Gennaio 2016

In [14]:

```
import pandas as pd
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
```

Esercizio 0 ¶

0.1,0.2 Grafici

$$D_X=2,\ldots,14$$
 , $X\sim Unif(D_X)$

$$X \sim Geom(p)$$
 , $n \in \{0,1,2,\dots\}$

0.3

$$E(X) = \frac{1-p}{p}$$

0.4

$$p = \frac{1}{E(X) + 1}$$

0.5

$$Var(X)=rac{1-p}{p^2}=E(X)(E(X)+1)$$

Esercizio 1

In [10]:

```
df = pd.read_csv('Comune_Bergamo_-_Incidenti_stradali.csv')
df.columns
```

Out[10]:

```
In [11]:
len(df)
Out[11]:
28040
```

1.2

- Protocollo categorici
- · Anno ordinali
- Data ordinali
- · Ora ordinali
- · Localita categorici
- Naturalncidente categorici
- N Illesi scalari
- · N Feriti scalari
- N Riservata 28040 non-null int64
- · N Morti scalari
- · Pedoni categorici
- Velocipedi categorici
- Ciclomotori_Motocicli categorici

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 28040 entries, 0 to 28039

- · Mezzi Pesanti categorici
- · Localizzazione categorici

In [12]:

```
df.info()
```

```
Data columns (total 15 columns):
Protocollo
                         28040 non-null object
Anno
                         28040 non-null int64
Data
                         28040 non-null object
0ra
                         28040 non-null object
                         28040 non-null object
Localita
NaturaIncidente
                         28040 non-null object
N Illesi
                         28040 non-null int64
N Feriti
                         28040 non-null int64
N_Riservata
                         28040 non-null int64
N Morti
                         28040 non-null int64
Pedoni
                         28040 non-null bool
Velocipedi
                         28040 non-null bool
Ciclomotori_Motocicli
                         28040 non-null bool
Mezzi Pesanti
                         28040 non-null bool
Localizzazione
                         27954 non-null object
dtypes: bool(4), int64(5), object(6)
memory usage: 2.5+ MB
```

In [21]:

```
df['Anno'].value_counts(sort=False).plot.bar()
plt.show()
```


1.4

In [33]:

n_feriti = pd.crosstab(index=df['N_Feriti'],columns="Frequenza Relativa",colnames=[''],
normalize=True)
n_feriti

Out[33]:

	Frequenza Relativa
N_Feriti	
0	0.501676
1	0.398930
2	0.074750
3	0.016084
4	0.005528
5	0.001961
6	0.000571
7	0.000357
8	0.000071
9	0.000036
10	0.000036

```
In [31]:
```

```
### incidenti, feriti ???
n_feriti.cumsum().plot()
plt.show()
```


1.6

!A = "nessuno ferito"

A = "almeno un ferito" = 1-P(!A)

In [43]:

```
1-df['N_Feriti'].value_counts(normalize=True).sort_index()[0]
#1-n_feriti[:1]
```

Out[43]:

0.49832382310984313

1.7

valore atteso -> stimo con media campionaria

In [44]:

```
df['N_Feriti'].mean()
```

Out[44]:

0.6357703281027104

1.8

Osservando il grafico e notando dai dati quì sotto che media e deviazione standard sono vicini possiamo assumere che il modello probabilistico è geometrico

In [45]:

```
df['N_Feriti'].describe()
```

Out[45]:

count 28040.000000 mean 0.635770 std 0.790586 0.000000 min 25% 0.000000 50% 0.000000 75% 1.000000 10.000000 max

Name: N_Feriti, dtype: float64

In [48]:

```
from statsmodels.distributions.empirical_distribution import ECDF
dist = ECDF(df['N_Feriti'].dropna())
plt.plot(dist.x, dist.y)
plt.show()
```


1.9

stima parametro della distribuzione

In [53]:

```
p = (1/(1+df['N_Feriti'].mean()))#vedi esercizio 0
p
```

Out[53]:

0.6113327664769879

In [56]:

```
X = st.geom(p,loc=-1)
x = np.arange(11) #numero max di incidenti
plt.plot(x,X.pmf(x),'o')
plt.show()
```


1.11

diagramma dispesione N_Feriti e N_Illesi

In [64]:

```
plt.scatter(df['N_Feriti'],df['N_Illesi'],color="brown")
plt.xlabel('Feriti')
plt.ylabel('Illesi')
plt.show()
```


1.12

Correlazione tra feriti e illesi

In [65]:

df['N_Feriti'].corr(df['N_Illesi'])

Out[65]:

-0.3070519976103214

Esercizio 2

Dati X_1,\dots,X_n campione casuale, con X= numero illesi incidente

2.1

Stimatore del valore atteso

$$T_n=\overline{X}$$

In [58]:

df['N_Illesi'].mean()

Out[58]:

1.7973965763195434

2.2

 $Var(\overline{X}) = \frac{1}{n}Var(X)$

$$\sigma(\overline{X}) = \sqrt{rac{1}{n} Var(X)}$$

In [59]:

std = (df['N_Illesi'].var()/df['N_Illesi'].dropna().count())**0.5
std

Out[59]:

2.3

Dimostrare che $P(|Z| < k) = 2\Phi(k) - 1$

$$P(|Z| < k) = P(-k < Z < k) = \Phi(k) - \Phi(-k) = \Phi(k) - (1 - \Phi(k)) = 2\Phi(k) - 1$$

2.4

Determinare k tale che P(|Z| < k) = 0.99. Riprendo l'esercizio precedente $2\Phi(k) - 1 = 0.99$

$$\Phi(k) = \frac{1.99}{2} = 0.995$$

$$k = \Phi^{-1}(0,955)$$

In [6]:

Z = st.norm()
Z.ppf(0.995)

Out[6]:

2.5758293035489004

2.5

$$egin{aligned} P(|T_n-\mu|<\epsilon)&=0.99\ &2\Phi(rac{\epsilon\sqrt{n}}{\sigma})-1&=0.99\ &P(|\overline{X}-E(ar{(}X))|\leq0.99)>rac{Var(X)}{n*0.99}\ &\epsilon=rac{\phi^{-1}(0.995)\sigma}{\sqrt{n}} \end{aligned}$$

In [60]:

(Z.ppf(0.995) * df['N_Illesi'].std())/df['N_Illesi'].dropna().count()**0.5

Out[60]:

Febbraio 2016

In [40]:

```
import pandas as pd
import numpy as np
import math
import scipy.stats as st
import matplotlib.pyplot as plt
```

Esercizio 0

0.1

 $i=1,\ldots,7$

$$X_i = \left\{egin{array}{ll} 0 & \emph{giorno i non piove} \ 1 & \emph{altrimenti} \end{array}
ight.$$

0.2

 E_1 = "piove in almeno un giorno infrasettimanale"

$$P(E_1) = 1 - \sum_{i=1}^5 f_X(i) = 1 - (1-p)^5$$

 E_2 = "non piove nel fine settimana"

$$P(E_2) = \sum_{i=6}^7 f_X(i) = (1-p)^2$$

0.3

Gli eventi considerati sono indipendenti, ma non mutuamente esclusivi. Questo perchè la pioggia in un giorno non influenza gli altri.

0.4

Calcolo la probabilità di E_1, E_2, E_3 = "piove in almeno un giorno infrasettimanale, ma non durante il fine settimana", E_4 = "piove in almeno un giorno infrasettimanale oppure non piove nel fine settimana"

$$P(E_3) = P(E_1 \cap E_2) = P(E_1) * P(E_2)$$

$$E_4=E_1\cup E_2$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

In [11]:

```
p = 0.4
e1 = 1 - (1-p)**5 ### E_1
e2 = (1-p)**2 ### E_2
e3 = e1*e2
e4 = e1+e2-e3
print(e1,e2,e3,e4)
```

0.9222400000000001 0.36 0.3320064000000003 0.9502336

Esercizio 1

1.1

$$D_X = \{1, \dots, 7\}$$

1.2

$$X \sim Binom(p,7) \ f_X(x) = inom{7}{x} p^x (1-p)^{7-x} I_{0,...,7}(x)$$

1.3

$$E(X) = p, Var(X) = p(1-p)$$
 $P(|T_n - p| \le 0.25) \ge 0.4$ $2\Phi(rac{0.25\sqrt{n}}{\sqrt{p(1-p)}}) - 1 \ge 0.4$ $2\Phi(rac{0.25\sqrt{n}}{\sqrt{p(1-p)}}) \ge 1.4$ $rac{0.25\sqrt{n}}{\sqrt{p(1-p)}} \ge \Phi^{-1}(0.7)$

Sappiamo che p = 0.4

$$egin{aligned} rac{0.25\sqrt{n}}{\sqrt{0.4(1-0.4)}} &\geq \Phi^{-1}(0.7) \ \sqrt{n} &\geq rac{\Phi^{-1}(0.7)\sqrt{0.24}}{0.25} \end{aligned}$$

In [25]:

```
Z = st.norm()
p = .4
n = ((Z.ppf(0.7)*(math.sqrt(0.24)))/(0.25))**2
n
```

Out[25]:

Esercizio 2

```
In [36]:
df = pd.read_csv('DATI-AMBIENTE.txt',sep=";",decimal=",",na_values=' ')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 15 columns):
PROVINCIA
                                     150 non-null object
                                     27 non-null object
C6H6
S02
                                     38 non-null object
                                     57 non-null object
CO
NO2
                                     138 non-null float64
                                     74 non-null float64
03
                                     77 non-null float64
O3_GIORNI_SUPERAMENTO_TOLLERANZA
O3_GIORNI_SUPERAMENTO_ALLARME
                                     77 non-null float64
                                     71 non-null float64
PM10
PM2_5
                                     26 non-null float64
                                     14 non-null object
Рb
                                     14 non-null object
As
                                     14 non-null object
Νi
Cd
                                     14 non-null object
BaP
                                     13 non-null object
dtypes: float64(6), object(9)
memory usage: 17.7+ KB
2.1
In [37]:
len(df)
Out[37]:
```

2.2

150

In [42]:

```
fprov = pd.crosstab(index=df['PROVINCIA'],colnames=[''],columns="Frequenza Assoluta")
fprov.plot.bar()
plt.show()
```


2.3

La provincia meno rappresentata è Como, mentre quella più rappresentata è Milano

In [51]:

```
print(df['PROVINCIA'].value_counts().sort_values().head(1))
print(df['PROVINCIA'].value_counts().sort_values().tail(1))
```

CO 5

Name: PROVINCIA, dtype: int64

MI 36

Name: PROVINCIA, dtype: int64

2.4

L'eterogeneità è molto vicino a 1 quindi c'è una buona distribuzione.

```
In [52]:
def gini(series):
    return 1 - sum(series.value_counts(normalize=True)
                          .map(lambda f: f**2))
def normalized_gini(series):
    s = len(series.unique())
    return s * gini(series)/(s-1)
normalized_gini(df['PROVINCIA'].dropna())
Out[52]:
0.9639757575757577
2.5
In [54]:
df['C6H6'].value_counts().describe()
Out[54]:
count
         18.000000
          1.500000
mean
std
          0.857493
min
          1.000000
25%
          1.000000
50%
          1.000000
75%
          2.000000
          4.000000
max
Name: C6H6, dtype: float64
In [55]:
df['S02'].value_counts().describe()
Out[55]:
count
         13.000000
mean
          2.923077
```

std

min

25%

50%

75%

max

2.498718

1.000000

1.000000

1.000000

4.000000 8.000000

Name: SO2, dtype: float64

In [56]:

df['CO'].value_counts().describe()

Out[56]:

count 11.000000 5.181818 mean std 3.919647 1.000000 min 25% 2.000000 50% 4.000000 75% 7.000000 13.000000 max

Name: CO, dtype: float64

2.6

2.7

Concentrazione a: cadmio

Concentrazione b: benzoapirene

In [71]:

df['03'].value_counts(normalize=True)

Out[71]: 47.0 0.108108 42.0 0.094595 50.0 0.067568 44.0 0.067568 40.0 0.067568 55.0 0.054054 48.0 0.054054 37.0 0.054054 46.0 0.054054 45.0 0.040541 0.040541 41.0 38.0 0.040541 60.0 0.027027 43.0 0.027027 35.0 0.027027 39.0 0.027027 61.0 0.013514 56.0 0.013514 34.0 0.013514 93.0 0.013514 53.0 0.013514 0.013514 51.0 52.0 0.013514 59.0 0.013514 49.0 0.013514 54.0 0.013514 58.0 0.013514

Name: 03, dtype: float64

In [72]:

```
import statsmodels.distributions as dm
dist = dm.ECDF(df.03.dropna())
plt.plot(dist.x, dist.y)
plt.show()
```


2.10

In [75]:

```
len(df[df['03'] == 46])
```

Out[75]:

4

2.11

In [81]:

```
mask1 = df['03'] > 45
mask2 = df['03'] < 50
len(df[mask1 & mask2]) + len(df[df['03'] == 45]) + len(df[df['03'] == 50])</pre>
```

Out[81]:

25

2.12

2.13

X = numero dei giorni inun anno nei quali viene superata la soglia per l'ozono

n = 150,
$$X_1, \ldots, X_n$$
 campione

In [93]:

```
tn = df['03_GIORNI_SUPERAMENTO_TOLLERANZA'].mean() #valore atteso
dvn = df['03_GIORNI_SUPERAMENTO_TOLLERANZA'].std()
print(tn,dvn)
```

11.207792207792208 8.025186769982142

2.14

Si potremmo dedurre che segua una legge binomiale per via della definizione: (0 non superamento, 1 superamento). Anche il grafico sembra rispettare.

In [94]:

```
df['03_GIORNI_SUPERAMENTO_TOLLERANZA'].hist()
plt.show()
```


25 gennaio 2017

Esercizio 0

0.1

• a => Funz cum emp: h, Istogramma: f

• b => Funz cum emp: g, Isogramma: d

• c => Funz cum emp: i, Istogramma e

0.2

$$P(B|A) = rac{P(A,B)}{P(A)}$$

la probabilità condizionata di un evento A rispetto a un evento B è la probabilità che si verifichi A, sapendo che B è verificato.

0.3

$$T_n = rac{\sum_{i=1}^n X_i}{n}$$

0.4

$$egin{aligned} P(|T_n-\mu|<0.5) \ P(-0.5 < T_n-\mu < 0.5) \ P(-rac{0.5}{rac{\sigma}{\sqrt{n}}} < rac{T_n-\mu}{rac{\sigma}{\sqrt{n}}} < rac{0.5}{rac{\sigma}{\sqrt{n}}}) \ P(-rac{0.5}{rac{\sigma}{\sqrt{n}}} < Z < rac{0.5}{rac{\sigma}{\sqrt{n}}}) \ \phi(rac{0.5}{rac{\sigma}{\sqrt{n}}}) - \phi(-rac{0.5}{rac{\sigma}{\sqrt{n}}}) \ \end{aligned}$$

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as st
import math
```

```
In [2]:
```

```
Z = st.norm()
n = 47
sigma = 2.5
z1 = 0.5 * math.sqrt(n)/ sigma
z2 = - (0.5 * math.sqrt(n)/ sigma)
Z.cdf(z1) -Z.cdf(z2)
```

Out[2]:

0.8296658522624347

Esercizio 1

```
In [15]:
```

```
df = pd.read_csv('dati-ospedali_new.csv', sep=';')
df[:10]
```

Out[15]:

	Odontoiatri_Universitari	Geologi_SSN	Collaboratori_tecnico- profes_Univ	Tecnico- sanitario_Univ	Inge
0	NaN	NaN	0.0	0.0	0.0
1	0.0	NaN	0.0	0.0	0.0
2	NaN	NaN	0.0	0.0	0.0
3	NaN	NaN	0.0	0.0	0.0
4	NaN	NaN	0.0	0.0	0.0
5	NaN	NaN	0.0	0.0	0.0
6	NaN	NaN	0.0	0.0	0.0
7	NaN	NaN	0.0	0.0	0.0
8	NaN	NaN	0.0	0.0	0.0
9	NaN	NaN	0.0	0.0	0.0

10 rows × 83 columns

```
→
```

In [4]:

```
# 1.1
len(df)
```

Out[4]:

146

```
In [5]:
```

```
# 1.2
len(df.columns)
```

Out[5]:

83

In [6]:

```
# 1.3
medici = df['MediciSSN'].dropna()
# 1.3.1
medici.hist(bins=20)
plt.show()

# medici.plot.box(vert=False)
# plt.show()

from statsmodels.distributions.empirical_distribution import ECDF
dist = ECDF(medici)
plt.plot(dist.x, dist.y)
plt.show()
```


In [7]:

1.3.2

import statsmodels.api as sm

medici_no_outliers = df.loc[df['MediciSSN'] < 1300,'MediciSSN'].dropna()
sm.qqplot(medici_no_outliers,fit=True, line='45')
(medici_no_outliers.mean(), medici_no_outliers.median())</pre>

dal grafico si può vedere come il parametro segua una legge normale essendo quasi sov rapposto alla bisettrice del quadrante

(media e mediana non mi convincono troppo, ma vabbé)

Out[7]:

(451.40140845070425, 383.5)

In [8]:

1.3.3 (medici.median(), medici.quantile(0.75) - medici.quantile(0.25))

utilizzo la mediana come indice di centralità perché più robusto rispetto agli outlie rs presenti nel carattere.

di conseguenza utilizzo il range interquartile per lo stesso motivo e ben si sposa co n la mediana

(non uso la varianza perché deriva dalla media che soffre gli outliers)

Out[8]:

(402.5, 357.25)

In [9]:

1.4

farmacisti = df['Farmacisti_SSN']

In [10]:

```
# 1.4.1
farmacisti.plot.box()
plt.show()
```


In [11]:

```
# 1.4.2 / 1.4.3
# Coefficiente di variazione (o deviazione standard relativa)
medici_mean = 406.6
medici_dev = 160.7
medici_coeff_var = medici_dev / medici_mean

farmacisti_mean = 6.4
farmacisti_dev = 2.9
farmacisti_coeff_var = farmacisti_dev / farmacisti_mean

(medici_coeff_var, farmacisti_coeff_var)
```

Out[11]:

(0.39522872602065906, 0.45312499999999994)

In [12]:

```
# 1.4.4
plt.scatter(medici, farmacisti)
plt.show()

medici.corr(farmacisti)
# il grafico mostra una dipendenza lineare tra i due caratteri
# il valore di correlazione molto vicino a 1 conferma la relazione
```


Out[12]:

0.8191729725239217

1.5

0 farmacisti => 2 \ 1 farmacisti => 22 \ 2 farmacisti => 4 \ 3 farmacisti => 1

0 grande struttura => 24 \ 1 grande struttra => 5

(L'esercizio richiedeva di basarsi sulla tabella sulla fotocopia. Nel caso richiedesse di farlo tramite codice bisogna fare così) pd.crosstab(index=df.Avvocati_SSN, columns= df.grandestruttura, margins=True)

Esercizio 2

veri positivi : 15 \ veri negativi : 12 \ falsi positivi : 35 \ falsi negativi : 2

Esercizio 3

```
In [13]:
```

```
# 3.1
ingegneri = df['Ingegneri_SSN']
(ingegneri.mean(), ingegneri.std())
```

Out[13]:

(4.708333333333333, 4.306240389679412)

3.2

$$P(|\bar{X}_n - u| < 0.5) >= 0.85$$

$$P(-0.5 < \bar{X}_n - u < 0.5) >= 0.85$$

$$P(-\frac{0.5}{\frac{\sigma}{\sqrt{n}}} < \frac{\bar{X}_n - u}{\frac{\sigma}{\sqrt{n}}} < \frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 0.85$$

$$P(-\frac{0.5}{\frac{\sigma}{\sqrt{n}}} < Z < \frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 0.85$$

$$P(Z < \frac{0.5}{\frac{\sigma}{\sqrt{n}}}) - P(Z < -\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 0.85$$

$$\phi(\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) - \phi(-\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 0.85$$

$$\phi(\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) - (1 - \phi(\frac{0.5}{\frac{\sigma}{\sqrt{n}}})) >= 0.85$$

$$2\phi(\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 1.85$$

$$\phi(\frac{0.5}{\frac{\sigma}{\sqrt{n}}}) >= 0.925$$

$$\frac{0.5}{\frac{\sigma}{\sqrt{n}}} >= \phi^{-1}(0.925)$$

$$n >= (\frac{\sigma}{0.5}\phi^{-1}(0.925))^2$$

In [14]:

```
sigma = ingegneri.std()
X = st.norm()
((sigma/0.5)*X.ppf(0.925))**2
```

Out[14]:

Per avere una stima del valore atteso con un errore inferiore a 1 è necessario un campione di almeno 154 elementi. Il nostro dataset ne contiene solo 146							

Luglio 2017

Esercizio 0

1

Completare la tabella dei percentili:

- 15 -> decimo percentile
- 55 -> 30esimo percentile
- 200 -> 50esimo percentile
- x -> 70esimo percentile
- y -> 90esimo percentile

```
x = 200 + (200-55) = 345 y = 200 + (200-15) = 385
```

2

Grafico

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
```

Esercizio 1

dal 1996 al 2010

```
In [2]:
```

```
#ESERCIZIO 1.1: Importare i dati (tenendo presente che il separatore di decimali per i
    numeri è la virgola
#e i valori sono separati dal carattere ";") e dire quanti casi sono presenti nel datas
et.
dati = pd.read_csv("BibliotecheQuartiere.csv",sep=";",decimal=",")
dati.columns
dati.count()
len(dati)

Out[2]:
402

In [3]:
#ESERCIZIO 1.2: Da quale anno a quale anno sono stati raccolti i dati?
dati['Anno'].unique()
print("dal 1996 al 2010")
```

In [4]:

```
#ESERCIZIO 1.3: Quante sono le biblioteche rionali presenti nel dataset?
#Elencarne i nomi.
print(len(dati['Biblioteca'].unique()))
dt = dati['Biblioteca'].drop_duplicates().sort_values()
dt[:10]
```

73

Out[4]:

0	Accursio									
110	Accursio *									
163	Accursio*									
1	Affori									
244	Affori *									
2	Baggio									
218	Baggio *									
191	Baggio*									
3	Bergamini									
246	Bergamini**									
Name:	Biblioteca, dtype: object									

In [5]:

```
#ESERCIZIO 1.4.1: Tracciare il grafico che si ritiene più opportuno per descrivere il n
umero di ragazzi che
#si iscrivono in biblioteca all'anno. Il grafico deve avere il titolo "RAGAZZI" e sul
l'asse opportuno
#(a seconda del grafico che scegliete) deve apparire l'etichetta "numero iscrizioni ann
uali per biblioteca".
ria = dati[['Anno','Ragazzi Iscritti']].dropna().groupby("Anno").sum()
ria.plot.bar()
plt.title("RAGAZZI")
plt.ylabel("numero iscrizioni annuali per biblioteca")
plt.show()
```


In [6]:

```
#ESERCIZIO 1.4.2. Tracciare un grafico analogo che descriva il numero di adulti che si
iscrivono in biblioteca all'anno.
aia = dati[['Anno','Adulti Iscritti']].dropna().groupby("Anno").sum()
aia.plot.bar()
plt.title("ADULTI")
plt.ylabel("numero iscrizioni annuali per biblioteca")
plt.show()
```


In [7]:

#ESERCIZIO 1.5.1. Calcolare la media, la deviazione standard e il coefficiente di varia
zione del numero di ragazzi
#che si iscrivono in biblioteca all'anno.
print(ria.mean())
print(ria.std())
print(ria.std()/ria.mean())

Ragazzi Iscritti 9759.9224

dtype: float64

Ragazzi Iscritti 1885.754181

dtype: float64

Ragazzi Iscritti 0.193214

dtype: float64

In [8]:

```
#ESERCIZIO 1.5.2. Fare lo stesso per il numero di adulti.
print(aia.mean())
print(aia.std())
print(aia.std()/aia.mean())
```

```
Adulti Iscritti 2670.385333
```

dtype: float64

Adulti Iscritti 1017.060859

dtype: float64

Adulti Iscritti 0.380867

dtype: float64

In [9]:

```
#ESERCIZIO 1.5.3 Confrontare la variabilità del numero di iscrizioni di ragazzi rispett
o a quella di adulti
print("Gli adulti iscritti all'anno sono più dispersi rispetto ai ragazzi iscritti")
```

Gli adulti iscritti all'anno sono più dispersi rispetto ai ragazzi iscritti

In [10]:

```
#ESERCIZIO 2:Concentriamoci sull'anno 2000.
#2.1. Tracciare, possibilmente nella stessa figura, il boxplot del numero di ragazzi ch
e si sono iscritti e del numero di
#adulti che si sono iscritti a una biblioteca rionale di Milano (nell'anno 2000).
plt.subplot(1,2,1)
dati[dati['Anno']==2000]['Ragazzi Iscritti'].plot.box()
plt.subplot(1,2,2)
dati[dati['Anno']==2000]['Adulti Iscritti'].plot.box()
plt.show()
```


Esercizio 2

In [11]:

```
#Esercizio 2.2. Utilizzare il risultato del comando summary per rispondere alle seguent
i domande:
#2.1. nell'anno 2000 quale percentuale (circa) di biblioteche ha avuto più di 300 nuovi
ragazzi iscritti?
mask1 = dati["Anno"]==2000
mask2 = dati["Ragazzi Iscritti"]<300
len(dati[mask1 & mask2]["Biblioteca"].get_values())/len(dati["Biblioteca"].unique())</pre>
```

Out[11]:

In [12]:

#2.2. nell'anno 2000 quale percentuale (circa) di biblioteche ha avuto più di 950 nuovi
iscritti?
mask1 = dati["Anno"]==2000
mask2 = dati["Ragazzi Iscritti"]>300
len(dati[mask1 & mask2]["Biblioteca"].get_values())/len(dati["Biblioteca"].unique())

Out[12]:

0.1232876712328767

Esercizio 3

In [13]:

#Esercizio 3.1 Concentriamoci ora sul servizio Bibliobus. #3.1. Creare una variabile che contiene i soli casi del dataset che si riferiscono alla biblioteca Bibliobus bb = dati[dati['Biblioteca'] == "Bibliobus"]

In [14]:

#3.2 Calcolare la tabella delle frequenze congiunte tra l'anno e il totale di nuovi isc
ritti al Bibliobus.
ann_iscritt = pd.crosstab(index=bb["Anno"],columns=bb["Totale Iscritti"])
ann_iscritt.head()

Out[14]:

Totale Iscritti	1.03	1.094	1.1	1.117	1.13	1.314	1.34	1.345	1.37800000000000001	1.434000
Anno										
1996	0	0	0	1	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0	0	0
1998	0	0	0	0	1	0	0	0	0	0
1999	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0

In [15]:

```
#3.3. Tracciare il grafico di dispersione dei caratteri Anno e Totale.Iscritti.
#Siccome in questo caso i dati sono ordinati per anno crescente, rigenerare il grafico
di dispersione collegando
#ciascun punto al successivo tramite una linea spezzata, al fine di evidenziare una ten
denza.
x = bb["Anno"]
y = bb["Totale Iscritti"]
colors = np.random.rand(100)
plt.scatter(x,y)
plt.plot(x,y) #collegare i puntini!!!
plt.show()
```


In [16]:

```
#3.4. Commentare, anche avvalendosi di strumenti formali, la seguente affermazione:
#"si può notare che nel corso degli anni c'è stato un incremento, seppur modesto, del n
umero di iscrizioni al
#servizio Bibliobus".
ecdf = sm.distributions.ECDF(bb["Totale Iscritti"])
x = bb["Anno"]
y = ecdf(x)
plt.step(x,y)
plt.show()
print("non cresce negli anni")
```


non cresce negli anni

In [17]:

#3.5 Prendiamo ora in considerazione le biblioteche Affori e Quarto Oggiaro.

#In Figura 1 sono mostrati nella parte alta i grafici del numero totale di nuovi utenti in ciascun anno e nella parte

#bassa la funzione cumulativa, che indica quindi il totale degli utenti della bibliotec a in ciascun anno.

#I grafici della parte bassa della figura sono in ordine giusto? Cioè ciascuno corrispo nde al grafico delle frequenze

#soprastante? Giustificate la risposta.

print("Si sono nella giusta corrispondenza. Nel grafico di quarto oggiaro possiamo nota re una forte aumento delle frequenze nell'anno 2002 che si riflette nelle ecdf con un a umento dell'altezza dei gradini")

Si sono nella giusta corrispondenza. Nel grafico di quarto oggiaro possiam o notare una forte aumento delle frequenze nell'anno 2002 che si riflette nelle ecdf con un aumento dell'altezza dei gradini

Esercizio 4

In [18]:

```
#Esercizio 4.1. Tracciare il boxplot oppure l'istogramma (se uno dei due grafici vi sem
bra più rappresentativo) del numero di libri acquisiti in un anno da una biblioteca.
sor = dati[dati['Biblioteca'] == 'Biblioteca Centrale Sormani']
sory = sor[['Anno','Libri Acquistati']].groupby('Anno').sum()
sory.plot.box()
plt.show()
```


In [19]:

#Esercizio 4.2. I grafici del punto precedente rivelano la presenza di alcuni outlier.
#Questi valori sono tutti relativi alla Biblioteca Centrale Sormani.
#Tracciare il boxplot oppure l'istogramma (se uno dei due grafici vi sembra più rappres
entativo) del numero di libri acquisiti in un anno da una biblioteca, escludendo però l
a Biblioteca Centrale Sormani.
no_sor = dati[dati['Biblioteca'] != 'Biblioteca Centrale Sormani']
no_sory = no_sor[['Anno','Libri Acquistati']].groupby('Anno').sum()
no_sory.plot.box()
plt.show()

In [20]:

#Esericizio 4.3.

In [21]:

#Esercizio 4.3.1. Se si esclude la Biblioteca Centrale Sormani si vede che il numero di libri acquisiti annualmente da una biblioteca ha un andamento "a campana": # determinare i parametri di tale distribuzione;

In [22]:

#Esercizio 4.3.2. utilizzare la tecnica del qaplot per controllare se anche il numero d i libri acquisiti annualmente dalla sola Biblioteca Centrale Sormani segue una legge no rmale.

Esercizio 5

5.1.1

$$Var(\overline{X}) = rac{1}{n} Var(X) \ \sqrt{(Var(\overline{X}))} = \sqrt{rac{Var(X)}{n}}$$

5.1.2

$$-rac{100}{rac{1}{\sqrt{n}\sigma}}<rac{\overline{X}-E(X)}{rac{1}{\sqrt{n}}\sigma}<rac{100}{rac{1}{\sqrt{n}\sigma}}$$

$$P(|Z|<rac{100}{rac{1}{\sqrt{n}\sigma}})=0.99$$

Poichè so che σ =90 ottengo:

$$P(|Z|<rac{10\sqrt{n}}{9})=0.99$$

5.1.3 Per il teorema del limite centrale

$$P(Z < rac{10\sqrt{n}}{9}) pprox \Phi(rac{10}{9}\sqrt{n}) - \Phi(-rac{10}{9}\sqrt{n}) = \Phi(rac{10}{9}\sqrt{n}) - (1 - \Phi(rac{10}{9}\sqrt{n})) = 2\Phi(rac{10}{9}\sqrt{n})) -$$

5.2.1

5.2.2

$$n > rac{Var(X)}{\sigma \epsilon^2} = rac{90^2}{0.9*100^2} = ?$$

Settembre 2017

Esercizio 0

0.1 Il valore atteso di A - B è uguale a u - u = 0

0.2

$$Var(A - B) = E[(A - B)^{2}] - E[A - B]^{2}$$
 $Var(A - B) = E[A^{2} - 2AB + B^{2}]$ $Var(A - B) = E[A^{2}] - 2E[AB] + E[B^{2}]$

Perché A e B variabili indipendenti

$$Var(A - B) = E[A^{2}] - 2E[A]E[B] + E[B^{2}]$$
 $Var(A - B) = (E[A^{2}] - u^{2}) + (E[B^{2}] - u^{2})$
 $Var(A - B) = Var(A) + Var(B)$
 $Var(A - B) = 2\sigma^{2}$

0.3 La distribuzione di A - B sarebbe a sua volta una variabile aleatoria normale perché somma di variabili aleatorie normali. I parametri sarebbero: valore atteso 0 e varianza 20^2

0.4

$$T_x = rac{\sum_{i=1}^n (X_i - u)^2}{n}$$

0.5 Lo stimatore è non distorto perché il valore atteso di ogni (Xi -u) è uguale alla varianza di X per definizione:

$$E[(X_i-u)^2] = Var(X) \ E[T_x] = rac{n*Var(X)}{n} = Var(X)$$

0.6

$$Y = A - B$$
 $T_u = 2T_x$

0.7

$$E[T_y] = E[2T_x]$$
 $E[T_y] = 2E[T_x]$ $E[T_y] = 2\sigma^2$

Esercizio 1

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as st

df = pd.read_csv('SF_Park_Scores.csv', sep=',', decimal='.')
df[:5]
```

Out[1]:

	ParkID	PSA	Park	FQ	Score	Facility Type	Facility Name	Address	State	z
0	86	PSA4	Carl Larsen Park	FY05Q3	0.795	Basketball Court	Ocean View Basketball Courts	Capitol & Montana St	CA	9
1	13	PSA4	Junipero Serra Playground	FY05Q3	0.957	Ball Field	Glen ball fields	Diamond & Farnum Street	CA	9
2	9	PSA4	Rolph Nicol Playground	FY05Q3	0.864	Dog Play Area	Douglass dog play area	26th & Douglass Street	CA	9
3	117	PSA2	Alamo Square	FY05Q4	0.857	Restroom	Gilman Bathrooms	Gilman Ave & Griffith	CA	9
4	60	PSA6	Jose Coronado Playground	FY05Q4	0.859	Basketball Court	GGP1 Panhandle Basketball Courts	Stanyan & Great Hwy	CA	9

·

```
In [7]:
```

```
# 1.2
df.describe()
```

Out[7]:

	ParkID	Score	Zipcode	Floor Count	Square Feet	Pei
count	5494.000000	5494.000000	4719.000000	1324.000000	4719.000000	4719.0
mean	32991.238260	0.897962	94117.015469	1.205438	26631.239099	548.79
std	150843.356703	0.117428	7.789351	0.555411	63124.930195	793.5
min	1.000000	0.000000	94102.000000	1.000000	213.120658	60.729
25%	55.000000	0.859000	94112.000000	1.000000	1379.550956	169.1
50%	106.000000	0.931000	94116.000000	1.000000	4241.343735	285.19
75%	154.000000	0.976000	94122.000000	1.000000	10192.913376	513.5
max	957226.000000	1.000000	94134.000000	4.000000	515443.479217	5506.:

In [10]:

```
# 1.5
from statsmodels.distributions.empirical_distribution import ECDF
dist = ECDF(df.Acres.dropna())
plt.plot(dist.x, dist.y)
plt.show()
```


In [11]:

1.6

La metà dei parchi di San Frascisco ha una estensione maggiore di 0.097368 acri

In [12]:

1.7

estensione media: 0.611372 acri

In [13]:

1.8

media e mediana non sono simili, quindi probabilmente la distribuzione non seguir à quindi una legge normale.

il grafico sarà quindi asimmetrico con una coda a destra

In [14]:

1.9

len(df[df.Acres < 50].dropna())</pre>

Out[14]:

1324

Esercizio 2

```
In [15]:

# 2.1

# -122.442014

# 37.755449

# 0.032165^2

# 0.025242^2

In [16]:

# 2.2

#!?
```

```
# 2.3
import statsmodels.api as sm
sm.qqplot(df.Latitude.dropna(), fit=True, line='45')
plt.show()

sm.qqplot(df.Longitude.dropna(), fit=True, line='45')
plt.show()

# I grafici confermano una distribuzione normale dei due caratteri.
# L'ipotesi è oltretutto confermata dai valori di media e mediana
```


In [18]:

2.4

Segue una legge normale perché summa di due variabili aleatorie normali.

Con valore atteso 0 e varianza 20^2 (non convintissimo)

In [19]:

```
# 2.5
df.plot.scatter('Latitude', 'Longitude')
plt.show()
print(df.Latitude.corr(df.Longitude))
```


-0.07568466249043722

In [20]:

2.6

Sia dal grafico molto sparso che dall'indice di correlazione molto vicino a 0 è c hiaro vedere come non ci sia alcuna

dipendenza tra i due caratteri.

In [21]:

2.7 plt.scatter(df.Latitude, df.Acres) plt.show()


```
In [22]:
```

```
# 2.8
parchi = df[(df.Acres < 5) & (df.Latitude < 37.8)]
```

In [23]:

```
# 2.9
parchi['Latitude'].plot.box()
plt.show()

parchi['Longitude'].plot.box()
plt.show()
```


Esercizio 3

$$P(A - B < 0.1)$$

Visto che la Longitudine ha una distribuzione normale, standardizzo

$$P(rac{A-B-u}{std(A-B)} < rac{0.1-u}{std(A-B)})$$
 $P(Z < rac{0.1-u}{std(A-B)})$

In [27]:

```
import math
## per esercizio 0 La var(A - B) = 2var(X)
devstd = math.sqrt(df.Longitude.std()**2 * 2)
x = (0.1)/devstd
norm = st.norm()
norm.cdf(x)
# Potrebbe essere sbagliato
```

Out[27]:

0.9860392741005208

3.2

$$P(|A - B| < 0.1)$$
 $P(-0.1 < A - B < 0.1)$

Visto che la Longitudine ha una distribuzione normale, standardizzo

$$P(-\frac{0.1-u}{std(A-B)} < \frac{A-B-u}{std(A-B)} < \frac{0.1-u}{std(A-B)})$$

$$P(Z < \frac{0.1-u}{std(A-B)}) - P(Z < -\frac{0.1-u}{std(A-B)})$$

In [28]:

```
devstd = math.sqrt(df.Longitude.std()**2 * 2)
x1 = (0.1)/devstd
x2 = - (0.1)/devstd
norm = st.norm()
norm.cdf(x1) - norm.cdf(x2)
```

Out[28]:

Gennaio 2018

Esercizio 0

0.1

La media campionaria è uno stimatore non distorto per μ ? $E(X)=\mu$

$$E(\overline{X}) = rac{1}{n} \sum_{i=1}^n E(X_i) = rac{n}{n} E(X) = E(X)$$

0.2

Grafico delle funzioni di ripartizione?

0.3

$$X \sim Expon(\lambda)$$

$$E(X)=rac{1}{\lambda}$$
 quindi

$$\lambda = \frac{1}{E(X)}$$

0.4

$$Var(X) = \frac{1}{\lambda^2} = E(X)^2$$

Deviazione standard = $\sqrt{\overline{Var(X)}} = E(X)$

0.5

L'esponenziale B ha il parametro con valore più alto perchè per p più alto F_X è maggiore (vedi punto 2)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as st
import numpy as np
import statsmodels.api as sm
from scipy.stats import expon
from scipy.stats import geom
```

Esercizio 1

```
In [2]:
dati = pd.read_csv("astici.csv",delimiter=",",decimal=".")
dati.columns
Out[2]:
Index(['kg.di.pesce', 'settore.di.pesca', 'forza.del.mare', 'peso.astic
e'], dtype='object')
1.1
In [3]:
len(dati)
Out[3]:
281
1.2
In [4]:
len(dati['settore.di.pesca'].unique())
Out[4]:
9
1.3
In [5]:
len(dati[dati['settore.di.pesca'] == 'A'])
Out[5]:
37
```

In [6]:

dati['settore.di.pesca'].value_counts().plot.bar()
plt.show()

1.5

Settore B

1.6

In [7]:

```
p = len(dati[dati['settore.di.pesca'] == "B"])/len(dati)
p * 100
```

Out[7]:

23.843416370106763

In [8]:

```
dati['forza.del.mare'].head()
#CATEGORICO
```

Out[8]:

0 9

1 9

2 9

3 7 4 8

Name: forza.del.mare, dtype: int64

1.8

In [9]:

```
dati['forza.del.mare'].value_counts().sort_index().plot.bar()
plt.show()
```


In [10]:

```
#1.9
ecdf = sm.distributions.ECDF(dati['forza.del.mare'])
x = np.arange(dati['forza.del.mare'].min(), dati['forza.del.mare'].max()+1)
y = ecdf(x)
plt.step(x,y)
plt.show()
```


1.10

In [11]:

```
sm.qqplot(dati['forza.del.mare'],line="45")
plt.show()
```


Il Q-Q Plot è la rappresentazione grafica dei quantili di una distribuzione. Confronta la distribuzione cumulata della variabile osservata con la distribuzione cumulata della normale. Se la variabile osservata presenta una distribuzione normale, i punti di questa distribuzione congiunta si addensano sulla diagonale che va dal basso verso l'alto e da sinistra verso destra. In questo caso i punti non si distribuiscono su questa diagonale e quindi possiamo affermare che non è approssimativamente normale.

1.11

```
In [12]:
dati['forza.del.mare'].mean()
Out[12]:
3.804270462633452
1.12
In [13]:
dati['forza.del.mare'].mode()
Out[13]:
dtype: int64
Il valore della forza del mare riscontrato più spesso è stato il 3.
```

1.13

```
In [14]:
```

```
dati['peso.astice'].head()
#QUANTITATIVO CONTINUO
```

```
Out[14]:
0
     29.9
```

1 29.3 29.9

2

3 29.9

28.4

Name: peso.astice, dtype: float64

In [15]:

```
#1.14 QUANTITATIVO CONTINUO -> HIST?
dati['peso.astice'].plot.hist()
plt.show()
```


1.15

In [16]:

```
#EVIDENZIARE GLI OUTLIER
dati['peso.astice'].plot.box()
plt.show()
```


1.16

In [17]:

```
astici_filtrato = dati[dati['peso.astice'] != dati['peso.astice'].min()]
```

In [18]:

```
print(astici_filtrato['peso.astice'].var(),astici_filtrato['peso.astice'].mean())
```

40.49094930875574 19.354285714285737

1.18

$$P(|X-E(X)|<10) \ 2\Phi(rac{10\sqrt{n}}{\sigma})-1$$

In [19]:

```
import math
n = len(astici_filtrato['peso.astice'])
X = st.norm()
sigma = astici_filtrato['peso.astice'].std()
pi = (10*math.sqrt(n))/sigma
2*X.cdf(pi)-1
```

Out[19]:

1.0

1.19

In [20]:

```
#RELAZIONE TRA peso.astice e forza.del.mare
plt.scatter(dati['peso.astice'],dati['forza.del.mare'])
plt.show()
```


In questo grafico è evidente una relazione tra i due caratteri. La relazione evidenziata è lineare positiva.

In [21]:

```
#RELAZIONE TRA peso.astice e kg.di.pesce.
plt.scatter(dati['peso.astice'],dati['kg.di.pesce'])
plt.show()
```


In questo grafico invece non si evidenzia nessun tipo di relazione tra i duie caratteri in quanto i puntini sono tutti sparsi.

1.20

In [22]:

```
#INDICE CHE INDICA LA RELAZIONE: INDICE DI CORRELAZIONE
dati["peso.astice"].corr(dati["forza.del.mare"])
```

Out[22]:

0.9156381240896676

Esercizio 2

In [23]:

```
#FUNZIONE CUMULATIVA EMPIRICA
ecdf = sm.distributions.ECDF(dati['kg.di.pesce'])
x = np.arange(dati['kg.di.pesce'].min(), dati['kg.di.pesce'].max()+1)
y = ecdf(x)
plt.step(x,y)
plt.show()
```


2.2

```
In [24]:
```

```
dati['kg.di.pesce'].var()/len(dati)
```

Out[24]:

0.346324073964187

```
In [25]:
```

```
dati['kg.di.pesce'].mean()
```

Out[25]:

10.078838086708181

2.3

La media campionaria è sempre uno stimatore non deviato, mentre la varianza bisogna verificare

In [26]:

dati['kg.di.pesce'].hist()
plt.show()

Il grafico appena proposto suggerisce che kg.di.pesce potrebbe distribuirsi come un esponenziale in quanto il grafico approssima molto bene quello della distribuzione esponenziale. Poi sappiamo che nell'aponenziale il valore atteso a le deviazione standard si equivalgono e anche in questo caso se stimo i due valori sono molto vicini tra di loro.

In [27]:

dati["kg.di.pesce"].describe()

Out[27]:

count	281.000000
mean	10.078838
std	9.864941
min	0.020205
25%	2.886564
50%	7.182464
75%	13.533704
max	46.633104

Name: kg.di.pesce, dtype: float64

2.5

$$\lambda = \frac{1}{E(X)}$$

In [28]:

1/(dati["kg.di.pesce"].mean())

Out[28]:

Febbraio 2018

Esercizio 0

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import scipy.stats as st
```

Esercizio 1

1.1

$$D_X = (0, 1)$$

1.2

$$P(X \le 0.5) = (1 - p)$$

1.3

$$Var(X) \leq rac{1}{4}$$

$$Var(X) = p - p^2$$

Facendo lo studio di funzione notiamo che nel max ho $p=\frac12$ quindi nel punto massimo $Var(X)=\frac12-\frac14=\frac14$

1.4

 $\overline{X}=rac{1}{n}\sum X_i$ non distorto per p poichè la media campionaria è sempre uno stimatore non distorto.

$$E[\frac{1}{n}\sum X_i] = \frac{1}{n}\sum E[X_i] = \frac{n}{n}E[X] = E(X) = p$$

1.5

$$P(|T_n-p| \leq \epsilon) \geq 1-\delta \ \delta \geq rac{1}{4n\epsilon^2}$$

Per Chebyshev

$$P(|T_n-p|>\epsilon)\geq rac{Var(T_n)}{\epsilon^2}$$

$$P(|T_n-p|<\epsilon) \leq 1-rac{Var(T_n)}{\epsilon^2}$$

$$1-rac{Var(X)}{\epsilon^2}=1-rac{(1-p)p}{n\epsilon^2}$$
 poichè $Var(T_n)=rac{Var(X)}{n}$

Nel valore max abbiamo dimostrato che $Var(X)=rac{1}{4}$ quindi $=1-rac{1}{4n\epsilon^2}$

Tornando all'espressione iniziale

$$P(|T_n-p|<\epsilon) \leq 1-rac{1}{4n\epsilon^2} \leq 1-\delta$$
 quindi l'espressione è verificata

1.6

Grafico

$$P(|Y - np| \le 1.5)$$

Standardizzo: $Y^* = rac{|Y-np|}{np(1-p)}$

$$\Phi(\frac{1.5}{np(1-p)}) - \Phi(-\frac{1.5}{np(1-p)})$$

$$\Phi(\frac{1.5}{37*0.35(0.65)})) = \Phi(8.4175)$$

Z(np, np)

$$P(|Z-np| \leq 1.5)$$

P(-1.5 + np < Z < 1.5 + np)

$$\Phi(\frac{1.5 + np}{np(1-p)}) - \Phi(\frac{-1.5 + np}{np(1-p)})$$

$$\Phi(\frac{1.5}{37*0.35(0.65)})) = \Phi(8.4175)$$

In [2]:

```
Y = st.norm()
n = 47
sigma = 37*0.35*0.65
y1 = 1.5/sigma
Y.cdf(y1)-Y.cdf(-y1)
```

Out[2]:

0.1414342302202134

In [3]:

```
p=0.35
Z =st.norm()
z1 = (1.5 + (27*0.35))/sigma
Z.cdf(z1)-Z.cdf(-z1)
```

Out[3]:

0.8066940654195229

Esercizio 2

In [4]:

```
pesca = pd.read_csv('pesca.csv', sep=',', decimal='.')
pesca.columns
```

Out[4]:

```
In [5]:
len(pesca['giorno.settimana'].unique())
#print("le giornate lavorative sono 5")
Out[5]:
5
2.2
In [6]:
len(pesca['giorno.settimana'])
Out[6]:
255
2.3
In [7]:
print("frequenza assoluta:")
fr = len(pesca[pesca['tempesta']==1])
print(fr)
print("freq relativa")
print(fr/len(pesca))
frequenza assoluta:
freq relativa
0.3686274509803922
```

In [8]:

```
pesca['tempesta'].value_counts().plot.bar()
plt.show()
```


2.5

In [9]:

```
len(pesca['settore.di.pesca'].unique())
```

Out[9]:

9

2.6

In [10]:

```
fres = pesca["settore.di.pesca"].value_counts(normalize = True)
mask = fres.index == "A"
fres[mask]
```

Out[10]:

```
A 0.145098
```

Name: settore.di.pesca, dtype: float64

2.7

```
In [11]:
```

```
pd.crosstab(pesca["settore.di.pesca"], pesca["tempesta"])
```

Out[11]:

tempesta	0	1
settore.di.pesca		
Α	24	13
В	28	24
С	19	14
D	3	2
E	24	16
F	5	3
G	20	11
Н	8	1
I	30	10

2.8

In [12]:

```
frea = pd.crosstab(pesca["settore.di.pesca"], pesca["tempesta"])
mask = frea.index == "A"
frea[mask]
```

Out[12]:

tempesta	0	1
settore.di.pesca		
Α	24	13

2.9

In [13]:

```
(pesca["tempesta"].mean())
```

Out[13]:

2.10

In [14]:

len(pesca["tempesta"])

Out[14]:

255

2.11

In [15]:

```
setta = pesca[pesca["settore.di.pesca"] == "A"]
setta["tempesta"].mean()
```

Out[15]:

0.35135135135135137

2.12

$$P(A|T=1)=rac{P(A\cap T=1)}{P(T=1)}$$

In [16]:

setta["tempesta"].mean()/pesca['tempesta'].mean()

Out[16]:

0.9531339850488787

2.13

In [17]:

len(setta.dropna())

Out[17]:

37

2.14

n = 37

$$P(|p_{TA}-p| \leq 0.1) > 1 - rac{Var(X)}{n*(0.1)^2}$$

Per il punto precedente so che n = 37

In [18]:

```
pta = setta["tempesta"].mean()
var = setta["tempesta"].var()
1-(var/(37*(0.1)**2))
```

Out[18]:

0.36693450206963685

Esercizio 3

3.1

In [19]:

```
pesca['peso.pescato']
print("continuo")
```

continuo

3.2

In [20]:

```
pesca['peso.pescato'].hist()
plt.show()
```



```
In [21]:
mask1 = pesca['peso.pescato'] > 10
mask2 = pesca['peso.pescato'] < 15</pre>
pp = pesca[mask1 & mask2]
len(pp['giorno.settimana'])/len(pesca['giorno.settimana']) * 100
Out[21]:
37.64705882352941
3.4
In [22]:
print(pesca["peso.pescato"].var())
print(pesca["peso.pescato"].mean())
16.09024449815005
10.788632531936003
3.5
In [23]:
from scipy.stats import norm
X = norm(loc = 10.78, scale = 4)
z = X.cdf(10)
y = X.cdf(15)
y-z
Out[23]:
0.431590863816581
3.6
In [24]:
```

print("Si possono confrontare perchè 3.5 è un approssimazione")

Si possono confrontare perchè 3.5 è un approssimazione

In [25]:

```
plt.scatter(pesca['forza.del.mare'],pesca['tempesta'])
plt.show()
```


3.9

In [26]:

```
print("tra [0,4] non ho tempesta, poi si")
```

tra [0,4] non ho tempesta, poi si

3.10

No

In [27]:

```
pesca['forza.del.mare'].corr(pesca['tempesta'])
```

Out[27]:

0.8412359096077446

In [28]:

```
dati_senza_NA = pesca.dropna()
dati_senza_NA["peso.pescato"].std()/dati_senza_NA["peso.pescato"].mean()
```

Out[28]:

Giugno 2018

In [1]:

```
import pandas as pd
import numpy as np
import math
import scipy.stats as st
import matplotlib.pyplot as plt
```

Esercizio 0

 q_1, q_2, q_3 primo, secondo e terzo quartile

0.1 ¶

Quanto vale $P(X \geq q_2)$? 50\% per definizione di quartile quindi la probabilità è 0,5.

0.2

Quanto vale $P(q_1 \leq X \leq q_3)$? primo e terzo sono 25\% e 75\% quindi 0.5

$$X \sim Z(\mu, \sigma^2)$$

0.3.1
$$P(|X - \mu| \leq lpha \cdot \sigma) = 0.5$$
 determinare $lpha$

$$P(|Z| \le \alpha) = 0.5$$

$$2\Phi(\alpha) - 1 = 0.5$$

$$\Phi(lpha)=0.75$$

$$lpha = \Phi^- 1 (0.75)$$

In [2]:

```
X = st.norm()
# X.cdf(a) = 0.75
X.ppf(0.75)
```

Out[2]:

0.6744897501960817

0.3.2

 q_1, q_2 in funzione dei parametri di X

$$P(X < x) = 0.25 \; P(Z < rac{x-\mu}{\sigma})$$

0.3.3

```
In [3]:
```

```
mu =1
sigma = 1
Z = st.norm(mu,sigma)
```

0.3.4

```
P(|X-\mu|<2\sigma)=0.95
```

In [4]:

```
X = st.norm()
X.cdf(2) - X.cdf(-2)
```

Out[4]:

0.9544997361036416

Esercizio 1

```
In [5]:
```

```
cani = pd.read_csv('cani.csv', delimiter=";",decimal=",")
cani.columns
```

```
Out[5]:
```

1.1

In [6]:

```
len(cani)
```

Out[6]:

161

In [7]:

```
caniIP = cani[cani['IP'] == "SI"]
len(caniIP)
```

Out[7]:

58

1.3.1

In [8]:

```
età = cani['EtaAnni']
bins = np.arange(0,età.max(),1)
età.hist(bins = np.hstack(bins))
plt.show()
```


1.3.2

In [9]:

```
print(età.min(),età.mean(),età.var(),età.max())
```

1.22 12.124658385093174 6.905200038819876 16.84

1.3.3

In [10]:

```
mask1 = età < 13
mask2 = età >= 12
len(età[ mask1 & mask2])
```

Out[10]:

32

1.3.4

```
In [11]:
età.max()
Out[11]:
16.84
1.3.5
In [12]:
età.mode()
Out[12]:
0
     14.25
1
     14.73
dtype: float64
1.4.1
In [13]:
len(cani[cani['MORTE'] == 1])
Out[13]:
118
1.4.2
In [14]:
cani[cani.MORTE == 1].MC.isna().value_counts()
Out[14]:
False
         115
True
Name: MC, dtype: int64
1.4.3
In [15]:
mask1 = cani.MORTE == 0
mask2 = cani.MC == 1
len(cani[mask1 & mask2])
Out[15]:
0
```

1.4.4

```
In [16]:
len(cani[cani.MC == 1])
Out[16]:
87
1.4.4
In [17]:
morti = cani[cani.MORTE == 1]
len(morti[morti.MC == 1])/len(morti)
Out[17]:
0.7372881355932204
1.5.1
In [18]:
gip = cani.GravitaIP
print('ordinale')
ordinale
1.5.2
In [19]:
gip.unique()
Out[19]:
array([0, 1, 2, 3], dtype=int64)
```

1.5.4

In [20]:

fgip = pd.crosstab(index=gip,colnames=[''],columns=['Frequenza Relativa'],normalize=Tru
e)
fgip

Out[20]:

	Frequenza Relativa
GravitalP	
0	0.639752
1	0.180124
2	0.111801
3	0.068323

1.5.4

In [21]:

```
fgip.plot.bar()
plt.show()
```


Esercizio 2

In [22]:

```
surv = cani.SURVIVALTIME
bins = np.arange(0,surv.max(),120)
surv.hist(bins = np.hstack(bins))
plt.show()
surv.value_counts(normalize=True).sort_index().cumsum().plot()
plt.show()
```


2.2

In [23]:

surv.mean()

Out[23]:

459.888198757764

$$T_n = \sum_{i=1}^n rac{X_i}{n}$$

2.4

Non è distorto in quanto la media campionaria, che è lo stimatore utilizzato non è mai distorto rispetto al valore atteso.

$$E(T_n)=E(rac{1}{n}\sum X_i)=rac{1}{n}\sum E(X_i)=rac{1}{n}nE(X)=E(X)$$

2.5

$$Var(T_n) = rac{Var(X)}{n} \ \sigma(T_n) = \sqrt{rac{Var(X)}{n}} = rac{\sigma}{\sqrt{n}}$$

2.6

In [24]:

surv.std()

Out[24]:

467.1967063479367

2.7

$$P(|T_n - E(X)| < 60) = 0.9$$
 $2\Phi(\frac{60\sqrt{n}}{\sigma}) - 1 = 0.9$ $\Phi(\dots) = 0.95$ $\sqrt{n} = \frac{\Phi^{-1}(0.95)\sigma}{60}$

In [25]:

```
X = st.norm()
n = ((X.ppf(0.95)* surv.std())/60)**2
n
```

Out[25]:

164.04067877198327

2.8

Dall'esercizio precedente possiamo affermare che la nostra taglia non è sufficiente.

In [26]:				
len(surv)				
Out[26]:				
161				
2.9				
- [0-1				
In [27]:				
(surv/365).mean()				
Out[27]:				
1.2599676678294895				
2.10				
E' non distorto perchè la media campionaria è sempre uno stimatore non distorto				
2.11				
In [28]:				
surv.mean()/365				
Out[28]:				
1.2599676678294904				

Esercizio 3

3.1

Sono strettamente dipendenti. Vedi il grafico e il valore tendente a 1 dell'indice di correlazione

In [29]:

```
EDVI = cani.EDVI
Allodiast = cani.Allodiast
plt.scatter(EDVI,Allodiast)
plt.show()
EDVI.corr(Allodiast)
```


Out[29]:

0.9073039817753574

3.2

Guardando l'istogramma e i valori di media e mediana simili posso affermare che segue una legge normale

In [30]:

Allodiast.hist() plt.show()

In [31]:

Allodiast.describe()

Out[31]:

count	161.000000
mean	2.013354
std	0.279596
min	1.050000
25%	1.850000
50%	2.000000
75%	2.180000
max	2.600000

Name: Allodiast, dtype: float64

In [32]:

3.3

In [33]:

```
print(Allodiast.mean(),Allodiast.median())
```

2.0133540372670815 2.0

Luglio 2018

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import scipy.stats as st
```

Esercizio 0

0.1

1B -> 2A normale, 1A -> 2B esponenziale

0.2

Il valore atteso minore è b, poichè è l'area sopra la curva.

0.3

Il valore 2:

- (X) 70esimo p
- (Y) 20p

0.4

cinquantesimo percentile:

- (X,a) 1
- (Y,b) 3

0.5

$$P(2 \le X \le 5) = F_X(5) - F_X(2) = 1 - 0.8 = 0.2$$
 $P(2 \le Y \le 5) = F_Y(5) - F_Y(2) = 0.8 - 0.2$

0.6

La mediana è minore della media.

Esercizio 1

$$X \sim Exp(
u)$$

1)
$$f_X(x) =
u e^{-
u x}$$

2)
$$E(X)=rac{1}{
u}$$
 = deviazione standard

3)
$$T_n = \overline{X}$$
, $E(T_n) = \frac{1}{n} E(\sum X_i) = \frac{1}{n} \sum E(X_i) = \frac{1}{n} n \frac{1}{\nu} = \frac{1}{\nu}$

4) Poichè $rac{1}{
u}$ è il valore atteso di x allora avremo $u=rac{1}{E(X)}$ quindi

$$\frac{1}{T_n} = R_n$$

Esercizio 2

```
In [2]:
```

```
cani = pd.read_csv("cani.csv",delimiter=";",decimal=",")
cani.columns
```

Out[2]:

2.1.1

In [3]:

```
ar = pd.crosstab(index=cani['Antiaritmico'],columns=["Abs. Freq."],colnames=[''])
ar
```

Out[3]:

	Abs. Freq.
Antiaritmico	
NO	150
SI	11

2.1.2

```
In [4]:
```

```
len(cani[cani['Antiaritmico'] == 'SI'])
```

Out[4]:

11

2.1.3

In [5]:

Si == 1, NO == 0

2.1.4

In [6]:

pd.crosstab(index=cani['Antiaritmico'],columns=cani['MC'],colnames=['Cani Morti Cardiac
i'])

Out[6]:

Cani Morti Cardiaci	0.0	1.0
Antiaritmico		
NO	28	78
SI	0	9

2.1.5

In [7]:

```
len(cani.MC[cani.Antiaritmico == 'SI'])*100/len(cani.MC)
```

Out[7]:

6.832298136645963

2.2.1

In [8]:

```
cani['SURVIVALTIME'].plot.box()
plt.show()
```


2.2.2

In [9]:

```
cani['SURVIVALTIME'].quantile(0.25),cani['SURVIVALTIME'].quantile(0.75)
canibox= cani[(cani['SURVIVALTIME']>=113)&(cani['SURVIVALTIME']<=711)]
print("I cani rappresentati dal quadrato all'interno del box plot sono : {}".format(len (canibox)))</pre>
```

I cani rappresentati dal quadrato all'interno del box plot sono : 81

2.2.3

In [10]:

cani['SURVIVALTIME'].hist()
plt.show()

2.2.4

In [11]:

print("Come si può vedere dal grafico si può supporre un modello esponenziale. Inoltre solitamente il modello esponenziale viene usato per descrivere il tempo di vita di un fenomeno")

Come si può vedere dal grafico si può supporre un modello esponenziale. In oltre solitamente il modello esponenziale viene usato per descrivere il te mpo di vita di un fenomeno

2.2.5

In [12]:

cani['SURVIVALTIME'].mean()

Out[12]:

2.2.6

```
In [13]:
```

```
cani['SURVIVALTIME'].std()
```

Out[13]:

467.1967063479367

2.2.7

In [14]:

```
print("Esponenziale: 1/valore atteso -> 1/(cani['SURVIVALTIME'].mean() cioè {}".format(
1/(cani['SURVIVALTIME'].mean())))
```

Esponenziale: 1/valore atteso -> 1/(cani['SURVIVALTIME'].mean() cioè 0.002 1744415331838686

Esercizio 3

In [15]:

```
canimorti = cani[cani['MORTE'] == 1]
canimortinna = canimorti.dropna(axis=0,subset=['MC'])
canimortinna = canimorti.dropna(axis=0,subset=['OndaEA'])
```

3.1

In [16]:

```
#1
canimortinna['OndaEA'].head()
print("Scalare")
```

Scalare

In [17]:

canimortinna['OndaEA'].plot.box()

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fb747c0828>

3.3

In [18]:

max(canimortinna['OndaEA'])

Out[18]:

4.19

3.4

In [19]:

```
#4
canimortinna[canimortinna['OndaEA'] == 4.19]['MC']
print("Si è morto per cause cardiache")
```

Si è morto per cause cardiache

```
In [20]:
#5
s = canimortinna[canimortinna['MC'] == 0]['OndaEA'].quantile(0.75)
s
Out[20]:
1.41
3.6
In [21]:
#6
mask1 = canimortinna['MORTE'] == 1
mask2 = canimortinna['MC'] == 0
mask3 = canimortinna['MC'] == 1
print("I cani morti per cause cardiache sono: {}".format(len(canimortinna[mask1 & mask3
])))
print("I cani morti per cause non cardiache sono: {}".format(len(canimortinna[mask1 & m
ask2])))
I cani morti per cause cardiache sono: 66
I cani morti per cause non cardiache sono: 17
3.7
In [22]:
#7
mask4 = canimortinna['OndaEA'] >= s
mask5 = canimortinna['OndaEA'] < s</pre>
print(">= : {}".format(len(canimortinna[mask1 & mask3 & mask4])))
print("< :{}".format(len(canimortinna[mask1 & mask2 & mask5])))</pre>
>= : 41
< :12
In [23]:
print('Cani morti per altre cause con valore di OndaEA >=s\nFalso Positivo : {}\nCani m
orti per cause cardiache con valore di OndaEA < s\nFalso Negativo : {}'.format(len(cani
mortinna[mask1 & mask2 & mask4]),len(canimortinna[mask1 & mask3 & mask5])))
Cani morti per altre cause con valore di OndaEA >=s
Falso Positivo : 5
Cani morti per cause cardiache con valore di OndaEA < s
Falso Negativo : 25
```

In [24]:

Sensibilità : 0.62121212121212 Specificità : 0.7058823529411765

In [2]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import scipy.stats as st
```

Settembre 2018

Esercizio 0

```
1) X \sim Bern(p) con p \in (0,1)
```

2) Var(X) = p(1-p) quindi $dvstd = \sqrt{p(1-p)}$

3)
$$k \in N, Y \sim Bin(k,p)$$

$$P(X=n)=inom{k}{n}p^n(1-p)^{k-n}$$

4) k = 50, p = 0.5

In [3]:

```
Y=st.binom(50,0.5)
x=np.arange(0,50)
plt.vlines(x,0,Y.pmf(x))
plt.plot(x,Y.pmf(x),'o')
plt.show()
```


5) Definizione Stimatore

6)
$$E(X)=p$$
, $T_n=\overline{X}$

$$E(T_n) = E(\sum \frac{X_i}{n}) = \frac{1}{n} E(\sum X_i) = \frac{1}{n} \sum E(X_i) = \frac{n}{n} E(X) = p$$

7)
$$n \geq 1$$

Dimostrare che $P(-\epsilon < T_n - p < \epsilon) pprox 2\Phi(\epsilon rac{\sqrt{n}}{\sigma}) - 1$

Standardizzo: $P(|T_n-p|<\epsilon)$ lo divido per la deviazione standard di T_n cioè $\sqrt{rac{1}{n}\sigma^2}$ e ottengo

$$P(|Z|<rac{\epsilon\sqrt{n}}{\sigma})$$

Applico il teorema del limite centrale:

$$P(|Z|<rac{\epsilon\sqrt{n}}{\sigma})pprox \Phi(rac{\epsilon\sqrt{n}}{\sigma})-\Phi(-rac{\epsilon\sqrt{n}}{\sigma})=\Phi(rac{\epsilon\sqrt{n}}{\sigma})-(1-\Phi(rac{\epsilon\sqrt{n}}{\sigma}))=2\Phi(rac{\epsilon\sqrt{n}}{\sigma})-1$$

Esercizio 1

In [4]:

```
fin = pd.read_csv("finanziamenti.csv",delimiter=";",decimal=",")
fin.columns
```

Out[4]:

In [5]:

```
#1
fin['CodiceCategoria']
print("Valore nominale in quanto indica un codice")
```

Valore nominale in quanto indica un codice

In [6]:

```
#2
finu = pd.crosstab(index=fin['UNITA'],columns=['Abs. Freq.'],colnames=[''])
finu
```

Out[6]:

	Abs. Freq.
UNITA	
ASSISI	243
CASCIA	13
CASTIGLIONE DEL L	75
CHIUSI	30
CITTA DI CASTELLO	288
CORTONA	1
FOLIGNO	449
GUALDO TADINO	75
GUBBIO	76
NORCIA	28
ORVIETO	60
PERUGIA	1005
SLL MULTIPLO	5
SLL NON ATTRIBUIBILE	255
SPOLETO	186
TERNI	638
TODI	117
UMBERTIDE	124

In [10]:

```
#3
finu.plot.bar()
plt.show()
```


In [25]:

```
#4 vedi foglio
```

In [27]:

```
#5
progetti_a=fin[fin['FinProvincia']<(fin['FinRegione'])]
progetti_b=fin[fin['FinProvincia']>=(fin['FinRegione'])]
```

In [34]:

```
print("A: {}".format(len(progetti_a)))
print("B: {}".format(len(progetti_b)))
```

A: 368 B: 3284

In [36]:

```
#6.1
mask = progetti_a['FinProvincia'] >= 200
mask1 = progetti_a['FinProvincia'] < 1000
selezione_progetti_a = progetti_a[mask & mask1]</pre>
```

In [39]:

```
#6.2
bins=np.arange(0,1001,100)
selezione_progetti_a['FinProvincia'].hist(bins = bins)
plt.show()
```


In [40]:

In [41]:

#6.4 print("Tra i due grafici ritengo che l'istogramma sia più informativo in quanto, nonost ante nel box plot possiamo trarre un sacco di informazioni non rileviamo la più importa nte : il carattere è suddiviso in due gruppi che sembrerebbero seguire una distribuzion e normale 'BIMODALE'")

Tra i due grafici ritengo che l'istogramma sia più informativo in quanto, nonostante nel box plot possiamo trarre un sacco di informazioni non rilev iamo la più importante : il carattere è suddiviso in due gruppi che sembre rebbero seguire una distribuzione normale 'BIMODALE'

```
In [42]:
```

```
#6.5
selezione_progetti_a['FinProvincia'].mean()
```

Out[42]:

636.9052631578948

In [43]:

```
selezione_progetti_a['FinProvincia'].std()
```

Out[43]:

264.80233322588253

In [47]:

```
#6.6
print("Nessuno vedi grafico")
```

Nessuno vedi grafico

In [52]:

```
#6.7
print(selezione_progetti_a['FinProvincia'].corr(selezione_progetti_a['TotSpese']))
selezione_progetti_a.plot.scatter('FinProvincia','TotSpese')
plt.show()
```



```
In [53]:
```

```
#6.8
selezione_progetti_a_noutliers=selezione_progetti_a[selezione_progetti_a['TotSpese']>20
00]
selezione_progetti_a_noutliers.plot.scatter('FinProvincia','TotSpese')
plt.show()
```


Esercizio 2

```
In [54]:
#1
len(fin)-len(fin.dropna(axis=0,subset=['TotSpese']))
Out[54]:
1134
In [56]:
#2
Z=st.norm()
dev=fin['TotSpese'].std()
(Z.ppf(1.95/2)*(len(fin))**0.5)/dev,(Z.ppf(1.95/2)*dev)/len(fin)**0.5
Out[56]:
(0.0005678277621445123, 6765.183171365392)
In [57]:
#3
```

<pre>#4 print("Normale") Normale In [59]: #5</pre>
In [59]:
#5
In [60]:
#6
In [61]:
#7
In [62]:
#8

In [1]:

import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import numpy as np
import scipy.stats as st

Gennaio 2019

Esercizio 0

$$X \in (-1,1) ext{ con P(X = 1) = p}$$

0.1

$$1 - P(X = 1) = P(X = -1) = 1 - p$$

0.2

$$E(X) = \sum x_i P(X=x_i) = p + (-1)(1-p) = 2p-1$$

0.3

$$p=rac{E(X)}{2}+1$$

0.4

$$Y = g(x) = X^2 = 1$$

sia per X=1 che per X=-1

0.5

$$E(Y) = E(g(X)) = E(X^2) = \sum g(X_i) P(X = X_i) = p+1-p=1$$

0.6

$$egin{split} Var(X) &= E(X^2) - E(X)^2 = E(Y) - E(X)^2 = 1 - (2p-1)^2 = 1 - (4p^2 + 1 - 4p) \ &= 4p - 4p^2 = \ &4p(1-p) \end{split}$$

0.7

h:R o R tale che sia una bernoulliana.

$$Z=h(X)=rac{X+1}{2}$$

In [2]:

```
# grafico f_x,F_x,f_z,F_z
y = st.bernoulli(0.7)
x = np.arange(-1,2)
plt.vlines(x,0,y.pmf(x))
plt.show()
```


Esercizio 1

1.1

$$E(\overline{X}) = E(X) = 2p - 1$$

1.2-1.3

$$Var(\overline{X}) = rac{1}{n} Var(X) = rac{4p(1-p)}{n}$$

2

 $T_n=rac{1+\overline{X}}{2}$ dimostrare che non è distorto per p

$$E(rac{1+\overline{X}}{2}) = E(rac{1}{2} + rac{1}{2}\sumrac{X_i}{n}) = rac{1}{2} + rac{1}{2n}\sum E(X_i) = rac{1}{2} + rac{n}{2n}E(X) = rac{1}{2} + rac{n}{2n}E(X) = rac{1}{2} + rac{n}{2n}E(X) = rac{1}{2}$$

3

$$P(|T_n - p| \le 0.05)$$

Standardizzo

$$P(rac{|T_n-2p\sqrt{n}|}{\sigma} \leq rac{2*0.05\sqrt{n}}{\sigma}) = P(|Z| \leq rac{0.1\sqrt{n}}{\sigma}) pprox \Phi(rac{0.1\sqrt{n}}{\sigma}) - \Phi(-rac{0.1\sqrt{n}}{\sigma}) = 2\Phi(rac{0.1\sqrt{n}}{\sigma}) - 1$$

Esercizio 2

 $G \sim Exp(
u)$

2.1

$$D_X=[0,\infty)$$

2.2

$$f_G =
u e^{-nux}$$

In [3]:

```
nu = 0.1
y = st.expon(nu)
x = np.arange(y.ppf(0.01),y.ppf(0.99))
plt.plot(x,y.pdf(x))
plt.show()
```


2.4

$$\sqrt(Var(G)) = \frac{1}{\nu} = E(X)$$

2.5

$$E(G) = 10$$

figura a poichè l'area sopra la curva è maggiore.

In [4]:

```
car = pd.read_csv("carsharing.csv",delimiter=";",decimal=",")
car.columns
```

Out[4]:

Esercizio 3

3.1

In [25]:

```
len(car)
```

Out[25]:

392

3.2.1

```
In [6]:
print("Qualitativo ORDINALE: {}".format(car['TimeFrame'].unique()))
Qualitativo ORDINALE: ['FRAME D' 'FRAME B' 'FRAME C' 'FRAME E' 'FRAME A']
3.2.2
In [7]:
len(car['TimeFrame'].unique())
Out[7]:
5
3.2.3
In [8]:
car['TimeFrame'].value_counts().sort_values().tail(2)
#pd.crosstab(index=car['TimeFrame'].sort_values(),columns=['Abs. Freq.'],colnames=[''])
Out[8]:
FRAME C
           107
FRAME B
           123
Name: TimeFrame, dtype: int64
3.2.4
In [9]:
pd.crosstab(index=car['TimeFrame'],columns=car['RushHour'],colnames=['Rush Hour'])
Out[9]:
```

Rush Hour	0	1
TimeFrame		
FRAME A	47	0
FRAME B	0	123
FRAME C	107	0
FRAME D	0	94
FRAME E	21	0

```
In [10]:
```

```
print("FRAME B e poi FRAME D")
```

FRAME B e poi FRAME D

3.3.1

In [26]:

```
carP = car[car['PremiumCustomer'] == 1]
len(carP)
```

Out[26]:

227

3.3.2

In [27]:

```
carP['Distance'].mean()
```

Out[27]:

8.437444933920705

3.3.3

In [28]:

car.PremiumCustomer.mean()

Out[28]:

0.15816326530612246

3.3.4

Media campionaria

3.3.5

$$P(|Tn-E(X)| < 0.05) < 1 - rac{Var(X)}{n*(0.05)^2}$$

Non so

In [31]:

```
1-(car.PremiumCustomer.std()/((0.05**2)*len(car.PremiumCustomer)))
```

Out[31]:

-0.00885188191255537

3.4.1

In [15]:

```
car['Distance'].plot.box()
plt.show()
```


3.4.2

In [16]:

```
car['Distance'].describe()
```

Out[16]:

count	392.000000
mean	7.858673
std	6.805123
min	0.100000
25%	1.575000
50%	5.750000
75%	14.025000
max	24.000000

Name: Distance, dtype: float64

In [17]:

```
print('Indice di Centralità = Mediana: {}\nIndice di Dispersione = Range Interquartile
    : {}'.format(car['Distance'].quantile(0.5),(car['Distance'].quantile(0.75)-car['Distance'].quantile(0.25))))
```

```
Indice di Centralità = Mediana: 5.75
Indice di Dispersione = Range Interquartile : 12.45
```

3.4.3

In [18]:

```
car.plot.scatter('Distance','Time')
plt.show()
print("Due Andamenti differenti. No relazione")
```


Due Andamenti differenti. No relazione

3.4.2

In [19]:

print("L'indice di correlazione {} conferma il fatto che non vi è una relazine di alcun tipo".format(car['Distance'].corr(car['Time'])))

L'indice di correlazione 0.6273992247694647 conferma il fatto che non vi è una relazine di alcun tipo

3.5.1

In [20]:

```
carD = car[car['RushHour'] == 1]['Distance']
plt.figure(figsize=[20,10])
plt.subplot(1,2,1)
carD.hist()
plt.subplot(1,2,2)
carD.plot.box(vert=False,whis='range')
plt.show()
```


3.5.2

In [21]:

print("No in quanto l'istogramma mostra che segueuna distribuzione esponenziale")

No in quanto l'istogramma mostra che segueuna distribuzione esponenziale

3.5.3

In [22]:

```
print(carD.mean())
print(carD.std())
```

- 3.3193548387096796
- 3.711106147915895

3.5.4

In [23]:

print("Esponenziale")

Esponenziale

3.5.5

In [24]:

print("Si perchè sono molto simili")

Si perchè sono molto simili

Febbraio 2019

Esercizio 0

Conosco P(A),P(B),P(A|B)

1)

$$P(B|A) = rac{P(A|B)P(B)}{P(A)}$$

$$X\sim (0,1)$$
 , $P(X=1)=p$

2.1)

$$E(X)=p\$,\$\sigma=\sqrt{p(1-p)}$$

2.2)

$$0.3=\sqrt{p-p^2}$$

$$0.09 = p - p^2$$

$$+p^2-p+rac{9}{100}=0$$

$$(p-rac{9}{10})(p-rac{1}{10})=0=>p=0.9||p=0.1$$

2.3)

$$F^{-1}(std(X))=\frac{-2p+1}{2\sqrt{p-p^2}}$$

$$-2p + 1 = 0$$

$$p = 0.5$$

$$2.4) p = 0.45$$

Esercizio 1

 \overline{X}

1.1)
$$orall X_i = 0$$
 avrò

$$\sum \frac{X_i}{n} = 0$$

1.2)
$$orall X_{1,2}=1$$
 avrò

$$\sum rac{X_i}{n} = rac{2}{n}$$

1.3)
$$orall X_i=1$$
 avrò

$$\sum rac{X_i}{n} = 1$$

2)

$$\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$$

3) è uno stimatore non distorto di p perchè la media campionaria è sempre iuno stimatore non distorto del valore atteso

$$E(\overline{X}) = E(\sum \frac{X_i}{n}) = \frac{1}{n} \sum E(X) = \frac{1}{n} n E(X) = E(X) = p$$

4)
$$n >> 1$$
 dimostrare che $P(|ar{(}X) - p| \leq \epsilon) \geq 2\Phi(2\epsilon\sqrt{n}) - 1$

Standardizzo
$$P(|Z| \leq rac{\epsilon \sqrt{n}}{\sigma}) pprox 2\Phi(rac{\sqrt{n}\epsilon}{\sigma}) - 1$$

Poichè $Var(X) \leq rac{1}{4}$ allora la deviazione standard sarà max $rac{1}{2}$ quindi avrò

$$2\Phi(2\sqrt{n}\epsilon)-1$$

In [1]:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import statsmodels.api as sm

import scipy.stats as st

In [2]:

```
car = pd.read_csv("carsharing.csv",delimiter=";",decimal=",")
car[:5]
```

Out[2]:

	Carldentifier	TimeFrame	RushHour	PremiumCustomer	Distance	Time
0	102	FRAME D	1	1	3.0	7.9
1	103	FRAME D	1	1	5.3	13.9
2	105	FRAME D	1	-1	0.4	4.1
3	110	FRAME D	1	1	2.8	5.0
4	110	FRAME B	1	-1	2.7	5.6

Esercizio 2

In [3]:

```
#2.1
print("Scalare: {}".format(car['Distance'].unique()))
```

```
Scalare: [ 3.
            5.3 0.4 2.8 2.7 11.8 9.3 7. 4. 13.1 0.8 3.5 13.4
0.1
      1.2 18.5 0.9 6.8 1.9 10.3 17.6 1.6 2.2 2.3 14.
                                                       0.2 0.3
 1.8 12. 6.3 18. 17.4 10.9 15.8 2.1 11.4 0.5 17.1 7.3 19.6 12.2
               7.1 12.1 1.5 16.6 1.7 16.5 0.6 15.1 14.8 15.7 13.
13.5 21. 23.
14.6 4.7 4.2 17.2 16.7 3.1 19.
                                 8.2 1.3 14.9 7.8 5.2 14.4 3.4
                            3.8 11.3 2.6 4.4 14.7 18.4 18.2 6.1
                   0.7 5.7
 7.4 12.4 13.3 20.
 6.6 19.7 3.7 10.6 3.2 13.9 11.6 5.6 15.6 16.3 3.3 7.2 16.1 7.6
                        4.9 8.8 9.7 19.4 15.4 9.4 8.4 1.1 18.8
 2. 19.1 17.8 16. 17.
19.9 7.9 8.1 13.7 11.7 5.8 17.7 12.6 10. 15.9 8.
                                                   8.9 14.3 10.1
17.5 14.1 8.7 18.3 6.2 19.3 9.1 10.4 9.8 12.5 6.4 16.2 3.6 5.4
12.8 5.1 1.4 22.
                   8.5 9. 12.9 24. 10.8 3.9 9.6 8.6 15.2 5.
16.8 4.1 5.9 2.5 7.5 13.2 10.2 15.5 11.9 18.7 7.7 14.5 18.6]
```

In [19]:

```
#2.2
carP = car[car['RushHour'] == 1]['Distance']
carNP = car[car['RushHour'] == 0]['Distance']
plt.boxplot([carP,carNP], labels=['Rush','No Rush'])
plt.show()
```


2.3

Negli orari di punta sono privilegiati gli spostamenti brevi come si può notare dal 3° quartile < 5km, al contrario per gli orari non di punta dove il 75% degli spostamenti supera i 10km

In [6]:

```
#4
print(carNP.mean())
print(carP.mean())
print("Possiamo dire che la distanza è maggiore nelle ore non di punta e che quindi abb
iamo una fascia breve di ore di punta, una grande di ore non di punta")
```

13.487428571428563

3.3193548387096796

Possiamo dire che la distanza è maggiore nelle ore non di punta e che quin di abbiamo una fascia breve di ore di punta, una grande di ore non di punt a

Esercizio 3

In [20]:

```
#3.1
tragittibrevi = car[car['Distance'] < 1.5]</pre>
```

In [21]:

```
#3.2
plt.scatter(tragittibrevi['Distance'], tragittibrevi['Time'])
plt.show()
```


In [22]:

#3.3
print('Sia dal gragico che dal valore del coefficiente di correlazione {}, possiamo con
fermare che non vi è alcuna relazione tra i due valori presi in considerazione'.format(
tragittibrevi['Distance'].corr(tragittibrevi['Time'])))

Sia dal gragico che dal valore del coefficiente di correlazione 0.03691131 525657363, possiamo confermare che non vi è alcuna relazione tra i due val ori presi in considerazione

Esercizio 4

In [23]:

```
#4.1
plt.subplot(1,2,1)
carNP.hist(bins=20)
plt.subplot(1,2,2)
carNP.plot.box()
plt.show()
```


In [26]:

```
# 4.2
sm.qqplot(carNP, fit=True, line='45')
plt.show()
print(carNP.mean(), carNP.median())
print("Il grafico quasi sovrapposto alla bisettrice e la vicinanza tra media e mediana
fanno intuire un comportamento normale")
```


13.487428571428563 14.4

Il grafico quasi sovrapposto alla bisettrice e la vicinanza tra media e me diana fanno intuire un comportamento normale

In [11]:

print('Media : {}\nMediana : {}\nSia dal grafico che dal valore della Media e Mediana p
ossiamo dire che la Distanza negli orari non di punta segue un andamento approssimativa
mente normale con coda a sinistra'.format(carNP.mean(),carNP.quantile(0.5)))

Media: 13.487428571428563

Mediana : 14.4

Sia dal grafico che dal valore della Media e Mediana possiamo dire che la Distanza negli orari non di punta segue un andamento approssimativamente n ormale con coda a sinistra

Esercizio 5

In [27]:

```
#5.1
len(car[car['RushHour'] == 1])/len(car)
car['RushHour'].mean()
```

Out[27]:

```
In [13]:
```

```
#5.2
print("Media campionaria")
```

Media

In [28]:

```
#5.3
campione = len(car.dropna())
campione
```

Out[28]:

392

5.4

$$\begin{split} P(|\bar{X_n} - \mu| <= 0.025) \\ P(-0.025 <= \bar{X_n} - \mu <= 0.025) \\ P(-\frac{0.025}{\frac{\sigma}{\sqrt{n}}} <= \frac{\bar{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} <= \frac{0.025}{\frac{\sigma}{\sqrt{n}}}) \\ P(-\frac{0.025}{\frac{\sigma}{\sqrt{n}}} <= Z <= \frac{0.025}{\frac{\sigma}{\sqrt{n}}}) \\ P(Z <= \frac{0.025}{\frac{\sigma}{\sqrt{n}}}) - P(Z <= -\frac{0.025}{\frac{\sigma}{\sqrt{n}}}) \\ P(|\bar{X_n} - \mu| <= 0.025) = \phi(\frac{0.025}{\frac{\sigma}{\sqrt{n}}}) - \phi(-\frac{0.025}{\frac{\sigma}{\sqrt{n}}}) \end{split}$$

In [29]:

```
p=0.05
Z = st.norm()
dev=car['RushHour'].std()
n = len(car.dropna())
x1 = (0.025*(n)**0.5)/dev
Z.cdf(x1)-Z.cdf(-x1)
```

Out[29]:

Esercizio 6

incidente = A = 0.15 \ orario di punta = B = 0.55

P(A|B) = 0.2

$$P(B|A) = rac{P(B\cap A)}{P(A)}$$

$$P(B|A) = rac{P(A|B)P(B)}{P(A)}$$

In [16]:

```
p = 0.15
pp = 0.2
prob = (pp*(len(car[car['RushHour'] == 1])/len(car)))/p
```

In [17]:

print('La probabilità che una data auto oggi non è disponibile perché ieri ha subito un incidente è : {}'.format(prob))

La probabilità che una data auto oggi non è disponibile perché ieri ha sub ito un incidente è : 0.7380952380952381

In [1]:

```
import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
import statsmodels.api as sm
import math
```

Giugno 2019

Esercizio 0

 $Y \sim UnifDisc(s)$

 $X \sim Bern(p)$ con p=0.8

0.1.1-0.1.2-0.2.1-0.2-2

grafici dispersione e ripartizione

0.2.3

$$E(X) = p \ Var(X) = p(1-p)$$

Esercizio 1

$$\overline{X_n} = \sum \frac{X_i}{n}$$

1.1

$$E(\overline{X}) = p$$

1.2

$$Var(\overline{X}) = \frac{1}{n} Var(X)$$

1.3

 ${\cal T}_n$ stimatore per il valore atteso

$$T_n=\overline{X_n}$$

1.4

$$E(T_n) = E(\sum rac{X_i}{n}) = rac{1}{n} \sum E(X_i) = rac{1}{n} n E(X) = E(X) = p$$
 non è distorto

1.5

 ${\it U}_n$ stimatore varianza non distorto

$$E(Var(X)) = \sum (1-p)p = np(1-p)$$
 $E(U_n) = E(nT_n(1-T_n))$

?????????

Esercizio 2

$$0 < \delta < 1, \epsilon > 0$$

2.1

$$P(|\overline{X_n} - p| \leq \epsilon) \geq 1 - \delta pprox P(|X^*| \leq rac{\epsilon}{\sqrt{p(1-p)}} \sqrt{n})$$

$$P(|rac{X_n-p}{rac{\sigma}{\sqrt{n}}}| \leq rac{\epsilon \sqrt{n}}{\sqrt{p(1-p)}} \geq 1-\delta$$

2.2

$$P(|\overline{X}-p| \leq \epsilon) \geq 1-\delta$$

$$2\Phi(2\epsilon\sqrt{n})-1\geq 1-\delta$$

$$\Phi(2\epsilon\sqrt{n}) \geq 1 - rac{\delta}{2}$$

2.3

$$\delta=0.05, \epsilon=0.01$$

$$\Phi(2\epsilon\sqrt{n}) \geq 1 - rac{\delta}{2} = \Phi(0.02\sqrt{n}) \geq 1 - 0.025$$

$$\Phi(0.02\sqrt{n}) \geq 0.975$$

$$\sqrt{n} \geq \Phi^- 1(0.975) * 0.02$$

In [2]:

x = st.bernoulli(0.8)

n = x.ppf(0.975)

math.sqrt(n)/0.02

Out[2]:

In [3]:

imp = pd.read_csv("impiantitermici.csv",sep=";",decimal=".",parse_dates=True)
imp[:5]

C:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py:2785: Dtype Warning: Columns (34) have mixed types. Specify dtype option on import or set low_memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[3]:

	IDENTIFICATIVO_IMPIANTO	GENERATORI_NUMERO	POTENZA_IMPIANTO
0	2f2df97825995cbd6f840fa2889c5ff89	1	28.0
1	2e6db9dfe3d91c4d4fc41fc2086c1ff89	1	24.0
2	2e4df9b8c2895c4ddfc41fd278ec3ff89	1	24.0
3	2f9cc9d8c3b96c5dcfd40fb288dc4ff89	1	31.5
4	287ad9b9d2592c7dcfb49f82387c6ff89	1	24.0

5 rows × 39 columns

Esercizio 3

3.1

In [4]:

len(imp)

Out[4]:

189997

3.2

In [5]:

print("scalare")

scalare

```
In [6]:
len(imp[imp['GENERATORE_DATA_INST'] < '01/01/1940'])
Out[6]:
0</pre>
```

3.4

In [23]:

```
mask1 = imp['POTENZA_IMPIANTO_RISC'] > 15.0
mask2 = imp['POTENZA_IMPIANTO_RISC'] < 35.0
mask3 = imp['GENERATORE_COMBUSTIBILE'] == 'GAS NATURALE'
selezione = imp[mask1 & mask2 & mask3]</pre>
```

3.5

In questo caso l'eterogeneità è massima perchè tutti i valori sono uguali, in quanto abbiamo posto come condizione di considerare come combustibile il gas naturale

3.6

```
In [9]:
```

3.7

```
In [25]:
```

```
selezione['EDIFICIO_CATEGORIA'].mode()
Out[25]:
```

0 E1 dtype: object

3.8

```
In [27]:
```

```
len(selezione[selezione['EDIFICIO_CATEGORIA'] == 'E1'])
```

Out[27]:

78875

```
In [28]:
#9
len(selezione[selezione['EDIFICIO_CATEGORIA'] == 'E1'])/len(selezione) * 100
Out[28]:
59.81813769357945
In [12]:
### Esercizio 4 non si riesce a fare il confronto fra date
```