hw6 Graded Student Giancarlos Marte **Total Points** 29 / 40 pts Question 1 **14** / 15 pts pda formal description ✓ - 0.5 pts Incomplete/incorrect table (minor infraction) ✓ - 0.5 pts CFG has minor error ● b and c never appear on stack, shouldn't be on table. Also, the string abcc can never be created with your implementation. Very close though. **Question 2** regular language is context-free 10 / 15 pts ✓ - 2 pts proof using NFA: incomplete / missing delta ✓ - 3 pts proof using DFA: conversion to PDA or CFG is not equivalent or is not general Question 3 non-cfl 4 / 9 pts - 1 pt counterexample must be a specific string (e.g., cannot include something like "indent1") ✓ - 2 pts counterexample not in the language ✓ - 2 pts didnt explain why each possible splitting of counterexample cannot be pumped

1 / 1 pt

in counterexample, did you forget a p on indent3?

Question 4 readme

✓ - 0 pts Correct

1. Formal Descriptions for PDA's

1.1)

A formal description of this PDA is a 6 tuple (Q, Σ , Γ , δ , q0, F} specified below:

 $Q = \{q1, q2, q3, q4, q5, q6, q7\}$

 $\Sigma = \{a, b, c\}$

 $\Gamma = \{a, \$\}$

 δ is given by the following table, where blank cells signify \emptyset .

o is given	by the following table,	Where blank comb big	5mi y 0.	
Input:	a	Ь	С	٦
Stack:	a b c \$ 8	a b c \$ 8	a b c \$ 8	a b c \$ 8
			e l	
91				(q ₂₁ \$)
92	ζ(η ₂ , ·	N)		{(q ₃ ,8) _, (45,8)}
9,3		{(q ₃ ,e)}		{(n ₄ ,€)}
94			{(q, e)}	
95		7(a, e))	{(q ₆ ,8)}
96			{(0 ₆ ,€)}	{(a _b , 1€)}
97				_
			ı	

$$q0 = q1$$

$$F = \{q4, q7\}$$


```
1.2)
string 1: aabb
(q1, aabb, \varepsilon) \vdash (q2, aabb, \$)
                  \vdash (q2, abb, a$)
                  \vdash (q2, bb, aa$)
                  \vdash (q3, bb, aa$)
                  \vdash (q3, b, a$)
                  \vdash (q3, \epsilon, $)
                  \vdash (q4, \epsilon, \epsilon)
string 2: aabcc
(q1, aabcc, \varepsilon) \vdash (q2, aabcc, \$)
                    \vdash (q2, abcc, a$)
                    ⊢ (q2, bcc, aa$)
                    ⊢ (q5, bcc, aa$)
                    ⊢ (q5, cc, aa$)
                    ⊢ (q6, cc, aa$)
                    \vdash (q6, c, a$)
                    \vdash (q6, \epsilon, $)
                    \vdash (q7, \epsilon, \epsilon)
1.3)
string 1: aaa
(q1, baa, \varepsilon) \vdash (q2, aaa, \$)
                \vdash (q2, aa, a$)
                \vdash (q2, a, aa$)
                \vdash (q2, \epsilon, aaa$)
→ can go no further than q3 and q6, therefore it is not a string in the language
string 2: ccab
(q1, cbba, \varepsilon) \vdash (q2, cbba, \$)
```

→ can reach accept states, but pda will not have finished reading the input, therefore it is not a

string in the language

1.4) $G \rightarrow aXc \mid cC \mid bB \mid aFb$ $X \rightarrow \epsilon \mid b \mid bX \mid aXc$ $C \rightarrow \epsilon \mid c \mid cC$ $B \rightarrow \epsilon \mid b \mid bB$ $F \rightarrow \epsilon \mid aFb$ Let P be the cfg that represents this pda. P is a 4 tuple (V, \(\Sigma\), R, S), where: $V = \{G, X, C, B, F\}$ $\Sigma = \{G \rightarrow aXc \mid cC \mid bB \mid aFb, X \rightarrow \epsilon \mid b \mid bX \mid aXc,$

$$\begin{split} C &\rightarrow \epsilon \mid c \mid cC, \\ B &\rightarrow \epsilon \mid b \mid bB, \\ F &\rightarrow \epsilon \mid aFb \end{split}$$

S = G

2) A Regular Language is a Context-Free

proof using dfa

step	statement	justification
1	Every regular language is a context free language	given statement to prove
2	A language is regular if it can be recognized by a dfa	definition of a regular language
3	A context free language can be described by a context free grammar	definition of context free language
4	A dfa M = (Q, Σ , δ , q0, F) recognizes the regular language L	(2)
5	M can be converted into a CFG named $X = (V, \Sigma, R, S)$ where: $V = Q$ $\Sigma = \Sigma$ $R = \delta_q q,$ where δ_q is the alphabet from the transition to the next state and q is the next state $S = q0, \text{ where } q0 \text{ now has a } \epsilon \text{ as a terminal as well as its } R \text{ rule.}$	computation
6	The regular language L can be described by X, therefore it is a context free language	(5) and (3)

proof using nfa

step	statement	justification
1	Every regular language is a context free language	given statement to prove
2	A language is regular if it can be recognized by a nfa	definition of a regular language
3	A context free language can be described by a pda	definition of context free language
4	A nfa N = $(Q, \Sigma, \delta, q0, F)$ recognizes the language L	(2)

5	N can be converted into a pda named X: $Q = Q$ $\Sigma = \Sigma$ $\Gamma = \varepsilon$ $\delta = Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ $q0 = q0$ $F = F$	computation and (4)
6	The regular language L can be described by X, therefore it is a context free language	(5) and (3)

proof using regular expression

step	statement	justification
1	Every regular language is a context free language	given statement to prove
2	A language is regular if it can be recognized by a regular expression	definition of a regular language
3	A regular expression can be converted into an equivalent nfa	theorem (backwards part): a lang is reg iff some regex describes it
4	A context free language can be described by a pda	definition of context free language
5	A regular expression R recognizes the language L	(2)
6	R can be converted into an nfa N = $(Q, \Sigma, \delta, q0, F)$	(3)
7	N can be converted into a pda named X: $Q = Q$ $\Sigma = \Sigma$ $\Gamma = \varepsilon$ $\delta = Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$ $q0 = q0$ $F = F$	computation
8	The regular language L can be described by X, therefore it is a context free language	(4) and (7)

3) Non-CFL Whitespace Checking

step	statement	justification
1	prove that W is not a CFL $W = \{w \mid w = if_b_1: indent_1n_1elif_b_2: indent_2n_2else: indent_3n_3\}$ where: $1. b1, b2 is in \{true, false\}$ $2. n1, n2, n3 are in \{0, 1,, 9\}$ $3. indent1, indent2, indent3 are in**$ $4. indent1 = indent2 = indent3 $	given statement to prove
2	proof by contradiction on W	method of proof
3	assume that W is a CFL	(2)
4	The pumping lemma for CFL says that for a CFL there is a pumping length where any string in the language of length at least p, then that string may be divided into five pieces satisfying three conditions. $s = string$ $p = pumping length$ $s = uvxyz \rightarrow 5 \text{ pieces}$ $conditions:$ 1. for $i >= 0$, $uv^i xy^i z$ in A, 2. $ vy > 0$, and 3. $ vxy <= p$	definition of pumping lemma for CFL
5	counterexample for assumption: $if_{-}b_{1}$: $indent_{1}^{p}n_{1}elif_{-}b_{2}$: $indent_{2}^{p}n_{2}else$: $indent_{3}^{n}n_{3}$	(4)
6	pumping the first two indents will always cause the condition of W, $ \text{indent1} = \text{indent2} = \text{indent3} $ to be false. This means that no matter how you split it the string will not be in the language, therefore the pumping lemma does not work on W $u = ifb_1: \\ v = indent_1^p$	(1), (4) and (5)

	$x = n_1 e lif_b_2:$ $y = indent_2^p$ $z = n_2 e lse: indent_3 n_3$	
7	W is not pumpable, which means it is not a CFL	(6)
8	statement 7 and 3 contradict, therefore W is not a CFL due to the contrapositive of the CFL pumping lemma.	(3), (4) and (7)

README

other students: none

websites/books: class slides, lecture,

https://www.youtube.com/watch?v=pMvvnTHenHE&t=184s for #2 using dfa proof, trying to

convert dfa transition function to R for CFG.

hours spent: 5 hours