PCA

Klaus Smit

June 5, 2020

Artificial Data Generation

```
\mathsf{Model}\ z = a_x x + a_y y + 3
```

z = Response variable x, y = predictos or featrues coefficients = $a_x=1 \quad a_y=1$ Intercept = 3

Original Data Points	X	у	Z	
P_0	0	0	3	
P_1	1	1	5	
P_2	2	2	7	

```
data = data.frame(x=c(0,1,2),y=c(0,1,2),z=c(3,5,7))
data
```

Applying PCA through code

```
data_scaled = (data[,1:2]-sapply(data[,1:2],mean)/sapply(data[,1:2],sd))
print(data_scaled)
```

```
## x y
## 1 -1 -1
## 2 0 0
## 3 1 1
```

```
PCA <- prcomp(data[,1:2], scale=TRUE)
print(c('mean',PCA$center)) # mean for each predictor</pre>
```

```
## x y
## "mean" "1" "1"
```

```
print(c('sigma',PCA$scale)) # standard deviation for each predictor using N-1
```

```
## x y
## "sigma" "1" "1"
```

The Math behind scaling the data

The data is scaled through standard the standard score (https://en.wikipedia.org/wiki/Standard_score)

```
x_{scale} = rac{x - \mu_x}{\sigma_x} \ \mu = mean \ 	ext{and} \ \sigma = standard \ deviation
```

m		x-1
x_{scale}	_	1

Scaled Data Points	X	у	Z	
P_0	-1	-1	3	
P_1	0	0	5	
P_2	1	1	7	

Note:

- 1. That PCA\$x is just the scaled data
- 2. PCA excludes z the response variable

Rotating the data

```
print(as.matrix(data_scaled)%*%PCA$rotation)
```

```
## PC1 PC2

## [1,] -1.414214 -1.110223e-16

## [2,] 0.000000 0.000000e+00

## [3,] 1.414214 1.110223e-16
```

```
PCA$x
```

```
## PC1 PC2
## [1,] -1.414214 -1.110223e-16
## [2,] 0.000000 0.000000e+00
## [3,] 1.414214 1.110223e-16
```

data_scaled times the rotation matrix is equal to the matrix containing the principal components PCA\$x

Scaled + Rotated Data Points	x	у	Z
P_0	-\sqrt {2}	0	3
P_1	0	0	5
P_2	$\sqrt{2}$	0	7