This weeks problem set provides practice with diagonalisable operators and the basic properties of inner products. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 5: due Tuesday 3 December: questions 22 from Section 6.2 (see 3 below) and question 2 below.

- 1. From section 6.2, problems 1, $2b, g, i, k, 5^*, 6, 7, 9, 13^*, 17^*, 22$.
- 2. Let V be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .
 - (a) Fix $y \in V$ and suppose $\langle x, y \rangle = 0$ for all $x \in V$. Show that y = 0.
 - (b) Let $T: V \longrightarrow V$ be a linear map such that $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all pairs $x, y \in V$ (we call such a map an *isometry*). Prove that T is an isomorphism.
 - (c) [†] Find all isometries $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that have $\det T = 1$.
- 3. (22 from 6.2) Let $V = \mathcal{C}([0,1],\mathbb{R})$ be the space of real valued, continuous functions on the interval [0,1] with the inner product $\langle f,g\rangle=\int_0^1 f(t)g(t)\ dt$. Let W be the subspace spanned by the linearly independent set $\{t,\sqrt{t}\}$.
 - (a) Find an orthonormal basis for W.
 - (b) Let $h(t) = t^2$. Use the orthonormal basis obtained in (a) to obtain the "best" (closest) approximation of h in W.