

Sino Bright School Chongqing

Monthly Exam, 2024-2025 T2

Subject: Further Math
Date: May 2025
Time: 60 Minutes
Teacher Responsible: Shi Feng

IMPORTANT: Read together before beginning the exam.

Students must complete the assessments to the best of their ability. Any students found cheating during an exam will be given a zero and referred to the Principal for further disciplinary measures. Cheating is a serious offense.

"Cheating" may include any of the following:

- Having course papers, notes, unapproved data sheets or other course-related materials in the exam room without the express permission of the subject class teacher in charge of the exam.
- Using or even having a cellphone or other electronic device in the exam room without the express permission of the subject class teacher in charge of the exam.
- Attempting to communicate, either verbally or non-verbally with other students during the exam.
- Having exam-related materials prior to the writing of the exam.

Mark Breakdown:	
Part 1: Multiple Choice Questions $5pts \times 10$	Student Name:
Part 2: Short Answer Questions $5pts \times 4$	
Part 3: Long Answer Questions $15pts \times 2$	
Total Score: 100	Score:

Special Instructions/Materials Allowed:

- Pen
- Calculator

Part I: Multiple Choice Questions ($5pts \times 10$)

- 1. If a root of f(x) = 0 lies in [3,4], what is the midpoint after the first iteration of interval bisection?
 - A) 3.25
 - B) 3.5
 - C) 3.75
 - D) 3.0
- 2. The formula for the first approximation x_1 using linear interpolation is:
 - A) $x_1 = a \frac{f(a)(b-a)}{f(b)-f(a)}$ B) $x_1 = \frac{a+b}{2}$

 - C) $x_1 = a \frac{f(a)}{f'(a)}$ D) $x_1 = \frac{f(b) f(a)}{b a}$
- 3. The directrix of the parabola $y^2 = 24x$ is:
 - A) x = -6
 - B) x = 6
 - C) y = -6
 - D) y = 6
- 4. The modulus of z = 3 + 4i is:
 - A) 5
 - B) 7
 - C) 12
 - D) 25
- 5. The iteration formula is $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. What condition is critical for convergence?
 - A) $f'(x_n) \neq 0$
 - B) $f(x_n) > 0$
 - C) $f(x_n) < 0$
 - D) $f'(x_n) = 0$
- 6. If z = 2 5i, then $z + z^*$ equals:
 - A) 4
 - B) -10i
 - C) 4 10i
 - D) 0
- 7. A root of a continuous function f(x) exists in [a, b] if:
 - A) f(a) and f(b) are positive
 - B) $f(a) \cdot f(b) < 0$
 - C) f(a) = f(b)
 - D) $f(a) \cdot f(b) > 0$
- 8. The Cartesian equation for x = 2t, $y = 4t^2$ is:
 - A) $y = x^2$

B)
$$y = 2x^2$$

B)
$$y = 2x^2$$

C) $y = \frac{x^2}{4}$
D) $y = 4x^2$

D)
$$y = 4x^2$$

9. The asymptotes of xy = 9 are:

A)
$$x = 0$$
 and $y = 0$

B)
$$x = 3 \text{ and } y = 3$$

C)
$$x = 9 \text{ and } y = 9$$

- D) None
- 10. If a quadratic equation has roots α and β , then $\alpha + \beta =$

A)
$$\frac{b}{a}$$

$$\stackrel{(a)}{=} \frac{b}{a}$$

$$\stackrel{\frown}{C}$$
 $\frac{c}{a}$

A)
$$\frac{b}{a}$$
B) $-\frac{b}{a}$
C) $\frac{c}{a}$
D) $-\frac{c}{a}$

Part II: Short Answer Questions $(5pts \times 4)$

- 1. After 3 iterations of interval bisection on [3,4], the interval length is _____.
- 2. For f(2) = -3 and f(4) = 5, the next approximation using linear interpolation is _
- 3. The focus of the parabola $y^2 = 28x$ is at _____.
- 4. The argument of z = -1 i (in radians) is _____.

Part III: Long Answer Questions $(15pts \times 2)$

- 1. Let $z^6 = 1$.
 - (a) Find all the solutions to the equation.

(b) Show each solution on an Argand diagram.

(c) Show that each solution lies on a circle with center (0,0) and radius 1.

- 2. Given the quadratic equation $x^2 5x + 6 = 0$ with roots α and β :
 - (a) Use Vieta's formulas to find $\alpha + \beta$ and $\alpha\beta$.

(b) Construct a new quadratic equation with roots 2α and 2β .

(c) Use the Newton-Raphson method with $x_0 = 3$ to approximate a root of the new equation. Perform 2 iterations and round your answers to 4 decimal places.