Math 325. Quiz #1

(1) State the definition of the minimum of a set S of real numbers.

A number in is the minimum of S provided mes and forall xes, mex.

(2) True or false, and justify with an argument or counterexample:

Let r be a rational number. If x is irrational, then x + r is irrational.

TRUE:

If X+r B, rational, then

X = (X+r)-r B rational

(since X+r B & -r B).

(3) True or false, and justify with an argument or counterexample:

Let S be any set of real numbers. For any $x \in S$ there is some $y \in \mathbb{R}$ such that x < y.

TRUE:

Given S and x ∈ S, we can take y=x+1.

Bonus: Prove or disprove: If S is a subset of $\mathbb Z$ and S has 1,000,000 as an upper bound, then S has a maximum.

Common mistakes:	explanat
#1: unexplained variables	f"+=
e.g., [x∈S and for all y∈S, x≤y] x is unexplained here! Correct version	4 real number x 13/ a minimum for 5 if x & S and far all y & S, x so on in explanation
e.g., [* xeal number x "is ex] minimum for S if xES and YES, XEY	
The y 3 a new variable being introduced to explain the idea Albert X 3 900 bigger flam any elt. of S	
Any et of si we need a quantifier. #1: assertion vs definition	\$27 K (2) 118
eg. There is a minimum? For a set S if	
This is about when a minimum	
exists, not what a minimum is	
THETHORMAS): MILLITUR VS DIDGEO	
e.g. The minimum of a frecise Set is the smallest element in the set. True, but perhaps not quite definition	n-grade.
True, but perhaps not quite definition Unpackage "smallest in the set" in we can work with mathematica	elays i

then S has a maximum. #2: correct negation/contrapositive # 2 S#3: argument by example to show these and true we need a general argument; I they were false we call show this with a courtererample. #3: "any set of real numbers"
means an arbitrary subset of IR, not IR itself #2: eg. | Say r i3 vational, so r= 4/6 for some a, b = #, THE B+ bx = a+bt and a+bx & Z, SO X+V B irrational, Just be cause X+1 can be written as a fraction where one of the pieces is not an integer does not mean x+v is irrational.

(e.g., 1=12)

Bonus: Prove or disprove: If S is a subset of \mathbb{Z} and S has 1,000,000 as an upper bound,