LISTA01: Rozwiązywanie i własności równań różniczkowych

Przygotowanie teoretyczne

- 1. Na czym polega całkowanie równań różniczkowych? Co to jest całka ogólna i szczególna r.r.?
- 2. Przedstaw procedurę rozwiązywania równań różniczkowych na czym polega klasyczna metoda rozwiązywania równań różniczkowych? Kiedy można ją zastosować?

Oznaczenia: u – wejście, wymuszenie; x – wyjście, rozwiązanie; a, b – parametry

Zadania 1. Dla podanych przykładów, przedstaw rozwiązanie ogólne i szczególne dla:

- a) u(t)=2, warunki początkowe to stan równowagi,
- **b)** u(t)=2, warunki poczatkowe x(0)=2 (jeśli potrzeba więcej, to wybrać dowolne)
- c) $u(t)=3\cdot 1(t)$, w warunkach początkowych wszystkie pochodne x(t) są równe zero.
- **d)** $u(t)=3\cdot\sin(2t)$, zerowe warunki początkowe

$$1) \quad a\dot{x}(t) + 2x(t) = 3u(t)$$

5)

- $2) \quad 2\dot{x}(t) + ax(t) = 2u(t)$
- 3) $2\ddot{x}(t) + b\dot{x}(t) + 3x(t) = 2u(t), b=10$
- 4) $2\ddot{x}(t) + b\dot{x}(t) + 3x(t) = 2u(t), b=2$

Zastosuj ogólna metodę rozwiązywania równań różniczkowych liniowych.

LAB: Rozwiąż równania symulacyjnie i porównaj z rozwiązaniem analitycznym.

Zadania 2. Dla podanego równania różniczkowego

- a) podaj czy jest liniowe, stacjonarne, jaki ma rząd,
- b) napisz równanie statyczne i charakterystyczne,
- c) wyznacz punkt/punkty równowagi,
- d) podaj przykłady warunków początkowych, Przykłady:

1)
$$a\ddot{x}(t) + \dot{x}(t) + bx(t) = \ddot{u}(t) + 2u(t)$$

11)
$$\ddot{x}^2(t) + 3\dot{x}(t) + ax(t) = u^2(t)$$

2)
$$\ddot{x}(t) + 3\dot{x}(t) + b\sqrt{x(t)} = u(t)$$

12)
$$\ddot{x}(t) + 3\dot{x}(t) + ax(t) = u^2(t)$$

3)
$$4\ddot{x}(t) + \ddot{x}(t) + a\dot{x}(t) + x^2(t) = u(t)$$

13)
$$b^2 \ddot{x}(t) + 2\dot{x}(t) + x(t) = \sqrt{a}u(t) + \dot{u}(t)$$

4)
$$\ddot{x}(t) + 4\dot{x}(t) + ax^{3}(t) = u(t)$$

14)
$$3\ddot{x}(t) + 2\ddot{x}(t) + \dot{x}(t) = 2u_1(t) + \dot{u}_1(t)$$

5)
$$\ddot{x}(t) + 2\dot{x}(t) + ax(t) = u(t) + 2\dot{u}(t)$$

15)
$$a\dot{x}(t) + 2ab x(t) = 2\ddot{u}(t) + \dot{u}(t)$$

16) $a\dot{x}(t) - 2ab x(t) = 2u(t) + \dot{u}(t)$

6)
$$\ddot{x}(t) + a\dot{x}(t) + 2x(t) = u(t) + a\dot{u}(t)$$

7)
$$a^2\ddot{x}(t) + \ddot{x}(t) + 3\dot{x}(t) + u_1(t)x(t) = u_2(t)$$

7)
$$a^2\ddot{x}(t) + \ddot{x}(t) + 3\dot{x}(t) + u_1(t)x(t) = u_2(t)$$

8)
$$2\ddot{x}(t) + 3\dot{x}(t) + a(t)x(t) = 2u_1(t) + 3u_2(t)$$

9)
$$5\ddot{x}(t) + \ddot{x}(t) + 3\dot{x}(t) + x(t)u_1(t) = u_2(t)$$

10)
$$2\ddot{x}(t) + 3\dot{x}(t) + a^3x(t) = 2u_1(t) + 3u_2(t)$$

LAB*: Rozwiąż analitycznie i/lub symulacyjnie

Zadania 3. Dla układu, który ma wskazane bieguny:

- a) przedstaw ogólna postać rozwiązania swobodnego (wskaż które parametry zależa od biegunów)
- b) naszkicuj rozwiązanie swobodne i jego składniki (z dokładnością do warunków początkowych)
- c) naszkicuj odpowiedź skokową układu o podanych biegunach
- d) naszkicuj odpowiedź impulsowa układu o biegunach
- e) naszkicuj składniki rozwiązania swobodnego i wskaż który z nich zaniknie najszybciej? (uzasadnij)
- f) który biegun ma decyduje o czasie zanikania rozwiązania swobodnego? (uzasadnij)
- g) zaproponuj i uzasadnij uproszczenie układu

Przykład 1

Przykład 2

LAB: Sprawdź wykresy symulacyjnie dla wybranych wartości biegunów. Nieważne są konkretne wartości biegunów, ale relacje pomiędzy wartościami (podobne, znacznie różne). Jeśli w rozwiązaniu występują oscylacje to tak dobrać wartość pulsacji, żeby te oscylacje były widoczne. Porównaj rozwiązania dla różnych warunków początkowych.

Zadania 4. Porównaj własności układów o biegunach oznaczonych 'x' i 'o': **a)** który szybciej osiągnie stan równowagi,

LAB: Porównaj reakcje układów symulacyjnie.

Na podsumowanie kursu

Zadania 5.

- 1) Znamy wzmocnienie układu k_u i jego bieguny (np. -3 i -2 \pm j). Należy odtworzyć równanie różniczkowe.
- 2) Znamy równanie statyczne układu: x=3u, oraz jego bieguny (wykres). Należy odtworzyć równanie różniczkowe
- 3) Uprość układ z zadania 1 i 2 (jeśli to możliwe) i przedstaw równanie różniczkowe po uproszczeniu
- 4) Dla jednego układu znamy bieguny (np. -3, -2), a dla drugiego układu znamy tłumienie i pulsację drgań. Który układ jest szybszy?

Podpowiedzi i/lub odpowiedzi

Zadanie 1

Zadanie 2

	Typ, rząd	R.statyczne	R.charakterystyczne	P.równowagi
1	ls, 2	bx = 2u	$a\lambda^2 + \lambda + b = 0$	
2	n, 2	$b\sqrt{x} = u$	-	
3	n, 3	$x^2 = u$	-	
4	n, 2	$ax^3 = u$	-	
5	ls, 2	ax = u	$\lambda^2 + 2\lambda + a = 0$	
6	ls, 2	2x = u	$\lambda^2 + a\lambda + 2 = 0$	
7	n, 3	$u_1 x = u_2$	-	
	lns, 3, gdy $u_1(t)$ można przyjąć	$u_{10}x = u_2$		
	jako parametr			
	ls, 3, gdy $u_1(t)$ - stały parametr			
8	lns, 2	$a_0 x = 2u_1 + 3u_2$		
9	n, 3	$xu_1 = u_2$	-	
10	ls, 2	$a^3x = 2u_1 + 3u_2$	$2\lambda^2 + 3\lambda + a^3 = 0$	
11	n, 2	$ax = u^2$	-	
12	n,2	$ax = u^2$	-	
	ls,2, gdy $u^2(t)$ jako $u_I(t)$	$ax = u_1$	$\lambda^2 + 3\lambda + a = 0$	
13	ls, 2	$x = \sqrt{a}u$	$b^2\lambda^2 + 2\lambda + 1 = 0$	
14	ls, 3	$0 = 2u_1$	$3\lambda^3 + 2\lambda^2 + \lambda = 0$	-
15	ls,1	2abx = 0	$a\lambda + 2ab = 0$	
16	ls, 1	-2abx = 2u	$a\lambda - 2ab = 0$	

Typ: ls – liniowe stacjopnarne, lns – liniowe niestacjonarne, n - nieliniowe

Sprawdzenie (część odpowiedzi): Zadanie 3

