

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

SPECIFICATION

5 TITLE OF THE INVENTION

NONVOLATILE SEMICONDUCTOR MEMORY

This application is a continuation of application
10 Serial No. 10/351,524, filed January 27, 2003, which is a
continuation of U.S. Application Serial No. 09/984,816, filed
October 31, 2001, now U.S. Patent 6,538,926; which, in turn
was a continuation of U.S. Application Ser. No. 09/880,934,
filed June 15, 2001, now U.S. Patent 6,370,059; which, in
15 turn, was a continuation of application Serial No.
09/630,426, filed August 1, 2000, now U.S. Patent 6,272,042;
which, in turn, was a continuation of application Serial No.
09/288,313, filed April 8, 1999, now U.S. Patent 6,101,123;
which, in turn, was a continuation of Serial No. 09/124,794,
20 filed July 30, 1998, now U.S. Patent 5,910,913; which, in
turn, was a divisional of application Serial No. 08/739,156,
filed October 30, 1996, now U.S. Patent 5,828,600; which, in
turn, was a divisional of application Serial No. 08/164,780,
filed December 10, 1993, now U.S. Patent No. 5,592,415; and
25 which, in turn, was a continuation-in-part of application
Serial No. 08/085,156, filed July 2, 1993, now abandoned; and
the entire disclosures of all of which are incorporated
herein by reference.

30 BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

This invention relates to a nonvolatile
semiconductor memory having an electric
programmable/erasable function.

35 2. DESCRIPTION OF THE RELATED ART

A memory referred to as an "electric one-time
erasable NOR type flash memory" has been developed in the
past as a nonvolatile semiconductor memory as described,
for example, in JP-A-62-27687 (laid open on December 1,
40 1987) and JP-A-3-219496 (laid open on September 26, 1991).

1 Fig. 7 of the accompanying drawings
2 illustrates a schematic sectional structure of the NOR
3 type flash memory cell according to the prior art and
4 its operation. The NOR type flash memory cell according
5 to the prior art comprises a floating gate type field
6 effect transistor structure wherein a gate oxide
7 film 2, a floating gate 3, an intermediate insulating
8 film 4 and a control gate 5 are formed on a p type
9 silicon substrate 1, an n type impurity layer 22 is
10 formed on a source terminal side and an n type
11 impurity layer 23 and a p type impurity layer 24 are
12 formed on a drain terminal side.

13 The NOR type flash memory according to the
14 prior art is formed by arranging the memory cells
15 described above in matrix, connecting the drain
16 terminal of each memory cell to a data line, connect-
17 ing each source terminal to a common source line, and
18 connecting each control gate to a word line.

19 Memory cell data is erased by applying a
20 negative voltage to the control gate 5 and a positive
21 voltage to the source impurity layer 22. At this time,
22 a high electric field is applied to the gate oxide
23 film 2 and a tunnelling mechanism of electrons takes

1 place, so that electrons accumulated in the floating
gate 3 are pulled out to the source impurity layer 22.
A threshold voltage of the memory cell decreases due
to this erasing operation.

5 Programming of data into the memory cell
is effected by applying a positive voltage to the
drain impurity layer 23 and to the control gate 5. At
this time, hot electrons generated in the vicinity of
the surface of a drain junction are injected into the
10 floating gate 3. A threshold voltage of the memory
cell increases due to this programming.

The NOR type flash memory according to the
prior art described above have the function of
collectively erasing at one time a chip as a whole or
15 a certain groups of memory cells, and one transistor
can constitute one memory cell. Further, when a
circuit scheme wherein a source wiring is used in
common for all bits, is employed, the memory chip area
can be reduced.

20 In comparison with the NOR type flash memory
cell according to the prior art described above, a
nonvolatile semiconductor memory is known which utilizes a
Fowler-Nordheim (F - N) tunneling mechanism.

1 An ACEE (Advanced Contactless EEPROM) described
in IEEE Journal of Solid-State Circuits, Vol. 4, No. 4,
Apr. 1991, pp. 484 - 491, is one of the examples of the
non-volatile semiconductor memory described above.

5 Transistors used for this ACEE are those transistors
which have a thin oxide film region for the F-N tunneling
at only an overlapped portion between the floating gate
and the source, and the thickness of the oxide film of
the transistor region is set to be greater than the
10 thickness of the oxide film in the tunnel region. The
memory cells are arranged in matrix, the drain terminal
of each memory cell is connected to a data line
comprising an impurity layer, and the source terminal is
connected to a source line comprising mutually different
15 impurity layers. Further, the impurity layer data line
and the impurity layer source lines connected to a
plurality of memory cells are connected to a data line
and to a common source line through a MOS transistor
(select transistor), respectively.

20 The device operations are as follows. In the
erasing operation, a negative voltage (-11 V) is applied
to a selected control gate to turn ON a source side
select transistor and a positive voltage (5 V) is applied
to the common source terminal, so that electrons are
25 released from the floating gate through the tunnel region

1 on the source side of the selected memory cell. In the
programming operation, the drain side select transistor
is turned ON with the source side select transistor being
kept OFF, a positive voltage (18 V) is applied to the
5 selected control gate, a positive voltage (7 V) is
applied to the non-selected control gate to such an
extent that programming is not made, 0 V is applied to
the data line so as to set the voltage on the source side
to 0 V through the non-selected memory cells which
10 commonly share the data line but to which programming is
not made, and the electrons are thus injected into the
floating gate from the source side tunnel region of the
selected memory cell by utilizing the F-N tunneling
mechanism. Here, a 7 V voltage is applied to the data
15 line for those memory cells which share in common the
control gate voltage with the memory cell to be subjected
to programming but into which programming is not made,
and the electric field applied to the source side tunnel
region is relaxed.

20 Since the ACEE utilizes the F-N tunneling
mechanism for the programming/erasing operations, a
consumed current per bit is small and hence, a voltage
booster having small current drivability can be used
inside the chip. Accordingly, a single 5 V supply can be
25 used.

A nonvolatile semiconductor memory utilizing
the F-N tunneling mechanism is also described in JP-A-4-
14871 (laid open on January 20, 1992). This nonvolatile

1 semiconductor memory uses a floating gate type field
effect transistor structure for memory cells, and has the
structure wherein the drains of a predetermined number of
memory cells are connected by a sub bit line, this sub
5 bit line is connected to a main bit line through a MOS
transistor, and the source terminals are connected in
common to the source line.

To erase memory cell data, a positive voltage V_F ,
(e.g. 22 V) is applied to the control gate, and the
10 source terminals and the drain terminals are first
grounded so as to accumulate the electrons in the float-
ing gate. In the programming operation, the control gate
of a selected memory cell is grounded and the positive
voltage V_F is applied to the drain impurity layer. To
15 inhibit programming, a voltage $V_F/2$ is applied to the
drain terminals. Accordingly, the electrons are released
from the floating gate to the drain impurity layer in the
select memory cell due to the tunneling mechanism.

The non-volatile semiconductor memory using the
20 F-N tunneling mechanism effects the programming/erasing
operations of data by the use of a very small current,
that is, the tunnel current. Accordingly, this semi-
conductor memory is effective for accomplishing lower
power consumption.

25 An EEPROM described in IEEE Journal of Solid-
State Circuits, Vol. SC-17, No. 5, Oct. 1982, pp.
821-827, is another example of the nonvolatile semi-
conductor memory using the F-N tunneling mechanism. In

1 this EEPROM, the electrons are injected from the drain to
the floating gate and attain a low threshold voltage in
the programming operation, and the electrons are released
from the floating gate to the whole channel immediately
5 therebelow and attain a high threshold value. The cell
of this EEPROM comprises a floating gate type F-N tunnel
transistor and a selector transistor connected to the
drain side of the former. The memory cells are arranged
in matrix, the drain terminal of the select transistor of
10 the memory cell is connected to the data line through a
switch transistor outside the memory cell, and the source
terminal of the floating gate type F-N tunnel transistor
of the memory cell is directly connected to the common
source line.

15 SUMMARY OF THE INVENTION

However, in the NOR type flash memory cell shown in Fig. 7, the consumed current at the time of programming is great, although the memory cell structure is miniature, and a single power supply operation is difficult. In other words, since the data programming operation to the floating gate relies on the hot carrier injection system, a current of about 500 μ A per bit must be supplied as a drain current, for a drain current of higher than 3.3 V, for example. Further, in the case of 20 a single 3 V supply, an operation at a minimum power source voltage of 2.7 V must be insured. Therefore, a drain terminal voltage condition for programming cannot 25

1 be satisfied. Furthermore, even when a 3.3 V stabilized
power source is produced by the use of a voltage booster
inside a chip, the increase of the area of the voltage
booster necessary for supplying a large current for the
5 hot carriers becomes essentially necessary, and this
renders an obstacle for reducing the chip area.

In contrast, the nonvolatile semiconductor
memory utilizing the F-N tunneling mechanism is effective
for reducing power consumption because the program/erase
10 operation of the data is effected using a very small
current of the tunnel current.

However, the cell of the EEPROM comprising the
floating gate type F-N tunnel transistor and the select
transistor according to the prior art involves the
15 problem that the cell area is great. Moreover, the
inventors of the present invention have clarified, as a
result of studies, the problems that the flow threshold
voltage of the floating gate type F-N tunnel transistor
assumes a negative value due to the circuit scheme of the
20 memory cell and that a large drain current flows through
the memory cell at the time of the programming operation
because a switch transistor is not interposed between the
source terminal of the floating gate type F-N tunnel
transistor of the memory cell and the common source line.

25 The ACEE according to the prior art described
above has the impurity layer wiring structure which can
reduce the number of contact holes per bit of the memory
cell, and reduces the memory array area. However, the

1 memory cell itself substantially requires two regions,
that is, the transistor region and the exclusive tunnel
oxide film region for generating the F-N tunneling
mechanism, and the increase of the memory cell area is
5 unavoidable.

Now, let's consider the case where the floating
gate type field effect transistor structure described in
JP-A-4-14871 is applied to the ACEE circuit scheme in
order to avoid the increase of the memory cell area. In
10 this case, according to the circuit operation of the ACEE
of the prior art described above, the control gate
selected at the time of programming of the data into the
memory cell is set to 18 V and the data line to 0 V.
Accordingly, the memory cell is under the inverted state,
15 and the electrons are injected into the floating gate
through the whole channel. Accordingly, it has been
found out that the data write time becomes longer than
when a transistor having an original exclusive tunnel
region is used.

20 In the circuit operation of the ACEE according
to the prior art described above, a 7 V voltage is
applied to the data line to inhibit programming and the
source line is charged through the non-selected memory
cells. However, since the charge current of the source
25 line flows from the drain terminal of the non-selected
memory cell to the source terminal, injection of the hot
electrons into the floating gate is more likely to occur,
so that programming of electrons into the non-selected

1 memory cells takes place. This phenomenon is referred to
as "disturbance". It has been found out that this
disturbance invites the rise of the threshold voltage in
the non-selected memory cells.

5 It has been found out further that when the
floating gate type field effect transistor structure is
applied to the ACEE, variance of the threshold voltage
(low threshold voltage) at the time of erasing must be
restricted. In the erasing operation, the positive
10 voltage is applied to the source terminal and the
negative voltage to the control gate, so that the
electrons can be pulled out from the floating gate to the
source impurity layer by the tunneling mechanism. Since
the source impurity layer region serves as the tunnel
15 region, any variance of the formation process of the
source impurity layer results in variance of the tunnel
current. This variance of the tunnel current is greater
than variance occurring in the structure where the tunnel
region is exclusively disposed. As a result, when the
20 memory cells existing on the same word line are erased at
one time, variance of the tunnel current invites variance
of the erase time. Accordingly, the erase voltage is
excessively applied to the memory cell which is erased at
the earliest timing and its threshold voltage is likely
25 to become negative. The greater the scale of the memory
array, the greater becomes variance of the formation
process of the source impurity layer as the cause of this
phenomenon. Accordingly, it has been found out that a

1 large scale memory cell is difficult to attain.

As described above, the inventors of the present invention have clarified that though the circuit scheme of the ACEE is effective, there still remain the problems of programming characteristics, disturbance characteristics and expansion of the scale of the memory array when the ACEE is accomplished by the mere use of the floating gate type field effect transistor structure.

Further, when the nonvolatile semiconductor memory described in JP-A-4-14871 is examined, the following problems are found out to increase the memory array scale, though this device has the possibility of a higher integration density and a higher readout speed.

(1) To promote miniaturization, this memory employs a sub bit line structure using a silicide or a refractory metal, but one contact region per two bits must be disposed. Accordingly, the memory cell area must still be reduced effectively.

(2) The erasing operation is effected by applying the positive voltage V_F to the control gate and grounding the source and drain terminals, and the programming operation is effected by grounding the control gate and applying the positive voltage V_F to the drain impurity layer. Accordingly, degradation of the tunnel oxide film in the vicinity of the source region is remarkable and current drivability β of the memory cell drastically drops. More specifically, when the programming operation is carried out by grounding the control gate and applying

1 the positive voltage v_p to the drain diffusion layer,
holes of the electron-hole pairs occurring at the drain
terminal are injected into the gate oxide film in accord-
ance with the direction of the electric field. When the
5 number of times of program/erase is small, the injection
quantity of the holes is small, and degradation occurs
only at the drain terminal and does not invite the drop β
of the memory cell. As the number of times for program/
erase increases, the injection quantity of the holes
10 becomes greater and drain expands from the drain terminal
to portions in the vicinity of the source. For this
reason, it becomes difficult to guarantee the number of
times of program/erase of at least 10^6 which is required
for a large capacity file memory.

15 It is therefore an object of the present inven-
tion to provide a nonvolatile semiconductor memory
having low power consumption, capable of a high speed
operation and having an effectively reduced cell area in
a nonvolatile semiconductor memory having an electric
20 programmable/erasable function.

It is another object of the present invention
to provide a non-volatile semiconductor memory ensuring
the number of times of program/erase of at least 10^6 and
optimal for a large scale memory array in both aspects of
25 programming characteristics and disturbance character-
istics.

The objects described above can be accomplished
by a nonvolatile semiconductor memory having an electric

1 programmable/erasable function, as typified by a
preferred embodiment of the present invention shown in
Fig. 1, for example, which comprises memory arrays each
comprising a plurality of memory cells disposed in matrix
5 having rows and columns, wherein each memory cell
comprises one MOSFET including a source region 6 and a
drain region 7 disposed on a semiconductor substrate in a
mutually spaced-apart relationship, a floating gate
electrode 3 formed through a gate insulating film 2
10 having a uniform film thickness from the surface of the
source region to the surface of the drain region 7 and a
control gate 5 formed on the floating gate electrode 3
through an intermediate insulating film 4, wherein the
drain regions of a plurality of memory cells on the same
15 column are connected to a data line formed for each
column and the control gates of the memory cells on the
same row are connected to a word line formed for each
row, wherein a voltage having a first polarity with
respect to the semiconductor substrate 1 is applied to
20 the drain region 7 of the memory cell which is an object
of a programming operation and a voltage having a second
polarity different from the first polarity with respect
to the semiconductor substrate 1 is applied to the
control gate 5 of the memory cell when the programming
25 operation is effected, so as to set the source region 6
of the memory cell to the same potential as the potential
of the substrate, and wherein a voltage having the first
polarity with respect to the semiconductor substrate 1 is

1 applied to the control gates 5 of a plurality of memory
cells to be subjected to an erasing operation and all the
other electrodes and the semiconductor substrate 1 are
kept at the same potential when the erasing operation is
5 effected.

In this way, the present invention accomplishes
low power consumption by the program/erase system
utilizing the tunneling mechanism. On the other hand,
miniaturization of the memory cell area can be accom-
10 plished by the memory cell structure shown in Fig. 1.

In the erasing operation, the voltage having
the first polarity is applied to the control gate 5 and
the source region 6 and the drain region 7 are brought to
the same potential as that of the substrate. Accord-
15 ingly, the F-N tunneling develops through the gate oxide
film 2, and the electrons are charged into the floating
gate 3 from the whole channel of the memory cell. In
consequence, the threshold voltage of the memory cells on
the same row is raised. A plurality of memory cells
20 having the control gates thereof connected to a plurality
of word lines can be collectively erased by selecting at
one time a plurality of word lines. Unlike the program-
ming operation of the ACEE described above, this erasing
operation does not charge the source line through the
25 memory cells, into which programming is not made, by
applying the voltage having the first polarity to the
data line. Therefore, the problem of degradation of the
hot carriers due to the charge current, etc., of the

1 source line does not occur.

In the programming operation, the voltage having the second polarity is applied to the control gate 5 while the voltage having the first polarity is applied 5 to the drain region 7, and the source region 6 is brought to the same potential as the substrate potential.

Accordingly, the F-N tunneling develops through the gate oxide film 2 and the electrons are released from the floating gate 3 to the drain diffusion layer side using 10 an overlapped portion (hereinafter after referred to as the "drain diffusion layer edge region") between the drain diffusion layer 7 and the floating gate 3, so that the threshold voltage of the memory cells becomes low.

The programming operation is effected in the word line 15 unit, the voltage of the data line connected to the memory cell to be subjected to programming is set to the voltage having the first polarity, and the voltage of the data line connected to the memory cells, for which programming is not made, is brought to the same potential

20 as the substrate potential. In this way, programming can be made to desired memory cells.

In the readout operation, the selected word line is set to the voltage having the first polarity while the non-selected word lines are kept at the same 25 potential as the substrate potential. The memory cell for which programming is made is turned ON and a current flows, but the memory cells for which programming is not made are turned OFF and no current flows. Accordingly,

1 the ON/OFF state of the memory cells can be obtained by observing the current or the voltage flowing through the data line by the use of a sense amplifier connected to the data line.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a sectional view showing, in simplification, the sectional structure of a memory cell used for a nonvolatile semiconductor memory according to the present invention.

10 Fig. 2 is a circuit diagram showing the circuit scheme according to the first embodiment of the present invention.

Fig. 3 is a block diagram of the nonvolatile semiconductor memory according to the first embodiment of the present invention.

15 Fig. 4 is a plan view showing the memory cell structure of the nonvolatile semiconductor memory according to the first embodiment of the present invention.

20 Fig. 5 is a sectional view showing a memory cell shape when taken along a line A - A' of Fig. 4.

Fig. 6 is a sectional view showing the memory cell shape when taken along a line B - B' of Fig. 4.

25 Fig. 7 is a sectional view showing the structure of an NOR type flash memory according to the prior art.

Fig. 8 is a plan view showing the memory cell

1 structure of a nonvolatile semiconductor memory accord-
ing to the second embodiment of the present invention.

Fig. 9 is a sectional view showing the memory
cell shape when taken along a line A - A' of Fig. 8.

5 Fig. 10 is a sectional view showing the memory
cell shape when taken along a line A - A' of Fig. 4,
according to the third embodiment of the present inven-
tion.

10 Fig. 11 is a sectional view showing the memory
cell shape when taken along a line A - A' of Fig. 4 as an
expanded example of the third embodiment of the present
invention.

15 Fig. 12 is a sectional view showing the memory
cell shape when taken along a line A - A' of Fig. 4,
according to the fourth embodiment of the present
invention.

20 Fig. 13 is a sectional view showing the memory
cell shape when taken along the line A - A' of Fig. 4,
according to the fifth embodiment of the present inven-
tion.

Fig. 14 is a sectional view showing the memory
cell shape when taken along the line A - A' of Fig. 4,
according to the sixth embodiment of the present inven-
tion.

25 Fig. 15 is a sectional view showing the memory
cell shape when taken along the line A - A' of Fig. 4,
according to the seventh embodiment of the present
invention.

1 Fig. 16 is a sectional view showing the memory
cell shape when taken along the line A - A' of Fig. 4,
according to the eighth embodiment of the present
invention.

5 Fig. 17 is a graph showing dependence of
current supply drivability on the number of times of
program/erase.

Fig. 18 is a table showing a voltage
relationship of signal lines in each of the data erasing,
10 programming and read-out operations in the first
embodiment of the present invention.

Fig. 19 is a table similar to Fig. 18 in the
second embodiment of the present invention.

Fig. 20 is a block diagram of a nonvolatile
15 semiconductor memory device according to another
embodiment of the present invention.

Figs. 21 to 24 are diagrams illustrating
various operations of the device shown in Fig. 20.

Fig. 25 is a block diagram of a nonvolatile
20 semiconductor memory device according to another diagram
of the present invention.

Fig. 26 is a diagram illustrating various
operations of the device shown in Fig. 25.

1 Figs. 27 to 29 are block diagrams of memory
systems according to other embodiments of the present
invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

5 The first embodiment of the present invention
will be described with reference to Figs. 1 to 6.

Fig. 1 shows a device structure (a transistor
structure) of a memory cell, Fig. 2 shows a circuit
scheme, Fig. 3 is a block diagram of a nonvolatile
10 semiconductor memory, Fig. 4 is a plan view of the
memory cell structure, Fig. 5 is a sectional view taken
along a line A - A' of Fig. 4, and Fig. 6 is a sectional
view taken along a line B - B' of Fig. 4.

Fig. 1 shows in a simplified form a
15 transistor in the region encompassed by a dash line in
Fig. 5 so as to explain the operation of a memory cell
according to the present invention. Since the structure
shown in Fig. 5 is used in practice, the memory cell
structure will be explained with reference to Fig. 5.
20 The drawing shows a memory cell for 2 bits, having the
same word line. A gate insulating film 53 having a
uniform film thickness of about 7 nm is formed on a p
type semiconductor substrate 52. A first floating gate

1 electrode 54 is formed on a gate oxide film 53, and an
insulating film 55 is formed on the side surface of
the first floating gate electrode 54. A second float-
ing gate electrode 56, which is electrically connected
5 to the first floating gate electrode, is formed next.
A control gate 58 functioning as a word line is formed
on the second floating gate electrode 56 through an
intermediate insulating film 57. An about 15 nm thick
insulating film, as calculated by a silicon dioxide
10 film, is used for the intermediate insulating film.
The second floating gate electrode 56 is so designed
as to possess a greater area than the first floating
gate electrode 54. In this way, a capacitance between
the second floating gate 56 and the control gate 58
15 is increased. Incidentally, the first floating gate
electrode 54 is patterned into a gate length of the
memory cell. An n type source region 62 and drain
region 61 are formed in self-alignment with the first
floating gate electrode 54. A p type diffusion region
20 64 is formed in the source region 62 to a greater
depth than the n type impurity diffusion layer forming
the source region 62, and an n type impurity region 63
for diffusion layer wiring of the source region is

1 formed. The p type diffusion layer region 64 functions
also as a punch-through stopper which is required at a gate
length of the memory cell of below 0.4 microns, and is
used for regulating the threshold voltage of the memory
5 cell under a thermal equilibrium condition. To tunnel-
release electrons using an overlapped portion between the
drain region 61 and the floating gate 54 (a drain diffusion
layer edge), the impurity concentration of the n type
impurity diffusion layer 61 constituting the drain region
10 61 is set to be higher than the impurity concentration of
the n type impurity diffusion layer constituting the
source region 62. For example, the drain region is
formed by ion implantation of arsenic and its surface
concentration is set to be at least $10^{20}/\text{cm}^3$.

15 Fig. 2 shows the basic circuit of two blocks
using n word lines (e.g., n = 16 to 128) as a unit.
Here, n memory cells constitute one group 11, and memory
cells corresponding to m data lines are connected to one
word line. Therefore, $m \times n$ memory cells function as one
20 block. To establish connection between the data lines
and the memory cells, a contact hole region 12 is defined
for each group and is connected to the data lines. In
other words, the memory cells are connected in parallel,
and the drain and source terminals of these memory cells
25 are connected by a drain diffusion layer wiring 13 formed
by an n type impurity region, as a first common wiring,
and by a source diffusion layer wiring 14 as the second
common wiring. Each data line 18 is wired by a metal

1 having a low resistance value, and is connected to the
drain diffusion layer wiring (sub data line) 13 inside
the block through lines of select transistors 15, 20
comprising an n type MOS transistor (or insulated-gate
5 field-effect transistor). The drain terminal of each of
the n memory cells is connected to the drain diffusion
layer wiring 13 and its source terminal, to the source
diffusion layer wiring (sub source line) 14. Here, the
resistance value of the drain and source diffusion layer
10 wirings is from 50 to 500 Ω/\square , for example. The source
diffusion layer wiring 14 is connected to the common source
wiring 17 through select transistors 16, 19 comprising an n
type MOS transistor (or insulated-gate field-effect transistor)

The number m of data lines to be connected to
15 one word line is, for example, some multiples of 512.
For, in view of the alternative application of fixed
memory devices at present, handling of one input/output
(I/O) device becomes easier when the number of data lines
is some multiples of 512. The number n of the word lines
20 greatly depends on the electrical characteristics of the
constituent memory cells and the resistance value of the
diffusion layer wiring. When the number of the word
lines connected to the data lines is 8,192, for example,
8,192/n \times 2 select transistors become necessary. There-
25 fore, the greater the number n, the smaller becomes the
occupying area of the select transistors. However, when
n becomes great, the resistance value of the diffusion
layer cannot be neglected, and the read-out character-
istics of the memory cell are lowered. Here, n of 32 to

1 256 is used.

Reduction of the chip area can be promoted by arranging the memory cells in the array form as shown in Fig. 2.

5 The block structure of the nonvolatile semiconductor memory chip will be explained with reference to Fig. 3. A latch circuit 33 for holding data is connected to the memory array portion 31 shown in Fig. 2 and to each data line 32 connected to the memory array. Each 10 latch circuit 33 is then connected to a common data line through a decoder 34. The common data line is connected to an input/output circuit. Further, an external input power source terminal having a single voltage level is disposed on the same substrate, though not shown in the 15 drawing. Incidentally, the latch circuit, the decoder, the common data line and the input/output circuit can be disposed for the other memory arrays formed in the same chip.

A drive line of a select transistor for selecting the word line and the block connected to each memory block is connected to each decoder 35, 36. A high voltage generator (voltage booster) 37 and a negative voltage generator 38 are connected to the decoders 35, 36. According to this structure, a high voltage is 25 selectively applied from the voltage booster 37 to the selected word line at the time of erase, and a negative voltage is selectively applied from a negative voltage generator 38 to the selected word line at the time of

1 programming.

The voltage booster 37 and the negative voltage generator 38 comprise a charge pump type voltage converter, for example, and can generate a high voltage 5 and a negative voltage from a single power supply voltage of not higher than 3.3 V.

Next, the voltage relationship of the signal lines in each of the data erasing, programming and read-out operations in this embodiment will be explained with 10 reference to Table 1 in Fig. 18. Table 1 tabulates an example of the erasing, programming and read-out operations for the word line W12. The term "erase state" means herein the state where the threshold voltage of the memory cell is under a high state of at least 3.3 V, for 15 example, and the term "programming state" means a state where the threshold voltage is within the range of 0.5 to 1.5 V, for example.

First of all, to effect the erase operation, the block 1 containing W12 must be activated. Here, SD1 20 and SS1 are set to 3.3 V so as to turn ON at least one of the select transistors 15 and 16. At this time, the voltage of the signal lines SD2 and SS2 of the other block is 0 V. A voltage of 12 V is applied to W12 of the word line in the selected block, and all the other word 25 lines are set to 0 V. Since all the data lines are set to 0 V at this time, a voltage of 6 to 8 V as a capacitance division voltage of a control gate voltage and a channel voltage is applied to the floating gates of all

1 the memory cells connected to the word line W12.
Accordingly, a high electric field is applied to the gate
oxide film between the floating gates and the channel
region, an F-N tunnel current flows and electrons are
5 injected to the floating gates, so that the threshold
voltage of the memory cell can be brought to about 3.3 V.
The time necessary for erasing is about 1 millisecond.
Since the memory cells on the other word lines are not
erased, only the memory cell on one word line can be
10 erased, and erase in a 512-byte unit (sector erase), for
example, can be made. Simultaneous erase of multiple
sectors is also possible by selecting simultaneously a
plurality of word lines.

To execute programming, the data is first
15 transferred from the input/output circuit to the latch
circuit 33 (included in the sense/latch circuit 39 in
Fig. 3) disposed for each data line. Next, to activate
the block 1 containing the word line W12, the signal line
SD1 is set to a voltage of not lower than 3.3 V. At this
20 time, SS1 is set to 0 V, and the source line in the block is
electrically isolated from the common source line. The
signal lines SD2 and SS2 of the non-selected block are
set to 0 V, and the non-selected block is cut off from
the data line. A voltage of -7 V is applied to the word
25 line W12 inside the selected block, and all the other
word lines are set to 3.3 V as the power source voltage,
for example. A voltage of 0 V or 3.3 V, for example, is
applied to the diffusion layer wirings inside the block

1 in accordance with the data of the latch circuit
connected to each data line. When the voltage of the
drain terminal of the memory cell is 3.3 V, a high
electric field is applied to the gate oxide film between
5 the drain diffusion layer and the floating gate, the
electrons inside the floating gate are pulled out to the
drain terminal, and thus the threshold voltage of the
memory cell can be lowered to below 1 V. When the drain
terminal voltage is 0 V, the absolute value of the
10 floating gate voltage calculated from capacitance
coupling is small, the tunneling mechanism through the
gate oxide film does not occur, and the threshold voltage
of the memory cell does not change. Though the voltages
of the word lines of the non-selected block are all set
15 to 0 V for the purpose of explanation, this value is not
particularly limitative. For example, 3.3 V as the power
source voltage may also be applied.

In this programming operation, the pull-out
time of the electrons, that is, the programming time, is
20 divided by 30, for example, and the threshold voltage of
the memory cell is verified and is compared with the data
in the latch circuit disposed for each data line whenever
the programming operation is conducted once. If the
threshold voltage is below a predetermined value (e.g., 1
25 V), the data in the latch circuit is re-written (e.g.,
from 3.3 V to 0 V) so as to inhibit the subsequent
programming operation. When the threshold value is above
the predetermined value (e.g., 1 V), one time of the

1 programming operation is further added. In other words,
when the threshold voltage of the memory cell reaches the
predetermined low threshold voltage, the voltage of the
latch circuit 33 reaches 0 v. In the subsequent program-
5 ming operation, therefore, the voltage of the drain
diffusion layer 7 becomes 0 v and the tunneling mechanism
of the electrons does not occur. Programming can be
attained into all the memory cells, that exist on one
word line and require programming, without variance of
10 data by repeating the flow described above. In this
manner, the threshold voltage of the memory cells can be
controlled to 0.5 to 1.5 v and at the same time, variance
of the low threshold voltage can be restricted even when
simultaneous programming is conducted in multiple bits.
15 Accordingly, this embodiment can avoid the influences of
variance on the low threshold voltage described in ACEE.

As described above, the threshold voltage can
be lowered for only the memory cell having the data line
to which the 3.3 v voltage is applied, and programming of
20 data is effected. The time necessary for this program-
ming is about one milli-second. The voltage applied to
the data line described above is determined by disturb-
ance characteristics to the memory cells on the same word
line for which programming is not made. In other words,
25 since a voltage 0 v is applied to the drain terminals and
-7 v to the word line, and consequently, the electrons
are gradually released from the floating gate. To limit
the release of the electrons in the non-programmed cells,

1 it is necessary to increase the difference of the
drain voltages between the programmed cell and the
non-programmed cells. Though this embodiment uses
the 3.3 V voltage, the absolute value of the
5 negative voltage to be applied to the word line can
be decreased and an undesirable decrease of the
threshold voltage of a cell which is not selected
for programming can be suppressed by the use of a
voltage higher than 3.3 V.

10 In this embodiment, the 3.3 V voltage is
applied to the word lines (W_{11} , W_{1n}) of the non-
selected memory cells in the selected block at the
time of programming. This is directed to improve
the operation margin of the memory cell. The voltage
15 applied to the non-selected word lines is determined
depending on the number of times of program/erase.
If the non-selected memory cell has a high threshold
voltage, an extremely small tunnel current flows
from the floating gate to the drain terminal, and
20 there is the possibility that the electrons are
pulled out from the floating gate with a result that
the threshold voltage of the non-selected memory cell
is decreased to such a level that the memory cell is

1 no longer held in an erased state. The total time
of program/erase of the non-selected memory cells
is $31 \times 1,000,000$ times $\times 1$ msec = 31,000 seconds
when all the other word lines in the same block are
5 subjected to the program/erase operations 1,000,000
times (assuming $n = 32$). Therefore, the data of
the memory cells must be held at least within the
time described above. When the threshold voltage
of the memory cell under the thermal equilibrium
10 condition is high, the data can be held even when
the voltage of the non-selected word lines is 0 V,
but when the threshold voltage under the thermal
equilibrium condition is lowered to 0.5 V, for
example, the voltage of the non-selected word lines
15 must be at least 1 V in order to relieve an electric
field between the floating gate and the drain
terminal. When the design range of the threshold
voltage of the memory cells under the thermal
equilibrium condition is expanded in this way, a
20 positive voltage must be applied to the non-
selected word lines, but the same voltage of 3.3 V
as the power source voltage is shown used for ease
of explanation.

1 Since the voltage to be applied to the non-
selected word lines is set to 3.3 V as described above,
the source wirings must be isolated for each data line
in the nonvolatile semiconductor memory according to
5 the present invention. For, when the threshold voltage
of the memory cells connected to the non-selected word
lines in the memory cell group 11 shown in Fig. 2 is
low, the non-selected word lines are under the ON state
because the voltage is 3.3 V and the voltage applied to
10 the drain terminal (drain side diffusion layer wiring)
is supplied to the source side. Accordingly, when the
source terminal is a common terminal, the source voltage
rises or an excessive drain current flows.

However, when the source wirings are merely
15 isolated for each unit data line, the coupling
capacitance of the source wirings extending parallel to
the data line becomes great, and a charge current flows
through the memory cell having a low threshold voltage
on the non-selected word line to charge the isolated
20 source wirings. Since this charge current flows, hot
electrons which occur in the memory cell are injected
into the floating gate. This invites a rise of the
threshold voltage and inversion of data.

1 As shown in Fig. 2, therefore, this
embodiment not only isolates the source wirings 14
in data line unit but also sections the word lines
into groups 11 each including n (n= 16 to 28) word
5 lines as shown in Fig. 2. In this way, the source
diffusion wiring layer of each group is connected
to the common source line through the selection
transistor while the drain diffusion wiring layer is
connected to the respective data lines to lower the
10 capacitance on the source wiring line, to reduce the
quantity of the charge current flowing through the
memory cell having a low threshold voltage and to
prevent inversion of data.

This embodiment represents the case where
15 the design range of the threshold voltage of the
memory cell under the thermal equilibrium condition
is expanded. When the threshold voltage under the
thermal equilibrium condition is optimized, however,
the data can be held even when the voltage of the
20 non-selected word line is 0 V. Accordingly,
isolation of the source terminals becomes unnecessary
and the select transistor connected to SS1 can
be eliminated.

In the read operation, SD1 and SS1 for the select transistors 15 and 16 are set to at least 3.3 V in order to activate the block 1 containing W12. As to the word lines inside the selected block, 3.3 V is applied to 5 W12 and 0 V is set to all the other word lines. A predetermined read voltage is applied to the data line. When the threshold voltage of the object memory cell is low in this case, the voltage of the data line drops, and when the former is high, the threshold voltage can be 10 kept at a predetermined voltage. Accordingly, the memory cell data can be judged by reading out this voltage difference into the latch circuit 33 in the sense/latch circuit 39.

The planar structure as well as the sectional structure of this embodiment will be explained with 15 reference to Figs. 4 to 6.

As shown in Fig. 4, a device isolation region 42 is defined in the direction of the data line 41 and the metal wiring 41 constituting this data line 41 is connected to the drain diffusion layer 44 of the select 20 transistor through the contact hole 43. The drain diffusion layer 44 is connected to the drain diffusion layer inside the memory cell block through the gate 45 of the select transistor. The transistor region of the memory cell is the one where a region 46 (region outside 25 the region encompassed by a frame) defining the first layer floating gate crosses a region 47 defining the word region 47. The floating gate of the memory cell has a

1 two-layered structure, and the second layer floating gate
is defined by a region 48. The portion between the
region 46 and the device isolation region 42 is the
5 diffusion layer wiring region, and the diffusion layer
region on the source side is so formed as to oppose the
diffusion layer region on the drain side. The diffusion
layer region on the source side is connected to a common
source region 50 through the gate 49 of the select
transistor.

10 Fig. 5 is a structural sectional view taken
along a line A - A' of the plan view of Fig. 4, and Fig.
6 is a structural sectional view taken along a line B -
B'. Each memory cell region is isolated by a device
isolation region 51 formed by a LOCOS (Local oxidation of
15 Silicon) oxide film. The floating gate has a two-layered
structure so as to improve a capacitance coupling value
of the floating gate electrode and the word line and to
lower the program/erase voltage. Accordingly, where
simplification of the process is important, the floating
20 gate 56 need not always be formed. The memory cell
according to this embodiment is formed on the p type
silicon substrate, but it can be formed on a p type well
region formed on the p type silicon substrate by the CMOS
process, or on a p type well region on an n type silicon
25 substrate. The word lines are equidistantly formed in
the section parallel to the data lines (Fig. 6) with a
minimum process size, and the first and second floating
gates 54, 56, the intermediate insulating film 57 and the

1 control gate 58 serving as the word line together form a
lamine structure. The word lines are isolated from one
another by a p type impurity region 76 which is
introduced by ion implantation.

5 In this embodiment, one bit can be formed in a
length of about three times the minimum process size in
the plane A - A' parallel to the word lines and in a
length about twice in the plane B - B'. In other words,
the memory cell area of about 0.74 square microns can be
10 obtained under the minimum process accuracy of 0.35
microns.

The description given above explains the
fundamental operations of erase, programming and read
of data inside the blocks of the nonvolatile
15 semiconductor memory device, and the operations of the
nonvolatile semiconductor memory device using these
functions will be explained with reference to Figs. 20
to 27.

Fig. 20 shows in detail a block structure of
20 a semiconductor chip 81 including the nonvolatile
semiconductor memory device shown in Fig. 3, the
peripheral circuits connected to the former and means
for controlling them. A memory array portion 31, a

1 sense circuit 39 and a decoder 34 are divided into eight
segments, for example, in accordance with the degree of
parallelism of an input/output circuit 76, and are
electrically connected with the outside of the chip 81
5 through an input/output circuit 76.

In the memory array portion 31, 512-byte memory
cells are connected to one word line. As already
described, since data is mainly handled in a 512-byte
unit in the existing fixed memory devices, the 512-byte
10 memory cells are connected to one word line but needless
to say, the number of the memory cells on the word line
can be changed appropriately in accordance with the
intended application of the nonvolatile semiconductor
memory device.

15 Reference numeral 11 denotes a cell group which
is similar to the cell group shown in Fig. 2 and typifies
one of the cell groups contained in the cell block
handled by one decoder 35. Though not shown in Fig. 2,
select transistors similar to the select transistors 15,
20 16, 19, 20 shown in Fig. 20 are disposed between the cell
groups belonging to the adjacent cell blocks. A memory
cell having (512 bytes + redundancy bits) can be
connected to each input/output circuit in consideration

1 of memory cells for redundancy. The address signal is
stored in an address buffer/latch 77 and is transmitted
to at least decoders 35, 36, and one of the word lines is
selected.

5 An input address signal A is transmitted to
the decoders 35, 36 in the random access operation
whereas in the serial access operation, it is
transmitted to the decoders 35, 36 a serial clock SC is
inputted to a block buffer 78 and an internal address
10 signal generated by an address counter 79 is transmitted
to the decoder 34.

Fig. 21 shows a timing chart for basic input
data at the time of data erase/program, i.e., data
re-write. When a chip is selected and after external
15 instructions such as read, erase/program, etc., are
accepted, each operation is carried out. Hereinafter, an
example of an erase/program (re-write) operation executed
under the control of the internal controller CTRL on the
basis of the external control signal C will be described,
20 but other operations such as data erase, programming,
etc., can of course be executed similarly. Various
signals associated with erase/program (re-write) are
generally inputted at the time of erase/program, but

1 those which are not directly relevant to the gist of the
present invention will be omitted.

First of all, the chip is selected, the
erase/program instruction (C) is inputted, and the
5 address signal A is further inputted (I). The erase word
line is selected in accordance with the input address
signal A and erase is effected in the manner described
above. In other words, a high voltage of about 12 V is
applied to the selected word line from a high voltage
10 generator 37 and the 512-byte memory cells on the word
line are collectively or simultaneously erased. To
confirm that the memory cells on the word line are under
the erase state, a voltage of 5 V, for example, is
applied to the word line while a voltage of about 1 V is
15 applied to the data line and a threshold voltage is
judged for verification. The operation is again executed
until all the bits on the selected word line are erased
(II). Next, the data is serially inputted in a 512-byte
length from the I/O terminal. The input data is
20 sequentially stored in the data latch 33 inside the sense
circuit 39 in synchronism with the serial clock SC (III).
Since the data input is transferred in an interval of 50
to 100 ns, the time t3 required for the data input (III)

1 is at most 100 μ s. After this data transfer is completed, the data write (IV) is effected. A voltage of -7 V is applied to one word line corresponding to the selected address from a negative voltage generator 38,
5 3.3 V or 0 V is applied to the data line in accordance with the data stored in the latch circuit 33 corresponding to each bit in the sense circuit 39. Programming (t41) and programming verify (t42) are executed as described above and the programming operation
10 is completed.

Thus, the data erase/program operation in the described embodiments no longer needs a light (weak) programming operation called "a pre-write" which is conventionally effected prior to an erasing
15 operation.

As already described, erase is effected by tunnel injection through the gate oxide film. Accordingly, the high voltage generator 37 increases the voltage to be applied for erase, and the threshold
20 voltage of the memory cell after erase can be set to a sufficiently high level. In this case, verify of the erase state of the memory cell after erase becomes unnecessary as shown in Fig. 22 and the verify process

- 1 can be omitted. Since the data latch 33 that has been
occupied for reading memory cell data for the verify
process after erase can be released, the transfer of the
erase/program data can be made after the address input.
5 In other words, the operation shifts to the data input
(III) after the address input (I) as shown in Fig. 23,
and the 512 bytes can be serially inputted. Accordingly,
the process from the address input to the data input can
be executed continuously without the necessity for
10 waiting for the erase time, and the occupying time of the
external I/O can be reduced.

In Fig. 22, on the other hand, the data input
(III) is effected between the I/O terminal and the data
latch 33 and erase (II) is effected for at least one of
15 the word lines in the memory array 32. Accordingly, the
data input (III) and the erase (II) can be effected
simultaneously, too, under the control of the internal
controller CTRL, as shown in Fig. 24.

As illustrated in this embodiment, data erase
20 and data write can be effected for each word line and in
consequence, parity can be established between the erase
unit and the programming unit and this can be used as a
sector. In the conventional NOR type flash memory, the

1 erase unit is greater than the programming unit. To
erase/program the data, therefore, the data of the erase
region must once be saved in the external buffer region.
In this embodiment, in contrast, since the erase unit and
5 the programming unit coincide with each other, the data
save operation is not necessary. As a result,
erase/program for one word line can be made by a single
address input and a single serial data transfer, and the
erase/program operation can be executed by one
10 instruction.

The erase/program operation shown in Fig. 23
can be processed in parallel by converting the memory
array portion 31 shown in Fig. 20 into a two-array
block structure as shown in Fig. 20 and by adding an
15 address latch 83 as shown in Fig. 25. This can be
accomplished because the memory array portion 31 is
divided into the array blocks and because the erase
unit and the programming unit coincide with each
other. However, in view of continuity of a plurality
20 of serial data, the address of the continuous sector
has a parity bit or a memory array block select bit
to gain an access to mutually different array blocks

1 in a file allocation table for managing a file system
using the memory chip 81 of the embodiment.

Fig. 26 shows the timing chart of this embodiment. The address signal A is inputted (I) and is stored (R1) in the address buffer/latch 82. The address buffer/latch 82 is used for erase, and erase is effected for one of the word lines in the array block 84, for example (II). After this erase is completed, the address in the address buffer/latch 82 is transferred to the address latch 83, and the data input (III) is executed. The next address signal A is inputted (I') in the data input (III) and is stored (R1) in the address buffer/latch 82. After the data input (III), the data in the data latch 33 is written (IV) to the address stored 15 in the address latch 83, that is, one word line in the array block 84 erased as described above. Here, the erase operation (II') for one word line in the array block 85 is executed simultaneously in accordance with the address buffer/latch 82.

According to the array block structure of the conventional NOR type flash memory, the memory cells are directly connected to one data line. Therefore, erase and programming cannot be executed simultaneously by

merely dividing the memory array portion into the array blocks. In contrast, according to this embodiment, the memory cell is indirectly connected to the data line through the select transistors 15, 16 (Fig. 2).

Therefore, when the data is written into the memory cell in the array block 84 and, at the same time, the data of the memory cells in the array block 85 is simultaneously erased, the select transistors on the data line side corresponding to the selected cell block 80 are turned ON so as to transfer the voltage of the data line to the sub-data line and to effect programming into the array block 84. Moreover, the select transistors on the data like side corresponding to the selected cell block 80 are turned OFF so as to bring the sub-data line into the open state and the select transistors on the source line side into the ON state, and the ground to the sub-source line, for effecting erase in the array block 85. As described above, erase in the word line unit is possible and the memory cells are isolated by selected transistors in this embodiment. Accordingly, when the memory array 31 is divided into the array blocks, erase and programming can be simultaneously executed inside the chip. Furthermore, since the data write time and the data erase time are

1 about 1 μ m and are equal to each other as already
described, no overhead of time exists when the data
programming operation and the data erase operation are
executed simultaneously. When programming and erase are
5 processed in parallel, the erase/program time as viewed
from outside the chip can be reduced to about 50%.

The second embodiment of the present invention
will be explained with reference to Figs. 8 and 9.

Fig. 8 is a plan view of the memory block. As
10 demonstrated by the operation of the first embodiment of
the present invention, the data can be held at the
voltage of 0 v of the non-selected word lines when the
threshold voltage under the thermal equilibrium condition
is optimized, so that isolation of the source terminals
15 becomes unnecessary and the select transistors connected
to the source terminal side can be omitted. The plan
view of Fig. 8 illustrates a planar pattern when the
source terminal of the memory cells is used in common.
In other words, the transistor region of the memory cell
20 defined by the region, where the region 46 defining the
first layer floating gate (the region outside the frame)
crosses the region 47 defining the word lines is in
contact with the transistor region of an adjacent memory

1 cell without the LOCOS region. Fig. 9 shows the
sectional structure taken along the line A - A' of Fig.
8. By the way, the sectional structure in the B - B'
plane of Fig. 8 is the same as that of Fig. 6. The
5 source region 63 is used in common by the two memory
cells on the word line 58, and the drain diffusion layer
61 is formed independently and individually for each
memory cell. In this way, the length of the memory cell
in the direction of the word line can be reduced, and the
10 memory cell area can be further reduced. Incidentally,
the operation of this memory cell structure is shown in
Table 2 of Fig. 19.

Fig. 10 shows the third embodiment of the
present invention. This embodiment uses a deposited
15 oxide film 71 on the side wall and a thermal oxide film
72 formed by a thermal oxidation process and a film
thickness of 50 to 300 nm as the insulating film to be
formed on the side surface of the floating gate 54 of the
first embodiment. A silicon dioxide film or a silicon
20 nitride film, that is formed by a CVD process, can be
used as the deposited oxide film 71 on the side wall.
However, the silicon dioxide film is preferably used in
order to improve program/erase reliability of the memory
cell. According to this structure, the impurity
25 diffusion layer 63 as the diffusion wiring layer can be
formed easily by an ion implantation process using the
first floating gate 54 and the deposited oxide film 71 on
the side wall as the mask. As shown in Fig. 11, the

1 thermal oxide film 72, the silicon dioxide film 73 and
the silicon nitride film 74 can be used as the insulating
film 55 shown in Fig. 5. This embodiment suppresses
invasion of a birds beak immediately below the floating
5 gate that proves the problem when the silicon nitride
film 74 is formed as the base of the silicon dioxide film
73 and between this silicon dioxide film 73 and the first
floating gate 54 and the thermal oxide film 72 is formed
by the thermal oxidation process.

10 This embodiment makes it easy to form the
thermal oxide film 72 between the floating gate 56 and
the silicon substrate by forming the deposited oxide film
and the silicon nitride film on the side surface of the
floating gate 54. Generally, when the thermal oxide film
15 72 is formed in the vicinity of the floating gate, a
birds beak region will enter the tunnel oxide film 53 due
to the thermal oxidation process, and the tunnel oxide
film is likely to become thick. This embodiment
suppresses the progress of the oxidation on the side
15 surface of the floating gate by the use of the deposited
oxide film and the silicon nitride film, prevents the
increase of the film thickness of the tunnel oxide film
and can thus prevent degradation of the memory cell
characteristics.

25 Fig. 12 shows the fourth embodiment. This
embodiment uses a device isolation structure 75 of a
shallow ditch for the device isolation region in the
third embodiment. In the rule of below 0.35 microns for

1 accomplishing a 256 MB large capacity memory, for
example, it becomes difficult to form a narrow device
isolation region by the use of the silicon dioxide film
formed by the thermal oxidation process. Particularly in
5 the case of the nonvolatile memory cell according to the
present system, overlap must be secured between the first
floating gate and the drain side diffusion layer in order
to obtain a sufficient tunnel current. In other words,
the junction depth of the drain side n type diffusion
10 layer of at least 0.1 micron must be secured, and the
depth of the shallow ditch region of about 0.2 microns
must be secured.

Fig. 13 shows the fifth embodiment. Whereas
the floating gate has the two-layered structure in the
15 fourth embodiment, it is formed only by the first level
floating gate 54 in this embodiment. For this reason,
the intermediate insulating film 57 is formed not only on
the floating gate but also on the deposited oxide film 71
formed on the side surface of the floating gate 54. In
20 this embodiment, the capacity of the floating gate 54 and
that of the control gate 58 are small. Therefore, the
control gate voltage necessary for program/erase must be
set to a high level or the program/erase time must be
prolonged. However, since the floating gate has the
25 single level structure, the memory cell fabrication
process is simplified, and an economical nonvolatile
semiconductor memory for the application of external
memories not requiring high speed performance can be

1 provided.

Fig. 14 shows the sixth embodiment. In the third embodiment, the thermal oxide film 72 is formed by using the deposited oxide film 71 as an oxidation-resistant film as shown in Fig. 10, but this embodiment forms the thermal oxide film 72 without forming the deposited oxide film 71. Accordingly, the formation step of the deposited oxide film can be omitted, and the number of the process steps can be reduced.

Fig. 15 shows the seventh embodiment. In the sixth embodiment, the floating gate electrode has the two-layered structure of the first floating gate 54 and the second floating gate 56 as shown in Fig. 14, but the floating gate electrode in this embodiment has a single layer structure of the second level floating gate alone. This can be accomplished by first forming the thermal oxide film 72 and then forming the floating gate electrode 56. Since this embodiment can accomplish the single layer structure of the floating gate, too, it can simplify the fabrication process.

Fig. 16 shows the eighth embodiment. In the first embodiment, the p type diffusion layer region 64 for the channel stopper is formed on the source terminal side as shown in Fig. 5, but in this embodiment, the p type diffusion layer regions are formed on both sides of the source and drain terminals by an angular ion implantation process, for example. In this way, the process can be simplified.

1 A low voltage single power source drive type
high speed large capacity nonvolatile semiconductor
memory can now be fabricated according to the memory cell
structure of the present invention such as the sector
5 structure using 512 bytes as a basic unit, a block
structure for reducing the area of the contact hole by
putting together 32 to 128 word lines, and further by the
modification of program/erase system. A data memory of a
card type can be produced using this nonvolatile: semi-
10 conductor memory, and can be used as an external storage
for a work station or as a storage of an electronic still
camera. Since the word line is segmented for each sector
as illustrated in the first embodiment, the data erase
unit can be set in an arbitrary scale, and a part of the
15 memory can be assorted to the program region of the
system with the rest being secured as the data region.

Fig. 17 is a graph showing dependence of
current drivability on the number of times of program/
erase. This graph comparatively shows the case where
20 programming is made by hot carriers according to the
prior art, the case where programming is made by applying
a positive voltage to the word line and utilizing the
tunneling mechanism, and the case where programming is
made by applying a negative voltage to the word line and
25 utilizing the tunneling mechanism in accordance with the
present invention. It can be understood clearly from the
graph that when programming is made by applying the nega-
tive voltage to the word line and utilizing the tunneling

1 mechanism according to the present invention, the drop β of current drivability can be suppressed. The detailed description of the hot carriers will be omitted.

5 However, when programming is effected by applying the positive voltage to the data line and utilizing the tunneling mechanism, that is, when programming is effected by grounding the control gate and applying the positive voltage V_p to the drain diffusion layer, the hole among the electron-hole pair occurring at the drain

10 terminal is injected into the gate oxide film in accordance with the direction of the electric field. When the number of times of program/erase is small, the injection quantity of the holes is small and degradation occurs only at the drain terminal, so that the drop β of the

15 memory cell does not occur. When the number of times of program/erase increases. However, the injection quantity of the holes increases and degradation expands from the drain terminal near to the source. In consequence, β of the memory cell drops. When programming is effected by

20 applying the negative voltage to the word line and utilizing the tunneling mechanism according to the present invention, however, the electron-hole pair occurring at the drain terminal can be suppressed by setting the drain voltage to a positive voltage of about 3.3 V,

25 for example, and thus the drop β of the memory cell can be prevented.

1 Fig. 27 shows an embodiment of an effective
memory system structure using the nonvolatile
semiconductor device FMC including the flash memory chips
CH₁ to CH_k according to the present invention. Each of
5 these flash memory chips CH₁ to CH_k can take the same
structure as that of the chip 81 shown in Figs. 20 to 25.
Each of the chips CH₁ to CH_k includes a plurality of
sectors each comprising one word line and a plurality of
memory cells connected to this word line, and includes
10 further a sector buffer memory disposed between the
outside of the chip and the data bus (corresponding to
the sense latch circuit 30 shown in Figs. 20 and 25).
The memory chips CH₁ to CH_k are connected in parallel
with one another and constitute the nonvolatile
15 semiconductor device FMC. The number of these memory
chips CH₁ to CH_k may be from 8 to 20, for example. The
input data is supplied through a data bus transceiver 101
and through an external system bus such as PCMCIA
(Personal Computer Memory Card International Association)
20 standard, IDE (Intelligent Device Electronics) standard,
I/O buses of CPU, and so forth. The memory system
includes an address decoder 103 for selecting the memory
chips, and address bus driver 102 for the address input
for selecting the sectors inside the chip and a control
25 bus controller 104 for address decoding, data control
and chip control. The data bus transceiver 101, the
address bus driver 102, the address decoder 103 and the

1 control bus controller 104 together constitute a host
interface 100.

In Fig. 27, the external system bus is to be released from a busy state once an external address signal has been transferred to the address bus driver 102 and an address decoder 103, the address bus driver 102 and address decoder 103 have a structure for performing function of latching their outputs so that internal address signals are latched therein. This also applies 10 to the later described embodiment with reference to Fig. 29.

In the conventional memory system, the sizes of erase and programming of the chip are different. Therefore, it has been necessary to temporarily save 15 (store) the data of the memory chip to be erased into a buffer memory disposed outside the chip before erase, to erase/program (i.e., to re-write) the content of the buffer memory by inputting the write data, and then to sequentially write back the data within the erased range 20 into the chip in a certain write unit.

According to the memory system shown in the drawing, a memory card system corresponding to the data bus such as PCMCIA, etc., can be constituted, but when the non-volatile semiconductor device FMC according to 25 the present invention is employed, the temporary data save operation, which has been necessary at the time of erase/program of the data in the conventional memory

1 system, is no longer necessary because the size of the
sector buffer memory disposed inside the chip is at least
the same as the size of erase/programming. In other
words, the buffer memory which has been necessary in the
5 conventional memory card system can be omitted. Since
the temporary save operation is not necessary, erase and
programming can be effected continuously. For example,
the time necessary for erasing/programming the data
having the unit memory region capacity for erase of 4K
10 bytes and the quantity of data to be erased/programming
of 512 bytes has been (erase 1 ms + write 1 ms/512 bytes
x 8) and has been 9 ms. In the memory system using the
non-volatile semiconductor device FMC according the
present invention, the time is (erase 1 ms + write 1 ms)
15 and is reduced to 2 ms. When 4K-byte data is erased/
programmed, the time of 9 ms is necessary according to
the conventional structure by the same calculation. In
the memory system according to this embodiment, however,
a plurality of word lines (a plurality of sectors) are
20 simultaneously selected and erased and consequently, the
necessary time is (erase 1 ms + write 1 ms/512 bytes x
8), i.e. 9 ms, and this value is approximate to the time
necessary in the conventional structure.

Fig. 28 shows the structure of another
25 effective memory system. In this embodiment, the host
interface 100 is changed to a microprocessor 200. Since
the size of the sector buffer memory disposed inside the

1 chip in this structure is at least the same as the size
of erase programming, it is necessary only to transfer
the data from the system bus to the sector buffer memory
inside the chip, and control can be easily by a one-chip
5 microcomputer. According to this structure, the number
of components on a card can be reduced when this system
is expanded on the card.

Fig. 29 shows a structural example of the
memory system equipped with an external buffer memory as
10 well as a memory chip similar to the memory chip FMC
shown in Fig. 27 is used. A buffer memory 110 of at
least 512 bytes is provided to the data bus shown in
Fig. 27 so that control from the control bus controller
104 can be made. As described above, the conventional
15 structure needs a buffer memory of at least 4K bytes for
erasing/programming data by saving the data of the erase
unit memory region inclusive of the data erase/program
area, and the buffer memory is occupied by the
program/erase data during erasing/programming. According
20 to this embodiment, the 4K byte buffer memory 110, for
example, is prepared not for preserving (saving) the
write data but for "pre-reading" the data. In other
words, while data erase/program is effected for a certain
chip, the next data to be erased/programmed is
25 transferred (or pre-read) from the external system bus to
the memory system. Accordingly, the capacity of the
buffer memory 110 needs by only 512 bytes which are the

1 minimum necessary bytes for sector program/erase, and a
large scale memory chip is not necessary. Namely, the
capacity of the buffer memory 110 may be an integer times
512 bytes. Alternately, it is possible to provide an
5 area for pre-reading the data in an area of the
conventional buffer memory, and to use the buffer memory
as a buffer memory which is used for both data reading
and programming operations.

Since the address bus driver 102 and address
10 decoder 103 shown in Fig. 29 serve to pre-read and store
therein address signals for data to be continuously or
successively erased/programmed, they latch a next or
succeeding address signal so that an erase/program
operation with the next or succeeding address signal is
15 started upon completion of an erase/program operation
with a current address signal. Thus, by making larger
the storage capacity for the pre-reading of address
signals, the number of times of the continuously
successive erase/program operations can be made larger
20 and the time during which the external system bus is
released from a busy state can be made longer.

The above-mentioned operations are performed
under control of the control bus controller 104 which, in
response to a control signal from the external system
25 bus, controls the data transceiver 101, address driver
102 and address decoder 103 and the memory chips CH1
to CHk.

1 As has already been described above, provision
of the buffer memory 110 in this embodiment makes it
possible to pre-read data to be programmed (namely, to
continuously or successively program the memory chips)
5 owing to the successive transference of address signals
and data and the latch-storage operation, during which
the external system bus is advantageously released from a
busy state to be available for another task.

In the memory system including a plurality of
10 memory chips according to the present embodiment,
although each individual memory chip may not be able to
go on to the next step of operation until an
erase/program operation with data supplied from the 512
byte sector buffer memory is completed, even if one chip
15 is under an erase/program operation, it is still possible
to perform another erase/program operation with respect
to another chip simultaneously with the first-mentioned
chip, namely, a parallel erase/program operation is
possible, which will result in a considerable increase of
20 an erase/program operation speed of the overall memory
system to advantage.

The description given above illustrates the
structures of the system using the nonvolatile
semiconductor device (flash memory chip) according to the
25 present invention. In the file applications in general,
erase/program using 512 bytes as one sector is executed.
Therefore, the erase/program time using the system

1 structure of the present invention can be made shorter
than the conventional structures. The program data for
one sector necessary for erase/program (re-write) of the
data can be saved in the chip, and erase/program can be
5 executed without adding the buffer memory for this
purpose to the system. Accordingly, the occupying area
as well as the cost can be reduced. Incidentally, if the
capacity of the buffer memory is 4 KB for the memory
having the erase size of 4 KB in the conventional
10 structure, pre-read cannot of course be made because all
the buffer memories are used for temporary storage of the
data.

In the nonvolatile semiconductor memory having
the electric programmable/erasable function, the present
15 invention effects both of the programming and erasing
functions by utilizing the tunneling mechanism between
the floating gate electrode and the diffusion layer of
each of the drain/source/substrate. Accordingly, power
consumption can be limited to about 10 nA per bit in both
20 of the programming and erasing operations. In other
words, a voltage booster having small current drivability
can be used, and a voltage booster necessary for
generating a high voltage required for programming and
erasing and a voltage reducer can be formed inside the
25 chip. Accordingly, program/erase/read by a single 3.3 v
power source can be attained using a high speed
nonvolatile semiconductor memory.

1 Further, all the memory cells connected to one
word line can be erased at the time of erase by applying
a high voltage (12 V) to only one of the word lines and
grounding all the other word lines. Accordingly, when a
5 plurality of memory cells are connected in parallel with
one word line, a plurality of memory cells can be erased
simultaneously (sector erase) by defining such a word
line as one sector. The memory cells on a plurality of
word lines can be collectively erased by selecting a
10 plurality of word lines.

In the programming operation, the data can be
written simultaneously into a plurality of memory cells
on one word line using the latch circuit as described
above. For this reason, programming in the sector unit
15 can be made by defining one word line as one sector in
the same way as in the case of erase. In other words,
since the erase unit and the programming unit can be made
identical with each other, the operations such as save of
data, etc., become unnecessary at the time of
20 erase/program of the data.

In the programming operation, when the
threshold voltage of the memory cell reaches a prede-
termined low threshold voltage, the voltage of the latch
circuit 33 becomes 0 V. In the subsequent programming
25 operation, therefore, the voltage of the drain diffusion

1 layer 7 becomes 0 v and the tunneling mechanism of the electrons does not occur. Accordingly, even when a large number of bits are simultaneously programmed, variance of the low threshold voltage can be suppressed.

5 The select word line is set to the voltage V_{ce} and the non-selected word lines are grounded. Therefore, the memory cells under the programming condition are turned ON and the current flows, but the memory cells out of the programming condition are turned OFF and the 10 current does not flow. For this reason, the ON/OFF state of the memory cells can be obtained by observing the current or voltage flowing through the data line by the use of the sense amplifier connected to the data line.

15 As described above, the programming and erasing operations can be accomplished by the tunneling mechanism between the diffusion layer and the floating gate inside the channel region of the memory cell. Accordingly, the area of the tunnel region can be reduced, and the memory cell area can be further miniaturized. In other words, 20 the cell area equal to, or smaller than, that of the conventional NOR type flash memory cell can be accomplished.

The negative voltage is used for the word line at the time of programming of data and the drain voltage 25 at this time can be reduced near to the power source voltage (3.3 v, for example). Accordingly, peripheral circuits on the data line side such as the decoder system need not have a high withstand voltage, so that the area

1 of the peripheral circuits can be reduced. Furthermore,
the occurrence of the electron-hole pairs at the drain
terminal at the time of data program/erase as well as the
degradation of the gate oxide film at the channel portion
5 can be prevented, and the drop of current drivability can
be prevented even after the number of times of program/
erase of 10^6 times. Since the disturbance prevention
voltage to be applied to the non-selected word lines at
the time of programming can be set to 3.3 V as the high
10 voltage side power source, the booster power source need
not be employed, and the write time can therefore be
reduced.

Furthermore, one contact hole region is formed
for a group comprising a plurality (16 to 128) of memory
15 cells as one unit, the occupying area of the contact
holes in the memory cell array can be reduced and further
miniaturization of the memory cells becomes possible, so
that a large capacity nonvolatile memory such as a 64 M
or 256 M memory can be accomplished.

20 The large-scale nonvolatile semiconductor
memory chip fabricated in accordance with the present
invention makes it possible to accomplish a large
capacity file system and a file card used for small
portable appliances, to constitute a data preservation
25 file system for an electronic still camera for processing
large quantities of image data, and further to produce a
card type portable recoder/reproducer for high quality
music.

The technology described above makes it now possible to employ the circuit scheme shown in Fig. 2. Accordingly, a 64 M or 256 M large capacity nonvolatile memory can now be accomplished by reducing the numbers of contact holes and reducing the effective memory cell area in addition to the use of the miniaturized memory cells.