CONSÉQUENCE LOGIQUE
MISE SOUS FORME CLAUSALE
PRINCIPE DE RÉSOLUTION
PREUVE PAR SIMPLIFICATION

FORMALISATION DES DÉMONSTRATIONS

Conséquence logique

P est **conséquence logique** de $\{P_1, ..., P_n\}$ si toute interprétation rendant vraies $P_1, ..., P_n$ simultanément rend vraie l'expression P.

Notation :
$$\{P_1,\ldots,P_n\} \models P$$
 ou $P_1 \wedge \cdots \wedge P_n \models P$

On suppose que les deux propositions suivantes **P1** et **P2** sont vraies :

P1: « Si Paul a fait cette bêtise, alors il est stupide »

P2: « Paul n'est pas stupide »

On peut montrer que la proposition **P** : « Paul n'a pas fait cette bêtise »

est conséquence logique de $\{P_1, P_2\}$ (ou de $P_1 \land P_2$):

$$\{P_1, P_2\} \models P$$

วน

$$P_1 \wedge P_2 \vDash P$$

On suppose que les deux propositions suivantes **P1** et **P2** sont vraies :

P1: « Si Paul a fait cette bêtise, alors il est stupide »

P2: « Paul n'est pas stupide »

On peut montrer que la proposition ${\bf P}$: « Paul n'a pas fait cette bêtise » est conséquence logique de $\{P_1,P_2\}$ (ou de P_1 \land

 P_2):

On utilise les atomes suivants :

B: « Paul a fait cette bêtise »

S: « Paul est stupide »

$$\{P_1, P_2\} \models P$$

ou

$$P_1 \wedge P_2 \vDash P$$

On against quick of the propositions selected H_1 eVPL convalue: H_2 = 5 Febru is first carbo below, alone lest appoint H_2 = 5 Febru in des promptie + H_2 = 5 Febru in des proposition P_1 = 7 Febru in P_2 part for other than one of the convenience in proposition P_2 = 7 Febru in P_3 (in P_3), P_4 [2] (in P_4 P_4 P_4); P_4 [2] (in P_4 P_4 P_4); P_4 [3] (in P_4 P_4 P_4);

Les propositions P_1 , P_2 et P s'écrivent :

- $P_1: B \to S$
- $P_2: \neg S$
- $P: \neg B$

On veut montrer $P_1 \wedge P_2 \models P$

В	S	P1	P2	Р
1	1			
1	0			
0	1			
0	0			

Les propositions P_1 et P_2 s'écrivent :

- $P_1: B \to S$
- $P_2: \neg S$
- $P: \neg B$

On veut montrer $P_1 \wedge P_2 \models P$

В	S	$P_1: B \to S$	P_2 : $\neg S$	P : $\neg B$
1	1	1		
1	0	0		
0	1	1		
0	0	1		

Les propositions P_1 , P_2 et P s'écrivent :

- $P_1: B \to S$
- $P_2: \neg S$
- $P: \neg B$

On veut montrer $P_1 \wedge P_2 \models P$

В	S	$P_1: B \to S$	P_2 : $\neg S$	P : ¬ B
1	1	1	0	
1	0	0	1	
0	1	1	0	
0	0	1	1	

Les propositions P_1 , P_2 et P s'écrivent :

- $P_1: B \to S$
- $P_2: \neg S$
- $P: \neg B$

On veut montrer $P_1 \wedge P_2 \models P$

В	S	$P_1: B \to S$	P_2 : $\neg S$	$P: \neg B$
1	1	1	0	
1	0	0	1	
0	1	1	0	
0	0	1	1	1

Les propositions P_1 et P_2 s'écrivent :

- $P_1: B \to S$
- $P_2: \neg S$
- $P: \neg B$

P est conséquence logique de {P1,P2}

$$\{P1, P2\} \models P$$

В	S	$P_1: B \to S$	P_2 : $\neg S$	P : $\neg B$
1	1	1	0	
1	0	0	1	
0	1	1	0	
0	0	1	1	1

2ème méthode : par transformation d'expressions

Remarque : supposer vrai $\{P1, P2\}$ revient à supposer vraie la proposition : $P1 \land P2$

$$P1 \land P2 \equiv$$

 $P_1: B \to S$ $P_2: \neg S$ $P: \neg B$

2ème méthode : par transformation d'expressions

Remarque : supposer vrai $\{P1, P2\}$ revient à supposer vraie la proposition : $P1 \land P2$

$$P1 \land P2 \equiv (B \rightarrow S) \land \neg S \equiv (\neg B \lor S) \land \neg S$$

$$\equiv (\neg B \land \neg S) \lor (S \land \neg S) \equiv \neg B \land \neg S$$

Conclusion : si P1 et P2 sont vraies alors $\neg B$ et $\neg S$ le sont aussi

DIFFÉRENCE ENTRE CONSÉQUENCE LOGIQUE ET IMPLICATION ?

CONSÉQUENCE LOGIQUE ET IMPLICATION

$$\{P1, P2\} \models P$$

Que peut-on dire de l'implication $P1 \land P2 \rightarrow P$?

В	S	$P_1: B \to S$	P_2 : $\neg S$	$P: \neg B$	$P_1 \wedge P_2$	$P1 \wedge P2 \rightarrow P$
1	1	1	0	0		
1	0	0	1	0		
0	1	1	0	1		
0	0	1	1	1		

CONSÉQUENCE LOGIQUE ET IMPLICATION

$$\{P1,P2\} \models P \equiv P1 \land P2 \models P$$

Que peut-on dire de l'implication $P1 \land P2 \rightarrow P$?

В	S	$P_1: B \to S$	P_2 : $\neg S$	P : ¬ B	$P_1 \wedge P_2$	$P1 \wedge P2 \rightarrow P$
1	1	1	0	0	0	1
1	0	0	1	0	0	1
0	1	1	0	1	0	1
0	0	1	1	1	1	1

CONSÉQUENCE LOGIQUE ET IMPLICATION

$$\{P1,P2\} \models P \equiv P1 \land P2 \models P$$

Que peut-on dire de l'implication $P1 \land P2 \rightarrow P$?

$$\{P1,P2\} \vDash P \equiv P1 \land P2 \vDash P \equiv P1 \land P2 \rightarrow P \text{ est une tautologie}$$

В	S	$P_1: B \to S$	P_2 : $\neg S$	$P: \neg B$	$P_1 \wedge P_2$	$P1 \wedge P2 \rightarrow P$
1	1	1	0	0	0	1
1	0	l'imp	olication P1	∧ P2 → I	P est	1
0	1		une taut	1		
0	0	1	1	-		1

MISE SOUS FORME CLAUSALE

Conséquence logique

P est **conséquence logique** de $\{P_1, ..., P_n\}$ si toute interprétation rendard vraies $P_1, ..., P_n$ simultanément rend vraie l'expression P.

Notation :
$$\{P_1, \dots, P_n\} \models P$$
 ou
$$P_1 \wedge \dots \wedge P_n \models P$$

 P_1, \dots, P_n : hypothèses du problème que l'on supposera **vraies**

Mise sous forme clausale

Vocabulaire

- **LITTÉRAL**: A ou $\neg A$ (un atome ou sa négation)
- **CLAUSE**: $A \lor B \lor \neg C$ (disjonction de littéraux). Clause vide : \bot
- Conjonction de clauses : $(\neg A \lor C) \land (B \lor C) \land (A \lor B \lor \neg C) \land B$

Règles pour la mise sous forme clausale

- ÉLIMINATION DE \leftrightarrow : $(A \leftrightarrow B)$ remplacé par $(A \to B) \land (B \to A)$
- ÉLIMINATION DE \rightarrow : $(A \rightarrow B)$ remplacé par $(\neg A \lor B)$
- NÉGATION:
 - $\neg \neg A$ remplacé par A
 - $-\neg(A\land B)$ remplacé par $(\neg A\lor \neg B)$
 - $-\neg(A\lor B)$ remplacé par $(\neg A\land \neg B)$
- **DISTRIBUTIVITÉ**: $(A \lor (B \land C)) \equiv ((A \lor B) \land (A \lor C))$ et $(A \land (B \lor C)) \equiv ((A \land B) \lor (A \land C))$

On suppose que P_1 , P_2 , P_3 , P_4 , P_5 , P_6 sont les hypothèses d[']un problème. Nous allons essayer d'écrire ces hypothèses P_1 , P_2 , P_3 , P_4 , P_5 , P_6 puis $P_1 \wedge P_2 \wedge P_3 \wedge P_4 \wedge P_5 \wedge P_6$ sous forme clausale, c'est-à-dire d'un "et" de "ou" sous forme clausale et

- $P_1 \equiv (A \rightarrow \neg B)$
- $P_2 \equiv ((A \lor B) \to C)$
- $P_3 \equiv ((C \land A) \rightarrow (\neg B \lor \neg A))$
- $P_4 \equiv (\neg B \rightarrow (C \vee \neg A))$
- $P_5 \equiv (A \rightarrow (B \lor A))$
- $P_6 \equiv ((\neg B \lor A) \to B)$

$$P_1 \equiv (A \rightarrow \neg B)$$

$$P_1 \equiv (A \rightarrow \neg B)$$

$$P_1 \equiv \neg A \lor \neg B$$

$$P_2 \equiv \big((A \vee B) \to C \big)$$

$$P_2 \equiv ((A \lor B) \to C)$$

$$P_2 \equiv \neg (A \lor B) \lor C$$

$$P_2 \equiv (\neg A \land \neg B) \lor C$$

$$P_2 \equiv (\neg A \lor C) \land (\neg B \lor C)$$

$$P_3 \equiv ((C \land A) \to (\neg B \lor \neg A))$$

$$P_3 \equiv ((C \land A) \rightarrow (\neg B \lor \neg A))$$

$$P_3 \equiv \neg(C \land A) \lor (\neg B \lor \neg A)$$

$$P_3 \equiv \neg C \vee \neg A \vee \neg B \vee \neg A$$

$$P_4 \equiv (\neg B \to (C \lor \neg A))$$

$$P_4 \equiv (\neg B \to (C \lor \neg A))$$

$$P_4 \equiv B \lor C \lor \neg A$$

$$P_5 \equiv (A \to (B \lor A))$$

$$P_5 \equiv (A \to (B \lor A))$$

$$P_5 \equiv \neg A \lor \neg B \lor A$$

$$P_6 \equiv ((\neg B \lor A) \to B)$$

$$P_6 \equiv ((\neg B \lor A) \to B)$$

$$P_6 \equiv \neg(\neg B \lor A) \lor B$$

$$P_6 \equiv (B \land \neg A) \lor B$$

$$P_6 \equiv (B \vee B) \wedge (\neg A \vee B)$$

Bilan

$$P_{1} \equiv A \rightarrow \neg B \equiv \neg A \vee \neg B$$

$$P_{2} \equiv (A \vee B) \rightarrow C \equiv (\neg A \vee C) \wedge (\neg B \vee C)$$

$$P_{3} \equiv (C \wedge A) \rightarrow (\neg B \vee \neg A) \equiv \neg C \vee \neg A \vee \neg B \vee \neg A$$

$$P_{4} \equiv \neg B \rightarrow (C \vee \neg A) \equiv B \vee C \vee \neg A$$

$$P_{5} \equiv (A \rightarrow (B \vee A)) \equiv \neg A \vee \neg B \vee A$$

$$P_{6} \equiv ((\neg B \vee A) \rightarrow B) \equiv (B \vee B) \wedge (\neg A \vee B)$$

$$\mathbf{P_1} \wedge \mathbf{P_2} \wedge \mathbf{P_3} \wedge \mathbf{P_4} \wedge \mathbf{P_5} \equiv (\neg A \vee \neg B) \wedge (\neg A \vee C) \wedge (\neg B \vee C) \wedge (\neg C \vee \neg A \vee \neg B \vee \neg A) \wedge (B \vee C \vee \neg A) \wedge (\neg A \vee \neg B \vee A) \wedge (B \vee B) \wedge (\neg A \vee B)$$

SIMPLIFICATIONS?

```
\mathbf{P_1} \wedge \mathbf{P_2} \wedge \mathbf{P_3} \wedge \mathbf{P_4} \wedge \mathbf{P_5} \equiv (\neg A \vee \neg B) \wedge (\neg A \vee C) \wedge (\neg B \vee C) \wedge (\neg C \vee \neg A \vee \neg B \vee \neg A) \wedge (B \vee C \vee \neg A) \wedge (\neg A \vee \neg B \vee A) \wedge (B \vee B) \wedge (\neg A \vee B)
```

Vocabulaire:

- $\neg A \lor B$, $B \lor C \lor \neg A$...: clauses
- $\neg C, A, \neg B, B \dots$: littéraux

Mise sous forme clausale

Vocabulaire

- **LITTÉRAL**: A ou $\neg A$ (un atome ou sa négation)
- **CLAUSE**: $A \lor B \lor \neg C$ (disjonction de littéraux). Clause vide : \bot
- Conjonction de clauses : $(\neg A \lor C) \land (B \lor C) \land (A \lor B \lor \neg C) \land B$

Règles pour la mise sous forme clausale

- ÉLIMINATION DE \leftrightarrow : $(A \leftrightarrow B)$ remplacé par $(A \to B) \land (B \to A)$
- ÉLIMINATION DE \rightarrow : $(A \rightarrow B)$ remplacé par $(\neg A \lor B)$
- NÉGATION:
 - $\neg \neg A$ remplacé par A
 - $-\neg(A\land B)$ remplacé par $(\neg A\lor \neg B)$
 - $-\neg(A\lor B)$ remplacé par $(\neg A\land \neg B)$
- **DISTRIBUTIVITÉ**: $(A \lor (B \land C)) \equiv ((A \lor B) \land (A \lor C))$ et $(A \land (B \lor C)) \equiv ((A \land B) \lor (A \land C))$

• **Suppression** de clauses comportant des littéraux opposés.

Par exemple : $A \lor B \lor \neg A$ (tautologie)

• **SUPPRESSION** de clauses comportant des littéraux opposés.

Par exemple : $A \lor B \lor \neg A$ (tautologie)

• Suppression d'un littéral dans une clause.

Par exemple : $C \lor \neg A \lor \neg A = C \lor \neg A$

• Suppression de clauses comportant des littéraux opposés.

Par exemple : $A \lor B \lor \neg A$ (tautologie)

• Suppression d'un littéral qui se répète dans une clause.

Par exemple : $C \lor \neg A \lor \neg A = C \lor \neg A$

• Suppression de clauses contenant d'autres clauses.

Par exemple : $(A \lor \neg B \lor C) \land (A \lor C)$

• Suppression de clauses comportant des littéraux opposés.

Par exemple : $A \lor B \lor \neg A$ (tautologie)

SUPPRESSION d'un littéral dans une clause.

Par exemple :
$$C \lor \neg A \lor \neg A = C \lor \neg A$$

Suppression de clauses contenant d'autres clauses.

Par exemple :
$$(A \lor \neg B \lor C) \land (A \lor C)$$

 Supposant un littéral vrai, suppression de sa négation dans une clause.

Par exemple :
$$(A \lor \neg B \lor C) \land \neg A \equiv (\neg B \lor C) \land \neg A$$

• Suppression de clauses comportant des littéraux opposés.

Par exemple : $A \lor B \lor \neg A$ (tautologie)

• SUPPRESSIC ces modifications permettent de transformer un énoncé en un énoncé <u>équivalent</u> sous forme clausale.

SUPPRESSION

Il est aussi possible de raisonner par « conséquence logique », en appliquant notamment le principe de résolution.

Supposan clause.

Par exemple : $(A \lor \neg B \lor C) \land \neg A \equiv (\neg B \lor C) \land \neg A$

Un exemple de preuve par simplification

LE SPHINX

Vous êtes perdus sur une piste dans le désert. Vous arrivez à une bifurcation.

Chacune des deux pistes est gardée par un sphinx que vous pouvez interroger. Les pistes peuvent soit conduire à une oasis, soit se perdre dans le désert profond (au mieux, elles conduisent toutes à une oasis, au pire elles se perdent toutes les deux).

Le sphinx de droite vous répond :

« Une au moins des deux pistes conduit à une oasis »

Le sphinx de gauche vous répond :

« La piste de droite se perd dans le désert »

Vous savez que les sphinx disent tous les deux la vérité, ou bien mentent tous les deux.

UN EXEMPLE DE PREUVE PAR SIMPLIFICATION

SD: « Une au moins des deux pistes conduit à une oasis »

SG: « La piste de droite se perd dans le désert »

Les sphinx disent tous les deux la vérité, ou bien mentent tous les deux.

PREUVE PAR RÉFUTATION

Raisonnement par l'absurde

Soit A une matrice différente de \mathcal{O}_n et de \mathcal{I}_n telle que $A^2=A$

- 1. Montrer par l'absurde que A n'est pas inversible
- 2. Montrer par l'absurde que $A-I_n$ n'est pas inversible

Raisonnement par l'absurde

Soit A une matrice différente de O_n et de I_n telle que $A^2 = A$

1. Montrer par l'absurde que A n'est pas inversible

Supposons que A est inversible

Il existe donc une matrice
$$B(A^{-1})$$
 telle que $AB = I_n$
 $AB = I_n \Longrightarrow A(AB) = A \Longrightarrow (AA)B = A \Longrightarrow A^2B = A$

Or
$$A^2 = A$$
 donc $AB = A$

Or
$$AB = I_n$$
 donc $A = I_n$ Contradiction

1. Montrer par l'absurde que $A-I_n$ n'est pas inversible

Supposons que $A - I_n$ est inversible

Il existe donc une matrice $B(A^{-1})$ telle que $B(A - I_n) = I_n$ $B(A - I_n) = I_n$

$$A^2 = A \Rightarrow A^2 - A = O_n \Rightarrow (A - I_n)A = O_n \Rightarrow B(A - I_n)A = O_n \Rightarrow A = O_n$$
 Contradiction

Preuve par réfutation

Principe:

$$A_1 \wedge \cdots \wedge A_n \vDash A \text{ si et seulement si}$$

 $A_1 \wedge \cdots \wedge A_n \wedge \neg A \text{ est une contradiction}$

Exemple

• Montrons : $(A \land B) \models (A \lor B)$

Par réfutation, montrer que $(A \to C)$ découle logiquement des propositions $(A \to B)$ et $(B \to C)$.

Par réfutation, montrer que $((A \to B) \to (B \to C))$ est conséquence logique de $(A \to (B \to C))$