ИИ глазами хакера

Елизавета Тишина

Специалист по анализу защищённости, DeteAct

Потенциальные угрозы

Обзор модели-примера

- Тренировочные данные: MNIST
- Условия: АРІ доступ к модели
- · Знания атакующего: -

Атаки обхода: Обзор

Атаки обхода: Пример

Подход: Fast Gradient Method [arXiv:1412.6572]

Атаки обхода: Влияние

- Спуфинг систем верификации
- Обход фильтров:
 - антивирусов
 - спам-фильтров
 - фильтров рекламы
 - ...

Fundoscopy
Absent/mild DR Moderate/Severe DR Normal Pneumothorax Nevus Melanoma

100.0%
100.0%
100.0%
100.0%
100.0%
Dermoscopy
Normal Pneumothorax Nevus Melanoma

100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%

[arXiv:1804.05296]

- Угрожающие жизни ситуации:
 - неверные диагнозы
 - неверные решения автопилота
 - ...

Атаки обхода: Защита

- Человеческий контроль
- Ограничение числа запросов к модели
- Detector:
 - Дополнительная модель для оценки вредоносности экземпляров
- Adversarial training:
 - Обучение модели на вредоносных экземплярах
- Defensive distillation

Атаки выворачивания модели: Обзор

Атаки выворачивания модели: Пример

Подход: MIFace [DOI:10.1145/2810103.2813677]

Атаки выворачивания модели: Влияние

Утечка данных:

- Содержимое документов
- Медицинские записи
- Пароли
- PIN коды
- •

[arXiv:2012.07805]

Атаки извлечения модели: Обзор & Влияние

• Нарушение права интеллектуальной собственности

Атаки извлечения / выворачивания модели: Защита

- ...
- Model retraining
- Post-processing
- Выбор случайной модели из нескольких различных моделей

Adversarial Robustness Toolbox

github.com/Trusted-AI/adversarial-robustness-toolbox

- Attacks
- Defences
- Estimators
- Evaluations
- Metrics
- Data generators

```
from art.attacks.inference.model inversion import MIFace
x average = np.zeros((10, 28, 28, 1)) + np.mean(x test, axis=0)
attackInversion = MIFace(classifier, max iter=25000, threshold=1.0, batch size=10, window length=128)
inverted = attackInversion.infer(x_average, y=np.arange(10))
Model inversion: 100%
                                        10/10 [10:13<00:00, 61.38s/it]
from art.attacks.evasion import FastGradientMethod
# Generation of adversarial examples
attackEvasion = FastGradientMethod(estimator=classifier, eps=0.2, batch size=64)
x adv = attackEvasion.generate(x test)
# Predicting and evaluating accuracies of predictions on both initial data samples and adversarial ones
predictions = (classifier.predict(x test), classifier.predict(x adv))
accuracies = (np.sum(np.argmax(predictions[0], axis=1) == np.argmax(y test, axis=1)) / len(y test),
              np.sum(np.argmax(predictions[1], axis=1) == np.argmax(y test, axis=1)) / len(y test))
print(f"Accuracy of predictions (initial data): {accuracies[0] * 100} %")
print(f"Accuracy of predictions (adversarial): {accuracies[1] * 100} %")
Accuracy of predictions (initial data): 98.16 %
Accuracy of predictions (adversarial): 41.88 %
```

[ART] Атаки извлечения модели: Пример атаки

```
from art.attacks.extraction import CopycatCNN
attackExtraction = CopycatCNN(classifier, batch size fit=10, batch size query=10, nb epochs=10, nb stolen=100)
extracted = attackExtraction.extract(x_test, thieved_classifier=res)
Train on 100 samples
Epoch 1/10
100/100 [=============== ] - 0s 2ms/sample - loss: 2.2616 - accuracy: 0.1500
100/100 [============== ] - 0s 740us/sample - loss: 2.0509 - accuracy: 0.2600
Epoch 3/10
100/100 [=============== ] - 0s 658us/sample - loss: 1.7601 - accuracy: 0.4600
Epoch 4/10
100/100 [================= ] - 0s 702us/sample - loss: 1.1608 - accuracy: 0.6700
Epoch 6/10
100/100 [================= ] - 0s 707us/sample - loss: 0.9168 - accuracy: 0.7400
100/100 [================ ] - 0s 804us/sample - loss: 0.7963 - accuracy: 0.7500
100/100 [================ ] - 0s 700us/sample - loss: 0.6875 - accuracy: 0.7900
Epoch 9/10
100/100 [============= ] - 0s 570us/sample - loss: 0.6211 - accuracy: 0.8100
Epoch 10/10
100/100 [=============== ] - 0s 619us/sample - loss: 0.5331 - accuracy: 0.8100
# Making predictions with use of both original and extracted versions of the target model and evaluating their similarity
victim predictions = np.argmax(model.predict(x test), axis=1)
thieved predictions = np.argmax(extracted.predict(x test), axis=1)
accuracy = np.sum(victim_predictions == thieved_predictions) / len(victim_predictions)
print(f"Similarity of predictions: {accuracy * 100} %")
Similarity of predictions: 69.31 %
```

Counterfit

github.com/Azure/counterfit

counterfit> list targets

Name	Model Type	Data Type	Input Shape	# Samples	Endpoint	Loaded
creditfraud	BlackBox	tabular	(30,)	(not loaded)	creditfraud_sklearn_pipeline.pkl mnist_sklearn_pipeline.pkl mnist_model.h5 movie_reviews_sentiment_analysis.pt satellite-image-params-airplane-stadium.h5	False
digits_blackbox	BlackBox	image	(1, 28, 28)	(not loaded)		False
digits_keras	keras	image	(28, 28, 1)	(not loaded)		False
movie_reviews	BlackBox	text	(1,)	(not loaded)		False
satellite	BlackBox	image	(3, 256, 256)	(not loaded)		False

counterfit> list frameworks

Framework	# Attacks			
art	(not loaded)			
augly	(not loaded)			
textattack	(not loaded)			

Counterfit

github.com/Azure/counterfit

	-		
counterfit>	I a c t	attac	
COUNTERLIT	TTSC	attat	

Name Ca	ry Type Ta	Category Type Tags	Framework			
BAEGarg2019 BERTAttackLi2020 CLARE2020 CheckList2020 Bl CheckList2020 DeepWordBugGao2018 FasterGeneticAlgorithmJia2019 GeneticAlgorithmAlzantot2018 HotFlipEbrahimi2017 IGAWang2019 InputReductionFeng2018 Kuleshov2017 MorpheusTan2020 Bl PSOZang2020 PWWSRen2019 Pruthi2019 Seq2SickCheng2018BlackBox TextBuggerLi2018 Bl TextFoolerJin2019 Bl Br BraterGeneticAlgorithmJia2019 Bl Br	EvasionAttack Ev	BlackBox EvasionAttack text Bl	textattack textattack textattack carliniL0Method CarliniLInfMethod CopycatCNN DeepFool ElasticNet FunctionallyEquivalentExtraction HopSkipJump KnockoffNets LabelOnlyDecisionBoundary MIFace NewtonFool ProjectedGradientDescentCommon SaliencyMapMethod SimBA SpatialTransformation UniversalPerturbation VirtualAdversarialMethod Wasserstein Blur Brightness ChangeAspectRatio ClipImageSize ColorJitter Contrast	WhiteBox EvasionAttack BlackBox ExtractionAttack WhiteBox EvasionAttack WhiteBox EvasionAttack WhiteBox EvasionAttack BlackBox ExtractionAttack BlackBox ExtractionAttack BlackBox ExtractionAttack WhiteBox EvasionAttack WhiteBox InferenceAttack WhiteBox EvasionAttack WhiteBox CommonCorruption BlackBox CommonCorruption	image, tabular image	art

[Counterfit] Атаки обхода: Пример

github.com/qwqoro/ML-Talk

```
digits_blackbox> use HopSkipJump
[+] New HopSkipJump (419f7593) created
[+] Using 419f7593
digits_blackbox>419f7593> set --sample_index 1 --max_eval 1500 --max_iter 10
```

digits blackbox>419f7593> run

- [-] Running attack HopSkipJump with id 419f7593 on digits blackbox)
- [-] Preparing attack...
- [-] Running attack...

Success	Elapsed time	Total Queries			
1/1	0.7	2390 (3504.1 query/sec)			

Sample Index	Input Label (conf)	Adversari Label (conf)	Max Abs Chg.	Adversarial Input
1	0 (1.0000)	6 (0.9809)	4.7776	counterfit/targets/digits_blackbox/results/419f7593/digits_blackbox-f03b8b22-f

[+] Attack completed 419f7593 (HopSkipJump)

[Counterfit] Атаки обхода: Пример

Изначальное изображение	Вредоносная версия изображения	Разница (преувеличена)	Изнач. класс	Изначальная уверенность	Итоговый класс	Итоговая уверенность
0	0		Ο	100%	6	98%
			1	100%	8	56%
2	2		2	100%	4	73%

Может быть интересно 👀

- · Коллаборация Google, OpenAl, Apple, Stanford, Berkeley и Northeastern University: Извлечение тренировочных данных из языковых моделей + демонстрация атаки на GPT-2
 - & arXiv:2012.07805
- · MIT:

Демонстрация присутствия вредоносных 3D экземпляров в физическом мире + демонстрация атак обхода против нейросетей, разработанных Google

- & arXiv:1707.07397
- *P*arXiv:1804.08598

