11464: INFORMATION SYSTEMS SECURITY

Chapter 6: Public-Key Cryptography

Public Key Cryptography

By
Mustafa Al-Fayoumi

Outline

- Overview of Public-key cryptosystems
- □ The RSA algorithm
 - Description of the algorithm
 - Computational aspects
 - Exponentiation Algorithms
- Diffie-Hellman Key Exchange
 - Primitive Roots

Basic Protocol for Public-Key Encryption

Security Mechanisms of Public-Key Cryptography

- Here are main mechanisms that can be realized with asymmetric cryptography:
 - Key Distribution (e.g., Diffie-Hellman key exchange, RSA) without a preshared secret (key)
 - Nonrepudiation and Digital Signatures (e.g., RSA, DSA or ECDSA) to provide message integrity
 - Identification, using challenge-response protocols with digital signatures
 - Encryption (e.g., RSA / Elgamal)
- Disadvantage: Computationally very intensive (1000 times slower than symmetric Algorithms!)

Basic Key Transport Protocol

- In practice: Hybrid systems, incorporating asymmetric and symmetric algorithms
 - 1. Key exchange (for symmetric schemes) and digital signatures are performed with (slow) asymmetric algorithms
 - 2. Encryption of data is done using (fast) symmetric ciphers, e.g., block ciphers or stream ciphers

How to build Public-Key Algorithms

- Asymmetric schemes are based on a "one-way function" f():
 - \Box Computing y = f(x) is computationally easy
 - Computing x = f-1(y) is computationally infeasible
- One way functions are based on mathematically hard problems.
 - Three main families:
 - Factoring integers (RSA, ...):
 - Given a composite integer n, find its prime factors (Multiply two primes: easy)
 - Discrete Logarithm (Diffie-Hellman, Elgamal, DSA, ...):
 - Given a, y and m, find x such that $ax = y \mod m$ (Exponentiation ax : easy)
 - Elliptic Curves (EC) (ECDH, ECDSA):
 - Generalization of discrete logarithm
- Note: The problems are considered mathematically hard, but no proof exists (so far).

Key Lengths and Security Levels

Symmetric	ECC	RSA, DL	Remark
64 Bit	128 Bit	≈ 700 Bit	Only short term security (a few hours or days)
80 Bit	160 Bit	≈ 1024 Bit	Medium security (except attacks from big governmental institutions etc.)
128 Bit	256 Bit	≈ 3072 Bit	Long term security (without quantum computers)

Rivest-Shamir-Adleman (RSA) Scheme

- Developed in 1977 at MIT by Ron Rivest, Adi Shamir & Len Adleman based on the factoring problem.
- Most widely used general-purpose approach to public-key encryption
- □ Is a cipher in which the plaintext and ciphertext are integers between 0 and n-1 for some n
 - A typical size for n is 1024 bits, or 309 decimal digits

RSA Scheme

- Algorithm Key Generation Algorithm for RSA Public-Key Encryption by Alice, Alice should do the following:
 - Choose large primes: p, q
 - Compute n = pq,
 - Compute $\phi(n) = (p-1)(q-1)$
 - Select a random integer e, such that:
 - 1 < *e* < Ø
 - $GCD(e,\emptyset) = 1$

Recall: φ(n) Function:
1. If n is a prime, then φ(n) = n - 1.
2. If n is a product of two primes,
NOT equal, then φ (n) = (p -1) (q-1).
3. If n is a product of two primes,

equal, then ϕ (n) = (p -1) q.

- Use the extended Euclidean algorithm to compute the unique integer d, such that $1 < d < \emptyset(n)$ as follows:
 - $ed \equiv 1 \mod \emptyset(n)$ (i.e., $d = e^{-1} \mod \emptyset(n)$)
- Keys: public, (e, n); private, (d, φ);

Remember: In mathematical background lectures, we learned and applied some algorithms to find the inverse (d) like: Exhaustive search, Fraction Method and Multiply Theta. More reference: Princess Sumaya University for Technology - Fall 2021

RSA Scheme

- Algorithm RSA Public-Key Encryption and Decryption
- Encryption: Bob should do the following:
 - Obtain Alice's authentic public key (n, e)
 - Represent the message as an integer m in the interval [0, n-1].
 - Compute $c = m^e \mod n$ (e.g. using one of Exponentiation Algorithms)
 - Send the Cipertect (c) to Alice.
- Decryption: Alice should do the following:
 - Get the Ciphertext (c) from Bob
 - Recover the plaintext (m) as follows:
 - $m = c^d \mod n$

Exponentiation Algorithms:

- 1. Fast Exponentiation Algorithm for Encryption and Decryption
- 2. Repeated Square-and-Multiply Algorithmy four Exponentiation for ZnFall 2021

self-assessment

Explain why the public key and private key in the RSA scheme are inverses in group $mod \ \emptyset(n)$ and not inverses in group $mod \ n$, where n is the product of two distinct large prime numbers?

Example: RSA with small numbers

ALICE

Message x = 4

BOB

- 1. Choose p = 3 and q = 11
- 2. Compute n = p * q = 33
- 3. $\Phi(n) = (3-1) * (11-1) = 20$
- Choose e = 3
- 5. $d \equiv e^{-1} \equiv 7 \mod 20$

$$K_{pub} = (33,3)$$

$$y = x^e \equiv 4^3 \equiv 31 \mod 33$$

$$y^d = 31^7 \equiv 4 = x \mod 33$$

Example of RSA Scheme

16

- p = 5, q=7; n = 5*7 = 35; $\varphi(n) = (5-1)(7-1)=24$
- Exponent e = 5;
 - 1 < 5 < 24
 - GCD (e, $\phi(n)$) = (5, 24) = 1;
- $ed \equiv 1 \mod \emptyset(n)$ (i.e., $d = e^{-1} \mod \emptyset(n)$)

Public key: (e=5, n=35)

Private key: $(d=5, \varphi (n)=24)$

GCD(5, 24):

 $24 \bmod 5 = 4$

 $5 \mod 4 = 1$

 $4 \mod 1 = 0 - \text{Stop. GCD}(5, 24) = 1$

By using fraction method find the inverse $(e^{-1} \mod \emptyset(n))$ as follows:

Def=
$$\phi/e = 24/5=4.8$$

$$D = 1/e = 1/5 = 0.2 d = 5$$

Repeat

 $d = d + def \quad 5*5 \equiv 1 \pmod{24}$

Until d= integer

Encryption M=4

$$C=4^5 \equiv 9 \pmod{35}$$

$$E(M) \equiv M^e \pmod{n}$$

Decryption C=9

$$M = 9^5 \equiv 4 \pmod{35}$$

$$M \equiv C^d \ (mod \ n)$$

Princess Sumaya University for Technology - Fall 2021

Computational Aspects (RSA Processing of Multiple Blocks)

Princess Sumaya University for Technology - Fall 2021

(a) General approach

(b) Example

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

RSA Processing of Multiple Blocks

19

- p = 43, q=59; n = 43*59 = 2357; $\varphi(n) = 42*58 = 2436$
- > Exponent e = 13; $(e, \varphi(n)) = (13, 42*58) = 1$;

d = 937 $937* 13 \equiv 1 \pmod{2436}$

Block length is 4

PUBLIC KEY CRYPTOGRAPHY

 $C_1 = 1520^{13} \equiv 95 \pmod{2537}$

Public key: (13, 2357)

Private key: (937, 2357)

 m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9 m_{10} m_{11}

1520 0111 0802 1004 2402 1724 1519 1406 1700 1507 2423

$$E(M_i) \equiv Mi^e \pmod{n}$$

0095 1648 1410 1299 0811 2333 2132 0370 1185 1457 1084

$$c_1$$
 c_2 c_3 c_4 c_5 c_6 c_7 c_8 c_9 c_{10} c_{11}

 $0095^{937} \equiv 1520 \pmod{2537}$

$$M_i \equiv C^d \pmod{n}$$

Princess Sumaya University for Technology - Fall 2021

Practical RSA parameters

- Practical RSA parameters are much, much larger. The RSA modulus n should be at least 1024 bit long, which results in a bit length for p and q of 512. Here is an example of RSA parameters for this bit length:
- p= E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9B98389CE4DE19199AA3069B404F D98C801568CB9170EB712BF 10B4955CE9C9DC8CE6855C6123h
- q= EBEOFCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2778A8048B149828AEA30BD0BA34B 977982A3D42168F594CA99F3981DDABFAB2369F229640115h
- n=
 CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91D12FC76DA0544C47568AC83D85
 5D47CA8D8A779579AB72E635D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B72
 E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670255C1FEDE1A2762CF4392C0759499C
 COABECFF008728D9A11ADFh
- e= 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3AB4F6DD8293CA1945DB12D796AE9 244D60565C2EB692A89B8881D58D278562ED60066DD8211E67315CF89857167206120405B08B54 D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554391E114C85B56A9725E9BD5685D6C9C7 EED8EE442366353DC39h
- d= C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A395F266C78F4A28E86F545960C2C E01EB8AD5246905163B28D0B8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CCC5 84D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2C0DF05841B5E4984D059A35D7270D5 00514891F7B77B804BED81h

Preparation for next Lecture

- Continue reading about RSA Scheme:
 - **■** Security of the RSA:
 - Trial Division
 - □ Pollard's rho and Pollard's p-1 algorithms
 - Oblivious Transfer

Problem: Confidential Massage

A

$$PU_A = (e = 7, n = 187)$$

$$PR_A = (d = 23, n = 187)$$

$$PU_{R} = (e = 5, n = 299)$$

B

$$PU_B = (e = 5, n = 299)$$

$$PR_R = (d = 53, n = 299)$$

$$PU_A = (e = 7, n = 187)$$

Assume A send encrypted message to B − A ----> B

Problem: Confidential Massage

A

$$PU_A = (e = 7, n = 187)$$

$$PR_A = (d = 23, n = 187)$$

$$PU_{R} = (e = 5, n = 299)$$

B

$$PU_R = (e = 5, n = 299)$$

$$PR_R = (d = 53, n = 299)$$

$$PU_A = (e = 7, n = 187)$$

Assume A send encrypted message to **B** − **A** ----> **B**

$$C = E(PU_B, M)$$

= $M^e \mod n$
= $15^5 \mod 299$
= 214

$$C = 214$$

 $M = D(PP_B, C)$ = $C^d \mod n$ = $214^{53} \mod 299$ = 15

Brute Force Attack

Just try all possibilities for M:

- So, a brute force attack will try all values of M
- How stop the brute force attack?
- Make M large, and M to be large, n must be large because M must be less than n. So, the RSA algorithm need to choose an n which is very enough large that is one of security condition.

Integer Factoring Problem

□ Factorisation:

- With the exception of the number 1, all numbers can be decomposed into two or more numbers that multiply together to make the number.
- For example, the number 6 can be factorized as follows:
 - \Box 6 = 3 × 2 x 1.
 - 3, 2 and 1 are referred to as factors of 6.
 - \square 6 can also be factorized as: 6 = 6 x 1.
 - So 6 and 1 are also factors of 6.
- The process of decomposing a number in this way is called factorisation.

Security of RSA: Trial division

- Once it is established that an integer n is composite, before expending vast amounts of time with more powerful techniques, the first thing that should be attempted is trial division by all "small" primes. Here, "small" is determined as a function of the size of n.
- As an extreme case, trial division can be attempted by all primes up to \sqrt{n} . If this is done, trial division will completely factor n but the procedure will take roughly \sqrt{n} divisions in the worst case when n is a product of two primes of the same size.
- $lue{}$ In general, if the factors found at each stage are tested for primality, then trial division to factor n completely takes o(p)

Trial division

- □ **Fact** Let n be chosen uniformly at random from the interval [1, x].
- □ (i) If $\frac{1}{2} \le \alpha \le 1$, then the probability that the largest prime factor of n is $\le x^{\infty}$ is approximately $1 + \ln \infty$. Thus, for example, the probability that n has a prime factor $> \sqrt{x}$ is $\ln 2 \approx 0.69$.
- □ (ii) The probability that the second-largest prime factor of n is $\leq x^{0.2117}$ is about $\frac{1}{2}$.
- \square (iii) The expected total number of prime factors of n is In ln+O(1). (If $n=\prod p_i^{e_i}$, the total number of prime factors of n is $\sum e_i$)

Trial division

Algorithm:

- 1. Choose an odd integer number that is not prime number (n).
- 2. Compute (S) as follows [Sqrt(n)].
- 3. If (S is a prime) and (n mod S = 0) then return S.
- 4. Repeat
 - 4.1 S = S 1
 - 4.2 Check if S is a prime
 - 4.3 Compute n mod S.

Until (S is a prime) and (n mod S = 0) then return S.

5. End

Example

- □ Example suppose n = 2077
- Then the value of $\sqrt{2077} = 45.574115460..$
- \Box Find [45.574115460..] = 45

- □ P=31 and q= 2077/31= 67
- OR
- P=67 and q=2077/67=31

45	Not prime
44	Not prime
43	2077 mode 43 = 13
42	Not prime
41	2077 mode 41 = 27
40	Not prime
39	Not prime
38	Not prime
37	2077 mode 37 = 5
36	Not prime
35	Not prime
34	Not prime
33	Not prime
32	Not prime
31	$2077 \mod 31 = 0$

45	Not prime
46	Not prime
47	2077 mode 47 = 9
48	Not prime
49	Not prime
50	Not prime
51	Not prime
52	Not prime
53	2077 mode 53 = 10
54	Not prime
55	Not prime
56	Not prime
57	Not prime
58	Not prime
59	2077 mode 59 = 12
60	Not prime
61	$2077 \mod 61 = 3$
62	Not prime
63	Not prime
64	Not prime
65	Not prime

Not prime

 $2077 \mod 67 = 0$

Preparation for next Lecture

- Continue reading about RSA Scheme:
 - **Exponentiation Algorithms:**
 - Fast Exponentiation Algorithm for Encryption and Decryption
 - Repeated Square-and-Multiply Algorithm for Exponentiation in Zn

Finding power - Exponentiation

- □ Example: $c = m^e = 21^{11} \mod 29$
- Raising 21 to the **power 11**, multiplying 11 copies of 21 together, looks like a lengthy and error prone task which will result in calculations involving numbers with many digits (in fact 21¹¹ = 350 277 500 542 221) ??
- However, to work out the result we can take advantage of two things:
 - 1. We only need to work with numbers up to 29
 - 2. We can break down the operation of raising 21 to the power of 11 into a number of stages

- 21¹¹ means multiplying eleven copies of twenty-one together. A clue as to how this calculation might be broken down is given by writing the exponent of 11 as a sum of, for instance, three components 8 + 2 + 1 then:
 - $21^{11} \equiv 21^{8+2+1}$
- □ This shows that multiplying 11 copies of 21 together is the same as first multiplying eight copies of 21 together and then multiplying the result by the product of a further two copies of 21, giving a total of 10 copies.
- Next, to make the total number of copies 11 the result would need to be multiplied by another copy of 21.

 21¹¹ can therefore be written as $21^8 \times 21^2 \times 21^1$

- □ **A second observation** can also be valuable. It is that, for instance, $21^8 = 21^{4+4} = 21^4 \times 21^4$
- $\hfill\Box$ That is, 21^8 is the same as multiplying two copies of 21^4 together. This can be summarized in the notation of exponentiation as $(21^4)^2$
- □ Note also that 21^4 can be found by multiplying two copies of 21^2 together so that 21^4 = 21^2 x 21^2 = $(21^2)^2$ and 21^8 = $(21^4)^2$

■ Now, exploiting the advantage of working modulo 29:

$$21^2 \equiv 441 \mod 29$$

= $441 - 15 \times 29 \equiv 6 \mod 29$

■ Using the result for 21² and taking a further step gives 21⁴ as:

$$21^4 \equiv (21^2)^2 \equiv 6^2 \equiv 36 \mod 29$$

= $36 - 1 \times 29 \equiv 7 \mod 29$

■ And then utilizing the result for 21⁴ to obtain 21⁸ gives:

$$21^8 \equiv (21^4)^2 \equiv 7^2 \equiv 49 \mod 29$$

 $\equiv 1 \times 29 + 20 \equiv 20 \mod 29$

With these results the encryption calculation can be completed without the need to perform arithmetic on very large numbers:

$$21^{11} \mod 29 \equiv 21^{8+2+1} \equiv 21^8 \times 21^2 \times 21 \equiv 20 \times 6 \times 21 \mod 29$$

 $\equiv 120 \times 21 \equiv (4 \times 29 + 4) \times 21 \mod 29$
 $\equiv 4 \times 21 \equiv 84 \equiv 2 \times 29 + 26 \mod 29$
 $\equiv 26 \mod 29$

■ So the result of encryption the letter (21) by using the encryption key 11 is letter (26)

$$19^{13} \equiv 19^{8+4+1} \mod 77$$

Calculating the powers of 19 modulo 77 gives:

$$19^{2} \equiv 361 \equiv (361 - 4 \times 77) \equiv 53 \bmod 77$$

$$19^{4} \equiv (19^{2})^{2} \equiv 53^{2} \equiv 2809 \equiv (2809 - 36 \times 77) \equiv 37 \bmod 77$$

$$19^{8} \equiv (19^{4})^{2} \equiv 37^{2} \equiv 1369 \equiv (1369 - 17 \times 77) \equiv 60 \bmod 77$$
So
$$19^{13} \equiv 19^{8+4+1} \bmod 77 \equiv 60 \times 37 \times 19 \equiv 2220 \times 19$$

$$\equiv (2220 - 28 \times 77) \times 19 \bmod 77 \equiv 64 \times 19 \equiv 1216$$

$$\equiv (1216 - 15 \times 77) \bmod 77 \equiv 61 \bmod 77$$

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange: Overview

- Proposed in 1976 by Whitfield Diffie and Martin Hellman
- Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security (IPSec)
- The Diffie-Hellman Key Exchange (DHKE) is a key exchange protocol and **not** used for encryption
- (For the purpose of encryption based on the DHKE, ElGamal can be used.)

Diffie-Hellman Key Exchange: Overview

- The purpose of key distribution (or key exchange) protocols is to allow a shared key to be securely transmitted between the principals
- Diffie-Hellman key exchange protocol: (Important)
 - Is a classic protocol which enables Bob and Alice to agree on a key for encrypting subsequent messages, which does not require them to explicitly send the key
- Its effectiveness depends on the difficulty of computing discrete logarithms

Diffie-Hellman Key Exchange: Set-up

- 1. Choose a large prime p.
- 2. Choose an integer $\alpha \in \{2,3,\ldots,p-2\}$.
- 3. Publish p and α .

Alice

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key Y_B in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

Princess Sumaya University for Technology - Fall 2021

One Immediate Application: The Diffie-Hellman Algorithm

<u>Problem:</u> Establish *common* keys (for symmetric cryptography) to be used by two <u>individuals</u> so that **intruders** cannot discover them in a feasible amount of computer time.

Let

These are known to all!

Pick X_A relatively prime to q-1

• q be a large prime (primitive root)

• α be an integer relatively prime to p

Pick X_B relatively prime to q-1

$$Y_A \equiv \alpha^{X_A} \pmod{q}, \quad 0 < Y_A < q$$

$$Y_B \equiv \alpha^{X_B} \pmod{q}, \quad 0 < Y_B < q$$

$$K = (X_B)^{X_A} \mod q \equiv \alpha^{X_B X_A} \pmod{q}, 0 < K < q \equiv K = (Y_A)^{X_B} \pmod{q} \equiv \alpha^{X_A X_B} \pmod{q}, 0 < K < q$$

We can now use the joint key K for encryption, e.g., with AES

A Simple Example of a DH Exchange

Domain parameters

$$q = 17$$

$$\alpha = 2$$

$$Y_A \equiv \alpha^{X_A} \pmod{q} = 8 \pmod{17} = 8$$

$$Y_B \equiv \alpha^{X_B} \pmod{q} = 32 \pmod{17} = 15$$

$$K = Y_B^{X_A} \pmod{q} = 3375 \pmod{17} = 9 = K = Y_A^{X_B} \pmod{q} = 32768 \pmod{17} = 9$$

Diffie-Hellman Key Exchange: Set-up

Example:

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume that $\alpha = 7$ and q = 23. The steps are as follows:

- Alice chooses $X_{\Delta} = 3$ and calculates $Y_{\Delta} = 7^3 \mod 23 = 21$.
- 2. Bob chooses $X_B = 6$ and calculates $Y_B = 7^6 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 4^3 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 21^6 \mod 23 = 18$.
- 7. The value of K is the same for both Alice and Bob;

$$(\alpha^{X_A})^{X_B} \mod q = 7^{18} \mod 23 = 18$$

Primitive Roots

□ Primitive Roots In the group $G = \langle Z_n^*, \times \rangle$, when the order of an element is the same as f(n), that element is called the primitive root of the group.

Table 8.3 Powers of Integers, Modulo 19

a	a^2	a^3	a^4	a ⁵	a ⁶	a^7	a^8	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Primitive Roots

Example

□ Table 9.5 shows the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle \mathbb{Z}_7 *, \times \rangle$. In this group, $\phi(7) = 6$.

Table 9.5 *Example 9.50*

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
<i>a</i> = 1	<i>x</i> : 1	<i>x</i> : 1	x: 1	<i>x</i> : 1	x: 1	x: 1
<i>a</i> = 2	x: 2	<i>x</i> : 4	<i>x</i> : 1	<i>x</i> : 2	x: 4	x: 1
a = 3	x: 3	x: 2	<i>x</i> : 6	<i>x</i> : 4	x: 5	<i>x</i> : 1
a = 4	x: 4	x: 2	<i>x</i> : 1	x: 4	x: 2	<i>x</i> : 1
a = 5	x: 5	x: 4	x: 6	x: 2	x: 3	x: 1
a = 6	x: 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1	x: 6	x: 1

Primitive root \rightarrow

Primitive root \rightarrow

Primitive Roots

- □ If the group $G = \langle Z_n^*, \times \rangle$ has any primitive root, the number of primitive roots is f(f(n)).
- □ Cyclic Group If g is a primitive root in the group, we can generate the set Z_n^* as $Z_n^* = \{g^1, g^2, g^3, ..., g^{f(n)}\}$

Example:

The group $G = \langle Z_{10}^*, \times \rangle$ has two primitive roots because f(10) = 4 and f(f(10)) = 2. It can be found that the primitive roots are 3 and 7. The following shows how we can create the whole set Z_{40}^* using each primitive root.

the whole set Z_{40}^* using each primitive root. $g = 3 \rightarrow g^1 \mod 10 = 3$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 7$ $g^4 \mod 10 = 1$ $g = 7 \rightarrow g^1 \mod 10 = 7$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 3$ $g^4 \mod 10 = 1$

The group $G = \langle Z_n^*, \times \rangle$ is a cyclic group if it has primitive roots. The group $G = \langle Z_p^*, \times \rangle$ is always cyclic.