Modelo Replicador

El modelo replicador es una ecuación diferencial utilizada en teoría de juegos y dinámica evolutiva para des

$$dx/dt = x * (a - x - y)$$

 $dy/dt = y * (b - x - y)$

Aquí, x e y representan las frecuencias de dos estrategias o tipos en la población, y a y b son constantes qu

1. Puntos de Equilibrio

Para encontrar los puntos de equilibrio, establecemos dx/dt = 0 y dy/dt = 0:

Desde dx/dt = 0:

$$x(a - x - y) = 0$$

 $x = 0 \circ a - x - y = 0$

Desde dy/dt = 0:

$$y(b - x - y) = 0$$

y = 0 o b - x - y = 0

Resolviendo este sistema de ecuaciones, encontramos los puntos de equilibrio:

- 1. Extinción de ambas estrategias: (x = 0, y = 0)
- 2. Extinción de la estrategia y: (x = a, y = 0)
- 3. Extinción de la estrategia x: (x = 0, y = b)
- 4. Coexistencia: (x = a y, y = b x)

2. Análisis de Estabilidad

Para analizar la estabilidad de los puntos de equilibrio, se utilizan métodos de análisis de estabilidad como e

$$\mathsf{J} = [[\partial \mathsf{f}/\partial \mathsf{x},\,\partial \mathsf{f}/\partial \mathsf{y}],\,[\partial \mathsf{g}/\partial \mathsf{x},\,\partial \mathsf{g}/\partial \mathsf{y}]]$$

Evaluamos el Jacobiano en los puntos de equilibrio y analizamos los eigenvalores:

Si todos los eigenvalores tienen partes reales negativas, el punto de equilibrio es estable. Si alguno tiene parte real positiva, el punto es inestable.

3. Soluciones Especiales

En algunos casos, es posible encontrar soluciones explícitas bajo ciertas condiciones. Sin embargo, en muc

4. Conclusiones

El análisis de estabilidad proporciona información sobre cómo las frecuencias de las dos estrategias en la p

El modelo replicador es fundamental para entender la dinámica evolutiva y la selección natural en poblacion