EXHIBIT X

Case 2:12 pmd 02327 Document 2205-24 Filed 05/14/16 Page 2 of 5 PageID #: 69601

Histology Embedding and Staining Protocol for PROLENE Mesh and Sutures

Last Revised By: S. Benight; 1/31/16

First Written : 1/19/2016 First Written By : M. Garcia

Page 1 of 4

PURPOSE:

The purpose of this document is to describe histology embedding and staining procedures for PROLENE mesh and suture material.

PROCEDURES:

A. General

- 1. Photo documentation
 - a. Take photos of each part of this protocol.
 - b. Clean, uncontaminated hands/gloves will be used for handling the camera at all times.
- 2. Reporting and sample management
 - a. Cut mesh/suture pieces using a clean razorblade
 - b. Enter each sample into Exponent's Evidence Database
 - c. Prepare labeled vials for incubating and storing each sample
 - d. Record sample names/evidence ID numbers
 - e. Record observations throughout the protocol (e.g. sample appearance and changes, solution appearance and changes)
- 3. Safety
 - a. Wear personal eye protection, nitrile gloves, and a lab coat while conducting this experiment
- B. Samples to be prepared for histology embedding and staining
 - 1. Test samples Segments from each of the following:
 - a. 3 PROLENE TVT mesh devices
 - b. 1 PROLENE suture
 - c. 1 PROLENE hernia mesh

Each sample will have been treated with one of the following conditions:

- d. Chemical oxidation (Guelcher protocol)
- e. QUV oxidation
- f. Serum-coated
- g. Control (Pristine)
- C. Paraffin-Embedding Protocol¹
 - 1. Process and embed samples in an automated tissue processor according to the following schedule:

E^xponent[®]

¹ Paraffin-embedded samples are prepared and stained following the protocol submitted by Dr. Iakovlev.

Case 2:12 md-02327 Document 2205-24 Filed 05/14/16 Page 3 of 5 PageID #: 69602

Histology Embedding and Staining Protocol for PROLENE Mesh and Sutures

First Written: 1/19/2016 First Written By: M. Garcia

Page 2 of 4

Last Revised By : S. Benight; 1/31/16

Processing Step	Incubating Solution	Number of Changes	Duration of Each Incubation Step
1	70% Reagent Alcohol	2	1 hour each
2	80% Reagent Alcohol	1	1 hour
3	95% Reagent Alcohol	1	1 hour
4	100% Reagent Alcohol	3	1.5 hours each
5	Xylene substitute (ProPar, Manufacturer)	3	1.5 hours each
6	Leica EM400 Paraffin wax	2	2 hours each

- 2. Embed samples in paraffin blocks using Leica EM400 wax
- 3. Trim the paraffin blocks as necessary and cut at 4-6 µm-thick sections
- 4. Briefly float the paraffin sections in a water bath set to 40-45°C to remove wrinkles and allow them to flatten
- 5. Mount the sections onto adhesive-coated glass slides, then air-dry for 30 minutes and bake in a 45-50°C oven overnight
- D. Staining protocol for paraffin-embedded samples

1. Stain samples using an automated stainer programmed with the following protocol:

Processing Step	Incubating Solution	Duration of Each Incubation Step
1	65°C	10 min
2	Xylene	3 min
3	Xylene	2 min
4	Xylene	2 min
5	100% Alcohol	1 min
6	100% Alcohol	1 min
7	95% Alcohol	1 min
8	Water	1 min
9	Harris Hematoxylin	10 min
10	Wash station	1 min
11	Acid Alcohol	30 sec
12	Water	2 min

Case 2:12 md-02327 Document 2205-24 Filed 05/14/16 Page 4 of 5 PageID #: 69603

Histology Embedding and Staining Protocol for PROLENE Mesh and Sutures

Last Revised By: S. Benight; 1/31/16

1 min

First Written: 1/19/2016 First Written By: M. Garcia

Page 3 of 4

13	Ammonia Water	1 min
14	Water	1 min
15	Eosin	2 min
16	100% Alcohol	1 min
17	100% Alcohol	1 min
18	100% Alcohol	1 min
19	Xylene	1 min

Xylene

E. Resin-embedding protocol

20

1. Process and embed samples in an automated tissue processor according to the following schedule:

Processing Step	Incubating Solution	Number of Changes	Duration of Each Incubation Step
1	70% Reagent Alcohol	2	1 hour each
2	80% Reagent Alcohol	1	1 hour
3	95% Reagent Alcohol	1	1 hour
4	100% Reagent Alcohol	3	1.5 hours each
5	Technovit 7200	3	3 hours each

- 2. Polymerize the resin samples using a visible light polymerization unit
- 3. Trim the blocks as necessary, cut using a diamond saw blade, then ground and polish to approximately 50 µm thickness
- 4. Stain the resin-embedded samples using an automated stainer programmed with the following protocol:

Processing Step	Incubating Solution	Duration of Each Incubation Step
1	Water	1 min
2	Harris Hematoxylin	10 min
3	Water	1 min

Case 2:12 md-02327 Document 2205-24 Filed 05/14/16 Page 5 of 5 PageID #: 69604

Histology Embedding and Staining Protocol for PROLENE Mesh and Sutures

First Written : 1/19/2016 First Written By : M. Garcia

Last Revised By : S. Benight; 1/31/16

Page 4 of 4

4	Acid Alcohol	30 sec
5	Water	1 min
6	Ammonia water	1 min
7	Water	1 min
8	Eosin	1 min
9	Water	30 sec

Changes to this protocol may be made at the time of the experiment(s) at the judgement of Exponent staff overseeing this experiment and will be documented accordingly.

