Demostração - Aula 3

Análise de Tópicos

Análise, ou Modelagem, de Tópicos nos permite analisar grandes volumes de texto atravéz de técnicas de clusterização ou agrupamento dos documentos em tópicos!

Grande parte dos dados disponíveis no mundo real não estão classificados e por isso não podemos aplicar as técnicas de aprendizado supervisionado que usamos anteriormente!

Nestes casos, onde trabalhamos com dados não classificados, podemos tentar encontrar suas classificações agrupando-os em tópicos.

Importante!

Por não termos junto aos dados sua verdadeira classificação, nesses casos não sabemos a "resposta correta" o que torna muito difícil mensurar o quanto nosso algoritmo está acertando ou errando!

Tudo que sabemos (ou assumimos) é que documentos que forem agrupados no mesmo tópico compartilham ideias similares.

Fica a cargo do usuário (cientista/analista de dados, eng. machine learning e etc) se os grupos formados são coerentes e o que cada grupo representa!

LDA - Latent Dirichlet Allocation

LDA ou Latent Dirichlet Allocation é um "modelo probabilístico generativo" de uma coleção composta de partes. Em termos de modelagem de tópicos, as coleções são documentos e as partes são palavras, ou frases (n-gramas).

O LDA tem esse nome pois usa a Distribuição Dirichlet (do matemático alemão Johann Peter Gustav Lejeune Dirichlet) para encontrar tópicos "latentes" nos documentos.

Em 2003, esse método foi publicado pela primeira vez por David Blei, Andrew Ng e Michael Jordan e pode ser <u>lido aqui</u>

Para entender melhor como o método funciona recomendo a leitura do artigo original no link acima!

LDA

Existem algumas premissas na aplicação do LDA:

- 1. Documentos com assuntos similares usam palavras similares
- 2. Os tópicos latentes podem ser encontrados atravez dos grupos de palavras que ocorrem juntas
- 3. Documentos são distribuições de probabilidade sobre os tópicos latentes
- 4. Tópicos são também distribuições de probabilidade sobre as palavras

Documentos são distribuições de probabilidade sobre os tópicos latentes

Tópicos são também distribuições de probabilidade sobre as palavras

Exemplo Análise de Tópicos

import pandas as pd

df = pd.read_csv("https://dados-ml-pln.s3-sa-east-1.amazonaws.com/produtos.csv", delimiter=";", end

df.describe()

→		nome	descricao	categoria
	count	4080	2916	4080
	unique	3696	2460	4
	top	Mais Escuro - Cinquenta Tons Mais Escuros Pel	JOGO ORIGINAL. NOVO. LACRADO. PRONTA ENTREGA	livro
	freq	20	39	1020

```
df.dropna(inplace=True)

df["texto"] = df['nome'] + " " + df['descricao']

df.describe()
```

→				4		
]		ne	ome	descricao	categoria	texto
	count	29	916	2916	2916	2916
	unique	25	584	2460	4	2646
	top	Mais Escuro - Cinque Tons Mais Escuros Po		JOGO ORIGINAL. NOVO. LACRADO. PRONTA ENTREGA	livro	Boneco Dragon Ball Z Son Gokou Produto novo
	freq		20	39	838	20
df.ca	itegoria.va	lue_counts()				
→		count				
	categori	a				
	livro	838				
	maquiager	n 788				
	brinquedo	668				
	game	622				
	dtype: int64					
# amo		del_selection impo	ort t	rain_test_split		
df_tr	<pre>df_train, df_test = train_test_split(df,</pre>					

stopwords do nltk

nltk.download('stopwords')

vect.fit(df_train.texto)

treinamento do modelo

LDA.fit(text_vect_train)

stops = nltk.corpus.stopwords.words('portuguese')

text_vect_train = vect.transform(df_train.texto)

[nltk_data] Downloading package stopwords to /root/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

from sklearn.feature_extraction.text import CountVectorizer

vect = CountVectorizer(ngram_range=(1,1), stop_words=stops)

from sklearn.decomposition import LatentDirichletAllocation

LDA = LatentDirichletAllocation(n_components=4, random_state=42)

import nltk

vetorização

 \rightarrow

```
→
                                                             (i) (?)
                     LatentDirichletAllocation
     LatentDirichletAllocation(n_components=4, random_state=42)
#LDA.get params()
LDA.components_.shape
\rightarrow \overline{\phantom{a}} (4, 31506)
LDA.components_[0]
→ array([20.37408976, 5.46762667, 0.25328679, ..., 0.25000302,
             5.34517087, 1.24878944])
LDA.components_[0].argsort()
\rightarrow array([11512, 26875, 15675, ..., 19932, 18447, 23485])
LDA.components_[0].argsort()[:15]
→ array([11512, 26875, 15675, 21606, 15221, 18622, 20935, 20156, 30034,
             9015, 14451, 27895, 15649, 30563, 16624])
vect.get_feature_names_out()[15649] #20811
\rightarrow
    'golf'
# top palavras dos tópicos
terms = vect.get_feature_names_out()
for index, topic in enumerate(LDA.components_):
    terms_comp = zip(terms, topic)
    sorted_terms = sorted(terms_comp, key= lambda x:x[1], reverse=True)[:15]
    print("THE TOP 15 WORDS FOR TOPIC # "+str(index)+": ")
    #print(sorted_terms)
    print([t[0] for t in sorted_terms])
    print('\n')
   THE TOP 15 WORDS FOR TOPIC # 0:
     ['pincel', 'kit', 'maquiagem', 'cores', 'produto', 'cm', 'profissional', 'maleta', 'base', 'son
     THE TOP 15 WORDS FOR TOPIC # 1:
     ['produto', 'edição', 'livro', 'páginas', 'novo', 'vida', 'mundo', 'anos', 'história', '00', ']
     THE TOP 15 WORDS FOR TOPIC # 2:
     ['cílios', 'harry', '12', 'potter', 'produto', 'kit', 'fio', 'super', 'produtos', 'compra', 'ta
     THE TOP 15 WORDS FOR TOPIC # 3:
     ['mercado', 'produto', 'pagamento', 'prazo', 'frete', 'entrega', 'envio', 'jogo', 'produtos',
```

```
. . .
0 - maquiagem
1 - livro
2 - brinquedo
3 - game
1.1.1
→ '\n0 - maquiagem\n1 - livro\n2 - brinquedo\n3 - game\n'
. . .
for index, topic in enumerate(LDA.components_):
   print(f'THE TOP 15 WORDS FOR TOPIC #{index}')
   print([vect.get_feature_names_out()[i] for i in topic.argsort()[-15:]])
   print('\n')
→ '\nfor index, topic in enumerate(LDA.components_):\n print(f'THE TOP 15 WORDS FOR TOPIC #{i
                  print([vect.get_feature_names_out()[i] for i in topic.argsort()[-15:]])\n
     ndex}')\n
     t('\n')\n'
# aplica o modelo de analise de tópicos na base de teste
# vetorização
text_vect_test = vect.transform(df_test.texto)
# scoragem
results = LDA.transform(text_vect_test)
# contagem
print(text_vect_train.shape)
print(text_vect_test.shape)
print(text vect train.shape[0]+text vect test.shape[0])
     (2332, 31506)
     (584, 31506)
     2916
df test.texto
results[0]
    array([0.88342881, 0.02287574, 0.08830277, 0.00539267])
results.argmax(axis=1)
    array([0, 0, 3, 0, 0, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 3, 3, 3, 1, 2, 2, 1,
            3, 0, 3, 0, 1, 0, 0, 0, 3, 1, 1, 2, 3, 3, 2, 0, 0, 1, 1, 2, 3, 3,
            1, 3, 2, 0, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 3, 3, 1, 1, 1, 1,
            0, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0,
            0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 0, 1, 2, 3, 2, 0, 2, 3, 2,
            0, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 1, 3, 3, 3, 3, 0, 3, 1, 0, 1,
            1, 0, 1, 1, 1, 0, 3, 1, 3, 2, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 2,
            2, 3, 1, 1, 0, 2, 1, 1, 3, 0, 2, 2, 1, 3, 0, 1, 2, 3, 0, 1, 1, 0,
```

0, 1, 3, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 3, 3, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 2, 3, 0, 3, 0, 1,

```
0, 0, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 3,
0, 3, 1, 1, 0, 0, 1, 3, 3, 2, 1, 0, 0, 3, 0, 3, 0, 1, 1, 1, 2, 1,
3, 3, 2, 1, 3, 0, 1, 0, 2, 0, 3, 3, 0, 1,
                                          2, 3, 3, 3, 0,
3, 1, 1, 1, 1, 2, 2, 0, 1, 3, 1, 2, 1, 0, 3, 3, 1, 1, 0, 0, 0,
1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 3, 0, 2,
3, 2, 1,
        2, 0, 1,
                  3,
                     2, 0, 3,
                              1, 0, 1,
                                       1, 3, 3, 1,
                                                      3,
1, 3, 3, 3, 1, 2, 3, 2, 0, 0, 0, 1, 3, 1, 1, 0, 3, 0, 0, 0, 2, 2,
2, 1, 0, 1, 0, 1, 1, 3, 1, 3, 0, 1, 1, 1, 3, 1, 1, 1, 1, 0, 2, 1,
                     3, 1, 0, 1, 1, 3,
3, 1, 2, 1, 3, 3, 2,
                                       1, 2, 1, 3, 1,
2, 1, 3, 1, 1, 3, 3, 2, 0, 1, 3, 0, 1, 1, 0, 3, 0, 1, 3, 3, 0,
3, 2, 3, 2, 1, 2, 0, 0, 3, 1, 1, 1, 0, 3, 0, 0, 3, 1, 1, 0, 1, 3,
                              3, 0, 0, 1, 0, 3, 0, 0, 1,
0, 0, 0, 1, 0, 3, 3,
                     1, 3, 1,
                                                         1, 3, 0,
1, 1, 1, 3, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 3, 3, 3, 0,
1, 0, 0, 1, 3, 2, 3, 3, 1, 3, 1, 3, 1, 2, 1, 2, 3, 3, 1, 3, 1, 1,
2, 0, 1, 0, 3, 1, 1, 0, 1, 0, 1, 2, 3, 1, 1, 1, 3, 2, 2, 2, 2, 3,
3, 3, 0, 3, 1, 2, 3, 1, 1, 3, 0, 2, 1, 3, 2, 1, 1, 2, 0, 1, 2, 2,
1, 0, 3, 1, 3, 1, 3, 0, 3, 0, 0, 1])
```

seleciona o tópico com a maior probabilidade
df_test['topico'] = results.argmax(axis=1)

df_test.head()

```
\rightarrow
                                                      descricao
                                                                    categoria
                                                                                                 texto topico
                              nome
              Estojo Duo Iluminador
                                            DUO ILUMINADOR E
                                                                                  Estojo Duo Iluminador
              E Bronzer Belle Angel
                                                                                  E Bronzer Belle Angel
      2700
                                       BRONZER BELLE ANGEL -
                                                                  maquiagem
                                                                                                               0
                                M...
                                                      B0250 D...
                                                                                                   M...
                    Patrulha Canina
                                                                                        Patrulha Canina
                                          Kit carrinhos da Patrulha
                                                                                 Carrinhos De Fricção 6
      1297
             Carrinhos De Fricção 6
                                                                     brinquedo
                                                                                                               0
                                          canina Tamanho: Cerc...
                           Person...
                                                                                              Person...
               Pokemon Ultra Moon
                                            #Nossos produtos são
                                                                                   Pokemon Ultra Moon
      3162
                 Nintendo 3ds Midia
                                                 NOVOS e 100%
                                                                                     Nintendo 3ds Midia
                                                                                                               3
                                                                         game
                           Fisica ...
                                                   ORIGINAIS# ...
                                                                                               Fisica ...
                                     esta alta qualidade Punho de
                                                                                 Kite Pincel 12 Unidade
              Kite Pincel 12 Unidade
      2895
                                                                   maquiagem
                                             madeira Escova Co...
                                                                                   esta alta qualidade ...
                   Maleta Grande P/
                                               FOTOS REAIS DO
                                                                                      Maleta Grande P/
      2226
                        Maquiagem
                                         PRODUTO - ENVIAMOS
                                                                   maquiagem
                                                                                            Maguiagem
                Profissional Rodin
                                                SUA MAI FTA C
                                                                                    Profissional Rodin
```

df_test.head()

e		
	•	_
-	7	•

	nome	descricao	categoria	texto	topico	categ_cod
2700	Estojo Duo Iluminador E Bronzer Belle Angel M	DUO ILUMINADOR E BRONZER BELLE ANGEL - B0250 D	maquiagem	Estojo Duo Iluminador E Bronzer Belle Angel M	0	0
1297	Patrulha Canina Carrinhos De Fricção 6 Person	Kit carrinhos da Patrulha canina Tamanho: Cerc	brinquedo	Patrulha Canina Carrinhos De Fricção 6 Person	0	2
3162	Pokemon Ultra Moon Nintendo 3ds Midia Fisica	#Nossos produtos são NOVOS e 100% ORIGINAIS#	game	Pokemon Ultra Moon Nintendo 3ds Midia Fisica	3	3
2895	Kite Pincel 12 Unidade	esta alta qualidade Punho de madeira Escova Co	maquiagem	Kite Pincel 12 Unidade esta alta qualidade	0	0
2226	Maleta Grande P/ Maquiagem Profissional	FOTOS REAIS DO PRODUTO - FNVIAMOS SUA	maquiagem	Maleta Grande P/ Maquiagem Profissional	0	0

df_test.info()

<<class 'pandas.core.frame.DataFrame'>
Index: 584 entries, 2700 to 1842

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	nome	584 non-null	object
1	descricao	584 non-null	object
2	categoria	584 non-null	object
3	texto	584 non-null	object
4	topico	584 non-null	int64
5	categ_cod	584 non-null	int64

dtypes: int64(2), object(4)
memory usage: 31.9+ KB

from sklearn.metrics import accuracy_score, confusion_matrix

print(accuracy_score(df_test.categ_cod, df_test.topico))

→ 0.6575342465753424

import seaborn as sns
import matplotlib.pyplot as plt

matrix = confusion_matrix(df_test.categ_cod, df_test.topico)

plt.figure(figsize = (10,7))

sns.heatmap(df_cm, annot=True)

Y Exercício

Como já samemos, a base de dados de "produto" [1] foi utilizada para modelos de classificação supervisionados e sabemos qual foi a configuração que gerou um bom resultado. Que tal aplicarmos essas técnicas de pré-processamento que gerou um bom modelo e compararmos? Faça um teste de análise de tópicos com 4 tópicos conse as seguintes configurações:

- Remover registros com valores nulos;
- Contatenar as colunas de nome e descrição;
- Aplicar lematização em verbos;
- Amostra de 20% para teste e random_state = 42;
- Vetorização de contagem dos termos em unigramas removendo stopwords (NLTK + Spacy).

[1] https://dados-ml-pln.s3-sa-east-1.amazonaws.com/produtos.csv

```
import pandas as pd

df = pd.read_csv("https://dados-ml-pln.s3-sa-east-1.amazonaws.com/produtos.csv", delimiter=";", enc

# respota
```

Outros exemplos

max_df: float in range [0.0, 1.0] or int, default=1.0

When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None.

Google T: Ao criar o vocabulário, ignore os termos que tenham uma frequência de documento estritamente maior que o limite fornecido (palavras de parada específicas do corpus). Se flutuante, o parâmetro representa uma proporção de documentos, número absoluto de contagens. Este parâmetro será ignorado se o vocabulário não for Nenhum.

min_df: float in range [0.0, 1.0] or int, default=1

When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None.

Google T: Ao criar o vocabulário, ignore os termos que tenham uma frequência de documento estritamente menor que o limite especificado. Esse valor também é chamado de corte na literatura. Se flutuante, o parâmetro representa uma proporção de documentos, número absoluto de contagens. Este parâmetro será ignorado se o vocabulário não for Nenhum.

df_train
df_test

nome

							<u> </u>
	2700	Estojo Duo Iluminador E Bronzer Belle Angel M	DUO ILUMINADOR E BRONZER BELLE ANGEL - B0250 D	maquiagem	Estojo Duo Iluminador E Bronzer Belle Angel M	0	0
	1297	Patrulha Canina Carrinhos De Fricção 6 Person	Kit carrinhos da Patrulha canina Tamanho: Cerc	brinquedo	Patrulha Canina Carrinhos De Fricção 6 Person	0	2
	3162	Pokemon Ultra Moon Nintendo 3ds Midia Fisica	#Nossos produtos são NOVOS e 100% ORIGINAIS#	game	Pokemon Ultra Moon Nintendo 3ds Midia Fisica	3	3
	2895	Kite Pincel 12 Unidade	esta alta qualidade Punho de madeira Escova Co	maquiagem	Kite Pincel 12 Unidade esta alta qualidade	0	0
	2226	Maleta Grande P/ Maquiagem Profissional Rodin	FOTOS REAIS DO PRODUTO - ENVIAMOS SUA MALETA C	maquiagem	Maleta Grande P/ Maquiagem Profissional Rodin	0	0
vect. text_ LDA2	fit(df vect_t = Late	_train.texto) rain = vect.transfo	range=(2,2), stop_wor orm(df_train.texto) .on(n_components=4,ra	·		2)	
<u></u>		Cinquenta ions	· · · · · · · · · · · · · · · · · · ·			0	1
→ ▼	•	LatentDir	ichletAllocation	i) (? Mais Escuros Pelos	Ü	•
	Latent	tDirichletAllocatio	n(n_components=4, ran	ndom_state=4	12)		
	1842	Boneco Dragon	Produto novo	brinquedo	Boneco Dragon Ball Z Son Gokou	1	2
-	•	ras dos tópicos t.get_feature_names	;_out()				
t s p #	erms_c orted_ rint(" print(THE TOP 15 WORDS FO sorted_terms) t[0] for t in sorte	opic) ns_comp, key= lambda OR TOPIC # "+str(inde		erse=True)[:15]		
		P 15 WORDS FOR TOPI on ball', 'produto	IC # 0: novo', '30 cm', 'har	ry potter',	'boneco dragon', '	'delineador	gel', 'l
	THE TO	P 15 WORDS FOR TOP	[C # 1:	ivani lani	l of Lundoine corr	odost lsíli	os posti

['pronta entrega', 'cabo madeira', 'mercado livre', 'call of', 'madeira cerdas', 'cílios postiç

descricao categoria

texto topico categ_cod

```
THE TOP 15 WORDS FOR TOPIC # 2:
     ['atacado wow', 'wow shop', 'vendemos atacado', 'frete produtos', 'produtos vendemos', '100 rea
     THE TOP 15 WORDS FOR TOPIC # 3:
     ['mercado envios', 'mercado pago', 'prazo envio', 'prazo entrega', 'mercado livre', 'gta games
# aplica o modelo de analise de tópicos na base de teste
# vetorização
text_vect_test = vect.transform(df_test.texto)
# scoragem
results = LDA2.transform(text_vect_test)
df_test['topico'] = results.argmax(axis=1)
df_test['categ_cod'] = df_test.categoria.map(
   {'maquiagem': 0, 'brinquedo':1, 'game': 3, 'livro': 2}
print(accuracy_score(df_test.categ_cod, df_test.topico))
→ 0.21404109589041095
#df_test['categ_cod'] = df_test.categ_cod.astype(np.int64)
import seaborn as sns
```

import matplotlib.pyplot as plt

plt.figure(figsize = (10,7))
sns.heatmap(df_cm, annot=True)

matrix = confusion_matrix(df_test.categ_cod, df_test.topico)

columns=list('0123'))

df_cm = pd.DataFrame(matrix, index=list('0123'),

Comece a programar ou gere código com IA.

```
# Analisando com 8 tópicos
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split

stops = nltk.corpus.stopwords.words('portuguese')

vect = TfidfVectorizer(ngram_range=(1,1), stop_words=stops)
vect.fit(df_train.texto)
text_vect_train = vect.transform(df_train.texto)

LDA3 = LatentDirichletAllocation(n_components=8,random_state=42)
LDA3.fit(text_vect_train)

LatentDirichletAllocation
i ?
```

LatentDirichletAllocation(n_components=8, random_state=42)

```
# top palavras dos tópicos
terms = vect.get_feature_names_out()
for index, topic in enumerate(LDA3.components_):
   terms_comp = zip(terms, topic)
   sorted_terms = sorted(terms_comp, key= lambda x:x[1], reverse=True)[:15]
   print("THE TOP 15 WORDS FOR TOPIC # "+str(index)+": ")
   #print(sorted_terms)
   print([t[0] for t in sorted_terms])
   print('\n')
→ THE TOP 15 WORDS FOR TOPIC # 0:
     ['cílios', 'ana', 'vingadores', 'grey', 'luz', 'som', 'gokou', 'son', 'produto', 'novo', 'harry
    THE TOP 15 WORDS FOR TOPIC # 1:
     ['edição', 'livro', 'livros', 'páginas', 'produto', '00', 'vida', 'história', 'kit', 'origem',
    THE TOP 15 WORDS FOR TOPIC # 2:
     ['flex', 'laminas', 'tebori', 'hard', 'fifa', 'jogadores', 'pula', 'fisica', 'agulhas', 'bola',
    THE TOP 15 WORDS FOR TOPIC # 3:
     ['mia', 'gel', 'inglot', 'delineador', 'calendário', 'garota', 'págs', 'precisa', 'vai', 'tebor
    THE TOP 15 WORDS FOR TOPTC # 4:
```