- 1. Расчет линейной электрической цепи при несинусоидальном входном напряжении
- 1.1. Разложить заданную периодическую несинусоидальную ЭДС $e(\omega t)$ в ряд Фурье ограничившись пятой гармоникой. Примеры несинусоидальной ЭДС приведены на рис. 1.1. Исходные данные для определения формы $e(\omega t)$ приведены в табл. 1.1. Построить в одной системе координат временные графики гармоник, суммарную кривую и заданную ЭДС на периоде несинусоидальной ЭДС (от 0 до 360°).

Номер варианта – номер студента по списку в журнале группы. Вид симметрии задает преподаватель.

1.2. Определить входной ток $i(\omega t)$ и его действующее значение в цепи рис. 1.2 при воздействии ЭДС $e(\omega t)$ из п. 1.1, активную мощность Р, реактивную Q и полную S мощность цепи.

Параметры схемы приведены в табл. 1.2.

Номер схемы – номер студента по списку в журнале группы.

Построить временные графики гармоник и суммарную кривую входного тока $i(\omega t)$.

Рис. 1.1 Пример несинусоидальных ЭДС $e(\omega t)$

 $\label{eq:Table} \mbox{Tabnuцa 1.1}$ Характеристики периодической несинусоидальной ЭДС $e(\omega t)$

Номер	1			2	3	
варианта	ωt	e	ωt	e	ωt	e
	градус	В	градус	В	градус	В
1	10	40	50	30	130	100
2	20	50	60	40	140	100
3	30	60	70	50	150	100
4	40	70	80	60	160	100
5	50	80	90	70	170	100
6	10	100	90	70	130	80
7	20	100	100	60	140	70
8	30	100	110	50	150	60
9	40	100	120	40	160	50
10	50	100	130	30	170	40
11	20	20	60	20	170	100
12	40	30	80	30	170	100
13	60	40	100	40	170	100
14	80	50	120	50	170	100
15	100	60	140	60	170	100
16	10	100	40	60	80	60
17	10	100	60	50	100	50
18	10	100	80	40	120	40
19	10	100	100	30	140	30
20	10	100	120	20	160	20
21	30	35	100	-20	150	100
22	30	30	90	-20	140	100
23	30	25	80	-20	130	100
24	30	20	70	-20	120	100
25	30	15	60	-20	110	100
26	30	100	80	-20	150	35
27	40	100	90	-20	150	30
28	50	100	100	-20	150	25
29	60	100	110	-20	150	20
30	70	100	120	-20	150	15

Таблица 1.2 Параметры схемы

Номе	Номер студента в		ω,	r_1 ,	r_2 ,	L_1 ,	C_1 ,	L_2 ,	C_1 ,
спи	списке группы		1/c	Ом	Ом	мГн	мкФ	мГн	мкФ
1	11	21	1000	25	20	15	40	10	30
2	12	22	2000	10	10	10	20	15	20
3	13	23	3000	40	35	12	10	10	15
4	14	24	4000	120	90	20	3	5	10
5	15	25	5000	45	65	4	4	6	8
6	16	26	4000	20	25	10	50	20	40
7	17	27	3000	35	40	6	5	5	10
8	18	28	2000	15	20	15	20	10	15
9	19	29	5000	100	100	20	2	15	5
10	20	30	10000	25	30	2	1	3	2

Рис. 1.2, лист 1. Схемы электрических цепей к расчету входного тока при несинусоидальном входном напряжении

Рис. 1.2, лист 2.

Рис. 1.2, лист 3

1.3. Пример разложения периодической несинусоидальной функции в ряд Фурье

В случае, когда периодическая несинусоидальная функция задана графически, например в виде осциллограммы, используется приближенный способ определения коэффициентов ряда.

Исходные данные к рассматриваемому примеру приведены в табл. 1.3. Вид симметрии кривой – симметрия относительно оси абсцисс.

Таблица 1.3 Исходные данные к примеру

1		2	2	3	
ωt	e	ωt	e	ωt	e
градус	В	градус	В	градус	В
70	100	120	-20	150	15

Иллюстрация к примеру разложения периодической несинусоидальной функции в ряд Фурье приведена на рис. 1.3. Для графического построения половины периода исходной кривой несинусоидального напряжения использованы координаты из табл. 1.3. (отсчеты обозначены как 7, 12 и 15). Разобъём половину периода функции на 18 интервалов с шагом 10° (на рисунке отсчеты пронумерованы). Определим амплитуды отсчетов для дальнейшего использования в определении коэффициентов ряда Фурье – в качестве примера на рисунке явно обозначены первые пять амплитуд отсчетов $e_1 - e_5$.

При симметрии относительно оси абсцисс ряд Фурье не содержит постоянную составляющую и четные гармоники ($A_0 = B_2 = C_2 = B_4 = C_4 = ... = 0$), т.е. содержит только нечетные синусные и косинусные составляющие:

$$f(\omega t) = B_1 \sin \omega t + C_1 \cos \omega t + B_3 \sin 3\omega t + C_3 \cos 3\omega t +$$

$$+ B_5 \sin 5\omega t + C_5 \cos 5\omega t + \dots =$$

$$= A_{1m} \sin(\omega t + \Psi_1) + A_{3m} \sin(3\omega t + \Psi_3) + A_{5m} \sin(5\omega t + \Psi_5) + \dots$$

$$(1.1)$$

Данные к расчету синусных и косинусных коэффициентов ряда Фурье для первой гармоники приведены в табл. 1.4. Расчет коэффициентов для 3 и 5 гармоник ряда приведен в табл. 1.5 и 1.6 соответственно.

Для определения коэффициентов использовались ординаты отсчетов лишь половины периода несинусоидальной периодической функции, поэто-

му полученный результат для каждого из коэффициентов B_k и C_k будем удваивать.

Рис. 1.3. Иллюстрация к примеру разложения периодической несинусоидальной функции в ряд Фурье

Таблица 1.4 Расчет коэффициентов ряда Фурье для первой гармоники (k=1)

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	10	0,174	0,985	2,26	12,80
2	28,00	20	0,342	0,940	9,58	26,31
3	42,50	30	0,500	0,866	21,25	36,81
4	57,00	40	0,643	0,766	36,64	43,66
5	70,50	50	0,766	0,643	54,01	45,32
6	85,00	60	0,866	0,500	73,61	42,50
7	100,00	70	0,940	0,342	93,97	34,20
8	75,00	80	0,985	0,174	73,86	13,02
9	51,00	90	1,000	0,000	51,00	0,00
10	27,50	100	0,985	-0,174	27,08	-4,78
11	2,50	110	0,940	-0,342	2,35	-0,86
12	-20,00	120	0,866	-0,500	-17,32	10,00
13	-8,00	130	0,766	-0,643	-6,13	5,14
14	2,50	140	0,643	-0,766	1,61	-1,92
15	15,00	150	0,500	-0,866	7,50	-12,99
16	10,00	160	0,342	-0,940	3,42	-9,40
17	5,00	170	0,174	-0,985	0,87	-4,92
18	0,00	180	0,000	-1,000	0,00	0,00
	Алгебраическая сумма по столбцу				435,55	234,91

Коэффициенты для первой гармоники:

$$B_1 = \frac{2}{18} \sum (e(n10^\circ) \sin(kn10^\circ)) = \frac{435,55}{9} = 48,39;$$

$$C_1 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{234,91}{9} = 26,10.$$

Амплитуда и начальная фаза:

$$E_{1m} = A_{1m} = \sqrt{B_1^2 + C_1^2} = \sqrt{48,39^2 + 26,10^2} = 54,98 \text{ B};$$

$$\Psi_1 = \operatorname{arctg} \frac{C_1}{B_1} = \operatorname{arctg} \frac{26,10}{48,39} = 28,34^{\circ}.$$

Таблица 1.5 Расчет коэффициентов ряда Фурье для третьей гармоники (k=3)

n	<i>e</i> (<i>n</i> 10°)	kn10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	30	0,500	0,866	6,50	11,26
2	28,00	60	0,866	0,500	24,25	14,00
3	42,50	90	1,000	0,000	42,50	0,00
4	57,00	120	0,866	-0,500	49,36	-28,50
5	70,50	150	0,500	-0,866	35,25	-61,05
6	85,00	180	0,000	-1,000	0,00	-85,00
7	100,00	210	-0,500	-0,866	-50,00	-86,60
8	75,00	240	-0,866	-0,500	-64,95	-37,50
9	51,00	270	-1,000	0,000	-51,00	0,00
10	27,50	300	-0,866	0,500	-23,82	13,75
11	2,50	330	-0,500	0,866	-1,25	2,17
12	-20,00	360	0,000	1,000	0,00	-20,00
13	-8,00	390	0,500	0,866	-4,00	-6,93
14	2,50	420	0,866	0,500	2,17	1,25
15	15,00	450	1,000	0,000	15,00	0,00
16	10,00	480	0,866	-0,500	8,66	-5,00
17	5,00	510	0,500	-0,866	2,50	-4,33
18	0,00	540	0,000	-1,000	0,00	0,00
	Алгебра	ическа	я сумма по	столбцу	-8,83	-292,49

Коэффициенты для третьей гармоники:

$$B_3 = \frac{2}{18} \sum (e(n10^\circ)\sin(kn10^\circ)) = \frac{-8,83}{9} = -0,98;$$

$$C_3 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{-292,49}{9} = -32,50.$$

Амплитуда и начальная фаза:

$$E_{3m} = A_{3m} = \sqrt{B_3^2 + C_3^2} = \sqrt{0.98^2 + 32.50^2} = 32.51 \text{ B};$$

$$\Psi_3 = \operatorname{arctg} \frac{C_3}{B_3} = \operatorname{arctg} \frac{-32,50}{-0,98} = 88,27^\circ$$
, но т.к. $B_3 < 0$ то к полученному

значению необходимо добавить или вычесть 180° , т.е. в итоге $\Psi_3=88,27^\circ+180^\circ=268,27^\circ$ или $\Psi_3=88,27^\circ-180^\circ=-91,73^\circ$.

Таблица 1.6 Расчет коэффициентов ряда Фурье для пятой гармоники $\left(k=5\right)$

n	$e(n10^\circ)$	kn10°	$\sin(kn10^\circ)$	$\cos(kn10^\circ)$	$e(n10^\circ)\sin(kn10^\circ)$	$e(n10^\circ)\cos(kn10^\circ)$
1	13,00	50	0,766	0,643	9,96	8,36
2	28,00	100	0,985	-0,174	27,57	-4,86
3	42,50	150	0,500	-0,866	21,25	-36,81
4	57,00	200	-0,342	-0,940	-19,50	-53,56
5	70,50	250	-0,940	-0,342	-66,25	-24,11
6	85,00	300	-0,866	0,500	-73,61	42,50
7	100,00	350	-0,174	0,985	-17,36	98,48
8	75,00	400	0,643	0,766	48,21	57,45
9	51,00	450	1,000	0,000	51,00	0,00
10	27,50	500	0,643	-0,766	17,68	-21,07
11	2,50	550	-0,174	-0,985	-0,43	-2,46
12	-20,00	600	-0,866	-0,500	17,32	10,00
13	-8,00	650	-0,940	0,342	7,52	-2,74
14	2,50	700	-0,342	0,940	-0,86	2,35
15	15,00	750	0,500	0,866	7,50	12,99
16	10,00	800	0,985	0,174	9,85	1,74
17	5,00	850	0,766	-0,643	3,83	-3,21
18	0,00	900	0,000	-1,000	0,00	0,00
	Алгебра	ическа	я сумма по	столбцу	43,68	85,04

Коэффициенты для пятой гармоники:

$$B_5 = \frac{2}{18} \sum (e(n10^\circ)\sin(kn10^\circ)) = \frac{43,68}{9} = 4,85;$$

$$C_5 = \frac{2}{18} \sum (e(n10^\circ)\cos(kn10^\circ)) = \frac{85,04}{9} = 9,45.$$

Амплитуда и начальная фаза:

$$E_{5m} = A_{5m} = \sqrt{B_5^2 + C_5^2} = \sqrt{4,85^2 + 9,45^2} = 10,62 \text{ B};$$

$$\Psi_5 = \operatorname{arctg} \frac{C_5}{B_5} = \operatorname{arctg} \frac{9,45}{4,85} = 62,82^{\circ}.$$

В итоге функция описывается рядом:

$$e(\omega t) = E_{1m}\sin(\omega t + \Psi_1) + E_{3m}\sin(3\omega t + \Psi_3) + E_{5m}\sin(5\omega t + \Psi_5) =$$

$$= 54,98\sin(\omega t + 28,34^\circ) + 32,51\sin(3\omega t - 91,73^\circ) + 10,62\sin(5\omega t + 62,82^\circ) \text{ B}.$$

График периодической несинусоидальной ЭДС (симметрия относительно оси абсцисс) и ее представление тремя гармониками приведено на рис. 1.4.

Рис. 1.4. График периодической несинусоидальной ЭДС и ее представление тремя гармониками

Сравнительный анализ графиков исходной и результирующей кривых показывает хорошее совпадение, что позволяет сделать вывод об удовлетворительном результате определения коэффициентов ряда Фурье для заданной периодической несинусоидальной функции.