Yield Gap Analysis Using the Boundary-line Methodology

Chawezi Miti

University of Nottingham/Rothamsted Research

April 23, 2025

Course Overview

This course is grounded in the boundary line methodology introduced by Webb (1972). This approach is used to analyze biological data collected in uncontrolled (non-experimental) environments, aiming to identify the most efficient biological response. It has been widely applied in environmental research.

Course Objectives

The objective of the course are to:

- Understand the principle behind the boundary-line methodology.
- Apply the boundary line methodology to data using the BLA R package.
- Make agronomic interpretations from outputs of a boundary line analysis

Course Outcomes

At the end of the course, you should be able to:

- Identify the conditions under which boundary line analysis is appropriate.
- Fit boundary line models to data using various methods.
- Interpret the results of boundary line analysis in an agronomic context

Course Content

The course is composed of two parts:

shutterstock.com - 1586195833

Yield Gap Analysis Using the Boundary-line Methodology

What are boundary-line Models?

- Data collected in controlled condition
- All conditions are optimal except x_i
- Maximum biological limit

- A model can be fitted to these data
- $yield = f(x_i) + e$
- Least squares method

- Additional data from conditions
 - Slightly limiting

- Additional data from conditions
 - Slightly limiting
 - Moderately limiting

- Additional data from conditions
 - Slightly limiting
 - Moderately limiting
 - Extremely limiting

Boundary line analysis

Conceptually

Reality

Boundary line analysis

Webb(1972) proposed an upper boundary model for such data

 Fit a boundary model to these data What conditions are necessary to apply Boundary-line analysis?

Assumptions for boundary line modelling

1. Normal distribution for x and y variables

- Variable should cover a wide range of instances
- Skewness [-1,1]
- Octile-skewness [-0.2,0.2]

Assumptions for boundary line modelling

2. Outlier detection and removal

• Use of bagplot, a bivariate equivalent of univariate boxplot

Assumptions for boundary line modelling

3. Evidence of boundary conditions

• Large number of data points in the boundary neighbourhood

Assumptions for boundary line modelling

3. Evidence of boundary limiting conditions

• There should be evidence of data clustering at upper edges

- Indices
 - Area
 - Distance

Yield Gap Analysis Using the Boundary-line Methodology

How is a boundary line model fitted?

Methods of Boundary line fitting

1. Binning method

- Divide the data into sections
- Select boundary points
- Fit boundary model (OLS)

Methods of Boundary line fitting

1. Binning method

- Identify a biologically plausible model
- Fit boundary model
- Ordinary least squares

$$\hat{\beta}_{\tau} = \min \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$$

Methods of Boundary line fitting

2. Bolides algorithm

- a) Select boundary points
 - Points that enclose data

- b) Fit boundary model
 - Ordinary least squares

Methods of Boundary line fitting

3. Quantile regression

• Fit boundary models based on a quantile value (τ)

$$\hat{\beta}_{\tau} = \min \sum_{i=1}^{n} \rho_{\tau}(y_i - x_i^{\top} \beta)$$

- β is model parameter(s)
- ullet + residues, weight = au
- ullet residues, weight =1- au

Methods of Boundary line fitting

4. Censored bivariate normal model

• Based on clustering structure (ML)

Methods of Boundary line fitting

4. Censored bivariate normal model

• Based on clustering structure and measurement error (ML)

How are boundary-line model	s interpretatio	n ag	gror	nom	nicall	ly?	
	↓ □	▶ ∢ 🗗	→ <	≣→	◆ 臺 →	Į.	りくぐ

Yield Gap Analysis Using the Boundary-line Methodology

1. Yield gap and Critical nutrient values

2. Explained and Unexplained yield gaps

Uni-factor analysis

3. Most limiting factor (Liebig, 1840)

4. Explained and Unexplained yield gaps

Multi-factor analysis

Yield Gap Analysis Using the Boundary-line Methodology

What tools are available to carry-out a boundary-line analysis?

Applications BLA R Package

Practical in R

Optimization

• Initial-starting values for parameter optimization

Optimization

• Local and Global optima in parameter optimization

Measurement error determination for cbvn

- Direct measurement
- 2 Can be determined from Nugget variance of a variogram

Measurement error determination for cbvn

1 Can be determined from **Likelihood** profile of σ_{me}

