

I. Suite arithmétique

Définition

Une suite arithmétique est une suite de nombres où chaque terme, à partir du deuxième, est obtenu en ajoutant toujours un même nombre au précédent, appelé raison :

$$u_{n+1} = u_n + \mathbf{r}$$

Propriété

Dans une suite arithmétique de raison r, le terme u_n est obtenu à partir du premier terme par la relation :

- $u_n = u_0 + nr$ (lorsque le terme initial est u_0)
- $u_n = u_1 + (n-1)r$ (lorsque le terme initial est u_1)

	+ r	+r +	- r	
/	_ /	\ /		
u ₀	u ₁	u ₂	U ₃	 U _n
	$u_1 = u_0 + r$	$u_2 = u_0 + 2r$	$u_3 = u_0 + 3r$	 $u_n = u_0 + nr$

Exemples

- Soit (u_n) la suite arithmétique de terme initial $u_0 = 1, 5$ et de raison r = -7. Le terme de rang n est $u_n = 1, 5 + n \times (-7)$ c'est à dire $u_n = 1, 5 \times 7n$. On a ainsi :
 - $u_4 = 1, 5 7 \times 4 = -26, 5$
 - $u_{100} = 1, 5 7 \times 100 = -698, 5$
- Soit (u_n) la suite arithmétique de terme initial $u_1 = 14$ et de raison r = 1, 3. Le terme de rang n est $u_n = 14 + (n-1) \times 1, 3$; c'est à dire $u_n = 12, 7+1, 3n$. On a ainsi :
 - $u_4 = 12, 7 + 1, 3 \times 4 = 17, 9$;
 - $u_{100} = 12, 7 + 1, 3 \times 100 = 142, 7.$

II. Suite géométrique

Définition

Une suite géométrique est une suite de nombres où chaque terme, à partir du deuxième, est obtenu en multipliant le précédent par un même nombre, appelé raison :

$$u_{n+1} = u_n \times \mathbf{q}$$

Propriété

Dans une suite géométrique de raison q, le terme u_n est obtenu à partir du premier terme par la relation :

- $u_n = u_0 \times q^n$ (lorsque le terme initial est u_0)
- $u_n = u_1 \times q^{n-1}$ (lorsque le terme initial est u_1)

Exemples

Soit (u_n) la suite géométrique de terme initial $u_0 = 2, 4$ et de raison q = 0, 6. Le terme de rang n est $u_n = 2, 4 \times 0, 6^n$.

 $u_n = u_1 \times q^{n-1}$

On a ainsi:

- $u_4 = 2, 4 \times 0, 6^4 = 0,31104$;
- $u_{100} = 2, 4 \times 0, 6^{100} = 0.$
- Soit (u_n) la suite arithmétique de terme initial $u_1 = 0, 7$ et de raison q = 2, 2. Le terme de rang n est $u_n = 0, 7 \times 2, 2^{n-1}$.

On a ainsi:

- $u_5 = 0, 7 \times 2, 2^4 = 16,39792;$
- $u_1 1 = 0, 7 \times 2, 2^{10} = 1859.$