F74091043 陳季謙 GAI\_project4

第一部分:使用 DDPM 前向噪音增強深度圖像先驗(DIP)

簡介

本研究探討將擴散概率模型(DDPM)前向過程生成的噪音圖像整合到深度圖像先驗(DIP)框架中的影響。傳統上,DIP使用高斯分佈的噪音圖像進行訓練。我們假設,通過利用不同時間步驟的 DDPM 前向過程中的噪音,可以增強 DIP 的學習效果,特

別是對於暗影圖像的處理。

方法

數據集和數據加載器

使用自定義圖像數據集(CustomImage)和數據加載器(Get\_DataLoader)來準備訓練數據。我們的數據集來自 <u>Kaggle - Cars Image Dataset</u>,圖像大小為(128, 128, 1)。

模型設計

我們設計並訓練了兩個 DDPM 模型:

1.使用時間步驟的 DDPM 模型

#### 2.不使用時間步驟的 DDPM 模型

每個模型都使用相同的 UNet 結構和超參數配置,包括:

- 時間步長 (n\_steps): 1000
- 最小 beta (min\_beta): 0.1
- 最大 beta (max\_beta): 20
- 設備 (device): 'cuda' (如可用)

訓練過程中,我們使用 L1 損失函數(nn.L1Loss)和 Adam 優化器(torch.optim.Adam)。

#### 訓練過程

我們將每個模型訓練 500 個 epochs, 並每 50 個 epochs 記錄一次 SSIM 評估分數和損失值。訓練過程如下:

## 結果

## 使用時間步驟的 DDPM 模型

| Epoch | Loss    | SSIM      |  |  |  |
|-------|---------|-----------|--|--|--|
| 0     | 0.53747 | -0.015420 |  |  |  |
| 50    | 0.06441 | 0.592005  |  |  |  |
| 100   | 0.04068 | 0.766120  |  |  |  |
| 150   | 0.03383 | 0.823018  |  |  |  |
| 200   | 0.03667 | 0.870141  |  |  |  |
| 250   | 0.02207 | 0.912944  |  |  |  |
| 300   | 0.02139 | 0.946594  |  |  |  |
| 350   | 0.01572 | 0.966167  |  |  |  |
| 400   | 0.01230 | 0.979688  |  |  |  |
| 450   | 0.01691 | 0.987943  |  |  |  |



# 不使用時間步驟的 DDPM 模型

| Epoch | Loss    | SSIM     |  |  |  |
|-------|---------|----------|--|--|--|
| 0     | 0.51767 | 0.004536 |  |  |  |
| 50    | 0.05374 | 0.656609 |  |  |  |
| 100   | 0.03708 | 0.786829 |  |  |  |
| 150   | 0.03063 | 0.838247 |  |  |  |
| 200   | 0.02634 | 0.867745 |  |  |  |
| 250   | 0.02448 | 0.893534 |  |  |  |

| 300 |       | 0.02 | 416  | 0.91 | .4578 |    |     |    |       |     |
|-----|-------|------|------|------|-------|----|-----|----|-------|-----|
| 350 |       | 0.01 | .780 | 0.92 | 29651 |    |     |    |       |     |
| 400 |       | 0.01 | .543 | 0.94 | 15852 |    |     |    |       |     |
| 450 |       | 0.01 | .663 | 0.95 | 7336  |    |     |    |       |     |
|     |       |      |      |      |       |    |     |    |       |     |
|     | 0.5 - |      |      |      |       |    |     |    |       |     |
|     | 0.4 - |      |      |      |       |    |     |    |       |     |
|     | 0.3 - |      |      |      |       |    |     |    |       |     |
|     | 0.2 - |      |      |      |       |    |     |    |       |     |
|     | 0.1 - | 1    |      |      |       |    |     |    |       |     |
|     |       |      |      |      |       | -  | -   | -  | -     | _   |
|     | 0.0   | 1    | 10   | _    | 200   |    | -1- | 40 | 90 00 |     |
|     |       | 0    |      | 00   | 200   |    | 300 | 40 | 0     | 500 |
|     |       |      | 関す   | À    | 100   | 9  |     | 9  |       |     |
|     |       |      |      | 3    | 1000  | 9. | 製造  | 9. |       |     |
|     |       | _    | _    | -    |       |    |     |    |       |     |

分析與討論

## 模型性能比較

- 1.使用時間步驟的 DDPM 模型在訓練初期 (epoch 0) 有較高的初始損失和負的 SSIM 值,但隨著訓練的進行,損失快速下降,SSIM 值顯著提高。
- 2.不使用時間步驟的 DDPM 模型在訓練初期的損失和 SSIM 值表現略優於使用時間步驟的模型,但隨著訓練的進行,SSIM 值的增長速度略遜於使用時間步驟的模型。

#### 結論

使用時間步驟的 DDPM 模型在最終的 SSIM 評估中表現優於不使用時間步驟的模型,顯示了更高的學習能力和圖像質量。這表明,通過在不同時間步驟下生成的噪音圖像進行訓練,可以幫助 DIP 模型更有效地學習圖像特徵。

第二部分:學習率對 DDPM 模型性能的影響

簡介

本實驗旨在評估不同學習率對去噪擴散概率模型(DDPM)性能的影響。我們主要使用結構相似性指數(SSIM)來衡量模型生成圖像的質量。實驗通過多次運行來確保結果的可靠性。

## 實驗設置

- 1. 模型架構: 模型架構是基於 UNet 的 DDPM, 配置如下參數:
  - 步驟數:500
  - 最小 beta: 0.1
  - 。 最大 beta: 0.2
  - 設備: GPU (如果可用)
- 2. 學習率: 測試的學習率為: 0.001, 0.003, 0.005, 0.007, 0.009。
- 3. **數據集與數據加載器**:使用自定義圖像數據集,每次運行重新加載數據,並使用自定義的數據加載器。
- 4. **訓練配置**: 每個模型使用 Adam 優化器進行 500 個 epoch 的訓練,並記錄每個學習率在每次實驗中的 SSIM 分數。

## 結果與分析

在每次實驗中,我們記錄了不同學習率下的損失和 SSIM 分數。以下是每個學習率的 SSIM 分數平均值:

- 學習率: 0.001
  - SSIM 平均值: 0.900
- 學習率: 0.003
  - SSIM 平均值: 0.950
- 學習率: 0.005
  - 。 SSIM 平均值: 0.980
- 學習率: 0.007
  - o SSIM 平均值: 0.993
- 學習率: 0.009
  - 。 SSIM 平均值: 0.997





### 討論

從結果可以看出,隨著學習率的增加,模型的 SSIM 分數也在逐步提高,表明生成圖像的質量有所提升。然而,過高的學習率(如 0.009)可能會導致模型訓練不穩定,出現較高的損失波動。因此,找到適當的學習率對於模型的穩定訓練和高質量生成至關重要。

#### 結論

實驗結果顯示,學習率對 DDPM 模型的性能有顯著影響。在本次實驗中,學習率 0.009 取得了最佳的 SSIM 分數,但考慮到訓練的穩定性,0.007 也能提供接近的高質 量生成。因此,建議在實際應用中根據具體情況選擇合適的學習率,以平衡訓練穩定 性和生成圖像質量。