524-83 182864 N**94-1**5910

Data Distribution

J. E. Hilland

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

This presentation:

- 1. Presents data distribution from the perspective of Earth observations and the end user
- 2. Reviews problems associated with SAR data distribution
- 3. Discusses future data distribution techniques

7

Third Spaceborne Imaging Radar Symposium Representative Requirements

Typical End User Requirements which drive distribution technology

	Timeliness	Resolution	Data transfer rate
Near real time	< 6hr	>200m	20 images/day
Scientific research	Weeks to Months	100m	200 images/day

7

Third Spaceborne Imaging Radar Symposium Data Distribution Problems

- Raw Signal Data
- Huge data volume- Terabytes per year
- Significant expense copying High Density Digital Tapes (\$250,000/yr)
 - Different tape formats (recorders) between many data distributors
- Images
- Large data volume for global studies
 - Nonstandard format
- High demand, large volume precludes data networks
- Prior to ERS-1, JERS-1, Magellan user base was small compared to Landsat/SPOT
- Geophysical Products
- Tend to be restricted to expert users

Multimission SAR Processing System Architecture Third Spaceborne Imaging Radar Symposium

HDDR-High Density Digital Recorder

Third Spaceborne Imaging Radar Symposium Data Product Formats

- · A standard data format improves data product usability by:
 - 1. Standardizing image annotation structures
 - 2. Providing an international standard
- Promoting data usability with standard software data packages
- For Earth Observing Satellites:
- · CEOS SAR computer compatible tape is the output product format standard for:
 - The Alaska SAR Facility
- National flight agencies, e.g., for ERS-1, JERS-1 distribution
- CEOS structure is designed for computer compatible tapes (based on LandSat tapes)
- Hierarchical Data Format (HDF) For SAR
 Improves SAR usability through compatibility
- Large Earth science user community for data in HDF structure
 - Facilitates intersensor comparison, global model comparison
- Preferred format for the Earth Observing System Data and Information System Version 0 (and probably for versions in the late 1990's)
 - HDF is supported by a large software tool base for science data visualization
- Translator developed by the Alaska SAR Facility for converting CEOS to HDF

קק

Third Spaceborne Imaging Radar Symposium CEOS Format

VOLUME DIRECTORY FILE

Volume Descriptor Record File Pointer Records Text Records

SAR LEADER FILE

Data Set Summary Record
Map Projection Record
Platform Position Data Record
Attitude Data Record
Radiometric Data Record
Radiometric Compensation Record
Data Quality Summary Record
Data Histogram Record
Range Spectra Record
Radar Parameter Update Record
Detailed Processing Parameters

mission, data acquisition, sensor, processing parameters geometric characteristics of image data orbit parameters, spacecraft position and velocity vectors attitude and attitude rate tables relating data numbers to backscatter coefficients radiometric correction vectors data quality analysis results summary data histograms range spectra radar parameters (gain, DWP) change mission specific processing parameters

SAR IMAGERY OPTION FILE

File Descriptor Record SAR Data Record (Image or Signal Data) with line ID (prefix, suffix not used)

NULL VOLUME DIRECTORY FILE

Null Volume Descriptor Record

Third Spaceborne Imaging Radar Symposium HDF Format

- · HDF was developed by the National Center for Supercomputer Applications (NCSA)
- HDF provides:
- A format for the exchange of data in distributed computing environments
- Support for scientific data; large data sets, data descriptions, sharable data
- Public domain software; data analysis, visualization, computer communications
- Approximately 100,000 users

Information Objects	n Objects
Raster image -	8-bit, 24-bit
Palette-	Look-up table
Data-	Arrays
Annotation-	Text (metadata)
Vsets-	Grouped data

Third Spaceborne Imaging Radar Symposium High Density Media Comparison

High density media for the distribution of raw signal data

Media Format	Drive	Read/Write	Data Capacity (Bytes)	Access Time Search Time Transfer Rate (ms) (s) MBps	Search Time (s)	Transfer Rate MBps	Drive Cost (\$K)	Media Cost	Availability
Optical paper, 35mm paper, length: 880 m, 12 in diam, reel	New design reel-to-reel	Write Once Read Many (WORM) Laser, non-contact	1×10 ¹²	28	09	ဇ	225	\$5K/reel \$0.005/MB	In operation
Optical paper, 0.5 in tape, length: 255, IBM 3480 cartridge	Modified IBM 3480	1	9 50 x10 plus 50 cart. jukebox	600 (to 200 MB)	15	ဇ	% %	\$250/cartridge \$0.005/MB	1992
HDDT, cartridge	Rotary scan	Read/Write	45x10	1	300	1-12	200	\$500/cartridge \$0.01/MB	in operation
CCT, 0.5 in reel		Read/Write	120x10	10	150	0.4	30	\$12/tape \$0.1/MB	In operation
Dig. Opt Disk, 12 in		WORM	6×10	09	090'0	0.2	25	\$300/platter \$0.15/MB	In operation
Magnetic disk		Read/Write	1x10 ⁹	15	0:030	.	ဟ	\$5k/drive \$5/MB	In operation

Third Spaceborne Imaging Radar Symposium Distribution Media

· Distribution media for multilook detected and geophysical data products

1978 (Seasat)	<u>1993</u>	
Black/white Strips 50 µm resolution	Black/white prints Frames (scene) 8k x 8k pixels 25 μm resolution	Color Prints 1.5 x 2k pixels 80 µm resolution
Computer Compatible Tape 50 MB/tape 200 KBps transfer rate	8mm magnetic tape 2 or 5 GB capacity 250 KBps transfer rate CD-ROM 600 MB capacity 200 KBps transfer rate	Computer Compatible Tape 100 MB/tape 400 KBps transfer rate Data networks 300 KBps transfer rate

Third Spaceborne Imaging Radar Symposium Data Communications Networks

Current Networks Utilized For SAR Data Transfer

- NASA Science Network
- Earth Observing System Data and Information System Version 0 Network
- **Performance**
- T1 56 Kbps T3 1.5 Mbps
- Key to network utilization
- Distribute products derived from SAR images, e.g., ice motion fields, vegetation index
 - Reduces data volume,
- Increases SAR data usability and user base
 - Data compression for browse image transfer
- Near real-time applications
- DOMSAT with image data compression (1 Mbps data channel)

בובן

DISTRIBUTED ACTIVE ARCHIVE CENTERS (DAACS) AND INFORMATION SYSTEM (EOSDIS) EARTH OBSERVING SYSTEM DATA Third Spaceborne Imaging Radar Symposium

Third Spaceborne Imaging Radar Symposium EOSDIS ARCHITECTURE EOSDIS-SPONSORED DATA CENTERS*

EARTH SCIENCE DAACS	ACS		
CENTER	INITIAL SYSTEMS	AREAS OF INTEREST	EOS AND OTHER MISSIONS/INSTRUMENTS
GSFC GODDARD SPACE FLIGHT CENTER	NCDS, PLDS, CDDIS	CLIMATE, METEOROLOGY, STRATOSPHERE, OCEAN BIOLOGY, AND GEOPHYSICS; AVHRR AND TOVS PATHFINDER DATA SETS	MODIS-N, AIRS, MHS, AMSU, SeaWIFS, GLRS-A, HIRDLS, TOMS, AND TMI
Larc Langley RESEARCH CENTER	ERBE PROCESSING	CLOUDS, RADIATION, AEROSOLS, AND TROPOSPHERIC CHEMISTRY	CERES, ERBE, MOPITT, MISR, EOSP, SAGE, AND TES
EDC EROS DATA CENTER.	GLIS, LANDSAT PROCESSING	LAND PROCESSES	ASTER: HIRIS, SAR (LAND), LANDSAT (MSS AND TM), AND AVHRR
UNIVERSITY OF ALASKA-FAIRBANKS	ASF SYSTEM	SAR IMAGERY OF ICE, SNOW, And Sea Burface	ERS-1, JERS-1, ERS-2, RADARSAT, AND ONGOING ROLE AS OROUND STATION

*EOSDIS Handbook, 1992

Third Spaceborne Imaging Radar Symposium EOSDIS ARCHITECTURE (Cont'd) EOSDIS-SPONSORED DATA CENTERS*

CU UNIVERSITY OF COLORADO	CDMS	POLAR OCEANS AND ICE	SMMR, SSM/I, AND OLS
JPL JET PROPULSION LABORATORY	SOON	PHYSICAL OCEANOGRAPHY	TOPEX/POSEIDON, NSCAT, STIKSCAT, AND ALT
MSFC MARSHALL SPACE FLIGHT CENTER	WetNet	HYDROLOGIC CYCLE; SSM/I PATHFINDER DATA SETS	MIMR, TMI, TRMM PR, LIS, AND SSM/I
ORNL OAK RIDGE NATIONAL LABORATORY	TGDDIS	TRACE GAS FLUXES	GROUND-BASED DATA RELATING TO FLUXES OF TRACE GASES (e.g., CO ₂ , CH ₄)
SOCIO-ECONOMIC D CDRC CIESIN DATA AND RESEARCH CENTER	ATA AND -	SOCIO-ECONOMIC DATA AND APPLICATIONS CENTER CDRC — HUMAN DIMENSIONS OF CIESIN DATA AND GLOBAL CHANGE AND POLICYMAKING APPLICATIONS	SOCIO-ECONOMIC DATA

*EOSDIS Handbook, 1992

Third Spaceborne Imaging Radar Symposium EOSDIS ARCHITECTURE NETWORK STRATEGY*

ODC. THER DATA CENTERS NON-INTEROPERABLE WITH DAACS

AFFILIATED DATA CENTERS INTEROPERABLE

ADC. = WITH DAACS (NOAA/NESDIS, NOAA/UNIVERSITY

OF WISCONSIN.....)

USERS SUPPORTED BY GENERAL SCIENCE (SCF) = NETWORKS (NSF INTERNET, NSN, NREN...)

\(\int DAAC \rightarrow = DISTRIBUTED ACTIVE ARCHIVE CENTER

auality control science computing facilities

EXTERNAL NETWORKS LEVEL OF SERVICE

INTERNAL NETWORKS LEVEL OF SERVICE

EOSDIS INTERNAL NETWORKS

EOSDIS EXTERNAL NETWORKS

Complex = FACILITIES FOR LEVEL 0 AND 1 DATA HANDLING

*from EOSDIS Handbook, 1992

EOSDIS SCIENCE USER INTERFACE Third Spaceborne Imaging Radar Symposium

Earth Observing System Data and Information System **EOSDIS** -

DAAC - Distributed Active Archive Center MS - Information Management System

PGS - Product Generation System

JADS - Data Archive and Distribution System