ECE 2300 Digital Logic Design

Homework 5

Choi Tim Antony Yung April 4, 2020

1 Using an 8:1 mux, create a circuit to generate

$$f(ABCD) = \overline{W} \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot Z + X \cdot Y \cdot Z$$

W	X	Y	Z	f	W	X	Y	Z f
0	0	0	0	1	1	0	0	$\begin{array}{c c} 0 & 0 \\ 1 & 1 \end{array}$
0	0	0	1	1	1	0	0	1 1
0	0	1	0	1	1	0	1	$\left \begin{array}{c c} 0 & 0 \\ 1 & 0 \end{array} \right $
0	0		1		1	0	1	1 0
0	1	0	0	1	1	1	0	$\left \begin{array}{c c} 0 & 0 \\ 1 & 0 \end{array} \right $
0	1	0	1	0	1	1	0	1 0
0	1	1	0	1	1	1	1	0 0
0	1	1	1	1	1	1	1	1 1

Using two 4:1 muxes, generate the B_O (Borrow-Out) and C_O (Carry-Out) outputs for a 1-bit full subtractor and 1-bit full adder respectively where X is the minuend, Y is the subtrahend or Y and Y are the addends and be is the borrow-in or carry-in.

$$B_O = \overline{X} \cdot b_c + \overline{X} \cdot Y + Y \cdot b_c$$

$$C_O = X \cdot Y + X \cdot b_c + Y \cdot b_c$$

X	$Y \mid b_c \mid B_O C_O$					X	Y	b_c	$\mid B_O \mid$	C_O
0	0	0	0	0		1	0	0	0	0
0	0	1	1	0		1	0	1	0	1
0	1	0	1	0		1	1	0	0	1
0	1	1	1	0 1		1	1	1	1	1

3 Using an 8:1 mux, create a circuit to generate the segment g outputs for a 7-segment display where $g = \overline{B} \cdot \overline{D} + C \cdot \overline{D}$.

A	В	С	D	$\mid g \mid$	A	В	С	D	$\mid g \mid$
0	0	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	1	0	1	1	0	1 1	0	1
0	0	1	1	0	1	0	1	1	0
0	1	0	0	0	1	1	0	1	0
0	1	0	1	0	1	1	$0 \\ 0$	0	0
0	1	1	0	1	1	1	1	0	1
0	1	1	1	0	1	1	1	1	0

