Pandas

Contents

- Pandas
- Cleaning & Analysis with Pandas
- Cleaning Data with Pandas

Pandas is a powerful open-source Python library for **data manipulation and analysis**. It was initially created in **2008** by **Wes McKinney** while working at AQR Capital to address the need for a flexible and high-performance tool for financial data analysis. Since then, Pandas has become one of the most widely used libraries in **data science** and **machine learning**.

Relation to Python

- Built entirely in **Python**, with heavy reliance on **NumPy** for fast numerical operations.
- Provides an intuitive way to handle **structured data** (tables, spreadsheets, time series).
- Integrates seamlessly with other Python libraries like Matplotlib, SciPy, Scikit-learn,
 TensorFlow, and PyTorch.

Importance for AI & Machine Learning

- Jata Cleaning: Preprocessing raw datasets before training AI models.
- **Feature Engineering**: Creating, transforming, and scaling features used in ML algorithms.
- Nation Norks as a bridge between raw data (CSV, SQL, JSON) and ML frameworks.

Core Components of Pandas

- **Series** → One-dimensional labeled array (like a column).
- **DataFrame** → Two-dimensional labeled data structure (like an Excel table).

Why Pandas?

- **II** Tools for reading/writing data (CSV, Excel, SQL, JSON).
- **Q** Rich indexing and selection.
- El Powerful groupby and aggregation.
- Handles missing data gracefully.
- Official Website: https://pandas.pydata.org/

```
import pandas as pd

# Check installed version
print("Pandas version:", pd.__version__)
```

Pandas version: 2.2.3

Pandas Series vs DataFrame

Pandas has two core data structures:

- **Series** → One-dimensional labeled array.
- **DataFrame** → Two-dimensional table of data (like an Excel sheet).

Visual Representation:

Series **Series DataFrame** apples apples oranges oranges 0 0 0 0 3 0 1 2 1 1 2 3 2 2 0 2 0 3 3 1

From the image:

- A **Series** is like one column (e.g., apples or oranges).
- A **DataFrame** is like combining multiple Series side by side.

Example: Series

A **Series** is a one-dimensional labeled array. It has an **index** and **values**.

Example Code:

```
apples = pd.Series([3, 2, 0, 1], name="apples")
print("Series - Apples:")
print(apples)

print("\nAccess element at index 1:", apples[1])
```

```
Series - Apples:
0    3
1    2
2    0
3    1
Name: apples, dtype: int64
Access element at index 1: 2
```

Example: DataFrame

A **DataFrame** is a two-dimensional labeled data structure with rows and columns.

You can build it by combining multiple Series together.

Example Code:

```
apples = pd.Series([3, 2, 0, 1], name="apples")
oranges = pd.Series([0, 3, 7, 2], name="oranges")

df = pd.DataFrame({"apples": apples, "oranges": oranges})
print("DataFrame:")
print(df)
```

```
DataFrame:
   apples oranges
0 3 0
1 2 3
2 0 7
3 1 2
```

Data Indexing and Selection

In Pandas, **indexing and selection** are very powerful tools that let you access rows and columns efficiently.

Two Main Methods:

- [.loc[]] → Label-based indexing
 - Use when you know the row/column labels.
 - Safer when working with **non-integer indexes** (e.g., names, dates).
- [.iloc[]] → Integer position-based indexing
 - Use when you want to access by row/column position.
 - Useful in loops or when labels are not known.

Comparison Table:

Method	Input Type	Example	Output
loc	Labels (row/col)	df.loc[1, "name"]	'Bob'
iloc	Integers (position)	df.iloc[2, 1]	35
Column	Column name	df["age"]	Series
Slice	Row slice	df[1:3]	Rows 1–2

Rule of Thumb:

- Use loc when working with labels (more explicit).
- Use iloc when working with **positions** (like Python lists).

```
import pandas as pd

# Sample DataFrame
df = pd.DataFrame({
    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 30, 35],
    "city": ["NY", "LA", "Chicago"]
})

print("DataFrame:")
print(df)

# Access examples
print("\nAccess with loc (row index=1, column 'name'):", df.loc[1, "name"])
print("Access with iloc (row position=2, col position=1):", df.iloc[2, 1])

print("\nAge column:")
df["age"]

print("\nRows 1 to 2 (slice):")
df[1:3]
```

```
DataFrame:
    name age city

0 Alice 25 NY
1 Bob 30 LA
2 Charlie 35 Chicago

Access with loc (row index=1, column 'name'): Bob
Access with iloc (row position=2, col position=1): 35

Age column:

Rows 1 to 2 (slice):
```

	name	age	city
1	Bob	30	LA
2	Charlie	35	Chicago

Operations on Data

Pandas makes it easy to **add new columns**, **apply functions**, and **compute statistics** directly on DataFrames.

Example Use Cases:

- Add calculated columns.
- Create boolean flags (e.g., <code>is_adult</code>).
- Apply custom functions to each value.

```
# Add 5 to each age
df["age_plus_5"] = df["age"] + 5

# Create boolean column (True/False)
df["is_adult"] = df["age"] >= 18

# Apply function: string length of names
df["name_length"] = df["name"].apply(len)
```

```
# Add new calculated columns
df["age_plus_5"] = df["age"] + 5
df["is_adult"] = df["age"] >= 18
df["name_length"] = df["name"].apply(len)
print("Updated DataFrame with new columns:")
df
```

Updated DataFrame with new columns:

	name	age	city	age_plus_5	is_adult	name_length
0	Alice	25	NY	30	True	5
1	Bob	30	LA	35	True	3
2	Charlie	35	Chicago	40	True	7

In this notebook, we will use **Pandas** to:

- Read CSV and JSON files
- Analyze data
- Clean data: handle empty cells, wrong formats, invalid values, duplicates

```
import pandas as pd
import numpy as np
print("Pandas version:", pd.__version__)
```

Pandas version: 2.2.3

Create Example Bank Dataset

We will simulate a small bank customers dataset.

```
data = {
    "CustomerID": [1, 2, 3, 4, 5, 5],
    "Name": ["Alice", "Bob", "Charlie", "David", "Eva", "Eva"],
    "Age": [25, 30, None, 40, "thirty", 28],
    "Balance": [1000.50, 2500.00, 3000.75, None, 1500.20, 1500.20],
    "JoinDate": ["2022-01-10", "2021-05-12", "wrong_date", "2020-07-15", "2022-03-20"
}

df = pd.DataFrame(data)
    df.to_csv("bank_data.csv", index=False)
    df.to_json("bank_data.json", orient="records", lines=True)

print("Bank dataset created: bank_data.csv & bank_data.json")
    df
```

Bank dataset created: bank_data.csv & bank_data.json

	CustomerID	Name	Age	Balance	JoinDate
0	1	Alice	25	1000.50	2022-01-10
1	2	Bob	30	2500.00	2021-05-12
2	3	Charlie	None	3000.75	wrong_date
3	4	David	40	NaN	2020-07-15
4	5	Eva	thirty	1500.20	2022-03-20
5	5	Eva	28	1500.20	2022-03-20

Reading Data: CSV and JSON

```
# Read CSV
df_csv = pd.read_csv("bank_data.csv")
print("CSV Data:")
display(df_csv)

# Read JSON
df_json = pd.read_json("bank_data.json", lines=True)
print("JSON Data:")
display(df_json)
```

CSV Data:

	CustomerID	Name	Age	Balance	JoinDate
0	1	Alice	25	1000.50	2022-01-10
1	2	Bob	30	2500.00	2021-05-12
2	3	Charlie	NaN	3000.75	wrong_date
3	4	David	40	NaN	2020-07-15
4	5	Eva	thirty	1500.20	2022-03-20
5	5	Eva	28	1500.20	2022-03-20

JSON Data:

	CustomerID	Name	Age	Balance	JoinDate
0	1	Alice	25	1000.50	2022-01-10
1	2	Bob	30	2500.00	2021-05-12
2	3	Charlie	None	3000.75	wrong_date
3	4	David	40	NaN	2020-07-15
4	5	Eva	thirty	1500.20	2022-03-20
5	5	Eva	28	1500.20	2022-03-20

Analyzing Data

[.head()] → preview first rows

- [.info()] → summary of dataset
- .describe() → statistical summary

```
print(df.head())
print("\nDataset Info:")
print(df.info())
print("\nStatistical Summary:")
print(df.describe(include="all"))
```

```
Age Balance JoinDate
  CustomerID
                 Name
0
           1
                Alice
                          25 1000.50 2022-01-10
1
           2
                  Bob
                          30 2500.00 2021-05-12
2
           3 Charlie
                        None 3000.75 wrong_date
3
           4
                David
                          40
                                  NaN 2020-07-15
           5
                  Eva thirty 1500.20 2022-03-20
```

Dataset Info:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	6 non-null	int64
1	Name	6 non-null	object
2	Age	5 non-null	object
3	Balance	5 non-null	float64
4	JoinDate	6 non-null	object
dtype	es: float64(1), int64(1), o	bject(3)

memory usage: 372.0+ bytes

None

Statistical Summary:

	CustomerID	Name	Age	Balance	JoinDate
count	6.000000	6	5.0	5.000000	6
unique	NaN	5	5.0	NaN	5
top	NaN	Eva	25.0	NaN	2022-03-20
freq	NaN	2	1.0	NaN	2
mean	3.333333	NaN	NaN	1900.330000	NaN
std	1.632993	NaN	NaN	821.649309	NaN
min	1.000000	NaN	NaN	1000.500000	NaN
25%	2.250000	NaN	NaN	1500.200000	NaN
50%	3.500000	NaN	NaN	1500.200000	NaN
75%	4.750000	NaN	NaN	2500.000000	NaN
max	5.000000	NaN	NaN	3000.750000	NaN

Cleaning Data

1. Cleaning Empty Cells

```
print("Rows with missing values:")
print(df[df.isnull().any(axis=1)])

# Make a copy
df_filled = df.copy()

# Convert Age & Balance to numeric (force errors to NaN)
df_filled["Age"] = pd.to_numeric(df_filled["Age"], errors="coerce")
df_filled["Balance"] = pd.to_numeric(df_filled["Balance"], errors="coerce")

# Fill missing values
df_filled["Age"] = df_filled["Age"].fillna(df_filled["Age"].median())
df_filled["Balance"] = df_filled["Balance"].fillna(0)
```

Rows with missing values:

```
CustomerID Name Age Balance JoinDate
3 Charlie None 3000.75 wrong_date
4 David 40 NaN 2020-07-15
```

	CustomerID	Name	Age	Balance	JoinDate
0	1	Alice	25.0	1000.50	2022-01-10
1	2	Bob	30.0	2500.00	2021-05-12
2	3	Charlie	29.0	3000.75	wrong_date
3	4	David	40.0	0.00	2020-07-15
4	5	Eva	29.0	1500.20	2022-03-20
5	5	Eva	28.0	1500.20	2022-03-20

Reading Data with Pandas

Pandas provides easy methods to load data from different formats like **CSV** and **JSON**.

Why important?

- Real-world datasets are often stored in CSV/JSON.
- Pandas provides a **fast, unified interface** to load them.
- Makes it easy to start analyzing immediately.

Supported formats: CSV, JSON, Excel, SQL, Parquet, etc.

Reading CSV File

We will use the sample dataset: datasets/sample_data/sample_bank_data.csv

```
import pandas as pd

df_csv = pd.read_csv("datasets/sample_data/sample_bank_data.csv")
print(df_csv.head())
```

```
import pandas as pd

# Read CSV

df_csv = pd.read_csv("datasets/sample_data/sample_bank_data.csv")
print("CSV Data Preview:")

df_csv.head()
```

CSV Data Preview:

	account_id	name	age	gender	city	account_type	balance	loan_amoı
0	MY1000	Aisyah Bin Ali	56.0	Male	Kuala Lumpur	Savings	47747.78	53970
1	MY1001	Siti Bin Hafiz	69.0	Male	Kota Kinabalu	Fixed Deposit	36921.06	0
2	MY1002	Aisyah Bin Fatimah	NaN	Female	Kuching	Savings	27762.27	34961
3	MY1003	Farid Bin Ahmad	32.0	Male	Penang	Savings	30624.87	35021
4	MY1004	Aisyah Bin Siti	60.0	Male	Kuching	Current	21038.04	73881

Reading JSON File

We will use the sample dataset located at: datasets/sample_data/sample_bank_data.json

```
df_json = pd.read_json("datasets/sample_data/sample_bank_data.json")
print(df_json.head())
```

Notes:

- pd.read_json() can read JSON files or JSON strings directly.
- Pandas automatically converts JSON into a structured **DataFrame**.
- Useful for APIs and web data that often come in JSON format.
- If the JSON has nested objects, use <code>json_normalize()</code> to flatten it.

```
import pandas as pd

# Read line-delimited JSON file

df_json = pd.read_json("datasets/sample_data/sample_bank_data.json", lines=True)
print("JSON Data Preview:")

df_json.head()
```

JSON Data Preview:

	account_id	name	age	gender	city	account_type	balance	loan_amoเ
0	MY1000	Aisyah Bin Ali	56.0	Male	Kuala Lumpur	Savings	47747.78	53970
1	MY1001	Siti Bin Hafiz	69.0	Male	Kota Kinabalu	Fixed Deposit	36921.06	0
2	MY1002	Aisyah Bin Fatimah	NaN	Female	Kuching	Savings	27762.27	34961
3	MY1003	Farid Bin Ahmad	32.0	Male	Penang	Savings	30624.87	35021
4	MY1004	Aisyah Bin Siti	60.0	Male	Kuching	Current	21038.04	73881

Analyzing Data

Once the dataset is loaded, Pandas provides quick methods to understand it:

- .head() → Preview first rows.
- (.info()) → Column names, data types, memory usage.
- (.describe()) → Statistical summary (mean, std, min, max, quartiles).
- .shape → Number of rows & columns.

```
# Analyze CSV data
print("CSV Info:")
print(df_csv.info())

print("\nCSV Description:")
print(df_csv.describe())

print("\nShape (rows, columns):", df_csv.shape)
```

CSV Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 510 entries, 0 to 509
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	account_id	510 non-null	object
1	name	510 non-null	object
2	age	484 non-null	float64
3	gender	510 non-null	object
4	city	485 non-null	object
5	account_type	510 non-null	object
6	balance	485 non-null	float64
7	loan_amount	510 non-null	float64
8	transaction_count	510 non-null	int64
9	last_transaction	510 non-null	object
d+vn	oc. $float64(2)$ int	64(1) object(6)	

dtypes: float64(3), int64(1), object(6)

memory usage: 40.0+ KB

None

CSV Description:

	age	balance	loan_amount	transaction_count
count	484.000000	485.000000	510.000000	510.000000
mean	44.351240	24716.251134	22284.779196	99.141176
std	14.992496	14642.001337	31368.151813	57.625780
min	18.000000	331.140000	0.000000	1.000000
25%	32.000000	12083.270000	0.000000	48.000000
50%	45.000000	24771.570000	0.000000	99.500000
75%	57.000000	37438.160000	41234.527500	149.000000
max	69.000000	49985.910000	99688.990000	199.000000

Shape (rows, columns): (510, 10)

```
# Analyze JSON data
print("JSON Info:")
print(df_json.info())

print("\nJSON Description:")
print(df_json.describe())

print("\nShape (rows, columns):", df_json.shape)
```

```
JSON Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 510 entries, 0 to 509
Data columns (total 10 columns):
     Column
                        Non-Null Count
                                        Dtype
     ____
                        -----
                                        ----
_ _ _
 0
     account_id
                        510 non-null
                                        object
                        510 non-null
                                        object
 1
     name
 2
                                        float64
     age
                        484 non-null
 3
                                        object
                        510 non-null
     gender
 4
                        485 non-null
                                        object
     city
 5
                        510 non-null
                                        object
     account_type
                                        float64
 6
     balance
                        485 non-null
 7
     loan amount
                        510 non-null
                                        float64
 8
     transaction_count 510 non-null
                                        int64
 9
     last transaction
                        510 non-null
                                        int64
dtypes: float64(3), int64(2), object(5)
memory usage: 40.0+ KB
None
JSON Description:
              age
                        balance
                                  loan_amount
                                              transaction_count
count
       484.000000
                     485.000000
                                   510.000000
                                                      510.000000
mean
        44.351240 24716.251134 22284.779196
                                                        99.141176
std
        14.992496 14642.001337
                                 31368.151813
                                                        57.625780
min
        18.000000
                     331.140000
                                     0.000000
                                                        1.000000
25%
        32.000000 12083.270000
                                                        48.000000
                                     0.000000
50%
        45.000000
                   24771.570000
                                     0.000000
                                                       99.500000
75%
        57.000000
                  37438.160000 41234.527500
                                                      149.000000
        69.000000 49985.910000
                                 99688.990000
                                                       199.000000
max
       last_transaction
count
           5.100000e+02
           1.687963e+12
mean
std
           8.906938e+09
min
           1.672704e+12
25%
           1.680761e+12
50%
           1.687824e+12
           1.694995e+12
75%
max
           1.703981e+12
```

When working with real-world datasets, you often encounter problems like:

• Empty cells (missing values)

Shape (rows, columns): (510, 10)

- Wrong formats (dates stored as text)
- Wrong or unrealistic data (negative age, negative balance)
- Duplicate rows

If we don't clean the data properly, any **statistical analysis or machine learning model** will produce misleading results. For example: a missing value in age will distort the average age, which can bias the model.

```
import pandas as pd

# Load dataset

df = pd.read_csv("datasets/sample_data/sample_bank_data.csv")
print(" Original Data Preview:")

df.head()
```

Original Data Preview:

	account_id	name	age	gender	city	account_type	balance	loan_amoı
0	MY1000	Aisyah Bin Ali	56.0	Male	Kuala Lumpur	Savings	47747.78	53970
1	MY1001	Siti Bin Hafiz	69.0	Male	Kota Kinabalu	Fixed Deposit	36921.06	0
2	MY1002	Aisyah Bin Fatimah	NaN	Female	Kuching	Savings	27762.27	34961
3	MY1003	Farid Bin Ahmad	32.0	Male	Penang	Savings	30624.87	35021
4	MY1004	Aisyah Bin Siti	60.0	Male	Kuching	Current	21038.04	73881

Cleaning Empty Cells

- dropna() → removes rows/columns with missing values.
- $[fillna()] \rightarrow fills missing values with a given value (e.g., <math>[0], [mean], [median])$.

Why it matters?

• Models cannot handle NaN values.

Choice of replacement depends on context (e.g., missing balance → 0, missing age → median).

```
df_clean = df.copy()

# Convert 'age' to numeric (invalid values → NaN)
df_clean['age'] = pd.to_numeric(df_clean['age'], errors='coerce')

# Fill missing ages with the median
df_clean['age'] = df_clean['age'].fillna(df_clean['age'].median())

# Fill missing balances with 0
df_clean['balance'] = df_clean['balance'].fillna(0)

print(" After filling missing values:")
df_clean.head()
```

After filling missing values:

	account_id	name	age	gender	city	account_type	balance	loan_amou
0	MY1000	Aisyah Bin Ali	56.0	Male	Kuala Lumpur	Savings	47747.78	53970.
1	MY1001	Siti Bin Hafiz	69.0	Male	Kota Kinabalu	Fixed Deposit	36921.06	0.
2	MY1002	Aisyah Bin Fatimah	45.0	Female	Kuching	Savings	27762.27	34961.
3	MY1003	Farid Bin Ahmad	32.0	Male	Penang	Savings	30624.87	35021.
4	MY1004	Aisyah Bin Siti	60.0	Male	Kuching	Current	21038.04	73881.

Cleaning Wrong Format

Sometimes columns like **dates** are stored as plain text. We can convert them using [pd.to_datetime()].

Why it matters?

• If dates remain as text, we cannot sort or calculate differences correctly.

```
df_clean['last_transaction'] = pd.to_datetime(df_clean['last_transaction'], errors='co
print(" After converting last_transaction to datetime:")
print(df_clean.dtypes)
```

```
After converting last_transaction to datetime:
account_id
                             object
                             object
name
                            float64
age
                             object
gender
city
                             object
account_type
                             object
balance
                            float64
                            float64
loan_amount
transaction_count
                              int64
last transaction
                     datetime64[ns]
dtype: object
```

Cleaning Wrong Data

Examples:

- Ages less than 0 or greater than 120 → unrealistic.
- Negative balances → invalid.
- Negative transaction counts → invalid.

Why it matters?

- Invalid values distort averages and distributions.
- Models may learn misleading patterns (e.g., negative balance = unrealistic customer).

```
# Keep only realistic ages
df_clean = df_clean[(df_clean['age'] >= 0) & (df_clean['age'] <= 120)]

# Fix negative balances by setting them to 0
df_clean.loc[df_clean['balance'] < 0, 'balance'] = 0

# Ensure transaction_count is non-negative
df_clean.loc[df_clean['transaction_count'] < 0, 'transaction_count'] = 0

print(" After cleaning invalid values:")
print(df_clean.head())</pre>
```

After cleaning invalid values:

_	itei tieaii.	riig Tiivattu v	alues.					
	account_id		name	age	gender	city	account_type	\
0	MY1000	Aisyah	Bin Ali	56.0	Male	Kuala Lumpur	Savings	
1	MY1001	Siti Bi	n Hafiz	69.0	Male	Kota Kinabalu	Fixed Deposit	
2	MY1002	Aisyah Bin	Fatimah	45.0	Female	Kuching	Savings	
3	MY1003	Farid Bi	n Ahmad	32.0	Male	Penang	Savings	
4	MY1004	Aisyah B	in Siti	60.0	Male	Kuching	Current	
	balance	loan_amount	transac	tion_c	ount las	t_transaction		
0	47747.78	53970.86			55	2023-12-14		
1	36921.06	0.00			100	2023-04-25		
2	27762.27	34961.43			173	2023-04-14		
3	30624.87	35021.84			136	2023-04-28		
4	21038.04	73881.37			119	2023-01-05		

Removing Duplicates

drop duplicates() removes duplicated rows.

Why it matters?

- Duplicates bias statistical analysis (e.g., balance counted twice).
- For machine learning, duplicates cause models to overfit and learn repeated patterns.

```
df_clean = df_clean.drop_duplicates()
print(" After removing duplicates:")
print(df_clean.head())
```

After removing duplicates: account_id name gender city account_type age 0 MY1000 Aisyah Bin Ali 56.0 Male Kuala Lumpur Savings 1 MY1001 Siti Bin Hafiz 69.0 Male Kota Kinabalu Fixed Deposit 2 Aisyah Bin Fatimah MY1002 45.0 Female Kuching Savings 3 Farid Bin Ahmad MY1003 32.0 Male Penang Savings MY1004 Aisyah Bin Siti Kuching Current 60.0 Male loan_amount transaction_count last_transaction balance 0 47747.78 53970.86 55 2023-12-14 1 36921.06 0.00 100 2023-04-25 2 27762.27 34961.43 173 2023-04-14 3 30624.87 35021.84 2023-04-28 136 4 21038.04 2023-01-05 73881.37 119

Summary Table of Cleaning Steps

Step	Function(s)	Effect on Data	Importance for Models
Empty cells	dropna(), [fillna()	Handle missing values	Prevents errors & bias
Wrong format	to_datetime()	Convert text → dates	Enables time analysis
Wrong/unrealistic	loc[] with conditions	Fix invalid values	Prevents misleading patterns
Duplicates	<pre>drop_duplicates()</pre>	Remove repeated rows	Reduces bias & overfitting