Zbiór zadań do wykładu z Atmosfer Gwiazdowych I (III rok studiów licencjackich).

1 Zadania

Zadanie 1

Wprowadzając funkcje

$$E_n(x) = \int_1^\infty \frac{e^{-xt}dt}{t^n} = x^{n-1} \int_x^\infty \frac{s^{-t}dt}{t^n}$$
 (53)

Pokazać, że dla n>1 zachodzą związki

$$E'_n(x) = -E_{n-1}(x)$$
, (Wsk. skorzystać z twierdzenia Leibnitza)
 $E_n(x) = [e^{-x} - xE_{n-1}(x)]/(n-1)$, (Wsk. całkować przez części funkcję $E_{n+1}(x)$)
 $E_n(0) = 1/(n-1)$

Zadanie 2

Pokazać, że
$$E'_1 = -e^{-x}/x$$

Zadanie 3

Pokazać, że dla
$$x \gg 1$$

 $E_n(x) \approx e^{-x}/x$

Zadanie 4

Pokazać że dla $S(\tau) = a + b\tau$ mamy: $\Lambda_{\tau}(a+bt) = (a+bt) + 1/2[bE_3(\tau) - aE_2(\tau)],$ $\Phi_{\tau}(a+bt) = 4/3b + 2[aE_3(\tau) - bE_4(\tau)]$ Wsk. Policzyć $\Lambda(1)$, $\Lambda(\tau)$ i skorzystać z Zad. 1. Policzyć: $\Lambda_{\tau=0}$, $(Odp.: 1/2 \ a + 1/4 \ b)$ $J(\tau) = \Lambda_{\tau}(S) \ dla \ \tau \gg 1$, $Odp.: S(\tau)$ H(0) = 1/4a + 1/6b $H(\tau) \ dla \ \tau \gg 1$, $Odp.: 1/3 \ b$

Zadanie 5

Uruchomić program do liczenia funkcji $E_n(x)$ i sprawdzić numerycznie zadania 1–4

Zadanie 6

Zakładając model atmosfery szarej w przybliżeniu Eddingtona pokazać, że pociemnienie brzegowe ma postać:

$$I_E(0,\mu) = 3/4F(\mu + 2/3)$$

Wynik przedstawić graficznie.

Zadanie 7

Korzystając z rozwiązania Eddingtona, $S(\tau) = J_E(\tau) = 3H(\tau + 2/3)$, problemu atmosfery szarej w równowadze promienistej pokazać, że:

$$J_E^{(2)}(\tau) = \Lambda_{\tau}[S(t)] = 3/4F[\tau + 2/3 - 1/3E_2(\tau) + 1/2E_3(\tau)],$$

$$J_E^{(2)}(0)/J_E(0) = 7/8,$$

$$T(\tau = 0)/T_{\text{eff}} = (7/16)^{1/4} = 0.813,$$

$$q(0) = 7/12 = 0.583,$$

$$F^{(2)}(\tau) = \Phi_{\tau}[S(t)] = F[1 + E_3(\tau) - 3/2E_4(\tau)].$$

Dlaczego $F^{(2)}$ nie jest stałe z głębokością optyczną? Pokazać, że $\Delta F/F=[F-F^{(2)}]/F=-E_3(\tau)+3/2E_4(\tau)$. Wyniki przedstawić graficznie.

Zadanie 8

Podziałać operatorem X na $S(\tau) = J_E(\tau)$. Pokazać, że:

$$K_E^{(2)} = 3/16F[4/3\tau + 8/9 - 4/3E_4(\tau) + 2E_5(\tau)].$$

Podać postać analityczną czynnika Eddingtona $f(\tau) = K_E(\tau)/J_E(\tau)$ oraz $f^{(2)}(\tau) = K_E^{(2)}(\tau)/J_E^{(2)}(\tau)$, gdzie $K_E(\tau)$ i $J_E(\tau)$ odnoszą się do rozwiązania Eddingtona. Wyniki porównać graficznie.

Pokazać, że wielkości $J_E^{(2)}(\tau)$ odpowiada prawo ciemnienia brzegowego:

$$I_E^{(2)}(0,\mu) = 3/4F(7/12 + 1/2\mu + (1/3\mu + 1/2\mu^2)ln[(1+\mu)/\mu]).$$

Porównać graficznie $I_E^{(2)}(0,\mu)$ z $I_E(0,\mu)$.

Zadanie 9

Metoda Chandrasekhara dla n=1 i n=2

Podać rozwiązania dla $J(\tau)$, $q(\tau)$, $I(0,\mu)$, $K(\tau)$, $f_K = K/J$ i $f_H = H/J$

Zadanie 10

Metoda Unsolda.

Zał. przez atmosferę pąsko-równoległą przepływa stały z głębokością strumień promieniowania H=const. Niech przybliżenie początkowe będzie w postaci

$$B(\tau) = 3H(\tau + C)$$

tj. funkcja Hoppfa $q(\tau) = C = const.$

Wyliczyć strumień $H(\tau)$ i pokazać, że różnice wynoszą:

$$\Delta H(\tau) = H - H(\tau) = 3/2H[E_4(\tau) - CE_3(\tau)].$$

Wyprowadzić zależności $\Delta H(0)$ i $d(\Delta H)/d\tau$.

Pokazać, że w metodzie Unsolda poprawki mają postać:

$$\Delta B(\tau) = 3H[17/24 - C - 1/2CE_2(\tau) + 1/2E_3(\tau) + 3/2CE_4(\tau) - 3/2E_5(\tau)].$$

Pokazać, że niezależnie od stałej C mamy teraz:

$$q(0) = 7/12 = 0.583$$
 i $q(\tau \gg 1) = 17/24 = 0.708$.

Porównać te wartości z rozwiązaniem ścisłym.

Zadanie 11

Porównać graficznie funkcję Hopfa $q(\tau)$ dla rozwiązań problemu atmosfery szarej w równowadze promienistej: Eddingtona $(S(\tau) = J_E(\tau))$, $S = J^{(2)}$, Chandrasekhara, Unsolda i ścisłe (Mihalas).

Zadanie 12

Uogólnienie Zad. 10 na przypadek atmosfery nie-szarej. Równania wyjściowe:

$$\frac{dH_{\nu}}{d\tau_{\nu}} = J_{\nu} - S_{\nu},$$

$$\frac{dK_{\nu}}{d\tau_{\nu}} = H_{\nu},$$

gdzie:

$$S_{\nu} = \frac{\kappa_{\nu}}{\kappa_{\nu} + \sigma_{\nu}} B_{\nu} + \frac{\sigma_{\nu}}{\kappa_{\nu} + \sigma_{\nu}} J_{\nu},$$

$$d\tau_{\nu} = (\kappa_{\nu} + \sigma_{\nu})\rho dz = \chi_{\nu}\rho dz.$$

Pokazać, że przy założeniu K = 1/3J poprawka Unsolda przyjmuje postać:

$$\Delta B(\tau_B) = \frac{\kappa_J}{\kappa_B} 3 \int_0^{\tau_B} \frac{\chi_H}{\kappa_B} \Delta H(t) dt + 2\Delta H(\tau_B = 0) - \left[\frac{d(\Delta H(\tau_B))}{d\tau_B} \right],$$

 $K,\ J,\ H$ są wielkościami wycałkowanymi po pełnym przedziale częstotliwości; $\chi_H,$ $\kappa_B,\ \kappa_J$ oznaczają średnie współczynniki absorpcji ważone odpowiednio $H_{\nu},\ B_{\nu}$ i $J_{\nu},$ a τ_B – głębokość optyczną dla κ_B

Jaka jest poprawka do początkowego rozkładu temperaury?

Zadanie 13

Zał. atmosfera płasko-równoległa w LTE.

Niech funkcja żródłowa ${\cal S}$ zawiera absorpcję LTE i rozpraszanie na swobodnych elektronach.

Napisać explicite postać funkcji żródłowej S_{ν} .

Napisać równania całkowe na S_{ν} i J_{ν} .

Napisać postać operatorową dla S_{ν} i J_{ν} , tj. pokazać, że

$$S = \frac{\kappa}{\kappa + \sigma} B + \frac{\sigma}{\kappa + \sigma} \Lambda[S]$$

$$J = \Lambda[B] + \frac{\sigma}{\kappa + \sigma} \Lambda[J - B]$$

Zadanie 14

c.d. Zad. 13

Wyznaczenie $J(\tau)$ metodą iteracyjną

Startując z rozwiązania $J^0 = B^0$ dla $\sigma = 0$ pokazać, że w n-tym kroku mamy:

$$J^n = B^0 + \sum_{i=1}^n = \delta^i$$

gdzie

$$\delta^0 = B^0 - B$$

$$\delta^i = \Lambda[\frac{\sigma}{\kappa + \sigma}\delta^{i-1}]$$

Wyliczyć J^n dla $B = a + b\tau$

Zadanie 15

c.d. Zad. 14

Zał. atmosfera płasko-równoległa, $B=a+b\tau, \frac{\kappa}{\sigma}=const,$ przybliżenie Eddingtona Pokazać, że

$$J - B = \alpha exp(-\lambda \tau) + \beta exp(\lambda \tau)$$

gdzie: $\lambda = (3\frac{\kappa}{\kappa + \sigma})^{1/2}$

Wsk. zróżniczkować $\frac{d}{d\tau}$ równanie przepływu promieniowania Podać warunki brzegowe $\tau=0$ i $\tau\gg 1$. Dla $\tau=0$ użyc zał. Eddingtona. Stąd

 $\beta=0,\ \alpha=\frac{1}{\sqrt{3}}H(0)-a$ Przedyskutować drogę termilizacji promieniowania, tj. na jakich głębokościach optycznia i rozwania, tj. na jakich głęb nych $J\approx B,$ jeśli dominuje rozpraszanie promieniowania (np. $\frac{\kappa}{\kappa+\sigma}\approx 10^{-4})$

Zadanie 16

Wyprowadzić równanie przepływu promieniowania w postaci

$$\frac{1}{\kappa} \frac{d}{dm} \left[\frac{1}{\kappa} \frac{dK}{dm} \right] = J - S$$

Wprowadzając czynnik $f_K = \frac{K}{J}$ otrzymamy równanie Feautrier'a przepływu promieniowania.

Zadanie 17

Zał. atmosfera nie-szara płasko-równoległa w równowadze promienistej Przyjmująć, że

$$S_{\nu} = \frac{\kappa_{\nu}}{\kappa_{\nu} + \sigma_{\nu}} B_{\nu} + \frac{\sigma_{\nu}}{\kappa_{\nu} + \sigma_{\nu}} J_{\nu}$$

pokazać, że równanie równowagi promienistej przyjmuje postać

$$\kappa_B B = \kappa_J J$$

a rozkład temperatury (ścisły w LTE) można przedstawić jako

$$T^4 = 3/4T_{\text{eff}}^4 \frac{\kappa_J}{\kappa_B} (\frac{\tau_H}{3f_K} + \frac{1}{3f_H(0)})$$

Oznaczenia średnich ważonych:

$$\kappa_J = \frac{\int \kappa_\nu J_\nu d\nu}{\int \kappa_\nu d\nu}$$

$$\kappa_B = \frac{\int \kappa_\nu B_\nu d\nu}{\int \kappa_\nu d\nu}$$

$$\chi_H = \frac{\int (\kappa_{\nu} + \sigma_{\nu}) H_{\nu} d\nu}{\int (\kappa_{\nu} + \sigma_{\nu}) d\nu}$$

$$d\tau_H = \chi_H dm$$

$$f_K = K/J, f_H = H/J$$

Porównać ten wynik z rozwiązaniem Eddingtona dla atmosfery szarej.

Zadanie 18

Równanie równowagi hydrostatycznej z uwzględnieniem ciścienia promieniowania w różnych postaciach

Napisać to równanie dla: $\frac{dP_g}{dz} = ...,$ $\frac{dP_g}{d\tau_F} =,$ $\frac{dP_g}{dm} =,$ $\frac{dP_g}{dm} =,$ w przybliżeniu dyfuzyjnym, $\frac{dP_g}{d\tau} =$ dla atmosfery szarej gdy $P_r = a/3T^4$

Zadanie 19

Atmosfery rozciągłe Wychodząc z równania

$$\mu \frac{dI_{\nu}}{dr} + \frac{1}{r}(1 - \mu^2)\frac{dI_{\nu}}{d\mu} = j_{\nu} - \chi_{\nu}I_{\nu}$$

wyprowadzić równania

$$\frac{dK_{\nu}}{dr} + \frac{1}{r}(3K_{\nu} - J_{\nu}) = -\chi_{\nu}H_{\nu}$$

$$\frac{1}{r^2}\frac{d(r^2H_\nu)}{dr} = j_\nu - \chi_\nu J_\nu$$

(tutaj pochodne czastkowe!!)