2. Consider the following AR(2) model:
Yt = 0.9 Yt-1 - 0.1 Yt-2 + et
Is this model Stationary? Show all you work.
-> AR (p) process is stationary if and only if each of the proots
of the AR chamiteristic equotion is >1
1-\$, x - \$, x -0
$X = \frac{\phi_1 + \sqrt{g_1^2 + 4g_2}}{-2 \phi_2}, x = \frac{\phi_1 - \sqrt{g_1^2 + 4g_2}}{-2 \phi_2}$
So, AR(2) is stationary iff
Ø,+Ø, <1 d Ø,-6,<1 d ø, <1.
$\phi_{i} = 0.9$ $\phi_{\pm} = -0.1$
Ø, +Ø ₂ = 0.8 < 1
6 61= -1 < 1
16,1= 01<1
So Stationary