1. Describe the following concepts in the context of logical reasoning as precisely and compact as possible:

• Enumeration:

Enumeration is going through all possible models of a given statement to check for truth values. This can done using a truth table where you arrange models so as to capture all possible combinations of the symbols .

• Validity. I.e. when is a sentence valid/invalid:

A valid sentence is one that is true for all the models(a structured world where the truth of false of a sentence can be evaluated)

• Satisfiability. I.e. when is a sentence satisfiable/ when is it unsatisfiable?

If at least one model proves to be true the statement is said to be satisfiable

• CNF and DNF. Give an example for each

CNF : Conjunctive Normal form ; A statement or a sentence that is expressed as conjunction(\land) of multiple clauses(multiple AND clauses) eq: $(A \lor B) \land (\neg B \lor C)$

DNF: Disjunctive Normal Form; A logical sentence that is expressed as disjunction of multiple multiple clauses(multiple OR clauses) eq: $(A \land B) \lor (\neg B \land C)$

• Resolution:

Resolution is a inference rule that can be used iteratively solve to prove the satisfiability of a statement. To perform this, first convert the statement to conjunctive normal form. Then if we want to show that the knowledge base entails the statement α ($KB \models \alpha$), we do this by iteratively finding pairs of α until we can prove that $KB \models \neg \alpha$ is unsatisfied.

2. Consider the following Implication:

$$[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]$$

a) Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable

Let T=Truth and F= False

Food (F)	Party (P)	Drinks (D)	$F \Rightarrow P$	$D \Rightarrow P$	$F \wedge D$	$(F \Rightarrow P)$ \lor $(D \Rightarrow P)$		$[(F \Rightarrow P) \lor (D \Rightarrow P)]$ \Rightarrow $[(F \land D) \Rightarrow P]$
T	T	T	T	T	Т	Т	Т	Т
T	T	F	Т	Т	F	Т	Т	T
T	F	Т	F	F	Т	F	F	Т
T	F	F	Т	Т	F	Т	Т	F
F	Т	Т	Т	Т	F	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т	Т
F	F	Т	Т	F	F	Т	T	Т
F	F	F	Т	Т	F	Т	Т	Т

Since for all models the sentence is true this is valid.

(b) Convert the left-hand and right-hand sides of the main implication into CNF separately, showing each step, and explain how the results confirm your answer.

$$[(F \Rightarrow P) \lor (D \Rightarrow P)] \Rightarrow [(F \land D) \Rightarrow P]$$

Reducing the implements sign using implication elimination

$$[(\neg F \lor P) \lor (\neg D \lor P)] \Rightarrow [\neg (F \land D) \lor P]$$

Using De morgen's law on right hand of implements sign

$$[(\neg F \lor P) \lor (\neg D \lor P)] \Rightarrow [(\neg F \lor \neg D) \lor P]$$

Impliment elimination

$$\neg[(\neg F \lor P) \lor (\neg D \lor P)] \lor [(\neg F \lor \neg D) \lor P]$$

Using De morgen's law

$$\neg(\neg F \lor P) \land \neg(\neg D \lor P) \lor [(\neg F \lor \neg D) \lor P]$$

Using De morgen's law and double negation elimination

$$(F \land \neg P) \land (D \land \neg P) \lor [(\neg F \lor \neg D) \lor P]$$

Using associativity of \vee

$$(\ \mathcal{F} \ \wedge \neg P) \wedge (D \wedge \neg P) \vee [(\neg F \vee (\neg D \vee P)]$$

Elimination of duplicates P

$$(F \land D \land \neg P) \lor (\neg F \lor \neg D \lor P)$$

(c) Prove your answer to (a) using resolution.

Food (F)	Party (P)	Drinks (D)	$\neg F$	$\neg P$	$\neg D$	$F \wedge D \wedge \neg P$	$\neg F \vee \neg D \vee P$	$(F \land D \land \neg P) \\ \lor \\ (\neg F \lor \neg D \lor P)$
F	F	F	T	Т	Т	F	Т	Т
F	F	Т	Т	Т	F	F	Т	Т
F	Т	F	Т	F	Т	F	Т	Т
F	Т	T	Т	F	F	F	Т	Т
T	F	F	F	Т	Т	F	Т	Т
T	F	T	F	Т	F	Т	F	Т
T	Т	F	F	F	Т	F	Т	Т
T	Т	Т	F	F	F	F	Т	Т

3. Let A, B and C be propositional formulas such that A and B entails C $(e.gA \land B \to C)$. Then, is $(A \to C) \lor (B \to C)$ always true?

$$A \lor B \Rightarrow C$$

Reducing the implements sign using implication elimination

$$\neg (A \lor B) \lor C$$

Expanding bracket using demorgens law

$$(\neg A \land \neg B) \lor C$$

Using distribuitivity of $\vee over \wedge$

$$(\neg A \lor C) \land (\neg B \lor C)$$

Using reverse of implication eliminiation

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

A	В	С	$A \wedge B$	$A \Rightarrow C$	$B \Rightarrow C$	$(A \land B) \Rightarrow C$	$(A \Rightarrow C) \lor (B \Rightarrow C)$
T	Т	Т	Т	T	T	Т	T
Т	Т	F	Т	T	F	F	Т
T	F	Т	F	F	Т	Т	Т
T	F	F	F	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	F	T	T	Т	Т
F	F	F	F	Т	Т	Т	Т

 $(A \to C) \lor (B \to C)$ is always true(proved by Truth Table)

4. Prove the following formulas:

Let T=Truth, F=False

•
$$\neg P \land \neg Q \Longleftrightarrow \neg (P \lor Q)$$

Demorgen's law state that $\neg P \land \neg Q \equiv \neg (P \lor Q)$ therefore we can say that above equation holds true bidirectionally under Demorgen's law

P	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \land \neg Q$	$\neg (P \lor Q)$	$\neg P \land \neg Q \Longleftrightarrow \neg (P \lor Q)$
T	Т	F	F	Т	F	F	T
T	F	F	Т	Т	F	F	T
F	Т	Т	F	Т	F	F	T
F	F	Т	Т	F	Т	Т	Т

•
$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

Demorgen's law state that $\neg(P \land Q) \equiv \neg P \lor \neg Q$ therefore we can say that above formula is true bidirectionally

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg (P \land Q)$	$\neg P \lor \neg Q$	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
T	Т	F	F	Т	F	F	Т
T	F	F	Т	F	Т	T	Т
F	Т	Т	F	F	Т	T	Т
F	F	Т	Т	F	Т	Т	Т

• $P \lor (P \land Q) \Leftrightarrow P$

Using distributivity of \vee over \wedge

P	Q	$P \wedge Q$	$P \vee (P \wedge Q)$	$P \lor (P \land Q) \Leftrightarrow P$
Т	Т	T	Т	T
Т	F	F	Т	Т
F	Т	F	F	Т
F	F	F	F	Т

References:

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach