The Measurement of the $W\gamma$ Cross Section at 8 TeV (PhD thesis defense)

Ekaterina Avdeeva

University of Nebraska - Lincoln

June, 2017

Talk Outline

Introduction to theory

- Standard Model
- Proton-proton collisions
- $V W \gamma \rightarrow I \nu \gamma$ process

Experimental setup

- Large Hadron Collider (LHC)
- Compact Muon Solenoid (CMS)
- Particle reconstruction in CMS

\triangleright $W\gamma$ cross section measurement

- Measurement goal and strategy
- Data and simulation (MC) samples
- Measurement steps
- Main challenge: jets → γ background estimation
- Systematic uncertainties
- Results

Conclusions

More details about each subject are available in the dissertation:

https://github.com/eavdeeva/ThesisTextWg/blob/master/nuthesis/examples/nuthesis.pdf

Theory. Atom Structure

Theory. The Standard Model

Theory. Proton-Proton Collisions

- Quarks u,u,d within a proton interact and produce gluons and quark-antiquark pairs;
- In a pp collision, any "parton" from one proton can interact with any parton from another proton.

Theory. $W\gamma \rightarrow I\nu\gamma$

$$q_1ar{q_2} o W$$
 or $q_1ar{q_2} o W\gamma$ Usually $q_1ar{q_2}=uar{d}$ or $q_1ar{q_2}=dar{u}$

Three mechanisms:

ISR: initial state radiation; FSR: final state radiation;

TGC: triple gauge coupling.

Measurement goals:

Test the Standard Model;

Provide a precise cross section measurement; Search for anomalous TGC (aTGC).

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ≡ ⟨□⟩⟨○

Theory. $W\gamma \rightarrow I\nu\gamma$

$$qar{q'} o W$$
 or $qar{q'} o W\gamma$. Usually $qar{q'}=uar{d}$ or $qar{q'}=dar{u}$

Three mechanisms:

ISR: initial state radiation;

FSR: final state radiation;

TGC: triple gauge coupling.

Measurement goals:

Test the Standard Model;

Provide a precise cross section measurement;

Search for anomalous TGC (aTGC).

Large Hadron Collider (LHC)

Compact Muon Solenoid (CMS). Components

Compact Muon Solenoid (CMS). Particle Reconstruction

Process to study: $W\gamma \rightarrow \mu\nu\gamma$, $W\gamma \rightarrow e\nu\gamma$.

Final state particles: muons, electrons, photons, neutrinos.

Compact Muon Solenoid (CMS). Neutrinos

Process to study: $W\gamma \to \mu\nu\gamma$, $W\gamma \to e\nu\gamma$.

Final state particles: muons, electrons, photons, neutrinos.

Neutrino is not detected. The measure of P_T^{ν} is missing transverse energy: $E_T^{miss} = -|\sum \mathbf{P_T}|$. Sum over all visible particles in the event.

Measurement Goal

To measure the total and the differential $(\frac{d\sigma}{dP_T^\gamma})$ cross sections of $W\gamma\to l\nu\gamma$ at $\sqrt{s}=$ 8 TeV.

Phase space definition:

- $ightharpoonup P_T^{\gamma} > 15 \text{ GeV};$
- ΔR(γ, lep) >0.7;
- several more requirements related to geometric and kinematic limitations

Measurement Strategy

Step	Algebraic representation for the measurement of				
	$d\sigma/dP_T^\gamma$	σ			
select events	N_{sel}^{j}	N _{sel}			
subtract background	$N_{sign}^j = N_{sel}^j - N_{bkg}^j$	$N_{sign} = N_{sel} - N_{bkg}$			
unfold	$N_{A \times \epsilon}^{i} = U_{ij} \cdot N_{sign}^{j}$	_			
correct for efficiency	$N_{true}^i = rac{N_{A imes\epsilon}^i}{(A imes\epsilon)^i}$	$N_{true} = rac{N_{sign}}{A imes \epsilon}$			
compute cross section	$\left(\frac{d\sigma}{dP_T^{\gamma}}\right)^i = \frac{N_{true}^i}{L \cdot (\Delta P_T^{\gamma})^i}$	$\sigma = N_{true}/L$			
estimate systematic uncertainties					

Data Samples and Triggering

Data: CMS experiment, 2012, pp collisions at \sqrt{s} =8 TeV Integrated luminosity: L =19.6 fb $^{-1}$

Dataset	Candidates	Purpose	Size, T
Single muon	$W\gamma ightarrow \mu u \gamma$	target process	1.2
Single electron	$W\gamma o e u\gamma$	target process	2.0
Double muon	$Z\gamma o \mu\mu\gamma$	background estimation	0.4
Double electron	$Z\gamma o ee\gamma$	background estimation	0.5

MC Samples and Luminosity Reweighting

Process	Туре	σ , pb
$W\gamma ightarrow I u\gamma$	signal	554
W +jets $\rightarrow I\nu$ +jets	background	36257
$DY+jets \rightarrow II+jets$	background	3504
$t\bar{t}+{\sf jets} \rightarrow 1/+{\sf X}$	background	99
$t\overline{t}+\mathrm{jets}\rightarrow 2I+X$	background	24
$Z\gamma o II\gamma$	background	172

All MC samples are normalized to the data luminosity of L =19.6 fb $^{-1}$ in all studies and plots.

Requirements for Selection of $W\gamma$ Candidates

Selection requireme	Selection requirements for candidates					
$W\gamma \rightarrow \mu\nu\gamma$	$ W\gamma \rightarrow e\nu\gamma$					
Event	level:					
Exactly one lepton +	at least one photon	process signature				
$M_{\tau}^{W} >$	40 GeV	rejects DY+jets, $Z\gamma$				
,	$110 > M_{e\gamma} > 70$ GeV excl.	rejects DY+jets				
$\Delta R(lep,$	$\gamma) > 0.7$	theory consideration				
Photon s	selection:					
$P_{\tau}^{\gamma} > 1$	$P_{\tau}^{\gamma}>$ 15 GeV					
$\eta^{\dot{\gamma}}$: EE	acceptance					
Photo	Photon ID					
	[one change in ID]	$W\gamma\gamma$ -recommended				
Lepton s	Lepton selection:					
$p_T^{\mu} > 25 \text{ GeV};$	$p_T^e > 30 \text{ GeV};$	trigger				
$ \eta^{\mu} < 2.1$	η ^e : EB or EE	trigger, acceptance				
Muon ID	POG*-recommended					
Second le	rejects DY+jets, $Z\gamma$					
$p_T^{\mu 2} > 10 \text{ GeV};$	$p_T^{e2} > 10 \text{ GeV};$					
$ \eta^{\mu 2} < 2.4$	η ^{e2} : EB or EE					
	[veto] ID	very loose				

If we have several candidates in an event, we choose one with the highest P_T^{γ}

^{*}POG - Particle Object Group (in CMS)

Data vs MC. M_T^W and $M_{I\gamma}$

 $M_T^W>$ 40 **GeV** is applied in both channels $M_{l,\gamma}<$ 70 or $M_{l,\gamma}>$ 110 **GeV** is applied in the **electron channel** only

Data vs MC. P_T^{γ}

- ▶ Selected datasets are dominated by W+jets events in low P_T^{γ} bins;
- Fraction of signal increases with P_T^{γ} ;
- Data disagree with MC.

All MC samples are normalized to the luminosity of data.

Data vs MC. P_T^{γ}

Backgrounds:

▶ jets $\rightarrow \gamma$: *W*+jets, DY+jets, $t\bar{t}$ +jets;

• $e \rightarrow \gamma$: DY+jets, electron channel only;

real- γ : $Z\gamma$, $W\gamma \rightarrow \tau \nu \gamma$.

Jets $\rightarrow \gamma$ Background. Sources

Jets $\to \gamma$ background estimation is the most challenging part of this measurement and also the source of the largest systematic uncertainties (discussed later).

Jets $ightarrow \gamma$ Background. Template Method

- ightharpoonup Choose a variable that has a significant discriminative power between the true and fake photon candidates V_{fit} ;
- Prepare real- γ (T_{true}) and fake- γ (T_{fake}) templates*;
- Fit V_{fit} distribution in data by: $F(V_{fit}) = N_{true} \cdot T_{true}(V_{fit}) + N_{fake} \cdot T_{fake}(V_{fit})$.
- *Templates: binned histograms of V_{fit} , which should be accurate representations of V_{fit} distributions of real and fake photons in the $W\gamma$ -selected dataset.

Jets $ightarrow \gamma$ Background. Templates from $Z\gamma ightarrow \bar{\mu}\mu\gamma$

FSR selection: $M_{\mu\mu\gamma}$ <101 GeV and $\Delta R(\mu_1, \gamma)$ >0.4 ISR selection: $M_{\mu\mu\gamma}$ >101 GeV and $\Delta R(\mu_1, \gamma)$ >1.0

Jets $ightarrow \gamma$ Background. $V_{\it fit} = I_{\it ch}^{\gamma}$ and $V_{\it fit} = \sigma_{i\eta i\eta}$

 $e \rightarrow \gamma$ Background. Source

Real- γ Background. Sources

Main sources of true γ background are $Z\gamma$ and $W\gamma \to \tau\nu\gamma$. The MC-based estimation is used to subtract these backgrounds. MC-based background estimation.

P_T^{γ} Spectrum (EB only)

P_T^{γ} Spectrum after Background Subtraction (EB and EE)

Cross Checks for Jets $\rightarrow \gamma$ Background Estimation

Simple MC closure check:

- Mix W γ and W+jets MC samples to prepare pseudodata;
- Use $W\gamma$ and W+jets Mc to prepare templates;
- Fit pseudodata and compare fit results with MC predictions;
- Agreement is mostly good.

MC realistic check:

- Mix $W\gamma$, W+jets, DY+jets, $Z\gamma$, $t\bar{t}$ +jets MC samples to prepare pseudodata-I;
- Mix $Z\gamma$ and DY+jets MC to prepare pseudodata-II for templates;
- Fit pseudodata-I and compare fit results with MC predictions;
- Agreement is better than in data but generally not very good.

$Z\gamma$ check:

- Apply Z
 γ selection on Double Muon and Double Electron datasets;
- Prepare templates the same way as for the $W\gamma$ measurement;
- Fit $Z\gamma$ -selected datasets and compare fit results with MC predictions and I_{ch}^{γ} vs $\sigma_{i\eta}^{\gamma}$;
- Measure $Z\gamma$ cross section and compare to the published CMS 8 TeV result;
- Agreement is very good.

Conclusions: reasons of discrepancies in the $W\gamma$ measurement:

- Not accurate shape of templates;
- Effect of a bis on the fit machinery.

Other Corrections

Detector resolution unfolding:Important note: errors across difffent P_T^γ bins become correlated after the unfolding procedure.

Efficiency:

Acceptance:

Efficiency Scale Factors

POG Special SF from $W\gamma$

Uncertainties. Introduction

Relative Uncertainties [%] on the $W\gamma \to \mu\nu\gamma$ Cross Section

Diagonal elements of error matrices only

		systematic uncertainties						
P_T^{γ} , GeV	stat.	related to jets $\rightarrow \gamma$						
GeV	unc.	N _{Ich} vs	$Z\gamma$ MC	templ.	SFs	lumi	other	total
		$N_{\sigma i \eta i \eta}$	norm.	stat.				syst.
>15	1	10	24	4	2	3	4	27
15-20	2	31	12	10	3	3	6	35
20-25	2	29	13	11	1	3	6	34
25-30	2	24	13	11	1	3	5	30
30-35	3	40	15	13	2	3	7	45
35-45	2	11	12	8	2	3	6	19
45-55	4	62	19	20	2	3	8	68
55-65	3	15	12	14	1	3	7	24
65-75	6	36	19	17	1	3	10	44
75-85	4	6	11	16	1	3	10	21
85-95	5	2	9	23	1	3	13	25
95-120	5	10	8	12	1	3	9	18
120-500	3	4	11	21	2	3	9	24

Relative Uncertainties [%] on the $W\gamma \to e\nu\gamma$ Cross Section

Diagonal elements of error matrices only

				syster	natic un	certaintie	s		
P_T^{γ} ,	stat.	relat	ed to jets-	γ					
GeV	unc.	N _{Ich} vs	$Z\gamma$ MC	templ.	SFs	lumi	$e \rightarrow \gamma$	other	total
		$N_{\sigma i \eta i \eta}$	norm.	stat.					syst.
>15	2	15	35	5	19	3	4	5	44
15-20	8	80	27	19	17	3	18	11	90
20-25	7	38	20	14	12	3	11	10	48
25-30	5	25	16	12	14	3	8	8	36
30-35	5	35	14	12	14	3	3	8	42
35-45	3	14	13	8	18	3	2	7	28
45-55	8	53	20	22	36	3	7	11	71
55-65	7	17	12	30	44	3	5	10	58
65-75	7	23	15	32	44	3	4	11	61
75-85	8	32	17	27	44	3	6	13	64
85-95	9	9	7	9	40	3	8	14	44
95-120	7	19	9	14	44	3	5	11	51
120-500	4	12	6	24	39	3	1	9	48

Relative Uncertainties [%] on the $W\gamma \to e\nu\gamma$ Cross Section

Diagonal elements of error matrices only

				syster	natic und	certaintie	s		
P_T^{γ} ,	stat.	relat	ted to jets-	$\cdot \gamma$					
GeV	unc.	N _{Ich} vs	$Z\gamma$ MC	templ.	SFs	lumi	$e \rightarrow \gamma$	other	total
		$N_{\sigma i \eta i \eta}$	norm.	stat.					syst.
>15	2	15	35	5	19	3	4	5	44
15-20	8	80	27	19	17	3	18	11	90
20-25	7	38	20	14	12	3	11	10	48
25-30	5	25	16	12	14	3	8	8	36
30-35	5	35	14	12	14	3	3	8	42
35-45	3	14	13	8	18	3	2	7	28
45-55	8	53	20	22	36	3	7	11	71
55-65	7	17	12	30	44	3	5	10	58
65-75	7	23	15	32	44	3	4	11	61
75-85	8	32	17	27	44	3	6	13	64
85-95	9	9	7	9	40	3	8	14	44
95-120	7	19	9	14	44	3	5	11	51
120-500	4	12	6	24	39	3	1	9	48

Major Sources of the Systematic Uncertainties

```
Bias in Template Shape and Fit Machinery: |N_{lch} - N_{\sigma i \eta i \eta}| Z\gamma MC Normalization: Statistical Power of Templates: PixelSeedVeto SFs (electron channel only):
```

Total and Differential Cross Section

$\sigma~(P_T^{\gamma}>15~{\rm GeV})$, fb
9101
$10949 \pm 91 \pm 1463$
9146 \pm 185 \pm 2213

$Z\gamma$ Check. Differential Cross Section

- ightharpoonup Cross section of $Z\gamma o II\gamma$ agrees well with the 8 TeV published CMS result and with the theory prediction;
- The workflows for the $Z\gamma$ and $W\gamma$ measurements are very similar;
- The same procedures of the jets $\rightarrow \gamma$ background estimation have been used;
- $Z\gamma \rightarrow \mu\mu\gamma$: template data significantly overlap with analyzed data \rightarrow closure check;
- $Z\gamma \rightarrow ee\gamma$: template data **do not overlap** with analyzed data \rightarrow **valid physics measurement**.

Acknowledgements

Before drawing conclusions...

- ► Ilya Kravchenko, Yurii Maravin, Lovedeep Saini;
- Joshua Kunkle, Senka Duric, Dmytro Kovalskyi;
- Kuo Chia-Ming, Sachiko Toda McBride, Yutaro liyama;
- whole CMS collaboration.

Conclusions

- Cross section for muon and electron channels are computed;
- ▶ This is the first measurement of the differential $W\gamma$ cross section with CMS;
- Results agree with the theory;
- Results between the two channels agree;
- Good agreement in the $Z\gamma$ check validates most parts of the measurement.