1 Composita and further comments

Remark 1. Let A, B be sets. Then $A \cap B$ can be expressed using only the operation \subseteq . Notice $A \cap B \subseteq A, B$ and $A \cap B$ is the maximal set with this property:

$$\forall C \text{ such that } C \subseteq A, B \implies C \subseteq A \cap B.$$

Let $H_1, H_2 \leq G$. Then $H_1 \cap H_2 \leq G$ is the *maximal* subgroup contained in both H_1 and H_2 . Hence by the Galois correspondence we have $L^{H_1 \cap H_2}$ is the *minimal* subfield of L containing both L^{H_1} and L^{H_2} .

Definition 1 (Compositum). Let K_1 and K_2 be fields contained in some field L. The <u>compositum</u> of K_1 and K_2 in L (or the <u>composite field</u>), denoted by K_1K_2 , is the smallest subfield of L containing both K_1 and K_2 .

Lemma 1.1. Let $K, E, F \subseteq L$. Then

- 1. $E:K, F:K \text{ finite } \Longrightarrow EF:K \text{ finite;}$
- 2. $E:K, F:K normal \implies E\cap F:K normal;$
- 3. E:K, F:K finite and E:K normal $\implies EF:F$ normal;
- 4. E:K, F:K finite and normal $\implies EF:K, E\cap F:K$ normal;
- 5. $E:K, F:K normal \implies EF:E\cap F normal$.

Definition 2 (Subnormal series). Suppose char K = 0, $\sqrt[\infty]{1} \subset K$, and K - L is a radical Galois extension. Then,

$$K = K_0 - K_1 - K_2 - \dots - K_m = L$$

for $K_j = K_{j-1}(r_j), r_i^{n_j} \in K_{j-1}$. Then

$$\operatorname{Gal}_K L = G = G_0 \geqslant G_1 \geqslant G_2 \geqslant \cdots \geqslant G_m = \{Id.\}.$$

By assumption $\sqrt[\infty]{1} \subset K \implies K_i : K_{i-1}$ is a normal extension, so $G_i \subseteq G_{i-1}$ and we have

$$\operatorname{Gal}_K L = G = G_0 \rhd G_1 \rhd G_2 \rhd \cdots \rhd G_m = \{Id.\}.$$

This is called a subnormal series.

Definition 3 (Soluble group). A group G is soluble if there exists a finite series of subgroups

$$\{Id.\} = G = G_0 \leqslant G_1 \leqslant G_2 \leqslant \cdots \leqslant G_m = G$$

such that

- 1. $G_i \triangleleft G_{i-1} \quad \forall 1 \leq j \leq n$ and
- 2. G_{i-1}/G_i is cyclic $\forall 1 \leq j \leq n$.