

_Want more Nobel prizes?

Linear Regression

_Marco Loog

Past, Present, Future

- _Previous focus largely on classification
- _Today linear regression
- _Tomorrow mainly classification again

With a focus on linear classifiers

What is Regression?

_Examples of prediction problems where you may not be interested in a class?

Input-Output and Error Measure

_Given p(x, y)Distribution over input-output

_Function f(x)

_How to measure goodness of fit?

Model Assumption

_Given example of (chocolate,prizes) input = chocolate output = prize

_What functions to consider?

Ingredients

_Model Will look at linear models

_Fitting function
Squared loss
Probabilistic

So...

_Regression aims to minimize expected squared loss

$$\int (f(x) - y)^2 p(x, y) dx dy$$

Other losses possible of course

- _We do not know *p*
- _We need to assume a model for *f*

Squared Loss

_Risk of interest and "Bayes regression function"?

x is fixed at x we have the density phylx)
so optimal f(x) minimizes
$$\int (f(x) - y)^2 p(y|x) dy$$
take $\frac{d}{dx}$ and set $\int s = \int \int f(x) dy$

Least Squares Linear Regression

_Assuming linearity...

Given N iid input-output pairs (x_i, y_i) Find the w that minimizes

$$\int (x) = w^{T} x$$

$$\sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = ||Xw - Y||^{2}$$

Least Squares Linear Regression

_Assuming linearity...

Given N iid input-output pairs (x_i, y_i) Find the w that minimizes

$$\int (x) = w^{T} x$$

$$\sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = ||Xw - Y||^{2}$$

$$\sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = \|Xw - Y\|^{2}$$

_Let's solve this for 1D inputs...

$$\frac{d\Sigma}{d\omega} \left(w \times_i - y_i \right)^2 = \sum_{i=0}^{2} (w \times_i - y_i) \times_i = 0$$

$$\sum_{i=0}^{2} w \times_i^2 - 2w \times_i y_i = 0$$

$$w = \sum_{i=0}^{2} x_i y_i$$

$$w = \sum_{i=0}^{2} x_i y_i$$

Note: Intercept / Bias

 $x' = \begin{pmatrix} x \\ 1 \end{pmatrix}$ $x' = \begin{bmatrix} x \\ 1 \end{bmatrix}$ $x' = \begin{bmatrix} x \\ 1 \end{bmatrix}$ $x' = \begin{bmatrix} x \\ 1 \end{bmatrix}$ $x' = \begin{bmatrix} x \\ 1 \end{bmatrix}$

_w^Tx always goes through 0 for input 0 How do we fix this?

Q? / Recap / Remainder

_Regression is for ordered / continuous outputs

$$\sum_{i=1}^{N} (w^{T} x_{i} + w_{0} - y_{i})^{2}$$

Probabilistic extension Simple prior knowledge "Nonlinear" model

Extension to Probabilistic Model

_But why?

Model spread in prediction Express confidence

Extension to Probabilistic Model

_How to?

One possibility is to assume conditional for Gaussian p(y|x)

How To

- _Conditional at $x : p(y|x) = N(y|w^Tx, \sigma^2)$
- _Fit to data by maximizing (conditional) likelihood

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

What are the parameters to optimize? Depends on what the model assumes...

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

Let's fit it

Assume σ known

$$\sum |\sigma g N(yi|w) = \sum_{c} \left[C + -\frac{1}{2\sigma^2}(w x_i - y_i)^2\right]$$

$$\widehat{\mathcal{Q}}_{ML} = (X^T X)^{-1} X^T Y$$

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

Let's fit it

Assume w known

$$\frac{1}{M} = \frac{1}{N} = \frac{1}$$

Q? / Recap / Next Topic

_Can reinterpret standard linear regression in terms of a probabilistic model

_Now: important way of incorporating prior knowledge [more on this in Week 5]

Rough Idea

_Estimate
average height
in football team
_What do you do
in case of 0
observations?

Maximum a Posteriori Estimation

_One way of combining a prior information with actual data: take likelihood × prior

 $p(\text{data}|\theta)p(\theta)$

_MAP estimate obtained by maximizing for heta

So, think about how you would approach team height estimation...

Generic Prior in Regression

- _Assume that w is [relatively] close to 0
- _More specifically take prior $N(w|0,\alpha I)$ [$\alpha = \text{fixed!}$]
- _MAP estimate \widehat{w}_{MAP} maximizes

$$\left(\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)\right)N(w|0,\alpha I)$$

You should be able to solve this [at least for 1D case, σ fixed]

Generic Prior in Regression

MAP estimate \widehat{w}{MAP} maximizes

$$\left(\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)\right)N(w|0,\alpha I)$$

_Solution for this specific choice [with σ fixed]

$$\widehat{w}_{\text{MAP}} = \left(X^T X + \frac{\sigma^2}{\alpha} I\right)^{-1} X^T Y$$

Next: Nonlinear Relations...

_Often variables relate in a nonlinear way

$$_{E} = mc^{2}$$
, $G = \frac{m_{1}m_{2}}{r^{2}}$, etc.

_What can we do?

Feature Transformations

- _Nothing prevents inventing own combinations
- _Already added constant for intercept / bias / offset
- _Why stop there?

With $x \in \mathbb{R}^3$ a feature vector, we could add...

 x_1^2 , $\sin x_3$, x_1x_2 , etc.

[Note potential confusion with indexed samples]

_Generally, invent mapping $\phi \colon \mathbb{R}^d \longrightarrow \mathbb{R}^D$ from d-dimensional space to new D-dimensional one

Feature Transformations

With your choice of ϕ , new objective becomes

$$\sum_{i=1}^{N} (w^T \phi(x_i) - y_i)^2$$

Typically, model is still called linear

_Special case : polynomial regression of some order

_Relation to the kernel trick [Week 4]

Wrap-up

- _Discussed regression, linear in particular
- _Both squared loss formulation and probabilistic
- _Extensions using prior and feature transformations
- Tomorrow we look at linear classifiers
- _Think about the following:
 - Which linear ones did you see already?
 - How to use linear regression to build a linear classifier?