Logistic Regression

Joe

Introduction

Session Objective

Please clone:

https://github.com/drJAGartner/log_reg_demo

- Build a logistic regression model that describes the probability that an iris belongs to a particular category based on measurable parameters.
- 2. With the same model, create a confusion matrix to show the performance of the model.

The W's of Logistic Regression

- What a method of producing continuous predictions
 (i.e. regression) when the dependent variable
 is discrete
- Why the output of logistic regression is bound
 between 0 and 1, and can be directly
 interpreted as an outcome probability
- When data has classes that are linearly separable (i.e.
 can be split by a line, bottom)

Although logistic regression is a continuous model, it is used as a classification model

 Side note, the logistic function is also called the sigmoid, and is often used in neural networks as an activation function

Classification Models

What is Classification

- Up to this point, all of the models we have produced numeric output, i.e. regression models
- Classification models are built for instances where the output have discrete meaning
 - e.g. image classifier: cat or dog
- Logistic Regression becomes a classifier by applying a decision threshold

Measures of Effectiveness (1)

			True condition		
		Total population	Condition positive	Condition negative	
	Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	
		Predicted condition negative	False negative (Type II error)	True negative	

Confusion matrix: https://en.wikipedia.org/wiki/Confusion_matrix

Measures of Effectiveness (2)

			True condition		
		Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$
	Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive
		Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$
			True positive rate (TPR) Recall. Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$		

False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$

Another Visualization

Measures of Effectiveness (3)

True condition		
Condition positive	Condition negative	
True positive	False positive (Type I error)	
False negative (Type II error)	True negative	
True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	
$\frac{\text{False negative rate}}{\Sigma \text{ False negative}} \text{ (FNR), Miss rate} = \\ \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR) Specificity $(SPC) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	

Measures of Effectiveness (4)

Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$

$$F_{1} \text{ score} = \frac{2}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

Back to Logistic Regression

Start from the assumption we want a function to describe probabilities [0, 1] based on a linear model $[-\infty, \infty]$. The function that has this property is the logit

$$g(F(x)) = \ln igg(rac{F(x)}{1-F(x)}igg) = eta_0 + eta_1 x,$$

Start from the assumption we want a function to describe probabilities [0, 1] based on a linear model $[-\infty, \infty]$. The function that has this property is the logit

$$g(F(x)) = \ln\left(rac{F(x)}{1-F(x)}
ight) = eta_0 + eta_1 x,$$

odds

Start from the assumption we want a function to describe probabilities [0, 1] based on a linear model $[-\infty, \infty]$. The function that has this property is the logit

$$g(F(x)) = \ln igg(rac{F(x)}{1-F(x)}igg) = eta_0 + eta_1 x,$$

Logit

Start from the assumption we want a function to describe probabilities [0, 1] based on a linear model $[-\infty, \infty]$. The function that has this property is the logit

$$g(F(x)) = \ln igg(rac{F(x)}{1-F(x)}igg) = eta_0 + eta_1 x,$$

Here, F(x) is a probability (i.e. bound from 0-1). Let's whiteboard this for a clearer picture.

Enough Slides!

We discussed how Logitic Regression can be used in theory, let's put it to practice by walking through some example cases.

Let's hop into a notebook and start looking!