ABSTRACT Great Lakes Photonics Symposium June 7-11 2004

Conference: Aerospace Applications

- 1. PAPER TITLE Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications
- 2. AUTHORS Arthur J. Decker, NASA Glenn Research Center, M.S. 77-1, 21000 Brookpark Rd., Cleveland, OH 44135, Phone 216 433 3639, fax 216 433 8643, Arthur.J.Decker@nasa.gov
- 3. PRESENTATION PREFERENCE Oral Presentation
- 4. PRINCIPAL AUTHOR'S BIOGRAPHY Dr. Arthur J. Decker has worked in Optical Metrology at NASA's Glenn Research Center for about 38 years. He has specialized for several years in neural-net processing of interference fringe patterns for non-destructive testing and fault recognition. Currently he is applying optical and neural-net techniques to the quantum technologies including nanotechnology and optical computing.

5. ABSTRACT TEXT

Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-tovariable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including imagedirected alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

6. KEYWORDS Neural Nets, Calibration, Image Processing, Nanotechnology

Optical Instrumentation Technology Arthur J. Decker Branch

General Objective

- Given
- Inputs of 10's, 100's,
 1000's Up To 10,000
 Channels of Optical
 Data.
- Outputs of a Few to
 10,000 Responses.
- Train
- Neural Net To
 Map Generally Inputs To
 Outputs.

Format I—A Few Image Characteristics

Inputs

- Intensity CM Position
- Pattern Characterization
- Last Alignment ControlOperated

Outputs

- Alignment Control To Be Operated
- New CM Position
- New PatternCharacterization

Format II—Sub-Sampled Images

- Deterministically
- Flow Visualization.
- Tunnel Sensor Outputs. Map Images To Wind
- Randomly
- Speckled Fringe Patterns.
- Use Trained Net as a Null Detector for Damage.

Format III—Scaled and Tiled Images

- Optical Tweezers
 Control
- To Manipulate and
 Calibrate Nanotube
 Sensors.
- Multiple Nets and Multiple Scales.
- Nets Control a SLM.

SLM-Generated Trap Pattern

Format IV—Full Optical Data

- Tomography
- lcing Tunnel Tomography
 Provides Only 300-400
 Projections Through
 Fibers.
- Neural Net Tomography
 Appears to Self
 Regularize.

Computed Tomography

f (e110r)

Neural-Net Tomography

Randomly Sub-Sampled Images

- Easy to Determine
- Neural-Net Architecture.
- Training Set Composition.
- Required Computer Resources.
- NDE Application
- Handled Like a Calibration.
- Subject to Simulation.

Speckled Fringe Patterns of Vibrating Structures

- Amplitude, Air, Synchronization and Noise: Speckle Effect, Vibration Optical System Fluctuations.
- Rule 1: Train the Net with Noise Samples Equal to 10% of the Number of Pixel Sub-Samples for Noise Immunity.
- Rule 2: Use About 3 Hidden-Layer Nodes Per Training Class.

NDE Application

- Process
- Excite LowAmplitude Vibrations.
- Sub-Sample Randomly.
 - Divide Records Into
 Two Classes To Train.
- Assign Different Output Indices to Classes.
- Outputs Become
 Sensitive to Damage
 Induced Mode Shape
 Changes.

Mode-Shape Variations

- Change Boundary Conditions.
- Example
- 1728 Pixels
- Class 1: One Mode
- Class 2: Three Modes
- 173 Patterns Per Mode.
- Hidden Nodes: Six.

Glenn Research Center

at Lewis Field

4/27/2004

Optics-Only Calibration

- Second Class
- Add Small Amounts
 Of Other Modes to
 Mode to Be Monitored.
- Need Many (2nd, 5th, 7th,
 8th, 9th, 10th) For Position
 Independent Sensitivity.
 - Measure Response
- Use Modes That Differ From Training Set (1st, 3d, 6th).
- Lab Sensitivity ~100 nm Peak-to-Peak, 50 nm Amplitude.

Increasing the Sensitivity

Form Second Class
From Smaller Vibration
Amplitudes (80 nm Peak-To-Peak).

- Use Model Data
- Contaminate 4th Mode.
- Use 2nd and 3^d To Train.
- Test With 6th.
- Need To Transform Inputs For Training.

Folding Transformation

- Increases Sensitivity
 Until First Systematic
 Effect is Learned.
- Transforms the Input Intensity.
- Model Example
- Needs 9 Folds.
- Needs 9 Hidden Nodes.
- Generates 10 nmAmplitudeSensitivity.

Folded Laboratory Data

- Training
- Appears To Succeed With Only 5 Folds.
- Folding In Fact
- Environmental Effects. Merely Responds To **Creates Net That**
- Amplitude Sensitivity Is Truly 50 nm.
- Peak-to-Peak Amplitude (nm) 0 and 1 Represent Before And After No-Excitation Condition.

Glenn Research Center

4/27/2004

16

Future Work and Potential Future Work

- Development of Neural-Net Controller for Optical Tweezers (Scaling and Tiling Approach).
- Add Neural-Net Processor to Icing Tunnel Tomography System.
- Develop Neural-Net Quantum Computer Simulator.

Concluding Remarks

- Discussed Four Approaches to Matching the Processing Capability of Software Neural Nets to Image Data.
- Approach and the Speckled Fringe Pattern Discussed the Random Sub-Sampling Application.
- Discussed Optics Only Calibration of a Neural Net Null Detector for Damage Detection.

