

Bounded Approximation Scheme

Input: A resource ratio $\alpha \in (0,1]$ and an access schema \mathcal{A} . Scheme^[6]: Given generic SQL Q and D, computes $(Q(D_Q), \eta)$:

• access a fraction D_Q of D with $|D_Q| \leq \alpha |D|$; • $\operatorname{accuracy}(Q, D, Q(D_Q)) \geq \eta$.

Chellenges: Deterministic bound for generic queries (even non-aggregate)

▶ Compute **both** answers and accuracy bound by accessing $\leq \alpha |D|$ tuples

Flexible trade-offs: available resources vs. accuracy bound

[6] Y. Cao, W. Fan: Data Driven Approximation with Bounded Resources, VLDB 2017

not one-size-fit-all reduction access data relevant to Q only to make best use of available resources

Bounded Approximation Scheme

decided by available resources

approximate answers

Input: A resource ratio $\alpha \in (0,1]$ and an access schema \mathcal{A} .

Scheme^[6]: Given generic SQL Q and D, computes $(\hat{Q}(D_Q), \eta)$:

- access a fraction D_Q of D with $|D_Q| \leq \alpha |D|$;
 - $\mathsf{accuracy}(Q,D,Q(D_Q)) \geq \eta$. deterministic!

Flexible trade-offs: available resources vs. accuracy bound

Chellenges:

- Deterministic bound for generic queries (even non-aggregate)
- ▶ Compute **both** answers and accuracy bound by accessing $\leq \alpha |D|$ tuples

accuracy bound

How does it work?