The Smith Normal Form using Sage

Morith Hlavaty, Julian Kornweibel May 20, 2024

1 Definitions

1.1 Definition: Ring

A **Ring** $(R, +, \cdot)$ is a set R with the two operations + (addition) and \cdot (multiplication), for which the following holds true:

- (R, +) is an abelian group under addition, meaning it satisfies all group properties and the commutative property.
- (R, \cdot) is a semigroup under multiplication, meaning it satisfies group properties, but does not require inverse elements or a neutral element.
- The distributive properties apply.

A Ring is called a commutative ring, if it satisfies the commutative property under multiplication.

1.2 Definition: Integral domain

Let R be a Ring. R is a integral domain if it is a nonzero commutative ring in which for each pair of nonzero elements the following property holds true: for $a, b \in R \setminus \{0\}$ is $a * b \neq 0$

1.3 Definition: Ideal

Let I be a subset of a ring $(R, +, \cdot)$. I is an **ideal** if the following holds true:

- (I, +) is a subgroup of (R, +).
- For all $a \in I$ and $r \in R$, $r \cdot a = a \cdot r \in I$

Note also, that we formally differentiate between left- and right-ideal if the ring is not commutative, but we only require a commutative ring for this project. In this case, it is common to write the ideal generated by a as $\langle a \rangle$.

We now define a special type of ideal:

1.4 Definition: Principle Ideal & Principle Ideal Domain (PID)

Let $(R, +, \cdot)$ be a commutative ring. An ideal of the form:

$$\bullet \ a \cdot R = R \cdot a = \{a \cdot r : r \in R\}$$

is called a **principle ideal** generated by a.

You can imagine this as a subset of multiples of the elements of the ring over R. The principle ideal generated by $k \in \mathbb{Z}$ is: $k\mathbb{Z} = \{0, \pm k, \pm 2k, ...\}$.

Let $(R, +, \cdot)$ be an integral domain. Then R is a **principle ideal domain** (PID) if every ideal in $(R, +, \cdot)$ is a principle ideal.

1.5 Lemma:

The set of Integers \mathbb{Z} is a PID.

Proof. Let $I \subset \mathbb{Z}$ be an ideal.

Trivially, suppose the $I = \{0\}$

$$\Rightarrow I = 0 \cdot \mathbb{Z}$$

 $\Rightarrow I$ is a principle ideal.

Now let $I \subset \mathbb{Z}$ be a non-zero ideal.

 \Rightarrow there exists a smallest positive integer $a \in I$, where a > 0.

Now let $b \in I$ and suppose b > a. The extended euclidean algorithm for \mathbb{Z} tells us that there must exist $q, r \in \mathbb{Z}$ such that $b = a \cdot q + r$ with $0 \le r < a$.

$$\Rightarrow r = b - a \cdot q$$
.

Since $a \in I$ and $q \in \mathbb{Z}$,

$$\Rightarrow a\cdot q\in I$$

$$\Rightarrow b - a \cdot q \in I$$

$$\Rightarrow r \in \mathbb{Z}$$
.

And since a is the smallest possible integer in I

$$\Rightarrow r = 0$$

 \Rightarrow ever element in I must be of the form $b = a \cdot q$

$$\Rightarrow I = a \cdot \mathbb{Z}$$
. Meaning I is a principle ideal.

 \Rightarrow Every ideal in \mathbb{Z} is a principle ideal, so \mathbb{Z} is a PID.

1.6 Lemma:

every Field \mathbb{F} is a PID

Proof. Let F be a field and $I \subset F$ be a non-zero ideal (as the zero case is identical

to the one above).

 $\Rightarrow 1 = a^{-1} \cdot a \in I$, where a^{-1} exists since F is a field and $a \neq 0$.

$$\Rightarrow \forall b \in F, b = b \cdot 1 \in I$$

$$\Rightarrow I = F = \langle 1 \rangle \text{ if } I \neq \{0\}$$

 \Rightarrow The only ideals of a field F are $\langle 0 \rangle = \{0\}$ and $\langle 1 \rangle = F$, both of which are clearly principal ideals.

1.7 Definition: Identity Matrix

An $n \times n$ matrix I_n is the **identity matrix** if all the diagonal elements are equal to 1 and all the other elements are zero, meaning it is of the form:

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

1.8 Definition: Invertible Matrix

A matrix P over a PID is **invertable** if there exists a matrix Q over the PID such that:

•
$$P \cdot Q = I_n$$

Clearly, if P and Q are units, then PQ is also a unit.

1.9 Definition: Elementary Matrix

There eixist three types of elementary matricies defined as followed: A $n \times n$ matrix E_i^{α} in the form:

$$\begin{bmatrix} 1 & 0 & \dots & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 1 & \ddots & & \vdots \\ \vdots & & \ddots & \alpha & \ddots & \vdots \\ \vdots & & & \ddots & 1 & \ddots & \vdots \\ \vdots & & & \ddots & 1 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & 1 \end{bmatrix}$$

with α some value in the PID.

This represents multiplication of a row or column by α and is invertable.

A $n \times n$ matrix $E_{i,j}^{\alpha}$ in the form:

$$\begin{bmatrix} 1 & 0 & \dots & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 1 & \ddots & \alpha & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & 1 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & 1 \end{bmatrix}$$

with α some value in the PID.

This represents adding a multiple of a row or column and is invertable by appling the matrix with $-\alpha$

1.9 Definition: Elementary Matrix

A $n \times n$ matrix $E_{i,j}$ in the form:

$$\begin{bmatrix} 1 & 0 & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & & & \vdots \\ \vdots & \ddots & 1 & \ddots & & & & \vdots \\ \vdots & & \ddots & 0 & \ddots & 1 & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 1 & \ddots & 0 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 & 1 \\ \end{cases}$$

This represents swapping two rows or columns and is invertable by applying the same matrix again

2 Smith Normal Form

2.1 Definition Smith Normal Form (SNF)

Let A be a non-zero $m \times n$ matrix over a PID R.

There exist **invertable** $m \times m$ and matrices P and Q over R such that the product $P \cdot A \cdot Q$ is of the form:

$$PAQ = \begin{bmatrix} \alpha_1 & 0 & \dots & \dots & \dots & 0 \\ 0 & \alpha_2 & \ddots & & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \alpha_r & \ddots & & \vdots \\ \vdots & & & \ddots & 0 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & 0 \end{bmatrix} = S$$

which has the following attributes:

- the diagonal elements α_i satisfy: $\alpha_i \mid \alpha_{i+1}$ for all i, where $1 \leq i < r$.
- P is a product of elementary row matrices.
- Q is a product of elementary column matrices.

S = PAQ is the **Smith normal form** of A.

2.2 Algorithm

The algorithm will be presented in the 'Jupyter Notebook', but the basic idea will always be the following:

Let A, P, Q, and S be defined as they were in **2.1**, then:

$$\begin{bmatrix} A & I_m \\ I_n & * \end{bmatrix} \longrightarrow \begin{bmatrix} S & P \\ Q & * \end{bmatrix}$$

which we can always obtain by applying elementary row and column operations.