1. (10 puntos) Complete las demostraciones de las reglas de asignación de la pro-	esen-
tación de la semana 7.	

Regla de asignación

En el análisis discriminante se asigna X=x a la clase con mayor $\delta_k(x)$ donde:

$$\delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Teorema de Bayes:
$$P(B_i | A) = \frac{P(D_i \cap A)}{\sum_{\ell=1}^{K} P(B_i \cap A)} = \frac{P(B_i) P(A|B_i)}{\sum_{\ell=1}^{K} P(B_i) P(A|B_i)}$$

Aplicación del teorema de Bayes:
$$P(Y=K|X=x) = \frac{\int_{K} (x) \pi_{K}}{\sum_{k=1}^{K} \int_{L} (x) \pi_{k}}$$

$$X \sim N(\mu, \sigma^2) \Rightarrow P(Y = K(X = x)) = \frac{\pi_K \cdot \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{1}{2\sigma^2}(x - \mu_K)^2\right)}{\sum_{s=1}^{K} \pi_s \cdot \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{1}{2\sigma^2}(x - \mu_K)^2\right)}$$

Note que el denominador <u>no</u> depende de K, por lo que se puede amitir para la comparación de clases. Al aplicar $log(\pi_N \cdot f_N(x))$ se obtiene:

$$log(\Pi_{K} \cdot f_{K}(X)) = log(\Pi_{K}) + log\left(\frac{1}{\sqrt{2\pi} \tau} \cdot exp\left(\frac{-(x-\mu_{K})^{2}}{2\tau^{2}}\right)\right)$$

$$= log(\Pi_{K}) + log\left(\frac{1}{\sqrt{2\pi} \tau}\right) + log\left(exp\left(\frac{-(x-\mu_{K})^{2}}{2\tau^{2}}\right)\right)$$

$$= log(\Pi_{K}) + log\left(\frac{1}{\sqrt{2\pi} \tau}\right) - \frac{(x-\mu_{K})^{2}}{2\tau^{2}}$$

$$= log(\Pi_{K}) + log\left(\frac{1}{\sqrt{2\pi} \tau}\right) - \frac{(x^{2} - 2x\mu_{K} + \mu_{K}^{2})}{2\tau^{2}}$$

$$= log(\Pi_{K}) + log\left(\frac{1}{\sqrt{2\pi} \tau}\right) - \frac{x^{2} + 2x\mu_{K} - \mu_{K}^{2}}{2\tau^{2}}$$

Nuevamente se omiten los términos que no dependen de h:

=
$$\log(\pi_K) + \frac{\chi \mu_K - \mu_K^2}{\sigma^2}$$

$$\frac{...}{\sigma^2} \frac{\delta_{\mathsf{H}}(x) = x \cdot \mu_{\mathsf{H}} - \mu_{\mathsf{H}}^2 + Log(\pi_{\mathsf{H}})}{\sigma^2}$$

Regla de asignación

El Análisis Discriminante asigna X=x a la clase con mayor $\hat{\delta}_k(x)$ donde

$$\hat{\delta}_k(x) = x \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\sigma^2} + \log \hat{\pi}_k$$

La prueba es análoga a la anterior, $\hat{f}_{\kappa}(x)$ se define como:

$$\hat{f}_{h}(x) = \frac{1}{\sqrt{2\pi} \hat{\sigma}} \exp\left(-\frac{(x - \hat{\mu}_{h})^{2}}{2\hat{\sigma}^{2}}\right)$$

Se aplica log(fin: fn(x)):

$$log(\widehat{\pi}_{\mathsf{N}} \cdot \widehat{f}_{\mathsf{N}}(x)) = log(\widehat{\pi}_{\mathsf{N}}) + log\left(\frac{1}{\sqrt{2\pi} \, \widehat{\mathfrak{T}}} \cdot exp\left(\frac{-(x-\widehat{\mu}_{\mathsf{N}})^2}{2\widehat{\mathfrak{T}}^2}\right)\right)$$

$$= log(\widehat{\pi}_{\mathsf{N}}) + log\left(\frac{1}{\sqrt{2\pi} \, \widehat{\mathfrak{T}}}\right) + log\left(exp\left(\frac{-(x-\widehat{\mu}_{\mathsf{N}})^2}{2\widehat{\mathfrak{T}}^2}\right)\right)$$

$$= log(\widehat{\pi}_{\mathsf{N}}) + log\left(\frac{1}{\sqrt{2\pi} \, \widehat{\mathfrak{T}}}\right) - \frac{(x-\widehat{\mu}_{\mathsf{N}})^2}{2\widehat{\mathfrak{T}}^2}$$

$$= log(\widehat{\pi}_{\mathsf{N}}) + log\left(\frac{1}{\sqrt{2\pi} \, \widehat{\mathfrak{T}}}\right) - \frac{(x^2 - 2x\widehat{\mu}_{\mathsf{N}} + \widehat{\mu}_{\mathsf{N}}^2)}{2\widehat{\mathfrak{T}}^2}$$

$$= log(\widehat{\pi}_{\mathsf{N}}) + log\left(\frac{1}{\sqrt{2\pi} \, \widehat{\mathfrak{T}}}\right) - \frac{x^2 + 2x\widehat{\mu}_{\mathsf{N}} - \widehat{\mu}_{\mathsf{N}}^2}{2\widehat{\mathfrak{T}}^2}$$

Nuevamente se omiten los términos que no dependen de h:

=
$$log(\hat{\pi}_{\kappa}) + \frac{\chi \hat{\mu}_{\kappa} - \hat{\mu}_{\kappa}^2}{\hat{\sigma}^2}$$

En el caso de $p>1$ predictores, el clasificador LDA asume que las individuos en la clase k sigue una distribución Gaussiana Multivariada con media μ_k , y Σ es la matriz de covarianzas
igual para todas las clases.
Regla de asignación
El análisis discriminante asigna $X=x$ a la clase con mayor $\delta_k(x)$ donde:
$\delta_k(x) = x^t \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^t \Sigma^{-1} \mu_k + \log(\pi_k)$
La Normal Multivariada se define como:
$\int (x) = \frac{1}{(2\pi)^{p/2} \Sigma ^{1/2}} exp\left(-\frac{1}{2} \cdot (x - \mu_{K})^{t} \Sigma^{-1} (x - \mu_{K})\right)$
Aplicando Log(Tn·fn(x1):
$log(\pi_{h} \cdot f_{h}(x)) = log(\pi_{h}) + \frac{1}{2} \cdot (x - \mu_{k})^{t} \Sigma^{-1}(x - \mu_{k})$
$= log(\pi_{k}) - \frac{\sum_{k} \left[\chi^{t} \cdot \chi - \chi^{t} \cdot \mu_{k} - \chi \mu_{k}^{t} + \mu_{k}^{t} \mu_{k} \right]$
$= log(\pi_{K}) - \frac{\Sigma^{-1} \left[\chi^{t} \cdot \chi - \chi^{t} \cdot \mu_{K} - \chi \mu_{K}^{t} + \mu_{K}^{t} \mu_{K} \right]}{2}$ $= log(\pi_{K}) + \frac{1}{2} \cdot \chi^{t} \Sigma^{-1} \mu_{K} + \frac{1}{2} \cdot \mu_{K}^{t} \Sigma^{-1} \chi - \frac{1}{2} \cdot \mu_{K}^{t} \Sigma^{-1} \mu_{K}$
Note que xt Z-1 µm = µm Z-1x, por tanto:
= log(π _K) + x ^t Σ ⁻¹ μ _K - 1/2 μ _K Σ ⁻¹ μ _K
$\delta_{\mathbf{n}}(\mathbf{x}) = \mathbf{x}^{L} \mathbf{\Sigma}^{I} \mu_{\mathbf{n}} - 1 \mu_{\mathbf{n}}^{L} \mathbf{\Sigma}^{I} \mu_{\mathbf{n}} + \log(\pi_{\mathbf{n}}) / 2$
2

Regla de asignación

El QDA asigna X=x a la clase con mayor $\delta_k(x)$ donde:

$$\begin{split} \delta_k(x) &= -\frac{1}{2}\log|\mathbf{\Sigma}_k| - \frac{1}{2}(x - \mu_k)^T\mathbf{\Sigma}_k^{-1}(x - \mu_k) + \log\pi_k. \\ &= -\frac{1}{2}\mathbf{x}^t\boldsymbol{\Sigma}_k^{-1}\mathbf{x} + \mathbf{x}^t\boldsymbol{\Sigma}_k^{-1}\mu_k - \frac{1}{2}\mu_k^t\boldsymbol{\Sigma}_k^{-1}\mu_k + \log(\pi_k) - \frac{1}{2}\log(1\mathbf{\Sigma}_k\mathbf{I}). \end{split}$$

$$f(x) = \frac{1}{(2\pi)^{\rho/2} |\Sigma_{\kappa}|^{1/2}} exp\left(\frac{1}{2} (x-\mu)^{\epsilon} \sum_{\kappa}^{-1} (x-\mu)^{\kappa}\right)$$

Aplicando Log(ITn fn(x)):

$$log(\Pi_{h} \cdot f_{h}(x)) = log(\Pi_{h}) - \frac{1}{2} \cdot (x - \mu_{k})^{t} \Sigma_{h}^{-1} (x - \mu_{k}) - log(|\Sigma_{k}|)^{1/2}$$

$$= log(\Pi_{h}) - \frac{1}{2} \cdot \Sigma_{h}^{-1} (x^{t} \cdot x - x^{t} \mu_{k} - \mu_{k}^{t} x + \mu_{h}^{t} \mu_{k}) - \frac{1}{2} log(|\Sigma_{h}|)$$

$$= log(\Pi_{h}) - \frac{1}{2} x^{t} \Sigma_{h}^{-1} x + \frac{1}{2} x^{t} \Sigma_{h}^{-1} \mu_{h} + \frac{1}{2} \mu_{h}^{t} \Sigma_{h}^{-1} x - \frac{1}{2} \mu_{h}^{t} \Sigma_{h}^{-1} \mu_{h} - \frac{1}{2} log(|\Sigma_{k}|)$$

Note que xt Z hun = µh Z x, por tanto:

$$\frac{1}{2} \log(\pi_{K}) - \frac{1}{2} x^{L} \sum_{n}^{1} x + x^{L} \sum_{n}^{1} \mu_{K} - \frac{1}{2} \mu_{K}^{L} \sum_{n}^{1} \mu_{K} - \frac{1}{2} \log(|\Sigma_{K}|)$$

$$\frac{1}{2} \delta_{n}(x) = \frac{1}{2} \log(|\Sigma_{k}|) - \frac{1}{2} x^{t} \Sigma_{n}^{-1} x + x^{t} \Sigma_{n}^{-1} \mu_{n} - \frac{1}{2} \mu_{n}^{t} \Sigma_{n}^{-1} \mu_{n} + \log|\pi_{n}|$$

3) Demuestre lo siguiente:

a)
$$V = V_B + V_W$$

b)
$$\sum_{s=1}^{r} q_s g_s = 0$$
, por tanto rango $(C_g) \le r - 1$

c) rango(
$$C_g$$
) = rango(V_B)

1 V= VB+ VW

Definiciones: $V = X^{t}DX = \sum_{i=1}^{n} \rho_{i}x_{i}X_{i}^{t} = \sum_{s=1}^{r} \sum_{i \in I_{s}} \rho_{i}x_{i}X_{i}^{t}$ (matriz covarianza lotal)

$$V_{W} = \sum_{s=1}^{r} q_{s} V_{s} = \sum_{s=1}^{r} \sum_{i \in G} \rho_{i} (x_{i} - g_{s})(x_{i} - g_{s})^{t}$$
 (matriz covarianza intra-clase)

$$V_{B} + V_{W} = \sum_{s=1}^{r} q_{s} g_{s} g_{s}^{L} + \sum_{s=1}^{r} \sum_{i \in C_{s}} \rho_{i} (X_{i} - g_{s}) (X_{i} - g_{s})^{L}$$

$$= \sum_{s=1}^{r} q_s g_s g_s^{t} + \sum_{s=1}^{r} \sum_{i \in (s)} p_i (x_i - g_s) (x_i^{t} - g_s^{t})$$

$$= \sum_{s=1}^{r} q_{s} g_{s}^{t} + \sum_{s=1}^{r} \sum_{i \in C_{s}} p_{i} \left(\chi_{i} \chi_{i}^{t} - \chi_{i} g_{s}^{t} - \chi_{i}^{t} g_{s}^{t} + g_{s} g_{s}^{t} \right)$$

$$= \sum_{s=1}^{t} q_{s} g_{s}^{t} + \sum_{s=1}^{r} \sum_{i \neq t} \rho_{i} \chi_{i} \chi_{i}^{t} - \rho_{i} \chi_{i} g_{s}^{t} - \rho_{i} \chi_{i}^{t} g_{s} + \rho_{i} g_{s} g_{s}^{t}$$

Observe que $q_s = \sum_{i \in C_s} \rho_i$, $q_s = \frac{1}{q_s} \sum_{i \in C_s} \rho_i x_i = \sum_{i \in C_s} \rho_i x_i = q_s$, por lo tanto:

$$= \sum_{s=1}^{L} \sum_{i \in I_{s}} p_{i} x_{i} x_{i}^{t} + \sum_{s=1}^{L} q_{s} q_{s}^{t} - q_{s} q_{s}^{t} - q_{s} q_{s}^{t} - q_{s} q_{s}^{t} + q_{s} q_{s}^{t}$$

$$= \sum_{S=1}^{r} \sum_{i \notin \ell_{S}} p_{i} x_{i} x_{i}^{t}$$

b) $\sum_{s=1}^{r} q_s q_s = 0$, por tento rango $(C_g) \leq r - 1$

$$\sum_{s=1}^{r} q_{s} q_{s} = \sum_{s=r}^{r} q_{s} \cdot \frac{1}{q_{s}} \sum_{i \in l_{s}} p_{i} x_{i}$$

$$= \sum_{s=1}^{r} \sum_{i \in C_s} \rho_i \chi_i$$

=0 -> Debido a que X está centrada

El rango es el número maximo de filas o columnas linealmente independientes de la
matriz, como $\sum_{s=1}^{r} q_s q_s = 0$, entances los q_s no son todos independientes. Por lo tanto,
2=1 12 12 1
rango (Cg) = 1-1.//
c) rango(cg) = rango(vn)
Por definición, VB= Cg Da Cg. Si se toma x E IR":
VBX = O L=> Xt Cg Dq Cg X = O
$= (C_g x)^{L} Dq(C_g x) = 0$
Sabemos que $C_g x$ es la matriz con filas $g_s^{\xi} x > 0$ y D_{ϕ} la matriz diag (q_{ξ}) donde $q_{\xi} > 0$. De forma que $(C_g x)^{\xi} D_{\phi} (C_g x) = 0$ solamente cuando $g_s^{\xi} x = 0 = > C_g x = 0$. Tenemos que $V_{B} y = C_g x = 0$ mismo núcleo = > rango $(V_{B}) = rango(C_g)$:
rango (V _B) = ρ-dim (Ker (V _B)) = ρ-dim (Ker (Cg)) = rango (Cg).//
debido al teorema de rango-nulídad (p=número columnas).

	Id	Monto Crédito	Ingreso Neto	Monto Cuota	Grado Académico	Buen Pagador]
	1	2	4	1	4	Sí	
	$\frac{2}{2}$	2	3	1	4	Sí	
	3	4	1	4	2	No Sí	
	$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	3	3	3	2	No	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	4	1	4	Sí	
	7	4	2	3	2	No	
	8	4	1	3	2	No	
	9	3	4	1	3	Sí	
	10	1	3	2	4	Sí Sí	
	11	1	4	2	4	51	
	<u>k</u> (=1	P(X= x Y= i) P(Y:	- ()				
			(X= x BP=1)P	(BP=1) + P(X=)	(IBP=0)P(BP=0)		
dondc X= 1,3,	2,4,	_	(X= x BP=1)P 0.6364, P(B	(BP=1) + P(X=) $(P=0) = \frac{4}{11} \approx ($	(IBP=0)P(BP=0)		
dondc X= 1,3,	2,4,	P	(X= x BP=1)P 0.6364, P(B Caso [$(BP=1) + P(X=2)$ $P=0) = \frac{4}{11} \approx (BP=1)$ $P=0 = 0$	(IBP=0) P(BP=0)).3636		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit	2, 4, 1 : to = 1	P(BP=1) = $\frac{7}{11} \approx$ BP=1 = $\frac{3}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monk	(BP=1) + P(X=2) P=0) = $\frac{4}{11}$ ≈ ((IBP=0) P(BP=0)).3636 BP=01= 5		
dondc X= 1,3, Caso BP= Si= : P(Monto Crédit P(Ingreso Neto	2,4, 1: 10=1 0=3	P(BP=1) = $\frac{7}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$	(X= x BP= 1) P 0.6364, P(B Caso [P(Mont	(BP=1) + P(X=2) P=0) = $\frac{4}{11} \approx (3)$ DP= No = 0: 0 Crédito = 1 CSO Neto = 3 1	BP=0) = \frac{0}{5} BP=0) = \frac{1}{5}		
dondc X= 1,3, Caso BP= Si= : P(Monto Crédit P(Ingreso Neto	2,4, 1: 10=1 0=3	P(BP=1) = $\frac{7}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto	(BP=1) + P(X=2) $P = 0) = \frac{4}{11} \approx 0$ $DP = No = 0$ $Crédito = 1 Occorrections Occorrec$	$\begin{array}{c} (BP=0) P(BP=0) \\ 0.3636 \\ BP=0 = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ 0=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit P(Ingreso Neto P(Monto Cuota	2,4, 1: +o=1 o=3 = 2 0	$P(BP=1) = \frac{1}{11} \approx$ $ BP=1 = \frac{3}{7}$ $BP=1 = \frac{2}{7}$ $P=1 = \frac{2}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto	(BP=1) + P(X=2) P=0) = $\frac{4}{11} \approx (3)$ DP= No = 0: 0 Crédito = 1 CSO Neto = 3 1	$\begin{array}{c} (BP=0) P(BP=0) \\ 0.3636 \\ BP=0 = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ 0=0 = \frac{0}{5} \end{array}$		
	2,4, 1: 10=1 0=3 =2 C mico=	P(BP=1) = $\frac{1}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$ U BP=1) = $\frac{6}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto	(BP=1) + P(X=2) $P = 0) = \frac{4}{11} \approx 0$ $DP = No = 0$ $Crédito = 1 Occorrections Occorrec$	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si= : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé	2,4, 1: 10=1 0=3 =2 € mico=	P(BP=1) = $\frac{1}{11}$ ≈ BP=1) = $\frac{1}{7}$ BP=1) = $\frac{2}{7}$ P=1) = $\frac{2}{7}$ P=1 X= x) =	(X= x BP=1) P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado => 0 0.2999 · 0.	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si= : P(Monto Credit P(Ingreso Neto P(Monto Wota P(Grado Acade	2,4, 1: 10=1 0=3 =2 € mico=	P(BP=1) = $\frac{1}{11}$ ≈ BP=1) = $\frac{1}{7}$ BP=1) = $\frac{2}{7}$ P=1) = $\frac{2}{7}$ P=1 X= x) =	(X= x BP=1)P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé	2,4, 1: 10=1 0=3 =2 € mico=	P(BP=1) = $\frac{1}{11}$ ≈ BP=1) = $\frac{1}{7}$ BP=1) = $\frac{2}{7}$ P=1) = $\frac{2}{7}$ P=1 X= x) =	(X= x BP=1) P 0.6364, P(B Caso [P(Monto P(Ingre P(Monto P(Grada -> 0 0.2999 · 0.6364-	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si= : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé) 글 글 글 글 슬	2,4, 1: 10=1 0=3 =2 E mico= ≈ 0,0	P(BP=1) = $\frac{7}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$ BP=1) = $\frac{6}{7}$ BP=1 X= x = $\frac{6}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado => 0 0.2999 · 0.6364-	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé) 축 구 축 축	2,4, 1: 10=1 0=3 =2 E mico= ≈ 0,0	$P(BP=1) = \frac{1}{11} \approx$ $ BP=1 = \frac{3}{7}$ $BP=1 = \frac{2}{7}$ $P=1 = \frac{2}{7}$ $P=1 X=x = \frac{6}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado => 0 0.2999 · 0.6364-	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé) 축 구 축 축	2,4, 1: 10=1 0=3 =2 E mico= ≈ 0,0	P(BP=1) = $\frac{7}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$ BP=1) = $\frac{6}{7}$ BP=1 X= x = $\frac{6}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado => 0 0.2999 · 0.6364-	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		
dondc X= 1,3, Caso BP= Si = : P(Monto Crédit P(Ingreso Neto P(Monto Cuota P(Grado Acadé) 글 글 글 글 6	2,4, 1: 10=1 0=3 =2 E mico= ≈ 0,0	P(BP=1) = $\frac{7}{11}$ \approx BP=1) = $\frac{2}{7}$ BP=1) = $\frac{2}{7}$ BP=1) = $\frac{6}{7}$ BP=1 X= x = $\frac{6}{7}$	(X= x BP=1)P 0.6364, P(B Caso [P(Monto P(Ingr P(Monto P(Grado => 0 0.2999 · 0.6364-	$(BP=1) + P(X=2)$ $(P=0) = \frac{4}{11} \approx (BP=1)$ O Crédito = 1 CSO Neto = 3 O Cuota = 2 BP Académico = 1	$\begin{array}{c} (BP=0) P(BP=0) \\ (BP=0) = \frac{0}{5} \\ BP=0 = \frac{1}{5} \\ P=0 = \frac{0}{5} \end{array}$		