Create a database named *employee*, then import data_science_team.csv proj_table.csv and emp_record_table.csv into the employee database from the given resources.

CREATE DATABASE employee;

USE employee;

Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, and DEPARTMENT from the employee record table, and make a list of employees and details of their department.

SELECT EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPT FROM emp_record;

Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPARTMENT, and EMP_RATING if the EMP_RATING is:

- less than two
- greater than four
- between two and four

SELECT EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPT, EMP_RATING FROM emp_record WHERE EMP_RATING < 2;

SELECT EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPT, EMP_RATING FROM emp_record WHERE EMP_RATING > 4;

SELECT EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPT, EMP_RATING FROM emp_record WHERE EMP_RATING BETWEEN 2 AND 4;

Write a query to concatenate the FIRST_NAME and the LAST_NAME of employees in the *Finance* department from the employee table and then give the resultant column alias as NAME.

SELECT CONCAT(FIRST_NAME, LAST_NAME) AS NAME FROM emp_record WHERE DEPT = 'FINANCE';

Write a query to list only those employees who have someone reporting to them. Also, show the number of reporters (including the President).

SELECT MANAGER, COUNT(*) AS NUM_REPORTERS FROM emp_record GROUP BY MANAGER ORDER BY NUM_REPORTERS DESC;

Write a query to list down all the employees from the healthcare and finance departments using union. Take data from the employee record table.

SELECT EMP_ID, FIRST_NAME, LAST_NAME, DEPT FROM emp_record WHERE DEPT = 'HEALTHCARE'

UNION

SELECT EMP_ID, FIRST_NAME, LAST_NAME, DEPT FROM emp_record WHERE DEPT = 'FINANCE';

Write a query to list down employee details such as EMP_ID, FIRST_NAME, LAST_NAME, ROLE, DEPARTMENT, and EMP_RATING grouped by dept. Also include the respective employee rating along with the max emp rating for the department.

SELECT emp.EMP_ID, emp.FIRST_NAME, emp.LAST_NAME, emp.ROLE, emp.DEPT, dept_max_rating.max_rating AS MAX_EMP_RATING_FOR_DEPT FROM emp_record AS emp

INNER JOIN(

SELECT DEPT, MAX(EMP_RATING) AS max_rating FROM emp_record GROUP BY DEPT) AS dept_max_rating ON emp.DEPT = dept_max_rating.DEPT ORDER BY MAX_EMP_RATING_FOR_DEPT DESC

Write a query to calculate the minimum and the maximum salary of the employees in each role. Take data from the employee record table.

SELECT MIN(SALARY) AS MIN_SALARY, MAX(SALARY) AS MAX_SALARY, ROLE FROM emp_record GROUP BY ROLE;

Write a query to assign ranks to each employee based on their experience. Take data from the employee record table.

SELECT EMP_ID, FIRST_NAME, LAST_NAME, EXP, RANK() OVER (ORDER BY EXP DESC) AS EXP_RANK FROM emp_record;

Write a query to create a view that displays employees in various countries whose salary is more than six thousand. Take data from the employee record table.

CREATE VIEW high_salary_emp_view AS (SELECT * FROM emp_record WHERE SALARY > 6000);

Write a nested query to find employees with experience of more than ten years. Take data from the employee record table.

SELECT * FROM emp_record WHERE EMP_ID IN (SELECT EMP_ID FROM emp_record WHERE EXP > 10);

Write a query to create a stored procedure to retrieve the details of the employees whose experience is more than three years. Take data from the employee record table.

```
DELIMITER //

CREATE PROCEDURE get_emp_exp_more_than_three()

BEGIN

SELECT * FROM emp_record WHERE EXP > 3;

END//

DELIMITER;

CALL get emp exp more than three()
```

Write a query using stored functions in the project table to check whether the job profile assigned to each employee in the data science team matches the organization's set standard.

The standard being:

For an employee with experience less than or equal to 2 years assign 'JUNIOR DATA SCIENTIST',

For an employee with the experience of 2 to 5 years assign 'ASSOCIATE DATA SCIENTIST',

For an employee with the experience of 5 to 10 years assign 'SENIOR DATA SCIENTIST',

For an employee with the experience of 10 to 12 years assign 'LEAD DATA SCIENTIST',

For an employee with the experience of 12 to 16 years assign 'MANAGER'.

DELIMITER //

CREATE FUNCTION GetJobProfile(experience INT)
RETURNS VARCHAR(100)
DETERMINISTIC

```
BEGIN
  DECLARE job_profile VARCHAR(100);
  IF experience <= 2 THEN
    SET job_profile = 'JUNIOR DATA SCIENTIST';
  ELSEIF experience <= 5 THEN
    SET job_profile = 'ASSOCIATE DATA SCIENTIST';
  ELSEIF experience <= 10 THEN
    SET job profile = 'SENIOR DATA SCIENTIST';
  ELSEIF experience <= 12 THEN
    SET job_profile = 'LEAD DATA SCIENTIST';
  ELSE
    SET job_profile = 'MANAGER';
  END IF;
  RETURN job_profile;
END //
DELIMITER;
SELECT EMP ID, FIRST NAME, LAST NAME, DEPT, EXP, GetJobProfile(EXP) AS
JOB_PROFILE FROM data_science_team;
```

Create an index to improve the cost and performance of the query to find the employee whose FIRST_NAME is 'Eric' in the employee table after checking the execution plan.

```
CREATE INDEX idx_first_name ON emp_record(FIRST_NAME);
```

EXPLAIN SELECT * FROM emp record WHERE FIRST NAME = 'Eric';

Write a query to calculate the bonus for all the employees, based on their ratings and salaries (Use the formula: 5% of salary * employee rating).

SELECT EMP_ID, FIRST_NAME, LAST_NAME, DEPT, ROLE, SALARY * 0.05 * EMP_RATING AS BONUS FROM emp_record;

Write a query to calculate the average salary distribution based on the continent and country. Take data from the employee record table.

SELECT CONTINENT, COUNTRY, AVG(SALARY) AS AVERAGE_SALARY FROM emp_record GROUP BY CONTINENT, COUNTRY;