## EE380 (Control Systems) Solution to Pre-Lab work of Experiment 2

| Student Name | Roll No. | Bench No. |  |
|--------------|----------|-----------|--|
|              |          |           |  |
|              |          |           |  |

- **Q1** Write down the identified mathematical model you used in Experiment 1.
- **Q2** In the lab, we will apply a sinusoidal voltage from a function generator (FG) to the dsPIC microcontroller's analog input. We will want the motor's speed to track this sinusoidal input.

Design using loop-shaping, a controller of first order such that the closed-loop system will track sinusoids of frequencies upto 7 Hz with  $e_{ss} \le 2\%$  (in magnitude). For the settling time (defined as "time to enter the x% tube with the intention of remaining in it") do the best you can achieve, given the other specifications, and given that the imperfections of the plant are what they are. *Hint: See EE250 lecture notes for a solution to this problem.* 



- Q4 Discretize the continuous-time controller using Euler's approximation. Use tf2ss.
- Q5 With the discretized version, perform a simulation of digital control of the continuous-time plant using the m-file simsine.m. Apply reference sinusoids of magnitude = 150 rad/s, and about 4 frequencies (in Hz): 1, 3, 5, 7. You may need to slightly modify simsine.m to suit your purpose. Populate the following table.

| Frequency of reference sinusoid of amplitude 150 rad/s [Hz] | 1 | 3 | 5 | 7 |
|-------------------------------------------------------------|---|---|---|---|
| Amplitude of rotor speed $\omega$ in CL [rad/s]             |   |   |   |   |
| Amplitude of control <i>u</i> [V]                           |   |   |   |   |

If the desired performance is not achieved, then repeat Q2 onwards. Else, proceed to Q6.

In the lab, observe the frequencies up to which tracking happens well.

**Q6** Write the digital controller in C.

Q7 SYSTEM IDENTIFICATION USING LSE: Supply various values to K, a, b in the file sysid.m, execute this file in GNU Octave, and compare the resulting values of K, a, b with the supplied values. Do you think that sysid.m is doing a good job of estimating the supplied values?

|              | K | а | b | K | а | b | K | a | b |
|--------------|---|---|---|---|---|---|---|---|---|
| To sysid.m   |   |   |   |   |   |   |   |   |   |
| From sysid.m |   |   |   |   |   |   |   |   |   |

**Q8** Assume that the plant TF obtained in Experiment 1 is 32.286/(0.052s+1).

A voltage waveform is applied to the open-loop system from a function generator. Three sets of  $u-\omega$  data are obtained into files named tri4fg5.log, tri8fg5.log, and rect4fg5.log. These data correspond respectively to trianglular waveform of  $u\approx 4$  V amplitude, triangular waveform of  $u\approx 8$  V amplitude, and rectangular waveform of  $u\approx 4$  V amplitude.

To see the effect of the deadzone, plot the contents of each of the .log files using readplot.m, and sketch your results below.

| $\omega$ vs. $t$ and $u$ vs. $t$ from tri4fg5.log | $\omega$ vs. $t$ and $u$ vs. $t$ from tri8fg5.log | $\omega$ vs. $t$ and $u$ vs. $t$ from rect4fg5.log |
|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
|                                                   |                                                   |                                                    |
|                                                   |                                                   |                                                    |
|                                                   |                                                   |                                                    |
|                                                   |                                                   |                                                    |

Then, use the attached file readSID.m, which is an amalgam of readplot.m and sysid.m, to populate the following table.

|                                    |    | Parameters of step response |                                                         |  |  |
|------------------------------------|----|-----------------------------|---------------------------------------------------------|--|--|
| Type of TF                         | TF | <b>ω</b> (∞) [rad/s]        | Sketch of step responses (all in one) (unfiltered ones) |  |  |
| TF from Exp-t 1                    |    |                             |                                                         |  |  |
| TF from triangle of 4 V amplitude  |    |                             |                                                         |  |  |
| TF from triangle of 8 V amplitude  |    |                             |                                                         |  |  |
| TF from rectangle of 4 V amplitude |    |                             |                                                         |  |  |