LINEAR MODELS ARE GREAT

ALEX GOLD
SOLUTIONS ENGINEER
RSTUDIO

Slides at: https://github.com/akgold/dsdc_linear_models

IT ME.

WHAT DOES IT MEAN TO BE LINEAR?

160.0

+ some prediction error

$$Y = \beta X + \epsilon$$

ALEX <3 LINEAR MODELS

$Y = \beta X + \epsilon$

$Y = \sum \beta_k f_k(x_i) + \epsilon$

 $gender = \beta_0 + \beta_1 weight + \beta_2 height$

$$gender = \beta_0 + \beta_1 weight + \beta_2 height$$

VS

$$gender = \beta_0 + \beta_1 weight + \beta_2 height$$

It's all about the Data-Generating Process

$$mpg = \beta_0 + \beta_1 cyl + disp$$

OR

$$mpg = \beta_0 + \beta_1 cyl + \beta_2 cyl^2 + \beta_3 log(disp)$$
?

- 1. INTERPRETATION MATTERS. 2. LINEARITY ISN'T RESTRICTIVE. 3. MO' SQUIGGLY = MO' OVERFITTING. 4. SMALL DATA'S OK.
- 5. IT'S ALL ABOUT THE DGP.

