

Universitat Politècnica de Catalunya

UPC 2

Michael Sammler, Eric Valls, Dean Zhu

SWERC 2017

November 26, 2017

content template Makefile troubleshoot

Contest (1)

content.txt Contest (1) Mathematics (2) Data structures (3) Numerical (4) Number theory (5) Combinatorial (6) Graph (7) Geometry (8) Strings (9)

template.cpp

Various (10)

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int, int> pii;
typedef vector<int> vi;
const 11 oo = 0x3f3f3f3f3f3f3f3f3f1LL;
#define FOR(i, a, b) for(ll i = (a); i < int(b); i++)
#define FORD(i, a, b) for(ll i = (b)-1; i >= int(a); i--)
#define has(c, e) ((c).find(e) != (c).end())
#define sz(c) ll((c).size())
#define all(c) c.begin(),c.end()
  cin.sync with stdio(0); cin.tie(0);
  cin.exceptions(cin.failbit);
```

Makefile

CXXFLAGS += -q -Wall -Wextra -Wshadow -std=c++14

troubleshoot.txt

```
Write a few simple test cases, if sample is not enough.
Are time limits close? If so, generate max cases.
Is the memory usage fine?
Could anything overflow?
Make sure to submit the right file.
```

```
Wrong answer:
Print your solution! Print debug output, as well.
Are you clearing all datastructures between test cases?
Can your algorithm handle the whole range of input?
Read the full problem statement again.
Do you handle all corner cases correctly?
Have you understood the problem correctly?
Any uninitialized variables?
Any overflows?
Confusing N and M, i and j, etc.?
Are you sure your algorithm works?
What special cases have you not thought of?
Are you sure the STL functions you use work as you think?
Add some assertions, maybe resubmit.
Create some testcases to run your algorithm on.
Go through the algorithm for a simple case.
Go through this list again.
Explain your algorithm to a team mate.
```

Ask the team mate to look at your code. Go for a small walk, e.g. to the toilet. Is your output format correct? (including whitespace) Rewrite your solution from the start or let a team mate do it. Runtime error: Have you tested all corner cases locally? Any uninitialized variables? Are you reading or writing outside the range of any vector? Any assertions that might fail? Any possible division by 0? (mod 0 for example) Any possible infinite recursion? Invalidated pointers or iterators? Are you using too much memory?

Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Do you have any possible infinite loops? What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf) Avoid vector, map. (use arrays/unordered map) What do your team mates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all datastructures between test cases?

Mathematics (2)

2.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f \Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n$.

Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where
$$r = \sqrt{a^2 + b^2}$$
, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area

triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of cosines:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan\frac{\alpha+\beta}{2}}{\tan\frac{\alpha-\beta}{2}}$$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \quad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(2(y, x))$$

2.4.4 Pick's theorem

$$A = i + b/2 - 1$$

2.4.5 Volumes

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \quad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.7.1 Faulhaber's formulae

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \frac{2n^3 + 3n^2 + n}{6}$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n^2 + n}{2}\right)^2 = \frac{n^4 + 2n^3 + n^2}{4}$$

$$1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{6n^5 + 15n^4 + 10n^3 - n}{30}$$

$$1^5 + 2^5 + 3^5 + \dots + n^5 = \frac{2n^6 + 6n^5 + 5n^4 - n^2}{12}$$

$$1^6 + 2^6 + 3^6 + \dots + n^6 = \frac{6n^7 + 21n^6 + 21n^5 - 7n^3 + n}{42}$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$

$$\mu = \lambda, \, \sigma^2 = \lambda$$

2.8.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a,b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

LineContainer SegmentTree FenwickTree

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is ergodic if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and aperiodic (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming.

```
Time: \mathcal{O}(\log N)
bool Q;
struct Line {
 mutable ll k, m, p;
 bool operator<(const Line& o) const
   return 0 ? p < o.p : k < o.k;
};
struct LineContainer : multiset<Line> {
 // (for doubles, use inf = 1/.0, div(a,b) = a/b)
 const ll inf = LLONG_MAX;
 ll div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
 bool isect(iterator x, iterator v) {
   if (y == end()) { x->p = inf; return false; }
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
 void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
     isect(x, erase(v));
 ll query(ll x) {
    assert(!emptv());
   Q = 1; auto 1 = *lower_bound({0,0,x}); Q = 0;
    return l.k * x + l.m;
```

```
};
SegmentTree.h
Description: Some useful functions for segment trees
Time: \mathcal{O}(\log N)
                                                            65 lines
const 11 tot = (1 << 19); // bigger than N
11 N = 1; // ...
11 minv[tot * 2];
11 lazy[tot * 2];
void init(ll x, ll l, ll r) {
  if(1 >= N) return;
  if(r - 1 <= 1) {
    minv[x] = 1; // ...
    lazy[x] = 0;
    return;
  init (2*x, 1, (1+r)/2);
  init (2*x+1, (1+r)/2, r);
  minv[x] = min(minv[2*x], minv[2*x+1]);
  lazv[x] = 0;
// propagates lazy, msut be called before recursing
void prop(ll x, ll l, ll r) {
  if(r - 1 <= 1) return;
  minv[2*x] += lazv[x];
  lazv[2*x] += lazv[x];
  minv[2*x+1] += lazv[x];
  lazy[2*x+1] += lazy[x];
  lazy[x] = 0;
// add v to [a, b]
void sadd(ll x, ll l, ll r, ll a, ll b, ll v) {
  if(b <= 1 || r <= a) return;
  if(a <= 1 && r <= b) {
    minv[x] += v;
    lazy[x] += v;
    return;
  prop(x, 1, r);
  sadd(2*x, 1, (1+r)/2, a, b, v);
  sadd(2*x+1, (1+r)/2, r, a, b, v);
  minv[x] = min(minv[2*x], minv[2*x+1]);
// finds the lowest value res, such that all values
// in |res, end| are >= 2 (condition can be adjusted)
ll squery(ll x, ll l, ll r, ll end) {
  if(end <= 1) return end;</pre>
  if (minv[x] >= 2) return 1; // ...
  if(r - 1 <= 1) {
    return r;
  prop(x, 1, r);
  if (minv[2*x+1] >= 2) { // ...
    return squery (2*x, 1, (1+r)/2, end);
  11 rend = squery (2*x+1, (1+r)/2, r, end);
  if(rend > (1+r)/2) return rend;
  return squery (2*x, 1, (1+r)/2, end);
void example() {
 11 a = 0, b = 1;
  init(1, 0, tot);
```

FenwickTree2d OrderedSet RMQ Treap

```
sadd(1, 0, tot, a, b, -2);
  11 \text{ res} = \text{squery}(1, 0, \text{tot, a});
FenwickTree.h
Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and
updates single elements a[i], taking the difference between the old and new
Time: Both operations are \mathcal{O}(\log N).
struct FT {
  vector<11> s:
  FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query (int pos) { // sum of values in [0, pos)
    11 \text{ res} = 0;
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  int lower_bound(ll sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum \le 0) return -1;
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
    return pos;
};
FenwickTree2d.h
Description: Computes sums a[i,j] for all i<I, j<J, and increases single
elements a[i,j].
Time: \mathcal{O}(\log^2 N).
                                                                22 lines
struct FT2 {
    11 R. C:
    vector<vector<ll>> tree;
  // note r+1 & c+1
    NumMatrix(ll r, ll c) : R(r), C(c), tree(r+1, vector<ll>(c)
         +1)) { }
    void update(int row, int col, int diff) {
        for(int i = row+1; i <= R; i += (i & -i))</pre>
             for(int j = col+1; j<=C; j += (j & -j))</pre>
                 tree[i][i] += diff;
    int sum(int row, int col) {
        int r = 0;
        // Not i >= 0
        for(int i = row; i > 0; i -= (i & -i))
             for (int j = col; j > 0; j = (j & -j))
                 r += tree[i][j];
        return r;
};
OrderedSet.h
Description: Order Statistics tree
             Set.find_by_order(k) returns an iterator to the k-th
object, Set.order_of_key finds its rank in the set. (its index
in the sorted set)
```

```
Time: \mathcal{O}(\log N)
<ext/pb_ds/assoc_container.hpp> // Common file, <ext/pb_ds/tree_policy.hpp> //
Including tree_order_statistics_node_update
using namespace __gnu_pbds;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
     tree_order_statistics_node_update>;
RMQ.h
Description: Range minimum query
          Call function build and then use query to return the
smallest value, ST stores the index to the value.
Time: \langle \mathcal{O}(N \log N), \mathcal{O}(1) \rangle
                                                               35 lines
struct SparseTable {
    vector<vector<int> > ST;
    vector<int> P;
    vector<int> v:
    int N:
    int MAXLOG = 0;
    void build(int n, const vector<int>& V) {
        N = n;
        v = V;
        while ((1 << MAXLOG) <= N) ++MAXLOG;</pre>
        ST = vector<vector<int> > (N, vector<int> (MAXLOG));
        P = vector<int> (N+1);
        int LOG = 0;
        for(int i = 1; i < N + 1; ++i){</pre>
             P[i] = ((1 << LOG) > i ? LOG-1 : ++LOG-1);
         for(int i = 0; i < N; ++i) ST[i][0] = i;</pre>
         for (int j = 1; j < MAXLOG; ++j) {</pre>
             for (int i = 0; i + (1 << j) - 1 < N; ++i) {
                 if (V[ST[i][j - 1]] < V[ST[i + (1 << (j - 1))][</pre>
                      j - 1]])
                       ST[i][j] = ST[i][j-1];
                       ST[i][j] = ST[i + (1 << (j - 1))][j - 1];
  // minimum in range [l, r] (both inclusive)
    int query(int 1, int r) {
        int LOG = P[r-1+1];
         return min(v[ST[1][LOG]], v[ST[r - (1 << LOG) + 1][LOG</pre>
             ]]);
} ;
Treap.h
Description: Treap
Time: Expected \mathcal{O}(\log N)
                                                              103 lines
struct Tree {
  Tree *left, *right, *parent; // if parent needed.
 11 x, y, count;
 Tree (ll x) : x(x), y(rand()), count(1) {
    left = right = parent = nullptr;
};
inline int card(Tree* t) {return (t ? t->count : 0);}
inline void setp(Tree *t, Tree *p) {
  if(t) t \rightarrow parent = p;
```

```
void update(Tree* t) { //Update when pointers change
  if (!t) return;
  t->count = 1 + card(t->left) + card(t->right);
  setp(t->left, t);
  setp(t->right, t);
Tree* merge (Tree* t1, Tree* t2) {
  if (t1 == nullptr) return t2;
  if (t2 == nullptr) return t1;
  if (t1->y>=t2->y) {
    t1->right = merge(t1->right, t2);
    update(t1);
    return t1;
  } else {
    t2 \rightarrow left = merge(t1, t2 \rightarrow left);
    update(t2);
    return t2;
// leaves on the left all nodes less than x.
pair<Tree*, Tree*> split(Tree* t, ll x) {
  if (t == nullptr) return {nullptr, nullptr};
  if (t->x < x)  {// if (card(t->left) + 1 <= x) {
  // auto p = split(t \rightarrow right, x - card(t \rightarrow left) - 1);
    auto p = split(t->right, x);
    t->right = p.first;
    update(t);
    setp(t, nullptr);
    return {t, p.second};
  } else {
    auto p = split(t->left, x);
    t->left = p.second;
    update(t);
    setp(t, nullptr);
    return {p.first, t};
Tree* insert (Tree* t, Tree* n) {
  auto p = split(t, n->x);
  t = merge(p.first, n);
  t = merge(t, p.second);
  return t;
// Devuelve cuantos hay \leq x
int count(Tree* t, int x) {
  if (!t) return 0;
  if (t->x <= x)
    return 1 + card(t->left) + count(t->right, x);
  else return count(t->left, x);
Tree* update_node(Tree* &root, Tree* node, 11 nx) {
  setp(node->left, nullptr);
  setp(node->right, nullptr);
  auto m = merge(node->left, node->right);
  auto p = node->parent;
  node->left = node->right = node->parent = nullptr;
  node -> x = nx;
  update (node);
  if (p) {
    p->left == node ? p->left = m : p->right = m;
    if (m) m->parent = p;
    while (p) { update(p); p = p->parent; }
    else {
```

UnionFind Polynomial PolyRoots PolyInterpolate Integrate MatrixInverse Simplex

```
root = m;
  return insert (root, node);
int main() {
 int n; cin >> n;
  vector<Tree*> nodes(n);
  Tree* treap = nullptr;
  for (int i = 0; i < n; ++i) {
   ll x; cin >> x;
   Tree \star n = new Tree(x);
   update(n);
   nodes[i] = n;
   treap = insert(treap, n);
  int m; cin >> m; // Update k-th node with value x
  for (int i = 0; i < m; ++i) {
    int k; ll x; cin >> k >> x;
   Tree* t = nodes[k-1];
    treap = update_node(treap, t, x);
```

UnionFind.h

 ${\bf Description:} \quad {\rm Disjoint\text{-}set \ data \ structure}.$

```
Time: \mathcal{O}\left(\alpha(N)\right)
```

```
struct UF {
    vi e;
    UF (int n) : e(n, -1) {}
    bool same_set(int a, int b) { return find(a) == find(b); }
    int size(int x) { return -e[find(x)]; }
    int find(int x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
    void join(int a, int b) {
        a = find(a), b = find(b);
        if (a == b) return;
        if (e[a] > e[b]) swap(a, b);
        e[a] += e[b]; e[b] = a;
    }
};
```

Numerical (4)

Polynomial.h

```
18 lines
struct Polynomial {
  int n; vector<double> a;
  Polynomial(int n): n(n), a(n+1) {}
  double operator()(double x) const {
    double val = 0;
    for(int i = n; i >= 0; --i) (val *= x) += a[i];
    return val;
  void diff() {
    rep(i,1,n+1) a[i-1] = i*a[i];
    a.pop_back(); --n;
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=n--; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
```

PolyRoots.h

Description: Finds the real roots to a polynomial.

```
Usage: vector<double> roots; Polynomial p(2);
p.a[0] = 2; p.a[1] = -3; p.a[2] = 1;
poly_roots(p, -1e10, 1e10, roots); // x^2-3x+2=0
"Polynomial.h"
void poly_roots(const Polynomial& p, double xmin, double xmax,
    vector<double>& roots) {
  if (p.n == 1) { roots.push_back(-p.a.front()/p.a.back()); }
    Polynomial d = p;
    d.diff();
    vector<double> dr;
    poly roots(d, xmin, xmax, dr);
    dr.push_back(xmin-1);
    dr.push back (xmax+1);
    sort(all(dr));
    for (auto i = dr.begin(), j = i++; i != dr.end(); j = i++) {
      double l = *j, h = *i, m, f;
      bool sign = p(1) > 0;
      if (sign ^{\circ} (p(h) > 0)) {
        //for(int \ i = 0; \ i < 60; ++i){
        while (h - 1 > 1e-8) {
          m = (1 + h) / 2, f = p(m);
          if ((f \le 0) \hat{sign}) 1 = m;
          else h = m:
        roots.push_back((1 + h) / 2);
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
   y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

Integrate.h

```
Description: Fast integration using an adaptive Simpson's rule.

Usage: double z, y;

double h(double x) { return x*x + y*y + z*z <= 1; }

double g(double y) { ::y = y; return quad(h, -1, 1); }

double f(double z) { ::z = z; return quad(g, -1, 1); }

double sphereVol = quad(f, -1, 1), pi = sphereVol*3/4;

19 line
```

```
typedef double d;
template<typename F>
d simpson(F f, d a, d b) {
   d c = (a+b) / 2;
   return (f(a) + 4*f(c) + f(b)) * (b-a) / 6;
}
template<typename F>
d rec(F f, d a, d b, d eps, d S) {
   d c = (a+b) / 2;
```

```
d S1 = simpson(f, a, c);
d S2 = simpson(f, c, b), T = S1 + S2;
if (abs (T - S) <= 15*eps || b-a < 1e-10)
    return T + (T - S) / 15;
return rec(f, a, c, eps/2, S1) + rec(f, c, b, eps/2, S2);
}
template < typename F>
d quad(F f, d a, d b, d eps = 1e-8) {
    return rec(f, a, b, eps, simpson(f, a, b));
}
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

Time: $\mathcal{O}\left(n^3\right)$ 36 lines

```
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
       r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
   rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
     A[j][i] = 0;
     rep(k,i+1,n) A[j][k] = f*A[i][k];
     rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
   rep(j,i+1,n) A[i][j] /= v;
   rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j, 0, i) {
   double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
 rep(i, 0, n) rep(j, 0, n) A[col[i]][col[j]] = tmp[i][j];
 return n;
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b, \ x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x=0 is viable.

```
Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

typedef double T; // long double, Rational, double + mod<P>...

SolveLinear SolveLinear SolveLinear FFT FFTIntegers

```
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
  int m, n;
  vi N, B;
  vvd D:
  LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
     rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r && abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
     rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j, 0, n+2) if (j!= s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
     rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
     int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0:
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
       int s = 0;
        rep(j,1,n+1) ltj(D[i]);
       pivot(i, s);
   bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = A.size(), m = x.size(), rank = 0, br, bc;
 if (n) assert(A[0].size() == m);
 // FOR(i, 0, n) FOR(j, 0, m) A[i]/[j] %= MOD; also b[i]...
 vi col(m); iota(col.begin(), col.end(), 0);
 FOR(i,0,n) {
    double v, bv = 0;
   FOR(r,i,n) FOR(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
     FOR(j,i,n) if (fabs(b[j]) > eps) return -1;
     break;
    swap(A[i], A[br]);
   swap(b[i], b[br]);
    swap(col[i], col[bc]);
   FOR(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
   FOR(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[i] -= fac * b[i];
     FOR(k,i,m) A[j][k] -= fac*A[i][k];
   rank++;
 x.assign(m, 0);
 for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   FOR(j,0,i) b[j] \rightarrow A[j][i] * b[i];
 return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}(n^2m)$

```
typedef bitset<1000> bs;

int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
  int n = sz(A), rank = 0, br;
  assert(m <= sz(x));
  vi col(m); iota(all(col), 0);</pre>
```

```
for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
  if (br == n) {
    FOR(j,i,n) if(b[j]) return -1;
  int bc = (int)A[br]._Find_next(i-1);
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  FOR(j,0,n) if (A[j][i] != A[j][bc]) {
    A[j].flip(i); A[j].flip(bc);
  FOR(j,i+1,n) if (A[j][i]) {
    b[i] ^= b[i];
    A[j] ^= A[i];
  rank++;
x = bs();
for (int i = rank; i--;) {
  if (!b[i]) continue;
  x[col[i]] = 1;
  FOR(j,0,i) b[j] ^= A[j][i];
return rank; // (multiple solutions if rank < m)
```

FFT.h

Description: Fast Fourier transform. Also includes a function for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. a and b should be of roughly equal size. For convolutions of integers, rounding the results of conv works if $(|a| + |b|) \max(a, b) < \sim 10^9$ (in theory maybe 10^6); you may want to use an NTT from the Number Theory chapter instead.

Time: $\mathcal{O}(N \log N)$

```
<valarray>
                                                           29 lines
typedef valarray<complex<double> > carray;
void fft(carray& x, carray& roots) {
 int N = sz(x);
 if (N <= 1) return;</pre>
 carray even = x[slice(0, N/2, 2)];
 carray odd = x[slice(1, N/2, 2)];
  carray rs = roots[slice(0, N/2, 2)];
  fft(even, rs);
  fft (odd, rs);
  rep(k, 0, N/2) {
    auto t = roots[k] * odd[k];
    x[k] = even[k] + t;
    x[k+N/2] = even[k] - t;
typedef vector<double> vd;
vd conv(const vd& a, const vd& b) {
 int s = sz(a) + sz(b) - 1, L = 32-_builtin_clz(s), n = 1 << L;
 if (s <= 0) return {};
 carray av(n), bv(n), roots(n);
  rep(i, 0, n) roots[i] = polar(1.0, -2 * M PI * i / n);
  copy(all(a), begin(av)); fft(av, roots);
  copy(all(b), begin(bv)); fft(bv, roots);
  roots = roots.apply(conj);
  carray cv = av * bv; fft(cv, roots);
  vd c(s); rep(i,0,s) c[i] = cv[i].real() / n;
  return c;
```

FFTIntegers.h

Determinant Modular Arithmetic ModInverse ModPow ModSum ModMulLL

```
Description: NTT
Time: \mathcal{O}(N \log N)
                                                             63 lines
LL fpw(LL a, LL b, LL p) {
    LL r = 1; while(b){if(b&1) r=r*a%p; a=a*a%p; b/=2;} return
        r;
const LL MOD = 2013265921; const LL ROOT = 440564289; // MOD ==
     15*(1<<27)+1 \ (prime)
vector<LL> e, er;
     has order 2^27
void FFT(vector<int> &x, LL d = 1) {
  int n = x.size();
  if(n != e.size()){
    e.resize(n); er.resize(n);
    e[0] = 1; e[1] = fpw(ROOT, (1 << 27)/n, MOD);
   er[0] = 1; er[1] = fpw(e[1], MOD-2, MOD);
   rep(i,2,n) e[i] = e[i-1] * e[1] % MOD;
    rep(i, 2, n) er[i] = er[i-1] * er[1] % MOD;
  if(d == -1) swap(e, er);
  rep(i,0,n){
    int j=0; for(int k=1; k<n; k<<=1, j<<=1) if(k&i) j++;</pre>
         haxy i cheetosy
    j>>=1; if(i<j) swap(x[i], x[j]);
         haxy i cheetosy
  int k=0;
  while((1<<k)<n) k++;
  for(int s=1; s<n; s<<=1) {</pre>
   --k;
    for(int i=0; i<n; i+=2*s) rep(j,0,s){</pre>
     LL u = x[i+j], v = x[i+j+s]*e[j<< k]%MOD;
     x[i+j] = u+v-(u+v>=MOD?MOD:0);
     x[i+j+s] = u-v+(u-v<0?MOD:0);
  if(d == -1) swap(e, er);
vector<int> convolution(vector<int> a, vector<int> b) {
  int n = 1; while (n < (int) \max(a.size(), b.size())) n *= 2;
  n \neq 2; a.resize(n); b.resize(n);
  FFT(a); FFT(b); rep(i,0,n) a[i] = (LL)a[i]*b[i]%MOD*fpw(n,MOD
       -2, MOD) % MOD; FFT(a, -1);
  return a;
//2**13 : 8192 16384 32768
vector<int> Mult(vector<int> a, vector<int> b) {
  int exponent = 11; //change so that M/2^exp is as small as
       possible
  int sqrt2 = 1 << (exponent);</pre>
  int mod = le9 + 7; //has to be smaller than mod from ntt
  vector<int> a1(a.size()), a2(a.size()), b1(b.size()), b2(b.
       size()):
  for(int i = 0; (int) i < a.size(); ++i) {</pre>
   a2[i] = a[i]/sqrt2; a1[i] = a[i]%sqrt2;
  for(int i = 0; (int) i < b.size(); ++i) {</pre>
   b2[i] = b[i]/sqrt2; b1[i] = b[i]%sqrt2;
  vector < int > alb1 = convolution(al,b1), alb2 = convolution(al,
      b2), a2b1 = convolution(a2,b1), a2b2 = convolution(a2,b2)
       );
  vector<int> ans(alb1.size());
  for(int i = 0; i < (int) alb1.size(); ++i) {</pre>
```

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
 int n = sz(a); double res = 1;
 rep(i,0,n) {
    int b = i:
    rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
    rep(j,i+1,n) {
      double v = a[j][i] / a[i][i];
     if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];
 return res;
const 11 mod = 1000000009;
11 det(vector<vector<11>>& a) {
 int n = sz(a); 11 ans = 1;
 rep(i,0,n) {
    rep(j,i+1,n) {
      while (a[j][i] != 0) { // gcd step}
       ll t = a[i][i] / a[j][i];
       if (t) rep(k,i,n)
         a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans \star = -1;
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
  return (ans + mod) % mod;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
11 x, y, g = euclid(a.x, mod, x, y);
   assert(g == 1); return Mod((x + mod) % mod);
}
Mod operator^(l1 e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
}
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

const 11 mod = 1000000007; // faster if const
11 modpow(11 a, 11 e) {
 if (e == 0) return 1;
 11 x = modpow(a * a % mod, e >> 1);
 return e & 1 ? x * a % mod : x;
}

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

21 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (k) {
   ull to2 = (to * k + c) / m;
    res += to * to2;
   res -= divsum(to2, m-1 - c, m, k) + to2;
 return res;
11 modsum(ull to, 11 c, 11 k, 11 m) {
 c %= m;
 k %= m;
 if (c < 0) c += m;
 if (k < 0) k += m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for large c.

Time: $\mathcal{O}\left(64/bits \cdot \log b\right)$, where bits = 64 - k, if we want to deal with k-bit numbers.

```
typedef unsigned long long ull;
const int bits = 10;
// if all numbers are less than 2^k, set bits = 64-k
const ull po = 1 << bits;
ull mod_mul(ull a, ull b, ull &c) {
  ull x = a * (b & (po - 1)) % c;
  while ((b >>= bits) > 0) {
    a = (a << bits) % c;
}</pre>
```

ModSqrt eratosthenes MillerRabin factor euclid phiFunction chinese

```
x += (a * (b & (po - 1))) % c;
}
return x % c;
}
ull mod_pow(ull a, ull b, ull mod) {
   if (b == 0) return 1;
   ull res = mod_pow(a, b / 2, mod);
   res = mod_mul(res, res, mod);
   if (b & 1) return mod_mul(res, a, mod);
   return res;
}
```

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. **Time:** $\mathcal{O}(\log^2 p)$ worst case, often $\mathcal{O}(\log p)$

```
11 sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1);
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} or 2^{(n+3)/8} * 2^{(n-1)/4} works if p \% 8 == 5
  11 s = p - 1;
  int r = 0;
  while (s % 2 == 0)
   ++r, s /= 2;
  11 n = 2; // find a non-square mod p
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  11 b = modpow(a, s, p);
 11 q = modpow(n, s, p);
  for (;;) {
   11 t = b;
   int m = 0:
   for (; m < r; ++m) {
     if (t == 1) break;
     t = t * t % p;
   if (m == 0) return x;
   11 gs = modpow(g, 1 << (r - m - 1), p);
   q = qs * qs % p;
   x = x * qs % p;
   b = b * g % p;
   r = m:
```

5.2 Primality

eratosthenes.h

Description: Prime sieve for generating all primes up to a certain limit. is prime [i] is true iff i is a prime.

Time: $\lim_{m \to \infty} 100'000'000 \approx 0.8 \text{ s}$. Runs 30% faster if only odd indices are stored.

```
const int MAX_PR = 5000000;
bitset<MAX_PR> isprime;
vi eratosthenes_sieve(int lim) {
  isprime.set(); isprime[0] = isprime[1] = 0;
  for (int i = 4; i < lim; i += 2) isprime[i] = 0;
  for (int i = 3; i*i < lim; i += 2) if (isprime[i])
    for (int j = i*i; j < lim; j += i*2) isprime[j] = 0;
  vi pr;
  rep(i,2,lim) if (isprime[i]) pr.push_back(i);
  return pr;
}
```

MillerRabin.h

"ModMulLL.h"

Description: Miller-Rabin primality probabilistic test. Probability of failing one iteration is at most 1/4. 15 iterations should be enough for 50-bit numbers.

Time: 15 times the complexity of $a^b \mod c$.

```
bool prime(ull p) {
   if (p == 2) return true;
   if (p == 1 || p % 2 == 0) return false;
   ull s = p - 1;
   while (s % 2 == 0) s /= 2;
   rep(i,0,15) {
      ull a = rand() % (p - 1) + 1, tmp = s;
      ull mod = mod_pow(a, tmp, p);
      while (tmp != p - 1 && mod != 1 && mod != p - 1) {
        mod = mod_mul(mod, mod, p);
        tmp *= 2;
      }
      if (mod != p - 1 && tmp % 2 == 0) return false;
    }
   return true;
}
```

factor.h

Description: Pollard's rho algorithm. It is a probabilistic factorisation algorithm, whose expected time complexity is good. Before you start using it, run init (bits), where bits is the length of the numbers you use. to get factor multiple times, uncomment comments with (*)

Time: Expected running time should be good enough for 50-bit numbers.

```
"MillerRabin.h", "eratosthenes.h", "euclid.h"
vector<ull> pr:
ull f(ull a, ull n, ull &has) {
 return (mod_mul(a, a, n) + has) % n;
vector<ull> factor(ull d) {
 vector<ull> res;
 for (size_t i = 0; i < pr.size() && pr[i]*pr[i] <= d; i++)</pre>
   if (d % pr[i] == 0) {
     while (d % pr[i] == 0) /*{ */ d /= pr[i];
     res.push back(pr[i]); /*} (*)*/
 //d is now a product of at most 2 primes.
 if (d > 1) {
   if (prime(d))
     res.push back(d);
    else while (true) {
     ull has = rand() % 2321 + 47;
     ull x = 2, y = 2, c = 1;
     for (; c==1; c = gcd((y > x ? y - x : x - y), d)) {
       x = f(x, d, has);
       y = f(f(y, d, has), d, has);
     if (c != d) {
       res.push back(c); d /= c;
       if (d != c /* || true (*)*/) res.push_back(d);
       break:
 return res;
void init(int bits) {//how many bits do we use?
 vi p = eratosthenes_sieve(1 << ((bits + 2) / 3));</pre>
 pr.resize(p.size());
 for (size_t i=0; i<pr.size(); i++)</pre>
   pr[i] = p[i];
```

5.3 Divisibility

euclid.h

Description: Finds the Greatest Common Divisor to the integers a and b. Euclid also finds two integers x and y, such that $ax + by = \gcd(a, b)$. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
11 gcd(l1 a, l1 b) { return __gcd(a, b); }
11 euclid(l1 a, l1 b, l1 &x, l1 &y) {
   if (b) { l1 d = euclid(b, a % b, y, x);
     return y -= a/b * x, d; }
   return x = 1, y = 0, a;
}
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's totient or Euler's phi function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. The cototient is $n - \phi(n)$. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) = (p_1 - 1)p_1^{k_1 - 1} ... (p_r - 1)p_r^{k_r - 1}$. $\phi(n) = n \cdot \prod_{p|n} (1 - 1/p)$.

 $\sum_{d|n} \phi(d) = n, \sum_{1 \le k \le n, \gcd(k,n) = 1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

const int LIM = 5000000; int phi[LIM]; void calculatePhi() { rep(i,0,LIM) phi[i] = i&1 ? i : i/2; for(int i = 3; i < LIM; i += 2)</pre>

10 lines

5.4 Chinese remainder theorem

for (int j = i; j < LIM; j += i)

chinese.h

Description: Chinese Remainder Theorem.

(phi[j] /= i) *= i-1;

chinese(a, m, b, n) returns a number x, such that $x \equiv a \pmod m$ and $x \equiv b \pmod n$. For not coprime n, m, use chinese_common. Note that all numbers must be less than 2^{31} if you have Z = unsigned long long.

Time: $\log(m+n)$

if(phi[i] == i)

```
"euclid.h"

template <class Z> Z chinese(Z a, Z m, Z b, Z n) {
    Z x, y; euclid(m, n, x, y);
    Z ret = a * (y + m) % m * n + b * (x + n) % n * m;
    if (ret >= m * n) ret -= m * n;
    return ret;
}
```

intperm derangements

template <class Z> Z chinese_common(Z a, Z m, Z b, Z n) { Z d = gcd(m, n); if (((b -= a) %= n) < 0) b += n; if (b % d) return -1; // No solution return d * chinese(Z(0), m/d, b/d, n/d) + a; }</pre>

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000.$

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Combinatorial (6)

6.1 The Twelvefold Way

Counts the # of functions $f: N \to K$, |N| = n, |K| = k. The elements in N and K can be distinguishable or indistinguishable, while f can be injective (one-to-one) of surjective (onto).

N	K	none	injective	surjective
dist	dist	k^n	$\frac{k!}{(k-n)!}$	k!S(n,k)
indist	dist	$\binom{n+k-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
dist	indist	$ \sum_{t=0}^{k} S(n,t) $ $ \sum_{t=1}^{k} p(n,t) $	$[n \le k]$	S(n,k)
indist	indist	$\int_{t=1}^{k} p(n,t)$	$[n \leq k]$	p(n,k)

Here, S(n,k) is the Stirling number of the second kind, and p(n,k) is the partition number.

6.2 Permutations

6.2.1 Factorial

	1 2 3							
n!	1 2 6	24 1	20 72	0 504	0 403	320 36	2880 3	3628800
	11							
$\overline{n!}$	4.0e7	7 4.8e	8 6.26	9.8.7	e10 1	.3e12	2.1e13	3.6e14
n	20	25	30	40	50	100	150	171
$\overline{n!}$	2e18	2e25	3e32	8e47	3e64	9e157	6e262	2 >DBL_MA

intperm.h

Description: Permutations to/from integers. The bijection is order preserving.

Time: $\mathcal{O}(n^2)$ int factorial[] = {1, 1, 2, 6, 24, 120, 720, 5040}; // etc. template <class Z, class It> void perm to int (Z& val, It begin, It end) { **int** x = 0, n = 0; for (It i = begin; i != end; ++i, ++n) **if** (*i < *begin) ++x; if (n > 2) perm_to_int<Z>(val, ++begin, end); else val = 0; val += factorial[n-1]*x; /* range [begin, end) does not have to be sorted. */ template <class Z, class It> void int_to_perm(Z val, It begin, It end) { Z fac = factorial[end - begin - 1]; // Note that the division result will fit in an integer! int x = val / fac; nth element (begin, begin + x, end); swap(*begin, *(begin + x)); if (end - begin > 2) int_to_perm(val % fac, ++begin, end);

6.2.2 Cycles

Let the number of *n*-permutations whose cycle lengths all belong to the set S be denoted by $g_S(n)$. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.2.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left| \frac{n!}{e} \right|$$

derangements.h

Description: Generates the *i*:th derangement of S_n (in lexicographical order).

template <class T, int N>

```
struct derangements {
 T dgen[N][N], choose[N][N], fac[N];
 derangements() {
    fac[0] = choose[0][0] = 1;
    memset (dgen, 0, sizeof(dgen));
    rep(m, 1, N) {
      fac[m] = fac[m-1] * m;
      choose[m][0] = choose[m][m] = 1;
        choose[m][k] = choose[m-1][k-1] + choose[m-1][k];
 T DGen(int n, int k) {
    T ans = 0;
    if (dgen[n][k]) return dgen[n][k];
    rep(i, 0, k+1)
      ans += (i&1?-1:1) * choose[k][i] * fac[n-i];
    return dgen[n][k] = ans;
  void generate(int n, T idx, int *res)
    int vals[N];
    rep(i,0,n) vals[i] = i;
    rep(i,0,n) {
      int j, k = 0, m = n - i;
      rep(j,0,m) if (vals[j] > i) ++k;
      rep(j,0,m)
        T p = 0;
        if (vals[j] > i) p = DGen(m-1, k-1);
        else if (vals[j] < i) p = DGen(m-1, k);
        if (idx <= p) break;</pre>
        idx -= p;
      res[i] = vals[j];
      memmove(vals + j, vals + j + 1, sizeof(int)*(m-j-1));
};
```

6.2.4 Involutions

An involution is a permutation with maximum cycle length 2, and it is its own inverse.

$$a(n) = a(n-1) + (n-1)a(n-2)$$
$$a(0) = a(1) = 1$$

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152

6.2.5 Stirling numbers of the first kind

$$s(n,k) = (-1)^{n-k}c(n,k)$$

c(n,k) is the unsigned Stirling numbers of the first kind, and they count the number of permutations on n items with k cycles.

$$s(n,k) = s(n-1,k-1) - (n-1)s(n-1,k)$$
$$s(0,0) = 1, s(n,0) = s(0,n) = 0$$

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k)$$
$$c(0,0) = 1, c(n,0) = c(0,n) = 0$$

6.2.6 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t.

$$\pi(j) > \pi(j+1), k+1$$
 j:s s.t. $\pi(j) \ge j, k$ j:s s.t. $\pi(j) > j.$

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.2.7 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.3 Partitions and subsets

6.3.1 Partition function

Partitions of n with exactly k parts, p(n, k), i.e., writing n as a sum of k positive integers, disregarding the order of the summands.

$$p(n,k) = p(n-1,k-1) + p(n-k,k)$$
$$p(0,0) = p(1,n) = p(n,n) = p(n,n-1) = 1$$

For partitions with any number of parts, p(n) obeys

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

binomial binomialModPrime RollingBinomial multinomial

6.3.2 Binomials

binomial.h

Description: The number of *k*-element subsets of an *n*-element set, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Time:
$$\mathcal{O}(\min(k, n - k))$$
 6 lines

11 choose(int n, int k) {
 11 c = 1, to = min(k, n-k);
 if (to < 0) return 0;
 rep(i,0,to) c = c * (n - i) / (i + 1);
 return c;
}

binomialModPrime.h

Description: Lucas' thm: Let n,m be non-negative integers and p a prime. Write $n=n_kp^k+\ldots+n_1p+n_0$ and $m=m_kp^k+\ldots+m_1p+m_0$. Then $\binom{n}{m}\equiv\prod_{i=0}^k\binom{n_i}{m_i}\pmod{p}$. fact and invfact must hold pre-computed factorials / inverse factorials, e.g. from ModInverse.h.

RollingBinomial.h

Description: $\binom{n}{k}$ (mod m) in time proportional to the difference between (n, k) and the previous (n, k).

```
const 11 mod = 1000000007;
vector<11> invs; // precomputed up to max n, inclusively
struct Bin {
  int N = 0, K = 0; 11 r = 1;
  void m(11 a, 11 b) { r = r * a % mod * invs[b] % mod; }
  11 choose(int n, int k) {
    if (k > n || k < 0) return 0;
    while (N < n) ++N, m(N, N-K);
    while (K < k) ++K, m(N-K+1, K);
    while (K > k) m(K, N-K+1), --K;
    while (N > n) m(N-K, N), --N;
    return r;
  }
};
```

multinomial.h Description: $\binom{\sum k_i}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1! k_2! \dots k_n!}$

Time: $\mathcal{O}((\sum k_i) - k_1)$ 11 multinomial(vi& v) {
 11 c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i])
 c = c * ++m / (j+1);
 return c;

6.3.3 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1, k-1) + kS(n-1, k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$$

6.3.4 Bell numbers

Total number of partitions of n distinct elements.

$$B(n) = \sum_{k=1}^{n} {n-1 \choose k-1} B(n-k) = \sum_{k=1}^{n} S(n,k)$$

$$B(0) = B(1) = 1$$

The first are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597. For a prime p

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.5 Triangles

Given rods of length $1, \ldots, n$,

$$T(n) = \frac{1}{24} \begin{cases} n(n-2)(2n-5) & n \text{ even} \\ (n-1)(n-3)(2n-1) & n \text{ odd} \end{cases}$$

is the number of distinct triangles (positive are) that can be constructed, i.e., the # of 3-subsets of [n] s.t. $x \le y \le z$ and $z \ne x + y$.

EulerianCycle SCC 2sat

6.4 General purpose numbers

6.4.1 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$
$$C_{n+1} = \frac{2(2n+1)}{n+2} C_n$$

$$C_0 = 1, C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

First few are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900.

- # of monotonic lattice paths of a $n \times n$ -grid which do not pass above the diagonal.
- # of expressions containing n pairs of parenthesis which are correctly matched.
- # of full binary trees with with n+1 leaves (0 or 2 children).
- # of non-isomorphic ordered trees with n+1 vertices
- # of ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- # of permutations of [n] with no three-term increasing subsequence.

6.4.2 Super Catalan numbers

The number of monotonic lattice paths of a $n \times n$ -grid that do not touch the diagonal.

$$S(n) = \frac{3(2n-3)S(n-1) - (n-3)S(n-2)}{n}$$
$$S(1) = S(2) = 1$$

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859

6.4.3 Motzkin numbers

Number of ways of drawing any number of nonintersecting chords among n points on a circle. Number of lattice paths from (0,0) to (n,0) never going below the x-axis, using only steps NE, E, SE.

$$M(n) = \frac{3(n-1)M(n-2) + (2n+1)M(n-1)}{n+2}$$

M(0) = M(1) = 1

 $1,\,1,\,2,\,4,\,9,\,21,\,51,\,127,\,323,\,835,\,2188,\,5798,\,15511,\,41835,\\113634$

6.4.4 Narayana numbers

Number of lattice paths from (0,0) to (2n,0) never going below the x-axis, using only steps NE and SE, and with k peaks.

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$$
$$N(n,1) = N(n,n) = 1$$
$$\sum_{k=0}^{n} N(n,k) = C_n$$

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50

6.4.5 Schröder numbers

Number of lattice paths from (0,0) to (n,n) using only steps N,NE,E, never going above the diagonal. Number of lattice paths from (0,0) to (2n,0) using only steps NE, SE and double east EE, never going below the x-axis. Twice the Super Catalan number, except for the first term. 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098

Graph (7)

Eulerian Cycle.h

Time: $\mathcal{O}(E)$

Description: returns de eulerian cycle/tour starting at u, cycle is in reverse order. If its a tour it must start at a vertex with odd degree. It is common to add edges between odd vertex to find a pseudo euler tour.

Usage: Call find cycle with a vertex where a eulerian tour/cycle is possible, when adding edges make sure that two vertex have the same edge iff it is undirected.

```
typedef vector<int> vi;
struct edge{
  int u, v;
  bool used;
};

void Eulerdfs(int u, vi &nxt, vi &Euler, vector<edge> &E, const
      vector<vi> &adj) {
  while(nxt[u] < adj[u].size()) {
    int go = adj[u][nxt[u]++];
    if(!E[go].used) {
      E[go].used = 1;
    int to = (E[go].u ^ E[go].v ^ u);
      Eulerdfs(to, nxt, Euler, E, adj);
    }
} Euler.push_back(u);</pre>
```

```
vi Eulerian(int u, vector<edge> &E, const vector<vi> &adj) {
  vi nxt (adj.size(),0);
  vi Euler;
  Eulerdfs(u, nxt, Euler, E, adj);
  reverse(Euler.begin(), Euler.end());
  return Euler;
}
```

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

 $\begin{tabular}{ll} \textbf{Use addedge to addedges in a directed graph (will also add reverse edges), after calling Kosaraju comp will save the component number of each vertex ordered by topological order. \\ \end{tabular}$

```
Time: \mathcal{O}(E+V)
const int MAXN = 100010;
stack<int> st;
int m[MAXN], comp[MAXN];
vector<int> adj[2][MAXN];
int c = 0;
void addedge(vector<vector<int>> &adj, int u, int v) {
    adj[0][u].push back(v);
    adj[1][v].push_back(u);
void dfs(int u, int t, vector<int>& m) {
    m[u] = 1;
    for(int v : adj[t][u]) if(!m[v]) dfs(v,t);
    if(t) comp[u] = c;
    else st.push(u);
void kosaraju(int n) {
    vector<int> m(n,0);
    for(int i = 0; i < n; ++i) if(!m[i]) dfs(i,0,m);</pre>
    m = vector<int>(n,0);
    for(;st.size();st.pop()) {
        int u = st.top();
        if(!m[u]) dfs(u,1), c++;
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(\sim x)$.

```
Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim3); // Var 0 is true or var 3 is false ts.set_value(2); // Var 2 is true ts.at_most_one(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars Time: \mathcal{O}(N+E) where N is the number of boolean variables and E is
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
  int N;
  vector<vi> gr;
  vi values; // 0 = false, 1 = true

TwoSat(int n = 0) : N(n), gr(2*n) {}

int add_var() { // (optional)}
  gr.emplace_back();
  gr.emplace_back();
```

BiconnectedComponents MinimalArborescence BinaryJumps LinkCutTree

```
return N++;
  void either(int f, int j) {
   f = (f >= 0 ? 2*f : -1-2*f);
   j = (j >= 0 ? 2*j : -1-2*j);
   gr[f^1].push_back(j);
   gr[j^1].push_back(f);
  void set value(int x) { either(x, x); }
  void at_most_one(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = \simli[0]:
    rep(i,2,sz(li)) {
     int next = add var();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = ~next;
   either(cur, ~li[1]);
  vi val, comp, z: int time = 0:
  int dfs(int i) {
   int low = val[i] = ++time, x; z.push back(i);
   trav(e, gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    ++time:
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = time;
     if (values[x>>1] == -1)
       values[x>>1] = !(x&1);
    } while (x != i);
    return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1;
};
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph. In a biconnected component there are at least two distinct paths between any two nodes. A node can be in serveral or none components. if(true) at (*) creates pseudo bridge components. With these each node has at least one component and a node is an articulation point iff it has > 1 components. A bridge is not part of any cycle. To find biconnected components, which contain articulation points (see windmill graph), run without (*) and join all components of nodes, which are in more than one component, using union find and create new component for nodes without components. Then the components form a tree.

```
Time: \mathcal{O}(E+V)
                                                             34 lines
vi num, st;
// TODO: resize and fill adj
vector<vi> adj, comps; // comps[i]: Components of node i
11 Time, C; // C: number of components
```

```
11 dfs(ll at, ll par) {
 11 me = num[at] = ++Time, top = me;
  st.push_back(at);
 bool first = true; // for detecting multi edges
```

```
for(auto y: adj[at]) {
   if(y == par && first) { first = false; continue; }
    if (num[y]) {
     top = min(top, num[y]);
   } else {
     11 si = sz(st);
     11 \text{ up} = dfs(y, at);
     top = min(top, up);
     if (up >= me) {
       if (up == me) { // (*) if (true) for bridge components
         FOR(p, si, sz(st)) comps[st[p]].push_back(C);
         comps[at].push_back(C++);
       st.resize(si);
     if (up > me) { /*e is a bridge*/
 return top;
void bicomps() {
 num.assign(sz(adj), 0); C = 0;
 comps.clear(); comps.resize(sz(adj));
 FOR(i, 0, sz(adj)) if (!num[i]) dfs(i, -1);
```

Minimal Arborescence.h

pred[R] = -1;

res += m;

FOR(i, 0, N) {

if (i == R || del[i]) continue;

FOR(j, 0, sz(from[i])) {

from[i][j].second -= m;

Description: Computes a minimal spanning tree in a directed graph from a root under the condition, that it exists. Set the values marked with TODO. Algo changes N and from!

```
Time: \mathcal{O}(n \log n)
int N, R; // TODO number of nodes and number of root
vector<pii> from[2*MAXN]; // TODO for each node list of (
     predecessor, cost)
int pred[2*MAXN], label[2*MAXN];
bool del[2*MAXN];
bool cycle(int n, int p) {
  if (label[n] == 2) return false;
  if (label[n] == 1) {
    label[n] = -1;
    return true;
  label[n] = 1;
  if (cycle(pred[n], n)) {
    if (label[n] == 1) {
      label[n] = -1;
    } else if (p != -1) {
      label[p] = 2;
    return true;
  } else {
    label[n] = 2;
    return false;
int rek() {
  int res = 0;
```

FOR(j, 0, sz(from[i])) m = min(m, from[i][j].second);

if (from[i][j].second == 0) pred[i] = from[i][j].first;

```
FOR(i, 0, N) label[i] = 0;
 label[R] = 2;
 FOR(i, 0, N) {
   if (del[i] || label[i] == 2) continue;
   if (cycle(i, -1)) {
     FOR(j, 0, N) {
       if (del[j]) continue;
       if (label[i] == -1)
         FOR(k, 0, sz(from[j])) if (label[from[j][k].first] !=
               -1)
           from[N].pb(from[i][k]);
          from[j].clear();
         del[i] = true;
       } else {
          FOR(k, 0, sz(from[j])) if (label[from[j][k].first] ==
            from[j][k].first = N;
      del[N++] = false;
      return res + rek();
 return res:
int min arbor() {
 FOR(i, 0, N) del[i] = false;
 return rek();
```

BinaryJumps.h

};

Description: Computes lca with binaryjumps. Insert nodes in dfs preorder. NODES MUST BE 1 INDEXED! (or add 1 to the parameters in each function here)

```
Time: \mathcal{O}(n \log n)
                                                            29 lines
const 11 maxN = 201005; // TODO
const 11 MAXLOG = 20; // TODO: (1 << MAXLOG) > maxN
struct BinaryLifting {
 11 BL[maxN][MAXLOG];
 11 D[maxN];
 void init(ll root) { D[root] = 1; }
 void insert(ll n, ll par) {
   D[n] = D[par] + 1;
    BL[n][0] = par;
    FOR(j, 1, MAXLOG) BL[n][j] = BL[BL[n][j-1]][j-1];
 ll lift(ll node, ll h) {
   11 \text{ cnt} = 0;
    while(h) {
      if(h&1) node = BL[node][cnt];
      cnt++; h >>= 1;
    return node;
  int lca(int a, int b) {
    if(D[a] > D[b]) swap(a, b);
    FORD(i, 0, MAXLOG) if(D[BL[b][i]] >= D[a]) b = BL[b][i];
    if(a == b) return a;
    FORD(i, 0, MAXLOG) if(BL[a][i] != BL[b][i])
     a = BL[a][i], b = BL[b][i];
    return BL[a][0];
```

LengauerTarjan MaxFlow

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

```
Time: All operations take amortized \mathcal{O}(\log N).
```

96 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
  Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() \{ c[0] = c[1] = 0; fix(); \}
  void fix() {
   if (c[0]) c[0]->p = this;
   if (c[1]) c[1]->p = this;
   // (+ update sum of subtree elements etc. if wanted)
  void push_flip() {
   if (!flip) return;
    flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
   if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
   int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
   if (b < 2) {
     x - c[h] = y - c[h ^ 1];
     z \rightarrow c[h ^1] = b ? x : this;
    y - c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
   if (p) p->fix();
    swap(pp, y->pp);
  void splay() {
    for (push_flip(); p; ) {
     if (p->p) p->p->push_flip();
     p->push flip(); push flip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
  Node* first() {
   push_flip();
   return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut
  vector<Node> node;
  LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
   assert(!connected(u, v));
   make_root(&node[u]);
   node[u].pp = &node[v];
  void cut (int u, int v) { // remove \ an \ edge \ (u, \ v)
   Node *x = &node[u], *top = &node[v];
   make_root(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
    else {
     x->c[0] = top->p = 0;
     x->fix();
```

```
bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
 void make_root(Node* u) {
    access(u);
    u->splay();
    if(u->c[0]) {
      u - > c[0] - > p = 0;
      u - c[0] - flip ^= 1;
      u - c[0] - pp = u;
      u - > c[0] = 0;
      u->fix();
 Node* access(Node* u) {
   u->splav();
    while (Node* pp = u->pp) {
      pp \rightarrow splay(); u \rightarrow pp = 0;
      if (pp->c[1]) {
        pp - c[1] - p = 0; pp - c[1] - pp = pp; 
      pp->c[1] = u; pp->fix(); u = pp;
    return u;
};
```

LengauerTarjan.h

Description: Computes dominator tree of a directed graph from a root. Vertex A dominates B, if all possible paths from root to B go through A. Dominator tree contrains exactly one path root -> A -> B. initialize adjancy lists, call dominator_tree(r) with root r. Afterwards dom[i] is the parent of i in the dominator tree.

```
Time: \mathcal{O}((E+V) \cdot \log V)
vi adj[N], rev[N];
int dom[N], semi[N], par[N], node[N], anc[N], label[N];
stack<int> bucket[N];
void dfs(int n, int &cnt) {
 node[cnt] = n;
 semi[n] = cnt++;
  for (const auto &to : adj[n]) {
    if (semi[to] == -1) { par[to] = n; dfs(to, cnt); }
    rev[to].pb(n);
void compress(int n) {
  if (anc[anc[n]] != anc[n]) {
    compress(anc[n]);
    if (semi[label[anc[n]]] < semi[label[n]]) label[n] = label[</pre>
         anc[n]];
    anc[n] = anc[anc[n]];
int eval(int n) {
  if (anc[n] == n) return n;
  compress(n);
  return label[n];
void dominator_tree(int r) {
 FOR(i, 0, N) dom[i] = semi[i] = -1;
  int cnt = 0;
```

```
dfs(r, cnt);
FOR(i, 0, N) anc[i] = label[i] = i;
FORD(i, 1, cnt) {
  int n = node[i];
  FOR(i, 0, sz(rev[n])) semi[n] = min(semi[n], semi[eval(rev[
  bucket[node[semi[n]]].push(n);
  anc[n] = par[n];
  while (!bucket[par[n]].empty()) {
    int m = bucket[par[n]].top();
    bucket[par[n]].pop();
    int u = eval(m);
    dom[m] = (semi[u] < semi[m]) ? u : par[n];
FOR(i, 1, cnt) {
  int n = node[i];
  if (dom[n] != node[semi[n]]) dom[n] = dom[dom[n]];
FOR(i, 0, N) rev[i].clear();
```

MaxFlow.h

Description: Returns maximum flow.

if (u == t) return bot;

int e = adj[u][act[u]];

Usage: To obtain a cut in the mincut problem one must bfs
from the source. All the vertices reached from it using only
edges with capacity > 0 are in the same cut

Time: $\mathcal{O}\left(V^2*E\right)$ for general graphs. For unit capacities $\mathcal{O}\left(min(V^(2/3), E^(1/2))*E\right)$. For maximum matching $\mathcal{O}\left(E*sqrt(V)\right)$)(bipartite unit weighted graf). It is generally very

67 lines

```
typedef long long 11;
typedef vector<int> VI;
typedef vector<VI> VVI;
const 11 INF = 1000000000000000000LL;
#define VEI(w,e) ((E[e].u == w) ? E[e].v : E[e].u)
#define CAP(w,e) ((E[e].u == w) ? E[e].cap[0] - E[e].flow : E[e]
    ].cap[1] + E[e].flow)
#define ADD(w,e,f) E[e].flow += ((E[e].u == w) ? (f) : (-(f)))
struct Edge { int u, v; 11 cap[2], flow; };
VI d, act;
bool bfs(int s, int t, VVI& adj, vector<Edge>& E) {
  queue<int> Q;
  d = VI(adj.size(), -1);
  d[t] = 0;
  Q.push(t);
  while (not Q.empty()) {
    int u = Q.front(); Q.pop();
    for (int i = 0; i < int(adj[u].size()); ++i) {</pre>
      int e = adj[u][i], v = VEI(u, e);
      if (CAP(v, e) > 0 \text{ and } d[v] == -1) {
        d[v] = d[u] + 1;
        Q.push(v);
  return d[s] >= 0;
11 dfs(int u,int t,ll bot, VVI& adj, vector < Edge > & E) {
```

for (; act[u] < int(adj[u].size()); ++act[u]) {</pre>

MaxflowMinCap MaxflowMinCost

```
11 inc=dfs(VEI(u,e),t,min(bot,CAP(u,e)),adj,E);
      if (inc) {
       ADD(u, e, inc);
        return inc;
  return 0;
11 maxflow(int s, int t, VVI& adj, vector<Edge>& E) {
  for (int i=0; i<int(E.size()); ++i) E[i].flow = 0;</pre>
  11 flow = 0, bot;
  while (bfs(s, t, adj, E)) {
    act = VI(adj.size(), 0);
    while ((bot = dfs(s,t,INF, adj, E))) flow += bot;
  return flow;
void addEdge(int u, int v, VVI& adj, vector<Edge>& E, ll cap) {
  Edge e;
  e.u = u;
  e.v = v;
  e.cap[0] = cap;
  e.cap[1] = 0;
  e.flow = 0;
  adj[u].push_back(E.size());
  adj[v].push_back(E.size());
  E.push back(e);
MaxflowMinCap.h
Description: Normal maxflow but with minimum capacity in each edge
            \mathcal{O}\left(V^2*E\right) for general graphs.
                                              For unit capacities
O(min(V^{(2/3)}, E^{(1/2)}) * E)
                                                            108 lines
typedef long long 11;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<11> v11;
const 11 INF = 1000000000000000000LL;
#define VEI(w,e) ((E[e].u == w) ? E[e].v : E[e].u)
#define CAP(w,e) ((E[e].u == w) ? E[e].cap[0] - E[e].flow : E[e]
     ].cap[1] + E[e].flow)
#define ADD(w,e,f) E[e].flow += ((E[e].u == w) ? (f) : (-(f)))
struct Edge { int u, v; 11 cap[2], mincap, flow; };
vi d, act;
bool bfs(int s, int t, vvi& adj, vector<Edge>& E) {
  queue<int> Q;
  d = vi(adj.size(), -1);
  d[t] = 0;
  O.push(t);
  while (not Q.empty()) {
    int u = Q.front(); Q.pop();
    for (int i = 0; i < int(adj[u].size()); ++i) {</pre>
      int e = adj[u][i], v = VEI(u, e);
      if (CAP(v, e) > 0 \text{ and } d[v] == -1) {
       d[v] = d[u] + 1;
        Q.push(v);
```

if (CAP(u, e) > 0 and d[u] == d[VEI(u, e)] + 1) {

```
return d[s] >= 0;
ll dfs(int u,int t,ll bot,vvi& adj,vector<Edge>& E) {
 if (u == t) return bot;
  for (; act[u] < int(adj[u].size()); ++act[u]) {</pre>
    int e = adj[u][act[u]];
    if (CAP(u, e) > 0 and d[u] == d[VEI(u, e)] + 1) {
      11 inc=dfs(VEI(u,e),t,min(bot,CAP(u,e)),adj,E);
      if (inc) {
        ADD(u, e, inc);
        return inc;
  return 0;
ll maxflow(int s, int t, vvi& adj, vector<Edge>& E) {
  11 \text{ flow} = 0. \text{ bot};
  while (bfs(s, t, adj, E)) {
    act = vi(adi.size(), 0);
    while ((bot = dfs(s,t,INF, adj, E))) flow += bot;
  return flow;
void addEdge(int x,int y,ll c,ll m,vvi& adj,vector<Edge>& E) {
    Edge e;
    e.u = x:
    e.v = y;
    e.cap[0] = c - m;
    e.cap[1] = 0;
    e.mincap = m;
    adj[x].push_back(E.size());
    adj[y].push_back(E.size());
    E.push_back(e);
11 mincap(int s, int t, vvi& adj, vector<Edge>& E) {
    int n = adj.size();
    int m = E.size();
    vll C(n, 0);
    for (int i = 0; i < m; ++i) {
        C[E[i].u] -= E[i].mincap;
        C[E[i].v] += E[i].mincap;
    adj.push_back(vi(0));
    adj.push_back(vi(0));
    11 \text{ flowsat} = 0;
    for (int i = 0; i < n; ++i) {</pre>
        if (C[i] > 0) {
            addEdge(n, i, C[i], 0, adj, E);
            flowsat += C[i];
        else if (C[i] < 0) addEdge(i, n + 1, -C[i], 0, adj, E);</pre>
    addEdge(t, s, INF, 0, adj, E);
    for (int i = 0; i < (int)E.size(); ++i) E[i].flow = 0;</pre>
    if (flowsat != maxflow(n, n + 1, adj, E)) return -1;
    maxflow(s, t, adj, E);
    while ((int)E.size() > m) E.pop_back();
    adj.pop_back();
    adj.pop_back();
    for (int i = 0; i < n; ++i) {</pre>
        int j = (int)adj[i].size() - 1;
        while (j >= 0 and adj[i][j] >= m) {
            -- j;
             adj[i].pop_back();
```

```
11 \text{ flow} = 0;
for (int i = 0; i < m; ++i) {</pre>
    E[i].flow += E[i].mincap;
    if (E[i].u == s) flow += E[i].flow;
    else if (E[i].v == s) flow -= E[i].flow;
return flow;
```

MaxflowMinCost.h

Description: adj is and adjacency list, deg is the degree of the vertex. You shouldn't touch padre. w,cap are matrices, NOT LISTS!

```
typedef pair < 11, 11 > PLI;
const int INF = 2e9;
#define NN 505
#define pot(u,v) (pi[u]-pi[v])
int adj[NN][NN], deg[NN], padre[NN];
11 w[NN][NN], cap[NN][NN], pi[NN], d[NN], f[NN][NN], dist[NN];
11 flow, cost;
bool dijkstra(int s, int t) {
  memset (padre, -1, sizeof (padre));
  FOR(i,0,N) d[i] = INF;
  d[s] = 0;
  priority gueue<PLI> 0:
  O.push(PLI(0,s));
  while (not Q.empty()) {
    int u = 0.top().second;
    11 \text{ dist} = -0.\text{top}().\text{first};
    Q.pop();
    if (dist != d[u]) continue;
    FOR(i, 0, deg[u]) {
      int v = adj[u][i];
      if (f[u][v] \ge 0 and cap[u][v] - f[u][v] > 0 and
          d[v] > d[u] + pot(u,v) + w[u][v]) {
        d[v] = d[u] + pot(u,v) + w[u][v];
        Q.push(PLI(-d[v], v));
        padre[v] = u;
      else if (f[u][v] < 0 and d[v] > d[u] + pot(u,v) - w[v][u]
        d[v] = d[u] + pot(u,v) - w[v][u];
        Q.push (PLI (-d[v], v));
        padre[v] = u;
  FOR(i,0,N) if (pi[i] < INF) pi[i] += d[i];
  return padre[t] >= 0;
void maxmin(int s, int t) {
  memset(f, 0, sizeof(f));
  memset(pi, 0, sizeof(pi));
  flow = cost = 0;
  while (dijkstra(s, t)) {
    11 bot = INF;
    for (int v = t, u = padre[v]; u != -1; v = u, u = padre[u])
      if (f[u][v] \ge 0) bot = min(cap[u][v] - f[u][v], bot);
      else bot = min(f[v][u], bot);
    for (int v = t, u = padre[v]; u != -1; v = u, u = padre[u])
```

if (f[u][v] >= 0) cost += w[u][v]*bot;

StableMarriage MaxWeightBipartiteMatching globalmincut

Description: finds a max weight bipartite matching. hungarian() returns

MaxWeightBipartiteMatching.h

```
else cost -= w[v][u]*bot;
      f[u][v] += bot;
      f[v][u] -= bot;
    flow += bot;
void negative_edges(int s, int t) {
  for (int i = 0; i < N; ++i) dist[i] = INF;</pre>
  dist[s] = 0;
  for (int k = 0; k < N; ++k) {
    for (int x = 0; x < N; ++x) {
     for (int j = 0; j < deg[x]; ++j) {</pre>
        int y = adj[x][j];
        if (!cap[x][y]) continue;
        dist[y] = min(dist[x] + w[x][y], dist[y]);
  for (int x = 0; x < N; ++x) {
    for (int j = 0; j < deg[x]; ++j) {
      int y = adj[x][j];
     if (!cap[x][y]) continue;
     w[x][y] += dist[x] - dist[y];
  maxmin(s, t);
  cost += flow*dist[t];
StableMarriage.h
Description: findMatch finds a stable matching where the first groups is
prefered given the preference lists of two groups of persons
        prl[i] = preference list of person i (from 1. list)
(format A), pr2[i][j] = position in the preference list of
person j (from 1. list), in preference list of i (from 2.
list) (format B)
Time: \mathcal{O}(N^2)
                                                            28 lines
const int MAXN = 4 * 1024;
int pr1[MAXN][MAXN],pr2[MAXN][MAXN];
int match[MAXN]; // match[i]=partner of person i out of group 2
int res[MAXN]; // res[i]=partner of person i out of group 1
int id[MAXN];
int N;
void findMatch() {
  fill_n (match, N, -1);
  fill_n(id, N, 0);
  FOR (m, 0, N) {
    int cur = m;
    while (true) {
     int ot = pr1[cur][id[cur]];
     if (match[ot] == -1) {
       match[ot] = cur;
       break;
      if (pr2[ot][cur] < pr2[ot][match[ot]]) swap(match[ot],cur</pre>
          );
      id[cur]++;
  FOR(i, 0, N) res[match[i]] = i;
// convert preference list of format A to format B and in
int ranks[MAXN][MAXN]; // values to convert
int reranks[MAXN][MAXN]; // converted values
void convertRanklist() { FOR(i,0,N) FOR(j,0,N) reranks[i][ranks
```

 $[i][j]] = j; }$

```
the value of the max weight matching. xy contains for each vertex on the
left the corresponding node right, yx the other way around.
Usage: initialize cost matrix (profit of matching on of the N
left vertexes with one of the N right vertexes)
Time: \mathcal{O}(N^3)
                                                            68 lines
int cost[N][N];
int xy[N], yx[N];
int lx[N], ly[N];
bool tree[N];
int slack[N], pred[N];
void init_matching() {
  fill_n(xy, N, -1);
  fill_n(yx, N, -1);
  fill_n(lx, N, 0);
 fill_n(ly, N, 0);
  FOR(x, 0, N) FOR(y, 0, N) lx[x] = max(lx[x], cost[x][y]);
void init_tree() {
  fill n(tree, N, false);
  fill_n(pred, N, -1);
  FOR(x, 0, N) {
    if (xy[x] != -1) continue;
    tree[x] = true;
    FOR(y, 0, N) slack[y] = lx[x] + ly[y] - cost[x][y];
    break;
bool augment() {
  bool found = true;
  while (found) {
    found = false;
    FOR (y, 0, N)
      if (pred[y] != -1 || slack[y]) continue;
      found = true:
      FOR(x, 0, N) if (tree[x] && cost[x][y] == lx[x] + ly[y])
           pred[y] = x;
      if (yx[y] == -1) {
        while (y != -1) {
          yx[y] = pred[y];
          swap(y, xy[pred[y]]);
        return true;
      } else if (!tree[yx[y]]) {
        tree[vx[v]] = true;
        FOR (yy, 0, N) {
          int v = lx[yx[y]] + ly[yy] - cost[yx[y]][yy];
          slack[yy] = min(slack[yy], v);
  return false;
void update labels() {
  int delta = INT MAX;
  FOR(y, 0, N) if (pred[y] == -1) delta = min(delta, slack[y]);
  FOR(x, 0, N) if (tree[x]) lx[x] = delta;
  FOR(y, 0, N) if (pred[y] !=-1) ly[y] += delta; else slack[y]
        -= delta;
int hungarian() {
```

```
FOR(i, 0, N) {
   init_tree();
    while (!augment()) update_labels();
 int res = 0;
 FOR(x, 0, N) res += cost[x][xy[x]];
  return res;
globalmincut.h
Description: Given an adjacency matrix returns the global mincut and
the vertices of one of the cuts.
Time: \mathcal{O}(V^3)
                                                          84 lines
 * If you dont need the cut you can eliminate every thing with
      this coment "// *******"
 *Explanation of algorithm:
 * -getting the mincut value: it does n-1 iterations. In each
      iteration it starts by a vertex (random) as set A.
 * then it iterates until only two vertices are left by adding
       to set A the most tightly connected vertex to A (vertex
 * it insert this vertex to A. When only two vertices are left
      , the mincut between those two is the weight W of the
      edges between
   the last vertex and A. mincut = min(mincut, W)
   We then merge the two last vertices and start again.
 * -qetting the cut: basically when we merge two nodes we
      merge them with mfset. When we obtain a new best mincut
      value, a cut
 * is represented buy the nodes in the same component as the
// Maximum number of vertices in the graph
#define NN 256
// Maximum edge weight (MAXW * NN * NN must fit into an int)
#define MAXW 1000
// Adjacency matrix and some internal arrays
int v[NN], w[NN];
bool a[NN];
int pare[NN]; // ********
int par (int b) { // ********
 if (pare[b] == b) return b;
 pare[b] = par(pare[b]);
 return pare[b];
inline void merge (int b, int c) { // *********
 pare[par(b)] = par(c);
pair < int, vi > minCut(vvi& q, int n) {
 int n1 = n;
  // init the remaining vertex set
 for (int i = 0; i < n; i++) {
   v[i] = i;
    pare[i] = i; // *******
  // run Stoer-Wagner
 int best = MAXW * n * n;
 vi cut; // *******
  while (n > 1) {
    // initialize the set A and vertex weights
    a[v[0]] = true;
```

init_matching();

for (int i = 1; i < n; i++) {</pre> a[v[i]] = false; w[i] = q[v[0]][v[i]];// add the other vertices int prev = v[0]; for (int i = 1; i < n; i++) { // find the most tightly connected non-A vertex int zj = -1;for (int j = 1; j < n; j++) **if** (!a[v[j]] && (zj < 0 || w[j] > w[zj])) zj = j;// add it to A a[v[zj]] = true; // last vertex? **if** (i == n - 1) { // remember the cut weight **if** (best > w[zj]) { best = w[zj];cut.clear(); // ****** for (int ko = 0; ko < n1; ko++) if (par(ko) == par(v[zj])) cut.push_back(ko); // ****** // merge prev and v[zj]merge(prev, v[zj]); // *********

g[v[j]][prev] = g[prev][v[j]] += g[v[zj]][v[j]];

Karp's Minimum Mean Cycle

// update the weights of its neighbours

if (!a[v[j]]) w[j] += g[v[zj]][v[j]];

for (int j = 0; j < n; j++)

for (int j = 1; j < n; j++)

v[zj] = v[--n];

break;

prev = v[zi];

return {best, cut};

```
1. Initialize: d_0(r) = 0 and \forall v \in V - \{r\}, d_0(v) = \infty.
```

2. For i = 1 to n:

— For every $v \in V$ calculate:

$$--- d_i(v) = \min_{u:(u,v)\in E} = \{d_{i-1}(u) + c((u,v))\}$$

Optim = $\min_{v \in V} \max_{0 \le k \le n-1} \left\{ \frac{d_n(v) - d_k(v)}{n-k} \right\}$

7.2 Planar Graphs

Formula Euler: v-e+f=2

Theorem 1: If v >= 3 then e <= 3v - 6.

Theorem 2: If v > 3 and there are no cycles of length 3, then $e \leq 2v - 4$.

Bipartite Graphs

let G = (V,E) be a Bipartite graph, we will call each part L and R respectively.

Point lineDistance SegmentDistance SegmentIntersection

Maximum Matching is equal to Minimum Vertex Cover, to get the nodes in the MVC we choose the unmatched vertices of L and run a BFS/DFS in the graph with edges in the matching directed from R to L, and edges not in the matching directed from L to R. Let's all this Z, now MVC = $(L \setminus Z) \cup (R \cap Z)$.

The **Minimum Edge Cover** is obtained by doing a Maximum Matching, Then run a BFS/DFS from unmatched vertices of L, the MEC is the unreachable vertices of A and reachable vertices of B.

The Maximum Independent Set is the complementary of the Minimum Vertex Cover

7.3.1 DAG

The **Minimum Path Cover** is given by the edges in the MM of the bipartite graph after doubling the vertices.

7.4 ASSP: Johnson Algorithm

We have a sparse graph with, possibly, negative edges. We want to compute the all-pairs shortest path. Floyd Warshall may be too slow.

Algorithm:

- 1) A new node q is added to the graph, connected by zero-weight edges to each of the other nodes.
- 2) Bellman–Ford algorithm is used, starting from the new vertex q, to find for each vertex v the minimum weight h(v) of a path from q to v.

If this step detects a negative cycle, the algorithm is terminated as the shortest-path is undefined.

- 3) edges of the original graph are reweighted using the values computed by the Bellman–Ford algorithm: an edge from u to v, having length w(u,v), is given by the new length w(u,v) + h(u) - h(v).
- 4) q is removed, and Dijkstra's algorithm is used to find the shortest paths from each node s to every other vertex in the reweighted graph.
- 5) Dijkstra from every node. The shortest path in this new graph is the same as in the initial graph although it's weight changes.

The idea is to do dijkstra by storing "weight in new graph" and "weight in old graph" sorting by the first one.

Geometry (8)

Geometric primitives

Point.h

template <class T>

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
struct Point {
 typedef Point P;
 explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
 P operator+(P p) const { return P(x+p.x, y+p.y); }
 P operator-(P p) const { return P(x-p.x, y-p.y); }
 P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this);
 T dist2() const { return x*x + y*y; }
 double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
 // returns point rotated 'a' radians ccw around the origin
 P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
};
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance.


```
template <class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
```

```
SegmentDistance.h
```

Description:

Returns the shortest distance between point p and the line segment from point s to e.

```
Usage: Point < double > a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;</pre>
```


SegmentIntersection.h

SegmentIntersectionQ lineIntersection sideOf onSegment linearTransformation Angle CircleIntersection circleTangents

Description:

If a unique intersetion point between the line segments going from s1 to e1 and from s2 to e2 exists r1 is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists 2 is returned and r1 and r2 are set to the two ends of the common line. The wrong position e2 will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. Use segmentIntersectionQ to get just a true/false answer.


```
Usage: Point < double > intersection, dummy;
if (segmentIntersection(s1,e1,s2,e2,intersection,dummy) ==1)
cout << "segments intersect at " << intersection << endl;</pre>
```

```
template <class P>
int segmentIntersection(const P& s1, const P& e1,
   const P& s2, const P& e2, P& r1, P& r2) {
  if (e1==s1) {
   if (e2==s2) {
     if (e1==e2) { r1 = e1; return 1; } //all equal
      else return 0; //different point segments
    } else return segmentIntersection(s2,e2,s1,e1,r1,r2);//swap
  //segment directions and separation
  P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
  auto a = v1.cross(v2), a1 = v1.cross(d), a2 = v2.cross(d);
  if (a == 0) { //if \ parallel
    auto b1=s1.dot(v1), c1=e1.dot(v1),
        b2=s2.dot(v1), c2=e2.dot(v1);
    if (a1 || a2 || max(b1,min(b2,c2))>min(c1,max(b2,c2)))
     return 0:
    r1 = min(b2,c2) < b1 ? s1 : (b2 < c2 ? s2 : e2);
    r2 = max(b2,c2)>c1 ? e1 : (b2>c2 ? s2 : e2);
    return 2-(r1==r2);
  if (a < 0) { a = -a; a1 = -a1; a2 = -a2; }
  if (0<a1 || a<-a1 || 0<a2 || a<-a2)</pre>
   return 0;
  r1 = s1-v1*a2/a;
  return 1;
```

SegmentIntersectionQ.h.

Description: Like segmentIntersection, but only returns true/false. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

"Point.h" 16 lines template <class P> bool segmentIntersectionQ(P s1, P e1, P s2, P e2) { **if** (e1 == s1) { **if** (e2 == s2) **return** e1 == e2; swap(s1,s2); swap(e1,e2);P v1 = e1-s1, v2 = e2-s2, d = s2-s1;auto a = v1.cross(v2), a1 = d.cross(v1), a2 = d.cross(v2); **if** (a == 0) { // parallel auto b1 = s1.dot(v1), c1 = e1.dot(v1), b2 = s2.dot(v1), c2 = e2.dot(v1);return !a1 && max(b1,min(b2,c2)) <= min(c1,max(b2,c2));</pre> **if** (a < 0) { a = -a; a1 = -a1; a2 = -a2; } return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);

lineIntersection.h

Description:

If a unique intersetion point of the lines going through s1,e1 and s2.e2 exists r is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists -1 is returned. If s1==e1 or s2==e2 -1 is returned. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.


```
Usage: point < double > intersection;
if (1 == LineIntersection(s1,e1,s2,e2,intersection))
cout << "intersection point at " << intersection << endl;</pre>
                                                             9 lines
"Point.h"
```

```
template <class P>
int lineIntersection (const P& s1, const P& e1, const P& s2,
   const P& e2, P& r) {
 if ((e1-s1).cross(e2-s2)) { //if not parallell
   r = s2-(e2-s2)*(e1-s1).cross(s2-s1)/(e1-s1).cross(e2-s2);
    return 1:
  } else
    return -((e1-s1).cross(s2-s1)==0 || s2==e2);
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow$ left/on line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q)==1;
"Point.h"
                                                           11 lines
template <class P>
int sideOf(const P& s, const P& e, const P& p) {
  auto a = (e-s).cross(p-s);
  return (a > 0) - (a < 0);
template <class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
  auto a = (e-s).cross(p-s);
  double 1 = (e-s).dist()*eps;
  return (a > 1) - (a < -1);
```

onSegment.h

Description: Returns true iff p lies on the line segment from s to e. Intended for use with e.g. Point<long long> where overflow is an issue. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>.

```
"Point.h"
template <class P>
bool onSegment (const P& s, const P& e, const P& p) {
 P ds = p-s, de = p-e;
 return ds.cross(de) == 0 && ds.dot(de) <= 0;
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and

```
scaling) which takes line p0-p1 to line q0-q1 to point r.
"Point.h"
typedef Point < double > P;
P linearTransformation(const P& p0, const P& p1,
    const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
  return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
```

Angle.h

```
a number of rotations around the origin). Useful for rotational sweeping.
Usage: vector < Angle > v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) {
while (v[j] < v[i].t180()) ++j;
} // sweeps j such that (j-i) represents the number of
positively oriented triangles with vertices at 0 and i
                                                            37 lines
struct Angle {
  int x, y;
  int t;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle a) const { return {x-a.x, y-a.y, t}; }
  int quad() const {
    assert(x || y);
    if (y < 0) return (x >= 0) + 2;
    if (y > 0) return (x <= 0);
    return (x <= 0) * 2;
  Angle t90() const { return \{-y, x, t + (quad() == 3)\}; \}
  Angle t180() const { return \{-x, -y, t + (quad() \ge 2)\}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator < (Angle a, Angle b) {
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.guad(), a.y * (11)b.x) <</pre>
         make_tuple(b.t, b.quad(), a.x * (ll)b.y);
bool operator>=(Angle a, Angle b) { return !(a < b); }</pre>
bool operator>(Angle a, Angle b) { return b < a; }</pre>
bool operator<=(Angle a, Angle b) { return ! (b < a); }</pre>
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // where b is a vector
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (r > a.t180()) r.t--;
  return r.t180() < a ? r.t360() : r;</pre>
```

Description: A class for ordering angles (as represented by int points and

8.2 Circles

res

CircleIntersection.h

Description: Computes a pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
                                                           14 lines
typedef Point<double> P;
bool circleIntersection(P a, P b, double r1, double r2,
    pair<P, P>* out) {
  P delta = b - a;
  assert (delta.x || delta.y || r1 != r2);
  if (!delta.x && !delta.y) return false;
  double r = r1 + r2, d2 = delta.dist2();
  double p = (d2 + r1*r1 - r2*r2) / (2.0 * d2);
  double h2 = r1*r1 - p*p*d2;
  if (d2 > r*r \mid | h2 < 0) return false;
  P mid = a + delta*p, per = delta.perp() * sqrt(h2 / d2);
  *out = {mid + per, mid - per};
  return true;
```

circumcircle MinimumEnclosingCircle insidePolygon PolygonArea PolygonCenter PolygonCut ConvexHull PolygonDiameter PointInsideHull

circleTangents.h

Description:

Returns a pair of the two points on the circle with radius r second centered around c whos tangent lines intersect p. If p lies within the circle NaN-points are returned. P is intended to be Point<double>. The first point is the one to the right as seen from the p towards c.


```
Usage: typedef Point < double > P;
pair < P, P > p = circleTangents(P(100, 2), P(0, 0), 2);
```

```
template <class P>
pair<P,P> circleTangents(const P &p, const P &c, double r) {
 P a = p-c;
 double x = r*r/a.dist2(), y = sqrt(x-x*x);
 return make_pair(c+a*x+a.perp()*y, c+a*x-a.perp()*y);
```

circumcircle.h Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
"Point.h"
typedef Point <double > P;
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h"
pair<double, P> mec2(vector<P>& S, P a, P b, int n) {
  double hi = INFINITY, lo = -hi;
  rep(i,0,n) {
   auto si = (b-a).cross(S[i]-a);
    if (si == 0) continue;
   P m = ccCenter(a, b, S[i]);
    auto cr = (b-a).cross(m-a);
   if (si < 0) hi = min(hi, cr);
    else lo = max(lo, cr);
  double v = (0 < 10 ? 10 : hi < 0 ? hi : 0);
  P c = (a + b) / 2 + (b - a).perp() * v / (b - a).dist2();
  return { (a - c).dist2(), c};
pair<double, P> mec(vector<P>& S, P a, int n) {
  random_shuffle(S.begin(), S.begin() + n);
  P b = S[0], c = (a + b) / 2;
  double r = (a - c).dist2();
  rep(i,1,n) if ((S[i] - c).dist2() > r * (1 + 1e-8)) {
   tie(r,c) = (n == sz(S) ?
     mec(S, S[i], i) : mec2(S, a, S[i], i));
  return {r, c};
pair<double, P> enclosingCircle(vector<P> S) {
  assert(!S.empty()); auto r = mec(S, S[0], sz(S));
  return {sqrt(r.first), r.second};
```

8.3 Polygons

Usage: typedef Point<int> pi; vector<pi> v; v.push_back(pi(4,4));

v.push_back(pi(1,2)); v.push_back(pi(2,1));

insidePolygon.h

Description: Returns true if p lies within the polygon described by the points between iterators begin and end. If strict false is returned when p is on the edge of the polygon. Answer is calculated by counting the number of intersections between the polygon and a line going from p to infinity in the positive x-direction. The algorithm uses products in intermediate steps so watch out for overflow. If points within epsilon from an edge should be considered as on the edge replace the line "if (onSegment..." with the comment bellow it (this will cause overflow for int and long long).

```
Time: \mathcal{O}(n)
                                                            14 lines
"Point.h", "onSegment.h", "SegmentDistance.h"
template <class It, class P>
bool insidePolygon(It begin, It end, const P& p,
    bool strict = true) {
  int n = 0; //number of isects with line from p to (inf,p.y)
  for (It i = begin, j = end-1; i != end; j = i++) {
    //if p is on edge of polygon
    if (onSegment(*i, *j, p)) return !strict;
    //or: if (segDist(*i, *j, p) \le epsilon) return ! strict;
    //increment n if segment intersects line from p
    n += (max(i->y, j->y) > p.y && min(i->y, j->y) <= p.y &&
        ((*j-*i).cross(p-*i) > 0) == (i->y <= p.y));
  return n&1; //inside if odd number of intersections
```

bool in = insidePolygon(v.begin(), v.end(), pi(3,4), false);

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h"
                                                             6 lines
template <class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i, 0, sz(v) -1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
typedef Point<double> P;
Point<double> polygonCenter(vector<P>& v) {
 auto i = v.begin(), end = v.end(), j = end-1;
 Point<double> res{0,0}; double A = 0;
 for (; i != end; j=i++) {
   res = res + (*i + *j) * j \rightarrow cross(*i);
   A += j->cross(*i);
 return res / A / 3;
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
```

typedef Point<double> P; vector<P> polygonCut (const vector<P>& poly, P s, P e) {

```
vector<P> res;
rep(i,0,sz(poly)) {
  P cur = poly[i], prev = i ? poly[i-1] : poly.back();
  bool side = s.cross(e, cur) < 0;</pre>
  if (side != (s.cross(e, prev) < 0)) {</pre>
    res.emplace_back();
    lineIntersection(s, e, cur, prev, res.back());
    res.push back(cur);
return res;
```

ConvexHull.h

Description:

Returns a vector of indices of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.


```
Usage: vector<P> ps, hull;
trav(i, convexHull(ps)) hull.push_back(ps[i]);
Time: \mathcal{O}(n \log n)
```

"Point.h" typedef Point<ll> P; pair<vi, vi> ulHull(const vector<P>& S) { vi Q(sz(S)), U, L; iota(all(Q), 0); sort(all(Q), [&S](int a, int b) { return S[a] < S[b]; });</pre>

```
trav(it, Q) {
#define ADDP(C, cmp) while (sz(C) > 1 \&\& S[C[sz(C)-2]].cross(\
 S[it], S[C.back()]) cmp 0) C.pop_back(); C.push_back(it);
   ADDP(U, \leq); ADDP(L, >=);
 return {U, L};
vi convexHull(const vector<P>& S) {
 vi u, l; tie(u, l) = ulHull(S);
 if (sz(S) <= 1) return u;</pre>
 if (S[u[0]] == S[u[1]]) return {0};
 1.insert(1.end(), u.rbegin()+1, u.rend()-1);
 return 1:
```

PolygonDiameter.h

15 lines

Description: Calculates the max squared distance of a set of points.

```
"ConvexHull.h"
vector<pii> antipodal(const vector<P>& S, vi& U, vi& L) {
  vector<pii> ret;
  int i = 0, j = sz(L) - 1;
  while (i < sz(U) - 1 | | j > 0) {
    ret.emplace_back(U[i], L[j]);
    if (j == 0 | | (i != sz(U)-1 && (S[L[j]] - S[L[j-1]])
          .cross(S[U[i+1]] - S[U[i]]) > 0)) ++i;
    else --j;
  return ret;
pii polygonDiameter(const vector<P>& S) {
  vi U, L; tie(U, L) = ulHull(S);
  pair<11, pii> ans;
  trav(x, antipodal(S, U, L))
    ans = max(ans, {(S[x.first] - S[x.second]).dist2(), x});
  return ans.second;
```

LineHullIntersection closestPair kdTree

PointInsideHull.h

Description: Determine whether a point t lies inside a given polygon (counter-clockwise order). The polygon must be such that every point on the circumference is visible from the first point in the vector. It returns 0 for points outside, 1 for points on the circumference, and 2 for points inside. Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "onSegment.h"
typedef Point<11> P;
int insideHull2(const vector<P>& H, int L, int R, const P& p) {
  int len = R - L;
  if (len == 2) {
    int sa = sideOf(H[0], H[L], p);
    int sb = sideOf(H[L], H[L+1], p);
    int sc = sideOf(H[L+1], H[0], p);
    if (sa < 0 || sb < 0 || sc < 0) return 0;</pre>
    if (sb==0 || (sa==0 && L == 1) || (sc == 0 && R == sz(H)))
     return 1;
    return 2:
  int mid = L + len / 2;
  if (sideOf(H[0], H[mid], p) >= 0)
   return insideHull2(H, mid, R, p);
  return insideHull2(H, L, mid+1, p);
int insideHull(const vector<P>& hull, const P& p) {
  if (sz(hull) < 3) return onSegment(hull[0], hull.back(), p);</pre>
 else return insideHull2(hull, 1, sz(hull), p);
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points, isct(a, b) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i. \bullet (i, i) if along side (i, i + 1), \bullet (i, i) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i+1). The points are returned in the same order as the line hits the polygon.

```
Time: \mathcal{O}(N + Q \log n)
"Point.h"
                                                            63 lines
ll sgn(ll a) { return (a > 0) - (a < 0); }
typedef Point<ll> P;
struct HullIntersection {
  int N:
  vector<P> p;
  vector<pair<P, int>> a;
  HullIntersection(const vector<P>& ps) : N(sz(ps)), p(ps) {
   p.insert(p.end(), all(ps));
   int b = 0:
    rep(i,1,N) if (P\{p[i],y,p[i],x\} < P\{p[b],y,p[b],x\}) b = i;
    rep(i,0,N) {
     int f = (i + b) % N;
      a.emplace_back(p[f+1] - p[f], f);
  int qd(P p) {
   return (p.y < 0) ? (p.x >= 0) + 2
         : (p.x \le 0) * (1 + (p.y \le 0));
  int bs(P dir) {
    int lo = -1, hi = N;
    while (hi - lo > 1) {
      int mid = (lo + hi) / 2;
     if (make_pair(qd(dir), dir.y * a[mid].first.x) <</pre>
        make_pair(qd(a[mid].first), dir.x * a[mid].first.y))
```

```
hi = mid;
    else lo = mid;
  return a[hi%N].second;
bool isign(P a, P b, int x, int y, int s) {
  return sqn(a.cross(p[x], b)) * sqn(a.cross(p[y], b)) == s;
int bs2(int lo, int hi, P a, P b) {
 int L = lo;
  if (hi < lo) hi += N;
  while (hi - lo > 1) {
   int mid = (lo + hi) / 2;
   if (isign(a, b, mid, L, -1)) hi = mid;
    else lo = mid;
  return lo;
pii isct(P a, P b) {
  int f = bs(a - b), j = bs(b - a);
  if (isign(a, b, f, j, 1)) return {-1, -1};
  int x = bs2(f, j, a, b)%N,
     v = bs2(i, f, a, b)%N;
  if (a.cross(p[x], b) == 0 &&
     a.cross(p[x+1], b) == 0) return \{x, x\};
  if (a.cross(p[y], b) == 0 &&
     a.cross(p[y+1], b) == 0) return {y, y};
  if (a.cross(p[f], b) == 0) return {f, -1};
  if (a.cross(p[j], b) == 0) return {j, -1};
  return {x, y};
```

8.4 Misc. Point Set Problems

closestPair.h

Description: i1, i2 are the indices to the closest pair of points in the point vector p after the call. The distance is returned.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
template <class It>
bool it_less(const It& i, const It& j) { return *i < *j; }</pre>
template <class It>
bool y_it_less(const It& i,const It& j) {return i->y < j->y;}
template < class It, class IIt> /* IIt = vector < It>::iterator */
double cp_sub(IIt ya, IIt yaend, IIt xa, It &i1, It &i2) {
  typedef typename iterator_traits<It>::value_type P;
  int n = yaend-ya, split = n/2;
  if(n <= 3) { // base case
    double a = (*xa[1] - *xa[0]).dist(), b = 1e50, c = 1e50;
    if(n==3) b=(*xa[2]-*xa[0]).dist(), c=(*xa[2]-*xa[1]).dist()
    if(a <= b) { i1 = xa[1];
      if(a <= c) return i2 = xa[0], a;
      else return i2 = xa[2], c;
    } else { i1 = xa[2];
      if(b <= c) return i2 = xa[0], b;
      else return i2 = xa[1], c;
 vector<It> ly, ry, stripy;
  P splitp = *xa[split];
  double splitx = splitp.x;
  for(IIt i = ya; i != yaend; ++i) { // Divide
```

```
if(*i != xa[split] && (**i-splitp).dist2() < 1e-12)</pre>
      return i1 = *i, i2 = xa[split], 0;// nasty special case!
    if (**i < splitp) ly.push_back(*i);</pre>
    else ry.push_back(*i);
  } // assert((signed)lefty.size() == split)
  It j1, j2; // Conquer
  double a = cp_sub(ly.begin(), ly.end(), xa, i1, i2);
  double b = cp_sub(ry.begin(), ry.end(), xa+split, j1, j2);
  if (b < a) a = b, i1 = 1, i2 = 12;
  double a2 = a*a;
  for(IIt i = ya; i != yaend; ++i) { // Create strip (y-sorted)
    double x = (*i) -> x;
    if(x >= splitx-a && x <= splitx+a) stripy.push back(*i);</pre>
  for(IIt i = stripy.begin(); i != stripy.end(); ++i) {
    const P &p1 = **i;
    for(IIt j = i+1; j != stripy.end(); ++j) {
      const P &p2 = **\dot{j};
      if(p2.y-p1.y > a) break;
      double d2 = (p2-p1).dist2();
      if (d2 < a2) i1 = *i, i2 = *j, a2 = d2;
  return sgrt(a2);
template < class It > // It is random access iterators of point < T >
double closestpair (It begin, It end, It &i1, It &i2) {
  vector<It> xa, ya;
  assert (end-begin >= 2);
  for (It i = begin; i != end; ++i)
   xa.push_back(i), ya.push_back(i);
  sort(xa.begin(), xa.end(), it_less<It>);
  sort(ya.begin(), ya.end(), y_it_less<It>);
  return cp_sub(ya.begin(), ya.end(), xa.begin(), i1, i2);
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
"Point.h"
                                                           63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }
  P pt; // if this is a leaf, the single point in it
  T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if the box is wider than high (not best
           heuristic...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
```

DelaunayTriangulation PolyhedronVolume Point3D 3dHull sphericalDistance AhoCorasick

```
int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root:
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node \rightarrow first, *s = node \rightarrow second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best:
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest(const P& p) {
    return search(root, p);
};
```

Delaunay Triangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are colinear or any four are on the same circle, behavior is undefined. **Time:** $\mathcal{O}\left(n^2\right)$

8.5 3D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

6 lines

```
template <class V, class L>
double signed_poly_volume(const V& p, const L& trilist) {
  double v = 0;
  trav(i, trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point 3D.h

```
Description: Class to handle points in 3D space. T can be e.g. double or
long long.
template <class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
3dHull.h
```

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right) _"Point3D.h" 49 lines typedef Point3D<double> P3;
```

```
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [\&] (int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
    mf(i, j, k, 6 - i - j - k);
```

```
rep(i,4,sz(A)) {
   rep(j, 0, sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 trav(it, FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
 return FS;
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) f1 (ϕ_1) and f2 (ϕ_2) from z axis. All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

AhoCorasick.h

Description: Builds an Ahocorasick Trie, with suffix links
Usage: This is an offline Algorithm, Pass the vector of
patterns to Trie.init(), find function returns the number of
times each string appears

```
Time: \mathcal{O}(n+m+z)^{-1} 75 lines
```

PalindromeTree Manacher SuffixArray

```
inline int getval(char c) {
   return c - first;
  void CreateSuffixLink() {
   queue<int> q;
    for(q.push(0); q.size(); q.pop()) {
     int pos = q.front();
      reversebfs.push(pos);
      for(int i = 0; i < Alpha; ++i) {</pre>
       if(V[pos].nxt[i]) q.push(V[pos].nxt[i]);
        else if(!pos || !V[pos].p) {
         V[pos].SuffixLink = 0;
         V[pos].nxt[i] = V[0].nxt[i];
        else {
          int val = getval(V[pos].c);
         int j = V[V[pos].p].SuffixLink;
         V[pos].SuffixLink = V[j].nxt[val];
         V[pos].nxt[i] = V[V[pos].SuffixLink].nxt[i];
  void init(vector<string> &v) {
   V.resize(MaxM);
   num = v.size();
   int id = 0;
    for(auto &s : v) {
     int pos = 0;
     for(char &c : s) {
       int val = getval(c);
       if(!V[pos].nxt[val]) {
         V[lst].p = pos; V[lst].c = c; V[pos].nxt[val] = lst
       pos = V[pos].nxt[val];
     V[pos].end.emplace_back(id++);
   CreateSuffixLink();
  vector<int> find(string& word) {
   int pos = 0;
   vector<int> ans(num, 0);
    for(auto &c : word) {
     int val = getval(c);
     pos = V[pos].nxt[val];
     V[pos].cnt++; //We count the times we reach each node,
          and then do a reverse propagation
    for(; reversebfs.size(); reversebfs.pop()) {
     int x = reversebfs.top(); //When we process x, we know we
           have been there V/x]. cnt times:
     for(int i : V[x].end) ans[i] += V[x].cnt;
     if(V[x].SuffixLink != -1) V[V[x].SuffixLink].cnt += V[x].
          cnt;
    return ans;
};
```

PalindromeTree.h

Description: Palindrome Tree for string s

Time: $\mathcal{O}\left(sz(s)\right)$ for building

ie: $\mathcal{O}(sz(s))$ for building

const int maxN = 1000010; // at least sz(s) + 3

```
64 lines
```

```
int suffix;
 int len;
 map<char, int> children;
 // not needed for construction, add if needed
  char c;
 int parent;
 vector<int> suffixof;
int nodeid;
Node tree[maxN]; // 0: -1 root, 1: empty string
int pos2node[maxN]; // not needed for construction
int add(int parent, char c) {
  if(has(tree[parent].children, c)) {
    return tree[parent].children[c];
 int newid = nodeid++;
 tree[newid].suffix = -1;
  tree[newid].len = tree[parent].len + 2;
 tree[newid].parent = parent;
 tree[newid].c = c;
 tree[parent].children[c] = newid;
  return newid;
void build(string& s) {
 nodeid = 2:
 tree [0] .parent = -1;
 tree[0].len = -1;
 tree[1].parent = -1;
 tree[0].suffixof.push back(1);
  int cur = 0;
  FOR(i, 0, s.size()) {
    int newn = -1;
    while(1) {
      int curlen = tree[cur].len;
      if(i-1-curlen >= 0 && s[i-1-curlen] == s[i]) {
       newn = add(cur, s[i]);
       break;
      cur = tree[cur].suffix;
    pos2node[i] = newn;
    if(tree[newn].suffix != -1) {
     cur = newn;
      continue;
    if(cur == 0) {
      tree[newn].suffix = 1;
    } else {
      l ob
       cur = tree[cur].suffix;
      } while(i-1-tree[cur].len < 0</pre>
          || s[i-1-tree[cur].len] != s[i]);
      tree[newn].suffix = tree[cur].children[s[i]];
    tree[tree[newn].suffix].suffixof.push_back(newn);
    cur = newn;
```

Manacher.h

struct Node {

Description: call with String str of length n, returns: r[0..2*n-2],r[i] radius of longest palindrome with center i/2 in str

11 lines

```
Time: \mathcal{O}(n)
```

SuffixArrav.h

Description: lcp(x,y) = min(lcp(x,x+1),lcp(x+1,x+2)...lcp(y-1,y)) to answer queries with RMQ O(1)

Memory: Build $\mathcal{O}(N \log N)$ (Can be optimised as in B you only use the previous row to compute one row. But then you cannot do lcp

Time: Build: $\mathcal{O}(N \log N)$ where N is the length of the string for creation of the SA. LCP $\mathcal{O}(\log N)$ It is not necessary to use raddixsort if the $\mathcal{O}(n\log^2 n)$ fits the time limit one can just use at sort

```
fits the time limit, one can just use stl sort.
struct SF {
 pair<11, 11> ord;
 bool operator<(const SF& s) const { return ord < s.ord; }</pre>
ll lcp(ll x, ll v, vector < vector < ll > > &B, ll N, ll step)
 if (x == y) return N - x;
 11 \text{ res} = 0;
 for (11 i = step - 1; i >= 0 and x < N and y < N; --i)
   if (B[i][x] == B[i][y]) { x += 1<<i; y += 1<<i; res += 1<<i</pre>
 return res;
void raddixSort(vector < SF > & A, vector < vector <11 > > & B,
     vector < 11 > &times, vector < 11 > & pos, vector < SF >
    & L2, 11 N) {
 11 k = max(N, 256LL);
 for (11 i = 0; i < k + 2; ++i) times[i] = 0;
 for (ll i = 0; i < N; ++i)</pre>
   times[A[i].ord.second + 1]++;
 pos[0] = 0;
  for (11 i = 1; i < k + 2; ++i)
   pos[i] = pos[i - 1] + times[i - 1];
  for (11 i = 0; i < N; ++i)
   L2[pos[A[i].ord.second + 1]++] = A[i];
  for (11 i = 0; i < k + 2; ++i)
   times[i] = 0;
  for (11 i = 0; i < N; ++i)
   times[L2[i].ord.first + 1]++;
  pos[0] = 0;
  for (11 i = 1; i < k + 2; ++i)</pre>
   pos[i] = pos[i - 1] + times[i - 1];
 for (11 i = 0; i < N; ++i)
    A[pos[L2[i].ord.first + 1]++] = L2[i];
void compute suffix array(vector < SF > & A, vector<vector<11>
```

>> Compute_suffix_array(vector < SF > & A, vector<vector<i1:
>> & B, 11 N, string & S, 11 & step) {
 11 MAXN = 3000005; //millor posar numero gran que algo en
 funcio de N pq peta
 vector < SF > L2 (MAXN);
 vector < 11 > pos(MAXN + 2,0), times(MAXN + 2,0);

Hashing Z KMP MinRotation IntervalContainer IntervalCover ConstantIntervals

```
A.resize(N); B.resize(1); B[0].resize(N);
  for (11 i = 0; i < N; ++i) B[0][i] = S[i];
  step = 1;
  for (11 b = 0, pw = 1; b < N; ++step, pw <<=1) {
    for (11 i = 0; i < N; ++i) {</pre>
     A[i].ord.first = B[step - 1][i];
     A[i].ord.second = i + pw < N ? B[step - 1][i + pw] : -1;
     A[i].id = i;
    raddixSort(A, B, times, pos, L2, N); //sort(A.begin(). A.
    B.resize(step + 1); B[step].resize(N);
   b = B[step][A[0].id] = 1;
    for (11 i = 1; i < N; ++i) {
     if (A[i - 1] < A[i]) ++b;
     B[step][A[i].id] = b;
Hashing.h
Description: Various self-explanatory methods for string hashing. 45 lines
typedef unsigned long long H;
static const H C = 123891739; // arbitrary
// Arithmetic mod 2^64-1. 5x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse).
// "typedef HK;" instead if you think test data is random.
struct K {
  typedef uint128 t H2;
  H \times ; K(H \times = 0) : X(X) \{ \}
  K operator+(K o) { return x + o.x + H(((H2)x + o.x) >> 64); }
  K operator* (K o) { return K(x*o.x) + H((H2)x * o.x) >> 64); }
  H operator-(K o) { K a = \starthis + \simo.x; return a.x + !\sima.x; }
struct HashInterval {
  vector<K> ha, pw;
  HashInterval(string& str) : ha(str.size()+1), pw(ha) {
   pw[0] = 1;
   FOR(i,0,str.size())
     ha[i+1] = ha[i] * C + str[i],
     pw[i+1] = pw[i] * C;
  H hashInterval (int a, int b) { // hash [a, b]
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
 if (str.size() < length) return {};</pre>
  K h = 0, pw = 1;
  FOR(i,0,length)
  h = h * C + str[i], pw = pw * C;
  vector < H > ret = \{h - 0\};
  FOR(i,length,str.size()) {
   ret.push_back(h * C + str[i] - pw * str[i-length]);
   h = ret.back();
  return ret;
H hashString(string& s) {
 K h = 0;
  for(auto c:s) h = h * C + c;
```

return h - 0;

```
Z.h
```

```
Description: Computes the prefix function

vector<int> Z(string &s) {
   int n = s.size();
   int L, R;
   L = R = 0;
   vector<int> Z(n, 0);
   for (int i = 1; i < n; ++i) {
      if (i < R) Z[i] = min(Z[i-L], R-i);
      else Z[i] = 0;
      while (Z[i] + i < n and s[Z[i]] == s[i+Z[i]]) ++Z[i];
      if (i+Z[i] > R) {
        L = i;
        R = i + Z[i];
      }
   }
}
```

KMP.h

Description: string matching

Time: $\mathcal{O}(P+T)$ where P is the length of the pattern, T is length of the tout

```
string s, p; cin >> s >> p;
vector<int> pi(p.size() + 1, 0);
int k = 0;
for (int i = 2; i <= p.size(); ++i) {
    while (k > 0 and p[i - 1] != p[k]) k = pi[k];
    if (p[i - 1] == p[k]) ++k;
    pi[i] = k;
}
k = 0;
for (int i = 0; i < s.size(); ++i) {
    while (k > 0 and s[i] != p[k]) k = pi[k];
    if (p[k] == s[i]) ++k;
    if (k == p.size()) k = pi[k]; //Matching
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+min_rotation(v), v.end()); **Time:** $\mathcal{O}(N)$

```
int min_rotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(i,0,N) {
   if (a+i == b || s[a+i] < s[b+i]) {b += max(0, i-1); break;}
  if (s[a+i] > s[b+i]) { a = b; break; }
  }
  return a;
```

$\underline{\text{Various}}$ (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: O(log N)

template <class T>
auto addInterval(set<pair<T, T>>& is, T L, T R) {
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
```

```
while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
template <class T>
void removeInterval(set<pair<T, T>>& is, T L, T R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 T r2 = it->second;
 if (it->first == L) is.erase(it);
 else (T&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$

19 lin

```
template < class T >
vi cover(pair < T, T > G, vector < pair < T, T > I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
    T cur = G.first;
    int at = 0;
    while (cur < G.second) { // (A)
        pair < T, int > mx = make_pair(cur, -1);
        while (at < sz(I) && I[S[at]].first <= cur) {
            mx = max(mx, make_pair(I[S[at]].second, S[at]));
            at++;
        }
        if (mx.second == -1) return {};
        cur = mx.first;
        R.push_back(mx.second);
    }
    return R;
}</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...}); 

Time: \mathcal{O}(k \log \frac{n}{k})
```

```
template < class F, class G, class T>
void rec(int from, int to, F f, G g, int& i, T& p, T q) {
    if (p == q) return;
    if (from == to) {
        g(i, to, p);
        i = to; p = q;
    } else {
        int mid = (from + to) >> 1;
        rec(from, mid, f, g, i, p, f(mid));
        rec(mid+1, to, f, g, i, p, q);
    }
}
```

TernarySearch Karatsuba Josephus DivideAndConquerDP KnuthDP java

```
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
   if (to <= from) return;
   int i = from; auto p = f(i), q = f(to-1);
   rec(from, to-1, f, g, i, p, q);
   g(i, to, q);
}</pre>
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];}); Time: $\mathcal{O}(\log(b-a))$

```
template < class F >
int ternSearch (int a, int b, F f) {
    assert (a <= b);
    while (b - a >= 5) {
        int mid = (a + b) / 2;
        if (f(mid) < f(mid+1)) // (A)
            a = mid;
    else
        b = mid+1;
    }
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;
}</pre>
```

Karatsuba.h

Description: Faster-than-naive convolution of two sequences: $c[x] = \sum a[i]b[x-i]$. Uses the identity $(aX+b)(cX+d) = acX^2 + bd + ((a+c)(b+d) - ac - bd)X$. Doesn't handle sequences of very different length well. See also FFT, under the Numerical chapter.

Time: $\mathcal{O}\left(N^{1.6}\right)$

Josephus.h

Description: if you have n people in a circle and the first person to die is 0, and each time afterwards you kill the person k positions later, outputs the number of the last person to die

```
cin >> n >> k; v[1]=0;
for (int i=2;i<=n;++i) v[i]=(v[i-1]+k)%i;
cout<< v[n]+1 << endl;</pre>
```

10.3 Dynamic programming

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i,k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. **Time:** $\mathcal{O}((N + (hi - lo))) \log N)$

```
struct DP { // Modify at will:
  int lo(int ind) { return 0; }
  int hi(int ind) { return ind; }
  ll f(int ind, int k) { return dp[ind][k]; }
  void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

void rec(int L, int R, int LO, int HI) {
  if (L >= R) return;
  int mid = (L + R) >> 1;
  pair<ll, int> best(LLONG_MAX, LO);
```

```
rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
    best = min(best, make_pair(f(mid, k), k));
store(mid, best.second, best.first);
rec(L, mid, LO, best.second+1);
rec(mid+1, R, best.second, HI);
}
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
}:
```

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}(N^2)$

10.4 Java

import java.util.Arrays / Collections; // sort,binarySearch,
 fill,min,max,reverse

import static java.lang.Math.*;//min,max,abs,cos,cosh,atan2,
round,random,sqrt,..

import java.io.*; //BufferedReader,..

10.5 Debugging tricks

- signal (SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG violations generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.6 Optimization tricks

10.6.1 Bit hacks

- x & -x is the least bit in x.
- x & & ! (x & (x 1)) true, if x is power of 2.
- gray_code[x] = $x ^ (x >> 1)$

- checkerboard[y][x] = $(x \& 1) \hat{ } (y \& 1)$
- ffs(int x), ffs(ll x) number of the least significant bit, ffs(1 << i) = i+1
- _builtin_clz(uint x), ..._clzll(ull) number of leading zeros, for x ; 0
- _builtin_ctz(uint x), ..._ctzll(ull) number of trailing zeros, for x; 0
- __builtin_popcount(uint x),
 ..._popcountll(ull) number of 1 bits
- #define ld_ll(X)
 (63-_builtin_clzll(ll(X))) floor(log2(X))
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K)) if (i & 1
 b) D[i] += D[i^(1 << b)]; computes all sums of subsets.

10.6.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize for loops and optimizes floating points better (assumes associativity and turns off denormals).
- #pragma GCC target ("avx,avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

techniques

Techniques (A)

techniques.txt

Combinatorics

159 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contigous subvector sum Invariants Huffman encoding Graph teory Dynamic graphs (extra book-keeping) Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algoritm MST: Prim's algoritm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Lovasz toggle Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Graphical sequences Floyd-Warshall Eulercvkler Flow networks * Augumenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cutvertices, cutedges och biconnected components Edge coloring * Trees Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programmering Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over intervals Dynprog over subsets Dynprog over probabilities Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) Bitonic cycle Log partitioning (loop over most restricted)

Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Pick's theorem Number theory Integer parts Divisibility Euklidean algorithm Modular arithmetic * Modular multiplication * Modular inverses * Modular exponentiation by squaring Chinese remainder theorem Fermat's small theorem Euler's theorem Phi function Frobenius number Quadratic reciprocity Pollard-Rho Miller-Rabin Hensel lifting Vieta root jumping Game theory Combinatorial games Game trees Mini-max Nim Games on graphs Games on graphs with loops Grundy numbers Bipartite games without repetition General games without repetition Alpha-beta pruning Probability theory Optimization Binary search Ternary search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression Ouadtrees KD-trees All segment-segment intersection Discretization (convert to events and sweep) Angle sweeping Line sweeping Discrete second derivatives Strings Longest common substring Palindrome subsequences

Knuth-Morris-Pratt Tries Rolling polynom hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Letter position lists Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex hull trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree