БЛОК І. РАЗМИНКА

I.1 Файл «**ozone.csv**» предоставляет таблицы с данными по общим объемам озона в октябре в единицах Добсона 1 и по двум компонентам хлорфторуглерода F11 и F12 в числе частей на триллион по объему (pptv) за период 1957–1984 гг. 2 .

Прочитать и выполнить парсинг этих данных и изобразить их на наиболее подходящей диаграмме.

- **1.2 На странице**³ Википедия предоставляет список значений распространенности элементов на Солнце и в Солнечной системе в виде таблицы HTML (наряду с другими подобными данными). Использовать метод *read_html* из библиотеки рапdas для чтения и парсинга данных Кайе и Лаби (Кауе and Laby) (столбец с заголовком «Y1») и создать столбиковую диаграмму (гистограмму), демонстрирующую правило Оддо-Гаркинса: элементы с четными атомными номерами более распространены, чем соседние с ними элементы с нечетными атомными номерами.
- **1.3** Диаграмма Герцшпрунга-Рассела (или Рессела) классифицирует звезды на точечной диаграмме: каждая звезда представлена точкой, координатой х которой является активная температура, а координатой у светимость (звездная величина), мера электромагнитного излучения звезды. Файл «**hygdata_v3-abridged.csv**» предоставляет данные базы данных HYG-database⁴, в которой представлены данные о 119 614 звездах. Прочитать эти данные с помощью методов библиотеки pandas и создать диаграмму Герцшпрунга-Рассела. Столбец светимости идентифицируется как 'lum' в заголовке, а температуру звезды можно вычислить по ее показателю цвета (также обозначаемому как (B-V) и определяемому по столбцу с меткой 'ci'), воспользовавшись формулой Баллестероса:

$$\frac{T}{K} = 4600 \left(\frac{1}{0.92(B-V) + 1.7} + \frac{1}{0.92(B-V) + 0.62} \right)$$

Следует отметить, что светимость лучше всего отображается на логарифмической шкале, а ось температуры обычно изображается в обратном направлении (с уменьшением температуры слева направо на диаграмме).

I.4 Transport for London (TfL) – это публично-правовая корпорация, явля- юща-

¹Единица Добсона (Dobson unit) равна слою чистого озона 10 мкм (0.01 мм) при стандартных давлении и температуре, образующегося из общего объема озона в атмосфере над какой-либо областью поверхности Земли.

²C_M. Farman et al., Nature 315, 207 (1985)

³https://en.wikipedia.org/wiki/Abundances_of_the_elements_(data_page)

⁴База данных https://github.com/astronexus/HYG-Database, опубликованная под защитой лицензии Creative Commons Attribution-ShareAlike.

яся функциональным подразделением администрации Лондона и отвечающая за управление транспортной системой Лондона, включая координацию работы общественного транспорта, содержание главных дорог и светофоров. В файле «multi-year-station-entry-and-exit-figures.xls» содержатся статистические данные об использовании сети подземного транспорта (The Tube –лондонское метро) в форме количества входящих и выходящих пассажиров за «обычный» день на каждой станции за период 2007–2017 гг.

Прочитать этот документ средствами библиотеки pandas и проанализировать его, чтобы определить:

- самую загруженную станцию в обычный день в 2017 г.;
- станцию с наибольшим приростом пассажиропотока за период 2007–2017 гг.;
- станцию с наибольшей относительной разностью между количеством пассажиров в рабочие дни и в обычное воскресенье в 2017 г.

I.5 В файле «**CO2-transitions.par**» содержится база данных HITRAN ⁵, которая предоставляет список значений интенсивности молекулярных линий для моделирования лучистого теплообмена в атмосферах планет (астрофизика молекулярных линий). Собственный формат этой базы данных представлен в виде записей длиной 160 символов с фиксированной шириной полей.

Использовать pandas для чтения файла «**CO2-transitions.par**». Данные представлены в виде полей фиксированной длины. Нужные поля содержатся в колонках 4-15 (волновые числа, $\widetilde{\nu}$, см $^{-1}$) и колонки 16-25 (интенсивность спектральных (молекулярных) линий, S, при $T=296 {\rm K}$, см $^{-1}/$ площадь молекулы (?) см $^{-2}$)

Построить график зависимости интенсивности молекулярных линий от длины волны при лучистом теплообмене в инфракрасной области спектра ($\lambda=$ от 1 микрона до 20 микрон, соответствующая волновым числам $\widetilde{\nu}=$ от $500 {\rm cm}^{-1}$ до $10000 {\rm cm}^{-1}$), где диоксид углерода (${\rm CO}_2$) отвечает в значительной степени за возникновение парникового эффекта в атмосфере Земли.

⁵https://hitran.org