

(An Autonomous Institute)

DESIGN AND IMPLEMENTATION OF CODE CONVERTOR

EXPT NO:

DATE :

AIM: To design and implement 4-bit

- (i) Binary to gray code converter
- (ii) Gray to binary code converter
- (iii) BCD to excess-3 code converter
- (iv) Excess-3 to BCD code converter

APPARATUS REQUIRED:

Sr. No.	COMPONENT	SPECIFICATION	QTY.
1.	X-OR GATE	IC 7486	1
2.	AND GATE	IC 7408	1
3.	OR GATE	IC 7432	1
4.	NOT GATE	IC 7404	1
5.	IC TRAINER KIT	-	1
6.	PATCH CORDS	-	35

THEORY:

The availability of a large variety of codes for the same discrete elements of information results in the use of different codes by different systems. A conversion circuit must be inserted between the two systems if each uses different codes for the same information. Thus, code converter is a circuit that makes the two systems compatible even though each uses different binary code.

(An Autonomous Institute)

The bit combination assigned to binary code to gray code. Since each code uses four bits to represent a decimal digit. There are four inputs and four outputs. Gray code is a non-weighted code.

The input variable is designated as B3, B2, B1, B0, and the output variables are designated as C3, C2, C1, Co. from the truth table, the combinational circuit is designed. The Boolean functions are obtained from K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though each uses a different binary code. To convert from binary code to Excess-3 code, the input lines must supply the bit combination of elements as specified by code and the output lines generate the corresponding bit combination of code. Each one of the four maps represents one of the four outputs of the circuit as a function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions derived by the maps. These are various other possibilities for a logic diagram that implements this circuit. Now the OR gate whose output is C+D has been used to implement partially each of three outputs.

(An Autonomous Institute)

LOGIC DIAGRAM:

BINARY TO GRAY CODE CONVERTOR

K-Map for G₃:

 $G_3 = B_3$

(An Autonomous Institute)

K-Map for G₂:

G2 = B3 ⊕ B2

K-Map for G₁:

(An Autonomous Institute)

K-Map for G₀:

G0 = B1 ⊕ B0

TRUTH TABLE:

| Binary input | Gray code output |

В3	B2	B1	B 0	G3	G2	G1	G0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

(An Autonomous Institute)

LOGIC DIAGRAM:

GRAY CODE TO BINARY CONVERTOR

(An Autonomous Institute)

K-Map for B₃:

$$B3 = G3$$

K-Map for B₂:

(An Autonomous Institute)

K-Map for B_1 :

B1 = G3⊕G2⊕G1

K-Map for B₀:

B0 = G3⊕G2⊕G1⊕G0

(An Autonomous Institute)

TRUTH TABLE:

| Gray Code | Binary Code|

G3	G2	G1	G0	В3	B2	B 1	B 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

(An Autonomous Institute)

LOGIC DIAGRAM:

BCD TO EXCESS-3 CONVERTOR

K-Map for E₃:

E3 = B3 + B2(B0 + B1)

(An Autonomous Institute)

K-Map for E₂:

E2 = B2 (B1 + B0)

K-Map for E₁:

E1 = B1 ⊕ B0

(An Autonomous Institute)

K-Map for E_0 :

 $E0 = \overline{B0}$

TRUTH TABLE:

B(CD input			Excess -	- 3 output		1
В3	B2	B 1	В0	G3	G2	G1	G0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

(An Autonomous Institute)

LOGIC DIAGRAM:

EXCESS-3 TO BCD CONVERTOR

(An Autonomous Institute)

K-Map for A:

A = X1 X2 + X3 X4 X1

K-Map for B:

 $B = X2 \oplus (\overline{X3} + \overline{X4})$

(An Autonomous Institute)

K-Map for C:

X3 :	X4				
X1 X2	00	01	11	10	
00	Х	X	0	Х	
01	0	1	x	1	
11	0	х	х	x	
10	Х	1	0	1	

K-Map for D:

X3:	X4			
X1 X2	00	01	11	10
00	Х	Х	0	Х
01	1	0	0	1
11	1	х	Х	х
10	1	0	0	1

$$D = \overline{X4}$$

(An Autonomous Institute)

TRUTH TABLE:

	Excess – 3 Input	BCD Output	
--	------------------	-------------------	--

В3	B2	B 1	B0	G3	G2	G1	G0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

PROCEDURE:

- (i) Connections were given as per circuit diagram.
- (ii) Logical inputs were given as per truth table
- (iii) Observe the logical output and verify with the truth tables.

RESULT: