

MT7682 Datasheet

Version: 2.5

Release date: 17 May 2018

© 2017 Airoha Technology Corp.

This document contains information that is proprietary to Airoha Technology Corp. ("Airoha") and/or its licensor(s). Airoha cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with Airoha ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. AIROHA EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
0.9	10 March 2017	Initial draft
1.0	5 May 2017	Refined the readability of this document
		Added performance values
2.0	14 August 2017	Modified performance values
		Modified condition values in Table 6.2-5, ". Electrical characteristics"
		Added section 2.4, "Analog baseband"
		Added section 3.2, "Radio MCU subsystem"
		Added section 4.5, "Power-on sequence"
		Modified Table 4.4-1, "Current consumption in different power modes".
2.1	26 October 2017	Modified Table 7.1-1
2.2	21 November 2017	Modified Section 7
2.3	7 January 2018	Modified Table 5.2-2
2.4	7 February 2018	Modified Table 5.2-2 and Table 7.1-1
2.5	17 May 2018	Added Section 2.4.3, "external clock source"
		Modified Section 2.5.1, "UART"
		Modified Section 2.5.2, "SPI"

Features

Wi-Fi

- IEEE 802.11 b/g/n (2.4GHz, 1x1)
- Supports 20MHz, 40MHz bandwidth in 2.4GHz band
- Wi-Fi security WEP/WPA2/WPS
- SoftAP, sniffer
- Dynamically switching between STA and SoftAP modes at runtime
- Airoha smart connection
- Multi-cloud connectivity
- Receiver antenna diversity
- Support for Wi-Fi/Bluetooth LE coexistence
- Integrated balun, PA/LNA
- · Optional external LNA and PA support

Microcontroller subsystem

- 192MHz ARM® Cortex®-M4 with FPU
- 14 DMA channels
- One RTC timer, one 64-bit and 5 32-bit general purpose timers
- Hardware DFS from 3MHz to 192MHz
- Development support: SWD, JTAG
- Crypto engine
 - o AES 128/192/256 bits
 - o DES, 3DES
 - o MD5, SHA-1/224/256/384/512
- True random number generator
- JTAG password protection

Memory

- Up to 384KB SRAM, with zero-wait state and 96MHz maximum frequency
- Up to 32KB L1 cache with high hit rate, zerowait state and 192MHz maximum frequency
- Embedded 8Mbits flash, with less than 0.1μA (typical) and 80MHz maximum frequency deep power-down current

Communication interfaces

- A set of SDIO 2.0 master and SDIO 2.0 slave
- An I2C (3.4Mbps) interface
- Three UART interfaces (3Mbps)
- An SPI master and SPI slave with up to 48MHz SCK, quad mode)

- Two I2S interfaces
 - One 16/24-bit, master/slave mode
 One 16-bit, master/slave mode with
 TDM
 - Two TX/RX channels with 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz frequencies
- Five PWM channels
- 14 GPIOs (fast IOs, 5V-tolerant)
- A single channel 12-bit AUXADC

Power management

- Integrated DC-DC
- Power input
 - o V_{RTC}: from 1.62V to 3.63V
 - V_{PMU} / V_{RF}: 3.3V (+/-10%)
 - O V_{IO*}: 1.8V, 3.3V (+/-10%)
- Off mode: <0.5μA
- Retention mode (with RTC)
 - o <2.7μA (RTC only)</p>
 - ο ~4.7μA with 8KB RAM sleep mode
- Deep sleep mode (with external 32kHz clock, SDIO off)
 - o 80μA with 0KB RAM sleep mode
 - o 108μA with 384KB RAM sleep mode
- G-band RX power: 42mA
- G-band TX power
 - o FPA: 248mA at 19dBm CCK
 - o FPA: 220mA at 16.5dBm OFDM
- DTIM interval with 32kHz external clock source and 384KB SRAM
 - o DTIM=1: 0.62mA
 - o DTIM=3: 0.29mA
- Ambient temperature from -30°C to 85°C

Clock source

- 26MHz or 40MHz crystal oscillator
- 32kHz crystal oscillator or internal 32kHz RC for RTC

Package type

 5-mm x 5-mm x 0.9-mm 40-pin QFN with 0.4mm lead pitch

Note:

The power consumption data is measured at 25°C

Table of Contents

1.	Over	rview	7
	1.1.	Platform features	
	1.2.	Wi-Fi subsystem features	
	1.3.	System block diagram	
2.	Func	tional Overview	10
	2.1.	Host processor subsystem	
	2.2.	Boot source	
	2.3.	Clock architecture	
	2.4. 2.5.	Analog baseband	
	2.5. 2.6.	Serial interfaces Peripherals	
3.		i RF Subsystem	
٠.	3.1.	Wi-Fi radio characteristics	
	3.2.	Radio MCU subsystem	
4.	_	er Management Unit	
	4.1.	Overview	35
	4.2.	Low-power operating mode	35
	4.3.	PMU architecture	36
	4.4.	Power performance summary	
	4.5.	Power-on sequence	38
5.	Pin D	Description	39
	5.1.	MT7682 pin list	39
	5.2.	MT7682 pins	
	5.3.	MT7682 pin multiplexing	44
6.	Elect	trical Characteristics	48
	6.1.	Absolute maximum ratings	
	6.2.	Operating conditions	48
7.	Syste	em Configuration	59
	7.1.	Mode selection	
8.	Pack	age Information	60
	8.1.	MT7682 mechanical data of the package	
	8.2.	MT7682 thermal operating specifications	
	8.3.	MT7682 lead-frame packaging	
9.	Orde	ering Information	62
	9.1.	MT7682 top marking definition	62

Lists of Tables and Figures

Table 2.1-1. MT7682 bus connection	12
Table 2.4-1. Auxiliary ADC input channel	15
Table 2.4-2. Auxiliary ADC specifications	16
Table 2.4-3. XPLL design specifications	17
Table 2.4-4. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated) (1)	18
Table 2.4-5. Functional specifications of XOSC32	19
Table 2.4-6. Recommended parameters for 32kHz crystal	19
Table 2.5-1. SPI master controller interface	21
Table 2.5-2. I2S protocol specifications	25
Table 2.5-3. TDM protocol specifications	25
Table 2.6-1. GPIO speeds when the Cortex-M4 cache is enabled	27
Table 3.1-1. 2.4GHz RF receiver specifications	28
Table 3.1-2. 2.4GHz RF transmitter specifications	29
Table 3.2-1. N9 memory map	31
Table 3.2-2. N9 interrupt source	33
Table 4.4-1. Current consumption in different power modes	37
Table 5.1-1. MT7682S pin coordinates	39
Table 5.2-1. Acronym for pin types and I/O structure	40
Table 5.2-2. MT7682 pin function description and power	40
Table 5.3-1. Peripheral functions and signals	44
Table 5.3-2. PinMux description	47
Table 6.1-1. Absolute maximum ratings for power supply	48
Table 6.1-2. Absolute maximum ratings for I/O power supply	48
Table 6.1-3. Absolute maximum ratings for voltage input	48
Table 6.1-4. Absolute maximum ratings for storage temperature	48
Table 6.2-1. General operating conditions	48
Table 6.2-2. Recommended operating conditions for power supply	49
Table 6.2-3. Recommended operating conditions for voltage input	49
Table 6.2-4. Recommended operating conditions for operating temperature	49
Table 6.2-5. Electrical characteristics	49
Table 6.2-6. ESD electrical characteristics of MT7682	58
Table 7.1-1. Mode selection table	59
Table 8.2-1. MT7682 thermal operating specifications	61
Table 9.1-1. Ordering information	62
Figure 1.3-1. System block diagram	9
Figure 2.2-1. Boot source determination flow	
Figure 2.3-1. MT7682 clock source architecture	15
Figure 2.4-1. XPLL block diagram	17
Figure 2.4-2. Fractional-N XPLL block diagram	18

MT7682 Datasheet

Figure 2.5-1. Pin connection between SPI master and SPI slave	20
Figure 2.5-2. SPI transmission formats	21
Figure 2.5-3. Operation flow with and without PAUSE mode	22
Figure 2.5-4. CS de-assert mode	22
Figure 2.5-5. SPI master controller critical path sampling	23
Figure 2.5-6. SPI master controller SCK and data delay	23
Figure 2.5-7. SPI transmission formats	24
Figure 2.5-8. SPI slave controller early transmission	25
Figure 3.1-1. 2.4GHz RF block diagram	28
Figure 3.2-1. N9 bus fabric	33
Figure 3.2-2. N9 interrupt controller	33
Figure 4.2-1. MT7682 Cortex-M4 and N9 power states and modes	36
Figure 4.5-1. Power-on sequence	38
Figure 5.1-1. MT7682S pin diagram and top view	39
Figure 5.3-1. GPIO block diagram	44
Figure 8.1-1. Outlines and dimensions of MT7682 SQFN 5 mm*5 mm*0.9 mm, 40-pin package	61
Figure 9.1-1. Mass production top marking of MT7682	62

1. Overview

MT7682 is a highly integrated chipset featuring an application processor, a low power 1x1 11n single-band Wi-Fi subsystem and a power management unit (PMU).

MT7682 is based on ARM® Cortex®-M4 with floating point microcontroller unit (MCU) including integrated with 1MB flash memory. MT7682 supports interfaces including UART, I2C, SPI, I2S, PWM, SDIO and ADC.

The Wi-Fi subsystem contains the 802.11b/g/n radio, baseband and MAC that are designed to meet low power and high throughput application requirements. It also contains a 32-bit RISC CPU that could fully offload the application processor.

1.1. Platform features

1.1.1. Micro-controller subsystem

- ARM® Cortex®-M4 with FPU as application processor with maximum frequency at 192MHz.
- Up to 32KB L1 cache with high hit rate and zero wait state with maximum frequency at 192MHz.
- 384KB SYSRAM with zero wait state with maximum frequency at 96MHz.
- SiP 8Mbits low power flash with 0.1μA deep-down current (typical condition) with maximum frequency at 80MHz.
- Crypto engine supporting AES, DES/3DES, MD5, SHA1/SHA2.
- True random number generator
- One RTC timer, one 64-bit and five 32-bit general purpose timers
- 14 DMA channels
- eXecute In Place (XIP) on flash
- Up to 14 GPIO with 5V-tolerant fast IOs, each IO can be configured as external interrupt source.

1.1.2. Interfaces

The following interfaces are multiplexed with GPIO.

- An SPI master interface, 1, 2 or 4-bit mode, up to 48MHz
- An SPI slave interface, 1, 2 or 4-bit mode, up to 48MHz
- An SDIO host interface (v2.0)
- An SDIO device interface (v2.0)
- An I2S interface supporting 16 or 24-bit, master/slave mode
 (supports 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz sample rates, transmit or receive, 2 channels)
- One I2S interface supporting 16-bit, master/slave mode (supports TDM mode)
 (supports 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz sample rates, transmit or receive, 2 channels)
- An I2C master interface (3.4Mbps)
- One channel of 12-bit ADC

- Up to three UART interfaces with hardware flow control (~3Mbps)
- Up to five PWM channels

1.2. Wi-Fi subsystem features

1.2.1. Wi-Fi MAC

Supports all data rates of 802.11g including 6, 9, 12, 18, 24, 36, 48 and 54Mbps.

- Supports short GI and all data rates of 802.11n including MCS0 to MCS7.
- Wi-Fi security WEP, WPA2 and WPS.
- Supports SoftAP and sniffer modes.
- Supports Airoha Smart Connection.
- Supports multi-cloud connectivity.
- Supports Wi-Fi/Bluetooth LE coexistence.

1.2.2. WLAN baseband

20 and 40MHz channels

- MCS0-7 (BPSK, r=1/2 through 64QAM, r=5/6)
- Supports greenfield, mixed mode and legacy modes.
- Short Guard Interval
- Supports digital pre-distortion to enhance PA performance.
- Supports receiver antenna diversity.

1.2.3. WLAN RF

Integrated 2.4GHz PA and LNA, and T/R switch

- Supports frequency band from 2402 to 2494MHz.
- Single-ended RFIO with integrated balun
- Supports optional external LNA and PA.

1.2.4. Core

Dedicated high-performance 32-bit RISC CPU N9 with up to 160MHz clock speed.

• Feasibility Wi-Fi host subsystem in Cortex-M4 to support custom applications.

1.3. System block diagram

Figure 1.3-1. System block diagram

2. Functional Overview

2.1. Host processor subsystem

2.1.1. ARM® Cortex®-M4 with FPU

The Cortex-M4 with FPU is a low-power processor with 3-stage pipeline Harvard architecture. It has reduced pin count and low power consumption and delivers very high performance efficiency and low interrupt latency, making it ideal for embedded microcontroller products.

The processor incorporates:

- IEEE754-compliant single-precision floating-point computation unit (FPU).
- A Nested Vectored Interrupt Controller (NVIC) to achieve low latency interrupt processing.
- Enhanced system debugging with extensive breakpoint.
- An optional Memory Protection Unit (MPU) to ensure platform security robustness.

The Cortex-M4 executes the Thumb®-2 instruction set with 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers. The instruction set is fully backward compatible with Cortex-M3/M0+.

MT7682 has further enhanced the Cortex-M4 with floating point processor to reduce the power by another 11% (in Dhrystone) compared to the original Cortex-M4. Low power consumption is a significant feature for IoT and Wearables application development.

2.1.2. Cache controller

A configurable 32KB cache is implemented to improve the code fetch performance when CPU accesses a non-zero wait-state memory such as EMI, external flash or boot ROM through the on-chip bus.

The core cache is a small block of memory containing a copy of a small portion of cacheable data in the external memory. If CPU reads a cacheable datum, the datum will be copied to the core cache. Once CPU requests the same datum again, it can be obtained directly from the core cache (called cache hit) instead of fetching it again from the external memory to achieve zero wait-state latency.

The cache can be disabled and this block of memory can be turned into tightly coupled memory (TCM), a high-speed memory for normal data storage. The sizes of TCM and cache can be set to one of the following four configurations:

- 32KB cache, 64KB TCM
- 16KB cache, 80KB TCM
- 8KB cache, 88KB TCM
- 0KB cache, 96KB TCM

2.1.3. Memory management

Three types of memories are implemented for use:

On-die memories (SRAMs) up to 96KB at CPU clock speed with zero wait state.

• Embedded flash of 8Mbits to store programs and data.

96KB SRAMs are composed of TCMs and L1 caches. L1 cache (up to 32KB) is implemented to improve processor access performance of the long latency memories (flash).

TCMs are designed for high speed, low latency and low power demanding applications. Each TCM has its own power state; active, retention or power-down. TCM must be in active state for normal read and write access. Retention state saves the SRAM content and consumes the minimum leakage current with no access. Power-down loses the content and consumes almost zero power.

The TCMs can also be accessed by other internal AHB masters like DMA or multimedia sub-system for low power applications. These applications can run on TCM without powering on flash to save more power.

Boot ROM is also implemented for processor boot-up and its content is unchangeable.

2.1.4. Memory protection unit (MPU)

The Memory Protection Unit (MPU) is an optional component to manage the CPU access to memory. The MPU provides full support for:

- Protection regions (up to 8 regions and can be further divided up into 8 sub-regions).
- Overlapping protection regions, with region priority.
- Access permissions.
- Exporting memory attributes to the system.

The MPU is useful for applications where a critical code has to be protected against the misbehavior of other tasks. It can be used to define access rules, enforce privilege rules and separate processes.

2.1.5. Nested vectored interrupt controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) supports up to 32 maskable interrupts and 16 interrupt lines of Cortex-M4 with 32 priority levels. The NVIC and the processor core interface are closely coupled to enable low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked or nested interrupts to enable tail-chaining of interrupts. The processor supports both level and pulse interrupts with programmable active-high or low control.

2.1.6. External interrupt controller (EIC)

The external interrupt controller consists of up to 32 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising edge or falling edge or both or level). Each line can also be masked independently. A pending register maintains the status line of the interrupt requests. Up to 21 GPIOs can be connected to 21 external interrupt lines.

2.1.7. Bus architecture

To better support various IoT applications, MT7682 adopts 32-bit multi-AHB matrix to provide low-power, fast and flexible data operation. Table 2.1-1 shows the interconnections between bus masters and slaves.

The bus masters include Cortex-M4, SPM, SPI master, SPI slave, SDIO master, SDIO slave, Crypto engine, WIFI (CONN) system and DMA.

The bus slaves include the Always On (AO) domain APB peripherals, Power Down (PD) domain APB peripherals, TCM, SFC, EMI, SYSRAM, RTC SRAM, and WIFI (CONN) system.

Table 2.1-1. MT7682 bus connection

Master Slave	ARM Cortex- M4	PD DMA	SPM	SPI Master	SPI Slave	SDIO Master	SDIO Slave	Crypto Engine	CONNSYS Master
AO APB Peripherals	•	•	•					•	
PD APB Peripherals	•	•	•					•	
TCM	•	•	•					•	
EMI	•	•	•	•	•	•	•	•	•
SFC	•	•	•					•	
SYSRAM	•	•	•	•	•	•	•	•	•
RTC SRAM	•	•	•	•	•	•	•	•	•
CONNSYS	•	•	•					•	

2.1.8. Direct memory access (DMA) controller

MT7682 chipset features three Direct Memory Access (DMA) controllers, containing 16 channels in power-down domain. They manage data transfer between the peripheral devices and memory.

There are three types of DMA channels in the DMA controller – full-size DMA channel, half-size DMA channel and virtual FIFO DMA for different peripheral devices. DMA controllers support ring-buffer and double-buffer memory data transactions.

To improve bus efficiency, the DMA controllers provide an unaligned-word access function. When this function is enabled, it can automatically convert the address format from the unaligned type to aligned type, ensuring compliance with the AHB/APB protocol.

Each peripheral device is connected to a dedicated DMA channel that can configure transfer data sizes, source address and destination address by software. The DMA controllers can be used with the following peripherals:

- Two I2C interfaces
- A single HIF
- Two I2S interfaces
- Three UART interfaces

2.2. Boot source

There are three options of boot source:

- Serial flash
- SPI slave (to load binary from host)
- SDIO slave (to load binary from host)

The host may transmit a binary through SPI slave or SDIO slave to internal system memory (SRAM). The MCU (Cortex-M4) can execute on SRAM after transmission is complete. The boot source in boot ROM is determined according to the flowchart shown in Figure 2.2-1. HIF_EN and HIF_SEL can be configured at power up using by GPIO_4 and GPIO_13, respectively.

Figure 2.2-1. Boot source determination flow

2.3. Clock architecture

The clock controller (see below Figure 2.3-1) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- **Clock prescaler**. To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- Safe clock switching. Clock sources can be changed safely at runtime through a configuration register.
- Clock management. To reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. The AHB and APB clock supports Dynamic Clock Management (DCM) with a dynamic clock slow down or gating when the bus fabric is idle.
- System clock source. Two different clock sources can be used to drive the master clock (FCPU and FBUS):
 - o 26 MHz/40MHz Crystal Oscillator (XO), that can supply reference clock for PLLs.
 - o Baseband PLL1 (BBPLL1) which reference clock is XO, with a maximum frequency at 1040MHz.
 - Baseband PLL2 (BBPLL2) which reference clock is XO or divided from BBPLL1, with a fixed frequency at 960MHz.
- Auxiliary clock source. Three ultra-low power clock sources that can be used to drive the real-time clock. In 32k-less mode, XO32K and EOSC32K are chosen, while in 32k mode only XOSC32K is used:
 - o 32.768 kHz low-speed external crystal (XOSC32K).
 - 32.76 kHz or 32.745kHz low-speed internal clock divided from XO 40MHz or 26MHz (XO32K).

- o 32 kHz low-speed internal RC (EOSC32K) with ±5% variation.
- Peripheral clock sources. Three types of peripheral clock source options are used. Each peripheral has its own gating register:
 - o Several peripherals (SDIOMST (MSDC), SPIMST and SFC) have their own clock independent from the system clock. BBPLL1 and BBPLL2, each having independent outputs allowing the highest flexibility, can generate independent clocks for the SDIOMST (MSDC), SPIMST and SFC.
 - O Clock of several peripherals, including three (I2COs, a crypto engine, DMA and more, is the same as fast AHB/APB bus clock (FBUS).
 - Clock of several lower speed requirement peripherals including SEJ, AUXADC, eFUSE and more, is from F_FXO_CK (26MHz or 20MHz). The clock frequency of GPTIMER is from either F_FXO_D2_CK (13MHz or 10MHz) or F_RTC_CK (32kHz).

Clock-out capability.

O Default output from CLKOUT pin is the 32kHz clock chosen from 32k or 32k-less mode. CLKOUT pin can also output F_FXO_CK clock (26MHz or 20MHz) or XPLL clock (26MHz, 24.576MHz or 22.5792MHz).

26MHz or 40MHz XO is selected on reset as the default CPU clock. This clock source is input to a set of cascaded PLL (BBPLL1 and BBPLL2) thus allowing to increase the CPU frequency (F_{CPU}) up to 192MHz when VCORE is 1.15V. Several prescalers allow the configuration of the fast bus clock, the maximum frequency of the AHB and APB bus (F_{BUS}) is 96MHz, while the maximum frequency of the low-speed bus domains is 26MHz or 20MHz (divided for 40MHz XO clock). The frequency ratio of F_{CPU} and F_{BUS} needs to be 2:1. The devices with embedded XPLL achieve better I2S performance. The XPLL can output either 24.576MHz for 48kHz base I2S sample rate or 22.5792MHz for 44.1kHz base I2S sample rate.

Figure 2.3-1. MT7682 clock source architecture

2.4. Analog baseband

To communicate with analog blocks, a common control interface for all analog blocks is implemented. In addition, there are dedicated interfaces for data transfer. The dedicated data interface of each analog block is implemented in the corresponding digital block. Analog circuits include the following analog functions for data conversion and clocking purposes:

- 1) Auxiliary ADC provides an ADC for the battery and other auxiliary analog functions monitoring.
- 2) Clock generation a PLL providing clock signals to the audio interface unit.
- 3) XOSC32 a 32kHz crystal oscillator circuit for RTC applications on analog blocks.

2.4.1. Auxiliary ADC

2.4.1.1. Block description

The auxiliary ADC includes the following functional blocks:

- 1) Analog multiplexer selects a signal from one of the seven auxiliary input pins. Real-time signals, such as temperature, are transferred and monitored in the voltage domain.
- 2) 12-bit A/D converter converts the multiplexed input signal to 12-bit digital data.

Table 2.4-1. Auxiliary ADC input channel

Channel	Application	Input range [V]
0	AGPIO	0V to Min{AVDD25, VDDIO}
Others	No other	N/A
	channels used	

2.4.1.2. Functional specifications

The functional specifications of the auxiliary ADC are listed in Table 2.4-2.

Table 2.4-2. Auxiliary ADC specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
N	Resolution		12		Bit
FC	Clock rate			4	MHz
FS	Sampling rate at N-Bit		FC/(N+4)		MSPS
	Input swing	0		AVDD25	V
CIN	Input capacitance				
	 Unselected channel 		100		fF
	o Selected channel		6.4		pF
RIN	Input resistance				
	 Unselected channel 	400			ΜΩ
	o Selected channel	0.2			ΜΩ
	Clock latency		N+4		1/FC
DNL	Differential nonlinearity		± 1		LSB
INL	Integral nonlinearity		± 2		LSB
OE	Offset error (AVDD25 variation is not included, which is dependent on BG accuracy)		± 10		mV
FSE	Full swing error (AVDD25 variation is not included, which is dependent on BG accuracy)		± 10		mV
SINAD	Signal to noise and distortion ratio (1kHz full swing input and 4MHz clock rate)		65		dB
DVDD	Digital power supply		1.2		V
AVDD25	2.5V analog power supply for auxiliary ADC (regulated from AVDD33)	2.4	2.5	2.6	V
AVDD33	3.3V analog power supply for 2.5V LDO and 2.5V reference generator	3	3.3	3.6	V
Т	Operating temperature	-20		85	°C
	Auxiliary ADC current consumption (from AVDD25)		280		μΑ
	Selected channel AVDD33 current consumption (includes 2.5V LDO and 2.5V reference generator)				
	o Power-up		750		μΑ
	o Power-down		1		μΑ

2.4.2. Audio phase-locked loop (XPLL)

2.4.2.1. Overview

A low-cost fractional-N XPLL for general-purpose clocking is introduced in this section. The PLL is programmable to generate clocks ranging from 0.5GHz to 1.5GHz with a 7-bit integer and 24-bit fractional divisor. Low-to-high level shifters, self-bias circuit and internal regulators are built-in to enhance portability and performance.

The XPLL design specifications are summarized in Table 2.4-3. Detailed setting instructions and restrictions will be illustrated in following sections.

Mode		Support	Unit	Notes
	Input clock frequency (Fin)	0.1 to 120	MHz	After pre-divider
	Output clock frequency (Fout)	VDD=3.3±10% 500 to 1500	MHz	64 bands; need K-band
		VDD=2.5±10% 500 to 1000	MHz	64 bands; need K-band
SPEC	Feedback divide ratio (integer-N)	1 to 128		
	Output clock long-term jitter (delay 1us)	50ps RMS	ps	
	Output clock period jitter	50ps P-P	ps	
	Output clock phase jitter	100ps RMS	ps	
	Digital power supply (DVDD)	1.08 to 1.26	V	
	Analog power supply (AVDD)	2.25 to 3.63	V	
	Current consumption	< 3	mA	
	Power down current	<1	μΑ	
	Operating temperature	-20 to 85	°C	

Table 2.4-3. XPLL design specifications

2.4.2.2. Configuration and block diagram

The XPLL top block diagram with a fractional-N PLL and a bandgap bias circuit is shown in Figure 2.4-1. The bandgap bias circuit generates a temperature-independent bias current of 25µA for fractional-N XPLL usage.

Figure 2.4-1. XPLL block diagram

Figure 2.4-2 shows the fractional-N PLL block diagram with typical PLL components, such as phase frequency detector (PFD), charge pump (CHP), low pass filter (LPF), voltage-controlled oscillator (VCO) and several frequency dividers. The internal low dropout regulator (LDO) is used to improve the PSRR of sensitive blocks, such as PFD, CHP and VCO.

The PLL feedback divider is implemented by a 7-bit multi-module divider (MMD) which can operate at very high speed with wide divisor range. The MMD divisor is controlled by the DDS for fractional-N frequency multiplication.

The period-controlled word (PCW) of the DDS is a 31-bit binary number with a 7-bit integer and 24-bit fractional parts. The pre-divider and post-divider are both simple binary dividers added to facilitate PLL frequency configuration.

Figure 2.4-2. Fractional-N XPLL block diagram

2.4.3. External clock source

2.4.3.1. Digitally controlled crystal oscillator (DCXO)

The Digitally Controlled Crystal Oscillator (DCXO) uses a two-pin 26MHz crystal resonator. Crystals with a 1612 and a 3225 footprint are both supported. Please refer to Table 2.4-4 for the supported crystal resonator capacitance load and tuning sensitivity range. The on-chip programmable capacitor array is used for frequency-tuning, whereby the tuning range is ±50ppm. This DCXO supports 32kHz crystal-less operation.

				_		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating frequency	Fref			26		MHz
Crystal C load	CL		6	7.5		pF
Crystal tuning sensitivity	TS		12.5	33		ppm/pF
Static range	SR	CDAC from 0 to 511		± 50		Ppm
Start-up time	TDCX0	Frequency error < 10ppm Amplitude > 90 %		0.6	2.5	Ms
Pushing figure				0.2		ppm/V
Fref buffer output level	VFref	Max. loading = 10pF		1.1		V _{p-p}
Fref buffer output phase noise		10kHz offset Jitter noise		-138		dBc/Hz

Table 2.4-4. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated) (1)

⁽¹⁾ Guaranteed by design, not tested in production.

2.4.3.2. 32kHz crystal oscillator (XOSC32)

The low-power 32kHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768kHz crystal and a load composed of two functional capacitors. It is designed to be a clock source of RTC for lower-power platforms. Please refer to Table 2.4-5 for more information about the key performance.

The minimum VRTC value means the minimum VRTC for the clock to stay alive is 1.4V when the crystal oscillator successfully starts.

The crystal parameters determine the oscillation allowance. Table 2.4-6 shows the recommend for the crystal parameters to be used well with XOSC32.

Symbol Parameter Unit Min. **Typical** Max. VRTC RTC module power 3.3 V Start-up time Tosc 1 sec Dcyc Duty cycle 30 50 % **Current consumption** 3 μΑ Τ °C Operating temperature -40 85

Table 2.4-5. Functional specifications of XOSC32

Table 2.4-6. Recommended parameters for 32kHz crystal

Symbol	Parameter	Min.	Typical	Max.	Unit
F	Frequency range		32768		Hz
GL	Drive level			1.5	μW
Δf/f	Frequency tolerance		+/- 20		ppm
ESR	Series resistance		50	70	kΩ
С0	Static capacitance		0.9	2	pF
CL1	Load capacitance	6		12.5	pF

The –R is more than 3 times bigger with this CL range and crystal. If a larger CL is selected, the frequency accuracy decreases and the –R degrades.

2.5. Serial interfaces

2.5.1. Universal asynchronous receiver transmitter (UART)

MT7682 chipset houses four UART interfaces that provide full duplex serial communication between the baseband chipset and external devices.

The universal asynchronous receiver transmitter (UART) provides full duplex serial communication channels between the baseband chipset and external devices.

The UART has both M16C450 and M16550A modes of operation that are compatible with a range of standard software drivers. The extensions are designed to be broadly software compatible with M16550A variants, but certain areas offer no consensus.

The UART supports word lengths from 5 to 8 bits, an optional parity bit and one or two stop bits and is fully programmable by an 8-bit CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included together with separate transmit and receive FIFOs. Two modem control lines and a diagnostic loop-

back mode are provided. The UART also includes two DMA handshake lines, indicating when the FIFOs are ready to transfer data to the CPU.

Note, that the UART is designed so that all internal operation is synchronized by the clock signal. This synchronization results in minor timing differences between the UART and industry standard M16550A device, which means that the core is not clocked for clock identical to the original device.

After hardware reset, the UART will be in M16C450 mode. Its FIFOs can then be enabled and the UART can enter M16550A mode. The UART also has further additional functions beyond the M16550A mode. Each of the extended functions can be selected individually under software control.

- There are three UART channels supporting software flow control. Two of them support hardware flow control. Each UART has an individual interrupt source.
- For transmission, the UART supports word lengths from 5 to 8 bits with an optional parity bit and 1 or 2 stop bits.
- The UART supports standard baud rates of 110bps, 300bps, 1200bps, 2400bps, 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps and non-standard baud rates from 110bps to 3Mbps.
- There are dedicated DMA channels for both transmit (TX) and receive (RX) for each UART.

The UART supports automatic baud rate detection in RX mode. The recommended baud rate range is from 300bps to 115,200bps.

2.5.2. Serial peripheral interface (SPI)

MT7682 chipset features one SPI master controller and one SPI slave controller to receive/transmit device data using single, dual and quad SPI protocols.

The Serial Peripheral Interface (SPI) is a serial transmission protocol, which supports single mode (four-pin), , dual mode (four-pin) and quad mode (six-pin) for increased data throughput. The maximum serial clock (SCK) frequency is 48MHz. Note that single mode can support full duplex, but dual and quad mode only support half duplex. Figure 2.5-1 is an example of the connection between the SPI master and SPI slave. Table 2.5-1 shows the characteristic of each pin.

Figure 2.5-1. Pin connection between SPI master and SPI slave

Signal name	Туре	Default value	Description
CS	0	1 (output)	Active low chip selection signal
SCK	0	0 (output)	The (bit) serial clock. Maximum SCK clock rate is 48MHz.
MOSI	I/O	1 (output)	Data signal 0
MISO	I/O	Pull down (input)	Data signal 1
SIO2	I/O	1 (output)	Data signal 2
SIO3	1/0	1 (output)	Data signal 3

Table 2.5-1. SPI master controller interface

2.5.2.1. SPI master controller

- The SPI master controller supports single mode, dual mode and quad mode. The controller can automatically switch port direction for data input/output according to registers SPIM_TYPE and SPIM_RW_MODE.
- The SCK frequency can be configured as 96/N MHz when core power is 1.1V or 1.3V, and 26/N MHz when core power is 0.9V, where N ranges from 2 to 2¹⁷, with CPOL and CPHA features for different applications. CPOL defines the SCK polarity. CPHA defines the legal timing to sample data. The CS signal setup time, hold time and idle time can be configured, too. The detailed timing diagram of the SCK and CS is shown in Figure 2.5-2.

Figure 2.5-2. SPI transmission formats

- There are two modes for data read/write in SPI master controller:
 - o Direct mode. The CPU directly write data to or read data from the SPI master controller FIFO.
 - O DMA (Direct Memory Access) mode. The SPI master controller includes DMA design, which can automatically and continuously write data from memory to the SPI master controller or read data from the SPI master controller to memory. In DMA mode, the endian order of memory data is adjustable.
- Unlimited length transmission can be achieved by enabling pause mode. In pause mode, the CS signal will stay
 active after one transfer. During this period, the SPI master controller will be in PAUSE_IDLE state and wait for
 the resume command to start the next transfer. Figure 2.5-3 is the state transition diagram.

Figure 2.5-3. Operation flow with and without PAUSE mode

 A configurable option to control CS de-assertion between byte transfers is available. The SPI master controller supports a special transmission format called CS de-assert mode. Figure 2.5-4 illustrates the waveform in this transmission format.

Figure 2.5-4. CS de-assert mode

- When the SPI master controller operates in dual or quad mode, the transmission package includes three parts: command phase, dummy phase and data phase.
 - o Command phase always operates at single mode.
 - Dummy phase cannot transmit or receive data.
 - Data phase operation depends on SPIM_TYPE and SPIM_RW_MODE settings. The command phase and dummy phase are useful for special applications, such as read or write serial flash data.
- The sample clock, SCK and data delay is adjustable to solve the timing skew issue.
- o If the critical path latency between master and slave is larger than half of SCK cycle, the SPI master controller may samples the wrong data. The critical path of SPI transmission includes two parts:
 - Master transmits SCK to slave
 - Slave feeds back data to master

The sampling clock delay (register **SPIM_GET_DELAY**) and sampling edge (register **SAMPLE_SEL**) can be adjusted to solve this issue. Each interval of **SPIM_GET_DLY** is 10.42 ns. The detailed description is shown in Figure 2.5-5.

Figure 2.5-5. SPI master controller critical path sampling

If the timing skew between SCK and data is too big, the received data on slave can be corrupted. This issue can be solved by adjusting the delay on SCK and data path (registers **SPIM_SEL_ADDR** and **SPIM_SEL_WDATA**), as shown in Figure 2.5-6.

Figure 2.5-6. SPI master controller SCK and data delay

2.5.2.2. SPI slave controller

- The SPI slave controller supports single mode, dual mode and quad mode. The controller can automatically switch port direction for data input/output according to register SPIS TYPE.
- There are two methods to determine the memory address for SPI slave to write/read data
 - When SPIS_DEC_ADDR_EN is 0, the address is determined by SPISLV_BUFFER_BASE_ADDR and CW/CR command from the master. The address and length from master CW/CR command is stored in SPIS_TRANS_ADDR and SPIS_TRANS_LENGTH. The start address of the transfer is "SPISLV_BUFFER_BASE_ADDR + SPIS_TRANS_ADDR", and the end address is "SPISLV_BUFFER_BASE_ADDR + SPIS_TRANS_ADDR + SPIS_TRANS_LENGTH". The CW/CR command can only succeed if the end address does not exceed the maximum available memory address, which is "SPISLV_BUFFER_BASE_ADDR + SPISLV_BUFFER_SIZE".
 - When SPIS_DEC_ADDR_EN is 1, the address is directly determined by SPISLV_BUFFER_BASE_ADDR.
- The maximum SCK frequency supported is 48 MHz with CPOL and CPHA features. CPOL defines the SCK polarity. CPHA defines the legal timing to sample data. The detailed timing diagram of the SCK and CS is shown in Figure 2.5-7.

Figure 2.5-7. SPI transmission formats

- The SPI slave controller support early transmission feature to solve data path latency issue. The timing diagram is shown in
- Figure 2.5-8.

Figure 2.5-8. SPI slave controller early transmission

2.5.3. Inter-integrated circuit (I2C) interface

MT7682 chipset provides two I2C master controllers. There are three types of speed modes in the I2C controllers: standard mode (100kbps), fast mode (400kbps) and high-speed mode (3.4Mbps), supporting 7-bit/10-bit addressing and can be served by the DMA controller.

The I2C package size supports up to 1,024 bytes per transfer and 1,024 transfers per transaction in DMA mode and 8 bytes per transfer in non-DMA mode. START/STOP/REPEATED START condition can be increased to support single or multi transfer. These features can be configured by software based on design requirements.

2.5.4. Inter-IC sound interface (I2S)

MT7682 chipset provides two Inter-IC Sound Interface (I2S) controllers. The controllers can be selected as master or slave. There are two types of transfer protocols in the I2S controllers: one is the I2S protocol, supporting 24-bit/16-bit addressing and mono/stereo transaction; the other one is the TDM protocol, supporting 16-bit addressing and TDM32/TDM64/TDM128 transaction. I2S controllers can be served by the DMA controller and the sample rate can support either 16, 24, 48, 96, 192kHz or 11.025, 22.05, 44.1kHz when sharing only one internal PLL. Detailed specifications of the I2S and TDM are shown in Table 2.5-2 and Table 2.5-3.

I2S Protocol	Bit Width	Input/output Sample
Master Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, mono/stereo
	I2S1: 16b/24b	XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, mono/stereo
		XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, mono/stereo
Slave Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, mono/stereo
	I2S1: 16b/24b	XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, mono/stereo
		XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, mono/stereo

Table 2.5-2. I2S protocol specifications

Table 2.5-3. TDM protocol specifications

TDM Protocol	Bit Width	Input/output Sample		
Master Mode	I2S0: 16b	• XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, TDM32/TDM64		
		 XPLL 22.5792MHz: 11.025, 22.05, 44.1, 88.2, 176.4 kHz, TDM32/TDM64 		

TDM Protocol	Bit Width	Input/output Sample
		• XPLL 24.576MHz: 8, 12, 16, 24, 32, 48, 96, 192 kHz, TDM32/TDM64
Slave Mode	I2S0: 16b	XO or XPLL 26MHz: 8, 12, 16, 24, 32, 48 kHz, TDM32/TDM64/TDM128 (up to 4 channels for TDM128) XPLL 22.5792MHz (either of the following):
		• 11.025, 22.05, 44.1, 88.2 kHz, TDM32/TDM64/TDM128 (up to 4 channels for TDM128)
		• 176.4 kHz, TDM32/TDM64
		XPLL 24.576MHz (either of the following):
		8, 12, 16, 24, 32, 48, 96 kHz, TDM32/TDM64/TDM128 (up to 4 channels for TDM128)
		• 192 kHz, TDM32/TDM64

2.5.5. SD memory card controller

The controller supports the SD memory card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 2.0.

Furthermore, the controller also partially supports the SDIO card specification version 2.0. However, the controller can only be configured as the host of the SD memory card. Hereafter, the controller is abbreviated as the SD controller.

Main features of the controller:

- 32-bit access for control registers
- 8, 16 and 32-bit access for FIFO in PIO mode
- Built-in CRC circuit
- Supports PIO mode, basic DMA mode, and descriptor DMA mode for SD controller.
- Interrupt capabilities
- Data rate of up to 48Mbps in 1-bit mode and 48x4 Mbps in 4-bit mode. The module is targeted at 48MHz operating clock.
- Programmable serial clock rate on SD bus (256 gears)
- Card detection capabilities (MT7682 uses the EINT controller for card detection)
- Does not support SPI mode for SD memory card
- Does not support suspend/resume for SD memory card.

2.6. Peripherals

2.6.1. Pulse-width modulation (PWM)

There are five PWM controllers to generate pulse signals. The duty cycle, high time and low time of pulse signals can be programmed. The PWM controllers can be configured to use 40MHz, 13MHz or 32kHz clock source to support a wide range of output pulse frequencies.

2.6.2. General purpose inputs/output (GPIO)

Each of the General Purpose Input/Output (GPIO) pins are software configurable as an output (push-pull or opendrain) or as an input (with or without pull-up or pull-down) that supports input floating with buffer gating to reduce power consumption. Most of the GPIOs are multiplexed with peripheral functions and have selectable output driving strength. The maximum toggling speeds of a single GPIO are listed in Table 2.6-1.

If the MCU handles more than one GPIO at a time or receives an interrupt, a rapid performance degradation may occur.

Dedicated IOs operate at higher speeds depending on the peripheral or interface usage. For example, PWM IOs can output 20 MHz when VCORE is 1.15V.

VCORE	Cortex-M4 speed	Maximum toggling speed of single GPIO pins
VCORE	COITCX IVI- Speed	Waxiiiaii toggiiig speed of single of to pins
1.15V	192MHz	1MHz
1.15V	96MHz	500kHz
0.85V	N/A	N/A (Cortex-M4 is in deep sleep mode)

Table 2.6-1. GPIO speeds when the Cortex-M4 cache is enabled

2.6.3. General purpose timer (GPT)

The general purpose timer (GPT) includes five 32-bit timers and one 64-bit timer. Each timer has four operation modes and can operate on one of the two clock sources; RTC clock (32.768kHz) and system clock (13MHz).

2.6.4. Real time clock (RTC)

The RTC module provides time and data information, as well as 32.768kHz clock. The clock is selected between three clock sources — one from an external (XOSC32) and two from an internal (XO, EOSC32). The RTC block has an independent power supply. When the MT7682 platform is at retention mode, a dedicated regulator will supply power to the RTC block. In addition to providing timing data, an alarm interrupt will be generated and can be used to power up the baseband core. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches the maximum value. The year span is supported until up to 2,127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

2.6.5. True random number generator (TRNG)

The TRNG is a device in power-down domain that generates random numbers from the ring oscillator (RO) outputs. Various types of ROs are adopted, including Hybrid Fibonacci Ring Oscillator (H-FIRO), Hybrid Ring Oscillator (H-RO) and Hybrid Galois Ring Oscillator (H-GARO). IRQ will be issued once the random data is successfully generated.

3. Wi-Fi RF Subsystem

3.1. Wi-Fi radio characteristics

3.1.1. Wi-Fi RF block diagram

Front-end loss with external balun (2.4GHz band): 2.4GHz band insertion loss is 1dB.

Figure 3.1-1. 2.4GHz RF block diagram

3.1.2. Wi-Fi 2.4GHz band RF receiver specifications

The specifications noted in the table below are measured at the antenna port including the front-end loss.

Table 3.1-1. 2.4GHz RF receiver specifications

Parameter	Description	Performance	Performance				
		Minimum	Typical	Maximum	Unit		
Frequency range	Center channel frequency	2412		2484	MHz		
RX sensitivity	1 Mbps CCK	-	-97.5	-	dBm		
	2 Mbps CCK	-	-94.5	-	dBm		
	5.5 Mbps CCK	-	-92.5	-	dBm		
	11 Mbps CCK	-	-89.5	-	dBm		
RX sensitivity	BPSK rate 1/2, 6 Mbps OFDM	-	-94.5	-	dBm		
	BPSK rate 3/4, 9 Mbps OFDM	-	-93.3	-	dBm		
	QPSK rate 1/2, 12 Mbps OFDM	-	-91.5	-	dBm		
	QPSK rate 3/4, 18 Mbps OFDM	-	-89.1	-	dBm		
	16QAM rate 1/2, 24 Mbps OFDM	-	-85.8	-	dBm		
	16QAM rate 3/4, 36 Mbps OFDM	-	-82.4	-	dBm		

Parameter	Description	Perform	nance		
	64QAM rate 1/2, 48 Mbps OFDM	-	-78.2	-	dBm
	64QAM rate 3/4, 54 Mbps OFDM	-	-77.0	-	dBm
RX Sensitivity	MCS 0, BPSK rate 1/2	-	-93.9	-	dBm
Bandwidth=20MHz	MCS 1, QPSK rate 1/2	-	-90.7	-	dBm
Mixed mode	MCS 2, QPSK rate 3/4	-	-88.3	-	dBm
800ns Guard Interval Non-STBC	MCS 3, 16QAM rate 1/2	-	-85.3	-	dBm
NOII-31 BC	MCS 4, 16QAM rate 3/4	-	-81.8	-	dBm
	MCS 5, 64QAM rate 2/3	-	-77.4	-	dBm
	MCS 6, 64QAM rate 3/4	-	-76	-	dBm
	MCS 7, 64QAM rate 5/6	-	-74.8	-	dBm
RX Sensitivity	MCS 0, BPSK rate 1/2	-	-90.5	-	dBm
Bandwidth =40MHz	MCS 1, QPSK rate 1/2	-	-87.7	-	dBm
Mixed mode	MCS 2, QPSK rate 3/4	-	-85.2	-	dBm
800ns Guard Interval Non-STBC	MCS 3, 16QAM rate 1/2	-	-81.7	-	dBm
NOII-31 BC	MCS 4, 16QAM rate 3/4	-	-78.6	-	dBm
	MCS 5, 64QAM rate 2/3	-	-74.0	-	dBm
	MCS 6, 64QAM rate 3/4	-	-72.7	-	dBm
	MCS 7, 64QAM rate 5/6	-	-71.5	-	dBm
Maximum Receive Level	6 Mbps OFDM	-	-10	-	dBm
	54 Mbps OFDM	-	-10	-	dBm
	MCS0	-	-10	-	dBm
	MCS7	-	-20	-	dBm
Receive Adjacent	1 Mbps CCK	-	40	-	dBm
Channel Rejection	11 Mbps CCK	-	40	-	dBm
	BPSK rate 1/2, 6 Mbps OFDM	-	34	-	dBm
	64QAM rate 3/4, 54 Mbps OFDM	-	22	-	dBm
	HT20, MCS 0, BPSK rate 1/2	-	33	-	dBm
	HT20, MCS 7, 64QAM rate 5/6	-	15	-	dBm
	HT40, MCS 0, BPSK rate 1/2	-	29	-	dBm
	HT40, MCS 7, 64QAM rate 5/6	-	9	-	dBm

3.1.3. Wi-Fi 2.4GHz band RF transmitter specifications

The specifications listed in Table 3.1-1 are measured at the antenna port, which includes the front-end loss.

Table 3.1-2. 2.4GHz RF transmitter specifications

Parameter	Description	Performance			
		Minimum	Typical	Maximum	Unit
Frequency range		2412	-	2484	MHz

Parameter	Description	Performance			
Output power with	1 Mbps CCK	-	19	-	dBm
spectral mask and EVM compliance	11 Mbps CCK	-	19	-	dBm
L vivi compliance	6 Mbps OFDM	-	18.5	-	dBm
	54 Mbps OFDM	-	16.5	-	dBm
	HT20, MCS 0	-	17.5	-	dBm
	HT20, MCS 7	-	15.5	-	dBm
	HT40, MCS 0	-	16.5	-	dBm
	HT40, MCS 7	-	14.5	-	dBm
TX EVM	6 Mbps OFDM	-	-	-5	dB
	54 Mbps OFDM	-	-	-25	dB
	HT20, MCS 0	-	-	-5	dB
	HT20, MCS 7	-	-	-28	dB
	HT40, MCS 0	-	-	-5	dB
	HT40, MCS 7	-	-	-28	dB
Output power variation ⁽¹⁾	TSSI closed-loop control across all temperature ranges and channels and VSWR \leq 1.5:1.	-1.5	-	1.5	dB
Carrier suppression		-	-	-30	dBc
Harmonic Output	2nd Harmonic	-	-45	-43	dBm/MHz
Power	3nd Harmonic	-	-45	-43	dBm/MHz

Note 1: VDD33 voltage is within ±5% of typical value.

3.2. Radio MCU subsystem

3.2.1. CPU

MT7682 features the 32-bit N9 CPU, with the following features:

- 5-stage pipeline with extensive clock-gating
- Dynamic branch prediction with BTB
- 16 and 32-bit mixed instruction format
- Multiply-accumulate and multiply-subtract instructions
- Instructions optimized for audio applications
- Instruction and data local memory
- Programmable data endian control
- JTAG based debug interface

3.2.2. RAM/ROM

The radio MCU subsystem features instruction local memory (ILM), data local memory (DLM) and SYSRAM. The ROM code is in the ILM.

3.2.3. Memory map

Table 3.2-1 describes how peripherals are mapped to the memory space in the radio MCU subsystem. When the MCU performs a read transaction to an undefined address, the bus returns 0. When the MCU performs a write transaction to an undefined address, the bus regards it as an invalid transaction and does nothing.

Table 3.2-1. N9 memory map

Start address	End address	Function	Description
0x0000_0000	0x0000_FFFF	ILM ROM	Instruction local memory ROM for N9
0x0001_0000	0x0002_3FFF	ILM RAM	Instruction local memory RAM for N9
0x0010_0000	0x0010_7FFF	SYSRAM N9	System RAM for N9
0x0200_0000	0x0200_021C	Patch & CR	N9 ROM patch engine
0x0209_0000	0x0209_7FFF	DLM RAM	Data local memory for N9
0x5000_0000	0x501F_FFFF	HIF_device	Host interface device controller
0x6000_0000	0x6FFF_FFFF	WIFISYS	Wi-Fi subsystem
0x7000_0000	0x70FF_FFFF	PDA DMA port	Patch decryption accelerator DMA slave
0x7800_0000	0x7800_0000	VFF access port0	Virtual FIFO access port 0 of N9 DMA
0x7800_0100	0x7800_0100	VFF access port1	Virtual FIFO access port 1 of N9 DMA
0x7900_0000	0x7900_FFFF	VFF_CM4 access port	Virtual FIFO access ports of Cortex-M4 DMA
0x8000_0000	0x800C_FFFF	APB0	APB bridge 0 (synchronous to N9)
0x8000_0000	0x8000_FFFF	CONFG	N9 subsystem configuration
0x8001_0000	0x8001_FFFF	DMA	Generic DMA engine for N9
0x8002_0000	0x8002_FFFF	TOP_CFG_OFF	TOP_OFF (N9) power domain chip level configuration (GPIO, PinMux, RF, PLL, clock control)
0x8008_0000	0x8008_FFFF	AHB_MON	AHB bus monitor
0x800A_0000	0x800A_FFFF	UART_DSN	UART for N9 debug
0x800B_0000	0x800B_FFFF	SEC	Secure boot configuration
0x800C_0000	0x800C_FFFF	HIF	Host interface configuration
0x8100_0000	0x810C_FFFF	APB1	APB bridge 1 (synchronous to N9)
0x8102_0000	0x8102_FFFF	TOP_CFG_AON	TOP_AON power domain chip level configuration (RGU, PinMux, PMU, XTAL, clock control)
0x8103_0000	0x8103_FFFF	DBG_CIRQ	Debug interrupt controller for N9
0x8104_0000	0x8104_FFFF	CIRQ	Interrupt controller for N9

Start address	End address	Function	Description
0x8105_8000	0x8105_FFFF	GPT	General purpose timer for N9
0x8106_0000	0x8106_FFFF	РТА	Packet traffic arbitrator for Wi- Fi coexistence
0x8108_0000	0x8108_FFFF	WDT	Watchdog timer for N9
0x8109_0000	0x8109_FFFF	PDA	Patch decryption accelerator
0x810A_0000	0x810A_FFFF	RDD	Wi-Fi debug
0x810C_0000	0x810C_FFFF	RBIST	RF BIST configuration
0x8300_0000	0x810C_FFFF	APB2	APB bridge 1 (synchronous to Cortex-M4)
0xA000_0000	0xAFFF_FFFF	PSE	Packet switch engine memory

3.2.4. N9 bus fabric

Figure 3.2-1. N9 bus fabric

N9 bus fabric functional description:

- Command batch: Used to save and restore critical CR and memory data when entering and leaving low power mode.
- Wi-Fi HIF: The host control and data interface from N9 to Wi-Fi subsystem.
- Wi-Fi PSE: The packet switch engine used to transfer packets from N9 to Wi-Fi MAC/radio or from Cortex-M4 to Wi-Fi MAC/radio, and vice versa.
- PDA: Packet decryption agent, used to download firmware and decipher the encrypted firmware.
- PTA: Packet traffic arbitration, used to execute Wi-Fi traffic arbitration when the two radios are transmitting and receiving at the same time.
- RDD: The Wi-Fi debug function.
- eFUSE: The eFUSE macro used for Wi-Fi MAC and radio configuration.

3.2.5. CIRQ

N9 subsystem uses the interrupt controller CIRQ to control internal interrupt source selection, mask, edge/level sensitivity and software enabling, as well as external interrupt mask and edge/level sensitivity. CIRQ also integrates the de-bounce circuit for external interrupts.

Figure 3.2-2. N9 interrupt controller

There are a total of 23 interrupts and 14 external interrupts. The power domain/subsystem lists the power domain and subsystem from which the interrupt is generated. Table 3.2-2 lists the interrupt sources of internal and external interrupts.

Table 3.2-2. N9 interrupt source

IRQ number	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description
INT0	(Reserved)					
INT1	DMA	CONN_OFF/MCUSYS				Generic DMA in N9 subsystem

IRQ number	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description
INT2	HIFSYS	CONN_AON/HIF				WIFI_HIF(SDIO)
INT3	(Reserved)					
INT4	THERM	CONN_OFF				Thermometer
INT5	(Reserved)					
INT6	WIFI	CONN_OFF/MAC				Wi-Fi subsystem
INT7	ICAP	CONN_OFF/MCUSYS				Internal capture in RBIST module
INT8	EINT	CONN_AON/MCUSYS				External interrupt
INT9	(Reserved)					
INT10	WDT_N9	CONN_AON/MCUSYS				Watch dog timer in N9 subsystem
INT11	AHB_MONIT OR	CONN_OFF/MCUSYS				AHB monitor
INT12	(Reserved)					
INT13	PLC_ACCLR	CONN_OFF/MCUSYS				Packet Loss Concealment accelerator
INT14	(Reserved)					
INT15	PSE	CONN_OFF/PSE				Packet switch engine
INT16	(Reserved)					
INT17	HIFSYS	CONN_OFF/HIFSYS				HIF subsystem
INT18	(Reserved)					
INT19	PTA	CONN_OFF/MCUSYS				PTA module
INT20	CMBT	CONN_OFF				Command batch module
INT21	GPT3	CONN_AON/MCUSYS				General purpose timer module
INT22	N9_PM	CONN_OFF/MCUSYS				N9 performance monitor
EINT0	(Reserved)		V	V	Available	
EINT1	CM4_TO_N9_ SW		V	V	Available	Cortex-M4 software interrupt N9
EINT2	HIFSYS	CONN_AON/HIF	V	V	Available	WIFI_HIF (SDIO)
EINT3	(Reserved)		V	V	Available	
EINT4	(Reserved)		V	V	Available	
EINT5	(Reserved)		V	V	Available	
EINT6	GPT	CONN_AON/MCUSYS	V	V	Available	General purpose timer module (GPT0 timer and GPT1 timer)
EINT7	(Reserved)		V	V	Available	
EINT8	(Reserved)		V	V	Available	
EINT9	DSLP_IRQ	CONN_AON	V	V	Available	Deep sleep control
EINT10	(Reserved)		V	V	Available	
EINT11	(Reserved)		V	V	Available	

Note 1: Capable to wake up N9 firmware when N9 it's in sleep mode.

4. Power Management Unit

4.1. Overview

The power management unit (PMU) manages the power supply of the entire chip, including baseband, processor, memory, camera, vibrator, and more. There are two power input sources for MT7682:

1) AVDD33_RTC for RTC timer control.

This is operated by wider input voltage range from 1.62V to 3.63V, and supports real time clock control and alarm logic. Because of the ultra-low input voltage and lower current consumption, it can efficiently enhance battery life time by alkaline or other portable batteries.

2) AVDD33_BUCK for PMU control.

A single regulated 3.3V power supply is required for the MT7682. It could be from an external DC-DC converter to convert a higher voltage supply to 3.3V or boost from a lower voltage supply to 3.3V. The PMU contains Under-Voltage Lockout (UVLO) circuit, several Low Drop-Out Regulators (LDOs), a high efficiency buck converter and a reference band-gap circuit. The circuits are optimized for low quiescent current, low drop-out voltage, efficient line/load regulation, high ripple rejection and low output noise.

4.2. Low-power operating mode

The MT7682 power state diagram is shown in Figure 4.2-1.

In **ACTIVE** mode, the Cortex-M4 and N9 power states operate independently, and both have Idle, Active and Sleep modes. When both are in sleep mode, the chipset enters **SLEEP** mode.

In SLEEP mode, the PMU can be changed to low power mode to further lower the current consumption.

RETENTION mode provides a lower current consumption than **SLEEP** mode. It is suitable for applications that remain idle for a long period. To enter **RETENTION** mode is software configurable and to exit, use RTC timer or EINT.

OFF mode is controlled by the CHIP_EN signal and in this state, only always-on PMU logics are alive to maintain the lowest current consumption.

Figure 4.2-1. MT7682 Cortex-M4 and N9 power states and modes

4.3. PMU architecture

The 3.3V power source is directly supplied to the switching regulator, digital IOs and RF-related circuit. It is converted to 1.45V by the buck converter for low voltage circuits. The built-in digital LDOs and RF LDOs convert 1.45V to 1.15V for digital, RF and BBPLL core circuits. The three LDOs are CLDO, SLDO-H and MLDO. SLDO-H stands for sleep mode LDO, CLDO stands for digital core LDO, and MLDO stands for internal or external memory LDO.

In **ACTIVE** mode, the buck converter converts 1.45V output to other subsystems in MT7682. It can operate in either PFM mode or PWM mode. With an external on-board LC filter ($2.2\mu H$ inductor and $10\mu F$ cap), it outputs a low ripple 1.45V to Wi-Fi RF system and CLDO input power. In **ACTIVE** mode, CLDO is under BUCK domain, and then it outputs 1.15V for whole chip digital logics.

In **SLEEP** mode, BUCK output voltage will be kept by SLDO-H. The SLDO-H also generates 1.45V output voltage to Wi-Fi RF system and CLDO input power. While MT7682 is in **SLEEP** mode, CLDO will reduce its output level from 1.15V to 0.85V for whole chip digital logics used to reduce power consumption.

In **RETENTION** mode, BUCK, CLDO, SLDO-H and MLDO will be shut down. During this mode, only always-on PMU logics, RTC timer controller and retention SRAM are alive to keep lower current consumption.

Once MT7682 goes into **OFF** mode (controlled by CHIP_EN), BUCK, CLDO, SLDO-H, MLDO and RTC controller will be shut down. During this mode, only some PMU AO domain blocks are alive to keep lowest current consumption.

4.4. Power performance summary

Table 4.4-1 lists example current consumptions in VBAT domain.

Table 4.4-1. Current consumption in different power modes

Operation Mo	de	Test Conditions	Current	Unit
Power Mode	Scenario		Consumptions ⁽¹⁾	
OFF	OFF	CHIP_EN keeps low	< 0.5	μΑ
RETENTION	RETENTION	RTC timer	2.7	μΑ
		OKB SRAM data retention		
		RTC timer	4.7	μΑ
		8KB SRAM data retention		
SLEEP	SLEEP_ext_32Khz	Cortex-M4 in sleep state	110	μΑ
		TCM 96KB SRAM is retained		
		SYSRAM 384KB SRAM is retained		
		XTAL 32kHz		
	SLEEP_int_32Khz	Cortex-M4 in sleep state	380	μΑ
		TCM 96KB SRAM is retained		
		SYSRAM 384KB SRAM is retained		
		Internal 32kHz		
ACTIVE	Wi-Fi TX	CCK 19dBm	248	mA
		N9 in idle state		
		Cortex-M4 in active state		
		TCM 96KB SRAM is retained		
		XTAL 32kHz		
		OFDM 16.5dBm	220	mA
		N9 in idle state		
		Cortex-M4 in active state		
		TCM 96KB SRAM is retained		
		XTAL 32kHz		
	Wi-Fi RX	• HT20_MCS7	42	mA
		N9 in active state		
		Cortex-M4 in active state		
		XTAL 32kHz		
		• HT20_MCS7	30	mA
		N9 in idle state		
		Cortex-M4 in sleep state		
		XTAL 32kHz		
ACTIVE &	DTIM = 1	Cortex-M4 in sleep state	620	μΑ
SLEEP		TCM 96KB SRAM is retained		
		XTAL 32kHz		

 $^{(1)}$ Conditions: VBAT at 3.3v, VDDIO at 3.3V, 25°C, Typical corner IC, XTAL at 26MHz

4.5. Power-on sequence

The MT7682 power-on sequence is shown in Figure 4.5-1.

Figure 4.5-1. Power-on sequence

5. Pin Description

5.1. MT7682 pin list

For MT7682S, a QFN 5mm*5mm, 40-pin, 0.4mm pitch package is offered. Pin-outs and the top view for this package are shown in Figure 5.1-1.

	40	39	38	37	36	35	34	33	32	31		
	AVSS33_WF0_G_PA_R	AVDD15_WF0_TRX	AVDD15_XO	ХО	00IO0	GP101	6PIO3	GP102	GP104	DVDD_CORE		
1 AVDD33_WF0_G_TX											DVDD_IO_1	30
2 WF0_G_RFIO											GPIO21	29
3 AVDD33_WF0_G_PA											GPIO22	28
4 GPIO17											DVDD_MLDO	27
5 GPIO16											LXBK	26
6 GPIO15											AVSS33_BUCK	25
7 GPIO14											AVDD33_BUCK	24
8 DVDD_IO_0											AVDD15_CLDO	23
9 GPIO13											AVDD12_CLDO	22
10 GPIO12											AVDD18_MLDO	21
	GPI011	DVDD_CORE	XIN	хоит	RTC_EINT	AVDD33_VRTC	EXT_PWR_EN	AVSS	CHIP_EN	AVDD33_MISC	MT7682	
	11	12	13	14	15	16	17	18	19	20		

Figure 5.1-1. MT7682S pin diagram and top view

5.1.1. MT7682 pin coordination

Table 5.1-1. MT7682S pin coordinates

Pin#	Net name	Pin#	Net name	Pin#	Net name
1	AVDD33_WF0_G_TX	2	WF0_G_RFIO	3	AVDD33_WF0_G_PA
4	GPIO17	5	GPIO16	6	GPIO15
7	GPIO14	8	DVDD_IO_0	9	GPIO13
10	GPIO12	11	GPIO11	12	DVDD_CORE
13	XIN	14	XOUT	15	RTC_EINT
16	AVDD33_VRTC	17	EXT_PWR_EN	18	AVSS

Pin#	Net name	Pin#	Net name	Pin#	Net name
19	CHIP_EN	20	AVDD33_MISC	21	AVDD18_MLDO
22	AVDD12_CLDO	23	AVDD15_CLDO	24	AVDD33_BUCK
25	AVSS33_BUCK	26	LXBK	27	DVDD_MLDO
28	GPIO22	29	GPIO21	30	DVDD_IO_1
31	DVDD_CORE	32	GPIO4	33	GPIO2
34	GPIO3	35	GPIO1	36	GPIO0
37	XO	38	AVDD15_XO	39	AVDD15_WF0_TRX
40	AVSS33_WF0_G_PA_R				

5.2. MT7682 pins

Table 5.2-1. Acronym for pin types and I/O structure

Name	Abbreviation	Description
Pin Type	AI	Analog input
	AO	Analog output
	AIO	Analog bi-direction
	DI	Digital input
	DO	Digital output
	DIO	Digital bi-direction
	Р	Power
	G	Ground
IO Structure	TYPE0	Pull-up/down
		3.63V tolerance
	TYPE1	Pull-up/down
		5V tolerance
	TYPE2	Pull-up/down
		5V tolerance
		SDIO characteristic support
	TYPE3	Pull-up/down
		5V tolerance
		Analog input/output

Table 5.2-2. MT7682 pin function description and power

Pin Number	Pin Name	Pin Type /O Structure	Pin Description	Alternate Pin Functions	Power domain
Real	-time clock				

MT7682 Datasheet

Pin Number	Pin Name	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain
15	RTC_EINT	DIO	TYPE0	Dedicate EINT input in RTC	-	AVDD33_VRTC
14	XOUT	AIO	-	Input pin for 32K crystal	-	AVDD33_VRTC
13	XIN	AIO	-	Input pin for 32K crystal	-	AVDD33_VRTC
Wi-F	i radio interface					
37	XO	AI	-	Crystal input or external clock input (26/40 MHz)	-	AVDD15_XO
39	AVDD15_WF0_TRX	Р	-	Wi-Fi TRX 1.5V power input	-	-
1	AVDD33_WF0_G_TX	Р	-	Wi-Fi TX 3.3V power input	-	-
3	AVDD33_WF0_G_PA	Р	-	Wi-Fi PA 3.3V power input (V_{RF})	-	-
40	AVSS33_WF0_G_PA_R	G	-	Wi-Fi PA ground	-	-
2	WF0_G_RFIO	AIO	-	Wi-Fi RF IO	-	AVDD33_WF0 _G_PA (AO)/ AVDD15_WF0 _TRX (AI)
38	AVDD15_XO	Р	-	XO 1.5V power input	-	-
Pow	er management unit					
19	CHIP_EN	Al	-	Chip enable	-	AVDD33_VRTC
17	EXT_PWR_EN	AO	-	PMU enable	-	AVDD33_VRTC
20	AVDD33_MISC	Р	-	Power input	-	-
16	AVDD33_VRTC	Р	-	RTC domain power supply (V _{RTC})	-	-
21	AVDD18_MLDO	Р	-	MLDO power output for SF	-	-
23	AVDD15_CLDO	Р	-	CLDO power input from BUCK	-	-
26	LXBK	Р	-	SW node for BUCK	-	-
25	AVSS33_BUCK	G	-	GND of AVDD33_BUCK	-	-
24	AVDD33_BUCK	Р	-	Buck power input (V _{BAT})	-	-
22	AVDD12_CLDO	Р	-	CLDO power output for core power	-	-
Gen	eral purpose I/O					
36	GPIO0	DIO	TYPE3	General purpose input/output, Pin 0 Default pull-up	UART (1) I2C (1) I2S Master/Slave Cortex-M4 JTAG External frontend support BT_PRI1 PWM (0)	DVDD_IO_1

MT7682 Datasheet

	Pin	Pin	a	Pin	Alternate	Power domain
Pin Number	Name	Туре	I/O Structure	Description	Pin Functions	
35	GPIO1	DIO	TYPE3	General purpose input/output, Pin 1 Default pull-up	UART (1) I2C (1) I2S Master/Slave Cortex-M4 JTAG External frontend support BT_PRI3 PWM (1)	DVDD_IO_1
33	GPIO2	DIO	TYPE3	General purpose input/output, Pin 2 Default pull-up	UART (1) PWM (0) I2S Master/Slave Cortex-M4JTAG CLKO0 BT_PRI0 External frontend support	DVDD_IO_1
34	GPIO3	DIO	TYPE3	General purpose input/output, Pin 3 Default pull-down	UART (1) PWM (1) I2S Master/Slave Cortex-M4 JTAG External frontend support	DVDD_IO_1
32	GPIO4	DIO	TYPE1	General purpose input/output, Pin 4 Default no pull	SPI Slave (0) SPI Master (0) Cortex-M4JTAG External frontend support	DVDD_IO_1
11	GPIO11	DIO	TYPE2	General purpose input/output, Pin 11 Default pull-down	PWM (3) UART (2) SDIO Master SDIO Slave CLKO2 External frontend support I2S Master/Slave	DVDD_IO_0
10	GPIO12	DIO	TYPE2	General purpose input/output, Pin 12 Default pull-down	SPI Slave (1) SPI Master (1) UART (2) SDIO Master SDIO Slave External frontend support	DVDD_IO_0

MT7682 Datasheet

	Pin	Pin	o	Pin	Alternate	Power domain
Pin Number	Name	Туре	/O Structure	Description	Pin Functions	
					I2S Master/Slave	
9	GPIO13	DIO	TYPE2	General purpose input/output, Pin 13 Default pull-down	SPI Slave (1) SPI Master (1) UART (2) SDIO Master SDIO Slave CLKO4 I2S Master/Slave	DVDD_IO_0
7	GPIO14	DIO	TYPE2	General purpose input/output, Pin 14 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave SDIO Master SDIO Slave PWM (4) CLKO4	DVDD_IO_0
6	GPIO15	DIO	TYPE2	General purpose input/output, Pin 15 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave SDIO Master SDIO Slave I2C (1) PWM (3)	DVDD_IO_0
5	GPIO16	DIO	TYPE2	General purpose input/output, Pin 16 Default pull-down	SPI Slave (1) SPI Master (1) 12S Master/Slave SDIO Master SDIO Slave 12C (1)	DVDD_IO_0
4	GPIO17	DIO	TYPE3	General purpose input/output, Pin 17 Default pull-down	SPI Slave (1) SPI Master (1) I2S Master/Slave PWM (5) CLKO3 AUXADC0 BT_PRIO	DVDD_IO_0
29	GPIO21	DIO	TYPE1	General purpose input/output, Pin 21 Default pull-up	UART (0) I2C (1) PWM (5)	DVDD_IO_1
28	GPIO22	DIO	TYPE1	General purpose input/output, Pin 22 Default no pull	UART (0)	DVDD_IO_1

pin Number	Pin Name tal IO power	Pin Type	I/O Structure	Pin Description	Alternate Pin Functions	Power domain		
30	DVDD IO 1	Р	-	Power input of GPIO left	_	-		
				group (V _{IO_1})				
8	DVDD_IO_0	Р	-	Power input of GPIO right group (V_{10_0})	-	-		
27	DVDD_MLDO	Р	-	Power input of SF/EMI group	-	-		
Digit	Digital core power							
12	DVDD_CORE	Р	-	Core power	-	-		
31	DVDD_CORE	Р	-	Core power	-	-		

5.3. MT7682 pin multiplexing

The MT7682 platform offers 14 GPIO pins. By setting up the control registers, the MCU software can control the direction, the output value and read the input values on the pins. The GPIOs and GPOs are multiplexed with other functions to reduce the pin count. To facilitate application use, the software can configure which clock to send outside the chip. There are five clock-out ports embedded in 48 GPIO pins and each clock-out can be programmed to output an appropriate clock source. In addition, when two GPIOs function for the same peripheral IP, the smaller GPIO serial number has higher priority over the bigger one.

Figure 5.3-1. GPIO block diagram

MT7682 has rich peripheral functions and the peripheral signals are shown in Table 5.3-1. The SDIO, SPI Master and SPI Slave can support signal group allocate on different pins.

Alternate Function	Signal List				
SDIO Master	MA_MC0_CK				
	MA_MC0_CM0				
	MA_MC0_DA0				
	MA_MC0_DA1				
	MA_MC0_DA2				
	MV WCO DV3				

Table 5.3-1. Peripheral functions and signals

Alternate Function	Signal List
SDIO Slave	SLV_MC0_CK
	SLV _MC0_CM0
	SLV _MC0_DA0
	SLV _MC0_DA1
	SLV _MC0_DA2
	SLV _MC0_DA3
UART (0)	URXD0
	UTXD0
	UORTS
	UOCTS
UART (1)	URXD1
	UTXD1
	U1RTS
	U1CTS
UART (2)	URXD2
	UTXD2
	U2RTS
	U2CTS
I2C (1)	SCL1
	SDA1
I2S Master/Slave	I2S_RX
	I2S_TX
	I2S_WS
	I2S_CK
I2S Master/Slave	TDM_RX
	TDM_TX
	TDM_WS
	TDM_CK
	TDM_MCLK
SPI Master (0)	SPIMST_A_SCK
	SPIMST_A_CS
	SPIMST_A_SIO0
	SPIMST_A_SIO1
	SPIMST_A_SIO2
	SPIMST_A_SIO3
SPI Master (1)	SPIMST_B_SCK
	SPIMST_B_CS
	SPIMST_B_SIO0
	SPIMST_B_SIO1
	SPIMST_B_SIO2
	SPIMST_B_SIO3
SPI Slave (0)	SPISLV_A_SCK
	SPISLV_A_CS
	SPISLV_A_SIO0

Alternate Function	Signal List
	SPISLV_A_SIO1
	SPISLV_A_SIO2
	SPISLV_A_SIO3
SPI Slave (1)	SPISLV_B_SCK
	SPISLV_B_CS
	SPISLV_B_SIO0
	SPISLV_B_SIO1
	SPISLV_B_SIO2
	SPISLV_B_SIO3
PWM (0)	PWM0
PWM (1)	PWM1
PWM (3)	PWM3
PWM (4)	PWM4
PWM (5)	PWM5
AUXADC	AUXADCIN_0
Cortex-M4 JTAG	JTDI
	JTMS
	JTCK
	JTRST_B
	JTDO
External frontend	WIFI_ANT_SEL0
support	WIFI_ANT_SEL1
	WIFI_ANT_SEL2
	WIFI_ANT_SEL3
	WIFI_ANT_SEL4

Table 5.3-2. PinMux description

Ball Name	Aux Func.0	Aux Func.1	Aux Func.2	Aux Func.3	Aux Func.4	Aux Func.5	Aux Func.6	Aux Func.7	Aux Func.8	Aux Func.9	Aux Func.10
GPIO_0	GPIO0	EINT0		U1RTS	SCL1	I2S_RX	JTDI		WIFI_ANT_S ELO	BT_PRI1	PWM0
GPIO_1	GPIO1	EINT1		U1CTS	SDA1	I2S_TX	JTMS		WIFI_ANT_S EL1	BT_PRI3	PWM1
GPIO_2	GPIO2	EINT2		URXD1	PWM0	I2S_WS	JTCK	CLKO0		BT_PRIO	WIFI_ANT_S EL4
GPIO_3	GPIO3	EINT3		UTXD1	PWM1	I2S_CK	JTRST_B			WIFI_ANT_S EL2	I2S_CK
GPIO_4	GPIO4	SPISLV_A_SI O2	SPIMST_A_SI O2	EINT4		I2S_MCLK	JTDO			WIFI_ANT_S EL3	I2S_MCLK
GPIO_11	GPIO11	EINT11	PWM3	URXD2	MA_MC0_CK	SLV_MC0_CK	CLKO2			WIFI_ANT_S ELO	I2S_RX
GPIO_12	GPIO12	SPISLV_B_SI O3	SPIMST_B_SI O3	UTXD2	MA_MC0_C M0	SLV_MC0_C M0	EINT12			WIFI_ANT_S EL1	I2S_TX
GPIO_13	GPIO13	SPISLV_B_SI O2	SPIMST_B_SI O2	U2RTS	MA_MC0_D A0	SLV_MC0_D A0	CLKO4		EINT13		I2S_WS
GPIO_14	GPIO14	SPISLV_B_SI O1	SPIMST_B_SI O1	TDM_RX	MA_MC0_D A1	SLV_MC0_D A1	PWM4		EINT14		CLKO4
GPIO_15	GPIO15	SPISLV_B_SI O0	SPIMST_B_SI 00	TDM_TX	MA_MC0_D A2	SLV_MC0_D A2	SCL1		EINT15		PWM3
GPIO_16	GPIO16	SPISLV_B_SC K	SPIMST_B_S CK	TDM_WS	MA_MC0_D A3	SLV_MC0_D A3	SDA1		EINT16		
GPIO_17	GPIO17	SPISLV_B_CS	SPIMST_B_C S	TDM_CK	PWM5	CLKO3	AUXADC0		EINT17		BT_PRIO
GPIO_21	GPIO21	URXD0	EINT19	SCL1		PWM5					
GPIO_22	GPIO22	UTXD0	EINT20								

6. Electrical Characteristics

6.1. Absolute maximum ratings

Table 6.1-1. Absolute maximum ratings for power supply

Symbol or pin name	Description	Min.	Max.	Unit
AVDD33_MISC	Power input -(3.63	V
AVDD33_VRTC	RTC domain power supply (V _{RTC})	-0.3	3.63	V
AVDD18_MLDO	MLDO power output for SF	-0.3	3.63	V
AVDD15_CLDO	CLDO power input from BUCK	-0.3	1.595	V
AVDD33_BUCK	Buck power input (V _{BAT})	-0.3	3.63	V
AVDD12_CLDO	CLDO power output for core power	-0.3	1.265	V

Table 6.1-2. Absolute maximum ratings for I/O power supply

Symbol or pin name	Description N		Typ.1	Typ.2	Max.	Unit
DVDD_IO_0	Power supply for GPIO group 0	1.62	1.8	3.3	3.63	V
DVDD_IO_1	Power supply for GPIO group 1	1.62	1.8	3.3	3.63	V
DVDD_MLDO	Power supply for SF/EMI IO 1.8V group	1.62	1.8	-	1.98	V

Table 6.1-3. Absolute maximum ratings for voltage input

Symbol or pin name	Description	Min.	Max.	Unit
VIN0	Digital input voltage for IO Type 0	-0.3	3.63	V
VIN1	Digital input voltage for IO Type 1	-0.3	5.5	V
VIN2	Digital input voltage for IO Type 2	-0.3	5.5	V
VIN3	Digital input voltage for IO Type 3	-0.3	5.5	V

Table 6.1-4. Absolute maximum ratings for storage temperature

Symbol or pin name	Description	Min.	Max.	Unit
Tstg	Storage temperature	-55	125	°C

6.2. Operating conditions

6.2.1. General operating conditions

Table 6.2-1. General operating conditions

Item	Description	Condition	Min.	Тур.	Max.	Unit
F _{CPU}	Internal Cortex-M4 & TCM & Cache clock	VCORE = 1.15V	0	-	192	MHz

Item	Description	Condition	Min.	Тур.	Max.	Unit
F _{MEMS}	Internal memory (SFC and EMI) related AHB and APB clock. Synchronous with Fcpu.	VCORE = 1.15V	0	-	96	MHz

Table 6.2-2. Recommended operating conditions for power supply

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
AVDD33_MISC	Power input	2.97	3.3	3.63	V
AVDD33_VRTC	RTC domain power supply (V _{RTC})	1.62	3.3	3.63	V
AVDD18_MLDO	MLDO power output for SF	1.62	1.8	1.98	V
AVDD15_CLDO	CLDO power input from BUCK	1.305	1.45	1.595	V
AVDD33_BUCK	Buck power input (V _{BAT})	2.97	3.3	3.63	V
AVDD12_CLDO	CLDO power output for core power	1.035	1.15	1.265	V

Table 6.2-3. Recommended operating conditions for voltage input

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
VIN0	Digital input voltage for IO Type 0	-0.3	-	DVDIO+0.3	V
VIN1	Digital input voltage for IO Type 1	-0.3	-	DVDIO+0.3	V
VIN2	Digital input voltage for IO Type 2	-0.3	-	DVDIO+0.3	V
VIN3	Digital input voltage for IO Type 3	-0.3	-	DVDIO+0.3	V

Table 6.2-4. Recommended operating conditions for operating temperature

Symbol or pin name	Description N		Тур.	Max.	Unit
Тс	Operating temperature	-30	1	85	°C

6.2.2. Input or output port characteristics

Table 6.2-5. Electrical characteristics

Symbol	Description	Cor	ndition	Min.	Тур.	Max.	Unit
DIIH0	Digital high input current	•	PU/PD disabled	-5	-	5	μΑ
	for IO Type 0	•	DVDIO = 3.3, 2.8, 1.8V				
		•	DVDIO * 0.65 < VINO < DVDIO + 0.3V				
		•	PU enabled	-35	-	5	μΑ
		•	DVDIO = 3.3, 2.8, 1.8V				
		•	DVDIO * 0.75 < VINO < DVDIO				

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		 PD enabled DVDIO = 3.3, 2.8, 1.8V DVDIO * 0.75 < VINO < DVDIO 	7	-	70	μА
DIILO	Digital low input current for IO Type 0	 PU/PD disabled DVDIO = 3.3, 2.8, 1.8V -0.3V < VINO < DVDIO * 0.35 	-5	-	5	μΑ
		 PU enabled, DVDIO = 3.3, 2.8, 1.8V 0 < VINO < DVDIO * 0.25 	-60	-	-6	μА
		 PD enabled, DVDIO = 3.3, 2.8, 1.8V 0 < VINO < DVDIO * 0.25 	-5	-	40	μА
DIOH0	Digital high output current for IO Type 0	 DVOH = 2.805V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		 DVOH = 1.53V DVDIO = 1.8V Maximum driving mode 	8	-	-	mA
DIOL0	Digital low output current for IO Type 0	 DVOL = 0.495V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOL = 0.442V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		DVOL = 0.27VDVDIO = 1.8V	8	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		Maximum driving mode				
DRPU0	Digital I/O pull-up	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for IO Type 0	• VIN = 0V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 0				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 0V				
DRPD0	Digital I/O pull-down	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for IO Type 0	• VIN = 3.3V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 2.8V				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 1.8V				
DVOH0	Digital output high voltage for IO Type 0	• DVDIO = 3.3V	2.4	-	-	V
	тог то туре о	• DVDIO = 2.8V	1.89	-	-	V
		• DVDIO = 1.8V	1.215	-	-	V
DVOL0	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 0	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V
DIIH1	Digital high input current	PU/PD disabled	-5	-	5	μΑ
	for IO Type 1	• DVDIO = 3.3, 2.8, 1.8V				
		• DVDIO * 0.65 < VIN1 < DVDIO + 0.3V				
		• DVDIO = 3.3V	-5	-	5	μΑ
		• 4.5V < VIN1 < 5.5V				
		PU enabled	-35		5	μΑ
		• DVDIO = 3.3, 2.8, 1.8V				
		• DVDIO * 0.75 < VIN1 < DVDIO				
		PD enabled	7		70	μΑ
		• DVDIO = 3.3, 2.8, 1.8V				
		• DVDIO * 0.75 < VIN1 < DVDIO				
DIIL1	Digital low input current for IO Type 1	PU/PD disabled	-5	-	5	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		1.8V • -0.3V < VIN1 < DVDIO * 0.35				
		 PU enabled DVDIO = 3.3, 2.8, 1.8V 0 < VIN1 < DVDIO * 0.25 	-60	-	-6	μА
		 PD enabled DVDIO = 3.3, 2.8, 1.8V 0 < VIN1 < DVDIO * 0.25 	-5	-	40	μА
DIOH1	Digital high output current for IO Type 1	 DVOH = 2.805V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		 DVOH = 1.53V DVDIO = 1.8V Maximum driving mode 	8	-	-	mA
DIOL1	Digital low output current for IO Type 1	 DVOL = 0.495V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOL = 0.442V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		 DVOL = 0.27V DVDIO = 1.8V Maximum driving mode 	8	-	-	mA
DRPU1	Digital I/O pull-up resistance for IO Type 1	DVDIO = 3.3VVIN = 0V	40	85	190	kΩ
		DVDIO = 2.8VVIN = 0V	40	85	190	kΩ
		• DVDIO = 1.8V	80	160	320	kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• VIN = 0V				
DRPD1	Digital I/O pull-down	• DVDIO = 3.3V	40	85	190	kΩ
	resistance for IO Type 1	• VIN = 3.3V				
		• DVDIO = 2.8V	40	85	190	kΩ
		• VIN = 2.8V				
		• DVDIO = 1.8V	80	160	320	kΩ
		• VIN = 1.8V				
DVOH1	Digital output high voltage for IO Type 1	• DVDIO = 3.3V	2.4	-	-	V
	for 10 Type 1	• DVDIO = 2.8V	1.89	-	-	V
		• DVDIO = 1.8V	1.215	-	-	V
DVOL1	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 1	• DVDIO = 2.8V	-	-	0.42	٧
		• DVDIO = 1.8V	-	-	0.27	V
DIIH2	Digital high input current	PU/PD disabled	-5	-	5	μΑ
	for IO Type 2	• DVDIO = 3.3, 2.8,				
		1.8V				
		 DVDIO * 0.65 VIN2 < DVDIO + 				
		0.3V				
		• DVDIO = 3.3V	-5	-	5	μΑ
		• 4.5V < VIN2 < 5.5V				
		PU enabled, RSEL1	-60	-	5	μΑ
		• DVDIO = 3.3, 2.8,				
		1.8V • DVDIO * 0.75 <				
		VIN2 < DVDIO				
		PU enabled, RSEL2	-120	-	5	μΑ
		• DVDIO = 3.3, 2.8,				
		1.8V				
		 DVDIO * 0.75 VIN2 < DVDIO 				
		PD enabled, RSEL1	10	-	110	μΑ
		 DVDIO = 3.3, 2.8, 				
		1.8V				
		• DVDIO * 0.75 < VIN2 < DVDIO				
			20	_	220	μΑ
		PD enabled, RSEL2DVDIO = 3.3, 2.8,	20		220	μΑ
		1.8V				
		• DVDIO * 0.75 <				
		VIN2 < DVDIO				

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
DIIL2	Digital low input current for IO Type 2	 PU/PD disabled DVDIO = 3.3, 2.8, 1.8V -0.3V < VIN2 < DVDIO * 0.35 	-5	-	5	μΑ
		 PU enabled, RSEL1 DVDIO = 3.3, 2.8, 1.8V 0 < VIN2 < DVDIO * 0.25 	-100	-	-10	μΑ
		 PU enabled, RSEL2 DVDIO = 3.3, 2.8, 1.8V 0 < VIN2 < DVDIO * 0.25 	-200	-	-20	μΑ
		 PD enabled, RSEL1 DVDIO = 3.3, 2.8, 1.8V 0 < VIN2 < DVDIO * 0.25 	-5	-	60	μΑ
		 PD enabled, RSEL2 DVDIO = 3.3, 2.8, 1.8V 0 < VIN2 < DVDIO * 0.25 	-5	-	120	μΑ
DIOH2	Digital high output current for IO Type 2	 DVOH = 2.805V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		 DVOH = 1.53V DVDIO = 1.8V Maximum driving mode 	8	-	-	mA
DIOL2	Digital low output current for IO Type 2	 DVOL = 0.495V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		• DVOL = 0.42V	20	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• DVDIO = 2.8V				
		 Maximum driving mode 				
		• DVOL = 0.27V	8	-	-	mA
		• DVDIO = 1.8V				
		 Maximum driving mode 				
DRPU2	Digital I/O pull-up	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 2	• VIN = 0V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 0V, RSEL2				
DRPD2	Digital I/O pull-down resistance for IO Type 2	• DVDIO = 3.3V	25	45	100	kΩ
		• VIN = 3.3V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 3.3V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 2.8V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 2.8V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 1.8V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 1.8V, RSEL2				
DVOH2	Digital output high voltage	• DVDIO = 3.3V	2.805	-	-	V
	for IO Type 2	• DVDIO = 2.8V	2.38	-	-	V
		• DVDIO = 1.8V	1.53	-	-	V
DVOL2	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 2	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V
DIIH3	Digital high input current	PU/PD disabled	-5	-	5	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	for IO Type 3	 DVDIO = 3.3, 2.8, 1.8V DVDIO * 0.65 < VIN3 < DVDIO + 0.3V 				
		DVDIO = 3.3V4.5V < VIN3 < 5.5V	-5	-	5	μΑ
		 PU enabled DVDIO = 3.3, 2.8, 1.8V DVDIO * 0.75 < VIN3 < DVDIO 	-35	-	5	μА
		 PD enabled DVDIO = 3.3, 2.8, 1.8V DVDIO * 0.75 < VIN3 < DVDIO 	7	-	70	μА
DIIL3	Digital low input current for IO Type 3	 PU/PD disabled DVDIO = 3.3, 2.8, 1.8V -0.3V < VIN3 < DVDIO * 0.35 	-5	-	5	μА
		 PU enabled, DVDIO = 3.3, 2.8, 1.8V 0 < VIN3 < DVDIO * 0.25 	-60	-	-6	μА
		 PD enabled, DVDIO = 3.3, 2.8, 1.8V 0 < VIN3 < DVDIO * 0.25 	-5	-	40	μА
DIOH3	Digital high output current for IO Type 3	 DVOH = 2.805V DVDIO = 3.3V Maximum driving mode 	24	-	-	mA
		 DVOH = 2.38V DVDIO = 2.8V Maximum driving mode 	20	-	-	mA
		DVOH = 1.53VDVDIO = 1.8VMaximum driving	8	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		mode				
DIOL3	Digital low output current for IO Type 3	• DVOL = 0.495V	24	-	-	mA
	7,1	DVDIO = 3.3V Navigous deiving				
		 Maximum driving mode 				
		• DVOL = 0.42V	20	-	-	mA
		• DVDIO = 2.8V				
		Maximum driving mode				
		• DVOL = 0.27V	8	-	-	mA
		• DVDIO = 1.8V				
		Maximum driving mode				
DRPU3	Digital I/O pull-up	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 3	• VIN = 0V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 0V, RSEL2				
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 0V, RSEL1				
		• DVDIO = 1.8V	25	50	100	kΩ
		• VIN = 0V, RSEL2				
DRPD3	Digital I/O pull-down resistance for IO Type 3	• DVDIO = 3.3V	25	45	100	kΩ
	resistance for to Type 3	• VIN = 3.3V, RSEL1				
		• DVDIO = 3.3V	10	23	50	kΩ
		• VIN = 3.3V, RSEL2				
		• DVDIO = 2.8V	25	45	100	kΩ
		• VIN = 2.8V, RSEL1				
		• DVDIO = 2.8V	10	23	50	kΩ
		• VIN = 2.8V, RSEL2	50	400	200	1.0
		• DVDIO = 1.8V	50	100	200	kΩ
		• VIN = 1.8V, RSEL1	25	F.C.	100	l ₁ C
		• DVDIO = 1.8V	25	50	100	kΩ
DVOII3	Digital autaut high valta -	• VIN = 1.8V, RSEL2	2 005			V
DVOH3	Digital output high voltage for IO Type 3	• DVDIO = 3.3V	2.805	-	-	
	10 1, pc 3	● DVDIO = 2.8V	2.38	-	-	V

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		• DVDIO = 1.8V	1.53	-	-	V
DVOL3	Digital output low voltage	• DVDIO = 3.3V	-	-	0.495	V
	for IO Type 3	• DVDIO = 2.8V	-	-	0.42	V
		• DVDIO = 1.8V	-	-	0.27	V

6.2.3. ESD electrical sensitivity

Table 6.2-6. ESD electrical characteristics of MT7682

ESD mode	Description	Pin name	Min.	Max.	Unit
НВМ	All pins exclude RF pins	JESD22-A114-F	-2000	2000	V
	RF pins	JESD22-A114-F	-1000	1000	V
CDM	All pins exclude RF pins	JESD22-C101-D	-500	500	V
	RF pins	JESD22-C101-D	-250	250	V

7. System Configuration

7.1. Mode selection

Strapping pin definition and condition are listed as Table 7.1-1. Core reset refers to the condition chip changes from either OFF or RETENTION mode to ACTIVE mode

Table 7.1-1. Mode selection table

Mode Selection	Pin name	Description	Trapping condition
XO source frequency select	GPIO_17	GND : XO input is 26MHz (default) DVDD_IO_0 : XO input is 40MHz	Core reset
32kHz clock source select	GPIO_14	GND : 32kHz source is from external DVDD_IO_0 : 32kHz source is from internal (divided from 26/40MHz clock) (default)	Core reset
Boot with host interface (HIF_EN)	GPIO_4	GND : Boot with host interface disabled (default) DVDD_IO_1: Boot with host interface enabled	Core reset
Host interface select (active if HIF_EN is enabled)	GPIO_13	(Active if HIF_EN = 1) GND : Host interface via SPI slave DVDD_IO_0 : Host interface via SDIO slave (default)	Core reset
Boot ROM bypass select	GPIO_16	GND: Boot up bypass boot ROM (directly jump to flash) DVDD_IO_0: Boot up with boot ROM (default)	Core reset
JTAG pins fixed for use	GPIO_15	GND : JTAG pins fixed for JTAG use DVDD_IO_0 : JTAG pins as GPIO (configurable after boot up) (default)	Core reset
UART download	GPIO_12	GND: Enter UART download mode in Boot ROM DVDD_IO_0: Skip UART download in Boot ROM (default)	Core reset or watchdog reset

Note 1: Strapping resistors for default option are implemented as internal pull-down or internal pull-up. (Refer to DRPU* and DRPD* in Table 6.2-5 for internal pull-up and pull-down resistor value.)

Note 2: If non-default option is used, it is recommended to use pull-down or pull-up $10k\Omega$ as external strapping resistors.

Note 3: SDIO master and slave interfaces are limited to 1-bit mode if the 32kHz source is from external.

8. Package Information

8.1. MT7682 mechanical data of the package

ltem		Symbol	MIN.	NOM.	MAX.	
total height		Α	0.80	0.85	0.90	
stand off		A1	0.00	0.02	0.05	
mold thickness		A2	0.60	0.65	0.70	
leadframe thickness		A3		0.20 REF.		
lead width		b	0.15	0.20	0.25	
	Х	D	4.90	5.00	5.10	
package size	Y	E	4.90	5.00	5.10	
E-PAD size	х	D2	3.75	3.85	3.95	
E-PAD SIZE	Υ	E2	3.75	3.85	3.95	
lead length		L	0.250	0.325	0.400	
lead pitch		е	0.40 bsc			
lead arc		R	0.075			
Package profile of a sur	face	aaa		0.10		
Lead position		bbb		0.07		
Paralleliam		ccc		0.10		
Lead position		ddd	0.05			
Lead profile of a surface	eee	0.08				
Epad position		fff		0.10		

Figure 8.1-1. Outlines and dimensions of MT7682 SQFN 5 mm*5 mm*0.9 mm, 40-pin package

8.2. MT7682 thermal operating specifications

Table 8.2-1. MT7682 thermal operating specifications

Description	Value	Unit
Thermal resistance from device junction to package case	57.8	C/W

Note: MTK RFB FR4 2 Layers PCB size: 21.5x35.5mm

8.3. MT7682 lead-frame packaging

The MT7682 platform is provided in a lead-free package and meets RoHS requirements.

9. Ordering Information

9.1. MT7682 top marking definition

Line 1 : MEDIATEK LOGO Line 2 : ARM LOGO Line 3 : Part Number Line 4 : Date Code Line 5 : Die 1 Lot Number Line 6 : Die 2 Lot Number

Figure 9.1-1. Mass production top marking of MT7682

Table 9.1-1. Ordering information

Product number	Package	Description
MT7682SN	SQFN	5 x 5 x 0.9 mm 40-pin QFN with 0.4mm lead pitch