(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-107082

(43)公開日 平成7年(1995)4月21日

					* · · · · · · · · · · · · · · · · · · ·	<u> </u>
(51) Int.CL.*	Ξ	識別記号 庁内整理番号	FΙ	·		技術表示箇所
H04L	9/00					
	9/10		,			+4.
	9/12		• •			
	•		H04L	9/ 00	are to	Z
			客查請求	未請求	請求項の数1	OL (全 13 頁)
(21)出願番号		特額平5-250850	(71)出顧人		26 冒電話株式会社	
(22)出顧日 .		平成5年(1993)10月6日	(72) 発明者		f代田区内幸町-	一丁目1番6号
				東京都		1丁目1番6号 日
			(74)代理人	弁理士	伊東 忠彦	
				,		
•						•

(54) 【発明の名称】 暗号ゲートウェイ装置

(57)【要約】

【目的】 本発明は、暗号化/非暗号化の選択及びセッション鍵の選択を端末の組合せ毎又はセッション毎に設定し、既存の端末装置のハードウェア及びアプリケーションプログラムに影響を与えることなく暗号通信を実現する暗号ゲートウェイ装置を提供することを目的とする。

【構成】 本発明の暗号ゲートウェイ装置は、端末の識別情報とセッション鍵の組を保持するセッション鍵テーブル(11)と、上記組をセッション鍵テーブルに登録する手段(12)と、受信情報から端末識別情報と通信文を抽出する手段(14)と、識別情報を検索キーとしてセッション鍵テーブルからセッション鍵を検索する手段(15)と、識別情報とセッション鍵に応じて通信文を暗号化又は復号する手段(16)とから成り、セッション鍵の検索の結果該当するセッション鍵が無い場合には通信文を原文のまま送信する構成を特徴とする。

【特許請求の範囲】

【請求項1】 受信情報を送信端末から受信し、該受信 情報を暗号化又は復号し、該暗号化又は復号された送信 情報を受信端末に送信する暗号ゲートウェイ装置におい て、

送信端末及び受信端末の識別情報と該暗号化又は復号の ためのセッション鍵の組を保持するセッション鍵テープ

前記送信端末及び受信端末の識別情報と該セッション鍵 を該セッション鍵テーブルに登録するテーブル管理手段 10

前記受信情報から前記送信端末及び受信端末の識別情報 と、通信文を抽出する受信情報解析手段と、

該抽出された識別情報を検索キーとして前記セッション 鍵テーブルから該当するセッション鍵を検索するセッシ ョン鍵検索手段と、

前記抽出された識別情報と前記該当するセッション鍵に 応じて該通信文を暗号化又は復号して送信情報を作成す る暗号化復号手段とから成り、

上記セッション鍵検索手段による検索の結果前記セッシ ョン鍵テーブルに該当するセッション鍵が無い場合には 前記通信文を原文のまま送信する構成としたことを特徴 とする暗号ゲートウェイ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は暗号ゲートウェイ装置に 係り、特に広い地域に分散した事業所等の特定グループ 内の端末間で暗号通信を行う場合に、任意の2台の端末 が共通のセッション鍵を有することにより暗号通信を行 うパケット通信システムにおける暗号ゲートウェイ装置 30 に関する。

[0002]

【従来の技術】図10は従来技術による暗号通信システ ムを説明する図であって、端末 i 130と端末 i 140 との間で通信を行う場合、一方の端末i 130のアプリ ケーションプログラム132(以下、APと略す)が鍵 配送センタ160から通信に使用するセッション鍵16 2を取得する。端末i130のAP132は、このセッ ション鍵を通信相手の端末 | 140に送信して、2台の 端末で共通のセッション鍵を共有し、これを用いて通信 文を暗号化及び復号して暗号通信を行う。

【0003】図11は、従来の暗号ゲートウェイ装置1 80を説明する図であって、暗号化/復号を行うための 固定セッション鍵181と、受信情報を受信するための 受信部182と、受信情報を解析して通信文を抽出する 受信情報解析部183と、固定セッション鍵181を利 用して通信文を暗号化/復号する暗号化/復号部184 と、暗号化/復号された通信文を送信する送信部185

【0004】図12は、図11に示す暗号ゲートウェイ・50

装置を利用した暗号通信システムを説明するための図で あり、端末211 、212 、...、21 m から成るA グループの端末に暗号ゲートウェイ装置1801 が外付 けされ、端末311、312、...、31n から成る Bグループの端末に暗号ゲートウェイ装置1802 が外 付けされる。暗号ゲートウェイ装置1801、1802 のセッション鍵は固定であるため、端末211 と端末3 12 の暗号通信と、端末21 ≥ と端末312 の暗号通信 とは共通のセッション鍵で暗号化される。さらに、例え ば、端末212と端末311 との通信のように暗号化が 不要な通信を行う場合には、暗号ゲートウェイ装置18 01 と1802 とを介さない伝送路を用いて通信を行 う。

[0005]

【発明が解決しようとする課題】図10に示す従来の暗 号通信システムでは、暗号通信に先立って、一方の端末 上のAPが鍵配送センタからセッション鍵を取得し、こ れを通信相手の端末に送信することが必要であって、端 末のAP側の処理が煩雑である。

【0006】さらに、平文による端末間の通信を暗号通 信に対応するよう変更するためには、端末装置のハード ウェア又はAPを個別に改造する必要があるが、通信シ ステムにおける端末の種類とAPは膨大な数に及ぶの で、改造の規模及び工数が大きく、従って開発費も大き くなるという問題がある。

【0007】一方、従来の暗号ゲートウェイ装置を利用 する場合には、固定のセッション鍵により画一的に暗号 化又は復号がなされるため、通信相手先の端末が暗号通 信を行うか、或いは非暗号化通信を行うかに応じて暗号 通信のセッション鍵の変更等を行うことができない。

【0008】本発明は上記の従来の暗号通信システムの 問題点に鑑み、暗号通信と非暗号通信の選択と、暗号通 信における共有セッション鍵の選択を端末の組合せ毎又 はセッション毎に設定し、さらに、既存の端末装置のハ ードウェア及びAPに影響を与えることなく暗号通信を、 実現する暗号ゲートウェイ装置を提供することを目的と する。

[0009]

【課題を解決するための手段】図1は本発明の原理構成 図である。本発明の暗号ゲートウェイ装置は、受信情報 を送信端末から受信し(13)、該受信情報を暗号化又 は復号し、該暗号化又は復号された送信情報を受信端末 に送信して(17)暗号通信を行う装置であって、送信 端末及び受信端末の識別情報と暗号化又は復号のための セッション鍵の組を保持するセッション鍵テーブル(1 1)と、送信端末及び受信端末の識別情報とセッション 鍵をセッション鍵テーブルに登録するテーブル管理手段 (12)と、受信情報から送信端末及び受信端末の識別 情報と、通信文を抽出する受信情報解析手段(14) と、抽出された識別情報を検索キーとしてセッション鍵

テーブルから該当するセッション鍵を検索するセッション鍵検索手段(15)と、抽出された識別情報と該当するセッション鍵に応じて通信文を暗号化又は復号して送信情報を作成する暗号化復号手段(16)とから成り、セッション鍵検索手段による検索の結果セッション鍵テーブルに該当するセッション鍵が無い場合には通信文を原文のまま送信する構成を特徴とする。

[0010]

【作用】本発明の暗号ゲートウェイ装置は、送信端末と受信端末の組合せ毎又はセッション毎に暗号化用セッシ 10 ョン鍵を選定してセッション鍵テーブルを構成し、送信端末から受信した情報により送信元と送信先を識別し、その識別結果をキーとしてセッション鍵テーブルを検索してセッション鍵を得て送信情報の通信文を暗号化又は復号し、セッション鍵が得られない場合には原文のまま送信用通信文として受信端末に送信する。したがって、送信端末から送られた通信文が暗号文と平文のいずれであっても受信することができる。さらに、セッション鍵テーブルを用いることによりセッション鍵を送信端末と受信端末の組合せ毎又はセッション母に自由に設定でき 20 るので、既存の端末に接続する際に、既存の端末ハードウェア、及び、端末のAPを改造する必要がない。

【0011】図2は本発明の暗号ゲートウェイ装置を利用した暗号通信システムの概要を説明する図であり、伝送路40と、Aグループの端末21:、...、21 と、Bグループの端末31:、...、31 。と、Cグループの端末32:、...、32:とから成る通信システムにおいて、Aグループに暗号ゲートウェイ装置Aを、Bグループに暗号ゲートウェイ装置Bをさらに設置している。本発明の暗号ゲートウェイ装置により、暗号化と復号が端末の識別情報に応じて判別され、即ち、暗号ゲートウェイ装置が接続されている端末からの送信は暗号化され、暗号ゲートウェイ装置が接続されている端末への送信情報は復号される。さらに、セッションに対する通信は、通信文の原文のまま、即ち、平文で通信される。

【0012】ここで、全ての端末が平文のみを送受信する端末とし、AグループとBグループの間は暗号通信を行ない、CグループとAグループ及びCグループとBグ 40ループとは非暗号通信を行うことを考える。まず最初に、Aグループの暗号ゲートウェイ装置A20のセッション鍵テーブルに、Aグループの端末211、...、21 を送信元とし、Bグループの端末3

11、...、31n を送信先とするセッションに対するセッション鍵を登録する。本発明の暗号ゲートウェイ装置により、暗号ゲートウェイ装置が接続されている端末からの送信は暗号化を行うので、暗号ゲートウェイ装置A20は、Aグループ内の端末からBグループの端末への送信情報を暗号化して伝送路40に出力する。次

に、Bグループの暗号ゲートウェイ装置B30のセッシ ョン鍵デーブルにも同様に、Aグループの端末2 11 、...、21 ■ を送信元とし、Bグループの端末 311、...、31n を送信先とするセッションに対 するセッション鍵を登録する。本発明の暗号ゲートウェ イ装置により、暗号ゲートウェイ装置が接続されている 端末への送信情報は復号するので、暗号ゲートウェイ装 置B30は、Aグループ内の端末からBグループの端末 への送信情報を復号してBグループ内の端末に出力す る。以上により、Aグループ内の端末からBグループB の端末への通信は、各グループ内では平文であって、暗 号ゲートウェイ装置を介した伝送路上の通信は暗号文と することができる。尚、上記と同様にして、Bグループ の端末311、...、31nを送信元とし、Aグルー プの端末211、...、21 を送信先とするセッシ ョンに対するセッション鍵をAグループの暗号ゲートウ ェイ装置A20のセッション鍵デーブル及びBグループ の暗号ゲートウェイ装置B30のセッション鍵デーブル に登録することにより、Bグループ内の端末からAグル ープ内の端末への通信を暗号通信化できるようになる。 【0013】一方、Aグループの暗号ゲートウェイ装置 A20のセッション鍵デーブル及びBグループの暗号ゲ ートウェイ装置B30のセッション鍵デーブルには、C グループの端末とにより形成するセッションの登録は行 わない。本発明の暗号ゲートウェイ装置により、セッシ ョン鍵テーブルにセッション鍵が登録されていないセッ・ ションに対しては、平文のまま通信するので、Aグルー プとCグループとの通信及びBグループとCグループと の通信は、平文で行われる。

【0014】次に、端末211、21■、312は、暗 号文のみを送受信する端末とし、端末212、311、 31 を平文のみを送受信する端末として、本発明の暗 号ゲートウェイ装置を説明する。ここで、暗号ゲートウ ェイ装置A20のセッション鍵テーブルには、送信元が 端末212 であって、送信先がBグループ内の各端末3 11 、...、31n であるセッションと、送信元がB グループBの各端末311、...、31nであり、送 信先が端末212 であるセッションに対してセッション 鍵を登録する。これにより、端末212 からの通信文は 暗号ゲートウェイ装置A20により暗号化され、端末2 11、21mからの通信文は原文、即ち暗号文のまま通 過される。したがって、送信元の端末に係わらず、暗号 ゲートウェイ装置A20は、伝送路40に暗号文を送出 する。さらに、暗号ゲートウェイ装置B30のセッショ ン鍵テーブルも同様に設定することにより、暗号ゲート ウェイ装置B30から伝送路40に送出される通信文 は、すべて暗号文とすることができる。したがって、伝 送路40上の通信文はすべて暗号文である。上記の通 り、伝送路40を介してグループBの端末から暗号ゲー 50 トウェイ装置A20が受信する受信情報は、すべて暗号

文である。ここで、暗号ゲートウェイ装置A20は、セ ッション鍵テーブルに登録された送信先が端末212で あるセッションに対する通信文を対応するセッション鍵 を用いて復号、即ち平文に変換して端末212 に送出す る。また、送信先が端末212以外のセッションに対す るセッション鍵はセッション鍵テーブルに登録されてい ないので、暗号ゲートウェイ装置A20は、送信先が端 末212 以外の通信文は、原文、即ち暗号文のまま送信 先に送出する。

[0015]

【実施例】以下、コネクション型のプロトコルを利用し てネットワークを介して通信を行うTCP/IP・LA N環境を例として、本発明の一実施例による暗号ゲート ウェイ装置の説明を行う。

【0016】図3は本発明の一実施例の暗号ゲートウェ イ装置による暗号通信システムの構成図であり、暗号ゲ ートウェイ装置110と、端末1130と、端末114 0と、ネットワーク120から成る。端末1130と端 末1140とが、セッションを確立してネットワーク1 ゲートウェイ装置110は、ネットワーク120を介し て暗号文による通信を行ない、端末 j 1 4 0 と暗号ゲー トウェイ装置110は、平文による通信を行うものとす

【0017】暗号ゲートウェイ装置110は、セッショ ン識別子とセッション鍵の組を保持するセッション鍵テ ープル111と、セッション鍵テーブル111にセッシ ョン鍵を登録するテーブル管理部112と、情報を受信 する受信部113と、受信された情報を解析するパケッ ト解析部114と、解析された受信情報に含まれるセッ ション識別子に対応するセッション鍵をセッション鍵テ ープル111から検索するセッション鍵検索部115 と、解析された受信情報中の通信文を暗号文又は平文に 変換する暗号化/復号部116と、暗号化/復号部11 6で変換された通信文又はパケット解析部114からの 原文のままの通信文を送信する送信部117とから成

【0018】図4は、本発明の一実施例によるセッショ ン鍵テーブル111を示し、セッションを識別するため のセッション識別子とそのセッション固有のセッション 40 鍵とを保持する。セッション識別子は、送信元及び送信 先のネットワーク内でのアドレスを示すための情報であ って、送信元のIPアドレスとポート番号、及び送信先 のIPアドレスとポート番号とにより構成される。

【0019】暗号通信を開始する前に、テーブル管理部 112が、CRT/KB等の入出力装置、ディスケッ ト、又はネットワーク等を介して入力されたセッション **諡別子とセッション鍵とをセッション鍵テーブル111**

【0020】セッション鍵テーブル111に登録された 50

セッション識別子を用いて各セッションを一意に識別す ることができるので、セッション鍵検索部115はこの セッション識別子を検索キーとしてセッション鍵を検索 することができる。

【0021】図5は、本発明の一実施例によるTCP/ IP・LANで使用するOSIの参照モデルに準拠した プロトコルであって、データリンクレイヤがMAC (Me diaAccess Control) プロトコル、ネットワークレイヤ がIP(Internet Protocol)、トランスポートレイヤ がTCP (Transmit Control Protocol)で実現され、 AP (アプリケーションプログラム) は、TCPレイヤ 間でセッションを確立する。本発明の一実施例におい て、APの通信文(APデータ)に暗号をかけることに より、IPルータを介したネットワークを使用した通信 が可能である。

【0022】図6は、本発明の一実施例においてTCP /IP・LANに接続された2台の端末間で通信する際 に使用されるパケットのフォーマットを示す図である。 パケットは、MACヘッダ (MAC_H) と、IPヘッ 20を介して通信を行う。ここで、端末i130と暗号 20 ダ (IP_H)と、TCPへッダ (TCP_H)から構 成されるヘッダと、APデータ及びパケット全体のフレ ーム・チェック・シーケンス(FCS)から構成され る。APデータが暗号化又は復号されて暗号通信が行わ

> 【0023】図7は、本発明の一実施例によるIPへッ ダのフォーマットを示す図であって、IPヘッダの長さ (単位は4オクテット)を示す I H L (インターネット ・ヘッダ長)と、IPヘッダとIPデータ(両者を合わ せて【Pデータグラムという)を加えたオクテット長を 示すTL(全長)と、上位層として利用されるプロトコ ル (本発明の一実施例ではTCPプロトコルであって、 値は'6')を示すPROT(プロトコル)と、送信元 IPアドレスを示すSRC_ADRS (ソース・アドレ ス) と、送信先 I Pアドレスを示すDST_ADRS (デスティネーション・アドレス) とより成る。尚、図 中に'-'で示された上記以外のIPヘッダの項目につ いては説明を省略するが、IPヘッダの詳細は、「道 下、本間:異機種接続とTCP/IP絵とき読本、オー ム社」に記載されている。

【0024】パケット解析部114は、IHLにより上 位プロトコル(本発明の一実施例ではTCPプロトコ ル)のヘッダ開始位置を識別する。暗号化/復号部 1 1 6は、TLによりAPデータの末尾、即ち暗号化/復号 処理の終了位置を識別する。

【0025】図8は、本発明の一実施例によるTCPへ ッダのフォーマットを示す図であって、送信元のポート 番号を表すSRC_PORT(ソース・ポート)と、送 信先のポート番号を表すDST_PORT (デスティネ ーション・ポート)と、TCPヘッダ長(単位は4オク テット)を示すD〇 (データ・オフセット) から成る。

暗号化/復号部116は、DOの値によりAPデータの 開始位置、即ち暗号化/復号処理の開始位置を識別す る。

【0026】以下では、図3に示すシステムにおいて、 受信されたパケットに応じて、端末i130から端末j 140へのAPデータは復号し、端末 j 140から端末 i 130へのAPデータは暗号化し、端末 i 140が送 信元又は送信先に指定された上記以外のAPデータは通 過 (非暗号化) し、その他のパケットは無視するように 実現された本発明の暗号ゲートウェイ装置110の一実 10 施例を詳細に説明する。

【0027】図9は、本発明の一実施例による暗号ゲー トウェイ装置 1-1 0の暗号化/復号処理を説明するフロ ーチャートである。

【0028】ステップ100) 受信部113は、端末i 130と端末 | 140との間で通信されるパケットを受 信し、受信パケットをパケット解析部114に送出す

【0029】ステップ110)パケット解析部114 は、受信部113より受信パケットを受信し、受信パケ ットのMACヘッダからTYPE (タイプ) を取り出 し、上位プロトコルがIP(値は0x0800)で無い 場合には、受信パケットを送信パケットとして送信部1 17に転送し、ステップ270に進む(非暗号通信とな る)。.

【0030】ステップ120)パケット解析部114 は、受信パケットのIPヘッダからPROT(プロトコ ル)を取り出し、上位プロトコルがTCP(値は6)で ない場合には、受信パケットを送信パケットとして送信 部117に転送し、ステップ270に進む(非暗号通信 となる)。

[0031] ステップ130) パケット解析部114 は、受信パケットのIPヘッダからTL(全長)を取り 出し、この値からIPデータグラム(IPヘッダ、TC Pヘッダ、及びAPデータ)を取得する。

【0032】ステップ140)パケット解析部114 は、受信パケットのIPヘッダからIHL(インターネ ット・ヘッダ長)を取り出し、この値に基づいて、IP データグラムから I Pヘッダと I Pデータ(T C Pヘッ ダとAPデータ)とを分離する。

【0033】ステップ150)パケット解析部114 は、TCPヘッダからDO(データ・オフセット)を取 り出し、この値に基づいて、IPデータからAPデータ を分離する。

【0034】ステップ160)パケット解析部114 は、IPヘッダからSRC_ADRS(ソース・アドレ ス) 及びDST_ADRS(デスティネーション・アド レス)を取得する。

【0035】ステップ170)パケット解析部114 は、TCPヘッダからSRC_PORT(ソース・ポー 50 ケットを端末i130又は端末j140に送信し、パケ

ト) 及びDST__PORT (デスティネーション・ポー ト) を取得する。

【0036】ステップ180) セッション鍵検索部11 5は、セッション識別子、即ち、SRC_ADRSと、 DST_ADRSと、SRC_PORTと、及びDST __PORTをパケット解析部114より入力し、入力し たセッション識別子をキーとしてセッション鍵テーブル 111を検索する。

【0037】ステップ190)セッション鍵検索部11 5は、セッション鍵テーブル111に上記セッション識 別子が登録されていない場合には、パケット解析部11 4の受信パケットを送信パケットとして送信部117に 転送し、ステップ270に進む(非暗号通信となる)。 【0038】ステップ200) セッション鍵検索部11 5は、セッション鍵テーブル111から検索されたセッ ション鍵Ks を取得する。

【0039】ステップ210) 暗号化/復号部114 は、パケット解析部114の受信パケット、セッション 識別子及びAPデータと、セッション鍵検索部のセッシ ョン鍵Ksと、さらに、暗号ゲートウェイ装置110が 接続されている端末j140のIPアドレス(IPi) を取得する。

[0040]ステップ220) 暗号化/復号部114 は、上記IP」とセッション識別子中のSRC_ADR Sとを比較して、当該受信パケットの送信方向、即ち、 暗号化と復号のいずれであるかを特定する。IP」とS RC_ADRSが一致する場合、ステップ250に進 ts.

【0041】ステップ230)暗号化/復号部114 は、上記IP」とセッション識別子中のDST_ADR Sとを比較して、当該パケットの送信方向、即ち、暗号 化と復号のいずれであるかを特定する。IP」とDST ADRSが一致する場合、ステップ260に進む。 【0042】ステップ240) 当該受信パケットは、暗 号ゲートウェイ装置に接続される端末 j 1 4 0 とは無関 係であるため、暗号化/復号部114は、当該受信パケ ットを破棄し、パケット受信に伴う一連動作を終了す

【0043】ステップ250) 暗号化/復号部36は、 40 A P データをセッション鍵 K。 を用いて暗号化し、A P データが暗号化された送信パケットを作成し、送信部1 17に転送し(端末j140から端末i130への暗号 化通信)、ステップ270に進む。

【0044】ステップ260) 暗号化/復号部36は、 APデータをセッション鍵Kaを用いて復号し、APデ ータが復号された送信パケットを作成し(端末1130 から端末 j 1 4 0 への復号通信)、送信部 1 1 7 に転送 する。

【0045】ステップ270)送信部117は、送信パ

ット受信に伴う一連動作を終了する。

【0046】尚、上記本発明の一実施例による説明では 受信パケット及び送信パケットを各部の間で転送するも のとして説明しているが、受信パケット及び送信パケッ トをバッファに格納し、格納されるアドレスを転送する 等、受信パケット及び送信パケットのデータを各部が相 万にアクセスできる方法であれば本発明の一実施例に制 限されることはない。

[0047]

【発明の効果】以上説明したように、本発明による暗号 10 ゲートウェイ装置をフロントエンドプロセッサとして端 末に接続して、端末間で通信されるパケット等の情報を 受信し、情報の送信元と送信先とに応じて、暗号化、復 号、又は非暗号化(通過)した情報を送信することによ り、既存のAPや端末のハードウェアを改造することな く低コストで暗号通信システムを実現することができ

【0048】さらに、本発明の暗号ゲートウェイ装置に より、各端末間の通信を(暗号文又は平文、及び、同一 グループ内又はグループ間を問わず) 一切変更すること 20 21 、. 、321 端末 無く、暗号ゲートウェイ装置を設置したグループ間の通 信文をすべて暗号化し、暗号ゲートウェイ装置を設置し ないグループとの通信は平文のまま行うことができる。

【図面の簡単な説明】

- 【図1】本発明の原理構成図である。
- 【図2】本発明の暗号ゲートウェイ装置を利用した暗号 通信システムの概要を説明する図である。
- 【図3】本発明の一実施例によるシステム構成図であ
- 【図4】本発明の一実施例によるセッション鍵テーブル 30 132、142 を説明する図である。
- 【図5】本発明の一実施例によるTCP/IP・LAN のプロトコルを説明する図である。
- 【図6】本発明の一実施例によるパケット・フォーマッ トを説明する図である。
- 【図7】本発明の一実施例による I P ヘッダのフォーマ

[図4]

本発明の一実施的によるセッション健テーブル

选位元	アドレス	送信先	セッション	
IPアドレス	ポート番号	1P7FVZ	ポート番号	
IP_S.	P_S.	1 P_D,	P_D,	Ku
IP_S:	P_S.	I P_D,	P_D,	Kas
1 4	i	i.	. :	:
IP_S.	P_S.	IP_D.	P_D.	K

. 10

ットを説明する図である。

【図8】本発明の一実施例によるTCPヘッダのフォー マットを説明する図である。

【図9】本発明の一実施例による暗号化/復号処理のフ ローチャートである。

- 【図10】従来技術を説明する図(その1)である。
- 【図11】従来技術を説明する図(その2)である。
- 【図12】従来技術による暗号通信システムを説明する 図である。

【符号の説明】

- 10、20、30、110 暗号ゲートウェイ装置
- 11、111 セッション鍵テーブル
- テーブル管理手段 1 2
- 受信手段 13
- 受信情報解析手段 14
- セッション鍵検索手段 1.5
- 暗号化/復号手段 16
- 17 送信手段
- $21_1, \dots, 21_n, 31_1, \dots, 31_n, 3$
 - - 40、42 伝送路
 - 112 テーブル管理部
 - 113、182 受信部
 - 114 パケット解析部
 - 115 セッション鍵検索部
 - 116、184 暗号化/復号部
 - 117、185 送信部
 - 120 ネットワーク
 - 130 端末 i
 - アプリケーションプログラム
 - 140 端末 i
 - 160 鍵配送センタ
 - 162 セッション鍵
 - 180、1801、1802 暗号ゲートウェイ装置
 - 181 固定セッション鍵
 - 183 受信情報解析部

【図5】

本発明の一実施的によるTCP/IP・LANのプロトコル

上位レイヤ	AP		
トランスポート	TCP		
ネットワーク	19		
データリンク	MAC		
物理	传理		

【図1】

【図6】

本発明の原理構成図

本発明の一安証的によるパケット・フォーマット

【図2】

本発明の暗号ゲートウェイ装置による 暗号通信システムの概念図

【図3】 本発明の一実施例によるシステム構成図

[図7]

本発明の一実施別によるIPヘッダのフォーマット

TL:会員 PROT:プロトコル SRC_ADRS:ソース・アドレス DST_ADRS:デスティネーション・アドレス

[図10]

従来技術の説明図(その1)

【図9】

本発明の一実施例による暗号化/復号処理のフローチャート

【図11】

従来技術の説明図(その2)

【図12】

従来技術による暗号通信システムの説明図

