9. Electro-Optic Modulators

9.1 Basic Operation Characteristics of Switches and Modulators

9.1.1 Modulation Depth (Modulation Index)

$$\eta = \frac{I_{\circ} - I}{I_{\circ}} > 0 \qquad (I_{\circ} > I) \text{ modulator}$$

I: transmitted intensity (decreased)

Io: I with no electrical signal applied

(NOT input intensity)

 $I: transmitted (increased) \leq I_m$

Maximum modulation depth (or extinction ratio)

$$\eta_{max} = \frac{I_o - I_m}{I_o}, \quad I_m \in I_o \quad (modulator)$$

$$\eta_{\text{max}} = \frac{I_{\text{m}} - I_{\text{o}}}{I_{\text{m}}}, \quad I_{\text{m}} \geqslant I_{\text{o}} \quad (\text{switch})$$

(3) Modulation depth for phase modulators

Phase change is functionally related to an
equivalent intensity change.

For the case of interference modulators

$$\eta = \sin^2(4\phi/2)$$

 $0\phi = phase change$

$$E_{i} = E_{0}e^{i\phi}$$

$$E_{2} = E_{0}e^{i(\phi + \Delta\phi)}$$

$$E_{out} = E_{i} + E_{2} = E_{0}(e^{i\phi} + e^{i(\phi + \Delta\phi)})$$

$$= E_{0}(e^{i(\phi + \frac{\Delta\phi}{2} - \frac{\Delta\phi}{2})} + e^{i(\phi + \frac{\Delta\phi}{2} + \frac{\Delta\phi}{2})})$$

$$= E_{0} 2 \cos(\frac{\Delta\phi}{2}) e^{i(\phi + \frac{\Delta\phi}{2})}$$

Intensity $\propto (Field \ Amplitude)^2$ $I_0 = 4 E_0^2 \qquad (\Delta \phi = 0)$ $I = 4 E_0^2 \cos^2(\frac{\Delta \phi}{2}) \qquad (\Delta \phi \neq 0)$ $\eta = \frac{I_0 - I}{I} = \sin^2(\frac{\Delta \phi}{2})$

(4) Modulation depth of frequency modulator

$$D_{\max} = \frac{|f_m - f_0|}{f_0} = f_{igure\ of\ merit}$$

fo: optical carrier frequency

fm: Shifted optical frequency

I ~ hf (Quantum Mechanism)

9.1.2 Bandwidth

Modulator
$$\eta = \frac{1}{2} \eta_{\text{max}}$$

$$\Delta f = f_{\text{upper}} - f_{\text{lower}} \approx f_{\text{upper}}$$

Switch

Switching time
$$T$$

bandwidth $\Delta f = \frac{2\pi}{T}$

Usually, Of 1 Td

9.1.3 Insertion Loss

$$\mathcal{Z}_{i} = 10 \log \left(\frac{I_{t}}{I_{o}} \right) \quad \text{modulator} \quad \left(I_{t} \leq I_{o} \right)$$

$$\mathcal{Z}_{i} = 10 \log \left(\frac{I_{t}}{I_{m}} \right) \quad \text{Switch} \quad \left(I_{t} \leq I_{m} \right)$$

$$V=0, \ I=I_{o} \quad \qquad \qquad I_{t} \leq I_{m}$$

9.1.4 Power Consumption

Modulator

Driving power a modulation frequency

$$VE = hf$$

A useful figure of merit $\frac{P}{\Delta f} = \frac{mW}{MH_z}$

The smaller , the better

Channel-waveguide modulator small $\frac{P}{\Delta f}$ Bulk modulator large $\frac{P}{\Delta f}$ 10

 $\frac{Switch}{Same figure of merit} \frac{P}{4f}$

Phold: the amount of power required to hold the switch in a given state.

- Ideal switch $P_{hold} = 0$ Consume power during the change of state.
- E0 Switch
 Reguire the presence of \$\vec{\xi}\$ to maintain at least one state
 ∴ leakage current \$\pi\$0 \$\Rightarrow\$ \$P_{hold}\$\$\$\$\pi\$0

9.1.5 Isolation

I1 : Driving port optical intensity

Iz: Driven port optical intensity at off state with respect to port #1.

e.g.
$$\frac{I_2}{I_1} = 1 \%$$

isolation = 10 log $\left(\frac{I_2}{I_1}\right) = -20 dB$

9.2 The Electro-Optic Effect

$$\Delta n \propto E$$
 linear E0 effect (Pockels effect)
 $\Delta n \propto E^2$ nonlinear " " (Kerr effect)

Linear EO effect

The equation of the index ellipsoid in the presence of an electric field is

$$\left(\frac{1}{n^{2}}\right)_{1} x^{2} + \left(\frac{1}{n^{2}}\right)_{2} y^{2} + \left(\frac{1}{n^{2}}\right)_{3} z^{2} + 2\left(\frac{1}{n^{2}}\right)_{4} yz$$

$$+ 2\left(\frac{1}{n^{2}}\right)_{5} xz + 2\left(\frac{1}{n^{2}}\right)_{6} xy = 1$$

 $\Delta \left(\frac{1}{n^2}\right)_{i} = \sum_{j=1}^3 r_{ij} E_j \qquad i=1,2,\cdots,6$

ri.j electro-optic tensor

- (1) $Y_{ij} = 0$ in crystals with inversion symmetry (centrosymmetric)
- (2) Noncentrosymmetric crystals

 For most symmetry classes, only a few nonzero elements.

14

e.g.
$$r_{41}$$
 GaP, GaAs

 r_{33} LiNbO₃. LiTaO₃

$$\Delta n = -\frac{1}{2} n^3 r \mathcal{E}$$

$$\Delta \lambda \propto \frac{d}{\lambda} \propto \frac{\mathcal{E}}{\lambda} \qquad d \uparrow_{\Theta} \qquad |\vec{P}| \propto d \propto |\vec{\mathcal{E}}|$$

$$\lambda \Delta \lambda \propto \mathcal{E}, \qquad \Delta(\lambda^2) \propto \mathcal{E}$$

$$\lambda = \frac{2\pi}{\mathcal{E} n}$$

$$\Delta \left(\frac{1}{n^2}\right) \propto \mathcal{E}$$

$$\Delta \left(\frac{1}{n^2}\right) = r\mathcal{E} \qquad (f \text{ is not changed})$$

The nonlinear (quadratic) Kerr electro-optic coefficient is relatively weak in commonly used waveguide materials.

A nonlinear dependence on electric field introduces unwanted modulation crossproducts (distortion) into the modulated Signal.

buffered layer insulator, $n_{buff} < n_{LiNb0_3}$ $\vec{\nabla} \times \vec{H} = \vec{J} + \vec{D} = \vec{\sigma} \vec{E} + j\omega \epsilon \vec{E} = j\omega \epsilon_o \left(\frac{\vec{\sigma}}{j\omega \epsilon_o} + K \right) \vec{E}$ $\therefore K_{eff} = K - j \frac{\vec{\sigma}}{\omega \epsilon_o}$ lossy

9.3 Single-Waveguide Electro-Optic Modulators

Fig. 9.1.

19

9.3.1 Phase Modulation

$$\Delta N_{23} = N_2 - N_3$$

$$= \Delta n_{\text{chemical}} + \Delta n_{\text{ccR}} + \Delta n_{\text{ED}}$$

$$(a-b \neq 0) \quad \text{(carrier conc. \downarrow) (E0 effect)}$$

Condition

Asymmetric Waveguide

$$\frac{1}{32 n_2} \left(\frac{\lambda_o}{t_g}\right)^2 < \Delta n_{chemical} + \Delta n_{ccR} < \frac{9}{32 n_2} \left(\frac{\lambda_o}{t_g}\right)^2$$

For a TE wave

$$\Delta n_{Eo} = n^3 r_{4i} \left(\frac{V}{2 t_g} \right) = \frac{\Delta \beta_{Eo}}{k} = \frac{\lambda_o \Delta \beta_o}{2 \pi}$$

Examples

- · LiNbOz planar waveguide by outdiffusion modulation power 0.4 mW/MHz/rad $\Delta \varphi = / rad$ $\lambda_0 = 6328 \mathring{A}$
- LiNbO₃ ion-beam etched ridge Waveguide W = 19 MM modulation power 20 MW/MHz/rad

22

· Ti-indiffused LiNbOz channel waveguide W = Sum . modulation power 1.7 MW/MHz/rad

23

9.3.2 Polarization Modulation

In a phase modulator, phase coherent detection system must be used => complicated

Simple modification > Polarization Modulation

3 = 3'

l Ex: Not changed

- · polarization sensitive detector
- polarization selective filter (analyzer)
 ahead of the detector

The difficulty of fabricating an effective analyzer monolithically has limited the use of polarization modulators in OIC's, and has led to a preference for intensity modulation.

25

Analyzer

- · Discrete waveguide (used for an air beam)
 - conventional wire-grid polarizer
 - absorptive polarizing filter
- · Optical integrated circuit
 - grating couplers (polarization)
 prism sensitive

9.3.3 Intensity Modulation

The zero field threshold condition for an intensity modulator is given by

$$\Delta n_{23} = \Delta n_{chemical} + \Delta n_{CCR} = \frac{1}{32 n_2} \left(\frac{\lambda_0}{t_g}\right)^2$$

(Cutoff condition of an asymmetric guide)

Examples :

- (i) Modulators
- (1) GaAs carrier-concentration-reduction planar waveguide (Hall et al.)

Bring the TEo mode from cutoff to propagating.

(2) GaAs c.c.R. channel waveguide (Campbell et al.) $\eta = 95\%$ $\Delta f = 150 \text{ MHz}$

$$\frac{P}{\Delta f} = 300 \, \mu W / MH_2$$

This type of intensity modulator can also function as effective optical switches.

(ii) Switches

$$\Delta N_{23} = \Delta N_{chem} + \Delta N_{c.c.R.}$$
 $V = 0$ TE₀ Cutoff
 $\Delta N = \Delta N_{23} + \Delta N_{E0}$ $V \neq 0$ TE₀ propagates

9.3.4 Electro-Absorption Modulation

{ Electro-Optic effect — Pockels effect { Electro-Absorption effect — Franz-Keldysh effect

In the presence of strong electric field the absorption edge of a semiconductor is shifted to a longer wavelength.

Example: GaAs

$$\mathcal{E} = 1.3 \times 10^{5} \text{ V/cm}$$

$$\lambda = 9000 \, \text{Å}$$

$$\Delta = 25 \, \text{cm}^{-1} \Rightarrow 10^{4} \, \text{cm}^{-1}$$

$$(\ell = 0) \qquad (\ell \neq 0)$$

Fig. 9.2.

Mechanism

At low &

No allowed electron

State Within the bandgap.

33

At high E

density function

broadening ⇒

"finite probability of finding the electron in the $extit{gap}^{''}$

Fig. 9.4.

V = o transparent \$ 0 modulated or Cutoff

37

Examples

(1) Reinhart
$$Al_x Ga_{1-x} As$$

$$\lambda = 9000 \text{ Å}$$

$$V = -8 \text{ voits } \text{ Change a factor of } 100$$

$$\eta = 90 \%$$

$$\frac{P}{\Delta f} = 0.1 \text{ mW/MH}_z$$

(2) Campbell $\lambda = 0.9 \sim 1.2 \, \mu \text{m}$ typical 1.06 μm Linsertion = - 3 dB extinction ratio = - 16 dB 4f > 500 MHz

9.4 Dual-Channel Waveguide **Electro-Optic Modulators**

Fig. 9.5.

38

9.4.1 Theory of Operation

The Coupling Equations

$$\frac{\mathrm{d}A_0(z)}{\mathrm{d}z} = -\mathrm{i}\beta_0 A_0(z) - \mathrm{i}\kappa A_1(z)$$

$$\frac{\mathrm{d}A_1(z)}{\mathrm{d}z} = -\mathrm{i}\beta_1 A_1(z) - \mathrm{i}\kappa A_0(z)$$

Boundary Condition

$$A_0(0) = 1$$
 and $A_1(0) = 0$

41

Solutions

$$A_0(z) = \left(\cos gz - i\frac{\Delta\beta}{2g}\sin gz\right) \exp\left[-i\left(\beta_0 - \frac{\Delta\beta}{2}\right)z\right]$$

$$A_1(z) = -\left(\frac{-ik}{g}\sin gz\right)\exp\left[-i\left(\beta_1 + \frac{\Delta\beta}{2}\right)z\right]$$

where

$$\Delta \beta = \beta_0 - \beta_1$$
 $g^2 \equiv \kappa^2 + \left(\frac{\Delta \beta}{2}\right)^2$

Optical Power

$$P_0(z) = A_0(z)A_0^*(z) = \cos^2(gz)e^{-\alpha z} + \left(\frac{\Delta \beta}{2}\right)^2 \frac{\sin^2(gz)}{g^2}e^{-\alpha z}$$

$$P_1(z) = A_1(z)A_1^*(z) = \frac{\kappa^2}{g^2}\sin^2(gz)e^{-\alpha z}$$

*The condition for total transfer of power for zero applied voltage is given by

43

Consider m = 0

$$\begin{cases} \kappa L = \frac{\pi}{2} \\ gL = \pi \end{cases} \text{ and } g^2 = \kappa^2 + \left(\frac{\alpha\beta}{2}\right)^2$$

Solving gives

$$\Delta \beta = \frac{\sqrt{3} \pi}{/}$$

effective index
$$N_g = \frac{\beta}{R}$$

$$\Delta n_g = \frac{\Delta \beta}{R} = \frac{\sqrt{3} \pi}{6/2}$$

Example: AlGa As dual-channel waveguide modulators (100%)

$$3 \mu m \times 3 \mu m$$
 $L = 1 cm$
 $\lambda = 9000 \text{ Å}$

Need $4 \text{ Mg} = 1 \times 10^{-4} \text{ Surprising Small!}$

heguired $\mathcal{E} = 3 \times 10^{-4} \text{ V/cm}$

or $V = \mathcal{E} t_g = 10 \text{ V}$

9.4.2 Operating Characteristics of Dual-Channel Modulators

45

- 1969 Marcatili
 The concept of Using dual-channel
 directional coupler as a modulator.
- * 1995 Campbell

 The first operational device.
- Theory (Taylor)

— Experiment (Campbell)

Fig. 9.7.

Substrate GaAs GaAs TE modes 95% Extinction ratio 13dB Nd: YAG laser A 1.06 um Width 6 µm Separation 7 um Vmax 35 V 1 ns Rise-time Δf (3d8) 100 MHz P/Af 180 MW/MH2

Dual-channel modulator with three electrodes are limited by the capacitance of the electrodes Reducing the width of the Schottky barrier contacts.

1975 Papuchon
 Two electrode type of dual-channel modulators
 (Commutateur Optique Binaire RApide, COBRA)
 Offers the potential advantage of low capacitance
 by eliminating the center electrode.

Ti-diffused LiNbO3 waveguide

Ti strip width 2 µm

Coupling length 500 µm 1 mm

\$\lambda\$ 5145 \hat{A}\$

Separation 2 µm 3 µm

Switch off voltage 6 V

• 1976 Kogelnik and Schmidt

- Splited electrodes (Alternate Δβ)

The basic electrodes are split in half.

51

The effect of stepped Δβ reversal is to yield
 a device in which both the off and on states
 can be electrically adjusted for a relative
 Wide range of lengths.

 This also allows one to maximize the extinction ratio and minimize crosstalk.
 Complete transfer by electrical adjustment is possible if

$$\frac{L}{\ell} < \ell$$

L: total length of the modulator

e.g. Schmidt and Buhl 4×4 optical switching network

tive stepped AB switches

Crosstalk - 18 dB

Iinput = | kW/cm2

53

- 1977 Steinberg et al.
 Polarization insensitive modulators
- Electro-optic modulators are generally sensitive to the polarization of the light waves Proper choice of polarization for a maximum desired interaction is needed.
- Problem

rectangular guide of an OIC excite's both TE and TM modes

Needs polarization-insensitive modulator

- Solution

Combination of different types of electrode

Fig. 9.9.

Designer has an additional degree of freedom that can be used to cancel polarization sensitivity.

9.5 Mach-Zehnder Type Electro-Optic Modulators

Two-channel modulators

- Employ the synchronous coupling of energy between overlaping mode tails
 e.g. directional coupler
- Employ the difference in optical path lengths
 traveled by two Coherent light waves
 e.g. Mach-Zehnder interferometer

3dB

beam Splitter

beam recombiner

(1)

(2)

3ero Off

Asymmetric Single bend , 3 - electrode , synchronous

Fig. 9.10.

59

Asymmetric, nonsynchronous

Mach Zehnder Interferometer

A. ON STATE - THROUGHPUT = 99.8%

61

B. OFF STATE - THROUGHPUT = 1.8%

9.6 Electro-Optic Modulators Employing Reflection or Diffraction

9.6.1 Bragg-Effect Electro-Optic Modulators

$$\delta = n_g (AB + BC) - AD$$

$$= 2 n_g \Lambda \sin \theta_B = \lambda_o m$$

$$constructive$$

$$\therefore 2 \Lambda \sin \theta_{B} = \frac{m \lambda_{o}}{n_{g}}$$

63

grating is produced by the applied Voltage.

$$2 \Lambda \sin \theta_8 = \frac{\lambda_0}{n_g} \qquad (m=1)$$

Based on the thick grating assumption $2\pi\lambda_{\circ}L \gg \Lambda^{2}$

If
$$\theta \neq \theta_{8}$$
 efficiency reduced!

$$\Delta \theta_{\mathcal{B}} = \frac{2\Lambda}{L} = \frac{4S}{L} \qquad S = \frac{\Lambda}{2}$$

$$S = \frac{1}{2}$$

Diffracted light intensity

$$\frac{I}{I_0} = Sin^2(VB)$$

$$\eta = \sin^2\left(\frac{4\varphi}{2}\right)$$

R: constant

Examples

(1) Hammer et al. 1991

$$\begin{cases} \text{Waveguide } f; | lm \\ \text{Substrate} \end{cases} \begin{cases} ZnO \\ \text{Sapphire} \end{cases} \begin{cases} LiNb_x Ta_{1-x} O_3 \\ Li Ta O_3 \end{cases}$$

(2) Tangonan et al. 1978

$$\lambda = 1.06 \, \mu \text{m}$$
 extinction ratio 24.7dB (300:1)

24 dB

(250:1)

Fig. 9.11.

9.6.2 Electro-Optic Reflection Modulators

It is possible to use the linear E-O effect to reduce the index of refraction in a layer, thereby bringing about the TIR of an optical beam.

Fig. 9.12.

$$\begin{cases} V=0 & port \# / \longrightarrow port \# \mathcal{G} \\ port \# \mathcal{G} &= 0 \end{cases}$$

$$V\neq 0 \qquad reflection \neq 0 \quad port \# \mathcal{G} &= 0$$

At $\theta = \theta_c = critical$ angle, TIR may occur at the first interface.

$$\theta_c = \sin^{-1}\left[1 - \frac{1}{2}n^2_{133}\left(\frac{V}{d}\right)\right]$$

$$\frac{\theta_{c1}}{n_i}$$

Snell's law

$$n, \sin \theta_c = n/\sin 90^\circ$$

= $(n, -\Delta n,)$

$$\Delta n_1 = \frac{1}{2} \eta_1^3 r_{33} \frac{V}{d}$$

:.
$$\theta_c = \sin^{-1}(1 - \frac{1}{2} n_1^2 r_3, \frac{V}{d})$$

$$\left(\frac{V}{d}\right)_{TZR} = \mathcal{E}_{TZR} = \frac{2\left(1-\sin\theta_{i}\right)}{n_{i}^{2}r_{33}}$$

$$= \frac{2\left(1-\cos\left(\frac{\pi}{2}-\theta_{i}\right)\right)}{n_{i}^{2}r_{33}} = \frac{2\left(1-1+\frac{\left(\frac{\pi}{2}-\theta_{i}\right)^{2}}{2}\right)}{n_{i}^{2}r_{33}}$$

$$= \frac{1}{n_{i}^{2}r_{33}}\left(\frac{\pi}{2}-\theta_{i}\right)^{2}$$

Example

Tsa; 1978

Y-Cut LiNbO₃

Ti indiffusion

Waveguide horn 4.7mm

tapering from 4 μ m to 40 μ m in Width $\lambda = 6328 \mathring{A}$ $\Rightarrow V \approx 50V$ Complete Switching

Cross talk to port 3 with V=0 -15 dB

Switching speed 6 6Hz

9.7 Comparison of Waveguide Modulators To Bulk Electro-Optic Modulators

Pe : average external power

For an ideal E0 modulator with no ohmic losses, all this goes into the stored electric field between the electrodes. Hence, we can take

$$W = \frac{1}{2} \int \epsilon E_a^2 dV$$

$$\int \int peak \ amplitude \ of \ the \ applied$$

$$field$$

$$permittivity$$

$$\approx \frac{\xi}{2} E_a^2(WL) t$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$P_e = \frac{4f \in Wt L E_a^2}{2}$$

Modulating Power ~ active Volume

Fig. 9.13a-c.

73

75

Examples: GaAs, 141, single channel

$$\Delta n = \frac{1}{2} n_i^3 r_4, \mathcal{E} \qquad (\mathcal{E} = \mathcal{E}_{\alpha})$$

$$P_e = \frac{2 \Delta f \in WtL}{n_2^6 r_{4}^2} (\Delta n)^2$$

For the special case of the dual-channel 100% modulator

$$\Delta n = \frac{\sqrt{3} \, R}{\kappa \, L} = \frac{\sqrt{3} \, \lambda_o}{2 \, L}$$

$$\therefore P_e = \frac{3 \in Wt \lambda_0^2}{2 n_2^6 r_{41}^2 L}$$

Typical numerical values

$$W = 6 \mu m \quad t = 3 \mu m \quad \lambda_0 = 0.9 \mu m$$
 $N_2 = 3.6 \quad r_{41} = 1.2 \times 10^{-12} \, \text{m/V}$
 $\frac{E}{E_0} = 12$, $L = 0.5 \, \text{cm}$
 $\frac{P_0}{\Delta f} = 0.148 \, \text{mW/MHz}$

$$\begin{cases} Planar & \frac{P_0}{\Delta f} \approx 10 \text{ times large} & \because \text{ W 1} \\ \text{bulk} & 100 \sim 1000 & \text{W, t 1} \end{cases}$$

Correction

The calculated $\frac{P_e}{\Delta f}$ is based on the assumption that the optical fields and the electric field are both uniformly confined to a volume V V = W + L

*Actual case
$$P_e'$$

$$P_e' = \frac{2(af) \in \left(\frac{W}{C_s}\right) \left(\frac{t}{C_z}\right) L}{n_z^6 r_{u_s^2}} \quad an^2 < P_e$$

C, >1, C2>1 Needs less power

9.8 Traveling Wave Electrode Configurations

For high frequency operation, the dimension of the electrode should not be regarded as "lumped"

z: characteristic impedance of a traveling wave electrode

$$\frac{1}{z} = \frac{c}{\sqrt{e_{eff}}} \left(\frac{C}{L}\right)$$

Fig. 9.14a,b.

79

Electrodes with Coplanar Waveguide (CPW) structure

Fig. 9.15.