Модификация групп

Павел Соколов, Илья Давиденко, Семён Вац

Содержание

Определения	3
Лемма Ильи Давиденко	3
Порождающая структура	5
Построение изоморфизмов	8

Определения

Пусть задано действие группы H на пространстве группы N с сохранением её групповой структуры. Это означает, что задан гомоморфизм $\varphi: H \longrightarrow Aut(N)$ группы H в группу автоморфизмов группы N. Автоморфизм группы N, соответствующий элементу h из H при гомоморфизме φ , обозначим φ_h . За множество элементов полупрямого произведения $G = N \rtimes_{\varphi} H$ групп N и H над гомоморфизмом φ — берётся прямое произведение $N \times H$. Бинарная операция * на G определяется по следующему правилу - для любых $n_1, n_2 \in N$ и $h_1, h_2 \in H$

$$(n_1,h_1) * (n_2,h_2) = (n_1\varphi_{h_1}(n_2),h_1h_2)$$

Пусть группа H действует на множестве X перестановками. Будем называть A^X прямым произведением A самим с собой, индексированное элементами X. Можно считать, что A^X - множество всевозможных последовательностей $\overline{a} = (a_x)_{x \in X}$. Действие группы H на X может быть представлено как действие H на A^X переиндексированием элементов. $h(a_x)_{x \in X} = (a_{h \cdot x})_{x \in X}$. Тогда Cnлетением $(A \circ H$ или AwrH) называется полупрямое произведение этих двух групп, основанное на действии одной из групп на множестве копий другой группы. Элементом сплетения будет пара (h, \overline{a}) .

$$(h_1, \overline{a}_1) \cdot (h_2, \overline{a}_2) = (h_1 h_2, (h_2 \cdot \overline{a}_1) \overline{a}_2)$$

Группа Гупты-Фабриковского $\Gamma_3 = \langle a,t \rangle$, действует на бесконечном 3-ичном дереве. Действия a,t задаются следующим образом:

$$t(0w) = 1w, \ t(1w) = 2w, \ t(2w) = 0w$$

 $a(0w) = 0t(w), \ a(1w) = 2w, \ a(2w) = 2a(w)$

Лемма Ильи Давиденко

Пемма 1. При инъективном гомоморфизме образ самоподобной группы будет являться самоподобной группой

 $\begin{subarray}{ll} \mathcal{A} оказательство. Пусть есть инъективный гомоморфизм $\varphi:A\rtimes B\longrightarrow G$, тогда $\tau:B\longrightarrow Aut(A)\Longrightarrow \varphi:A\longrightarrow C$, $\varphi:B\longrightarrow D$ - биекции, при этом очевидно, что существует $\tau':D\longrightarrow Aut(C)$, тогда $G\cong C\rtimes D\Rightarrow G$ - самоподобна

Лемма 2. При инъективном гомоморфизме образ Γ_3 действует тривиально на первом уровне, а на втором действуем как Γ_3 или тривиально

Доказательство. Рассмотрим инъективный гомоморфизм $\varphi: \Gamma_3 \longrightarrow Aut(T_{(23)^\infty}), \ \pi: \Gamma_3 \longrightarrow \Gamma_3/St_{\Gamma_3}(1), \ \pi': Aut(T_{(23)^\infty}) \longrightarrow Aut(T_{(23)^\infty})/St_{Aut(T_{(23)^\infty})}(2) \Longrightarrow$ существует гомоморфизм

$$\varphi': \Gamma_3/St_{\Gamma_3}(1) \longrightarrow Aut(T_{(23)^{\infty}})/St_{(Aut(T_{(23)^{\infty}}))}(2)$$

$$\varphi'(g) = \pi'(\varphi(g))$$

$$\Gamma_3 r \varphi d\pi_1 Aut(T_{(23)^{\infty}}) d\pi_2$$

$$\Gamma_3/St_{\Gamma_2}(1) r \varphi' Aut(T_{(23)^{\infty}})/St_{Aut(T_{(23)^{\infty}})}(2)$$

Проверим, действительно ли φ' является гомоморфизмом:

$$\varphi'(gh) = \pi'(\varphi(gh)) = \pi'(\varphi(g)\varphi(h)) = \pi'(\varphi(g))\pi'(\varphi(h)) = \varphi'(g)\varphi'(h)$$

$$Aut(T_{(23)^{\infty}})/St_{Aut(T_{(23)^{\infty}})}(2) \cong C_3 \wr C_2$$
, a $\Gamma_3/St_{\Gamma_3}(1) \cong C_3 \Longrightarrow \varphi': C_3 \longrightarrow C_3 \wr C_2$

Каждый элемент группы C_3 имеет нечётный порядок, тогда $\varphi':C_3\longrightarrow C_3\times C_3$, из-за чётности порядка C_2

 $Ker_{\varphi'}$ = N, где N - нормальная подгруппа в C_3 , но в C_3 есть лишь 2 нормальные подгруппы: C_3 и $e \Longrightarrow Ker_{\varphi'}$ = e или $Ker_{\varphi'}$ = C_3

В первом случае образ Γ_3 действует как Γ_3 на втором уровне

Во втором случае образ Γ_3 действует действует тривиально на первых 2-ух уровнях \square

Следствие

Исходя из лемм 1 и 2, становится ясно, что образ Γ_3 задается циклическими сдвигами C_3 на уровнях поддерева

Первая Лемма Семёна Ваца

Лемма 3. Порядок любого действия группы Γ_3 равен ∞ или 3^N .

Доказательство. Сначала определим порядок автоморфизмов a, t. Докажем, что их порядок равен 3. Пусть j – вычет по модулю 3. Тогда легко видеть, что

$$t(jw) = ((j+1) \mod 3), \ t(t(jw)) = ((j+2) \mod 3)w = t^{-1}(jw)$$

 $t(t(t(jw))) = ((j+3) \mod 3)w = jw \Rightarrow ord(t) = 3$

На строках вида 0w порядок a равен 3:

$$a(0w) = 0t(w), \ a(a(0w)) = 0t(t(w)) = 0t^{-1}(w), \ a(a(a(0w))) = 0t(t(t(w))) = 0w$$

$$a(a....(a(1w))...)) = 1w$$

Пусть r - строка, не начинающаяся с 2, тогда;

$$a(2w) = 2...2a(r)$$

На таких строках как r, автоморфизм a имеет цикл с максимальной длиной 3.

Остаётся понять, что сущестувет такой автоморфизм, у которого бесконечный порядок. Рассмотрим at. $\forall w \in X^n \ ord(at) = 3^n$. Докажем по индукции. База n = 1.

Уровень 1 имеет порядок 3 (поддеревья вершины 0,1,2 встают на свои места 1 раз за 3 применения). Переход: $(n-1) \longrightarrow n$.

Заметим, что на предыдущем уровне $ord(at) = 3^{n-1}$.

Тогда $(2...20), (2...21), (2...22) \longrightarrow (2...22), (2...20)(2...21)$ ровно через 3^{n-1} шагов , потому что на уровне n под действием at вращаются друг относительно друга только эти 3 строки. Из этого следует , что $\forall T \in \mathbb{N} \ \exists N \in \mathbb{N} : 3^N > T$.

Из этого следует $ord(at) = \infty$

Заметим такой интересный факт: пусть $w\in \mathrm{X}^N=>a(w)\in \mathrm{X}^N$, $t(w)\in \mathrm{X}^N=>$

 $\forall g \in \langle a,t \rangle, \forall g \in X^N$ выполнено, что $g(w) \in X^N$ в силу того , что g - инъективный гомоморфизм. Теперь поймём , что на N-ом уровне дерева находится ровно 3^N вершин. Тогда ,

по следствию из теоремы Лагранжа, для уровня верно, что количество элементов на уровне делится на порядок любого элемента w=> и на порядок действия g на уровне. Делители 3^N это только степени 3-ки => порядок действия на любом уровне дерева это степень 3-ки. Значит порядок действия это или 3^k или ∞ .

Вторая Лемма Семёна Ваца

Лемма 4. Пусть есть $\varphi: \Gamma_3 \longrightarrow Aut(T_{(23)^{\infty}})$ - инъективный гомоморфизм. $\Gamma_3 = < a, t >$. Тогда или $\varphi(a)$, или $\varphi(t)$ можно задать рекурсивно.

Доказательство. Отметим, что $Aut(T_{(23)^\infty}) = \langle \varphi(a), \varphi(t) \rangle$. Обозначим, что $\varphi(a) = a', \varphi(t) = t'$. Тогда a' и t' являются циклическими сдвигами вершин на уровне. Заметим, что композиция циклических сдвигов - циклический сдвиг. У каждого циклического сдвига конечный порядок. Порядок на уровне должен сохраняться => действие затрагивает каждый уровень дерева (на каждом уровне должен быть порядок 3^n). Заметим, что циклические сдвиги коммутируют. Тогда получаем, что a,t не коммутируют, а a',t' коммутируют. Но, так как φ - инъекция и гомоморфизм, коммутативность должна не изменяться. Пришли к противоречию.

Порождающая структура

Рассмотрим $g, r \in Aut(T_{(23)^{\infty}})$, действующие следующим образом:

$$r(00w) = 01w, \ r(01w) = 02w, \ r(02w) = 00w$$

 $g(00w) = 00r(w), \ g(01w) = 01w, \ g(02w) = 02g(w)$

Далее введем несколько видов действий на данный элемент q:

- Повороты
- Спуск
- Растягивание
- Накладывания

Отметим, что у каждого дейтвия, введенного ниже, существует обратный при некоторых условиях

Повороты

На гомоморфизмах определим такую операцию как поворот, которая переводит инъективный гомоморфизм в инъективный гомоморфизм с помощью следующего преобразования: Возьмем и поддействуем a' или t' на $T_{(23)^\infty}$. Рассмотрим, как выбранный нами элемент действует на всех поддревьях с корнями, находящимися на одинаковом уровне: не умоляя общности, можно сказать, что из каждой интересующей нас вершины выходит по 2 ребра, каждый из которых имеет свое поддерево, например a и b, тогда если для каждой такой вершины применить одинаковую перестановку a и b, то у нас сохранится инъективный гомоморфизм.

Для лучшего понимания обратимся к картинке:

Несложно заметить, что если H - группа поворотов, то

$$H \cong C_2 \times S_3 \times C_2 \times S_3 \times \dots$$

Тогда группа поворотов является несчётной, так как содержит все последовательности из 0 и 1, а их , в свою очередь , несчётное количество. Следовательно , и количество инъективных гомоморфизмов есть несчётное множество

Спуск

Не менее важной операцией является спуск. Пусть имеется некоторый инъективный гомоморфизм - τ , тогда переведем τ в τ' , заданный следующим соотношением: $\forall p \in \tau(\Gamma_3)$ $p \longrightarrow p' \in \tau'(\Gamma_3)$, причем p'(00w) = 00p(w) (на строках с другим началом p' действует как id).

Растягивание

Предыдущия операция спускает гомоморфизм только на несколько первых уровней, однако , начиная с некоторого момента , он действует также. Введём действие, которое растягивает гомоморфизм (то есть увеличивает расстояние между уровнями, на которых действует образ Γ_3). Пусть имеется некоторый инъективный гомоморфизм - σ , тогда переведем σ в σ' , заданный следующим соотношениями: $\forall q \in \sigma q \longrightarrow q' \in \sigma', q'(u00x) = q'(u)00q(x), q'(xy) = q(xy)x, y \in 0,1,2q'$ ничего не меняет для всех остальных окончаний слов

Накладывания

Каждый инъективный гомоморфизм работает следующим образом $\varphi: G = \langle a,b \rangle \longrightarrow H = \langle c,d \rangle$. Определим еще одну операцию - накладывание двух гомоморфизмов друг на друга через склеивание порождающих элементов. Скажем, что есть наложение типа A (для накладываня разных элементов друг на друга) и наложение типа B (если хотим наложить друг на друга одинаковые элементы из 2-ух разных гомоморфизмов).

Тип А: Пусть есть $\varphi: \Gamma_3 \longrightarrow H$ и $\psi: \Gamma_3 \longrightarrow N$. Найдем в H поддерево, которое при всех элементах H остается id и его корень не перемещается по уровню, тогда в это поддрево можно вложить N

Тип В: Пусть есть $\varphi: \Gamma_3 \longrightarrow H$ и $\psi: \Gamma_3 \longrightarrow N$, причем $\varphi(a) = \psi(a)$ и действие $\varphi(t)$ не пересекается с $\psi(t)$, тогда можно объединить $\varphi(t)$ с $\psi(t)$

Из определения накладывания 2-ух гомоморфизмов можно сделать вывод, что полученные действия все еще имеют тот же порядок, что и прообраз, а также сохраняют инъективность, то есть полученная композиция все еще является инъективным гомоморфизмом

Построение изоморфизмов

Пусть имеется изоморфиз $\varphi: \Gamma_3 \longrightarrow Aut(T_{(23)^\infty})$, тогда при помощи обратных действий сведем $\varphi(a)$ или $\varphi(t)$, к g или r. Из следствия из леммы 1 и 2, видно, что $\varphi(a)$ и $\varphi(t)$, дейвует на поддеревьях, как повроты. Тогда представим эти элементы групп, как дерево с "треугольными"концами, зависмыми от a, t. Разложим это дерево на тривиальные (не id максимум на одном поддереве) при помощи действия обратного действию накладывания. Каждое из таких деревьев при помощи обратного спуска и растягивания, можно поднять наверх превратив либо в g, либо в r, с точностью до поворота на уровнях. Следовательно из образующих можно последовательностью описанных действий построить любой инъективный гомоморфизм из Γ_3 в $Aut(T_{(23)^\infty})$.

Введем более конкретный алгоритм для перевода из одного гомоморфизма в другой. Заметим, что если свести порождающие элементы к необходимому виду, то к нему сведется и весь образ. Будем считать, что мы одновременно преобразуем оба порождающих элемента, тогда введем такой алгоритм:

1)Действие порождающих элементов на правом и левом поддреве никак не влияют друг на друга. То есть для любой их комбинации обязательно на одном из поддревьев они действуют с нужным порядком, а на другом с порядком не большим, чем требующийся. Заметим, что если для какой-то комбинации из порождающих элементов мы действуем на одном из поддеревьев элементом порядка меньшим чем его прообраз, то на этом дереве мы всегда действуем как нам необходимо => мы можем применить операцию, обратную к накладыванию, и получить гомоморфизм с более простыми порождающими элементами

2)Затем смотрим на оставшееся поддрево и то как мы на него действуем: при необходимости поднимаем(операция, обратная к спуску) и сжимаем(операция, обратная к растягиванию

Циклически рименяя такой алгоритм, мы сведем любой инъективный гомоморфизм к самому базовому. Таким образом, можно сделать вывод, что с помощью заданной структуры возможно любой гомоморфизм из Γ_3 в $Aut(T_{(23)^\infty}$ перевести в другой