Statistical analysis and data mining complimentary

Daria Bystrova

e-mail: daria.bystrova@inria.fr

https://sites.google.com/view/dariabystrova/home

Information

- *Time*: 11.30 13H room F115
- Duration: 11 weeks
- Content: additional theory, exercises and lab works for the main course.
- Grading: course will be graded by the practical works. (1)
- Books:
 - The Elements of Statistical Learning
 - An Introduction to Statistical Learning

Multiple linear regression

Model: We have real-valued output Y and input vector $X = (X_1, ..., X_p)$ with p predictors:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- $\boldsymbol{\beta} = (\beta_0, ..., \beta_p)$ unknown constants called coefficients or parameters
- β_0 is called intercept
- ϵ random error term
- If we estimate $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p$ then

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p,$$

 \hat{y} is prediction of Y on the basis of $X=(x_1,...,x_p)$

Simple linear regression model

We assume a model:

How do we estimate $\hat{\beta}_0$ and $\hat{\beta}_1$?

Simple linear regression model

Our model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Estimation of $\hat{\beta}_0$ and $\hat{\beta}_1$:

We have n independent observations: $\{(x_i, y_i)\}_{i=1}^n$

Simple linear regression model

Our model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Estimation of $\hat{\beta}_0$ and $\hat{\beta}_1$:

We have n independent observations: $\{(x_i, y_i)\}_{i=1}^n$

Least squares estimators

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
 $i = 1,...,n$

We define residual sum of squares (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Least square estimators

$$\hat{\beta}_0, \hat{\beta}_1 = argmin_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\nabla RSS = \left(\frac{\partial RSS}{\partial \beta_0}, \frac{\partial RSS}{\partial \beta_1}\right), \nabla RSS = (0,0)$$

$$\begin{cases}
\frac{\partial RSS}{\partial \beta_0} = -2\left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)\right] = 0 \\
\frac{\partial RSS}{\partial \beta_1} = -2\left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)x_i\right] = 0
\end{cases}$$

Least square estimators

$$\hat{\beta}_0, \hat{\beta}_1 = argmin_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\nabla RSS = \left(\frac{\partial RSS}{\partial \beta_0}, \frac{\partial RSS}{\partial \beta_1}\right), \nabla RSS = (0,0)$$

$$\begin{cases} \frac{\partial RSS}{\partial \beta_0} = -2\left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)\right] \implies \beta_0 = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i \\ \frac{\partial RSS}{\partial \beta_1} = -2\left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i\right] = 0 \end{cases}$$

Reminder:
$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 sample mean, $S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ sample variance $c_{xy} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)$ sample covariance

Least square estimators

$$\hat{\beta}_0, \hat{\beta}_1 = argmin_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\beta_0 = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i = \overline{y}_n - \beta_1 \overline{x}_n = 0$$

$$-2\left[\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) x_i\right] = \sum_{i=1}^{n} x_i y_i - \beta_1 \sum_{i=1}^{n} x_i^2 - \left[\overline{y}_n - \beta_1 \overline{x}_n\right] \sum_{i=1}^{n} x_i \implies$$

$$\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \overline{y}_{n} - \beta_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - \overline{x}_{n} \sum_{i=1}^{n} x_{i} \right) = 0 \implies \beta_{1} = \frac{c_{xy}}{S_{x}^{2}} \text{ slope}$$

 C_{xy}

Intercept
$$\beta_0 = \overline{y}_n - \frac{S_{xy}}{S_x^2} \overline{x}_n$$

$$r_{xy} = \frac{c_{xy}}{S_x S_y}$$
 empirical correlation coefficient

- $r_{xy} \in [-1,1]$ $r_{xy} = 1$ positive linear dependence
- $r_{xy} = -1$ negative dependence

$$r_{xy} = \frac{c_{xy}}{S_x S_y}$$
 empirical correlation coefficient

Correlation coefficient does not change with centering or scaling of the variables

$$r_{xy} = \frac{c_{xy}}{S_x S_y}$$
 empirical correlation coefficient

- Correlation coefficient does not change with centering or scaling of the variables
- Correlation is symmetric (correlation of X with Y is the same as X with Y)

$$r_{xy} = \frac{c_{xy}}{S_x S_y}$$
 empirical correlation coefficient

- Correlation coefficient does not change with centering or scaling of the variables
- Correlation is symmetric (correlation of X with Y is the same as X with Y)
- Correlation coefficient is sensitive to outliers

Correlation does not imply causation!

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

From https://www.tylervigen.com

Question: When RSS is the smallest?

Question: When RSS is the smallest?

$$RSS = \sum_{i=1}^{n} (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)^2 = [\text{using the derived expressions}] ?$$

Question: When RSS is the smallest?

$$RSS = \sum_{i=1}^{n} (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)^2 = [\text{using the derived expressions}] =$$

$$= \sum_{i=1}^{n} (y_i - \overline{y}_n - \frac{c_{xy}}{S_x^2} (x_i - \overline{x}_n))^2 = \dots = \left[\sum_{i=1}^{n} (y_i - \overline{y}_i) \right] (1 - \frac{c_{xy}^2}{S_x^2 S_y^2}) = \dots$$

$$= \left[\sum_{i=1}^{n} (y_i - \overline{y}_i)^2\right] (1 - r_{xy}^2)$$

Answer: When $r_{xy} = \pm 1$

Accuracy of the model

. Residual standard error
$$RSE = \sqrt{\frac{1}{n-2}RSS}$$
 absolute measure lack of fit

19

Accuracy of the model

- . Residual standard error $RSE = \sqrt{\frac{1}{n-2}}RSS$ absolute measure lack of fit
- R^2 statistic measure proportion of variance explained
 - . Residual Sum of Squares $RSS = \sum_{i=1}^{n} (y_i \hat{y})^2$
 - . Total Sum of squares $TSS = \sum_{i=1}^{n} (y_i \overline{y}_n)$

$$\cdot R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

Accuracy of the model

- . Residual standard error $RSE = \sqrt{\frac{1}{n-2}}RSS$ absolute measure lack of fit
- R^2 statistic measure proportion of variance explained
 - . Residual Sum of Squares $RSS = \sum_{i=1}^{n} (y_i \hat{y})^2$
 - . Total Sum of squares $TSS = \sum_{i=1}^{n} (y_i \overline{y}_n)$

•
$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

In case of simple linear regression:

$$R^2 = 1 - \frac{RSS}{TSS} = 1 - \frac{TSS(1 - r_{xy}^2)}{TSS} = r_{xy}^2$$

Properties of estimators $\hat{\beta}_0$, $\hat{\beta}_1$

$$Y = \beta_0 + \beta_1 x + \epsilon$$

- We assume that random term ϵ has $\mathbb{E}[\epsilon] = 0$
- $\{(x_i, y_i)\}_{i=1}^n$ represent i.i.d random sample of size n
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators:

•
$$\mathbb{E}[\hat{\beta}_0] = \beta_0$$

•
$$\mathbb{E}[\hat{\beta}_1] = \beta_1$$

$$Var[\hat{\beta}_1] = \frac{Var[\epsilon]}{nS_x^2}$$

$$Var[\hat{\beta}_0] = \frac{Var[\epsilon]}{n} (1 + \frac{\overline{x}_n}{S_x^2})$$