$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}} = (1 + e^{x})^{-1}$$

Chain rule:
$$g'(x) = -x^{-2}$$
, $g'(h(x)) = -(1+e^{-x})^{-2}$
 $h'(x) = 0 + 7$ chain rule $e^{-x} - (e^{-x})^{-1}$

$$h'(x) = 0 + 1$$
 chain whe $e^{-x} = (e^{x})^{-1}$
 $h'(x) = -(e^{x})^{-2} e^{x}$ $h'(x) = -e^{-x}$

$$\therefore \int f'(x) = \int (1 + e^{-x})^{-2} \left(\int e^{-x} \right)$$

$$=\frac{e^{-x}}{(1+e^{-x})^2}$$

· Form : Signal form.

$$=\frac{e^{-x}}{(1+e^{-x})(1+e^{-x})}=\left(\frac{1}{1+e^{-x}}\right)\left(\frac{e^{-x}}{1+e^{-x}}\right)=\delta(x)\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)$$

$$= \sigma(x) \left(\frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}} \right) = \sigma(x) \left(1 - \sigma(x) \right)$$

2.
$$y = \sigma(x_1), x_1 = wx$$

$$\frac{dy}{dx} = \frac{dy}{dx}, \frac{dx}{dx} = \sigma(wx)(1-\sigma(wx)) \cdot \omega$$