

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół:1.Kulig Mateusz
2.Ryś Przemysław

AGH	Wyo Fizyka	2.Ryś Przemysław				
Laboratorium Technik Jądrowych						
Rok akademicki: 2022/2023 Semestr V Grupa: 2						
Temat ćwiczenia: Badanie układu koincydencyjnego						
Data wykonania ćwiczenia 20.10.2022		Data oddania sprawozdania 03.11.2022	Ocena			

1 Wstęp teoretyczny

Izotop sodu Na-22 rozpada się poprzez rozpad β^+ , czyli produktami rozpadu oprócz nowego jądra są pozyton oraz neutrino elektronowe. Pozyton jest antycząstką elektronu więc gdy te dwie cząstki anihilują natychmiastowo gdy się spotkają. w wyniku tej anihilacji powstają dwa fotony o przeciwnie skierowanych zwrotach prędkości, tak aby spełniona została zasada zachowania pędu. Takie dwa fotony możemy zarejestrować oraz przekonać się ze zostały wyemitowane w tym samym czasie za pomocą układu koincydencyjnego, czyli układu elektronicznego wyłapującego jednoczesne sygnały. W przypadku rozpadu kobaltu-60 rozpada się od poprzez rozpad gamma, a para fotonów pojawia się ponieważ jądro dyskretnie zmienia swój poziom energetyczny.

2 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z obsługą oraz prawidłowym przygotowaniem i skonfigurowaniem układu koincydencyjnego oraz użycie metody koincydencji do wyznaczenia aktywności źródła promieniotwórczego.

3 Aparatura

W skład aparatury wchodziły następujące przyrządy:

- Sondy scyntylacyjne na torze 1 oraz 2
- Wzmacniacze impulsowe (2 szt.)
- analizatory jednokanałowe (2 szt.)
- linia opóźniająca wchodząca w skład analizatora jednokanałowego
- układ koincydencyjny
- przeliczniki (3 szt.)

4 Analiza danych

Sondy scyntylacyjne umieszczone były naprzeciw siebie, tak aby promieniowanie gamma powstałe w wyniku anihilacji pozytonu wyemitowanego z próbki i elektronu będącego na torze jego ruchu zostało równocześnie zarejestrowane przez oba liczniki.

4.1 Widmo różniczkowe izotopu sodu Na-22

Dla sodu Na-22 wyznaczyliśmy widma różniczkowe dla obu torów w pełnym zakresie energii, czyli dla napięcia od 0 do 10 woltów z przeskokiem co 0,1 wolta. Dla każdego napięcia pomiary wykonywaliśmy przez 10 sekund. W ten sposób otrzymaliśmy dla każdego toru po 100 odczytów. Wyniki przedstawiliśmy w Tabeli 1. Następnie wykonaliśmy wykres ilości zliczeń w zależności od napięcia (Rysunek 1).

Rysunek 1: Widma różniczkowe dla obu torów.

Piki widma różniczkowego pochodzące z anihilacji cząstki beta plus odpowiadały mniejszej energii niż te pochodzące z rozpadu gamma. Tak więc z wykresu odczytaliśmy położenie pików zliczeń:

- dla toru 1 pik leżał na przedziale napięcia od 1,5 do 1,9 volta,
- dla toru 2 pik leżał na przedziale napięcia od 1,9 do 2,3 volta.

Następnie zmierzyliśmy ilość zliczeń dla obu torów na odczytanych wcześniej przedziałach napięcia. Pomiar wykonywaliśmy w czasie 100 sekund.

- Dla toru 1 odczytaliśmy 54919 zliczeń czyli $J_1 = 549, 19$ zliczeń na sekundę.
- Dla toru 2 odczytaliśmy 58023 zliczeń czyli $J_2 = 580, 23$ zliczeń na sekundę.

4.2 Krzywa koincydencji opóźnionych izotopu sodu Na-22

Następnie ustawiliśmy parametry analizatorów dla obu torów tak aby obejmowały one wyznaczone piki anihilacyjne. Następnie wykonaliśmy pomiar koincydencji opóźnionych, czyli liczby zliczeń w zależności od ustawionego czasu opóźnienia. Czas opóźnienia zmienialiśmy w zakresie od 2,3 μs do 3 μs , ze skokiem co 0,02 μs . Każdy pomiar wykonywaliśmy przez 10 sekund. Wyniki przedstawiliśmy w Tabeli 2. Otrzymaną krzywą koincydencji prezentuje Rysunek 2.

Z rysunku 2 odczytać można wartość opóźnienia t_0 , dla której liczba koincydencji jest maksymalna, szerokość połówkową, maksymalną liczbę koincydencji oraz całkowitą częstość zliczeń koincydencji:

- $t_0 = 2,66 \mu s$
- FWHM = $0.26 \ \mu s$
- K(maksymalna liczba koincydencji) = 537

Rysunek 2: Krzywa koincydencji opóźnionych.

• $J_{cakowite} = 53.7$

Czas rozdzielczy układu obliczyć możemy korzystając ze wzoru $\tau=\frac{FWHM}{\sqrt{2}},$ który w tym przypadku wynosi $\tau=0,1838\mu s.$

Następnie obliczyliśmy liczbę koincydencji rzeczywistych stosując formułę $J_{cakowite} = J_{rzeczywiste} + J_1 J_2 \tau$ i otrzymaliśmy

- $J_{przypadkowe} = J_1 J_2 \tau = 0.0586$
- $J_{rzeczywiste} = 53,642$

4.3 Pomiar aktywności źródeł promieniotwórczych metodą koincydencji

Korzystając z tego samego układu koincydencyjnego wyznaczyliśmy widmo różniczkowe dla kobaltu-60. Opóźnienie dobraliśmy tak aby zlikwidować opóźnienie wzajemne dwóch torów. Widmo różniczkowe wyznaczyliśmy w przedziale od 3,5 do 6 woltów z przeskokiem co 0,1 wolta. Dla każdego napięcia pomiary wykonywaliśmy przez 10 sekund. W ten sposób otrzymaliśmy dla każdego toru po 26 odczytów. Wyniki przedstawiliśmy w Tabeli 3. Następnie wykonaliśmy wykres ilości zliczeń w zależności od napięcia (Rysunek 3).

Z wykresu odczytaliśmy położenie pików:

- $\bullet\,$ dla toru 1 pierwszy pik leżał na przedziale napięcia od 3,6 do 4 wolta, a drugi w przedziale 4,2 do 4,4 wolta,
- ullet dla toru 2 pierwszy pik leżał na przedziałe napięcia od 4,5 do 4,7 volta, a drugi w przedziałe od 5 do 5,4 wolta.

Dla tych zakresów wykonaliśmy pomiary trwające 100 sekund oraz pomiary tła:

Rysunek 3: Widma różniczkowe dla kobaltu.

- dla toru 1 całkowita ilość zliczeń 3457, promieniowanie tła 152 zatem rzeczywista ilość zliczeń 3305,
- dla toru 2 całkowita ilość zliczeń 2702, promieniowanie tła 74 zatem rzeczywista ilość zliczeń 2628.

Średnia ilość zliczeń na tor wynosi zatem 2966,5. Następnie przez 1000 sekund mierzyliśmy liczbę jednoczesnych sygnałów i otrzymaliśmy 50 zliczeń. Korzystając ze wzoru $A=\frac{J^2}{2J_{rzeczywiste}}$ otrzymaliśmy wartość aktywności źródła

$$A = 8,8kBq$$
.

Korzystając z danych laboratoryjnych dotyczących źródła Co-60:

- $T_{1/2} = 5,271$ lat,
- A = 10,37 kBq
- data referencyjna 01/12/2018.

Za pomocą tych danych obliczyć możemy oczekiwaną aktywność źródła A' = 6,3kBq. jest to wartość takiego samego rzędu jak ta otrzymana metodą koincydencji.

5 Aneks

Tabela 1: Zależność ilości zliczeń na poszczególnych torach od przyłożonego napięcia dla sodu. Podświetlone zostały komórki uznane przez nas za piki liczby zliczeń.

Napięcie [V]	Tor 1	Tor 2	Napięcie [V]	Tor 1	Tor 2	Napięcie [V]	Tor 1	Tor 2
0	684	2386	3,4	75	116	6,8	1	4
0,1	598	493	3,5	45	105	6,9	0	9
0,2	740	565	3,6	33	111	7	3	9
0,3	758	686	3,7	20	151	7,1	1	18
0,4	737	690	3,8	16	113	7,2	1	11
0,5	886	714	3,9	83	145	7,3	0	4
0,6	879	682	4	363	136	7,4	0	2
0,7	831	789	4,1	533	98	7,5	0	1
0,8	651	700	4,2	264	76	7,6	0	0
0,9	625	700	4,3	45	38	7,7	0	1
1	581	623	4,4	6	29	7,8	0	0
1,1	379	560	4,5	11	25	7,9	0	0
1,2	213	540	4,6	17	28	8	1	0
1,3	203	490	4,7	16	61	8,1	1	2
1,4	184	296	4,8	10	185	8,2	2	1
1,5	350	200	4,9	5	428	8,3	2	2
1,6	2631	207	5	10	487	8,4	0	0
1,7	2970	154	5,1	7	258	8,5	1	2
1,8	333	201	5,2	9	63	8,6	1	0
1,9	119	906	5,3	2	16	8,7	0	2
2	101	2890	5,4	2	8	8,8	0	0
2,1	119	2386	5,5	1	13	8,9	0	0
2,2	107	410	5,6	9	17	9	1	0
2,3	136	119	5,7	9	16	9,1	0	0
2,4	107	106	5,8	10	12	9,2	0	0
2,5	125	102	5,9	7	13	9,3	0	0
2,6	111	123	6	2	5	9,4	0	0
2,7	138	99	6,1	2	7	9,5	0	1
2,8	128	122	6,2	0	6	9,6	0	0
2,9	135	109	6,3	1	9	9,7	0	1
3	154	107	6,4	2	5	9,8	0	0
3,1	135	103	6,5	0	1	9,9	1	0
3,2	133	114	6,6	2	5	10	0	1
3,3	120	108	6,7	0	3			

Tabela 2: Zależność ilości zliczeń od ustawionego czasu opóźnienia dla sodu.

Czas opóźnienia [µs]	Zliczenia	Czas opóźnienia [µs]	Zliczenia
2,3	6	2,66	6
2,32	7	2,68	7
2,34	10	2,7	10
2,36	11	2,72	11
2,38	12	2,74	12
2,4	21	2,76	21
2,42	29	2,78	29
2,44	42	2,8	42
2,46	62	2,82	62
2,48	112	2,84	112
2,5	114	2,86	114
2,52	158	2,88	158
2,54	224	2,9	224
2,56	307	2,92	307
2,58	321	2,94	321
2,6	414	2,96	414
2,62	445	2,98	445
2,64	524	3	524

Tabela 3: Zależność ilości zliczeń na poszczególnych torach od przyłożonego napięcia dla kobaltu. Podświetlone zostały komórki uznane przez nas za piki liczby zliczeń.

Napięcie [V]	Tor 1	Tor 2	Napięcie [V]	Tor 1	Tor 2
3,5	34	81	4,8	5	29
3,6	69	74	4,9	5	28
3,7	153	60	5	1	66
3,8	155	58	5,1	2	104
3,9	46	59	5,2	0	113
4	13	35	5,3	2	57
4,1	50	42	5,4	3	22
4,2	126	33	5,5	0	6
4,3	140	44	5,6	1	8
4,4	46	96	5,7	5	6
4,5	7	146	5,8	3	2
4,6	6	159	5,9	1	3
4,7	5	78	6	1	4