

Hydrocarbon Resins

99/00S10

March 2001

TABLE OF CONTENTS

	Page
I EXECUTIVE SUMMARY	- 1 -
A. SYNOPSIS	- 1 -
B. OVERVIEW	- 2 -
1. Hydrocarbon Resins – What Are They?	- 2 -
2. Feedstocks for Synthetic Hydrocarbon Resins	- 2 -
3. Manufacturing Processes	- 3 -
C. PROCESS ECONOMICS	- 5 -
D. COMMERCIAL STATUS	- 7 -
E. STRATEGIC ISSUES	- 9 -
1. Value Added Potential	- 9 -
2. Globalisation	- 10 -
II INTRODUCTION	- 11 -
A. AIM OF THE STUDY	- 11 -
B. OVERVIEW	- 12 -
1. What Are Hydrocarbon Resins?	- 12 -
2. How Are They Used?	- 12 -
3. Feedstock Sources	- 13 -
4. Molecular Structures	- 14 -
(a) Aliphatic Resins	- 14 -
(b) Resins from Cyclopentadiene	- 15 -
(c) Aromatic Resins	- 16 -
C. CHEM SYSTEMS PRODUCTION COST METHODOLOGY	- 17 -
1. Capital Cost Estimation	- 17 -
(a) Battery Limits Investment	- 17 -
(b) Off-Sites Investment	- 18 -
(c) Contractor Charges Typically 15 to 25 percent of Installed BL and OS Costs	- 19 -
(d) Project Contingency Allowance	- 19 -
(e) Working Capital	- 20 -
(f) Other Project Costs	- 20 -
(1) Start-Up/Commissioning Costs	- 20 -
(2) Miscellaneous Owner's Costs	- 21 -
2. Cost of Production Elements	- 22 -
(a) Battery Limits	- 22 -
(b) Production Costs	- 22 -
(1) Labor	- 22 -
III PROCESS TECHNOLOGY	- 24 -
A. FEEDSTOCKS	- 24 -

**TABLE OF CONTENTS
(Continued)**

	Page
1. Petroleum Derived	- 25 -
(a) Processing Pyrolysis Gasoline	- 25 -
(b) Dicyclopentadiene Removal	- 27 -
(c) Piperylene Concentrates	- 28 -
(d) C ₉ Resin Oils	- 29 -
(e) C ₄ Streams	- 29 -
2. Coal Tar Derived	- 30 -
3. Pure Monomers	- 31 -
4. Naturally Sourced	- 31 -
(a) Rosin Esters and Salts	- 31 -
(b) Terpenoids	- 32 -
(c) Asphaltite	- 32 -
B. PROCESS CHEMISTRY	- 33 -
1. Lewis Acid Catalyzed	- 33 -
(a) Cationic Polymerization	- 33 -
(b) Process Control Issues	- 35 -
(1) Feed Composition	- 35 -
(2) Temperature	- 35 -
(3) Catalyst/Cocatalyst Systems	- 36 -
(4) Residence Time/Contact Time	- 37 -
2. Thermal Processes	- 37 -
C. PROCESS DESIGN	- 38 -
1. Aliphatic Resins	- 38 -
2. DCPD Resins	- 40 -
3. Aromatic Resins	- 42 -
4. Waterwhite Resins	- 44 -
5. Other Resin Systems	- 45 -
 IV PROCESS ECONOMICS	 - 46 -
A. OVERVIEW	- 46 -
B. UNITED STATES	- 48 -
1. Aliphatic Resins	- 48 -
2. Aromatic Resins	- 48 -
3. Mixed C ₅ -C ₉ Systems	- 48 -
4. Thermal DCPD Resins	- 52 -
5. Hydrogenation	- 52 -
6. Pure Monomer Resins	- 52 -
7. Summary for the United States	- 60 -

**TABLE OF CONTENTS
(Continued)**

	Page
C. WESTERN EUROPE	- 62 -
D. JAPAN	- 64 -
E. SENSITIVITIES	- 66 -
 V COMMERCIAL STATUS	
A. REVIEW OF END-USAGES	- 68 -
1. Adhesives	- 68 -
2. "Sticky Tapes"	- 69 -
3. Sealants	- 69 -
4. Coatings	- 69 -
5. Printing Inks	- 70 -
6. Rubber Compounding	- 70 -
7. Plastics Compounding	- 71 -
8. Miscellaneous End Uses	- 71 -
9. Naming and Modelling Conventions	- 71 -
B. GLOBAL SYNTHETIC RESIN MARKET	- 72 -
1. End-Uses	- 72 -
2. Aliphatic Resins	- 73 -
3. Aromatic Resins	- 75 -
4. Waterwhite Resins	- 79 -
C. UNITED STATES	- 82 -
1. Production Capacity	- 82 -
2. Supply/Demand Balance	- 83 -
D. WESTERN EUROPE	- 87 -
E. JAPAN	- 92 -
F. OTHER REGIONS	- 96 -
 VI STRATEGIC ISSUES	
A. OVERVIEW	- 97 -
B. VALUE ADDED POTENTIAL	- 98 -
C. GLOBALIZATION	- 100 -
 VII REFERENCES	- 102 -

APPENDIX I

COST OF PRODUCTION ESTIMATES FOR SYNTHETIC
HYDROCARBON RESIN PRODUCTION IN WESTERN EUROPE

APPENDIX II

COST OF PRODUCTION ESTIMATES FOR SYNTHETIC
HYDROCARBON RESIN PRODUCTION IN JAPAN

TABLES

	Page
Table I.C.1 Cost of Production Summary for Hydrocarbon Resins	- 5 -
Table I.E.1 Major Hydrocarbon Resin Producers Global Capacity, End 2000	- 10 -
Table III.A.1 Preferred Polymer – Tackifier Resin Combinations	- 24 -
Table III.A.2 Composition of a Typical Unsaturated C ₅ Streams by Source	- 26 -
Table III.A.3 Composition of a Typical Unsaturated C ₉ Stream	- 27 -
Table III.A.4 Typical Composition Range for Piperylene Concentrates	- 28 -
Table III.A.5 Typical Composition Range for Piperylene Concentrates	- 29 -
Table III.A.6 Composition of a Typical Coal Tar Sourced C ₉ Stream	- 31 -
Table IV.A.1 Feedstock Prices	- 46 -
Table IV.A.2 Utility Prices	- 47 -
Table IV.B.1 Cost of Production Estimate for: Aliphatic Hydrocarbon Resin Process: Piperylene-Based, Lewis Acid Catalysis	- 49 -
Table IV.B.2 Cost of Production Estimate for: Aromatic Hydrocarbon Resin Process: C ₉ -Based, Lewis Acid Catalysis	- 50 -
Table IV.B.3 Cost of Production Estimate for: Aliphatic/Aromatic Hydrocarbon Resin Process: C ₅ -C ₉ -Based, Lewis Acid Catalysis	- 51 -
Table IV.B.4 Cost of Production Estimate for: Low Purity Dicyclopentadiene Process: - Crude C5 Stream Heat Soak/Fractionation	- 53 -
Table IV.B.5 Cost of Production Estimate for: Reactive Cycloaliphatic Hydrocarbon Resin Process: - Thermal Polymerization of Low Purity DCPD	- 54 -
Table IV.B.6 Cost of Production Estimate for: Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: - DCPD Thermal Polymerization/ High Pressure Hydrogenation	- 55 -
Table IV.B.7 Cost of Production Estimate for: C ₉ Modified Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: - DCPD/C9 Thermal Polymerization/High Pressure Hydrogenation	- 56 -
Table IV.B.8 Cost of Production Estimate for: <u>Hydrogenated Aliphatic Hydrocarbon Resin Process</u> : - High Pressure Hydrogenation of Aliphatic Resin	- 57 -
Table IV.B.9 Cost of Production Estimate for: <u>Hydrogenated Aromatic Hydrocarbon Resin Process</u> : - High Pressure Hydrogenation of Aromatic Resin	- 58 -
Table IV.B.10 Cost of Production Estimate for: Pure Monomer Hydrocarbon Resin Process: - Two Stage Polymerization	
Table IV.B.11 Cost of Production Summary for Hydrocarbon Resins (<i>USGC</i>)	- 60 -
Table IV.C.1 Cost of Production Summary for Hydrocarbon Resins (<i>Western Europe</i>)	- 62 -

**TABLES
(Continued)**

	Page
Table V.B.1 Global Aliphatic Hydrocarbon Resin Demand by Region, 1994-2015	- 74 -
Table V.B.2 Global Aromatic Hydrocarbon Resin Demand by Region, 1994-2015	- 77 -
Table V.B.3 Global Waterwhite Hydrocarbon Resin Demand by Region, 1994-2015	- 80 -
Table V.C.1 United States Synthetic Hydrocarbon Resin Capacity, End 2000	- 82 -
Table V.C.2 United States Aliphatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 83 -
Table V.C.3 United States Aromatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 84 -
Table V.C.4 United States Waterwhite Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 85 -
Table V.D.1 West European Synthetic Hydrocarbon Resin Capacity, End 2000	- 87 -
Table V.D.2 West European Aliphatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 89 -
Table V.D.3 West European Aromatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 89 -
Table V.D.4 West European Waterwhite Hydrocarbon Resins Supply/ Demand Balance, 1994-2015	- 90 -
Table V.E.1 Japanese Synthetic Hydrocarbon Resin Capacity, End 2000	- 92 -
Table V.E.2 Japanese Aliphatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 93 -
Table V.E.3 Japanese Aromatic Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 94 -
Table V.E.4 Japanese Waterwhite Hydrocarbon Resins Supply/Demand Balance, 1994-2015	- 95 -
Table V.F.1 Other Synthetic Hydrocarbon Resin Capacity, End 2000	- 96 -
Table VI.C.1 Major Hydrocarbon Resin Producers Global Capacity, End 2000	- 101 -
Table AI.A.1 Cost of Production Estimate for: Aliphatic Hydrocarbon Resin Process: Piperylene-Based, Lewis Acid Catalysis	- 103 -
Table AI.A.2 Cost of Production Estimate for: Aromatic Hydrocarbon Resin Process: C ₉ -Based, Lewis Acid Catalysis	- 104 -
Table AI.A.3 Cost of Production Estimate for: Aliphatic/Aromatic Hydrocarbon Resin Process: C ₅ -C ₉ -Based, Lewis Acid Catalysis	- 105 -

**TABLES
(Continued)**

	Page
Table AI.A.4 Cost of Production Estimate for: Low Purity Dicyclopentadiene Process: Crude C ₅ Stream Heat Soak/Fractionation	- 106 -
Table AI.A.5 Cost of Production Estimate for: Reactive Cycloaliphatic Hydrocarbon Resin Process: Thermal Polymerization of Low Purity DCPD	- 107 -
Table AI.A.6 Cost of Production Estimate for: Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: DCPD Thermal Polymerization/ High Pressure Hydrogenation	- 108 -
Table AI.A.7 Cost of Production Estimate for: C ₉ Modified Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: DCPD/C ₉ Thermal Polymerization/High Pressure Hydrogenation	- 109 -
Table AI.A.8 Cost of Production Estimate for: Hydrogenated Aliphatic Hydrocarbon Resin Process: High Pressure Hydrogenation of Aliphatic Resin	- 110 -
Table AI.A.9 Cost of Production Estimate for: Hydrogenated Aromatic Hydrocarbon Resin Process: High Pressure Hydrogenation of Aromatic Resin	- 111 -
Table AI.A.10 Cost of Production Estimate for: Pure Monomer Hydrocarbon Resin Process: Two Stage Polymerization	- 112 -
Table AI.A.11 Cost of Production Summary for Hydrocarbon Resins (<i>Western Europe</i>)	- 113 -
Table All.A.1 Cost of Production Estimate for: Aliphatic Hydrocarbon Resin Process: Piperylene-Based, Lewis Acid Catalysis	- 114 -
Table All.A.2 Cost of Production Estimate for: Aromatic Hydrocarbon Resin Process: C ₉ -Based, Lewis Acid Catalysis	- 115 -
Table All.A.3 Cost of Production Estimate for: Aliphatic/Aromatic Hydrocarbon Resin Process: C ₅ -C ₉ -Based, Lewis Acid Catalysis	- 116 -
Table All.A.4 Cost of Production Estimate for: Low Purity Dicyclopentadiene Process: Crude C ₅ Stream Heat Soak/Fractionation	- 117 -
Table All.A.5 Cost of Production Estimate for: Reactive Cycloaliphatic Hydrocarbon Resin Process: Thermal Polymerization of Low Purity DCPD	- 118 -
Table All.A.6 Cost of Production Estimate for: Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: DCPD Thermal Polymerization/ High Pressure Hydrogenation	- 119 -
Table All.A.7 Cost of Production Estimate for: C ₉ Modified Hydrogenated Cycloaliphatic Hydrocarbon Resin Process: DCPD/C ₉ Thermal Polymerization/High Pressure Hydrogenation	- 120 -

**TABLES
(Continued)**

	Page
Table All.A.8 Cost of Production Estimate for: Hydrogenated Aliphatic Hydrocarbon Resin Process: High Pressure Hydrogenation of Aliphatic Resin	- 121 -
Table All.A.9 Cost of Production Estimate for: Hydrogenated Aromatic Hydrocarbon Resin Process: High Pressure Hydrogenation of Aromatic Resin	- 122 -
Table All.A.10 Cost of Production Estimate for: Pure Monomer Hydrocarbon Resin Process: Two Stage Polymerization	- 123 -
Table All.A.11 Cost of Production Summary for Hydrocarbon Resins (<i>Japan</i>)	- 124 -

FIGURES

	Page
Figure I.B.1 Petrochemical C ₅ and C ₉ Stream Production	- 3 -
Figure I.B.2 Schematic Hydrocarbon Resin Processes	- 4 -
Figure I.C.1 Hydrocarbon Resin Production Costs	- 6 -
Figure I.D.1 Global Synthetic Hydrocarbon Resin Consumption by Major End-Use, 2000	- 7 -
Figure I.D.1 Global Hydrocarbon Resin Consumption by Type, 1994-2015	- 8 -
Figure I.E.1 Hydrocarbon Resin Value Added Potential	- 9 -
Figure II.A.1 Aliphatic Resin Monomers	- 13 -
Figure II.A.2 Major Aromatic Resin Monomers	- 14 -
Figure II.A.3 A Possible Aliphatic Resin Structure	- 15 -
Figure II.A.4 Cyclopentadiene Resins	- 15 -
Figure II.A.5 A Possible Aromatic Resin Structure	- 16 -
Figure III.A.1 Petrochemical C ₅ and C ₉ Stream Production	- 26 -
Figure III.A.2 Wilton Coal Tar Distillation Process	- 30 -
Figure III.B.2 Potential Energy Distribution for Lewis Acid Disengagement from Double Bond	- 36 -
Figure III.C.1 Semi-Continuous Catalytic Aliphatic Hydrocarbon Resin Plant	- 39 -
Figure III.C.2 Semi-Continuous Catalytic Aliphatic Hydrocarbon Resin Plant	- 39 -
Figure III.D.1 Semi-Continuous Thermal DCPD Hydrocarbon Resin Plant	- 41 -
Figure III.D.2 Semi-Continuous Thermal DCPD Hydrocarbon Resin Plant	- 41 -
Figure III.E.1 Semi-Continuous Catalytic Aromatic Hydrocarbon Resin Plant	- 42 -
Figure III.E.2 Semi-Continuous Catalytic Aliphatic Hydrocarbon Resin Plant	- 43 -
Figure III.E.3 Semi-Continuous Catalytic Aromatic Hydrocarbon resin Plant	- 43 -
Figure III.F.1 Multipurpose Batch-Wise Homogeneous Hydrogenation	- 44 -
Figure III.F.2 Multipurpose Batch-Wise Heterogeneous Hydrogenation	- 45 -
Figure IV.B.1 Hydrocarbon Resin Production Costs (<i>USGC</i>)	- 61 -
Figure IV.C.1 Hydrocarbon Resin Production Costs (<i>Western Europe</i>)	- 63 -
Figure IV.D.1 Hydrocarbon Resin Production Costs (<i>Japan</i>)	- 65 -
Figure IV.E.1 Hydrocarbon Resin Production Costs	- 66 -
Figure IV.E.2 Aliphatic Resin Production Cost Sensitivity	- 67 -
Figure IV.E.3 Aromatic Resin Production Cost Sensitivity	- 67 -
Figure V.B.1 Global Aliphatic Hydrocarbon Resin Consumption by Region, 1994-2015	- 72 -
Figure V.B.2 Global Aliphatic Hydrocarbon Resin Consumption by Region, 1994-2015	- 73 -

**FIGURES
(Continued)**

	Page
Figure V.B.3 Global Aliphatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 74 -
Figure V.B.4 Global Aliphatic Hydrocarbon Resin Trade by Region, 1995-2015	- 75 -
Figure V.B.5 Global Aromatic Hydrocarbon Resin Consumption by Region, 1994-2015	- 76 -
Figure V.B.6 Global Aromatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	-78 -
Figure V.B.7 Global Aromatic Hydrocarbon Resin Trade by Region, 1995-2015	- 78 -
Figure V.B.8 Global Waterwhite Hydrocarbon Resin Consumption by Region, 1994-2015	- 79 -
Figure V.B.9 Global Waterwhite Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 81 -
Figure V.B.10 Global Waterwhite Hydrocarbon Resin Trade by Region, 1995-2015	- 81 -
Figure V.C.1. United States Aliphatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 84 -
Figure V.C.2 United States Aromatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 85 -
Figure V.C.3 United States Waterwhite Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 86 -
Figure V.D.1 West European Aliphatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 89 -
Figure V.D.2 West European Aromatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 90 -
Figure V.D.3 West European Waterwhite Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 91 -
Figure V.E.1 Japanese Aliphatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 93 -
Figure V.E.2 Japanese Aromatic Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 94 -
Figure V.E.3 Japanese Waterwhite Hydrocarbon Resin Supply/Demand Balance, 1994-2015	- 95 -
Figure VI.B.1 Hydrocarbon Resin Value Added Potential	- 98 -