Détection de Messages Haineux dans le Contexte Camerounais Cas de la détection de messages haineux sur WhatsApp

NDONKOU FRANCK TCHIAZE FOUOSSO ROMERO FOTSING ENGOULOU SIMON GAETAN

Master 1 Data Science - UY1

Encadré par :Dr Thomas MESSI NGUELE

22 juin 2025

Contexte et Problématique

Contexte Camerounais

- +293 langues locales
- Français, Anglais, francamglais
- Communication à travers des plateformes comme TikTok, WhatsApp, Facebook et YouTube.
- Expressions haineuses spécifiques non détectées

Problématique

- Modèles existants inadaptés au contexte local
- Expressions comme "ta maman", "vas en brousse avec ça
- Mélange linguistique complexe

Objectifs du Projet

Objectifs Principaux

- Développer un modèle de détection de messages haineux spécifiquement adapté au contexte linguistique et culturel camerounais
- Utiliser ce modèle pour la détection des discours haineux sur WhatsApp

Défis dans la Détection de Messages Haineux au Cameroun

Made with > Napkin

Collecte et Annotation des Données

Phase 1 : Collecte par Scraping

- Facebook, WhatsApp, YouTube
- 60 000 messages collectés
- Représentatifs du contexte camerounais

Phase 2: Annotation Collaborative

- Site web: collect-hate-msg.institut-visa.com
- 3 annotateurs par message
- Vote majoritaire (2/3 consensus)
- Classes : Haineux/Non-haineux/Hésitant

Résultats d'Annotation

- 3 600 messages annotés
- 1 538 haineux (42.7%)
- 2 062 non-haineux (57.3%)
- Équipe : 1900 messages
- Communauté : 1 700 messages

Pipeline de Traitement des Données

Fine-tuning du Modèle DistilCamemBERT

Modèle de Base : DistilCamemBERT

- Poulpidot/distilcamenbertfrench-hate-speech
- Pré-entraîné sur 44 milles messages français(20k haineux et 24k non haineux
- Spécialisé pour la détection de haine
- 66M paramètres (version allégée)

Prétraitement Tokeniseur CamemBERT Nettoyage de texte Texte d'entrée RTF Texte d'entrée RTF Prétraitement Model DistilCamemBERT DistilCamemBERT Model Sortie de classification Discours de non-haine

Modèle DistilCamemBERT

Architecture Complète de notre Modèle

Pipeline de Représentation des Données et de Classification

Métriques d'Évaluation et Justification

Stratégie : Maximiser le Rappel

- Objectif : Minimiser les faux négatifs
- Philosophie : Mieux détecter un message haineux que de le manquer
- But : Sensibilisation et éducation

Métriques Utilisées

- Rappel (Recall) : $TP/(TP+FN) \rightarrow \grave{A}$ maximiser
- Précision : TP/(TP+FP)
- F1-Score : Moyenne harmonique
- Accuracy : Performance globale

Priorité

Détecter 100% des messages haineux, même au prix de quelques faux positifs

Courbes d'Apprentissage

Phase MLM - Adaptation Vocabulaire

Observations

- Convergence stable
- Pas de sur-apprentissage
- Early stopping efficace

Phase Classification

Observations

- Amélioration continue
- Début de surapprentissage après la 3^e époque

Résultats - Performances du Modèle

Rapport de Classification Final				
	precision	recall	f1-score	support
Θ	0.81	0.73	0.77	203
1	0.69	0.78	0.73	153
accuracy			0.75	356
macro avg	0.75	0.76	0.75	356
weighted avg	0.76	0.75	0.75	356

Analyse Détaillée

• VN : 156 (bonne détection non-haineux)

• VP : 110 (détection correcte haineux)

• FN: 47 (messages haineux manqués)

• FP: 43 (sur-détection)

Impact et Considérations Éthiques

Atteindre un Environnement Numérique Plus Sain

Considérations Éthiques

Architecture de l'application

Conclusions et Perspectives

Objectifs Atteints

- ✓ Modèle adapté au contexte camerounais
- ✓ Corpus de 3 600 messages annotés
- $\sqrt{+35\%}$ sur expressions locales
- ✓ Détection des discours haineux sur WhatsApp

Perspectives d'Amélioration

- Extension multilingue (pidgin, langues locales)
- Optimisation du rappel (objectif : plus de 70%)
- Apprentissage actif avec feedback
- Déploiement mobile Android/iOS

Contribution

- Développement d'un corpus annoté pour la détection de discours haineux spécifique au contexte sociolinguistique camerounais
- Première solution NLP spécialisée pour la détection de haine en contexte camerounais

Références Bibliographiques I

Poulpidot (2021).

Poulpidot/distilcamenbert-french-hate-speech.

Hugging Face Model Hub.

https://huggingface.co/Poulpidot/distilcamenbert-french-hate-speech

Wolf, T., et al. (2020).

Transformers: State-of-the-Art Natural Language Processing.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.