

Chapter 15 – Part I Identifying Failure & Repair Distributions

Identifying Candidate Distributions
Probability Plots & Least-squares curve-fitting

Fitting Theoretical Distributions

- Empirical models do not provide information beyond the range of the sample data.
- A sample is only a small (random) subset of the population of failure times, and it is the distribution the sample came from and not the sample itself which we want to establish.
- Often the failure process is a result of some physical phenomena which can be associated with a particular distribution.
- Small sample sizes provide very little information concerning the failure process. However, if the sample is consistent with a theoretical distribution, then much "stronger" results are possible based upon the properties of the theoretical distribution.
- Use can be made of the theoretical reliability model in performing more complex analysis of the failure process.

Chapter 15

Identifying Candidate Distributions

3 - STEP PROCESS:

- Identify candidate distributions
 - Construct a histogram
 - Compute descriptive stats
 - Analyze empirical failure rate
 - Use prior knowledge
 - Use properties of theoretical distribution
 - construct a probability plot
- 2. Estimate parameters (Maximum Likelihood)
- 3. Perform a goodness-of-fit tests (Chapter 16)

Histograms Sturges' rule for grouping data

$$k = [1 + 3.3 \log_{10} n]$$

where
$$k = number of classes,$$

 $n = sample size.$
 $|x| = integer part of x$

For example,

<u>n</u>	<u>k</u>
50	7
500	10
5000	13

Given the following 35 failure times:										
1476	300	98	221	157						
1825	499	552	1563	36						
246	442	20	796	31						
47	438	400	279	247						
210	284	553	767	1297						
214	428	597	2025	185						
467	401	210	289	1024						

From Sturges' rule:

$$k = 1 + 3.3 \log 10 \ 35 = 1 + 3.3 \ (1.544) = 6.0954 \approx 6$$

FREQUENCY DISTRIBUTION OF OBSERVED VALUES

too few classes

FREQUENCY DISTRIBUTION OF OBSERVED VALUES

too many classes

FREQUENCY DISTRIBUTION OF OBSERVED VALUES

JUST RIGHT!

Descriptive Statistics

Rank ordered data:										
20	31	36	47	98						
157	182	185	210	210						
214	221	246	247	279						
284	289	300	400	401						
428	438	442	467	499						
552	553	597	767	796						
1024	1297	1476	1563	2025						

$$t_{med}$$
 = 300
 $MTTF = 485.2$
supports exponential
 $s = 469.8$

$$s^2 = (20^2 + 31^2 + ... + 2025^2 - 35 \times 485.2^2)/34 = 220,712.3$$

Empirical Hazard Rate Curve

Probability Plots

$$\begin{bmatrix} t_i, F(t_i) \end{bmatrix}, i = 1, 2, \dots, n$$
tting position

plotting position

plots as a straight line on appropriate graph paper y = a + b x

Exponential Plots

$$F(t) = 1 - e^{-\lambda t}$$
 or $1 - F(t) = e^{-\lambda t}$

$$\ln \left[1 - F(t)\right] = -\lambda t \quad \text{or} \quad$$

$$-\ln [1 - F(t)] = \ln [1/(1-F(t))] = \lambda t$$

On special graph paper, given failure times

$$t_1, t_2, ..., t_n$$
, plot the points $\left[t_i, \hat{F}(t_i)\right]$

vertical scale:
$$\hat{F}(t) \rightarrow -- \rightarrow \ln \left[\frac{1}{1 - \hat{F}(t)} \right]$$

Exponential Plots - least-squares

parameter estimation: Since $F(MTTF) = 1 - e^{-1} = .632$ Find the value of t which corresponds to F(t) = 0.632.

alternatively use least-square to fit a line passing through the origin:

$$\hat{\lambda} = b = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

$$MTTF = 1/\hat{\lambda} = 1/b$$

where $y_i = \ln \{1/[1-F(t)]\}$ and $x_i = t_i$.

FAILURE TIME (x _i)	$F(t_i)$	$y_i = Ln [1/(1-F(t))]$	(t_i)
3.3	3.431373E-02	3.491616E-	02
4.2	8.333334E-02	8.701131E-	02
12.9	.132353	.1419703	
13.8	.1813726	.2001262	•
14.3	.2303922	.2618741	$F(t_i) = (i-0.3)/(n+0.4)$
14.8	.2794118	.3276874	
18.5	.3284314	.398139	
22.8	.377451	.4739329	
27.1	.4264706	.5559461	
29.7	.4754902	.6452911	SLOPE - $b = 01832$
32	.5245098	.743409	Estimated MTTF
39.5	.5735295	.8522118	= 1/b = 54.6
41.3	.622549	.9743145	Index of Fit = $.979$
41.6	.6715686	1.113427	
51.1	.7205883	1.275069	SAMPLE MTTF = 48.7
61.7	.7696078	1.467972	
92.2	.8186275	1.707202	
106.6	.8676471	2.022284	
148.8	.9166668	2.484908	
198.1	.9656863	3.372211	

Chapter 15

Example 15.4 – Exponential Plot

Chapter 15

Weibull Plots

$$F(t) = 1 - e^{-\left(\frac{t}{\theta}\right)^{\beta}} \ln \left[\frac{1}{(1 - F(t))}\right] = \left(\frac{t}{\theta}\right)^{\beta}$$

$$\ln \ln \left[\frac{1}{(1 - F(t))} \right] = \beta \ln t - \beta \ln \theta$$

plot:
$$\left(\ln t_i, \ln \ln \left| \frac{1}{(1 - F(t_i))} \right| \right)$$

Find the characteristic life from: $F(\theta) = 0.632$

Find the shape parameter from the slope of the fitted line:

$$\ln \ln \left[\frac{1}{(1 - F(t))} \right] = \beta \ln t - \beta \ln \theta$$

or solve:

$$\beta = \ln \ln \left[\frac{1}{(1 - F(t))} \right] / (\ln t - \ln \theta)$$

find average value over several t_i

<u>i</u>	<u>Failure Time</u>	(i3)/(5+.4)
1	32 hrs	.13
2	51	.31
3	74	.50
4	90	.50 .69
5	120	.87

$$\theta$$
 = 85 hr.

for
$$i = 2$$
:

$$\hat{\beta} = \frac{\ln \ln \frac{1}{1 - .31}}{\ln 51 - \ln 85} = 1.94$$

for
$$i = 5$$
:

$$\frac{\ln \ln \frac{1}{1 - .31}}{\ln 51 - \ln 85} = 1.94 \qquad \hat{\beta} = \frac{\ln \ln \frac{1}{1 - .87}}{\ln 120 - \ln 85} = 2.06$$

average
$$\hat{\beta} = 2.0$$

Nonlinear Weibull Plots

(a) Correct for t₀

(b) Competing Failure Modes

Least-Squares Approach

$$\ln \ln \left[\frac{1}{(1 - F(t))} \right] = \beta \ln t - \beta \ln \theta$$

$$x_i = \ln t_i \quad and \quad y_i = \ln \ln \left[\frac{1}{1 - F(t_i)} \right]$$

$$b = \frac{\sum_{i=1}^{n} x_i y_i - \overline{x} \sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2} \qquad \stackrel{\wedge}{B} = b$$

$$a = y - b \overline{x}$$

$$\theta = e^{-a/b}$$

Example 15.5 (continued)

FAILURE TIME	$F(t_i) = (i-0.3)/(n+0.4)$	ln ln[1/(1-F(t _i))]
32	.1296296	-1.974459
51	.3148148	9726862
74	.5	3665129
90	.6851852	.1447674
120	.8703704	.7144555
INTERCE	CPT - a	-8.951651
SLOPE - t		2.01553
ESTIMAT	ED BETA	2.01553
ESTIMAT	ED THETA	84.88845
Index-of-l	Fit (R)	.9986
	$-\left(\frac{t}{2}\right)$	2.01553
R($(t) = e^{-(84.88845)}$)

Chapter 15 20

i	t _i	$I' (I \cdot I) = \overline{}$	$y_i = In In [1/(1-F(t_i))]$
		n+.4	
1	25.1	0.0455	-3.067874
2	73.9	0.1104	2.145824
3	75.5	0.1753	-1.646281
4	88.5	0.2403	-1.291789
5	95.5	0.3052	-1.010262
6	112.2	0.3701	-0.7716678
7	113.6	0.4351	-0.5602884
8	138.5	0.5000	-0.3665131
9	139.8	0.5649	-0.1836104
10	150.3	0.6299	-6.117305E-03
11	151.9	0.6948	0.1712648
12	156.8	0.7597	0.3548976
13	164.5	0.8247	0.5545261
14	218.0	0.8896	0.7901556
15	403.1	0.9545	1.128508

Chapter 15 21

Example 15.6 Weibull Failure Data

INTERCEPT - a -9.1649
SLOPE - b 1.8027
Estimated BETA (β) 1.8027
Estimated THETA (θ) 161.41
Index of Fit .9545

$$-.\left(\frac{t}{161.41}\right)^{1.8027}$$

Normal Plots

$$F(t) = \Phi\left(\frac{t - \mu}{\sigma}\right) = \Phi(z)$$

$$z_i = \Phi^{-1}[F(t_i)] = \frac{t_i - \mu}{\sigma} = \frac{t_i}{\sigma} - \frac{\mu}{\sigma}$$

set: $x_i = t_i$ and $y_i = z_i$ and apply the L-S fomulae

$$\overset{\wedge}{\sigma} = \frac{1}{b}$$
 and $\overset{\wedge}{\mu} = -a\overset{\wedge}{\sigma} = -\frac{a}{b}$

Example

ш	Ι	$x_i = t_i$	$F(t_i)$	$y_i = Z_i$	i
	1	68.0	0.0343	-1.8211	
	2	69.6	0.0833	-1.3832	(i - 0.3) / (20 + 0.4)
	3	71.1	0.1324	-1.1151	
	4	71.4	0.1814	-0.9100	
	5	74.3	0.2304	-0.7375	
	6	74.6	0.2794	-0.5846	Normal Tables
	7	75.5	0.3284	-0.4443	
	8	77.6	0.3775	-0.3121	INTERCEPT a 0.01E/E
	9	77.8	0.4265	-0.1853	INTERCEPT - $a = -9.81565$
	10	78.0	0.4755	-0.0615	SLOPE - b = 0.123553
	11	78.2	0.5245	0.0615	Estimated SIGMA (σ) = 1/b = 8.0937
	12	80.2	0.5735	0.1853	
	13	80.3	0.6225	0.3121	Estimated MEAN = $-a/b$ = 79.445
	14	81.9	0.6716	0.4443	Index of Fit = R = 0.979
	15	83.0	0.7206	0.5846	
	16	85.6	0.7696	0.7375	
	17	87.4	0.8186	0.9100	$rac{1}{2} = rac{1}{2} \left(t - 79.445 \right)$
	18	87.7	0.8676	1.1151	$R(t) = 1 - \mathcal{D}\left(\frac{t - 79.445}{8.0937}\right)$
	19	88.4	0.9167	1.3832	8.0937
Cha	20	98.3	0.9657	1.8211	24

Example – Normal Probability Plot

Chapter 15 25

Lognormal Plots

$$F(t) = \Phi\left(\frac{1}{s}\ln\frac{t}{t_{med}}\right) = \Phi(z)$$

$$z_i = \Phi^{-1} [F(t_i)] = \frac{1}{s} \ln t - \frac{1}{s} \ln t_{med}$$

set: $x_i = \ln t_i$ and $y_i = z_i$ and apply the L-S fomulae

$$s = \frac{1}{h}$$
 and t_{med} $= e^{-a/b}$

Repair times (in min.) of a mechanical pump are believed to follow a lognormal distribution.

	i	t_i	$F(t_i)$	\mathbf{z}_{i}	i		t_i	$F(t_i)$	\mathbf{z}_{i}
	1	44.0	0.0276	-1.9173		<i>(</i> '	2) / (2,5	. 0 4)	0.000
	2	47.1	0.0669	-1.4993		(i - 0.	.3) / (25	+0.4)	0.3005
	3	53.4	0.1063	-1.2465	'	/	151.3	0.6575	0.4057
	4	59.8	0.1457	-1.0551	1	8	151.3	0.6969	0.5155
	5	61.5	0.1850	-0.8965	1	9	151.9	0.7362	0.6317
	6	77.0	0.2244	-0.7574	2	0	186.2	0.7756	0.7574
	7	78.7	0.2638	-0.6317	2	1	213.5	0.8150	0.8965
	8	84.8	0.3031	-0.5155	2	2	218.2	0.8543	1.0551
	9	99.6	0.3425	-0.4057	2	3	222.8	0.8937	1.2461
	10	100.8	0.3819	-0.3005	2	4	230.1	0.9331	1.4993
	11	102.4	0.4213	-0.1986	2	5	498.4	0.9724	1.9173
	12	104.6	0.4606	-0.0989					
	13	112.3	0.5000	0.0000		No	rmal Tal	nles	
	14	122.1	0.5394	0.0990			- IIIai Iai		
<u> </u>	15	122.5	0.5787	0.1986					

Example – Lognormal Probability

INTERCEPT -
$$a = -7.755$$

SLOPE - b
$$= 1.631$$

Estimated
$$s = 1/b = 0.613$$

Estimated
$$T_{MED} = e^{-sa} = 116.0$$

Index of Fit
$$= 0.986$$

$$H(t) = \mathcal{D}\left(\frac{1}{.613} \ln \frac{t}{116}\right)$$

$$Y = 1.631X - 7.755$$

Multiply Censored Plots

Thirty motors are placed on accelerated test with failures occurring at the following cycle times. A cycle consists of a motor starting up to its maximum number of revolutions per minute then shutting down until it has come to a complete stop. Censored units resulted from motors removed from test to satisfy other demands.

Chapter 15 29

Multiply Censored Plots

<u>Time</u>	Adj Rank (i)	$\underline{F(t_i)}$	$y = \ln [1/(1-F)]$	<u>ln y</u>		7
- 141	1	$.02\overline{3}$	0233	-3.735	$F(t_i)$	
391	2	.056	.0575	-2.855	\ 1 /	
399	3	.089	.0930	-2.375	i - 0.3	
410+					$=\frac{v_{t_i}}{v_{t_i}}$	
463	4.04	.123	.1311	-2.031	30 + 0.4	
465	5.07	.157	.1708	<i>-</i> 1.767	<u> </u>	J
497	6.11	.191	.2121	<i>-</i> 1.550		
501+						
559	7.19	.227	.2571	-1.358	1 ,	
563	8.27	.262	.3043	- 1.190	number at	
579	9.36	.298	.3537	-1.039	risk	
580+						
586	10.50	.336	.4086	8950		
616	11.64	.373	.4666	<u>-7622</u>	fit avaanantis	1
683	12.77	.410	.5282	6382	fit exponentia	
707	13.91	.448	.5939	5211		
713	15.05	.485	.6641	4092	- fit Wailanii	
742+					fit Weibull	
755+						
chapter 15	16.38	.529	.7529	2838	3	80

EXAMPLE 15.10

A newly manufactured diesel engine is experiencing frequent failures as a result of either the ignition system failing (failure mode A) or the fuel injection system failing (failure mode B). Tracking failures under a one-year warranty, the following failure times were recorded in days since beginning operation for the first 40 units sold:

Unit Number	12	3	22	9	31	38	5	8	27	18	23	19	32	13	30	36	24
Failure time	2	8	15	30	35	61	123	123	132	184	186	202	218	232	269	297	333
Failure mode	A	A	A	A	A	В	A	В	В	A	A	A	A	В	В	В	A

Chapter 15

EXAMPLE 15.10

	i	t _i	F(t _i)	i	t _i	F(t _i)
	0	0	0.0000	10	184	0.1737
	1	2	0.0244	11	186	0.2003
For Weibull distribution -	2	8	0.0488	12	202	0.2270
Least-squares fit:	3	15	0.0732	13	218	0.2537
Failure Mode A:	4	30	0.0976	14	232.0+	
$\hat{\beta} = .4811$ and $\hat{\theta} = 3732.7$	5	35	0.1220	15	269.0+	
	6	61.0+		16	297.0+	
Failure Mode B:	7	123	0.1470	17	333	0.2835
$\hat{\beta} = 1.34$ and $\hat{\theta} = 1037.6$	8	123.0+		18-40	365.0+	
	9	132.0+				

$$R(t) = e^{-(t/3732.7)^{.4811}} e^{-(t/1037.6)^{1.34}}$$

Minimum Extreme Value Distribution

$$F(t) = 1 - \exp\left[-e^{\frac{(t-\mu)}{\alpha}}\right]$$

$$\ln\left[\frac{1}{1-F(t)}\right] = e^{\frac{(t-\mu)}{\alpha}} \text{ or } \ln\left\{\ln\left[\frac{1}{1-F(t)}\right]\right\} = \frac{t}{\alpha} - \frac{\mu}{\alpha}$$

Therefore plot x_i and y_i and fit the line y = a + bx.

$$\left(x_i = t_i, y_i = \ln \ln \left[\frac{1}{1 - F(t_i)}\right]\right)$$

The least-squares parameter estimates are $\alpha = 1/b$ and $\mu = -a\alpha$.