Monotonic Alpha-divergence Minimisation

Kamélia Daudel

Postdoc at the University of Oxford kamelia.daudel@gmail.com

CIRM 29/09/2021

Joint work with Randal Douc and François Roueff

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.
- → Variational Inference (VI): inference is seen as an optimisation problem
- **1** Posit a variational family Q, where $q \in Q$.
- \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{g \in \mathcal{O}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- (i) Choice of D
- ii) Choice of G

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.
- → Variational Inference (VI): inference is seen as an optimisation problem
 - **1** Posit a variational family Q, where $q \in Q$.
 - \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{g \in \mathcal{O}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- (i) Choice of L
- ii) Choice of Q

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family Q, where $q \in Q$.
 - $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{Q}}$ (typically the KL divergence)

- (i) Choice of D
- ii) Choice of 9

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family Q, where $q \in Q$.
 - \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{Q}}$ (typically the KL divergence)

- (i) Choice of D
- ii) Choice of G

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data \mathcal{D}

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family \mathcal{Q} , where $q \in \mathcal{Q}$.
 - 2 Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- (i) Choice of D (ii) Choice of Q

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data \mathcal{D}

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many complex models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family \mathcal{Q} , where $q \in \mathcal{Q}$.
 - 2 Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- (i) Choice of D (ii) Choice of Q

The α -divergence family

 $(\mathsf{Y},\mathcal{Y},\nu)$: measured space, ν is a σ -finite measure on (Y,\mathcal{Y}) . \mathbb{Q} and $\mathbb{P}:\mathbb{Q}\preceq\nu$, $\mathbb{P}\preceq\nu$ with $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu}=q$, $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu}=p$.

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

The α -divergence family

 $(\mathsf{Y},\mathcal{Y},\nu)$: measured space, ν is a σ -finite measure on (Y,\mathcal{Y}) . \mathbb{Q} and $\mathbb{P}:\mathbb{Q}\preceq\nu$, $\mathbb{P}\preceq\nu$ with $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu}=q$, $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu}=p$.

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{0,1\right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

A flexible family of divergences...

Figure: In red, the Gaussian which minimises the α -divergence to a mixture of two Gaussian for a varying α

Adapted from Divergence Measures and Message Passing. T. Minka (2005). Technical Report MSR-TR-2005-173

The α -divergence family (2)

$\alpha\text{-divergence}$ between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{ 0, 1 \right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$
$$= \operatorname{arginf}_{q \in \mathcal{Q}} \Psi_{\alpha}(q; p)$$

with
$$\Psi_{\alpha}(q;p)=\int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$$
 and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

The α -divergence family (2)

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{ 0, 1 \right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\begin{split} q^{\star} &= \operatorname{arginf}_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q} || \mathbb{P}_{|\mathscr{D}}) \\ &= \operatorname{arginf}_{q \in \mathcal{Q}} \Psi_{\alpha}(q; p) \end{split}$$

with
$$\Psi_{\alpha}(q;p)=\int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$$
 and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

Our approach

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Idea:

Extend the typical variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by considering the variational family

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\lambda,\Theta} k(y) = \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

and propose an update formula for (λ,Θ) that ensures a systematic decrease in the α -divergence / Ψ_{α} at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta,y) \in T \times Y$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_Y p(y)\nu(\mathrm{d}y) < \infty$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0$$
 (Weights)

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0$$
 (Weights)

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

- (Weights) and (Components) permit simultaneous updates
- The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta},k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{i=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

- (Weights) and (Components) permit simultaneous updates
- The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta},k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{i=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

- (Weights) and (Components) permit simultaneous updates
- 2 The dependency is simpler in (Weights)

$$\rightarrow$$
 (Weights) holds for λ_{m+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta},k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

- (Weights) and (Components) permit simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha-1)\kappa \geqslant 0$

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

$$\int_{\mathbf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y) , \quad j = 1 \dots J$$

Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{i,n} \in (0,1], c_{i,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \mathrm{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

and $g_{j,n}$ is assumed to be $eta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \mathrm{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j=1...J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \mathrm{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j=1...J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $eta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

Maximisation approach

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) , \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- $\ensuremath{\mathbf{2}}$ We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) , \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0, \, \eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- $\ensuremath{\mathbf{2}}$ We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow We recover the M-PMC algorithm when lpha=0, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow We recover the M-PMC algorithm when lpha=0, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $j = 1 \dots J$, se

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) y \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n}) (y - m_{j,n})^{T} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}.$$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration n

$$\hat{\gamma}_{j,\alpha}^{n}(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $j = 1 \dots J$, set

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) (y - m_{j,n})^T \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}.$$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration m

$$\hat{\gamma}_{j,\alpha}^{n}(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $j = 1 \dots J$, set

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n}) (y - m_{j,n})^{T} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}.$$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration n

$$\hat{\gamma}_{j,\alpha}^n(y) = \frac{k(\theta_{j,n},y)}{q_n(y)} \left(\frac{\mu_{\boldsymbol{\lambda}_n,\boldsymbol{\Theta}_n}k(y)}{p(y)}\right)^{\alpha-1}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , d = 16$$

$$\begin{split} &\alpha=0,\,\eta_n=\eta\\ &M=200,\,J=100\\ &q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ &\rightarrow \text{varying }\eta\text{ and }\kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times \left[0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})\right] \;, d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times \left[0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})\right] \;, d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

Gradient-based approach

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}} , \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{i,n} = \lambda_{i,n} (\int_{\mathbb{R}} \mu_{\lambda_n} \Theta_{\lambda_n} k(u)^{\alpha} p(u)^{1-\alpha} \nu(\mathrm{d}u))^{-1}$
- \rightarrow Problem: $\lambda_{i,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{i,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- ullet Rényi's lpha-divergence minimisation :
- $c_{j,n} = \lambda_{j,n} \left(\int_{\mathsf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{i,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem : $\lambda_{i,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{i,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_{Y} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y))^{-1}$

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \;, \quad j = 1 \dots J \\ \theta_{j,n+1} &= \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta) |_{\theta = \theta_{j,n}} \;, \quad j = 1 \dots J \end{split}$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = \frac{\mathbf{c}_{j,n}}{\int_{\mathbf{Y}}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \frac{\lambda_{j,n}}{\lambda_{j,n}} (\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem: $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_{Y} \gamma_{j,\alpha}^{n}(y)\nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta) |_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = \frac{\mathbf{c}_{j,n}}{\int_{\mathbf{Y}}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \frac{\lambda_{j,n}}{(\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- o Solution enabled by our framework : $c_{j,n}=(\int_{\mathbf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y))^{-1}$

- $\rightarrow \mathsf{Gaussian} \; \mathsf{kernels} \; k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \; \mathsf{with} \; \Theta \in \mathsf{T}^J, \, \mathsf{T} = \mathbb{R}^d \; \mathsf{and} \; \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_Y \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = (\int_{Y} \gamma_{i,\alpha}^{n}(y)\nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2}(1-\alpha)^{-1}$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration r

- $\rightarrow \mathsf{Gaussian} \; \mathsf{kernels} \; k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \; \mathsf{with} \; \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \; \mathsf{and} \; \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = (\int_{Y} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2}(1-\alpha)^{-1}$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration r

- $\rightarrow \mathsf{Gaussian} \; \mathsf{kernels} \; k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \; \mathsf{with} \; \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \; \mathsf{and} \; \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = (\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration r

- $\rightarrow \text{Gaussian kernels } k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \text{ with } \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \text{ and } \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - $\bullet \ \mathsf{Case} \ 2: \ c_{j,n} = (\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d} y))^{-1} \ \mathsf{with} \ \beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$

Algorithm 2: α -divergence minimisation for GMMs (2)

At iteration n.

For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \theta_{j,n+1} &= \begin{cases} \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - \theta_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} & \text{(Case 1)} \\ (1 - \gamma_n) \, \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \, y \, \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} & \text{(Case 2)} \end{cases} \end{split}$$

 $[\]rightarrow$ In practice : M i.i.d samples generated from a_n at iteration n

- $\rightarrow \text{Gaussian kernels } k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2\boldsymbol{I_d}) \text{ with } \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \text{ and } \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{i,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n}=(\int_{\mathbf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n}=\sigma^{-2}(1-\alpha)^{-1}$

Algorithm 2: α -divergence minimisation for GMMs (2)

At iteration n.

For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \theta_{j,n+1} &= \begin{cases} \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - \theta_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} & \text{(Case 1)} \\ (1 - \gamma_n) \, \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \, y \, \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} & \text{(Case 2)} \end{cases} \end{split}$$

 \rightarrow In practice : M i.i.d samples generated from q_n at iteration n

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

Target:
$$p(y) = 2 \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$
, $d = 16$

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation,
- mixture weights and mixture components parameters can be updated simultaneously,
- empirical benefits of our general framework compared to gradient-based approaches and to the M-PMC algorithm

- Additionnal convergence results
- ML applications (suggestions?)

Thank you for your attention!

kamelia.daudel@gmail.com

Monotonic Alpha-divergence Minimisation

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2020). To appear in the Annals of Statistics.

Practical algorithm for GMMs optimisation

o Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \mathbf{I}_d)$ with $\theta_j \in \mathsf{T} = \mathbb{R}^d$ and $\sigma^2 > 0$

Algorithm 3: α -divergence minimisation for GMMs (constant σ^2)

At iteration n.

① Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .

2 For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n} (Y_{m,n}) + (\alpha-1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{\ell,\alpha}^{n} (Y_{m,n}) + (\alpha-1)\kappa \right]^{\eta_{n}}} \\ \theta_{j,n+1} &= \begin{cases} \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n} (Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n} (Y_{m,n})} & \text{(Maximisation)} \\ \theta_{j,n} &+ \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n} (Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\gamma}_{j,\alpha}^{n} (Y_{m,n})} & \text{(GD-based)} \end{cases} \end{split}$$

Here.

$$\hat{\gamma}_{j,\alpha}^{n}(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Practical algorithm for GMMs optimisation

o Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \mathbf{I}_d)$ with $\theta_j \in \mathsf{T} = \mathbb{R}^d$ and $\sigma^2 > 0$

Algorithm 3: α-divergence minimisation for GMMs (constant σ^2)

At iteration n,

- **①** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) + (\alpha-1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{\ell,\alpha}^{n}(Y_{m,n}) + (\alpha-1)\kappa \right]^{\eta_{n}}} \\ \theta_{j,n+1} &= \begin{cases} \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})} & \text{(Maximisation)} \\ \theta_{j,n} &+ \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})} & \text{(GD-based)} \end{cases} \end{split}$$

Here

$$\hat{\gamma}_{j,\alpha}^n(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Practical algorithm for GMMs optimisation

o Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \mathbf{I}_d)$ with $\theta_j \in \mathsf{T} = \mathbb{R}^d$ and $\sigma^2 > 0$

Algorithm 3: α -divergence minimisation for GMMs (constant σ^2)

At iteration n,

- **1** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{\ell,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa \right]^{\eta_{n}}} \\ \theta_{j,n+1} &= \begin{cases} \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})} & \text{(Maximisation)} \\ \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{j=1}^{J} \sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})} & \text{(GD-based)} \end{cases} \end{split}$$

Here,

$$\hat{\gamma}_{j,\alpha}^n(y) = \frac{k(\theta_{j,n},y)}{q_n(y)} \left(\frac{\mu_{\boldsymbol{\lambda}_n,\boldsymbol{\Theta}_n}k(y)}{p(y)}\right)^{\alpha-1}$$

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

<u>Parameters</u>

$$\begin{array}{l} \alpha=0,\,\eta_n=\eta,\,M=200\\ q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ \text{vs}\\ q_n(y)=J^{-1}\sum_{j=1}^Jk(\theta_{j,n},y)\\ \rightarrow \text{varying }\eta\text{ and }\kappa \end{array}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\begin{array}{l} \alpha=0,\,\eta_n=\eta,\,M=200\\ q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ \text{vs}\\ q_n(y)=J^{-1}\sum_{j=1}^Jk(\theta_{j,n},y)\\ \rightarrow \text{varying }\eta\text{ and }\kappa \end{array}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

<u>Parameters</u>

$$\begin{array}{l} \alpha=0\text{, }\eta_n=\eta\text{, }M=200\\ q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ \text{vs}\\ q_n(y)=J^{-1}\sum_{j=1}^Jk(\theta_{j,n},y)\\ \rightarrow \text{varying }\eta\text{ and }\kappa \end{array}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

<u>Parameters</u>

$$\begin{array}{l} \alpha=0,\ \eta_n=\eta,\ M=200\\ q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ \text{vs}\\ q_n(y)=J^{-1}\sum_{j=1}^Jk(\theta_{j,n},y)\\ \rightarrow \text{varying }\eta \text{ and }\kappa \end{array}$$

