

Thesis Title

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering

2022

Damian Crosby

Department of Mechanical, Aerospace and Civil Engineering

Contents

C	ontei	ITS	4						
Li	st of	figures	3						
List of tables List of publications									
Al	ostra	et	7						
De	eclar	ation of originality	8						
C	opyri	ight statement	9						
A	ckno	wledgements	10						
1	Cre	ating a Configurable Payload for Instability Experiments	11						
	1.1	Introduction	11						
	1.2	Payload Design	11						
	1.3	Payload Configuration Space	11						
		1.3.1 Mass and Centre of Mass (COM) functions	12						
	1.4	Test Points	12						
		1.4.1 Extrema Set (\mathcal{E})	12						
		1.4.2 Cube Set (C)	13						
		1.4.3 Balanced Set (\mathcal{B})	13						
	1.5	Test Point Matching Search Methods	14						
		1.5.1 Simulated Annealing $(n = 3)$	14						
		1.5.2 Brute-Force Nearest Neighbour $(n = 2)$	14						
		1.5.3 Selected Method	14						
	1.6	Conclusion and Discussion	14						
2	Cre	ating a Configurable Payload for Instability Experiments	15						
	2.1	Introduction	15						
	2.2	Control Experiments	15						
		2.2.1 Results	15						
	2.3	Conclusion and Discussion	1.5						

Appendices 17

Word Count: X

List of figures

List of tables

List of publications

Publications go here.

List of abbreviations

3D Three Dimensional

COM Centre of Mass

٨	h	C1	-	_	۸ŧ	
4	11	•	ľ	ч	ct	

This is abstract text.

Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Copyright statement

- i The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.
- ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made *only* in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
- iii The ownership of certain Copyright, patents, designs, trademarks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
- iv Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations (see http://www.library.manchester.ac.uk/about/regulations/) and in The University's policy on Presentation of Theses.

Acknowledgements

Acknowledgements go here.

Chapter 1

Creating a Configurable Payload for Instability Experiments

1.1 Introduction

In order to generate a diverse set of test data for the experiments in chapter ??, a configurable payload was conceived, an object that could be configured to have a wide range of masses and COM. A series of test points can then be generated which have a specific mass and COM, and a matching algorithm can be used to find the configuration that mostly closely matches these parameters. The experiments in chapter ?? can then be run with each of these test points to generate the test data.

1.2 Payload Design

The payload consists of a matrix of cubes of various materials packed tightly into a Three Dimensional (3D) printed container. The cubes are designed to be changed after each experimental run to alter the mass and COM of the payload. A lid on the container prevents the cubes from falling out during the experiment, and the exterior design of the box may accommodate additional features to improving the handling of the payload by the robot arm.

1.3 Payload Configuration Space

In order to find a configuration that closely matches a desired test point, first the payload has to be abstracted mathematically, so the mass and COM can be calculated for a given configuration. Firstly we can consider a positive real set of material densities $\mathcal{P} \in \mathbb{R}^+$, each element the density (in kg m⁻³) of a material to be used:

$$\mathcal{P} = \{ \rho_1, \rho_2 \dots \rho_n \mid \rho_i > 0 \} \tag{1.1}$$

Each configuration can then be defined as an $n \times n \times n$ matrix C, such that each element is an element of \mathcal{P} , where n^3 is the number of cubes in the matrix:

$$C = (c_{ijk}) \in \mathbb{R}^{n^n} \mid (c_{ijk}) \in \mathcal{P}$$
(1.2)

1.3.1 Mass and COM functions

To calculate the mass of the configuration, we can take the sum of all the cube densities multiplied by their volume a^3 , where a is the cube edge length, plus the container mass m_c :

$$M(\mathbf{C}) = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{ijk} a^{3}\right) + m_{c}$$
(1.3)

To calculate the COM, we can take the sum of each cube mass multiplied by its position relative to the centroid of the center cube (c_{222}) , which can be calculated from the cube indexes ijk, plus the container COM r_c if non-zero:

$$R(\mathbf{C}) = \frac{\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{ijk} a^{4} \left(\begin{bmatrix} i & j & k \end{bmatrix} - n + 1\right)\right) + \mathbf{r}_{c}}{M(\mathbf{C})}$$
(1.4)

1.4 Test Points

With \mathcal{Z} as the set of all permutations of C, test points can be derived from subsets of \mathcal{Z} defined either by logical expressions on \mathcal{Z} , or the nearest neighbours of \mathcal{Z} from a set of coordinates.

1.4.1 Extrema Set (\mathcal{E})

The extrema set is designed to test the extremas of the space of $\mathcal Z$ for both $M(\mathcal Z)$ and $R(\mathcal Z)$. The extrema set if defined from a set of logical constraints. The first two constraints of the set find the maximum and minimum values of the payload mass using $M(\mathcal Z)$, and the next four constraints use the payload COM using $M(\mathcal C)$ to get the maximum and minimum values of the x and y component of the COM. Finally, the last four constraints define the diagonal maximum and minimum values where the COM components match x=y or x=-y.

$$\mathcal{E} = \begin{cases} \mathbf{M}(\mathbf{x}) = \max \{M(\mathcal{Z})\} \\ M(\mathbf{x}) = \min \{M(\mathcal{Z})\} \\ R(\mathbf{x})_x = \max \{R(\mathcal{Z})_x\} \\ R(\mathbf{x})_x = \min \{R(\mathcal{Z})_x\} \\ R(\mathbf{x})_y = \max \{R(\mathcal{Z})_y\} \\ R(\mathbf{x})_y = \min \{R(\mathcal{Z})_y\} \\ R(\mathbf{x})_x = \max \{R(\mathcal{Z})_x\} \land R(\mathbf{x})_x = R(\mathbf{x})_y \\ R(\mathbf{x})_x = \min \{R(\mathcal{Z})_x\} \land R(\mathbf{x})_x = R(\mathbf{x})_y \\ R(\mathbf{x})_x = \max \{R(\mathcal{Z})_x\} \land R(\mathbf{x})_x = -R(\mathbf{x})_y \\ R(\mathbf{x})_x = \min \{R(\mathcal{Z})_x\} \land R(\mathbf{x})_x = -R(\mathbf{x})_y \end{cases}$$

Mass Limited \mathcal{E}_1

When this set was generated, it was found that $M(\mathcal{E}_1)$ was greater than the chosen robot arm could safely lift. Therefore, \mathcal{E}_1 was changed to $\begin{bmatrix} m_{max} & 0 & 0 & 0 \end{bmatrix}$ where m_{max} is the safe mass limit that the robot arm can lift.

1.4.2 Cube Set (C)

The cube set is defined by the vertices of a cube of size b centred around the COM origin $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$.

$$C = \left\{ \boldsymbol{x} \subset C \mid \left[\pm \frac{b}{2} \quad \pm \frac{b}{2} \quad \pm \frac{b}{2} \right] = \boldsymbol{x} \right\}$$
 (1.6)

1.4.3 Balanced Set (B)

The balanced set is defined by q points in \mathcal{C} subject to the constraint $R(\mathbf{x})_x = 0 \wedge R(\mathbf{x})_y = 0$. This can be defined as a "balanced" set as the COM x and y components are both zero. The points are evenly spaced between the maximum and minimum mass as defined in section ??.

$$m_{r} = \frac{\max\{M(\mathcal{Z})\} - \min\{M(\mathcal{Z})\}}{q+1}$$

$$\mathbf{z} = \begin{bmatrix} m_{r} & 2m_{r} & \cdots & qm_{r} \end{bmatrix}$$

$$\mathcal{B} = \{\mathbf{x} \subset \mathcal{C} \mid z_{i} = \mathbf{x} \land R(\mathbf{x})_{x} = 0 \land R(\mathbf{x})_{y} = 0\}$$

$$(1.7)$$

Ta	ırget	Nearest			
\overline{m}	r	m	r	L2 Norm Error	
		Cı	ibe S	$\operatorname{et}\left(\mathcal{C}\right)$	
		Bala	nced	Set (B)	

• Extrema Set (\mathcal{E}) • Cube Set (\mathcal{C}) • Balanced Set (\mathcal{B})

1.5 Test Point Matching Search Methods

While we are guaranteed an exact result for elements of \mathcal{E} as every element is defined by constraints on known configurations, for \mathcal{C} and \mathcal{B} as the elements are defined numerically, there is no guarantee that any element will have an exact match in solution space. The cardinality of \mathcal{Z} is also important. It is defined as $|\mathcal{Z}| = |\mathcal{P}|^{n^n}$ which increases super exponentially with n. For example, when $|\mathcal{P}| = 4$, n = 2 results in 256 permutations and n = 3 results in approximately 1.8×10^{16} permutations. It's very clear that when n > 2 for nontrivial cardinalities of \mathcal{P} , any kind of brute-force method is not computationally tractable. The only exception is for \mathcal{E}_1 and \mathcal{E}_2 , where the solution is trivial as $\mathcal{E}_1 = \mathbf{C} \mid \min(\mathcal{P}) \forall c_{ijk}$ and $\mathcal{E}_2 = \mathbf{C} \mid \max(\mathcal{P}) \forall c_{ijk}$. Therefore, we investigated both a brute-force nearest neighbour method for when n = 2, and a simulated annealing method for when n = 3.

1.5.1 Simulated Annealing (n = 3)

1.5.2 Brute-Force Nearest Neighbour (n = 2)

1.5.3 Selected Method

1.6 Conclusion and Discussion

Chapter 2

Creating a Configurable Payload for Instability Experiments

- 2.1 Introduction
- **2.2** Control Experiments
- **2.2.1** Results
- 2.3 Conclusion and Discussion

 \mathcal{E}_1

 \mathcal{E}_1

Appendices