温州大学

2021 年数学建模竞赛

参赛组别: 本科生 (填写本科或研究生)

选做题号: <u>A</u> (填写A或B)

	参赛队员1	参赛队员 2	参赛队员3
姓名	董相铭	吕浩轩	何俊雪
学号	20211357104	20211357118	20211357109
学院	机电工程	计算机与人工智能	电子信息与电气工
子炕			程
专业	20 机械	20 计算机科学与技	20 电子信息技术
		术	
电话	13321208176	15167739133	15947463421
Emai1	2606629076@qq.com	1243082942@qq.com	1908997996@qq.com

温州大学教务处 温州大学数理学院

目录

—、	爆发期的国内疫情	的数据分析	2
_,	在进行有效防治措	施后相关数据分析	4
三、	在全球接种疫苗的	背景下	4~6
			7~10
五、	引用文献及资料		10

一、爆发期的国内疫情的数据分析

为了更加直观的预测新冠肺炎在没有疫苗的情况下,所呈现的爆发趋势,我们查找了国家卫健委发布的从 2020 年 1 月 20 日到 2020 年 2 月 16 日疫情通报的所有数据,并且进行了部分统计作为准备工作。

4	A	В	С	D	Е	F	G	Н	Ι
1		确诊病例(新增)	确诊病例(累计)	重症(现有)	死亡(累计)	治愈(累计)	密切接触(累计)	接受观察(现有)	
2	1月20日	77	291	0	6	0	1739	922	
3	1月21日	149	440	102	9	0	2197	1394	
4	1月22日	131	571	95	17	0	5897	4928	
5	1月23日	259	830	177	25	34	9507	8420	
6	1月24日	457	1287	237	41	38	15197	13967	
7	1月25日	688	1975	324	56	49	23431	21556	
8	1月26日	769	2744	461	80	51	32799	30453	
9	1月27日	1771	4515	976	106	60	47833	44132	
10	1月28日	1459	5974	1239	132	103	65537	59990	
11	1月29日	1737	7711	1370	170	124	88693	81947	
12	1月30日	1982	9692	1527	213	171	113579	102427	
13	1月31日	2102	11791	1795	259	243	136987	118478	
14	2月1日	2590	14380	2110	304	328	163844	137594	
15	2月2日	2829	17205	2296	361	475	189543	152700	
16	2月3日	3235	20438	2788	425	632	221015	171329	
17	2月4日	3887	24324	3219	490	892	252154	185555	
18	2月5日	3694	28018	3859	563	1153	282813	186354	
19	2月6日	3143	31161	4821	636	1540	314028	186045	
20	2月7日	3399	34546	6101	722	2050	345498	189660	
21	2月8日	2656	37198	6188	811	2649	371905	188183	
22	2月9日	3062	40174	6484	908	3281	399487	187518	
23	2月10日	2478	42638	7333	1016	3996	428438	187728	
24	2月11日	2015	44653	8204	1113	4740	451462	185037	
25	2月12日	15152	59804	8030	1367	5911	471531	181386	
26	2月13日	5090	63851	10204	1380	6723	493067	177984	
27	2月14日	2641	66492	11053	1523	8090	513183	169039	
28	2月15日	2009	68500	11272	1665	9419	529418	158764	
29	2月16日	1563	70548	10644	1770	10844	546016	150539	
30									

并查阅了知网相关论文, 主要是下面这一篇。

·新冠肺炎(NCP)防治专栏

基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用

COURS (COURS

联解¹, 徐安定², 王晓艳¹, 张勇³, 尹小妹⁴, 马茂¹, 吕军⁵ (1. 西安交通大学第一附属医院体检部。西安710061;2. 暨南大学 附属第一医院 神经内科。广州 510630;3. 西安交通大学第一附属医院 国有资产办公室。西安710061;4. 西安交通大学第一附属医院 几种,西安710061;5. 暨南大学 附属第一医院集床研究部,广州 510630)

[擴 頁] 目的:评价新型冠状病毒(2019-a-GaV)鲱类疫情中相关于预措施的作用。方法:收集2019-a-GaV疫情 数据。分析2019-a-GaV的传播特点。利用ppshom建立 SEIII模型,加入潜伏期传染率,感染人群变化率等新参数。含法 分析助控手段的有效性。 結果:始出多种相关于预措施下疫情发展趋势的预测。模型显示。基于严格限制出行的 隔离措施能够减缓 2019-a-GaV 发病曲线发展的趋势,使潜伏和感染人群的峰值异低 45.71% 和29.90%。潜伏人群 数量较快到这群峰:模拟发现,本次疫情的损点将出现在 3月初,但对比 2019-a-GaV 疫情实际数据,疫情拐点或将提 前出现。 建论: 2019-a-GaV 鲱类疫情的助控措施是有效的,各地力政府层严格执行隔离制度。切断传播途径。巩固 成果,全力遏制2019-a-GaV 传播。

[美健調] 新型冠状病毒; python; SEII 模型; 干预效果 [中服分类号] R183 [文献标识码] A [文章编号] 1000-9965(XXXX)XX-0001-07

Analysis of the role of current prevention and control measures in the epidemic of new coronavirus based on SEIR model

GENG Hui*, XU Anding*, WANG Xiaoyan*, ZHANG Yong*, YIN Xiaomei*, MA Mao*, Lit Jun* (1, Physical Examination center, the First Affiliated Hospital of Xi*an Jiaotong University, Xi*an 710061, China; 2, Department of Neurology, The First Affiliated Hospital of Jinan University, Gaangohou 510630, China; 3, State-worned Assets Office, First Affiliated Hospital of Xi*an Jiaotong University, Xi*an 710061, China; 4, Pediatrics, the First Affiliated Hospital of Xi*an Jiaotong University, Xi*an 710061, China; 5, Department of Clinical Research. The First Affiliated Hospital of Jinan University, Gaangohou 510630, China; 5

将确诊病例(新增)确诊病例(累计)重症(现有)死亡(累计)治愈(累计)密切接触(累计)接受观察(现有)这些数据导入excel文档并添加到我们编写的MATLAB函数中,使用SEIR模型计算康复率及死亡率以及各类人数,将数据导入模型中绘出图像如下。

由图像可直观的得出康复率在我国疫情爆发期的情况,我们发现康复率成幂函数增长,在爆发后20天更超过了1.0%,死亡率成线性增长。

二、在进行有效防治措施后相关数据分析

在世卫组织官网上下载中国在居家隔离后的相关数据导入 excel 文档并使用 matlab 仿真得出图像。

同理导入同时印度疫情爆发的数据将二者的图像作比较得出

三、在全球接种疫苗的背景下,全球疫情的未来态势

导入 2021 年 5 月中国的数据和印度的数据,得出图像并作对比 我们得出由于中国在进行全国疫苗免费接种后有很多人拥有了免疫力,使得新增 感染人数显著降低,康复率上甚至达到了 100%而同时的印度,由于控制不当, 新冠病毒发生了变异,使疫情发生了第二次爆发,成千上万人感染和死亡。

(全球无疫苗情况下新冠肺炎走势)

四、源代码及相关函数

```
function [rr,d] = getData_COVID_19()
1
       [data, ~, ~]=xlsread('C:\Users\DXM\Desktop\竞赛\温州大学数学建模大赛\COVID_19\data\2019年1月-2月中国新冠肺炎数据.xls');
2 -
3
       pat=data(:,2); %确诊人数
4 -
5 —
       pat_re=data(:,5); %康复人数
       pat_die=data(:,4); %死亡人数
6 -
7 —
       [fitresult, gof] = get_RE_2(pat, pat_re);
8 —
       m=fitresult.a;
9 —
       n=fitresult.b:
10 —
     for i=1:length(pat)
11 -
        rr(i)=m*pat(i)^(n-1);
12 —
13 —
       [fitresult, gof] = getDIE(pat, pat_die);
14 -
       d=fitresult.pl;
15 —
```

getDate_COVID_19 函数

```
1 -
       clear;clc
 2
 3 —
       S=8837300/8; %易感人群
 4 —
       E=2.4; %潜伏期人群
      I=1; %感染者
 5 —
       R=0; %康复者
 6 —
      N=S+E+I+R; %总数
8 —
 9
       r1=20; %潜伏期患者每天接触到的人
10 —
11 -
       r2=10; %感染者每天接触到的人
12 -
       b1=0.045; %潜伏期患者传染概率
13 —
       b2=0.045; %感染者传染概率
14 -
       a=0.10; %潜伏期患者变成感染者
15
       %r患者康复概率
16
       %d患者死亡概率
17
18 -
       [rr, d] = getData_COVID_19();
19 —
       days=200;
20
21 - for i=1:200
22 —
         if i>=16
23 -
             r1=3;
             r2=5:
24 —
25 —
          end
26 -
          if i<=28
27 —
              r=rr(i);
28 -
29 -
             r=rr(28);
30 —
31 —
          S(i+1)=S(i)-(r1*b1*E(i)*(S(i)/N)+r2*b2*I(i)*(S(i)/N));
32 —
          E(i+1)=E(i)+(r1*b1*E(i)*(S(i)/N)+r2*b2*I(i)*(S(i)/N))-(E(i)*a);
33 —
          I(i+1)=I(i)+E(i)*a-(I(i)*r+I(i)*d);
34 -
          R(i+1)=R(i)+I(i)*r;
35 —
          N=S(i+1)+E(i+1)+I(i+1)+R(i+1);
36 —
```

```
21 - for i=1:200
22 —
          if i>=16
23 —
              r1=3;
24 —
              r2=5;
25 —
           end
26 —
           if i<=28
27 —
              r=rr(i);
28 —
           else
29 -
             r=rr(28);
30 —
          S(i+1)=S(i)-(r1*b1*E(i)*(S(i)/N)+r2*b2*I(i)*(S(i)/N));
31 —
32 -
          E(i+1)=E(i)+(r1*b1*E(i)*(S(i)/N)+r2*b2*I(i)*(S(i)/N))-(E(i)*a);
33 —
          I(i+1)=I(i)+E(i)*a-(I(i)*r+I(i)*d);
          R(i+1)=R(i)+I(i)*r;
34 -
35 —
           N=S(i+1)+E(i+1)+I(i+1)+R(i+1);
36 —
      end
37
38 —
       x=1:days+1;
39 —
       subplot (2, 1, 1)
40 —
       plot(x, S, x, E, x, I, x, R);
41 —
       xlabel('天数');
42 —
       ylabel('人数');
       legend('易感人群','潜伏期患者','感染者','康复者');
43 —
44 —
       hold on;
       subplot (2, 1, 2)
45 -
46 —
       plot(rr(1:28))
47 —
       xlabel('天数');
48 —
       ylabel('康复率');
49
50
51
```

SEIR 模型

```
1
     function [fitresult, gof] = get_RE(pat, pat_re)
2
     © %CREATEFIT (PAT, PAT_RE)
3
       % Create a fit.
4
       % Data for 'untitled fit 1' fit:
5
6
       % X Input : pat
7
       % Y Output: pat_re
8
       % Output:
9
           fitresult : a fit object representing the fit.
           gof : structure with goodness-of fit info.
10
11
12
       -% 另请参阅 FIT, CFIT, SFIT.
13
       % 由 MATLAB 于 17-Feb-2020 20:27:15 自动生成
14
15
16
       %% Fit: 'untitled fit 1'.
17
18 —
       [xData, yData] = prepareCurveData( pat, pat_re );
19
20
       \% Set up fittype and options.
21 -
       ft = fittype('poly1');
22
23
       % Fit model to data.
      [fitresult, gof] = fit(xData, yData, ft);
25
       % Plot fit with data.
26
       %figure('Name', 'untitled fit 1');
27
28
       %h = plot( fitresult, xData, yData );
       %legend( h, 'pat_re vs. pat', 'untitled fit 1', 'Location', 'NorthEast' );
29
       % Label axes
30
31
       %xlabel pat
       %ylabel pat_re
32
       %grid on
33
24
```

get_RE函数

```
1 2
      function [fitresult, gof] = get_RE_2(pat, pat_re)
      %CREATEFIT (PAT, PAT_RE)
3
       % Create a fit.
4
5
        % Data for 'untitled fit 1' fit:
        % X Input : pat
% Y Output: pat_re
6
        % Output:
9
              fitresult : a fit object representing the fit.
10
             gof : structure with goodness-of fit info.
11
12
       -% 另请参阅 FIT, CFIT, SFIT.
13
        % 由 MATLAB 于 18-Feb-2020 11:28:16 自动生成
14
15
16
       % Fit: 'untitled fit 1'.
[data, `, `]=xlsread('C:\Users\DXM\Desktop\竞赛\温州大学数学建模大赛\COVID_19\data\2019年1月-2月中国新冠肺炎数据.xls');
17
18 —
19
20 —
        [xData, yData] = prepareCurveData( pat, pat_re );
21
22
        % Set up fittype and options.
       ft = fittype('powerl');
23 —
        opts = fitoptions('Method', 'NonlinearLeastSquares');
24 —
25 —
        opts. Display = 'Off';
26 —
        opts.StartPoint = [0.162869601184208 0.900104485756097];
27
28
        % Fit model to data.
       [fitresult, gof] = fit( xData, yData, ft, opts);
29 —
30
31
32
        %figure('Name', 'untitled fit 1');
        %h = plot (fitresult, xData, yData);
%legend(h, 'pat_re vs. pat', 'untitled fit 1', 'Location', 'NorthEast');
33
34
35
        % Label axes
36
        %xlabel pat
37
        %ylabel pat_re
```

get_RE2函数

```
function [fitresult, gof] = getDIE(pat, pat_die)
1
 2
      □ %CREATEFIT (PAT, PAT_DIE)
        % Create a fit.
 3
 4
        % Data for 'untitled fit 1' fit:
 5
 6
               X Input : pat
               Y Output: pat_die
 7
 8
        % Output:
 9
               fitresult: a fit object representing the fit.
10
               gof : structure with goodness-of fit info.
11
12
        -% 另请参阅 FIT, CFIT, SFIT.
13
14
        % 由 MATLAB 于 17-Feb-2020 20:33:33 自动生成
15
16
        %% Fit: 'untitled fit 1'.
17
18 -
        [xData, yData] = prepareCurveData( pat, pat_die );
19
20
        % Set up fittype and options.
        ft = fittype('poly1');
21 -
22
23
        % Fit model to data.
       [fitresult, gof] = fit(xData, yData, ft);
24 -
25
        % Plot fit with data.
26
        %figure('Name', 'untitled fit 1');
27
28
        %h = plot( fitresult, xData, yData );
29
        %legend( h, 'pat_die vs. pat', 'untitled fit 1', 'Location', 'NorthEast');
30
        % Label axes
31
        %xlabel pat
32
        %ylabel pat_die
33
        %grid on
34
35
```

Get_DIE函数

参考文献

- [1] 职心,徐安定,王晓艳,张勇,尹小妹,马茂,吕军.暨南大学学报(自然科学与医学版) 2020,41(2)
 - [2] 植运超,陈既谋,杨林森.东莞理工学院学报 2020, 27 (03)
 - [3] 李瑞松, 刘洪久. 浙江农林大学信息工程学院. 疾病预防控制通报.2021
- [4]疫情人数数据来自 https://covid19.who.int/info/ 世卫组织的冠状病毒 (COVID-19) 仪表板