

Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu₂O-layered thin films under visible light irradiation

Da Hye Won ^{a,1}, Chang Hyuck Choi ^{a,1}, Jaehoon Chung ^a, Seong Ihl Woo ^{a,b,*}

^a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

^b Graduate School of EELS (BK plus), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

ARTICLE INFO

Article history:

Received 19 February 2014

Received in revised form 9 April 2014

Accepted 13 April 2014

Available online 21 April 2014

Keywords:

CO₂ reduction

Photoelectrochemical

Copper oxide

Transition metal

Performance degradation

ABSTRACT

As a cathode material for fuel generation from CO₂ reduction in a photoelectrochemical system, layered CuO/Cu₂O films were developed and their surfaces were decorated with transition metals (*i.e.* Ag, Au, Cd, Cu, Pb, and Sn). Deposition of the transition metals effectively enhanced CO₂ conversion to fuel in terms of faradaic efficiency. In particular, Pb/CuO/Cu₂O demonstrated outstanding performance among the transition metals: 0.524 μmol/h cm² for formic acid and 0.102 μmol/h cm² for methanol with 40.45% of total faradaic efficiency at –0.16 V (vs. SHE), which was a higher potential than standard redox potentials of formic acid and methanol formation from CO₂. Moreover, electrochemical impedance spectroscopy (EIS) showed that the deposition of the transition metals onto CuO/Cu₂O electrode effectively generated photo-induced electron–hole pairs under visible light irradiation. However, fast performance degradations of the prepared electrodes were observed during the reactions as well as the disappearances of the photocurrents. X-ray photoelectron spectroscopy (XPS) results revealed that the outer CuO layer was readily reduced to Cu₂O/Cu, and this compositional destruction was responsible for the degradation of the photocurrent by prohibiting transfers of the electrons (or holes) to the active sites.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Carbon dioxide, the main gas product from fossil fuel combustion, is known as one of the primary greenhouse gases. For efficient consumption of CO₂, various studies on the conversion of CO₂ to useful products have been conducted. However, since CO₂ is chemically stable, the conversion of CO₂ requires large external energy such as a gas phase reaction at high temperature [1,2] or an electrochemical reaction at large overpotential [3,4], which produces more CO₂ than the amount of CO₂ used for the conversion (see Supplementary information). Recently, photochemical and photoelectrochemical systems utilizing the photoenergy have been widely studied as a promising approach to overcome the high energy barrier of CO₂ conversion in an energy-and

environment-friendly manner. As a photocathode in this system, various types of p-type semiconductors have been developed such as p-GaP [5,6], p-InP [7–9], p-Si [10–12], p-CdTe [13,14], p-CZTS [15] and p-CIS [16]. In order to resolve the problems of low reactivity, selectivity, and faradaic efficiency, however, semiconductors have been modified with several methods such as usage of homogeneous catalysts including pyridine and imidazole with the semiconductor [5,16,17], anchoring a metal complex electrocatalyst such as a Ru complex on the surface of the semiconductor [7–9,15], or decoration of transition metals on the semiconductor surface [10,12].

Cu-based materials (metallic Cu, CuO, and Cu₂O) are abundant resources that show good performances in electrochemical CO₂ reduction systems with affordable preparation methods [4,18–24]. Moreover, copper oxide is a promising material as a photocathode due to its p-type semiconductor properties and suitable band gap that responds to visible light. In a previous study, the Rajeshwar group developed a morphologically modified CuO–Cu₂O hybrid nanoarray that selectively produced methanol from CO₂ with ~95% faradaic efficiency [25,26]. Despite these advantages of the copper oxide, it has not yet been researched extensively as a photocathode. This is probably due to the poor stability of Cu-based materials

* Corresponding author at: Korea Advanced Institute of Science and Technology, Department of Chemical and Biomolecular Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea. Tel.: +82 42 350 3918; fax: +82 42 350 3910.

E-mail address: sivwoo@kaist.ac.kr (S.I. Woo).

¹ These authors have contributed equally.

against severely reducible experimental conditions. For example, a rapid performance degradation of similar materials has been reported in electrochemical systems [22]. Although the electrode deactivation is an important issue in this research area, the origin of the low stability is not yet fully understood.

Herein, layered structure CuO/Cu₂O thin films were simply prepared by oxidation of Cu foil. To improve performance and increase the reaction selectivity, the surfaces of the CuO/Cu₂O films were modified by various transition metal particles. Using a Me/CuO/Cu₂O thin film as a photocathode (Me = Ag, Au, Cd, Cu, Pb, and Sn), photoelectrochemical reduction of CO₂ to liquid fuels was investigated at higher potential than the standard redox potential of the products under visible light irradiation. It has been reported that the selectivity of products in an electrochemical system was highly determined by the type of transition metals used as the electrode material [3]. Furthermore, in a photochemistry system, a junction with metal and a semiconductor improves the efficiency of photoenergy usage [27–29]. Therefore, we anticipated that using a metal to decorate on CuO/Cu₂O would enhance the catalytic activity and control product selectivity according to the type of metals in the photoelectrochemical system. In addition, the degradation phenomenon of the CuO/Cu₂O-based films in the photoelectrochemical reduction of CO₂ was also investigated through the correlation with compositional changes and photocurrent responses in the reactions by using the X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) studies.

2. Experimental

2.1. Synthesis of Me/CuO/Cu₂O

Cu foil (0.25 mm, 99.99%, Sigma-Aldrich) was pretreated with 1.0 M HCl, and then sonicated in ethanol, acetone, and deionized water, sequentially. CuO/Cu₂O layered thin film was synthesized by oxidation of a cleaned Cu substrate at 400 °C under air flow (100 sccm) for 4 h in a tube furnace. Various transition metals, (*i.e.* Ag, Au, Cd, Cu, Sn, and Pb) were deposited onto the CuO/Cu₂O photoelectrode by photo-assisted electrodeposition at –1.0 V (vs. SCE) in the 1 M NaNO₃ (Sigma-Aldrich) solutions dissolved in 0.02 M of each metal precursor under UV-visible light illumination for 5 s. The selected metal precursors were AgNO₃ (Sigma-Aldrich), HAuCl₄·3.6H₂O (Kojima Chemicals CO. LTD.), CdSO₄ (Sigma-Aldrich), CuSO₄ (Sigma-Aldrich), SnSO₄ (Sigma-Aldrich), and Pb(NO₃)₂ (Sigma-Aldrich).

2.2. Physical characterizations

The physical characteristics of the prepared photocathodes were analyzed using X-ray diffraction (XRD), an ultraviolet–visible near infrared spectrometer (UV-vis-NIR spectrometer), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDS), and XPS. The XRD patterns were obtained by thin film XRD (RIGAKU D/MAX-RC) using the radiation of a Cu K α source at 30 kV and 60 mA. The band gap of CuO/Cu₂O layered thin film was calculated by Kubelka–Munk function based on the results of a UV-vis-NIR spectrometer (V-570 of Jasco). The deposited metals were observed with the FESEM (Hitachi S-4800) equipped with EDS (Horiba) at an acceleration voltage 5.0 kV. The surface compositions of the prepared photocathodes were investigated by XPS (Sigma Probe of Thermo VG Scientific) equipped with a microfocused monochromator X-ray source.

2.3. Photoelectrochemical test

The measurements of photoelectrochemical activity were performed using an electrochemical analyzer of CHI 700D (CH Instruments Inc.). The reactor was a custom-built Teflon reactor with a quartz window, which enables to reference and counter electrodes to be equipped on both sides of the reactor. A saturated calomel electrode (SCE) and carbon rod were used as reference and counter electrodes, respectively. The carbon rod as a counter electrode was used to prevent the re-oxidation of CO₂ reduction products at the counter electrode, such as formic acid and methanol in the batch cell system [5]. The electrolyte was 0.1 M KHCO₃ (Sigma-Aldrich) aqueous solution and analytical grade of water (HPLC Certified Solvent, Burdick & Jackson) was used. The light source was a 450 W Xe lamp (Newport, 66921) equipped with a UV cut-off filter (Newport, 59472). The active area of prepared photoelectrode was 1 cm².

2.4. Liquid product analysis

Liquid products were analyzed by 800 MHz ¹H 1D liquid NMR (Bruker Avance) at 25 °C. Internal 2,2-dimethyl-2-silapentane-5-sulfonate was used as a chemical shift reference. The standard solution was 2 mM dimethylsulfoxide (DMSO) and 10 mM phenol in D₂O solvent (Cambridge Isotope Laboratories, Inc.). NMR samples were prepared by mixing 476 μL of product-electrolyte and 24 μL of the standard solution. The amounts of products were calculated by comparing integral areas of formic acid and methanol with phenol and DMSO, respectively. The peak positions were calibrated by purchased formic acid (Sigma-Aldrich) and methanol (Sigma-Aldrich) dissolved in 0.1 M KHCO₃ aqueous solutions containing the standard solution (Fig. S1). The positions of formic acid and methanol were the same as those reported in previous research [21].

2.5. Gas product analysis

Gas product analyses were performed with 5890 series 2 of Hewlett Packard gas chromatography equipped with a thermal conductivity detector (TCD). A carboxen-1000 column (12390-U, Supelco) was used, and He (99.999% purity) and Ar (99.999% purity) were used as a reference gas. Oven temperature was maintained at 150 °C and 180 °C for He and Ar, respectively. CO₂ (99.99% purity) was continuously purged into the reactor and vented to the sampling loop with 5 sccm of the gas flow velocity. This flow contained the gas products from photoelectrochemical CO₂ reduction. Aliquots were collected every 10 min during the reaction. Before beginning the photoelectrolysis reaction, CO₂ was purged over 45 min and then photoelectrolysis was started after confirming none of the other peaks in gas chromatography responses except CO₂. The calibration curve for CO was obtained by injecting the mixture gases having different CO concentrations in CO₂ balance.

2.6. Band characterization using Mott–Schottky plots

The Mott–Schottky equation is as follows:

$$\frac{1}{C^2} = \frac{2}{\epsilon \epsilon_0 e A^2 N_A} \left(V - V_f - \frac{k_B T}{e} \right)$$

where C is the interfacial capacitance, A is the interfacial area, N_A is the number of acceptors, V is the applied voltage, k_B is Boltzmann's constant, T is the absolute temperature, and e is the electronic charge. Therefore, flat band potential can be calculated by subtracting k_BT/e from the x-intercept in the linear plot of 1/C² vs. V. The flat band potential is regarded as a potential of the valence band edge [30]. To examine accurate the band characteristics of CuO/Cu₂O

Fig. 1. (a) XRD result of CuO/Cu₂O thin film, (b) Band gap of CuO/Cu₂O calculated by UV-vis-NIR spectrometer measurement, (c) XPS data of CuO/Cu₂O, and (d) Top-down FESEM image of Pb metal deposited CuO/Cu₂O (representative image).

electrode in our case, Mott–Schottky plots at frequencies of 5 kHz and 10 kHz were collected from CuO and Cu₂O electrodes in 0.1 M KHCO₃ aqueous solution, respectively (Fig. S2(a) and (b)). The flat band potentials of CuO and Cu₂O were 0.67 V and 0.40 V (vs. SHE), respectively. The conduction band edges could be obtained by subtracting the measured band gaps (1.40 eV of CuO and 1.87 eV of Cu₂O by UV-vis-NIR spectrometer as shown in Fig. 1(b)) from the valence band edges (Fig. S2(c)).

3. Results and discussion

3.1. Characteristics of the CuO/Cu₂O

The layered structure of CuO/Cu₂O was confirmed by XRD, UV-vis-NIR spectrometer, and XPS analyses. In the XRD results (Fig. 1(a)), CuO and Cu₂O peaks emerged after oxidation of the Cu foil, indicating mixed phases of CuO and Cu₂O in the film. The UV-vis-NIR spectrometer also supported the presence of two different band gaps, observed at 1.40 eV and 1.87 eV (Fig. 1(b)) assigned to CuO and Cu₂O, respectively [25]. However, in the XPS analysis (Fig. 1(c)), which is a surface sensitive technique, only a CuO peak at 933 eV appeared in XPS-Cu_{2p}. This implied that CuO is the dominant surface product on the outer layer and Cu₂O is dominant in the inner layer of the prepared film. The distinctive layered structure was probably attributed to complete oxidation at the surface and partial oxidation of the inner film due to inadequate oxygen diffusion into the film. Deposition of transition metals on the CuO/Cu₂O electrodes, which was performed by photo-assisted electrodeposition, was confirmed by FESEM and EDS analyses. Fig. 1(d) shows a representative FESEM image among the metal deposited CuO/Cu₂O electrodes, Pb/CuO/Cu₂O.

Regardless of the type of transition metals, the prepared films have similar morphologies and sizes of the surface-deposited metal particles, ranging from several hundred nanometers to several micrometers (Fig. S3). Moreover, similar amount of the metals (*i.e.* $0.31 \pm 0.08 \mu\text{mol}/\text{cm}^2$) were deposited on CuO/Cu₂O electrodes except for Ag (Table S1).

3.2. Photoelectrochemical activity of the Me/CuO/Cu₂O

The CO₂ reduction in the photoelectrochemical system was examined by linear sweep voltammetry (LSV) and chronoamperometry in N₂- or CO₂-bubbled 0.1 M KHCO₃ aqueous solutions (pH 6.6–6.7) under irradiation of chopped visible light (a 450 W Xe lamp with a UV cut off filter, $400 \text{ nm} < \lambda < 800 \text{ nm}$). Fig. 2 shows the photoelectrochemical responses of the bare CuO/Cu₂O. The results reveal higher reduction photocurrent under CO₂-bubbling than under a N₂-bubbling environment, indicating the CO₂ reducibility of bare CuO/Cu₂O. It has been reported that photocurrent in the N₂-bubbled electrolyte results from H₂ evolution or the innate properties of photocathode materials [10,25], and this would be further discussed in Section 3.3.

Interestingly, the Me/CuO/Cu₂O demonstrated improved photoelectrochemical activities of CO₂ reduction with higher onset potentials (Fig. S4). In the case of a p-type semiconductor in an electrolyte, there is an energy barrier between the semiconductor and the liquid electrolyte interface, and metal deposition on the semiconductor reduces energy loss in the interfacial reaction by decreasing the energy barrier of the junctions [12]. Therefore, deposited metals can facilitate electron transfer from the semiconductor to the liquid solution with reduced energy loss as well as acting as active sites [27,28]. The selectivity of fuel from CO₂

Fig. 2. CO₂ photoreduction activity of bare CuO/Cu₂O photocathode in N₂- and CO₂-gas bubbled 0.1 M KHCO₃ aqueous solution (pH 6.6–6.7) under irradiation of chopped visible light (a 450 W Xe lamp with UV cut off filter, 400 < λ < 800) by LSV (a), and chronoamperometry at -0.4 V (vs. SCE) (b).

reduction was also determined according to the type of deposited transition metal [12,29].

A product analysis was performed in CO₂-bubbled 0.1 M KHCO₃ aqueous solutions under visible light irradiation for 1 h at -0.4 V (vs. SCE). It is worth noting that this potential is converted to -0.16 V (vs. SHE), which is much higher than the standard redox potential of formic acid (*ca.* -0.61 V vs. SHE), methanol (*ca.* -0.38 V vs. SHE), and carbon monoxide (*ca.* -0.53 V vs. SHE) formation from CO₂ [31]. However, the reduction of CO₂ at a more positive potential than the standard redox potentials was successfully performed due to the generation of photoenergy onto the CuO/Cu₂O film under the irradiation of visible light [30]. As shown in Table 1, bare CuO/Cu₂O shows 0.231 μmol/h cm² of formic acid and 0.024 μmol/h cm² of methanol in the photoelectrochemical CO₂ reduction. Otherwise, in the case of the Me/CuO/Cu₂O, metal-decorated film, improved activities for liquid fuel generations, from 0.329 to 0.602 μmol/h cm² for formic acid and from 0.054 to 0.110 μmol/h cm² for methanol, respectively, were observed. In particular, Cu and Pb demonstrated outstanding performances for liquid fuel generations among the transition metals: 0.602 μmol/h cm² of formic acid and 0.110 μmol/h cm² of methanol for Cu and 0.524 μmol/h cm² of formic acid and 0.102 μmol/h cm² of methanol for Pb. In electrochemical systems, research based on various transition metals has yielded similar results [3], indicating that the selectivity of CO₂ conversion products is determined by the type of metals, and Cu and Pb are promising electrocatalysts for liquid fuel generation. As gas products,

Fig. 3. Faradaic efficiencies of bare and metal-deposited CuO/Cu₂O photocathodes.

CO dominantly evolved close to $0.258 \pm 0.014 \mu\text{mol}/\text{h cm}^2$, regardless of the type of metal, but H₂ was scarcely detected (Table 1). The absolute amounts of the products from the prepared photocathodes are comparable with previous studies: p-InP or p-CZTS with a Ru complex demanding a complicated fabrication process (Table S2) [9,15]. In terms of faradaic efficiency, the transition metal deposition on CuO/Cu₂O showed positive effects: 11.91% for bare CuO/Cu₂O but a dramatic increase to 18.29–40.45% for Me/CuO/Cu₂O (Fig. 3). However, the faradaic efficiency in this study is still lower than the values reported by other groups [7–9,11,15,16,25].

3.3. Investigation of photoelectrode degradation

The low faradaic efficiencies of Me/CuO/Cu₂O electrodes resulted from the poor stabilities of the Me/CuO/Cu₂O photocathode. Fig. 4(a) shows the performance profile of bare CuO/Cu₂O during 1 h of CO₂ reduction reaction. The performance rapidly decreased to ~30% after 20 min. In Fig. 4(b), the response from the chopped visible light irradiation also revealed fast degradation of photocurrent during the first 20 min.

This significant photocurrent disappearance was due to reduction of the surface CuO, which was confirmed by the XPS results of the photocathodes before and after the reaction (Fig. 5(a)). As shown in Fig. 5(a), the intensity of the CuO peak in XPS-Cu₂p decreased and the Cu₂O/Cu peak newly emerged after the reaction. This indicates that reduction from CuO to Cu₂O/Cu on the surface of the photocathode occurred during the reaction. This phenomenon was also observed in all of the Me/CuO/Cu₂O photocathodes (Fig. 5(b) and Figs. S6–S8). The Pourbaix diagram also supports the results that Cu is the most stable phase under our experimental conditions with the pH and the applied potential we implemented (pH 6.6–6.7 and -0.16 V vs. SHE).

As shown in Table 1 and Fig. 3, the total faradaic efficiencies of the prepared electrodes for the CO₂ reductions were 11.91–40.45% for 1 h. However, the hydrogen gas was not detected in the reactions unlike many previous reports, and thus, the usage of residual currents is unclear. Hence, it was supposed that the residual currents were used for reducing CuO to Cu₂O/Cu, as shown in Fig. 5, and then the thickness of the reduced layer was mathematically calculated. This suggestion was fairly reasonable because CuO reduction ($E_{\text{CuO/Cu}}^0 = 0.57 \text{ V}$ vs. SHE at pH = 0) was thermodynamically more favorable than hydrogen evolution reaction ($E_{\text{H}_2/\text{H}_2^+}^0 = 0 \text{ V}$ vs. SHE at pH = 0), possibly resulting in dominant CuO reduction to Cu₂O/Cu rather than hydrogen evolution as demonstrated in XPS analysis (Fig. 5). We assumed that the outer layer of CuO was reduced to Cu having fcc crystal structure (Table S3). The predicted

Table 1

The results of photoelectrochemical CO₂ reduction in CO₂-bubbled 0.1 M KHCO₃ aqueous solution with prepared photocathodes (bare CuO/Cu₂O and Me/CuO/Cu₂O:Me=Ag, Au, Cd, Cu, Pb, and Sn) at -0.4 V (vs. SCE) under visible light irradiation.

	Charge ^a (C)	Formic acid ($\mu\text{mol}/\text{h cm}^2$)	F.E. (%)	Methanol ($\mu\text{mol}/\text{h cm}^2$)	F.E. (%)	CO ($\mu\text{mol}/\text{h cm}^2$)	F.E. (%)
Bare	0.93	0.231	4.78	0.024	1.49	0.250	5.64
Ag	0.72	0.368	9.81	0.015	1.23	0.272	7.25
Au	0.68	0.568	16.05	0.077	6.54	0.258	7.90
Cd	0.94	0.506	10.38	0.078	4.79	0.243	5.45
Cu	0.78	0.602	14.90	0.110	8.20	0.244	6.60
Pb	0.52	0.524	19.32	0.102	11.33	0.243	9.80
Sn	0.66	0.329	9.55	0.054	4.57	0.251	7.95

^a Total charge used in CO₂ reduction reaction ($= \int I dt$; where I is the measured current and t is the reaction time) for 1 h in CO₂-bubbled 0.1 M KHCO₃ aqueous solution at -0.4 V (vs. SCE).

thicknesses of the Cu on the surface of the prepared electrodes were in the range of 114–302 nm. Considering the thickness of photoelectrochemical electrodes are generally reported with a few μm for efficient light utility [32,33], the calculated thickness is quite reasonable, corresponding to our assumption and inferring that the rest currents were consumed by the partial surface reduction of the CuO electrode.

However, a certain percentage of Cu₂O/Cu existed on the surface of Me/CuO/Cu₂O electrodes before the reaction, which was caused by the partial surface reduction of Me/CuO/Cu₂O electrodes for the photo-assisted electrodeposition step of metals, even if it took only 5 s. Nonetheless, the Me/CuO/Cu₂O electrodes demonstrated increased faradaic efficiencies and selectivities for the CO₂ reduction reaction compared to those of the CuO/Cu₂O electrode. The reduced film-thicknesses for the metal deposition steps were

Fig. 4. (a) Performance degradation of CuO/Cu₂O during photoelectrochemical CO₂ reduction at -0.4 V (vs. SCE) for 1 h under visible light irradiation. (b) Photocurrent profile of CuO/Cu₂O at -0.4 V (vs. SCE) under chopped visible light irradiation (inset: focused graph on the range of 45–46 min).

very thin (less than 1 nm, Table S3), and thus, it can be concluded that the slight destruction of the less than 1 nm scarcely decreased the reaction kinetics.

The roles of metals as well as the effects of surface reduction were experimentally investigated by EIS studies of the CuO/Cu₂O and the Au/CuO/Cu₂O electrodes (Fig. 6). Even though the semicircles in the EIS results are attributed to the combinations of the various reaction parameters (e.g. activation energy, kinetics, diffusion, resistance, etc.), it was very useful to study the effects of visible-light irradiation and the roles of metals. Fig. 6(a) showed that the diameter of a semicircle of CuO/Cu₂O decreases from 81Ω to 76Ω due to visible light irradiation, inferring the formation of photoexcited electrons having high energy. The

Fig. 5. (a) XPS data of bare CuO/Cu₂O before (black) and after reaction (red) (b) XPS-Cu_{2p} peak of CuO (black) and Cu₂O/Cu (red) of bare and metal decorated photocathodes (Me/CuO/Cu₂O) before (left bar) and after (right bar) reaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Electrochemical impedance spectroscopy (EIS) measurements in CO_2 -bubbled 0.1 M KHCO_3 at -0.4 V (vs. SCE) under dark (red) and visible light irradiation (blue) for $\text{CuO}/\text{Cu}_2\text{O}$ photocathode (a) before and (b) after reaction, and those of $\text{Au}/\text{CuO}/\text{Cu}_2\text{O}$ photocathode (c) before and (d) after reaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Band structure of $\text{CuO}/\text{Cu}_2\text{O}$ before (left) and after (right) reaction.

resistance value is greatly diminished from 84Ω to 72Ω for the $\text{Au}/\text{CuO}/\text{Cu}_2\text{O}$ electrode (Fig. 6(c)) with a difference of 12Ω even though that of the bare $\text{CuO}/\text{Cu}_2\text{O}$ electrode is only 5Ω . It implies that deposition of transition metals onto $\text{CuO}/\text{Cu}_2\text{O}$ electrode improves the efficient electron transfer from semiconductor to electrolyte by suppressing the recombination of the photo generated carrier, which readily occurred in the case of bare $\text{CuO}/\text{Cu}_2\text{O}$ electrode. In Fig. 6(b) and (d), both of bare $\text{CuO}/\text{Cu}_2\text{O}$ and $\text{Au}/\text{CuO}/\text{Cu}_2\text{O}$ photocathodes show similar circle diameters regardless of light irradiation after the reaction, indicating the disappearance of the photo effects.

Based on the results, the proposed mechanism was described as a band diagram in Fig. 7. In the original structure of $\text{CuO}/\text{Cu}_2\text{O}$, photoexcited electrons are transferred from the conduction band of Cu_2O and CuO to the metal and finally are used in the CO_2 reduction reaction due to the different band positions of CuO and Cu_2O . At the same time, the holes flow along the valence band to the anode.

Therefore, this electrode engineering is expected to generate effective electron-hole separation under photoenergy irradiation and provide a highway for facile electron migration to the active sites for CO_2 reduction. However, after the reaction, $\text{Cu}_2\text{O}/\text{Cu}$ reduced from CuO on the surface destroys the electron-hole pathways, disturbing the efficient transfer of the charge carriers.

4. Conclusions

In this research, various transition metal-(i.e. Ag, Au, Cd, Cu, Pb and Sn)-decorated $\text{CuO}/\text{Cu}_2\text{O}$ electrodes were designed as a promising strategy for efficient photoelectrochemical CO_2 reduction. Due to the different band positions of CuO and Cu_2O , the desirable electron-hole pathway from Cu_2O and CuO to active metals was provided in the layered structure of $\text{CuO}/\text{Cu}_2\text{O}$. Moreover, the metal deposition onto the surface of $\text{CuO}/\text{Cu}_2\text{O}$

were examined for reducing the energy loss in interfacial reactions as well as for controlling the selectivity of the products in terms of faradaic efficiency. Among the transition metals, Pb/CuO/Cu₂O exhibited the prominent CO₂ reduction reaction ability with 40.45% faradaic efficiency at -0.16 V (vs. SHE), which was much higher than the standard redox potential of the products. Furthermore, to investigate the origin of the performance degradation of prepared CuO/Cu₂O electrode during the reaction, XPS and EIS studies were conducted before and after the reaction. As a result, reduction of the outer layer CuO to Cu₂O/Cu was identified, and it caused interrupted flow of photogenerated carriers, inducing the disappearance of photocurrent. Moreover, EIS studies also implied that the metal deposition enhanced the efficient electron transfer to the active site with compressed electron–hole recombination.

Acknowledgments

The NMR experiments for liquid products analysis were performed on Bruker Avance 800 MHz spectrometer at the Korea Basic Science Institute (KBSI). This research is supported by BK21PLUS program (Sustainable Energy Science and Engineering) through the National Research Foundation (NRF), Republic of Korea.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.apcatb.2014.04.021>.

References

- [1] A. Andrea, N.C. Eric, A.R. Mark, L. Stephanie, R.E. Lindsey, E.M. James, B.S. Ellen, Synthesis and characterization of ferrite materials for thermochemical CO₂ splitting using concentrated solar energy, in: Advances in CO₂ Conversion and Utilization, American Chemical Society, New Mexico, 2010, pp. 1–13.
- [2] B. Lu, K. Kawamoto, J. Environ. Chem. Eng. 1 (2013) 300–309.
- [3] M. Azuma, K. Hashimoto, M. Hiramatsu, M. Watanabe, T. Sakata, J. Electrochem. Soc. 137 (1990) 1772–1778.
- [4] M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594 (2006) 1–19.
- [5] E.E. Barton, D.M. Rampulla, A.B. Bocarsly, J. Am. Chem. Soc. 130 (2008) 6342–6344.
- [6] M. Halmann, Nature 275 (1978) 115–116.
- [7] T. Arai, S. Sato, T. Kajino, T. Morikawa, Energy Environ. Sci. 6 (2013) 1274–1282.
- [8] S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 133 (2011) 15240–15243.
- [9] T. Arai, S. Sato, K. Uemura, T. Morikawa, T. Kajino, T. Motohiro, Chem. Commun. 46 (2010) 6944–6946.
- [10] T.J. LaTempa, S. Rani, N.Z. Bao, C.A. Grimes, Nanoscale 4 (2012) 2245–2250.
- [11] B. Kumar, J.M. Smieja, C.P. Kubiak, J. Phys. Chem. C 114 (2010) 14220–14223.
- [12] R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, J. Phys. Chem. B 102 (1998) 974–980.
- [13] H. Yoneyama, K. Sugimura, S. Kuwabata, J. Electroanal. Chem. 249 (1988) 143–153.
- [14] J.H. Jeon, P.M. Mareeswaran, C.H. Choi, S.I. Woo, RSC Adv. 4 (2014) 3016–3019.
- [15] T. Arai, S. Tajima, S. Sato, K. Uemura, T. Morikawa, T. Kajino, Chem. Commun. 47 (2011) 12664–12666.
- [16] J.L. Yuan, C.J. Hao, Sol. Energy Mater. Sol. Cells 108 (2013) 170–174.
- [17] A.B. Bocarsly, Q.D. Gibson, A.J. Morris, R.P. L'Esperance, Z.M. Detweiler, P.S. Lakkaraju, E.L. Zeitzer, T.W. Shaw, ACS Catal. 2 (2012) 1684–1692.
- [18] J.H. Montoya, A.A. Peterson, J.K. Norskov, ChemCatChem 5 (2013) 737–742.
- [19] Z.F. Chen, P. Kang, M.T. Zhang, B.R. Stoner, T.J. Meyer, Energy Environ. Sci. 6 (2013) 813–817.
- [20] C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 7231–7234.
- [21] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jarillo, Energy Environ. Sci. 5 (2012) 7050–7059.
- [22] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, J. Electrochem. Soc. 158 (2011) E45–E49.
- [23] S. Ohya, S. Kaneko, H. Katsumata, T. Suzuki, K. Ohta, Catal. Today 148 (2009) 329–334.
- [24] P. Li, H. Wang, J. Xu, H. Jing, J. Zhang, H. Han, F. Lu, Nanoscale 5 (2013) 11748–11754.
- [25] G. Ghadimkhani, N.R. de Tacconi, W. Chanmanee, C. Janaky, K. Rajeshwar, Chem. Commun. 49 (2013) 1297–1299.
- [26] K. Rajeshwar, N.R. de Tacconi, G. Ghadimkhani, W. Chanmanee, C. Janáky, ChemPhysChem 14 (2013) 2251–2259.
- [27] X. Feng, J.D. Sloppy, T.J. LaTempa, M. Paulose, S. Komarneni, N. Bao, C.A. Grimes, J. Mater. Chem. 21 (2011) 13429–13433.
- [28] O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Lett. 9 (2009) 731–737.
- [29] X. Li, Z. Zhuang, W. Li, H. Pan, Appl. Catal., A: Gen. 429–430 (2012) 31–38.
- [30] J. Gu, A. Wuttig, J.W. Krizan, Y. Hu, Z.M. Detweiler, R.J. Cava, A.B. Bocarsly, J. Phys. Chem. C 117 (2013) 12415–12422.
- [31] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Annu. Rev. Phys. Chem. 63 (2012) 541–569.
- [32] A. Hagfeldt, U. Björkstén, S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 27 (1992) 293–304.
- [33] S. Soedergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, J. Phys. Chem. 98 (1994) 5552–5556.