CMPS 130

Spring 2016

Homework Assignment 5Problems are from Martin 4th edition.

Chapter 2 (p.77): 55abcdg, 57bdgh

Chapter 3 (p.117): 1abcd, 2abcd, 3abc, 4, 7cijm, 9

1. Problem 2.55abcdg

For each of the FAs pictured in Fig. 2.45, use the minimization algorithm described in Section 2.6 to find a minimum-state FA recognizing the same language. (It's possible that the fiven FA may already be minimal.)

Solution:

a.

2	×		_	
3		×		
4	×		×	
5	×	×	×	×
	1	2	3	4

b. Already minimal

2	×				
3	×	×		_	
4	×	×	×		
5	×	×	×	×	
6	×	×	×	×	×
	1	2	3	4	5

c.

2	×					
3	×	×		_		
4	×	×	×		_	
5	×	×	×			_
6	×	×	×	×	×	
7	×	×	×	×	×	
	1	2	3	4	5	6

		1				
_ 2	×					
3	×	×		_		
4	×	×	×		_	
5	×	×		×		_
6	×	×	×		×	
7	×	×	×	×	×	×
	1	2	3	4	5	6

2	×							
3	×	×						
4	×	×						
5	×	×	×	×				
6	×	×	×	×				
7	×	×	×	×	×	×		
8	×	×	×	×	×	×		
9	×	×	×	×			×	×
	1	2	3	4	5	6	7	8

2. Problem 2.57bdgh

Each case below defines a language over $\{a, b\}$. In each case, decide whether the language can be accepted by an FA, and prove that your answer is correct.

- b. The set of all strings containing some non-null string of the form ww.
- d. The set of odd-length strings with middle symbol a.
- g. The set of non-palindromes.
- h. The set of strings in which the number of a's is a perfect square.

Solution:

b. $L = \{ x \in \{a, b\}^* \mid x = ywwz, w \neq \lambda \}$ is accepted by an FA.

Proof: We consider the complementary language $\overline{L} = \{a, b\}^* - L$. Notice that no string of length 4 or more can belong to \overline{L} since all such strings contain either aa, bb, abab or baba. We obtain $\overline{L} = \{\lambda, a, b, ab, ba, aba, bab\}$ by examining all 15 strings over $\{a, b\}$ of length at most 3.

It's not difficult to draw an FA accepting this finite language. Upon reversing the accept/non-accept states in the FA for \overline{L} , we arrive at the following FA for L.

One can do this problem without actually drawing the diagram by arguing as follows. For each string in \overline{L} , there exists an FA accepting only that string. (In fact any single-string language is accepted by some FA, as has been seen in previous homework assignments.) The product construction (applied several times) yields an FA accepting the union

$$\overline{L} = \{\lambda\} \cup \{a\} \cup \{b\} \cup \{ab\} \cup \{ba\} \cup \{aba\} \cup \{bab\}$$

By simply reversing the accept/non-accept states in the FA for \overline{L} , we obtain an FA for L.

d. $L = \{x \in \{a, b\}^* \mid x = yaz, |y| = |z| \}$ is not accepted by any FA.

Proof: Assume, to get a contradiction, that L is accepted by some FA, and suppose that this FA has n states. Let $x = b^n a b^n$. Then clearly $x \in L$ and $|x| \ge n$. The Pumping Lemma provides strings u, v and w such that x = uvw and satisfying (1) $|uv| \le n$, (2) |v| > 0 and (3) $uv^i w \in L$ for all $i \ge 0$. By the definition of x and using (1), we see that u and v contain only b's, and in particular $v = b^k$, for some $k \ge 1$. (Note (2) says $k \ne 0$.) By (3) we have $b^{n+k}ab^n = uv^2w \in L$. But clearly $b^{n+k}ab^n \notin L$ since $n+k\ne n$. This contradiction shows that no such FA can exist.

g. $L = \{ x \in \{a, b\}^* \mid x \neq x^r \}$ is not accepted by any FA.

Proof: Suppose an FA exists that accepts L. Then, upon reversing the accept/non-accept states in this FA, we obtain an FA accepting $\overline{L} = \{a, b\}^* - L = \{x \in \{a, b\}^* \mid x = x^r\}$, which is the language of palindromes, Pal. But it was proved in class, and on page 62 of the text, that there are infinitely many I_{Pal} equivalence classes in $\{a, b\}^*$, and hence Pal is *not* accepted by any FA. (This can also be proved using the Pumping Lemma.) This contradiction shows that no FA can accept $L = \overline{Pal}$.

h. $L = \{x \in \{a, b\}^* \mid n_a(x) \text{ is a perfect square }\}$ is not accepted by any FA. **Solution:** We will display an infinite set of pairwise L-distinguishable strings in $\{a, b\}^*$. The result follows from Theorem 2.26 on page 62 of the text. We first introduce some notation and prove a lemma. Let \mathbb{N}^2 denote the set of perfect squares, i.e. $\mathbb{N}^2 = \{n^2 \mid n \in \mathbb{N}\}$.

Lemma: for any $n_1, n_2 \in \mathbb{N}$ with $n_1 \neq n_2$, there exists a number $k \geq 0$ such that $n_1 + k \in \mathbb{N}^2$ and $n_2 + k \notin \mathbb{N}^2$.

Proof: Assume for definitness that $n_1 < n_2$ (the other case being similar). Chose m sufficiently large that $n_1 < m^2$ and $n_2 - n_1 < 2m + 1$. Set $k = m^2 - n_1$. Then observe that $k \ge 0$ and $n_1 + k = m^2 \in \mathbb{N}^2$. By our choice of m, we also have

$$\begin{aligned} n_1 &< n_2 < n_1 + 2m + 1 \\ \\ \Rightarrow n_1 + k &< n_2 + k < (n_1 + k) + 2m + 1 \\ \\ \Rightarrow m^2 &< n_2 + k < m^2 + 2m + 1 = (m + 1)^2 \end{aligned}$$

Since $n_2 + k$ lies between two consecutive perfect squares, it cannot itself be a perfect square, i.e. $n_2 + k \notin \mathbb{N}^2$, as required.

Claim: No FA accepts $L = \{ x \in \{a, b\}^* \mid n_a(x) \in \mathbb{N}^2 \}.$

Proof: Let $S = \{ a^n \mid n \ge 0 \}$. Then any two distinct strings in S are L-distinguishable. Indeed, by the above lemma, if we pick $n_1, n_2 \ge 0$ with $n_1 \ne n_2$, there exists $k \ge 0$ such that $n_1 + k \in \mathbb{N}^2$ and $n_2 + k \notin \mathbb{N}^2$. Therefore $a^{n_1}a^k = a^{n_1+k} \in L$ and $a^{n_1}a^k = a^{n_2+k} \notin L$, showing that a^k distinguishes a^{n_1} from a^{n_2} with respect to L. Since S is infinite, we are done by Theorem 2.26.

Note 1: In fact x is L-indistinguishable from $a^{n_a(x)}$ for any $x \in \{a, b\}^*$, and therefore the I_L equivalence classes are exactly $\{ [a^n] \mid n \ge 0 \}$.

Proof: For any $z \in \{a, b\}^*$, $n_a(xz) = n_a(x) + n_a(z) = n_a(a^{n_a(x)}z)$ and therefore $xz \in L \leftrightarrow a^{n_a(x)}z \in L$.

Note 2: This result can also be proved using the Pumping Lemma.

Proof: Suppose L is accepted by some FA with n states. Let $x = a^{(n+1)^2}$. Then $|x| \ge n$ and $x \in L$. The Pumping Lemma provides a factorization x = uvw with $(1) |uv| \le n$, $(2) |v| \ge 1$ and $(3) uv^iw \in L$ for all $i \ge 0$. By (1) and $(2) v = a^k$ for some k satisfying $1 \le k \le n$. Letting i = 0 in (3) we have $uw \in L$, which implies $(n+1)^2 - k = n_a(uv) \in \mathbb{N}^2$. But observe $(n+1)^2 - k < (n+1)^2$ since $k \ge 1$. Also $n \ge k \Rightarrow n - k \ge 0 \Rightarrow 2n+1-k > 0$. Adding n^2 to both sides of this last inequality yields $(n+1)^2 - k = (n^2 + 2n + 1) - k > n^2$, and therefore $n^2 < (n+1)^2 - k < (n+1)^2$. But then $(n+1)^2 - k \notin \mathbb{N}^2$ since it lies between two consecutive perfect squares. This contradiction shows that no such x exists, and therefore no such FA exists.

3. Problem 3.1abcd

In each case below, find a string of minimum length in $\{a,b\}^*$ not in the language corresponding to the given regular expression.

- a. $b^*(ab)^*a^*$
- b. $(a^* + b^*)(a^* + b^*)(a^* + b^*)$
- c. $a^*(baa^*)^*b^*$
- d. $b^*(a + ba)^*b^*$

Solution: In what follows it will help to consider the set *S* of all 31 strings over $\{a, b\}$ of length 4 or less:

 $S = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, aaba, aabb, abaa, abab, abba, abba, abbb, baaa, baab, baba, baba, bbba, bbba, bbba, bbbb, bbaa, bbab, bbab, bbaa, bbab, bbab,$

- a. The strings aab and abb do not belong to the language represented by $b^*(ab)^*a^*$. One checks directly that all other stings in S of length 3 or less match the regular expression. Therefore aab and abb are of minimum possible length.
- b. The strings *abab* and *baba* do not match the regular expression $(a^* + b^*)(a^* + b^*)(a^* + b^*)$. An inspection of the strings in S reveals that all others match. Thus *abab* and *baba* are of minimum length.
- c. The string **bba** does not belong to the language represented by $a^*(baa^*)^*b^*$. Direct inspection of S reveals that all other strings of length 3 or less match, so that **bba** is of minimum length.
- d. The strings *abba* and *abbb* do not belong to the language represented by $b^*(a + ba)^*b^*$, while all other strings in *S* match the regular expression. Therefore *abba* and *abbb* are of minimum length.

4. Problem 3.2abcd

Consider the two regular expressions $r = a^* + b^*$ and $s = ab^* + ba^* + b^*a + (a^*b)^*$.

- a. Find a string corresponding to r but not to s.
- b. Find a string corresponding to s but not to r.
- c. Find a string corresponding to both r and s.
- d. Find a string in $\{a, b\}^*$ corresponding to neither r nor s.

Solution: We use the notation L_{exp} to stand for the language over $\{a, b\}$ corresponding to the regular expression exp.

a. The string aa matches r but not s.

Proof: $aa = a^2 \in L_{a^*} \subseteq L_r$. But $aa \notin L_{ab^*}$ since strings in L_{ab^*} have exactly one a, $aa \notin L_{ba^*}$ since strings in L_{ba^*} start with b, $aa \notin L_{b^*a}$ since strings in L_{b^*a} have exactly one a, and finally $aa \notin L_{(a^*b)^*}$ since $aa \neq \lambda$ and aa contains no b's. Therefore $aa \notin L_s$.

b. The string ab matches s but not r.

Proof: Clearly $ab \in L_{ab^*} \subseteq L_s$. Also since ab is neither all a's nor all b's, $ab \notin L_{a^*}$ and $ab \notin L_{b^*}$, hence $ab \notin L_r$.

c. The string a matches both r and s.

Proof: We have $a \in L_{a^*} \subseteq L_r$ and $a \in L_{ab^*} \subseteq L_s$, so $a \in L_r \cap L_s$.

d. The string *bbaa* matches neither *r* nor *s*.

Proof: Since bbaa is neither all a's nor all b's, $bbaa \notin L_{a^*}$ and $bbaa \notin L_{b^*}$, hence $bbaa \notin L_r$. Also $bbaa \notin L_{ab^*}$ since it has more than one a, $bbaa \notin L_{ba^*}$ since it has more than one b, $bbaa \notin L_{b^*a}$ since it has more than one a. Finally any non-null string in $L_{(a^*b)^*}$ must end in b, hence $bbaa \notin L_{(a^*b)^*}$. Therefore $bbaa \notin L_s$.

5. Problem 3.3abc

Let r and s be arbitrary regular expressions over the alphabet Σ . In each case below, find a simpler equivalent regular expression.

- a. $r(r^*r + r^*) + r^*$
- b. $(r + \lambda)^*$
- c. $(r+s)^*rs(r+s)^* + s^*r^*$

Solution: We write $\exp_1 = \exp_2$ to mean $L_{\exp_1} = L_{\exp_2}$.

a. $r(r^*r + r^*) + r^* = r^*$

Proof: A concatenation of one or more factors from L_r is certainly a concatenation of zero or more such factors. Therefore $L_{r^*r} \subseteq L_{r^*}$ so $L_{r^*r} \cup L_{r^*} = L_{r^*}$, hence $r^*r + r^* = r^*$. Thus $r(r^*r + r^*) + r^* = rr^* + r^* = r^*$.

b. $(r + \lambda)^* = r^*$

Proof: Any concatenation of zero or more strings from L_r and λ , is also a product of zero or more strings from L_r , and conversely. Hence $(r + \lambda)^* = r^*$.

c. $(r+s)^*rs(r+s)^* + s^*r^* = (r+s)^*$

Proof: Clearly $L_{(r+s)^*r_S(r+s)^*} \subseteq L_{(r+s)^*}$ since each string in the left side is a product of strings in L_r and strings in L_s , and the right side is the set of *all* strings of this kind. We need to show that every string in $L_{(r+s)^*}$ matches the expression on the left. Let $x \in L_{(r+s)^*}$ be chosen arbitrarily. Then x is a product of zero or more factors from L_r and L_s . We have two cases.

<u>Case 1</u>: All factors in x from L_s come before (i.e. to the left of) all factors from L_r . In this case x matches the regular expression s^*r^* .

<u>Case 2</u>: Some factor in x from L_r precedes some factor from L_s . Those two factors match rs and in this case the string x matches the regular expression $(r + s)^*rs(r + s)^*$.

In both cases x matches the expression $(r + s)^*rs(r + s)^* + s^*r^*$, as required.

6. Problem 3.4

It is not difficult to show using mathematical induction that for every integer $n \ge 2$, there are nonnegative integers i and j such that n = 2i + 3j. With this in mind, simplify the regular expression $(aa + aaa)(aa + aaa)^*$.

Solution: $(aa + aaa)(aa + aaa)^* = aaa^*$

Proof: Since every string in $L_{(aa+aaa)(aa+aaa)^*}$ contains 2 or more a's and nothing but a's, we have

$$L_{(aa+aaa)(aa+aaa)^*} \subseteq L_{aaa^*}$$

It remains to show that $L_{aaa^*} \subseteq L_{(aa+aaa)(aa+aaa)^*}$. Pick $x \in L_{aaa^*}$. Then $x = a^n$ for some $n \ge 2$. By the above fact, there exist $i, j \ge 0$ such that n = 2i + 3j. Note that not both i and j can be zero for otherwise n would be zero. If $i \ge 1$, then

$$x = a^{2i+3j} = (aa)((aa)^{i-1}(aaa)^j) \in L_{aa}L_{aa+aaa}^{i+j-1}$$

and hence $x \in L_{(aa+aaa)(aa+aaa)^*}$. If $j \ge 1$ then

$$x = a^{2i+3j} = (aaa) \big((aa)^i (aaa)^{j-1} \big) \in L_{aaa} L_{aa+aaa}^{i+j-1}$$

and again $x \in L_{(aa+aaa)(aa+aaa)^*}$. Thus $L_{(aa+aaa)(aa+aaa)^*} = L_{aaa^*}$, as required.

7. Problem 3.7cijm

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^*$.

- c. The language of all strings that do not end with ab.
- i. The language of all strings containing both bb and aba as substrings.
- j. The language of all strings not containing the substring *aaa*.
- m. The language of all strings in which the number of a's is even and the number of b's is odd.

Solution: If x is any string over $\{a, b\}$, then $(a + b)^*x(a + b)^*$ is a regular expression matching any string having x as a substring.

- c. Regular expression: $\lambda + a + b + (a + b)^*(aa + ba + bb)$
- i. Regular expression: $(a+b)^*bb(a+b)^*aba(a+b)^* + (a+b)^*aba(a+b)^*bb(a+b)^*$
- j. Regular expression: $(\lambda + a + aa)(b + ba + baa)^*$
- m. Will talk about this in class.

8. Problem 3.9

Show that every finite language is regular.

Solution:

Recall the recursive definition of \mathcal{F} :

- (1) (1.1) $\emptyset \in \mathcal{F}$ (1.2) $\{\lambda\} \in \mathcal{F}$ (1.3) $\{\sigma\} \in \mathcal{F}$ for all $\sigma \in \Sigma$.
- $(2) L_1, L_2 \in \mathcal{F} \Rightarrow L_1 \cup L_2 \in \mathcal{F}$
- $(3) L_1, L_2 \in \mathcal{F} \Rightarrow L_1 L_2 \in \mathcal{F}$

Lemma: \mathcal{F} consists of all finite languages.

Proof: Every language obtained by rule (1) is finite, and every language in \mathcal{F} is obtained by a finite number of applications of rules (1), (2) and (3), hence every language in \mathcal{F} is itself finite. It remains to show that every finite language is in \mathcal{F} . First observe that every single string language $\{x\}$ is in \mathcal{F} by (1.2), (1.3) and (3). Indeed $\{\lambda\} \in \mathcal{F}$ by (1.2), and if $x = \sigma_1 \sigma_2 \cdots \sigma_k$ then $\{x\} = \{\sigma_1\}\{\sigma_2\} \cdots \{\sigma_k\} \in \mathcal{F}$ by (1.3) and (3). Therefore if L is a finite language, then (2) gives us

$$L=\{x_1,x_2,\dots,x_n\}=\{x_1\}\cup\{x_2\}\cup\dots\cup\{x_n\}\in\mathcal{F}$$

Recall the recursive definition of \mathcal{R} :

- (1) (1.1) $\emptyset \in \mathcal{R}$ (1.3) $\{\sigma\} \in \mathcal{R}$ for all $\sigma \in \Sigma$.
- $(2) L_1, L_2 \in \mathcal{R} \Rightarrow L_1 \cup L_2 \in \mathcal{R}$
- $(3) \quad L_1, L_2 \in \mathcal{R} \ \Rightarrow \ L_1 L_2 \in \mathcal{R}$
- $(4) L \in \mathcal{R} \Rightarrow L^* \in \mathcal{R}$

Claim: $\mathcal{F} \subseteq \mathcal{R}$

Proof: Let $L \in \mathcal{F}$. We must show that $L \in \mathcal{R}$. We have two cases.

Case 1: $\lambda \notin L$.

In this case, L is constructed by a finite number of applications of rules (1.1), (1.3), (2) and (3). But these construction steps are a subset of those defining \mathcal{R} . Therefore $L \in \mathcal{R}$ in this case.

Case 2: $\lambda \in L$.

Let $L_1 = L - \{\lambda\}$. We have $\{\lambda\} = \emptyset^* \in \mathcal{R}$ by (1.1) and (4), and $L_1 \in \mathcal{R}$ by case 1. It follows from (2) that $L = L_1 \cup \{\lambda\} \in \mathcal{R}$, in this case also.