Lesson 3.8.2: Solving Problems Involving Angle Bisectors and Perpendicular Lines

Angle Bisector: a line that divides an angle into two equal

Perpendicular Bisector: the line drawn perpendicular through the midpoint of a given line segment

Practice Exercises 3.8.2

Solve the following problems completely.

1. Given: \overline{BN} is an angle bisector of $\angle IBE$ $m\angle IBN = 4x - 3, m\angle EBN = 2x + 7$

Find: *m∠IBN*

2. Given: $\overline{\textit{UP}}$ is an angle bisector of $\angle \textit{JUM}$

 $m \angle JUP = m \angle MUP = 50^{\circ}$

 $m \angle JUP = 2x + y, m \angle MUP = 3x - y$

3. Given: \overline{BN} is a perpendicular bisector

of $\overline{\textit{IE}}$

IN = 5x - 3, EN = 2x + 3

Find: IE

Activity 3.8.2

Solve the following problems completely.

1. Given: \overline{BD} is an angle bisector of $\angle ABC$ $m\angle CBD = 3x + 10, m\angle ABD = 2x + 30$ Find: *m∠CBD*

2. Given: \overline{PQ} is an angle bisector of

 $m\angle MPQ = 3x + 9, m\angle NPQ = 5x - 5$

Find: *m∠MPN*

3. Given: \overline{SR} is a perpendicular bisector of \overline{EQ}

Find: SQ

Lesson 3.8.2: Solving Problems Involving Angle Bisectors and Perpendicular Lines

Angle Bisector: a line that divides an angle into two equal parts

Perpendicular Bisector: the line drawn perpendicular through the midpoint of a given line segment

Practice Exercises 3.8.2

Solve the following problems completely.

1. Given: \overline{BN} is an angle bisector of $\angle IBE$ $m\angle IBN = 4x - 3, m\angle EBN = 2x + 7$

Find: *m∠IBN*

2. Given: $\overline{\textit{UP}}$ is an angle bisector of $\angle \textit{JUM}$

 $m \angle JUP = m \angle MUP = 50^{\circ}$

 $m \angle JUP = 2x + y, m \angle MUP = 3x - y$ Find: x

3. Given: \overline{BN} is a perpendicular bisector of \overline{IE}

IN = 5x - 3, EN = 2x + 3Find: IF

Activity 3.8.2

Solve the following problems completely.

1. Given: \overline{BD} is an angle bisector of $\angle ABC$ $m\angle CBD = 3x + 10, m\angle ABD = 2x + 30$

Find: *m∠CBD*

Given: \overline{PQ} is an angle bisector of

 $m \angle MPQ = 3x + 9, m \angle NPQ = 5x - 5$

Find: *m∠MPN*

3. Given: \overline{SR} is a perpendicular bisector of \overline{EQ}

Find: SQ

Lesson 3.8.2: Solving Problems Involving Angle Bisectors and Perpendicular Lines

Angle Bisector: a line that divides an angle into two equal parts

Perpendicular Bisector: the line drawn perpendicular through the midpoint of a given line segment

Practice Exercises 3.8.2

Solve the following problems completely.

1. Given: \overline{BN} is an angle bisector of $\angle IBE$

 $m\angle IBN = 4x - 3, m\angle EBN = 2x + 7$ Find: *m∠IBN*

2. Given: $\overline{\textit{UP}}$ is an angle bisector of $\angle \textit{JUM}$

 $m\angle JUP = m\angle MUP = 50^{\circ}$

 $m \angle JUP = 2x + y, m \angle MUP = 3x - y$ Find: x

3. Given: \overline{BN} is a perpendicular bisector of IF

IN = 5x - 3, EN = 2x + 3

Find: IE

Activity 3.8.2

Solve the following problems completely.

1. Given: \overline{BD} is an angle bisector of $\angle ABC$ $m\angle CBD = 3x + 10, m\angle ABD = 2x + 30$

Find: *m∠CBD*

2. Given: \overline{PQ} is an angle bisector of

 $m\angle MPQ = 3x + 9, m\angle NPQ = 5x - 5$ Find: *m∠MPN*

3. Given: \overline{SR} is a perpendicular bisector of \overline{EQ}

Find: SQ

Lesson 3.8.2: Solving Problems Involving Angle Bisectors and Perpendicular Lines

Angle Bisector: a line that divides an angle into two equal parts

Perpendicular Bisector: the line drawn perpendicular through the midpoint of a given line segment

Practice Exercises 3.8.2

Solve the following problems completely.

1. Given: \overline{BN} is an angle bisector of $\angle IBE$ $m\angle IBN = 4x - 3, m\angle EBN = 2x + 7$

Find: *m∠IBN*

2. Given: $\overline{\textit{UP}}$ is an angle bisector of $\angle \textit{JUM}$ $m \angle JUP = m \angle MUP = 50^{\circ}$

 $m \angle JUP = 2x + y, m \angle MUP = 3x - y$

Find: x

3. Given: \overline{BN} is a perpendicular bisector

IN = 5x - 3, EN = 2x + 3

Find: IF

Activity 3.8.2

Solve the following problems completely.

1. Given: \overline{BD} is an angle bisector of $\angle ABC$ $m\angle CBD = 3x + 10, m\angle ABD = 2x + 30$

Find: *m∠CBD*

 $m\angle MPQ = 3x + 9, m\angle NPQ = 5x - 5$

Find: *m∠MPN*

3. Given: \overline{SR} is a perpendicular bisector of \overline{EQ}

Find: SQ

