TP 01 - Trabalho Prático 01

Algoritmos I

Entrega: 21/01/2021

1 Objetivos do trabalho

O objetivo deste trabalho é modelar o problema computacional descrito a seguir utilizando uma estrutura de dados que permita resolvê-lo de forma eficiente com os algoritmos estudados nesta disciplina.

Serão fornecidos alguns casos de teste bem como a resposta esperada para que o aluno possa verificar a corretude de seu algoritmo. Não obstante, recomenda-se que o aluno crie casos de teste adicionais a fim de validar sua própria implementação.

O código-fonte da solução e uma documentação sucinta (relatório contendo não mais do que 5 páginas) deverão ser submetidos via moodle até a data limite de 21/01/2021. A especificação do conteúdo do relatório e linguagens de programação aceitas serão detalhadas nas seções subsequentes.

2 Definição do problema

Finalmente, após meses de espera, o mundo começa a ver a aprovação nos testes das primeiras vacinas de imunização em relação ao vírus Sars-CoV-2 (coronavírus), causador da doença covid-19.

A Secretaria de Saúde de uma capital brasileira realizou uma grande compra de vacinas de um fabricante. Estas vacinas devem ser mantidas e transportadas a uma temperatura máxima de -60 °C, sob o risco de perder sua eficácia. O fabricante permite a retirada das vacinas em seus centros de distribuição (CD), os quais possuem super refrigeradores e mantêm as vacinas à temperatura de -90 °C. Ao retirar as vacinas de um centro de distribuição, as mesmas devem ser transportadas em embalagens dentro de uma grande caixa térmica com nitrogênio até os postos de vacinação.

Como a Secretaria de Saúde dessa cidade já compra outras vacinas do mesmo fabricante, já existe uma logística de transporte com uma quantidade fixa de caminhões saindo de cada centro de distribuição e rotas já definidas ligando estes centros de distribuição a diversos postos de vacinação espalhados pela cidade.

Define-se **rota** como sendo um caminho, com direção definida, iniciando em um centro de distribuição e passando por um ou mais postos de vacinação, uma única vez, até chegar a um posto final do qual não é possível alcançar um outro posto, ou a um posto que foi visitado anteriormente nesse mesmo caminho.

Todo dia pela manhã, os caminhões são carregados com materiais em cada centro de distribuição, e partem juntos, cada qual seguindo uma das rotas possíveis a partir daquela origem. Os caminhões percorrem as rotas passando sequencialmente pelos postos de vacinação (PV) respeitando a localização geográfica e conexões entre eles. Sabe-se ainda que as distância entre quaisquer postos de vacinação vizinhos em uma rota, bem como as distâncias entre um centro de distribuição e os postos de vacinação vizinhos a ele em alguma rota, é aproximadamente a mesma. Em outras palavras, a distância percorrida por um caminhão entre dois pontos vizinhos (centro de distribuição ou posto de vacinação) em uma rota é aproximadamente a mesma. Cada caminhão, ao chegar ao último posto de vacinação de sua rota, retorna diretamente para o centro de distribuição de origem para realizar nova entrega no dia seguinte.

Durante a entrega das vacinas, no trajeto entre dois postos de vacinação vizinhos, ou entre o centro de distribuição e o primeiro posto da rota, estima-se que haja um incremento da temperatura interna da caixa térmica das vacinas de X°C, devido ao calor trocado entre a caixa térmica e o ambiente do caminhão durante o percurso.

Desta forma, a Secretaria de Saúde deseja calcular, entre todos os PVs pertencentes às possíveis rotas (PVs alcançáveis), a quantidade máxima de postos de vacinação que estarão aptos a realizar a vacinação contra o coronavírus, ou seja, que receberão as vacinas em temperatura abaixo da temperatura máxima indicada pelo fabricante (PVs alcançados), sem que haja alterações na estrutura logística disponível.

Por fim, a Secretaria de Saúde também deseja identificar se há alguma rota que percorra um mesmo posto de vacinação mais de uma vez, para fins de melhoria de sua estrutura logística.

3 Exemplo do problema

Observe na Figura 1 uma estrutura logística na qual há dois centros de distribuição (CD01 e CD02) e 21 postos de vacinação (PVs). Considere ainda que o incremento de temperatura a cada vez que um posto de vacinação é percorrido seja de X=15 °C. Assim, como a temperatura inicial é de -90 °C no centro de distribuição, a carga de vacinas poderia percorrer até 2 postos de vacinação em sequência antes que a temperatura ultrapasse o limite de -60 °C $\left(\frac{-60}{15} - (-90)}{15}\right) = 2$.

Os postos de vacinação alcançavéis pelo CD01, mantendo a integridade das vacinas são: PV1, PV2, PV3, PV5, PV16. Em contraapartirda, o CD02 distribui vacinas para os postos de vacinação PV14, PV15, PV17, PV18, PV19. Desta maneira, como o restante dos postos de vacinação não são alcançáveis por nenhum centro de distribuição garantindo a integridade das vacinas, estas unidades não poderão realizar a vacinação contra Covid-19.

Portanto, a resposta esperada nesta situação de exemplo seria que o número máximo de postos de vacinação aptos a receber as vacinas é igual a 10.

Note que, dada a representação gráfica da estrutura logística, não se verifica uma rota que passa por um posto de vacinação mais de uma vez. Caso houvesse, por exemplo, um caminho entre PV11 \rightarrow PV09 ou PV12 \rightarrow PV09, haveria uma rota que passaria por PV09 mais de uma vez.

4 Arquivos de entrada e saída

Para fins de restrição da dimensão do problema, a quantidade máxima de centros de distribuição (CD) nos casos de testes é $10 \ (1 \le \text{CD} \le 10)$ e a quantidade máxima de postos de vacinação (PV) é $100 \ (0 \le \text{PV} \le 100)$. O incremento X de temperatura a cada vez que a caixa térmica das vacinas é aberta será fornecido como parâmetro, sendo um número inteiro não-negativo (X > 0).

O arquivo de entrada conterá, na primeira linha, três valores, representando respectivamente a quantidade de CDs, a quantidade de PVs e o valor X de incremento de temperatura da vacina para cada trecho percorrido da rota. As próximas C linhas do arquivo contém as ligações imediatadas de cada centro de distribuição. Por fim, as próximas P linhas conterão as ligações de cada posto de vacinação. Note que o identificador de cada PV é dado de forma sequencial começando de 1 até o valor de P (o valor 0 representa que o dado PV ou CD não leva a nenhum outro PV).

O arquivo de saída deve conter, na primeira linha, a quantidade máxima de postos de vacinação que receberão as vacinas em condições íntegras. Na segunda linha, em ordem crescente pelo código do PV, a lista dos PVs que receberão as vacinas em condições íntegras, separados por espaço (apenas os números de identificação dos PVs). Caso o valor da primeira linha seja 0, então a segunda linha deve exibir o texto "**" (sem as aspas).

Figura 1: Exemplo de situação com dois centros de distribuição e 21 postos de vacinação

Por último, a terceira linha deve conter o valor "1" (sem aspas), caso seja identificada alguma rota que percorra um mesmo posto de vacinação mais de uma vez, ou "0" (sem aspas) em caso contrário.

Exemplo das linhas da entrada

C P X // Centros de distribuição, postos de vacinação e incremento de temperatura.

 ${
m C1}$ // Linhas que determinam as ligações de cada centro de distribuição

. . .

P1 // Linhas de cada posto de vacinação

. . .

Exemplo da saída

R // Quantidade de postos de vacinação alcançados.

PV PV ... // a lista dos R postos de vacinação alcançados, ordenada de forma crescente // pelo código do PV

C // 1 caso haja alguma rota que percorra um mesmo posto mais de uma vez ou 0, caso contr∳rio

5 Exemplo Prático de Entrada e Saída

```
Exemplo prático da entrada
2 21 15
1 2 // c1
14 17 18 // c2
16 // p1
3 5 // p2
4
0
6
7
8 9
13
10 13
11
12
14
15
0
15
19
19
20 21
16
0 // p21
```

Exemplo prático da saída

```
10 // Qtde de postos alcançados
1 2 3 5 14 15 16 17 18 19 // Lista dos PVs alcançados
0 // Não há rotas que passem em um mesmo posto de vacinação mais de uma vez
```

6 Especificação das entregas

Você deve submeter um arquivo compacto (zip ou tar.gz) no formato **MATRICULA_NOME** via Moodle contendo:

- todos os arquivos de código-fonte implementados;
- um arquivo makefile¹ que crie um executável com nome tp01;
 - ATENÇÃO: O makefile é para garantir que o código será compilado da forma como vocês implementaram, evitando erros na compilação. É essencial que ao digitar "make" na linha de comando dentro da pasta onde reside o arquivo makefile, o mesmo compile o programa e gere um executável chamado tp01.
- sua documentação (arquivo pdf).

Sua documentação deverá ser sucinta e conter não mais do que 5 páginas com o seguinte conteúdo obrigatório:

- Modelagem computacional do problema;
- estruturas de dados e algoritmos utilizados para resolver o problema (pseudo-código da solução impelementada), bem como justificativa para tal escolha. Não transcreva trechos da código-fonte;
- análise de complexidade de tempo assintótica da solução proposta, devidamente justificada.

7 Implementação

7.1 Linguagem, Ambiente e Parâmetros

O seu programa deverá ser implementado na linguagem C ou C++ e deverá fazer uso apenas de funções da biblioteca padrão da linguagem. Trabalhos que utilizem qualquer outra linguagem de programação e/ou que façam uso de bibliotecas que não a padrão não serão aceitos.

O aluno pode implementar seu programa em qualquer ambiente (Windows, Linux, MacOS, etc...), no entanto, deve garantir que seu código compile e rode nas máquinas do DCC (tigre.dcc.ufmg.br ou jaguar.dcc.ufmg.br), pois será neste ambiente que o TP será corrigido. Note que essas máquinas são acessíveis a todos os alunos do DCC com seu login e senha, podendo inclusive ser realizado acesso remoto via ssh. O aluno pode buscar informações no site do CRC (Centro de Recursos Computacionais) do DCC (https://www.crc.dcc.ufmg.br/).

O arquivo da entrada deve ser passado ao seu programa como entrada padrão, através da linha de comando (e.g., \$./tp01 < casoTeste01.txt) e gerar o resultado também na saída padrão (não gerar saída em arquivo).

ATENÇÃO: Não é necessário que o aluno implemente em ambiente Linux. Recomenda-se que o aluno teste seu código nas máquinas previamente especificadas, as quais serão utilizadas para correção do TP, a fim de conferir a funcionalidade, makefile e demais características do código.

¹https://pt.wikibooks.org/wiki/Programar_em_C/Makefiles

7.2 Testes automatizados

A sua implementação passará por um processo de correção automatizado, utilizando além dos casos de testes já disponibilizados, outros exclusivos criados para o processo de correção. O formato da saída de seu programa deve seguir a especificação apresentada nas seções anteriores. Saídas diferentes serão consideradas erro para o programa. O aluno deve certificar-se que seu programa execute corretamente para qualquer entrada válida do problema.

ATENÇÃO: O tempo máximo esperado para execução do programa, dado o tamanho máximo do problema definido em seções anteriores, é de 5 segundos.

7.3 Qualidade do código

Preze pela qualidade do código-fonte, mantendo-o organizado e comentado de modo a facilitar seu entendimento para correção. Caso alguma questão não esteja clara na documentação e no código fonte, a nota do trabalho pode ser penalizada.

8 Critérios para pontuação

A nota final do TP (NF) será composta por dois fatores: fator parcial de implementação (fpi) e fator parcial da documentação (npd). Os critérios adotados para pontuação dos fatores é explicado a seguir.

8.1 Fator parcial de implementação

Serão avaliados quatro aspectos da implementação da solução do problema, conforme a Tabela 1.

Aspecto	Sigla	Valores possíveis
Compilação no ambiente de correção	co	0 ou 1
Respostas corretas nos casos de teste de correção	ec	0 a $100%$
Tempo de execução abaixo do limite	te	0 ou 1
Qualidade do código	qc	0 a 100 %

Tabela 1: Aspectos de avaliação da implementação da solução do problema

O fator parcial de implementação será calculado pela seguinte fórmula:

$$fpi = co \times (ec - 0, 15 \times (1 - qc) - 0, 15 \times (1 - te))$$

Caso o valor calculado do fator seja menor que zero, ele será considerado igual a zero.

8.2 Fator parcial da documentação

Serão avaliados quatro aspectos da documentação entregue pelo aluno, conforme a Tabela 2. O fator parcial de documentação será calculado pela seguinte fórmula:

$$fpd = 0, 4 \times mc + 0, 4 \times ds + 0, 2 \times at - 0, 25 \times (1 - ap)$$

Caso o valor calculado do fator seja menor que zero, ele será considerado igual a zero.

Aspecto	Sigla	Valores possíveis
Apresentação (formato, clareza, objetividade)	ap	0 a 100%
Modelagem computational	mc	0 a $100%$
Descrição da solução	ds	0 a $100%$
Análise de complexidade de tempo assintótica	at	0 a 100 $\%$

Tabela 2: Aspectos de avaliação da documentação

8.3 Nota final do TP

A nota final do trabalho prático será obtida pela equação a seguir:

$$NF = 10 \times (0, 6 \times fpi + 0, 4 \times fpd)$$

É importante ressaltar que é obrigatória a entrega do código fonte da solução e documentação. Na ausência de um desses elementos, a nota do trabalho prático será considerada igual a zero, pois não haverá possibilidade de avaliar adequadamente o trabalho realizado.

Assim como em todos os trabalhos dessa disciplina é estritamente proibida a cópia parcial ou integral de código-fontes, seja da Internet ou de colegas. Se for identificado o plágio, o aluno terá a nota zerada e o professor será informado para que as medidas cabíveis sejam tomadas.

ATENÇÃO: Os alunos que submeterem os TPs com atraso, terão a nota final penalizada em termos percentuais de acordo com a seguinte regra: $2^{d-1}/0$, 16 (onde d é a quantidade de dias úteis de atraso na entrega do TP)

Anotações:

Busca em Largura: identifica os caminhos possíveis a partir de um CD, a ideia é que identifique os PV's alcançáveis até que a temperatura atinja - 60°C

Figura 2: Caso de teste 1 - Estrutura logística com 1 centro de distribuição e 30 postos de vacinação

Anexo: Casos de teste para validação da implementação

Os casos de testes descritos a seguir estão disponibilizados na plataforma *moodle* em arquivo txt. Foram criados cinco casos de teste para que o aluno possa validar sua solução antes de submeter seu trabalho para correção. A seguir são apresentados 3 casos com o respectivo diagrama visual. Cada um dos três casos possui algumas variações no parâmetro relacionado ao incremento de temperatura entre os postos de vacinação a fim de permitir testar algumas situações. Os outros dois casos de teste, por apresentarem um número maior de CDs e PVs estarão disponíveis apenas em formato txt no *moodle*.

Recomenda-se que o aluno teste sua implementação com os casos de teste disponibilizados comparando sua resposta com aquela esperada a fim de reduzir a chance de ocorrência de bugs de implementação.

Caso 1: 1 CD, 30 PVs, rota única

A Figura 2 apresenta um diagrama da estrutura logistica do caso de teste 1. Abaixo, será apresentado para cada valor do parâmetro referente ao incremento de temperatura, a saída esperada.

Arquivo de entrada: CasoTeste01a.txt
Saída esperada para incremento de temperatura: 31 °C

0

*
0

```
Arquivo de entrada: CasoTeste01b.txt
Saída esperada para incremento de temperatura: 30 °C

1
1
0
```

```
Arquivo de entrada: CasoTeste01c.txt
Saída esperada para incremento de temperatura: 3 °C

10
1 2 3 4 5 6 9 10 11 12
0
```

```
Arquivo de entrada: CasoTeste01d.txt
Saída esperada para incremento de temperatura: 2 °C

15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
```

```
Arquivo de entrada: CasoTeste01e.txt
Saída esperada para incremento de temperatura: 1 °C

30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0
```


Figura 3: Caso de teste 2 - Estrutura logística com 1 centro de distribuição, 30 postos de vacinação e múltiplas rotas

Caso 2: 1 CD, 30 PVs, múltiplas rotas

A Figura 3 apresenta um diagrama da estrutura logistica do caso de teste 2. A seguir, será apresentado para cada valor do parâmetro referente ao incremento de temperatura, a saída esperada.

```
Arquivo de entrada: CasoTeste02a.txt
Saída esperada para incremento de temperatura: 3 °C

11
1 2 3 4 5 6 9 10 11 12 16
1
```

```
Arquivo de entrada: CasoTeste02b.txt
Saída esperada para incremento de temperatura: 2 °C

21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 24
1
```


Figura 4: Caso de teste 3 - Estrutura logística com 2 centros de distribuição, 21 postos de vacinação e múltiplas rotas

Caso 3: 2 CDs, 21 PVs, multiplas rotas

A Figura 4 apresenta um diagrama da estrutura logistica do caso de teste 3. A seguir, será apresentado para cada valor do parâmetro referente ao incremento de temperatura, a saída esperada.

```
Arquivo de entrada: CasoTeste03a.txt
Saída esperada para incremento de temperatura: 6 °C

13
1 2 8 9 10 11 12 14 15 16 17 18 20
0
```

```
Arquivo de entrada: CasoTeste03b.txt
Saída esperada para incremento de temperatura: 3 °C

17
1 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0
```