Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži 22 pitanja i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti 20 pitanja, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je 180 minuta. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

1 (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}.$ Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. L^i $L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

$$\boxed{\mathsf{A}} \ L^1 = L^3 = 0, \, L^2 = L^4 < 1 \quad \boxed{\mathsf{C}} \ L^1 = L^2 = 1 < L^3 < L^4$$

$$C$$
 $L^1 = L^2 = 1 < L^3 < L^4$

$$\boxed{ {\sf B} } \ L^1 = L^4 < L^2 = L^3$$

2 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i =$ $\{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu $\mathcal{D},$ tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

$$\boxed{ \textbf{A} } \ E_1 > E_2 = E_3 > E_4 \quad \boxed{ \textbf{B} } \ E_1 = E_2 = E_3 > E_4 \quad \boxed{ \textbf{C} } \ E_1 > E_2 > E_3 = E_4 \quad \boxed{ \textbf{D} } \ E_1 = E_2 > E_3 = E_4$$

- 3 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - B | Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - C Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
 - D Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
- 4 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

Grupa A 1/6

- (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $\boxed{\mathsf{A}} \Phi$ ima puni rang, rang($\mathbf{G}) > m$ i \mathbf{G} ima inverz, ali s visokim kondicijskim brojem
 - $\lceil \mathsf{B} \rceil$ rang $(\Phi) < m+1, \, \mathbf{G}$ nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
 - $\lceil \mathsf{C} \rceil$ rang $(\Phi) = N$, no rang $(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - $\boxed{\mathsf{D}} \Phi$ nema puni rang, rang $(\mathbf{G}) < m+1$ i \mathbf{G} nema pseudoinverz
- 6 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_1} je podnaučen
- B Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- C Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- \square Model \mathcal{H}_{α_2} je prenaučen

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

7 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y = 0 koristimo oznaku y = -1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

- $\boxed{\mathsf{A}} \ d(\mathrm{SVM}) < d(\mathrm{LINR}) < d(\mathrm{LR}) \qquad \boxed{\mathsf{C}} \ d(\mathrm{SVM}) < d(\mathrm{LR}) < d(\mathrm{LINR})$
- $\boxed{ \texttt{B} \ d(\text{LR}) < d(\text{SVM}) < d(\text{LINR}) \quad \boxed{ \texttt{D} \ d(\text{LINR}) < d(\text{LR}) < d(\text{SVM}) }$
- 8 (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 3.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.5$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?
 - A 2.54 B 7.11 C 4.03 D 1.19
- 9 (N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, -1, -3)$ s oznakom $\mathbf{y} = (1, 0, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

10 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 2)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

A 18 B 100 C 96 D 40

(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, -2, -0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

(T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?

A OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih

B OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR

C OVO svaki klasifikator trenira sK/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO

(P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

lacksquare A \mathbf{w}_1 B \mathbf{w}_3 C \mathbf{w}_4 D \mathbf{w}_2

(T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. **Što možemo** reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?

 $oxed{\mathsf{A}}$ Razlika je to manja što je vektor $oldsymbol{\phi}(\mathbf{x})$ bliži ishodištu

 $\ensuremath{\,{\sf B}\,}$ Razlika je to veća što je stopa učenja η bliža jedinici

lacksquare Razlika je to manja što je oznaka y bliže jedinici

 $\ensuremath{\mathsf{D}}$ Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, κ (water, eau) = 2/6 = 0.33. Skup za učenje je sljedeći:

$$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, -3.5, 0, -1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

16 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C = 10 i $\gamma = 0.0001$ za vektor dualnih parametara dobili smo $\alpha = (10, 1.052, 10, 10, 8.948)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za treći primjer, $L(y^{(3)}, h(\mathbf{x}^{(3)}))$?

 A
 1.64
 B
 1.18
 C
 0.03
 D
 0.24

17 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-2, -2), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

 $\fbox{A} \ \frac{4}{5}\sqrt{10} \ \text{puta} \ \ \fbox{B} \ \frac{1}{6}\sqrt{2} \ \text{puta} \ \ \ \fbox{C} \ \frac{3}{5}\sqrt{10} \ \text{puta} \ \ \ \boxed{D} \ \frac{2}{5}\sqrt{10} \ \text{puta}$

(P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Već ranije smo utvrdili da je model sa $C = 2^{-2}$ i $\gamma = 10^{-1}$ podnaučen, a da je model sa $C = 2^{1}$ i $\gamma = 10^{1}$ prenaučen. Za sve ostale modele ne znamo jesu li prenaučeni, podnaučeni ili optimalni. Koliko modela još ima smisla ispitati jer su moguće optimalni?

A 10 B 25 C 96 D 76

19 (P) Na 900 primjera sa 50 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 52 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?

A Optimiramo 901 parametar, a naučeni model ima 3501 parametar

B Optimiramo 51 parametar, a naučeni model ima 2653 parametara

C Optimiramo 51 parametar, a naučeni model ima 2600 parametara

D Optimiramo 901 parametar, a naučeni model ima 2653 parametara

20	(T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?
	A Dualni problem tvrde margine C Primarni problem tvrde margine
	B Primarni problem meke margine D Dualni problem meke margine
21	$(T) \ Algoritmi \ strojnog učenja \ mogu \ biti parametarski ili neparametarski. \ {\bf \check{S}to} \ {\bf je} \ {\bf karakteristika} \ {\bf neparametarskih} \ {\bf skih} \ {\bf algoritama} \ {\bf strojnog} \ {\bf u\check{c}enja}?$
	A Broj parametara ovisi o broju primjera
	B Složenost modela raste s normom vektora parametara
	C Pretpostavljaju teorijsku distribuciju podataka
	D Hiperparametri nemaju utjecaja na složenost modela
22	(N) U ulaznome prostoru dimenzije $n=3$ trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore

(N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \ \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,2,-30)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?

 $\fbox{A} + 907.43 \quad \fbox{B} + 541.53 \quad \fbox{C} - 739.13 \quad \boxed{D} - 373.22$

Grupa A 5/6

Grupa A 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

- 1 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - B Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - C Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
 - D Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
- (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}$. Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. $L^i = L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

- 3 (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?

 - B Φ nema puni rang, rang(\mathbf{G}) < m+1 i \mathbf{G} nema pseudoinverz
 - $C \mid \operatorname{rang}(\Phi) = N$, no $\operatorname{rang}(G) < N$, pa G ima pseudoinverz, ali nema numerički stabilan inverz
 - $|\mathsf{D}|$ rang $(\Phi) < m+1$, **G** nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
- 4 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

$$\boxed{ \textbf{A} } \ E_1 = E_2 > E_3 = E_4 \quad \boxed{ \textbf{B} } \ E_1 > E_2 > E_3 = E_4 \quad \boxed{ \textbf{C} } \ E_1 > E_2 = E_3 > E_4 \quad \boxed{ \textbf{D} } \ E_1 = E_2 = E_3 > E_4$$

Grupa B 1/6

5 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

 $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_1} je podnaučen

 $\lceil \mathsf{C} \rceil$ Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}

 \square Model \mathcal{H}_{α_2} je prenaučen

6 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

A 0.29 B 7.10 C 1.58 D 2.69

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

7 (P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

lacksquare lacksquare

8 (N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, 1, -3)$ s oznakom $\mathbf{y} = (0, 1, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

A 4.02 B 6.00 C 8.00 D 12.02

9 (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 0.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.274$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?

A 1.19 B 2.54 C 7.11 D 4.03

10	(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog
	prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2)$. U jednoj iteraciji treniranja modela
	vektor parametara jednak je $\mathbf{w}=(0.1,0.5,-2,0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta
	gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

11 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 0)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

12 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y=0 koristimo oznaku y=-1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

$$\boxed{\mathsf{A}} \ d(\mathtt{LR}) < d(\mathtt{SVM}) < d(\mathtt{LINR}) \qquad \boxed{\mathsf{C}} \ d(\mathtt{LINR}) < d(\mathtt{LR}) < d(\mathtt{SVM})$$

- (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. Što možemo reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
 - A Razlika je to manja što je vektor $\phi(\mathbf{x})$ bliži ishodištu

 - $\lceil \mathsf{C} \rceil$ Razlika je to veća što je stopa učenja η bliža jedinici
 - D Razlika je to manja što je oznaka y bliže jedinici
- (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?
 - \fbox{A} OVR treba Kputa više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2puta manje zastupljene nego OVR
 - B OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih
 - lacksquare OVO svaki klasifikator trenira sK/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO
 - D OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- (P) Na 500 primjera sa 80 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 38 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
 - A Optimiramo 501 parametara, a naučeni model ima 3541 parametar
 - B Optimiramo 81 parametar, a naučeni model ima 3040 parametara
 - C Optimiramo 81 parametar, a naučeni model ima 3079 parametara
 - D Optimiramo 501 parametara, a naučeni model ima 3079 parametara
- (N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,-2,5)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?
- 17 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Već ranije smo utvrdili da je model sa $C=2^{-2}$ i $\gamma=10^{-1}$ podnaučen, a da je model sa $C=2^{1}$ i $\gamma=10^{1}$ prenaučen. Za sve ostale modele ne znamo jesu li prenaučeni, podnaučeni ili optimalni. Koliko modela još ima smisla ispitati jer su moguće optimalni?

- A 76 B 25 C 96 D 10
- 18 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.0001$ za vektor dualnih parametara dobili smo $\alpha=(10,1.052,10,10,8.948)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

- 19 (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Broj parametara ovisi o broju primjera
 - B Broj značajki ne ovisi o dimenziji ulaznog prostora
 - C Svaki primjer ima globalan utjecaj na izgled hipoteze
 - D Hiperparametri nemaju utjecaja na složenost modela

(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1,\mathbf{x}_2)=|\mathbf{x}_1\cap\mathbf{x}_2|/|\mathbf{x}_1\cup\mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, $\kappa(\text{water},\text{eau})=2/6=0.33$. Skup za učenje je sljedeći:

$$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, -3.5, 0, -1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

21 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-1, -1), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

 $oxed{A}$ $\frac{3}{5}\sqrt{10}$ puta $oxed{B}$ $\frac{4}{5}\sqrt{10}$ puta $oxed{C}$ $\frac{2}{5}\sqrt{10}$ puta $oxed{D}$ $\frac{1}{6}\sqrt{2}$ puta

(T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?

A Primarni problem tvrde margine C Dualni problem meke margine

B Primarni problem meke margine D Dualni problem tvrde margine

Grupa B 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

1 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- B Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- C Model \mathcal{H}_{α_1} je podnaučen
- D Model \mathcal{H}_{α_2} je prenaučen
- 2 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - B Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - C Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
 - D Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
- 3 (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $|A| \Phi$ ima puni rang, rang(G) > m i G ima inverz, ali s visokim kondicijskim brojem
 - $|\mathsf{B}| \operatorname{rang}(\Phi) = N$, no $\operatorname{rang}(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - $\lceil \mathbf{C} \rceil$ rang $(\Phi) < m+1$, \mathbf{G} nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
 - $|\mathsf{D}| \Phi$ nema puni rang, rang $(\mathsf{G}) < m+1$ i G nema pseudoinverz
- 4 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Grupa C 1/6

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

$$\boxed{ \textbf{A} } \ E_1 > E_2 > E_3 = E_4 \quad \boxed{ \textbf{B} } \ E_1 = E_2 = E_3 > E_4 \quad \boxed{ \textbf{C} } \ E_1 = E_2 > E_3 = E_4 \quad \boxed{ \textbf{D} } \ E_1 > E_2 = E_3 > E_4$$

5 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

(P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}$. Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. $L^i = L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

 $\begin{array}{|c|c|c|c|c|} \hline \textbf{A} & L^1 = L^3 = 0, \ L^2 = L^4 < 1 & \hline \textbf{C} & L^1 = L^2 = 1 < L^3 < L^4 \\ \hline \textbf{B} & L^1 = L^4 < L^2 = L^3 & \hline \textbf{D} & L^1 = L^4 = 1, \ L^2 < L^3 \\ \hline \end{array}$

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, -2, -0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

8 (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. Što možemo reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?

- $oxed{\mathsf{A}}$ Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli
- B Razlika je to manja što je oznaka y bliže jedinici
- \square Razlika je to veća što je stopa učenja η bliža jedinici
- D Razlika je to manja što je vektor $\phi(\mathbf{x})$ bliži ishodištu

 \P (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?

 \fbox{A} OVR treba Kputa više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2puta manje zastupljene nego OVR

B OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih

OVO svaki klasifikator trenira sK/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO

 $\boxed{\mathsf{D}}$ OVR iziskuje K-1puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1puta manje primjera nego kod OVR

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 0)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

- (P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?
- 12 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^{\mathrm{T}}\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y=0 koristimo oznaku y=-1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

- (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 0.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.274$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?
 - A 1.19 B 7.11 C 2.54 D 4.03
- (N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, -1, -3)$ s oznakom $\mathbf{y} = (0, 0, 1)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- 15 (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Složenost modela raste s normom vektora parametara
 - B Pretpostavljaju teorijsku distribuciju podataka
 - C Eksplicitno modeliraju granicu između primjera
 - D Broj parametara ovisi o broju primjera
- 16 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-2, -2), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

- (T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?
 - A Dualni problem tvrde margine C Dualni problem meke margine
 - B Primarni problem meke margine D Primarni problem tvrde margine
- 18 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Već ranije smo utvrdili da je model sa $C=2^{-2}$ i $\gamma=10^{-1}$ podnaučen, a da je model sa $C=2^{1}$ i $\gamma=10^{1}$ prenaučen. Za sve ostale modele ne znamo jesu li prenaučeni, podnaučeni ili optimalni. Koliko modela još ima smisla ispitati jer su moguće optimalni?

- A 96 B 76 C 25 D 10
- 19 (P) Na 500 primjera sa 80 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 38 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
 - A Optimiramo 81 parametar, a naučeni model ima 3079 parametara
 - B Optimiramo 501 parametara, a naučeni model ima 3040 parametara
 - C Optimiramo 501 parametara, a naučeni model ima 3079 parametara
 - D Optimiramo 501 parametara, a naučeni model ima 3541 parametar
- 20 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Grupa C

Treniranjem uz C=10 i $\gamma=0.0001$ za vektor dualnih parametara dobili smo $\alpha=(10,1.052,10,10,8.948)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

lacksquare A 0.24 B 1.64 C 0.03 D 1.18

(N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5$, $\alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,2,-30)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?

 $\fbox{A} + 541.53 \quad \fbox{B} - 739.13 \quad \boxed{\texttt{C}} + 907.43 \quad \boxed{\texttt{D}} - 373.22$

(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, κ (water, eau) = 2/6 = 0.33. Skup za učenje je sljedeći:

 $\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, -3.5, 0, -1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

 A
 0.552
 B
 0.359
 C
 0.795
 D
 0.456

Grupa C 5/6

Grupa C 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

- 1 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
 - B Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - C Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - D Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
- 2 (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $oxed{\mathsf{A}}$ rang $(\Phi) < m+1, \, \mathbf{G}$ nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
 - $\lceil \mathsf{B} \rceil$ rang $(\Phi) = N$, no rang $(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - |C| Φ ima puni rang, rang(G) > m i G ima inverz, ali s visokim kondicijskim brojem
 - $|\mathsf{D}| \Phi$ nema puni rang, rang $(\mathsf{G}) < m+1$ i G nema pseudoinverz
- 3 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

- 4 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- B Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- $C \mid Model \mathcal{H}_{\alpha_1}$ je podnaučen
- D Model \mathcal{H}_{α_2} je prenaučen

Grupa D 1/6

5 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

6 (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0,0), (2,0), (3,2), (5,2)\}$. Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. $L^i = L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{A} & L^1 = L^4 < L^2 = L^3 & \hline \textbf{C} & L^1 = L^2 = 1 < L^3 < L^4 \\ \hline \textbf{B} & L^1 = L^3 = 0, \ L^2 = L^4 < 1 & \hline \textbf{D} & L^1 = L^4 = 1, \ L^2 < L^3 \\ \hline \end{array}$$

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

7 (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 0.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.274$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?

8 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (-1, 0, -1, 2, 3, 2)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

9 (P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 – \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

$$lacksquare$$
 A $lacksquare$ B $lacksquare$ C $lacksquare$ D $lacksquare$

(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, -2, 0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

- (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. **Što su prednosti odnosno nedostatci OVO i OVR** sheme u takvom slučaju?
 - \fbox{A} OVO svaki klasifikator trenira sK/2puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju Kputa manje primjera nego kod OVO
 - $\mbox{\sf B}$ OVR trebaKputa više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2 puta manje zastupljene nego OVR
 - OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR
 - D OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih
- 12 (N) Raspolažemo označenim skupom primjera iz triju klasa (K = 3) u trodimenzijskome ulaznom prostoru (n = 3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, 1, -3)$ s oznakom $\mathbf{y} = (0, 1, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

- A 6.00 B 12.02 C 8.00 D 4.02
- 13 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}_i$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y = 0 koristimo oznaku y = -1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

- $\boxed{ \textbf{A} \ d(\text{SVM}) < d(\text{LINR}) < d(\text{LR}) \quad \boxed{\textbf{C}} \ d(\text{SVM}) < d(\text{LR}) < d(\text{LINR}) }$
- $\boxed{ \mbox{\sf B} \ d({\rm LINR}) < d({\rm LR}) < d({\rm SVM}) \quad \boxed{ \mbox{\sf D} \ d({\rm LR}) < d({\rm SVM}) < d({\rm LINR}) }$
- (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. **Što možemo** reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
 - \fbox{A} Razlika je to manja što je oznaka y bliže jedinici
 - $| \, {\sf B} \, | \,$ Razlika je to veća što je stopa učenja η bliža jedinici
 - |C| Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli
 - $|\mathsf{D}|$ Razlika je to manja što je vektor $\phi(\mathbf{x})$ bliži ishodištu

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- (T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?
 - A Dualni problem tvrde margine C Primarni problem tvrde margine
 - B Dualni problem meke margine D Primarni problem meke margine

16	(P) Na 800 primjera sa 50 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre
	imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 28 prototipa. Koliko parametara moramo
	optimirati te koliko parametara ima naučeni model?

- A Optimiramo 51 parametar, a naučeni model ima 1429 parametara
- B Optimiramo 51 parametar, a naučeni model ima 1400 parametara
- C Optimiramo 801 parametar, a naučeni model ima 1429 parametara
- D Optimiramo 801 parametar, a naučeni model ima 1400 parametara

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-1, -1), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, κ (water, eau) = 2/6 = 0.33. Skup za učenje je sljedeći:

$$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, -3.5, 0, -1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

19 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Za model sa $C=2^{-2}$ i $\gamma=10^1$ utvrdili smo da je podnaučen, a za model sa $C=2^1$ i $\gamma=10^1$ utvrdili smo da je prenaučen. Koliko modela još ima smisla ispitati jer su moguće optimalni?

20 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.0001$ za vektor dualnih parametara dobili smo $\alpha=(10,1.052,10,10,8.948)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za treći primjer, $L(y^{(3)},h(\mathbf{x}^{(3)}))$?

$$oxed{\mathsf{A}}\ 1.64 \quad oxed{\mathsf{B}}\ 0.03 \quad oxed{\mathsf{C}}\ 1.18 \quad oxed{\mathsf{D}}\ 0.24$$

- 21 (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Hiperparametri nemaju utjecaja na složenost modela
 - B Eksplicitno modeliraju granicu između primjera
 - C Broj parametara ovisi o broju primjera
 - D Pretpostavljaju teorijsku distribuciju podataka
- (N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5$, $\alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,-2,5)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?

Grupa D 5/6

Grupa D 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

1 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

$$oxed{A}\ 2.69 \quad oxed{B}\ 1.58 \quad oxed{C}\ 0.29 \quad oxed{D}\ 7.10$$

- 2 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
 - B Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
 - C Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - D Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
- (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- A Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- B Model \mathcal{H}_{α_1} je podnaučen
- $\lceil \mathsf{C} \rceil$ Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- D Model \mathcal{H}_{α_2} je prenaučen
- 4 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

$$\boxed{ \textbf{A} } \ E_1 > E_2 > E_3 = E_4 \quad \boxed{ \textbf{B} } \ E_1 > E_2 = E_3 > E_4 \quad \boxed{ \textbf{C} } \ E_1 = E_2 > E_3 = E_4 \quad \boxed{ \textbf{D} } \ E_1 = E_2 = E_3 > E_4$$

Grupa E 1/6

- (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}$. Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. $L^i = L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?
 - $\boxed{\mathbf{A}} \; L^1 = L^3 = 0, \, L^2 = L^4 < 1 \quad \boxed{\mathbf{C}} \; L^1 = L^4 = 1, \, L^2 < L^3$
- (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $[\mathbf{A}]$ rang $(\Phi) = N$, no rang $(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - $\lceil \mathsf{B} \rceil$ rang $(\Phi) < m+1$, \mathbf{G} nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
 - $\lceil \mathsf{C} \rceil$ Φ ima puni rang, rang $(\mathsf{G}) > m$ i G ima inverz, ali s visokim kondicijskim brojem
 - $\boxed{\mathsf{D}}$ Φ nema puni rang, rang $(\mathbf{G}) < m+1$ i \mathbf{G} nema pseudoinverz

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

- (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 3.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.5$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?
 - A
 2.54
 B
 7.11
 C
 4.03
 D
 1.19
- 8 (N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, -2, -0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?
- (P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 – \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?
 - lacksquare lacksquare
- 10 (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. Što možemo reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
 - $\boxed{\mathsf{A}}$ Razlika je to manja što je oznaka y bliže jedinici
 - B Razlika je to manja što je vektor $\phi(\mathbf{x})$ bliži ishodištu
 - ${\sf C}$ Razlika je to veća što je stopa učenja η bliža jedinici
 - D Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli

- (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?
 - \fbox{A} OVR treba Kputa više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2puta manje zastupljene nego OVR
 - B OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih
 - OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR
 - \square OVO svaki klasifikator trenira s K/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO
- (N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, 1, -3)$ s oznakom $\mathbf{y} = (0, 1, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

- A 6.00 B 4.02 C 12.02 D 8.00
- 13 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y = 0 koristimo oznaku y = -1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

- $\boxed{\mathsf{A}} \ d(\mathsf{SVM}) < d(\mathsf{LR}) < d(\mathsf{LINR}) \qquad \boxed{\mathsf{C}} \ d(\mathsf{LINR}) < d(\mathsf{LR}) < d(\mathsf{SVM})$
- $\boxed{ \texttt{B} \ d(\text{SVM}) < d(\text{LINR}) < d(\text{LR}) \quad \boxed{ \texttt{D} \ d(\text{LR}) < d(\text{SVM}) < d(\text{LINR}) }$
- 14 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, -3, 0)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

(T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?

A Dualni problem meke margine C Primarni problem tvrde margine

B Dualni problem tvrde margine D Primarni problem meke margine

16 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-1, -1), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \, \alpha_2>0, \, \alpha_3>0, \, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. **Koliko je meka margina veća od tvrde margine?**

(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, κ (water, eau) = 2/6 = 0.33. Skup za učenje je sljedeći:

 $\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, 0, -3.5, 0, 1, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

(T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?

A Složenost modela raste s normom vektora parametara

B Broj značajki ne ovisi o dimenziji ulaznog prostora

C Svaki primjer ima globalan utjecaj na izgled hipoteze

D Broj parametara ovisi o broju primjera

(N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,2,-30)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?

20 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Za model sa $C=2^{-2}$ i $\gamma=10^1$ utvrdili smo da je podnaučen, a za model sa $C=2^1$ i $\gamma=10^1$ utvrdili smo da je prenaučen. Koliko modela još ima smisla ispitati jer su moguće optimalni?

A 10 B 96 C 68 D 25

(N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.001$ za vektor dualnih parametara dobili smo $\boldsymbol{\alpha}=(10,0,10,2.779,2.779)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

- (P) Na 500 primjera sa 80 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 38 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
 - A Optimiramo 81 parametar, a naučeni model ima 3040 parametara
 - B Optimiramo 81 parametar, a naučeni model ima 3079 parametara
 - C Optimiramo 501 parametara, a naučeni model ima 3079 parametara
 - D Optimiramo 501 parametara, a naučeni model ima 3040 parametara

Grupa E 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

- 1 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - B Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
 - C Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - D Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
- 2 (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $|A| \Phi$ ima puni rang, rang(G) > m i G ima inverz, ali s visokim kondicijskim brojem
 - $\lceil \mathsf{B} \rceil$ rang $(\Phi) = N$, no rang $(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - $\boxed{\mathsf{C}}$ Φ nema puni rang, rang $(\mathbf{G}) < m+1$ i \mathbf{G} nema pseudoinverz
 - \square rang $(\Phi) < m+1$, G nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
- 3 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

$$\boxed{ \textbf{A} } \ E_1 > E_2 > E_3 = E_4 \quad \boxed{ \textbf{B} } \ E_1 = E_2 > E_3 = E_4 \quad \boxed{ \textbf{C} } \ E_1 = E_2 = E_3 > E_4 \quad \boxed{ \textbf{D} } \ E_1 > E_2 = E_3 > E_4$$

4 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Grupa F 1/6

Što iz toga možemo zaključiti?

- A Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- B | Model \mathcal{H}_{α_1} je podnaučen
- C Model \mathcal{H}_{α_2} je prenaučen
- D Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- 5 (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}.$ Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. L^i $L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

$$\boxed{ \textbf{A} } \ L^1 = L^2 = 1 < L^3 < L^4 \quad \boxed{ \textbf{C} } \ L^1 = L^4 < L^2 = L^3$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{A} & L^1 = L^2 = 1 < L^3 < L^4 & \hline \textbf{C} & L^1 = L^4 < L^2 = L^3 \\ \hline \textbf{B} & L^1 = L^4 = 1, \, L^2 < L^3 & \hline \textbf{D} & L^1 = L^3 = 0, \, L^2 = L^4 < 1 \\ \hline \end{array}$$

6 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2,-3), 2), ((3,5), -1), ((5,0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

7 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^{\mathrm{T}}\mathbf{x} > 0\}$. Za modele SVM i LINR umjesto oznake y=0 koristimo oznaku y=-1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

$$\boxed{ \textbf{A} \ d(\text{LR}) < d(\text{SVM}) < d(\text{LINR}) } \quad \boxed{ \textbf{C} \ d(\text{SVM}) < d(\text{LR}) < d(\text{LINR}) }$$

$$\boxed{ \texttt{B} \ d(\text{SVM}) < d(\text{LINR}) < d(\text{LR}) } \qquad \boxed{ \texttt{D} \ d(\text{LINR}) < d(\text{LR}) < d(\text{SVM}) }$$

- 8 (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 0.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.274$. Koliki gubitak unakrsne entropije bi nanosio primjer x kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?
 - A 4.03 B 2.54 C 7.11 D 1.19
- 9 (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. **Što možemo** reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
 - A Razlika je to manja što je oznaka y bliže jedinici
 - B Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli
 - C Razlika je to veća što je stopa učenja η bliža jedinici
 - D Razlika je to manja što je vektor $\phi(\mathbf{x})$ bliži ishodištu

(N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, -1, -3)$ s oznakom $\mathbf{y} = (0, 0, 1)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

A 12.02 B 6.00 C 4.02 D 8.00

(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, -2, -0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

(P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

lacksquare A \mathbf{w}_1 B \mathbf{w}_2 C \mathbf{w}_4 D \mathbf{w}_3

13 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}\}_i = \{((-1, 4), +1), ((2, -3), -1), ((2, 5), -1))\}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 2)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

A 96 B 40 C 18 D 100

(T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?

 \fbox{A} OVR iziskuje K-1puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1puta manje primjera nego kod OVR

B OVO svaki klasifikator trenira sK/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO

C OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- (T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?
 - A Dualni problem meke margine C Primarni problem meke margine
 - B Primarni problem tvrde margine D Dualni problem tvrde margine
- (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Već ranije smo utvrdili da je model sa $C=2^{-2}$ i $\gamma=10^{-1}$ podnaučen, a da je model sa $C=2^{1}$ i $\gamma=10^{1}$ prenaučen. Za sve ostale modele ne znamo jesu li prenaučeni, podnaučeni ili optimalni. Koliko modela još ima smisla ispitati jer su moguće optimalni?

- 17 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0, 0), -1), ((-1, -1), -1), ((1, 3), +1), ((2, 2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

- \fbox{A} $\frac{3}{5}\sqrt{10}$ puta \fbox{B} $\frac{1}{6}\sqrt{2}$ puta \fbox{C} $\frac{4}{5}\sqrt{10}$ puta \fbox{D} $\frac{2}{5}\sqrt{10}$ puta
- (P) Na 900 primjera sa 50 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 52 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
 - A Optimiramo 51 parametar, a naučeni model ima 2653 parametara
 - B Optimiramo 901 parametar, a naučeni model ima 2600 parametara
 - C Optimiramo 51 parametar, a naučeni model ima 2600 parametara
 - D Optimiramo 901 parametar, a naučeni model ima 2653 parametara
- (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.001$ za vektor dualnih parametara dobili smo $\boldsymbol{\alpha}=(10,0,10,2.779,2.779)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

- A 0.03 B 0.24 C 1.64 D 1.18
- (N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je

Grupa F

kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, $\kappa(\text{water}, \text{eau}) = 2/6 = 0.33$. Skup za učenje je sljedeći:

$$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, 0, -3.5, 1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

- (N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,-2,5)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?
- (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Hiperparametri nemaju utjecaja na složenost modela
 - B Broj parametara ovisi o broju primjera
 - C Broj značajki ne ovisi o dimenziji ulaznog prostora
 - D Složenost modela raste s normom vektora parametara

Grupa F 5/6

Grupa F 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži **22 pitanja** i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti **20 pitanja**, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

1 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

- (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $\lceil \mathbf{A} \rceil$ rang $(\Phi) = N$, no rang $(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - lacksquare D nema puni rang, rang $(\mathbf{G}) < m+1$ i \mathbf{G} nema pseudoinverz
 - $oldsymbol{\mathsf{C}}$ Φ ima puni rang, rang $(\mathbf{G}) > m$ i \mathbf{G} ima inverz, ali s visokim kondicijskim brojem
 - $\lceil \mathsf{D} \rceil$ rang $(\Phi) < m+1$, \mathbf{G} nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan
- (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0,0), (2,0), (3,2), (5,2)\}$. Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. $L^i = L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{A} & L^1 = L^3 = 0, \ L^2 = L^4 < 1 & \hline \textbf{C} & L^1 = L^4 < L^2 = L^3 \\ \hline \textbf{B} & L^1 = L^4 = 1, \ L^2 < L^3 & \hline \textbf{D} & L^1 = L^2 = 1 < L^3 < L^4 \\ \hline \end{array}$$

4 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2, -3), 2), ((3, 5), -1), ((5, 0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

Grupa G 1/6

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_2} je prenaučen
- $oxed{\mathsf{B}}$ Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- \square Model \mathcal{H}_{α_1} je podnaučen
- 6 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
 - B Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - C Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
 - D Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

- (N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 3.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.5$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?
 - A 4.03 B 1.19 C 7.11 D 2.54
- f 8 (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?
 - A OVR treba K puta više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2 puta manje zastupljene nego OVR
 - B OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR
 - C OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih
 - D OVO svaki klasifikator trenira sK/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO
- 9 (T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. **Što možemo** reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
 - |A| Razlika je to manja što je oznaka y bliže jedinici
 - \square Razlika je to veća što je stopa učenja η bliža jedinici

 - D Razlika je to veća što je izlaz modela $h(\mathbf{x})$ bliži nuli

Grupa G 2/6

10 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y = 0 koristimo oznaku y = -1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

$$\boxed{\mathsf{A}} \ d(\mathtt{LR}) < d(\mathtt{SVM}) < d(\mathtt{LINR}) \qquad \boxed{\mathsf{C}} \ d(\mathtt{SVM}) < d(\mathtt{LINR}) < d(\mathtt{LR})$$

$$\boxed{ \texttt{B} \ d(\text{LINR}) < d(\text{LR}) < d(\text{SVM}) \quad \boxed{ \texttt{D} \ d(\text{SVM}) < d(\text{LR}) < d(\text{LINR}) }$$

11 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 2)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, -0.5, -2, 0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?

(N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, 1, -3)$ s oznakom $\mathbf{y} = (0, 1, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

(P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

$$lacksquare$$
 A $lacksquare$ W_3 B $lacksquare$ W_1 C $lacksquare$ W_2 D $lacksquare$

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- 15 (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Broj značajki ne ovisi o dimenziji ulaznog prostora
 - B Eksplicitno modeliraju granicu između primjera
 - C Svaki primjer ima globalan utjecaj na izgled hipoteze
 - D Broj parametara ovisi o broju primjera
- 16 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-1, -1), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \alpha_2>0, \alpha_3>0, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

- $oxed{\mathsf{A}} \ \tfrac{3}{5}\sqrt{10} \ \mathrm{puta} \quad oxed{\mathsf{B}} \ \tfrac{1}{6}\sqrt{2} \ \mathrm{puta} \quad oxed{\mathsf{C}} \ \tfrac{2}{5}\sqrt{10} \ \mathrm{puta} \quad oxed{\mathsf{D}} \ \tfrac{4}{5}\sqrt{10} \ \mathrm{puta}$
- (N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,2,-20)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?
- 18 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Već ranije smo utvrdili da je model sa $C=2^{-2}$ i $\gamma=10^{-1}$ podnaučen, a da je model sa $C=2^{1}$ i $\gamma=10^{1}$ prenaučen. Za sve ostale modele ne znamo jesu li prenaučeni, podnaučeni ili optimalni. Koliko modela još ima smisla ispitati jer su moguće optimalni?

- A 10 B 76 C 96 D 25
- 19 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.0001$ za vektor dualnih parametara dobili smo $\boldsymbol{\alpha}=(10,1.052,10,10,8.948).$ Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

20	(P) Na 700 primjera sa 100 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 42 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
	A Optimiramo 701 parametar, a naučeni model ima 4200 parametara
	B Optimiramo 701 parametar, a naučeni model ima 4243 parametara
	C Optimiramo 101 parametar, a naučeni model ima 4243 parametara
	D Optimiramo 101 parametar, a naučeni model ima 4200 parametara
21	(T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli ?
	A Dualni problem tvrde margine C Dualni problem meke margine
	B Primarni problem tvrde margine D Primarni problem meke margine
22	(N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog $(y=1)$ ili francuskog $(y=0)$ podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1,\mathbf{x}_2)= \mathbf{x}_1\cap\mathbf{x}_2 / \mathbf{x}_1\cup\mathbf{x}_2 $, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, $\kappa(\text{water},\text{eau})=2/6=0.33$. Skup za učenje je sljedeći:
	$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0), (\text{chance}, 1), (\text{hasard}, 0)\}$

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w}=(-0.5,0,0,0,-3.5,1,0,0,1)$. Razmotrite

primjer $(\mathbf{x},y)=$ (nounours,0). Koliko iznosi gubitak modela na primjeru (\mathbf{x},y) ?

Grupa G 6/6

Međuispit iz Strojnog učenja 1 (ak. god. 2022./2023.)

- NEKORIGIRANA VERZIJA -

Ispit sadrži 22 pitanja i ukupno nosi najviše 20 bodova (za 35% bodova na predmetu). Pitanja nose po 1 bod, a 1/3 boda oduzima se za pogrešan odgovor. Za maksimalan broj bodova dovoljno je točno riješiti 20 pitanja, a višak bodova iznad 20 se zanemaruje. Trajanje ispita je **180 minuta**. Primjerak ispita morate predati zajedno sa svojim rješenjima.

Cjelina 1: Osnovni koncepti i linearna regresija (6 pitanja)

1 (P) Jednostavnom regresijom modeliramo ovisnost nezavisne varijable y o zavisnoj varijabli x. Model treniramo postupkom običnih najmanjih kvadrata (OLS) na skupu podataka $\mathcal{D} = \{(x^{(i)}, y^{(i)})\} = \{(0, 0), (2, 0), (3, 2), (5, 2)\}.$ Neka je h hipoteza koju dobivamo treniranjem modela te neka je L^i gubitak hipoteze h na primjeru $x^{(i)}$, tj. L^i $L(y^{(i)}, h(x^{(i)}))$. Što vrijedi za gubitke hipoteze na pojedinim primjerima?

$$| A | L^1 = L^4 < L^2 = L^3$$

C
$$L^1 = L^2 = 1 < L^3 < L^4$$

B
$$L^1 = L^4 = 1, L^2 < L^3$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{A} & L^1 = L^4 < L^2 = L^3 & \hline \textbf{C} & L^1 = L^2 = 1 < L^3 < L^4 \\ \hline \textbf{B} & L^1 = L^4 = 1, \ L^2 < L^3 & \hline \textbf{D} & L^1 = L^3 = 0, \ L^2 = L^4 < 1 \\ \hline \end{array}$$

- 2 (T) Modeli strojnog učenja općenito su različite složenosti. S porastom složenosti modela raste vjerojatnost da model bude prenaučen. Ta vjerojatnost raste s količinom šuma u podatcima. Zašto šum u podatcima za učenje može dovesti do prenaučenosti klasifikacijskog modela?
 - A Zbog šuma granica između klasa izgleda nelinearnijom nego što ona to zapravo jest, pa primjeri blizu granice znatno više doprinose pogrešci učenja nego primjeri koji su udaljeni od granice
 - B Povećanjem količine šuma granica između klasa postaje sve nelinearnija, pa raste i složenost modela te dobivena hipoteza očekivano neće odgovarati granici između klasa na ispitnom skupu
 - C Zbog šuma su oznake nekih primjera u skupu za učenje pogrešne, pa sve hipoteze iz modela imaju na tom skupu pogrešku koja je veća od nula, a još veća na ispitnom skupu
 - D Efekt šuma ja slučajan, pa će hipoteza koja se previše prilagodi šumu na skupu za učenje očekivano imati veliku pogrešku na ispitnom skupu gdje je šum drugačiji ili ga nema
- 3 (N) Raspolažemo sljedećim skupom primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((1,0), 1), ((2, -3), 2), ((3, 5), -1), ((5, 0), -4) \}$$

Na ovom skupu gradijentnim spustom trenirali smo L_1 -regularizirani model linearne regresije sa $\lambda = 1$. Dobili smo težine $\mathbf{w} = (2.12, -0.94, -0.08)$. Koliko iznosi L_1 -regularizirana pogreška $E(\mathbf{w}|\mathcal{D})$?

- 4 (T) Multikolinearnost značajki jedan je od problema koji može nastupiti kod primjene modela regresije na stvarnim podatcima. Efekt multikolinearnosti i savršene multikolinearnosti dobro je uočljiv kod optimizacijskoga postupka običnih najmanjih kvadrata (OLS) kada se on provodi izračunom pseudoinverza matrice dizajna. Neka je m broj značajki, Φ je matrica dizajna i $\mathbf{G} = \Phi^{\mathrm{T}}\Phi$ je Gramova matrica. Koji je efekt savršene multikolinearnosti kod postupka OLS?
 - $|\mathbf{A}| \operatorname{rang}(\Phi) = N$, no $\operatorname{rang}(\mathbf{G}) < N$, pa \mathbf{G} ima pseudoinverz, ali nema numerički stabilan inverz
 - $oxed{\mathsf{B}} \Phi$ ima puni rang, rang $(\mathbf{G}) > m$ i \mathbf{G} ima inverz, ali s visokim kondicijskim brojem
 - $|C|\Phi$ nema puni rang, rang(G) < m+1 i G nema pseudoinverz
 - $|\mathsf{D}|$ rang $(\Phi) < m+1$, **G** nema puni rang i nema inverz, no ima pseudoinverz koji nije numerički stabilan

Grupa H 1/6 5 (P) Razmatramo klasifikacijski problem u ulaznome prostoru $\mathcal{X} = \mathbb{Z}^2$. Skup označenih primjera je $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i = \{((0,0),0),((0,2),0),((0,-1),0),((-1,0),1),((0,1),1),((1,0),1)\}$. Razmatramo sljedeće modele, parametrizirane sa $\boldsymbol{\theta} \in \mathbb{R}^{n+1}$:

$$\mathcal{H}_1: h_1(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \boldsymbol{\theta}^{\mathrm{T}} \mathbf{x} \ge 0 \}$$

$$\mathcal{H}_2: h_2(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (x_1 - \theta_1)^2 + (x_2 - \theta_2)^2 \ge \theta_0^2 \}$$

Pored ova dva modela, razmatramo i njihove kombinacije, modele \mathcal{H}_3 i \mathcal{H}_4 . Neka je $\mathcal{H}_3 = \mathcal{H}_1 \cup \mathcal{H}_2$ te neka je \mathcal{H}_4 skup funkcija definiranih kao $h_4(\mathbf{x}; \boldsymbol{\theta}) = h_1(\mathbf{x}) \cdot h_2(\mathbf{x})$. Neka je E_k minimalna empirijska pogreška koja se modelom \mathcal{H}_k može ostvariti na skupu \mathcal{D} , tj. $E_k = \operatorname{argmin}_{h \in \mathcal{H}_k} E(h|\mathcal{D})$. Koji odnosi vrijede između minimalnih empirijskih pogrešaka ovih modela?

6 (P) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}
- $oxed{\mathsf{B}}$ Optimalan model je onaj s hiperparametrom iz intervala $[\alpha_1, \alpha_2]$
- C Model \mathcal{H}_{α_2} je prenaučen
- \square Model \mathcal{H}_{α_1} je podnaučen

Cjelina 2: Linearni klasifikacijski modeli (8 pitanja)

(N) Na skupu označenih primjera \mathcal{D} trenirali smo model logističke regresije. Dobili smo neki vektor težina \mathbf{w} i pomak $w_0 = 3.15$. Tako naučenom modelu neki primjer \mathbf{x} , čija je oznaka u skupu primjera y = 0, nanosi gubitak unakrsne entropije od $L(0, h(\mathbf{x})) = 0.5$. Koliki gubitak unakrsne entropije bi nanosio primjer \mathbf{x} kada bismo njegove značajke pomnožili sa dva i promijenili mu oznaku?

8 (N) Raspolažemo sljedećim skupom za učenje u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((-1, 4), +1), ((2, -3), -1), ((2, 5), -1)) \}$$

Na ovom skupu treniramo perceptron. Pritom koristimo funkciju preslikavanja u šesterodimenzijski prostor značajki, definiranu na sljedeći način:

$$\phi(\mathbf{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Početne težine perceptrona neka su $\mathbf{w} = (1, 0, -1, 2, 3, 0)$. Koliko iznosi empirijska pogreška perceptrona na skupu za učenje prije početka treniranja (dakle, s početnim težinama)?

9 (N) Raspolažemo označenim skupom primjera iz triju klasa (K=3) u trodimenzijskome ulaznom prostoru (n=3). Na tom skupu treniramo model multinomijalne logističke regresije. Treniranje provodimo gradijentnim spustom. U nekoj od iteracija gradijentnog spusta matrica težina je sljedeća (stupci odgovaraju težinama za pojedine klase):

$$\mathbf{W} = \begin{pmatrix} 3 & 3 & 3 \\ 2 & 0 & -2 \\ 3 & -4 & 6 \\ -3 & 0 & 2 \end{pmatrix}$$

Jedan od primjera u skupu za učenje je primjer $\mathbf{x} = (-4, -1, -3)$ s oznakom $\mathbf{y} = (1, 0, 0)$. Koliko iznosi gubitak unakrsne entropije koji u ovoj iteraciji optimizacijskog postupka nanosi dotični primjer?

Grupa H 2/6

10	(T) Za optimizaciju parametara poopćenih linearnih modela može se koristiti stohastički gradijentni spust, odnosno pravilo LMS. Neka je (\mathbf{x}, y) označeni primjer za koji radimo ažuriranje težina pomoću pravila LMS. Što možemo reći o razlici između novih (ažuriranih) i starih težina (težina prije ažuriranja)?
	$oxed{A}$ Razlika je to manja što je oznaka y bliže jedinici
	$oxed{B}$ Razlika je to manja što je vektor $oldsymbol{\phi}(\mathbf{x})$ bliži ishodištu
	${f C}$ Razlika je to veća što je izlaz modela $h({f x})$ bliži nuli
	\ensuremath{D} Razlika je to veća što je stopa učenja η bliža jedinici
11	(N) Model logističke regresije treniramo stohastičkim gradijentnim spustom. Primjere iz dvodimenzijskog ulaznog prostora preslikali smo u prostor značajki funkcijom $\phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2)$. U jednoj iteraciji treniranja modela vektor parametara jednak je $\mathbf{w} = (0.1, 0.5, 2, -0.5)$. Koliko u toj iteraciji iznosi L_2 -norma gradijenta gubitka za primjer $(\mathbf{x}, y) = ((1, -1), 1)$?
	lacksquare A 0.50 $lacksquare$ B 0.09 $lacksquare$ C 1.42 $lacksquare$ D 0.22

12 (P) Skup za učenje čine sljedeći označeni primjeri:

$$\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_i = \left\{ ((-2, 3), 0), ((-1, 2), 0), ((0, 1), 0), ((0, 0), 0), ((1, 1), 0)), ((1, -1), 1), ((2, 0), 1) \right\}$$

Na skupu \mathcal{D} treniramo logističku regresiju (LR) i stroj potpornih vektora s tvrdom marginom (SVM). Dodatno, treniramo model linearne regresije (LINR), gdje izlaz tog modela koristimo za klasifikaciju, tj. $h(\mathbf{x}) = \mathbf{1}\{\mathbf{w}^T\mathbf{x} \geq 0\}$. Za modele SVM i LINR umjesto oznake y = 0 koristimo oznaku y = -1. Za treniranje modela LR koristimo dovoljan broj iteracija tako da možemo pretpostaviti da je dobivena pogreška unakrsne entropije praktički jednaka nuli. Razmotrite primjer $\mathbf{x}^{(7)} = (2,0)$. Neka je d(m) udaljenost primjera $\mathbf{x}^{(7)}$ od granice između klasa dobivene modelom m. Što od navedenog vrijedi za tu udaljenost?

- (T) Višeklasni problem može se riješiti binarnim klasifikatorom uz primjenu sheme OVO ili sheme OVR. Obje sheme imaju svoje prednosti i nedostatke. Pretpostavite da raspolažemo sa K klasa i da svaka klasa ima N/K primjera, gdje je N ukupan broj primjera u skupu za učenje. Što su prednosti odnosno nedostatci OVO i OVR sheme u takvom slučaju?
 - \fbox{A} OVO svaki klasifikator trenira s K/2 puta manje primjera nego OVR, ali pozitivne klase kod OVR imaju K puta manje primjera nego kod OVO
 - B OVO iziskuje (K-1)/2 puta više parametara nego OVR, ali svaki OVR klasifikator ima K-1 puta manje pozitivnih primjera nego negativnih
 - \fbox{C} OVR treba Kputa više klasifikatora nego OVO, ali su kod OVO pozitivne klase K/2puta manje zastupljene nego OVR
 - D OVR iziskuje K-1 puta više klasifikatora od sheme OVO, ali kod OVO pozitivne klase imaju K-1 puta manje primjera nego kod OVR
- (P) Na primjerima iz dvodimenzijskoga ulaznog prostora treniramo L_2 -regulariziranu logističku regresiju. Neka su $\mathbf{w}_0 = (1, -4, 4)$, $\mathbf{w}_1 = (1, -4, 6)$, $\mathbf{w}_2 = (1, -1, 7)$, $\mathbf{w}_3 = (1, -7, 1)$ i $\mathbf{w}_4 = (1, -7, -3)$ vektori u prostoru parametara. Neka je $E(\mathbf{w}|\mathcal{D})$ neregularizirana pogreška unakrsne entropije na skupu za učenje \mathcal{D} . Pritom je \mathbf{w}_0 minimizator funkcije $E(\mathbf{w}|\mathcal{D})$ te vrijedi $E(\mathbf{w}_1|\mathcal{D}) = E(\mathbf{w}_2|\mathcal{D}) = E(\mathbf{w}_3|\mathcal{D})$. Napravite skicu izokontura funkcije pogreške u potprostoru $w_1 \times w_2$. Za treniranje modela koristimo gradijentni spust s linijskim pretraživanjem uz regularizacijski faktor $\lambda = 100$. Za tako naučen model vrijednost regularizacijskog izraza $\frac{\lambda}{2} ||\mathbf{w}||^2$ jednaka je 400. Međutim, broj koraka gradijentnog spusta (broj poziva linijskog pretraživanja) ovisi o tome koliko će spust krivudati, a to ovisi o odabiru inicijalnih parametara. Kao moguće inicijalne parametre razmotrite vektore \mathbf{w}_1 - \mathbf{w}_4 . S kojim inicijalnim parametarima će algoritam gradijentnog spusta konvergirati u najmanjem broju koraka?

```
\begin{bmatrix} \mathsf{A} \end{bmatrix} \mathbf{w}_4 \quad \begin{bmatrix} \mathsf{B} \end{bmatrix} \mathbf{w}_3 \quad \begin{bmatrix} \mathsf{C} \end{bmatrix} \mathbf{w}_1 \quad \begin{bmatrix} \mathsf{D} \end{bmatrix} \mathbf{w}_2
```

Grupa H 3/6

Cjelina 3: SVM, jezgrene i neparametarske metode (8 pitanja)

- (T) Optimizacijski problem algoritma SVM može se postaviti u formulaciji meke ili tvrde margine te u primarnoj ili dualnoj formulaciji. Ovisno o formulaciji, kvadratni program sadrži različit broj varijabli po kojima optimiramo (optimizacijske varijable). Ako matrica dizajna ima više redaka nego stupaca, koja formulacija ima najmanje optimizacijskih varijabli?
 - A Dualni problem tvrde margine C Dualni problem meke margine
 - B Primarni problem meke margine D Primarni problem tvrde margine
- (T) Algoritmi strojnog učenja mogu biti parametarski ili neparametarski. Što je karakteristika neparametarski skih algoritama strojnog učenja?
 - A Pretpostavljaju teorijsku distribuciju podataka
 - B Broj parametara ovisi o broju primjera
 - C Hiperparametri nemaju utjecaja na složenost modela
 - D Broj značajki ne ovisi o dimenziji ulaznog prostora
- 17 (N) Treniramo SVM s Gaussovom jezgrenom funkcijom. Model treniramo na skupu od N=5 označenih primjera. Vektor oznaka je $\mathbf{y}=(+1,+1,-1,-1,+1)$. Euklidske udaljenosti između primjera dane su sljedećom matricom udaljenosti:

$$\mathbf{D} = \begin{pmatrix} 0.0 & 7.48 & 6.16 & 13.42 & 12.21 \\ 7.48 & 0.0 & 12.73 & 20.1 & 14.18 \\ 6.16 & 12.73 & 0.0 & 10.49 & 9.95 \\ 13.42 & 20.1 & 10.49 & 0.0 & 20.02 \\ 12.21 & 14.18 & 9.95 & 20.02 & 0.0 \end{pmatrix}$$

Treniranjem uz C=10 i $\gamma=0.001$ za vektor dualnih parametara dobili smo $\alpha=(10,0,10,2.779,2.779)$. Koliko iznosi gubitak zglobnice ovako naučenog modela SVM za prvi primjer, $L(y^{(1)},h(\mathbf{x}^{(1)}))$?

- (P) Na 900 primjera sa 50 značajki treniramo rijetki jezgreni stroj s Gaussovim jezgrama. Sve Gaussove jezgre imaju istu varijancu. Nakon treniranja, dobivamo model koji ima 52 prototipa. Koliko parametara moramo optimirati te koliko parametara ima naučeni model?
 - A Optimiramo 51 parametar, a naučeni model ima 2653 parametara
 - B Optimiramo 901 parametar, a naučeni model ima 2653 parametara
 - C Optimiramo 51 parametar, a naučeni model ima 2600 parametara
 - D Optimiramo 901 parametar, a naučeni model ima 3501 parametar
- (N) U ulaznome prostoru dimenzije n=3 trenirali smo model SVM-a s linearnom jezgrom. Potporne vektore naučenog modela čine označeni primjeri ((2,-5,15),-1), ((1,8,-305),-1) i ((1,-6,225),+1), a njima odgovarajući dualni koeficijenti su $\alpha_1=0.5, \alpha_2=0.8$ i $\alpha_3=0.9$. Treniranje smo proveli na skaliranim značajkama: svaku smo značajku x_j standardizirali primjenom transformacije $\frac{x_j-\mu_j}{\sigma_j}$, gdje su μ_j i σ_j srednja vrijednost odnosno varijanca značajke x_j u skupu označenih podataka \mathcal{D} . Parametri skaliranja su $\boldsymbol{\mu}=(15,-2,100)$ i $\boldsymbol{\sigma}=(4,1,12)$. Model SVM-a koristimo za predikciju klase primjera $\mathbf{x}=(1,2,-30)$. Koliko će se promijeniti izlaz modela ako kod predikcije propustimo skalirati značajke primjera \mathbf{x} ?
- (N) Rješavamo problem određivanja podrijetla pojedinih riječi u jeziku: za svaku riječ trebamo odrediti je li engleskog (y=1) ili francuskog (y=0) podrijetla. Problem rješavamo logističkom regresijom izvedenom kao rijetki jezgreni stroj, gdje za bazne funkcije koristimo jezgru κ nad znakovnim nizovima. Funkcija κ definirana je kao $\kappa(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 \cap \mathbf{x}_2|/|\mathbf{x}_1 \cup \mathbf{x}_2|$, gdje su operacije unije i presjeka definirane nad skupovima slova od kojih se riječi sastoje. Na primjer, κ (water, eau) = 2/6 = 0.33. Skup za učenje je sljedeći:

$$\mathcal{D} = \{(\mathbf{x}, y)\}_i = \{(\text{water}, 1), (\text{eau}, 0), (\text{dog}, 1), (\text{chien}, 0), (\text{paperclip}, 1), (\text{trombone}), 0\}, (\text{chance}, 1), (\text{hasard}, 0)\}$$

Grupa H 4/6

Treniranjem rijetkoga jezgrenog stroja dobili smo vektor težina $\mathbf{w} = (-0.5, 0, 0, 0, -3.5, 1, 0, 0, 1)$. Razmotrite primjer $(\mathbf{x}, y) = (\text{nounours}, 0)$. Koliko iznosi gubitak modela na primjeru (\mathbf{x}, y) ?

21 (P) Neka je $\mathcal{H}_{C,\gamma}$ model SVM-a s Gaussovom jezgrom. Hiperparametri tog modela su regularizacijski faktor C i preciznost jezgre γ . Odabir modela provodimo unakrsnom provjerom i to pretraživanjem po rešetci za sljedeće vrijednosti hiperparametara:

$$C = \{2^{-5}, 2^{-4}, \dots, 2^4, 2^5\}$$
$$\gamma = \{10^{-5}, 10^{-4}, \dots, 10^4, 10^5\}$$

Za model sa $C=2^{-2}$ i $\gamma=10^1$ utvrdili smo da je podnaučen, a za model sa $C=2^1$ i $\gamma=10^1$ utvrdili smo da je prenaučen. Koliko modela još ima smisla ispitati jer su moguće optimalni?

A 10 B 25 C 68 D 96

22 (P) Razmatramo sljedeći skup označenih primjera u dvodimenzijskome ulaznom prostoru:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}_i = \{ ((0,0), -1), ((-1, -1), -1), ((1,3), +1), ((2,2), +1), ((3, -1), +1)) \}$$

Na ovom skupu treniramo model SVM-a, i to model s tvrdom marginom te model s mekom marginom sa C=1. Kod modela s mekom marginom za dualne koeficijente vrijedi $\alpha_1=1, \, \alpha_2>0, \, \alpha_3>0, \, \alpha_4>0$ i $\alpha_5=1$. Skicirajte tvrdu i meku marginu u ulaznome prostoru. Koliko je meka margina veća od tvrde margine?

 $oxed{\mathsf{A}} \ \ \frac{3}{5}\sqrt{10} \ \mathrm{puta} \quad oxed{\mathsf{B}} \ \ \frac{2}{5}\sqrt{10} \ \mathrm{puta} \quad oxed{\mathsf{C}} \ \ \frac{4}{5}\sqrt{10} \ \mathrm{puta} \quad oxed{\mathsf{D}} \ \ \frac{1}{6}\sqrt{2} \ \mathrm{puta}$

Grupa H 6/6