Умные разрезания

- 1. (а) Существует ли клетчатый многоугольник из 24 клеток, который можно разрезать и на 6 четырёхклеточных фигурок вида буквы « Γ »? (Фигурки можно поворачивать и переворачивать.)
 - (б) Тот же вопрос для клетчатого многоугольника из 28 клеток нужно разрезать на 7 букв «T» и на 7 букв « Γ »?

- **2.** Существует ли клетчатый прямоугольник, который можно разрезать на квадраты 2×2 и прямоугольники 1×4 так, чтобы и тех, и других было по нечётному количеству?
- **3.** Можно ли из квадрата 7×7 вырезать по линиям сетки 8 пятиклеточных букв «Т»?

- 4. Квадрат 45×45 разрезали по линиям сетки на несколько прямоугольников. Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.
- **5.** Квадрат 9×9 разрезан на квадраты 2×2 и «уголки» из трех клеток. Какое наибольшее количество квадратов 2×2 могло при этом получиться?
- 6. Квадрат со стороной 2^{100} разбит по клеточкам на прямоугольники, стороны которых меньше стороны квадрата, а площади равны степеням двойки $(1, 2, 4, 8, \dots)$. Докажите, что среди прямоугольников разбиения найдутся два, у которых равны горизонтальные стороны и равны вертикальные стороны.
- 7. Фигуру разрезали на две части и сложили из них квадрат. Придумайте другой способ сделать это.

