Machine Learning W6 Tutorial

COMP30027 | Sandy Luo

Overview

Measuring Distance

Euclidean, Manhattan...

KNN

Theory, code

SVM

Theory, code

01

Euclidean Distance

02

Manhattan Distance

03

Cosine Similarity

Distance Measures

1. Euclidean Distance

• "Straight-line distance" (in 2D space)

Given 2 items {A,B} and their features
 a and b:

In *n*-dimensional space:

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

2. Manhattan Distance

"Count the grid"

Given 2 items {A,B} and their features
 a and b:

In *n*-dimensional space:

$$d(A,B) = \sum_{i=1}^{n} |a_i - b_i|$$

3. Cosine Similarity

Given 2 items {A,B} and their feature
 vectors a and b:

In *n*-dimensional space:

$$cos(A,B) = \frac{\sum_{i} a_{i}b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

• Doesn't consider vector length, cares about direction

When to use what

- Is your data:
 - Sparse? Dense?
 - Continuous? Grid-like?
 - Do dimensions (features) have similar importance?
 - Does direction matter or magnitude?

01

Concept

02

Case Study

K-Nearest Neighbour

Classify test instance by:

- 1. Find the k nearest data points from the test instance
- 2. Assign the test instance by the majority class of the k points

K = 4

K-Nearest Neighbour

2. Assign the test instance by the majority class of the k points

Variations: Assign by the highest-weighted class (sum k point weights)

1. Inverse linear distance: $w_j = rac{d_{max} - d_j}{d_{max} - d_{min}}$

 d_{min} = d from nearest neighbour, d_{max} = d from furthest

2. Inverse distance: $w_j = rac{1}{d_i + \epsilon}$

Q1:

Classify the test instances using 1-NN and 3-NN with the three distance measures.

For 3-NN, consider both majority vote and weighted voting (cosine similarity can be weighted by simply summing the similarities of the 3 neighbours).

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

APPLE	IBM	LEMON	SUN	CLASS
2	0	3	1	?
1	2	1	0	?

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

1. Find closest k = 1 neighbour

$$\sum_{i=1}^{n} (a_i - b_i)^2 <- a = A \text{ features, b} = E \text{ features}$$

$$= (4-2)^2 + (0-0)^2 + (1-3)^2 + (1-1)^2$$

$$= 2^2 + 0 + (-2)^2 + 0$$

$$= 8$$

 \rightarrow d(A,E) = sqrt(8) \sim = 2.828

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	1
5	0	5	2	fruit	E
2	5	0	0	computer	
1	2	1	7	computer] [

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

1. Find closest k = 1 neighbour

$$\sum_{i=1}^{n} (a_i - b_i)^2 \quad \text{$<$-$a = B features, b = E features}$$

$$= (5-2)^2 + (0-0)^2 + (5-3)^2 + (2-1)^2$$

$$= 3^2 + 0 + (2)^2 + 1^2$$

$$= 9 + 4 + 1 = 14$$

$$\rightarrow$$
 d(B,E) = sqrt(14) ~= 3.742

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	
5	0	5	2	fruit	
2	5	0	0	computer	
1	2	1	7	computer	

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

1. Find closest k = 1 neighbour

$$\sum_{i=1}^{n} (a_i - b_i)^2 \quad \text{$<$-$ a = C features, b = E features}$$

$$= (2-2)^2 + (5-0)^2 + (0-3)^2 + (0-1)^2$$

$$= 0 + 5^2 + (-3)^2 + (-1)^2$$

$$= 25 + 9 + 1 = 35$$

$$\rightarrow$$
 d(C,E) = sqrt(35) ~= 5.916

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	,
5	0	5	2	fruit	
2	5	0	0	computer	
1	2	1	7	computer	

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

1. Find closest k = 1 neighbour

$$\sum_{i=1}^{n} (a_i - b_i)^2 <- a = D \text{ features, b} = E \text{ features}$$
$$= (1-2)^2 + (2-0)^2 + (1-3)^2 + (7-1)^2$$

$$= (-1)^2 + 2^2 + (-2)^2 + (6)^2$$

$$= 1 + 4 + 4 + 36 = 45$$

$$\rightarrow$$
 d(D,E) = sqrt(45) ~= 6.708

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit)
5	0	5	2	fruit	
2	5	0	0	computer	
1	2	1	7	computer	

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

1. Find closest k = 1 neighbour

$$\rightarrow$$
 d(A,E) = sqrt(8) ~= 2.828

$$\rightarrow$$
 d(B,E) = sqrt(14) ~= 3.742

$$\rightarrow$$
 d(C,E) = sqrt(35) ~= 5.916

$$\rightarrow$$
 d(D,E) = sqrt(45) ~= 6.708

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	A
5	0	5	2	fruit	В
2	5	0	0	computer	C
1	2	1	7	computer	

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

Assign test instance E the class of the closest neighbour → <u>class = "fruit"</u>

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

- k=3, Euclidean, inverse distance
- 1. Find closest k = 3 neighbours

closest 3!

$$\rightarrow$$
 d(A,E) = sqrt(8) ~= 2.828

$$\rightarrow$$
 d(C,E) = sqrt(35) ~= 5.916

$$\rightarrow$$
 d(D,E) = sqrt(45) ~= 6.708

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

Q1:

$$w_j = rac{d_{max} - d_j}{d_{max} - d_{min}}$$
 d_{min} = d from nearest neighbour, d_{max} = d from furthest

Test instance 1 (E):

• k=3, Euclidean, inverse distance

 \rightarrow d(C,E) = sqrt(35) ~= 5.916

2. Calculate weighted inverse distance of the k=3 points

$$w_j = rac{d_{max} - d_j}{d_{max} - d_{min}}$$

 d_{min} = d from nearest neighbour, d_{max} = d from furthest

Test instance 1 (E):

• k=3, Euclidean, inverse distance

3. Assign label by the class w/ heightest weight

•
$$w_{fruits} = w_A + w_B = 1 + 0.704 = 1.704$$

• 1.704 > 0 → <u>class = "fruit"</u>

$$\rightarrow$$
 d(A,E) = sqrt(8) ~= 2.828

$$\rightarrow$$
 d(B,E) = sqrt(14) ~= 3.742

$$\rightarrow$$
 d(C,E) = sqrt(35) ~= 5.916

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	Α
5	0	5	2	fruit	В
2	5	0	0	computer	С
1	2	1	7	computer	D

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$d(A,B) = \sum_{i=1}^{n} |a_i - b_i|$$

- k=3, Manhattan, inverse linear distance
- 1. Find closest k = 3 neighbours

$$d(A,E) = |4-2| + |0-0| + |1-3| + |1-1|$$

$$= 2 + 0 + 2 + 0 = 4$$

$$d(B,E) = |5-2| + |0-0| + |5-3| + |2-1|$$

$$= 3 + 0 + 2 + 1 = 6$$

$$d(C,E) = |2-2| + |5-0| + |0-3| + |0-1|$$

$$= 0 + 5 + 3 + 1 = 9$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	
5	0	5	2	fruit	E
2	5	0	0	computer	
1	2	1	7	computer	ַ

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

Q1:

$$w_j=rac{1}{d_j+\epsilon}$$

Test instance 1 (E):

- k=3, Manhattan, inverse linear distance
- 2. Calculate weighted inverse linear distance of the k=3 points

$$d(A,E) = 4$$
, $d(B,E) = 6$, $d(C,E) = 9$

$$w_A = 1/(d_A + e)$$
 $w_B = 1/(d_B + e)$ $w_C = 1/(d_C + e)$
= 1/(4+e) = 1/(6+e) = 1/(9+e)

$$w_j=rac{1}{d_j+\epsilon}$$

• Here, e is not given.

• Assume e → 0

Test instance 1 (E):

• k=3, Manhattan, inverse linear distance

3. Assign label by the class w/ heightest weight

• 0.621 > 0.169 → <u>class = "fruit"</u>

Training set:

APPLE	IBM	LEMON	SUN	CLASS	
4	0	1	1	fruit	A
5	0	5	2	fruit	В
2	5	0	0	computer	С
1	2	1	7	computer	D

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 1. Find closest k = 3 neighbours

$$\sum_{i} a_{i}b_{i} = (A_{apple}*E_{apple}) + (A_{ibm}*E_{ibm}) + ...$$

$$= (4*2) + (0*0) + (1*3) + (1*1)$$

$$= 8 + 0 + 3 + 1 = 12$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}} = \operatorname{sqrt}(A_{\operatorname{apple}}^{2} + A_{\operatorname{ibm}}^{2} + \dots) * \operatorname{sqrt}(E_{\operatorname{apple}}^{2} + E_{\operatorname{ibm}}^{2} + \dots)
= \operatorname{sqrt}(4^{2} + 0^{2} + 1^{2} + 1^{2}) * \operatorname{sqrt}(2^{2} + 0^{2} + 3^{2} + 1^{2})
= \operatorname{sqrt}(16 + 0 + 1 + 1) * \operatorname{sqrt}(4 + 0 + 9 + 1) = \operatorname{sqrt}(18 * 14)$$

 \rightarrow cos(A,E) = 12 / sqrt(18*14) ~= 0.756

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 1. Find closest k = 3 neighbours

$$\sum_{i} a_{i}b_{i} = (B_{apple}*E_{apple}) + (B_{ibm} *E_{ibm}) + ...$$

$$= (5*2) + (0*0) + (5*3) + (2*1)$$

$$= 10 + 0 + 15 + 2 = 27$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}} = \operatorname{sqrt}(B_{apple}^{2} + B_{ibm}^{2} + ...) * \operatorname{sqrt}(E_{apple}^{2} + E_{ibm}^{2} + ...)$$

$$= \operatorname{sqrt}(5^{2} + 0^{2} + 5^{2} + 2^{2}) * \operatorname{sqrt}(2^{2} + 0^{2} + 3^{2} + 1^{2})$$

$$= \operatorname{sqrt}(25 + 0 + 25 + 4) * \operatorname{sqrt}(4 + 0 + 9 + 1) = \operatorname{sqrt}(54 * 14)$$

 \rightarrow cos(B,E) = 27 / sqrt(54*14) ~= 0.982

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 1. Find closest k = 3 neighbours

$$\sum_{i} a_{i}b_{i} = (C_{apple}*E_{apple}) + (C_{ibm}*E_{ibm}) + ...$$

$$= (2*2) + (5*0) + (0*3) + (0*1)$$

$$= 4 + 0 + 0 + 0 = 4$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}} = \operatorname{sqrt}(C_{apple}^{2} + C_{ibm}^{2} + ...) * \operatorname{sqrt}(E_{apple}^{2} + E_{ibm}^{2} + ...)$$

$$= \operatorname{sqrt}(2^{2} + 5^{2} + 0^{2} + 0^{2}) * \operatorname{sqrt}(2^{2} + 0^{2} + 3^{2} + 1^{2})$$

$$= \operatorname{sqrt}(4 + 25 + 0 + 0) * \operatorname{sqrt}(4 + 0 + 9 + 1) = \operatorname{sqrt}(29 * 14)$$

 \rightarrow cos(C,E) = 4 / sqrt(29*14) ~= 0.199

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 1. Find closest k = 3 neighbours

$$\sum_{i} a_{i}b_{i} = (D_{apple}*E_{apple}) + (D_{ibm}*E_{ibm}) + ...$$

$$= (1*2) + (2*0) + (1*3) + (7*1)$$

$$= 2 + 0 + 3 + 7 = 12$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}} = \operatorname{sqrt}(D_{\operatorname{apple}}^{2} + D_{\operatorname{ibm}}^{2} + \dots) * \operatorname{sqrt}(E_{\operatorname{apple}}^{2} + E_{\operatorname{ibm}}^{2} + \dots)
= \operatorname{sqrt}(1^{2} + 2^{2} + 1^{2} + 7^{2}) * \operatorname{sqrt}(2^{2} + 0^{2} + 3^{2} + 1^{2})
= \operatorname{sqrt}(1 + 4 + 1 + 49) * \operatorname{sqrt}(4 + 0 + 9 + 1) = \operatorname{sqrt}(55 * 14)$$

 \rightarrow cos(D,E) = 12 / sqrt(55*14) ~= 0.432

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 1. Find closest k = 3 neighbours

•
$$cos(C,E) = 4 / sqrt(29*14) \sim = 0.199$$

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

similarity → higher the score the more similar (closer) it is!

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, majority vote
- 2. Assign by the majority class of the k points
- $cos(A,E) = 12 / sqrt(18*14) \sim = 0.756$
- $cos(B,E) = 27 / sqrt(54*14) \sim = 0.982$
- $cos(D,E) = 12 / sqrt(55*14) \sim = 0.432$
- 2 * fruit, 1 * computer
- → majority class = "fruit"
- → assign instance E's class as "fruit"

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

- k=3, Cosine similarity, weighted voting
- 2. Assign by the weighted vote of the k points

•
$$cos(A,E) = 12 / sqrt(18*14) \sim = 0.756$$

•
$$cos(B,E) = 27 / sqrt(54*14) \sim = 0.982$$

•
$$cos(D,E) = 12 / sqrt(55*14) \sim = 0.432$$

• 1.739 > 0.432 → class = "fruit"

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

APPLE	IBM	LEMON	SUN	CLASS	
2	0	3	1	?) E
1	2	1	0	?	F

Q1:

Fill in the rest of the table!

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

$$d(A,B) = \sum_{i=1}^{n} |a_i - b_i|$$

$$cos(A,B) = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}}$$

$$w_j=rac{1}{d_j+\epsilon}$$

$$w_j = rac{d_{max} - d_j}{d_{max} - d_{min}}$$

 d_{min} = d from nearest neighbour, d_{max} = d from furthest

Training set:

APPLE	IBM	LEMON	SUN	CLASS
4	0	1	1	fruit
5	0	5	2	fruit
2	5	0	0	computer
1	2	1	7	computer

Test set:

APPLE	IBM	LEMON	SUN	CLASS
2	0	3	1	?
1	2	1	0	?

E

Q1:

Test instance 1:

Measure	K	Weight	Prediction
Euclidean	1	N/A	fruit
Euclidean	3	Majority vote	fruit
Euclidean	3	Inverse dist	fruit
Euclidean	3	Inverse linear dist	fruit
Manhattan	1	N/A	fruit
Manhattan	3	Majority vote	fruit
Manhattan	3	Inverse dist	fruit
Manhattan	3	Inverse linear dist	fruit
Cosine	1	N/A	fruit
Cosine	3	Majority vote	fruit
Cosine	3	Sum	fruit

Test instance 2:

Measure	K	Weight	Prediction
Euclidean	1	N/A	computer
Euclidean	3	Majority vote	fruit
Euclidean	3	Inverse dist	fruit
Euclidean	3	Inverse linear dist	computer
Manhattan	1	N/A	computer
Manhattan	3	Majority vote	computer
Manhattan	3	Inverse dist	computer
Manhattan	3	Inverse linear dist	computer
Cosine	1	N/A	fruit
Cosine	3	Majority vote	computer
Cosine	3	Sum	fruit

Q2:

How does the k value in k-NN algorithm affect the decision boundary between classes?

- K increase:
 - More neighbours → smoother decision boundary → less sensitive
- Issues with big K:
 - Too big → may miss rare classes
 - May become O-R / majority class classifier
- Need to find balance!

01

Concept

02

Questions

SVM

Support Vector Machine

- Hyperplane-based classifier
 - Tries to find the hyperplane that best separates the classes
 - Hyperplane = the high-dimensional equivalent of a line

- Best separator = hyperplane w/ maximum margin
 - Maximise distance b/w closest point & boundary
 - Soft margins: allow some data points to violate the boundary

Support Vector Machine

- Non-linear SVM:
 - Transform data to a new feature space
 - Find hyperplane separating two classes in the new space

Kernel Trick

- Kernel trick:
 - Compute inner products directly instead of computing highdimensional coordinates

- Kernel functions:
 - Functions to transform data efficiently

Common kernel functions:

1. Linear Kernel:

$$K(x_i,x_j)=x_i^Tx_j$$

2. Polynomial Kernel:

$$K(x_i,x_j) = (x_i^Tx_j + heta)^d$$

B. Radial Basis Kernel:

$$K(x_i,x_j)=exp(-rac{||x_i-x_j||^2}{2\sigma^2})$$

Q3(a):

What does it mean for a classification dataset to be "linearly separable"?

- Linearly separable:
 - Can completely separate the classes with a single hyperplane

Q3(b):

If a dataset isn't linearly separable, an SVM learner has two major options. What are they, and why might we prefer one to the other?

1. Soft margin:

- Allow some mistakes to be made w/ penalty to find better boundary
- Better choice if largely linearly separable → kernel methods too
 powerful for few outliers, may generate a spurious transformation

2. Kernel methods:

- Transform the data into a higher-dimensional space
- Better if the instance topology isn't linear, but polynomial / circular...

Q4:

Unlike other geometric methods such as K-NN, SVMs work better with large attribute sets. Why might this be true?

- Do all attributes contribute equally to the label prediction?
- SVM hyperplanes:
 - o Implicitly capture relationships b/w features w/o feature engineering
 - Can effectively learn from a large number of features w/o prior knowledge
- SVMs only need support vectors (small subset of points) to define boundary
 - Sparse representation → efficient & scalable w.r.t no. of input features.*

Q5:

How do changes in data points affect the decision boundary of an SVM?

- Decision boundary is determined by the support vectors
 - Support vectors = data points closest to the boundary
 - If data point not support vector, doesn't affect hyperplane

- Hence, change support vectors → change decision boundary
 - + / a support vector → decision boundary may shift / rotate

Q5:

How do changes in data points affect the decision boundary of an SVM?

Mathematical explanation of SVM:

- Solve contrained optimisation problem using Lagrange multipliers
 - a. Introduce a value a_i for each contraint (training data point)
 - b. Solve a_i
 - c. Eventually, most a_i = 0; non-zero values → support vectors
- As such, non-support vectors have a_i = 0, don't contribute to solution

Q5:

How do changes in data points affect the decision boundary of an SVM?

Solve by minimizing w.r.t. w, b and

The Lagrangian

He Lagrangian maximizing w.r.t. a i (\lambda i)
$$\mathcal{L}(w,b,\lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \lambda_i (y_i(w'x_i+b)-1)$$

KKT conditions:

- * Feasibility: $y_i((w^*)'x_i + b^*) 1 \ge 0$ for i = 1, ..., n
- * Feasibility: $\lambda_i^* \geq 0$ for i = 1, ..., n
- * Complementary slackness: $\lambda_i^* (y_i((\mathbf{w}^*)'\mathbf{x}_i + b^*) 1) = 0$
- * Stationarity: $\nabla_{\boldsymbol{w},b}\mathcal{L}(\boldsymbol{w}^*,b^*,\boldsymbol{\lambda}^*)=\mathbf{0}$

If nothing makes sense: https://www.youtube.com/watch?v=bM4_AstaBZo&t=512s

Q6(a):

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

What is the value of slack variables for data points that are correctly classified in SVMs?

subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) + \xi_i - 1 \ge 0$$
, $\xi_i \ge 0, \forall i \in \{1, 2, ..., N\}$

- Slack variables in soft-margin SVM allows for some classification errors
 - Value indicates how much a data point violates the margin
 - e.g. For correct classification, slack variable = 0 → doesn't contribute
 - e.g. For incorrect instances inside the margin, slack variable = 1
 - For incorrect instances outside the margin?

Q6(b):

What should the slack penalty C be to make a soft-margin SVM function as a hard-margin SVM?

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$
subject to $y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) + \xi_{i} - 1 \ge 0$,
$$\xi_{i} \ge 0, \forall i \in \{1, 2, ..., N\}$$

- C: trade-off b/w maximising the margin & minimising the training error
 - If C increase, weight of training error higher → try to minimise error,
 so the margin will be smaller
 - If C decrease, weight of second term lower → try to get larger margin
- Hard SVM = no mistakes allowed / penalty rate = ∞
 - Set slack penalty C to be very large

Q6(b):

How many binary classifiers are needed to classify a dataset with 4 classes using one-vs-one method?

- One-vs-all: one classifier to separate one class from the rest
- One-vs-one: one classifier per pair of classes

Q6(b):

How many binary classifiers are needed to classify a dataset with 4 classes using one-vs-one method?

• 4 classes:

- 4 choose 2 = c(c-1)/2
- \circ = (4×3)/2 = 6 unique pairs of classes

