Normalformen

Ziel:

Verbesserung der Qualität des DB-Entwurfs

Vorgangsweise:

- Zerlegung der Relationen entsprechend den Normalformen-Regeln
- Normalformen sind ENTWURFSREGELN für den guten relationalen DB-Entwurf

Warum Normalformen

Qualität eines relationalen Datenbankentwurfs bewerten

1. Redundanzfreiheit

in mehreren Tabellen wird immer wieder
 ZUNAME, VORNAME, ADR,... gehalten

2. Konsistenzbedingungen

- einhalten, die durch funktionale Abhängigkeiten gegeben sind
- {PERSNR}-->PERSONEN-Tabelle
- {PLZ} --> {BLAND,ORT,STRASSE}
- 3. Daten-Anomalien vermeiden

Normalformen garantieren obige Kriterien!!

'Schlechte' Relationenschemata

ProfVorl						
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5259	Der Wiener Kreis	2
2137	\mathbf{Kant}	C4	7	4630	Die 3 Kritiken	4

Update-Anomalien

Einfügeanomalien

Löschanomalien

Anomalien bei schlechten Relationenschemata

- Updateanomalien:
 - Wenn ein Professor einen anderen Raum bezieht, müssen alle Tupel geändert werden.
- Einfügeanomalie:
 - Was macht man mit Professoren, die keine Vorlesung halten?
- Löschanomalien:
 - Was passiert, wenn Kant seine einzige Vorlesung absagt ?
 - Wird er gelöscht?

Lösung: Zerlegung der Relation in Teilrelationen

Funktionale Abhängigkeiten

- Beim <u>DB-Entwurf</u> sind die <u>funktionalen Abhängigkeiten (FD)</u>
 zwischen Attributen bzw. Attributkombinationen <u>sehr wichtig</u>.
- FDs sind Integritätsbedingungen, die zu allen Zeiten in jedem DB-Zustand (=Ausprägung) eingehalten werden müssen.
- Kenntnis und Beachtung v. FDs beim DB-Entwurf ist eine unabdingbare Voraussetzung für die Gewährleistung der Integrität einer Datenbank
- FDs sind eine Verallgemeinerung des Schlüsselbegriffs

Funktionale Abhängigkeiten

- Schema
 - **R** = {A, B, C, D}
- Ausprägung R
- Seien $\alpha \subseteq R$, $\beta \subseteq R$
- $\alpha \rightarrow \beta$ genau dann wenn $\forall r, s \in R$ mit $r \cdot \alpha = s \cdot \alpha \Rightarrow r \cdot \beta = s \cdot \beta$

R				
A	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c3	d2	
a3	b2	c4	d3	

$$\{A\} \rightarrow \{B\}$$
 $\{C, D\} \rightarrow \{B\}$
 $\{Cit Nicht: \{B\} \rightarrow \{C\}$
 $\{Cit Notationskonvention: CD \rightarrow B$

Beispiel: Funktionale Abhängigkeiten

Stammbaum					
Kind	Vater	Mutter	Opa	Oma	
Sofie	Alfons	Sabine	Lothar	Linde	
Sofie	Alfons	Sabine	Hubert	Lisa	
Niklas	Alfons	Sabine	Lothar	Linde	
Niklas	Alfons	Sabine	Hubert	Lisa	
		•••	Lothar	Martha	
	•••	•••	•••		

- Kind → Vater, Mutter
- Frage: Welche 2 weiteren Fds gibt es
- Kind,Opa → Oma
- Kind,Oma → Opa

Funktionale Abhängigkeiten

- Übliche Sprechweisen:
 - a --> β ,d.h. wenn a bekannt ist, kennt man auch β
 - a bestimmt ß oder ß hängt von a ab
- Alle Tupel, die in a den selben Wert aufweisen, müssen auch in ß übereinstimmen.
- Überprüfe, ob die angegeb. FDs (a-d) beim Erstellen der Relation eingehalten wurden A B C D E F a) AB->D b)C-->E c)C-->F d)ABC-->E
 - ae3g5p
 - ac4h1g
 - ab3f5p
 - a e 2 g 4 g
 - ak3f7p
 - ak2f4g

Schlüssel

• $\alpha \subseteq \mathcal{R}$ ist ein Superschlüssel wenn gilt:

$$\alpha \to \mathcal{R}$$

- β ist voll funktional abhängig von α in Zeichen $\alpha \xrightarrow{\bullet} \beta$ falls beide nachfolgenden Kriterien gelten:
 - 1. $\alpha \to \beta$, d.h. β ist funktional abhängig von α und
 - 2. α kann nicht mehr "verkleinert" werden, d.h.

$$\forall A \in \alpha : \alpha - \{A\} \not\to \beta$$

• $\alpha \subseteq \mathcal{R}$ ist ein Kandidatenschlüssel wenn gilt:

~	•	D
α	\rightarrow	κ

Städte				
Name	BLand	Vorwahl	\mathbf{EW}	
Frankfurt	Hessen	069	650000	
Frankfurt	Brandenburg	0335	84000	
München	Bayern	089	1200000	
Passau	Bayern	0851	50000	
	• • •			

Die Kandidatenschlüssel für die Relation Städte sind:

- {Name, BLand}
- {Name, Vorwahl}
 Man beachte, daß zwei (kleinere) Städte dieselbe Vorwahl haben können.

Transitive Abhängigkeit

 S Sei der Identifikationsschlüssel einer Relation R. B und C seien zwei weitere Attribute oder Attributskombinationen von R derart, daß die drei Attribute (Attributskombinationen) untereinander je distinkt sind. C ist transitiv abhängig von S falls jederzeit gilt:

```
- R.S ---> R.B und R.B ---> R.C
```

- R.B -/-> R.S
- PERSONAL (<u>PersNr</u>, Name, AbtNr, AbtBez)
 - PersNr -> PERSONAL (insbes.: PersNR -> AbtNr)
 - AbtNr -> AbtBez
 - AbtBez ist transitiv abhängig von PersNr
- "Transitiv abhängig" ist also gleichbedeutend mit "abhängig auch über schlüsselfremde Umwege"

1. NF

 Eine Relation befindet sich in der 1. Normalform, wenn keines ihrer Attribute Attributwerte aufweist, die ihrerseits Mengen sind.

Personal:

PID	Person	AbtID	Abteilung	ProjID	Projekt	ProjZeit
1	Hans	1	Physik	11,12	А, В	60,40
2	Rolf	2	Chemie	13	С	100
3	Ursula	2	Chemie	11,12,13	А, В, С	20,50,30
4	Paul	1	Physik	11,13	А, С	80,20

Person Projekt:

PID	Person	AbtID	Abteilung	ProjID	Projekt	ProjZeit
1	Hans	1	Physik	11	А	60
1	Hans	1	Physik	12	В	40
2	Rolf	2	Chemie	13	С	100
3	Ursula	2	Chemie	11	А	20
3	Ursula	2	Chemie	12	В	50
3	Ursula	2	Chemie	13	С	30
4	Paul	1	Physik	11	А	80
4	Paul	1	Physik	13	С	20

2. NF (1)

Eine Relation \mathcal{R} mit zugehörigen FDs F ist in zweiter Normalform, falls jedes Nichtschlüssel-Attribut $A \in \mathcal{R}$ voll funktional abhängig ist von jedem Kandidatenschlüssel der Relation.

${\bf Studenten Belegung}$			
MatrNr	VorlNr	Name	Semester
26120	5001	Fichte	10
27550	5001	Schopenhauer	6
27550	4052	Schopenhauer	6
28106	5041	Carnap	3
28106	5052	Carnap	3
28106	5216	Carnap	3
28106	5259	Carnap	3

Studentenbelegung ist nicht 2 NF wegen

- $\{MatrNr\} \rightarrow \{Name\}$ und
- $\{MatrNr\} \rightarrow \{Semester\}$

2. NF (2)

- Einfügeanomalie: Was macht man mit Studenten, die keine Vorlesungen hören?
- Updateanomalien: Wenn z.B. "Carnap" ins vierte Semester kommt, muß sichergestellt werden, daß alle vier Tupel geändert werden.
- Löschanomalien: Was passiert, wenn "Fichte" ihre einzige Vorlesung absagt?

Zerlegung in:

- hören: {[MatrNr, VorlNr]} und
- Studenten: {[MatrNr, Name, Semester]}

Beide Relationen sind 2 NF (erfüllen sogar noch "höhere Gütekriterien")

2. NF (3)

Projekt:

ProjID	Projekt
11	A
12	В
13	С

Personal:

PID	Person	AbtID	Abteilung
1	Hans	1	Physik
2	Rolf	2	Chemie
3	Ursula	2	Chemie
4	Paul	1	Physik

Projektzugehörigkeit:

PID	ProjID	ProjZeit
1	11	60
1	12	40
2	13	100
3	11	20
3	12	50
3	13	30
4	11	80
4	13	20

3. NF (1)

• Eine Relation befindet sich in der 3. Normalform, wenn sie sich in der 2. Normalform befindet und kein Attribut, das nicht zum Identifikationsschlüssel gehört, transitiv von diesem abhängt.

- Eine Relation befindet sich dann und nur dann in der 3.
 Normalform, wenn sie sich in der 2. Normalform befindet und kein NSA von einen anderen NSA funktional abhängig ist.
- Eine Relation befindet sich NICHT in der 3. Normalform, wenn ein NSA von einen anderen NSA funktional abhängig ist.
 - Bsp: {<u>PERSNR</u>, NAME, ABTNR,ABTNAME}
 - Weil ABTNR --> ABTNAME und beide sind NSA => nicht in 3.NF

3.NF (2)

Personal:

PID	Person	AbtID
1	Hans	1
2	Rolf	2
3	Ursula	2
4	Paul	1

Abteilung:

AbtID	Abteilung		
1	Physik		
2	Chemie		

Projekt:

ProjID	Projekt		
11	A		
12	В		
13	С		

Projektzugehörigkeit:

PID	ProjID	ProjZeit
1	11	60
1	12	40
2	13	100
3	11	20
3	12	50
3	13	30
4	11	80
4	13	20

http://de.wikipedia.org/wiki/Normalisierung_(Datenbank)

4797	100	-		4	
()	11		4140	of or	
1			dŒ	a neti	

CD_ID	Album	Titelliste
4811	Anastacia - Not That Kind	{1. Not That Kind, 2. I'm Outta Love, 3. Cowboys & Kisses}
4713	Pink Floyd - Wish You Were Here	{1. Shine On You Crazy Diamond}

- Verletzung der 1NF
- Das Feld **Album** beinhaltet die Attributwertebereiche Interpret und Albumtitel.
- Das Feld **Titelliste** enthält eine Menge von Titeln.

• Frage: Ist CD_Lieder in 2. NF?

CD Lieder

CD_ID	Album	Interpret	Track	Titel
4811	Not That Kind	Anastacia	1	Not That Kind
4811	Not That Kind	Anastacia	2	I'm Outta Love
4811	Not That Kind	Anastacia	3	Cowboys & Kisses
4712	Wish You Were Here	Pink Floyd	1	Shine On You Crazy Diamond

• Lösung: CD_Lieder ist nun in 2.NF

 $^{\rm CD}$

Lieder

CD_ID	Album	Interpret
4811	Not That Kind	Anastacia
4712	Wish You Were Here	Pink Floyd

CD_ID	Track	Titel
4811	1	Not That Kind
4811	2	I'm Outta Love
4811	3	Cowboys & Kisses
4712	1	Shine On You Crazy Diamond

Annahme: CD habe folgendes Aussehen:

Frage: Ist CD in 3.NF?

CDGründungsjah CD_{ID} Album Interpret \mathbf{I}^{-} Not That Kind 4811 Anastacia 1999 4713 Freak of Nature Anastacia 1999 Wish You Were Pink 4712 1965 Here Floyd

<u>Übung: CD_Lieder</u>

- Die Zerlegung entspricht nun der 3. NF, d.h.
 - Redundanzfrei, keine evtl. Insert/Update/Delete Anomalien

	CD	CD_Künstler			Künstler		
CD_ID	Album	CD_ID	I_ID	I_ID	Interpret	Gründungsjah r	
4811	Not That Kind	4811	2423				
				2423	Anastacia	1999	
4713	Freak of Nature	4713	2423				
				3433	Pink	1965	
4712	Wish You Were Here	4712	3433		Floyd		

<u>Übung:</u>

 1. Normalisieren Sie die folgende, nicht normalisierte Tabelle bis zur dritten Normalform.

<u>InNr</u>	<u>TnName</u>	<u>EirNr</u>	<u>FirmenName</u>	<u>KursTyp</u>	<u>KursTypName</u>	Ort	<u>Datum</u>
1962	Antkowiak	56	Helm AG	K1060	Systemmodelle	D	15.06.99
1958	Sieger	56	Helm AG	K1500	Forms	D	03.10.99
5324	Schuster	87	Schuster GbR	K1122	Reports	НН	06.09.99
8231	Hauser	102	Bauer KG	K1060	Systemmodelle	В	10.11.99
9243	Scherbaum	87	Schuster GbR	K1122	Reports	НН	06.09.99
2834	Adam	25	Eva Kosmetik GmbH	K1500	Forms	D	03.10.99
2936	Meister	142	Stahlbau Bronk	K1060	Systemmodelle	S	10.11.99
6352	Hinrichs	102	Bauer KG	K1070	PL/SQL	М	10.09.99
1962	Antkowiak	56	Helm AG	K1000	SQL	D	11.11.99
2932	Bond	7	British Goods Inc.	K3308	Admin Oracle8	S	13.12.99