Temas: Limites e continuidade de frvvr

A primeira noção de limite que conheceram foi a noção de limite sigundo Heine

Usamos sucussões para nos aproximarmos dos pontos de acomulação.

Relembrar

Limite segundo Heine (f.R.V.R)

seja f uma f.r.v.r e a, beir, o limite de f quando x tende paea a é b, se a é ponto de acomulação do domínio de f e se:

 $\forall (\varkappa_n)_{n \in \mathbb{N}}, \varkappa_n \rightarrow \alpha \Rightarrow \lim f(\varkappa_n) = b$ Se este limite existin, ele é único

Em c2, não vamos aprofundar muito o estudo de limites. Vamos abordar essencialmente trabalhar com limites de funções de duas variaveis.

Sucessoes em 12 ...

Definição (limite de uma sucessão)

Diz-se que uma sucessão $((x_k,y_k))_{k\in\mathbb{N}}$ em \mathbb{R}^2 converge para $(a,b)\in\mathbb{R}^2$ se para cada r>0 existe $k_0\in\mathbb{N}$ tal que $(x_k,y_k)\in B_r((a,b))$ para todo o $k>k_0$. Escrevemos $\lim_{k\to\infty}(x_k,y_k)=(a,b)$ (ou $(x_k,y_k)\to(a,b)$ quando $k\to\infty$).

Exemplo 1

Seja
$$\mathcal{H}_n = \frac{1}{n} \quad e \quad \mathcal{Y}_n = \frac{n}{n+1}$$
, então $(\mathcal{H}_n, \mathcal{Y}_n) \xrightarrow{n \to +\infty} (0, 1)$

$$y_n \longrightarrow 0$$
 $y_n \longrightarrow 1$

A Bola centreada em (a,b) 7 interseta sempre D em pontos diferentes de (a,b).

Definição (limite de uma f.r.v.v.r.)

Sejam $\ell \in \mathbb{R}$, $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ e (a,b) um ponto de acumulação de D. Diz-se que ℓ é **limite** de f(x,y) quando (x,y) tende para (a,b), e escreve-se lim $f(x,y) = \ell$, se para qualquer sucessão de pontos $(x_k,y_k)_{k \in \mathbb{N}}$ de $D \setminus \{(a,b)\}$ convergente para (a,b), a correspondente sucessão das imagens $(f(x_k,y_k))_{k \in \mathbb{N}}$ convergir para ℓ (em \mathbb{R}).

Tem de veeifical a condição qualquer que seja a escolha das sucessões. Por isso, basta que encontremos um contra-exemplo para mostraremos que falha!

$$\lim_{(\eta, y) \to (0,0)} \frac{\chi^2 + y}{y^2 + \chi}$$

$$y_n = \frac{1}{n} \longrightarrow 0$$
 $y_n = \frac{1}{n} \longrightarrow 0$

$$(\varkappa_n, y_n) \longrightarrow (0,0)$$

$$\lim_{n\to+\infty} f(x_n, y_n) = \lim_{n\to+\infty} \frac{\left(\frac{1}{n}\right)^2 + \frac{1}{n}}{\left(\frac{1}{n}\right)^2 + \frac{1}{n}} = \lim_{n\to+\infty} 1 = 1$$

$$\chi_n = -\frac{1}{n} \longrightarrow 0 \qquad (\chi_n, y_n) \longrightarrow (o, o)$$

 $y_n = \frac{1}{n} \longrightarrow 0$

$$\lim_{n \to +\infty} f(x_n, y_n) = \lim_{n \to +\infty} \frac{\left(-\frac{1}{n}\right)^2 + \frac{1}{n}}{\left(\frac{1}{n}\right)^2 - \frac{1}{n}} = \lim_{n \to +\infty} \frac{\frac{1}{n^2} + \frac{1}{n}}{\frac{1}{n^2} - \frac{1}{n}}$$

$$\lim_{n \to +\infty} \frac{\frac{1+n}{n^2}}{\frac{1-n}{n^2}} = \lim_{n \to +\infty} \frac{n^2(1+n)}{n^2(1-n)} = \lim_{n \to +\infty} \frac{1+n}{1-n} = -1 \neq 1$$

:. Como os limites sad diferentes, n existe limite.

Exemplo 3

$$\lim_{(\chi,y)\to(0,1)} \frac{2\chi+y}{\chi} - \frac{1}{n} \chi_n = \frac{1}{n} \quad \chi_n = 1 + \frac{1}{n}$$

$$2\chi_n = -\frac{1}{n} \quad \chi_n = 1 + \frac{1}{n}$$

(a)
$$y_n = -\frac{1}{n}$$
 $y_n = 1 + \frac{1}{n}$

$$\lim_{n \to +\infty} \frac{2\left(\frac{1}{n}\right) + \left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = \lim_{n \to +\infty} \frac{\frac{3}{n} + 1}{\frac{1}{n}} = \frac{1}{0^{+}} = +\infty$$

$$\lim_{n \to +\infty} \frac{2(-\frac{1}{n}) + (1 + \frac{1}{n})}{-\frac{1}{n}} = \lim_{n \to +\infty} \frac{-\frac{1}{n} + 1}{-\frac{1}{n}} = \frac{1}{0} = -\infty$$

:. Como os limites said diferentes, n existe limite.

Exemplo 4

Mostremos que
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0.$$

Seja (x_k, y_k) uma sucessão arbitrária de pontos de $\mathbb{R}^2 \setminus \{(0, 0)\}$ convergente para (0, 0). Designando a função em causa por f, temos

$$\lim_{k\to\infty} f(x_k, y_k) = \lim_{k\to\infty} \underbrace{x_k}_{k\to\infty} \underbrace{\frac{y_k^2}{x_k^2 + y_k^2}}_{\leq 1} = 0.$$

Limite de uma função usando curvas

Podemos calcular o limite de uma função utilizando curvas para aproximar o ponto (a,b), em lugar de usar uma sucessão.

Vejamos um exemplo:

$$\lim_{(\mathcal{H}, y) \to (0,0)} \frac{\chi y}{\chi^2 + y^2} \qquad \frac{\text{Curvas: (Passam em } (0,0))}{\chi = 0}$$

$$\lim_{(\mathcal{H}, y) \to (0,0)} \frac{\chi y}{\chi^2 + y^2} \qquad y = m\chi$$

$$\lim_{(\mathcal{H}, y) \to (0,0)} \frac{\chi y}{\chi^2 + y^2} \qquad y = m\chi$$

$$\lim_{(\mathcal{H}, y) \to (0,0)} \frac{\partial y}{\chi^2 + y^2} \qquad y = \lim_{(\mathcal{H}, y) \to (0,0)} \frac{\partial y}{\chi^2 + y^2} \qquad y = 0$$

Exemplo 6

$$\lim_{(\chi,y)\to(0,0)} \frac{2\chi+4y}{\chi-y} = \lim_{\chi\to0} \frac{4\chi}{-y} = -4$$

$$\lim_{(\chi,y)\to(0,0)} \frac{2\chi+4y}{\chi-y} = \lim_{\chi\to0} \frac{2\chi}{-y} = -4$$

$$\lim_{(\chi,y)\to(0,0)} \frac{2\chi+4y}{\chi-y} = \lim_{\chi\to0} \frac{2\chi}{\chi} = 2$$

$$\lim_{(\chi,y)\to(0,0)} \frac{2\chi+4y}{\chi-y} = \lim_{\chi\to0} \frac{2\chi+4m\chi}{\chi-m\chi} = \lim_{\chi\to0} \frac{\chi(z+4m)}{\chi(1-m)}$$

$$\lim_{\chi=m\chi} \frac{2\chi+4y}{\chi-m\chi} = \lim_{\chi\to0} \frac{\chi(z+4m)}{\chi(1-m)}$$

$$= \frac{2+4m}{1-m} \qquad \text{valores}$$

$$\frac{diferentes}{diferentes}$$

Limites usando mudança de variaveis

Proposição (mudança de variável)

Considere-se a composição f(x,y) = g(h(x,y)) com domínio D e seja (a,b) um ponto de acumulação de D. Suponha-se que $\lim_{(x,y)\to(a,b)} h(x,y) = c$ e $\lim_{u\to c} g(u) = \ell$. Se g é contínua $^{(*)}$ em c (ou g não está definida em c), então $\lim_{(x,y)\to(a,b)} f(x,y) = \ell$.

$$\lim_{(\chi, y) \to (0,0)} \frac{\text{sen}(\chi^2 + y^2)}{\chi^2 + y^2} =$$

$$u = \chi^2 + y^2$$

$$(\chi, y) \to (0,0) \Rightarrow u \to 0$$

$$\lim_{u \to 0} \frac{\operatorname{sen} u}{u} = 1$$

Continuidade de uma f.R.V.V.R

Definição (função contínua (a 2 variáveis))

Uma função $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ diz-se **contínua** num ponto de acumulação $(a,b)\in D$ se

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b).$$

f é contínua num subconjunto $S \subseteq D$ se é contínua em todos os pontos de S.

nota: Assume-se que f é continua em pontos isolados.

A continuidade de funções recuis de n variáveis recuis goza de propriedades análogas às firivir.

- · funções constantes são contínuas.
- . A soma, subtração, produto e quociente de funções continuas e uma função continua.
- . A composição de funções contínuas e ainda uma função contínua

$$f(x,y) = \begin{cases} \frac{1 - e^{xy}}{xy} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

$$\lim_{(x,y)\to(0,0)} \frac{1-e^{xy}}{xy} = -\lim_{u\to 0} \frac{e^{u}-1}{u} = -1 \neq f(0,0) = 1$$

$$\text{M.V: } u=xy (x,y)\to(0,0) \text{ entao } u\to 0$$

Como o limite existe, mas não coincide com a imagem de f no ponto (0,0), podemos então concluir que f não é continua em (0,0).

Exemplo 9

$$f(x,y) = \begin{cases} \frac{x^2 + y}{x + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Vimos em cincl, no exemplo 2, que o limite de fem (0,0) não existe Logo, podemos concluir que a função f, não e continua em (0,0).