第5章 频谱的线性搬移电路

- ▶5.1 非线性电路的分析方法
- ▶5.2 二极管电路
- ▶5.3 差分对电路
- >5.4 其它频谱线性搬移电路

频谱搬移电路的核心部分是相乘器,而乘法电路的核心单元是一个带恒流源的差分对电路。

差分对电路

单差分对电路

双差分对电路

一、单差分对电路

① 电路

V1, V2两个晶体管和两个 电阻精密配对(这在集成电

路上很容易现)。

静态时,

$$I_{e1} = I_{e2} = I_0 / 2$$
 for

当输入端加差模电压 u 时,如果 u>0,则

$$i_{e1} = I_{e1} + \Delta I = I_0 / 2 + \Delta I$$

$$i_{e2} = I_{e2} - \Delta I = I_0 / 2 - \Delta I$$

$$i_{e1} + i_{e2} = I_0$$
 $u = u_{be1} - u_{be2}$

$$u_{c1} = E_c - i_{c1}R_L$$

$$u_{c2} = E_c - i_{c2}R_L$$

一、单差分对电路

② 传输特性

设
$$\alpha = 1$$

则有:
$$i_{c1} \square i_{e1}$$
; $i_{c2} \square i_{e2}$

$$i_{c1} = I_{s}e^{\frac{u_{be1}}{V_{T}}}$$
 $i_{c2} = I_{s}e^{\frac{u_{be2}}{V_{T}}}$

$$I_0 = i_{e1} + i_{e2} = i_{c1} + i_{c2}$$

$$=I_{s}\left(e^{\frac{u_{be1}}{V_{T}}}+e^{\frac{u_{be2}}{V_{T}}}\right)=i_{c2}\left(1+e^{\frac{u_{be1}-u_{be2}}{V_{T}}}\right)$$

$$=i_{c2}(1+e^{\frac{u}{V_T}})=i_{c1}(1+e^{\frac{-u}{V_T}})$$

一、单差分对电路

② 传输特性

$$I_0 = i_{c2}(1 + e^{\frac{u}{V_T}}) = i_{c1}(1 + e^{\frac{-u}{V_T}})$$

$$i_{c2} = \frac{I_0}{1 + e^{V_T}} \qquad i_{c1} = \frac{I_0}{1 + e^{-V_T}} \qquad \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$i_{c1} - \frac{I_0}{2} = \frac{I_0}{2} \left[\frac{2}{1 + e^{-\frac{u}{V_T}}} \right] - \frac{I_0}{2} = \frac{I_0}{2} \left(\frac{1 - e^{-\frac{u}{V_T}}}{1 + e^{-\frac{u}{V_T}}} \right) = \frac{I_0}{2} \tanh\left(\frac{u}{2V_T}\right)$$

一、单差分对电路

② 传输特性

$$i_{c1} = \frac{I_0}{2} + \frac{I_0}{2} \tanh(\frac{u}{2V_T})$$

$$i_{c2} = \frac{I_0}{2} - \frac{I_0}{2} \tanh(\frac{u}{2V_T})$$

$$u_{c1} = E_c - i_{c1}R_L$$

$$u_{c2} = E_c - i_{c2}R_L$$

双端输出时

$$u_{o} = u_{c2} - u_{c1} = (E_{c} - i_{c2}R_{L}) - (E_{c} - i_{c1}R_{L}) \qquad \exists_{f \in \mathbb{F}_{c}}$$

$$= R_{L}(i_{c1} - i_{c2}) = R_{L}I_{0} \tanh(\frac{u}{2V_{T}}) \qquad i_{o} = I_{0} \tanh(\frac{u}{V_{-}})$$

西安电子科技大学 ISM 国家重点实验室

一、单差分对电路

③ 讨论

- 1. i_{c1} , i_{c2} , i_0 与 I_0 之间是线性关系,而与差模输入 u 之间是非线性关系。

 双端输出时,直流抵消,交流输出加
- 倍 2. 输入电压很小时,传输特性近似为线性 关系,即工作在线性放大区

$$i_{c1} = \frac{I_0}{2} + \frac{I_0}{2} \tanh(\frac{u}{2V_T})$$

$$i_{c2} = \frac{I_0}{2} - \frac{I_0}{2} \tanh(\frac{u}{2V_T})$$

$$i_o = I_0 \tanh(\frac{u}{V_T})$$

$$tanh(\frac{x}{2}) \square \frac{x}{2}$$

当
$$|\mathbf{u}| < V_{\mathrm{T}} = 26 \,\mathrm{mv}$$
 时 $i_0 = I_0 \,\mathrm{tanh}(\frac{u}{2V_{\mathrm{T}}}) \,\Box \,I_0 \,\frac{u}{2V_{\mathrm{T}}}$

- 一、单差分对电路
 - ③ 讨论
 - 3. 若输入电压很大,一般在 |u| > 100 mV 时,电路呈现限幅状态,两管接近于开关状态,因此,该电路可作为高速开关、限幅放大器等电路。 i_2 i_3
 - 4. 小信号运用时, 跨导

$$g_m = \frac{\partial i_o}{\partial u}\Big|_{u=0} = \frac{I_0}{2V_T} \approx 20I_0$$

- ◆ g_m 与 I_0 成正比, I_0 ↑→ 增益↑
- $◆g_m$ ↑ → 输入电压对电流的控制能力越大,可用作 AGC
- $◆I_0→I_0(t)$ → $g_m=g_m(t)$ 时变跨导

一、单差分对电路

③ 讨论

5. 当输入差模电压 $u=U_1\cos\omega_1 t$ 时

$$i_0 = I_0 \tanh(\frac{u}{2V_T}) = I_0 \tanh(\frac{U_1 \cos(\omega_1 t)}{2V_T})$$

一、单差分对电路

③ 讨论

$$i_0 = I_0 \tanh(\frac{u}{2V_T}) = I_0 \tanh(\frac{U_1 \cos(\omega_1 t)}{2V_T})$$

付立叶级数展开:

$$\tanh(\frac{u}{2V_T}) = \prod_{n=1}^{\square} \beta_{2n-1}(x)\cos[(2n-1)\omega_1 t]$$

$$i_0 = I_0 \square \beta_{2n-1}(x)\cos[(2n-1)\omega_1 t]$$

$$n = 1$$

一、单差分对电路

④ 差分对频谱搬移电路

差分对电路中有两个可控通道:

- (1) 线性通道
- (2) 非线性通道:差模输入:

集电极负载为一滤波回路,设它对输出频率分量的阻抗为 R_L

恒流源由 VT3 提供,, VT3 射极接有大电阻 Re,该电路也称为长尾偶电路

一、单差分对电路

④ 差分对频谱搬移电路 由图可知:

$$u_{B}=u_{be3}+i_{e3}R_{e}-E_{e}$$
 忽略 u_{be3} ,则 $i_{e3}=\frac{E_{e}+u_{B}}{R_{e}}$

$$I_0(t) = i_{c3} = i_{e3} = \frac{E_e + u_B}{R_e} = I_0(1 + \frac{u_B}{E_e})$$

$$I_0 = \frac{E_e}{R_e}$$

$$i_0(t) = I_0(t) \tanh(\frac{u_A}{2V_T}) = I_0(1 + \frac{u_B}{E_e}) \tanh(\frac{u_A}{2V_T})$$

一、单差分对电路

④ 差分对频谱搬移电路

$$i_0(t) = I_0(1 + \frac{u_B}{E_e}) \tanh(\frac{u_A}{2V_T})$$

当 |u_A|<26mv 时,有

$$i_o(t) \square I_0(1 + \frac{u_B}{E_e}) \frac{u_A}{2V_T}$$

该式中, 有两个输入信号的乘积项

故该电路可构成频谱线性搬移电路

二、双差分对电路

① 电路

该电路由三个基本的差分电路组成,或者说两个差分对电路组成

$$i_{I} = i_{1} + i_{3}$$
 $i_{5} = i_{1} + i_{2}$
 $i_{II} = i_{2} + i_{4}$ $i_{6} = i_{3} + i_{4}$

$$I_0 = i_5 + i_6 = i_1 + i_2 + i_3 + i_4$$

二、双差分对电路

② 工作原理

$$i_{I} = i_{1} + i_{3}$$
 $i_{5} = i_{1} + i_{2}$
 $i_{II} = i_{2} + i_{4}$ $i_{6} = i_{3} + i_{4}$
 $I_{0} = i_{5} + i_{6} = i_{1} + i_{2} + i_{3} + i_{4}$
 $i_{o} = i_{I} - i_{II} = (i_{1} + i_{3}) - (i_{2} + i_{4})$
 $= (i_{1} - i_{2}) - (i_{4} - i_{3})$

二、双差分对电路

② 工作原理

$$i_0 = I_0 \tanh(\frac{u_B}{2V_T}) \tanh(\frac{u_A}{2V_T})$$

(1) 一般:
$$u_A = U_A \cos(\omega_1 t)$$

$$u_B = U_B \cos(\omega_1 t)$$

$$i_o = I_o \bigoplus_{m=0} \beta_{2m-1}(x_1) \beta_{2n-1}(x_2) \square$$

 $\cos(2m-1)\omega_1 t \cos(2n-1)\omega_2 t$

$$x_1 = \frac{u_A}{V_T} \qquad x_2 = \frac{u_B}{V_T}$$

组合分量: $(2m-1)\omega_1 \square (2n-1)\omega_2$

差分对电路 5.3

二、双差分对电路

② 工作原理

$$i_0 = I_0 \tanh(\frac{u_B}{2V_T}) \tanh(\frac{u_A}{2V_T})$$

(2) u_A<26mv 时

$$i_0 \quad \mathcal{U}_0 \quad \mathcal{U}_A \\ 2V_T \cos(\omega_1 t) \begin{bmatrix} \Box \\ \Box \\ n=1 \end{bmatrix} \beta_{2n-1} \cos(2n-1)\omega_2 t$$

组合分量:
$$(2n-1)\omega_2 \square \omega_1$$

二、双差分对电路

② 工作原理

$$i_0 = I_0 \tanh(\frac{u_B}{2V_T}) \tanh(\frac{u_A}{2V_T})$$

 $(3) u_A, u_B < 26 mv$ 时

$$i_o = I_o \frac{u_B}{2V_T} \frac{u_A}{2V_T} = \frac{I_0}{4V_T^2} u_B u_A$$

此时为理想乘法器

二、双差分对电路

③ 电路改进——反馈差分电路

作为乘法器时,要求输入电压的幅度要小,因而 u_A , u_B 的动态范围较小。

为了大 $u_{\rm B}$ 的动态范围,可以在 V_5 , V_6 的发射极上接入负反馈电阻 $R_{\rm e2}$ 。

当 Re2 的滑动点处于中间值时,有:

二、双差分对电路

③ 电路改进——反馈差分电路

$$u_{B} = V_{T} \ln \frac{i_{e5}}{i_{e6}} + \frac{1}{2} (i_{e5} - i_{e6}) R_{e2}$$

若 R。足够大,满足

$$\frac{1}{2}(i_{e5} - i_{e6})R_{e2} >> V_T \ln \frac{i_{e5}}{i_{e6}}$$

贝J:
$$u_B \Box \frac{1}{2} (i_{e5} - i_{e6}) R_{e2} \Box \frac{1}{2} (i_5 - i_6) R_{e2}$$

 V_5 , V_6 的差动输出电流近似与 u_B 成正比,而与 I_0 无关

该结论必须在两管均工作在放大区条件下才成立。

二、双差分对电路

③ 电路改进——反馈差分电路

两管均工作在放大区

工作在放大区,可近似认为 i_{e5} , i_{e6}

均大于 0 ,即 $i_{e5} > 0$, $i_{e6} > 0$ 。

$$i_{e5} + i_{e6} = I_0$$

$$u_B \square \frac{1}{2} (i_{e5} - i_{e6}) R_{e2}$$

$$\mathbf{u}_{\mathrm{B}}$$
 的最大动态范围为 $-\frac{I_{0}}{2}R_{e2} \square u_{B} \square \frac{I_{0}}{2}R_{e2}$

二、双差分对电路

③ 电路改进——反馈差分电路 双差分对电路输出电流:

$$i_o = i_5 \tanh(\frac{u_A}{2V_T}) - i_6 \tanh(\frac{u_A}{2V_T})$$
$$u_B \square \frac{1}{2} (i_5 - i_6) R_{e2}$$

$$i_o = \frac{2u_B}{R_{e2}} \tanh(\frac{u_A}{2V_T})$$

8

5.3 差分对电路

二、双差分对电路

③ 电路改进——反馈差分电路

$$i_o = \frac{2u_B}{R_{o2}} \tanh(\frac{u_A}{2V_T})$$
 \rightarrow 双差分对工作在线性时变状态

当 u_A 足够小时,反馈差分对电路为理想乘法器;

当 u_A 足够大时,则电路工作在传输特性的平坦区,此时上式可表示为开关工作状态:

$$i_o \Box \frac{2}{R_{e2}} K(\omega_A t) u_B$$

结论: 施加反馈电阻后, 双差分对电路工作在线性时变状态或开关工作状态, 故特别适合作为频谱搬移电路。

一、晶体三极管频谱线性搬移电路

① 电路

 u_1 —— 输入信号 u_2 —— 参考信号 U_2 >>> U_1

 u_1,u_2 加到三级管的 be 结,利用三极管的非线性特性,产生 u_1 , u_2 的频率组合分量,由输出回路选出所需的频率分量。

一、晶体三极管频谱线性搬移电路

② 分析

(1)时变偏置

一般情况下, u_1 很小, $U_2>>U_1$,可将此电路等效为小信号谐振放大器。输入 $u_1(f_1)$,输出 $u_o(f_o)$

基极偏置电压: $E_b(t) = E_b + u_2$

(2) 集电级电流 i。

忽略三级管内部反馈和集电极电压的反作用,三级管的静态伏安特 性可表示为

$$i_c = f(u_{be}, u_{ce}) \square f(u_{be}) = f(E_b + u_1 + u_2)$$

一、晶体三极管频谱线性搬移电路

② 分析

(2) 集电级电流 *i*。

$$i_c \Box f(u_{be}) = f(E_b + u_1 + u_2)$$

$$E_b(t) = E_b + u_2$$

$$i_c = f(E_b(t) + u_1)$$

在时变工作点处,将 i_c 对 u_1 做泰

勒级数展开有:

$$i_c = f[E_b(t)] + f[E_b(t)]u_1 + \frac{1}{2}f[E_b(t)]u_1^2$$

$$+\frac{1}{3!}f^{(n)}[E_b(t)]u_1^3 + (n)^{(n)}[E_b(t)]u_1^n + (n)^{(n)}[E_$$

一、晶体三极管频谱线性搬移电路

② 分析

线性时变电路中频率分量: $|n\omega_2 \square \omega_1|$; $n\omega_2$

一、晶体三极管频谱线性搬移电路

- ② 分析
 - (2) 集电级电流 i_c

$$i_{c} = f[E_{b}(t)] + f[E_{b}(t)]u_{1} + \frac{1}{2}f[E_{b}(t)]u_{1}^{2} + \frac{1}{3!}f[E_{b}(t)]u_{1}^{3} + 2\frac{1}{n!}f^{(n)}[E_{b}(t)]u_{1}^{n} + 2\frac{1$$

$$\frac{1}{n!} f^{(n)}[E_b(t)] = \frac{d^n i_c}{du_{be}^n} \Big|_{u_{be} = E_b(t)}, n = 1, 2, 3,$$

$$f^{(n)}[E_b(t)] = C_{n0} + C_{n1}\cos\omega_2 t + C_{n2}\cos2\omega_2 t + 2\omega_2 t$$

$$i_c$$
 中的频率分量有: $\omega_{p,q} = | \mathbf{\Phi} \mathbf{\Phi}_2 - q \omega_1 | p, q = 0, 1, 2, \mathbf{\Phi}_2$

三级管电路等效为线性时变电路后, 频率分量大大减少。

- 一、晶体三极管频谱线性搬移电路
- ③ 三极管电路中时变电流与时变跨导的曲线图

- 一、晶体三极管频谱线性搬移电路
- ③ 三极管电路中时变电流与时变跨导的曲线图

二、场效应管频谱线性搬移电路

结型场效应管是利用栅漏极间的非 线性转移特性实现频谱线性转移功 能的

转移特性近似为平方律关系,即

$$i_D = I_{DSS} (1 - \frac{u_{GS}}{V_p})^2$$

正向传输跨导 g_m 为

$$g_{m} = \frac{di_{D}}{du_{GS}} = g_{m0}(1 - \frac{u_{GS}}{V_{p}})$$

$$g_{m0} = 2 \frac{I_{Dss}}{|V_p|}$$
 —— u_{GS} = 0 时的跨导

二、场效应管频谱线性搬移电路

$$g_m = \frac{di_D}{du_{GS}} = g_{m0}(1 - \frac{u_{GS}}{V_p})$$

设
$$u_{GS} = E_{GS} + U_2 \cos(\omega_2 t)$$

时变跨导:
$$g_m(t) = g_{m0}(1 - \frac{E_{GS} + U_2 \cos(\omega_2 t)}{V_P})$$
令: $g_{mQ} = g_{m0}(1 - \frac{E_{GS}}{V_P})$ — 对应于 E_{GS} 的静态跨导 $g_m(t) = g_{mQ} - g_{m0} \frac{U_2 \cos(\omega_2 t)}{V_P}$

$$g_{mQ} = g_{m0} (1 - \frac{E_{GS}}{V_{p}})$$
 — 对应于 E_{GS} 的静态跨导

$$g_m(t) = g_{mQ} - g_{m0} \frac{U_2 \cos(\omega_2 t)}{V_P}$$

$$V_{\rm P}$$
 为负值,故: $g_m(t) = g_{mQ} + g_{m0} \frac{U_2 \cos(\omega_2 t)}{|V_{\rm P}|}$

二、场效应管频谱线性搬移电路

$$g_m(t) = g_{mQ} + g_{m0} \frac{U_2 \cos(\omega_2 t)}{|V_P|}$$

当输入信号 $\mathbf{u}_1 = U_1 \cos(\omega_1 t)$

,且 U₁<<U₂ 时

$$i_D(t) = g_m(t)U_1 \cos \omega_1 t = g_{mQ}U_1 \cos \omega_1 t + U_1 g_{m0} \frac{U_2}{|V_P|} \cos \omega_1 t \cos \omega_2 t$$

由上式可知,由于结型场效应管的平方律转移特性,其组合分量相对于晶体三极管电路的组合分量要少得多。在 $U_1 << U_2$ 时,频率分量有: ω_1 , $\omega_2 \square \omega_1$

即使 $U_1 << U_2$ 不成立时,频率分量只有 $\omega_1, \omega_2, 2\omega_2, 2\omega_1, \mathcal{D}_2 \cup \omega_1$

二、场效应管频谱线性搬移电路

路

三极管频谱线性搬移电路特点:

高增益,低噪声 但动态范围小,非线性

场效应管频谱线性搬移电路特点:

动态范围大

, 非线性失真小