Домашняя работа по дискретной математике №5

Вариант 140

Работу выполнил: Петров Вячеслав, Р3108, Поток 2

Работу проверил: Поляков Владимир Иванович

	Граф С1												
V/V	e ₁	e ₂	е3	e 4	e 5	e 6	e 7	es	e 9	e 10	e 11	e ₁₂	pe
e ₁	0				1	1		1	1			1	5
e ₂		0				1		1	1		1	1	5
е3			0					1		1	1		3
e 4				0	1	1				1	1	1	5
e 5	1			1	0			1					3
e 6	1	1		1		0	1		1	1	1		7
е7						1	0	1	1	1	1	1	6
es	1	1	1		1		1	0	1	1		1	8
e 9	1	1				1	1	1	0		1	1	7
e 10			1	1		1	1	1		0			5
e 11		1	1	1		1	1		1		0	1	7
e 12	1	1		1			1	1	1		1	0	7

	Граф С2												
V/V	y 1	y 2	у3	y 4	y 5	y 6	y 7	y 8	y 9	y 10	y 11	y 12	рy
y 1	0			1	1	1							3
y 2		0			1					1	1		3
y 3			0		1	1		1	1	1	1	1	7
y 4	1			0	1		1		1	1			5
y 5	1	1	1	1	0			1	1		1	1	8
y 6	1		1			0	1	1	1	1		1	7
y 7				1		1	0	1	1	1	1	1	7
y 8			1		1	1	1	0	1		1	1	7
y 9			1	1	1	1	1	1	0				6
y 10		1	1	1		1	1			0			5
y 11		1	1		1		1	1			0		5
y 12			1		1	1	1	1				0	5

Для графа G $_1 \sum (p_e(x)) = 68$. Список P(e)={5,5,3,5,3,7,6,8,7,5,7,7}

Для графа $G_2 \sum (p_{\nu}(x)) = 68$. Список P(e)={3,3,7,5,8,7,7,7,6,5,5,5}

G ₁	e ₁	e ₂	е3	e 4	e 5	e 6	е7	es	e 9	e 10	e ₁₁	e ₁₂
G_2	y 11	y 12	y 1	y 10	y ₂	y 7	y 9	y 5	y 8	y 4	y 6	У з

	p(e)=p(y)=8	p(e)=p(y)=7	p(e)=p(y)=6	p(e)=p(y)=5	p(e)=p(y)==3
е	e ₈	e ₆ ,e ₉ ,e ₁₁ ,e ₁₂	e ₇	e ₁ ,e ₂ ,e ₄ ,e ₁₀	e ₃ ,e ₅
У	y 5	y 3, y 6, y 7, y 8	y 9	y 10, y 4, y 11, y 12	Y 1, Y 2

Из таблицы можно сразу заметить соответствие вершин графов:

E	Y
e ₈	y 5
e ₇	y 9

Для определения соответствия вершин с p(e)=p(y)=5 попробуем связать с установленными вершинами из p(e)=p(y)=8,6

	E	Y		
e ₁ ->	e ₈	y 5, y 9	<-y ₄	
e ₂ ->	e ₈	-	<-y ₁₀	
e ₄ ->	-	y 5	<-y ₄ <-y ₁₀ <-y ₁₁	
e ₁₀ ->	e ₇ ,e ₈	y 5	<-y ₁₂	

Анализ показывает следующее соответствие:

E	Υ
e ₄	y 10
e ₁₀	y 4

Для определения соответствия вершин с p(e)=p(y)=3 попробуем связать с установленными вершинами из p(e)=p(y)=8,6,5

E		Y			
e ₃ ->	e ₈ , e ₁₀	y 5, y 4	<-γ ₁		
e ₅ ->	e ₈ , e ₄	y 5, y 10	<-γ ₂		

Анализ показывает следующее соответствие:

_	
E	Υ
e ₃	y 1
e ₅	y 2

Вернёмся к определению соответствия вершин с p(e)=p(y)=3. Свяжем с установленными вершинами из p(e)=p(y)=8,6,5,3

J	E	Υ			
e ₁ ->	e ₈ , e ₅	y 5, y 2	<-y ₁₁		
e ₂ ->	e ₈	y 5	<-y ₁₂		

Анализ показывает следующее соответствие:

E	Υ
e ₁	y 11
e_2	y 12

Для определения соответствия вершин с p(e)=p(y)=7 попробуем связать с установленными вершинами из p(e)=p(y)=8,6,5,3

	E	Y		
e ₆ ->	e1,e2,e4,e7,e10	y5,y9,y10,y11,y12	<-y ₃	
e ₉ ->	e1,e2,e7,e8	y1,y9,y10,y12	<-y ₆	
e ₁₁ ->	e2,e3,e4,e7	y4,y9,y10,y11,y12	<-y ₇	
e ₁₂ ->	e1,e2,e4,e7,e8	y5,y9,y11,y12	<-y ₈	

Анализ показывает следующее соответствие:

Ε	Υ
e_6	y 7
e 9	y 8
e ₁₁	y 6
e ₁₂	y 3

Итого получаем:

E	Y
e1	y11
e2	y12
e3	у1
e4	y10
e5	y2
e6	у7
e7	у9
e8	у5
e9	y8
e10	y4
e11	у6
e12	у3

По итоговой таблице связей, можно сделать вывод, что каждой вершине графа G_1 соответствует одна вершина из графа G_2 , что доказывает изоморфизм данных графов.