## สรุป Chapter 2 (ต่อ)

# **Proximity Measure for Binary Attributes**

A contingency table for binary data

|          |     | OD    | ject / |     |
|----------|-----|-------|--------|-----|
|          |     | 1     | 0      | sum |
| Object i | 1   | q     | r      | q+r |
|          | 0   | 8     | t      | s+t |
|          | sum | q + s | r+t    | p   |

- $\lim_{sum} q+s \qquad r+t \qquad p \\ \square \quad \text{Distance measure for symmetric binary variables} \qquad d(i,j) = \frac{r+s}{q+r+s+t}$
- $\Box$  Distance measure for asymmetric binary variables:  $d(i, j) = \frac{r+s}{q+r+s}$
- ☐ Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

□ Note: Jaccard coefficient is the same as

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

\*\* กรณี Attributes ไม่ได้เป็นตัวเลข แต่เป็น Binary

Contingency ตารางนี้ค่อยดูว่า 0 กับ 1 มันเป้นยังไง

#### **Example: Dissimilarity between Asymmetric Binary Variables**

| Name | Gender  | Fever  | Cough    | Test-1   | Test_2  | Test_3  | Test_4 |      |     |   | Mary |                       |
|------|---------|--------|----------|----------|---------|---------|--------|------|-----|---|------|-----------------------|
| Jack | M       | Y      | N        | P        | N       | N       | N      |      |     | 1 | 0    | $\Sigma_{\text{row}}$ |
| Mary | F       | Ŷ      | N        | P        | N       | P       | N      | Inck | 1   | 2 | 0    | 2                     |
| Jim  | M       | Y      | P        | N        | N       | N       | N      | Jack | 0   | 1 | 3    | 4                     |
| □ Ge | nder is | a symn | netric a | ttribute | (not co | unted i | n)     |      | 5 . | 3 | 3    | 6                     |

- ☐ The remaining attributes are asymmetric binary
- ☐ Let the values Y and P be 1, and the value N be 0

Let the value Y and P be 1, and the value N be 0

Distance: 
$$d(i, j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$



- ตัวอย่าง มีจุดอยู่ 3 จุดแนวนอน Jack , Mary และ Jim
- มี 8 Attributes
- M คือ 1 F คือ 0 N เป็น 0 P เป็น 1

Y เป็น 1 N เป็น 0

# ☐ A contingency table for binary data Object *j*



☐ Distance measure for symmetric binary variables

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- $\hfill \square$  Distance measure for asymmetric binary variables:  $d(i,j) = \frac{r+s}{q+r+s}$
- □ Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

□ Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discove

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

| - | สตรคำนวณ |
|---|----------|
|   | 91       |

ตัว t คือ 0 ตรงกับ 0

| Name         | Gender   | Fever | Cough       | Test-1 | Test-2 | Test-3   | Test-4 |                                |
|--------------|----------|-------|-------------|--------|--------|----------|--------|--------------------------------|
| Jack<br>Mary | M<br>F 0 | Y     | Cough<br>NO | P. P.  | N. ()  | N.<br>P. | N.Q    |                                |
| lim          | M        | Y     | P\          | N      | N      | N        | N      |                                |
|              |          |       | . !         |        |        |          | ,      |                                |
|              |          |       | ,           | V      | ow y   | }        |        | $d(i,j) = \frac{r+s}{q+r+s+t}$ |
|              |          |       |             | T      | 0      | 10       | 1      |                                |
|              |          | 1     |             | -      |        | >0       | m      | - 1+1                          |
|              |          |       |             | 74     | 10     | 3        | 3 1    | 7 -                            |
|              | Jack     |       |             | 0      |        |          |        |                                |
|              | for      |       | 0           | 15     | 3      |          | b,     | s 2                            |
|              | U        | 1     | -           | 1      | 10     | 1        | 1      | 2 7                            |
|              |          | J     | son 1       | 3-1    |        | 17       |        | 1                              |
|              |          |       |             |        |        | 1        |        |                                |

ตารางคำนวณตัวอย่างอาจารย์ทำให้ดู เป็น Similarity ระยะห่างสูงสุดเท่ากับ 1

## **Proximity Measure for Categorical Attributes**

- ☐ Categorical data, also called nominal attributes
- Example: Color (red, yellow, blue, green), profession, etc.
- ☐ Method 1: Simple matching
- ☐ m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- ☐ Method 2: Use a large number of binary attributes
- ☐ Creating a new binary attribute for each of the *M* nominal states

- ระยะทางระหว่าง attributes categorical
- Categorical คือ เป็นชื่ออย่างเดียว
- วิธีการมี 2 แบบ แบบแรกคล้าย ๆ Similarity
- p– m คือจำนวนตัวที่ไม่เหมือน
- p ข้างล่างคือจำนวนทั้งหมด

วิธีการในแบบที่ 2 ลักษณะตัวอย่าง

#### **Ordinal Variables**

- ☐ An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
- Replace an ordinal variable value by its rank:  $r_{if} \in \{1,...,M_f\}$
- Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by  $z_{ij} = \frac{r_{ij} 1}{M_{ij} 1}$
- Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
- ☐ Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- □ Compute the dissimilarity using methods for interval-scaled variables

#### **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- ☐ Can be treated like interval-scaled
- Replace an ordinal variable value by its rank:  $(1,...,M_f)$
- Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by  $\sqrt{z} = \sqrt{r_i 1}$
- ☐ Example: freshman: 0) sophomore: 1/3; junior: 2/3; senior 1
  - ☐ Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

- การหาระยะห่างระหว่างจุด ตามสูตร  $Z_{
m if}$ 

ตัวอย่างการหาค่า Z<sub>if</sub>

## **Attributes of Mixed Type**

- A dataset may contain all attribute types
- □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- If f is numeric: Use the normalized distance
- If f is binary or nominal:  $d_{ij}^{(f)} = 0$  if  $x_{if} = x_{if}$ ; or  $d_{ij}^{(f)} = 1$  otherwise
- If f is ordinal

เป็นวิธีการรวม เช่น ตัวอย่าง data โควิดหรือวงใน

- A dataset may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:



- If f is numeric: Use the normalized distance
- If f is binary or nominal:  $d_{ij}^{(f)} = 0$  if  $x_{if} = x_{jf}$ ; or  $d_{ij}^{(f)} = 1$  otherwise
- If f is ordinal
- Compute ranks  $z_{if}$  (where  $z_{if} = \frac{r_{if} 1}{M_f 1}$ )
- Treat z<sub>if</sub> as interval-scaled

- ตัวอย่างคำนวณวิธีการใช้งาน

## **Cosine Similarity of Two Vectors**

□ A **document** can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or phrase) in the document

| Document  | team | coach | hockey | baseball | soccer | penalty | score | win | loss | season |
|-----------|------|-------|--------|----------|--------|---------|-------|-----|------|--------|
| Document1 | 5    | 0     | 3      | 0        | 2      | 0       | 0     | 2   | 0    | 0      |
| Document2 | 3    | 0     | 2      | 0        | 1      | 1       | 0     | 1   | 0    | 1      |
| Document3 | 0    | 7     | 0      | 2        | 1      | 0       | 0     | 3   | 0    | 0      |
| Document4 | 0    | 1     | 0      | 0        | 1      | 2       | 2     | 0   | 3    | 0      |

- Other vector objects: Gene features in micro-arrays
- ☐ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- $\Box$  Cosine measure: If  $d_1$  and  $d_2$  are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where  $\bullet$  indicates vector dot product, ||d||: the length of vector d



- ตัววัดความเหมือนของจุด
- วัดความเหมือนหรือต่างกันยังไง

- ตัวอย่างให้เห็นภาพในการัวดระยะห่างระหว่างจุดอาจจะทำแบบการหามุมองศา แล้วหาระยะห่างก็ได้