Circuits and Transforms

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

Donal Loitam AI21BTECH11009

1. Definitions

1.1 The unit step function is defined as

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

1.2 The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2. Laplace Transform

- 2.1. In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes q_1 μ C. Then S is switched to position Q. After a long time, the charge on the capacitor is q_2 μ C
- 2.2. Draw the circuit using latex-tikz **Solution:**

Fig. 2.2. Circuit diagram of the circuit in question

2.3. Find q_1

Solution: After a long time, when steady state is achieved, a capacitor behaves like an open circuit, i.e., current passing through it is zero

By Kirchoff's junction law, we get

$$\frac{V-1}{1} + \frac{V-2}{2} = 0 \tag{2.1}$$

1

$$\implies V = \frac{4}{3} V \tag{2.2}$$

$$\implies q_1 = CV = \frac{4}{3} \,\mu\text{C} \tag{2.3}$$

2.4. Show that the Laplace transform of u(t) is $\frac{1}{s}$ and find the ROC

Solution: The Laplace transform of u(t) is given by

$$\mathcal{L}\{u(t)\} = \int_{-\infty}^{\infty} u(t)e^{-st} dt \qquad (2.4)$$
$$= \int_{0}^{\infty} e^{-st} dt \qquad (2.5)$$

$$=\lim_{R\to\infty}\frac{1-e^{-sR}}{s}\tag{2.6}$$

This limit is finite only if $\Re(s) > 0$, which is going to be its ROC

Therefore

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s} \qquad \Re(s) > 0 \qquad (2.7)$$

2.5. Show that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad a > 0$$
 (2.8)

and find the ROC

Solution: The Laplace transform of $e^{-at}u(t)$ for a > 0 is given by

$$\mathcal{L}\{u(t)\} = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt \qquad (2.9)$$

$$= \int_0^\infty e^{-(s+a)t} \, \mathrm{d}t \tag{2.10}$$

$$= \lim_{R \to \infty} \frac{1 - e^{-(s+a)R}}{s+a}$$
 (2.11)

This limit is finite only if $\Re(s+a) > 0$, which is going to be its ROC Therefore

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}$$
 $\Re(s) > -a$ (2.12)

since a is real

2.6. Now consider the following resistive circuit transformed from Fig. 2.2

where

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_1(s)$$
 (2.13)

$$2u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_2(s)$$
 (2.14)

Find the voltage across the capacitor $V_{C_0}(s)$ **Solution:**

$$V_2(s) = \frac{2}{s}$$
 $\Re(s) > 0$ (2.16)

By Kirchoff's junction law, we get

$$\frac{V_c - V_1}{R_1} + \frac{V_c - V_2}{R_2} + \frac{V_c - 0}{\frac{1}{sC_0}} = 0 \quad (2.17)$$

$$\Longrightarrow V_c \left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0 \right) = \frac{V_1}{R_1} + \frac{V_2}{R_2} \quad (2.18)$$

$$\Longrightarrow V_c(s) = \frac{\frac{1}{sR_1} + \frac{2}{sR_2}}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
 (2.19)

$$= \frac{\frac{1}{R_1 C_0} + \frac{2}{R_2 C_0}}{s \left(s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}\right)} \tag{2.20}$$

2.7. Find $v_c(t)$

Solution:

$$V_c(s) = \frac{\frac{1}{R_1 C_0} + \frac{2}{R_2 C_0}}{\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \left(\frac{1}{s} - \frac{1}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \right)$$
(2.21)

$$= \frac{\frac{1}{R_1} + \frac{2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}} \left(\frac{1}{s} - \frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right) (2.22)$$

Taking the inverse Laplace transform in (2.22),

$$V(s) \longleftrightarrow \frac{2R_1 + R_2}{R_1 + R_2} u(t) \left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}} \right)$$

$$(2.23)$$

$$= \frac{4}{3} \left(1 - e^{-\left(1.5 \times 10^6\right)t} \right) u(t) \tag{2.24}$$

The python code codes/2.6.py plots the graph below.

2.8. Verify your result using ngspice

3. Initial Conditions

3.1. Find q_2 in Fig. 2.2

Solution: After a long time, when steady state is achieved, a capacitor behaves like an open circuit, i.e., current passing through it is zero By Kirchoff's junction law, we get

$$\frac{V-0}{1} + \frac{V-2}{2} = 0 \tag{3.1}$$

$$\implies V = \frac{2}{3} V \tag{3.2}$$

$$\implies q_2 = CV = \frac{2}{3} \,\mu\text{C} \tag{3.3}$$

3.2. Draw the equivalent s-domain resistive circuit when S is switched to position Q. Use variables

 R_1, R_2, C_0 for the passive elements. Use latex-tikz

Solution:

Fig. 3.2. Circuit diagram in s-domain

The battery $\frac{4}{3s}$ corresponds to the intial potential difference of $\frac{4}{3}$ V across the capacitor just before switching it to Q

3.3. Find $V_c(s)$

Solution: By Kirchoff's junction law, we get

$$\frac{V_c - 0}{R_1} + \frac{V_c - V_2}{R_2} + \frac{V_c - \frac{4}{3s}}{\frac{1}{sC_0}} = 0 \quad (3.4)$$

$$\implies V_c \left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0\right) = \frac{V_2}{R_2} + \frac{4}{3}C_0 \quad (3.5)$$

$$\implies V_c(s) = \frac{\frac{2}{sR_2} + \frac{4}{3}C_0}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$
(3.6)

$$\Rightarrow V_c(s) = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + sC_0}$$

$$= \frac{\frac{2}{R_2C_0} + \frac{4}{3}s}{\frac{2}{R_2C_0} + \frac{4}{3}s}$$
(3.6)

$$= \frac{\frac{2}{R_2C_0} + \frac{4}{3}s}{s\left(s + \frac{1}{R_1C_0} + \frac{1}{R_2C_0}\right)}$$
(3.7)

3.4. Find $v_c(t)$. Plot using Python

Solution: On performing partial fraction de-

composition

$$V_c(s) = \frac{4}{3} \left(\frac{1}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \right) + \frac{\frac{2}{R_2 C_0}}{\frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \left(\frac{1}{s} - \frac{1}{s + \frac{1}{R_1 C_0} + \frac{1}{R_2 C_0}} \right)$$
(3.8)

for $\Re(s) > 0$

On taking the inverse Laplace transform, we get

$$v_c(t) = \frac{4}{3}e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t) + \frac{2R_1}{R_1 + R_2}\left(u(t) - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t)\right)$$
(3.9)

Substitute the values $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $C_0 = 1 \mu F$

$$v_c(t) = \frac{4}{3}e^{-\frac{3}{2}\times10^6t}u(t) + \frac{2}{3}\left(1 - e^{-\frac{3}{2}\times10^6t}\right)u(t)$$

$$= \frac{2}{3}\left(1 + e^{-\frac{3}{2}\times10^6t}\right)u(t)$$
(3.10)

The Python code codes/3.4.py plots the graph below.

- 3.5. Verify your result using ngspice **Solution:** The ngspice script codes/3.5.cir simulates the given circuit and the generated output is depicted in Fig. (??).
- 3.6. Find $v_c(0^-)$, $v_c(0^+)$ and $v_c(\infty)$

Solution: At $t = 0^-$, the switch still hasn't been switched to Q and the circuit is in steady state

$$v_c(0^-) = \frac{4}{3} V$$
 (3.12)

For $t \ge 0$, we can use the above formula

$$v_c(0^+) = \lim_{t \to 0^+} v_c(t) = \frac{4}{3} V$$
 (3.13)

$$v_c(\infty) = \lim_{t \to \infty} v_c(t) = \frac{2}{3} V$$
 (3.14)

3.7. Obtain Fig. 3.2 using the equivalent differential equation

Solution: Using Kirchoff's junction law

$$\frac{v_c(t) - 0}{R_1} + \frac{v_c(t) - v_2(t)}{R_2} + \frac{\mathrm{d}q}{\mathrm{d}t} = 0$$
 (3.15)

where q(t) is the charge on the capacitor

On taking the Laplace transform on both sides of this equation

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + (sQ(s) - q(0^-)) = 0$$
(3.16)

But $q(0^-) = \frac{4}{3}C_0$ and

$$q(t) = C_0 v_c(t)$$
 (3.17)

$$\implies Q(s) = C_0 V_c(s)$$
 (3.18)

Thus

$$\frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \left(sC_0V_c(s) - \frac{4}{3}C_0\right) = 0$$

$$\implies \frac{V_c(s) - 0}{R_1} + \frac{V_c(s) - V_2(s)}{R_2} + \frac{V_c(s) - \frac{4}{3s}}{\frac{1}{sC_0}} = 0$$
(3.20)

which is the same equation as the one we obtained from Fig. 3.2

The equivalent circuit in the *t*-domain is shown below.

Fig. 3.7.