電腦網路實驗實驗報告 < Packet Analysis >

姓名: 翁佳煌 學號: 409430030

1. 實驗名稱

網路封包擷取操作與分析

2. 實驗目的

這次實驗有三個 LAB, LAB1 主要是要理解 TCP 和 UDP 協議的差異,並學習如何找出 TCP 三向交握和 UDP 的封包,以及如何使用 Wireshark 等工具進行協議分析,以加深對網絡協議的理解和熟練掌握分析技能。LAB2 是分析HTTP 協議,學習 HTTP 協議的基本知識和特點,深入了解 HTTP 協議的結構和原理,學會使用 Wireshark 等工具進行 HTTP 協議分析,以提高對網絡協議的認識和能力。LAB3 是 DNS 分析,了解 DNS 協議的基本知識和作用,用Wireshark 工具進行 DNS 協議分析,深入了解 DNS 協議的運作原理和相關技術,以加強對網絡協議的掌握和分析能力。

3. 實驗設備

Linux 作業系統之電腦。 Wireshark。

4. 實驗步驟

LAB1-TCP \ UDP:

- 1. 首先觀察 TCP 封包,開啟 Wireshark。
- 2. 開啟國光客運的網站。

3. 擷取完畢後,經由 Filter 顯示 TCP 的封包,隱藏其他的封包。

4. 觀察步驟 3 顯示的封包,可觀察到 SYN、SYN-ACK、Seq 等訊息,我將會在下面的問體與討論更深入探討這些名詞。

- 5. 接下來觀察 UDP 封包, 我改開啟 Youtube 的網站。
- 6. 擷取完畢後,經由Filter顯示 UDP 的封包,隱藏其他的封包。

LAB2- 分析 HTTP 協議:

- 1. 開啟 Wireshark。
- 2. 打開使用 http 的網站,這裡是開啟佳音英語的網站。
- 3. 返回 Wireshark,在 filter 中過濾出 http 的封包。

4. 觀察 http 協議中的內容, 我將會在下面的問體與討論更深入討論這部分。

LAB3- DNS 分析:

1. 開啟 terminal,使用 nslookup 查詢佳音英語網站的 ip 地址。

2. 回到 Wireshark,利用指令 dns | | ip. addr==210.71.254.24 過濾後,觀察連線 是使用 UDP 還是 TCP,由紅色框框可知,DNS 是使用 UDP。

5. 問題與討論

1. 配合封包內容解釋 TCP 三向交握的原理。(解釋 SYN、ACK..等)比較 TCP 和 UDP:

TCP 是一種面向連接的協議,它使用三向交握(Three-way Handshake)建立可靠的連接。TCP 通過確認封包是否已被接收,以確保數據的可靠性。 三向交握過程如下:

客戶端向服務器端發送 SYN 封包 (SYN = Synchronize Sequence Numbers),表示客戶端想要建立一個連接,並傳遞自己的初始序號 ISN (Initial Sequence Number)。

服務器端收到客戶端的 SYN 封包後,回傳一個 SYN-ACK 封包,表示服務器已經收到客戶端的請求,同時也傳遞自己的初始序號 ISN。

客戶端收到服務器端的 SYN-ACK 封包後,向服務器端回傳一個 ACK 封包 (ACK = Acknowledgment),表示客戶端已經收到服務器端的回應,此時雙方建立了可靠的連接,可以開始傳輸數據。

在 TCP 連接中,每一個封包都有一個序號(Sequence Number)和一個確認號(Acknowledgment Number)。序號表示傳輸的字節流中的第一個字節的序號,確認號表示接收端期望接收的下一個序號。通過使用序號和確認號,TCP 可以確保數據的可靠性和有序性。

相較於 TCP, UDP (User Datagram Protocol)是一種無連接的協議,它不使用三向交握或其他機制來建立可靠的連接。UDP 更加簡單,不需要像 TCP 那樣建立連接和確認數據傳輸,因此 UDP 的傳輸速度更快,但不可靠性也更高。因此,UDP 通常用於那些較需要傳輸速度較快,而不需要保證每一個對包都被傳輸成功的應用,例如視頻和音頻傳輸等。

2. 配合 LAB2 封包內容解釋其中 Host、accept、cookie…等:

在 LAB2 的 Request 中,我們可以看到許多的 header,以下是其中幾個的解釋: Host 為請求的網站主機名稱,這個是必須的。

Accept 是指定客戶端支援的 MIME 類型,例如 text/html、application/xhtml+xml 等。Cookie 為將之前由該服務器發送的 cookie 發送回服務器,可以用於會話跟蹤等。User-Agent:請求的客戶端類型,例如是瀏覽器還是爬蟲等。

在 Response 中, Server 回應的服務器類型和版本號。這個 header 可以讓客戶端知道該回應是由哪個服務器發送的,以及服務器的版本號等信息。

Content-Type 為回應的內容類型,例如 text/html、application/json 等。這個 header 可以讓客戶端知道該回應的內容類型,進而根據這個信息來進行相應的處理。

Content-Length 是回應內容的字節長度。這個 header 可以讓客戶端知道回應的內容長度,以便客戶端可以知道何時結束接收回應。

Set-Cookie 為服務器返回的 cookie 信息。當服務器向客戶端發送回應時,可以通過 Set-Cookie header 返回一個新的 cookie,這樣客戶端就可以在後續的請求中將該 cookie 發送回服務器,以維護會話等機制。

3. 解釋為什麼 DNS 適合用 UDP protocol 而不是 TCP protocol:

DNS 是一種用於將域名解析為 IP 地址的協議,它使用 UDP 協議進行通信。以下是列出幾個原因解釋為什麼 DNS 適合使用 UDP 協議而不是 TCP 協議:

效率:UDP協議的優勢之一是它非常輕量級,它不需要像 TCP協議那樣建立一個可靠的、雙向的連接。由於 DNS 是一個較為簡單的協議,通常請求和回應的 大小都比較小,因此使用 UDP協議可以提高效率,減少開銷。

時間: DNS 通常用於網絡連接的一開始,例如瀏覽器輸入 URL 時,需要向 DNS 服務器發送請求以解析該 URL 的 IP 地址。由於 DNS 的請求和回應通常比較短小,且需要快速返回,因此使用 UDP 協議可以避免 TCP 協議的握手過程,減少延遲時間。

可靠性:雖然 UDP 協議不像 TCP 協議那樣可靠,但在 DNS 這種情況下,使用 UDP 協議仍然足夠可靠。由於 DNS 的請求和回應都很短小,且在互聯網上的 DNS

服務器很多,因此即使出現一些丟包或延遲的情況,客戶端仍然可以重新發送請求或向其他 DNS 服務器發送請求,不會對整個應用造成太大影響。

總而言之, DNS 使用 UDP 協議是出於效率、時間敏感和可靠性等因素的綜合考慮,使用 UDP 協議可以更好地滿足 DNS 協議的特點和需求。

6. 心得與感想

這次的三個 LAB 實在是讓人學到不少東西,首先 LAB1,透過 Wireshark 工具觀察到了 TCP 三向握手和 UDP 封包的傳輸過程,進一步理解了 TCP 和 UDP 的區別和適用場景。對於 TCP 三向握手,我理解到 SYN、ACK、FIN 這些標誌位的含義和作用,以及三向握手的重要性和原理。在實際的網絡開發中,我發現 TCP 協議的穩定性和可靠性更高,但傳輸速度相對較慢;而 UDP 協議則更快,但可靠性相對較差。因此,在實際的應用場景中,需要根據不同的需求和情況選擇適合的協議。

再來 LAB2,通過本次實驗,我深入了解了 HTTP 協議和網絡通信的基本原理。 我通過 Chrome 開發者工具觀察到了 HTTP 協議中 request 和 response 的內容和 結構,了解了其中 Host、accept、cookie 等字段的含義和作用。

最後 LAB3,我學會了使用 nslookup 和 wireshark 工具來分析 DNS 的運作過程。我了解到 DNS 的作用和重要性,以及域名解析的流程和原理。同時,我也學習到了為什麼 DNS 適合使用 UDP 協議而不是 TCP 協議。

7.參考文獻

1. LAB1:

https://notfalse.net/7/three-way-handshake https://ithelp.ithome.com.tw/articles/10155938

2. LAB2:

https://ithelp.ithome.com.tw/articles/10158471

http://skenyeh.blogspot.com/2011/01/http-status-codes.html

https://zh.wikipedia.org/wiki/HTTP

3. LAB3 :

https://blog.csdn.net/jason_cuijiahui/article/details/86712107

https://kknews.cc/zh-tw/code/qvap9yg.html