Drugs_data = pd.read_csv("./drug.csv") print(Drugs_data) print("Data Types:\n", Drugs_data.dtypes) print("----") print("Missing Values:\n", Drugs_data.isnull().sum()) Drugs_data_cleaned = Drugs_data.dropna() # Separate features and targets X = Drugs_data_cleaned.drop(columns=['Drug']) y_status = Drugs_data_cleaned['Drug'] # Categorical feature encoding for X encoder = LabelEncoder() categorical_cols = X.select_dtypes(include=['object']).columns for col in categorical_cols: X[col] = encoder.fit_transform(X[col]) # Categorical target encoding for y le_status = LabelEncoder() y_status_encoded = le_status.fit_transform(y_status) # Numerical standardization scaler = StandardScaler() numerical_cols = X.select_dtypes(include=['float64', 'int64']).columns X[numerical_cols] = scaler.fit_transform(X[numerical_cols]) # Separate into training and testing sets for both X and $y_{_}$ status # X_train, X_test, y_status_train_encoded, y_status_test_encoded = train_test_split(# X, y_status_encoded, test_size=0.3, random_state=90) # print("\nEncoded Training Data:\n", X_train) # print("\nEncoded Testing Data:\n", X_test) print("-----") Age Sex BP Cholesterol Na_to_K Drug 23 F HIGH 25.355 drugY 47 M LOW HIGH 13.093 drugC 47 M LOW HIGH 10.114 drugC 28 F NORMAL HIGH 3 NaN drugX HIGH 18.043 drugY 4 61 F LOW 195 56 F LOW HIGH 11.567 drugC HIGH 12.006 drugC 196 LOW 16 M HIGH 197 52 M NORMAL 9.894 drugX 198 23 M NORMAL NaN 14.020 drugX NORMAL 11.349 drugX 199 40 F LOW [200 rows x 6 columns] Data Types: Age int64 Sex object object Cholesterol object float64 Na_to_K brug dtype: object Missing Values: Age 0 Sex BP Cholesterol 2 Na_to_K Drug dtype: int64 In [3]: #experiment no.1 experiment_number = 5 treeSize = [] All_acuracies = [] for i in range(experiment_number): X_train, X_test, y_status_train_encoded, y_status_test_encoded = train_test_split(X, y_status_encoded, test_size=0.3, random_state=i*40) # Create Decision_Tree clf = DecisionTreeClassifier(random_state=40) clf.fit(X_train, y_status_train_encoded) # decision tree size size = clf.tree_.node_count treeSize.append(size) y_pred = clf.predict(X_test) # accuracy calculation accuracy_i = accuracy_score(y_status_test_encoded, y_pred) All_acuracies.append(accuracy_i) print(f"Experiment no. {i + 1}:") print(f"Size of Decision Tree: {size}") print(f"Accuracy equals: {accuracy_i:.2f}") print("-----") Experiment no. 1: Size of Decision Tree: 11 Accuracy equals: 0.98 Experiment no. 2: Size of Decision Tree: 11 Accuracy equals: 1.00 -----Experiment no. 3: Size of Decision Tree: 11 Accuracy equals: 0.98 -----Experiment no. 4: Size of Decision Tree: 11 Accuracy equals: 1.00 ______ Experiment no. 5: Size of Decision Tree: 11 Accuracy equals: 0.98 ______ In [5]: #Best Performing best_ofAll_experiment = All_acuracies.index(max(All_acuracies)) print(f" The Best Performing Model is fromExperiment number: {best_ofAll_experiment + 1}") print(f"it's Size : {treeSize[best_ofAll_experiment]}") print(f"it's Accuracy : {All_acuracies[best_ofAll_experiment]:.2f}") print("-----") The Best Performing Model is from Experiment number: 2 it's Size : 11 it's Accuracy : 1.00 In [6]: #f experiment no.2 Accuracies_Mean = [] Accuracies_Maximum = [] Accuracies_Minimum= [] $TreeSizes_Mean = []$ TreeSizes_Maximum = [] TreeSizes_Minimum = [] SIze2 = [] All_accuracies2 = [] RandomSeeds_ = [42, 66, 33, 90, 125]SplitingRRange = range(30, 80, 10) for SplitRanges in SplitingRRange: SplitRanges /= 100.0 TrainingSetSize=1-SplitRanges for seed_o in RandomSeeds_: X_train, X_test, y_status_train_encoded, y_status_test_encoded = train_test_split(X, y_status_encoded, test_size=TrainingSetSize, random_state=seed_o) #Creation of DT clf = DecisionTreeClassifier(random_state=seed_o) clf.fit(X_train, y_status_train_encoded) # decision tree size size_i = clf.tree_.node_count SIze2.append(size_i) y_pred = clf.predict(X_test) # accuracy calculation accuracy_j = accuracy_score(y_status_test_encoded, y_pred) All_accuracies2.append(accuracy_j) Accuracies_Mean.append(np.mean(All_accuracies2)) Accuracies_Maximum.append(np.max(All_accuracies2)) Accuracies_Minimum.append(np.min(All_accuracies2)) TreeSizes_Mean.append(np.mean(SIze2)) TreeSizes_Maximum.append(np.max(SIze2)) TreeSizes_Minimum.append(np.min(SIze2)) Reporting_ = pd.DataFrame({ 'TrainingSetSize': SplitingRRange, 'MeanAccuracy': Accuracies_Mean, 'MaximumAccuracy': Accuracies_Maximum, 'MinimumAccuracy': Accuracies_Minimum, 'MeanTreeSize': TreeSizes_Mean, 'MaximumTreeSize': TreeSizes_Maximum, 'MinimumTreeSize': TreeSizes_Minimum }) print(Reporting_) TrainingSetSize MeanAccuracy MaximumAccuracy MinimumAccuracy \ 0.945985 0.868613 30 1.0 0.868613 40 0.958463 1.0 1 2 50 0.967547 1.0 0.868613 3 0.973096 0.868613 60 1.0 70 0.977121 0.868613 4 1.0 MeanTreeSize MaximumTreeSize MinimumTreeSize 11.000000 11 11.000000 11 11 1 13 11 2 11.133333 3 11.100000 13 11 11.080000 13 11 In [7]: #plotting plt.subplot(1, 2, 1) plt.title('Accuracy against Training Set Size') plt.xlabel('Training Set Size in (%)') plt.ylabel('Accuracy') plt.plot(SplitingRRange, Accuracies_Minimum, label='Minimum Accuracy') plt.plot(SplitingRRange, Accuracies_Maximum, label='Maximum Accuracy') plt.plot(SplitingRRange, Accuracies_Mean, label='Mean Accuracy') plt.legend() plt.subplot(1, 2, 2) plt.title('Tree Size against Training Set Size') plt.xlabel('Training Set Size in (%)') plt.ylabel('Number of Final Tree Nodes') plt.plot(SplitingRRange, TreeSizes_Minimum, label='Minimum Tree Size') plt.plot(SplitingRRange, TreeSizes_Maximum, label='Maximum Tree Size') plt.plot(SplitingRRange, TreeSizes_Mean, label='Mean Tree Size') plt.legend() plt.show() print("-----") Accuracy against Training Set Sizeee Size against Training Set Size 1.00 13.00

Nour Ayman Alaassar 20200406 Rawan Mostafa Mahmoud 20200183

In [1]: **import** numpy **as** np

In [2]: # Data Preprocessing

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score

from sklearn.preprocessing import StandardScaler, LabelEncoder

12.75 0.98 Nodes 12.50 0.96 12.25 Minimum Accuracy → Minimum Tree Size Accuracy 0.94 Maximum Accurac Maximum Tree Size 12.00 Mean Accuracy Mean Tree Size 0.92 ‡1.75 · 11.50 0.90 11.25 0.88 1.00 30 40 50 60 70 30 40 50 60 70 Training Set Size in (%) Training Set Size in (%) In [12]: # Load the diabetes dataset df = pd.read_csv('diabetes.csv') # Function for Min-Max Scaling def min_max_scaling(data): min_vals = np.min(data, axis=0) $max_vals = np.max(data, axis=0)$ scaled_data = (data - min_vals) / (max_vals - min_vals) return scaled_data In [13]: # Function for computing Euclidean distance def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2)) # Function to perform KNN classification def knn_classify(train_data, train_labels, test_instance, k): distances = np.zeros(len(train_data)) for i in range(len(train_data)): distances[i] = euclidean_distance(train_data[i], test_instance) # Get indices of k nearest neighbors k_neighbors_indices = np.argsort(distances)[:k] # Use Distance-Weighted Voting to break ties class_votes = {} for idx in k_neighbors_indices: label = train_labels[idx] weight = 1 / distances[idx] # Inverse of distance class_votes[label] = class_votes.get(label, 0) + weight # Return the class with the highest weighted votes return max(class_votes, key=class_votes.get) # Function to split data into training and testing sets def train_test_split(data, labels, split_ratio=0.7): split_index = int(split_ratio * len(data)) train_data, test_data = data[:split_index], data[split_index:] train_labels, test_labels = labels[:split_index], labels[split_index:] return train_data, train_labels, test_data, test_labels # Function to evaluate KNN with different k values def evaluate_knn(data, labels, k_values): accuracies = [] for k in k_values: correct_classifications = 0 for i in range(len(test_data)): predicted_label = knn_classify(train_data, train_labels, test_data[i], k) if predicted_label == test_labels[i]: correct_classifications += 1 accuracy = correct_classifications / len(test_data) * 100 accuracies.append(accuracy) print(f'k value: {k}\nNumber of correctly classified instances: {correct_classifications}\n' f'Total number of instances: {len(test_data)}\nAccuracy: {accuracy:.2f}%\n') # Calculate and print average accuracy avg_accuracy = np.mean(accuracies) print(f'Average Accuracy Across All Iterations: {avg_accuracy:.2f}%') In [14]: # Extract features and labels from the dataset features = df.drop('Outcome', axis=1).values labels = df['Outcome'].values # Normalize features using Min-Max Scaling scaled_features = min_max_scaling(features) # Split data into training and testing sets train_data, train_labels, test_data, test_labels = train_test_split(scaled_features, labels) # Define k values for iterations $k_{values} = [26, 27, 28]$

Evaluate KNN with different k values evaluate_knn(test_data, test_labels, k_values) k value: 26 Number of correctly classified instances: 183 Total number of instances: 231 Accuracy: 79.22% k value: 27 Number of correctly classified instances: 181 Total number of instances: 231 Accuracy: 78.35% k value: 28 Number of correctly classified instances: 181 Total number of instances: 231 Accuracy: 78.35% Average Accuracy Across All Iterations: 78.64%