STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

ET1.1: LINEAR EQUATIONS

Equations with one variable may be solved using transposition skills to make the variable the subject of the equation.

Using a sequence of inverse operations to 'undo' the equation

$$3(2x + 7) = -15...$$

.... becomes....

$$x = -6$$

Simple equations

Examples

1.
$$m + 4 = -2$$

$$m + 4 - 4 = -2 - 4$$

[subtract 4 both sides]

$$m = -6$$

2.
$$p-2=5$$

$$p-2+2=5+2$$

[add 2 both sides]

$$p = 7$$

3. 3g = 18

$$\frac{3g}{3} = \frac{18}{3}$$

[divide 3 both sides]

$$g = 6$$

 $\frac{y}{4} = -5$

$$\frac{y}{4} \times 4 = -5 \times 4$$

[multiply by 4 both sides]

$$y = -20$$

More complex equations

With more complicated equations more than one inverse operation may need to be applied

Examples

1.
$$2w-3=-17$$

 $2w=-14$ [add 3 to both sides]
 $w=-7$ [divide 2 both sides]

2.
$$\frac{3d}{4} + 5 = 7$$

$$\frac{3d}{4} = 2$$
 [subtract 5 each side]
$$3d = 8$$
 [multiply 4 each side]
$$d = \frac{8}{3}$$
 [divide 3 each side]

With practice more than one operation can be done in the same line:

3.
$$3c + 1 = c - 5$$
 [move all terms with 'c' to one side of the equation]
 $3c - c = -5 - 1$ [subtract c, subtract 1 each side]
 $2c = -6$
 $c = -3$ [divide 2 each side]

Look at the examples below for techniques to deal with equations that contain brackets and fractions

4.
$$3(5-2j) = 33$$
 [expand the brackets first]
 $15-6j = 33$
 $-6j = 18$ [subtract 15 each side]
 $j = -3$ [divide (-6) each side]

5.
$$2(3k-1) = 5(k+7)$$
$$6k-2 = 5k+35$$
$$6k-5k = 35+2$$
 [subtract 5k, add 2 each side]
$$k = 37$$

With just one fraction on each side of the equality use cross multiplication:

$$\frac{a}{b} = \frac{c}{d} \implies ad = bc$$

6.
$$\frac{h+1}{3} = \frac{h}{4}$$

$$4(h+1) = 3h$$
 [cross multiplying]
$$4h+4=3h$$
 [expand brackets]

$$h = -4$$
 [subtract 3h, subtract 4 each side]

7.
$$\frac{2z+11}{7} = \frac{z-3}{12}$$

$$12(2z+11) = 7(z-3) \qquad \text{[cross multiplying]}$$

$$24z+132 = 7z-21 \qquad \text{[expand brackets]}$$

$$17z = -153 \qquad \text{[subtract 7z, subtract 132 each side]}$$

$$z = -9$$

When cross multiplication is not appropriate fractions may be removed by multiplying both sides of the equation by the lowest common multiple (LCM) Of all the denominators:

8.
$$\frac{3u}{4} - \frac{1}{3} = 7$$
 [NB: $7 = \frac{7}{1}$.: LCM for 4,3 and 1 is 12]
$$\frac{3u}{4} \times 12 - \frac{1}{3} \times 12 = 7 \times 12$$
 [multiply each side by the LCM]
$$9u - 4 = 84$$
 [simplify]
$$u = 88$$

$$u = \frac{88}{9}$$

Exercise

1 Solve the following equations

a)
$$x + 3 = 7$$

b)
$$5 - i = -2$$

c)
$$3c = 12$$

d)
$$-r = -12$$

a)
$$x + 3 = 7$$
 b) $5 - j = -2$ c) $3c = 12$ d) $-r = -12$ e) $\frac{m}{2} = -7$ f) $-8u = 12$

g)
$$4g + 4 = 16$$

h)
$$7 - 2w = \frac{1}{2}$$

g)
$$4g + 4 = 16$$
 h) $7 - 2w = 1$ i) $\frac{e}{2} - 5 = -8$

j)
$$21 - 3t = 12$$

k)
$$\frac{y}{5} - 9 = -5$$

j)
$$21 - 3t = 12$$
 k) $\frac{y}{5} - 9 = -5$ l) $3 - \frac{u}{2} = -7$

2 Solve these equations

a)
$$51 + 2 = 1 + 10$$

b)
$$10p - 11 = 2p - 3$$

c)
$$5a - 12 = 3a + 6$$

a)
$$5i + 2 = i + 10$$

b) $10p - 11 = 2p - 3$
c) $5a - 12 = 3a + 6$
d) $10d + 10 = 3d + 3$
e) $f + 6 = 6f - 9$
f) $8 - g = 5g + 14$
g) $5h - 2 = 7h - 12$
h) $6j + 13 = 4j + 13$

a)
$$5h = 2 = 7h = 12$$

f)
$$8 - a = 5a + 14$$

g)
$$5h - 2 = 7h - 12$$

h)
$$6i + 13 = 4i + 13$$

3 Solve

a)
$$3(2k-4) = 18$$

b)
$$5(2z + 9) = 15$$

c)
$$3(x + 4) = 6$$

a)
$$3(2k-4) = 18$$

b) $5(2z+9) = 15$
c) $3(x+4) = 6$
d) $3(c+3) + 2(c-5) = 4$

e)
$$3(2v-3) + 2(v-4) = -25$$
 f) $3(b+4) = 2(4b+1)$

$$3(b + 4) = 2(4b + 1)$$

- 4 Solve
 - a) $\frac{9n}{5} 4 = 5$
- b) $\frac{4m}{3}$ 11 = 9
- c) $1 \frac{9q}{2} = -8$
- d) $\frac{w-4}{2} = 2$
- e) $\frac{3-2e}{11} = 1$
- $f) \quad \frac{3r+9}{5} = -3$
- g) $\frac{3t}{8} + 4 = 1$
- h) $\frac{y}{3} = \frac{2}{9}$
- i) $\frac{5u-4}{4} = \frac{u-5}{5}$ j) $\frac{2i+1}{7} = \frac{3i-5}{4}$
- k) $\frac{p+1}{3} + 1 = 4$
- 1) $2 \frac{5a-4}{6} = 4$
- m) $\frac{d-3}{3} 4 = \frac{d-2}{2}$
- n) $\frac{1-m}{5}$ m = $\frac{2m-1}{2}$

Answers

- 1 a) 4 b) 7 c) 4 d) 12 e) -14 f) $-\frac{3}{2}$ g) 3

- h) 3

- i) -6 j) 3 k) 20 l) 20

- a) 2 b) 1 c) 9 d) -1 e) 3 f) -1 g) 5 h) 0

- 3 a) 5 b) -3 c) -2 d) 1 e) -1 f) 2

- 4 a) 5 b) 15 c) 2 d) 8 e) -4 f) -8 g) -8 h) $\frac{2}{3}$ i) 0 j) 3 k) 8 l) $-\frac{8}{5}$ m) -24 n) $\frac{7}{22}$