Algorithms for Dynamic Right-Sizing in Data Centers

Kevin Kappelmann

August 03, 2017

Technical University of Munich

Dynamic Right-Sizing

Dynamically adjust the number of active servers and efficiently distribute the varying workloads

Model and Problem Formulation

Input:

ullet $m\in\mathbb{N}$... Number of homogeneous servers

- $m \in \mathbb{N}$... Number of homogeneous servers
- ullet $eta \in \mathbb{R}_{\geq 0}$... Switching costs of a server

- $m \in \mathbb{N}$... Number of homogeneous servers
- $\beta \in \mathbb{R}_{\geq 0}$... Switching costs of a server
- ullet $f:[0,1]
 ightarrow \mathbb{R} \ldots$ Convex operating cost function of a server

- $m \in \mathbb{N}$... Number of homogeneous servers
- $\beta \in \mathbb{R}_{\geq 0}$... Switching costs of a server
- ullet $f:[0,1]
 ightarrow \mathbb{R} \, \dots \,$ Convex operating cost function of a server
- $T \in \mathbb{N}$... Number of time slots

- $m \in \mathbb{N}$... Number of homogeneous servers
- ullet $eta \in \mathbb{R}_{\geq 0}$... Switching costs of a server
- ullet $f:[0,1]
 ightarrow \mathbb{R} \, \dots \,$ Convex operating cost function of a server
- $T \in \mathbb{N}$... Number of time slots
- $\lambda_1, \ldots, \lambda_T \in [0, m] \ldots$ Arrival rates (workloads)

Input:

- $m \in \mathbb{N}$... Number of homogeneous servers
- ullet $eta \in \mathbb{R}_{\geq 0}$... Switching costs of a server
- ullet $f:[0,1]
 ightarrow \mathbb{R} \ldots$ Convex operating cost function of a server
- $T \in \mathbb{N}$... Number of time slots
- $\lambda_1, \ldots, \lambda_T \in [0, m] \ldots$ Arrival rates (workloads)

Notation:

• $x_1, \ldots, x_T \in \{0, \ldots, m\}$... Numbers of active servers

$$c_{op}(x_t, \lambda_t) \coloneqq \left\{$$

$$c_{op}(x_t,\lambda_t) \coloneqq \begin{cases} \infty, & ext{if } \lambda_t > x_t & ext{//too few servers} \end{cases}$$

$$c_{op}(x_t,\lambda_t)\coloneqq egin{cases} \infty, & ext{if } \lambda_t>x_t & ext{$//$too few servers} \ 0, & ext{if } x_t=\lambda_t=0 & ext{$//$no active servers} \end{cases}$$

$$c_{op}(x_t, \lambda_t) \coloneqq egin{cases} \infty, & \text{if } \lambda_t > x_t & //\text{too few servers} \\ 0, & \text{if } x_t = \lambda_t = 0 & //\text{no active servers} \\ x_t f(\lambda_t/x_t), & \text{otherwise} & //\text{even distribution} \end{cases}$$

Operating costs for one time step *t*

$$c_{op}(x_t, \lambda_t) \coloneqq egin{cases} \infty, & \text{if } \lambda_t > x_t & //\text{too few servers} \\ 0, & \text{if } x_t = \lambda_t = 0 & //\text{no active servers} \\ x_t f(\lambda_t/x_t), & \text{otherwise} & //\text{even distribution} \end{cases}$$

Goal: Minimize total costs

Operating costs for one time step *t*

$$c_{op}(x_t, \lambda_t) \coloneqq egin{cases} \infty, & \text{if } \lambda_t > x_t & //\text{too few servers} \\ 0, & \text{if } x_t = \lambda_t = 0 & //\text{no active servers} \\ x_t f(\lambda_t/x_t), & \text{otherwise} & //\text{even distribution} \end{cases}$$

Goal: Minimize total costs

minimize
$$\sum_{t=1}^{T} \left(\underbrace{c_{op}(x_t, \lambda_t) + \beta \max\{0, x_t - x_{t-1}\}}_{c(x_{t-1}, x_t, \lambda_t)} \right)$$

Optimal Offline Algorithm

Fundamental idea: reduce problem to shortest path problem

Fundamental idea: reduce problem to shortest path problem

0,0

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Fundamental idea: reduce problem to shortest path problem

Time complexity: $\Theta(Tm)$

Offline Approximation Algorithm

2-Optimal Linear-Time Algorithm

Use logarithmic steps to reduce number of nodes

2-Optimal Linear-Time Algorithm

Use logarithmic steps to reduce number of nodes

where
$$b := \lfloor \log_2(m) \rfloor$$

2-Optimal Linear-Time Algorithm

Shortest Path in graph corresponds to 2-optimal schedule.

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity: $\Theta(T \log_2(m))$

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity: $\Theta(T \log_2(m))$

Can we generalize to allow for arbitrary precisions?

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity: $\Theta(T \log_2(m))$

Can we generalize to allow for arbitrary precisions? Yes!

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity: $\Theta(T \log_2(m))$

Can we generalize to allow for arbitrary precisions? Yes!

Approximation for arbitrary precision $\varepsilon>0$ with time complexity $\Theta \left(T \log_{1+\varepsilon}(m) \right)$

Summary and Prospects

Summary

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

Summary

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

Optimal Offline Algorithm with pseudo-linear runtime $\Theta(Tm)$

Summary

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

Optimal Offline Algorithm with pseudo-linear runtime $\Theta(Tm)$

(1+arepsilon)-Optimal Offline Algorithm with linear runtime $\Thetaig(T\log_{1+arepsilon}(m)ig)$

Can our approach be modified to ...

Can our approach be modified to ...

• deal with more than one homogeneous server collection?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?
- work as an online algorithm?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?
- work as an online algorithm?

Open question: Is there a polynomial optimal algorithm or is it an NP-hard problem?

Thanks for your attention!

Any questions?

Data Centers' Costs

Fast-growing demand for data collection, processing, and storage

Proof Idea

Take a schedule and transform periods between two powers of 2

Proof Idea

Take a schedule and transform periods between two powers of 2

$(1+\varepsilon)$ -Optimal Offline Algorithm

where $y := 1 + \varepsilon, b := \lfloor \log_y(m) \rfloor$

Image Sources I

- Data center: datacentervoice.com/wp-content/ uploads/2015/12/data-center.jpg
- Data center costs: perspectives.mvdirona.com/2008/11/ cost-of-power-in-large-scale-data-centers/