第5章 单片机存储器扩展

5.1 MCS-51单片机系统扩展及结构

虽然一个单片机芯片具备了计算机的基本组成, 但其内部资源有限,一般情况下需要进行外部扩展, 以满足实际应用的要求。

一、单片机系统扩展结构

4

二、系统总线及总线构造

- 1. 什么是总线? 连接计算机各部分的一组公共信号线。有并行总线和串行总线两种结构形式。
- 2. MCS-51的并行总线结构:由三组总线构成,即地址总线、数据总线、控制总线。 地址总线(AB):单片机向外传送地址信号,用于选择存储单元和I/O端口,共有16条地址线,寻址范围64K。 数据总线(DB):单片机与存储器之间或单片机与I/O端口之间传送数据,共有8条数据线,双向传送。
 - 控制总线(CB): 一组控制信号线,有的控制信号是单片机传送给其它部件,有的控制信号是其它部件传送给单片机。

3. 单片机的串行扩展技术:

并行总线结构引线多,连接复杂,电路尺寸大。近年来出现了串行总线扩展技术。即通过串行接口实现外部资源的扩展。常用的有两种: SPI总线和I²C总线。

4. MCS-51单片机并行总线的构造

P₀口: 低8位地址线/数据线(复用,8位锁存器将地址锁存)

P2口: 高8位地址线

控制信号:

ALE: 地址锁存信号, 高电平有效;

/PSEN:外部ROM读信号,低电平有效;

/RD、/WR:外部RAM或I/O的读写信号;

/EA: 内部ROM选择信号,低电平时读外部ROM.

5.2 MCS-51单片机存储器扩展及编址技术

基

础

一、单片机存储器系统 包括程序存储器和数据存储器。程序存储器包 括片内ROM(有的芯片没有)和片外扩展ROM。 数据存储器包括片内RAM和片外扩展RAM。

图 5.3 80C51 单片机系统的存储器结构和存储空间分配

二、扩展存储器编址技术

编址: 将系统地址总线与存储芯片进行适当连接, 使一个地址只对应一个存储单元。

片内编址: 芯片内部存储单元的编址由芯片内译码电路完成,设计时只需将存储芯片地址线与系统地址线直接连接即可。

芯片选择:将高位地址线通过适当方法与存储芯片的片选信号相连接,从而完成芯片的选择。

线选法:将系统的高位地址线与存储芯片的片选端直接连接。连接简单,但地址是断续的,扩展容量受限。

译码法:将系统的高位地址进行译码,译码器输出作为片选信号。可实现连续地址扩展,有效利用存储空间。

ŦП

常用译码芯片

74LS139: 双2-4译码器

/G: 使能端,低电平有效

A、B: 译码输入

 Y_0 、 Y_1 、 Y_2 、 Y_3 : 译码输出,低电平有效

表 5-1 74LS139 真值表

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{CC} - 2G - 2A - 2B - 2Y ₀ - 2Y ₁ - 2Y ₂ - 2Y ₃
--	--

图 5.4 74LS139 译码器引脚图

输	输 入 端		输入端				出端	· · · · · · · · · · · · · · · · · · ·
使能	选	.择	N/	37	V	.,		
G	В	Α	Y ₀	Y ₁	Y ₂	Y ₃		
1	×	×	1	1	1	1		
0	0	0	0	1	1	1		
0	0	1	1	0	1	1		
0	1	0	1	1	0	1		
0	1	1	1	1	1	0		

74LS138: 3-8译码器

/E₁、/E₂、E₃: 使能端

A、B、C: 译码输入端

Y7~Y0: 译码输出, 低电平有效

图 5.5 74LS138 译码器引脚图

表 5-2 74LS138 真值表

	输入端					朝	f H	k k	岩				
	使 能			选择		v	Y ₁	Y_2	Y ₃	Y_4	Y ₅	Y ₆	Y ₇
E_3	\overline{E}_2	\overline{E}_{i}	С	В	A	Y ₀	11	12	13	14	I 5	16	17
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
0	×	×	×	X	1	1	1	1	1	1	1	1	1
X	1	×	×	X	1	1	1	1	1	1	1	1	1
×	×	1	X	X	1	1	1	1	1	1	1	1	1

5.3 MCS-51单片机程序存储器扩展

- 一、只读存储器(ROM):程序运行时只能读不能写。 程序存储器扩展使用ROM。将数据信息写入ROM称为 编程。
- •掩膜ROM:以掩膜工艺编程,由厂家在生产时完成, 适合大批量生产。
- 片 •可编程ROM (PROM):编程由用户在使用时完成, 机 但只能写入一次,经常称为OTP.ROM。
- 基 •紫外线擦除可改写ROM(EPROM):编程由用户完成, 础 用电信号编程,用紫外线擦除,允许反复擦除重新写入。
 - •电擦除可改写ROM(E²PROM):编程由用户完成, 用电信号编程,用电信号擦除,允许反复擦除重新写入。
 - •快擦写ROM(flashROM): 电信号编程,电信号擦除, 速度比E²PROM快得多。

二、典型ROM芯片

以EPROM型的2716为例进行说明。

A₁₀~A₀: 11位地址线

O7~A0: 数据输出

/CE,PGM: 片选/编程

/OE: 输出允许

Vpp: 编程电源

图 5.7 2716 引脚图

片机基

础

单

机基

4

表 5-3 2716 工作方式

引脚方式	CE/PGM	ŌĒ	$V_{ m pp}$	$O_7 \sim O_0$
读出	低	低	+5 V	程序读出
未选中	高	×	+5 V	高阻
編程	正脉冲	高	+25 V	程序写入
程序检验	低	低	+25 V	程序读出
编程禁止	低	南	+25 V	高阻

础

程序存储器扩展举例

图 5.8 单片程序存储器扩展连接图

/PSEN(外部ROM读 信号)与/OE(输出 允许信号)连接

ALE与锁存控 制信号连接

P0口经373与A7~A0 连接, 低位地址

存储映像分析

设P2.6~P2.3为0,则

 A_{15} A_{10} A_0

最高地址: 1<u>0000</u>11111111111 8FFFH

实际上有16个映像区,多映像区的重叠现象是线选法编址的一大缺点。

4

多片ROM扩展

图 5.9 两片程序存储器扩展连接图

P2.7-0时选左片,地址为0000H~1FFFH; P2.7-1时选右片,地址为8000H~9FFFH。

5.4 MCS-51单片机数据存储器扩展

RAM-

单

机

础

静态(SRAM):有电源时,信息不回丢失。

动态(DRAM):有电源,且需要刷新,才能保存信息。

典型RAM芯片: 6116

A10~A0: 地址线, 2kB

D7~D0:数据线

/CE: 片选信号

/OE: 输出允许信号

/WE: 写选通信号

表 5-4 6116 工作方式

状态	C S	ŌĒ	WE	$D_7 \sim D_0$
未选中	1	×	×	高阻
禁止	0	1	1	高阻
读出	0	0	1	数据读出
写入	0	1	0	数据写入

单

机

单片数据存储器扩展

/CS端直接接地,地址 范围为0000H~07FFH

单

机

础

线选法扩展多片数据存储器

高位地址线用 作片选信号

单

片机基础

	P_2 D	$P_0 =$		
#	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0		
I .#	01110000	0000000	最低地址	7000H
	01110111	1111111	最高地址	77FFH
I #	01101000	0 0 0 0 0 0 0	最低地址	6800 H
	01101111	11111111	最高地址	6FFFH
Ⅲ #	01011000	0000000	最低地址	5800H
	01011111	11111111	最高地址	5FFFH
I V #	0 0 1 1 1 0 0 0	0000000	最低地址	3800H
	00111111	11111111	最高地址	3FFFH

译码法扩展多片数据存储器

图 5.13 译码法 RAM 扩展使用的译码电路

	P_2 D	P_0 \square		
	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0		
I #	0000000	0000000	低地址	0000H
	00000111	1111111	高地址	07FFH
II #	00001000	0000000	低地址	0800H
1	00001111	1111111	高地址	0FFFH
#	00010000	0000000	低地址	1000H
Ì	00010111	1111111	高地址	17FFH
IV #	00011000	0000000	低地址	1800H
	00011111	1111111	高地址	1FFFH

5.5 存储器综合扩展

一、同时扩展程序存储器和数据存储器

扩展可读写的程序存储器

应用时拔掉 第1片

单 机 基

5.6 MCS-51单片机存储器系统的特点和使用

物理存储空间4个: 片内RAM、片外RAM、片内ROM、片外ROM。

逻辑存储空间3个:片内RAM128、片外RAM64K、片内外ROM64K。

存储空间的区分: 指令和硬件上加以区分, 见下图:

	内部	外部
数据	MOV 指令	MOVX 指令
存储器 M	MOV 指令	RD、WR 选通
程序 存储器	MOVC 指令 EA=1	MOVC 指令 PSEN 选通 EA=0

图 5.17 MCS-51 存储器的 4 个物理存储空间和 3 个逻辑存储空间

单片机基

础

片内外程序存储器的衔接

单片机基

础