Example: sequence data set wit two loci [simula

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.6.11 [June-18-15]

Program started at Wed Apr 6 20:18:16 2016 Program finished at Wed Apr 6 20:23:16 2016

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (from parmfile) 310705631

Start parameters:

Theta values were generated from the FST-calculation

M values were generated from the FST-calculation

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4
1 Africa	m	а	а	а
2 Americas	а	m	а	а
3 Pacific	а	а	m	а
4 Asia	а	а	а	m

Order of parameters:

1	Θ_1	=	Θ_1	[m]	<displayed></displayed>
2	Θ_2	=	Θ_1	[m]	
3	Θ_3^-	=	Θ_1	[m]	
4	Θ_4°	=	Θ_1	[m]	

			Example: sequence	data oot wit two	
	_>1 = N	l _{2->1} [a] ·	<displayed></displayed>		
M ₃ .	$_{->1}$ = M	$I_{3 \to 1}$ [a]	<displayed></displayed>		
M ₄₋	$_{->1}$ = M	$I_{4->1}$ [a]	<displayed></displayed>		
M_{1}	$_{->2}$ = M		<displayed></displayed>		
M ₃ .	$_{->2}$ = M		<displayed></displayed>		
M_{4}	$_{->2}$ = M		<displayed></displayed>		
M_{1}	$_{->3}$ = M		<displayed></displayed>		
M ₂ .	$_{->3}$ = M		<displayed></displayed>		
M ₄ .	$_{->3}$ = M	$I_{4->3}$ [a]	<displayed></displayed>		
M_{1}	$_{->4} = M$		<displayed></displayed>		
M_{2}			<displayed></displayed>		
M ₃₋	_>4 = M		<displayed></displayed>		
among loc	ei:			Mutation rat	e is constant for all loci
teav:					Bayesian inference
iegy.					Dayesian interence
tributions fo	r parameter				
	· parameter	Proposa	ı		
		•			
			=		
-				5 .	D :
					500
Unitorm	0.000000	5000.000000	10000.000000	1000.000000	500
n settings:					Long chain
nains					1
steps [a]					5000
(record eve	ery x step [b]				10
concurrent	chains (repli	cates) [c]			2
mpled) para	ameter value	s [a*b*c]			100000
discard tre	es per chain	(burn-in)			5000
kov chaine:					
	7			A ch	ains with temperatures
ing solicille	,		10000		1.50 1.00
			10000	00.00 3.00	Swapping interval is 1
					owapping interval is 1
:					
					infile.seq
:					outfile-bayes1
	M 3- M 4 M 1- M 3- M 4 M 1- M 2- M 4 M 1- M 2- M 3- M 3- M 4 M 1- M 2- M 3- M 5- M 6- M 1- M 1- M 1- M 2- M 1- M 1- M 2- M 3- M 1- M 1- M 2- M 3- M 1- M 1	M 3->1 = M M 4->1 = M M 1->2 = M M 3->2 = M M 4->2 = M M 1->3 = M M 2->3 = M M 4->3 = M M 1->4 = M M 2->4 = M M 2->4 = M M 3->4 = M M 2->4 = M M 3->4 = M M 3->4 = M M 3->4 = M M 3->4 = M M 3->6 among loci: tegy: tributions for parameter Prior Minimum Uniform 0.000000 Uniform 0.000000 Uniform 0.000000 n settings: nains steps [a] (record every x step [b] concurrent chains (replimpled) parameter value discard trees per chain kov chains: sing scheme	M 3->1 = M 3->1 [a]	M 2->1 = M 2->1 [a]	M 3->1 = M 3->1 [a]

Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data Number of loci: 2

Population	Locus	Gene copies
1 Africa	1	25
	2	25
2 Americas	1	25
	2	25
3 Pacific	1	25
	2	25
4 Asia	1	25
	2	25
Total of all populations	1	100
	2	100

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00740	0.01000	0.01170	0.01320	0.01660	0.01210	0.01204
1	Θ_2	0.00740	0.01000	0.01170	0.01320	0.01660	0.01210	0.01204
1	Θ_3^2	0.00740	0.01000	0.01170	0.01320	0.01660	0.01210	0.01204
1	Θ_4	0.00740	0.01000	0.01170	0.01320	0.01660	0.01210	0.01204
1	M _{2->1}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{3->1}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{4->1}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{1->2}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{3->2}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{4->2}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{1->3}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{2->3}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{4->3}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{1->4}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{2->4}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
1	M _{3->4}	0.0	20.0	110.0	180.0	280.0	150.0	119.2
2	Θ_1	0.00000	0.00100	0.00210	0.00280	0.00380	0.00230	0.00203
2	Θ_2	0.00000	0.00100	0.00210	0.00280	0.00380	0.00230	0.00203
2	Θ_3^-	0.00000	0.00100	0.00210	0.00280	0.00380	0.00230	0.00203
2	Θ_4	0.00000	0.00100	0.00210	0.00280	0.00380	0.00230	0.00203
2	M _{2->1}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{3->1}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{4->1}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{1->2}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{3->2}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{4->2}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{1->3}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{2->3}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	$M_{4->3}$	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{1->4}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	M _{2->4}	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
2	$M_{3->4}$	460.0	720.0	910.0	1080.0	1380.0	930.0	915.9
All	Θ_1	0.00000	0.00000	0.00150	0.00300	0.00400	0.00330	0.00677
All	$\Theta_2^{^1}$	0.00000	0.00000	0.00150	0.00300	0.00400	0.00330	0.00677

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
All	Θ_3	0.00000	0.00000	0.00150	0.00300	0.00400	0.00330	0.00677
All	Θ_4	0.00000	0.00000	0.00150	0.00300	0.00400	0.00330	0.00677
All	M _{2->1}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{3->1}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{4->1}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{1->2}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{3->2}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{4->2}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{1->3}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{2->3}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{4->3}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{1->4}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{2->4}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0
All	M _{3->4}	480.0	700.0	910.0	1100.0	1420.0	910.0	861.0

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel))

shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-921.37	-533.88	-431.62
2	-847.12	-669.25	-589.41
All	-1767.65	-1202.28	-1020.18

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = 0.847480

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	6393/6393	1.00000
Θ_2	6393/6393	1.00000
Θ_3	6393/6393	1.00000
Θ_4°	6393/6393	1.00000
M 2->1	6394/6394	1.00000
$M_{3->1}$	6239/6239	1.00000
$M_{4->1}$	6140/6140	1.00000
$M_{1\rightarrow 2}$	6247/6247	1.00000
$M_{3->2}$	6318/6318	1.00000
$M_{4->2}$	6177/6177	1.00000
$M_{1->3}$	6124/6124	1.00000
$M_{2->3}$	6253/6253	1.00000
$M_{4->3}$	6186/6186	1.00000
$M_{1->4}$	6221/6221	1.00000
$M_{2->4}$	6240/6240	1.00000
$M_{3->4}$	6275/6275	1.00000
Genealogies	17893/100113	0.17873

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.88543	1215.96
Θ_2	0.88543	1215.96
Θ_3	0.88543	1215.96
Θ_4	0.88543	1215.96
$M_{2\rightarrow 1}$	0.60724	5163.47
$M_{3->1}$	0.60724	5163.47
$M_{4->1}$	0.60724	5163.47
$M_{1\rightarrow 2}$	0.60724	5163.47
$M_{3->2}$	0.60724	5163.47
$M_{4->2}$	0.60724	5163.47
$M_{1\rightarrow 3}$	0.60724	5163.47
$M_{2\rightarrow3}$	0.60724	5163.47
$M_{4->3}$	0.60724	5163.47
$M_{1\rightarrow 4}$	0.60724	5163.47
$M_{2->4}$	0.60724	5163.47
$M_{3\rightarrow4}$	0.60724	5163.47
Ln[Prob(D G)]	0.84962	1641.47

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion

tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if							
you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to							
100 or more. With many populations (>3) it is also very common that some migration routes are estimated pool							
because the data contains little or no information for that route. Increasing the range will not help in such	,						
situations, reducing number of parameters may help in such situations.							
situations, reducing number of parameters may help in such situations.							
No warning was recorded during the run							
No warning was recorded during the run							