1) Simplify the Boolean function X'Y + XY' + XY using K-map.

2) Simplify the Boolean function A'C + A'B + AB'C + BC and drow the logic diagram of simplified function.

Ans: F = A'C + A'B + AB'C + BC F = A'(O+1)C + A'B(O+1) + AB'C + (O+1)BC F = A'(B'+B)C + A'B(C'+C) + AB'C + (A'+A)BC F = A'B'C + A'BC + A'BC' + A'BC + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC F = A'B'C + A'BC + A'BC' + AB'C + ABC' F = A'B'C + A'BC + A'BC' + AB'C + ABC' F = A'B'C + A'BC + A'BC' + AB'C + ABC' F = A'B'C + A'BC + A'BC' + AB'C + ABC' F = A'B'C + A'BC + A'BC' + AB'C + ABC' F = A'B'C + A'BC + A'BC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + A'BC + ABC' + ABC' + ABC' F = A'B'C + ABC' + ABC' + ABC' + ABC' F = A'B'C + ABC' + ABC' + ABC' + ABC' F = A'B'C + ABC' + ABC' + ABC' + ABC' + ABC' F = A'B'C + ABC' + ABC'

: A'(+A'B+AB'(+B(= A'B+C

$$\begin{array}{lll}
O(21.21)_{8} = (2.)_{10} \\
Aw: (21.21)_{9} \\
&= 2 \times 8^{1} + 1 \times 8^{2} + 2 \times 8^{1} + 1 \times 8^{-1} \\
&= 16 + 1 + 0.25 + 0.015625 \\
&= 17. 265625 \\
O(175.164)_{10} = (2.)_{8} \\
Ans: (175 169)_{10} \\
&= 2 \times 8^{1} + 1 \times 8^{2} + 2 \times 8^{1} + 1 \times 8^{-1} \\
&= 16 + 1 + 0.25 + 0.015625 \\
&= 17. 265625 \\
O(175.164)_{10} = (2.)_{8} \\
O(169 \times 2 = 0.338) \\
O(169 \times 2 = 0.338) \\
O(175.164)_{10} = (2.)_{10} \\
O(169 \times 2 = 0.338) \\
O(175.164)_{10} = (2.)_{10} \\
O(10101111) \\
O(10101111$$

Scanned by CamScanner

8 (E F.B1)₁₆ = (?)₁₀

Ano: (E F.B1)₁₆

=
$$14 \times 16^{4} + 15 \times 16^{6} + 11 \times 16^{-4} + 116^{-2}$$

= $294 + 15 + 0.6875 + 0.00390625$

= 239.69140625

: (EF.B1)₁₆ = (?)₁₆

Ano: (76.234)₁₀ = (?)₁₆

Ano: (76.234)₁₀

- 16 | 76 | (76.234)₁₀

- 0.234 × 16 = 3.744 | 3 |

0.744 × 16 = 11.909 | B |

0.904 × 16 = 14.864 | E |

38F

: (76.234)₁₀ = (9623 BE)₁₆

(10 (10 110.010)₁ = (?)₂

Ano: (10 110.010)₂ = (26.2)₈

(1)
$$(10110.01)_1 = (2.)_{16}$$

And: $(10110.01)_1$

= $0001 \ 0110 \cdot 0100$

4

: $(10110.01)_2 = (16.4)_{16}$

(1) $(256.73)_{16} = (2.)_2$

And: $2.5 \ C.F.$
 $(256.73)_{16} = (0010010100.10100.10100)_2$

(256.73)₁₆ = $(0010010100.10100.10100)_2$

(256.73)₁₆ = $(100101000.10100.10100)_2$

(256.13) $g = (2.)_2$

And: $2.5 \ 6.13$
 $1.13 \ 1.100001011$

: $(256.13)_8 = (10101100.001011)_2$

De Write the Boolean equations for the function given in table and reduce the same using K- map.

inpu	output		
A	B	C	F
0	0	0	0
0	0		11
0	1	0	0
0		1	111
	0	0	11
	0		0
	1	0	
	1		0

Ans: F = A'B'C + A'BC + A'B'C' + ABC'

F = m, + m3 + m4 + m6

AB	A'B'	AB	AB	AB'
c'	0 0	0 2	1) 4
C] 3	0,	0,

Group I: AC'

Group II: A'C

(18) Reduce the expression using u-map and draw its logic diagram.

Ano:

Kmop!

Group I: B'D'

Group II: A CD'

: , F = B'O' + ACD'

Logic curacit:

20 Connert the ortal number (127,35)8 to heradecimal (), Ans: (127.35) . 3 5) 011 101), = (001 010 111 = (1010111.011101) = (0101, 0111, 0100) $=(5,7,7,4)_{16}$ · (127.35) 8 = (57.74),6