CS 113 DISCRETE STRUCTURES

Examples of the Euclidean algorithm for finding GCDs

AN IMPORTANT PROPERTY

- The division algorithm (a property, really)
- Given two integers m and n, you can always find q and r (integers) so that
 - m = nq + r, with $0 \le r < n$

THE EUCLIDEAN ALGORITHM

- This algorithm is nothing more than repeated application of the division algorithm
- This gives a process for finding the gcd of two integers
- We call the process the Euclidean algorithm
- The next slide contains examples

EXAMPLES

gcd (301, 238):	gcd (533,377):
301 = 238*1 + 63	533 = 377*1 + 156
238 = 63*3 + 49	377 = 156*2 + 65
63 = 49*1 + 14	156 = 65*2 + 26
49 = 14*3 + 7	65 = 26*2 + 13
14 = 7*2 + 0	26 = 13*2 + 0
5 steps. gcd: 7.	gcd: 13.
gcd (532,437):	gcd (533,328):
532 = 437*1 + 95	533 = 328*1 + 205
437 = 95*4 + 57	328 = 205*1 + 123
95 = 57*1 + 38	205 = 123*1 + 82
57 = 38*1 + 19	123 = 82*1 + 41
38 = 19*2 + 0	82 = 41*2 + 0
gcd: 19.	gcd: 41.

A CRUCIAL FACT

- To verify that this works, we need a crucial fact
- Choose two non-zero integers m,n
- Suppose m > n
 - If m=n, the statement below is unnecessary
 - Otherwise, if m < n, switch them around
- The Fact: If m and n are related by m = nq + r, then
 - gcd(m,n) = gcd(n,r)
- The fact is not too hard to verify

VERIFYING THAT MATH

 Verifying the process for the gcd of 532 and 437 using the crucial fact:

```
• gcd(532, 437) = gcd(437, 95) = gcd(95, 57)
```

```
• = \gcd(57, 38) = \gcd(38, 19)
```

• = 19 because $19 \mid 38$. (The remainder is 0.)

ANOTHER BENEFIT

- We also can find a and b (integers) so that
 - \cdot 532a + 437b = 19
 - or, in general terms, ma + nb = gcd (m, n)
- Just follow the chain backwards

FOLLOWING THE CHAIN BACKWARDS

- The gcd is 19
- So, from the next to the last line, write
 - 19 = 57 38*1
- The line before says 95 = 57*1+38. Solve for 38 and substitute
 - 19 = 57 (95 57*1)*1
- Expand and regroup, based on 57, 95 to get
 - 19 = 57*2 95
- Continue
- The full process is displayed on the next slide

SUMMARY

•
$$19 = 57 - 38$$
 *1

•
$$19 = 57 - (95 - 57*1)*1$$

$$\cdot$$
 19 = 57 - 95 + 57

•
$$19 = 57*2 - 95$$

•
$$19 = (437 - 95*4)*2 - 95$$

•
$$19 = 437*2 - 95*8 - 95$$

•
$$19 = 437*2 - 95*9$$

•
$$19 = 437*2 - (532 - 437)*9$$

•
$$19 = 437*2 - 532*9 + 437*9$$

• So, in summary,
$$19 = (-11)437 + (9)*532$$

QUESTIONS

Any questions?