Информационные технологии. Лекция 02. Свойства КФС. Основные компоненты КФС.

Студент группы 2305 Макурин Александр

13 февраля 2023

1 Свойства КФС

1.1 Имманентные

Свойственны любой КФС

Связь

Механика

Анализ окружающей среды

1.2 Трансцендентные

Зависят от реализации

Перемещение

Целевая нагрузка

Взаимодействие с оператором (?)

2 Архитектура (делиберативная/реактивная):

В зависимости от типа КФС меняются:

- Цель (идеальное функционирование/ $e_i^t
 ightarrow e_i^{t-1}$ или стабильность)
- Критерии (есть/нет) $R = < r_1, ..., r_n >$ все ресурсы системы. r_1 соответствует e_1 .

Достижение перечня задач:

$$\left\{ \begin{array}{l} |TK^e| \to |TK| \\ \\ cost(TK) \le R \end{array} \right.$$
где $cost$ - затраты

• Стратегии (есть/нет)

$$\left\{ \begin{array}{l} |TK^{ei}| \to |TK| \\ cost(TK^{ei}) \le R^{ei} \end{array} \right| - \ \mbox{каждый сам пытается достичь целей}$$

Отличие между индивидуальным и групповым достижением целей:

Круги - цели, кресты - субъекты, стремящиеся к их достижению. Красные и зелёные линии обозначают случай с индивидуальной попыткой достижения целей, оранжевые - групповую попытку.

В качестве примера можно привести выполнение студентами лабораторных работ. По одиночке успеть сделать все невозможно, но, разделив работы, получение автомата становится вполне реальным.

- Взаимодействие ((есть или косвенное)/(нет или косвенное))
- Память

$$S^{t+1} = F(E^t, U^t, S^t)$$

- делиберативная с памятью

$$S^{t+1} = F(E^t, U^t)$$

- делиберативная

$$S^{t+1} = F(U^t)$$

- реактивная

2.1 4 функции любой системы:

- Сбор
- Хранение
- Обработка
- Передача

2.2 3 уровня связи

			1
•	Физ	\rightarrow	инф

• Ин
$$\phi \rightarrow \phi$$
из

• Инф \rightarrow инф

$$|W_{phy}| = const$$

$$|W_{inf}| \to \infty$$

Канал связи принимаем условно идеальным ($P_{\text{передачи}} = 1$)

Источник \rightarrow канал (ε) \rightarrow прёмник

DJI являются лучшими беспилотниками, потому что канал передачи на нём идеальный (всё на одной плате, нет проводов-"шнурков")

B - пропускная способность канала

M = U_{in_i} - множество сообщений

$$t_{
m nep} = rac{M}{B}$$
 - время передачи

 $t_{..}=2\alpha_1 t_{\rm пер}+\alpha_2 t_{
m формирования\ плана}+\delta$, где δ - время выполнения плана, α_2 - сложность формирования плана (зависит от оптимальности алгоритма), α_1 - шум

Управляемые нами параметры (на которые мы можем влиять):

 $B \to max$ (нас интересует)

 $M \to min$

 $\alpha_1 \to 1$ (нас интересует)

 $\alpha_2 \to 0$

ЛПР (лицо принимающее решение) $Per: e_i \to S^{per}, Per$ - функция оценки, e_i - элемент кибернетической системы, S^{per} - субъективное представление об элементе

S - пространство \forall (любых) состояний системы E.

В контексте КФС $\overline{S^t}=S^t+\epsilon$, где $\overline{S^t}$ - мнение наблюдателя о системе, S^t - реальное состояние ϵ - погрешность.

•
$$e_i \neq e_j \Leftrightarrow Per(e_i) \neq Per(e_j)$$

•
$$\forall e_i \exists S_{ei}^{per}$$

$$\lim S_{ei}^{per} = S_{ei}$$

 $\Delta S
ightarrow \infty$ - мы ничего не знаем о системе

Варианты связи с наблюдаемостью:

- $y(t) \rightarrow 0$ нет данных (система спит/мертва)
- Per(y(t)) o 0 данные есть, но наблюдатель ничего не понял (наблюдатель спит/мёртв)

- $|Per(y(t))| |y(t)| \to 0$ наблюдатель что-то понимает о каком-то элементе системе (количественное сравнение)
- $Per^* \lim Per(y(t)) = Per^*$ качественное сравнение

В рамках курса ЛПР=СУ (система управления).

В контексте инф-инф:

источник - кодировщик - канал связи (шум) - декодировщик - приёмник

 $P_{\text{приёма}} o 0 \Leftrightarrow \text{шум} o \infty$