This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

11. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-6}{6} + \frac{4}{8}x \ge \frac{10}{7}x + \frac{4}{3}$$

The solution is $(-\infty, -2.513]$

A. $(-\infty, a]$, where $a \in [-1, 9]$

 $(-\infty, 2.513]$, which corresponds to negating the endpoint of the solution.

- B. $(-\infty, a]$, where $a \in [-7, 2]$
 - * $(-\infty, -2.513]$, which is the correct option.
- C. $[a, \infty)$, where $a \in [-5, -2]$

 $[-2.513, \infty)$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

- D. $[a, \infty)$, where $a \in [1, 5]$
 - $[2.513, \infty)$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.
- E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comments: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

12. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 4 units from the number 5.

The solution is $(-\infty, 1) \cup (9, \infty)$

A. (1,9)

This describes the values less than 4 from 5

B. [1, 9]

This describes the values no more than 4 from 5

C. $(-\infty, 1] \cup [9, \infty)$

This describes the values no less than 4 from 5

D. $(-\infty, 1) \cup (9, \infty)$

This describes the values more than 4 from 5

E. None of the above

You likely thought the values in the interval were not correct.

General Comments: When thinking about this language, it helps to draw a number line and try points.

13. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-6x + 9 > 7x - 10$$

The solution is $(-\infty, 1.462)$

A. (a, ∞) , where $a \in [0, 5]$

 $(1.462, \infty)$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

- B. $(-\infty, a)$, where $a \in [0.5, 1.7]$
 - * $(-\infty, 1.462)$, which is the correct option.
- C. (a, ∞) , where $a \in [-3, 1]$

 $(-1.462, \infty)$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

- D. $(-\infty, a)$, where $a \in [-2.5, -1.1]$
 - $(-\infty, -1.462)$, which corresponds to negating the endpoint of the solution.
- E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comments: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

14. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-4 + 5x > 8x$$
 or $9 + 8x < 11x$

The solution is $(-\infty, -1.333)$ or $(3.0, \infty)$

A. $(-\infty, a] \cup [b, \infty)$, where $a \in [-4.1, -2]$ and $b \in [0.6, 2.5]$

Corresponds to including the endpoints AND negating.

- B. $(-\infty, a) \cup (b, \infty)$, where $a \in [-2.9, 0]$ and $b \in [1.6, 4.2]$
 - * Correct option.
- C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-4.1, -1.7]$ and $b \in [0.4, 1.7]$

Corresponds to inverting the inequality and negating the solution.

D. $(-\infty, a] \cup [b, \infty)$, where $a \in [-2.1, -0.4]$ and $b \in [1.8, 6.6]$

Corresponds to including the endpoints (when they should be excluded).

E. $(-\infty, \infty)$

Corresponds to the variable canceling, which does not happen in this instance.

Summer C 2020

General Comments: When multiplying or dividing by a negative, flip the sign.

15. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$7 - 5x < \frac{23x - 9}{7} \le 8 + 3x$$

The solution is None of the above.

- A. (a, b], where $a \in [-2.9, -0.4]$ and $b \in [-38, -31]$
 - (-1.00, -32.50], which is the correct interval but negatives of the actual endpoints.
- B. $(-\infty, a] \cup (b, \infty)$, where $a \in [-1.9, -0.9]$ and $b \in [-35, -28]$
 - $(-\infty, -1.00] \cup (-32.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality AND flipping the inequality AND getting negatives of the actual endpoints.
- C. [a, b), where $a \in [-2.7, -0.4]$ and $b \in [-38, -32]$
 - [-1.00, -32.50), which corresponds to flipping the inequality and getting negatives of the actual endpoints.
- D. $(-\infty, a) \cup [b, \infty)$, where $a \in [-3.2, -0.5]$ and $b \in [-34, -31]$
 - $(-\infty, -1.00) \cup [-32.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality and getting negatives of the actual endpoints.
- E. None of the above.
 - * This is correct as the answer should be (1.00, 32.50].

To solve, you will need to break up the compound inequality into two inequalities. Be sure to keep track of the inequality! It may be best to draw a number line and graph your solution.