Oasis Infobyte

Task 1: Iris Flower Classification

Iris flower has three species; setosa, versicolor, and virginica, which differs according to their measurements. Now assume that you have the measurements of the iris flowers according to their species, and here your task is to train a machine learning model that can learn from the measurements of the iris species and classify them.

1. Import all necessary

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
    import warnings
    warnings.filterwarnings('ignore')
```

2. Import dataframe

	Iu	Sepailenginom	Sepaiwidilicili	retailenginom	retaivviutiiciii	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

3. Check for Null Values

we don't have null values

4. Check for Dublicate row

```
In [5]: df.duplicated().sum()
Out[5]: 0
```

we don't have dublicate row

5. Summery of data

```
In [6]: df.describe()
```

Out[6]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
                            Non-Null Count Dtype
             Column
         0
             Ιd
                            150 non-null
                                            int64
             SepalLengthCm 150 non-null
                                            float64
         1
         2
             SepalWidthCm
                            150 non-null
                                            float64
         3
             PetalLengthCm 150 non-null
                                            float64
         4
             PetalWidthCm
                            150 non-null
                                            float64
         5
             Species
                            150 non-null
                                            object
        dtypes: float64(4), int64(1), object(1)
        memory usage: 7.2+ KB
```

6. Check column name

7. Check the datatype

8. Shape of dataset

```
In [10]: df.shape
Out[10]: (150, 6)
```

9. Find Corelation of data

In [11]: df.corr()

Out[11]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

In [12]: plt.figure(figsize=(15,15))
sns.heatmap(df.corr() , annot=True)

Out[12]: <AxesSubplot:>

10. Analysing the 'Spices' column

```
In [13]: df["Species"]
Out[13]: 0
                    Iris-setosa
          1
                    Iris-setosa
          2
                    Iris-setosa
                    Iris-setosa
          3
                    Iris-setosa
          145
                 Iris-virginica
          146
                 Iris-virginica
                 Iris-virginica
          147
                 Iris-virginica
          148
                 Iris-virginica
          149
         Name: Species, Length: 150, dtype: object
In [14]: df["Species"].describe()
Out[14]: count
                             150
          unique
                               3
          top
                    Iris-setosa
          freq
                              50
          Name: Species, dtype: object
In [15]: plt.plot(df["Species"])
Out[15]: [<matplotlib.lines.Line2D at 0x1e92737f310>]
            Iris-virginica
           Iris-versicolor
              Iris-setosa
                           0
                                   20
                                           40
                                                   60
                                                           80
                                                                  100
                                                                          120
                                                                                  140
```

```
In [16]: plt.hist(df["Species"])
```


In [17]: sns.pairplot(df , hue = "Species")

Out[17]: <seaborn.axisgrid.PairGrid at 0x1e9273cecd0>

11. Analysing the "SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm" column

In [18]: df

Out[18]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

```
In [19]: sns.scatterplot(x="SepalLengthCm" , y = "SepalWidthCm" , data = df , hue = "Spe
Out[19]: <AxesSubplot:xlabel='SepalLengthCm', ylabel='SepalWidthCm'>
```



```
In [20]: sns.scatterplot(x="PetalLengthCm" , y = "PetalWidthCm" , data = df , hue = "SpetalWidthCm" , data = df , hue = df , hu
```

Out[20]: <AxesSubplot:xlabel='PetalLengthCm', ylabel='PetalWidthCm'>

12. Split the data

```
In [21]: x = df.drop("Species" , axis = 1)
```

In [22]: x

Out[22]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

```
In [23]: y = df["Species"]
In [24]: df["Species"].unique()
Out[24]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [25]: y.replace( { "Iris-setosa" : 1 ,"Iris-virginica" : 2 , "Iris-versicolor" : 3}
In [26]: y
Out[26]: 0
                1
                1
         1
         2
                1
                1
                1
         145
                2
                2
         146
         147
                2
                2
         148
         149
         Name: Species, Length: 150, dtype: int64
```

13. Let's Standardize iris data

```
In [27]: from sklearn.model_selection import train_test_split
         x_train , x_test , y_train , y_test = train_test_split(x,y,test_size=0.20)
In [28]: from sklearn.preprocessing import MinMaxScaler
In [29]: | scaler = MinMaxScaler()
In [30]: | x_scaled = scaler.fit_transform(x)
In [31]: | x_scaled
                | O.O/2TOJ22, O.OOIIIIII, O.JJ, O.OOTTOO/O, O./J
                [0.87919463, 1.
                                  , 0.75
                                               , 0.91525424, 0.79166667],
                [0.88590604, 0.58333333, 0.33333333, 0.77966102, 0.875
                [0.89261745, 0.55555556, 0.33333333, 0.69491525, 0.58333333],
                                       , 0.25
                                                   , 0.77966102, 0.54166667],
                [0.89932886, 0.5
                [0.90604027, 0.94444444, 0.41666667, 0.86440678, 0.91666667],
                [0.91275168, 0.55555556, 0.58333333, 0.77966102, 0.95833333],
                [0.91946309, 0.58333333, 0.45833333, 0.76271186, 0.70833333],
                [0.9261745, 0.47222222, 0.41666667, 0.6440678, 0.70833333],
                [0.93288591, 0.72222222, 0.45833333, 0.74576271, 0.83333333],
                [0.93959732, 0.66666667, 0.45833333, 0.77966102, 0.95833333],
                [0.94630872, 0.72222222, 0.45833333, 0.69491525, 0.91666667],
                [0.95302013, 0.41666667, 0.29166667, 0.69491525, 0.75
                [0.95973154, 0.69444444, 0.5
                                                   , 0.83050847, 0.91666667],
                [0.96644295, 0.66666667, 0.54166667, 0.79661017, 1.
                [0.97315436, 0.66666667, 0.41666667, 0.71186441, 0.91666667],
                [0.97986577, 0.55555556, 0.20833333, 0.6779661 , 0.75
                [0.98657718, 0.61111111, 0.41666667, 0.71186441, 0.79166667],
                [0.99328859, 0.52777778, 0.58333333, 0.74576271, 0.91666667],
                           , 0.44444444, 0.41666667, 0.69491525, 0.70833333]])
```

14. Apply models

```
In [32]: from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

In [33]: x_train

Out[33]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
110	111	6.5	3.2	5.1	2.0
144	145	6.7	3.3	5.7	2.5
42	43	4.4	3.2	1.3	0.2
87	88	6.3	2.3	4.4	1.3
93	94	5.0	2.3	3.3	1.0
37	38	4.9	3.1	1.5	0.1
26	27	5.0	3.4	1.6	0.4
76	77	6.8	2.8	4.8	1.4
24	25	4.8	3.4	1.9	0.2
34	35	4.9	3.1	1.5	0.1

120 rows × 5 columns

In [34]: | x_test

Out[34]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
79	80	5.7	2.6	3.5	1.0
6	7	4.6	3.4	1.4	0.3
139	140	6.9	3.1	5.4	2.1
141	142	6.9	3.1	5.1	2.3
107	108	7.3	2.9	6.3	1.8
39	40	5.1	3.4	1.5	0.2
148	149	6.2	3.4	5.4	2.3
132	133	6.4	2.8	5.6	2.2
85	86	6.0	3.4	4.5	1.6
105	106	7.6	3.0	6.6	2.1
2	3	4.7	3.2	1.3	0.2
66	67	5.6	3.0	4.5	1.5
53	54	5.5	2.3	4.0	1.3
54	55	6.5	2.8	4.6	1.5
77	78	6.7	3.0	5.0	1.7
84	85	5.4	3.0	4.5	1.5
52	53	6.9	3.1	4.9	1.5
147	148	6.5	3.0	5.2	2.0
130	131	7.4	2.8	6.1	1.9
106	107	4.9	2.5	4.5	1.7
3	4	4.6	3.1	1.5	0.2
88	89	5.6	3.0	4.1	1.3
32	33	5.2	4.1	1.5	0.1
58	59	6.6	2.9	4.6	1.3
75	76	6.6	3.0	4.4	1.4
4	5	5.0	3.6	1.4	0.2
16	17	5.4	3.9	1.3	0.4
45	46	4.8	3.0	1.4	0.3
13	14	4.3	3.0	1.1	0.1
60	61	5.0	2.0	3.5	1.0

```
In [35]: y_train
Out[35]: 110
                 2
          144
                 2
          42
                 1
                 3
          87
          93
                 3
                . .
          37
                 1
          26
                 1
          76
                 3
          24
                 1
          34
          Name: Species, Length: 120, dtype: int64
In [52]: |y_test
Out[52]: 79
                 3
                 1
          6
          139
                 2
                 2
          141
          107
                 2
          39
                 1
          148
                 2
          132
                 2
          85
                 3
                 2
          105
                 1
          2
                 3
          66
          53
                 3
          54
                 3
                 3
          77
                 3
          84
          52
                 3
          147
                 2
          130
                 2
                 2
          106
                 1
          3
                 3
          88
                 1
          32
          58
                 3
          75
                 3
          4
                 1
                 1
          16
                 1
          45
          13
                 1
          60
                 3
          Name: Species, dtype: int64
In [53]: model.fit(x_train, y_train)
Out[53]: LinearRegression()
```

```
In [54]: y_Pred = model.predict(x_test)
```

15. check model

```
In [55]: from sklearn.metrics import r2_score
In [56]: r2 = r2_score(y_test,y_Pred)
In [68]: r2
Out[68]: 0.5788563474209586
In [58]: from sklearn.metrics import mean squared error, mean absolute error
In [59]: MAE = mean_absolute_error(y_test,y_Pred)
In [60]: MAE
Out[60]: 0.46396734938952594
In [61]: np.sqrt(MAE) # root mean squared error
Out[61]: 0.6811514878421143
In [62]: MSE = mean_squared_error(y_test,y_Pred)
In [63]: MSE
Out[63]: 0.29058912027953865
In [64]: | slope = model.coef_
In [65]: slope
Out[65]: array([-0.01003626, -0.14817517, -0.75373742, 0.54559319, -0.1202715])
In [66]: intercept = model.intercept_
In [67]: intercept
Out[67]: 4.0098134974314
 In [ ]:
```

In []: