

Lecture 2 Question 6

Give an expression for the Reynolds number ${\rm Re}_L$ for the given situation in the figure based on known parameters.

The general expression for the Reynolds number is $\text{Re}_{\text{L}} = \frac{\rho u_{\infty} L}{\eta}$, where the characteristic length for the given case is L = 2W and $\nu = \frac{\eta}{\rho}$. Thus:

$$\mathrm{Re_L} = \frac{u_\infty 2W}{\nu}$$