#### 1 KOMPOZITNI MATERIALI

## Definicija: kompozita:

- je mešanica vsaj dveh različnih sestavin ali faz,
- so homogeni v makroskopskem in heterogeni v mikroskopskem merilu,
- delež, oblika, in razdelitev sestavin so vnaprej načrtovani,
- niso naravne tvorbe, pač pa delo človeških rok.
- posamezne sestavine mora biti vsaj 5 %.

Izjeme, ki jih med kompozitne materiale ne uvrščamo:

- Četudi imajo posamezne sestavine bistveno različne lastnosti, tako, da ima kompozit bistveno drugačne lastnosti od posameznih faz, umetne snovi z dodatki proti UV ne štejemo med kompozitne materiale.
- Umetne kompozite izdelujemo z namenskim dodajanjem in mešanjem sestavin, dvofazne zlitine nastale iz homogene taline ali po toplotnih obdelavah ne uvrščamo med kompozitne materiale.



**Slika 1:** Primer sestave deske iz različnih materialov, vsak s svojim namenom.

#### 1.1 Armaturna delitev kompozitnih materialov

Kompozit je sestavljen iz osnovnega materiala (matrice), ki prenaša tlačne obremenitve, in armaturnih vlaken, ki prenašajo natezne sile. Vlakna so vgrajena v matrico in izboljšajo trdnost ter togost kompozita.

Glede na obliko armature ločimo kompozite z matrico, ki je ojačana z:

- delci ali
- z vlakni.

Poleg le teh, pa poznamo še kompozitne materiale s strukturirano teksturo.



Slika 2: Delitev kompozitnih materialov.

## 1.1.1 Ojačitve z delci



**Slika 3:** Uporaba ojačitve kompozitnih materialov z delci.

Ojačitve z mikroskopsko-majhnimi delci:

• preprečujejo plastično deformacijo (kovin)

Ojačitve z večjimi delci:

• izkoriščamo večjo trdoto armiranega materiala



Slika 4: Uporaba kompozitnih materialov, ki so ojačani z delci.

Najpomembnejša in najbolj znana uporaba kompozitov, ojačanih z delci, je volframov karbid (WC). To je vrsta cementiranega karbida, pri katerem je volframov karbid v kobaltovem vezivu. Tu je kobaltovo vezivo matrična faza, delci volframovega karbida pa ojačitve delcev.

#### 1.1.2 Ojačitve z vlakni

- relativno enostavno lahko načrtujemo elastičnosti modul (E) v smeri vlaken
- materiali so anizotrpičeni:
  - različne fizikalne lastnosti v različnih smereh pri usmerjenih vlaknih
  - primer: armiran beton (npr.: ne smemo spremeniti balkona v ploščad)
- · ali izotropični:
  - pri naključno razporejenih vlaknih (npr.: vlakna za beton)

Glede na usmeritev vlaken ločimo:

- · usmerjena vlakna
  - Aligned Continuous fibers
  - Examples:
    - -- Metal:  $\gamma'(Ni3AI)$ - $\alpha(Mo)$  by eutectic solidification.

-- Ceramic: Glass w/SiC fibers formed by glass slurry Eglass = 76 GPa; ESiC = 400 GPa.





Slika 5: Prikaz različnih kompozitnih materialov z usmerjenimi vlakni.

- naključno postavljena vlakna
- Discontinuous, random 2D fibers
- Example: Carbon-Carbon
  - -- process: fiber/pitch, then burn out at up to 2500 C.
  - uses: disk brakes, gas turbine exhaust flaps, nose cones.



- Other variations:
  - -- Discontinuous, random 3D
  - -- Discontinuous, 1D

**Slika 6:** Primer kompozita, ki je sestavljen iz naključnih ogljikovih vlakev v matrici iz ogljika in silicijevega karbida (zavorni diski pri športnih avtomobilih).

• neskončna usmerjena vlakna



Slika 7: Primer postavitve industrijskega obrata za nanos neskončnih vlaken.



**Slika 8:** Primer ojačevanja matrice z različnimi gometrijami nanosa vlaken (na primer: tlačne posode).

#### 1.1.3 Strukturirani kompoziti

- med kompoziti najbolj skrbno načrtovani tehnološki postopki,
- odlično razmerje med  $E/\rho$
- Stacked and bonded fiber-reinforced sheets
  - -- stacking sequence: e.g., 0°/90°
  - -- benefit: balanced, in-plane stiffness



- -- low density, honeycomb core
- -- benefit: small weight, large bending stiffness



Slika 9: Primer laminiranih kompozitnih materialov in kompozitov s "sandich" konsrukcijo.

### 1.2 Prednosti kompozitov



Slika 10: Prednosti kompozitnih materialov v primerjavi z nekaterimi materiali.

## 1.3 Sestava kompozitnih materialov

Kompozitni materiali sestojijo predvsem iz dveh osnovnih sestavin:

- iz matice (osnove) in
- armature (sestavin za povečanje mehanskih lastnosti)

Kompozitni materiali sestojijo iz 5 najbolj razširjenih osnovnih skupin glede na obliko armature:

- kompoziti z vlakni
- · kompoziti z delci
- kompoziti s kosmiči
- kompoziti z laminati, lističi
- kompoziti s polnilom.

#### 1.3.1 Vlakna v kompozitih

Vlakna, ki se uporabljajo za armiranje kompozitov, naj imajo naslednje lastnosti:

- · majhno gostoto
- veliko trdnost in modul elastičnosti pri vseh delovnih temperaturah
- minimalno topnost v matrici
- · kemično obstojnost
- · nimajo faznih transformacij
- primerna so za tehnološke postopke

### Vlakna, ki se danes uporabljajo:

- · imajo majhno gostoto,
- veliko trdnost jim zagotavlja kovalentna vez
- anizotropne mehanske lastnosti.

#### Najbolj uporabna vlakna so:

- steklena vlakna:
  - izdelana so iz stekel različne kemične sestave
  - 50% 60%  $SiO_2$  ter oksidi kalija, bora, natrija, aluminija in železa.
- ogljikova vlakna:
  - so izredno trdna, toga in lahka vlakna
  - izredno odporna na visoke temperature
- · kovinska vlakna:
  - so iz volframa, berilija, molibdena in visokotrdnih ogljikovih in nerjavnih jekel

# **1.3.1.1 Vpliv vlaken na fizikalne lastnoati** niso odvisne le od materiala iz katerega so vlakna, pač pa tudi:

- kolikošna je njihova prisotnost (delež),
- kako velika vlakna so,
- · kakšno obliko imajo,
- kako so razporejeni v matrici,
- in njihova orientacija.



Schematic representations of the various geometrical and spatial characteristics of particles of the dispersed phase that may influence the properties of composites: (a) concentration, (b) size, (c) shape, (d) distribution, and (e) orientation.

Slika 11: Vpliv razporeditve vlaken na lastnosti kompozitnih materialov.

## 1.3.2 Matrica kompozitnega materiala

Matrica daje kompozitnemu materialu:

- obliko in
- · monolitost
- določa položaj armature (vlaken)
- omogoča prenos obremenitve na vlakna, ki so vgrajena v matrico

Način povezave vlaken in matrice bistveno vpliva na:

- trdnost in
- žilavost kompozita
- togost (modul elastičnosti) se z armiranjem vlaken poveča.

Poznamo več vrst matric iz različnih materialov:

- keramične (CMC ceramic matrix composite)
- polimerne (PMC polymer matrix composite)

• kovinske (MMC - metal matrix composite)

#### 1.3.3 Keramične matrice

- so trde in
- krhke (krhkost izboljšamo z vlakni)
- majhno toplotno prevodnost
- majhna natezna trdnost
- velik modul elastičnosti (ob majhnem raztezku se pojavijo velike notranje napetosti)
- manjšo gostoto (od kovin)
- odporne na zelo visoke temperature
- primer uporabe:
  - zavorni diski
  - lopatice v plinskih turbinah (reaktivni motorji)
  - toplotni ščit za vesoljska vozila
- Keramični matrični kompoziti

#### 1.3.4 Polimerne matrice

- manjša trdnost
- manjši modul elastičnosti
  - obremenitev se že ob manjših obremenitvah dobro prenaša na vlakna
- niso odporne na višje temperature
- imajo izredno nizko gostoto
- veliko žilavost
- odporne proti kemikalijam in vodi
- postopek izdelave je enostaven in
- poceni
- primer.: epoksi smole, fenolne smole...

#### 1.3.5 Kovinske matrice

- trdne
- žilave
- togost povečamo s togimi armiranimi vlakni
  - armirana vlakna z velikim modulom elastičnosti

# 1.4 Primeri uporabe

# 1.4.1 Letalska industrija



Shematični pogled na kovinsko matrico ojačeno z močnimi neprekinjenimi vlakni.



Vlaknati kompoziti (šrafirano) se vedno več uporabljajo za izdelavo delov vojaških in civilnih letal.

Slika 12: Kompozitni materiali s kovinsko matrico v letalski industiji.