Introduction to Tensors

Contravariant and covariant vectors

Rotation in 2-space: $x' = \cos \theta x + \sin \theta y$ $y' = -\sin \theta x + \cos \theta y$

To facilitate generalization, replace (x, y) with (x^1, x^2)

Prototype contravariant vector: $d\mathbf{r} = (dx^1, dx^2)$

$$dx^{1'} = \frac{\partial x^{1'}}{\partial x^1} dx^1 + \frac{\partial x^{1'}}{\partial x^2} dx^2 = \cos \theta dx^1 + \sin \theta dx^2$$

Similarly for $dx^{2'}$

Same holds for $\Delta \mathbf{r}$, since transformation is linear.

Compact notation:
$$dx^{i'} = \sum_{j} \frac{\partial x^{i'}}{\partial x^{j}} dx^{j}$$

(generalizes to any transformation in a space of any dimension)

Contravariant vector:
$$a^{i'} = \sum_{j} \frac{\partial x^{i'}}{\partial x^{j}} a^{j}$$

Now consider a scalar field $\phi(\mathbf{r})$: How does $\nabla \phi$ transform under rotations?

$$abla \phi = \left(rac{\partial \phi}{\partial x^1} \,,\, rac{\partial \phi}{\partial x^2}
ight) \qquad \qquad rac{\partial \phi}{\partial x^{i'}} = \sum\limits_{j} rac{\partial \phi}{\partial x^j} rac{\partial x^j}{\partial x^{i'}}$$

$$abla'' \phi = \left(\frac{\partial \phi}{\partial x^{1'}}, \frac{\partial \phi}{\partial x^{2'}} \right)$$

$$\frac{\partial x^j}{\partial x^{i'}} \text{ appears rather than } \frac{\partial x^{i'}}{\partial x^j}$$

For rotations in Euclidean n-space:

$$\frac{\partial x^j}{\partial x^{i'}} = \frac{\partial x^{i'}}{\partial x^j} = \cos \theta \qquad \text{where } \theta = \text{angle btwn } x^j \text{ and } x^{i'} \text{ axes}$$

It is not the case for all spaces and transformations that $\frac{\partial x^j}{\partial x^{i'}} = \frac{\partial x^{i'}}{\partial x^j}$

so we define a new type of vector that transforms like the gradient:

Covariant vectors:
$$a_{i'} = \sum_{j} a_{j} \frac{\partial x^{j}}{\partial x^{i'}}$$

Explicit demonstration for rotations in Euclidean 2-space:

$$x^{1'} = \cos \theta x^1 + \sin \theta x^2$$
$$x^{2'} = -\sin \theta x^1 + \cos \theta x^2$$

$$x^1 = \cos\theta \, x^{1'} - \sin\theta \, x^{2'}$$

$$x^2 = \sin\theta \, x^{1'} + \cos\theta \, x^{2'}$$

$$\frac{\partial x^{1'}}{\partial x^{1}} = \cos \theta = \frac{\partial x^{1}}{\partial x^{1'}}$$

$$\frac{\partial x^{2'}}{\partial x^1} = -\sin\theta = \frac{\partial x^1}{\partial x^{2'}}$$

$$\frac{\partial x^{1'}}{\partial x^2} = \sin \theta = \frac{\partial x^2}{\partial x^{1'}}$$

$$\frac{\partial x^{2'}}{\partial x^2} = \cos \theta = \frac{\partial x^2}{\partial x^{2'}}$$

What about vectors in Minkowski space?

$$x^{1'} = \gamma x^1 - \gamma \beta x^4$$

$$x^1 = \gamma x^{1'} + \gamma \beta x^{4'}$$

$$x^{2'} = x^2$$

$$x^2 = x^{2'}$$

$$x^{3'} = x^3$$

$$x^3 = x^{3'}$$

$$x^{4'} = -\gamma \beta x^1 + \gamma x^4$$

$$x^4 = \gamma \beta x^{1'} + \gamma x^{4'}$$

$$\frac{\partial x^{1'}}{\partial x^4} = -\gamma \beta \quad \text{but} \quad \frac{\partial x^4}{\partial x^{1'}} = \gamma \beta \quad => \text{contravariant and covariant vectors are different!}$$

vectors are different!

Recap (for arbitrary space and transformation)

Contravariant vector:
$$A^{i'} = \sum_{j} \frac{\partial x^{i'}}{\partial x^{j}} A^{j} = \sum_{j} p_{j}^{i'} A^{j}$$

Covariant vector:
$$A_{i'} = \sum_{j} \frac{\partial x^{j}}{\partial x^{i'}} A_{j} = \sum_{j} p_{i'}^{j} A_{j}$$

For future convenience, define new notation for partial derivatives:

$$p_i^{i'} \equiv rac{\partial x^{i'}}{\partial x^i} \quad ; \quad p_{i'}^i \equiv rac{\partial x^i}{\partial x^{i'}} \quad ; \quad rac{\partial^2 x^{i'}}{\partial x^i \partial x^j} = p_{ij}^{i'}$$

Note:
$$p_{i''}^i = \sum_{i'} p_{i'}^i p_{i''}^{i'}$$
 ; $\sum_{i'} p_{i'}^i p_j^{i'} = \delta_j^i$

$$\delta_i^i$$
 = Kronecker delta = 1 if $i=j$, 0 if $i\neq j$

Tensors

Consider an *N*-dimensional space (with arbitrary geometry) and an object with components $A_{l...n}^{i...k}$ in the $\{x^i\}$ coord system and $A_{l...n}^{i'...k'}$ in the $\{x^{i'}\}$ coord system.

This object is a mixed tensor, contravariant in i...k and covariant in l...n, under the coord transformation $\{x^i\} \to \{x^{i'}\}$ if

$$A_{l'...n'}^{i'...k'} = \sum_{i...k,l...n} A_{l...n}^{i...k} p_i^{i'}...p_k^{k'} p_{l'}^{l}...p_{n'}^{n}$$

Rank of tensor, M = number of indices

Total number of components = N^{M}

Vectors are first rank tensors and scalars are zero rank tensors.

If space is Euclidean *N*-space and transformation is rotation of Cartesian coords, then tensor is called a "Cartesian tensor".

In Minkowski space and under Poincaré transformations, tensors are "Lorentz tensors", or, "4-tensors".

Zero tensor **0** has all its components zero in all coord systems.

Main theorem of tensor analysis:

If two tensors of the same type have all their components equal in one coord system, then their components are equal in all coord systems.

Einstein's summation convention: repeated upper and lower indices => summation

e.g.:
$$A_i B^i = \sum_{i=1}^N A_i B^i$$

 $A_i B^i$ could also be written $A_j B^j$; index is a "dummy index"

Another example:
$$A_k^{ij}B_j^k = \sum_{j=1}^N \sum_{k=1}^N A_k^{ij}B_j^k$$

j and k are dummy indices; i is a "free index"

Summation convention also employed with $\frac{\partial u^i}{\partial x^i}$, $\frac{\partial q}{\partial x^i} \frac{dx^i}{d\tau}$, etc.

Example of a second rank tensor: Kronecker delta

$$\delta^i_j \, p^{i'}_i \, p^j_{j'} = p^{i'}_j \, p^j_{j'} = \delta^{i'}_{j'}$$

Tensor Algebra (operations for making new tensors from old tensors)

1. Sum of two tensors: add components: $C_{k...}^{i...} = A_{k...}^{i...} + B_{k...}^{i...}$

Proof that sum is a tensor: (for one case)

$$C_{k'}^{i'} = A_{k'}^{i'} + B_{k'}^{i'} = A_k^i p_i^{i'} p_{k'}^k + B_k^i p_i^{i'} p_{k'}^k$$
$$= (A_k^i + B_k^i) p_i^{i'} p_{k'}^k = C_k^i p_i^{i'} p_{k'}^k$$

- 2. Outer product: multiply components: e.g., $C_{klm}^{ij} = A_k^i B_{lm}^j$
- 3. Contraction: replace one superscript and one subscript by a dummy index pair

e.g.,
$$B_{km}^j = A_{khm}^{hj}$$

Result is a scalar if no free indices remain.

e.g,
$$A_i^i$$
 , A_{ij}^{ij} , $\delta_i^i=N$

4. Inner product: contraction in conjunction with outer product

e.g.:
$$C_{ikl} = A_{ij} B_{kl}^j$$

Again, result is a scalar if no free indices remain, e.g. $A_{ij} B^{ij}$

5. Index permutation: e.g., $B_{ijk} = A_{ikj}$

SP 5.3-5

Differentiation of Tensors

Notation:
$$A_{l...n,r}^{i...k} \equiv \frac{\partial}{\partial x^r} \left(A_{l...n}^{i...k} \right)$$
; $A_{l...n,rs}^{i...k} \equiv \frac{\partial^2}{\partial x^r \partial x^s} \left(A_{l...n}^{i...k} \right)$, etc.

$$A_{l'\dots n',r'}^{i'\dots k'} = \frac{\partial}{\partial x^{r'}} \left(A_{l\dots n}^{i\dots k} \, p_i^{i'} \dots p_k^{k'} p_{l'}^{l} \dots p_{n'}^{n} \right)$$

$$=rac{\partial}{\partial x^r}ig(A_{l...n}^{i...k}\,p_i^{i'}...p_k^{k'}p_{l'}^l...p_{n'}^nig)\;p_{r'}^r$$

$$=A_{l...n,r}^{i...k}p_i^{i'}...p_k^{k'}p_{l'}^{l}...p_{n'}^{n}p_{r'}^{r}$$
 IF transformation is linear

IF transformation is linear (so that p's are all constant)

=> derivative of a tensor wrt a coordinate is a tensor only for linear transformations (like rotations and LTs)

Similarly, differentiation wrt a scalar (e.g., τ) yields a tensor for linear transformations.

Now specialize to Riemannian spaces

characterized by a metric $d\mathbf{s}^2 = g_{ij} dx^i dx^j$ with $\det(g_{ij}) \neq 0$

Assume g_{ij} is symmetric: $g_{ij} = g_{ji}$ (no loss of generality, since they only appear in pairs)

If $d\mathbf{s}^2 > 0$ when $dx^i \not\equiv 0$, then space is "strictly Riemannian" (e.g., Euclidean *N*-space)

Otherwise, space is "pseudo-Riemannian" (e.g., Minkowski space)

 g_{ij} is called the "metric tensor".

Note that the metric tensor may be a function of position in the space.

Proof that g_{ij} is a tensor:

$$g_{ij}dx^idx^j = g_{ij}dx^{k'}p_{k'}^idx^{l'}p_{l'}^j \qquad \text{(since } dx^i \text{ is a vector)}$$

$$d\mathbf{s}^2 = g_{ij}dx^idx^j = g_{k'l'}dx^{k'}dx^{l'} \qquad (2 \text{ sets of dummy indices})$$

$$=> (g_{k'l'} - g_{ij}p_{k'}^i p_{l'}^j)dx^{k'}dx^{l'} = 0$$

It's tempting to divide by $dx^{k'}dx^{l'}$ and conclude $g_{k'l'}=g_{ij}p_{k'}^ip_{l'}^j$

But there's a double sum over k' and l', so this isn't possible.

Instead, suppose
$$dx^{i'} = 1$$
 if $i' = 1$
= 0 otherwise

$$=> g_{1'1'} - g_{ij} p_{1'}^i p_{1'}^j = 0$$
 Similarly for $g_{2'2'}$, etc.

$$(g_{k'l'} - g_{ij}p_{k'}^i p_{l'}^j)dx^{k'}dx^{l'} = 0$$

Now suppose
$$dx^{i'} = 1$$
 if $i' = 1$ or 2
= 0 otherwise

Only contributing terms are: k'=1, l'=1 k'=1, l'=2 k'=2, l'=1 k'=2, l'=2

$$(g_{k'l'} - g_{ij}p_{k'}^{i}p_{l'}^{j})dx^{k'}dx^{l'} = \underbrace{g_{1'1'} - g_{ij}p_{1'}^{i}p_{1'}^{j} + g_{2'2'} - g_{ij}p_{2'}^{i}p_{2'}^{j} + g_{2'1'} - g_{ij}p_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^{i}p_{2'}^{i} + g_{2'}^$$

 $g_{1'2'} = g_{2'1'}$ since g_{ij} is symmetric.

 $g_{ij} p_{2'}^i p_{1'}^j = g_{ij} p_{1'}^i p_{2'}^j$ since i and j are dummy indices.

$$=> 2(g_{1'2'} - g_{ij} p_{1'}^i p_{2'}^j) = 0$$
 Similarly for all $g_{i'j'}$ $(i' \neq j')$

General definition of the scalar product: $\mathbf{A} \cdot \mathbf{B} = g_{ij} A^i B^j$

Define g^{ij} as the inverse matrix of g_{ij} : $g^{ij}g_{jk} = \delta^i_k$ g^{ij} is also a tensor, since applying tensor transformation yields $g^{i'j'}g_{j'k'} = \delta^{i'}_{k'}$, which defines $g^{i'j'}$ as the inverse of $g_{i'j'}$

Raising and lowering of indices: another tensor algebraic operation, defined for Riemannian spaces = inner product of a tensor with the metric tensor

e.g.:
$$A_i = g_{ij}A^j$$
 ; $A^i = g^{ij}A_j$; $A^i_{jk} = g^{ir}g_{ks}A_{rj}^s$

Note: covariant and contravariant indices must be staggered when raising and lowering is anticipated.

4-tensors

In all coord systems in Minkowski space:

$$\begin{split} d\mathbf{s}^2 &= g_{\mu\nu} \, dx^{\mu} \, dx^{\nu} = c^2 dt^2 - dx^2 - dy^2 - dz^2 \\ => & g_{\mu\nu} = \mathrm{diag}(-1, -1, -1, 1) = g^{\mu\nu} \\ \text{e.g.} & A_i = g_{i\mu} \, A^{\mu} = -A^i \ (i = 1, 2, 3) \\ & A_4 = g_{4\mu} A^{\mu} = A^4 \\ & U^{\mu} = \gamma(u) \, (\mathbf{u}, c) \ \Rightarrow \ U_{\mu} = \gamma(u) \, (-\mathbf{u}, c) \end{split}$$

Under standard Lorentz transformations:

$$p_1^{1'} = p_4^{4'} = \gamma$$
, $p_4^{1'} = p_1^{4'} = -\gamma\beta$, $p_2^{2'} = p_3^{3'} = 1$

$$p_{1'}^1 = p_{4'}^4 = \gamma \; , \; \; p_{4'}^1 = p_{1'}^4 = \gamma \beta \; , \; \; p_{2'}^2 = p_{3'}^3 = 1$$

All the other p's are zero.

e.g.:
$$A^{1'2'} = A^{\mu\nu} p_{\mu}^{1'} p_{\nu}^{2'} = A^{\mu 2} p_{\mu}^{1'} = \gamma \left(A^{12} - \beta A^{42} \right)$$