

Nome completo:	
Documento de identificação CC n.º _ _ _ _ _ _ _	_
Assinatura do aluno:	
Teste de Matemática	
3.ºCiclo do Ensino Básico 2022	
9.º Ano de Escolaridade	VERSÃO 1
A PREENCHER PELO PROFESSOR CLASSIFICADOR	
Classificação em percentagem _ (por cento)
Correspondente ao nível ()	
Duração da Prova: 90 minutos Tolerância: 30 minutos	
	16 Páginas

Todas as respostas são dadas no enunciado da prova.

É permitido o uso de régua, compasso, esquadro e transferidor.

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor.

Risca aquilo que pretendes que não seja classificado.

Apresenta apenas uma resposta para cada item.

Apresenta as tuas respostas de forma legível.

Se o espaço reservado a uma resposta não for suficiente, podes utilizar o espaço que se encontra no final da prova. Neste caso, deves identificar claramente o item a que se refere a tua resposta.

Nas respostas aos itens de escolha múltipla, assinala com X a opção correta.

As cotações dos itens encontram-se no final da prova.

Formulário

Números e Operações

Valor aproximado de π (pi): 3,14159

Geometria e Medida

Áreas

Losango: $\frac{\text{Diagonal maior} \times \text{Diagonal menor}}{2}$

Trapézio: $\frac{\text{Base maior} + \text{Base menor}}{2} \times \text{Altura}$

Superfície esférica: $4\pi r^2$, sendo r o raio da esfera

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone: $\frac{\text{Área da base} \times \text{Altura}}{3}$

Esfera: $\frac{4}{3}\pi r^3$, sendo r o raio da esfera

Trigonometria

Fórmula fundamental: $\sin^2 x + \cos^2 x = 1$

Relação da tangente com o seno e o cosseno: $\tan x = \frac{\sin x}{\cos x}$

1. Considera o seguinte sistema de equações:

$$\begin{cases} \frac{3}{4}(2y-x) = 6\\ 2x - \frac{y}{3} = -5 \end{cases}$$

Qual dos seguintes pares ordenados (x, y) é solução deste sistema?

- $A\square$ (-1,-9) $B\square$ (0,15)
- $C\square$ (-2,3) $D\square$ (2,4)

2. Escreve o número $\frac{(2^2)^4 \times 3^8}{6^{-7}}$ na forma de potência de base $\frac{1}{6}$.

Apresenta todos os cálculos que efetuares.

3. Indica um número irracional que pertença, simultaneamente, aos intervalos]-1,3] e]0,4[.

4. Numa sequência de números, com mais de quatrocentos termos, cada termo, com exceção do primeiro, obtém-se adicionando 3 ao termo anterior. O sexto termo da sequência é 17.

Qual dos números seguintes não é termo desta sequência?

- $C\square$ 88
- \mathbf{p} 800

5. Considera a **Figura 1** seguinte onde estão representados o decágono regular [ABCDEFGH]K] e o triângulo [*JKL*].

Sabe-se que o ângulo JLK é igual a 17°

Determina a amplitude do ângulo KJL.

Apresenta todos os cálculos que tiveres de efetuar.

6. Considera a inequação seguinte:

$$\frac{x}{2} \ge \frac{2 - 6x}{3} + \frac{1}{6}$$

O conjunto-solução da inequação pode ser representado por:

$$\mathbf{A} \square \ [\pi, +\infty[\ \cap\ \left[\frac{1}{3}, +\infty\right[$$

$$\mathbf{B} \square [\pi, +\infty[\cup \left[\frac{1}{3}, +\infty\right[$$

$$C \square \left[-\infty, \frac{1}{3} \right] \cap [\pi, +\infty[$$

$$\mathbf{D} \square]-\infty,\pi] \cap \left[\frac{1}{3},+\infty\right[$$

7. Os alunos finalistas do 9.ºano foram convidados a criar um jardim em forma de triângulo isósceles, como mostra a **Figura 2**.

Figura 2

Determina o valor da área do jardim.

Apresenta todos os cálculos que efetuares.

8. Seja f uma função de proporcionalidade inversa. Sabe-se que f(2) = 6.

Em qual das opções seguintes se apresenta uma expressão que define a função f?

$$\mathbf{A} \square f(x) = \frac{3}{x}$$

$$\mathbf{B} \square f(x) = \frac{12}{x}$$

$$\mathbf{C} \square \ f(x) = 3x$$

$$\mathbf{D} \square \ f(x) = 12x$$

9. Considera o polinómio $9 - \frac{x^2}{25}$.

Escreve o polinómio dado num produto de dois polinómios de grau 1.

10. Resolve a equação seguinte.

$$5(x+1)^2 = x + 7$$

Apresenta o conjunto-solução.

Apresenta todos os cálculos que efetuares.

11. Na Figura 3 está representado um prisma quadrangular regular reto.

Qual das seguintes afirmações é verdadeira?

 $\mathbb{C}\square$ Os planos *ABC* e *EHB* são concorrentes

 \mathbf{D} Os planos ACG e BFH são paralelos

12. Escreve o valor de $\sqrt{13}$, (4) na forma de fração irredutível.

Mostra como chegaste à tua resposta.

Sugestão: Começa por escrever o número 13, (4) na forma de uma fração irredutível.

13. No referencial da Figura 4 estão representadas graficamente as funções $f \in g$.

Sabe-se que:

- a função f é uma função quadrática cuja representação gráfica é uma parábola com vértice na origem no referencial
- ullet a função g, função de proporcionalidade inversa, é definida por

$$g(x) = \frac{12}{x} \quad (x > 0)$$

ullet os gráficos das funções f e g intersetam-se no ponto P que tem abcissa 2

Determina f(-4).

Mostra como chegaste à tua resposta.

14. Os alunos finalistas do 9.ºano resolveram no último dia de aulas passar a tarde na piscina municipal.

A piscina é formada pela união de um paralelepípedo com um prisma trapezoidal com as dimensões indicadas na **Figura 5**.

Determina o volume da piscina.

Apresenta o resultado, em litros, na forma de notação científica.

15. Considera o conjunto seguinte:

$$S = \left\{ \frac{6}{5}; \quad 3,52; \quad -6,(7); \quad \sqrt{44} \right\}$$

Qual dos números do conjunto *S* corresponde a uma dízima infinita não periódica?

$$\mathbf{A} \square \frac{6}{5}$$
 $\mathbf{B} \square 3,52$ $\mathbf{C} \square -6,(7)$ $\mathbf{D} \square \sqrt{44}$

16. Na Figura 6 está representada parte de uma circunferência.

Determina, **utilizando apenas régua e compasso**, o centro da circunferência e acaba de a representar.

Explica como chegaste à tua resposta, apresentando a construção geométrica que efectuaste.

Nota: Esta questão deve ser resolvida a lápis e não a tinta.

17. Na Figura 7, o triângulo [ABC] é retângulo em A.

Sabe-se ainda que:

- [ADEF] é um quadrado
- $\overline{AB} = 2$
- $\overline{AC} = 6$

Figura 7

Calcula a medida da área do quadrado [ADEF].

Apresenta todos os cálculos que efetuares.

Responde a um e um só dos grupos A ou B

Se responderes a mais do que um destes grupos deves indicar qual deles pretendes que seja classificado. Se não deres esta indicação será classificado o grupo a que responderes em primeiro lugar.

Grupo A

18. O António, aluno finalista do 9.ºano, lançou dois dados cúbicos equilibrados, com as faces numeradas de 1 a 6, e registou o produto dos números obtidos nas faces que ficaram voltadas para cima.

Sugestão: começa por construir uma tabela de dupla entrada que caracterize a situação.

18.1. O António resolveu lançar um desafio à sua colega Beatriz:

"Determina a probabilidade de o produto obtido ser um número inferior a 10." Qual a resposta correta ao desafio do António?

- $A \square \frac{17}{36}$
- $\mathbf{B} \square \frac{1}{2}$
- $C \square \frac{19}{36}$
- $\mathbf{D} \square \frac{5}{18}$

18.2. A Joana, que estava por perto, lançou um desafio ao António:

"Sabendo que o produto obtido é um múltiplo de 2, determina a probabilidade de os números saídos nos dados serem ambos pares."

O António resolveu o desafio, e respondeu corretamente ao mesmo.

Determina o valor da probabilidade a que António chegou.

Apresenta o resultado na forma de fração irredutível.

Grupo B

18. Na Figura 8 está representado um triângulo isósceles.

Sabe-se que
$$\overline{AC} = \overline{BC}$$
, $\overline{AB} = 4$ e $A\hat{C}B = 40^{\circ}$.

Qual das afirmações seguintes é verdadeira?

$$\mathbf{A} \square \overline{AC} = \frac{2}{\cos 20^{\circ}}$$

$$\mathbf{B} \square \ \overline{AC} = \frac{4}{\cos 70^{\circ}}$$

$$\mathbf{C} \square \overline{BC} = \frac{2}{\sin 20^{\circ}}$$

$$\mathbf{D} \Box \overline{BC} = \frac{2}{\tan 70^{\circ}}$$

19. Seja β um ângulo agudo.

Sabe-se que
$$\cos \beta = \frac{1}{4}$$
.

Mostra que
$$4\sqrt{5}\sin\beta = 5\sqrt{3}$$
.

Apresenta todos os cálculos que efetuares.

FIM COTAÇÕES

Item
Cotação (em percentagem)
cottașto (cin percontagem)

	1	2		3	4	4	5	6	7	8	9	10	T	
	3	6		3	,	3	7	3	7	3	3	8	O	1000/
	11	12	13		14	15	16	16 17 GRUPO A C	GRU	РО В	A	100%		
l	11	12	10	_	L 1	10	10	11	18.1.	18.2.	18	19	L	
	3	7	8	-	10	3	6	8	3	6	3	6		

Esta página só deve ser utilizada se quiseres completar ou emendar qualquer resposta. Caso a utilizes, não te esqueças de identificar claramente cada uma dessas respostas.

Nome completo:	
Documento de identificação CC n.º _ _ _ _ _ _ _	_
Assinatura do aluno:	
Teste de Matemática	
3.ºCiclo do Ensino Básico 2022	
9.º Ano de Escolaridade	VERSÃO 2
A PREENCHER PELO PROFESSOR CLASSIFICADOR	
Classificação em percentagem (por cento)
Correspondente ao nível ()	
Duração da Prova: 90 minutos Tolerância: 30 minutos	
	16 Páginas

Todas as respostas são dadas no enunciado da prova.

É permitido o uso de régua, compasso, esquadro e transferidor.

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor.

Risca aquilo que pretendes que não seja classificado.

Apresenta apenas uma resposta para cada item.

Apresenta as tuas respostas de forma legível.

Se o espaço reservado a uma resposta não for suficiente, podes utilizar o espaço que se encontra no final da prova. Neste caso, deves identificar claramente o item a que se refere a tua resposta.

Nas respostas aos itens de escolha múltipla, assinala com X a opção correta.

As cotações dos itens encontram-se no final da prova.

Formulário

Números e Operações

Valor aproximado de π (pi): 3,14159

Geometria e Medida

Áreas

Losango: $\frac{\text{Diagonal maior} \times \text{Diagonal menor}}{2}$

Trapézio: $\frac{\text{Base maior} + \text{Base menor}}{2} \times \text{Altura}$

Superfície esférica: $4\pi r^2$, sendo r o raio da esfera

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone: $\frac{\text{Área da base} \times \text{Altura}}{3}$

Esfera: $\frac{4}{3}\pi r^3$, sendo r o raio da esfera

Trigonometria

Fórmula fundamental: $\sin^2 x + \cos^2 x = 1$

Relação da tangente com o seno e o cosseno: $\tan x = \frac{\sin x}{\cos x}$

1.	Considera o	seguinte	sistema	de	equações:
----	-------------	----------	---------	----	-----------

$$\begin{cases} \frac{3}{4}(2y-x) = 6\\ 2x - \frac{y}{3} = -5 \end{cases}$$

Qual dos seguintes pares ordenados (x, y) é solução deste sistema?

- $A\square$ (0,15) $B\square$ (-2,3) $C\square$ (2,4) $D\square$ (-1,-9)
- **2.** Escreve o número $\frac{(2^2)^4 \times 3^8}{6^{-7}}$ na forma de potência de base $\frac{1}{6}$.

Apresenta todos os cálculos que efetuares.

3. Indica um número irracional que pertença, simultaneamente, aos intervalos]-1,3] e]0,4[.

4. Numa sequência de números, com mais de quatrocentos termos, cada termo, com exceção do primeiro, obtém-se adicionando 3 ao termo anterior. O sexto termo da sequência é 17.

Qual dos números seguintes não é termo desta sequência?

- $\mathbf{A}\square$ 800
- $\mathbf{B}\square$ 88
- $\mathbf{C}\square$ 80
- $\mathbf{D} \square 8$

5. Considera a **Figura 1** seguinte onde estão representados o decágono regular [ABCDEFGHJK] e o triângulo [*JKL*].

Sabe-se que o ângulo JLK é igual a 17°

Determina a amplitude do ângulo KJL.

Apresenta todos os cálculos que tiveres de efetuar.

6. Considera a inequação seguinte:

$$\frac{x}{2} \ge \frac{2 - 6x}{3} + \frac{1}{6}$$

O conjunto-solução da inequação pode ser representado por:

$$\mathbf{A} \square \ \left] -\infty, \frac{1}{3} \right] \cap \left[\pi, +\infty\right[$$

$$\mathbf{B} \square]-\infty,\pi] \cap \left[\frac{1}{3},+\infty\right[$$

$$\mathbf{C} \square \ [\pi, +\infty[\ \cap \ \left[\frac{1}{3}, +\infty\right[$$

$$\mathbf{D} \square [\pi, +\infty[\cup \left[\frac{1}{3}, +\infty\right[$$

7. Os alunos finalistas do 9.ºano foram convidados a criar um jardim em forma de triângulo isósceles, como mostra a **Figura 2**.

Figura 2

Determina o valor da área do jardim.

Apresenta todos os cálculos que efetuares.

8. Seja f uma função de proporcionalidade inversa. Sabe-se que f(2) = 6.

Em qual das opções seguintes se apresenta uma expressão que define a função f?

$$\mathbf{A} \square \ f(x) = \frac{12}{x}$$

$$\mathbf{B} \square f(x) = \frac{3}{x}$$

$$\mathbf{C} \square \ f(x) = 12x$$

$$\mathbf{D} \square \ f(x) = 3x$$

CD4038

9. Considera o polinómio $9 - \frac{x^2}{25}$.

Escreve o polinómio dado num produto de dois polinómios de grau 1.

10. Resolve a equação seguinte.

$$5(x+1)^2 = x + 7$$

Apresenta o conjunto-solução.

Apresenta todos os cálculos que efetuares.

11. Na Figura 3 está representado um prisma quadrangular regular reto.

Qual das seguintes afirmações é verdadeira?

12. Escreve o valor de $\sqrt{13}$, (4) na forma de fração irredutível.

Mostra como chegaste à tua resposta.

Sugestão: Começa por escrever o número 13, (4) na forma de uma fração irredutível.

13. No referencial da Figura 4 estão representadas graficamente as funções $f \in g$.

Sabe-se que:

- a função *f* é uma função quadrática cuja representação gráfica é uma parábola com vértice na origem no referencial
- a função g, função de proporcionalidade inversa, é definida por

$$g(x) = \frac{12}{x} \quad (x > 0)$$

ullet os gráficos das funções f e g intersetam-se no ponto P que tem abcissa 2

Determina f(-4).

Mostra como chegaste à tua resposta.

14. Os alunos finalistas do 9.ºano, resolveram no último dia de aulas, passar a tarde na piscina municipal.

A piscina é formada pela união de um paralelepípedo com um prisma trapezoidal com as dimensões indicadas na **Figura 5**.

Determina o volume da piscina.

Apresenta o resultado, em litros, na forma de notação científica.

15. Considera o conjunto seguinte:

$$S = \left\{ \frac{6}{5}; \quad 3,52; \quad -6,(7); \quad \sqrt{44} \right\}$$

Qual dos números do conjunto *S* corresponde a uma dízima infinita não periódica?

$$\mathbf{A} \square 3,52$$
 $\mathbf{B} \square \sqrt{44}$ $\mathbf{C} \square \frac{6}{5}$ $\mathbf{D} \square -6,(7)$

16. Na Figura 6 está representada parte de uma circunferência.

Determina, **utilizando apenas régua e compasso**, o centro da circunferência e acaba de a representar.

Explica como chegaste à tua resposta, apresentando a construção geométrica que efectuaste.

Nota: Esta questão deve ser resolvida a lápis e não a tinta.

17. Na Figura 7, o triângulo [ABC] é retângulo em A.

Sabe-se ainda que:

- [ADEF] é um quadrado
- $\overline{AB} = 2$
- $\overline{AC} = 6$

Figura 7

Calcula a medida da área do quadrado [ADEF].

Apresenta todos os cálculos que efetuares.

Responde a um e um só dos grupos A ou B

Se responderes a mais do que um destes grupos deves indicar qual deles pretendes que seja classificado. Se não deres esta indicação será classificado o grupo a que responderes em primeiro lugar.

Grupo A

18. O António, aluno finalista do 9.ºano, lançou dois dados cúbicos equilibrados, com as faces numeradas de 1 a 6, e registou o **produto** dos números obtidos nas faces que ficaram voltadas para cima.

Sugestão: começa por construir uma tabela de dupla entrada que caracterize a situação.

- 18.1. O António resolveu lançar um desafio à sua colega Beatriz:
 "Determina a probabilidade de o produto obtido ser um número inferior a 10."
 Qual a resposta correta ao desafio do António?
 - $A \square \frac{19}{36}$
- $\mathbf{B} \square \frac{5}{18}$
- $C \square \frac{17}{36}$
- $\mathbf{D} \square \frac{1}{2}$

18.2. A Joana, que estava por perto, lançou um desafio ao António:

"Sabendo que o produto obtido é um múltiplo de 2, determina a probabilidade de os números saídos nos dados serem ambos pares."

O António resolveu o desafio, e respondeu corretamente ao mesmo.

Determina o valor da probabilidade a que António chegou.

Apresenta o resultado na forma de fração irredutível.

Grupo B

18. Na Figura 8 está representado um triângulo isósceles.

Sabe-se que $\overline{AC} = \overline{BC}$, $\overline{AB} = 4$ e $A\hat{C}B = 40^{\circ}$.

Qual das afirmações seguintes é verdadeira?

$$\mathbf{A} \square \ \overline{BC} = \frac{2}{\tan 70^{\circ}}$$

$$\mathbf{B} \square \ \overline{AC} = \frac{2}{\cos 20^{\circ}}$$

$$\mathbf{C} \square \overline{AC} = \frac{4}{\cos 70^{\circ}}$$

$$\mathbf{D} \square \overline{BC} = \frac{2}{\sin 20^{\circ}}$$

19. Seja β um ângulo agudo.

Sabe-se que $\cos \beta = \frac{1}{4}$.

Mostra que $4\sqrt{5}\sin\beta = 5\sqrt{3}$.

Apresenta todos os cálculos que efetuares.

FIM COTAÇÕES

Item Cotação (em percentagem)

1	2	3	4	1	5	6	7	8	9	10	T O T	100%				
3	6	3	.,	3	7	3	7	3	3	8	A L	10070				
11	12	13	14	15	16	17	GRU	PO A	GRU	РО В						
11	12	10	14	10		10	10	10	10	16	17	18.1.	18.2	18	19	
3	7	8	10	3	6	8	3	6	3	6						

Esta página só deve ser utilizada se quiseres completar ou emendar qualquer resposta. Caso a utilizes, não te esqueças de identificar claramente cada uma dessas respostas.