Assignment 2

Duc Viet Le CS536

February 9, 2017

Problem 1. HTTP and DNS

a. How much time elapses from when the client clicks on the link until the client receives the object?

Ans. Since the client needs to contact n different DNS servers to get destination's ip address, the DNS-look up time is:

$$Time_{dns} = \sum_{i=1}^{n} RTT_i$$

Assume the connection use TCP, it will take another $2 \times RRT_0$ to establish and receive the file. Therefore, the total time is:

Total Time =
$$2 \times RTT_0 + \sum_{i=1}^{n} RTT_i$$

b. • Non-persistent HTTP with no parallel TCP connection.

Ans. Since this is non-persistent HTTP with no parallel TCP connection, in addition to the time calculated above, there will be another 8 TCP connections set up and download files. Therefore, total time is:

$$2 \times RTT_0 + \sum_{i=1}^{n} RTT_i + 8 \times 2 \times RTT_0 = 18 \times RTT_0 + \sum_{i=1}^{n} RTT_i$$

• Non-persistent HTTP with 5 parallel TCP connection.

Ans. Similarly, with non-persistent HTTP, there are 8 TCP connections set up and request to download; however, since there are 5 parallel connections, we reduces the transfering time of 8 files to $\lceil 8/5 \rceil \times 2 \times RTT_0$. The new total time is:

$$2 \times RTT_0 + \sum_{i=1}^{n} RTT_i + 2 \times 2 \times RTT_0 = 6 \times RTT_0 + \sum_{i=1}^{n} RTT_i$$

• Persistent HTTP with pipelining?

Ans: For persistent HTTP, there will be only one TCP connection set up, and with pipelining, the host will get all 8 files at the same time. The time to transfer 8 files becomes RTT_0 . Therefore, the total time is:

$$2 \times RTT_0 + \sum_{i=1}^{n} RTT_i + RTT_0 = 3 \times RTT_0 + \sum_{i=1}^{n} RTT_i$$

Problem 2. DNS

a. Here are the results: @m.root-servers.net any --> @f.edu-servers.net --> @harbor.ecn.purdue.edu root: dig +norecurse @m.root-servers.net any xinu01.cs.purdue.edu ;; AUTHORITY SECTION: edu. 172800 IN NS a.edu-servers.net. edu. 172800 IN NS l.edu-servers.net. edu. 172800 IN NS d.edu-servers.net. edu. 172800 IN NS g.edu-servers.net. edu. 172800 IN NS c.edu-servers.net. edu. 172800 IN NS f.edu-servers.net. top-level: dig +norecurse @f.edu-servers.net any xinu01.cs.purdue.edu ;; AUTHORITY SECTION: purdue.edu. 172800 IN NS harbor.ecn.purdue.edu. purdue.edu. 172800 IN NS pendragon.cs.purdue.edu. purdue.edu. 172800 IN NS ns1.rice.edu. purdue.edu. 172800 IN NS ns3.purdue.edu. authorative: dig +norecurse @harbor.ecn.purdue.edu xinu01.cs.purdue.edu ;; ANSWER SECTION: xinu01.cs.purdue.edu. 86400 IN A 128.10.3.51 b. • google.com I tried: @m.root-servers.net any --> @c.gtld-servers.net --> @ns.googe.com root: ;; AUTHORITY SECTION: com. 172800 IN NS e.gtld-servers.net. com. 172800 IN NS m.gtld-servers.net. com. 172800 IN NS i.gtld-servers.net. com. 172800 IN NS c.gtld-servers.net. com. 172800 IN NS h.gtld-servers.net. com. 172800 IN NS d.gtld-servers.net. com. 172800 IN NS k.gtld-servers.net. com. 172800 IN NS b.gtld-servers.net. com. 172800 IN NS l.gtld-servers.net. com. 172800 IN NS a.gtld-servers.net. com. 172800 IN NS g.gtld-servers.net. com. 172800 IN NS f.gtld-servers.net. com. 172800 IN NS j.gtld-servers.net.

top level: Answer

```
;; AUTHORITY SECTION:
google.com. 172800 IN NS ns2.google.com.
google.com. 172800 IN NS ns1.google.com.
google.com. 172800 IN NS ns3.google.com.
google.com. 172800 IN NS ns4.google.com.
```

authorative:

```
;; ANSWER SECTION:
google.com. 300 IN A 128.210.224.45
google.com. 300 IN A 128.210.224.59
google.com. 300 IN A 128.210.224.29
google.com. 300 IN A 128.210.224.38
google.com. 300 IN A 128.210.224.57
google.com. 300 IN A 128.210.224.53
google.com. 300 IN A 128.210.224.44
google.com. 300 IN A 128.210.224.34
google.com. 300 IN A 128.210.224.30
google.com. 300 IN A 128.210.224.19
google.com. 300 IN A 128.210.224.49
google.com. 300 IN A 128.210.224.23
google.com. 300 IN A 128.210.224.27
google.com. 300 IN A 128.210.224.15
google.com. 300 IN A 128.210.224.42
```

• amazon.com I tried:

 ${\tt @m.root-servers.net}$ any --> ${\tt @c.gtld-servers.net}$ --> ${\tt @pdns1.ultradns.net}$ root

```
;; AUTHORITY SECTION:
com. 172800 IN NS d.gtld-servers.net.
com. 172800 IN NS h.gtld-servers.net.
com. 172800 IN NS f.gtld-servers.net.
com. 172800 IN NS c.gtld-servers.net.
com. 172800 IN NS b.gtld-servers.net.
com. 172800 IN NS g.gtld-servers.net.
com. 172800 IN NS g.gtld-servers.net.
com. 172800 IN NS a.gtld-servers.net.
com. 172800 IN NS e.gtld-servers.net.
com. 172800 IN NS i.gtld-servers.net.
com. 172800 IN NS i.gtld-servers.net.
com. 172800 IN NS m.gtld-servers.net.
com. 172800 IN NS l.gtld-servers.net.
com. 172800 IN NS j.gtld-servers.net.
com. 172800 IN NS j.gtld-servers.net.
com. 172800 IN NS j.gtld-servers.net.
```

;; AUTHORITY SECTION:

top-level:

amazon.com. 172800 IN NS pdns1.ultradns.net.

```
amazon.com. 172800 IN NS pdns6.ultradns.co.uk. amazon.com. 172800 IN NS ns1.p31.dynect.net. amazon.com. 172800 IN NS ns3.p31.dynect.net. amazon.com. 172800 IN NS ns2.p31.dynect.net. amazon.com. 172800 IN NS ns4.p31.dynect.net.
```

authorative answer:

;; ANSWER SECTION:

amazon.com. 60 IN A 54.239.25.200 amazon.com. 60 IN A 54.239.17.6 amazon.com. 60 IN A 54.239.26.128 amazon.com. 60 IN A 54.239.17.7 amazon.com. 60 IN A 54.239.25.192 amazon.com. 60 IN A 54.239.25.208