Kryptografia i bezpieczeństwo systemów informatycznych

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytet Gdański

sem. letni 2024/2025

inf.ug.edu.pl/~amb/

Andrzej Borzyszkowski (Instytut Informatyki Kryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

1/2

Podpis cyfrowy, podstawy

- Cel: (1) przekonać odbiorcę o autentyczności dokumentu
 - dodatkowo, (2) przekonać też stronę trzecią
 - czyli atrybut niezaprzeczalności
- W kryptografii symetrycznej (1) jest łatwe:
 Alicja i Bolek mają wspólny tajny klucz, Bolek wie, że dokument
 zaszyfrowany musi pochodzić od Alicji
 mogą użyć MAC by uniemożliwić manipulację kryptogramem
 - (2) nie jest spełnione
 - i Alicja i Bolek mogą sporządzić ten sam dokument, sąd nie ma podstaw wierzyć Bolkowi, że autorem jest Alicja a nie Bolek
- Cechy (pożądane): (1) niemożność sfałszowania podpisu
 - (2) niemożność przeniesienia podpisu z innego dokumentu
 - (3) niemożność zmiany podpisanego dokumentu
 - dodatkowo: łatwość identyfikacji osoby składającej podpis, łatwość weryfikacji podpisu

Schematy podpisu cyfrowego

Andrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

2/2

Podpis cyfrowy, kryptografia symetryczna

- Protokół z kluczem symetrycznym:
 - zaufany arbiter Tadeusz zna tajne klucze wszystkich uczestników
 - Alicja przesyła zaszyfrowany dokument do arbitra z informacją, że adresatem jest Bolek: $\langle K_A(M), B \rangle$
 - ten odszyfrowuje, szyfruje i przesyła do Bolka z informacją
 - o autorze: $K_B(\langle M, A \rangle)$
 - albo przesyła $K_B(\langle M, A \rangle)$ do Alicji, by to ona przesłała
 - Bolek wierzy Tadeuszowi, że wiadomość jest od Alicji, w razie potrzeby powoła się na Tadeusza, który jest powszechnie szanowany
- Problem: potrzebny jest zaufany pośrednik,
 - zna on wszystkie klucze (niebezpieczeństwo kompromitacji),
 - podpis jest przeznaczony tylko dla jednego odbiorcy duże wymagania obliczeniowe
 - (ale można operować wyłącznie na skrótach)

Podpis cyfrowy w kryptografii asymetrycznej

- Para kluczy, prywatny i publiczny (s, p)
 - podpisywanie kluczem prywatnym może być niedeterministyczne, Sig(s, m)
 - weryfikacja kluczem publicznym musi dawać wynik T/F, V(p,Sig(s,m))=T, $V(p,m_1)=F$ jeśli m_1 nie jest postaci Sig(s,m) dla pewnego m. osobny problem, czy znajomość Sig(s,m) zapewnia znajomość m
- Bezpieczeństwo (atak egzystencjalny):
 - Mariola zna klucz publiczny
 - i ma dostęp do urządzenia podpisującego
 - wygrywa, jeśli potrafi przedstawić jakąkolwiek podpisaną wiadomość (wcześniej nie podpisaną przez urządzenie)
 - nie wiemy, czy ta wiadomość jest jej przydatna

odbiorca musi mieć wspólny	każdy może zweryfikować podpis
klucz z nadawcą	
dla każdego odbiorcy musi być	dokument jest podpisany raz dla
odrębny MAC	wszystkich
odbiorca sam ma pewność, ale	weryfikacja jest dostępna wszystkim

Podpis cyfrowy:

z góry ustalono związek z kluczem publicznym)

podpisu nie można się wyprzeć (jeśli

ndrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

5/2

Podpis cyfrowy a szyfrowanie w kryptografii asymetrycznej

- Dane są dwie funkcje: F(k,...) oraz $G(\ell,...)$ wzajemnie odwrotne: dla wszystkich k,ℓ,m zachodzi $G(\ell,F(k,m))=m$
 - szyfrowanie: $F(k,\ldots)$ szyfruje kluczem publicznym k, $G(\ell,\ldots)$ odszyfrowuje kluczem prywatnym ℓ
 - podpis: F(k,...) podpisuje kluczem prywatnym k, $G(\ell,...)$ weryfikuje kluczem publicznym ℓ , $G(\ell,F(k,m))==m$
 - albo podpis $G(\ell,...)$ i weryfikacja za pomocą F(k,...)
- Czy to zawsze możliwe?:
 - klucze niekoniecznie można zamieniać rolami
 - operacje z kluczem publicznym i prywatnym nie muszą być przemienne

Andrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

6/22

Klasyfikacja ataków

Możliwości Marioli:

Podpis cyfrowy a MAC

nie może jej przekazać

MAC nie wiąże się ze

zobowiązaniem

MAC

- Mariola zna klucz publiczny
- ma kilka przykładów podpisanych wiadomości
- ma dostęp do urządzenia podpisującego
- Cele Marioli:
 - znaleźć klucz prywatny, czyli móc podpisać dowolny dokument
 - mieć pewną szansę na złożenie fałszywego podpisu pod wybranym dokumentem
 - znaleźć jakąkolwiek nową podpisaną wiadomość (nie wiemy, czy ta wiadomość jest jej przydatna) – fałszerstwo egzystencjalne
- Bezwarunkowe bezpieczeństwo: nie istnieje, zawsze można przetestować wszystkie podpisy, ale jest to nierealne

Algorytm RSA

- Przygotowanie Alicji:
 - wybiera duże liczby pierwsze p i q, oblicza $N = p \cdot q$
 - wybiera e i d takie, że $e \cdot d = 1 \mod \varphi(n)$, $\varphi(n) = (p-1) \cdot (q-1)$
 - klucz publiczny: (N, e)
 - klucz prywatny: (N, d)
- Podpis Alicji:
 - przesyła do Bolka $S((N,d),m)=m^d \mod N$, m musi być < N
- Weryfikacja przez Bolka:
 - pobiera klucz publiczny Alicji
 - oblicza $V((N, e), s) = s^e \mod N$,
 - znajduje $m=s^e \mod N$ i przekonuje się, że tylko właścicielka klucza prywatnego była w stanie tak zaszyfrować
- Każdy może przeprowadzić same kroki co Bolek

ndrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

9 / 2

RSA, podpis ślepy

- ullet Bolek chce podpisu Alicji pod dokumentem m jej nieznanym
 - np. patent w biurze patentowym
- Algorytm Chauma
 - Alicja przygotowuje parę kluczy, $\langle N, e \rangle$, $\langle N, d \rangle$ i ujawnia klucz publiczny $\langle N, e \rangle$
 - Bolek wybiera losowe k i przesyła do podpisu $m \cdot k^e \mod N$
 - Alicja podpisuje $y = (m \cdot k^e)^d = m^d \cdot k \mod N$
 - Bolek oblicza $m^d = y/k \mod N$ otrzymuje dokument m podpisany kluczem prywatnym Alicji
- Alicja nie wie co podpisała
 - wniosek: taki podpis może być składany jedynie za pomocą pary kluczy przeznaczonej do składania podpisu ślepego

Słabości RSA

- Nieodporność na fałszerstwo egzystencjalne
 - Mariola może wybrać dowolne y, obliczyć $m=y^e \mod N$ i twierdzić, że Alicja podpisała wiadomość m rzeczywiście $m^d=y$
 - co prawda wiadomość m będzie prawie na pewno bezsensowna, ale będzie podpisana kluczem prywatnym d
- Nieodporność na fałszerstwo z wybranym tekstem
 - Mariola zdobywa dwa podpisy na wiadomościach m_1 oraz $m_2=\frac{m}{m_1}$ i łatwo oblicza podpis m: $m^d=m_1^d\cdot m_2^d$
 - podpis pod nieznanymi dokumentami musi być stosowany ostrożnie
 - ale jest stosowany w różnych protokołach uwierzytelniania
 - okaże się zaraz, że na szczęście, raczej nie podpisujemy wprost iloczynów i ilorazów liczb

Andrzej Borzyszkowski (Instytut Informatyki Kryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

10 / 22

Podpis skrótu jako zasada ogólna

- Kryptografia asymetryczna jest mało wydajna
 - dokumenty są znacząco dłuższe niż tysiące bitów
 - rozwiązanie: podpisywanie jedynie skrótu dokumentu
- sam dokument nie da się odtworzyć z podpisanego skrótu, musi być dołączany do przesyłki
- Tw.: jeśli schemat podpisu jest bezpieczny oraz skrót jest bezkolizyjny, to schemat podpisu skrótu jest bezpieczny
 - nie da się utworzyć podpisanego skrótu
 - nie da się znaleźć dwóch dokumentów o tym samym skrócie (podpis skrótu byłby automatycznie podpisem obu)
- Uwaga: bezpieczeństwo bardzo silnie zależy od bezkolizyjności
 - dwa dokumenty o tym samym skrócie mają ten sam podpis
 - funkcje md5 oraz SHA-1 nie nadają się do podpisu cyfrowego

Funkcje skrótu - atak urodzinowy

- Prawdopodobieństwo, że dwie osoby spośród n osób mają urodziny tego samego dnia
 - dla $n \geqslant 22$ jest $> \frac{1}{2}$
- Prawdopodobieństwo, że dwie spośród r losowych liczb z zakresu $0\dots n$ są równe jest $1-e^{\frac{-r^2}{n}}$
 - jeśli zakres jest 50 bitowy, to wystarczy wygenerować 2³⁰ liczb by praktycznie na pewno było powtórzenie
- Alicja przygotowuje dwie wersje dokumentu, w każdej dokonuje 2³⁰
 małych modyfikacji, znajduje dwie wersje o identycznej funkcji skrótu
 i prosi Bolka o podpisanie jednej wersji
 - jest to również podpis pod drugą wersją
 - de facto fałszuje podpis Bolka
- Funkcje skrótu powinny być dwa razy dłuższe niż się wydaje
- Bolek może przed podpisaniem dokonać małej modyfikacji

ndrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

13 / 22

Podpis jednorazowy

- Klucz prywatny do podpisu nie musi być długotrwały
 - można po prostu zaprzestać używania
- Inna zasada bezpieczeństwa:
 - Mariola zna klucz publiczny p, ma dostęp do urządzenia szyfrującego, które złoży podpis tylko jeden raz
 - wygrywa, jeśli potrafi przedstawić jakąkolwiek podpisaną wiadomość (wcześniej nie podpisaną przez urządzenie)
- Schemat podpisu jednorazowego w oparciu o funkcję skrótu
 - klucz prywatny: seria par $\langle x_i, y_i \rangle$ dla każdego bitu m
 - klucz publiczny: seria skrótów $\langle h(x_i), h(y_i) \rangle$
 - podpis pod $m=b_1,\ldots,b_k$: ujawnienie x_i lub y_i w zależności od wartości bitu b_i
- Tw.: jest to schemat podpisu jednorazowego bezpiecznego
 - rozwiązanie bardzo kosztowne, raczej teoretyczne

Podpis skrótu w RSA

- Podpisany dokument: $\langle m, H(m)^d \mod N \rangle$ - weryfikacja: czy $H(m) == s^e \mod N$?
- Fałszerstwo egzystencjalne
 - po obliczeniu $s^e \mod N$ dla dowolnego s trzeba jeszcze znaleźć m o danym skrócie zadanie praktycznie niewykonalne
- Fałszerstwo z dwoma podpisami
 - iloczyn dwóch skrótów w ogóle nie będzie skrótem, nie zgadza się długość
- Nie ma jednak dowodu, że podpis RSA nawet z bezkolizyjnym skrótem jest bezpieczny

Andrzej Borzyszkowski (Instytut Informatyki Kryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

14 / 22

Schemat ElGamala

- Przygotowanie Alicji:
 - wybiera liczbę pierwszą p, generator g, wykładnik a < p-1
 - klucz publiczny: $(p, g, \alpha = g^a \mod p)$
 - klucz prywatny Alicji: a
- Alicia podpisuje wiadomość m < p:
 - losuje k, t.ż. NWD(k, p-1) = 1,
 - oblicza $r = g^k \mod p$ oraz $s = k^{-1} \cdot (m a \cdot r) \mod p 1$
 - podpisem jest cała trójka $\langle m, r, s \rangle$
- Bolek weryfikuje podpis na podstawie klucza publicznego:
 - sprawdza równość $\alpha^r \cdot r^s = g^m \mod p$
- Uzasadnienie: $s \cdot k + a \cdot r = m \mod p 1$
 - a więc $g^m = g^{s \cdot k + a \cdot r} = r^s \cdot \alpha^r \mod p$
- Niedeterminizm:
 - ta sama wiadomość może mieć wiele różnych podpisów

Schemat ElGamala, bezpieczeństwo

- ullet Mariola chce sfałszować podpis pod inną wiadomością m
 - k jest dowolne, więc r też, β jest znane, szuka s takiego, że $\beta^r \cdot r^s = \alpha^m \mod p$
 - czyli rozwiązuje problem logarytmu dyskretnego $\mathit{r^s} = \beta^{-\mathit{r}} \cdot \alpha^{\mathit{m}}$ mod p
 - może zacząć od wyboru s i szukać r, ale to też sprowadzi się do problemu logarytmu dyskretnego
- Nie wiadomo, czy wspólne szukanie r i s ułatwi zadanie

Andrzej Borzyszkowski (Instytut Informatyki Kryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

17 / 2

Andrzej Borzyszkowski (Instytut Informatyki lKryptografia i bezpieczeństwo systemów infor

sem. letni 2024/2025

10 / 20

Schemat Schnorra

- Przygotowanie:
 - liczby pierwsze q 224 bity oraz p ponad 2000 bitów, q jest dzielnikiem p-1
 - generator α_0 w \mathbb{Z}_p^* , $\alpha=\alpha_0^{(p-1)/q}$, oczywiście $\alpha^q=1\mod p$
 - wykładnik a < q 1
 - klucz publiczny: $(p, q, \alpha, \beta = \alpha^a \mod p)$
 - klucz prywatny: a
 - ustalona funkcja skrótu $h: \{0,1\}^* \to \mathbb{Z}_q$
- Alicja podpisuje dowolną wiadomość m (może b. długą):
 - losuje k < q-1, oblicza $r = h(m||\alpha^k \mod p)$ oraz $s = k + a \cdot r \mod q$
 - podpisem jest cała trójka $\langle m, r, s \rangle$
- Bolek weryfikuje podpis na podstawie klucza publicznego:
 - sprawdza równość $r = h(m||\alpha^s \cdot \beta^{-r} \mod p)$
- Uzasadnienie: $\alpha^s \cdot \beta^{-r} = \alpha^k \mod p$

Digital Signature Algorithm

Schemat ElGamala, losowość

- Standard opracowany w 1991 r. przyjęty w 1994 r.
- Opiera się na problemie logarytmu dyskretnego
 - a więc nie da się bezpośrednio użyć do szyfrowania
 - wymaga przekazania oryginału wiadomości (jak ElGamal)
- Algorytm jest bardziej skomplikowany
 - lecz szybszy w działaniu (dwa potęgowania zamiast trzech przy weryfikacji)

• Alicja podpisała dwie wiadomości m_1 i m_2 z tą samą wartością losową

– z równania $a \cdot r = m_1 - k \cdot s_1 \mod p - 1$ można obliczyć a, również

- Ewa widzi to i wie, że $s_1 \cdot k - m_1 = s_2 \cdot k - m_2 \mod p - 1$

• Tzn. system jest całkowicie skompromitowany, znany jest klucz

a więc część r w obu podpisach jest identyczna

k daje się obliczyć, być może niejednoznacznie

prywatny i można fałszować wszystkie podpisy

- czyli $(s_1 - s_2) \cdot k = m_1 - m_2 \mod p - 1$

być może jest kilka rozwiązań

- bezpieczniejszy, wymaga by p-1 miało duży dzielnik pierwszy
- częścią standardu jest funkcja skrótu SHA-1 specjalnie zaprojektowana z tej okazji
 - zastąpiona najpierw przez SHA-2, a obecnie przez SHA-3
 - dziś SHA-1 ma znalezione kolizje i nie powinna być stosowana do podpisu
- Formalnie, nie ma żadnego dowodu bezpieczeństwa schematu

Dlaczego logarytm dyskretny?

- Dane dwie funkcje: F(k,...) oraz $G(\ell,...)$ t.ż. dla wszystkich k,ℓ,m zachodzi $G(\ell,F(k,m))=m$
 - -F(k,...) jest podpisem kluczem prywatnym k, $G(\ell,...)$ weryfikuje kluczem publicznym ℓ tzn. $G(\ell,F(k,m))=m$?
- Algorytmu do podpisu można użyć do szyfrowania jeśli będzie spełniony jeden z warunków
 - klucze można zamienić rolami
 - operacje z kluczem publicznym i prywatnym są przemienne
- RSA spełnia każdy z warunków
 - $-e \cdot d = 1 \mod \varphi(N)$, dowolna z nich może być tajna
 - obie operacje są potęgowaniem, kolejność potęgowania jest dowolna
- Algorytm ElGamala dla podpisu jest inny niż algorytm dla szyfrowania
 - upublicznienie narzędzia do podpisu nie daje narzędzia do szyfrowania

Szyfrowanie a podpis

- Alicja szyfruje wiadomość do Bolka, ale Bolek ją odszyfrowuje i publikuje
 - Alicja może jednak zaprzeczać, że to jej wiadomość
- Alicja podpisuje a następnie szyfruje wiadomość do Bolka, Bolek ją odszyfrowuje i publikuje
 - Alicja nie może już zaprzeczać, że to jej wiadomość, jest podpisana
 - Bolek może ją zaszyfrować i przesłać do Celiny, która będzie myśleć, że była adresatką podpisanej wiadomości
 - w treści podpisywanej wiadomości może być wspomniane, że adresatem jest Bolek
- Alicja szyfruje wiadomość do Bolka i podpisuje już zaszyfrowaną
- Bolek jest pewien, że to komunikat od Alicji, ale nie może tego przedstawić publicznie (sytuacja jak w kryptografii symetrycznej)

21 / 22