A compound of Formula I:

$$R^{1A}$$
 R^{1B}
 R^{2A}
 R^{2B}

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

I

R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of Z and Y is NR³ and the other of Z and Y is CHR⁴;

wherein R³ and R⁴ are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl, and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO_2R^9$; and $-SO_3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl;

Le man trail of the first from the form

haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-SC^{13}$; -

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁹R¹⁰; -P⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl;

hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-S(O)2R^{13}$; $-SO_3R^{13}$; $-S^+R^{13}R^{14}A^-$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; -OM; $-SO_2C_3R^{13}$; $-NR^{14}C_3C_3C_3R^{13}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-OR^{18}$; $-S(O)NR^{13}R^{14}$; $-NR^{13}R^{14}$; $-NR^{13}R^{14$

wherein the R^{\(\)} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR

13-, -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R 18 alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR 9 ; -NR 9 R 10 ; -N $^+$ R 9 R 11 R 12 A $^-$; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; -CONR 9 R 10 ; -SO2OM; -SO2NR 9 R 10 ; -PR 9 R 10 ; -P(OR 13)OR 14 ; -PO(OR 16)OR 17 ; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt;
- (c) the R⁵ moiety comprises a phosphonic acid group or at least two carboxyl groups; or
- (d) the R⁵ moiety comprises a polyethylene glycol group having a molecular weight of at least 1000.

2. A compound of Claim 1 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹⁸; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

5 ub

DOGIERS OFFICE

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl, polyalkyl; alkenyl;

alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminocarbonylalkyl; alkylarminocarbonylalkyl; carboxyalkylarminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

3. A compound of claim 2 wherein R⁵ is:

II

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether, -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R 10, and RW are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are

attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

OSSIEESS OFESCI

wherein R^{16} and R^{17} are independently selected from the group consisting of R

⁹ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

4. A compound of claim 3 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 3.

5. A compound of claim 3 wherein R⁵ is:

IIB

wherein R¹⁹ is as defined in Claim 3.

6. A compound of claim 3 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

7. A compound of claim 3 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

8. A compound of claim 3 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -P(O)R 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-SO_2R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl, alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

9. A compound of claim 3 wherein:

R³ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 R 14 R 15 A -; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A -; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A -; and -N $^+$ R 13 R 14 R 15 A -; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one

or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quatexnary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein $R^{\sqrt{3}}$ and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl;

Solar

quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

10. A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(\rm O)R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R¹³, R¹⁴, and R¹⁵ are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

11. A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

IIA

wherein R¹⁹ is as defined in Claim 10.

13. A compound of claim 10 wherein R⁵ is:

14. A compound of claim 10 wherein R¹⁹ is selected from the group consisting

IIB

wherein R¹⁹ is as defined in Claim 10.

DGGAMESS OFESOL

410

$$CO_2H$$
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_3H
 CO_3H
 CO_5H
 CO_5

15. A compound of claim 3 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

16. A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

17. A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

- 18. A compound of claim 3 wherein j is 1 or 2.
- 19. A compound of claim 3 wherein j is 2.
- 20. A compound of claim 3 wherein R^{1A} and R^{1B} are hydrogen.
- 21. A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl.
- 22. A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 23. A compound of claim 3 wherein R^{2A} and R^{2B} are the same alkyl.
 - 24. A compound of claim 3 wherein R^{2A} and R^{2B} are each n-butyl.
 - 25. A compound of claim 3 wherein one of R^{2A} and R^{2B} is ethyl and the other of

鰛

 R^{2A} and R^{2B} is n-butyl.

- 26. A compound of claim 3 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 27. A compound of claim 3 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

28. A compound of claim 3 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

29. A compound of claim 1 corresponding to Formula IA:

j is 0, 1 or 2; and

wherein:

N

W

Half then worth for the fall

no is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl, and aralkyl; or

 R^{2A} and R^{3B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl, and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO_2R^9$; and $-SO_3R^9$;

wherein the R^5 alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -CQR 13 ; -NR 13 C(O)R 14 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen, hydroxy; oxo;

alkyl; cycloalkyl; alkenyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$; -CO

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; aminocarbonylalkyl; aminocarbonylalkyl;

alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R⁹ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R⁶ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N[†]R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹¹R¹²A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue; and wherein the R⁶ quaternary heterocyclyl radical optionally may be

THE THE THE THE

carbohydrate residue; and

substituted with one or more radicals selected from the group consisting of halogen; -CN\,-NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; - $S(O)R^{13}$, SO_2R^{13} ; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; OM; $-SO_2$ OM; $-SO_2NR^{13}R^{14}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-P(O)R^{13}R^{14}$; $-P^{13}R^{14}$ $P^{+}R^{13}R^{14}R^{15}A^{-}$; $-P(OR^{13})OR^{14}$; $-S^{+}R^{13}R^{14}A^{-}$; $-N^{+}R^{13}R^{14}R^{15}A^{-}$; and

wherein the R⁶ radicals comprising carbon optionally may have one or more carbons replaced by $-O_{3}^{-1}$, $-NR^{13}$ -; $-N^{+}R^{13}R^{14}A^{-}$; $-S_{-}$; $-SO_{-}$; $-SO_{2}$; $-S^{+}R^{13}A^{-}$; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polyether; or polyalkyl; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹ -; $-N^+R^9R^{10}A^-$; -S-; -SO-; -SO2-; $-S^+R^9A^-$; $-P^*R^9R^{10}A^-$; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl, aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; - $NR^{9}R^{10}; -N^{+}R^{9}R^{11}R^{12}A^{-}; -SR^{9}; -S(O)R^{9}; -SO_{2}R^{9}; -SO_{3}R^{9}; -CO_{2}R^{9}; -CO_{2}R^{9}; -CO_{3}R^{9}; -CO_{$ 10 : -SO2OM: -SO2NR 9 R 10 : -PR 9 R 10 : -P(OR 13)OR 14 : -PO(OR 16)OR 17 : and -C(O)OM; or

W

J

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and

provided that the R⁵ alkyl, cycloalkyl, aryl, heterocyclyl, and -OR⁹ radicals are not substituted with -O(CH₂)₁₋₄NR'R''R''' wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge; and/or
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and/or
 - (c) the R⁵ moiety comprises at least two carboxy groups.

30. A compound of Claim 29 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}CO_2R^{14}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}R^{14}R^{15}$; -PR $^{13}R^{14}R^{15}$ -P(O)R $^{13}R^{14}$; -P $^{+}R^{13}R^{14}R^{15}A^{-}$; -P(OR 13)OR 14 ; -S $^{+}R^{13}R^{14}A^{-}$; and -N $^{+}R^{13}R^{14}R^{15}A^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

1

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$; $-CO_2R^7$; $-CO_2R^7$; $-CO_2R^7$; $-CO_2R^7$; $-P_1R^8$; and $-P_1R^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; OR^9 ; -NR $^9R^{10}$; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR $^9R^{10}$; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

n E

لحمة

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴ and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarminocarbonylalkyl; alkylarminocarbonylalkyl; alkylarminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

of more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

31. A compound of claim 30 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -

 $\begin{array}{l} NR^{13}SONR^{14}R^{15}; -NR^{13}SO_{2}NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P^{+}R^{13}R^{14}R^{15}A^{-}; \end{array}$

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N $^{+}$ R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S $^{+}$ R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P $^{+}$ R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -

U

 $S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$; or R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarboxylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^{16}$; $-\text{CO2R}^{16}; -\text{CONR}^9 \text{R}^{10}; -\text{SO2NR}^9 \text{R}^{10}; -\text{PO}(\text{OR}^{16}) \text{OR}^{17}; -\text{R}^9 \text{R}^{10}; -\text{P}^+ \text{R}^9 \text{R}^{10} \text{R}^{11} \text{A-};$ -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

32. A compound of claim 31 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 31.

33. A compound of claim 31 wherein R⁵ is:

IIB

wherein R¹⁹ is as defined in Claim 31.

34. A compound of claim 31 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

35. A compound of claim 31 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

36. A compound of claim 31 wherein:

R³ is R⁵; and

 R^4 is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -

roasta ee ee con

 $\begin{array}{l} \text{CO2R}^{13}; \text{-OM}; \text{-SO2OM}; \text{-SO2NR}^{13}R^{14}; \text{-C(O)NR}^{13}R^{14}; \text{-C(O)OM}; \text{-COR}^{13}; \text{-} \\ \text{NR}^{13}\text{C(O)R}^{14}; \text{-NR}^{13}\text{C(O)NR}^{14}R^{15}; \text{-NR}^{13}\text{CO}_{2}R^{14}; \text{-OC(O)R}^{13}; \text{-OC(O)NR}^{13}R^{14}; \text{-} \\ \text{NR}^{13}\text{SOR}^{14}; \text{-NR}^{13}\text{SO}_{2}R^{14}; \text{-NR}^{13}\text{SONR}^{14}R^{15}; \text{-NR}^{13}\text{SO}_{2}\text{NR}^{14}R^{15}; \text{-PR}^{13}R^{14}; \text{-P(O)R}^{13}R^{14}; \text{-P($

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroxyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CO2R⁷; -CO2R⁷; -NR⁷R⁸; -PR⁷R⁸; -PR⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-SO3R^9$; $-CO2R^9$; and $-CONR^9R^{10}$; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarminocarbonylalkyl; alkylarminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^{16}$; $-CO_2R^{16}$; $-CO_2R^{16}$; $-CO_2R^9R^{10}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R

9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

37. A compound of claim 31 wherein:

 R^3 is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R³ alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -

 $\begin{array}{l} NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO_2R^{13}; -SO_3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14}R^{15}; -CO_2R^{13}; -OM; -SO_2OM; -SO_2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P(OR^{13})OR^{14}; -S^+R^{13}R^{14}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; \\ \text{and} \end{array}$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR7; -NR7R8; -SR7; -S(O)R7; -SO2R7; -SO3R7; -CO2R7; -CONR7R8; -N+R7R8R9A-; -P(O)R7R8; -PR7R8; -P+R7R8R9A-; and -P(O)(OR7)OR8; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl;

carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be

Substituted with one or more radicals selected from the group consisting of halogen; - CN, sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heteroxyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO2R^9$; $-SO3R^{16}$; $-CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylālkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

38. A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, -NR¹³C(O)R¹⁴, -OC(O)NR¹³R¹⁴, and -NR¹³SO₂R¹⁴, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$, and

wherein R¹³, R¹⁴, and R¹⁵ are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary

heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PQ(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

39. A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SQ2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R¹³, R¹⁴, and R¹⁵ are optionally substituted with one or more groups

Sub As

Ū

N

selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(QR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

40. A compound of claim 38 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 38.

41. A compound of claim 38 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 38.

42. A compound of claim 38 wherein R¹⁹ is selected from the group consisting of: 437

`CO₂H CO₂H DOGITESS DIEST Cl-CO₂H `CO₂H and Cl43. A compound of claim 38 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

44. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

45. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

46. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

 R^3 is R^5 ; and

R⁴ is selected from hydrogen and alkyl.

47. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

 R^3 is selected from from hydrogen and alkyl; and R^4 is R^5 .

- 48. A compound of claim 38 wherein j is 1 or 2.
- 49. A compound of claim 38 wherein j is 2.
- 50. A compound of claim 38 wherein R^{1A} and R^{1B} are hydrogen.
- 51. A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 52. A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 53. A compound of claim 38 wherein R^{2A} and R^{2B} are the same alkyl.
 - 54. A compound of claim 38 wherein R^{2A} and R^{2B} are each n-butyl.
- 55. A compound of claim 38 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 56. A compound of claim 38 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 57. A compound of claim 38 wherein j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

58. A compound of claim 38 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

59. A compound of claim 42 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

60. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 $R^{2A} \mbox{ and } R^{2B}$ are independently selected from alkyl.

61. A compound of claim 42 wherein:

j is 2;

 R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

62. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

63. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 64. A compound of claim 42 wherein j is 1 or 2.
- 65. A compound of claim 42 wherein j is 2.
- 66. A compound of claim 42 wherein R^{1A} and R^{1B} are hydrogen.
- 67. A compound of claim 42 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 68. A compound of claim 42 wherein R^{2A} and R^{2B} are independently selected from the group consisting $C_{1\text{-}6}$ alkyl.
 - 69. A compound of claim 42 wherein R^{2A} and R^{2B} are the same alkyl.
 - 70. A compound of claim 42 wherein R^{2A} and R^{2B} are each n-butyl.

- 71. A compound of claim 42 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 72. A compound of claim 42 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 73. A compound of claim 42 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

74. A compound of claim 42 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

75. A compound of claim 1 corresponding to Formula IB:

IB

ځمۇ

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl and R⁵, and

wherein R⁵ is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO2R⁹; and -SO3R⁹;

wherein the R^5 alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCOR 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 CONR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl,

S AT CONTINUE OF AT

and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CO2R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a

cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminoalkyl; antinocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl;

alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R

9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)NR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9

; $-SO_2R^9$; $-SO_3R^{16}$; $-CO_2R^{16}$; $-CONR^9R^{10}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{11}R^{12}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO 2 R 13 ; OM; -SO 2 OM; -SO 2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R^{18} is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -

 $OR^{9}_{1}-NR^{9}R^{10}; -N^{+}R^{9}R^{11}R^{12}A^{-}; -SR^{9}; -SO_{2}R^{9}; -SO_{2}R^{9}; -SO_{3}R^{9}; -CO_{2}R^{9}; -SO_{3}R^{9}; -CO_{3}R^{9}; -CO_{3$ $CONR^{10}$; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷: and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and

provided that the R⁵ alkyl, cycloalkyl, aryl, and heterocyclyl, and -OR⁹ radicals are not substituted with -O(CH₂)₁₋₄NR'R''R''' wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and
 - (c) the R⁵ moiety comprises at least two carboxy groups.

76. A compound of Claim 75 wherein R⁵ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13; - $NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-SO_2R^{13}$; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-RR^{13}NR^{14}R^{15}$; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(Q)NR¹³R¹⁴; -C(O)OM; -COR¹³; - $NR^{13}C(O)R^{14}$; $-NR^{13}C(O)NR^{14}R^{15}$; $-NR^{13}CO_2R^{14}$, $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; - $NR^{13}SOR^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SONR^{14}R^{15}$; $-NR^{13}SO_2NR^{14}R^{15}$; $-PR^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{14}R^{15}$; $-P(O)R^{15}R^{15}$ $^{13}R^{14}$; $-P^{+}R^{13}R^{14}R^{15}A^{-}$; $-P(OR^{13})OR^{14}$; $-S^{+}R^{13}R^{14}A^{-}$; and $-N^{+}R^{13}R^{14}R^{15}A^{-}$; and

wherein the alkyl, polyalkyl,

haloalkyl, hydroxyalkyl, cycloalkyl,

g. g. g. g.

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)QR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene;

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl;

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

S b M

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl, heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

77. A compound of claim 76 wherein R⁵ is:

II

wherein

k is 0, 1, 2, 3 or 4; and

one or more R¹⁹ are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;

heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-SO_2R^{13}$; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; -OM; $-SO_2OM$; $-SO_2OR^{13}R^{14}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-NR^{13}C(O)R^{14}$; $-NR^{13}C(O)NR^{14}R^{15}$; $-NR^{13}CO_2R^{14}$; $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P^+R^{13}R^{14}R^{15}A^-$; and $-N^+R^{13}R^{14}R^{15}A^-$; and

wherein the R¹⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N $^{+}$ R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S $^{+}$ R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P $^{+}$ R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino;

carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo;

oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-0R^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO2R^9$; $-SO3R^{16}$; $-CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarenocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

78. A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

79. A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

80. A compound of claim 77 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

81. A compound of claim 77 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

82. A compound of claim 77 wherein:

 R^3 is R^{5} ; and

R⁴ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R⁴ alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CO2R⁷; -CO2R⁷; -M⁷R⁸; -P⁷R⁸; -P⁷R⁸; -P⁷R⁸R⁹A⁻; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may have one or more carbons

replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one

or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

83. A compound of claim 77 wherein:

R³ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R³ alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SOR¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR7; -NR7R8; -SR7; -S(O)R7; -SO2R7; -SO3R7; -CO2R7; -CONR7R8; -N+R7R8R9A-; -P(O)R7R8; -PR7R8; -P+R7R8R9A-; and -P(O)(OR7)OR8; and

wherein the alkyl, polyalkyl,

haloalkyl, hydroxyalkyl, cycloalkyl,

5 Uh A8

COCLETS OFESSE

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are

N

Į.d.

attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

Sub Ab

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R and M, and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

84. A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

85 A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -QC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^{\mbox{-}9}R^{\mbox{-}10}A$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

86. A compound of claim 84 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 84.

87. A compound of claim 84 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 84.

88. A compound of claim 84 wherein R¹⁹ is selected from the group consisting

IIB

S Jy Of:

·CO₂H 2Cl-.CO₂H 467

89. A compound of claim 84 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

90. A compound of claim 84 wherein:

j is 2;

 R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

91. A compound of claim 84 wherein:

j is 2;

 R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

92. A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

93. A compound of claim 84 wherein:

i is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 94. A compound of claim 84 wherein j is 1 or 2.
- 95. A compound of claim 84 wherein j is 2.
- 96. A compound of claim 84 wherein R^{1A} and R^{1B} are hydrogen.
- 97. A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 98. A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.

- 99. A compound of claim 84 wherein R^{2A} and R^{2B} are the same alkyl.
- 100. A compound of claim 84 wherein R^{2A} and R^{2B} are each n-butyl.
- 101. A compound of claim 84 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 102. A compound of claim 84 wherein one or more \mathbb{R}^6 are independently selected from methoxy and dimethylamino.
 - 103. A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

104. A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

105. A compound of claim 88 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

106. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

107. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

108. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

 R^3 is R^5 ; and

R⁴ is selected from hydrogen and alkyl.

109. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

110. A compound of claim 88 wherein j is 1 or 2.

- 111. A compound of claim 88 wherein j is 2.
- 112. A compound of claim 88 wherein R^{1A} and R^{1B} are hydrogen.
- 113. A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 114. A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 115. A compound of claim 88 wherein R^{2A} and R^{2B} are the same alkyl.
 - 116. A compound of claim 88 wherein R^{2A} and R^{2B} are each n-butyl.
- 117. A compound of claim 88 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 118. A compound of claim 88 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 119. A compound of claim 88 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

120. A compound of claim 88 wherein

j is 1 or 2; $R^{1A} \text{ and } R^{1B} \text{ are hydrogen;}$ one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

121. A compound of Formula III:

 R^{21} R^{20} R^{20} R^{20}

III

Salo

wherein:

 R^{2C} and R^{2D} are independently selected from C_{1-6} alkyl; and R^{20} is selected from the group consisting of halogen and R^{23} ;

 $R^{21} \text{ is selected from the group consisting of hydroxy, alkoxy, and } R^{23}; \text{ and } \text{ wherein } R^{23} \text{ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR^{13}; -NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO2R^{13}; -SO3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14}R^{15}; -CO2R^{13}; -OM; -SO2OM; -SO2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}OR^{14}; -S^{13}R^{14}R^{15}A^{-}; -R^{13}R^{14}A^{-}; and -N^{+}R^{13}R^{14}R^{15}A^{-}; and$

IJ

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²³ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷;- CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸, -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²³ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A-; -S-; -SO-; -SO2-; -S⁺R⁷A-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

Ų

IJ

The transfer

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A-; -S $^{+}$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -R(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R¹⁶ and R¹⁷ are independently selected from the group consisting of R

9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{22} is unsubstituted phenyl or R^{23} ; or a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{20} , R^{21} and R^{22} is R^{23} .

122. A compound of Claim 121 wherein R²³ is:

wherein

p is 0, 1, 2, 3 or 4; and

one or more R²⁴ are independently selected from the group consisting of

SUAI

Ī

n n

L

'n

J

halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the R²⁴alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -SO2R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the R^{24} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N +R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl;

alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl;

Supre

 alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A-; -S $^{+}$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

123. A compound of claim 122 wherein R²³ is:

wherein R²⁴ is as defined in Claim 122.

124. A compound of claim 122 wherein R²³ is:

wherein R²⁴ is as defined in Claim 122.

125. A compound of claim 122 wherein:

 R^{24} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

ShAII

The stand was the stand of the stand

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-R^9R^{11}R^{12}A^-$,

 $CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

126. A compound of claim 125 wherein R²³ is:

wherein R²⁴ is as defined in Claim 125.

127. A compound of claim 125 wherein R²³ is:

wherein R²⁴ is as defined in Claim 125.

128. A compound of claim 125 wherein R²⁴ is selected from the group DOSIECES OFECT consisting of: Cl-N

483

129. A compound of claim 122 wherein:

R^{2C} and R^{2D} are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

130. A compound of claim 122 wherein:

 R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

131. A compound of claim 122 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

132. A compound of claim 122 wherein R^{2C} and R^{2D} are the same alkyl.

- 133. A compound of claim 122 wherein R^{2C} and R^{2D} are each n-butyl.
- 134. A compound of claim 122 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.
 - 135. A compound of claim 125 wherein:

R^{2C} and R^{2D} are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

136. A compound of claim 125 wherein:

R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

137. A compound of claim 125 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

 R^{20} is chloro; and

 R^{21} is selected from the group consisting of hydroxy and methoxy.

- 138. A compound of claim 125 wherein R^{2C} and R^{2D} are the same alkyl.
- 139. A compound of claim 125 wherein R^{2C} and R^{2D} are each n-butyl.
- 140. A compound of claim 125 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.

141. A compound of Formula V:

$$R^{26}$$
 R^{26}
 R^{26}
 R^{2F}
 R^{2F}
 R^{27}
 R^{2F}

5 Uh 3

wherein:

R^{2E} and R^{2F} are independently selected from C₁₋₆ alkyl; and

R²⁵ and R²⁶ are independently selected from the group consisting of hydrogen, alkoxy, and R²⁸;

wherein R^{28} is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²⁸ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

5 UM 3

the line don the line of the first half the

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_3R^7$; $-CO_2R^7$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{28} aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and RW are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

N

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹: -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{27} is unsubstituted phenyl or R^{28} ; or a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{25} , R^{26} and R^{27} is R^{28} .

142. A compound of Claim 141 wherein R²⁸ is:

wherein

r is 0, 1, 2, 3 or 4; and

one or more R^{29} are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; - NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -

W

 $NR^{13}CO_2R^{14}$; $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; $-NR^{13}SOR^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-P(O)R^{13}R^{14}$; $-P(O)R^{1$

wherein the R²⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl,

alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R²⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; cycloalkyl;

cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ;

Sch A13

U C

ļ.i

-CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

143. A compound of claim 142 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 142.

144. A compound of claim 142 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 142.

145. A compound of claim 142 wherein:

 R^{29} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}\text{-}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

146. A compound of claim 145 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 145.

147. A compound of claim 145 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 145.

Suh

148. A compound of claim 145 wherein R²⁹ is selected from the group consisting of:

CI-N -CO₂H 2Cl-497

Cl-+NEt₃ CO₂H CO₂H

Cl-O991EEE3.O7E51 CO₂H CO₂H and Cl-

149. A compound of claim 142 wherein:

 \boldsymbol{R}^{2E} and \boldsymbol{R}^{2F} are independently selected from ethyl and n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

150. A compound of claim 142 wherein:

R^{2E} and R^{2F} are n-butyl; and

 R^{25} and R^{26} are independently selected from hydrogen and methoxy.

151. A compound of claim 142 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and R^{25} and R^{26} are independently selected from hydrogen and methoxy.

- 152. A compound of claim 142 wherein R^{2E} and R^{2F} are the same alkyl.
- 153. A compound of claim 142 wherein R^{2E} and R^{2F} are each n-butyl.
- 154. A compound of claim 142 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.
 - 155. A compound of claim 145 wherein:

 R^{2E} and R^{2F} are independently selected from ethyl and n-butyl; and R^{25} and R^{26} are independently selected from hydrogen and methoxy.

156. A compound of claim 145 wherein:

 R^{2E} and R^{2F} are n-butyl; and

 R^{25} and R^{26} are independently selected from hydrogen and methoxy.

157. A compound of claim 145 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

158. A compound of claim 145 wherein R^{2E} and R^{2F} are the same alkyl.

159. A compound of claim 145 wherein R^{2E} and R^{2F} are each n-butyl.

160. A compound of claim 145 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.

161. A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; R^{25} and R^{26} are hydrogen; and R^{27} is:

wherein r is 1 and R^{29} is as defined in claim 142.

162. A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and R^{25} and R^{26} are methoxy; and R^{27} is:

wherein r is 1 and R^{29} is as defined in claim 142.

163. A compound of Formula VII:

$$(Q)_i$$
 R^{1C}
 R^{1D}
 R^{2G}
 R^{2H}

50h Alle

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl and aralkyl; or

VII

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of E and F is NR³⁰ and the other of E and F is CHR³¹;

wherein R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R^{30} and R^{31} alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 R 15 R 15 R 14 R 15 R 15

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl, quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO₂R⁷; - SO_3R^7 ; $-CO_2R^7$; $-CO_2R^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R and R radicals optionally may have one or more carbons replaced by -O-; -NR 7 -; -N+R 7 R 8 A 7 -; -S-; -SO-; -SO₂-; -S+R 7 A 7 -; -PR 7 -; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; - $SO2R^9$; - $SO3R^9$; - $CO2R^9$; and - $CONR^9R^{10}$; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

W IJ

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarminocarbonylalkyl; alkylarminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR

SUPRIL

9; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M_λ and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O- $\dot{\gamma}$

 $-(C=O)_s$ -alkyl- $(C=O)_t$; and

a covalent bond;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups;

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+R^{13}R^{14}A^-$; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2 OM; -SO2NR $^{13}R^{14}$; -NR $^{14}C(O)R^{13}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR $^{13}R^{14}$; -NR $^{13}R^{18}$; -NR $^{18}OR^{14}$; -N $^+R^{13}R^{14}R^{15}A^-$; -RR $^{13}R^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

carbonyurate residue

SUN

die des test fress fress fress fress fress

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -\$ $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R³⁴ quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2 OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴; -P¹³R¹⁴;

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or

Suhall

more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{30} , R^{31} and R^{34} is R^{32} .

164. A compound of Claim 163 wherein R³² is phenyl substituted with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O) $_s$ -alkyl-(C=O) $_t$; and

a covalent bond;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

165. A compound of Claim 164 wherein R³² is phenyl substituted at the paraposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

166. A compound of Claim 164 wherein R³² is phenyl substituted at the metaposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

```
-(C=O)<sub>s</sub>-alkyl-;

-(C=O)<sub>s</sub>-alkyl-NH-;

-(C=O)<sub>s</sub>-alkyl-O-;

-(C=O)<sub>s</sub>-alkyl-(C=O)<sub>t</sub>; and
```

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1;

167. A compound of claim 164 wherein:

R³⁰ is R^{32;} and

R³¹ is selected from the group consisting of hydrogen and alkyl.

168. A compound of claim 165 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

169. A compound of claim 164 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

170. A compound of claim 164 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

171. A compound of claim 164 wherein:

i is 2;

 R^{IC} and R^{ID} are hydrogen; and

R^{2G} and R^{2H} are independently selected from alkyl.

172. A compound of claim 164 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

- 173. A compound of claim 164 wherein i is 1 or 2.
- 174. A compound of claim 164 wherein i is 2.
- 175. A compound of claim 164 wherein R^{1C} and R^{1D} are hydrogen.
- 176. A compound of claim 164 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 177. A compound of claim 164 wherein R^{2G} and R^{2H} are independently selected from the group consisting C_{1-6} alkyl.
 - 178. A compound of claim 164 wherein R^{2G} and R^{2H} are the same alkyl.
 - 179. A compound of claim 164 wherein R^{2G} and R^{2H} are each n-butyl.
- 180. A compound of claim 164 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 181. A compound of claim 164 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 182. A compound of claim 164 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

183. A compound of claim 164 wherein

i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

184. A compound of claim 163 corresponding to Formula VIIA:

 $(R^{34})_1$

VIIA

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl and aralkyl; or

R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C₃₋₇ cycloalkyl group; and

R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R ¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R ¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵;

To the test that the test of

$$\begin{split} &\text{NR}^{13}\text{CO}_2\text{R}^{14}; \text{-OC(O)}\text{R}^{13}; \text{-OC(O)}\text{NR}^{13}\text{R}^{14}; \text{-NR}^{13}\text{SOR}^{14}; \text{-NR}^{13}\text{SO}_2\text{R}^{14}; \text{-} \\ &\text{NR}^{13}\text{SONR}^{14}\text{R}^{15}; \text{-NR}^{13}\text{SO}_2\text{NR}^{14}\text{R}^{15}; \text{-PR}^{13}\text{R}^{14}; \text{-P(O)}\text{R}^{13}\text{R}^{14}; \text{-P}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-; \text{-} \\ &\text{P(OR}^{13}\text{)OR}^{14}; \text{-S}^+\text{R}^{13}\text{R}^{14}\text{A}^-; \text{and -N}^+\text{R}^{13}\text{R}^{14}\text{R}^{15}\text{A}^-; \text{and} \end{split}$$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

R and R 12 together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl, alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl;

5 Uh AIT

carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

R³² is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl- $\frac{1}{2}$

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C= \overrightarrow{O} _t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and \(\)

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13

R\\\^4; -P\^+R^{13}R^{14}R^{15}A^-; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^+$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

Sob Ar wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(Q)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt, solvate, or product thereof; provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

185. A compound of Claim 184 wherein R³² is phenyl substituted with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

186. A compound of Claim 185 wherein R^{32} is phenyl substituted at the paraposition with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl-;

-(C=O)s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

 $-(C=O)_s$ -alkyl- $(C=O)_t$; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

- 1

s and t are independently 0 or 1.

187. A compound of Claim 185 wherein R³² is phenyl substituted at the metaposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-; -(C=O)_s-alkyl-NH-; -(C=O)_s-alkyl-O-; -(C=O)_s-alkyl-(C=O)_t; and a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

188. A compound of claim 185 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

189. A compound of claim 185 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

190. A compound of claim 185 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

OH OH OH

191. A compound of claim 185 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

192. A compound of claim 185 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from alkyl.

193. A compound of claim 185 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

- 194. A compound of claim 185 wherein i is 1 or 2.
- 195. A compound of claim 185 wherein i is 2.
- 196. A compound of claim 185 wherein R^{1C} and R^{1D} are hydrogen.
- 197. A compound of claim 185 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 198. A compound of claim 185 wherein R^{2G} and R^{2H} are independently selected from the group consisting C_{1-6} alkyl.
 - 199. A compound of claim 185 wherein R^{2G} and R^{2H} are the same alkyl.
 - 200. A compound of claim 185 wherein R^{2G} and R^{2H} are each n-butyl.
- 201. A compound of claim 185 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 202. A compound of claim 185 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 203. A compound of claim 185 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

204. A compound of claim 185 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R³⁴ are independently selected from methoxy and dimethylamino.

205. A compound of claim 163 corresponding to Formula VIIB:

 $(Q)_{i}$ R^{1C} R^{2G} R^{2H} R^{30}

VIIB

5 Uh A18

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R ¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R ¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -

 $NR^{14}CO_2R^{14}$; $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; $-NR^{13}SOR^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{1$ $NR^{13}SO_{1}NR^{14}R^{15}; -NR^{13}SO_{2}NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P^{+}R^{13}R^{14}R^{15}A^{-};$ $P(OR^{13})OR^{14}$; $-S^+R^{13}R^{14}A^-$; and $-N^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; dycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; - SO_3R^7 ; $-CO_2R^7$; $-CO_3R^7$; $-CO_3$ and $-P(O)(OR^7)OR^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; - $P(O)R^7$ -; $-P^+R^7R^8A^-$ -; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; àmino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; - $SO2R^9$; - $SO3R^9$; - $CO2R^9$; and - $CONR^9R^{10}$; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl;

Sub

carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

R³² is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-NH-; -(C=O)_s-alkyl-O-; -(C=O)_s-alkyl-(C=O); and

a covalent bond; and

R₃₃ is selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13

R 4; -P+R¹³R¹⁴R¹⁵A-; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

5 mi

GGJEEJJ CZESJ

Sub All wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A², -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt, solvate, or prodrug thereof;

a pharmaceutically acceptable salt, solvate, or prodrug thereof provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

206. A compound of Claim 205 wherein R³² is phenyl substituted with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O)s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

207. A compound of Claim 206 wherein R³² is phenyl substituted at the paraposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)s-alkyl-(C=O)t; and

a covalent bond; and

 $\ensuremath{R^{33}}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

208. A compound of Claim 206 wherein R³² is phenyl substituted at the metaposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O) $_s$ -alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

209. A compound of claim 206 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

210. A compound of claim 206 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

211. A compound of claim 206 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

212. A compound of claim 206 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

213. A compound of claim 206 wherein:

i is 2;

 R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from alkyl.

214. A compound of claim 206 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

- 215. A compound of claim 206 wherein i is 1 or 2.
- 216. A compound of claim 206 wherein i is 2.
- 217. A compound of claim 206 wherein R^{1C} and R^{1D} are hydrogen.
- 218. A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 219. A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting C_{1-6} alkyl.
 - 220. A compound of claim 206 wherein R^{2G} and R^{2H} are the same alkyl.
 - 221. A compound of claim 206 wherein R^{2G} and R^{2H} are each n-butyl.
- 222. A compound of claim 206 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 223. A compound of claim 206 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 224. A compound of claim 206 wherein

i is 1 or 2;

R^{IC} and R^{ID} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

225. A compound of claim 206 wherein

i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

226. A compound of Formula VIII:

$$R^{36}$$
 R^{35}
 R^{37}
 R^{37}

VIII

wherein:

R²¹ and R^{2J} are independently selected from C₁₋₆ alkyl; and

R³⁵ is selected from the group consisting of halogen and R³⁸;

R³⁶ is selected from the group consisting of hydroxy, alkoxy, and R³⁸;

wherein R³⁸ is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³⁹ or -O-X-R³⁹ and wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O) $_u$ -alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O) $_u$ -alkyl-(C=O) $_v$; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

u and v are independently 0 or 1; and

R³⁷ is unsubstituted phenyl or R³⁸; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof;

X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

$$-(C=O)_u$$
-alkyl-;

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

227. A compound of Claim 226 wherein R³⁸ is phenyl substituted with -N(H)-

u and v are independently 0 or 1.

228. A compound of Claim 227 wherein R³⁸ is phenyl substituted at the paraposition with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

-(C=O)
$$_u$$
-alkyl-O-;

-(C=O)
$$_u$$
-alkyl-(C=O) $_v$; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

229. A compound of Claim 227 wherein R³⁸ is phenyl substituted at the meta-position with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

(***)

-(C=O)_u-alkyl-O-; -(C=O)_u-alkyl-(C=O)_v; and a covalent bond; and

 ${\ R}^{39}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

230. A compound of claim 227 wherein R³⁸ is phenyl substituted with a radical selected from the group consisting of:

231. A compound of claim 227 wherein:

R²¹ and R^{2J} are independently selected from ethyl and n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

232. A compound of claim 227 wherein:

R^{2I} and R^{2J} are n-butyl;

R³⁵ is chloro; and

 R^{36} is selected from the group consisting of hydroxy and methoxy.

233. A compound of claim 227 wherein:

one of R^{2I} and R^{2J} is ethyl and the other of R^{2I} and R^{2J} is n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

234. A compound of claim 227 wherein R²¹ and R^{2J} are the same alkyl.

235. A compound of claim 227 wherein R²¹ and R²¹ are each n-butyl.

236. A compound of claim 227 wherein one of R^{2I} and R^{2J} is ethyl and the other of R^{2I} and R^{2J} is n-butyl.

237. A compound of Formula IX:

 R^{41} R^{40} R^{42} R^{2K} R^{2K} R^{2K}

5 ph a 20

wherein:

 R^{2K} and R^{2L} are independently selected from C_{1-6} alkyl; and

R⁴⁰ and R⁴¹ are independently selected from the group consisting of hydrogen, alkoxy, and R⁴³;

wherein R⁴³ is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ and wherein:

X is selected from the group consisting of

-(C=O)_a-alkyl-;

-(C=O) $_a$ -alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

a and b are independently 0 or 1; and

 R^{42} is unsubstituted phenyl or R^{43} ; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof;

provided that at least one of R⁴⁰, R⁴¹ and R⁴² is R⁴³.

238. A compound of Claim 237 wherein R^{43} is phenyl substituted with -N(H)-X- R^{44} or -O-X- R^{44} wherein:

X is selected from the group consisting of:

-(C=O)_a-alkyl-;

-(C=O)a-alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

239. A compound of Claim 238 wherein R⁴³ is phenyl substituted at the paraposition with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

-(C=O) $_a$ -alkyl-;

-(C=O) $_a$ -alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

240. A compound of Claim 238 wherein R⁴³ is phenyl substituted at the metaposition with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

-(C=O) $_a$ -alkyl-;

-(C=O)_a-alkyl-NH-;

-(C=O) $_a$ -alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

 R^{44} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

241. A compound of claim 238 wherein R⁴³ is phenyl substituted with a radical selected from the group consisting of:

242. A compound of claim 238 wherein:

 R^{2K} and R^{2L} are independently selected from ethyl and n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.

243. A compound of claim 238 wherein:

 \boldsymbol{R}^{2K} and \boldsymbol{R}^{2L} are n-butyl; and

R⁴⁰ and R⁴¹ are independently selected from hydrogen and methoxy.

244. A compound of claim 238 wherein:

one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.

- 245. A compound of claim 238 wherein R^{2K} and R^{2L} are the same alkyl.
- 246. A compound of claim 238 wherein R^{2K} and R^{2L} are each n-butyl.
- 247. A compound of claim 238 wherein one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl.

Ruleye

249. A compound of claim 238 wherein:
one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and
R⁴⁰ and R⁴¹ are hydrogen.

250. A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are methoxy.

A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula I according to any one of claims 1 to 120, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

252. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula III according to any one of claims 121 to 140, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

253. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula V according to any one of claims 141 to 162, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

254. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula VII according to any one of claims 163 to 225, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

255. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of

509 A21 Formula VIII according to any one of claims 226 to 236, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

Sub 1921

256. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula IX according to any one of claims 237 to 250, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

257. The method of claim 251 wherein the hyperlipidemic condition is atherosclerosis.

257-288. A pharmaceutical composition comprising a compound of Formula I according to any one of claims 1 to 120 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.

5 W

359. A pharmaceutical composition comprising a compound of Formula III according to any one of claims 121 to 140 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier.

259
260. A pharmaceutical composition comprising a compound of Formula V according to any one of claims 141 to 162 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier.

261. A pharmaceutical composition comprising a compound of Formula VII according to any one of claims 163 to 225 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.

262. A pharmaceutical composition comprising a compound of Formula VIII according to any one of claims 226 to 236 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.

263. A pharmaceutical composition comprising a compound of Formula IX according to any one of claims 237 to 250 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.