This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) An actinic radiation curable composition, comprising a photopolymerizable monomer and a photo-acid generating agent selected from the group consisting of compounds represented by Formulas (I) -(III):

Formula (I)

$$R_2$$
 S_1 X_2 R_3

Formula (II)

$$R_{3}$$
 R_{4}
 R_{5}

Formula (III)

$$R_{6}$$
 X
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}

wherein R_1 - R_{13} each represents a hydrogen atom or a substituent selected from the group consisting of an alkyl group, a halogenated alkyl group, an alkoxy group, a carbonyl group, a phenylthio group, a halogen atom, a cyano group, a nitro group and a hydroxy group, provided that R_1 - R_3 , R_4 - R_7 and R_8 - R_{13} do not represent a hydrogen atom at the same time,

 S_1 - S_6 each represents a sulfur atom, each of S_1 - S_5 having three bonds each bond being to a different adjacent carbon atom,

a maximum bond distance at least one of the bonds between S₁ and the adjacent C atom in Formula (I) having a bond distance in the range of 0.1688 nm - 0.1750 nm and none having a bond distance greater than 0.1750 nm, a maximum bond distance at least one of the bonds between S₃ and the adjacent C atom in Formula (II) having a bond distance in the range of 0.1688 nm - 0.1750 nm and none having a bond distance greater than 0.1750 nm, a maximum

bond distance at least one of the bonds between S4 and the adjacent C atom and a maximum bond distance at least one of the bonds between S_5 and the adjacent C atom in Formula (III), are 0.1688 - 0.1750 nm, respectively having a bond distance in the range of 0.1688 nm - 0.1750 nm and none having a bond distance greater than 0.1750 nm,

and X represents a non-nucleophilic anion group.

- 2. (Previously Presented) The actinic radiation curable composition of claim 1, comprising the photopolymerizable monomer having an oxetane ring in the molecule.
- 3. (Previously Presented) The actinic radiation curable composition of claim 1, comprising the photopolymerizable monomer having an oxirane group in the molecule.
- 4. (Original) The actinic radiation curable composition of claim 1, comprising the following photopolymerizable monomers
- (a) a compound having at least one oxetane ring in the molecule in an amount of 60 - 95 weight percent;
- (b) a compound having at least one oxirane group in an amount of 5 - 40 weight percent; and

(c) a vinyl ether compound in an amount of 0 - 40 weight percent,

each weight percent being based on the total weight of the composition.

- 5. (Original) The actinic radiation curable composition of claim 1, comprising the following photopolymerizable monomers:
 - (a) a compound having one oxetane ring in the molecule; and
- (b) a compound having at least two oxetane rings in the molecule.
- 6. (original) The actinic radiation curable composition of claim 1, having a viscosity of 7 - 50 mPa·s at 25°C.
- 7. (Previously Presented) The actinic radiation curable composition of claim 1 which is an ink-jet ink and further comprises a pigment.
- 8. (Withdrawn) An image forming method using the actinic radiation curable ink of claim 7, comprising the steps of:
- (a) jetting a droplet of the ink from a nozzle of an ink-jet recording head to form an image onto a recording material; and

- (b) irradiating the image with an actinic ray, wherein the irradiation step is carried out between 0.001 and 2.0 seconds after jetting the droplet of the ink.
- 9. (Withdrawn) An image forming method using the actinic radiation curable ink of claim 7, comprising the steps of:
- (a) jetting a droplet of the ink from a nozzle of an ink-jet recording head to form an image onto a recording material; and
- (b) irradiating the image with an actinic ray, wherein after the irradiation step, a thickness of the ink on the recording material is 2 20 $\mu m\,.$
- 10. (Withdrawn) An image forming method using the actinic radiation curable ink of claim 7, comprising the steps of:
- (a) jetting a droplet of the ink from a nozzle of an ink-jet recording head to form an image onto a recording material; and
 - (b) irradiating the image with an actinic ray,

wherein a volume of the droplet of the ink jetted from the nozzle is 2 - 15 pl.

11. (Withdrawn) An ink-jet recording apparatus for the image forming method of claim 8, wherein the actinic radiation curable

ink and the recording head is heated to 35 - 100°C before the jetting step is carried out.

12. (Previously Presented) The actinic radiation curable composition of claim 1, wherein the substituent of R_{1} - R_{13} is selected from the group consisting of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group; a trifluoromethyl group, a difluoromethyl group; a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, a decyloxy group, a dodecyloxy group; an acetoxy group, a propionyloxy group, a decylcarbonyloxy group, a dodecylcarbonyloxy group, a methoxycarbonyl group, an ethoxycarbonyl group, a benzoyloxy group; a phenylthio group; fluorine, chlorine, bromine, iodine; a cyano group; a nitro group; and a hydroxy group.