## Homework2

Jieying Jiao 2018-09-13

# Contents

| 1 | $\mathbf{E}\mathbf{x}\mathbf{e}$ | ercise 1.2                            | ŀ |
|---|----------------------------------|---------------------------------------|---|
|   | 1.1                              | Use Monte Carlo to estimate $\Phi(t)$ | ŀ |
|   | 1.2                              | Boxplots of bias                      | ŀ |
| 2 | Exe                              | proise 1.3                            | 7 |

4 CONTENTS

### Chapter 1

### Exercise 1.2

#### 1.1 Use Monte Carlo to estimate $\Phi(t)$

The Monte Carlo methods gives:

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leqslant t)$$

where  $X_i$  are random normal sample drawn from N(0,1).

```
library(xtable)
phi.MC <- function(n, t) {</pre>
  phi.hat <- matrix(0, nrow = length(n), ncol = length(t))</pre>
  for (i in 1:length(n)) {
    for (j in 1:length(t)) {
      X \leftarrow rnorm(n[i], 0, 1)
      phi.hat[i, j] <- mean(as.numeric(X <= t[j]))</pre>
  }
truth <- pnorm(t)
phi.hat <- rbind(phi.hat, truth)</pre>
n \leftarrow c(10^2, 10^3, 10^4)
t \leftarrow c(0.0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72)
set.seed(1)
phi.hat <- phi.MC(n, t)</pre>
rownames(phi.hat) <- c(paste0("n = 10e", 2:4), "truth")</pre>
colnames(phi.hat) <- paste0("t = ", t)</pre>
t.MC <- xtable(phi.hat, digits = 4, caption = "Monte Carlo estimation",
                 label = "MC result")
```

The estimation results are shown in Table 1.1.

#### 1.2 Boxplots of bias

Repeat the above expriment 100 times and plot bias of Monte Carlo methods at every time point t using boxplots.

|                        | t = 0  | t = 0.67 | t = 0.84 | t = 1.28 | t = 1.65 | t = 2.32 | t = 2.58 | t = 3.09 | t = 3.72 |
|------------------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| n = 10e2               | 0.4600 | 0.7700   | 0.7800   | 0.8700   | 0.9200   | 1.0000   | 0.9900   | 1.0000   | 1.0000   |
| n = 10e3               | 0.5110 | 0.7370   | 0.7710   | 0.9080   | 0.9500   | 0.9860   | 0.9990   | 0.9980   | 1.0000   |
| n = 10e4               | 0.5061 | 0.7467   | 0.8021   | 0.8981   | 0.9527   | 0.9913   | 0.9947   | 0.9985   | 0.9998   |
| $\operatorname{truth}$ | 0.5000 | 0.7486   | 0.7995   | 0.8997   | 0.9505   | 0.9898   | 0.9951   | 0.9990   | 0.9999   |

Table 1.1: Monte Carlo estimation



### Chapter 2

### Exercise 1.3

```
.Machine$double.xmax

## [1] 1.797693e+308
.Machine$double.xmin

## [1] 2.225074e-308
.Machine$double.eps

## [1] 2.220446e-16
.Machine$double.neg.eps
```

## [1] 1.110223e-16

Floating number is represented in computer as:

$$(-1)^{x_0} (1 + \sum_{i=1}^t x_i 2^{-i}) 2^k$$

In a 64 bits machine,  $x_0$  takes 1 sign bites, significant takes 52 bits, so t can be 52 at most. Exponent k takes 11 bits, so  $2^11 = 2048$  possible values. With shifting to negative side, k can be from -1022 to 1023, with both -1023 (all zeros) amd 1024 (all ones) are left for special numbers.

- ".Machine\$double.xmax" is the largest floating number that computer can display, it is  $(1 + \sum_{i=1}^{52} 2^{-i}) \times 2^{1023}$
- ".Machine\$double.xmin" is the smallest floating numer that computer can display, it is  $2^{-1022}$ .
- ".Machine\$double.eps" is the smallest positive floating number that the computer can tell the difference by adding it. It is actually the smallest significant, that is  $2^{-52}$ .
- ".Machine\$double.neg.eps" is the smallest positive floating number that the computer can tell the difference by substracting it. It is  $2^{-53}$ .