

İstatistiksel Hava Kalitesi Modelleri

- ➤ Kirletici kaynakları ve emisyon envanterleri yetersiz olduğunda istatistiksel modellerden faydalanılabilir.
- Kısa süreli hava kalitesi tahmini için kullanılabilir (örneğin alarm durumları).
- ➤ Kolay elde edilen parametreler (ör. meteorolojik parametreler gibi) yardımı zor ölçülen parametreler (ör. kirletici konsantrasyonları) istatistiksel yöntemler (ör. Regresyon modeli) tahmin edilebilir.

Hava Kirliliği Modellemede İstatistiksel Yöntemler

- Zaman serileri analizleri
 - Box-Jenkins modelleri
- Reseptör modelleri
 - EPA Chemical Mass Balance Model
 - https://www3.epa.gov/scram001/receptor cmb.htm
 - EPA Positive Matrix Factorization (PMF)
 - https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses
- > Regresyon Modelleri

Box-Jenkins Modelleri

- > Doğrusal durağan stokastik modeller
 - Otoregresif Model (AR)
 - Hareketli Ortalama Modeli (MA)
 - Otoregresif Hareketli Ortalama Modeli (ARMA)
- Durağan olmayan doğrusal stokastik modeller
 - ARIMA
- ➤ Mevsimlik modeller

2015.03.02.STAT.07

TIME SERIES ANALYSIS AND FORECASTING FOR AIR POLLUTION IN ANKARA: A BOX-JENKINS APPROACH

Duygu TURGUT *

http://dx.doi.org/10.17093/aj.2015.3.2.5000148347

Regresyon Modeli

 $Y = \beta_0 + \beta_1 X_1 + \varepsilon$ (Tek değişkenli)

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \varepsilon$ (Çok değişkenli)

- >Y: bağımlı değişken (hava kirleticisi konsantrasyonu)
- ≽βi: regresyon katsayısı
- ➤ X_i: bağımsız değişken
- >ε: hata

Regresyon Modeli

Table 4. Transformation of the nonlinear regression and linear regression.

Types	Nonlinear Function	Do Transformation	Linear Function
Hyperbolic function	$Y = a + b\frac{1}{x}$	$x' = \frac{1}{x}$	Y' = a + bx'
Power function	$Y = ax^b$	$Y' = \ln Y \ x = \ln x \ A = \ln a$	Y' = A + bx'
Exponential function	$Y = ae^{bx}$	$Y' = \ln Y, \ A = \ln a$	Y' = A + bx'
	$ \begin{array}{l} \text{or} \\ Y = ae^{\frac{b}{x}} \end{array} $	$Y' = \ln Y, \ x = \frac{1}{x}, \ A = \ln a$	Y' = A + bx'
Logarithmic function	$Y = a + b \ln x$	$x' = \ln x$	Y' = a + bx'
S curve type	$Y = \frac{1}{a + be^{-x}}$	$Y' = \frac{1}{Y}, x = e^{-x}$	Y' = a + bx'
Parabolic type	$Y = a + bx + cx^2$	$x_1 = x, x_2 = x^2$	$Y' = a + bx_1 + cx_2$

(Bai et al., 2018)

Regresyon Modeli – Örnek Uygulama

- > Yazılım ve Veri Seti
- ➤ Jamovi (https://www.jamovi.org/) (ücretsiz)
- ➤ R veri seti (https://www.jamovi.org/library.html)

Doğrusal ve Doğrusal Olmayan Model Karşılaştırması

 $Ozon = -64.3421 + 0.0598 \times Solar$. $R - 3.3336 \times Wind + 1.6521 \times Temp$

➤ Doğrusal Model: Adj. R² = 0.595, RMSE = 20.8

 $Ln(Ozon) = -10.559 + 0.305 \times Ln(Solar, R) - 0.663 \times Ln(Wind) + 3.205 \times Ln(Temp)$

➤ Doğrusal Olmayan Model: Adj. R² = 0.679, RMSE = 0.482

İleri Okuma...

Review

Statistical Modeling Approaches for PM_{10} Prediction in Urban Areas; A Review of 21st-Century Studies

Hamid Taheri Shahraiyni 1,2,* and Sahar Sodoudi 1

- Institut für Meteorologie, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, Berlin 12165, Germany; sodoudi@zedat.fu-berlin.de
- $^{2} \quad$ Remote Sensing Research Center, Sharif University of Technology, Tehran 1458889694, Iran
- * Correspondence: hamid.taheri@met.fu-berlin.de; Tel.: +49-30-8385-4366; Fax: +49-30-8387-1160

Academic Editor: Pasquale Avino

Received: 29 September 2015; Accepted: 12 January 2016; Published: 26 January 2016

https://doi.org/10.3390/atmos7020015

Kaynaklar

- ➤ Bai, L., Wang, J., Ma, X., Lu, H. (2018). Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health, 15, 780.
- ➤ Taheri Shahraiyni, H.; Sodoudi, S. (2016). Statistical Modeling Approaches for PM₁₀ Prediction in Urban Areas; A Review of 21st-Century Studies. Atmosphere, 7, 15.
- Turgut, D., Temiz, İ. (2015). Ankara'daki Hava Kirliliği İçin Zaman Serileri Analizi ve Tahmin: Box-Jenkins Yaklaşımı. Alphanumeric Journal, 3(2), 131-138.