CS-235: Computer Organization & Assembly Language

Outlines

- Input/output Addressing
 - Port Based I/O
 - Bus Based I/O
 - Memory Mapped I/O
 - Standard/Isolated I/O
- I/O Instructions

A System Diagram

Computer System Block Diagram

FIGURE 1–12 The block diagram of a computer system showing the address, data, and control bus structure.

I/O Addressing

 Every Microprocessor possesses certain pins to communicate with other devices

Port Based I/O	Bus Based I/O	
Processor has one or more N ports	Shared communication channel for all devices	
Processor access the ports just like a register	Communication protocol is built into the processor	
	Single instruction is required to complete one process	

Buses

Shared communication link to connect multiple devices

Memory Mapped I/O

Memory Mapped I/O

- IO/Memory shares the same bus.
- Devices can be accessed in the same way as we access memory in general scenario.

Memory Mapped I/O

Bus has 20-bit address

- Lower 512K Addresses are mapped for Memory
- Higher 512K Addresses correspond to Peripherals

I/O

Memory

Model 4

Shared memory models

Memory Mapped I/O Address (8088/8086)

Figure 8-40 (a) Isolated I/O ports. (b) Memory-mapped I/O ports.

I/O Mapped I/O Addresses

Note: I/O Mapped I/O is also known as Standard I/O or Isolated I/O

For 16-bit processor, standard I/O Address Space is:

For 16-bit processor, standard I/O address space is:

When $IO/\overline{M} = 0$

All 1Mbytes contains the memory address

For 16-bit processor, standard I/O address space is;

When $IO/\overline{M} = 1$

64kbytes out of 1MB are for I/O address.

- Dedicated Address Space for Memory & IO
- Additional Pins on Bus indicate that either Memory or I/O is being accessed

Standard I/O Addressing (8088/8086)

Memory Mapped I/O

Peripheral Registers and Memory occupy same Address Space

I/O Mapped I/O

 IO/\overline{M} signal points towards Memory or Peripherals

Memory Mapped I/O

Peripheral Registers and Memory occupy same Address Space

Bus Address is 16-bits

- Lower 32K Address Space for Mem
- Higher 32K Address Space for I/O

I/O Mapped I/O

 IO/\overline{M} signal points towards Memory or Peripherals

Bus Address is 16-bits

- 64K Address Space is available for Mem
- Also 64K Addresses are available for I/O

Memory Mapped I/O

Peripheral Registers and Memory occupy same Address Space

Bus Address is 16-bits

- Lower 32K Address Space for Mem
- Higher 32K Address Space for I/O

MOV, ADD works for both Memory and I/O

I/O Mapped I/O

 IO/\overline{M} signal points towards Memory or Peripherals

Bus Address is 16-bits

- 64K Address Space is available for Mem
- Also 64K Addresses are available for I/O

Special Instructions like IN, OUT, INS and OUTS are required for I/O

Memory Mapped I/O

Peripheral Registers and Memory occupy same Address Space

Bus Address is 16-bits

- Lower 32K Address Space for Mem
- Higher 32K Address Space for I/O

MOV, ADD works for both Memory and I/O

Example:

ADD A, B

I/O Mapped I/O

 IO/\overline{M} signal points towards Memory or Peripherals

Bus Address is 16-bits

- 64K Address Space is available for Mem
- Also 64K Addresses are available for I/O

Special Instructions like IN, OUT, INS and OUTS are required for I/O

Example: IN R0,A
IN R1,B
ADD R0,R1
OUT A.R0

Standard I/O

I/O Devices

Switches, LEDs, Keyboard, Mouse etc.

I/O Interface

- Receives Address from CPU
- Decodes the I/O Address for Port Number
- Latch the Output Data
- Sample Input Data
- Synchronize Data Transfer
- Voltage Level translation to operate I/O Devices

I/O Map of Personal Computer

Reserved for Computer System (0000H-0400H)

Minimum Mode Interface

Signals for I/O Read Cycle??

Bus Read Cycle

Bus Read Cycle

Maximum Mode Interface

I/O Bus Cycle Status Code

<u>S2</u>	S1	S0	Function
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive

Fixed Address

Byte: *IN AL*, *p*8

Word: *IN AX*, *p*8

DWord: IN EAX, p8

Variable Address

Byte: IN AL, DX

Word: IN AX, DX

Can only access first 256 locations using fixed address

Can access all 64K locations using variable Address

Instruction	Format	Meaning	Operation
IN	IN Acc, Port	Input direct	Acc ← Port
	IN Acc, DX	Input indirect	$Acc \leftarrow ((DX))$
OUT	OUT Port, Acc	Output direct	Port ← Acc
	OUT DX, Acc	Output indirect	((DX)) ← Acc

Memory Mapped vs Standard I/O

Example: (Memory Mapped I/O)

-ADD A, B

Example: (Standard Mapped I/O)

Memory Mapped vs Standard I/O

Example: (Memory Mapped I/O)

 $\neg ADD A, B$

Example: (Standard Mapped I/O)

- -IN R0, A
- -INR1,B
- -ADD R0, R1
- -OUT A, R0

Reading Assignment

Example

Write a sequence of instructions that will output the data
 FFh to a byte wide output port at address 00ABh of the
 I/O address space

Reading Assignment

Example

 Write a sequence of instructions that will output the data FFh to a byte wide output port at address 00ABh of the I/O address space

Solution:

- -MOV AL, FFH
 - -OUT AB, AL

Reading Assignment

Example

 Write a series of instructions that will output FFh to an output port located at address B000h of I/O address space.

Reading Assignment

Example

 Write a series of instructions that will output FFh to an output port located at address B000h of I/O address space

Solution:

- -MOVDX, B000H
 - $-MOV\ AL, FFh$
 - -OUTDX, AL

Reading Assignment

Example

 Data are to be read in from 2 bytes wide input ports at Addresses 00AAh and 00A9h and then output as a WORD to output port at Address B000h

I/O Instructions

Reading Assignment

Example

 Data are to be read in from 2 bytes wide input ports at Addresses 00AAh and 00A9h and then output as a WORD to output port at Address B000h

Solution:

- IN AL, AAh
- MOV AH,AL
- IN AL, A9h
- MOV DX, B000h
- OUT DX,AX

Basic Input Interface

Basic Input Interface

Basic Input Interface

Basic Output Interface

Basic Output Interface

Compromises/ Extensions

Parallel I/O Peripherals:

- When processor only supports bus based I/O and parallel ports are required
- Each peripheral ports are connected to a register within peripheral that is read/written by processor

Parallel I/O for Bus Based System

Compromises/ Extensions

Extended Parallel I/O:

- Processor supports port based I/O but additional ports are required.
- One or multiple processor ports are connected to parallel I/O peripheral to extend the number of available ports.

4 ports are extended to 6 ports.

 For every port in 82C55 there is an internal register that can be read or written by processor

A_1	A_0	Function
0	0	Port A
0	1	Port B
1	0	Port C
1	1	Command register

FIGURE 11-19 The 82C55 interfaced to the low bank of the 80386SX microprocessor.

FIGURE 11–21 An 8-digit LED display interfaced to the 8088 microprocessor through an 82C55 PIA.

Questions?

Thank You!