CS 677: Parallel Programming for Many-core Processors Lecture 10

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu

Project Status Update

- Due April 12
 - 1. What is the status of the CPU version? If you are using existing code for this part, cite the source of the code.
 - 2. What is the status of the GPU version in terms of completeness? Which functionalities have been implemented and what is missing?
 - 3. What is the status of the GPU version in terms of correctness? Is the, potentially unoptimized, GPU version correct? If not, what is your plan for achieving correctness?

Be prepared to talk about it in class

Outline

- Homework 4 discussion
- Thrust

Tiling P

- Use a thread block to calculate a tile of P
 - Thread Block size determined by the TILE_SIZE

Tiling N

 Each N element is used in calculating up to KERNEL_SIZE * KERNEL_SIZE elements of P (all elements in the tile)

3	4	5	6	7	
2	3	4	5	6	
1	2	3	4	5	
2	3	5	6	7	
0	1	1	3	1	

3	4	5	6	7	
2	3	4	5	6	
1	2	3	4	5	
2	3	5	6	7	
0	1	1	3	1	

High-Level Tiling Strategy

- Load a tile of N into shared memory (SM)
 - All threads participate in loading
 - A subset of threads then use each N element in SM

Input tiles need to be larger than output tiles

Dealing with Mismatch

- Use a thread block that matches input tile
 - Each thread loads one element of the input tile
 - Some threads do not participate in calculating output
 - There will be if statements and control divergence

Setting Block Size

```
#define BLOCK_SIZE (TILE_SIZE + 4)
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
```

In general, block size should be tile size + (kernel size -1)

Shifting from output coordinates to input coordinates

Shifting from output coordinates to input coordinates

```
int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y * TILE_SIZE + ty;
int col_o = blockIdx.x * TILE_SIZE + tx;

int row_i = row_o - 2;
int col_i = col_o - 2;
    This is for 5×5
    mask
```

Threads that loads halos outside N should return 0.0

Taking Care of Boundaries - Ghost Cells

```
float output = 0.0f;

if((row_i >= 0) && (row_i < N.height) &&
    (col_i >= 0) && (col_i < N.width) ) {
    Ns[ty][tx] = N.elements[row_i*N.width + col_i];
}
else{
    Ns[ty][tx] = 0.0f;
}</pre>
```

Some threads do not participate in calculating output

```
if(ty < TILE_SIZE && tx < TILE_SIZE) {
   for(i = 0; i < 5; i++) {
     for(j = 0; j < 5; j++) {
      output += Mc[i][j] * Ns[i+ty][j+tx];
   }
}</pre>
```

Some threads do not write output

Tiling Benefit Analysis

- Start with KERNEL_SIZE = 5
- Each point in an input tile is used multiple times.
 - Each boundary point (blue) is used 9 times
 - Each second-boundary point (yellow) is used 16 times
 - Each inner boundary point (red) is used 25 times

Reuse Analysis

- For TILE_SIZE = 12
 - 44 boundary points
 - 36 second-boundary points
 - 64 inside points
 - Total uses 44*9 + 36*16 + 64*25 = <math>396+576+1600 = 2572
 - Average reuse = 2572/144 = 17.9
- As TILE_SIZE increases, the average reuse approach 25

In General

 The number of boundary layers is proportional to the KERNEL_SIZE

 The maximal reuse of each data point is (KERNEL_SIZE)²

Second Approach

 Can block dimensions match output size dimensions?

Third Approach

- Match BLOCK_SIZE with TILE_SIZE instead of TILE_SIZE+KERNEL_SIZE-1
- Exploit L2 cache which is shared by all SMs
 - All relevant halo cells have been transferred to shared memory by some block
 - Therefore, they must be in L2 cache
 - Access them directly from "global memory"

A Simple Example

```
#include <thrust/host vector.h>
#include <thrust/device vector.h>
#include <iostream>
int main(void)
    // H has storage for 4 integers
    thrust::host vector<int> H(4);
    // initialize individual elements
    H[0] = 14;
   H[1] = 20;
   H[2] = 38;
   H[3] = 46;
```

```
// H.size() returns the size of vector H
std::cout << "H has size " << H.size() << std::endl;</pre>
// print contents of H
for (int i = 0; i < H.size(); i++)
    std::cout << "H[" << i << "] = " << H[i] << std::endl;
// resize H
H.resize(2);
std::cout << "H now has size " << H.size() << std::endl;</pre>
// Copy host vector H to device vector D
thrust::device vector<int> D = H;
```

```
// elements of D can be modified
 D[0] = 99;
 D[1] = 88;
 // print contents of D
 for (int i = 0; i < D.size(); i++)
     std::cout << "D[" << i << "] = " << D[i] << std::endl;
 // H and D are automatically deleted when the function
returns
 return 0;
```

Diving In

```
#include <thrust/host vector.h>
#include <thrust/device vector.h>
#include <thrust/sort.h>
int main (void)
    // generate 16M random numbers on the host
    thrust::host vector<int> h vec(1 << 24);
    thrust::generate(h vec.begin(), h vec.end(), rand);
    // transfer data to the device
    thrust::device vector<int> d vec = h vec;
    // sort data on the device
    thrust::sort(d vec.begin(), d vec.end());
    // transfer data back to host
    thrust::copy(d vec.begin(), d vec.end(), h vec.begin());
```

Objectives

- Programmer productivity
 - Rapidly develop complex applications
 - Leverage parallel primitives
- Encourage generic programming
 - Don't reinvent the wheel
 - E.g. one reduction to rule them all
- High performance
 - With minimal programmer effort
- Interoperability
 - Integrates with CUDA C/C++ code

What is Thrust?

- C++ template library for CUDA
 - Mimics Standard Template Library (STL)
- Containers

```
- thrust::host_vector<T>
- thrust::device vector<T>
```

Algorithms

```
- thrust::sort()
- thrust::reduce()
- thrust::inclusive_scan()
- Etc.
```

Namespaces

- C++ supports namespaces
 - Thrust uses thrust namespace

```
thrust::device_vectorthrust::copy
```

– STL uses std namespace

```
std::vectorstd::list
```

Avoids collisions

```
- thrust::sort()
- std::sort()
```

For brevity

- using namespace thrust;

Containers

- Make common operations concise and readable
 - Hides cudaMalloc, cudaMemcpy and cudaFree

```
// allocate host vector with two elements
thrust::host vector<int> h vec(2);
// copy host vector to device
thrust::device vector<int> d vec = h vec;
// manipulate device values from the host
d \ vec[0] = 13;
d \text{ vec}[1] = 27;
std::cout << "sum: " << d_vec[0] + d_vec[1] << std::endl;
// vector memory automatically released w/ free() or cudaFree()
```

Containers

- Compatible with STL containers
 - Eases integration

```
- vector, list, map, ...
```

```
// list container on host
std::list<int> h_list;
h_list.push_back(13);
h_list.push_back(27);

// copy list to device vector
thrust::device_vector<int> d_vec(h_list.size());
thrust::copy(h_list.begin(), h_list.end(), d_vec.begin());

// alternative method
thrust::device_vector<int> d_vec(h_list.begin(), h_list.end());
```

Note: initializing an STL container with a device_vector works, but results in one cudaMemcpy() for each element instead of a single cudaMemcpy for the entire vector.

Sequences defined by pair of iterators

```
// allocate device vector
thrust::device_vector<int> d_vec(4);

d_vec.begin(); // returns iterator at first element of d_vec
d_vec.end() // returns iterator one past the last element of d_vec
// [begin, end) pair defines a sequence of 4 elements
```


Iterators act like pointers

```
// allocate device vector
thrust::device vector<int> d vec(4);
thrust::device vector<int>::iterator begin = d vec.begin();
thrust::device vector<int>::iterator end = d vec.end();
int length = end - begin; // compute size of sequence [begin, end)
end = d_vec.begin() + 3; // define a sequence of 3 elements
                begin
                                  end
```

Use iterators like pointers

- Track memory space (host/device)
 - Guides algorithm dispatch

```
// initialize random values on host
thrust::host_vector<int> h_vec(1000);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// copy values to device
thrust::device_vector<int> d_vec = h_vec;

// compute sum on host
int h_sum = thrust::reduce(h_vec.begin(), h_vec.end());

// compute sum on device
int d_sum = thrust::reduce(d_vec.begin(), d_vec.end());
```

Convertible to raw pointers

```
// allocate device vector
thrust::device_vector<int> d_vec(4);

// obtain raw pointer to device vector's memory
int * ptr = thrust::raw_pointer_cast(&d_vec[0]);

// use ptr in a CUDA C kernel
my_kernel<<<N/256, 256>>>(N, ptr);

// Note: ptr cannot be dereferenced on the host!
// raw pointers do not know where they live
// Thrust iterators do
```

Wrap raw pointers with device ptr

```
int N = 10;
// raw pointer to device memory
int * raw ptr;
cudaMalloc((void **) &raw ptr, N * sizeof(int));
// wrap raw pointer with a device ptr
thrust::device_ptr<int> dev ptr(raw ptr);
// use device ptr in thrust algorithms
thrust::fill(dev_ptr, dev_ptr + N, (int) 0);
// access device memory through device ptr
dev ptr[0] = 1;
// extract raw pointer from device ptr
int * raw ptr2 = thrust::raw pointer cast(dev ptr);
// free memory
cudaFree(raw ptr);
```

Recap

Containers

- Manage host & device memory
- Automatic allocation and deallocation
- Simplify data transfers

Iterators

- Behave like pointers
- Keep track of memory spaces
- Convertible to raw pointers

Namespaces

Avoid collisions

C++ Background

Function templates

```
// function template to add numbers (type of T is variable)
template< typename T >
T add(T a, T b)
  return a + b;
}
// add integers
int x = 10; int y = 20; int z;
z = add<int>(x,y);  // type of T explicitly specified
z = add(x,y); // type of T determined automatically
// add floats
float x = 10.0f; float y = 20.0f; float z;
z = add<float>(x,y); // type of T explicitly specified
z = add(x,y); // type of T determined automatically
```

C++ Background

Function objects (Functors)

```
// templated functor to add numbers
template< typename T >
class add
   public:
   T operator()(T a, T b)
      return a + b;
};
int x = 10; int y = 20; int z;
add<int> func; // create an add functor for T=int
z = func(x,y); // invoke functor on x and y
float x = 10; float y = 20; float z;
add<float> func; // create an add functor for T=float
z = func(x,y); // invoke functor on x and y
```

```
// this is a functor
// unlike functions, it can contain state
struct add x {
  add x(int x) : x(x) \{ \}
  int operator()(int y) { return x + y; }
private:
 int x;
};
// Now you can use it like this:
add x add42(42); // create an instance of the functor class
int i = add42(8); // and "call" it
assert(i == 50); // and it added 42 to its argument
std::vector<int> in; // assume this contains a bunch of values)
std::vector<int> out;
// Pass a functor to std::transform, which calls the functor on every
// element in the input sequence, and stores the result to the output
// sequence
// unlike a function pointer this can be resolved and inlined at
// compile time
std::transform(in.begin(), in.end(), out.begin(), add x(1));
assert(out[i] == in[i] + 1); // for all i
```

C++ Background

Generic Algorithms

```
// apply function f to sequences x, y and store result in z
template <typename T, typename Function>
void transform(int N, T * x, T * y, T * z, Function f)
   for (int i = 0; i < N; i++)
      z[i] = f(x[i], y[i]);
int N = 100;
int x[N]; int y[N]; int z[N];
                                   // add functor for T=int
add<int> func;
transform(N, x, y, z, func);
                                  // compute z[i] = x[i] + y[i]
transform(N, x, y, z, add<int>()); // equivalent
```

- Thrust provides many standard algorithms
 - Transformations
 - Reductions
 - Prefix Sums
 - Sorting
- Generic definitions
 - General Types
 - Built-in types (int, float, ...)
 - User-defined structures
 - General Operators
 - reduce with plus operator
 - scan with maximum operator

General types and operators

```
#include <thrust/reduce.h>
// declare storage
device vector<int> i vec = ...
                                               Initial value of sum
device vector<float> f vec = ...
// sum of integers (equivalent calls)
reduce(i vec.begin(), i vec.end());
reduce(i vec.begin(), i vec.end(),
                                      0, plus<int>());
// sum of floats (equivalent calls)
reduce(f vec.begin(), f_vec.end());
reduce(f vec.begin(), f_vec.end(), 0.0f, plus<float>());
// maximum of integers
reduce(i vec.begin(), i vec.end(), 0, maximum<int>());
```

General types and operators

```
struct negate float2
     host device
   float2 operator()(float2 a)
       return make float2(-a.x, -a.y);
};
// declare storage
device vector<float2> input = ...
device vector<float2> output = ...
// create functor
negate float2 func;
// negate vectors
transform(input.begin(), input.end(), output.begin(), func);
```

General types and operators

```
// compare x component of two float2 structures
struct compare float2
    host device
  bool operator()(float2 a, float2 b)
       return a.x < b.x;
};
// declare storage
device vector<float2> vec = ...
// create comparison functor
compare float2 comp;
// sort elements by x component
sort(vec.begin(), vec.end(), comp);
```

Operators with State

```
// compare x component of two float2 structures
struct is greater than
   int threshold;
   is_greater_than(int t) { threshold = t; }
    host device
  bool operator()(int x) { return x > threshold; }
};
device vector<int> vec = ...
// create predicate functor (returns true for x > 10)
is greater than pred(10);
// count number of values > 10
int result = count if(vec.begin(), vec.end(), pred);
```

Recap

- Algorithms
 - Generic
 - Support general types and operators
 - Statically dispatched based on iterator type
 - Memory space is known at compile time
 - Have default arguments
 - reduce (begin, end)
 - reduce (begin, end, init, binary_op)

- Behave like "normal" iterators
 - Algorithms don't know the difference

Examples

- constant iterator
- -counting iterator
- transform_iterator
- permutation_iterator
- zip_iterator

- constant iterator
 - Mimics an infinite array filled with a constant value

```
// create iterators
constant_iterator<int> begin(10);
constant_iterator<int> end = begin + 3;

begin[0]  // returns 10
begin[1]  // returns 10
begin[100]  // returns 10

// sum of [begin, end)
reduce(begin, end);  // returns 30 (i.e. 3 * 10)
```


- counting iterator
 - Mimics an infinite array with sequential values

```
// create iterators
counting_iterator<int> begin(10);
counting_iterator<int> end = begin + 3;

begin[0]  // returns 10
begin[1]  // returns 11
begin[100]  // returns 110

// sum of [begin, end)
reduce(begin, end);  // returns 33 (i.e. 10 + 11 + 12)
```


- transform iterator
 - Yields a transformed sequence
 - Facilitates kernel fusion (e.g. sum of squares)

- transform iterator
 - Conserves memory capacity and bandwidth

```
// initialize vector
device vector<int> vec(3);
vec[0] = 10; vec[1] = 20; vec[2] = 30;
// create iterator (type omitted)
first = make transform iterator(vec.begin(), negate<int>());
last = make transform iterator(vec.end(),
                                            negate<int>());
first[0] // returns -10
first[1] // returns -20
first[2] // returns -30
// sum of [begin, end)
reduce(first, last); // returns -60 (i.e. -10 + -20 + -30)
```

- zip_iterator
 - Looks like an array of structs (AoS)
 - Stored in structure of arrays (SoA)

• zip iterator

```
// initialize vectors
device vector<int> A(3);
device vector<char> B(3);
A[0] = 10; A[1] = 20; A[2] = 30;
B[0] = 'x'; B[1] = 'y'; B[2] = 'z';
// create iterator (type omitted)
first = make zip iterator(make tuple(A.begin(), B.begin()));
last = make zip iterator(make tuple(A.end(), B.end()));
first[0] // returns tuple(10, 'x')
first[1] // returns tuple(20, 'y')
first[2] // returns tuple(30, 'z')
// maximum of [begin, end)
maximum< tuple<int,char> > binary op;
reduce(first,last, first[0], binary op); // returns tuple(30, 'z')
// tuple() defines a comparison operator
                                                             54
```

Best Practices

- Fusion
 - Combine related operations together

- Structure of Arrays
 - Ensure memory coalescing

- Implicit Sequences
 - Eliminate memory accesses

Fusion

- Combine related operations together
 - Conserves memory bandwidth
- Example: SNRM2
 - Square each element
 - Compute sum of squares and take sqrt()
 - The fused implementation reads the array once while the un-fused implementation performs 2 reads and 1 write per element

Fusion

Unoptimized implementation

```
// define transformation f(x) -> x^2
struct square
     host device
    float operator()(float x)
        return x * x;
};
float snrm2 slow(device vector<float>& x)
  // without fusion
 device vector<float> temp(x.size());
  transform(x.begin(), x.end(), temp.begin(), square());
  return sqrt( reduce(temp.begin(), temp.end()) );
```

Fusion

Optimized implementation (3.8x faster)

```
// define transformation f(x) -> x^2
struct square
     host device
    float operator()(float x)
        return x * x;
float snrm2 fast(device vector<float>& x)
  // with fusion
  return sqrt( transform reduce(x.begin(), x.end(),
                                square(), 0.0f, plus<float>());
```

Structure of Arrays (SoA)

- Array of Structures (AoS)
 - Often does not obey coalescing rules
 - device vector<float3>
- Structure of Arrays (SoA)
 - Obeys coalescing rules
 - Components stored in separate arrays
 - device vector<float> x, y, z;
- Example: Rotate 3d vectors
 - SoA is 2.8x faster

Array of Structures (AoS)

```
struct rotate float3
   host device
  float3 operator()(float3 v)
   float x = v.x;
   float y = v.y;
    float z = v.z;
    float rx = 0.36f*x + 0.48f*y + -0.80f*z;
    float ry =-0.80f*x + 0.60f*y + 0.00f*z;
    float rz = 0.48f*x + 0.64f*y + 0.60f*z;
   return make float3(rx, ry, rz);
};
device vector<float3> vec(N);
transform(vec.begin(), vec.end, vec.begin(), rotate float3());
```

Structure of Arrays (SoA)

```
struct rotate tuple
             device
    host
  tuple<float,float,float> operator()(tuple<float,float,float> v)
    float x = qet<0>(v);
    float y = qet<1>(v);
    float z = get < 2 > (v);
    float rx = 0.36f*x + 0.48f*y + -0.80f*z;
    float ry =-0.80f*x + 0.60f*y + 0.00f*z;
    float rz = 0.48f*x + 0.64f*y + 0.60f*z;
    return make tuple(rx, ry, rz);
};
device vector\langle float \rangle \times (N), y(N), z(N);
transform(make zip iterator(make tuple(x.begin(), y.begin(), z.begin())),
          make zip iterator(make tuple(x.end(), y.end(), z.end())),
          make zip iterator(make tuple(x.begin(), y.begin(), z.begin())),
          rotate tuple());
```

Implicit Sequences

- Avoid storing sequences explicitly
 - Constant sequences
 - [1, 1, 1, 1, ...]
 - Incrementing sequences
 - [0, 1, 2, 3, ...]
- Implicit sequences require no storage
 - constant iterator
 - counting_iterator
- Example
 - Index of the smallest element

Implicit Sequences

```
// return the smaller of two tuples
struct smaller tuple
  tuple<float,int> operator()(tuple<float,int> a, tuple<float,int> b)
    if (a < b)
      return a;
    else
      return b;
};
int min index(device vector<float>& vec)
  // create explicit index sequence [0, 1, 2, ...)
  device vector<int> indices(vec.size());
  sequence(indices.begin(), indices.end());
  tuple<float,int> init(vec[0],0);
  tuple<float,int> smallest;
  smallest = reduce(make zip iterator(make tuple(vec.begin(), indices.begin())),
                    make zip iterator(make tuple(vec.end(),
                                                               indices.end())),
                    init,
                    smaller tuple());
  return get<1>(smallest);
```

Implicit Sequences

```
// return the smaller of two tuples
struct smaller tuple
  tuple<float,int> operator()(tuple<float,int> a, tuple<float,int> b)
    if (a < b)
      return a;
    else
      return b;
};
int min index(device vector<float>& vec)
  // create implicit index sequence [0, 1, 2, ...)
  counting iterator<int> begin(0);
  counting iterator<int> end(vec.size());
  tuple<float,int> init(vec[0],0);
  tuple<float,int> smallest;
  smallest = reduce(make zip iterator(make tuple(vec.begin(), begin)),
                    make zip iterator(make tuple(vec.end(),
                                                                 end)),
                    init,
                    smaller tuple());
  return get<1>(smallest);
```

Recap

- Best Practices
 - Fusion
 - 3.8x faster
 - Structure of Arrays
 - 2.8x faster
 - Implicit Sequences
 - 3.4x faster

Additional Resources

- Thrust
 - Homepage http://thrust.github.io/
 - More

http://docs.nvidia.com/cuda/thrust/index.html https://developer.nvidia.com/thrust