Inteligencia Artificial para el Cuidado del Agua

Análisis de aplicaciones en la mitigación del consumo excesivo de agua

Borbón Sánchez Edgar

Millán López Ana Karen

La Crisis del Agua en México

52%

106

76%

Territorio Árido

Acuíferos Sobreexplotados

Consumo Agrícola

Del país en climas áridos o semiáridos con sequías intensas

Catalogados como secos desde 2014

Del agua total con pérdidas del 60%

México enfrenta una crisis hídrica crítica donde estamos usando el agua más rápido de lo que se puede reponer naturalmente.

Objetivos de la Investigación

01

Diagnóstico de la Crisis

Identificar sectores de mayor consumo y causas de ineficiencia hídrica.

03

Machine Learning Urbano

Investigar algoritmos para detección predictiva de fugas en redes.

02

Análisis Tecnológico

Evaluar aplicaciones de IA en agricultura de precisión y riego optimizado.

04

Propuestas Estratégicas

Recomendar líneas de investigación para gestión hídrica sostenible.

El Problema del Riego Tradicional

Métodos Obsoletos

Más del 80% de la superficie de riego utiliza métodos tradicionales como riego por inundación o surcos.

Pérdidas por evaporación e infiltración

Mínimo de agua desperdiciada

Arquitectura del Riego Inteligente

Adquisición de Datos

Red de sensores de humedad, estaciones meteorológicas y teledetección satelital en tiempo real.

Análisis Predictivo

Algoritmos de Machine Learning procesan datos para crear modelos predictivos de demanda.

Automatización

Control automático de válvulas y bombas para aplicar agua exacta sin intervención manual.

Casos de Éxito: CARLOTA de Bayer

Programa CARLOTA

Utiliza big data y algoritmos para optimizar procesos agrícolas en México.

14 Millones m³

Agua ahorrada total

20% Reducción

En consumo de agua

Transformando la agricultura tradicional hacia un modelo basado en datos.

Kilimo: Modelo de Negocio Innovador

Creando un círculo virtuoso donde la conservación del agua genera beneficios económicos directos.

Detección Predictiva de Fugas Urbanas

Machine Learning en Redes Urbanas

El sector urbano consume 15% del agua total pero sufre pérdidas del 50% por fugas en infraestructuras envejecidas.

Algoritmos detectan patrones anómalos antes de fallas visibles.

Mantenimiento Proactivo

Intervención preventiva reduce pérdidas masivas.

Desafíos y Barreras

Técnicos

Falta de datos históricos consistentes y etiquetados para entrenar modelos precisos.

Económicos

Altos costos de inversión inicial en sensores y software especializado.

Sociales

Escasez de personal capacitado para operar sistemas complejos de IA.

A pesar de los desafíos, el potencial de ahorro justifica la inversión a largo plazo.

Conclusiones

Viabilidad Comprobada

La IA demuestra ahorros de hasta 40% en agua con casos exitosos documentados.

Recurso Limitado

Cada esfuerzo por reducir desperdicio vale la inversión de recursos.

Transformación Necesaria

Cambio de gestión tradicional hacia modelo proactivo basado en datos.

"El futuro del agua está en la inteligencia artificial."

