

Research Motivation

Automated detection using a computer algorithm is one of the potential alternatives to human moderators against hate speech spread on social network. This project aimed at understanding the mechanism behind this automation by building a deeplearning detector with the dataset from the open web. Thus, it was duplication work fundamentally. It attempted to state-of-industry RNN approach for classification task on a Twitter dataset.

Conclusion

As a work of reproducibility, this project managed to adapt a simple LSTM model on a different dataset labelled by Davidson. The project achieved an accuracy rate of 84.68%, which is a state-of-the-art result. The implementation process provided the author with an opportunity to dive deeper into the theory behind text classification and the rationale behind automated hate speech detection.

Automated Hate Speech Detection with LSTM Classifier

Team Project by Hu, Xiaoyan for the Course: Natural Language Processing with Deep Learning, Hertie School

Proposed Method

Dataset:

25k tweets containing terms collected by Davidson et al. (2017) from the lexicon and had them manually coded by CrowdFlower (CF) workers.

• Model:

- Baseline: Multinomial Naive Bayer
- Deep Learning: Long Short-Term Memory network (LSTM)
 - Implementation framework: PyTorch

[SIMPLE ILLUSTRATION OF THE LSTM MODEL FROM COLAH'S BLOG]

Results:

79.22% for baseline model; 84.68% for LSTM model on the validation dataset.

Results Analysis

- Successfully implemented the deep learning model
- High probability of overfitting:
 From graph on the right-hand side, this project observes a high probability of over-fitting in this LSTM model. While the training loss steadily decreases from 0.361 to 0.218, the validation loss gradually increases from 0.3 to 0.445. At the same time, Training accuracy improved from 86.33% to 91.87% while the validation set accuracy stagnated around 84% through the whole course.
- Potential cause: too small data size for LSTM model.

Epoc	h· 0					
Брос		Loss:	0. 477	Trai	n Acc:	82. 05%
						82. 76%
Epoc	h: 1					
	Train	Loss:	0.376	Trai	n Acc:	85. 51%
	Val.	Loss:	0.376	Val	. Acc:	85. 70%
Epoc						0.0 0.0%
						86. 33%
Epoc		Loss:	0. 400	vai	. Acc:	83. 81%
Ерос		I oss.	0 345	Trai	n Acc:	87. 35%
						85. 46%
Epoc		Loss.	0.000	, , , ,		00. 10%
		Loss:	0.350	Trai	n Acc:	86.87%
	Val.	Loss:	0.406	Val	. Acc:	84. 79%
Epoc	h: 5					
	_					87. 93%
	_	Loss:	0. 384	Val	. Acc:	85. 90%
Epoc		T	0 000	T:	A	00 00%
	_					88. 92%
Epoc		LOSS:	0. 392	vai	. Acc:	85. 49%
Epoc		Loss.	0 292	Trai	n Acc:	89. 18%
						80. 47%
Epoc						
		Loss:	0. 285	Trai	n Acc:	89. 37%
	Val.	Loss:	0.399	Val	. Acc:	85. 31%
Epoc	h: 9					
						89. 90%
_	_	Loss:	0. 392	Val	. Acc:	84. 63%
Epoc	h: 10	I	0.065	Tuoi		00 20%
				1		90. 20% 85. 42%
Enoc	h: 11	LU55.	0.412	Val	. Acc.	00.42/0
Брос		Loss:	0. 275	Trai	n Acc:	89. 90%
						85. 25%
Epoc	h: 12					
	Train	Loss:	0. 255	Trai	n Acc:	90. 21%
	Val.	Loss:	0.407	Val	. Acc:	85. 49%
Epoc	h: 13	_				
	_					90. 74%
Enac	_	LOSS:	0. 420	val	. ACC:	84. 79%
грос	h: 14 Train	Loss	0 247	Trai	n Acc:	90. 67%
						84. 34%
Epoc	h: 15	Loss.	0. 111	, , , ,	. 1100.	01.01%
		Loss:	0. 241	Trai	n Acc:	91. 26%
	Val.	Loss:	0. 441	Va1	. Acc:	84. 70%
Epoc	h: 16					
	Train	Loss:	0. 230	Trai	n Acc:	91. 40%
		Loss:	0. 428	Val	. Acc:	84. 82%
Epoc	h: 17		0.000			01 040
	_					91. 04%
Fnoc	vai. h: 18	LOSS:	0.431	val	. ACC:	84. 95%
Ерос		Loss:	0 229	Trai	n Acc:	91. 63%
						84. 35%
Epoc	h: 19			,		
		Loss:	0. 218	Trai	n Acc:	91.87%
	Val.	Loss:	0.445	Val	. Acc:	84.68%

Reflection

- The implementation process provided the author with an opportunity to understand the theory behind text classification and the rationale behind automated hate speech detection.
- Although this project adopted the LSTM model, the author is aware of **the drawbacks of LSTM** as it still cannot memorize sequences that scale beyond a certain range. Moreover, the RNN models are not hardware friendly which means that it takes many computation resources. Many improvement and alternatives have been proposed, especially those that centered around "attention".
- Apart from efficiency and accuracy, we still face other challenges:
- ☐ Technical: distinguish subtle contextual differences, active detection evasion etc.
- □ Non-Technical: right balance between freedom of speech and hate speech quarantine, what do our values stand for facing hate speech.

