ACTO2 – SAR

(18/06/2018 - 3 puntos)

• • •

(IMPORTANTE: se pide justificar las respuestas)

1) Se pide obtener la postings list a partir de la siguiente secuencia de bits codificada utilizando codificación variable en bytes: (0,5 puntos)

00000100 10000001 10000111 00000001 00010100 10001101

Solución:

La decodificación de la secuencia anterior siguiendo el esquema de codificación variable en bytes corresponde a la secuencia de gaps [513, 7, 18957], por lo que la postings list es [513, 520, 19477].

2) Esta pregunta consta de dos apartados:

(1 punto)

- a) Enuncia la ley de Zipf y justifica su utilidad en recuperación de información.
- b) Asumiendo que la longitud de la postings list de una colección de documentos sigue una ley de Zipf ~ i⁻¹, y que las primeras 100 listas más largas tienen una longitud >= 1000, ¿qué posición ocupan en el ranking de frecuencias los términos que ocurren una vez?

Solución:

a) En lenguaje natural, hay unos pocos términos muy frecuentes y muchos términos que aparecen con baja frecuencia. Ley de Zipf establece que el i-ésimo término más frecuente tiene una frecuencia proporcional a 1/i. Siendo K una constante y cf_i la frecuencia que corresponde al término que ocupa la posición i en el ranking de frecuencias de términos, se enuncia la Ley de Zipf como: cf_i= K/i.

Esta ley empírica es útil para hacer una estimación de las longitudes de las postings list en un índice inertido.

- b) Si aplicamos la ley para i=100 y cf_i =1000, nos devuelve un valor de K=100x1000= 10⁵
 Ahora la aplicamos para el caso de una frecuencia 1, 1=10⁵/i, por lo que i=10⁵/1.

 Por tanto, los términos de frecuencia 1 ocupan una posición 10⁵ en el ranking de frecuencias para este caso.
- 3) Se pide indicar sobre la tabla, los desplazamientos que se realizarían en una búsqueda por Booyer-Moore del patrón " DBDDBF " en la cadena " FBABBFDADAWDBDDBFDCCA ". (0,5 puntos)

Solución:

\mathbf{F}	\mathbf{B}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{F}	\mathbf{D}	\mathbf{A}	D	\mathbf{A}	\mathbf{W}	\mathbf{D}	\mathbf{B}	D	\mathbf{D}	\mathbf{B}	\mathbf{F}	\mathbf{D}	\mathbf{C}	\mathbf{C}	A
D	В	D	D	В	\mathbf{F}															
	D	B	D	D	B	\mathbf{F}														
			D	В	D	D	В	\mathbf{F}												
					\mathbf{D}	B	D	\mathbf{D}	\mathbf{B}	\mathbf{F}										
											\mathbf{D}	\mathbf{B}	D	D	\mathbf{B}	\mathbf{F}				

4) Dadas las siguientes páginas web y los enlaces entre ellas representadas como un grafo, se pide calcular los valores HUB y AUTHORITY de cada página utilizando la aproximación HITS. Realiza cinco iteraciones sin normalización. (1 punto)

Solución:

Matriz de enlaces:

[0 1 0 0 0] [0 0 0 0 0] [1 1 0 1 0] [1 1 0 0 0] [0 1 0 0 0]

	HUBS	AUTHORITY							
t ₀ [1	1 1 1 1]	[1 1 1 1 1]							
t ₁ [1	0 3 2 1]	[2 4 0 1 0]							
t ₂ [4	0 7 6 4]	[5 7 0 3 0]							
t ₃ [7	0 15 12 7]	[13 21 0 7 0]							
t ₄ [21	0 41 34 21]	[27 41 0 15 0]							
t ₅ [41	0 83 68 41]	[75 117 0 41 0]							

Hubs: [41 0 83 68 41] Authority: [75 117 0 41 0]