AlProbe

Akash Yadav Muniraju Chelsi Jain Nirali Mehta Rahil Piyush Mehta Shivani Jinger

Introduction

- 1. The problem statement revolves around evaluating the hypothesized capability (HC) of a SDM agent within a constrained environment governed by specific rules.
- 2. The focus lies on assessing whether the SDM possesses the hypothesized capability, and if so, determining the precise instructions required to elicit the desired behavior.
- 3. To achieve this, the action space is defined, which is pivotal for generating valid directives within the environment.
- 4. The objective entails not only determining the presence of the hypothesized capability but also identifying the corresponding instruction set necessary for the SDM to perform the hypothesized behavior.
- 5. This investigation bridges the gap between theoretical capability and actionable implementation within a defined environment, offering insights into the functionality and adaptability of the SDM within its operational constraints.

Input/Output

Input:-

- 1. Hypothesized Capability formulated using the action space
- 2. SDM + environment(constrained)
- 3. Action Space (For example [Pick, Move, Forward, Left, Right])

Output:-

- 4. Does SDM agent is able to perform this hypothesized capability (Yes/No)
- 5. If yes, then what instruction will make SDM perform that HC.

Project Methodology

Project Timeline

Task	Time	Assignee
Defining the environment and agent	1 week	Rahil Piyush Mehta, Nirali Mehta, Chelsi Jain
Generating instructions from the action space	1 week	Chelsi Jain
Applying the instructions to the environment	2 days	Rahil Piyush Mehta, Shivani Jinger
Formulating Hypothesized capability	1 week	Akash Yadav Muniraju
Comparing the final states, documentation	3 weeks	Chelsi Jain, Shivani Jinger, Rahil Piyush Mehta

Action Space Example

Num	Name	Action
0	left	Turn left
1	right	Turn right
2	forward	Move forward
3	pickup	Unused
4	drop	Unused
5	toggle	Unused
6	done	Unused

Progress Update

- 1) Figured out how the environment is defined https://minigrid.farama.org/environments/minigrid/FourRoomsEnv/
- 2) Figured out how the agent is defined
- 3) Generated instructions from the action space. Done using brute force method
- 4) Applied instructions to the environment https://minigrid.farama.org/environments/minigrid/FourRoomsEnv/
- 5) Created hypothesized capability from the action space for the classic four room mini grid environment.

Environment

Move forward ---> Turn right ---> Turn right ---> Move forward ---> Turn right ---> Move forward ---> Turn right ---> Turn rig

Instructions from action space

```
Turn left
Turn left ---> Turn left
Turn left ---> Turn left ---> Turn left
Turn left ---> Turn left ---> Turn left
Turn left ---> Turn left ---> Turn left ---> Turn left ---> Turn left
Turn left ---> Turn left ---> Turn left ---> Turn left ---> Turn right
Turn left ---> Turn left ---> Turn left ---> Turn left ---> Move forward
Turn left ---> Turn left ---> Turn left ---> Turn right
Turn left ---> Turn left ---> Turn left ---> Turn right ---> Turn left
Turn left ---> Turn left ---> Turn left ---> Turn right ---> Turn right
Turn left ---> Turn left ---> Turn left ---> Turn right ---> Move forward
Turn left ---> Turn left ---> Turn left ---> Move forward
Turn left ---> Turn left ---> Turn left ---> Move forward ---> Turn left
Turn left ---> Turn left ---> Turn left ---> Move forward ---> Turn right
Turn left ---> Turn left ---> Turn left ---> Move forward ---> Move forward
```

Hypothesized Capability

- 1) The agent traverse all the four in the direction room 1-2-3-4.
- LEFT®FORWARD®FORWARD®FORWARD®FORWARD®FORWARD®FORWARD®RIGHT®FORWARD®FORWARD®FORWARD®RIGHT®FORWARD® D®FORWARD®LEFT®FORWARD®FORWARD®FORWARD®FORWARD® FORWARD® F

2) The Agent fail to traverse the room and collide with the wall while traversing to room 3

FORWARD \rightarrow FORWA

Next Steps

- 1) We will create our own dataset with 10-15 mini grid environments and hypothesized capabilities.
- 2) Store the initial state of the environment.
- 3) Apply the hypothesized capability to the environment.
- 4) Store the final state as final_state_hc of the environment after applying.
- 5) Apply the generated instructions on to the environment and the agent.
- 6) Store the final state as final_state_2 of the environment.
- 7) Compare the final_state_hc and final_state_2, if they are the same, then return the output as True, else False.
- 8) Explore more techniques to optimize the algorithm in each of the above step.

Research Questions

- 1. What instructions lead any agent to perform a particular query?
- 2. How do the negative hypothesized capability within agent systems affect their overall performance, adaptability, and usability across diverse task domains and environmental conditions?