Assignment 1

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

Apar Saxena BT22BTECH11003

Question

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as (i) number greater than 4. (ii) six appears on at least one die.

Solution

When a die is tossed two times, we obtain $(6\times6)=36$ number of sample points. Let X be the random variable which denote the number greater than 4 in two tosses of a die. So X may have values 0,1 or 2.Now,

P(X=0)=P (number less than or equal to 4 on both the tosses) = $\frac{4}{6} \times \frac{4}{6} = \frac{16}{36} = \frac{4}{9}$

P(X=1)=P (number less than or equal to 4 on first toss and greater than 4 on second toss) + P(number greater than 4 on first toss and less than or equal to 4 on second toss)

$$=\frac{4}{6}\times\frac{2}{6}+\frac{4}{6}\times\frac{2}{6}=\frac{16}{36}=\frac{4}{9}$$

P(X=2) =P (number greater than 4 on both the tosses) $=\frac{2}{6} \times \frac{2}{6} = \frac{4}{36} = \frac{1}{9}$

Probability distribution of X, i.e., number of successes is

X	0	1	2
P(x)	$\frac{4}{9}$	$\frac{4}{9}$	19

Let X be the random variable which denotes the number of six appears on atleast one die. So, X may have values 0 or 1.

P(X=0) =P (six does not appear on any of the die) = $\frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$

P(X=1) = P (six appears on at least one of the die) $=\frac{11}{36}$

Thus, the required probability distribution is as follows

X	0	1
P(x)	<u>25</u> 36	$\frac{11}{36}$