基礎数学概論

ゆり* *1

^{*1} 東京工業大学 環境・社会理工学院 土木・環境工学系 @81suke_

目次

はじめに			3
第1章	微分方	程式	4
1.1	微分方	程式の基本形	4
	1.1.1	変数分離形	4
	1.1.2	同次形	5
1.2	完全微	分方程式	7
	1.2.1	積分因子を用いた完全形への変形	8
1.3	1 階の網	線形微分方程式	12
1.4	2 階の網	線形微分方程式	15
	1.4.1	2 階の同次線形微分方程式	15
	1.4.2	2階の同次線形微分方程式の解の性質	17
	1.4.3	2階の非同次線形微分方程式	19
1.5	連立微	分方程式	23
	1.5.1	連立微分方程式の例	23
	1.5.2	連立非同次線形微分方程式	26

はじめに

本書は工学において欠かすことのできない教養数学について簡潔にまとめたものである。主目的は 著者が大学の講義で学習した内容のまとめであるが、活用の機会は多岐にわたると信じている。

- 文中で付される記号 —

- ∴ したがって (therefore)
- ∵ なぜなら (because)
- ∀ 任意の、全ての (all)
- ∃ ある、存在する (exists)
- № 自然数
- ℤ 整数
- ℚ 有理数
- ℝ 実数
- ℂ 複素数
- $\exp(x)$ 指数関数 e^x
- ln(x) 自然対数 log x
 - i 虚数単位 $(i = \sqrt{-1})$

第1章

微分方程式

工学では微分方程式は重要である。研究におけるデータ解析ではコンピュータによる近似解を求めることで微分方程式を解く。

微分方程式は主に2つに分類される。

- 常微分方程式 (ordinary differencial equation, ODE)
 yが1つの独立変数 x の関数で微分方程式が x や y とその導関数で構成されるもの
- 2. 偏微分方程式 (partial differencial equation, PDE)2 つ以上の独立変数で構成されるもの

微分方程式に含まれる導関数の最高指数のことを階数と呼ぶ。

表 1.1: 微分方程式の例

階数
$$\frac{1}{dx} = x + y + 1 \qquad x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$$
 の数
$$2 \sim \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 = 1 \right) \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1$$

1.1 微分方程式の基本形

1.1.1 変数分離形

いま

$$g(y)\frac{dy}{dx} = f(x) \tag{1.1}$$

が与えられているとき、両辺をxで積分して

$$\int g(y)\frac{dy}{dx}dx = \int f(x)dx \tag{1.2}$$

$$\int g(y)dy = \int f(x)dx \tag{1.3}$$

が得られる。

 $\frac{dy}{dx} = 1 + y^2 \ を解け。$

$$\frac{dy}{dx} = 1 + y^2$$

$$\frac{1}{1 + y^2} dy = dx$$

$$\int \frac{1}{1 + y^2} dy = \int dx$$

$$\therefore \tan^{-1} y = x + C \quad (C: const.)$$

1.1.2 同次形

 $\frac{y}{x} = u$ とおくことで変数分離形へと変換することができる場合もある。

$$(与式) = \frac{dy}{dx} = f\left(\frac{dy}{dx}\right) \tag{1.4}$$

$$\frac{dy}{dx} = \frac{du}{dx}x + u\tag{1.5}$$

これより

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right) = \frac{du}{dx}x + u\tag{1.6}$$

$$\frac{du}{dx}x = f(u) - u \tag{1.7}$$

$$\frac{du}{dx}x = f(u) - u \tag{1.7}$$

$$\frac{1}{x}dx = \frac{1}{f(u) - u}du \tag{1.8}$$

- 例題

$$2xy\frac{dy}{dx} = y^2 - x^2$$
 を解け。

両辺を 2xy で割って $u = \frac{y}{x}$ とすると、

$$\frac{dy}{dx} = \frac{y^2 - x^2}{2xy} = \frac{\left(\frac{y}{x}\right)^2 - 1}{2\left(\frac{y}{x}\right)} = \frac{u^2 - 1}{2u}$$

$$\frac{dy}{dx} = \frac{du}{dx}x + u$$

これより

$$\frac{u^2 - 1}{2u} = \frac{du}{dx}x + u$$
$$\frac{du}{dx}x = \frac{-(u^2 + 1)}{2u}$$
$$\frac{1}{x}dx = -\frac{2u}{u^2 + 1}du$$

両辺を積分して

$$\ln |x| = -\ln |u^{2} + 1| + C$$

$$C = \ln |x(u^{2} + 1)|$$

$$\pm e^{C} = x(u^{2} + 1)$$

$$C' = x(u^{2} + 1)$$

 $u = \frac{y}{x} \, \, \sharp \, \, \emptyset$

$$C' = x \left\{ \left(\frac{y}{x} \right)^2 + 1 \right\}$$
$$= \frac{y^2}{x} + x$$
$$xC' = x^2 + y^2$$

したがって

$$x^{2} - C'x + y^{2} = 0$$

$$\therefore \left(x - \frac{C'}{2}\right)^{2} + y^{2} = \left(\frac{C'}{2}\right)^{2}$$

1.2 完全微分方程式

2変数関数 u(x,y) の全微分は

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \tag{1.9}$$

であるから、この性質を用いて微分方程式を元の形に戻すことを考える。

いま、微分方程式が

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0 ag{1.10}$$

の形で表され

$$M(x,y) = \frac{\partial u}{\partial x} \tag{1.11}$$

$$N(x,y) = \frac{\partial u}{\partial y} \tag{1.12}$$

を満足するとき、この方程式の一般解は u(x,y) = C (C:const.) となる。

(1.11),(1.12) をもう一度偏微分すると、

$$\frac{\partial M}{\partial y} = \frac{\partial^2 u}{\partial x \partial y} \tag{1.13}$$

$$\frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x \partial y} \tag{1.14}$$

と一致する。

(1.11) の両辺をxで積分して

$$u = \int Mdx + k(y) \tag{1.15}$$

ただし、k(y) は y のみを変数とする関数である。

k(y) を求めるために、(1.15) を y で偏微分して

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\int M dx \right) + \frac{dk}{dy} = N \tag{1.16}$$

$$\frac{dk}{dy} = N - \frac{\partial}{\partial y} \left(\int M dx \right) \tag{1.17}$$

例題

$$\cos(x+y) + \left\{3y^2 + 2y + \cos(x+y)\right\} \frac{dy}{dx} = 0$$
 を解け。

$$M = \cos(x+y)$$
$$N = 3y^{2} + 2y + \cos(x+y)$$

とおき、それぞれをy、x で偏微分すると

$$\frac{\partial M}{\partial y} = \frac{\partial u}{\partial x \partial y} = -\sin(x+y)$$
$$\frac{\partial N}{\partial x} = \frac{\partial u}{\partial x \partial y} = -\sin(x+y)$$

これらが一致するため、完全微分方程式である。

解を u(x,y) = C とすると (C:const.)

$$\frac{\partial u}{\partial x} = M$$
$$\frac{\partial u}{\partial y} = N$$

より

$$u = \int Mdx + k(y) = \sin(x+y) + k(y)$$

これをyで偏微分して

$$\frac{\partial u}{\partial y} = \cos(x+y) + \frac{dk}{dy} = N = 3y^2 + 2y + \cos(x+y)$$

よって

$$\frac{dk}{dy} = 3y^2 + 2y$$
$$k = y^3 + y^2 + C' \quad (C' : const.)$$

ゆえに

$$u = \sin(x+y) + y^{3} + y^{2} + C' = C$$

$$\therefore \sin(x+y) + y^{3} + y^{2} + C'' = 0$$

1.2.1 積分因子を用いた完全形への変形

1 階の微分方程式が $P(x,y)+Q(x,y)\frac{dy}{dx}=0$ と表され、 $\frac{\partial P}{\partial y}\neq\frac{\partial Q}{\partial x}$ ならば完全微分形ではない。 しかし、

$$\frac{\partial(FP)}{\partial y} = \frac{\partial(FQ)}{\partial x} \tag{1.18}$$

となるような F が存在し

$$F(x,y)P(x,y) + F(x,y)Q(x,y)\frac{dy}{dx} = 0$$
 (1.19)

となる場合がある。このFを積分因子とよぶ。

(1.18) の条件を書き下すと

$$\frac{\partial F}{\partial y}P + F\frac{\partial P}{\partial y} = \frac{\partial F}{\partial x}Q + F\frac{\partial Q}{\partial x}$$
(1.20)

(i) F(x,y)=F(x) であるとき、 $\frac{\partial F}{\partial y}=0$ このとき、(1.20) は

$$F\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = \frac{dF}{dx}Q\tag{1.21}$$

$$\frac{dF}{dx} = F \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} \tag{1.22}$$

ここで $\dfrac{\dfrac{\partial P}{\partial y}-\dfrac{\partial Q}{\partial x}}{Q}$ が x のみの関数であるならば変数分離形となるので、これを g(x) とする。

$$\frac{dF}{dx} = Fg(x) \tag{1.23}$$

x で積分して

$$\int \frac{1}{F}dF = \int g(x)dx \tag{1.24}$$

$$ln |F| = \int g(x)dx \tag{1.25}$$

$$F = \exp\left(\int g(x)dx\right) \tag{1.26}$$

となり、積分因子が求められる。

(ii) F(x,y) = F(y) のとき、 $\frac{dF}{dx} = 0$ 同様にして

$$\frac{dF}{dy}P + F\frac{\partial P}{\partial y} = F\frac{\partial Q}{\partial x} \tag{1.27}$$

$$-F\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = \frac{dF}{dy}P\tag{1.28}$$

$$\frac{dF}{dy} = -F \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{P} \tag{1.29}$$

ここで $\dfrac{\dfrac{\partial P}{\partial y}-\dfrac{\partial Q}{\partial x}}{P}$ が y のみの関数であるならば変数分離形となるので、これを g(y) とする。

$$\frac{dF}{dy} = -Fg(y) \tag{1.30}$$

y で積分して

$$\int \frac{1}{F}dF = -\int g(y)dy \tag{1.31}$$

$$ln |F| = -\int g(y)dy \tag{1.32}$$

$$F = \exp\left(-\int g(y)dy\right) \tag{1.33}$$

例題

$$(e^{x+y} + ye^y) + (xe^y - 1)\frac{dy}{dx} = 0$$
 を解け。

$$\begin{cases} P = e^{x+y} + ye^y \\ Q = xe^y - 1 \end{cases}$$

とすると、

$$\begin{cases} \frac{\partial P}{\partial y} = e^{x+y} + e^y + ye^y \\ \frac{\partial Q}{\partial x} = e^y \end{cases}$$

となり、 $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ であるから完全微分形ではない。 ここで積分因子を求めることを考える。

$$\begin{cases} \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \\ \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \end{cases} = \frac{e^{y}(e^{x} + y)}{xe^{x} - 1}$$
$$\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \\ \frac{\partial P}{\partial y} = \frac{e^{y}(e^{x} + y)}{e^{y}(e^{x} + y)} = 1$$

 $\dfrac{\dfrac{\partial P}{\partial y}-\dfrac{\partial Q}{\partial x}}{P}$ が y のみの関数であるからこれを g(y) として

$$F(y) = \exp\left(-\int g(y)dy\right) = \exp\left(-\int dy\right) = e^{-y}$$

これを元の微分方程式にもどして

$$e^{-y}(e^{x+y} + ye^y) + e^{-y}(xe^y - 1)\frac{dy}{dx} = 0$$

$$\underbrace{(e^x + y)}_{P'} + \underbrace{(x - e^{-y})}_{Q'}\frac{dy}{dx} = 0$$

$$\frac{\partial P'}{\partial y} = 1, \frac{\partial Q'}{\partial x} = 1$$
より完全微分形である。
解を $u(x,y) = C$ とすると $(C:const.)$

$$\frac{\partial u}{\partial x} = P'$$
$$\frac{\partial u}{\partial y} = Q'$$

より

$$u = \int P'dx + k(y) = e^x + xy + k(y)$$

これをyで偏微分して

$$\frac{\partial u}{\partial y} = x + \frac{dk}{dy} = Q' = x - e^{-y}$$

よって

$$\frac{dk}{dy} = -e^{-y}$$

$$k = e^{-y} + C' \quad (C' : const.)$$

ゆえに

$$u = e^{x} + xy + e^{-y} + C' = C$$

 $\therefore e^{x} + xy + e^{-y} + C'' = 0$

1.3 1階の線形微分方程式

$$\frac{dy}{dx} + P(x)y = \gamma(x) \tag{1.34}$$

で表される微分方程式を考える。ここで、

$$\left\{ egin{aligned} \gamma(x) = 0 \; \emph{O}$$
とき 同次線形常微分方程式 $\gamma(x)
eq 0 \; \emph{O}$ とき 非同次線形常微分方程式

である。

(i) $\gamma(x) = 0$ のとき

$$\frac{dy}{dx} + P(x)y = 0 \tag{1.35}$$

変数分離形としてこれを解くと

$$\int \frac{1}{y} dy = -\int P(x)dx \tag{1.36}$$

$$ln |y| = -\int P(x)dx + C$$
(1.37)

$$y = C \exp\left(-\int P(x)dx\right) \tag{1.38}$$

(ii) $\gamma(x) \neq 0$ のとき

$$\frac{dy}{dx} + P(x)y = \gamma(x) \tag{1.39}$$

ここで

$$\{\underbrace{P(x)y - \gamma(x)}_{P' \succeq \pm \delta}\} + \underbrace{\frac{dy}{dx}}_{O' \succeq \pm \delta} = 0 \tag{1.40}$$

として $(P'+Q'\frac{dy}{dx}=0$ の形とみなせる)、積分因子により完全形を導く。 積分因子 F(x,y)=F(x) と仮定すると、

$$\frac{dF}{dx} = F \frac{\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)}{Q} = \frac{F(P(x) - 0)}{1} = FP(x)$$
(1.41)

これはxのみの関数であるから、完全微分形にできる。 よって

$$\frac{1}{F}dF = P(x)dx \tag{1.42}$$

$$F = C \exp\left(\int P(x)dx\right) \tag{1.43}$$

ここで、C は任意であるから C=1 として積分因子 $\exp\left(\int P(x)dx\right)$ を元の式 (1.40) にかけて

$$\underbrace{\exp\left(\int P(x)dx\right)\left\{P(x)y - \gamma(x)\right\}}_{M} + \underbrace{\exp\left(\int P(x)dx\right)}_{N} \frac{dy}{dx} = 0 \tag{1.44}$$

解を u(x,y) = C とすると、

$$u = \int Ndy + K(x) = y \exp\left(\int P(x)dx\right) + k(x)$$
(1.45)

$$M = \frac{\partial u}{\partial x} = P(x)y \exp\left(\int P(x)dx\right) + \frac{dk}{dx} = \exp\left(\int P(x)dx\right)(P(x)y - \gamma(x))$$
 (1.46)

よって

$$\frac{dk}{dx} = -\exp\left(\int P(x)dx\right)\gamma(x) \tag{1.47}$$

$$k = -\int \exp\left(\int P(x)dx\right)\gamma(x)dx + C''$$
(1.48)

$$u = y \exp\left(\int P(x)dx\right) - \int \exp\left(\int P(x)dx\right)\gamma(x)dx + C'' = C'$$
 (1.49)

整理して

$$y = \exp\left(-\int P(x)dx\right) \left\{C''' + \int \exp\left(\int P(x)dx\right)\gamma(x)dx\right\}$$
(1.50)

$$= e^{-h} \left\{ C''' + \int e^h \gamma(x) dx \right\} \qquad \left(:: \int P(x) dx = h \right)$$
 (1.51)

例題

$$\frac{dy}{dx} + y \tan x = \sin 2x \ を解け.$$

$$\frac{dy}{dx} + y \underbrace{\tan x}_{P(x)} = \underbrace{\sin 2x}_{\gamma(x)}$$

とすると、

$$h = \int P(x)dx = \int \tan x dx = -\int \frac{(\cos x)'}{\cos x} dx = -\ln|\cos x|$$

$$e^{-h} = e^{\ln|\cos x|} = \cos x$$

$$e^{h} = \frac{1}{\cos x}$$

$$e^{h}\gamma(x) = \frac{1}{\cos x}\sin 2x = \frac{2\sin x \cos x}{\cos x} = 2\sin x$$

$$\therefore y = \cos x \left(C + \int 2\sin x dx\right) = C\cos x - 2\cos^{2} x$$

1.4 2階の線形微分方程式

$$y'' + P(x)y' + qy = \gamma(x) \tag{1.52}$$

で表される微分方程式を考える。ここで、

$$\begin{cases} \gamma(x) = 0 \text{ のとき} & 同次線形常微分方程式 \\ \gamma(x) \neq 0 \text{ のとき} & 非同次線形常微分方程式 \end{cases}$$

である。

同次線形常微分方程式には 2 つの基本解 y_1, y_2 が存在し、その線形結合も方程式の解となる (一般解)

$$y = C_1 y_1 + C_2 y_2 \tag{1.53}$$

特解を求めるためには2つの初期値が必要となる。

$$y(x_0) = k_1 \quad (k_1 : const.)$$
 (1.54)

$$\frac{d}{dk}y(x_0) = k_2 \quad (k_2 : const.) \tag{1.55}$$

1.4.1 2階の同次線形微分方程式

$$y'' + py' + qy = 0 (1.56)$$

について、1つの基本解が判明しているときの1階の微分方程式での変形を行う。

判明している基本解を y_1 、求めたいもう 1 つの基本解を y_2 とする。いま、 $y_2=uy_1$ と仮定する。 このとき、

$$y_2' = u'y_1 + uy_1' \tag{1.57}$$

$$y_2'' = u''y_1 + 2u'y_1 + uy_1'' (1.58)$$

これを元の方程式 (1.56) に代入して

$$y_2'' + py_2' + qy_2 = 0 (1.59)$$

$$(u''y_1 + 2u'y_1' + uy_1'') + p(u'y_1 + uy_1') + q(uy_1) = 0$$
(1.60)

$$u''y_1 + u'(2y_1' + py_1) + u(y_1'' + py_1' + qy_1) = 0$$
(1.61)

$$u''y_1 + u'(2y_1' + py_1) = 0 (1.62)$$

ここで U=u',U'=u'' とすると

$$U' + \left(\frac{2y_1'}{y_1} + p\right)U = 0 (1.63)$$

これを解くと

$$\int \frac{1}{U}dU = \int \left(\frac{-2y_1'}{y_1} - p\right)dx \tag{1.64}$$

$$ln |U| = -2 ln |y_1| - \int p dx + C$$
(1.65)

$$U = \pm \frac{1}{y_1^2} \exp\left(-\int p(x)dx\right) \exp(C) = \frac{C'}{y_1^2} \exp\left(-\int p(x)dx\right)$$
(1.66)

$$y_2 = uy_1 = y_1 \int U dx (1.67)$$

- 例題

$$(x^2-x)y''-xy'+y=0$$
 の基本解が x のとき、もう 1 つの基本解を求めよ。

もう 1 つの基本解を y_2 とする。 $y_2 = uy_1 = ux$ とすると、

$$y_2' = u'x + u$$
$$y_2'' = u''x + 2u'$$

元の方程式に代入して整理すると

$$(x^{2} - x)(u''x + 2u') - x(u'x + u) + ux = 0$$
$$(x^{2} - x)u'' + (x - 2)u' = 0$$

$$x(x-1)U' + (x-2)U = 0$$
$$\int \frac{1}{U}dU = \int \left(\frac{1}{x-1} - \frac{2}{x}\right)dx$$

これより

$$\ln |U| = \ln |x - 1| - \ln |x^{2}| + C_{1}$$

$$U = \pm e^{C_{1}} \left(\frac{1}{x} - \frac{1}{x^{2}}\right)$$

$$\therefore y_{2} = ux$$

$$= x \int U dx$$

$$= \pm e^{C_{1}} x \int \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx$$

$$= \pm e^{C_{1}} x \left(\ln |x| + \frac{1}{x} + C_{2}\right)$$

$$= \left(\pm e^{C_{1}}\right) x \left(\ln |x| + \frac{1}{x}\right) + \left(\pm e^{C_{1}}\right) C_{2} x$$

$$= C_{3} (x \ln |x| + 1) + C_{4} x$$

となり線形結合の形となった。x はすでに判明している基本解であるから、もう 1 つの基本解は $(x \ln |x| + 1)$ である。

1.4.2 2階の同次線形微分方程式の解の性質

$$y'' + ay' + by = 0(a, b : const.)$$
(1.68)

の解が $y=\mathrm{e}^{\lambda x}$ で表されるとする。(このとき、 $\frac{d^n}{dx^n}y=\lambda^n\mathrm{e}^{\lambda x}$) これを方程式 (1.68) に代入すると、

$$\lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = 0 \tag{1.69}$$

$$(\lambda^2 + a\lambda + b)e^{\lambda x} = 0$$
特性方程式 (1.70)

$$\lambda^2 + a\lambda + b = 0 \tag{1.71}$$

このとき、この特性方程式の判別式を D とすると、

$$D = a^2 - 4b \begin{cases} > 0: 2 \text{ つの実数解をもつ} & (i) \\ = 0: 1 \text{ つの実重根をもつ} & (ii) \\ < 0: 2 \text{ つの虚数解をもつ} & (iii) \end{cases}$$

(i) D > 0 のとき

2 つの 1 次独立な基本解 $e^{\lambda_1 x}$, $e^{\lambda_2 x}$ が求められるので、一般解は $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$

(ii) D = 0 のとき

もう 1 つの基本解を求めるために、1 つの基本解からもう 1 つの基本解を求める。 1 つの基本解が $y_1=\mathrm{e}^{\lambda_1 x}=\mathrm{e}^{-\frac{a}{2}x}$ として、もう 1 つの基本解を $y_2=uy_1=u\mathrm{e}^{-\frac{a}{2}x}$ とすると

$$y_2'' + ay_2' + by_2 = 0 (1.72)$$

$$(u''y_1 + 2u'y_1' + uy_1'') + a(u'y_1 + uy_1') + b(uy_1) = 0$$
(1.73)

$$u''y_1 + u'(2y_1' + ay_1) + u(y_1'' + ay_1' + by_1) = 0$$
(1.74)

$$u''y_1 + u'\left(2\left(-\frac{a}{2}e^{-\frac{a}{2}x}\right) + ae^{-\frac{a}{2}x}\right) + u(y_1'' + ay_1' + by_1) = 0$$
(1.75)

$$u''y_1 = 0 (1.76)$$

(1.77)

よって

$$u'' = 0 \tag{1.78}$$

$$u' = S \tag{1.79}$$

$$u = sx + t (s, t : const.) (1.80)$$

$$y_2 = uy_1 = (sx+t)e^{-\frac{a}{2}x}$$
(1.81)

一般解は

$$y = C_1 e^{-\frac{a}{2}x} + C_2(sx+t)e^{-\frac{a}{2}x}$$
(1.82)

$$= \underbrace{(C_1 + C_2 t)}_{C'_1} e^{-\frac{a}{2}x} + \underbrace{C_2 s}_{C'_2} x e^{-\frac{a}{2}x}$$
(1.83)

$$= (C_1' + C_2'x)e^{-\frac{a}{2}x} \tag{1.84}$$

(iii) D < 0 のとき

特性方程式の解を

$$\lambda = \frac{-a \pm \sqrt{a^2 - 4b}}{2} = -\frac{a}{2} \pm i \frac{\sqrt{4b - a^2}}{2} = -\frac{a}{2} \pm i\omega \quad (i, \omega \in \mathbb{R})$$
 (1.85)

このとき一般解は

$$y = C_1^* e^{\left(-\frac{a}{2} + i\omega\right)x} + C_2^* e^{\left(-\frac{a}{2} - i\omega\right)x}$$
(1.86)

ここでオイラーの公式

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.87}$$

を用いると、

$$y = e^{-\frac{a}{2}x} (C_1^* e^{i\omega x} + C_2^* e^{-i\omega x})$$
(1.88)

$$= e^{-\frac{a}{2}x} \left\{ C_1^* (\cos \omega x + i \sin \omega x) + C_2^* (\cos \omega x - i \sin \omega x) \right\}$$
 (1.89)

$$= e^{-\frac{a}{2}x} \{ \underbrace{(C_1^* + C_2^*)}_{C_1'} \cos \omega x + \underbrace{i(C_1^* - C_2^*)}_{C_2'} \sin \omega x \}$$
 (1.90)

$$= e^{-\frac{a}{2}x} (C_1' \cos \omega x + C_2' \sin \omega x) \tag{1.91}$$

1.4.3 2階の非同次線形微分方程式

$$y'' + P(x)y' + q(x)y = \gamma(x)$$
 (1.92)

の一般解は、 $\gamma(x) = 0$ とした同次方程式の解

$$y_h = C_1 y_1 + C_2 y_2 (1.93)$$

と非同次方程式の特解 y_p により

$$y = y_h + y_p \tag{1.94}$$

$$= C_1 y_1 + C_2 y_2 + y_p (1.95)$$

と表せる。 $(y_p$ に任意定数が含まれないことに注意) y_p の求め方として、未定係数法と定数変化法がある。

未定係数法

特解の関数形式を決めてから、その係数を決定することで解を求める方法である。以下のルールに 従って関数形式を決定する。

(i) 基本ルール

 $\gamma(x)$ の形式に従って y_p の形式を決定する。

表 1.2: 未定係数法 基本ルール

$\gamma(x)$ に含まれる項	y_p の形式
ke^{nx}	$K\mathrm{e}^{nx}$
$kx^n (n=0,1,\cdots)$	$K_n x^n + K_{n-1} x^{n-1} + K_{n-2} x^{n-2} + \dots + K_1 x + K_0$
$k\cos\omega x, k\sin\omega x$	$K\cos\omega x + M\sin\omega x$
$ke^{\alpha x}\cos\omega x, ke^{\alpha x}\sin\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$

(ii) 修正ルール

 y_p の候補が同次方程式の基本解と一致する場合、 y_p に x を乗じたものが y_p の候補となる。 また、同次方程式の特性方程式が重根をもつときは、 x^2 を乗じたものが y_p の候補となる。

(iii) 和のルール

 $\gamma(x)$ が複数の種類の関数の線形和で表されるとき、 y_p の候補は対応する y_p の候補の線形和で表される。

- 例題 -

$$y'' - 16y = 9.6e^{4x} + 30e^x$$
 の一般解を求めよ。

同次方程式の一般解は

$$y_h = C_1 e^{-4x} + C_2 e^{4x}$$

与式の非同次方程式の右辺第 1 項は、同次方程式の基本解の 1 つ e^{4x} の実数倍より、特解は

$$y_p = Kxe^{4x} + Me^x$$

これを x で微分して

$$y'_p = Ke^{4x} + 4Kxe^{4x} + Me^x$$

 $y''_p = 8Ke^{4x} + 16Kxe^{4x} + Me^x$

これらを元の式に代入すると

$$K = \frac{9.6}{8} = 1.2$$
$$M = -2$$

よって非同次方程式の解は

$$y = C_1 e^{-4x} + C_2 e^{4x} + 1.2x e^{4x} - 2e^x$$

定数変化法

y''+p(x)y'+q(x)y=0 の一般解が $y=C_1y_1+C_2y_2$ で表され、 y_1,y_2 が互いに独立であるとき、 $C_1y_1+C_2y_2=0$ となるのは $C_1=C_2=0$ のときのみである。

ここに新たに $C_1y_1' + C_2y_2' = 0$ という条件を加えると

$$\begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.96}$$

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0 \tag{1.97}$$

であれば $C_1=C_2=0$ が解となるのでこれが y_1,y_2 が一次独立となる条件となる。この W をロンスキアンとよぶ。

 $y''+p(x)y'+q(x)y=\gamma(x)$ の一般解が $y_h=C_1y_1+C_2y_2$ で表されるとする。 C_1,C_2 は x の関数 $C_1(x),C_2(x)$ として、 $y_p=C_1(x)y_1+C_2(x)y_2$ としこれを求めることを考える。

$$y_p' = C_1' y_1 + C_1 y_1' + C_2' y_2 + C_2 y_2'$$
(1.98)

$$= (C_1 y_1' + C_2 y_2') + (C_1' y_1 + C_2' y_2)$$
(1.99)

新たな条件を $C'_1y_1 + C'_2y_2 = 0$ とすると、(方程式を満足する C_1, C_2 を見つけさえすればよいため、このような仮定をしてよい)

$$y_p' = C_1 y_1' + C_2 y_2' (1.100)$$

$$y_p'' = C_1' y_1' + C_1 y_1'' + C_2' y_2' + C_2 y_2''$$
(1.101)

これらを元の方程式に代入して整理すると

$$C_1'y_1' + C_2'y_2' = \gamma(x) \tag{1.102}$$

$$\begin{cases}
C'_1 y_1 + C'_2 y_2 = 0 \\
C'_1 y'_1 + C'_2 y'_2 = \gamma
\end{cases}$$
(1.103)

$$\begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} C_1' \\ C_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \gamma \end{pmatrix} \tag{1.104}$$

$$\begin{pmatrix} C_1' \\ C_2' \end{pmatrix} = \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \gamma \end{pmatrix} = \frac{1}{y_1 y_2' - y_1' y_2} \begin{pmatrix} y_2' & -y_2 \\ -y_1' & y_1 \end{pmatrix} \begin{pmatrix} 0 \\ \gamma \end{pmatrix} = \frac{\gamma}{W} \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix} \tag{1.105}$$

以上から

$$C_1 = \int -\frac{y_2 \gamma}{W} dx \tag{1.106}$$

$$C_2 = \int \frac{y_1 \gamma}{W} dx \tag{1.107}$$

$$y_p = -y_1 \underbrace{\int \frac{y_2 \gamma}{W} dx}_{C_1(x)} + y_2 \underbrace{\int \frac{y_1 \gamma}{W} dx}_{C_2(x)}$$
 (1.108)

例題

$$y'' + y = \frac{1}{\cos x}$$
 の一般解を求めよ。

同次方程式の一般解は

$$y_h = C_1 y_1 + C_2 y_2$$
$$= C_1 \cos x + C_2 \sin x$$

 C_1, C_2 がxの関数として、特解を求める。

 y_1, y_2 に関するロンスキアン W は

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$
$$= \cos x \cos x - (-\sin x) \sin x$$
$$= 1$$

特解は

$$y_p = -y_1 \int \frac{y_2 \gamma}{W} dx + y_2 \int \frac{y_1 \gamma}{W} dx$$
$$= -\cos x \int \frac{\sin x}{\cos x} dx + \sin x \int dx$$
$$= \cos x \ln|\cos x| + x \sin x$$

一般解は

$$y = (C_1 + \ln|\cos x|)\cos x + (C_2 + x)\sin x$$

連立微分方程式 1.5

今まで取り扱った微分方程式を拡張した連立微分方程式により、2個の異なる事象の関係を記述す ることが可能である。

1.5.1 連立微分方程式の例

連立微分方程式の例として、以下の例が挙げられる。

• Richardson の軍拡競争モデル

$$\begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{pmatrix} = \begin{pmatrix} -a & k \\ h & -b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

• Strogatz の恋愛モデル

ロミオがジュリエットを好きになる気持ち
$$\frac{dR}{dt}=aJ$$
 ジュリエットがロミオを好きになる気持ち $\frac{dJ}{dt}=-bR$
$$\frac{d}{dt}\begin{pmatrix} R\\ J \end{pmatrix}=\begin{pmatrix} 0 & a\\ -b & 0 \end{pmatrix}\begin{pmatrix} R\\ J \end{pmatrix}$$

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0 を解け。a$$

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0 を解け。a$$

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0 を解け。a$$

$$y_1 = y, y_2 = \frac{dy}{dx}$$
 とする。
このとき

$$\frac{dy_1}{dx} = y_2$$

$$\frac{dy_2}{dx} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = 3\frac{dy}{dx} - 2y = -2y_1 + 3y_2$$

$$\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -2y_1 + 3y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

ここで、
$$Y=\begin{pmatrix}y_1\\y_2\end{pmatrix}, A=\begin{pmatrix}0&1\\-2&3\end{pmatrix}$$
 とすると、上式は
$$\frac{dY}{dx}=AY$$

と表せる。

ここで
$$B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 として解を $Y = \mathrm{e}^{\lambda x} B$ とすると、

(左辺) =
$$\frac{dY}{dx} = \frac{d}{dx}(e^{\lambda x}B) = e^{\lambda x}\lambda B$$

(右辺) = $AY = e^{\lambda x}AB$

(左辺) = (右辺) より、 $\lambda B = AB$ を満足する λ, B を求めればよい。 固有方程式は

$$\begin{vmatrix} -\lambda & 1 \\ -2 & 3 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 2)$$

固有値は $\lambda=1,2$

$$\lambda=1$$
 のとぎ $B=C_1\begin{pmatrix}1\\1\end{pmatrix}$ 、 $\lambda=2$ のとぎ $B=C_2\begin{pmatrix}1\\2\end{pmatrix}$

微分方程式の解は

$$Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^x C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{2x} C_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

このとき、

$$y = y_1 = C_1 e^x + C_2 e^{2x}$$

 $\frac{dy}{dx} = y_2 = C_1 e^x + 2C_2 e^{2x}$

である。

例題

$$\begin{cases} \frac{dx}{dt} = x - z \\ \frac{dy}{dt} = 2x + 2y + 2z \end{cases}$$
 を解け。
$$\frac{dz}{dt} = 2x + y + 2x$$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} とすると$$

$$\frac{d}{dt}X = \begin{pmatrix} 1 & 0 & -1\\ 2 & 2 & 2\\ 2 & 1 & 2 \end{pmatrix} X$$

$$B = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$
 として $X = \mathrm{e}^{\lambda t} B$ とすると以下の固有方程式が導ける。

$$\begin{vmatrix} 1 - \lambda & 0 & -1 \\ 2 & 2 - \lambda & 2 \\ 2 & 1 & 2 - \lambda \end{vmatrix} = 0$$

これを解くと $\lambda = 1, 2$ (重解)

$$\lambda = 1 \text{ のとき } B = s \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \quad (s \in \mathbb{R}) \qquad \text{ \sharp of } X = \begin{pmatrix} e^t \\ -2e^t \\ 0 \end{pmatrix}$$

$$\lambda = 2 \text{ obset} B = s' \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \quad (s' \in \mathbb{R}) \qquad \text{ \sharp of } X = \begin{pmatrix} e^{2t} \\ -2e^{2t} \\ -e^{2t} \end{pmatrix}$$

ここで、 $\lambda = 2$ に対するもう 1 つの解を

$$X = \begin{pmatrix} (k+t)e^{2t} \\ (m-2t)e^{2t} \\ (n-t)e^{2t} \end{pmatrix}$$

とする。*1

$$X = \begin{pmatrix} e^{2t}(1+2k+2t) \\ e^{2t}(-2+2m-4t) \\ e^{2t}(-1+2n-2t) \end{pmatrix}$$

これらを元の式に入れて整理すると、

$$k=s^{\prime\prime}$$
 として、 $m=-1-2s^{\prime\prime}, n=-1-s^{\prime\prime}$

$$X = \begin{pmatrix} te^{2t} \\ -(1+2t)e^{2t} \\ -(1+t)e^{2t} \end{pmatrix}$$

$$\therefore \begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 \begin{pmatrix} e^t \\ -2e^t \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} e^{2t} \\ -2e^{2t} \\ -e^{2t} \end{pmatrix} + C_3 \begin{pmatrix} te^{2t} \\ -(1+2t)e^{2t} \\ -(1+t)e^{2t} \end{pmatrix}$$

 $^{^{*1}}$ 重解のときは $(A+Bt)\mathrm{e}^{\lambda t}$ 、3 重解のときは $(A'+B't+C't^2)\mathrm{e}^{\lambda t}$ を仮定する。

D<0 のときは、D>0 の場合と同様に解いてオイラーの公式 $\mathrm{e}^{i\theta}=\cos\theta+i\sin\theta$ を用いてまとめる。

1.5.2 連立非同次線形微分方程式

- 例題

x, y を t の関数とするとき、

$$\begin{cases} x' = 2x - y + e^{2t} \\ y' = 5x - 4y + e^{-t} \end{cases}$$
 を解け。

同次形 (e^{2t}, e^{-t}) の項が存在しない) のときを考える。

固有方程式は

$$\begin{vmatrix} 2-\lambda & -1 \\ 5 & -4-\lambda \end{vmatrix} = (\lambda+3)(\lambda-1) = 0 \qquad \lambda = -3, 1$$

ゆえにこれを解くと

$$\begin{cases} x = C_1 e^t + C_2 e^{-3t} \\ y = C_1 e^t + 5C_2 e^{-3t} \end{cases}$$

定数変化法を考え、 C_1, C_2 が t の関数であるとすると

$$\begin{cases} x = C_1(t)e^t + C_2(t)e^{-3t} \\ y = C_1(t)e^t + 5C_2(t)e^{-3t} \end{cases}$$

$$\frac{dx}{dt} = C_1'(t)e^t + C_1(t)e^t + C_2'(t)e^{-3t} - 3C_2(t)e^{-3t}$$
$$\frac{dy}{dt} = C_1'(t)e^t + C_1(t)e^t + 5C_2'(t)e^{-3t} - 15C_2(t)e^{-3t}$$

これらを元の式に代入して整理すると

$$e^{t}C'_{1}(t) + e^{-3t}C'_{2}(t) = e^{2t}$$

 $e^{t}C'_{1}(t) + 5e^{-3t}C'_{2}(t) = e^{-t}$

これから

$$C'_1(t) = \frac{1}{4}(5e^t - e^{-2t})$$
$$C'_2(t) = \frac{1}{4}(e^{2t} - e^{5t})$$

積分して

$$C_1(t) = \frac{1}{4} \left(5e^t + \frac{1}{2}e^{-2t} \right) + C_3$$
$$C_2(t) = \frac{1}{4} \left(\frac{1}{2}e^{2t} - \frac{1}{5}e^{5t} \right) + C_4$$

ゆえに求める一般解は

$$\begin{cases} x = C_1 e^t + C_2 e^{-3t} + \frac{6}{5} e^{2t} + \frac{1}{4} e^{-t} \\ y = C_1 e^t + 5C_2 e^{-3t} + e^{2t} + \frac{3}{4} e^{-t} \end{cases}$$