Course Code	MTH502			
Course Name	Number Theory			
Credits	4			
Course Offered to	UG			
Course Description	This course is an elementary introduction to number theory with no algebraic prerequisites. Topics covered include primes, congruences, quadratic reciprocity, diophantine equations, Arithmetic functions, Lagrange's four-squares theorem and partitions.			
Pre-	requisites			
Pre-requisite	Pre-requisite			
(Mandatory)	(Desirable)	Pre-requisite(other)		
Nil	Nil			

*Please insert more rows if required

Post Conditions*(For suggestions on verbs please refer the second sheet)							
CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
To be able to write down formal Mathematical proofs	,	To be able to apply number-theoretic techniques to simply computations.	To be able to describe properties of some special number-theorectic functions and their growth rates	numbers of some special forms	describe complete	To be able to explain the proof of Lagrange's four squares theorem	To be able to explain basic theory of partitions
	Weekly	Lecture Plan					

Week Number Lecture Topic COs Met Assignment/Labs/Tutorial

1	Divisibility: basic definition, properties, prime numbers, some results on distribution of primes.	CO1 and CO2	Tutorial 1
2	Congruences, Complete and reduced residue systems, theorems of Fermat, Euler & Wilson, application to RSA cryptosystem. Linear congruences and Chinese Remainder Theorem.	CO1 and CO3	Tutorial 2
3	Primitive roots and indic	CO1 and CO3	Tutorial 3
4	Quadratic congruences, and Quadratic Reciprocity law	CO1 and CO3	Tutorial 4
5	Arithmetical functions: examples, with some properties and their rate of growth.	CO1 and CO4	Tutorial 5
6	Numbers of special form: Perfect numbers; Mersenne Primes and Amicable numbers; Fermat's numbers; Fibonacci numbers.	CO1, CO3 and CO5	Tutorial 6

	Diophantine equations: linear and quadratic, some general		
		CO1 and CO6	Tutorial 7
	Representation of integers as sums of		
7	squares.	CO1 and CO7	Tutorial 8
8	Partition: basic propertie	CO1 and CO8	Tutorial 9

*Please insert more rows if required

Weekly Lab Plan				
Week Number	Laboratory Exercise	COs Met	Platform (Hardware/Software)	

*Please insert more rows if required

Assessment Plan			
Type of Evaluation	Grade		
Midsem	30		
Quizzes	30		
Major	40		

*Please insert more row for other type of Evaluation

Resource Material						
Туре		Title				
Textbook	1. David M. Burton, Elei	David M. Burton, Elementary Number Theory, Tata McGraw Hill.				
	2. Niven, Zuckerman an	2. Niven, Zuckerman and Montgomery, An introduction to the theory of				
	3. Hardy and Wright, Ar	3. Hardy and Wright, An introduction to the theory of numbers, Oxford				
	4. Tom M. Apostal, Introduction to Analytic Number Theory, Springer.					
	5. Alan Baker, A Concise Introduction to the Theory of Numbers,					
	Cambridge University P	nbridge University Press.				