

VORLESUNG NETZWERKSICHERHEIT

SOMMERSEMESTER 2020 MO. 10-12 UHR

FRAGEN AUS DER LETZTEN WOCHE

Welcher Layer1-Standard wird für Bluetooth verwendet?

FRAGEN AUS DER LETZTEN WOCHE

7 Application			
6 Presentation	Anwendungen		
5 Session Layer			
4 Transport Layer	SDP BNEP RFCOMM CMTP		
3 Network Layer	Logical link control and adaption protocol		
	Host Controller Interface		
2 Data Link Lawar	Link Manager Protocol		
2 Data Link Layer	Baseband / Link Controller		
1 Physical Layer	RF / Funk		

FRAGEN AUS DER LETZTEN WOCHE

20. April 2020

4

BUGBOUNTY-CHALLENGE

Aktuelle TOP3 (vielen Dank für die Unterstützung):

Platz	Studi	Punkte
1.	Felix	3
1.	Larissa	3
2.	Mario, Marco, Gina	1

KAPITEL 3 PUBLIC-KEYCRYPTOGRAPHY

NETZWERK-CRYPTO

Motivation zur kryptographischen Absicherung der Kommunikation:

- Inhalte sind vertraulich und nur für Berechtigte entschlüsselbar
- Daten bei Übermittlung und Speicherung nicht unbemerkt veränderbar
- Sender und Empfänger verifizieren sich gegenseitig als Urheber oder Ziel
- Urheberschaft einer Nachricht nicht abstreitbar

ACHTUNG: Nicht alle Ziele immer gleichzeitig erreichbar / gewünscht.

PUBLIC-KEY-CRYPTOGRAPHY

Asymmetrische Kryptographie

- Benötigt Schlüsselpaar
 - Öffentlicher Schlüssel
 - Privater Schlüssel
 - Öffentlicher Schlüssel von privatem Schlüssel abgeleitet
- Bekannte Algorithmen
 - DH (Diffie-Hellman; Schlüsseltausch)
 - ElGamal (ElGamal; Verschlüsseln & Signieren)
 - RSA (Rivest; Shamir; Adleman; Verschlüsseln & Signieren)
- Quiz: Wer ist auf dem Foto?

PUBLIC-KEY-CRYPTOGRAPHY

Absicherung von Kommunikation

- TLS (SSL)
- GnuPG
- S/MIME

Absicherung von Softwareinstallation

GnuPG

Hintergrund

Public Key Cryptography Standards (PKCS)

Was meint Transport Layer Security?

- Absicherung der Transportschicht?
 - Absicherung durch darunterliegende Schichten
- Absicherung durch die Transportschicht?
 - Absicherung der darüber liegenden Schichten

Vorgänger: Secure Sockets Layer (SSL)

Ziel: Absicherung der Anwendungsschicht

OSI Layer 5/6 (Sitzungs- und Darstellungsschicht)

TCP/IP

Application

Application

Transport

Internet

Host-to-network

TLS im TCP/IP – Protokollstapel

- Betrachtung von TLS als Anwendung
- "Tunnel" von Anwendungsprotokollen durch TLS
- Bekannte Beispiele:
 - HTTP over TLS (HTTPS)
 - SMTP over TLS (SMTPS)
 - FTP over TLS (FTPS)

Historie

■ 1994 SSLv1 (Netscape)

■ 1995 SSLv2 (Netscape)

1996 SSLv3 (Netscape / Microsoft)

■ 1999 TLSv1 (IETF Standard: RFC 2246)

■ 2006 TLSv1.1 (RFC 4346)

■ 2008 TLSv1.2 (RFC 5246)

■ 2018 TLSv1.3 (RFC 8446)

Historie

1994	SSLv1 ((Netscape)
-------------	---------	------------

■ 1995 SSLv2 (Netscape)

1996 SSLv3 (Netscape / Microsoft)

■ 1999 TLSv1 (IETF Standard: RFC 2246)

■ 2006 TLSv1.1 (RFC 4346)

■ 2008 TLSv1.2 (RFC 5246)

■ 2018 TLSv1.3 (RFC 8446)

TLSv1 Updates:

- RFC 2712
- RFC 2817
- RFC 2818
- RFC 3268
- RFC 3546
 - Erweiterungen (z.B. SNI)!
- RFC 5746
- RFC 6176
 - Prohibiting SSLv2
- RFC 7465
- RFC 7507
- RFC 7919

Historie

1994	SSLv1 ((Netscape)
-------------	---------	------------

■ 1995 SSLv2 (Netscape)

1996 SSLv3 (Netscape / Microsoft)

■ 1999 TLSv1 (IETF Standard: RFC 2246)

TLSv1.1 (RFC 4346)

■ 2008 TLSv1.2 (RFC 5246)

■ 2018 TLSv1.3 (RFC 8446)

TLSv1.1 Updates:

- RFC 4366
- RFC 4680
- RFC 4681
- RFC 5746
- RFC 6176
 - Prohibiting SSLv2
- RFC 7465
- RFC 7507
- RFC 7919

Historie

■ 1994 SSLv1 (Netscape)

1995 SSLv2 (Netscape)

1996 SSLv3 (Netscape / Microsoft)

■ 1999 TLSv1 (IETF Standard: RFC 2246)

■ 2006 TLSv1.1 (RFC 4346)

■ 2008 TLSv1.2 (RFC 5246)

■ 2018 TLSv1.3 (RFC 8446)

TLSv1.2 Updates:

RFC 5746

RFC 5878

RFC 6176

Prohibiting SSLv2

RFC 7465

Prohibiting RC4

RFC 7507

RFC 7568

Deprecating SSLv3

RFC 7627

RFC 7685

RFC 7905

RFC 7919

RFC 8447

Historie

■ 1994 SSLv1 (Netscape)

■ 1995 SSLv2 (Netscape)

1996 SSLv3 (Netscape / Microsoft)

■ 1999 TLSv1 (IETF Standard: RFC 2246)

■ 2006 TLSv1.1 (RFC 4346)

■ 2008 TLSv1.2 (RFC 5246)

TLSv1.3 (RFC 8446)

TLSv1.3 Updates:

Bisher keine

Aufbau

- TLS definiert zwei eigene Schichten
 - Kontrollschicht
 - TLS Handshake Protocol
 - TLS Cipher Spec. Protocol
 - TLS Alert Protocol
 - TLS Application Data Protocol
 - Nutzdatenschicht
 - TLS Record Protocol

TLS HANDSHAKE PROTOCOL

- Ablauf
 - Cipher Auswahl / Abstimmung
 - ACHTUNG: Es gibt auch NULL-Encryption
 - Schlüsselaustausch für asymmetrische Verschlüsselung
 - Serverauthentifikation
 - Clientauthentifikation

Authentifikation mittels X509v3 Zertifikat

TLS HANDSHAKE PROTOCOL

X509V3 (ISO/IEC 9594-8)

- ITU-T-Standard für Public-Key-Infrastrukturen
 - ITU = Internationale Fernmeldeunion der Vereinten Nationen
 - ITU-T = Standardisierungs-Einheit der ITU
 - X = "Data networks and open system communications"
- Spezifizierte Datentypen
 - Public-Key-Zertifikat
 - Attributzertifikat
 - Certificate Revocation List (CRL)
 - Attribute Certificate Revocation List (ACRL)

TLS RECORD PROTOCOL

CRYPTO-STANDARDS

Viele Standards, die heutiges Cryptographieumfeld prägen

- ITU-T (Vereinte Nationen)
 - X509-Zertifikate
- IEEE 802
 - 802.1X Authentifikation am Ethernet-Port
- RSA Security Inc. Public-Key-Cryptography-Standard (PKCS)
 - 15 Standards und Definitionen für Public-Key-Crypto
- Request for Comments (RFC)
 - Organisationsübergreifende Veröffentlichung von Standards (bzw. Entwürfen und Updates)

PUBLIC-KEY-CRYPTOGRAPHY-STANDARDS

- PKCS#1 RSA public key crypto
- PKCS#2 RSA encryption of message digests Merged in PKCS#1
- PKCS#3 Diffie-Hellman key agreement
- PKCS#4 RSA key syntax
 Merged in PKCS#1
- PKCS#5 Password based cryptography specification
- PKCS#6 Extended certificate syntax
- PKCS#7 Cryptographic message syntax
- PKCS#8 Private key information syntax

PUBLIC-KEY-CRYPTOGRAPHY-STANDARDS

- PKCS#9 Selected attribute types
- PKCS#10 Certification request standard
- PKCS#11 Crypto token interface (cryptoki)
- PKCS#12 Personal information exchange syntax
- PKCS#13 Elliptic curve cryptography
- PKCS#14 Pseudo random number generation
- PKCS#15 Cryptographic token information format

PKCS#1 – RSA PUBLIC KEY CRYPTOGRAPHY

RFCs:

 RFC 2313 Ve 	ersion 1.5	März 1998
---------------------------------	------------	-----------

RFC 2437 Version 2.0 Oktober 1998

RFC 3447 Version 2.1 Februar 2003

RFC 8017 Version 2.2 November 2016

PKCS#1 – RSA PUBLIC KEY CRYPTOGRAPHY

Definitionen:

- RSA Schlüsseltypen für öffentliche und private Schlüssel
 - Öffentlicher Schlüssel:
 - n: modulus
 - e: öffentlicher exponent
 - Privater Schlüssel
 - n: modulus
 - d: privater exponent
- "Multi-prime" RSA (ab PKCS#1 v2.1):
 - Modulus ist das Produkt von mehr als zwei Primfaktoren

PKCS#1 – RSA PUBLIC KEY CRYPTOGRAPHY

Definitionen:

- Umwandlung von Datentypen (Integer <-> Octet-String Primitive)
 - I20SP
 - OS2IP
- Ver- und Entschlüsselung (Primitive und Operationen)
 - RSAEP ((n, e), m) mit m = Nachricht (Integer)
 - RSADP (K, c) mit K = privater Schlüssel & Parameter zur Erzeugung
- Signatur und Verifikation (Primitive und Operationen)
 - RSASP1 (K, m)
 - RSASV1 ((n, e), s)

PKCS#1 – VERWENDET ASN.1

PKCS#1 sieht für die Repräsentation von Schlüsseln das ASN.1-Format vor:

- Abstract Syntax Notation One (ASN.1) ITU-T-Standard (gemeinsam mit ISO)
- Definiert Repräsentation von
 - Schlüsseln (öffentlich/privat)
 - Zertifikatanfragen (CSR)
 - Zertifikaten
- Darstellungs-/Übertragungsformate:
 - DER
 - CER
 - PEM (nicht Teil von ASN.1) oft Base64 encoded DER

Privacy Enhanced Mail (definiert durch IETF)

- RFC 7468
- Encoding von kryptografischem Material