评委一评分,签名及备注	队号:	评委三评分,签名及备注
	20027	
评委二评分,签名及备注	选题:	评委四评分,签名及备注
	C	

题目:家庭暑期旅游套餐的设计

摘要

暑假期间很多家长会带孩子去旅游,当然不同的家庭有不同的需求。综合考虑旅行路线、费用、时间以及其他重要因素,为有不同需求的家庭设计不同的旅游套餐。以北京为例,综合了文化性、学习性、趣味性和景观性等多方面因素选取了 18 个具有代表性的景点,又利用聚类的思想,将距离较近(不用乘车就可到达)的景点合并成一个景点,最终得到了 14 个景点。对 14 个景点进行评价、排序,从而选择适合的景点,进行路线规划。利用 Matlab 软件对收集的路程和路费信息进行线性回归,得出路程和路费之间的函数关系,为求套餐总费用做准备。关于本题,我们主要针对以下三种情况进行讨论:

针对时间为主要因素时,可将套餐分为长期和短期两种情况。长期初步设定为5天,短期则设定为2天。长期,即时间充裕的情况下,遍历14个景点,把游览14个景点的费用计算转化为最短路问题,利用WinQSB求解出哈密尔顿最优回路,再根据最优回路求出所需费用。短期,即时间有限,不能遍历14个景点,只能令这一路线套餐在2天内包含最多的景点,应用模糊评价法,使时间的权重相对较大,再综合费用、景点可取性和交通状况对景点进行综合评价和排名,从而确定了5个景点,利用WinQSB求出哈密尔顿最优回路,从而计算出此线路套餐所需费用。

针对费用为主要因素时,利用 0—1 变量约束保证每个景点只去一次,再基于费用进行综合评价,给出排名,以 5 个景点为起点,分别制定游览景点数为 5、6、7、8、9、10、11、12、13、14 的哈密顿最优回路,并求费用。

针对不同家庭对游览内容有不同需求,因此,另外又制定了4条主题线路分别为文化线、游学线、景观线和趣味线。

对于暑期去北京旅游共给出了 15 个套餐可供选择,如表四所示。除选择适合的出行路线外,还要注意天气,回避人流高峰。

关键词:聚类、WinQSB、哈密顿回路、LINGO软件、模糊评价、0-1变量约束

家庭暑期旅游套餐的设计

1 问题重述

北京是全国著名旅游城市,每年接纳游客上千万人次,很多人都将北京作为假期旅游的首选城市。暑假即将来临,很多家长会选择这个时间带孩子到北京旅游。 但不同的家庭会受到人数,费用,时间等限制,综合考虑旅行路线,费用、时间以及其它你认为比较重要的因素,为有不同需求的家庭设计一份最佳旅游套餐。

2 模型假设

- 1、所有景点、景点均为节点:
- 2、每两个旅游景点之间用同样的车作为交通工具,平均速度为50km/h,乘坐途中不考虑交通费以外的其他费用,并且单位路程的交通费相同(均为 $0.5\pi/km$):
 - 3、只考虑不同景点间公路的连接,将公路作为节点之间的通路;
 - 4、汽车发车时间连续, 行驶时间不单独计算, 不考虑交通中的意外:
 - 5、旅行者在出游过程中不会出现被滞留等意外情况;
 - 6、每天固定餐饮等消费为100元/天;

3 符号约定

 符号	说明
С	每个人的旅游总花费
t_{i}	每个人在第 i 个景点的逗留时间
C_{i}	每个人在i个景点的总消费
t_{ij}	从第 <i>i</i> 个景点到第 <i>j</i> 个景点路途中所需时间
c_{ij}	从第 <i>i</i> 个景点到第 <i>j</i> 个景点所需的交通费用
r_{ij}	$r_{ij} = \begin{cases} 1 \text{ 直接从第}i \land \text{景点到达第}j \land \text{景点} \\ 0 & \text{其他} \end{cases}$
d_{ij}	第 i 个景点和第 j 个景点之间的路程;
<i>v m</i>	所乘坐的公交车的平均时速; 所乘坐的公交车的平均费用;

4 问题分析

根据题目中问题的提出,本文选取我国的政治、经济文化中心——北京,作为此次暑期旅游的目的地。首先,我们考虑在无任何约束条件的情况下,选择18个知名度较高的旅游胜地经行统计分析,得出旅游的最短线路图。接着,我

们以时间作为主要约束条件,得出不同时间段的最优线路。然后,将旅游费用作为主要约束条件,景点个数为辅,规划出最短旅游线路。最后,本文为满足不同家庭的需求,制定出相应的旅游套餐方案,更推出特色主题旅行为各个家庭带来不一样的旅行体验。

5 模型的建立与求解

5.1 模型的准备

我们采集了北京 18 个景点的数据,其中不乏有十分接近的,故我们按地理位置将它们进行聚类,最终得到 14 个景点。在交通费用与路线长度成正比、不同景点的住宿费用相等、车辆行驶于公路铁路的时速恒定等假设条件的基础上求出 14 个景点两两之间的最短路程并建立表格,为建立模型做准备。

当不考虑时间、费用的限制时,制定 14 个景点的总体哈密尔顿最优回路,最大限度的来满足不受限制的游客,并使游客可以最快速度,用最少的费用游览这 14 个景点。为求解最优哈密顿回路,此处应用 WinQSB 软件中的 Networking model 模块对线路进行动态规划,并求得最优解。

当受到时间的限制时,将套餐分为长期和短期。长期初步设定为7天,短期初步设定为2天。长期的即为第一种情况下的求解结果,这里不做过多赘述。短期即为用模糊评价法对14个景点进行基于时间的综合评价并排名,从中选出5个排名最高的根据附录2中数据应用WinQSB软件中的Networking model模块即可求得最优哈密顿回路,得出最优路线。

当受到费用的限制时,根据对题目的理解我们可以知道,旅游的总费用包括交通费用,食宿费用和在景点游览时的费用,而在确定了要游览的景点的个数后,我们的目标就是在满足所有约束条件的情况下,求出成本的最小值。在设计合适的旅游路线上,要使在很短的时间内花最少的钱游览尽可能多的景点。在这里我们的做法是利用 0-1 变量约束法,使各景点在满足相应的约束条件下,先确定游览景点数,再利用模糊评价法选出相应数量的景点,然后计算出在这种情况下的最小花费。

通过对建立模型,我们做出条件约束:

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times t_{ij} + \frac{1}{2} \times \sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times (t_i + t_j) \le 55.5$$

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} = n \qquad (n = 2, 3, \dots, 14)$$

$$\sum_{i} r_{ij} = \sum_{j} r_{ij} \le 1 \qquad (i, j = 1, 2, 3, \dots, 14)$$

$$\sum_{i=1}^{14} r_{ij} = 1 \qquad \sum_{j=1}^{14} r_{ij} = 1$$

$$r_{ij} \times r_{ji} = 0 \qquad (i, j = 2, 3, \dots, 14)$$

其中, *i*, *j* 表示第 *i* 个或者第 *j* 个景点,分别表示:(前门大街、天安门、故宫、中山公园)、颐和园、陶然亭、北海、圆明园、天坛、动物园、长城、香山、(后海、恭王府)、海底世界、清华、北大、欢乐谷。

我们用软件对其进行求解得出多种方案,确定浏览的景点数与路程,在计算出最小花费与消耗时间,供不同家庭选择。

5.2 路费模型

为得到在北京市旅游过程中乘坐车辆的路程和路费之间的大致关系,我们采集了10组数据,并用MATLAB对其进行线性回归,从而得出在旅游过程中乘坐车辆的路程和路费之间的关系如图1所示。

				表一 路	程路费	关系图				
路程(x)	15.7	6.7	17.2	11.1	6.4	2	5.1	12.2	8.7	27.2
路费(y)	7.2	2.9	8.1	5.0	2.5	0.9	2.3	5.7	4.9	13

图 1 路程和路费之间的关系

根据程序结果,得出路费与路程之间的回归方程: y = 0.489x - 0.06。根据方程,我们得出北京乘坐车辆的路程价格大约为0.5元/Km。

5.3 路程模型

此模型中编号分别表示:

1——前门大街、天安门、故宫、中山公园(此四个地点相距较近,可组合成一个景点),2——颐和园,3——陶然亭,4——北海,5——圆明园,6——天坛,7——动物园,8——长城,9——香山,10——后海、恭王府(此两个地点相距较近,可组合成一个景点),11——海底世界,12——清华,13——北大,14——欢乐谷等14个景点位置,如图2所示。

图 2 北京部分景点位置分布图

根据所调查数据,现将任意两景点间的距离进行统计,如表二所示。

	表 _一 。													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	18.9	5.3	2.9	16.8	4.3	8.9	67.6	25.2	4.9	6.6	16.9	17.2	13.7
2	18.9	0	20.9	16.7	3.1	21.9	10.9	55.4	8.9	15.2	22.8	6	3.3	31.1
3	5.3	20.9	0	6.5	18.7	3.7	10.8	69.9	26.9	8.4	11.2	16.9	19.2	11.4
4	2.9	16.7	6.5	0	14	5.8	6.1	64.9	22.5	2.4	5.8	12.2	14.4	15.2
5	16.8	3.1	18.7	14	0	19.4	8.9	56.1	11.3	12.7	19.6	3.1	1.9	28.5
6	4.3	21.9	3.7	5.8	19.4	0	11.6	69.9	27.9	6.8	8	17.7	20	9.6
7	8.9	10.9	10.8	6.1	8.9	11.6	0	63.8	16.4	7.6	12.2	8.6	8.8	22.9
8	67.6	55.4	69.9	64.9	56.1	69.9	63.8	0	65	68.2	66.7	60.8	61.8	83.7
9	25.2	8.9	26.9	22.5	11.3	27.9	16.4	65	0	22.3	27.6	14.9	12.2	44
10	4.9	15.2	8.4	2.4	12.7	6.8	7.6	68.2	22.3	0	5.5	11	13.5	15.9
11	6.6	22.8	11.2	5.8	19.6	8	12.2	66.7	27.6	5.5	0	17.8	19.1	10.7
12	16.9	6	16.9	12.2	3.1	17.7	8.6	60.8	14.9	11	17.8	0	3	26.7
13	17.2	3.3	19.2	14.4	1.9	20	8.8	61.8	12.2	13.5	19.1	3	0	28.2
14	13.7	31.1	11.4	15.2	18.5	9.6	22.9	83.7	44	15.9	10.7	26.7	28.2	0

表二 各景点间距离

5.4 路线模型—哈密顿路径问题的应用

所谓哈密顿路径问题是指:在由n个顶点与m个有向线段组成的有向图形中,问能否找到一条路径,从顶点0出发,到顶点n-1结束,途中经历每个顶点一次且只有一次。这样的途径就称为哈密顿路径。哈密顿路径问题是组合数学中的一个典型的 NP 完全类问题,也就是说这一问题的计算量极大,超出了多项式算法的范围,如图 3 中就存在一条哈密顿径,其是 $0\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 6$ 。

图 3 一个由 7 个顶点组成的有向图

求解最优哈密顿回路,此处应用 WinQSB 软件中的 Networking model 模块求解得出:

05-24-2014	From Node	Connect To	Distance/Cost		From Node	Connect To	Distance/Cost
1	Node1	Node4	2.9	8	Node12	Node13	3
2	Node4	Node10	2.4	9	Node13	Node5	1.9
3	Node10	Node11	5.5	10	Node5	Node2	3.1
4	Node11	Node6	8	11	Node2	Node9	8.9
5	Node6	Node3	3.7	12	Node9	Node14	44
6	Node3	Node7	10.8	13	Node14	Node8	83.7
7	Node7	Node12	8.6	14	Node8	Node1	67.6
	Total	Minimal	Traveling	Distance	or Cost	=	254.10
	(Result	from	Nearest	Neighbor	Heuristic)		

即最优哈密尔顿回路为:

$$1 \rightarrow 4 \rightarrow 10 \rightarrow 11 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 12 \rightarrow 13 \rightarrow 5 \rightarrow 2 \rightarrow 9 \rightarrow 14 \rightarrow 8 \rightarrow 1$$

其最短距离为: 254.10km。

5.5 0—1 模型

5.5.1 目标函数的确立

经过对题目分析,我们可以知道本题所要实现的目标是:花最少的钱游览尽可能多的地方。显然,花费最少和游览的景点尽量多是该问题的两个目标。因此,我们的做法是在满足相应的约束条件下,先确定游览的景点数,然后计算出在这种情况下的最小花费。这样最终会得出几种旅游路线,可以根据自己的实际情况进行选择。

游览的总费用由2部分组成,分别为交通总费用和在旅游景点的花费。我们定义:

m——每个人的旅游总花费;

 m_1 ——每个人的交通总费用;

*m*₂——每个人的旅游景点的花费。

从而得到目标函数:

$$Min m = m_1 + m_2 (1)$$

1、 交通总花费

因为 c_{ij} 表示从第i个景点到第j个景点所需的交通费用,而 r_{ij} 是判断 是否从第i个景点直接到第j个景点的 0—1 变量,因此我们可以很容易的得到交通总费用为:

$$m_1 = \sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times c_{ij}$$
 (2)

2、 旅游景点的花费

因为 c_i 表示 在i个景点的总消费, r_{ij} 也可以表示出 是否到达过第i个和第j个景点,而整个旅游路线最终组成一个闭环形,因此 $\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times (c_i + c_j)$ 实际上将代表们在所到景点的花费计算了两遍,从而我们可得旅游景点的花费为:

$$m_2 = \frac{1}{2} \times \sum_{i=1}^{14} \sum_{i=1}^{14} r_{ij} \times (c_i + c_j)$$
 (3)

根据式(1)、(2)、(3)我们可以得到目标函数为:

$$Min m = m_1 + m_2$$

$$= \sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times c_{ij} + \frac{1}{2} \times \sum_{j=1}^{14} \sum_{j=1}^{14} r_{ij} \times (c_i + c_j)$$
(4)

3、约束条件

①时间约束

旅游时间应该不多余 55.5 个小时,而这些时间包括在路途中的时间和在旅游景点逗留的时间。因为 t_{ij} 表示从第i个景点到第j个景点路途中所需时间,所以

路途中所需总时间为 $\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times t_{ij}$; t_i 表示 在第i个景点的逗留时间,故代表们在

旅游景点的总逗留时间为 $\frac{1}{2}$ × $\sum_{i=1}^{14}\sum_{j=1}^{14}r_{ij}$ × (t_i+t_j) 。 因此,总的时间约束为:

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times t_{ij} + \frac{1}{2} \times \sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times (t_i + t_j) \le 55.5$$
 (5)

②旅游景点数约束

根据假设,整个旅游路线是一个闭环形,即最终要回到起始地点,形成回路,

因此 $\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij}$ 即表示 旅游的景点数,这里我们假定要旅游的景点数为

n(n=2,3,...,14)。因此旅游景点数约束为:

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} = n \qquad (n = 2, 3, ..., 14)$$
 (6)

③0-1 变量约束

我们可以把所有的景点连成一个圈,而把每一个景点看做圈上一个点。对于每个点来说,只允许最多一条边进入,同样只允许最多一条边出来,并且只要有一条边进入就要有一条边出去。因此可得约束:

$$\sum_{i} r_{ij} = \sum_{i} r_{ij} \le 1 \qquad (i, j = 1, 2, \dots 14)$$
 (7)

又因为旅游路线为一个环路。所以

当
$$i=1$$
时, $\sum_{i=1}^{n} r_{ij} = 1$; $j=1$ 时, $\sum_{i=1}^{n} r_{ij} = 1$ 。

综合以上可知,

$$\sum_{i} r_{ij} = \sum_{j} r_{ij} \le 1 \qquad (i, j = 1, 2, \dots 14)$$

$$\sum_{i=1} r_{ij} = 1 \qquad \sum_{j=1} r_{ij} = 1 \qquad (8)$$

同样,当 $i,j \ge 2$ 时,根据题意不可能出现 $r_{ij} = r_{ji} = 1$,即不可能出现在两地间往返旅游,因为这样显然不满足游览景点尽量多的原则。因此我们可得约束:

$$r_{ij} \times r_{ji} = 0$$
 $(i, j = 2, 3, \dots 14)$ (9)

5.5.2 建立模型

综上所述,我们得到总的模型为式(4):

$$Min m = m_1 + m_2$$

$$= \sum_{i=1}^{14} \sum_{i=1}^{14} r_{ij} \times c_{ij} + \frac{1}{2} \times \sum_{i=1}^{14} \sum_{i=1} r_{ij} \times (c_i + c_j)$$

由式(5)、(6)、(7)、(8)、(9)得到约束条件:

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times t_{ij} + \frac{1}{2} \times \sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} \times (t_i + t_j) \le 55.5$$

$$\sum_{i=1}^{14} \sum_{j=1}^{14} r_{ij} = n \qquad (n = 2, 3, \dots, 14)$$

$$\sum_{i} r_{ij} = \sum_{j} r_{ij} \le 1 \qquad (i, j = 1, 2, 3, \dots, 14)$$

$$\sum_{i=1}^{14} r_{ij} = 1 \qquad \sum_{j=1}^{14} r_{ij} = 1$$

$$r_{ij} \times r_{ji} = 0 \qquad (i, j = 2, 3, \dots, 14)$$

5.5.3 模型求解与结果分析:

1、 模型准备

通过上网查询资料,我们可以得到 d_{ii} 的具体值,根据公式 $t_{ii} = d_{ii}/v$ 可得到相 应的 t_{ii} ,同样根据公式 $c_{ii} = d_{ii} \times m$ 可以得到相应的 c_{ii} (i, j = 1, 2, ..., 14)。

通过网络我们对北京的一些旅行社进行咨询,我们得出在第 i 个景点的最佳 逗留时间和他们在第i个景点总消费:

在每个景点的逗留时间:

(单位:小时)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
6	4	2	2	5	2.5	4	7	3	4	3	3	3	7

在每个景点的总消费:

(单位:元)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
100	35	5	10	25	15	15	45	10	40	85	0	0	200

2、 模型求解

短期旅游路线基于时间的综合评价进行排序得出五个景点,根据附录2中数 据应用 WINOSB 软件中的 Networking model 模块即可求得最优哈密顿回路。

即: $1 \rightarrow 4 \rightarrow 6 \rightarrow 3 \rightarrow 11 \rightarrow 1$ 。

该线路最短距离为46.20km,成人花费440元,学生花费340元。

其他情况下,我们根据模型建立的约束条件,运用 LINGO 软件,确定了如 下几种旅游路线,根据确定景点个数,得出最小花费,如表三所示。

表三 n取5,6,7时的最小花费

游览景点数n	5	6	7
成人花费 (元/人)	25	40	55
孩子花费 (元/人)	12.5	20	27.5
路费 (元/人)	30	30	32.5
路线	$3 \rightarrow 4 \rightarrow 12 \rightarrow 13$ $\rightarrow 9 \rightarrow 3$	$3 \rightarrow 6 \rightarrow 4 \rightarrow 12 \rightarrow 13 \rightarrow 9 \rightarrow 3$	$3 \rightarrow 6 \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow 13 \rightarrow 9 \rightarrow 3$

表四 n取8,9,10时的最小花费

游览景点数 n	8	9	10
成人花费(元/人)	80	115	155
孩子花费(元/ 人)	40	57.5	77.5
路费(元/人)	33.5	35	37.5
路线	$3 \rightarrow 6 \rightarrow 4 \rightarrow 7 \rightarrow 1$ $2 \rightarrow 13 \rightarrow 5 \rightarrow 9 \rightarrow$ 3		$2 \rightarrow 5 \rightarrow 13 \rightarrow 12 \rightarrow 7 \rightarrow 4 \rightarrow 10 \rightarrow 6 \rightarrow 3 \rightarrow 9 \rightarrow 2$

表五 n取11,12,13时的最小花费

旅游景点数 n	11	12	13
成人花费(元/ 人)	200	285	385
孩子花费(元/ 人)	100	142.5	192.5
路费 (元/人)	90	95	97.5
路线	$2 \rightarrow 5 \rightarrow 13 \rightarrow 12$ $\rightarrow 7 \rightarrow 4 \rightarrow 10 \rightarrow 6$ $\rightarrow 3 \rightarrow 9 \rightarrow 8 \rightarrow 2$	$2 \rightarrow 5 \rightarrow 13 \rightarrow 12$ $\rightarrow 7 \rightarrow 4 \rightarrow 10 \rightarrow 1$ $1 \rightarrow 6 \rightarrow 3 \rightarrow 9 \rightarrow 8$ $\rightarrow 2$	$1 \rightarrow 4 \rightarrow 10 \rightarrow 11 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 1$ $2 \rightarrow 13 \rightarrow 5 \rightarrow 2 \rightarrow 9 \rightarrow 8 \rightarrow 1$

表六 n取14时的最小花费

旅游景点数 n	14
成人花费(元/人)	585
孩子花费(元/人)	292.5
路费(元/人)	125
路线	$1 \rightarrow 4 \rightarrow 10 \rightarrow 11 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 12 \rightarrow 13 \rightarrow 5 \rightarrow 2 \rightarrow 9 \rightarrow 14 \rightarrow 8 \rightarrow$
吖 纹	1

根据以上数据的分析与模型的求解,设计规划出 10 种路线可供游客选择。 其中,以路线四为例,画出规划路线图,如图 4 所示。

图 4 路线四出游图

3、 主题线路

由于此次设计的线路是暑期家长带学生出来旅游,因此我们考虑到的并不仅仅是物质方面的限制因素,也考虑了精神方面的需求,不同家庭也有不同的喜好,因此,我们制定了四条物美价廉的主题路线,为有不同需求的家庭提供更多,更符合他们意愿的选择。

表七 主题路线明细表

主题线路	路线	费用 (元/人)	所用时间 (天)	特色说明
文化线	$1 \rightarrow 6 \rightarrow 3 \rightarrow 10 \rightarrow$ $5 \rightarrow 2 \rightarrow 8 \rightarrow 1$	743	4	有很多家庭会对北京的文化感 兴趣,对首都的历史很向往, 因此,文化线会是这些家庭一 个不错的选择。
游学线	$1 \rightarrow 3 \rightarrow 11 \rightarrow 12$ $\rightarrow 13 \rightarrow 5 \rightarrow 1$	550	3	暑期旅游,也不乏一些家长抱着让孩子长知识,长见识的心态带孩子出来旅游,这样的话,游学线就成为了这些家庭的一个很好地选择。
景观线	$4 \rightarrow 10 \rightarrow 11 \rightarrow 9$ $\rightarrow 8 \rightarrow 4$	580	3	有很多家庭为了领略北京的自 然风光而来到北京,景观线不 失为一种不错的路线。
趣味线	$7 \rightarrow 14 \rightarrow 11 \rightarrow 8$ $\rightarrow 7$	723	3	自然也有很多家长想和孩子一 起开心地玩,同时也让孩子通 过此次旅游放松一下,那么就 可以选择趣味线。

各主题线路如图 5 所示。

。图5主题路线图

最终,通过对所搜集数据的统计与分析,运用数学建模的方法,制定出适合

表八 暑期亲子套餐

表八 者期亲于套餐 「								
 套餐分类	套餐名	 套餐路线	成人价	学生价				
以		女 食町以	(元)	(元)				
二日游套餐	1	天安门→北海→天坛→陶然亭→海底世	440	240				
	1	界→天安门	440	340				
	2	陶然亭→北海→清华→北大→香山→陶	230	240				
		然亭	230	240				
	3	陶然亭→天坛→北海→清华→北大→香	280	260				
		山→陶然亭	200 200					
	4	陶然亭→天坛→北海→动物园→清华→	295	270				
		北大→香山→陶然亭						
三日游套餐	1	陶然亭→天坛→北海→动物园→清华→ 北大→圆明园→香山→陶然亭	425	385				
		□ 北人→國明四→督田→陶然亭 □ 颐和园→圆明园→北大→清华→动物园						
	2	→北海→天坛→陶然亭→香山→颐和园	490	435				
	1	颐和园→圆明园→北大→清华→动物园						
		→北海→恭王府→天坛→陶然亭→香山	655	575				
四日游套餐		→颐和园	022	1				
	2	颐和园→圆明园→北大→清华→动物园						
		→北海→恭王府→天坛→陶然亭→香山	700	600				
		→长城→颐和园						
	1	颐和园→圆明园→北大→清华→动物园						
		→北海→恭王府→海底世界→天坛→陶	880	740				
		然亭→香山→长城→颐和园						
	2	天安门→北海→恭王府→海底世界→天						
五日游套餐		坛→陶然亭→动物园→清华→北大→圆	905	715				
11日初去食		明园→颐和园→香山→长城→天安门						
	3	天安门→北海→恭王府→海底世界→天						
		坛→陶然亭→动物园→清华→北大→圆	1310	1020				
		明园→颐和园→香山→欢乐谷→长城→	1310					
		天安门						
主题套餐	文化线	前门、天安门、故宫、中山公园→天坛→						
		陶然亭→后海、恭王府→圆明园→颐和园	1150					
		→长城→前门、天安门、故宫、中山公园						
	游学线	前门、天安门、故宫、中山公园→陶然亭	850					
		→海底世界→清华→北大→圆明园→前						
	景观线	门、天安门、故宫、中山公园 北海→后海、恭王府→海底世界→香山→	880					
		「北海→ 石海、 添工州 → 海 成 巨 介 → 督 山 →						
	趣味线	动物园→欢乐谷→海底世界→长城→动	1030					
		物园						
		1/4 1						

6 模型的评价与推广

6.1 模型的评价

优点:

- 1、本文思路清晰,模型恰当,得出的方案合理;
- 2、本文成功的使用了 0—1 变量,使模型的建立和编程得以顺利进行。 不足:

实际情况中,两景点之间可能还有出公路外其他交通方式,如汽车、地铁,增加这些考虑后,结果会更加合理。

6.2 模型的推广

模型的建立还可以进一步考虑诸如:例如交通的堵塞,天气影响等因素,作为更进一步的约束条件,这样我们就能建立更为精准的模型,使结果更实际化。

而本文所用的 0-1 规划法,还适用于求解互斥的计划问题、约束条件互斥问题、固定费用问题和分派问题等方面。哈密顿路径问题的应用,还适用于公司送货、救灾路线等方面。

对模型进行一些适当改动,便可推广到诸如清洁车的街道清扫、公安执勤 人员的最优巡视路线安排等实际问题。

7 参考文献

- [1]姜启源 谢金星 叶俊、《数学模型(第三版)》,北京:高等教育出版社,2003年。
- [2]曾五一等,《统计学》,北京:北京大学出版社,2006年。
- [3]赵静 但琦,《数学建模与数学实验》,高等教育出版社,2001年。
- [4] 杨学庆 柳重堪,《哈密顿路径问题的一种基于有穷自动机的 DNA 算法》。 http://www.cnki.net/, 2014年5月24日。
- [5]周品 赵新芳、《MATLAB 数学建模与仿真》、北京、国防工业出版社、2009年。
- [6]施光燕 等,《最优化方法》,北京: 高等教育出版社,1999年。
- [7]旅馆住宿价格查询, http://www.zjxc.cn/lixingshe3/szlxs186, 2014年5月23日。
- [8]北京早晚高峰及堵车地点, http://www. 517666. com. cn/, 2014年5月23日。
- [9]公路客运, http://www.china-holiday.com/, 2014年5月23日。
- [10]姚恩瑜 何勇 陈仕平,《数学规划与组合优化》,杭州:浙江大学出版社,2001。
- [11]谢金星 薛毅,《优化建模与 LINDO/LINGO 软件》,北京:清华大学出版社,2005。

附录

1、MATLAB 程序

```
>> clear
x=[15.7 6.7 17.2 11.1 6.4 2 5.1 12.2 8.7 27.2];
y=[7.2 2.9 8.1 5.0 2.5 0.9 2.3 5.7 4.9 13];
n=length(x);
yb=mean(y);
xb=mean(x);
x2b=sum(x.^2)/n;
xyb=x*y'/n;
b=(xb*yb-xyb)/(xb^2-x2b);
a=yb-b*xb;
y1=a+b.*x;
plot(x,y,'*',x,y1);
```

2、基于时间的综合评价

	费用	等级	交通	时间	综合评价
6	5	5	0	5	4.5
3	5	4	1	5	4.3
4	5	4	1	5	4.3
1	5	5	1	4	4.2
12	5	4	1	4	3.9
13	5	4	1	4	3.9
9	5	4	0	4	3.8
2	4	5	1	3	3.6
11	2	5	1	4	3.6
7	5	4	0	3	3.4
10	4	4	1	3	3.3
5	4	4	1	2	2.9
8	4	5	0	1	2.7
14	1	4	0	1	1.8

3、基于费用的综合评价

	费用	可取性	交通	时间	综合评价
1	5	5	1	4	4.4
4	5	4	1	5	4.25
12	5	4	1	4	4.05
13	5	4	1	4	4.05
3	5	3	1	5	3.9
2	4	5	1	3	3.85
6	5	3	0	5	3.8
7	5	4	0	3	3.75
8	4	5	0	1	3.35
11	2	5	1	4	3.35
5	4	4	1	2	3.3
9	5	2	0	4	3.25
10	4	3	1	3	3.15
14	1	4	0	1	1.95