0.1 Distancia de árboles

0.1.1 Descripción del problema

Un árbol se define como un grafo conectado y no dirigido con n vértices y n-1 aristas. La distancia entre dos vértices en un árbol es igual al número de aristas en el camino simple único entre ellos.

Te dan dos enteros x y y. Construye un árbol con las siguientes propiedades:

- El número de pares de vértices con una distancia par entre ellos es igual a x.
- El número de pares de vértices con una distancia impar entre ellos es igual a y.

Por un par de vértices, nos referimos a un par ordenado de dos vértices (posiblemente, el mismo o diferente).

0.1.2 Propuesta de solución

En el ejercicio nos piden que construyamos un árbol con las propiedades que nos dan:

- Que el número de pares de vértices con distancia par sea x.
- Que el número de pares de vértices con distancia impar sea y.

Al final del ejercicio nos hacen una especificación de lo que es un par de vértices y nos dicen que el par puede estar conformado por el mismo vértice. Por lo que todos los vértices tienen distancia par con ellos mismos.

0.1.3 Estrategia para resolver el problema

La distancia entre dos vértices es par si están en el mismo nivel o en niveles distintos con una distancia par entre los niveles.

Y es impar si uno está en un nivel par y el otro en un nivel impar.

Si x es el número de pares con distancia par y y es el número de pares con distancia impar, entonces podemos deducir que:

Los vértices se pueden dividir en dos grupos: aquellos en niveles pares y aquellos en niveles impares. Si a es el número de vértices en niveles pares y b es el número de vértices en niveles impares, entonces:

- El número de pares de vértices con distancia par es $a^2 + b^2$.
- El número de pares de vértices con distancia impar es 2ab.

Figure 1: Representación gráfica del problema

A partir de las ecuaciones:

$$a^2 + b^2 = x, (1)$$

$$2ab = y, (2)$$

podemos resolver estas ecuaciones para encontrar a y b.

Lo que hicimos para resolver este ejercicio fue aplicar conocimientos de combinatoria.

Sabemos que en un árbol de n vértices hay n^2 pares de vértices, luego tenemos que ver los que tienen distancia par y los que tienen distancia impar.

Separamos los vértices por niveles, los que están en niveles pares, a, y los que están en niveles impares, b. Ahora los de distancia par están en los mismos niveles por lo que nos queda $a^2 + b^2$. Y para los impares por cada uno de nivel par tenemos los que están en niveles impares, de ahí que sea 2ab.

La complejidad temporal de este algoritmo es $\mathcal{O}(\sqrt{x+y})$, pues lo que hacemos para calcular a y b es un ciclo for que va hasta $\sqrt{x+y}$ y ver si $x-a^2=b^2$ nos da los valores que cumplen con las ecuaciones anteriores.

Al tener esos valores de a y b, sabemos cuántos nodos están en niveles pares y cuántos nodos están en niveles impares, y ya de ahí es fácil construir un árbol.