EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 19: Pipelined ADC 1

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Pipelined ADC Architecture

S. Lewis et. al., "A 10-b 20-Msample / s Analog-to-Digital Converter," *IEEE Journal of Solid-State Circuits*, vol. 27, pp. 351-358, March, 1992.

1-bit/stage Pipelined ADC

10-Bit Pipelined ADC (1.5-Bit/Stage) Architecture

1.5-Bit Per Stage

$$V_o = \begin{cases} 2V_i - V_{ref} & \text{if } V_i > V_{ref}/4 & d = 2 \ (10)_2 \\ 2V_i & \text{if } -V_{ref}/4 \le V_i \le +V_{ref}/4 & d = 1 \ (01)_2 \\ 2V_i + V_{ref} & \text{if } V_i < -V_{ref}/4 & d = 0 \ (00)_2 \end{cases}$$

- 2X gain + 3-level DAC + subtraction all integrated
- Digital redundancy relaxes the tolerance on Comparator offsets

1.5-Bit Stage Architecture

V _{IN}	Range	В1	В0	DAC O/P	Residue
$V_{IN} > V_{H}$	Н	1	0	$+\mathbf{V}_{\mathbf{REF}}$	$2V_{IN} - V_{REF}$
$V_L < V_{IN} < V_H$	M	0	1	0	2V _{IN}
$V_{\rm H} < V_{ m L}$	L	0	0	$-\mathbf{V}_{\mathbf{REF}}$	$2V_{IN} + V_{REF}$

Timing Diagram of Pipelining

- Two-phase nonoverlapping clock is typically used, with the coarse ADCs operating within the nonoverlapping times
- All pipelined stages operate simultaneously, increasing throughput at the cost of latency