

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Introdução a arquitetura de computadores; conceituação e histórico.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Principio de Equivalência de Hardware e Software:

"Qualquer coisa que possa ser feita com software pode ser feita com hardware, e qualquer coisa que possa ser feita com hardware também pode ser feita com software"*

No nível mais básico, um computador é um disposto que consiste de três partes:

- 1. Um processador para interpretar e executar programas
- 2. Uma memória para armazenar dados e instruções
- 3. Um mecanismo para transferir dados de e para o mundo externo

O cérebro do estudante é o processador, as anotações que estão sendo feitas representam a memoria e a caneta usada para tomar notas é o mecanismo de E/S (entrada / saída).

* O que este principio não trata é a velocidade com a qual tarefas equivalentes são realizadas. Implementações em hardware são sempre mais rápidas.

Padronização: 1 Byte = 8 bits

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Prefixos comuns associados com arquitetura e organização de computadores

Pref.	Símb.	Potência de 10	Potência de 2	Pref.	Símb.	Potência de 10	Potência de 2
Kilo	K	$1 \text{ mil} = 10^3$	$2^{10} = 1024$	Mili	m	1 milésimo = 10 ⁻³	2-10
Mega	M	1 milhão = 10 ⁶	220	Micro	m	1 milionésimo = 10 ⁻⁶	2^{-20}
Giga	G	1 bilhão = 10 ⁹	230	Nano	n	1 bilionésimo = 10 ⁻⁹	2^{-30}
Tera	T	$1 \text{ trilhão} = 10^{12}$	240	Pico	р	1 trilionésimo = 10^{-12}	2^{-40}
Peta	P	$1 \text{ quadrilhão} = 10^{15}$	250	Femto	f	$1 \text{ quadrilion\'esimo} = 10^{-15}$	2^{-50}
Exa	E	$1 \; quintillhão = 10^{18}$	2 ⁶⁰	Atto	a	$1 \text{ quintilion\'esimo} = 10^{-18}$	2^{-60}
Zetta	Z	1 sextilhão = 10 ²¹	270	Zepto	Z	1 sextilionésimo = 10^{-21}	2^{-70}
Yotta	Υ	1 setilhão = 10 ²⁴	280	Yocto	У	1 setilionésimo = 10 ⁻²⁴	2-80

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Parâmetros elétricos:

Frequência é uma grandeza que indica o número de eventos em determinado período de tempo (ciclos, voltas, oscilações etc).

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

História e evolução dos Computadores:

Geração Zero (1642 - 1945) – Mecânicos

Primeira Geração (1945 - 1953) — Válvulas

Segunda Geração (1954 - 1965) — Transistores

Terceira Geração (1965 - 1980) — Circuitos Integrados

Quarta Geração (1980 – até hoje) – Circuitos Integrados VLSI (Very-large-scale integration)

Quinta Geração (Visão do Futuro) – Uso de Inteligência Artificial

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Geração Zero (1642 - 1945) - Mecânicos

Máquina de Calcular de Pascal (1642)

O francês Blaise Pascal construiu a primeira calculadora que efetivamente funcionava. Usando o princípio de engrenagens dentadas acionadas por alavancas efetuava soma e subtração com oito algarismos. Denominada de Pascaline.

Roda de Leibnitz (1672)

O alemão Gottfried von Leibniz construiu outra máquina mecânica capaz de realizar as quatro operações básicas (soma, subtração, divisão e multiplicação). Sendo considerado o pai das calculadoras de bolso

Cartões Perfurados para tecelagem (1801)

O francês, Joseph Marie Jacquard, introduziu, o conceito de armazenamento de informações em placas perfuradas, não para o processamento de dados, mas sim para a tecelagem. Uma das primeiras máquinas programáveis.

Máquina Analítica (1833)

Construída por Charles Baddage, a máquina analítica tinha quatro componentes: a memória, a unidade de computação, a unidade de entrada e de saída. Podia executar diferentes sequências de cálculos.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Pascaline de 8 dígitos

Máquina Analítica

Roda de Leibnitz

Cartões Perfurados para tecelagem

Primeira Geração (1945 - 1953) - Válvulas

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

John Ambrose Fleming - 1904

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Máquina de von Neumann

Memória: 4096 palavras de 40 bits (2 instruções de 20 bits ou um inteiro)

Instrução: 8 bits para indicar o tipo, 12 tipos para endereçar a memória

Acumulador: registrador especial de 40 bits

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Mark I

Em 1944 Dr. Howard Aiken da Universidade de Harvard em parceria com a IBM e a Marinha Norte-Americana construí-o o *Automatic Sequence Controlled Calculator* (ASCC) denominado MARK I. Com cerca de 765.000 componentes entre reles, eixos de rotação e embreagens. O barulho do computador em funcionamento, se assemelhava a várias pessoas tricotando dentro de uma sala. Ele foi o primeiro computador eletromecânico e realizava somas em menos de 1 segundo e multiplicações em 6 segundos

Descrição detalhada:

Comprimento	17m
Altura	2m
Profundidade	0,6m
Peso	70t
Fios	800km
Relés	3.500
Contatos	35.000
Interruptores	1.464
Contatores	2.225
Consumo	-

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

ENIAC

Decorrente da segunda guerra mundial. Os britânicos criaram o Colossus para decifrar os códigos nazistas e os americanos ENIAC (*Eletronic Numerical Integrator and Calculator*), primeiro computador eletrônico desenvolvido na Universidade da Pensilvânia (John Mauchly & John Presper Eckert). Ele utilizava válvulas eletrônicas e os números eram manipulados na forma decimal. Apesar da alta velocidade para a época (1000 vezes mais rápido que o Mark I), era extremamente difícil mudar as instruções contidas dentro do computador, pois a programação era feita por meio de válvulas e fios que eram trocados de posição de acordo com o que se desejava. Outro inconveniente era que algumas válvulas queimavam em média a cada 5 minutos.

Descrição detalhada:

Válvulas	17.468
Cristais de Diodo	1.500
Relés	70.000
Resistores	10.000
pontos de solda	500.000
Peso	30t
Altura	5,5m
Comprimento	2,5m
Área ocupada	140m²
Consumo	150kw

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

EDVAC

O EDVAC (*Electronic Discrete Variable Computer*), apesar de ser mais moderno, não diminuiu de tamanho e ocupava 100% do espaço que o ENIAC ficava. Ele era dotado de cem vezes mais memória interna que o ENIAC – um grande salto para a época. As instruções já não eram passadas ao computador por meios de fios ou válvulas: elas ficavam em um dispositivo eletrônico denominado linha de retardo. Esse dispositivo era um tubo contendo vários cristais que refletiam pulsos eletrônicos para frente e para trás muito lentamente. Um outro avanço foi o abandono do modelo decimal e a utilização dos códigos binários, reduzindo drasticamente o número de válvulas. Seus criadores, Mauchly e Eckert, começaram a trabalhar neste modelo logo após o lançamento do ENIAC.

Descrição detalhada:

Área ocupada	45,5 m
Peso	7.800 kg
Válvulas	6.000
Diodos	12.000
Consumo	56 kW/h

Segunda Geração (1954 - 1965) — Transistores

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

O Transistor foi inventado em 1948 no Bell Labs por John Bardeen, Walter Brattain e William Shockle os quais receberam o prêmio Nobel de física em 1956.

Com o uso dos transistores os computadores ficaram menores, e reduziu-se o consumo energético e o número de falhas decorrente da dissipação de calor.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

UNIVAC (1952)

John Mauchly e Presper Eckert proprietários da Filadéfia a Remington Rand criaram o UNIVAC (*Universal Automatic Computer*), um computador destinado ao uso comercial. Era uma máquina eletrônica de programa armazenado que recebia instruções de uma fita magnética de alta velocidade ao invés dos cartões perfurados. O UNIVAC foi utilizado para prever os resultados da eleição presidencial de 1952 nos EUA.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

IBM 650 (1953)

Foi o primeiro computador a ser produzido em massa. Até o ano de 1962 foram produzidos 2000 unidades. Em 1969, encerrou-se a produção e suporte.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

TRADIC (1955)

Em 1955, JH Felker da Bell Laboratories lança o primeiro computador totalmente transistorizado para a Força Aérea Americana, o TRADIC (*TRAnsistor Digital Computer*), este possuía cerca de 800 transistores, o que permitia trabalhar com menos de 100 watts de consumo de energia

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Terceira Geração (1965 - 1980) — Circuitos Integrados

Altair 8800 (1975)

O Altair 8800 foi baseado no Intel 8080. A linguagem do Altair era o BASIC (criada por Bill Gates e Paul Allen). Sendo utilizado pela 1° vez o termo "computador pessoal".

Apple I (1976)

Steve Wozniak projetou o Apple I e utilizou o processador 6800 da Motorola ou invés do 8080 da Intel (devido ao custo).

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Quarta Geração (1980 – até hoje)

SSI (*Small Scale Integration*) – Integração em pequena escala: São os CI com menos componentes. Podem dispor de até 30 dispositivos por pastilha (chip).

MSI (*Medium Scale Integration*) – Integração em média escala: Corresponde aos CI com várias centenas de componentes, podendo possuir de 30 a 1000 dispositivos por pastilha (estes circuitos incluem descodificadores, contadores, etc.).

LSI (*Large Scale Integration*) – Integração em grande escala: Contém milhares de componentes podendo possuir de 1000 até 100 000 dispositivos por pastilha (estes circuitos normalmente efetuam funções lógicas complexas, tais como toda a parte aritmética duma calculadora, um relógio digital, etc.).

VLSI (*Very Large Scale Integration*) – Integração em muito larga escala: É o grupo de CI com um número de componentes compreendido entre 100 000 e 10 milhões de dispositivos por pastilha (são utilizados na implementação de microprocessadores).

ULSI (*Ultra Large Scale Integration*) – Integração em escala ultra larga: É o grupo de CI com mais de 10 milhões de dispositivos por pastilha.

A IBM introduziu seu PC (*Personal Computer*), seguindo a tendência do crescente mercado de computador pessoal. Ele possuía clock de 4.77 MHz, microprocessador Intel 8088 e usava o sistema operacional MS-DOS da Microsoft.

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Quinta Geração (Visão do Futuro) – Inteligência Artificial

Inteligência Artificial

Reconhecimento de voz

Sistemas inteligentes

Redes neuronais

Robótica

Redes de Alta Velocidade

Escala de Integração ULSI (*Ultra Large Scale Integration*)

Computação Distribuída

Computação nas Nuvens (Cloud)

Computação em Grade ou em Rede

Computação Móvel

Computação Ubíqua (presença direta das tecnologias na vida das pessoas)

Realidade Aumentada

Componentes eletrônicos de um computador

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 02

Bobina: barrar as variações de energia vindas da rede elétrica

Capacitor: armazena energia quando a corrente passa por ele e a libera quando ela é necessária

Resistor: limita ou regula a corrente elétrica, impedindo que ela flua de forma incorreta

Transistor: amplifica a tensão ou a corrente

Diodo: permite que a corrente elétrica só percorra em uma única direção

Transformador: reduzir ou aumentar a tensão (voltagem)

Cristal: controla a frequência

Fusível: proteção

