

Universidad Tecnológica de la Mixteca 00046

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Análisis Numérico			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto	172041	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer y comprender la importancia de los métodos numéricos en la solución de problemas físicos que involucren ecuaciones sin solución analítica o bien que ésta sea difícil de implementar, así como elegir el método más apropiado para algún problema específico. Los conceptos teóricos serán implementados con software.

TEMAS Y SUBTEMAS

1. Errores.

- 1.1. Errores del dispositivo: error por redondeo y error por truncamiento.
- 1.2. Errores del método: error de truncamiento.
- 1.3. Error absoluto y error relativo.

2. Solución de ecuaciones no lineales.

- 2.1. Método de bisección.
- 2.2. Método del punto fijo.
- 2.3. Método de Newton Raphson.
- 2.4. Método de la secante.
- 2.5. Aceleración de convergencia.

3. Sistemas de ecuaciones lineales.

- 3.1. Métodos directos: métodos de eliminación gaussiana con pivote.
- 3.2. Factorización LU.
- 3.3. Factorización Cholesky.
- 3.4. Métodos iterativos: método de Jacobi y método de Gauss-Seidel.

4. Sistemas de ecuaciones no lineales.

- 4.1. Método del Punto fijo.
- 4.2. Método de Newton Raphson.
- 4.3. Método de Newton Raphson modificado.

5. Interpolación.

- 5.1. Interpolación de Lagrange.
- 5.2. Polinomio interpolante de Newton.
- 5.3. Estimación de errores.
- 5.4. Splines (lineales, cuadráticos y cúbicos).

6. Aproximación con mínimos cuadrados.

- 6.1. Aproximación lineal.
- 6.2. Aproximación polinomial.
- 6.3. Aproximación lineal múltiple.

Universidad Tecnológica de la Mixteca 00047

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

7. Integración numérica.

- 7.1. Regla compuesta del trapecio.
- 7.2. Regla compuesta de Simpson.
- 7.3. Integración con segmentos desiguales.
- 7.4. Cuadratura de Gauss y Legendre.
- 7.5. Integrales impropias.

8. Ecuaciones diferenciales ordinarias.

- 8.1. El problema del valor inicial.
- 8.2. Método de Euler.
- 8.3. Método de Euler Mejorado.
- 8.4. Métodos de Runge-Kutta (Orden 2, 3 y 4).
- 8.5. Ecuaciones diferenciales de orden superior.
- 8.6. Sistemas de ecuaciones diferenciales.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los retroproyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curro

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Métodos Numéricos para Ingenierías, Chapra S. C., Canale R.P., McGraw-Hill, 7ª Ed., 2013.
- Métodos Numéricos Aplicados a la Ingeniería, Nieves H.A., Domínguez S. F., CECSA, 2012.
- 3. Análisis Numérico, Burden R.L., Faires J.D., Cengaje Learning, 9ª Ed., 2003.

4. Métodos Numéricos, Luthe R., Olivera A., Schutz F., Limusa, 1990.

Consulta

- Applied Numerical Analysis, Curtis F.G. and Patrick O.W., Addison-Weslesy, 7th Ed, 2003.
- Numerical Analysis and Graphic Visualization with MATLAB, 2nd Ed., Namakura S., Prentice Hall, 2003.
- 3. Numerical Methods with Matlab: Implementations and Applications, Recktenwald G.W., Prentice Hall,
- Numerical Methods, Ram B., Pearson Education, 2010.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en ciencias o ingeniería con especialidad en métodos numéricos

DR. SALOMÓN GONZÁLEZ MARTÍNEZ

JEFE DE CARRERA

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA AUTORIZO

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO VICE-RECTORIA

ACADÉMICA