Large Language Models (LLMs)

Fine-Tuning

Learning goals

 comprehend the different subtleties in the space between supervised fine-tuning and zero-shot prompting

HOW TO SOLVE A TASK WITH LANGUAGE MODELS? (1)

- "old-style" single-task fine-tuning
 - supervised training on a task-specific training set of size k
 (where k is not small, e.g., k = 100)
 - the output can be an arbitrary category (e.g., "0", "1" for sentiment analysis), typically done for BERT
 - alternatively, the output can be a meaningful "verbalizer" (e.g., "negative", "positive" for sentiment analysis), works best for autoregressive models

HOW TO SOLVE A TASK WITH LANGUAGE MODELS? (2)

- few-shot prompting
 - provide k (where k is small) examples of what the model is supposed to do
 - the model will then often complete the task just based on analogy to these few shots

HOW TO SOLVE A TASK WITH LANGUAGE MODELS? (3)

- multi-task finetuning
 - mixes single-task finetuning with prompting
 - requires finetuning on a large training set
 - but now: many tasks (the more the better)
 - task format is consistent with language model objective (similar to verbalizer)
 - T5

HOW TO SOLVE A TASK WITH LANGUAGE MODELS? (4)

- instruction tuning (short for instruction finetuning)
 - theory/hope: you do not have to explicitly train on specific tasks
 - instead, you teach the model a general capability of being "helpful"
 - it then solves arbitrary tasks without few-shot prompting and without finetuning beyond instruction tuning
 - no task-specific training set required!
 - next lecture

ANOTHER TYPE OF FINETUNING

- Finetuning has yet another meaning.
- Continued pretraining is also sometimes called finetuning.
- Continued pretraining: given a language model that has been trained on generic data (web, reddit etc), adapt it to a new domain (e.g., company-iternal data) by training it on a large corpus from this new domain.
- This results in a language model that has all the nice capabilities
 of a generic language model (e.g., MISTRAL family), but also
 understands the special domain.

RECAP

- encoder vs. decoder models (discriminative vs. generative)
- (in-context) learning vs. creative generation/chat
- pre-training with plain language modeling:
 - next token prediction
 - no explicit understanding of tasks
 - no alignment with human preferences for chat or for generation of coherent text

ISSUES WITH (BERT TASK-SPECIFIC) FINE-TUNING

- Only single-task models (sequential transfer learning instead of multi-task learning)
- Generalization of the model
 - only w.r.t. to one task / data distribution
 - Question: what about other tasks? Do they also benefit?
 - Question: what about related domains? other languages?
- Still requires (quite) large amounts of annotated data
- Poor (to none) zero-/few-shot capabilities of fine-tuned models

ISSUES WITH PROMPTING

- Assumption: Model has learned about the task during (unsupervised) pre-training
 Question: Is this always a realistic assumption??
- A direct response within the frame of a given label set is expected
 - Humans usually don't directly answer but provide intermediate reasoning steps (so-called "chain-of-thought")
- Misalignment with human needs
 - Out of context answers
 - Harmful answers
- Lack of interpretability
 - Just the answer w/o explanation
 - Big concern about LLMs in general

ISSUES WITH PROMPTING

- Hallucinations: Output that is not true. (different possible causes: just made up, incorrect internal reasoning etc)
- Imprecise mathematical operations: Models not trained to do arithmetics
- Inadequate experience grounding: Not fully capable of generating correct answers to questions from specialized domains not covered by pretraining data
- Limited ability for complex reasoning: Long-known challenge in NLP/LLMs

T5: BEST OF BOTH WORLDS, FINE-TUNING ON TASKS AND PROMPTING

BEST OF BOTH WORLDS

- Question: How does multi-task learning happen?
- → IMPLICITLY, i.e. the model learns via fine-tuning which task prefix to associate with which set of labels
 - Question: How can we make the EXPLICIT?
- → Mapping any natural language tasks into a human-readable prompted form Sanh et al., 2021

CAREFULLY DESIGNING TASK PREFIXES

MULTITASK PROMPTED TRAINING

- Multitask Prompted Training: Novel training method that involves learning from multiple tasks using unified prompt formats as a means to improve generalization to new, unseen tasks.
 - → zero-shot task generalization
- This means that the model can perform well on tasks it hasn't been explicitly trained for.
- The key for this lies in the set of shared prompts it has learned from during fine-tuning.

MULTITASK PROMPTED TRAINING

- Benchmark for Evaluation:
 - Held-out tasks instead of just held-out samples as a test set (data sets are grouped according to task beforehand)
 - All data sets belonging to as held-out task go to the test set
 - Generalization across tasks / data distributions
- Highlights the Importance of Prompts: The paper emphasizes the importance of prompts in facilitating zero-shot learning, as the model can generalize to new tasks by relying on the learned prompts and the ability to generate text outputs.

TO - DATA SPLITS

Source: Sanh et al., 2021

TO – PROMPT TEMPLATES

(C)

FINETUNED LANGUAGE NET (FLAN)

Figure 2: Comparing instruction tuning with pretrain–finetune and prompting.

FLAN FINETUNING

Finetune on many tasks ("instruction-tuning")

► Source: Wei et al., 2021

FLAN PERFORMANCE

FLAN FINE-TUNING

Extend instruction fine-tuning:

- Scaling the number of fine-tuning tasks and data
 - NIV2 (1554 tasks)
 - T0-SF (193 tasks)
 - Muffin (80 tasks)
 - CoT (reasoning tasks, cf. next chapter)
- Scaling model sizes
 - PaLM 8 B
 - PaLM 62 B
 - PaLM 540 B

FLAN UPSCALING

Fine-tuning in 1.8 K tasks

FINE-TUNING CONCLUSIONS

- It is still possible to upscale
 - Larger models will improve performance
 - More fine-tuning tasks will improve performance
- Instruction finetuning generalizes across models
 - It works well on different architectures
- It improves usability and mitigates some harms
- It is relatively compute-efficient
 - For PaLM 540 B it takes 0.2 % of pre-training compute, but improves by 9.4 %