Homework 2 Solution and Grading Policy

TA: Kai-Chun Chen

Homework Policy: (READ BEFORE YOU START TO WORK)

- Copying from other students' solution is not allowed. If caught, all involved students get 0 point on that particular homework. Caught twice, you will be asked to drop the course.
- Collaboration is welcome. You can work together with **at most one partner** on the homework problems which you find difficult. However, you should write down your own solution, not just copying from your partner's.
- Your partner should be the same for the entire homework.
- Put your collaborator's name beside the problems that you collaborate on.
- When citing known results from the assigned references, be as clear as possible.

1. (Mixture of random processes) [14]

In this problem we look at different ways to generate mixtures of random processes, and the entropy rate of the mixture of random processes. Consider two stationary random processes $\{X_0[i] | i \in \mathbb{N}\}$ and $\{X_1[i] | i \in \mathbb{N}\}$ taking values in disjoint alphabets \mathcal{X}_0 and \mathcal{X}_1 respectively. The two processes are independent from each other, that is, $\{X_0[i]\} \perp \{X_1[i]\}$, and they have entropy rates \mathcal{H}_0 and \mathcal{H}_1 respectively. Let $\{\Theta_i | i \in \mathbb{N}\}$ be a **stationary** Bernoulli random process, independent of everything else.

- a) Let $\Theta_i = \Theta$ for all $i \in \mathbb{N}$, where $\Theta \sim \text{Ber}(q)$. Is the random process $\{X_{\Theta_i}[i]\}$ stationary? What is its entropy rate?
- b) Let $\{\Theta_i\}$ be Markov with a probability transition matrix

$$\mathsf{P}_{\Theta_2|\Theta_1} = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix}, \text{ for } \alpha, \beta \in (0, 1).$$

Suppose that both $\{X_0[i]\}$ and $\{X_1[i]\}$ are i.i.d. processes in this problem. Is the random process $\{X_{\Theta_i}[i]\}$ stationary? What is its entropy rate? [8]

Solution:

a) Since $\{X_0[i]\}$ and $\{X_1[i]\}$ are stationary, we have

$$\begin{split} \mathsf{P}_{X_{\Theta_1}[1],\dots,X_{\Theta_n}[n]} &= (1-q)\mathsf{P}_{X_0[1],\dots,X_0[n]} + q\mathsf{P}_{X_1[1],\dots,X_1[n]} \\ &= (1-q)\mathsf{P}_{X_0[l+1],\dots,X_0[n]} + q\mathsf{P}_{X_1[1],\dots,X_1[l+n]} \quad \text{(by stationariness)} \\ &= \mathsf{P}_{X_{\Theta_{l+1}}[l+1],\dots,X_{\Theta_{l+n}}[l+n]} \end{split}$$

By definition, $\{X_{\Theta_i}[i]\}$ is stationary. Let $Y_i = X_{\Theta_i}[i]$.

$$\mathcal{H}(X_{\Theta_{i}}[i]) = \lim_{n \to \infty} H\left(Y_{n} \middle| Y^{n-1}\right)$$

$$= \lim_{n \to \infty} H\left(Y_{n}, \Theta_{n} \middle| Y^{n-1}, \Theta^{n-1}\right) \qquad \text{(since } \mathcal{X}_{0} \text{ and } \mathcal{X}_{1} \text{ are disjoint)}$$

$$= \lim_{n \to \infty} H\left(Y_{n} \middle| Y^{n-1}, \Theta^{n}\right) + H\left(\Theta_{n} \middle| Y^{n-1}, \Theta^{n-1}\right)$$

$$= \lim_{n \to \infty} H\left(Y_{n} \middle| \Theta_{n}\right) + H\left(\Theta_{n} \middle| \Theta_{n-1}\right)$$

$$= \lim_{n \to \infty} H\left(Y_{n} \middle| \Theta\right) + H\left(\Theta \middle| \Theta\right)$$

$$= q\mathcal{H}_{1} + (1 - q)\mathcal{H}_{0} + 0$$

b) Since we know in advance that $\{\Theta_i\}$ is stationary, we can conclude that $\Pr\{\Theta_1=0\}=\frac{\beta}{\alpha+\beta}$ and $\Pr\{\Theta_1=1\}=\frac{\alpha}{\alpha+\beta}$. As a result, $\{X_{\Theta_i}[i]\}$ can be shown to be stationary by decomposing $\mathsf{P}_{X_{\Theta_1}[1],\dots,X_{\Theta_n}[n]}$ and $\mathsf{P}_{X_{\Theta_{l+1}}[+1],\dots,X_{\Theta_{l+n}}[l+n]}$ simply by showing that $\Pr\{\Theta_n=0\}=\frac{\beta}{\alpha+\beta}$ and $\Pr\{\Theta_n=1\}=\frac{\alpha}{\alpha+\beta}$ for all n.

Next, let
$$Y_i = X_{\Theta_i}[i]$$
. $\mathcal{H}(\{X_{\Theta_i}[i]\}) = \lim_{n \to \infty} \mathcal{H}(Y_n | Y^{n-1})$.

$$\begin{split} & \operatorname{H}\left(Y_{n}\big|Y^{n-1}\right) \\ & = \operatorname{H}\left(Y_{n}, \Theta_{n}\big|Y^{n-1}\right) \\ & = \operatorname{H}\left(Y_{n}\big|\Theta_{n}, Y^{n-1}\right) + \operatorname{H}\left(\Theta_{n}\big|Y^{n-1}\right) \\ & = \operatorname{H}\left(Y_{n}\big|\Theta_{n}, Y^{n-1}\right) + \operatorname{H}\left(\Theta_{n}\big|Y^{n-1}\right) \\ & = \operatorname{Pr}\{\Theta_{n} = 1\}\operatorname{H}\left(X_{1}[n]\big|X_{1}^{n-1}\right) + \operatorname{Pr}\{\Theta_{n} = 0\}\operatorname{H}\left(X_{0}[n]\big|X_{0}^{n-1}\right) + \operatorname{H}\left(\Theta_{n}\big|Y^{n-1}\right) \\ & = \operatorname{Pr}\{\Theta_{n} = 1\}\operatorname{H}\left(X_{1}[n]\big|X_{1}^{n-1}\right) + \operatorname{Pr}\{\Theta_{n} = 0\}\operatorname{H}\left(X_{0}[n]\big|X_{0}^{n-1}\right) + \operatorname{H}\left(\Theta_{n}\big|\Theta^{n-1}\right) \\ & = \frac{\alpha}{\alpha + \beta}\mathcal{H}_{1} + \frac{\beta}{\alpha + \beta}\mathcal{H}_{0} + \operatorname{H}\left(\Theta_{2}\big|\Theta_{1}\right) \\ & = \frac{\alpha}{\alpha + \beta}(\mathcal{H}_{1} + \operatorname{H}_{b}(\beta)) + \frac{\beta}{\alpha + \beta}(\mathcal{H}_{0} + \operatorname{H}_{b}(\alpha)) \end{split}$$

Grading Policy:

- a) Stationaryiness and reason [2] calculation of entropy rate [4]
- b) Stationaryiness and reason [2] calculation of entropy rate [6]

2. (Binary hypothesis testing) [16]

Let $X_1, X_2, ...$ be a sequence of i.i.d. Bernoulli p random variables, that is,

$$\Pr\{X_i = 1\} = 1 - \Pr\{X_i = 0\} = p.$$

Based on the observations so far, the goal is of a decision maker to determine which of the following two hypotheses is true:

$$\mathcal{H}_0: p = p_0$$

 $\mathcal{H}_1: p = p_1$

where $0 < p_0 < p_1 \le 1/2$.

- a) (Warm-up) Consider the problem of making the decision based on X_1 . Draw the optimal $(\pi_{1|0}, \pi_{0|1})$ trade-off curve. [4]
- b) Suppose the decision maker waits until an 1 appears and makes the decision based on the whole observed sequence. Sketch the optimal $(\pi_{1|0}, \pi_{0|1})$ trade-off curve. [4]
- c) Now suppose the decision maker waits until in total n 1's appear and makes the decision based on the whole observed sequence. Let $\varpi_{0|1}^*(n,\epsilon)$ denote the minimum type-II error probability subject to the constraint that the type-I error probability is not greater than ϵ , $0 < \epsilon < 1$. Does $\lim_{n \to \infty} \frac{1}{n} \log \frac{1}{\varpi_{0|1}^*(n,\epsilon)}$ exist? If so, find it. Otherwise, show that the limit does not exist.

Solution:

a) By Neyman-Pearson theorem, the optimal test is randomized LRT. So, by leveraging the parameters of the randomized LRT, that is, τ and γ , we can derive the optimal trade-off curve. Note that the likelihood ratio can only take two values: $\frac{p_1}{p_0}$, $\frac{1-p_1}{1-p_0}$. Therefore, discuss the range of τ we get

$$\begin{cases} \pi_{1|0} = 1, \pi_{0|1} = 0, & 0 \leq \tau < \frac{1-p_1}{1-p_0} \\ \pi_{1|0} = p_0 + \gamma(1-p_0), \pi_{0|1} = (1-\gamma)(1-p_1) = \frac{1-p_1}{1-p_0}(1-\pi_{1|0}), & \tau = \frac{1-p_1}{1-p_0} \\ \pi_{1|0} = p_0, \pi_{0|1} = 1-p_1, & \frac{1-p_1}{1-p_0} < \tau < \frac{p_1}{p_0} \\ \pi_{1|0} = \gamma p_0, \pi_{0|1} = (1-\gamma)p_1 + (1-p_1) = 1 - \frac{p_1}{p_0} \pi_{1|0}, & \tau = \frac{p_1}{p_0} \\ \pi_{1|0} = 0, \pi_{0|1} = 1, & \tau > \frac{p_1}{p_0}. \end{cases}$$

We can then draw the trade-off curve using the equations derived above.

b) Note that our observation can only be $1,01,001,0001,\cdots$, let L be the length of the observation, we have

$$\mathcal{H}_0: L \sim \text{Geo}(p_0)$$

 $\mathcal{H}_1: L \sim \text{Geo}(p_1)$

Similar to a), we can discuss the range of τ and get:

$$\begin{cases} \pi_{1|0} = 0, \pi_{0|1} = 1, \ \tau > \frac{p_1}{p_0} \\ \pi_{1|0} = \sum_{i=1}^{n-1} (1 - p_0)^{i-1} p_0 + \gamma (1 - p_0)^{n-1} p_0, \\ \pi_{0|1} = \sum_{i=n+1}^{\infty} (1 - p_1)^{i-1} p_1 + (1 - \gamma) (1 - p_1)^{n-1} p_1, \ \tau = \frac{(1 - p_1)^{n-1} p_1}{(1 - p_0)^{n-1} p_0} \\ \pi_{1|0} = \sum_{i=1}^{n} (1 - p_0)^{i-1} p_0, \pi_{0|1} = \sum_{i=n+1}^{\infty} (1 - p_1)^{i-1} p_1, \ \frac{(1 - p_1)^{n-1} p_1}{(1 - p_0)^{n-1} p_0} > \tau > \frac{(1 - p_1)^n p_1}{(1 - p_0)^{n} p_0}. \end{cases}$$

And we can draw the trade-off curve using the equations derived above.

c) The observation can be viewed as n i.i.d. geometric random variables. To see this, for any realization of observation, insert a "—" symbol in front of the sequence, also insert a "—" right after a "1". For example, if n=4 and the realization is 010001101, we write it as |01|0001|1|01|. Appearantly, the length of the subsequence between two—is a geometric random variable. Hence, in this subproblem, we are testing $\text{Geo}(p_0)^{\otimes n}$ and $\text{Geo}(p_1)^{\otimes n}$. By Chernoff-Stein lemma,

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{1}{\varpi_{0|1}^*(n, \epsilon)} = D(\text{Geo}(p_0) || \text{Geo}(p_1)) = \log \frac{p_0}{p_1} + \left(\frac{1 - p_0}{p_0}\right) \log \frac{1 - p_0}{1 - p_1}.$$

Grading Policy:

- a) Specify the trade-off curve [2] Argue the optimality [2]
- b) Specify the trade-off curve [2] Argue the optimality [2]
- c) Formulate the problem as a hypothesis testing with n instances [3], Chernoff-Stein lemma [2], and calculation [3]

3. (Mixture of information divergences) [8]

For m discrete probability distributions P_1, P_2, \ldots, P_m with the same support \mathcal{X} , consider the following minimization problem:

$$\min_{Q \in \mathcal{P}(\mathcal{X})} \sum_{i=1}^{m} \lambda_i \mathrm{D}(P_i || Q),$$

where $\mathcal{P}(\mathcal{X})$ denotes the collection of probability distributions over \mathcal{X} , $\sum_{i=1}^{m} \lambda_i = 1$, and $\lambda_i > 0$ for i = 1, 2, ..., m. Show that $\sum_{i=1}^{m} \lambda_i P_i$ is a minimizer to the above problem.

Solution:

Let
$$\overline{\mathsf{P}} = \sum_{i=1}^{m} \lambda_i \mathsf{P}_i$$
, we have $\forall \mathsf{Q} \in \mathcal{P}(\mathcal{X})$, that

$$\sum_{i=1}^{m} \lambda_{i} D(P_{i} \| Q) - \sum_{i=1}^{m} \lambda_{i} D(P_{i} \| \overline{P})$$

$$\begin{split} &= \sum_{i=1}^m \sum_{x \in \mathcal{X}} \lambda_i \mathsf{P}_i(x) \log \frac{\overline{\mathsf{P}}(x)}{\mathsf{Q}(x)} \\ &= \sum_{x \in \mathcal{X}} \left(\sum_{i=1}^m \lambda_i \mathsf{P}_i(x) \right) \log \frac{\overline{\mathsf{P}}(x)}{\mathsf{Q}(x)} \\ &= \sum_{x \in \mathcal{X}} \overline{\mathsf{P}}(x) \log \frac{\overline{\mathsf{P}}(x)}{\mathsf{Q}(x)} \\ &= \mathsf{D}\left(\overline{\mathsf{P}} \big\| \mathsf{Q} \right) \geq 0. \end{split}$$

Hence, \overline{P} is a minimizer.

Grading Policy

Reasonable Procedure[4] Correctness [4] Per mistake [-1]

4. (Rényi's divergence) [12]

Alfréd Rényi introduced the following generalization of information divergence called $R\acute{e}nyi$'s divergence of order α (for simplicity, only deal with the discrete case):

$$D_{\alpha}(\mathsf{P}\|\mathsf{Q}) := \frac{1}{\alpha - 1} \log \left(\sum_{a \in \mathcal{X}} \mathsf{P}(a)^{\alpha} \mathsf{Q}(a)^{1 - \alpha} \right), \quad \alpha \in (0, 1) \cup (1, \infty),$$

where P, Q are both probability distributions over a finite alphabet \mathcal{X} , and $supp P \subseteq supp Q$.

- a) (Non-negativity) Show that $D_{\alpha}(P||Q) \geq 0$, with equality if and only if P = Q. [4]
- b) (Relation with KL divergence) Show that $D_{\alpha}(P||Q) \ge D(P||Q)$ for $\alpha > 1$ and $D_{\alpha}(P||Q) \le D(P||Q)$ for $\alpha < 1$. Furthermore, $\lim_{\alpha \to 1} D_{\alpha}(P||Q) = D(P||Q)$. [4]
- c) (Data processing) Show that $D_{\alpha}(P||Q)$ satisfies the data processing inequality. [4]

Solution:

a) We divide the value of α into two cases: If $\alpha \in (0,1)$, we can lower bound $D_{\alpha}(P||Q)$ by Hölder's inequality, which states that for any p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$, we have

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}},$$

the equality holds iff $(|x_1|^p, ..., |x_n|^p)$ and $(|y_1|^q, ..., |y_n|^q)$ are linearly dependent.

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \left(\sum_{a \in \mathcal{X}} P(a)^{\alpha} Q(a)^{1 - \alpha} \right)$$
$$\geq \frac{1}{\alpha - 1} \log \left(\sum_{a \in \mathcal{X}} (P(a)^{\alpha})^{\frac{1}{\alpha}} \right)^{\alpha} \left(\sum_{a \in \mathcal{X}} (Q(a)^{1 - \alpha})^{\frac{1}{1 - \alpha}} \right)^{1 - \alpha}$$

(by Hölder's inequality with
$$p = \frac{1}{\alpha}, q = \frac{1}{1-\alpha}$$
) = 0

If $\alpha \in (1, \infty)$, we can bound it by Jensen's inequality,

$$\begin{split} \mathbf{D}_{\alpha}(\mathsf{P}\|\mathsf{Q}) &= \frac{1}{\alpha - 1} \log \left(\sum_{a \in \mathcal{X}} \mathsf{P}(a)^{\alpha} \mathsf{Q}(a)^{1 - \alpha} \right) \\ &= \frac{1}{\alpha - 1} \log \left(\sum_{a \in \mathcal{X}} \mathsf{P}(a) \left(\frac{\mathsf{P}(a)}{\mathsf{Q}(a)} \right)^{\alpha - 1} \right) \\ &= \frac{1}{\alpha - 1} \log \mathsf{E}_{X \sim \mathsf{P}} \left[\left(\frac{\mathsf{P}(X)}{\mathsf{Q}(X)} \right)^{\alpha - 1} \right] \\ &\geq \frac{1}{\alpha - 1} \mathsf{E}_{X \sim \mathsf{P}} \left[\log \left(\frac{\mathsf{P}(X)}{\mathsf{Q}(X)} \right)^{\alpha - 1} \right] \\ &= \mathsf{E}_{X \sim \mathsf{P}} \left[\log \frac{\mathsf{P}(X)}{\mathsf{Q}(X)} \right] = \mathsf{D}(\mathsf{P}\|\mathsf{Q}) \geq 0 \end{split}$$

Furthermore, both equality holds iff P(a) = Q(a) for all $a \in \mathcal{X}$, which is P = Q.

b) In a), we have proved the case when $\alpha > 1$. For the case when $\alpha < 1$, we can directly obtain the result by substituting the inequality since $\frac{1}{\alpha-1} < 0$ here. Thus, it suffices to show that $\lim_{\alpha \to 1} D_{\alpha}(P||Q) = D(P||Q)$.

$$\lim_{\alpha \to 1} D_{\alpha}(P||Q) = \lim_{\alpha \to 1} \frac{\log \left(\sum_{a \in \mathcal{X}} P(a)^{\alpha} Q(a)^{1-\alpha} \right)}{\alpha - 1}$$

$$\stackrel{H}{=} \lim_{\alpha \to 1} \frac{\sum_{a \in \mathcal{X}} P(a)^{\alpha} Q(a)^{1-\alpha} \log \left(\frac{P(a)}{Q(a)} \right)}{\sum_{a \in \mathcal{X}} P(a)^{\alpha} Q(a)^{1-\alpha}}$$

$$= \sum_{a \in \mathcal{X}} P(a) \frac{P(a)}{Q(a)} = D(P||Q)$$

c) Follow the notation proving data processing inequality used in lecture, we have $\forall x, y$,

$$\frac{\mathsf{P}_{X,Y}(x,y)}{\mathsf{Q}_{X,Y}(x,y)} = \frac{\mathsf{P}_{X}(x)W_{Y|X}(y|x)}{\mathsf{Q}_{X}(x)W_{Y|X}(y|x)} = \frac{\mathsf{P}_{X}(x)}{\mathsf{Q}_{X}(x)}$$

As a result,

$$D_{\alpha}(\mathsf{P}_{X,Y}||\mathsf{Q}_{X,Y}) = \frac{1}{\alpha - 1} \sum_{a \in \mathcal{X}} \sum_{b \in \mathcal{Y}} \mathsf{P}_{X,Y}(a,b) \left(\frac{\mathsf{P}_{X,Y}(a,b)}{\mathsf{Q}_{X,Y}(a,b)} \right)^{\alpha - 1}$$
$$= \frac{1}{\alpha - 1} \sum_{a \in \mathcal{X}} \mathsf{P}_{X}(a) \left(\frac{\mathsf{P}_{X}(a)}{\mathsf{Q}_{X}(a)} \right)^{\alpha - 1} = D_{\alpha}(\mathsf{P}_{X}||\mathsf{Q}_{X})$$

Therefore,

$$\begin{split} \mathbf{D}_{\alpha}(\mathsf{P}_{X}\|\mathsf{Q}_{X}) &= \mathbf{D}_{\alpha}(\mathsf{P}_{X,Y}\|\mathsf{Q}_{X,Y}) \\ &= \frac{1}{\alpha - 1}\mathsf{E}_{X,Y \sim \mathsf{Q}_{X,Y}} \left[\left(\frac{\mathsf{P}_{X,Y}(X,Y)}{\mathsf{Q}_{X,Y}(X,Y)} \right)^{\alpha} \right] \\ &= \frac{1}{\alpha - 1}\mathsf{E}_{Y \sim \mathsf{Q}_{Y}} \left[\mathsf{E}_{X \sim \mathsf{Q}_{X|Y = Y}} \left[\left(\frac{\mathsf{P}_{X,Y}(X,Y)}{\mathsf{Q}_{X,Y}(X,Y)} \right)^{\alpha} \middle| Y \right] \right] \\ &\geq \frac{1}{\alpha - 1}\mathsf{E}_{Y \sim \mathsf{Q}_{Y}} \left[\mathsf{E}_{X \sim \mathsf{Q}_{X|Y = Y}} \left[\left(\frac{\mathsf{P}_{X,Y}(X,Y)}{\mathsf{Q}_{X,Y}(X,Y)} \right) \middle| Y \right]^{\alpha} \right] \\ &= \frac{1}{\alpha - 1}\mathsf{E}_{Y \sim \mathsf{Q}_{Y}} \left[\left(\frac{\mathsf{P}_{Y}(Y)}{\mathsf{Q}_{Y}(Y)} \right)^{\alpha} \right] = \mathsf{D}_{\alpha}(\mathsf{P}_{Y}\|\mathsf{Q}_{Y}) \end{split}$$

Grading Policy

- a) Proof of inequality [3] Equivalent condition of equality [1]
- b) Proof of inequalities [2] Calculation of limit [2]
- c) Correct proof [4] Wrong for some α [-1]