Les montages proposés dans ce chapitre sont des montages classiques qu'il peut être utile de reconnaître rapidement.

- traliver 6

 $V_S = V_E$

MONTAGES À A.L.I. -trouver et

Suiveur

Ce montage est très utilisé en adaptation d'impédance. Le courant d'entrée (I+) étant nul, ce montage ne consomme donc aucun courant sur les étages précédents.

Cas particulier : si $R_2 = R_1$, $V_S = -V_E$,

Additionneur inverseur

Cas particulier : si $R_1 = R_2 = R_3$, $V_S = -(V_1 + V_2)$.

Conversion courant-tension

Conversion tension-courant

→ Le courant de sortie est indépendant de la charge (R_{charge}) du montage.

Soustracteur

MONTAGE À A.L.I. 10.2 EN COMPARATEUR

On supposera les A.L.I. alimentés en +/- 10 volts et une tension de déchet de I volt.

Les sorties peuvent donc prendre deux valeurs uniquement:

$$V_S = +/-V_{sat} = +/-(V_{alim} - V_{déchet}) = +/-9 \text{ volts.}$$

Montages de base (comparateur de tension fixe)

Sans contre réaction

 \rightarrow Pour le premier schéma, si on inverse les entrées + et -, on inverse le cycle $V_S = f(V_F)$.

Montages à hystérésis

Avec contre réaction

Dans les cas précédents, la sortie n'agit pas sur l'entrée. Il n'y a qu'un seuil de basculement (V_b) . Lorsqu'on procède à un rebouclage de la sortie sur l'entrée non inverseuse, il apparaît deux seuils de basculement V_{b_1} et V_{b_2} . Les valeurs de ces basculements dépendent du sens de variation de l'entrée (de V_{b_1} vers V_{b_2} ou inversement), ce qui donne un cycle dit d'hystérésis.

Exemple R $V_{\rm E}$ $V_{\rm S}$

Entrée non-inverseuse :

$$V^+ = V_S \times \frac{R}{R+R} = \frac{V_S}{2}$$

- pour $V_S = V_{sat} \rightarrow V_{b_1} = 4.5 \text{ volts}$; - pour $V_S = -V_{sat} \rightarrow V_{b_2} = -4.5 \text{ volts}$.

Ce qui donne le cycle suivant :

Montage astable

Ce montage, comme son nom l'indique, n'a pas d'état stable. Sa sortie va passer inlassablement de $+ V_{sat}$ à $- V_{sat}$.

L'A.L.I. fonctionne bien en comparateur vu que l'on procède à un rebouclage de la sortie sur l'entrée non inverseuse (+). Les seuils de basculement (sur l'entrée non-inverseuse) sont les mêmes que précédemment :

$$V_{b_1} = + V_{sat}/2 = 4.5 \text{ V et } V_{b_2} = - V_{sat}/2 = -4.5 \text{ V.}$$

La tension V_C va osciller entre ces deux valeurs :

Pour ce montage, on a : $T = 2 RC \ln 3$.

Modulation à Largeur d'Impulsion (M.L.I)

La tension d'entrée V_F est une tension constante.

On s'aperçoit, dans les deux cas, que le rapport cyclique de la sortie (et aussi la valeur moyenne V_S) est fonction de la valeur de la tension d'entrée V_F .

Ce montage est utilisé pour créer des tensions à rapport cyclique variable ou dans les régulateurs de tension moyenne, ou pour la transmission par M.L.I.

