Using BaseR

Mike Keating

Task 1: Basic Vector Practice

Question 1:

Create two vectors named pre and post. One vector corresponding to the pre measurements and one to the post measurements.. Create two vectors named pre and post. One vector corresponding to the pre measurements and one to the post measurements.

Question 2:

Assign names to the vector elements using the paste() function. Note that names() can be overwritten by a character vector.

```
names <- paste("Subject", 1:20, sep="_")
# Assign names
names(pre) <- names
names(post) <- names</pre>
```

Question 3:

Calculate the change in blood pressure for each patient.

```
# Change in blood pressure
diff_bp <- pre - post
diff_bp</pre>
```

```
Subject_1
           Subject_2 Subject_3 Subject_4 Subject_5 Subject_6 Subject_7
        16
                   30
Subject_8 Subject_9 Subject_10 Subject_11 Subject_12 Subject_13 Subject_14
       15
                   -5
                                         40
                                                    19
                              10
                                                                          18
Subject_15 Subject_16 Subject_17 Subject_18 Subject_19 Subject_20
       31
                   25
                                         26
                                                    22
                                                               22
                              -4
```

Question 4:

Calculate the average decrease in blood pressure across all patients.

```
avg_change_all <- mean(diff_bp)</pre>
```

Question 5

Determine which patients experienced a decrease in blood pressure after treatment (a positive change). Use the which() function to just return the indices (and names) associated with this type of change.

```
index_patients_decreased_bp <- which(diff_bp > 0)
```

Question 6

Subset the vector of differences to only return those that have a positive change

```
patients_decreased_bp <- diff_bp[index_patients_decreased_bp]</pre>
```

Question 7

Calculate the average decrease in blood pressure for those where the blood pressure decreased (positive change).

```
mean_patients_decreased_bp <- mean(patients_decreased_bp)
paste(mean_patients_decreased_bp)</pre>
```

[1] "20.6470588235294"

Task 2: Basic Data Frame Practice

Question 1

Create a data frame object with four columns corresponding to your data above: patient, pre_bp, post_bp, and diff_bp.

Question 2

Return only rows where the diff_bp column is negative.

```
subset(bp_df, diff_bp < 0)</pre>
```

```
Patient pre_bp post_bp diff_bp
9 Subject_9 114 119 -5
13 Subject_13 128 130 -2
17 Subject_17 120 124 -4
```

Question 3

Add a new column to the data frame corresponding to TRUE if the post_bp is less than 120.

```
bp_df$post_bp_normal <- ifelse(bp_df$post_bp < 120, TRUE, FALSE)</pre>
```

Let's quickly check our logic worked.

tail(bp_df)

	Patient	pre_bp	post_bp	diff_bp	post_bp_normal
15	Subject_15	137	106	31	TRUE
16	Subject_16	131	106	25	TRUE
17	Subject_17	120	124	-4	FALSE
18	Subject_18	128	102	26	TRUE
19	Subject_19	139	117	22	TRUE
20	Subject 20	135	113	22	TRUE

Question 4

Finally, print the data frame out nicely in your final document by modifying the code below appropriately.

knitr::kable(bp_df)

Patient	pre_bp	post_bp	diff_bp	post_bp_normal
Subject_1	130	114	16	TRUE
$Subject_2$	128	98	30	TRUE
$Subject_3$	116	113	3	TRUE
$Subject_4$	124	99	25	TRUE
$Subject_5$	133	107	26	TRUE
$Subject_6$	134	116	18	TRUE
$Subject_7$	118	113	5	TRUE
$Subject_8$	126	111	15	TRUE
$Subject_9$	114	119	-5	TRUE
$Subject_10$	127	117	10	TRUE
$Subject_11$	141	101	40	TRUE
$Subject_12$	138	119	19	TRUE
$Subject_13$	128	130	-2	FALSE
$Subject_14$	140	122	18	FALSE
$Subject_15$	137	106	31	TRUE
$Subject_16$	131	106	25	TRUE
$Subject_17$	120	124	-4	FALSE
$Subject_18$	128	102	26	TRUE
$Subject_19$	139	117	22	TRUE
${\bf Subject_20}$	135	113	22	TRUE

List Practice

Question 1

Create a new data frame with these data that is similar to the data frame from task 2 (including the new column). That is, include a patient, pre, post, diff, and normal (less than 120) column using the data above. Name this new data frame bp_df_placebo.

	Patient	pre_bp	post_bp	${\tt diff_bp}$	<pre>post_bp_normal</pre>
1	Subject_21	138	105	33	TRUE
2	Subject_22	135	136	-1	FALSE
3	Subject_23	147	123	24	FALSE
4	Subject_24	117	130	-13	FALSE
5	Subject_25	152	134	18	FALSE
6	Subject_26	134	143	-9	FALSE

Question 2

Now create and store a list with two elements:

- 1st element named treatment and contains the first data frame you created.
- 2nd element named placebo and contains the second data frame you created.

Question 3

Access the first list element using three different types of syntax.

```
# By index
bp_list[1]
```

\$treatment

```
Patient pre_bp post_bp diff_bp post_bp_normal
    Subject_1
                  130
                           114
                                     16
                                                   TRUE
1
2
                  128
                                                   TRUE
    Subject_2
                            98
                                     30
                                      3
                                                   TRUE
3
    Subject_3
                  116
                           113
4
   Subject_4
                  124
                            99
                                     25
                                                   TRUE
5
   Subject_5
                  133
                           107
                                     26
                                                   TRUE
   Subject_6
                  134
                           116
                                                   TRUE
6
                                     18
7
                                                   TRUE
   Subject_7
                  118
                           113
                                      5
8
   Subject_8
                  126
                           111
                                     15
                                                   TRUE
9
    Subject_9
                  114
                           119
                                     -5
                                                   TRUE
10 Subject_10
                  127
                           117
                                                   TRUE
                                     10
11 Subject_11
                  141
                           101
                                     40
                                                   TRUE
12 Subject_12
                  138
                           119
                                     19
                                                   TRUE
13 Subject_13
                  128
                           130
                                     -2
                                                  FALSE
14 Subject_14
                  140
                           122
                                                  FALSE
                                     18
15 Subject_15
                  137
                           106
                                     31
                                                   TRUE
16 Subject_16
                  131
                           106
                                     25
                                                   TRUE
17 Subject_17
                  120
                           124
                                     -4
                                                  FALSE
18 Subject_18
                  128
                                                   TRUE
                           102
                                     26
19 Subject_19
                  139
                                     22
                                                   TRUE
                           117
20 Subject_20
                  135
                           113
                                     22
                                                   TRUE
```

```
# By index in the other direction
bp_list[-2]
```

\$treatment

```
Patient pre_bp post_bp diff_bp post_bp_normal

Subject_1 130 114 16 TRUE

Subject_2 128 98 30 TRUE
```

3	Subject_3	116	113	3	TRUE
4	${ t Subject_4}$	124	99	25	TRUE
5	Subject_5	133	107	26	TRUE
6	Subject_6	134	116	18	TRUE
7	Subject_7	118	113	5	TRUE
8	Subject_8	126	111	15	TRUE
9	Subject_9	114	119	-5	TRUE
10	Subject_10	127	117	10	TRUE
11	Subject_11	141	101	40	TRUE
12	Subject_12	138	119	19	TRUE
13	Subject_13	128	130	-2	FALSE
14	Subject_14	140	122	18	FALSE
15	Subject_15	137	106	31	TRUE
16	Subject_16	131	106	25	TRUE
17	Subject_17	120	124	-4	FALSE
18	Subject_18	128	102	26	TRUE
19	Subject_19	139	117	22	TRUE
20	Subject_20	135	113	22	TRUE

By name bp_list\$treatment

	Patient	pre_bp	post_bp	diff_bp	post_bp_normal
1	Subject_1	130	114	16	TRUE
2	Subject_2	128	98	30	TRUE
3	Subject_3	116	113	3	TRUE
4	Subject_4	124	99	25	TRUE
5	Subject_5	133	107	26	TRUE
6	Subject_6	134	116	18	TRUE
7	Subject_7	118	113	5	TRUE
8	Subject_8	126	111	15	TRUE
9	Subject_9	114	119	-5	TRUE
10	Subject_10	127	117	10	TRUE
11	Subject_11	141	101	40	TRUE
12	Subject_12	138	119	19	TRUE
13	Subject_13	128	130	-2	FALSE
14	Subject_14	140	122	18	FALSE
15	Subject_15	137	106	31	TRUE
16	Subject_16	131	106	25	TRUE
17	Subject_17	120	124	-4	FALSE
18	Subject_18	128	102	26	TRUE
19	Subject_19	139	117	22	TRUE

20 Subject_20 135 113 22 TRUE

Question 4

In one line, access the placebo data frame, pre_bp column.

```
bp_list$placebo$pre_bp
```

[1] 138 135 147 117 152 134 114 121 131 130

Task 4: Control Flow Practice

Question 1

Classify bp as optimal, borderline, and high.

```
bp_list$treatment$status <- character(20)
bp_list$placebo$status <- character(10)</pre>
```

Question 2

For the non-placebo data frame (within the list), create a for loop and use if/then/else logic to create the status column's values.

```
for (i in 1:nrow(bp_list$treatment)) {
   post_bp <- bp_list$treatment[i, "post_bp"]
   if (post_bp > 130) {
      bp_list$treatment[i, "status"] <- "high"
   }
   else if (post_bp > 120) {
      bp_list$treatment[i, "status"] <- "borderline"
   }
   else {
      bp_list$treatment[i, "status"] <- "optimal"
   }
}
head(bp_list$treatment)</pre>
```

```
Patient pre_bp post_bp diff_bp post_bp_normal status
1 Subject_1
               130
                       114
                                 16
                                              TRUE optimal
2 Subject_2
               128
                        98
                                 30
                                              TRUE optimal
3 Subject_3
                       113
                                  3
                                              TRUE optimal
               116
4 Subject 4
               124
                        99
                                 25
                                              TRUE optimal
5 Subject_5
               133
                       107
                                              TRUE optimal
                                 26
6 Subject_6
               134
                       116
                                 18
                                              TRUE optimal
```

Question 3

Repeat for the placebo dataframe (within the list)

```
for (i in 1:nrow(bp_list$placebo)) {
   post_bp <- bp_list$placebo[i, "post_bp"]
   if (post_bp > 130) {
      bp_list$placebo[i, "status"] <- "high"
   }
   else if (post_bp > 120) {
      bp_list$placebo[i, "status"] <- "borderline"
   }
   else {
      bp_list$placebo[i, "status"] <- "optimal"
   }
}
head(bp_list$placebo)</pre>
```

```
Patient pre_bp post_bp diff_bp post_bp_normal
                                                         status
1 Subject_21
                138
                         105
                                  33
                                                TRUE
                                                        optimal
                135
                         136
                                  -1
                                               FALSE
2 Subject_22
                                                           high
                147
3 Subject_23
                         123
                                  24
                                               FALSE borderline
4 Subject_24
                117
                         130
                                 -13
                                               FALSE borderline
5 Subject_25
                152
                         134
                                  18
                                               FALSE
                                                           high
6 Subject_26
                134
                         143
                                  -9
                                               FALSE
                                                           high
```

Task 5: Function Writing

Question 1

```
get_stat <- function(df_list, stat = "mean"){</pre>
  my_func <- get(stat)</pre>
  cols <- c("post_bp", "pre_bp", "diff_bp")</pre>
  values <- c()</pre>
  names <- c()</pre>
  j <- 1
  for (i in 1:length(df_list)){
    for (col in cols){
      name <- paste( col, "_",names(df_list[i]),"_", stat, sep="")</pre>
      value <- my_func(df_list[[i]][,col])</pre>
      values[j] <- value</pre>
      names [j] <- name
      j = j + 1
    }
  }
  stats <- values
  names(stats) <- names</pre>
  return(stats)
```

Without specifying stat:

```
result <- get_stat(bp_list)
knitr::kable(result)</pre>
```

	X
post_bp_treatment_mean	112.35
pre_bp_treatment_mean	129.35
$diff_bp_treatment_mean$	17.00
post_bp_placebo_mean	128.90
pre_bp_placebo_mean	131.90
diff_bp_placebo_mean	3.00

Specifying various stats:

```
result <- get_stat(bp_list, "var")
knitr::kable(result)</pre>
```

	X
post_bp_treatment_var	74.76579
pre_bp_treatment_var	64.55526
diff_bp_treatment_var	153.68421
post_bp_placebo_var	124.98889
pre_bp_placebo_var	149.87778
diff_bp_placebo_var	341.33333

```
result <- get_stat(bp_list, "sd")
knitr::kable(result)</pre>
```

	X
post_bp_treatment_sd	8.646721
$pre_bp_treatment_sd$	8.034629
$diff_bp_treatment_sd$	12.396944
$post_bp_placebo_sd$	11.179843
pre_bp_placebo_sd	12.242458
$diff_bp_placebo_sd$	18.475209

```
result <- get_stat(bp_list, "max")
knitr::kable(result)</pre>
```

	x
post_bp_treatment_max	130
pre_bp_treatment_max	141
$diff_bp_treatment_max$	40
post_bp_placebo_max	143
pre_bp_placebo_max	152
$diff_bp_placebo_max$	33

result <- get_stat(bp_list, "min")</pre>

knitr::kable(result)

	X
post_bp_treatment_min	98
$pre_bp_treatment_min$	114
$diff_bp_treatment_min$	-5
$post_bp_placebo_min$	105
pre_bp_placebo_min	114
$diff_bp_placebo_min$	-21