SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR

RO.	LL NO: Total number of pages:[2]
Tota	al number of questions:06
	B.TechCSE/4 th Sem Discrete Structures (RG RP)
	Subject Code:BTCS402A /BTCS302/ BTCS402
	ime allowed: 3 Hrs 2011 battu onwoods) Max Marks:60
•	All questions are compulsory
	PART A (2×10)
2,1.	Answer in brief:
	(a) Define a group with the help of an example.
	(b) Define an equivalence relation with the help of an example.
	(c) Define a field.
	(d) What is Euler circuit'?
	(e) Define PIGEONHOLE principle.
	(f) A non-directed graph G has 8 edges, Find the number of vertex, if the degree of each vertex is 2?
	(g) In how many ways can 5 boys and 5 girls be seated around a table so that no two girls
	are together
	(h) Define a tautology.
	(i) Define minimal spanning tree.
	(j) If $\{B, +, ., '\}$ is a Boolean algebra, then $(a+b)' = a'.b'$ (all CO's)
	[1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982] - 1982]

PART B (8×5)

Q.2. Find the homogeneous solution and particular solution of recurrence relation $a_{r+2} - 2a_{r+1} + a_r = 3r + 5$, $a_0 = 1$, $a_1 = 2$.

OR

Use generating function to solve the recurrence relation $a_r = a_{r-1} + 2a_{r-2} + 2^r$, where $a_0 = 4$, $a_1 = 12$

Q.3. Sate and prove Euler's Theorem on graphs.

OR

Define Euler Circuit and Hamiltonian Circuit and also give examples of a graph

- a. Which has an Euler circuit but not a Hamiltonian Circuit.
- b. Which has a Hamiltonian Circuit but not an Euler circuit.
- c. Which has both Hamiltonian Circuit and Euler circuit.
- d. Which has neithera Hamiltonian Circuit nor an Euler circuit.

CO₅

- Q.4. a. With the help of truth table, show that $p \Leftrightarrow q \equiv (p \lor q) \Rightarrow (p \land q)$.
 - b. Verify that proposition $p \lor \Theta(p \land q)$ is a tautology.

OR

CO₂

Use Karnaugh map to find the minimal sum for f(x, y, z, t) = xy' + xyz + x'y'z' + x'yzt'

Q.5. Prove that every group of a cyclic group is cyclic.

CO4

OR

In a class of 80 students, 50 students know English, 55 know French and 46 know German language. 37 students know English and French, 28 students know French and German, 7 students know none of the languages. Find out

- (a) How many students know all the three languages?
- (b) How many know only one language?

COI

Q.6. Draw k-map and simplify the Boolean expression $\sum (0,2,6,8,10,12,14,15)$.CO2

OR

Define a spanning tree. Obtain a minimal spanning tree for the graph using Prim's algorithm

