SDR/DSP Skill Development Roadmap

Combining IQ Concepts, Python Programming, PySDR Learning, and RTL-SDR Practice

To progressively master Digital Signal Processing (DSP) and Software Defined Radio (SDR) using Python, IQ data, PySDR theoretical framework, and RTL-SDR hardware through a structured path of small to advanced exercises — supporting future research, product development, and standardization work.

Phase 1: SIMPLE LEVEL — Foundational Mastery

Goals

- Build strong intuition about IQ data and phase modulation (QPSK).
- Understand how Python communicates with SDR hardware.
- Visualize signals and extract meaning from them.
- Get comfortable running basic RTL-SDR and DSP tasks.

Module 1.1 — IQ Data Basics in Python

Task	Description	Tool/Concept
✓ Simulate I/Q Data	Use numpy to create sine and cosine signals	NumPy
✓ Combine to Form Complex Signal	Combine into I + jQ	Python Complex Numbers
✓ Visualize I/Q Plane	Plot points in complex plane	Matplotlib

Module 1.2 — QPSK Symbol Mapping

Task	Description	Tool/Concept
✓ Create Bitstream	Define a bitstream manually	Python List
✓ Map to IQ Symbols	2 bits → (I, Q) using QPSK	Logic
✓ Plot Constellation	Visualize symbol locations	Matplotlib

Outcome: See how digital bits translate into modulated IQ symbols.

Module 1.3 — RTL-SDR Hardware Setup & Test

Task	Description	Tool/Concept
✓ Install Drivers	Zadig driver installation for RTL-SDR	RTL-SDR
✓ Verify Dongle	Test recognition via rtl_test	Command Line
✓ Capture Samples in Python	Use pyrtlsdr to read live IQ	Python + PyRTLSDR

Outcome: Successfully communicate with SDR dongle and get real data.

Module 1.4 — Live IQ Plotting

Task	Description	Tool/Concept
✓ Capture Live Data	From RTL-SDR using Python	PyRTLSDR
✓ Plot IQ Samples	In real-time or batch	Matplotlib
✓ Observe Shape	Understand stationarity, noise, and drift	IQ Interpretation

Outcome: Build muscle memory of IQ structure and dynamic signal behavior.

Q Phase Completion Milestones

Milestone	Criteria
Code and run QPSK bit → IQ mapping	
Plot QPSK constellation for test stream	
Receive live IQ from RTL-SDR	
Plot real-world IQ signal	
Document observations in project log	

Folder Structure (Recommended)

Suggested Weekly Timeline

Week	Activity
Week 1	Python IQ simulation + plotting
Week 2	QPSK bit → symbol mapping + constellation
Week 3	RTL-SDR setup + live data capture

Week	Activity
Week 4	Live plotting + milestone review

Documentation Tracking Template

Each module can have a log like this (in phase1_observations.md):

```
### Module 1.2 - QPSK Mapping
```

- ✓ Bitstream used: 11001100
- ✓ Symbols mapped: (1+1j), (-1+1j), etc.
- ✓ Issues faced: Matplotlib scaling confusion
- Resolved: Used `plt.axis('equal')`
- ∏ Insight: Visualizing IQ makes modulation logic intuitive