Krzysztof	komputerowe zadanie 7. z zestawu 2.	27.10.2023 r.
Czarnowus	ćwiczeń z Rachunku Prawdopodobieństwa	

1. Wstęp

Napisano program do obliczania metodą Monte Carlo prawdopodobieństwa zdarzenia wylosowania kart innych niż trefl podczas wyciągania trzech losowych kart z talii zawierającej 52 karty. W tym celu stworzono funkcję, wykonującą trzy kroki:

- I) generowanie pierwszej liczby pseudolosowej, liczenie jej reszty z dzielenia przez 52 i sprawdzanie, czy jest ona mniejsza od wartości 13,
- II) generowanie drugiej liczby pseudolosowej, liczenie jej reszty z dzielenia przez 51 i sprawdzanie, czy jest ona mniejsza od wartości 13,
- III) generowanie trzeciej liczby pseudolosowej, liczenie jej reszty z dzielenia przez 50 i sprawdzanie, czy jest ona mniejsza od wartości 13.

Przy takiej implementacji wszystkim trzynastu treflom przypisane zostają wartości całkowite z zakresu 0-12. W przypadku spełnienia zdarzenia wylosowania którejś z nich w jednym z kroków funkcja przerywa działanie zwracając wartość równoważną temu, że w danym losowaniu trzech kart otrzymano przynajmniej jednego trefla, natomiast w przypadku spełnienia trzech kroków bez wylosowania żadnego trefla funkcja zwraca wartość 0. Losowanie wykonywane jest bez zwracania, w związku z czym każdy kolejny krok polega na wybieraniu z mniejszej puli kart.

Problemem zastosowanej metody jest nieznaczne odejście od równomiernego rozkładu liczb pseudolosowych podczas wykonywania działania modulo; ponieważ jednak zakres generowanych wartości jest względnie dużo większy od liczb, z dzielenia których reszta jest obliczana, problem ten ma zaniedbywalne znaczenie.

Funkcję symulującą losowanie kart wywołano 10 000 000 razy i z krokiem 100 losowań zapisywano otrzymane prawdopodobieństwo wystąpienia badanego zdarzenia jako:

$$P(A) = 1 - \frac{\text{liczba losowań,w których otrzymano trefla}}{\text{całkowita liczba losowań}}$$
(1)

Analitycznie wyznaczona wartość prawdopodobieństwa rozważanego zdarzenia wynosi:

$$P(A) = \frac{39 \times 38 \times 37}{52 \times 51 \times 50} = 0.4135 \tag{2}$$

Oczekuje się, że dana wartość zostanie w wyniku symulacji wyliczona z dokładnością do 0,1%, a więc że będzie zawierała się w przedziale [0.4125; 0.4145].

2. Wyniki

Wyniki otrzymane po przeprowadzeniu obliczeń przedstawiono na rysunku 1. Poziomymi czarnymi liniami zaznaczono dopuszczalną granicę błędu 0,1%, linią niebieską natomiast analitycznie wyliczoną wartość dokładną.

Rysunek 1. Zależność otrzymanego prawdopodobieństwa rozważanego zdarzenia od liczby wykonanych symulacji.

Można zaobserwować, że już po wykonaniu ok. 100 000 symulacji otrzymana wartość zaczyna stale zawierać się w zadanych granicach błędu pomiarowego.