PROJECT

PROBLEM STATEMENT: To perform an analytics report on 100 years of Rainfall data

Importing packages

```
In [24]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.preprocessing import StandardScaler
   %matplotlib inline
```

Reading the data

In [25]: df=pd.read_csv(r"C:\Users\Lenovo\OneDrive\Desktop\Data Sets\rainfall in india 1

Out[25]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4
4116	rows × 19 columr	าร										

Data cleaning and preprocessing

In [26]: df.shape

Out[26]: (4116, 19)

In [27]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4112 non-null	float64
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
dtyp	es: float64(1	7), int64(1), ob	ject(1)
mama	ry usage: 611	1 ± KR	

memory usage: 611.1+ KB

In [28]: df.describe()

Out[28]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000
4							

In [29]: df.head()

Out[29]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4
4 (•

In [30]: df.tail()

Out[30]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	N
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	18
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	7
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	5
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	23
4								_					

In [31]: df["SUBDIVISION"].value_counts()

Out[31]:	SUBDIVISION	
	WEST MADHYA PRADESH	115
	EAST RAJASTHAN	115
	COASTAL KARNATAKA	115
	TAMIL NADU	115
	RAYALSEEMA	115
	TELANGANA	115
	COASTAL ANDHRA PRADESH	115
	CHHATTISGARH	115
	VIDARBHA	115
	MATATHWADA	115
	MADHYA MAHARASHTRA	115
	KONKAN & GOA	115
	SAURASHTRA & KUTCH	115
	GUJARAT REGION	115
	EAST MADHYA PRADESH	115
	KERALA	115
	WEST RAJASTHAN	115
	SOUTH INTERIOR KARNATAKA	115
	JAMMU & KASHMIR	115
	HIMACHAL PRADESH	115
	PUNJAB	115
	HARYANA DELHI & CHANDIGARH	115
	UTTARAKHAND	115
	WEST UTTAR PRADESH	115
	EAST UTTAR PRADESH	115
	BIHAR	115
	JHARKHAND	115
	ORISSA	115
	GANGETIC WEST BENGAL	115
	SUB HIMALAYAN WEST BENGAL & SIKKIM	115
	NAGA MANI MIZO TRIPURA	115
	ASSAM & MEGHALAYA	115
	NORTH INTERIOR KARNATAKA	115
	LAKSHADWEEP	114
	ANDAMAN & NICOBAR ISLANDS	110
	ARUNACHAL PRADESH	97
	Name: count, dtype: int64	

```
In [32]: states={"SUBDIVISION":{
         "WEST MADHYA PRADESH":1,
         "EAST RAJASTHAN":2,
         "COASTAL KARNATAKA":3,
         "TAMIL NADU":4,
         "RAYALSEEMA":5,
         "TELANGANA":6,
         "COASTAL ANDHRA PRADESH":7,
         "CHHATTISGARH":8,
         "VIDARBHA":9,
         "MATATHWADA": 10,
         "MADHYA MAHARASHTRA":11,
         "KONKAN & GOA":12,
         "SAURASHTRA & KUTCH":13,
         "GUJARAT REGION":14,
         "EAST MADHYA PRADESH":15,
         "KERALA":16,
         "WEST RAJASTHAN":17,
         "SOUTH INTERIOR KARNATAKA":18,
         "JAMMU & KASHMIR":19,
         "HIMACHAL PRADESH": 20,
         "PUNJAB":21,
         "HARYANA DELHI & CHANDIGARH":22,
         "UTTARAKHAND":23,
         "WEST UTTAR PRADESH": 24,
         "EAST UTTAR PRADESH":25,
         "BIHAR":26,
         "JHARKHAND":27,
         "ORISSA":28,
         "GANGETIC WEST BENGAL":29,
         "SUB HIMALAYAN WEST BENGAL & SIKKIM":30,
         "NAGA MANI MIZO TRIPURA":31,
         "ASSAM & MEGHALAYA":32,
         "NORTH INTERIOR KARNATAKA":33,
         "LAKSHADWEEP":34,
         "ANDAMAN & NICOBAR ISLANDS":35,
         "ARUNACHAL PRADESH":36}}
         df=df.replace(states)
         df
```

Out[32]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	N
0	35	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	55
1	35	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	35
2	35	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	28
3	35	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	30
4	35	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	2
	•••												
4111	34	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	18
4112	34	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	1
4113	34	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	7
4114	34	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	5
4115	34	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	23

4116 rows × 19 columns

```
In [33]: df.isnull().sum()
```

```
Out[33]: SUBDIVISION
          YEAR
                            0
                            4
          JAN
          FEB
                            3
          MAR
                            6
          APR
                            4
                            3
          MAY
                            5
          JUN
          JUL
                            7
          AUG
                            4
          SEP
                            6
                            7
          OCT
          NOV
                           11
          DEC
                           10
          ANNUAL
                           26
          Jan-Feb
                           6
          Mar-May
                           9
          Jun-Sep
                           10
          Oct-Dec
                           13
```

dtype: int64

```
In [34]: df.fillna(method="ffill",inplace=True)
```

```
In [35]: | df.columns
Out[35]: Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JU
         L',
                 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
                 'Jun-Sep', 'Oct-Dec'],
                dtype='object')
In [36]: df.isnull().sum()
Out[36]: SUBDIVISION
                         0
         YEAR
                         0
         JAN
                         0
                         0
         FEB
         MAR
                         0
         APR
                         0
         MAY
                         0
         JUN
                         0
         JUL
                         0
         AUG
                         0
         SEP
                         0
         OCT
                         0
         NOV
                         0
         DEC
                         0
         ANNUAL
                         0
         Jan-Feb
                         0
                         0
         Mar-May
         Jun-Sep
                         0
         Oct-Dec
                         0
         dtype: int64
```

Data Visualization

In [37]: sns.lmplot(x="YEAR",y="ANNUAL",data=df,order=2,ci=None)

Out[37]: <seaborn.axisgrid.FacetGrid at 0x1cf10d4fb10>

In [38]: sns.displot(df['YEAR'])

Out[38]: <seaborn.axisgrid.FacetGrid at 0x1cf12f3e050>


```
In [39]: sns.displot(df['ANNUAL'])
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x1cf13131050>

APPLYING LINEAR REGRESSION

```
In [40]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression

In [41]: x=np.array(df['YEAR']).reshape(-1,1)
    y=x=np.array(df['ANNUAL']).reshape(-1,1)

In [42]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)

In [44]: regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_train,y_train))
```

1.0

```
In [46]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='blue')
plt.plot(x_test,y_pred,color='black')
plt.show()
```


Since we got 100% accuracy we can say that it is not a best model.Because no model is 100% accurate.Now we are going to implement Logistic Regression

Applying Logistic Regression

```
In [78]: |lr.fit(x_train,y_train)
```

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl earn\utils\validation.py:1143: DataConversionWarning: A column-vector y was p assed when a 1d array was expected. Please change the shape of y to (n_sample s,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
earn\linear_model_logistic.py:458: ConvergenceWarning: lbfgs failed to conve
rge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
ession)

n_iter_i = _check_optimize_result(

Out[78]:

► LogisticRegression

In [79]: lr.score(x_test,y_test)

Out[79]: 0.1408906882591093

```
In [80]: sns.regplot(x=x,y=y,data=df,logistic=True,ci=None)
```

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\sta
tsmodels\genmod\families\links.py:198: RuntimeWarning: overflow encountered i
n exp

t = np.exp(-z)

Out[80]: <Axes: >

Here we did'nt got the good accuracy as well as graph also. Now we are going to implement clustering algorithm KMeans

Applying Ridge Regression and Lasso Regression

```
In [81]: from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

```
In [82]: features= df.columns[:2]
target= df.columns[:15]
```

```
In [83]: | x=np.array(df['YEAR']).reshape(-1,1)
          y=np.array(df['ANNUAL']).reshape(-1,2)
In [84]: x= df[features].values
          y= df[target].values
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1
          print("The dimension of X_train is {}".format(x_train.shape))
In [96]:
          print("The dimension of X test is {}".format(x_test.shape))
          The dimension of X_train is (2881, 2)
          The dimension of X test is (1235, 2)
In [97]: | scaler=StandardScaler()
          x train=scaler.fit transform(x train)
          x_test=scaler.transform(x_test)
In [100]: #Ridge Regression Model
          ridgeReg=Ridge(alpha=10)
          ridgeReg.fit(x train,y train)
          #train and test score for ridge regression
          train score ridge=ridgeReg.score(x train,y train)
          test_score_ridge=ridgeReg.score(x_test,y_test)
          print("The train score for lr model is {}".format(train score ridge))
          print("The test score for lr model is {}".format(test score ridge))
          The train score for lr model is 0.19734268994216755
          The test score for lr model is 0.197092828044007
In [103]:
          #lasso regression model
          print("\nLasso Model: \n")
          lasso=Lasso(alpha=10)
          lasso.fit(x_train,y_train)
          train_score_ls=lasso.score(x_train,y_train)
          test_score_ls=lasso.score(x_test,y_test)
          print("The train score for ls model is {}".format(train_score_ls))
          print("The test score for ls model is {}".format(test score ls))
          Lasso Model:
          The train score for ls model is 0.11243395544012529
          The test score for ls model is 0.11483605154265669
```

localhost:8888/notebooks/Project(Rainfall).ipynb#Here-we-did'nt-got-the-good-accuracy.so-now-we-are-going-to-implement-Lasso-Regression

The train score for ridge model is 0.19734268994216667 The train score for ridge model is 0.1970928280440069

Here we did'nt got the good accuracy.so now we are going to implement KMeans

Applying KMeans

```
In [60]: plt.scatter(df["YEAR"],df["ANNUAL"])
    plt.xlabel("YEAR")
    plt.ylabel("ANNUAL")
```

Out[60]: Text(0, 0.5, 'ANNUAL')


```
In [61]: from sklearn.cluster import KMeans
```

In [41]: km=KMeans()
km

Out[41]:

```
▼ KMeans
KMeans()
```

In [42]: y_predicted=km.fit_predict(df[["YEAR","ANNUAL"]])
y_predicted

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wil
l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
ppress the warning
 warnings.warn(

Out[42]: array([3, 3, 1, ..., 7, 7, 7])

In [43]: df["Cluster"]=y_predicted
 df.head()

Out[43]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
0	35	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2
1	35	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0
2	35	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4
3	35	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7
4	35	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4
4.1			_										

```
In [58]: df1=df[df.Cluster==0]
    df2=df[df.Cluster==1]
    df3=df[df.Cluster==2]

plt.scatter(df1["YEAR"],df1["ANNUAL"],color="red")
    plt.scatter(df2["YEAR"],df2["ANNUAL"],color="green")
    plt.scatter(df3["YEAR"],df3["ANNUAL"],color="blue")
```

Out[58]: <matplotlib.collections.PathCollection at 0x1754edb1f10>


```
In [59]: plt.xlabel("YEAR")
    plt.ylabel("ANNUAL")
```

```
Out[59]: Text(0, 0.5, 'ANNUAL')
```



```
In [60]: from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
```

```
In [61]: scaler.fit(df[["ANNUAL"]])
    df["ANNUAL"]=scaler.transform(df[["ANNUAL"]])
    df.head()
```

Out[61]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	 NOV	DEC
0	35	0.000000	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	 558.2	33.6
1	35	0.008772	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	 359.0	160.5
2	35	0.017544	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	 284.4	225.0
3	35	0.026316	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	 308.7	40.1
4	35	0.035088	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	 25.4	344.7

5 rows × 22 columns

```
In [62]: scaler.fit(df[["YEAR"]])
    df["YEAR"]=scaler.transform(df[["YEAR"]])
    df.head()
```

Out[62]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	 NOV	DEC
0	35	0.000000	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	 558.2	33.6
1	35	0.008772	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	 359.0	160.5
2	35	0.017544	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	 284.4	225.0
3	35	0.026316	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	 308.7	40.1
4	35	0.035088	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	 25.4	344.7

5 rows × 22 columns

In [63]: km=KMeans()

In [64]: y_predicted=km.fit_predict(df[["YEAR","ANNUAL"]])
y_predicted

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wil
l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
ppress the warning
 warnings.warn(

Out[64]: array([7, 7, 7, ..., 1, 1, 1])

In [65]: df["New Cluster"]=y_predicted
 df.head()

Out[65]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	 NOV	DEC
0	35	0.000000	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	 558.2	33.6
1	35	0.008772	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	 359.0	160.5
2	35	0.017544	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	 284.4	225.0
3	35	0.026316	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	 308.7	40.1
4	35	0.035088	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	 25.4	344.7

5 rows × 22 columns

```
In [66]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]

plt.scatter(df1["YEAR"],df1["ANNUAL"],color="red")
    plt.scatter(df2["YEAR"],df2["ANNUAL"],color="green")
    plt.scatter(df3["YEAR"],df3["ANNUAL"],color="blue")

plt.xlabel("YEAR")
    plt.ylabel("ANNUAL")
```

Out[66]: Text(0, 0.5, 'ANNUAL')


```
In [70]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]

plt.scatter(df1["YEAR"],df1["ANNUAL"],color="red")
    plt.scatter(df2["YEAR"],df2["ANNUAL"],color="green")
    plt.scatter(df3["YEAR"],df3["ANNUAL"],color="blue")

plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",maplt.xlabel("YEAR")
    plt.ylabel("ANNUAL")
```

Out[70]: Text(0, 0.5, 'ANNUAL')


```
In [71]: k_rng=range(1,10)
sse=[]
```

```
Project(Rainfall) - Jupyter Notebook
In [73]: for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["YEAR","ANNUAL"]])
             sse.append(km.inertia )
         sse
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
```

ppress the warning warnings.warn(

```
Out[73]: [434.0133739262185,
           173.1482983344619,
           124.90114269286946,
           91.16133202288262,
           67.48575762867335,
           54.0886216031728,
           44.862831877855115,
           38.6674115044697,
           34.855906243888334]
          plt.plot(k_rng,sse)
In [74]:
          plt.xlabel("k")
          plt.ylabel("Sum of Squared Error")
Out[74]: Text(0, 0.5, 'Sum of Squared Error')
              450
              400
              350
           Sum of Squared Error
              300
              250
              200
              150
              100
               50
```

Here we got the accurate curve in th graph(i.e.Elbow curve) ¶

3

2

CONCLUSION: We can conclude that KMeans is the best model for the given datset

5

9