DCA 0118 – Procesamento Digital de Sinais Tópico 5.1: Amostragem de sinais de tempo contínuo

Tiago Barros ¹

1(tbarros@dca.ufrn.br)

Departamento de Engenharia de Computação e Automação (DCA) Centro de Tecnologia (CT) Universidade Federal do Rio Grande do Norte (UFRN)

2022.1

mostragem de sinais de TC Amostragem periódica Domínio da frequência Reconstrução Processamento em TE

Programa

Conteúdo

- Amostragem de sinais de tempo contínuo (TC);
- Amostragem periódica;
- Representação da amostragem no domínio da frequência;
- Reconstrução de um sinal de banda limitada a partir de suas amostras;

Bibliografia

Livro texto

Oppenheim, A.V. e Schafer, R.W., 2012. Processamento em tempo discreto de sinais. 3ª ed.-São Paulo: Pearson Education do Brasil.

- Capítulo 4:
 - Seções 4.0, 4.1, 4.2, 4.3;

Material complementar

- Oppenheim, A.V. e Willsky, A. S., Sinais e Sistemas.
- Lathi, B. P., Sinais e Sistemas Lineares.
- Curso do Prof. Renato Lopes (Unicamp) no Coursera: (https://www.coursera.org/learn/pds);

Amostragem de sinais de TC

Pode-se processar sinais contínuos no tempo através da seguinte abordagem:

- Amostragem no tempo;
- Processamento em tempo discreto;
- Reconstrução do sinal em tempo contínuo;

Amostragem periódica

→ Método mais comum de obter-se sinais de tempo discreto;

 \implies Obtém-se sequência de amostras, x[n], do sinal contínuo no tempo, pela relação

$$x[n] = x_c(nT), -\infty < n < \infty;$$

- T é o período de amostragem em segundos;
- Define-se $f_s = 1/T$ como a frequência de amostragem, em amostras por segundo;
- Forma alternativa (angular) frequência de amostragem (analógica):
 - $\Omega_s = 2\pi/T \text{ rad/s}$;

Amostragem periódica

Define-se sistema conversor ideal, de tempo contínuo para tempo discreto (conversor C/D):

Amostragem periódica

- \implies Sistema prático que implementa a amostragem é o conversor analógico digital (A/D);
- \implies É uma aproximação do conversor C/D ideal:
 - Amostrador em tempo;
 - Amostrador em amplitude;

nostragem de sinais de TC **Amostragem periódica** Domínio da frequência Reconstrução Processamento em TD

Amostragem periódica

 \implies Operação de amostragem é não-inversível: x[n] não é suficiente para recuperar $x_c(t)$

- Muitos sinais contínuos possuem mesma saída discreta (ambiguidade);
- Pode-se remover ambiguidade restringindo sinal de entrada no amostrador;
 - Restrição na frequência $\Longrightarrow x_c(t)$ é sinal de banda limitada.

Sinal de banda limitada

Um sinal é de banda limitada se para alguma frequência Ω_N , temos que $X_c(j\Omega)=0$ para $|\Omega|\geq\Omega_N$.

Amostragem periódica

→ Representação matemática da amostragem:

Define-se o trem de impulsos como:

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT),$$

onde $\delta(t)$ é a função delta de Dirac (impulso unitário).

Produto $x_s(t)$ é

$$x_s(t) = x_c(t)s(t) = x_c(t)\sum_{n=-\infty}^{\infty} \delta(t - nT).$$

Pode-se mostrar que este produto é

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT).$$

- → Modulação de trem de impulsos:
 - Representação matemática da amostragem.

2022.1

Amostragem periódica

 Tiago Barros
 Tópico 5
 2022.1
 10 / 44

mostragem de sinais de TC **Amostragem periódica** Domínio da frequência Reconstrução Processamento em T

Amostragem periódica

Diferenças entre $x_s(t)$ e x[n]:

- $x_s(t)$: sinal de tempo contínuo nulo, exceto nos múltiplos inteiros de T;
- x[n]: sequência indexada na variável n; não contém informações implícitas sobre período de amostragem T; amostras são números finitos;

Como

$$x_s(t) = x_c(t)s(t),$$

temos que, pela TFTC:

$$X_s(j\Omega) = \frac{1}{2\pi}X_c(j\Omega) * S(j\Omega).$$

A TFTC de $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$ é dada por

$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s),$$

onde $\Omega_s = 2\pi/T$.

Temos que

$$X_{s}(j\Omega) = \frac{1}{2\pi}X_{c}(j\Omega) * \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_{s})$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s})).$$

 $\Longrightarrow X_s(j\Omega)$ são cópias periódicas da TF de $x_c(t)$, $X_c(j\Omega)$;

2022.1 15 / 44

 \implies Essas cópias são deslocadas em múltiplos inteiros de Ω_s e depois sobrepostas para formar espectro $X_s(i\Omega)$;

 \Longrightarrow Se espectro de $X_c(j\Omega)$ for limitado em $\pm\Omega_N$, para não haver sobreposição espectral devemos ter:

$$\Omega_s - \Omega_N > \Omega_N$$

ou

$$\Omega_s > 2\Omega_N$$
.

- \Longrightarrow Se $\Omega_{\rm s} < 2\Omega_{\rm N}$:
 - Haverá sobreposição espectral entre as cópias de $X_c(j\Omega)$ (distorção de *aliasing*);
 - Não será mais possível recuperar $X_c(j\Omega)$ a partir de $X_s(j\Omega)$;

 \implies Podemos recuperar $x_c(t)$ a partir de $x_s(t)$ com um filtro passa-baixas (FPB) analógico ideal, com ganho T e frequência de corte Ω_c , tal que

$$\Omega_N < \Omega_c < \Omega_s - \Omega_N$$

е

$$X_r(j\Omega) = H_r(j\Omega)X_s(j\Omega)$$

onde:

- $X_r(i\Omega)$ é o sinal recuperado;
- $H_r(i\Omega)$ é o FPB analógico ideal;
- \implies Nesse caso, $X_r(j\Omega) = X_c(j\Omega)$.

Exemplo

$$x_c(t) = \cos(\Omega_0 t),$$

$$X_c(j\Omega) = \pi\delta(\Omega - \Omega_0) + \pi\delta(\Omega + \Omega_0).$$

Duas situações:

- $\Omega_0 < \Omega_s/2$;
- $\Omega_s/2 < \Omega_0 < \Omega_s$;

agem de sinais de TC Amostragem periódica **Domínio da frequência** Reconstrução Processamento em

Teorema da amostragem de Nyquist-Shannon

Teorema da amostragem

Seja $x_c(t)$ um sinal de banda limitada com $X_c(j\Omega) = 0$ para $|\Omega| \ge \Omega_N$.

Então, $x_c(t)$ é unicamente representado por suas amostras $x[n] = x_c(nT)$, $n = 0, \pm 1, \pm 2, \cdots$, se

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N,$$

onde:

• $2\Omega_N$ é a frequência de Nyquist, ou seja, frequência que deve ser excedida por Ω_s ;

Para obter a TFTD, $X(e^{j\omega})$, de x[n], em termos de $X_s(j\Omega)$ e $X_c(j\Omega)$, lembramos que:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT).$$

Podemos escrever sua TFTC como:

$$X_{s}(j\Omega) = \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x_{c}(nT) \delta(t-nT) \right) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x_{c}(nT) \int_{-\infty}^{\infty} \delta(t-nT) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x_{c}(nT) e^{-j\Omega T n}.$$

Como $x[n] = x_c(nT)$ e $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$, segue que:

$$X_s(j\Omega) = X(e^{j\omega})\Big|_{\omega=\Omega T} = X(e^{j\Omega T}).$$

Como

$$X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s)),$$

Temos

$$X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s)).$$

De modo equivalente

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left[j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right].$$

 $\Longrightarrow X(e^{j\omega})$ é uma versão de $X_s(j\Omega)$ com mudança de escala na frequência, com fator de escala especificado por $\omega = \Omega T$;

- → Normalização do eixo da frequência:
 - $\Omega = \Omega_s$ em $X_s(j\Omega)$ normalizada para $\omega = 2\pi$ em $X(e^{j\omega})$;
 - É um resultado direto da normalização do tempo na transformação de $x_s(t)$ para x[n];

⇒ Se sinal for amostrado respeitando-se o teorema da amostragem, ele pode ser recuperado a partir de suas amostras, conhecendo-se o período de amostragem. Esta afirmação pode ser ilustrada da seguinte forma, fazendo uso do trem de impulsos:

Dado x[n], forma-se $x_s(t)$ a partir de um trem de impulsos:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT),$$

onde a n-ésima amostra está associada ao impulso em t = nT, sendo T o período de amostragem da sequência x[n].

Se trem de impulsos for entrada para um FPB ideal com resposta em frequência $H_r(j\Omega)$, a saída do filtro aplicado ao sinal $x_s(t)$ é

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t-nT).$$

Representação por diagrama de blocos:

Filtro de reconstrução ideal, $H_r(j\Omega)$: \Longrightarrow Ganho T;

- \Longrightarrow Frequência de corte Ω_c :
 - $\Omega_N < \Omega_c < \Omega_s \Omega_N$;
 - Valor conveniente apropriado para qualquer relação entre Ω_s e Ω_N que evite aliasing:

$$\Omega_c = \frac{\Omega_s}{2} = \frac{\pi}{T}$$

→ Resposta ao impulso do filtro:

$$h_r(t) = \frac{sen(\pi t/T)}{\pi t/T},$$

O sinal reconstruído é dado por

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\operatorname{sen}(\pi(t-nT)/T)}{\pi(t-nT)/T}.$$

 \implies Pode-se mostrar que $x_r(t)$ é uma versão reconstruída de $x_c(t)$, onde o sinal é interpolado entre as amostras de x[n].

ostragem de sinais de TC Amostragem periódica Domínio da frequência **Reconstrução** Processamento em ⁻

Reconstrução de um sinal de banda limitada

Sistema equivalente para conversor de tempo discreto para tempo contínuo:

Representa operações de:

- Conversão da sequência em trem de impulsos;
- Filtragem por um FPB ideal;

Como
$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t-nT)$$
, temos que
$$X_r(j\Omega) = \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x[n]h_r(t-nT)\right) e^{-j\Omega t} dt$$
$$= \sum_{n=-\infty}^{\infty} x[n] \left(\int_{-\infty}^{\infty} h_r(t-nT)e^{-j\Omega t} dt\right)$$

$$= \sum_{n=-\infty}^{\infty} x[n] H_r(j\Omega) e^{-j\Omega T n}$$

$$= H_r(j\Omega) Y(z^{j\Omega T})$$

 $= H_r(i\Omega)X(e^{j\Omega T})$

- ⇒ Descrição de conversão ideal D/C no domínio da frequência:
 - Em $X(e^{j\omega})$, faz-se uma mudança na escala da frequência $(\omega$ para $\Omega T)$;
 - FPB ideal $H_r(j\Omega)$:
 - Seleciona período de base da TF periódica resultante $X(e^{j\Omega T})$;
 - Compensa fator 1/T inerente à amostragem;

 \Longrightarrow Se sequência x[n] foi obtida pela amostragem na taxa de Nyquist, ou maior, de um sinal com banda limitada, o sinal reconstruído, $x_r(t)$, será igual ao sinal com banda limitada original;

Como vimos:

•
$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right);$$

•
$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\operatorname{sen}[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

•
$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\text{sen}[\pi(t-nT)/T]}{\pi(t-nT)/T}$$
,
ou $Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T}) = \begin{cases} TY(e^{j\Omega T}), & |\Omega| < \pi/T, \\ 0, & \text{caso contrário.} \end{cases}$

Resposta em frequência de sistema em TD:

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}).$$

Sinal reconstruído é

$$Y_{r}(j\Omega) = H_{r}(j\Omega)Y(e^{j\Omega T})$$

$$= H_{r}(j\Omega)H(e^{j\Omega T})X(e^{j\Omega T})$$

$$= H_{r}(j\Omega)H(e^{j\Omega T})\frac{1}{T}\sum_{k=-\infty}^{\infty}X_{c}\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)$$

 \Longrightarrow Se $X_c(j\Omega) = 0$ para $|\Omega| > \pi/T$, então:

$$Y_r(j\Omega) = \left\{ \begin{array}{ll} H(e^{j\Omega T}) X_c(j\Omega), & |\Omega| < \pi/T, \\ 0, & \text{caso contrário.} \end{array} \right.$$

Então a resposta em frequência efetiva, em TC, é dada por:

$$Y_r(j\Omega) = H_{\text{eff}}(j\Omega)X_c(j\Omega),$$

com

$$H_{\text{eff}}(j\Omega) = \left\{ egin{array}{ll} H(e^{j\Omega T}), & |\Omega| < \pi/T, \\ 0, & \text{caso contrário.} \end{array}
ight.$$

ostragem de sinais de TC Amostragem periódica Domínio da frequência Reconstrução **Processamento em TD**

Processamento em tempo-discreto de sinais em tempo-contínuo

ostragem de sinais de TC Amostragem periódica Domínio da frequência Reconstrução **Processamento em TD**

Processamento em tempo-discreto de sinais em tempo-contínuo

- \Longrightarrow Frequência de corte discreta ω_c ;
- \Longrightarrow Frequência de corte contínua ω_c/T ;

Estratégia para projetar filtro contínuo em TD:

- Sistema em TD deve ser LIT;
- Sinal de entrada deve ser amostrado a uma taxa superior à taxa de Nyquist;

Relação entre resposta ao impulso em TC e TD:

Relação entre resposta ao impulso em TC e TD (demonstração no livro):

Propriedade da invariância da resposta ao impulso

$$h[n] = T h_c(nT)$$

Quando h[n] e $h_c(t)$ relacionam-se por meio desta propriedade, o sistema de tempo discreto é considerado uma versão invariante ao impulso do sistema de tempo contínuo.