

Cálculo II Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase Nº14: Cálculo II Integrales Impropias

Ya hemos estudiado las integrales impropias de la primera especie y ahora nos centraremos en las integrales impropias donde la función es no acotada en el intervalo de integración:

Integrales Impropias de la Segunda Especie

Si f es una función continua en el intervalo (a,b] pero no es acotada cerca de a, es decir, $\lim_{x\to a^+} f(x) = \infty$, entonces

$$\int_a^b f(x) \ dx = \lim_{c \to a^+} \int_c^b f(x) \ dx$$

Similarmente, si f es una función continua en el intervalo [a,b) pero no es acotada cerca de b, es decir, $\lim_{x\to b^-} f(x) = \infty$, entonces:

$$\int_a^b f(x) \ dx = \lim_{c \to b^-} \int_a^b f(x) \ dx$$

Observación: Notemos que si una función f no es acotada cerca de c, donde a < c < b y además $\int_a^c f(x) \ dx$ y $\int_c^b f(x) \ dx$ convergen, entonces se cumple que:

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

Ahora bien, si una de las integrales $\int_a^c f(x) dx$ ó $\int_c^b f(x) dx$ diverge, entonces $\int_a^b f(x) dx$ diverge.

Analizar la convergencia de las siguientes integrales:

(a)
$$\int_0^1 \ln(x) \ dx$$

(b)
$$\int_0^1 \frac{1}{1-x^2} dx$$

(c)
$$\int_{-3}^{2} \frac{1}{(x-1)^{5/3}} dx$$

Solución a): Notemos que $f(x) = \ln(x)$ es continua en el intervalo (0,1], pero no acotada cerca de x=0, por ende la integral que debemos resolver es impropia de la segunda especie, así:

$$\int_{0}^{1} \ln(x) dx = \lim_{c \to 0^{+}} \int_{c}^{1} \ln(x) dx$$

$$= \lim_{c \to 0^{+}} x \ln(x) - x \Big|_{c}^{1}$$

$$= \lim_{c \to 0^{+}} 1 \ln(1) - 1 - (c \ln(c) - c)$$

$$= \lim_{c \to 0^{+}} c - c \ln(c) - 1$$

$$= \lim_{c \to 0^{+}} c - \frac{\ln(c)}{1/c} - 1$$

$$= -1$$

Por lo tanto, podemos concluir que la integral impropia converge,

Prof. Víctor Aros Q. Cálculo II October 7, 2021 6/21

Solución b): Notemos que $f(x) = (1 - x^2)^{-1}$ es continua en el intervalo [0, 1), pero no acotada cerca de x = 1, por ende la integral que debemos resolver es impropia de la segunda especio, así:

$$\int_0^1 \frac{1}{1 - x^2} dx = \lim_{a \to 1^-} \int_0^a \frac{1}{2(x + 1)} - \frac{1}{2(x - 1)} dx$$

$$= \lim_{a \to 1^-} \frac{1}{2} \ln|x + 1| - \frac{1}{2} \ln|x - 1| \Big|_0^a$$

$$= \lim_{a \to 1^-} \frac{1}{2} \ln|a + 1| - \frac{1}{2} \ln|a - 1| - \frac{1}{2} \ln|1| + \frac{1}{2} \ln|-1|$$

$$= +\infty$$

Por lo tanto, podemos concluir que la impropia diverge.

◆□▶ ◆□▶ ◆■▶ ◆■ ・ ● ・ ◆ Q (~)

Los resultados que veremos a continuación serán enunciados para integrales del tipo $\int_a^b f(x) \ dx$ donde la función no es acotada en b, pero también serán válidos para los demás casos, como los del ejemplos anteriores.

Álgebra de Integrales Impropias 2da Especie

Sean $\int_a^b f(x) dx$ y $\int_a^b f(x)$ dos integrales impropias convergentes, donde f es no acotada en b y sea $\lambda \in \mathbb{R}$. Entonces, las siguientes afirmaciones se cumplen:

1. La integral $\int_a^b f(x) + g(x) dx$ converge y además:

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

2. La integral $\int_a^b \lambda f(x) dx$ converge y además:

$$\int_{a}^{b} \lambda f(x) \ dx = \lambda \int_{a}^{b} f(x) \ dx$$

Ahora haremos un análisis similar al caso de las integrales impropias de la primera especie sobre las funciones del tipo $f(x) = \frac{1}{x^p}$, pero en este caso estará definida en (0,1], ya que en dicho intervalo f es continua y no acotada cerca de x=0. Consideremos los siguientes casos:

Si $p \neq 1$, se tiene:

$$\int \frac{1}{x^p} dx = \frac{x^{p+1}}{p+1} + C$$

luego, si analizamos la convergencia, se tiene:

$$\int_0^1 \frac{1}{x^p} dx = \lim_{a \to 0^+} \int_a^1 \frac{1}{x^p} dx = \lim_{a \to 0^+} \frac{x^{1-p}}{1-p} \Big|_a^1 = \lim_{a \to 0^+} \frac{1}{1-p} - \frac{a^{1-p}}{1-p}$$

Ahora bien, si p = 1 se tiene:

$$\int_0^1 \frac{1}{x} \, dx = \lim_{a \to 0^+} \int_a^1 \frac{1}{x} \, dx = \lim_{a \to 0^+} \ln|x| \Big|_a^1 = \lim_{a \to 0^+} 1 - \ln|a| = +\infty$$

Finalmente,

$$\int_0^1 \frac{1}{x^p} dx = \begin{cases} \text{diverge} & p \ge 1\\ \frac{1}{1-p} & p < 1 \end{cases}$$

Criterios de Convergencia

De manera análoga que con las integrales impropias de la primera especie podemos preguntarnos por la convergencia o divergencia de una integral impropia sin calcular la integral definida, es por esto que estudiaremos dos criterios de convergencia que nos servirán para realizar este análisis.

Criterios de Convergencia

Criterio de Comparación

Sean f,g funciones continuas en [a,b), pero no acotadas cerca de x=b, es decir, $\lim_{x\to b^-}f(x)=\infty$ y $\lim_{x\to b^-}g(x)=\infty$. Además, se cumple que $0\leq g(x)\leq f(x)$ para todo $x\in [a,b)$, entonces:

- 1. Si $\int_a^b f(x) dx$ converge, entonces $\int_a^b g(x) dx$ converge
- 2. Si $\int_a^b g(x) dx$ diverge, entonces $\int_a^b f(x) dx$ diverge

Observación: este criterio también es válido para las funciones que son continuas en (a, b], pero no acotadas cerca de x = a.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ からで

Criterios de Convegencia

Criterio de Comparación en el Límite

Sean f,g funciones continuas en [a,b), pero no acotadas cerca de x=b, es decir, $\lim_{x\to b^-}f(x)=\infty$ y $\lim_{x\to b^-}g(x)=\infty$, por ende: entonces:

$$ightharpoonup$$
 Si $\lim_{x \to +\infty} \left[\frac{f(x)}{g(x)} \right] = L > 0$, entonces

$$\int_{a}^{b} f(x) dx \text{ converge} \Leftrightarrow \int_{a}^{b} g(x) dx \text{ converge}$$

$$ightharpoonup \operatorname{Si} \lim_{x \to +\infty} \left[\frac{f(x)}{g(x)} \right] = 0, \text{ entonces}$$

$$\int_a^b g(x) dx$$
 converge $\Rightarrow \int_a^b f(x) dx$ converge

Analice la convergencia de las siguientes integrales impropias:

(a)
$$\int_2^{5/2} \frac{1}{\sqrt{(3-x)(x-2)}} dx$$

(b)
$$\int_0^2 \frac{1}{(1+x^2)\sqrt{4-x^2}} dx$$

(c)
$$\int_{1}^{2} \frac{1}{\ln(x)} dx$$

(d)
$$\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} dx$$

Solución a): Notemos que $f(x)=((3-x)(x-2))^{-1/2}$ es una función continua en (2,5/2], pero no acotada cerca de x=2, además para todo valor dentro del intervalo f es no negativa. Por otro lado :

$$2 < x < 5/2 \Rightarrow 3 - 2 > 3 - x > 3 - 5/2$$

 $\Rightarrow 1 > 3 - x > 1/2$

además,

$$2 < x < 5/2 \Rightarrow 2 - 2 < x - 2 < 5/2 - 2$$
$$\Rightarrow 0 < x - 2 < 1/2$$

dado lo anterior, podemos establecer que:

$$(3-x)(x-2) > 1/2(x-2) \Rightarrow \sqrt{(3-x)(x-2)} > \sqrt{1/2(x-2)}$$

por ende,

$$\frac{11}{\sqrt{(3-x)(x-2)}} < \frac{1}{\sqrt{1/2}\sqrt{x-2}}$$

Ahora bien, solo nos falta analizar la convergencia de la integral impropia, como sigue:

$$\int_{2}^{5/2} \frac{\sqrt{2}}{\sqrt{x-2}} \, dx =$$

16/21

Ahora estudiaremos un tipo de integrales impropias especiales, como por ejemplo:

$$\int_0^{+\infty} x e^{-x} dx, \quad \int_0^{+\infty} x^{-1/2} e^{-x} dx, \quad \int_0^{+\infty} x^2 e^{-x} dx, \dots$$

todas estas integrales tienen algo en común, en primer lugar el exponente de la x se puedes escribir como:

y además, siempre sera convergente para todo

Función Gamma

La función gamma estudiada por varios matemáticos es una aplicación que permite extender el concepto de factorial a los números reales y complejos (una de sus aplicaciones más importantes)

Definición

Sea $\Gamma:]0, +\infty[\to \mathbb{R}$ la función definida por:

$$\Gamma(t) = \int_0^{+\infty} e^{-x} x^{t-1} dx$$

siendo esta convergente para todo t > 0.

Función Gamma

Además, esta función puede ser gráficada en el plano real y complejo, dependiendo del valor de t y el resultado de la integral impropia:

Función Gamma

Algunas de las propiedades que cumple la función Gamma son:

- 1. Γ es convergente para todo t > 0 y divergente para $t \ge 0$.
- 2. $\Gamma(1) = 1$
- 3. $\Gamma(t+1)=t\Gamma(t)$, para todo t>0
- 4. Si $t \in \mathbb{N}$, $\Gamma(t) = (t-1)!$
- 5. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

- 1. Determine el valor de $\Gamma(3)$, $\Gamma(\frac{3}{2})$ y $\Gamma(\frac{11}{2})$.
- 2. Calcule las siguientes integrales impropias:

(a)
$$\int_0^{+\infty} e^{-x} x^4 dx$$

$$\text{(b)} \int_0^{+\infty} e^{-3x} x^5 \, dx$$

(c)
$$\int_0^{+\infty} 5^{-4x^2} dx$$