

192 kHz 数字音频接收/转换(D/A)电路

产品简述

MS8412 是一款接收并解码、数模转换的数字音频电路,它支持 IEC60958, S/PDIF,EIAJ CP1201 和 AES3 接口标准。模拟部分集成插值滤波器、多 bit 数模转换器、输出模拟滤波器。 MS8412含有数字去加重模块,可以工作在 3.3V 和 5V 下。这些特性使它成为 DVD 播放解码器、数字通信设备等无线设备的理想选择。

MS8412 采用 SSOP28 封装。

主要特点

- 兼容 IEC60958, S/PDIF, EIAJ CP1201 和 AES3 协议
- 3.3V 或 5V 工作电压
- 4:1 S/PDIF 输入多路器
- 支持 I²C 接口
- 32kHz 到 192kHz 的采样频率范围
- 低抖动时钟恢复
- 支持差分或单端输入
- 内置 muti-bitΔΣ调制器
- 24bit D/A 转换器
- 输出 105dB 动态范围
- -90dB 总谐波失真+信噪比
- 线性滤波输出
- 片上数字去加重

产品规格分类

产品	封装形式	丝印名称
MS8412	SSOP-28	MS8412

应用

- A/V 接收器
- CD-R, DVD 接收器
- 多媒体音箱
- 数字混频控制台
- 数字音频处理器
- 机顶盒
- 计算机
- 汽车音频系统

内部框图

管脚排列图

NC	1	28 NC
SCL	2	27 NC
SDA	3	26 NC
AUDIO	4	$\overline{25}$ \overline{RST}
ERROR	5	24 PFILT
VDD	6	23 GND
MCLKOUT	7	22 VPLL
OSC	8	21 RXN
TEST_E	9	20 RXP0
MCLKIN	10	19 RXP1
VQ	11	18 RXP2
AGND	12	17 RXP3
AOUTR	13	16 AOUTL
AFILT+	14	15 VAA

管脚描述

日州田公		1	
管脚名称	管脚号	方向	管脚描述
NC	1		悬空
SCL	2	I	串行数字接口时钟,用于串行数字接口通信。详见"数字接口描述"部分
SDA	3	1/0	ι ² C的ι/O数据线。SDA是开漏输出,需要接一个上拉电阻到VDD。 详见"数字接口描述"部分
AUDIO	4	0	低电平表示 SPDIF 信号是有效的 PCM 信号
ERROR	5	0	接收器错误输出。当接收的S/PDIF数据不稳定或者没有S/PDIF信号输入时,将输出"1"
VDD	6	Р	数字部分电源。
MCLKOUT	7	0	S/PDIF 通过 PLL 恢复的主时钟输出端口。必须和 PIN10 连接
OSC	8	ı	接晶振,当PLL失锁时,MCLKOUT跟随该时钟
TEST_E	9	0	串行音频数据输出监视端口,必须通过47K电阻上拉到VDD
MCLKIN	10	I	内部 DAC 主时钟输入端口.必须和 PIN 7 连接
VQ	11	0	内部静态电压的滤波器接口,外接电容。
AGND	12	G	地
AOUTR	13	0	模拟输出 右通道输出端口
AFILT+	14	0	内部 DAC 的正向参考电压,外接电容。
VAA	15	Р	模拟电源
AOUTL	16	0	模拟输出 左通道输出端口

RXP3	17	I	
RXP2	18	I	S/PDIF 正向输入端,单端或差分接收 S/PDIF 编码的数据。RXP[3:0]
RXP1	19	ı	包含了 4 选 1 的 S/PDIF 输入选择器。不使用的输入端应悬空或接
RXP0	20	ı	AGND。推荐的输入电路详见"AES3 接收器的外部元件"。
RXN	21	I	S/PDIF 负向输入端,单端或差分接收 S/PDIF 编码的数据。 在单端信号工作时,该管脚应该接一个电容交流耦合到地。 推荐的输入电路详见"外置 SPDIF 接收器"章节。
VPLL	22	Р	内部 PLL 电源。+3.3 V。该电源需要保证低噪声,以保证 PLL 的稳定。
GND	23	G	内部 PLL 电源地
PFILT	24	О	PLL 环路滤波器输出端。 该管脚必须连接一个 RC 网络到 PIN23。详见 "PLL 滤波器"章节
RST	25	ı	复位脚,低电平时,MS8412 进入低功耗模式,且内部的所有状态都复位。在上电开始时,RST 必须保持低电平,直到电源电压和所有的输入时钟在频率及相位上稳定
NC	26	ı	悬空
NC	27	ı	悬空
NC	28	0	悬空

极限参数

(AGND, GND = 0 V, 所有的电压值都是相对于 0V。工作在这些限定的条件下可能会对设备产生永久的损害。正常工作并不保证在这些极限范围内。)

参数	符号	最小值	最大值	单位
电源电压	VAA,VDD,VPLL	-	5.5	V
输入电流,除供电外的任何管脚(注1)	l _{in}	-	±10	mA
输入电压	V_{in}	-0.3	(VDD) +0.3	V
工作温度(供电)	TA	-55	125	$^{\circ}$
存储温度	T_{stg}	-65	150	${\mathbb C}$

注:

1.上升到 100mA 的瞬态电流不会引起 SCR 的栓锁效应。

推荐的工作条件

(AGND, GND=0V, 所有的电压值都是相对于 0V。)

参数	符号	最小值	典型值	最大值	单位
	VAA				
电源电压	VDD	3.0	3.3 或 5.0	5.25	V
	VPLL				
工作温度	TA	-40	-	+85	$^{\circ}$

电气参数

直流特性:

(AGND, GND=0V, 所有的电压值都是相对于 0V。)

参数		符号	最小值	典型值	最大值	单位
静态模式(注 2, 4)						
静态模式下的供电电流	VAA	IAA	-	110	-	μΑ
	VDD	IDD	-	70	-	μА
	VPLL=3.3V	IPLL	-	10	-	μΑ
	VPLL=5.0V	IPLL	-	12	-	μΑ
正常工作(注3,4)						
48kHZ 帧速率下的电源电流	VAA	IAA	-	22	-	mA
	VDD	IDD	-	6.9	-	mA
	VPLL=3.3V	IPLL	-	3.8	-	mA
	VPLL=5.0V	IPLL	-	5.2	-	mA
192kHZ 帧速率下的电源电流	VAA	IA	-	27	-	mA
	VDD	IDD	-	23	-	mA
	VPLL=3.3V	IL	-	8.8	-	mA
	VPLL=5.0V	IL	-	12.8	-	mA

注:

- 2.静态模式是指RST =LO 且所有的时钟和数据线保持静态。
- 3.正常工作是指RST =HI。
- 4.假定没有输入悬空。推荐所有输入在任何时间下都由高或低电平驱动。

数字输入特性:

(AGND, GND=0V, 所有的电压值都是相对于 0V。)

参数	符号	最小值	典型值	最大值	单位
输入漏电流	I _{IN}	-	-	±0.5	μΑ
差分输入灵敏度,RXP[3:0]到 RXN	V _{TH}	-	150	200	mVpp
输入滞后	V _H	0.15	1	1.0	V

数字输入规格:

(AGND, GND=0V, 所有的电压值都是相对于 0V。)

参数	符号	最小值	最大值	单位
输出高电压(I _{OH} =-3.2mA)	V _{OH}	(VDD) -1.0	-	V
输出低电压(IoL=3.2mA)	V _{OL}	-	0.5	V
输入高电压,除 RXP[3:0],RXN	V _{IH}	2.0	(VDD) +0.3	V
输入低电压,除 RXP[3:0], RXN	V _{IL}	-0.3	0.8	V

DAC模拟特性1:

(TA = 25°C,满幅输出正弦信号, 997Hz, Fs=48/96/192kHz; RL = 3k Ω , CL = 10pF,测试带宽 10 Hz 至 20kHz。)

参数		5V			3.3V				
		最小值	典型值	最大值	最小值	典型值	最大值	单位	
	18 to 24 bit	A-weighted	99	105		97	103		dB
动态范围		unweighted	96	102		94	100		dB
20.1611111111111111111111111111111111111	16bit	A-weighted	90	96		90	96		dB
		unweighted	87	93		87	93		dB
	18 to 24 bit	0dB		-90	-85		-90	-85	dB
		-20dB		-82	-76		-80	-74	dB
分, 水, 水, 中, 古, ·喝, 丰		-60dB		-42	-36		-40	-34	dB
总谐波失真+噪声	16bit	0dB		-90	-84		-90	-84	dB
		-20dB		-73	-67		-73	-67	dB
		-60dB		-33	-27		-33	-27	dB
	18 to 24 bit	A-weighted	95	105		93	103		dB
-1. 1. 1. E		unweighted	92	102		90	100		dB
动态范围	16bit	A-weighted	86	96		86	96		dB
		unweighted	83	93		83	93		dB
	18 to 24 bit	0dB		-90	-82		-90	-82	dB
		-20dB		-82	-72		-80	-70	dB
3		-60dB		-42	-32		-40	-30	dB
总谐波失真+噪声	16bit	0dB		-90	-82		-90	-82	dB
		-20dB		-73	-63		-73	-63	dB
		-60dB		-33	-23		-33	-23	dB

DAC 模拟特性 2:

参数	符号	最小值	典型值	最大值	单位
通道隔离度(1KHz)			100		dB
DAC 精度	,				
通道间增益匹配误差			0.1	0.25	dB
增益漂移			100		ppm/°C
模拟输出	,				
满幅度输出电压			0.65•VAA		Vpp
直流电压	VQ		0.5∙VAA		VDC
AOUT 端最大直流电流	IOUTmax		10		uA
VQ 端最大电流	IQmax		100		uA
最大 AC 负载电阻(图 20)	RL		3		kΩ
最大负载电容(图 20)	CL		100		pF
输出阻抗	Zout		100		Ω

数字和模拟滤波响应:

数于作 类 拟滤波响应:						
参数		符号	最小值	典型值	最大值	单位
Single-Speed 模式						
/× 4× +#-	至 -0.1dB 拐点		0		0.35	Fs
通频带	至 -3dB 拐点		0		0.4992	Fs
10Hz 到 20KHz 的频	页率响应		-0.175		+.01	dB
衰减带			0.5465			Fs
衰减幅度			50			dB
延时		Tgd		10/fs		S
	Fs=32KHZ				+1.5/+0	
去加重误差	Fs=44.1KHZ				+0.05/-0.25	
	Fs=48KHZ				-0.2/-0.4	
Double-Speed 模式						
New Joy 111.	至 -0.1dB 拐点		0		0.22	Fs
通频带	至 -3dB 拐点		0		0.501	Fs
10Hz 到 20KHz 的频	页率响应		-0.15		+0.15	dB
衰减带			0.5770			Fs
衰减幅度			55			dB
延时		Tgd		5/fs		S

参数	符号	最小值	典型值	最大值	单位	
Quad-Speed 模式						
) Z 1/L 111-	至 -0.1dB 拐点		0	•	0.11	Fs
通频带	至 -3dB 拐点		0		0.469	Fs
10Hz 到 20KHz 的频率响应			-0.12		+0	dB
衰减带			07			Fs
衰减幅度			51			dB
延时		Tgd		2.5/fs		S

转换特性:

(输入:逻辑 0=0V,逻辑 1=VDD;CL=20pF)

参数	符号	最小值	典型值	最大值	单位
RST 管脚低电平脉冲宽度		200	-	-	μs
PLL 时钟恢复的采样速率范围		30	-	200	kHz
MCLKOUT 输出抖动(注 5)		-	200	-	Ps RMS
MCLKOUT 输出占空比 (注 6)		45	50	55	%
MCLKOUT 输出占空比 (注 7)		50	55	65	%

注:

- 5.典型的 RMS 周期性抖动。
- 6.时钟由双相编码输入恢复后的占空比。
- 7.当 MCLKOUT 作为 MCLKIN 输出时的占空比。

转换特性-数字接口-I2C格式:

(输入:逻辑 0=0V,逻辑 1=VL;C_L=20pF)

参数	符号	最小值	最大值	单位
SCL时钟频率	f _{scl}	-	100	kHz
传输之间的总线空闲时间	t _{buf}	4.7	-	μs
起始条件的保持时间(在第一个时钟脉冲之前)	t _{hdst}	4.0	-	μs
时钟低电平时间	t _{low}	4.7	-	μs
时钟高电平时间	t _{high}	4.0	-	μs
起始条件的建立时间	t _{sust}	4.7	-	μs
在SCL下降沿后的SDA保持时间 (备注8)	t _{hdd}	10	-	ns
到SCL上升沿的SDA建立时间	t _{sud}	250	-	ns
SCL和SDA的上升时间	t _r	-	1000	ns
SCL和SDA的下降时间	t _f	-	300	ns
结束条件的建立时间	t _{susp}	4.7	-	μs

注:

8. 由于 SCL 的变换时间 300ns,数据必须保持足够的时间。

功能描述

1.概述

MS8412是一个单片CMOS芯片,遵循AES3,IEC60953,S/PDIF,和EIAJ CP1201接口标准接收和解码音频并实现模拟转换。MS8412标准的音频采样频率,包括48、44.1、32kHz,96、88.2、64kHz,192、176.4、128kHz。

MS8412采用一个4:1多路复用器选择一个输入,解码并允许通过一个输出管脚输出。输入数据可以是差分或者单端信号。

2.AES3和S/PDIF标准文件

我们假设用户已熟悉AES3和S/PDIF数字格式。对于最新的AES3,IEC60958,和IEC61937规格的最新参考内容是适用的。

典型连接图显示了硬件模式下电源和外部连接的MS8412配置。请注意所有I/O管脚,包括RXN和RXP[3:0],工作在VDD电压下。最新的AES3标准可在www.aes.org或www.ansi.org的音频工程协会和ANSI上获取。从ANSI或国际电技术委员会的www.iec.ch上获取最新的IEC60958/61937信息。在日本电子局可获取最新的EIAJ CP-1201标准。

3.AES3和S/PDIF数字音频接收器

MS8412包含了一个AES3/SPDIF数字音频接收器。遵循AES3,IEC60958(S/PDIF),和EIAJ CP-1201接口标准,接收器接收和解码双相编码音频数据。接收器由一个模拟差分输入级(驱动模拟输入管脚RXP0-RXP3和RXN),一个基于时钟恢复的PLL电路,和一个用于把音频数据从通道状态和用户数据中分离出来的解码器。外部器件用于连接输入数据缆线并隔离MS8412。下图显示了接收器的输入结构。

If RXP[3:0] is selected by either the receiver MUX or the TX passthrough MUX,N=1. If RXP[3:0] is selected by both the receiver MUX and the TX passthrough MUX,N=2. If RXP[3:0] is not selected at all,N=0(i.e. high impedance).

MS8412采用一个4:1 S/PDIF输入多路选择器,最多可容纳4通道的输入数字音频数据。数字音频数据可以是单端或差分的。差分输入利用RXP[3:0]和一个共用的RXN。单端信号通过RXP[3:0]输入并将RXN

交流耦合到地。

MS8412中4:1 S/PDIF输入多路选择器的所有有效输入都应通过一个电容耦合进入。当输入不用时应 悬空。若不使用多路选择器,输入应悬空状态或接到AGND。推荐电容值为0.01μF-0.1μF。用于交流耦 合电容器的电介质推荐使用COG或X7R。

输入多路选择器的输入电压范围由I/O供电电压管脚VDD确定。RXP[3:0]和RXN管脚的输入电压范围也由VDD电压确定。输入电压高于VDD或低于GND会降低性能或损坏元件。

3.1多路选择器

通过寄存器04h中的RXSEL[2:0]位使用多路选择器的选择线。多路选择器默认为RXPO。

4.时钟恢复和PLL滤波器

详见"PLL滤波器"的描述,所推荐PLL滤波器元件的选择和布局考虑。

5.错误

在解码双相编码数据流输入时,MS8412可以鉴别各种错误。

用户可以通过对ERROR管脚查看接收器错误。

ERROR - 在当前采样过程中,如果有效位是高电平,或奇偶检查,双相编码,可靠性或PLL锁定错误产生,保持先前的音频采样数据且通过串行音频输出端口。

6.非音频检测

AES3数据流可用于传输非音频数据。因此输入的AES3数据流是否是数字音频非常重要。这个信息 典型地传输在通道状态位1。然而,如AC-3TM或MPEG编码器的确切非音频源不遵循该规定,且位不会 被正确地设置。MS8412的AES3接收器使用自动检测系统可检测出非音频数据。

如果AES3数据流包含了IEC61937或DTS数据传输的专用格式中的同步码,将会出现一个内部的自动 检测信号。如果一段时间后同步码不再出现,自动检测系统将会中断,且检测信号会持续到另一种格 式被检测。

AUDIO 是管脚4上的输出。如果检测到非音频数据,数据仍会如同音频数据一样正确处理。有一个特例是,如果输入数据流是非音频数据,利用去加重音自动选择功能将会略过加重滤波器。如有需要,用户可用此使输出静音。

7.AES3接收器的外部元件

MS8412的AES3接收器用于专消费者和消费者模式接口。使用专家的数字音频规格需要一个对称的接收器,使用带110Ω±20%阻抗的XLR连接器。在接收器上的XLR连接器需有带阳极外壳的阴极管脚。由于接收器有非常高的输入阻抗,接收器的末端应放置一个110Ω的电阻以匹配导线阻抗,如图1和2所示。尽管AES没有规定变压器,但强烈推荐使用变压器。

如需在使用变压器时隔离,一个0.01μF的电容应串联在每个输入管脚(RXP[3:0]和RXN),如图2所

示。当不使用变压器时,由于高频能量会耦合到接收器,导致模拟性能的降低。

图1和2显示了一个可选择的(推荐)直流隔离电容(0.1μF-0.47μF)串联在电缆输入。如果在电缆中存在直流电压,该电容可以改善接收器的可靠性,防止变压器饱和,隔离直流电流。

在消费者模式接口中,需要一个阻抗为75Ω±5%接收器的不平衡的电路。消费者格式接口的连接器 是一个RCA声音插口。图3显示了接收器电路。

在使用外置RS422接收器,光学接收器或其它TTL/CMOS逻辑输出驱动MS8412接收器部分时,应使用图5中的电路。

在系统结构中,使用地环路和避免直流电流击穿电缆的屏蔽层是非常重要的,因为这会避免不同隔离的地连接在一起。通常地推荐将传输单元底板的屏蔽层接地,且通过电容连接屏蔽层到接收器的底板地。然而,在某些情况下,它却有利于两个接地的装置保持在相同电位,且可依据电缆屏蔽层关闭电路连接。通常地情况下推荐接地或电容耦合到底板的屏蔽层。

7.1隔离变压器的要求

图 1.110 欧姆平衡传输(带变压器隔离)

图 2.110 欧姆平衡传输

图 3.75 欧姆同轴电缆输入

图 4.S/PDIF 多路复用器输入电路

图 5.TTL/CMOS 输入电路

8.PLL滤波器

电路板布局和电容的选择两者互相影响,且决定了PLL的性能。下图包含了PLL滤波器元件和模拟 电源旁路的一种推荐布局。0.1μF旁路电容具有1206形式的系数。RFLT,CFLT,CRIP,1000pF的去耦合

电容具有0805形式的系数。连接线在电路板的顶层表面,因此没有通路电感。非常短的连接线使得滤波器通路中的电感减到最小值。VAA和AGND的连接线向后延长到各自的起点,且在电路板中只显示为截断的形式。

布局推荐示例

表2列出了PLL外部器件值。

表2.PLL外部器件值

范围(kHz)	R _{FLT}	C _{FLT}	C _{RIP}	稳定时间
32 - 192	2kΩ	22nF	1nF	4ms

9.抖动衰减

下图是抖动衰减曲线图。AES3和IEC60958-4协议规定了最大2dB的抖动增益或脉冲尖峰。

PLL的抖动衰减特性曲线

10.去加重

MS8412含有片上数字去加重功能,下图显示了在Fs 为44.1kHz 时的去加重曲线。

11.模拟输出初始化和Power-Down

当系统初始上电后就进入power-down 状态,此时插值滤波器和ΔΣ调制器复位,内部参考电压、数模转换器、开关电容滤波器、低通滤波器被关闭,直到系统检测到MCLKIN时钟。然后给内部参考电压上电,最后才给数模转换器、开关电容滤波器上电,而输出端输出静态电压VQ。

11.1 输出瞬态控制

MS8412采用Popguard 技术来减小上电和下电时的瞬态响应。

上电: 当系统初始上电时,输出端的直流电平就由 VQ 端提供,此时VQ 端为低电平。当MCLKIN 检测到后, VQ 端就产生正常的直流电压。当VQ 端接3.3uF 电容时,这个过程需250ms(10uF 电容需420ms)。

为了防止在下电时产生瞬态脉冲,在下电前必须是直流缓冲电容完全放电。当 VQ 端外接3.3uF 电容时,MCLKIN必须在下电前250ms 停止(10uF 电容需420ms),在这段时间内VQ 端和输出端逐渐下降到GND。

11.2 模拟输出与滤波

MS8412的模拟滤波器是一个连接着低通滤波器的开关电容滤波器。它的频率响应图见下图表。

SSM 传输带宽图

12.数字接口

MS8412 作为一个从设备,可以使用 I²C 接口。

12.1 I2C模式

在 I^2C 模式,SDA 是一个双向数据线。数据被 SCL 的时钟输入和输出到端口。在 MS8412 被复位时,检测管脚状态。

下面两图分别显示了写和读周期的信号时序。当时钟信号为高电平时,SDA有一个下降的转变作为起始状态。时钟信号为高电平时,有一个上升转变作为结束状态。SDA的其它所有转变都发生在时钟信号为低电平时。在起始状态后,由7位芯片地址和1位读/写位(高为读,低为写)组成的第一个字节被发送到MS8412。7位地址固定为0010000。在MS8412的通信中,芯片地址作为第一个字节被发送到MS8412。地址的第8位是读/写位。如果是个写操作,接下来的一个字节为寄存器地址(04h)。如果是个读操作,将输出寄存器04h的内容。每一个字节由一个应答位(ACK)分隔开。在每次输入字节读取后MS8412输出应答位,每一个传输的字节后微控制器发送应答位给MS8412。

I2C 从模式下数字接口的写时序

I2C 从模式下数字接口的读时序

12.2 多路选择器控制 (04h)

7	6	5	4	3	2	1	0
1	0	RXSEL2	RXSEL1	RXSEL0	0	0	0

RXSEL[2:0] - 选择 RXPO 到 RXP3 作为接收器的输入

默认='000'

000 - RXPO,

001 - RXP1,

010 - RXP2,

011 - RXP3

13.应用

13.1 复位,上电和启动

当 RST 为低电平时,MS8412进入低功耗模式,内部所有的状态复位,包括数字接口和寄存器,且输出静音。当 RST 为高电平时,数字接口工作,配置寄存器。在PLL锁定后,使能串行音频输出端。

13.2 供电电源,地,PCB布局

对于大部分应用,MS8412可在一个单独的+3.3V供电电源下工作,包含标准电源去耦合部分。由于MCLKOUT管脚上输出的恢复输入时钟部分需要较低的抖动,因此使用一个独立稳定的模拟+3.3V电源VAA,且VAA和AGND之间连接去耦合电容。确保没有数字路径在VAA,AGND或PFILT上,因为噪音耦合会降低性能。这些管脚需要隔离开关信号和其他噪音源。

VDD固定数字输入和输出电平和AES/SPDIF接收器的输入电平一样。

推荐在未使用区域填满地层和在表面放去耦合电容。去耦合电容需放置在PCB板的同一边,使 MS8412的电感效应最低,且所有去耦合电容必须尽可能的靠近MS8412。

典型应用图

典型的输入结构和推荐的输入电路见"AES3/SPDIF数字音频接收器"和"AES3接收器的外部元件"。(如有需要,可提供相应的附件)

为得到最佳的抖动性能,滤波器的地直接连接到AGND管脚。见表2的PLL滤波器值。

封装外形图

SSOP28:

DIM SYMBOL	MIN.	N□M.	MAX.	
Α	-	42	2.00	
A1	0.05	-	0.25	
A2	1.65	1.75	1.85	
A3	0.75	0.80	0.85	
b	0.29	-	0.37	
b1	0.28	0.30	0.33	
c 0.15		_	0.20	
c 1	0.14	0.15	0.16	
D	10.00	10.20	10.40	
E	7.60	7.80	8.00	
E1	5.10	5.30	5.50	
е		0.65BSC	NO.	
L	0.55	0.75	0.95	
L1	1.25BSC			
Θ	0°	-	8*	

印章与包装规范

一、印章内容介绍

产品正面

MS8412: 产品型号 XXXXXX: 生产批号

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装说明

型号	封装形式	只/卷	卷/盒	只/盒	盒 / 箱	只/箱
MS8412	SSOP28	2000	1	2000	8	16000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

杭州市滨江区伟业路 1号高新软件园 9号楼 701室

