Algoritmos e Estruturas de Dados II

Exercícios dos Quizzes até a 1ª Prova

Questões extraídas dos *quizzes* da disciplina elaborados pela Prof.ª Eveline Alonso Resoluções elaboradas pelo aluno Luca Ferrari Azalim

1. O comando condicional if-else possibilita a escolha de um grupo de ações a serem executadas quando determinadas condições de entrada são ou não satisfeitas. O trecho de código abaixo contém uma estrutura condicional.

```
if (n < a + 3 || n > b + 4 || n > c + 1){
    l+= 5;
} else {
    l+= 2; k+=3; m+=7; x += 8;
}

if (n > b + 4){
    l+= 2; k+=3; m+=7; x += 8;
} else {
    l+= 5;
}
```

Considerando o código acima, marque a opção que apresenta o melhor e pior caso, respectivamente, para o número de adições.

- a) 5 e 9
- **b)** 4 e 9
- **c)** 5 e 12
- d) 6 e 12
- **e)** 4 e 12

Resolução:

n < a + 3	n > b + 4	n > c + 1	Total de Adições
V	V	V	7
V	V	F	7
V	F	V	4
V	F	F	4

F	V	V	8
F	V	F	8
F	F	V	9
F	F	F	9

2. O trecho de código abaixo contém o comando for.

```
for (int i = 0; i <= n; i+=2){
   b *= 3;
}</pre>
```

Considerando o código acima, assinale a opção que apresenta o número de vezes que realizamos a operação de multiplicação.

- a) $piso(\frac{n}{2})$
- b) $teto(\frac{n}{2}-1)$
- c) $teto(\frac{n}{2})$
- d) $piso(\frac{n}{2} + 1)$
- e) $teto(\frac{n}{2} + 1)$

Resolução:

Valor de n	Total de Multiplicações
4	3
8	5
3	2
5	3

3. O trecho de código abaixo contém o comando for.

```
for (int i = n; i >= 0; i--) {
```

```
for (int j = 2; j < (n - 7); j++) {
    b *= 5;
}
</pre>
```

Considerando o código acima, assinale a opção que apresenta o número de vezes que realizamos a operação de multiplicação.

```
a) n(n-2)
b) n(n-9)
c) n(n-7)
d) (n+1)(n-9)
e) n(n-1)(n-7)
```

4. O trecho de código abaixo realiza operações lógicas dentro de uma estrutura condicional.

```
if (n < a + 3 && n > b + 4 && n > c + 1){
    l+= 5;
} else {
    l+= 2; k+=3; m+=7; x += 8;
}

if (n <= b + 4){
    l+= 2; k+=3; m+=7; x += 8;
} else {
    l+= 5;
}</pre>
```

```
a) 6 e 12
```

b) 4 e 10

c) 6 e 11

d) 5 e 9

e) 4 e 9

Resolução:

n < a + 3	n > b + 4	n > c + 1	n <= b + 4 ou NOT(n > b + 4)	Total de Adições
V	V	V	F	6

V	V	F	F	9
V	F	V	V	11
V	F	F	V	11
F	V	V	F	7
F	V	F	F	7
F	F	V	V	10
F	F	F	V	10

5. Indique o número de multiplicações que o código abaixo realiza:

```
for (int i = n + 1; i > 0; i /= 2) {
   a *= 2;
}
```

- **a)** teto(log(n))
- **b)** piso(log(n+1)) + 1
- c) piso(log(n)) + 1
- **d)** piso(log(n))

Resolução:

Valor de n	Valor de i	Total de Multiplicações
8	9, 4, 2, 1	4
16	17, 8, 4, 2, 1	5
7	8, 4, 2, 1	4
17	18, 9, 4, 2, 1	5

6. Indique o número de multiplicações que o código abaixo realiza:

```
for (int i = 1; i < n; i *= 2) {
    a *= 2;</pre>
```

```
}
```

```
a) 2 \times (piso(log(n)) + 1)
```

c)
$$2 \times (teto(log(n)))$$

d)
$$2 \times (piso(log(n+1)+1)$$

Resolução:

Valor de n	Valor de i	Total de Multiplicações
8	1, 2, 4	6
16	1, 2, 4, 8	8
7	1, 2, 4	6
17	1, 2, 4, 8, 16	10

7. Indique o número de multiplicações que o código abaixo realiza:

```
for (int i = 1; i <= n; i *= 2) {
   a *= 2;
}</pre>
```

```
a) 2 \times (piso(log(n)) + 1)
```

c)
$$2 \times teto(log(n))$$

d)
$$2 \times (piso(log(n+1)) + 1)$$

Resolução:

Valor de n	Valor de i	Total de Multiplicações
8	1, 2, 4, 8	8
16	1, 2, 4, 8, 16	10
7	1, 2, 4	6
17	1, 2, 4, 8, 16	10

b) $2 \times (piso(log(n)))$

b) $2 \times piso(log(n))$

8. Indique o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 1; i /= 2) {
   a *= 2;
}
```

- a) piso(log(n+1)) + 1
- **b)** piso(log(n)) + 1
- **c)** teto(log(n))
- **d)** piso(log(n))

Resolução:

Valor de n	Valor de i	Total de Multiplicações
8	8, 4, 2	3
16	16, 8, 4, 2	4
7	7, 3	2
17	17, 8, 4, 2	4

9. Considere a soma: 4 + 25 + 64 + 121

Qual expressão resulta na soma acima?

a)
$$\sum (i^2 + 4)$$
, $para \ 0 \le i \le 3$

b)
$$\sum (3i + 2)^2$$
, para $0 \le i \le 3$

c)
$$\sum (2i + 4)^2$$
, para $0 \le i \le 3$

d)
$$\sum (i^2 + i + 4)$$
, para $0 \le i \le 3$

e)
$$\sum (i^2 + 2i + 4)$$
, $para 0 \le i \le 3$

10. Indique se a igualdade abaixo é verdadeira ou falsa:

$$\sum (3 + t) = 75 + \sum t, para 8 \le t \le 32$$

- a) Falso
- b) Verdadeiro

Resolução:

Passo 1: Aplicar a propriedade de associatividade.

$$\sum_{8}^{32} 3 + \sum_{8}^{32} t = 75 + \sum_{8}^{32} t$$

Passo 2: Passar o $\sum_{t=0}^{32} t$ para o outro lado com sinal inverso.

$$\sum_{8}^{32} 3 = 75 + \sum_{8}^{32} t - \sum_{8}^{32} t$$

Passo 3: Resolver a subtração do lado direito.

$$\sum_{8}^{32} 3 = 75$$

Passo 4: Resolver o somatório do lado esquerdo.

$$(32 - 8 + 1) \times 3 = 75$$

 $25 \times 3 = 75$
 $75 = 75$

11. Indique se a igualdade abaixo é verdadeira ou falsa:

$$\sum k^{p} = (\sum k), para \ 0 \le k \le 12$$

- a) Falso
- b) Verdadeiro

Resolução:

Passo 1: Substituir p por um número qualquer

$$\sum_{0}^{12} k^2 = \left(\sum_{0}^{12} k\right)^2$$

Passo 2: Troque o valor máximo dos somatórios por um número menor.

$$\sum_{0}^{3} k^{2} = \left(\sum_{0}^{3} k\right)^{2}$$

Passo 3: Resolva os somatórios e perceba que não se trata de uma igualdade.

$$0^{2} + 1^{2} + 2^{2} + 3^{2} = 0 + 1 + 2 + 3$$

 $0 + 1 + 4 + 9 = 0 + 1 + 2 + 3$
 $14 = 6$

12. Dado o somatório:

$$\sum (2i + x)$$
, para $1 \le i \le 3$

Escolha uma opção:

- **a)** 6 + 3x
- **b)** 6 + x
- **c)** 2 + 3x
- **d)** 12
- **e)** 12 + 3x

Resolução:

Passo 1: Aplicar a propriedade da associatividade.

$$\sum_{1}^{3} (2i) + \sum_{1}^{3} (x)$$

Passo 2: Aplicar a propriedade da distributividade.

$$2 \times \sum_{1}^{3} (i) + \sum_{1}^{3} (x)$$

Passo 3: Resolver o primeiro somatório utilizando a fórmula $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$, que é a fórmula que resulta na soma dos termos de uma progressão aritmética de razão 1.

$$\sum_{1}^{3} (i) = \frac{3(3+1)}{2} + i_{0} = 6$$

Passo 4: Resolver o segundo somatório multiplicando *x* pelo número de iterações do somatório.

$$\sum_{1}^{3}(x) = 3x$$

Passo 5: Substituir os somatórios pelas resoluções e simplificar.

$$2 \times \sum_{1}^{3} (i) + \sum_{1}^{3} (x) = 2 \times 6 + 3x$$
$$2 \times \sum_{1}^{3} (i) + \sum_{1}^{3} (x) = 12 + 3x$$

13. Um ponto importante a ser considerado no projeto de um algoritmo é a eficiência da solução proposta. Essa eficiência tradicionalmente relaciona o tamanho da entrada com o tempo de execução ou espaço de memória necessários para a execução do algoritmo. Sabendo que a função de complexidade de tempo de um algoritmo é $f(n) = 3n^2 + 5n - 4$, analise as afirmações abaixo sobre a ordem de complexidade desse algoritmo:

- I. $O(n^3)$
- II. $O(n^2)$
- III. $O(n^n)$

É correto o que se afirma em:

- a) II e III, apenas.
- b) I, apenas.
- c) I, II e III.
- d) I e II, apenas.

Resolução:

A ordem de complexidade da função $f(n) = 3n^2 + 5n - 4 \in O(n^2)$ e, consequentemente, O de qualquer função maior que $f(n) = n^2$.

- **14.** Leia as afirmativas a seguir, considerando que f1(n) e f2(n) são funções positivas.
- **1.** Se f2(n) é O(f1(n)), um algoritmo de função de complexidade de tempo f1(n) possui ordem de complexidade f2(n).
- **2.** Se f2(n) é O(f1(n)), então f1(n) é um limite superior para f2(n).
- **3.** Se a função $f2(n) = 5 \times log(n) + 11$, então a função f2(n) é O(log(n)).
- **4.** Se $f2(n) = n^2$ e $f1(n) = (n + 2)^2$, temos que f2(n) é O(f1(n)) e f1(n) é O(f2(n)).
- **5.** Se $f2(n) = 2 \times n + 1$ e $f1(n) = 2 \times n$, temos que f2(n) = O(f1(n)).

Assinale a alternativa que apresenta somente afirmativas corretas:

```
a) 1, 2, 4 e 5
```

- **b)** 1, 3, 4 e 5
- c) 2, 3, 4 e 5
- d) 2, 3 e 5
- e) 2, 3 e 4
- 15. Considere o código abaixo, implementado utilizando-se a linguagem de programação Java:

```
public static boolean saoDisjuntos(int[] A, int[] B) {
   for (int i = 0; i < A.length; i++)
        for (int j = 0; j < B.length; j++)
        if (A[i] == B[j])
            return false;
   return true;
}</pre>
```

Considere ainda que cada um dos vetores "A" e "B" apresenta n elementos.

A ordem de complexidade desse algoritmo é:

- a) O(log(n))
- **b)** O(n)
- c) $O(n \times log(n))$
- **d)** $O(n^2)$
- **e)** $0(2 \times n)$
- **16.** Considere dois vetores ordenados. Assuma ainda que cada um desses vetores apresente n elementos. Precisa-se formar então um terceiro vetor, correspondente à junção desses dois vetores ordenados mencionados anteriormente. Dessa forma, esse terceiro vetor apresentará 2n elementos, que também serão armazenados de forma ordenada. Pode-se afirmar que a ordem de complexidade desse processo será:
- **a)** $\Theta(log(n))$
- **b)** $\Theta(n)$
- c) $\Theta(n^2)$
- **d)** $\Theta(n \times log(n))$
- e) $\Theta(1)$
- **17.** Abaixo temos um gráfico que evidencia a relação de domínio assintótico entre diversas funções de complexidade de algoritmos.

Analisando o gráfico apresentado, podemos afirmar que:

- a) O limite superior do comportamento do custo de uma função de complexidade f(n) é n^2 quando n aproxima-se de 2n.
- b) A notação O permite comparar os limites superiores dos comportamentos de algoritmos. Assim,

podemos afirmar que um programa $\mathcal{O}(f4)$ é sempre melhor que um algoritmo $\mathcal{O}(f3)$.

- c) A ordem de complexidade de f3 corresponde a O(log(n)).
- d) f3 e f4 apresentam desempenho melhor que 2n.
- e) A complexidade de f1 corresponde a $\Theta(n^2)$.