Photogrammetry & Robotics Lab

Relative Orientation, Fundamental and Essential Matrix

Cyrill Stachniss

The slides have been created by Cyrill Stachniss.

1

5 Minute Preparation for Today

https://www.youtube.com/watch?v=auhpPoAqprk

Winter term 2024 - Cyrill Stachniss

Camera Pair

- So far, we computed the camera orientation for a single camera
- We are now considering situations in which we have two images

Two Common "Camera Pairs"

- A stereo camera
- One camera that moves

Camera pair = two configurations from which an image each has been taken

5

Orientation Parameters

 The orientation of the camera pair can be described using two independent orientations

How many parameters are needed?

- Calibrated cameras: ? parameters (angle preserving mapping)
- Uncalibrated cameras: ? parameters (straight-line preserving mapping)

Orientation Parameters for the Camera Pair and Relative Orientation

7

Orientation Parameters

 The orientation of the camera pair can be described using two independent orientations

How many parameters are needed?

- Calibrated cameras: 12 parameters (angle preserving mapping)
- Uncalibrated cameras: 22 parameters (straight-line preserving mapping)

Orientation with Control Points

- The orientation of the camera pair can be described using independent orientations for each camera
- Calibrated camera pair: 12 parameters
- Can be computed via two separate spatial resection/P3P steps
- Requires 3(4) known control points

9

Orientation with Control Points

- The orientation of the camera pair can be described using independent orientations for each camera
- Uncalibrated pair: 22 parameters
- Can be computed via two separate DLT steps
- Requires 6 known control points

Can We Estimate the Camera Orientations WITHOUT Knowing the Scene?

Which Parameters Can We Obtain and Which Not?

Cameras Measure Directions

We cannot obtain the (global) translation and rotation of the pair as well as the **scale** of the scene

Image courtesy: Förstner & Wrobel 14

What We Can Compute

- The **rotation** R of the second camera w.r.t. the first one (3 parameters)
- The **direction** *B* of the line connecting the to centers of projection (2 params)
- We do not know their distance (the length of B)

Image courtesy: Förstner & Wrobel 15

13

For Calibrated Cameras

- We need 2x6=12 parameters for two calibrated cameras for the orientation
- With a calibrated camera, we obtain an angle-preserving model of the object
- Without additional information, we can **only obtain** 12-7 = **5 parameters** (not 7=translation, rotation, scale)

first camera

distance between cameras

Photogrammetric Model

- Given two images, we can reconstruct the object only up to a similarity transform
- Called a photogrammetric model
- The orientation of the photogrammetric model is called the absolute orientation
- For obtaining the absolute orientation, we need at least 3 points in 3D (to estimate the 7 parameters)

17

19

What Is Needed for Computing an 3D Model of a Scene?

18

For Uncalibrated Cameras

- Straight-line preserving but not angle preserving
- Objects can only be reconstructed up to a straight-line preserving mapping
- Projective transform (15 parameters)
- Thus, for uncalibrated cameras, we can only obtain 22-15=7 parameters given two images
- We need at least 5 points in 3D (15 coordinates) for the absolute o.

Relative Orientation Summary

Cameras	#params /img	#params /img pair	#params for RO	#params for AO	min #P
calibrated	6	12	5	7	3
not calibrated	11	22	7	15	5

RO = relative orientation

AO = absolute orientation

min #P = min. number of control points

Coplanarity Constraint for Straight-Line Preserving (Uncalibrated) Cameras to Obtain the Fundamental Matrix

21

23

Coplanarity Constraint

- Consider perfect orientation and the intersection of two corresponding rays
- Rays lie within one plane in 3D

Which Parameters Can We **Compute Without Additional Information About the Scene?**

Start with a perfect orientation and the intersection of two corresponding rays

Coplanarity Constraint for Uncalibrated Cameras

Coplanarity can be expressed by

Scalar Triple Product

- The operator $[\cdot, \cdot, \cdot]$ is the triple product
- Dot product of one of the vectors with the cross product of the other two

$$[A, B, C] = (A \times B) \cdot C$$

- It is the volume of the parallelepiped of three vectors
- [A, B, C] = 0 means that the vectors lie in one plane

Image courtesy: Wikipedia (Niabot) 25

Coplanarity Constraint for Uncalibrated Cameras

The directions of the vectors O'X' and O"X" can be derived from the image coordinates x', x"

$$\mathbf{x}' = \mathsf{P}'\mathbf{X}$$
 $\mathbf{x}'' = \mathsf{P}''\mathbf{X}$

with the projection matrices

$$P' = K'R'[I_3| - X_{O'}]$$
 $P'' = K''R''[I_3| - X_{O''}]$

Reminder:
$$[I_3| - X_{O''}] = \begin{bmatrix} 1 & 0 & 0 & -X_{O''} \\ 0 & 1 & 0 & -Y_{O''} \\ 0 & 0 & 1 & -Z_{O''} \end{bmatrix}$$

Coplanarity Constraint for Uncalibrated Cameras

Coplanarity can be expressed by

$$[\mathcal{O}'\mathcal{X}' \quad \mathcal{O}'\mathcal{O}'' \quad \mathcal{O}''\mathcal{X}''] = 0$$

26

Directions to a Point

 The normalized directions of the vectors O"X" and O'X' are

$$^{n}\mathbf{x}'=(R')^{-1}(\mathsf{K}')^{-1}\mathbf{x}'$$
 image coord.

as the normalized projection

$${}^{n}\mathbf{x}' = [I_{3}| - \mathbf{X}_{O'}]\mathbf{X}$$
 world coord.

- provides the direction to from the center of projection to the point in 3D
- Analogous:

27

$${}^{n}\mathbf{x}'' = (R'')^{-1}(K'')^{-1}\mathbf{x}''$$

Base Vector

 The base vector O'O" directly results from the coordinates of the projection centers

$$b = X_{O^{\prime\prime}} - X_{O^\prime}$$

Coplanarity Constraint

 Using the previous relations, the coplanarity constraint

$$[O'X' \quad O'O'' \quad O''X''] = 0$$

can be rewritten as

$$\begin{bmatrix} {}^{n}\mathbf{x}' & \boldsymbol{b} & {}^{n}\mathbf{x}'' \end{bmatrix} = 0$$

$${}^{n}\mathbf{x}' \cdot (\boldsymbol{b} \times {}^{n}\mathbf{x}'') = 0$$

$${}^{n}\mathbf{x}'^{\mathsf{T}} S_{b} {}^{n}\mathbf{x}'' = 0$$
skew-symmetric matrix

30

Derivation

Why is this correct?

$${}^{n}\mathbf{x}' \cdot (\mathbf{b} \times {}^{n}\mathbf{x}'') = 0$$
$${}^{n}\mathbf{x}'^{\mathsf{T}} S_{b} {}^{n}\mathbf{x}'' = 0$$

Derivation

• Why is this correct?

$${}^{n}\mathbf{x}' \cdot (\boldsymbol{b} \times {}^{n}\mathbf{x}'') = 0$$
$${}^{n}\mathbf{x}'^{\mathsf{T}} S_{b} {}^{n}\mathbf{x}'' = 0$$

Results from the cross product as

$$\underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{\mathbf{b}} \times \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} -b_3x_2 + b_2x_3 \\ b_3x_1 - b_1x_3 \\ -b_2x_1 + b_1x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}}_{\mathbf{x}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}}$$

with S_b being a skew-symmetric matrix

Coplanarity Constraint

- By combining ${}^{n}\mathbf{x}' = (R')^{-1}(\mathsf{K}')^{-1}\mathbf{x}'$ and ${}^{n}\mathbf{x}'^{\mathsf{T}}S_{b}{}^{n}\mathbf{x}'' = 0$
- we obtain

$$\mathbf{x'}^{\mathsf{T}}(\mathsf{K}')^{-\mathsf{T}}(R')^{-\mathsf{T}}\mathsf{S}_b(R'')^{-1}(\mathsf{K}'')^{-1}\mathbf{x}'' = 0$$

Coplanarity Constraint

- By combining ${}^{n}\mathbf{x}' = (R')^{-1}(\mathsf{K}')^{-1}\mathbf{x}'$ and ${}^{n}\mathbf{x}'^{\mathsf{T}}S_{b}{}^{n}\mathbf{x}'' = 0$
- we obtain

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K}')^{-\mathsf{T}} (R')^{-\mathsf{T}} \mathsf{S}_b (R'')^{-1} (\mathsf{K}'')^{-1}}_{\mathsf{F}} \mathbf{x}'' = 0$$

$$F = (K')^{-T}(R')^{-T}S_b(R'')^{-1}(K'')^{-1}$$
$$= (K')^{-T}R'S_bR''^{T}(K'')^{-1}$$

34

Fundamental Matrix

 The matrix F is the fundamental matrix (for uncalibrated cameras):

$$\mathsf{F} = (\mathsf{K}')^{-\mathsf{T}} R' \mathsf{S}_b R''^{\mathsf{T}} (\mathsf{K}'')^{-1}$$

 It allow for expressing the coplanarity constraint by

$$\mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''} = 0$$

Fundamental Matrix

 The fundamental matrix is the matrix that fulfills the equation

$$\mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''} = 0$$

for corresponding points

 Fundamental matrix contains all the information available about the relative orientation of two images from uncalibrated cameras

Fundamental Matrix From the Camera Projection Matrices

• If the projection matrices are given, we can derive the fundamental matrix?

$$P', P'' \rightarrow F$$

Let the projection matrices be partitioned into a left 3×3 matrix and a 3-vector as P' = [A'|a'].

37

Fundamental Matrix From the Camera Projection Matrices

- We have $P' = [A'|\mathbf{a}'] = [\underbrace{K'R'}_{A'}|\underbrace{-K'R'X_{O'}}_{\mathbf{a}'}]$
- and $b'_{12} = A'^{-1}a' A''^{-1}a''$
- and thus can compute F by

$$F = (K')^{-T} R' S_b R''^T (K'')^{-1} = A'^{-T} S_{b'_{12}} A''^{-1}$$

• with
$$S_b = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}$$

Fundamental Matrix From the Camera Projection Matrices

- We have $P' = [A'|a'] = [\underbrace{K'R'}_{A'}|\underbrace{-K'R'X_{O'}}_{a'}]$
- and can recover the projection center

$$\mathbf{A}'^{-1}\mathbf{a}' = (\mathbf{K}'\mathbf{R}')^{-1}\mathbf{a}' = -\mathbf{R}'^{\top}\mathbf{K}'^{-1}\mathbf{K}'\mathbf{R}'\boldsymbol{X}_{O'} = -\boldsymbol{X}_{O'}$$
$$\boldsymbol{X}_{O'} = -\mathbf{A}'^{-1}\mathbf{a}'$$

so that the base line is given by

$$b'_{12} = -A''^{-1}a'' + A'^{-1}a'$$

38

Alternative Definition

- In the context of many images, we will call F_{ij} that fundamental matrix which yields the constraint $\mathbf{x'}_i^\mathsf{T} F_{ij} \mathbf{x}_i'' = 0$
- Thus in our case, we have $F = F_{12}$
- Our definition of F is not the same as in the book by Hartley and Zisserman
- The definition in Hartley and Zisserman is based on $\mathbf{x}_i''^{\top} \mathsf{F}_{ij} \mathbf{x}_j' = 0$, i.e. $\mathsf{F} = \mathsf{F}_{21} = \mathsf{F}_{12}^{\mathsf{T}}$
- The transposition needs to be taken into account when comparing expressions

The Fundamental Matrix Song

Essential Matrix ("F for Calibrated Cameras")

42

Using Calibrated Cameras

- Most photogrammetric systems rely on calibrated cameras
- Calibrated cameras simplify the orientation problem
- Often, we assume that both cameras have the same calibration matrix
- Assumption here: no distortions or other imaging errors

Coplanarity Constraint

- For calibrated cameras the coplanarity constraint can be simplified
- Based on the calibration matrices, we obtain the directions as

This relation results from

$$\mathbf{x}' = \mathsf{P}'\mathbf{X}' = \mathsf{K}'R'[I_3| - X_O']\mathbf{X}' = \mathsf{K}' {}^k\mathbf{x}'$$

Coplanarity Constraint

Exploiting the fundamental matrix

$$\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K}')^{-\mathsf{T}} (R')^{-\mathsf{T}} \mathsf{S}_b (R'')^{-1} (\mathsf{K}'')^{-1}}_{\mathsf{F}} \mathbf{x}'' = 0$$

Coplanarity Constraint

Exploiting the fundamental matrix

$$\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K'})^{-\mathsf{T}} (R')^{-\mathsf{T}} \mathsf{S}_b (R'')^{-1} (\mathsf{K''})^{-1}}_{\mathsf{F}} \mathbf{x''} = 0$$

$$\underbrace{\mathbf{x'}^{\mathsf{T}} (\mathsf{K'})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1} \mathbf{x''}}_{k_{\mathbf{x''}}} = 0$$

45

Coplanarity Constraint

Exploiting the fundamental matrix

$$\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K'})^{-\mathsf{T}} (R')^{-\mathsf{T}} \mathsf{S}_b (R'')^{-1} (\mathsf{K''})^{-1}}_{\mathsf{F}} \mathbf{x''} = 0$$

$$\underbrace{\mathbf{x'}^{\mathsf{T}} (\mathsf{K'})^{-\mathsf{T}}}_{k_{\mathbf{x'}^{\mathsf{T}}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1} \mathbf{x''}}_{k_{\mathbf{x''}}} = 0$$

$$k_{\mathbf{x'}^{\mathsf{T}}} R' \mathsf{S}_b R''^{\mathsf{T}} k_{\mathbf{x''}} = 0$$

same form as the fundamental matrix but for calibrated cameras

Essential Matrix

From F to the essential matrix E

$$\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K'})^{-\mathsf{T}} (R')^{-\mathsf{T}} \mathsf{S}_b (R'')^{-1} (\mathsf{K''})^{-1}}_{\mathsf{F}} \mathbf{x''} = 0$$

$$\underbrace{\mathbf{x'}^{\mathsf{T}} (\mathsf{K'})^{-\mathsf{T}}}_{k_{\mathbf{x'}^{\mathsf{T}}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1} \mathbf{x''}}_{k_{\mathbf{x''}}} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K'})^{-\mathsf{T}}}_{\mathsf{K}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1} \mathbf{x''}}_{k_{\mathbf{x''}}} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K'})^{-\mathsf{T}}}_{k_{\mathbf{x'}^{\mathsf{T}}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-\mathsf{T}}}_{k_{\mathbf{x''}}} R' \mathsf{S}_b R''^{\mathsf{T}} \underbrace{(\mathsf{K''})^{-1}}_{k_{\mathbf{x''}}} \mathbf{x''} = 0$$

47

Essential Matrix

- We derived a specialization of the fundamental matrix
- For the calibrated cameras, it is called the essential matrix

$$\mathsf{E} = \mathsf{R}' \mathsf{S}_b \mathsf{R''}^\mathsf{T}$$

 We can write the coplanarity constraint for calibrated cameras as

$${}^{k}\mathbf{x'}^{\mathsf{T}}\mathsf{E}\ {}^{k}\mathbf{x''}=0$$

49

Popular Parameterizations for the Relative Orientation

Essential Matrix

- The essential matrix as five degrees of freedom
- There are **five** parameters that determine the relative orientation of the image pair for calibrated cameras
- This means: there are 4=9-5 constraints to its 9 elements (3x3)
- ${}^{\bullet}$ The essential matrix is homogenous and singular ${}_{k{\bf v'}^{\mathsf{T}}\mathsf{F}}\,{}^k{\bf x''}=0$

50

Five Parameters - How?

 Five parameters that determine the relative orientation of the image pair

How to parameterize the essential matrix?

The Popular Parameterizations

- Five parameters that determine the relative orientation of the image pair
- Three popular parameterizations

Image courtesy: Förstner 53

General Parameterization of Dependent Images

The general parameterization of dependent images uses a

- normalized direction vector b
- rotation matrix R

DE: Allgemeine Parametrisierung des Folgebildanschluss

The Popular Parameterizations

- 1. General parameterization of dependent images
- 2. Photogrammetric parameterization of dependent images
- 3. Parameterization of independent images

Image courtesy: Förstner 54

Photogrammetric Parametrizat. of Dependent Images

Photogrammetric parameterization of dependent images uses

- two components B_Y and B_Z of the base direction (B_X=const)
- a rotation matrix R

DE: Klassich-photogrammetrische Parametrisierung des Folgebildanschluss

Parameterization of Independent Images

The parameterization with independent images uses

- a rotation matrix $R'(\omega', \phi', \kappa')$
- a rotation matrix $R''(\omega'', \phi'', \kappa'')$
- a fixed basis of constant length

DE: Parametrisierung mit Bilddrehungen

57

For the Parameterizations of Dependent Images

- The reference frame is the frame of the first camera
- Describe the second camera relative to the first one
- Rotation mat. of the first cam is $R' = I_3$
- The rotation of the R.O. is then R = R''

Parameterization of Dependent Images

(DE: Parametrisierung des Folgebildanschluss)

58

General Parameterization of Dependent Images

• The orientation of the second camera is R = R'' and we obtain from the coplanarity constraint

$${}^{k}\mathbf{x'}^{\mathsf{T}}\mathsf{S}_{b}\mathsf{R}^{\mathsf{T}}{}^{k}\mathbf{x}'' = 0 \quad \text{with} \quad |\boldsymbol{b}| = 1$$

• 6 parameters + 1 constraint |b| = 1

General Parameterization of Dependent Images

The resulting 5 degree of freedom are

$$(\underbrace{B_X, B_Y, B_Z}_{\mathbf{b}}, \underbrace{\omega, \phi, \kappa}_{\mathbf{R}})$$
 with $B_X^2 + B_Y^2 + B_Z^2 = 1$

Parameterization of Independent Images

(DE: Parametrisierung mit Bilddrehungen)

61

Parameterization of Independent Images

- The center of the reference frame is the projection center O' of the 1st cam
- The x-axis $e_1^{[3]}$ of the object c.s. is the basis

$$oldsymbol{B}_r = \left[egin{array}{c} B_{X_r} \ 0 \ 0 \end{array}
ight] = oldsymbol{X}_{O_r^{\prime\prime}} - oldsymbol{X}_{O_r^{\prime}}$$

• with $\mathbf{b} = \mathbf{B}_r = (B_{X_r}, 0, 0)^\mathsf{T}, B_{X_r} = const.$

Parameterization of Independent Images

62

- We have 6 rotation parameters but one rotation around the basis cannot be obtained
- It would result in a change in the exterior orientation of the camera pair
- Thus, one omits the rotation ω' or uses the difference $\Delta\omega=\omega'-\omega''$

$${}^{k}\mathbf{x'}^{\mathsf{T}}R'\mathsf{S}R''^{\mathsf{T}}{}^{k}\mathbf{x''} = 0$$
 with $\omega', S = const.$

Parameterization of Independent Images

The resulting 5 parameters are

$$(\Delta\omega, \phi', \kappa', \phi'', \kappa'')$$

Parameterizations Summary

1. General parameterization of dependent images $(B_X, B_Y, B_Z, \omega, \phi, \kappa)$ with $B_X^2 + B_Y^2 + B_Z^2 = 1$

2. Photogrammetric parameterization of dependent images

 $(B_Y, B_Z, \omega, \phi, \kappa)$ $B_X = \text{const.} B_Y$

3. Parameterization of independent images

$$(\Delta\omega, \phi', \kappa', \phi'', \kappa'')$$

66

Remark

- Two parameterizations are general and can represent all geometric configurations
- The classical photogrammetric parameterization has a singularity
- Singularity: If the base vector is directed orthogonal to the X axis, the base components B_Y and B_Z will be infinitely large in general
- This parameterization therefore leads to instabilities

Commonly Used: General Parameterization of Dependent Images

- This general parameterization is the most frequently used one
- The resulting parameters are

$$\underbrace{(B_X,B_Y,B_Z,\underbrace{\omega,\phi,\kappa})}_{\mathbf{b}}\quad\text{with}\quad B_X^2+B_Y^2+B_Z^2=1$$

$$(|\pmb{b}|=1)$$

Summary

- Parameters of image pairs
- Relative orientation
- Fundamental matrix F
- Coplanarity constraint $\mathbf{x'}^\mathsf{T} \mathbf{F} \mathbf{x''} = 0$
- Essential matrix E
 (F for the calibrated camera pair)
- Coplanarity constraint ${}^{k}\mathbf{x}'^{\mathsf{T}} \mathsf{E} {}^{k}\mathbf{x}'' = 0$
- Parameterization of the relative orientation

Testing Point Correspondences (optional material)

69

71

Correspondence Test for Two Points in the Image Plane

- We can exploit the coplanarity constraint to test for the correspondence of two points
- For correspondence, the residual

$$w = \mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''} = \text{vec}(\mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''})$$
$$= (\mathbf{x''} \otimes \mathbf{x'})^\mathsf{T} \text{vec} \mathsf{F} = (\mathbf{x''} \otimes \mathbf{x'})^\mathsf{T} \mathbf{f}$$

should be zero (the operator ⊗ is the Kronecker product, see next slide)

Kronecker Product

 The Kronecker product is a special product of matrices and defined as

$$A \otimes B = \left[\begin{array}{cccc} A_{11}B & \dots & A_{1n}B \\ \dots & \dots & \dots \\ A_{m1}B & \dots & A_{mn}B \end{array} \right]$$

Example

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \otimes \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} = \begin{pmatrix} 1 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} & 2 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} \\ 3 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} & 4 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} \\ 5 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} & 6 \begin{pmatrix} 7 & 8 \\ 9 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 7 & 8 & 14 & 16 \\ 9 & 0 & 18 & 0 \\ 21 & 24 & 28 & 32 \\ 27 & 0 & 36 & 0 \\ 35 & 40 & 42 & 48 \\ 45 & 0 & 54 & 0 \end{pmatrix}$$

70

Correspondence Test

- In reality, $w = (\mathbf{x}'' \otimes \mathbf{x}')^{\mathsf{T}} \mathbf{f}$ is seldom =0
- w has the variance

$$\sigma_w^2 = \left(\frac{\partial w}{\partial \mathbf{x}'}\right) \Sigma_{x'x'} \left(\frac{\partial w}{\partial \mathbf{x}'}\right)^\mathsf{T} + \left(\frac{\partial w}{\partial \mathbf{x}''}\right) \Sigma_{x''x''} \left(\frac{\partial w}{\partial \mathbf{x}''}\right)^\mathsf{T} + \left(\frac{\partial w}{\partial \mathbf{f}}\right) \Sigma_{ff} \left(\frac{\partial w}{\partial \mathbf{f}}\right)^\mathsf{T}$$

- Direct result from the variance propagation (DE: Varianzfortpflanzung)
- Assumes known errors on x' and x''and in the elements of F

73

Correspondence Test

 Given the variance, we can formulate a significance test with

$$z = \frac{w_i}{\sigma_{w_i}} \sim N(0, 1)$$

where

$$z = \frac{(\mathbf{x}'' \otimes \mathbf{x}')^\mathsf{T} \mathbf{f}}{\sqrt{\mathbf{x}''^\mathsf{T} \mathsf{F}^\mathsf{T} \Sigma_{x'x'} \mathsf{F} \mathbf{x}'' + {\mathbf{x}'}^\mathsf{T} \mathsf{F} \Sigma_{x''x''} \mathsf{F}^\mathsf{T} \mathbf{x}' + (\mathbf{x}'' \otimes \mathbf{x}')^\mathsf{T} \Sigma_{ff} (\mathbf{x}'' \otimes \mathbf{x}')}}$$

Note: test value is point-dependent!

Correspondence Test

- In reality, $w = (\mathbf{x}'' \otimes \mathbf{x}')^{\mathsf{T}} \mathbf{f}$ is seldom =0
- w has the variance

$$\sigma_{w}^{2} = \left(\frac{\partial w}{\partial \mathbf{x}'}\right) \Sigma_{x'x'} \left(\frac{\partial w}{\partial \mathbf{x}'}\right)^{\mathsf{T}} + \left(\frac{\partial w}{\partial \mathbf{x}''}\right) \Sigma_{x''x''} \left(\frac{\partial w}{\partial \mathbf{x}''}\right)^{\mathsf{T}} + \left(\frac{\partial w}{\partial \mathbf{f}}\right) \Sigma_{ff} \left(\frac{\partial w}{\partial \mathbf{f}}\right)^{\mathsf{T}}$$
• where

$$\left(\frac{\partial w}{\partial \mathbf{x}'}\right) = \mathbf{x''}^\mathsf{T} \mathsf{F}^\mathsf{T} \qquad \left(\frac{\partial w}{\partial \mathbf{x}''}\right) = \mathbf{x'}^\mathsf{T} \mathsf{F} \qquad \left(\frac{\partial w}{\partial \mathbf{f}}\right) = (\mathbf{x}'' \otimes \mathbf{x}')^\mathsf{T}$$

See: Förstner, Wrobel: Photogrammetric Computer Vision, Chapter 12.2.3 ("The Geometry of the Image Pair")

74

Correspondence Test

 Given the variance, we can formulate a significance test with

$$z = \frac{w_i}{\sigma_{w_i}} \sim N(0, 1)$$

 The test allows us to discard a hypothesis if $|z| > k_{\alpha}$ where k_{α} defines the threshold for the confidence level, e.g., $k_{\alpha} = 1.96$ for $\alpha = 5\%$

Summary

- Parameters of image pairs
- Relative orientation
- Fundamental matrix F
- Coplanarity constraint $\mathbf{x'}^\mathsf{T} \mathbf{F} \mathbf{x''} = 0$
- Essential matrix F (F for the calibrated camera pair)
- Coplanarity constraint ${}^{k}\mathbf{x}'^{\mathsf{T}}\mathsf{E}\ {}^{k}\mathbf{x}'' = 0$
- Parameterization of the relative orientation

Literature

• Förstner, Wrobel: Photogrammetric Computer Vision, Ch. 12.2

78

77

Slide Information

- The slides have been created by Cyrill Stachniss as part of the photogrammetry and robotics courses.
- I tried to acknowledge all people from whom I used images or videos. In case I made a mistake or missed someone, please let me know.
- The photogrammetry material heavily relies on the very well written lecture notes by Wolfgang Förstner and the Photogrammetric Computer Vision book by Förstner & Wrobel.
- Parts of the robotics material stems from the great Probabilistic Robotics book by Thrun, Burgard and Fox.
- If you are a university lecturer, feel free to use the course material. If you adapt the course material, please make sure that you keep the acknowledgements to others and please acknowledge me as well. To satisfy my own curiosity, please send me email notice if you use my slides.

Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de, 2014