INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

Quiz III - April 2016

B. Tech - II Semester

MA121 - Vector Calculus and Differential Equations

Date: 04/04/2016 Time: 9.00 am - 10.00 am Max. Marks: 15

Attempt all questions

- 1. (a) Let $f:(1,2)\cup(2,3)\longrightarrow\mathbb{R}$ be a function such that f'(x)=0 for all $x\in(1,2)\cup(2,3)$. Is then f constant? Support your answer. [2.5]
 - (b) Corresponding to the given function f, is it possible to get another function f: $(1,3) \longrightarrow \mathbb{R}$ such that \tilde{f} is continuous and $\tilde{f}(x) = f(x)$ for all $x \in (1,2) \cup (2,3)$. Justify your answer. [2.5]
- 2. (a) Let $\vec{v}_1 = (1,2)$ and $\vec{v}_2 = (-1,2)$ be two vectors in \mathbb{R}^2 over \mathbb{R} . Show that $L_{\{\vec{v}_1,\vec{v}_2\}} =$ \mathbb{R}^2 , i.e., any vector $\vec{v} = (x, y) \in \mathbb{R}^2$ can be expresses in terms of linear combination of \vec{v}_1 and \vec{v}_2 .
 - (b) Suppose \vec{v}_1 and \vec{v}_2 be any two vectors in \mathbb{R}^2 such that \vec{v}_1 and \vec{v}_2 make an angle π with the vector $\vec{0}$. Find $L_{\{\vec{v_1},\vec{v_2}\}}$, with explanation. [2]
- 3. (a) Let $D \subseteq \mathbb{R}^2$ be an open set and $P_0 \in D$ and $f: D \longrightarrow \mathbb{R}$ a function. Define directional derivative of f at the point P_0 along a non-zero vector \vec{v} in \mathbb{R}^2 . [1.5]
 - (b) Let $f: \mathbb{R}^2 \longrightarrow R$ be given by $f(x,y) = \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$. Suppose $\vec{v} = (v_1, v_2)$ be an unit vector (i.e., $\sqrt{v_1^2 + v_2^2} = 1$) in \mathbb{R}^2 . Check whether $D_{\vec{v}}(f)|_{P_0}$ exists for any point $P_0 = (x_0, y_0) \in \mathbb{R}^2$.

Hint: Check for $P_0 = (0,0)$ and for $P_0 \neq (0,0)$ [3.5]

END