Stochastic Block Model Prior with Ordering Constraints for Gaussian Graphical Models

Teo Bucci, Filippo Cipriani, Filippo Pagella, Flavia Petruso, Andrea Puricelli, Giulio Venturini Supervisor: Dr. Alessandro Colombi

Bayesian Statistics MSc. Mathematical Engineering Politecnico di Milano

January 09, 2023

CONTENTS

- 1. The model
- 2. The sampling strategy
- 2.1 Overview of the sampling strategy
- 2.2 Updating the graph
- 2.3 Updating the partition
- 3. Next steps

THE MODEL

Goal: given a set of n data with p variables, simultaneously infer the conditional dependence structure of such variables and their clustering.

THE MODEL

Goal: given a set of n data with p variables, simultaneously infer the conditional dependence structure of such variables and their clustering.

Constraint: the partition must respect the original order of the variables.

THE MODEL

Goal: given a set of n data with p variables, simultaneously infer the conditional dependence structure of such variables and their clustering.

Constraint: the partition must respect the original order of the variables.

$$egin{aligned} oldsymbol{y}_1, \dots, oldsymbol{y}_n \mid oldsymbol{K} &\stackrel{ ext{iid}}{\sim} \mathcal{N}_p(oldsymbol{0}, oldsymbol{K}^{-1}) \ oldsymbol{K} \mid G \sim \operatorname{G-Wishart}(b, D) \ P((i, j) \in E \mid oldsymbol{z}, Q) = Q_{z_i z_j}, ext{ independent} \ Q_{rs} \mid oldsymbol{z} &\stackrel{ ext{ind}}{\sim} \operatorname{Beta}(lpha, eta), 1 \leq r \leq s \leq M \
ho \sim f_{
ho}\left(
ho
ight) \end{aligned}$$

Notation for the partition: ρ vector of cardinalities, **z** vector of groups memberships.

The prior for the **partition** $f_o(\rho)$ is (5) from Martínez and Mena 2014.

Q is marginalized out.

Q is marginalized out.

The prior for the **graph** given the vector of group memberships is

$$P(G \mid \mathbf{z}) = \prod_{u=1}^{M} \prod_{v=u}^{M} \frac{B(\alpha + S_{uv}, \beta + S_{uv}^{\star})}{B(\alpha, \beta)}$$

where

- S_{uv} is the sum of the edges between group u and v.
- S_{vv}^* is the sum of the "non-edges", namely $S_{vv}^* = T_{vv} S_{vv}$ and T_{vv} is the total number of possible edges.

BLOCK GIBBS SAMPLER

Conditional distributions for our model:

Graph and Precision	$P(\mathbf{K}, G \mid \mathbf{Y}, \mathbf{z}) \propto P(\mathbf{Y} \mid \mathbf{K}) P(\mathbf{K} \mid G) P(G \mid \mathbf{z})$
Random Partition	$P(\mathbf{z} \mid \mathbf{Y}, \mathbf{K}, G) \propto P(\mathbf{Y} \mid \mathbf{K}) P(\mathbf{K} \mid G) P(G \mid \mathbf{z}) P(\mathbf{z}) \propto P(G \mid \mathbf{z}) P(\mathbf{z})$

BLOCK GIBBS SAMPLER

Conditional distributions for our model:

Graph and Precision	$P(\mathbf{K}, G \mid \mathbf{Y}, \mathbf{z}) \propto P(\mathbf{Y} \mid \mathbf{K}) P(\mathbf{K} \mid G) P(G \mid \mathbf{z})$
Random Partition	$P(\mathbf{z} \mid \mathbf{Y}, \mathbf{K}, G) \propto P(\mathbf{Y} \mid \mathbf{K}) P(\mathbf{K} \mid G) P(G \mid \mathbf{z}) P(\mathbf{z}) \propto P(G \mid \mathbf{z}) P(\mathbf{z})$

We implement a Block Gibbs-Sampler strategy:

- 1. Sampling Graph and Precision Matrix
 - G and K given z are sampled using a modified version of a Birth-and-Death chain (Mohammadi and Wit 2015), changing one link at a time.
- 2. Sampling the Random Partition
 - Conditionally on G, we can sample z through an adaptive split and merge sampler.

BIRTH AND DEATH ALGORITHM FOR UPDATING THE GRAPH

BDGraph is an algorithm that follows a Birth-and-Death approach to decide whether to add a new edge to the graph or delete an already existing one.

BIRTH AND DEATH ALGORITHM FOR UPDATING THE GRAPH

BDGraph is an algorithm that follows a Birth-and-Death approach to decide whether to add a new edge to the graph or delete an already existing one.

	Target distribution	B/D rates
Before	$P(G, \mathbf{K} \mid \mathbf{Y}) \propto \mathcal{L}(\mathbf{Y} \mid \mathbf{K}) \mathcal{L}(\mathbf{K} \mid G) P(G)$	$\frac{P(G')}{P(G)}$
After	$P(G, \mathbf{K} \mid \mathbf{Y}, \mathbf{z}) \propto \mathcal{L}(\mathbf{Y} \mid \mathbf{K}) \mathcal{L}(\mathbf{K} \mid G) P(G \mid \mathbf{z})$	$\frac{P(\hat{G}' \mid \mathbf{z})}{P(G \mid \mathbf{z})}$

where $G' = G^{\pm e}$ and e is an edge.

BIRTH AND DEATH ALGORITHM FOR UPDATING THE GRAPH

BDGraph is an algorithm that follows a Birth-and-Death approach to decide whether to add a new edge to the graph or delete an already existing one.

	Target distribution	B/D rates
Before	$P(G, \mathbf{K} \mid \mathbf{Y}) \propto \mathcal{L}(\mathbf{Y} \mid \mathbf{K}) \mathcal{L}(\mathbf{K} \mid G) P(G)$	$\frac{P(G')}{P(G)}$
After	$P(G, \mathbf{K} \mid \mathbf{Y}, \mathbf{z}) \propto \mathcal{L}(\mathbf{Y} \mid \mathbf{K}) \mathcal{L}(\mathbf{K} \mid G) P(G \mid \mathbf{z})$	$\frac{P(\hat{G}' \mid \mathbf{z})}{P(G \mid \mathbf{z})}$

where $G' = G^{\pm e}$ and e is an edge.

Birth rate
$$\propto \frac{P(G^{+e} \mid \mathbf{z})}{P(G \mid \mathbf{z})} = \frac{S_{uv} + \alpha}{S_{uv}^{\star} + \beta}$$
 Death rate $\propto \frac{P(G^{-e} \mid \mathbf{z})}{P(G \mid \mathbf{z})} = \frac{S_{uv}^{\star} + \beta}{S_{uv} + \alpha}$

GENERAL STEPS FOR UPDATING THE PARTITION

We perform an adaptive **split and merge**.

- 1. With probability $\alpha_{\rm split}$, usually 0.5, choose an **split move**, otherwise a **merge move**. Unless we are forced by extreme cases.
 - 1.1 Propose a new partition by splitting one group into two or merging two adjacent.
 - 1.2 Accept or reject using Metropolis Hastings. The target is: $f(\rho \mid G) \approx f_G(G \mid \rho) f_\rho(\rho)$

GENERAL STEPS FOR UPDATING THE PARTITION

We perform an adaptive split and merge.

- 1. With probability α_{split} , usually 0.5, choose an **split move**, otherwise a **merge move**. Unless we are forced by extreme cases.
 - 1.1 Propose a new partition by splitting one group into two or merging two adjacent.
 - 1.2 Accept or reject using Metropolis Hastings. The target is: $f(\rho \mid G) \approx f_G(G \mid \rho) f_\rho(\rho)$

$$\alpha_{\text{accept}} = \min \left\{ 1, \underbrace{\frac{f_G\left(G \mid \rho'\right)}{f_G\left(G \mid \rho\right)} \underbrace{\frac{f_\rho\left(\rho'\right)}{f_\rho(\rho)}}_{\substack{\text{partition} \\ \text{ratio}}} \underbrace{\frac{Q(\rho', \rho)}{Q(\rho, \rho')}}_{\substack{\text{proposal} \\ \text{ratio}}} \right\}$$

SHUFFLE MOVE

- 2. To improve the mixing of the chain we also perform a **shuffle move**.
 - 2.1 Propose a new partition by moving some nodes from a group to an adjacent one.
 - 2.2 Accept or reject using Metropolis Hastings.

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

Suppose a split move.

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

Suppose a split move.

At each iteration, **draw** node i with probability proportional to $a_i^{(t)}$.

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

Suppose a split move.

At each iteration, **draw** node i with probability proportional to $a_i^{(t)}$.

Denoting by $a^\star = \sum_{j \in \{ ext{admissible split nodes}\}} a_j^{(t)}$ and $d^\star = \sum_{j \in \{ ext{admissible merge nodes}\}} d_j^{(t)}$

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

Suppose a split move.

At each iteration, **draw** node *i* with probability proportional to $a_i^{(t)}$.

Denoting by $a^\star = \sum_{j \in \{ ext{admissible split nodes}\}} a_j^{(t)}$ and $d^\star = \sum_{j \in \{ ext{admissible merge nodes}\}} d_j^{(t)}$

$$\frac{Q(\rho',\rho)}{Q(\rho,\rho')} = \frac{P(\text{choose merge})}{P(\text{choose split})} \cdot \frac{P(\text{merge at node } i)}{P(\text{split at node } i)} = \frac{1-\alpha_{\text{split}}}{\alpha_{\text{split}}} \cdot \frac{\frac{d_i^{(t)}}{d^\star + d_i^{(t)}}}{\frac{a_i^{(t)}}{a^\star}}$$

We introduce $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$, two (p-1)-dimensional vectors of **weights** to choose the node where to perform the split or the merge. They are unnormalized discrete densities.

Suppose a split move.

At each iteration, **draw** node *i* with probability proportional to $a_i^{(t)}$.

Denoting by $a^\star = \sum_{j \in \{\text{admissible split nodes}\}} a_j^{(t)}$ and $d^\star = \sum_{j \in \{\text{admissible merge nodes}\}} d_j^{(t)}$

$$\frac{Q(\rho',\rho)}{Q(\rho,\rho')} = \frac{P(\text{choose merge})}{P(\text{choose split})} \cdot \frac{P(\text{merge at node } i)}{P(\text{split at node } i)} = \frac{1-\alpha_{\text{split}}}{\alpha_{\text{split}}} \cdot \frac{\frac{d_i^{(t)}}{d^\star + d_i^{(t)}}}{\frac{a_i^{(t)}}{a^\star}}$$

The extreme cases "every node belonging to the same group" and "every node has its own group" are dealt with separately.

ADAPTIVE STEP

The two weights vectors $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$ are updated at each iteration t as in Benson and Friel 2018 using the following adaptation scheme.

ADAPTIVE STEP

The two weights vectors $\mathbf{a}^{(t)}$ and $\mathbf{d}^{(t)}$ are updated at each iteration t as in Benson and Friel 2018 using the following adaptation scheme.

• If a **split** move at node *i* has been accepted, then update:

$$\log(a_i^{(t+1)}) = \log(a_i^{(t)}) + \frac{h}{t/p}(\alpha_{\mathsf{split}} - \alpha_{\mathsf{target}}).$$

• If a **merge** move at node *i* has been accepted, then update:

$$\log(d_i^{(t+1)}) = \log(d_i^{(t)}) + \frac{h}{t/p}(\alpha_{\mathsf{merge}} - \alpha_{\mathsf{target}}).$$

Where h>0 is the initial adaptation, t/p are the iterations (t) per number of nodes (p), $\alpha_{\rm target}$ is the target MH acceptance rate and $\alpha_{\rm merge}=1-\alpha_{\rm split}$.

NEXT STEPS

The first draft of the code is completed.

Next things to do:

- Debugging the code.
- Run simulations.
- Perform posterior analysis.

MAIN REFERENCES

- Benson, A. and N. Friel (2018). "Adaptive MCMC for Multiple Changepoint Analysis with Applications to Large Datasets". In: Electronic Journal of Statistics 12.2.
- Colombi, A., R. Argiento, L. Paci and A. Pini (2022). "Learning block structured graphs in Gaussian graphical models". In: arXiv preprint arXiv:2206.14274.
- Legramanti, S., T. Rigon, D. Durante and D. B. Dunson (2022). "Extended stochastic block models with application to criminal networks". In: The Annals of Applied Statistics 16.4, pp. 2369–2395.
- Martínez, A. F. and R. H. Mena (2014). "On a Nonparametric Change Point Detection Model in Markovian Regimes". In: Bayesian Analysis 9.4.
- Mohammadi, A. and E. C. Wit (2015). "Bayesian Structure Learning in Sparse Gaussian Graphical Models". In: Bayesian Analysis 10.1.

Thank you!

Any questions?

Extra

PARTITION RATIO

As a prior, we use an EPPF induced by the **two-parameter Poisson-Dirichlet** process (Pitman-Yor process) from Martínez and Mena 2014.

Let M and p be the number of groups and nodes, respectively, and $n_j, j = 1, \dots, M$ the cardinalities of the groups, ϑ and σ are parameters.

$$P(\rho = \{n_1, \dots, n_M\}) = \begin{cases} \frac{p!}{M!} \frac{\prod_{i=1}^{M-1} (\vartheta + i\sigma)}{(\vartheta + 1)_{(p-1)\uparrow}} \prod_{j=1}^{M} \frac{(1-\sigma)_{(n_j-1)\uparrow}}{n_{j\uparrow}}, & \rho \text{ admissible} \\ 0, & \rho \text{ not admissible}. \end{cases}$$

Hence, in the split case, after simplifying common factors, the partition ratio is:

$$\frac{f_{\rho}(\rho')}{f_{\rho}(\rho)} = \frac{1}{M}(\vartheta+M\sigma)\frac{(1-\sigma)_{(n_s'-1)\uparrow}(1-\sigma)_{(n_s'+1)\uparrow}}{(1-\sigma)_{(n_s-1)\uparrow}}\frac{n_s!}{n_s'!n_{s+1}'!}$$

GRAPH RATIO

Suppose a split move.

The graph ratio, after simplifying common factors, is:

$$\frac{f_G(G \mid \rho')}{f_G(G \mid \rho)} = \left(\frac{1}{B(\alpha, \beta)}\right)^{M+1} \times \frac{\prod_{l=1}^{S-1} f_B(C'_l, C'_S) f_B(C'_l, C'_{S+1}) \cdot \prod_{m=S+2}^{M+1} f_B(C'_S, C'_m) f_B(C'_{S+1}, C'_m) \cdot f_B(C'_S, C'_{S+1}) f_B(C'_S, C'_S) f_B(C'_{S+1}, C'_{S+1})}{\prod_{l=1}^{S-1} f_B(C_l, C_S) \prod_{m=S+1}^{M} f_B(C_S, C_m) \cdot f_B(C_S, C_S)}$$

where

$$f_B(C_u, C_v) = B(\alpha + S_{uv}, \beta + S_{uv}^{\star})$$