AutoML: Evaluation

Visualizing Evaluation over Time

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u>

Motivation

• If we define AutoML as an optimization process, the incumbent solution (i.e., the best found configuration so far) gradually improves over time

Motivation

- If we define AutoML as an optimization process, the incumbent solution (i.e., the best found configuration so far) gradually improves over time
- We don't know when users will stop the AutoML process
 - Running over the coffee break (15min)
 - Running during a meeting (1h)
 - Running over night (16h)
 - Running over the weekend (48+h)

Motivation

- If we define AutoML as an optimization process, the incumbent solution (i.e., the best found configuration so far) gradually improves over time
- We don't know when users will stop the AutoML process
 - Running over the coffee break (15min)
 - Running during a meeting (1h)
 - Running over night (16h)
 - ► Running over the weekend (48+h)
- → Anytime performance of AutoML is important
 - ▶ i.e., the AutoML tool should return the best possible solution at each time point

Observing Performance over Time

(Empty slides for drawing something live in the video.)

Repeated Experiments

Repeated Experiments

→ Don't linearly interpolate between points!

Step Functions

Step Functions

→ Do we care about number of function evaluations?

CPU Time

CPU Time

 \rightsquigarrow We might loose information in the beginning.

x-log scale

x-log scale

 \rightsquigarrow Small differences on y are hard to spot.

y-log scale

y-log scale

 \rightsquigarrow Log on both?

x-y-log scale

x-y-log scale

Mean \pm Standard Deviation: $\mu \pm \sigma$

Mean \pm Standard Deviation: $\mu \pm \sigma$

 \rightsquigarrow Mean \pm standard deviation works only if uncertainty is symmetric.

Mean \pm Standard Error: $\mu \pm rac{\sigma}{\sqrt{n}}$

Mean \pm Standard Error: $\mu \pm rac{\sigma}{\sqrt{n}}$

∼→ Confidence of the mean estimate!

$\mathsf{Median} \, + \, 25/75\mathsf{th} \, \, \mathsf{Percentile}$

$\overline{\text{Median} + 25/75\text{th Percentile}}$

 \rightsquigarrow Works also for asymmetric uncertainties.

Comparing 2 AutoML Optimizers

Summary

- Plotting anytime performance is helpful
- ② On real benchmarks often better to plot CPU time instead of function evaluations
- Use step functions!
- Consider log-scales on x and/or y
- Onsider different ways for plotting the uncertainty of cost observations

