Problem: Mathematical Optimization Bài Tập: Ứng Dụng Toán Học Để Giải Quyết 1 Số Bài Toán Tối Ưu

Nguyễn Quản Bá Hồng*

Ngày 14 tháng 10 năm 2024

Tóm tắt nội dung

This text is a part of the series *Some Topics in Elementary STEM & Beyond*: URL: https://nqbh.github.io/elementary_STEM.

Latest version:

- Problem: Mathematical Optimization Bài Tập: Ứng Dụng Toán Học Để Giải Quyết 1 Số Bài Toán Tối Ưu.

 PDF: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_12/optimization/problem/NQBH_optimization_problem.pdf.
 - $T_EX: \verb|URL:|| https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_12/optimization/problem/NQBH_optimization_problem.tex.|$
- Problem & Solution: Mathematical Optimization Bài Tập & Lời Giải: Ứng Dụng Toán Học Để Giải Quyết 1 Số Bài Toán Tối Ưu.

 $PDF: \verb|URL:|| https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_12/optimization/solution/NQBH_optimization_solution.pdf.$

TEX: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_12/optimization/solution/NQBH_optimization_solution.tex.

Mục lục

1	Application of System of Linear Inequations to Solve Some Linear Programming Problems – Vận Dụng Hệ Bất Phương Trình Bậc Nhất Để Giải Quyết 1 Số Bài Toán Quy Hoạch Tuyến Tính 1.1 How to solve some linear programmings – Cách giải 1 số bài toán quy hoạch tuyến tính	
2	 Application of Derivative to Solve Some Optimization Problems in Reality – Vận Dụng Đạo Hàm Để Giải Quyết 1 Số Bài Toán Tối Ưu Trong Thực Tiễn 2.1 Application of derivative to solve some optimization problems in science, engineering, & technology – Vận dụng đạo hàm để giải quyết 1 số bài toán tối ưu trong khoa học, kỹ thuật, & công nghệ 2.2 Application of derivative to solve some optimization problems in economy – Vận dụng đạo hàm để giải quyết 1 số bài toán tối ưu trong kinh tế 	2
3	Miscellaneous	3
Tã	ài liêu	3

Application of System of Linear Inequations to Solve Some Linear Programming Problems – Vận Dụng Hệ Bất Phương Trình Bậc Nhất Để Giải Quyết 1 Số Bài Toán Quy Hoạch Tuyến Tính

Definition 1 (Linear programming). "Linear programming (LP), also called linear optimization, is a method to achieve the best outcome, e.g., maximum profit or lower cost, in a mathematical model whose requirements \mathcal{E} objective are represented by linear relationships. Linear programming is a special case of mathematical programming \equiv mathematical optimization." – Wikipedia/linear programming

More formally, linear programming is a technique for the optimization of a linear linear objective function, subject to linear equality & linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polytope. A linear programming algorithm finds a point in the polytope where this function has the largest (or smallest) value if such a point exists.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

Linear programs are problems that can be expressed in standard form as

Find a vector
$$\mathbf{x}$$
 that maximizes/minimizes $\mathbf{c}^{\top}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b} \ \& \ \mathbf{x} \geq \mathbf{0}$. (lp)

Here the components of \mathbf{x} are the variables to be determined, \mathbf{b} , \mathbf{c} are given vectors, & A is a given matrix. The function whose value is to be maximized ($\mathbf{x} \mapsto \mathbf{c}^{\top} \mathbf{x}$ in this case) is called the objective function. The constraint $A\mathbf{x} \leq \mathbf{x}$ & $\mathbf{x} \geq \mathbf{0}$ specify a convex polytope over which the objective function is to be optimized.

Linear programming can be applied to various fields of study, which is widely used in mathematics &, to a lesser extent, in business, economics, & to some engineering problems. There is a close connection between linear programs, eigenequations, John von Neumann's general equilibrium model, & structural equilibrium models (see dual linear program). Industries using linear programming models include transportation, energy, telecommunications, & manufacturing. It has proven useful in modeling diverse types of problems in planning, routing, scheduling, assignment, & design.

Định nghĩa 1 (Quy hoạch tuyến tính). Bài toán quy hoạch tuyến tính là bài toán tìm GTLN/GTNN của hàm mục tiêu trong điều kiện hàm mục tiêu là hàm bậc nhất đối với các biến \mathcal{E} mỗi 1 điều kiện ràng buộc là bất phương trình bậc nhất đối với các biến (không kể điều kiện ràng buộc biến thuộc tập số nào, e.g., \mathbb{N} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Ta có thể viết bài toán quy hoạch tuyến tính 2 biến x, y về dạng sau:

$$\max T := \alpha x + \beta y \text{ s.t } a_i x + b_i y \le c_i, \ \forall i = 1, 2, \dots, n,$$
 (lp2max)

$$\min T := \alpha x + \beta y \text{ s.t } a_i x + b_i y \le c_i, \ \forall i = 1, 2, \dots, n,$$
 (lp2min)

trong đó các điều kiện ràng buộc đều là các bất phương trình bậc nhất đối với x, y. See also:

- Problem: Inequation & Linear System of Inequations Bài Tập: Bất Phương Trình & Hệ Bất Phương Trình.

 Folder: Elementary STEM & Beyond/Elementary Mathematics/grade 10/linear system inequations/problem: [pdf¹][TpX²].
 - ∘ Problem & Solution: Inequation & Linear System of Inequations Bài Tập & Lời Giải: Bất Phương Trình & Hệ Bất Phương Trình.

Folder: Elementary STEM & Beyond/Elementary Mathematics/grade 10/linear system inequations/solution: [pdf³][T_EX⁴].

1.1 How to solve some linear programmings – Cách giải 1 số bài toán quy hoạch tuyến tính

Có thể giải 1 số bài toán quy hoạch tuyến tính dạng (lp2max) hay (lp2min) theo 2 bước:

- 1. Xác định miền nghiệm $S \subset \mathbb{R}^2$ của hệ bất phương trình $a_i x + b_i y \leq c_i, \forall i = 1, \dots, n$.
- 2. Tìm điểm $(x,y) \in S$ sao cho biểu thức $T = T(x,y) = \alpha x + \beta y$ có GTLN ở bài toán (lp2max) hoặc có GTNN ở bài toán (lp2min).

Khi miền nghiệm S là đa giác (polygon), biểu thức $T(x,y) = \alpha x + \beta y$ đạt GTLN/GTNN (gộp chung gọi là *cực trị*) tại $(x,y) \in \mathbb{R}^2$ là tọa độ 1 trong các đỉnh của đa giác đó. Khi đó, bước 2 có thể được thực hiện như sau:

- (a) Xác định tọa độ các đỉnh của đa giác đó.
- (b) Tính giá trị của biểu thức $T(x,y) = \alpha x + \beta y$ tại các đỉnh của đa giác đó.
- (c) So sánh các giá trị & kết luận.

[Thá+25, Chuyên đề II, §1, LT1-3, 1., 2., 3., 4., 5., pp. 20-25].

Application of Derivative to Solve Some Optimization Problems in Reality Vận Dụng Đạo Hàm Để Giải Quyết 1 Số Bài Toán Tối Ưu Trong Thực Tiễn

2.1 Application of derivative to solve some optimization problems in science, engineering, & technology – Vận dụng đạo hàm để giải quyết 1 số bài toán tối ưu trong khoa học, kỹ thuật, & công nghệ

Đạo hàm là 1 khái niệm toán học xuất phát từ nhiều vấn đề trong khoa học, kỹ thuật, & công nghệ (STEM) nên đạo hàm là 1 công cu quan trong để giải quyết 1 số bài toán tối ưu trong thực tiễn.

 $^{^1\}mathrm{URL}$: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/linear_system_inequations/problem/NQBH_linear_system_inequations_problem.pdf.

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/linear_system_inequations/problem/NQBH_linear_system_inequations_problem.tex.

³URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/linear_system_inequations/solution/NQBH_linear_system_inequations_solution.pdf.

⁴URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_10/linear_system_inequations/solution/NQBH_linear_system_inequations_solution.tex.

2.2 Application of derivative to solve some optimization problems in economy – Vận dụng đạo hàm để giải quyết 1 số bài toán tối ưu trong kinh tế

Đạo hàm là 1 công cụ quan trọng để giải quyết 1 số bài toán tối ưu trong kinh tế, e.g., bài toán tối ưu hóa chi phí sản xuất, bài toán tối ưu hóa lợi nhuận, \dots Xem thêm Vận Trù Học.

Để giải quyết bài toán tối ưu trong thực tiễn bằng phương pháp sử dụng đạo hàm:

- 1. Xây dựng hàm số biểu thị đại lượng biến thiên trong bài toán tối ưu đó.
- 2. Sử dụng đạo hàm để tìm GTLN/GTNN của hàm số vừa nhận được.
- 3. Dựa trên GTLN/GTNN của hàm số vừa nhận được ở Bước 2, có thể xác định được nghiệm của bài toán tối ưu ban đầu.

Thá+25, Chuyên đề II, §2, LT1-2, 1., 2., 3., 4., 5., pp. 29-37].

3 Miscellaneous

Tài liệu

[Thá+25] Đỗ Đức Thái, Phạm Xuân Chung, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Minh Phương. *Chuyên Đề Học Tập Toán 12.* Nhà Xuất Bản Đại Học Sư Phạm, 2025, p. 75.