Автор: Смирнов Алексей Владимирович ИСУ: 409578 Группа: R3242

Отчет по расчетно-графической работе №1 «Численное интегрирование дифференциальных уравнений первого порядка»

Вариант 16

Численно решить дифференциальное уравнение

$$y' = y - x^2, y(1) = 2$$

на отрезке [0;2] с шагом h=0.2 методом Эйлера, модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение y=y(x) и сравнить значения точного и приближенных решений в точке x=2. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления вести с четырьмя десятичными знаками.

Решение

Для численного решения уравнения удобно использовать средства языка программирования Python в совокупности с библиотекой NumPy. Для каждого из методов была написана программа, исходный код которых можно увидеть в Листингах 1–3.

Метод Эйлера

i	x_i	y_{i}	$f(x_i,y_i)$	Δy_i
1	0.0000	0.8825	0.0000	0.0000
2	0.2000	1.0931	1.0531	-0.2106
3	0.4000	1.3264	1.1664	-0.2333
4	0.6000	1.5680	1.2080	-0.2416
5	0.8000	1.8000	1.1600	-0.2320
6	1.0000	2.0000	1.0000	0.2000
7	1.2000	2.2000	0.7600	0.1520
8	1.4000	2.3520	0.3920	0.0784
9	1.6000	2.4304	-0.1296	-0.0259
10	1.8000	2.4045	-0.8355	-0.1671
11	2.0000	2.2374	0.0000	0.0000

Таблица 1.

модифицированный метод Эйлера

i	x_{i}	$x_{i+\frac{1}{2}}$	y	$y_{i+rac{1}{2}}$	$f(x_i,y_i)$	$f\!\left(x_{i+\frac{1}{2}},y_{i+\frac{1}{2}}\right)$	Δy_i
1	0.0000	0.1000	1.0407	0.0000	0.0000	0.0000	0.0000

2	0.2000	0.3000	1.2482	1.1274	1.2082	1.0374	-0.2075
3	0.4000	0.5000	1.4652	1.3346	1.3052	1.0846	-0.2169
4	0.6000	0.7000	1.6760	1.5444	1.3160	1.0544	-0.2109
5	0.8000	0.9000	1.8620	1.7398	1.2220	0.9298	-0.1860
6	1.0000	1.1000	2.0000	2.1000	1.0000	0.8900	0.1780
7	1.2000	1.3000	2.1780	2.2518	0.7380	0.5618	0.1124
8	1.4000	1.5000	2.2904	2.3234	0.3304	0.0734	0.0147
9	1.6000	1.7000	2.3050	2.2795	-0.2550	-0.6105	-0.1221
10	1.8000	1.9000	2.1829	2.0772	-1.0571	-1.5328	-0.3066
11	2.0000	2.1000	1.8764	0.0000	0.0000	0.0000	0.0000

Таблица 2.

Метод Рунге-Кутта

i	x	y	K	Δy_i
0	0.0000	1.0326		
1	0.2000	1.2401	-0.2400	-0.2400
	0.3000	1.1201	-0.2060	-0.4120
	0.3000	1.1371	-0.2094	-0.4188
	0.4000	1.0307	-0.1741	-0.1741
				-0.2075
2	0.4000	1.4578	-0.2596	-0.2596
	0.5000	1.3281	-0.2156	-0.4312
	0.5000	1.3500	-0.2200	-0.4400
	0.6000	1.2378	-0.1756	-0.1756
				-0.2177
3	0.6000	1.6703	-0.2621	-0.2621
	0.7000	1.5393	-0.2099	-0.4197
	0.7000	1.5654	-0.2151	-0.4302
	0.8000	1.4553	-0.1631	-0.1631
				-0.2125
4	0.8000	1.8587	-0.2437	-0.2437
	0.9000	1.7369	-0.1854	-0.3707

	0.9000	1.7661	-0.1912	-0.3824
	1.0000	1.6675	-0.1335	-0.1335
				-0.1884
5	1.0000	2.0000	0.2000	0.2000
	1.1000	2.1000	0.1780	0.3560
	1.1000	2.0890	0.1758	0.3516
	1.2000	2.1758	0.1472	0.1472
				0.1758
6	1.2000	2.1758	0.1472	0.1472
	1.3000	2.2494	0.1119	0.2237
	1.3000	2.2317	0.1083	0.2167
	1.4000	2.2841	0.0648	0.0648
				0.1087
7	1.4000	2.2845	0.0649	0.0649
	1.5000	2.3170	0.0134	0.0268
	1.5000	2.2912	0.0082	0.0165
	1.6000	2.2928	-0.0534	-0.0534
				0.0091
8	1.6000	2.2937	-0.0533	-0.0533
	1.7000	2.2670	-0.1246	-0.2492
	1.7000	2.2314	-0.1317	-0.2635
	1.8000	2.1619	-0.2156	-0.2156
				-0.1303
9	1.8000	2.1634	-0.2153	-0.2153
	1.9000	2.0557	-0.3109	-0.6217
	1.9000	2.0080	-0.3204	-0.6408
	2.0000	1.8430	-0.4314	-0.4314
				-0.3182
10	2.0000	1.8452		

Таблица 3.

Точное решение

Исходное уравнение

$$y' = y - x^2$$

переносом y в левую часть преобразуется в линенейное неоднородное уравнение первого порядка.

$$y'-y=-x^2$$

Характеристический многочлен

$$\lambda - 1$$

Решение соответствующего однородного уравнения

$$\lambda - 1 = 0 \Longrightarrow \lambda = 1$$
$$y_0 = C_1 e^x$$

Подберем частное решение методом неопределенных коэффициентов. Правая часть

$$-x^2$$

тогда частное решение имеет вид

$$\begin{split} \tilde{y} &= Ax^2 + Bx + C \\ \tilde{y}' &= 2Ax + B \\ \tilde{y}' - \tilde{y} &= (-A)x^2 + (2A - B)x + (B - C) = -x^2 \\ \begin{cases} A &= 1 \\ 2A - B &= 0 \Longrightarrow B = 2 \\ B - C &= 0 \Longrightarrow C = 2 \end{cases} \\ \tilde{y} &= x^2 + 2x + 2 \end{split}$$

Общее решение уравнения

$$y = C_1 e^x + x^2 + 2x + 2$$

Начальные условия: y(1) = 2:

$$2 = C_1 \cdot e + 1 + 2 + 2$$

$$C_1 = -\frac{3}{e}$$

Финальное решение

$$y(x) = -\frac{3}{e}e^x + x^2 + 2x + 2$$

Сравнение результатов

Решение	x = 1.0	x = 1.2	x = 1.4	x = 1.6	x = 1.8	x = 2.0	В точке $x = 1.0$	
							$\delta_{ ext{Afc}}$	$\delta_{ m Oth}$
Точное	2.0000	2.1758	2.2845	2.2936	2.1634	1.8452		

Метод	2.0000	2.2000	2.3520	2.4304	2.4045	2.2374	0.3922	21.257%
Эйлера								
Модиф.	2.0000	2.1780	2.2904	2.3050	2.1829	1.8764	0.0312	1.693%
метод								
Эйлера								
Метод	2.0000	2.1758	2.2845	2.2937	2.1634	1.8452	0.0000	0.002%
Рунге-								
Кутта								

Таблица 4.

```
1
   import numpy as np
                                                               Python
2
   np.set printoptions(4)
   XS = np.linspace(0,2,11)
3
4
   I = np.where(XS == 1)[0][0]
5
   n = N = XS.shape[0]
6
   h = np.float64('.2')
7
   f = lambda x, y: y - x*x
8
   cellformat = lambda x: "[{:5.4f}]".format(x)
9
10 table1 i = np.array(range(1, n+1))
11 table1_x = XS
12 table1_y = np.zeros((n,), dtype=np.float64)
13 table1_y[I] = 2
   table1_f = np.zeros((n,), dtype=np.float64)
   table1 deltay = np.zeros((n,), dtype=np.float64)
15
16
17
   for i in range(I, 0, -1):
18
       table1_f[i] = f(table1_x[i], table1_y[i])
19
       table1 deltay[i] = -h*table1 f[i]
20
       table1_y[i-1] = table1_y[i] + table1_deltay[i]
21
   for i in range(I, N-1):
22
       table1_f[i] = f(table1_x[i], table1_y[i])
23
       table1 deltay[i] = h*table1 f[i]
24
       table1_y[i+1] = table1_y[i] + table1_deltay[i]
25
   table1 = np.vstack((table1 i, table1 x, table1 y, table1 f,
26
   table1_deltay)).T
```

Листинг 1. Решение уравния методом Эйлера

```
1
                                                                Python
   # ...
2
3
   table2 i = np.arange(1, n+1)
4
   table2 x = XS
   table2 y = np.zeros((n,), dtype=np.float64)
5
6
   table2_f = np.zeros((n,), dtype=np.float64)
7
8
   table2 x2 = table2 x + h / 2
9
   table2_y2 = np.zeros((n,), dtype=np.float64)
   table2_f2 = np.zeros((n,), dtype=np.float64)
10
11
12
   table2 deltay = np.zeros((n,), dtype=np.float64)
13
14
   table2 y[I] = 2
15
16
17
   for i in range(I, 0, -1):
18
       table2 f[i] = f(table2 x[i], table2 y[i])
19
20
       # table2 x2
21
       table2_y2[i] = table2_y[i] -h/2 * table2_f[i]
22
       table2_f2[i] = f(table2_x2[i], table2_y2[i])
23
24
       table2 deltay[i] = -h*table2 f2[i]
25
       table2_y[i-1] = table2_y[i] + table2_deltay[i]
26
27
   for i in range(I, n-1):
       table2 f[i] = f(table2 x[i], table2 y[i])
28
29
30
       # table2 x2
       table2_y2[i] = table2_y[i] + h/2 * table2_f[i]
31
       table2_f2[i] = f(table2_x2[i], table2_y2[i])
32
33
34
       table2 deltay[i] = h*table2 f2[i]
35
       table2_y[i+1] = table2_y[i] + table2_deltay[i]
36
   table2 = np.vstack((table2 i,
37
```

```
table2_x, table2_x2,
table2_y, table2_y2,
table2_f, table2_f2,
table2_deltay)).T
```

Листинг 2. Решение уравнения модифицированным методом Эйлера

```
Python
1
   # ...
2
3
   table3 i = np.arange(0, N)
4
   table3 x1 = XS
5
   table3_x2 = table3_x1 + h / 2
6
   table3 x3 = table3 x1 + h / 2
7
   table3 x4 = table3 x1 + h
8
9
   table3_y1 = np.zeros((n,),dtype=np.float64)
10
   table3 y1[I] = 2
11
12 table3 y2 = np.zeros((n,),dtype=np.float64)
13
   table3 y3 = np.zeros((n,),dtype=np.float64)
14
   table3_y4 = np.zeros((n,),dtype=np.float64)
15
16
   table3 K1 = np.zeros((n,),dtype=np.float64)
   table3 K2 = np.zeros((n,),dtype=np.float64)
17
18
   table3_K3 = np.zeros((n,),dtype=np.float64)
19
   table3_K4 = np.zeros((n,),dtype=np.float64)
20
21
   table3 Dy = np.zeros((n,),dtype=np.float64)
22
23
   for i in range(I, 0, -1):
24
       table3 K1[i] = f(table3 x1[i], table3 y1[i]) * -h
25
26
       table3_y2[i] = table3_y1[i] + table3_K1[i] / 2
27
       table3 K2[i] = f(table3 x2[i], table3 y2[i]) * -h
28
29
       table3 y3[i] = table3 y1[i] + table3 K2[i] / 2
       table3 K3[i] = f(table3 x3[i], table3 y3[i]) * -h
30
31
```

```
table3 y4[i] = table3 y1[i] + table3 K3[i]
32
33
        table3 K4[i] = f(table3 \times 4[i], table3 \times 4[i]) * -h
34
35
        table3 Dy[i] = 1/6 * (table3 K1[i] + 2*table3 K2[i] +
36
                               2*table3 K3[i] + table3 K4[i])
37
38
        table3 y1[i-1] = table3 y1[i] + table3 Dy[i]
39
40
   for i in range(I, n-1):
        table3 K1[i] = f(table3 \times 1[i], table3 \times 1[i]) * h
41
42
43
        table3 y2[i] = table3 y1[i] + table3 K1[i] / 2
44
        table3_K2[i] = f(table3_x2[i], table3_y2[i]) * h
45
46
        table3 y3[i] = table3 y1[i] + table3 K2[i] / 2
47
        table3 K3[i] = f(table3 x3[i], table3 y3[i]) * h
48
49
        table3 y4[i] = table3 y1[i] + table3 K3[i]
50
        table3 K4[i] = f(table3 \times 4[i], table3 \times 4[i]) * h
51
52
        table3_Dy[i] = \frac{1}{6} * (table3_K1[i] + 2*table3_K2[i] +
53
                               2*table3_K3[i] + table3_K4[i])
54
55
        table3 y1[i+1] = table3 y1[i] + table3 Dy[i]
56
57
   table3 = np.vstack((table3 i,
58
                         table3 x1, table3 x2, table3 x3, table3 x4,
                         table3 y1, table3 y2, table3 y3, table3 y4,
59
                         table3_K1, table3_K2, table3_K3, table3_K4,
60
61
                         table3 Dy)).T
```

Листинг 3. Решение уравнения методом Рунге-Кутта