Hence, we proved the following connection between the resultant and the discriminant

$$a_0 \operatorname{Disc}(f) = (-1)^{n(n-1)/2} \operatorname{Res}(f, f'),$$
 (11.7)

which can serve as the definition of the discriminant of a polynomial in an arbitrary commutative ring with unity. The elements different from zero in the first row of the matrix from the definition of $\operatorname{Res}(f,f')$ are a_0 and na_0 . Therefore, $\operatorname{Res}(f,f')$ is a multiple of a_0 and $\operatorname{Disc}(f)$ is a polynomial with integer coefficients in variables a_0,\ldots,a_n . From

$$Disc(f) = (-1)^{n(n-1)/2} a_0^{n-2} \prod_{i=1}^n f'(\alpha_i)$$

and Corollary 11.11, it follows that for $f \in A[x]$, where A is an integral domain of characteristic 0, f has multiple roots (i.e. it is not square-free) if and only if $\mathrm{Disc}(f) = 0$.

11.3 Irreducibility of polynomials

Definition 11.4. Let A be an integral domain. We say that a polynomial $f \in A[x]$ is reducible (in A[x], or over A) if it can be written in the form f = gh, where $g, h \in A[x] \setminus A$. If a non-constant polynomial is not reducible, then we say that it is irreducible (over A).

We are first interested in the irreducibility of polynomials over \mathbb{Z} . The following result is a direct consequence of Gauss' lemma for polynomials (Lemma 11.4).

Corollary 11.12. A polynomial with integer coefficients is irreducible over \mathbb{Z} if and only if it is irreducible over \mathbb{Q} .

Proof: It is clear that the irreducibility over $\mathbb Q$ implies the irreducibility over $\mathbb Z$. We will prove the converse. Let $f\in\mathbb Z[x]$ and f=gh, where $g,h\in\mathbb Q[x]$. We can assume that $\cot(f)=1$. Let us choose a positive integer m such that $mg\in\mathbb Z[x]$. Let $\cot(mg)=n$. Then for $r=m/n\in\mathbb Q$, we have $rg\in\mathbb Z[x]$ and $\cot(rg)=1$. Analogously, we choose $s\in\mathbb Q$ such that $sh\in\mathbb Z[x]$ and $\cot(sh)=1$. Now, by Gauss' lemma 11.4, $\cot(rg)\cot(sh)=\cot(rsgh)$. From $\cot(rsf)=1$ and $\cot(f)=1$, we conclude that rs=1, so

$$f = (rg)(sh)$$

is a factorization of f over \mathbb{Z} .

348 POLYNOMIALS

When examining the (ir)reducibility of a polynomial over \mathbb{Q} , it is useful to first examine whether the polynomial has rational roots, i.e. linear factors. In doing so, the following theorem may be useful.

Theorem 11.13. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, and let $\alpha = r/s \in \mathbb{Q}$, where gcd(r, s) = 1, be a rational root of f. Then $r \mid a_0$ and $s \mid a_n$.

Proof: If f(r/s) = 0, then also $s^n f(r/s) = 0$, so we have

$$0 = a_n r^n + a_{n-1} r^{n-1} s + \dots + a_1 r s^{n-1} + a_0 s^n$$

$$= a_n r^n + s (a_{n-1} r^{n-1} + \dots + a_1 r s^{n-2} + a_0 s^{n-1})$$

$$= r (a_n r^{n-1} + a_{n-1} r^{n-2} s + \dots + a_1 s^{n-1}) + a_0 s^n.$$
(11.8)

Now, from (11.8), it follows that $s \mid a_n r^n$, and since $\gcd(r, s) = 1$, we obtain $s \mid a_n$. Analogously, from (11.9), it follows that $r \mid a_0 s^n$ and $r \mid a_0$.

The statement of Theorem 11.13 holds (with an analogous proof) for polynomials $f \in A[x]$, where A is a unique factorization domain, and roots $\alpha = r/s \in \mathbb{Q}(A)$, where $\mathbb{Q}(A)$ is the *fraction field* of A, i.e. the smallest field which contains A. For example, the fraction field of \mathbb{Z} is \mathbb{Q} , whilst the fraction field of K[x] is the field of rational functions K(x) on K.

If the polynomial $f \in \mathbb{Z}[x]$ is reducible, then we may ask how to factorize it into the product of irreducible factors. Here, we will present $\mathit{Kronecker's}$ algorithm for factorization. If f(x) is reducible and $\deg f = n$, then it has a factor g(x) of degree $\leq r = \lfloor n/2 \rfloor$. In order to find g(x), let us consider numbers $c_j = f(j)$ for $j = 0, 1, \ldots, r$. If $c_j = 0$, then x-j divides f(x). And if $c_j \neq 0$, then g(j) divides c_j . For any choice of divisors $d_i \mid c_i, i = 0, 1, \ldots, r$, there is precisely one polynomial g(x) such that $\deg g \leq r$ and $g(j) = d_j$ for $j = 0, 1, \ldots, r$. This is the polynomial

$$g(x) = \sum_{j=0}^r d_j g_j(x), \quad \text{where} \quad g_j(x) = \prod_{\substack{0 \leq k \leq r \\ k \neq j}} \left(\frac{x-k}{j-k}\right)$$

(Lagrange's interpolation polynomial). Now, for each polynomial obtained in this manner, we need to check whether the coefficients of the polynomial q are integers and whether q(x) divides the polynomial f(x).

Let us mention that there are more efficient algorithms for factorization of integer polynomials which use a version of Hensel's lemma for polynomials (Berlekamp's algorithm) and LLL reduction (see [302, Chapters 4.2 and 4.3], [342, Chapter 8] and [345, Chapters 2.5 and 8.1]).

Let p be a prime number and $\mathbb{F}_p=\{0,1,\ldots,p-1\}$ the field of residues modulo p with the operations of addition and multiplication modulo p. For $a\in\mathbb{Z}$, we denote by \bar{a} the element of \mathbb{F}_p such that $a\equiv \bar{a}\pmod{p}$. Let $f(x)=a_0+a_1x+\cdots+a_nx^n\in\mathbb{Z}[x]$. Then we denote by \bar{f} the reduction of f modulo p, i.e. the polynomial

$$\bar{f}(x) = \bar{a}_0 + \bar{a}_1 x + \dots + \bar{a}_n x^n \in \mathbb{F}_p[x].$$

Theorem 11.14 (Schönemann, 1846). Let $f = g^n + ph \in \mathbb{Z}[x]$ be a monic polynomial, where n is a positive integer, p is a prime number and $g, h \in \mathbb{Z}[x]$. Assume that \bar{g} is irreducible in $\mathbb{F}_p[x]$ and that \bar{g} does not divide \bar{h} in $\mathbb{F}_p[x]$. Then the polynomial f is irreducible in $\mathbb{Z}[x]$.

Proof: Assume that $f=f_1f_2$ is a non-trivial factorization of f in $\mathbb{Z}[x]$. We can assume that the polynomials f_1,f_2 are monic. Then $\bar{f}=\bar{f}_1\cdot\bar{f}_2$ in $\mathbb{F}_p[x]$. Since $\bar{f}=\bar{g}^n$ and \bar{g} is irreducible in $\mathbb{F}_p[x]$, it follows that there exist positive integers u and v such that u+v=n and polynomials $h_1,h_2\in\mathbb{Z}[x]$, such that

$$f_1 = g^u + ph_1, \quad f_2 = g^v + ph_2.$$

From $f = g^n + ph = (g^u + ph_1)(g^v + ph_2)$, it follows that

$$h = g^u h_2 + g^v h_1 + p h_1 h_2. (11.10)$$

We can assume that $u \leq v$. Then (11.10) becomes

$$h = g^u h_3 + p h_1 h_2, (11.11)$$

where $h_3 = h_2 + g^{v-u}h_1 \in \mathbb{Z}[x]$. Consider the reduction of (11.11) modulo p. We have

$$\bar{h} = \bar{g}^u \cdot \bar{h}_3 \tag{11.12}$$

and we conclude that \bar{g} divides \bar{h} in $\mathbb{F}_p[x]$, which is a contradiction with the assumption of the theorem.

Theorem 11.15 (Eisenstein, 1850). *Let*

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

be a monic polynomial with integer coefficients and let p be a prime number such that p divides $a_0, a_1, \ldots, a_{n-1}$, but p^2 does not divide a_0 . Then f is irreducible in $\mathbb{Z}[x]$.

350 POLYNOMIALS

Proof: Let us write f in the form $f=g^n+ph$, where g(x)=x, $h(x)=(a_{n-1}x^{n-1}+\cdots+a_1x+a_0)/p$. Then all assumptions of Theorem 11.14 are satisfied $(a_0/p\not\equiv 0\pmod p)$ and $\bar g(x)=x$ does not divide $\bar h(x)$), so f is irreducible in $\mathbb Z[x]$.

Example 11.1. Let p be a prime number. Then the polynomial

$$f(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible in $\mathbb{Z}[x]$.

Solution: We will apply Eisenstein's criterion to the polynomial

$$f(x+1) = \frac{(x+1)^p - 1}{(x+1) - 1} = x^{p-1} + \binom{p}{1} x^{p-2} + \dots + \binom{p}{p-1}.$$

Each of the binomial coefficients $\binom{p}{i} = \frac{p(p-1)\cdot\ldots\cdot(p-i+1)}{1\cdot2\cdot\ldots\cdot i}$, for $i=1,\ldots,p-1$, is divisible by p, while $\binom{p}{p-1} = p$ is not divisible by p^2 , so the statement follows from Theorem 11.15.

Example 11.2. Let a_1, \ldots, a_n , $n \geq 2$, be distinct integers. Prove that the polynomial

$$f(x) = (x - a_1) \cdot \ldots \cdot (x - a_n) - 1$$

is irreducible in $\mathbb{Z}[x]$.

Solution: Assume that $f(x) = f_1(x)f_2(x)$ is a non-trivial factorization of f in $\mathbb{Z}[x]$. From $f(a_i) = -1 = f_1(a_i)f_2(a_i)$, it follows that

$$f_1(a_i) + f_2(a_i) = 0$$
, for $i = 1, \dots, n$.

Since the polynomial $f_1 + f_2$ has at least n roots and degree $\leq n - 1$, we conclude that $f_1 + f_2 = 0$. Now, from $f(x) = f_1(x)f_2(x)$, we obtain

$$(x - a_1) \cdot \dots \cdot (x - a_n) - 1 = -(f_1(x))^2.$$
 (11.13)

The leading coefficient on the left-hand side of (11.13) is equal to 1, while the one on the right-hand side is equal to -1, which is a contradiction. \diamondsuit

11.4 Polynomial decomposition

When we ask whether a polynomial can be factorized, we usually mean whether it can be written as a *product* of two (or more) non-trivial factors