1-train test split

October 20, 2024

1 Train Test Split

The train-test split is a critical concept in machine learning for evaluating the performance of a model. It involves dividing the dataset into two distinct parts: the training set and the test set. This method ensures that we can assess how well the model generalizes to unseen data, which is the key to making accurate predictions in real-world applications.

Purpose of Train-Test Split: The main goal is to evaluate the model's ability to generalize to new, unseen data by testing it on a separate test set that the model has never encountered during training. If a model performs well on both the training data and the test data, it's likely to perform well on new, real-world data.

Key Terminology:

- 1. Training Set: The subset of the dataset used to train the model. The model learns patterns, relationships, and trends from this data.
- 2. Test Set: The subset used to evaluate the model after training. It provides an unbiased estimate of the model's performance on unseen data.

Why Train-Test Split is Important:

- Avoid Overfitting: Without a train-test split, the model might memorize the training data (overfitting) rather than learning generalizable patterns. This would result in poor performance on new data.
- Unbiased Evaluation: It provides an unbiased measure of how well the model generalizes beyond the training data.
- Generalization Performance: It allows us to assess the model's generalization error, i.e., how it will perform on future data.

Train-Test Split Ratio:

- 80:20 Split: Commonly used when the dataset is sufficiently large. This balance ensures that there is enough data for the model to learn (80%) while still keeping a good portion (20%) for evaluating the model's performance.
- 70:30 Split: Used when you want more data for testing, but still have enough data for training. This might be more appropriate when the dataset is relatively smaller, as having more test data can give a clearer picture of generalization.

• 90:10 Split: Used when the dataset is very large. A small test set is enough to provide a good estimate of model performance since the model has a huge amount of data to train on.

```
[23]: import pandas as pd
      from sklearn.model_selection import train_test_split
[24]: data = pd.read csv('500hits.csv', encoding='latin-1')
      data.head()
[24]:
                PLAYER
                        YRS
                                 G
                                       AB
                                                     Η
                                                          2B
                                                               3B
                                                                    HR
                                                                          RBI
                                               R
                                                                                 BB
              Ty Cobb
                             3035
                                    11434
                                                                          726
      0
                         24
                                            2246
                                                  4189
                                                         724
                                                              295
                                                                   117
                                                                               1249
          Stan Musial
      1
                         22
                             3026
                                    10972
                                           1949
                                                  3630
                                                         725
                                                              177
                                                                   475
                                                                         1951
                                                                               1599
         Tris Speaker
                                    10195
      2
                         22
                             2789
                                           1882
                                                  3514
                                                         792
                                                              222
                                                                   117
                                                                          724
                                                                               1381
          Derek Jeter
                                                                   260
      3
                         20
                             2747
                                    11195
                                           1923
                                                  3465
                                                         544
                                                               66
                                                                         1311
                                                                               1082
        Honus Wagner
                         21
                             2792
                                    10430
                                           1736
                                                  3430
                                                        640
                                                              252
                                                                   101
                                                                            0
                                                                                963
           SO
                 SB
                      CS
                              BA
                                  HOF
      0
          357
                892
                     178
                          0.366
                                    1
      1
          696
                 78
                      31
                          0.331
      2
          220
                432
                     129
                          0.345
                                    1
         1840
                358
      3
                      97
                          0.310
                                    1
      4
          327
                722
                      15 0.329
                                    1
[25]: X = data.drop(columns=['PLAYER', 'HOF'])
      y = data['HOF']
      X.shape
      y.shape
[25]: (465,)
[26]: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11,__
       →test size=0.2)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
      (372, 14)
      (93, 14)
      (372,)
      (93,)
[27]: print(X_train.describe().round(3))
                 YRS
                              G
                                         AB
                                                    R
                                                                        2B
                                                                                  ЗВ
                                                               Η
             372.000
                        372.000
                                   372.000
                                              372.000
                                                         372.000
                                                                   372.000
                                                                            372.000
     count
     mean
              17.011
                      2046.522
                                  7526.078
                                             1154.126
                                                        2177.995
                                                                   382.505
                                                                             78.094
               2.662
                        351.233
                                  1302.406
                                              291.308
                                                         426.615
                                                                    97.173
                                                                             48.798
     std
```

min	11.000	1331.000	4981.000	651.000	1660.000	177.000	3.000
25%	15.000	1797.500	6507.500	936.000	1838.000	312.000	41.000
50%	17.000	1992.000	7237.000	1099.000	2080.500	367.000	67.000
75%	19.000	2245.500	8198.250	1305.000	2383.750	436.250	108.000
max	26.000	3308.000	12364.000	2295.000	4189.000	792.000	309.000
	HR	RBI	BB	SO	SB	CS	BA
count	372.000	372.000	372.000	372.000	372.000	372.000	372.000
mean	202.642	901.073	780.105	850.323	196.927	58.987	0.289
std	141.726	484.370	327.453	472.918	185.586	49.322	0.021
min	9.000	0.000	239.000	0.000	7.000	0.000	0.246
25%	79.750	645.000	536.500	448.000	64.500	23.000	0.274
50%	185.500	977.500	719.000	844.000	141.000	52.000	0.288
75%	293.250	1218.500	961.250	1234.250	285.500	84.000	0.300
max	755.000	2297.000	2190.000	1936.000	1406.000	335.000	0.366

[28]: print(X_test.describe().round(3))

	YRS	G	AB	R	H	2B	3B	\
count	93.000	93.000	93.000	93.000	93.000	93.000	93.000	
mean	17.204	2057.409	7452.968	1135.065	2139.258	374.742	80.398	
std	3.154	368.580	1265.371	283.877	415.165	93.929	51.792	
min	11.000	1399.000	5472.000	601.000	1660.000	206.000	14.000	
25%	15.000	1820.000	6622.000	935.000	1818.000	310.000	45.000	
50%	17.000	1997.000	7359.000	1108.000	2054.000	361.000	68.000	
75%	19.000	2282.000	8096.000	1283.000	2256.000	432.000	99.000	
max	25.000	2850.000	10876.000	1859.000	3430.000	668.000	252.000	
	HR	RBI	ВВ	SO	SB	CS	BA	
count	HR 93.000	RBI 93.000	BB 93.000	SO 93.000	SB 93.000	CS 93.000	BA 93.000	
count mean								
	93.000	93.000	93.000	93.000	93.000	93.000	93.000	
mean	93.000 194.677	93.000 867.011	93.000 797.387	93.000 836.065	93.000 191.817	93.000 54.473	93.000 0.287	
mean std	93.000 194.677 151.600	93.000 867.011 495.127	93.000 797.387 328.755	93.000 836.065 552.309	93.000 191.817 166.926	93.000 54.473 42.508	93.000 0.287 0.022	
mean std min	93.000 194.677 151.600 15.000	93.000 867.011 495.127 0.000	93.000 797.387 328.755 266.000	93.000 836.065 552.309 15.000	93.000 191.817 166.926 8.000	93.000 54.473 42.508 0.000	93.000 0.287 0.022 0.248	
mean std min 25%	93.000 194.677 151.600 15.000 78.000	93.000 867.011 495.127 0.000 618.000	93.000 797.387 328.755 266.000 527.000	93.000 836.065 552.309 15.000 359.000	93.000 191.817 166.926 8.000 61.000	93.000 54.473 42.508 0.000 15.000	93.000 0.287 0.022 0.248 0.272	