Name:

Documentation:

- 1. A pressure sensor outputs -2mV when the pressure is 30psi and +13mV when the pressure is 150psi. The input range for the analog-to-digital converter is 0-10V, where 0V corresponds to 30psi and 10V corresponds to 150psi.
 - (a) Design the interface circuit.

Gain =

Bias =

(b) What does the interface circuit output when the sensor voltage is $+6 \mathrm{mV?}$

 $V_{\mathrm{out}} =$

2. An Analog-to-Digital Converter (ADC) has a sampling frequency of 30kHz, what is the maximum input frequency allowed before aliasing occurs?

 $f_{
m max} =$

3. Given the following amplitude spectrum for an analog signal being applied to an ADC, what is the minimum sampling frequency required to avoid aliasing? What $V_{\rm max}$ and $V_{\rm min}$ would you recommend to avoid clipping with your ADC?

 $f_s =$

 $m V_{min} =$

 $V_{
m max} =$

4. Perform the following number base conversions

(a) 81_{10} $\xrightarrow{8\text{-bit binary}}$

(b) 65_{10} 8-bit binary

(c) 11110101_2 Decimal

(d) 01101110_2 Decimal

5. Given a 4-bit ADC with $V_{min} = 0V$, what V_{max} is required to get a voltage resolution of $\frac{1}{4}V$?

 $m V_{max} =$

6. Given an ADC with $V_{\rm max}=10V$ and $V_{\rm min}=0V$, how many bits would be required to get a voltage resolution less than 2mV? Recall this needs to be an integer value.

b =