- 1. Goal: Demonstrate and characterize GPU power variations in ML parallel workloads. This could enable power-aware time/space-sharing and placement performance optimizations
 - a. **Profiling**: Measurable metrics that affect variability at device level
 - i. Jetson:
 - a) SGEMM metrics with/without DVFS. Measurements with fine-grained frequency control is a good approximation to understand range of variations
 - b) Fine-grained sensor measurements contrasted with nyprof reporting
 - ii. V100:
 - a) Testbench: Automated toolchain install, runs and reporting
 - b) Concurrent SGEMM runs across 4xV100 (space locality), Multiple jobs on a single GPU (to represent time locality). Extend this to future measurements
 - iii. Obtain power, frequency, temperature metrics across all GPUs using nvprof
 - b. **Characterization**: Create stressmark suite to demonstrate variability by picking workloads that span applications/bottlenecks representing realistic usage in space-sharing systems
 - i. SGEMM/DGEMM
 - ii. RESNET (Language)
 - iii. BERT (Vision)
 - iv. DLRM (Recommender systems)
 - c. **Mitigation**: Decided to defer to future work post project-proposal.
- 2. Challenges
 - a. C4130 nodes require force reboot after 30m or so with CUDA installation. This seems to be a known issue, but the provided workaround isn't working yet. This limits long running simulations Mailing list link
 - b. SGEMM kernel fails for matrix dimensions larger than 16k x 16k
 - c. More than 4 GPU variation study likely not possible. Even if we get two nodes of c4130, the relative placement in cluster is unknown to have reproducible effects
- 3. Timeline

Week starting	Goals
April 10	 Co-locate cross combinations of the following from the <u>Nvidia DL repository</u> with SGEMM (base vs test) a) RESNET (Vision) b) BERT (Language)
April 17	 c) DLRM (Recommender) Collect metrics for same scenarios with GPU-boost disabled Collate database with metrics captured across all runs include 1-4 GPU combinations Formalize variation using model properties and trends/anomalies from profiling
April 24	Analysis, documentation, and presentation

- 4. Resource request from course staff
 - a. We have c4130 node reserved until the 20th. It might be helpful if we can get an extension on this for a week or 2 nodes of c4130.
 - b. Guidance on analysis plan since the data collection part feels open ended