POSITIVE HAHN-BANACH SEPARATIONS IN OPERATOR ALGEBRAS

IKHAN CHOI

ABSTRACT.

1. Introduction

- definition and properties of $f_{\varepsilon}(t) := (1 + \varepsilon t)^{-1} t$
- relation between $\{\omega' \in M_*^+ : \omega' \le \omega\}$ and $\{h \in \pi(M)'^+ : h \le 1\}$

2

Definition 2.1 (Hereditary subsets). Let E be a partially ordered real vector space. We say a subset F of the positive cone E^+ is *hereditary* if $0 \le x \le y$ in E and $y \in F$ imply $x \in F$, or equivalently $F = (F - E^+)^+$, where $F - E^+$ is the set of all positive elements of E bounded above by an element of E. A *-subalgebra E of a *-algebra E is called *hereditary* if and only if the positive cone E is a hereditary subset of E. We define the *positive polar* of E as the positive part of the real polar

$$F^{\circ +} := \{x^* \in (E^*)^+ : \sup_{x \in F} x^*(x) \le 1\}.$$

An example that is a non-hereditary closed convex subset of a C^* -algebra is $\mathbb{C}1$ in any unital C^* -algebra.

Theorem 2.2 (Positive Hahn-Banach separation for von Neumann algebras). *Let M be a von Neumann algebra*.

- (1) If F is a σ -weakly closed convex hereditary subset of M^+ , then $F = F^{\circ + \circ +}$. In particular, if $x \in M^+ \setminus F$, then there is $\omega \in M^+_*$ such that $\omega(x) > 1$ and $\omega \le 1$ on F.
- (2) If F_* is a weakly closed convex hereditary subset of M_*^+ , then $F_* = F_*^{\circ + \circ +}$. In particular, if $\omega \in M_*^+ \setminus F_*$, then there is $x \in M^+$ such that $\omega(x) > 1$ and $x \le 1$ on F_* .

Proof. (1) Since the positive polar is represented as the real polar

$$F^{\circ +} = F^{\circ} \cap M_{*}^{+} = F^{\circ} \cap (-M^{+})^{\circ} = (F \cup -M^{+})^{\circ} = (F - M^{+})^{\circ},$$

the positive bipolar can be written as $F^{\circ + \circ +} = (F - M^+)^{\circ \circ +} = \overline{F - M^+}^+$ by the usual bipolar theorem. Because $F = (F - M^+)^+ \subset (\overline{F - M^+})^+$, it suffices to prove the opposite inclusion $(\overline{F - M^+})^+ \subset F$.

Let $x \in \overline{F-M^+}^+$. Take a net $x_i \in F-M^+$ such that $x_i \to x$ σ -strongly, and take a net $y_i \in F$ such that $x_i \leq y_i$ for each i. Suppose we may assume that the net x_i is bounded. Define strongly continuous functions $f_{\varepsilon} : [-(2\varepsilon)^{-1}, \infty) \to \mathbb{R} : z \mapsto z(1 + \varepsilon z)^{-1}$ parametrized by $\varepsilon > 0$. Then, for sufficiently small ε so that the bounded net x_i has the spectra in $[-(2\varepsilon)^{-1}, \infty)$, we have $f_{\varepsilon}(x_i) \to f_{\varepsilon}(x)$ σ -strongly, and hence σ -weakly. On the other hand, by the hereditarity and the σ -weak compactness of F, we

2 IKHAN CHOI

may assume that the bounded net $f_{\varepsilon}(y_i) \in F$ converges σ -weakly to a point of F by taking a subnet. Then, we have $f_{\varepsilon}(x) \in F - M^+$ by

$$0 \le f_{\varepsilon}(x) = \lim_{i} f_{\varepsilon}(x_{i}) \le \lim_{i} f_{\varepsilon}(y_{i}) \in F,$$

thus we have $x \in F$ since $f_{\varepsilon}(x) \uparrow x$ as $\varepsilon \to 0$. What remains is to prove the existence of a bounded net $x_i \in F - M^+$ such that $x_i \to x$ σ -strongly.

Define a convex set

$$G := \{x \in \overline{F - M^+} : \exists x_m \in F - M^+, -2x \le x_m \uparrow x\} \subset M^{sa},$$

where x_m denotes a sequence. In fact, it has no critical issue for allowing x_m to be uncountably indexed. Since we clearly have $F-M^+\subset G$ and every non-decreasing net with supremum is bounded and σ -strongly convergent, it suffices to show that G, or equivalently its intersection with the closed unit ball by the Krein-Smůlian theorem, is σ -strongly closed. Let $x_i\in G$ be a net such that $\sup_i\|x_i\|\leq 1$ and $x_i\to x$ σ -strongly. For each i, take a sequence $x_{im}\in F-M^+$ such that $-2x_i\leq x_{im}\uparrow x_i$ σ -strongly as $m\to\infty$, and also take $y_{im}\in F$ such that $x_{im}\leq y_{im}$. Since $\|x_{im}\|\leq 2\|x_i\|\leq 2$ is bounded, it implies that there is a bounded net x_j in $F-M^+$ such that $x_j\to x$ σ -strongly, and we can choose arbitrarily small $\varepsilon>0$ such that $\sigma(x_j)\subset [-(2\varepsilon)^{-1},\infty)$ for all j. Since $f_\varepsilon(x_j)$ converges to $f_\varepsilon(x)$ σ -strongly and $f_\varepsilon(y_j)$ is a bounded net for each $\varepsilon>0$ so that we may assume that the net $f_\varepsilon(y_j)$ is σ -weakly covergent by taking a subnet, we have $f_\varepsilon(x)\in F-M^+$ by

$$f_{\varepsilon}(x) = \lim_{i} f_{\varepsilon}(x_{i}) \leq \lim_{i} f_{\varepsilon}(y_{i}) \in F,$$

where the limits are in the σ -weak sense. By taking ε as any decreasingly convergent sequence to zero, we have $x \in G$, hence the closedness of G.

(2) It suffices to prove $(\overline{F}_* - M_*^+)^+ \subset F_*$, so we begin our proof by fixing $\omega \in (\overline{F}_* - M_*^+)^+$. Since the norm closure and the weak closure of the convex set $F_* - M_*$ coincide, we have a sequence $\omega_n \in F_* - M_*^+$ such that $\omega_n \to \omega$ in norm of M_* , and we can take $\varphi_n \in F_*$ such that $\omega_n \leq \varphi_n$ for all n. By modifying ω_n into $\omega_n - (\omega_n - \omega)_+ \in F_* - M_*^+$ and taking a rapidly convergent subsequence, we may assume $\omega_n \leq \omega$ and $\|\omega - \omega_n\| \leq 2^{-n}$ for all n. If we consider the Gelfand-Naimark-Segal representation $\pi: M \to B(H)$ associated to a positive normal linear functional $\omega + \sum_n (\omega - \omega_n)$ on M with the canonical cyclic vector Ω , we can construct commutant Radon-Nikodym derivatives $h, h_n, k_n \in \pi(M)'$ of $\omega, \omega_n, \varphi_n$ respectively. Since $-1 \leq h_n \leq h$ is bounded, $h_n \to h$ in the weak operator topology of $\pi(M)'$. By the Mazur lemma, we can take a net h_i by convex combinations of h_n such that $h_i \to h$ strongly in $\pi(M)'$, and the corresponding linear functionals ω_i and φ_i satisfy $\omega_i \leq \varphi_i$ with $\varphi_i \in F_*$ by the convexity of F_* so that $\omega_i \in F_* - M_*^+$. The net h_i can be taken to be a sequence in fact because $\pi(M)'$ is σ -finite, but it is not necessary. For each i and $0 < \varepsilon < 1$, define

$$h_{\varepsilon} := f_{\varepsilon}(h), \quad h_{i,\varepsilon} := f_{\varepsilon}(h_i), \quad k_{i,\varepsilon} := f_{\varepsilon}(k_i)$$

in $\pi(M)'$, where the functional calculus $f_{\varepsilon}(h_i)$ can be defined because $h_i \geq -1$ for all i, and define k_{ε} as the σ -weak limit of the bounded net $f_{\varepsilon}(k_i)$, which may be assumed to be σ -weakly convergent. Define $\omega_{\varepsilon}, \omega_{i,\varepsilon}, \varphi_{i,\varepsilon}$, and φ_{ε} as the corresponding normal linear functionals on M to $h_{\varepsilon}, h_{i,\varepsilon}, k_{i,\varepsilon}$, and k_{ε} . Note that $\varphi_i \in F_*$. The hereditarity of F_* and $0 \leq \varphi_{i,\varepsilon} \leq \varphi_i$ imply $\varphi_{i,\varepsilon} \in F_*$, and the weak closedness of F_* and the weak

convergence $\varphi_{i,\varepsilon} \to \varphi_{\varepsilon}$ in M_* imply $\varphi_{\varepsilon} \in F^*$. From $\omega_i \leq \varphi_i$, we can deduce $0 \leq \omega_{\varepsilon} \leq \varphi_{\varepsilon}$ by considering the operator monotonicity f_{ε} and taking the weak limit on i. Thus again, the hereditarity of F_* implies $\omega_{\varepsilon} \in F^*$, and the weak closedness of F_* and the weak convergence $\omega_{\varepsilon} \to \omega$ in M_* imply $\omega \in F^*$.

3

Lemma 3.1. Let A be a C^* -algebra, and let F^* be a weakly* closed convex hereditary subset of A^{*+} . If $\omega_i \in F^* - A^{*+}$ is a net such that $\omega_i \to \omega$ weakly* in A^* , and if there is $\widetilde{\omega} \in A^{*+}$ such that $-\widetilde{\omega} \leq \omega_i$ for all i, then for any $\delta > 0$ there is a sequence $\omega_n \in F^* - A^{*+}$ such that $\omega - \delta \widetilde{\omega} \leq \omega_n \uparrow \omega$ weakly in A^* .

Proof. Let $\varphi_i \in F^*$ be a net such that $\omega_i \leq \varphi_i$ for all i. Consider the Gelfan-Naimark-Segal representation $\pi: A \to B(H)$ of $\widetilde{\omega}$ with the canonical cyclic vector $\Omega \in H$. Since $0 \leq \widetilde{\omega} + \omega$, the Friedrichs extension theorem defines a positive self-adjoint operator \widetilde{h} affiliated with $\pi(A)'$ such that $\pi(A)\Omega \subset \mathrm{dom}\,\widetilde{h}$ and $(\widetilde{\omega} + \omega)(a) = \langle \widetilde{h}\pi(a)\Omega, \Omega \rangle$ for all $a \in A$, and we can define the commutant Radon-Nikodym derivative of ω with respect to $\widetilde{\omega}$ by $h := \widetilde{h} - 1$, which satisfies $\omega(a) = \langle h\pi(a)\Omega, \Omega \rangle$ for all $a \in A$. Similarly, we can define the commutant Radon-Nikodym derivatives h_i, k_i of ω_i, φ_i with respect to $\widetilde{\omega}$, by the Friedrichs extension theorem.

Fix $0<\varepsilon<1$. Since $-1\le h_i$ and $0\le k_i$, the functional calculus $h_{i,\varepsilon}:=f_\varepsilon(h_i)$ and $k_{i,\varepsilon}:=f_\varepsilon(k_i)$ are well-defined. Taking a subnet, we may assume $h_{i,\varepsilon}$ and $k_{i,\varepsilon}$ are σ -weakly convergent in $\pi(A)'$, and denote by h_ε and k_ε the limits. By the operator concavity of f_ε , we may assume $h_{i,\varepsilon}\to h_\varepsilon$ and $k_{i,\varepsilon}\to k_\varepsilon$ σ -stronlgy. (It is true, but I will write more details later) Since

$$f_{c}(h) - f_{c}(h_{i}) = \varepsilon^{-1}((1 + \varepsilon h_{i})^{-1} - (1 + \varepsilon h_{i})^{-1}) = (1 + \varepsilon h_{i})^{-1}(h - h_{i})(1 + \varepsilon h_{i})^{-1}$$

and since $(1 + \varepsilon h)\pi(A)\Omega$ is dense in H because $\pi(A)\Omega$ is a core(?) of h and $1 + \varepsilon h$ is surjective, we have $f_{\varepsilon}(h) = h_{\varepsilon}$ from

$$\begin{split} &\|(f_{\varepsilon}(h) - h_{\varepsilon})(1 + \varepsilon h)\pi(a)\Omega\| \\ &\leq \|(f_{\varepsilon}(h) - f_{\varepsilon}(h_{i}))(1 + \varepsilon h)\pi(a)\Omega\| + \|(f_{\varepsilon}(h_{i}) - h_{\varepsilon})(1 + \varepsilon h)\pi(a)\Omega\| \\ &\leq \|(1 + \varepsilon h_{i})^{-1}\| \|(h - h_{i})\pi(a)\Omega\| + \|(h_{i,\varepsilon} - h_{\varepsilon})(1 + \varepsilon h)\pi(a)\Omega\| \\ &\leq (1 - \varepsilon)^{-1}\|(h - h_{i})\pi(a)\Omega\| + \|(h_{i,\varepsilon} - h_{\varepsilon})(1 + \varepsilon h)\pi(a)\Omega\| \end{split}$$

$$\begin{split} &\langle (1+\varepsilon h_i)^{-1}(h-h_i)\pi(a)\Omega,\pi(b)\Omega\rangle \\ &= \langle (1-\varepsilon h_i(1+\varepsilon h_i)^{-1})(h-h_i)\pi(a)\Omega,\pi(b)\Omega\rangle \\ &= \langle (h-h_i)\pi(a)\Omega,\pi(b)\Omega\rangle + \langle \varepsilon h_i(1+\varepsilon h_i)^{-1}(h-h_i)\pi(a)\Omega,\pi(b)\Omega\rangle \end{split}$$

When we denote by $\omega_{i,\varepsilon}$, ω_i , $\varphi_{i,\varepsilon}$, φ_i the linear functionals in A^{*sa} corresponded to $h_{i,\varepsilon}, h_i, \varphi_{i,\varepsilon}, \varphi_i$, it follows clearly that $\omega_{i,\varepsilon} \to \omega_{\varepsilon}$ and $\varphi_{i,\varepsilon} \to \varphi_{\varepsilon}$ weakly* in A^* . The inequality $\omega_{i,\varepsilon} \leq \varphi_{i,\varepsilon} \in F^*$ implies $\omega_{\varepsilon} \leq \varphi_{\varepsilon} \in F^*$. Considering the normal extension $\pi^{**}: A^{**} \to B(H)$ of the representation π , we have $\omega_{\varepsilon} \uparrow \omega$ weakly in A^* as $\varepsilon \to 0$. Then, we obtain a desired sequence ω_n by taking ε to be a decreasing sequence that

4 IKHAN CHOI

converges to zero and less than $\delta ||h||^{-1}(||h|| - \delta)^{-1}$ so that $t - \delta \leq f_{\varepsilon}(t)$ on $|t| \leq ||h||$, where $\delta < ||h||$ is assumed without loss of generality.

The following lemma is a slight generalization of the Krein-Šmulian theorem, and it can be proved as similar as the original theorem.

Lemma 3.2. Let A be a C^* -algebra, and C_n^* be a non-decreasing sequence of weakly*-closed convex subsets of A^{*sa} , whose union C_{∞}^* contains A^{*+} . If a norm closed convex subset G^* of A^{*sa} has the property that $G^* \cap C_n^*$ is weakly* closed for each n, then $G^* \cap C_{\infty}^*$ is relatively weakly* closed in C_{∞}^* .

Proof. Fix an element ω_0 of $C_\infty^* \setminus G^*$. It is enough to construct an element a of A^{sa} separating a norm open ball centered at ω_0 from G^* . Since G^* is norm closed, there exists r>0 such that $G^*\cap B(\omega_0,r)=\varnothing$. By replacing G^* to $r^{-1}(G^*-\omega_0)$ and C_n^* to $r^{-1}(C_n^*-\omega_0)$, we may assume $G^*\cap B(0,1)=\varnothing$, and the claim follows if we prove there is $a\in A^{sa}$ separating B(0,1) and G^* . The condition $A^{*+}\subset C_\infty^*$ becomes $A^{*+}-\omega_0\subset C_\infty^*$. Letting the index n start from one, we may also replace C_n^* to $n(C_n^*\cap B(0,1))$ since its union is still C_∞^* . Note that C_n^* is bounded for each n, and we can easily see that $G^*\cap C_1^*=\varnothing$ and $n^{-1}C_n^*\subset (n+1)^{-1}C_{n+1}^*$.

Note that for any Banach space X, if F is a bounded subset of X, then by endowing with the discrete topology on F, we have a natural bounded linear operator $\ell^1(F) \to X$ with its dual $X^* \to \ell^\infty(F)$. We will construct a bounded subset F of X such that the subset $G^* \cap C^*_\infty$ of X^* induces a subset of the smaller subspace $c_0(F)$ of $\ell^\infty(F)$ via the map $X^* \to \ell^\infty(F)$, and also such that it satisfies $G^* \cap C^*_\infty \cap F^\circ = \emptyset$, where $F^\circ := \{x^* \in X^* : \sup_{x \in F} |x^*(x)| \le 1\}$ denotes the complex polar of F. If such a set $F \subset X$ exists, then the image of $G^* \cap C^*_\infty$ in $c_0(F)$ is a convex set disjoint to the closed unit ball $B_{c_0(F)}$ by the condition $G^* \cap C^*_\infty \cap F^\circ = \emptyset$. Therefore, there exists a separating linear functional $I \in B_{\ell^1(F)}$ by the Hahn-Banach separation, and it induces a linear functional separating G^* and B_{X^*} . Then, we are done.

Let $F_0 := \{0\} \subset X$. As an induction hypothesis on n, suppose for each $0 \le k \le n-1$ we already have a finite subset F_k of $(C_k^*)^\circ$ such that

$$G^* \cap C_n^* \cap \left(\bigcup_{k=0}^{n-1} F_k\right)^{\circ} = \emptyset.$$

If every finite subset F_n of $(C_n^*)^\circ$ satisfies

$$G^* \cap C_{n+1}^* \cap \left(\bigcup_{k=0}^{n-1} F_k\right)^{\circ} \cap F_n^{\circ} \neq \emptyset,$$

then since the intersection $G^* \cap C_{n+1}^*$ is weakly* compact, the finite intersection property leads a contradiction because the intersection of all complex polars F_n° of finite subsets F_n of $(C_n^*)^\circ$ is C_n^* , which is the polar of all union of finite subsets F_n of $(C_n^*)^\circ$ by the bipolar theorem. Thus, we can take a finite subset F_n of $(C_n^*)^\circ$ such that

$$G^* \cap C_{n+1}^* \cap \left(\bigcup_{k=0}^n F_k\right)^\circ = \varnothing.$$

Let $F:=\bigcup_{k=0}^{\infty}F_k$. Then, we have $G^*\cap C_{\infty}^*\cap F^\circ=\emptyset$, and every element of C_{∞}^* is restricted to F to define an element of $c_0(F)$ because for each $\omega\in C_n^*$ and $k\geq 0$ we

have

$$\omega(F_{n+k}) \subset \omega((C_{n+k}^*)^\circ) \subset \frac{n}{n+k} \omega((C_n^*)^\circ) \subset [-\frac{n}{n+k}, \frac{n}{n+k}].$$

Finally, for any $\omega \in A^{*sa}$, if we enumerate F as a sequence f_m , then

$$|\omega(f_m)| \le |(\omega_+ - \omega_0)(f_m)| + |(\omega_- - \omega_0)(f_m)| \to 0,$$

so the uniform boundedness principle concludes that F is bounded. Therefore, the set F satisfies the properties we desired.

Lemma 3.3. Let M be a von Neumann algebra, and let \mathfrak{M} be a σ -weakly dense hereditary *-subalgebra of M. If $\omega_i \in M^{sa}_*$ is a dominated net such that $\omega_i \to \omega \in M^{sa}_*$ pointwisely on \mathfrak{M} , then $\omega_i \to \omega$ weakly in M_* .

Proof. Let $\widetilde{\omega} \in M_*^+$ be a dominating functional of ω_i such that $-\widetilde{\omega} \leq \omega_i \leq \widetilde{\omega}$ for all i. If $e_j \in \mathfrak{M}^+$ is a net such that $\|e_j\| \leq 1$ and $e_j \to 1$ σ -strongly in M taken by the Kaplansky density theorem, then we have $e_j x e_j \in \mathfrak{M}$ by the hereditarity of \mathfrak{M} and we can check $e_j x e_j \to x$ σ -strongly for each $x \in A^{**}$. For any $x \in A^{**+}$ and $\varepsilon > 0$, since the absolute value function is a strongly continuous function, we can fix j such that $\widetilde{\omega}(|x-e_j x e_j|) < \varepsilon$, so the convergence $\omega_i \to \omega$ on \mathfrak{M} is enhanced to the weak convergence in M_* by

$$(\omega - \omega_i)(x) = (\omega - \omega_i)((x - e_j x e_j)_+) - (\omega - \omega_i)((x - e_j x e_j)_-) + (\omega - \omega_i)(e_j x e_j)$$

$$\leq (\omega + \widetilde{\omega})((x - e_j x e_j)_+) + (\omega + \widetilde{\omega})((x - e_j x e_j)_-) + (\omega - \omega_i)(e_j x e_j)$$

$$\leq 2\widetilde{\omega}(|x - e_j x e_j|) + (\omega - \omega_i)(e_j x e_j) \rightarrow 2\varepsilon + 0.$$

The main difficulty in dominating an approximating net ω_i of ω in the weak* closure is that we cannot modify ω_i to $\omega_i - (\omega_i - \omega)_+$ because $(\omega_i - \omega)_+$ may not coverge to zero weakly*.

Theorem 3.4 (Positive Hahn-Banach separation for C*-algebras). *Let A be a C*-algebra*.

- (1) If F is a weakly closed convex hereditary subset of A^+ , then $F = F^{\circ + \circ +}$. In particular, if $a \in A^+ \setminus F$, then there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega \leq 1$ on F.
- (2) If F^* is a weakly* closed convex hereditary subset of A^{*+} , then $F^* = (F^*)^{\circ + \circ +}$. In particular, if $\omega \in A^{*+} \setminus F^*$, then there is $a \in A^+$ such that $\omega(a) > 1$ and $a \le 1$ on F^* .

Proof. (1) We directly prove the separation without invoking the arguments of positive bipolars. Denote by F^{**} the σ -weak closure of F in the universal von Neumann algebra A^{**} . We first show that F^{**} is hereditary subset of A^{**+} . Suppose $0 \le x \le y$ in A^{**} and $y \in F^{**}$. Then, there is $z \in A^{**}$ such that $x^{\frac{1}{2}} = zy^{\frac{1}{2}}$. Take bounded nets b_i in F and c_i in A such that $b_i \to y$ and $c_i \to z$ σ -strongly* in A^{**} using the Kaplansky density. We may assume the indices of these two nets are same. Since both the multiplication and the involution of a von Neumann algebra on bounded parts are continuous in the σ -strong* topology, and since the square root on a positive bounded interval is a strongly continuous function, we have the σ -strong* limit

$$x = y^{\frac{1}{2}}z^*zy^{\frac{1}{2}} = \lim_{i} b_i^{\frac{1}{2}}c_i^*c_ib_i^{\frac{1}{2}},$$

so we obtain $x \in F^{**}$ from $b_i^{\frac{1}{2}} c_i^* c_i b_i^{\frac{1}{2}} \in F$. Thus, F^{**} is hereditary in A^{**+} .

6 IKHAN CHOI

Let $a \in A^+ \setminus F$. Observe that we have $a \in A^{**+} \setminus F^{**}$ because if $a \in F^{**}$, then we have a net a_i in F such that $a_i \to a$ σ -weakly in A^{**} , meaning that $a_i \to a$ weakly in A and by the weak closedness of F in A we get a contradiction $a \in F^{**} \cap A = F$. By Theorem, there is $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega \le 1$ on $F \subset F^{**}$, so it completes the proof.

(2) As same as above, our goal is to prove $(\overline{F^* - A^{*+}})^+ \subset F^*$, so take $\omega \in (\overline{F^* - A^{*+}})^+$. We first prove it when A is separable, which makes the weak* topology on any bounded part of A^{*sa} metrizable. Consider the following convex set

$$G^* := \left\{ \omega \in \overline{F^* - A^{*+}} : \text{ there is a sequence } \omega_n \in F^* - A^{*+} \text{ and } \widetilde{\omega} \in A^{*+} \text{ such that } \right\}.$$

$$-\widetilde{\omega} \le \omega_n \to \omega \text{ weakly* in } A^*$$

In the spirit of the Krein-Šmulian theorem, let ω_n be a bounded sequence in G^* such that $\omega_n \to \omega$ weakly* in A^* , and claim $\omega \in G^*$. Since ω belongs to the relative weak* closure of $G^* \cap C^*_{\infty}$ in C^*_{∞} , where

$$C_n^* := \{\omega' \in A^{*sa} : -\sum_{k \le n} \omega_k - \omega_- \le \omega'\}, \quad C_\infty^* := \bigcup_n C_n^*,$$

if we prove G^* is norm closed and $G^* \cap C_n^*$ is weakly* closed for each n, then we obtain $\omega \in G^*$ by Lemma, which completes the proof.

Since the limit of a norm convergent sequence in G^* can be approximated by a dominated sequence in G^* as in the proof of Theorem, and every sequence in C_n^* is dominated, it is enough to show $\omega \in G^*$ when it is the weak* limit of a dominated sequence ω_n in G^* . Since A is σ -unital, when we denote by e a strictly positive element of *A*, we can take a sequence $\omega_{nm} \in F^* - A^{*+}$ such that $\omega_{nm}(e) \uparrow \omega_n(e)$, which implies the weak* convergence $\omega_{nm} \uparrow \omega_n$ for each n by boundedness. Associated to ω , ω_n , ω_{nm} , and φ_{nm} , the commutant Radon-Nikodym derivatives h, h_n , h_{nm} , and k_{nm} are defined. Note that h_n is a bounded sequence, and h_{nm} are bounded increasing sequences for each n, and k_{nm} are self-adjoint operators constructed by Friedrichs extension with $h_{nm} \leq k_{nm}$ for every n and m. The boundedness implies that $h_n \to h$ as $n \to \infty$ and $h_{nm} \uparrow h_n$ as $m \to \infty$ for each n in the weak operator topology. By applying the Mazur lemma, we can take a convergent diagonal sequence such that $h_{nn} \to h$ in the strong operator topology, after taking rapidly convergent subsequence from h_{nm} for each n, which can be done because the existence of a cyclic vector implies that the commutant is a σ -finite von Neumann algebra and the strong operator topology is metrizable. Then, h_{nn} is bounded by the uniform boundedness principle, we can take f_{ε} to show $\omega \in F^* - A^{*+}$.

Now we consider a general C^* -algebra A. For a C^* -subalgebra B of A, we define a set

$$F_B^* := \{ \omega \in B^{*+} : \text{there is } \varphi \in F^* \text{ such that } \omega \leq \varphi \text{ on } B^+ \}.$$

It is clearly a convex hereditary subset of B^{*+} . If $\omega_i \in F_B^*$ is a net such that $\omega_i \to \omega$ weakly* in B^* and $\omega_i \le \varphi_i \in F^*$ on B^+ , then there are positive extensions $\widetilde{\omega}_i \in A^{*+}$ of ω_i such that $\widetilde{\omega}_i \le \varphi_i$ on B^+ .

If $\widetilde{\omega}_i$ is a positive norm preserving extension of ω_i , then $\widetilde{\omega}_i \leq \varphi_i$? no.

 $\omega_n \to \omega$ in norm and $\omega_n \le \omega$. Let

Considering $k_{i,\varepsilon} \to k_{\varepsilon}$ so that $\varphi_{\varepsilon} \in F^*$. We need weak* convergence $\varphi_{i,\varepsilon} \to \varphi_{\varepsilon}$.

$$\widetilde{\omega}_{i,\varepsilon} \leq \varphi_{i,\varepsilon}$$

$$\widetilde{\omega}_{\varepsilon} \leq \varphi_{\varepsilon}$$

$$\varphi_i = \omega_i^{\sim} + (\varphi_i - \omega_i)^{\sim} \text{ on } B$$

 $\|\omega_{i}^{\sim} + (\varphi_{i} - \omega_{i})^{\sim}\| \leq \|\omega_{i}^{\sim}\| + \|(\varphi_{i} - \omega_{i})^{\sim}\| = \|\omega_{i}\| + \|\varphi_{i}|_{B} - \omega_{i}\| \leq \|\varphi_{i}|_{B}\|$

Let $\omega \in (\overline{F^* - A^{*+}})^+$, where the closure is taken in the weak* topology. Take a net $\omega_i \in F^* - A^{*+}$ and $\varphi_i \in F^*$ such that $\omega_i \to \omega$ weakly* in A^* and $\omega_i \le \varphi_i$ for each i. If we denote by $\omega_B, \omega_{i,B}, \varphi_{i,B}$ the restrictions of $\omega, \omega_i, \varphi_i$ on B, then we have $\varphi_{i,B} \in F_B^*$ and $\omega_{i,B} \in F_B^* - B^{*+}$, with the weak* convergence $\omega_{i,B} \to \omega_B$ in B^* , thus we have $\omega_B \in (F_B^* - B^{*+})^+ = F_B^*$ because B is separable. If we consider the non-decreasing net of all separable C*-subalgebras B_i of A, then the restriction ω_{B_i} of ω on B_i belongs to the set $F_{B_i}^*$ as we have seen just now, so there is $\varphi_j \in F^*$ such that $\omega \leq \varphi_j$ on B_i^+ for each j. Here we let ψ be a faithful semi-finite normal weight on A^{**} , and let $\pi: A^{**} \to B(H)$ be the Gelfand-Naimark-Segal representation associated to ψ , together with the left A^{**} -liner map $\Lambda: \mathfrak{N}_{\psi} \to H$ of dense range such that $\psi(x^*x) = \|\Lambda(x)\|^2$ for all $x \in \mathfrak{N}_{\psi}$. Note that because the weight ψ is faithful and semi-finite, Λ is injective and σ -weakly densely defined, meaning that \mathfrak{M}_{ψ} is a hereditary σ -weakly dense *subalgebra of A^{**} . Construct the commutant Radon-Nikodym derivatives h, k_i of ω, φ_i with respect to ψ . Here k_i is a positive self-adjoint operator defined by the Friedrichs extension such that ran $\Lambda \subset \text{dom } k_j$ for all j. Taking a subnet, we may assume that there is $k_{\varepsilon} \in \pi(A)^{\prime +}$ satisfying $f_{\varepsilon}(k_{i}) \to k_{\varepsilon} \sigma$ -weakly. Because of the operator concavity of f_{ε} (more detail), we can take a net $\varphi_l \in F^*$ such that $f_{\varepsilon}(k_l) \to k_{\varepsilon}$ σ -strongly, where k_l are again the commutant Radon-Nikodym derivatives of φ_l defined by the Friedrichs extension. Since is a strongly continuous function, we have $(f_{\varepsilon}(k_l)-k_{\varepsilon}) \to 0$ σ -strongly, so if we define $\varphi_{l,\varepsilon} \in F^* - A^{*+}$ and $\varphi_{\varepsilon} \in A^{*+}$ such that

$$\varphi_{l,\varepsilon}(x^*x) := \langle (f_{\varepsilon}(k_l) - (f_{\varepsilon}(k_l) - k_{\varepsilon})_+) \Lambda(x), \Lambda(x) \rangle, \quad \varphi_{\varepsilon}(x^*x) := \langle k_{\varepsilon} \Lambda(x), \Lambda(x) \rangle$$

for each $x \in \mathfrak{N}_{\psi}$, then we have $\varphi_{l,\varepsilon} \to \varphi_{\varepsilon}$ pointwisely on \mathfrak{M}_{ψ} and $\varphi_{l,\varepsilon} \le \varphi_{\varepsilon}$ for all l. How to dominate $\varphi_{l,\varepsilon}$ from below?

By Lemma we have $\varphi_{l,\varepsilon} \to \varphi_{\varepsilon}$ weakly in A^* , so Theorem implies that $\varphi_{\varepsilon} \in (\overline{F^* - A^{*+}}^w)^+ = F^*$. If we define $\omega_{\varepsilon} \in A^{*+}$ and $\varphi_{l,\varepsilon} \in F^*$ by

$$\omega_{\varepsilon}(x^*x) := \langle f_{\varepsilon}(h)\Lambda(x), \Lambda(x) \rangle, \quad \varphi_{i,\varepsilon}(x^*x) := \langle f_{\varepsilon}(k_i)\Lambda(x), \Lambda(x) \rangle$$

for each $x \in \mathfrak{N}_{\psi}$, then since $\omega \leq \varphi_{j}$ on B_{j}^{+} implies $\omega_{\varepsilon} \leq \varphi_{j,\varepsilon}$ on B_{j}^{+} , the weak* limit $\omega_{\varepsilon} \leq \lim_{j} \varphi_{j,\varepsilon} = \varphi_{\varepsilon}$ deduces $\omega_{\varepsilon} \in F^{*} - A^{*+}$. Since $\omega_{\varepsilon} \to \omega$ pointwisely on \mathfrak{M}_{ψ} and $0 \leq \omega_{\varepsilon} \leq \omega$ for all $0 < \varepsilon$, we have $\omega \in (\overline{F^{*} - A^{*+}}^{w})^{+} = F^{*}$ by Lemma and Theorem. \square

4

Corollary 4.1. Let M be a von Neumann algebra. Then, there is a one-to-one correspondence

```
 \left\{ \begin{array}{c} \text{subadditive normal} \\ \text{weights of } M \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \text{hereditary closed} \\ \text{convex subsets of } M_*^+ \end{array} \right\} 
 \varphi \qquad \qquad \mapsto \qquad \left\{ \omega \in M_*^+ : \omega \leq \varphi \right\}
```