DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used which has guaranteed noise specifications.

FEATURES

- Small-signal bandwidth: 10MHz
- Output drive capability: 600 Ω , 10V (rms)
- Input noise voltage: 5nV √Hz
- DC voltage gain: 50000
- AC voltage gain: 2200 at 10kHz
- Power bandwidth: 140kHz
- Slew-rate: 9V/μs
- Large supply voltage range: ±3 to ±20V

PIN CONFIGURATION

EACH AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
v _s	Supply voltage	±22	V
VIN	Input voltage	± V supply	l v
VDIFF	Differential input voltage 1	±.5	V
TA	Operating temperature range	0 to 70	°C
TSTG	Storage temperature	-65 to +150	°C
Tj	Junction temperature	150	o °C
PD	Power dissipation		1
_	5532FE	1000	mW
	Lead temperature (soldering, 10 sec)	300	°C

NOTES:

Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V.
 Maximum current should be limited to ± 10mA.

^{2.} Thermal resistance of the FE package is 125°C/W.

DC ELECTRICAL CHARACTERISTICS T_A = 25°C, V_S = \pm 15V unless otherwise specified. 1, 2

PARAMETER			SE5532/5532A			NE5532/5532A			
		TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
vos	Offset voltage	Over temperature		.5	2 3		.5	4 5	mV mV
los	Offset current	Over temperature			100 200		10	150 200	nA nA
l _B	Input current	Over temperature		200	400 700		200	800 1000	nA nA
Icc	Supply current	Over temperature			13		8	16	mA mA
V _{CM} CMRR PSRR	Common mode input range Common mode rejection ratio Power supply rejection ratio		± 12 80	± 13 100 10	50	± 12	± 13 100 10	100	V dB μV/V
AVOL	Large signal voltage gain	$R_L \ge 2k\Omega \ V_0 = \pm 10V$ Over temperature $R_L \ge 600\Omega, \ V_0 = \pm 10V$ Over temperature	50 25 40 20			25 15 15 10	100 50		V/mV V/mV V/mV V/mV
VOUT	Output swing	$\begin{aligned} R_{L} &\geq 600\Omega \\ R_{L} &\geq 600\Omega, \ V_{S} = \pm 18V \\ R_{L} &\geq 2k\Omega \end{aligned}$	± 12	± 13		± 12 ± 15	± 13 ± 16		V V V
RIN	Input resistance		30	300		30	300		kΩ
Isc	Output short circuit current			38			38		mA

NOTES

AC ELECTRICAL CHARACTERISTICS T_A = 25°C, V_S = \pm 15V unless otherwise specified.

PARAMETER		TEST CONDITIONS	NE/SE5532/5532A			UNIT
	FANAMETEN	TEST CONDITIONS	Min	Тур	Max	ONII
ROUT	Output resistance	$A_V = 30$ dB Closed loop f = 10kHz, $R_L = 600\Omega$		0.3		Ω
	Overshoot	Voltage follower $V_{IN} = 100mV p-p$ $C_L = 100pF R_L = 600\Omega$		10		%
	Gain	f = 10kHz		2.2		V/mV
	Gain bandwidth product	C _L = 100pF R _L = 600Ω		10		MHz
	Slew rate			9		V/μs
	Power bandwidth	$V_{OUT} = \pm 10V$ $V_{OUT} = \pm 14V$, $R_L = 600\Omega$, $V_{CC} = \pm 18V$		140 100		kHz kHz

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$ unless otherwise specified.

	TEST CONDITIONS	NE/SE5532			NE/SE5532A			
PARAMETER		Min	Тур	Max	Min	Тур	Max	UNIT
Input noise voltage	$f_O = 30Hz$ $f_O = 1kHz$		8 5			8 5	12 6	nV /√Hz nV /√Hz
Input noise current	$f_O = 30Hz$ $f_O = 1kHz$		2.7 0.7	,		2.7 0.7		pA∕√Hz pA/√Hz
Channel separation	$f = 1kHz, RS = 5k\Omega$		110			110		dB

^{1.} For NE5532, NE5532A, T_{Min} = 0°C, T_{Max} = 70°C. 2. For SE5532/5532A, T_{Min} = -55°C, T_{Max} = +125°C.

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

APPLICATIONS

The Signetics 5532 High Performance Op Amp is an ideal amplifier for use in high quality and professional audio equipment which requires low noise and low distortion.

The circuit included in this application note has been assembled on a P.C. board, and tested with actual audio input devices (Tuner and Turntable). It consists of an RIAA pre-amp, input buffer, 5-band equalizer, and mixer. Although the circuit design is not new, its performance using the 5532 has been improved.

The RIAA pre-amp section is a standard compensation configuration with low frequency boost provided by the Magnetic car-

tridge and the RC network in the op amp feedback loop. Cartridge loading is accomplished via R1. 47k was chosen as a typical value, and may differ from cartridge to cartridge.

The Equalizer section consists of an input buffer, 5 active variable band pass/notch (depending on R9's setting) filters, and an

DO -- 100k

COMPONENT VALUE TABLES

R9 = 25k			R9 = 50 k			R9 = 100k			
R8 = 2.41	k R10 =	= 240k	R8 = 5.11	R10 =	= 510k	R8 = 10k	R10 =	1 meg	
fo	C5	C6	fo	C5	C6	fo	C5	C6	
23 Hz	1μF	.1μF	25 Hz	.47μF	.047μF	12 Hz	.47μF	.047μF	
50 Hz	.47μF	.047μF	36 Hz	.33μF	.033μF	18 Hz	.33μF	.033µF	
72 Hz	.33μF	.033μF	54 Hz	.22μF	.022μF	27 Hz	.22μF	.022µF	
108 Hz	.22µF	.022μF	79 Hz	.15μF	.015μF	39 Hz	.15μF	.015μF	
158 Hz	.15μF	.015μF	119 Hz	$.1 \mu F$.01μF	59 Hz	$.1 \mu F$.01μF	
238 Hz	.1μF	.01μF	145 Hz	.082μF	.0082μF	72 Hz	.082μF	.0082µF	
290 Hz	.082μF	.0082μF	175 Hz	.068µF	.0068μF	87 Hz	.068μF	.0068µF	
350 Hz	.068μF	.0068µF	212 Hz	.056µF	.0056μF	106 Hz	.056μF	.0056μF	
425 Hz	.056μF	.0056μF	253 Hz	.047μF	.0047μF	126 Hz	.047μF	.0047μF	
506 Hz	.047μF	.0047µF	360 Hz	.033μF	.0033μF	180 Hz	.033μF	.0033μF	
721 Hz	.033μF	.0033µF	541 Hz	.022μF	.0022μF	270 Hz	.022μF	.0022μF	
1082 Hz	.022μF	.0022µF	794 Hz	.015μF	.0015μF	397 Hz	.015μF	.0015μF	
1588 Hz	.015μF	.0015μF	1191 Hz	.01μF	.001μF	595 Hz	.01μF	.001μF	
2382 Hz	.01μF	.001μF	1452 Hz	.0082µF	820pF	726 Hz	.0082μF	820pF	
2904 Hz	.0082μF	820pF	1751 Hz	.0068μF	680pF	875 Hz	.0068μF	680pF	
3502 Hz	.0068μF	680pF	2126 Hz	.0056μF	560pF	1063 Hz	.0056μF	560pF	
4253 Hz	.0056μF	560pF	2534 Hz	.0047μF	470pF	1267 Hz	.0047μF	470pF	
5068 Hz	.0047μF	470pF	3609 Hz	.0033μF	330pF	1804 Hz	.0033μF	330pF	
7218 Hz	.0033µF	330pF	5413 Hz	.0022μF	220pF	2706 Hz	.0022μF	220pF	
10827 Hz	.0022µF	220pF	7940 Hz	.0015μF	150pF	3970 Hz	.0015μF	150pF	
15880 Hz	.0015μF	150pF	11910 Hz	.001μF	100pF	5955 Hz	.001μF	100pF	
23820 Hz	.001μF	100pF	14524 Hz	820pF	82pF	7262 Hz	820pF	82pF	
			17514 Hz	680pF	68pF	8757 Hz	680pF	68pF	
			21267 Hz	560pF	56pF	10633 Hz	560pF	56pF	
			1			12670 Hz	470pF	47pF	
			1			18045 Hz	330pF	33pF	

DO - FO L

COMPONENT VALUES C1 C2 R3 R4 100k СЗ 1mea **C4** R5 C5 SEE TABLE 1.1k C6 SEE TABLE R6 100k R7 100k SEE TABLE R9 (pot) SEE TABLE R10 SEE TABLE R11 100K R12 100K 20K (5 STAGES)

Figure 1

output summing amplifier. The input buffer is a standard unity gain design providing impedance matching between the pre amplifiers and the equalizer section. Because the 5532 is internally compensated, no external compensation is required. The 5-band active filter section is actually 5 individual active filters with the same feedback design for all 5. The main differance in all five stages is the values of C5 and C6 which are responsible for setting the center frequency of each stage. Linear pots are recommended for R9. To simplify use of this circuit, a component value table is provided, which lists center frequencies and their associated capacitor values. Notice that C5

equals (10) C6, and that the Value of R8 and R10 are related to R9 by a factor of 10 as well. The values listed in the table are common and easily found standard values.

The final stage is the summing amplifier/buffer stage, to sum the individual filters (Figure 2). Note the original signal is subtracted from the sum by a factor dependant on the number of filter stages. This subtraction is necessary to maintain a unity gain configuration at the output with all pots set to the flat position. If R13 were omitted the output with 1 volt at each stage would equal 5 volts (in this case) instead of the desired 1 volt. Full boost and cut using the table val-

ues is about \pm 15dB. Although 5 bands were chosen for this application, the user may have as many bands as are required. Please note that the subtracting resistor R13, must be adjusted to meet the unity requirement using R13 = $\frac{100K}{\# \ of \ stages}$ i.e. 5 stages = 20k.

The remainder of the circuit employs the Philips TCA 730H volume, balance, and loudness-control circuit and the Signetics NE540 power driver circuit, which as shown will net about 35 watts per channel RMS. The NE540 can be found in the Signetics Analog Data Manual, and Applications Manual. Information on the TCA730A may be obtained from Signetics Analog Division.

