Seja \mathbb{R} o conjunto dos números reais, munido de duas operações, chamadas adição e multiplicação, que satisfazem a certas condições, chamadas os axiomas de corpo, abaixo especificadas. A adição faz corresponder a cada par de elementos $x, y \in \mathbb{R}$ sua soma $x + y \in \mathbb{R}$, enquanto a multiplicação associa a esses elementos o seu produto $x \cdot y \in \mathbb{R}$. Os axiomas de corpo são os seguintes:

Axiomas da adição

- A1. Associatividade quaisquer que seja $x, y, z \in \mathbb{K}$, tem-se (x + y) + z = x + (y + z).
- A2. Comutatividade quaisquer que seja $x, y \in \mathbb{K}$, tem-se x + y = y + x.
- A3. Elemento neutro existe $0 \in \mathbb{K}$ tal que x + 0 = x, seja qual for $x \in \mathbb{K}$.
- A4. Simétrico todo elemento $x \in \mathbb{K}$ possui um simétrico $x \in \mathbb{K}$ tal que x + (-x) = 0. Axiomas da multiplicação
- M1. Associatividade dados quaisquer $x, y, z \in \mathbb{K}$, tem-se $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- M2. Comutatividade seja quais forem $x, y \in \mathbb{K}$, tem-se $x \cdot y = x \cdot y$.
- M3. Elemento neutro existe $1 \in \mathbb{K}$ tal que $1 \neq 0$ e $x \cdot 1 = x$, qualquer que seja $x \in \mathbb{K}$.
- M4. Inverso multiplicativo todo $x \neq 0$ em \mathbb{K} possui um inverso $x^{-1} \in \mathbb{K}$, tal que $x \cdot x^{-1} = 1$.

Questão 1: Crie um programa em Python capaz de somar e multiplicar dois elementos do conjunto \mathbb{R} , assim como, verificar seus respectivos axiomas.

Dica: Em M4, se $x, y, z \in \mathbb{N}$, então $x \cdot x^{-1} \in \mathbb{R}$.