

**CIFF Trustees:** 





# Business Intelligence & Data Mining



Octubre 2015

MASTER EN BUSINESS ANALYTICS & BIG DATA 2015–2016



# **Objetivos**



| • | Sesion 1A: Introducción al Business Intelligenct  ☐ Business Intelligence ☐ BI, BA y Big Data: Contexto ☐ Pentaho BA    |
|---|-------------------------------------------------------------------------------------------------------------------------|
| • | Sesión 1B ETL y Adquisición de Datos  ☐ ETL ☐ Pentaho Data Integration ☐ Data Integration y Data Mining: Realimentación |
| • | Sesión 2A: Introducción Data Mining – Machine Learning  Algoritmos  Ejemplos                                            |
| • | Sesión 2B: Pentaho Data Scientist (PDS)  □ PDS (Weka) □ DW→ETL→ PDS □ PDS → FTL→DW                                      |



#### A.- Data Mining

- Qué es Data Mining.
- Procesos de Data Mining
- Algoritmos de Data Mining
- Herramienta de Data Mining: Introdución a WEKA





# **Objetivos**

- Reconocer la problemática del análisis de grandes volúmenes de datos y de los beneficios de su uso sistemático para la obtención de modelos y patrones predictivos o descriptivos.
- Conocer las fases del Descubrimiento de Conocimiento de Bases de Datos y la importancia de las mismas en el éxito del proceso (en especial las de limpieza y selección de datos).
- Introducir las distintas técnicas de aprendizaje automático y estadísticas utilizadas en minería de datos, su potencial, su coste computacional y sus limitaciones de representación y de inteligibilidad.



## Objetivos

- Elegir, para un problema concreto, qué técnicas de minería de datos son más apropiadas.
- Generar los modelos y patrones elegidos utilizando una herramienta o paquete de minería de datos.
- Evaluar la calidad de un modelo, utilizando técnicas sencillas de evaluación (validación cruzada).
- Utilizar métodos de combinación de técnicas y de reiteración (p.ej. boosting).



#### A.- Data Mining

- Qué es Data Mining.
- Proceso de Data Mining
- Algoritmos de Data Mining
- Herramienta de Data Mining: Introdución a WEKA
- Ejemplos sencillos sobre distintos algoritmos y análisis de los resultados obtenidos





# Causas del Origen del DM

Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos

- El aumento del volumen y variedad de información que se encuentra almacenada en bases de datos digitales ha crecido espectacularmente en los últimos años. Nuevas tecnologías como BigData fomentan su crecimiento.
- Gran parte de esta **información es histórica**, es decir, representa transacciones o situaciones que se han producido.
- Aparte de su función de "memoria de la organización", la información histórica es útil para predecir la información futura.



# Causas del Origen del DM

- La mayoría de decisiones de empresas, organizaciones e instituciones se basan también en información de experiencias pasadas extraídas de fuentes muy diversas.
- las decisiones colectivas suelen tener consecuencias mucho más graves, especialmente económicas, y, recientemente, se deben basar en volúmenes de datos que desbordan la capacidad de la mente humana.



# Causas del Origen del DM

- Tamaño de datos poco habitual para algoritmos clásicos:
  - número de registros (ejemplos) muy largo (10<sup>8</sup>-10<sup>12</sup> bytes).
  - datos altamente dimensionales (nº de columnas/atributos).
- El usuario final no es un experto en aprendizaje automático ni en estadística.
- El usuario no puede perder más tiempo analizando los datos:
  - industria: ventajas competitivas, decisiones más efectivas.
  - ciencia: datos nunca analizados, bancos no cruzados, etc.
  - personal: "information overload"...



# Causas del Origen del DM

- Los procesos-sistemas clásicos de estadística son difíciles de aplicar-usar y no escalan al número de datos típicos en bases de datos actuales.
- Crítico en ecosistemas BigData o Sistemas Distribuidos



# DataMinig?

#### Surge KDD!!!

- "Descubrimiento de Conocimiento implícito en Bases de Datos" (KDD, del inglés Knowledge Discovery from Databases).
- "proceso no trivial de identificar patrones válidos, novedosos, potencialmente útiles y en última instancia comprensibles a partir de los datos". Fayyad (1996)
- Diferencia clara con métodos estadísticos: la estadística se utiliza exclusivamente para validar o parametrizar un modelo sugerido y preexistente, no para generarlo.
- Diferencia sutil "Análisis Inteligente de Datos" (IDA, del inglés Intelligent Data Analysis) que correspondía con el uso de técnicas de inteligencia artificial en el análisis de los datos.



# Qué es DataMining y qué NO es

- KDD nace como Suite completa o Concepto Global y se nutre de diferentes disciplinas:
  - estadística.
  - sistemas de información / bases de datos.
  - aprendizaje automático / IA.
  - visualización de datos.
  - computación paralela / distribuida.
  - interfaces de lenguaje natural a bases de datos.



# Qué es DataMining y qué NO es

- La minería o prospección de datos (DM) no es más que una fase del KDD:
  - Fase que integra los métodos de aprendizaje y estadísticos para obtener hipótesis de patrones y modelos.
- Al ser la fase de generación de hipótesis, vulgarmente se asimila KDD con DM.
- Además, las connotaciones \*\* del término "minería de datos" han hecho que éste se use como identificador del área.



# Qué es DataMining y qué NO es

La minería de datos **no** es una extensión de los sistemas de informes inteligentes o sistemas **OLAP** (*On-Line Analytical Processing*).

La minería de datos aspira a más

Otras herramientas, p.ej. consultas sofisticadas o análisis estadístico, pueden responder a preguntas como:

"¿Han subido las ventas del producto X en junio?"

"¿Las ventas del producto X bajan cuando promocionamos el producto Y?"

Pero sólo con técnicas de minería de datos podremos responder a preguntas del estilo:

"¿Qué factores influyen en las ventas del producto X?"

"¿Cuál será el producto más vendido si abrimos una delegación en Portugal?



# **DataMining**

- Visión con las herramientas tradicionales:
  - El analista empieza con una pregunta, una suposición o simplemente una intuición y explora los datos y construye un modelo. El analista propone el modelo. Realiza preguntas
- Visión con la minería de datos:
  - Aunque el analista no pierde la posibilidad de proponer modelos, **el sistema encuentra y sugiere modelos**.



# **DataMining**

#### Ventajas:

- Generar un modelo requiere menos esfuerzo manual y permite evaluar cantidades ingentes de datos.
- Se pueden evaluar muchos modelos generados automáticamente, y esto aumenta la probabilidad de encontrar un buen modelo.
- El analista necesita menos formación sobre construcción de modelos y menos experiencia.



# Áreas de Aplicación

Más importante industrialmente

#### Áreas de Aplicación:

- Business Intelligence Toma de Decisiones (banca-finanzasseguros, márketing, políticas sanitarias/demográficas, ...)
- **Procesos Industriales** (componentes químicos, compuestos, mezclas, esmaltes, procesos, etc.)
- Investigación Científica (medicina, astronomía, meteorología, psicología, ...). Aquí la eficiencia no es tan importante.



# Áreas de Aplicación

#### Áreas de Aplicación:

- Soporte al Diseño de Bases de Datos.
- Reverse Engineering (dados una base de datos, desnormalizarla para que luego el sistema la normalice).
- Mejora de Calidad de Datos.
- Mejora de Consultas (si se descubren dependencias funcionales nuevas u otras condiciones evitables).



# Ejemplos de Aplicación

#### KDD para toma de decisiones

Comercio/Marketing:

- Identificar patrones de compra de los clientes.
- Buscar asociaciones entre clientes y características demográficas.
  - Predecir respuesta a campañas de *mailing*.
  - Análisis de cestas de la compra.

Banca:

- Detectar patrones de uso fraudulento de tarjetas de crédito.
- Identificar clientes leales.
- Predecir clientes con probabilidad de cambiar su afiliación.
- Determinar gasto en tarjeta de crédito por grupos.
- Encontrar correlaciones entre indicadores financieros.
- Identificar reglas de mercado de valores a partir de históricos.



# Ejemplos de Aplicación

#### KDD para toma de decisiones

#### Seguros y Salud Privada:

- Análisis de procedimientos médicos solicitados conjuntamente.
- Predecir qué clientes compran nuevas pólizas.
- Identificar patrones de comportamiento para clientes con riesgo.
- Identificar comportamiento fraudulento.

#### Transportes: GEO

- Determinar la planificación de la distribución entre tiendas.
- Analizar patrones de carga.



# Ejemplos de Aplicación

Medicina: Tratamiento Digital de Imágenes Médicas

- Identificación de terapias médicas satisfactorias para diferentes enfermedades.
- Asociación de síntomas y clasificación diferencial de patologías.
- Estudio de factores (genéticos, precedentes, hábitos, alimenticios, etc.) de riesgo/salud en distintas patologías.
- Segmentación de pacientes para una atención más inteligente según su grupo.
- Predicciones temporales de los centros asistenciales para el mejor uso de recursos, consultas, salas y habitaciones.
- Estudios epidemiológicos, análisis de rendimientos de campañas de información, prevención, sustitución de fármacos, etc.



# Ejemplos de Aplicación

#### **Procesos Industriales**

- Extracción de modelos sobre comportamiento de compuestos.
- Detección de piezas con trabas.
- Predicción de fallos
- Modelos de calidad.
- Estimación de composiciones óptimas en mezclas.
- Extracción de modelos de coste.
- Extracción de modelos de producción.
- Simulación costes/beneficios según niveles de calidad