Linear and Convex Optimization Homework 02

Qiu Yihang, 2021/10/03-10/05

1. Proof:

By the definition, $\forall x_1, x_2 \in f^{-1}(C), \forall \theta \in [0,1], \exists y_1, y_2 \in C \text{ s.t. } y_1 = f(x_1), y_2 = f(x_2).$ Let $\bar{\theta} = 1 - \theta$. Since C is convex, $\theta y_1 + \bar{\theta} y_2 \in C$.

Since f(x) = Ax + b is an affine function,

$$f(\theta x_1 + \bar{\theta} x_2) = A(\theta x_1 + \bar{\theta} x_2) + b = \theta A x_1 + \theta b + \bar{\theta} A x_2 + \bar{\theta} b = \theta y_1 + \bar{\theta} y_2 \in C,$$

i.e. $\theta x_1 + \bar{\theta} x_2 \in f^{-1}(C)$.

Thus, $f^{-1}(C)$ is also convex.

Qed.

2. Proof:

First we prove $\mathbf{0} \notin C$ by contradiction. If $\mathbf{0} \in C$, by definition we know $\exists x_1 \in C_1, x_2 \in C_2$ s.t. $x_1 - x_2 = \mathbf{0}$, i.e. $C_1 \cap C_2 = \{x_1\} \neq \emptyset$. Contradiction. Thus, $\mathbf{0} \notin C$.

Then we prove C is a nonempty set.

Since C_1 and C_2 are both nonempty sets, there exist at least one $x_1 \in C_1$ and one $x_2 \in C_2$. By definition, we have $x_1 - x_2 \in C$. Thus, C is a nonempty set.

Now we prove C is a convex set.

 $\forall x, y \in C, \forall \theta \in [0,1]$, by definition, $\exists x_1, y_1 \in C_1, x_2, y_2 \in C_2$ s.t. $x = x_1 - x_2, y = y_1 - y_2$. Let $\bar{\theta} = 1 - \theta$.

Since C_1 and C_2 are both convex sets, $\mathbf{z_1} \triangleq \theta \mathbf{x_1} + \bar{\theta} \mathbf{y_1} \in C_1$, $\mathbf{z_2} \triangleq \theta \mathbf{x_2} + \bar{\theta} \mathbf{y_2} \in C_2$.

Thus,
$$\theta x + \bar{\theta} y = \theta x_1 - \theta x_2 + \bar{\theta} y_1 - \bar{\theta} y_2 = (\theta x_1 + \bar{\theta} y_1) - (\theta x_2 + \bar{\theta} y_2) = z_1 - z_2 \in C$$
.

Therefore, C is a convex set.

In conclusion, C is a nonempty convex set and $\mathbf{0} \notin C$.

Qed. \blacksquare

3. (a) Proof:

 $\forall x_1, x_2 \in \text{int } C, \ \forall \theta \in [0,1], \ \text{Since int } C \subset C, \ x_1, x_2 \in C.$

Since C is convex, $\forall x_1, x_2 \in C, \forall \theta \in [0,1]$, let $\bar{\theta} = 1 - \theta$, $y \triangleq \theta x_1 + \bar{\theta} x_2 \in C$.

Since $x_1, x_2 \in \text{int } C$, $\exists \varepsilon > 0 \text{ s.t. } B(x_1, \varepsilon) \subset C$, $B(x_2, \varepsilon) \subset C$.

 $\forall z \in B(y, \varepsilon), \|z - y\| < \varepsilon,$

i.e.
$$z - y + x_1 \in B(x_1, \varepsilon) \subset C$$
, $z - y + x_2 \in B(x_2, \varepsilon) \subset C$,

$$z = y + (z - y) = \theta x_1 + \bar{\theta} x_2 + (\theta + \bar{\theta})(z - y) = \theta(z - y + x_1) + \bar{\theta}(z - y + x_2) \in C.$$

Thus, $B(y, \varepsilon) \subset C$, i.e. $y \in \text{int } C$.

In other words, **int** *C* is convex.

(b) Proof:

 $\forall x_1, x_2 \in \bar{C}, \forall \theta \in [0,1], \text{ let } \bar{\theta} = 1 - \theta, y = \theta x_1 + \bar{\theta} x_2, \partial C = \bar{C} \setminus \text{int } C \triangleq \{x: x \in \bar{C}, x \notin \text{int } C\}.$ There are three cases:

CASE 1. $x_1, x_2 \in \text{int } C$. Since C is convex, from (a) we know $y \in \text{int } C \subset \overline{C}$.

CASE 2. $x_i \in \text{int } C, x_j \in \partial C, \{i, j\} = \{1, 2\}. \text{ Let } x_1 \in C, x_2 \in \partial C.$

- (1) When $\theta = 0$, $y = x_2 \in \bar{C}$.
- (2) When $\theta \in [0,1)$, since $x_2 \in \partial C$, for given $\varepsilon > 0$, we can always find $\tilde{x}_2 \in B(x_2, \varepsilon)$
- s.t. $\widetilde{x}_2 \in \text{int } C$. We have $\|\widetilde{x}_2 x_2\| < \varepsilon$.

From (a) we know $\theta x_1 + \bar{\theta} \widetilde{x}_2 \in \text{int } C$ and $B(\theta x_1 + \bar{\theta} \widetilde{x}_2, \varepsilon) \subset C \subset \bar{C}$.

Meanwhile,
$$\mathbf{y} = \theta \mathbf{x}_1 + \bar{\theta} \mathbf{x}_2 = (\theta \mathbf{x}_1 + \bar{\theta} \widetilde{\mathbf{x}}_2) + \bar{\theta} (\mathbf{x}_2 - \widetilde{\mathbf{x}}_2) \in B(\theta \mathbf{x}_1 + \bar{\theta} \widetilde{\mathbf{x}}_2, \theta \varepsilon)$$

 $\subset B(\theta x_1 + \bar{\theta} \widetilde{x}_2, \varepsilon) \subset \bar{C}.$

CASE 3. $x_1, x_2 \in \partial C$.

- (1) When $\theta = 0$, $y = x_2 \in \bar{C}$.
- (2) When $\theta = 1$, $y = x_1 \in \bar{C}$.
- (3) When $\theta \in (0,1)$, since $x_1, x_2 \in \partial C$, for given $\varepsilon > 0$, we can always find $\widetilde{x}_1 \in B(x_1, \varepsilon), \widetilde{x}_2 \in B(x_2, \varepsilon)$ s.t. $\widetilde{x}_1, \widetilde{x}_2 \in \text{int } C$.

We have
$$\|\widetilde{x}_1 - x_1\| < \varepsilon$$
, $\|\widetilde{x}_2 - x_2\| < \varepsilon$.

From (a) we know $\theta \widetilde{x}_1 + \bar{\theta} \widetilde{x}_2 \in \text{int } C$ and $B(\theta \widetilde{x}_1 + \bar{\theta} \widetilde{x}_2, \varepsilon) \subset C \subset \bar{C}$.

Meanwhile,
$$y = \theta x_1 + \bar{\theta} x_2 = (\theta \tilde{x}_1 + \bar{\theta} \tilde{x}_2) + \bar{\theta} (x_2 - \tilde{x}_2) + \theta (x_1 - \tilde{x}_1)$$
.

Since
$$\|\bar{\theta}(x_2 - \tilde{x}_2) + \theta(x_1 - \tilde{x}_1)\| \le \theta \|\tilde{x}_1 - x_1\| + \bar{\theta} \|\tilde{x}_2 - x_2\| \le \theta \varepsilon + \bar{\theta} \varepsilon \le \varepsilon$$
, $y \in B(\theta \tilde{x}_1 + \bar{\theta} \tilde{x}_2, \varepsilon) \subset \bar{C}$.

Thus, $y \in \bar{C}$.

In other words, \bar{C} is convex.

Qed.

4. (a) Proof:

 $\forall y_1, y_2 \in C$, by definition we know $\exists \varphi_1, \dots, \varphi_m, \mu_1, \dots, \mu_m$ s.t.

$$\sum_{i=1}^{m} \varphi_i x_i = y_1, \sum_{i=1}^{m} \mu_i x_i = y_2, \sum_{i=1}^{m} \varphi_i = 1, \sum_{i=1}^{m} \mu_i = 1, \varphi_i \ge 0, \mu_i \ge 0 \ (i = 1, 2, ..., m).$$

 $\forall \theta \in [0,1], \text{ let } \bar{\theta} = 1 - \theta,$

$$\theta \mathbf{y}_1 + \bar{\theta} \mathbf{y}_2 = \sum_{i=1}^m \theta \varphi_i \mathbf{x}_i + \sum_{i=1}^m \bar{\theta} \mu_i \mathbf{x}_i = \sum_{i=1}^m (\theta \varphi_i + \bar{\theta} \mu_i) \mathbf{x}_i,$$

$$\sum_{i=1}^m \theta \varphi_i + \bar{\theta} \mu_i = \theta \sum_{i=1}^m \varphi_i + \bar{\theta} \sum_{i=1}^m \mu_i = \theta + \bar{\theta} = 1,$$

$$\theta \varphi_i + \bar{\theta} \mu_i \ge 0 \ (i = 1, 2, ..., m).$$

Thus, $\theta y_1 + \bar{\theta} y_2 \in C$.

In other words, C is convex.

(b) Proof:

First we prove $C \subset \mathbf{conv} S$ by contradiction.

If there exists $x \in C$ s.t. $x \notin \text{conv } S$, by definition we know $x = \sum_{i=1}^{m} \theta_i x_i$.

Meanwhile, since $x_1, ..., x_m \in \mathbf{conv} S$ and $\mathbf{conv} S$ is convex, by theorem, convex combination $x \in \mathbf{conv} S$. (The theorem will be proved below.)

Contradiction.

Thus, $\forall x \in C$, $x \in \text{conv } S$, i.e. $C \subset \text{conv } S$.

By definition we know
$$S \subset C$$
 (let $\theta_i = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases}$ $(i \in \{1, ..., m\})$, we get $\mathbf{x}_k \in C$).

Since **conv** S is the smallest convex set containing S (by the definition of convex hull) and C is a convex set containing S, we know **conv** $S \subset C$.

Therefore, $C = \mathbf{conv} S$.

Qed. \blacksquare

(The theorem given in the ppt and used above can be proved as follows.)

<u>Thm.</u> If C is convex and $x_1, ..., x_m \in C$, any convex combination $x = \sum_{i=1}^m \theta_i x_i \in C$. *Proof.* Prove the theorem by induction.

We prove

$$y_n = \frac{\sum_{i=1}^n \theta_i x_i}{\sum_{i=1}^n \theta_i} \in C \ (n \in \{1, ..., m\}).$$

BASE STEP. When n = 1, obviously $y_1 = x_1 \in C$.

When n = 2, obviously $y_2 \in C$ (by the definition of convex sets).

INDUCTIVE STEP.

Suppose when n = k < m, $y_n \in C$.

Let
$$\bar{\theta}_{k+1} = 1 - \theta_{k+1}$$
, then $\bar{\theta}_{k+1} \ge 0$, $\theta_{k+1} \ge 0$

(by the definition of convex combination).

Since $\frac{\sum_{i=1}^k \theta_i}{\sum_{i=1}^{k+1} \theta_i} + \frac{\theta_{k+1}}{\sum_{i=1}^{k+1} \theta_i} = 1$, by the definition of convex sets, we have

$$\frac{\sum_{i=1}^k \theta_i}{\sum_{i=1}^{k+1} \theta_i} y_k + \frac{\theta_{k+1}}{\sum_{i=1}^{k+1} \theta_i} x_{k+1} \in C.$$

i.e

$$\begin{aligned} \boldsymbol{y}_{k+1} &= \frac{\sum_{i=1}^{k+1} \theta_{i} \boldsymbol{x}_{i}}{\sum_{i=1}^{k+1} \theta_{i}} = \frac{\sum_{i=1}^{k} \theta_{i} \boldsymbol{x}_{i} + \theta_{k+1} \boldsymbol{x}_{k+1}}{\sum_{i=1}^{k+1} \theta_{i}} = \frac{\sum_{i=1}^{k} \theta_{i}}{\sum_{i=1}^{k+1} \theta_{i}} \frac{\sum_{i=1}^{k} \theta_{i} \boldsymbol{x}_{i}}{\sum_{i=1}^{k+1} \theta_{i}} + \frac{\theta_{k+1}}{\sum_{i=1}^{k+1} \theta_{i}} \boldsymbol{x}_{k+1} \\ &= \frac{\sum_{i=1}^{k} \theta_{i}}{\sum_{i=1}^{k+1} \theta_{i}} \boldsymbol{y}_{k} + \frac{\theta_{k+1}}{\sum_{i=1}^{k+1} \theta_{i}} \boldsymbol{x}_{k+1} \in C \end{aligned}$$

Thus, $y_n \in C$ still holds when n = k + 1 $(n \le m)$.

Therefore, $y_m \in C$.

Since $\sum_{i=1}^{m} \theta_i = 1$ (by the definition of convex combination), we have

$$x = \sum_{i=1}^{m} \theta_i x_i = \frac{\sum_{i=1}^{m} \theta_i x_i}{\sum_{i=1}^{m} \theta_i} = y_m \in C.$$

5. Proof:

Consider the case of $\|x - x_0\|_2 \le \|x - x_i\|_2$.

Let
$$\boldsymbol{x}=(y_1,\ldots,y_n), \boldsymbol{x}_i=\left(x_{i_1},\ldots,x_{i_n}\right)$$
 $(i=0,1,\ldots,K).$

$$\|x - x_0\|_2 \le \|x - x_i\|_2 \Leftrightarrow \sqrt{\sum_{j=1}^n (y_j - x_{0_j})^2} \le \sqrt{\sum_{j=1}^n (y_j - x_{i_j})^2}$$

$$\Leftrightarrow 2\sum_{j=1}^{n} \left(x_{i_{j}} - x_{0_{j}} \right) y_{j} \leq \sum_{j=1}^{n} \left(x_{i_{j}}^{2} - x_{0_{j}}^{2} \right) \Leftrightarrow (x_{i} - x_{0})^{T} x \leq x_{i}^{T} x_{i} - x_{0}^{T} x_{0}$$

Thus, we can find

$$\boldsymbol{A} = \begin{pmatrix} (\boldsymbol{x}_1 - \boldsymbol{x}_0)^T \\ \vdots \\ (\boldsymbol{x}_K - \boldsymbol{x}_0)^T \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} \boldsymbol{x}_1^T \boldsymbol{x}_1 - \boldsymbol{x}_0^T \boldsymbol{x}_0 \\ \vdots \\ \boldsymbol{x}_K^T \boldsymbol{x}_K - \boldsymbol{x}_0^T \boldsymbol{x}_0 \end{pmatrix}$$

s.t. $V = \{x : Ax \le b\}$, i.e. V is a polyhedron.

A visualization of V when n = 2 is as follows.

