CSE 599Q社身界更好機 CS编程辅导 Link

Quantum algorithms

1. Bernsteir ith a noisy oracle [16 points]

Recall that in the black below there is a hidden string $s\in\{0,1\}^n$ and we have access to a function $f:\{0,1\}^n\to\{0,1\}$ such that

The goal is to recover the secret s, and the Bernstein-Vazirani algorithm allows us to do this with only a single quantum query to fnt Project Exam Help

Suppose now that the function f is noisy, in the sense that, for some noise parameter arepsilon>0, we only have the guarantee

 $\frac{\texttt{Email: tutorcs@163.com}}{\#\{x \in \{0,1\}^n: f(x) = s \cdot x \bmod 2\}} \geq 1 - \varepsilon.$

- A. [10 pts] Calculate a lower bound on the probability that a single run of the Bernstein-Vazirani algorithm nevertheless succeeds in recovering s and make sure to justify your calculation. $\frac{10 \text{ pts}}{10 \text{ pts}} = \frac{10 \text{ pts}}{10 \text{ pts}} = \frac{10$
- **B.** [6 pts] What happens when $\varepsilon=1/2$? Explain why there is no hope for an algorithm to recover s in this case.

2. Group theory for Shor [16 points]

A. [0 pts] We write \mathbb{Z}_n for the additive group of integers modulo n, whose elements can be represented by the numbers $\{0,1,2,\ldots,n-1\}$, and we use \mathbb{Z}_n^* to denote the multiplicative group of integers modulo n, whose elements can be represented by the numbers $\{1 \leq a < n : \gcd(a,n) = 1\}$.

Show that for p prime, there is some generator $g\in \mathbb{Z}_p^*$ such that $\mathbb{Z}_p^*=\{g^0,g^1,g^2,\dots,g^{p-2}\}.$

You may assume that \mathbb{Z}_p^* has a generator for the rest of the problem.

- **B. [4 pts]** Use this to show that the groups \mathbb{Z}_{p-1} and \mathbb{Z}_p^* are <u>isomorphic</u>.
- **C. [4 pts]** Show that $g^{(p-1)/2} \equiv -1 \pmod p$ must hold, where g is your generator of \mathbb{Z}_p^* .

D. [4 pts] Suppose that p,q are two distinct prime numbers. Show that \mathbb{Z}_{pq}^* and $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$ are isomorphic.

You may use the Chinese Remainder Theorem: If m,n are two numbers with $\gcd(m,n)=$ then the system equation CS in CS in

What is the image to the image of the image

E. [4 pts] Suppose y **H. .** Se isomorphisms to map $\mathbb{Z}_{pq}^* \to \mathbb{Z}_{p-1} \times \mathbb{Z}_{q-1}$. What is the imag

3. More group dieury for Shor [16 points]

A. [4 pts] If (G,+) is a group with identity element g then the order of an element $g\in G$ is the smallest k such that $g+g+\cdots+g=0$ (the sum of k copies of g). We write $\operatorname{ord}_G(g)$ for the order of g.

Suppose $m=2^kb$ is an even integer $(k\geq 1)$ and 0 so do. Show that if $u\in \mathbb{Z}_m$ is even, then 2^k does **not** divide $\mathrm{ord}(u)$. Email: tutorcs@163.com

- **B. [4 pts]** Suppose m,n are even integers and we pick $u\in\mathbb{Z}_m$ and $v\in\mathbb{Z}_n$ uniformly at random. Show that with probability at least 1/2, the largest power of 2 that divides $\mathrm{ord}_{\mathbb{Z}_n}(u)$ is different from the largest power of 2 that divides $\mathrm{ord}_{\mathbb{Z}_n}(v)$.
- C. **[4 pts]** Show that if $(u,v)\in\mathbb{Z}_m imes\mathbb{Z}_n$, then $\inf_{\mathrm{OTd}_{\mathbb{Z}_m}}\underbrace{v,v}_{\mathbb{Z}_n}\underbrace{v,v}_{\mathbb{Z}_m}$
- **D. [4 pts]** Suppose now that p,q are distinct odd prime numbers and we pick $u\in\mathbb{Z}_{p-1}$ and $v\in\mathbb{Z}_{q-1}$ uniformly at random, and define $L:=\mathrm{ord}_{\mathbb{Z}_{p-1}\times\mathbb{Z}_{q-1}}(u,v)$. Use Problem 1 and parts (A)-(C) to show that with probability at least 1/2, both of the following hold:
 - $\circ \; L$ is even
 - $\circ \ (u,v)+(u,v)+\cdots+(u,v)$ (summed L/2 times) is not equal to $(\frac{p-1}{2},\frac{q-1}{2}).$

4. Non-trivial square roots [12 points]

Use Problems 1 and 2 to show the following: Suppose that B=pq is a product of two distinct odd primes p and q. Choose an element $A\in\mathbb{Z}_B^*$ uniformly at random and define $L:=\mathrm{ord}_{\mathbb{Z}_B^*}(A)$.

Show that with probability at least 1/2, it holds that L is even and $A^{L/2}$ is a non-trivial square root of 1 modulo B, i.e., $\left(A^{L/2}\right)^2 \equiv 1 \pmod B$, and $A^{L/2} \not\equiv \pm 1 \pmod B$.

5. Order finding reduces to factoring [12 points]

In class, we showed that if B=pq is a product of two primes and we can find the order of an element A if E^* , if continue the large p and e^p in e^p in e^p . If e^p is a product of two primes and we can find the order of an element e^p in e^p .

Suppose now that you have a subroutine that takes a number B as input and outputs its prime factorization. Show that you can use this to find the order of any given element $A \in \mathbb{Z}_B^*$. Your $A \in \mathbb{Z}_B^*$. Your $A \in \mathbb{Z}_B^*$ polynomial time in the size of the input, i.e., in time $(\log_2 B)^{O(1)}$.

Extra creditive [20 points]

A. Read the paper Pretending to factor large numbers on a quantum computer. Write a paragraph surmarizing their main critique prior experiments am Help

B. Read the paper Realization of a scalable Shor algoirthm. Do you think it adequately addresses the criticisms of the first article? Why (or why not)? Explain your thinking. Email: tutorcs 2.03.com

QQ: 749389476

https://tutorcs.com