Cruma Topuepa. Mes peux Bezy.

1.
$$X^3 - 2X^2 - 2X - 3 = 0$$

 $2X^3 - 5X^2 + 2X + 1 = 0$;

$$X^4 + 2X^3 - 2X^2 - 3X + 2 = 0$$
;

1.
$$c' = 0$$
, $c = \text{const}$
2. $(x^n)' = nx^{n-1}$

$$3. \left(a^{x}\right)' = a^{x} \cdot \ln a$$

2.

3.
$$(a^x) = a^x \cdot \ln a$$

4. $(e^x)' = e^x$

4.
$$(e^x)' = e^x$$

4.
$$(e^x)' = e^x$$

5. $(\log_a x)' = \frac{1}{x \ln a}$

6.
$$(\ln x)' = \frac{1}{x}$$

7. $(\sin x)' = \cos x$

8.
$$(\cos x)' = -\sin x$$

8.
$$(\cos x) = -\sin^2 x$$

9. $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$

9.
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

10. $(tgx)' = \frac{1}{2\sqrt{x}}$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11. $(ctgx)' = -\frac{1}{\sin^2 x}$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

14.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$

15. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

17.
$$(\cosh x)' = \cosh x$$

$$= \sin x$$

$$= \frac{1}{\cosh^2 x}$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19. $(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$

$$=\frac{1}{\cosh^2 x}$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

$$= \sin x$$

 $= \frac{1}{12}$

$$= \sinh x$$

16.
$$(\sinh x)' = \cosh x$$

17. $(\cosh x)' = \sinh x$

