Graph Theory Note

Ran Xie

January 20, 2023

1 Regular Languages

state diagram of finite automaton M. q_0, q_1, q_2 are states. q_0 is start state. q_1 is accept state. Arrows are called **transitions**. Input is string of 0s and 1s. The output is either **reject** or **accept**.

Finite Automaton M is 5-tuple $(Q, \sigma, \delta, q_0, F)$ where

- 1. Q is a finite set called the states
- 2. σ is a finite set called the alphabet
- 3. $\delta: Q \times \sigma \to Q$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subset Q$ is the set of accept states.

Language of machine M, A is the set of all strings that M accepts and write L(M) = A. We say M accepts A or M recognizes A.

Language operations: Let A and B be languages

- 1. Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- 2. Concatenation: $A \circ B = \{xy | x \in A, y \in B\}$
- 3. Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and } x_i \in A\}$

Regular Language is a language accepted by some finite automatons. The class of regular language is closed under union and concatenation.