Student ID: _____

<u>Definitions and Formulas:</u> This page contains some definitions used in this exam and a list of formulas (theorems) that you may use in the exam (without having to provide a proof). Note that you might not need all of these formulas on this exam.

Note: This is a preliminary version of the page that will appear on the exam. The actual corresponding page on the exam will contain all of these formulas but might also contain a few others

<u>Definitions</u>

- 1. $N = \{0, 1, 2, 3, \ldots\}$, the set of non-negative integers.
- 2. $Z^+ = \{1, 2, 3, \ldots\}$, the set of positive integers.
- 3. R is the set of real numbers.
- 4. R^+ is the set of positive real numbers.

Formulas:

- 1. $\neg (p \land q)$ is equivalent to $\neg p \lor \neg q$.
- 2. $\neg (p \lor q)$ is equivalent to $\neg p \land \neg q$.
- 3. $\neg \forall x \in U(p(x))$ is equivalent to $\exists x \in U(\neg p(x))$
- 4. $\sum_{i=1}^{n-1} i = n(n-1)/2$.
- 5. $\sum_{i=1}^{n-1} i^2 = \frac{2n^3 3n^2 + n}{6}$.
- 6. If $r \neq 1$ then $\sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r}$
- 7. If $r \neq 1$ then $\sum_{i=0}^{n} ir^i = \frac{nr^{n+2} (n+1)r^{n+1} + r}{(1-r)^2}$
- 8. If $r \neq 1$ then $\sum_{i=0}^{n} i^2 r^i = \frac{r + r^2 (n+1)^2 r^{n+1} + (2n^2 + 2n 1)r^{n+2} n^2 r^{n+3}}{(1-r)^3}$