

DPP – 2 (Unit & Dimension)

7: 1	C - 1	4:	1	Website:-	
Video	->0	uutton	on	wensite'-	
V I U U U		IULIOII	VII	TT CUBIC.	

https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-

https://youtu.be/fe1L15gCivs

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/69

- Q 1. In $S = a + bt + ct^2$, S is measured in meters and t in seconds. The unit of c is:
 - (a) ms^{-2}

(b) *m*

(c) ms^{-1}

- (d) None
- A physical quantity x depends on quantities y and z as follows: Q 2. $x = Ay + B \tan(Cz)$, where A, B and C are constants. Which of the following do not have the same dimensions?

(a) x and B

(c) y and B/A

- (d) x and A
- In the relation $P = \frac{\alpha}{\beta} e^{-\frac{\alpha z}{k\theta}}$, P is pressure, Z is the distance, k is Boltzmann constant Q 3. and θ is the temperature. The dimensional formula of β will be (Hint:- Unit of Boltzmann constant is J/K)

(a) $[M^0L^2T^0]$

(b) $[M^1L^2T^1]$

(c) $[M^1L^0T^{-1}]$

- (d) $[M^0L^2T^{-1}]$
- The radius of nucleus is $r = r_0 A^{1/3}$, where A is mass number. The dimensions of r_0 is:

(a) $[M L T^{-2}]$

(b) $[M^0 L^0 T^{-1}]$

(c) $[M^0 L T^0]$

- (d) none of these
- A and B have different dimensions. Then which of the following relation will be Q 5. meaningful?

(b) [A - B]

(c) [A + B]

- (d) $\left[e^{\frac{A}{B}}\right]$
- If $v = \frac{A}{t} + Bt^2 + ct^3$ where v is velocity, t is time A, B and C are constant then the Q 6. dimensional formula of B is:

(a) $[M^0 LT^0]$

(c) $[M^0 L^0 T^0]$

- (b) $[ML^0 T^0]$ (d) $[M^0 LT^{-3}]$
- $X = 3YZ^2$ find dimensions of Y in (MKSA) system, if X and Z are the dimensions of Q 7. capacitance and magnetic field respectively:

[Hint:- Unit of capacitance of a capacitor is $coulamb^2/J$ and unit of magnetic field = $kg.s^{-2}.A^{-1}$]

(a) $[M^{-3}L^{-2}T^{-4}A^{-1}]$

(b) $[ML^{-2}]$

hysicsaholics

(c) $[M^{-3}L^{-2}T^4A^4]$

- (d) $[M^{-3}L^{-2}T^8A^4]$
- The dimensions of $\frac{a}{b}$ in the equation $P = \frac{a-t^2}{bx}$ where P is pressure, x is distance and t Q 8. is time are: (a) M²LT⁻³
- (b) MT⁻²
- (c) ML^3T^{-1}
- (d) LT⁻³
- Q 9. The division of energy by time is X. The dimensional formula of X is same as that of [Hint:- Momentum = mass \times velocity, Power = force \times velocity, Torque = Force \times perpendicular distance]
 - (a) Momentum
- (b) Power

(c) Torque

- (d) None of these
- Q 10. Write the dimensions of a \times b in the relation $E = \frac{b-x^2}{at}$. Where E is the energy, x is the displacement and t is time
 - (a) ML^2T

(b) $M^{-1}L^2T^1$

- (c) ML^2T^{-2}
- (d) MLT^{-2}

Answer Key

Q.1	a	Q.2	d	Q.3	a	Q.4	c	Q.5 a
Q.6	d	Q.7	d	Q.8	b	Q.9	b	Q.10 b