Arithmétique : DS du 6 novembre 2024

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit $A = \mathbb{F}_2[X]/(X^5 + 1)$.
 - a) Combien l'anneau A contient-il d'éléments? Combien d'éléments contient le groupe multiplicatif A^* des éléments inversibles de A?
 - b) Que vaut l'ordre multiplicatif de $X^2 + X + 1$ dans A^* ? Le groupe A^* est-il cyclique?
 - c) Montrer que la somme de deux éléments quelconques de A^* n'est pas dans A^* .
 - d) Quel est l'unique élément non nul y de A tel que yX = y?

- Exercice 2.

- a) Calculer X^{64} dans $\mathbb{F}_2[X]/(X^8+X+1)$. En déduire que les degrés des facteurs irréductibles de X^8+X+1 sont 2 ou 3 ou 6.
- b) Calculer $X^8 + X + 1$ modulo $X^3 + X + 1$ et en déduire que les degrés des facteurs irréductibles de $X^8 + X + 1$ sont 2 et 6.
- c) En déduire la décomposition en facteurs irréductibles de $X^8 + X + 1$.

- EXERCICE 3.

- a) Calculer X^9 dans $\mathbb{F}_2[X]/(X^6+X^3+1)$. Dans $\mathbb{F}_2[X]/(X^6+X^3+1)$, quel est l'ordre de X?
- b) Pourquoi peut-on en déduire, sans calcul supplémentaire, que $X^6 + X^3 + 1$ est irréductible dans $\mathbb{F}_2[X]$?
- c) Si α est une racine de $X^6 + X^3 + 1$ dans \mathbb{F}_{64} , quel est le polynôme minimal de α^3 ?

- Exercice 4.

- a) Montrer que le corps à 16 éléments \mathbb{F}_{16} se représente comme $\mathbb{F}_2(\alpha)$ où α est un élément de polynôme minimal $X^4 + X + 1$. Quel est l'ordre multiplicatif de α ?
- b) Rappeler ce qu'est la trace Tr() de \mathbb{F}_{16} sur \mathbb{F}_2 et calculer

$$\operatorname{Tr}(1), \operatorname{Tr}(\alpha), \operatorname{Tr}(\alpha^2), \operatorname{Tr}(\alpha^3).$$

- c) On pose $e_1 = 1$, $e_2 = \alpha$, $e_3 = \alpha^2$, $e_4 = \alpha^3$. Pourquoi est-ce que e_1 , e_2 , e_3 , e_4 est une base de \mathbb{F}_{16} vu comme espace vectoriel sur \mathbb{F}_2 ? On rappelle que cela veut dire que toute somme non vide d'éléments distincts de l'ensemble $\{e_1, e_2, e_3, e_4\}$ est non nulle et que tout élément de \mathbb{F}_{16} s'écrit comme somme d'éléments de $\{e_1, e_2, e_3, e_4\}$.
- d) Sachant que e_1, e_2, e_3, e_4 est une base de \mathbb{F}_{16} , montrer que pour tout élément x non nul de \mathbb{F}_{16} , xe_1, xe_2, xe_3, xe_4 est aussi une base de \mathbb{F}_{16} .
- e) Soient $f_1 = \alpha^{-1}$, $f_2 = \alpha^2$, $f_3 = \alpha$, $f_4 = 1$. Montrer que f_1 , f_2 , f_3 , f_4 est une base de \mathbb{F}_{16} .
- f) Montrer que pour tous i, j = 1, 2, 3, 4,

$$\operatorname{Tr}(e_i f_i) = 0 \text{ si } i \neq j \quad \text{et } \operatorname{Tr}(e_i f_i) = 1.$$