 12$	A
$8 \sim 9$	$n \le 2000, m = 1$	无
$10 \sim 11$	$n \le 1000, m \le 11$	无
$12 \sim 13$	$n \le 3000, m \le 12$	В
$14 \sim 15$	$n \le 3000, m \le 12$	С
$16 \sim 17$	$n \le 3000, m \le 12$	无
$18 \sim 19$	$n \le 10^5, m \le 16$	В
$20 \sim 21$	$n \le 10^5, m \le 16$	С
$22 \sim 25$	$n \le 10^5, m \le 18$	无

A: 假如我们认为树的根节点是 1,则对于所有 $1 \le i \le m$,一定满足 u_i, v_i 中有一个节点是另一个节点的祖先节点。

- B: 对于所有 $1 \le i < n$,保证 $x_i = i, y_i = i + 1$ 。
- C: 对于所有 $1 \le i \le m$,保证 $u_i = v_i$ 。

对于所有数据,保证 $1 \le n \le 10^5, 1 \le m \le 18, 1 \le u_i, v_i, x_i, y_i \le n$,给出的树形态一定合法,不存在两个一模一样的偷窃计划。

妖魔夜行 (rumia)

【题目描述】

「看上去像不像是"圣人被钉在十字架上"?」

「看上去像是"人类采用了十进制"」

你遇见了食人妖怪露米娅, 你要逃离她。

现在你在点n上。

当你在点 x 上时, 你可以选择进行三种类型的移动:

- 1. 若 x < n,你可以后退一步到点 x + 1 上。
- 2. 你可以前进一步移动到点 x-1 上。
- 3. 你可以使用符卡,移动到点 d 上,满足 d|x。

其中 d|x 表示正整数 d 可以被 x 整除。

对于你来说,131 这样移动容易摔倒,所以不允许出现连续的三次移动类型分别为 131。

每个位置最多到达一次,如你移动到了点 1 上,你会立即结束移动,求有多少种不同的路径让你最后到达了点 1。

两种路径不同当且仅当存在一次<u>移动到的位置不同</u>或者一次<u>移动的种类不同</u>。 答案对 998244353 取模。

请注意本题特殊的空间限制。

【输入格式】

从文件 rumia.in 中读入数据。

一行一个正整数 n,表示最开始所在的位置。

【输出格式】

输出到文件 rumia.out 中。

一行一个正整数,表示不同的路径数量对998244353取模之后的结果。

【样例1输入】

1 4

【样例1输出】

1 7

【样例 2 输入】

1 20

【样例 2 输出】

1 1367

【样例3输入】

1 1000

【样例3输出】

1 325338903

【数据范围】

测试点编号	$n \leq$	
$1 \sim 4$	10	
$5 \sim 8$	300	
$9 \sim 10$	3000	
$11 \sim 12$	10^{4}	
$13 \sim 16$	4×10^4	
$17 \sim 20$	10^{5}	

对于所有数据,满足 $1 \le n \le 10^5$ 。