LESSON 42 NOTES

"Big-Oh" Notation:

- <u>DEFINITION</u>: A theoretical measure of the execution of an algorithm, given an input size "n".
- o FORMAT: $O(g(x)) \rightarrow$ "on order of g(x)", where g(x) is some function
- IS AN APPROXIMATION!!
- o Is used to illustrate:
 - <u>Time efficiency:</u> Length of time it takes an algorithm to run completely.
 - Space efficiency: Amount of space that an algorithm uses.

Common Efficiency Rankings:

notation	name	n = 10	n = 100	n = 1000
$O(\log n)$	logarithmic	3.32	6.64	9.97
O(n)	linear	10	100	1,000
$O(n \log n)$	linearithmic	33.22	664.4	9,965.8
$O(n^2)$	quadratic	100	10,000	1,000,000
$O(n^c), c > 1$	polynomial	1,000	1,000,000	1,000,000,000
$O(c^n)$	exponential	1,024	1.27×10^{30}	1.07×10^{301}

Efficiencies of Selection Sort and Insertion Sort:

- **Time Efficiency:** $O(n^2)$

- Space Efficiency: O(n)