[Lec 07]

Vanishing Gradient

- \rightarrow Think of 'Chain Rule' (Multiplied by smaller values \rightarrow .. \rightarrow ...)
- → gets exponentially small as it goes to the shallower layers
- Pascanu et al
- \rightarrow Largest eigenvalue of W_h is < 1 \rightarrow gradient will shrink exponentially
- → Largest eigenvalue > 1 → exploding gradients
- cf. bound 1 (sigmoid nonlinearity)

• Why it is a problem

- 1. Gradient signal from faraway is lost because it is much smaller than the gradient signal from close-by
 - → Updated with respect to near effects
- 2. Gradient can be viewed as a measure of the effect of the past on the future
 - a. no dependency between step t and t+n
 - b. wrong parameters to capture the true dependency between t and t+n
- RNN better at learning
- cf. Syntactic recency (The writer of the books is) vs Sequential recency (The writer of the books are)

Exploding Gradient

- Why it is a problem
- → SGD update becomes too big (lead to bad updates result in Inf and NaN)
- Solution) Gradient Clipping

If the norm of the gradient is greater than some threshold

 \rightarrow scale it down between applying SGD update

- Skip Connections (ResNet)
- \rightarrow Vanishing/Exploding Gradient is not just the problem for RNNs
- \rightarrow Can be seen in CNNs and FF Networks (Deep Layers)

Sol) Residual Connections (ResNet) → Identity Connection preserves information v

LSTM (Long Term Short Memory)

- \rightarrow RNN with separate memory (motivating idea)
- → Solution for vanishing gradients problem
- hidden state h_t and cell state c_t
- LSTM can erase, write and read information from the cell
- → selection of which information is erased/written/read is controlled by three corresponding gates
- open. closed. in-between
- dynamic gates \rightarrow value computed by current context

Cell State

- → LSTM solves Gradient Descent by its architecture to preserve information over many timestamps
- → doesn't guarantee entirely

GRU (Gated Recurrent Units)

- \rightarrow more simple than RNNs
- → No cell state!

LSTM vs GRU

- → Most Widely Used
- → GRU: Quicker to compute -fewer parameters
- → No conclusive evidence of outperformance between two.
- LSTM → Good Default Choice (Long Dependencies & More training Data)
- · Change to GRU if need more efficiency

Fancy RNN

- Bidirectional RNNs
- Multi-Layer RNNs