Notes

Ryan Heslin

August 26, 2021

1.
If 0 is an eigenvalue, $\det A = 0$ because the determinant is the product of an eigenvalue.
2.
True, that is the characteristic polynomial.
3.
True.
4.
True.
5.
False; a repeat eigenvalue may correspond to a single eigenvector.
6.
True, diagonalization requires an eigenbasis.
7.
True. The eigenvlues of a diaonal matrix are just the diagonal, so $\lambda_n x_n = \lambda_n e_n$
8.
True.
$Ax = \lambda x$ $A^3 x = A^2 \lambda x$
$= A^2 A x$
$=A^3x$

9.

False; an odd-rank skew-symmetric has 0 as an eigenvalue, thought he others are complex

10.

True.

$$A^2 = -I$$

$$Av^2 = -v$$

$$\lambda^2 v = -v$$

But odd-ranked matrices can't have purely imaginary eignvalues, so False.

11.

True, since eignvalues sum to the trace.

12.

True; that means multiplication always respects vector length.

13.

True. Rotation matrices are always skew-symmetric, so they have unitary complex eignvectors.

14.

True; that is simply the dimension of the kernel, since A - 0I = A.

15.

True. All similar matrices arediagonalizable,a dn teh

16.

17.

False.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

18. 19. 20. 21. False. Consider $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 22. 23. 24. **25**. **26**. 27. 28. 29. 30. 31. True. Distinct eigenvalues always correspond to independent eigenvectors. **32.** 33. False. Orhtogonal matrices can be diagonalizable yet cannot ahve more than 2 distinct eigenvalues. 34.

False. Consider $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

and its transpose. ## 36.

35.

37.

False.

$$\lambda_v v = Av$$

$$\lambda_w w = Aw$$

$$A(v + w) = \lambda_v v + \lambda_w w$$

38.

39.

40.

41.

42.

43.

True, from the definition of similarity.

44.

45.

46.

47.

True by definition.

48.

True. The number of 0 eigenvalues is n - rank, so each distinct eigenvalue adds a dimension of rank.

49.

True. The image of A is just a single vector if it has rank 1, so that vector satisfies $Ax = \lambda x$.

50.

True. Then the one nonzero eigenvalue has geometric multiplicity 1 (corresponding to the image of A) and the n-1 0 eigenvalues have the geometric multiplicity of the kernel's dimension, n-1

51.

52.

53.

True. If $\lambda x = Ax = 0$, it is in the kernel; otherwise it is in the image, since any scalar of v still qualifies as an eigenvector.

54.

True. Symmetric matrices guarantee orthogononal and thus distinct - eigenvectors.

55.

True. $Au = \lambda u = 4u$.

56.

True. This eigenvector corresponds to the subspace u the matrix is projecting into, since Pu = u.

57.

58.