

Daily Tutorial Sheet 11

Numerical Value Type for JEE Main

126.(2) Given 40% of the absorbed energy is reemitted. Let n_1 be the number of quanta absorbed and n_2 be the number of quanta emitted.

$$\Rightarrow n_1 \frac{hc}{\lambda_1} \times \frac{40}{100} = \frac{n_2 hc}{\lambda_2}$$

$$\Rightarrow \frac{n_1}{\lambda_1} \times 0.4 = \frac{n_2}{\lambda_2}$$

$$\Rightarrow \frac{n_1}{n_2} = \frac{\lambda_1}{\lambda_2} \times \frac{10}{4} = \frac{400}{500} \times \frac{10}{4} = 2$$

 $\textbf{127.(7)} \qquad \text{Cu}_{(29)} = ls^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$

 $\ell = 0 \implies S - subshell$

Total electrons in S-subshell = 7

128.(1) State A $\xrightarrow{\text{excitation}}$ State B

1 radial node one radial node

$$E_{\rm B} = -13.6 \text{ eV } \ell = ?$$

For Li⁺²

$$E_{n} = \frac{-13.6(9)}{n^2}$$

Thus n = 3 for state B

Also
$$n-\ell-1=1 \implies 3-\ell-1=1 \implies \ell=1$$

129.(9) Total electrons present in a shell = $2n^2$

For n = 3, total electrons = 18

Now half of the electrons will have $m_s = +1/2$ and others will have $m_s = -1/2$

- \therefore Max electrons with $m_s = -1/2$ in n = 3 will be 9.
- **130.(10)** Maximum no. of electrons having n = 4 and $\ell = 2$ are 10

$$\ell = 0$$
 to $n - 1$

For
$$n = 4$$
 $\ell = 0,1,2,3$

Total electrons that can be accommodated in a subshell = $2(2\ell+1)$

$$= 2(5) = 10$$

131.(10) Energy given = 99% (IE)

$$=\frac{99}{100}\times13.6\,\text{eV}$$

Let the electron jump from ground state to nth state on absorbing the given energy.

$$\Rightarrow$$
 $E_n - E_1 = 0.99 \times 13.6 \,\text{eV}$

$$\Rightarrow 13.6 \left(\frac{1}{1^2} - \frac{1}{n^2} \right) = 0.99 \times 13.6$$

$$\Rightarrow 1 - \frac{1}{n^2} = 0.99$$

$$\Rightarrow$$
 $n^2 = 100$

$$\Rightarrow$$
 n = 10

132.(4) Let the electron jumps from first excited state (n = 2) to n = n.

De-Broglie wavelength of e^- in nth orbit = 13.4 $\overset{o}{A}$

$$\Rightarrow \frac{h}{mv} = 13.4 \text{ Å}$$

$$\Rightarrow \qquad \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \text{ kg} \times \text{V}_{\text{n}}} = 13.4 \times 10^{-10} \text{m}$$

$$\Rightarrow \qquad V_n = 0.54 \times 10^6 \ ms^{-1}$$

$$\Rightarrow$$
 2.18×10⁶ $\frac{z}{n}$ = 0.54×10⁶ (Z = 1 for H)

$$\Rightarrow \qquad n = \frac{2.18}{0.54} = 4$$

133.(5)
$$\Delta E_{2\rightarrow 3} = 47.2 \,\text{eV}$$

$$\Rightarrow 13.6Z^2 \left(\frac{1}{4} - \frac{1}{9}\right) = 47.2$$

$$\Rightarrow Z^2 = \frac{47.2}{13.6} \times \frac{36}{5}$$

$$\Rightarrow$$
 $Z^2 = 25$

$$\Rightarrow$$
 Z = 5

134.(2)
$$13.6Z^2 \left(\frac{1}{1} - \frac{1}{4}\right) \text{eV} = \frac{\text{hc}}{\lambda}$$

$$\Rightarrow 13.6 \times 1.6 \times 10^{-19} Z^2 \times \frac{3}{4} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3 \times 10^{-8}}$$

$$\Rightarrow$$
 $Z^2 = 4 \Rightarrow Z = 2$

135.(2) M-shell
$$\Rightarrow$$
 n = 3

$$\ell = 0$$
 to $n-1$

$$\Rightarrow$$
 $\ell = 0,1,2$

Zero nodal planes will be present in 3s and $3dz^2$ orbital.

136.(6)
$$Fe^{+2} = [Ar]3d^6$$

Number of electrons in d-orbital = 6

137.(8) Uncertainty in position = uncertainty in momentum =
$$\Delta x$$

$$\Rightarrow \Delta x^2 = \frac{h}{4\pi}$$

$$\Rightarrow \Delta x = \sqrt{\frac{h}{4\pi}}$$

Also
$$\Delta x \cdot m\Delta v = \frac{h}{4\pi}$$

$$\begin{split} \Delta v &= \frac{h}{4\pi m \, \Delta x} \\ &= \frac{h}{4\pi m} \cdot \sqrt{\frac{4\pi}{h}} \\ &= \sqrt{\frac{h}{4\pi}} \cdot \frac{1}{m} \\ &= \sqrt{\frac{6.6 \times 10^{-34}}{4 \times 3.14}} \times \frac{1}{9.1 \times 10^{-31}} \\ &= 8 \times 10^{-12} \, \text{ms}^{-1} \\ \Rightarrow \quad x &= 8 \end{split}$$

- 138.(5) Total nodes = n 1 $3p_x, 3d_{xy}, \ 3d_{z^2}, 4p_z \ and \ 4d_{x^2-v^2} \ have more than 1 node$
- **139.(4)** Total number of waves made by electron = orbit number ⇒ total waves = 4
- **140.(0)** Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$ For 4s orbital $\ell=0$

 \Rightarrow orbital angular momentum = 0

141.(9) For H-like species energy only depends on the value of 'n' and not on ' ℓ ' Thus all the orbital belonging to same shell will be degenerate.

Solution | Workbook-1 18 Atomic Structure