Machine Learning

## 3장 최적화(optimization)와 딥러닝 모형진단

고려대학교 통계학과 박유성



- ()] 출력층과 손실함수
- 02 역전파(backpropagation)
- () 3 최적화 알고리즘
- ①4 딥러닝모형의 진단과 일반화(generalization)

#### 01 출력층과 손실함수

- 딥러닝의 설계는 입력특성변수 x의 자료형태에 따라 MLP, CNN, RNN, 또는 이들 신경망의 조합을 결정할 뿐만 아니라 출력의 형태를 결정하는 출력층의 결정
   도 포함하고 있다
- 연구의 목적이 분류(classification)이면 2개의 그룹으로 분류할 것인지, 3개 이상의 그룹으로 분류할 것인지를 구분해야 하며 연구의 목적이 회귀(regression)이면 출력이 하나의 값인지 두 개 이상의 값인지를 구분해야 한다
- 예를 들어, 특정 사안에 대한 트윗이 찬성인지 반대인지를 구분한다든가 손으로
   쓴 우편번호가 0~9의 숫자 중 어느 숫자인지를 구분하는 3개 이상의 클래스를 구분
- 회귀의 경우, 최근 10일 동안 관측된 주식가격을 통해 내일 주식가격을 예측한다
   든가 또는 내일을 포함하여 향후 3일 동안의 주식가격을 예측

- 목적변수의 실제 참값과 딥러닝에 의해 예측된 값이 최대한 근접해야 딥러닝 모
   형은 의미를 가지게 된다
- 실제 참값과 딥러닝에 의해 예측된 값의 거리를 측정하는 측도가 필요하며 이를 손실함수(loss function)라고 한다

#### 손실함수(회귀)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- 여기에서 n은 표본의 크기 또는 batch size
- $y_i$ 는 목적변수,  $\hat{y}_i$ 는  $y_i$ 의 예측치로  $E(y_i|x_i)$ 임
- $y_i$ 가 두 개 이상이면,  $y_{i1}, y_{i2}, \cdots, y_{ik}$ 를 k개의 목적변수라고 하고  $\hat{y}_{i1}, \hat{y}_{i2}, \cdots, \hat{y}_{ik}$ 를 예측치라고 하면

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} (y_{ij} - \hat{y}_{ij})^{2}$$

- SSE내에 있는  $\hat{y}_i$ 는 딥러닝 모형에 있는 수많은 모수의 함수이다.
- 최종 출력층의 활성함수는 항등함수(선형)이다.

#### 손실함수(회귀)

- 손실함수 후보:  $\sum_{i=1}^n |y_i \hat{y}_i|$  또는  $\sum_{i=1}^n |\frac{y_i \hat{y}_i}{y_i}|$
- 손실함수를 최소화하는데 사용하는 역전파(backpropagation)가 작동하기 위한 전제조건은 손실함수가 모든 값에서 미분 가능이어야 한다
- MSE= $\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$ , MAE= $\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$ , MAPE= $\frac{1}{n}\sum_{i=1}^{n}|\frac{y_i-\hat{y}_i}{y_i}|$  ⇒모형의 정밀도(accuracy) 측도로 사용하며 과대적합, 과소적합 등을 판단하거나 서로 다른 딥러닝모형을 비교하는데 유용하게 사용된다

#### 손실함수(범주형)

- 목적: 두 개의 클래스분류. 이를 이항분류(binary classification)라고 하며
- 목적변수 *y<sub>i</sub>*= 0 또는 1
- ullet  $x_i$ 가 입력 $\Rightarrow$ 최종 은닉층의 출력,  $h_1,h_2,\cdots,h_m$  $\Rightarrow$  출력층,  $z_i=\sum_{j=1}^m w_jh_j+b$

$$sigmoid(z_i) = \frac{1}{1+e^{-z_i}} = \hat{y}_i \text{ (0~1)} \Rightarrow P(y_i = 1|x_i)$$
의 추정치

•  $p_i = P(y_i = 1|x_i)$ 표기하고 n개의 표본이 서로간에 독립이며  $y_i$ 가 Bernoulli 확률변수이면, 로그우도함수는

$$\sum_{i=1}^{n} [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

이므로 우도함수를 최대로 하는  $p_i$ 

#### 손실함수(범주형)

• 손실함수는

$$loss = -\sum_{i=1}^{n} [y_i log p_i + (1 - y_i) log (1 - p_i)]$$

를 최소화하는  $p_i$ .

- 이 손실함수를 binary cross entropy라고 함.
- $p_i$ 의 추정치는  $\hat{y}_i$ 이다.
- 이 의미는  $y_i=1$ 일 때 $\hat{y}_i\approx 1$ 이 되고  $y_i=0$ 일 때 $\hat{y}_i\approx 0$  이 되도록 딥러닝 모수를 추정한다는 것.

#### 01 출력층과 손실함수

#### 손실함수(범주형)

- 목적: 두 개 이상의 c개 클래스분류. 이를 <mark>다항분류</mark>라고 하며
- 목적변수  $y_i$ 는 one-hot encoding

 $x_i$ 가 입력 $\Rightarrow$ 최종 은닉층의 출력,  $h_1, h_2, \cdots, h_m \Rightarrow$  출력층,  $z_{ij} = \sum_{k=1}^m w_{kj} h_k + b_j$ ,  $j=1\cdots,c$   $sigmoid(z_{ij}) = \frac{1}{1+\rho^{-z_{ij}}} = \hat{y}_{ij} \text{ (0~1): } P(y_{ij}=1|x_i) \text{의 추정치}$ 

$$1+e^{-2ij}$$

- 위 식은 i 번째 표본의 소속이 j인지 아닌지를 구별하는 이항분류임
- 그러므로 이항분류를 c번 반복하여 가장 큰  $\hat{y}_{ij}$ 를 가진 클래스로 분류(Oneversus Rest)

#### 손실함수(범주형)

One-versus-Rest (OvR) 다범주 분류의 손실함수

$$-\sum_{j=1}^{c} \sum_{i=1}^{n} [y_{ij} \log \hat{y}_{ij} + (1 - y_{ij} \log(1 - \hat{y}_{ij}))]$$

- 그러나  $\sum_{j=1}^{c} \hat{y}_{ij} = 1$ 을 보장하지 않음.
- Softmax fuction:

$$\hat{y}_{ij} = \sigma(z_{ij}) = \frac{\exp(z_{ij})}{\sum_{j=1}^{c} \exp(z_{ij})}$$

여기에서  $\hat{y}_{ij}$ 는 i번째 표본이 j번째 클래스에 속할 확률  $p_{ij}$ 의 추정치이며  $\sum_{j=1}^{c} \hat{y}_{ij} = 1$ 를 만족함.

■ 표본이 서로간에 독립인 <mark>다항분포를 가정하면 로그우도함수</mark>는

$$\sum_{i=1}^{n} \sum_{j=1}^{c} y_{ij} log p_{ij}$$

#### 손실함수(범주형)

■ 그러므로 softmax 함수를 이용한 손실함수는

$$-\sum_{i=1}^n \sum_{j=1}^c y_{ij} \log \hat{y}_{ij}$$

가 된다. 이 손실함수를 categorical cross entropy라고 한다.

| 목적   | 출력층의 활성함수 | 손실함수                                              | 정밀도                         |
|------|-----------|---------------------------------------------------|-----------------------------|
| 회귀   | केट       | SSE                                               | MSE, MAE, MAPE              |
| 이항분류 | sigmoid   | binary cross entropy                              | accuracy, precision, recall |
| 다항분류 | softmax   | binary cross entropy<br>categorical cross entropy | accuray, precision, recall  |

■ accuracy는 정확하게 분류한 비율을 말하고, precision은 예측한 클래스가 맞은 비율, recall은 관심있는 클래스가 제대로 예측된 비율



- 손실함수 l(x)는 2차함수
- $x = x_1$ 에서 l(x)의 미분값은 양수,  $x = x_2$ 에서 l(x)의 미분값은 음수

$$\Rightarrow x \leftarrow x - \eta \frac{\partial l(x)}{\partial x}$$
,

여기에서  $\eta > 0$  이며 이를 <mark>학습률(learning rate)</mark>이라고 한다.

- $x \eta \frac{\partial l(x)}{\partial x}$ 에서 l(x)의 미분값을 계산한 후,  $x \leftarrow x \eta \frac{\partial l(x)}{\partial x}$ 으로 x를 update하 여 이러한 update를  $\frac{\partial l(x)}{\partial x} = 0$ 이 될 때까지 x를 update하면 l(x)를 최소화하는 x를 구하게 됨.
- 학습률 η는 매우 작은 값임
- 아주 작은 학습률을 곱해서 조금씩 최신화하는 이유는
- 딥러닝에서 다루는 손실함수가 간단한 2차함수가 아닌 아주 복잡한 함수이며
- 특히, 국소최소값(local minimum)과 안장점(saddle point)에 빠지는 것을 방지하기 위함이 첫 번째 목적이고,
- 두 번째 목적은 곧 논의할 <mark>과대적합(overfitting)을 방지하기 위함</mark>이다.

- MLP, CNN, RNN 모형은 수많은 모수를 가지고 있다.
- 이 모수들은 앞에 정의된 손실함수를 최소화하는 과정에서 동시에 최신화하게 된다.
- 이는 모든 모수에 대한 손실함수의 미분값이 필요하다는 것을 의미한다.
- 그러나 상위 은닉층에 있는 모수는 하위 은닉층의 함수로 구성되어 있으므로 소위 역전파(backpropagation)를 이용하여 딥러닝 모형에 있는 모든 모수의 미분값을 구하게 된다.

- 손실함수를 최소화하는 모수를 구하는 방법
- 딥러닝내 모수의 초기치를 임의로 부여한 후, 입력층→은닉층 → 출력층 순으로
   모수값을 대입하여 손실함수를 계산
- 손실함수의 미분값을 출력층  $\rightarrow$  은닉층  $\rightarrow$  입력층으로, 즉 역순으로(이를 역전파 라고 한다) 계산하여  $x-\eta \frac{\partial l(x)}{\partial x}$ 에 의해 모수를 최신화한다.
- 이 과정을 <mark>과대적합 문제가 발생하지 않을 때까지 반복하여 최적의 모수를 산출</mark> 하게 된다



- 입력변수가 2개, 2개의 노드를 가진 은닉층, 그리고 3개의 클래스를 분류하기 위한 3개의 노드를 가진 출력층으로 구성된 MLP 모형
- 은닉층의 활성함수는 sigmoid를, 출력층의 활성함수는 softmax를 사용
- 그러므로 손실함수는 categorical cross entropy
- 첨자의 복잡성을 피하기 위해 표본의 개수는 1개라고 가정한다.

• 
$$s_1^{(1)} = w_1 x_1 + w_2 x_2 + b_1$$
,  $s_2^{(1)} = w_3 x_1 + w_4 x_2 + b_2$ 

$$z_1 = \frac{1}{1 + e^{-s_1^{(1)}}}, \ z_2 = \frac{1}{1 + e^{-s_2^{(1)}}}$$

• 
$$s_1^{(2)} = \eta_1 z_1 + \eta_2 z_2 + b_3$$
,  $s_2^{(2)} = \eta_3 z_1 + \eta_4 z_2 + b_4$ ,  $s_3^{(2)} = \eta_5 z_1 + \eta_6 z_2 + b_5$ 

■  $P(y_1 = 1)$ 의 추정치를  $\hat{y}_1$ ,  $P(y_2 = 1)$ 의 추정치를  $\hat{y}_2$ ,  $P(y_3 = 1)$ 의 추정치를  $\hat{y}_3$ 이라고 할 때

$$\widehat{y}_1 = \frac{\exp(s_1^{(2)})}{\sum_{j=1}^3 \exp(s_j^{(2)})}, \ \widehat{y}_2 = \frac{\exp(s_2^{(2)})}{\sum_{j=1}^3 \exp(s_j^{(2)})}, \ \widehat{y}_3 = \frac{\exp(s_3^{(2)})}{\sum_{j=1}^3 \exp(s_j^{(2)})}$$

• 손실함수  $\ell = -\sum_{i=1}^{3} y_i \log \hat{y}_i$ 

•  $\frac{\partial \ell}{\partial \eta_4}$ 를 구하기 위해,  $\eta_4 \to s_2^{(2)} \to \hat{y}_1, \hat{y}_2, \hat{y}_3$  즉,  $\eta_4$ 는  $s_2^{(2)}$ 에 영향을 주고  $s_2^{(2)}$ 는  $\hat{y}_1, \hat{y}_2, \hat{y}_3$ 에 영향을 주므로 Chain rule에 의해

$$\frac{\partial \ell}{\partial \eta_4} = \frac{\partial \ell}{\partial \hat{y}_1} \frac{\partial \hat{y}_1}{\partial s_2^{(2)}} \frac{\partial s_2^{(2)}}{\partial \eta_4} + \frac{\partial \ell}{\partial \hat{y}_2} \frac{\partial \hat{y}_2}{\partial s_2^{(2)}} \frac{\partial s_2^{(2)}}{\partial \eta_4} + \frac{\partial \ell}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_2^{(2)}} \frac{\partial s_2^{(2)}}{\partial \eta_4} 
= y_1 \hat{y}_2 z_2 + y_2 (1 - \hat{y}_2) z_2 + y_3 \hat{y}_2 z_2 
= \hat{y}_2 (y_1 + y_2 + y_3) z_2 - y_2 z_2 = (\hat{y}_2 - y_2) z_2 \quad (y_1 + y_2 + y_3 = 1)$$

•  $\frac{\partial \ell}{\partial w_1}$ 을 위해  $w_1 \to s_1^{(1)} \to z_1 \to s_1^{(2)}$ ,  $s_2^{(2)}$ ,  $s_3^{(2)} \to \hat{y}_1$ ,  $\hat{y}_2$ ,  $\hat{y}_3$ 이므로

$$\frac{\partial \ell}{\partial w_1} = \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial \ell}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial s_j^{(2)}} \frac{\partial \hat{s}_j^{(2)}}{\partial z_1} \frac{\partial z_1}{\partial s_1^{(1)}} \frac{\partial s_1^{(1)}}{\partial w_1} = \sum_{j=1}^{3} (\hat{y}_j - y_j) \eta_{2j-1} z_1 (1 - z_1) x_1$$

•  $l_i$ 를 i번째 표본의 손실이라고 정의할 때 총 표본 n에 대한 손실은

$$l = \sum_{i=1}^{n} l_i$$

■ 기울기 하강법(gradient descent): 손실함수가 아래로 볼록, no local minimum일 때

$$\theta^{(t+1)} = \theta^{(t)} - \eta \frac{\partial l}{\partial \theta} \big|_{\theta = \theta^{(t)}}$$

- n = 1이면 확률적 기울기 하강법(stochastic gradient descent): local minimum에 강점, too noisy
- Batch: n = k 내로 나는 단위  $\rightarrow$  batch stochastic gradient descent

- 학습률 η의 결정에 따라 최적화 알고리즘이 개발됨
- 전체 데이터에 적용되는 2개의 최적화 알고리즘
- Adagradoptimizer

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \eta \frac{1}{\sqrt{\sum_{r=1}^t (\theta_i^{(r)})^2 + \varepsilon}} \frac{\partial l^{(t)}}{\partial \theta_i}$$

여기에서 
$$\frac{\partial l^{(t)}}{\partial \theta_i} = \frac{\partial l}{\partial \theta_i} \big|_{\theta_i = \theta_i^{(t)}}$$
이고 아주 작은 값  $\varepsilon > 0$  보통  $10^{-8}$ 

 $\Rightarrow$  학습률이 반복 누적제곱합에 반비례  $\theta_i$ 가 클수록 최신화를 작게 하고 작을수록 최신화를 많이 함.

2. Rprop 최적화(Resilient backpropagation optimization)

전체 데이터를 이용한 최적화 알고리즘 중 가장 우수함.

$$\Delta_{min}$$
,  $\Delta_{max}$ , 그리고  $\delta_i^t = sign(\frac{\partial l^{(t)}}{\partial \theta_i} \times \frac{\partial l^{(t-1)}}{\partial \theta_i})$ 를 정의한다.

$$\Delta_i^{(t+1)} = \begin{cases} \min\left(1.2\Delta_i^{(t)}, \Delta_{max}\right) & \text{만약 } \delta_i^t > 0 \\ \max\left(0.5\Delta_i^t, \Delta_{min}\right) & \text{만약 } \delta_i^t < 0 \\ \Delta_i^{(t)} & \text{만약 } \delta_i^t = 0 \end{cases}$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} - sign(\frac{\partial l^{(t)}}{\partial \theta_i}) \Delta_i^{(t+1)}$$

- 2. Rprop 최적화(Resilient backpropagation optimization)
- igtriangle  $\delta_i^t > 0$  이면 손실의 미분이 같은 방향이므로 수렴속도를 높이고
- $lack \delta_i^t < 0$ 이면 손실함수의 미분 값의 부호가 바뀌어서 최소값을 지났다는 의미이므로 최소값 주변에서의 진동을 방지하고 최소값으로 접근하도록 수렴속도를 줄이게 된다.

RMSprop (Root mean squared propagation)

$$g_i^{(t)} = \alpha g_i^{(t-1)} + (1 - \alpha) \left(\frac{\partial l^{(t)}}{\partial \theta_i}\right)^2$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \frac{\eta}{\sqrt{g_i^{(t)} + \varepsilon}} \frac{\partial l^{(t)}}{\partial \theta_i}$$

여기에서 일반적으로  $\alpha = 0.999, \varepsilon = 10^{-8}$ 

$$\Rightarrow g_i^{(t)} = \sum_{r=0}^t \alpha^r (1 - \alpha) \left( \frac{\partial l^{(t-r)}}{\partial \theta_i} \right)^2 + \alpha^t g_i^{(0)}$$

- ◆ <mark>가장 최근의 손실함수변동에 가장 큰 가중치를 주고</mark> 지수적 감소형태의 가중치
- ◆ 직전 최신화에서 손실함수의 변동에 많이 기여한 모수의 최신화는 줄이고 적게 기여한 모수의 최신화는 증가시킴.

Adaptive delta (AdaDelta)

AdaDelta는 RMSprop에 모수의 변화량  $\Delta \theta_i^{(t)} = \theta_i^{(t)} - \theta_i^{(t-1)}$ 를 추가함

$$g_i^{(t)} = \alpha g_i^{(t-1)} + (1 - \alpha) \left(\frac{\partial l^{(t)}}{\partial \theta_i}\right)^2$$

$$h_i^{(t)} = \beta h_i^{(t-1)} + (1 - \beta)(\Delta \theta_i^{(t)})^2$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \frac{\sqrt{h_i^{(t)} + \varepsilon}}{\sqrt{g_i^{(t)} + \varepsilon}} \frac{\partial l^{(t)}}{\partial \theta_i}$$

 $\Rightarrow$   $\theta_i$ 의 변동이 크게 변했다는 것은  $\theta_i$ 가 손실함수 감소에 기여가 크다는 의미이므로  $\theta_i$ 의 변동에 비례하여 최신화 강도 증가.

Adaptive moment (Adam)

$$m_i^{(t)} = \beta_1 m_i^{(t-1)} + (1 - \beta_1) \frac{\partial l^{(t)}}{\partial \theta_i}$$

$$g_i^{(t)} = \beta_2 g_i^{(t-1)} + (1 - \beta_2) (\frac{\partial l^{(t)}}{\partial \theta_i})^2$$

지수명균: 
$$\overline{m}_i^{(t)} = \frac{m_i^{(t)}}{1-\beta_1^t}$$
,  $\overline{g}_i^{(t)} = \frac{g_i^{(t)}}{1-\beta_2^t}$ 

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \frac{\eta}{\sqrt{\bar{g}_i^{(t)} + \varepsilon}} \bar{m}_i^{(t)}$$

Momentum

$$v_i^{(t+1)} = \alpha v_i^{(t)} - \eta \frac{\partial l^{(t)}}{\partial \theta_i} \big|_{\theta_i = \theta_i^{(t)}}$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} + v_i^{(t+1)}$$

- $\Rightarrow \frac{\partial l^{(t)}}{\partial \theta_i}$ 이 계속해서 동일한 부호를 가지면 $v_i^{(t+1)}$ 의 절대값은 증가.
- $\Rightarrow$   $\frac{\theta_i^{(t+1)}}{\theta_i}$ 의 변화가 커짐. 반대로  $\frac{\partial l^{(t)}}{\partial \theta_i}$ 의 부호가 교차하면  $\frac{\partial l^{(t)}}{\partial \theta_i}$ 의 절대값이 작아짐.
- $\Rightarrow \theta_i^{(t+1)}$ 의 변화가 작아짐.

Nesterov

$$\begin{split} \tilde{\theta}_i^{(t)} &= \theta_i^{(t)} + \alpha v_i^{(t)} \\ v_i^{(t+1)} &= \alpha v_i^{(t)} - \eta \frac{\partial l^{(t)}}{\partial \theta_i} \big|_{\theta_i = \tilde{\theta}_i^{(t)}} \\ \theta_i^{(t+1)} &= \theta_i^{(t)} + v_i^{(t+1)} \end{split}$$

$$\Rightarrow \frac{\partial l^{(t)}}{\partial \theta_i}$$
의 평가값을  $\tilde{\theta}_i^{(t)}$ 으로 변경

- 딥러닝을 포함하여 머신러닝의 궁극적 목표는 추정에 전혀 사용한 적이 없는 (never-seen-before) 데이터에도 성능이 좋은, 모형의 일반화 (generalization)에 있다
- 이를 위해 딥러닝에서는 모수를 추정하기 이전에 미리 전체 데이터에서 따로 떼어 놓고 이 데이터를 시험데이터(testing data)라고 한다. 나머지 데이터로 딥러닝 모형을 설정하고 모수를 추정한 후, 시험데이터에 이 학습된 모형을 적용하여 모형의 일반화를 점검하게 된다.
- 딥러닝 모형을 설정하고 모수를 추정하는 데이터는 학습데이터(training data) 와 검증데이터(validation data)로 구성되어 있다.

- 학습데이터는 MLP, CNN, RNN 등 딥러닝 모형에 포함되어 있는 모수를 추정하고 손실함수값과 모형의 정밀도를 계산하는데 사용한다.
- 검증데이터는 딥러닝 모형의 설계를 위한 은닉층의 수, 딥러닝 아키텍쳐, 최적화 알고리즘의 선택, 과대적합문제를 해결하기 위한 규제화(regularization), dropout, 배치표준화(batch normalization) 사용여부 등 수 많은 모형 튜닝 (tuning)에 사용되는 데이터이다.
- 그러므로 검증데이터는 초모수(hyperparameters)를 조절하여 학습데이터에 서 학습된 모형의 성능을 향상시키는데 사용된다.
- 검증데이터는 딥러닝 모형을 설정하는데 정보를 제공하므로 모형 설정에 전혀 정보를 제공하지 않는 시험데이터와 구별된다.

29

- 검증데이터가 딥러닝 모형의 튜닝 임무를 마치면, 딥러닝 모형의 최종적인 모수
   추정은 학습데이터+검증데이터에 적용하여 구해야한다
- 데이터가 많을수록 좀 더 정확한 모수추정치를 구한다는 통계적인 관점 때문이다.





- 위 그림은 과대적합의 예를 보여주고 있다.
- 일반적으로 <mark>평균모형</mark>보다 높은 <mark>목표정밀도를 미리 설정해 놓고</mark> 학습데이터의 정밀도가 이에 도달하지 못하면 모형이 과소적합(under-fitting)되었다고 말한다.
- 과소적합되면 딥러닝의 은닉층을 늘리거나 은닉층의 노드수를 증가시킨다.
- 그래도 문제가 해결되지 않으면 딥러닝 모형의 설계를 변경하여야 한다.

- 학습데이터의 목표 정밀도는 충족되었으나 검증데이터의 정밀도가 그림과 같이
   학습데이터의 정밀도와 크게 차이가 나면,
- <mark>딥러닝 모형에 일반적으로 일어나는 현상이면서 가장 큰 문제인 과대적합(over-fitting)문제가 발생했다고 진단한다.</mark>
- 검증데이터에 과대적합문제가 발생하면 시험데이터(testing data)에도 동일한 과대적합문제가 발생한다.
- 그러므로 <mark>과대적합이 발생한 딥러닝 모형은 일반화(generalization)에 실패</mark>했다고 말한다.

#### 과대적합문제를 해결하는 방법

■ 가장 좋은 방법은 데이터를 더 수집하여 학습데이터의 크기를 늘리는 것좀 더 많은 데이터는 좀 더 많은 불확실성을 모형에 부과하게 되어 모형의 성능을

통계적으로 향상시키기 때문이다.

- 그러나 대부분의 경우, 데이터의 크기를 늘리는 것은 쉽지 않다. 대체 방법으로 딥러 러닝의 은닉층을 줄이거나 은닉층의 노드수를 줄이는 것
- <mark>노드수를 줄이는 방법 중에 하나는 모수에 대한 규제화(regularization)이다</mark>.

 $L_1$  regularization : 손실함수=기존의 손실함수+ $\lambda_1 \sum |\theta_i|$ 

 $L_2$  regularization : 손실함수=기존의 손실함수+ $\lambda_2 \sum \theta_i^2$ 

#### 과대적합문제를 해결하는 방법

■ 출력층 직전 은닉층의 노드수를 줄이는 것

통계적 관점에서 출력층 직전 은닉층 노드수가 설명변수의 수가 됨

- Dropout
- dropout는 은닉층의 출력값 중 일부를 임의로 0으로 놓는 것을 말한다.
- 학습(learning)과정에서 은닉층의 출력값 중 일부를 0으로 한다는 것은 다음 층 (은닉층 또는 출력층)의 입력의 일부가 0으로 입력된다는 것이다.
- 역전파를 이용한 모수의 최신화가 안되는 효과를 가지게 된다. 이는 모형의 불확실성을 증가시켜 과대적합문제를 해결하는 데에 유용하다.

#### 과대적합문제를 해결하는 방법

- 활성함수에 아주 작은 값 또는 아주 큰 값이 입력되면 활성함수의 미분값은 거의
   0에 가까운 값을 가지게 된다.
- 예를 들어, sigmoid함수를 고려하면 일정수준 이하 또는 일정수준 이상의 값이 sigmoid 함수에 입력되면 각각 거의 0 또는 1의 값을 출력하게 되므로 이러한 작은 값 또는 큰 값에서의 sigmoid 함수의 미분 값은 0에 가깝게 된다.
- 그러므로 선형결합의 값이 아주 작은 값 또는 아주 큰 값이 연달아 입력되면 선형 결합 가중치(모수)가 역전파로 최신화를 하지 못해, 수렴속도가 아주 느리게 되어 결과적으로 최적화의 실패요인이 된다. 배치정규화는 이러한 문제를 해결하는 우 수한 도구이다.

#### 과대적합문제를 해결하는 방법

#### 배치정규화

■ 배치의 크기 m, 특성변수 x를 표준화

$$\tilde{x}_i = \frac{x_i - batch \ mean \ of \ x_i}{batch \ standard \ deviation \ of \ x_i}, \ i = 1, \dots, m$$

- $x_i^* = \alpha \tilde{x}_i + \beta$
- 여기에서 α와 β는 딥러닝 모수임
- 배치정규화는 각 은닉층내에서 활성화 함수를 적용하기 직전에 실행되어야 한다.
- 이외에도 instance normalization, layer normalization, group normalization이 있음.

# Q & A