مبادئ في المنطق

العيارة

العبارة هي كل نص رياضي صحيح لغويا و معناه يمكن أن يكون صحيحا أو خاطئا و لا يمكن أن يكون صحيحا و خاطئا في نفس الوقت

الدالة العيارية

هي كل نص رياضي يحتوي على متغير ينتمي إلى مجموعة معينة و يصبح عبارة كلما عوضنا هذا المتغير بعنصر محدد من هذه المجموعة

المكممات

المكمم الكوني

 $x\in E;\ P\left(x\right)$ لتكن $P\left(x\right)$ لتكن $P\left(x\right)$ تقرأ مهما يكن $P\left(x\right)$ من $P\left(x\right)$ أو تقرأ لكل $P\left(x\right)$ لدينا $P\left(x\right)$ تقرأ مهما يكن $P\left(x\right)$ من $P\left(x\right)$ أو تقرأ لكل $P\left(x\right)$ من $P\left(x\right)$ تحقق $P\left(x\right)$ المرمز $P\left(x\right)$ يسمى المكمم الكوني

المكمم الوجودي

```
x \in E; \ P(x) لتكن P(x) لتكن P(x) تعني يوجد عنصر X على الأقل من X يحقق Y(x) تعني يوجد عنصر Y(x) الرمز Y(x) يسمى المكمم الوجودي Y(x) تعني يوجد عنصر وحيد Y(x) من Y(x) يحقق Y(x) الرمز Y(x) يسمى المكمم الوجودي بالوحدانية
```

إذا كاتت المكممات من نفس الطبيعة فترتيبها غير مهم أما إذا كانت من طبيعيتين مختلفتين فترتيبها مهم

العمليات المنطقية

نفي عبارة

 $\overline{non}P$ نفي عبارة \overline{P} أو \overline{P}

تكون صحيحة إذا كانت P خاطئة و تكون خاطئة إذا كانت P صحيحة \overline{P}

P	\overline{P}
1	0
0	1

نفي عبارات مكممة

 $(\exists x \in E)$: $\overline{P(x)}$: هي العبارة P(x) : P(x) : في العبارة \blacksquare

 $(\forall x \in E)$: P(x) : في العبارة P(x) : هي العبارة $(\exists x \in E)$: P(x)

 $(\exists x \in E)(\exists y \in F)$: P(x,y) : مي العبارة $(\forall x \in E)(\forall y \in F)$: P(x,y) : نفي العبارة *

 $(\exists x \in E)(\forall y \in F): \overline{P(x,y)}$ عن العبارة: $(\forall x \in E)(\exists y \in F): P(x,y):$ عن العبارة: \bullet

الإستدلال بالمثال المضاد:

سحیح \overline{P} للبرهنة علی أن عبارة ما P خاطئة یکفی أن نبرهن أن نفیها \checkmark

للبرهنة على أن العبارة E من E من عنصر على الأقل عنصر E من عنصر كا للبرهنة على الأقل عنصر E بحيث تكون V

صحیحة $\overline{P(x)}$

الفصل المنطقى

نرمز لفصل عبارتین P و Q بالرمز : Q أو Q) أو Q و هو عبارة تكون صحیحة إذا كانت على الأقل إحدى العبارتین Q و صحیحة.

P	Q	$(P \vee Q)$
1	1	1
1	0	1
0	1	1
0	0	0

العطف المنطقي

نرمز لعطف عبارتین P و Q بالرمز : (Q و Q) أو $(P \land Q)$ و هو عبارة تكون صحیحة فقط في حالة إذا كانت العبارتین P و صحیحتین معا .

P	Q	$(P \wedge Q)$
1	1	1
1	0	0
0	1	0
0	0	0

الإستلزام

نرمز لإستلزام عبارتين P و Q بالرمز : $Q \Rightarrow Q$ و نقراً P تستلزم Q أو إذا كان P فإن Q و هو يكون خاطئا في حالة واحدة هي أن تكون P صحيحة و Q خاطئة

P	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

التكافؤ المنطقى

 $P \Leftrightarrow Q$: نرمز لتكافؤ عبارتين P و Q بالرمز $Q \Leftrightarrow Q$

و نقراً (P تكافئ Q) أو (Q تعني Q) أو (P إذا وفقط إذا كان Q

 $(Q \Rightarrow P$ و هو يعني $P \Rightarrow Q$ و

ويكون التكافؤ صحيحا إذا كانت ل P و Q نفس قيم الحقيقية

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

القوانين المنطقية

قوانين مورغان

$$P$$
 لتكن P و Q عبارتين ، لدينا : \overline{P} د \overline{Q} د . \overline{Q} د . \overline{Q} د . \overline{Q}

$$\overline{(P \land Q)} \Leftrightarrow \overline{P} \lor \overline{Q} \qquad \overline{(P \lor Q)} \Leftrightarrow \overline{P} \land \overline{Q}$$

$$P$$
لتكن P و Q و R ثلاث عبارات ، لدينا : $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$

قانون التكافؤات المتتالية

العبارة
$$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$$
 قاتون منطقي

قانون الإستلزام المضاد للعكس

العبارة
$$(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$$
 قانون منطقي

قانون الخلف

العبارة
$$P = \overline{Q} \wedge (\overline{P} \Rightarrow \overline{Q})$$
 قاتون منطقي

قانون فصل الحالات

العبارة
$$\lceil (P \!\Rightarrow\! Q) \!\wedge\! (Q \!\Rightarrow\! R)
ceil \!\Rightarrow\! \lceil (P \!\vee\! Q) \!\Rightarrow\! R
ceil$$
 قاتون منطقي

مبدأ الترجع

$$n$$
 لتكن $P(n)$ خاصية لمتغير صحيحي طبيعي

- محيحة $P\left(n_{0}\right)$ محيح الدا كان يوجد عدد صحيح طبيعي ما بحيث تكون بالم
- محیحة $(\forall n \geq n_0)$ $P(n) \Rightarrow P(n+1)$ صحیحة $(\forall n \geq n_0)$

فإن العبارة
$$P(n)$$
 صحيحة فإن العبارة