SEQUENTIAL BRICK ASSEMBLY WITH EFFICIENT CONSTRAINT SATISFACTION

2023.05.04

이 논문에서 제시한 기존 레고 조립 알고리즘

- 1. Bayesian optimization -> 각 블록 위치에 대한 반복적인 최적화 작업으로 인해 계산 부하가 큼
- 2. Deep graph generative model -> mask 사용이 조립 성능을 저하시킴
- 3. Reinforcement learning -> 블록의 올바른 위치를 잘 예측하지 못함
- -> 위 연구의 단점을 해결하기 위해 U-shaped sparse 3D convolutional neural network 이용
- Convolution filter -> 복잡한 블록 제약 조건을 만족하는지 효율적으로 검증
- Sampling procedure -> 고품질 벽돌 구조물 생성 가능

Sequential Brick Assembly Problem

- Pivot brick 개념 등장
- Pivot brick과의 상대 위치 계산하고, 정해진 위치에 블록 조립
- 블록의 물리적 제약과 블록 위치에 따른 점수 고려해야 함
- 물리적 제약 3가지: no-overlap, no-isolation, vertical assemble

- 1. 블록 구조물을 U-Net에 입력한 후, Convolution filter를 적용하여 점수를 계산하고, 다음 블록의 위치 예측
- 2. 블록 구조물을 convolution filter로 필터링하고, indicator function으로 블록이 조립될 수 있을지 유효성 판단
- 3. 앞서 계산한 블록 위치에 대한 점수와 유효성 판단을 기반으로 조립할 블록의 위치 선택
 - Sampling을 통해 pivot brick을 선택
 - Pivot brick에 대한 상대 위치 결정

Table 2: Quantitative results of the completion of brick structures. An asterisk after a method name denotes that partial or full ground-truth information is given to the corresponding model.

Methods	IoU (†)				% valid (↑)				Inference Time (sec., ↓)			
	airplane	table	chair	avg.	airplane	table	chair	avg.	airplane	table	chair	avg.
BayesOpt* Brick-By-Brick*	0.145 0.455	0.206 0.440	0.233 0.434	0.194 0.443	100.0 12.0	100.0 7.0	100.0 16.0	100.0 11.7	1.20e6 305.6	1.11e6 1502.4	1.05e6 2785.2	1.12e6 1531.1
DGMLG	0.315	0.269	0.271	0.285	0.0	1.0	0.0	0.3	237.3	340.0	473.0	350.4
BrECS (2×4) BrECS $(2 \times 4 + 2 \times 2)$	0.571 0.599	0.586 0.594	0.534 0.541	0.564 0.578	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	36.3 73.8	143.9 224.1	151.0 279.0	110.4 192.3

Table 3: Quantitative results of the generation of brick structures with distinct brick types. Asterisk denotes that partial or full ground-truth information is given to the corresponding model.

Methods	Class	probability o	of target clas	% valid (↑)				
	airplane	table	chair	avg.	airplane	table	chair	avg.
BayesOpt*	0.039	0.043	0.069	0.050	100.0	100.0	100.0	100.0
Brick-By-Brick*	0.430	0.042	0.032	0.168	6.0	3.0	2.0	3.7
DGMLG	0.228	0.023	0.027	0.093	0.0	0.0	0.0	0.0
BrECS (2×4)	0.415	0.250	0.404	0.356	100.0	100.0	100.0	100.0
BrECS $(2 \times 4 + 2 \times 2)$	0.447	0.229	0.419	0.365	100.0	100.0	100.0	100.0

