Computational Algebraic Geometry Homework 3

Michael Nelson

Problem 1

I was successful.

Problem 2

Exercise 1. Suppose f_1 , f_2 , and f_3 are three polynomials in $\mathbb{Q}[x,y,z]$ of degree 3 whose coefficients are all integers of absolute value at most 20. Experiment with Macaulay2 to see how large the coefficients in a Gröbner basis for $\mathcal{V}(f_1,f_2,f_3)$ can be.

Solution 1. The coefficients can become incredibly large. For instance, calculating the Gröbner basis of

I = 20x3 + 19x2y + 18xy2 + 17xy2,17x3 + 12xy2 + 14z3,18xyz + 20x2y + 17z3,20yz2 + 17xz2 + 18z3;

gives us

994131220y2z2-815803669z4.

Problem 3

Exercise 2. Find an example of an ideal $I \subseteq \mathbb{R}[x,y]$ such that $\mathcal{V}(I_1) = \mathbb{R}$ but $\overline{\pi_1(\mathcal{V}(I))} = \emptyset$.

Solution 2. Let $I = \langle x^2 + y^2 + 1 \rangle$. Then $I_1 = I \cap \mathbb{R}[y] = 0$, and thus $\mathcal{V}(I_1) = \mathbb{R}$. On the other hand, note that $\underline{\mathcal{V}(I)} = \emptyset$ since $x^2 + y^2 = -1$ has no solutions in \mathbb{R}^2 . In particular, this implies $\pi_1(\mathcal{V}(I)) = \emptyset$, which implies $\overline{\pi_1(\mathcal{V}(I))} = \emptyset$.

Problem 4

Exercise 3. Let $f(x,y) \in K[x,y]$ and V = V(f). Let p be a point on V. We say that p is a **singular point** of V(f) if both partial derivatives $\partial_x f(p) = 0$ and $\partial_y f(p) = 0$. If at least one of these partial derivatives is nonzero, then p is a **nonsingular point** of V(f).

Let p be a point on V and let $\ell(t)$ be a line passing through p when the parameter t=0. Without using calculus, we say that ℓ is **tangent** to V at p if $f(\ell(t))$ has a root of multiplicity greater than one as a function of t at t=0.

- 1. Show that the algebraic variety $\mathcal{V}(x^3 xy + y^2 1)$ has no singular points.
- 2. Check that the only tangent line to $\mathcal{V}(x^3 xy + y^2 1)$ at the point (1,1) is the one given by calculus.
- 3. Construct an algebraic variety whose points correspond to tangent lines to $\mathcal{V}(x^3 xy + y^2 1)$; that is, the set lines which are tangent at some point of $\mathcal{V}(x^3 xy + y^2 1)$.

Solution 3. Throughout this problem, let $f = x^3 - xy + y^2 - 1$ and note that $\partial_x f = 3x^2 - y$ and $\partial_y f = -x + 2y$.

1. Assume for a contradiction that (a, b) is a singular point of $\mathcal{V}(f)$. Then we must have

$$3a^{2} - b = 0$$
$$-a + 2b = 0$$
$$a^{3} - ab + b^{2} - 1 = 0.$$

From the first equation above, we see that $b = 3a^2$. From the second equation above, we see that a = 2b. Thus we have $b = 12b^2$, which implies either b = 0 or b = 1/12, and hence either a = 0 or a = 1/6 (respectively). However neither (0,0) nor (1/6,1/12) are solutions to the last equation. This is a contradiction.

2. Let $\ell(t)$ be a line passing through p=(1,1) when the parameter t=0. In particular, $\ell(t)$ has the form

$$\ell_{\mathbf{v}}(t) = p + t\mathbf{v} = (1 + tv_1, 1 + tv_2)$$

where $\mathbf{v} = (v_1, v_2)$ is a nonzero vector in K^2 . Note that for any nonzero $a \in K$, we have $\ell_{a\mathbf{v}}(t/a) = \ell_{\mathbf{v}}(t)$. In particular, both $\ell_{a\mathbf{v}}(t)$ and $\ell_{\mathbf{v}}(t)$ parametrize the same line (though they are not the same parametrization). Since \mathbf{v} is nonzero, either $v_1 \neq 0$ or $v_2 \neq 0$.

First assume that $v_2 \neq 0$. Since $\ell_{(1/v_2)\mathbf{v}}(t)$ and $\ell_{\mathbf{v}}(t)$ parametrize the same line, we may as well assume that $\mathbf{v} = (v, 1)$ where $v \neq 0$. Then we have

$$f(\ell_{\mathbf{v}}(t)) = (1+tv)^3 - (1+tv)(1+t) + (1+t)^2 - 1$$

= $v^3 t^3 + (3v^2 - v + 1)t^2 + (2v + 1)t$
= $t(v^3 t^2 + (3v^2 - v + 1)t + (2v + 1)).$

This polynomial has a root of multiplicity greater than one as a function of t at t = 0 if and only if v = -1/2. Now assume that $v_1 \neq 0$. As noted above, we may as well assume that $\mathbf{v} = (1, v)$ where $v \neq 0$. Then we have

$$f(\ell_{\mathbf{v}}(t)) = (1+t)^3 - (1+t)(1+tv) + (1+tv)^2 - 1$$

= $v^2t^2 + (-v^2 + v)t + v^3 + 3v^2 + 2v$.

This has a root of multiplicity greater than one as a function of t at t = 0 if and only if

$$0 = -v^{2} + v = v(1 - v)$$

$$0 = v^{3} + 3v^{2} + 2v = v(v + 1)(v + 2).$$

Clearly this implies v = 0, which is a contradiction since we assumed $v \neq 0$.

Therefore we see that there is only one line which is tangent to V(f) at the point (1,1), and it is parametrized by

$$\ell_{(-1,2)}(t) = (1-t, 1+2t).$$

The equation which describes this line is exactly the equation which we obtain from calculus: namel

$$\partial_x f(1,1)(x-1) + \partial_y f(1,1)(y-1) = 2(x-1) + (y-1)$$

= 2x + y - 3.

Indeed, for all *t* we have 2(1 - t) + (1 + 2t) - 3 = 0.

3. We now consider the more general situation where p = (a, b) is a point on V(f) and $\mathbf{v} = (v_1, v_2)$ is a nonzero vector in K^2 . Let $\ell_{p,\mathbf{v}}(t) = p + t\mathbf{v}$. Then observe that

$$f(\ell_{p,\mathbf{v}}(t)) = (a+tv_1)^3 - (a+tv_1)(b+tv_2) + (b+tv_2)^2 - 1$$

$$= (a^3 - ab + b^2 - 1) + (3a^2v_1t + 3av_1^2t^2 + v_1^3t^3 - av_2t - bv_1t - v_1v_2t^2 + 2bv_2t + v_2^2t^2)$$

$$= 3a^2v_1t + 3av_1^2t^2 + v_1^3t^3 - av_2t - bv_1t - v_1v_2t^2 + 2bv_2t + v_2^2t^2$$

$$= v_1t^3 + (3av_1^2 - v_1v_2 + v_2^2)t^2 + (3a^2v_1 - av_2 - bv_1 + 2bv_2)t$$

$$= t(v_1t^2 + (3av_1^2 - v_1v_2 + v_2^2)t + ((3a^2 - b)v_1 + (2b - a)v_2)).$$

In particular, $f(\ell_{p,\mathbf{v}}(t))$ has a root of multiplicity greater than one as a function of t at t=0 if and only if

$$(3a^2 - b)v_1 + (2b - a)v_2 = 0.$$

In particular, let

$$X = \left\{ ((a,b), [v_1:v_2]) \in \mathbb{A}_K^2 \times \mathbb{P}_K^1 \mid f(a,b) = 0 \text{ and } (3a^2 - b)v_1 + (2b - a)v_2 = 0 \right\}$$

The X is an algebraic subvariety of $\mathbb{A}^2_K \times \mathbb{P}^1_K$ whose points correspond to tangent lines to $\mathcal{V}(f)$.

Problem 5

Exercise 4. Prove that an algebraically closed field is infinite.

Solution 4. We prove the contrapositive: Let K be a finite field and list its elements as a_1, \ldots, a_n . Then the polynomial

$$f(x) = 1 + \prod_{i=1}^{n} (x - a_i)$$

has no roots in K since $f(a_i) = 1$ for all $1 \le i \le n$. Thus K cannot be algebraically closed.