Joining the Incenter and Orthocenter Configurations: Properties Associated with a Tangential Quadrilateral

Andrew Wu

May 15, 2019

Abstract

Normally, it is quite rare to see olympiad geometry problems pertaining to both the incenter and orthocenter configurations. We discuss properties pertaining to a configuration related to both these centers with the condition that a certain quadrilateral is tangential.

1 The Configuration

Displayed below is a triangle ABC with orthocenter H such that E and F are the feet of the altitudes from B and C, respectively; furthermore, I is the incenter, and the incircle meets sides \overline{BC} , \overline{CA} , and \overline{AB} at P, Q, and R, respectively. This triangle has the special property that quadrilateral BFEC is tangential—that is, it has an inscribed circle, the incircle of $\triangle ABC$.

In general, it is not true that BFEC will have an inscribed circle, but when it does we can find many interesting properties.

2 Properties Associated with This Configuration

You may have already observed that it seems as if R, H, and Q are collinear. Indeed, this follows immediately from a degenerate case of Brianchon's Theorem. However, there are many more nontrivial properties we can show, beginning with the following:

Property 1. AH = PI, and in particular, AHPI is a parallelogram.

Proof. Of course, as $\overline{AH} \parallel \overline{IP}$, showing that AH = PI will immediately imply that AHPI is a parallelogram. We begin by applying Pitot's Theorem to quadrilateral BFEC; we have BC + EF = BF + EC. As triangles AEF and ABC are similar with scale factor $\cos \angle A$, we know that $EF = BC \cos \angle A$; this motivates us to express BF and EF in terms of BC, yielding the following equation:

$$BC + BC \cos \angle A = BC \cos \angle B + BC \cos \angle C$$
.

Of course, we divide through by BC and get $1 + \cos \angle A = \cos \angle B + \cos \angle C$. Now we will apply the identity $\cos \angle A + \cos \angle B + \cos \angle C = 1 + \frac{r}{R}$, where r is the length of the inradius and R is the length of the circumradius. (This identity can be proven through some mechanical expansion with identities, or by a clever application of Carnot's theorem.) Simplification with the identity yields

$$2\cos\angle A = \frac{r}{R}$$

which yields $2R\cos\angle A=r$, and as $AH=2R\cos\angle A$, it follows that AH=r=PI. We are done.

Property 2. The circumcircles of triangles AEF, APQ, and ABC are coaxial, and consequently \overrightarrow{HI} passes through the midpoint M of \overline{BC} .

Proof. Using **Property 1**, we deduce that $\overline{PH} \perp \overline{QR}$. Let K be the intersection of the circumcircles of $\triangle AQR$ and $\triangle ABC$.

We claim that I, H, and K are collinear; as H is the foot of the P-altitude in $\triangle PQR$, it lies on the nine-point circle of $\triangle PQR$. Furthermore, upon an inversion about the incircle, the circumcircle of $\triangle ABC$ swaps with the nine-point circle of $\triangle PQR$, as A, B, and C map to the midpoints of intouch chords $\overline{QR}, \overline{RP}$, and \overline{PQ} , respectively. Thus under this inversion, H maps to a point on the circumcircle of $\triangle ABC$, and as H lies on \overline{QR} , it must also map to a point on the circumcircle of $\triangle IQR$. Thus H maps to K and this claim is proven.

The rest is easy: we know that $\angle AKI = 90^{\circ}$, so therefore $\angle AKH = 90^{\circ}$ and K lies on the circle with diameter \overline{AH} , as do E and F. As a consequence of this property, it follows that \overline{HI} passes through the midpoint M of \overline{BC} because it is well-known that K, H, and M are collinear (say, by orthocenter reflections.)

There is an alternative method of proving that H, I, and M are collinear without involving K; all we need is **Property 1**. For simplicity, in the diagram below, we have included only the essential components:

Here we let M_A be the midpoint of arc \widehat{BC} not containing A, so that A, I, and M_A are collinear; to show that H, I, and M are collinear, it suffices to show that $\frac{IA}{AH} = \frac{IM_A}{M_AM}$.

By the Incenter-Excenter Lemma, we know that $M_AI = M_AB$, so $\frac{IM_A}{M_AM} = \frac{M_AB}{M_AM} = \csc\left(\frac{1}{2}\angle A\right)$. But $\frac{IA}{AH} = \frac{IA}{r}$ by **Property 1**, and it is clear that $\frac{IA}{r} = \csc\left(\frac{1}{2}\angle A\right)$, so therefore H, I, and M are collinear. From here we may let K be the intersection of the circle with diameter \overline{AH} and the circumcircle of $\triangle ABC$, such that $\angle AKH = \angle AKI = 90^{\circ}$, once again showing the desired coaxiality.

Property 3. If H_A is the reflection of the orthocenter H in \overline{BC} and if L is the midpoint of arc \widehat{BAC} , then L, P, and H_A are collinear.

To prove this property, we will use two separate lemmas, one relying on the fact that K is the Miquel point of BFEC, and the other relying on the fact that K is the Miquel point of BRQC. (Of course, this is true because K is the intersection of the circumcircles of $\triangle AEF$, $\triangle AQR$, and $\triangle ABC$.)

Lemma 1. In any arbitrary triangle ABC with D, E, and F as the feet of the A, B, and C-altitudes, respectively, if K is the Miquel Point of quadrilateral BFEC and H_A is the intersection of \overrightarrow{AD} and the circumcircle of $\triangle ABC$, then KBH_AC is a harmonic quadrilateral.

<u>Proof of Lemma 1.</u> Letting G be the intersection of \overrightarrow{BC} and \overrightarrow{AK} , we firstly observe that G lies on \overrightarrow{EF} by an application of the radical axis theorem. Next, it follows that (G, D; B, C) = -1, and thus $(G, D; B, C) \stackrel{A}{=} (K, H_A; B, C)$, so KBH_AC is a harmonic quadrilateral.

Lemma 2. In any arbitrary triangle ABC such that its incircle meets sides \overline{BC} , \overline{CA} , and \overline{AB} at points P,Q, and R, respectively, if K is the Miquel Point of quadrilateral \overline{BRQC} and L is the midpoint of arc \overline{BAC} , then \overline{LK} , \overline{QR} , and \overline{BC} are concurrent. Furthermore, if \overline{LP} meets the circumcircle of $\triangle ABC$ again at J, then KBJC is a harmonic quadrilateral.

Proof of Lemma 2. We first show that \overrightarrow{KP} bisects $\angle BKC$, which will show that it passes through M_A , the midpoint of arc \widehat{BC} not containing A. As K is the center of the spiral similarity mapping \overline{BR} to \overline{CQ} , it follows that $\frac{KB}{BR} = \frac{KC}{CQ}$; by equal tangents, BR = BP and CQ = CP, so $\frac{KB}{BP} = \frac{KC}{CP}$, implying that K, P, and M_A are collinear by the Angle Bisector theorem.

Next, we know that $(L, M_A; B, C) = -1$ and (S, P; B, C) = -1, where S denotes the intersection of \overrightarrow{QR} and \overrightarrow{BC} . It follows from projecting through K that L, K, and S are collinear. Furthermore, KBJC is a harmonic quadrilateral from projecting (S, P; B, C) through L. The lemma is proven.

Having proven these two lemmas, we may return to the main proof, which is now quite easy. Refer to the diagram below:

Proof of Property 3. Let H'_A be the intersection of \overrightarrow{LP} and the circumcircle of $\triangle ABC$. As K is the Miquel Point of quadrilateral BRQC, it follows that $(K, H'_A; B, C)$ is harmonic. But as K is the Miquel Point of quadrilateral BFEC, we know that $(K, H_A; B, C)$ is harmonic. Thus $H'_A = H_A$ and L, P, and H_A are indeed collinear.

Property 4. L, I, and D are collinear, where L is the midpoint of arc \widehat{BAC} and D is the foot of the A-altitude.

Proof. As H, I, and M are collinear, it follows by similar triangles that $\frac{IP}{HD} = \frac{MP}{MD}$. Orthocenter reflections yield that $HD = H_AD$, and as triangles MPL and DPH_A are similar, we know that $\frac{LP}{LH_A} = \frac{MP}{MD}$. It follows that

$$\frac{LP}{LH_A} = \frac{MP}{MD} = \frac{IP}{HD} = \frac{IP}{H_AD}.$$

Therefore L, I, and D are collinear by similar triangles.

Property 5. \overline{AI} is tangent to the circumcircle of $\triangle HID$.

Proof. It suffices to show that $\angle AIH = \angle ADI$. Let U be the antipode of P with respect to the incircle. Our first claim is that \overline{HI} is parallel to the A-extouch cevian; let X be the reflection of P in M, such that A, U, and X are collinear and lie on the A-extouch cevian. (This is true by homothety at A mapping the incircle to the A-excircle.) Then \overline{MI} is the P-midline of $\triangle PUX$, so $\overline{MI} \parallel \overline{AX}$ and $\angle AIH = \angle IAX$.

Now let T be the A-mixtilinear touchpoint, such that by the well-known isogonality of \overrightarrow{AT} and \overrightarrow{AX} we have $\angle AIH = \angle IAX = \angle IAT$. But it is well-known that L, I, and T are collinear, so $\angle IAT = \frac{1}{2}\widehat{TM_A}$. As LAH_AM_A is an isosceles trapezoid, we have $\frac{1}{2}\widehat{TM_A} = \frac{1}{2}\widehat{TH_A} + \frac{1}{2}\widehat{AL} = \angle ADI$, and the conclusion follows.

Alternatively, we can provide a proof using ratios. It suffices to show that $AI^2 = AH \cdot AD$, or that $\frac{AI}{AD} = \frac{AH}{AI}$. But we know that AH = r, the length of the inradius, so therefore $\frac{AH}{AI} = \sin \frac{1}{2} \angle A$. Similar triangles and **Property 4** yield that $\frac{AI}{AD} = \frac{M_AI}{M_AL}$. By the Incenter-Excenter lemma, we know that $M_AI = M_AB$, so we get $\frac{M_AI}{M_AL} = \frac{M_AB}{M_AL} = \sin \angle BLM_A = \sin \frac{1}{2} \angle A$, so we may conclude.

Property 6. Lines $\overrightarrow{MH_A}$ and \overrightarrow{LI} concur on the circumcircle of $\triangle BIC$.

Proof. Suppose that \overrightarrow{LI} meets the circumcircle of $\triangle BIC$ again at V. By the Incenter-Excenter lemma, \overline{LB} and \overline{LC} are tangent to the circumcircle of $\triangle BIC$.

It follows that \overrightarrow{BC} is the polar of L with respect to the circumcircle of $\triangle BIC$, and thus (L, D; I, V) = -1. But projecting this quadruplet from M onto the A-altitude yields that M, H_A , and V are collinear, so we are done.

Property 7. Again, let T be the A-mixtilinear touchpoint; let N be the tangency point between the incircle of $\triangle ABC$ and \overline{EF} . Then quadrilateral TPIN is cyclic.

Proof. The key idea is once again to note the isogonality of extouch and mixtilinear lines. Indeed, observe that $\triangle AEF$ and $\triangle ABC$ are inversely similar, and that N is actually the A-extouch point in $\triangle AEF$. It follows that \overrightarrow{AN} and \overrightarrow{AX} are isogonal in $\angle A$, and thus that A, N, and T are collinear.

Now see that \overrightarrow{TP} passes through the reflection of A in the perpendicular bisector of \overline{BC} (to prove this, we may reflect T and P over $\overrightarrow{LM_A}$, such that P maps to X and T maps to the intersection of \overrightarrow{AX} and the circumcircle of $\triangle ABC$.) Then, as T, I, and L are collinear, it follows that \overrightarrow{TI} bisects $\angle NTP$. But N and P lie on the incircle, so IP = IN, and we have proven the desired concyclity.

In particular, we may also observe that K lies on the circle circumscribing this cyclic quadrilateral. We proved earlier that K, P, and M_A are collinear; then $\angle PKT = \angle M_AKT = \angle M_ALT = \angle PIT$ by parallel $\overline{M_AL}$ and \overline{PI} , showing the desired concyclity.

At this point, we've already proven many results related to this particular configuration; we leave it to the reader to solve the exercises in the following section.

3 Exercises

We'll use the same labels as before. Hints begin on the next page.

Property 8. The A-mixtilinear incircle is tangent to the circumcircle of $\triangle AEF$.

Property 9. The A-mixtilinear incircle is tangent to the circumcircle of $\triangle BHC$. Consequently, the center of the A-mixtilinear incircle is the foot of the A-angle bisector.

Property 10. \overline{KT} is perpendicular to \overline{BC} .

Property 11. $\overrightarrow{M_AT}$, \overrightarrow{EF} , and \overrightarrow{BC} are concurrent.

Property 12. If $\overrightarrow{H_AT}$ meets \overrightarrow{BC} at Y, then \overrightarrow{KY} and $\overrightarrow{M_AD}$ concur on the circumcircle of $\triangle ABC$. If Z is that point of concurrency, then $\overrightarrow{ZH_A}$ passes through the intersection of \overrightarrow{KT} and \overrightarrow{BC} .

Property 13. \overline{MZ} passes through the reflection of T in \overline{BC} .

4 Hints to Exercises

Hint 8. Invert using Property 5.

Hint 9. Same as Hint 8.

Hint 10. Just some angle-chasing. Show that $\widehat{KL} = \widehat{M_AT}$.

Hint 11. Project a harmonic quadrilateral from T.

Hint 12. Let \overrightarrow{KY} meet the circumcircle of $\triangle ABC$ at Z and show that ZBTC is a harmonic quadrilateral, using **Property 10**. Then project from M_A onto \overrightarrow{BC} .

Hint 13. $\overrightarrow{T'M}$ and \overrightarrow{AX} meet on the circumcircle of $\triangle ABC$ (why?) so project $(B, C; M, P_{\infty})$ from Z onto the circumcircle. $(P_{\infty}$ denotes the infinity point on \overrightarrow{BC} .)