ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ					
КАТЕДРА ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНИКА					
Студент		Фак. №			
Факултет	Група	Дата			
Преподавател		Подпис			

Упражнение №7

ИЗСЛЕДВАНЕ НА СВЪРЗАНИ ЧЕТИРИПОЛЮСНИЦИ

1. Теоретични положения

2. Опитна постановка

2.1. Определяне на комплексните съпротивления на четириполюсниците и техните свързвания

2.2. Определяне на комплексните съпротивления чрез цифров ватметър

Последователно свързване

Паралелно свързване

Верижно свързване

2.3. Определяне на комплексния коефициент C на четириполюсниците и техните свързвания

- 3. Резултати от измерванията и изчисленията
- 3.1. Определяне ня комплексните съпротивления на четириполюсниците и техните свързвания
- 3.1.1. Определяне на комплексното входно съпротивление при прекъсване на изхода Z_{10}

Изследвани	U_{10}	I_{10}	P_{10}	z_{10}	ϕ_{10}	$Z_{10} = z_{10} e^{j\varphi_{10}}$	$Z_{10} = R - jX$
четириполюсници	V	A	W	Ω	deg	arOmega	arOmega
Π_1							
Π_2							
Последователно							
Паралелно							
Верижно							

3.1.2. Определяне на комплексното входно съпротивление при късо съединение на изхода Z_{1K}

Изследвани четириполюсници	$U_{_{1K}}$	I_{1K}	P_{1K}	Z_{1K}	φ_{1K}	$Z_{1K} = z_{1K} e^{j\varphi_{1K}}$	$Z_{1K} = R - jX$
	V	A	W	Ω	deg	arOmega	Ω
Π_1							
Π_2							
Последователно							
Паралелно							
Верижно							

3.1.3. Определяне на комплексното входно съпротивление при обратно захранване и прекъсване на входа Z_{20}

Изследвани четириполюсници	${U}_{\scriptscriptstyle 20}$	I_{20}	P_{20}	z_{20}	$arphi_{20}$	$Z_{20} = z_{20} e^{j\varphi_{20}}$	$Z_{20} = R - jX$
	V	A	W	Ω	deg	arOmega	arOmega
Π_1							
Π_2							
Последователно							
Паралелно							
Верижно							

3.2. Определяне на комплексния коефициент $\,C\,$ на четириполюсниците и техните свързвания

Изследвани четириполюсници	\overline{U}_{20}	I_{10}	$P_{\scriptscriptstyle W}$	$P_{\scriptscriptstyle W}^{\prime}$		α	$C = C e^{j\alpha}$	$C = \text{Re} \pm j \text{Im}$
	V	A	W	$\uparrow \downarrow$	S	deg	S	S
$arPi_1$								
Π_2								
Последователно								
Паралелно								
Верижно								

3.3. Коефициенти, определени чрез измерените $Z_{{\scriptscriptstyle 10}}$, $Z_{{\scriptscriptstyle 1K}}$, $Z_{{\scriptscriptstyle 20}}$ и C

Изследвани четириполюсници	A	В	C	D
1		Ω	S	
$arPi_1$				
Π_2				
Последователно				
Паралелно				
Верижно				

3.4. Коефициенти, определени теоретично, въз основа на електрическите схеми на четириполюсниците

Изследвани	A	В	C	D
четириполюсници		Ω	S	
Π_1				
Π_2				
Последователно				
Паралелно				
Верижно				

Определяне на Z-параметрите на четириполюсниците и на последователното им свързване

Изследвани четириполюсници	Z_{11}	Z_{12}	Z_{21}	Z_{22}
	arOmega	arOmega	arOmega	arOmega
Π_1				
Π_2				
Последователно				

Определяне на Y-параметрите на четириполюсниците и на паралелното им свързване

Изследвани четириполюсници -	<i>Y</i> ₁₁	Y ₁₂	Y_{21}	Y ₂₂
	S	S	S	S
$arPi_1$				
Π_2				
Паралелно				

	_						
3.5.	Определяне на	еквивалентна	заместваша	схема на	съставен	четириполюсь	ник

Избрано свързване на четириполюсниците (последователно, паралелно или верижно) –

Избрана еквивалентна замествща схема (Т- или П-тип) –

Изчисляване на параметрите на еквивалентната схема

$$Z_1 =$$

$$Z_2 =$$

$$Z_0 =$$

Изчисляване на параметрите на елементите в еквивалентната схема

 $C_1 =$

$$R_1 =$$

$$R_2 = C_2 =$$

$$R_0 = C_0 =$$

Електрическа схема на еквивалентния четириполюсник

4. Изчисления