

Student Name	FILE	
Teacher's Name		

Extension 1 Mathematics

TRIAL HSC

August 2020

General Instructions

- Working time 120 minutes + 10 minutes reading time
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided at the back of this paper
- In questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks

70

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 60 marks

- Attempt questions 11-14
- Allow about 1 hours and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

- 1. A coin is biased such that the probability of a head is 0.8. The probability that exactly four tails will be observed when the coin is flipped ten times is:
 - (A) $10 \times 0.2^6 \times 0.8^4$
 - (B) 10 C₄ × 0.2^4 × 0.8^6
 - (C) 10 C₄ × 0.2^6 × 0.8^4
 - (D) $10 \times 0.2^4 \times 0.8^6$
- 2. Which one of the following vectors is parallel to the vector $\overrightarrow{OP} = 12i 6j$?
 - (A) $\overrightarrow{OA} = 12i + 6j$
 - (B) $\overrightarrow{OB} = -i + 2j$
 - (C) $\overrightarrow{OC} = 2i + j$
 - (D) $\overrightarrow{OD} = -2i + j$
- 3. Which of the following is the correct expression for $\int \frac{dx}{\sqrt{9-x^2}}$?
 - (A) $\sin^{-1} 3x + c$
 - $(B)\cos^{-1}3x + c$
 - (C) $\sin^{-1}\frac{x}{3} + c$
 - $(D)\cos^{-1}\frac{x}{3}+c$

4. The region made between the curves $y = x^2 + 1$ and y = 4, and the y-axis is shown below.

Which of these expressions gives the area of the region shown?

$$(A) \qquad \int_0^{\sqrt{3}} x^2 + 1 \ dx$$

(B)
$$\int_{1}^{4} y - 1 \, dy$$

(C)
$$\pi \int_{1}^{4} y - 1 \, dy$$

(D)
$$\int_{1}^{4} \sqrt{y-1} \, dy$$

5. The number of elephants, N, in a population at time t is given by $N = Ae^{kt} + 750$, with constants A > 0 and k > 0. Which of the following is the correct differential equation?

3

$$(A) \frac{dN}{dt} = -k(N + 750)$$

(B)
$$\frac{dN}{dt} = k(N + 750)$$

(C)
$$\frac{dN}{dt} = -k(N - 750)$$

(D)
$$\frac{dN}{dt} = k(N - 750)$$

6. In the triangle below, $\left| \underbrace{u}_{\sim} \right| = \left| \underbrace{v}_{\sim} \right| = 4$.

What is the value of $u \cdot v$?

- (A) 16
- (B) $8\sqrt{2}$
- (C) 8
- (D) $8\sqrt{3}$
- 7. Which polynomial has a multiple root at x = 1
 - (A) $x^3 + 3x^2 4$
 - (B) $x^3 3x + 2$
 - (C) $x^3 3x 4$
 - (D) $x^3 + 3x^2 + 2$
- 8. When $\cos x + \sin x$ is rewritten in the form $R \cos(x \alpha)$, then:
 - (A) $R = \sqrt{2}$ and $\alpha = \frac{\pi}{4}$
 - (B) R = 2 and $\alpha = \frac{\pi}{4}$
 - (C) $R = \sqrt{2}$ and $\alpha = \frac{3\pi}{4}$
 - (D) R = 2 and $\alpha = \frac{3\pi}{4}$

9. The slope field below is for a first-order differential equation.

Which of the following is a possible differential equation?

- $(A) \frac{dy}{dx} = \sin 2x$
- (B) $\frac{dy}{dx} = \sin 2y$
- (C) $\frac{dy}{dx} = \cos 2x$
- $(D)\frac{dy}{dx} = \cos 2y$

10. The graph of the function y = f(x) is below.

Which of the following is a graph of $y = \frac{1}{|f(x)|}$? (B)

(A)

(C)

(D)

Section II

Total marks – 60 Attempt Question 11-14 Allow about 1 hour and 45 minutes for this section

Begin each question on a NEW page

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a NEW page.

- a) Nine people are arranged around a circular table
 - i. How many ways can they be arranged?

1

ii. If they are seated randomly, what is the probability that two individuals, Lois and Clark, are sitting next to each other?

1

b) The heights in a population are normally distributed with a mean of 173 cm and a standard deviation of 7cm. Use the empirical rule to find the approximate probability that a randomly selected person has a height under 159 cm?

2

- c) A standard die is rolled 5 times. What is the probability of rolling a four at least two times? 2
- d) Find $\frac{dy}{dx}$ if $y = e^{2x} \cos^{-1} x$

2

e) Find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$ if $x = 2 \cos t$ and $y = 2 \sin t$

2

f) Solve $\frac{2x}{x-3} \ge x + 4$

3

g) Use the substitution $u = 2 - x^4$, or otherwise, to find $\int 7x^3(2 - x^4)^5 dx$

2

End of Question 11

Question 12 (15 marks) Begin a NEW page.

a) Find the particular solution to
$$\frac{dy}{dx} = \frac{2x}{3y^2}$$
 where $y(0) = 1$

b) In the trapezium below,
$$\overrightarrow{OA} = u$$
, $\overrightarrow{OC} = v$, and $|\overrightarrow{OA}| = 2|\overrightarrow{CB}|$

Express the vector \overrightarrow{BA} in terms of u and v.

- c) An unbiased coin is flipped 6400 times. The random variable *X* is the number of heads recorded.
 - i. Assuming that X can be accurately approximated by a normal distribution, find the values of μ and σ such that $X \sim N(\mu, \sigma^2)$
 - ii. Find the z-scores of flipping 3260 heads and of flipping 3100 heads.
 - iii. Hence, use the table below to estimate the probability of flipping between 3 100 and 3 260 heads.

	First Decimal Place									
Z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159
1	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713
2	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Question 12 is continued on the next page

d) If $t = \tan \frac{\theta}{2}$

i. Show that $3 \sin \theta - 4 \cos \theta - 4 = \frac{6t - 8}{1 + t^2}$

ii. Hence solve $3 \sin \theta - 4 \cos \theta = 4$ for $0 \le \theta \le 2\pi$

End of Question 12

Question 13 (15 marks) Begin a NEW page.

a) The radius of the base of a cylinder is increasing at a rate of 5 cm/min. The height of the cylinder is fixed at 30 cm and the formula for the volume of a cylinder is $V = \pi r^2 h$. Find the exact rate of change of the volume of the cylinder at the instant where the radius is 10 cm.

2

b) Below, the region between $y = 3\cos\frac{x}{2}$ and the x-axis is shaded between $x = -\pi$ and $x = \pi$.

If the region is rotated around the x-axis, find the volume of the solid formed. Leave your answer to 2 decimal places.

3

c) Use mathematical induction to prove that $7^{2n} + 7^n + 4$ is divisible by 6 for integers $n \ge 0$. 4

d) Billy throws a pebble from a height of 2 metres at an angle of θ to the horizontal, with a velocity of 30m/s.

- i. Show that the expressions for the horizontal and vertical displacement at t seconds after projection are $x = 30t\cos\theta$ and $y = -5t^2 + 30t\sin\theta + 2$ respectively. (Take the acceleration due to gravity as -10 m/s² and take the origin to be the ground directly below Billy).
- ii. Show that the equation of the path of the particle is $y = \frac{-x^2}{180} (1 + \tan^2 \theta) + x \tan \theta + 2$
- iii. If Billy manages to hit a target at point T, which is 10 away on the ground and 6 metres high, find two possible angles of projection, to the nearest degree.

End of Question 13

Question 14 (15 marks) Begin a NEW page.

a) 25 quokkas are introduced to an island to promote the survival of the species. The growth of their population, Q, over t years, can be modelled by $\frac{dQ}{dt} = 0.0006Q(15\ 000 - Q)$.

i. Show that
$$\frac{1}{0.0006Q(15\ 000-Q)} = \frac{1}{9} \left(\frac{1}{Q} + \frac{1}{15\ 000-Q} \right)$$

- ii. Hence, solve $\frac{dQ}{dt} = 0.0006Q(15\ 000 Q)$, using integration, to show that $Q = \frac{15\ 000}{1+Be^{-9t}}$, where B is some constant.
- iii. Find the value of B, and hence use the model to estimate the number of quokkas on the island after two months.
- iv. What is the maximum number of quokkas that the island will support?
- v. After how many months is the number of quokkas to greater than half of the maximum amount?

Question 14 is continued on the next page

b) Adam walks in a straight line form the point A(-1,4) to the point Q(4,16) with constant speed. His position vector can be expressed in the form p = a + tu, where t is the time after he starts walking. Adam arrives at the point Q at t = 3.

- i. State the vectors a and u.
- ii. Bob is at point B(11,9). During Adam's walk from A to P, Bob wishes to throw a ball to Adam. Bob decides to throw the ball when Adam is at the closest point to B.

2

1

3

 α) Write a vector $\underset{\sim}{w}$ that is perpendicular to $\underset{\sim}{u}$.

 β) Hence or otherwise, find value of t when Bob throws the ball to Adam.

End of Exam

1 MC		
2		
3). B		
4		
52. D		
6	•	-
73.		
8		· · · · · · · · · · · · · · · · · · ·
94.0		
10		
11 5, D		
12		
13 6		
14		
15 7. 3	•	
16		
17 8 1	· · · · · · · · · · · · · · · · · · ·	
18		
19 9. (
20		
21 (O. B		
22		
23		
24		
25		
26		

\(.	
1 2 1/8! = 40320	
2 1×2×7	
3 11/40320 = 4	
4	
5	
6b) 159 = 173 -2×7.	
7	
8 95%	
9 711/1	
10 2	
11 $P(X < 159) = \frac{5\%}{2} = 2.5\%$	
12	
13 c) P(At least two)= 1- (5(5)5+5(1-(6)x(5)4)	
$-\frac{763}{3888}$	
15	
$16 d) u = e^{2x} \sqrt{-\omega s^{-1}} x$	
$17 u' = 2e^{2x} v' = -\frac{1}{\sqrt{1-x^2}}$	
18 27	-
19 - dy = 2e 22 cos 2 - Virx2	
20	
21 e) $\frac{da}{dt} = -2\sin t$ $\frac{dy}{dt} = 2\cos t$	
22 2 s t	
23 - da - 2 cost = - tant	
24	
25 At t= 4, dr tan 4	
26	

1 $2x$ 2 f) $x - 3$ $x(x - 3)$ $x - 4$ $x - 3$ $x + 3$ 3 $2x(x - 3)$ $x - 2(x + 4)(x - 3)^2 x = 0$ 4 $(x - 3) \left[2x - (x + 4)(x - 3) \right] \ge 0$ 5 $(x - 3) \left(2x - (x^2 + x - 12) \right) \ge 0$ 6 $(x - 3) \left(-x^2 + x + 12 \right) \ge 0$ 7 $-(x - 3) \left(-x^2 - x - 12 \right) \ge 0$ 8 $-(x - 3) \left(-x^2 - x - 12 \right) \ge 0$ 9 $x - 3$ 10 $x - 4$ 11 $x - 3$ 12 $x - 4$ 13 $x - 4$ 14 $x - 3$ 15 $x - 4$ 16 $x - 4$ 17 $x - 4$ 18 $x - 4$ 19 $x - 4$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 27 $x - 7$ 28 $x - 7$ 29 $x - 7$ 20 $x - 7$ 20 $x - 7$ 21 $x - 7$ 22 $x - 7$ 23 $x - 7$ 24 $x - 7$ 25 $x - 7$ 26 $x - 7$ 2		<u> </u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 22	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(2f)$ $(x-3)^{2}$ $(x+4)(x-3)^{2}$ $(x+3)^{2}$	
4 $(x-3)[2x - (x+4)(x-3) \ge 0]$ 5 $(x-3)[2x - (x^2+x-12)] \ge 0$ 6 $(x-3)(-x^2+x+12) \ge 0$ 7 $-(x-3)(x^2-x-12)\ge 0$ 8 $-(x-3)(x-4)(x+3)\ge 0$ 9 10 11 -3 12 12 13 $x \ge -3$, $3 < x \le 4$ 14 15 $a \ge 0$, $a \ge 0$ 16 $a \ge 0$, $a \ge 0$ 17 18 $a \ge 0$, $a \ge 0$ 19 20 $a \ge 0$, $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 20 $a \ge 0$ 21 $a \ge 0$ 22 $a \ge 0$ 23 $a \ge 0$ 24 $a \ge 0$ 25 $a \ge 0$ 26 $a \ge 0$ 27 $a \ge 0$ 28 $a \ge 0$ 29 $a \ge 0$ 20 $a \ge 0$		
5 $(x-3)(2x-(x^2+x-12)) \ge 0$ 6 $(x-3)(-x^2+x+12) \ge 0$ 7 $-(x-3)(x^2-x-12)\ge 0$ 8 $-(x-3)(x-4)(x+3)\ge 0$ 9 10 11 12 12 13 $x \le -3$, $3 < x \le 4$ 14 15 g) $y = 2-x^4$	4 $(x-3)[2x-(x+4)(x-3) \geq 6)$	
6 $(x-3)(-x^2+x+12) \ge 0$ 7 $-(x-3)(x^2-x-12) \ge 0$ 8 $-(x-3)(x-4)(x+3) \ge 0$ 9 10 11 12 12 13 14 14 15 14 16 16 16 16 16 16 16 16 16 16 16 16 16		
8 $-(\chi-3)(\chi-4)(\chi+3) \ge 0$ 9 10 11		
8 $-(\chi-3)(\chi-4)(\chi+3) \ge 0$ 9 10 11 12 13 $\chi \le -3$, $3 < \chi \le 4$ 14 15 g) $u = 2 - \chi^4$ 16 $du = -4\chi^3 d\chi$ and $d\chi = -4\chi^3$ 17 18 $\chi = -4\chi^3 (2 - \chi^4) d\chi$ 19 20 $\chi = -4\chi^3 (2 - \chi^4) d\chi$ 21 22 $\chi = -4\chi^3 (2 - \chi^4) d\chi$ 23 $\chi = -4\chi^3 (2 - \chi^4) d\chi$ 24 $\chi = \chi + $	$-(x-3)(x^2-x-12) \ge 0$	
10 11 12 13 $x \in -3$, $3 < x \in 4$ 14 15 q) $u = 2 - x^{4}$ 16 $du = -4x^{3} dx$ and $dx = -4x^{3}$ 17 18 $x = 7$, $3 =$		
11 12 13 14 15 16 17 18 17 18 19 20 27 21 22 24 24 24 24 24 25 -7 (2-24) 16 17 18 18 19 19 20 20 21 21 22 24 24 24 24 24 24 25 -7 (2-24) 25	9	
12 13 $\chi \leq -3$, $3 < \chi \leq 4$ 14 15 g) $u = 2 - 2^{4}$ 16 $du = -4 \chi^{3} d\chi$ and $d\chi = -4 \chi^{3}$ 17 18 $\int 7 \chi^{3} (2 - \chi^{4})^{5} d\chi$ 19 20 20 27 4 $\chi^{3} \chi^{5} \chi^{5} \chi^{-4} \chi^{3}$ 21 22 23 24 24 25 -7 $\chi^{5} \chi^{6} + \zeta$ 25 -7 $\chi^{7} \chi^{7} \chi^$	10	
13 $x \le -3$, $3 < x \le 4$ 14 15 9) $u = 2 - x^{4}$ 16 $du = -4x^{3} dx$ and $dx = -4x^{3}$ 17 18 $x = 4x^{3} (2 - x^{4})^{5} dx$ 19 20 $x = 7 + 4x^{3} (2 - x^{4})^{5} dx$ 21 22 $x = 4x^{3} (2 - x^{4})^{5} dx$ 23 $x = -7 + 4x^{3} dx$ 24 $x = 4x^{3} + 6x^{4} + 6x^{4}$ 25 $x = -7(2 - x^{4})^{6}$	11 -3 3	
14 15 g) $u = 2 - 24$ 16 $du = -4x^3 dx$ and $dx = -4x^3$ 17 18 $\therefore \int 7x^3 (2 - x^4)^5 dx$ 19 20 $= 7 \int x^3 (x^5 - 4x^3)^5 dx$ 21 22 $= 4 \int x^5 dx$ 23 $= -7 + 4 \int x^5 dx$ 24 $= 4 + 4 + 6 + 6$ 25 $= -7(2 - x^4)^6$	12	
15 g) $u = 2 - 2^{4}$ 16 $du = -4x^{3} dx$ and $dx = -4x^{3}$ 17 18 $\therefore \int 7x^{3} (2 - x^{4})^{5} dx$ 19 20 $= 7 \int x^{3} \int x^{5} x^{5} - 4x^{3}$ 21 22 $= 4 \int x^{5} dx$ 23 $-7 \int x^{6} dx$ 24 $= 4 \times 6 + C$ 25 $-7(2 - x^{4})^{6}$	13 : x ≤ -3, 3 < x ≤ 4	
16 $d_{1} = -4 x^{3} dx$ and $dx = -4 x^{3}$ 17 18 $\therefore \int 7x^{3} (2-x^{4})^{5} dx$ 19 20 $= 7 \int x^{3} \int x -4x^{3}$ 21 22 $= 4 \int x^{5} dx$ 23 $-7 \int x^{6}$ 24 $= 4 \times 6 + 6$ 25 $-7 (2-x^{4})^{6}$	14	
17 18 $7x^{3}(2-x^{4})^{5}dx$ 19 20 -7 $x^{3}(x^{5})^{5}x^{-4}x^{3}$ 21 22 -7 x^{5}	<u> </u>	
18 $\int 7x^{3} (2-x^{4})^{5} dx$ 19 20 $= 7 \int x^{3} (5x^{2} - 4x^{3})^{2}$ 21 22 $= 4 \int x^{5} dx$ 23 24 $= 4 \times 6 + 6$ 25 $-7(2-x^{4})^{6}$	$du = -4x^3 dx and dx = -4x^3$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{18}{7} \frac{7}{3} \left(2 - \frac{4}{3}\right) dx$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{20}{20} = \frac{7}{2} \sqrt{\chi^3 + \frac{4\chi^3}{4\chi^3}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$-7(2-x^4)^6$		
$-7(2-x^4)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7(2-34)	
	26 = 24 + (

$\frac{1}{a}\frac{dy}{dz} = \frac{2x}{3x_1^2}$	
2	
$3 \qquad \int 3y^2 dy = \int 2x dx$	
$4 \qquad y^3 = x^2 + C \qquad *$	
5 At x=0, y=1	
6 1=Otc	
7 (-)	
8	
$9 \qquad y = \sqrt[3]{\chi^2 + 1}$	
10	
11 b) BA = 2 x - x + y	
12 = 2 4 - 4	
13	
$ 14 c /n = 6400 + \frac{1}{2}$ $0^{2} = 6400 + \frac{1}{2} + \frac{1}{2}$	
$= 3200$ $\sigma^2 = 1600$	
16 0 - 40	
17	
18 17/ For 3260 For 3100	
19 3260-3200 3100-3200	
20 2= 40 =1.5 2= 40 =-2.5	
21	
$\frac{22}{111} / P(3100 \le X \le 3260)$	
$= p(-2.5 \le Z \le 1.5)$	
$= P(Z \le 1.5) - P(Z \ge 2.5)$ 72.5 1.5 2.5	
$= P(Z \le 1.5) - (1 - P(Z \le 2.5))$	
26 = 0.9332 - 1 + 0.9938	

=0.927

1 d):/LHS=3sin 0 - 4 cos 0 - 4	
$\frac{2}{3\times 2t}$ $4(1-t^2)$ - $4(1+t^2)$	
$=\frac{1}{1+t^2}-\frac{1}{1+t^2}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 = 1+t²	
6 6t-8	
$7 = 1+t^2$	
8	
9 ii/3sin0-4cos0=4	
9 ji/3sin0-4cos0=4 10 3sin0-4cos0-4=0	
11 6t-8 12 Hence 1+t2 = 0 from 5/	
12 Hence 1+t2 = 0 from 5/	
$\frac{13}{\sqrt{2}}$	
14	
15 : ta 2 - 3 O = 0 = 27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\theta = 1.85 (2dp)$	·
18	,
18	
18 19 Check: If 0= 17 LHS= 35in 11 - 4 cests 20 = 4	
18 19 Check: If $\theta = \pi$ LMS= 3 sin $\pi - 4$ cest	
18 19 Check: If $\theta = \pi$ LMS = 3 sin π - 4 cost = 20 21 = RMS	
18 19 Check: If $\theta = \pi$ LMS = 35in π - 4 cest = 20 20 = RMS	
18 19 Check: If $\theta = \pi$ LMS = 3 sin π - 4 cost = 20 21 = RMS	
18 19 Check: If $\theta = \pi$ LMS= 3 sin $\pi - 4$ cost π 20 = π 21 = π 22 23	

	T
$\frac{1}{\sqrt{dr}}$	
$\frac{1}{2} \frac{dr}{dt} = 5$ $V = \pi r^2 \times 30$ $\frac{dr}{dt} = 60 \times 6$	
$V = \pi r^2 \times 30$ $\frac{dv}{dr} = 60\pi r$	
4 de de de	
5 Now at = dt x dr	
$= 5 \times 60 \pi r = 300 \pi r$	· ·
7 At r=10	
8 dv	
$\frac{dv}{dt} = 3000 \pi$	
ο γ 1	,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
12	
$\frac{13}{13} = \frac{18\pi}{100} = $	
14	
15 = 911 Jo + cosz dz	
16	
$= 9_{H} \times + \sin x = 0$	
18	
$= 9\pi \left(\pi + \sin - (0 + \sin 0)\right)$	
20	
$= 9\pi^2 \sqrt{3}$	
22	
$= 88.83 (2dp) v^3$	
24	
25	•
26	

1 c) Show true for n=0	
2 7°+7°+4=6, which is divisible by 6	
3 Statement is true for not.	
4	
5 Assume true for n=k, i.e. assume	
6 72k+7k+4=6M where M B-go interes	-
6 72k+7k+4=6M, where M is an integer 7 -: 7k=6M-4-72k	
8	
9 Hence prove true for n=R+1 is aim to prove 10 72(k+1) + 7k+1 + 4 is divisible by 6	-
10 72(k+11) + 7k+1 + 4 is divisible by 6	
11	
$12 = 7^{2k+2} + 7^{k+1} + 4$	
$13 - 49 \cdot 7^{2k} + 7 \cdot 7^{k} + 4$	
$\frac{14 - 49 \times 7^{2k} + 7(6M - 4 - 7^{2k}) + 4}{15 - 49 \times 7^{2k} + 42M - 28 - 7 \times 7^{2k} + 4}$	
$15 = 49 + 7^{2k} + 42M - 28 - 7 + 7^{2k} + 4$	
$= 42 \times 7^{2k} + 42M - 24$	
$ _{17} = 6(7 \times 7^{2R} + 7M - 4)$	
18 -6L, where Lis an integer.	
19	
20 : If the statement is true for n=R, it is	
21 also true for n=k+1.	
22	
23 As the statement is true for NEO, it is also	
24 true for n=141=2, 3, 4.	
25 Hence, by mathematical induction, it is true for	
26 all lintegers n20	

Official STHS Mathematics Paper

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9 So $x = 30t \cos\theta$ So $y = -5t^2 + 30t \sin\theta + 2$ 10 11 ii / x (1) 12 So $t = 30 \cos\theta$ and $y = -5t^2 + 30 + \sin\theta + 2 - (2)$ 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18} = \frac{30^2}{30^2} x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 21
9 So $x = 30t \cos\theta$ So $y = -5t^2 + 30t \sin\theta + 2$ 10 11 ii / x (1) 12 So $t = 30 \cos\theta$ and $y = -5t^2 + 30 + \sin\theta + 2 - (2)$ 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18} = \frac{30^2}{30^2} x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 21
9 So $x = 30t \cos\theta$ So $y = -5t^2 + 30t \sin\theta + 2$ 10 11 ii / x (1) 12 So $t = 30 \cos\theta$ and $y = -5t^2 + 30 + \sin\theta + 2 - (2)$ 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18} = \frac{30^2}{30^2} x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 21
9 So $x = 30t \cos\theta$ So $y = -5t^2 + 30t \sin\theta + 2$ 10 11 ii / x (1) 12 So $t = 30 \cos\theta$ and $y = -5t^2 + 30 + \sin\theta + 2 - (2)$ 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18} = \frac{30^2}{30^2} x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 21
9 So $\pi = 30t \cos\theta$ So $y = -5t^2 + 30t \sin\theta + 2$ 10 11 ii/ π 12 So $t = 30 \cos\theta$ and $y = -5t^2 + 30 + 5 \cos\theta + 2$ 13 14 Sub (1) into (2) 15 16 17 18 19 19 19 19 19 19 19 19 19
10 11 ii / x (1) 12 So $t = 30 \cos \theta$ and $y = 5t^2 + 30 + \sin \theta + 2$ (2) 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30 \cos \theta}) + 30 \sin \theta \times 30 \cos \theta + 2$ 17 -5 18 $= 30^2 \times x^2 \sec^2 \theta + x + \tan \theta + 2$ 19 $-x^2$ 20 $= 180 (1 + \tan^2 \theta) + x + \tan \theta + 2$ 21 22
12 So $t = 30 \cos \theta$ and $y = 5t^{2} + 30 + 5 - \theta + 2$ — (2) 13 14 Sub (1) into (2) 15 16 $y = -5(\frac{x}{30 \cos \theta}) + 30 \sin \theta \times 30 \cos \theta + 2$ 17 -5 18 $= 30^{2} x^{2} \sec^{2}\theta + x \tan \theta + 2$ 19 $-x^{2}$ 20 $= 180(1 + \tan^{2}\theta) + x \tan \theta + 2$ 21 22
13 14 (nb (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18}$ 18 $\frac{30^2}{20} \times x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 22
13 14 (nb (1) into (2) 15 16 $y = -5(\frac{x}{30\cos\theta}) + 30\sin\theta \times 30\cos\theta + 2$ 17 $\frac{-5}{18}$ 18 $\frac{30^2}{20} \times x^2 \sec^2\theta + x \tan\theta + 2$ 19 $\frac{-x^2}{180} (1 + \tan^2\theta) + x \tan\theta + 2$ 21 22
15 $ \frac{16}{16} y = -5\left(\frac{x}{30\cos\theta}\right) + 30\sin\theta \times 30\cos\theta + 2 $ 17 $ -5 $ 18 $ = 30^{2} x^{2} \sec^{2}\theta + x \tan\theta + 2 $ 19 $ -x^{2} $ 20 $ = 180 \left(1 + \tan^{2}\theta\right) + x \tan\theta + 2 $ 21 22
16 $y = -5\left(\frac{x}{30\cos\theta}\right)^{2} + 30\sin\theta \times 30\cos\theta + 2$ 17 -5 18 $= 30^{2} x^{2} \sec^{2}\theta + x \tan\theta + 2$ 19 $-x^{2}$ 20 $= 180\left(1 + \tan^{2}\theta\right) + x \tan\theta + 2$ 21 22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rcl} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22
22
23
24
25
26

Official STHS Mathematics Paper

1 At $x=6$, $y=10$	
2 -102	
3 6= 180 (1+ tan2)	O) +10+a=0+2
4 6 5 (1+ tan 20) + 10 mtan 0 + 2
5 54 = -5 - 5 tan 20	
6 5tan20 - 90tan0	
7	90-1 902-4,5,41
8	$an^2\theta = 2 \times 5$
9	90 = 57280
10	= 10
11	
12 90+17	280 90-57280
13 : tan 0 = 10	tanA = 10
14	
15	
16	(Note: 0 is
17 : A= 87° 25°	acute).
18	
19	
20	
21	
22	
23	
24	
25	
26	
<u>L</u>	

	3
1 a) 1/1	
2 RHS= 9 (Q + 15000-Q)	
3 1/15000 -Q+Q	
4 = 9 (Q(15000-Q));	
5 15000 / 1	
6 = 9 (Q(15000 - Q)).	
7	
$= \frac{9}{15000} Q(15000 - Q)$	
9	
= 0.0006 Q(15000-Q)	
11 - LHS	
12	
13 ii/ Hence dt = 0.0006Q(15000-Q)	
14 dt //	
$15 \qquad \overline{dQ} = 9 \left(\overline{Q} + 15000 - \overline{Q} \right)$	
16	
17 t= 9() Q dQ -) 15000-Q dQ	
18 t= q n Q - n 15000-Q + C	
19 9(t-c)= In Q 15000-Q	
$\frac{Q}{ S000-Q } = e^{qt-qL}$	
21 <u>15000-Q</u> - Aeqt, where A= teqc	
22 Q = 15000 Aeqt - QAeqt	
23 O(+ A at) - 15000 Aoat	
$Q = \frac{15000 Ae^{4t}}{1+Ae^{4t}}$	
25 15000	-
$Q = \frac{1}{A_0qt} + 1$	
145	

Q= 15000 1+Be-9t, where B= A

1 iii/ At t=0, Q=25
15000
$\frac{3}{25} = 1 + Be^{-9x0}$
4 25+258=15000
5 25B=14975
B = 599
7
8 -: At t= \frac{2}{12} (t is in years)
I ⁹ 15 <i>0</i> 00 ~ 1
$Q = \frac{1 + 599e^{-9x}}{1 + 599e^{-9x}}$
= 111.395
12 : Estimate of 111 grokkas after 2 months.
13
14
15 is/ Carrying capacity as +>0
16 15000
17 : Q -> T+0 = 15000
18
19 . The maximum number supported
20 15 15000.
21
22
23
24
25
26

1
2 v/ Hence, set Q=7500
$\frac{15000}{4} = \frac{15000}{1 + 599e^{-9t}}$
5
$6 + 599e^{-9t} = 2$
7
$e^{-9t} = 599$
9
$-9t = \ln(\frac{1}{599})$
11
$t = -\frac{1}{9} \ln(\frac{599}{99})$
= 0.71 years
= 0.71 years = 8.527 months.
15
16 - After 9 months the amount of
17 groppeas exceeds half of the maximum.
18 V
19
20
21
22
23
24
25
26

	1
16) 1/ AQ=[4-6-1] [5] 2 [16-4] = [12]	
2 [16-4] = [12]	
3	
4 and Adam gets to Q from A at t=3,	
\	
6 Hence a = 4 and u = 3 × [12]	·
$\frac{7}{5}$	
8 = L4	
9	
10	
11	
12	
13 ii/ x) A vector peperdicular is	
14	
15 -4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Scalar multiple.	
18	
19	
20	
21	
22	
23	
24	
25	
26	

1
2B) Equation of the throw 3: [9] + > [5]
3 as lit goes from (11,9) in the direction w.
5
There I T + T I T I T I T I T I T I T I T I T
9 5
10: -1+5==11-4x and 4+4=9+3
-3+5t=33-12
$12 12\lambda = 36-5t 12+12t=27+5\lambda-(2)$
36-St
$\lambda = 12 - (1)$
15
16 Sub (1) into (2)
36-St
$18 2+12t=27+5 \times 12$
5 (36-5t)
$\frac{1}{12}$
-180+144t=180-25t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24
25
26