M1C1_Mini 数据格式标准说明

一、雷达工作方式

- M1C1_Mini 激光雷达上电自动旋转并且输出数据,不需要通过指令控制。
- M1C1_Mini 激光雷达在转速稳定后才输出数据,在转速调整过程中,伴随部分 0xFE 或 0xFF 的单字节速度调整指令。
- M1C1_Mini 激光雷达暂不支持外部调速,固定转速为 10Hz。

二、雷达指令格式

实现的指令

1、雷达信息上传,本条指令为雷达上电的发出的第一条指令,上传指令详细描述了 M1C1 Mini 激光雷达的信息。

其中数据区长度为 20 个字节,以下为具体数据:

字节偏移:

第 1-12 字节为激光雷达型号。其中,第 1-9 字节为 M1C1_Mini 的 ASCCII 码; 第 10 字节为 0x00, 代表结束。

第 13-14 字节为 0C 00,代表雷达数据零度角与下图标注零度角的夹角为 12°,逆时针方向,低位在前。

第 15 字节为 0x00, 代表雷达旋转方向为顺时针。

第 16 字节为 0x01,表示需要在扫地机的驱动代码中实现角度矫正。

第 17-19 字节预留, 默认为 0。

第 20 字节为 0x03,表示当前的软件版本号为 Rev 3。

2、开始扫描,在开始扫描前固定发送,本条指令为雷达上电后发出的第二条指令。

A5 5A 00 00 80 01 81 数据区

其中, 0x80 0x01 为检验和, 0x81 位类型码。

数据区为系统扫描的点云数据,按照以下数据结构,以16进制发送给外部设备。

PHL	РНН	СТ	LSN	FSAL	FSAH	LSAL	LSAH	CSL	CSH	S1L	S1H	S2L	S2H		
AA	55														
标识		名称					描述								
PH		数据包头					AA 55								
СТ		包类型					0x00=点云数据包; 0x01=起始数据包; (注)								
LSN		采样点数量					表示当前数据包中包含的采样点数量; 起始数据包								
								中只有1个起始点的数据,该值为1。							
FSA		起始角度					采样数据中第一个采样点对应的角度数据								
LSA		结束角度					采样数据中最后一个采样点对应的角度数据								
CS		校验码						当前数据包的校验码,采用双字节异或对当前数据							
							包进行校验								
Si		采样数据						系统测试的采样数据,为采样点的距离数据							

➤ 起始位解析:

当检测到 CT=1 时,表明该包数据为起始数据包,表示一圈数据的开头,该数据包中 LSN = 1,即 Si 的数量为 1;其距离、角度的具体值解析参见下文。

➤ 距离解析:

距离解算公式: Distance = (SiL+SiH<<8)>>2; 单位为 mm。

设采样数据为 E4 6F,由于本系统是小端模式,所以本采样点 D = 0x6FE4,带入到距离解算公式,得 Distance = 0x6FE4>>2=7161mm。

➤ 角度解析:

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如下的数据结构,

AngleL[1:7]	C[0]	AngleH[0:7]	
-------------	------	-------------	--

C 是校验位, 其值固定为 1。角度解析具体过程如下:

起始角解算公式: Angle_fsa = (FSA>>1)/64- AngCorrect_;

结束角解算公式: Angle_lsa = (LSA>>1)/64- AngCorrect_LSN;

中间角解算公式: Angle(i) =

(FSA>>1)/64+
$$\frac{(LSA >> 1)/64 - (FSA >> 1)/64}{LSN - 1}$$
*(i-1)- AngCorrect_i; [i=1,2,3...LSA-1]

其中 AngCorrect 为角度修正值,公式如下:

$$\begin{aligned} \text{IF Distance}_i &== 0 \\ \text{AngCorrect}_i &= 0 \end{aligned}$$

ELSE

$$AngCorrect_{i} = arctan (19.16 * \frac{Distance_{i}-90.15}{90.15*Distance_{i}})$$

设数据包中,第 1~8 字节为: AA 55 00 19 39 18 97 23

Distance₁ = 1000, Distance_{1 SN} = 8000,

所以 LSN = 0x19 = 25, FSA = 0x1839, LSA = 0x2397, 带入角度解算公式, 得:

Angle_fsa = 48.4375° - 10.9442° = 37.4933°

Angle_lsa = 71.1718° -11.8653 = 59.3065°

Angle(i) = $48.4375^{\circ} +0.9473^{\circ} *(i-1) - AngCorrect_{i}$

➤ 校验码解析:

校验码采用双字节异或,对当前数据包除 CS 外所有字节进行校验,其本身不参与异或运算,因此,校验码解算公式为:

 $CS = PH ^ (CT | LSN << 8) ^ FSA ^ LSA ^ Si;$

注: PH=(PHL|PHH<<8); 其他字段也同样计算。