MATH 411 - Homework 1

Trung Dang

February 2023

Problem 1: Suppose $f,g:S\to S$ are functions which are both 1-1 and onto. Prove that:

- (a) their composition $f \circ g : S \to S$
- (b) the inverse function $f^{-1}: S \to S$ are also 1-1 and onto.

Proof. (a) First, we prove that $f \circ g$ is 1-1. Assume the contrary, $\exists u \neq v$ such that:

$$f \circ g(u) = f \circ g(v) \tag{1}$$

, or

$$f(g(u)) = f(g(v)) \tag{2}$$

Since f is 1-1, g(u) = g(v). And since g is also 1-1, u = v, is a contradiction.

Second, we prove that $f \circ g$ is onto.

Assume that there is an element $u \in S$ such that for no $v \in S$, f(g(v)) = u. Hence there must be an element w such that there is no g(v) = w. But since g is onto, this raises a contradiction.

In conclusion, $f \circ g$ is both 1-1 and onto

(b) We first prove that f^{-1} is 1-1. Assume that for some $u, v \in S$, $f^{-1}(u) = f^{-1}(v)$, then f(u) = f(v), contradicting with f is 1-1.

Meanwhile, since for every $x \in S$, there is another element y such that f(x) = y, thus we have $f^{-1}(y) = x$. Therefore, f^{-1} is a surjection.

From the aforementioned claims, f^{-1} is a bijection.

Problem 2: Which of the following are binary operations on the set \mathbb{Z} ? Explain:

- (a) $a \circ b = |a b|$ (b) $a \circ b = \sqrt{|ab|}$ (c) $a \circ b = a^b$

Proof. (a) the operation is binary since it takes two inputs from $\mathbb Z$ and returns one output which is also in $\mathbb Z$

- (b) the operation is NOT binary. While it takes 2 inputs, its output may not belong to \mathbb{Z} . For instance, $2 \circ 3 = \sqrt{6} \notin \mathbb{Z}$
- (c) the operation is binary since it takes two inputs from $\mathbb Z$ and returns one output which is also in \mathbb{Z}

Problem 3: Let (S, \circ) and (T, \bullet) be sets with binary operations. A 1-1 and onto function $f: S \to T$ is called an *isomorphism* of binary operations if $f(a \circ b0 = f(a) \bullet f(b)$ for every $a, b \in S$

- (a) Suppose (S, \circ) and (T, \bullet) are isomorphic and (S, \circ) is a group. Show that (T, \bullet) is also a group.
- (b) Let $(\mathbb{R}_{>0},\cdot)$ be the set of positive numbers with binary operation multiplication. Show that $(\mathbb{R},+)$ and $(\mathbb{R}_{>0},\cdot)$ are isomorphic binary operations.

Proof. (a) Because (S, \circ) is a group, it must satisfy the three axioms of a group, namely:

•

$$(a \circ b) \circ c = a \circ (b \circ c) \tag{3}$$

- \bullet existence of identity e
- existence of an inverse: $a \circ a^{-1} = a^{-1} \circ a = e$

We will prove the same axioms for (T, \bullet) . Indeed, using (3), we have:

$$(f(a) \bullet f(b)) \bullet f(c) = f(a \circ b) \bullet f(c) = f((a \circ b) \circ c) = f(a \circ (b \circ c)) = f(a) \bullet (f(b) \bullet f(c))$$

So f is associative.

Moreover, since $f(a) \bullet f(e) = f(a \circ e) = f(a) = f(e \circ a) = f(e) \bullet f(a)$, f(e) is the identity of (T, \bullet) .

And for all $f(a) \in T$, $f(a^{-1}) \bullet f(a) = f(a^{-1} \circ a) = f(e)$. Thus there exists an inverse in (T, \bullet) . So (T, \bullet) satisfies three conditions of a group and is hence a group.

(b) Consider the function: $f: \mathbb{R} \to \mathbb{R}_{>0}$, mapping $x \mapsto e^x$. Then if we regard $(\mathbb{R}, +)$ as group S and $(\mathbb{R}_{>0}, \cdot)$ as T, then we have:

$$f(a+b) = f(a) \cdot f(b) \tag{5}$$

Thus they are isomorphic.

Problem 4: Let 2^s be the power set of S and let $f: 2^s \to 2^s$ be the function that takes every subset $T \subseteq S$ to its complementary subset $S \setminus T$. Show that f is an isomorphism of binary operations $(2^s, \cup)$ and $(2^s, \cap)$

Proof. The problem is equivalent to

$$f(a \cup b) = f(a) \cap f(b)$$

, or

$$(a \cup b)^C = a^C \cap b^C$$

which is true by De Morgan's Law.

Problem 5: Prove that:

- (a) In every group G and for every $a,b\in G,$ the inverse element of ab is equal to $b^{-1}a^{-1}$
- (b) In every group G, and for every $a \in G$, the inverse of a^{-1} is equal to a.

Proof. (a) Denote the identity element of the group as e, we have:

$$(ab)(ab)^{-1} = e$$

$$\iff a^{-1}(ab)(ab)^{-1} = a^{-1}e$$

$$\iff (a^{-1}a)b(ab)^{-1} = a^{-1}$$

$$\iff b^{-1}b(ab)^{-1} = b^{-1}a^{-1}$$

$$\iff (ab)^{-1} = b^{-1}a^{-1}$$

(b) By definition, $aa^{-1} = e = a^{-1}a$, so a^{-1} is an inverse of a and vice versa. We now prove the uniqueness of the inverse.

Indeed, assume ab=e=ac. Then using the associativity of group operations, we have b=be=b(ac)=(ba)c=ec=c. So, b=c, and a is therefore the unique inverse of a^{-1}

Problem 6: Suppose G is a group such that $(ab)^2 = a^2b^2$ for any $a, b \in G$. Prove that G is an Abelian group.

Proof. The problem can be re-written as, for any 2 numbers $a,b\in G,$ the identity ab=ba holds. Indeed,

$$(ab)^2 = a^2b^2$$

$$\iff abab = aabb$$

$$\iff a^{-1}(abab)b^{-1} = a^{-1}aabbb^{-1}$$

$$\iff (a^{-1}a)ba(bb^{-1}) = (a^{-1}a)ab(bb^{-1}) \text{ (associativity)}$$

$$\iff ba = ab \text{ (inverse)}$$

Therefore G is an Abelian group.

Problem 7: (a) Prove that the following *cancellation law* holds in every group G: if xa = xb then a = b

(b) Find 3 non-zero 2×2 matrices X,A,B such that XA = XB but $A \neq B$

(c) Find 3 functions with domain $\mathbb R$ and range $\mathbb R$ such that $f\circ g=f\circ h$ but $g\neq h$

Proof. (a) Since $x, a, b \in G$, there exists an inverse x^{-1} of x. Therefore,

$$xa = xb$$
 $\iff x^{-1}xa = x^{-1}xb$
 $\iff a = b \text{ (inverse)}$

(b) For instance: $X=\begin{bmatrix}1&0\\0&0\end{bmatrix},\,A=\begin{bmatrix}2&1\\1&1\end{bmatrix},\,B=\begin{bmatrix}2&1\\5&7\end{bmatrix}$. Then:

$$XA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 7 \end{bmatrix} = XB \tag{6}$$

But $A \neq B$

(c) Take $g(x)=x, \forall x\in\mathbb{R}, h(x)=x+2\pi, \forall x\in\mathbb{R}.$ Choose:

$$f(x) = \tan(x), \forall x \in \mathbb{R}, x \neq k\pi + \frac{\pi}{2},$$

$$f(x) = 0, \forall x = k\pi + \frac{\pi}{2}$$

Then $f(g(x)) = f(h(x)), \forall x \in \mathbb{R}$, but $g(x) \neq h(x)$

.

Problem 8: Consider the following operation with sets:

$$A \oplus B = (A \cup B) \setminus (A \cap B) \tag{7}$$

- (a) Use Venn diagrams to prove that \oplus satisfies associativity.
- (b) Let S be an arbitrary set and let 2^S be its power set. Prove that $(2^S, \oplus)$ is a group. In particular, explain what is the identity and what is the inverse element.

Proof. (a)

For A, B, C, denote $A \cap B = X, B \cap C = Z, C \cap A = Y$, and $A \cap B \cap C = T$.

Then $(A \oplus B) \oplus C = (A \cup B \setminus X) \oplus C = (A \cup B \cup C) \setminus (X \cup Y \cup Z)$ And $A \oplus (B \oplus C) = A \oplus (B \cup C \setminus Z) = (A \cup B \cup C) \setminus (X \cup Y \cup Z)$. In other words, both conditions are equivalent to the set of all elements in exactly one of A, B, C

Therefore \oplus satisfies associativity.

(b) From problem (a) we know that the binary operation \oplus is associative. Therefore, we are left to prove $(2^S, \oplus)$ has an identity and defines the inverse element

For e to be the identity of 2^S , over operation \oplus , $\forall A \in 2^S$, $A \oplus e = A$. But we also know from (a) that $A \oplus B$ returns the elements in exactly one of A or B. Therefore, to preserve all the elements in A, $A \cap e = \emptyset$, and the empty set is the only element of 2^S that has no common element with any others. So $e = \emptyset$

Assume set A has an inverse B, then $A \oplus B = \emptyset$. This will only happens if $A \cup B = A \cap B$, or B = A. Thus, the inverse of an element is itself.

Since it has an identity and inverse, $(2^S, \oplus)$ is a group.

Problem 9: (a) Give an explicit algorithm to construct a bijection between the sets \mathbb{Z} and \mathbb{Q} .

(b) Prove that there is no isomorphism between binary operations $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$

Proof. (a) Denote $\mathbb{Q}_{>0}$, $\mathbb{Q}_{<0}$, $\mathbb{Z}_{>0}$, $\mathbb{Z}_{<0}$ as the sets of positive and negative rational numbers, and the sets of positive and negative integers.

Since $\mathbb{Q} = \mathbb{Q}_{>0} \cup \{0\} \cup \mathbb{Q}_{<0}$ and $\mathbb{Z} = \mathbb{Z}_{>0} \cup \{0\} \cup \mathbb{Z}_{<0}$, it suffices to prove that there exists a bijection from $\mathbb{Q}_{>0} \to \mathbb{Z}_{>0}$, or \mathbb{N} , and similarly with their negative counterparts

We will create a table of natural coordinates, with column numbers as the numerator and rows representing denominators of fractions in $\mathbb{Q}_{>0}$ and assign to them a value in $\mathbb{Z}_{>0}$:

	1 Value	1	3	4	5		
1	1	2	4	7	11		
2	3	5	8	12			
3	6	9	13				
4	10	14		. •			
5	15						
:	K						

Similarly, we construct a bijection between $\mathbb{Z}_{<0}$ and $\mathbb{Q}_{<0}$. And mapping $0 \mapsto 0$, we have the desired construction.

(b) We have to prove the problem 2-fold: there is no isomorphism $\mathbb{Q} \to \mathbb{Z}$ and $\mathbb{Z} \to \mathbb{Q}$.

First Case: there is no isomorphism $\mathbb{Q} \to \mathbb{Z}$

Assume the contrary: there exists an isomorphic function $f: \mathbb{Q} \to \mathbb{Z}$. Then

 $\exists q$ such that f(q) = 1. And since $f(q) = f(2 \times q/2) = 2f(q/2)$, we must have $f(q/2) = 1/2 \notin \mathbb{Z}$, a contradiction.

Second Case: there is no isomorphism $\mathbb{Z} \to \mathbb{Q}$ Let f(1) = q, then for all positive integer n, f(n) = nf(1) = nq. Meanwhile, f(a+0) = f(a) + f(0), implying f(0) = 0. Thus, f(-1+1) = f(-1) + f(1) = 0, so f(-1) = -q. This implies that for all negative integers n, f(n) = nq. Thus, $f(n) = nf(1), \forall n \in \mathbb{Z}$, so the range of f is not \mathbb{Q} , a contradiction.

Therefore, there is no isomorphism between $(\mathbb{Q}, +)$ and $(\mathbb{Z}, +)$