

Advanced Network Security

Lecture 11: Demystifying 5G

Harald Vranken, Katharina Kohls May 17th, 2021

Open University Nijmegen Radboud University Nijmegen

Recap

- (1) Clarifying Imp4Gt
 - Encryption oracle: Inject arbitrary packets in uplink direction
 - Depends on the Ping reflection
- (2) ReVoLTE
 - Exploiting keystream reuse in VoLTE calls
 - Record target call
 - Place subsequent call, recover keystream, decrypt
- (3) Required Background
 - ROHC and Codecs
 - VoLTE AKA and SRTP
 - IMS and data bearers
 - Keystream generation

This Lecture

4G versus 5G

- ▶ 4G is deployed and used by millions...
- ▶ 5G is in a transition state
- ► We can measure and test what happens in 4G...
- ▶ and for 5G it's sometimes not even specified.

This Lecture

Interactive Lecture!

- ▶ Introduction to 5G and some basics
- Selected topics
- ► Investigate blind spots

The 5G Wonderland

Technical Background

5G Improvements

The 5G Wonderland

Buzzword Bingo!

Buzzword Bingo

The 5G Wonderland

Fifth Mobile Generation

5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices.¹

¹https://www.qualcomm.com/5g/what-is-5g

Qualcomm about 5G

5G is designed to deliver peak data rates up to 20 Gbps ...the Qualcomm[™] Snapdragon[™] X65 is designed to achieve up to 10 Gbps in downlink peak data rates.

But 5G is about more than just how fast it is. In addition to higher peak data rates, 5G is designed to provide much more network capacity by expanding into new spectrum, such as mmWave.

5G can also deliver much lower latency for a more immediate response and can provide an overall more uniform user experience so that the data rates stay consistently high—even when users are moving around.²

²https://www.qualcomm.com/5g/what-is-5g

The answer to everything

What are possible use cases for 5G?

The answer to everything... where can I get it?

https://antennekaart.nl

Technical Background

Network Components

Component	4G	5 G	lcon
Phone	UE	UE	
Base Station	eNodeB	gNodeB	('A')
Core Network	EPC	5GC	:
Internet	IP Network	IP Network	

5G Deployment

5G Non-Standalone (5G NSA)

- ► 5G Network supported by existing 4G RAN and EPC
- Dual Connectivity: UE simultaneously connected to LTE cell and 5G NR cell
- ▶ Best option for early deployment
- Quick creation of 5G coverage

5G Standalone (5G SA)

- ► 5G network without support from 4G RAN infrastructure
- ▶ 5G NR coverage
- Simplification and improved efficiency compared to NSA operation
- ► Final target architecture

Protocol Stack: Control Plane

Protocol Stack: PHY, MAC

NAS-SM NAS-MM RRC **PDCP RLC** MAC PHY UE

PHY, MAC

- ► Physical Layer (PHY)
 - Receive and send signals
 - Multiplexing
- ▶ Medium Access Control (MAC)
 - Scheduling
 - RNTI
 - Error correction
 - Retransmissions

Protocol Stack: Radio Link Control (RLC)

NAS-SM NAS-MM RRC **PDCP RLC** MAC PHY

Radio Link Control (RLC)

- ► Transfer upper layer data units in three different modes
 - (1) Acknowledged Mode
 - (2) Unacknowledged Mode
 - (3) Transparent Mode

UE

Protocol Stack: Packet Data Convergence Protocol (PDCP)

NAS-SM NAS-MM RRC **PDCP RLC** MAC

Packet Data Convergence Protocol (PDCP)

- ► Robust Header Compression (ROHC)
- ➤ Separation of user plane (IP) and control plane (RRC)
- Encryption of control and user plane
- ▶ Integrity protection of control plane

UE

PHY

Protocol Stack: Radio Resource Control (RRC)

NAS-SM NAS-MM RRC PDCP **RLC** MAC PHY

Radio Resource Control (RRC)

- ► Establish and release RRC connection
- Assign Radio Network Temporary Identity (RNTI)
- Establish data bearers
- ► Measurement configuration, reporting

UE

Protocol Stack: NAS Mobility Management (NAS-MM)

NAS-SM NAS-MM RRC **PDCP RLC** MAC

NAS Mobility Management (NAS-MM)

- Mobility management (paging)
- Identity management
- ► Authentication

UE

PHY

Protocol Stack: NAS Session Management (NAS-SM)

NAS Session Management (NAS-SM)

- ► Establish and manage communication links
- Assign IP address
- Quality of Service

UE

5G Improvements

5G Improvements

Service-Based Architecture Unified Accessagnostic

Authentication

5GC-EPS
Interworking Security

RAN Security
DU-CU Split

User Plane
Integrity Protection

Primary

Authentication

Visibility Configurability Interconnection
Security SEPP

Enhanced Subscriber Privacy Increased
Home Control

Secondary

Authencication

Initial NAS
Message Protection

Service-Based Architecture

Reference Point Architecture

Service-Based Architecture

Service-Based Architecture

- ▶ REST/HTTPS-based interfaces
- ► Third party applications in the core network
- Cloud-based deployment
- ▶ New core network vendors

What are possible challenges of the service-based architecture?

- ▶ Correct implementation
- ▶ Trust between entities

5G Improvements

Service-Based Architecture Unified Accessagnostic

Authentication

5GC-EPS
Interworking Security

RAN Security
DU-CU Split

User Plane
Integrity Protection

Primary Authentication Visibility Configurability Interconnection
Security SEPP

Enhanced Subscriber Privacy Increased
Home Control

Secondary

Authencication

Initial NAS
Message Protection

4G: Plaintext Modification

There is no integrity protection for user plane traffic!

4G: Plaintext Modification

- ▶ PDCP encrypts IP packet
- ▶ Stream cipher: AES in counter mode
- ► XOR manipulation mask *m*
- ▶ Deterministic manipulation
- Manipulation remains undetected

User Plane Integrity Protection

Mandatory Integrity Protection

- ▶ 4G: No integrity protection for user plane data
- ▶ User data redirection (L8), Full Impersonation (L9)
- ► 5G: Mandatory to support
- ▶ Optional to use by operator

What are challenges of mandatory integrity protection?

- Overhead
- Deployment

5G Improvements

Service-Based Architecture Unified Accessagnostic

Authentication

5GC-EPS
Interworking Security

RAN Security
DU-CU Split

User Plane
Integrity Protection

Primary

Authentication

Visibility Configurability Interconnection
Security SEPP

Enhanced Subscriber Privacy Increased
Home Control

Secondary

Authencication

Initial NAS
Message Protection

Interconnection

Country A Visiting

Country B

Home

What does "Interconnection" mean?

- ▶ Roaming
- ► You connect to the local network
- ➤ Your credentials are in the home network
- ▶ Both networks must connect

Roaming Architecture in 4G

HPLMN and **VPLMN**

Home versus visiting network

- ▶ The HPLMN is the home network.
 - This is where your SIM card is from.
 - Key components like the HSS are always at home.
- ► The VPLMN is the visiting network.
 - This is where you currently are.
 - In case you are in your SIM'c home country, HPLMN = VPLMN

Home Routing and Local Breakout

Local Breakout versus Home Routing

- ► There are two modes of operation
- **▶** Local Breakout
 - You use the infrastructure of the VPLMN
 - The HPLMN is only involved in the AKA

► Home Routing

- The S-GW routes your traffic to the home network.
- You use a P-GW in the HPLMN

Interconnection Security SEPP

Before 5G

- ► SS7 network (70s) based on trust
- ► Many attacks on user tracking, eavesdropping

5G Standalone

- Security Edge Protection Proxy (SEPP)
- ► HTTPS and PRotocol for N32 INterconnect Security (PRINS)

Control Traffic

Interconnection Security

- ▶ SS7, Diameter, SEPP, PRINS...
- ▶ Only for control traffic!
- ▶ Problem: SS7 remains as fallback!
- ► What happens to user plane roaming traffic?

Investigate

Questions

- ▶ We know about the control plane, but what happens to user plane traffic?
- ▶ What transport protocols are used for the user plane traffic?

Hints

- Read the specification: EPS Roaming Guidelines Version 22.0 IR.88-v22.0_lecture_11.pdf
- ► Focus on LTE, that's OK for now
- ▶ If you find GTP you're on the right track!

Some answers

What happens to user plane traffic?

- ▶ Local breakout (using the VPLMN's local gateway) or home routed
- ▶ Home routed traffic is sent over the N9 interface which uses the GPRS tunneling protocol (GTP). GTP uses UDP.
- Same as LTE and before, home routed traffic sent via SEPP

How does the SEPP stack differ from the SS7 stack?

- ► HTTP/2 and JSON, using TLS
- ► SS7 uses its own stack

5G Improvements

Service-Based Architecture Unified Accessagnostic

Authentication

5GC-EPS
Interworking Security

RAN Security
DU-CU Split

User Plane
Integrity Protection

Primary

Authentication

Visibility Configurability Interconnection
Security SEPP

Enhanced Subscriber Privacy Increased
Home Control

Secondary
Authencication

Initial NAS
Message Protection

Enhanced Subscriber Privacy

Permanent and Temporary

- ▶ Unique identifier on the SIM card
- Because AKA uses a shared symmetric key, it can only happen after user identification
- ➤ Sending the IMSI/SUPI in plaintext means a user can be identified and tracked ②
- ► To avoid this, temporary identifiers are used!

	4G	5G
Permanent	IMSI	SUPI
Temporary	TMSI	GUTI

First Contact

It's not always possible to use the temporary identifiers.

When does a temporary identifier not work?

Contacting the Network

- Temporary identifiers need to be assigned
- When the user visits for the first time, there is no TMSI/GUTI for the user
- ► Special case: IMSI/SUPI cannot be derived from the TMSI/GUTI

4G IMSI Catchers

Man-in-the-Middle

- (1) UE connects to legitimate eNodeB (X)
- (2) Attacker places a fake base station 🙀
- (3) Stronger signal makes user connect to fake bts (A)
- (4) Attacker can force the user to share permanent identifiers!

IMSI Catcher Protection in 5G

Backward Compatibility

- ▶ 2G/3G/4G are vulnerable to IMSI catchers
- ▶ Main reason: Backward compatibility
- ▶ 5G solves the problem at the cost of backward compatibility

How do they do it?

No Plaintext Transmission of Permanent Identifiers

Subscription Concealed Identifier (SUCI)

- Whenever the SUPI is needed, a concealed version is sent instead
- Elliptic Curve Integrated Encryption Scheme (ECIES) ³
- ▶ The SUCI is sent instead of the plaintext permanent SUPI

³ECIES combines a Key Encapsulation Mechanism with a Data Encapsulation Mechanism. It derives a bulk encryption key and MAC key from a common secret. It's a hybrid scheme that uses an asymmetric approach to send a symmetric key.

5G Identity Exchange

From SUPI to SUCI

From SUPI to SUCI

- ► The SUPI consists of
 - IMSI: Standard case we know from 4G; unique personal number
 - NAI: New 5G setting, personal address like user@homerealm.example.net
- ▶ IMSI has MCC and MNC as "preamble", example KPN Telecom B.V.:
 - MCC 204
 - MNC 69
- MSIN is a personal, permanent, unique number
- ▶ Needs protection, gets encrypted using a fresh input and a public key

From SUPI to SUCI - Encryption — Step 1

INPUT

From SUPI to SUCI - Encryption — Step 2

From SUPI to SUCI - Encryption — Step 3

From SUPI to SUCI - Encryption - Step 4

From SUPI to SUCI - Encryption - Step 5

5G Identity Exchange

From SUCI to SUPI - Decryption — Step 1

From SUCI to SUPI – Decryption — Step 2

From SUCI to SUPI - Decryption — Step 3

From SUCI to SUPI - Decryption — Step 4

Trace Analysis

 $\tt registration_request_suci.pcapng$

SUCI Decryption

SUPI Encryption

Packet 1

```
√-5GS mobile identity

   -Lenath: 52
   -0... = Spare: 0
   -.000 .... = SUPI format: IMSI (0)
   -.... 0... = Spare: 0
   -\dots .001 = Type of identity: SUCI (1)
   - Mobile Country Code (MCC): France (208)
   - Mobile Network Code (MNC): Thales communications & Security (93)
   -Routing indicator: 0
   -.... 0001 = Protection scheme Id: ECIES scheme profile A (1)
    Home network public kev identifier: 0
  Scheme output: 7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c40431a0371c...
       ECC ephemeral public key: 7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c404
       Ciphertext: 31a0371c
     MAC tag: 0x7bdd02efd7162ba2
```

SUPI Encryption

Packet 2

```
√-5GS mobile identity

   -Length: 52
  _0... = Spare: 0
   -.000 .... = SUPI format: IMSI (0)
   -.... 0... = Spare: 0
   -\dots .001 = Type of identity: SUCI (1)
   - Mobile Country Code (MCC): France (208)
   - Mobile Network Code (MNC): Thales communications & Security (93)
   -Routing indicator: 0
   — .... 0001 = Protection scheme Id: ECIES scheme profile A (1)
    Home network public kev identifier: 0
  Scheme output: b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c283492392f1fd3e7...
       ECC ephemeral public key: b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c28349239
      -Ciphertext: 2f1fd3e7
     ∟MAC tag: 0xe158a42f076118da
```

CryptoMobile Example

What we will do:

- ► Install the CryptoMobile lib
- ▶ Prepare the keys
- ► Load the SUCIs from the PCAPs
- ▶ Recover the IMSIs from them

Demo: CryptoMobile

Example (Linux Machine)

```
git clone https://github.com/P1sec/CryptoMobile.git
cd CryptoMobile
python setup.py install
```

Demo: CryptoMobile

```
from CryptoMobile.EC import *
from CryptoMobile.ECIES import *
import binascii

# Setting up home network UDM environment
ec = X25519(binascii.unhexlify(
   'c53c22208b61860b06c62e5406a7b330c2b577aa5558981510d128247d38bd1d'))
hn_privkey = ec.get_privkey()
hn_pubkey = ec.get_pubkey()
binascii.hexlify(hn_pubkey)
b'5a8d38864820197c3394b92613b20b91633cbd897119273bf8e4a6f4eec0a650'
hn = ECIES_HN(hn_privkey, profile='A')
```

Demo: CryptoMobile

```
# Decrypting incoming SUCI A from PCAP
ue_pubkey = binascii.unhexlify(
  '7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c404')
ue_ciphertext = binascii.unhexlify('31a0371c')
ue_mac = binascii.unhexlify('7bdd02efd7162ba2')
hn_msin = hn.unprotect(ue_pubkey, ue_ciphertext, ue_mac)
binascii.hexlify(hn_msin)
> b'00000100'
# IMSI is 2089300000100 MCC and MNC in cleartext PCAP
# Decrypting incoming SUCI B from PCAP
ue_pubkey = binascii.unhexlify(
  'b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c28349239')
ue_ciphertext = binascii.unhexlify('2f1fd3e7')
ue_mac = binascii.unhexlify('e158a42f076118da')
hn_msin = hn.unprotect(ue_pubkey, ue_ciphertext, ue_mac)
binascii.hexlify(hn_msin)
> b'00000101'
# IMSI is 2089300000101 MCC and MNC in cleartext PCAP
```

Summary

Introduction to 5G

- ▶ The 5G wonderland
 - 20Gbps, ultra low latency
 - New use cases, new network concepts
- Improvements
 - Service-based architecture
 - User plane integrity protection
 - Interconnection security
 - Enhanced subscriber privacy
- Digging through the specification
- Decrypting SUCIs

Acronyms

5G NR 5G New Radio

5G NSA 5G Non-Standalone

5G SA 5G Standalone

5GC 5G Core

AF Application Function

AMF Access and Mobility Management Function

AKA Authentication and Key Agreement

AUSF Authentication Server Function

eNodeB Evolved NodeB

ECIES Elliptic Curve Integrated Encryption Scheme

EEA EPS Encryption Algorithm

EPC Evolved Packet Core

E-UTRAN Evolved Universal Terrestrial Radio Access

gNodeB gNodeB

GUTI Global Unique Temporary Identifier

HPLMN Home PLMN

HSS Home Subscriber ServiceIMS IP Multimedia Subsystem

IMSI International Mobile Subscriber Identity

MAC Medium Access Control

MCC Mobile Country Code

MME Mobility Management Entity

MNC Mobile Network Code

Mobile Retwork Code

MSIN Mobile Station Identification Number

NAI Network Access Identifier

NAS Non-Access Stratum

NAS-MM NAS Mobility Management

NAS-SM NAS Session Management

NEF Network Exposure Function

NGAP NG Application Protocol

NRF Network Respository Function

NSSF Network Slice Selection Function

P-GW PDN Gateway

PCF Policy Control Function

PCRF Policy and Charging Rules Function

PDCP Packet Data Convergence Protocol

PDN Packet Data Network

PHY Physical Layer

PRINS PRotocol for N32 INterconnect Security

RAN Radio Access Network
RA-RNTI Random Access RNTI

RLC Radio Link Control

RNTI Radio Network Temporary Identity

ROHC Robust Header Compression
RRC Radio Resource Control

RTP Real-Time Transport Protocol

SCTP Stream Control Transmission Protocol

SMF Session Management Function

S-GW Serving Gateway

SEPP Security Edge Protection Proxy

SIP Session Initiation Protocol

SMF Session Management Function

SRTP Secure Real-Time Transport Protocol

SUCI Subscription Concealed Identifier
SUPI Subscription Permanent Identifier

SS7 Signalling System 7

TMSI Temporary Mobile Subscriber Identity

UE User Equipment

UDM Unified Data Management

UPF User Plane Function

VPLMN Visiting PLMN