- 1 1?
- 2 2?
- 3 3 ?

Beweis  $\iff$  von

$$G \text{ frei } \iff G \curvearrowright_{\text{frei}} Baum$$
$$S' := \{g_e \in G \mid e \text{ wesentlich für } T_0\}$$

wesentlich heißt

$$e = \{u, v\}, u \in T_0, v \notin T_0$$

 $g_e$  so, dass  $g_e^{-1}v \in V(T_0)$ 

**2.Schritt** Zeige S' erzeugt G:

 $g \in G$ , Ziel: finde Elemente in S' so, dass g Produkt dieser ist.

Wähle Ecke  $u \in T_0$ , weil T zusammenhängend, existiert Kantenpfad p in T von u nach g.u.

Weil  $V(T) = \bigcup_{g \in G} V(g.T_0)$ , weil  $T_0$  aus jedem G-Orbit eine Ecke enthält.

 $\implies p$  durchläuft verschiedene Kopien  $g_0T_0,...,g_nT_0$  von  $T_0$  mit  $g_0=1,g_n=g.$ 

Es ist  $g_{j+1} \neq g_j$  für  $\forall j : k_0 \leq j \leq k_1$ , wenn p reduziert.

 $\Rightarrow g_j T_0$  und  $g_{j+1} T_0$  sind für alle j wie oben verbunden.

 $g_j^{-1}e_j$  ist wesentliche Kante für  $T_0$ ;  $p=e_0...e_{n-1}$ 

Setze  $s_j := g_j^{-1} g_{j+1} \in S'$ . Dann  $g = g_0 \cdots g_{k_0}^{-1} g_{k_0+1} g_{k_0+1}^{-1} \cdots g_n = s_0 \cdots s_n \in \langle S' \mid \rangle$ 

**3.Schritt**  $\exists S \subset S'$ , das G frei erzeugt.

aus 1. Schritt folgt, dass S' in Paare aufspaltet  $\{s,s^{-1};$  für S wähle ein Element pro Paar aus.

Es reicht zu zeigen: Cay(G,S) enthält keine Kreise.

Annahme: Sei  $g_0, \ldots, g_{n-1}, g_n = g_0$  Kreis in Cay(G,S) Setze  $s_j := g_j^{-1} g_{j+1} \forall j = 0, \ldots, n-1$ Es sei  $s_j \in S \forall j$  (OE: S so wählbar)

Sei  $e_i$  wesentliche Kante zw.  $T_0$  und  $s_i T_0$ 

Jede Kopie von  $T_0$  ist zusammenhängender Teilbaum, daher können wir die Ecken der Kanten  $g_j e_j$  und  $g_j s_j e_{j+1} = g_{j+1} e_{j+1}$ , die in  $g_{j+1} T_0$  liegen durch einen eindeutigen, reduzierten Weg in  $g_{i+1}T_0$  verbinden.

Weil  $g_n = g_0$ , ist der erhaltene Weg geschlossen.

Starten und Enden in selber Kopie vom Baum  $T_0$ . Widerspruch zu T ist Baum.

#### Korollar 3.15 (Satz von Nielsen-Schreier) 3.1

Untergruppen freier Gruppen sind frei.

Beweis Eine Untergruppe wirkt frei auf den Cayleygraphen seiner Obergruppe.

#### 3.2 Korollar 3.16

F freie Gruppe, Rang(F) = n, G < F UG vom Index k. Dann ist G frei und vom Rang k(n-1) + 1. Insbesondere sind Untergruppen vom endlichen Index in freien Gruppen vom endlichen Index endlich erzeugt.

**Beweis** S freies EZS von F,  $\Gamma := Cay(G, S)$ , G,  $F \curvearrowright_{frei} \Gamma$  durch Linksmult.

Bew 3.11: Rang(G) =  $\frac{1}{2}E$ , E = # wesentlicher Kanten für Fund.-Baum  $T_0$  von  $G \curvearrowright T$ 

Weil |F:G|=k hat  $T_0$  genau k Ecken.

Es gilt  $d_T(v) = 2n$  für alle v in T.

Dann: (1)  $\sum_{v \in V(T_0)} d_T(v) = k2n$ , andererseits ist  $T_0$  endlicher Baum mit k Ecken, also hat  $T_0$  k-1 Kanten.

In (1) werden Kanten doppelt gezählt, d.h.

$$\sum_{v \in V(T_0)} d_T(v) = 2(k-1) + E$$

$$1/2E = k(n-1) + 1 = RangG$$

#### 3.3 Korollar 3.17

F frei vom Rang  $m \geq 2$ , und  $n \in \mathbb{N}$ , Dann gibt es UG von F, die frei und vom Rang n ist.

# 3.4 3.18 Ping-Pong Lemma (Felix Klein)

G Gruppe, erzeugt von  $S = \{a, b\}$ , wobei a, b unendliche Ordnung.  $G \curvearrowright X$ , X Menge, so dass für  $\emptyset \neq A, B \subset X$  mit  $B \not\subset A$  gilt:

$$a^n B \subset A \text{ und } b^n A \subset B, \forall n \in \mathbb{Z} \setminus \{0\}$$

dann ist G frei von S erzeugt.

**Beweis** Zu zeigen  $G \cong F_{red}(a, b)$  via Isom, der S festhält.

UAE:  $\phi: F_{red}(a,b) \longrightarrow G$  mit  $\phi|S=id$ , dann ist  $\phi$  surjektiv.

Zu zeigen:  $\phi$  injektiv.

Annahme:  $\phi$  nicht injektiv, dann existiert  $w \in F_{red}(S)$  mit  $\phi(w) = 1$ 

4 Fälle:

**1.Fall** w beginnt mit nichttriv. Potenz von a und endet mit einer solchen:

$$w = a^{n_0} b^{m_0} \dots b^{m_k} a^{n_{k+1}}, n_i, m_i \in \mathbb{Z} - 0$$

Nun ist  $B = 1.B = \phi(w)B = a^{n_0}b^{m_0}...b^{m_k}a^{n_{k+1}}.B \subset A$ . Widerspruch!

- **2.Fall** w beginnt mit b und endet mit b. konjugiere mit a: 1.Fall
- **3.Fall** w beginnt mit a und endet mit b. Konjugiere mit  $a^k$  für k groß genug

### 3.5 3.19 Beispiel

freie UG von SL(2,Z)

$$SL(2,\mathbb{Z}) = \left\{ egin{matrix} a & b \\ c & d \end{array} | \ det = 1 
ight\}$$

Dann ist  $G := \langle M_1, M_2 \mid \rangle$  frei vom Rang 2, wobei

$$M_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, M_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

**Beweis** Betrachte lineare Wirkung von  $SL(2,\mathbb{R}) \curvearrowright \mathbb{R}^2$  definiert durch

$$(M,(x,y)) \longmapsto M.(x,y)$$

 $\forall n \in \mathbb{Z} - 0 \text{ und } (x,y) \in \mathbb{R}^2 \colon M_1^n.(x,y) = (x+2ny,y) \\ \text{Sei } A = \{(x,y) \mid |x| > |y|\}, \ B = \{(x,y) \mid |y| > |x|\}, \ B \not\subset A \\ \text{Dann } |x+2ny| \geq |2ny| - |x| > |2y| - |y| = |y|, \text{ also } M_1^nB \subset A, \text{ analog für } M_2. \\ 3.18 \text{ zeigt: G frei.}$ 

# 4 Quasi-Isometrien

**Motivation** Gruppe -> Geometrie Ziel: Konzept finden, welches Cayleygraphen einer festgelegten Gruppe als gleich (äquivalent) auffasst

## 4.1 Ein paar Definitionen

Seien (X, d), (Y, d) metrische Räume,  $f: X \to Y$  eine stetige Abbildung.

• f heißt eine **isometrische Einbettung**, falls für alle  $x, y \in X$  gilt

$$d(f(x), f(y) = d(x, y)$$

- $\bullet$  f heißt eine **Isometrie**, falls f eine surjektive isometrische Einbettung ist.
- X und Y heißen isometrisch, falls eine Isometrie  $X \to Y$  existiert.
- f heißt eine **Bilipschitz-Einbettung**, falls eine reelle Konstante  $c \ge 1$  existiert, sodass für alle  $x, y \in X$  gilt

$$\frac{1}{c}d(x,y) \le d(f(x), f(y) \le cd(x,y)$$

 $\bullet$  f heißt eine Bilipschitz-Äquivalenz, falls f eine surjektive Bilipschitz-Einbettung ist.

# 4.2 Bemerkung 4.4

- Isometrie -> Bil.Äqu -> QI
- Umkehrung i.A. nicht richtig
- Quasi-Isometrisch sind (R, d) und (Z, d) und (Z, d) mit den euklidischen Metriken. Die Inklusionen sind quasi-isom. Einbettungen, aber keine Bilipschitzäqu., weiter sind

$$\begin{split} f: \mathbb{R} &\longrightarrow \mathbb{Z} \\ g: \mathbb{Z} &\longrightarrow 2\mathbb{Z} \end{split} \qquad x \longmapsto \{x, x-1\} \cap 2\mathbb{Z} \end{split}$$

# 4.3 Quiz 4.5

• Sind  $\mathbb{Z}$  und  $2\mathbb{Z}$  bilipschitz-äquivalent?

#### 4.4 4.6 Durchmesser metrischer Räume

Jeder nichtleere, metrische Raum (X, d) mit endlichen Durchmessern

$$diam(X) := \sup_{x,y \in X} (d(x,y))$$

ist quasi-isometrisch zu einem Punkt.

**Beweis** Setze D := diam(X), sei  $* \in X$  beliebig. definiere die Abbildung

$$f: X \longrightarrow X, x \longmapsto *$$

Dann gilt

$$d(f(x), f(y)) - D \le d(f(x), f(y)) \le d(f(x), f(y)) + D$$

Daraus folgt auch, dass  $d(f^2(x), id(x)) \leq D$ , ergo sind X und \* quasi-isometrisch.

# 4.5 Korollar

Ist X beschränkt und Y quasi-isom. zu X, so ist auch Y beschränkt.

#### 4.6 4.17 Satz

X,Y metrische Räume,  $f:X\to Y$  eine quasi-isometrische Einbettung. Dann gilt:

f Quasi-Isometrie  $\iff$  f hat quasi-dichtes Bild in Y

d.h.  $f(X) \subset Y$  ist  $\delta$ -dicht für  $\delta \geq 0$ , d.h.

$$\forall y \in Y, \exists x \in X : d(y, f(x)) \leq \delta$$

**Beweis** f Quasi-Isometrie, dann existiert quasi-Inverse  $g: Y \to X$  und somit  $\delta > 0$ , s.d.  $\forall y \in Y$  gilt

$$d((f \circ g)(y), y) \le \delta$$

ergo quasi-Dichtes Bild.

Andere Richtung: f sei (C,D)-q.i. Einbettung mit  $\delta$ -dichtem Bild, wir konstruieren quasi-Inverse via Auswahlaxiom

Setze  $\lambda := \max\{C, D, \delta\} \ge 1$ , dann gilt

- $\forall x, y \in X : \frac{1}{\lambda}d(x,y) \lambda \le d(f(x), f(y) \le \lambda d(x,y) + \lambda$
- $\forall y \in Y \exists x \in X : d(f(x), y) \le \lambda$

Setze  $g: Y \to X, y \longmapsto x_{\lambda}$ ; wähle  $x_{\lambda}$  so, dass  $d(f(x_{\lambda}), y) \leq \lambda$ .

Zu Zeigen: g ist quasi-invers zu f.

$$\forall y \in Y : d(f(g(y)), id(y)) = d(f(x_{\lambda}), y) \le \lambda$$
$$\forall x \in X : d(g(f(x)), id(x)) = d(x_{f(x)}, x) \le \lambda \cdot d(f(x_{f(x)}), f(x)) + \lambda^2 \le 2\lambda^2$$

Noch zu zeigen: g ist quasi-isometrische Einbettung

Seien dazu  $y, y' \in Y$ 

$$d(g(y), g(y')) = d(x_y, x_{y'}) \le \lambda d(f(x_y), f(x_{y'})) + \lambda^2$$
  

$$\le \lambda (d(f(x_y), y) + d(y, y') + d(y', f(x_{y'}))) + \lambda^2$$
  

$$\le \lambda^2 + \lambda d(y, y') + \lambda^2 + \lambda^2$$

Setze  $C = \lambda, D = 3\lambda^2$ 

Für  $y, y' \in Y$  ist noch zu zeigen

$$d(g(y), g(y') \ge \frac{1}{C}d(y, y') - D$$

#### 4.7 4.18 Definition: Geodäten

Eine **Geodäte** ist ein eine isometrische Einbettung  $\gamma:[0,L]\to X$  eines Intervalls in einen metrischen Raum.

# 4.8 4.20 Definition Quasigeodäte

Eine (C, D)-Quasigeodäte für  $C \ge 1, D \ge 0$  ist eine (C, D)-Quasiisometrische Einbettung von [0, L] nach X.

X heißt (C, D)-quasigeodätisch, falls  $\forall x, y \in X$  eine verbindende Quasigeodäte

$$\gamma: [0, d(x, y)] \to X$$

existiert.

#### 4.9 4.22 Satz von Schwarz-Milner

G Gruppe, X metr. Raum,  $G \curvearrowright X$  durch Isometrien. Weiter gelte: X quasi-geod. für (C, D)mit  $D > 0 \; \exists B \subset X$  beschränkt mit  $\bigcup_{g \in G} gB = X \; S := \{g \in G \mid gB' \cap B' \neq \emptyset\}$  ist endlich mit  $B' := \{ x \in X \mid \exists y \in B : d(x, y) \le 2D \}$ 

Dann gilt: G wird von S erzeugt  $\forall x \in X$  ist  $(G, d_S) \to (X, d); g \mapsto g.x$  eine quasi-Isometrie.

**Beweis** ZZ: S erzeugt G

Sei  $g \in G$ ,  $x \in B$ . Dann existiert (C, D)-Quasigeodäte von x nach g.x,  $\gamma : [0, d(x, g.x)] \to X$ . Setze  $n := \lceil \frac{CL}{D} \rceil$  und für alle  $j = 0, \dots, n-1$  Setzte  $t_j = \frac{jD}{C}$  und  $t_n := L$   $x_j := \gamma(t_j)$  für

Die Translate von B unter G überdecken X, also existiert für alle  $x_j$  ein  $g_j$ , s.d.  $x_j \in g_j.B$ ,  $g_0 = 1, g_n \in g$ 

Beh.:  $\forall j = 1, ..., n$  ist  $s_j := g_{j-1}^{-1} g_j \in S$  Bew.:  $\gamma$  Quasi-Geodäte  $d(x_{j-1}, x_j) \leq C|t_{j-1} - t_j| +$  $D \leq C_{\overline{C}}^{D} + D = 2D \text{ also } x_{j} \in B_{2D}(g_{j-1}.B) \stackrel{G \sim X_{isom}}{=} g_{j-1}.B_{2D}(B) = g_{j-1}.B' \text{ andererseits ist}$   $x_{j} \in g_{j}.B \subset g_{j}.B' \text{ also } g_{j}.B \cap g_{j-1}.B' \neq \emptyset \text{ also } g_{j-1}^{-1}g_{j} \in S \qquad \square$   $Also g = g_{n} = g_{n-1}(g_{n-1}^{-1}g_{n}) = g_{n-1}s_{n} = g_{n-2}(g_{n-2}^{-1}g_{n-1})s_{n} = s_{1}...s_{n} \in \langle S \mid \rangle_{G}$ 

Wir zeigen  $\forall x \in X : \phi : G \to X, g \mapsto g.x$  quasi-isom. Einbettung mit quasi-dichtem Bild.

OE:  $x \in B$ , weil  $\bigcup_{g \in G} g.B = X$  und  $G \curvearrowright X$  isom., sonst ersetze B durch passendes Translat. Sei  $x' \in X$ . Dann gibt es  $g \in G$  mit  $x' \in g$ . B  $d(x', \phi(g)) = d(x', gx) \le diam(gB) = diam(B) = \delta$  $\Longrightarrow \delta$ -dichtes Bild

Noch ZZ: qi. Einbettung

Betrachte (C,D)-quasi-geodäte  $\gamma:[0,L]\to X$  von x nach g.x Dann gilt  $d(\phi(e),\phi(g))=d(x,g.x)=d(\gamma(0),\gamma(L))\geq \frac{L}{C}-D\geq \frac{1}{C}(\frac{D(n-1)}{C}D)=\frac{D}{C^2}n-\frac{D}{C^2}-D\geq \frac{D}{C^2}d_S(e,g)-(\frac{D}{C^2}+D)$  Abschätzung nach oben: Setze  $n=d_S(e,g)$ 

 $d(\phi(e),\phi(g)) = d(x,g.x) \leq d(x,s_1.x) + d(s_1.x,s_1s_2.x) + \dots + d(s_1...s_{n-1}.x,g.x) \stackrel{Gwirktisom.}{=} d(x,s_1.x) + d(x,s_2.x) + \dots + s(x,s_n) + \dots + s(x,s$ wähle für  $(C_0, D_0)$ -qi Einbettung die Konstanten  $C_0 = \max\{C^2/D, 2(...) \mid \}$   $D_0 = D/C^2 + D$ allgemeiner Fall folgt aus der Linksinvarianz von d und  $d_S$ .

#### 4.104.23 Definition

Ein metrischer Raum X heißt eigentlich, falls alle abgeschlossene Bälle von endlichem Radius kompakt sind.

Eine Wirkung  $G \cap X$  ist **eigentlich**, wenn für alle kompakten Teilmengen  $K \subset X$ , die Menge

$$\{g \in G \mid g.K \cap K \neq \emptyset\}$$

endlich ist.

Manchmal sagt man auch eigentlich diskontinuierlich.

#### 4.11 Bemerkung

f eigentlich, wenn Urbilder kompakter Mengen wieder kompakt sind. Hier  $G \curvearrowright X$  eigentlich

$$\Longleftrightarrow G\times X\longrightarrow X$$

$$(g,x) \longmapsto g.x$$

ist eigentliche Abbildung. (Wobei man auf G die diskrete Topologie betrachtet.)

#### 4.24 Beispiel 4.12

- $\mathbb{Z} \curvearrowright \mathbb{R}$  via Translation ist eigentlich.
- $G \cap X$  eigentlich  $\Longrightarrow Stab_G(x)$  ist endlich für  $x \in X$ , d.h. G-Bahnen haben keinen Häufungspunkt
- $\mathbb{Z} \curvearrowright \mathbb{R}^2$  Rotation um Ursprung um Winkel mal z (0,0) ist Fixpunkt, also kann diese Wirkung nicht eigentlich sein.
- $\mathbb{Z} \curvearrowright S^1$  via Rotation um  $\alpha$  ist nicht eigentlich, da  $S^1$  kompakt.
- $unendlicheGruppe \land kompakterRaum$  ist nicht eigentlich
- G erzeugt von S,  $|S| < \infty$ , dann ist  $G \cap Cay(G, S) =: \Gamma$  eigentlich.

**Beweis**  $K \subset \Gamma$  kompakt  $\Longrightarrow diam(K) < \infty \Longrightarrow \forall g \in G \text{ mit } d_S(e,g) = |g|_S > diam(K) \text{ gilt:}$  $K \cap g.K = \emptyset$ , sonst  $\exists x \in K \cap g.K \Longrightarrow x \in K$  und  $g^{-1}.x \in K$  mit  $d_S(x, g^{-1}.x) = |g^{-1}|_S = |g|_S$ ein Widerspruch 

Insbesondere nur endlich viele g mit  $|g|_S \leq D$ .

#### 4.134.25 Erinnerung

X topologischer Raum

• X hausdorffsch, g.d.w.

$$\forall x \in X \exists U_x \subset_O, x \in U_x, U_y \subset_O, y \in U_y : U_x \cap U_y = \emptyset$$

- X lokal kompakt, g.d.w. Für alle  $x \in X$  enthält jede offene Umgebung von x eine kompakte Umgebung von x.
- $\bullet$  X metrischer Raum  $\Longrightarrow$  hausdorffsch
- eigentliche metrische Räume  $\Longrightarrow$  lokal kompakt

## 4.26 Bemerkung/Lemma: Quotientenräume

(X,d) metrischer Raum, eigentlich

$$\alpha: G \to Isom(X)$$
 Wirkung von G auf X

 $p:X\to X/G$ natürliche Projektion auf Quotienten

Setze  $f(x,y) := \inf\{d(x,y)|p(x) = x, p(y) = y\}$  für  $x,y \in X/G$ Dann gilt:

- 1.  $inf = min, d.h. \exists x, y \in X : f(x,y) = d(x,y) \forall x, y \in X/G$
- 2. f ist Metrik auf X/G

```
Beweis Seien z, w \in X/G, x = p^{-1}(w); setze R = f(z, w)
Annahme: \inf \neq \min
Dann existieren unendliche Folgen (x_n, y_n) mit d(x_n, y_n) \to R und p(x_n) = w, p(y_n) = z.
Weil p(x_n) = p(x) gilt: \exists h_n \in G mit h_n x_n = x
\Longrightarrow d(h_n x_n, h_n y_n) = d(x_n, y_n), da \alpha isom.
daraus folgt x_n kann durch konstante Folge x und y_n durch y_n h_n ersetzt werden.
Daraus folgt y_n \in B_{R+\epsilon}(x_n), p(y_n) = z
Weil B_{R+\epsilon}(x) kompakt ist, hat (y_n)_n einen HP in B_{R+\epsilon}(x). Widerspruch zu 4.24
```

```
f nichtneg. und symmetrisch, da d so. f(z,w)=0\Longrightarrow\exists x,y:d(x,y)=0\Longrightarrow x=y\Longrightarrow z=w Dreiecksungleichung: u,v,w\in X/G, wähle x,y\in X, s.d. d(x,y)=f(u,v),\ p(x)=u,p(y)=v. Wähle y_1 mit d(x,y_1)=f(u,v),\ p(y_1)=v;\ y_2,\ p(y_2)=v und d(z,y_2)=f(v,w) weil y_1,y_2\in p^{-1}(v) existiert g mit g.y_2=y_1 \Longrightarrow f(u,v)+f(v,w)=d(x,y_1)+d(y_2,z)=d(x,g.y_2)+d(g.y_2,g.z)\geq d(x,g.z)\geq f(u,w)
```

#### 4.15 4.27 Definition

Eine Gruppenwirkung  $G \curvearrowright X$  heißt kokompakt, wenn X/G kompakt.

Betrachte auf X/G Topologie, die durch Quotientenmetrik f induziert wird, wenn wir mit metrischen Raum gestartet sind.

# 4.16 4.28 Beispiele

- $\mathbb{Z} \curvearrowright \mathbb{R}^2$  durch Translation längs x-Achse.  $\mathbb{R}^2/\mathbb{Z} = \text{Zylinder}$  ist nicht kompakt, also keien kokompakte Wirkung.
- X kompakt, wegzusammenhängend top. Raum,  $\widetilde{X}$  universelle Überlagerung.  $\pi_1(X) \curvearrowright \widetilde{X}$  durch Decktransformationen ist kokompakt und eigentlich  $X = \widetilde{X}/\pi_1(X)$
- $G \cap Cay(G, S) =: X$  mit kombinatorischer Metrik  $n := |S|, X/G = R_n$ , Rose mit n Blättern, kompakt

# 4.17 4.29 (topologischer) Satz von Schwarz-Milner

G wirke eigentlich, kokompakt, durch Isometrien auf einen nichtleeren, eigentlichen, geodätischen metrischen Raum (X,d), dann gilt G endlich erzeugt und für alle  $x\in X$  ist

$$G \longrightarrow X, g \longmapsto g.x$$

eine Quasi-Isometrie.

Wenn  $G \curvearrowright X$  eigentlich, kokompakt und durch Isometrien, so sagt man auch G wirkt **geometrisch**.

#### Beweis Suche B.

- nach Vorr. ist  $X \forall \epsilon > 0$ ,  $(1, \epsilon)$ -quasi-geodätisch.
- Sei für bel.  $x_0 \in X$ :  $B := \{x \in X \mid d(x, x_0) \leq D\}$ ;  $D := diam(X/G) < \infty$ , da  $G \curvearrowright X$  kokompakt.

Dann gilt:  $\bigcup_{g \in G} g.B = X$ ,  $B' := B_{2\epsilon}(B)$  endlicher Radius, also kompakt, da X eigentlich.  $G \cap X$  eigentlich, also  $\{g \in G \mid g.B' \cap B' \neq \emptyset\}$  endlich. 4.22 zeigt Beh.

#### 4.18 Korollar

Sei H < G, G endlich erzeugt mit  $(G:H) < \infty$ . Dann ist H endlich erzeugt und quasi-isom. zu G.

**Bew:** S sei endl. EZS von G

 $\Longrightarrow H \curvearrowright Cay(G,S) =: \Gamma$  mit Wortmetrik  $d_S$  isom., eigentlich, kokompakt.

Sei B endliches Vertretersystem von G/H, existiert, weil Anzahl Nebenklassen von H in G endlich ist.

Dann ist HB = G

 $B':=B_2(B)$  endlich,  $\{h\in H\mid h.B'\cap B'\neq\emptyset\}$  endlich. Schwarz-Milner: H endlich erzeugt und  $H\sim_{qi}\gamma\sim_{qi}G$ 

#### 4.19 4.31 Definition

- 1. Zwei Gruppen G, H heißen **kommensurabel**, wenn es Untergruppen G' < G, H < H' mit endlichem Index gibt, s.d.  $G' \cong H'$ .
- 2. Zwei Gruppen G, H heißen schwach kommensurabel, wenn es Untergruppen G' < G, H < H' mit endlichem Index gibt, s.d. normale Untergruppen  $N \lhd H', M \lhd G'$  mit

$$H'/N \cong G'/M$$

#### 4.20 Bemerkung

 $\sim_C, \sim_{WC}$  sind ÄQ (kommensurabel, schwach ...)  $G \sim_C H \Longrightarrow G \sim_{QI} H(fallsGendlicherzeugt)$ 

#### 4.21 Korollar

Sei G eine Gruppe und

1. G' < G eine UG mit endlichem Index. Dann gilt:

G' endlich erzeugt  $\iff$  G endlich erzeugt

Falls G, G' endlich erzeugt, dann  $G \sim_{QI} G'$ 

2.  $N \triangleleft G$  ein endliche normale Untergruppe. Dann gilt:

$$G/N$$
 endlich erzeugt  $\iff$  G endlich erzeugt

Falls G, N endlich erzeugt, dann  $G/N \sim_{QI} G$ 

Insbesondere: Ist G endl. erz. und  $H \sim_W CG$ , dann ist H endlich erzeugt und  $G \sim_Q IH$ 

# 4.22 Bemerkung

Man kann zeigen, dass nicht alle qi Gruppen kommensurabel sind. Z.Bsp.:  $(F_3 \times F_3) * F_3 \sim_Q I(F_3 \times F_3) * F_4$ , aber die Gruppen sind nicht kommensurabel (Eulercharakteristik)

#### 4.23 4.33 Korollar

Sei M eine kompakte Mannigfaltigkeit ohne Rand mit Riemannscher Metrik und M' die Riem. universelle Überlagerung. Dann gilt:

- 1.  $\pi_1(M)$  endl. erz.
- 2.  $\forall c \in M' \text{ ist } \pi_1(M) \to M', g \longmapsto g.x \text{ eine QI}$

**Beweis** Zeige mit Standard-Argumenten der Geometrie und alg. Topo, dass M' eig. und geod.  $\pi(M) \curvearrowright M'$  eig., kokompakt und durch Isom.

# 5 Quasi-Isometrie-Invarianten

# 5.1 Definition

Sei V eine menge. Eine **QI-Invariante** mit Werten in V ist eine Abb.

$$I: X \longrightarrow V$$

 $X \subset \{G : Gruppe \mid Gendl.erz\}, \text{ s.d. gilt}$ 

$$G \sim_O IH \Longrightarrow I(G) = I(H)$$

# 5.2 Bemerkung

- 1. QI-Invarianten sind hilfreich, um  $G \not\sim_Q IH$  zu zeigen
- 2. i.A. ist es nicht möglich zu entscheiden, ob $G \sim_Q IH$  gilt

#### 5.3 Beispiel

- 1.  $V = \{1\}$ , dann keine Infos
- 2.  $V = \{0, 1\}, I(G) = 1, Gunendl., sonst0 \text{ ist QIInv.}$
- 3.  $V=\mathbb{N},\ I(F)=rangF,\ F$  endl. erz. freie Gruppe, ist keine QIInv., weil  $F_n\sim_Q IF_m$  für  $n,m\geq 2$

#### 5.4 Definition

Eine Eigenschaft P von endl. erz. Gruppen heißt **geometrisch**, wenn gilt: G hat P und H qi G, dann H hat P

# 5.5 Beispiel

- 1.  $\forall n \in \mathbb{N}$  ist die Eigenschaft **virtuell**  $\mathbb{Z}^n$  zu sein eine geom. ES.
- 2. endlich sein ist geometrisch.
- 3. endlich erzeugt und virtuell frei ist geometrisch ES.
- 4. abelsch ist kein geom. ES.

1 bis 3 ist schwer zu beweisen, wir zeigen:

- 1. endlich präsentiert ist geom. ES.
- 2. Wachstum von Gruppen liefert geom. ES.
- 3. einige Ränder/Enden von einigen Gruppen liefert geom. ES.

### 5.6 Einschub: Simplizialkomplexe und CW-Komplexe

**Definition** Ein (abstrakter) **Simplizialkomplex**  $\Delta$  ist eine Menge von Teilmengen einer Menge V, s.d. gilt:

- 1.  $\{v\} \in \Delta$  für alle  $v \in V$
- $2. \ \emptyset \neq A \subset B \in \Delta \Longrightarrow A \in \Delta$

Dimension von  $a \in \Delta$  ist dim(a) := |a| - 1 Dimension von  $\Delta$  ist  $dim(\Delta) = \sup_{a \in A} dim(a)$  Schreibe: a ist K-Simplex, falls dim(a) = K

### Beispiel

- 1.  $V = \{1, 2, 3\}, \Delta = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\}$  ist Simplizialkomplex für V
- 2.  $V = \{1, 2, 3\}, \Delta = \{\{1\}, \{2\}, \{1, 2\}\}$  ist kein Simplizialkomplex für V
- 3. ungerichtete, einfache Graphen sind Simplizialkomplexe
- 4. V Menge,  $\Delta = P(V) \{\emptyset\} =: \langle V \mid \rangle$  ist Simplizialkomplex;

**Allgemeiner: CW-Komplexe** Ein CW-Komplex ist ein top. Raum, der schrittweise aus sog. Zellen zusammengeklebt worden ist.

**Definition** Sei  $X^{(0)} \subset \mathbb{R}^n$  eine diskrete Menge, diese Menge besteht aus den sogenannten **0-Zellen**.

Das n-Skelett  $X^{(n)}$  entsteht aus den  $X^{(n-1)}$  durch Ankleben von n-Zellen  $D_i^n$  durch stetige Abb.

$$\phi_i: S^{n-1} = \partial D_n \longrightarrow X^{(n-1)}$$

Formal:

$$X^{(n)} = X^{(n-1)} \cup \bigcup_{i \in I} D_i^n / \sim$$

wobei  $x \sim \phi_i(x)$  für  $x \in \partial D_i^n$ 

Definiere den CW-Komplex durch  $X = \bigcup_{n>0} X^{(n)}$ .

#### Beispiele

1. Graphen mit Doppelkanten sind CW-Komplexe

#### 5.6.1 Definition

G, H schwach kommensurabel, falls  $\exists$ 

$$N \lhd G' \leq G$$

$$M \lhd H' \leq H$$

wobei N, M, (G':G), (H':H) endlich sind.

#### 5.6.2 Satz 5.5

G endlich erzeugt von S mit Relationen R, R endlich. Sei H endlich erzeugte Gruppe von S' und  $H \sim_{QI} G$ , dann gilt: H ist endlich präsentiert und es existiert eine endliche Menge R' von Relationen, s.d.

$$H = \langle S' \mid R' \rangle$$

Idee Baue 2-dim. CW-Komplex, der die Darstellung kodiert (aufbauend auf Cayleygraphen).

$$\begin{array}{ll} \mathbf{Erinnerung} & G = \left\langle S \mid R \right\rangle = F(S)/\left\langle R \mid \right\rangle_G \lhd \\ \exists \pi : F(S) \to > \left\langle S \mid R \right\rangle, kern\pi = \left\langle R \mid \right\rangle_G \lhd \end{array}$$

## 5.7 Definition 5.6: Präsentationskomplex

OE:  $1 \in S, G \cong \langle S \mid R \rangle$  endlich präsentiert.

$$\Gamma := Cay(G, S) / \sim$$

wobei zwei Kanten e, e' verklebt werden (äquiv. sind), wenn gilt  $\delta(e) = \delta(e')$ 

Der **Präsentations(zwei)komplex** K = K(S, R) von G ist der Quotient K'/G von folgendem 2-Komplex K':

1-Skelett von K' ist  $\Gamma$ 

 $\forall$  Kreise  $\gamma$  in  $\Gamma$  der Form  $\gamma = g^{-1}.(1, s_1, s_1 s_2, \dots, s_1 \cdots s_n)$  wobei  $g \in G, s_1 \cdots s_n \in R$ ; klebe 2-Zelle an  $\gamma$  um K' zu erhalten.

K' heißt Cayley-Komplex von  $\langle S \mid R \rangle$ 

**Bemerkung** Man kann mittels Seifert-Van Kampen zeigen, dass K' einfach zusammenhängend. K' ist univ. Überlagerung und  $G = \pi(K) = \pi(K'/G)$ 

#### 5.8 Beispiel 5.8

- 1.  $G = \mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$  $K' = \mathbb{R}^2, K = T^2$
- 2. Flächengruppen:  $G:=\left\langle a,b,c,d\mid a^{-1}b^{-1}abc^{-1}d^{-1}cd\right\rangle K'$  kann aufgefasst werden als Parkettierung von  $H^2$

K ist Torus mit 2 Löchern,  $S^2$ -Fläche von Geschlecht 2

# 5.9 Bemerkung 5.9: alternative Definition von K(S,R)

hier  $K_G$ ,  $K_G$  enthält

- 1. eine 0-Zelle v
- 2. eine 1-Zelle für jedes  $s \in S$ , die von v nach v führt, orientiere diese 1-Zellen
- 3. eine 2-Zelle  $d_r \forall r \in R$  verklebt so, dass Kanten  $g \to gs$  orientierungserhaltend verklebt werden über  $1 \to s_1 \to s_1 s_2 \to \ldots \to s_1 \cdots s_n$ , wobei  $r = s_1 \cdots s_n, s_i \in S \cup S^{-1}$

Man kann zeigen  $K_G \cong K(S,R)$  und K' ist univ. Überlagerung von  $K_G$ 

**Beweis von 5.5** Setze  $G_1 := G, G_2 := H, S_1 := S, S_2 := S', \Gamma = Cay(G_i, S_i) / \sim$  wie in 5.6.

Sei  $\rho$  die Länge der längsten Relation in R

- Cayleykomplex  $K'_1$  ist einfach zusammenhängend
- Seien  $f: \Gamma_2 \to \Gamma_1, f': \Gamma_1 \to \Gamma_2$  (C, D)-quasi Isometrien (existieren, da  $G \sim_{QI} H$ )

Sei  $\mu > 0$ , s.d.  $d(f'(f(v)), v) \leq \mu \forall v \in \Gamma_2$ 

Setze  $m:=\max\left\{ \rho,\mu,C,D\mid\right\} ,M:=3(3m^{2}+5m+1).$ 

Sei  $K_2'$  2-Komplex, den man durch Ankleben von 2-Zellen an jeden Kreis der Länge  $\leq M$  in  $\Gamma_2$  erhält.

Sei l Kantenkreis in  $\Gamma_2$ , d.h.  $l = (g_1, \ldots, g_n, g_1)$ Betrachte l als Abb.  $\partial D \to \Gamma_2$ , D ist hier eine 2-Zelle.

**Zwischenlemma (Formalisierung der Bemerkung 5.7.2)** G erzeugt von  $S, R \leq Kern\pi$ ,  $\pi: F(S) \to G$ ; X Komplex den man, durch Ankleben von 2-Zellen an Kantenkreisen geg. durch Wörtern in R an  $Cay(G,S)/\sim$  erhält. Dann gilt:

X einfach zusammenhängend  $\iff \langle R \mid \rangle_G^{\triangleleft} = kern(\pi)$ 

Beweis von Zwischenlemma: Lemma 8.9 in Bridson-Haefliger, S.135

Wir sind fertig, wenn wir zeigen können:

l besitzt stetige Fortsetzung  $l': D \to K'_2$ , d.h.  $K'_2$  einfach zusammenhängend.

Seien  $v_i$  Urbilder der  $g_i$  unter l

Sei  $\phi: \partial D \to \Gamma_1$  eine Abb., die  $v_i$  auf  $f(g_i)$  in  $\Gamma_1$  und die Kante  $\{v_i, v_{i+1}\}$  auf  $\partial D$  auf Geodäten von  $f(g_i)$  nach  $f(g_{i+1})$ .

 $K_1'$  ist einfach zusammenhängend  $\Longrightarrow \phi$  erweitert zu  $\phi': D \to K_1'$ 

- $\forall x \in D$  definiere Elemente  $h_x$  in  $V(\Gamma_1) = G$  wie folgt:
  - ist  $\phi'(x)$  Ecke, so ist  $h_x = \phi'(x)$
  - ist  $\phi'(x)$  in einer offenen Kante oder offenen 2-Zelle enthalten, so wähle nächste Ecke der Kante / 2-Zelle als  $h_x$

Weil  $\phi'$  stetig ist, ist  $d(h_x, h_y) \leq \rho \forall x, y$ , wenn x, y nah genug aneinander sind in D. Es gilt  $d(\phi(x), h_x) \leq \frac{1}{2} \forall x \in \partial D$  (alle Kanten in  $\partial D$  haben Länge 1).

• Trianguliere D so, dass  $v_i \in \partial D$  wieder Ecken von T sind und  $\forall$  benachbarten  $t, t' \in T$  gilt:

$$d(h_t, h_{t'}) \le \rho$$

Metrik auf D dazu so gewählt, dass D reguläres M-Polygon in  $\mathbb{R}^2$  ist

- Setze  $l'_{|\partial D} = l$  und  $l'(x) = f'(h_x) \forall x \in D^o$ 

**Behauptung** Für alle benachbarten Ecken t, t' in der Triangulierung T gilt:

Gilt diese Behauptung, so erweitert l' auf D so, dass Kanten in T auf Geodäten in  $\Gamma_2$  geschickt werden und nach Konstruktion Kreise der Länge  $\leq M$  eine 2-Zelle beranden. Daraus würde folgen, dass l' eine stetige Fortsetzung wäre.

**Bew. Beh.:** einziger interessanter Fall:  $t \in D^o, t' \in \partial D$ . Sei t' zwischen  $v_i$  und  $v_{i+1}$ . Es gilt:

$$d(l'(t),l'(t')) = d(f'(h_t),l(t')) \overset{ganzviele \triangle - Ugl.en}{\leq} d(f'(h_t),f'(h_t)) + d(f'(h_{t'}),f'(\phi(t'))) + d(f'(\phi(t')) + f'(\phi(v_i))) + d(f'(h_t),h'(t')) + d(f'(h_t),h'(h_t)) + d(f'(h_t),h'(h$$

# 6 Hyperbolische Gruppen

# 6.1 Oberes Halbebenenmodell von $\mathbb{H}^2$

$$\mathbb{H}^2 := \{ z \in \mathbb{C} \mid Imz > 0 \}$$

Riemannsche Struktur:

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

hyberbolische Norm für Tangentenvektoren  $v \in \mathcal{T}_z \mathbb{H}^2 = \mathbb{R}^2$ 

$$||v||_{hyp} := \frac{||v||_{eukl}}{imz}$$

direkte Definition einer Metrik auf  $\mathbb{H}^2$ :

Sei  $\gamma:[0,1]\to\mathbb{H}^2$  glatte Kurve,  $\gamma(t)=x(t)+iy(t)$ , dann ist die **Länge** von  $\gamma$  definiert durch

$$L_{hyp}(\gamma) := \int_0^1 \frac{||\gamma'(t)||_{eukl}}{y(t)} dt$$

wir definieren die **hyperbolische Metrik** auf  $\mathbb{H}^2$ 

$$d(z,w) := \inf_{\gamma: z \to w, glatt} L_{\mathbb{H}}(\gamma)$$

# 6.2 Beispiel

1. 
$$c:[0,1] \to \mathbb{H}^2, c(t) = i + (a-1)it, a \in \mathbb{R}$$

$$L_{\mathbb{H}}(c) = \ln(a)$$

Außerdem gilt für beliebiges  $\gamma:[0,1]\to\mathbb{R}^2$  von i nach a

$$L_{\mathbb{H}} = \int_0^1 \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)} dt \ge \int_0^1 \frac{y'(t)}{y(t)} = \ln a$$

$$\Longrightarrow d(i, a) = \ln a$$

2. 
$$\gamma(t) = ai + t, a > 0, \gamma'(t) = 1, y(t) = a, x(t) = t$$

$$\Longrightarrow L^{\mathbb{H}}(\gamma) = \frac{1}{a}$$

$$L(\gamma) \to 0, a \to \infty$$

$$L(\gamma) \to \infty, a \to 1$$

Insbesondere ist  $\gamma$  keine Geodäte.

#### 6.3 Isometrien

Isometrien von  $\mathbb{H}^2$  sind die Möbiustransformationen. Eine **Möbiustransformation** (MT) ist eine Abbildung  $\pi: \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \to \overline{\mathbb{C}}$  definiert durch

$$z \longmapsto \frac{az+b}{cz+d}, a, b, c, d \in \mathbb{C}$$

# 6.4 Eigenschaften

- 1. MT sind dreifach transitiv auf  $\overline{\mathbb{C}}$ , d.h. sind  $(z_1, z_2, z_3), (w_1, w_2, w_3) \in \overline{\mathbb{C}}^3$ , dann existiert genau eine MT T mit  $T(z_i) = w_i$ .
- 2. MT bilden Kreise bzw. Geraden auf Kreise bzw. Geraden ab.
- 3.  $PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\pm I$  operiert auf  $\mathbb{H}^2$  durch Möbiustransformationen:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \frac{az+b}{cz+d} =: A.z$$

$$Im(A.z) = \frac{Imz}{\left|cz + d\right|^2} > 0$$

#### 6.5 Satz

Die Wirkung von  $PSL(2,\mathbb{R}) \curvearrowright \mathbb{H}^2$  durch MT ist isometrisch und

$$PSL(2,\mathbb{R}) \hookrightarrow Isom(\mathbb{H}^2)$$

# Beweisskizze:

• Bestimme Erzeuger von  $PSL(2,\mathbb{R})$  (Gaußverfahren)

$$\left\{ \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \lambda & \\ & \frac{1}{\lambda} \end{pmatrix} \mid r \in \mathbb{R}, \lambda \in \mathbb{R} \setminus \{0\} \right\}$$

für Injektivität:

- betrachte: 
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = id_{\mathbb{H}^2}$$
  
-  $\{I, -I\} \triangleleft SL(\mathbb{R}^2)$   
-  $T_A(z) = z \iff A = \pm I$ 

#### 6.6 Bemerkung

$$Isom(\mathbb{H}^2, d_{\mathbb{H}}) \cong PSL(2, \mathbb{R}) \cup \sigma \cdot PSL(\mathbb{R}^2)$$

wobei  $\sigma = [z \mapsto -\overline{z}]$ 

#### 6.7 Satz: Geodätische

Geodäten in  $\mathbb{H}^2$  sind nach Bogenlänge parametrisierte Halbkreise mit Zentrum auf der x-Achse und Halbgeraden parallel zur y-Achse. Insbesondere gibt es für je zwei Punkte genau eine Geodätische, die diese verbindet.

**Beweis** Seien  $z, w \in \mathbb{H}^2$ 

1. Sei zunächst z=ia, w=ib, b>a>0 Man rechnet nach:

$$L_{\mathbb{H}}(\gamma) = \ln(\frac{b}{a})$$

Für  $\sigma$  gilt:

$$L_{\mathbb{H}}(\sigma) = \ln \frac{b}{a}$$

Ergo ist  $\sigma$  Geodäte

- 2. z, w beliebig: betrachte 2 Teilfälle
  - (a)  $Re(z) \neq Re(w)$ : Sei C Kreis um Punkt P auf x-Achse, der z und w enthält. (P ist der Schnittpunkt der x-Achse und der Orthogonalen der Verbindungsstrecke zw, der den Mittelpunkt der Verbindungsstrecke enthält.)  $(0,t_1)$  und  $(0,t_2)$  seien die Randpunkte des Halbkreises C, setze dann

$$g(u) := \frac{u - t_2}{u(t_2 - t_1) - t_1(t_2 - t_1)}$$

$$g(t_1) = \infty, g(t_2) = 0$$

Weiter bildet g den Kreis C auf die imaginäre Achse ab. (Nachrechnen mit Halbkreisparam.)

(b) Re(z) = Re(w): Mit dreifach-Transitivität existiert MT mit g(w) = w', g(z) = z' und Rew = Rew', Imw' = Rew'

Mit dreifach-Transitivität existiert MT mit g(w) = w', g(z) = z' und Rew = Rew', Imw' = 0, Rez' = Rez, Imz'0. Nachrechnen: senkrechte Kurve  $z \to w$  wird auf imaginäre Achse abbildet.

6.8 Bemerkung

hyperbolische Kreise  $S_{r,p}:=\left\{w\in\mathbb{H}^2\mid d(w,p)=r\right\}$  sehen exzentrisch aus

6.9 Lemma

Zu jeder Geodäten  $\gamma$  und  $\forall z \notin \gamma$  gibt es unendlich viele Geodäten  $\sigma$  mit:  $z \in \sigma$  und  $\sigma || \gamma$ , wobei

$$\sigma||\gamma:\Leftrightarrow\sigma\cap\gamma=\emptyset$$

#### 6.10 Satz 6.9: Dreiecke sind dünn

Jedes hyperbolische Dreieck hat Innenkreisradius  $\leq \frac{1}{2} \ln 3$ 

**Beweisskizze** Sei ein Dreieck in  $\mathbb{H}^2$  gegeben (die einzelnen Seiten sind Strecken von Geodäten). In diesem gibt es einen Hyperbolischen Kreis mit maximalen Radius.

Die beiden Seiten rechts und links, werden zu Geraden gebogen, wodurch der Innenkreisradius größer wird.

Es existiert eine MT, die die drei Ecken des neuen Dreiecks  $p,q,\infty$  auf  $-1,1,\infty$  abbildet. Das dadurch erhaltene Dreieck hat einen Innenkreisradius von  $\leq \frac{1}{2} \ln 3$ 

# 6.11 Definition 6.10: Fuchssche Gruppen

Eine Untergruppe  $\Gamma < Isom(\mathbb{H}^2)$  heißt genau dann **Fuchssche Gruppe**, wenn sie eigentlich diskontinuierlich auf  $\mathbb{H}^2$  wirkt.

# 6.12 Definition 6.11: Fundamentalbereich

Sei  $G \curvearrowright X$  eigentliche Wirkung auf einem lokal kompaktem Hausdorffraum. Ein (abgeschlossenes)  $F \subset X$  heißt **Fundamentalbereich** von  $G \curvearrowright X$ , wenn gilt:

- (a) G.F = X
- (b)  $g.F^o \cap F^o = \emptyset \forall g \in G \setminus \{e\}$

### 6.13 Bemerkung

Jede Untergruppe einer Fuchsschen Gruppe ist wieder eine Fuchssche Gruppe.

# 6.14 Beispiel: 6.12

1.  $T_A$  MT zu

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $T_A(z) = z + 1, \Gamma := \langle T_A \mid \rangle$  Bahnen haben keinen Häufungspunkt. Stabilisatoren sind trivial.  $\{z \in \mathbb{H}^2 \mid Rez \in [0,1)\}$  ist ein Fundamentalbereich.  $\mathbb{H}^2/\Gamma \cong (D^2)^o \setminus \{0\} \cong S^1 \times \mathbb{R}$ .

- 2.  $A = \begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}, \Gamma = \langle T_A \mid \rangle$  wirkt eigentlich.  $\mathbb{H}^2 \setminus \Gamma \cong S^1 \times \mathbb{R}$
- 3.  $PSL(2,\mathbb{Z}) < SL(2,\mathbb{R}) < Isom(\mathbb{H}^2),$   $PSL(2,\mathbb{Z})$  ist Fuchssche Gruppe Poincare: Theorie des groups fuchsiens (1882)
- 4. alle abelschen Fuchsschen Gruppen sind zyklisch insbesondere is also keine Fuchssche Gruppe isomorph zu  $\mathbb{Z}^n$  für n>1

# 6.15 Definition 6.13: Hyperbolische metrische Räume

Sei (X, d) ein metrischer Raum. Ein geodätisches Dreieck  $\Delta$  in X ist ein Tripel von Geodäten (den Seiten des Dreiecks)  $\gamma_1, \gamma_2, \gamma_3 : [0, l_i] \to X$  so, dass:

$$\gamma_1(0) = \gamma_3(l_3), \gamma_2(0) = \gamma_1(l_1), \gamma_3(0) = \gamma_2(l_2)$$

Ein geodätisches Dreieck  $\Delta$  ist  $\delta$ -dünn für ein  $\delta \geq 0$ , falls

$$\gamma_i \subset A_i \cup U_k$$

wobei  $A_i := \{x \in X \mid d(x, \gamma_i) \leq \delta\}$  für i, j, k verschieden.

# 6.16 Beispiel

- Alle Dreiecke in  $\mathbb{R}$  sind 0-dünn.
- Ebenfalls 0-dünn sind alle Dreiecke in simplizialen Bäumen.
- Dreiecke in  $\mathbb{H}^2$  sind  $\delta$ -dünn.

#### 6.17 Definition 6.14:

Ein metrischer Raum (X, d) heißt  $\delta$ -hyperbolisch, wenn er geodätisch ist und alle geodätischen Dreiecke in X  $\delta$ -dünn sind. Wir sagen X ist (Gromor)-hyperbolisch, wenn es ein  $\delta \geq 0$  gibt, s.d. X  $\delta$ -hyperbolisch ist.

### 6.18 Bemerkung

 $\delta$ -hyperbolisch  $\Longrightarrow \delta'$ -hyperbolisch  $\forall \delta' \geq \delta$ 

#### 6.19 Beispiel 6.15

- $\mathbb{R}^n$  ist nicht hyperbolisch für n > 1.
- Geodätische Räume mit endlichem Durchmesser sind hyperbolisch.
- $\bullet$  0-hyperbolische Räume sind genau  $\mathbb{R}$ -Bäume.

#### 6.20 Satz 6.16: iterierte Dünnheit

Sei (X,d)  $\delta$ -hyperbolischer Raum, P sei ein hyperbolisches Polygon mit Kanten  $s_i: X_{i-1} \to X_i, i = 1 \dots n$ . Setze

$$Y := \bigcup_{i=1}^{n} Bild(s_i)$$

Dann gilt  $\forall x \in S_0$ 

$$d(x, Y) \le k \cdot \delta$$

 $\min k := \lceil \log_2 n \rceil$ 

#### Beweis

• Sei  $n=2^l$  für ein  $l \in \mathbb{N}$ , zu zeigen:

$$d(x, Y) \le l\delta$$

Induktion über l:

**I.A.:** l = 1, dann n = 2, P Dreieck  $\Longrightarrow$  Behauptung.

Induktionsschritt:  $l \rightarrow l+1$ 

 $n=2^{l+1}$ , wähle  $x\in BildS_0$  und geodätische Segmente  $[X_0,X_{2^l}],[X_n,X_{2^l}]$ Das Dreieck  $X_0,X_{2^l},X_n$  ist  $\delta$ -dünn, also existiert  $t\in [X_0,X_{2^l}]$  mit  $d(t,x)\leq \delta$ . Nach I.V. ist

$$d(t, Y') < l\delta$$

für  $Y' = \bigcup_{i=1}^{2^l} s_i$ 

$$\Rightarrow \exists t' \in Y' \text{ mit } d(t, t') = d(t, Y')$$
$$\Rightarrow d(x, Y) \le d(x, t') \le d(x, t) + d(t, t') \le \delta + l\delta$$

ullet Sei n beliebig: füge r Zwischenpunkte auf Y ein, sodass

$$n+r=2^l$$

#### 6.21 Definition 6.17:

(X,d): metrischer Raum,  $c \ge 1, b \ge 0$ 

Ein (c,b)-quasi-geodätisches Dreieck ist analog zu geodätisches Dreieck definiert mit  $\gamma_i$  (c,b)-quasi-Geodäten.

 $\delta$ -dünn genau analog definiert.

#### 6.22 Definition 6.18:

X heißt  $(c, b, \delta)$ -quasi-hyperbolisch, falls X (c, b)-quasi-geodätisch und alle (c, b)-quasi-geodätisch Dreiecke  $\delta$ -dünn sind.

X heißt (c,b)-quasi-hyperbolisch, wenn  $\delta \geq 0$ , s.d. X  $(c,b,\delta)$ -quasi-hyperbolisch.

#### 6.23 Bemerkung

Im Allgemeinem ist es schwieriger zu zeigen, dass X quasi-hyperbolisch ist, als, dass X hyperbolisch ist.

# 6.24 Proposition 6.19: QI-Invarianz von quasi-hyperbolisch

(X,d),(Y,e) metrische quasi-isometrische Räume, dann:

- X quasi-geod.  $\iff Y$  quasi-geod.
- X quasi-hyp.  $\iff Y$  quasi-hyp.

**Beweis**  $f: X \to Y$  sei eine (c, c)-Quasi-Isometrie mit c-dichtem Bild.

• Ohne Einschränkung sei Y(c,c)-quasi-geod., seien  $x,x' \in X$ . Dann existiert eine (c,c)-Quasi-Geodäte  $\gamma$  von  $f(x) \to f(x')$ .

Mit Auswahlaxiom finden wir  $\gamma':[0,l]\to X$  mit

$$\gamma'(0) = x, \gamma'(l) = x' \text{ und } e(f(\gamma'(t)), \gamma(t)) \le c \forall t$$

Wie in Satz 4.7 zeigt man, dass  $\gamma'$   $(c, max(3c^2, 3))$ -quasi-Geodäte ist. Daraus folgt: X ist quasi-geodätisch.

• Ohne Einschränkung sei Y quasi-hyp., der obere Teil zeigt, dass X quasi-geodätisch ist. Es gibt also Konstanten  $c \geq 1, d \geq 0$ , s.d. Y (c, d)-quasi-hyp. und X (c, d)-quasi-geod. Seien  $c' \geq c, d' \geq d$  und  $\gamma_i$ , i = 1, 2, 3, (c', d')-quasi-geodätisches Dreieck in X. Das Bild  $(f \circ \gamma_1, f \circ \gamma_2, f \circ \gamma_3)$  unter f ist (c'', d'')-quasi-geod. Dreieck in Y. Weil Y quasi-hyp., ist  $(f \circ \gamma_1, f \circ \gamma_2, f \circ \gamma_3)$   $\delta$ -dünn, für  $\delta \geq 0$ . Man rechne nach:

$$Bild(\gamma_1) \subset \bigcup_{c\delta+cd} (Bild\gamma_2 \cup Bild\gamma_3)$$

weil f eine (c, d)- quasi-isom. Einbettung ist mit  $\delta$ -dichtem Bild. Also ist X quasi-hyperbolisch mit Konstanten  $(c', d', c\delta + cd)$ .

## 6.25 Bemerkung

In 6.19.2 reicht es vorauszusetzen: X, Y metr., Y quasi-hyp., X quasi-geod.,  $f: X \to Y$  qi. Einbettung, dann ist X quasi-hyp.

#### 6.26 Satz 6.20

(X,d) geod. metr. Raum.

X hyperbolisch  $\iff$  X quasi-hyperbolisch

Beweis unter Benutzung von 6.21  $\Leftarrow$ : klar.

 $\implies$ : Sei X  $\delta$ -hyperbolisch,  $c \geq 0, b \geq 1$ . Wir zeigen:

 $\exists \delta' \geq 0$ , s.d.  $X(c, b, \delta')$ -quasi-hyp.

Sei  $\Delta := (\gamma_1, \gamma_2, \gamma_3)$  ein (c, b)-quasi-geod. Dreieck.

Weil X geodätisch, existieren Geodäten  $\gamma'_i$  mit selben Endknoten wie  $\gamma_i$ .

 $X \text{ hyp.} \Longrightarrow \Delta' = (\gamma'_i)_{i=1,\ldots,3} \text{ delta-dünn.}$ 

Mit (6.21) folgt:

$$Bild(\gamma_i') \subset U_k(Bild\gamma_i)$$

$$Bild(\gamma_i) \subset U_k(Bild\gamma_i')$$

$$X$$
 δ-hyp.  $\Longrightarrow Bild(\gamma_i') \subset U_\delta(Bild\gamma_j \cup Bild\gamma_k)$   
 $\Longrightarrow Bild(\gamma_i) \subset U_k(Bild(\gamma_i')) \subset U_k(U_\delta(Bild\gamma_i \cup Bild\gamma_k)) \subset U_{2k+\delta}(Bild\gamma_i \cup Bild\gamma_k)$ 

# 6.27 Satz 6.21 (Stabilität von Quasi-Geodäten)

Seien  $c, \delta \geq 0, b \geq 1$  Konstanten. Dann existiert  $k = k(\delta, c, b) \geq 0$ , s.d. gilt:

Ist X  $\delta$ -hyp. Raum,  $\gamma:[0,l]\to X$  eine (c,b)-quasi-Geodäte und  $\gamma':[0,l']\to X$  eine Geodäte mit  $\gamma'(0)=\gamma(0)$  und  $\gamma'(l')=\gamma(l)$ .

Dann gilt:  $Bild(\gamma') \subset U_k(Bild\gamma)$  und  $Bild(\gamma) \subset U_k(Bild\gamma')$ 

**Bemerkung** Die Voraussetzung X  $\delta$ -hyperbolisch ist hier wesentlich.

Beweis unter Benutzung von 6.23 und 6.24 Ohne Einschränkung sei  $\gamma$  stetig (geht wg. 6.24). Sei  $\gamma'$  Geodäte, wir schätzen zunächst Abstand ab:

$$D := \sup \{ d(x, Bild(\gamma)) \mid x \in Bild\gamma' \}$$

Sei  $x_0$  Punkt, an dem das Supremum angenommen wird. Der offene Ball mit Radius d um  $x_0$  schneidet  $\gamma$  nicht.

Sei y Punkt auf  $\gamma_{|[0,t]}$ ,  $(t \text{ so, dass } \gamma'(t) = x_0)$ , so gewählt, dass  $d(y,x_0) = 2D$  oder, wenn  $d(\gamma'(0),x_0) < 2D$ , dann setze  $y = \gamma'(0)$ .

Wähle  $y', z' \in \gamma$  mit  $d(y, y') \leq D$  und  $d(z, z') \leq D$ . Verbinde y mit y', z mit z' durch geod. Segmente. Betrachte jetzt den Weg  $\sigma :=$ 

- 1. Geodäte  $y \mapsto y'$ , dann Teilstück
- 2. dann Teilstück von  $\gamma$  von y'nach z'
- 3. Geodäte  $z' \mapsto z$

Nach Konstruktion und 6.23:

$$D \stackrel{DvermeidetdenD-Ballumx_0}{\leq} d(x_0, \sigma) \leq \delta ||\log_2(L(\sigma))|| + 1$$

$$\Longrightarrow d(y', z') \leq d(y', y) + d(y, z) + d(z, z') \leq D + 4D + D$$

Mit 6.24 ist

$$L(\sigma) \le cd(y', z') + b + 2D \le c6D + b + 2D$$

$$\stackrel{6.23}{\Longrightarrow} D = d(x_0, \sigma) \le \sigma ||\log_2(L(\delta))|| + 1$$

$$D - 1 \le \delta ||\log_2(D(6c + 2) + b)||$$

 $\log_2$  wächst langsamer als D-1, also ist D beschränkt durch eine Konstante  $D_0(c,b,\delta)$ . Wir müssen noch zeigen:

$$\gamma \subset U_{D_1}(\gamma')$$

für  $D_1 = D_1(D_0, c, b)$ 

Sei  $[r, s] \subset [0, l]$  maximales Teilintervall, s.d.  $\gamma_{|[r, s]}$  außerhalb der  $D_0$ -Umgebung von  $\gamma'$  liegt; wenn so ein [r, s] nicht existiert, setze  $D_1 = D_0$ , fertig.

Jeder Punkt von  $\gamma'$  liegt in  $U_{D_0}(\gamma)$ .

Somit gilt

$$\gamma' \subset U_{D_0}(\gamma_{|[0,r]} \cup \gamma_{|[s,l]})$$

Weil  $\gamma, \gamma'$  stetig und [0, l'] Definitionsbereich von  $\gamma'$  zusammenhängend, existiert  $t' \in [0, l']$ , sowie  $r' \in [0, r']$  und  $s' \in [s, l]$  mit  $d(\gamma'(t), \gamma(r')) \leq D_0$  und

$$d(\gamma'(t'), \gamma(s')) \le D_0$$

$$\implies d(\gamma(r'), \gamma(s')) \le 2D_0$$

Und wir erhalten:

$$L(\gamma_{|[r,s]}) \le L(\gamma_{|[r',s']}) \stackrel{6.24}{\le} cd(\gamma(r'), \gamma(s')) + b \le c2D_0 + b =: D_1$$
$$\Longrightarrow \gamma_{|[r,s]} \subset U_{D_1}(\gamma')$$

Man überlegt sich  $\forall p, q \text{ mit } \gamma_{|[p,q]} \not\subset U_{D_0}(\gamma'), \text{ dass }$ 

$$\gamma_{|[p,q]} \subset U_{D_1}(\gamma')$$

also gilt wegen  $D_1 > D$ , dass

$$\gamma \subset U_{D_1}(\gamma')$$

#### 6.28 6.22 Korollar von 6.20

X, Y geod. metr. Räume,  $X \simeq_{\mathrm{QI}} Y$ . Dann:

X hyperbolisch  $\iff$  Y hyperbolisch

# 6.29 6.23 Hilfslemma (Abstand von Kurven und Geodäten)

 $\delta \geq 0, \ (X,d)$   $\delta$ -hyp., sei  $\gamma:I\to X$  stetige Kurve in X mit Endpunkten p,q. Sei  $\gamma'$  Geodäte von p nach q. Dann gilt  $\forall t\in I$ 

$$d(\gamma'(t), Bild(\gamma)) \le \delta ||\log_2(L(\gamma))|| + 1$$

wobei

$$L(\gamma) := \sup \left\{ \sum d(\gamma(t_i), \gamma(t_{i+1}) \mid (t_0, \dots, t_n) \text{ Zerlegung von } I \right\}$$

**Beweisskizze** Ohne Einschränkung:  $1 < L(\gamma) =: L' < \infty$  und  $\gamma : [0, l] \to X$  nach Bogenlänge parametrisiert,  $p = \gamma(0), q = \gamma(l)$ . Wähle  $N \in \mathbb{N}_0$  groß genug, sodass

$$\frac{L(\gamma)}{2^{N+1}} < 1 \le \frac{L(\gamma)}{2^N}$$

Sei  $\gamma':[0,l']\to X$  und t fest in [0,l'].

X hyperbolisch  $\Longrightarrow$  wir finden Punkte  $x_1, \ldots, x_n$  in X, s.d. gilt:

$$d(\gamma'(\gamma'(t), x_1)), d(x_i, x_{i+1}) \le \delta$$

mit  $x_i$  auf einer Geodäten der Länge  $L(\gamma)/2^i$  mit Endpunkten in  $Bild\gamma$ . Sei y der Endpunkt der Geodäten, die  $x_i$  enthält, der näher an  $\gamma'$  ist. Es gilt:

$$d(\gamma'(t),Bild\gamma) \leq d(\gamma'(t),y) \leq d(\gamma'(t),x_i) + d(x_i,y) \leq i\delta + L(\gamma)/(2^{i+1}) \leq \delta \left|\left|\log_2(L(\gamma))\right|\right| + 1$$
 weil  $\frac{L(\gamma)}{2^{N+1}} < 1, N \leq \left|\left|\log_2(L(\gamma))\right|\right|$ .

# 6.30 Satz 6.24: Hilfslemma: Approximation durch stetige Quasi-Geodäten

(X,d) geod. metr. Raum,  $c \ge 1, b \ge 0$ , dann existiert  $c' \ge 1, b \ge 0$ , s.d. gilt: Ist  $\gamma$  (c,b)-quasi-Geodäte  $\gamma:[0,l] \to X$ , dann existiert eine stetige (c',b')-quasi-Geodäte  $\gamma':[0,l] \to X$  mit  $\gamma'(0) = \gamma(0), \gamma'(l) = \gamma(l)$  und für die gilt

1.  $\forall s \leq t \text{ in } [0,1]$ :

$$L(\gamma'_{|[s,t]}) \le c'd(\gamma'(s), \gamma'(t)) + b'$$

2.

$$Bild(\gamma') \subset U_{c+b}(Bild(\gamma))$$
  
 $Bild(\gamma) \subset U_{c+b}(Bild(\gamma'))$ 

Beweisskizze  $I := [0, l) \cap \mathbb{Z}$ 

1. Schritt  $\gamma'(t) := \gamma(t) \forall t \in I$ 

2.Schritt Erweitere  $\gamma'$  auf [0,l] durch  $\gamma'(l):=\gamma(l)$  und zwischen benachbarten t,t+1 in I bzw. zw. max I und l durch Geodäten

6.31 Definition 6.25: Hyperbolische Gruppen

Eine endlich erzeugte Gruppe G heißt (Gromor)-hyperbolisch, wenn für ein (und somit für alle) endliche Erzeugersysteme S der Cayleygraph von G bzgl. S hyperbolisch ist.

# 6.32 Bemerkung

Auf dem Cayleygraphen betrachten wir die geodätische Graphmetrik (geom. Realisierung) definiert durch die Eigenschaft, dass alle Kanten die Länge 1 haben.

# 6.33 Satz 6.24 (hyperbolisch ist geometrisch)

Seien G, H endlich erzeugt,  $G \subseteq_{QI} H$ , so gilt:

G hyperbolisch  $\Leftrightarrow H$  hyperbolisch

Beweis folgt aus 6.22, weil "hyperbolisch, QI-Invar. für metr. Räume.

#### 6.34 Beispiele 6.25

- 1. freie Gruppen
- 2. endliche Gruppen
- $3. \mathbb{Z}, \mathbb{R}$
- 4. Fuchssche Gruppen

- 5.  $\mathbb{Z}^n, \mathbb{R}^n$  nicht hyperbolisch für n > 1
- 6.  $\mathbb{C}$  nicht hyperbolisch
- 7. Parkettierungsgruppen von ( $\mathbb{H}^2$ ) P konvexes, kompaktes (d.h. keine Ecken auf dem Rand) Polygon in  $\mathbb{H}^2$  mit Ecken in  $x_1, \ldots, x_n, n \geq 3$

**Annahme**  $\forall i$  ist der Innenwinkel an  $x_i$  in P von der Form  $\pi/p_i, p_i \in \mathbb{Z}_{\geq 2}$ . Falls  $\sum_{j=1}^n \frac{1}{p_i} < n-2$ , dann existiert ein solches Polygon (dünnes Polygon in  $\mathbb{H}^2$ )

**Annahme** P regulär, d.h.  $p_i = p \forall i$ 

betrachte Spiegelungen  $s_i$  an Seite  $x_i \to x_{i+1}$  in P, diese erzeugen eine Gruppe G

$$G = \langle s_1, \dots, s_n \mid s_i^2, (s_i s_{j-1})^p, \forall i \forall j \rangle$$

Satz (Poincare) G wirkt eigentlich auf  $\mathbb{H}^2$  mit P als Fundamentalbereich. Für  $x \in P^o$  ist G.x quasi-isom. zu  $\mathbb{H}^2$ 

# 7 Wortproblem für hyperbolische Gruppen

#### 7.1 Definition

 $G = \langle S \mid R \rangle$ endl. präsentierte Gruppe.

Wir sagen:

das Wortproblem ist für G lösbar

wenn es einen Algorithmus gibt, der für alle  $w \in (S \cup S^{-1})^*$  entscheidet, ob w = 1 in G oder nicht.

#### Genauer Die Mengen

$$\{w \in (S \cup S^{-1})^* \mid w = 1\} \text{ und } \{w \in (S \cup S^{-1})^* \mid w \neq 1\}$$

sind rekursiv aufzählbar.

#### Beispiele

- 1. freie Gruppen und freie abelsche Gruppen sind sogar Chomsky 2
- 2. alle endlichen Gruppen sind Chomsky 3
- 3. Sind Gruppen Chomsky 3 genau, dann, wenn  $((S \cup S^{-1})^* : L) < \infty$

#### Bemerkung

- 1. Für eine beliebige Gruppe ist das Wortproblem im Allgemeinem nicht lösbar.
- 2. Folgende Klassen haben lösbares WP:
  - (a) Coxetgruppen
  - (b) Zopfgruppen
  - (c) Fundamentalgruppen geschlossener orientierter Flächen
  - (d) hyperbolische Gruppen

### 7.2 Satz (Gromor, Olshanskii 1992)

 $k \in \mathbb{Z}_{\geq 2}, A = S \cup S^{-1}, S = \{s_1, \dots, s_n \mid \}, i \geq 0$  und Folge von natürlichen Zahlen  $n_1, \dots, n_i$ Sei  $\mathcal{N} := \mathcal{N}(k, i, n_1, \dots, n_i)$  die Anzahl der Präsentationen  $\langle s_1, \dots, s_k \mid r_1, \dots, r_i \rangle$ ,  $r_j$  reduziertes Wort in A mit Länge  $l(r_j) = n_j \forall j = 1, \dots, i$ .

 $N_h \leq \mathcal{N}$  sei die Anzahl der hyperbolischen Gruppen dieser Form.

Für  $n := \min \{n_1, \ldots, n_i \mid \}$  gilt:

$$\lim_{n \to \infty} \frac{N_h}{N} = 1$$

# 7.3 Satz

Hyperbolische Gruppen haben lösbares Wortproblem, d.h. für ein endliches Erzeugendensystem S von G existiert  $R \subset (S \cup S^{-1})^*$  so, dass  $G \cong \langle S \mid R \rangle$  und das Wortproblem für  $\langle S \mid R \rangle$  lösbar ist.

Beweis unter Benutzung von 7.4 und 7.5 Offensichtlich.

#### 7.4 Definition

Eine endliche Präsentierung  $\langle S \mid R \rangle$  ist eine **Dehn-Präsentation**, wenn für ein  $n \in \mathbb{N}$  Wörter  $u_1, \ldots, u_n, v_1, \ldots, v_n$  existieren mit

- 1.  $R = \{u_1v_1^{-1}, \dots, u_nv_n^{-1} \mid \}$
- 2.  $\forall j$  gilt:  $v_i$  ist echt kürzer als  $u_i$
- 3.  $\forall w \in (S \cup S^{-1})^* \setminus \{\epsilon\}$ , die das neutrale Element präsentieren, existiert ein  $j \in \{1, \dots, n\}$ , s.d.  $u_j$  ein Teilwort von w ist.

# 7.5 7.4 Satz: Dehn-Algorithmus

Ist  $\langle S \mid R \rangle$  eine Dehn-Präsentation, dann ist das Wortproblem lösbar.

**Beweis**  $R = \{u_i v_i^{-1} \mid i = 1, ..., n\}$ , sei w ein beliebiges Wort und führe strukturelle Induktion nach der Länge von w.

- I.A. Offensichtlich ist w trivial.
- I.S. Existiert ein  $u_i$ , sodass  $u_i$  ein Teilwort von w ist, so ersetze dieses durch  $v_i$ . Das dadurch erhaltene Wort hat eine echt kleinere Länge, weshalb man nach Induktion-Voraussetzung entscheiden kann, ob dieses das Neutralelement präsentiert.

  Ist kein Teilwort von w gleich einem  $u_i$ , so kann w nach Dehn-Eigenschaft nicht das Neutralelement präsentieren.

#### 7.6 7.5 Satz

G hyperbolische, von S endlich erzeugte Gruppe; dann existiert  $R \subset (S \cup S^{-1})^*$  so, dass  $\langle S \mid R \rangle$  Dehn-Präsentation und  $G \cong \langle S \mid R \rangle$ .

Beweis unter Benutzung von 7.6 Sei  $R := \{uv^{-1} \mid u, v \in (S \cup S^{-1})^*, d_S(1, \pi(u)) < ||u|| \le D, ||v|| = d_S(1, \pi(u)), \pi(u) \}$  wobei  $D := \lceil 8\delta \rceil$ ,  $\pi$  ist kanonische Projektion  $F(S) \to G$  Betrachte Abbildung

$$\phi: \langle S \mid R \rangle \to G$$

induziert durch  $\phi_{|S} = id_S$ ,  $\langle S \mid \rangle = G$ , also ist  $\phi$  surjektiv.

**Behauptung**  $\phi$  injektiv und  $\langle S \mid R \rangle$  Dehn-Präsentation.

$$\iff \ker \pi = \langle R \mid \rangle_{F(S)}^{\triangleleft}$$

**Beweis** Definition von R liefert

$$\langle R \mid \rangle_{F(S)}^{\lhd} \subset \ker \pi$$

Sei jetzt $w \in (S \cup S^{-1})^*$ mit  $\pi(w) = 1$ 

Zu Zeigen durch Induktion über Wortlänge:  $w \in \langle R \mid \rangle_{F(S)}^{\triangleleft}$  und w besitzt Teilwörter nach Definition von Dehn-Präsentation.

$$l(w) = 0$$
  $w = e$ 

- l(W) > 0 (a) w nicht reduziert, dann besitzt w ein Teilwort der Form  $ss^{-1}e$  mit  $s \in S \cup S^{-1}$ .  $ss^{-1}e \in R \text{ mit } u = ss^{-1}, v = e.$ 
  - (b) w reduziert, dann entspricht w einem geschlossenem Kantenpfad in Cay(G,S) $7.6 \Longrightarrow \exists$  nicht-geod. Teilpfad und somit nicht-geod. Teilwort, das abgekürzt werden kann.

 $\Rightarrow$  w besitzt Zerlegung w = w'uw'', wobei u nicht geodätisch und  $d(1, \pi(u)) < l(u) \stackrel{7.7}{\leq} D$ Wähle  $v \in (S \cup S^{-1})^*$ , sodass  $\pi(u) = \pi(v)$  und  $l(v) = d_S(1, \pi(u)) < l(U)$ 

Definition von  $R: 1 = \pi(w) = \pi(w')\pi(u)\pi(w'') \stackrel{\pi(u) = \pi(v)}{=} \pi(w'vw'')$ Nach IV. ist  $w'vw'' \in \langle R \mid \rangle_{F(S)}^{\lhd}$  und besitzt gesuchte Teilwörter.  $\implies \exists k \in \ker \pi \text{ mit } w = w'vw''k$ 

#### 7.6 Lemma: Abkürzungslemma 7.7

G hyperbolische, von S endlich erzeugte Gruppe; Cay(G,S)  $\delta$ -hyperbolisch für ein  $\delta > 0$ . Falls  $\gamma:[0,n]\to Cay(G,S)$  ein stückweiser linearer nach Bogenlänge parametrisierter geschlossener Weg ist, dann existieren  $t, t' \in [0, n]$  mit

$$l(\gamma_{|[t,t']}) \leq 8\delta$$
 und  $\gamma_{|[t,t']}$  nicht geodätisch

#### Beweis unter Benutzung von 7.7

1. Zeige:  $\gamma$  kann für  $c > 8\delta$  keine c-lokale Geodäte sein.

**Annahme**  $\exists c > 8\delta$ , sodass  $\gamma$  eine c-lokale Geodäte in Cay(G, S).

Weil  $\gamma(0) = \gamma(n)$  muss  $n > 8\delta$ 

Lemma 7.7 :  $\gamma 2\delta$ -nahe an jeder Geodäte von  $\gamma(0) \rightarrow \gamma(n) = \gamma(0)$ ,

also ist  $\gamma$  2 $\delta$ -nahe am Punkt  $\gamma(0) = \text{konstante Geodäte}$ 

$$\Longrightarrow \gamma \subset U_{2\delta}(\gamma(0)) = B_{2\delta}(\gamma(0))$$

$$4\delta \geq diam B_{2\delta}(\gamma(0)) \stackrel{\gamma \text{ geschlossen, nach BL param.}}{\geq} d_S(\gamma(0), \gamma(5\delta)) \stackrel{BL,c\text{-lokale Geodäte}}{=} 5\delta$$

Was ein Widerspruch ist.

 $\Longrightarrow \gamma$ kann keine c-lokale Geodäte sein für  $c>8\delta$ 

2. Also  $\exists t, t' \in [0, n]$  mit

$$||t - t'|| \le 8\delta$$
 und  $d(\gamma(t), \gamma(t')) \ne ||t - t'||$ 

Insbesondere ist  $\gamma_{|[t,t']}$  keine Geodäte.

# 7.8 Lemma 7.7: Trapping für lokale Geodäten

 $\delta \geq 0, c > 8\delta$  und (X, d)  $\delta$ -hyperbolisch.  $\gamma : [0, l] \to X$  c-lokale Geodäte, d.h.

 $\forall t, t' \in [0, l] \text{ mit } ||t - t'|| < c \text{ gilt}$ 

$$d(\gamma(t), \gamma(t')) = ||t - t'||$$

Ist  $\gamma':[0,l']\to X$  mit  $\gamma'(0)=\gamma(0),\gamma'(l)=\gamma(l),$  so gilt

$$\gamma \subseteq U_{2\delta}(\gamma')$$

# 7.9 Konjugationsproblem

Problem: Gegeben zwei Elemente u, v; existiert ein g, s.d.

$$quq^{-1} = v$$

Beispiel: freie Gruppen Wort  $w=s_0\cdots s_n$  in F(S) ist zyklisch reduziert, wenn  $s_i\neq s_{i+1}^{-1}\forall i=0,\ldots,n-1$  und  $s_0\neq s_n^{-1}$ , d.h. alle zyklischen Permutationen von w sind reduziert. Gegeben beliebiges Wort w, so kann w wie folgt zyklisch reduziert werden: Wiederhole

- Lösche Teilwörter  $s^{-1}s$ ,  $s \in S \cup S^{-1}$
- Lösche  $s_0$  und  $s_n$ , falls  $s_0^{-1} = s_n$

Das zyklisch reduzierte Wort, das man so erhält, ist eindeutig bis auf zyklische Permutationen.

Z.Bsp.  $bab^{-1}babb^{-1} \longrightarrow baa$  oder aab

u und v sind konjugiert genau dann, wenn ihre zyklischen Reduktionen zyklische Permutationen voneinander sind.

Algorithmus:

- 1. reduziere u, v zyklisch
- 2. betrachte alle zyklischen Permutationen von u und v und prüfe, ob Schnitt nicht leer ist. (Hierzu muss man das Wortproblem lösen können.)

#### 7.10 Definition 7.9

Ein Wort w über S, S endl. EZS von G, heißt **vollständig reduziert**, wenn w und alle seine zyklischen Permutationen Geodäten in Cay(G,S) sind.

## 7.11 Lemma 7.10

G  $\delta$ -hyp. bzgl. S,  $||S|| < \infty$ .

Repräsentieren zwei vollständige reduzierte Wörter u, v zwei konjugierte Elemente in G, dann gilt:

- 1.  $\max\{l(u), l(v)\} \le 8\delta + 1$  oder
- 2.  $\exists$  zykl. Permutationen u', v' von u, v und ein Wort w mit

$$l(w) \le 2\delta + 1$$

sodasss  $wu'w^{-1} = v'$ 

**Beweis** Sei w geodätisches Wort, s.d.  $wuw^{-1} = v$ .

Betrachte geod. Viereck Q mit Kanten $w, u, w^{-1}, v^{-1}$  in Cay(G, S):

Man kann zeigen, dass es zyklische Permutationen von u und v gibt, s.d. jede Ecke auf u Abstand  $\geq l(w)$  zur Seite v hat.

Jede Ecke auf u hat Abstand  $\geq l(w)$  zu jeder Ecke v.

Sei P Mitte von Pfad u, dann existiert q auf eines der drei anderen Kanten mit  $d(p,q) \leq 2\delta$  (weil G  $\delta$ -hyp.).

Ist q auf v, dann haben die am nächsten an p und q liegenden Ecken Abstand  $\leq 2\delta + 1$ .

Dann ist  $l(w) \leq 2\delta + 1$ .

Ist q auf einer der vertikalen Seiten mit Enden x (auf u) und y (auf v), dann gilt:

$$l(w) - \frac{1}{2} \le d(p, y) \le 2\delta + d(q, y)$$

und

$$d(q, y) = l(w) = d(x, q)$$

$$\implies d(x, q) \le 2\delta + 1$$

$$d(x, p) \le d(p, q) + d(q, x) \le 4\delta + \frac{1}{2}$$

$$l(w) = 2d(x, p)$$

$$\implies l(u) \le 8\delta + 1$$

Analog zeige

$$l(v) \le 8\delta + 1$$