PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz zawiera 10 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedną odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

Życzymy powodzenia!

⊅OPEZON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Trzecia część liczby 3¹⁵⁰ jest równa:

$$A.1^{50}$$

$$\mathbf{R}.\,\mathbf{1}^{150}$$

$$C.3^{50}$$

$$\mathbf{D.3}^{149}$$

Zadanie 2. (*1 pkt*)

Liczbą wymierną nie jest liczba:

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{7}$$

C.
$$\sqrt{25}$$

D.
$$\sqrt{5}$$

Zadanie 3. (*1 pkt*)

4,5% liczby x jest równe 48,6. Liczba x jest równa:

Zadanie 4. (*1 pkt*)

Jeśli $A = \langle -8, 12 \rangle$ i B = (0, 20), to różnica $A \setminus B$ jest przedziałem:

$$\mathbf{A.}(-8,0)$$

B.
$$\langle -8, 0 \rangle$$

$$C.(-8,0)$$

D.
$$(-8,0)$$

Zadanie 5. (*1 pkt*)

Zbiór wszystkich liczb x, których odległość od liczby 7 na osi liczbowej jest nie mniejsza niż 4, jest opisany nierównością:

A.
$$|x-7| > 4$$

B.
$$|x+7| > 4$$

D.
$$|x + 7| \ge 4$$

Zadanie 6. (*1 pkt*)

Liczba 3 nie należy do dziedziny wyrażenia:

$$\mathbf{A} \cdot \frac{x-3}{|x+3|}$$

B.
$$\frac{2x-1}{|x-3|}$$

C.
$$\frac{2x-1}{|x|+3}$$

D.
$$\frac{x-3}{|2x-1|}$$

Zadanie 7. (1 *pkt*)

Równanie $x^3 + 9x = 0$:

A. nie ma pierwiastków

C. ma dwa pierwiastki

B. ma jeden pierwiastek

D. ma trzy pierwiastki

Zadanie 8. (*1 pkt*)

Liczba przeciwna do podwojonej odwrotności liczby *a* jest równa:

$$\mathbf{A} \cdot -2a$$

B.
$$-\frac{1}{2a}$$

$$C. -\frac{a}{2}$$

D.
$$-\frac{2}{a}$$

Zadanie 9. (*1 pkt*)

Wyrażenie 5(4-x) - 2x(x-4) można zapisać w postaci:

$$\mathbf{A} \cdot -10x(4-x)$$

B.
$$-10x(x-4)$$

$$C.(4-x)(5-2x)$$

$$\mathbf{C} \cdot (4-x)(5-2x)$$
 $\mathbf{D} \cdot (4-x)(5+2x)$

Zadanie 10. (1 pkt)

Wyróżnik ⊿ jest równy 0 dla trójmianu kwadratowego:

A.
$$y = x^2 + 9$$

B.
$$y = x^2 - 9$$

C.
$$y = x^2 - 6x + 9$$
 D. $y = x^2 + 9x$

D.
$$y = x^2 + 9x$$

Zadanie 11. (1 pkt)

Jeśli $x^2 < x$, to:

$$A_{\bullet} - 1 < x < 0$$

B.
$$x < 1$$

C.
$$x < 0 \lor x > 1$$

D.
$$0 < x < 1$$

Zadanie 12. (*1 pkt*)

Do wykresu funkcji $f(x) = \log_4 x$ nie należy punkt:

$$\mathbf{A.}(1,0)$$

$$\mathbf{B} \cdot \left(\frac{1}{2}, -\frac{1}{2}\right)$$

$$\mathbf{D.}(16,2)$$

Zadanie 13. (*1 pkt*)

Punkt P jest punktem przecięcia się wykresów funkcji y = -2x + 4 i y = -x - 2. Punkt P leży w układzie współrzędnych w ćwiartce:

A. pierwszej

B. drugiei

C. trzeciej

D. czwartej

Zadanie 14. (*1 pkt*)

Liczby 2,6 są dwoma początkowymi wyrazami ciągu geometrycznego. Do wyrazów tego ciągu nie należy liczba:

A. 162

B. 54

C.18

D. 9

Zadanie 15. (*1 pkt*)

Pierwszy wyraz ciągu arytmetycznego jest równy $\sqrt{7}$ – 5, a drugi wyraz jest równy 2 $\sqrt{7}$ – 1. Różnica tego ciagu jest równa:

$$A.\sqrt{7} + 4$$

B.
$$\sqrt{7}$$
 – 6

$$\mathbf{C} \cdot -\sqrt{7} - 4$$
 $\mathbf{D} \cdot -\sqrt{7} - 6$

D.
$$-\sqrt{7}$$
 – 6

Zadanie 16. (*1 pkt*)

Funkcja kwadratowa rosnąca w przedziale $(-\infty, -3)$ ma wzór:

A.
$$f(x) = -(x-3)^2 +$$

B.
$$f(x) = -(x+3)^2 + 1$$

A.
$$f(x) = -(x-3)^2 + 1$$
 B. $f(x) = -(x+3)^2 + 1$ **C.** $f(x) = -(x-1)^2 + 3$ **D.** $f(x) = -(x-1)^2 - 3$

D.
$$f(x) = -(x-1)^2 - 3$$

Zadanie 17. (*1 pkt*)

Zbiorem wartości funkcji $f(x) = 2^x + 3$ jest przedział:

$$\mathbf{A} \cdot (-\infty, +\infty)$$

$$\mathbf{B.}(0,+\infty)$$

$$\mathbf{C}.(3,+\infty)$$

$$\mathbf{D} \cdot (-3, +\infty)$$

Zadanie 18. (*1 pkt*)

Wierzchołki trójkąta ABC leżą na okręgu i środek O okręgu leży wewnątrz trójkąta. Jeśli kąt ABO ma miarę 20°, to kat ACB ma miarę:

A. 70°

B. 40°

C. 20°

D. 10°

Zadanie 19. (*1 pkt*)

Dany jest trójkąt ABC, w którym $|AC| = |BC|, |\angle ACB| = 80^\circ$, zaś AD jest dwusieczną kąta BAC i $D \in BC$. Wówczas miara kata ADB jest równa:

A.105°

B. 90°

C.80°

D. 75°

Zadanie 20. (*1 pkt*)

Sinus kata ostrego α jest równy $\frac{3}{7}$. Wówczas cosinus tego kata jest równy:

A. $\frac{4}{7}$

B. $\frac{7}{4}$

C. $\frac{2\sqrt{7}}{7}$

D. $\frac{2\sqrt{10}}{7}$

Zadanie 21. (*1 pkt*)

Wysokość trójkąta równobocznego jest o 2 krótsza od boku tego trójkąta. Bok trójkąta jest równy:

A.
$$4(2+\sqrt{3})$$

B.
$$4(2-\sqrt{3})$$

B.
$$4(2-\sqrt{3})$$
 C. $\frac{4(2+\sqrt{3})}{7}$ **D.** $\frac{4(2-\sqrt{3})}{7}$

D.
$$\frac{4(2-\sqrt{3})}{7}$$

Zadanie 22. (1 pkt)

Prosta prostopadła do prostej *l* o równaniu 4x - 5y + 6 = 0 ma wzór:

A.
$$y = -\frac{1}{5}x + b$$

B.
$$y = -\frac{1}{4}x + b$$

A.
$$y = -\frac{1}{5}x + b$$
 B. $y = -\frac{1}{4}x + b$ C. $y = -\frac{4}{5}x + b$ D. $y = -\frac{5}{4}x + b$

D.
$$y = -\frac{5}{4}x + b$$

Zadanie 23. (1 pkt)

Punkt S = (3, -1) jest środkiem odcinka AB i A = (-3, -5). Punkt B ma współrzędne:

B.
$$(9, -3)$$

B.
$$(9,-3)$$
 C. $(-9,-3)$

D.
$$(-9,3)$$

Zadanie 24. (*1 pkt*)

Okrąg o równaniu $(x+5)^2 + (y-9)^2 = 4$ ma środek S i promień r. Wówczas:

A.
$$S = (5, -9), r = 2$$
 B. $S = (5, -9), r = 4$ **C.** $S = (-5, 9), r = 2$ **D.** $S = (-5, 9), r = 4$

B.
$$S = (5, -9), r = 4$$

$$\mathbf{C.} \ S = (-5, 9), r = 2$$

D.
$$S = (-5.9), r = 4$$

Zadanie 25. (1 pkt)

Jeśli średnica podstawy stożka jest równa 12, a wysokość stożka 8, to kąt α między wysokością stożka, a jego tworzącą jest taki, że:

A. tg
$$\alpha = \frac{12}{8}$$

C. tg
$$\alpha = \frac{6}{8}$$

D. tg
$$\alpha = \frac{8}{6}$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 *pkt*)

Wyznacz wartość funkcji $f(x) = -x^2 - 4x + 1$ dla $x = 3\sqrt{2} - 2$.

Zadanie 27. (2 *pkt*)

Punkty A, B należą do jednego ramienia kąta o wierzchołku O, a punkty C, D należą do jego drugiego ramienia i wiadomo, że $AC \parallel DB$. Wyznacz $\mid AB \mid$, jeśli wiadomo, że $\mid AO \mid = 4, \mid AC \mid = 5, \mid BD \mid = 12$.

Zadanie 28. (2 *pkt*)

W trójkącie prostokątnym jedna przyprostokątna jest 4 razy większa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 16 razy większy od drugiego.

Zadanie 29. (2 *pkt*) Rozwiąż równanie $x^3 + 3x^2 + x + 3 = 0$.

Zadanie 30. (2 *pkt*)

Rozwiąż nierówność $x^2 - x + 5 > 0$.

Zadanie 31. (*4 pkt*)

W czasie wakacji Marcin przejechał rowerem ze stałą prędkością odległość z miasteczka A do B liczącą 120 km. Gdyby jechał ze średnią prędkością o 5 km/godz. większą, to przejechałby tę odległość w czasie o 2 godziny krótszym. Wyznacz średnią rzeczywistą prędkość Marcina i rzeczywisty czas przejazdu.

Zadanie 32. (5 *pkt*)

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem 60°. Odległość spodka wysokości ostrosłupa od krawędzi bocznej jest równa 4. Oblicz objętość tego ostrosłupa.

Zadanie 33. (6 pkt)
Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia:

A – na każdej kostce wypadła nieparzysta liczba oczek, B – suma wyrzuconych oczek jest nie mniejsza niż 8.

Oblicz prawdopodobieństwo zdarzenia $A \cup B$.

