## Capstone2

July 19, 2023

#### Data Exploration:

Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:

Glucose

BloodPressure

SkinThickness

Insulin

BMI

Visually explore these variables using histograms. Treat the missing values accordingly.

There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  print('All library imported')
```

#### All library imported

```
[2]: #load the data
data=pd.read_csv('health care diabetes.csv')
print ('data loaded')
```

data loaded

```
[3]: data.head()
```

```
[3]:
        Pregnancies
                       Glucose
                                 BloodPressure
                                                  SkinThickness
                                                                    Insulin
                                                                               BMI
                    6
                            148
                                              72
                                                                              33.6
                    1
                                                               29
                                                                              26.6
     1
                             85
                                              66
                                                                          0
     2
                    8
                            183
                                              64
                                                                0
                                                                          0
                                                                              23.3
     3
                    1
                             89
                                              66
                                                               23
                                                                         94
                                                                              28.1
     4
                    0
                            137
                                              40
                                                               35
                                                                        168
                                                                              43.1
```

```
DiabetesPedigreeFunction Age
                                   Outcome
                      0.627
0
                               50
                      0.351
                                         0
1
                               31
2
                      0.672
                               32
                                         1
3
                      0.167
                               21
                                         0
4
                      2.288
                                         1
                               33
```

[4]: #shape of data data.shape

[4]: (768, 9)

[5]: #missing values
data.isnull().sum()

[5]: Pregnancies 0 Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0 BMI 0  ${\tt DiabetesPedigreeFunction}$ 0 0 Age Outcome 0 dtype: int64

[6]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

| # | Column                   | Non-Null Count | Dtype   |
|---|--------------------------|----------------|---------|
|   |                          |                |         |
| 0 | Pregnancies              | 768 non-null   | int64   |
| 1 | Glucose                  | 768 non-null   | int64   |
| 2 | BloodPressure            | 768 non-null   | int64   |
| 3 | SkinThickness            | 768 non-null   | int64   |
| 4 | Insulin                  | 768 non-null   | int64   |
| 5 | BMI                      | 768 non-null   | float64 |
| 6 | DiabetesPedigreeFunction | 768 non-null   | float64 |
| 7 | Age                      | 768 non-null   | int64   |
| 8 | Outcome                  | 768 non-null   | int64   |

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

```
[7]: #know the target data
      data['Outcome'].value_counts()
 [7]: 0
           500
           268
      1
      Name: Outcome, dtype: int64
 [8]: #create histogram distribution of the data
      plt.hist(data['Glucose'])
      plt.show()
               200
               175
               150
               125
               100
                75
                50
                25
                 0
                            25
                                   50
                                          75
                                                100
                                                       125
                                                              150
                                                                     175
                                                                            200
 [9]: data[(data['Glucose']==0)].shape
 [9]: (5, 9)
[10]: data['Glucose'].mean()
[10]: 120.89453125
[11]: #fill these zeros
      data.loc[data['Glucose']==0,'Glucose']=120.8945312
[12]: data[(data['Glucose']==0)].shape
```

[12]: (0, 9)

[13]: #create histogram distribution of the data
plt.hist(data['BloodPressure'])
plt.show()



[14]: #create histogram distribution of the data
plt.hist(data['SkinThickness'])
plt.show()



```
[15]: # data is not normally distribute. right skeweness right side long tail.
plt.hist(data['Insulin'])
plt.show()
```



```
[16]: plt.hist(data['BMI'])
  plt.show()
```







# [18]: plt.hist(data['DiabetesPedigreeFunction']) plt.show()



## [19]: data.describe().T # T transpose

| 5 . 67 |                          |         |             | _          |        | ~ = 0/   | , |
|--------|--------------------------|---------|-------------|------------|--------|----------|---|
| [19]:  |                          | count   | mean        | std        | min    | 25%      | \ |
|        | Pregnancies              | 768.0   | 3.845052    | 3.369578   | 0.000  | 1.00000  |   |
|        | Glucose                  | 768.0   | 121.681605  | 30.436016  | 44.000 | 99.75000 |   |
|        | BloodPressure            | 768.0   | 69.105469   | 19.355807  | 0.000  | 62.00000 |   |
|        | SkinThickness            | 768.0   | 20.536458   | 15.952218  | 0.000  | 0.00000  |   |
|        | Insulin                  | 768.0   | 79.799479   | 115.244002 | 0.000  | 0.00000  |   |
|        | BMI                      | 768.0   | 31.992578   | 7.884160   | 0.000  | 27.30000 |   |
|        | DiabetesPedigreeFunction | 768.0   | 0.471876    | 0.331329   | 0.078  | 0.24375  |   |
|        | Age                      | 768.0   | 33.240885   | 11.760232  | 21.000 | 24.00000 |   |
|        | Outcome                  | 768.0   | 0.348958    | 0.476951   | 0.000  | 0.00000  |   |
|        |                          |         |             |            |        |          |   |
|        |                          | 50      | % 75°       | % max      |        |          |   |
|        | Pregnancies              | 3.000   | 0 6.00000   | 17.00      |        |          |   |
|        | Glucose                  | 117.000 | 0 140.25000 | 199.00     |        |          |   |
|        | BloodPressure            | 72.000  | 0 80.0000   | 122.00     |        |          |   |
|        | SkinThickness            | 23.000  | 0 32.0000   | 99.00      |        |          |   |
|        | Insulin                  | 30.500  | 0 127.25000 | 846.00     |        |          |   |
|        | BMI                      | 32.000  | 0 36.60000  | 0 67.10    |        |          |   |
|        | DiabetesPedigreeFunction | 0.372   | 5 0.6262    | 5 2.42     |        |          |   |
|        | Age                      | 29.000  | 0 41.0000   | 81.00      |        |          |   |
|        | Outcome                  | 0.000   |             |            |        |          |   |
|        | - · · · · <del></del>    |         |             |            |        |          |   |

```
[20]: #data exploration
      variables = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
      for i in variables:
          data[i].replace('0',np.nan)
          data[i].fillna(data[i].median(), inplace=True)
[21]: data.head()
[21]:
         Pregnancies
                     Glucose BloodPressure SkinThickness
                                                               Insulin
                                                                          BMI
                   6
                         148.0
                                            72
                                                           35
                                                                         33.6
                   1
                         85.0
                                                           29
                                                                         26.6
      1
                                            66
                                                                      0
      2
                   8
                         183.0
                                            64
                                                                         23.3
                                                            0
                                                                      0
      3
                          89.0
                                            66
                                                           23
                                                                         28.1
                   1
                                                                     94
      4
                   0
                         137.0
                                            40
                                                           35
                                                                    168 43.1
                                         Outcome
         DiabetesPedigreeFunction Age
      0
                             0.627
                                     50
                                                1
                             0.351
                                                0
      1
                                     31
      2
                             0.672
                                     32
                                                1
      3
                             0.167
                                     21
                                                0
                             2.288
                                     33
                                                1
[22]: variables = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
      for i in variables:
          #data[i].replace(0,np.nan)
          data[i].replace(0,data[i].median(), inplace=True)
[23]: data.head()
[23]:
         Pregnancies
                     Glucose BloodPressure SkinThickness
                                                               Insulin
                                                                          BMI
                   6
                         148.0
                                            72
                                                                   30.5
                                                                         33.6
      0
      1
                   1
                         85.0
                                            66
                                                           29
                                                                   30.5
                                                                         26.6
      2
                   8
                         183.0
                                            64
                                                           23
                                                                   30.5
                                                                         23.3
      3
                    1
                         89.0
                                            66
                                                           23
                                                                   94.0
                                                                         28.1
                         137.0
                                            40
                                                                  168.0 43.1
                   0
                                                           35
         DiabetesPedigreeFunction Age
                                         Outcome
      0
                             0.627
                                     50
                             0.351
                                                0
      1
                                     31
      2
                             0.672
                                     32
                                                1
      3
                                                0
                             0.167
                                     21
      4
                             2.288
                                                1
                                     33
```

- 1 plotting count
- 2 create satter chart
- 3 perform correlation analysis



| [26]: | dib_person=data[data['Outcome']==1] |             |         |               |               |         |      |   |  |
|-------|-------------------------------------|-------------|---------|---------------|---------------|---------|------|---|--|
| [27]: | dib_                                | person      |         |               |               |         |      |   |  |
| [27]: |                                     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | \ |  |
|       | 0                                   | 6           | 148.0   | 72            | 35            | 30.5    | 33.6 |   |  |
|       | 2                                   | 8           | 183.0   | 64            | 23            | 30.5    | 23.3 |   |  |
|       | 4                                   | 0           | 137.0   | 40            | 35            | 168.0   | 43.1 |   |  |
|       | 6                                   | 3           | 78.0    | 50            | 32            | 88.0    | 31.0 |   |  |
|       | 8                                   | 2           | 197.0   | 70            | 45            | 543.0   | 30.5 |   |  |
|       |                                     | •••         | •••     | •••           |               | •••     |      |   |  |
|       | 755                                 | 1           | 128.0   | 88            | 39            | 110.0   | 36.5 |   |  |
|       | 757                                 | 0           | 123.0   | 72            | 23            | 30.5    | 36.3 |   |  |
|       | 759                                 | 6           | 190.0   | 92            | 23            | 30.5    | 35.5 |   |  |

| 761 | 9              | 170.0       |     | 74      | 31 | 30.5 | 44.0 |
|-----|----------------|-------------|-----|---------|----|------|------|
| 766 | 1              | 126.0       |     | 60      | 23 | 30.5 | 30.1 |
|     |                |             |     |         |    |      |      |
|     | DiabetesPedigr | reeFunction | Age | Outcome |    |      |      |
| 0   |                | 0.627       | 50  | 1       |    |      |      |
| 2   |                | 0.672       | 32  | 1       |    |      |      |
| 4   |                | 2.288       | 33  | 1       |    |      |      |
| 6   |                | 0.248       | 26  | 1       |    |      |      |
| 8   |                | 0.158       | 53  | 1       |    |      |      |
|     |                |             |     | •••     |    |      |      |
| 755 |                | 1.057       | 37  | 1       |    |      |      |
| 757 |                | 0.258       | 52  | 1       |    |      |      |
| 759 |                | 0.278       | 66  | 1       |    |      |      |
| 761 |                | 0.403       | 43  | 1       |    |      |      |
| 766 |                | 0.349       | 47  | 1       |    |      |      |
|     |                |             |     |         |    |      |      |

[268 rows x 9 columns]

```
[28]: sns.histplot(x=dib_person['Glucose'])
plt.show()
```



```
[29]: dib_person['Glucose'].value_counts().head(10)
```

```
[29]: 125.0
      128.0
                6
      129.0
                6
      158.0
                6
      115.0
                6
      181.0
                5
      173.0
                5
      162.0
      124.0
                5
      146.0
                5
```

Name: Glucose, dtype: int64

## [30]: sns.histplot(x=dib\_person['BloodPressure']) plt.show()



## [31]: dib\_person['BloodPressure'].value\_counts().head(10)

```
[31]: 72
             32
      70
             23
      76
             18
      74
             17
      78
             17
      64
             13
      80
             13
      82
             13
```

84 1268 12

Name: BloodPressure, dtype: int64

```
[32]: #scatter plot to find data who have diabetic
plt.scatter(x=dib_person['BloodPressure'],y=dib_person['Glucose'])
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
```

[32]: Text(0, 0.5, 'Glucose')



```
[33]: sns.scatterplot(x='Glucose',y='BloodPressure',hue='Outcome',data=data)
```

[33]: <AxesSubplot:xlabel='Glucose', ylabel='BloodPressure'>



[34]: sns.scatterplot(x='SkinThickness',y='Insulin',hue='Outcome',data=data)

[34]: <AxesSubplot:xlabel='SkinThickness', ylabel='Insulin'>



```
data.corr()
[35]:
                                Pregnancies
                                              Glucose BloodPressure
                                                                       SkinThickness
      Pregnancies
                                   1.000000
                                             0.127964
                                                             0.208615
                                                                            0.032568
      Glucose
                                   0.127964 1.000000
                                                             0.218623
                                                                            0.172361
      BloodPressure
                                   0.208615
                                             0.218623
                                                             1.000000
                                                                            0.147809
      SkinThickness
                                   0.032568 0.172361
                                                             0.147809
                                                                            1.000000
      Insulin
                                  -0.055697
                                             0.357081
                                                            -0.028721
                                                                            0.238188
      BMI
                                   0.021546 0.231469
                                                             0.281132
                                                                            0.546951
      DiabetesPedigreeFunction
                                                            -0.002378
                                                                            0.142977
                                  -0.033523 0.137106
                                             0.266600
                                                             0.324915
      Age
                                   0.544341
                                                                            0.054514
      Outcome
                                   0.221898
                                             0.492908
                                                             0.165723
                                                                            0.189065
                                 Insulin
                                               BMI
                                                    DiabetesPedigreeFunction \
      Pregnancies
                               -0.055697 0.021546
                                                                    -0.033523
      Glucose
                                0.357081 0.231469
                                                                     0.137106
      BloodPressure
                               -0.028721 0.281132
                                                                    -0.002378
      SkinThickness
                                0.238188 0.546951
                                                                     0.142977
      Insulin
                                1.000000 0.189022
                                                                     0.178029
      BMI
                                0.189022 1.000000
                                                                     0.153506
      DiabetesPedigreeFunction 0.178029 0.153506
                                                                     1.000000
      Age
                               -0.015413
                                          0.025744
                                                                     0.033561
      Outcome
                                0.148457 0.312249
                                                                     0.173844
                                     Age
                                           Outcome
      Pregnancies
                                0.544341
                                         0.221898
      Glucose
                                0.266600 0.492908
      BloodPressure
                                0.324915 0.165723
      SkinThickness
                                0.054514 0.189065
      Insulin
                               -0.015413 0.148457
      BMI
                                0.025744 0.312249
      DiabetesPedigreeFunction 0.033561 0.173844
      Age
                                1.000000 0.238356
                                0.238356
      Outcome
                                          1.000000
[68]: plt.figure(figsize=(5,5))
      sns.heatmap(data.corr(),annot=True,cmap='viridis')
```

#### [68]: <AxesSubplot:>

[35]: #correlation analysis. Visual



## 4 DATA MODELLING

```
[37]: #DATA preporcocessing
      X=data.iloc[:,:-1].values
[38]: X
                                                33.6
[38]: array([[
                 6.
                      , 148.
                                   72.
                                                           0.627,
                                                                   50.
                                                                          ],
                                                           0.351,
                                                                   31.
                                                                          ],
                 1.
                         85.
                                   66.
                                                26.6
              8.
                      , 183.
                                   64.
                                                23.3
                                                           0.672,
                                                                   32.
                                                                          ],
             ...,
```

```
[ 1.
                    , 126.
                                60.
                                           30.1 ,
                                                     0.349,
                                                                   ],
                                                             47.
            [ 1.
                       93.
                                70.
                                      , ...,
                                           30.4 ,
                                                     0.315,
                                                             23.
                                                                   ]])
[39]: y=data.iloc[:,-1].values
[40]: y
[40]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
            1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
            1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
            1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,
            0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
            0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
            1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
[41]: #train set test tst split
```

[ 5.

, 121.

72.

26.2 ,

0.245,

30.

],

from sklearn.model\_selection import train\_test\_split

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.
       \rightarrow 2, random_state=10)
[42]: X train.shape
[42]: (614, 8)
[43]: X_test.shape
[43]: (154, 8)
[44]: import warnings
      warnings.filterwarnings('ignore')
        1.Logistic regression
[45]: from sklearn.linear_model import LogisticRegression #LR is Class so we create_
       \hookrightarrow object
      model1=LogisticRegression()
[46]: #training
      model1.fit(X_train,y_train)#training fit an be used
[46]: LogisticRegression()
[47]: y_pred1=model1.predict(X_test)
[48]: #train score & test score
      print('Train score', model1.score(X_train, y_train))
      print('Test score', model1.score(X_test, y_test))
     Train score 0.7752442996742671
     Test score 0.7597402597402597
[49]: from sklearn.metrics import confusion_matrix,classification_report
[52]: print(confusion_matrix(y_test,y_pred1))
      # 0
               1 (output)
                FP
      #O TN
      #1 FN
      # recall formula=TP/TP+FN
     [[87 8]
      [29 30]]
```

```
[53]: print(classification_report(y_test,y_pred1))
                                recall f1-score
                   precision
                                                    support
                0
                        0.75
                                  0.92
                                             0.82
                                                         95
                        0.79
                                  0.51
                1
                                             0.62
                                                         59
                                             0.76
                                                        154
         accuracy
                        0.77
                                  0.71
                                             0.72
                                                        154
        macro avg
     weighted avg
                        0.77
                                  0.76
                                             0.75
                                                        154
[58]: #Prepare ROC curve
      from sklearn.metrics import roc_auc_score,roc_curve
      prob=model1.predict_proba(X)
      #prob
      #select prob for the psitive outcome onnly
      prob=prob[:,1]
      #calculate area under the curve
      auc=roc_auc_score(y,prob)
      print('AUC score:',auc)
     AUC score: 0.843417910447761
[61]: #claculat roc curve
      fpr,tpr,thresholds=roc_curve(y,prob)
      #plot
      plt.plot([0,1],[0,1],linestyle='--')
      plt.plot(fpr,tpr,marker='.')
```

[61]: [<matplotlib.lines.Line2D at 0x7f808516b510>]



```
[62]: import joblib
      joblib.dump(model1, 'Logistic.pkl')
      print('model1saved')
     model1saved
[64]: #Load the model
      Pred_model=joblib.load('Logistic.pkl')
      print('model loaded')
     model loaded
[65]: data.columns
[65]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
            dtype='object')
[66]: Pregnancies=2
      Glucose=148
      BloodPressure=72
      SkinThickness=40
      Insulin=100
      BMI=25.5
      DiabetesPedigreeFunction=0.35
      Age=35
```

#### Person has [0]

```
[67]: #another file you predict the model
import joblib
Pred_model=joblib.load('Logistic.pkl')
print('model loaded')
```

## model loaded

2. Decision Tree 3. Random forest 4. KNN 5, SVM

## []: