Κβαντική πληροφορία

Πέτρος Πετρίδης

А.Π.Θ.

Ιούνιος 2022

Imports

```
from scipy.integrate import odeint
from scipy.interpolate import interpld
from scipy.integrate import quad
from scipy.integrate import simpson
from scipy.optimize import fsolve
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

Lane-Emden

Υδροστατική ισορροπία:

$$\frac{d}{dr} \left[\frac{r^2}{\rho(r)} \frac{dP(r)}{dr} \right] = -4\pi G r^2 \rho(r)$$

$$\dot{\eta}_{\frac{d^2\theta(\xi)}{d\xi^2} + \frac{2}{\xi} \frac{d\theta(\xi)}{d\xi} + \theta(\xi)^n = 0}$$

όπου
$$n=\frac{1}{\gamma-1},$$
 $a=\sqrt{\frac{K\gamma}{4\pi G(\gamma-1)}\rho_o^{\gamma-2}},$ $\theta(0)=1$ και $\theta'(0)=0$

Aν
$$\theta'(\xi)=z$$
, τότε $z'(\xi)=\theta''(\xi)=-\frac{2}{\xi}\frac{d\theta(\xi)}{d\xi}-\theta(\xi)^n$ w_initial=[1,0]

$$dw = [[], []]$$

x=np.linspace(10**-8,10,2000)

Equations

$$h(\alpha k) = \left(\frac{4\pi\rho_0\alpha^3}{ak}\int_0^{\xi_R}\theta^n(\xi)\sin(\alpha k\xi)\xi d\xi\right)^2$$

$$\alpha k_{min} = \frac{\pi}{\xi_R}$$

$$h(\alpha k_{min}) = \left(\frac{4\pi\rho_0 \alpha^3}{\alpha k_{min}} \int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d\xi\right)^2$$

$$\bar{f}(\alpha k) = \frac{h(\alpha k)}{h(\alpha k_{min})} = \left(\frac{\pi/\xi_R}{k}\right)^2 \frac{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d \xi\right)^2}{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d \xi\right)^2}$$

$$S = -4\pi \int_{\alpha k_{min}}^{\infty} \left(\frac{\pi/\xi_R}{^k}\right)^2 \frac{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d \xi\right)^2}{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d \xi\right)^2} \log \left(\left(\frac{\pi/\xi_R}{^k}\right)^2 \frac{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d \xi\right)^2}{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d \xi\right)^2}\right) k^2 dk$$

Equations and functions

```
h(\alpha k) = \left(\frac{4\pi\rho_0 \alpha^3}{ak} \int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d\xi\right)^2
h(\alpha k_{min}) = \left(\frac{4\pi\rho_0\alpha^3}{\alpha k_{min}} \int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d\xi\right)^2
             def hak min(x,theta,n,wmin):
                    if callable (theta):
                          result=(theta(x)**n)*np.sin(wmin*x)*x
                    else:
                          result=(theta**n)*np.sin(wmin*x)*x
                    return result
             def hak(x,omega,theta,n):
                    if callable (theta):
                          result=(theta(x)**n)*np.sin(omega*x)*x
                    else:
                          result=(theta**n)*np.sin(omega*x)*x
                    return result
```

Equations and functions

```
S=-4 \pi \int_{\alpha k_{min}}^{\infty} \left(\frac{\pi/\xi_R}{k}\right)^2 \frac{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d \xi\right)^2}{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d \xi\right)^2} log\left(\left(\frac{\pi/\xi_R}{k}\right)^2 \frac{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\alpha k \xi) \xi d \xi\right)^2}{\left(\int_0^{\xi_R} \theta^n(\xi) \sin(\frac{\pi}{\xi_R} \xi) \xi d \xi\right)^2}\right) k^2 dk
                               def S(omega, theta, n, wmin):
                                      if callable(theta):
                                             I1=guad(hak min,xo,xr,args=(theta,n,wmin))
                                            paranomastis=I1[0]**2
                                             12=quad(hak,xo,xr, args=(omega,theta,n))
                                             arithmitis=T2[01**2
                                             paragontas=(wmin/omega)**2
                                             item=paragontas*arithmitis/paranomastis
                                             result=item*np.log(item)*omega**2
                                      else:
                                             I1=simpson(hak min(xx,theta,n,wmin),xx)
                                            paranomastis=I1**2
                                             I2=simpson(hak(xx,omega,theta,n),xx)
                                             arithmitis=T2**2
                                             paragontas=(wmin/omega)**2
                                             item=paragontas*arithmitis/paranomastis
                                             result=item*np.log(item)*omega**2
                                      return result
```

Equations and functions

```
\begin{split} M &= 4\pi \rho_o \alpha^3 \int_0^{\xi_R} \theta^n(\xi) \xi^2 d\xi \\ &\qquad \text{def Mass}(\mathbf{x}, \text{theta,n}): \\ &\qquad \text{if callable(theta):} \\ &\qquad \text{result=}(\text{theta}(\mathbf{x}) **\mathbf{n}) * (\mathbf{x} **2) \\ &\qquad \text{else:} \\ &\qquad \text{result=}(\text{theta}**\mathbf{n}) * (\mathbf{x} **2) \\ &\qquad \text{return result.} \end{split}
```

Lane Emden + Figure 1

```
#Lane Emden + Figure 1
gamma=[1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9]
fig1,ax1=plt.subplots()
fig2,ax2=plt.subplots()
LinesColor=["red", "black", "blue"]
LinesStyle=["dashed", "solid", "dashdot"]
MarkerColor=["red", "green", "blue"]
counter=0
for g in gamma:
    n=1/(q-1)
    CoefGamma=np.sqrt(g/(g-1))
    y=odeint(model,w initial,x,args=(n,))
    yy=y[:,0]
    ind=np.where(~np.isnan(yy))
    xx=xx[ind]
    yy=yy[ind]
    ax1.plot(xx,yy,label="y=%.1f"%q)
    xr=xx[-1]
    wmin=np.pi/xr
    Il=simpson(hak min(xx,yy,n,wmin),xx)
    paranomastis=I1**2
    omegas=np.arange(wmin,100,0.01)
    fakLIST=[]
    ws=[]
    if g==1.2 or g==1.4 or g==1.7;
        for w in omegas:
            paragontas=(wmin/(w))**2
            I1=simpson(hak(xx,w,vv,n),xx)
            arithmitis=I1**2
            fakLIST.append(paragontas*arithmitis/paranomastis)
            ws.append(w/CoefGamma)
        ax2.plot(ws,fakLIST,color=LinesColor(counter),linestvle=LinesStvle(counter),label="v=%.lf"%g)
        ax2.scatter(ws[0],fakLIST[0],color=MarkerColor[counter],marker="v",zorder=2)
        ax2.legend(loc="best")
        counter=counter+1
```

Lane Emden + Figure 1

```
#Lane Emden
ax1.legend(loc="best")
ax1.set title(r"Solutions for Lane-Emden")
ax1.set ylabel(r"$\theta(\xi)$")
ax1.set xlabel(r"$\xi$")
ax1.grid(True)
ax1.plot(np.linspace(0,10,10),10*[0],"k",linewidth=0.8)
ax1.set xlim([0,10])
ax1.set ylim([-0.5,1.2])
#Figure 1
ax2.set_xlabel(r"$k/\sqrt{\frac{4\pi G \rho_o^{\gamma-2}}{K}}$")
ax2.set_ylabel(r"$\bar{f}(\omega)$")
ax2.set\_title(r"Plot "r"$\bar{f}(\omega)$" " vs " r"$ \omega=k/\sqrt{\frac{4\pi G \rho o^{\qamma-2}}{K}}$")
ax2.set xlim([0,1.5])
ax2.set ylim([0,1.1])
ax2.set yticks (np.arange (0, 1.2, 0.1))
ax2.legend(loc="best")
ax NEW=ax2.twinx().twiny()
ax NEW.set xlim([0,1.5])
ax NEW.set ylim([0,1.1])
ax NEW.set yticks(np.arange(0,1.2,0.1))
ax NEW.set xticklabels([])
ax NEW.set yticklabels([])
```

Lane Emden


```
#Figure 2
listGamma=[]
Sro=[]
maza=[]
gamma=np.arange(1.25,1.8,0.05)
for q in gamma:
    n=1/(q-1)
    y=odeint(model,w initial,x,args=(n,))
    xx=x
    yy=y[:,0]
    ind=np.where(~np.isnan(vv))
    xx=xx[ind]
    vv=vv[ind]
    theta=interpld(xx,yy,kind="cubic",fill value="extrapolate")
    xo=0
    xr=fsolve(theta,6)
    xr=xr[0]
    wmin=np.pi/xr
    I=quad(S, wmin, 20, args=(theta, n, wmin))
    I=I[0]
    I=-I*np.pi*4*((q-1)/q)**(3/2)
    Sro.append(I)
    listGamma.append(g)
    Imass=simpson(Mass(xx,yy,n),xx)
    maza.append(4*np.pi/200*(g/(g-1))**(3/2)*Imass)
```

```
#Figure 2
fig3,ax3=plt.subplots()
ax3.plot(listGamma, Sro, color="red", \
         label=r"{\frac{S\rho o^{-1}}{(\frac{K}{4\pi G})^{-3/2}\rho c^{2-\frac{3\gamma a}{2}}}}")
ax3.plot(listGamma, maza, color="green", linestyle="dotted", \
         label=r"\S\{frac\{M\}\{200(frac\{K\}\{4\}pi G\})^{3/2}\}rho c^{frac\{3\}gamma}\{2\}-2\}\}$")
ax3.legend()
ax3.set xlabel(r"$\gamma$")
ax3.set vlabel(r"$M(func(\qamma)),S(func(\qamma))$")
ax3.set title(r"$Mass$"" and "r"$\frac{S}{\rho o}$")
ax3.set xticks(np.arange(1.25,1.75,0.05))
ax3.set yticks(np.arange(0.4,1.4,0.1))
ax NEW=ax3.twinx().twiny()
ax NEW.set xlim([0,1.5])
ax NEW.set ylim([0,1.1])
ax NEW.set yticks(np.arange(0,1.2,0.1))
ax NEW.set xticklabels([])
ax NEW.set yticklabels([])
```


Figure 3 και Figure 4

$$\begin{split} &\rho(r) = \rho_0 \theta(\xi)^n \xrightarrow{\rho_0 = \rho_c} \\ &\theta(\xi) = \left(\frac{\rho(r)}{\rho_c}\right)^{1/n} \\ &\theta(0) = \left(\frac{\rho(0)}{\rho_c}\right)^{1/n} = \left(\frac{\rho_0}{\rho_c}\right)^{1/n} \Rightarrow \text{allayyh arministic sunstants} \\ &M = 4\pi \left(\frac{K}{4\pi G}\right)^{3/2} \rho_c^{3\gamma/2 - 2} \left(\frac{\gamma}{\gamma - 1}\right)^{3/2} \int_0^{\xi_R} \theta(\xi)^n \xi^2 d\xi \\ &= 4\pi * const. * \left(\frac{\gamma}{\gamma - 1}\right)^{3/2} \int_0^{\xi_R} \theta(\xi)^n \xi^2 d\xi \\ &= \frac{S}{\alpha^3 \rho_o} = \frac{-4\pi * \text{Integral}_s * (\frac{K}{4\pi G})^{-3/2} \rho_c^{2 - \frac{3\gamma}{2}}}{(\frac{\gamma}{\gamma - 1})^{3/2} \frac{\rho_o}{\rho_c}} = \frac{-4\pi * \text{Integral}_s * const.}{(\frac{\gamma}{\gamma - 1})^{3/2} \frac{\rho_o}{\rho_c}} \end{split}$$

Figure 3 και Figure 4

```
#Figure 3 + Figure 4
RoDiaRc=np.arange(1,2.95,0.01)
gamma=np.arange(1.2,1.75,0.01)
Entropy=np.zeros((len(RoDiaRc),len(gamma)),float)
mazaCnt=np.zeros((len(RoDiaRc),len(gamma)),float)
for i in range(len(RoDiaRc)):
    for j in range(len(gamma)):
       g=gamma[j]
       n=1/(q-1)
       w0=[RoDiaRc[i]**(1/n),0]
       v=odeint(model,w0,x,args=(n,))
        xx=x
       yy=y[:,0]
        index=np.where(~np.isnan(vv))
       xx=xx[index]
       yy=yy[index]
        theta=interpld(xx,vv,kind="cubic",fill value="extrapolate"
        vo=0
       xr=fsolve(theta,6)
       xr=xr[0]
        wmin=np.pi/xr
```

```
I=simpson(Mass(xx,yy,n),xx)
I=4*np.pi*(np.sqrt(g/(g-1)))**3*I
mazaCnt[i][j]=I

rCoef=RoDiaRc[i]
gCoef=g/(g-1)
listY=[]
listY=[]
h=(40-wmin)/(1000-1)
wtest=np.arange(wmin,40+h,h)
for wt in wtest:
    listY.append(S(wt,yy,n,wmin))
listX=wtest

I=simpson(listY,listX)
I=-I*np.pi*4./(rCoef*gCoef**(3/2))
Entropv(i[ifi]=I
```

Figure 3 xal Figure 4

```
#Figure 3
plt.figure(4)
plt.contour(gamma, RoDiaRc, mazaCnt, levels=np.arange(130, 255, 5), linewidths=0.5, colors='k')
plt.contourf(gamma,RoDiaRc,mazaCnt,levels=np.arange(130,255,5),cmap="gist gray")
plt.colorbar(ticks=np.arange(140,270,20),label=r"$(\frac{K}{4\pi G})^{3/2}\rho c^{3\gamma/2-2}$")
plt.ylim([1,2.9])
plt.xlim([1.25,1.7])
ymin,ymax=plt.gca().get ylim()
plt.plot([4/3,4/3],[ymin,ymax],"k--")
plt.xlabel(r"$\gamma$")
plt.vlabel(r"$\frac{\rho o}{\rho c}$")
plt.title("Mass vs "r"$\gamma$"" vs "r"$\frac{\rho o}{\rho c}$")
#Figure 4
plt.figure(5)
plt.contour(gamma, RoDiaRc, Entropy, levels=np.arange(0.4,1.4,0.03), linewidths=0.5, colors='k')
plt.contourf(gamma,RoDiaRc,Entropy,levels=np.arange(0.4,1.4,0.03),cmap="gist gray")
plt.colorbar(ticks=np.arange(0.4,1.4,0.1),label=r"$(\frac{K}{4\pi G})^{-3/2}\rho c^{2-3\gamma/2}$")
plt.vlim([1,2.91)
plt.xlim([1.25,1.7])
ymin,ymax=plt.gca().get ylim()
plt.plot([4/3,4/3],[ymin,ymax],"k--")
plt.xlabel(r"$\gamma$")
plt.vlabel(r"$\frac{\rho o}{\rho c}$")
plt.title("S vs "r"$\gamma$"" vs "r"$\frac{\rho o}{\rho c}$")
```



```
#Figure 5
GammaFig5=np.arange(1.25,1.8,0.001)
DataX=[]
DataY=[[],[],[]]
for g in GammaFig5:
    n=1/(q-1)
    y=odeint(model,w initial,x,args=(n,))
    xx=x
    yy=y[:,0]
    ind=np.where(~np.isnan(vv))
    xx=xx[ind]
    yy=yy[ind]
    theta=interpld(xx,yy,kind="cubic",fill value="extrapolate")
    x \cap = 0
    xr=fsolve(theta,6)
    xr=xr[0]
    wFIG5=[np.pi/xr/0.95,np.pi/xr,np.pi/xr/1.05]
    for i in range (len (wFIG5)):
        listY=[]
        wmin=wFIG5[i]
        h=(40-wmin)/(1000-1)
        wtest=np.arange(wmin, 40+h, h)
        for wt in wtest:
                listY.append(S(wt,yy,n,wmin))
        I=simpson(listY, wtest)
        I=-I*np.pi*4
        DataY[i].append(I)
```

DataX.append(q)

```
#Figure 5
fig4.ax4=plt.subplots()
ax4.plot(DataX,DataY[0],label=r"$k {min}=\frac{\pi }{0.95\xi R}$",linestyle="dotted",color="blue")
a1=DataY[0].index(max(DataY[0]))
a2=DataY[0].index(min(DataY[0]))
ax4.scatter(DataX[a1],DataY[0][a1],color="red",edgecolor="black",marker="v",s=20*2**0,zorder=2)
ax4.scatter(DataX[a2],DataY[0][a2],color="white",edgecolor="blue",s=20*2**0,zorder=2)
ax4.plot(DataX,DataY[1],label=r"$k {min}=\frac{\pi }{1\xi R}$",linestyle="solid",color="black")
a1=DataY[1].index(max(DataY[1]))
a2=DataY[1].index(min(DataY[1]))
ax4.scatter(DataX[a1],DataY[1][a1],color="red",edgecolor="black",marker="v",s=20*2**0,zorder=2)
ax4.scatter(DataX[a2],DataY[1][a2],color="white",edgecolor="blue",s=20*2**0.zorder=2)
ax4.plot(DataX,DataY[2],label=r"$k {min}=\frac{\pi }{1.05\xi R}$",linestyle="dashdot",color="red")
a1=DataY[2].index(max(DataY[2]))
a2=DataY[2].index(min(DataY[2]))
ax4.scatter(DataX[a1],DataY[2][a1],color="red",edgecolor="black",marker="v",s=20*2**0,zorder=2)
ax4.scatter(DataX[a2],DataY[2][a2],color="white",edgecolor="blue",s=20*2**0,zorder=2)
axes = plt.gca()
y min, y max = axes.get ylim()
ax4.plot([4/3,4/3],[y min,y max],"k--",label="$\gamma=4/3$",linewidth=0.5)
ax4.plot([5/3,5/3],[v min,v max],"k--",label="$\gamma=5/3$",linewidth=0.5)
ax4.legend()
ax4.set xlabel(r"$\gamma$")
ax4.set vlabel(r"$S$")
ax4.set title(r"$Plot$"" of "r"$S$"" vs "r"$\gamma$"" for different "r"$k {min}$")
ax4.set xlim([1.2,1.75])
ax4.set vlim([4.6,5.6])
ax4.set_vticks(np.arange(4.6,5.6,0.1))
ax4.set xticks(np.arange(1.3,1.8,0.1))
ax NEW=ax4.twinx().twiny()
ax NEW.set xlim([1.25,1.75])
ax NEW.set ylim([4.6,5.6])
ax NEW.set yticks(np.arange(4.6,5.6,0.1))
ax NEW.set xticklabels([])
ax NEW.set vticklabels([])
```


ΤΕΛΟΣ

ΤΕΛΟΣ ΠΑΡΟΥΣΙΑΣΗΣ