Departamento de Eletrónica, Telecomunicações e Informática

Machine Learning

LECTURE 1: INTRODUCTION

Petia Georgieva (petia@ua.pt)

Artificial Intelligence (AI)

AI is a general purpose technology that may influence every industry (similar to electricity, internet).

AI is based on

Machine Learning (ML) & Deep Learning (DL) algorithms

PROGRAM

Supervised learning

- Linear (univariate/ multivariate) regression
- Logistic regression. Regularization
- Artificial Neural Networks (ANN)
- Support Vector Machines (SVM)
- Decision Tree (DT);
- Naive Bayes classifier
- k-Nearest Neighbor (k-NN) classifier

Unsupervised learning

- K-means clustering
- Data dimensionality reduction
- Principal components analysis (PCA)

Deep Learning

Deep Learning architectures:

- CNN (Convolutional Neural Networks);
- LSTM (Lond Short Term Memory) neural network
- Multivariate Gaussian approach for Anomaly Detection
 Recommender Systems

Evaluation

Lectures & labs: 3 hours per week.

Practical component - 50% of the final grade

Practical component consists of 2 projects, developed in a group of two students.

The first project is evaluated based on a submitted report (IEEE format) and a short (10-15 min.) oral presentation.

The second project is evaluated based on a submitted report (IEEE format).

The students are encouraged to use Latex text editor.

Overleaf is a convenient platform for collaborative writing and publishing using Latex (https://www.overleaf.com/).

Theoretical Component - 50% of the final grade (Final exam).

Why Machine/Deep Learning

- **Sensors** get cheaper (e.g. widely available IoT devices)
- Exponential **growth of data** WSN/IoT, medical records, biology, engineering, etc.
- **Data sources**: sound, vibration, image, electrical signals, accelerometer, temperature, pressure, LIDAR etc.
- Increasing computational resources.

Complex Applications:

- ✓ Autonomous driving;
- ✓ Intelligent robotics;
- ✓ Computer Vision;
- ✓ Natural Language Processing (Speech recognition, Machine translation)
- ✓ 5G+ networks

A bit of history

- **1950,** Alan Turing: "Computing Machinery and Intelligence" define the question "Can machines think?" =>Turing test.
- **1956** –The field of Artificial Inteligente (AI) formally established at the conference in Dartmouth College.
- **1959,** Arthur Samuel: "Field of study that gives computers the ability to learn without being explicitly programmed".
- **1998,** Tom M. Mitchell: "Can the computer program learn from experience?".

Machine Learning – "definition"

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." **(T. Mitchell 1998)**

Given

- a task T (e.g. classify spam/regular emails)
- a performance measure P (weighted sum of mistakes)
- some experience E with the task (e.g. hand-sorted emails)

Goal

- generalize the experience in a way that allows to improve the machine performance on the task

Learning to classify documents

Web page:

Company, Personal, University, etc.

Articles:

Sport, Political, History, etc.

Computer Vision

Learning to detect & recognize faces

Computer Vision Tasks

Image classification: input a picture into ML/DL model and get the class label (e.g. person, bike, car, background, etc.)

Classification & localization: the model outputs not only the class label of the object but also draws a bounding box (the coordinates) of its position in the image.

Object Detection: outputs the position and labels of several objects.

Time Series (TS) Data

<u>Time Series</u> (TS) - collection of samples recorded at a sequence of time intervals

TS forecasting (prediction) => based on past samples, predict future trends, seasonality, anomalies, etc. Many applications:

- Key Performance Indicators (KPIs): network traffic prediction
- Smart Homes predict indoor temp., heating set-point, thermal comport
- Weather forecast heat waves, flooding
- WSN physical layer channel modelling / estimation

Multimodal Object Detection

Multimodal generative AI models

ML workflow

Train: Iterate until achieve satisfactory performance (off-line)

Predict: Integrate trained models into applications (real time)

From Raw data to Hand-crafted features

Raw data:

collected upstream/downstream network traffic metrics; sensor measurements uploaded packets (#, Bytes), downloaded packets (#, Bytes), silence/activity periods

Feature extraction (input vector x) - e.g. statistical metrics mean, max, min, standard deviation, different quantiles, over multiple sub-windows

Class (label y): Network traffic OK (0) / NOT OK (1)

Machine Learning Approaches

Supervised Learning

Given examples with "correct answer" (labeled examples)

(e.g. given dataset with spam/not-spam labeled emails)

Unsupervised Learning

Given examples without answers (no labels).

Deep Learning

Automatically extract hidden features (in contrast to hand-crafted features). Need a lot of data (Big data). Need for very high computational resources (GPUs).

Reinforcement Learning

On-line (on the fly) learning, by trial and error

Applications: intelligent robotics, autonomous systems

Supervised Learning

Requires labeled data (examples with "correct answer").

Regression: The Labels are real numbers.

Ex. Predict the house price (output) based on data for the house area and number of bedrooms (features).

Living area (feet ²)	#bedrooms	Price (1000\$s)	
2104	3	400	
1600	3	330	
2400	3	369	
1416	2	232	
3000	4	540	
÷	:	:	

Classification: The Labels are categorical values (class 1, class 2, etc.)

Ex. Predict normal (0) or abnormal (1) state of data center computers:

Features: memory use of computer; number of disc accesses /sec; CPU load; network traffic; silence

Unsupervised Learning

Given unlabeled data (NO answers)

Features: education, job, age, marital status, etc.

Market segmentation

Social network analysis

Clustering: Given a collection of examples (e.g. user profiles with a number of features). Each example is a point in the multidimensional space of features. Find a similarity measure that separates the points into clusters.

-K-means clustering

Reinforcement Learning

On-line learning by taking actions and getting rewards/penalties. intelligent robotics =>

Learn to act so as to maximize expected rewards

Learning is based on observed episodes

Why Deep Learning?

Hardware get smaller.

Sensors get cheaper, widely available IoT devices with high sample-rate. Data sources: sound, vibration, image, electrical signals, accelerometer, temperature, pressure, LIDAR, etc.

Big Data: Exponential growth of data, (IoT, medical records, biology, engineering, etc.)

How to deals with **unstructured data** (image, voice, text, EEG, ECG, etc.) => What are the best feature?

Deep Neural Networks: first extract (automatically) the hidden features, then solve ML tasks (classification, regression)

DL for 5G+ networks

Data traffic forecast – a key mechanism to automate 5G Network

Data Types

1. Numeric (Quantitative) features

- Integer numbers
- Floats (decimals) temperature, height, weight, humidity, etc.
- 2. Boolean True/False
- **3. Categorical features -** gender, days of the week, seasons, country of birth, colors, etc.

How to deal with categorical features? - One-hot encoding (1,0) transforms n categories into n features

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1

Iris Plant data

- Iris Plant data benchmark dataset for illustration of ML methods.
 - UCI Machine Learning Repository
 http://www.ics.uci.edu/~mlearn/MLRepository.html
 - 3 flower types (classes):
 - Setosa
 - Virginica
 - Versicolour
 - 4 attributes (features)
 - Sepal width and length
 - Petal width and length

Data Visualization (1)

Histograms

- Show the distribution of values of a single feature
- Divide the range of values of a single feature into bins and show bar plots of the number of examples in each bin.
- Histogram shape depends on the number of bins
- Example: Petal Width (10 and 20 bins, respectively)

Data Visualization (2)

Box Plots

- Another way of displaying the distribution of data

Data Visualization (3)

Scatter Plot Array

RECOMMENDED BIBLIOGRAPHY

- Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Aurélien Géron. O'Reilly, 2019
- François Chollet. Deep Learning with Python, Manning, 2018.
 (on-line)
- Andrew Ng, Machine Learning Yearning, 2017.
- Tom Mitchell, Machine Learning. McGraw-Hill, 1997.

- http://cs229.stanford.edu/
- MOOC (Massive Open Online Courses)
 e.g. https://www.coursera.org/

ANACONDA 3

1) Install Anaconda 3 for Python 3:

https://docs.anaconda.com/anaconda/install/

2) Learn how to use Jupyter Notebook (part of Anaconda)

https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Comment: If use higher versions than python 3.11 problems with tensorflow/ kerras libraries may arise.

Try to keep for now python version below 3.11.

