

(11)Publication number:

06-139578

(43) Date of publication of application: 20.05.1994

(51)Int.CI.

G11B 7/00 G11B 7/125

(21)Application number: 04-290524

(71)Applicant: OLYMPUS OPTICAL CO LTD

(22)Date of filing:

28.10.1992

(72)Inventor: KITAMURA HIROAKI

(54) OPTICAL INFORMATION RECORDING AND REPRODUCING DEVICE

(57)Abstract:

PURPOSE: To enable manpower saving in circuit constitution regardless of the kin and the sensitivity of a recording medium by using an optimum pattern as test write and to set the power of a laser beam to be an optimum write power.

CONSTITUTION: At the time of test write operation, 59 pieces of resink marks RS formed on an optical disk 2 are detected for setting the write power of the laser beam irradiating the optical disk 2 to be the optimum power, and the write power is set optimally by making the omissions of the mark the minimum. The detection of the resink mark is performed by a mark detection circuit 8, and detection signals are counted by a counter [17]. 9. By a CPU 10, the number of pieces of detection signal is monitored, and the optimum power is set through a control circuit 5.

LEGAL STATUS

[Date of request for examination]

20.08.1999

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3143234

[Date of registration]

22.12.2000

[Number of appeal against examiner's decision

of rejection

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

22.12.2003

(19)日本国特許庁 (JP)

数(A) ধ 4年。 噩 **(12)**

(11)特許出頭公開番号

特開平6-139578

皮術表示個所

(43)公開日 平成6年(1994)5月20日

ᇤ 广内整理番号 9195-5D 7247-5D Σ 強別記事 7/125 2/00 G11B (51)IntCL.

路査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号	特顯平4-290524	(71)出個人 000000376	000000376	
			オリンパス光学工業体式会社	
(22)出版日	平成4年(1992)10月28日		東京都波谷区橋ヶ谷2丁目43番2号	
		(72)発明者	光	
			東京都波谷区幡ヶ谷2丁目43番2号 オ	ī
			ンパス光学工業株式会社内	
		(74)代理人	(74)代理人 弁理士 伊藤 進	
	-			

(54) 【発明の名称】 光学的情報記録再生装置

て、記録媒体の種類や感度に関わらず、回路構成を省力 化できると共に、レーザー光のパワーを収適なライトパ 【目的】 テストライトとして吸適なパターンを用い ワーに散定できるようにすること。 光ディスク 2 に照射するレーザーのライトパ Sを59個検出し、マークの欠落が最小となるようにす ることで、ライトパワーを殷適に設定する。リシンクマ **→クRSの検出は、マーク検出回路8により行い、この** 検出信号をカウンタ9によりカウントする。CPU10 ワーを吸適なパワーに合わせ込むために、テストライト 動作時に、光ディスク 2 に形成されたリシンクマークR 検出個数を監視すると共に、制御回路5を介して、 最適パワーの設定をする。 [姓]

、体幹部状の循曲】

フーナーアームにより記録媒体に信題を 記録する光ヘッドと、前記光ヘッドの発光団及び発光時 間を制御する制御手段と、前記配録媒体から再生される **開報信号中に含まれるマーク情報を検出するため、前記** マーク情報と予め記録してあるデータとを比較して検出 する比較・検出手段と、前記比較・検出手段による比較 の結果により、前記マーク情報と前記予め記録してある データとが一致する数をカウントする計測手段とを備え た光学的情報記録再生装置において、 前記光ヘッドの発光量を任意に設定してから、前記記録 媒体に対してマーク情報を記録し、この記録されたマー ク情報を再生すると共に、前記計測手段のカウント値を 弘にして前記比較・検出手段により検出される前記マー ク情報の欠落が最小となるように、前記制御手段を介し て、前記光ヘッドの発光肌を調整するように構成してい ることを特徴としている光学的情報記録再生装配。

[発明の詳細な説明] [0001]

_

[産業上の利用分野] 本発明は、テストライトにより最 適のライトパワーが設定できる光学的情報記録再生装置 の改良に関する。

50

イトの結果を判別する手段として、従来例としては、特 開昭62-54830号公報に開示されている様な、再 [従来の技術] 記録媒体に対し最適なライトパワーに合 わせる手段として、テストライトがある。そのテストラ 生信号の幅を読み込む方法がある。あるいは、特別昭6 3-121130号公報に開示されている様な、データ

[0003] 前記公頼に記載のものは、以下の様なもの を睨み込みピットコラー事を聞くる方法がある。

[0004]

ーム発生手段により、ある一定の周波数のレーザーを発 の幅を検出し、その幅が段適の値になる様にレーザービ ームパルス幅ならびに、ウイトパワーを変化させる。こ 任意歯仮のレーザーピームを発生する記録用レーザービ 生させ、記録媒体に照射して記録ピットを形成する。次 に、形成された記録ビットを再生して得られた再生信号 のようにした、宮袋媒体に対したワーザーアームのドネ ルギー肌が、最適になる様に制御する方法である。 (1) 再生信号の幅を読み込む方法について

[0005]

を変化させレーザービームのパワーを最適になる様に制 として読み取る。次に、それらのライトデータとリード データをデータパターン同志で比較することにより、ビ 任意のライトデータをレーザービーム発生装置を用いて 記録媒体に記録し、その記録したデータをリードデータ ットエラーの読み誤り率が発になる様に、ライトパワー (2) ビットエラー率を闘べる方法について

特団平6-139578

3

卸する方法である。

とピットの間が狭すぎることになる。従って、信報デー タの再生時、配録媒体に記録されているピットの大きさ が大き過ぎるなどで、互いに隣接するピット同志の影響 により、波形干渉を引き起こす等して、再生信号の幅が ば、ライトパワーが大きすぎる場合、形成されたピット [0006] しかしながら、(1)の方法では、例え 正しく點み取れない場合がある。

除周波数の異なるデータを再生しようとした場合、幾つ **校出幅が狭過ぎて幅が読み取りにくくなる。そして、記** ものコンパレータを持たなければならず、回路が非常に 【0007】また、例えばディスクの回転数を上げて、 より高速に再生信号の幅を読み取ろうとした場合など、 奥雄になる欠点も有する。

91

比較しており、ピット毎に企てのデータを比較するので 或いは1024パイトのパッファ(R AMなど)を必要 とする。そのため、リードデータとライトデータを選次 [0008] 一方、(2)の方法では、データを比れ **るために1セクタ毎に比較したとしても512パイ** 非常に時間がかかってしまう。

[0009] また、テストライトとして、どの版なパタ -ンを用いると良いのか、説明がなされていない。 [00100]

タを再生しようとした場合、幾つものコンパレータを持 **たなければならず、回路が非常に複雑になる欠点を有す** 年生信号の幅を配む方法では、配録周波数の異なるデー 【発明が解決しようとする戦略】 前述のように、 (1)

【0011】また、(2) ビットエラーゆを聞べる方法 では、テストライトとして、どの様なパターンを用いる と良いのか、説明がなされていない。 30

[0012] 本発明は、前記事情にかんがみてなされた 配除媒体の種類や感度に関わらず、回路構成を省力化で きると共に、レーザー光のパワーを設適なライトパワー もので、テストライトとして最適なパターンをIIIいて、 に散定できる光学的情報記録再生装置を提供すること

【課題を解決するための手段】本発明の光学的情報記 [0013]

目的としている。

再生数院は、フーザーアームにより記録媒体に情報を記 を制御する制御手段と、前配配斡媒体から再生される情 マーク情報と予め記録してあるデータとを比較して検出 する比較・検出手段と、前記比較・検出手段による比較 の結果により、前記マーク情報と前記予め記録してある データとが一致する数をカウントする印刷手段とを備え 録する光ヘッドと、前記光ヘッドの発光肌及び発光時間 **単信号中に含まれるマーク情報を検出するために、前記** 40

発光肌を任意に散定してから、前配配験媒体に対してや [0014] かのに、本筋則の数脳は、巨関形ヘッドの たものである。

1

20

に、記録媒体に形成されたマーク情報を前記比較・検出 【作用】本発明では、記録媒体に照射するレーザーのラ 情報を記録媒体に記録し、テストライトのリード動作時 手段により検出し、前記計測手段のカウント値を基にし て前記マーク情報の欠落が最小となるように制御するこ イトパワーを収適なパワーに合わせ込むために、マーク とで、前配ライトパワーを吸適に設定する。 [0015]

【実施例】図を参照して本発明の実施例について、以下

[0016]

34からなっている。さらに、前記データ部33を詳細 タ内フォーマットの構造は、図2に示す様に、アドレス **部31、フラグ部32、データ部33、及びパッファ部** にみると、NFO部36、シンクバイト部37、データ (RS) は1セクタ中に59個存在する。また、シンク 【0017】 記録媒体としての光ディスクにあってセク 及びECC なからなるDATA 部38、リシンクマーク 部39に分けることができる。例えば、ISO標準フォ ーマットの120幅ディスクでは、512 (Byte/ セクタ〕の場合、マーク情報としてのリシンクマーク バイト (SB) は、1セクタ中に1個存在する。

のである。

なコード・パターンが用いられている。シンクバイト及 は、データの甑み出し開始位置(同期位置)を示す特殊 びリシンクマークは、一般的に、確実にデータ同期位置 を検出するために自己相関性、つまり比較のためのコー ド・パターンと覧み出しコード・パターンとが少しでも なる性質が強く、データの変調方式には従っていない特 ピットずれしていると、一致するピットが極端に少なく [0018] このシンクパイト及びリシンクマークに 殊なパターンが使用されている。

照射するレーザーのパワーを吸遠なパワーに合わせ込む 【0019】一方、図3は本発明の一実施例に係る光学 的情報記録再生装置1のブロック図である。この光学的 **情報記録再生装置1は、記録媒体である光ディスク2に** ために、テストライト動作時に1セクタ当たりのリシン クマークまたはシンクバイトといった記録媒体の同期パ ターンを検出し、最適ライトパワーの散定を行うもので

9

光晴気ディスクであって、図2にホ中フォーマットのデ 【0020】尚、この装置1で使用するディスク2は、 イスクを使用するものとして、以下説明する。 【0021】前配装置1において、前配ディスク2は前 るようになっている。このディスク2には、光ヘッド4

記装置1のモーター3により、所定の回転数で回転され

によりレーザー光が照射され、情報の事き込み及び読み 発光費及び発光時間(パルス幅)が制御されるようにな 制御手段としてのレーザーパワー発光制御部5により、 出しがなされるようになっている。前記光ヘッド4は、

は、2 値化信号にエラー訂正を施したり、変調とは逆の アルゴリズムで2値化信号を復調等するものである。復 関回路 7 で復聞された情報は、後述するC P U に入力す 【0022】前記ディスク2からの反射光が光ヘッド4 にて検出された光磁気信号は、二値化回路6に入りデジ 二質化回路6の出力は、同時に、比較・検出手段として のマーク検出回路8に入力されている。前記復闘回路7 タル化され、さらに復調回路7に入力される。その際、 るようになっている。

97

ド・パターンとが同じ場合に、パルス信号を出力するも のである。また、カウンタ回路9は、前記マーク検出回 路8が出力するパルス数(検出信号)をカウントするも 【0023】前記マーク検出回路8は、予め記録された リシンクタークのコード・パターンと比較のためのコー

【0024】 CPU10は、カウンタ回路9のによりカ 照射したレーザーパワーが正しいか否かを判断する。そ を決定すると共に、パワー調整の制御をする。また、C PU10は、セクタ内フォーマットの仕様に合致したコ **ード・パターンをレーザーパワー制御部5に送ることに** より、ディスク2にマーク情報、例えばリシンクマーク した、C b D 10、趙凯赳

整結

に応じた、

前記

一が **ーパワー関御部5に送るデータを決め、レーザーパワー** ウントされたパルス数が59個存在するか否かにより、 を記述する。 【0025】尚、カウンタ回路9は、データ読み取り可 ドゲート信号とつながっており、その信号が動作状態と なると同時にセットされ、また終了状態になる毎にリセ 能状態であることを知らせる(テストライト時の)リー ットがかかる構成になっている。

のテストライト・リードの際、ライトパワーを任意の値 Xに設定し、ステップS2で、ディスク2に例えばリシ ンクマークをテストライトする。装置1は、ライトされ たセクタをリードし、1セクタ内のリシンクマークを説 [0021]図4に示すステップS1で、先ずディスク て、段適なライトパワーの検出方法について説明する。 [0026] 図4及び図5のフローチャートに基づい

[0028] 尚、前記任意の値Xは、予想される最適の パワーであって、メディア毎におおよそ決まっているも のを用いるものとする。この値Xは、どの様な値でも良 いが、前記予想値を用いた方が、テストライトの処理時 聞を短縮するには良い。

[0029] この時、ステップS3で、読み取り開始時 に、ステップS4ないしS7の計測ループをカウントす

20

る。もし、1セクタを読み終えた時点で、1つでもリシ トする。そして、ステップS4で、マーク検出回路8に ンクマークが読み取れなかった場合には、リード可能質 部カウンタを1つカウントアップした後、次にステップ る図示しない内部カウンタの値 n (計測回数) をリセッ て検出された数、つまり本来1セクタ当たり59個ある リシンクマークの検出数をカウンタ回路9でカウントす 域外のライトパワーと判断され、ステップS5で前配内 S 6で、現在のライトパワーXに対して、可変肌Yミリ ワット分加算し、再度ライトパワーXとして設定し直

を設定する。そして、n=5は一例であり、可変肌ソの 【0030】尚、メディアによってパワーマージンは殴 知なので、例えば前配n=5で、前配マージンを全てカ すなわち、初期値Xに可変型Yを5回加算すると、パワ **ーマージンの上限を少なくとも越えるように、可変批Y** 値と合わせ、種々の変動要因も考慮して、実際のパワー パーできるように、可変肌Yを算出することができる。 マージンの上限に至るように設定する。

[0031] ここで、ステップS4でNoの場合、可変 マークの個数後出動作を繰り返す。ステップS7で、前 記内部カウンタが5回カウント (n=5) した内、1回 もリシンクマークの個数が、59個検出できなかった場 合、ステップSBで、ライトパワーXを最初に設定した 肚Vを加算する度に、その設定パワーの基で、リシンク 値に戻すため、現在のパワーXから4Yを引く。 つま り、X= (X-4Y) の資質をする。

10)、ステップS11で再び、前記マーク検出回路8 **批Yは、ステップS6と異なる値Y'に設定しても良い** 【0032】そして、ステップS9以降で、今度は、逆 に可変肌Yだけライトパワーを下げていき (ステップS によるリシンクマークの検出個数を確認する。尚、可変 が、初期数定されたパワーXは、通常、前配マージンの ステップS9ないしS12の計圏ループにおいて、初期 に、可変<u>型Yを</u>散定する。尚、ステップS12では、同 一の前記内部カウンタを用いているので、n=10か否 値Xから可変肚Yを計測回数だけ(例えば、5回)破算 すると、パワーマージンの下限を少なくとも越えるよう 中央にあると考えられるので、同一値でもよい。但じ、 かの判断をしている。

0033] そして、ステップS4あるいはステップS し、59個點んだことが確認された後、図5のステップ S14で、リード可能領域にあるライトパワーXを先す 11で、リシンクマークが、59個説めるまで繰り返

の場合、同図のステップS13に移りエラーとして処理 [0034] ところで、図4のステップS12で、No

可変<u>重∆(例えば、∆=X÷10)を</u>設け、X=(X− [0035] 次に、依出したライトパワーXに対して、

時間平6-139578

€

は、検川特度に関わるものであり、このムを小さくすれ 4)の資質を行い、リード可能領域内の最小のライトパ ば特度良く検出がなされる一方で、検出時間も長くなる ワーを顧衣リシンクシーク(RS)の後出を行いながら **求める (ステップS15,S16畚照)。 尚、可変脱**る

[0036] そして、ステップS15で、Noとなった きのパワーを最小のライトパワーBとする (ステップS 17卷照)。

ているのは、ステップSI5でライトパワーを設定し直 してからリシンクマークの検出を行うために、リード可 能領域内にあったライトパワーXが、値Bでは領域外と 4)と、ライトパワーを4ミリワットずつ上げて、ステ ップS19かリシンクセークの包数を循路したゆく。メ 【0031】窓、 ステップS17でB= (X+4) とし アップS 1 9 でN o となった時、ステップS 2 0 で、リ 【0038】次に、 オテップS 18で同僚にX= (X+ なっているので、可変<u>取×(×≧∆)ミリワット分</u>5 トパワーが小さくなってしまう。それ枚、ライトパ Xの行き過ぎ肌を補正するための処置である。 01 20

しているのは、前配同様、行き過ぎ肌を補正するためで る。ここでも最大値Aを決定する際、A=(X-A)と ード可能領域内のライトパワーの収大の値Aが得られ

[0039] 最後に、ステップS21で、前配方法で来 21 を求めることにより、最適ライトパワーを算出する oた最小質Bと最大質Aの中国質CC= + (A+B) / ことができる。

[0040] 図1には、リシンクマークを検出する回路 の具体例を示す。

ータ23を有している。前記8 ビットシフトレジスタ2 シフトレジスタ21、比較データ部22、及びコンパレ 1 には、前記2値化回路6からの2値化信号が入力する 【0041】図1にポナヤーク検出回路8は、8ピット ようになっている。 【0042】テストライト時に発生するリードゲート信 になっている。その変換のタイミングは、図に示すクロ レジスタ21により、パラレルデータに変換されるよ 号がアクティブ状態の時のみ、ディスク2に告き込 たリシンクタークのシリアルゲータは、8 ピットシ

Ê

比較データ部22の値と、値能シフトレジスタ21のパ [0043] 故に、予めプルアップ、プルダウンにより リシンクシークの既知のパターンデータを構成している ラレルデータとを各ピット毎に、コンパレータ23によ ックのタイミングで行われる。 り逐次比較する。

い、"0"と"1"との特定の組み合わせパターンから 【0044】ここで、1セクタ内に配置された59個の リシンクマークの金ては、周一データパターン(例えば 8 ビット)、すなわち他の領域には存在が許されていな

20

特開平6-139578

[0045] 庶的コンパレータ23は、唐記シントレジ スタ21のパラレルデータと、データ比較部22とのそ と、八つのEXNORゲート24の各出力の福里積をと れぞれ排他的镭照をとる人 の EXNORゲート 24 るANDゲート25とから解成されている。

10では、前述した様にリード可能領域となるライトパ におけるリシンクマークのデータパターンと、同一のパ 【0046】前記コンパレータ23では、データ再生時 ている時のみ、1クロック(検出信号)が出力され、そ して前記カウンタ回路9に入力される。前記カウンタ回 【0047】テストライト時において、カウンタ回路9 に入力されたクロックが、59個となった場合、CPU リシンクマーク検出信号が出力されることになる。すな ターンが現れるか否かが維結的に比較される。そして、 **わち、コンパレータ23は、前記金てのゲータが一致し** コンパレータ23からは、パターンが一致したときに、 路9は、クロック入力毎にカウントアップしていく。

状態から抜け出した時に、つまり1セクタ分部みだした **時点で、CPU10は、カウンタ9の出力が59個にな** 【0048】もし仮に、リードゲート信号がアクティブ し、再びレーザーパワー制御部5~パワーの変更データ っているか否かを判断する。59個になっていない場 合、前記CPU10は、ライトパワーが不適切と判断

30 40 【0049】以上のことは、別の検出方法を用いた構成 **例えばシンクバイト (SB) でもよい。シンクバイトは** は、比較データ部22と、コンパレータ23と、シフト レジスタ21とをそれぞれ2個(8 ビット/1個) 増や した構成になる。合計30のコンパワータ23の三0の 出力は、それらの論理預を取るANDゲートを経て、カ る。前記検出信号は、カウント回路9によりカウントさ れ、前記と同様の手段で最適ライトパワーの検出、設定 は、ステップS4,S11,S16,S19の個数であ によっても可能であり、検出するマーク情報としては、 ウント回路9のクロック (検出信号) として入力され ができる。尚、この例の場合、検出個数の基準は、1 24ビットで構成されているので、マーク検出回路8 [個/セクタ] となる。前記フローチャートにおいて

23と、シフトレジスタ21とがそれぞれ3個地散され パイト (SB) の両方を検出する構成にしても良い。マ 【0050】また、リシンクマーク (RS) 及びシンク ーク検出回路8は、比較ゲータ部22と、コンパレータ ることになる。尚、この例の場合、検出個数の基準は、

20 【0051】本実施例では、1セクタ当たりのマークの -5-

数の検出が『全て行えたか』、『1個でも検出できなか **った』 ひあるのひ、 会否の判定基準 (コンパワートレベ**

い)の設定が容易である。

-クの数(リシンクタークの場合、8 ピット×5 9 個× 【0052】また、従来例では、仮に1セクタ毎のビッ ト比較を行った場合、2×マーク ("1", "0"の2 パターン) のデータのピット数×1セクタに存在するマ 2) 分カウントできるカウンタが、必要となる。しかし ながら本実施例では、59個カウントできるカウンタで 16ですむために、カウンタを大幅削減することができ よいため、回路構成が簡易となりカウントする数も1/

【0053】尚、マーク検出回8は、通常、リシンクマ **ーク(RS)及びシンクパイト(SB)の両方を検出す** る構成になっているので、その点から言っても回路構成 【0054】また、拉記リシンクマーク、シンクバイト といったマーク信頼は、復職回路において復職されない 特殊なパターンで書かれており、データパターンが各マ は、ユーザーデータ領域に比べ極めて厳しいデータパタ ーンで記録されているため、マーク部37,39でのリ ードライトを行う方がデータ部38で行うより、レーザ 一クにより決まっている。さらにマークのデータ領域 ーパワーの散定に適している。

20

るデータに比べ極めて厳しいデータパターンのことであ 5。こうした厳しいデータパターンとは、最長のデータ ことである。例えば、最長パターンと最短パターンが操 【0055】前記マーク信報は、リシンクマーク、シン クパイト毎に代表されるように、データ領域に配録され の間に最短のデータが存在するようなデータパターンの り返されるデータは、再生側において、読みにくいデー タである。

【0056】変調方式が、例えば2-1変闘の場合、段 及のデータは"8T"で、仮短のデータは"3T"であ 5。そして、例えば8T,3T,8T,8T,3T…苺 のパターンが該当する。また、変調方式が、例えば1ー 7 変闘の場合、最長のデータは"8 T"で、 最短のデー タは"21"である。そして、例えば81,21,8 T, 8T, 2T…毎のパターンが該当する。

条件でライトパワーを設定できる。従って、本実施例で 【0057】本実施例では、前述のようにリシンクマー ク、シンクパイト箏のマーク情報を用いて、より厳しい は、マーク情報が完全に再生されるように設定されたパ ワーであれば、通常のデータは容易且つ確実に再生する ことができ、再生能力を向上させることができる。 [0058] 次に、テストライトのため、マーク情報を 【0059】ライトパワーがディスクのどの位置でも一 記録するディスク上の位置について述べる。

並であれば、任意の位置で一回、図4及び図5に示すフ ローチャートに従ったテストライト・リードを行えば良

い。しかし、通常は、ディスクは、内周側と外周側で設 **定パワーを変えている。例えばディスクの徭方向におい ト、玄霊、中霊、冬宮の川しの燈及かフボーパワーが瑞** なるものとする。この場合、内図、中図、外図の三つの 領域の各任意のセクタで、つまり代表される三つのセク タで、それぞれ前記テストライトによるライトパワーを は、得られた三つのライトパワーの例えば平均値を取っ て、これを最適パワーとして前配制御部5に設定を指示 **険出し、その値を把握する。そして、街間CPU10**

【0060】尚、内周側の方が、外周側よりリード・ラ イトを行うのに高いパワーが必要である。そこで、テス トライトに要する時間を短縮するため、前配例において 回のテストライト・リードのみで、パワーを設定しても も、前記内側(あるいは最内周)のセクタにおいて、

[発明の効果] 本発明の光学的情報記録再生装置によれ **しまりより厳しい条件でパワーの設定ができ、記録媒体** の種類や感度に関わらず、レーザー光のパワーを最適な **装置にも適用できる。また、記録媒体としては、ディス** ば、テストライトとして最適なパターンを用いており、 クに限らずカード状の媒体でも良い。

2…光ディスク 4…光ヘッド 7…復職回路 [0061] 本発明は、哲き換え型に限らず、追記型の

5…フーナーベワー室容用 8 …マーク検出回路 9…カウンタ回路 10...CPU

21…8ビットシフトレジスタ 22…比較データ部 23…コンパレータ 25 ... AND 4-1 20

[図

ライトパワーに設定できると共に、それを省力化した回

G

特国平6-139578

名構成でできるという効果がある。

[図1] 図1はマーク像出回路の具体例を示す構成図。 【図2】図2はディスクのフォーマット例を示す説明 【図面の簡単な説明】

[図3] 図3は光学的情報記録再生装配のプロック図。 [図4] 図4はテストライト・リードのフローチャー

[図5] 図5 (1図4 に続くテストライト・リードのフロ

[作号の説明] ーチャート。

1 … 光学的情報配錄再生装置

ī

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

☐ LINES OR MARKS ON ORIGINAL DOCUMENT

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY