Logistics and Introduction to the Course

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 4, 2018

Course Logistics

- Course name: Topics in Probabilistic Modeling and Inference (CS698X) "TPMI" or just "PMI"
- Timing and Venue: Tue/Th 5:10-6:30pm, KD-101
- Instructor: Piyush Rai (Email: piyush@cse.iitk.ac.in; please prefix email subject with CS698X)
- Instructor Office Hours: Wednesday 11:00-12:00pm (RM-502), or by appointment.
- Course website: https://goo.gl/iJBkh7 (where course material and readings will be posted)
- Discussion site: Piazza (https://goo.gl/UkbX1m). Please register and participate actively.
- Attendance Policy: None, but missing too many classes will make it hard for you to catch up with the material.
- Auditing? Please let me know your email id to be added to the mailing list. You may also submit homeworks and appear for exams (we'll try to grade but cannot guarantee)

TAs and Course/Project Mentors

• TAs: Shivam Bansal, Smrithi Prabhu, Vinay Verma

• Course/Project Mentors: Gundeep Arora, Nikhil Mehta, Govind Gopakumar, Archit Sharma, Nishit Asnani, Rishabh Goyal

• TA/mentor office hours/locations and contact details will soon be posted on class webpage/Piazza

Textbook and Readings

- Textbook: No official textbook required. Required reading material will be provided.
- Some books that you may use as reference
 - Kevin Murphy, Machine Learning: A Probabilistic Perspective (MLAPP), The MIT Press, 2012.
 - Christopher Bishop, Pattern Recognition and Machine Learning (PRML), Springer, 2007.
 - David Barber. Bayesian Reasoning and Machine Learning (BRML), Cambridge Univ. Press, 2012.
 - Andrew Gelman et al. Bayesian Data Analysis (BDA), Chapman & Hall/CRC, 2013

• Several other monographs on some specific topics will be provided for readings

Grading Policy

- 5 homework assignments: 30%
 - ullet Pen and paper based + some programming in MATLAB/Python
- Midterm exam: 20%
- Final exam: 30%
- Class Project: 20%
 - To be done in groups of 3
 - More details forthcoming (by next week)
 - Exceptional work in the course project may earn you a direct A grade
- Note: Exams will be closed-book (you will be provided a cheat-sheet)

Course Project

- A list of possible project ideas will soon be shared
 - Many options: Research project, implementation of research papers, survey of a topic, etc.
- Project mentors can be another source for project suggestions
- You can also propose your own idea (but discuss the scope/feasibility with me first)
- Some deadlines
 - Project proposal: Worth 5%. Due on Feb 1
 - In-class final presentation: Worth 5%. During last week of classes
 - Final report: Worth 10%. Due end of semester.

Collaboration vs Cheating

- Collaboration is encouraged. Cheating/copying will lead to strict punishments.
- Feel free to discuss homework assignments with your classmates.
- However, you are supposed to write your own solution in your own words (same goes for coding assignments)
- Plagiarism from other sources (for assignments/project) will also lead to strict punishment unless you duly credit the original source(s)
- Other things that will lead to punishment
 - Use of unfair means in the exams
 - Fabricating experimental results in assignments/project
- Important: Both copying as well as helping someone copy will be equally punishable

Probabilistic Modeling and Inference

Why Probabilistic Modeling?

Real-world data is noisy and uncertain (and often limited if data acquisition is expensive/difficult)

	Item 1	ltem 2	Item 3	 ltem n
User 1	2	3	?	 5
User 2	?	4	3	 ?
User 3	3	2	?	 3
User m	1	?	5	 4

- Consequently, inferences drawn or predictions made using such data will also be uncertain
- Important to take these aspects into account while modeling the data and making inferences
- Probabilistic modeling provides a "language" to handle this naturally by:
 - Modeling the observed data and all other unknowns via a joint probability distribution
 - Using rules of probability to make inferences about the unknowns given the observed data
- Broadly applicable to a wide range of domains, such as Vision, NLP, computational biology, robotics, finance, signal processing, and many more..

Why Probabilistic Modeling?

The Simple Framework behind Probabilistic Modeling & Inference

• Based essentially on two simple rules of probability: sum rule and product rule

$$P(a) = \sum_{b} P(a, b)$$
 (Sum Rule)
 $P(a, b) = P(a)P(b|a) = P(b)P(a|b)$ (Product Rule)

- Note: For continuous random variables, sum is replaced by integral: $P(a) = \int P(a,b)db$
- Another rule is the Bayes rule (can be easily obtained from the above two rules)

$$P(b|a) = \frac{P(b)P(a|b)}{P(a)} = \frac{P(b)P(a|b)}{\int P(a,b)db} = \frac{P(b)P(a|b)}{\int P(b)P(a|b)db}$$

• All of probabilistic modeling and inference is based on consistently applying these two simple rules

Starting off: A Toy Probabilistic Model

• N observations $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$, generated by a probabilistic model with unknown params θ

- Let's treat both y and θ as random variables with a joint probability distribution $p(y, \theta)$
- Note that we can factorize this joint distribution as

$$p(\mathbf{y}, \theta) = p(\mathbf{y}|\theta)p(\theta)$$

- $p(y|\theta)$ is our posited observation/generation model for data, also called the likelihood function
 - Also helps in modeling the noise/uncertainty in the observed data
- $p(\theta)$ can encode our prior beliefs about the unknowns, called the prior distribution
- Can choose appropriate likelihood/prior to inject our domain knowledge about the problem/data

The Inference Task

- ullet Usually, two ways to perform inference for the unknowns heta
 - Find a point estimate, e.g., the "most likely" θ that might have generated the observed data y

$$\hat{\theta} = \arg\max_{\theta} p(\mathbf{y}|\theta) : \text{maximum likelihood (ML) estimation}$$
 (i.e., find θ for which data looks most probable) (ignores the prior $p(\theta)$)

ullet Perform fully Bayesian inference. Find the posterior distribution of heta using the Bayes rule

$$p(\theta|\mathbf{y}) = \frac{p(\theta)p(\mathbf{y}|\theta)}{p(\mathbf{y})} = \frac{p(\theta)p(\mathbf{y}|\theta)}{\int p(\mathbf{y},\theta)d\theta} = \frac{p(\theta)p(\mathbf{y}|\theta)}{\int p(\theta)p(\mathbf{y}|\theta)d\theta} \quad \text{(takes into account the prior)}$$

- ullet The posterior distribution provides a more holistic view of heta, not just a "point estimate"
 - Caveat: Also a much harder task in general as compared to finding the point estimate
- Another cheaper alternative is to directly find the maxima (mode) of the posterior distribution
 - Known as maximum-a-posteriori (MAP) estimation

The Inference Task (A Pictorial Illustration)

The Bayesian Inference Cycle

Bayesian inference fits naturally into an "online" learning setting

 \bullet Our belief about θ keeps getting updated as we see more and more data

Making Predictions

- ullet Can use the inferred heta to predict other unknown quantities of interest
- E.g., for a new observation y_* , we can infer its predictive distribution $p(y_*|\mathbf{y})$
- This too can be done in two ways
 - Using the MLE/MAP point estimate $(\hat{\theta})$ of θ , compute the "plug-in" predictive distribution

$$p(y_*|\mathbf{y}) = p(y_*|\hat{\theta})$$

ullet Compute the posterior predictive distribution by posterior-weighted averaging over all values of heta

$$p(y_*|\mathbf{y}) = \int p(y_*, \theta|\mathbf{y})d\theta$$

$$= \int p(y_*|\theta, \mathbf{y})p(\theta|\mathbf{y})d\theta$$

$$= \int p(y_*|\theta)p(\theta|\mathbf{y})d\theta \qquad \text{(Assumes that, given } \theta, y_* \text{ is independent of } \mathbf{y})$$

- Posterior averaged prediction is more robust (and also more informative; more on this later)
 - Caveat: Also much harder to compute as compared to the plug-in prediction

Posterior Predictive (A Pictorial Illustration)

Samples from posterior distribution of a linear model for binary classification

Equal probability contours of the resulting posterior predictive distribution

Single Parameter Model vs Multiparameter Model

- Single parameter models have only a single unknown parameter
 - This parameter does not depend on any other unknowns

- What it means: The prior $p(\theta)$ doesn't depend on any other unknown(s)
- Multiparameter models have multiple unknown parameters, e.g., hierarchical models

Multiparameter models are more commonly encountered, more powerful/flexible/expressive. But
also usually harder to do inference on (require methods such as EM, MCMC, VB inference, etc.)

Probabilistic Modeling = Density Estimation

- Any probabilistic modeling/inference problem ultimately boils down to doing density estimation
- Reason: All of the following quantities are essentially probability densities (continuous/discrete)
 - The likelihood distribution $p(y|\theta)$
 - The prior distribution $p(\theta)$
 - The posterior distribution $p(\theta|y)$
 - The plug-in predictive distribution $p(y_*|\hat{\theta})$
 - The posterior predictive distribution $p(y_*|\mathbf{y})$
- Note: In prob. modeling, even supervised learning problems reduce to doing density estimation!
 - Here the observations are of the form $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$
 - The ultimate goal is to compute plug-in predictive $p(y_*|x_*,\hat{\theta})$ or posterior predictive $p(y_*|x_*,\mathbf{X},\mathbf{y})$
 - Can compute it by modeling $p(\mathbf{X}, \mathbf{y}|\theta)$, or directly modeling $p(\mathbf{y}|\mathbf{X}, \theta)$. Both involve density est.

Some Other Benefits of the Probabilistic Approach

Modular Construction of Complex Models

- Can easily construct combinations of multiple simple probabilistic models to learn complex patterns
- An example: Can perform nonlinear regression using a mixture of linear regression models
 - It is a simple yet powerful combination of two models one that performs clustering of the data and the other that learns a linear regression model within each cluster (both learned jointly)

More generally, these are called "mixture of experts" models

Latent Variables and Generative Models

- Can endow the generative distribution $p(\mathbf{x}_n|\theta)$ with a data-point specific latent variable \mathbf{z}_n
- Each latent variable represents an "encoding" of the corresponding data point
- Such models are used in many problems, especially unsupervised learning: Gaussian mixture model, probabilistic principal component analysis, topic models, modeling sequential/time-series data, etc.

- Learning latent variable models has two benefits: (1) Each latent variable z_n can be used as a new representation of the data x_n , and (2) We can synthesize new data using by generating a z randomly and mapping it to x via the generative model $p(x|z,\theta)$ from the learned model
- Note: LVMs are another example of multiparameter models. Usually harder to do inference on, as compared to models that have no latent variables (even point estimation such as MLE is hard!)

Hyperparameter Estimation

 Every model invariably has certain hyperparameters, e.g., regularization hyperparater in a linear regression model, or kernel hyperparameters in kernel regression or kernel SVM, etc.

- This is again an example of a multiparameter model.
- Estimating the hyperparameter becomes a subroutine of the overall model's inference problem
 - Both point estimation and fully Bayesian inference possible for hyperparameters
 - Usually a hard problem but many ways to solve it

Sequential Learning and Decision-Making

- The estimate of model's uncertainty can "guide" us, e.g.
 - Given the current estimate of a function uncertainty over the input space, where should we acquire the next observation?

• This can many applications in active learning, reinforcement learning, Bayesian optimization, etc.

Model Comparison

- Suppose we have a number of models m = 1, 2, 3, ..., M to choose from
- We can compute the posterior probability of each candidate model, again using Bayes rule

$$P(m|\mathbf{y}) = \frac{P(m)P(\mathbf{y}|m)}{P(\mathbf{y})}$$
 [w

[where
$$p(\mathbf{y}|m) = \int p(\mathbf{y}, \theta|m) d\theta = \int p(\mathbf{y}|\theta, m) p(\theta|m) d\theta$$
]

- Assuming each model is equally likey to be chosen a priori, we can ignore the prior P(m)
 - Then model selection would just choose the model m with largest marginal likelihood P(y|m)

• It doesn't require a cross-validation set (can be done even for unsupervised learning problems)

Nonparametric Bayesian Modeling

• Nonparametric Bayesian Modeling: A principled way to learn "right" model size/complexity

The model size can grow with data (especially desirable for online learning settings)

Tentative List of Topics

- Basics of probabilistic modeling and inference for single and multiparameter/hierarchical models
 - This covers estimating std. probability distributions from data, and regression/classification problems
- Basics of probabilistic graphical models
- Latent variable models for unsupervised learning and supervised learning
- Approximate inference methods (MCMC and Variational Inference, including recent advances)
- Nonparametric Bayesian models (Gaussian Process, Dirichlet Process, Beta Process)
- Latent variable models for text data and relational data (e.g., social networks)
- Latent variable models for sequential and time-series data
- Bayesian Optimization and sequential decision making problems
- Probabilistic Programming (implementing probabilistic models using Stan/Edward)
- Other topics based on students' interest

Course Goals

- Learn the basics of probabilistic modeling of data
- Learn how to formulate complex data modeling problems via probabilistic models
- Learn the implications of making specific choices of likelihood/prior distributions and how these choices influence the model's properties and inference
- Understand the maths as well as the intuition behind the inference methods used for estimating the unknowns in such models
- Learn how to implement such models (both from scratch, as well as using support from some existing software frameworks such as Stan/Edward)
- Get acquainted with recent developments in the field of probabilistic modeling and inference
- Use the course project to reinforce the topics you learn about in the class, and explore other topics beyond what is covered in the class

Pre-requisites and My Expectations from You

- Need to be comfortable with the following
 - Standard (discrete/continuous) probability distributions and their properties
 - Various other probability related concepts such as expectation, KL divergence, etc.
 - Linear algebra and calculus on vectors/matrices
 - Basic optimization techniques such as gradient and stochastic gradient methods
 - Note: I'll provide some pointers to quick refreshers on these (plus a tutorial session next week)
- Should try to work out (as an exercise) any derivations that I might skip in the class but request you to try yourself (if they are not immediately obvious to you)
 - In case of difficulty, get help from the instructor, TAs, or your classmates
- Regularly go through the provided reading materials
- Attend classes regularly (even though the attendance is not enforced)