Control structures

Mike Burrell

Readings

Conditions

Booleans

Control structures with

Conclusion

Variables

v an abic.

Conclusion

Control structures

Basic C++

Mike Burrell

March 5, 2024

Textbook readings

Control structures

Aike Burrell

Readings

Conditions

Booleans
Control structures with

booleans

Variable

variabic.

Conclusion

Chapter 1 — 1.4

Chapter 4 — 4.3

Chapter 5 — 5.1, 5.2, 5.3, 5.4

Goals for this set of slides

Control structures

Mike Burrel

Readings

Conditions

Control structures wit booleans

Variable

Scope

- Understand how to break up problems using if, else, while, do, and switch
- Understand type inference in C++

More history

Control structures

Miles Desert

Reading

Conditions

Booleans

Control structures with booleans

Variables Scope

- One of the earliest divergences between C and C++ is over the use of booleans
- From 1970 to 1999, C did not have any booleans
- In contrast, C++ had booleans right from the 1980s, but it maintained compatibility with boolean-less C
- This is important because it changes how we think about conditions (e.g., if statements)

Booleans in C++

Control structures

Mika Burrall

Conditions

Control structures with booleans

Variable:

■ The word bool is a keyword (reserved word) in C++

- As are true and false
- It exists outside of the usual integer type hierarchy
 - Its representation is completely implementation-defined
 - Most commonly, it is represented as a single byte (sizeof (bool) is very often 1)
- However, it *is* an integer type, of sorts....

Integers and booleans

Control structures

Miko Burroll

Reading

Condition

Booleans
Control structures with

Control structures v booleans Conclusion

Variables Scope To maintain better compatibility with C (which historically didn't have a bool type), C++ treats bools as integers

```
false — is defined to be 0 true — is defined to be 1
```

- An integer will be implicitly converted into a boolean
 - Any non-zero value will be interpreted to be true
- Arithmetic (-, +, --, ++, etc.) is possible on bools, too, though discouraged

Idiomatic C++

Control structures

Mike Burre

Readings

Conditions

Booleans
Control structures with

booleans
Conclusion

Variables

Conclusion

```
int num_factors(unsigned int x)
{
   if (!x) {
       return 0;
   int c = 1;
   for (unsigned int i = 2; i < x; i++) {
       if (x \% i == 0) {
           c++;
           x /= i;
   return c;
```

Note the use of if (!x)

Integers as booleans

Control structures

Mika Burrall

Reading

Condition

Booleans

Control structures with booleans

booleans Conclusion

Variables Scope Many C++ programmers (especially those who also use C) will idiomatically use integers as if they were booleans and vice versa

- Also with pointers, which we'll see before long
- The behaviour that 0=false and anything-other-than-0=true is well-defined and usually a safe thing to take advantage of
- Just make sure that your code is clear and understandable

Most structures are the same

Control structures

Mika Burrall

Reading

Conditions

Booleans

Control structures with booleans

Variables Scope

- if, while both work the same in C++ as they do in Python
 - Except that the conditions can be integers instead of booleans
- Like in Python, an else is possible, and else ifs may be chained together indefinitely

Boolean operators are the same

Control structures

Mike Burrell

Readings

Booleans

Control structures with

booleans
Conclusion

Variables

Scope

- <, >, <=. >=, !=, && (and), || (or), ? :, !
 (not), etc.
- Just be aware of the fact that the result of a boolean expression could be turned into an integer at any moment
 - E.g., int x = (y < z) * 10;
 - If y < z, then x will be 10; otherwise it will be 0.

For loops

Control structures

Alle Desmall

Reading

Conditions
Booleans

Control structures with booleans
Conclusion

Variables Scope ■ Basic for loops (for (;;)) are commonly used in C++

- For-each loops (*enhanced for loops* in Java, *range-based for loops* in C++) are different though!
 - For-each loops in C++ are considerably more flexible and complex
 - Even with arrays, C++ for-each loops offer a lot of flexibility
 - We will look at these when we discuss vectors

Switch statements

Control structures

Mike Burrell

Reading

Conditions

Booleans

Control structures with booleans

Variables

■ C++ has a switch statement that can take the place of else if in some instances

- In C++, switch statements may *only* be used with integer constants
- "Integer constants" includes enumerations, which we'll discuss later in the course

Conclusion of control flow

Control structures

Aika Burrall

Reading

Conditions

Booleans

Control structures with booleans

Conclusion
Variables

- Use basic if, for, while, etc., as you would in Python
- Be aware of the fact that integers and booleans are interchangeable
- false=0, true=1, 0=false, non-zero=true

Scope

Control structures

Miles December

Reading

Conditions

Booleans

Control structures with booleans

Variables Scope Scope of variables works similarly, but not exactly the same as in Python

- Curly-braces demark the scope of a variable
- Variables are deallocated when they fall out of scope
- C++ has globals (declared outside of any scope)
 - The static keyword can be used to turn a global variable into a variable accessible only within the current file

Conclusion

Control structures

Aika Burrall

Readings

Conditions

Booleans

Control structures wit booleans

Variables

Variables

Scope Conclusion

- Variables work generally as they do in Python or C
- Booleans and integers are often freely mixed together