LAST NAME:				FIRST NAME:				CIRC	CIRCLE:			
									Li		Minkoff	Zweck
1	/10	2	/10	3	/10	4	/10	5	/10			
6	/10	7	/10	8	/10	9	/10	10	/10	Γ	/100	

MATH 2415 Final Exam, Fall 2016

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] Find a parametrization of the line which is given by the intersection of the planes x + y + z = 0 and x - 2y + z = 0.

(2) [10 pts] (a) Sketch the curve with the parametrization $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$, for $0 \le t \le \pi$.	
) Find the arc length of the curve \mathbf{r} defined in part (a) from the point $(1, 0, 0)$ to the point $(-1, 0, 0)$	τ).

(3) [10 pts] Find the volume of the solid under the paraboloid	$z = x^2 + y^2$ and above the disk $x^2 + y^2 \le 9$.

- (4) [10 pts] Let $\mathbf{F}(x,y) = x^3 y^4 \mathbf{i} + x^4 y^3 \mathbf{j}$.
- (a) Find a function f so that $\mathbf{F} = \nabla f$.

(b) Use part (a) to evaluate the line integral $\int_C {\bf F} \cdot d{\bf r}$ along the curve

$$\mathbf{r}(t) = \sqrt{t} \, \mathbf{i} + (1 + t^3) \, \mathbf{j}$$
 for $0 \le t \le 1$.

(5) [10 pts] Find the absolute maximum and minimum values of the function f(x, y) = xy - x on the triangle with vertices (-1, 0), (-1, 3), and (2, 0).

(6) [10 pts] Use Green's Theorem to evaluate the line integral

$$\int_C y^2 dx + xy dy,$$

where C is the oriented curve consisting of the line segment from (-2,0) to (2,0) followed by the top half of the circle $x^2 + y^2 = 4$ traversed counter-clockwise.

- (7) [10 pts]
- (a) Let C be the curve in the plane which is parametrized by $\mathbf{r}(t) = (3t, 4t + 1)$, where $0 \le t \le 1$ and let z = f(x, y) = xy. Calculate $\int_C f \, ds$.

(b) Calculate the divergence of the vector field $\mathbf{F}(x,y,z) = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j} + z \, \mathbf{k}$.

(8) [10 pts] Let D be the region in the first quadrant of the xy-plane bounded by the curves $y=\frac{x}{2},\ y=x,\ xy=4$ and xy=9. Calculate $\iint_D x\,dxdy$. **Hint:** Use the change of variables $x=ve^u,\ y=ve^{-u}$.

(9) [10 pts] Let E be the solid region in the first octant (i.e., where $x \ge 0$, $y \ge 0$, $z \ge 0$) that is inside the cylinder $x^2 + y^2 = 1$ and below the plane x + z = 1. Sketch the solid E and calculate $\iiint_E y \, dV$.

(10)	[10	ptsl

(a) Let z = f(x, y) and $(x_0, y_0) = (1, 2)$. Let C be the level curve of f through the point (x_0, y_0) and suppose that $\nabla f(x_0, y_0) = (3, 4)$. Find a parametrization of the tangent line to the curve C at (x_0, y_0) .

(b) Prove that the directional derivative of a function z = f(x, y) at a point (x_0, y_0) is maximized when the derivative is taken in the direction of the gradient of f at (x_0, y_0) .

Pledge: I have neither given nor received aid on this exam

Signature: