Economía y finanzas matemáticas Optativa del grado en Matemáticas, UAM, 2020-2021

Hoja 4 (árboles binomiales y fórmulas de Black-Scholes)

ÁRBOLES DE JARROW-RUDD

En los siguientes ejercicios, los datos de mercado serán la cotización hoy S_0 del subyacente, el tipo de interés R (anual, continuo) y la volatilidad σ (anual) del subyacente. El modelo binomial (Jarrow-Rudd) tiene paso Δt y sus parámetros son: p = 50 %,

$$u = e^{R\Delta t} \frac{1}{\cosh(\sigma\sqrt{\Delta t})} e^{+\sigma\sqrt{\Delta t}}, \quad d = e^{R\Delta t} \frac{1}{\cosh(\sigma\sqrt{\Delta t})} e^{-\sigma\sqrt{\Delta t}}.$$

- 1. Opciones binarias. Escribe la fórmula de valoración de opción que, a vencimiento $M\Delta t$,
 - a) paga 1 si la cotización está por encima de S_0 , mientras que paga 0 si es igual o inferior;
 - b) paga 1 si la cotización está entre K y 2K (y paga 0 en el resto de los casos).
- 2. Opciones path dependent. Digamos que M=2 (un árbol con dos pasos). Obtén una fórmula para valorar una opción que paga, en tiempo $2\Delta t$, la cantidad

$$\left(\frac{S_0 + S_1 + S_2}{3} - S_0\right)^+,$$

donde S_j es la cotización en tiempo $j\Delta t$ (una call sobre la media aritmética de las cotizaciones).

_____ FÓRMULAS DE BLACK-SCHOLES

3. Digamos que

$$S = 100, \quad r = 5\%, \quad \sigma = 30\%, \quad T = 6 \text{ meses}, \quad K = 110.$$

Calcula el valor de la prima de la call, la put y el forward (con las fórmulas de Black-Scholes).

4. Digamos que la cotización hoy de una cierta acción es 50 euros. El tipo de interés (continuo, anual) es del 1%. Se tienen los siguientes precios de calls (sobre la acción) a distintos vencimientos y strikes:

	3 meses	6 meses	12 meses
45	7.0	8.3	10.5
50	3.7	5.2	7.5
55	1.6	2.9	5.1

¿Son estos precios consistentes con el modelo de Black-Scholes?

5. Griegas en Black-Scholes. Dados los valores de r (tipo anual continuo), σ y S (volatilidad y cotización del subyacente), K (strike) y $\tau = T - t$ (tiempo hasta vencimiento), la fórmula de valoración de Black-Scholes para la prima de la call en tiempo t viene dada por:

$$c = S \Phi(d_+) - K e^{-r\tau} \Phi(d_-),$$
 donde $d_{\pm} = \frac{1}{\sigma \sqrt{\tau}} \ln \left(\frac{S}{K e^{-r\tau}} \right) \pm \frac{\sigma \sqrt{\tau}}{2}$

y Φ denota la función de distribución de la normal estándar. Si tomamos t=0 obtenemos la fórmula vista en clase.

a) Comprueba que

$$\frac{\partial c}{\partial S} = \Phi(d_+).$$

(Nota: la derivada de la función de distribución Φ es la función de densidad de la normal estándar, que se denota por ϕ).

b) Las derivadas parciales de la prima con respecto a los parámetros reciben el nombre "griegas". La del apartado a) es la "delta". Calcula también las siguientes derivadas:

$$\frac{\partial c}{\partial \sigma}$$
 (vega); $\frac{\partial c}{\partial t}$ (theta); $\frac{\partial c}{\partial r}$ (rho);

- c) Comprueba si las cuatro derivadas parciales anteriores tienen signo e interprétalo financieramente.
 - d) Calcula también la "gamma", es decir,

$$\frac{\partial^2 c}{\partial S^2},$$

e interpreta su signo.

e) Repite los cálculos para la prima de la put, cuya fórmula es

$$p = K e^{-r\tau} \Phi(-d_{-}) - S \Phi(-d_{+}).$$

¿Coinciden las griegas de la put con las correspondientes de la call? ¿Cuáles? ¿Por qué?

6. Opciones binarias. Si un derivado paga $g(S_T)$ a vencimiento T, la correspondiente fórmula de valoración (a la Black-Scholes) viene dada por

$$e^{-rT} \int_{-\infty}^{\infty} g(S_T) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$$
, donde $S_T = S_0 e^{(r-\sigma^2/2)T} e^{\sigma\sqrt{T}x}$.

- a) Halla una fórmula explícita para una "call binaria", que paga 1 si, a vencimiento T, $S_T > K$, mientras que paga 0 si $S_T < K$. Y para la "put binaria", que paga 0 y 1 justo al revés.
- b) Hala la correspondiente fórmula para la put binaria (quizás interese aplicar la "paridad call-put" para este caso binario).
- c) Halla la fórmula para la prima de una opción que paga 1 si S_T está entre K y 2K (y 0 en el resto de los casos).

______ EJERCICIO ANTICIPADO Y OPCIONES AMERICANAS

7. Llegada de ofertas. a) Vamos a recibir n ofertas, $F_n, F_{n-1}, \ldots, F_1$, de forma consecutiva. La primera en llegar es F_n . Imponemos la cláusula habitual de que si no se acepta una oferta en el momento en que llega, se "pierde". Digamos que las ofertas son variables aleatorias i.i.d. uniformes en [0,1]. Llamemos U_k al umbral de aceptación para la oferta F_k , y V_k al valor del juego en el paso k. Por ejemplo, $U_1=0$ y $V_1=1/2$ (la media de una uniforme en [0,1]). En el paso anterior, $U_2=1/2$, mientras que

$$V_2 = \mathbf{E}(F_2|F_2 > 1/2) \cdot \mathbf{P}(F_2 > 1/2) + V_1 \cdot \mathbf{P}(F_2 < 1/2) = 0.625.$$

Comprueba que $U_k = V_{k-1}$. Obtén una fórmula de recurrencia para los V_k (y por tanto para los U_k). Deduce el valor del umbral de aceptación en el primer paso para n = 10.

b) Repite los cálculos del ejercicio anterior para el caso de tres ofertas, F_3, F_2, F_1 , que son variables aleatorias i.i.d. que siguen una distribución dada por la siguiente función de densidad:

$$f(x) = \begin{cases} 1/3 & \text{si } 0 < x < 1; \\ 2/3 & \text{si } 1 < x < 2; \end{cases}$$

Calcula el valor a partir del cual debemos aceptar la primera oferta, F_3 .