Machine Learning Report - Coded Project

Table of Contents

Problem 1	4
Context	4
Objective	4
Data Description	4
Define the problem and perform Exploratory Data Analysis	5
Importing Data	5
EDA	5
Boxplot of numerical variables	9
Bivariate Analysis	11
Pair plot	12
Heat map plot	13
Key Observations:	13
Outlier Treatment	13
Model Building	14
KNN & Naïve Bayes	14
Bagging & Boosting	17
Problem 2	21
Problem 2 - Define the problem and Perform Exploratory Data Analysis	21
-Problem Definition - Find the number of Characters, words & sentences in all three speeches	21
Problem 2 - Text cleaning	22
- Stopword removal - Stemming - find the 3 most common words used in all three speeches	22
Problem 2 - Plot Word cloud of all three speeches	22
- Show the most common words used in all three speeches in the form of word clouds	22

Table of Figures

1. Statistical Summary	6
2. Boxplot of Age & Economic cond national	9
3. Boxplot of Blari & Hague	9
4. Boxplot of Europe & political knowledge	10
5. Displot of Age & countplot of vote	10
6. Displot of Age& Econoic cond national	10
7. Displot of economic cond household & Europe	11
8. Distplot of ploitical knowledge & Hague	11
9. Countplot of gender & Blair	
10. Pairplot	12
11. Heat map plot	13
12. Before outlier treatment	14
13. After outlier treatment	14
14. Roc curve for KNN	15
15. ROC curve for Naive Bayes	16
16. ROC curve for Bagging	17
17. ROC curve for Boosting	18
18. Three Common words in speeches	22
19. Word cloud	22

Problem 1

Context

CNBE, a prominent news channel, is gearing up to provide insightful coverage of recent elections, recognizing the importance of data-driven analysis. A comprehensive survey has been conducted, capturing the perspectives of 1525 voters across various demographic and socio-economic factors. This dataset encompasses 9 variables, offering a rich source of information regarding voters' characteristics and preferences.

Objective

The primary objective is to leverage machine learning to build a predictive model capable of forecasting which political party a voter is likely to support. This predictive model, developed based on the provided information, will serve as the foundation for creating an exit poll. The exit poll aims to contribute to the accurate prediction of the overall election outcomes, including determining which party is likely to secure the majority of seats.

Data Description

1. vote: Party choice: Conservative or Labour

2. **age**: in years

3. **economic.cond.national**: Assessment of current national economic conditions, 1 to 5.

4. **economic.cond.household**: Assessment of current household economic conditions, 1 to 5.

5. **Blair**: Assessment of the Labour leader. 1 to 5.

6. **Hague**: Assessment of the Conservative leader, 1 to 5.

7. **Europe**: an 11-point scale that measures respondents' attitudes toward European integration. High scores represent 'Eurosceptic' sentiment.

8. **political.knowledge**: Knowledge of parties' positions on European integration, 0 to 3.

9. **gender:** female or male.

Define the problem and perform Exploratory Data Analysis

- Problem definition - Check shape, Data types, and statistical summary - Univariate analysis - Multivariate analysis - Use appropriate visualizations to identify the patterns and insights - Key meaningful observations on individual variables and the relationship between variables

Importing Data

Out[66]:		vote	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	gender
	1	Labour	43	3	3	4	1	2	2	female
	2	Labour	36	4	4	4	4	5	2	male
	3	Labour	35	4	4	5	2	3	2	male
	4	Labour	24	4	2	2	1	4	0	female
	5	Labour	41	2	2	1	1	6	2	male

EDA

There are 1525 Rows and 9 columns

no. of rows: 1525 no. of columns: 9

There are 2 object datatypes and 7 integer datatypes.

```
<class 'pandas.core.frame.DataFrame'>
Index: 1525 entries, 1 to 1525
Data columns (total 9 columns):
     Column
                               Non-Null Count
                                               Dtype
     -----
                               -----
                                               ----
 ---
 0
     vote
                               1525 non-null
                                               object
                               1525 non-null
                                               int64
 1
     age
     economic.cond.national
 2
                               1525 non-null
                                               int64
  3
     economic.cond.household 1525 non-null
                                               int64
 4
     Blair
                               1525 non-null
                                               int64
 5
     Hague
                               1525 non-null
                                               int64
 6
     Europe
                               1525 non-null
                                               int64
 7
     political.knowledge
                               1525 non-null
                                               int64
      gender
                               1525 non-null
                                               object
dtypes: int64(7), object(2)
memory usage: 119.1+ KB
Shape of the dataset: (1525, 9)
```

Data types:

vote	object
age	int64
economic.cond.national	int64
economic.cond.household	int64
Blair	int64
Hague	int64
Europe	int64
political.knowledge	int64
gender	object

dtype: object

Statistical summary:

	count	mean	std	min	25%	50%	75%	\
age	1525.0	54.182295	15.711209	24.0	41.0	53.0	67.0	
economic.cond.national	1525.0	3.245902	0.880969	1.0	3.0	3.0	4.0	
economic.cond.household	1525.0	3.140328	0.929951	1.0	3.0	3.0	4.0	
Blair	1525.0	3.334426	1.174824	1.0	2.0	4.0	4.0	
Hague	1525.0	2.746885	1.230703	1.0	2.0	2.0	4.0	
Europe	1525.0	6.728525	3.297538	1.0	4.0	6.0	10.0	
political.knowledge	1525.0	1.542295	1.083315	0.0	0.0	2.0	2.0	

max age 93.0 economic.cond.national 5.0 economic.cond.household 5.0 Blair 5.0 Hague 5.0 Europe 11.0 political.knowledge 3.0

1. Statistical Summary

There are 0 missing values in all the columns.

Missing values:

vote	0
age	0
economic.cond.national	0
economic.cond.household	0
Blair	0
Hague	0
Europe	0
political.knowledge	0
gender	0
dtype: int64	

```
.
Variable: vote
Unique values: ['Labour' 'Conservative']
Value counts:
vote
               1063
462
Labour
Conservative
Name: count, dtype: int64
Variable: gender
Unique values: ['female' 'male']
Value counts:
gender
female 812
male
         713
Name: count, dtype: int64
Variable: age
Minimum value: 24
Maximum value: 93
Mean: 54.18
Standard deviation: 15.71
Variable: economic.cond.national
Minimum value: 1
Maximum value: 5
Mean: 3.25
Standard deviation: 0.88
Variable: economic.cond.household
Minimum value: 1
Maximum value: 5
Mean: 3.14
Standard deviation: 0.93
Variable: Blair
Minimum value: 1
Maximum value: 5
Mean: 3.33
Standard deviation: 1.17
Variable: Hague
Minimum value: 1
Maximum value: 5
Mean: 2.75
Standard deviation: 1.23
Variable: Europe
Minimum value: 1
Maximum value: 11
Mean: 6.73
Standard deviation: 3.30
Variable: political.knowledge
Minimum value: 0
Maximum value: 3
Mean: 1.54
Standard deviation: 1.08
```

The labour vote is 1063 and the vote for conservative is 462, the labour vote is double the times of conservative votes.

The vote cast by the gender female is more than the gender male.

The mean age cast is 54.

Boxplot of numerical variables

2. Boxplot of Age & Economic cond national

3. Boxplot of Blari & Hague

4. Boxplot of Europe & political knowledge

5. Displot of Age & countplot of vote

6. Displot of Age& Econoic cond national

7. Displot of economic cond household & Europe

8. Distplot of ploitical knowledge & Hague

Bivariate Analysis

9. Countplot of gender & Blair

Pair plot 10. Pairplot

Heat map plot

11. Heat map plot

Key Observations:

The dataset contains 1525 rows and 9 columns. There are no missing values in the dataset.

There are few outliers in the column - economic.cond.national, economic.cond.household

The majority of the voters are between the ages of 30 and 60. The mean age of the voter is 54.

There are slightly more female voters than male voters.

There is a strong correlation between the variables economic.cond.national and economic.cond.household with 0.35 based on the heatmap Correlation matrix. There is a strong correlation between the variables economic.cond.national and Blair with 0.33 based on the heatmap Correlation matrix.

Most of the votes are casted to the labour party than the conservative party.

Outlier Treatment

Before Outlier treatment

12. Before outlier treatment

After Outlier treatment

13. After outlier treatment

Model Building

KNN & Naïve Bayes

KNN Accuracy: 0.7751091703056768

Naive Bayes Accuracy: 0.8144104803493449

KNN Precision: 0.6086956521739131

Naive Bayes Precision: 0.6904761904761905

KNN Recall: 0.631578947368421

Naive Bayes Recall: 0.6541353383458647

KNN F1 Score: 0.6199261992619925

Naive Bayes F1 Score: 0.6718146718146719

Confusion matrix for KNN train dataset:

[[679 59] [72 257]]

Classification report for KNN train data set:

	precision	recall	f1-score	support
0	0.90	0.92	0.91	738
1	0.81	0.78	0.80	329
accuracy			0.88	1067
macro avg	0.86	0.85	0.85	1067
weighted avg	0.88	0.88	0.88	1067

Confusion matrix for KNN test dataset:

[[271 54]

[49 84]]

Classification report for KNN test data set:

	precision	recall	f1-score	support
0	0.85	0.83	0.84	325
9	0.65	0.03	0.04	323
1	0.61	0.63	0.62	133
accuracy			0.78	458
macro avg	0.73	0.73	0.73	458
weighted avg	0.78	0.78	0.78	458

14. Roc curve for KNN

	precision	recall	TI-score	support
0	0.88	0.89	0.88	738
1	0.75	0.72	0.73	329
accuracy			0.84	1067
macro avg	0.81	0.81	0.81	1067
weighted avg	0.84	0.84	0.84	1067

Confusion matrix for Naive Bayes test dataset:

[[286 39]

[46 87]]

Classification report for Naive Bayes test dataset:

	precision	recall	f1-score	support
0	0.86	0.88	0.87	325
1	0.69	0.65	0.67	133
accuracy			0.81	458
macro avg	0.78	0.77	0.77	458
weighted avg	0.81	0.81	0.81	458

15. ROC curve for Naive Bayes

Bagging & Boosting

Bagging Accuracy: 0.8144104803493449
Boosting Accuracy: 0.7729257641921398
Bagging Precision: 0.6818181818181818
Boosting Precision: 0.6013986013986014
Bagging Recall: 0.6766917293233082
Boosting Recall: 0.6466165413533834
Bagging F1 Score: 0.6792452830188679
Boosting F1 Score: 0.6231884057971013
Confusion matrix for Bagging train dataset:
[[738 0]
[1 328]]

Classification report for Bagging train dataset: precision recall f1-score support 0 1.00 1.00 1.00 738 1.00 1.00 1.00 329 1.00 1067 accuracy 1.00 1.00 1.00 1067 macro avg weighted avg 1.00 1.00 1.00 1067

Confusion matrix for Bagging test dataset:

[[283 42] [43 90]]

Classification report for Bagging test dataset:

	precision	recall	f1-score	support
0	0.87	0.87	0.87	325
1	0.68	0.68	0.68	133
accuracy			0.81	458
macro avg	0.77	0.77	0.77	458
weighted avg	0.81	0.81	0.81	458

16. ROC curve for Bagging

Confusion matrix for Boosting train dataset: [[738 0] [1 328]] Classification report for Boosting train dataset: precision recall f1-score support 0 1.00 1.00 1.00 738 1 1.00 1.00 1.00 329 accuracy 1.00 1067 1.00 macro avg 1.00 1.00 1067 weighted avg 1.00 1.00 1.00 1067

Confusion matrix for Boosting test dataset:

[[268 57] [47 86]]

Classification report for Boosting test dataset:

	precision	recall	f1-score	support
0	0.85	0.82	0.84	325
1	0.60	0.65	0.62	133
accuracy			0.77	458
macro avg	0.73	0.74	0.73	458
weighted avg	0.78	0.77	0.78	458

17. ROC curve for Boosting

After tuning the bagging & Boosting classifier, we got the results below.

```
Bagging Train Accuracy: 0.9990627928772259
Bagging Train Precision: 1.0
Bagging Train Recall: 0.9969604863221885
Bagging Train F1 Score: 0.9984779299847794
Boosting Train Accuracy: 0.9990627928772259
Boosting Train Precision: 1.0
Boosting Train Recall: 0.9969604863221885
Boosting Train F1 Score: 0.9984779299847794
Bagging Test Accuracy: 0.8209606986899564
Bagging Test Precision: 0.6976744186046512
Bagging Test Recall: 0.6766917293233082
Bagging Test F1 Score: 0.6870229007633587
Boosting Test Accuracy: 0.7838427947598253
Boosting Test Precision: 0.6180555555555556
Boosting Test Recall: 0.6691729323308271
Boosting Test F1 Score: 0.6425992779783394
```

```
Top 3 Models:
- Model: BaggingClassifier(estimator=DecisionTreeClassifier(), n estimators=100,
                  random_state=42)
 Accuracy: 0.8144104803493449
 Precision: 0.6818181818181818
 Recall: 0.6766917293233082
 F1 Score: 0.6792452830188679
 ROC AUC: 0.8669404279930595
- Model: GaussianNB()
 Accuracy: 0.8144104803493449
 Precision: 0.6904761904761905
 Recall: 0.6541353383458647
 F1 Score: 0.6718146718146719
 ROC AUC: 0.8667669172932331
- Model: AdaBoostClassifier(estimator=DecisionTreeClassifier(), n_estimators=100,
                  random state=42)
 Accuracy: 0.7729257641921398
 Precision: 0.6013986013986014
 Recall: 0.6466165413533834
 F1 Score: 0.6231884057971013
 ROC AUC: 0.7859919028340082
```

From the above code, we can see that the top 3 models are: Bagging classifier, Gaussian Naive Bayes and adaboosting classifier. We can choose either Bagging classifier or Gaussian Naive Bayes, due to their accuracy, precision, Recall, F1 score and ROC AUC. The most important features in the boosting model are:

- age
- economic.cond.national
- · economic.cond.household
- Blair
- Hague

Suggestions:

- 1. The Conservative Party should focus on improving the national and household economic conditions to increase their chances of winning the vote.
- 2. The Labour Party should focus on maintaining their strong support among voters who are satisfied with the current economic conditions and who have a positive view of their leader, Blair.

Problem 2

In this particular project, we are going to work on the inaugural corpora from the nltk in Python. We will be looking at the following speeches of the Presidents of the United States of America:

- 1. President Franklin D. Roosevelt in 1941
- 2. President John F. Kennedy in 1961
- 3. President Richard Nixon in 1973

Code Snippet to extract the three speeches:

Problem 2- Define the problem and Perform Exploratory Data Analysis
-Problem Definition- Find the number of Characters, words & sentences in all three speeches

Speech 1:

Total characters: 7571

Total words: 1360 Total sentences: 68

Speech 2:

Total characters: 7618

Total words: 1390 Total sentences: 57

Speech 3:

Total characters: 9991

Total words: 1819 Total sentences: 72

Problem 2- Text cleaning

- Stopword removal- Stemming- find the 3 most common words used in all three speeches

18. Three Common words in speeches

```
Three most common words in speech 1: [('nation', 17), ('it', 14), ('the', 10)]
Three most common words in speech 2: [('let', 16), ('us', 12), ('power', 9)]
Three most common words in speech 3: [('us', 26), ('let', 22), ('america', 21)]
```

Problem 2- Plot Word cloud of all three speeches

- Show the most common words used in all three speeches in the form of word clouds 19. Word cloud

