제곱근의 성질(
$$a < 0$$
) (Square Root Property for $a < 0$)

a < 0 일때

$$a < 0$$
 일때 $(\sqrt{a})^2$:

$$a < 0$$
 일때 $(\sqrt{a})^2$: a 가 음수이므로

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다. 중학교 과정에서는 양수의 제곱근만 생각한다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$:

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다. $(-\sqrt{a})^2$: a가 음수이므로

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다. $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

중학교 과정에서는 양수의 제곱근만 생각형 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a:$

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2}=-a:\quad a^2$ 의 양의 제곱근은

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다. 즉,

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 - a이다.

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 -a이다.

 $\sqrt{(-a)^2} = -a:$

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 -a이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉,

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉, 제곱해서 $(-a)^2$ 이 되는 것은

a < 0 일때

 $\left(\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 -a이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉, 제곱해서 $(-a)^2$ 이 되는 것은 a, -a 가 있는데,

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉, 제곱해서 $(-a)^2$ 이 되는 것은 a, -a 가 있는데,

이 중 양수는

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\left(-\sqrt{a}\right)^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉, 제곱해서 $(-a)^2$ 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

a < 0 일때

 $(\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $(-\sqrt{a})^2$: a가 음수이므로 제곱근 기호를 쓸 수 없다.

중학교 과정에서는 양수의 제곱근만 생각한다.

 $\sqrt{a^2} = -a$: a^2 의 양의 제곱근은 -a이다.

즉, 제곱해서 a^2 이 되는 것은 a, -a 가 있는데,

이 중 양수는 *- a*이다.

 $\sqrt{(-a)^2} = -a$: $(-a)^2$ 의 양의 제곱근은 -a이다.

즉, 제곱해서 $(-a)^2$ 이 되는 것은 a, -a 가 있는데,

이 중 양수는 - a이다.

github:

https://min7014.github.io/math20200104003.html

Click or paste URL into the URL search bar, and you can see a picture moving.