MAT324: Real Analysis – Fall 2014

Assignment 8 - Solutions

Problem 1: Compute

$$\int_{(0,\infty)\times(0,1)} y\sin(x)e^{-xy}\,dxdy,$$

and explain why Fubini's theorem is applicable.

SOLUTION. Notice that

$$\int_{(0,\infty)\times(0,1)} |y\sin(x)e^{-xy}| dxdy \le \int_{(0,\infty)\times(0,1)} ye^{-xy} dxdy$$

The integrand on the right-hand side is measurable, so we can apply Tonelli's Theorem:

$$\begin{split} \int_{(0,\infty)\times(0,1)} y e^{-xy} dx dy &= \int_{(0,1)} \left[\int_{(0,\infty)} y e^{-xy} dx \right] dy \\ &= \int_{(0,1)} \left[\int_{(0,\infty)} \frac{d(e^{-xy})}{dx} dx \right] dy \\ &= \int_{(0,1)} 1 dy = 1 \end{split}$$

Therefore the integrand of $\int_{(0,\infty)\times(0,1)} |y\sin(x)e^{-xy}| dxdy$ is in L^1 , and we can apply Fubini's theorem:

$$\int_{(0,\infty)\times(0,1)} y \sin(x) e^{-xy} dx dy = \int_0^1 y \left[\int_0^\infty \sin(x) e^{-xy} dx \right] dy$$
$$= \int_0^1 \left(\frac{y}{y^2 + 1} \right) dy$$
$$= \frac{1}{2} \log(2)$$

Problem 2: Let λ_1, λ_2 and μ be measures on a measurable space (X, \mathcal{F}) . Show that if $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$ then $(\lambda_1 + \lambda_2) \ll \mu$.

SOLUTION. Suppose $E \in \mathcal{F}$ is such that $\mu(E) = 0$. Since $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, $\lambda_1(E) = \lambda_2(E) = 0$, so $(\lambda_1 + \lambda_2)(E) = 0$, thus $\lambda_1 + \lambda_2 \ll \mu$.

Problem 3: Let X = [0,1] with Lebesgue measure and consider probability measures μ and ν given by densities f and g as follows

$$\nu(E) = \int_E f \, dm$$
 and $\mu(E) = \int_E g \, dm$,

for every measurable subset $E \subset [0,1]$. Suppose f(x), g(x) > 0 for every $x \in [0,1]$. Is ν absolutely continuous with respect to μ (that is $\nu \ll \mu$)? If it is, determine the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$. Is μ absolutely continuous with respect to ν (that is $\mu \ll \nu$)?

SOLUTION. Let E be a Lebesgue measurable set and let m denote the Lebesgue measure. Notice that since f>0, $\mu(E)=\int_E f dm=0$ iff m(E)=0. In particular, if $\mu(E)=0$, then $\nu(E)=\int_E g dm=0$, for m(E)=0, so $\nu\ll\mu$. The argument to show that $\mu\ll\nu$ is similar. Furthermore, since $\nu\ll\mu\ll m$, by proposition 7.7, (ii) in the textbook,

$$\frac{d\nu}{dm} = \frac{d\nu}{d\mu} \frac{d\mu}{dm},$$

so
$$\frac{d\nu}{d\mu} = \frac{f}{a}$$
.

Problem 4: Suppose μ is a σ -finite measure on $([0,1],\mathcal{F})$ and E_1,E_2,\ldots,E_{2014} are measurable subsets of [0,1]. Define ν on \mathcal{F} by $\nu(E) = \sum_{k=1}^{2014} \mu(E \cap E_k)$. Show that $\nu \ll \mu$ and find the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$.

SOLUTION. Notice that

$$\mu(E \cap E_k) = \int_E \chi_{E_k} dm,$$

So for each measure ν_k , defined by $\nu_k(E) = \mu(E \cap E_k)$, we have $\nu_k \ll m$. By problem 2, $\nu = \sum_{k=1}^{2014} \nu_k \ll m$. In addition, from $\nu_k(E) = \int_E \chi_{E_k} dm$, we know that $\frac{d\nu_k}{dm} = \chi_{E_k}$. By proposition 7.7 (i) in the textbook, $\frac{d\nu}{dm} = \sum_{k=1}^{2014} \chi_{E_k}$.

Problem 5: Let $\lambda_1, \lambda_2, \mu$ be measures on a σ -algebra \mathcal{F} . Show that

- a) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$ then $(\lambda_1 + \lambda_2) \perp \mu$.
- b) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$ then $\lambda_2 \perp \lambda_1$.

SOLUTION.

a) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$ then there exist disjoint sets A_i , B_i , i = 1, 2, such that $A_i \cup B_i = X$, $\mu(A_i) = 0$, $\lambda_i(B_i) = 0$. Then the sets $A = A_1 \cup A_2$ and $B = B_1 \cap B_2$ satisfy $X = A \cup B$, $A \cap B = \emptyset$, and

$$\mu(A) \le \mu(A_1) + \mu(A_2) = 0$$
$$(\lambda_1 + \lambda_2)(B) \le \lambda_1(B_1) + \lambda_2(B_2) = 0$$

This implies that $(\lambda_1 + \lambda_2) \perp \mu$.

b) Suppose $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$. Let $A, B \in \mathcal{F}$ be disjoint sets, $A \cup B = X$, and $\lambda_2(A) = 0$, $\mu(B) = 0$. Since $\lambda_1 \ll \mu$, we also have $\lambda_1(B) = 0$, so $\lambda_2 \perp \lambda_1$.

Problem 6: For a point x, define the Dirac measure δ_x to be

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

2

For a fixed set B define the Lebesgue measure restricted to B by $m_B(A) = m(A \cap B)$. Let $\mu = \delta_1 + m_{[2,4]}$ and $\nu = \delta_0 + m_{(1,2)}$. Show that $\nu \perp \mu$.

Solution. μ and ν are concentrated on disjoint sets, namely $1 \cup [2,4]$ and $0 \cup (1,2)$, respectively, so they are mutually singular.