EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

06326364

PUBLICATION DATE

25-11-94

APPLICATION DATE

22-03-93

APPLICATION NUMBER

05061883

APPLICANT:

TOTTORI SANYO ELECTRIC CO LTD;

INVENTOR:

SASANO EIJI;

INT.CL.

H01L 33/00

TITLE

LIGHT EMITTING DIODE LAMP

ABSTRACT:

PURPOSE: To provide a light emitting diode lamp having less numbers of light emitting diodes capable of easily assembling the insulating base and the light emitting diodes.

CONSTITUTION: The light emitting diode lamp is provided with a lead 1, an insulating base 5 having conductive patterns formed thereon mounted on the lead 1, many light emitting diodes respectively mounted on the conductive patterns and a translucent resin 32 at least covering the peripheries of respective light emitting diodes. Furthermore, it is recommended that the many light emitting diodes are to be the blue colored light emitting diode 11 and the yellow colored elight emitting diode 18.

COPYRIGHT: (C)1994,JPO

BNSDOCID: <JP____406326364A AJ >

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-326364

(43)公開日 平成6年(1994)11月25日

(51) Int.Cl.5

H01L 33/00

識別記号

庁内整理番号 N 7376-4M

L 7376-4M

FΙ

技術表示箇所

審查請求 未請求	請求項の数 2	OL	(全	6	頁)
----------	---------	----	----	---	----

(21)出願番号

(22)出願日

特願平5-61883

平成5年(1993)3月22日

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(71)出願人 000214892

鳥取三洋電機株式会社

鳥取県鳥取市南吉方3丁目201番地

(72)発明者 道盛 方紀

鳥取県鳥取市南吉方3丁目201番地 鳥取

三洋電機株式会社内

(72)発明者 笹野 英二

鳥取県鳥取市南吉方3丁月201番地 鳥取

三洋電機株式会社内

(74)代理人 弁理士 安富 耕二 (外1名)

(54) 【発明の名称】 発光ダイオードランプ

(57)【要約】

【目的】 従来より、発光ダイオードの数が少なく、絶縁台及び発光ダイオードを組立し易く、かつ発光ダイオードの数の少ない発光ダイオードランプを提供する。

【構成】 リードと、リード上に載置されかつ表面に導電パターンが形成された絶縁台と、導電パターン上に各々載置された複数の発光ダイオードと、少なくとも各発光ダイオードの周辺を覆う透光性樹脂を設けるものである。更に望ましくは、前記複数の発光ダイオードを青色発光ダイオードと黄色発光ダイオードとするものである。

1

【特許請求の範囲】

【請求項1】 リードと、そのリード上に載置されかつ 表面に導電パターンが形成された絶縁台と、その導電パ ターン上に各々載置された複数の発光ダイオードと、少 なくとも前記各発光ダイオードの周辺を覆う透光性樹脂 を具備する事を特徴とする発光ダイオードランプ。

イオードと黄色発光ダイオードである事を特徴とする請 求項1の発光ダイオードランプ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は複数の発光ダイオードを 用いた発光ダイオードランプに関する。

[0 0 0 2]

【従来の技術】従来、複数の発光ダイオードを用いた発 光ダイオードランプが例えば特開平4-137569号 公報にて、図7の断面図と図8の平面図の様に示されて いる。これらの図に於て、キャン71の載置面上に2個 の絶縁台72が載置され、その上に導電性接着剤を介し てそれぞれ青色発光ダイオード73が載置されている。 赤色発光ダイオード74と緑色発光ダイオード75がキ ャン71上に載置されている。各絶縁台72と各発光ダ イオード73、74、75とキャン71と端子76乃至 80に於て配線が施こされている。

[0003]

【発明が解決しようとする課題】しかして上述のランプ では、各発光ダイオード73、74、75の発光接合面 の高さを同一にするために、2個の絶縁台72が設けら れているが、2個を別々に固定するので作業時間がかか る。また青色発光ダイオード73を絶縁台72上に固定 30 型エピタキシャル層14(層厚約 $5~\mu$ m)が形成され、 するのに、手作業で行っているので作業時間がかかると 共に、青色発光ダイオード73が位置ずれし易い第1の 欠点がある。また上述のランプに於て白色光を得るため に3原色混合方式により、赤色及び緑色及び青色発光ダ イオードを合計3個以上必要とする。 故に発光ダイオー ドの数が多く、端子も配線の数も多いのでコスト高にな ると共に消費電力が大きいという第2の欠点がある。本 発明はかかる欠点を鑑みて、絶縁台及び発光ダイオード を組立し易く、かつ従来より発光ダイオードの数が少な い発光ダイオードランプを提供するものである。

[0004]

【課題を解決するための手段】本発明は上述の課題を解 決するために、リードと、リード上に載置されかつ表面 に導電パターンが形成された絶縁台と、導電パターン上 に各々載置された複数の発光ダイオードと、少なくとも 各発光ダイオードの周辺を覆う透光性樹脂を設けるもの である。本発明は更に望ましくは、前記複数の発光ダイ オードを青色発光ダイオードと黄色発光ダイオードとす るものである.

[0005]

【作用】上述の様に本発明は、1 つ絶縁台の導電パター ン上に複数の発光ダイオードを載置するので、従来の様 に各々の絶縁台を固定する方式と比べて作業時間が早く なる。更に本発明は、青色発光ダイオードと黄色発光ダ イオードを絶縁台上に設け両方を点灯することにより、 青色光と黄色光が混合され白色光が得られる。 故に従来 の3原色混合方式に比べて発光ダイオードの数が減る。 [0006]

【実施例】以下に本発明の第1実施例を図1と図2に従 10 い説明する。図1は本実施例に係る発光ダイオードラン プの断面図であり、図2はそのランプの平面図である。 これらの図に於て、リード1は鉄板等の金属板からな り、端部2と載置部3と反射部4からできている。

【0007】絶縁台5は例えば10¹¹cm⁻³程度の低濃度 不純物を含むシリコンからなり、平面から見れば長方形 であり、側面から見れば階段状に高さが異なる様に形成 されている。絶縁台5の表面には導電パターン6、7が 形成され、電気的に分離している。 導電パターン6、7 には各々、切欠き8、9があり、部分的に電極が除かれ 20 ている。これは自動機により発光ダイオードを絶縁台5 上に載置する時に、載置場所を認識し易くすると共に、 正確な載置位置を確保するためである。絶縁台5はリー ド1の載置部3の上に導電性接着剤10を介して載置さ れている。

【0008】 青色発光ダイオード11は窒素を添加され た炭化硅素(SiC)からなるN型基板12(層厚約1 0 0 μm) 上に、窒素とアルミニウムを添加された炭化 硅素からなるN型エピタキシャル層 13 (層厚約 9μ m) 及びアルミニウムを添加された炭化硅素からなるP 表面電極15と裏面電極16が形成されたものである。

【0009】上述の様にN型エピタキシャル層13とP 型エピタキシャル層14により形成される発光接合面は 裏面電極16に近い側に設けられている。これは発光接 合面と表面電極15との距離を遠ざけることにより、放 出光が表面電極15に遮ぎられることを少なくし、光取 出効率を向上させるためである。 青色発光ダイオード 1 1は絶縁台5の導電パターン6上に半田17を介して載 置されている。

【0010】黄色発光ダイオード18は燐化ガリウム (GaP) からなるN型基板19 (層厚約280μm) 上に、テルルが添加されたGaAsıP:-ı(xはN型基 板19から遠ざかるに従い、徐々に0から0.15に変 化する) からなるN型勾配層20 (層厚約30 μm) 及 びテルルが添加されたGaAs٥.15 Ро. 85 からなるN型 エピタキシャル層 2 1 (層厚約 1 5 μm) 及び窒素とテ ルルが添加されたG a A s a . 15 P a . 85 からなるN型エビ タキシャル層 2 2 (層厚約 1 5 μm) 及び亜鉛が添加さ れたGaAs٥.15 Ро.85からなるP型エピタキシャル層 50 23(層厚約5μm)が形成され、表面電極24と裏面

電極25が形成されたものである。

【0011】そして黄色発光ダイオード18のN型エピ タキシャル層22とP型エピタキシャル層23により形 成された発光接合面と育色発光ダイオード11の発光接 合面の高さが略同じになる様に、絶縁台5の段差の大き さが決められている。

【0012】他のリード26と27は鉄板等の金属板か らなり、リード1の反射部4の外側に位置して設けられ ている。 金属細線 28、29、30、31 はそれぞれ他 ード1と導電パターン6との間、及びパターン電極6と 黄色発光ダイオード18との間、及び導電パターン7と 他のリード27との間に施こされている。透光性樹脂3 2は例えば光拡散剤が混入されたエポキシ樹脂からな り、少なくとも背色及び黄色発光ダイオード11と18 を覆う様に形成されている。これらの部品により本実施 例の発光ダイオードランプ33が構成されている。

【0013】上述の様に青色及び黄色発光ダイオード1 1、18はアノードコモンにしているので、リード1に は陽極電圧が、他のリード26と27には陰極電圧が印 20 加される。

【0014】次に本実施例の発光ダイオードランプによ る発光色を図6の色度図に従って説明する。横軸と縦軸 はそれぞれCIE (国際照明委員会) 1931色度図に 於けるx座標とy座標である。青色発光ダイオード11 を単独に点灯させた時の発光色を視感色彩計により実測 したものが、この図に於てaで示されている。黄色発光 ダイオード18を単独に点灯させた時の発光色を実測し たものが b で示されている。そして両発光ダイオード 1 1.18を同時に点灯した時の発光色が c で示されてお 30 表面には導電パターン 60 が連続して形成されている。 り、そのx座標は0.3、y座標は0.31である。上 述のCIE1931色度図に於て、dで示された範囲内 (中心値のx座標は0.33、y座標は0.33) が白 色とされている。故に実測値 c は白色の範囲内である。

【0015】更に、各発光ダイオードの材質が第1実施 例と異なる本発明の第2実施例を図3と図4に従い説明 する。図3は本実施例の発光ダイオードランプの断面図 であり、図4はその平面図である。これらの図に於て、 絶録台34は例えば低濃度不純物を含むシリコンからな り、階段状に高さが異なり、その表面には導電パターン 35、36が形成され、電気的に分離している。 導電パ ターン35には切欠き37が、導電パターン36には切 欠き38、39が形成され、自動機が認識し易い様にさ れている。絶縁台34は載置部3上に導電性接着剤10 を介して載置されている。

【0016】 骨色発光ダイオード40はサファイア基板 41上に、窒化アルミニウムからなるパッファー層42 及びN-型室化ガリウム層43及びN型室化ガリウム層 44及び低濃度の不純物が添加された窒化ガリウム層4

極46及びN*型窒化ガリウム層43と接触する陰極電 極47からできている。この陽極電極46及び陰極電極 47はそれぞれ絶縁基台34の導電パターン35と36 上に導電性接着剤を介して載置されている。

【0017】 黄色発光ダイオード48はN型窒化ガリウ ム基板49上に、シリコンが添加されたN型InGaA IPからなるN型クラッド層50及びInGaA1Pか らなる活性間51及び低濃度の亜鉛が添加されたP型1 nGaAlPからなるP型クラッド層52及び高濃度の のリード26と青色発光ダイオード11との間、及びリ10 亜鉛が添加されたP型GaAlAsからなるP電流拡散 **層53と表面電極54と裏面電極55から構成されてい**

> 【0018】そして上述の青色発光ダイオード40のN 型室化ガリウム層44と空化ガリウム層45により形成 された発光接合面が黄色発光ダイオード48の活性周5 1と略同一の高さになる様に、絶縁台34の段差の大き さが決められている。金属細線56、57、58が配線 されている。これらの図と図1及び図2に於て、同一番 号のものは同一であることを示す。

【0019】次に本実施例の発光ダイオードランプによ る発光色を図6にて説明する。青色発光ダイオード40 と黄色発光ダイオード48を単独に点灯させた時の発光 色を実測したものが、それぞれeとfで示されている。 そしてこれらを同時に点灯した時の発光色はdで示され た白色の範囲内にある。

【0020】 更に青色発光ダイオードの材質が第1実施 例と異なる本発明の第3実施例を図5の断面図にて説明 する。この図に於て、絶縁台59は例えば低濃度不純物 を含むシリコンからなり、階段状に高さが異なり、その 絶縁台59は載置部3上に導電性接着剤10を介して載 置されている。

【0021】青色発光ダイオード61は層厚約250μ mのN型セレン亜鉛(ZnSe)からなる基板62及び 塩素が添加されたN型セレン化窒素からなるN型エピタ キシャル層63 (層厚約5μm) 及び亜鉛が添加された P型セレン化亜鉛からなるP型エピタキシャル層64 (層厚約1 μm) 及び表面電極65及び裏面電極66か ら構成されている。青色発光ダイオード61は載置部3 上に導電性接着剤を介して載置されている。

【0022】第1実施例と同一材質からなる黄色発光ダ イオード18は載置部3上に導電性接着剤を介して載置 されている。この図と図1及び図2に於て、同一番号の ものは同一であることを示す。そして上述の青色発光ダ イオード61の発光接合面が黄色発光ダイオード18の 発光接合面と略同一の高さになる様に、絶縁台59の段 差の大きさが決められ。ている。また両発光ダイオードは カソードコモンに配線されている。

【0023】次にこの発光ダイオードランプの発光色を 5 からなり、その窒化ガリウム層 4 5 と接触する陽極電 50 図 6 により説明する。青色発光ダイオード 6 1 と黄色発 光ダイオード18を単独に点灯させた時の発光色を実測したものが、それぞれgとりで示されている。これらを同時に点灯した時の発光色はdで示された白色の範囲内にある。

[0024]

【発明の効果】上述の様に、1つの絶縁台の導電パターン上に複数の発光ダイオードを載置するので、従来の様に各々の絶縁台を固定する方式と比べて作業時間が早くなる。更に導電パターンに切欠きを設けることにより、自動機により載置場所を認識し易くなり、正確な位置に 10発光ダイオードを載置できる。

【0025】また、各発光ダイオードが載置される絶縁 台の高さを階段状に変えることにより、発光色の異なる 複数の発光ダイオードの発光接合面を略同一の高さに設 けることができる。故に各発光ダイオードから放出され る光は発光源の近くで混ざり合うので、互いの光が良く 混ざり合うことができる。

より少ない。

【図面の簡単な説明】

【図1】本発明の第1実施例に係る発光ダイオードランプの断面図である。

【図2】本発明の第1実施例に係る発光ダイオードランプの平面図である。

【図3】本発明の第2実施例に係る発光ダイオードランプの断面図である。

【図4】本発明の第2実施例に係る発光ダイオードランプの平面図である。

【図5】本発明の第3実施例に係る発光ダイオードランプの断面図である。

【図6】本発明の第1及び第2及び第3実施例に係る各々の発光ダイオードランプに於ける発光色の色度図である。

【図7】従来の発光ダイオードランプの断面図である。 【図8】従来の発光ダイオードランプの平面図である。 【符号の説明】

1 リード

5、34、59 絶縁台

6、7、35、36 導電パターン

11、40、59 青色発光ダイオード

18、48 黄色発光ダイオード

32 透光性樹脂

【図1】

[図6]

[図2]

[図4]

[図3]

【図5】

【図7】

[図8]

【手続補正書】

【提出日】平成6年5月27日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0003

【補正方法】変更

【補正内容】

[0003]

【発明が解決しようとする課題】しかして上述のランプでは、各発光ダイオード73、74、75の発光接合面の高さを同一にするために、かつキャン71と背色発光ダイオード73との絶縁性を確保するために、2個の総会で作業時間がかかる。また青色発光ダイオード73を絶縁台72上に固定するのに、手作業で行っているので作業時間がかかると共に、 †色発光ダイオード73が位置ずれし易い第1の欠点がある。また上述のランプに於て中色光を得るために3原色混合方式により、赤色及び緑色及び背色発光ダイオードを合計3個以上必要とする。故に発光ダイオードの数が多く、端子も配線の数も多い

のでコスト高になると共に消費電力が大きいという第2 の欠点がある。本発明はかかる欠点を鑑みて、絶縁台及 び発光ダイオードを組立し易く、かつ従来より発光ダイ オードの数が少ない発光ダイオードランプを提供するも のである。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】黄色発光ダイオード48はN型配化ガリウム基板49上に、シリコンが添加されたN型InGaAlPからなるN型クラッド層50及びInGaAlPからなる活性層51及び低濃度の亜鉛が添加されたP型InGaAlPからなるP型クラッド層52及び高濃度の亜鉛が添加されたP型GaAlAsからなるP電流拡散層53と表面電極54と裏面電極55から構成されている。

【手続補正3】

【補正対象書類名】明細書 【補正対象項目名】0021 【補正方法】変更 【補正内容】

【0021】青色発光ダイオード61は層厚約250μ mのN型セレン亜鉛 (ZnSe) からなる基板62及び 塩素が添加されたN型セレン化亜鉛からなる<math>N型エピタ キシャル層 63 (層厚約 5μ m) 及びリチウムが添加されたP型セレン化亜鉛からなる<math>P型エピタキシャル層 64 (層厚約 1μ m) 及び表面電極 65 及び裏面電極 66 から構成されている。青色発光ダイオード 61 は載置部3上に導電性接着剤を介して載置されている。