

Self-introduction

- Yuanyi Luo
- · Fourth-year PhD candidate
- Interest in multimodal machine learning and pattern recognition
- Researching on multimodal graph representation

Linear structure

· Linear structure

7

Tree structure

Hierarchical data

Tree structure

6

Graph structure

- Complex networks with multiple interconnections
- Graph provides us with a convenient way to make choices
- Graphs aren't bound by rigid structural principles
- Graphs serve as the ideal tool for visualizing these connections in a clear and comprehensive manner

· Graph structure

Graph example - Twitter

• Small network of Twitter users

Graph example - Twitter

- Add new nodes without any rigid structured principles
- Expand the graph to include the messages

Property graph model

- The most common form of graph model is the property graph model, whereby:
 - The graph contains **nodes** and **relationships**.
 - A node may have zero or more properties (key-value pairs).
 - Nodes can be labelled with one or more labels.
 - Relationships can be named and directed, and always have a start and end node.
 - Relationships can also contain **properties**.

10

Labels and Relationships

11

- The graph on the right is a more complex example of a social network.
- Note that the relationships between entities do not exhibit uniformity.
- New nodes and relationships were added without compromising the existing network or migrating data (flexibility).

Graph for searching

Connected Papers: a graph-based tool for finding scientific papers

https://www.connectedpapers.com/

Answer the first question

What should we do if we want to summarize and clarify many complex relationships in our lives?

The definition of a graph

 A graph is a collection of vertices and edges, also known as nodes and relationships.

14

13

The definition of a graph

Undirected graph

· directed graph

The definition of a graph

• different weights of graphs have different means

Second Questions of Today's Lecture

Graph Database Management Systems

- A graph database management system features a CRUD (Create, Read, Update, Delete) interface.
- They are built for use with OLTP (online transactional processing) systems.
- · Graph databases have two key properties:
 - The **underlying storage** (*native graph storage* vs serialized storage).
 - The **processing engine** (most Graph DBs feature *index-free adjacency,* meaning nodes point to each other in the underlying database).

18

Graph Compute Engines

- A graph compute engine enables global graph computational algorithms to be run against large datasets.
- They are optimised for processing information in batches, similarly to OLAP (online analytical processing).

Graph structure

Why Graph Databases?

1 - Performance

- Graph databases have excellent performance on queries involving highly-connected data.
- The execution time for each query is proportional only to the size of the **part of the graph** traversed to satisfy the query, rather than the size entire graph.

Depth	RDBMS execution time(s)	Neo4j execution time(s)	Records returned
2	0.016	0.01	~2500
3	30.267	0.168	~110,000
4	1543.505	1.359	~600,000
5	Unfinished	2.132	~800,000

Above: an experiment finding friends of friends in an RDBMS vs in Neo4i.

21

THE UNIVERSITY OF WESTERN AUSTRALIA

Why Graph Databases?

2 - Flexibility

- We often need to modify an existing database, such as capturing a new type of relationship between two entities, or adding a new property.
- Graphs are naturally additive, meaning we can add new kinds of relationships, new nodes, labels and subgraphs without affecting existing queries.
- This means we don't have to model our domain ahead of time, and can update our graph ad hoc.

22

Why Graph Databases?

2 - Flexibility

Graph databases are excellent at combining data from across multiple domains:

Why Graph Databases?

3 - Agility

- Graph databases are schema-free, rapidly speeding up development.
- Graph databases do not adhere to the ACID principle (Atomicity, Consistency, Isolation, Durability) of relational databases.

Second Questions of Today's Lecture

Multimodal learning

26

Multimodal learning tasks

The problems of Multimodal learning

This part of my life is called "Happiness"

· Different schema

• Unclear relationship semantics

I am so happy

I am so happy

28

The problems of Multimodal learning

· Multimodal datasets

· Different schema

Unclear relationship semantics

?

Knowledge graph

Property graph

Knowledge graph

30

Multimodal learning with graph

29

Summary

- A graph is data structure that depicts key relationships and patterns within complex datasets.
- A graph database is a specialized data management system optimized for storing, querying, and analyzing interconnected data represented as graphs.
- If you want to analyze multimodal datasets that contains complex relationship semantics between different modalities, knowledge graph may be a good data representation method.

31