21CSE426T – Financial Machine Learning Unit 5 Assessment Group Assignment

Set 1 HOTS:

- 1. Explain how NLP can enhance the process of financial fraud detection. What are the limitations of using NLP in this context?
- 2. Describe how word embeddings like Word2Vec differ from traditional bag-of-words models in representing textual data. How might this affect sentiment analysis results?

MCQs:

- 1. What is the main purpose of Natural Language Processing?
 - A. Data encryption
 - B. Analyzing numerical data
 - C. Enabling computers to understand human language
 - D. Developing operating systems
- 2. Named Entity Recognition (NER) primarily identifies:
 - A. Synonyms in a text
 - B. Named entities such as names, places, and organizations
 - C. Part-of-speech categories
 - D. Document structure
- 3. In sentiment analysis, a word embedding technique helps to:
 - A. Count word frequencies
 - B. Convert text into vector format
 - C. Recognize entities in text
 - D. Analyze document structure
- 4. Tokenization is used to:
 - A. Encrypt data
 - B. Split text into smaller parts
 - C. Organize documents
 - D. Filter irrelevant words
- 5. Financial sentiment analysis is challenging because:
 - A. Financial texts are often too short
 - B. Financial terms are context-sensitive
 - C. News articles are all unbiased
 - D. Financial data lacks numerical values

Set 2 HOTS:

- 1. Compare and contrast the use of Naive Bayes and LDA for sentiment analysis in financial news data. How does each model impact the interpretation of results?
- 2. Explain the significance of event return in sentiment analysis-based trading strategies. How does it differ from simple return calculations?

MCQs:

- 1. Which of the following is a common step in text preprocessing for NLP?
 - A. Text encryption
 - B. Tokenization
 - C. Data sorting
 - D. Error correction
- 2. Word2Vec is a type of:
 - A. Text classification algorithm

- B. Word embedding model
- C. Language translation tool
- D. Syntax parser
- 3. NLP can be used in finance to analyze:
 - A. Loan repayments
 - B. Market sentiment from news
 - C. Database management
 - D. File compression
- 4. Which Python package is widely used for building NLP applications and has modules for tokenization, stemming, and more?
 - A. NumPy
 - B. pandas
 - C. NLTK
 - D. Matplotlib
- 5. What is the primary advantage of using LSTM for financial sentiment analysis?
 - A. Lower memory requirement
 - B. Handles long-term dependencies in text
 - C. Provides real-time analysis
 - D. Uses fewer data points

Set 3

HOTS:

- 1. Discuss how an NLP-powered chatbot could transform customer service in financial institutions. What ethical considerations should be addressed?
- 2. Propose a pipeline using spaCy for preprocessing financial news data, including tokenization, stop-word removal, and entity recognition. How would you evaluate the effectiveness of each step?

MCOs:

- 1. In a trading strategy, what is one role of NLP-based sentiment analysis?
 - A. Predicting transaction fees
 - B. Determining asset liquidity
 - C. Informing buy/sell decisions
 - D. Managing account balances
- 2. Lemmatization differs from stemming by:
 - A. Generating unique non-existent words
 - B. Returning root forms that are actual words
 - C. Ignoring suffixes and prefixes
 - D. Applying only to English text
- 3. In sentiment analysis, what does TextBlob primarily use to determine sentiment polarity?
 - A. Deep learning models
 - B. Naive Bayes classifiers
 - C. Regular expressions
 - D. Rule-based systems
- 4. Which model is commonly used for topic modeling in unsupervised sentiment analysis?
 - A. Naive Bayes
 - B. Latent Dirichlet Allocation (LDA)
 - C. LSTM

- D. Decision Tree
- 5. In a chatbot application, NLP is used primarily to:
 - A. Display web content
 - B. Generate predefined responses
 - C. Interpret and respond to user queries
 - D. Edit database records

Set 4

HOTS:

- 1. Analyze the challenges in using traditional sentiment lexicons for financial sentiment analysis. How could these lexicons be adapted for financial contexts?
- 2. Develop an argument for or against the use of LSTM-based sentiment analysis in realtime trading systems. Consider computational complexity and potential impacts on trading decisions.

MCOs:

- 1. In a trading strategy, what is one role of NLP-based sentiment analysis?
 - A. Predicting transaction fees
 - B. Determining asset liquidity
 - C. Informing buy/sell decisions
 - D. Managing account balances
- 2. Lemmatization differs from stemming by:
 - A. Generating unique non-existent words
 - B. Returning root forms that are actual words
 - C. Ignoring suffixes and prefixes
 - D. Applying only to English text
- 3. In sentiment analysis, what does TextBlob primarily use to determine sentiment polarity?
 - A. Deep learning models
 - B. Naive Bayes classifiers
 - C. Regular expressions
 - D. Rule-based systems
- 4. Which model is commonly used for topic modeling in unsupervised sentiment analysis?
 - A. Naive Bayes
 - B. Latent Dirichlet Allocation (LDA)
 - C. LSTM
 - D. Decision Tree
- 5. In a chatbot application, NLP is used primarily to:
 - A. Display web content
 - B. Generate predefined responses
 - C. Interpret and respond to user queries
 - D. Edit database records

Set 5 HOTS:

- 1. Construct a use case for NLP in assessing market volatility through news sentiment. What features would be essential for accurate predictions?
- 2. Evaluate the benefits and limitations of using TextBlob for initial sentiment analysis in financial contexts. What alternative models could provide more accurate sentiment scores?

MCQs:

- 1. The main limitation of bag-of-words models in NLP is:
 - A. High computational cost
 - B. Loss of word context and order
 - C. Incompatibility with Python
 - D. Complexity of implementation
- 2. Why is a deep learning model like LSTM preferred for certain NLP tasks?
 - A. Less training data is required
 - B. It captures sequential dependencies in text
 - C. It has lower computational demands
 - D. It is suitable for rule-based tasks
- 3. For which purpose would Latent Dirichlet Allocation (LDA) be most suitable?
 - A. Sentiment analysis
 - B. Text classification
 - C. Topic modeling
 - D. Syntax parsing
- 4. Which sentiment analysis method is most suitable for analyzing stock market conversations?
 - A. TextBlob
 - B. Financial Lexicon-based method
 - C. Basic Naive Bayes
 - D. Movie-based sentiment analysis
- 5. Which is a characteristic of unsupervised learning in NLP?
 - A. Requires labeled data
 - B. Uses known categories for training
 - C. Discovers patterns without labeled output
 - D. Utilizes reinforcement techniques

Set 6

HOTS:

- 1. Explain the impact of NLP in automating low-value tasks in financial institutions. How does it improve efficiency and objectivity?
- 2. Discuss the potential improvements that a financial sentiment analysis model could gain from using BERT or other advanced pretrained models.

MCQs:

- 1. Which algorithm is frequently used for initial sentiment classification in NLP?
 - A. Decision trees
 - B. K-Nearest Neighbors
 - C. Naive Bayes
 - D. Reinforcement learning

- 2. What is an advantage of using pre-trained models for NLP tasks?
 - A. Reduced training time and computational cost
 - B. Better grammar correction
 - C. Enhanced visualization of text data
 - D. Improved encryption of data
- 3. The CountVectorizer is commonly used for which type of NLP model?
 - A. Bag-of-words
 - B. Word embedding
 - C. PoS tagging
 - D. Named Entity Recognition
- 4. A rule-based chatbot:
 - A. Learns from previous interactions
 - B. Uses a fixed set of responses
 - C. Generates new phrases
 - D. Trains itself over time
- 5. Dependency parsing is primarily used for:
 - A. Tokenizing text
 - B. Removing stop words
 - C. Calculating sentiment scores
 - D. Understanding relationships between words in a sentence

Set 7

HOTS:

- 1. Analyze how topic modeling can help uncover hidden themes in financial documents. What challenges might arise in applying topic modeling in this context?
- 2. Discuss the significance of supervised and unsupervised models in NLP for analyzing large volumes of news data. How does each type of model contribute to insights?

MCQs:

- 1. Which of the following can help in representing the sentiment score of words within a specific context?
 - A. CountVectorizer
 - B. Word embedding
 - C. Rule-based system
 - D. Syntax parsing
- 2. A self-learning chatbot can improve through:
 - A. Rule-based responses
 - B. Using predefined answers
 - C. Supervised training on labeled data
 - D. Error correction
- 3. Which step typically follows tokenization in NLP preprocessing?
 - A. Stop word removal
 - B. Data encryption
 - C. Syntax parsing
 - D. Entity extraction
- 4. Inference in NLP can best be described as:

- A. Tokenizing data
- B. Splitting text into paragraphs
- C. Calculating word frequencies
- D. Generating decisions from processed text
- 5. What does the TF-IDF model achieve in text processing?
 - A. Counts total words in a text
 - B. Orders sentences based on structure
 - C. Highlights words that are important within a document but not common across documents
 - D. Encrypts textual data