Ricerca Operativa e Pianificazione delle Risorse

UniShare

Davide Cozzi @dlcgold

Gabriele De Rosa @derogab

Federica Di Lauro @f_dila

Indice

1	Intr	oduzione	2
2			3
	2.1	Modelli nella R.O	4
		2.1.1 Esercizio	
	2.2	Soluzione Grafica	18
		2.2.1 esercizi	25
	2.3	Simplesso	26
	2.4	Metodo del Simplesso	29
		2.4.1 Test di Ottimalità	33

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio! Immagini tratte dalle slide del corso, docente V. Messina

Capitolo 2

Introduzione alla Ricerca Operativa

La Ricerca Operativa è essenziale nel problem solving e nell'ambito del decision making. Sostanzialmente quindi si studia l'ottimizzazione, massimizzando le performances, l'accuratezza dei costi etc... per raggiungere un obiettivo.

Sulle slides ci sono vari esempi introduttivi di vita reale

Un altro problema studiato dalla riceca operativa sono le previsioni, mediante algoritmi predittivi che studiano i *pesi* delle osservazioni (cosa utile nel **Machine Learning** in quanto sono un uso di base delle **Reti Neurali**, *vari esempi introduttivi sulle slides*).

La ricerca operativa si occupa di formalizzare un problema in un modello matematico e calcolare una soluzione ottimo o approssimata. Essa costituisce un approccio scientifico alla risoluzione di problemi complessi da ricondurre alla matematica applicata. È utile in ambiti economici, logistici, di progettazione di servizi e di sistemi di trasporto e, ovviamente, nelle tecnologie. È la branca della matematica più applicata.

Il primo passo consiste nel costruire un modello traducendo il problema reale in linguaggio anturale in un linguaggio matematico, che non è ambiguo. Il secondo passo consiste nella costruzione delle soluzioni del modello tramite algoritmi e programmi di calcolo. Il terzo passo, ovvero l'ultimo, è l'interpretazione e la valutazione delle soluzioni del modello rispetto a quelle del problema reale.

La ricerca operativa ha origini nel 1800 in un ambiente puramente matematico. È stata resa "algoritmica" con la Macchina di Turing. La ricerca operativa usa anche tecniche numeriche e non solo analitiche.

Negli ultimi hanno si sono sviluppati, mediante il concetto di **gradiente**, nuovi algoritmi per il **deep network**.

2.1 Modelli nella R.O.

Definizione 1. Data una funzione $f : \mathbb{R} \to mathbb{R}$ e $X \subseteq \mathbb{R}^n$ un **problema di ottimizzazione** può esssere formulato come:

opt
$$f(x)$$
 s.t. $x \in X$

dove con opt = min, max indendiamo che opt può essere o min o max, portando ad un problema di minimizzazione con min f(x) o di massimizzazione max f(x).

f(x) è detta **funzione obiettivo** e vale che:

$$\max[f(x):\,x\in X]=-\min[-f(x):\,x\in X]$$

Inoltre $x \subseteq \mathbb{R}^n$ è l'insieme delle soluzioni ottenibili o anche regione ammissibile.

Infine $x \in X$ rappresenta il **vettore delle variabili decisionali** e si tratta di variabili numeriche i cui valori rappresentano la soluzione del problema.

 $Si\ capisce\ che\ essendo\ in\ \mathbb{R}\ si\ hanno\ infinite\ soluzioni.$

Quindi, un problema di ottimizzazione consiste nel determinare, se esiste, un punto di minimo/massimo della funzione f tra i punti dell'insieme X Se $X = \mathbb{R}^n$ si ha un'ottimizzazione non vincolata, altrimenti, $x \subset \mathbb{R}$ si ha un'ottimizzazione vincolata, dove la ricerca dei punti di ottimo della funzione obiettivo è fatta su un sottoinsieme proprio dello spazio di definizione tenendo però conto dei vincoli. Se ho una funzione obiettivo lineare non si può avere un'ottimizzazione non vincolata (non saprei cercare massimi e minimi senza vincoli).

Abbiamo poi l'ottimizzazione intera o a numeri interi se $x \in \mathbb{Z}^n$ e si possono avere ottimizzazioni miste se si hanno interi e reali. Si ha anche l'ottimizzazione binaria quando si hanno due vie decisionali.

Se non specificato si intende $X \subseteq \mathbb{R}$.

Definizione 2. Quando l'insieme X delle soluzioni ammissibili di un problema di ottimizzazione è espresso in un sistema di equazioni o disequazioni si parla di **problema di programmazione matematica** (PM).

Come vincolo si ha un'espressione $g_i(x)\{\leq,=,\geq\}0$ $(g_i \geq 0 \text{ etc } ...)$ e con $g_i: X \to \mathbb{R}$ che è una generica funzione che lega due variabili.

Si possono avere più vincoli ma si ha sempre l'uguale in ogni vincolo per permettere il funzionamento degli algoritmi. La regione ammissibile è $X\subseteq\mathbb{R}^n$ che è l'intersezione di tutti i vincoli del problema

$$X = \{x \in \mathbb{R}^n | g_i(x) \{ \le, 0, \ge \} 0, i = 1, \dots, m$$

Si hanno quindi m vincoli e n variabili. Se $x \in X$ allora x è soluzione ammissibile, se $x \notin X$ allora x è non ammissibile

Esempio 1. abbiamo la funzione obiettivo

$$\min_{x,y}(x^2+y^2)$$

con i 3 vincoli:

$$x + y \le 3$$
$$x \ge 0$$

$$y \ge 0$$

la regione ammissibile è:

$${x \in \mathbb{R}^2 | x + y \le 3, \ x \ge 0, \ y \ge 0}$$

ovvero l'area sottesa alla retta e compresa negli assi cartesiani:

Si possono avere problemi con regione non ammissibile, ovvero con $X=\emptyset$, che implica che il problema è mal posto oppure bisogna abbassare qualche vincolo. Si può avere un problema illimitato con:

$$\forall c \in \mathbb{R} \exists x_c \in X : f(x_c) \leq c \text{ se opt} = min$$

$$\forall c \in \mathbb{R} \exists x_c \in X : f(x_c) \ge c \text{ se opt} = max$$

Infine si può avere una sola soluzione ottima o più (anche infinite) soluzioni ottime utte con lo stesso valore della funzione obiettivo.

Esempio 2. abbiamo la funzione obiettivo

$$\min_{x,y}(x^2+y^2)$$

con i 3 vincoli:

$$x + y \le -1$$
$$x \ge 0$$
$$y \ge 0$$

Non ha soluzione (è matematicamente impossibile) e il problema non è ammissibile

Esempio 3. abbiamo la funzione obiettivo

$$\max_{x,y}(x^2+y^2)$$

con i 2 vincoli:

$$x \ge 0$$

$$y \ge 0$$

Ha come soluzione infinito

Esempio 4. abbiamo la funzione obiettivo

$$\max_{x,y,z}(z)$$

con i 4 vincoli:

$$x + y + z = 2$$

$$0 \le x \le 1$$

$$0 \le y \le 1$$

$$0 \le z \le 1$$

Ha infinite soluzioni (tutte le soluzioni con z = 1 e x + y = 1, in quanto cerco il max di z e come ultio vincolo ho che al massimo è 1)

La risoluzione di un problema di Programmazione matematica consiste nel trovare una soluzione ammissibile che sia un **ottimo globale** ovvero un vettore $* \in X$ tale che:

$$f(x^*) \le f(x) \ \forall x \in X \ se \ opt = \min$$

$$f(x^*) \ge f(x) \ \forall x \in X \ se \ opt = \max$$

Quando il problema è molto difficile da risolvere possiamo accontentarci di un ottimo locale, vale a dire un $\hat{x} \in X$ tale che, fissato un $\varepsilon > 0$ opportuno si ha che (per problemi di minimo e massimo):

$$f(\hat{x}) \le f(x) \ \forall x \in X : |||x - \hat{x}|| \le \varepsilon \ se \ opt = \min$$

$$f(\hat{x}) \ge f(x) \ \forall x \in X : \||x - \hat{x}|| \le \varepsilon \ se \ opt = \max$$

Un problema di ottimizzazione può avere più ottimi locali e globali e i punti di ottimo globale sono anche di ottimo locale.

Esempio 5. abbiamo la funzione obiettivo:

$$\min_{x,y}((x-0.2)^2 + y^2)$$

con i 3 vincoli:

$$x + y \le 1$$
$$x \ge 0$$
$$y \ge 0$$

In viola si ha la funzione obiettivo tridimensionale e convessa e in azzurro la regione ammissibile

si ha solo un minimo globale. Si possono usare le **curve di livello** che sono le proiezioni ortogonali sul piano cartesiano ottenute intersecando il piano z con il grafico della funzione.

In generale si useranno tecniche numeriche anche se si ha che una funzione convessa ha un solo minimo globale

Esempio 6. abbiamo la funzione obiettivo:

$$\min_{x}(0.2x^{2} + (1 - \cos(\pi x)))$$

con i 2 vincoli:

$$x \ge 5$$

$$y \ge 0$$

e si ha il seguente grafico:

si ha il coseno quindi si ha una funzione nè concava nè convessa si ha quindi un ottimo globale e 4 locali

Si ha:

• programmazione lineare (PL), con obiettivo e vincoli lineari:

$$opt \, f(x) = c^T x$$

$$X = \{x \in \mathbb{R}^n : g_i(x) \{ \le, =, \ge \} 0, \ i = 1, \dots m \ g_i(x) = a_i^T x - b_i \}$$

• programmazione lineare intera (PLI), con obiettivo e vincoli lineari interi:

$$opt f(x) = c^T x$$

$$X = \{x \in \mathbb{Z}^n : g_i(x) \{ \le, =, \ge \} 0, \ i = 1, \dots m \ g_i(x) = a_i^T x - b_i \}$$

• programmazione non lineare (PNL), con obiettivo e vincoli $g_i(x)$ non lineari:

opt
$$f(x)$$

$$X = \{x \in \mathbb{R}^n : g_i(x) \{ \le, =, \ge \} 0, \ i = 1, \dots m \ g_i(x) = a_i^T x - b_i \}$$

Esempio 7. abbiamo la funzione obiettivo:

$$\min_{x,y}(x^2+y^2)$$

con i 3 vincoli:

$$x + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

non è lineare in quanto x e y sono al quadrato e quindi non lineare

Esempio 8. abbiamo la funzione obiettivo:

$$\min_{x,y}(x+y)$$

con i 2 vincoli:

$$x^2 - 1 \ge 0$$

$$y \ge 0$$

non è lineare in quanto ho un vincolo al quadrato e quindi non lineare

Esempio 9. abbiamo la funzione obiettivo:

$$\min_{x,y}(x+4y)$$

con i 4 vincoli:

$$x + y = 3$$

$$x^2 - 1 \ge 0$$

$$x \ge 0$$

$$y \ge 0$$

non è lineare in quanto ho un vincolo al quadrato e quindi non lineare ma posso renderlo lineare in quanto $x^2 - 1 = (x - 1)(x + 1)$ ma x + 1 è sempre positivo quindi posso ammorbidire il vincolo rendendo il problema lineare

Ingredienti	Disponibilità massima	Costo x litro
Rum chiaro	61	15 €
Cola	15 1	1 €
Limone	3 I	2.5 €

Esempio 10.

Le dosi ideali sono: almeno il 25% di rum (R) chiaro e il 50% di Cola (C) e non più del 10% di limone (L) e voglio 10L di cubalibre. Abbiamo quindi, per logica:

 $C \ge 0$

 $L \ge 0$

 $R \leq 6$

 $C \le 15$

 $L \leq 3$

quindi:

$$0 \le C \le 15$$

$$0 \le L \le 3$$

inoltre:

$$R + C + L \ge 10$$

che è:

$$R+C+L-10 \geq 0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} R \\ C \\ L \end{bmatrix} - 10 \geq 0$$

quindi:

$$a_1^T = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, x = \begin{bmatrix} R \\ C \\ L \end{bmatrix}, b_1 = 10$$

Cosa vuol dire almeno il 25% di rum chiaro?

$$R \ge 0.25 \cdot (R + C + L)$$

Cosa vuol dire almeno il 50% di cola?

$$R > 0.5 \cdot (R + C + L)$$

Cosa vuol dire almeno il 25% di limone?

$$R \ge 0.1 \cdot (R + C + L)$$

che sono vincoli lineari. quindi il costo è:

$$\min_{R,C,L} (15R + C + 2.5L)$$

che è una funzione obiettivo lineare. Osserviamo che la funzione obiettivo può essere scritta anche nella seguente forma compatta:

$$\min c^t x, \ con \ c^t = \begin{bmatrix} 15 & 1 & 2.5 \end{bmatrix} \ e \ x = \begin{bmatrix} R \\ C \\ L \end{bmatrix}$$

Ora riscriviamo in forma matriciale:

 $\min cx$

$$Ax \ge b$$

con:

$$c = \begin{bmatrix} 15 & 1 & 2.5 \end{bmatrix}$$
$$x = \begin{bmatrix} R \\ C \\ L \end{bmatrix}$$

la prima riga sarà $R + C + L \ge 10$

la seconda sarà $R \ge 0.25 \cdot (R + C + L) \ge 0 \to (1 - 0.25)R - 0.25R - 0.25L$

la terza sarà $C \ge 0.5 \cdot (R + C + L) \ge 0 \to -0.5R + (1 - 0.5)C - 0.5L$

la quarta sarà $L \geq 0.1 \cdot (R+C+L) \geq 0 \rightarrow -0.1R - 0.25C + 0.9(1-0.1)L$

la quinta sarà $0 \le R \le 6 \to -R \ge -6$

la sesta sarà $0 \le C \le 15 \to -C \ge -6$

la settima sarà $0 \le L \le 3 \to -L \ge -6$

e quindi:

$$Ax = \begin{bmatrix} 1 & 1 & 1 \\ 0.75 & -0.25 & -0.25 \\ -0.5 & 0.5 & -0.5 \\ 0.1 & 0.1 & -0.9 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} R \\ C \\ L \end{bmatrix} \ge \begin{bmatrix} 10 \\ 0 \\ 0 \\ -6 \\ -15 \\ -3 \end{bmatrix}$$

Esempio 11. Si ha che:

Il comprare o no un videogioco può essere modellizzato per mezzo di variabili decisionali binarie associate ad ogni gioco usando variabili binarie:

$$x_i \in \{0, 1\} i = 1, \dots n$$

 $con x_i = 1 \ si \ compra \ con x_i = 0 \ no.$

Non superare il budget massimo di 100 euro può essere espresso dalla seguente relazione:

$$39,99 \cdot x_1 + 39,99 \cdot x_2 + 59,99 \cdot x_3 + 59,99 \cdot x_5 + 19,99 \cdot x_5 + 29,99 \cdot x_6 + 150$$

Non superare la memoria massima può essere espresso dalla seguente relazione:

$$30 \cdot x_1 + 40 \cdot x_2 + 12 \cdot x_3 + 46 \cdot x_5 + 12 \cdot x_5 + 70 \cdot x_6 = 150$$

e sono vincoli lineari.

Volere i giochi che più ci piacciono si esprime nel sequente modo:

$$\max(2 \cdot x_1 + 5 \cdot x_2 + 2 \cdot x_3 + 5 \cdot x_4 + 3 \cdot x_5 + 5 \cdot x_6)$$

che è una funzione obiettivo lineare.

Volere i giochi che più ci piacciono, avendo 200 euro di budget e 100GB si spazio corrisponde a:

$$\max(2 \cdot x_1 + 5 \cdot x_2 + 2 \cdot x_3 + 5 \cdot x_4 + 3 \cdot x_5 + 5 \cdot x_6)$$

Si tratta, quindi, di un problema di programmazione lineare a variabili binarie, che sono un caso particolare di variabili intere. Un modello di ottimizzazione di questo tipo prende il nome di Problema dello zaino (Knapsack)

altri esempi sulle slide

Esempio 12. Partendo dai dati di vendita di avatar capire se Endgame supererà gli incassi di avaatar, sapendo gli incassi dei primi giorni. Vogliamo costruire una retta di regressione lineare che interpoli i dati:

$$y = ax + b, \ a, b \in \mathbb{R}$$

Bisogna calcolare la retta di regressione corrisponde al seguente problema di ottimizzazione non vincolata:

$$\min_{a,b} \left[\frac{1}{2} \sum_{i=1}^{n} (y_i - ax_i - b)^2 \right]$$

e quindi si ha funzione obiettivo non-lineare con a,b variabili continue. Cerco quindi la retta di regressione partendo dai primi dati e ipotizzo una previsione e cerco a e b:

 $Questo \ \grave{e} \ un \ problema \ di \ ottimizzazione \ non \ vincolata \ e \ non \\ lineare$

altri esempi sulle slide

2.1.1 Esercizio

Esercizio 1. testo:

La Svivon produce batterie elettriche di tre tipi (Alfa, Beta e Gamma). Per due di esse (Beta e Gamma) utilizza del rame. Per coprire la produzione del prossimo mese, può acquistare il rame al prezzo di 5 euro/kg. Il fornitore però non può fornire più di 4000 kg di rame. Nella seguente tabella sono indicate: la quantità di rame richiesta per ciascuna batteria, i costi di manodopera (per batteria prodotta) e prezzi di vendita al pubblico (per batteria):

Batterie	Rame (kg/batteria)	Costi manodopera	Prezzi di vendita	
Alfa	-	12	25	
Beta	1	6	20	
Gamma	2	4	30	

(costi e manodopera sono entrambi in euro/batteria) Si suppinga che ogni batteria prodotta sia anche venduta.

I tre tipi di batteria vogliono essere prodotti in quantità tali che il numero di batterie di tipo Alfa sia almeno doppio del numero di batterie di tipo Beta e non superiore al numero di batterie Gamma. Formulare un opportuno modello di programmazione lineare per la pianificazione ottimale dell'attività diproduzione della Svivon.

Soluzione:

Innazitutto partiamo dal'ultima frase e definiamo le relazioni tra i tipi di batteria. Definiamo x_i il numero di batterie di tipo $i \in I$, con $I = \{\alpha, \beta, \gamma\}$ insieme degli indici. Cerchiamo ora funzione obiettivo e vincoli.

Suppongo di produrre una batteria di tipo α , avrò un guadagno effettivo pari a guadagno meno costi: 25-12=13. Per le β si avrà, avendo anche il costo del rame di 5 euro al kilo, $20-6-5\cdot 1=9$. Per le γ sarà $30-4-5\cdot 2=16$. L'azienda ovviamente vuole guadagnare di più, dobbiamo massimizzare il profitto. Il profitto delle α sarà $13x_{\alpha}$, per le β sarà $9x_{\beta}$ e per le γ sarà $16x_{\gamma}$. Quindi si avrà la seguente funzione obiettivo:

$$\max(z) = 13x_{\alpha} + 9x_{\beta} + 16x_{\gamma}$$

con i sequenti vincoli (ricordando che solo le β e le γ usano il rame):

$$\begin{cases} x_{\alpha} \ge 2x_{\beta} \\ x_{\alpha} \le x_{\gamma} \\ x_{\beta} + 2x_{\gamma} < 4000 \end{cases}$$

Bisogna specificare che le variabili non sono continue, quindi aggiungiamo un vincolo di interezza:

$$x_i \in \mathbb{N}, \, \forall i \in I$$

E abbiamo risolto le richieste dell'esercizio

Esercizio 2. Testo:

Un'industria con dueimpianti produttivi localizzati a Rimini e Firenze è interessata a sapere qual è l'organizzazione ottimale della propria rete distributiva, in modo da ottimizzare la consegna dei prodotti presso letreprincipali città di distribuzione:Palermo, Milano e Roma. La capacità produttiva dei due impianti di produzione è la seguente: Rimini 300, Firenze 600. La domanda presso le tre città di distribuzione è la seguente: Palermo 325, Milano 300, Roma 275. I costi associati al viaggio tra gli impianti di produzione e le città di distribuzione sono dati dalla seguente tabella:

	Palermo	Milano	Roma
Rimini	2500	1700	1800
Firenze	2500	1800	1400

Formulare un modello di Programmazione lineare che permetta di pianificare lo spostamento ottimale dei prodotti dagli impiantialle cittàdi distribuzione in modo tale da minimizzare i costi di viaggio

Solutione:

Sugli archi ho i costi di trasporto.

Definisco due insiemi indici, uno $I = \{RN, FI\}$ con le città di partenza, e uno $J = \{PA, MI, RM\}$ con le città d'arrivo.

Quindi le varfiabili $x_{i,j}$ indicano il numero di prodotti trasportati da dalla città $i \in I$ a quella $j \in J$.

Avrò la seguente funzione obiettivo:

$$\min(z) = 2500x_{RN,PA} + 1700x_{RN,MI} + \dots + 1400x_{FI,RM}$$

che può essere scritta in maniera compatta definendo il dato $c_{i,j}$ come il costo di trasporto tra le due città i e j, ottenendo:

$$\min(z) = \sum_{i} \sum_{j} c_{i,j} x_{i,j}$$

Cerchiamo ora i vincoli. A Rimini possono uscire 300 prodotti:

$$x_{RN,PA} + x_{RN,MI} + x_{RN,RM} = 300$$

una cosa simile va fatta per Firenze.

Per le città di arrivo vediamo l'esempio di Palermo:

$$x_{RN,PA} + x_{FI_PA} = +325$$

similmente per Milano e Roma.

Questi vincoli possono essere compattati a livello di sintassi, indicando con b_i il numero di prodotti spedibili da una città $i \in I$:

$$\sum_{i \in I} x_{i,j} = b_i, \ \forall i \in I$$

e indicando con b_j il numero di prodotti ricevibili da una città $j \in J$:

$$\sum_{i \in I} x_{i,j} = b_j, \ \forall j \in J$$

e aggiungiamo il vincolo per l'interezza:

$$x_{i,j} \in \mathbb{N}, \ \forall (i,j) \in I \times J$$

2.2 Soluzione Grafica

Consideriamo un problema di programmazione lineare. Abbiamo la seguente funzione obiettivo:

$$opt f(x) = c^T x$$

con i seguenti vincoli lineari:

$$X = x \in \mathbb{R}^n : g_i(x) \{ \le, =, \ge \} 0, i = 1 \dots m$$

con:

$$g_i(x) = a_i^T x - b_i, \ a \in \mathbb{R}, b \in \mathbb{R}^m, \ c \in \mathbb{R}^n, \ opt = \{min, max\}$$

I problemi di ottimizzazione reali si presentano in forma PL se sono verificate le seguenti ipotesi:

- proporzionalità: il contributo di ogni variabile decisionale al valore della funzione obiettivo è proporzionale rispetto al valore assunto dalla variabile stessa
- additività: ogni funzione è la somma dei contributi delle variabili
- continuità: qualunque valore delle variabili in \mathbb{R}^n è accettabile

Diamo due definizioni:

• in uno spazio euclideo un **insieme convesso** è un insieme nel quale, per ogni coppia di punti, il segmento che li congiunge è interamente contenuto nell'insieme

• in uno spazio euclideo un **insieme non convesso** è un insieme nel quale, per ogni coppia di punti, il segmento che li congiunge non è interamente contenuto nell'insieme

Tornando al problema iniziale iniziamo a studiare il caso **2D**. In questo caso si ha che:

• i vinvoli $g_i(x)$ possono essere rette (se $g_i(x) = 0$) o semipiani (se $g_i(x) \neq 0$)

- la regione ammissibile X risulta essere un sottoinsieme convesso del piano cartesiano
- la funzione obiettivo $z = c_1 x_1 + c_2 x_2$ è un piano nello spazio \mathbb{R}^3

assumiamo inoltre, senza perdere generalità, un vincolo di non negatività delle variabili, ovvero $x_1, x_2 \ge 0$.

Un vincolo del tipo $a_1x_1 + a_2x_2 = b_1$ è una retta nel piano, con l'inclinazione che è perpendicolare al vettore $v = (a_1, a_2)$:

Questo viene detto vincolo retta.

Studiamo ora il **vincolo semipiano**, che è un vincolo del tipo $a_1x_1 + a_2x_2 \le b_1$ (che è appunto un semipiano).

Per disegnare il semipiano disegnamo prima la retta associata $a_1x_1 + a_2x_2 = b_1$. Scegliamo poi un punto non appartenente a tale retta e:

- se il punto verifica la disuguaglianza allora scegliamo il semipiano che lo contiene
- altrimenti scegliamo un altro semipiano

Esempio 13. Si ha $x_1 + x_2 \le 2$. Disegnamo quindi $x_1 + x_2 = 2$, scegliamo il punto (0,0) e, essendo $0+0 \le 2$ abbiamo che il punto soddisfa la disequazione e quindi il semipiano contiene (0,0)

Un vincolo del tipo $a_1x_1 + a_2x_2 \ge b_1$ è uguale a $-a_1x_1 - a_2x_2 \le -b_1$

La regione ammissibile X è data dall'intersezione dei vari vincoli (rette e semipiani) e quindi, dal punto di vista geometrico corrisponde ad un **poliedro convesso** in \mathbb{R}^2 , e può essere limitata (**politopo**) o illimitata

Esempio 14. Consideriamo il seguente problema di ottimizzazione:

$$z = -x_1 + x_2$$

con i vincoli:

$$x_1 + x_2 \le 4, x_1 \ge 0, x_2 \ge 0$$

Riscriviamo la funzione obiettivo come $x_2 = x_1 + z$, che rappresenta un fascio di rette parallele al variare di z, che all'aumentare si spostano verso il punto (0,4), oltre il quale si esce dalla regione ammissibile. Quindi la soluzione ottima è il punto (0,4) che rappresenta un vertice della regione ammissibile (poligono convesso):

Vediamo il caso 3D.

la funzione obiettivo $z = c_1 z_1 + c_2 x_2$ rappresenta un piano nello **spazio 3D** passante per l'origine e, in particolare, se $c_1, c_2 > 0$ allora il piano cresce da sinistra verso destra dal basso verso l'alto:

La funzione obiettivo $z = c_1x_1 + c_2x_2$ rappresenta un piano nello spazio 3D passante per l'origine, in particolare, se $c_1, c_2 < 0$, allora il piano cresce da destra verso sinistra dall'alto verso il basso:

Invece se $c_1>0$ e $c_2<0$ allora il piano cresce da sinistra verso destra, dall'alto verso il basso:

Invece se $c_1 < 0$ e $c_2 > 0$ allora il piano cresce da destra verso sinistra, dal basso verso l'alto:

È possibile individuare il punto di massimo (minimo) del problema di programmazione lineare (PL) seguendo la direzione di crescita (decrescita) della funzione obiettivo all'interno della regione ammissibile.

Si possono avere 3 situazioni:

- 1. il problema PL ammette **un'unica soluzione ottima** in un vertice del poligono convesso che delimita la regione ammissibile
- 2. il problema PL ammette **infinite soluzioni ottime** in un lato del poligono convesso che delimita la regione ammissibile se la direzione di descrescita è perpendicolare ad un lato del poligono
- 3. il problema PL **non ammette soluzione** perché la regione ammissibile è illimitata e la funzione obiettivo è illimitata superiormente (se è di massimizzazione) o illimitata inferiormente (se è di minimizzazione)

Esempio 15. La società WYNDOR GLASS Co. realizza prodotti in vetro di alta qualità tra cui finestre e porte in vetro. Essa possiede tre stabilimenti. Lo Stabilimento 1 produce telai in alluminio, lo Stabilimento 2 produce telai in legno, mentre lo Stabilimento 3 produce il vetro e assembla i prodotti. I dirigenti della società hanno deciso di rinnovare la linea di produzione con il lancio di due nuovi prodotti:

• Prodotto 1: una porta in vetro con intelaiatura in alluminio

• Prodotto 2: una finestra con intelaiatura in legno

Il guadagno stimato per i due nuovi prodotti è di 3000\$ e 5000\$ rispettivamente per lotto. Nella seguente tabella è rappresentato il tempo di produzione richiesto ed il tempo massimo disponibile per lotto nei 3 stabilimenti per i due nuovi prodotti:

Stabilimento	Tempo di produzione richiesto per il Prodotto I	Tempo di produzione richiesto per il Prodotto 2	Tempo di produzione disponibile
T .	1	0	4
2	0	2	12
3	3	2	18

Risolviamo usando il metodo matematico.

Indichiamo con x_1 e x_2 il numero di lotti per il primo ed il secondo prodotto rispettivamente (**variabili decisionali**). Queste due variabili chiaramente non negative e quindi $x_1, x_2 \in \mathbb{R}^+$ (anche se i lotti sono quantità intere in questo caso si può pensare le due quantità come tassi di produzione nel tempo e quindi come delle quantità continue) Quindi si ha:

- il tempo richiesto dallo Stabilimento 1 per produrre il prodotto 1 è dato da $1 \cdot x_1$
- il tempo richiesto dallo Stabilimento 2 per produrre il prodotto 1 è dato da $1 \cdot x_2$
- il tempo richiesto dallo Stabilimento 3 per produrre il prodotto 1
 e 2 è dato da 3 · x₁ + 2₂

aggiungiamo i vincoli sulle disponibilità massime di produzione:

$$1 \cdot x_1 \le 4$$
$$2 \cdot x_2 \le 12$$
$$3_1 + 2 \cdot x_2 \le 18$$

che si aggiungono a:

$$x_1, x_2 > 0$$

con la funzione obiettivo, per massimizzare i profitti, che è:

$$\max_{x_1, x_2} z = (3000 \cdot x_1 + 5000 \cdot x_2) = (3 \cdot x_1 + 5 \cdot x_2)$$

ho ottenuto quindi il mio modello matematico. Si tratta, quindi, di un problema di programmazione lineare a variabili continue con 3 vincoli (più 2 vincoli di non negatività) con la regione ammissibile che è un poligono convesso limitato

Si ha che la funzione obiettivo crescente lungo la direzione positiva degli assi x_1 e x_2 e si ottiene che il valore che massimizza la funzione obiettivo (con z > 0) è (2,6) dove z = 36.

Essendo la regione ammissibile finita e non vuota, per qualsiasi valore del profitto dei due prodotti si ottiene sempre almeno una soluzione ottima del problema (potrebbero essere infinite):

2.2.1 esercizi

Esempio 16. test:

Nell'intorno di un atomo l'energia di interazione tra l'atomo stesso e un altro atomo sonda che gli viene avvicinato, è data dalla formula

$$E = \frac{A}{r^{12}} - \frac{B}{r^{6'}}$$

dove A e B sono parametri caratteristici dell'atomo mentre rappresenta la distanza Euclidea tra l'atomo e la sonda. È data una configurazione tridimensionale di alcuni atomi, supposti puntiformi e si vuole trovare il punto

di minima energia a cui la sonda(anch'essa considerata puntiforme) tende a stabilizzarsi per effetto delle interazioni con gli atomi stessi. Sono dati 5 atomi, posizionati come in Tabella e con i relativi valori di A e B. Si vuole determinare la posizione ottimale dell'atomo sonda al fine di minimizzare l'energia complessiva

Atomo	x	У	Z	Α	В
1	3.2	2.5	4.8	1.0	200

2	6.6	1.2	4.5	3.0	250
3	8.5	7.8	1.5	1.5	100
4	0.8	5.1	5.6	0.5	400
5	4.1	9.3	0.9	1.7	500

Si descriva il modello matematico per esprimerela ricerca della soluzione di tale problema **soluzione**:

2.3 Simplesso

Consideriamo nuovamente un generico problema di programmazione lineare (PL) con la seguente funzione obiettivo lineare:

$$opt f(x) = C^T x$$

con i seguenti vincoli lineari:

$$X = x \in \mathbb{R}^n : g_i(x) \{ \leq, =, \geq \} 0, i = 1 \dots m$$

che può essere riscritto nella seguente **forma standard** (che è un problema di massimo):

$$\max c^T x$$

tale che $Ax = b, x \ge 0$, con:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, c = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$$

rispettivamente vettore colonna $n \times 1$, vettore colonna $m \times 1$, matrice $m \times n$ e vettore riqa $m \times 1$.

Per convenzione $b \geq 0$ quindi le b_i sono positive.

Ogni problema PL può essere riscritto in forma standard, infatti:

- $\min c^T x \to -\max(-c^T x)$ quindi esprimo un problema di minimo come un problema di massimo
- $a_i^T \leq b_i \rightarrow a_i^T + s_i = b_i$, con $s_i \geq 0$ che è è una nuova variabile che prende il nome di **variabile di slack**. Quindi esprimo un vincolo di disuguaglianza come uno di uguaglianza, introducendo una nuova variabile
- $a_i^T \geq b_i \rightarrow a_i^T s_i = b_i$, con $s_i \geq 0$ che è è una nuova variabile che prende il nome di **variabile di surplus**. Quindi esprimo un vincolo di disuguaglianza come uno di uguaglianza, introducendo una nuova variabile
- se $x_i \in \mathbb{R}$ (variabile intera) allora si possono definire due nuove variabili u_i e v_i tali che:

$$-u_i \ge 0$$

$$-v_{i} > 0$$

$$-x_i = u_i + v_i$$

Quindi esprimo una variabile libera attraverso una combinazione di variabili non negative, inoltre un'altra possibilità consiste nel ricavare l'espressione di tale variabile da uno dei vincoli del problema, eliminare tale vincolo del modello e sostituire tale espressione laddove compaia la variabile libera.

Esempio 17.

Notiamo che passiamo da un problema con 2 variabili ad uno con 5 variabili

Esempio 18.

Notiamo che passiamo da un problema con 3 variabili ad uno con 6 variabili. Inoltre, essendop x_3 libera la sostituiamo con $x_3 = u_3 - v_3$ Possiamo anche ricavare x_3 dal secondo vincolo una volta introdotta la variabile di surplus, ottenendo $x_3 = -3x_1 + s_2 + 1$:

Esempio 19. Riprendiamo il modello matematico relativo alla società Wyndor Glass Co.:

$$\max_{x_1, x_2} (3 \cdot x_1 + 5 \cdot x_2)$$
soggetto a:
• $x_1 \le 4$
• $2 \cdot x_2 \le 12$
• $3 \cdot x_1 + 2 \cdot x_2 \le 18$
• $x_1, x_2 \ge 0$

$$\max_{x_1, x_2} (3 \cdot x_1 + 5 \cdot x_2)$$
soggetto a:
• $x_1 + s_1 = 4$
• $2 \cdot x_2 + s_2 = 12$
• $3 \cdot x_1 + 2 \cdot x_2 \le 18$
• $x_1, x_2 \ge 0$

ogni sistema di vincoli della forma $Ax \leq b$ viene trasformato nel sistema:

$$\begin{bmatrix} A & I \end{bmatrix} [xx_s] = b$$

con I che è una matrice identità di dimensione $m \times m$ e x_s sono m variabili di slack.

Se il numero di vincoli m di A è strettamente maggiore del numero di variabili n, allora:

- se il rango di A è maggiore di n il sistema Ax = b non ha soluzione, come conseguenza di Rouchè-Capelli
- se il rango A è n allora ho m-n vincoli ridondanti
- se il numero di righe A è uguale al numero di colonne (matrice quadrata) allora:
 - se $det(A) \neq 0$ esiste un'unica soluzione del problema Ax = b. Se tale soluzione ha tutte le componenti non-negative allora è anche la soluzione ottimale del problema. Altrimenti il problema non ha soluzione
 - se det(A) = 0 il sistema non ammette soluzioni o uno dei vincoli è ridondante

2.4 Metodo del Simplesso

Questo metodo è stato ideato da G. Dantzig nel 1947 ed è considerato uno dei dieci migliori algoritmi del 900.

Questo algoritmo ha:

- nel caso medio tempo computazionale lineare rispetto al numero delle variabili
- nel caso peggiore ha tempo computazionale esponenziale

È comunque uno dei più efficienti algoritmi per risolvere un problema PL. Partiamo dal solito modello matematico relativo alla società WYNDOR GLASS & Co:

$$\max x_1, x_2 z = (3x_1 + 5x_2)$$

con:

$$x_1 \le 4, \ 2x_2 \le 12, \ 3x_1 + 2x_2 \le 18, \ x_1 \ge 0, \ x_2 \ge 0$$

che è un PL a variabili continue con 5 vincoli, 3 funzionali e 2 di non negatività. Il valore che massimizza è (2,6)

Partiamo ad analizzare i concetti geometrici. Per un vincolo, l'equazione della frontiera è ottenuta sostituendo i \geq e \leq con =, otteniamo quindi:

$$x_1 = 4$$
, $2x_2 = 12$, $3x_1 + 2x_2 = 18$, $x_1 = 0$, $x_2 = 0$

Ricordiamo che in due dimensioni una frontiera corrisponde ad una retta mentre nello spazio n-dimensionale la frontiera corrisponde ad un iperpiano

Un **vertice ammissibile** è una soluzione ammissibile che non è presente su nessun segmento che congiunge altre due soluzioni ammissibili. *i vertici di un poligono convesso non possono essere mai ottenuti da una combinazione convessa di altri 2 punti del poligono*. In 2 dimensioni ogni vertice ammissibile è l'intersezione delle frontiere di 2 vincoli mentre in *n* dimensioni ogni vertice ammissibile è l'intersezione delle frontiere di n vincoli Nell'esempio sopra si hanno 8 vertici di cui 5 ammissibili e 3 no:

e il vertice C è ammissibile ed è dato dall'intersezione della frontiera $2x_1=12$ con $3x_1+2=18$.

n un problema PL 2D, due vertici si dicono **adiacenti** se sono vertici di un medesimo segmento (la frontiera di uno dei vincoli) della regione ammissibile. Per un problema di PL con n variabili, due vertici si dicono adiacenti se condividono le frontiere di n-1 vincoli. Essi sono collegati attraverso un segmento, chiamato **spigolo** della regione ammissibile

Dove la linea rossa è la frontiera di $x \ge 0$. Si hanno i seguenti vertici adiacenti:

Vertici	Vertici Adiacenti
(0,0)	(0,6); (4,0)
(0,6)	(2,6);(0,0)
(2,6)	(4,3); (0,6)
(4,3)	(4,0);(2,6)
(4,0)	(0,0);(4,3)

Vediamo ora il teorema fondamentale della PL:

Teorema 1. Dato un generico problema PL:

- 1. se esiste una sola soluzione ottima (per esempio se X è non vuoto e limitato), allora deve essere un vertice ammissibile
- 2. se esistono soluzioni ottime multiple e la regione ammissibile è limitata, allora almeno due soluzioni ottime sono vertici adiacenti ammissibili

Si ha che il numero di vertici ammissibili è finito.

Nel caso in esame, questo è una conseguenza del fatto che ogni vertice è l'intersezione di 2 delle 5 frontiere del problema e, quindi, il numero massimo di combinazioni differenti di 5 equazioni considerate 2 alla volta è dato da:

$$\binom{5}{2} = 10$$

e nel nostro caso ne abbiamo 8 di cui 5 ammissibili.

2.4.1 Test di Ottimalità

i consideri un qualunque problema di PL che possieda almeno una soluzione ottima (ad esempio se X è non vuoto e limitato). Se un vertice ammissibile non ha nessun vertice adiacente migliore (in termini di funzione obiettivo), allora tale vertice è la soluzione ottima.

Riprendendo l'esempio solito il vertice A ha i due vertici adiacenti B e E che sono migliori e quindi A non è migliore. C ha gli adiacenti B e D peggiori e quindi è la souzione ottima del problema:

Vediamo ora una simulazione del metodo del simplesso dal punto di vista geometrico:

1. **inizializzazione**, dove si sceglie (0,0) come vertice inziale:

2. **test di ottimalità:** (0,0) non è una soluzione ottimale ma esistono soluzioni adiacenti migliori

Capitolo 2. Introduzione alla Ricerca Operativa 2.4. Metodo del Simplesso

3. **prima iterazione**, mi sposto su (0,6)

4. **test di ottimalità:** (0,6) non è soluzione ottimale. Esistono soluzioni adiacenti migliori

5. seconda iterazione, mi sposto su (2,6)

6. **test di ottimalità**, (2,6) è la soluzione ottimale in quanto non esistono vertici migliori adiacenti

7. fine procedura, termina dopo solo 2 iterazioni visitando 3 vertici su $5\,$

Questo metodo è iterativo e si concentra solo sui vertici. Se possibile, si sceglie come vertice iniziale l'origine:

Un'iterazione del metodo del simplesso corrisponde a muoversi dal vertice corrente ad uno adiacente migliore. Il metodo del simplesso si ferma nel momento in cui non vi sono più vertici adiacenti migliori.

Vediamo ora i concetti algebrici del simplesso.

a procedure algebrica per il metodo del simplesso, prevede di scrivere il problema PL in forma standard. Considerando il solito problema si avrebbe:

Questa nuova forma si chiama **forma aumentata**, in quanto sin introducono le 3 variabili s_1, s_2, s_3 .

Abbiamo quindi ottenuto una forma del tipo:

$$Ax = b$$

dove A è una matrice 3×5 e si passa da 3 a 5 variabili (2 originali più 3 di slack).

$$A = \begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 3 & 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 12 \\ 18 \\ 4 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix}$$

Definizione 3. Una soluzione aumentata è una soluzione per la quale alle variabili originali sono aggiunte le variabili di slack e corrispodne ad una soluzione del sistema Ax = b, che è sempre risolubile fissando due valori di variabili.

Esempio 20. Se consideriamo la soluzione 1,1 nella formulazione originale del problema, la soluzione aumentata è data da

Ovvero la soluzione aumentata corrisponde a (1, 1, 10, 13, 3)Se considero (0,8):

$$2 \cdot 8 + s_1 = 12$$

 $3 \cdot 0 + 2 \cdot 8 + s_2 = 18$
 $0 + s_3 = 4$
• $s_1 = -6$
• $s_2 = 0$
• $s_3 = 4$

Ovvero la soluzione aumentata corrisponde a (0,8,6,0,4) (fuori da X) Se considero (4,3):

$$2 \cdot 3 + s_1 = 12$$

 $3 \cdot 4 + 2 \cdot 3 + s_2 = 18$
 $4 + s_3 = 4$
• $s_1 = 6$
• $s_2 = 0$
• $s_3 = 0$

Definizione 4. Una **soluzione di base** ammissibile è un vertice ammissibile a cui sono aggiunti i corrispondenti valori della variabili di slack e corrisponde ad una soluzione di Ax = b tale che $x \ge 0$

Esempio 21. consideriamo il vertice (4,3) to è ammissibile e la soluzione di base ammissibile corrispondente è (4,3,6,0,0). Se considero (4,3) to non è ammissibile e la soluzione di base ammissibile corrispondente è (0,9,-6,0,0) non è ammissibile, infatti viene violato il vincolo di non negatività della variabile di slack s_1 .

Una soluzione di base ha m (numero dei vincoli del problema) variabili di base (≤ 0) e le rimanenti nm (n umero di variabili della forma aumentata) sono chiamate variabili non di base (= 0). Si ha che:

$$m \leq n$$

In una soluzione di base le variabili non di base sono nulle e i valori delle variabili di base sono ottenuti risolvendo il sistema di m equazioni.

Se una delle variabili di base è nulla, si parla di soluzione di base degenere

Definizione 5. In un problema PL due soluzioni di base si dicono adiacenti se tutte le variabili non di base tranne una sono uguali e questo implica che e variabili di base tranne una sono le stesse, anche se con valori numerici differenti

Esempio

- Consideriamo la soluzione di base associata a (0,0) ovvero (0,0,12,18,4) (variabili in base s_1, s_2 e s_3 , non in base x_1 e x_2)
- Una soluzione di base adiacente è data, ad esempio considerando x2 come variabile di base al posto di s_1

(variabili in base x_2, s_2 e s_3 , non in base s_1 e x_2)

- ightharpoonup Annullando s_1 al posto di x_2 si ottiene (quindi $x_1=0$ e $s_1=0$)

 - $2 \cdot x_2 + 0 = 12$ $3 \cdot 0 + 2 \cdot x_2 + s_2 = 18$ $0 + s_3 = 4$ $x_2 = 6$ $s_2 = 6$ $s_3 = 4$
- ➤ La nuova soluzione di base ottenuto è (0,6,0,6,4) che corrisponde al vertice adiacente (0,6)