Continuità e derivabilità

La derivabilità è una nozione più forte della continuità. Vale infatti il seguente:

Teorema. Sia $f : \text{dom } f \subseteq \mathbb{R} \to \mathbb{R}$. Se f è derivabile in x_0 , allora f è continua in x_0 .

Dimostrazione. Se f è derivabile in x_0 , allora

$$\lim_{x \to x_0} \left(f\left(x\right) - f\left(x_0\right) \right) =$$

e quindi f è continua in x_0 .

Non vale il viceversa: la continuità è necessaria alla derivabilità, ma non sufficiente.

Ad esempio, la funzione

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

è continua ma non derivabile in $x_0 = 0$ (il limite del rapporto incrementale in 0 non esiste).

Altri esempi tipici sono le funzioni |x|, $\sqrt[3]{x}$ e $\sqrt{|x|}$ nel punto $x_0 = 0$ (v. più avanti). Esistono inoltre funzioni continue su tutto \mathbb{R} e non derivabili in alcun punto (ad esempio le già citate funzioni di Weierstrass).

Derivate unilaterali (destre o sinistre)

Si definiscono considerando i limiti unilaterali del rapporto incrementale.

Definizione. Sia $f : \text{dom } f \subseteq \mathbb{R} \to \mathbb{R}$ definita in un intorno $I(x_0^+)$ di un punto $x_0 \in \mathbb{R}$. Chiamiamo **derivata destra** di f in x_0 il valore

$$f'_{+}(x_0) := \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0}$$
 se il limite esiste (finito o infinito).

Se $f'_{+}(x_0) \in \mathbb{R}$, diciamo che f è **derivabile da destra** in x_0 . Analogamente per $f'_{-}(x_0)$.

• <u>Graficamente</u>: considerare $x \to x_0^+$ significa guardare solo le secanti con punto variato (x, f(x)) a destra del punto base $(x_0, f(x_0))$.

Se $f'_{+}(x_0) \in \mathbb{R}$, la retta $y = f(x_0) + f'_{+}(x_0)(x - x_0)$ è detta **tangente destra** ad f in x_0 .

Se $f'_{+}(x_0) = \pm \infty$ ed f è continua da destra in x_0 , allora le secanti tendono a disporsi verticalmente e si chiama **tangente destra** ad f in x_0 la retta $x = x_0$.

• Proposizione. Se f è definita in un intorno completo di x_0 , allora:

f è derivabile in $x_0 \iff f'_+(x_0)$ ed $f'_-(x_0)$ esistono finite e sono uguali.

In tal caso, $f'(x_0) = f'_+(x_0) = f'_-(x_0)$.

Punti di non derivabilità

Approfondiamo lo studio dei punti in cui non c'è derivabilità.

È ovvio che se f non è continua in x_0 allora non è derivabile in x_0 (derivabile \Rightarrow continua), quindi il caso interessante è quello dei punti x_0 in cui f sia continua ma non derivabile.

Definizione (punti di non derivabilità notevoli). Sia $f : \text{dom } f \subseteq \mathbb{R} \to \mathbb{R}$ definita in un $I(x_0)$ completo e continua in x_0 . Supponiamo inoltre che $f'_+(x_0)$ ed $f'_-(x_0)$ esistano.

1 Se $f'_{+}(x_0) \neq f'_{-}(x_0)$ ed almeno una è finita, si dice che x_0 è un **punto angoloso** (le tangenti destra e sinistra formano un angolo)

 $f(x) = |x|, \quad f'_{\pm}(0) = \pm 1$

 $f'_{-}\left(x_{0}\right), f'_{+}\left(x_{0}\right) \in \mathbb{R}$

$$f'_{-}(x_0) = +\infty, \ f'_{+}(x_0) \in \mathbb{R}$$

2 Se $f'_{+}(x_0) \neq f'_{-}(x_0)$ sono entrambe infinite, si dice che x_0 è un **punto di cuspide** $(x = x_0$ è tangente sia destra che sinistra)

$$f(x) = \sqrt{|x|}$$
$$f'_{\pm}(0) = \pm \infty$$

$$f(x) = 1 - \sqrt{|x|}$$
$$f'_{+}(0) = \mp \infty$$

3 Se $f'_{+}(x_0) = f'_{-}(x_0)$ sono entrambe infinite, si dice che x_0 è un **punto di flesso** a tangente verticale ($x = x_0$ è tangente sia destra che sinistra)

$$f(x) = \sqrt[3]{x}$$
$$f'_{\pm}(0) = +\infty$$

$$f\left(x\right) = -\sqrt[3]{x}$$

$$f_{\pm}'\left(0\right) = -\infty$$

Osservazioni.

- Non si classificano i casi in cui almeno una tra $f'_{+}(x_{0})$ ed $f'_{-}(x_{0})$ non esiste.
- Se f è definita solo a destra di x_0 , è continua in x_0 e risulta $f'_+(x_0) = \pm \infty$, si dice semplicemente che x_0 è un punto a tangente verticale.

Analogamente a sinistra.

$$f\left(x\right) = \sqrt{x}, \quad f'_{+}\left(0\right) = +\infty$$

Due esercizi svolti (sullo studio della derivabilità)

Esercizio 1. Studiare la derivabilità di $f(x) = x \sin \sqrt[3]{x}$ e calcolare f'(x), ove esista. Svolgimento. Si ha dom $f = \mathbb{R}$.

• Se $x_0 \neq 0$, allora f è derivabile in x_0 per i teoremi sulle regole di derivazione. Infatti f(x) è il prodotto di $f_1(x) = x$, che è derivabile ovunque, ed $f_2(x) = \sin \sqrt[3]{x}$, che è derivabile in $x_0 \neq 0$ in quanto composta delle funzioni $\sqrt[3]{x}$ (derivabile in $x_0 \neq 0$) e sin x (derivabile su \mathbb{R} e quindi in $\sqrt[3]{x_0}$). La derivata f'(x) in $x \neq 0$ si ottiene tramite regole di derivazione:

$$f'(x) = \sin \sqrt[3]{x} + xD(\sin \sqrt[3]{x}) = \sin \sqrt[3]{x} + x\cos(\sqrt[3]{x})D\sqrt[3]{x} = \sin \sqrt[3]{x} + \frac{1}{3}\sqrt[3]{x}\cos \sqrt[3]{x}.$$

• La derivabilità in $x_0 = 0$ non segue dalle regole di derivazione e quindi va studiata tramite la definizione (v. anche teorema del tappabuchi più avanti). Si ha

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x \sin \sqrt[3]{x}}{x} = \lim_{x \to 0} \sin \sqrt[3]{x} = 0,$$

per cui f è derivabile anche in 0 ed f'(0) = 0.

Esercizio 2. Studiare la derivabilità di $f(x) = \begin{cases} g_1(x) & \text{se } x \geq a & \text{con } g_1, g_2 : \mathbb{R} \to \mathbb{R} \\ g_2(x) & \text{se } x < a & \text{derivabili ovunque.} \end{cases}$

Nello studio delle funzioni definite a tratti, è utile tener presente che, poiché la derivata è un limite, dal carattere locale del limite segue quello della derivata:

se f(x) = g(x) in un $I(x_0)$, allora f è derivabile in x_0 se e solo se g è derivabile in x_0 ; in tal caso, $f'(x_0) = g'(x_0)$.

Analogamente per le derivate destre e sinistre se f(x) = g(x) in un $I(x_0^{\pm})$.

Svolgimento.

• Se $x_0 \neq a$, allora f coincide con g_1 o g_2 in tutto un $I(x_0)$ e quindi f è derivabile in x_0 (perché lo sono g_1 e g_2) con $f'(x_0) = g'_1(x_0)$ se $x_0 > a$ ed $f'(x_0) = g'_2(x_0)$ se $x_0 < a$. Dunque

$$f'(x) = \begin{cases} g'_1(x) & \text{se } x > a \\ g'_2(x) & \text{se } x < a \end{cases}.$$

- Se $x_0 = a$, allora f coincide con g_1 in tutto un $I(x_0^+)$ e quindi f è derivabile da destra in $x_0 = a$ (perché lo è g_1) con $f'_+(a) = g'_1(a)$.
- La derivabilità completa di f in $x_0 = a$ va studiata calcolando $f'_-(a) = \lim_{x \to a^-} \frac{f(x) f(a)}{x a}$ (v. anche teorema del tappabuchi) e controllando se $f'_-(a)$ coincide con $f'_+(a)$ o meno.