Homework 10 - Arnav Kucheriya

Homework 10 - Cardinalities

Finite Sets

1. Let X, Y be finite sets. |X| = m, |Y| = n, and $f: X \to Y$.

- f is surjective \Rightarrow (d) $m \ge n$
- f is injective \Rightarrow (b) $m \le n$
- f is **bijective** \Rightarrow (c) m=n
- f is surjective, not bijective \Rightarrow (d) $m \geq n$ and $m \neq n$
- f is injective, not surjective \Rightarrow (a) m < n

Enumerable Sets

2. Function $B: \mathbb{N} \cup \{0\} \rightarrow \mathbb{Z}$

$$B(n) = egin{cases} rac{n+1}{2} & ext{if } n ext{ is odd} \\ -rac{n}{2} & ext{if } n ext{ is even} \end{cases}$$

(a) Values:

- B(0) = 0
- B(1) = 1
- B(2) = -1
- B(3) = 2
- B(4) = -2
- B(5) = 3
- B(6) = -3
- B(7) = 4
- (b) Inverse $B^{-1}:\mathbb{Z} o \mathbb{N} \cup \{0\}$

$$B^{-1}(y) = egin{cases} 2y-1 & ext{if } y>0 \ -2y & ext{if } y\leq 0 \end{cases}$$

(c) Evaluate:

•
$$B^{-1}(-3) = 6$$

•
$$B^{-1}(3) = 5$$

•
$$B^{-1}(-10) = 20$$

•
$$B^{-1}(10) = 19$$

3. $\mathbb{N} \setminus \{3, 10, 50\}$ is enumerable.

Proof: Since $\mathbb N$ is enumerable and finite subsets can be removed from enumerable sets while retaining enumerability, the set $\mathbb N\setminus\{3,10,50\}$ is enumerable.

4. $A = \{5\} \times \mathbb{N}$ is enumerable.

Proof: Define f(n)=(5,n) for $n\in\mathbb{N}$. This is a bijection from $\mathbb{N}\to A$.

5. Set
$$T = \{n \in \mathbb{N} \cup \{0\} : n \equiv 3 \mod 4\}$$

- (a) First 5 elements: 3, 7, 11, 15, 19
- (b) Bijection f(n)=4n+3 maps $\mathbb{N}\cup\{0\} o T$
- (c) Restricting f to $n \in \mathbb{N}$ gives bijection $\mathbb{N} \to T \setminus \{3\}$

6. Functions on $\mathbb N$

- (a) f(n) = n + 1 is bijective and not identity.
- (b) f(n) = 2n is injective but not surjective.
- (c) $f(n) = \left| \frac{n}{2} \right|$ is surjective but not injective.
- (d) For set $\{1, 2, 3, 4\}$:
 - Injective not surjective: Not possible
 - Surjective not injective: Not possible
 - Bijective not identity: e.g., $f = \{(1,2), (2,1), (3,4), (4,3)\}$

7. Function $b_2:\mathbb{N} o \mathbb{Q}$

- (a) Values depend on context from class, but assuming pairing: $b_2(4) = 1/3$, $b_2(10) = 2/3$ (e.g., diagonal pairing)
- (b) It is bijective (by construction).
- (c) Condition for equality: $\frac{a}{b} = \frac{m}{n} \Leftrightarrow an = bm$

8. Composition of bijections

Let $f: A \to B$ and $g: B \to C$ be bijections.

Then $g \circ f : A \to C$ is bijection because:

- Injectivity: $g(f(a_1)) = g(f(a_2)) \Rightarrow a_1 = a_2$
- Surjectivity: $\forall c \in C$, $\exists b \in B$, $\exists a \in A$ such that g(f(a)) = c

9. Bijections between intervals

- (a) f(x)=3x maps (0,1) o (0,3)
- (b) f(x)=x+2 maps (0,1) o (2,3)
- (c) f(x) = 3x + 5 maps $(0,1) \to (5,8)$
- (d) f(x)=0.2x-0.1 maps (-10,10)
 ightarrow (-0.1,0.1)
- (e) $f(x)=\sin(x)$ maps $[-rac{\pi}{2},rac{\pi}{2}]
 ightarrow [-1,1]$

10. Composition of bijections

- (a) f(x) = 2x 1 maps $(0,1) \to (-1,1)$
- (b) $f(x)=rac{\pi}{2}x$ maps $(-1,1) o \left(-rac{\pi}{2},rac{\pi}{2}
 ight)$
- (c) f(x) = an(x) maps $\left(-rac{\pi}{2},rac{\pi}{2}
 ight)
 ightarrow \mathbb{R}$
- (d) Composite: $(0,1) \xrightarrow{f_1} (-1,1) \xrightarrow{f_2} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) \xrightarrow{f_3} \mathbb{R}$
- (e) Composite: $(0,1) \xrightarrow{f_1} (-1,1) \xrightarrow{f_2} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) \xrightarrow{f_3} \mathbb{R}$

11.

Video: https://www.youtube.com/watch?v=OxGsU8oIWjY

Appears: pairing functions for $\mathbb{N} \times \mathbb{N}$, mapping \mathbb{Q} to \mathbb{N} .

Difference: Graphical/computational approach vs theoretical proofs shown in class.