Математическая логика и Теория алгоритмов

Посов И.А.

Весна 2022 г.

Запись конспекта: Спиридонов А.

Содержание

1 Математическая логика

1.1 Исчисление высказываний

Определение $\wp = \{0, 1\}$

- 0 ложь, false
- 1 истина, true
- \wp множество логических значений

Определение Логическая функция (от n переменных) $f:\wp^n\to\wp$ Замечание Часто логические функции вводят перечислением возможных аргументов и значений для них

Пример

x y	f(x,y)
0.0	0
0.1	1
1 0	1
1 1	1

Ту же функцию можно задать формулой f(x,y) = max(x,y)

Утверждение

Функций от n переменных может быть $2^{(2^n)} = 2^{2^n}$

$x_1, x_2 \dots x_n$		$f(x_1, x_2 \dots x_n)$					
0 0 0 0	2^n	Для каждой строчки 0 или 1					
	разных	(2 варианта)					
	наборов	итого 2^n вариантов					
$1\ 1\ 1\ \dots 1$	аргументов						

Следствие

• $n = 1 : 2^2 = 4$ функции f(x)

		- т,	- TJ J (**)			
\boldsymbol{x}	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$		
0	0	0	1	1		
1	0	1	0	1		

 $\overline{f_1(x)} = \text{тождественный } 0$

$$f_2(x) = x$$

 $f_3(x)$ — отрицание.

Обозначение: $\neg x, \bar{x}$

Обозначение в языках программирования: !x, not x

Примеры:
$$\neg 1 = 0, \neg 0 = 1, \neg \neg 0 = 0$$

$$\overline{f_4(x)} = \text{тождественная } 1$$

• $n = 2: 2^4 = 16$ функций f(x, y)

x y	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0.0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0.1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

 $f_1(x,y) =$ тождественный 0

 $f_2(x,y)$ — логическое И, конъюнкция

<u>Математическая запись:</u> $f_2(x, y) = xy$

Обозначение: $x \cap y, x \wedge y, x * y, xy$

Обозначение в языках программирования: x & y

 $f_3(x,y)$ Математическая запись: $f_3(x,y): x > y$

<u>Обозначение:</u> $x \rhd y$ (запрет по y) = $\overline{x \Rightarrow y}$

 $f_4(x,y) = x$

 $f_5(x,y)$ Математическая запись: $f_5(x,y) : x < y$

<u>Обозначение:</u> $x \triangleleft y$ (запрет по x) = $\overline{y} \Rightarrow \overline{x}$

 $f_6(x,y) = y$

 $f_7(x,y)$ — исключающее или (ровно один элемент истина)

Математическая запись: $f_t(x,y): x+y \mod 2$

Обозначение: $x + y, x \oplus y$

Обозначение в языках программирования: $x^{\wedge}y$, x xor y

 $f_8(x,y)$ — логическое ИЛИ, дизъюнкция (если истина хотя бы одна)

Математическая запись: $f_8(x,y) = max(x,y)$

Обозначение: $x \cup y, x \vee y$, редко $x \mid y$

 $f_9(x,y)$ — стрелка Пирса

Обозначение: $x \downarrow y = \overline{x \cup y}$

 $f_{10}(x,y)$ – эквивалентность (оба истина или оба ложь)

Математическая запись: $f_{10}(x, y) : x = y$

Обозначение: $x \Leftrightarrow y, x \leftrightarrow y, x \equiv y$

Обозначение в языках программирования: x == y

$$f_{11}(x,y)=\bar{y}$$
 $f_{12}(x,y)-$ импликация в обратную сторону Обозначение: $x \Leftarrow y = y \Rightarrow x$
 $f_{13}(x,y)=\bar{x}$
 $f_{14}(x,y)-$ импликация (следование) Математическая запись: $f_{14}(x,y):x\leq y$ Обозначение: $x\Rightarrow y,x\to y$

* импликация
- истина следует из чего угодно $(f_{14}(x,1)=1)$
"Леших не существует" \Rightarrow "Русалок не существует" $(1\Rightarrow 1=1)$
"Все крокодилы оранжевые" \Rightarrow "Русалок не существует" $(0\Rightarrow 1=1)$
"из лжи следует истина"
- из лжи следует что угодно $(f_{14}(0,x)=1)$
"Русалки существуют" \Rightarrow "Драконы существуют" $(0\Rightarrow 0=1)$
Например, если одновременно $x=0$ и $x=1\Rightarrow$ можно доказать, что $x=5$
Замечание $x\Rightarrow y=0$ только в случае, если $x=1,y=0$
 $f_{15}(x,y)$ - штрих Шеффера Обозначение: $x\mid y=\overline{xy}$

Замечание Используя исключительно стрелку Пирса или штрих Шеффера можно выразить любую другую функцию

•
$$n = 3: 2^8 = 256$$
 функций $f(x, y, z)$

Определение Логические выражения — способ задания логических функций с помощью переменных и операций 0 1 ¬ * \lor \Rightarrow \Leftarrow + \equiv | \downarrow \lhd \triangleright

Примеры:

$$(x \lor y)z$$
$$(x \Rightarrow yz) \lor (y \equiv z)$$
$$(0 \Rightarrow x) \lor (1 \Rightarrow y)$$

Определение Значения логического выражения можно записать Таблицей истинности

Замечания

- Порядок строчек в таблице истинности может быть любым, но мы возьмём порядок двоичных чисел: 000 001 010 011 100 101 110 111

– Таблицы истинности часто считают постепенно

x y z	$(x \lor y)$	$(x \lor y)z$					
0 0 0	0	0					
0 0 1	0	0					
0 1 0	1	0					
0 1 1	1	1					
100	1	0					
1 0 1	1	1					
1 1 0	1	0					
1 1 1	1	1					

Замечание

Приоритет операций в исчислении высказываний:

Примеры:

$$\overline{\neg x \lor y = (\neg x)} \lor y$$

$$x \lor yz = x \lor (yz) \neq (x \lor y)z$$

$$x \Rightarrow y \lor z = x \Rightarrow (y \lor z)$$

$$\overline{x \lor y} = \neg(x \lor y)$$

Алгебраические преобразования логических выражений

Алгебраические преобразования логических выражений — изменение выражения по правилам, обычно в сторону упрощения Например, $\underbrace{(0\Rightarrow x)}_1 \lor (1\Rightarrow y) = \underbrace{1\lor (1\Rightarrow y)}_{1\lor \alpha=1} = 1$

• Отрицание

$$\neg \bar{x} = x$$

Доказательство

_ \		
\boldsymbol{x}	\bar{x}	$\neg \bar{x}$
0	1	0
1	0	1

\bullet \vee

$$1 \lor x = 1$$

$$0 \lor x = x$$

Доказательство

\boldsymbol{x}	$0 \lor x$
0	$0 \lor 0 = 0$
1	$0 \lor 1 = 1$

$$x \lor y = y \lor x$$
 (Симметричность)

$$x \lor (y \lor z) = (x \lor y) \lor z$$
 (Ассоциативность)

$$x \vee \bar{x} = 1$$

Доказательство

<u> </u>		
\boldsymbol{x}	\bar{x}	$x \vee \bar{x}$
0	1	$0 \lor 1 = 1$
1	0	$1 \lor 0 = 1$

$\bullet \land$

$$xy = yx$$

$$x(yz) = (xy)z$$

$$x * 0 = 0$$

$$x * 1 = x$$

$$x * x = x$$

$$x * \bar{x} = 0$$

$$\bullet$$
 +, \oplus

$$x + y = y + x$$

$$x + (y+z) = (x+y) + z$$

$$x + 0 = x$$

$$x + 1 = \bar{x}$$

$$x + x = 0$$

$$x + \bar{x} = 1$$

Доказательство

$$x + \bar{x} = x + (1 + x) = x + 1 + x = 1 + x + x = 1 + 0 = 1$$

ullet

 $x \Rightarrow y \neq y \Rightarrow x$

, 8	, , ,	
x y	$x \Rightarrow y$	$y \Rightarrow x$
0.0	1	1
0.1	1	0
1 0	0	1
1 1	1	1

$$x \Rightarrow 0 = \bar{x}$$

Доказательство

x	$x \Rightarrow 0$
0	$0 \Rightarrow 0 = 1$
1	$1 \Rightarrow 0 = 0$

$$0 \Rightarrow x = 1$$

$$x \Rightarrow 1 = 1$$

$$1 \Rightarrow x = x$$

$$x \Rightarrow x = 1$$

$$x\Rightarrow \bar{x}=\bar{x}$$

$$\bar{x} \Rightarrow x = x$$

 $x\Rightarrow y\Rightarrow z$: договоримся, что это $x\Rightarrow (y\Rightarrow z)\neq (x\Rightarrow y)\Rightarrow z$

	, ,	1	/	(0) // (
x y z	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	1	0	1	0
0 1 1	1	1	1	1
100	0	1	1	1
1 0 1	0	1	1	1
1 1 0	1	0	0	0
1 1 1	1	1	1	1

$\bullet \Leftrightarrow$

$$x \Leftrightarrow y = y \Leftrightarrow x$$

$$x \Leftrightarrow 0 = \bar{x}$$

$$x \Leftrightarrow 1 = x$$

$$x \Leftrightarrow x = 1$$

$$x \Leftrightarrow \bar{x} = 0$$

$$x \Leftrightarrow (y \Leftrightarrow z) = (x \Leftrightarrow y) \Leftrightarrow z$$
 (Ассоциативность)

Логические законы

Дистрибутивность

$$(x \lor y)\&z = x\&z \lor y\&z = y\&z \lor x\&z$$

 $(x + y)z = xz + yz$
 $(x\&y) \lor z = (x \lor z)\&(y \lor z) = (y \lor z)\&(x \lor z)$

Замечание
$$(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 = x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$$

Интересно . . .
$$xy \lor z = (x \lor z)(y \lor z) = xy \lor xz \lor zy \lor zz = xy \lor xz \lor zy \lor z = xy \lor xz \lor zy \lor z = xy \lor xz \lor zy \lor z = xy \lor z \lor z$$

$$x + y = \overline{x \Leftrightarrow y}$$
$$(x \Rightarrow y)(y \Rightarrow x) = x \Leftrightarrow y$$

1.2 Многочлен Жегалкина

Замечание Одну и ту же функцию можно записать по-разному

В алгебре:
$$f(x) = x + 1 = 1 + x = cos(x - x) + x = \dots$$
 $g(x) = x^2 - 1 = (x - 1)(x + 1) = \dots$ В логике: $f(x,y) = x \lor y = x \lor y \lor 0 = (x \lor y) \underbrace{(y \lor \bar{y})}_{1} = x\bar{y} \lor y$

Определение Многочлен Жегалкина для логической функции $f(x_1,\ldots,x_n)$ — это многочлен с переменными x_i , константами 0,1 и со степенями переменных ≤ 1

Альтернативное определение Многочлен Жегалкина для логической функции $f(x_1,\ldots,x_n)$ — это многочлены от x_i над \mathbb{Z}_2

Примеры:

$$f(x,y,x) = 1 + x + yz + xyz$$
 (Коэффициенты при остальных слагаемых = 0)

$$f(x, y, x) = 1 + x$$

 $f(x, y, x) = 1 + xy$
 $f(x, y, x) = 1 + xy + xyz$

НЕ многочлены Жегалкина:

$$1 + x + (y \lor z)$$

$$1 + x + z^2$$

3амечание В общем случае многочлен ($a_i = 0$ или 1):

от 1 переменной $a_0 + a_1 x$

от 2 переменных $a_0 + a_1x + a_2y + a_3xy$

от 3 переменных $a_0 + a_1x + a_2y + a_3z + a_4xy + a_5xz + a_6yz + a_7xyz$

. . .

В общем случае $f(x_1,\ldots,x_n): a_0+a_1x_1+\cdots+a_nx_n+ax_1x_2+ax_1x_3+\cdots+ax_{n-1}x_n+ax_1x_2x_3+\cdots+ax_{n-2}x_{n-1}x_n+\cdots+ax_1x_2\ldots x_n$

(Рассматриваем все пары, тройки, ... переменных)

Утверждение

$$\forall f(x_1,\ldots,x_n)$$
 — логической функции $\exists !$ многочлен Жегалкина $g(x_1,\ldots,x_n): f=q$

Пример:

Всего существует 4 функции от 1 переменной:

$$f(x) = 0 = 0 = 0 + 0x$$

 $f(x) = 1 = 1 = 1 + 0x$
 $f(x) = x = x = 0 + 1x$
 $f(x) = \bar{x} = \underbrace{1 + x}_{\text{Многочлены}} = 1 + 1x$

Доказательство

І. Разные многочлены — это разные логические функции. То есть

$$f(x_1, \dots, x_n) = a_0 + \dots + ax_1x_2 \dots x_n$$

$$g(x_1, \dots, x_n) = b_0 + \dots + bx_1x_2 \dots x_n$$

$$\exists i : a_i \neq b_i$$

Возьмём различающийся индекс с самым маленьким количеством переменных

Пример:

$$\overline{f(x,y,x)} = 1 + x + xy + xyz = \dots + 1x + 0y + 0z + 1xy + \dots$$

$$g(x,y,x) = 1 + y + z + xyz = \dots + \underbrace{0x}_{min} + 1y + 1z + 0xy + \dots$$

Для переменных этого слагаемого подставим 1,

для остальных слагаемых — 0

[В примере
$$x = 1, y = 0, z = 0 : f(1,0,0), g(1,0,0)$$
]

И в f, и в g все другие слагаемые = 0, поскольку в них обязательно есть нулевая переменная

Тогда

$$f(x_1, \dots, x_n) (= a_i \underbrace{x_1 x_2 \dots x_n}_{1} = a_i) \bowtie g(x_1, \dots, x_n) (= b_i \underbrace{x_1 x_2 \dots x_n}_{1} = b_i)$$
$$a_i \neq b_i \Rightarrow f(x_1, \dots, x_n) \neq g(x_1, \dots, x_n)$$

Мы нашли точку, в которой они различаются, ⇒ они различаются

II. Проверим, что многочленов Жегалкина от n переменных столько же, сколько функций от n переменных

$$a_0 + \cdots + ax_1x_2 \dots x_n$$

Посчитаем количество слагаемых

1) 1 слагаемое без переменных, n слагаемых с одной переменной

$$(a_0 + a_1x_1 + \dots + a_nx_n)$$

 C_n^2 слагаемых с двумя переменными C_n^3 слагаемых с тремя переменными

 C_n^n слагаемых с n переменными Всего: $\underbrace{C_n^0}_1 + C_n^1 + \cdots + C_n^n = [$ С помощью комбинаторики $]=2^n$

Пример:

от 1 переменной $a_0 + a_1 x - 2$ слагаемых $= 2^1 = 2$

от 2 переменных $a_0 + a_1 x + a_2 y + a_3 x y - 4$ слагаемых = $2^2 = 4$

от 3 переменных $a_0 + a_1x + a_2y + a_3z + a_4xy + a_5xz + a_6yz + a_7xyz$ — 8 слагаемых = $2^3 = 8$

2) Все слагаемые имеют вид:

$$\underbrace{x_1x_2\dots x_n}_{\text{Каждая переменная 0 или 1}}=2^n$$
 слагаемых

Итого, многочлен Жегалкина от n переменных имеет 2^n слагаемых $a_0 + \dots + a_{2^n - 1} x_1 x_2 \dots x_n$

Сколько разных многочленов?

Каждое a_i — это 0 или 1

Ответ: 2^{2^n} , и это столько же, сколько логических функций Итого, количество логических функций от n переменных

и многочленов Жегалкина от n переменных совпадает

Следствие Любая логическая функция может быть представлена в виде многочлена Жегалкина

Примеры:

f(x,y) = x * y — уже многочлен Жегалкина

 $f(x,y) = x \lor y$ — не многочлен Жегалкина

Подберём, воспользовавшись

Методом неопределённых коэффициентов: $x \lor y = a_0 + a_1 x + a_2 y + a_3 x y$

$$f(0,0) = 0 = a_0 + a_1 0 + a_2 0 + a_3 0 = a_0 \Rightarrow a_0 = 0$$

$$f(1,0) = 1 \lor 0 = 1 = a_0 + a_1 = a_1 \Rightarrow a_1 = 1$$

$$f(0,1) = 0 \lor 1 = 1 = a_0 + a_2 = a_2 \Rightarrow a_2 = 1$$

$$f(x,y) = 1 + 1 + a_3 x y$$

$$f(1,1) = 1 \lor 1 = 1 = 1 + 1 + a_3 = 0 + a_3 = a_3 \Rightarrow a_3 = 1$$

Otbet:
$$x \lor y = x + y + xy$$

Другой способ получить многочлен Жегалкина из $x \vee y$

Преобразуем $x \vee y$

С учётом
$$\overline{x \vee y} = \bar{x}\bar{y}$$
 и $\bar{x} = 1 + \bar{x}$

С учётом
$$\overline{x \vee y} = \overline{x}\overline{y}$$
 и $\overline{x} = 1 + x$ $x \vee y = \overline{x}\overline{y} = \overline{(1+x)(1+y)} = 1 + (1+x)(1+y) = \underbrace{1+1}_{0} + x + y + xy = \underbrace{1+1}_{0} + x + y$

$$x + y + xy$$

Многочлен Жегалкина для $x \Leftrightarrow y$

$$x \Leftrightarrow y = \overline{x+y} = 1 + x + y$$

Многочлен Жегалкина для $x \Rightarrow y$

$$x \Rightarrow y = \bar{x} \lor y = (1+x) \lor y =$$

C учётом
$$x \vee y = x + y + xy$$

$$= (1+x) + y + (1+x)y = 1 + x + \underbrace{y+y}_{0} + xy = 1 + x + xy$$

Итого,
$$x \Rightarrow y = 1 + x + xy$$

Замечание Если есть логическая формула, её можно привести к форме многочлена Жегалкина двумя способами:

- Методом неопределённых коэффициентов
- Методом алгебраических преобразований

Например:

$$x \lor y = \overline{x}\overline{y} = \overline{(1+x)(1+y)} = \dots = x+y+xy$$

 $x \Rightarrow y = \overline{x} \lor y = \dots = 1+x+xy$

$$x\Rightarrow (y\vee \bar{z})=($$
Также можно сказать, что $(y\vee \bar{z})=(z\Rightarrow y))\downarrow =x\Rightarrow (y+\bar{z}+y\bar{z})=x\Rightarrow (y+(1+z)+y(1+z))=x\Rightarrow (1+z+yz)=1+x+x(1+z+yz)=1+x+x+xz+xyz=1+xz+xyz$

$$x \Rightarrow (y \lor \bar{z}) = 1 + xz + xyz$$

$$x \Leftrightarrow y \Leftrightarrow z = (1+x+y) \Leftrightarrow z = 1+(1+x+y)+z = \underbrace{1+1}_0 + x + y + z = \underbrace{x+y+z}$$

<u>Вывод</u> Заранее не ясно, сложно ли привести функцию к многочлену Жегалкина

1.3 Дизъюнктивно-нормальная форма (ДНФ)

Определение Литерал — это переменная или отрицание переменной Например, $x, \bar{x}, y, \bar{y}, z, \bar{z}$

Определение Конъюнкт — конъюнкция литералов Например, $x, x\bar{y}, xyz, xy\bar{z}, \underbrace{\bar{y}}_{\text{один литерал}}, \underbrace{\Box}_{\text{пустой конъюнкт}}$

He является конъюнктом \overline{xy} , $x \checkmark$

Определение Логическое выражение имеет дизъюнктивно-нормальную форму, если она является дизъюнкцией конъюнктов

Например, $x\bar{y} \vee \bar{x}\bar{z}t \vee z \vee \bar{x}y$

He ДH Φ : \overline{xy}

Но если преобразовать $\overline{xy} = \bar{x} \vee \bar{y}$

ДНФ: $\bar{x} \vee \bar{y}$

Построение ДНФ по таблице истинности функции

Алгоритм (на примере 3 переменных)

22 24 2	f(m a, ~)
x y z	f(x,y,z)
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
100	0
1 0 1	0
1 1 0	1
1 1 1	0
111	0

Берём строки с
$$f(x, y, z) = 1$$
 Допустим, есть строка $x = a_1 \ (0 \ или \ 1)$ $y = a_2 \ (0 \ или \ 1)$ $z = a_3 \ (0 \ или \ 1)$

В ответ добавляется конъюнкт трёх литералов: xyz Если значение переменной 0 — литерал берётся с отрицанием, если значение переменной 1 — литерал берётся без отрицания

x y z	f(x,y,z)	
0 0 0	0	
0 0 1	0	
0 1 0	1	$\bar{x}y\bar{z}$
0 1 1	1	$\begin{vmatrix} \bar{x}y\bar{z} \\ \bar{x}yz \end{vmatrix}$
100	0	
1 0 1	0	
1 1 0	1	$xy\bar{z}$
1 1 1	0	

Ответ: $\bar{x}y\bar{z} \vee \bar{x}yz \vee xy\bar{z}$

Доказательство корректности алгоритма

Когда полученная ДН $\Phi=1$?

Когда есть конъюнкт = 1

Если первый конъюнкт = 1 (В примере
$$\bar{x}y\bar{z}=1$$
) \Rightarrow все его литералы = 1 (В примере $x=0,y=1,z=0$)

Если второй конъюнкт = 1 (В примере
$$\bar{x}yz = 1$$
) \Rightarrow все его литералы = 1 (В примере $x = 0, y = 1, z = 1$)

Если третий конъюнкт = 1 (В примере
$$xy\bar{z}=1$$
) \Rightarrow все его литералы = 1 (В примере $x=1,y=1,z=0$)

x y z	$\bar{x}y\bar{z}$	$\bar{x}yz$	$xy\bar{z}$	Ответ $= f(x, y, z)$
0 0 0	0	0	0	0
0 0 1	0	0	0	0
0 1 0	1	0	0	1
0 1 1	0	1	0	1
1 0 0	0	0	0	0
1 0 1	0	0	0	0
1 1 0	0	0	1	1
1 1 1	0	0	0	0

Замечание У одной функции могут быть разные ДНФ

$$\underline{\bar{x}y\bar{z}\vee\bar{x}yz\vee xy\bar{z}} = \underbrace{\bar{x}y(\bar{z}\vee z)\vee xy\bar{z}}_{\text{ДНФ}} = \underline{\bar{x}y(\bar{z}\vee z)\vee xy\bar{z}}_{\text{ДНФ}} = (x\vee\bar{x})y\bar{z}\vee\bar{x}yz = \underbrace{y\bar{z}\vee\bar{x}yz}_{\text{ДНФ}} = y\bar{z}\vee\bar{x}yz\vee\underbrace{x\bar{x}}_{0}\dots = \infty \text{ способов}$$

Как получать ДНФ для формулы/функции?

- По таблице истинности
- Алгебраическими преобразованиями

$$x = x$$

$$\bar{x} = \bar{x}$$

$$x \lor y = x \lor y$$

$$xy = xy$$

$$x \Rightarrow y = \bar{x} \lor y$$

$$x \Rightarrow y = x \lor y$$

$$x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\bar{x} \lor y)(\bar{y} \lor x) = \underbrace{\bar{x}\bar{y} \lor \bar{x}x \lor y\bar{y} \lor yx}_{\text{ДН}\Phi} =$$

$$=\underbrace{\bar{x}\bar{y}\vee yx}_{\text{ДН}\Phi}$$

x y	$x \Leftrightarrow y$	
0.0	1	$\bar{x}\bar{y}$
0.1	0	
1 0	0	
1 1	1	xy

$$x \Leftrightarrow y = \bar{x}\bar{y} \lor yx$$

$$x+y=\overline{x\Leftrightarrow y}=\overline{(x\Rightarrow y)(y\Rightarrow x)}=\overline{(\bar{x}\vee y)(\bar{y}\vee x)}=\overline{\bar{x}\vee y}\vee \overline{\bar{y}\vee x}=\neg \bar{x}*\bar{y}\vee \neg \bar{y}*\bar{x}=x\bar{y}\vee \bar{x}y$$

x y	x+y	
0.0	0	
0.1	1	$\bar{x}y$
1 0	1	$x\bar{y}$
1 1	0	

$$x + y = x\bar{y} \vee \bar{x}y$$

Пример:

$$\overline{x \Rightarrow (y+z)} = \bar{x} \lor (y+z) = \bar{x} \lor \bar{y}z \lor y\bar{z}$$

Задача (не)выполнимости

Дана логическая формула в ДНФ

Проверить, бывает ли она равна 0?

$$\bar{x}\bar{y}\vee x\vee y$$

Для этого и x, и y должны быть =0, однако в этом случае $\bar{x}\bar{y}=1$ \Rightarrow не бывает

Если знать значения переменных (ответ) для 0, то их можно быстро проверить

Подобрать значения переменных для 0 — трудно

Не известно алгоритма, который "принципиально" быстрее полного перебора

Нерешённая проблема компьютерных наук:

сравнение классов P и NP

Р — задача, которую можно эффективно решить

NP — задача, которую можно эффективно проверить

Эта задача из класса NP: если бы для неё нашёлся эффективный алгоритм, классы P и NP совпали бы, то есть эти классы совпали бы для любой задачи такого рода

Та задача, к которой сводится задача выполнимости, — тоже сложна:

- упростить логическое выражение
- поиск минимальной ДНФ

Запись таблицы истинности в виде графика

$$f(x,y) = x + y$$

$$f(0,0) = 0$$

$$f(0,1) = 1$$

$$f(0,1) = 1$$

 $f(1,0) = 1$

$$f(1,1) = 0$$

$$f(x, y, z) = x + y + z$$

Задача минимизации ДНФ

Дано: логическая функция (в виде ДНФ) <u>Найти:</u> самую короткую эквивалентную ДНФ (с минимальным количеством литералов и \vee) Например, $\bar{x}\bar{y} \vee \bar{z}$ короче $xy \vee yz$

Замечание

Далее в этом разделе рассматриваем только f(x, y, z)

Замечание

- Какова таблица истинности для $\overset{a}{X}\overset{b}{Y}\overset{c}{Z}?$
- a=0 или 1
- b=0 или 1
- c=0 или 1
- 0 отрицание; 1 без отрицания

Пример:

- $\bar{X}Y\bar{Z}$
- a = 0
- b = 1
- c = 0

Если $\bar{X}Y\bar{Z}=1$, то $\bar{X}=1,Y=1,\bar{Z}=1\Rightarrow X=0,Y=1,Z=0$ Если $\bar{X}Y\bar{Z}=1$, то X=a,Y=b,Z=c

• Какова таблица истинности для $\overset{a}{X}\overset{b}{Y}$? Если $\overset{a}{X}Y=1$, то $\overset{a}{X}=1,\overset{b}{Y}=1\Leftrightarrow X=a,Y=b$ Пример: $\bar{X}Y$

 $ar{X}Y$ — единицы на ребре x=0,y=1,z=?

Аналогично, $\bar{Y}\bar{Z}$

 $\bar{X}Y$ — единицы на ребре y=0,z=1,x=?

 \bullet Какова таблица истинности для конъюнкта из одного литерала $X, \bar{X}, Y, \bar{Y}, Z, \bar{Z}?$

Например, \bar{Y}

$$\bar{y} = 1 \Rightarrow y = 0$$

 $ar{Y}$ — грань y=0

Например, X

x = 1

X — грань x = 0

Итого,

Таблица истинности для XYZ— это вершина: X=a, Y=b, Z=c Таблица истинности для XY— это ребро: X=a, Y=b

Таблица истинности для $\stackrel{a}{X}$ — это грань: X=a

Попробуем минимизировать ДНФ

Пример 1:

 $\overline{\underline{\mathcal{A}aнo: \bar{x}\bar{y}\bar{z}}} \lor x\bar{y}\bar{z} \lor xy\bar{z}$

Найти: самый короткий ДНФ Рисуем таблицу истинности

 $\bar{x}\bar{y}\bar{z}$ — вершина (0,0,0)

 $x \bar{y} \bar{z}$ — вершина (1,0,0)

 $xy\bar{z}$ — вершина (1,1,0)

Иначе это можно записать как $\bar{y}\bar{z}\vee x\bar{z}$

Иначе это можно записать как $\bar{x}\bar{y}\bar{z}\vee xy\bar{z}$

Иначе это можно записать как $\bar{y}\bar{z} \lor xy\bar{z}$

To есть $\bar{x}\bar{y}\bar{z} \lor x\bar{y}\bar{z} \lor xy\bar{z} =$

 $= \bar{y}\bar{z} \vee x\bar{z} =$

 $= \bar{x}\bar{y}\bar{z} \vee xy\bar{z} =$

 $= \bar{y}\bar{z} \vee xy\bar{z}$

Самая короткая ДНФ, ответ: $\bar{y}\bar{z}\vee x\bar{z}$

Иначе это можно записать как $x \vee \bar{x} \bar{y} \bar{z}$

Иначе это можно записать как $x \vee \bar{y}\bar{z}$

$$\bar{x}\bar{y}\bar{z} \lor x\bar{y} \lor xy =$$

$$= x \vee \bar{x}\bar{y}\bar{z} =$$

$$= x \vee \bar{y}\bar{z}$$

Самая короткая ДНФ, ответ: $x \vee \bar{y}\bar{z}$

Замечание

Этот метод позволяет наглядно перебрать все ДНФ и выбрать минимальную

Метод алгебраических преобразований не позволит проверить, что ответ оптимальный

$$\bar{x}\bar{y}\bar{z}\vee x\bar{y}\bar{z}\vee xy\bar{z}=\bar{x}\bar{y}\bar{z}\vee x\bar{y}\bar{z}\vee x\bar{y}\bar{z}\vee xy\bar{z}=\underbrace{(\bar{x}\vee x)}_{1}\bar{y}\bar{z}\vee x\bar{z}\underbrace{(\bar{y}\vee y)}_{1}=\\=\bar{y}\bar{z}\vee x\bar{z}=\underbrace{\dots}_{\text{Вдруг можно короче?}}$$

Определение Двойственная функция

$$\square$$
 есть $f:\wp^n\to\wp=\{0,1\}$
Двойственная $f^*:\wp^n\to\wp:f^*(x_1,\ldots,x_n)=\overline{f(\overline{x_1},\ldots,\overline{x_n})}$

Замечание

Смысл двойственной функции заключается в переходе в мир замены лжи на истину $(0 \leftrightarrow 1)$

x y	$x \vee y$
0.0	0
0 1	1
1 0	1
1 1	1

"Новый мир"

x y	$f^*(x,y) = x \wedge y$
1 1	1
1 0	0
0.1	0
0.0	0

Проверим, что $(x \lor y)^* = xy$ по определению: $(x \lor y)^* = \overline{\overline{x} \lor \overline{y}} = \neg \overline{x} * \neg \overline{y} = xy$

$$(x+y)^* = \overline{x} + \overline{y} = 1 + (1+x) + (1+y) = 1 + x + y = x \Leftrightarrow y$$

Замечание
$$f^{**}(x_1,\ldots,x_n)=\overline{f^*(\overline{x_1},\ldots,\overline{x_n})}=\neg\overline{f(\overline{x_1},\ldots,\overline{x_n})}=f(x_1,\ldots,x_n)$$
 То есть $f^{**}=f$

Следствие

$$\overline{(xy)^* = x \vee y}$$
$$(x \Leftrightarrow y)^* = x + y$$

Теорема о композиции

$$f(x_1, \dots, x_m) = f_0(f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$$

$$f_i = \wp^n \to \wp, i = 1..m$$

$$f_0 = \wp^m \to \wp$$

Тогда
$$f^*(x_1,\ldots,x_m)=f_0^*(f_1^*(x_1,\ldots,x_n),f_2^*(x_1,\ldots,x_n),\ldots,f_m^*(x_1,\ldots,x_n))$$

Доказательство

$$f^* = \overline{f(\overline{x_1}, \dots, \overline{x_m})} = \overline{f_0(f_1(\overline{x_1}, \dots, \overline{x_n}), f_2(\overline{x_1}, \dots, \overline{x_n}), \dots, f_m(\overline{x_1}, \dots, \overline{x_n}))} = f_0^*(f_1(\overline{x_1}, \dots, \overline{x_n}), f_2(\overline{x_1}, \dots, \overline{x_n}), \dots, f_m(\overline{x_1}, \dots, \overline{x_n})) = f_0^*(f_1^*(x_1, \dots, x_n), f_2^*(x_1, \dots, x_n), \dots, f_m^*(x_1, \dots, x_n))$$

Следствие

Если есть $f(x_1, \ldots, x_n)$ — записано как логическое выражение с \vee , *, \neg , +, \Leftrightarrow , то f^* — такое же выражение, но связки заменены на двойственные:

$$\lor\leftrightarrow\ast$$

$$+\leftrightarrow\Leftrightarrow$$

$$\neg \leftrightarrow \neg$$

Пример:

$$\frac{1}{f(x,y,z)} = \overline{x \vee (\bar{y}z)} \Leftrightarrow (x+y+z)
f^*(x,y,z) = \overline{x * (\bar{y} \vee z)} + (x \Leftrightarrow y \Leftrightarrow z)$$

$$1^* = 0$$

$$0^* = 1$$

1.4 Конъюнктивно-нормальная форма (КНФ)

Определение Литерал — это переменная или отрицание переменной

Например, $x, \bar{x}, y, \bar{y}, z, \bar{z}$

Определение Дизъюнкт — дизъюнкция литералов

Например, $x \lor y, x \lor y \lor \bar{z}, x \lor \bar{z}, \bar{x}$

He является дизъюнктом, например, xy, $x \lor yz$

Определение Конъюнктивно-нормальная форма (КН Φ)

— это конъюнкция нескольких дизъюнктов

Например, $(x \vee y)(y \vee \bar{z}), (x \vee y)z, xyz, x \vee z$

Не является КНФ, например, $xy \lor z$, но является $(x \lor z)(y \lor z)$

Утверждение У любой логической функции есть $KH\Phi$, её можно построить по таблице истинности

Доказательство

Заметим, что если вычислить (КНФ)* (двойственную к КНФ), то получится ДНФ

Пример:

$$\overline{[(x\vee y\vee z)(x\vee \bar y)(\bar y\vee \bar z)]^*}=(xyz)\vee (x\bar y)\vee (\bar y\bar z)=xyz\vee x\bar y\vee \bar y\bar z$$
и наоборот: (ДНФ)* = КНФ

Итого, чтобы получить КНФ для функции f, надо построить ДНФ для f^*

 $\H{H}\Phi$ для f^* — существует

Пример:

 $\overline{f(x,y,z)} = xy \Leftrightarrow z$

x y z	xy	f	f^*	ДНФ для f^*
0 0 0	0	1	0	
0 0 1	0	0	1	$\bar{x}\bar{y}z$
0 1 0	0	1	1	$egin{array}{c} ar{x}ar{y}z\ ar{x}yar{z} \end{array}$
0 1 1	0	0	0	
1 0 0	0	1	1	$x\bar{y}\bar{z}$
1 0 1	0	0	0	
1 1 0	1	0	1	$xy\bar{z}$
1 1 1	1	1	0	

$$f^*(x, y, z) = \overline{f(\overline{x}, \overline{y}, \overline{z}})$$

$$f^*(0,0,0) = \overline{f(1,1,1)}$$

$$f^*(0,0,1) = \frac{f(1,1,0)}{f(1,1,0)}$$

$$f^*(0,1,0) = \overline{f(1,0,1)}$$

Столбец f^* — отрицание перевёрнутого столбца f

Итого, $f^* = \bar{x}\bar{y}z \vee \bar{x}y\bar{z} \vee x\bar{y}\bar{z} \vee xy\bar{z}$

По теореме о композиции, $f = (\bar{x} \lor \bar{y} \lor z)(\bar{x} \lor y \lor \bar{z})(x \lor \bar{y} \lor \bar{z})(x \lor y \lor \bar{z})$

Получение КН Φ по таблице истинности без двойственной функции

 $f(x, y, z) = xy \Leftrightarrow z$

0 (. 0 .		
x y z	$\int f$	ДНФ для f^*
0 0 0	1	
0 0 1	0	$x \lor y \lor \bar{z}$
0 1 0	1	
0 1 1	0	$x \vee \bar{y} \vee \bar{z}$
100	1	
1 0 1	0	$\bar{x} \lor y \lor \bar{z}$
1 1 0	0	$\bar{x} \vee \bar{y} \vee z$
1 1 1	1	

В столбце значений переменных:

- 1: есть отрицание
- 0: нет отрицания

Otbet: $f = (\bar{x} \lor \bar{y} \lor z)(\bar{x} \lor y \lor \bar{z})(x \lor \bar{y} \lor \bar{z})(x \lor y \lor \bar{z})$

ДНФ — строки с 1
$$\left\{ \begin{array}{l} 0 \leftrightarrow \bar{x}\bar{y}\bar{z} \\ 1 \leftrightarrow xyz \end{array} \right.$$
 КНФ — строки с 0 $\left\{ \begin{array}{l} 0 \leftrightarrow xyz \\ 1 \leftrightarrow \bar{x}\bar{y}\bar{z} \end{array} \right.$

Пример 2:

 $\overline{f(x,y)} = x + y$ в КНФ

x y	x+y	
0.0	0	$x \lor y$
0.1	1	
1 0	1	
1 1	0	$1 \ \bar{x} \lor \bar{y}$

Otbet: $(x \lor y)(\bar{x} \lor \bar{y})$

Замечание

Для функции, записанной в форме КН Φ , можно поставить задачу "выполнимости".

Вопрос: может ли значение быть = 1?

- не известно решений, принципиально эффективнее полного перебора значений переменных

Пример:

$$\overline{(x \vee y \vee z)}(x \vee \bar{y})(y \vee \bar{z})(\bar{x} \vee \bar{z})$$

При
$$(x=1,y=1,z=0)$$
 значение функции $=1$

Многие задачи, головоломки сводятся к задаче выполнимости Пример:

Принцип Дирихле — если есть n клеток и в них n+1 заяц, то \exists клетка, в которой ≥ 2 зайца

Докажем это утверждение при помощи сведения к задаче выполнимости при n=2

$$X_{i,j}$$
 — в клетке i сидит заяц j $\left\{ \begin{array}{lll} i & = & 1$ или 2 (клетка) $j & = & 1$ или 2 или 3 (заяц)

Попробуем записать, что в каждой клетке ≤ 1 зайца:

I. Каждый заяц ровно в одной клетке

$$X_{11} + X_{21}$$
 — заяц 1

$$X_{12} + X_{22}$$
 — заяц 2

$$X_{13} + X_{23}$$
 — заяц 3

(Если клеток много: $X_{1i}\bar{X}_{2i}\dots\bar{X}_{ki}\vee\bar{X}_{1i}X_{2i}\dots\bar{X}_{ki}\vee\dots\vee\bar{X}_{1i}\bar{X}_{2i}\dots X_{ki}$)

II. В каждой клетке ≤ 1 зайца

заяц клетка	1	2	3
1	X_{11}	X_{12}	X_{13}
2	X_{21}	X_{22}	X_{23}

Если есть 2 зайца, то один из конъюнктов= 1

В клетке $1 \leq 1$ зайца: $\overline{X_{11}X_{12} \vee X_{11}X_{13} \vee X_{12}X_{13}}$ В клетке $2 \leq 1$ зайца: $\overline{X_{21}X_{22} \vee X_{21}X_{23} \vee X_{22}X_{23}}$

Соединяем все утверждения:

$$(X_{11}+X_{21})(X_{12}+X_{22})(X_{13}+X_{23})\overline{(X_{11}X_{12}\vee X_{11}X_{13}\vee X_{12}X_{13})}\overline{(X_{21}X_{22}\vee X_{21}X_{23}\vee X_{22}X_{23})}$$
 = тождественный 0

$$\frac{\overline{a \vee b} = \overline{a} * \overline{b}}{\overline{a * b} = \overline{a} \vee \overline{b}}$$

Преобразуем в КНФ:

$$(X_{11} + X_{21})(X_{12} + X_{22})(X_{13} + X_{23}) =$$

$$= (X_{11} \lor X_{21})(\bar{X}_{11} \lor \bar{X}_{21})(X_{12} \lor X_{22})(\bar{X}_{12} \lor \bar{X}_{22})(X_{13} \lor X_{23})(\bar{X}_{13} \lor \bar{X}_{23})$$

$$\overline{(X_{11}X_{12} \vee X_{11}X_{13} \vee X_{12}X_{13})} = (\bar{X}_{11} \vee \bar{X}_{12})(\bar{X}_{11} \vee \bar{X}_{13})(\bar{X}_{12} \vee \bar{X}_{13})$$

$$\overline{(X_{21}X_{22} \vee X_{21}X_{23} \vee X_{22}X_{23})} = (\bar{X}_{21} \vee \bar{X}_{22})(\bar{X}_{21} \vee \bar{X}_{23})(\bar{X}_{22} \vee \bar{X}_{23})$$

КНФ:

$$\begin{array}{l} (X_{11} \vee X_{21})(\bar{X}_{11} \vee \bar{X}_{21})(X_{12} \vee X_{22})(\bar{X}_{12} \vee \bar{X}_{22})(X_{13} \vee X_{23})(\bar{X}_{13} \vee \bar{X}_{23}) \\ (\bar{X}_{11} \vee \bar{X}_{12})(\bar{X}_{11} \vee \bar{X}_{13})(\bar{X}_{12} \vee \bar{X}_{13})(\bar{X}_{21} \vee \bar{X}_{22})(\bar{X}_{21} \vee \bar{X}_{23})(\bar{X}_{22} \vee \bar{X}_{23}) \end{array}$$

— берём программу, которая решает задачу выполнимости Она скажет: <u>невыполнима</u>

Основные причины, по которым удобна КНФ:

- 1) КН Φ в памяти компьютера представляет из себя список списков, что очень удобно в плане хранения и при работе
- 2) Почему не ДНФ? Поскольку требуется выполнение всех условий, их необходимо перемножить однако при перемножении ДНФ не всегда получается ДНФ; в отличие от КНФ, при перемножении которых получается КНФ

Ещё один пример головоломки, сводящейся к задаче выполнимости: японский кроссворд

1.5 Классы замкнутости

Определение Логическая функция $f: \wp^n \to \wp$ $\wp = \{0,1\}$

Класс — это множество логических функций

Примеры:

 $K_1 =$ класс функций от двух переменных

 $K_2 =$ класс функций от двух переменных : f(x,y) = f(y,x) (симметричных)

$$f(x,y)=x\lor y\in K_1,\in K_2$$
 $g(x,y)=x\Rightarrow y\in K_1,\notin K_2$ $K_3=$ класс функций : $f(x,\dots)=f(\bar x,\dots)$ $f(x,y,z)=y\Rightarrow z\in K_3$ $f(x,y,z)=(x\Rightarrow y)\lor z\notin K_3$ $f(x,y,z)=\underbrace{x\bar x}_0\lor y\lor z\in K_3$

 $K_4 = \{ f(x, y) = x \lor y, g(x, y) = x \Rightarrow y \}$

$$g(x,y,z) = \underbrace{f_1(f_2(f_1(x,y),y,z),z)}_{\text{композиция функций}}$$

 $\sqsupset K = \{f_1, f_2, \dots\}$ — класс функций

 K^*- замыкание класса — это класс, состоящий из всех композиций функций K

Примеры:

$$\overline{K} = \{f() = 0, g(x) = \overline{x}\}$$

$$K^* = \{0, g(x), \underbrace{g(f())}_{1}, \underbrace{g(g(f()))}_{0}, \underbrace{g(g(g(f())))}_{1}, \dots, \underbrace{g(g(x))}_{x}, \underbrace{g(g(g(x)))}_{\overline{x}}, \dots\}$$

$$K^* = \{x, \overline{x}, 0, 1\}$$

$$K = \{g(x) = \bar{x}\}\$$

$$K^* = \{g(x), \underbrace{g(g(x))}_{x}, \underbrace{g(g(g(x)))}_{\bar{x}}, \dots\}$$

$$K^* = \{x, \bar{x}\}$$

$$K = \{\bar{x}, x \lor y, xy\}$$
 $K^* = \{\forall \ функция \ \}$ (поскольку можно составить любую ДНФ/КНФ)

Определение Если K- класс, $K^*=\zeta$ (все логические функции), то K- полный класс

Вывод:
$$K = \{\bar{x}, x \lor y, xy\}$$
 — полный класс $K = \{f(x) = \bar{x}, f(x, y) = x \lor y\}$ $xy = (\overline{xy}) = (\bar{x} \lor \bar{y}) = f(g(f(x), f(y)))$ $K = \{\bar{x}, = x \lor y\}$ — тоже полный класс

$$K = \{f(x,y) = xy, g(x,y) = x + y\}$$

$$f(0,0) = 0$$

$$g(0,0) = 0$$

Следовательно, любая композиция функций, принимающая на вход только 0, будет = 0

Но если h(0)=0, мы не сможем получить, к примеру, \bar{x} $\bar{x} \notin K^*$

 $K = \{xy, x+y\}$ — не полный класс