Avionics Reference Document

David Knight

November 28, 2019

Contents

Title I	Page	1
Table	of Contents	2
1 Inti 1.1 1.2 1.3	Purpose	5 5 5
2 Han 2.1 2.2 2.3 2.4	Pressure Transducers	6 6 6 6 7
3.1 3.2 3.3	PROM Layouts Layout Version IDs	8 8 9 13
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.19 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.10 4.10 4.11 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.10 4.11 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.10 4.11 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.10 4.10 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.19 4.10 4.10 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.1	ID 0 - Clock Sync . ID 1 - Emergency Signal ID 100 - Helium Pressure ID 101 - Lox Pressure ID 102 - Methane Pressure ID 103 - Chamber Pressure ID 103 - Chamber Pressure ID 200 - Helium Fill Valve ID 201 - LOX Fill Valve ID 202 - Methane Fill Valve ID 300 - Helium Tank Temperature ID 301 - LOX Tank Temperature ID 302 - Methane Tank Temperature ID 303 - Nozzle Temperature ID 304 - Upper Air Frame Temperature ID 304 - Upper Air Frame Temperature ID 400 - Helium PT Current ID 401 - LOX PT Current ID 402 - Methane PT Current ID 403 - Chamber PT Current ID 404 - Helium Fill Hall Effect Current ID 405 - LOX Fill Hall Effect Current ID 406 - Methane Fill Hall Effect Current	14 14 14 14 14 14 15 15 15 15 15 16 16 16 16

List of Tables

List of Figures

1 Introduction

- 1.1 Purpose
- 1.2 Scope
- ${\bf 1.3}\quad {\bf Definitions}\ {\bf and}\ {\bf Acronyms}$

2 Hardware

2.1 Pressure Transducers

Model Number	MLH05KPSB01G
Serial Number	F8CEA38AA5
Datasheet Link	Link
Sensing Units	PSIG
Pressure Port Type	1/4-18 NPT (ANSI B1.20.1)
Accuracy	$\pm 0.25\%$
Pressure Range	0PSIG to 5000PSIG
Data Frequency	50Hz
Output Voltage Range	1.0 to 5.0 Volts
Input Voltage Range	8.0 to 30.0 Volts
Temperature Range	-40°to +125°Celcius

Model Number	ASUHGP1K55A1AA1A20000
Serial Number	E5C0ADEA35
Datasheet Link	Link
Sensing Units	PSIG
Pressure Port Type	3/8 Inch 24 UNF Dash 3 (SAE J514)
Accuracy	$\pm 0.25\%$
Pressure Range	0PSIG to 1500PSIG
Data Frequency	50Hz
Output Voltage Range	0.5 to 4.5 Volts
Input Voltage Range	8.0 to 16.0 Volts
Temperature Range	-40°to +150°Celcius

2.2 Thermocouples

Model Number	240-080
Serial Number	BB510C3CE3
Datasheet Link	Link
Type	K
Sensing Units	Celcius
Data Frequency	10Hz
Temperature Range	-73°to +150°Celcius

2.3 RTDs

Model Number	1PT100K2515
Serial Number	8105874731
Datasheet Link	Link
Type	PT100
Sensing Units	Celcius
Data Frequency	10Hz
Temperature Range	-200° to +150° Celcius

2.4 Hall Effect Sensors

Model Number	TCS40DPR
Serial Number	6D65BA9367
Datasheet Link	Link
Sensing Units	mT
Output Type	Push-Pull
Trip	$\pm 4.4 \mathrm{mT}$
Release	$\pm 0.9 \mathrm{mT}$
Input Voltage Range	8.0 to 16.0 Volts
Data Frequency	10Hz
Temperature Range	-40° to +150° Celcius

3 EEPROM Layouts

3.1 Layout Version IDs

VersionID	Version Name
1	Sensor Board Layout Rev 1
2	Power Distro Board Layout Rev 1

3.2 Sensor Board Layout Rev 1

		Sensor Bo	ard Layout Rev 1 Page #0)	
Byte #	Usage	Byte #	Usage	Byte #	Usage
0 1 2 3	Layout Rev Number	48 49 50 51	PT0 Calibration Polyfit p1	96 97 98 99	PT1 Data CanID
4 5 6 7	EEPROM Layout Compile Time	52 53 54 55	PT0 Calibration Polyfit p2	100 101 102 103	PT1 Current CanID
8 9 10 11	Board Status	56 57 58 59	PT0 Calibration Polyfit p3	104 105 106 107	PT1 Data Frequency
12 13 14 15	Board VIN Voltage CanID	60 61 62 63	PT0 Calibration Polyfit p4	108 109 110 111	PT1 Max Output Voltage
16 17 18 19	Board current CanID	64 65 66 67	PT0 Calibration Polyfit p5	112 113 114 115	PT1 Min Output Voltage
20 21 22 23	PT0 Data CanID	68 69 70 71	PT0 Calibration Polyfit p6	116 117 118 119	PT1 Max Pressure
24 25 26 27	PT0 Current CanID	72 73 74 75	PT0 Calibration Polyfit p7	120 121 122 123	PT1 Min Pressure
28 29 30 31	PT0 Data Frequency	76 77 78 79	PT0 Biquad Filter b0	124 125 126 127	PT1 Calibration Polyfit p1
32 33 34 35	PT0 Max Voltage	80 81 82 83	PT0 Biquad Filter b1		
36 37 38 39	PT0 Min Voltage	84 85 86 87	PT0 Biquad Filter b2		
40 41 42 43	PT0 Max Pressure	88 89 90 91	PT0 Biquad Filter a1		
44 45 46 47	PT0 Min Pressure	92 93 94 95	PT0 Biquad Filter a2		

			ard Layout Rev 1 Page #1		
Byte #	Usage	Byte #	Usage	Byte #	Usage
128 129 130 131	PT1 Calibration Polyfit p2	176 177 178 179	PT2 Current CanID	224 225 226 227	PT2 Calibration Polyfit p7
132 133 134 135	PT1 Calibration Polyfit p3	180 181 182 183	PT2 Data Frequency	228 229 230 231	PT2 Biquad Filter b0
136 137 138 139	PT1 Calibration Polyfit p4	184 185 186 187	PT2 Max Voltage	232 233 234 235	PT2 Biquad Filter b1
140 141 142 143	PT1 Calibration Polyfit p5	188 189 190 191	PT2 Min Voltage	236 237 238 239	PT2 Biquad Filter b2
144 145 146 147	PT1 Calibration Polyfit p6	192 193 194 195	PT2 Max Pressure	240 241 242 243	PT2 Biquad Filter a1
148 149 150 151	PT1 Calibration Polyfit p7	196 197 198 199	PT2 Min Pressure	244 245 246 247	PT2 Biquad Filter a2
152 153 154 155	PT1 Biquad Filter b0	200 201 202 203	PT2 Calibration Polyfit p1	248 249 250 251	Hall Effect 0 Data CanID
156 157 158 159	PT1 Biquad Filter b1	204 205 206 207	PT2 Calibration Polyfit p2	252 253 254 255	Hall Effect 0 Current CanID
160 161 162 163	PT1 Biquad Filter b2	208 209 210 211	PT2 Calibration Polyfit p3		
164 165 166 167	PT1 Biquad Filter a1	212 213 214 215	PT2 Calibration Polyfit p4		
168 169 170 171	PT1 Biquad Filter a2	216 217 218 219	PT2 Calibration Polyfit p5		
172 173 174 175	PT2 Data CanID	220 221 222 223	PT2 Calibration Polyfit p6		

	Sensor Board Layout Rev 1 Page #2						
Byte #	Usage	Byte #	Usage	Byte #	Usage		
256 257 258 259	Hall Effect 0 Data Frequency	304 305 306 307	TC0 Biquad Filter	352 353 354 355	RTD0 Biquad Filter b1		
260 261 262 263	Hall Effect 1 Data CanID	308 309 310 311	TC0 Biquad Filter	356 357 358 359	RTD0 Biquad Filter b2		
264 265 266 267	Hall Effect 1 Current CanID	312 313 314 315	TC1 Data CanID	360 361 362 363	RTD0 Biquad Filter a1		
268 269 270 271	Hall Effect 1 Data Frequency	316 317 318 319	TC1 Data Frequency	364 365 366 367	RTD0 Biquad Filter a2		
272 273 274 275	Hall Effect 2 Data CanID	320 321 322 323	TC1 Biquad Filter b0	368 369 370 371	RTD1 Data CanID		
276 277 278 279	Hall Effect 2 Current CanID	324 325 326 327	TC1 Biquad Filter b1	372 373 374 375	RTD1 Data Frequency		
280 281 282 283	Hall Effect 2 Data Frequency	328 329 330 331	TC1 Biquad Filter	376 377 378 379	RTD1 Biquad Filter b0		
284 285 286 287	TC0 Data CanID	332 333 334 335	TC1 Biquad Filter	380 381 382 383	RTD1 Biquad Filter b1		
288 289 290 291	TC0 Data Frequency	336 337 338 339	TC1 Biquad Filter a2				
292 293 294 295	TC0 Biquad Filter b0	340 341 342 343	RTD0 Data CanID				
296 297 298 299	TC0 Biquad Filter b1	344 345 346 347	RTD0 Data Frequency				
300 301 302 303	TC0 Biquad Filter b2	348 349 350 351	RTD0 Biquad Filter b0				

		Sensor Bo	ard Layout Rev 1 Page #3		
Byte #	Usage	Byte #	Usage	Byte #	Usage
384		432		480	
385	RTD1 Biquad Filter	433		481	
386	b2	434		482	
387		435		483	
388		436		484	
389	RTD1 Biquad Filter	437		485	
390	a1	438		486	
391		439		487	
392		440		488	
393	RTD1 Biquad Filter	441		489	
394	a2	442		490	
395		443		491	
396		444		492	
397		445		493	
398		446		494	
399		447		495	
400		448		496	
401		449		497	
402		450		498	
403		451		499	
404		452		500	
405		453		501	
406		454		502	
407		455		503	
408		456		504	
409		457		505	
410		458		506	
411		459		507	
412		460		508	
413		461		509	
414		462		510	
415		463		511	
416		464			
417		465			
418		466			
419		467			
420		468			
421		469			
422		470			
423		471			
424		472			
425		473			
426		474			
427		475			
428		476			
429		477			
430		478			
431		479			
431		4/9			

${\bf 3.3} \quad {\bf Power~Distro~Board~Layout~Rev~1}$

	Power Distro Board Layout Rev 1 Page #0					
Byte #	Usage	Byte #	Usage	Byte #	Usage	
0		48		96		
1	Board Status	49		97		
2	Board Status	50		98		
3		51		99		
4		52		100		
5	Offboard Battery	53		101		
6	Voltage CANID	54		102		
7	_	55		103		
8		56		104		
9	Offboard Battery	57		105		
10	Current CANID	58		106		
11		59		107		
12		60		108		
13	Onboard Battery	61		109		
14	Voltage CANID	62		110		
15		63		111		
16		64		112		
17	Onboard Battery	65		113		
18	Current CANID	66		114		
19		67		115		
20		†† 68		116		
21	Helix Loop CW	69		117		
22	Voltage CANID	70		118		
23		71		119		
24		\dagger 72		120		
25	Helix Loop CW	73		121		
26	Current CANID	74		122		
27	0 3311 3311 0 1 1 1 1 1	75		123		
28		†† 76		124		
29	Helix Loop CCW	77		125		
30	Voltage CANID	78		126		
31		79		127		
32		H 80				
33	Helix Loop CCW	81				
34	Current CANID	82				
35		83				
36		84				
37		85				
38		86				
39		87				
40		88				
41		89				
42		90				
43		91				
44		92				
45		93				
46		94				
47		95				
		11 00		1	I	

4 CAN IDs

4.1 ID 0 - Clock Sync

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False	0 to 4294967295	Milliseconds	UTC time

4.2 ID 1 - Emergency Signal

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0		False			Status
	0-1				System Status

4.3 ID 100 - Helium Pressure

Frequency: 50Hz

	Byte	Bit	Signed	Range	Units	Description
ſ	0-3		False		Milliseconds	UTC time
	4-5		False		PSIG	Helium Pressure

4.4 ID 101 - Lox Pressure

Frequency: 50Hz

	Byte	Bit	Signed	Range	Units	Description
ſ	0-3		False		Milliseconds	UTC time
ſ	4-5		False		PSIG	LOX Pressure

4.5 ID 102 - Methane Pressure

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	Methane Pressure

4.6 ID 103 - Chamber Pressure

Frequency: $50 \mathrm{Hz}$

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	Chamber Pressure

4.7 ID 200 - Helium Fill Valve

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	Helium Fill Valve State

4.8 ID 201 - LOX Fill Valve

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	LOX Fill Valve State

4.9 ID 202 - Methane Fill Valve

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	Methane Fill Valve State

4.10 ID 300 - Helium Tank Temperature

Frequency: 10Hz

	Byte	Bit	Signed	Range	Units	Description
ĺ	0-3		False		Milliseconds	UTC time
ĺ	4-5		True		Celcius	Helium Tank Temperature

4.11 ID 301 - LOX Tank Temperature

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	LOX Tank Temperature

4.12 ID 302 - Methane Tank Temperature

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Methane Tank Temperature

4.13 ID 303 - Nozzle Temperature

Frequency: 10Hz

1					
Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Nozzle Temperature

4.14 ID 304 - Upper Air Frame Temperature

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Upper Air Frame Temperature

4.15 ID 400 - Helium PT Current

Frequency: 10Hz

By	yte	Bit	Signed	Range	Units	Description
0-3	3		False		Milliseconds	UTC time
4-	5		True		milliamps	Helium PT Current

4.16 ID 401 - LOX PT Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	LOX PT Current

4.17 ID 402 - Methane PT Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Methane PT Current

4.18 ID 403 - Chamber PT Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Chamber PT Current

4.19 ID 404 - Helium Fill Hall Effect Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Helium Fill Hall Effect Current

4.20 ID 405 - LOX Fill Hall Effect Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	LOX Fill Hall Effect Current

4.21 ID 406 - Methane Fill Hall Effect Current

Frequency: 10Hz

_ =	1	-,	_			
	Byte	Bit	Signed	Range	Units	Description
ſ	0-3		False		Milliseconds	UTC time
ſ	4-5		True		milliamps	Methane Fill Hall Effect Current