Backtracking, Branch & Bound

Module 2

Sem IV

AoA Even 2021-22

Introduction

• Backtracking and Branch and Bound are two graph based methods for design of algorithms.

• In both cases we explore a search tree.

• In Backtracking, we start with a node and explore the nodes in **Depth First manner**.

• All the nodes need not to be explored. Cut the branches of the tree based on the constraint of the problem. This reduces the time complexity of the algorithm.

• Branch and Bound explores the search tree in a Breadth First manner.

• It is modified form of Depth First Search.

- Here solution vector is of form $x_1, x_2, x_3,...,x_n$, n tuple $(x_1, x_2, x_3,...,x_n)$, where x_i is chosen from finite set of S_i , such that constraint of the problem is satisfied.
- Backtracking algorithm solves the problem using two types of constraints:
 - 1. Explicit Constraint
 - 2. Implicit Constraint

Terminologies Used:

Backtracking algorithms determine problem solutions by systematically searching for solution using tree structure.

- 1. State space tree: The solution space is organized as a tree called the state space tree.
- **2. Explicit constraint**: These are the rules that restrict each component x_i of the solution vector to take values only from a given set S.
- 3. Implicit constraint: These are the rules that describe the way in which the x_i 's must relate to each other or which of the components of the solution vector satisfy the criteria function.
- 4. Solution space: It is the set of all tuples that satisfy the explicit constraints.
- 5. Live node: It is the node that has been generated, but none of its descendants are yet generated.
- **6. Bounding function or criteria**: It is a function created that is used to kill live nodes without generating all its children.

Terminologies Used:

Backtracking algorithms determine problem solutions by systematically searching for solution using tree structure.

- 7. **Extended node or E-node**: It is the live node whose children are currently being generated.
- 8. **Dead node**: It is the node that is not to be extended further or all of whose children have already been generated.
- 9. **Answer node**: It is the node that represents the answer of the problem that means the node at which the criteria functions are maximized, minimized or satisfied.
- 10. Solution node: It is the node that has the possibility to become the answer node.

- 1. 2-Queen problem
- 2. 3-Queen Problem
- 3. 4-Queen Problem
- 4. 8-Queen problem

2-Queen problem:

Q	X
X	X

X	Q
X	X

Therefore, No Solution

- 1. 2-Queen problem
- 2. 3-Queen Problem
- 3. 4-Queen Problem
- 4. 8-Queen problem

2-Queen problem:

Q	X
X	X

X	Q
X	X

Therefore, No Solution

Similarly, No Solution for 3-Queen problem

4 Queen Problem:

State space Tree:

Figure 2 Solution of four-queens problem.

4 Queen Problem:

Solution can be represented as four-tuple (x_1, x_2, x_3, x_4) where x_1 is column value in row 1 for placement of Q_1 and so on.

Solution 2, 4, 1, 3

Solution 3, 1, 4, 2

Figure 7 Two possible solutions to four-queens problem.

N Queen Problem:

```
Algorithm NQueens(k,n)

// Using backtracking, this procedure prints all

// possible placements of n queens on an n \times n

// chessboard so that they are nonattacking.

for i := 1 to n do

{

if Place(k,i) then

x[k] := i;

if (k = n) then write (x[1:n]);

else NQueens(k+1,n);

}

14

}
```

N Queen Problem:

```
Algorithm Place(k,i)
// Returns true if a queen can be placed in kth row and
// ith column. Otherwise it returns false. x[] is a
// global array whose first (k-1) values have been set.
// Abs(r) returns the absolute value of r.

for j := 1 to k-1 do
    if ((x[j] = i) // Two in the same column
        or (Abs(x[j] - i) = Abs(j - k)))
        // or in the same diagonal
        then return false;
return true;
}
```

N Queen Problem:

• (4,1), (5,2), (6,3), (7,4), (8,5) Let (i, j) and (k,l) be two cells in the chessboard.

If
$$i-j = k-1$$

e.g. $4-1 = 6-3 = 3$

Rearranging above equation, we have $i-k = j-l \Rightarrow |i-k| = |j-l|$

• (5,8), (6,7), (7,6), (8,5) Again let (i, j) and (k,l) be two cells in the chessboard.

If
$$i+j = k+l$$

e.g. $5+8 = 6+7 = 13$

Rearranging above equation, we have $i-k = l-j \Rightarrow |i-k| = |j-l|$

Given: 1. n distinct positive numbers (called weights w_i), where $1 \le i \le n$

2. Sum (m)

We need to find all possible subsets of given numbers (w_i) having sum equal to the target Sum (m).

Example:

n=4;
$$(w_1, w_2, w_3, w_4,) = (11, 13, 24,7) \& m=31$$

Desired subsets are (11,13,7) & (24,7)

Solution vector (1, 2, 4) & (3, 4)

→ [Variable Length]

In general, all solution vectors are k-tuples, (x_1, x_2, x_3, x_4) ; $1 \le k \le n$

Implicit Constraints:

- 1. No two subsets should be same & sum of corresponding w_i 's be m
- 2. $x_i < x_{i+1}$ such that $1 \le i \le k$, to avoid generating multiple instances of same subset e.g. (1,2,4) & (1,4,2)

Example:

n=4;
$$(w_1, w_2, w_3, w_4) = (11, 13, 24, 7) \& m=31$$

Another Approach: [Fixed Length]

Each solution set is represented by n-tuple (x_1, x_2, x_3, x_4) such that

 $x_i \in \{0,1\}$ where $1 \le i \le n$

$$x_i = 0 \rightarrow w_i$$
 not selected, and $x_i = 1 \rightarrow w_i$ selected

Therefore, Solution space of above instance are (1,1,0,1) & (0,0,1,1)

Example:

n=4;
$$(w_1, w_2, w_3, w_4) = (11, 13, 24, 7) \& m=31$$

Another Approach: [Fixed Length]

Each solution set is represented by n-tuple (x_1, x_2, x_3, x_4) such that

 $x_i \in \{0,1\}$ where $1 \le i \le n$

$$x_i = 0 \rightarrow w_i$$
 not selected, and $x_i = 1 \rightarrow w_i$ selected

Therefore, Solution space of above instance are (1,1,0,1) & (0,0,1,1)

Example:

$$S = \{2, 3, 5, 6, 7, 9, 10\} \& M = 15$$

In state space tree of solution, node list values of sumSoFar, k & remWeight

Initialize root node with values, sumSoFar = 0, k= 1 & remWeight= 42

0	1	42

Example:

Algorithm 4 SUMOFSUBSETS (Sumsofar, k, remweight)

This algorithm is used to find all the solutions of the sum of subsets problem. The X [] is the solution vector.

```
1. Set X[k]=1
2. if (Sumsofar+w[k]=M) then
   print X[1..k]
   // solution is found
   else
          if (Sumsofar+w[k]+w[k+1] \le M) then
   // Generate Left child
          SUMOFSUBSETS (Sumsofar+w[k], k+1, remweight-w[k])
          Endif
3. Endif
4. if ((Sumsofar+remweight-w[k]>=M) and (Sumsofar+w[k+1] ≥ M) then
    // Generate Right child
           X[k]=0
          SUMOFSUBSETS (Sumsofar, k+1, remweight-w[k])
   Stop
```

Backtracking: Graph Coloring

- It's a classic combinatorial Problem
- It's a problem of coloring N vertices of a given graph G in such a way that no two adjacent vertices share the same color and yet M colors are used.
- The problem is called as *M* coloring problem.
- \underline{M} coloring Decision problem: M is given, whether graph can be colored using M colors
- <u>M coloring optimization problem</u>: smallest number of colors (M) required to color the graph.

Backtracking: Graph Coloring Algorithm

- Suppose we have graph G=(V,E) with N vertices and M is given number of colors.
- We represent Graph G by adjacency matrix G[n,n] where,
 - $\circ G[i,j]=1$ if (i,j) is an edge of G and
 - \circ G[*i,j*]=0 otherwise.
- If d is degree of given graph, then it can be colored with d+1 colors $[m \text{ is referred to as } \mathbf{chromatic number}]$.
- Here colors are represented as integers 1,2,3,...,M and coloring solution will be a vector x[1...N].
- So, solutions are given by n-tuple $(x_1, x_2, x_3, ..., x_n)$ where, $1 \le x_i \le M$ and $1 \le i \le N$ and x_i is color of node i.

Example 1:

1 2 3 4

1	Γ0	1	0	1]
2	1	0	1	1
3	0	1	0	1
4	1	1	1	0

State Space Tree:

Dead node

Example 2:

Map

Planer Graph

Branch & Bound: Introduction

- Branch: using State Space Tree (Similar to Backtracking)
- Bound: using Upper and Lower bounds
- Branch and Bound differs from backtracking in the sense that all the children of the E-Node are generated before any other live node becomes the E-Node.
- Branch and Bound is the generalization of both graph search strategies, BFS and DFS.
- The state space tree of the branch and bound method can be constructed using following three strategies:
 - FIFO (First In First Out) search (Implemented using QUEUE)
 - LIFO (Last In First Out) search (Implemented using STACK)
 - LC (Least Cost) search (Implemented using PRIORITY QUEUE)

Branch & Bound: Introduction

FIFO (First In First Out) Branch and Bound

- In FIFO search, queue data structure is used.
- Initially node 1 is taken as the E-node.
- The child nodes of node 1 are generated. All these live nodes are placed in a queue.
- Next the first element in the queue is deleted, i.e. node 2, the child nodes of node 2 are generated and placed in the queue.
- This continues until the answer node is found.

Branch & Bound: FIFO

LIFO (Last In First Out) Branch and Bound

Example: Job sequencing with deadlines problem

- Jobs = $\{J1, J2, J3, J4\}$; P = $\{10, 5, 8, 3\}$; d = $\{1, 2, 1, 2\}$
- Node 1 is the E-node. Child nodes of node 1 are generated and placed in the queue.

2	3	4	5	
---	---	---	---	--

• First element in the queue is deleted, ie., 2 is deleted and its child nodes are generated.

3	4	5	6	7	8	
---	---	---	---	---	---	--

• Similarly, the next element is deleted, ie., 3 and its child nodes are generated and placed in the queue. This is continued until an answer node is reached.

Branch & Bound: FIFO

FIFO (First In First Out) Branch and Bound

Example: Job sequencing with deadlines problem

- Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}
- Node 1 is the E-node. Child nodes of node 1 are generated and placed in the queue.

• First element in the queue is deleted, ie., 2 is deleted and its child nodes are generated.

3 4	5	6	7	8	
-----	---	---	---	---	--

• Similarly, the next element is deleted, ie., 3 and its child nodes are generated and placed in the queue. This is continued until an answer node is reached.

Branch & Bound: LIFO

LIFO (Last In First Out) Branch and Bound

- In LIFO search, stack data structure is used.
- Initially node 1 is taken as the E-node.
- The child nodes of node 1 are generated. All these live nodes are placed in a stack.
- Next the first element in the stack is deleted, i.e. node 5, the child nodes of node 5 are generated and placed in the stack.
- This continues until the answer node is found.

Branch & Bound: LIFO

FIFO (First In First Out) Branch and Bound

Example: Job sequencing with deadlines problem

- Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}
- Node 1 is the E-node. Child nodes of node 1 are generated and placed in the stack.
- First element in the stack is deleted, i.e., 5 is deleted and its child nodes are generated.
- Similarly, the next element is deleted, i.e., 4 and its child nodes are generated and placed in the queue. This is continued until an answer node is reached.

Branch & Bound: LIFO

FIFO (First In First Out) Branch and Bound

Example: Job sequencing with deadlines problem

- Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}
- Node 1 is the E-node. Child nodes of node 1 are generated and placed in the stack.
- First element in the stack is deleted, i.e., 5 is deleted and its child nodes are generated.
- Similarly, the next element is deleted, i.e., 4 and its child nodes are generated and placed in the queue. This is continued until an answer node is reached.

Branch & Bound: LCBB

LC (Least Count) Branch and Bound:

- In both FIFO and LIFO Branch and Bound the selection rules for the next E-node in rigid and blind.
- The selection rule for the next E-node does not give any preferences to a node that has a very good chance of getting the search to an answer node quickly.
- In this method ranking function or cost function is used.
- The child nodes of the E-node are generated, among these live nodes; a node which has minimum cost is selected. By using ranking function, the cost of each node is calculated.

Branch & Bound: LCBB

LC (Least Count) Branch and Bound:

Example: Job sequencing with deadlines problem

- Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}
- Initially we will take node 1 as E-node. Generate children of node 1, the children are 2, 3, 4, 5. By using ranking function we will calculate the cost of 2, 3, 4, 5 nodes is $\hat{c} = 25$, $\hat{c} = 12$, $\hat{c} = 14$, $\hat{c} = 30$ respectively.
- Now we will select a node which has minimum cost i.e., node 3. For node 3, the children are 6, 7.

Branch & Bound: LCBB

LC (Least Count) Branch and Bound:

- All the live nodes are stored in a PRIORITY QUEUE or HEAP.
- The live nodes are not selected according to the order in which they have been queued or stacked but according to their heuristic value.
- The heuristic value is calculated for each live node and then the node with the highest heuristic value is chosen as the Enode.

LC (Least Count) Branch and Bound:

• The 0/1 knapsack problem is to

Maximize
$$\sum_{i=1}^{n} p_i x_i$$
 subject to $\sum_{i=1}^{n} w_i x_i \le M$

- objective of this problem is to fill the knapsack in order to maximize the profit subject to its capacity.
- But Branch & Bound is used for minimization problem.

LC (Least Count) Branch and Bound:

- This modified knapsack problem is stated as,
- The 0/1 knapsack problem is the maximization problem where the value of the objective function $\hat{c}(x) = \sum p_i x_i$ is maximized subjected to $\sum w_i x_i \leq M$,
- Now our aim is minimization, so we take the objective function $\hat{c}(x) = -\sum pi \ xi$ subjected to $\sum w_i x_i \leq M$ in order to convert the 0/1 knapsack problem as the minimization problem where xi = 0 or 1, $1 \leq i \leq n$
- The two functions $\hat{c}(x)$ and U(x) are defined using two algorithms Bound and UBound .

LC (Least Count) Branch and Bound:

- UBound computes the weights of the list of objects placed in the knapsack as a whole and their sum ≤m, and the profit is correspondingly decremented from initial profit and returned.
- Bound is similar to UBound but it considers fractional objects to use the entire capacity of the sack $\Sigma w_i x_i = m$.

$$\begin{array}{c} n=4;\ m=15;\\ (p_1,\,p_2,\,p_3,\,p_4)=\{10,\,10,\,12,\,18\};\ (w_1,\,w_2,\,w_3,\,w_4)=\{2,\,4,\,6,\,9\}\\ x_1=1,\\ x_2=1,\\ x_3=0,\\ x_4=1 \end{array}$$

$$\begin{array}{c} \hat{c}=-38\ (10+10+12+3/9*18)\\ u=-32\ (10+10+12)\\ \vdots\\ x_{3}=0\\ u=-32\ (10+10+12)\\ \vdots\\ x_{3}=0\\ \vdots\\ x_{2}=1\\ \vdots\\ x_{2}=0\\ \end{array}$$

$$\begin{array}{c} \hat{c}=-38\ (10+10+12+5/9*18)\\ u=-22\ (10+12)\\ \vdots\\ x_{3}=0\\ \vdots\\ x_{3}=0\\ \vdots\\ x_{4}=0\\ \end{array}$$

$$\begin{array}{c} \hat{c}=-38\ (10+10+12+3/9*18)\\ u=-32\ (10+10+12)\\ \vdots\\ x_{3}=0\\ \vdots\\ x_{4}=0\\ \end{array}$$

$$\begin{array}{c} \hat{c}=-38\ (10+10+18)\\ u=-38\ (10+10+18)\\ u=-38\ (10+10+18)\\ u=-38\ (10+10+18)\\ u=-38\ (10+10+18)\\ \end{array}$$

- The 15 Puzzle problem is invented by Sam Loyd in 1878.
- The problem consist of 15 numbered (0-15) tiles on a square box with 16 tiles(one tile is blank or empty).
- The objective of this problem is to change the arrangement of initial node to goal node by using series of legal moves.
- The Initial and Goal node arrangement is shown by following figure

Initial state				
1	2	3	4	
5	6		8	
9	10	7	11	
13	14	15	12	

Figure 19 Initial and goal states for 15-puzzle problem.

- In initial node four moves are possible. User can move any one of the tile like 2,or 3, or 5, or 6 to the empty tile. From this we have four possibilities to move from initial node.
- The legal moves are for adjacent tile number is left, right, up, down, ones at a time.
- Each and every move creates a new arrangement, and this arrangement is called state of puzzle problem.
- By using different states, a state space tree diagram is created, in which edges are labeled according to the direction in which the empty space moves.
- The LCBB method is the general method used to solve the 15-puzzle problem so that the goal state can be achieved in minimum number of tile movement.

• In state space tree, nodes are numbered as per the level. In each level we must calculate the value or cost of each node by using given formula:

$$C(x)=f(x)+g(x)$$
,

- f(x) is length of path from root or initial node to node x,
- g(x) is estimated length of path from x downward to the goal node. Number of non-blank tile not in their correct position.
- C(x) < Infinity.(initially set bound).
- Each time node with smallest cost is selected for further expansion towards goal node. This node become the e-node.

• Example:

Solve the given15-puzzle problem using LCBB.

In	itial	Lstate	à
			ā

1	2	3	4
5	6		8
9	10	7	11
13	14	15	12

Goal state

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

• Example:

