Unsupervised Learning: Clustering

The University of Texas at Dallas

Machine Learning

2. Using gradient descent

Linear: perceptron gradient descent Nonlinear: neural net: backprop

Support vector machines

Overview of Learning

Type of Supervision

(eg, Experience, Feedback)

	Labeled Examples	Reward	Nothing
Discrete Function	Classification		Clustering
Continuous Function	Regression		
Policy	Apprenticeship Learning	Reinforcement Learning	

Clustering

Clustering systems:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Program executions (intrusion detection)
- Useful when don't know what you're looking for
- But: often get gibberish

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small (squared) Euclidean distance

$$dist(x,y) = (x-y)^{T}(x-y) = \sum_{i} (x_{i} - y_{i})^{2}$$

Outline

- K-means & Agglomerative Clustering
- Agglomerative Clustering
- Expectation Maximization (EM)

K-Means: Algorithm

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest cluster center
 - Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Iterative Step 1

 Assign data instances to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

Repeat until convergence

Example: K-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Example: K-Means for Segmentation

K=2

K=3

Original

Example: K-Means for Segmentation

8%

17%

K-Means as Optimization

Consider the total distance to the means:

$$\phi(\{x_i\},\{a_i\},\{c_k\}) = \sum_i \operatorname{dist}(x_i,c_{a_i})$$
 points means assignments

- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c
- Co-ordinate Gradient Descent
- Will it converge?
 - Yes!, if you can argue that each update can't increase Φ

Phase I: Update Assignments

 For each point, re-assign to closest mean:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

Can only decrease total distance phi!

$$\phi(\lbrace x_i \rbrace, \lbrace a_i \rbrace, \lbrace c_k \rbrace) = \sum_i \operatorname{dist}(x_i, c_{a_i})$$

Phase II: Update Means

 Move each mean to the average of its assigned points:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

- Also can only decrease total distance... (Why?)
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean

Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variancebased split / merge, initialization heuristics

K-Means Getting Stuck

A local optimum:

K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 - If the patterns are very very clear?
- Runtime?
- Do people ever use it?
- How many clusters to pick?

Agglomerative Clustering

Agglomerative clustering:

- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters

Algorithm:

- Maintain a set of clusters
- Initially, each instance in its own cluster
- Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

 How should we define "closest" for clusters with multiple elements?

Agglomerative Clustering

How should we define "closest" for clusters with multiple elements?

- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)

 Find pair of clusters that leads to minimum increase in total within cluster distance after merging

 Different choices create different clustering behaviors

Clustering Behavior

Agglomerative Clustering Questions

- Will agglomerative clustering converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
- Do people ever use it?
- How many clusters to pick?

EM: Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
 - Problematic because data points that lie roughly midway between cluster centers are assigned to one cluster
- Soft clustering gives probabilities that an instance belongs to each of a set of clusters.

Probabilistic Clustering

- Try a probabilistic model!
 - allows overlaps, clusters of different size, etc.
- Can tell a generative story for data
 - -P(X|Z)P(Z)
- Challenge: we need to estimate model parameters without labeled Zs

Z	X ₁	X ₂
??	0.1	2.1
??	0.5	-1.1
??	0.0	3.0
??	-0.1	-2.0
??	0.2	1.5
•••	•••	•••

Finite Mixture Models

 \underline{x}_i is a d-dimensional vector

- Given a dataset: $D = \{\underline{x}_1, \dots, \underline{x}_N\}$
- Mixture model: $\Theta = \{\alpha_1, \dots, \alpha_K, \theta_1, \dots, \theta_K\}$

$$p(\underline{x}|\Theta) = \sum_{k=1}^{K} \alpha_k p_k(\underline{x}|z_k, \theta_k)$$

The $p_k(\underline{x}|z_k, \theta_k)$ are mixture components, $1 \leq k \leq K$

 $z = (z_1, \dots, z_K)$ is a vector of K binary indicator variables

Note: only one of them equals 1 at any given point. Each point is assumed to be generated from exactly one mixture component!

Mixture Weights.
$$\alpha_k = p(z_k)$$
 $\sum_{k=1}^K \alpha_k = 1$

Finite Mixture Model: Probabilistic View

the "membership weight" of data point \underline{x}_i in cluster k, given parameters Θ

$$w_{ik} = p(z_{ik} = 1 | \underline{x}_i, \Theta) = \frac{p_k(\underline{x}_i | z_k, \theta_k) \cdot \alpha_k}{\sum_{m=1}^K p_m(\underline{x}_i | z_m, \theta_m) \cdot \alpha_m}$$

• The membership weight express our uncertainty about which of the "K" components generated the vector \underline{x}_i .

Gaussian Mixture Models (GMMs)

$$p_k(\underline{x}|\theta_k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} e^{-\frac{1}{2}(\underline{x}-\underline{\mu}_k)^t \Sigma_k^{-1}(\underline{x}-\underline{\mu}_k)}$$

 We can define a GMM by making each "k-th" component a Gaussian density with parameters:

$$\theta_k = \{\underline{\mu}_k, \Sigma_k\}$$

Question: How to learn these parameters from data?

EM algorithm: Key Idea

- Start with random parameters
- Find a class for each example (E-step)
 - Since we are using probabilistic classification, each example will be given a vector of probabilities
- Now we have a supervised learning problem.
 Estimate the parameters of the model using the maximum likelihood method (M-step)
- Iterate between the E-step and M-step until convergence

EM: Two Easy Steps

- E-step: (Yields a N x K matrix)
 - Compute w_{ik} for all data points indexed by "i" and all mixture components indexed by "k."
- M-step:
 - Use the membership weights and data to compute the new parameters

$$N_k = \sum_{i=1}^{N} w_{ik} \qquad \alpha_k^{new} = \frac{N_k}{N}$$

$$\underline{\mu}_k^{new} = \left(\frac{1}{N_k}\right) \sum_{i=1}^{N} w_{ik} \cdot \underline{x}_i$$

$$\Sigma_k^{new} = \left(\frac{1}{N_k}\right) \sum_{i=1}^{N} w_{ik} \cdot (\underline{x}_i - \underline{\mu}_k^{new}) (\underline{x}_i - \underline{\mu}_k^{new})^t$$

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Properties of EM

- EM converges to a local minima
 - This is because each iteration improves the loglikelihood
 - Proof same as K-means
 - E-step can never decrease likelihood
 - M-step can never decrease likelihood
- If we make hard assignments instead of soft ones. Algorithm is equivalent to K-means!

What you should know

- K-means for clustering:
 - algorithm
 - converges because it's coordinate ascent
- Know what agglomerative clustering is
- EM for mixture of Gaussians:
- Remember, E.M. can get stuck in local minima,
 - And empirically it *DOES!*