# 拔草測風向!PTT輿情分析

# 張家瑋博士

國立臺中科技大學資訊工程學系-助理教授 國立成功大學工程科學系-兼任助理教授 jiaweichang@mail.ncku.edu.tw

## ABOUT ME

http://張家瑋.大平台.tw

https://jiaweichang.github.io/biography/

### PTT

oppo5566 (5566) [問卦] 發錢 預測大谷翔平本日打擊 Thu Apr 12 07:26:39 2018

大谷翔平 本日要先發打擊對上遊騎兵左投Matt moore,

這是上次鄉民預測中的發錢名單

https://i.imgur.com/t7xIGOK.jpg

以及收到P幣之後的感謝回信

https://i.imgur.com/vEm8tme.ipg

那這次要預測的推文格式為:安打數/全壘打數/打點

範例: 3/1/1

前十位預測中的鄉民稅後各100P

PS.不用擔心錢不夠發,有朋友贊助

786165 +X3 4/12 Safin 786166 +X2 4/12 borondawon 786167 +10 4/12 mike901003 786168 + 4/12 RonaldReagan R: 786169 + 4/12 lianpig5566 786170 + 7 4/12 agh386690 **●**86171 + 7 4/12 IELTS 86172 + 5 4/12 xjapan74269 86173 + 8 4/12 CORSA 86174 + 4/12 bota 86175 + 5 4/12 Cocochia 看板 Gossiping 86176 +99 4/12 Eliphalet 86177 + 4/12 vmlinuz86178 + 4/12 penisman 86179 +95 4/12 arrenwu 86180 + 9 4/12 Pattaya 86181 + 4/12 waymayday 爆 4/12 oppo5566

看板《Gossiping》

【板主:Kay731/RS5566/Ra..】

786163 + 4 4/12 ahuang80919 786164 + 2 4/12 hachilou

04/12 07:26 04/12 07:27 04/12 07:27 ATSEVEN: 0/0/0 04/12 07:28 04/12 07:28 04/12 07:29 04/12 07:29 snsdakb48: 04/12 07:29 04/12 07:29 loveinmars: 0/0/0 randv101021: 3/1/1 04/12 07:29 04/12 07:30 事不過四 再打出全壘打我就 04/12 07:30 dick8752: 04/12 07:30 3 Jeff9453: 04/12 07:30 wb7346: 1/0/0 04/12 07:30 04/12 07:31 04/12 07:31

## 實作大綱

- 1. 繪製圖表(matplotlib、seaborn)
- 2. 中文斷詞(jieba)
  - 去除stop-words、斷詞
- 3. 機器學習(sklearn)
  - TFIDF \ LinearSVC \ KNN

### **Code Structure**

```
import library
匯入函示庫
               import library l as libl
               from library import sub-library as sublib
               print('Hello World')
               for i in range(10):
               ---- print('Hi!') #印出十次 'Hi!'
          個
          空白
               def sayhi():
               ---- print('Hi')
                                #呼叫 function sayhi(),印出一次
               sayhi()
                'Hi'
```

## **Import Library**

import json #用來讀取/產生 json 格式的套件 import numpy as np #用來處理數值矩陣的套件

import matplotlib as mpl #用來繪製圖表的套件 import matplotlib.pyplot as plt #為 matplotlib 的子套件,提供命令行式函數的集合 import seaborn as sns #基礎於 matplotlib 的高階圖表的繪製套件

from collections import defaultdict #使用 dictionary 儲存資料

zhfont1 = mpl.font\_manager.FontProperties(fname='DejaVuSans.ttf') #讀取中文字型

## **Load Data**

```
# load ptt posts

path = 'gossip.json' #欲載入文檔之路徑

with open(path, encoding='utf8') as f:
    posts = json.load(f)
```

### **Load Data**

```
{ "author": "morning3569",
    "title" = "[協尋] 1/1台中清水早上八點多車禍",
    "content" = "\n\n1/1 早上8點多\n\n台中清水紫雲巖.....",
    "comments" =
    [{ "content": "bad", "score":-1, "user": "xxx"},
    { "content": "good", "score":1, "user": "yyy"},
    { "content": "soso", "score":0, "user": "zzz"},
    ....
    ]
    , "score":-244
}
```

```
total_comments = defaultdict(int)
                                         #宣告 dict 儲存所有留言
          total_pushes = defaultdict(int)
                                         #宣告 dict 儲存所有推文
          total hates = defaultdict(int)
                                         #宣告 dict 儲存所有嘘文
          for post in posts:
                               #逐一讀取 json 中的所有八卦版文章
            for comment in post['comments']: #抓出該篇文章的所有留言
              user = comment['user']
                                     #抓出該則留言的鄉民帳號
              total comments[user] += 1 #該名user的留言次數+1
同在第二個
              if comment['score'] > 0:
for loop
                                         #score 大於 0 代表是推文
               total_pushes[user] += 1
的生命週期中
                                         #該名user的推文次數+1
              elif comment['score'] < 0:</pre>
                                         #score 小於 0 代表是噓文
                total hates[user] += 1
                                         #該名user的嘘文次數+1
```

# 繪製圖表

- matplotlib
- seaborn



推



嘘

Top 20 的鄉民ID

counts.items()取得所有在案鄉民的ID與其留言次數。如下: {[account, times], [account1, times1], [account2, times2]...]}

def show\_distributions(counts, pushes, hates):

sorted\_cnts = [t[0] for t in sorted(counts.items(), key= lambda x: -x[1])][:20] #取前20個最踴躍回覆者之ID

```
usernames = [u for u in sorted_cnts] #依序取得前20名的鄉民ID total_y = [counts[u] for u in sorted_cnts] #依序取得前20名鄉民的總留言數 y_pushes = [pushes[u] for u in sorted_cnts] #依序取得前20名鄉民的推文數 y_hates = [hates[u] for u in sorted_cnts] #依序取得前20名鄉民的噓文數
```

y\_neutral = np.asarray(total\_y) - np.asarray(y\_pushes) - np.asarray(y\_hates) #依序取得前20名鄉民的箭頭(中立)留言數

因sorted()預設是遞增, 所以實作技巧上可以將次 數都先加上負號,再取前 20個。

```
y_NandP = y_neutral + np.asarray(y_pushes)
#依序將前20名鄉民的箭頭(中立)留言數與推文數相加
....
```

```
def show_distributions(counts, pushes, hates):
 X = np.arange(20) #生成 0-19 的矩陣(array),代表 Top20 的鄉民
 fig, ax = plt.subplots(figsize=(10,8))
 plt.bar(X, np.asarray(y_pushes)+np.asarray(y_neutral), facecolor='#00ACC1', edgecolor='white')
 #將推文數與中立留言數相加,依照 Top20 的 ID 順序繪圖,該顏色代表鄉民的推文數
 plt.bar(X, np.asarray(y_neutral), facecolor='#7CB342', edgecolor='white')
 #依照 Top20 的 ID 順序繪圖,該顏色代表鄉民的中立留言數
 plt.bar(X, -np.asarray(y_hates), facecolor='#FFB300', edgecolor='white')
 #依照 Top20 的 ID 順序繪圖,該顏色代表鄉民的嘘文數。Y軸之值加上負號,讓嘘文在另一象限顯示
 plt.xlim(-0.5, 19.5) #設定本圖的 X 軸邊界,左右多 0.5 是為了美觀留有空間
 plt.ylim(-max(y_hates)*1.2, max(y_NandP)*1.2) #設定本圖的Y軸邊界,分別以上下象限的最大值得1.2倍
 plt.yticks(()) #去除 Y 軸的標籤
 ax.set xticks(X) #設定 X 軸的 0-19 的軸距標記
 ax.set_xticklabels(usernames, rotation=45, fontsize=12, fontproperties=zhfont1)
 #在已設定的 X 軸標記上,將鄉民的ID標記上。設定 ID 文字傾斜45度,文字大小 12 並使用 DejaVu Sans 字體。
```

```
def show distributions (counts, pushes, hates):
  #以下設定推、嘘、中立留言的次數所顯示的位置
                                                                    Z
 for x, y, z in zip(X, np.asarray(y_pushes)+np.asarray(y_neutral), np.asarray(y_pushes)):
    plt.text(x, y+10, z, ha='center', va='bottom')
  for x, y in zip(X, np.asarray(y_neutral)):
    plt.text(x, y-35, y, ha='center', va='bottom')
  for x,y in zip(X, -np.asarray(y_hates)):
    plt.text(x, y-35, abs(y), ha='center', va='bottom')
                            取絕對值
  plt.show(fig) #顯示
```

## Top 20 踴躍留言者的簡易分析

show\_distributions(total\_comments, total\_pushes, total\_hates)









Top 20 的鄉民ID

# 中文斷詞

- jieba
- remove stop-words

## Jieba 中文斷詞

import jieba #用來處理中文斷詞的套件

```
for w in jieba.cut("我來到台南成功大學"):
    print(w)
```

我來

到

台南

成功

大學

## [實作] PTT鄉民用語分析

{ "author" : "morning3569" ,

"title" = "[協尋] 1/1台中清水早上八點多車禍",

"content" = "\n\n1/1 早上8點多\n\n台中清水紫雲巖....",

```
"comments" =
                                                           [{ "content" : "bad" , "score" :-1, "user" : "xxx" },
                                                            { "content" : "good" , "score" :1, "user" : "yyy" },
                                                            { "content" : "soso" , "score" :0, "user" : "zzz" },
# 預處理鄉民留言之用語 (斷詞與計算次數) – Start
c words = []
c scores = []
                                                             "score" : -244
for post in posts:
 for comment in post['comments']:
                                   #取得八卦文文章之鄉民留言
    I = comment['content'].strip()
                                   #去頭去尾換行之類的字符
   if I and comment['score'] != 0:
     d = defaultdict(int)
     for w in jieba.cut(l):
                                   #w是針對 | 中的文字斷詞後所得之詞語
       d[w] += 1
     if len(d) > 0:
       c_scores.append(1 if comment['score'] > 0 else 0)
                                                      #每則留言之標記(推/嘘)
       c_words.append(d)
#預處理鄉民留言之用語 (斷詞與計算次數) - End
```

# 機器學習

- TF-IDF
- Vector Representation
- LinearSVC

#### TF-IDF

#### 單篇文章的詞頻統計

{'1': 2, '/': 1, '': 1, '早上': 1, '8': 1, '點多': 1, '台': 1, '中': 1, '清水': 1, '紫': 1, '雲': 1, '巖': 1, '外': 1, '中山路': 1, '那邊': 1, '的': 3, '7': 1, '-': 1, '11': 1, '附近': 1, '我': 1, '同學': 1, '阿嬤出': 1, '嚴重': 1, '庫禍': 1, '肇事者': 1, '到現': 1, '在': 1, '都': 1, '還沒': 1, '出面': 1, '現在': 1, '還在': 1, '加護': 1, '病房': 1, '如果': 1, '有': 2, '路口': 1, '監視器': 1, '影像': 1, '或是': 1, '行車紀': 1, '錄器': 1, '拍': 1, '到': 1, '豫請': 1, '提供': 1, '麻煩': 1, '八卦': 1, '板': 1, '各位': 1, '幫高調': 1, '謝謝': 1, '!': 2})

單篇的向量轉換

| (0,0)   | 1.0 | (0, 29) | 1.0 |
|---------|-----|---------|-----|
| (0,1)   | 1.0 | (0,30)  | 2.0 |
| (0, 2)  | 1.0 | (0,31)  | 1.0 |
| (0,3)   | 2.0 | (0, 32) | 1.0 |
| (0,4)   | 1.0 | (0, 33) | 1.0 |
| (0,5)   | 1.0 | (0, 34) | 1.0 |
| (0,6)   | 1.0 | (0, 35) | 3.0 |
| (0,7)   | 1.0 | (0, 36) | 1.0 |
| (0, 8)  | 1.0 | (0, 37) | 1.0 |
| (0,9)   | 1.0 | (0, 38) | 1.0 |
| (0, 10) | 1.0 | (0, 39) | 1.0 |
| (0, 11) | 1.0 | (0, 40) | 1.0 |
| (0, 12) | 1.0 | (0,41)  | 1.0 |
| (0, 13) | 1.0 | (0, 42) | 1.0 |
| (0, 14) | 1.0 | (0, 43) | 1.0 |
| (0, 15) | 1.0 | (0,44)  | 1.0 |
| (0, 16) | 1.0 | (0, 45) | 1.0 |
| (0, 17) | 1.0 | (0, 46) | 1.0 |
| (0, 18) | 1.0 | (0, 47) | 1.0 |
| (0, 19) | 1.0 | (0, 48) | 1.0 |
| (0, 20) | 1.0 | (0, 49) | 1.0 |
| (0, 21) | 1.0 | (0, 50) | 1.0 |
| (0, 22) | 1.0 | (0,51)  | 1.0 |
| (0, 23) | 1.0 | (0, 52) | 1.0 |
| (0, 24) | 1.0 | (0, 53) | 2.0 |
| :       |     |         |     |
|         |     |         |     |

## TF-IDF

#### 單篇的 TF-IDF (Sparse Matrix) 單篇的 Vector Representation

| 單篇統計詞頻  |     |         |     |  |  |  |  |  |
|---------|-----|---------|-----|--|--|--|--|--|
| (0, 0)  | 1.0 | (0, 29) | 1.0 |  |  |  |  |  |
| (0, 1)  | 1.0 | (0, 30) | 2.0 |  |  |  |  |  |
| (0, 2)  | 1.0 | (0, 31) | 1.0 |  |  |  |  |  |
| (0, 3)  | 2.0 | (0, 32) | 1.0 |  |  |  |  |  |
| (0, 4)  | 1.0 | (0, 33) | 1.0 |  |  |  |  |  |
| (0, 5)  | 1.0 | (0, 34) | 1.0 |  |  |  |  |  |
| (0, 6)  | 1.0 | (0, 35) | 3.0 |  |  |  |  |  |
| (0, 7)  | 1.0 | (0, 36) | 1.0 |  |  |  |  |  |
| (0, 8)  | 1.0 | (0, 37) | 1.0 |  |  |  |  |  |
| (0, 9)  | 1.0 | (0, 38) | 1.0 |  |  |  |  |  |
| (0, 10) | 1.0 | (0, 39) | 1.0 |  |  |  |  |  |
| (0, 11) | 1.0 | (0, 40) | 1.0 |  |  |  |  |  |
| (0, 12) | 1.0 | (0, 41) | 1.0 |  |  |  |  |  |
| (0, 13) | 1.0 | (0, 42) | 1.0 |  |  |  |  |  |
| (0, 14) | 1.0 | (0, 43) | 1.0 |  |  |  |  |  |
| (0, 15) | 1.0 | (0, 44) | 1.0 |  |  |  |  |  |
| (0, 16) | 1.0 | (0, 45) | 1.0 |  |  |  |  |  |
| (0, 17) | 1.0 | (0, 46) | 1.0 |  |  |  |  |  |
| (0, 18) | 1.0 | (0, 47) | 1.0 |  |  |  |  |  |
| (0, 19) | 1.0 | (0, 48) | 1.0 |  |  |  |  |  |
| (0, 20) | 1.0 | (0, 49) | 1.0 |  |  |  |  |  |
| (0, 21) | 1.0 | (0, 50) | 1.0 |  |  |  |  |  |
| (0, 22) | 1.0 | (0, 51) | 1.0 |  |  |  |  |  |
| (0, 23) | 1.0 | (0, 52) | 1.0 |  |  |  |  |  |
| (0, 24) | 1.0 | (0, 53) | 2.0 |  |  |  |  |  |

計算

| (0,53)      | 0.23735633163877065 | (0, 24) | 0.11867816581938533 |  |
|-------------|---------------------|---------|---------------------|--|
| (0, 52)     | 0.11867816581938533 | (0, 23) | 0.11867816581938533 |  |
| (0,51)      | 0.11867816581938533 | (0, 22) | 0.11867816581938533 |  |
| (0,50)      | 0.11867816581938533 | (0, 21) | 0.11867816581938533 |  |
| (0, 49)     | 0.11867816581938533 | (0, 20) | 0.11867816581938533 |  |
| (0, 48)     | 0.11867816581938533 | (0, 19) | 0.11867816581938533 |  |
| (0, 47)     | 0.11867816581938533 | (0, 18) | 0.11867816581938533 |  |
| (0, 46)     | 0.11867816581938533 | (0, 17) | 0.11867816581938533 |  |
| (0, 45)     | 0.11867816581938533 | (0, 16) | 0.11867816581938533 |  |
| (0, 44)     | 0.11867816581938533 | (0, 15) | 0.11867816581938533 |  |
| (0, 43)     | 0.11867816581938533 | (0, 14) | 0.11867816581938533 |  |
| (0, 42)     | 0.11867816581938533 | (0, 13) | 0.11867816581938533 |  |
| (0,41)      | 0.11867816581938533 | (0, 12) | 0.11867816581938533 |  |
| (0, 40)     | 0.11867816581938533 | (0, 11) | 0.11867816581938533 |  |
| (0, 39)     | 0.11867816581938533 | (0, 10) | 0.11867816581938533 |  |
| (0, 38)     | 0.11867816581938533 | (0, 9)  | 0.11867816581938533 |  |
| (0, 37)     | 0.11867816581938533 | (0, 8)  | 0.11867816581938533 |  |
| (0, 36)     | 0.11867816581938533 | (0, 7)  | 0.11867816581938533 |  |
| (0, 35)     | 0.35603449745815596 | (0, 6)  | 0.11867816581938533 |  |
| (0, 34)     | 0.11867816581938533 | (0, 5)  | 0.11867816581938533 |  |
| (0, 33)     | 0.11867816581938533 | (0, 4)  | 0.11867816581938533 |  |
| (0, 32)     | 0.11867816581938533 | (0, 3)  | 0.23735633163877065 |  |
| (0, 31)     | 0.11867816581938533 | (0, 2)  | 0.11867816581938533 |  |
| (0, 30)     | 0.23735633163877065 | (0, 1)  | 0.11867816581938533 |  |
| (0, 29)     | 0.11867816581938533 | (0, 0)  | 0.11867816581938533 |  |
| 24 11 11 11 | BOYE DE STAND       |         |                     |  |

## Scikit-learn (sklearn)

from sklearn.feature\_extraction import DictVectorizer #用於轉換 dict 為 sklearn estimators 可用的向量

from sklearn.feature\_extraction.text import TfidfTransformer #將矩陣轉換為 TF 或 TF-IDF 表示

from sklearn.svm import LinearSVC #以 LinearSVC 演算法為例

### 以 LinearSVC 提取置言的用語特徵

```
# 將詞語及其出現次數轉換成向量

c_dvec = DictVectorizer() #宣告向量轉換方法

c_tfidf = TfidfTransformer() #宣告TFIDF方法

c_X = c_tfidf.fit_transform(c_dvec.fit_transform(c_words))
#將所有的留言中的詞語矩陣,轉成向量並計算tf-idf

c_svc = LinearSVC() #宣告 LinearSVC 方法

c_svc.fit(c_X, c_scores) #餵入訓練資料 c_X 以及資料標籤 c_scores

c_svc.coef_[0] #取得留言用語的權重係數,值越大代表越有代表性
```

### 以 LinearSVC 提取 宣言的前三十大用語

display\_top\_features(c\_svc.coef\_[0], c\_dvec.get\_feature\_names(), 30)



# THANK YOU