1. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a uniform distribution on the interval $(0, \theta)$.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} & 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

$$F(x;\theta) = \begin{cases} 0 & x < 0 \\ \frac{x}{\theta} & 0 < x < \theta \\ 1 & x > \theta \end{cases}$$

$$E(X) = \frac{\theta}{2} \quad \text{Var}(X) = \frac{\theta^2}{12}$$

a) Obtain the method of moments estimator of θ , $\widetilde{\theta}$.

$$\mathrm{E}(\mathrm{X}) = \frac{\theta}{2}.$$
 \Rightarrow $\overline{\mathrm{X}} = \frac{\widetilde{\theta}}{2}.$ \Rightarrow $\widetilde{\theta} = 2\,\overline{\mathrm{X}}.$

b) Is $\widetilde{\theta}$ unbiased for θ ? That is, does $E(\widetilde{\theta})$ equal θ ?

$$E(\overline{X}) = E(X) = \frac{\theta}{2}.$$
 \Rightarrow $E(\tilde{\theta}) = E(2\overline{X}) = 2E(\overline{X}) = \theta.$

 $\widetilde{\theta}$ is unbiased for θ .

c) Compute $Var(\widetilde{\theta})$.

$$\widetilde{\theta} = 2\overline{X}. \qquad \operatorname{Var}\left(\widetilde{\theta}\right) = \operatorname{Var}\left(2\overline{X}\right) = 4\operatorname{Var}\left(\overline{X}\right) = 4\cdot\frac{\sigma^2}{n}.$$
For Uniform $(0,\theta)$,
$$\sigma^2 = \frac{\theta^2}{12}. \qquad \Rightarrow \qquad \operatorname{Var}\left(\widetilde{\theta}\right) = \frac{\theta^2}{3\cdot n}.$$

d) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.

Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} \left(\frac{1}{\theta}\right) = \frac{1}{\theta^{n}}, \qquad \theta > \max X_{i},$$

$$L(\theta) = 0, \qquad \theta < \max X_{i}.$$

Therefore, $\hat{\theta} = \max X_i$.

e) Is $\hat{\theta}$ unbiased for θ ? That is, does $E(\hat{\theta})$ equal θ ?

$$\begin{aligned} \mathbf{F}_{\max \mathbf{X}_{i}}(x) &= \mathbf{P}(\max \mathbf{X}_{i} \leq x) = \mathbf{P}(\mathbf{X}_{1} \leq x, \mathbf{X}_{2} \leq x, \dots, \mathbf{X}_{n} \leq x) \\ &= \mathbf{P}(\mathbf{X}_{1} \leq x) \cdot \mathbf{P}(\mathbf{X}_{2} \leq x) \cdot \dots \cdot \mathbf{P}(\mathbf{X}_{n} \leq x) = \left(\frac{x}{\theta}\right)^{n}, \quad 0 < x < \theta. \end{aligned}$$

$$f_{\max X_i}(x) = F'_{\max X_i}(x) = \frac{n \cdot x^{n-1}}{\theta^n}, \quad 0 < x < \theta.$$

$$E(\hat{\theta}) = \int_{0}^{\theta} x \cdot \frac{n \cdot x^{n-1}}{\theta^{n}} dx = \frac{n}{\theta^{n}} \cdot \int_{0}^{\theta} x^{n} dx = \frac{n}{\theta^{n}} \cdot \left(\frac{x^{n+1}}{n+1}\right) \left| \frac{\theta}{\theta} = \frac{n \cdot \theta}{n+1} \neq \theta.$$

 $\hat{\theta}$ is NOT unbiased for θ .

f) What must c equal if $c \hat{\theta}$ is to be an unbiased estimator for θ ?

$$E\left(\frac{n+1}{n}\cdot\hat{\theta}\right) = \frac{n+1}{n}\cdot E\left(\hat{\theta}\right) = \frac{n+1}{n}\cdot \frac{n\cdot\theta}{n+1} = \theta. \qquad c = \frac{n+1}{n}.$$

g) Compute $Var(\hat{\theta})$ and $Var\left(\frac{n+1}{n} \hat{\theta}\right)$.

$$E\left(\hat{\theta}^{2}\right) = \int_{0}^{\theta} x^{2} \cdot \frac{n \cdot x^{n-1}}{\theta^{n}} dx = \frac{n}{\theta^{n}} \cdot \int_{0}^{\theta} x^{n+1} dx = \frac{n}{\theta^{n}} \cdot \left(\frac{x^{n+2}}{n+2}\right) \left| \frac{\theta}{\theta} = \frac{n \cdot \theta^{2}}{n+2} \right|.$$

$$Var\left(\hat{\theta}\right) = E\left(\hat{\theta}^{2}\right) - \left[E\left(\hat{\theta}\right)\right]^{2} = \frac{n \cdot \theta^{2}}{n+2} - \left(\frac{n \cdot \theta}{n+1}\right)^{2} = \frac{n \cdot \theta^{2}}{(n+2) \cdot (n+1)^{2}}.$$

$$Var\left(\frac{n+1}{n}\hat{\theta}\right) = \left(\frac{n+1}{n}\right)^{2} \cdot Var\left(\hat{\theta}\right) = \frac{\theta^{2}}{(n+2) \cdot n}.$$

Def Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for θ . $\hat{\theta}_1$ is said to be **more efficient** than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$.

The **relative efficiency** of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is $Var(\hat{\theta}_2)/Var(\hat{\theta}_1)$.

h) Which estimator for θ is more efficient, $\widetilde{\theta}$ or $\frac{n+1}{n}$ $\widehat{\theta}$? What is the relative efficiency of $\frac{n+1}{n}$ $\widehat{\theta}$ with respect to $\widetilde{\theta}$?

Since
$$\frac{\theta^2}{(n+2)\cdot n} < \frac{\theta^2}{3\cdot n}$$
 for $n > 1$, $\frac{n+1}{n}\hat{\theta}$ is more efficient than $\tilde{\theta}$.

Relative efficiency of
$$\frac{n+1}{n}\hat{\theta}$$
 with respect to $\tilde{\theta} = \frac{n+2}{3}$.

For an estimator $\hat{\theta}$ of θ , define the **Mean Squared Error** of $\hat{\theta}$ by

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2].$$

$$E[(\hat{\theta} - \theta)^{2}] = (E(\hat{\theta}) - \theta)^{2} + Var(\hat{\theta}) = (bias(\hat{\theta}))^{2} + Var(\hat{\theta}).$$

i) Find MSE($\widetilde{\theta}$).

bias
$$(\widetilde{\theta}) = 0$$
 and $Var(\widetilde{\theta}) = \frac{\theta^2}{3n}$.

$$\Rightarrow \operatorname{MSE}(\widetilde{\theta}) = \operatorname{E}\left[\left(\widetilde{\theta} - \theta\right)^{2}\right] = 0 + \frac{\theta^{2}}{3n} = \frac{\theta^{2}}{3n} \to 0 \quad \text{as } n \to \infty.$$

j) Find MSE($\hat{\theta}$).

bias
$$(\hat{\theta}) = \frac{n \cdot \theta}{n+1} - \theta = -\frac{\theta}{n+1}$$
 and $\operatorname{Var}(\hat{\theta}) = \frac{n \theta^2}{(n+1)^2 (n+2)}$.

$$\Rightarrow \operatorname{MSE}(\hat{\theta}) = \operatorname{E}\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \left(-\frac{\theta}{n+1}\right)^{2} + \frac{n\theta^{2}}{(n+1)^{2}(n+2)}$$
$$= \frac{2\theta^{2}}{(n+1)(n+2)} \to 0 \quad \text{as } n \to \infty.$$

k) Which estimator is "better", $\tilde{\theta}$ or $\hat{\theta}$?

$$MSE(\widetilde{\theta}) = \frac{\theta^2}{3n}. \qquad MSE(\widehat{\theta}) = \frac{2\theta^2}{(n+1)(n+2)}.$$

Note that even though $\widetilde{\theta} = 2\overline{X}$ is unbiased for θ and $\widehat{\theta} = \max X_i$ is not unbiased for θ ,

$$MSE(\hat{\theta}) \ll MSE(\tilde{\theta})$$
 for large n . $\hat{\theta}$ is "better".

$$MSE(c\,\hat{\theta}) = E[(c\,\hat{\theta} - \theta)^2] = c^2 E(\hat{\theta}^2) - 2c E(\hat{\theta})\theta + \theta^2.$$

$$c_{\min} = \frac{E(\hat{\theta}) \cdot \theta}{E(\hat{\theta}^2)}.$$

 \Rightarrow An estimator could be improved by multiplying it by a constant if c_{\min} does NOT depend on θ .

For
$$\widetilde{\theta} = 2\overline{X}$$
,

$$c_{\min} = \frac{\mathrm{E}(2\overline{\mathrm{X}}) \cdot \theta}{\mathrm{Var}(2\overline{\mathrm{X}}) + \left[\mathrm{E}(2\overline{\mathrm{X}})\right]^2} = \frac{\theta^2}{\frac{\theta^2}{3n^2 + \theta^2}} = \frac{3n}{3n+1}.$$

$$\widetilde{\widetilde{\Theta}} = \frac{6n}{3n+1}\overline{X}.$$

bias
$$(\widetilde{\theta}) = \frac{3n\theta}{3n+1} - \theta = -\frac{\theta}{3n+1}$$
 and $\operatorname{Var}\left(\widetilde{\theta}\right) = \frac{3n\theta^2}{(3n+1)^2}$.

$$\Rightarrow \operatorname{MSE}(\widetilde{\widetilde{\theta}}) = \frac{\theta^2}{(3n+1)^2} + \frac{3n\theta^2}{(3n+1)^2} = \frac{\theta^2}{3n+1}.$$

For $\hat{\theta} = \max X_i$,

$$c_{\min} = \frac{E(\hat{\theta}) \cdot \theta}{E(\hat{\theta}^2)} = \frac{\frac{n \cdot \theta^2}{n+1}}{\frac{n \cdot \theta^2}{n+2}} = \frac{n+2}{n+1}.$$

$$\hat{\hat{\theta}} = \frac{n+2}{n+1} \max X_i.$$

bias
$$(\hat{\hat{\theta}}) = \frac{(n+2)n\theta}{(n+1)^2} - \theta = -\frac{\theta}{(n+1)^2}$$
 and $\operatorname{Var}(\hat{\hat{\theta}}) = \frac{(n+2)n\theta^2}{(n+1)^4}$.

$$\Rightarrow \operatorname{MSE}(\hat{\hat{\theta}}) = \frac{\theta^{2}}{(n+1)^{4}} + \frac{(n+2)n\theta^{2}}{(n+1)^{4}} = \frac{\theta^{2}}{(n+1)^{2}}.$$

Indeed,

$$\begin{aligned} \operatorname{MSE}(\stackrel{\sim}{\widetilde{\theta}}) &= \frac{\theta^2}{3n+1} < \frac{\theta^2}{3n} = \operatorname{MSE}(\stackrel{\sim}{\theta}). \\ \operatorname{MSE}(\stackrel{\circ}{\widehat{\theta}}) &= \frac{\theta^2}{(n+1)^2} = \frac{\theta^2}{n^2+2n+1} < \frac{\theta^2}{n^2+2n} = \operatorname{MSE}(\stackrel{\circ}{\theta}), \\ \operatorname{where} \stackrel{\circ}{\widehat{\theta}} &= \frac{n+1}{n} \widehat{\theta} = \frac{n+1}{n} \max X_i. \\ \operatorname{MSE}(\stackrel{\circ}{\widehat{\theta}}) &= \frac{\theta^2}{(n+1)^2} < \frac{2\theta^2}{(n+1)(n+2)} = \operatorname{MSE}(\stackrel{\circ}{\theta}). \end{aligned}$$

More on the Method of Moments:

For
$$U(0,\theta)$$
, $E(X^k) = \frac{\theta^k}{k+1}$, $k > -1$.

$$\Rightarrow \qquad \widetilde{\theta}_k = \left((k+1) \overline{X^k} \right)^{1/k}, \quad \text{where } \overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k.$$
For example, $E(X^2) = \frac{\theta^2}{3}$, $\widetilde{\theta}_2 = \sqrt{3 \overline{X^2}}$.