Li₂ Structure Factor Calculations

(No Computers allowed)

Monoclinic Space Group P2₁/c

http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

Generation of Li₂ Cell contents

Cell: 4.000 5.000 6.000 90 95.00 90

#	Label	X	Υ	Z	Symm. op.
1	LI1	0.8	0.2	0.1	x,y,z
2	LI2	0.6	0.3	0.2	x,y,z
3	LI1	0.2	0.7	0.4	1-x,1/2+y,1/2-z
4	LI2	0.4	0.8	0.3	1-x,1/2+y,1/2-z
5	LI1	0.2	0.8	0.9	1-x,1-y,1-z
6	LI2	0.4	0.7	0.8	1-x,1-y,1-z
7	LI1	0.8	0.3	0.6	x,1/2-y,1/2+z
8	LI2	0.6	0.2	0.7	x,1/2-y,1/2+z

The DiLithium Crystal

The Structure Factor (simplified)

$$F(hkl) = \sum_{j=1}^{n} \left(f_j e^{(2\pi i \left(hx_j + ky_j + lz_j \right))} \right)$$

F – Amplitude of diffracted intensity: Structure Factor

hkl – integer indices: Refers to diffraction planes in Direct Space, or spot position in Reciprocal Space

 \boldsymbol{n} - atoms in the unit cell, at positions $(\boldsymbol{x}_j,\,\boldsymbol{y}_j,\,\boldsymbol{z}_j)$

 f_j - atomic scattering factor. For X-rays, scales with number of electrons in atom n and drops off with scattering angle

$$F_{010} = \pm ?.???$$
 for Li_2

d = 5.000 Å

 $igaphi_{\mathsf{j}}$ is the atomic scattering factor

$$\mathbf{F}_{hkl} = \sum_{j} \mathbf{f}_{j} e^{2\pi i(hxj+kyj+lzj)}$$

$F(hkl) = \sum_{j=1}^{n} (f_j e^{(2\pi i(hx_j + ky_j + lz_j))})$

Li₂ in P2₁/c

a = 4.000Å

b = 5.000Å

c = 6.000Å

 $\alpha = 90^{\circ}$

 $\beta = 95.00$ °

 $\gamma = 90$ °

j 1

1 Li1 0.8, 0.2, 0.1

2 Li2 0.6, 0.3, 0.2

3 Li1 0.2, 0.7, 0.4

4 Li2 0.4, 0.8, 0.3

5 Li1 0.2, 0.8, 0.9

6 Li2 0.4, 0.7, 0.8

7 Li1 0.8, 0.3, 0.6

8 Li2 0.6, 0.2, 0.7

Phase Angle

Fraction of 2π

0.2

0.1

0.3

0.4

$F_{010} = 0.000 \text{ for Li}_2$

 $2\pi(hxj + kyj + lzj) = 2\pi(0x_j + 1y_j + 0z_j)$ is the phase angle for each atom in the cell

$$\mathbf{F}_{hkl} = \sum_{j} \mathbf{f}_{j} e^{2\pi i (hxj + kyj + lzj)}$$

$F_{010} = 0.000 \text{ for Li}_2$

$$F(hkl) = \sum_{j=1}^{n} (f_j e^{(2\pi i(hx_j + ky_j + lz_j))})$$

Li₂ in P2₁/c

020

a = 4.000Å b = 5.000Å c = 6.000Å α = 90° β = 95.00° γ = 90°

j 1 Li1 0.8, 0.2, 0.1 2 Li2 0.6, 0.3, 0.2 3 Li1 0.2, 0.7, 0.4 4 Li2 0.4, 0.8, 0.3 5 Li1 0.2, 0.8, 0.9 6 Li2 0.4, 0.7, 0.8 7 Li1 0.8, 0.3, 0.6 8 Li2 0.6, 0.2, 0.7

Phase Angle

Fraction of 2π

$F_{020} = -7.492 \text{ for Li}_2$

When the average electron density is *between* the planes, the structure factor has a *negative* phase angle.

$$F(hkl) = \sum_{j=1}^{n} (f_j e^{(2\pi i(hx_j + ky_j + lz_j))})$$

Li₂ in P2₁/c

102

```
a = 4.000Å
b = 5.000Å
c = 6.000Å
α = 90°
β = 95.00°
γ = 90°
```


Phase Angle

Fraction of 2π

$F_{102} = 8.894 \text{ for Li}_2$

d + d + d

-10

phase angle.

Atom 7

- Atom 8

$F_{-1-2-2} = -6.072$ for Li_2

