

5 What is claimed is:

1. A digital filter for filtering sample data, comprising:
a delay network for delaying input sample data to provide a plurality of
delayed sample data outputs;

10 a filter network representable by a decomposed coefficient weighting
matrix for processing said delayed sample data outputs; and

a processor for producing a filtered output by computing a weighted
product summation of said delayed sample data outputs and said coefficient weighting
matrix.

15

2. A digital filter according to claim 1, wherein
said decomposed coefficient weighting matrix comprises a structurally
factored matrix.

20

3. A digital filter according to claim 2, wherein
said structurally factored matrix employs a factor derived based on a
property including at least one of, (a) coefficient matrix row symmetry, and (b)
coefficient matrix column symmetry.

25

4. A digital filter according to claim 1, wherein
said decomposed coefficient weighting matrix is derived by at least one
of (a) factoring a first coefficient weighting matrix with a common row factor, and (b)
factoring a first coefficient weighting matrix based on at least one of, (i) coefficient
matrix row symmetry, and (ii) coefficient matrix column symmetry.

30

5. A digital filter according to claim 1, wherein
said decomposed coefficient weighting matrix is derived by factoring a
first coefficient weighting matrix using a sparse matrix.

35

6. A digital filter according to claim 1, wherein
said decomposed coefficient weighting matrix represents a multiple
input, multiple output, filter network.

40

7. A digital filter according to claim 1, including
an interpolation network for interpolating sample data to provide said
input sample data.

5 8. A digital filter according to claim 1, wherein
 said processor is responsive to a sample spatial position index signal in
 producing said filtered output.

10 9. A digital filter according to claim 1, wherein
 said processor includes a factor combiner for deriving a weighted sum
 of factors representing a linear transform process.

15 10. A digital filter according to claim 1, wherein
 said decomposed coefficient weighting matrix exhibits the form

$$\begin{bmatrix} 0 & 0 & 3 & 0 \\ -1 & 4 & -2 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

3

11. A digital filter according to claim 1, wherein
 said digital filter provides the function

$$H(z) = [1 \quad \mu \quad \mu^2] \cdot \frac{\begin{bmatrix} 0 & 0 & 3 & 0 \\ -1 & 4 & -2 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}}{3} \cdot \begin{bmatrix} 1 \\ z^{-1} \\ z^{-2} \\ z^{-3} \end{bmatrix}$$

20 where u is a sample spatial position representative signal and z represents an input
 sample.

12. A digital filter according to claim 1, wherein
 said decomposed coefficient weighting matrix exhibits the form

$$\begin{bmatrix} 6 & 58 & 58 & 6 \\ 23 & 59 & -59 & -23 \\ 31 & -31 & -31 & 31 \\ 16 & -48 & 48 & -16 \end{bmatrix}$$

128

- 5 13. A digital filter according to claim 1, wherein
 said digital filter provides the following function, where u is a sample
 spatial position representative signal and z represents an input sample

$$H(z) = [1 \quad \mu \quad \mu^2 \quad \mu^3] \begin{bmatrix} \frac{1}{2} & 0 & \frac{3}{64} & 0 \\ 0 & 1 & 0 & \frac{23}{128} \\ 0 & 0 & \frac{31}{128} & 0 \\ 0 & 0 & 0 & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ z^{-1} \\ z^{-2} \\ z^{-3} \end{bmatrix}$$

- 10 14. A method for filtering sample data, comprising the steps of:
 delaying input sample data to provide a plurality of delayed sample data
 outputs;

processing said delayed sample data outputs using a filter network
 represented by a structurally factored coefficient weighting matrix; and

- 15 producing a filtered output by computing a weighted product
 summation of said delayed sample data outputs and said coefficient weighting matrix.

- 20 15. A method according to claim 14, wherein
 said structurally factored matrix comprises a coefficient weighting
 matrix employing factors derived based on a property including at least one of, (a)
 coefficient matrix row symmetry, and (b) coefficient matrix column symmetry.

- 25 16. A method according to claim 14, wherein
 said structurally factored matrix is derived by at least one of (a)
 factoring a first coefficient weighting matrix with a common row factor, and (b)
 factoring a first coefficient weighting matrix based on a property including at least one
 of, (i) coefficient matrix row symmetry, and (ii) coefficient matrix column symmetry.

- 30 17. A method according to claim 14, wherein
 said structurally factored matrix comprises a decomposed coefficient
 weighting matrix derived by factoring a first coefficient weighting matrix using a
 sparse matrix.

5 18. A method for filtering sample data, comprising the steps of:
 delaying input sample data to provide a plurality of delayed sample data
 outputs;

10 processing said delayed sample data outputs using a filter network
 using a coefficient weighting matrix comprising,

$$\begin{bmatrix} 0 & 0 & 3 & 0 \\ -1 & 4 & -2 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}; \text{ and}$$

3

producing a filtered output by computing a weighted product summation of said delayed sample data outputs and said coefficient weighting matrix.

15 19. A method for filtering sample data, comprising the steps of:
 delaying input sample data to provide a plurality of delayed sample data
 outputs;

16 processing said delayed sample data outputs using a filter network
 using a coefficient weighting matrix comprising,

$$\begin{bmatrix} 6 & 58 & 58 & 6 \\ 23 & 59 & -59 & -23 \\ 31 & -31 & -31 & 31 \\ 16 & -48 & 48 & -16 \end{bmatrix}; \text{ and}$$

128

producing a filtered output by computing a weighted product summation of said delayed sample data outputs and said coefficient weighting matrix.