Package 'WMAP'

November 30, 2024

Title Weighted Meta-Analysis with Pseudo-Populations
Version 1.1.0
Description Implementation of integrative weighting approaches for multiple observational studies and causal inferences. The package features three weighting approaches, each representing a special case of the unified weighting framework, introduced by Guha and Li (2024) <doi:10.1093 biomtc="" ujae070="">, which includes an extension of inverse probability weights for data integration settings.</doi:10.1093>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
LazyData true
Imports pkgcond, ggplot2, zeallot, caret, randomForest, forcats, utils, stats, grDevices
Depends R (>= $3.5.0$)
NeedsCompilation no
Author Subharup Guha [aut, cre], Mengqi Xu [aut], Kashish Priyam [aut], Yi Li [aut]
Maintainer Subharup Guha <s.guha@ufl.edu></s.guha@ufl.edu>
Repository CRAN
Date/Publication 2024-11-30 05:10:02 UTC
Contents
balancing.weights 2 causal.estimate 3 demo 5 get_weights 6 mean_diff 6 percentESS 7

2 balancing.weights

	cing.weights Compute balancing weights using FLEXOR or other meti	
Index		13
	summary.causal_estimates	 11
	summary.balancing_weights	 10
	sigma_ratio	 10
	print.causal_estimates	 9
	print.balancing_weights	 8
	plot.causal_estimates	 7

Description

This function calculates balancing weights based on the specified pseudo-population method.

Usage

```
balancing.weights(
   S,
   Z,
   X,
   method,
   naturalGroupProp,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

Arguments

S	Vector of factor levels representing the study memberships. Takes values in $\{1,, J\}$.		
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,, K\}$.		
Χ	Covariate matrix of N rows and p columns.		
method	Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, or IGO.		
naturalGroupProp			
	Relevant only for FLEXOR method: a fixed user-specified probability vector θ .		
num.random	Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40.		
gammaMin	Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001.		

causal.estimate 3

gammaMax Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step

iterative procedure. Default is 0.999.

seed Seed for random number generation. Default is NULL.

verbose Logical; Relevant only for FLEXOR method: if TRUE (default), displays progress

messages during computation to the console. Set to FALSE to suppress these

messages.

Value

An S3 list object with the following components:

 $\mathbf{wt.v}$ N empirically normalized sample weights.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
```

causal.estimate

Estimate causal effects using FLEXOR or other methods

Description

This function estimates causal effects based on the specified pseudo-population method. The FLEXOR method involves an iterative two-step procedure.

Usage

```
causal.estimate(
   S,
   Z,
   X,
   Y,
   B = 100,
   method,
   naturalGroupProp = NULL,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

4 causal.estimate

Arguments	
1 LI Sulliville	

S	Vector of factor levels representing the study memberships. Takes values in $\{1,,J\}.$		
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,,K\}.$		
X	Covariate matrix of N rows and p columns.		
Υ	Matrix of L outcomes, with dimensions $N \times L$.		
В	Number of bootstrap samples for variance estimation. Default is 100.		
method	Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, or IGO.		
naturalGroupProp			
	Relevant only for FLEXOR method: a fixed user-specified probability vector θ .		
num.random	Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40.		
gammaMin	Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001.		
gammaMax	Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step iterative procedure. Default is 0.999.		
seed	Seed for random number generation. Default is NULL.		
verbose	$Logical; if \ TRUE\ (default), displays\ progress\ messages\ during\ computation\ to\ the\ console.\ Set\ to\ FALSE\ to\ suppress\ these\ messages.$		

Value

An S3 list object with the following components:

percentESS Percentage sample effective sample size (ESS) of the pseudo-population.

moments.ar An array of dimension $3 \times K \times L$, containing:

- Estimated means, standard deviations (SDs), and medians (dimension 1),
- For *K* groups (dimension 2),
- And L counterfactual outcomes (dimension 3).

otherFeatures.v Estimated mean group differences for L outcomes.

collatedMoments.ar An array of dimension $3 \times K \times L \times B$, containing:

- moments.ar of the *b*th bootstrap sample (dimensions 1–3),
- For B bootstrap samples (dimension 4).

collatedOtherFeatures.mt A matrix of dimension $L \times B$ containing:

- otherFeatures.v of the bth bootstrap sample (dimension 1),
- For B bootstrap samples (dimension 2).

collatedESS A vector of length B containing percentage sample ESS for B bootstrap samples. **method** Pseudo-population method, i.e., weighting method.

demo 5

Examples

```
data(demo)
set.seed(1)
causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
```

demo

Demo Dataset

Description

A dataset containing example data for demonstration purposes.

Usage

data(demo)

Format

An rda object, with 450 observations and the following variables:

- **S** A vector of factor levels, representing the study memberships.
- **Z** A vector of factor levels, representing the group memberships.
- **X** A covariate matrix.
- Y An outcome matrix.

naturalGroupProp The relative group prevalences of the larger natural population. Necessary only for FLEXOR weights; it should be skipped for IC and IGO weights.

groupNames Disease subtype names "IDC" or "ILC"

Details

Demo Dataset

Examples

```
data(demo)
```

6 mean_diff

get_weights

Extract sample weights

Description

A generic function to extract sample weights from objects of class 'balancing_weights'

Usage

```
get_weights(object)
```

Arguments

object

An objects of class 'balancing_weights'.

Value

Empirically normalized sample weights.

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
get_weights(output1)</pre>
```

mean_diff

Extract causal estimates (mean differences)

Description

A generic function to extract mean differences for objects of class 'causal_estimates'.

Usage

```
mean_diff(object)
```

Arguments

object

An objects of class 'causal_estimates'.

Value

The mean differences between two groups

percentESS 7

Examples

```
data(demo)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
mean_diff(output2)</pre>
```

percentESS

Extract percentage sample ESS

Description

A generic function to extract percentage sample ESS for different object classes

Usage

```
percentESS(object)
```

Arguments

object

An objects of class 'balancing_weights' or 'causal_estimates'.

Value

Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
percentESS(output1)

output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
percentESS(output2)</pre>
```

```
plot.causal_estimates Boxplot of percent ESS
```

Description

Plot method for objects of class 'causal_estimates' to generate a boxplot of percent sample effective sample size (ESS) for a specific weighting method using bootstrap samples.

Usage

```
## S3 method for class 'causal_estimates' plot(x, ...)
```

Arguments

An object of class 'causal_estimates', the number of bootstrap samples B must be greater than 0.

... Additional arguments including:

y_limit The y-axis range. Default is c(0,50). color The boxplot color. Default is "red".

Value

A boxplot of percent sample ESS for a specific weighting method (FLEXOR, IC, or IGO)

Examples

```
data(demo)
set.seed(1)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
plot(output2)</pre>
```

print.balancing_weights

Print method for objects of class 'balancing_weights'

Description

Print method for objects of class 'balancing_weights'

Usage

```
## S3 method for class 'balancing_weights'
print(x, ...)
```

Arguments

x An object of class 'balancing_weights'

... Additional arguments affecting the printed results (so far no additional arguments are needed, so leave blank).

Value

Print values of the 'balancing_weights' object, including:

Weight length The total number of weights.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

print.causal_estimates 9

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
print(output1)</pre>
```

```
print.causal_estimates
```

Print method for objects of class 'causal_estimates'

Description

Print method for objects of class 'causal_estimates'

Usage

```
## S3 method for class 'causal_estimates'
print(x, ...)
```

Arguments

x An object of class 'causal_estimates'

... Additional arguments affecting the printed results (so far no additional arguments are needed, so leave blank).

Value

Print values of the 'causal_estimates' object, including:

Percentage sample ESS Percentage sample effective sample size (ESS) for the pseudo-population.

Mean differences The mean differences between two groups

Sigma ratios The ratios of standard deviations between two groups

Examples

```
data(demo)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
print(output2)</pre>
```

sigma_ratio

Extract sigma ratios

Description

A generic function to extract the ratios of standard deviations for objects of class 'causal_estimates'.

Usage

```
sigma_ratio(object)
```

Arguments

object

An objects of class 'causal_estimates'.

Value

The ratios of standard deviations between two groups

Examples

```
data(demo)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
mean_diff(output2)</pre>
```

```
summary.balancing_weights
```

Summary method for objects of class 'balancing_weights'

Description

Summary method for objects of class 'balancing_weights'

Usage

```
## S3 method for class 'balancing_weights'
summary(object, ...)
```

Arguments

object An object of class 'balancing_weights'

... Additional arguments affecting the summary produced (so far no additional ar-

guments are needed, so leave blank).

Value

Printed summary of the 'balancing_weights' object, including:

Weight length The total number of weights.

Weight distribution Statistical summary of weight values.

Percentage sample ESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
summary(output1)</pre>
```

```
summary.causal_estimates
```

Summary method for objects of class 'causal_estimates'

Description

Summary method for objects of class 'causal_estimates'

Usage

```
## S3 method for class 'causal_estimates'
summary(object, ...)
```

Arguments

object An object of class 'causal_estimates'

... Additional arguments affecting the summary produced (so far no additional ar-

guments are needed, so leave blank).

Value

Printed summary of the 'causal_estimates' object, including:

Percentage sample ESS Percentage sample effective sample size (ESS) for the pseudo-population.

Mean differences with 95% CI (if B > 0) The mean differences between two groups with their corresponding 95% confidence intervals.

Sigma ratios with 95% CI (if B > 0) The ratios of standard deviations between two groups with their corresponding 95% confidence intervals.

Mean differences (if $B = \emptyset$) The mean differences between two groups.

Sigma ratios (if B = 0) The ratios of standard deviations between two groups.

Examples

```
data(demo)
set.seed(1)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
summary(output2)</pre>
```

Index

```
\verb|balancing.weights|, 2
causal.estimate, 3
demo, 5
get_weights, 6
groupNames (demo), 5
mean\_diff, 6
naturalGroupProp (demo), 5
percentESS, 7
plot.causal_estimates, 7
print.balancing_weights, 8
print.causal_estimates, 9
S (demo), 5
{\tt sigma\_ratio}, \textcolor{red}{10}
\verb|summary.balancing_weights|, 10
\verb|summary.causal_estimates|, 11|\\
X (demo), 5
Y (demo), 5
Z (demo), 5
```