Name: Himanshu Sharma

Business Case: Target SQL

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation, and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

Data is available in 8 csv files. High level overview of relationship between datasets is as follow:

- 1. Import the dataset and do usual **exploratory analysis** steps like checking the structure & characteristics of the dataset.
 - 1.1. Data type of columns in a table

Table name: customers

Field name	Туре
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INTEGER
customer_city	STRING
customer_state	STRING

Table name: geolocations

Field name	Туре
geolocation_zip_code_prefix	INTEGER
geolocation_lat	FLOAT
geolocation_lng	FLOAT
geolocation_city	STRING
geolocation_state	STRING

Table name: payments

Field name	Туре
order_id	STRING
payment_sequential	INTEGER
payment_type	STRING
payment_installments	INTEGER
payment_value	FLOAT

Table name: products

Field name	Туре
product_id	STRING
product_category	STRING
product_name_length	INTEGER
product_description_length	INTEGER
product_photos_qty	INTEGER
product_weight_g	INTEGER
product_length_cm	INTEGER
product_height_cm	INTEGER
product_width_cm	INTEGER

Table name: order_items

Field name	Туре
order_id	STRING
order_item_id	INTEGER
product_id	STRING
seller_id	STRING
shipping_limit_date	TIMESTAMP
price	FLOAT
freight_value	FLOAT

Table name: sellers

Field name	Туре
seller_id	STRING
seller_zip_code_prefix	INTEGER
seller_city	STRING
seller_state	STRING

Table name: orders

Field name	Туре
order_id	STRING
customer_id	STRING
order_status	STRING
order_purchase_timestamp	TIMESTAMP
order_approved_at	TIMESTAMP
order_delivered_carrier_date	TIMESTAMP
order_delivered_customer_date	TIMESTAMP
order_estimated_delivery_date	TIMESTAMP

Table name: order_reviews

Field name	Туре
review_id	STRING
order_id	STRING
review_score	INTEGER
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

1.2. Time period for which the data is given.

Query:

select

min (order_purchase_timestamp) as Date_First_Transaction, max (order_purchase_timestamp) as Date_Last_Transaction from `targetcasestudy-1004.target.orders`

Row	Date_First_Transaction ▼	Date_Last_Transaction ▼
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

Insight: E-commerce is growing fast around the world. The in-dept analysis of the datasets has been carried out to reflect the trend in the Brazilian market. After digging into the datasets, it is found that the data is given for the time period between 2016-2018.

1.3. Cities and States of customers ordered during the given period.

Query:

select distinct customer_city, customer_state from `targetcasestudy-1004.target.customers` cust RIGHT JOIN `targetcasestudy-1004.target.orders` o on cust.customer_id = o.customer_id

Result:

Row	customer_city ▼	customer_state ▼
1	rio de janeiro	RJ "
2	sao leopoldo	RS
3	general salgado	SP
4	brasilia	DF
5	paranavai	PR
6	cuiaba	MT
7	sao luis	MA
8	maceio	AL
9	hortolandia	SP
10	varzea grande	MT
11	belo horizonte	MG
12	sao paulo	SP
13	ipojuca	PE
14	itanhaem	SP
15	porto alegre	RS
16	sao lourenco da mata	PE
17	aracaju	SE
18	ituverava	SP
19	diadema	SP
20	londrina	PR
21	rolante	RS

Insight: It is clear with the data that the customer base of Target is present in all the 27 states of Brazil.

2. In-depth Exploration:

2.1. Is there a growing trend on e-commerce in Brazil?

How can we describe a complete scenario?

Can we see some seasonality with peaks at specific months?

Query:

```
select
extract(year from order_purchase_timestamp) as years,
count(distinct order_id) as number_of_orders
from `targetcasestudy-1004.target.orders`
group by years
order by years
```

Result:

Row	years ▼	//	number_of_orders
1		2016	329
2		2017	45101
3		2018	54011

Insight: It is clearly visible in the result and graphs that there is increasing trend in the e-commerce in Brazil. As the data is available from September 2016 that's why one can observe the smaller number of orders in this year. In year 2017 and 2018 there is huge jump in terms of sales. It indicates the fast growth of the company in Brazil market.

The monthly data based on order purchase shows that year 2017 was the best year for the sales of the company. They hit the peak of number of orders during the November month in 2017. There was a deep fall in the number of orders in September and October months of 2018.

Both the graphs below indicate the yearly and monthly number of orders for the provided data:

2.2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query:

```
SELECT COUNT(*) as No_of_orders,

CASE

WHEN order_purchase between '03:00:00' and '06:00:00'

THEN 'Dawn'

WHEN order_purchase between '06:00:00' and '12:00:00'

THEN 'Morning'

WHEN order_purchase between '12:00:00' and '17:00:00'

THEN 'Afternoon'

ELSE 'Night'

END AS Time_customer_tend_to_buy

from (select*,extract(time from order_purchase_timestamp)as

order_purchase from `targetcasestudy-1004.target.orders`) t_stamp

GROUP BY Time_customer_tend_to_buy

order by No_of_orders
```

Result:

Row	No_of_orders ▼ /	Time_customer_tend_to_buy •
1	666	Dawn
2	22240	Morning
3	32212	Afternoon
4	44323	Night

Insight: For the given dataset, entire day is divided into four parts Dawn, Morning, Afternoon, Night. It is visible in the result that maximum number of orders were made in night. The company should roll out discounts and offers during mid-day, so that it can attract more customer during that timeframe.

Recommendations: As is it visible that customers tend to order more during the night, the company should focus more on the categorized buyers with some strategies.

- 3. Evolution of E-commerce orders in the Brazil region:
 - 3.1. Get month on month orders by states.

Query:

```
select extract(month from o.order_purchase_timestamp) as month, count(o.order_id)as order_id, c.customer_state, from `targetcasestudy-1004.target.orders`as o join `targetcasestudy-1004.target.customers` as c on o.customer_id=c.customer_id group by month, c.customer_state order by month
```

Result:

Row	month •	order_id ▼	customer_state ▼
How /	montn 🔻 //	990	RJ
2	1	3351	SP
3	1	151	DF
4	1	427	RS
5	1	99	CE
6	1	113	PE
7	1	443	PR
8	1	264	BA
9	1	971	MG
10	1	51	RN
11	1	82	PA
12	1	66	MA
13	1	345	SC
14	1	19	то

Insight: The 'SP' state attracted the greatest number of customers.

3.2. Distribution of customers across the states in Brazil

```
select customer_state, count(customer_id) as numberofcust from `targetcasestudy-1004.target.customers` group by 1 order by 2 desc
```

Row /	customer_state ▼	numberofcust ▼ //
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Insight: The 'SP' state attracted 41746 number of customers during the given period.

- 4. Impact on Economy: Analyse the money movement by e-commerce by looking at order prices, freight, and others.
 - 4.1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table.

```
with cte as
select *
from (select round(sum(payment value), 2) as payment sum 2017
from `targetcasestudy-1004.target.orders` o
INNER JOIN
`targetcasestudy-1004.target.payments` p
on o.order id = p.order id
where extract(year from order_purchase_timestamp) = 2017 and extract(month from
order purchase timestamp) between 1 and 8
) h
Cross Join
select round(sum(payment value), 2) as payment sum 2018
from `targetcasestudy-1004.target.orders` o
INNER JOIN
`targetcasestudy-1004.target.payments` p
on o.order_id = p.order_id
where extract(year from order purchase timestamp) = 2018 and extract(month from
order_purchase_timestamp) between 1 and 8
) i
group by payment sum 2017, payment sum 2018
```

```
) select*, round((( payment_sum_2018- payment_sum_2017)/ payment_sum_2017 ),4) *100 as percent_change from cte
```


Insight: Here, the increase in the cost of orders for 2017 and 2018 respectively was analysed. January to August months were considered during this calculation. On this basis of same it was calculated that there was an increase of 137% in number of customers during the given period.

4.2. Mean & Sum of price and freight value by customer state.

Query:

```
select c.customer_state,
round(sum(oi.price),2) as sum_price,
round(avg(oi.price),2) as mean_price,
round(sum(oi.freight_value),2) as sum_freightval,
round(avg(oi.freight_value),2) as mean_freightval
from `targetcasestudy-1004.target.orders` as o
inner join `targetcasestudy-1004.target.order_items` as oi
on o.order_id = oi.order_id
inner join `targetcasestudy-1004.target.customers` as c
on o.customer_id = c.customer_id
group by c.customer_state
order by c.customer state
```

Row /	customer_state ▼	sum_price ▼	mean_price ▼ //	sum_freightval ▼	mean_freightval 🔻
1	AC	15982.95	173.73	3686.75	40.07
2	AL	80314.81	180.89	15914.59	35.84
3	AM	22356.84	135.5	5478.89	33.21
4	AP	13474.3	164.32	2788.5	34.01
5	BA	511349.99	134.6	100156.68	26.36
6	CE	227254.71	153.76	48351.59	32.71
7	DF	302603.94	125.77	50625.5	21.04
8	ES	275037.31	121.91	49764.6	22.06
9	GO	294591.95	126.27	53114.98	22.77
10	MA	119648.22	145.2	31523.77	38.26
11	MG	1585308.03	120.75	270853.46	20.63

- 5. Analysis on sales, freight, and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery.

Query:

```
select
distinct order_id, extract(date from order_purchase_timestamp) as
Date_of_purchase,
extract(date from order_delivered_carrier_date) as
Delivery_Carrier_Date,
extract(date from order_estimated_delivery_date) as
Estimated_date_of_Delivery,
(extract(day from order_delivered_carrier_date) - extract(day from
order_purchase_timestamp)) as pur_delivery_days,
(extract(day from order_delivered_carrier_date) - extract(day from
order_estimated_delivery_date)) as diff_est_delivery
from `targetcasestudy-1004.target.orders`
where order_status = 'delivered'
```

Row /	order_id ▼	Date_of_purchase	Delivery_Carrier_Date	Estimated_date_of_0	pur_delivery_days 🥕	diff_est_delivery 🔻
1	44879a8f19c5e8a5e9278477b	2018-08-23	2018-08-27	2018-10-04	4	23
2	0562291f2b37f55cc259053d2	2018-04-30	2018-04-30	2018-06-06	0	24
3	a01f50d51f398895df76f09531	2018-05-12	2018-05-28	2018-06-06	16	22
4	628923e74a955e432c826a2e0	2018-05-11	2018-05-30	2018-06-06	19	24
5	ab879558e02a4aec8e7aa5941	2018-04-21	2018-04-28	2018-06-06	7	22
6	b10350ed7f626af6db79354ad	2018-05-23	2018-05-28	2018-06-06	5	22
7	656ada45a719393ba3e97d8d	2018-04-27	2018-04-30	2018-06-06	3	24
8	d1594d3b636b86cf4ce22e2ca	2018-04-29	2018-05-29	2018-06-06	0	23
9	a8214c9e03a43c8544892568	2018-05-22	2018-05-30	2018-06-06	8	24
10	7a74611af770d37eb88aa4c25	2018-05-22	2018-05-29	2018-06-06	7	23
11	0ed4bf3a5a970c8b076ce4cce	2018-05-22	2018-05-28	2018-06-06	6	22
12	3407bfcbaa0cb49c244ededbc	2018-04-21	2018-04-30	2018-06-06	9	24
13	4b8bfc23c1469d2169ca53287	2018-05-12	2018-05-28	2018-06-06	16	22
14	fdeb8e2ed51d3a12a9d6c27a2	2018-01-21	2018-01-31	2018-02-06	10	25
15	82e77a081a87b4df3966d2fce	2017-12-29	2017-12-29	2018-02-06	0	23
16	7edf24d26573e36b72c670b38	2018-01-22	2018-01-31	2018-02-06	9	25
17	68e6025320f22a05b32dd8e3f	2018-01-22	2018-01-31	2018-02-06	9	25
18	10992b09416c413bd4685017	2018-01-21	2018-01-31	2018-02-06	10	25
19	13b405c01103fcb4ab199d6a8	2018-01-22	2018-01-31	2018-02-06	9	25

2. Find time_to_delivery & diff_estimated_delivery.

Formula for the same given below:

- o time_to_delivery = order_delivered_customer_dateorder purchase timestamp
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Query:

select

distinct order_id, extract(datetime from order_purchase_timestamp) as Purchase_date, extract(datetime from order_delivered_customer_date) as Delivery_Cust_Date, extract(datetime from order_estimated_delivery_date) as Est_Delivery_Date, (extract(datetime from order_delivered_customer_date) - extract(datetime from order_purchase_timestamp)) as Time_to_delivery, (extract(datetime from order_estimated_delivery_date) - extract(datetime from order_delivered_customer_date)) as Diff_estimated_delivery

where order_status = 'delivered'

from 'targetcasestudy-1004.target.orders'

Row /	order_id ▼	Purchase_date ▼	Delivery_Cust_Date ▼	Est_Delivery_Date ▼	Time_to_delivery ▼	Diff_estimated_delivery ▼
1	c158e9806f85a33877bdfd4f60	2017-04-14T22:06:32	2017-05-08T11:10:26	2017-05-18T00:00:00	0-0 23 13:3:54	0-0 9 12:49:34
2	b60b53ad0bb7dacacf2989fe2	2017-05-10T14:03:27	2017-05-23T13:12:27	2017-05-18T00:00:00	0-0 12 23:9:0	0-0 -5 -13:12:27
3	c830f223aae08493ebecb52f2	2017-04-22T15:50:30	2017-05-05T13:27:50	2017-05-18T00:00:00	0-0 12 21:37:20	0-0 12 10:32:10
4	a8aa2cd070eeac7e4368cae3d	2017-05-09T17:42:45	2017-05-16T23:22:20	2017-05-18T00:00:00	0-0 7 5:39:35	0-0 1 0:37:40
5	813c55ce9b6baa8f879e064fbf	2017-04-26T01:01:39	2017-05-08T08:54:36	2017-05-18T00:00:00	0-0 12 7:52:57	0-0 9 15:5:24
6	44558a1547e448b41c48c408	2017-05-10T20:47:02	2017-05-12T17:00:05	2017-05-18T00:00:00	0-0 1 20:13:3	0-0 5 6:59:55
7	036b791897847cdb8e39df794	2017-05-10T15:34:59	2017-05-17T11:14:40	2017-05-18T00:00:00	0-0 6 19:39:41	0-0 0 12:45:20
8	1aba60c04110bdd421b250ea	2017-04-18T21:20:40	2017-05-10T11:50:00	2017-05-18T00:00:00	0-0 21 14:29:20	0-0 7 12:10:0
9	0312ecf90786def87f98aa19e0	2017-05-10T22:02:40	2017-05-18T17:09:46	2017-05-18T00:00:00	0-0 7 19:7:6	0-0 0 -17:9:46
10	635c894d068ac37e6e03dc54e	2017-04-15T15:37:38	2017-05-16T14:49:55	2017-05-18T00:00:00	0-0 30 23:12:17	0-0 1 9:10:5
11	f79bd0b3bacc5142f90f81a15b	2017-04-22T13:55:16	2017-05-12T13:55:55	2017-05-18T00:00:00	0-0 20 0:0:39	0-0 5 10:4:5
12	3b97562c3aee8bdedcb5c2e45	2017-04-14T22:21:54	2017-05-17T10:52:15	2017-05-18T00:00:00	0-0 32 12:30:21	0-0 0 13:7:45
13	51a7d7d26116c0eaee6bb35ea	2017-04-25T08:12:22	2017-05-04T07:18:36	2017-05-18T00:00:00	0-0 8 23:6:14	0-0 13 16:41:24
14	bb0607616e290609d11b67e0	2017-04-25T09:43:59	2017-05-10T09:19:50	2017-05-18T00:00:00	0-0 14 23:35:51	0-0 7 14:40:10
15	1451f4e1d7e9367d2fe5173de	2017-04-22T18:45:59	2017-05-15T11:52:19	2017-05-18T00:00:00	0-0 22 17:6:20	0-0 2 12:7:41
16	bf375386af3b1f89486a565f18	2017-04-17T14:04:59	2017-05-01T12:34:00	2017-05-18T00:00:00	0-0 13 22:29:1	0-0 16 11:26:0

3. Group data by state, take mean of freight value, time_to_delivery, diff_estimated_delivery.

Query:

```
select
distinct customer state,
avg(freight value) as meanfreight,
avg(extract(datetime from order delivered customer date) -
extract(datetime from order_purchase_timestamp)) as time_to_delivery,
avg(extract(datetime from order estimated delivery date) -
extract(datetime from order_delivered_customer_date)) as diff_estimated_delivery
from `targetcasestudy-1004.target.customers` c
Inner join
`targetcasestudy-1004.target.orders` o
on c.customer_id = o.customer_id
Inner join
`targetcasestudy-1004.target.order items` oi
on oi.order id = o.order id
where order status = 'delivered'
group by c.customer_state
```

Row /	customer_state ▼	meanfreight 🔻	time_to_delivery ▼	diff_estimated_delivery ▼
1	GO	22.5628678085	0-0 14 33:40:48.375933245	0-0 11 14:18:7.996486605
2	SP	15.1151823544	0-0 8 17:22:20.194547921	0-0 10 12:17:14.311513533
3	RS	21.6131920443	0-0 14 28:31:32.063916517	0-0 13 10:22:7.941790314
4	BA	26.4875563399	0-0 18 29:56:34.191963073	0-0 10 6:55:31.734727124
5	MG	20.6263425209	0-0 11 23:34:48.313564571	0-0 12 15:23:35.678460823
6	MT	27.9969141755	0-0 17 23:4:49.308582449	0-0 13 21:30:17.274831243
7	RJ	20.9114360461	0-0 14 27:32:58.179594145	0-0 11 7:17:3.752386339
8	SC	21.5073590432	0-0 14 23:56:36.372711740	0-0 10 20:50:21.306809860
9	SE	36.5731733333	0-0 20 35:12:59.317333333	0-0 9 7:49:3.408
10	PE	32.6933333333	0-0 17 30:42:8.667239404	0-0 12 18:20:47.015463917
11	TO	37.4350322580	0-0 17 10:45:40.490322580	0-0 11 15:36:27.777419354
12	CE	32.7344950911	0-0 20 23:41:56.934081346	0-0 10 9:51:29.995792426
13	PR	20.4718162506	0-0 11 22:43:59.571074526	0-0 12 19:0:31.719242343
14	PA	35.6290132827	0-0 23 18:5:50.211574952	0-0 13 13:39:52.679316888
15	MS	23.3509001233	0-0 15 12:49:3.794081381	0-0 10 12:41:12.300863131
16	ES	22.0289797752	0-0 15 15:34:39.280898876	0-0 9 22:46:51.880898876

- 4. Sort the data to get the following:
- 5. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - Top 5 states with lowest average freight value:

Query:

```
select c.customer_state,
round(avg(oi.freight_value),2) as mean_freightval
from `targetcasestudy-1004.target.orders` as o
join `targetcasestudy-1004.target.order_items` as oi
on o.order_id = oi.order_id
join `targetcasestudy-1004.target.customers` as c
on o.customer_id = c.customer_id
group by 1
order by 2
limit 5
```

Result:

Row /	customer_state ▼	mean_freightval
1	SP	15.15
2	PR	20.53
3	MG	20.63
4	RJ	20.96
5	DF	21.04

• Top 5 states with highest average freight value:

```
select c.customer_state,
round(avg(oi.freight_value),2) as mean_freightval
from `targetcasestudy-1004.target.orders` as o
join `targetcasestudy-1004.target.order_items` as oi
on o.order_id = oi.order_id
join `targetcasestudy-1004.target.customers` as c
on o.customer_id = c.customer_id
group by 1
order by 2 desc
limit 5
```

Row /	customer_state ▼ //	mean_freightval 🔻
1	RR	42.98
2	PB	42.72
3	RO	41.07
4	AC	40.07
5	PI	39.15

6. Top 5 states with highest/lowest average time to delivery

Query:

```
select c.customer_state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,
day)),2) as time_to_delivery,
from `targetcasestudy-1004.target.orders` o
join `targetcasestudy-1004.target.customers` c
on o.customer_id = c.customer_id
group by 1
order by 2
limit 5
```

Result:

Row	customer_state ▼	//	time_to_delivery
1	SP		8.3
2	PR		11.53
3	MG		11.54
4	DF		12.51
5	SC		14.48

7. Top 5 states where delivery is really fast/ not so fast compared to estimated date.

Top 5 states where delivery is really fast

```
select distinct c.customer_state,

avg(extract(datetime from order_estimated_delivery_date) -

extract(datetime from order_delivered_customer_date)) as delivery_diff

from `targetcasestudy-1004.target.orders` o

left join

`targetcasestudy-1004.target.customers` c

on o.customer id = c.customer id
```

group by c.customer_state order by delivery_diff limit 5

Result:

Row	customer_state	• //	delivery_diff ▼	/
1	AL		0-0 7 24:46:9.886649874	
2	MA		0-0 8 21:18:29.762900976	
3	SE		0-0 9 7:53:14.623880597	
4	ES		0-0 9 19:7:50.208521303	
5	BA		0-0 9 26:22:39.872542997	

Top 5 states where delivery is not so fast

Query:

```
select distinct c.customer_state,
avg(extract(datetime from order_estimated_delivery_date) -
extract(datetime from order_delivered_customer_date)) as delivery_diff
from `targetcasestudy-1004.target.orders` o
left join
`targetcasestudy-1004.target.customers` c
on o.customer_id = c.customer_id
group by c.customer_state
order by delivery_diff desc
limit 5
```

Row	customer_state	• //	delivery_diff ▼
1	AC		0-0 19 25:50:53.400
2	RO		0-0 19 9:31:25.802469135
3	AP		0-0 18 25:25:34.119402985
4	AM		0-0 18 20:26:36.986206896
5	RR		0-0 16 14:16:13.243902439

6. Payment type analysis:

1. Month over Month count of orders for different payment types

Query:

```
select payment_type,
extract(month from o.order_purchase_timestamp) as months_wise_data,
count(*) as no_of_orders
from `targetcasestudy-1004.target.orders`o
inner join `targetcasestudy-1004.target.payments`p
on o.order_id = p.order_id
group by 1,2
order by 2
```

Result:

Row /	payment_type ▼ //	months_wise_data	no_of_orders ▼ //
1	credit_card	1	6103
2	UPI	1	1715
3	voucher	1	477
4	debit_card	1	118
5	UPI	2	1723
6	credit_card	2	6609
7	voucher	2	424
8	debit_card	2	82
9	credit_card	3	7707
10	UPI	3	1942
11	debit_card	3	109
12	voucher	3	591
13	voucher	4	572
14	credit_card	4	7301

2. Count of orders based on the no. of payment instalments.

```
select payment_installments,
count(*) as no_of_orders
from `targetcasestudy-1004.target.payments`
group by payment_installments
```

Row	payment_installment	no_of_orders ▼ /
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16
15	14	15

Recommendations:

- 1. Different kind of vouchers or gift cards can be sent to the customers who come under medium range buyer's category.
- **2.** Solving the supply change issue in bottom 5 states where the delivery is not so fast.
- **3.** Understanding the needs of the customers by getting in touch with them which belongs to bottom 5 states in terms of number of customers and understanding their needs.