Задача №1

ХАОТИЧЕСКОЕ ДВИЖЕНИЕ ДИНАМИЧЕСКИХ СИСТЕМ

Точечные одномерные отображения

$$x_{n+1} = f(x_n)$$
 $x_0, x_1, x_2, ..., x_n, x_{n+1}, ...$

Задание: создать компьютерный код, с помощью которого можно строить рисунки типа

Сделать это сначала для f(x) = 4rx(1-x), r — параметр. x и r меняются от 0 до 1. Входные параметры — r и x_0 .

Аналитические исследования

Простейшие случаи

1. $x_{n+1} = f(x_n)$ Все члены последовательности одинаковые. Стационарная точка.

Понятие устойчивости стационарной точки

$$\mathbf{x}_{\mathsf{n}+\mathsf{1}} = \mathbf{x}^* + \delta_{\mathsf{n}+\mathsf{1}} \qquad \mathbf{x}_{\mathsf{n}} = \mathbf{x}^* + \delta_{\mathsf{n}} \qquad \mathsf{Устойчивость} \ \mathsf{при} \ \left| \frac{\mathbf{x}_{\mathsf{n}+\mathsf{1}} - \mathbf{x}^*}{\mathbf{x}_{\mathsf{n}} - \mathbf{x}^*} \right| < \mathbf{1}. \qquad \left| \frac{\delta_{\mathsf{n}+\mathsf{1}}}{\delta_{\mathsf{n}}} \right| < \mathbf{1}$$

Условие устойчивости $|f'(x^*)| < 1$.

Задание: для вышеприведенной функции аналитически (имея только бумагу и ручку!) найти стационарные точки x^* и определить, для каких параметров r они устойчивы в случае f(x) = 4rx(1-x).

2. $x_{n+2} = f(x_n)$ Члены последовательности повторяются при изменении n на 2 («колебания» с периодом 2).

Уравнения для определения x* и x**:

$$x^* = f(f(x^*))$$
 $x^{**} = f(f(x^{**}))$ Здесь $x^* = f(x^{**})$ и $x^{**} = f(x^*)$

Понятие устойчивости в этом случае

$$x_{n+2}=x^*+\delta_{n+2}$$
 $x_n=x^*+\delta_n$ Устойчивость при $\left|rac{x_{n+2}-x_*}{x_n-x_*}
ight|<1.$ $\left|rac{\delta_{n+2}}{\delta_n}
ight|<1$

$$\begin{split} x_{n+2} &= f\left(f(x_n)\right) \qquad x_{n+2} = x^* + \delta_{n+2} = f(f(x^* + \delta_n)) \approx f(f(x^*) + f'(x^*)\delta_n + \ldots) \approx \\ f(f(x^*)) &+ f'(f(x^*))f'(x^*)\delta_n \end{split}$$

Условие устойчивости $|f'(x^*)| < 1$.

Задание: для функции f(x) = 4rx(1-x) объяснить, как аналитически найти x* и x** и определить, для каких параметров r этот режим устойчив. Для продвинутых студентов это сделать либо аналитически, либо c помощью символьных вычислений b Python или c помощью пакетов типа Mathematica, Mathcard, Mathlab....

1. Исследование удвоения периода

а) Изучите динамическое поведение стандартного отображения (2)

$$\mathbf{x}_{\mathsf{n}+1} = \mathbf{f}(\mathbf{x}_{\mathsf{n}}) \tag{1}$$

$$f(x) = 4rx(1-x) \tag{2}$$

- б) Исследуйте динамическое поведение стандартного отображения (2) для значений параметра $r=0.26,\ 0.5,\ 0.7,\ 0.72,\ 0.74$ и 0.748. (В случае r=0.748 для сходимости итерационного процесса необходимо приблизительно 1000 итераций.) Сходится ли процесс к значению x=0?
- в) Исследуйте динамическое поведение отображения (2) для значений параметра r = 0.752, 0.76, 0.8 и 0.862. (В случае r = 0.752 для сходимости итерационного процесса необходимо приблизительно 1000 итераций.) Меняется ли период цикла и чему он равен? Как меняется поведение системы при увеличении r до 0.8922?

2. Хаотический режим

- а) При r > 0.8924864179... реализуется хаотический режим, в котором две близлежащие начальные точки разбегаются по различным траекториям после небольшого числа итераций. В качестве примера выберите $x_0 = 0.50$ и 0.51. Наложите друг на друга результаты расчетов для этих вариантов, построенные разными цветами. Это сделать как в хаотическом режиме, так и при r < 0.8924864179...
- б) Точность представления чисел с плавающей запятой в компьютере конечна. Для проверки влияния конечной точности вашего компьютера выберите сначала значения r = 0.91 и $x_0 = 0.5$ и получите значения x_n . Затем модифицируйте свою программу так, чтобы последовательно выполнялись операции x = x/10 и $x = x \times 10$. Эта комбинация действий обрезает последнюю десятичную цифру, которую хранит компьютер. Получите значения x_n при тех же условиях и сравните результаты, наложив их друг на друга, когда они приведены разными цветами. Что будет при малых r, когда режим еще не хаотический? (Вместо деления и умножения на r0 сделайте то же самое и с делением и умножением на r16 и на r20. Объясните результат.)
- в) Каковы динамические свойства системы при r = 0.958? Есть ли другие «окна» в хаотическом режиме?

3. Качественные особенности отображения

а) Постройте график, где по оси абсцисс откладываются r, а по оси ординат - x_n , получаемые в пределе больших n. Сколько удвоений периода вы можете различить?

4. Оценка универсальной постоянной δ

Процесс удвоения периода с последующим переходом к хаосу может быть описан количественно. Пусть r_n является значением r, при котором впервые появляется 2^n циклов. По мере роста n значение r_n приближается к предельному значению r_∞ по закону

$$\mathbf{r}_{\mathbf{n}} - \mathbf{r}_{\infty} = \mathbf{A} \delta^{-\mathbf{n}}. \tag{3}$$

Величина δ , называемая постоянной Фейгенбаума, не зависит от детальных свойств отображения, а зависит только от его порядка. Напротив, постоянная А зависит от детальной структуры отображения. Из (3) следует, что δ можно определить следующим образом

$$\delta = \lim \frac{r_{n+1} - r_n}{r_{n+2} - r_{n+1}} \tag{4}$$

а) Для отображения (2) найдите r_n (при n=1 - 4) и оцените δ .

5. Другие одномерные отображения

Выполните перечисленные выше эксперименты для определения качественных свойств отображений

$$f(x) = xe^{r(1-x)} \tag{5}$$

$$f(x) = r[1-(2x-1)^4]. (6)$$

Для отображения (5) значения x и r – любые неотрицательные, B то время как для (6) эти значения должны лежать на отрезке [0,1].