

Egn Yn_1 = 1 / sqrt(coupling_coeff + 1)

coupling_coeff = 1

- Yn_2 = sqrt(coupling_coeff / (coupling_coeff + 1))
- $S_theor = -j * \{\{0, Yn_1, 0, Yn_2\}, \{Yn_1, 0, Yn_2, 0\}, \{0, Yn_2, 0, -Yn_1\}, \{Yn_2, 0, -Yn_1, 0\}\}$

S_theor(3, 1)

S theor(3, 3)

<-infinity> / 0.000

<-infinity> / 0.000

S_theor(4, 1)

S theor(4, 3)

-3.010 / -90.000

-3.010 / 90.000

S_theor(1, 1)	S_theor(2, 1)	
<-infinity> / 0.000	-3.010 / -90.000	
S_theor(1, 3)	S_theor(2, 3)	

<-infinity> / 0.000

Eqn Z0 = 50 Eqn Z1 = Z0 / Yn_1 Eqn Z2 = Z0 / Yn_2

-3.010 / -90.000

Yn_1	Yn_2	Z1	Z2
0.707	0.707	70.711	70.711