Machine Learning and Financial Applications

Lecture 3 Modern Portfolio Management

Liu Peng

Learning outcomes

Get to know modern portfolio theory

Able to implement common portfolios

Know the pros and cons of common portfolio strategies

```
w1 + w2 + w3 = 1 (budget constraint)
```

optional (wi >= 0 (no-short constraint))

objective

What is Portfolio Management?

Portfolio Risk and Return

Q: Do we have access to asset risk and return parameters?

n assets

Portfolio Return:

 $\overline{R_p} = \sum_{i=1}^n w_i R_i$

w^T R

- R_p : Expected return of the portfolio
- w_i : Weight of asset i in the portfolio
- R_i : Expected return of asset i

 $w^T sigma (w = [w1, w2, w3])$

Portfolio Variance (Risk):

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \overline{\sigma_{ij}}$$

• σ_p^2 : Variance of portfolio returns

rho_ij < 1

• σ_{ij} : Covariance between returns of asset i and asset j

Portfolio Standard Deviation (Volatility):

$$\sigma_p = \sqrt{\sigma_p^2}$$

• σ_p : Standard deviation (volatility) of the portfolio

Mean-Variance Optimization

max Rp s.t. sigma_p^2 <= sigma_0^2

$$egin{aligned} & ext{Minimize } \sigma_p^2 & ext{subject to} & ext{$R_p \geq R_t,$} & ext{$\sum_{i=1}^n w_i = 1$} \end{aligned}$$
 R_t : Target return

Q:

What is an alternative formulation?

Optimization problem balances risk (σ_p^2) and return (R_p).

How does the risk aversion parameter come into the picture?

Risk-Adjusted Return

Efficient Frontier:

 Set of portfolios offering the maximum expected return for a given level of risk (or minimum risk for a given return).

Sharpe Ratio:

$$S_p = rac{ ext{Rf (benchmark)}}{\sigma_p} = rac{ ext{Rp} - R_f}{\sigma_p}$$
 excess return = $ext{Rp}$ - $ext{Rf}$

- S_p : Sharpe ratio of the portfolio
- R_f : Risk-free rate
- Measures risk-adjusted return; higher values indicate better performance.

- Risk and return constitute two objectives
- Often there is a tradeoff in these two
- To analyze both metrics together, we can use:
 - Efficient frontier
 - Sharpe ratio
 - Etc...

In-class quiz

• Q1-3

Common Portfolio Strategies

- Maximum return portfolio
- Minimum variance portfolio
- Mean-variance portfolio
- Maximum Sharpe ratio portfolio
- Etc...

Group Discussion

How to properly evaluate and assess different portfolio strategies?

Maximum Return Portfolio (MRP)

Example:

$$mu1 = 10\%$$
, $mu2 = 20\%$, $mu3 = 15\%$
 $w = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

Objective: Maximize the expected portfolio return

Rn

 $\text{maximize}_{\mathbf{w}} \mathbf{\underline{w}}^T \widehat{\boldsymbol{\mu}}$

- w: Weight vector of assets in the portfolio
- μ : Expected return vector of the assets

Constraint:

$$\mathbf{w}^T \mathbf{1} = 1$$

• Ensures the sum of the portfolio weights equals 1 (full investment).

Optimal Strategy:

Allocate entire investment to the asset with the highest expected return.

Optimal Weight Vector (\mathbf{w}_{MRP}):

$$w_{MRP,j} = egin{cases} 1 & ext{if } j = i^* \ 0 & ext{otherwise} \end{cases}$$

- $i^* = \arg\max_j \{\mu_j\}$
- μ_j : Expected return of asset j
- Asset i^* has the highest expected return, so $w_{i^*}=1$ and $w_i=0$ for all $j\neq i^*$.

Implications:

- The MRP is risk-indifferent; it maximizes return without considering variance.
- It typically resides on one end of the efficient frontier, representing the highest potential return but also the highest risk.

Global Minimum Variance Portfolio (GMVP)

Q: Do we need to predict asset returns?

Objective: Minimize Portfolio Variance

$$\min_{\mathbf{w}} \mathbf{w}^T \Sigma \mathbf{w}$$

Constraint:

$$\mathbf{w}^T \mathbf{1} = 1$$

· Ensures the portfolio is fully invested.

Lagrangian Formulation:

$$\mathcal{L}(\mathbf{w}, \gamma) = \mathbf{w}^T \Sigma \mathbf{w} + \gamma (1 - \mathbf{w}^T \mathbf{1})$$

• γ : Lagrange multiplier for the constraint.

First-Order Condition:

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = 2 \Sigma \mathbf{w} - \gamma \mathbf{1} = 0$$

Solving for w:

$$\mathbf{w} = rac{\gamma}{2} \Sigma^{-1} \mathbf{1}$$

Determine γ Using Full Investment Constraint:

$$rac{\gamma}{2} \mathbf{1}^T \Sigma^{-1} \mathbf{1} = 1 \implies \gamma = rac{2}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}$$

GMVP Weight Vector:

$$\mathbf{w}_{GMVP} = rac{\Sigma^{-1}\mathbf{1}}{\mathbf{1}^T\Sigma^{-1}\mathbf{1}}$$

Expected Return and Variance of GMVP

Expected Return of GMVP:

$$\mu_{GMVP} = \mathbf{w}_{GMVP}^T \boldsymbol{\mu}$$

• μ : Vector of expected returns for the assets.

Substitute GMVP Weights:

$$\mu_{GMVP} = \left(rac{\Sigma^{-1}\mathbf{1}}{\mathbf{1}^T\Sigma^{-1}\mathbf{1}}
ight)^Toldsymbol{\mu} = rac{\mathbf{1}^T\Sigma^{-1}oldsymbol{\mu}}{\mathbf{1}^T\Sigma^{-1}\mathbf{1}}$$

Variance of GMVP:

$$\sigma_{GMVP}^2 = \mathbf{w}_{GMVP}^T \Sigma \mathbf{w}_{GMVP}$$

Substitute GMVP Weights into Variance Expression:

$$\sigma_{GMVP}^2 = \left(rac{\Sigma^{-1} \mathbf{1}}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}
ight)^T \Sigma \left(rac{\Sigma^{-1} \mathbf{1}}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}
ight)^T$$

Simplify Variance Formula:

$$\sigma_{GMVP}^2 = rac{1}{(\mathbf{1}^T \Sigma^{-1} \mathbf{1})^2} \left(\mathbf{1}^T \Sigma^{-1} \Sigma \Sigma^{-1} \mathbf{1}
ight)$$

Final Variance Expression:

$$\sigma_{GMVP}^2 = rac{1}{\mathbf{1}^T \Sigma^{-1} \mathbf{1}}$$

Mean-Variance Optimization (MVO)

Objective: Maximize the trade-off between expected return and risk for a portfolio of assets.

$$\max_{\mathbf{w}} \left(\mathbf{w}^T oldsymbol{\mu} - rac{1}{2} \lambda \mathbf{w}^T \Sigma \mathbf{w}
ight)$$

Subject to:

$$\mathbf{w}^T \mathbf{1} = 1$$

Parameters:

- w: Portfolio weights for assets.
- μ : Vector of expected returns.
- Σ : Covariance matrix of returns.
- λ: Risk-aversion coefficient.

Interpretation: Balances maximizing expected returns and minimizing risk, controlled by λ .

Solving the MVO Using Lagrangian Multipliers

Lagrangian Function:

$$\mathcal{L}(\mathbf{w}, \gamma) = \mathbf{w}^T oldsymbol{\mu} - rac{1}{2} \lambda \mathbf{w}^T \Sigma \mathbf{w} + \gamma (1 - \mathbf{w}^T \mathbf{1})$$

First-Order Conditions (FOCs):

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = oldsymbol{\mu} - \lambda \Sigma \mathbf{w} - \gamma \mathbf{1} = 0$$

Optimal Weights:

$$\mathbf{w} = rac{1}{\lambda} \Sigma^{-1} oldsymbol{\mu} - rac{\gamma}{\lambda} \Sigma^{-1} \mathbf{1}$$

Determine γ using Budget Constraint:

$$\gamma = rac{1}{\lambda} \left(oldsymbol{\mu}^T \Sigma^{-1} \mathbf{1} - \lambda
ight) \Big/ \left(\mathbf{1}^T \Sigma^{-1} \mathbf{1}
ight)$$

In-class quiz

• Q4-7

Maximum Sharpe Ratio Portfolio (MSRP)

Objective: Maximize Sharpe Ratio

Sharpe Ratio =
$$\frac{R_p - R_f}{\sigma_p}$$

- R_p : Portfolio return
- R_f : Risk-free rate
- σ_p : Portfolio standard deviation (risk)

Optimization Problem:

$$\max_{\mathbf{w}} rac{\mathbf{w}^T oldsymbol{\mu} - R_f}{\sqrt{\mathbf{w}^T \Sigma \mathbf{w}}}$$

- μ : Expected returns vector
- Σ: Covariance matrix of asset returns
- Subject to: $\mathbf{w}^T \mathbf{1} = 1$

Challenge:

 Non-linear objective function due to square root in the denominator, making the problem potentially non-convex.

Workaround - Using Excess Returns:

$$\max_{\mathbf{w}} \left(\mathbf{w}^T (oldsymbol{\mu} - R_f \mathbf{1}) - rac{oldsymbol{\lambda}}{2} \mathbf{w}^T \Sigma \mathbf{w}
ight)$$

• Simplifies the optimization problem using excess returns over the risk-free rate.

Maximum Sharpe Ratio Portfolio (MSRP) (optimal)

Lagrangian Formulation:

$$\mathcal{L}(\mathbf{w}) = \mathbf{w}^T (oldsymbol{\mu} - R_f \mathbf{1}) - rac{\lambda}{2} \mathbf{w}^T \Sigma \mathbf{w}$$

• λ : Risk aversion parameter

First-Order Condition (FOC):

$$abla_{\mathbf{w}} \mathcal{L} = (\boldsymbol{\mu} - R_f \mathbf{1}) - \lambda \Sigma \mathbf{w} = 0$$

• Solve for w to find the unconstrained solution:

$$\mathbf{w}^*_{unconstrained} = rac{1}{\lambda} \Sigma^{-1} (oldsymbol{\mu} - R_f \mathbf{1})$$

Normalization for Full Investment:

$$\mathbf{w}_{MSRP} = rac{\mathbf{w}^*_{unconstrained}}{\mathbf{1}^T \mathbf{w}^*_{unconstrained}} = rac{\Sigma^{-1} (oldsymbol{\mu} - R_f \mathbf{1})}{\mathbf{1}^T \Sigma^{-1} (oldsymbol{\mu} - R_f \mathbf{1})}$$

Portfolio Composition:

- ullet N risky assets with return vector $\mathbf{r} = [r_1, r_2, \dots, r_N]^T.$
- One risk-free asset (e.g., Treasury bills) with constant return R_f .

Portfolio Weights:

- Weights for risky assets: $\mathbf{w} \in \mathbb{R}^N$.
- Weight for risk-free asset: w_f .
- Budget constraint: $\mathbf{w}^T \mathbf{1} + w_f = 1$.

Portfolio Return:

$$r_p = \mathbf{w}^T \mathbf{r} + w_f R_f = \mathbf{w}^T (\mathbf{r} - R_f \mathbf{1}) + R_f$$

Excess Return:

$$ilde{r}_p = r_p - R_f = \mathbf{w}^T (\mathbf{r} - R_f \mathbf{1}) = \mathbf{w}^T ilde{\mathbf{r}}$$

• $\tilde{\mathbf{r}} = \mathbf{r} - R_f \mathbf{1}$: Vector of excess return random variables.

Expected Excess Return and Variance:

$$ilde{\mu}_p = \mathbf{w}^T ilde{oldsymbol{\mu}}, \quad \sigma_p^2 = \mathbf{w}^T \Sigma \mathbf{w}$$

• $ilde{m{\mu}} = m{\mu} - R_f \mathbf{1}$: Vector of expected excess returns.

Optimization Problem:

$$\min_{\mathbf{w}} \mathbf{w}^T \Sigma \mathbf{w}, \quad \text{subject to } \mathbf{w}^T \tilde{\boldsymbol{\mu}} = \tilde{\mu}_0$$

Lagrangian Function:

$$\mathcal{L}(\mathbf{w}, \lambda) = \mathbf{w}^T \Sigma \mathbf{w} + \lambda (ilde{\mu}_0 - \mathbf{w}^T ilde{oldsymbol{\mu}})$$

First-Order Condition (FOC):

• Derivative w.r.t. w:

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = 2\Sigma \mathbf{w} - \lambda ilde{m{\mu}} = 0$$

Solve for w:

$$\mathbf{w} = rac{1}{2} \lambda \Sigma^{-1} ilde{oldsymbol{\mu}}$$

Determine λ Using Constraint:

• Derivative w.r.t. λ :

$$rac{\partial \mathcal{L}}{\partial \lambda} = ilde{\mu}_0 - \mathbf{w}^T ilde{oldsymbol{\mu}} = 0$$

· Substitution yields:

$$\lambda = rac{2 ilde{oldsymbol{\mu}}_0}{ ilde{oldsymbol{\mu}}^T\Sigma^{-1} ilde{oldsymbol{\mu}}}$$

Optimal Weights:

$$\mathbf{w}^* = ilde{oldsymbol{\mu}}_0 rac{\Sigma^{-1} ilde{oldsymbol{\mu}}}{ ilde{oldsymbol{\mu}}^T \Sigma^{-1} ilde{oldsymbol{\mu}}}$$

Applying Full Investment Constraint:

• For $\mathbf{1}^T \mathbf{w} = 1$:

$$\mathbf{w}_{MSRP} = rac{\Sigma^{-1}(oldsymbol{\mu} - R_f \mathbf{1})}{\mathbf{1}^T \Sigma^{-1}(oldsymbol{\mu} - R_f \mathbf{1})}$$

· Confirms the closed-form solution for MSRP.

An Alternative Derivation for MSRP (optional)

Connecting MVO Weights with Other Portfolios

Final Expression for Optimal Weights:

$$\mathbf{w}_{MVO} = rac{1}{\lambda} \Sigma^{-1} oldsymbol{\mu} - \left(rac{1}{\lambda} \left(oldsymbol{\mu}^T \Sigma^{-1} \mathbf{1} - \lambda
ight) \Big/ \left(\mathbf{1}^T \Sigma^{-1} \mathbf{1}
ight)
ight) \Sigma^{-1} \mathbf{1}$$

Weights as a Combination of GMVP and MSRP:

$$\mathbf{w}_{MVO} = \mathbf{w}_{GMVP} + \left(rac{\mu_{GMVP}}{\lambda \sigma_{GMVP}^2}
ight) \left(\mathbf{w}_{MSRP} - \mathbf{w}_{GMVP}
ight)$$

Key Insights:

- \mathbf{w}_{MVO} is a blend of the Global Minimum Variance Portfolio (GMVP) and Maximum Sharpe Ratio Portfolio (MSRP).
- The allocation adjustment between GMVP and MSRP depends on the risk-return tradeoff parameter λ , GMVP's expected return (μ_{GMVP}), and its variance (σ_{GMVP}^2).

Comparing Common Portfolios

In-class quiz

• Q8-10

```
modifier_ob.
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
Irror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z";
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 melection at the end -add
   ob.select= 1
  er ob.select=1
  ntext.scene.objects.action
  "Selected" + str(modified
  irror ob.select = 0
 bpy.context.selected_obje
  ata.objects[one.name].se
 int("please select exactle
 OPERATOR CLASSES ----
    vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
```

Coding session

Group Homework – Implementing Common Portfolio Strategies

Obtain financial data (at least three assets) of your own choice

- Strategy Implementation:
 - Implement at least three strategies
 - Use rolling window approach to obtain out-ofsample results
 - Report final performance metrics (CAGR, annual volatility, Sharpe ratio, and max drawdown)

Watch/review video tutorials and class recording

Post learning reflections and questions if any

Complete group homework

