Фамилия, имя и номер группы (печатными буквами):	Задача	1	2	3	4	5
	Балл					

Информация об экзамене

- 1. Эту работу (листы) нельзя открывать до объявления преподавателем о начале контрольной работы. В противном случае оценка за работу будет обнулена.
- 2. На контрольной работе можно пользоваться простым калькулятором, ручками, линейкой и карандашом. Кроме того, можно использовать **три** листа A4, обязательно **скрепленных между собой** и содержащих (по обеим сторонам) любую информацию, написанную от руки (самим студентом).
- 3. Контрольная выполняется индивидуально. Общение или взаимодействие с кем-либо или чемлибо (за исключением обозначенных выше разрешенных предметов) помимо преподавателей и ассистентов по курсу приведет к обнулению оценки за работу. Кроме того, нельзя иметь при себе электронные средства коммуникации, включая телефон, электронные часы и наушники.
- 4. Продолжительность экзамена составляет 170 минут (2 часа, 50 минут). После объявления об окончании времени конторольной работы необходимо прекратить вносить какие-либо правки в работу. В противном случае оценка за работу будет обнулена.
- 5. Досрочно покидать аудиторию можно лишь в течение первых 150 минут экзамена.
- 6. По окончанию работы необходимо дождаться, пока преподаватели соберут все работы в аудитории и пересчитают их количество, сопоставив с числом находящихся в аудитории студентов.
- 7. Необходимо иметь с собой студенческий пропуск, который позволит преподавателям и ассистентам идентифицировать вашу личность.
- 8. Условия из предыдущих пунктов не распространяются на условия из последующих, если в тексте задачи или пункта непосредственно не указано иное.
- 9. Таблица стандартного нормального распределения расположена на странице, следующей за текстом задания. На соседней странице расположены значения квантилей других распределений.
- 10. Писать ответы можно как на передней, так и на задней частях листа.

1. Смышленая панда, под руководством ученого кота, изобрела универсальный корм который, по задумке, должен подходить как котам, так и пандам. Корм был роздан 400 котам и 100 пандам которые, независимо друг от друга, оценили его качество по 3-х балльной шкале (чем больше балл, тем больше понравился корм). Результаты представлены ниже в форме таблицы, в которой указано, сколько котов и панд поставили тот или иной балл корму. Например, согласно таблице 150 котов оценили корм в 2 балла.

Порадуйте панду, на уровне значимости 5% протестировав гипотезу о том, что:

- а) Случайно взятый кот оценит качество корма в 3 балла с вероятностью 0.5, а оценку в 1 балл он поставит с вероятностью в 9 раз меньшей, чем оценку в 2 балла. (5 баллов)
- б) У котов и панд отсутствуют различия в том, как они оценивают качество корма. (5 баллов)
- в) Котам, в среднем, корм нравится так же, как и пандам (в качестве альтернативы предположите, что математическое ожидание выставляемого случайным котом балла выше, чем у панды). (5 баллов)
- г) Коты и панды с равной вероятностью ставят корму три балла (рассмотрите двухстороннюю альтернативу). **(5 баллов)**

Решение:

а) Через $Z=(Z_1,...,Z_{400})$ обозначим выборку из баллов, поставленных корму опрошенными котами. Для краткости обозначим $P(Z_1=1)=p_1$, $P(Z_1=2)=p_2$ и $P(Z_1=3)=p_3$. Сформулируем тестируемую (нулевую) гипотезу в форме ограничений на соответствующие параметры (вероятности):

$$H_0: p_1 = 0.05, \quad p_2 = 0.45, \quad p_3 = 0.5$$

Исходя из формулировки нулевой гипотезы очевидно, что ее можно протестировать при помощи Хи-квадрат теста Пирсона (также можно было бы использовать тест отношения правдоподобия). Найдем реализацию соответствующей тестовой статистики:

$$T(x) = \frac{(10 - 400 \times 0.05)^2}{400 \times 0.05} + \frac{(150 - 400 \times 0.45)^2}{400 \times 0.45} + \frac{(240 - 400 \times 0.5)^2}{400 \times 0.5} = 18$$

Поскольку при условии верной нулевой гипотезы тестовая статистика имеет Хи-квадрат распределение с двумя степенями свободы (так как было наложено три ограничения на вероятности), то критическая область теста будет иметь вид $\mathcal{T}_{0.05} \approx (5.99, \infty)$. В силу того, что $18 \in (5.99, \infty)$, нулевая гипотеза отвергается на 5%-м уровне значимости.

б) Через $X=(X_1,...,X_{500})$ обозначим выборку из баллов, проставленных существами корму. Через $Y=(Y_1,..,Y_{500})$ обозначим выборку из бернуллиевских случайных величин, принимающих значение 1, если респондент является котом.

При помощи теста Хи-квадрат Пирсона протестируем гипотезу о том, что выборки были получены из независимых распределений.

Рассчитаем реализацию тестовой статистики:

$$T(x) = \frac{\left(10 - 500 \times \frac{10 + 20}{500} \times \frac{10 + 150 + 240}{500}\right)^2}{500 \times \frac{10 + 20}{500} \times \frac{10 + 150 + 240}{500}} + \dots + \frac{\left(50 - 500 \times \frac{240 + 50}{500} \times \frac{20 + 30 + 50}{500} \times \frac{20 + 30 + 50}{500}\right)^2}{500 \times \frac{240 + 50}{500} \times \frac{20 + 30 + 50}{500}} \approx 43.463$$

В данном случае X_1 и Y_1 принимают по два и три возможных значения соответственно. Поэтому, при верной нулевой гипотезе тестовая статистика будет иметь (в асимптотике) хиквадрат распределение с (2-1)(3-1)=2 степенями свободы. Следовательно, критическая область принимает вид $\mathcal{T}_{0.05}\approx (5.99,\infty)$. Нулевая гипотеза отвергается на 5%-м уровне значимости, поскольку $43.463\in (5.99,\infty)$

в) Обозначим $E(X_1)=\mu_X$ и $E(Y_1)=\mu_Y$. Тестируется гипотеза $H_0:\mu_X=\mu_Y$ против альтернативы $H_1:\mu_X>\mu_Y$.

Рассчитаем реализации выборочных средних:

$$\overline{x}_{400} = \frac{1 + \ldots + 1 + 2 + \ldots + 2 + 3 + \ldots + 3}{400} = \frac{10 \times 1 + 150 \times 2 + 240 \times 3}{400} = 2.575$$

$$\overline{y}_{100} = \frac{1 + \ldots + 1 + 2 + \ldots + 2 + 3 + \ldots + 3}{100} = \frac{20 \times 1 + 30 \times 2 + 50 \times 3}{100} = 2.3$$

По аналогии посчитаем реализации исправленных выборочных дисперсий:

$$\hat{\sigma}_X^2 = \frac{10 \times (1 - 2.575)^2 + 150 \times (2 - 2.575)^2 + 240 \times (3 - 2.575)^2}{400 - 1} \approx 0.295$$

$$\hat{\sigma}_Y^2 = \frac{20 \times (1 - 2.3)^2 + 30 \times (2 - 2.3)^2 + 50 \times (3 - 2.3)^2}{100 - 1} \approx 0.616$$

В итоге рассчитаем тестовую статистику:

$$T(x,y) = \frac{(2.575 - 2.3)}{\sqrt{\frac{0.295}{400} + \frac{0.616}{100}}} \approx 3.311$$

Поскольку при верной нулевой гипотезе распределение тестовой статистики (асимптотически) является стандартным нормальным, то критическая область принимает вид $\mathcal{T}_{0.05}=(1.65,\infty)$. Так как $3.311\in(1.65,\infty)$, то нулевая гипотеза отвергается на 5%-м уровне значимости.

г) Рассмотрим бернуллиевскую случайную величину $I(X_1=3) \sim Ber(p_X)$, принимающую значение 1 если кот поставил корму наивысший балл и 0 – в противном случае. Сформируем выборку из таких случайных величин $X^*=(I(X_1=3),...,I(X_{400}=3))$. Аналогичную выборку сформируем и для панд $Y^*=(I(Y_1=3),...,I(Y_{100}=3))$, где $I(Y_1=3) \sim Ber(p_Y)$. Тестируется гипотеза $H_0: p_X=p_Y$ против альтернативы $H_1: p_X \neq p_Y$. Рассчитаем выборочные средние (оценки вероятностей):

$$\overline{x}_{400}^* = \frac{240}{400} = 0.6, \qquad \overline{y}_{100}^* = \frac{50}{100} = 0.5$$

$$\overline{z}_{400,100} = \frac{240 + 50}{500} = 0.58$$

С помощью посчитанных выше значений найдем реализацию тестовой статистики:

$$T(x,y) = \frac{0.6 - 0.5}{\sqrt{0.58(1 - 0.58)(1/400 + 1/100)}} \approx 1.812$$

Поскольку критическая область имеет вид $\mathcal{T}_{0.05} = (-\infty, -1.96) \cup (1.96, \infty)$, а также $1.812 \notin (1.96, \infty)$ и $1.812 \notin (-\infty, -1.96)$, то нулевая гипотеза **не** отвергается на 5%-м уровне значимости.

- 2. Объем ежедневно потребляемого Лаврентием кофе (в граммах) хорошо описывается нормальным распределением и не зависит от объемов кофе, употребленных в предыдущие дни. В первый день Лаврентий выпил 100 грамм кофе, во второй 200 грамм, а в третий 300 грамм.
 - а) Постройте 90%-й доверительный интервал для математического ожидания ежедневно потребляемого Лаврентием кофе. **(5 баллов)**
 - б) Повторите предыдущий пункт предполагая, что дисперсия ежедневно потребляемых Лаврентием объемов кофе равняется 8100. (3 балла)
 - в) Повторите предыдущий пункт (с известной дисперсией) для математического ожидания объемов кофе потребляемых не ежедневно, а еженедельно. (2 балла)

Решение:

 а) Сперва рассчитаем реализацию выборочного среднего и исправленной выборочной дисперсии:

$$\overline{x}_3 = \frac{100 + 200 + 300}{3} = 200$$

$$\hat{\sigma}_3^2 = \frac{(100 - 200)^2 + (200 - 200)^2 + (300 - 200)^2}{3 - 1} = 10000$$

Теперь найдем реализацию искомого доверительного интервала:

$$\left(200 - 2.92\sqrt{\frac{10000}{3}}, 200 + 2.92\sqrt{\frac{10000}{3}}\right) \approx (31.4, 368.6)$$

б) Используя истинную дисперсию получаем:

$$\left(200 - 1.65\sqrt{\frac{8100}{3}}, 200 + 1.65\sqrt{\frac{8100}{3}}\right) \approx (114.3, 285.7)$$

в) Нетрудно догадаться, что поскольку $E(X_1+...+X_7)=7E(X_1)$, то искомая реализация примет вид:

$$(7 \times 114.3, 7 \times 285.7) \approx (800, 2000)$$

3. Имеется выборка объемом в n=100 наблюдений из распределения со следующей функцией плотности:

$$f_{X_1}(t)=rac{1}{t\sqrt{2\pi}}e^{-rac{(\ln(t)-\mu)^2}{2}}$$
, где $t\in R$

Известно, что $E(X_1)=e^{\mu+0.5}$, $\sum_{i=1}^{100}\ln(x_i)=500$ и $e^{5.5}\approx 245$.

- а) Постройте 90%-й асимптотический доверительный интервал для параметра μ . (5 баллов)
- б) Постройте 90%-й асимптотический доверительный интервал для $E(X_1)$ (воспользуйтесь дельта-методом). **(5 баллов)**
- в) На 10%-м уровне значимости протестируйте гипотезу о том, что $\mu=4.9$ против альтернативы $\mu\neq4.9$. (5 баллов)
- г) На 10%-м уровне значимости протестируйте гипотезу о том, что $E(X_1)=240$ против альтернативы $E(X_1)<240$ (воспользуйтесь дельта-методом). (5 баллов)

Решение:

а) Нетрудно найти ММП оценку и информацию Фишера:

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \ln(X_i), \quad i(\mu) = 1$$

Реализация ММП оценки будет иметь вид:

$$\hat{\mu}_n(x) = \frac{1}{100} \times 500 = 5$$

Найдем реализацию искомого доверительного интервала:

$$\left(5 - 1.65\sqrt{\frac{1}{1 \times 100}}, 5 + 1.65\sqrt{\frac{1}{1 \times 100}}\right) = (4.835, 5.165)$$

б) Обратим внимание, что:

$$E'(X_1) = e^{0.5 + \mu}$$

Используя дельта-метод получаем реализацию искомого доверительного интервала:

$$\left(e^{5+0.5} - 1.65\sqrt{\frac{(e^{5+0.5})^2}{1 \times 100}}, e^{5+0.5} + 1.65\sqrt{\frac{(e^{5+0.5})^2}{1 \times 100}}\right) \approx (204.318, 285.066)$$

в) Тестируется гипотеза $H_0: \mu=5$ против альтернативы $H_1: \mu\neq 5$. Найдем реализацию тестовой статистики:

$$T(x) = \sqrt{100 \times 1}(5 - 4.9) = 1$$

Поскольку $1 \notin (1.65, \infty)$, то нулевая гипотеза не отвергается на 10%-м уровне значимости.

г) Тестируется гипотеза $H_0: E(X_1)=240$ против альтернативы $H_1: E(X_1)<240$. Найдем реализацию тестовой статистики:

$$T(x) = \sqrt{\frac{100 \times 1}{(e^{5+0.5})^2}} \left(e^{5+0.5} - 240\right) \approx 0.19$$

Поскольку $0.19 \notin (-\infty, -1.28)$, то нулевая гипотеза не отвергается на 10%-м уровне значимости.

4. Имеется выборка из одного наблюдения X_1 с функцией плотности:

$$f_{X_1} = egin{cases} rac{(1+lpha)}{2^{1+lpha}} x^lpha, \ ext{если} \ x \in (0,2) \ 0, \ ext{в противном случаe} \end{cases}$$

- а) При помощи Леммы Неймана-Пирсона постройте тест, позволяющий протестировать гипотезу $H_0: \alpha=1$ против альтернативы $H_1: \alpha=2$ на 10%-м уровне значимости. (10 баллов)
- б) Рассчитайте мощность предложенного вами теста. (10 баллов)

Решение:

а) Запишем тестовую статистику:

$$T(X) = \frac{\frac{(1+2)}{2^{1+2}}X_1^2}{\frac{(1+1)}{2^{1+1}}X_1^1} = 0.75X_1$$

Для удобства поделим статистику на 0.75:

$$T_1(X) = X_1$$

Для того, чтобы сформировать критическую область, необходимо найти квантиль $X_1|H_0$ уровня 0.9, для чего сперва необходимо выписать функцию распределения X_1 при $x\in (0,2)$:

$$F_{X_1}(x) = \int_0^x \frac{(1+\alpha)}{2^{1+\alpha}} t^{\alpha} dt = \frac{x^{1+\alpha}}{2^{1+\alpha}}$$
, где $x \in (0,2)$

В результате получаем:

$$F_{X_1|H_0}(x)=rac{x^{1+1}}{2^{1+1}}=0.25x^2$$
, где $x\in(0,2)$

Найдем необходимую квантиль, обозначив ее как $q_{0.9}$:

$$0.25x^2 = 0.9 \implies q_{0.9} \approx 1.9$$

В результате нулевая гипотеза отвергается при $X_1 > 1.9$.

б) Рассчитаем мощность теста:

$$1 - P(X_1 \le 1.9|H_1) = 1 - \frac{1.9^{1+2}}{2^{1+2}} \approx 0.143$$

5. Имеется выборка с реализацией x = (0.1, 1, 0.2). На 10%-м уровне значимости протестируйте гипотезу о том, что выборка была получена из распределения со следующей функцией плотности **(10 баллов)**:

$$f_{X_1}(t) = egin{cases} 0.5t, ext{ если } t \in (0,2) \\ 0, ext{ в противном случае} \end{cases}$$

Решение:

Воспользуемся тестом Колмогорова. Сперва найдем функцию распределения для распределения, предполагаемого в соответствии с нулевой гипотезой:

$$F_{X_1}(t) = \int_0^t 0.5 k dk = 0.25 t^2$$
, где $t \in (0,2)$

Рассчитаем тестовую статистику:

$$\begin{split} d_n^+(x) &= \max(|\frac{1}{3} - 0.25 \times 0.1^2|, |\frac{2}{3} - 0.25 \times 0.2^2|, |\frac{3}{3} - 0.25 \times 1^2|) \approx \min(0.331, 0.657, 0.75) = 0.75 \\ d_n^-(x) &= \max(|\frac{1-1}{3} - 0.25 \times 0.1^2|, |\frac{2-1}{3} - 0.25 \times 0.2^2|, |\frac{3-1}{3} - 0.25 \times 1^2|) \approx \\ &\approx \max(0.0025, 0.3233, 0.4167) = 0.4167 \end{split}$$

$$d(x) = \sqrt{3} \max(d_n^+(x), d_n^-(x)) = \sqrt{3} \max(0.75, 0.4167) = \sqrt{3} \times 0.75 \approx 1.3$$

Так как выборка состоит из трех наблюдений, то распределение тестовой статистики при верной нулевой гипотезе можно аппроксимировать распределением Колмогорова с параметром 3. В силу того, что уровень значимости теста равняется 10%, критическая область будет иметь вид $\mathcal{T}_{0.1}=(q_{0.9}^3,\infty)\approx (1.102,\infty)$. Поскольку $1.3\in (1.102,\infty)$, то нулевая гипотеза отвергается на 10%-м уровне значимости.

6. Имеется выборка из трех наблюдений из некоторого непрерывного распределения. Нулевая гипотеза некоторого теста с простой альтернативной гипотезой отвергается, если $X_1 < X_2 < X_3$. Найдите вероятности ошибок первого и второго рода этого теста. (10 баллов)

Подсказка: вспомните комбинаторику.

Решение:

Поскольку X_1 , X_2 и X_3 независимы и одинаково распределены , то независимо от того, какая из гипотез верна, все события вида $X_i < X_j < X_k$, где $i \neq j \neq k$, равновероятны. Всего существует 3! = 6 соответствующих событий. Вероятности этих событий в сумме дают единицу, поскольку нестрогими неравенствами можно пренебречь в силу того, что выборка была получена из непрерывного распределения. Отсюда получаем, что:

$$P(X_1 < X_2 < X_3 | H_0) = \frac{1}{6}, \qquad 1 - P(X_1 < X_2 < X_3 | H_1) = 1 - \frac{1}{6} = \frac{5}{6}$$

Из полученного результата следует, что вероятности ошибки первого рода равняется $\frac{1}{6}$, а второго рода $-\frac{5}{6}$.

7. Рост (в дециметрах) и вес (в килограммах) случайно взятого пингвина хорошо описываются независимыми хи-квадрат случайными величинами с 10-ю и k степенями свободы соответственно. Нулевая гипотеза $H_0: k=1$ отвергается, если отношение суммарного роста к суммарному весу у двух случайно взятых пингвинов превышает 200. Найдите уровень значимости данного теста. (10 баллов)

Решение:

Имеются две выборки $X=(X_1,X_2)$ и $Y=(Y_1,Y_2)$, отражающие рост и вес пингвинов соответственно. По условия нулевая гипотеза отвергается, если $\frac{X_1+X_2}{Y_1+Y_2}>200$. Поскольку $X_1\sim\chi^2(10)$ и $Y_1|H_0\sim\chi^2(1)$, то по свойствам Хи-квадрат случайных величин получаем $(X_1+X_2)\sim\chi^2(20)$ и $(Y_1+Y_2)|H_0\sim\chi^2(2)$. Отсюда, в силу независимости выборок получаем:

$$Z = \frac{X_1 + X_2}{Y_1 + Y_2} \times \frac{2}{20} | H_0 \sim F(20, 2)$$

Отсюда получаем уровень значимости теста:

$$P\left(\frac{X_1 + X_2}{Y_1 + Y_2} > 200|H_0\right) = P\left(\frac{X_1 + X_2}{Y_1 + Y_2} \times \frac{2}{20} > 200 \times \frac{2}{20}|H_0\right) =$$
$$= P(Z > 20) = 1 - P(Z \le 20) \approx 0.05$$

Таблица	станлартного	нормального	распределения
1 40011114	or any aprilor o	110 philaminitor o	pacification

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

Значение квантилей распределений хи-квадрат, Стьюдента, Фишера и Колмогорова

Пусть q_{γ}^k — квантиль порядка γ распределения хи-квадрат с k степенями свободы:

$$\begin{aligned} q_{0.01}^2 &\approx 0.02, \quad q_{0.05}^2 \approx 0.103, \quad q_{0.1}^2 \approx 0.211, \quad q_{0.9}^2 \approx 4.61, \quad q_{0.95}^2 \approx 5.99, \quad q_{0.99}^2 \approx 9.21 \\ q_{0.01}^3 &\approx 0.115, \quad q_{0.05}^3 \approx 0.352, \quad q_{0.1}^3 \approx 0.584, \quad q_{0.9}^3 \approx 6.25, \quad q_{0.95}^3 \approx 7.82, \quad q_{0.99}^3 \approx 11.35 \\ q_{0.01}^4 &\approx 0.297, \quad q_{0.05}^4 \approx 0.711, \quad q_{0.1}^4 \approx 1.064, \quad q_{0.9}^4 \approx 7.779, \quad q_{0.95}^4 \approx 9.488, \quad q_{0.99}^4 \approx 13.277 \end{aligned}$$

Пусть q_{γ}^k — квантиль порядка γ распределения Стьюдента с k степенями свободы:

$$q_{0.9}^2 \approx 1.886$$
, $q_{0.95}^2 \approx 2.920$, $q_{0.99}^2 \approx 6.965$
 $q_{0.9}^3 \approx 1.638$, $q_{0.95}^3 \approx 2.353$, $q_{0.99}^3 \approx 6.965$
 $q_{0.9}^4 \approx 1.533$, $q_{0.95}^4 \approx 2.132$, $q_{0.99}^4 \approx 3.747$

Пусть F — случайная величина, имеющая распределения Фишера с 20 и 2 степенями свободы:

$$\mathbb{P}\{F<5\}\approx 0.82,\quad \mathbb{P}\{F<10\}\approx 0.91,\quad \mathbb{P}\{F<15\}\approx 0.93,\quad \mathbb{P}\{F<20\}\approx 0.95$$
 Пусть q_γ^n — квантиль порядка γ распределения Колмогорова с параметром n :

$$q_{0.9}^2 \approx 1.345$$
, $q_{0.95}^2 \approx 1.458$, $q_{0.99}^2 \approx 1.610$, $q_{0.9}^3 \approx 1.102$, $q_{0.95}^3 \approx 1.226$, $q_{0.99}^3 \approx 1.436$