

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

Отчёт по лабораторной работе №1

Прямые методы решения систем линейных алгебраических уравнений

Студент:	Φ H2-52B		А.И. Токарев	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
			Ю.А. Сафронов	
		(Подпись, дата)	(И. О. Фамилия)	
_				
Проверил:				
		(Подпись, дата)	(И. О. Фамилия)	

Оглавление

1.	Краткое описание алгоритмов		3
	1.1. Метод Гаусса		3
	1.2. Метод QR -разложения		4
2.	Исходные данные	•	6
3.	Результаты расчетов		7
4.	Анализ результатов		9
5.	Контрольные вопросы	•	10

1. Краткое описание алгоритмов

Дана система линейных алгебраических уравнений:

$$\sum_{i=1}^{n} a_{ij} x_i = f_i, \quad i = \overline{1, n}. \tag{1}$$

1.1. Метод Гаусса

Сначала система (1) приводится прямым ходом к верхнетреугольному виду:

$$\begin{cases} a_{11}^{(0)}x_1 + a_{12}^{(0)}x_2 + a_{13}^{(0)}x_3 + \dots + a_{1n}^{(0)}x_n = f_1^{(0)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = f_2^{(1)}, \\ \dots & \dots & \dots \\ a_{n-1,n-1}^{(n-2)}x_{n-1} + a_{n-1,n}^{(n-2)}x_n = f_{n-1}^{(n-2)}, \\ a_{nn}^{(n-1)}x_n = f_n^{(n-1)}. \end{cases}$$

Коэффициенты $a_{ij}^{(k)}$ и $f_i^{(k)}$ вычисляются следующим образом

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - c_{ik} a_{kj}^{(k-1)}, \quad f_i^{(k)} = f_i^{(k-1)} - c_{ik} f_k^{(k-1)},$$

где

$$c_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}, \quad a_{ij}^{(0)} = a_{ij}, \quad f_i^{(0)} = f_i, \quad k = \overline{1, n-1}, \quad j = \overline{k, n}, \quad i = \overline{k+1, n}.$$

Далее производится обратный ход метода, во время которого определяются неизвестные x_i , начиная с i=n:

$$x_i = \left(f_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j\right) / a_{ii}^{(i-1)}, \quad i = \overline{n, 1}.$$

Общее количество делений и умножений в методе Гаусса: $\frac{1}{3}n(n^2+3n-1)\sim \frac{n^3}{3}$.

1.2. Метод \it{QR} -разложения

Метод QR-разложения основан на представлении матрицы системы в виде произведения ортогональной матрицы Q и верхней треугольной матрицы R. Один из способов получения такого разложения — метод вращений.

Сначала неизвестное x_1 исключается из всех уравнений, кроме первого. Это производится при помощи следующего алгоритма. Для исключения x_1 из второго уравнения вычисляются коэффициенты

$$c_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \quad s_{12} = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}},$$

затем первое уравнение системы заменяется линейной комбинацией первого и второго уравнений с коэффициентами c_{12} и s_{12} , а второе уравнение — линейной комбинацией тех же уравнений, но уже с коэффициентами $(-s_{12})$ и c_{12} . Так как $-s_{12}a_{11}+c_{12}a_{21}=0$, коэффициент во втором уравнении при x_1 обратится в нуль.

В итоге исходная система будет приведена к виду:

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + a_{13}^{(1)}x_3 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\ a_{31}^{(1)}x_1 + a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + \dots + a_{3n}^{(1)}x_n = b_3^{(1)}, \\ \dots & \dots & \dots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + a_{n3}^{(1)}x_3 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}. \end{cases}$$

Это преобразование эквивалентно умножению матрицы системы уравнений и вектора правой части слева на ортогональную матрицу T_{12} , имеющую вид

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Так как коэффициенты c_{12} и s_{12} подобраны таким образом, что $c_{12}^2+s_{12}^2=1$, то можно считать, что

$$c_{12} = \cos \varphi$$
 и $s_{12} = \sin \varphi$.

Следовательно, матрица T_{12} — это матрица поворота на угол φ по часовой стрелке в плоскости (x_1, x_2) .

Для исключения x_1 из третьего уравнения, используются коэффициенты c_{13} и s_{13} :

$$c_{13} = \frac{a_{11}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + a_{31}^{(1)})^2}}, \ s_{13} = \frac{a_{31}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + a_{31}^{(1)})^2}},$$

Далее первое и третье уравнение заменяются своими линейными комбинациями. Эта операция равносильна умножению слева матрицы $A^{(1)}=T_{12}A$ и вектора правой части $b^{(1)}=T_{12}b$ на ортогональную матрицу, имеющую вид

$$T_{13} = \begin{pmatrix} c_{13} & 0 & s_{13} & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ -s_{13} & 0 & c_{13} & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Аналогично неизвестная x_1 исключается из остальных уравнений, затем x_2 – из всех уравнений, кроме первого и второго, при этом используются матрицы $T_{23}, T_{24}, \ldots, T_{2n}$ и так далее. Процесс продолжается, пока система не будет приведена к верхней треугольной форме. То есть $T = T_{n-1,n} \cdot T_{24} \cdot T_{23} \cdot T_{1n} \cdot \ldots \cdot T_{13} \cdot T_{12}$. Причём, R = TA, где R – полученная верхнетреугольная матрица и $Q = T^{-1} = T^T$.

2. Исходные данные

Даны две СЛАУ, которые имеют вид:

$$A = \begin{pmatrix} 28.8590 & -0.0080 & 2.4060 & 19.2400 \\ 14.4360 & -0.0010 & 1.2030 & 9.6240 \\ 120.2040 & -0.0320 & 10.0240 & 80.1440 \\ -57.7140 & 0.0160 & -4.8120 & -38.4780 \end{pmatrix}, \quad f_A = \begin{pmatrix} 30.4590 \\ 18.2480 \\ 128.1560 \\ -60.9080 \end{pmatrix},$$

$$B = \begin{pmatrix} 117.2000 & 1.0500 & -8.9700 & 0.7500 \\ 4.2600 & 185.8000 & 0.1300 & -8.8600 \\ -3.8100 & 5.2300 & -189.0000 & -4.8800 \\ 5.8200 & 3.8700 & -2.4700 & 81.4000 \end{pmatrix}, \quad f_B = \begin{pmatrix} 455.3400 \\ -924.0400 \\ -1554.4600 \\ 59.7500 \end{pmatrix}$$

3. Результаты расчетов

Результаты для А:

- 1. Точность double
 - а) Метод Гаусса

$$x^* = (1.000, 1000.000, -20.000, 3.000)^T, \quad ||Ax^* - b|| = 5.75 \cdot 10^{-14}.$$

б) Метод QR

$$x^* = (1.000, 1000.000, -20.000, 3.000)^T, \quad ||Ax^* - b|| = 9.11 \cdot 10^{-14}.$$

- 2. Точность float
 - а) Метод Гаусса

$$x^* = (1.487, 1000.238, -18.078, 2.029)^T, \quad ||Ax^* - b|| = 3.303 \cdot 10^{-5}.$$

б) Метод QR

$$x^* = (1.313, 1000.154, -18.766, 2.377)^T, \quad ||Ax^* - b|| = 7.864 \cdot 10^{-6}.$$

Изменим вектор b на величину $\delta = 0.01$. Тогда для точности double методом Гаусса

$$b^* = (30.4690, 18.2580, 128.1660, -60.9180)^T,$$

$$x^* = (-1278.8167, 378.425, -5019.792, 2547.633), \quad ||Ax^* - b^*|| = 5.15 \cdot 10^{-11}.$$

Для точности float методом Гаусса

$$b^* = (30.4690, 18.2580, 128.1660, -60.9180)^T,$$

$$x^* = (-1006.303, 513.317, -3939.908, 2003.767), \quad ||Ax^* - b^*|| = 0.016.$$

Малое изменение правой части ведет к большому изменению решения, следовательно, матрица плохо обусловлена. Точный расчет числа обусловленности:

$$cond_1A = 1.22 \cdot 10^8$$
, $cond_{\infty}A = 1.09 \cdot 10^8$, $cond_{max}A = 5.63 \cdot 10^8$.

Оценка числа обусловленности снизу:

$$cond_A = 42319.177.$$

Результаты для В:

1. Точность double

а) Метод Гаусса

$$x^* = (3.000, -5.000, 8.000, 1.000)^T, \quad ||Ax^* - b|| = 2.163 \cdot 10^{-12}.$$

б) Метод QR

$$x^* = (2.999, -5.000, 8.000, 0.999)^T, \quad ||Ax^* - b|| = 3.019 \cdot 10^{-11}.$$

- 2. Точность float
 - а) Метод Гаусса

$$x^* = (3.000, -4.999, 8.000, 1.000)^T, \quad ||Ax^* - b|| = 0.001.$$

б) Метод QR

$$x^* = (3.000, -5.000, 8.000, 0.999)^T, \quad ||Ax^* - b|| = 0.010.$$

Изменим вектор b на величину $\delta = 0.01$. Тогда для точности double методом Гаусса

$$b^* = (455.3500, -924.0500, -1554.4700, 59.7500)^T,$$

$$x^* = (2.999, -5.000, 8.000, 0.999), \quad ||Ax^* - b^*|| = 2.24 \cdot 10^{-12}.$$

Для точности float методом Гаусса

$$b^* = (455.3500, -924.0500, -1554.4700, 59.7500)^T,$$

$$x^* = (2.999, -5.000, 8.000, 0.999), \quad ||Ax^* - b^*|| = 0.001.$$

Малое изменение правой части ведет к малому изменению решения, следовательно, матрица хорошо обусловлена. Точный расчет числа обусловленности:

$$cond_1 A = 2.64$$
, $cond_{\infty} A = 2.64$, $cond_{max} A = 37.05$.

Оценка числа обусловленности снизу:

$$cond_A = 1.40$$

4. Анализ результатов

Использование типа double позволяет получить более точные решения, нежели использование float. Если матрица плохо обусловлена, то решение сильно зависит от ошибки в правой части: любое отклонение приводит к сильному изменению решения. Метод Гаусса считает точнее, чем QR, так как требуется меньшее число арифметических операций для его реализации.

5. Контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Метод Гаусса применим тогда и только тогда, когда все угловые миноры матрицы \mathcal{A} ненулевые, что равносильно условию $a_{ii}^{(i-1)} \neq 0$ для всех i=1,2,...,n, где $a_{ii}^{(i-1)}$ - элементы матрицы на главной диагонали после приведения ее к ступенчатому виду. Соотвественно, в противном случае метод Гаусса без выбора главного элемента в ходе работы может привести к делению на ноль, при этом матрица может быть и невырождена. Метод Гаусса с выбором главного элемента можно применять для любой невырожденной матрицы. Если матрица будет вырожденной, то в какой-то момент главный элемент будет равен нулю, что недопустимо.

2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Докажем от противного. Допустим, что возможна такая ситуация, когда при условии $\det \mathcal{A} \neq 0$, существует такой шаг k, для которого, соотвественно, в k-ом столбце все элементы не выше главной диагонали нулевые (на примере матрицы $n \times n$):

$$\mathcal{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,k-1} & a_{1k} & \dots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{2,k-1} & a_{2k} & \dots & a_{2,n-1} & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{k-1,k-1} & a_{k-1,k} & \dots & a_{k,n-1} & a_{kn} \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{k+1,n-1} & a_{k+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Определитель ступенчатой матрицы равен произведению элементов ее главной диагонали:

$$\det \mathcal{A} = a_{11} * a_{22} * \dots * a_{k-1,k-1} * 0 * a_{k+1,k+1} * \dots * a_{nn}, \quad a_{kk} = 0.$$

Противречие. Следовательно, либо матрица вырождена, либо существует ненулевой элемент не выше главной диагонали.

3. В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неизвестных. Предложите алгоритм, позволяющий восстановить первоначальный порядок неизвестных.

Данную проблему можно решить вводом косвенной индексации. Вместо $\mathcal{A}[i][j]$ использовать $\mathcal{A}[row(i)][col(j)]$, где row и col — массивы (по сути своей являющиеся подстановками), в которых, например, для перемены местами двух строк или столбцов нужно поменять местами соотвествующие индексы.

4. Оцените количество арифметических операций, требуемых для QRразложения произвольной матрицы A размера $n \times n$.

Внешний цикл $i=\overline{1,n-1}$, внутренний цикл $j=\overline{i+1,n}$. Каждый виток цикла j считаются коэффициенты c_{ij},s_{ij} - 4 операции (так то их 6, но знаменатель мы считаем 1 раз). Далее для замены строк на линейные комбинации понадобится еще один цикл $k=\overline{1,n}$ по 4 операции. Отсюда получение матрицы R занимает $4n\cdot\frac{n(n-1)}{2}+4\frac{n(n-1)}{2}=2(n-1)n(n+1)$. Далее для нахождения матрицы Q воспользуемся соотношением $R\cdot Q=A$, или $Q=A\cdot R^{-1}$. Найти обратную матрицу для верхнетреугольной можно за $\frac{n(n-\frac{1}{2})(n-1)}{3}$ операций. Чтобы перемножить матрицы нужно n^3 операций. В итоге $2(n-1)n(n+1)+\frac{n(n-\frac{1}{2})(n-1)}{3}+n^3\sim\frac{10}{3}n^3$.

5. Что такое число обусловленности и что оно характеризует? Имеется ли связь между обусловленностью и величиной определителя матрицы? Как влияет выбор нормы матрицы на оценку числа обусловленности?

Числом обусловленности называют величину $condA = \|A^{-1}\| \cdot \|A\|$. Стоит отметить, что $condA = condA^{-1}$. Эта величина характеризует влияние изменения значений правой части на решение системы; отклонение полученного решения от исходного.

Между числом обусловленности и определителем матрицы нет никакой связи, потому что умножение матрицы на число $\lambda>0$ меняет определитель, но не меняет число обусловленности, так как $\det A^{-1}=\frac{1}{\det A}.$

- 6. Как упрощается оценка обусловленности, если матрица является:
 - а) диагональной;
 - б) симметричной;
 - в)ортогональной;
 - г) положительно определённой;
 - д) треугольной?
 - а) $condA=rac{a_{max}}{a_{min}},$ где a_{max},a_{min} максимальный и минимальный элементы мат-

рицы;

- б) $condA = \frac{\lambda_{max}}{\lambda_{min}}$, где $\lambda_{max}, \lambda_{min}$ максимальный и минимальный собственные элементы матрицы;
- в) Для оценки нормы используют тот факт, что для ортогональной матрицы $A^{-1} = A^T$, тогда $condA = ||A||^2$. Кроме того, число обусловленности ортогональной матрицы равно единице:
- г) Собственные числа положительно определенной матрицы являются действительными положительными числами, поэтому в этом случае можно считать число обусловленности через собственные числа;
- д) $condA = \frac{a_{max}}{a_{min}},$ где a_{max}, a_{min} максимальный и минимальный элементы на диагонали матрицы.
- 7. Применимо ли понятие числа обусловленности к вырожденным матрицам?

Обусловленность оценивает близость матрицы A к вырожденной. Чем больше число обусловленности, тем ближе матрица к вырожденной. Если матрица A — вырожденная, то её число обусловленности стремится к бесконечности.

8. В каких случаях целесообразно использовать метод Гаусса, а в каких — методы, основанные на факторизации матрицы?

Метод Гаусса считает точнее и быстрее, так как требует меньше арифметических операций, но он проигрывает «на длинной дистанции», когда нужно решать одну задачу с различными правыми частями. Для алгоритмов факторизации можно единожды посчитать разложение, в то время как для алгоритма Гаусса придется все начинать сначала.

- 9. Как можно объединить в одну процедуру прямой и обратный ход метода Гаусса? В чём достоинства и недостатки такого подхода? Можно обнулять не все элементы ниже главной диагонали, а все элементы, кроме элементов главной диагонали. Достоинство: один цикл. Недостаток: приходится выполнять лишние арифметические операции.
- 10. Объясните, почему, говоря о векторах, норму $||x||_1$ часто называют октаэдрической, норму $||x||_2$ шаровой, а норму $||x||_\infty$ кубической. Потому что множестно $X = \{x : ||x|| < 1\}$, которое называют открытым единичным шаром (для замкнутого неравенство нестрогое), с соответствующей нормой приобретает форму соответствующей геометрической фигуры.