$$\Xi(1690)$$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: ***

AUBERT 08AK, in a study of $\Lambda_c^+ \to \Xi^- \pi^+ K^+$, finds some evidence that the $\Xi(1690)$ has $J^P=1/2^-$.

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged $\Sigma\overline{K}$ mass spectra in $K^-p\to (\Sigma\overline{K})K\pi$ at 4.2 GeV/c. The data from the $\Sigma\overline{K}$ channels alone cannot distinguish between a resonance and a large scattering length. Weaker evidence at the same mass is seen in the corresponding $\Lambda\overline{K}$ channels, and a coupled-channel analysis yields results consistent with a new Ξ .

BIAGI 81 sees an enhancement at 1700 MeV in the diffractively produced ΛK^- system. A peak is also observed in the $\Lambda \overline{K}^0$ mass spectrum at 1660 MeV that is consistent with a 1720 MeV resonance decaying to $\Sigma^0 \overline{K}^0$, with the γ from the Σ^0 decay not detected.

BIAGI 87 provides further confirmation of this state in diffractive dissociation of Ξ^- into ΛK^- . The significance claimed is 6.7 standard deviations.

ADAMOVICH 98 sees a peak of 1400 \pm 300 events in the $\Xi^-\pi^+$ spectrum produced by 345 GeV/c Σ^- -nucleus interactions.

Ξ(1690) MASSES

MIXED CHARGES

VALUE (MeV)

DOCUMENT ID

 1690 ± 10 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

$\Xi(1690)^{0}$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1686±4	1400	ADAMOVICH 98 \		WA89	Σ^- nucleus, 345 GeV/ c
$1699\!\pm\!5$	175	$^{ m 1}$ DIONISI	78	HBC	$K^{-} p 4.2 \text{ GeV}/c$
$1684\!\pm\!5$	183	² DIONISI	78	HBC	K^-p 4.2 GeV/ c
<i>Ξ</i> (1690) [−] MASS					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$1691.1 \pm 1.9 \pm 2.0$	104	BIAGI	87	SPEC	\varXi^- Be 116 GeV
1700 ± 10	150	³ BIAGI	81	SPEC	Ξ^- H 100. 135 GeV

Ξ(1690) WIDTHS

HBC

⁴ DIONISI

45

MIXED CHARGES

VALUE (MeV)

 1694 ± 6

DOCUMENT ID

<30 OUR ESTIMATE

HTTP://PDG.LBL.GOV

Page 1

Created: 5/30/2017 17:20

 $K^{-} p 4.2 \text{ GeV}/c$

≡(1690)⁰ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
10± 6	1400	ADAMOVICH	98	WA89	Σ^- nucleus, 345 GeV/ c
$44\!\pm\!23$	175	¹ DIONISI	78	HBC	$K^- p 4.2 \text{ GeV}/c$
20± 4	183	² DIONISI	78	HBC	K^-p 4.2 GeV/ c

Ξ(1690)[−] WIDTH

HTTP://PDG.LBL.GOV

VALUE (MeV) CL% EVTS	DOCUMENT ID	TECN	COMMENT
< 8 90 104	BIAGI 8	7 SPEC	Ξ^- Be 116 GeV
47 ± 14 150	BIAGI 8:	1 SPEC	Ξ^- H 100, 135 GeV
26 ± 6 45	[‡] DIONISI 78	8 HBC	$K^- p 4.2 \text{ GeV}/c$

Ξ (1690) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\Lambda \overline{K}$	seen
Γ_2	$\Sigma \overline{K}$	seen
Γ3	$ \Xi \pi $ $ \Xi^{-} \pi^{+} \pi^{0} $	seen
Γ_4	$\equiv -\pi + \pi^0$	
Γ_5	$=\frac{\pi}{\Xi} - \frac{\pi}{\pi} + \frac{\pi}{\pi}$	possibly seen
Γ ₆	$\Xi(1530)\pi$	

Ξ (1690) BRANCHING RATIOS

$\Gamma(\Lambda \overline{K})/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT	
seen	104	BIAGI	SPEC	_	\varXi^- Be 116 GeV	
$\Gamma(\Sigma \overline{K})/\Gamma(\Lambda \overline{K})$						Γ_2/Γ_1
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.75 ± 0.39	75	ABE	02C	BELL		$e^+e^-pprox \Upsilon(4S)$
2.7 ± 0.9		DIONISI	78	HBC	0	K^-p 4.2 GeV/ c
3.1 ± 1.4		DIONISI	78	HBC	_	K^-p 4.2 GeV/ c
$\Gamma(\Xi\pi)/\Gamma(\Sigma\overline{K})$ VALUE		DOCUMENT ID		TECN	CHG	Γ_3/Γ_2
< 0.09		DIONISI	78	HBC	0	$K^- p$ 4.2 GeV/ c
$\Gamma(\Xi\pi)/\Gamma_{total}$						Г ₃ /Г
VALUE		DOCUMENT ID		TECN	COMN	1ENT
seen		ADAMOVICH	98	WA89		nucleus, 345 eV/ <i>c</i>
$\Gamma(\Xi^-\pi^+\pi^0)/\Gamma(\Sigma^{\overline{B}})$	₹)					Γ_4/Γ_2
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
< 0.04		DIONISI	78	HBC	0	K^-p 4.2 GeV/ c

Page 2

Created: 5/30/2017 17:20

$\Gamma(\Xi^-\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_5/Γ							
VALUE	<u>EVTS</u>	DOCUMENT ID	DOCUMENT ID			COMMENT	
possibly seen	4	BIAGI	BIAGI 87			<i>Ξ</i> − Be 116 GeV	
$\Gamma(oldsymbol{\Xi}^-\pi^+\pi^-)/\Gamma(oldsymbol{\Sigma}\overline{K})$						Γ_5/Γ_2	
VALUE		DOCUMENT ID		TECN	CHG	COMMENT	
< 0.03		DIONISI	DIONISI 78			K^-p 4.2 GeV/ c	
$\Gamma(\Xi(1530)\pi)/\Gamma(\Sigma\overline{K})$ Γ_6/Γ_2							
VALUE		DOCUMENT ID		TECN	CHG	COMMENT	
< 0.06		DIONISI	78	HBC	_	K^-p 4.2 GeV/ c	

Ξ (1690) FOOTNOTES

Ξ(1690) REFERENCES

AUBERT	08AK	PR D78 034008	E	3. Aubert <i>et al.</i>	(BABAR Collab.)
ABE	02C	PL B524 33	k	K. Abe <i>et al.</i>	(KEK BELLE Collab.)
ADAMOVICH	98	EPJ C5 621	N	Л.I. Adamovich <i>et al.</i>	(CERN WA89 Collab.)
BIAGI	87	ZPHY C34 15	5	S.F. Biagi <i>et al.</i>	(BRIS, CERN, GEVA+) I
BIAGI	81	ZPHY C9 305	S	5.F. Biagi <i>et al.</i>	(BRIS, CAVE, GEVA+)
DIONISI	78	PL 80B 145	(C. Dionisi <i>et al.</i>	(CERN, AMST, NIJM+) I

Created: 5/30/2017 17:20

 $^{^1}$ From a fit to the $\Sigma^+\,K^-$ spectrum. 2 From a coupled-channel analysis of the $\Sigma^+\,K^-$ and $\Lambda\overline{K}^0$ spectra. 3 A fit to the inclusive spectrum from $\Xi^-\,N\to\Lambda K^- X.$ 4 From a coupled-channel analysis of the $\Sigma^0\,K^-$ and ΛK^- spectra.