MPMA: Mixture Probabilistic Matrix Approximation for Collaborative Filtering

Chao Chen*, Dongsheng Li^t, Qin Lv*, JunChi Yan^{tç}, Stephen M. Chu^t, Li Shang**

*Tongji University, China

^t IBM Research, China

^S East China Normal University, China

* University of Colorado Boulder, USA

Introduction

☐ Matrix approximation based collaborative filtering

- Better recommendation accuracy
- High computation complexity: O(rMN) per iteration
- Effectively estimate overall structures
- Poorly detect strong local associations

$$\widehat{M} = \underset{X=UV'}{\operatorname{argmin}} \|M - UV'\|$$

Introduction

□ Challenge

How to utilize both global and local information

□ Intuition

- a) Standard low-rank model *ignoring local associations*
- b) Clustering-based model *ignoring global structure*
- c) Proposed MPMA model automatically fuse global and local information

$$(a) \quad \hat{R}_{ij} = \tilde{U}_{i} \cdot \tilde{V}_{.j}$$

$$(b) \quad \hat{R}_{ij} = U^{(1)}_{i} \cdot V^{(1)}_{.j}$$

$$(c) \quad \hat{R}_{ij} = \pi_{1} \tilde{U}_{i} \cdot V^{(1)}_{.j} + \pi_{2} \tilde{U}_{i} \cdot \tilde{V}_{.j} + \pi_{3} U^{(1)}_{i} \cdot \tilde{V}_{.j}$$

$$(b) \quad \hat{R}_{ij} = U^{(1)}_{i} \cdot V^{(1)}_{.j}$$

$$(c) \quad \hat{R}_{ij} = \pi_{1} \tilde{U}_{i} \cdot V^{(1)}_{.j} + \pi_{2} \tilde{U}_{i} \cdot \tilde{V}_{.j} + \pi_{3} U^{(1)}_{i} \cdot \tilde{V}_{.j}$$

Outline

■ Introduction ☐ MPMA Design Problem Formulation ■ Efficient Pipeline-based Learning Algorithm **☐** Recommendation Prediction **☐** Performance Analysis **☐** Sensitivity Analysis **☐** Performance Comparison □ Conclusion

MPMA Design – Problem Formulation

■ Mixture Model

- 1. $N\left(R_{ij}\middle|\widetilde{U}_{i}.V_{\cdot j}^{(s)},\sigma_{1}^{2}\right)$
- 2. $N(R_{ij}|\widetilde{U}_i.\widetilde{V}_{.j},\sigma_2^2)$
- 3. $N\left(R_{ij}\middle|U_{i\cdot}^{(t)}\tilde{V}_{\cdot j},\sigma_{3}^{2}\right)$

□ Loss Function

$$\ln p(\widetilde{U}, \widetilde{V}, U^{(1)}, ..., U^{(g)}, V^{(1)}, ..., V^{(f)} | R)$$

$$= \sum_{s=1}^{f} \sum_{t=1}^{g} \sum_{\rho(i)=s} \sum_{\rho(j)=t} \ln \{ I_{ij} (\pi_1 p(R_{ij}, \widetilde{U}, V^{(s)}) + \pi_2 p(R_{ij}, \widetilde{U}, \widetilde{V}) + \pi_3 p(R_{ij}, U^{(t)}, \widetilde{V}) \} + C$$

$$\zeta(\widetilde{U}, \widetilde{V}, U^{(1)}, \dots V^{(f)})
= ||I \otimes (R - \widetilde{U}\widetilde{V})|| + \lambda_1 ||\widetilde{U}|| + \lambda_2 ||\widetilde{V}||
+ \sum_{s \in [f]} \alpha_s ||I_U^{(s)} \otimes (R_U^{(s)} - \widetilde{U}^{(s)}V^{(s)})||
+ \sum_{t \in [g]} \beta_t ||I_V^{(t)} \otimes (R_V^{(t)} - U^{(s)}\widetilde{V}^{(s)})||
+ \sum_{s \in [f]} \lambda_3 ||V^{(s)}|| + \sum_{t \in [g]} \lambda_4 ||U^{(t)}||$$

MPMA Design – Problem Formulation

Transformation and Variants

$$\min \|I \otimes (R - \widetilde{U}\widetilde{V})\| + \lambda_1 \|\widetilde{U}\| + \lambda_2 \|\widetilde{V}\|$$

$$+ \sum_{s \in [f]} \alpha_s \|I_U^{(s)} \otimes (R_U^{(s)} - \widetilde{U}^{(s)}V^{(s)})\|$$

$$+ \sum_{s \in [f]} \beta_t \|I_V^{(t)} \otimes (R_V^{(t)} - U^{(s)}\widetilde{V}^{(s)})\|$$

$$+ \sum_{t \in [g]} \lambda_3 \|V^{(s)}\| + \sum_{t \in [g]} \lambda_4 \|U^{(t)}\|$$

i-MPMA: only local item features are applied

u-MPMA: only local user features

are applied

MPMA: both local item and user

features are applied

 $\min \|I \otimes (R - \widetilde{U}\widetilde{V})\| + \lambda_1 \|\widetilde{U}\| + \lambda_2 \|\widetilde{V}\|$ $+ \sum_{s \in [f]} \lambda_3 \|V^{(s)}\| + \sum_{t \in [g]} \lambda_4 \|U^{(t)}\|$

s.t.

 $\sum_{s \in [f]} \alpha_s \left\| I_U^{(s)} \otimes \left(R_U^{(s)} - \widetilde{U}^{(s)} V^{(s)} \right) \right\| \le \delta$ $\sum_{t \in [g]} \beta_t \left\| I_V^{(t)} \otimes \left(R_V^{(t)} - U^{(s)} \widetilde{V}^{(s)} \right) \right\| \le \varepsilon$

Minimizing the overall error, while guaranteeing the performance in each submatrices

MPMA Design – Efficient Pipeline-based Learning Algorithm

□ Challenge

High computational overheads

$$\begin{split} \frac{\partial \zeta}{\partial \widetilde{U}^{(s)}} &= \lambda_1 \widetilde{U}^{(s)} + I_U^{(s)} \otimes \left(\widetilde{U}^{(s)} \widetilde{V} - R_U^{(s)} \right) \widetilde{V}' \\ &+ \alpha_s I_U^{(s)} \otimes \left(\widetilde{U}^{(s)} V^{(s)} - R_U^{(s)} \right) \left[V^{(s)} \right]' \\ \frac{\partial \zeta}{\partial \widetilde{V}^{(s)}} &= \lambda_2 \widetilde{V}^{(t)} + I_V^{(t)} \otimes \left(\widetilde{U} \widetilde{V}^{(t)} - R_V^{(t)} \right)' \widetilde{U} \\ &+ \beta_t I_V^{(t)} \otimes \left(U^{(t)} \widetilde{V}^{(t)} - R_V^{(t)} \right)' U^{(t)} \end{split}$$

$$\frac{\partial \zeta}{\partial U^{(t)}} = \beta_t I_V^{(t)} \otimes \left(U^{(t)} \tilde{V}^{(t)} - R_V^{(t)} \right) \left[\tilde{V}^{(t)} \right]'
+ \lambda_3 U^{(t)}
\frac{\partial \zeta}{\partial V^{(s)}} = \alpha_s I_U^{(s)} \otimes \left(\tilde{U}^{(s)} V^{(s)} - R_U^{(s)} \right)' \tilde{U}^{(s)}
+ \lambda_4 V^{(s)}$$

☐ Pipeline-based Learning Algorithm

For 100 items, the running time is reduced from 200T to 101T (very closed to SVD's 100T)

S_1			
	S_2		
		S_3	
			S_4

Item Seq.					
1	Glo_1	Loc_1			
2		Glo_2	Loc_2		
3			Glo_3	Loc_3	
4				Glo_4	Loc_4
Time	\overline{T}_1	T_2	T_3	T_4	T_5

MPMA Design – Recommendation Prediction

□ Problem

Given global and local features $\widetilde{U},\widetilde{V},U^{(1)},\dots,U^{(g)},V^{(1)},\dots,V^{(f)}$, estimate (π_1,π_2,π_3) to produce prediction by

$$\widehat{R}_{ij} = \pi_1 \widetilde{U}_{i\cdot} V_{\cdot j}^{(s)} + \pi_2 \widetilde{U}_{i\cdot} \widetilde{V}_{\cdot j} + \pi_3 U_{i\cdot}^{(t)} \widetilde{V}_{\cdot j}$$

□ EM-based Estimation Method

E-Step

$$\gamma(Z_{ij}^{k}) = \frac{\pi_{k} N\left(R_{ij} \middle| R_{ij}^{(k)}, \sigma_{k}^{2}\right)}{\sum_{l \in [1,3]} \pi_{l} N\left(R_{ij} \middle| R_{ij}^{(l)}, \sigma_{l}^{2}\right)}$$

$$R_{ij}^{(1)} = \widetilde{U}_{i}.V_{\cdot j}^{(s)}$$

$$R_{ij}^{(2)} = \widetilde{U}_{i}.\widetilde{V}_{\cdot j}$$

$$R_{ij}^{(3)} = U_{i}^{(t)}\widetilde{V}_{\cdot j}$$

M-Step

$$\sigma_k^2 = \frac{\sum_{ij} \gamma(Z_{ij}^k) \left(R_{ij} - R_{ij}^{(k)}\right)^2}{N_k}$$

$$\pi_k = \frac{N_k}{N}$$

$$N_k = \sum_{ij} \gamma(Z_{ij}^k)$$

$$N = \sum_k N_k$$

Outline

■ Introduction ☐ MPMA Design ☐ Problem Formulation ☐ Efficient Pipeline-based Learning Algorithm **☐** Recommendation Prediction **☐** Performance Analysis **☐** Sensitivity Analysis **☐** Performance Comparison □ Conclusion

Empirical Analysis – Experimental Setup

	MovieLens 1M	MovieLens 10M	Netflix
#users	6,040	69,878	480,189
#items	3,706	10,677	17,770
#ratings	10 ⁶	10 ⁷	108

Benchmark datasets

☐ Sensitivity analysis

- 1. Effect of the latent factor
- 2. Effect of the clustering

☐ Comparison to state-of-the-art methods

- 1. Recommendation accuracy
- 2. Computation efficiency

Sensitivity Analysis –Latent Factor

Sensitivity Analysis – Clustering

Performance Comparison(1)

Recommendation Accuracy

	MovieLens 10M	Netflix
NMF	0.8832 ± 0.0007	0.9396 ± 0.0002
RSVD	0.8253 ± 0.0009	0.8534 ± 0.0001
BPMF	0.8195 ± 0.0006	0.8420 ± 0.0003
APG	0.8098 ± 0.0005	0.8476 ± 0.0028
GSMF	0.8012 ± 0.0011	0.8420 ± 0.0006
MPMA	0.7712 ± 0.0002	0.8139 ± 0.0003

Performance Comparison (2)

Computation Efficiency

Outline

☐ Introduction ☐ MPMA Design □ Problem Formulation ☐ Efficient Pipeline-based Learning Algorithm **☐** Recommendation Prediction **☐** Performance Analysis **☐** Sensitivity Analysis **☐** Performance Comparison □ Conclusion

Conclusion

- ☐ MPMA Mixture Probabilistic Matrix Approximation
 - Mixture probabilistic model
 - Efficient pipeline-based learning algorithm
 - EM-based recommendation prediction
- ☐ Empirical analysis on three benchmark datasets
 - Sensitivity analysis
 - Improvement in accuracy with good efficiency