

PROJETO COMPLETO DE REDES ÓPTICAS

Fábio de Oliveira Lima Marcelo de Oliveira Lima Marcelo Eduardo Vieira Segatto Renato Tannure Rotta de Almeida

Universidade Federal do Espírito Santo - UFES Programa de Pós-Graduação em Engenharia Elétrica - PPGEE

Sumário

- Redes Ópticas: Contextualização.
- MTB Limite Inferior para o Congestionamento
- Modelo TWA
- Experimentos Computacionais
- Conclusão

Redes Ópticas

- Demandas de Tráfego fixas, para fins de planejamento, podendo basear-se em levantamentos históricos ou estimativas.
- Supomos a utilização da tecnologia WDM (Wavelength Division Multiplexing) e equipamentos ópticos capazes de realizar o roteamento por comprimento de onda.
- As demandas de tráfego podem compor caminhos sobre a topologia da rede, podendo ser subdivididas e transportadas paralelamente por mais de um caminho.

Definições

- Ligações Físicas
 - Topologia Física
- Rotas Físicas
 - Continuidade
 - Ligações Lógicas
 - Topologia Lógica
- Semitransparente
- Congestionamento

 Rotas físicas e ligações lógicas são interpretações diferentes da mesma estrutura, de acordo com a camada a rede.

Subproblemas do Projeto de uma WRON

 O projeto de uma WRON é dividido em dois ou quatro sub-problemas:

Projeto Completo de uma WRON

- O projeto completo, incluindo os quatro subproblemas, é modelado na literatura com modelos MILP.
- A primeira etapa é escolher a topologia lógica. Ela deve ser escolhida de forma a facilitar o projeto dos demais subproblemas.
- O Congestionamento da rede é uma importante métrica de qualidade desta fase do projeto.

Lower Bounds para o Congestionamento

- Em modelagens abrangentes é necessário controlar várias métricas ao mesmo tempo.
- Isso é facilitado quando se conhece para alguma delas eficientes limites inferiores (LB - lower bounds).
- Uma métrica muito explorada é o congestionamento. Mas as técnicas conhecidas para obter LBs de boa qualidade para ele envolvem elevado custo computacional.
- Por isso, foi desenvolvido um novo LB para o congestionamento, de alta qualidade e custo computacional ínfimo.

TRÁFEGO ESTIMADO

- Qual é o mínimo de tráfego que pode ser designado a cada ligação lógica da rede?
- É razoável que a ligação mais carregada evite transportar tráfego que foi ou será retransmitido.
- Não é possível que um nó envie menos tráfego do que a soma das demandas originadas nele.
 E não é possível que um nó receba menos tráfego do que o destinado a ele.
- Temos assim estimativas para o tráfego mínimo, chegando ou saindo de um nó.
- O MTB é definido como o máximo entre essas estimativas.

Lower Bound para o Congestionamento

Minimum Traffic Bound - MTB

$$MTB = \max_{v} \left\{ \sum_{d} (P_{vd}/\alpha_v) , \sum_{s} (P_{sv}/\beta_v) \right\}$$

$$\Theta_{\nu}$$
 Γ_{ν}

O Modelo TWA

$$\sum_{i} B_{iw}^{mn} \leqslant D_{mn}, \quad \forall (m, n, w)$$

$$\sum_{s} q_{sw}^{iv} \cdot A_{s} \leqslant Cap \cdot \left(\sum_{m} B_{iw}^{mv} - \sum_{n} B_{iw}^{vn}\right), \quad \forall (i, v, w), \text{ com } i \neq v$$

$$\sum_{iw} q_{sw}^{iv} - \sum_{jw} q_{sw}^{vj} = Q_{sv}, \quad \forall (s, v), \text{ com } s \neq v$$

$$\sum_{jw} q_{vw}^{vj} = 1, \quad \forall v$$

TWA	Equações	Reais	Binárias
Custo Assintótico:	$\Theta(N^2 \cdot W)$	$\Theta(N^3 \cdot W)$	$\Theta(N^3 \cdot W \cdot K)$

Experimentos Computacionais

- Em (KRISHNASWAMY; SIVARAJAN, 2001):
 - Modelo MILP para projeto completo (KS)
 - Rede Física é dada, bidirecional e sem multiplicidade
 - Resultados produzidos pela combinação de quatro heurísticas.

Modelo KS

Minimize: λ_{max}

$$\lambda_{ijr}^s \leqslant b_{ijr} \cdot A_s$$

$$\lambda_{ijr} = \sum_{s} \lambda_{ijr}^{s}$$
$$\lambda_{ijr} \leqslant \lambda_{max}$$

$$\lambda_{ijr} \leqslant \lambda_{max}$$

$$\sum_{w} C_{ij}^{wr} = b_{ijr}$$

$$C_{mnij}^{wr} \leqslant C_{ij}^{wr}$$

$$\sum_{ijr} C_{mnij}^{wr} \leqslant 1$$

$$\sum_{jr} b_{ijr} = Gout_i$$

$$\sum_{ir} b_{ijr} = Gin_j$$

$$\sum_{jr} \lambda_{ijr}^s - \sum_{jr} \lambda_{jir}^s = \left\{egin{array}{ll} A_s, & s=i \ -P_{si}, & c.c. \end{array}
ight.$$

$$\sum_{mw} C_{mnij}^{wr} \cdot DD_{mn} - \sum_{mw} C_{nmij}^{wr} \cdot DD_{nm} = \begin{cases} b_{ijr}, & n = j \\ -b_{ijr}, & n = i \\ 0, & c.c. \end{cases}$$

Modelo KS

Minimize: λ_{max}

$$\lambda_{ijr}^s \leqslant b_{ijr} \cdot A_s$$

$$\lambda_{ijr} + \sum_{s} \lambda_{ijr}^{s}$$
 $\lambda_{ijr} + \sum_{s} \lambda_{max}^{s}$

$$\sum_{w} C_{ij}^{wr} = b_{ijr}$$

$$C^{wr}_{mnij} \leqslant C^{wr}_{ij}$$

$$\sum_{ijr} C_{mnij}^{wr} \leqslant 1$$

$$\sum_{jr} b_{ijr} = Gout_i$$

 $b_{ijr} = Gin_j$ Sem limitação de capacidade

 $\sum q_{sw}^{iv} \cdot A_s \leqslant Cap \cdot \left(\sum_{m} B_{iw}^{mv} - \sum_{n} B_{iw}^{vn}\right)$

Continuidade de comprimentos de onda e distribuição do tráfego

$$\sum_{nw} C_{mnij}^{wr} \cdot DD_{mn} - \sum_{mw} C_{nmij}^{wr} \cdot DD_{nm} = \begin{cases} b_{ijr}, & n = j \\ -b_{ijr}, & n = i \\ 0, & c.c. \end{cases}$$

Comparação com o modelo KS

- Restrições adicionais ao TWA:
 - Função Objetivo: Congestionamento λ_{max}
 - MTB como lower bound
 - G = Grau lógico da rede
 - Limitação de multiplicidade de ligações lógicas
- Como limitação de capacidade, foram utilizados os resultados produzidos para o modelo KS.

Estratégia Adotada

- A parir de G = 1, procura-se pelo W mínimo a partir de 1, testando seus valores no modelo com o SCIP, até que retorne que a instância é insolúvel, ou é interrompido quando encontra uma solução viável.
- Se o W atual é inviável, ele é incrementado, e uma nova tentativa é feita.
- Se o W atual é viável, a solução é registrada, G é incrementado e passa-se a procurar o W mínimo para G+1 a partir do valor atual.

O computador onde foram executados os experimentos desta seção possui a seguinte configuração: desktop PC; executando o sistema operacional GNU/Linux Kubuntu, versão 9:04 32bits; equipada com processador Intel Pentium 4 3:00GHz de 2 núcleos, com 2048KB de cache e 1:5GB de RAM.

Legendas dos resultados

	<u> </u>
Sigla	Significado
G	Grau Lógico
KS-p	Resultados obtidos em (KRISHNASWAMY; SIVARAJAN, 2001)
TWA- λ_{max}	Resultados do método aqui proposto
W	Mínimo viável para o número de comprimentos de onda
LB	Lower Bound para o congestionamento obtido para o KS-p
UB	Upper Bound para o congestionamento obtido para o KS-p
MTB	Minimum Trafic Bound
MILP	Resultados obtidos pelo SCIP para o TWA- λ_{max}
T	Tempo em minutos gasto com o SCIP

<i>P</i> 1	KS-p			TWA- λ_{max}			
\overline{G}	W	LB	UB	W	MTB	MILP	$T_{(m)}$
2	4	126.74	145.74	2	126.87	143.66	451
3	4	84.58	*84.58	3	84.58	*84.58	221
4	4	63.43	70.02	3	63.44	69.17	8
5	5	50.74	50.94	4	50.75	50.82	225
6	6	42.29	44.39	4	42.29	43.54	24
7	6	36.25	36.43	5	36.25	*36.25	65
8	7	31.72	31.77	6	31.72	*31.72	102
9	9	28.19	28.37	7	28.19	*28.19	131
10	9	25.37	25.64	8	25.37	25.53	72
11	11	23.00	23.08	9	23.07	23.31	200
12	12	21.27	21.39	11	21.14	21.35	140
13	13	20.24	20.25	13	19.52	*20.25	16

P2	KS-p				TWA- λ_{max}		
\overline{G}	W	LB	UB	W	MTB	MILP	$T_{(m)}$
2	2	284.26	389.93	1	284.66	*292.31	152
3	4	189.76	217.80	2	189.78	*189.78	4.4
4	3	142.33	152.99	2	142.33	*142.33	2
5	4	113.87	*113.87	3	113.87	*113.87	4
6	5	94.89	*94.89	3	94.89	*94.89	3.9
7	6	81.33	*81.33	4	81.33	*81.33	4.3
8	6	71.17	*71.17	4	71.17	*71.17	6.8
9	9	62.15	63.26	5	63.26	*63.26	20.9
10	10	56.93	*56.93	6	56.93	*56.93	20.1
11	10	51.75	*51.75	6	51.75	*51.75	23.2
12	13	47.44	*47.44	7	47.44	*47.44	23.1
13	13	43.79	*43.79	7	43.79	*43.79	14.8

Análise dos Resultados

- Em todas as instâncias de ambas as redes foram obtidos melhores resultados.
- Soluções ótimas para 70% das instâncias, contra 37% dos resultados para o modelo KS.
- O W obtido sempre é o mínimo para o UB adotado.
- Em 62% das instâncias, o MTB equivale ao ótimo. E mesmo quando o ele não corresponde ao ótimo, no pior caso, o MTB ficou menos de 5% abaixo do UB.
- A qualidade alcançada pelo MTB em todas as instâncias, praticamente igual ao *lower bound* obtido em (KRISHNASWAMY; SIVARAJAN, 2001), mas calculado em menos de 0.01 segundos. Esse é um resultado expressivo, frente aos 125 minutos, em média, gastos com o método iterativo.

Rede Física da NSFNET

Modelo da arquitetura de um OXC

Modelo da arquitetura de um OADM

