Proofs in Online Resource Allocation

Tongtong Lin, Jiahang Qiu, and Liqun Fu

School of Informatics, Xiamen University, Xiamen 361005, China Email: {tongtong, jiahang}@stu.xmu.edu.cn, liqun@xmu.edu.cn

Lemma 1. For any control parameter $M \ge 0$, the drift-pluspenalty expression of problem \mathcal{P}_1 is upper bounded by

$$\Delta V(t) + M \cdot \mathbb{E} \{ h \left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}} \boldsymbol{r}(t) \right) | \boldsymbol{Q}(t) \}$$

$$\leq D + \sum_{k=1}^{K} Q_k(t) \mathbb{E} \left\{ r_k(t) | \boldsymbol{Q}(t) \right\}$$

$$+ M \cdot \mathbb{E} \{ h \left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}} \boldsymbol{r}(t) \right) | \boldsymbol{Q}(t) \},$$

$$(1)$$

where D is a positive constant that satisfies

$$D \geq \frac{1}{2} \sum_{k=1}^{K} Q_k(t) \mathbb{E} \left\{ (r_k(t) - \bar{r}_k)^2 | \boldsymbol{Q}(t) \right\}, \forall t = 1, 2, \cdots, T.$$

Proof. According to the definitions of Q_t and $\Delta V(t)$, we have

$$\begin{split} & \Delta \boldsymbol{V}(t) = \mathbb{E}\left\{\boldsymbol{V}(t+1) - \boldsymbol{V}(t) | \boldsymbol{Q}(t) \right\} \\ & = \frac{1}{2} \sum_{k=1}^{K} \mathbb{E}\left\{Q_{k}^{2}(t+1) - Q_{k}^{2}(t) | \boldsymbol{Q}(t) \right\} \\ & = \frac{1}{2} \sum_{k=1}^{K} \mathbb{E}\left\{\left(\max\left\{Q_{k}(t) + r(t) - \bar{r}_{k}, 0\right\}\right)^{2} - Q_{k}^{2}(t) | \boldsymbol{Q}(t) \right\} \\ & \leq \frac{1}{2} \sum_{k=1}^{K} \mathbb{E}\left\{\left(Q_{k}(t) + r_{k}(t) - |\bar{r}_{k}|^{2} - Q_{k}^{2}(t) | \boldsymbol{Q}(t) \right\} \\ & = \sum_{k=1}^{K} Q_{k}(t) \mathbb{E}\left\{r_{k}(t) | \boldsymbol{Q}(t) \right\} - \sum_{k=1}^{K} Q_{k}(t) \mathbb{E}\left\{\bar{r}_{k}(t) | \boldsymbol{Q}(t) \right\} \\ & + \frac{1}{2} \sum_{k=1}^{K} \mathbb{E}\left\{\left(r_{k}(t) - \bar{r}_{k}\right)^{2} | \boldsymbol{Q}(t) \right\} \\ & \leq \sum_{k=1}^{K} Q_{k}(t) \mathbb{E}\left\{r_{k}(t) | \boldsymbol{Q}(t) \right\} + D, \end{split}$$

where in inequality (a) , the fact $(\max\{X,0\})^2 \leq X^2$ is exploited. In inequality (b), the term $\sum\limits_{k=1}^K Q_k(t) \mathbb{E}\left\{\bar{r}_k(t) | \mathbf{Q}(t)\right\}$ is removed because it is positive, and due to the first constraint in \mathscr{P}_1 , the term $\frac{1}{2}\sum\limits_{k=1}^K \mathbb{E}\left\{\left(r_k(t) - \bar{r}_k\right)^2 | \mathbf{Q}(t)\right\}$ has an upper bound which is denoted as D. Adding the term $M \cdot \mathbb{E}\{h\left(C(t) + \mathbf{a}(t)^\mathsf{T} \mathbf{r}(t)\right) | \mathbf{Q}(t)\}$ to both sides, the above lemma can be obtained. \square

This work was supported in part by the National Natural Science Foundation of China (No. 61771017). Corresponding author: Liqun Fu.

Property 1. The K types of resources are allocated sequentially, i.e., $r_{k'}(t) = B_{k'}, \forall k' < k$ is a necessary condition for $r_k(t) > 0$.

Proof. The KKT conditions are given as:

$$Ma_k(t)h'(C(t) + a(t)^{\mathsf{T}}r(t)) + Q_k(t) + \tau_k - v_k = 0,$$
 (2)

$$v_k r_k(t) = 0, \quad (3)$$

$$\tau_k[B_k - r_k(t)] = 0, \quad (4)$$

$$v_k \ge 0$$
, (5)

$$\tau_k \ge 0$$
, (6)

$$\forall k = 1, \dots, K, \quad (7)$$

Assume that the optimal resource allocation policy $\boldsymbol{r}(t)$ satisfies

$$-\frac{1}{p_{k+1}(t)} < M \cdot h' \left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}} \boldsymbol{r}(t) \right) \le -\frac{1}{p_k(t)}$$
 (8)

then for $k'=1,2,\ldots,k-1$, $\tau_{k'}$ has to be positive to satisfy Eqs. [(2),(5),(6),(8)], then $r_{k'}$ must equal to $B_{k'}$ given Eq. (4). Meanwhile, for $k'=k+1,k+2,\ldots,K,\ v_{k'}$ has to be positive to satisfy Eqs. [(2),(5),(6),(8)], then $r_{k'}$ must equal to zero given Eq. (3).

Property 2. If $M \cdot h' \left(C(t) + \sum\limits_{k'=1}^{k-1} a_{k'}(t) r_{k'}(t) \right) < -\frac{1}{p_k(t)}$ and $B_k > 0$, the k-th resource will be allocated, i.e, $r_k(t) > 0$. Moreover, if $0 < Q_k(t) \leq \frac{Ma_k(t)}{4}$, then $r_k(t)$ satisfies

$$r_k(t) = min \left\{ \frac{\gamma(t) - C(t) - \sum_{k'=0}^{k-1} a_{k'}(t) B_{k'}}{a_k(t)}, B_k \right\}, \quad (9)$$

where $\gamma(t) = \ln(-1 + \frac{Ma_k(t) + \sqrt{M^2a_k(t)^2 - 4Ma_k(t)Q_k(t)}}{2Q_k(t)})$; if $Q_k(t) = 0$, we have $r_k(t) = B_k$.

Proof. If $M \cdot h'\left(C(t) + \sum\limits_{k'=1}^{k-1} a_{k'}(t) r_{k'}(t)\right) < -\frac{1}{p_k(t)}$ and $B_k > 0$, then $r_k(t)$ has to be positive given Eqs. [(2),(3),(4),(5),(6)], otherwise τ_k will be zero and Eq. (2) is not satisfied.

Moreover, according to Eqs. [(3),(4),(5),(6)], when $0 < r_k(t) < B_k$, i.e., $\tau_k = v_k = 0$, r_k satisfies

$$Q_k(t) + Ma_k(t)h'\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right) = 0.$$
 (10)

By calculating, we have

$$h'\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right) = \frac{-\exp(C(t) + \sum_{k'=0}^{k-1} a_{k'}(t)B_{k'} + a_{k}(t)r_{k}(t))}{\left(1 + \exp\left(C(t) + \sum_{k'=0}^{k-1} a_{k'}(t)B_{k'} + a_{k}(t)r_{k}(t)\right)\right)^{2}}.$$

Let S denote $\exp\bigg(C(t)+\sum\limits_{k'=0}^{k-1}a_{k'}(t)B_{k'}+a_k(t)r_k(t)\bigg).$ Then Eq. (10) becomes:

$$Q_k(t)s^2 + (2Q_k(t) - Ma_k(t))s + Q_k(t) = 0.$$
 (11)

As a further step, we define the left side of the above equation as function $\beta(s)$. If $Q_k(t) > \frac{Ma_k(t)}{4}$, i.e, there is no solution to Eq. (11) and $Q_k(t) + Ma_k(t)h'\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right) \geq 0$. Then the minimum of $Q_k(t)r_k(t) + M \cdot h\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right)$ appears at $r_k(t) = 0$. If $Q_k(t) \leq \frac{Ma_k(t)}{4}$, i.e., Eq. (11) has two solutions $s1, s2 = -1 + \frac{Ma_k(t)}{2Q_k(t)} \pm \frac{\sqrt{M^2a_k(t)^2 - 4Ma_k(t)Q_k(t)}}{2Q_k(t)}$ (assuming s1 < s2). From s1, s2, it can be easily get two $r_k(t)$ -s, which are denoted by $r_k^{-1}(t)$ and $r_k^{-2}(t)$ respectively. By calculating the gradient of $\beta(s)$, It can be observed that $r_k^{-1}(t)$ is local maxima and $r_k^{-2}(t)$ is local minima. Therefore, $r_k^{-2}(t)$ is the optimal solution which ensures that the objective function $Q_k(t)r_k(t) + M \cdot h\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right)$ is the smallest when $Q_k(t) \leq \frac{Ma_k(t)}{4}$. When $Q_k(t) = 0$ and $r_k(t) > 0$, we have $v_k = 0$ given Eq. (3), and Eq. (2) can be simplified to $Ma_k(t)h'\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right) + \tau_k = 0$, then $\tau_k = -Ma_k(t)h'\left(C(t) + \boldsymbol{a}(t)^{\mathsf{T}}\boldsymbol{r}(t)\right) \neq 0$. Therefore, according to Eq. (4), we have $r_k(t) = B_k$ when $Q_k(t) = 0$.