Doğrusal Sınıflandırıcılar ve Perceptron

Perceptron Algoritması

- 1957 yılında Frank Rosenblatt tarafından Cornell Havacılık Laboratuvarında icat edilmiştir. (Cornell Aeronautical Laboratory)
- Doğrusal sınıflandırma algoritmasıdır.

Frank Rosenblatt

• Özellik vektörleri(Feature vectors) ve etiketler(labels): $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

• Özellik vektörleri(Feature vectors) ve etiketler(labels): $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

Düzlem(Plane) için d = 2

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathcal{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

ık gelen istediğimiz bir

Eğitim için örnek sayısı

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir.

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathcal{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir.

• Siniflandirici: $h: \mathbb{R}^d \to \{-1, 1\}, h(x) = 1 \text{ ya } da - 1$

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathcal{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir. $x^+ = \{x \in \mathbb{R}^d : h(x)\}$

çıktı(output) vermesiair.

• Sınıflandırıcı: $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1$ • $x^+ = \{x \in \mathcal{R}^a: h(x) = 1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathcal{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$

- Siniflandirici : $h: \mathcal{R}^d \to \{-1, 1\}$, h(x) = 1 $ya \ da 1$ $x^- = \{x \in \mathcal{R}^a : h(x) = 1\}$ Siniflandiricinin görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.
- Eğitim hatası (Train Error): $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathcal{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$

- Siniflandirici : $h: \mathcal{R}^d \to \{-1,1\}, \ h(x) = 1 \ ya \ da 1$ Siniflandirici : $h: \mathcal{R}^d \to \{-1,1\}, \ h(x) = 1 \ ya \ da 1$ Siniflandiricinin görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.
- Eğitim hatası (Train Error) : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$

1, eşit değil ise 0, eşitse

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir. $x^+ = \{x \in \mathbb{R}^d : h(x)\}$

çıktı(output) vermesidir.

• Sınıflandırıcı: $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1$ • $x^+ = \{x \in \mathcal{R}^d: h(x) = 1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Eğitim hatası : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$ 'n' burada hatamızı hesaplamak için kullancağımız örnek sayıdır.

0, eşitse

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir.

çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$ • Sınıflandırıcı : $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1$ $x^- = \{x \in \mathcal{R}^d : h(x) = -1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Eğitim hatası : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$ 'n' burada hatamızı hesaplamak için kullancağımız örnek sayıdır.

1, eşit değil ise

• Test hatası : $\mathcal{E}(h)$ 0, eşitse

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir.

çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$ • Sınıflandırıcı : $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1$ $x^- = \{x \in \mathcal{R}^d : h(x) = -1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Eğitim hatası : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$ 'n' burada hatamızı hesaplamak için kullancağımız örnek sayıdır.

kullancağımız örnek sayıdır.

• Test hatas: $\mathcal{E}(h)$

1, eşit değil ise 0, eşitse

Test hatasının teori kısmı, sınıflandırıcının eğitim setinde ne kadar iyi bir sınıflandırma yaptığını tespit etmesidir.

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir.

çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$ • Sınıflandırıcı : $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1$ $x^- = \{x \in \mathcal{R}^d : h(x) = -1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Eğitim hatası : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$ 'n' burada hatamızı hesaplamak için kullancağımız örnek sayıdır.

• Test hatas: $\mathcal{E}(h)$

1, eşit değil ise

0, eşitse

kullancağımız örnek sayıdır.

Test hatasının teori kısmı, sınıflandırıcının eğitim setinde ne kadar iyi bir sınıflandırma yaptığını tespit etmesidir.

> Ayrıca test seti için bu tespit yapılmalıdır. (Generalization)

• Özellik vektörleri(Feature vectors) ve etiketler(labels) : $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$

x sınıflandırma için tahmin yapmamızı sağlayan bir vektördür.

Çıkışlar, etiketler yada hedefler

• Eğitim seti(Training set): $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ..., n\}$

Denetimli öğrenmenin görevi, bize bir girdi(input) ve buna karşılık gelen istediğimiz bir çıktı(output) vermesidir. $x^+ = \{x \in \mathcal{R}^d : h(x) = 1\}$

• Siniflandirici: $h: \mathcal{R}^d \to \{-1, 1\}, \ h(x) = 1 \ ya \ da - 1 \longrightarrow x^- = \{x \in \mathcal{R}^d: h(x) = -1\}$

Sınıflandırıcının görevi, uyguladığımız bir girdiyi belli bir noktaya haritalandırmasıdır.

• Eğitim hatası : $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n \left[h(x^{(i)}) \neq y^{(i)} \right]$ 'n' burada hatamızı hesaplamak için kullancağımız örnek sayıdır.

• Test hatası : $\mathcal{E}(h)$

1, eşit değil ise 0, eşitse

Test hatasının teori kısmı, sınıflandırıcının eğitim setinde ne kadar iyi bir sınıflandırma yaptığını tespit etmesidir.

> Ayrıca test seti için bu tespit yapılmalıdır. (Generalization)

• Sınıflandırıcı kümesi (set of classifiers) : $h \in \mathcal{H}$

Eğitim Seti (Train Set)

Eğitim Seti (Train Set)

Eğitim Seti (Train Set)

 $\mathcal{E}_n=0:$ Bu sınıflandırıcı iyi bir iş yapıyor. Koordinat sistemindeki eğitim noktalarını çok güzel ayırmakta!

$$h(x) = +1$$

bir kümenin alt kümesinin

rastgele(random) değerleri

Asıl mesele ise henüz görmediğimiz test örneklerini doğru bir şekilde sınıflandırabilmek.

Eğitim örneği ve test örneği arasında bir bağlantı kurmaya çalışmak.

 χ_1

2 boyutta, karar sınırımız bir çizgi, x vektörü 1 boyutlu olsaydı karar sınırımız bir nokta olacaktı. 3 boyutta ise bir düzlem...

Doğrusal sınıflandırıcı için karar sınırımızı değiştirebiliriz.

Doğrusal Ayırma

Tanım:

Eğitim örnekleri $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ... n\}$ doğrusal ayrılabilir eğer ki uygun bir parametre vektörü \widehat{w} ve denkleştirme parametresi(offset parameter) \widehat{b} aşağıda bulunan denklemdeki koşula uyuyor ise;

$$y^{(i)}(\widehat{w} \cdot x^{(i)} + \widehat{b}) > 0, \qquad i = 1, ..., n$$

Doğrusal Ayırma

Tanım:

Eğitim örnekleri $S_n = \{(x^{(i)}, y^{(i)}), i = 1, ... n\}$ doğrusal ayrılabilir eğer ki uygun bir parametre vektörü \widehat{w} ve denkleştirme parametresi(offset parameter) \widehat{b} aşağıda bulunan denklemdeki koşula uyuyor ise;

Sonuçların işaretleri birbirlerine eşit olmalı, aksi halde doğrusal ayırmamız mümkün değil.

$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n [[h(x^{(i)}) \neq y^{(i)}]]$$

$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n [h(x^{(i)}) \neq y^{(i)}]$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

• Doğrusal sınıflandırma için eğitim hatası(orjinden)

$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n [h(x^{(i)}) \neq y^{(i)}]$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

Orjinden geçen doğrusal sınıflandırıcının hatası

• Doğrusal sınıflandırma için eğitim hatası(orjinden)

$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n [h(x^{(i)}) \neq y^{(i)}]$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [y^{(i)} w \cdot x^{(i)} \le 0]$$

Orjinden geçen doğrusal sınıflandırıcının hatası

Verilen $y^{(i)}$ etiketinde, bu etiketin işareti $(w \cdot x^{(i)})$ iç çarpımının sonucunda elde edilen işaret ile aynı olmalı.

• Doğrusal sınıflandırma için eğitim hatası(orjinden)

$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n [[h(x^{(i)}) \neq y^{(i)}]]$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [y^{(i)} w \cdot x^{(i)} \le 0]$$

Orjinden geçen doğrusal sınıflandırıcının hatası

Eğer $y^{(i)}w \cdot x^{(i)} = 0$ ise bu örnek tam karar sınırının üzerinde olduğu anlamına gelir. Ve bunu bir hata olarak kabul ederiz. Çünkü hangi yöne doğru sınıflandırma yapmamız gerektiğini bilmiyoruz.

Verilen $y^{(i)}$ etiketinde, bu etiketin işareti $(w \cdot x^{(i)})$ iç çarpımının sonucunda elde edilen işaret ile aynı olmalı.

• Doğrusal sınıflandırma için eğitim hatası

$$\mathcal{E}_n(w,b) = \frac{1}{n} \sum_{i=1}^n [y^{(i)}(w \cdot x^{(i)} + b) \le 0]$$

• Doğrusal sınıflandırma için eğitim hatası

0 yada negatif olursa hata olarak kabul edilir. Pozitif olursa hata yoktur.

Perceptron Öğrenme Algoritması

$$w = 0 (vekt\"{o}r)$$

Perceptron Öğrenme Algoritması

Parametremizi sıfıra eşitleriz.

$$w = 0 (vekt\"{o}r)$$

 $if \ y^{(i)}(w \cdot x^{(i)}) \le 0 \ then$
 $w = w + y^{(i)}x^{(i)}$

i. örnek (ithexample)

Sonraki adım $\rightarrow y_{veni}^{(i)} (w + y^{(i)} x^{(i)}) \cdot x_{veni}^{(i)} = ||x^{(i)}||^2 > 0$

$$w = 0 \ (vekt\"{o}r)$$

 $for \ i = 1, ..., n \ do$
 $if \ y^{(i)} (w \cdot x^{(i)}) \le 0 \ then$
 $w = w + y^{(i)} x^{(i)}$

Bütün eğitim örnek sayısı
$$w = 0$$
 ($vekt$ ö r)
$$for i = 1, ..., n do$$

$$if y^{(i)}(w \cdot x^{(i)}) \le 0 then$$

$$w = w + y^{(i)}x^{(i)}$$

Eğer i. Örneğimiz bir hata ise(ilk başta her zaman hata!), güncelleme yaparız.

şekilde karesi

bize 1'i verir

```
procedure PERCEPTRON(\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T)

w = 0 (vektör)

for t = 1, ..., T do

for i = 1, ..., n do

if y^{(i)}(w \cdot x^{(i)}) \leq 0 then

w = w + y^{(i)}x^{(i)}

return w
```


Birbirinden farklı eğitim örnekleri parametreleri farklı yönlere güncelleyebileceğinden dolayı, sonraki güncellemeler bir önceki güncellemelerin bulduğu sınıflandırmaları ortadan kaldırabilir.

procedure PERCEPTRON(
$$\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T$$
)

 $w = 0 \ (vekt\"{o}r)$
 $for \ t = 1, ..., T \ do$
 $for \ i = 1, ..., n \ do$
 $if \ y^{(i)}(w \cdot x^{(i)}) \leq 0 \ then$
 $w = w + y^{(i)}x^{(i)}$

en

return w

__ pr

Birbirinden farklı eğitim örnekleri parametreleri farklı yönlere güncelleyebileceğinden dolayı, sonraki güncellemeler bir önceki güncellemelerin bulduğu sınıflandırmaları ortadan kaldırabilir.

procedure $PERCEPTRON(\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T)$ $w = 0 \ (vekt\"{o}r)$ $for \ t = 1, ..., T \ do$ $for \ i = 1, ..., n \ do$ $if \ y^{(i)}(w \cdot x^{(i)}) \leq 0 \ then$ $w = w + y^{(i)}x^{(i)}$ te $return \ w$

T parametresi bize eğitim setinde kaç defa tekrar ettiğimizi belirtir.

procedure PERCEPTRON($\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T$) $w = 0 \ (vekt\"{o}r)$ $for \ t = 1, ..., T \ do$ $for \ i = 1, ..., n \ do$

if $y^{(i)}(w \cdot x^{(i)}) \le 0$ then

 $w = w + y^{(i)}x^{(i)}$

return w

T parametresi bize eğitim setinde kaç defa tekrar ettiğimizi belirtir.

Birbirinden farklı eğitim örnekleri parametreleri farklı yönlere güncelleyebileceğinden dolayı, sonraki güncellemeler bir önceki güncellemelerin bulduğu sınıflandırmaları ortadan kaldırabilir.

> Perceptron, bunu bir çözüm olarak bulabilir.

____ p

Birbirinden farklı eğitim örnekleri parametreleri farklı yönlere güncelleyebileceğinden dolayı, sonraki güncellemeler bir önceki güncellemelerin bulduğu sınıflandırmaları ortadan kaldırabilir.

procedure PERCEPTRON($\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T$) $w = 0 \ (vekt\"{o}r)$ $for \ t = 1, ..., T \ do$ $for \ i = 1, ..., n \ do$ $if \ y^{(i)}(w \cdot x^{(i)}) \leq 0 \ then$ $w = w + y^{(i)}x^{(i)}$ $v = w + y^{(i)}x^{(i)}$

return w

T parametresi bize eğitim setinde kaç defa tekrar ettiğimizi belirtir.

epoch

Bunu da bir çözüm olarak bulabilir.

Perceptron Fonksiyonu

$$f(x) = \begin{cases} 1, & w \cdot x + b > 0 \\ 0, & di \S er \end{cases}$$

Perceptron Öğrenme Algoritması (Offset ile)

```
procedure PERCEPTRON(\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T)

w = 0 \ (vekt\"{o}r)

for t = 1, ..., n do

if y^{(i)}(w \cdot x^{(i)} + b) \leq 0 then

w = w + y^{(i)}x^{(i)}

b = b + y^{(i)}

return w, b
```

Perceptron Öğrenme Algoritması (Offset ile)

procedure PERCEPTRON(
$$\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T$$
)

 $w = 0 \text{ (vekt\"{o}r)}$

for $t = 1, ..., T$ do

for $i = 1, ..., n$ do

if $y^{(i)}(w \cdot x^{(i)} + b) \leq 0$ then

 $w = w + y^{(i)}x^{(i)}$
 $b = b + y^{(i)}$

return w, b

Perceptron Öğrenme Algoritması (Offset ile)

procedure PERCEPTRON(
$$\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T$$
)

 $w = 0 \ (vekt\"{o}r)$

for $t = 1, ..., T$ do

for $i = 1, ..., n$ do

$$if \ y^{(i)}(w \cdot x^{(i)} + b) \leq 0 \text{ then}$$

$$w = w + y^{(i)}x^{(i)}$$

$$b = b + y^{(i)}$$

return w, b
 $\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} w \\ b \end{bmatrix} + y^{(i)} \begin{bmatrix} x^{(i)} \\ 1 \end{bmatrix}$

$$w \cdot x + b = \begin{bmatrix} w \\ b \end{bmatrix} \cdot \begin{bmatrix} x \\ 1 \end{bmatrix}$$

Perceptron Öğrenme Algoritması (Gradient Descent)

procedure PERCEPTRON(
$$\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, \alpha = 0.01, epochs = 10\}$$

$$w = 0 \ (vekt\"{o}r)$$

$$for \ t = 1, ..., epochs \ do$$

$$for \ i = 1, ..., n \ do$$

$$if \ y^{(i)}(w \cdot x^{(i)} + b) \leq 0 \ then$$

$$w = w - \frac{1}{n} * \alpha \sum_{i}^{n} y^{(i)}(w \cdot x^{(i)} + b) \cdot x^{(i)}$$

$$b = b - \frac{1}{n} * \alpha \sum_{i}^{n} y^{(i)}(w \cdot x^{(i)} + b)$$

return w, b

Perceptron: YSA ile gösterilişi

Bu sınıflandırmayı doğru bir şekilde yapabilmek için aktivasyon fonksiyonlarına ihtiyaç duyarız.

Doğrusal olmayan bir aktivasyon fonksiyonu uyguladığımızda, ayırma işlemini bu şekilde ayırabiliriz. (Aktivasyon Fonksiyonu)

Örnek

Aşağıda verilen küçük veri seti bilgilerine göre orjinden geçen bir perceptron algoritması oluşturmaya çalışın.

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)}=0$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$

Weight vektörü ilk değeri 0.

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)}=0$$

Weight vektörü ilk değeri 0.

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$
 —

Weight vektörü ilk değeri 0.

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \longrightarrow w^{(0)} \cdot x^{(1)} = 0$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$

Weight vektörü ilk değeri 0.

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [y^{(i)} w \cdot x^{(i)} \le 0]$$

$$w^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $x^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $w^{(0)} \cdot x^{(1)} = 0$ $w^{(0)} \cdot x^{(1)} = 0$ 0'a eşit. Hata var!

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$
 —

Weight vektörü ilk değeri 0.

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $x^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $w^{(0)} \cdot x^{(1)} = 0$ O'a eşit. Hata var!

$$w^{(1)} = w^{(0)} + y^{(1)}x^{(1)} = 0 + 1 \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)}=0$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$w^{(1)} \cdot x^{(3)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -0.5$$
 — $-0.5 < 0$, hata var, güncelle!

$$x^{(1)} = [-1, -1], y^{(1)} = 1$$

$$x^{(1)} = [1, 0], \quad y^{(2)} = -1$$

$$x^{(1)} = [-1, 1.5], y^{(3)} = 1$$

$$w^{(0)} = 0$$

$$\mathcal{E}_n(w) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} w \cdot x^{(i)} \le 0]]$$

$$w^{(1)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$w^{(1)} \cdot x^{(3)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1.5 \end{bmatrix} = -0.5$$
 — $-0.5 < 0$, hata var, güncelle!

$$w^{(2)} = w^{(1)} + y^{(3)}x^{(3)} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1.5 \end{bmatrix} = \begin{bmatrix} -2 \\ 0.5 \end{bmatrix}$$