下一代Internet技术与 协议

张冬梅 北京邮电大学 计算机学院 zhangdm@bupt.edu.cn

IP协议

- □IP协议概述
- □ IPv6

IP协议概述

- □互联网通信协议的工作环境
 - ■用户需求
 - ■底层通道环境
- □互联网通信协议的功能
- □IP协议提供的服务

IP在协议栈中的位置

- □多个高层协议
- □多个低层协议

□唯一的网络层协议

□是路由器和主机共同支持的最高层协议

IP 提供的服务

- □ 不可靠(unreliable connectionless)的 尽力投递服务
 - 不可靠: IP does not make an attempt to recover lost packets
 - 无连接: Each packet ("datagram") is handled independently. IP is not aware that packets between hosts may be sent in a logical sequence
 - 尽力投递: IP does not make guarantees on the service
- □影响
 - 高层协议需要处理丢包等问题
 - 分组乱序

IP数据报简介

- □通用的虚拟包
- ■對装
 - ■IP数据报与帧
 - 底层封装
 - ■互联网传输过程
- □分段与重组
 - 最大传送单元(Maxium Transmission Unit)
 - ■原因
 - ■方法

IP协议内容

- □ IP地址的编址方案(已经讲过)
- □IP数据报格式
- □IP路由和交换

IPv4数据报

- □简介
 - 互联网的基本传输单元: IP数据报
 - IP数据报处理在软件中进行
- □IP数据报格式

IP节点处理数据报过程

IP路由技术的工作原理(1/6)

□路由表的内容

- ■目的地址
- ■前缀长度
- ■下一跳地址
- ■端口号

IP路由技术的工作原理(2/6)

□基本概念

- 直接投递: 通信双方在同一个物理网络中
- 间接投递: 通信双方不在一个物理网络中
- 默认路由: 简化路由表的一种方法

IP路由技术的工作原理(3/6)

□路由表表项的分类

- 特定主机路由
- 网络前缀路由
- 缺省路由(默认路由)

IP路由技术的工作原理(4/6)

- □路由匹配原则归纳
 - 首选: 特定主机路由
 - 其次: 最长网络前缀匹配
 - 最后: 缺省路由
 - 路由错误,ICMP报错

IP路由技术的工作原理(5/6)

- □生成路由表的方法
 - 静态生成, 手工配置
 - ■利用ICMP消息
 - ■利用动态路由协议
 - OSPF
 - RIP
 - BGP

IP路由技术的工作原理(6/6)

- □生成路由表的基本工作过程
 - ■制定各物理网络的网络前缀
 - ■配置路由器各端口的IP地址及前缀长度
 - ■路由器学习邻局路由器的信息
 - 路由器根据路由协议,定期交换路由更新信息,更新自己的路由表

IP网络路由举例

源地址:	1.0.0.1	

目的地址: 1.0.1.2, 2.0.0.3

2.0.0.7,4.0.0.5

Router1			
目的地址	网络掩码	下一跳地址	端口号
1.0.0.0	255.0.0.0	直接投递	a
2.0.0.0	255.0.0.0	3.0.0.253	ь
3.0.0.0	255.0.0.0	直接投递	b
Router2			
目的地址	网络掩码	下一跳地址	端口号
1.0.0.0	255.0.0.0	3.0.0.254	с
2.0.0.0	255.0.0.0	直接投递	b
3.0.0.0	255.0.0.0	直接投递	С

目的地址	网络掩码	下一跳地址	端口号
0.0.0.0	0.0.0.0	1.0.0.254	a
1.0.0.0	255.255.255.240	直接投递	a
Н3			
目的地址	网络掩码	下一跳地址	端口号
0.0.0.0	0.0.0.0	2.0.0.253	a
2.0.0.0	255.0.0.0	直接投递	a

IP协议路由处理流程

IPv4变革的动机

- □有限的地址空间
- □ 新的Internet应用
 - 传递音频和视频信息
 - ■对更复杂的寻址和路由能力的需求
 - ■移动服务

IPv6

- □ IPv6简介
- □ IPv6特征
- □ IPv6协议
- □常用的几种扩展头标简介

IPv6简介

- □ IPv6是IP协议的新版本
- □ 也叫做IPng(IP新一代)
- □ 1995年随RFC1883的出现而完成
- □ 1998年RFC2460取代了RFC1883
- □ IPv6的目的就是要解决IPv4遇到的问题
- □ IPv6将是未来唯一的第三层协议
- □ IPv6将是下一代Internet的基础协议

IPv6特征

- □ IPv6保留了IPv4的成功特征
- □ IPv6的新加特征
 - ■地址尺寸
 - 头部格式
 - ■扩展头标
 - 对音频和视频的支持
 - ■可扩展的协议

IPv6协议

- □ 基本术语
 - 节点 (node): 任何实现了IPv6的设备
 - 路由器: 转发IPv6报文的节点
 - 主机: 在网络上除了路由器的节点
 - 链路: 节点利用来在链路层通信的通信设备或介质,如以太网、PPP链路或网络层隧道

相关术语

- 邻居:连接在同一链路上的节点
- ■接口:结点与链路相连接的部件
- 链路MTU: 在某一链路上的最大传输单元
- 路径MTU: 出发点和目的节点之间的路径上 所有链路的最小链路MTU.

IPv6格式

- □ IPv6报头特点
 - 报头大大简化
 - ■固定的基本报头长度
 - 去掉报头校验和
 - IPv4报头中的一些字段被取消或是变成 可选项
 - ■用扩展报头代替了IPv4报头中的选项字 段

IPv6格式

- □ IPv6数据报格式
 - 简化的头标(40字节基本/固定头标)
 - ■参数的修订
 - ■新增加的域

IPv6协议首部与IPv4协议首部的比较

□ IPv6协议与IPv4协议是互不兼容的两个网络层协议,IPv6是在IPv4基础上的改进

版本	首部 长度		服务 类型	总	长度		版本	通信类型		流标签	
	标识	Į		标志	分段 偏移		有交	效荷载长度	下一	一个首部	跳数 限制
生存时间 协议 首部校验和			Neg Id. Id.								
			源地址					V	原地址		
			目的地址								
		选项	Ę		填充			E	的地址		
			(a) IPv4 协	议首部				(b) I	Pv6 协议i	首部	
				<u> </u>	Pv6 中字段名	不变	;	—— IPv6 中取	消;		
	── IPv6 中新字段;										

IPv6协议与IPv4协议首部字段比较及特征

表 2-2 IPv6 协议与 IPv4 协议首部字段的比较及特征

IPv4 首部的字段	IPv6 首部的字段	比较及在 IPv6 中的特征
版本(4比特)	版本(4比特)	功能相同,IPv6 中该字段值为 6
IHL(4 比特)		IPv6 分组固定首部为 40 字节
服务类型 (8 比特)	通信类型(8比特)	具有类似的功能
	流标签(20比特)	用于标识 IPv6 数据流
总长度(16 比特)	有效荷载长度(20比特)	具有类似的功能
标识 (16 比特)		IPv6 中分段处理方式不同
标志(3比特)		IPv6 中分段处理方式不同
分段偏移(13比特)		IPv6 中分段处理方式不同

IPv6协议首部去掉了IPv4协议中的5个字段,这5个字段 是首部长度、标识、标志、段偏移和首部校验和

IPv6格式

- 流量类别(Traffic Class):表示IPv6数据包的类别和优先级,前
 6位是DSCP字段,后两位用于ECN
- 流标记(Flow Label):表示数据包是源与目标之间一系列包中的 一个,需要中间IPv6路由器进行特殊处理

补:区分服务(DS)

- □ 背景:随着网络负担的加重以及应用种类的增多,对于不同的通信流提供不同水平的QoS是一个紧迫的需求
- □ 区分服务(Differentiated Service):基于类别的服务
- □ DS模型: 当网络出现拥塞时,根据业务的不同服务等级约定,有差别地进行流量控制和转发来解决拥塞问题
- □ DS体系结构设计目标
 - ■简单、易实现
 - 低成本工具来支持

补:区分服务(DS)

□功能组成

- 管理域: (属于同一个组织的)一组服务器
- 管理规范: 定义一组服务类别,每个服务类别对应于特定的转发规则
- 在使用DS之前,服务提供者和客户要签订服务级协议

□工作原理

- IP流量进入管理域会被标记服务类别(DSCP值),不同的 QoS处理有不同的标记
- 提供内置的聚集机制,基于DS字段进行排队和转发处理
- 服务类别定义属于单跳行为(per hop behavior),仅对应每个路由器上得到的处理,非整个网络中得到保证
- ■属于同一类别的流量要求符合特定的形状特征

补: DS模型体系结构

不同DS区域可有不同的以实现不同的服务提供策略,它们之间通过SLA与TCA协调提供跨区域服务:

. SLA: 服务等级协定,关于业务流在网络中传递时所应当获得的待遇。

. TCA: 流量调整协定,关于业务分类准则、业务模型及相应处理的协定。

在网络边缘进行业 务分类和流量调整。

- 流量分类
 - . 基于DSCP
 - . 基于其他特征
- 流量监管/调整
 - 测量
 - . 标记
 - . 丢弃
 - 整形

补:区分服务(DS)

- □特点:简单、易实现
 - 不需要预先设置,不需要端到端协商,不需要预留 资源
- □ 举例: 确保转发(Assured Forwarding)
 - 4种优先级、3种丢弃,共计12种服务类别

IPv6格式

- □ 负载长度(Payload length)
 - 16bit, 扩展首部+上层PDU
 - 表示的长度≤65535
 - >65535, Paylaod length=0并使用Hop-by-Hop中的 Jumbo Payload选项
- □ 跳数限制(Hop Limit)

路由器转发IPv4分组过程

- □ 检查首部校验和
- □检查版本字段
- □ 递减生存时间(TTL)字段的值
- □ 处理<u>首部选项</u>字段的值,依次处理
- □路由选择
 - 下一跳地址、默认路由、discard and ICMP
- □ 处理<u>分组总长度</u>的问题
 - Fragment or discard & ICMPv4
- □ 计算校验和
- □依据路由选择结果转发分组

路由器转发IPv6分组过程

- ■检查首部校验和
- □检查版本字段
- □ 递减生存时间(跳数限制hop limit)字段的值
- **√**□ 处理<u>首部选项(下一首部</u>)字段的值,依次处理
 - □路由选择
 - 下一跳地址、默认路由、discard and ICMP
- **√**□ 处理<u>分组总长度(有效载荷</u>)长度的问题
 - discard and ICMP
 - ■计算校验和
 - □依据路由选择结果转发分组

IPv6格式

□扩展报头

- IPv6使用扩展报头来代替IPv4的选项字段。 以此来减少IPv6信息包中途经过路由器时的 处理时间。扩展报头可位于IPv6报头和上层 协议之间,报头之间由下一个报头字段进行 连接,这样组成一个菊花链式结构。
- 一个IPv6信息包可以有0个,1个或多个扩展 报头。

IPv6格式—下一头标

取值 (十进制)	含义	取值 (十进制)	含义
0	Hop-by-hop 逐跳选项首部	47	通用路由封装GRE
1	ICMPv4	50	ESP
2	IGMPv4	51	AH
4	IPv4封装	58	ICMPv6
5	IST(Internet Stream Protocol)	59	无下一头标
6	TCP	60	Destination option目的选项扩展头标
8	EGP	88	EIGRE(Enhanced Interior Gateway Routing Protocol)
9	IGP	89	OSPF
17	UDP	108	IP有效载荷压缩协议
41	IPv6封装	115	L2TP(二层隧道传输协议)
43	routing路由扩展首部	132	流控制传输协议SCTP
44	fragment分段扩展首部	135	Monility移动扩展头标,移动节点使用
46	RSVP		

扩展首部

- □位置:在IPv6基本头标和有效载荷之间
- □格式

- □特点(与IPv4的选项字段比较)
 - 灵活、高效: 只在需要时才插入
 - 可扩展性好: 可以根据需要定义新的扩展头标
- □ 处理位置:路由器、目的节点

扩展头标

- □问题
 - 路由器需要查看每个扩展头标吗?
 - 如何能够做到让路由器**高效地选择出需要其处理的扩 展头标?**
- □ 关于IPv6扩展头的几点说明:
 - 扩展包头必须严格按出现顺序处理,目的结点不能搜索某一特定的扩展头并对之优先处理
 - 如果要处理的下一个包头的类型不认识或0则返回 ICMP (code 1) 并丢弃包
 - 为了字边界对齐,每个扩展报头的长度是必须是**8**字 节的整数倍

扩展头标

- □基本组合方式
 - IP基本头标+数据
 - IP基本头标+1个扩展头标+数据
 - IP基本头标+n个扩展头标+数据
 - IP基本头标+扩展头标

扩展头标

出现的顺序 首部名称 路 IPv6基本首部 由 Hop-by-hop 逐跳选项扩展首部 器 Destination目的选项扩展首部1(由首部中指定的网络节点依 处理 次进行处理) routing扩展首部 fragment分片扩展首部 5 6 AH认证扩展首部 的 ESP封装安全净荷 节 点 Destination目的选项扩展首部2(仅由目的节点进行处理) 处 Mobility移动扩展首部 理 无下一头标 最后 最后 UDP,TCP,ICMP以及其他高层协议首部

- Hop-by-hop Options Header
- □ 作用: 描述了数据分组每一跳转发的特性
- 处理位置: 从源节点到目的节点的路由上的每 一个节点(即路由器)
- □ 说明:
 - ■除了逐跳选项扩展首部,其余扩展头部与上层协议 一样是根据目标地址判断是否需要解析处理。
 - 逐跳选项首部在沿途路由器上被**无条件解析处理**

- □ 选项可能会有起始位置的要求,即保证选项中的 特定字段正好位于某个边界上。
- □对齐通过表达式xn+y表示:表示选项需要从x字节的整数倍加上y字节(相对头部起始位置)的边界开始。
 - eg. 为了保证选项中的IP地址字段正好位于4字节的 边界上,可以要求选项从4n+2位置开始
- □ 为了满足选项的对其要求,当有多个选项时,可以在某个选项之前或各选项之间使用填充字段

- 逐跳选项首部决定了数据包内容一定会被沿途的 路由器处理
- 逐跳选项首部的选项类型决定了数据包如何被处理。
- □ Pad 1的选项
 - 用于边界对齐,插入一个填充字节
 - 1字节,格式: 0000 0000(选项类型)
- □ Pad N的选项结构
 - 用于边界对齐,插入2个或多个填充字节
 - N字节

0000 0001

选项数据长度

N-2字节个0

■ 格式

N个字节的填充

- □ 特大有效载荷(jumbo payload)
 - 作用: IP数据报的载荷长度超过65535字节时使用
 - 选项从(4n+2)字节处开始,固定6字节 _{代码 长度}

□结构

- □ 能表示的最大IP分组长度JPL: 65535≤JPL<232
 - 该长度不包含IPv6基本首部
 - 包含逐跳选项扩展首部在内的字节数
 - 使用该选项,则IPv6基本头中的有效载荷字段设置为0
- □ 只有沿途每个路由器都能处理时才可使用该选项
- 如果使用了分片扩展首部,则hop-by-hop选项扩展首部中不能包含特大有效载荷选项

- □ 路由器警告(警示)选项(router alert option)
 - 用于告知路由器该IPv6分组中的内容需要进行特殊的处理,用于RSVP、MLD(Multicast Listener Discovery Protocol)等

This memo describes a new IP Option type that <u>alerts transit routers to</u> <u>more closely examine the contents of an IP packet</u>. This is useful for, but not limited to, new protocols that are addressed to adestination but <u>require relatively complex processing in routers</u> along the path.

- 选项从(2n+0)字节处开始,长度固定为4字节
- Router处理行为:被应用层进程在用户态处理,将剩余跳数递减后重新注入协议栈,继续转发

48

路由扩展首部

- □ Routing Header, RH(头标类型: 43)
- 作用:控制路径,用来指出IPv6分组在从源节点到目的节点的过程中需要经过的一个或多个路由器(即包含每一个中间目的路由器的列表)
- 应用场景:信源将分组发往信宿时,在某些情况下希望控制该分组经过的路径。
- □格式

 代码
 长度

 下一首部
 扩展首部长度
 路由类型
 剩余段数

 类型相关数据

- □路由类型
 - 类型0:支持宽松源路由
 - 类型2: 支持IPv6移动性

路由扩展首部

□路由类型0的路由扩展首部

下一头标	扩展头标长度	路由类型=0	剩余中继点数		
保留					
地址[0]					
地址[1]					
地址 [n-1]					

路由扩展首部应用举例

路由扩展首部

STEP1: 信源发出分组时,基本头标的目的地址是预定路径上第一个中继点地址,沿该路径的各HOP地址依次列于寻路头标地址表内,剩余中继点数为地址表中地址的总数

STEP2:中间节点需要改变的域

- ■基本头标
 - 中继点限制(减1)
 - 目的站IP地址(地址表中的一个地址)
- ■扩展头标
 - 剩余中继点数(SI=SL-1)
 - 地址表中的某个地址(与基本头标中目的地址对调)

路由扩展首部

□相关讨论

- 效率高: 只有目的地址指示的路由器处理路由扩展首部,其他中间路由器不处理
- 路由类型字段不可识别时:
 - ■剩余字段数≠0,忽略,继续处理下一个首部
 - ■剩余字段数=0,丢弃并发送ICMPv6报参数错误
- 路由类型=0时,目的地址不能为多播地址

- □ Fragment Header: FH(头标类型: 44)
- □ 作用:数据报分片用于将大于路径MTU(PMTU)的信息包从源节点发送到目的节点
- □ 位置:源节点分片
- □ 相关技术:路径MTU发现技术(PMTUD)
- 1
 格式
 下一头标
 保留=0
 报片偏移
 保留=0
 M

 (8字节)
 标识符
 - M(ore): 最后的报片置为 "0", 其余报片置为 "1";
 - 报片偏移(13bit): 以64比特为单位(即8字节的整数倍), 最大值=2¹³-1=8191*8=65528字节
 - 标识符(32bit): 唯一标识最近(在分组的生存期内)从源地址发现目的地址的分组,网络具有容纳更多分片的能力。

□原始IPv6数据报:未被分片的分组

- IPv6分组基本首部
- ■需要路由器处理的扩展首部
 - ■逐跳选项扩展首部
 - 目的选项扩展首部(放在路由选项之前的)
 - 路由扩展首部

■重组

- 具有相同源地址、目的地址和分片标识符
- 不可分片部分=第1个分片分组的不可分片部分
- 下一头标: 第1个分片分组的分片扩展首部的下一首部字段
- RFC2460建议超过60s就放弃重组,并丢弃已部分重组的包,同时向源主机发送ICMPv6超时消息

- □ 原始IPv6数据报
- □ 路径MUT=1500B

```
IPv6基本头(40字节) + IP数据(3960字节) 
净荷长度=3960
下一头标=17(UDP协议)
```

第1片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1448字节)

净荷长度=1456 下一头标=17

下一头标=44 偏移量=0

M=1

标识符=1234567

第2片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1448字节)

净荷长度=1456 下一头标=17

下一头标=44 偏移量=181

M=1

标识符=1234567

第3片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1064字节)

净荷长度=1072 下一头标=17

M=0

标识符=1234567

- □ 路径MTU (PMTU)
 - 大量数据传输时,为了提高信道利用率需要发送<u>尽可能大的</u> IP数据包(PMTU)
 - IPv6要求链路层至少支持1280字节的MTU
 - 为了传送大于路径MTU的信息包,节点可使用IPv6分段报头, 在<u>源节点将信息包分段</u>,而在目的节点将信息包重装配。
 - 特点: IPv6的分段处理不同于IPv4, IPv6仅在源节点通过扩展报头中的分段报头进行分段处理, 简化了中间节点对分组的处理。
 - 两台主机之间PMTU会变化且不需要在两个方向相同
- □ 思考问题: 主机如何发现路径的MTU?**路径MTU发现** 机制(参见ICMPv6相关内容)

- 相关说明(思考: Why?)
 - 不推荐发送主机对负载进行分片(即IP层不分片)
 - 建议通过TCP使用PMTU控制数据段的大小
- □ 常用LAN和WAN技术的IPv6 MTU

LAN or WAN	IPv6 MTU
Ethernet II	1500(超大帧可达9000)
IEEE802.3	1492
IEEE802.11	2312
FDDI	4352
PPP	1500
FR	1592
ATM	9180

□ 异常情况处理

- 60s内没有收到全部分片,则终止重组并报错
- M=1且数据部分长度非8字节整数倍,丢弃并报错
- 重组后有效载荷长度>65535字节,丢弃并报错
- MTU<1280字节的数据包为非法

Fragment attack

- Ping of Death---发送大于65536字节的ICMP包使目标主机缓冲区溢出,引起拒绝服务攻击,导致操作系统崩溃
- Teardown attack---偏移字段设置成不正确的值(DoS攻击)
- Tiny fragment attack---发送设计过的分片来绕过防火墙等 包过滤系统或者入侵检测系统

- Destination Option Header, DOH
- □ 问题的引出:如何对IPv6增加新的功能?
- □ 常用方法
 - 定义一个新扩展头标,该头标仅由目的地址标识的主机来 处理;
 - 不分配新的头标类型,仅定义一个通用的、自由度高的由 目的地主机处理的扩展头标
- □目的选项扩展首部作用
 - 携带只需要目的站点检验的可选信息(便于用户增加新IP 层功能),为中间节点或目的节点指定分组的转发参数

□ 使用方式

- IF(存在路由首部AND目的选项在路由首部前), THEN 目的选项指定中间节点(Router)均需要转发或 处理的选项
- ELSE(即不存在路由首部OR目的选项在路由首部后) 目的选项指定目的节点处理的选项

□ 为什么要定义两个位置?

■ 在某些情况下(例如使用路由头部),当数据报被转发到最终目的地时,IPv6头部中的目的IP地址字段将会改变。

□格式

```
        下一首部
        扩展首部长度

        选项(N*8B)
```

- 下一首部(8bit)
- 扩展首部长度(8bit)
- 选项(变长)

。选项(TLV)

8bit8bit选项类型T选项数据长度L选项数据值V

■ 选项类型T

- 动作(Operation): 指明处理节点不能识别选项时的操作
 - 00: 忽略,继续处理下一选项
 - 01: 丢弃IP分组,不回送I*CM*P报文
 - 10: 丢弃IP分组,回送ICMP差错报文
 - 11: 丢弃IP分组,如果目的地址不是组播地址,就回送 ICMP报文(目的信息作为一个单独的扩展首部是使用)
- 改变(C): 选项在传输的路径上是否改变(1: 改变; 0: 不改变)

- □ 将目的信息作为目的选项扩展首部中的
 - 一个选项
 - 填充1选项
 - ■填充N选项
- □ 将目的信息作为一个单独的扩展首部: 家乡地址选项HA(MIPv6章节介绍)
 - 用来表示移动节点的家乡地址
 - 类型: 11001001

选项扩展首部

选项名	首部	动 作	改变	类型(8bit)	长度 (B)	起始位置	RFC
Pad 1	H,D	00	0	0	N	无	RFC2460
Pad N	H,D	00	0	1	可变	无	RFC2460
超大有效 载荷	Н	11	0	194(0xC2)	4	4n+2	RFC2675
路由器警 告	Н	00	0	5	2	2n+0	RFC2711
家乡地址	D	11	0	201(0xC9)	16	8n+6	RFC6275

IPv6扩展首部与IPv4选项的比较

IPv4中的情况	IPv6中的情况	
无操作和选项结束选项	Pad1, PadN(Hop by Hop)	
记录路由	无	
时间戳	无	
源路由(严格、松散)	路由扩展首部(Routing Header)	
基本头中的分片字段	分片扩展首部(Fragment Header)	
无	认证首部(Authentication Header)	
无	封装安全净荷ESP	
无	目的选项扩展首部(DOH)	

关于定义新的扩展首部和选项

□ RFC8200 (2017)

- **不推荐**定义新类型的IPv6扩展首部,除非有充分的证据说明现存的IPv6扩展首部(通过增加新选项等的方法)无法实现需要的功能
- 禁止定义新的具有hop-by-hop行为的扩展首部
- 不推荐定义hop-by-hop新选项
- 推荐利用<u>目的选项扩展首部</u>实现更多可选功能

IPv6与IPv4的比较

- □ IPv6中,要求所封装的UDP首部中必须有校验和字段,而IPv4封装的UDP首部中校验和是可选的
- □ IPv6要求每条链路最小MTU为1280字节, IPv4的链路最小MTU为68字节.
- □ IPv6的分组最大长度是232, IPv4为216.

IPv4协议与IPv6协议的主要差异

特 征	IPv4	IPv6
地址位数	地址长度为32位(4字节)	地址长度为128位(16字节)
对 IPSec 支持	对 IPSec 的支持是可选的	对 IPSec 的支持是必需的
服务质量支持	首部中没有优先级字段	首部中有流标识字段,可给出优先级
分段位置	主机和路由器均要进行分段	仅在源主机进行分段 路径MTU(PMTU
数据包大小	对链路层数据包大小没有要求	链路层必须支持 1280 字节的数据包
首部校验和	首部中包含校验和字段	首部中没有校验和字段
选项处理	首部中包含可选项字段	将可选项功能转移到扩展首部
链路层地址解析	ARP 使用广播发送请求帧,进行链路层地址解析	采用多播的邻居结点请求报文
组管理	使用组管理协议(IGMP)管理本地子网成员	用多播侦听发现(MLD)
路由器发现	用 ICMP 路由发现报文判断最佳默认网关的 IP 地址	ICMPv6 的路由请求报文和路由通告报文实现
对本地链路所有结	采用广播地址将协议包发送到子网的所有结点	采用链路本地范围的所有结点的多播地址
点的传输	不用/ 描地址付价区区及应到 1 内的/// 有组点	大用键码 中地 把图的///有组点的多描地址
地址配置	手工配置 IP 地址或通过 DHCP 配置	自动配置 IPv6 地址
DNS 记录格式	DNS 采用资源记录格式 A	DNSv6 采用资源记录格式 AAAA

IPv6协议与相邻协议关系

- □上层协议和计算
 - IPv6中,UDP的校验和是必需的,IPv4是可 选的
 - TCP、UDP和ICMPv6的校验和采用伪头标校验

伪头标校验

- □关于数据的校验问题
 - ■IP基本头标无校验
 - IP包中的数据部分的报文格式中如果有校验和域,则该校验和的计算需要使用伪头标

伪头标校验

- IP基本头标中的关键数据
 - ■信源地址
 - 信宿地址
 - ■下一头标
 - ▶净荷长度

□ IPv6基本首部

谢 谢!