Saeed Hedayatian

Notes on Optimization on Smooth Manifolds

Notes on Optimization on Smooth Manifolds

Embedded submanifolds: first-order geometry

Euclidean space

Embedded submanifolds of Euclidean spaces

Smooth embedded submanifold

Tangent space

Topology of an embedded submanifold

Creating new manifolds

Smooth maps on embedded submanifolds

References

Embedded submanifolds: first-order geometry

In optimization on manifolds, we aim to solve problems of the form

$$\min_{x \in \mathcal{M}} f(x),$$

where \mathcal{M} is a smooth manifold and $f: \mathcal{M} \to \mathbb{R}$ is a smooth cost function. In this chapter, we will develop tools that would enable us to solve such problems. In particular, we need to formally define the notion of *smooth manifold* and *smooth function* on it. Furthermore, we will provide a notion of *differential* and *inner products* on such spaces. Defining these notions will enable us to generalize classic first-order optimization methods such as gradient descent to smooth manifolds, which are possibly non-linear.

In this chapter, we will

- have a quick review on Euclidean spaces and their properties,
- introduce the concept of (an embedded sub-) manifold,
- define smooth maps on these manifolds and extend the notion of differential to them,

Euclidean space

A **linear space** or a **vector space**, denoted by \mathcal{E} , is a set equipped with (and closed under) vector addition and scalar multiplication. Examples include \mathbb{R}^n , $\mathbb{R}^{n \times p}$, $\operatorname{Sym}(n)$, $\operatorname{Skew}(n)$, with the last two being the spaces of real symmetric matrices of size n and the space of real skew-symmetric matrices of size n, respectively.

A **basis** for \mathcal{E} is a maximally large set of (linearly) independent vectors e_1, \dots, e_n . Any vector $x \in \mathcal{E}$ can be expressed as a unique linear combination of the basis vectors: $x = a_1e_1 + \dots + a_ne_n$ with a_i s being real numbers.

Each basis induces a one-to-one mapping between \mathcal{E} and \mathbb{R}^n : we write $\mathcal{E} \equiv \mathbb{R}^n$. Moreover, \mathcal{E} inherits the usual **topology** of \mathbb{R}^n : we can define the **neighborhood** of $x \in \mathcal{E}$ to be an open subset of \mathcal{E} that contains x.

For two linear spaces \mathcal{E} , \mathcal{E}' of dimensions d, d' respectively, using the identification $\mathcal{E} \equiv \mathbb{R}^d$, $\mathcal{E} \equiv \mathbb{R}^{d'}$, a function $F: \mathcal{E} \to \mathcal{E}'$ is **smooth** if and only if it is smooth (infinitely differentiable) in the usual sense for a function from \mathbb{R}^d to $\mathbb{R}^{d'}$.

The **differential** of F at x is a linear map $DF(x): \mathcal{E} o \mathcal{E}'$ defined by

$$DF(x)[v] = \lim_{t o 0} rac{F(x+tv)-F(x)}{t} = rac{\mathrm{d}}{\mathrm{d}t}F(x+tv)igg|_{t=0}.$$

This defines the differential using its relation to the directional derivatives. We can alternatively define the differential to be the (unique) linear map that satisfies

$$\lim_{h o 0}rac{|F(x+h)-F(x)-DF(x)[h]|}{|h|}=0.$$

For a curve $c:\mathbb{R} o \mathcal{E}$, we write c'(t) to denote its velocity at t , $\frac{\mathrm{d}}{\mathrm{d}t}c(t)$.

We can also equip a linear space \mathcal{E} with an **inner product**, $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to \mathbb{R}$. Any linear space with an inner product is called a **Euclidean space**. Notice that the isomorphism between \mathcal{E} and \mathbb{R}^n induced by a particular basis also induces the standard inner product (and Euclidean norm) of \mathbb{R}^n into \mathcal{E} .

To wrap up, we can think of a Euclidean space \mathcal{E} (along with a fixed basis for it) as \mathbb{R}^n where we have standard notions of topology, inner product, norm, differential, etc.

Embedded submanifolds of Euclidean spaces

In this section, we will

- define what mean by an *embedded submanifold* of a linear space,
- what is the *tangent space* and how to find it for embedded submanifolds,
- define the *embedded topology*, which allows us to extend notions such as open/closed set and neighborhoods for embedded submanifolds, and
- show how to create some *new manifolds* from existing ones.

Smooth embedded submanifold

Let \mathcal{M} be a subset of a linear space \mathcal{E} . We say \mathcal{M} is a *(smooth)* embedded submanifold of \mathcal{E} if either of the following holds:

- 1. \mathcal{M} is an open subset of \mathcal{E} . In this case, we call \mathcal{M} an open submanifold. If $\mathcal{M} = \mathcal{E}$ then we also call it a linear manifold.
- 2. For a fixed integer $k\geqslant 1$ and for each $x\in\mathcal{M}$, there exists a neighborhood \mathcal{U} of x in \mathcal{E} and a smooth function $h:\mathcal{U}\to\mathbb{R}^k$ such that

(i) For every
$$y\in \mathcal{U}$$
, $h(y)=0$ if and only if $y\in \mathcal{M}$; and (ii) $\operatorname{rank} Dh(x)=k$.

Such a function h is called a **local defining function for** \mathcal{M} **at** x.

We call \mathcal{E} the embedding space or the ambient space of \mathcal{M} .

Tangent space

Let \mathcal{M} be a subset of \mathcal{E} . For all $x \in \mathcal{M}$ we define the **tangent space** to \mathcal{M} at x as

$$\mathrm{T}_x\mathcal{M}=\{c'(0)|c:I o\mathcal{M} ext{ is smooth around }0 ext{ and }c(0)=x\}.$$

Basically, a vector $v \in \mathcal{E}$ is in $T_x \mathcal{M}$ (is a **tangent vector**) if and only if there exists a smooth curve on \mathcal{M} passing through x with velocity v.

Notice that $T_x \mathcal{M} \subseteq \mathcal{E}$ is not necessarily a linear space. However, the following theorem which characterizes the tangent space of smooth manifolds shows that the tangent space of a smooth embedded submanifold at any point is indeed a linear space.

Characterization of $T_x\mathcal{M}$: Let \mathcal{M} be an embedded submanifold of \mathcal{E} . Consider a point x on \mathcal{M} . If \mathcal{M} is an open submanifold, then $T_x\mathcal{M}=\mathcal{E}$. Otherwise, $T_x\mathcal{M}=\ker Dh(x)$ with h being any local defining function of \mathcal{M} at x.

The above theorem implies that for any embedded submanifold \mathcal{M} , and for any point $x \in \mathcal{M}$, the set $\mathrm{T}_x \mathcal{M}$ is a linear subspace of \mathcal{E} of some fixed dimension $\dim \ker Dh(x) = \dim \mathcal{E} - \mathrm{rank}\ Dh(x) = \dim \mathcal{E} - k$. The dimension of $\mathrm{T}_x \mathcal{M}$ is called the **dimension of** \mathcal{M} denoted by $\dim \mathcal{M}$.

Topology of an embedded submanifold

A subset \mathcal{U} of \mathcal{M} is *open* (respectively, *closed*) in \mathcal{M} if \mathcal{U} is the intersection of \mathcal{M} with an open (respectively closed) subset of \mathcal{E} . This is called the **subspace topology**.

A **neighborhood** of $x \in \mathcal{M}$ is an open subset of \mathcal{M} that contains x. A neighborhood of a subset of \mathcal{M} is an open set of \mathcal{M} that contains that subset.

Creating new manifolds

- Let \mathcal{M} be an embedded submanifold of \mathcal{E} . Any open subset of \mathcal{M} is also an embedded submanifold of \mathcal{E} with same dimension and tangent spaces as \mathcal{M} .
- Let \mathcal{M} , \mathcal{M}' be embedded submanifolds of \mathcal{E} , \mathcal{E}' . Then their Cartesian product, $\mathcal{M} \times \mathcal{M}'$ is an embedded submanifold of $\mathcal{E} \times \mathcal{E}'$ of dimension $\dim \mathcal{M} + \dim \mathcal{M}'$ such that

$$\mathrm{T}_{(x,x')}\mathcal{M} imes \mathcal{M}'=\mathrm{T}_x\mathcal{M} imes \mathrm{T}_{x'}\mathcal{M}'.$$

Smooth maps on embedded submanifolds

References

An introduction to optimization on smooth manifolds by Nicolas Boumal

(By: Saeed Hedayatian)