UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

THIAGO BELL

Laboratório 5 - Algoritmo de Cristofides

1.1 Tarefa

Implementar o algoritmo de Cristofides para o problema do caixeiro viajante.

1.2 Implementação

O algoritmo foi implementado em C++. A implementação de grafo é feita através do armazenamento de cada aresta em uma estrutura de dados especial. Em diferentes momentos da execução do algoritmo é necessário acessar essa informação de formas diferentes. No cálculo da *minimum spanning tree* precisa-se ordenar as arestas por comprimento e no pareamento precisa-se acessá-las a partir dos seus respectivos vértices. Por isso, armazena-se listas de ponteiros. Uma lista de arestas para cada vértice utilizando ponteiros também é utilizada. Assim, pode-se ordenar os ponteiros e manter a ordem anterior mantendo válida outras referências a esses dados.

Cada estrutura de arestas, representava uma ou mais arestas nao direcionadas entre dois vértices. Um campo númerico determinava o número de arestas paralelas entre os vértices. No caso de uma aresta estar na *minimum spanning tree* e também ser selecionada no pareamento esse número passa a ser dois.

O algoritmo usado para o cálculo da minimum spanning tree foi o de Kruskal com complexidade O(logn) onde n é o número de vértices. Para o ciclo euleriano, foi usado o algoritmo de Hierholzer com custo O(m).

1.3 Ambiente de Teste

Os experimentos foram realizados usando um processador Intel i7-2600k acompanhado de 8 GiB de RAM. O sistema operacional utilizado foi Ubuntu Linux.

1.4 Testes Realizados

Testes foram realizados com as redes sugeridas. Os tempos de execução foram medidos. Os resultados foram comparados com os caminhos ótimos apresentados na TSPLIB.

1.5

1.6 Conclusão

Implementou-se o algoritmo de Hopcroft-Karp . Verificou-se que a implementação respeita a complexidade do algoritmo. Além disso, esse algoritmo tem melhor performance que o de Fork-Fulkerson com uma mesma instância reduzida ao problema de fluxo máximo.