Mathe Nachhilfe

Analytische Geometrie - Einführung

Analytische Geometrie - Einführung

Ein neues Koordinatensystem

Punkte ablesen Punkte eintragen

Vektoren

Ortsvektoren Vektoren durch zwei Punkte

Länge eines Vektors

2D

3D

Analytische Geometrie - Einführung

Ein neues Koordinatensystem Punkte ablesen Punkte eintragen

Vektoren

Ortsvektoren Vektoren durch zwei Punkte

Länge eines Vektors

2[

3D

P(0, 1.5, 1.5) P(1, 2, 2) P(3, 3, 3)

facebook.com/JeanHilftDir Skype: JeanHilftDir

Folien: github.com/JeanHilftDir/Mathe

Analytische Geometrie - Einführung

Ein neues Koordinatensystem Punkte ablesen Punkte eintragen

Vektoren

Ortsvektoren Vektoren durch zwei Punkte

Länge eines Vektors

20

3E

Vektoren - Ortsvektoren

A = (3, 5, 1)

A = (3, 5, 1)

A = (3,5,1)B = (4,6,3)

A = (3,5,1)B = (4,6,3)

A = (3,5,1) B = (4,6,3)C = (1,-2,4)

A = (3,5,1) B = (4,6,3)C = (1,-2,4)

A = (3,5,1) B = (4,6,3) C = (1,-2,4)P = (3.5,2,-0.5)

A = (3,5,1) B = (4,6,3) C = (1,-2,4) P = (3.5,2,-0.5) Q = (4.5,0,3.5)

A = (3,5,1) B = (4,6,3) C = (1,-2,4) P = (3.5,2,-0.5) Q = (4.5,0,3.5)

A = (3, 5, 1)B = (4, 6, 3)C = (1, -2, 4)P = (3.5, 2, -0.5)Q = (4.5, 0, 3.5) $\vec{v}_1 = \vec{OA}$

A = (3,5,1) B = (4,6,3) C = (1,-2,4) P = (3.5,2,-0.5) Q = (4.5,0,3.5)

 $ec{v}_1 = ec{OA} \ ec{v}_2 = ec{OB} \$

A = (3,5,1) B = (4,6,3) C = (1,-2,4) P = (3.5,2,-0.5) Q = (4.5,0,3.5)

 $ec{v}_1 = ec{OA} \ ec{v}_2 = ec{OB} \ ec{v}_3 = ec{OC}$

A = (3,5,1) B = (4,6,3) C = (1,-2,4) P = (3.5,2,-0.5) Q = (4.5,0,3.5)

 $ec{v}_1 = ec{OA} \ ec{v}_2 = ec{OB} \ ec{v}_3 = ec{OC}$

 $\vec{v}_4 = \vec{PQ} = \vec{v}_3$

P = (3.5, 2, -0.5)Q = (4.5, 0, 3.5)

P = (3.5, 2, -0.5)Q = (4.5, 0, 3.5)

 $\vec{v}_4 = \vec{PQ} = \vec{OQ} - \vec{OP}$

$$P = (3.5, 2, -0.5)$$

$$Q = (4.5, 0, 3.5)$$

$$\vec{v}_4 = \vec{PQ} = \vec{OQ} - \vec{OQ}$$

$$ec{v_4} = ec{PQ} = ec{OQ} - ec{OP}$$
 $ec{v_4} = \left(egin{array}{c} x_q - x_p \ y_q - y_p \ z_q - z_p \end{array}
ight)$

$$P = (3.5, 2, -0.5)$$

 $Q = (4.5, 0, 3.5)$

$$ec{v_4} = ec{PQ} = ec{OQ} - ec{OP}$$
 $ec{v_4} = \left(egin{array}{c} x_q - x_p \ y_q - y_p \ z_q - z_p \end{array}
ight)$
 $ec{v_4} = \left(egin{array}{c} 4.5 - 3.5 \ 0 - 2 \ 3.5 - (-0.5) \end{array}
ight)$

$$\vec{c}_4 = \begin{pmatrix}
4.5 - 3.5 \\
0 - 2 \\
3.5 - (-0.5)
\end{pmatrix}$$

$$P = (3.5, 2, -0.5)$$

 $Q = (4.5, 0, 3.5)$

$$\vec{v}_4 = \vec{PQ} = \vec{OQ} - \vec{OQ}$$

$$\vec{v}_4 = \begin{pmatrix} x_q - x_p \\ y_q - y_p \\ z_q - z_p \end{pmatrix}$$

$$\vec{v}_{4} = \vec{PQ} = \vec{OQ} - \vec{OP}$$

$$\vec{v}_{4} = \begin{pmatrix} x_{q} - x_{p} \\ y_{q} - y_{p} \\ z_{q} - z_{p} \end{pmatrix}$$

$$\vec{v}_{4} = \begin{pmatrix} 4.5 - 3.5 \\ 0 - 2 \\ 3.5 - (-0.5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

facebook.com/JeanHilftDir Skype: JeanHilftDir

Folien: github.com/JeanHilftDir/Mathe

Analytische Geometrie - Einführung

Ein neues Koordinatensystem

Punkte ablesen

Punkte eintragen

Vektoren

Ortsvektoren

Vektoren durch zwei Punkte

Länge eines Vektors

2D

3D

R = (3, 2)

$$R = (3, 2)$$

 $S = (4, 5)$
 $\vec{v}_5 = \begin{pmatrix} 4 - 3 \\ 5 - 2 \end{pmatrix}$

$$R = (3,2)$$

$$S = (4,5)$$

$$\vec{v}_5 = \begin{pmatrix} 4-3\\5-2 \end{pmatrix} = \begin{pmatrix} 1\\3 \end{pmatrix}$$

$$R = (3,2)$$

$$S = (4,5)$$

$$\vec{v}_5 = \begin{pmatrix} 4-3\\5-2 \end{pmatrix} = \begin{pmatrix} 1\\3 \end{pmatrix}$$

$$|\vec{v}_5| = \sqrt{x^2 + y^2}$$

$$R = (3,2)
S = (4,5)
\vec{v}_5 = \begin{pmatrix} 4-3 \\ 5-2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}
|\vec{v}_5| = \sqrt{x^2 + y^2}
|\vec{v}_5| = \sqrt{1^2 + 3^2}$$

$$R = (3,2)$$

$$S = (4,5)$$

$$\vec{v}_5 = \begin{pmatrix} 4-3 \\ 5-2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$|\vec{v}_5| = \sqrt{x^2 + y^2}$$

$$|\vec{v}_5| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$R = (3,2)
S = (4,5)
\vec{v}_5 = \begin{pmatrix} 4-3 \\ 5-2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}
|\vec{v}_5| = \sqrt{x^2 + y^2}
|\vec{v}_5| = \sqrt{1^2 + 3^2} = \sqrt{10}
|\vec{v}_5| \approx 3.1623$$

U = (1.5, 2, -0.5)

U = (1.5, 2, -0.5)V = (2.5, 0, 3.5)

U = (1.5, 2, -0.5)V = (2.5, 0, 3.5)

U = (1.5, 2, -0.5) V = (2.5, 0, 3.5) $\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix}$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$U = (1.5, 2, -0.5)$$
 $V = (2.5, 0, 3.5)$
 $\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$U = (1.5, 2, -0.5)$$
 $V = (2.5, 0, 3.5)$
 $\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$

$$U = (1.5, 2, -0.5)$$
 $V = (2.5, 0, 3.5)$
 $\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_6| = \sqrt{x^2 + \left| \left(\begin{array}{c} 0 \\ y \\ z \end{array} \right) \right|^2}$$

$$U = (1.5, 2, -0.5)$$
 $V = (2.5, 0, 3.5)$
 $\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$

$$|\vec{v}_6| = \sqrt{x^2 + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^2}$$
$$|\vec{v}_6| = \sqrt{x^2 + \sqrt{y^2 + z^2}^2}$$

$$= \sqrt{x^2 + \sqrt{y^2 + z^2}}$$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_6| = \sqrt{x^2 + y^2 + z^2}$$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v_6} = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_{6}| = \sqrt{1^{2} + (-2)^{2} + 4^{2}}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4}$$

$$|v_6| = \sqrt{1^2 + (-2)^2 + 4}$$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4^2}$$

 $|\vec{v}_6| = \sqrt{1 + 4 + 16}$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4^2}$$

 $|\vec{v}_6| = \sqrt{1 + 4 + 16} = \sqrt{21}$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_6| = \begin{bmatrix} x^2 + \left| \begin{pmatrix} 0 \\ y \end{pmatrix} \right|^2$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4^2}$$

 $|\vec{v}_6| = \sqrt{1 + 4 + 16} = \sqrt{21} \approx 4.5826$

$$U = (1.5, 2, -0.5)$$

$$V = (2.5, 0, 3.5)$$

$$\vec{v}_6 = \begin{pmatrix} 2.5 - 1.5 \\ 0 - 2 \\ 3.5 - (-0, 5) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \left| \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right|^{2}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + \sqrt{y^{2} + z^{2}}}$$

$$|\vec{v}_{6}| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4^2}$$

$$|\vec{v}_6| = \sqrt{1^2 + (-2)^2 + 4^2}$$

 $|\vec{v}_6| = \sqrt{1 + 4 + 16} = \sqrt{21} \approx 4.5826$

facebook.com/JeanHilftDir Skype: JeanHilftDir

Folien: github.com/JeanHilftDir/Mathe