The Limit of a Function

Screen clipping taken: 29/08/2023 1:09 pm

· Limits are the same; you can get a number that is closer and closer but never that number because it does not exist.

Screen clipping taken: 29/08/2023 1:09 pm

Screen clipping taken: 29/08/2023 1:10 pm

Screen clipping taken: 29/08/2023 1:11 pm

Numerical Investigation:

Let's investigate the behavior of the function f defined by $f(x) = x^2 - x + 2$ for values of x near 2. The following table gives values of f(x) for values of x close to 2 but not equal to 2.

X	f(x)	X	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

1 Definition Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

EXAMPLE 1 Guess the value of $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

x < 1	f(x)
0.5	0.666667
0.9	0.526316
0.99	0.502513
0.999	0.500250
0.9999	0.500025

x > 1	f(x)
1.5	0.400000
1.1	0.476190
1.01	0.497512
1.001	0.499750
1.0001	0.499975

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5$$

$$g(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$

EXAMPLE 3 Guess the value of $\lim_{x\to 0} \frac{\sin x}{x}$.

X	$\frac{\sin x}{x}$
±1.0	0.84147098
±0.5	0.95885108
±0.4	0.97354586
±0.3	0.98506736
±0.2	0.99334665
±0.1	0.99833417
±0.05	0.99958339
±0.01	0.99998333
±0.005	0.99999583
±0.001	0.99999983

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L$$

EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values (if they exist) of the following:

- (a) $\lim_{x\to 2^-} g(x)$
- (b) $\lim_{x\to 2^+} g(x)$
- (c) $\lim_{x\to 2} g(x)$

- (d) $\lim_{x\to 5^-} g(x)$
- (e) $\lim_{x \to 5^+} g(x)$
- (f) $\lim_{x\to 5} g(x)$

Infinite Limits

EXAMPLE 8 Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists.

X	$\frac{1}{x^2}$
±1	1
±0.5	4
±0.2	25
±0.1	100
±0.05	400
±0.01	10,000
±0.001	1,000,000

$$\lim_{x\to 0}\frac{1}{x^2}=\infty$$

(a)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(b)
$$\lim_{x \to a^+} f(x) = \infty$$

(c)
$$\lim_{x \to a^{-}} f(x) = -\infty$$

(d)
$$\lim_{x \to a^+} f(x) = -\infty$$

Definition The line x = a is called a **vertical asymptote** of the curve y = f(x)if at least one of the following statements is true:

$$\lim_{x\to a} f(x) = \infty$$

$$\lim_{x \to 2^{-}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = \infty \qquad \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

Laws of Limit & Substitution

Limit Laws Suppose that *c* is a constant and the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

EXAMPLE 1 Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the following limits, if they exist.

(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$
 (b) $\lim_{x \to 1} [f(x)g(x)]$ (c) $\lim_{x \to 2} \frac{f(x)}{g(x)}$

(b)
$$\lim_{x \to 1} [f(x)g(x)]$$

(c)
$$\lim_{x \to 2} \frac{f(x)}{g(x)}$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

where *n* is a positive integer

7.
$$\lim_{r \to a} c = c$$

8.
$$\lim_{x \to a} x = a$$

9.
$$\lim_{x\to a} x^n = a^n$$
 where *n* is a positive integer

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 where *n* is a positive integer (If *n* is even, we assume that $a > 0$.)

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 where *n* is a positive integer

If *n* is even, we assume that $\lim_{x\to a} f(x) > 0$.

EXAMPLE 2 Evaluate the following limits and justify each step.

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

(b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

SOLUTION

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} 4$$
$$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4$$
$$= 2(5^2) - 3(5) + 4$$
$$= 39$$

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$$

$$= \frac{\lim_{x \to -2} x^3 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3 \lim_{x \to -2} x}$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

$$= -\frac{1}{11}$$

Algebraic Simplification

EXAMPLE 3 Find $\lim_{x \to 1} \frac{x^2 - 1}{x}$.

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1)$$
$$= 1 + 1 = 2$$

EXAMPLE 4 Find $\lim_{x\to 1} g(x)$ where

$$g(x) = \begin{cases} x+1 & \text{if } x \neq 1 \\ \pi & \text{if } x = 1 \end{cases}$$

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} (x+1) = 2$$

EXAMPLE 7 Show that $\lim_{x\to 0} |x| = 0$.

SOLUTION Recall that

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

V EXAMPLE 8 Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

Theoretical Way

2 Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the **limit of** f(x) **as** x **approaches** a **is** L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \varepsilon$

EXAMPLE 2 Prove that $\lim_{x \to 3} (4x - 5) = 7$.

SOLUTION

1. Preliminary analysis of the problem (guessing a value for δ). Let ε be a given positive number. We want to find a number δ such that

if
$$0 < |x - 3| < \delta$$
 then $|(4x - 5) - 7| < \varepsilon$

But |(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3|. Therefore we want δ such that

if
$$0 < |x-3| < \delta$$
 then $4|x-3| < \varepsilon$

that is, if
$$0 < |x-3| < \delta$$
 then $|x-3| < \frac{\varepsilon}{4}$

This suggests that we should choose $\delta = \varepsilon/4$.

