

Figure 2 Multiple sequence alignment

(a)	1 1 1 1	A !	 ГА	_ G		- - T	_ A	 T (G G	T (G 1	 ' A	- G	– – A G	- <u>-</u>	_ C	<u>-</u> -	 A C	_ C	A A_	C (c c	T	A A	<u>С А</u> Т Т	A	A C	T -	A A	T C T C C C	CBA87 71V-1658 EEE VEE
idonia, atana	41 17 39 37	G	А Т А <u>Т</u> А	C	C I	AA	T A	A 7 A 7	r G r G	G Z	A Z	A A	G A	A A	T	T T	C I	A C	G	T T	T (G A	A C	T T	T A	G	AT	G	CA	G A G A G A	CBA87 71V-1658 EEE VEE
	81. 57 79 77	C	A G A G	C C	c (G	T T	A 7	င်	T (C A	AA	G G	T C	G	C	T] C	Α	Α.	A	G A	T	G	СIT	\mathbf{T}_{-}	TС	C	A C	A A A T A G	CBA87 71V-1658 EEE VEE
	97 97 119 117	T	гт	G	A (<u> </u>	, тГ.	A	3 A	A	3 C	<u> A</u>	A	CG	C	Α	G	Т	C	Α	C '	T G	A	C	A A	т	G A	C	C A	T G T G	71V-1658 EEE VEE
	159		r a	Α	T G	C	T .	A G	3 G	G	2 6	т	T	тт	C	G	CI	7 C	С	T[A)	G C	T	A	СŒ	Α	A_G	C	T_C	AT	71V-1658 EEE VEE
	97 177 199 197	T	G A	G	$G \lfloor G \rfloor$	Α	G.	A_ <i>I</i>	<u>1</u> G	T	3 6	; A	T .	A C	A	G	<u>A</u> (: <u>C</u>	A	G	G ¹	rle	A	\mathbf{T}	clc	T_	G G	Α	TA	TT	71V-1658 EEE VEE
(b)	Iclo	r c c T	G	Т	Α	T I	λlG	G	GC	$ \mathbf{r} $	\mathbf{T}	clo	: G	C ·	G_{2}	C A	_G_	G'	rc	: <u> </u> C	_A	G	G		V-1 EE-						

- CTCGATATAGGATTGCGTCGCCGAATTAAG EEE
 - a. The 5' terminus of WEE CBA87 (1-97), WEE 71V-1658 (25-240), EEE (1-238) and VEE (1-236) via Clustal module of DNAStar. Areas where sequences differ are boxed.
 - b. Hypervariable region identified in nsP1. Alignment of WEE 71V-1658 (1420-1449), WEE 1654 (65-94) and EEE (1415-1444) is shown.

Figure 3 Stem loop structures in the 5' NTR

Hairpin structures were identified using the RNA folding program of the Genequest module (DNASTAR).

- a. Structures for WEE (CBA87/71V-1658) sequence (1-192).
- b. Structures for EEE (1-192).

Minimal free energy values are shown for the different structures.

Double stem loop structures in SIN.

11381 -20.1 11475 -20.1 11475 -20.1 11475 -20.1 11475 -20.1 11475 -20.1 -2

Figure 4 Stem loop structures in the 3' NTR

Figure 5 Phylogenetic relationship of the WEE nonstructural region compared to other alphaviruses

Figure 6 Expression of WEE structural genes in cell culture

One μg of plasmid DNA was transfected into Vero cells. After 31 hrs incubation, the cells were histochemically stained using a monoclonal antibody to WEE (11D2). a. pCXH-3; b. pCI (control plasmid).

Figure 7 In vitro transcription and translation of WEE expression vectors

Qiagen purified vectors containing the WEE 26S insert were expressed *in vitro* using the TNT system and [35 S]-methionine labelling. Three μ L aliquots of each samples were run by SDS-PAGE on a 12% gel.

Lane: 1) Rainbow ¹⁴C-labelled marker; 2) Luciferase translation control; 3) pVAX; 4) pVHX-6; 5)pCXH-3; 6) pcDWXH-7; 7) pcDWHX-45; 8) pXTR2-4.

Figure 8 WEE mouse infectivity model

Groups of 4 mice were inoculated intranasally with 50 $\,\mu$ L of virus (approximately 10⁴ PFU). The mice were monitored for 12 days, and the % survival graphed.

Figure 9 Protection using ballistic delivery of pCXH-3

Groups of 4 mice were immunized with one or two doses (2 x 1.25 μ g) of either pCI or pCXH-3. The interval between boosters (2 doses) or challenge was 3 weeks. The mice were challenged intranasally with 50 μ L of WEE Fleming (1.25 x 10⁴ PFU). The mice were monitored for 12 days, and the % survival graphed.

Figure 10 Protection using ballistic delivery of pVHX-6

Groups of 4 mice were immunized with four doses (2 x 1.25 $\,\mu$ g) of pVAX or pVXH-6 . The interval between boosters or challenge was 2 weeks. The mice were challenged intranasally with 50 $\,\mu$ L of WEE Fleming (1.25 x 10⁴ PFU). The mice were monitored for 14 days, and the % survival graphed.

Figure 11 Protection using ballistic delivery of pVHX-6

Groups of 5-8 mice were immunized with three or four doses (2 x 1.25 $\,\mu$ g) of pVAX or pVXH-6 . The interval between boosters or challenge was 2 weeks. The mice were challenged intranasally with 50 $\,\mu$ L of WEE Fleming (1.7 x 104 PFU). Untreated control and WEE inactivated control (3 doses) groups were also included. The mice were monitored for 14 days, and the % survival graphed.