Forward Model of Radar Signals in the distributed radar system

O.Krasnov, o.a.krasnov@tudelft.nl 05.10.2012

Forward Model of Radar Signals for every single node of the system

Given:

- * radar system 3D geometry,
- * targets 3D position and velocity,
- * radar nodes characteristics

Goal:

- * radar signals for every single node of the system
 - * on Range-Doppler plane
 - * input for raw-signals parameters

Signal simulation: Step 1 - ideal targets on Range-Doppler plane

Note: these are continuous infinite axis

Signal simulation: Step 2

- targets on radar's Range-Doppler plane

Modeled targets on continuous infinite Range - Doppler velocity plane

Radar Scene

Simulation results, $N_{burst} = 64$

Localization results

Simple triangulation algorithm that defines the intersection points of 3 3D spheres (Doppler not used)

No any targets associations – every detection processed with all others. As results total number of located targets = $2 \times 5^3 = 2 \times 125$

Every red point show two results with different Z

Blue squares – true positions

Black polygon – area of antenna patterns overlap.

Localization results

Filtered detected targets with $|Z - Z_{true}| < 1 \text{ m}$

Still there are 2 x 33 ghost targets inside the detection polygon

De-ghosting is very important and necessary!

