

Robot Perception

Robust Estimation

Dr. Chen Feng

<u>cfeng@nyu.edu</u>

ROB-GY 6203, Fall 2022

Overview

- + Feature detection
 - Harris/FAST/DoG
- + Feature description & matching
 - SIFT/SURF
- ++ Linear & total least square
- * RANSAC
 - Intuitions behind RANSAC
 - How RANSAC works
 - Why minimal solution is important
 - More example problems
 - **Variations**
- *: know how to code
- ++: know how to derive
- +: know the concept

References

- HZ2003:
 - Section 4.7, 4.8, 11.6
- Corke 2011:
 - Section 14.2.3
- Sz2022:
 - Section 7.1, 7.2, 8.1.4
- DeTone, D., Malisiewicz, T. and Rabinovich, A., 2018. Superpoint: Self-supervised interest point detection and description. In CVPR workshops (pp. 224-236).
- Sarlin, P.E., DeTone, D., Malisiewicz, T. and Rabinovich, A., 2020. Superglue: Learning feature matching with graph neural networks. In CVPR (pp. 4938-4947).

Data Association: Finding Correspondences Automatically

General	Planar	Panoramic		
 Fundamental matrix F (uncalibrated) Essential matrix E (calibrated) 	Homography H	Homography H		
7 correspondences5 correspondences	4 correspondences	4 correspondences		

Data Association: Finding Correspondences Automatically

Feature Detection (Harris/FAST/SIFT/SURF/ORB/LSD)

Feature Description/Matching (SIFT/SURF/ORB)

- Homography estimation
- F-matrix estimation
- PnP problem
- ...
- RANSAC to reject matching outliers

Corner/Blob Detection

Corner Detection Criteria Illustrations

Repeatability

Illumination invariance

Scale invariance

Pose invariance

- Rotation
- Affine

Corner Detection Criteria Illustrations

Saliency

Locality

Harris Corner

 C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Harris Detector: Basic Idea

Explore intensity changes within a window as the window changes location

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Blob Detector: Difference of Gaussians (DoG)

- Harris corner is rotation invariant
 - But not scale-invariant

 DoG: find extrema in both 2D-space and scale-space

FAST: Machine Learning for Corner Detection

- FAST (Features from Accelerated Segment Test)
 - Corner: if there exists n=12 contiguous pixels in the circle which are all brighter or all darker than the center for a threshold t
- High-speed test
 - quickly exclude many non-corners
- Decision-tree based improvement
- Non-maximum suppression

Edward Rosten, Reid Porter, and Tom Drummond, "Faster and better: a machine learning approach to corner detection" in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol 32, pp. 105-119.

A Classic Vision Pipeline: Description & Matching

Feature Detection (Harris/FAST/SIFT/SURF/ORB /LSD)

Feature Description/Matching (SIFT/SURF/ORB)

- Homography estimation
- F-matrix estimation
- PnP problem
- . . .
- RANSAC to reject matching outliers

Feature Description

Depending on the application a descriptor must incorporate information that is:

- Invariant w.r.t:
- Illumination
- Pose
- Scale
- Intraclass variability

• Highly distinctive (allows a single feature to find its correct match with good probability in a large database of features)

SIFT Descriptor

- A standard (but non-free) descriptor
- Location and scale given by DoG detector (SIFT keypoints)

Typically M = 8; N= 4 1 x 128 descriptor

SIFT Descriptor is Robust to Small Variations

- Illumination
 - gradient & normalization
- Pose (small affine variation)
 - orientation histogram
- Scale
 - fixed by DOG
- Intra-class variability
 - histograms (small variations)

This makes the SIFT descriptor rotational invariant

From SIFT to SURF

- SIFT is good in terms of matching quality
 - But it is too slow for real-time applications
- SURF uses integral image to speed up the SIFT computation

Faster than SURF? BRIEF/ORB

Connecting feature description with machine learning

More specifically, we define test τ on patch \mathbf{p} of size $S \times S$ as

$$\tau(\mathbf{p}; \mathbf{x}, \mathbf{y}) := \begin{cases} 1 & \text{if } \mathbf{p}(\mathbf{x}) < \mathbf{p}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases}, \tag{1}$$

where $\mathbf{p}(\mathbf{x})$ is the pixel intensity in a smoothed version of \mathbf{p} at $\mathbf{x} = (u, v)^{\top}$. Choosing a set of n_d (\mathbf{x}, \mathbf{y})-location pairs uniquely defines a set of binary tests. We take our BRIEF descriptor to be the n_d -dimensional bitstring

$$f_{n_d}(\mathbf{p}) := \sum_{1 \le i \le n_d} 2^{i-1} \ \tau(\mathbf{p}; \mathbf{x}_i, \mathbf{y}_i) \ . \tag{2}$$

Calonder, Michael, et al. "Brief: Binary robust independent elementary features." European conference on computer vision. Springer, Berlin, Heidelberg, 2010.

Data Association: Wrong Matches are Inevitable

General	Planar	Panoramic
 Fundamental matrix F (uncalibrated) Essential matrix E (calibrated) 	Homography H	Homography H
7 correspondences5 correspondences	• 4 correspondences	4 correspondences

Fitting a 2D Line

Linear Regression (Linear Least Squares)

Orthogonal Regression (Total Least Squares)

$$\epsilon_i = \boldsymbol{n}^T(\boldsymbol{p}_i - \boldsymbol{q})$$

$$[n, q]^* = \underset{n,q}{\operatorname{argmin}} \sum_{i} \|\epsilon_i\|^2$$

$$s. t. \|n\|^2 = 1$$

perpendicular offsets

Orthogonal Regression for Line Estimation

• Given a set of 3D points $\{p_i\}$, we want to find out a line/plane (i.e., unit normal **n** and center **q**) that describes this set of points as

$$egin{aligned} n^\intercal(p_i-q) &= 0, orall i \ \cot(n,q) & ext{$ ext{$\stackrel{\perp}{=}$}$ $ ext{$dist}^2(p_i;n,q)$} \ &= \sum_i (n^\intercal(p_i-q))^2 \ &= n^\intercal[\cdots,p_i-q,\cdots][\cdots,p_i^\intercal-q^\intercal,\cdots]^\intercal n \ &= n^\intercal A(q) A(q)^\intercal n \end{aligned}$$

Orthogonal Regression for Line Estimation

Solving q

$$\mathbf{0} = rac{\partial \mathrm{cost}(n,q)}{\partial q} \equiv \sum_i (2nn^\intercal q - 2nn^\intercal p_i)$$

$$q^* = rac{1}{|\{p_i\}|}\sum_i p_i$$

Orthogonal Regression for Line Estimation

Solving n

$$\operatorname{cost}(n;q^*) \triangleq n^\intercal A(q^*) A(q^*)^\intercal n = n^\intercal B(q^*) n$$

• Equivalent to solve:

$$n^* = rg \min_n \qquad n^\intercal B(q^*) n$$
 s.t. $n^\intercal n = 1$

- Solve by SVD
 - Optimal n is B's eigenvector corresponding to the smallest eigenvalue.
 - So, this is also referred to as the PCA-based solution.

But Least Squares is NOT Robust to Outliers!

http://www.unige.ch/ses/sococ/cl/////stat/action/nonlin5.jpg

How to Solve This Intuitively?

- Mitigating outlier's influence/weight in the estimation
 - Iteratively Re-weighted Least Squares (IRLS)
- Detect outlier and remove it from estimation
 - RANdom SAmple Consensus (RANSAC)

How to Detect an Outlier?

- Enumeration strategy
 - Leave one out
- Voting strategy
 - Hypothesis and test

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is
 - Consensus set = {supporting points}
 - Score by #(supporting points)= |Consensus set|

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is

RANSAC Framework

Objective

Robust fit of a model to a data set S which contains outliers.

Algorithm

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S.
- (iii) If the size of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate.

(iv) If the size of S_i is less than T, select a new subset and repeat the above.

(v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i .

Often omitted in implementation

RANSAC Details – Distant Threshold t

- If data is known to be distributed as a Gaussian of standard deviation σ :
 - Use the 3σ rule
- Otherwise:
 - Determined manually from experience
 - Try-and-error

RANSAC Details – #Samples N

- Basic idea: max the probability p of at least one successful sampling
 - Success sample: all the *s* sampled data points are inliers
- Assume outlier ratio ∈ is known
- Probability of one successful sampling: $(1 \epsilon)^s$
- Probability of at least one successful sampling: $1 [1 (1 \epsilon)^s]^N$
- Thus: $N = \ln(1-p) / \ln[1 (1-\epsilon)^s]$

Why Minimal Solution is Important

• For p=0.99

Sample size	Sample size Proportion of			tion of	outliers ϵ			
s	5%	10%	20%	25%	30%	40%	50%	_
2	2	3	5	6	7	11	17	-
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	_
8	5	9	26	44	78	272	1177	Е

RANSAC Details – Adaptive Sampling

What if outlier ratio ∈ is NOT known?

- $N = \infty$, sample_count= 0.
- While $N > \text{sample_count Repeat}$
 - Choose a sample and count the number of inliers.
 - Set $\epsilon = 1 \text{(number of inliers)/(total number of points)}$
 - Set N from ϵ and (4.18) with p = 0.99.
 - Increment the sample_count by 1.
- Terminate.

More Examples – Homography

Objective

Compute the 2D homography between two images.

Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) **Putative correspondences:** Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) **RANSAC robust estimation:** Repeat for N samples, where N is determined adaptively as in algorithm 4.5:
 - (a) Select a random sample of 4 correspondences and compute the homography H.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with H by the number of correspondences for which $d_{\perp} < t = \sqrt{5.99} \, \sigma$ pixels.

Choose the H with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) **Optimal estimation:** re-estimate H from all correspondences classified as inliers, by minimizing the ML cost function (4.8-p95) using the Levenberg–Marquardt algorithm of section A6.2(p600).
- (v) **Guided matching:** Further interest point correspondences are now determined using the estimated H to define a search region about the transferred point position.

The last two steps can be iterated until the number of correspondences is stable.

n

More Examples – F-matrix

Objective Compute the fundamental matrix between two images.

Algorithm

- (i) **Interest points:** Compute interest points in each image.
- (ii) **Putative correspondences:** Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) RANSAC robust estimation: Repeat for N samples, where N is determined adaptively as in algorithm 4.5(p121):
 - (a) Select a random sample of 7 correspondences and compute the fundamental matrix F as described in section 11.1.2. There will be one or three real solutions.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with F by the number of correspondences for which $d_{\perp} < t$ pixels.
 - (d) If there are three real solutions for F the number of inliers is computed for each solution, and the solution with most inliers retained.

Choose the F with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) Non-linear estimation: re-estimate F from all correspondences classified as inliers by minimizing a cost function, e.g. (11.6), using the Levenberg-Marquardt algorithm of section A6.2(p600).
- (v) Guided matching: Further interest point correspondences are now determined using the estimated F to define a search strip about the epipolar line.

The last two steps can be iterated until the number of correspondences is stable.

Issues in RANSAC

- RANSAC could be time-consuming
 - Too many trials
- RANSAC will fail if the problem is multi-model
 - i.e., the data is sampled from multiple models (lines/planes/homography/...)

The RANSAC Song

Next Week

- + Overview of Deep Learning
- ++ Computational Graph
- ++ Back Propagation
- + DNN Architectures RNN, CNN, ResNet, AE
- + Common Practices

- *: know how to code
- ++: know how to derive
- +: know the concept

References for next week

- Go2016
 - Section 6-6.1, 6.5, 9-9.4, 10-10.2, 14-14.2
- Sz2022
 - Section 5.3.1-5.3.2, 5.3.4-5.3.5, 5.4.1-5.4.4, 5.5.2, 5.5.4
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.
- https://github.com/ajaymache/machine-learning-yearning