國立雲林科技大學 資訊管理系 資料探勘

作業四 關聯分析實作

D10630002 陳冠臻 M11023006 謝媄衣 M11123044 沈俊良 M11123061 王成綱

指導教授:許中川

2022 年 1 月 2 日

摘要

本研究採用 trade 資料集測試 support、confidence 及 lift,使用 MS SQL Server 進行資料清洗、正規化資料,透過 Python 訓練演算法(Apriori 及 FP-Growth)、迴圈找出 trade 資料集之最佳支持度及關連性,並畫出各關聯圖及折線圖,並比較 trade 資料集在各演算法間哪項最佳,最後資料集支持度及關連性最高之屬性為 DISCRETE。

關鍵字: MS SQL Server、Apriori、FP-Growth、support、confidence、lift

一、緒論

1.1 動機

面對已佔有龐大市場的大型電商,中小型電商不必妄自菲薄,掌握「個 人化行銷 :: 了解客戶需求、透過服務創造差異化,一樣能贏得顧客的心。大 型電商如亞馬遜,由於規模大、商品數量多,無法細緻地提供顧客購買建議 及相關服務,因此,細緻度成為中小型電商切入的關鍵。據美國行銷平台 SmarterHQ 調查,在亞馬遜購物的用戶,57%都是為了購買特定物品而來、其 中 63%更事先決定好要購買的商品才來購物。BI Intelligence 的市場研究員 Daniel Keves 解釋,這代表多數人是因亞馬遜規模大、商品數量多而來購物, 並非因為亞馬遜是最好「逛」或「發掘新商品」的購物網站。若是其他中小 型電商能注重顧客體驗及需求,提供完整的服務,便能在此處創造差異化, 替品牌創造客戶及支持者。「個人化行銷」與多數人熟悉的「客製化行銷」不 同,更注重體驗。「客製化行銷」將消費者視為一個「群體」,由廠商先分析 消費者的喜好、依結果設計產品功能和服務後,再讓客戶選擇最適合自己的 項目;「個人化行銷」則以「個人」的角度分析消費者,廠商會依據消費者個 人過往的資料及消費習慣分析,主動提出客戶會最感興趣、或最符合客戶需 求的內容。因此本研究希望能提升國內中小型電商的銷售,因此著眼於行銷 方式上,首先會先與傳統零售購買時定時定點是的行銷策略做區隔,同時也 不與大型電商提供成千上萬件眼花撩亂的商品方式相同,反而是發展出一套 選擇的機制,能貼近消費者本身行銷方式,而這也是本次研究的首要目標。

1.2 目的

傳統大量行銷策略逐漸轉向顧客導向的行銷方向,與顧客進行更直接、 互動關係更頻繁方式進行溝通。而多樣化與個人化的溝通方式,可使個別的 消費者發展長期互惠的關係,來達到客戶滿意度的提升和創造更多顧客價值, 而非僅發展成買與賣的單項式交易關係。個人化行銷的關鍵是「優良的體驗」 以下為個人化消費體驗的方式:一、以產品為基礎的個人化行銷分析消費者 的行為模式,不但不用費時去蒐集每個用戶較獨立的個人資料,更有過去經 驗作為佐證。倘若消費者不因這次看到下方的推薦欄位而將其商品放進購物 車中掏錢購買,至少對商品來說也有多一次的曝光機會,當下一次消費者再 進到電商網站時,說不定便會形成轉換。二、以消費者為基礎的個人化行銷, 以消費者為基礎的個人化行銷中,可細分消費者為首次進入電商網站的潛在 消費者與過去曾造訪過甚至是有購買紀錄的既有消費者。三、即時性個人化 行銷,善加利用即時性的資訊個人化行銷,可以提供消費者耳目一新的新鮮 感,例如:某品牌服飾官網會依據造訪者所在的地點提供天氣資訊,並且同 時推薦適合該天氣所穿著的服飾。因此我們可以根據上述個人化行銷原則, 發展出體驗的消費方式,因此本研究希望可以推出一種個人化的優惠券,可 根據消費者的消費習慣與購買過的物品紀錄,來形塑他的未來可能的消費樣 態,給予他消費建議清單,並可以搭配即時特價的服務,刺激當下購買的衝 動,更細緻且不讓人有衝動消費後的罪惡感,提供消費者有良好的消費經驗 和體驗。

二、真實資料集

2.1 資料集

表 1 Trade Dataset Data Set 資料屬性一覽

欄位名稱	欄位意義	型態			
ITEM_ID	商品編號	Integer			
ITEM_NO	商品型號	Char			
PRODUCT_TYPE	商品名稱	Char			
CUST_ID	銷售 ID	Integer			
TRX_DATE	銷售日期	Date			
INVOICE_NO	發票編號	Integer			
QUANTITY	銷售數量	Integer			
様本數		屬性個數			
157397		7			

三、方法

3.1 實作說明

將 Trade Dataset Data Set 使用 Microsoft SQL Server Management Studio 匯入至 Microsoft SQL Server 資料表中,透過 T-SQL 語法進行正規化處理,並匯出成 csv 檔。

使用 Python 作為開發程式語言,透過 Apriori、FP-Growth 演算法套件, 對資料集進行關聯分析,並計算支持度與執行時間分析各演算法之最佳參數 值,再依個別演算法之支持度及信心度比較關聯分析結果。

3.2 操作說明

可自行輸入 Apriori 關聯演算法程式之支持度、信心度及輸入商品類行為何,找出輸入之商品類型所最推薦商品,並記錄各組關聯分析之執行時間、信心度及支持度。

可自行輸入 FP-Growth 關聯演算法程式之支持度、信心度及輸入商品類 行為何,找出輸入之商品類型所最推薦商品,並記錄各組關聯分析之執行時 間、信心度及支持度。

圖 1 資料集關聯分析流程圖

四、實驗

4.1 前置處理

對於 Trade Dataset Data Set 之名目尺度特徵屬性進行剃除零或負值,以及將交易資料集中相同 INVOICE_NO 表示為同一筆交易紀錄。

ITEM_ID	ITEM_NO	PRODUCT_TYPE	CUST_ID	TRX_DATE	INVOICE_NO	QUANTITY
3217532	M25P40-VMN6TPB	MEMORY_EMBEDED	3218	2016/7/26	CX47348203	2500
3326781	AU80610006237AASLBX9	CPU / MPU	2470	2016/7/11	CX47346522	50
740487	MMBD2837LT1G	DISCRETE	16135	2016/7/27	CX47348534	3000
3434776	IHLP1616ABER2R2M11	PEMCO	999999999	2016/7/29	A20160700174	(
70072	MMBT3906LT1G	DISCRETE	2356	2016/7/6	CX47346184	12000
3204503	PCA9555DWR	LOGIC IC	2506	2016/7/21	A10085337	(
3420352	TMP103AYFFR	LINEAR IC	10228	2016/7/25	CX47347899	3000
3311565	OV6922-V09N	OPTICAL AND SENSOR	38381	2016/7/6	CX47346191	1152
140887	SN74AHC1G126DCKR	LOGIC IC	999999999	2016/7/31	5119	(
3216410	SI2303CDS-T1-GE3	DISCRETE	27495	2016/7/11	CX47346636	3000
123164	TLZ24B-GS08	DISCRETE	30377	2016/7/28	CX47348680	2500
14380729	CC2530F256RHAR	LINEAR IC	999999999	2016/7/31	5119	(
14831058	QCA9550-AT4A	CHIPSET / ASP	16686	2016/7/1	CX47345496	651
148734	SN74LVC1G04DBVR	LOGIC IC	2506	2016/7/28	CX47348656	3000
88067	SN74AHC32PWR	LOGIC IC	38430	2016/7/22	CX47347745	50000
3315806	UCC2813PWTR-5	LINEAR IC	3736	2016/7/26	CX47348078	2000
2901183	CAT24C08WI-GT3	MEMORY_SYSTEM	16135	2016/7/13	CX47346899	9000
14677766	FH8065501516762SR1S9	CPU / MPU	2506	2016/7/15	CX47347172	14
15145043	RF2946-000	PEMCO	2454	2016/7/14	CX47347047	4000
3434915	LM75BIMM-3/NOPB	LINEAR IC	53917	2016/7/6	CX47346157	3000
2442248	ESD5B5.0ST1G	DISCRETE	2494	2016/7/4	CX47345910	15000
3326173	BAV99/8,215	DISCRETE	16135	2016/7/6	CX47346143	9000
135739	1PS79SB30,115	DISCRETE	35211	2016/7/28	CX47348630	12000
15041950	VJ0805Y102KXABP31	PEMCO	56711	2016/7/1	CX47345591	10000
3252971	CM1213A-02SR	DISCRETE	2470	2016/7/11	CX47346492	3000
149830	SN74LVC1G17DBVR	LOGIC IC	2549	2016/7/26	CX47348394	3000
15006948	CM8063401286503SR1AJ	CPU / MPU	3447	2016/7/1	CX47345430	
8929651	WGI210IT,SLJXT	CHIPSET / ASP	9552	2016/7/1	CX47345554	1350
2219803	NTLJD3115PT1G	DISCRETE	2767244	2016/7/4	CX47345741	3000

圖 2 Trade Dataset Data Set 原始資料

LINEAR IC	LOGIC IC	MEMORY EMBEDED			
CPU / MPU	DISCRETE	LINEAR IC	PEMCO		
CHIPSET / ASP	CPU / MPU	LINEAR IC			
DISCRETE	LINEAR IC	OPTICAL AND SENSOR			
CHIPSET / ASP	DISCRETE	LINEAR IC	MEMORY_SYSTEM		
CPU / MPU	LOGIC IC	MEMORY_EMBEDED			
OTHERS	PEMCO				
DISCRETE	MEMORY_SYSTEM				
PEMCO					
LINEAR IC	MEMORY_EMBEDED	OTHERS			
DISCRETE	LINEAR IC	LOGIC IC	MEMORY_EMBEDED	MEMORY_SYSTEM	
CHIPSET / ASP	DISCRETE	LINEAR IC	LOGIC IC	OPTICAL AND SENSOR	OTHERS
CPU / MPU	DISCRETE				
CHIPSET / ASP	LOGIC IC	MEMORY_EMBEDED			
DISCRETE	LOGIC IC	OTHERS			
LOGIC IC	OPTICAL AND SENSOR				
DISCRETE	LINEAR IC	LOGIC IC	MEMORY_EMBEDED		
CHIPSET / ASP	MEMORY_SYSTEM				
DISCRETE	LINEAR IC	MEMORY_EMBEDED	PEMCO		
CPU / MPU	LINEAR IC	LOGIC IC	MEMORY_EMBEDED		
LINEAR IC	MEMORY_SYSTEM				
LOGIC IC	OPTICAL AND SENSOR	OTHERS			
CPU / MPU	MEMORY_SYSTEM				
OPTICAL AND SENSOR					
MEMORY_SYSTEM					
CPU / MPU	LINEAR IC	OPTICAL AND SENSOR			
CHIPSET / ASP	DISCRETE	LINEAR IC	OTHERS		
DISCRETE	LOGIC IC	OPTICAL AND SENSOR	OTHERS		
CHIPSET / ASP	CPU / MPU	DISCRETE			
OTHERS					

圖 3 Trade Dataset Data Set 正規化後資料

4.2 實驗設計

在 Apriori 演算法下,自行輸入支持度、信心度及商品,則顯示當支持度為 0.1、信心度為 0.1 及輸入商品類型為 DISCRETE 時顯示推薦商品為 OPTICAL AND SENSOR、LINEAR IC 及 LOGIC IC。

0.1 請輸入支持度: (Press 'Enter' to conf

0.1 請輸入信心度: (Press 'Enter' to conf

DISCRETE

請輸入商品類型(PRODUCT_TYPE,若有多項請以「,」分開): confirm or 'Escape' to cancel)

圖 4 Trade Data Set 之輸入支持度、信心度及商品類型圖

圖 5 Trade Data Set 之輸入支持度、信心度及商品類型圖結果圖

針對 Support、Confidence 及 Lift 進行交叉分析及比較各支持度及信心度 在每個值之間分佈

圖 6 Trade Data Set 之 Support vs Confidence 之比較

圖 7 Trade Data Set 之 Support vs Lift 之比較

圖 8 Trade Data Set 之 Lift vs Confidence 之比較

在 FP-Growth 演算法下,自行輸入支持度及商品,則顯示當支持度為 0.1、輸入商品類型為 DISCRETE 時顯示推薦商品為 LINEAR IC、CPU / MPU、 PEMCO、OPTICAL AND SENSOR、 CHIPSET / ASP、 MEMORY_SYSTEM、 LOGIC IC、MEMORY_EMBEDED、OTHERS。

0.1 DISCRETE 請輸入商品類型(PRODUCT_TYPE, 若有多項

圖 9 Trade Data Set FP-Growth 之輸入支持度及商品類型圖

您輸入的支持度為:0.1 您輸入的商品類型為:DISCRETE ['LINEAR IC', 'CPU / MPU', 'PEMCO', 'OPTICAL AND SENSOR', 'CHIPSET / ASP', 'MEMORY_SYSTEM', 'LOGIC IC', 'MEMORY_EMBEDED', 'OTHERS']

圖 10 Trade Data Set FP-Growth 之輸入支持度及商品類型圖

在 FP-Growth 演算法下,算出最有好的前五名的商品以及利用 treemap 畫 出矩形式樹狀結構圖,找出最好的商品

	items	incident_count
0	DISCRETE	95
1	LINEAR IC	93
2	LOGIC IC	84
3	MEMORY_EMBEDED	62
4	OTHERS	61

圖 11 Trade Data Set 之商品 incident count 排名前五圖

圖 12 Trade Data Set 之矩形式樹狀結構圖-為 incident_count 排名第一

圖 13 Trade Data Set 之矩形式樹狀結構圖-為 incident_count 排名第二

圖 14 Trade Data Set 之矩形式樹狀結構圖-為 incident_count 排名第三

在 FP-Growth 演算法下,算出 Support、Confidence 及 Lift 之排名前十之 數值

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(DISCRETE)	(LINEAR IC)	0.519126	0.508197	0.316940	0.610526	1.201358	0.053122	1.262738
1	(LINEAR IC)	(DISCRETE)	0.508197	0.519126	0.316940	0.623656	1.201358	0.053122	1.277752
2	(LOGIC IC)	(LINEAR IC)	0.459016	0.508197	0.267760	0.583333	1.147849	0.034489	1.180328
3	(LINEAR IC)	(LOGIC IC)	0.508197	0.459016	0.267760	0.526882	1.147849	0.034489	1.143443
4	(DISCRETE)	(LOGIC IC)	0.519126	0.459016	0.295082	0.568421	1.238346	0.056795	1.253499
5	(LOGIC IC)	(DISCRETE)	0.459016	0.519126	0.295082	0.642857	1.238346	0.056795	1.346448
6	(DISCRETE, LOGIC IC)	(LINEAR IC)	0.295082	0.508197	0.191257	0.648148	1.275388	0.041297	1.397757
7	(DISCRETE, LINEAR IC)	(LOGIC IC)	0.316940	0.459016	0.191257	0.603448	1.314655	0.045776	1.364220
8	(LOGIC IC, LINEAR IC)	(DISCRETE)	0.267760	0.519126	0.191257	0.714286	1.375940	0.052256	1.683060
9	(DISCRETE)	(LOGIC IC, LINEAR IC)	0.519126	0.267760	0.191257	0.368421	1.375940	0.052256	1.159381

圖 15 Trade Data Set FP-Growth 之 Support、Confidence 及 Lift 排名圖

五、結論

本研究使用 SQL Server 進行前置處理,後利用 python 進行各演算法 (Apriori、FP-Growth)分析,計算資料集在各演算法間哪項最佳,結果得知 Trade 資料集在 Apriori 及 FP-Growth 演算法下 DISCRETE 商品是最好的結果,且支持度在 Apriori 下最高。

六、參考文獻

chwang
12341 (Jul 2020) \circ github \circ

https://github.com/chwang12341/Machine-

Learning/blob/master/Apriori/%E9%97%9C%E8%81%AF%E8%A6%8F%E5%89%87%E5% AF%A6%E6%88%B0.ipvnb

MAX (Nov 2018)。[關聯分析] Apriori 演算法介紹 (附 Python 程式碼)。

https://www.maxlist.xyz/2018/11/03/python_apriori/

阿新(Aug 2019)。Python --深入淺出 Apriori 關聯分析演算法(二)

Apriori 關聯規則實戰。

https://www.796t.com/content/1566475622.html

Yeh James (Oct 2017)。[資料分析&機器學習] 第2.4 講:資料前處理 (Missing data, One-hot encoding, Feature Scaling)。

https://medium.com/jameslearningnote/%E8%B3%87%E6%96%99%E5%88%86%E6%9E%90%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%AC%AC24%E8%AC%9B%E8%B3%87%E6%96%99%E5%89%8D%E8%99%95%E7%90%86-missing-data-one-hot-encoding-feature-scaling-3b70a7839b4a

Harsh (Sep 2019) · Association Analysis in Python ·

https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c

Is 泰 (Aug 2018)。 Python 機器學習 — 關聯規則 (Apriori、FP-growth)。 https://www.twblogs.net/a/5b7dd3152b717768385411e0

Sebastian Raschka (2022) \circ fpgrowth: Frequent itemsets via the FP-growth algorithm \circ

http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/fpgrowth/Bashir Alam (Feb 2022) \circ Implementation of FP-growth algorithm using Pvthon \circ

https://hands-on.cloud/implementation-of-fp-growth-algorithm-using-python/