

PALESTRA - CAMPUS PARTY 24

IA na saúde: auxílio ao diagnóstico de Parkinson

Rafael Barros, Vitor Negromonte e Gabriel W.A Matias

Sumário

- 1. Introdução
 - 1.1 Quem somos
 - 1.2 Sobre o Parkinson
 - 1.3 Aplicações de IA na saúde
 - 1.4 Nossa solução
- 2. Redes Convolucionais
 - 2.1 Conceito
 - 2.2 Arquiteturas
- 3. Vision Transformer
- 4. Trade-offs

1. Quem somos

Vitor Negromonte

Pesquisador em IA Generativa

Rafael Barros

Pesquisador do LuxAl

Gabriel
Matias
Membro Apple Developer
Academy

A doença de Parkinson é um distúrbio neurológico crônico e progressivo que afeta o sistema nervoso central, particularmente as áreas do cérebro responsáveis pelo controle do movimento.

1. Aplicações de lA na saúde

1. Nossa solução

Distinguishing Different Stages of Parkinson's Disease Using Composite Index of Speed and Pen-Pressure of Sketching a Spiral

Poonam Zham¹*, Dinesh K. Kumar¹, Peter Dabnichki¹, Sridhar Poosapadi Arjunan¹ and Sanjay Raghav^{1,2}

School of Engineering, RMIT University, Melbourne, VIC, Australia, *Dandenong Neurology, Melbourne, VIC, Australia

Healthy

Parkinson

1. Sobre o processo

2. Redes convolucionais

Yann LeCun Head of Al @ Meta

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

2. Arquiteturas

1

ResNet

2

DenseNet

3

EfficientNet

2. Arquiteturas: ResNet

ResNet

Número de parâmetros: **25.6M e 44.7M**

2. Arquiteturas: DenseNet

DenseNet

Número de parâmetros: 8.1M e 14.3M

2. Arquiteturas: EfficientNet

EfficientNetV2

Número de parâmetros: **21.6M e 54.4M**

Curiosidade

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com Noam Shazeer* Google Brain

Google Brain Google Research noam@google.com nikip@google.com

Niki Parmar*

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research
llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*

Google Brain

lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

3. Vision Transformer

GPT (Generative Pre-Trained Transformer) *s.m.*

Um modelo de linguagem desenvolvido por meio de aprendizado de máquina, caracterizado pela utilização da arquitetura Transformer.

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

*equal technical contribution, †equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

3. Vision Transformer

Número de parâmetros: **84.4M**

4. Trade-offs

Dados

Os dados utilizados no treinamento dos modelos possuíam boa qualidade. No entanto, a quantidade de amostras disponíveis para o treinamento era limitada, o que pode ter impactado a capacidade de generalização do modelo.

Eficiência energética

O treinamento de modelos de IA demanda uma quantidade significativa de energia. Para minimizar o impacto ambiental e reduzir o consumo energético, implementamos técnicas avançadas de otimização de uso de GPU.

Complexidade

A implementação de modelos robustos, como CNNs e Vision Transformers (ViTs), apresenta desafios de otimização. Essas arquiteturas exigem um balanceamento cuidadoso entre performance e custo computacional.

Resultados

Apesar de resultados muito interessantes, necessita-se de muitos estudos, visto que é uma iniciativa de projeto.

EfficientNet Small

DenseNet 121

85% 87%

ResNet50

EfficientNet Medium

DenseNet169

ResNet101

Resultados

Apesar de resultados muito interessantes, necessita-se de muitos estudos, visto que é uma iniciativa de projeto.

95%

Ensemble

