Lecture notes of Stochastic Process

lectured by prof. Hsueh-I Lu

pishen

AlgoLab, CSIE, NTU

April 11, 2012

Thank list

LeoSW, windker

pishen (AlgoLab) Stochastic Process April 11, 2012 2 / 6

Recurrent & transient

Definition

The recurrent probability of state i of Markov chain \mathbb{X} is

$$f_i = P(\text{there exists an index } t \ge 1 \text{ with } X(t) = i | X(0) = i)$$

- State i of \mathbb{X} is recurrent if $f_i = 1$.
- State i of \mathbb{X} is transient if $f_i < 1$.

Recurrent & transient (cont.)

- If state i is recurrent, by the property of Markov chain, once it re-enter the state i, we can take it as starting from X(0) again. Hence we know that it will keep re-entering the state i again and again in the process.
- If state i is transient, in each period it start going from i, it may have probability $1-f_i$ that it won't come back anymore. Hence the probability that the process will be in state i for exactly n periods equals $f_i^{n-1}(1-f_i), \ n\geq 1$, which is a geometric distribution.

pishen (AlgoLab) Stochastic Process April 11, 2012 4 / 60

Recurrent & transient (cont.)

- From the preceding page, it follows that state i is recurrent if and only if, starting in state i, the expected number of steps that the process is in state i is infinite.
- We can also derive that, if the Markov chain has finite states, at least one state is recurrent.

Expected number of visits

Let

$$I(n) = \begin{cases} 1 & \text{if } X(n) = i \\ 0 & \text{if } X(n) \neq i \end{cases}$$

we have $\sum_{n=0}^{\infty}I(n)$ represents the number of steps that the process is in state i , and

$$E\left[\sum_{n=0}^{\infty} I(n)|X(0) = i\right] = \sum_{n=0}^{\infty} E[I(n)|X(0) = i]$$

$$= \sum_{n=0}^{\infty} 1 \cdot P(X(n) = i|X(0) = i)$$

$$= \sum_{n=0}^{\infty} P_{ii}^{n}$$

We set $T = \sum_{n=0}^{\infty} I(n)$

6 / 66

Lemma 1

From the above statements, we prove the following

Lemma

State i is

recurrent
$$\iff \sum_{n=0}^{\infty} P_{ii}^n = \infty$$
,

transient
$$\iff \sum_{n=0}^{\infty} P_{ii}^n < \infty$$

Proof of Lemma 1

Suppose state i is transient($f_i < 1$), consider $P(T = k) = f_i^{k-1} \cdot (1 - f_i)$. Since T is a geometric distribution, we have

$$E[T] = \sum_{k=0}^{\infty} k \cdot f_i^{k-1} \cdot f_i$$
$$= \frac{1}{1 - f_i} < \infty$$

Communicated states

Definition

State i and j communicate, denoted $i\leftrightarrow j,$ if there exist integers $m\geq 0$ and $n\geq 0$ such that

$$P_{ij}^m > 0$$
 and $P_{ji}^n > 0$

Lemma 2

Lemma

If $i \leftrightarrow j$, then the following statements hold.

- State i is recurrent if and only if state j is recurrent.
- State *i* is transient if and only if state *j* is transient.

Let m and n be nonnegative integers with $P_{ij}^m \cdot P_{ji}^n > 0$. Suppose that state j is recurrent, i.e., $\sum_{t=0}^{\infty} P_{jj}^t = \infty$. We have

$$\begin{split} \sum_{t=0}^{\infty} P_{ii}^t &\geq \sum_{t=0}^{\infty} P_{ii}^{m+t+n} \\ &\geq \sum_{t=0}^{\infty} P_{ij}^m \cdot P_{jj}^t \cdot P_{ji}^n \\ &= P_{ij}^m \cdot P_{ji}^n \cdot \sum_{t=0}^{\infty} P_{jj}^t = \infty \end{split}$$

Thus, state i is also recurrent.

Infinite drunken man problem

Let the state space consist of all integers. Let X(0)=0 (i.e. at time 0 the drunken man is in state 0). The transition probabilities are such that

$$P_{i(i+1)} = P_{i(i-1)} = 0.5$$

holds for all states i of \mathbb{X} .

Outline

- Limiting probabilities
- Stationary distribution
- 3 Long-run proportion
- 4 (Inverse of) Expected return time

Limiting Probabilities

Definition

Number π_j is the *limiting probability* of j if

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

holds for all states $i \in S$ ($S \subseteq \mathbb{N}$ is the state space).

- \blacksquare π_i is independent of i.
- $\blacksquare \lim_{n \to \infty} P^n = \begin{pmatrix} \pi \\ \pi \\ \vdots \end{pmatrix}$, where $\pi = (\pi_1, \pi_2, \ldots)$

Stationary Probability Distribution

Definition

Non-negative row vector $\pi = (\pi_1, \pi_2, ...)$ is a stationary probability distribution of X if $\pi \times P = \pi$ holds and $\sum_{i \in S} \pi_i = 1$

- \blacksquare π is a normalized left eigenvector with eigenvalue = 1.
- If X(0) has distribution π , then X(t) has the same distribution π for all $t \geq 1$. π is also called as steady-state distribution.
- It doesn't mean that each X(t) become independent. π only means the distribution of X(t) when the previous random variable's value is unknown.

Stochastic Process April 11, 2012 15 / 66

Theorem 1

Theorem

Let X be an irreducible, aperiodic, positive recurrent Markov chain, then

- The limiting probability π_i of each state j exists.
- $\blacksquare \pi = (\pi_1, \pi_2, \ldots)$ is the unique stationary probability distribution.
- The proof will be stated at page 30.

Expected return time

Definition

The expected return time of state $i \in S$ is

$$\mu_i = \sum_{n \ge 1} n \cdot f_i^{(n)}$$

where

$$f_i^{(n)} = P(\min\{t: X(t) = i, t \ge 1\} = n | X(0) = i)$$

 $f_i = \sum_{n \ge 1} f_i^{(n)}$

Positive recurrent & null recurrent

Definition

State *i* is *positive recurrent* if $\mu_i < \infty$

Definition

State *i* is *null recurrent* if $\mu_i = \infty$

- Both are recurrent states, and are class properties, which means that if state i and j communicate, they will share this property.
- If X is finite, then each recurrent state of X is positive recurrent. Proof stated at page 55.

Example of null recurrent

Example

For a Markov chain with n states $(1, \ldots, n)$, if

$$P(X(t+1) = i + 1 | X(t) = i) = 1 - 1/n$$

and

$$P(X(t+1) = 1|X(t) = i) = 1/n$$

According to geometric distribution (taking p = 1/n), the expectation value of "steps taken for state 1 to come back" will be 1/p = n, hence $\lim_{n\to\infty} n = \infty.$

Period of a chain

Definition

The period of state i is d if d is the largest integer such that

$$P_{ii}^n = 0$$

holds for all n which is not divisible by d.

Definition

If each state of X has period 1, then X is called *aperiodic*.

- If $P_{ii} > 0$ for all $i \in S$, then X is aperiodic.
- Period can be seen as the \gcd of all n that have $P_{ii}^n>0$, note that $P_{ii}^{\gcd}>0$ is not necessary.
- The period of drunken man problem is 2.

pishen (AlgoLab) Stochastic Process April 11, 2012 20 / 66

Lemma 1

_emma

If state i is aperiodic and positive recurrent, then

$$\pi_j \equiv \lim_{n \to \infty} P_{ij}^n$$

exists and is positive for all states $i \in S$.

- This can be proved by the Blackwell theorem in Renewal theory.
- It doesn't promise that each π_i for different i will be the same. But they will be the same if we add the irreducible property.

Stochastic Process April 11, 2012 21 / 66

Property of lim

■ The position of lim cannot be switched arbitrarily in an equation.

Example

$$1 = \lim_{n \to \infty} \lim_{m \to \infty} \frac{m}{m+n} \neq \lim_{m \to \infty} \lim_{n \to \infty} \frac{m}{m+n} = 0$$

lim would not influence the inequality.

Example

If
$$f(n) \geq g(n)$$
, then $\lim_{n \to \infty} f(n) \geq \lim_{n \to \infty} g(n)$

Stochastic Process April 11, 2012 22 / 66

Property of lim (cont.)

■ lim is linear operator under finite number of functions.

Example

For $m < \infty$,

$$\sum_{i=1}^{m} \lim_{n \to \infty} f_i(n) = \lim_{n \to \infty} \sum_{i=1}^{m} f_i(n)$$

need an example of $m=\infty$

Inequality 1

Inequality

$$\sum_{j \in S} \pi_j \le 1$$

24 / 66

Proof.

$$\lim_{m \to \infty} \sum_{j=1}^{m} \pi_j = \lim_{m \to \infty} \sum_{j=1}^{m} \lim_{n \to \infty} P_{ij}^n$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^{m} P_{ij}^n$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j \in S} P_{ij}^n = 1$$

■ The last equation works since $\sum_{i \in S} P_{ii}^n = 1$.

pishen (AlgoLab) Stochastic Process April 11, 2012 25 / 66

Inequality 2

Inequality

For state $j \in S$, we have

$$\pi_j \ge \sum_{i \in S} \pi_i P_{ij}$$

Proof.

For $m \geq 1$ and $n \geq 1$,

$$P_{ij}^{n+1} = \sum_{k \in S} P_{ik}^n P_{kj} \ge \sum_{k=1}^m P_{ik}^n P_{kj}$$

then

$$\pi_{j} = \lim_{n \to \infty} P_{ij}^{n+1}$$

$$\geq \lim_{n \to \infty} \sum_{k=1}^{m} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \lim_{n \to \infty} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \pi_{k} P_{kj}$$

hence, we know

$$\lim_{m \to \infty} \sum_{k=1}^{m} \pi_k P_{kj} = \sum_{k \in S} \pi_k P_{kj} \le \pi_j$$

pishen (AlgoLab) Stochastic Process April 11, 2012

27 /

Equality 1

Equality

$$\pi_j = \sum_{i \in S} \pi_i P_{ij}$$

Proof.

Assume that for some $j \in S$, $\pi_j > \sum_{i \in S} \pi_i P_{ij}$, then

$$\begin{split} \sum_{j \in S} \pi_j &> \sum_{j \in S} \sum_{i \in S} \pi_i P_{ij} \\ &= \sum_{i \in S} \pi_i \sum_{j \in S} P_{ij} = \sum_{i \in S} \pi_i \end{split}$$

Since a value cannot be greater than itself, we got contradiction.

lacksquare should be represented by $\lim \sum$, the equation will still work.

pishen (AlgoLab) Stochastic Process April 11, 2012 29 / 66

Proof of theorem 1

- **Step 0**: existence of limiting probability.
- **Step 1**: existence of stationary probability distribution.
- **Step 2**: uniqueness.

0. Existence of limiting probability

Proof.

By lemma 1, we know that there exists a π_j for row i. Since the Markov chain is irreducible and all the states are positive recurrent, for any state i' other than i, we know that i' surely will visit i in finite steps. Therefore, the π_j value at row i' will equal to the π_j value at row i, which means that all the π_j for column j are the same, and is the limiting probability. \square

still not clear enough

1. Existence of stationary probability distribution

We want to prove that

Target

There's a vector $s = (s_1, s_2, ...)$ such that

- $2 s \times P = s$

Proof.

By lemma 1, we know that there exists a $\pi = (\pi_1, \pi_2, \ldots)$. And by equality 1, we know that

$$(\pi_1,\pi_2,\ldots)\times P=(\pi_1,\pi_2,\ldots)$$

Hence π can satisfy the 2nd part of our target.

Then, we take $k = \sum_{i \in S} \pi_i$. By inequality 1, we know that $k < \infty$, and can get

$$(\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots) \times P = (\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots)$$

where $\sum_{i \in S} \frac{\pi_i}{k} = 1$ also satisfy the 1st part of our target.

Therefore, this vector can be s, which means that it exists.

pishen (AlgoLab) Stochastic Process April 11, 2012 33 / 66

2. Uniqueness

Target

If $s = (s_1, s_2, ...)$ is a stationary distribution of \mathbb{X} , then $s = \pi$.

■ We'll prove this by inequality 3 & 4.

Inequality 3

Inequality

$$s_j \ge \pi_j, \forall j \in S$$

Proof.

Let the distribution of X(0) be s, by the property of stationary distribution, we have

$$s_{j} = P(X(n) = j) = \sum_{i \in S} P(X(n) = j | X(0) = i) P(X(0) = i)$$

$$= \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\geq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\geq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} = \lim_{m \to \infty} \sum_{i=1}^{m} \pi_{j} \cdot s_{i} = \pi_{j}$$

pishen (AlgoLab) Stochastic Process April 11, 2012 36 / 66

Inequality 4

Inequality

$$s_j \le \pi_j, \forall j \in S$$

Proof.

Similar in the proof above, $\forall m, n \geq 1$, we have

$$s_{j} = \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\leq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \left(\sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i} \right)$$

$$= \pi_{j}$$

pishen (AlgoLab) Stochastic Process April 11, 2012 38 / 66

An example Markov chain

Example

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix}, 0 < \alpha, \beta < 1$$
$$\pi = \left(\frac{\beta}{1 + \beta - \alpha}, \frac{1 - \alpha}{1 + \beta - \alpha}\right)$$

Real world example: Hardy-Weinberg Law

Example

There're two kinds of allele:

- dominant: A
- recessive: a

And three kinds of senotype with population proportion as follow:

- AA: p
- aa: q
- Aa: r = 1 (p + q)

Example (cont.)

$$P = \begin{array}{ccc} AA & aa & Aa \\ AA & \left(\begin{array}{ccc} p + \frac{r}{2} & 0 & q + \frac{r}{2} \\ 0 & q + \frac{r}{2} & p + \frac{r}{2} \\ \frac{p}{2} + \frac{r}{4} & \frac{p}{2} + \frac{r}{4} & \frac{p+q+r}{2} \end{array} \right)$$

we get $\pi = (p, q, r)$ when

$$p = \left(p + \frac{r}{2}\right)^2$$

$$q = \left(q + \frac{r}{2}\right)^2$$

Long-run proportion

Definition

We say that r_i is the *long-run proportion* of state $j \in S$ if

$$r_j = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P_{ij}^t$$

holds for each state $i \in S$.

- It represents the average appearance times of state i in the whole process.
- We will show that (in theorem 3) if X is irreducible, then the long-run proportion of all states exist.

Stochastic Process April 11, 2012 42 / 66

Theorem 2

Theorem (type 1)

If r_j exists for each $j \in S$ and $\sum_{j \in S} r_j > 0$, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of \mathbb{X} .

or

Theorem (type 2)

If r_j exists for each $j \in S$ and a stationary distribution exists, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of X.

Proof

Existence of stationary distribution in type 1:

Let

$$R = \begin{pmatrix} r \\ r \\ \vdots \end{pmatrix} = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t$$

then

$$R \times P = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^{t+1}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t + \lim_{n \to \infty} \frac{1}{n} (P^{n+1} - P)$$
$$= R$$

As stated later, $\sum_{j\in S} r_j \le 1$, hence by normalizing r, we prove that stationary distribution exist.

$$(\lim f(n)) \cdot g(n) = \lim f(n) \cdot g(n)?$$

pishen (AlgoLab)

Proof (cont.)

Uniqueness:

Let π be an arbitrary stationary distribution, then

$$\begin{split} r &= \pi \times R \\ &= \pi \times \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \times P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \\ &= \pi \end{split}$$

Proof (cont.)

Prove that $\sum_{j \in S} r_j \leq 1$:

$$\sum_{j \in S} r_j = \lim_{m \to \infty} \sum_{j=1}^m \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j=1}^m P_{ij}^t$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j \in S} P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n 1 = 1$$

Example 1

On a highway, if we know the probability that

- \blacksquare A truck is followed by a truck: 1/4
- A truck is followed by a car: 3/4
- A car is followed by a truck: 1/5
- \blacksquare A car is followed by a car: 4/5

We can construct a matrix

$$\begin{array}{ccc}
T & C \\
T & 1/4 & 3/4 \\
C & 1/5 & 4/5
\end{array}$$

and get the portion of trucks and cars on the whole highway as the eigenvector (4/19,15/19) (we will know that long-run proportion exists by Theorem 3).

Example 2

For a system which has several good and bad states, we have a matrix P:

Example 2 (cont.)

Q1: Breakdown rate (breakdown times / total time)
The long-run frequency of going to a bad state from a good state is

$$\sum_{i \in q} \sum_{j \in b} r_i P_{ij}$$

Example 2 (cont.)

Q2: The expected time μ_G (resp. μ_B) of staying in good (resp. bad) states once we reach a good (resp. bad) state?

Ans:

For each $t=1,2,\ldots$, let G_t (resp. B_t) be the length of the t-th good (resp. bad) phase of consecutive good (resp. bad) states. By the strong law of large numbers,

$$P\left(\lim_{t \to \infty} \frac{G_1 + B_1 + G_2 + B_2 + \dots + G_t + B_t}{t} = \mu_G + \mu_B\right) = 1$$

Since the reciprocal of above is the breakdown rate, we get equation (1):

$$P\left(\sum_{i \in G} \sum_{j \in B} \pi_i P_{ij} = \frac{1}{\mu_G + \mu_B}\right) = 1$$

pishen (AlgoLab) Stochastic Process April 11, 2012 50 / 66

Example 2 (cont.)

Also, with probability 1, we get equation (2):

$$P\left(\sum_{i \in G} r_i = \lim_{t \to \infty} \frac{G_1 + G_2 + \dots + G_t}{G_1 + B_1 + \dots + G_t + B_t} = \frac{\mu_G}{\mu_G + \mu_B}\right) = 1$$

Then, by (2)/(1), we get that

$$P\left(\mu_G = \frac{\sum_{i \in G} r_i}{\sum_{i \in G} \sum_{j \in B} r_i P_{ij}}\right) = 1$$

Theorem 3

Theorem,

If X is irreducible, then the long-run proportion r_i exists with probability 1, moreover,

- I If state i is positive recurrent (i.e. $0 < \mu_i < \infty$), then $P(r_i = \frac{1}{\mu_i}) = 1$.
- 2 If state i is null recurrent (i.e. $\mu_i = \infty$) or transient, then $P(r_i = 0) = 1$.

Proof

Part 1:

Suppose $X(0)=i,\ T_k$ is the number of steps required for the k-th i goes to (k+1)-st i, then by the strong law of large number,

$$\begin{split} P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\mu_i\right)&=1\\ \Rightarrow P\left(r_i=\lim_{k\to\infty}\frac{k}{T_1+T_2+\cdots+T_k}=\frac{1}{\mu_i}\right)&=1 \end{split}$$

 $lim(A/B) = \frac{1}{\lim(B/A)}?$

pishen (AlgoLab) Stochastic Process April 11, 2012 53 / 66

Proof (cont.)

Part 2:

f I If i is transient, i will only appear finite times in the long-run, hence

$$r_i = \frac{finite}{\infty} = 0$$

2 If i is null recurrent, μ_i is ∞ , then

$$P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\infty\right)=1$$

$$P\left(r_i = \lim_{k \to \infty} \frac{k}{T_1 + T_2 + \dots + T_k} = 0\right) = 1$$

(The first equation is not promised by the strong law of large number. But if it's not ∞ , we can say that μ_i is not ∞ , which is a contradiction.)

pishen (AlgoLab) Stochastic Process April 11, 2012 54 / 66

Example 1

Example (type 1)

If $\mathbb X$ is **irreducible** and finite, then $\mathbb X$ has no null recurrent states.

Example (type 2)

If X is finite, then X has no null recurrent states.

Finite irreducible imply positive recurrent.

pishen (AlgoLab) Stochastic Process April 11, 2012 55 / 66

Proof

Type 1:

If there's a state which is null recurrent, by irreducible, all the states will be null recurrent. Then, all states have $P(r_i = 0) = 1$. By changing the proof in page 46 into finite states version, we know that $\sum r_i = 1$. So it's impossible for finite r_i , which are all close to 0, to sum up to 1.

Type 2:

If it's not irreducible, the finite set of communicated null recurrent states still form an irreducible and finite Markov chain, which can fit the requirement of type 1.

Stochastic Process April 11, 2012 56 / 66

Example 2

Example

In the drunken man problem with infinite states, no state will be positive recurrent.

Infinite drunken man imply no positive recurrent. Note that it doesn't mean all infinite irreducible Markov chain has no positive recurrent state.

pishen (AlgoLab) Stochastic Process April 11, 2012 57 / 66

Proof

If all the states are positive recurrent, then by theorem 3, we know that all the $r_i>0$ and is a finite value. Since each state of drunken man problem has the same structure, all the r_i has same value. We then set $r=\epsilon\cdot\min(r_1,r_2,\ldots)$ $(0<\epsilon<1)$ such that $r_i>r>0, \forall i$. And get

$$\sum_{i \in S} r_i > \sum_{i \in S} r = \infty > 1$$

which is contradiction to page 46.

Example 3: Poisson Hotel

Example

There's a hotel, with N representing the number of newly occupied rooms each day $(N \text{ is a poisson distribution with parameter } \lambda)$. And the number of consecutive check-in days of each room is a geometric distribution with probability p (p is the probability of check-out). X(t) is the number of occupied rooms in day t.

Q1: $P_{ij} = ?$

We set R_i as a binomial distribution with parameter (i, 1-p), which represents the number of rooms which will remain occupied in the next day, then

$$P_{ij} = P(R_i + N = j)$$

$$= \sum_{k \ge 0} P(R_i + N = j | R_i = k) P(R_i = k)$$

$$= \sum_{k \ge 0} P(N = j - k) P(R_i = k)$$

$$= \sum_{0 \le k \le \min(i,j)} \frac{e^{-\lambda} \cdot \lambda^{j-k}}{(j-k)!} \binom{i}{k} (1-p)^k p^{1-k}$$

pishen (AlgoLab) Stochastic Process April 11, 2012 60 / 66

Q2: $r_i = ?$

We guess (by a dream?) there's a stationary distribution which is a poisson distribution with parameter λ_0 . Setting X(0) with this distribution. And let R as the number of rooms in X(0) which remain check-in in the next day (R is a poisson distribution with parameter $\lambda_0(1-p)$). X(1) will have distribution R+N, which is a poisson distribution with parameter $\lambda_0(1-p)+\lambda$. Then since X(0) is a stationary distribution, it will have the same distribution with X(1), which means that $\lambda_0=\lambda_0(1-p)+\lambda$, and we get $\lambda_0=\lambda/p$. After getting r_i , we get that with probability 1,

$$\mu_i = \frac{1}{P(X(0) = i)} = \frac{i!}{e^{-\lambda/p} \cdot (\lambda/p)^i}$$

need clean up

Corollary of theorem 2 & 3

Corollary

If X is irreducible, then

 \mathbb{X} is positive recurrent $\iff \mathbb{X}$ admits a stationary distribution.

Moving to transient states

For transient states i and j, we define the following:

1 Expected steps in a transient state:

Definition

E is a matrix where E_{ij} is the expected number of steps with X(t)=j when X(0)=i.

2 Probability of reaching a transient state:

Definition

F is a matrix where

$$F_{ij} = P(X(t) = j \text{ for some } t \ge 1 | X(0) = i)$$

Computing E & F

Theorem

For a Markov chain X consisting finite transient states,

$$E = (I - T)^{-1}$$

where I is an identity matrix, T is the induced matrix of P by all the transient states in P. Moreover,

$$F_{ij} = rac{E_{ij} - \delta_{ij}}{E_{jj}}$$
 ,where $\delta_{ij} = egin{cases} 1 & ext{if } i=j \ 0 & ext{if } i
eq j \end{cases}$

Proof

Conditioned on X(1), we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{\sum_{k} P_{ik} \cdot E_{kj}}_{\text{step} \ge 1} = \sum_{k} T_{ik} \cdot E_{kj}$$

The 2nd equation works since the process will not go back to transient state once it enter a recurrent state. Then, we have

$$I \times E = E = I + T \times E$$

$$\Longrightarrow (I - T) \times E = I$$

$$\Longrightarrow E = (I - T)^{-1}$$

Proof (cont.)

Conditioned on whether or not X(t) = j holds for some $t \ge 1$, we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{F_{ij} \cdot E_{jj}}_{\text{steps} \ge \text{ the first } j}$$

therefore,

$$F_{ij} = \frac{E_{ij} - \delta_{ij}}{E_{jj}}$$