

11. Simple Linear Regression

Adapted From:

Probability & Statistics for Engineers & Scientists, 9th Ed.

Walpole/Myers/Myers/Ye (c)2010

Introduction to Business Statistics, 5e

Kvanli/Guynes/Pavur (c)2000

South-Western College Publishing

Statistics for Managers

Using Microsoft® Excel 4th Edition

Learning Objectives

- Describe the Linear Regression Model
- 2. State the Regression Modeling Steps
- Explain Ordinary Least Squares (Understand and check model assumptions)
- 4. Compute Regression Coefficients
- 5. Predict Response Variable
- 6. Interpret Computer Output

Models

- Representation of Some Phenomenon
- Mathematical Model Is a Mathematical Expression of Some Phenomenon
- Often Describe Relationships between Variables
- Types:
 - Deterministic Models
 - Probabilistic Models

Deterministic Models

- Hypothesize Exact Relationships
- Suitable When Prediction Error is Negligible
- Example: Force Is Exactly Mass Times Acceleration
 - $F = m \cdot a$

Probabilistic Models

- Hypothesize 2 Components
 - Deterministic
 - Random Error
- Example: Sales Volume Is 10 Times Advertising Spending + Random Error
 - $Y = 10X + \varepsilon$
 - Random Error May Be Due to Factors Other Than Advertising

Types of Probabilistic Models

Probabilistic Models

Regression Models

Correlation Models

Other Models

Regression Models

- Answer 'What Is the Relationship Between the Variables?'
- Equation Used
 - 1 Numerical Dependent (Response) Variable
 What Is to Be Predicted
 - 1 or More Numerical or Categorical Independent (Explanatory) Variables
- Used Mainly for Prediction & Estimation

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Specifying the Model

- Define Variables
- Hypothesize Nature of Relationship
 - Expected Effects (i.e., Coefficients' Signs)
 - Functional Form (Linear or Non-Linear)
 - Interactions

Model Specification Is Based on Theory

- Theory of Field (e.g., Sociology)
- Mathematical Theory
- Previous Research
- 'Common Sense'

Thinking Challenge: Which Is More Logical?

Types of Regression Models

Linear Equations

Linear Regression Model

Relationship Between Variables Is a Linear Function

Population & Sample Regression Models

Population Linear Regression Model

Sample Linear Regression Model

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Scattergram

- Plot of All (X_i, Y_i) Pairs
- Suggests How Well Model Will Fit

Least Squares

- 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum
 - But Positive Differences Off-Set Negative

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

LS Minimizes the Sum of the Squared Differences (SSE)

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
<i>X</i> ₁	Y ₁	X_1^2	Y ₁ ²	$X_1 Y_1$
X_2	Y ₂	X_2^2	Y ₂ ²	X_2Y_2
				:
X _n	Y _n	X_n^2	Y_n^2	X_nY_n
$\sum X_i$	$\sum Y_i$	ΣX_i^2	$\sum Y_i^2$	$\sum X_i Y_i$

Interpretation of Coefficients

- 1. Slope $(\hat{\beta}_1)$
 - Estimated Y Changes by β_1 for Each 1 Unit Increase in X
 - If $\beta_1 = 2$, then Sales (Y) Is Expected to Increase by 2 for Each 1 Unit Increase in Advertising (X)
- 2. Y-Intercept $(\hat{\beta}_0)$
 - Average Value of Y When X = 0
 - If $\hat{\beta}_0 = 4$, then Average Sales (Y) Is Expected to Be 4 When Advertising (X) Is 0

Parameter Estimation Example

•You're a marketing analyst for Hasbro Toys. You gather the following data:

•	<u>Ad \$</u>	Sales (Units)
	1	1
	2	1
	3	2
	4	2
	5	4

•What is the **relationship** between sales & advertising?

Scattergram Sales vs. Advertising

Parameter Estimation Solution Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Parameter Estimation Solution

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}} = \frac{37 - \frac{(15)(10)}{5}}{55 - \frac{(15)^{2}}{5}} = 0.70$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X} = 2 - (0.70)(3) = -0.10$$

Coefficient Interpretation Solution

- Slope $(\hat{\beta}_1)$
 - Sales Volume (Y) Is Expected to Increase by .7 Units for Each \$1 Increase in Advertising (X)
- Y-Intercept $(\hat{\beta}_0)$
 - Average Value of Sales Volume (Y) Is
 - -.10 Units When Advertising (X) Is 0
 - Difficult to Explain to Marketing Manager
 - Expect Some Sales Without Advertising

Parameter Estimation Computer Output

Derivation of Parameter Equations

Goal: Minimize squared error

$$0 = \frac{\partial \sum \hat{\varepsilon}_{i}^{2}}{\partial \hat{\beta}_{0}} = \frac{\partial \sum (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}}{\partial \hat{\beta}_{0}}$$

$$= \sum -2(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})$$

$$= -2(n\bar{y} - n\hat{\beta}_{0} - n\hat{\beta}_{1}\bar{x})$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Derivation of Parameter Equations

$$0 = \frac{\partial \sum \hat{\varepsilon}_{i}^{2}}{\partial \hat{\beta}_{1}} = \frac{\partial \sum (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}}{\partial \hat{\beta}_{1}}$$

$$= -2\sum x_{i}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})$$

$$= -2\sum x_{i}(y_{i} - \bar{y} + \hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i})$$

$$\hat{\beta}_{1}\sum x_{i}(x_{i} - \bar{x}) = \sum x_{i}(y_{i} - \bar{y})$$

$$\hat{\beta}_{1}\sum (x_{i} - \bar{x})(x_{i} - \bar{x}) = \sum (x_{i} - \bar{x})(y_{i} - \bar{y})$$

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$

Parameter Estimation Thinking Challenge

•You're an economist for the county cooperative. You gather the following data:

Yield (lb.)
3.0
5.5
6.5
9.0

•What is the **relationship** between fertilizer & crop yield?

© 1984-1994 T/Maker Co.

Scattergram Crop Yield vs. Fertilizer*

Parameter Estimation Solution Table*

Xi	Yi	X_i^2	Y_i^2	X_iY_i
4	3.0	16	9.00	12
6	5.5	36	30.25	33
10	6.5	100	42.25	65
12	9.0	144	81.00	108
32	24.0	296	162.50	218

Parameter Estimation Solution*

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}} = \frac{218 - \frac{(32)(24)}{4}}{296 - \frac{(32)^{2}}{4}} = 0.65$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X} = 6 - (0.65)(8) = 0.80$$

Coefficient Interpretation Solution*

- Slope $(\hat{\beta}_1)$
 - Crop Yield (Y) Is Expected to Increase by .65 lb. for Each 1 lb. Increase in Fertilizer (X)
- Y-Intercept $(\hat{\beta}_0)$
 - Average Crop Yield (Y) Is Expected to Be 0.8 lb. When No Fertilizer (X) Is Used

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Linear Regression Assumptions

- Mean of Probability Distribution of Error Is 0
- Probability Distribution of Error Has Constant Variance

Exercise: Constant across what?

- Probability Distribution of Error is Normal
- Errors Are Independent

Error Probability Distribution

Random Error Variation

- Variation of Actual Y from Predicted \hat{Y}
- Measured by Standard Error of Regression Model Sample Standard Deviation of ε , s
- Affects Several Factors
 - Parameter Significance
 - Prediction Accuracy

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Test of Slope Coefficient

- Shows If There Is a Linear Relationship Between X &
- Involves Population Slope β_1
- Hypotheses
 - H_0 : $\beta_1 = 0$ (No Linear Relationship)
 - H_a : $\beta_1 \neq 0$ (Linear Relationship)
- Theoretical Basis Is Sampling Distribution of Slope

Sampling Distribution of Sample Slopes

•All Possible Sample Slopes

Sample 1: 2.5

• Sample 2: 1.6

• Sample 3: 1.8

• Sample 4: 2.1

Very large number of sample slopes

Sampling Distribution

Slope Coefficient Test Statistic

$$t_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S_{\hat{\beta}_1}}$$
where
$$S_{\hat{\beta}_1} = \frac{S}{\sqrt{\sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}}}$$

Test of Slope Coefficient Example

•You're a marketing analyst for Hasbro Toys. You find $b_0 = -.1$, $b_1 = .7 \& s = .60553$.

•	<u>Ad \$</u>	Sales (Units)
	1	1
	2	1
	3	2
	4	2
	5	4

•Is the relationship **significant** at the **.05** level?

Solution Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	
5	4	25	16	20
15	10	55	26	37

Test of Slope Parameter Solution

•Ho:
$$\beta_1 = 0$$

•Ha:
$$\beta_1 \neq 0$$

•
$$\alpha = .05$$

$$\cdot df = 5 - 2 = 3$$

•Critical Value(s):

Test Statistic:

$$t = \frac{\hat{\beta}_1 - \beta_1}{S_{\hat{\beta}_1}} = \frac{0.70 - 0}{0.1915} = +3.656$$

Decision:

Reject at $\alpha = .05$

Conclusion:

There is evidence of a relationship

Test Statistic Solution

$$t_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S_{\hat{\beta}_1}} = \frac{0.70 - 0}{0.1915} = 3.656$$

where

$$S_{\hat{\beta}_{1}} = \frac{S}{\sqrt{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}} = \frac{0.60553}{\sqrt{55 - \frac{\left(15\right)^{3}}{5}}} = 0.1915$$

Test of Slope Parameter Computer Output

```
Parameter Estimates
         Parameter Standard T for HO:
Variable DF Estimate
                            Param=0 Prob>|T|
                     Error
INTERCEP 1 -0.1000
                    0.6350
                             -0.157 0.8849
        1 0.7000 0.1914
                             3.656 0.0354
ADVERT
                       P-Value
```


Measures of Variation in Regression

- Total Sum of Squares (SS_{yy}) Measures Variation of Observed Y_i Around the Mean Y_i
- Explained Variation (SSR)
 Variation Due to Relationship Between
 X & Y
- Unexplained Variation (SSE)
 Variation Due to Other Factors

Variation Measures

Coefficient of Determination

 Proportion of Variation 'Explained' by Relationship Between X & Y

$$r^{2} = \frac{\text{Explained Variation}}{\text{Total Variation}}$$

$$= \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} - \sum_{i=1}^{n} (Y_{i} - \hat{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

Coefficient of Determination

Examples

Coefficient of Determination Example

You're a marketing analyst for Hasbro Toys.

You find $\hat{\beta}_0 = -0.1 \& \hat{\beta}_1 = 0.7$.

Ad\$	Sales (Units)
1	1
2	1
3	2
4	2
5	4

Interpret a coefficient of determination of 0.8167.

r ² Computer Output

Regression Modeling Steps

- Hypothesize Deterministic Component
- Estimate Unknown Model Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- Evaluate Model
- Use Model for Prediction & Estimation

Prediction With Regression Models

- Types of Predictions
 - Point Estimates
 - Interval Estimates
- What Is Predicted
 - Population Mean Response E(Y) for Given X
 Point on Population Regression Line
 - Individual Response (Y_i) for Given X

What Is Predicted

Confidence Interval Estimate of Mean Y

$$\begin{split} \hat{Y} - t_{n-2,\alpha/2} \cdot S_{\hat{Y}} &\leq E(Y) \leq \hat{Y} + t_{n-2,\alpha/2} \cdot S_{\hat{Y}} \\ \text{where} \\ S_{\hat{Y}} &= S \sqrt{\frac{1}{n} + \frac{\left(X_p - \overline{X}\right)^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}} \end{split}$$

Factors Affecting Interval Width

- Level of Confidence (1 α) Width Increases as Confidence Increases
- Data Dispersion (s)
 Width Increases as Variation Increases
- Sample Size
 Width Decreases as Sample Size Increases
- Distance of X_p from Mean X Width Increases as Distance Increases

Why Distance from Mean?

Confidence Interval Estimate Example

You're a marketing analyst for Hasbro Toys. You find $b_0 = -.1$, $b_1 = .7 \& s = .60553$.

<u>Ad \$</u>	Sales (Units)
1	1
2	1
3	2
4	2
5	4

Estimate the **mean** sales when advertising is **\$4** at the **.05** level.

Solution Table

Xi	Y _i	X_i^2	Y_i^2	X_iY_i
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Confidence Interval Estimate Solution

$$\begin{split} \hat{Y} - t_{n-2,\alpha/2} \cdot S_{\hat{Y}} &\leq E(Y) \leq \hat{Y} + t_{n-2,\alpha/2} \cdot S_{\hat{Y}} \\ \hat{Y} &= -0.1 + (0.7)(4) = 2.7 \qquad \text{X to be predicted} \\ S_{\hat{Y}} &= .60553 \sqrt{\frac{1}{5} + \frac{(4-3)^2}{10}} = 0.3316 \\ 2.7 - \big(3.1824\big)(0.3316\big) \leq E(Y) \leq 2.7 + \big(3.1824\big)(0.3316\big) \\ 1.6445 &\leq E(Y) \leq 3.7553 \end{split}$$

Prediction Interval of Individual Response

$$\hat{Y} - t_{n-2,\alpha/2} \cdot S_{\left(Y - \hat{Y}\right)} \leq Y_P \leq \hat{Y} + t_{n-2,\alpha/2} \cdot S_{\left(Y - \hat{Y}\right)}$$

where

$$S_{(Y-\hat{Y})} = S \left(1 + \frac{1}{n} + \frac{(X_P - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \right)$$

Note! The 1 under the radical in the standard error formula. The effect of the extra Syx is to increase the width of the interval. This will be seen in the interval bands.

Why the Extra 'S'?

Interval Estimate Computer Output

```
Dep Var Pred Std Err Low95% Upp95%
                                       Low95%
                                               Upp95%
Obs SALES Value Predict
                         Mean Predict Predict
   1.000 0.600
                 0.469 - 0.892 2.092
                                       -1.837
                                                3.037
   1.000 1.300
 2
                 0.332 0.244 2.355
                                       -0.897
                                                3.497
                 0.271 1.138 2.861
                                       -0.111
 3
   2.000 2.000
                                                4.111
                                       0.502
   2.000 2.700
                 0.332 (1.644 3.755
                                                4.897
                 0.469
   4.000/3.400
 5
                        1.907 4.892
                                        0.962
                                                5.837
  Predicted Y when
                          Confidence
                                          Prediction
                  SyA
 X = 4
                          Interval
                                          Interval
```


Hyperbolic Interval Bands

Correlation Models

- Answer 'How Strong Is the Linear Relationship Between 2 Variables?'
- Coefficient of Correlation Used
 - Population Correlation Coefficient Denoted ρ (Rho)
 - Values Range from -1 to +1
 - Measures Degree of Association
- Used Mainly for Understanding

Sample Coefficient of Correlation

 Pearson Product Moment Coefficient of Correlation, r:

$$r = \sqrt{\text{Coefficien t of Determinat ion}}$$

$$= \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \cdot \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}}$$

Coefficient of Correlation Values

Coefficient of Correlation Examples

Test of Coefficient of Correlation

- Shows If There Is a Linear Relationship Between 2 Numerical Variables
- Same Conclusion as Testing Population Slope β_1
- Hypotheses
 - H_0 : $\rho = 0$ (No Correlation)
 - H_a : $\rho \neq 0$ (Correlation)

Summary

- Described the Linear Regression Model
- Stated the Regression Modeling Steps
- Explained Ordinary Least Squares
- Computed Regression Coefficients
- Predicted Response Variable
- Interpreted Computer Output

Thank You

"We trust in GOD, all others must bring data"