Leaf Segmentation

Structure

leaf-patch

- |-- Metrics.py
- |-- SaveWholeHeatmapAndMask.py
- |-- leaf_divide_test.py
- |-- leaf_divide_train.py
- |-- merge_npz_final.py
- |-- model
- | |-- _init__.py
- | |-- misc.py
- | `-- u_net.py
- |-- test.py
- |-- train.py
- `-- utils
 - |-- __init__.py
 - |-- datasets.py
 - |-- joint_transforms.py
 - |-- misc.py
 - |-- mk_dataset.py
 - |-- post-processing.py
 - |-- preprocess.py
 - `-- transforms.py

Prerequisites

Linux

NVIDIA GPU+CUDA 9.0

Dependencies

python 3.5.6, pytorch 1.1.0, opency-python 4.1.1, scikit-image 0.14.0, scikit-learn 0.20.0, scipy 1.1.0, pydensecrf 1.0rc3, and etc.

Data Preparation

We use the leaf data from the directory *AutoPheno*. Before the mode training and testing, we first use the *utils/preprocess.py* to clean the data (mainly rename files) and split train/test dataset.

About Training

We first use <code>leaf_divide_train.py</code> to preprocess the leaves and divide them into several smaller image patches. Please change the path setting if necessary. (<code>root_pth</code> and <code>tumorname</code>)

Then we run *utils/mk_dataset.py* to make training dataset.

Finally, we run *train.py* to train the U-Net model for leaf segmentation. Please change the path setting if necessary. You may also change the following parameters: *BATCH_SIZE*: the size of training image batch. Reduce or increase it according to the size of your GPU memory. Typically, larger is better.

MAX_EPOCH: the number of training epoch. One epoch means one traversal over the whole training set.

RESTORE_FROM: if you hope to train model from scratch, set "". If you hope to train model from previous saved model, set the path to the saved model here.

NUM_EXAMPLES_PER_EPOCH: the image number of training dataset. You can get it when run *mk_dataset.py*.

gpu: set the GPU id here.

About Testing

We first use *leaf_divide_test.py* to preprocess the leaves and divide them into several smaller image patches. Please change the path setting if necessary. (*root_pth* and *tumorname*)

Then we run *utils/mk_dataset.py* to make testing dataset.

We further run *test.py* to perform the inference. For brown disease, we use the trained model <u>LEAF UNET B64 S4800.pth</u>. For green disease, we use the trained model <u>LEAF UNET B0064 S001800.pth</u>. This can be set in the RESTORE_FROM. These pth file can be found in *trained_model* directory. You may need to change the following parameters: *test_dir*, *train_dir*, *NPZ_PATH*, *MAP_PATH*, *BATCH_SIZE*, *gpu*.

Subsequently, we run the <code>merge_npz_finally.py</code> to merge the segmentation results of each image patch for generating the segmentation map for the whole leaf. You may need to change: <code>dirlen, tumorname, srcpath,</code> and <code>model_id</code>.

Finally, please run *SaveWholeHeatmapAndMask.py* to perform CRF post-processing and save the visualization results. You can use the *metric.py* to evaluate the performance of model. Please change the path setting if necessary.

Contact

Please feel free to contact me (hftpsu.edu) if you have any questions.

Reference

- 1. U-Net: https://github.com/zijundeng/pytorch-semantic-segmentation
- 2. CRF: https://github.com/lucasb-eyer/pydensecrf