

LCD Display (1)

Hsi-Pin Ma

http://lms.nthu.edu.tw/course/21094
Department of Electrical Engineering
National Tsing Hua University

ROM Revisit

ROM Truth Table (Partial)

		Inputs				Outputs							
address (decimal)	14	13	12	11	10	A7	A6	Α5	A4	А3	A2	A1	A0
0	0	0	0	0	0	1	0	1	1	0	1	1	0
1	0	()	0	0	1	0	0	0	1	1	1	0	1
2	0	0	0	1	0	1	1	0	0	0	1	0	1
3	0	0	0	1	1	1	0	1	1	0	0	1	0
			:					:					
28	1	1	1	0	0	0	0	0	0	1	0	0	1
29	1	1	1	0	1	1	1	1	0	0	0	1	0
30	1	1	1	1	0	0	1	O	0	1	0	1	0
31	1	1	1	1	1	0	0	1	1	0	0	1	1

COE Format

- COE: memory coefficient file
- Two parameter:
 - memory_initialization_radix
 - Radix of the values in the memory_initialization_vector
 - Ex: 2, 10, or 16
 - memory_initialization_vector:
 - Memory content
 - Memory words are separated by whitespace
 - You can use comma (,) to help identify the boundary
 - Vector (entire memory) ended by semicolon

COE Example

```
; 8-bitwide by 8-deep RAM
memory_initialization_radix=2;
memory_initialization_vector=
                  whitespace
00000000
00010000,
00111000 ,
01111100 ,
00111000 ,
00010000,
00000000,
00000000;
```


You can use ASCII art generator to generate the pictures or use drawing tool to export the figures for you.

Generate ROM (1/6)

New Source

Generate ROM (2/6)

• Choose the source type: IP (CORE Generator & Architecture Wizard) and key in the filename

Generate ROM (3/6)

• Select:

Memories & Storage Elements -> RAMs/ROMs -> Block
 Memory Generator

Generate ROM (4/6)

- Wait for a while
- Select Memory Type:

Single Port ROM

Generate ROM (5/6)

• Data width: 64 bits, address depth: 1024

Generate ROM (6/6)

- Check "Load Init File"
- Select "Browse" and load your COE file

How to Use ROM Module

 You can find the port names through the functional model

Please note you should **wait for one clock** after your issue an address and then you can get your correct data.

LCD Display

• LCD128x64

- 128 pixels in row (Y) and 64 pixels in column (X)
- Two interlace frames cs[0] and cs[1] (similar as 14SD control)
- 1 frame has 8 pages, and 1 page has 64 x 8 bits (64 bytes)
- Use instructions to control the internal state
 - Set 'Display Start Line'
 - Set 'Address' (Y)
 - Set 'Page' (X)
 - Write display data
 - Display ON/OFF
- Check the details in EVS6使用手册 (P27,P28)

LCD Display (128x64)

Concept of a ROM Controller

- Fetch a page one time
- Data rearrangement (words to bytes)
 - 8x64-bit (8 *words*) to 64x8-bit (64 *bytes*)

64-bit word
:
ROM

One Page

D0
D7

LCD Display

Concept of a ROM Controller

ROM

One page

LCD Display

LCD Display

lcd_ctrl

rom_ctrl

Pin Assignment

LCD IO	FPGA Pin Assignment					
LCD_RST	E3					
LCD_CS[1]	E1					
LCD_CS[0]	F4					
LCD_E	F5					
LCD_RW	C2					
LCD_DI	C1					

LCD IO	FPGA Pin Assignment
LCD_D[7]	F3
LCD_D[6]	D2
LCD_D[5]	D1
LCD_D[4]	H7
LCD_D[3]	G6
LCD_D[2]	E4
LCD_D[1]	D3
LCD_D[0]	F6

Use RAM

 You can use RAM for changeable LCD display of your project

Similar as ROM

- The same in IP generator, except choose 'Single Port RAM'
- Now have write

Timing

- Write control, address, data should be at the same clock cycle
- Data read out from RAM is one clock cycle late than the address control

Indexed Vector Part Selects

- Verilog-2001 adds the capability to use variables to select a group of bits from a vector
 - The starting point of the part-select can vary
 - The width of the part-select remains constant

mem_next[((counter_word-1)*64) +: 64] = rom_out;

The starting point of the part-select is variable

The width of the part-select is constant

- +: Indicates the part-select increases from the starting point
- -: Indicates the part-select decreases from the starting point

Indexed Vector Part Selects

mem_next[((counter_word-1)*64)+:64] = rom_out;

counter_word	address range
1	0-63
2	64-127
3	128-191
4	192-255
5	256-319
6	320-383
7	384-447
8	448-511

Bad Coding Style:

Inferred Latches in Combinational Circuits

- Incomplete case statement
 - Make sure to have *default* case
 - Or always specify the default value in the beginning of the always block

```
always @*
begin
y=0;
case (alu_control)
2'd0: y = x + z;
2'd1: y = x - z;
2'd2: y = x * z;
default: y = 0;
endcase
end
```

```
always @(state or in)
begin
next_state = `INIT_STATE;
case (state)
S0: if (in) next_state = S1;
S1: if ...
...
endcase
end
```


Device Adjustment

EVS6 使用手册

Display Control

Pin No.	Symbol	Level	Description
1	Vss	0V	Ground
2	V_{DD}	3.0V	Supply voltage for logic
3	Vo	(Variable)	Operating voltage for LCD
4	D/I	H/L	H: Data , L: Instruction
5	R/W	H/L	H: Read (MPU←Module) , L: Write (MPU→Module)
6	E	Н	Enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	CS1	Н	Select Column 1~ Column 64
16	CS2	Н	Select Column 65~ Column 128
17	RST	L	Reset signal
18	Vout	-10V	Negative Voltage
19	A	_	Power Supply for LED backlight (+)
20	K	_	Power Supply for LED backlight (-)

Display Control Instruction

Instruction	D/I	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function
Display ON/OFF	0	0	0	0	1	1	1	1	1	0/1	Controls the display on or off. Internal status and display RAM data are not affected. 0:OFF, 1:ON
Set Address	0	0	0	1	Y address (0~63)			(3)		Sets the Y address in the Y address counter.	
Set Page (X address)	0	0	1	0	1	1	1 Page (0 ~7)		-7)	Sets the X address at the X address register.	
Display Start Line	0	0	1	1	Display start line(0~63)				0~63)		Indicates the display data RAM displayed at the top of the screen.
Status Read	0	1	BUS Y	0	ON/ OFF		0	0 0 0		0	Read status. BUSY 0:Ready, 1:In operation. ON/OFF 0:Display ON, 1:Display OFF. RESET 0:Normal, 1:Reset.
Write Display Data	1	0			Display Data					Writes data (DB0:7)into display data RAM. After writing instruction, Y address is increased by 1 automatically.	
Read Display Data	1	1			Display Data						Reads data (DB0:7) from display data RAM to the data bus.