# Covariate-dependence copula model based on web semantics

Yu Liu

Beihang University

liuyu96@buaa.edu.cn

October 22, 2018

## Outline

- Idea
- Covariate-dependent copula model
  - Sklar's theorem
  - Tail-dependence
  - ullet Nonlinear correlation coefficient Kendall's au
  - The reparameterized Joe-Clayton copula
  - Covariate-dependent copula features
  - Marginal models
  - Covariates
- News information
  - Data generation
  - Convert document into vector
- 4 Future work



#### Idea

- Measuring the dependence of financial market
- News will have an impact on financial market volatility

#### Sklar's theorem

In a bi-variate setting: let  $F_{xy}$  be a joint distribution with margins  $F_x$  and  $F_y$ . Then exist a function C, such that:

#### sklar's theorem

$$F_{xy}(x,y) = F(F_1^{-1}(u_1), F_2^{-1}(u_2)) = C(F_x(x), F_y(y))$$

If X and Y are continuous, then C is unique. Conversely if C is a copula function and  $F_x$  and  $F_y$  are distribution functions, then the function  $F_{xy}$  is a joint distribution with margins  $F_x$  and  $F_y$ .

## Tail-dependence

$$\lambda_L = \lim_{u \to 0^+} p(X_1 < F_1^{-1}(u)|X_2 < F_2^{-1}(u)) = \lim_{u \to 0^+} \frac{C(u, u)}{u}$$

$$\lambda_U = \lim_{u \to 1^-} p(X_1 > F_1^{-1}(u)|X_2 > F_2^{-1}(u)) = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u}$$

## Kendall's au

As for a set of observations:  $((x_1, y_1), (x_2, y_2), ..., (x_n, y_n))$ :

- concordant: if both  $x_i > x_j$  and  $y_i > y_j$ ; or if both  $x_i < x_j$  and  $y_i < y_j$
- discordant: if  $x_i > x_j$  and  $y_i < y_j$  or  $x_i < x_j$  and  $y_i > y_j$

The kendall's  $\tau$  coefficient is defined as:

$$\tau = \frac{n(concordant) - n(discordant)}{n(n-1)/2}$$

### Kendall's au

It also can be writed as:

$$\tau = 4 \int \int F(x_1, x_2) dF(x_1, x_2) - 1 = 4 \int \int C(u_1, u_2) dC(u_1, u_2) - 1$$

# The reparameterized Joe-Clayton copula

## Joe-Calyton copula

$$\begin{split} & \textit{C}(\textit{u},\textit{v}|\theta,\delta) = \eta(\eta^{-1}(\textit{u}) + \eta^{-1}(\textit{v})) = 1 - [1 - \{(1 - \overline{\textit{u}}^{\theta})^{-\delta} + (1 - \overline{\textit{v}}^{\theta}) - 1\}^{-1/\delta}]^{1/\theta} \\ & \text{where } \eta(\textit{s}) = 1 - [1 - (1 + \textit{s})^{-1/\delta}]^{1/\theta}, \; \theta \geq 1, \; \delta \geq 0, \; \overline{\textit{u}} = 1 - \textit{u}, \; \text{and} \\ & \overline{\textit{v}} = 1 - \textit{v}. \end{split}$$

## Tail-dependece

$$\lambda_L = 2^{-1/\delta}$$
 and  $\lambda_U = 2 - 2^{1/ heta}$ 



## The reparameterized Joe-Clayton copula

$$\tau = \begin{cases} 1 - 2/[\delta(2 - \theta)] + 4B(\delta + 2, 2/\theta - 1)/(\theta^2 \delta)1 \le \theta < 2\\ 1 - [\psi(2 + \delta) - \psi(1) - 1]/\delta\theta = 2\\ 1 - 2/[\delta(2 - \theta)] - 4\pi/[\theta^2 \delta(2 + \delta) \sin(2\pi\theta)B(1 + \delta + 2/\theta, 2 - 2/\theta)]\theta > \end{cases}$$
(1)

# The reparameterized Joe-Clayton copula

#### Reparametrization

$$C(u, v | \lambda_L, \tau) = 1 - [1 - [[1 - \bar{u}^{\log 2/\log(t - \tau^{-1}(\lambda_L))}]^{\log 2/\log\lambda_L} + [1 - \bar{v}^{\log 2/\log(2 - \tau^{-1}(\lambda_L))} - 1]^{\log \lambda_L/\log 2}]^{\log(2 - \tau^{-1}(\lambda_L))/\log 2}$$

Where 
$$\tau^{-1}(\lambda_L) = \lambda_U = 2 - 2^{1/\theta}$$

## Covariate-dependent copula features

The covariate-dependent copula model that allows the copula features to be linked to the observed covariates:

$$au = \mathit{l}_{ au}^{-1}(oldsymbol{X}oldsymbol{eta}_{ au}) \qquad ext{and} \qquad \lambda = \mathit{l}_{\lambda}^{-1}(oldsymbol{X}oldsymbol{eta}_{\lambda})$$

- $\bullet$   $\lambda$  without subscripts represents the dependences in the lower or upper tails
- $\tau$  is Kendall's  $\tau$
- X is the set of covariates matrix
- ullet eta with subscripts is the corresponding coefficients vector
- $I_{\lambda}(\cdot)$  and  $I_{\tau}(\cdot)$  are suitable *link function* that connect  $\lambda$  and  $\tau$  with **X**

# Marginal models

We assume the marginal models to be *split-t distributions*, then we allow the mean  $\mu_k$ , the scale  $\phi_k$ , the degree of freedom  $\nu_k$ , the skewness  $\kappa_k$  of the split-t density in the kth to be linked to covariates:

$$\mu_k = \mathbf{X} \beta_{\mu k}, \nu_k = \exp(\mathbf{X} \beta_{\nu k});$$

$$\phi_k = \exp(\mathbf{X} \beta_{\phi k}), \kappa_k = \exp(\mathbf{X} \beta_{\kappa k})$$

where  $X_k$  is the covariate matrix in the kth margin

## Covariates

| Covariates( $X_s$ ) | Explanation                                                                |
|---------------------|----------------------------------------------------------------------------|
| LastDay             | the returns from yesterday                                                 |
| LastWeek            | the returns from the previous five trading days                            |
| LastMonth           | the returns from the previous twenty trading days                          |
| CloseAbs95          | $(1-\rho)\sum_{s=0}^{\infty}\rho^{s} y_{t-2-s} $                           |
| CloseSqr95          | $(1-\rho)\sum_{s=0}^{\infty} \rho^{s}(y_{t-2-s})^{2}$                      |
| MaxMin95            | $(1-\rho)\sum_{s=0}^{\infty}\rho^{s}(Inp_{t-1-s}^{(h)}-Inp_{t-1-s}^{(f)})$ |

Table: Seven variables

## Data generation

#### Crawling the following information:

- Company: JD and BABA
- source: https:caixin.com
- date: 2017/05/23 2018/08/17

#### News data preprocessing:

- Combine news data from the same day
- Combine weekend news data with next Monday news data
- Remove news data from weekend

#### Convert document into vector

Our model require the input to be represented as a fixed-length feature vector. One of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses:

- they lose the ordering of the words
- they ignore semantics of the words

So, we use **Doc2vec** to convert document into vectore. Then we can convert each document into a 200-dimensional vector. After that, the function umap() can help us to reduce the dimension of the vector to two dimensions.

## Future work

| Experiment | Covariate   | Variable selected |
|------------|-------------|-------------------|
| 1          | one         | None              |
| 2          | $X_s$       | Υ                 |
| 3          | $X_s$       | N                 |
| 4          | $X_n$       | Υ                 |
| 5          | $X_n$       | N                 |
| 6          | $X_s + X_n$ | Υ                 |
| 7          | $X_s + X_n$ | N                 |

Table: Experiment programe