Верификация параллельных программных и аппаратных систем

Курс лекций

Шошмина Ирина Владимировна Карпов Юрий Глебович

Лекция 8

Model checking для формул LTL — часть 2

План курса

- 1. Введение
- 2. Метод Флойда-Хоара доказательства корректности программ
- з. Темпоральные логики
- 4. Алгоритм Model checking для проверки выполнимости формул CTL
- 5. BDD и их применение
- 6. Символьная проверка моделей
- 7. Автоматный подход к проверке выполнимости формул LTL
- 8. Система верификации Spin и язык Promela. Примеры верификации
- 9. Структура Крипке как модель реагирующих систем
- 10. Темпоральные свойства систем
- 11. Применения метода верификации model checking
- 12. Количественный анализ дискретных систем при их верификации
- 13. Верификация систем реального времени
- 14. Консультации по курсовой работе
- 15. Исчисление взаимодействующих систем (CCS) Р. Милнера

Цель программы управления – поддержание определенного ШАБЛОНА взаимодействия на интерфейсе со средой. Важен не конечный результат, а *ПОВЕДЕНИЕ*

Ю.Г.Карпов

Наша задача – рассмотреть алгоритм Model checking для логики

Проблемы, возникающие при выполнении алгоритма Model Checking для LTL

- 1. Построение по структуре Крипке М такого автомата Бюхи В_м, который допускает все возможные вычисления структуры М.
- 2. Автомат Бюхи и формулы LTL. Алгоритм построения по формуле Ф автомата Бюхи B_{Φ}
- 3. Синхронная композиция двух автоматов Бюхи.
- 4. Алгоритм проверки пустоты языка, допускаемого автоматом Бюхи.

Проблема пустоты автомата Бюхи

- σ'допускается автоматом Бюхи А, iff существует заключительное состояние А, которое проходится бесконечное число раз при приеме ω-цепочки σ.
- Для того, чтобы автомат Бюхи В допускал хотя бы одну БЕСКОНЕЧНУЮ цепочку, в графе переходов В должен быть достижимый из начального состояния ЦИКЛ, включающий хотя бы одно из заключительных состояний.

 ⊕ - язык, допускаемый автоматом Бюхи, НЕ пуст, если из начального состояния существует путь и в одно из принимающих состояний, и цикл v из этого состояния в себя.

Th. Проблема пустоты языка, допускаемого автоматом Бюхи, разрешима.

Контрпример: цепочка, переводящая автомат в цикл принимающих состояний

- 1. Находим все Сильно Связные Компоненты графа переходов.
- 2. Оставляем те ССК, в которых есть хотя бы одно допускающее состояние.
- 3. Проверяем, есть ли путь из S_0 хотя бы в одну оставшуюся ССК.

Алгоритм нахождения ССК линеен, проверка достижимости каждой компоненты также требует линейного времени \Rightarrow Сложность $O(n^2)$.

Каждая цепочка из начального состояния в ССК с принимающими состояниями определяет *контрпример --* вычисление, на котором Не выполняется Ф.

Пример: Model Checking для LTL

Удовлетворяет ли формуле Ф = GFp структура Крипке?

Если какое-либо вычисление *не удовлетворяет* Φ =GFp, то оно должно удовлетворять $\neg \Phi = \neg GFp = FG \neg p$

 $\neg \Phi = FG \{ \}$

ССК без финальных состояний

Поскольку нет достижимой ССК, включающей принимающее состояние, язык

 $_{\rm BM} \otimes _{\rm B op}$ пуст. Следовательно, на структуре Крипке формула GFp выполняется

Model Checking для LTL: Пример

Выполняется ли формула $\Phi = G(p \Rightarrow XFq)$ на структуре Крипке M?

$$\neg \Phi = \neg G(p \Rightarrow XFq) = F(p \land XG \neg q)$$

Автомат Бюхи B_{-Ф}

$$\{ \}, \{p\}, \{q\}, \{p,q\} \} \{p\}, \{ \} \}$$

$$B_{\neg \Phi} :: \{p, q\}, \{p\} \} \{p\}$$

Структура Крипке $M \Rightarrow$ автомат Бюхи B_{M}

Композиция автоматов Бюхи:

Есть цикл, включающий принимающее состояние \Rightarrow язык L $_{\text{BM}\otimes\ \text{B}\to\Phi}$ непуст.

М не удовлетворяет Ф. Контрпример: 1234(123)[®]

Некоторые факты об автоматах Бюхи и LTL

- Вопрос: почему сначала строят отрицание формулы LTL, а потом автомат Бюхи по отрицанию формулы?
 - Th. Язык автоматов Бюхи замкнут относительно операции дополнения.
 Иначе по любому автомату Бюхи можно построить автомат Бюхи, допускающий дополнение языка исходного автомата.
 Сложность получаемого автомата экспоненциальна от размера исходного автомата.
- Th. Язык автоматов Бюхи замкнут относительно операции асинхронной композиции
 - Доказательство очевидно
- Вопрос: а можно ли было использовать в качестве математической модели языка LTL структуру Крипке вместо автомата Бюхи?
 - Ответ очевиден, объяснение тоже

Обычно работаем с неполным автоматом Бюхи для формулы LTL

Автомат Бюхи, допускающий цепочки, определяемые формулой LTL G(q⇒XGp)

Проблемы, возникающие при выполнении алгоритма Model Checking для LTL

- 1. Построение по структуре Крипке М такого автомата Бюхи В_м, который допускает все возможные вычисления структуры М.
- 2. Автомат Бюхи и формулы LTL. Алгоритм построения по формуле Ф автомата Бюхи В_Ф
- 3. Синхронная композиция двух автоматов Бюхи.
- 4. Алгоритм проверки пустоты языка, допускаемого автоматом Бюхи.
 - Рассмотрим алгоритм построения автоматов Бюхи по LTL формуле, дающие более компактные автоматы

Автомат Бюхи: конечная модель ω-языков

• Автомат Бюхи В =(Q, Σ , I, δ , F)

Q - конечное множество состояний

 Σ - конечный алфавит

 $I \subseteq Q$ — множество начальных состояний

 $\delta \subseteq Q$ х Σ х Q — отношение переходов

F ⊆ Q – множество допускающих состояний

- Вычисление ρ автомата Бюхи В над ω -словом $\mathbf{w} = a_0 a_1 ... \in \Sigma^{\omega}$ бесконечная последовательность $\rho = q_0 q_1$... такая что:
 - $q_0 \in I$
 - $(\forall i \in \mathbb{N}) (q_i a_i q_{i+1}) \in \delta$
- ρ является **допускающим** ттт ($\exists q \in F$) $q_i = q$ для бесконечного числа $i \in N$, $\inf(\rho) \cap F \neq \emptyset$
- Язык, индуцируемый автоматом Бюхи $L_{B} \subseteq \Sigma^{\omega}$ множество ω -слов, для которых существуют допускающие вычисления ρ автомата B

Разметка вычислений подформулами LTL

- LTL формула $\phi = \mathbf{F}(\mathbf{a} \mathbf{U} \mathbf{b})$
- Темпоральные подформулы: $\phi_1 = a \cup b$, $\phi_2 = F(a \cup b)$

Пример: рассмотрим вычисление $\rho = s_0 s_1 \dots$ над словом $w = {} {} {a,b}{} \dots$

Состояние s помечается множеством темпоральных подформул ϕ , которые выполняются на вычислении, начинающимся в этом состоянии s

- Th. Для любой LTL формулы φ существует автомат Бюхи В, такой что L_φ=L_B
 - Размер автомата предыдущего алгоритма экспоненциален от размера формулы ф

I. Shoshmina

LTL2BA с помощью альтернирующих автоматов

- Существуют более эффективные алгоритмы построения автомата Бюхи по LTL формуле, но они сложнее
- Один из таких алгоритмов на основе альтернирующих автоматов

Альтернирующий автомат содержит И- и ИЛИ-переходы

- По грлал из **s2** можно перейти в **s2** ИЛИ в **s0** (подобно обычным переходам конечных автоматов)
- По р∧¬q∧¬r из s2 автомат переходит в s2 Ив s1
- И-переходы обозначаются дугой

Альтернирующий автомат на бесконечных словах

• Альтернирующий автомат $AA = (Q, \Sigma, I, \delta, F)$

Q – конечное множество состояний

 Σ - конечный алфавит

 $I \subseteq Q$ — множество начальных состояний

 $\delta \subseteq Q$ х Σ х 2^Q — отношение переходов

F ⊆ Q – множество допускающих состояний

• Отношение переходов:

 δ ={(s2, q, s2), (s2, q, s0), (s2, r, s0), (s2, p, (s1,s2)), (s1, p, s1), (s1, q, s0), (s0, T, s0)}

- Допускающее состояние:
 - F={s0}

Табличная форма записи отношения переходов АА

	{p}, {p,q},{p,r},{p,q,r}	{q},{p,q},{q,r}, {p,q,r}	{r}, {p,r},{q,r},{p,q,r}	{}
s2	(s2,s1)	s2	s0	
s1	s1	s1		
s0	s0	s0	s0	s0

(Почти) символьная форма записи отношения переходов AA

- Пометки на переходах считаем за формулы
- Для каждого состояния вводим символ si
- ИЛИ-переходы обозначаем через дизъюнкцию
- И-переходы через конъюнкцию
- Th. Состояния переходов АА образуют решетку без дополнения

р	q	r	δ(s2)	δ(s1)	δ(s0)
0	0	0	0	0	s0
0	0	1	s0	0	s0
0	1	0	s2	s0	s0
0	1	1	s2 \/ s0	s0	s0
1	0	0	s2/\s1	s1	s0
1	0	1	s2/\s1 \/ s0	s1	s0
1	1	0	s2/\s1 \/ s2	s1 \/ s0	s0
1	1	1	s2/\s1 \/ s2 \/ s0	s1 \/ s0	s0

■ Пользуемся правилом поглощения: a/\b \/ a = a

p	q	r	δ(s2)	δ(s2)	δ(s1)	δ(s0)
0	0	0	0	0	0	s0
0	0	1	s0	s0	0	s0
0	1	0	s2	s2	s0	s0
0	1	1	s2 ∨ s0	s2 \/ s0	s0	s0
1	0	0	s2/\s1	s2/\s1	s1	s0
1	0	1	s2/\s1 \/ s0	s2/\s1 \/ s0	s1	s0
1	1	0	s2/\s1 \/ s2	s2	s1 \ s0	s0
1	1	1	s2/\s1 \/ s2 \/ s0	s2 \/ s0	s1 \ s0	s0

Допустимое упрощение отношения переходов АА

- Пометки на переходах увеличат детерминизм автомата
- Допускаемый язык не изменится

р	q	r	δ(s2)	δ(s2)	δ(s1)	δ(s0)
0	0	0	0	0	0	s0
0	0	1	s0	s0	0	s0
0	1	0	s2	s2	s0	s0
0	1	1	s2 \ s0	s2 \ s0	s0	s0
1	0	0	s2/\s1	s2/\s1	s1	s0
1	0	1	s2/\s1 \/ s0	s2/\s1 \/ s0	s1	s0
1	1	0	s2/\s1 \/ s2	s2	s1 ∨ s0	s0
1	1	1	s2/\s1 \/ s2 \/ s0	s2 \ s0	s1 ∨ s0	s0

Вычисление альтернирующего автомата — в общем случае - дерево

Вычисление альтернирующего автомата на бесконечном слове w

- $\rho = \{V, D\}$ вычисление AA =(Q, Σ , I, δ , F) бесконечное дерево
- V= U V_i , бесконечное множество вершин, расположенных по уровням, V_i множество вершин на i-м уровне
- D отношение переходов:
- $s = V_0 \land s \in I$
 - корень дерева единственный, одна из начальных вершин АА
- $\forall s \in V_i, \exists q \in V_{i+1}. (s, w_i, q) \in D$
 - для каждой вершины существует последователь на следующем уровне
- $\forall q \in V_{i+1}, \exists_1 s \in V_i.(s, w_i, q) \in D, i \ge 0$
 - для каждой вершины существует родитель на предыдущем уровне и только один, кроме корня
- $\forall s \in V_i, \forall q \in V_{i+1}. \Big((s, w_i, q) \in D \to \exists C \subseteq Q. \Big((s, w_i, C) \in \delta \land q \in C \Big) \Big)$
 - Если есть переход в вычислении, то существует переход, который соответствует ему в AA
- $\forall s \in V_i, \forall q \in V_{i+1}. \left((s, w_i, q) \in D \& \exists C \subseteq Q. \left((s, w_i, C) \in \delta \land q \in C \right) \rightarrow \forall r \in C. r \in V_{i+1} \land (s, w_i, r) \in D \right)$
 - Переход в вычислении должен содержать переход во все вершины, соответствующие переходу АА
- $\forall s, s' \in V_i, \forall q, q' \in V_{i+1}, \forall w_i, w_i'. ((s, w_i, q) \in D \land (s', w'_i, q') \in D \rightarrow w_i = w'_i)$
 - Переход на одном уровне осуществляется по одинаковым символам

Допускающее условие по Бюхи

Ветвь θ **вычисления** ρ автомата AA на бесконечном слове w – последовательность состояний, $\theta = \theta_0 \ \theta_1 \ \theta_2 \ \theta_3 ...$

- **■**где каждое β_і является состоянием вычисления ρ
- каждый переход (β_i, β_{i+1}) переход вычисления ρ

Ветвь β **вычисления** ρ автомата AA называется **допускающей по Бюхи**, ттт когда на ней бесконечное количество раз встречается допускающее состояние AA, inf(β)∩F≠0

Вычисление ρ автомата AA на бесконечном слове w называется **допускающим по Бюхи** ттт, когда все его ветви являются допускающими

Слово w **допускается АА** ттт, когда существует допускающее вычисление **р**

Множество всех бесконечных слов, допускаемых альтернирующим автоматом AA, называется **языком AA**

Допускающее вычисление альтернирующего автомата по Бюхи

Свойства альтернирующего автомата

- Th. По любой LTL можно построить AA такой, что он допускает язык, индуцируемый LTL-формулой и только его
- Th. Языки АА замкнут относительно операции дополнения.
 Сложность построения альтернирующего автомата, допускающего дополнение языка АА, линейна относительно размера автомата
 - Для автомата Бюхи сложность построения экспоненциальна!

4

Перевод в отрицательную нормальную форму

• Грамматика LTL в отрицательной нормальной форме (ОНФ)

$$\phi ::= p \mid \neg p \mid \phi \lor \phi \mid \phi \lor \phi \mid \phi \lor \phi \mid \phi \lor \phi \mid X\phi$$

- a R b a отпускает b, R Release, $a R b = \neg(\neg a U \neg b)$
- Отрицательная нормальная форма это когда отрицания стоят только перед атомарными высказываниями
- Th. Любую LTL формулу можно перевести в отрицательную нормальную форму
- Свойства, позволяющие перевести в ОНФ

$$\neg(a \lor b) = \neg a \land \neg b$$
$$\neg(a \land b) = \neg a \lor \neg b$$
$$\neg(aUb) = \neg a R \neg b$$
$$\neg(aRb) = \neg a U \neg b$$

■ Пример: $Gp = \neg F(\neg p) = \neg (T \ U \neg p) = \bot R \ \neg \neg p = \bot R \ p$

Алгоритм построения альтернирующего автомата по LTL формуле

- Состояниями будут:
 - состояния, помеченные темпоральными подформулами формулы LTL φ, т.е. X, U, R
 - + 1 состояние, помеченное T=true, переходы из этого состояния по любому символу приводят в него самого
 - + 1 состояние, помеченное самой формулой φ, если в корне синтаксического дерева φ стоит нетемпоральная формула
- Начальным состоянием будет состояние, помеченное ф
- Допустимыми по Бюхи будут состояния, помеченные Т, R
 - Если в АА нет И-переходов, то он будет совпадать с автоматом Бюхи. В этом случае имеет смысл рассматривать условия по Бюхи
- Допустимыми по ко-Бюхи будут состояния, помеченные U
 - Если в АА есть И-переходы, то имеет смысл рассматривать условия по ко-Бюхи

Алгоритм построения альтернирующего автомата по LTL формуле

Введем булевы символы для обозначения состояний:

- $s_{\varphi \ U \ \psi}$ состояние, соответствующее формуле $\varphi \ U \ \psi$
- $s_{\varphi R \psi}$ состояние, соответствующее формуле $\varphi R \psi$
- s_{φ} состояние, соответствующее формуле X_{φ}
- Построение переходов основано на свойствах распространения обязательств

$$\bullet \quad \varphi \ U \ \psi = \psi \lor \varphi \land X(\varphi \ U \ \psi)$$

Переходы получаются для каждой формулы с помощью двоичных функций

$$\delta(p) = p$$

$$\delta(\neg p) = \neg p$$

$$\delta(X\varphi) = s_{\varphi}$$

$$\delta(\varphi \ U \ \psi) = \delta(\psi) \lor \delta(\varphi) \land s_{\varphi \ U \ \psi}$$

$$\delta(\varphi R \psi) = \delta(\psi) \wedge (\delta(\varphi) \vee s_{\varphi R \psi})$$

Примеры. Gp, Fp, aUb, aRb

$$\varphi = G F p$$

- Приводим в отрицательную нормальную форму: $\varphi = \bot R \ (T \ U \ p)$
- Подформулы этой формулы: $f_0 = p$, $f_1 = T U f_0$, $f_2 = \bot R f_1$
- Состояния АА: s_1 состояние по формуле f_1 , s_2 состояние по формуле f_2 , T состояние по формуле T
- Начальное состояние s₂
- Допускающее состояние по Бюхи s_2 , T
- Отношение переходов:

p	δ_0	δ_1	δ_2
0	0	s_1	$s_1 \wedge s_2$
1	1	1	s_2

• Очевидно, что δ_0 можно не указывать, так как оно совпадает со столбцом р и здесь f0 не образует состояния

Пример 2

$$\varphi = G(p \to Xp)$$

- Приводим в отрицательную нормальную форму: $\varphi = \bot R (\neg p \lor Xp)$
- Подформулы этой формулы: $f_0 = p$, $f_1 = Xf_0$, $f_2 = \neg p$, $f_3 = f_2 \lor f_1$, $f_4 = \bot R f_3$
- Состояния АА: s_0 состояние по формуле f_1 , s_4 состояние по формуле f_4 , T состояние по формуле T
- Начальное состояние s₄
- Допускающее состояние по Бюхи s_4 , T
- Отношение переходов:

p	δ_0	δ_1	δ_2	δ_3	δ_4
0	0	s_0	1	1	s_4
1	1	s_0	0	s_0	$s_0 \wedge s_4$

- здесь f0 образует состояние!
- δ_1 , δ_2 , δ_3 необходимы только для построения перехода δ_4

Тонкие абстрактные модели

- темпоральная логика,
- *w* -языки,
- недетерминированные автоматы Бюхи,
- синхронная композиция автоматов Бюхи, ..., которые реализовать "в железе" вообще невозможно, позволили построить алгоритмы проверки свойств поведения реальных сложных технических систем: коммуникационных протоколов, драйверов, систем логического управления, бортовых систем космических аппаратов и т.п.

Заключение

- Некоторые свойства систем НЕ выражаются СТL-формулами, но выражаются LTL-формулами. Поэтому нужны и алгоритмы проверки выполнимости таких формул на структуре Крипке
- Для проверки того, является ли М моделью формулы Ф логики LTL, строятся автоматы Бюхи A_M и $B_{-\Phi}$, и проверяется пустота языка, допускаемого автоматом Бюхи синхронной композицией $A_M \otimes B_{-\Phi}$
- Сложность алгоритма проверки моделей для LTL- формул значительно выше, чем для CTL формул: O(|A| * 2 |Ф|). Но формулы обычно малы!
- Получение контрпримера в результате выполнения алгоритма model checking имеет огромное значение для отладки технических систем
- Большинство инструментальных систем верификации выполняет алгоритм проверки модели для СТL.
- Система Spin конструирует В_Ф и проверяет, выполняется ли заданная LTL формула на введенной модели.
 Ю.Г.Карпов

34

Спасибо за внимание