Teorija grafov

Domača naloga

Sara Bizjak | IŠRM | 27202020

April 2021

Naloge sem reševala samostojno. Pri reševanju sem si pomagala z zapiski predavanj in vaj ter z gradivom, ki sem ga našla na internetu.

1. naloga

Za vsak $k \geq 2$ najdi k-regularen graf, ki nima popolnega prirejanja. Odgovor utemelji.

Problem razdelimo na dva primera in opazujemo grafe posebej za sode in posebej za lihe k.

• k je sod.

Iskani k-regularen graf za sode k je polni graf na k+1 vozliščih (K_{k+1}) . To je res, saj bi za popolno prirejanje število vozlišč v polnem grafu moralo biti sodo, k+1 pa je liho število, torej popolnega prirejanja ni. Poglejmo si skici za prva dva takšna primera, torej za k=2 in k=4.

Slika 1: Graf za $k = 2 \rightarrow K_3$.

Popolnega prirejanja očitno ni, saj vozlišča nasproti prve povezave, ki jo dodamo v prirejanje (označeno z zeleno barvo), ne moremo zasiši z nobeno povezavo. Če bi ga, potem prirejanje ne bi bilo popolno.

Slika 2: Graf za $k = 4 \rightarrow K_5$.

BŠS lahko začnemo dodajati zunanje povezave v izbrani zmeri (označeno z zeleno barvo in puščico). Vozlišča v (označenega z vijolično barvo) tedaj ne moremo zasičiti z nobeno povezavo, saj če bi dodali katerokoli oranžno povezavo v prirejanje, ne bi bilo popolno.

• k je lih.

Zamislimo si naslednji graf. Graf začnemo risati v enem (začetnem) vozlišču in ga povežemo sk naslednjimi vozlišči. Vsako izmed teh k vozlišč povežemo sk-1 novimi in potem še teh k-1 povežemo z naslednjimi k-1 tako,

da bodo vsa vozlišča na eni strani povezana z vsemi vozlišči na drugi (tako, da na tem delu nastane $K_{k-1,k-1}$). Zadnjih dodanih vozlišč je sodo mnogo (k-1), povežemo še dve po dve skupaj.

Vsako vozlišče v tako konstruiranem grafu ima natanko k sosedov, torej je graf resk-regularen.

Za dokaz o neobstoju 1-faktorja (kar je ekvivalentno temu, da graf nima popolnega prirejanja) uporabimo Tuttov izrek. Za množico S izberemo začetno vozlišče. Če iz grafa G odstranimo začetno vozlišče (G-S), dobimo natanko k lihih komponent, vsako s po 1 + (k-1) + (k-1) vozlišči. Ker je $\sigma(G-S) = k > |S| = 1$, tak graf po Tuttovem izreku ne premore 1-faktorja, torej nima popolnega prirejanja.

Za lažjo predstavo konstrukcije grafa si poglejmo skico za najmanjši tak primer, torej k=3.

Pri grafu za k = 3 velja: Naj bo oranžno (začnetno) vozlišče označeno z u in naj bo $S = \{u\}$ v Tuttovem izreku. Tedaj $\sigma(G - S) = 3 > |S| = 1$, kar pomeni, da graf res ne premore popolnega prirejanja.

Slika 3: Graf za k = 3.

A del: Naj bo H graf brez izoliranih vozlišč, v katerem je vsaka povezava incidenčna z vozliščem stopnje 1. Opiši povezane komponente grafa H. Dokaži, da je $\alpha'(H) \geq \frac{|V(H)|}{\Delta(H)+1}$.

Če je vsaka povezava incidenčna z vozliščem stopnje 1, potem vsako tako vozlišče predstavlja list in komponente grafa so 'zvezde' (prikazano na sliki 4).

Slika 4: Komponenta grafa H.

Najprej opazujmo graf H z eno samo komponento. Največje prirejanje za H je očitno velikosti 1. Denimo, da ima graf n+1 vozlišč. Sredinsko vozlišče ima tako stopnjo enako n, kar je tudi maksimalna stopnja grafa, torej $\Delta(H)=n$, torej očitno velja $1=\alpha'(H)\geq \frac{|V(H)|}{\Delta(H)+1}=\frac{n+1}{n+1}=1$. Naj ima sedaj graf več komponent. V tem primeru je razmislek podoben. Največje prirejanje bo tako enako številu komponent, denimo, da jih je h mnogo. Maksimalna stopnja grafa bo enaka stopnji sredinskega vozlišča v največji komponenti, recimo, da je, kot prej, enaka n. Ker je n maksimalna stopnja vozlišča, je potem največja komponenta velika n+1. Ker nobena

komponenta ni večja od n+1, je zgornja meja za vozlišča vseh komponent skupaj enaka $h \cdot (n+1)$. Iz tega sledi

$$h = \alpha'(H) \ge \frac{h \cdot (n+1)}{n+1} = h$$

Če so torej vse komponente enako velike, velja enakost, sicer imamo strogi neenačaj, saj bo izraz v števcu strogo manjši od $h \cdot (n+1)$.

B del: Dokaži, da za vsak graf G brez izoliranih vozlišč velja $\alpha'(H) \geq \frac{|V(H)|}{\Delta(H)+1}$.

Ideja je indukcija po številu povezav grafa G.

 $Baza\ indukcije$. Graf G brez izoliranih vozlišč z eno povezavo (to sta dve vozlišči povezani med sabo) in pogoj velja.

Indukcijska predpostavka. Denimo, da pogoj velja za vse grafe, ki imajo največ k povezav. Indukcijski korak. Pogoj bi sedaj radi dokazali za graf G, ki ima k+1 povezav. V tem grafu izbereno vozlišče $v=\Delta(G)$ in enega od njegovih robov, označimo z e, ki ga iz grafa odstranimo. Obravnavamo tri primere:

- Če odstranimo e, izoliramo obe robni vozlišči povezave. V tem primeru je deg(v) = 1, torej je $\Delta(G) = 1$, saj smo za v izbrali tako vozlišče z maksimalno stopnjo. Če odstranimo še obe ti dve vozlišči, ki sta po odstranitvi povezave e izolirani, dobimo graf s G s k povezavami brez izoliranih vozlišč, kar zadošča naši indukcijski predpostavki $(\alpha'(G') \geq \frac{k}{2})$. Očitno potem za G velja $\alpha'(G) \geq \frac{k+1}{2}$, saj sta obe robni vozlišči povezave e stopnje 1, torej tudi to povezavo lahko dodamo v prirejanje in bo množica še vedno neodvisna.
- Če odstranimo e, izoliramo eno od obeh robnih vozlišč. Izolirano vozlišče v tem primeru gotovo ni v, saj sicer ne bi bilo maksimalne stopnje. Podobno kot prej sedaj iz grafa G-e odstranimo še izolirano vozlišče. Tako dobimo graf, ki zadošča indukcijski predpostavki $\alpha'(G') \geq \frac{k}{\Delta(G')+1}$. Očitno je, da je $\Delta(G) = \Delta(G') + 1$, saj ima vozlišče v, ki je maksimalno, eno povezavo več v G kot v G' (e). Iz tega sledi, da $\alpha'(G) \geq \frac{k+1}{\Delta(G')+2} = \frac{k+1}{\Delta(G)+1}$, saj je največje prirejanje G lahko kvečjemu za 1 večje od največjega prirejanja za G'.
- Če odstranimo e, ne izoliramo nobenega vozlišča. Torej lahko induktivno predpostavko direktno apliciramo in pogoj velja.

Naj bo G k-povezan graf na vsaj 2k vozliščih. Dokaži, da v grafu G obstaja cikel dolžine vsaj 2k.

Najprej premislimo, da vG obstaja cikel. Kerj velja

$$\delta(G) \ge \kappa(G) \ge k \ge 2 \tag{1}$$

graf ni drevo, torej im cikel.

Označimo sedaj sCnajdaljši cikel vG. Po1vemo, da $|C| \geq k+1.$ Dokazali bi radi, da $|C| \geq 2k.$

Pokažimo to s protislovjem. Denimo, da |C| < 2k.

Označimo z v vozlišče, ki ni v C, torej $v \in G \setminus C$, kot je prikazano na sliki 5. Po 1 velja, da je

Slika 5: Graf G.

 $|N(v)| \geq k$. Vemo še, da nobena množica manjša od k ne more loćiti N(v) od V(C), saj je G k-povezan. Z drugimi besedami: vemo, da je moč najmanjše prerezne množice bsaj k. Iz tega po Mengerju sledi, da je med N(v) in V(C) vsaj k disjunktnih poti.

Naj bosta sedaj $v_1, v_2 \in N(v)$ in $c_1, c_2 \in C$. Tedaj obstajata različni poti a_1c_1 in a_2c_2 , ki ju označimo P_1 in P_2 po vrsti. Pot med c_1 in c_2 označimo s P.

Ločimo dve možnosti:

- $v \notin P_1$, $v \notin P_2$. Prikazano na sliki 6. Naj bo $C' = vP_1PP_2$ v nov cikel, ki je očitno daljši, če za pot med c_1 in c_2 vzamemo pot okoli po ciklu C (kot pobarvano na sliki). Ta cikel je res vsaj za 1 daljši, saj $|(C - c_1c_2)| + |P_1| + v_1v - vv_2 + |P_2| \ge |C| - 1 + 2 = |C| + 1$.
- v ∈ P₁ (BŠS). Prikazano na sliki 7.
 Označimo s P₁ pot od c₁ do v vzdolž P₁. Tedaj je C = vP₁ PP₂v nov cikel, ki je očitno daljši od C. Ta cikel je res vsaj za 1 daljši, kar vidimo podobno kot v prejšnjem primeru.

V obeh primerih smo prišli v protislovje, torej $|C| \ge 2k$.

Slika 6: Primer, ko $v \notin P_1, v \notin P_2$.

Slika 7: Primer, ko $v \in P_1$

Naj bo k liho in n sodo število, n > k. Naj bo G graf, katerega vozlišča so elementi grupe \mathbb{Z}_n in vozlišči x,y povezani natanko tedaj, ko je $|x-y| \leq \frac{k-1}{2}$ ali $x-y = \frac{n}{2}$. Določi povezanost grafa G.

G je k-regularen za $k \ge 1$ in povezan za $k \ge 3$. Torej je povezanost grafa največ k, imamo torej pogoj $\kappa(G) \le k$. Opazimo, da za k = n - 1 dobimo polni graf K_n , ki ima povezanost n - 1. Zdi se, da bi povezanost lahko bila enaka k.

Ker vemo, da $\kappa(G) \leq k$, moramo za dokaz $\kappa(G) = k$ pokazati še $\kappa(G) \geq k$, za kar uporabimo Mengerjev izrek.

Naj bo X poljubna podmnožica V(G), da je G-X nepovezan. Pokazati želimo, da mora biti $|X| \geq k$. Po Mengerju v G obstaja k paroma neodvisnih poti med u in v. Vemo, da morajo biti vsa vmesna vozlišča na teh poteh v X (sicer bi bil G-X povezan). Ker u ni direktno povezan z v, mora biti $|X| \geq k$, torej je $\kappa(G) \geq k$.

Ker velja $\kappa(G) \leq k$ in $\kappa(G) \geq k$ sledi, da je $\kappa(G) = k$.

Dokaži ali ovrzi naslednje trditve.

1. Vsak k-obarvljiv graf G ima dobro k-barvanje, v katerem nek barvni razred vsebuje natanko $\alpha(G)$ vozlišč. Trditev ne drži.

Poiščimo protiprimer. Opazujmo graf na sliki.

Slika 8: Graf za protiprimer.

Najprej opazimo, da moramo vozlišči A in α pobarvati vsako s svojo barvo, torej pristane v dveh različnih barvnih razredih. To nadalje pomeni, da sta B in C pobarvana z isto barvo kot A ter b in c pobarvana z isto barvo kot a. Celoten graf smo torej lahko pobarvali z dvema barvama, kar pomeni, da je graf 2-obarvlljiv. Ker pa so v vsakem barvnem razredu po 3 vozlišča, je torej $\alpha(G) = 3$ in dobili smo protiprimer. Trditev res ne drži.

2. Unija grafov G in H je graf z vozlišči $V(G) \cup V(H)$ in povezavami $E(G) \cup E(H)$. Velja $\chi(G \cup H) \leq \chi(G) + \chi(H)$. Trditev ne drži.

Poiščimo protiprimer. Vzemimo naslednja dva grafa G in H

Slika 9: Graf G.

Slika 10: Graf H.

Očitno je $\chi(G)=3$ (2 ne more biti, ker vsebuje trikotnike) in $\chi(H)=2$. Poglejmo sedaj še graf $G\cup H$.

Slika 11: Graf $G \cup H$.

Graf $G \cup H$ je polni graf na 6 vozliščih K_6 , torej je $\chi(G \cup H) = 6$. Imamo $\chi(G \cup H) = 6$ in $\chi(G) + \chi(H) = 5$, torej smo našli protiprimer in enakost res ne drži.

- 3. Če je G graf, potem je $\chi(G) \leq n(g) \alpha(G) + 1$. Trditev drži. Naj bo X neodvisna množica moči $\alpha(G)$. Vemo, da med vozlišči množice X ni nobene povezave, torej lahko vsakemu vozlišču v množici X lahko dodelimo isto barvo, ki jo označimo z 1. Sedaj pa pobarvajmo vsa ostala vozlišča v grafu, torej vseh $n(G) - \alpha(G)$ vozlišč, vsako s svojo barvo. Dobili smo dobro barvanje velikosti $n(G) - \alpha(G) + 1$. To pomeni, da je kromatično število grafa G največ $n(G) - \alpha(G) + 1$, torej res velja, da je $\chi \leq n(G) - \alpha(G) + 1$.
- grafa G. Trditev ne drži. Poiščimo protiprimer. Imejmo graf K_5 , ki mu iz nekega poljubnega vozlišča dodamo poljubno dolgo pot. Označimo tak graf z G. Če je pot dovolj dolga, se povprečna stopnja vozlišč lahko zelo približa številu 2 ($a(G) \simeq 2$). Kromatično število grafa G je enako kromatičnemu številu K_5 , kar je 5. V tem primeru velja $\chi(G) > 1 + a(G)$, kar nam poda protislovje. Trditev torej ne drži.

4. Če je G povezan graf, potem je $\chi(G) \leq 1 + \alpha(G)$, kjer je $\alpha(G)$ povprečna stopnja vozlišč