西安交通大学考试题 A (参考) 成绩					
课 程					
学院考试日期 年 月 日					
专业班号					
姓 名 学 号 期中	l末 V				
(注意:请将所有试题答案写在空白的"学生考试卷"上)					
一、 判断题(每小题1分,共16分)					
判断下列说法是否正确,在完全正确的题后括号内打"√",错	误的或不完				
全正确的题后括号内打"×"。					
1. 原子轨道是指核外电子绕核高速运动时的运动轨迹。	()				
2. 所有原子的原子轨道能级都是由主量子数和角量子数共同决定的。	()				
3. 一般说来,第一电离能越大的元素,其金属性越强。	. 一般说来,第一电离能越大的元素,其金属性越强。 ()				
4. 每个原子轨道最多只能允许两个电子存在。	()				
5. 第三周期元素中电负性最大的元素基态价电子构型为 $2s^23p^5$ 。	()				
6. 热力学标准态是温度为 298.15K, 气体分压为 100.0kPa, 溶液浓度为	1.0 mol·L ⁻¹				
时的状态。	()				
7. p 电子与 p 电子配对形成的化学键可以是 π 键也可以是 σ 键。	()				
8. 共价键和氢键都具有饱和性和方向性,而离子键和金属键都没有饱	和性和方向				
性。	()				
9. 原电池是将氧化还原反应分别在两个电极上进行,每个电极上发生	一个半电池				
反应,因此所有原电池反应都是氧化还原反应。	()				
10. 色散力既存在于非极性分子之间,也存在于极性分子之间。	()				
11. 标准热力学数据的规定是:298K、标准态下,参考单质的 $\Delta_f H_m^{\theta} = 0$	0、				
$\Delta_{\!f} G_m{}^\Theta = 0$, $S^\theta = 0$.	()				
12. NH_3 分子中采取的是 sp^3 杂化,且四个杂化轨道具有相同的能量。	()				

13. 温度升高可加快反应速率是由于能够提高反应速率常数。	()
14. 根据稀溶液的依数性, 0.5%的葡萄糖(C ₆ H ₁₂ O ₆)水溶液和0.5%	的蔗	糖
(C ₁₂ H ₂₂ O ₁₁)水溶液具有相同的渗透压。	()
15. MgSO ₄ 晶体的晶格能和熔点都比 K ₂ SO ₄ 晶体的要高。	()
16. 一定温度下,零级反应的反应速率不随反应物的浓度和时间的变化而	变化	Ł.
	()
二、 不定项选择题(每小题 2 分,共 20 分,全对得 2 分,发	匙对	但
不全者得1分,多选、错选不得分)		
1. PCl ₅ 分子的空间构型为:	()
A. 正三角形 B. 正四面体 C. 三角双锥 D. 正八面体		
2. 根据价层电子互斥理论,下列粒子的空间构型正确的有:	()
A: SF ₆ (正八面体) B: [Fe(CN) ₆] ³⁻ (正八面体	:)	
C: Ag(NH ₃) ₂ ⁺ (角形) D: ClO ₄ ⁻ (正四面体)		
3. 根据布朗斯特酸碱质子理论,下列物质能够被称为酸的有	()
A. SO ₂ B. NH ₄ ⁺ C.H ₂ O D.CH ₃ CH ₂ OH		
4. 下列哪组 n 、 l 、 m 量子数是正确的?	()
A. 3, 2, 2 B. 3, 0, 1 C. 3, 2, 1 D. 5, 4, -4		
5. 已知 298K 时热分解反应 $\mathrm{MgCO_3}(\mathrm{s}) \to \mathrm{MgO}(\mathrm{s}) + \mathrm{CO_2}(\mathrm{g})$ 的 $\Delta_r H_m^\Theta =$	101	.59
$kJ \cdot mol^{-1}$, $\Delta_{r}G_{m}^{\Theta}$ =49.15 $kJ \cdot mol^{-1}$,下列温度下能使 $MgCO_{3}(s)$ 自发分解有	ヺ ()
A. 451K B. 581K C. 479 K D. 617K		
6. 同一温度下,若反应(1)、(2)、(3)的关系为(1)-2(2)=(3),	则反	应
(3)的平衡常数 K_3^{Θ} 为()		
A. $[K_1^{\Theta}]^{2K_2^{\Theta}}$ B. $K_1^{\Theta} \bullet [K_2^{\Theta}]^2$;		
C. $K_1^{\Theta}/[K_2^{\Theta}]^2$ D. $[K_2^{\Theta}] \bullet \sqrt{K_1^{\Theta}}$		

西	安	交	涌	大	学	考	试	颞
-	_	\sim	~:-			J	W	~~

7. 在 CH_4 、 NH_3 、 H_2O 和 H_2S 分子中,将它们按照分子中的键角从大到小排序
应该是 ()
A. H_2S , H_2O , NH_3 , CH_4 B. CH_4 , H_2S , NH_3 , H_2O
C. CH_4 , NH_3 , H_2O , H_2S D. H_2S , CH_4 , NH_3 , H_2O
8. 在含有 0.10 mol·L ⁻¹ 的氨水和 0.10 mol·L ⁻¹ 的 NH_4Cl 的混合液中加入一倍的水,
发生明显变化的是()
A. 氨水的解离度 B. pH 值 C. 氨水的浓度 D. K_b^{Θ}
9. 己知电对 $\operatorname{Sn}^{4+} + 2e \square \operatorname{Sn}^{2+}$ 的 $E^{\Theta} = +1.51$ V,下列表述正确的是()
A. $\frac{1}{2}$ Sn ⁴⁺ + $e \square$ $\frac{1}{2}$ Sn ²⁺ $\not \square$ $E^{\Theta} = +0.755$ V
B. $2\mathrm{Sn}^{4+} + 4e \square$ $2\mathrm{Sn}^{2+}$ if $E^{\Theta} = +3.02\mathrm{V}$
C. $3\mathrm{Sn}^{4+} + 6e \square$ $3\mathrm{Sn}^{2+}$ if $E^{\Theta} = +4.53\mathrm{V}$
D. $\frac{1}{2}$ Sn ⁴⁺ + $e \square$ $\frac{1}{2}$ Sn ²⁺ iff $E^{\Theta} = +1.51$ V
10. 有关电化学腐蚀的正确说法是()
A. 析氢腐蚀发生在阳极上 B. 吸氧腐蚀发生在阴极上
C. 两种腐蚀都发生在阴极上 D. 两种腐蚀都发生在阳极上
三、填空题(每小题 2 分, 共 24 分)
1. 由等温方程可知,任意温度下都是"自发过程"的条件是 $\Delta_r H$ 0 并且
Δ _r S0。(填"大于", 或"小于")
2. 配合物[Cu(NH ₃) ₄]SO ₄ 的名称为,配位原子为。

3.	正催化剂可以改变反应历程,降低,从而提高。
4.	若某一级反应的半衰期 t _{1/2} 为 30 天,则该一级反应进行 90%时所需的时间为
	天(取整数)。
5.	化学反应 $2SO_2(g)+O_2(g)$ \square $2SO_3(g)$ 在温度为 $300K$ 时的标准平衡常数为
	4.86×10 ²⁴ ,则 400K 时的标准平衡常数为(已知 $\Delta_r H_m^{\Theta}$ =-197.78
	kJ·mol ⁻¹ , R=8.314 J·mol ⁻¹ ·K ⁻¹ , 保留 2 位小数)。可见, 升高温度, 平衡(填
	"向正向移动"、"向逆向移动"、"不移动")
6.	将 3.0 g 摩尔质量为 60.0 g/mol 的某物质溶解在 50.0g 纯水中,则此溶液的凝
	固点为℃。(已知 <i>K</i> _f (水)=1.86K·kg·mol ⁻¹ 。)
7.	已知 E^{Θ} (MnO ₄ -/MnO ₂) > E^{Θ} (BrO ₃ -/ Br-),则在四种物质中的氧化能力
	最强,的还原能力最强。
8.	已知下列化学反应方程式 ()
	$2\text{Zn} \ (s) \ +O_2 \ (g) = 2\text{ZnO} \ (s) \qquad \Delta_r G_m^{\theta} = -636.6 \text{ kJ} \cdot \text{mol}^{-1}$
	2Hg (1) +O ₂ (g) =2HgO (s) $\triangle_r G_m^{\theta} = -117.0 \text{ kJ} \cdot \text{mol}^{-1}$
	则 $Zn(s) + HgO(s) = ZnO(s) + Hg(1) \Delta_r G_m^{\theta} =k J \cdot mol^{-1}$
9.	已知苯甲酸的 K_a^{Θ} =6.46×10 ⁻⁵ ,为将 100ml,0.6 mol·L ⁻¹ 的苯甲酸溶液调节至
	pH=5, 需加入 克 NaOH 固体 (保留两位小数)。
10.	已知某难溶强电解质 AB3 在水中的溶解度为 S g/1000g 水, 其分子量为 M,
	那么其溶度积常数 $\mathbf{K}_{\mathrm{sp}}^{\Theta}$ =。
11.	热力学封闭系统是指与环境只有交换,没有交换的系统。
12.	温室效应主要是由于和等温室气体在大气中大量积聚导致的。
四	、计算题(共 40 分)
1.	(9分) 利用标准热力学函数估算反应: $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$
	(1) 在 873K 时的标准摩尔吉布斯函数变和标准平衡常数。

西安交通大学考试题

(2) 若此时系统中各组分气体的分压为 $P(CO_2)=P(H_2)=127$ kPa, $P(CO)=P(H_2O)=76$ kPa,计算此条件下反应的摩尔吉布斯函数变,并判断反应 进行的方向。

相关物质 298K 时的标准热力学数据

	CO ₂ (g)	$H_2(g)$	CO(g)	H ₂ O(g)
$\Delta_{\rm f} H_{\rm m}^{\Theta}/{\rm kJ \cdot mol^{-1}}$	-393.5	0	-110.5	-241.8
$S_{\mathrm{m}}^{\Theta}/\mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1}$	213.7	130.7	197.7	188.8

2. (11 分) 298K 时, N_2O_5 的分解反应: $N_2O_5(g) = 2NO_2(g) + 1/2O_2(g)$ 其浓度与反应速率的关系如下:

实验序号	N ₂ O ₅ 的初始浓度	反应速率(N ₂ O ₅ 的浓度减小)
	$/\text{mol} \cdot \text{L}^{-1}$	$/\text{mol} \cdot L^{-1} \cdot s^{-1}$
(1)	0.064	5.12×10 ⁻⁵
(2)	0.032	2.56×10^{-5}

- (1) 写出该反应的速率方程表达式;
- (2) 求反应的速率常数;
- (3) 求该温度下 N₂O₅ 分解的半衰期;
- (4) 若该反应的活化能为 136.73 kJ·mol⁻¹, 计算温度升高 10℃时, 该反应的速率常数。
- 3. (6 分) 往 AgCl 沉淀中加入一定量的 KI 溶液后发现白色 AgCl 沉淀减少了,与此同时又生成了 AgI 黄色沉淀。平衡后测得溶液中 I^- 的浓度为 5×10^{-8} mol/L。已知在实验温度下 $K_{sp}^{\Theta}(AgCl)=1.77\times10^{-10}$, $K_{sp}^{\Theta}(AgI)=8.51\times10^{-17}$

- (1) 求实验温度下反应 $AgCl + I^- \parallel AgI + Cl^-$ 的标准平衡常数。
- (2) 求平衡时溶液中Cl⁻的浓度。
- 4. (14分) 若 298K 时电池反应

$$2\text{MnO}_{4}^{-}(aq) + 8\text{H}^{+}(aq) + 6\text{I}^{-}(aq) \square$$
 $2\text{MnO}_{2}(s) + 4\text{H}_{2}\text{O}(1) + 3\text{I}_{2}(s)$

的 $\Delta_r G_m^{\Theta} = -662.38 \text{kJ·mol}^{-1}$, $E^{\Theta}(I_2/I^-) = 0.535 \text{V}$,F=96500 J·V⁻¹·mol⁻¹,试回 答下列问题:

- (1) 计算该原电池的标准电动势;
- (2) 写出该原电池的正负极反应式,并写出该原电池的电池符号;
- (3) 计算电对 $E^{\Theta}(MnO_4^-/MnO_2)$ 的值;
- (4) 若将原电池反应的 pH 值为 6, 其它离子的浓度均为 1 mol/L, 试计 算该原电池的电动势, 并判断此时该电池反应自发进行方向。

共6页 第6页