Salt Segmentation using U-shaped Residual Convolution Neural Network

Xuan Qin, Ph. D.

Mentor: Raghunandan Patthar

Outline

- Introduction
 - Salt background
 - Seismic imaging
- Methods
 - U-net
 - ResNet
- Results
- Concluding remarks

Background: Subsurface salt

- Unique physical properties
 - Relatively light density
 - High wave speed
 - Flow under stress
- Economic importance
 - Oil and gas trap
 - Storage site for helium and hydrogen
 - Disposal site for hazardous waste

Laboratory specimens of salt (halite) from Zong et al. (2020)

A salt dome trap

How to find salt: Seismic imaging

Reflection seismology is widely used to image the subsurface; Seismic events are expected at boundaries of different layers.

Salt body identification is critical but time-consuming and biased. Therefore, automation is highly desired.

Evolution of salt identification

Conventional hand-engineered horizon picking

Auto Seed Tracking Based on correlation

When computer vision Meets seismic images

Who should concern?

 Geophysicists and computer vision experts

 Government agencies and National Geological Survey

Oil and service companies

(Donadei and SönkeSchneider, 2002, book chapter)

Objective

- Implement semantic segmentation to label salt in each pixel of 18,000 test images by learning 4,000 seismic images and masks
- Determine the threshold of the binary classification in each pixel to yield the best metric of Intersection over Union (IoU)

Semantic Segmentation

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Metric: Intersection Over Union (IoU)

IoU compares the corresponding pixel between the ground truth and prediction:

$$IoU = \frac{I_1 \cap I_2}{I_1 \cup I_2}$$

Calculate IoU for different threshold (t) and find the best threshold of Mean IoU

$$\frac{TP(t)}{TP(t) + FP(t) + FN(t)}$$

Data wrangling

Grey: seismic image; Green: salt mask

- 4000 images with masks available, much less than 18,000 test images
- Image depths range from 50 to 950 m for both training and testing sets
- Salt coverage indicates imbalanced labels

Convolution Neural Network

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

U-net for semantic segmentation

U-net training history

- Unet has over 2.1 M trainable parameters
- Split the training images to training(0.8) and validation(0.2) sets
- Stratify the splitting based on 10 categories of salt coverage

Building block of ResNet

- Vanishing gradient problem
- Residual neural networks
 - Reintroduce outputs from shallower layers

ResBlock with Full Pre-Activation

ResNet training history

- ResNet has over 5.1 M trainable parameters
- Tune hyperparameter via tree-based Parzen Esimtors (TPE) in Hyperopt library

Data augmentation

- Horizontal flipping
- Sequentially augment images
 - Affine, including translation and rotation, scaling
 - Crop and pad
 - Gaussian noise/blur
 - Multiply to make darker/brighter
 - Add to shift the greyness
- Randomly generate augmentation in each batch and epoch

(Augment the image and mask)

(Further improve the training/validation metrics)

Optimize the threshold IoU

Image a6c2605919, Depth (m): 520

The last layer uses 'sigmoid' as the activation, generating a probability from 0 to 1 for each pixcel.

Select the threshold based on the validation sets

Examples of predicting the test images

Submission and Description Private Score ①

Future work

- Improve the model
 - Data augmentation with domain knowledge
 - Ensemble
 - Long-short circuit ResNet (bottleneck block)
 - Use Lovász Hinge as the loss function for binary segmentation
 - Attention module
- Build an API for convenient usage

Concluding remarks

- U-shaped network can solve image segmentation tasks using contraction and expansion paths
- Adding residual blocks further improves the segmentation task, assisting the automation of seismic interpretation
- Data augmentation improves the training/validation metrics and prevents from the overfitting

Acknowledgement

- TGS company and Kaggle platform
- Springboard for providing the Paperspace cloud platform with GPU machines

Xuan Qin
Qin.xuan1@gmail.com

Thank you!