Assignment Date	29 September 2022
Student Name	T.SOWMIYA
Student Roll Number	E1194038
Maximum Marks	2 Marks

Data Visualization and Pre-processing

Perform Below Tasks to complete the assignment:-

Tasks:-

- 1. Download the dataset: Dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations.
 - Univariate Analysis
 - Bi Variate Analysis
 - Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent & independent variables
- 9. Scale the independent variables
- 10. Split the data into training and testing

SOLUTIONS:

1.Download the dataset: Dataset data set is churn_modeling.csv 2)Load the dataset.

n []:	import pandas as pd														
n []:	<pre>dataset = pd.read_csv("Churn_Modelling.csv") dataset.head()</pre>														
ut[]:	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	
	0 1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1	
	1 2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	
	2 3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1	
	3 4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0	
	4 5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0	

3) Perform Below Visualizations. \bullet Univariate Analysis \bullet Bi - Variate Analysis \bullet Multi - Variate Analysis

```
In []: #univariate
    sns.displot(dataset['CreditScore'])
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef88c81820>


```
In [ ]:
sns.displot(dataset['NumOfProducts'])
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c2300d0>


```
In [ ]: #bi variate
    sns.relplot(x="CreditScore",y='Age',data=dataset)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c2aa2e0>

In []:
 sns.relplot(x="CreditScore",y='Age',hue="IsActiveMember",data=dataset)

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef868a98e0>


```
In [ ]:
    sns.catplot(x="Gender",y='Age',data=dataset)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1ef8c34f4f0>

4)Perform descriptive statistics on the dataset.

import pandas as pd
import numpy as np
ds = pd.read_csv("Churn_Modelling.csv")
ds.head(2)

[]:	KowNumber	Customeria	Surname	CreditScore	Geograpny	Gender	Age	ienure	Balance	NumOTProducts	HasCrCard	ISACTIVEIVIEMBER	EstimatedSalary	Exited	
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	

In []: ds.isnull().mean() RowNumber 0.0 Out[]: CustomerId 0.0 Surname 0.0 CreditScore 0.0 Geography 0.0 Gender 0.0 Age 0.0 Tenure 0.0 Balance 0.0 NumOfProducts 0.0 HasCrCard 0.0

0.0

0.0

0.0

dtype: float64

Exited

IsActiveMember

EstimatedSalary

]:	ds.d	escribe()														
]:		RowNumb	er Custo	merld	CreditScore	Age	Te	nure	Ва	alance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSa	alary	Exite
	count	10000.000	00 1.00000	00e+04 10	0000.00000	10000.000000	10000.00	0000	10000.00	00000	10000.000000	10000.00000	10000.000000	10000.00		000.0000
	mean	5000.500	00 1.56909	4e+07	650.528800	38.921800	5.01	2800	76485.88	89288	1.530200	0.70550	0.515100	100090.23	9881	0.20370
	std	2886.895	68 7.19361	9e+04	96.653299	10.487806	2.89	2174	62397.40	05202	0.581654	0.45584	0.499797	57510.49	2818	0.40276
	min		00 1.55657		350.000000	18.000000		0000		00000	1.000000	0.00000	0.000000	11.58		0.00000
	25%		00 1.56285		584.000000	32.000000		0000		00000	1.000000	0.00000	0.000000	51002.11		0.00000
	50%		00 1.56907		652.000000	37.000000		0000	97198.5		1.000000	1.00000	1.000000	100193.91		0.00000
	75%		00 1.57532		718.000000	44.000000			127644.24		2.000000	1.00000	1.000000	149388.24		0.00000
	max		00 1.58156		850.000000	92.000000			250898.09		4.000000	1.00000	1.000000	199992.48		1.00000
1.		lle the Miss	ing values													
			ustomorld	Surnama	CraditScar	e Geography	Condor	۸۵۵	Tonuro	Bala	nco NumOfBros	luete HacCrC	ard IsActiveMen	hor Estimat	odCalary	Evited
]: _		1	15634602	Hargrave				42	2		0.00	1	1		101348.88	
1		2	15647311	Hill				41	1	83807		1	0		12542.58	
2		3	15619304	Onio				42		159660		3	1		13931.57	
		4	15701354					39	1		0.00	2	0		93826.63	
-		5	15737888	Boni			Female Female	43	'	125510		1	1		79084.10	
n [] ut[]	Rou	ntaset.isn «Number stomerId	ull().sum 0 0	()												
	Cre Geo Geo	rname editScore ography nder	0 0 0													
	Age Ter	ure	0													
		lance nOfProduct	0 s 0													
	Has	CrCard	0													
		ActiveMemb :imatedSal														
		ited /pe: int64	0													
	da	taset is not	having an	_	or null valu n usedfill		et will hav	ve an	y missing	g values	s,we can handle	it in followin	g ways 1) lot of r	nissimg valu	esrer	move 2) l
	6)Fin	d the outlie	ers and rep	lace the o	utliers											
[]:	dat	aset.skew()													
	ic_o		is depre										e columns in Da efore calling t			s (with
[]:	RowN	umber omerId	0.00													
	Cred	omerld itScore	-0.07	1607												
	Age Tenu	re	1.01 0.01													
		nce	-0.14	1109												
		fD														
	NumO HasC	fProducts rCard	0.74 -0.90	1812												
	NumO HasC IsAc		-0.90 -0.06	1812 0437												

```
In [ ]: sns.boxplot(dataset["Age"])
       C:\ProgramData\Anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(
<AxesSubplot:xlabel='Age'>
                30 40 50 60
Age
 In [ ]:
                      q1= dataset["Age"].describe()["25%"]
                      q3= dataset["Age"].describe()["75%"]
 In [ ]:
                      q1
                    32.0
 Out[]:
 In [ ]:
                      q3
                    44.0
 Out[]:
 In [ ]:
                      iqr=q3-q1
                      iqr
                    12.0
 Out[]:
```

```
In [ ]:
              l_b=q1-(1.5*iqr)
                u_b=q3+(1.5*iqr)
 In [ ]:
               1 b
              14.0
 Out[]:
 In [ ]:
              l_b=q1-(1.5*iqr)
                u_b=q3+(1.5*iqr)
 In [ ]:
              1 b
              14.0
 Out[]:
In [ ]: l_b=q1-(1.5*iqr) u_b=q3+(1.5*iqr)
In [ ]: 1_b
Out[]: 14.0
In [ ]: u_b
Out[ ]: 62.0
In [ ]: dataset[dataset["Age"]<l_b]</pre>
Out[ ]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
In [ ]: dataset[dataset["Age"]>u_b].head()
Out[]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
       58 59 15623944 Tien 511 Spain Female 66 4 0.00 1 1 1 0 1643.11
      85 86 15805254 Ndukaku 652 Spain Female 75 10 0.00
                                  670 Spain Female 65 1 0.00 1 1 1 1 177655.68
```

65, 73, 65, 72, 67, 67, 79, 80, 68, 75, 66, 66, 70, 63, 72, 64, 64, 70, 67, 82, 63, 69, 65, 69, 64, 65,

```
In [ ]:
          dataset.dtypes
         RowNumber
                               int64
Out[]:
         CustomerId
                               int64
         Surname
                              object
         CreditScore
                               int64
         Geography
                              object
         Gender
                              object
                               int64
         Age
         Tenure
                               int64
         Balance
                             float64
         NumOfProducts
                               int64
         HasCrCard
                               int64
         IsActiveMember
                               int64
         EstimatedSalary
                             float64
         Exited
                                int64
         dtype: object
 In [ ]:
         outlier_list=list(dataset[dataset["Age"]>u_b]["Age"])
         outlier_list
        [66,
 Out[]:
         75,
         65,
```

74,

67,

66,

67,

63,

70,

71,

72, 67,

74,

76,

66,

63,

66,

68,

67,

63,

71,

66,

69,

73,

65,

66,

64, 69,

64,

77, 74,

65,

70,

67,

69,

67,

74,

69,

74,

74,

64,

63,

63,

70,

74, 65,

72,

77,

66,

65,

74,

88,

63, 71,

63,

64,

67,

70,

68,

71,

66,

75,

67,

73,

69,

76,

63,

85,

67,

74,

76,

66,

69,

66,

72,

63,

71,

63,

74,

67,

72, 72,

66,

84,

71,

66,

63,

74,

69,

84,

67, 64,

68,

66,

77,

70,

67,

79,

67, 76,

73,

66,

67,

64,

73,

76,

72,

64, 71,

63,

70,

65,

66,

65,

80, 66,

63,

63,

63,

63,

66,

74,

69,

63, 64,

76, 75,

68,

69,

77,

64,

66,

74,

71,

67,

68,

64,

68, 70,

64,

75,

66,

64,

78,

65, 74,

64,

64,

71,

77,

79,

70,

81,

64,

68,

68,

63,

79, 66,

64,

70,

69,

71,

72,

66,

68,

63, 71,

72,

72,

64,

78,

65,

65,

67,

63,

68,

71,

73,

64, 66,

71,

69,

71,

66,

76,

69,

73,

64,

64,

75,

73,

71,

72,

63, 67,

68,

73,

67,

64,

63,

92, 65,

75, 67,

71,

64,

66, 64,

66,

67,

77,

92,

67, 63,

66,

66,

68,

65,

72,

71,

76, 63,

67,

67,

66,

67,

63,

70,

72,

77,

74,

72,

73,

77,

67, 71,

64, 72,

81,

76,

69,

68,

74,

64,

64,

71,

68, 63,

67,

63,

64,

76,

63,

63,

68,

67, 72,

70,

81,

67,

73,

66,

68,

71, 66,

63,

75,

69,

64, 69,

70,

71,

71,

66, 70,

63,

64,

65,

63, 67,

71,

67,

65,

63,

73,

66,

64,

72,

71,

69,

67, 64,

81,

73,

63,

67,

74,

83,

69,

71,

78,

63,

70,

69,

72, 70,

63,

74,

80,

69,

72,

67, 76,

71,

67,

71,

78,

63,

63,

68,

64,

70,

78, 69,

68,

64,

64,

77,

77]

```
After removing outliers
In [ ]:
    dataset["Age"]=dataset["Age"].replace(outlier_dict)
    sns.boxplot(dataset["Age"])
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Cout[]:
In [ ]:
                  outlier_dict={}.fromkeys(outlier_list,u_b)
                  outlier_dict
Out[ ]: {66: 62.0,
                  75: 62.0,
                  65: 62.0,
                  73: 62.0,
                  72: 62.0,
                  67: 62.0,
                  79: 62.0,
                  80: 62.0,
                  68: 62.0,
                  70: 62.0,
                  63: 62.0,
                  64: 62.0,
                  82: 62.0,
                  69: 62.0,
                  74: 62.0,
                  71: 62.0,
                  76: 62.0,
                  77: 62.0,
                  88: 62.0,
                  85: 62.0,
                  84: 62.0,
                  78: 62.0,
                  81: 62.0,
                  92: 62.0,
                  83: 62.0}
```

7)Check for Categorical columns and perform encoding.

```
In [ ]:
                 dataset.dtypes
                RowNumber
                                              int64
    Out[ ]:
                CustomerId
                                             int64
                Surname
                                           object
                CreditScore
                                             int64
                Geography
                                           object
                Gender
                                           object
                Age
                                             int64
                Tenure
                                              int64
                               float64
                Balance
                NumOfProducts
                                          int64
                HasCrCard
                                              int64
                IsActiveMember
                                             int64
                EstimatedSalary
                                           float64
                Exited
                                              int64
                dtype: object
In [ ]: from sklearn.preprocessing import LabelEncoder
In [ ]: le=LabelEncoder()
      letLabelEncoder()
dataset['Geography']=le.fit_transform(dataset['Geography'])
dataset['Gender']=le.fit_transform(dataset['Gender'])
In [ ]: dataset.head()
Out[ ]: RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
                                          0 42
            1 15634602 Hargrave
                                                       0.00
                                                                                        101348.88
     1 2 15647311 Hill 608 2 0 41 1 83807.86
                                                                                       112542.58
           3 15619304 Onio
     2
                              502
                                      0 0 42
                                                 8 159660.80
                                                                                       113931.57
     3 4 15701354 Boni 699
                                     0 0 39 1 0.00
                                                                       0 0 93826.63
           5 15737888 Mitchell 850
                                     2 0 43 2 125510.82
                                                                                        79084.10
         8)Split the data into dependent and independent variables.
          y=dataset['Exited']
          x=dataset.drop(columns=['Exited','CustomerId','RowNumber','Surname'],axis=1)
 In [ ]:
 Out[ ]:
                 0
                 1
         4
                 0
         9995
         9996
                0
         9997
                 1
         9998
                 1
         9999
         Name: Exited, Length: 10000, dtype: int64
```

In []:	x										
Out[]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
	0	619	0	0	42	2	0.00	1	1	1	101348.88
	1	608	2	0	41	1	83807.86	1	0	1	112542.58
	2	502	0	0	42	8	159660.80	3	1	0	113931.57
	3	699	0	0	39	1	0.00	2	0	0	93826.63
	4	850	2	0	43	2	125510.82	1	1	1	79084.10
	9995	771	0	1	39	5	0.00	2	1	0	96270.64
	9996	516	0	1	35	10	57369.61	1	1	1	101699.77
	9997	709	0	0	36	7	0.00	1	0	1	42085.58
	9998	772	1	1	42	3	75075.31	2	1	0	92888.52
	9999	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows × 10 columns

9)Scale the independent variables

```
In [ ]:
         col_names=x.columns
         from sklearn.preprocessing import scale
In [ ]:
         x=scale(x)
        array([[-0.32622142, -0.90188624, -1.09598752, ..., 0.64609167,
                 0.97024255, 0.02188649],
               [-0.44003595, 1.51506738, -1.09598752, ..., -1.54776799,
                 0.97024255, 0.21653375],
               [-1.53679418, -0.90188624, -1.09598752, ..., 0.64609167,
                -1.03067011, 0.2406869],
               ...,
               [ 0.60498839, -0.90188624, -1.09598752, ..., -1.54776799,
                 0.97024255, -1.00864308],
               [ 1.25683526, 0.30659057, 0.91241915, ..., 0.64609167,
                -1.03067011, -0.12523071],
               [ 1.46377078, -0.90188624, -1.09598752, ..., 0.64609167,
                -1.03067011, -1.07636976]])
```

0 1 2	-0.326221			Age	Tenure		NumOfProducts	riuser curu		
2		-0.901886	-1.095988	0.342615	-1.041760	-1.225848	-0.911583	0.646092	0.970243	0.0218
	-0.440036	1.515067	-1.095988	0.240011	-1.387538	0.117350	-0.911583	-1.547768	0.970243	0.2165
3	-1.536794	-0.901886	-1.095988	0.342615	1.032908	1.333053	2.527057	0.646092	-1.030670	0.2406
_	0.501521	-0.901886	-1.095988	0.034803	-1.387538	-1.225848	0.807737	-1.547768	-1.030670	-0.1089
4	2.063884	1.515067	-1.095988	0.445219	-1.041760	0.785728	-0.911583	0.646092	0.970243	-0.3652
9995	1.246488	-0.901886	0.912419	0.034803	-0.004426	-1.225848	0.807737	0.646092	-1.030670	-0.0664
9996	-1.391939	-0.901886	0.912419	-0.375612	1.724464	-0.306379	-0.911583	0.646092	0.970243	0.0279
9997	0.604988	-0.901886		-0.273008		-1.225848	-0.911583	-1.547768	0.970243	-1.0086
9998 9999	1.256835	0.306591	0.912419	0.342615	-0.695982	-0.022608	0.807737	0.646092	-1.030670	-0.1252
]:		earn.mod	del_sel	ection	import		test_split plit(x,y,te	st size	=0.2,random	state=0)
	x_train. 8000, 10									
]:	x_test.s	hape								
]: (2000, 10))								
n []: у_	_train	.shap	e						
ıt[]: (80	000,)								
n []: y_	_test.	shape	•						