Corrigé Mines-Ponts 2001 Math I

Préliminaires

a. $x \in \ker f^k \Rightarrow f^k(x) = 0 \Rightarrow f^{k+1}(x) = f(f^k(x)) = 0 \Rightarrow x \in \ker f^{k+1}$ Donc $\ker f^k \subset \ker f^{k+1}$ pour tout naturel k.

b. Notons HR(k) la propriété : $\ker f^k = \ker f^{k+1}$.

HR(p) est vraie par hypothèse.

Si HR(k) alors on dispose des équivalences :

 $x \in \ker f^{k+2} \Leftrightarrow f(x) \in \ker f^{k+1} \Leftrightarrow f(x) \in \ker f^k \Leftrightarrow x \in \ker f^{k+1}$ qui entrainent HR(k+1).

Ainsi par récurrence, $\ker f^k = \ker f^{k+1}$ pour tout $k \ge p$.

 $d_k = \dim \ker f^k$ est une suite croissante majorée (par n) d'entiers naturels donc elle est constante à partir d'un certain rang p.

Elle est strictement croissante jusqu'à ce rang par contraposition du résultat précédent donc :

$$\forall k \le p, \quad k \le d_k \le n.$$

Ainsi $p \le d_p \le n$ et en particulier $d_n = d_{n+1}$ donc ker $f^n = \ker f^{n+1}$ par inclusion et égalité des dimensions.

c. Si $u^q = 0$ alors la limite de $(d_k)_k$ est n donc $d_n = n$ soit $u^n = 0$

Partie I

I-1 a. g commute avec D_n - donc avec D_n^{p+1} - car $D_n = g^2 - \lambda Id$ est un polynôme en g.

Alors $\ker D_n^{p+1}$ est stable par g (résultat de cours).

Les polynômes tels que leur dérivé (p+1)ème soit nul sont les polynômes de degré inférieur ou égal à p donc $E_p = \ker D^{p+1}$.

 E_p étant stable par D et g, les endomorphismes induits g_p et D_p vérifient la même relation.

- **b.** De même que précédemment puisque D est un polynôme en g et $E_n = \ker D^{n+1}$.
- c. i/
- F est de dimension finie (n+1) donc engendré par une famille finie \mathcal{F} de polynômes. Etant finie, \mathcal{F} est incluse dans un sous espace E_q donc $F \subset E_q$. Dans ce cas $D^{q+1}F = \{0\}$ donc l'endomorphisme induit de D_F est nilpotent.

 D_F est un endomorphisme nilpotent en dimension n+1 donc $D_F^{n+1}=0$ (préliminaire question c)

Alors $D^{n+1}(F) = \{0\}$ donc F est inclus dans E_n et par l'égalité de leur dimension : $F = E_n$.

- Soit maintenant F un sous espace de dimension infinie. Alors F n'est inclus dans aucun E_n donc pour tout entier n, il existe un polynôme P dans F de degré $m \ge n$. Si de plus F est D-stable, F contient $P, D(P), \ldots, D^m(P)$, famille engendrant E_m car échelonnée sur les degrés. Ainsi F contient tous les E_n donc F = E.
 - En conclusion, les sous espaces stables par D sont E, $\{0\}$ et les E_n .

ii/

Puisque D est un polynôme en q, tout sous espace G stable par q est stable par D.

Réciproquement, si G est stable par D alors (c.i/) G est égal à E, $\{0\}$ ou à E_n donc G est stable par g d'après la question I.1.a)

I-2 *a*. dim $E_0 = 1$ et $D_0 = 0$.

La relation $g^2 = \lambda Id + D_0$ se traduit matriciellement par $\gamma^2 = \lambda$ ce qui impose $\lambda \geq 0$.

- **b.** L'une ou l'autre des existences de g entraine (d'après I.1.a) l'existence de g_0 dans les conditions I-2.a) donc $\lambda \geq 0$. D'où le résultat par contraposition.
- **I-3** a. $f^n \neq 0$ donc il existe y tel que $f^n(y) \neq 0$. Montrons que $B = (f^n(y), f^{n-1}(y), \ldots, y)$ est libre : si $a_n f^n(y) + \cdots + a_0 y = 0$ alors en composant par f^{n-k} et compte tenu de $f^p = 0$ pour p > n, il vient $a_k f^n(y) + \cdots + a_0 f^{n-k}(y) = 0$. Comme $f^n(y) \neq 0$, on déduit pour k variant de 0 à n successivement $a_0 = 0, a_1 = 0, \ldots, a_n = 0$. B est libre.

Ayant n+1 éléments, B est une base de V et

$$Mat_B(f) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \\ 0 & & \dots & & 0 \end{bmatrix} = A_0.$$

- **b.** Puisque $D_n^{n+1} = 0$ et $D_n^n(X^n) = n! \neq 0$, l'existence de B_n est assurée. Dans cette base, la matrice de $\lambda Id + D_n$ est $A_0 + \lambda I_n$ soit A_{λ} .
- **I-4** a. Avec les notations précédentes, h(y) se décompose sur la base B_2 en :

$$h(y) = ay + bD_2(y) + cD_2^2(y).$$

Si de plus h et D_2 commutent alors h et D_2^k commutent également et pour k = 0, 1, 2:

 $h(D_2^k(y)) = D_2^k(h(y)) = aD_2^k(y) + bD_2^{k+1}(y) + cD_2^{k+2}(y) = (aId + bD_2 + cD_2^2)(D_2^k(y)).$

Donc $h = aId + bD_2 + cD_2^2$ puisque ces deux endomorphismes coincident sur la base B_2 .

b. D'après I.1.a) et le résultat précédent, nécessairement g = P(D) avec $P = a + bX + cX^2$.

Sous cette forme et compte tenu de la nilpotence de D, $g^2 = P^2(D) = a^2Id + 2abD_2 + (2ac + b^2)D_2^2$.

Enfin (Id, D_2, D_2^2) est libre puisque B_2 est libre donc $g^2 = \lambda Id + D$ si et seulement si $g = aId + bD_2 + cD_2^2$ avec $a^2 = \lambda, 2ab = 1, 2ac + b^2 = 0$.

Ce dernier système n'a de solutions que si $\lambda>0$ et dans ce cas :

$$a = \pm \sqrt{\lambda}, b = \frac{1}{2a}, c = -\frac{1}{8a^3}.$$

Ainsi les solutions de $G^2 = A_1$ sont $G = \pm (I_2 + \frac{1}{2}A_0 - \frac{1}{8}A_0^2)$.

Partie II

II-1 a. Si $g^2 = D_n$ alors $g^{2n+2} = 0$ donc g est nilpotent.

De plus $g^2 \neq 0$ donc par le préliminaire b) on a dim ker $g^2 \geq 2$.

- **b.** Or $\ker g^2 = \ker D_n = E_0$ qui est de dimension 1 ce qui contredit le résultat précédent : g n'existe pas.
- c. Si $g^2 = D$ alors par I.1.a il existe g_n tel que $g_n^2 = D_n$ ce qui est impossible.
- II-2 a. Les primitives d'un polynôme sont des polynômes donc D est surjective.

Ainsi D(E) = E puis pour tout m, $D^m(E) = E$ et $g(g^{k-1}(E)) = D^m(E) = E$ donc g est surjective.

b. $\forall q \leq k$, $\ker g^q \subset \ker g^k = \ker D^m = E_{m-1}$.

Donc $\ker g^q$ est de dimension finie pour $0 \le q \le k$.

c. $\forall P \in \ker g^p$, $g^{p-1}(\Phi(P)) = g^p(P) = 0$.

Ainsi Φ est une application de ker g^p dans ker g^{p-1} , linéaire comme g.

Noyau de Φ : $\ker \Phi = \ker g \cap \ker g^p = \ker g$

Image de Φ : soit $P \in \ker g^{p-1}$, il existe $Q \in E$ tel que g(Q) = P (g est surjective) et $g^p(Q) = g^{p-1}(P) = 0$ donc Q est élément de $\ker g^p$ ce qui légitime $\Phi(Q) = P$. D'où $Im(\Phi) = \ker g^{p-1}$.

Par le théorème du rang :

 $\dim \ker \Phi + \dim \operatorname{Im} \Phi = \dim \ker g^p$ soit $\dim \ker g + \dim \ker g^{p-1} = \dim \ker g^p$.

Il en résulte dim $\ker g^p = p \dim \ker g$ pour tout $0 \le p \le k$.

d. dim ker $D^m = \dim E_{m-1} = m$ et $g^k = D^m$ donc $k \dim \ker g = m$ et m est un multiple de k.

Réciproquement, si m = pk il suffit de prendre $g = D^p$.

D'où la condition nécessaire et suffisante : m est un multiple de k.

Condition non remplie dans le cas II-1.c car m = 1 et k = 2.

III-1 a.

$$(I+tD_n)\left(\sum_{k=0}^n (-1)^k t^k D_n^k\right) = \sum_{k=0}^n (-1)^k t^k D_n^k - (-1)^{k+1} t^{k+1} D_n^{k+1}$$
$$= I - (-1)^{n+1} t^{n+1} D_n^{n+1}$$
$$= I \qquad (D_n^{n+1} = 0)$$

Donc la matrice carrée $I + tD_n$ est inversible et son inverse que l'on notera simplement Q(t) est définie par :

$$Q(t) = (I + tD_n)^{-1} = \sum_{k=0}^{n} (-1)^k t^k D_n^k.$$

b. L'expression précédente prouve que $t\mapsto Q(t)$ est dérivable et commute à D_n .

En dérivant l'égalité $Q(t)(I+tD_n)=I$ vraie pour tout t, il vient :

$$Q'(t)(I+tD_n) + Q(t)D_n = 0$$
 soit $Q'(t) = -Q(t)D_nQ(t) = -Q(t)^2D_n$.

c.
$$L_n(t) = D_n P(D_n) = P(D_n) D_n$$
 où P est un polynôme donc $L_n(t)^{n+1} = D_n^{n+1} P^{n+1}(D_n)$ or $D_n^{n+1} = 0$ d'où $L_n^{n+1} = 0$.

d. En ajoutant un terme nul à L_n on obtient :

$$L'_n(t) = \sum_{k=1}^{n+1} (-1)^{k-1} t^{k-1} D_n^k = D_n \sum_{k=0}^{n} (-1)^k t^k D_n^k = D_n Q(t).$$

Comme $L_n(t)$ et $L'_n(t)$ commutent (polynômes en D_n) on a :

$$\frac{d}{dt}L_n^k(t) = kL_n'(t)L_n^{k-1}(t) = kL_n^{k-1}(t)D_nQ(t).$$

III-2 a.

$$\varphi_u(t)\varphi_v(t) = \sum_{p=0}^n \frac{u^p}{p!} (L_n(t))^p \sum_{q=0}^n \frac{v^q}{q!} (L_n(t))^q$$

$$= \sum_{k=0}^{2n} \left(\sum_{p+q=k} \frac{u^p v^q}{p! q!} L_n(t)^{p+q} \right)$$

$$= \sum_{k=0}^n \left(\sum_{p+q=k} \frac{u^p v^q}{p! q!} \right) L_n(t)^k \quad \text{nilpotence de } L_n(t)$$

$$= \sum_{k=0}^n \left(\sum_{p=0}^k \frac{u^p v^{k-p}}{p! (k-p)!} \right) L_n(t)^k$$

$$= \sum_{k=0}^n \left(\sum_{p=0}^k C_k^p u^p v^{k-p} \frac{1}{k!} \right) L_n(t)^k$$

$$= \sum_{k=0}^n \frac{(u+v)^k}{k!} L_n(t)^k$$

$$= \varphi_{u+v}(t)$$

b. $t \mapsto \varphi_u(t)$ est dérivable comme combinaison linéaire de fonctions dérivables. En utilisant III-1.d :

$$\varphi'_{u}(t) = \sum_{k=1}^{n} \frac{u^{k}}{k!} kQ(t) D_{n} L_{n}^{k-1}(t)$$

$$= uQ(t) D_{n} \sum_{k=1}^{n} \frac{u^{k-1}}{(k-1)!} L_{n}^{k-1}(t)$$

$$= uQ(t) D_{n} \sum_{k=0}^{n-1} \frac{u^{k}}{k!} L_{n}^{k}(t)$$

$$= uQ(t) D_{n} \sum_{k=0}^{n} \frac{u^{k}}{k!} L_{n}^{k}(t) \quad (D_{n} L_{n}^{n}(t) = 0)$$

$$= uQ(t) D_{n} \varphi_{u}(t)$$

Ainsi

$$\varphi_u'(t) = uQ(t)D_n\varphi_u(t).$$

c. φ_1' est dérivable comme produit de fonctions dérivables et $\varphi_1''(t) = Q'(t)D_n\varphi_1(t) + Q(t)D_n\varphi_1'(t) = -Q(t)D_nQ(t)D_n\varphi_1(t) + Q(t)D_nQ(t)D_n\varphi_1(t) = 0$ Ainsi $\varphi_1''(t) = 0$ est nul pour tout réel t; par conséquent $\varphi_1(t) = \varphi_1(0) + t\varphi_1'(0)$. Comme $L_n(0) = 0$ on déduit $\varphi_1(0) = I$ et $\varphi_1'(0) = D_n\varphi_n(0) = D_n$ et l'on conclut :

$$\forall t \in \mathbf{R}, \qquad \varphi_1(t) = I + tD_n.$$

III-3 a.
$$\lambda I + D_n = \lambda (I + \frac{1}{\lambda} D_n) = \lambda \varphi_1(\frac{1}{\lambda}) = \lambda (\varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2 = (\sqrt{\lambda} \varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2$$

Ce qui prouve l'existence de $M = \pm \sqrt{\lambda} \varphi_{\frac{1}{2}}(\frac{1}{\lambda})$ donc de g pour $\lambda > 0$.

b. Pour
$$\lambda = 1$$
 et $n = 2$ il vient $L_n(1/\lambda) = L_2(1) = D_2 - \frac{1}{2}D_2^2$ puis $\varphi_{\frac{1}{2}}(1) = I + \frac{1}{2}L_2(1) + \frac{1}{8}L_2^2(1) = I + \frac{1}{2}(D_2 - \frac{1}{2}D_2^2) + \frac{1}{8}D_2^2 = I + \frac{1}{2}D_2 - \frac{1}{8}D_2^2$ On retrouve bien les matrices G puisque $A_0 = D_2$ avec les notations de l'énoncé.

Partie IV

IV-1 a. h vérifie sur $]-1,+\infty[$ l'équation différentielle linéaire du premier ordre :

$$(1+x)y' = \frac{1}{2}y$$

b. Posons $a = 1/2, b_0 = 1$ et $b_p = a(a-1)\cdots(a-p+1)/p!$ pour $p \in \mathbf{N}^*$.

Alors $\frac{b_{p+1}}{b_p}=\frac{a-p}{p+1}$ tend vers -1 quand p tend vers l'infini donc la série entière $\sum b_p x^p$ a un rayon de convergence égal à 1 et dans l'intervalle ouvert de convergence] -1,1[sa somme S vérifie :

$$(1+x)S'(x) - aS(x) = S'(x) + xS'(x) - aS(x)$$

$$= \sum_{p=1}^{\infty} pb_p x^{p-1} + \sum_{p=0}^{\infty} (p-a)b_p x^p$$

$$= \sum_{p=0}^{\infty} [(p+1)b_{p+1} + (p-a)b_p]x^p = 0$$

Donc S est solution sur]-1,1[de l'équation différentielle et vérifie S(0)=1=h(0). En vertu de l'unicité des solutions du problème de Cauchy, h(x)=S(x) sur]-1,1[.

c. c_n est le coefficient de x^n dans le développement en série entière du produit h(x)h(x) = 1 + x. Donc $c_0 = c_1 = 1$ et $c_n = 0$ pour $n \ge 2$. IV-2 a. Soit $P \in E$ et n un majorant de son degré.

Alors
$$D^p(P) = 0$$
 pour $p > n$ donc $T(P) = \sum_{p=0}^n \frac{b_p}{\lambda^p} D^p P$ qui est bien un polynôme.

Etant clairement linéaire (prendre n pour majorant commun du degré de P et de Q), T est un endomorphisme de E qui d'après le calcul précédent laisse stable les sous espaces E_n .

b. En notant T_n l'endomorphisme induit par T sur E_n on a pour $P \in E_n$: $T^2(P) = T_n^2(P)$.

Or
$$T_n = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$$
 ce qui conduit, compte tenu de $D_n^k = 0$ pour $k > n$ à

$$T_n^2 = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p \sum_{q=0}^n \frac{b_q}{\lambda^q} D_n^q = \sum_{k=0}^n \sum_{p+q=k}^n \frac{b_p b_q}{\lambda^{p+q}} D_n^{p+q} = \sum_{k=0}^n \frac{c_k}{\lambda^k} D_n^k = I + \frac{1}{\lambda} D_n$$

Ainsi
$$T^2(P)=P+\frac{1}{\lambda}DP$$
 et finalement : $T^2=Id+\frac{1}{\lambda}D.$

$$c.$$
 $g = \pm \sqrt{\lambda}T$ convient . $(\lambda > 0)$

d. Et
$$g_n = \pm \sqrt{\lambda} \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$$
.

Dans le cas I-4, n=2 et $\lambda=1$.

Donc $g_2 = \pm (b_0 I + b_1 D_2 + b_2 D_2^2)$ avec $b_0 = 1, b_1 = \frac{1}{2}, b_2 = -\frac{1}{8}$ ce qui redonne les matrices précédentes.