

Indian Institute of Technology, Bombay Department of Electrical Engineering Electronic Devices Lab(EE-236)

Quiz 1, Date: Feb 02, 2022

Timing: 2:00 PM to 4:00 PM Spring 2022 Max marks: 10

1 Instructions

- You are allowed to use only those models that have been provided. You can download by clicking the name.
- You need not edit any model file.
- You can use previous lab report, netlist.

2 Problem Statements

- 1. You have been given a full wave precision rectifier circuit (see Figure 1) and a subcircuit model, let's call it black_box. Your task is as follows,
 - Understand the given model (i.e. black_box). Use it to write the netlist of the given circuit (see Figure 1).

 (1.5 Marks)
 - Plot the output response (Vout) of the circuit for sine input of 1 Vpeak and frequency
 1 kHz.

 (0.5 Marks)
 - Plot the transfer characteristics (Vout vs Vin) of this circuit and comment how transfer characteristics different from that of a full wave rectifier made using 1N4007 (Si diode). (0.5 + 0.5 Marks)

Figure 1: Circuit Diagram

The following models are given to you (Click on the names)

- OpAmp_UA741.
- Black Box

- 2. In this particular part, we want you to plot I-V characteristics of two different diodes. These are fabricated from different materials, let's call them X and Y. (0.5 Marks)
 - You are expected to tabulate Forward Voltage, Reverse Saturation Current,
 Peak Inverse Voltage(PIV) and Ideality factor of each diode. Note your observations and comment.
 - Bandgap of Silicon is 1.14eV and bandgap of Germanium is 0.67eV.
 - Suggest an application where one can use diode X, instead of diode Y. (0.5 Marks)

The following models are given to you (Click on the names)

- Diode X.
- Diode Y.
- 3. Plot and comment on C_{DUT} vs $|V_{DUT}|$ characteristics of a **Schottky diode**, where C_{DUT} is junction capacitance and $|V_{DUT}|$ is reverse voltage. (2 Marks)
 - Similarly, plot $1/C^2$ vs V_{DUT} of a Schottky diode. Find doping density $(N_D \text{ in } atoms/cm^3)$ and diode's built in potential $(V_{bi} \text{ in volts})$ from the plot. You may refer equations mentioned in page 3. (2 Marks)

NOTE:

• Here C is normalized junction capacitance= C_{DUT} /Area consider Area= 1μ m x 1μ m (Hypothetical value)

Purpose of small sinusoidal input signal:

- The capacitance at any given DC reverse bias is obtained by varying the charge around that corresponding depletion region edge by adding a small sinusoidal ac signal (1 Vpp, 100 kHz).
- Here TL071 is a high-speed JFET based operational amplifier (use $\pm 15V$ supply voltage) and design under test (DUT) is a Schottky diode.

The following models are given to you (Click on the names)

- Schottky diode: BAT85
- Op-Amp: TL071

Figure 2: Circuit for measurement of C-V characteristics of a Schottky diode.

Formulas

- Transfer function : $|V_{out}/V_{DUT}| = (C_{DUT}/C_{fb})(1/\sqrt{1+1/(\omega.R_{fb}.C_{fb})^2})$
- $1/C^2 = (2/q\varepsilon N_D)(V_{bi} V_R)$ where V_{bi} is diode built in potential
- V_R is diode reverse voltage = V_{DUT}
- q is charge of electron = $1.602 * 10^{-19}$ coulombs
- $\bullet~N_D$ is doping density, C is diode junction capacitance per unit area= $C_{DUT}/Area$