Universidade Federal de Pernambuco Departamento de Matemática - Geometria Analítica 1 Prof. Rodrigo Cavalcante

Quarta Lista Produtos Escalar e Vetorial

- 1. Seja $\beta=(\overrightarrow{e}_1,\overrightarrow{e}_2,\overrightarrow{e}_3)$ uma base ortonormal de \mathbb{V}^3 . Determine as coordenadas do vetor unitário que é ortogonal aos vetores $\overrightarrow{u}=(3,1,0)_{\beta}$ e $\overrightarrow{v}=(4,-1,3)_{\beta}$.
- 2. Considere a base $\beta = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ e os vetores $\vec{u} = (1, 1, -1), \ \vec{v} = (0, 1, 1)$ e $\vec{w} = (2, -1, 1)$.
 - a) Mostre que a sequência $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é uma base ortogonal de \mathbb{V}^3 ;
 - b) Determine as coordenadas do vetor \overrightarrow{r} , em relação à base β , que tenha norma $\sqrt{5}$, tal que o vetor \overrightarrow{r} seja ortogonal ao vetor $(2,1,-1)_{\beta}$ e que os vetores \overrightarrow{r} , $(1,1,1)_{\beta}$ e $(0,1,-1)_{\beta}$ sejam coplanares.
- 3. Sejam \overrightarrow{u} e \overrightarrow{v} dois vetores tais que $\|\overrightarrow{u}\| = \|\overrightarrow{v}\|$ e o vetor \overrightarrow{u} é ortogonal ao vetor \overrightarrow{v} . Mostre que os vetores $\overrightarrow{u} \overrightarrow{v}$ e $\overrightarrow{u} + \overrightarrow{v}$ são ortogonais.
- 4. Mostre que

$$\|\overrightarrow{u} + \overrightarrow{v}\|^2 + \|\overrightarrow{u} - \overrightarrow{v}\|^2 = 2(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2)$$

Qual a interpretação geométrica desse resultado?

- 5. Um vetor \overrightarrow{v} forma com os vetores \overrightarrow{i} e \overrightarrow{j} ângulos de $\frac{\pi}{3}$ e $\frac{2\pi}{3}$, respectivamente. Determine as coordenadas do vetor \overrightarrow{v} , em relação à base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, sabendo que $\|\overrightarrow{v}\| = 2$.
- 6. Em um quadrado ABCD cujos lados medem 2, seja M o ponto médio do lado BC. Calcule a medida angular entre \overrightarrow{DM} e \overrightarrow{BD} .

- 7. A medida angular entre \overrightarrow{u} e \overrightarrow{v} é $\frac{\pi}{4}$, $\|\overrightarrow{u}\| = \sqrt{5}$ e $\|\overrightarrow{v}\| = 1$. Calcule a medida angular entre $\overrightarrow{u} + \overrightarrow{v}$ e $\overrightarrow{u} \overrightarrow{v}$.
- 8. Determine todos os vetores unitários $\overrightarrow{u} = (x, y, z)$ cuja projeção ortogonal sobre \overrightarrow{k} é \overrightarrow{k} /2 e tais que a medida angular entre $\overrightarrow{v} = (x, y, 0)$ e \overrightarrow{i} seja $\frac{\pi}{6}$.
- 9. Mostre que se \overrightarrow{u} e \overrightarrow{v} são não-nulos, então

$$\operatorname{Proj}_{\overrightarrow{v}}\operatorname{Proj}_{\overrightarrow{u}}^{\overrightarrow{v}} = \frac{(\overrightarrow{u} \cdot \overrightarrow{v})^2}{\|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2} \overrightarrow{v}$$

- 10. Mostre que se $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{w} \wedge \overrightarrow{t}$ e $\overrightarrow{u} \wedge \overrightarrow{w} = \overrightarrow{v} \wedge \overrightarrow{t}$, então os vetores $\overrightarrow{u} \overrightarrow{t}$ e $\overrightarrow{v} \overrightarrow{w}$ são LD.
- 11. Calular x, sabendo que o triângulo ABC, de área $\frac{\sqrt{29}}{2}$, temos $\overrightarrow{AB}=(1-x,-2,-1)$ e $\overrightarrow{CB}=(-1,-2,1)$
- 12. Encontre \overrightarrow{u} de norma $\sqrt{6}$ tal que $\overrightarrow{u} \wedge (\overrightarrow{i} + \overrightarrow{j}) = 2(\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k})$.
- 13. Seja \overrightarrow{ABC} um triângulo qualquer e \overrightarrow{P} e Q pontos tais que $\overrightarrow{3AP} = \overrightarrow{AC}$ e $\overrightarrow{3BQ} = 2\overrightarrow{BC}$. Calcule a razão entre as áreas dos triângulos BPQ e ABC.
- 14. Sejam $\overrightarrow{u} = (1, 1, 1)$ e $\overrightarrow{v} = (0, 1, 2)$. Encontre uma base ortonormal positiva $(\overrightarrow{w}_1, \overrightarrow{w}_2, \overrightarrow{w}_3)$ tal que:
 - i. \overrightarrow{w}_1 e \overrightarrow{u} sejam paralelos com o mesmo sentido;
 - ii. \overrightarrow{w}_2 seja combinação linear de \overrightarrow{u} e \overrightarrow{v} ;
 - iii. $\overrightarrow{w}_3 \cdot \overrightarrow{k} > 0$.

 $^{^{1}\}mathrm{Tente}$ fazer isso sem usar o produto vetorial e depois usando o produto vetorial.