

Earth Materials

Minerals & Rocks

Matter

An atom is the smallest unit of an element that possesses the properties of the element. It consists of a nucleus of protons and neutrons and a surrounding cloud of electrons. There are three states of matter: gas, liquid, and solid. Each state is distinguished by unique physical properties. Processes in Earth's dynamics mostly involve the changing of matter from one state to another.

Nature of Minerals

A mineral is a natural inorganic solid with a specific internal structure and a chemical composition that varies only within specific limits. All specimens of a given mineral, regardless of where, when, or how they were formed, have the same physical properties (including cleavage, crystal form, hardness, density, color, luster, and streak). Minerals also have restricted stability ranges.

Earth Materials

Minerals & Rocks

- Mineral adalah **benda padat homogen yang terbentuk dialam, inorganik dan mempunyai struktur kristal padat, dengan komposisi kimia tertentu dan mempunyai sifat fisik tertentu**
- Setiap mineral mempunyai susunan atom yang teratur membentuk kristal padat.
- *Native Elements* merupakan mineral yg tidak umum, tetapi beberapa diantaranya mempunyai nilai ekonomik yang tinggi seperti emas, tembaga, perak, diamond dan graphite.
- Mineral dapat mempunyai komposisi kimia yang bervariasi. Variasi ini terjadi akibat proses substitusi atom dari satu elemen ke elemen lainnya. Substitusi ini dapat terjadi apabila kesetimbangan elektrik terjadi dalam struktur atom, dan jika elemen yang mengsubstitusi mempunyai jari-2 atom yang hampir sama.
- Lebih dari 3500 mineral adalah silikat (gabungan Si, O dan elemen lainnya). Seperti Feromagnesian silikat mengandung Fe dan Mg. Group mineral lainnya adalah karbonat, sulfida, sulfat, dan halida.

- Setiap materi terdiri dari atom.
- Atom terdiri dari inti (*nucleus*) yang terdiri dari *proton* dan *neutron* serta *electron* yang mengelilinginya.
- Elemen didefinisikan berdasarkan jumlah *proton* didalam inti.
- Masa Atom (atomic mass) adalah jumlah proton dan neutron dalam inti.
- Elemen dengan bentuk yang sama tetapi mempunyai masa berbeda dinamakan isotop.
- Jumlah elektron yang mengelilingi inti sama dengan jumlah *proton* didalam inti.
- Atom saling bergabung dikarenakan gaya ikat (bonding).
- Atom dari elemen-2 yang berbeda saling terikat membentuk *compounds*.
- Pada umumnya mineral adalah *compound*, tetapi hanya sedikit yang mempunyai satu jenis elemen yang dikenal sebagai *native elements*.

Earth Materials

Minerals & Rocks

Matter – Water

Molecules of water containing the chemical elements hydrogen and oxygen

Elements made up of atoms

ATOM

Earth Materials

Minerals & Rocks

Two electrons (red dots) have been added to completely fill the outer energy level. This means that the atom is now an ion with a -2 charge because it has 2 more electrons than protons.

ANION, KATION, MASA DAN NOMER ATOM

ISOTOPE: ATOM DGN JUMLAH NEUTRON BERBEDA

Carbon 12 (^{12}C)
6 protons + 6 neutrons

98.9% of all carbon atoms

Carbon 13 (^{13}C)
6 protons + 7 neutrons

1.1% of all carbon atoms

Carbon 14 (^{14}C)
6 protons + 8 neutrons

0.0000000001% of all carbon atoms

● Protons
● Neutrons

SILIKAT STRUKTUR-1

Minerals & Rocks

TABLE EM2.2-1

Group	Schematic Arrangement of Silica Tetrahedra	Unit Composition and silicon: oxygen ratio	Example mineral and formula
Nesosilicates Isolated tetrahedra bonded to positive ions. There is no sharing of oxygen ions between tetrahedra.		$[\text{SiO}_4]^{4-}$ 1:4	Olivine $(\text{Mg,Fe})_2\text{SiO}_4$
Sorosilicates Two silica tetrahedra linked with one shared oxygen ion. Other positive ions bond to remaining oxygen ions at unshared tetrahedra corners.		$[\text{Si}_2\text{O}_7]^{6-}$ 2:7	Epidote $\text{Ca}_2(\text{Fe,Al})\text{Al}_2\text{O}(\text{SiO}_4)(\text{Si}_2\text{O}_7)(\text{OH})$
Cyclosilicates Three or more silica tetrahedra linked into closed rings. Each tetrahedron shares oxygen ions with two adjacent tetrahedra. Other positive ions bond to unshared oxygen ions.		$[\text{Si}_6\text{O}_18]^{12-}$ $\text{Si}_x\text{:O}_{3x}$	Beryl $\text{Be}_3\text{Al}_2\text{Si}_6\text{O}_{18}$

SILIKAT STRUKTUR-2

Inosilicates

Infinitely linked tetrahedra forming single or double chains.

In single chains two oxygen ions from each silica tetrahedra are shared.

Double chains are two single chains linked to each other where either 2-3 oxygen ions of each silica tetrahedron are shared.

Other positive ions bond to unshared oxygen ions to link the chains together. The hydroxyl ion (OH^-), fits loosely in the openings between the two tetrahedral chains.

Phyllosilicates

Also known as sheet silicates. The three oxygen ions at the base of the silica tetrahedra are all shared, producing infinitely flat sheet in two-dimensions. Other positive ions bond to unshared oxygen ions.

Tectosilicates

Also known as the framework silicates. All four oxygen ions of the silica tetrahedra are shared to form a three-dimensional framework. Other positive ions bond to the structure to balance charges that result from Al^{3+} substitution for Si^{4+} .

Earth Materials

Minerals & Rocks

Crystals & Minerals

Microscopic view

- Komposisi dan struktur mineral membentuk sifat fisik seperti warna, kekerasan, *cleavage*, bentuk kristal dan *specific gravity*.
- Beberapa mineral termasuk sangat umum dijumpai pada batuan sehingga dikenal sebagai mineral pembentuk batuan (*rock-forming*). Kebanyakan dari jenis ini adalah silikat, tetapi beberapa dari group karbonat juga sangat penting terutama dalam batuan sedimen.
- Sumberdaya mineral adalah tempat terkonsentrasi mineral ekonomis yang penting. Cadangan adalah konsentrasi dari sumberdaya mineral yang mempunyai nilai ekonomis.
- Catatan: Persentasi volume dari 8 elemen utama: Oxigen (93.8%), Potassium (1.8%), Sodium (1.3%), Calcium (1.0%), Silikon (0.9%), Aluminum (0.5%), Iron (0.4%), Magnesium (0.3%)

Mineral dan Batuan

Kristal & Mineral

Crystals, Minerals & Rocks

Mineral dan Batuan

Kristal & Mineral

Crystal Forms

Mineral dan Batuan

Kristal & Mineral

HALITE

HEMATITE

- Crystal Form
- Color
- Lustre
- Streak
- Cleavage
- Hardness

Physical Properties

Mineral dan Batuan

Kristal & Mineral

Number of Cleavage Directions	Shapes that Crystal Breaks Into	Sketch	Illustration of Cleavage Directions
0 No cleavage, only fracture	Irregular masses with no flat surfaces		None
1	Basal cleavage "Books" that split apart along flat sheets		
2 at 90°	Elongated form with rectangular cross sections (prisms) and parts of such forms		
2 not at 90°	Elongated form with parallelogram cross sections (prisms) and parts of such forms		
3 at 90°	Cubic cleavage Shapes made of cubes and parts of cubes		
3 not at 90°	Rhombohedral cleavage Shapes made of rhombohedrons and parts of rhombohedrons		
4	Octahedral cleavage Shapes made of octahedrons and parts of octahedrons		
6	Shapes made of dodecahedrons and parts of dodecahedrons		

Mineral dan Batuan

Kristal & Mineral

HORNBLEND

CLEAVAGE

PYROXENE

Mineral dan Batuan

Kristal & Mineral

Mohs Scale of Hardness*		Hardness of Some Common Objects
HARD	10 Diamond 9 Corundum 8 Topaz 7 Quartz 6 Orthoclase Feldspar <small>Kalifosilium</small>	 6.5 Streak plate
SOFT	5 Apatite 4 Fluorite 3 Calcite 2 Gypsum 1 Talc	 5.5 Glass, Masonry nail, Knife blade 4.5 Wire (iron) nail 3.5 Copper wire or coin (penny) 2.5 Fingernail

SKALA MOHS

Mineral dan Batuan

Kristal & Mineral

- CALCITE DAN HCL
- WARNA

SIFAT KHUSUS

Mineral dan Batuan

Kristal & Mineral

MINERAL DATABASE (Alphabetical Listing)

Mineral	Luster	Hardness	Streak	Distinctive Properties	Some Uses
ACTINOLITE (amphibole)	Nonmetallic (NM)	5.5-6	White	Color dark green or pale green; Forms needle, prisms, and asbestos fibers; Good cleavage at 60° and 124°; SG = 3.1	Gemstone (Nephrite), Asbestos products
JASPHOLE: See HORNEELINDE and ACTINOLITE					
APATITE $\text{Ca}_5(\text{PO}_4)_3\text{F}$ calcium fluorophosphate	Nonmetallic (NM)	5	White	Color pale or dark green, brown, blue, white, or purple; Sometimes colorless; Transparent or opaque; Brittle; Conchoidal fracture; Forms hexagonal prisms; SG = 3.1-3.4	Used for pesticides and fertilizers
ASBESTOSE: fibrous varieties of AMPHIBOLE and SERPENTINE					
ALGITE (pyroxene) calcium ferromagnesian silicate	Nonmetallic (NM)	5.5-6	White to pale gray	Color green to black; Forms opaque, short, 8-sided prisms; Tetragonal cleavage; (110) and (001) intersect at 60° and 90° (nearly right angles); SG = 3.2-3.5	Some pyroxene mined as an ore of lithium, for making steel
AZURITE $\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2$ hydrated copper carbonate	Nonmetallic (NM)	3.5-4	Light blue	Color a distinctive deep blue; Forms crusts of small crystals, opaque earthy masses, or short and long prisms; Brittle; Effervesces in dilute HCl; SG = 3.7-3.8	Ore of copper for pipes, electrical circuits, coins, ammunition, gemstone
BARITE BaSO_4 , barium sulfate	Nonmetallic (NM)	3-8.5	White	Colorless to white, with tints of brown, yellow, blue, or red; Forms short tabular crystals and rose-shaped masses (Barite roses); Brittle; Cleavage good to excellent; Very heavy; SG = 4.5	Used in rubber, paint, glass, oil-well drilling fluids
BALMITE mixture of aluminous hydroxides	Nonmetallic (NM)	1-3	White	Brown earthy rock with shades of gray, white, and yellow; Amorphous; Often contains rounded pea-sized structures with lamellations; SG = 2.3	Ore of Aluminum
Biotite MICA ferromagnesian potassium, hydrated aluminum silicate	Nonmetallic (NM)	2.5-3	Gray-brown	Color black, green-black, or brown-black; Cleavage excellent; Forms very short prisms that split easily into very thin, flexible sheets; SG = 2.7-3.1	Used for fire-resistant tiles, rubber, paint
BORNITE Cu_3FeS_2 , copper-iron sulfide	Metallic (M)	3	Dark gray to black	Color opaque silvery blue or copper-red; Tarnishes to iridescent purple and blue; Forms dense, brittle masses; Cleavage poor to absent	Ore of copper for pipes, electrical circuits, coins, ammunition, brass, bronze
CALCITE CaCO_3 , calcium carbonate	Nonmetallic (NM)	3	White	Usually colorless, white, or yellow, but may be green, brown, or pink; Opaque or transparent; Excellent cleavage in 3 directions (not of SG); Forms prisms, rhombohedrons, or tabular shapes that break into rhombohedrons; Effervesces in dilute HCl; SG = 2.7	Used to make antacid tablets, fertilizer, cement; Ore of calcium
CHALCEDONY SiO_2 , cryptocrystalline quartz	Nonmetallic (NM)	7	White	Colorless, white, yellow, light brown, or other colored quartz in lamellations; Often translucent; Conchoidal fracture; Luster waxy; Cryptocrystalline; SG = 2.5-2.8	Used as an abrasive; Used to make glass, gemstones (agate, chrysoprase)

MINERAL DATABASE (Alphabetical Listing)

Mineral	Luster	Hardness	Streak	Distinctive Properties	Some Uses
CHALCOPYRITE Cu_1S , copper-iron sulfide	Metallic (M)	3.5-4	Dark gray	Color golden or brasses yellow; Tarnishes brown, or iridescent blue, green, and red; Forms elongate tabular; Brittle; Cleavage poor; SG = 4.1-4.3	Ore of copper for pipes, electrical circuits, coins, ammunition, brass, bronze
CHERT SiO_2 , cryptocrystalline quartz	Nonmetallic (NM)	7	White	Opaque gray or white; Luster waxy; Conchoidal fracture; SG = 2.6-2.8	Used as an abrasive; Used to make glass, gemstones
CHLORITE ferromagnesian silicate	Nonmetallic (NM)	2-2.5	White	Color dark green; Cleavage excellent; Forms short prisms that split easily into thin flexible sheets; Luster shiny or dull; SG = 2-3	Used for fire-resistant tiles, rubber, paint, art sculpture medium
CHRÖMITE FeCr_2O_4 , iron-chromium oxide	Metallic (M)	5.5-6	Dark brown	Color silvery black to black; Tarnishes gray; Forms octahedrons; Brittle; No cleavage; May be weakly magnetic; SG = 4.6-4.8	Ore of chromium for making chrome, stainless steel, mirrors, paint and used in leather tanning
CHRYSOCOLLA $\text{CuSiO}_3 \cdot 2\text{H}_2\text{O}$, hydrated copper silicate	Nonmetallic (NM)	2-4	Very light blue	Color pale blue to blue-green; Opaque; Forms amorphous crusts or may be massive; Conchoidal fracture; Luster shiny or earthy; SG = 2.0-2.4	Ore of copper for pipes, electrical circuits, coins, ammunition, gemstone
COPPER (NATIVE COPPER) Cu, copper	Metallic (M)	2.5-3	Copper	Color copper; Tarnishes brown or green; Forms distorted cubes octahedrons, and dendritic root-like masses; Malleable; Opaque; Cleavage absent; SG = 8.9-8.9	Ore of copper for pipes, electrical circuits, coins, ammunition, brass, bronze
CORUNDUM Al_2O_3 , aluminum oxide	Nonmetallic (NM)	9	White	Color gray, blue, mid. brown; Translucent or opaque; Forms short hexagonal prisms with striated flat ends; Cleavage absent; SG = 3.9-4.1	Used for abrasive powders to polish lenses; gemstones (red ruby, blue sapphire)
DOLOMITE $\text{CaMg}(\text{CO}_3)_2$, magnesium calcium carbonate	Nonmetallic (NM)	3.5-4	White	Color white, gray, cream, or pink; Usually opaque; Cleavage excellent in 3 directions; Breaks into monoblock shapes; Resembles calcite, but will effervesce in dilute HCl only if powdered; SG = 2.8-2.9	Ore of magnesium metal; soft abrasive; used to make paper
EPIDOTE complex silicate	Nonmetallic (NM)	6-7	White	Color pale or dark green to yellow-green; Massive or forms striated prisms; Cleavage poor; SG = 3.3-3.5	Gemstone
FELDSPAR: See PLAGIOCLASE (Na-Ca Feldspar) and POTASSIUM FELDSPAR (K-Spar)					
FLINT SiO_2 , cryptocrystalline quartz	Nonmetallic (NM)	7	White	Color black to very dark gray; Opaque to translucent; Conchoidal fracture; Cryptocrystalline; SG = 2.6-2.8	Used as an abrasive; Used to make glass, gemstones
FLUORITE CaF_2 , calcium fluoride	Nonmetallic (NM)	4	White	Colorless, pale blue, light blue, or yellow; Cleavage excellent; Crystals usually cubes; Brittle; Luster shiny or opaque; SG = 3.0-3.3	Source of fluorine for processing aluminum flux in steel making

DATABASE MINERAL

Mineral dan Batuan

Kristal & Mineral

COMMON IGNEOUS ROCK TEXTURES

E Glassy

B Vesicular (bubbly)

C Randomly oriented small crystals

D Randomly oriented large crystals

COMMON METAMORPHIC ROCK TEXTURES

E Deformed fossils

F Folded

G Oriented small crystals and shiny reflection

H Oriented equigranular large crystals

Mineral dan Batuan

Kristal & Mineral

COMMON SEDIMENTARY ROCK TEXTURES

I Silty clastic
(note fossil)

J Sandy clastic

K Layered
small crystals

L Coarse-grained
clastic

Mineral dan Batuan

Kristal & Mineral

Figure 1.5 Quartz crystal.

Figure 1.6 Rose quartz.

Figure 1.7 Smoky quartz.

Figure 1.8 Cryptocrystalline quartz (chert).

Figure 1.9 Orthoclase (microcline).

Figure 1.10 Plagioclase.

Figure 1.11 Gypsum (selenite).

Figure 1.12 Talc.

Figure 1.13 Calcite (note double refraction).

Figure 1.15 Biotite.

Figure 1.17 Hematite (specularite).

Figure 1.19 Goethite (limonite).

Figure 1.14 Fluorite.

Figure 1.16 Olivine.

Figure 1.18 Hematite.

Figure 1.20 Pyrite.

THE ORIGIN OF ROCKS

Igneous Rocks

Origin

PLATE TECTONICS & ORIGIN OF ROCKS

Igneous Rocks

Origin

PLATE TECTONICS & ORIGIN OF ROCKS

Earth Crust

Sedimentary vs Igneous Rocks

A. Crust

B. Surface

Rock distribution

Earth Crust

Rocks Cycle

ROCK CYCLES

Earth Crust

Rocks Cycle

Siklus Batuan menggambarkan proses interaksi dan transformasi dari tiga kelompok batuan. Proses ini dikontrol oleh proses internal seperti tektonik dan eksternal yaitu udara dan air.

Earth Crust

Rocks Cycle

Thermal
Metamorphic Rock

Intrusive Rocks

Dinamo-Thermal
Metamorphic Rock

Earth Crust

Rocks vs Tectonic Cycle

Rock Cycle & Plate Tectonics

Igneous Rocks

Plutonic vs Volcanic

Igneous Rocks

Plutonic vs Volcanic

EXTRUSIVE (VOLCANIC)

PIROCLASTIC

Origin of Igneous Rocks

Plate Tectonics and mantle melting - Generating magma by lowering pressure

MAGMA GENERATION IN SPREADING CENTER

Igneous Rocks

Plutonic vs Volcanic

Plate Tectonics and mantle melting - Generating magma by adding water

MAGMA GENERATION IN SUBDUCTION ZONE

Igneous Rocks

Plutonic vs Volcanic

- Mineral diawali kristalisasi dari magma dan lava sesudah inti kristal kecil terbentuk dan berkembang.
- Pendinginan cepat yang umumnya terjadi pada batuan vulkanik dan membentuk batuan yang bertekstur **afanitik (berbutir halus)**.
- Pendinginan perlahan dari batuan plutonik menghasilkan batuan bertexture **fanerik (berbutir kasar)**.

Igneous Rocks

Plutonic vs Volcanic

Klasifikasi, Texture dan Komposisi

- Klasifikasi batuan beku didasarkan pada **texture** dan **komposisi**.
- Batuan beku **volkanik** bertexture afanitik atau porfiritik termasuk: **riolit, andesit, basalt dan tuff**.
- Batuan beku **plutonik** bertexture fanerik termasuk: **granit, gabro dan diorit**.

Igneous Rocks

Komposisi dan Texture Batuan Beku

- Berdasarkan komposisi batuan beku dibagi menjadi dua yaitu: **Felsic (asam)** seperti granit dan riolit dan **Mafik (basa)** seperti gabro, diorit dan basalt.
- Sedangkan batuan beku yang komposisinya **intermedier** termasuk **granodiorit** dan **andesit**.
- **Pluton** adalah tubuh batuan beku yang mengintrusi batuan samping atau yang membeku jauh dibawah permukaan bumi. Intrusi diklasifikasikan berdasarkan volume dan geometri. Intrusi yang **konkordan** termasuk **sill** dan **lakolit**. Intrusi **diskordan** termasuk **dike**, **vulkanik neck**, **batolit** dan **stock**.
- **Batolit** adalah batuan plutonik yang besar dengan luas permukaan $\pm 100\text{km}^2$. **Stock** adalah batolit dengan ukuran jauh lebih kecil.

Igneous Rocks

Mafic vs Felsic

- Secara umum ada dua jenis magma :
 - Asam (Felsic)
 - Basa (Mafic)
- Pada kondisi ideal pendinginan magma yang mafic (basa) akan memberikan sekuen mineral yang berbeda yang stabil pada kondisi temperatur tertentu yang dinamakan sebagai deret atau seri **reaksi Bowen**.

Igneous Rocks

Bowen Series

Bowen Reaction Series

Igneous Rocks

Bowen Series

Bowen Reaction Series & Major Igneous Rocks

Igneous Rocks

Bowen Series

Reaction series for igneous rock formation from a magma.

Major Igneous Rocks

Igneous Rocks

Major Classification

The **classification of igneous rocks** is based on texture (shown vertically on the chart) and composition (shown horizontally). The size of type in which the names of the rocks are printed is roughly proportional to their abundance.

Igneous Rock Classification

Igneous Rocks

Intrusive vs. Extrusive

Relationship of Igneous Rock Types to
Their Modes of Occurrence in the Earth's Crust.

	ROCK TYPE	SOME MODES OF OCCURRENCE
EXTRUSIVE	Pumice Scoria	Lava flows, pyroclastics Crusts on lava flows, pyroclastics
	Obsidian	Lava flows
	Rhyolite Andesite Basalt	Lava flows, shallow intrusives
	Rhyolite porphyry Andesite porphyry Basalt porphyry	Dikes, sills, laccoliths, intruded at medium to shallow depths
INTRUSIVE	Granite Diorite Gabbro Peridotite	Batholiths and stocks of deep-seated intrusive origin

Igneous Rocks

Igneous Body

GEOMETRY OF IGNEOUS BODY

DIKE (DISCORDANT)

ROCK STRUCTURES

DIKE

SILL (CONCORDANT)

SILL

ROCK STRUCTURES

VOLCANIC NECK (PLUG)

Volcanic Neck: Volcanic plug/crater remnant in the surface

BATHOLITH

BATHOLITH: Intrusive body (about \pm 100 km 2)

General composition: Granite - Granodiorite

Igneous Rocks

Igneous Body

Block diagram showing various modes of occurrence of igneous rocks.