```
# Reading CSV file
import pandas as pd
data = pd.read_csv('salary_data.csv') # Giving the relative path of the file
# i.e. telling where my file is with respect to where i am
```

Printing the contents of data
data.head()

→		YearsExperience	Salary			
	0	1.1	39343.0	ıl.		
	1	1.3	46205.0			
	2	1.5	37731.0			
	3	2.0	43525.0			
	4	2.2	39891.0			
Next step		Generate code with	data		View recommended plots	New interactive sheet

Printing information of data
data.describe()

→		YearsExperience	Salary	
	count	30.000000	30.000000	11.
	mean	5.313333	76003.000000	
	std	2.837888	27414.429785	
	min	1.100000	37731.000000	
	25%	3.200000	56720.750000	
	50%	4.700000	65237.000000	
	75 %	7.700000	100544.750000	
	max	10.500000	122391.000000	

```
# Getting X and y values
X = data.iloc[:, [0]].values # Getting the Oth position column i.e. YearsExperie
y = data.iloc[:, 1].values # Getting the 1th position column i.e. Salary

# Splitting the X and y to training set and testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
```

Creating Model

1 of 3 11/08/24, 21:59

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
# Fitting/training the dataset
model.fit(X train, y train)
▼ LinearRegression
     LinearRegression()
# Predicting the values using testing set
y pred = model.predict(X test)
# Plotting the Graph
import matplotlib.pyplot as plt
plt.scatter(X_test, y_test, label='Actual Datapoints')
plt.scatter(X test, y pred, label='Predicted Datapoints', c='green')
plt.plot(X train, model.predict(X train), label='Regression Line', color='red'
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.legend()
plt.show()
Actual Datapoints
        120000
                      Predicted Datapoints
                      Regression Line
        100000
         80000
         60000
         40000
                       2
                                   4
                                               6
                                                           8
                                                                      10
                                      Years of Experience
# Evaluating the Model
from sklearn.metrics import mean squared error, r2 score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print('Mean Squared Error is:', mse)
nrint/'R^2 Scare is. 1 r21
```

2 of 3 11/08/24, 21:59

PITHL N & JOHE TO. , 14/

Mean Squared Error is: 12823412.298126549 R^2 Score is: 0.988169515729126

3 of 3 11/08/24, 21:59