Statistical Science	HDDA bonus exercise 2
Leiden University	September 24, 2024

Follow the instructions below carefully:

- Do not load any package but the default ones (like base).
- Load the assignmentA_grpB.Rdata file with the assignment and group numbers substituted for A and B, respectively, into R. The file is available via Brightspace. Verify that you are using the correct file!
- Verify that two objects, named X and Y, have been loaded into R's memory. These objects contain the data on the response vector (Y) and design matrix (X).
- Consider the linear regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ without (!) intercept and $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_{nn})$, to explain the variation in the response Y by a linear combination of the columns of the design matrix X.
- Evaluate the generalized ridge estimator of regression parameter β of the linear regression model with target β_0 equal to the zero vector with the last p-B elements replaced by one and penalty parameter $\Delta = (1-\rho)\mathbf{I}_{pp} + \rho\mathbf{1}_{pp}$ with $\rho = 1/(41+B)$ in which the group number is substituted for B.
- Estimate the error variance σ^2 by $\frac{1}{n} \|\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})\|_2^2$, where n denotes the sample size and $\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})$ the generalized ridge estimator with $\boldsymbol{\beta}_0$ and $\boldsymbol{\Delta}$ as above. This yields part one of the solution of the bonus exercise that is to be send in.
- In the remainder replace Δ by $\lambda \Delta$ with $\lambda \in \{10, 20, 30, \dots, 200\}$. Evaluate the mean squared error (MSE) of the obtained generalized ridge regression estimator, defined as:

$$MSE[\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})] = tr\{Var[\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})]\} + \{\mathbb{E}[\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})] - \boldsymbol{\beta}\}^{\top}\{\mathbb{E}[\hat{\boldsymbol{\beta}}(\boldsymbol{\beta}_0, \boldsymbol{\Delta})] - \boldsymbol{\beta}\},$$

in which the true regression parameter β is assumed to equal the zero vector and the error variance $\sigma^2 = 1$. Find the λ that minimizes the MSE of $\hat{\beta}(\beta_0, \lambda \Delta)$. This minizing λ is part two of the solution that is to be send in.

• Send your answer in before 23:59 CET, October 7, 2024. Instructions for composing the email can be found in the pdf-file with information on the hand-in assignments.