Using scores to improve language modelling of movie plot summaries

J. Sáez Gómez, R. vo Heijden, F. Stablum

Using scores to improve language modelling of movie plot summaries

Jorge Sáez Gómez Roelof van der Heijden Francesco Stablum

Universiteit van Amsterdam

December 13, 2014

Presentation outline

Using scores to improve language modelling of movie plot summaries

Problem formulation

Using scores to improve language modelling of movie plot summaries

- Is there any correlation between the score of a movie and the contents of its script?
- Can we use the score to better model a movie corpus?

Models

Using scores to improve language modelling of movie plot summaries

 $^{^1}$ Image taken from the paper "Supervised topic models" by David M. Blei and Jon D. McAuliffe (2007) 2

Models

Using scores to improve language modelling of movie plot summaries

J. Sáez Gómez, R. vo Heijden, F. Stablum Supervised Latent Dirichlet Allocation:²

 $^{^2}$ Image taken from the paper "Supervised topic models" by David M. Blei and Jon D. McAuliffe (2007) $\ \ \bigcirc$

Our collapsed Gibbs sampler:

$$p(z_{di} = k \mid Z^{\setminus i}, S, W, \alpha, \beta, \eta, \sigma) \propto \left[\prod_{k'} \frac{\prod_{w} \Gamma(N_{k'w}^{\setminus i} + \mathbb{I}(k' = k \land w = w_{di}) + \beta)}{\Gamma(N_{k'}^{\setminus i} + \mathbb{I}(k' = k) + W\beta)} \right] \times \mathcal{N} \left(s_{d} \mid \eta^{T} \cdot \frac{N_{dk'}^{\setminus i} + \mathbb{I}(k' = k)}{N_{d}}, \sigma \right) \prod_{k'} \Gamma(N_{dk'}^{\setminus i} + \mathbb{I}(k' = k) + \alpha)$$
Movie score term

Better implemented in log-space probabilities to avoid numerical problems.

J. Sáez Gómez, R. v Heijden, F. Stablum Estimating the global score hyperparameter η :

$$\eta_k^{new} \leftarrow (1 - \gamma)\eta_k^{old} + \gamma \frac{\sum_d \frac{N_{dk}}{N_d} \left(s_d - \sum_{k' \neq k} \eta_{k'}^{old} \frac{N_{dk'}}{N_d}\right)}{\sum_d \left(\frac{N_{dk}}{N_d}\right)^2 + \varepsilon}$$

Where:

- $1 \gg \gamma > 0$ in order for the previous series to converge.
- $1 \gg \varepsilon > 0$ is a smoothing constant.

Dataset

Using scores to improve language modelling of movie plot summaries

- We made scripts to crawl http://www.imsdb.com/ for movie scripts and then search http://www.imdb.com/ for movie scores and plot summaries.
- We got a database with \approx 700 movies.
- Movie score distribution (from 0 to 10):

Dataset

Using scores to improve language modelling of movie plot summaries

- Tokenization \rightarrow stemming \rightarrow pruning
- We prune words appearing only on a single movie (avoids overfitting) or within a stop list.
- Total number of tokens $\approx 12.7 \cdot 10^6$
- Number of unique tokens \approx 35000
- $lue{}$ Average number of tokens within a movie summary pprox 75
- \blacksquare Average number of tokens within a movie script ≈ 18000

Results

Using scores to improve language modelling of movie plot summaries

- Initial selection of 30 movies (20 training / 10 testing)
 with balanced scores.
- Using 10 topics and no scores.

Results

Using scores to improve language modelling of movie plot summaries

- Initial selection of 30 movies (20 training / 10 testing) with balanced scores.
- Using 10 topics and no scores.

Discussion

Using scores to improve language modelling of movie plot summaries

Challenges

Using scores to improve language modelling of movie plot summaries

- Improve speed of the collapsed Gibbs sampler.
- Use the movie scripts instead of the movie summaries.
- Use both the movie scripts and summaries.
- Incorporate more information into the model, such as the movie genre.