Circuits combinatoires Première - NSI

1 Problématique

Un ordinateur manipule des données codées sous forme de bits en mémoire. Des combinaisons de transistors assurent des opérations booléennes élémentaires.

À partir de ces éléments, comment réaliser une addition de nombres binaires?

2 Fonctions logiques

2.1 Notations booléennes

Les portes logiques évoquées dans les cours précédents peuvent être vues comme des fonctions booléennes élémentaires. On note ainsi les fonctions associées à chaque porte :

- $-- \neg (x)$ pour NOT
- $-- \wedge (x)$ pour AND
- $--\vee(x)$ pour OR

2.2 Nouvelle porte logique

Une porte logique élémentaire est également fréquemment utilisée dans les circuits électroniques : le **ou exclusif XOR**. Sa fonction booléenne associée se note \oplus .

X	У	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Tableau 1 – Fonction XOR

Symbole américain

Symbole européen

2.3 Opérations booléennes

Nous pouvons imaginer des fonctions booléennes complexes et déterminer leurs tables de vérités. Par exemple la fonction suivante f et définit par :

$$f(x,y,z) = (x \land y) \oplus (\neg y \lor z)$$

Activité 1:

- 1. La fonction f a trois paramètres. Combien de combinaisons possibles peut-on réaliser avec ces paramètres?
- 2. Établir la table de vérité des différentes expressions ci-après (tableau 2).
- 3. En déduire la table de vérité de f (tableau 3).

Circuits combinatoires Première - NSI

X	У	\mathbf{Z}	$(x \wedge y)$	$\neg y$	$(\neg y \vee z)$
0	0	0			
0	0	1			

Tableau 2 – Table de vérité de plusieurs expressions

X	У	\mathbf{z}	$(x \wedge y) \oplus (\neg y \vee z)$
0	0	0	
0	0	1	

Tableau 3 – Table de vérité de f

3 Réaliser un additionneur

3.1 Décomposition

Pour additionner deux nombres de n bits il faut additionner bit à bit et prendre en compte une éventuelle retenue.

La première étape consiste à construire un additionneur 1 bit. Il est lui-même construit à partir de circuit plus simple : $le\ demi-additionneur$.

3.2 Demi-additionneur

Un demi-additionneur prend deux bits en entrée e_0 et e_1 et renvoie la somme $e_0 + e_1$ en sortie s. Il faut prendre en compte une éventuelle retenue c. La table de vérité correspondante est :

e_0	e_1	s	c
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tableau 4 – Table de vérité du demi-additionneur

Activité 2:

- 1. Quelles fonctions logiques reconnaît-on en s et $c\,?$
- 2. En déduire le schéma du demi-additionneur 1 bit.

3.3 Additionneur 1 bit

Dans une addition bit à bit il faut prendre en compte l'éventuelle retenue de l'addition précédente. Ainsi un additionneur 1 bit prend trois entrées e_0 , e_1 et la retenue précédente c_0 . Il renvoie une sortie $s = e_0 + e_1 + c_0$ et une retenue éventuelle c.

En combinant deux demi-additionneurs nous pouvons construire un additionneur 1 bit.

Circuits combinatoires Première - NSI

Activité 3:

- 1.Établir la table de vérité de l'additionneur 1 bit.
- 2. Sur la figure 1 placer les entrées $e_0,\,e_1,\,c_0$ et les sorties s et c.

 $Figure \ 1-Additionneur \ 1 \ bit$

