Amendments to the Claims

1.-9. (Canceled)

10. (currently amended) A method for treating sexual arousal disorder comprising:

orally administering to a female subject in need thereof, an effective amount of an estrogen agonist / antagonist, and further comprising orally co-administering co-administering a cyclic quanosine 3',5'-monophosphate elevator.

- 11. (previously presented) The method of claim 10 wherein said cyclic guanosine 3',5'-monophosphate elevator is a PDE_v phosphodiesterase inhibitor.
- 12. (previously presented) The method of claim 11 wherein the PDE_V phosphodiesterase inhibitor is 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt.

Claims 13.-39. (canceled)

- 40. (previously presented) The method of claim 10 wherein said estrogen agonist / antagonist is selected from the group consisting of tamoxifen, 4-hydroxy tamoxifen, raloxifene, toremifene, centchroman, idoxifene, 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-benzyl]-naphthalen-2-ol, (4-[2-(2-aza-bicyclo[2.2.1]hept-2-yl)-ethoxy]-phenyl]-[6-hydroxy-2-(4-hydroxy-phenyl)-benzo[0]thiophen-3-yl]-methanone, EM-652, EM-800, GW 5638, GW 7604, or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt, or prodrug thereof.
- 41. (previously presented) The method of claim 10 wherein said estrogen agonist / antagonist is a compound selected from the formulas V or VI:

wherein:

 $R_{1B} \ is \ selected \ from \ H, \ OH, \ -O-C(O)-C_1-C_{12} \ alkyl \ (straight \ chain \ or \ branched), \\ -O-C_1-C_{12} \ alkyl \ (straight \ chain \ or \ branched \ or \ cyclic), \ or \ halogens \ or \ C_1-C_4 \\ halogenated \ ethers,$

 R_{28} , R_{38} , R_{48} , R_{58} , and R_{68} are independently selected from H, OH, -O-C(O)-C₁-C₁₂ (straight chain or branched), -O-C₁-C₁₂ (straight chain or branched or cyclic), halogens, or C₁-C₄ halogenated ethers, cyano, C₁-C₆ alkyl (straight chain or branched), or trifluoromethyl, with the proviso that, when R_{18} is H, R_{28} is not OH;

X_A is selected from H, C₁-C₆ alkyl, cyano, nitro, triflouromethyl, and halogen;

s is 2 or 3;

Ya is the moiety:

wherein:

- a) R_{7B} and R_{8B} are independently selected from the group of H, C_1 - C_6 alkyl, or phenyl optionally substituted by CN, C_1 - C_6 alkyl (straight chain or branched), C_1 - C_6 alkoxy (straight chain or branched), halogen, -OH, -CF₃, or -OCF₃; or
- b) R_{7B} and R_{8B} are concatenated to form a five-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4) alkyl, - CO_2 -H, -CN, - $CONHR_{1B}$, - NHC_2 - HC_1 - C_4 alkyl), - $N(C_1$ - C_4 alkyl), - $NHSO_2$ R_{1B}, - $NHSO_2$ R_{1B}, - $NHSO_2$ R_{1B}, - $NHSO_2$ -D-penyl optionally substituted with 1-3 (C_1 - C_4)alkyl, or
- c) R_{7B} and R_{8B} are concatenated to form a six-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkys, trihalomethoxy, C_1 - C_4 alkyl, C_1 - C_4 alkyl, hydroxy (C_1 - C_4) alkyl, $-CO_2$ -H, $-CN_1$, $-CONHR_{1B}$, $-NHC_2$, $-CN_1$ - $-CN_1$, $-CONHR_{1B}$, $-NHC_2$, $-CN_1$ - $-CN_1$ - $-CN_2$ - $-CN_1$ - $-CN_2$ - $-CN_3$ - $-CN_3$ - $-CN_4$ - $-CN_3$ - $-CN_3$ - $-CN_4$ - $-CN_3$ - $-CN_4$ - $-CN_4$ - $-CN_3$ - $-CN_4$ - $-CN_4$ - $-CN_4$ - $-CN_4$ - $-CN_5$ --CN
- d) R_{7B} and R_{8B} are concatenated to form a seven-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkoxy, trihalomethoxy, C_1 - C_4 alkyl, trihalomethyl, C_1 - C_4 alkylsulfonyl, hydroxy (C_1 - C_4) alkyl, C_1 - C_4 alkyl, hydroxy (C_1 - C_4) alkyl, - C_1 - C_4 , - C_1 - C_4 - C_1 - C_4 - C_4 - C_1 - C_4 -

Attorney Docket No. PC10636A Application No. 09/833,169

e) R_{7B} and R_{8B} are concatenated to form an eight-membered saturated heterocycle containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ acyloxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR1, -NH2, -NH(C-C₄ alkyl), -N(C1-C4 alkyl)₂, -NHSO₂R_{1B}, -ND₂, or phenyl optionally substituted with 1-3 (C₁-C₄)alkyl; or

f) R_{7B} and R_{8B} are concatenated to form a saturated bicyclic heterocycle containing from 6-12 carbon atoms either bridged or fused and containing one nitrogen heteroatom, the heterocycle being optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C_1 - C_4 alkyl, trihalomethoxy, C_1 - C_4 acyloxy, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, hydroxy (C_1 - C_4)alkyl, - CO_2 H, - CN_1 - CONHR_{1B}, -NH₂. -NH(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)₂, -NHSO₂R_{1B}, -NHCOR_{1B}, -NO₂, or phenyl optionally substituted with 1-3 (C_1 - C_4) alkyl; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt or prodrug thereof.

42. (previously presented) The method of claim 41 wherein said estrogen agonist / antagonist is the compound, TSE-424, of formula Va below:

or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

43. (previously presented) The method of claim 10 wherein said estrogen agonist / antagonist is EM-652 of formula III below or is EM-800 of formula IV below:

or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

(IV)

44. - 45. (Canceled)

46. (currently amended) A method for treating sexual arousal disorder comprising: orally administering to a female subject in need thereof, an effective amount of (·)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydronaphthalene-2-ol or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt, or a prodrug thereof and further comprising orally co-administering an effective amount of a cyclic guanosine 3',5-monophosphate elevator.

Attorney Docket No. PC10636A Application No. 09/833,169

- 47. (previously presented) The method of claim 46 wherein the cyclic guanosine 3',5'-monophosphate elevator is a PDE $_{\rm V}$ phosphodiesterase inhibitor.
- 48. (previously presented) The method of claim 47 wherein the PDE_V phosphodiesterase inhibitor is 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sufonyl]-4-methylpiperazine citrate salt.
- 49. (canceled)
- 50. (previously presented) The method of claim 46, 47 or 48 wherein (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol, D-tartrate salt is administered.
- 51. (previously presented) The method of claim 48 wherein the female subject is pre-menopausal.
- 52. (previously presented) The method of claim 46 wherein the female subject is postmenopausal.
- 53. (previously presented) The method of claim 46 wherein the female subject is pre-menopausal.
- 54. (previously presented) The method of claim 10 wherein the estrogen agonist/antagonist is a compound of formula (I):

wherein:

A is selected from CH2 and NR;

- B, D and E are independently selected from CH and N;
- Y is
- (a) phenyl, optionally substituted with 1-3 substituents independently selected from R⁴:
- $\mbox{(b)} \qquad \mbox{naphthyl, optionally substituted with 1-3 substituents} \\ \mbox{independently selected from R^4:} \\$
- (c) C_{3} - C_{8} cycloalkyl, optionally substituted with 1-2 substituents independently selected from \mathbb{R}^4 :
- (d) C_3 - C_8 cycloalkenyl, optionally substituted with 1-2 substituents independently selected from R^4 :
- (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R 4 :
- (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -0-, -NR²- and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R⁴: or
- (g) a bicyclic ring system consisting of a five or six membered heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R 4 :

71 is

(a) -(CH₂)₀ W(CH₂)₀-;

- (b) -O(CH₂)_p CR⁵R⁶-;
- (c) -O(CH₂)_pW(CH₂)_q-;
- (d) $-OCHR^2CHR^3$ -; or
- (e) -SCHR2CHR3-;

G is

(a)
$$-NR^7R^8$$
;
 $-N(CH_2)m$
Z
(b) $(CH_2)n$

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z² is -NH-, -O-, -S-, or -CH₂-;

optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from R⁴: or

 (c) a bicyclic amine containing five to twelve carbon atoms, either bridged or fused and optionally substituted with 1-3 substituents independently selected from R⁴: or

Z¹ and G in combination may be

W is

- (a) -CH₂-;
- (b) -CH=CH-;
- (c) -O-;
- (d) -NR²-;
- (e) -S(O)_n-;
- (f) —C—
- (g) -CR2(OH)-;
- (h) -CONR2-;
- (i) -NR²CO-:

(k) -C=C-:

R is hydrogen or C₁-C₆ alkyl;

(j)

R2 and R3 are independently

(a) hydrogen; or

- (b) C₁-C₄ alkyl;

R4 is

- (a) hydrogen;
- (b) halogen;
- (c) C₁-C₆ alkyl;
- (d) C₁-C₄ alkoxy;
- (e) C₁-C₄ acyloxy;
- (f) C1-C4 alkylthio;
- C₁-C₄ alkylsulfinyl; (g)
- (h) C₁-C₄ alkylsulfonyl;
- (i) hydroxy (C₁-C₄)alkyl;
- aryl (C₁-C₄)alkyl; (i)
- (k) -CO₂H;
- (I) -CN;
- -CONHOR; (m)
- (n) -SO₂NHR;
- (o) -NH₂;
- (p) C₁-C₄ alkylamino;
- (q) C₁-C₄ dialkylamino;
- (r) -NHSO₂R;
- (s) -NO₂;
- (t) -aryl; or
- -OH: (u)

 R^{5} and R^{6} are independently $C_{1}\text{-}C_{8}$ alkyl or together form a $C_{3}\text{-}C_{10}$ carbocyclic

ring;

R7 and R8 are independently

(a) phenyl;

- (b) a C₃-C₁₀ carbocyclic ring, saturated or unsaturated;
- (c) a $C_3\text{--}C_{10}$ heterocyclic ring containing up to two heteroatoms, selected from -O-, -N- and -S-:
 - (d) H
 - (e) C₁-C₆ alkyl; or
 - (f) form a 3 to 8 membered nitrogen containing ring with R⁵ or R⁶;

 R^7 and R^8 in either linear or ring form may optionally be substituted with up to three substituents independently selected from C_1 - C_6 alkyl, halogen, alkoxy, hydroxy and carboxv:

a ring formed by R⁷ and R⁸ may be optionally fused to a phenyl ring;

e is 0, 1 or 2;

m is 1, 2 or 3;

 $n is \ 0, \ 1 \ or \ 2;$

p is 0, 1, 2 or 3;

q is 0, 1, 2 or 3;

or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, N-oxide, ester, quaternary ammonium salt or prodrug thereof.

55. (previously presented) The method of claim 54 wherein said estrogen agonist / antagonist is a compound of formula (IA):

wherein G is

1

R⁴ is H, OH, F, or CI; and B and E are independently selected from CH and N or an optical or geometric isomer thereof; or a pharmaceutically acceptable salt, Noxide, ester, quaternary ammonium salt, or a prodrug thereof.