EXEMPLU

SARCINA PENTRU EVALUARE PERIODICĂ

Disciplina: Arhitectura și organizarea calculatorului

1. Construiți schema electrică și completați tabelul stărilor ale dispozitivului care îndeplinește următoarea funcție (Построить электрическую схему и заполнить таблицу состояний устройства, которое выполняет следующую функцию)

$$f_1(a,b,c,d) = \bar{a}bcd + (ab + \bar{c}) + \bar{a}c\bar{d}$$

2. Completați tabelul stărilor și minimizați funcția logică prin metoda Karnough. Construiți schema electrică a dispozitivului conform funcției logice minimizate (Заполнить таблицу состояний и минимизировать логическую функцию методом Карно. Построить электрическую схему устройства)

$$f(a,b,c,d) = \sum (1,2,3,4,5,6,8,9,14,15)$$

3. Transformați funcția logică din FCND în FCNC și prezentați funcția obținută prin metoda numerică (Преобразовать логическую функцию из СДНФ в СКНФ и представить полученную функцию в цифровом виде)

$$f(a,b,c,d) = abcd + abc\bar{d} + a\bar{b}c\bar{d} + a\bar{b}\bar{c}\bar{d} + \bar{a}bc\bar{d} + \bar{a}bc\bar{d}$$

4. Scrieți FCND ale funcțiilor care corespund următorului tabel de (Напишите СДНФ функций, которые соответствуют следующей таблице истинности)

Nr.	Argumenți				Funcția	
d/o						
	a	b	c	d	$F_1(a,b,c,d)$	$F_2(a,b,c,d)$
0	0	0	0	0	1	0
1	0	0	0	1	1	1
2	0	0	1	0	0	0
3	0	0	1	1	0	1
4	0	1	0	0	0	0
5	0	1	0	1	0	1
6	0	1	1	0	1	1
7	0	1	1	1	0	1
8	1	0	0	0	0	1
9	1	0	0	1	1	0
10	1	0	1	0	0	0
11	1	0	1	1	1	1
12	1	1	0	0	1	0
13	1	1	0	1	0	0
14	1	1	1	0	1	1
15	1	1	1	1	1	0

- 5. Construiți schema electrică din bistabilii D a unui divizor de frecvență care are K_{div} =4 și prezentați diagramele temporale (Построить из триггеров D электрическую схему делителя частоты с $K_{\text{дел}}$ =4 и представить временные диаграммы)
- 6. Scriţi funcţia logică executată de următoarea schemă electrică. (Напишите логическую функции, которая выполняется следующей электрической схемой.).

Construiți schema electrică a registrului de deplasare directă de ordinul 5 din bistabili JK și prezentați diagramele temporale pentru cazul înscrieri codului 10111 (Построить электрическую схему регистра прямого смещения 5 порядка из JK триггеров и представить временные диаграммы при записи кода 10111).