

IN THE SPECIFICATION

Please replace paragraph [0059] with the following marked up paragraph:

[0059] A scale $j \in \{1\dots J\}$ is assigned to each block of an image of size $M \times N$, so that a cost function Λ is maximized,

$$S_{opt} = \arg \max_{S \in \{1\dots J\}^{M \times N}} \Lambda(S, B) \quad (8)$$

where S_{opt} is the optimal segmentation map for the entire image, S is one of the $J^{M \times N}$

J^{MN} possible labelings. In one embodiment, each of blocks represents a pixel of an image

of size $m \times n$ $M \times N$, where there are $\frac{M/2^j}{m} \times \frac{N/2^j}{n}$ blocks of size $m \times n$ at level

$j \in \{1\dots J\}$, with each pixel block assigned one of the scales in $\{1\dots J\}$, and $\Lambda(S, B)$ yields the cost given any segmentation S and any entropy distribution B . In another embodiment, S_{opt} is the optimal segmentation map for the image composed of blocks, greater than one pixel, of size $m \times n$.