	<u>TD2 - Mrabet</u>		A B C D Note			
1	Donner le nom de la boucle de régulation.	0,5	Α			0,5
2	Donner le nom de la grandeur réglée.	0,5	Α			0,5
3	Donner le nom de l'organe de réglage.	0,5	Α			0,5
4	Donner le nom de la grandeur réglante.	0,5	Α			0,5
5	Donner le nom d'une perturbation.	0,5	Α			0,5
E	Donner le nom des éléments intervenants dans la boucle de régulation.	0,5	В			0,375
7	Sur la capture d'écran ci-dessus, donner la valeur de la consigne.	0,5	Α			0,5
8	Sur la capture d'écran ci-dessus, donner la valeur de la mesure.	0,5	D			0,025
g	En déduire la valeur de l'erreur statique.	1	С			0,35
10	Enregistrer la réponse du système à un échelon de commande de 5%.	1	Α			1
11	Le système est-il stable ?	1	В			0,75
12	Le système est-il intégrateur ?	1	В			0,75
13	Expliquer l'évolution de la mesure.	1	D			0,05
14	Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1	D			0,05
15	Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1	D			0,05
16	Quel doit être le sens d'action du régulateur ? Justifier votre réponse.	1	С			0,35
17	Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.	1	В			0,75
18	Donner la valeur du gain critique ainsi que celle de la période des oscillations.	1	С			0,35
19	En déduire les réglages du régulateur PID.	1	С			0,35
20	Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Α			1
21	Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	Х			0
22	Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.	1	Α			1
23	Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Α			1
24	Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	D			0,05
25	Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.	1	С			0,35

Mrabet

TD2 Steamer - Régulation à un élément

5

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :

Le <u>fichier aide</u> pour bien débuter.

I. Analyse de la boucle

Q1 : Donner le nom de la boucle de régulation.	0.5
regulation de niveau	
Q2 : Donner le nom de la grandeur réglée.	0.5
Niveau d'eau dans la cuve	
Q3 : Donner le nom de l'organe de réglage.	0.5
LV	
Q4 : Donner le nom de la grandeur réglante.	0.5
Debit d'eau entrant dans la cuve	
Q5 : Donner le nom d'une perturbation.	0.5
Débit de vapeur envoyé a la turbine	
Q6 : Donner le nom des éléments intervenants dans la boucle de régulation.	0.5
LV, LIC, LT, FT2	

Q7 : Sur la capture d'écran ci-dessus, donner la valeur de la consigne.

50%

Q8 : Sur la capture d'écran ci-dessus, donner la valeur de la mesure.

54%

Q9 : En déduire la valeur de l'erreur statique.

1

II. Boucle ouverte

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :

RAZ GO

On pourra régler le défilement sur 4s/carreau.

~>>

On pourra réinitialiser le graphe.

Clear

Q11: Le système est-il stable ?	1			
le procédé n'est pas stable car la variation de la grandeur réglante ne correspond pas a la variation de la grandeur réglée				
Q12 : Le système est-il intégrateur ?	1			
oui le système est intégrateur car il a une entrée(e) stable et constante, alors qu'en sortie (s) il y'a une droite croissante				
Q13 : Expliquer l'évolution de la mesure.	1			
lorsque la commande augmente w on constate une augmentation de la mesure x				
Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1			
О				
Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1			
on ne peut pas utiliser de methode de reglage en boucle ouverte car on ne peut pas modifier la commande en mode auto,				

III. Réglage de la boucle - Méthode de Ziegler&Nichols

Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse.

le procédé est directe car lorsque w augmente x augmenter aussi, et donc le sens d'action est inverse

le procède est directe car forsque w augmente x augmenter aussi, et donc le sens d'action est inverse

Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

Ac=A*1.7=25*1.7=42.5

Q19: En déduire les réglages du régulateur PID.

 $Tc = 11 \ donc \ ti = tc/2 = 11/2 = 5.5s \ td = tc/8 = 11/8 = 1.375s$

Q20 : Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.

1

1

1

Q21 : Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

?

