How to recommend and teach Bayesian modelling Stories from a QUT internship with the Department of Health Western Australia

James Hogg

17 November, 2022

Structure/talking points

- Introduction to internship and project
- Modelling work
- R code

Introduction

- QUT-approved internship for 3-months
- Paused PhD
- Got paid a very nice salary

Supervision

- Industry Partner: Alex Xiao (Department of Health Western Australia (DOH WA))
- QUT: Susanna Cramb

Project details

Improving Health Insights in Western Australia with novel modelling method development and implementation

- Improve internal "Public Health Atlas" using modelling
- Help staff gain modelling skills to apply to future DOH projects

• Map estimates for multiple

Ē

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)
 - **Epidemiology indicators** (age-standardised rates, standardised incidence ratios, years of life lost, etc)

5

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)
 - **Epidemiology indicators** (age-standardised rates, standardised incidence ratios, years of life lost, etc)
 - **Years** (up to 10)

5

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)
 - **Epidemiology indicators** (age-standardised rates, standardised incidence ratios, years of life lost, etc)
 - **Years** (up to 10)
 - Geographical levels (3)
 - Health districts (HD): 34
 - Local government areas (LGA): 138
 - Statistical area level 2 (SA2): 254

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)
 - **Epidemiology indicators** (age-standardised rates, standardised incidence ratios, years of life lost, etc)
 - **Years** (up to 10)
 - Geographical levels (3)
 - Health districts (HD): 34
 - Local government areas (LGA): 138
 - Statistical area level 2 (SA2): 254
- Use spatio-temporal Bayesian models

- Map estimates for multiple
 - Types of health data (Administrative, survey and burden of disease)
 - Conditions (cancer, smoking, backpain, etc)
 - **Epidemiology indicators** (age-standardised rates, standardised incidence ratios, years of life lost, etc)
 - **Years** (up to 10)
 - Geographical levels (3)
 - Health districts (HD): 34
 - Local government areas (LGA): 138
 - Statistical area level 2 (SA2): 254
- Use spatio-temporal Bayesian models
- QUT role/goals
 - Explore the wealth of data
 - Suggest/recommend the most suitable Bayesian models for all the DOH WA data
 - Complete three core deliverables

Deliverable 1

• Short report describing model recommendations

Deliverable 1

• Short report describing model recommendations

Deliverable 2

• Longer report with details of model recommendations

Deliverable 1

• Short report describing model recommendations

Deliverable 2

- Huge report with details of model recommendations and ...
 - Bayesian inference and computation
 - Hierachical and spatio-temporal models
 - Basic linear algebra
 - R functions
 - Plots and tables for illustrative purposes

Deliverable 1

• Short report describing model recommendations

Deliverable 2

- Huge report with details of model recommendations and ...
 - Bayesian inference and computation
 - Hierachical and spatio-temporal models
 - Basic linear algebra
 - R functions
 - Plots and tables for illustrative purposes

Deliverable 3

In-person three-day training

Modelling will be complete by DOH WA team

- Some have formal and extensive training in statistics
- Some have experience with modelling
- None have any knowledge of Bayesian statistics
- No/limited skills with R

Modelling will be complete by DOH WA team

- Some have formal and extensive training in statistics
- Some have experience with modelling
- None have any knowledge of Bayesian statistics
- No/limited skills with R

Scope and size

Huge variation in structure and type of data

Modelling will be complete by DOH WA team

- Some have formal and extensive training in statistics
- Some have experience with modelling
- None have any knowledge of Bayesian statistics
- No/limited skills with R

Scope and size

- Huge variation in structure and type of data
- HUGE number of conditions

How **HUGE**?

For illustration consider:

- Conditions: 660
- Geographical levels: 3
- Sex: 3
- Types (adjusted, unadjusted): 2

How **HUGE**?

For illustration consider:

- Conditions: 660
- Geographical levels: 3
- Sex: 3
- Types (adjusted, unadjusted): 2

11,880 Bayesian ST models

How **HUGE**?

For illustration consider:

- Conditions: 660
- Geographical levels: 3
- Sex: 3
- Types (adjusted, unadjusted): 2

11,880 Bayesian ST models

Assume 1 hour of computation per model: 1.3 years

What does this mean for the model recommendations?

What does this mean for the **model recommendations**?

- Reduce complexity
- Avoid condition-by-condition model selection
- Make models widely applicable (i.e. generic)
- Avoid recent developments rely on tried and tested approaches
- Keep the number of models to a minimum
- Double dip where possible

The data and models

Three broad categories

Administrative data

- Mortality
- Emergency department (ED) attendances
- Hospitalisations
- Notifiable communicable diseases
- Cancer incidence

Survey data

Risk factor data

Burden of disease data

- Mortality data
- Prevalence data

The data and models

Three broad categories Administrative data Registries

- Mortality
- emergency department (ED) attendances
- Hospitalisations
- Notifiable communicable diseases
- Cancer incidence

Survey data Yearly Health and Wellbeing Surveillance System (HWSS) survey

Risk factor data

Burden of disease data Registries and surveys

- Mortality
- Prevalence

Administrative data

We recommend **three** Bayesian Spatio-temporal disease mapping models...

Administrative data

We recommend **three** Bayesian Spatio-temporal disease mapping models...

... which only need raw counts (and populations).

Administrative data

We recommend **three** Bayesian Spatio-temporal disease mapping models...

... which only need raw counts (and populations).

Input data by

Model	Area	Year	Age	Input data	Offset	Key model output	Software	
					Expected	calculation ‡ Fitted counts		
SIR_ST	\checkmark	\checkmark		Counts	counts	÷ offset	CARBayesST	
ASR ST	1	./		Counts	Counts ÷ ASRs	Fitted counts	CARBayesST	
7.5.t. <u>_</u> 5 t	7.5.K_5.		Counts	. 7.013	÷ offset	omedayobbi		
ASRA_ST	✓	✓	✓	Counts	Population	Fitted counts (then calculate ASR)	nimble	

Survey data

We recommend **three** Bayesian Spatio-temporal small area estimation models...

Survey data

We recommend **three** Bayesian Spatio-temporal small area estimation models...

... need individual-level survey data, area-level summaries and area-level census data.

Survey data

We recommend **three** Bayesian Spatio-temporal small area estimation models...

... need individual-level survey data, area-level summaries and area-level census data.

Model	Sample weights	Population counts	Input data	Covariates	Model output	Software
MrP_ST		✓	Individual-level survey data	Individual- and area-level covariates	Fitted probabilities	nimble mcmcsae
WMrP_ST	✓	✓	Individual-level survey data	Individual- and area-level covariates	Fitted probabilities	nimble
FHELN_ST	✓	✓	Area-by-Year proportion estimates and sampling variances	Area-level census covariates	Fitted probabilities	mcmcsae

Burden of Disease data

We recommend three models

Burden of Disease data

We recommend three models

Input data by

		pc	it data	~,				
Model	BoD Metric	Area	Year	Age	Input data	Offset term	Key model output calculation	Software
ASRA_ST	YLL, YLD	✓	✓	✓	Counts/Point prevalence	Population/adjusted population	Fitted counts (then calculate YLL or YLD)	nimble
ASRAME_ST	YLD	✓	✓	✓	Prevalence estimates and sampling variances	Adjusted population	Fitted counts (then calculate YLL or YLD)	nimble
WMrP_ST	YLD	Individual-level survey data			Binary outcome	NA	Fitted probabilities§	nimble

Burden of Disease data

We recommend three models

Input data by

Model	BoD Metric	Area	Year	Age	Input data	Offset term	Key model output calculation	Software
ASRA_ST	YLL, YLD	√	✓	✓	Counts/Point prevalence	Population/adjusted population	Fitted counts (then calculate YLL or YLD)	nimble
ASRAME_ST	YLD	✓	✓	✓	Prevalence estimates and sampling variances	Adjusted population	Fitted counts (then calculate YLL or YLD)	nimble
WMrP_ST	YLD	Individual-level survey data			Binary outcome	NA	Fitted probabilities§	nimble

- R as the statistical software
- Bayesian R packages
 - CARBayesST:
 - nimble:
 - mcmcsae:

- R as the statistical software
- Bayesian R packages
 - CARBayesST: Fast and easy to use but not flexible
 - nimble: Flexible but complex and slow
 - mcmcsae: Fast, easy to use and relatively flexible

- R as the statistical software
- Bayesian R packages
 - CARBayesST: Fast and easy to use but not flexible
 - nimble: Flexible but complex and slow
 - mcmcsae: Fast, easy to use and relatively flexible
- Developed a series of R wrapper functions (46 and counting)

Code wrapper for CARBayesST

```
SIR model <- SampleCBST(y ~ offset(log(E)),
                           # Number of MCMC samples to draw for
                            → each chain
                           n.sample = 2500,
                           # burn-in
                           nburnin = 1250,
                           # amount to thin by
                           thin = 1,
                           # define the dataset
                           data = df,
                           # binary contiguity weight matrix
                           W = W.
                           # area and year variables in df
                           area = "M id",
                           year = "T_id",
                           # offset term as a numeric vector
                           ofs = df$E,
                           # observed count as a numeric vector
                           y = df y
```

Example of MCMC diagnostic warnings

```
> message(ASRAST_fit$messages)
Median Rhat: 1
0.01% of Rhats larger than 1.01
Max Rhat = 1.02 (rho)
0.01% of ess_bulk are too small
Min ess_bulk = 319.88 (rho)
0% of ess tail are too small
Min ess_{tail} = 443.56 (rho)
Average posterior draws per minute: 2051.13
```

Code wrapper for nimble

```
ASRA_model <- SampleNimble( # BUGS code
                             code = code,
                             # data list
                             nD = nD,
                             # initial value function
                             nI = nI(),
                             # constant list
                             nC = nC.
                             # parameters to monitor
                             monitors = monitors,
                             # total iterations per chain
                             niter = 4000,
                             # burn-in per chain
                             nburnin = 2000.
                             thin = 20,
                             nchains = 4.
                             # check samplers are correct
                             print_samplers = T,
                             # optimize sampling
                             # of the fixed effects
                             optimBeta = T,
                             beta_name = "B_qr",
                             # use an RW block sampler
                             sampler_name = "RW_block",
                             # decrease adaption during burn-in
                             adaptInterval = 10 # defaults to 200)
```

Thank you for your attention!