(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:24.09.1997 Bulletin 1997/39

(51) Int Cl.⁶: **C07D 403/06**, C07D 403/04, C07D 409/04, C07D 401/14, C07D 403/14, A61K 31/41

- (21) Application number: 92300617.5
- (22) Date of filing: 24.01.1992
- (54) Imidazole, triazole and tetrazole derivatives

Imidazol-, Triazol- und Tetrazolderivate Dérivés d'imidazole, triazole et tétrazole

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE
- (30) Priority: 01.02.1991 GB 9102222 03.04.1991 GB 9106917 21.06.1991 GB 9113415 23.10.1991 GB 9122451
- (43) Date of publication of application: 05.08.1992 Bulletin 1992/32
- (60) Divisional application: 97200467.5
- (73) Proprietor: MERCK SHARP & DOHME LTD. Hoddesdon Hertfordshire EN11 9BU (GB)
- (72) Inventors:
 - Baker, Raymond
 Much Hadham, Hertfordshire (GB)
 - Matassa, Victor G.
 Furneux Pelham, Hertfordshire (GB)
 - Street, Leslie J.
 Harlow, Essex (GB)

(74) Representative: Thompson, John Dr. et al Merck & Co., Inc. European Patent Department Terlings Park Eastwick Road

Harlow, Essex CM20 2QR (GB)

(56) References cited:

EP-A- 0 200 322 EP-A- 0 313 397 WO-A-91/18897

 JOURNAL OF MEDICINAL CHEMISTRY. vol. 30, no. 1, January 1987, WASHINGTON US pages 1
 12 R. A. GLENN 'Central Serotonin Receptors as Targets for Drug Research'

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

EP 0 497 512 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

40

45

50

55

The present invention relates to a class of substituted imidazole, triazole and tetrazole derivatives which act on 5-hydroxytryptamine (5-HT) receptors, being selective agonists of so-called "5-HT₁-like" receptors. They are therefore useful in the treatment of clinical conditions for which a selective agonist of these receptors is indicated.

5-HT₁-like receptor agonists which exhibit selective vasoconstrictor activity have recently been described as being of use in the treatment of migraine (see, for example, A. Doenicke <u>et al.</u>, <u>The Lancet</u>, 1988, Vol. 1, 1309-11). The compounds of the present invention, being selective 5-HT₁-like receptor agonists, are accordingly of particular use in the treatment of migraine and associated conditions, e.g. cluster headache, chronic paroxysmal hemicrania, headache associated with vascular disorders, tension headache and paediatric migraine.

EP-A-0313397 describes a class of tryptamine derivatives substituted by a five-membered heteroaliphatic ring, which are stated to be specific to a particular type of "5-HT₁-like" receptor and thus to be effective therapeutic agents for the treatment of clinical conditions, particularly migraine, requiring this activity. However, EP-A-0313397 neither discloses nor suggests the imidazole, triazole and tetrazole derivatives provided by the present invention.

The present invention provides a compound of formula I, or a salt or prodrug thereof:

$$A^{1}$$

$$X = Y = Z$$

$$A^{2} = Z$$

$$(1)$$

wherein the broken circle represents two non-adjacent double bonds in any position in the five-membered ring;

two, three or four of V, W, X, Y and Z represent nitrogen and the remainder represent carbon provided that, when two of V, W, X, Y and Z represent nitrogen and the remainder represent carbon, then the said nitrogen atoms are in non-adjacent positions within the five-membered ring;

A¹ represents hydrogen, methyl, ethyl, benzyl or amino;

A² represents a non-bonded electron pair when four of V, W, X, Y and Z represent nitrogen and the other represents carbon; or, when two or three of V, W, X, Y and Z represent nitrogen and the remainder represent carbon, A² represents hydrogen, methyl, ethyl, benzyl or amino;

E represents a bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms;

F represents a group of formula

U represents nitrogen or C-R2;

B represents oxygen, sulphur or N-R3;

R1 represents -CH2.CHR4.NR6R7 or a group of formula

$$_{5}$$
 $N-R^{5}$, $N-R^{5}$ or $N-R^{5}$

in which the broken line represents an optional chemical bond; and R², R³, R⁴, R⁵, R⁶ and R⁷ independently represent hydrogen or C₁₋₆ alkyl.

The present invention also provides compounds of formula I above wherein three or four of V, W, X, Y and Z represent nitrogen and the remainder represent carbon;

A² represents a non-bonded electron pair when four of V, W, X, Y and Z represent nitrogen and the other represents carbon; or, when three of V, W, X, Y and Z represent nitrogen and the remainder represent carbon, A² represents hydrogen, methyl, ethyl, benzyl or amino;

A¹, E and F are as defined above.

10

15

20

25

30

35

40

45

For use in medicine, the salts of the compounds of formula I will be non-toxic pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable non-toxic acid such as hydrochloric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, oxalic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.

Suitable alkyl groups include straight-chained and branched alkyl groups containing from 1 to 6 carbon atoms. Typical examples include methyl and ethyl groups, and straight-chained or branched propyl and butyl groups. Particular alkyl groups are methyl, ethyl and t-butyl.

The term "halogen" as used herein includes fluorine, chlorine, bromine and iodine, especially fluorine.

The present invention includes within its scope prodrugs of the compounds of formula I above. In general, such prodrugs will be functional derivatives of the compounds of formula I which are readily convertible in vivo into the required compound of formula I. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.

Where the compounds according to the invention have at least one asymmetric centre, they may accordingly exist as enantiomers. Where the compounds according to the invention possess two or more asymmetric centres, they may additionally exist as diastereoisomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention.

It will be appreciated that the imidazole, triazole and tetrazole rings of formula I can exist in a variety of canonical forms. These may suitably be represented by formulae IA to IT as follows:

5
$$A^{2} \longrightarrow E-F$$

$$A^{1} \longrightarrow E-F$$

$$A^{1} \longrightarrow A^{1} \longrightarrow E-F$$

$$A^{2} \longrightarrow A^{2} \longrightarrow E-F$$

$$A^{2} \longrightarrow A^{2} \longrightarrow A^{2} \longrightarrow E-F$$

$$A^{3} \longrightarrow A^{4} \longrightarrow E-F$$

$$A^{4} \longrightarrow A^{4} \longrightarrow E-F$$

$$A^{5} \longrightarrow E-F$$

$$A^{5}$$

15

20

wherein A¹, A², E and F are as defined above. Preferred imidazole, triazole and tetrazole rings of formula I include the rings represented by formulae IA, IC, IG, IH, IL, IM, IN, IP and IQ above, especially IH.

The alkylene chain E may be, for example, methylene, ethylene, 1-methylethylene, propylene or 2-methylpropylene. Alternatively, the group E may represent a single bond such that the group F in formula I is attached directly to the five-membered heteroaromatic ring.

The group F is suitably an indole, benzofuran or benzthiophene moiety of formula FA, or an indazole moiety of formula FB:

35

wherein B, R¹, R² and R³ are as defined above. Preferably, the group F represents an indole moiety of structure FC:

. .

55

wherein R¹, R² and R³ are as defined above, in particular wherein R² and R³ are both hydrogen.

It will be appreciated that when four of V, W, X, Y and Z represent nitrogen and the other represents carbon, i.e. when the ring of formula I is a tetrazole ring, then the group A² will be a non-bonded electron pair. Otherwise, A¹ and A² will independently represent hydrogen, methyl, ethyl, benzyl or amino.

Representative values of R¹ include aminoethyl, N-methylaminoethyl, N,N-dimethylaminoethyl, 4-piperidyl, 1-methyl-4-piperidyl, 3-pyrrolidinyl and 1-methyl-3-pyrrolidinyl.

Preferred values for the groups R² to R⁷ are hydrogen and methyl.

A particular sub-class of compounds according to the invention is represented by the compounds of formula IIA, and salts and prodrugs thereof:

5

10

15

20

25

$$X \stackrel{1}{\stackrel{N}{\longrightarrow}} (CH_2)_n$$

$$X \stackrel{1}{\stackrel{N}{\longrightarrow}} R \stackrel{1}{\longrightarrow} R$$

wherein

X¹ represents nitrogen or A¹²-C;

n is zero, 1, 2 or 3;

B¹ represents oxygen, sulphur or N-R¹³;

 A^{11} and A^{12} independently represent hydrogen, methyl, ethyl, benzyl or amino; and $\mathsf{R}^{12},\,\mathsf{R}^{13},\,\mathsf{R}^{14},\,\mathsf{R}^{16}$ and R^{17} independently represent hydrogen or $\mathsf{C}_{1\text{-}6}$ alkyl.

When X¹ represents A¹²-C, the group A¹¹ is preferably hydrogen or methyl.

Preferably, R¹², R¹³ and R¹⁴ each represents hydrogen. Preferred values of R¹⁶ and R¹⁷ with respect to formula IIA include hydrogen and methyl.

Another sub-class of compounds according to the invention is represented by the compounds of formula IIB, and salts and prodrugs thereof:

30

$$A^{21} \xrightarrow{N} (CH_2)_n$$

$$= R^{26} R^{27}$$

$$= R^{24}$$

+0

50

55

(IIB)

45 wherein

Y¹ represents nitrogen or A²²-C;

n is zero, 1, 2 or 3;

B² represents oxygen, sulphur or N-R²³;

 A^{21} and A^{22} independently represent hydrogen, methyl, ethyl or benzyl; and R^{22} , R^{23} , R^{24} , R^{26} and R^{27} independently represent hydrogen or C_{1-6} alkyl.

Preferably, R²², R²³ and R²⁴ each represents hydrogen. Preferred values of R²⁶ and R²⁷ with respect to formula IIB include hydrogen and methyl.

A further sub-class of compounds according to the invention is represented by the compounds of formula IIC, and salts and prodrugs thereof:

(IIC)

wherein

5

10

15

20

25

30

35

40

45

50

Y² represents nitrogen or A³²-C;

Z¹ represents nitrogen or CH;

n is zero, 1, 2 or 3;

B³ represents oxygen, sulphur or N-R³³;

A³¹ and A³² independently represent hydrogen, methyl or amino;

R³¹ represents -CH₂.CHR³⁴.NR³⁶R³⁷ or a group of formula

$$N-R^{35}$$
 or $N-R^{35}$

and

 R^{32} , R^{33} , R^{34} , R^{35} , R^{36} and R^{37} independently represent hydrogen or C_{1-6} alkyl.

Preferably, R^{32} , R^{33} and R^{34} each represents hydrogen. Preferred values of R^{35} , R^{36} and R^{37} include hydrogen and methyl.

A still further sub-class of compounds according to the invention is represented by the compounds of formula IID, and salts and prodrugs thereof:

$$\begin{array}{c|c}
A^{41} & W^{1} \\
N & (CH_{2})_{n}
\end{array}$$

wherein

W¹ represents nitrogen or C-A⁴²;

n is zero, 1, 2 or 3;

B⁴ represents oxygen, sulphur or N-R⁴³;

A⁴¹ and A⁴² independently represent hydrogen or methyl;

R⁴¹ represents -CH₂.CHR⁴⁴.NR⁴⁶R⁴⁷ or a group of formula

$$N-R^{45}$$
 or $N-R^{45}$;

and

5

15

20

35

40

45

50

55

R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ independently represent hydrogen or C₁₋₆ alkyl;

Preferably, R⁴², R⁴³ and R⁴⁴ each represents hydrogen. Preferred values of R⁴⁵, R⁴⁶ and R⁴⁷ include hydrogen and methyl.

Specific compounds within the scope of the present invention include:

2-[5-(2-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

2-[5-(1-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(tetrazol-2-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(tetrazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

30 N,N-dimethyl-2-[5-(1-methyl-1,2,4-triazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(l-methyl-1,2,4-triazol-3-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1,2,3-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

3-(2-aminoethyl)-5-(1-methyltetrazol-5-yl)-benzo[b]thiophene;

3-(2-aminoethyl)-5-(2-methyltetrazol-5-yl)benzo[b]thiophene;

3-[2-(N,N-dimethylamino)ethyl]-5-(2-methyltetrazol-5-yl)benzo[b]thiophene;

N,N-dimethyl-2-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(imidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl] ethylamine;

N,N-dimethyl-2-[5-(2-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine; N,N-dimethyl-2-[5-(1,2,4-triazol-l-yl)-1H-indol-3-yl]ethylamine;

1-methyl-4-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]piperidine;

1-methyl-4-[5- (1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]piperidine;

4-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]piperidine;

4-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]piperidine; 3-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidine;

4-[5-(imidazol-l-yl)-1H-indol-3-yl]piperidine;

4-[5-(1,2,3-triazol-l-yl)-1H-indol-3-yl]piperidine;

1-methyl-4-[5-(imidazol-1-yl)-1H-indol-3-yl]piperidine;

1-methyl-4-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]piperidine;

1-methyl-3-[5-(1,2,3-triazol-l-yl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(imidazol-1-yl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3 -[5-(imidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine;

N,N-dimethyl-2-[5-(2-aminoimidazol-1-yl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(2-aminoimidazol-l-ylmethyl)-1H-indol-3-yl]ethylamine;

N-methyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

and salts and prodrugs thereof.

The invention also provides pharmaceutical compositions comprising one or more compounds of this invention in association with a pharmaceutically acceptable carrier. Preferably these compositions are in unit dosage forms such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, auto-injector devices or suppositories; for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation. For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a non-toxic pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinylpyrrolidone or gelatin.

In the treatment of migraine, a suitable dosage level is about 0.01 to 250 mg/kg per day, preferably about 0.05 to 100 mg/kg per day, and especially about 0.05 to 5 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day.

The 1,2,4-triazole compounds of this invention may be prepared by a process which comprises reacting a reactive derivative of a carboxylic acid of formula Ra-CO₂H with a compound either of formula III or of formula IV, or a salt thereof:

35

40

45

10

15

20

25

30

N H 2

(IV)

wherein one of Ra, Rb and Rc is a group of formula A1, another is a group of formula A2, and the third is a group of formula -E-F, as defined with reference to formula I above.

Suitable reactive derivatives of the acid R^a - CO_2H include esters, for example C_{1-4} alkyl esters; thioesters, for example pyridylthioesters; acid anhydrides, for example (R^a - $CO)_2O$; acid halides, for example acid chlorides; orthoesters; and primary, secondary and tertiary amides.

A preferred reactive derivative of the acid Ra-CO₂H is the iminoether derivative of formula V:

55

where R is C₁₋₄ alkyl.

5

10

15

20

25

30

35

40

The reagent of formula III may be generated <u>in situ</u> in the reaction mixture. For example, the reaction may be effected by treating a compound of formula V above with an alkyl hydrazine, e.g. methyl hydrazine, followed by a suitable carboxylic acid such as formic acid.

The reaction is conveniently carried out by heating the reagents together, optionally in a solvent, for example tetrahydrofuran, dimethylformamide or a lower alkanol such as ethanol, propanol or isopropanol, at about 20°C to 100°C for about 1 to 6 hours.

Where Ra is a group of formula -E-F and the group F is an indole moiety of structure FC as defined above, the reactive derivative of a carboxylic acid of formula HO₂C-E-F may be prepared by reacting a compound of formula VI:

wherein Q represents a reactive carboxylate moiety, and E is as defined above; with a compound of formula VII or a carbonyl-protected form thereof:

45

50

55

wherein R^2 is as defined above and R^{11} corresponds to the group R^1 as defined above or represents a group of formula $-CH_2$. CHR^4D^1 , in which R^4 is as defined above and D^1 represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R^3 .

Suitable carbonyl-protected forms of the compounds of formula VII include the dimethyl acetal or ketal derivatives. The readily displaceable group D¹ in the compounds of formula VII suitably represents a halogen atom, preferably chlorine. When the moiety R¹¹ in the compounds of formula VII is a group of formula -CH2.CHR⁴D¹, the substituent D¹ is displaced in situ under the prevailing reaction conditions to afford a final product of formula I wherein R¹ represents a group of formula -CH2.CHR⁴.NH₂. The terminal amino group can subsequently, if desired, be further elaborated using techniques known from the art to give a compound of formula I wherein R¹ represents the required group of formula -CH₂.CHR⁴.NR⁶R².

The reaction of compounds VI and VII may be carried out in a single step (Fischer indole synthesis) or by an initial non-cyclising step at a lower temperature to give a compound of formula VIII:

wherein Q, E, R² and R¹¹ are as defined above; followed by cyclisation using a suitable reagent, such as a polyphosphate ester, to give a compound of formula Q-E-F.

The hydrazines of formula VI may be prepared from the corresponding anilines of formula IX:

wherein Q and E are as defined above; by diazotisation followed by reduction. Diazotisation is typically carried out using sodium nitrite/conc. HCl and the resulting diazo product reduced <u>in situ</u> using, for example, tin(II) chloride/conc. HCl or sodium sulphite/conc. HCl.

The anilines of formula IX may be prepared by reduction of the corresponding nitro compounds of formula X:

wherein Q and E are as defined above; typically by catalytic hydrogenation or using tin(II) chloride.

Where they are not commercially available, the nitro compounds of formula X may be synthesized by standard methods well known to those skilled in the art.

Where Ra is a group of formula -E-F and the group F is an indazole moiety of structure FB as defined above, the reactive derivative of a carboxylic acid of formula HO₂C-E-F may be prepared by the cyclisation of a compound of formula XI:

55

50

15

5

20

25

30

35

40

45

50

55

15 wherein Q, E and R1 are as defined above; and D2 represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R3.

The cyclisation of compound XI is conveniently achieved in a suitable organic solvent at an elevated temperature, for example in a mixture of m-xylene and 2,6-lutidine at a temperature in the region of 140°C.

The readily displaceable group D2 in the compounds of formula XI suitably represents a C1-4 alkanoyloxy group, preferably acetoxy. Where D2 in the desired compound of formula XI represents acetoxy, this compound may be conveniently prepared by treating a carbonyl compound of formula XII:

wherein R¹, E and Q are as defined above; or a protected derivative thereof; with hydroxylamine hydrochloride, advantageously in pyridine at the reflux temperature of the solvent; followed by acetylation with acetic anhydride, advantageously in the presence of a catalytic quantity of 4-dimethylaminopyridine, in dichloromethane at room temperature.

(XII)

The N-formyl protected derivative of the intermediate of formula XII may be conveniently prepared by ozonolysis of an indole derivative of formula XIII:

5

20

40

45

50

55

wherein R1, E and Q are as defined above; followed by a reductive work-up, advantageously using dimethylsulphide. The indole derivative of formula XIII may be prepared by methods analogous to those described in the accompanying Examples, or by procedures well known from the art.

In an alternative process, the triazole compounds according to the invention may be prepared by a method which comprises reacting a compound of formula XIV:

Hal
$$\sqrt{a}$$
 Z^a $X = X^a$ $X = X^a$

wherein A¹, E and F are as defined above, Hal represents halogen, and two of Va, Wa, Xa, Ya and Za, to one of which the group Hal is attached, represent carbon and the remainder represent nitrogen; with a reagent which provides an anion A2, where A2 is as previously defined.

Reagents which may provide the anion A2 include Grignard reagents A2MgHal (where Hal = halogen); organocuprate reagents such as LiA²₂Cu; organolithium reagents A²Li; or compounds which stabilise the anion by means of an adjacent activating group such as an ester or enolisable ketone function. In this case, the adjacent ester or ketone function may be retained after the process is complete, or may be removed. For example, an ester moiety may be hydrolysed and decarboxylated.

The 1,2,3-triazole compounds according to the present invention may be prepared by a process which comprises the cycloaddition of an alkyne of formula Ra-C≡C-Rb with an azide of formula Rc-N3, where Ra, Rb and Rc are as defined above

The cycloaddition reaction may be conveniently effected in a suitable solvent such as tetrahydrofuran, ideally by heating in an autoclave for 8 hours.

The tetrazole compounds in accordance with the invention may be prepared by a process which comprises the cycloaddition of a nitrile of formula N≡C-R^d with an azide of formula R^e-N₃, where one of R^d and R^e represents a group of formula A¹ and the other is a group of formula -E-F, as defined previously.

The cycloaddition reaction is conveniently effected by heating the reactants together at an elevated temperature, e.g. a temperature in the region of 150°C, in a suitable solvent such as N-methylpyrrolid-2-one, advantageously in the presence of triethylamine hydrochloride. The product obtained from the cycloaddition reaction will generally be a mixture of isomers substituted by the A¹ group at positions 1 and 2 of the tetrazole ring, corresponding to structures IL and IM respectively as defined above. These isomers may conveniently be separated using conventional techniques such as chromatography.

In an alternative process, the tetrazole compounds of the invention may be prepared by a method which comprises reacting a compound of formula Re-L with a tetrazole derivative of formula XV:

5

10

(XY)

15

20

25

wherein one of R^d and R^e represents a group of formula A¹ and the other is a group of formula -E-F, as defined above, and L represents a suitable leaving group; in the presence of a base such as triethylamine.

The leaving group L suitably represents halogen, e.g. bromine or iodine, or a sulphonate derivative such as tosylate or mesylate.

The reaction is conveniently carried out in a suitable organic solvent, e.g. acetonitrile, at room temperature.

The tetrazole derivatives of formula XV may be prepared by cycloaddition of a nitrile of formula $N \equiv C - R^d$ with sodium azide, advantageously under the conditions described above for the reaction between the nitrile $N \equiv C - R^d$ and the azide $R^e - N_3$; followed by acidification with a mineral acid such as hydrochloric acid.

In a further process, the compounds according to the invention wherein the group F is an indole moiety of structure FC as defined above may be prepared by a method which comprises reacting a compound of formula XVI:

30

35

40

wherein V, W, X, Y, Z, A^1 , A^2 and E are as defined above; with a compound of formula VII as defined above, or a carbonyl-protected form thereof, e.g. the dimethyl acetal or ketal; followed, where required, by N-alkylation by standard methods to introduce the moiety R^3 .

a single step (Fischer indole synthesis) or by an initial non-cyclising step at a lower temperature to give a compound

As with that between compounds VI and VII, the reaction between compounds XVI and VII may be carried out in

of formula XVII:

45

50

wherein V, W, X, Y, Z, A¹, A², E, R² and R¹¹ are as defined above; followed by cyclisation using a suitable reagent, e. g. a polyphosphate ester.

The hydrazines of formula XVI may be prepared from the corresponding anilines of formula XVIII:

20

25

30

35

40

55

wherein V, W, X, Y, Z, A¹, A² and E are as defined above; by methods analogous to those described above with reference to the compounds of formula IX.

The anilines of formula XVIII may be prepared from the corresponding nitro compounds of formula XIX:

$$A^{1}$$

$$X = X$$

$$X =$$

wherein V, W, X, Y, Z, A^1 , A^2 and E are as defined above; by methods analogous to those described above with reference to the compounds of formula X.

The nitro compounds of formula XIX may be prepared by a variety of methods which will be readily apparent to those skilled in the art. For example, where V represents a nitrogen atom, the relevant compounds of formula XIX may be prepared by reacting the anion of a compound of formula XX with a compound of formula XXI:

wherein W, X, Y, Z, A¹, A² and E are as defined above, and D³ represents a readily displaceable group.

Where compound XX is a triazole or tetrazole derivative, the anion thereof may be generated by carrying out the reaction in a base such as triethylamine. Where compound XX is an imidazole derivative, the anion thereof may conveniently be generated if the reaction is carried out in sodium hydride using N,N-dimethylformamide as solvent. Where salts of the compounds of formula XX are commercially available, e.g. the sodium salt of 1,2,4-triazole, these are advantageously utilised in N,N-dimethylformamide solution in place of the compounds of formula XX themselves, with no requirement in this instance for additional base to be present in the reaction mixture.

The readily displaceable group D³ in the compounds of formula XXI is suitably a halogen atom, preferably bromine; except when the moiety D³ is attached directly to the aromatic ring, i.e. when E represents a bond, in which case D³ is preferably fluorine.

Where they are not commercially available, the nitro compounds of formula XXI above may be prepared by procedures analogous to those described in the accompanying Examples, or by methods well known from the art.

In an alternative approach to the 1,2,4-triazole derivatives, the nitro compounds of formula XIX may be prepared from those of formula X above by appropriate modification of the moiety Q using, for example, methods analogous to those described above with reference to the compounds of formulae III and IV. Thus, for example, since Q in the compounds of formula X represents a reactive carboxylate moiety, the compounds of formula XIX may be prepared therefrom by reaction with a compound of formula A²-C(=NNHA¹)NH₂ or A²-C(=NNH₂)NHA¹.

In a still further process, the compounds according to the invention wherein the group F is an indazole moiety of structure FB as defined above may be prepared by a method which comprises cyclising a compound of formula XXII:

wherein V, W, X, Y, Z, A^1 , A^2 , E, R^1 and D^2 are as defined above; followed, where required, by N-alkylation by standard methods to introduce the moiety R^3 .

As with the cyclisation of compound XI, that of compound XXII is conveniently achieved in a suitable organic solvent at an elevated temperature, for example in a mixture of m-xylene and 2,6-lutidine at a temperature in the region of 140°C.

The compounds of formula XXII may, for example, be prepared from the corresponding compound of formula XXIII:

55

15

25

30

35

40

45

$$A^{1} \qquad \qquad E$$

$$A^{2} \qquad \qquad V \qquad \qquad E$$

$$N H_{2}$$

$$(XXIIII)$$

15

20

25

30

35

40

45

50

55

wherein V, W, X, Y, Z, A¹, A², E and R¹ are as defined above; or a protected derivative thereof; which in turn may be prepared from the corresponding compound of formula XXIV:

$$A^{1}$$

$$X$$

$$Y$$

$$Z$$

$$(XXIV)$$

$$H$$

wherein V, W, X, Y, Z, A¹, A², E and R¹ are as defined above; using methods analogous to those described above with reference to the compounds of formulae XII and XIII. Thus, for example, since Q in the compounds of formula XIII represents a reactive carboxylate moiety, the 1,2,4-triazole derivatives of formula XXIV may be prepared therefrom by reaction with a compound of formula A²-C(=NNHA¹)NH² or A²-C(=NNH₂)NHA¹.

In a yet further process, the compounds according to the invention wherein the group F is a benzofuran or benz-thiophene moiety may be prepared by a method which comprises cyclising a compound of formula XXV:

$$A^{1}$$

$$X$$

$$X$$

$$Y$$

$$Z$$

$$B^{\alpha}$$

$$R^{2}$$

$$R^{2}$$

wherein V, W, X, Y, Z, A^1 , A^2 , E and R^2 are as defined above, B^a represents oxygen or sulphur, and R^{21} corresponds to the group R^1 as defined above or represents a precursor group thereto as discussed below; followed, where required, by conversion of the group R^{21} into the desired group R^1 by conventional means.

The cyclisation is conveniently effected by using polyphosphoric acid or a polyphosphate ester, advantageously at an elevated temperature.

The compounds of formula XXV may be prepared by reacting a compound of formula XXVI with a compound of formula XXVII:

wherein V, W, X, Y, Z, A¹, A², E, B^a, R² and R²¹ are as defined above, and Hal repesents halogen.

The reaction is conveniently effected in the presence of a base such as sodium hydroxide.

The hydroxy and mercapto derivatives of formula XXVI may be prepared by a variety of methods which will be readily apparent to those skilled in the art. In one such method, the anion of a compound of formula XX as defined above is reacted with a compound of formula XXVIII:

15

20

25

30

35

40

45

50

55

wherein D3, E and Ba are as defined above; to afford an intermediate of formula XXVI wherein V is nitrogen.

The compounds of formula XXVII and XXVIII, where they are not commercially available, may be prepared by standard procedures well known in the art.

It will be understood that any compound of formula I initially obtained from any of the above processes may, where appropriate, subsequently be elaborated into a further compound of formula I by techniques known from the art. Indeed, as will be appreciated, the compound of formula XV above in which R^d is a group of formula -E-F is itself a compound of formula I in which A^1 is hydrogen and A^2 represents a non-bonded electron pair. In particular, a compound of formula I wherein R^3 is hydrogen initially obtained may be converted into a compound of formula I wherein R^3 represents C_{1-6} alkyl by standard alkylation techniques, for example by treatment with an alkyl iodide, e.g. methyl iodide, typically under basic conditions, e.g. sodium hydride in dimethylformamide, or triethylamine in acetonitrile. Similarly, a compound of formula I wherein R^1 represents a group of formula -CH $_2$.CH R^4 .NH $_2$ initially obtained may be converted into a compound of formula I wherein R^1 represents a group of formula -CH $_2$.CH R^4 .NH 6 R 7 in which R^6 and R^7 are as defined above with the exception of hydrogen, by conventional N-alkylation techniques, e.g. by treatment with the appropriate aldehyde in the presence of a reducing agent such as sodium cyanoborohydride.

Where the above-described processes for the preparation of the compounds according to the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography.

The novel compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The novel compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (-)-di-p-toluoyl-d-tartaric acid and/or (+)-di-p-toluoyl-1-tartaric acid followed by fractional crystallization and regeneration of the free base. The novel compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such

as those described in <u>Protective Groups in Organic Chemistry</u>, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene, <u>Protective Groups in Organic Synthesis</u>, John Wiley & Sons, 1981. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.

Alternatively, certain of the functional groups on the desired products may be carried through the reaction sequence as precursor groups, and then regenerated from these precursor groups at a late stage in the overall synthesis. For example, where R¹ in the desired compound of formula I represents a group of formula -(CH₂)₂NH₂, this group can be generated from a cyano precursor -CH₂CN by reduction using, for example, borane/tetrahydrofuran. The cyano precursor may in turn be carried through the reaction sequence as a methyl group -CH₃, which may conveniently be converted to -CH₂CN by treatment with N-bromosuccinimide and benzoyl peroxide, in the presence of a bright light source, followed by reaction of the resulting bromo intermediate with sodium cyanide in dimethyl sulphoxide.

The following Examples illustrate the preparation of compounds according to the invention.

The ability of test compounds to bind to 5-HT₁-like receptors was measured in membranes prepared from pig caudate using the procedure described in <u>J. Neurosci.</u>, 1987, <u>7</u>, 894. Binding was determined using 2 nM 5-hydroxytryptamine creatinine sulphate, 5-[1,2- 3 H(N)] as a radioligand. Cyanopindolol (100 nM) and mesulergine (100 nM) were included in the assay to block out 5-HT_{1A} and 5-HT_{1C} binding sites respectively. The concentration of the compounds of the accompanying Examples required to displace 50% of the specific binding (IC₅₀) is below 1 μ M in each case.

The activity of test compounds as agonists of the 5-HT₁-like receptor was measured in terms of their ability to mediate contraction of the saphenous vein of New Zealand White rabbits, using the procedure described in <u>Arch. Pharm.</u>, 1990, <u>342</u>, 111. Agonist potencies were calculated as $-\log_{10}EC_{50}$ (pEC₅₀) values, from plots of percentage 5-HT (1 μ m) response against the concentration of the agonist. The compounds of the accompanying Examples were found to possess pEC₅₀ values in this assay of not less than 5.0 in each case.

EXAMPLE 1

10

15

25

30

35

40

45

50

55

2-[5-(2-Benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

1. 4-Hydrazinobenzylcyanide. Hydrochloride

A solution of NaNO $_2$ (80g, 1.16mol) was added dropwise to a cooled (-10°C), stirred, suspension of 4-aminobenzyl cyanide (153.5g, 1.16mol) in concentrated HCI (1500ml), at such a rate that the temperature did not rise above -10°C. The mixture was stirred at -10°C for 0.25h before being filtered rapidly under vacuum into an addition funnel. The solution was added portionwise over a 0.25h period to a rapidly stirred mixture of $SnCl_2.2H_2O$ (1.05kg, 4.64mol) in concentrated HCI (800ml) keeping the temperature below -5°C. The mixture was allowed to warm to room temperature and stir for 0.25h before filtering the sandy coloured precipitate under vacuum and washing with ether (5 x 500ml). The resultant solid was dried over P_2O_5 in a vacuum oven (80°C) for 16h to give the title compound (213g, 100%), m. p. 181-183°C; ¹H NMR (360MHz, D_2O) δ 3.90 (2H, s, CH_2); 7.06 (2H, d, CH_2) = 8.7Hz, Ar-H); 7.40 (2H, d, CH_2) = 8.7Hz, Ar-H).

2. 2-(5-cyanomethyl-1H-indol-3-yl)ethylamine. Hydrochloride

4-Chlorobutanal dimethylacetal (37.07g, 0.24mol) was added to a stirred solution of 4-hydrazinobenzyl cyanide hydrochloride (47.0g, 0.26mol) in EtOH/H₂O (5:1; 21) and refluxed for 4.5h. The reaction mixture was evaporated to dryness under vacuum, MeOH (150ml) added, and the mixture left at 0°C for 10h. The resultant pale yellow precipitate was filtered under vacuum, washed with Et₂O/MeOH (5:1; 2 x 100ml) and dried. The product was used without further purification (24.1g, 40%), m.p. 239-241°C; R_f 0.4 in $CH_2CI_2/EtOH\ NH_3$ (40:8:1); ¹H NMR (360MHz, D_2O) 3.18 (2H, t, J = 7.1Hz, CH_2); 3.36 (2H, t, J = 7.1Hz, CH_2); 4.02 (2H, s, CH_2); 7.22 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.36 (1H, s, Ar-H); 7.56 (1H, d, J = 8.4Hz, Ar-H); 7.66 (1H, s, Ar-H).

3. 2-(5-Tetrazol-5-ylmethyl-1H-indol-3-yl) ethylamine

A solution of 2-(5-cyanomethyl-1H-indol-3-yl)ethylamine hydrochloride (2.5g, 10.6mmol), triethylamine hydrochloride (2.2g, 16.0mmol) and sodium azide (2.1g, 32.3mmol), in 1-methylpyrrolidin-2-one(30ml) was heated at 140°C for 8h. 5N hydrochloric acid (3ml) was added and the solvents removed by distillation under vacuum. The residue was chromatographed on silica-gel eluting with EtOH/Et₂O/H₂O/NH₃ (20:30:8:1) to give the title-tetrazole (1.76g, 69%); δ (360MHz, CD₃OD) 3.06 (2H, t, J = 7.2Hz, CH₂); 3.19 (2H, t, J = 7.2Hz, CH₂); 4.29 (2H, s, CH₂); 7.07 (1H, d, J = 8.4Hz, Ar-H); 7.13 (1H, s, Ar-H); 7.29 (1H, d, J = 8.4Hz, Ar-H); 7.44 (1H, s, Ar-H).

4. N-tert-Butyloxycarbonyl-2-(5-tetrazol-5-ylmethyl-1H-indol-3-yl)ethylamine

To a stirred suspension of 2-(5-tetrazol-5-ylmethyl-1H-indol-3-yl)ethylamine (1.76g, 7.27mmol) in dry CH_2CI_2 (40ml) was added triethylamine (1.5g, 14.9mmol) and (BOC)₂O (1.9g, 7.3mmol) and the mixture stirred for 16h. The solvent was removed under vacuum and the residue chromatographed on silica-gel eluting with EtOH/Et₂O/H₂O/NH₃ (20:60:8:1) to give the title <u>product</u> (1.6g, 64%); δ (360MHz, CD₃OD) 1.41 (9H, s, 3 of CH₃); 2.87 (2H, t, J = 7.4Hz, CH₂); 3.30 (2H, t, J = 7.4Hz, CH₂); 4.32 (2H, s, CH₂); 6.99 (1H, d, J = 8.3Hz, Ar-H); 7.04 (1H, s, Ar-H); 7.26 (1H, d, J = 8.3Hz, Ar-H); 7.49 (1H, s, Ar-H).

5. N-tert-Butyloxycarbonyl-2-[5-(2-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine and N-tert-butyloxycarbonyl-2-[5-(1-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine

Benzyl bromide (0.31g, 1.8mmol) was added to a solution of the tetrazole from step 4 (0.62g, 1.8mmol), and triethylamine (0.37g, 3.6mmol) in dry acetonitrile (20ml). The mixture was stirred at R.T. for 2h, heated at 70°C for 1h and then stirred at R.T. for 16h. The solvent was removed under vacuum and the residue chromatographed through silica-gel eluting with $CH_2CI_2/MeOH$ (97:3) to give 2-separated benzyl tetrazoles. The less polar isomer was identified as the 2-benzyl tetrazole (0.17g, 22.4%); δ (360MHz, $CDCI_3$) 1.43 (9H, s, 3 of CH_3); 2.90 (2H, t, J = 6.8Hz, CH_2); 3.41 (2H, br t, CH_2); 4.32 (2H, s, CH_2); 5.70 (2H, s, CH_2 Ph); 7.00 (1H, s, Ar-H); 7.15 (1H, d, J = 8.4Hz, Ar-H); 7.28 (1H, d, J = 8.4Hz, Ar-H); 7.34 (5H, s, Ar-H); 7.50 (1H, s, Ar-H); 7.96 (1H, br s, NH).

The more polar component was identified as the 1-benzyltetrazole (0.2g, 26.4%) δ (360MHz, CDCl₃) 1.43 (9H, s, 3 of CH₃); 2.88 (2H, t, J = 7.0Hz, CH₂); 3.40 (1H, br t, CH₂); 4.26 (2H, s, CH₂); 5.29 (2H, s, CH₂-Ph); 6.92 (1H, d, J = 8.4Hz, Ar-H); 7.01-7.05 (3H, m, Ar-H); 7.27-7.30 (5H, m, Ar-H); 8.08 (1H, br s, NH).

6. 2-[5-(2-Benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

Trifluoroacetic acid (1.5ml) was added to a solution of the less polar component isolated from step 5 (0.17g, 0.4mmol) in CH_2Cl_2 (5ml) and stirred at R.T. for 1h. The solvents were removed under vacuum and the residue chromatographed through silica-gel eluting with CH_2Cl_2 /EtOH/NH $_3$ (40:8:1) to give the title-tetrazole. The oxalate salt was prepared (65mg); mp 169-171°C; (Found: C, 59.23; H, 5.07; N, 19.60. $C_{19}H_{20}N_6$.1.05 ($C_2H_2O_4$) requires C, 59.36; H, 5.22; N, 19.68%); δ (360MHz, D_2O) 3.09 (2H, t, J = 6.9Hz, CH_2); 3.29 (2H, t, J = 6.9Hz, CH_2); 4.30 (2H, s, CH_2); 5.77 (2H, s, CH_2); 7.11 (1H, dd, J = 1.6 and 8.4Hz, Ar-H); 7.28 (1H, s, Ar-H); 7.32-7.34 and 7.39-7.41 (5H, m, Ar-H); 7.43 (1H, d, J = 8.4Hz, Ar-H); 7.51 (1H, s, Ar-H).

EXAMPLE 2

2-[5-(1-Benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Hydrochloride. Hemihydrate

Prepared from the more polar component isolated from step 5, Example 1, using the procedure described for step 6, Example 1. The hydrochloride hemihydrate salt was prepared; mp 210-213°C; (Found: C, 60.39; H, 5.88; N, 22.14. $C_{19}H_{20}N_6$.HCl.0.5H₂O requires C, 60.39; H, 5.87; N, 22.24%); δ (250MHz, D₂O) 3.02 (2H, t, J = 6.8Hz, CH₂); 3.19 (2H, t, J = 6.8Hz, CH₂); 4.44 (2H, s, CH₂); 5.60 (2H, s, CH₂); 6.95-7.02 (3H, m, Ar-H); 7.16-7.25 (4H, m, Ar-H); 7.28 (1H, s, Ar-H); 7.40 (1H, d, J = 8.4Hz, Ar-H).

EXAMPLE 3

N,N-Dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

1. N-tert-Butyloxycarbonyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine and N-tert-butyloxycarbonyl-2-[5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine

Methyl iodide (0.44g, 3.lmmol) was added to a stirred solution of the tetrazole from step 4, Example 1 (0.95g, 2.78mmol) and triethylamine (0.56g, 5.5mmol) in dry acetonitrile (15ml). After 10h a further equivalent of methyl iodide was added and stirred for 16h. The solvent was removed under vacuum and the residue chromatographed on silicagel eluting with $CH_2CI_2/MeOH$ (97:3) to give the title mixture of 1- and 2-methyltetrazoles (0.6g, 61%); δ (360MHz, $CDCI_3$) 1.43 (9H, m, 3 of CH_3); 2.89-2.92 (2H, m, CH_2); 3.38-3.48 (2H, m, CH_2); 3.83 (2H, s, CH_2); 4.28 and 4.40 (total 3H, s, CH_3); 6.98 and 7.17 (total 1H, d, CH_3); 7.02 and 7.06 (total 1H, s, Ar-H); 7.30 and 7.31 (total 1H, d, CH_3); 7.43 and 7.54 (total 1H, s, Ar-H); 8.00 and 8.10 (total 1H, br s, NH).

25

30

35

40

10

15

20

50

55

2. 2-[5-(2-Methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine and 2-[5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine

Prepared from the preceding methyltetrazoles using the procedure described in step 6, Example 1. The crude product was chromatographed on silica-gel eluting with $CH_2Cl_2/EtOH/NH_3$ (40:8:1) to give 2 separated components. The less polar product (0.lg, 24%) was identified as the 2-methyltetrazole; δ (360MHz, CDCl₃) 1.38 (9H, s, 3 of CH₃); 2.88 (2H, t, J = 6.6Hz, CH₂); 3.00 (2H, t, J = 6.6Hz, CH₂); 4.28 (3H, s, CH₃); 4.33 (2H, s, CH₂); 7.00 (1H, d, J = 8.4Hz, Ar-H); 7.06 (1H, d, J = 2.1Hz, Ar-H); 7.17 (1H, d, J = 8.4Hz, Ar-H); 7.56 (1H, s, Ar-H); 8.04 (1H, br s, NH).

The more polar product (0.13g, 31%) was identified as the 1-methyltetrazole; δ (360MHz, CDCl₃) 1.38 (9H, s, 3 of CH₃); 2.86 (2H, t, J = 6.6Hz, CH₂); 3.00 (2H, t, J = 6.6Hz, CH₂); 3.82 (3H, s, CH₃); 4.40 (2H, s, CH₂); 6.98 (1H, dd, J = 1.6 and 8.3Hz, Ar-H); 7.06 (1H, d, J = 1.6Hz, Ar-H); 7.31 (1H, d, J = 8.3Hz, Ar-H); 7.41 (1H, s, Ar-H); 8.18 (1H, br s, NH).

3. N,N-dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

A solution of formaldehyde (80mg of a 30% solution) in methanol (15ml) was added to a stirred solution of 2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine (0.1g, 0.4mmol), NaCNBH $_3$ (60mg) and glacial acetic acid (0.12g) in methanol (15ml). The solution was stirred for 2h, basified with K $_2$ CO $_3$ solution and the MeOH removed under vacuum. The crude product obtained after extraction into ethylacetate and removal of solvent was chromatographed through silica-gel eluting with CH $_2$ Cl $_2$ /EtOH/NH $_3$ (40:8:1) to give the desired N,N-dimethyltryptamine (96mg, 87%). The oxalate salt was prepared: mp 185-187°C (MeOH/Et $_2$ O); (Found: C, 54.42; H, 5.74; N, 22.53. C $_{15}$ H $_{20}$ N $_6$.C $_2$ H $_2$ O $_4$ requires C, 54.54; H, 5.92; N, 22.45%); δ (360MHz, D $_2$ O) 2.91 (6H, s, 2 of CH $_3$); 3.21 (2H, t, J = 7.4Hz, CH $_2$); 3.47 (2H, t, J = 7.4Hz, CH $_2$); 4.30 (3H, s, CH $_3$); 4.34 (2H, s, CH $_2$); 7.17 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.33 (1H, s, Ar-H); 7.48 (1H, d, J = 8.4Hz, Ar-H); 7.59 (1H, s, Ar-H).

EXAMPLE 4

10

15

20

25

30

35

40

45

50

55

N,N-Dimethyl-2-(5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

Prepared from 2-[5-(1-methyltetrazol-5-ylmethyl)- 1H-indol-3-yl]ethylamine (0.125g, 0.49mmol) using the procedure described in step 3, Example 3. The free base (0.11g, 80%) obtained was converted to the oxalate salt and recrystallised from MeOH/Et₂O; mp 176-177°C; (Found: C, 54.21; H, 5.84; N, 22.36. $C_{15}H_{20}N_6.C_2H_2O_4$ requires C, 54.54; H, 5.92; N, 22.45%); δ (360MHz, D_2O); 2.91 (6H, s, 2 of CH₃); 3.21 (2H, t, J = 7.4Hz, CH₂); 3.40 (2H, t, J = 7.4Hz, CH₂); 4.00 (3H, s, CH₃); 4.43 (2H, s, CH₂); 7.13 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.35 (1H, s, Ar-H); 7.50 (1H, d, J = 8.4Hz, Ar-H); 7.54 (1H, s, Ar-H).

EXAMPLE 5

N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate Hemihydrate

1. 1-(4-nitrophenyl)methyl-1,2,4-triazole

4-Nitrobenzylbromide (21.6g, 0.lmol) was added to a rapidly stirred suspension of 1,2,4-triazole sodium salt (9.lg, 0.1mol) in anhydrous DMF (100ml) and the mixture stirred at room temperature for 16h. Ethyl acetate (400ml) was added followed by water (250ml) and the layers separated. The organic phase was washed with water (3 x 250ml), dried (MgSO₄) and evaporated. The residue was chromatographed on silica gel eluting with ethyl acetate to give the title-product (10.6g, 52%); m.p. 98-100°C. δ (360MHz, CDCl₃) 5.47 (2H, s, CH₂) 7.40 (2H, d, J = 9Hz, Ar-H), 8.02 (1H, s, Ar-H), 8.18 (1H, s, Ar-H), 8.23 (2H, d, J = 9Hz, Ar-H).

2. 1-(4-aminophenyl)methyl-1,2,4-triazole. Hydrochloride

A solution of 1-(4-nitrophenyl)methyl- 1,2,4-triazole (10.0g, 49mmol) in ethanol (50ml), ethyl acetate (50ml), 5N HCl (10ml) and water (10ml) was hydrogenated over 10% Pd/C (1.0g) at 40 p.s.i., in a Parr apparatus, until an uptake of 188 p.s.i., had been observed (approx 10mins). The catalyst was removed by filtration through hyflo and the solvent removed under vacuum. The residue was azeotroped with ethanol (x2) to give the title-amine hydrochloride (10.6g, 100%). δ (360MHz, D₂O) 5.53 (2H, s, CH₂), 7.37-7.48 (4H, m, Ar-H), 8.12 (1H, s, Ar-H), 8.66 (1H, s, Ar-H).

3. 1-(4-Hydrazinophenyl)methyl-1,2,4-triazole

A solution of sodium nitrite (3.28g, 48mmol) in water (20ml) was added to a solution of the preceding amine hydrochloride (10.0g, 48mmol), in concentrated HCI (40ml), at such a rate that the temperature did not exceed -10°C. After addition was complete the solution was stirred at 0°C for 0.25h and then added portionwise to a rapidly stirred solution of SnCl₂.2H₂O (40g) in concentrated HCI (40ml). The solution was warmed to room temperature and basified with 20% aqueous NaOH solution. The solution was extracted with ethyl acetate (3 x 250ml) and the combined extracts dried (MgSO₄) and filtered through hyflo. The solution was evaporated to dryness to give the desired hydrazine (5.0g, 56%) m.p. 109-112°C. δ (360MHz, D_6 -DMSO) 3.93 (2H, br s, NH₂), 5.20 (2H, s, CH₂), 6.73 (2H, d, J = 8Hz, Ar-H), 7.08 (2H, d, J = 8Hz, Ar-H), 7.92 (1H, s, Ar-H), 8.57 (1H, s, Ar-H).

4. 2-[5-(1,2,4-Triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

4-Chlorobutanal dimethylacetal (3.22g, 21.1mmol) was added to a stirred solution of the preceding hydrazine (5.0g, 26.4mmol) in ethanol/water (5:1, 180ml) and 5N HCI (4.5ml) and the solution refluxed for 4h. The solvents were removed under vacuum and the residue chromatographed on silica gel, eluting with $CH_2Cl_2/EtOH/NH_3$ (30:8:1) to give the desired tryptamine (2.4g, 38%). δ (360MHz, $CDCl_3$) 2.90 (2H, t, J=7Hz, CH_2), 2.99 (2H, t, J=7Hz, CH_2), 5.43 (2H, s, CH_2), 7.10 (1H, s, Ar-H), 7.11 (1H, d, J=8Hz, Ar-H), 7.39 (1H, d, J=8Hz, Ar-H), 7.57 (1H, s, Ar-H), 7.94 (1H, s, Ar-H), 8.08 (1H, s, Ar-H).

5. N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine Oxalate Hemihydrate

A solution of formaldehyde (37% w/w solution, 0.19g), in methanol (10ml), was added to a mixture of the preceding tryptamine (0.36g, 1.5mmol), NaCNBH₃ (0.225g, 3.6mmol) and glacial acetic acid (0.45g), in methanol (10ml). The mixture was stirred at room temperature for 2h before adding saturated K_2CO_3 (50ml) and evaporating the methanol. The residue was extracted with ethyl acetate (3 x 100ml) and the combined extracts washed with brine (100ml), dried (K_2CO_3), and evaporated. The crude product was chromatographed on silica gel eluting with $CH_2CI_2/EtOH/NH_3$ (20: 8:1) to give the free base of the title-compound (0.21g, 52%). The oxalate hemihydrate salt was prepared, m.p. 165-167°C (MeOH/Et₂O); (Found: C, 55.53; H, 6.04; N, 18.59. $C_{15}H_{19}N_5.C_2H_2O_4$. 0.55H₂O requires C, 55.29; H, 6.03; N, 18.96%); m/e 269 (M+); δ (360MHz, D_2O) 2.91 (6H, s, NMe₂), 3.22 (2H, t, J = 7Hz, CH_2), 3.47 (2H, t, J = 7Hz, CH_2), 5.52 (2H, s, CH_2), 7.21 (1H, dd, J = 1.6 and 8.4Hz, Ar-H), 7.36 (1H, s, Ar-H), 7.52 (1H, d, J = 8.4Hz, Ar-H), 7.65 (1H, s, Ar-H), 8.06 (1H, s, Ar-H), 8.56 (1H, s, Ar-H).

EXAMPLE 6

10

15

25

30

35

50

55

N,N-Dimethyl-2-[5-(1,2,3,,4-tetrazol-2-ylmethyl)-1H-indol3-yl]ethylamine Oxalate.

1. 1-(41-(4-nitrophenyl)methyl-1,2,3,4-tetrazole -tetrazole and 2-(4-nitrophenyl)methyl-1,2,3,4-tetrazole.

4-Nitrobenzylbromide (15.42g, 71.3mmol) was added to a stirred solution of 1H-tetrazole (5.0g, 71.3mmol) and triethylamine (7.9g, 78.0mmol) in acetonitrile (100ml). The mixture was stirred at room temperature for 16h, the solvent removed under vacuum and the residue chromatographed on silica gel eluting with dichloromethane to give 2-isomers. The 2-alkylated product was obtained as the less polar product (2.47g, 17%); δ (360MHz, CDCl₃) 5.92 (2H, s, CH₂), 7.53 (2H, d, J = 8.7Hz, Ar-H), 8.25 (2H, d, J = 8.7Hz, Ar-H), 8.56 (1H, s, Ar-H). The more polar, major isomer was identified as the 1-alkylation product (11g, 75%); δ (360MHz, CDCl₃) 5.73 (2H, s, CH₂), 7.46 (2H, d, J = 8.7Hz, Ar-H), 8.27 (2H, d, J = 8.7Hz, Ar-H), 8.64 (1H, s, Ar-H).

2. 2-(4-Aminophenyl)methyl-1,2,3,4-tetrazole. Hydrochloride

2-(4-Nitrophenyl)methyl-1,2,3,4-tetrazole (2.47g, 12.lmmol) was hydrogenated as described for Example 5 step 2. The product (2.55g, 100%) was obtained as the hydrochloride salt; δ (250MHz, D₂O) 5.86 (2H, s, CH₂), 7.40 (2H, d, J = 8.7Hz, Ar-H), 7.36 (2H, d, J = 8.7Hz, Ar-H), 8.74 (1H, s, Ar-H).

3. N,N-Dimethyl-2-[5-(1,2,3,4-tetrazol-2-ylmeth,yl)-1H-indol-3-yl]ethylainine. Oxalate.

The preceding amine was converted into the title- $\underline{\text{compound}}$ using the general procedures described for Example 5 Steps 3-5. The oxalate salt was prepared and recrystallised from MeOH/Et₂O; mp 198-199°C; (Found: C, 53.38; H, 5.55; N, 22.63. C₁₄H₁₈N₆.C₂H₂O₄. 0.2 (EtOH) requires C, 53.30; H, 5.78; N, 22.74%); δ (360MHz, D₂O) 2.91 (6H, s,

NMe₂), 3.23 (2H, t, J = 7.4Hz, CH_2), 3.48 (2H, t, J = 7.4Hz, CH_2), 6.01 (2H, s, CH_2), 7.30 (1H, dd, J = 1.6 and 8.4Hz, Ar-H), 7.37 (1H, s, Ar-H), 7.53 (1H, d, J = 8.4Hz, Ar-H), 7.76 (1H, s, Ar-H), 8.74 (1H, s, Ar-H).

EXAMPLE 7

N,N-dimethyl-2-[5-1,2,3,4-tetrazol-1-ylmethyl)-1H-indol-3-]ethylamine. Succinate

1-(4-nitrophenyl)methyl-1,2,3,4-tetrazole was converted into the title-compound using the procedures described for Example 5. The succinate salt was prepared, m.p. 55-56°C (isopropylalcohol); (Found C: 57.08; H, 6.14; N, 23.34. $C_{14}H_{18}N_6$. 0.75 ($C_4H_6O_4$) requires C, 56.89; H, 6.32; N, 23.42%); δ (360MHz,D₂O) 2.93 (6H, s, NMe₂), 3.23 (2H, t, J = 7.5Hz, CH₂), 3.48 (2H, t, J = 7.5Hz, CH₂), 5.81 (2H, s, CH₂), 7.28 (1H, dd, J = 1.7 and 8.4Hz, Ar-H), 7.39 (1H, s, Ar-H), 7.56 (1H, d, J = 8.4Hz, Ar-H), 7.75 (1H, s, Ar-H), 9.20 (1H, s, Ar-H).

EXAMPLE 8

10

15

20

25

30

35

40

45

50

55

N,N-Dimeth,yl-2-[5-(1-methyl-1,2,4-triazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Bisoxalate

1. Ethyl 3-[2-(dimethylamino)ethyl]- 1H-indole-5-methylcarboximidate. Hydrochloride

A solution of N,N-dimethyl-2-(5-cyanomethyl-1H-indol-3-yl)ethylamine (5g, 22.01mmol) in ethanol was saturated with HCl gas and the solution stirred at room temperature for 16h. The solvent was removed under vacuum to give the title-product (6g, 92%); δ (360MHz, D₆-DMSO) 1.29 (3H, t, J = 7.0Hz, CH₂); 2.83 (6H, s, NMe₂), 3.13 (2H, t, J = 7.5Hz, CH₂), 3.31 (2H, m, CH₂), 4.04 (2H, s, CH₂), 4.42 (2H, q, J = 7.0Hz, CH₂), 7.08 (1H, dd, J = 1.5 and 8.4Hz, Ar-H), 7.27 (1H, s, Ar-H), 7.37 (1H, d, J = 8.4Hz, Ar-H), 7.48 (1H, br s, NH), 7.71 (1H, s, Ar-H).

2. N,N-dimethyl-2-[5-(1-methyl-1,2,4-triazol-5-ylmethyl)1H-indol-3-yl]ethylamine. Bisoxalate

A mixture of the preceding imidate ester (3g, 10.15mmol), methylhydrazine (0.8ml) and triethylamine (3.54ml), in ethanol (30ml), was stirred at room temperature for 3h. The solvent was removed under vacuum and the resultant product dissolved in formic acid (98%, 3.3ml) and the solution stirred for 0.5h at room temperature and refluxed for 2h. The solution was cooled to room temperature, poured into an aqueous solution of K_2CO_3 (75ml) and extracted with ethyl acetate (4 x 200ml). The combined extracts were dried (MgSO₄) and evaporated, and the residue chromatographed through silica gel eluting with $CH_2CI_2/EtOH/NH_3$ (40:8:1) to give 2-components. The less polar isomer was identified as the title-1-methyl-1,2,4-triazole (360mg). The bisoxalate salt was prepared; mp 135-137°C; (Found: C, 50.91; H, 5.38; N, 13.86. $CI_6H_{21}N_5$. 0.25(ethanol) requires C, 50.70; H, 5.47; N, 14.08%); δ (360MHz, D_2O) 2.91 (6H, s, NMe₂); 3.23 (2H, t, J = 7.3Hz, CH₂), 3.48 (2H, t, J = 7.3Hz, CH₂), 3.95 (3H, s, Me), 4.48 (2H, s, CH₂), 7.13 (1H, dd, J = 1.5 and 8.4Hz, Ar-H), 7.37 (1H, s, Ar-H), 7.53 (1H, d, J = 8.4Hz, Ar-H), 7.57 (1H, s, Ar-H), 8.32 (1H, s, Ar-H).

EXAMPLE 9

N,N-dimethyl-2-[5-(1-methyl-1,2,4-triazol-3-ylmethyl)-1H-indol-3-yl]ethylamine. Trishydrochloride

The more polar isomer obtained from Example 8 Step 2 was identified as the title-triazole (180mg). The trishydrochloride salt was prepared, mp <40°C (hygroscopic); Found: C, 49.80, H, 6.56; N, 16.69. $C_{16}H_{21}N_5$. 3HCl. 0.35 (Et₂O) requires C, 49.91; H, 6.62; N, 16.73%); δ (360MHz, D₂O) 2.91 (6H, s, NMe₂); 3.23 (2H, t, J = 7.4Hz, CH₂), 3.49 (2H, t, J - 7.4Hz, CH₂), 3.95 (3H, s, Me), 4.27 (2H, s, CH₂), 7.17 (1H, dd, J = 1.5 and 8.5Hz, Ar-H), 7.34 (1H, s, Ar-H), 7.50 (1H, d, J = 8.5Hz, Ar-H), 7.60 (1H, s, Ar-H), 8.88 (1H, s, Ar-H).

EXAMPLE 10

N,N-dimethyl-2-[5-(1,2,3-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate.

1. 1-(4-nitrophen,yl)methyl-1,2,3-triazole

4-Nitrobenzylbromide (25.4g, 0.12mol) was added to a solution of 1H-1,2,3-triazole (8.12g, 0.12mol) and triethylamine (11.88g, 0.12mol) in anhydrous acetonitrile. The mixture was refluxed for 1h, cooled to room temperature and the precipitated NEt₃. HBr filtered off. The solvent was removed under vacuum and the residue chromatographed through silica gel eluting with CH₂Cl₂ (100) to CH₂Cl₂/MeOH (95.5) to give 2-products. The more polar product was

identified as the title- $\frac{1-\text{isomer}}{1-\text{isomer}}$ (13g, 54%); mp 114-116°C δ (250MHz, CDCl₃) 5.72 (2H, s, CH₂), 7.38 (2H, d, J = 9Hz, Ar-H), 7.64 (1H, s, Ar-H), 7.78 (1H, s, Ar-H), 8.18 (2H, d, J = 9Hz, Ar-H). The less polar, minor isomer was identified as the 2-alkylation product (2.25g, 9%), mp 112-113°C. δ (250MHz, CDCl₃) 5.72 (2H, s, CH₂), 7.40 (2H, d, J = 9Hz, Ar-H), 7.66 (2H, s, Ar-H), 8.18 (2H, d, J = 9Hz, Ar-H).

2. N,N-Dimethyl-2-[5-(1,2,3-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

1-(4-nitrophenyl)methyl-1,2,3-triazole was converted into the title-<u>indole</u> using the general procedures described for example 5. The oxalate salt was prepared mp 210-212°C, (Found: C, 55.88; H, 5.75; N, 18.69. $C_{15}H_{19}N_5$. 1.1 ($C_2H_2O_4$) 0.15 H_2O requires C, 55.67; H, 5.84; N, 18.87%), δ (360MHz, D_2O). 2.90 (6H, s, NMe₂), 3.22 (2H, t, J = 7.4Hz, CH₂), 3.46 (2H, t, J - 7.4Hz, CH₂), 5.72 (2H, s, CH₂), 7.24 (1H, dd, J = 1.6 and 8.4Hz, Ar-H), 7.36 (1H, s, Ar-H), 7.52 (1H, d, J = 8.4Hz, Ar-H), 7.66 (1H, s, Ar-H), 7.79 (1H, s, Ar-H), 8.00 (1H, d, J = 1Hz, Ar-H)

EXAMPLE 11

 $\underline{3\text{-}(2\text{-}Aminoethyl)\text{-}5\text{-}(2\text{-}methyl\text{-}tetrazol\text{-}5\text{-}yl)} benzo[b]thiophene.\ Oxalate.$

Step 1

10

15

25

30

35

40

45

55

20 <u>4-Bromophenylmercaptopropanone</u>

To a stirred solution of 4-bromothiophenol (5.09g, 26.9mmol) in NaOH (1.08g, 26.9mmol) and water (32ml) was added chloroacetone (2.17ml, 27.3mmol) and the mixture was stirred under nitrogen for 45min before extracting with ether, washing with water, drying (Na₂ SO₄) and evaporating *in vacuo*, leaving 6.89g (100%) of the title compound as a white solid, δ (CDCl₃) 2.27 (3H, s), 3.65 (2H, s), 7.20 (2H, d, J = 8.5Hz), 7.41 (2H, d, J = 8.5Hz).

Step 2

5-Bromo-3-methyl benzo[b)]thiophene

To a gently refluxing mixture of polyphosphoric acid (4.47g) and chlorobenzene (100ml) was added 4-bromophenylmercaptopropanone (2.24g, 9.14mmol) portionwise over 1h and the mixture was heated at reflux for 8 days. After cooling the organic phase was decanted off and the residue was decomposed with H_2O (~100ml), extracted with CH_2CI_2 (2 x 75ml), dried (MgSO₄) and combined with the decanted organic phase. This was evaporated *in vacuo* to leave 2.096g of brown oil. Distillation on a Kugelröhr apparatus yielded 1.83g (88%) of the title compound as a pale yellow liquid, bp 100-110°C/0.35mbar. δ (CDCl₃) 2.41 (3H, s), 7.10 (1H, s), 7.43 (1H, dd, J = 8.5 and 1.9Hz), 7.69 (1H, d, J = 8.5Hz), 7.64 (1H, d, J = 1.9Hz).

Step 3

5-Cyano-3-methyl benzo[b]thiophene

To copper (I) cyanide (0.569g, 6.35mmol) was added 5-bromo-3-methyl benzo[b]thiophene (1.179g, 5.19mmol) in N-methylpyrrolidinone (10ml) and the mixture was stirred at 180-190°C for 17h. This was then partitioned between ether (75ml) and ammonia solution (75ml). The ether layer was separated, washed with more ammonia solution (2 x 50ml), dried (Na₂SO₄) and evaporated *in vacuo* to leave 0.81g of an off-white solid. Chromatography on flash silica, eluting with 10% ethyl acetate/petroleum ether yielded 0.76g (85%) of the title compound as a white solid. δ (CDCl₃) 2.47 (3H, s), 7.23 (1H, s), 7.55 (1H, dd, J = 8.3 and 1.5Hz), 7.93 (1H, d, J = 8.4Hz), 8.03 (1H, d, J = 1.4Hz).

50 Step 4

3-Methyl-5-(tetrazol-5-yl)-benzo[b]thiophene

To a solution of 5-cyano-3-methyl benzo[b]thiophene (0.194g, 1.12mmol) in N-methylpyrrolidinone (5ml) under nitrogen was added triethylamine hydrochloride (0.231g, 1.68mmol) followed by sodium azide (0.234g, 3.59mmol) and the mixture was extracted with ether (4 x 50ml). The combined ether extracts were dried (Mg SO₄) and evaporated *in vacuo* to leave 0.78g of a white solid. This was chromatographed on flash silica, eluting with $CH_2CI_2/MeOH/NH_3SI_4$ (40:8:1 to 30:8:1), to give 0.246g (100%) of the title product as a white solid. δ (DMSO) 2.46 (3H, s), 7.41 (1H, s), 7.98

(1H, d, J = 8.4Hz), 8.03 (1H, dd, J = 8.4 and 1.5Hz), 8.36 (1H, d, J = 0.9Hz). m/z (Cl⁻, NH₃) 215 (M-H)⁻, 160.

Step 5

10

15

20

25

30

35

40

45

50

3-Methyl-5-(2-methyltetrazol-5-yl)benzo[b]thiophene and 3-Methyl-5-(1-methyltetrazol-5-yl)benzo[b]thiophene

To a mixture of 3-Methyl-5-(tetrazol-5-yl)benzo[b]thiophene (0.241g, 1.12mmol) in acetonitrile (5ml) was added triethylamine (0.28ml, 2.01mmol), then iodomethane (0.486ml, 7.81mmol) followed by DMF (3ml) until a clear solution formed. The solution was stirred overnight under nitrogen before evaporating *in vacuo* and partitioning the residue between water (50ml) and ether (25ml). The aqueous layer was separated and extracted with more ether (2 x 25ml), the combined ether extracts were dried (Mg SO₄) and evaporated *in vacuo* to leave 0.241g of yellow solid. Chromatography on flash silica, eluting with 25-40% ethyl acetate/petroleum ether gave 0.168g (65%) of the 2-isomer of the title product as a white solid and 0.063g (24%) of the 1-isomer of the title product as a white solid. 2-isomer δ (CDCl₃) 2.52 (3H, s), 4.42 (3H, s), 7.14 (1H, s), 7.94 (1H, d, J = 8.4Hz), 8.10 (1H, dd, J = 8.4 and 1.5Hz), 8.51 (1H, s). *m/z* (Cl+,NH₃) 231 (M+H)+ 1-isomer δ (CDCl₃) 2.50 (3H, s), 4.22 (3H, s), 7.23 (1H, s), 7.64 (1H, dd, J = 8.3 and 1.5Hz), 8.03 (1H, d, J = 8.4Hz), 8.12 (1H, d, J = 1.6Hz). *m/z* (Cl+,NH₃) 231 (M+H)+, 202, 172.

Step 6

3-Cyanomethyl-5-(2-methyltetrazol-5-yl)benzo[b]thiophene

To a refluxing mixture of 3-methyl-5-(2-methyltetrazol-5-yl) benzo[b]thiophene (0.162g, 0.703mmol) and benzoyl peroxide (10.6mg) in carbon tetrachloride (10ml) irradiated with two desk lamps (2 x 60W) was added N-bromosuccinimide (0.126g, 0.707mmol) in small portions. After the addition was complete the mixture was heated at reflux for a further 90 min, then filtered and the filtrate was evaporated *in vacuo* to leave an oil/solid mixture. Chromatography on flash silica, eluting with dichloromethane gave 0.161g of crude 3-bromomethyl-5-(2-methyltetrazol-5-yl) benzo[b] thiophene as a colourless oil.

The crude 3-bromomethyl-5-(2-methyl-tetrazol-5-yl) benzo[b]thiophene (0.145g) in DMSO (0.3ml) was added to a mixture of sodium cyanide (29.9mg, 0.61mmol) in DMSO (0.2ml) and the mixture was stirred at 100°C for 2h. After cooling, the mixture was poured into water (10ml) and a brown solid was filtered off, washed with water and dried in a vacuum pistol to leave 73.5mg. The filtrate was extracted with dichloromethane (3 x 30ml) and the combined extracts were dried (Na₂SO₄) and evaporated *in vacuo* to leave 44.7mg. This was combined with the original solid and chromatographed on flash silica, eluting with 20-50% ethyl acetate/petroleum ether to yield 61.5mg (38%) of the title product as a white solid. δ (CDCl₃) 3.99 (2H, s), 4.43 (3H, s), 7.59 (1H, s), 8.00 (1H, d, J = 8.5Hz), 8.19 (1H, dd, J = 8.5 and 1.5Hz), 8.47 (1H, s).

Step 7

3-(2-Aminoethyl)-5-(2-methyl-tetrazol-5-yl)benzo[b]thiophene. Oxalate.

To a solution of 3-cyanomethyl-5-(2-methyl-tetrazol-5-yl) benzo[b]thiophene (0.434g, 1.70mmol) in THF (16ml) under nitrogen was added dropwise 1.0M borane-tetrahydrofuran complex in THF (5.10ml, 5.10mmol) and the mixture was heated at reflux for 6h. After cooling in an ice-bath the mixture was quenched with 2N HCl (22ml) and heated to reflux for 1h. The THF was then removed *in vacuo* and the residue basified with 50% sodium hydroxide solution (4ml) before extracting with dichloromethane (3 x 75ml). The combined extracts were dried (K_2CO_3) and evaporated *in vacuo* to leave 0.45g. Chromatography on flash silica eluting with $CH_2CI_2/MeOH/NH_3(aq)$ (60:8:1) gave 0.383g (87%) of the title product as a white solid. The oxalate salt was prepared using oxalic acid in methanol/ether to give the title product oxalate as a white solid, m.p. 204-209°C. Analysis found: C, 47.75; H, 4.28; N, 19.28%. Calcd for $C_{12}H_{13}N_5S$. 1.1 $C_2H_2O_4$: C, 47.59; H, 4.28; N, 19.54%. δ (DMSO) 3.17-3.21 (4H, m), 4.46 (3H, s), 7.72 (1H, s), 8.06 (1H, dd, J = 8.4 and 1.4Hz), 8.52(1H, s) m/z (Cl+,NH₃) 260 (M+H)+, 230.

EXAMPLE 12

3-(2-Aminoethyl)-5-(1-methyltetrazol-5-yl)) benzo[b]thiophene. Oxalate.

5 Step 1

10

15

20

25

30

35

40

45

55

3-Cyanomethyl-5-(1-methyltetrazol-5-yl)benzo[b]thiophene

Following the procedure of Example 11, Step 6, 0.666g (2.89mmol)3-methyl-5-(1-methyltetrazol-5-yl) benzo[b] thiophene was reacted with 0.515g (2.89mmol) of N-bromosuccinimide and 38.lmg of benzoyl peroxide in 30ml of carbon-tetrachloride. The reaction mixture was evaporated *in vacuo* and chromatographed on flash silica, eluting with 0-3% methanol/dichloromethane to give 0.532g of crude 3-bromo-5-(1-methyltetrazol-5-yl) benzo[b]thiophene.

The crude 3-bromo-5-(1-methyltetrazol-5-yl) benzo[b]thiophene (0.504g) was reacted with 97.7mg (1.99mmol) of sodium cyanide in 1.5ml of DMSO at 100°C for 2h. After cooling, the reaction mixture was poured into water (25ml) and extracted with dichloromethane (6 x 50ml). The combined extracts were dried (Na₂SO₄) and evaporated *in vacuo* to leave 0.37g. Chromatography on flash silica, eluting with 30-60% ethyl acetate/petroleum ether yielded 28.0mg (4%) of the title product. δ (CDCl₃) 4.00 (2H, s), 4.23 (3H, s), 7.63 (1H, s), 7.73 (1H, dd), 8.08 (1H, d), 8.15 (1H, d).

Step 2

3-(2-Aminoethyl)-5-(1-methyltetrazol-5-yl) benzo[b]thiophene. Oxalate.

Following the procedure of Example 11, Step 7, 26.1mg (0.102mmol) of 3-cyanomethyl-5-(1-methyltetrazol-5-yl) benzo[b]thiophene in 2ml of THF was reacted with 0.36ml (0.36mmol) of 1.0M borane-tetrahydrofuran complex in THF. Chromatography on flash silica, eluting with $CH_2CI_2/MeOH/NH_3(aq)$ (60:8:1) gave 17.7mg (67%) of the title product as a colourless oil. The oxalate salt was prepared using oxalic acid in methanol/ether to give the title product oxalate as a white solid, m.p. 206-212°C. Analysis found: C, 47.55; H, 4.05; N, 19.65%. Calcd for $C_{12}H_{13}N_5S$. 1.1 $C_2H_2O_4$: C, 47.59; H, 4.28; N, 19.54%. δ (D_2O) 3.32-3.35 (2H,m), 3.40-3.44 (2H, m), 4.22 (3H, s), 7.64 (1H, s), 7.73 (1H, d, J = 8.4Hz), 8.19 (1H, s), 8.22 (1H, d, 8.5Hz).

EXAMPLE 13

3-[2-(N,N-Dimethylamino)ethyl]-5-(2-methyltetrazol-5-yl) benzo[b]thiophene. Oxalate.

To a mixture of -(2-aminoethyl)-5-(2-methyltetrazol-5-yl) benzo[b]thiophene (0.372g, 1.43mmol) and sodium cyanoborohydride (0.136g, 2.15mmol) in methanol (3ml) and acetic acid (0.247ml, 4.30mmol) cooled in an ice bath was added 38% w/v formaldehyde solution (0.453ml, 5.74mmol) in methanol (3ml) dropwise over 5min and the mixture was stirred at room temperature for 3h. After this time, saturated potassium carbonate solution (30ml) was added and the mixture was extracted with ethyl acetate (3 x 50ml). The combined extracts were evaporated *in vacuo* to leave 0.53g. Chromatography on flash silica, eluting with 10-30% methanol/dichloromethane, gave 0.335g (81%) of the title product as a colourless oil. The oxalate salt was prepared using oxalic acid in methanol/ether to give the title product oxalate as a white solid, m.p. 214-218°C. Analysis found: C, 50.58; H, 4.80; N, 18.28%. Calcd for $C_{14}H_{17}N_5S$. $C_2H_2O_4$: C, 50.92; H, 5.07; N, 18.56%. δ (DMSO) 2.84 (6H, s), 3.30-3.42 (4H, m), 4.46 (3H, s), 7.69(1H,s), 8.06 (1H,dd, J = 8.4 and 1.4 Hz), 8.20 (1H, d, J = 8.4Hz), 8.56 (1H, s). m/z (Cl+,NH₃) 288 (M+H)+.

EXAMPLE 14

N,N-dimethyl-2-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine Trisoxalate

1. 1-(4-nitrophenyl)methyl-2-methylimidazole

Sodium hydride (2.45g; 61.0mmol, 60% dispersion in oil) was added to a solution of 2-methylimidazole (5.0g, 60.9mmol) in DMF (100ml). The mixture was stirred at room temperature for 0.25h before adding 4-nitrobenzyl bromide (13.2g, 61.0mmol) and heating at 110°C for 2h followed by stirring at room temperature for 16h. Water (200ml) and ethyl acetate (500ml) were added, the aqueous separated and extracted with ethyl acetate (2 x 500ml). The combined extracts were washed with water (3 x 250ml), dried (MgSO4) and evaporated. The crude product was chromatographed on silica gel eluting with $CH_2CI_2/MeOH$ (4%) to give the title-product (1.58g, 10.5%); δ (360MHz, $CDCI_3$) 2.34 (3H, s, Me); 5.16 (2H, s, CH_2); 6.67 (1H, d, J=1.3Hz, Ar-H); 7.03 (1H, d, J=1.3Hz, Ar-H); 7.19 (2H, d, J=9.5Hz, Ar-H); 8.22

(2H, d, J = 9.5Hz, Ar-H).

2. N,N-dimethyl-2-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl)ethylamine Trisoxalate

Prepared from the preceding 4-nitrobenzyl imidazole using the general procedure described for Example 5. The trisoxalate salt was prepared, mp 160-163°C (MeOH/Et₂O); (Found: C, 50.57; H, 5.25; N, 10.60. $C_{17}H_{22}N_4.2.8$ ($C_2H_2O_4$) requires C, 50.79; H, 5.21; N, 10.48%); m/e 282 (M+); δ (360MHz, D_2O) 2.65 (3H, s, Me); 2.92 (6H, s, NMe₂); 3.25 (2H, t, J = 7.3Hz, CH₂); 3.50 (2H, t, J = 7.3Hz, CH₂); 5.42 (2H, s, CH₂); 7.18 (1H, d, J = 8.4Hz, Ar-H); 7.31-7.40 (2H, m, Ar-H); 7.40 (1H, s, Ar-H); 7.56 (1H, d, J = 8.4Hz, Ar-H); 7.66 (1H, s, Ar-H).

EXAMPLE 15

5

10

30

50

55

N,N-dimethyl-2-[5-imidazol-1-ylmethyl-1H-indol-3-yl]ethylamine Bisoxalate

Prepared from imidazole and 4-nitrobenzyl bromide using the procedure described for Example 5. The bisoxalate salt was prepared, 165-166°C (MeOH/Et₂O); (Found: C, 53.30; H, 5.34; N, 12.18. $C_{16}H_{20}N_4$. 2.05 ($C_2H_2O_4$) requires C, 53.30; H, 5.36; N, 12.37%); δ (360MHz, D_2O) 2.92 (6H, s, NMe₂); 3.24 (2H, t, J = 7.7Hz, CH₂); 3.48 (2H, t, J = 7.7Hz, CH₂); 5.50 (2H, s, CH₂); 7.27 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.37 (1H, s, Ar-H); 7.45 (1H, s, Ar-H); 7.49 (1H, s, Ar-H); 7.56 (1H, d, J = 8.4Hz, Ar-H); 7.75 (1H, s, Ar-H); 8.78 (1H, s, Ar-H).

EXAMPLE 16

N,N-dimethyl-2-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]ethylamine Sesquioxalate

1. 1-(4-nitrophenyl)-2-methylimidazole

Sodium hydride (4.87g, 122.0mmol, 60% dispersion in oil) was added to a solution of 2-methylimidazole (10g, 122.0mmol) in DMF (100ml) and stirred at room temperature for 0.25h. 1-Fluoro-4-nitrobenzene(17.18g, 122.0mmol) was added to the reaction mixture and stirred at room temperature for 16h. Water (150ml) and ethyl acetate (250ml) were added, the aqueous separated and extracted with ethyl acetate (3 x 150ml). The combined extracts were washed with water (3 x 150ml), dried (Na₂SO₄) and evaporated to give the desired product (11.5g, 47%); δ (360MHz, CDCl₃) 2.24 (3H, s, Me); 7.06 (1H, d, J = 1.5Hz, Ar-H); 7.10 (1H, d, J = 1.5Hz, Ar-H); 7.50 (2H, d, J = 9.5Hz, Ar-H); 8.38 (2H, d, J = 9.5Hz, Ar-H).

2. N,N-dimethyl-2-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]ethylamine Sesquioxalate

Prepared from the preceding 4-nitrophenyl imidazole using the procedure described for Example 5. The sesqui-oxalate salt was prepared, mp 185-186°C (iPA/MeOH); (Found: C, 56.17; H, 5.99; N, 13.46. $C_{16}H_{20}N_4$.1.55 ($C_2H_2O_4$). 0.1 EtOH requires C, 56.19; H, 5.79; N, 13.58%); δ (360MHz, D_2O) 2.55 (3H, s, Me); 2.93 (6H, s, NMe₂); 3.26 (2H, t, J = 7.4Hz, CH₂); 7.30 (1H, dd, J = 2.0 and 8.7Hz, Ar-H); 7.48 (1H, d, J : 2.1Hz, Ar-H); 7.51-7.53 (2H, m, Ar-H); 7.70 (1H, d, J = 8.7Hz, Ar-H); 7.79 (1H, d, J = 2.0Hz, Ar-H).

EXAMPLE 17

45 N,N-dimethyl-2-[5-(1,2,4-triazol-1ylmethyl)-1H-indol-3-yl]ethylamine. Succinate. Procedure B

A solution of 1-(4-hydrazinophenyl)methyl- 1,2,4-triazole dihydrochloride (2g, 7.6mmol, Example 5 step 3) and 4-N,N-dimethylaminobutanal dimethylacetal (1.8g, 11.2mmol) in 4% aqueous sulphuric acid (70ml) was heated at reflux for 2h. After the reaction mixture was cooled to room temperature, ethyl acetate (200ml) was added and the aqueous basified with K_2CO_3 . The aqueous was separated and extracted further with ethyl acetate (2 x 150ml). The combined organics were dried (Na_2SO_4) and evaporated, and the residue chromatographed on silica gel eluting with $CH_2CI_2/EtOH/NH_3$ (30:8:1) to give the <u>title</u>-triazole (610mg, 30%). The succinate salt was prepared by addition of a solution of succinic acid (0.27g, 2.3mmol) in methanol (3ml) to a solution of the triazole (0.61g, 2.3mmol) in methanol (5ml). The solvent was removed under vacuum and the resultant product recrystallised from isopropylalcohol, mp 118-120°C; (Found: C, 58.76; H, 6.27; N, 17.79. $C_{15}H_{19}N_3.C_4H_6O_4$ requires C, 58.90; H, 6.50; N, 18.08%).

EXAMPLE 18

5

10

15

20

25

30

35

40

45

50

N,N-dimethyl-2-(5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Benzoate

The benzoate salt of N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine was prepared by addition of a solution of benzoic acid in diethyl ether to a solution of the free base in ethanol/diethyl ether (1:4). The precipitated salt was recrystallised from ethanol, mp 178-180°C; (Found: C, 67.28; H, 6.55; N, 17.66. $C_{15}H_{19}N_3$. $C_6H_5CO_2$ 2H requires C, 67.50; H, 6.44; N, 17.89%); ¹H NMR (360MHz, D_2O) δ 2.92 (6H, s, NMe₂); 3.22 (2H, t, J = 7.3Hz, CH₂); 3.46 (2H, t, J = 7.3Hz, CH₂); 5.52 (2H, s, CH₂); 7.22 (1H, dd, J = 1.6 and 8.4Hz, Ar-H); 7.36 (1H, s, Ar-H); 7.44-7.58 (4H, m, Ar-H); 7.65 (1H, s, Ar-H); 7.87-7.91 (2H, m, Ar-H); 8.06 (1H, s, Ar-H); 8.54 (1H, s, Ar-H).

EXAMPLE 19

N,N-dimethyl-2-[5-(2-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

Prepared as described for Example 3, using ethyl iodide. The oxalate salt was prepared, mp 140-142°C; (Found: C, 55.71; H, 6.26; N, 21.35. $C_{16}H_{22}N_6.C_2H_2O_4$ requires C, 55.66; H, 6.23; N, 21.64%); ¹H NMR (360MHz, D_2O) δ 1.54 (3H, t, J = 7.4Hz, CH_3); 2.91 (6H, s, NMe₂); 3.21 (2H, t, J = 7.4Hz, CH_2); 3.47 (2H, t, J = 7.4Hz, CH_2); 4.34 (2H, s, CH_2); 4.64 (2H, q, J = 7.4Hz, CH_2 CH₃); 7.17 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.33 (1H, s, Ar-H); 7.48 (1H, d, J = 8.4Hz, Ar-H); 7.59 (1H, s, Ar-H).

EXAMPLE 20

N,N-dimethyl-2-[5-(1-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate

Prepared using the procedure described for Example 4, using ethyl iodide. The oxalate salt was prepared, mp 179°C (MeOH/Et₂O); (Found: C, 55.59; H, 6.23; N, 21.49. $C_{16}H_{22}N_6.C_2H_2O_5$ requires C, 55.66; H, 6.23; N, 21.64%); ¹H NMR (360MHz, D₂O) δ 1.32 (3H, t, J = 7.4Hz, CH₃); 2.90 (6H, s, NMe₂); 3.21 (2H, t, J = 7.4Hz, CH₂); 3.46 (2H, t, J = 7.4Hz, CH₂); 4.38 (2H, q, J = 7.4Hz, CH₂); 4.47 (2H, s, CH₂); 7.14 (1H, dd, J = 1.5 and 8.4Hz, Ar-H); 7.35 (1H, s, Ar-H); 7.50 (1H, d, J = 8.4Hz, Ar-H); 7.53 (1H, s, Ar-H).

EXAMPLE 21

N,N-Dimethyl-2-[5-(1,2,4-triazol-1-yl)-1H-indol-3-yl]ethylamine. Bisoxalate

Prepared as described for Example 16 from 1,2,4-triazole sodium derivative and 1-fluoro-4-nitrobenzene. The bisoxalate salt was prepared, mp 210°C (MeOH/Et₂O); (Found: C, 50.11; H, 4.78; N, 16.35. $C_{14}H_{17}N_5$. 1.9 ($C_2H_2O_4$) requires C, 50.14; H, 4.92; N, 16.43%); ¹H NMR (360MHz, D₂O) δ 2.92 (6H, s, NMe₂); 3.25 (2H, t, J = 7.4Hz, CH₂); 3.50 (2H, t, J = 7.4Hz, CH₂); 7.44 (1H, s, Ar-H); 7.47 (1H, dd, J = 2.0 and 8.7Hz, Ar-H); 7.63 (1H, d, J = 8.7Hz, Ar-H); 7.88 (1H, d, J = 2.0Hz, Ar-H); 8.36 (1H, s, Ar-H); 9.05 (1H, s, Ar-H).

EXAMPLE 22

4-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]-N-methylpiperidine. Bisoxalate sesquihydrate

A solution of N-methyl-4-(formylmethyl)piperidine (0.25g, 1.8mmol) and 4-(2-methylimidazolyl)phenyl hydrazine hydrochloride (0.48g, 2.1mmol) in 4% H_2SO_4 (25ml) was heated at reflux for 16h. The mixture was cooled to room temperature, basified with K_2CO_3 solution and extracted with CH_2CI_2 (3 x 75ml). The combined extracts were dried (Na₂SO₄) and evaporated and the residue purified by chromatography on silica-gel eluting with CH_2CI_2 /EtOH/NH₃ (60: 8:1) to give the title-compound (0.12g). The bisoxalate sesquihydrate salt was prepared, mp 65-70°C (hygroscopic); (Found: C, 52.97; H, 5.51; N, 11.07. $C_{18}H_{22}N_4.2(C_2H_2O_4)$. 1.5H₂O requires C, 52.69; H, 5.83; N, 11.17%); ¹H NMR (360MHz, D_2O) δ 1.96-2.08 (2H, m, CH_2); 2.31-2.40 (2H, m, CH_2); 2.56 (3H, s, CH_3); 2.95 (3H, s, CH_3); 3.20-3.27 (3H, m, CH_3); 3.64-3.68 (2H, m, CH_2); 7.28 (1H, dd, CH_3) = 2 and 8.7Hz, Ar-H); 7.44 (1H, s, Ar-H); 7.48 (1H, d, CH_3) = 2Hz, Ar-H); 7.53 (1H, d, CH_3) = 2Hz, Ar-H); 7.69 (1H, d, CH_3) = 8.7Hz, Ar-H); 7.81 (1H, d, CH_3) = 2Hz, Ar-H).

EXAMPLE 23

5

10

15

20

25

30

35

40

45

50

55

4-(5-(1,2,4-Triazol-1-ylmethyl)-1H-indol-3-yl]-N-methylpiperidine. Oxalate

A solution of N-methyl-4-(formylmethyl)piperidine (0.1g, 0.71mmol) and 4-(1,2,4-triazolylmethyl)phenyl hydrazine dihydrochloride (0.185g, 0.71mmol) in 4% H_2SO_4 was heated at reflux for 2h. The mixture was cooled to room temperature, basified with K_2CO_3 solution and extracted with CH_2CI_2 (2 x 100ml). The crude product was chromatographed on silica-gel eluting with CH_2CI_2 /EtOH/NH $_3$ (40:8:1) to give the <u>title</u>-compound (60mg). The oxalate salt was prepared, mp 218-220°C; (Found: C, 58.61; H, 6.03; N, 17.94. $C_{17}H_{21}N_5$.1.02 ($C_2H_2O_4$) requires C, 58.96; H, 6.38; N, 17.56%); ¹H NMR (360MHz, D_2O) δ 1.88-2.02 (2H, m, CH_2); 2.20-2.34 (2H, m, CH_2); 2.92 (3H, s, CH_3); 3.10-3.24 (3H, m, CH_3); 3.60-3.64 (2H, m, CH_2); 5.51 (2H, s, CH_3); 7.21 (1H, dd, CH_3) and 8.4Hz, Ar-H); 7.26 (1H, s, Ar-H); 7.51 (1H, dd, CH_3); 7.69 (1H, s, Ar-H); 8.05 (1H, s, Ar-H); 8.55 (1H, s, Ar-H).

EXAMPLE 24

1H-4-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl)-piperidine Bisoxalate dihydrate

1. 4-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]-N-benzylpiperine

Prepared from N-benzyl-4-(formylmethyl)piperidine using the procedure described for Example 22; 1 H NMR (360MHz, CDCl₃) δ 1.80-1.94 (2H, m, CH₂); 1.98-2.06 (2H, m, CH₂); 2.14-2.24 (2H, m, CH₂); 2.33 (3H, s, CH₃); 2.76-2.85 (1H, m, CH); 3.02-3.08 (2H, m, CH₂); 3.60 (2H, s, CH₂); 7.03-7.10 (4H, m, Ar-H); 7.26-7.38 (5H, m, Ar-H); 7.41 (1H, d, J = 8.5Hz, Ar-H); 7.52 (1H, d, J = 1.8Hz, Ar-H); 8.30 (1H, br s, NH).

2. 1H-4-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]piperidine. Bisoxalate dihydrate

To a solution of ammonium formate (0.32g, 5.07mmol) and 4-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]-N-benzyl-piperidine (0.4g, 1.08mmol), in methanol (40ml) was added Pd/C (10%; 0.4g) and the mixture stirred at 60°C for 3h. The catalyst was removed by filtration through celite and the solvent removed under vacuum. The residue was taken up into H_2O (30ml), basified with NH_3 solution and extracted with ethyl acetate (3 x 100ml). The combined extracts were dried (Na_2SO_4) and evaporated and the residue chromatographed through silica-gel eluting with $CH_2CI_2/MeOH/NH_3$ (30:8:1) to give the desired piperidine (0.2g). The bisoxalate dihydrate salt was prepared, mp 80°C (hygroscopic); (Found: C, 50.53; H, 5.54; N, 10.87. $C_{17}H_{20}N_4.2(C_2H_2O_4).2.2H_2O$ requires C, 50.43; H, 5.72; N, 11.20%); ¹H NMR (360MHz, D_2O) δ 1.91-2.03 (2H, m, CH_2); 2.30-2.34 (2H, m, CH_2); 2.55 (3H, s, CH_3); 3.19-3.36 (3H, m, CH_3); 3.55-3.62 (2H, m, CH_2); 7.28 (1H, dd, CI_3) and 8.6Hz, Ar-H); 7.44 (1H, s, Ar-H); 7.47 (1H, d, CI_3) = 2.0Hz, Ar-H); 7.52 (1H, d, CI_3) = 1.2Hz, Ar-H); 7.69 (1H, d, CI_3) = 8.6Hz, Ar-H); 7.82 (1H, d, CI_3) = 1.2Hz, Ar-H).

EXAMPLE 25

1H-4-[5-(1,2,4-Triazol-1-ylmethyl)-1H-indol-3-yl]piperidine. Oxalate

Prepared from N-benzyl-4-(formylmethyl)piperidine and 4-(1,2,4-triazolylmethyl)phenyl hydrazine dihydrochloride using the procedures described for Examples 23 and 24. The oxalate salt was prepared, mp 272°C; (Found: C, 58.27; H, 5.56; N, 18.79. $C_{16}H_{19}N_5$. $C_2H_2O_4$ requires C, 58.21; H, 5.70; N, 18.86%); ¹H NMR (360MHz, D_2O) δ 1.86-1.98 (2H, m, CH₂); 2.24-2.28 (2H, m, CH₂); 3.15-3.36 (3H, m, CH and CH₂); 3.52-3.56 (2H, m, CH₂); 5.51 (2H, s, CH₂); 7.21 (1H, dd, J = 1.6 and 8.5Hz, Ar-H); 7.27 (1H, s, Ar-H); 7.52 (1H, d, J = 8.5Hz, Ar-H); 7.70 (1H, d, J = 1.6Hz, Ar-H); 8.09 (1H, s, Ar-H); 8.60 (1H, s, Ar-H).

EXAMPLE 26

1H-3-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]-pyrrolidine. Bisoxalate

1. 3-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]-N-benzylpyrrolidine

Prepared from N-benzyl-3- (formylmethyl)pyrrolidine and 4-(2-methylimidazolyl)phenyl hydrazine hydrochloride as described for Example 22; 1 H NMR (360MHz, CDCl₃) δ 1.98-2.06 (1H, m, CH of CH₂); 2.34 (3H, s, CH₃); 2.34-2.44 (2H, m, 2 of CH of CH₂); 2.71 (1H, t, J = 7.4 Hz, CH of CH₂); 2.80 (1H, t, J = 6.9Hz, CH of CH₂); 3.05 (1H, t, J = 8.7Hz, CH of CH₂) 3.61-3.73 (1H, m, CH); 3.72 (2H, ABq, J = 13Hz, CH₂); 6.95-7.14 (4H, m, Ar-H); 7.22-7.41 (5H, m, Ar-H);

7.40 (1H, d, J = 8.5Hz, Ar-H); 7.66 (1H, s, Ar-H); 8.30 (1H, br s NH).

2. 1H-3-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl)pyrrolidine. Bisoxalate

Prepared from the preceding N-benzylpyrrolidine using the procedure described for Example 24. The bisoxalate salt was prepared, mp 210-213°C (methanol/ether); (Found: C, 53.93; H, 5.22; N, 12.50. $C_{16}H_{18}N_4.2(C_2H_2O_4)$ requires C, 53.81; H, 4.97; N, 12.55%); ¹H NMR (360MHz, D_2O) δ 2.91-2.30 (1H, m, CH of CH_2); 2.55 (3H, s, CH_3); 2.55-2.60 (1H, m, CH of CH_2); 3.35-3.64 (3H, m, CH and CH_2); 3.80-3.90 (2H, m, CH_2); 7.30 (1H, dd, J = 2 and 8.6Hz, Ar-H); 7.47 (1H, d, J - 2Hz, Ar-H); 7.50 (1H, s, Ar-H); (7.53 (1H, d, J = 2Hz, Ar-H); 7.70 (1H, d, J = 8.6Hz, Ar-H); 7.80 (1H, d, J = 2Hz, Ar-H).

EXAMPLE 27

10

15

30

35

45

50

N-Methyl-3-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidine. Bisoxalate

To a cooled (0°C), stirred mixture of 1H-3-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidine (0.12g, 0.45mmol), acetic acid (0.136g, 2.3mmol) and NaCNBH $_3$ (71mg, 1.1mmol), in methanol (15ml), was added dropwise a solution of formaldehyde (89mg of a 38% w/w solution in H $_2$ O, 1.1mmol) in methanol (10ml). The mixture was stirred at 0°C for 0.1h before warming to room temperature and stirring for 1.5h. Saturated K $_2$ CO $_3$ solution (10ml) was added and the solvent removed under vacuum. The residue was extracted with ethyl acetate (3 x 100ml) and the combined extracts dried (Na $_2$ SO $_4$) and evaporated. The crude product was chromatographed on silica-gel eluting with CH $_2$ Cl $_2$ /MeOH/NH $_3$ (60:8:1) to give the title product (0.1g). The bisoxalate salt was prepared, mp 191-194°C (MeOH/Et $_2$ O); (Found: C, 54.39; H, 5.30; N, 11.87. C $_{17}$ H $_{20}$ N $_4$.2(C $_2$ H $_2$ O $_4$).0.2H $_2$ O requires C, 54.36; H, 5.30; N, 12.07%); ¹H NMR (360MHz, D $_2$ O) δ 2.26-2.45 (1H, m, CH of CH $_2$); 2.55 (3H, s, Me); 2.62-2.75 (1H, m, CH of CH $_2$); 3.02 and 3.03 (total 3H, s, Me); 3.23-3.45 (2H, m, CH $_2$); 3.60-3.68, 3.77-4.1 and 4.12-4.15 (total 3H, each m, CH and CH $_2$); 7.30 (1H, d, J = 8.9Hz, Ar-H); 7.48 (1H, d, J = 2.2Hz, Ar-H); 7.52 (1H, s, Ar-H); 7.53 (1H, d, J = 2.2Hz, Ar-H); 7.70 (1H, d, J = 8.9Hz, Ar-H); 7.78 (1H, s, Ar-H).

EXAMPLE 28

1H-4-[5-Imidazol-1-yl-1H-indol-3-yl]piperidine. Bisoxalate

Prepared from N-benzyl-4-(formylmethyl)piperidine)piperidine and 4-(imidazolyl)phenyl hydrazine hydrochloride using the procedures described for Examples 22 and 24. The bisoxalate salt was prepared, mp 155-157°C; (Found: C, 54.32; H, 5.50; N, 11.66. $C_{16}H_{18}N_4.2(C_2H_2O_4).0.3(Et_2O)$ requires C, 54.33; H, 5.38; N, 11.96%); ¹H NMR (360MHz, D_2O) δ 1.90-2.04 (2H, m, CH_2); 2.32 (2H, br d, CH_2); 3.20-3.32 (3H, m, CH_2); 3.55-3.60 (2H, m, CH_2); 7.41-7.44 (2H, m, CH_2); 7.64 (1H, s, CH_2); 7.68 (1H, d, CH_2); 7.85 (1H, s, CH_2); 7.92 (1H, d, CH_2); 7.906 (1H, s, CH_2); 7.906 (1H, s

40 EXAMPLE 29

1H-4-[5-(1,2,3-Triazol-1-yl)-1H-indol-3-yl]piperidine. Hemioxalate

Prepared from N-benzyl-4-(formylmethyl)piperidine and 4-(1,2,3-triazolyl)phenyl hydrazine hydrochloride using the procedures described for Examples 22 and 24. The hemioxalate salt was prepared, mp 278°C (MeOH/Et₂O); (Found: C, 61.84; H, 6.10; N, 22.21. $C_{15}H_{17}N_5.0.5(C_2H_2O_4)$ requires C, 61.53; H, 5.81; N, 22.42%); ¹H NMR (360MHz, D₆-DMSO) δ 1.66-1.82 (2H, m, CH₂); 1.98-2.06 (2H, m, CH₂); 2.83-2.89 (2H, m, CH₂); 2.98-3.08 (1H, m, CH); 3.21 (2H, br d, J = 12.5Hz, CH₂); 7.28 (1H, s, Ar-H); 7.51-7.56 (2H, m, Ar-H); 7.93 (1H, s, Ar-H); 8.05 (1H, s, Ar-H); 8.73 (1H, s, Ar-H).

EXAMPLE 30

N-Methyl-4-[5-imidazol-1-yl-1H-indol-3-yl]piperidine. Sesquioxalate

Prepared from N-methyl-4-(formylmethyl)piperidine and 4-(imidazolyl)phenyl hydrazine hydrochloride as described for Example 22. The sesquioxalate salt was prepared, mp 217°C; (Found: C, 57.41; H, 5.83; N, 13.30. C₁₇H₂₀N₄. 1.5(C₂H₂O₄).0.14(CH₃OH) requires C, 57.61; H, 5.66; N, 13.34%); ¹H NMR (360MHz, D₂O) δ 1.94-2.06 (2H, m, CH₂); 2.34-2.38 (2H, m, CH₂); 2.94 (3H, s, CH₃); 3.20-3.27 (3H, m, CH and CH₂); 3.63-3.67 (2H, m, CH₂);

7.40-7.43 (2H, m, Ar-H); 7.64 (1H, s, Ar-H); 7.68 (1H, d, J = 8.7Hz, Ar-H); 7.84 (1H, s, Ar-H); 7.90 (1H, d, J = 1.3Hz, Ar-H); 9.07 (1H, s, Ar-H).

EXAMPLE 31

N-Methyl-4-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]piperidine. Hemioxalate

Prepared from N-methyl-4-(formylmethyl)piperidine and 4-(1,2,3-triazolyl)phenyl hydrazine hydrochloride as described for Example 22. The hemioxalate salt was prepared, mp 251-254°C (MeOH/Et₂O); (Found: C, 62.21; H, 6.49; N, 21.21. $C_{16}H_{19}N_5.0.5(C_2H_2O_4).0.1H_2O$ requires C, 62.22; H, 6.20; N, 21.34%); ¹H NMR (360MHz, D_2O) δ 1.69-2.01 (2H, m, CH₂); 2.25-2.31 (2H, m, CH₂); 2.94 (3H, s, CH₃); 3.04-3.20 (3H, m, CH and CH₂); 3.61-3.65 (2H, m, CH₂); 7.32 (1H, s, Ar-H); 7.44 (1H, dd, J = 1.9 and 8.7Hz, Ar-H); 7.58 (1H, d, J = 8.7Hz, Ar-H); 7.86 (1H, d, J = 1.8Hz, Ar-H); 7.94 (1H, s, Ar-H); 8.29 (1H, s, Ar-H).

15 EXAMPLE 32

10

20

25

40

N-Methyl-3-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]pyrrolidine. Oxalate

Prepared from N-benzyl-3-(formylmethyl)pyrrolidine and 4-(1,2,3-triazolyl)phenyl hydrazine hydrochloride as described for Examples 26 and 27. The oxalate salt was prepared, mp 154-156°C (MeOH/Et₂O); (Found: C, 57.06; H, 5.39; N, 19.43. $C_{15}H_{17}N_5.C_2H_2O_4$ requires C, 57.14; H, 5.36; N, 19.60%); ¹H NMR (360MHz, D_2O) δ 2.23-2.38 (1H, m, CH of CH₂); 2.55-2.69 (1H, m, CH of CH₂); 3.01 (3H, s, Me); 3.13-3.42 and 3.55-3.60 (total 2H, each m, CH₂); 3.70-4.09 (3H, m, CH and CH₂); 7.39 (1H, d, J = 8.7Hz, Ar-H); 7.42-7.46 (1H, m, Ar-H); 7.58 (1H, d, J = 8.7Hz, Ar-H); 7.62 (1H, s, Ar-H); 7.93 (1H, s, Ar-H); 8.30 (1H, s, Ar-H).

EXAMPLE 33

N-Methyl-3-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine. Bisoxalate

Prepared from N-benzyl-3-(formylmethyl)pyrrolidine and 4-(2-(methyl)imidazol-1-ylmethyl)phenyl hydrazine hydrochloride as described for Examples 26 and 27. The bisoxalate salt was prepared, mp 152-153°C; (Found: C, 55.41; H, 5.51; N, 11.61. $C_{18}H_{22}N_4.2(C_2H_2O_4)$ requires C, 55.69; H, 5.52; N, 11.81%); ¹H NMR (360MHz, D_2O) δ 2.22-2.46 (1H, m, CH of CH₂); 2.58-2.76 (1H, m, CH of CH₂); 2.65 (3H, s, Me); 3.02 and 3.03 (total 3H, s, Me); 3.21-3.44, 3.60-3.67, 3.75-3.95 and 4.09-4.14 (total 5H, each m, CH and 2 of CH₂); 5.42 (2H, s, CH₂); 7.17-7.19 (1H, m, Ar-H); 7.32 (2H, s, Ar-H); 7.39 (1H, d, J = 8.4Hz, Ar-H); 7.56 (1H, d, J = 8.4Hz, Ar-H); 7.67 (1H, s, Ar-H).

EXAMPLE 34

N-Methyl-3-[5-imidazol-1-yl-1H-indol-3-yl]pyrrolidine. Bisoxalate

Prepared from N-benzyl-3-(formylmethyl)pyrrolidine and 4-(imidazolyl)phenyl hydrazine hydrochloride using the procedures described for Examples 26 and 27. The bisoxalate salt was prepared, mp 173-175°C (MeOH/Et₂O); (Found: C, 53.94; H, 5.07; N, 12.51.C₁₆H₁₈N₄.2(C₂H₂O₄) requires C, 53.81; H, 4.97; N, 12.55%); ¹H NMR (360MHz, D₂O) δ 2.26-2.45 and 2.60-2.78 (each 1H, each m, CH₂), 3.02 and 3.03 (total 3H, each s, Me), 3.23-3.45, 3.61-3.66, 3.78-3.95 and 4.11-4.16 (total 5H, each m, 2 of CH₂ and CH), 7.42 and 7.45 (total 1H, each s, Ar-H), 7.49 (1H, d, J = 9.2Hz, Ar-H), 7.65 (1H, s, Ar-H), 7.69 (1H, d, J = 9.2Hz, Ar-H), 7.86-7.89 (2H, m, Ar-H), 9.09 (1H, s, Ar-H).

EXAMPLE 35

N-Methyl-3-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine. Sesquioxalate. Hemihydrate

Prepared from N-benzyl-3-(formylmethyl)pyrrolidine and 4-(1,2,4-triazolylmethyl)phenyl hydrazine dihydrochloride as described for Examples 26 and 27. The sesquioxalate hemihydrate salt was prepared, mp 59-61°C (isopropyl alcohol/Et₂O); (Found: C, 55.10; H, 5.79; N, 16.99. $C_{16}H_{19}N_5.1.3(C_2H_2O_4).0.4H_2O$ requires C, 55.08; H, 5.57; N, 17.27%); ¹H NMR (360MHz, D_2O) δ 2.20-2.42 and 2.54-2.72 (each 1H, each m, CH_2), 3.00 and 3.02 (total 3H, each s, Me), 3.16-3.42, 3.56-3.62, 3.72-3.76, 3.82-3.94 and 3.98-4.10 (total 5H, each m, 2 of CH_2 and CH_3), 5.52 (2H, s, CH_2), 7.22 and 7.24 (total 1H, each s, Ar-H), 7.34 (1H, d, CH_3), 7.52 (1H, d, CH_3), 7.56 (1H, s, Ar-H), 8.06 (1H, s, Ar-H), 8.58 (1H, s, Ar-H).

EXAMPLE 36

5

10

15

25

30

35

40

45

50

55

N-Methyl-3-[5-imidazol-1-ylmethyl-1H-indol-3-yl]pyrrolidine. Oxalate. Hemihydrate

Prepared from N-benzyl-3-(formylmethyl)pyrrolidine and 4-(imidazol-1-ylmethyl)phenyl hydrazine hydrochloride as described for Examples 26 and 27. The oxalate hemihydrate salt was prepared, mp 101- 104°C (isopropyl alcohol/ Et₂O); (Found: C, 59.51; H, 6.35; N, 14.54. $C_{17}H_{20}N_4.C_2H_2O_4.0.6H_2O.$ 0.1 1 (iPrOH) requires C, 59.86; H, 6.25; N, 14.47%); ¹H NMR (360MHz, D_2O) δ 2.26-2.42 (1H, m, CH of CH₂), 2.60-2.74 (1H, m, CH of CH₂), 3.03 (3H, s, Me), 3.16-4.12 (5H, br m, 2 of CH₂ and CH), 5.45 (3H, s, Me), 7.27 (1H, dd, J = 1.6 and 8.5Hz, Ar-H), 7.31 (1H, s, Ar-H), 7.38-7.40 (2H, m, Ar-H), 7.58 (1H, d, J = 8.5Hz, Ar-H), 7.70 (1H, s, Ar-H), 8.39 (1H, s, Ar-H).

EXAMPLE 37

N,N-dimethyl-2-(5-(2-aminoimidazol-1-yl)-1H-indol-3-yl]ethylamine. Bisoxalate

Prepared from 2-aminoimidazole and 4-fluoro nitrobenzene as described for Example 16. To prevent reaction of the aminoimidazole with sodium nitrite under the diazotization conditions the amino was protected as the acetamide with Ac₂O/AcOH prior to hydrogenation and hydrazine formation. Fischer reaction of 4-[2-(methylcarbonylamino)imidazol-1-yl]phenyl hydrazine with N,N-dimethylaminobutanal dimethylacetal gave the title-product. The bisoxalate salt was prepared, mp 199-200°C (MeOH/Et₂O); (Found: C, 50.35; H, 5.06; N, 15.05. $C_{15}H_{19}N_5.2.1(C_2H_2O_4)$ requires C, 50.31; H, 5.10; N, 15.28%); ¹H NMR (360MHz, D₂O) δ 2.91 (6H, s, N(Me)₂), 3.27 (2H, t, J = 7.4Hz, CH₂), 3.50 (2H, t, J = 7.4Hz, CH₂), 6.97 (2H, s, Ar-H), 7.29 (1H, dd, J = 1.8 and 8.7Hz, Ar-H), 7.48 (1H, s, Ar-H), 7.67 (1H, d, J = 8.7Hz, Ar-H), 7.78 (1H, d, J = 1.8Hz, Ar-H).

EXAMPLE 38

N,N-Dimethyl-2-[5-(2-aminoimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Sesquioxalate

1. 4-Cyanophenylhydrazine. Hydrochloride

To a cooled (-15°C) and stirred suspension of 4-aminobenzonitrile (50g, 423mmol) in concentrated hydrochloric acid (550ml) was added dropwise a solution of sodium nitrite (31.5g, 457mmol) in water (200ml) at such a rate as to maintain the temperature below -10°C. After the addition was finished, the reaction mixture was quickly filtered to remove solids and the filtrate was added portionwise to a cooled (-20°C) and stirred solution of tin (II) chloride dihydrate (477g, 2.1mol) in concentrated hydrochloric acid (370ml) at such a rate as to maintain the temperature below -10°C. After further 15 minutes at -10 to 0°C, the white precipitate was collected by filtration, washed with diethyl ether (4 x 250ml) and dried to give 56g (78%) of the <u>title compound</u>; mp 235-237°C (ethanol-water 1:1); 1 H NMR (250MHz, DMSOdg) 3 0.50 (3H, br s, -N+H₃), 9.10 (1H, br s, -NH-), 7.71 (2H, d, J = 8.8Hz, Ar-H), 7.03 (2H, d, J = 8.8Hz, Ar-H); m/z (CI) 132 (M+-1).

2. 2-[5-Cyano-1H-indol-3-yl]ethylamine. Hydrochloride

To a stirred suspension of 4-cyanophenylhydrazine (50g) in a mixture of ethanol and water (5:1; 21) was added 4-chlorobutanal dimethylacetal (45g) and the resulting mixture was refluxed for 18 hours. Solvents were removed under vacuum and the residue was azeotroped with toluene to give a brown solid. Crystallisation of this crude material from methanol (150ml) gave 23g (35%) of the <u>title compound</u> as a yellow solid; mp 270-274°C; ¹H NMR (250MHz, DMSOde) δ 11.60 (1H, br s, indole N-H), 8.17 (1H, d, J = 1.1Hz, Ar-H), 7.97 (3H, br s, -N+H₃), 7.54 (1H, d, J = 8.5Hz, Ar-H), 7.46 (1H, s, Ar-H), 7.44 (1H, dd, J = 8.5 and 1.1Hz, Ar-H), 3.05 (4H, br s, -CH₂CH₂N-); m/z (CI) 184 (M+-1).

3. N-tert-Butyloxycarbonyl-2-[5-cyano-1H-indol-3-yl]ethylamine.

The <u>title compound</u> was prepared in 58% yield from the preceding tryptamine using the conditions described for Example 1 (Step 4); white solid; mp 132-134°C (hexane-ethyl acetate); ¹H NMR (250MHz, CDCl₃) δ 8.42 (1H, br s, indole N-H), 7.93 (1H, s, Ar-H), 7.41 (2H, s, Ar-H), 7.12 (1H, d, J = 2.2Hz, Ar-H), 4.71 (1H, br s, -NH-), 3.44 (2H, q, J = 6.9Hz, -CH₂NH-), 2.94 (2H, t, J = 6.9Hz, Ar-CH₂-), 1.45 (9H, s, t-Bu); m/z (Cl) 286 (M⁺+1).

4. N-tert-Butyloxycarbonyl-2-[5-aminomethyl-1H-indol-3-yl]ethylamine.

10

15

20

25

30

35

40

45

50

55

A solution ofthe product from the previous step (11.3g) in a mixture of absolute ethanol (750ml) and chloroform (22ml) was hydrogenated at 50 psi over platinum (IV) oxide (1g) for 28 hours. The catalyst was removed by filtration and solvents were removed under vacuum. Flash chromatography of the residue (silica gel, dichloromethane-methanol-ammonia 90:10:1) gave 9.5g (82%) of the <u>title compound</u> as a white solid; mp 147-149°C; ¹H NMR (360MHz, CDCl₃) δ 8.04 (1H, br s, indole N-H), 7.52 (1H, s, Ar-H), 7.33 (1H, d, J = 8.4Hz, Ar-H), 7.16 (1H, d, J = 8.4Hz, Ar-H), 7.03 (1H, s, Ar-H), 4.61 (1H, br s, -NHBOC), 3.96 (2H, s, Ar-CH₂NH₂), 3.45 (2H, br q, -CH₂NHBOC), 2.95 (2H, t, J = 6.8Hz, Ar-CH₂-), 1.43 (9H, s, t-Bu); m/z (Cl) 288 (M⁺-1).

5. N-tert-Butyloxycarbonyl-2-[5-dimethylaminomethyl-1H-indol-3-yl]ethylamine.

The <u>title compound</u> was prepared in 71% yield from the product from the previous step using the conditions described for Example 3 (Step 3); colourless thick oil; ^{1}H NMR (250MHz, CDCl₃) δ 8.07 (1H, br s, indole N-H), 7.50 (1H, s, Ar-H), 7.31 (1H, d, J = 8.3Hz, Ar-H), 7.16 (1H, d, J = 8.3Hz, Ar-H), 7.02 (1H, s, Ar-H), 4.61 (1H, br s, -NH-), 3.54 (2H, s, Ar-CH₂N-), 3.45 (2H, q, J = 6.2Hz, -CH₂NH-), 2.94 (2H, t, J = 6.2Hz, Ar-CH₂-), 2.27 (6H, s, -NMe₂), 1.43 (9H, s, t-Bu).

6. N-tert-Butyloxycarbonyl-2-[5-trimethylammonium methyl-1H-indol-3-yl]ethylamine. Iodide

A solution of the product from step 5 (2.9g) in a mixture of anhydrous diethyl ether (170ml) and iodomethane (36ml) was allowed to stand at room temperature for 16 hours in the dark. The white solid was collected by filtration, washed with diethyl ether and dried over phosphorous pentoxide at 50°C under vacuum to give 4.2g (100%) of the title compound; mp 199-202°C (decomposition); 1 H NMR (360MHz, DMSO-d₆) 8 11.09 (1H, br s, indole N-H), 7.69 (1H, s, Ar-H), 7.44 (1H, d, J = 8.3Hz, Ar-H), 7.26 (1H, s, Ar-H), 7.19 (1H, d, J = 8.3Hz, Ar-H), 6.89 (1H, br t, -NH-), 4.57 (2H, s, Ar-CH₂N-), 3.23 (2H, q, J = 7.6Hz, -CH₂NH-), 3.01 (9H, s, -N+Me₃), 2.83 (2H, t, J = 7.6Hz, Ar-CH₂-), 1.37 (9H, s, t-Bu); m/z (FAB) 332. (Found: C, 49.30; H, 6.55; N, 8.79. 8 C₁₉H₃₀IN₃O₂ requires: C, 49.68; H, 6.58; N, 9.15%).

7. N-tert-Butyloxycarbonyl-2-(5-(2-nitroimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

Sodium hydride (0.6g of a 60% dispersion in oil) was added to a stirred solution of 2-nitroimidazole (1.61g, 14.2mmol) in DMF (65ml), at room temperature. After 0.5h, a solution of the preceding methiodide (3.26g, 7.1mmol) in DMF (40ml) was added and the mixture refluxed for 2h and then stirred at room temperature for 18h. Aqueous work-up followed by flash chromatography of the crude product, afforded the title-compound (2.6g); ¹H NMR (360MHz, CDCl₃) δ 1.43 (9H, s, t-Bu), 2.94 (2H, t, J = 7.0Hz, CH₂), 3.40-3.48 (2H, m, CH₂), 5.69 (2H, s, CH₂), 7.01 (1H, s, Ar-H), 7.09 (1H, d, J = 8.4Hz, Ar-H), 7.10 (2H, s, Ar-H), 7.37 (1H, d, J = 8.4Hz, Ar-H), 7.54 (1H, s, Ar-H), 8.12 (1H, s, indole-NH).

8. 2-[5-(2-Nitroimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

A solution of the preceding imidazole (2.6g, 6.7mmol) in 90% HCO_2H) (150ml) was stirred at room temperature for 1.25h. The reaction was quenched by addition of MeOH and the solvents removed under vacuum. The crude product was purified by flash chromatography on silica-gel eluting with $CH_2Cl_2/EtOH/NH_3$ (30:8:1). The product (0.73g) was obtained as a yellow oil; ¹H NMR (360MHz, d₄-MeOH) δ 2.87-2.94 (4H, m, 2 of CH_2), 5.71 (2H, s, CH_2), 7.05 (1H, d, J=8.4Hz, Ar-H), 7.11 (1H, s, Ar-H), 7.12 (1H, s, Ar-H), 7.35 (1H, d, J=8.4Hz, Ar-H), 7.39 (1H, s, Ar-H), 7.55 (1H, s, Ar-H).

9. N,N-dimethyl-2-[5-(2-nitroimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

Prepared from the preceding tryptamine using the conditions described for Example 3(Step 3); 1 H NMR (250MHz, CDCl₃) 3 2.33 (6H, s, N(Me)₂), 2.62 (2H, t, J = 7.4Hz, CH₂), 2.92 (2H, t, J = 7.4Hz, CH₂), 5.68 (2H, s, CH₂), 7.00 (1H, d, J = 1.0Hz, Ar-H), 7.07 (1H, dd, J = 1.0 and 8.2Hz, Ar-H), 7.09 (1H, d, J = 2.4Hz, Ar-H), 7.10 (1H, d, J = 2.4Hz, Ar-H), 7.35 (1H, d, J = 8.2Hz, Ar-H), 7.53 (1H, s, Ar-H), 8.19 (1H, br s, indole-NH).

10. N,N-dimethyl-2-[5-(2-aminoimidazol-1ylmethyl)-1H-indol-3-yl]ethylamine. Sesquioxalate

The title-compound was prepared from the product of Step 9 using the conditions described for Example 5 (Step 2). The sesquioxalate salt was prepared, mp 211-212°C (MeOH/Et₂O); (Found: C, 54.46; H, 6.08; N, 16.53. $C_{16}H_{21}N_5$. 1.5($C_2H_2O_4$).0.06 (MeOH) requires C, 54.46; H, 5.81; N, 16.66%); ¹H NMR (360MHz, D_2O) δ 2.91 (6H, s, N(Me)₂),

3.25 (2H, t, J = 7.4Hz, CH_2), 3.49 (2H, t, J = 7.4Hz, CH_2), 5.16 (2H, s, CH_2), 6.77 (1H, d, J = 2.3Hz, Ar-H), 6.83 (1H, d, J = 2.3Hz, Ar-H), 7.19 (1H, dd, J = 1.5 and 8.5Hz, Ar-H), 7.39 (1H, s, Ar-H), 7.56 (1H, d, J = 8.5Hz, Ar-H), 7.61 (1H, s, Ar-H).

5 EXAMPLE 39

N-Methyl-2-(5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate.

1. N-Benzyl-2[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

To a solution of 2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine (1.5g, 6.2mmol) in EtOH (30ml) was added freshly distilled benzaldehyde (0.66g, 6.2mmol) and the solution stirred at room temperature for 21h. NaBH₄ (0.24g, 6.3mmol) was added portionwise over 10 min, at room temperature, and the resulting mixture was stirred for 0.5h before the solvent was removed under vacuum. The resulting residue was taken up into water (10ml) and acidified with 1N HCI (15ml). The mixture was then basified with 2N NaOH and extracted with EtOAc (4 x 50ml). The combined organic phases were washed with brine (30ml), dried and concentrated. Chromatography of the residue on silica-gel eluting with $CH_2CI_2/MeOH$ (85:15) gave the title-product (1.38g, 67%); ¹H NMR (360MHz, $CDCI_3$) δ 2.94 (4H, s, 2 of CH_2), 3.80 (2H, s, CH_2), 5.38 (2H, s, CH_2), 7.04 (1H, d, J = 2Hz, Ar-H), 7.08 (1H, dd, J = 1.5 and 8.4Hz, Ar-H), 7.18-7.30 (5H, m, Ar-H), 7.32 (1H, d, J = 8.4Hz, Ar-H), 7.54 (1H, s, Ar-H), 7.94 (1H, d, J = 2Hz, Ar-H), 8.17 (1H, br s, indole-NH).

2. N-Benzyl-N-methyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.

To a stirred solution of the preceding amine (1.14g, 3.4mmol) in anhydrous DMF (45ml) was added K_2CO_3 (0.89g, 6.4mmol) and dimethyl sulphate (0.46g, 3.7mmol). The mixture was stirred at room temperature for 3.5h before adding H_2O (90ml) and extracting with EtOAc (2 x 100ml). The combined organic solutions were washed with brine (40ml), dried, and concentrated. The residue was chromatographed on silica-gel eluting with $CH_2CI_2/MeOH$ (90:10) to give the desired product (0.69g); 1H NMR (360MHz, $CDCI_3$) δ 2.34 (3H, s, CH_3), 2.70-2.76 (2H, m, CH_2), 2.94-3.00 (2H, m, CH_2), 3.60 (2H, s, CH_2), 5.38 (2H, s, CH_2), 7.04 (1H, d, J=2Hz, Ar-H), 7.08 (1H, dd, J=2 and 8.4Hz, Ar-H), 7.20-7.36 (6H, m, Ar-H), 7.44 (1H, s, Ar-H), 7.94 (1H, s, Ar-H), 7.96 (1H, s, Ar-H), 8.18 (1H, br s, indole-NH).

3. N-Methyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Oxalate.

A solution of the preceding benzylamine (0.69g, 2.0mmol) in ethanol (100ml) and 2N HCl (2ml) was hydrogenated at 30 psi over 10% Pd/C (0.6g) for 4h. The catalyst was removed by filtration through hyflo, the solvent removed under vacuum, and the residue chromatographed on silica-gel eluting with CH₂Cl₂/EtOH/NH₃ (40: 8:1) to give the title-N-methylamine (0.34g, 68%). The oxalate salt was prepared and recrystallised from isopropyl alcohol; mp 149-150°C; (Found: C, 55.42; H, 5.72; N, 19.55. $C_{14}H_{17}N_5.C_2H_2O_4.0.15$ (iPA) requires C, 55.72; H, 5.75; N, 19.76%); ¹H NMR (360MHz, D₂O) δ 2.44 (3H, s, CH₃), 2.87-2.98 (4H, m, 2 of CH₂), 5.41 (2H, s, CH₂), 7.05 (1H, s, Ar-H), 7.09 (1H, dd, J = 1.6 and 8.4Hz, Ar-H), 7.31 (1H, d, J = 8.4Hz, Ar-H), 7.57 (1H, s, Ar-H), 7.96 (1H, s, Ar-H), 7.99 (1H, s, Ar-H).

EXAMPLE 40

Tablet Preparation

Tablets containing 1.0, 2.0, 25.0, 26.0, 50.0 and 100.0mg, respectively of the following compounds are prepared as illustrated below:

N,N-Dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylanfine. Oxalate.

N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine. Benzoate.

 $N, N-Dimethyl-2-(5-(1,2,3,4-tetrazol-1-ylmethyl)-1 H-indol-3-yl] ethylandne. \ Succinate.$

N-Methyl-4-[5-imidazol-1-yl-1H-indol-3-yl]piperidine. Sesquioxalate.

N-Methyl-3-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]pyrrolidine. Oxalate.

34

25

10

15

30

40

35

50

TABLE FOR DOSES CONTAINING FROM 1-25MG OF THE ACTIVE COMPOUND			
	Amount-mg		
Active Compound	1.0	2.0	25.0
Microcrystalline cellulose	49.25	48.75	37.25
Modified food corn starch	49.25	48.75	37.25
Magnesium stearate	0.50	0.50	0.50

TABLE FOR DOSES CONTAINING FROM 26-100MG OF THE ACTIVE COMPOUND Amount-mg Active Compound 26.0 50.0 100.0 Microcrystalline cellulose 52.0 100.0 200.0 4.25 8.5 Modified food corn starch 2.21 0.39 0.75 Magnesium stearate 1.5

All of the active compound, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 1.0mg, 2.0mg, 25.0mg, 26.0mg, 50.0mg and 100mg of the active ingredient per tablet.

Claims

5

10

15

20

25

30

35

40

45

50

1. A compound of formula I, or a salt or prodrug thereof:

(1

wherein the broken circle represents two non-adjacent double bonds in any position in the five-membered ring;

two, three or four of V, W, X, Y and Z represent nitrogen and the remainder represent carbon provided that, when two of V, W, X, Y and Z represent nitrogen and the remainder represent carbon, then the said nitrogen atoms are in non-adjacent positions within the five-membered ring;

A¹ represents hydrogen, methyl, ethyl, benzyl or amino;

A² represents a non-bonded electron pair when four of V, W, X, Y and Z represent nitrogen and the other represents carbon; or, when two or three of V, W, X, Y and Z represent nitrogen and the remainder represent carbon, A² represents hydrogen, methyl, ethyl, benzyl or amino;

E represents a bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms; F represents a group of formula

U represents nitrogen or C-R²;B represents oxygen, sulphur or N-R³;

5

25

40

45

50

R1 represents -CH2.CHR4.NR6R7 or a group of formula

in which the broken line represents an optional chemical bond; and R^2 , R^3 , R^4 , 4 R^5 , R^6 and R^7 independently represent hydrogen or C_{1-6} alkyl.

2. A compound as claimed in claim 1 represented by formula IIA, and salts and prodrugs thereof:

$$X \stackrel{\text{N}}{\longrightarrow} (CH_2)_n \qquad \qquad NR^{16}R^{17}$$

$$N \stackrel{\text{N}}{\longrightarrow} N$$

$$A^{11} \qquad B^{1} \qquad R^{12}$$

wherein

X¹ represents nitrogen or A¹²-C;

n is zero, 1, 2 or 3;

B¹ represents oxygen, sulphur or N-R¹³;

 A^{11} and A^{12} independently represent hydrogen, methyl, ethyl, benzyl or amino; and R^{12} , R^{13} , R^{14} , R^{16} and R^{17} independently represent hydrogen or C_{1-6} alkyl.

3. A compound as claimed in claim 1 represented by formula IIB, and salts and prodrugs thereof:

(IIB)

15 wherein

10

20

25

30

35

40

45

50

55

Y¹ represents nitrogen or A²²-C;

n is zero, 1, 2 or 3;

B² represents oxygen, sulphur or N-R²³;

 A^{21} and A^{22} independently represent hydrogen, methyl, ethyl or benzyl; and R^{22} , R^{23} , R^{24} , R^{26} and R^{27} independently represent hydrogen or C_{1-6} alkyl.

4. A compound as claimed in claim 1 represented by formula IIC, and salts and prodrugs thereof:

(| | C)

wherein

Y² represents nitrogen or A³²-C;

Z¹ represents nitrogen or CH;

n is zero, 1, 2 or 3;

B³ represents oxygen, sulphur or N-R³³;

A³¹ and A³² independently represent hydrogen, methyl or amino;

 ${\sf R}^{31}$ represents -CH₂.CHR³⁴.NR³⁶R³⁷ or a group of formula

$$N-R^{35}$$
 or $N-R^{35}$

and

 R^{32} , R^{33} , R^{34} , R^{35} , R^{36} and R^{37} independently represent hydrogen or C_{1-6} alkyl.

5. A compound as claimed in claim 1 represented by formula IID, and salts and prodrugs thereof:

5

10

15

(IID)

20 wherein

W¹ represents nitrogen or C-A⁴²;

n is zero, 1, 2 or 3;

B4 represents oxygen, sulphur or N-R43;

A⁴¹ and A⁴² independently represent hydrogen or methyl;

R⁴¹ represents -CH₂.CHR⁴⁴.NR⁴⁶R⁴⁷ or a group of formula

30

25

35

45

50

55

and

R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ independently represent hydrogen or C₁₋₆ alkyl.

40 **6.** A compound as claimed in claim 1 selected from:

2-[5-(2-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

2-[5-(1-benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(tetrazol-2-ylmethyl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(tetrazol-l-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(1-methyl-1,2,4-triazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(1-methyl-1,2,4-triazol-3-ylmethyl)-1H-indol-3-yl] ethylamine;

N,N-dimethyl-2-[5-(l,2,3-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

3-(2-aminoethyl)-5-(1-methyltetrazol-5-yl)-benzo[b]thiophene;

3-(2-aminoethyl)-5-(2-methyltetrazol-5-yl)-benzo[b]thiophene;

3-[2-(N,N-dimethylamino)ethyl]-5-(2-methyltetrazol-5-yl)benzo[b]thiophene;

N,N-dimethyl-2-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(imidazol-l-ylmethyl)-1H-indol-3-yl] ethylamine;

N, N-dimethyl-2-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(2-ethyltetrazol-5-ylmethyl)-1 H-indol-3-yl] ethylamine;

N,N-dimethyl-2-[5-(I-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamine;

N,N-dimethyl-2-[5-(l,2,4-triazol-l-yl)-lH-indol-3-yl]ethylamine;

1-methyl-4-[5-(2-methylimidazol-l-yl)-1H-indol-3-yl]piperidine;

1-methyl-4-[5-(1,2,4-triazol-l-ylmethyl)-1H-indol-3-yl]piperidine:

4-[5-(2-methylimidazol-l-yl)-1H-indol-3-yl]piperidine;

4-[5-(1,2,4-triazol-l-ylmethyl)-IH-indol-3-yl]piperidine;

3-[5-(2-methylimidazol-l-yl)-IH-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(2-methylimidazol-l-yl)-IH-indol-3-yl]pyrrolidine;

4-[5-(imidazol-l-yl)-1H-indol-3-yl]piperidine;

4-[5-(1,2,3-triazol-l-yl)-lH-indol-3-yl]piperidine;

1-methyl-4-[5-(imidazol-l-yl)-1H-indol-3-yl]piperidine;

1-methyl-4-[5-(1,2,3-triazol-l-yl)-1H-indol-3-yl]piperidine;

1-methyl-3-[5-(I,2,3-triazol-1-yl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(imidazol-1-yl)-1H-indol-3-yl]pyrrolidine; 1-methyl-3-[5-(1,2,4-triazol-l-ylmethyl)-1H-indol-3-yl]pyrrolidine;

1-methyl-3-[5-(imidazol-l-ylmethyl)-1H-indol-3-yl]pyrrolidine;

N,N-dimethyl-2-[5-(2-aminoimidazol-1-yl)-1H-indol-3-yl]ethylamine;

N, N-dimethyl-2-[5-(2-aminoimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamine;

N-methyl-2-[5-(I,2,4-triazol-1-ylmethyl)-IH-indol-3-yl]ethylamine;

and salts and prodrugs thereof.

- 7. A pharmaceutical composition comprising a compound as claimed in any one of the preceding claims in association with a pharmaceutically acceptable carrier or excipient.
 - 8. A compound as claimed in any one of claims 1 to 6 for use in therapy.
- 9. The use of a compound as claimed in any one of claims 1 to 6 for the manufacture of a medicament for the treatment and/or prevention of clinical conditions for which a selective agonist of 5-HT₁-like receptors is indicated.
 - 10. A process for the preparation of a compound as claimed in any one of claims 1 to 6 which comprises:
 - (A) reacting a reactive derivative of a carboxylic acid of formula Ra-CO₂H with a compound either of formula III or of formula IV, or a salt thereof:

wherein one of Ra, Rb and Rc is a group of formula A1, another is a group of formula A2, and the third is a group of formula -E-F, as defined in claim 1; or

(B) reacting a compound of formula XIV:

55

5

10

20

25

(XIV)

wherein A¹, E and F are as defined in claim 1, Hal represents halogen, and two of V^a, W^a, X^a, Y^a and Z^a, to one of which the group Hal is attached, represent carbon and the remainder represent nitrogen; with a reagent

- (C) the cycloaddition of an alkyne of formula R^a - $C \equiv C R^b$ with an azide of formula R^c - N_3 , where R^a , R^b and R^c are as defined above; or
- (D) the cycloaddition of a nitrile of formula $N \equiv C R^d$ with an azide of formula $R^e N_3$, where one of R^d and R^e represents a group of formula A^1 and the other is a group of formula -E-F, as defined in claim 1; or
- (E) reacting a compound of formula Re-L with a tetrazole derivative of formula XV:

which provides an anion -A2, where A2 is as defined in claim 1; or

(XV)

wherein one of \mathbb{R}^d and \mathbb{R}^e represents a group of formula A^1 and the other is a group of formula -E-F, as defined in claim 1, and L represents a suitable leaving group; in the presence of a base; or

- (F) the cycloaddition of a nitrile of formula N≡C-E-F, in which E and F are as defined in claim 1, with sodium azide, followed by acidification with a mineral acid; or
- (G) reacting a compound of formula XVI:

5

10

20

25

30

35

40

45

50

55

wherein V, W, X, Y, Z, A¹, A² and E are as defined in claim 1; with a compound of formula VII or a carbonyl-

protected form thereof:

5

10

15

wherein R2 is as defined in claim 1 and R11 corresponds to the group R1 as defined in claim 1 or represents a group of formula -CH₂.CHR⁴D¹, in which R⁴ is as defined in claim 1 and D¹ represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R3; or (H) cyclising a compound of formula XXII:

20

30

25

wherein V, W, X, Y, Z, A¹, A², E and R¹ are as defined in claim 1, and D² represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R3; or (J) cyclising a compound of formula XXV:

35

wherein V, W, X, Y, Z, A¹, A², E and R² are as defined in claim 1, B^a represents oxygen or sulphur, and R²¹ corresponds to the group R1 as defined in claim 1 or represents a precursor group thereto; followed, where required, by conversion of the group R²¹ into the desired group R¹; and (K) subsequently, where appropriate, converting a compound of formula I initially obtained into a further compound of formula I by conventional methods.

50

- 11. N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine, or a salt thereof.
- 12. A salt of the compound as claimed in claim 11 selected from the group consisting of the oxalate, succinate and benzoate salts.

- 13. The benzoate salt of N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine.
- 14. A pharmaceutical composition comprising N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable carrier or excipient.
- **15.** A pharmaceutical composition as claimed in claim 14 wherein the pharmaceutically acceptable salt is selected from the group consisting of the oxalate, succinate and benzoate salts.
- **16.** A pharmaceutical composition comprising the benzoate salt of N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-lH-in-dol-3-yl]ethylamine in association with a pharmaceutically acceptable carrier or excipient.
 - **17.** The use of N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of migraine and associated conditions.
- 15. The use as claimed in claim 17 wherein the pharmaceutically acceptable salt is selected from the group consisting of the oxalate, succinate and benzoate salts.
 - **19.** The use of the benzoate salt of N,N-dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine for the manufacture of a medicament for the treatment of migraine and associated conditions.

Patentansprüche

5

20

25

30

35

40

45

50

55

1. Eine Verbindung der Formel I oder ein Salz oder Prodrug davon:

(1)

worin der gestrichelte Kreis zwei nicht-benachbarte Doppelbindungen in irgendeiner Position in dem fünfgliedrigen Ring darstellt;

zwei, drei oder vier von V, W, X, Y und Z Stickstoff darstellen und der Rest Kohlenstoff darstellt, vorausgesetzt, daß, wenn zwei von V, W, X, Y und Z Stickstoff darstellen und der Rest Kohlenstoff darstellt, dann die Stickstoffatome in nicht-benachbarter Stellung in dem fünfgliedrigen Ring sind;

A¹ Wasserstoff, Methyl, Ethyl, Benzyl oder Amino darstellt;

A² ein nichtgebundenes Elektronenpaar darstellt, wenn vier von V, W, X, Y und Z Stickstoff darstellen und das andere Kohlenstoff darstellt, oder, wenn zwei oder drei von V, W, X, Y und Z Stickstoff darstellen und der Rest Kohlenstoff darstellt, A² Wasserstoff, Methyl, Ethyl, Benzyl oder Amino darstellt;

E eine Bindung oder eine gerade oder verzweigte Alkylenkette, die 1 bis 4 Kohlenstoffatome enthält, darstellt; F eine Gruppe der Formel

B U

darstellt;

U Stickstoff oder C-R2 darstellt;

B Sauerstoff, Schwefel oder N-R3 darstellt;

R¹ -CH₂.CHR⁴.NR⁶R⁷ oder eine Gruppe der Formel

5

$$N-R^5$$
, oder $N-R^5$

darstellt, worin die gestrichelte Linie eine fakultative chemische Bindung darstellt; und R², R³, R⁴, R⁵, R⁶ und R² unabhängig voneinander Wasserstoff oder C₁₋₆-Alkyl darstellen.

2. Eine wie in Anspruch 1 beanspruchte Verbindung, dargestellt durch die Formel IIA, und Salze und Prodrugs davon:

20

25

35

 $(1 \mid A)$

30

worin

X1 Stickstoff oder A12-C darstellt:

n null, 1, 2 oder 3 ist;

B¹ Sauerstoff, Schwefel oder N-R¹³ darstellt;

 A^{11} und A^{12} unabhängig voneinander Wasserstoff, Methyl, Ethyl, Benzyl oder Amino darstellen; und R^{12} , R^{13} , R^{14} , R^{16} und R^{17} unabhängig voneinander Wasserstoff oder C_{1-6} -Alkyl darstellen.

40 3. Eine wie in Anspruch 1 beanspruchte Verbindung, dargestellt durch die Formel IIB, und Salze und Prodrugs davon:

45

$$\begin{array}{c|c}
A^{21} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

50

55

worin

Y1 Stickstoff oder A22-C darstellt;

n null, 1, 2 oder 3 ist;

B² Sauerstoff, Schwefel oder N-R²³ darstellt;

 A^{21} und A^{22} unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Benzyl darstellen; und R^{22} , R^{23} , R^{24} , R^{26} und R^{27} unabhängig voneinander Wasserstoff oder C_{1-6} -Alkyl darstellen.

4. Eine wie in Anspruch 1 beanspruchte Verbindung, dargestellt durch die Formel IIC, und Salze und Prodrugs davon:

(IIC) ,

worin

5

10

15

25

30

45

50

55

Y² Stickstoff oder A³²-C darstellt;

Z¹ Stickstoff oder CH darstellt;

n null, 1, 2 oder 3 ist;

B³ Sauerstoff, Schwefel oder N-R³³ darstellt;

A³¹ und A³² unabhängig voneinander Wasserstoff, Methyl oder Amino darstellen;

R³¹ -CH₂.CHR³⁴.NR³⁶R³⁷ oder eine Gruppe der Formel

$$N-R^{35}$$
 oder $N-R^{35}$

40 darstellt; und

 $\mathsf{R}^{32},\,\mathsf{R}^{33},\,\mathsf{R}^{34},\,\mathsf{R}^{35},\,\mathsf{R}^{36}$ und R^{37} unabhängig voneinander Wasserstoff oder $\mathsf{C}_{1\text{-}6}\text{-}\mathsf{Alkyl}$ darstellen.

5. Eine wie in Anspruch 1 beanspruchte Verbindung, dargestellt durch die Formel IID, und Salze und Prodrugs davon:

(IID)

5

10

15

20

25

worin

W1 Stickstoff oder C-A42 darstellt;

n null, 1, 2 oder 3 ist;

B⁴ Sauerstoff, Schwefel oder N-R⁴³ darstellt;

A⁴¹ und A⁴² unabhängig voneinander Wasserstoff oder Methyl darstellen;

R⁴¹ -CH₂.CHR⁴⁴.NR⁴⁶R⁴⁷ oder eine Gruppe der Formel

$$N-R^{45}$$
 oder $N-R^{45}$

30

35

40

45

50

55

darstellt; und

 R^{42} , R^{43} , R^{44} , R^{45} , R^{46} und R^{47} unabhängig voneinander Wasserstoff oder C_{1-6} -Alkyl darstellen.

6. Eine wie in Anspruch 1 beanspruchte Verbindung, ausgewählt aus:

2-[5-(2-Benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

2-[5-(1-Benzyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(2-methyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(tetrazol-2-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(tetrazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1-methyl-1,2,4-triazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1-methyl-1,2,4-triazol-3-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1,2,3-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

3-(2-Aminoethyl)-5-(1-methyltetrazol-5-yl)-benzo[b]thiophen,

3-(2-Aminoethyl)-5-(2-methyltetrazol-5-yl)-benzo[b]thiophen,

3-[2-(N,N-Dimethylamino)ethyl]-5-(2-methyltetrazol-5-yl)benzo[b]thiophen,

N,N-Dimethyl-2-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(imidazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(2-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1-ethyltetrazol-5-ylmethyl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(1,2,4-triazol-1-yl)-1H-indol-3-yl]ethylamin,

1-Methyl-4-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]piperidin,

1-Methyl-4-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl] piperidin,

4-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]piperidin,

4-[5-(1,2,4-Triazol-1-ylmethyl)-1H-indol-3-yl]piperidin,

3-[5-(2-Methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidin,

1-Methyl-3-[5-(2-methylimidazol-1-yl)-1H-indol-3-yl]pyrrolidin,

4-[5-(Imidazol-1-yl)-1H-indol-3-yl]piperidin,

4-[5-(1,2,3-Triazol-1-yl)-1H-indol-3-yl]piperidin,

1-Methyl-4-[5-(imidazol-1-yl)-1H-indol-3-yl]piperidin,

1-Methyl-4-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]piperidin,

1-Methyl-3-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]pyrrolidin;

1-Methyl-3-[5-(2-methylimidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidin,

1-Methyl-3-[5-[imidazol-1-yl)-1H-indol-3-yl]pyrrolidin,

1-Methyl-3-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidin,

1-Methyl-3-[5-(imidazol-1-ylmethyl)-1H-indol-3-yl]pyrrolidin,

N,N-Dimethyl-2-[5-(2-aminoimidazol-1-yl)-1H-indol-3-yl]ethylamin,

N,N-Dimethyl-2-[5-(2-aminoimidazol-1-ylmethyl)-1H-indol-3-yl]ethylamin,

N-Methyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin

und Salzen und Prodrugs davon.

- 7. Eine pharmazeutische Zusammensetzung, die eine wie in irgendeinem der vorangehenden Ansprüche beanspruchte Verbindung in Verbindung mit einem pharmazeutisch annehmbaren Träger oder Hilfsstoff enthält.
- 8. Eine wie in irgendeinem der Ansprüche 1 bis 6 beanspruchte Verbindung für die Verwendung in der Therapie.
- 9. Die Verwendung einer wie in irgendeinem der Ansprüche 1 bis 6 beanspruchten Verbindung für die Herstellung eines Medikaments zur Behandlung und/oder Prävention klinischer Zustände, für welche ein selektiver Agonist von 5-HT₁-artigen Rezeptoren indiziert ist.
 - 10. Ein Verfahren für die Darstellung einer wie in irgendeinem der Ansprüche 1 bis 6 beanspruchten Verbindung, welches umfaßt:
 - (A) Reaktion eines reaktiven Derivats einer Carbonsäure der Formel Ra-CO₂H mit einer Verbindung entweder der Formel III oder der Formel IV oder einem Salz davon:

NHR^b
NHR^b
NH₂
(111)

N II
R C NHR b

45

5

10

15

20

30

35

40

worin einer der Reste Ra, Rb und Rc eine Gruppe der Formel A¹ ist, ein anderer eine Gruppe der Formel A² ist, und der dritte eine Gruppe der Formel -E-F ist, wie in Anspruch 1 definiert; oder

(B) Reaktion einer Verbindung der Formel XIV:

55

worin A1, E und F wie in Anspruch 1 definiert sind, Hal Halogen darstellt und zwei von Va, Wa, Xa, Ya und Za, wobei mit einem dieser Reste die Gruppe Hal verbunden ist, Kohlenstoff darstellen und der Rest Stickstoff darstellt, mit einem Reagens, welches ein Anion A2 zur Verfügung stellt, wobei A2 wie in Anspruch 1 definiert

- (C) die Cycloaddition eines Alkins der Formel Ra-C≡C-Rb mit einem Azid der Formel Rc-N3, wobei Ra, Rb und R^c wie oben definiert sind; oder
- (D) die Cycloaddition eines Nitrils der Formel N≡C-R^d mit einem Azid der Formel R^e-N₃, worin einer der Reste Rd und Re eine Gruppe der Formel A1 darstellt und der andere eine Gruppe der Formel -E-F ist, wie in Anspruch 1 definiert; oder
- (E) Reaktion einer Verbindung der Formel Re-L mit einem Tetrazolderivat der Formel XV:

$$R^{d}$$
 $N = N$
 $N = N$

worin einer der Reste R^d und R^e eine Gruppe der Formel A¹ darstellt und der andere eine Gruppe der Formel -E-F ist, wie in Anspruch 1 definiert, und L eine geeignete Abgangsgruppe darstellt, in Gegenwart einer Base;

- (F) die Cycloaddition eines Nitrils der Formel N≡C-E-F, in der E und F wie in Anspruch 1 definiert sind, mit Natriumazid, gefolgt von Ansäuern mit einer Mineralsäure; oder
- (G) Reaktion einer Verbindung der Formel XVI:

50

5

15

20

25

30

35

40

45

ist; oder

worin V, W, X, Y, Z, A¹, A² und E wie in Anspruch definiert sind, mit einer Verbindung der Formal VII oder einer carbonylgeschützten Form davon:

worin R² wie in Anspruch 1 definiert ist und R¹¹ der Gruppe R¹ entspricht, wie sie in Anspruch 1 definiert ist, oder eine Gruppe der Formel -CH₂.CHR⁴D¹ darstellt, in welcher R⁴ wie in Anspruch 1 definiert ist und D¹ eine leicht ersetzbare Gruppe darstellt, gefolgt, wo erforderlich, von N-Alkylierung durch Standardverfahren, um die Komponente R³ einzuführen; oder

(H) Cyclisierung einer Verbindung der Formel XXII:

worin V, W, X, Y, Z, A¹, A², E und R¹ wie in Anspruch 1 definiert sind und D² eine leicht ersetzbare Gruppe darstellt, gefolgt, wo erforderlich, von N-Alkylierung durch Standardverfahren, um die Komponente R³ einzuführen; oder

(J) Cyclisierung einer Verbindung der Formel XXV:

55

15

20

25

30

35

40

worin V, W, X, Y, Z, A¹, A², E und R² wie in Anspruch definiert sind, B^a Sauerstoff oder Schwefel darstellt und R²¹ der Gruppe R¹ entspricht, wie sie in Anspruch 1 definiert ist, oder eine Vorläufergruppe davon darstellt, gefolgt, wo erforderlich, von der Überführung der Gruppe R²¹ in die gewünschte Gruppe R¹; und (K) anschließend, wo passend, Überführen einer ursprünglich erhaltenen Verbindung der Formel I in eine weitere Verbindung der Formel I durch herkömmliche Verfahren.

- 11. N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin oder ein Salz davon.
- 12. Ein Salz der wie in Anspruch 11 beanspruchten Verbindung, ausgewählt aus der Gruppe, die aus den Oxalat-, Succinat- und Benzoatsalzen besteht.
- 13. Das Benzoatsalz von N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin.
- **14.** Eine pharmazeutische Zusammensetzung, die N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin oder ein pharmazeutisch annehmbares Salz davon in Verbindung mit einem pharmazeutisch annehmbaren Träger oder Hilfsstoff enthält.
- 15. Eine wie in Anspruch 14 beanspruchte pharmazeutische Zusammensetzung, worin das pharmazeutisch annehmbare Salz ausgewählt ist aus der Gruppe, die aus den Oxalat-, Succinat- und Benzoatsalzen besteht.
 - **16.** Eine pharmazeutische Zusammensetzung, die das Benzoatsalz von N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin in Verbindung mit einem pharmazeutisch annehmbaren Träger oder Hilfsstoff enthält.
 - 17. Die Verwendung von N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin oder einem pharmazeutisch annehmbaren Salzes davon für die Herstellung eines Medikaments für die Behandlung von Migräne und assoziierten Zuständen.
- **18.** Die wie in Anspruch 17 beanspruchte Verwendung, wobei das pharmazeutisch annehmbare Salz ausgewählt ist aus der Gruppe, die aus den Oxalat-, Succinat- und Benzoatsalzen besteht.
 - **19.** Die Verwendung des Benzoatsalzes von N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamin für die Herstellung eines Medikaments für die Behandlung von Migräne und assoziierten Zuständen.

Revendications

1. Composé de formule I, ou l'un de ses sels ou l'une de ses prodrogues,

55

50

45

5

10

15

20

25

$$A^{1}$$

$$X = X$$

$$Y = Z$$

$$(1)$$

où le cercle en tirets représente deux doubles liaisons non adjacentes, sur une position, quelconque du noyau à cinq chaînons ;

deux, trois ou quatre des radicaux V, W, X, Y et Z représentent des atomes d'azote, et les autres représentent des atomes de carbone, du moment que, quand deux des radicaux V, W, X, Y et Z représentent des atomes d'azote et les autres représentent des atomes de carbone, alors lesdits atomes d'azote se trouvent dans des positions non adjacentes à l'intérieur du noyau à cinq chaînons;

A¹ représente un hydrogène ou le groupe méthyle, éthyle, benzyle ou amino ;

A² représente une paire d'électrons non liés quand quatre des radicaux V, W, X, Y et Z sont des atomes d'azote et l'autre représente un atome de carbone ; ou encore, quand deux ou trois des radicaux V, W, X, Y et Z sont des atomes d'azote et les autres sont des atomes de carbone, A² représente un hydrogène ou le groupe méthyle, éthyle, benzyle ou amino ;

E représente une liaison ou une chaîne alkylène droite ou ramifiée contenant de un à quatre atomes de carbone ;

F représente un groupe de formule

5

10

20

25

30

35

40

45

50

55

U représente un azote ou C-R2;

B est un atome d'oxygène ou de soufre, ou N-R³;

R¹ représente -CH₂.CHR⁴.NR⁶R⁷ ou un groupe de formule

$$N-R^5$$
 , $N-R^5$

où la ligne en tirets représente une liaison chimique facultative ; et R^2 , R^3 , R^4 , R^5 , R^6 et R^7 représentent chacun indépendamment des autres un hydrogène ou groupe alkyle en C_1 - C_6 .

2. Composé selon la revendication 1, représenté par la formule IIA, et ses sels et prodrogues :

(IIA)

15 où

X1 est un atomes d'azote ou A12-C;

n vaut 0, 1, 2 ou 3;

B¹ est un atome d'oxygène ou de soufre ou N-R¹³;

A¹¹ et A¹² représentent chacun indépendamment de l'autre un atome d'hydrogène ou un groupe méthyle, éthyle, benzyle ou amino ; et

 R^{12} , R^{13} , R^{14} , R^{16} et R^{17} représentent chacun indépendamment des autres un hydrogène ou un groupe alkyle en C_{1-6} .

25 3. Composé selon la revendication 1, représenté par la formule IIB, et ses sels et prodrogues :

$$A^{21} \longrightarrow N \longrightarrow (CH_2)_n \longrightarrow N \times R^{26} \times R^{27}$$

(IIB)

40 où

35

45

Y1 est un atome d'azote ou A22-C;

n vaut 0, 1, 2 ou 3;

B² est un atome d'oxygène ou de soufre ou N-R²³;

A²¹ et A²², indépendamment l'un de l'autre, sont chacun un hydrogène ou un groupe méthyle, éthyle ou benzyle; et

 R^{22} , R^{23} , R^{24} , R^{26} et R^{27} , indépendamment les uns des autres, représentent chacun un atome d'hydrogène ou un groupe alkyle en C_{1-6} .

50 **4.** Composé selon la revendication 1, représenté par la formule IIC, et ses sels et prodrogues :

$$\begin{array}{c}
A & 3 & 1 \\
N & N & (CH_2)_n \\
V_2 = \frac{1}{2} & 1
\end{array}$$

15 (110)

οù

20

25

30

35

Y² est un atome d'azote ou A³²-C;

Z1 est un atome d'azote ou CH;

n vaut 0, 1, 2 ou 3;

B³ est un atome d'oxygène ou de soufre, ou N-R³³;

A³¹ et A³² représentent chacun indépendamment de l'autre un hydrogène ou un groupe méthyle ou amino ; R³¹ est le radical -CH₂.CHR³⁴.NR³⁶R³⁷ ou un groupe de formule

$$- \sqrt{N-R^{35}} \qquad \text{ou} \qquad - \sqrt{N-R^{35}}$$

 R^{32} , R^{33} , R^{34} , R^{35} , R^{36} et R^{37} représentent indépendamment les uns des autres chacun un hydrogène ou un groupe alkyle en C_{1-6} .

5. Composé selon la revendication 1, représenté par la formule IID, et ses sels et prodrogues :

A 4 1
$$\times$$
 N \times (C H $_2$) n \times R 4 1 \times R 4 2

οù

55

W¹ est un atome d'azote ou C-A⁴²; n vaut 0, 1, 2 ou 3;

B⁴ est un atome d'oxygène ou de soufre, ou N-R⁴³;

 A^{41} et A^{42} , indépendamment l'un de l'autre, représentent chacun un atome d'hydrogène ou le groupe méthyle ; R^{41} représente le groupe -CH₂.CHR⁴⁴.NR⁴⁶ R⁴⁷ ou un groupe de formule

 $N-R^{45}$ ou $N-R^{45}$;

et

R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ et R⁴⁷, indépendamment les uns des autres, représentent chacun un hydrogène ou un groupe alkyle en C₁₋₆.

15

20

25

35

40

45

50

10

6. Composé selon la revendication 1, choisi parmi les composés suivants :

2-[5-(2-benzyltétrazol-5-ylméthyl)-1H-indol-3-yl]-éthylamine;

2-[5-(1-benzyltétrazol-5-ylméthyl)-lH-indol-3-yl]-éthylamine;

N, N-dim'ethyl-2-[5-(1-m'ethylt'etrazol-5-ylm'ethyl)-1 H-indol-3-yl]'ethylamine;

N,N-diméthyl-2-[5-(2-méthyltétrazol-5-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(tétrazol-2-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(tétrazol-1-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1-méthyl-1,2,4-triazol-5-yl-méthyl)-lH-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1-méthyl-1,2,4-triazol-3-yl-méthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1,2,3-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine;

3-(2-aminoéthyl)-5-(1-méthyltétrazol-5-yl)-benzo[b]thiophène;

3-(2-aminoéthyl)-5-(2-méthyltétrazol-5-yl)-benzo[b]thiophène;

3-(2-(N,N-diméthylamino)éthyl)-5-(2-méthyltétrazol-5-yl)-benzo[b]thiophène;

N,N-diméthyl-2-[5-(2-méthylimidazol-1-ylméthyl)-1H-indol-3-yl]éthylamine ;

N,N-diméthyl-2-[5-(imidazol-l-ylméthyl)-1H-indol-3-yl]éthylamine :

N.N-diméthyl-2-[5-(2-méthylimidazol-1-vl)-1H-indol-3-vl]éthylamine :

N,N-diméthyl-2-[5-(2-éthyltétrazol-5-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1-éthyltétrazol-5-ylméthyl)-1H-indol-3-yl]éthylamine;

N,N-diméthyl-2-[5-(1,2,4-triazol-1-yl)-1H-indol-3-yl]éthylamine;

1-méthyl-4-[5-(2-méthylimidazol-1-yl)-1H-indol-3-yl]pipéridine;

1-méthyl-4-[5-(1,2,4-triazol-1-vlméthyl)-1H-indol-3-vl]pipéridine :

4-[5-(2-méthylimidazol-l-yl)-1H-indol-3-yl]-pipéridine;

4-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]-pipéridine;

3-[5-(2-méthylimidazol-l-yl)-1H-indol-3-yl]-pyrrolidine;

1-méthyl-3-[5-(2-méthylimidazol-1-yl)-1H-indol-3-yl]pyrrolidine;

4-[5-(imidazol-1-yl)-1H-indol-3-yl]pipéridine;

4-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]pipéridine;

1-méthyl-4-[5-(imidazol-1-yl)-1H-indol-3-yl]-pipéridine;

1-méthyl-4-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]-pipéridine;

1-méthyl-3-[5-(1,2,3-triazol-1-yl)-1H-indol-3-yl]-pyrrolidine;

1-méthyl-3-[5-(2-méthylimidazol-1-ylméthyl)-1H-indol-3-yl]pyrrolidine;

1-méthyl-3-[5-(imidazol-1-yl)-IH-indol-3-yl]-pyrrolidine;

1-méthyl-3-[5-(1,2,4-triazol-l-ylméthyl)-1H-indol-3-yl]pyrrolidine;

1-méthyl-3-[5-(imidazol-1-ylméthyl)-IH-indol-3-yl]pyrrolidine;

N,N-diméthyl-2-[5-(2-aminoimidazol-1-yl)-1H-indol-3-yl]éthylamine;

N, N-diméthyl-2-[5-(2-aminoimidazol-1-ylméthyl)-1H-indol-3-yl]éthylamine;

N-méthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine;

55

et leurs sels et prodrogues.

7. Composition pharmaceutique comprenant un composé selon l'une quelconque des revendications précédentes,

en association avec un excipient ou un support acceptables d'un point de vue pharmaceutique.

8. Composé selon l'une quelconque des revendications 1 à 6, pour utilisation en thérapie.

10

15

20

25

30

35

40

50

55

- 9. Utilisation d'un composé selon l'une quelconque des revendications 1 à 6 pour préparer un médicament destiné au traitement et/ou à la prévention d'états cliniques pour lesquels est indiqué un agoniste sélectif des récepteurs du type 5-HT₁.
 - 10. Procédé pour préparer un composé selon l'une quelconque des revendications 1 à 6, qui consiste :
 - (A) à faire réagir un dérivé réactif d'un acide carboxylique de formule R^a - CO_2H avec un composé de formule III ou de formule IV, ou l'un de ses sels :

NHR b

NH 2

NH 2

R c C NH 2

(111)

(17)

où l'un des radicaux R^a, R^b et R^c est un groupe de formule A¹, un autre est un groupe de formule A², et le troisième est un groupe de formule -E-F, comme définis dans la revendication 1 ; ou (B) à faire réagir un composé de formule XIV :

(X I V)

dans laquelle A¹, E et F sont tels que définis dans la revendication 1, Hal représente un halogène, et deux des radicaux V^a, W^a, X^a, Y^a et Z^a, à l'un desquels le groupe Hal est fixé, représentent des atomes de carbone, et les autres sont des atomes d'azote; avec un réactif qui fournit un anion A², où A² est tel que défini dans la revendication 1; ou bien

- (C) à procéder à la cycloaddition d'un alcyne de formule Rª-C≡C-R⁵ avec un azide de formule R°-N₃, où Rª, R⁵ et R° sont tels que définis ci-dessus ; ou bien
- (D) à procéder à la cycloaddition d'un nitrile de formule N≡C-R^d avec un azide de formule R^e-N₃, où l'un des radicaux R^d et R^e est un groupe de formule A¹ et l'autre est un groupe de formule -E-F, tel que défini dans la revendication 1 ; ou bien
- (E) à faire réagir un composé de formule Re-L avec un dérivé de tétrazole de formule XV:

$$\frac{N}{N} = \frac{N}{N}$$

(XY)

dans laquelle l'un des radicaux R^d et R^e est un groupe de formule A¹ et l'autre est un groupe de formule -E-F, tel que défini dans la revendication 1, et L représente un groupe éliminable approprié ; en présence d'une base ; ou bien

(F) à procéder à la cycloaddition d'un nitrile de formule N≡C-E-F dans laquelle E et F sont tels que définis dans la revendication 1, avec de l'azoture de sodium, puis à procéder à une acidification avec un acide minéral ; ou bien

(G) à faire réagir un composé de formule XVI :

dans laquelle V, W, X, Y, Z, A¹, A² et E sont tels que définis dans la revendication 1 ; avec un composé de formule VII, ou une forme carbonyl-protégée de ce dernier :

$$R^{2} \qquad R^{11}$$

où R² est tel que défini dans la revendication 1, et R¹¹ est le groupe R¹ tel que défini dans la revendication 1 ou représente un groupe de formule -CH₂.CHR⁴D¹, dans laquelle R⁴ est tel que défini dans la revendication 1 et D¹ représente un groupe facilement déplaçable ; puis, si nécessaire, à procéder à une N-alkylation par des procédés classiques pour introduire le fragment R³ ; ou bien (H) à cycliser un composé de formule XXII :

$$A^{1}$$

$$X$$

$$X$$

$$Y$$

$$Z$$

$$X \times Y$$

$$X \times$$

dans laquelle V, W, X, Y, Z, A^1 , A^2 , E et R^1 sont tels que définis dans la revendication 1 et D^2 représente un groupe facilement déplaçable ; puis, si nécessaire, à procéder à une N-alkylation par des procédés classiques pour introduire le fragment R^3 ; ou bien

(J) à cycliser un composé de formule XXV :

5

10

15

35

50

55

dans laquelle V, W, X, Y, Z, A^1 , A^2 , E et R^2 sont tels que définis dans la revendication 1, R^2 est un atome d'oxygène ou de soufre, et R^{21} correspond au groupe R^1 tel que défini dans la revendication 1 ou représente un groupe précurseur de ce dernier ; puis, si nécessaire, à procéder à une conversion du groupe R^2 en le groupe souhaité R^1 ; et

- (K) ensuite, si nécessaire, à convertir un composé de formule initialement obtenu en un autre composé de formule I par des procédés classiques.
- 40 11. N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine, ou l'un de ses sels.
 - **12.** Sel du composé selon la revendication 11, choisi dans le groupe comprenant les oxalates, les succinates et les benzoates.
- 45 **13.** Benzoate de N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine.
 - **14.** Composition pharmaceutique comprenant de la N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine ou l'un de ses sels acceptables d'un point de vue pharmaceutique, en association avec un excipient ou un support acceptables d'un point de vue pharmaceutique.
 - **15.** Composition pharmaceutique selon la revendication 14, dans laquelle le sel acceptable d'un point de vue pharmaceutique est choisi dans le groupe constitué des oxalates, succinates et benzoates.
 - **16.** Composition pharmaceutique comprenant le benzoate de la N,N-diméthyl-2-[5-(1,2,4-triazol-1-yl-méthyl)-1H-in-dol-3-yl]éthylamine, en association avec un excipient ou un support acceptables d'un point de vue pharmaceutique.
 - 17. Utilisation de N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine ou d'un de ses sels acceptables d'un point de vue pharmaceutique pour préparer un médicament destiné au traitement de la migraine et des

états associés.

5	18.	Utilisation selon la revendication 17, dans laquelle le sel acceptable d'un point de vue pharmaceutique est choisi dans le groupe constitué des oxalates, succinates et benzoates.
3	19.	Utilisation du benzoate de la N,N-diméthyl-2-[5-(1,2,4-triazol-1-ylméthyl)-1H-indol-3-yl]éthylamine pour préparer un médicament destiné au traitement de la migraine et des états associés.
10		
15		
20		
25		
30		
35		
40		
45		
50		
<i>55</i>		