Assignment Project Exam Help

https://eduassistpro.github.

Introduction

This review focuses on Linear Algebra, in the context of

Assignment Project Exam Help

• Matrices as Linear mappings/functions

https://eduassistpro.github.

Note

You've probability learned Linear Algebra from matrix/system of linear equations, etc. We will review key concepts in LASSI Philes Capture of linear educations for now). This perspective provides semantics and

https://eduassistpro.github.

 $\begin{array}{c} {\sf models/operations\ in\ this\ perspective} \\ {Add\ WeChat\ edu_assist_pr} \end{array}$

A Common Trick in Maths I

Question

Assignment Project Exam Help

https://eduassistpro.github.

•
$$f(u) * f(v) = f(u + v)$$
.

- The trick:
- Same in Linear algebra

Objects and Their Representations

Goal

Assignment Project Exam Help

A good representation helps (a lot)!

https://eduassistpro.github.

Basic Concepts I

Algebra

Assignment Project Examty Help element):

- . https://eduassistpro.github.
 - Closed for both operations
 - Some nice properties of these operation

Addomyvice entrataedu_assist_pr

• Distributive: $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a}$

Basic Concepts II

Think: What about substraction and division?

Always use analogy from algebra on integers (Z) and algebra on Poly

Why https://eduassistpro.github.

Basic Concepts III

Representation matters?

Consider even geometric vectors: $\mathbf{c} = \mathbf{a} + \mathbf{b}$ Solution in the condition of the coordinates?

https://eduassistpro.github.

Notes 🔥

- historinally, the objects we are uncentual assist pr are (column) vectors.
- The set of all *n*-dimensional real vectors is called \mathbb{R}^n .

(Column) Vector

Vector

Assignment of the property of

Oper

- https://eduassistpro.github.
 - Add WeChat edu_assist_pr

Linearity I

Linear Combination: Generalization of Univariate Linear Functions

Let $\lambda_i \in \mathbb{R}$, given a set of k vectors $\mathbf{v}_i \in [k]$, a linear Help $\mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_k \mathbf{v}_k = \int_{i \in [k]}^{k} \lambda_i \mathbf{v}_i$

https://eduassistpro.github.

Add WeChat edu assist properties of Span: All linear combination of a set of vector

- them.
- Basis: The minimal set of vectors whose span is exactly the whole \mathbb{R}^n .

Linearity II

• Benefit: every vector has a unique decomposition into basis.

Assignment Project Exam Help

• https://eduassistpro.github.

Think: Who?

Linearity III

Exercises

Assignment Project Exam Help

Decompose $3x^2 + 4x$ 8 into the linear combination of 2,

https://eduassistpro.github.

The "same" polynomial is mapped to two di
under we differ to be that edu_assist_pr

Matrix I

Linear Transformation

Assignment Project Exam Help

https://eduassistpro.github.

• The general form:

Add We hat edu_assist_predux
$$y_3 = M_{31}x_1 + M_{32}x_2$$

Matrix II

Nonexample

Assignment Project Exam Help $x \rightarrow y_2 = \gamma x_1^2 + \theta x_1 + \tau x_2$

https://eduassistpro.github.

Assignment Project Exam Help

https://eduassistpro.github.

Why On Linear Triveron tide hat edu_assist_properties:

- - $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
 - $(\lambda f)(x) = \lambda \cdot f(x)$
- What about f(g(x))?
- Useful

Matrix I

Definition

Assignment Project Exam Help $f(x) = y \implies M(x) = y$, where matrix-vector

https://eduassistpro.github.

mapping; the latter is more or less the

understanding of a function. The

de l'ism l'évre hat edu_assist_pr Semantic Interpretation

Matrix II

• Linear combination of columns of M:

https://eduassistpro.github.

Matrix III

• Example:

https://eduassistpro.github.

• When x is also a matrix,

$$\begin{bmatrix} 1 & 2 \\ -4 & 9 \\ 25 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix} = \begin{bmatrix} 21 & 42 \\ 86 & 172 \\ 35 & 70 \end{bmatrix}$$

System of Linear Equations I

https://eduassistpro.github.

- Interpretation: find a vector in \mathbb{R}^2 Add WeChat edu_assist_pr

System of Linear Equations II

Assignment Project Exam Help

https://eduassistpro.github.

A Matrix Also Specifies a (Generalized) Coordinate System

Assignment, Project Exam Help

https://eduassistpro.github.

A Matrix Also Specifies a (Generalized) Coordinate System II

```
Assignment Project Exam Help

for 1 1 0 0 for 3 3 1 -4

l: fo

fo https://eduassistpro.github.

Let x = -2 \implies Mx = I 13

Add WeChat edu_assist_pro.github.
```

Exercise I

• What if **y** is given in the above example?

Assignment Project Exam Help

https://eduassistpro.github.

Think about representing polynomials using the basis:

Inner Product

THE binary operator – some kind of "similarity"

- Assignment called ropped to f(x, y). For certain functions, $f(g) = \int_{0}^{x} f(t)g(t) dt$. leads to the
 - https://eduassistpro.github.
 - linearity in the first argument: $\langle ax + y, z = a x, z + y, z \rangle$
 - positive definitiveness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq$
 - Gerealies movement at the transfer of the control of the control
 - $\langle \sin nt, \sin mt \rangle = 0$ within $[-\pi, \pi]$ $(m \neq n) \Rightarrow$ they are orthogonal to each other.
 - $\mathbf{C} = \mathbf{A}^{\top} \mathbf{B}$: $C_{ij} = \langle A_i, B_j \rangle$
 - Special case: $\mathbf{A}^{\top}\mathbf{A}$.

Eigenvalues/vectors and Eigen Decomposition

"Eigen" means "characteristic of" (German)

Assignment Project Exam Help

- Not all matrices have eigenvalues. Here, we only consider
- https://eduassistpro.github.

columns). Then $AU = U\Lambda$, or equive This is the Eigeny Decomposition.

A We Can interpret Las at antiform CU_assist_processing the coordinate systems. Note that vectors i

orthogonal.
Λ as the scaling on each of the directions in the "new" coordinate system.

Applications

Compute Aⁿ

Assignment Project Exam Help

https://eduassistpro.github.

Exercises I

• Rewrite $\sum_{i=1}^{n} a_i b_i$ in vector/matrix operations.

Assignment Project Exam Help

. https://eduassistpro.github.

Exercises II

• Suppose we want to apply the linear mapping W to more than

one x vectors. Draw a schematic diagram to show how this Assignment mark of circle (rathextant) Ielp

https://eduassistpro.github.

• In machine learning, we usually store training data as a data matrix; if it is $n \times m$, then it has and call amply its laradinated being u assist process and apply the above linear mapping to all the tr samples.

References and Further Reading I

Gaussian Quadrature:

Assisted Ass

https://eduassistpro.github.

• We Recommend a Singular Value Decomposition.

 $\begin{array}{c} {}^{\tt http://www.ams.org/samplings/} \\ Add \ We Chat \ edu_assist_pr \end{array}$