

COLÉGIO A COLINA D SOL

FISÍCA

Robótica: Robô Apagador de Fogo

DOCENTE

FISÍCA

- Robótica: Robô Apagador de Fogo

INTEGRANTES:

N ^a	ALUNOS	NOTA DO	NOTA DA
		TRABALHO	DEFESA
02	Anderson		
	Tchitembo		
04	Cristiana Santos		
19	Margarida Mbaz		
23	Pérola Zola		
25	Rosa Morales		
28	Valéria Manuel		
29	Venancia Manuel		

12ª CLASSE

CURSO: CFB (Ciências Físicas e Biológicas)

SALA:17

GRUPO: III

ÍNDICE

1. Objectivo	1
1.1Introdução	2
2.Robô Apagador de Chamas	3
2.1 Funcionamento	3
2.3 Tipos de Robôs Apagadores de Fogo	4
3.Princípios de Física aplicados	5
4. Robótica aplicada	6
5. Vantagens e desvantagens	7
6. Integração dos Sistemas	8
7.Importância	9
8.Relatório	10-11
9.Resultados e discussões	12
10. Conclusão	13
11.Bibliografia	14

1. Objectivo

Objetivo Geral:

Desenvolver um protótipo de robô apagador de fogo que utilize princípios da Física e da Robótica para detectar e controlar focos de incêndio de forma prática, segura e acessível.

Objetivos Específicos:

- Aplicar conceitos da Física, como energia, movimento e propagação de calor, na construção do robô.
- Utilizar sensores e componentes simples para permitir a identificação de fogo ou calor.
- Demonstrar, por meio de experiências práticas, como o robô pode agir no combate inicial a pequenos incêndios.
- Estimular a criatividade e o interesse pela ciência e tecnologia como soluções para problemas reais em Angola.
- Mostrar a importância da inovação com materiais de baixo custo no ensino e na vida cotidiana.

1.1Introdução

A robótica é uma área que combina Física, Matemática e Tecnologia para criar máquinas capazes de ajudar em diferentes tarefas. Um dos exemplos é o robô apagador de fogo, que pode detectar e controlar pequenos focos de incêndio, reduzindo riscos para as pessoas.

Em Angola, os incêndios em casas e estabelecimentos ainda são um problema, e muitas vezes faltam recursos para combatê-los de forma rápida. Por isso, desenvolver soluções criativas e acessíveis torna-se muito importante.

Este trabalho apresenta a construção de um robô apagador de fogo, que utiliza princípios da Física, como movimento, energia e sensores de calor, para funcionar. Assim, mostramos como a ciência pode ser aplicada de forma prática e útil no dia a dia, além de incentivar a inovação e o interesse pela tecnologia no país.

2.Robô Apagador de Chamas

O robô apagador de fogo é um dispositivo autônomo ou semi-autônomo essencial em situações de combate a incêndios, projetado para atuar de forma eficiente e segura na extinção de chamas em ambientes de alto risco. Ele serve para localizar, conter e extinguir incêndios de forma rápida e precisa, especialmente em locais onde o acesso humano é perigoso ou inviável. Este robô utiliza sensores avançados e sistemas de navegação para localizar focos de incêndio, permitindo uma resposta rápida e precisa. Ele oferece uma alternativa inovadora para o combate a incêndios, minimizando os riscos para os bombeiros e otimizando a proteção de vidas e patrimônios.

2.1 Funcionamento

O sistema de movimento do robô já está montado. Os motores da direita e da esquerda têm a polaridade invertida, ou seja, os cabos vermelho e preto foram trocados. Ambos estão ligados aos mesmos pinos do controlador, mas essa inversão permite que girem de forma coordenada para o robô se mover para frente, para trás ou fazer curvas.

A bateria do sistema é composta por duas pilhas de 3,7V ligadas em série, o que resulta em uma voltagem total entre 7V e 8V quando totalmente carregadas. Essa voltagem pode variar de 5V a 8V, dependendo do nível de carga das pilhas.

O controle da bomba de água é feito através de um transistor TP122 conectado a um resistor de 1K ohm. O transistor permite que a bomba receba energia diretamente da bateria, enquanto o Arduino envia um pulso elétrico para ativar ou desativar a bomba conforme necessário.

O robô conta com três sensores de chama: um à esquerda, um ao centro e um à direita. Esses sensores detectam a presença e a direção do fogo, permitindo que o robô se oriente. Quando o sensor central detecta a maior intensidade de chama, o robô se alinha automaticamente nessa direção.

A placa controladora e o Arduino são responsáveis por coordenar todo o sistema, funcionando como o "cérebro" do robô. Eles controlam os motores, os sensores e a bomba de água. As ligações elétricas são feitas com cabos tipo jumper, e um código programado é carregado no Arduino para definir o comportamento de cada componente.

O funcionamento geral do robô é simples e eficiente: ele detecta o fogo, movimenta-se até se alinhar corretamente com a chama, e então avança e ativa a bomba de água para apaga.

2.3 Tipos de Robôs Apagadores de Fogo

Robôs de Extinção de Água: Utilizam bombas para projetar jatos de água diretamente nas chamas, sendo adequados para incêndios comuns. Esses robôs são amplamente utilizados em áreas urbanas e em indústrias onde a água é o agente extintor mais seguro.

Robôs com Extintores Químicos: Equipados com extintores de produtos químicos específicos, são ideais para incêndios causados por substâncias inflamáveis. São comumente usados em fábricas e laboratórios onde há alto risco de fogo com combustíveis não convencionais.

Robôs de Espuma: Projetados para aplicar espuma extintora, que é especialmente eficaz para incêndios em líquidos inflamáveis e áreas de difícil acesso. Esses robôs são utilizados em aeroportos, refinarias e indústrias químicas.

3. Princípios de Física aplicados

O funcionamento do robô apagador de fogo baseia-se em diferentes conceitos da Física, que permitem integrar sensores, motores e leis . A seguir destacam-se os principais:

Movimento e Energia

O deslocamento do robô depende da transformação de energia elétrica (da bateria) em energia mecânica, feita pelos motores. A Física explica essa conversão de energia e o movimento resultante através das leis de Newton. Por exemplo, a 2ª Lei de Newton mostra que a força exercida pelos motores sobre as rodas gera aceleração, permitindo que o robô se mova em direção à chama detectada.

Transferência de Calor

O fogo é uma fonte de calor que se propaga principalmente por radiação (ondas de calor), condução (quando atinge objetos sólidos) e convecção (movimento do ar quente). O robô utiliza sensores que conseguem identificar a radiação infravermelha emitida pelo fogo, transformando esse fenômeno físico em sinal elétrico para orientar sua ação.

Pressão da Água

Ao alcançar a chama, o robô utiliza um sistema de bombeamento de água para apagar o fogo. Esse processo depende do princípio da pressão nos fluidos, estudado na Hidrostática. O bombeamento aumenta a pressão dentro do reservatório e força a água a sair com velocidade suficiente para atingir a chama. Esse jato de água atua no processo de extinção do fogo por resfriamento e por eliminação do oxigênio em contato direto com a chama.

Eletricidade e Circuitos

Os componentes do robô (sensores, motores e bomba de água) funcionam em conjunto por meio de circuitos elétricos. A compreensão da corrente elétrica, da resistência e da diferença de potencial é essencial para garantir que a energia seja distribuída corretamente, permitindo o funcionamento seguro e eficiente do sistema.

4. Robótica aplicada

A robótica é um campo multidisciplinar que combina ciência, engenharia e tecnologia para projetar, construir, operar e aplicar robôs. Ela estuda como criar máquinas, muitas vezes programáveis, capazes de realizar tarefas de forma autônoma ou semi-autônoma, integrando elementos como mecânica, eletrónica e inteligência computacional. As aplicações são vastas e vão desde a indústria e medicina até a exploração espacial.

Componentes da Robótica:

- Design e Construção: A criação de robôs envolve a combinação de partes mecânicas, circuitos integrados, sistemas de sensoriamento e motores para a execução de movimentos.
- Programação e Controle: A programação é fundamental para definir as ações dos robôs e o controle garante que eles realizem as tarefas com precisão e eficiência.
- Interação com o Ambiente: Os robôs são projetados para interagir com o ambiente, usando sensores para coletar informações e responder a elas.

Objetivos da Robótica:

- Automação de Tarefas: Criar máquinas que possam executar tarefas de forma autônoma ou semi-autônoma, muitas vezes melhorando o desempenho humano.
- Aumento da Produtividade: Na indústria, robôs podem aumentar a taxa de produção, a qualidade dos produtos e reduzir custos e erros.
- Assistência Humana: Desenvolver sistemas que auxiliem os seres humanos em diversas áreas, realizando tarefas perigosas, repetitivas ou complexas.

5.Vantagens e desvantagens

Vantagens:

- 1. Redução de Risco para Bombeiros: Os robôs podem operar em áreas de alto risco, reduzindo a exposição de bombeiros a situações perigosas;
- 2. Resposta Rápida: A velocidade de ativação e movimento dos robôs permite uma resposta imediata ao detectar focos de incêndio;
- 3. Capacidade de Extinção Eficaz: Com sensores precisos e jatos direcionados, os robôs proporcionam uma extinção eficiente e precisa das chamas;
- 4. Adaptabilidade a Vários Cenários: Esses robôs podem ser utilizados em ambientes urbanos, florestais, industriais e até em plataformas de petróleo;
- 5. Redução de Danos Colaterais: Seu controle preciso permite focar o combate ao fogo, minimizando danos ao patrimônio e ao ambiente ao redor.

Desvantagens:

- 1. Limitações em Ambientes Extremos: Em temperaturas muito altas, alguns componentes podem falhar, limitando o uso em incêndios de grande escala.
- 2. Dependência de Infraestrutura: Alguns modelos requerem uma infraestrutura de comunicação específica para serem operados remotamente.
- 3. Necessidade de Capacitação: A operação e manutenção desses robôs exigem treinamento especializado, o que pode ser um obstáculo inicial para algumas corporações.
- 4. Autonomia Limitada: Em situações de incêndio prolongado, os robôs podem necessitar de recarga ou reposição de extintores, limitando sua atuação contínua.

6. Integração dos Sistemas

O robô apagador de fogo funciona graças à integração de três partes principais: sensores, sistema de controle e atuadores. Cada uma delas tem um papel específico, mas só juntas conseguem realizar a tarefa de detectar e apagar incêndios.

- **1. Sensores -** Os sensores são responsáveis por identificar a presença do fogo. Isso pode ser feito de duas formas principais:
 - Sensor de chama → capta a luz emitida pelo fogo.
 - Sensor de temperatura → mede o aumento de calor no ambiente.
 - Quando o sensor detecta a chama, ele envia um sinal elétrico para a próxima etapa.
- **2. Sistema de Controle** Esse sinal chega ao microcontrolador (como o Arduino), que funciona como o cérebro do robô. Ele analisa a informação recebida do sensor e decide o que fazer.

Ex:

- Se a chama estiver à esquerda, ele manda o motor virar nessa direção.
- Se a chama for detectada bem à frente, ele manda o robô avançar e preparar o sistema de água.
- **3. Atuadores** -entram em ação os atuadores, que transformam a energia elétrica em movimento real:
 - Motores de tração → movimentam as rodas para levar o robô até o fogo.
 - Bomba de água → quando o robô está perto, o controlador manda ativar a bomba, que projeta água sob pressão diretamente sobre a chama.

Integração dos Sistemas

A interação entre sensores, sistema de controle e atuadores é o que garante o funcionamento completo do robô. O sensor detecta → o controlador decide → o motor move → a bomba lança água.

Esse ciclo demonstra, na prática, como os princípios da robótica podem ser aplicados para resolver problemas de segurança.

7.Importância

Os robôs apagadores de fogo são importantes por sua capacidade de combater incêndios de forma autônoma e segura, oferecendo uma solução inovadora para a proteção de vidas e patrimônios. Sua utilização em indústrias, florestas e áreas urbanas mostra-se especialmente relevante em situações onde o acesso humano é perigoso ou inviável. Com o avanço da tecnologia, esses robôs podem se tornar cada vez mais essenciais, contribuindo para a segurança pública e reduzindo os impactos dos incêndios em diversos contextos.

8. Relatório

Tema: Construção de um robô apagador de chamas.

Objectivo: Detectar e apagar as chamas de forma autônoma.

Materiais:

- Fios jumper (30 cm)
- Servo motor micro FT90R (360 graus)
- Bomba elétrica (12V)
- Resistor fixo 1/4W ($1k\Omega$)
- Arduino Uno Rev3
- Sensor de chamas
- Capacitor IV-104PF
- Transistor TIP-122
- Pilhas 2200mAh (3.7V)
- Interruptor SPST
- Porta-pilhas para duas células 18650
- Kit de carro robotizado

Procedimentos:

1. Montagem da Estrutura Mecânica:

- Utilize o Kit de carro robotizado como base.
- Monte o chassi, fixe os motores de tração e as rodas.
- Instale o suporte para duas pilhas 18650 no chassi para alimentação principal.

2. Instalação do Sistema de Controle:

- Fixe a placa Arduino Uno Rev3 no chassi.
- Conecte o Módulo 1298 (driver de motor) ao Arduino para controle dos motores de tracão.
- Use fios jumper para fazer as ligações entre Arduino, driver de motor e motores.

3. Integração do Sensor de Chamas

- Posicione o sensor de chamas na parte dianteira do carro, em local visível e desobstruído.
- Conecte o sensor ao Arduino (alimentação, GND e pino de sinal).

4. Montagem do Sistema de Extinção

- Instale a bomba elétrica de 12V no chassi, com um reservatório de água.
- Conecte a bomba ao transistor TIP-122 para controle via Arduino.
- Adicione o capacitor IV-104PF em paralelo com a bomba para reduzir ruídos elétricos.
- Utilize o resistor fixo de $1k\Omega$ na base do transistor para limitar a corrente.

5. Controle de Direção com Servo Motor

- Acople o servo motor micro FT90R para direcionar o bico da mangueira ou sensor.
- Conecte o servo ao Arduino (alimentação, GND e pino de controle).

6. Alimentação Elétrica

- Ligar as pilhas 2200mAh 3.7V em série no suporte para obter 7.4V.
- Conectar essa fonte ao interruptor SPST para liga/desliga geral.
- Alimentar o Arduino, driver de motor e bomba conforme suas tensões de trabalho.

7. Programação do Arduino

- Desenvolver código para:
- Ler o sensor de chamas.
- Controlar os motores de tração (ir em direção ao fogo).
- Ligar a bomba de água quando o fogo for detectado.

8. Testes e Ajustes

- Testar a movimentação do carro.
- Verificar a resposta do sensor a uma fonte de calor.
- Ajustar a sensibilidade e o posicionamento dos componentes

9. Resultados e discussões

Primeiramente, encontramos vários trabalhos universitários na internet sobre robôs apagadores de chamas. Essas pesquisas nos ajudaram a entender como esse tipo de projeto funciona e quais peças poderíamos usar para montar o nosso robô. A partir dessas ideias, fizemos um modelo mais simples, usando água para apagar o fogo, pois é um método seguro e fácil de testar. Uma das maiores dificuldades encontradas no decorrer do mesmo foi a procura e compra dos materiais corretos, na qual tivemos que substituir os seguintes materiais: Bomba elétrica 12v substituída pela versão 5v, Servo motor 180 degrees substituída pela versão 360 degrees, Baterias 2200 mAh substituída pela 1200 mAh. A segunda maior dificuldade foi na execução do código, por isso foi necessário o auxílio e acompanhamento de um informático, que explicou melhor e ajudou-nos a entender sobre cada material e o código de programação num geral. A terceira dificuldade, foi com o suporte de água, que para conseguirmos igualar o peso do projecto e a quantidade de água que a bomba suporta, teve que ser mais reduzido, o que faz com que seja necessária a introdução constante de água. A quarta dificuldade foi com as baterias que pela sua capacidade e a dos materiais, faz com que o robô tenha uma certa limitação de uso.

Nos experimentos, usamos um pequeno pedaço de papel queimado para simular as chamas. O robô conseguiu detectar o fogo e acionar a bomba de água automaticamente, apagando a chama em poucos segundos. Em média, o tempo para apagar foi entre 3 e 6 segundos, dependendo da força da bomba e da distância do papel. Durante os testes, percebemos que, quando o jato de água não acertava bem o centro da chama e também ele só tem capacidade de apagar chamas pequenas . Com o projeto, conseguimos entender melhor o que aprendemos nas aulas de física.

Como grupo, achamos que o projeto foi muito bom, porque aprendemos a trabalhar em equipe, a montar circuitos, programar o robô e colocar em prática o que estudamos. Mesmo com algumas falhas e limitações, ficamos satisfeitos com o resultado, pois o robô cumpriu sua função e mostrou como a Física pode ser usada para resolver problemas reais de forma criativa e segura.

10. Conclusão

O projeto do robô apagador de chamas mostrou, na prática, como a Física pode ser aplicada na resolução de problemas reais. Utilizando água como principal recurso, o robô foi capaz de apagar pequenas chamas, explorando conceitos como transferência de calor, capacidade térmica da água e conversão de energia elétrica em movimento para acionar a bomba e os motores.

Durante os testes, observou-se que a quantidade de água e a potência dos atuadores influenciam diretamente na eficiência do sistema. Apesar de algumas limitações de alcance e precisão, o protótipo cumpriu seu objetivo principal: unir teoria e prática, demonstrando que a tecnologia pode contribuir para a segurança em situações de risco. Além disso, o trabalho evidenciou a importância de investir em soluções inovadoras que possam auxiliar no combate a incêndios e proteger vidas humanas.

11.Bibliografia

https://pt.handlergp.com/products/fire-robot/

https://pt.wikipedia.org/wiki/Rob%C3%B3tica

https://querobolsa.com.br/revista/o-que-e-robotica

https://gg3nesis.github.io/ignisbot/

https://chatgpt.com/

https://youtu.be/jsvAL9ogFBw?si=iHrld5Lhae_YGKXK

 $\underline{https://gg3nesis.github.io/ignisbot/imgs/C\%C3\%B3digo\%20C++\%2}$