

Single Cell Biological Applications

Agnès Paquet
SincellTE, Roscoff 04/02/2019

Wide range of applications

- Resolving cellular heterogeneity
- 2. Understand developmental processes and cell fate decisions
- 3. Fundamental characteristics of gene expression
- 4. Identification of co-regulated gene modules and network inference

Wide range of applications

- Resolving cellular heterogeneity
- 2. Understand developmental processes and cell fate decisions
- 3. Fundamental characteristics of gene expression
- 4. Identification of co-regulated gene modules and network inference

New cell populations discovery

RESEARCH ARTICLE SUMMARY

IMMUNOGENOMICS

Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

Alexandra-Chloé Villani,*† Rahul Satija,* Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James Fletcher, Morgane Griesbeck, Andrew Butler, Shiwei Zheng, Suzan Lazo, Laura Jardine, David Dixon, Emily Stephenson, Emil Nilsson, Ida Grundberg, David McDonald, Andrew Filby, Weibo Li, Philip L. De Jager, Orit Rozenblatt-Rosen, Andrew A. Lane, Muzlifah Haniffa,† Aviv Regev,† Nir Hacohen†

New marker discovery

Virology

- Profiling of gene expression level changes during infection
- Study of virus-infected cells (HIV-1,...)
- Bioinformatics:
 - If virus genes are polyA, they can be profiled at the same time that host genes
 - Think about normalization strategy: viral RNA quantity is increasing during infection, host genes RNA is constant

PM

Extreme heterogeneity of influenza virus infection in single cells

Alistair B Russell, 1 Cole Trapnell, 2 and Jesse D Bloom 1,2

Published online 2018 Feb 16. doi: 10.7554/eLife.32303

Arup K Chakraborty, Reviewing Editor

eLife. 2018; 7: e32303.

Arup K Chakraborty, Massachusetts Institute of Technology, United States;

Author information ▶ Article notes ▶ Copyright and License information ▶ Disclaimer

See "Single-cell transcriptional dynamics of flavivirus infection" in volume 7, e32942

This article has been cited by other articles in PMC.

Cell Reports

Single-Cell RNA-Seq Reveals Transcriptional Heterogeneity in Latent and Reactivated HIV-Infected Cells

Graphical Abstract

Authors

Monica Golumbeanu, Sara Cristinelli, Sylvie Rato, Miguel Munoz, Matthias Cavassini, Niko Beerenwinkel, Angela Ciuffi

Report

Correspondence

niko.beerenwinkel@bsse.ethz.ch (N.B.), angela.ciuffi@chuv.ch (A.C.)

In Brief

HIV latency hampers HIV cure. The shock-and-kill strategy aims a treactivating HIV expression to purge the latent reservoir of HIV-infected cells. However, latently infected cells do not respond equally to stimulation.

Golumbeanu et al. use single-cell RNA-seq to characterize cell heterogeneity and identify transcriptional features leading to reactivation success.

Cancer research: clinical applications

- scRNA-seq used for cellular heterogeneity studies
 - Liquid/solid tumors,
 - Early/metastatic, PDX,...
 - Tumor/microenvironment studies
- Clinical applications are still limited
- Potential use: measurement of minimal residual disease

Minimal Residual Disease

Shalek A, Science Trans Med 2018

Tirosh, metastatic melanoma, Science 2016

- Profiling of melanoma by scRNA-seq
 - Identify rare/hidden cells which will may lead to relapse
 - Profiling of immune cells

InfervCNV TCR profiling

Intra-tumor heterogeneity

- Use genes correlated with firsts PCs to find gene programs involved with metastatic disease
- Find genes highly correlated with MITF -> MITF program
- Find genes negatively correlated with MITF -> AXL program
- Heterogeneity of the scores associated with these programs within / between tumors

CELL ATLAS PROJECTS

Large scale collaborative projects

- Provide complete maps of
 - Immune system
 - Entire organs (brain)
 - Entire organisms (nematostella,...)

Mouse Cell Atlases (2018)

ARTICLE

https://doi.org/10.1038/s41586-018-0590-4

Single-cell transcriptomics of 20 mouse organs creates a *Tabula Muris*

The Tabula Muris Consortium*

Cell

Mapping the Mouse Cell Atlas by Microwell-Seq

Graphical Abstract

Authors

Xiaoping Han, Renying Wang, Yincong Zhou, ..., Guo-Cheng Yuan, Ming Chen, Guoji Guo

Resource

Correspondence

xhan@zju.edu.cn (X.H.), ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows construction of a mouse cell atlas at the single-cell level with a high-throughput and low-cost platform.

MCA browser http://bis.zju.edu.cn/MCA/

Mouse Brain Atlas

http://mousebrain.org/

Zeisel, Cell 2018

HUMAN CELL ATLAS

MAPPING THE BASIC UNITS OF LIFE

CZI proudly supports 38 new projects in these six areas for the Human Cell Atlas.

- Every cell type in the body
- First: define how to proceed
 - Best experimental practice / organ
 - Best bioinformatics methods
- Data will be made available to all

Different layers of information

Collection of spatial localization of cells

Distinguish:

- -Cell TYPE
- -Cell STATE

Take Home Message

- These atlases are great resources for your projects
- Interfaces / tools are provided for browsing/ data access
- WARNING: be aware of datasets limitations (quality of the data, sequencing depth, techno used...)

Applications:

- Reference to type cells in your project
- Automated tools to phenotype with confidence your cell in a very near future?
- Web based interface -> everybody can use them

Wide range of applications

- 1. Resolving cellular heterogeneity
- 2. Understand developmental processes and cell fate decisions
- 3. Fundamental characteristics of gene expression
- 4. Identification of co-regulated gene modules and network inference

Trajectory Analysis /Cell State and Cell Fate

- Embryogenesis/Development studies
 - Use genome editing to track cell lineage
- Cell fate decisions
 - How does a cell decide her fate?
 - Cancer cells evolution and clonal analysis
 - Variation in gene expression and stochasticity in cell decision processes

Griffiths JA, 2018

Trajectory inference from scRNAseq

2498 Robrecht Cannoodt et al.

Eur. J. Immunol. 2016. 46: 2496-2506

Figure 1. Applications of single-cell trajectory inference methods. (A) Single-cell data appropriate for TI can be both obtained from an unsynchronized population of single-cells (snapshot data) but also from synchronized cell populations. Single-cell expression data can be obtained genomewide (sc-RNAseq), for a subset of genes (sc-qPCR) or for a set of proteins (flow/mass cytometry). (B) Linear trajectories can be used to find new transition states, try to find new markers to better separate transition states, identify coexpression modules, and investigate the dynamics of gene regulation underlying the dynamic process. (C) In addition to all applications of linear trajectories, branched trajectories can also be used to identify bifurcation states, find protein markers to better separate specific branches of the developmental tree, identify how cells move from one transition state to another in vivo, and understand how the commitment to a particular branch works at the level of the gene regulatory network.

Airway epithelium regeneration study

Regeneration of Limbs: Axolotl model

Tanaka, Cell 2016

Mohammed H, Cell Reports 2017

Cell Reports

Resource

Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation

RNA Velocity

RNA velocity in single cells

Gioele La Manno, Ruslan Soldatov, Hannah Hochgerner, Amit Zeisel, Viktor Petukhov, Maria Kastriti, Peter Lonnerberg, Alessandro Furlan, Jean Fan, Zehua Liu, David van Bruggen, Jimin Guo, Erik Sundstrom, Goncalo Castelo-Branco, Igor Adameyko, Sten Linnarsson, Peter Kharchenko doi: https://doi.org/10.1101/206052

http://velocyto.org/

Nature, 2018

Wide range of applications

- 1. Resolving cellular heterogeneity
- 2. Understand developmental processes and cell fate decisions
- 3. Fundamental characteristics of gene expression
- 4. Identification of co-regulated gene modules and network inference

Network inference in scRNA-seq

SCENIC: single-cell regulatory network inference and clustering

Sara Aibar^{1,2}, Carmen Bravo González-Blas^{1,2},

Caveats:

- Low sequencing depth
- Drop-outs
- > Difficult to generate robust networks

Future Directions

Integration of single cell OMICS

What type of profiling?

Pubmed counts for single cell seq

CITE-seq

Combine cell surface markers + single cell RNAseq

Stoeckius, Nat Med 2017

Spatial Transcriptomics

Live cell imaging + scRNA-seq

Lane K, Cell Syst 2017

Data Integration Methods Required

Integrating single-cell transcriptomic data across different conditions, technologies, and species

- Non-linear transformation of cells in different proportions
- Aligns datasets from different technologies and species