Supplementary Material of "Multi-Objective Generalized Linear Bandits"

A Proof of Theorem 1

We follow standard techniques for analyzing the confidence sets [Zhang et al., 2016; Jun et al., 2017] and start with the following lemma.

Lemma 1 For any $t \ge 1$ and $i \in [m]$,

$$\ell_{t,i}(u) - \ell_{t,i}(v) \ge \nabla \ell_{t,i}(v)^{\top} (u - v) + \frac{\kappa}{2} (u^{\top} x_t - v^{\top} x_t)^2, \forall u, v \in \mathcal{B}_D.$$

Proof. Define $\tilde{\ell}_{t,i}(z) = -y_t^i z + g_i(z), z \in [-D,D]$. By Assumption 3 we have

$$\tilde{\ell}_{t,i}^{"}(z) = \mu_i'(z) \ge \kappa > 0, \ \forall z \in (-D, D)$$

which implies that $\tilde{\ell}_{t,i}(z)$ is κ -strongly convex on [-D,D], i.e.,

$$\tilde{\ell}_{t,i}(z) - \tilde{\ell}_{t,i}(z') \ge \tilde{\ell}'_{t,i}(z')(z-z') + \frac{\kappa}{2}(z-z')^2, \forall z, z' \in [-D, D].$$
 (17)

П

Note that

$$\ell_{t,i}(u) = \tilde{\ell}_{t,i}(u^{\top}x_t), \quad \ell_{t,i}(v) = \tilde{\ell}_{t,i}(v^{\top}x_t), \quad \nabla \ell_{t,i}(v)^{\top}(u-v) = \tilde{\ell}'_{t,i}(v^{\top}x_t)(u-v)^{\top}x_t.$$

We complete the proof by substituting $z = u^{\top} x_t$ and $z' = v^{\top} x_t$ into (17).

Let $f_{t,i}(\theta) = \mathbb{E}_{y_t^i}[\ell_{t,i}(\theta)]$ be the conditional expectation over y_t^i . The following lemma shows that θ_i is the minimum point of $f_{t,i}(\theta)$ on the bounded domain.

Lemma 2 For any $t \ge 1$ and $i \in [m]$, we have $f_{t,i}(\theta) - f_{t,i}(\theta_i) \ge 0$, $\forall \theta \in \mathcal{B}_D$.

Proof. Fix t and i. For any $\theta \in \mathcal{B}_D$, we have

$$f_{t,i}(\theta) - f_{t,i}(\theta_i)$$

$$= \mathbb{E}_{y_t^i}[\ell_{t,i}(\theta) - \ell_{t,i}(\theta_i)]$$

$$= g_i(\theta^\top x_t) - g_i(\theta_i^\top x_t) + \mu_i(\theta_i^\top x_t)(\theta_i^\top x_t - \theta^\top x_t)$$

$$\geq g_i'(\theta_i^\top x_t)(\theta^\top x_t - \theta_i^\top x_t) + \mu_i(\theta_i^\top x_t)(\theta_i^\top x_t - \theta^\top x_t)$$

$$= 0.$$

where the second and the last equality follow from properties of GLM, and the inequality holds due to the convexity of g_i . \Box To exploit the property of the estimation method in (1), we introduce the following lemma from Zhang *et al.* [2016].

Lemma 3 For any $t \ge 1$ and $i \in [m]$,

$$\nabla \ell_{t,i}(\hat{\theta}_{t,i})^{\top}(\hat{\theta}_{t,i} - \theta_i) - \frac{1}{2} \|\nabla \ell_{t,i}(\hat{\theta}_{t,i})\|_{Z_{t+1}^{-1}}^2 \le \frac{1}{2} \left(\|\hat{\theta}_{t,i} - \theta_i\|_{Z_{t+1}}^2 - \|\hat{\theta}_{t+1,i} - \theta_i\|_{Z_{t+1}}^2 \right). \tag{18}$$

To proceed, we bound the norm of $\nabla \ell_{t,i}(\hat{\theta}_{t,i})$ as follows.

$$\|\nabla \ell_{t,i}(\hat{\theta}_{t,i})\|_{Z_{t+1}^{-1}}^2 = \|-y_t^i x_t + \mu_i(\hat{\theta}_{t,i}^\top x_t) x_t\|_{Z_{t+1}^{-1}}^2 \le (R+U)^2 \|x_t\|_{Z_{t+1}^{-1}}^2$$
(19)

where the inequality holds because of Assumptions 3 and 4. We are now ready to prove Theorem 1. By Lemma 1, we have

$$\ell_{t,i}(\hat{\theta}_{t,i}) - \ell_{t,i}(\theta_i) \leq \nabla \ell_{t,i}(\hat{\theta}_{t,i})^{\top} (\hat{\theta}_{t,i} - \theta_i) - \frac{\kappa}{2} (\theta_i^{\top} x_t - \hat{\theta}_{t,i}^{\top} x_t)^2.$$

Taking expectation in both side and using Lemma 2, we obtain

$$0 \leq f_{t,i}(\hat{\theta}_{t,i}) - f_{t,i}(\theta_{i})$$

$$\leq \nabla f_{t,i}(\hat{\theta}_{t,i})^{\top} (\hat{\theta}_{t,i} - \theta_{i}) - \frac{\kappa}{2} (\theta_{i}^{\top} x_{t} - \hat{\theta}_{t,i}^{\top} x_{t})^{2}$$

$$= \underbrace{(\nabla f_{t,i}(\hat{\theta}_{t,i}) - \nabla \ell_{t,i}(\hat{\theta}_{t,i}))^{\top} (\hat{\theta}_{t,i} - \theta_{i})}_{a_{t,i}} - \frac{\kappa}{2} \underbrace{(\theta_{i}^{\top} x_{t} - \hat{\theta}_{t,i}^{\top} x_{t})^{2}}_{b_{t,i}} + \nabla \ell_{t,i}(\hat{\theta}_{t,i})^{\top} (\hat{\theta}_{t,i} - \theta_{i})$$

$$\leq a_{t,i} - \frac{\kappa}{2} b_{t,i} + \frac{(R + U)^{2}}{2} ||x_{t}||_{Z_{t+1}^{-1}}^{2} + \frac{1}{2} \left(||\hat{\theta}_{t,i} - \theta_{i}||_{Z_{t+1}}^{2} - ||\hat{\theta}_{t+1,i} - \theta_{i}||_{Z_{t+1}}^{2} \right)$$

$$= a_{t,i} - \frac{\kappa}{4} b_{t,i} + \frac{(R + U)^{2}}{2} ||x_{t}||_{Z_{t+1}^{-1}}^{2} + \frac{1}{2} \left(||\hat{\theta}_{t,i} - \theta_{i}||_{Z_{t}}^{2} - ||\hat{\theta}_{t+1,i} - \theta_{i}||_{Z_{t+1}}^{2} \right)$$

where the last equality is due to $Z_{t+1} = Z_t + \frac{\kappa}{2} x_t x_t^{\top}$. Summing the above inequality over 1 to t and rearranging, we have

$$\|\hat{\theta}_{t+1,i} - \theta_i\|_{Z_{t+1}}^2 \le \lambda D^2 + 2\sum_{s=1}^t a_{s,i} - \frac{\kappa}{2}\sum_{s=1}^t b_{s,i} + (R+U)^2\sum_{s=1}^t \|x_s\|_{Z_{s+1}}^2.$$
 (20)

We propose the following lemma to bound $\sum_{s=1}^{t} a_{s,i}$.

Lemma 4 With probability at least $1 - \delta$, for any $i \in [m]$ and $t \ge 1$,

$$\sum_{s=1}^{t} a_{s,i} \le \frac{\kappa}{4} \sum_{s=1}^{t} b_{s,i} + \frac{\kappa}{4} + \frac{8(R+U)^2}{\kappa} \log\left(\frac{m}{\delta}\sqrt{1+4D^2t}\right). \tag{21}$$

Proof. Let $\eta_{s,i} = y_s^i - \mu_i(\theta_i^\top x_s)$, which is a martingale difference sequence. By Assumptions 3 and 4, $|\eta_{s,i}| \le (R+U)$ holds almost surely, which implies that $\eta_{s,i}$ is (R+U)-sub-Gaussian. Thus, we can apply the self-normalized bound for martingales (Abbasi-Yadkori *et al.* 2012, Corollary 8) and use the union bound to obtain that with probability at least $1-\delta$,

$$\sum_{s=1}^{t} a_{s,i} \le (R+U) \cdot \sqrt{\left(2 + 2\sum_{s=1}^{t} b_{s,i}\right)} \cdot \sqrt{\log\left(\frac{m}{\delta}\sqrt{1 + \sum_{s=1}^{t} b_{s,i}}\right)}, \ \forall i \in [m], \forall t \ge 1.$$

We conclude the proof by noticing that $b_{s,i} \leq 4D^2$ and using the well-known inequality $\sqrt{pq} \leq \frac{p}{c} + cq$, where $c = \frac{8(R+U)}{\kappa}$. \square

It remains to bound $\sum_{s=1}^{t} \|x_s\|_{Z_{s+1}^{-1}}^2$. To this end, we employ Lemma 12 in Hazan *et al.* [2007] and obtain

$$\sum_{s=1}^{t} \|x_s\|_{Z_{s+1}^{-1}}^2 \le \frac{2}{\kappa} \sum_{s=1}^{t} \log \frac{\det(Z_{s+1})}{\det(Z_s)} \le \frac{2}{\kappa} \log \frac{\det(Z_{t+1})}{\det(Z_1)}.$$
 (22)

We complete the proof by combining (20), (21), and (22).