Approximated PCA Iteration 3

Rodrigo Arias

March 13, 2017

Proposed hypothesis

Let ϵ_b be the error in the result with width b, then the following hypothesis can be proposed:

- ▶ The mean of $\mu = \log_2(\epsilon_b) \approx -b$.
- ▶ The standard deviation ≈ 2 .

Mean

Let $X = \log_2(\epsilon_b)$ be a random variable with unknown mean μ and variance σ^2 . Then, after k runs, the observed mean \overline{x} follows (CLT):

$$\overline{X} \sim N(\mu, \sigma/\sqrt{k})$$

Or:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{k}} \sim N(0, 1)$$

Mean

For any α , $0 < \alpha < 1$, let z_{α} be such that $P[Z > z_{\alpha}] = \alpha$ With probability $1 - \alpha$, the mean μ will lie in the region:

$$\overline{X} \pm z_{\alpha/2} S / \sqrt{n}$$

Plot of the mean

Let ϵ_b be the error in the result with width b, then the following hypothesis can be proposed:

- ▶ The mean of $\log_2(\epsilon_b) \approx -b$.
- ▶ The standard deviation ≈ 2 .