ANEXO 2

MEDIDAS EM ESPESSURA PARA CALIBRAÇÃO DO DISPOSITIVO

Tabela 1 - Variação dos Modos TE e TM e Profundidade de Modulação em função da espessura do dielétrico SiO2 com energia de Fermi de 0 eV e 0,5 eV para largura do capacitor fixa em 10 um.

_		Modos (dB/mm)		Profunc	lidade de
Espessura (um)	0 (eV	0.5	eV	Modulaçã	io (dB/mm)
(uiii)	TE	TM	TE	TM	TE	TM
0.6	0.44358	0.03689	0.0317	0.0026	0.411879	0.0342903
0.65	0.47776	0.03579	0.03416	0.00252	0.443599	0.0332688
0.7	0.51183	0.03473	0.03662	0.00245	0.475214	0.0322836
0.75	0.5455	0.0337	0.03904	0.00238	0.506456	0.0313271
0.8	0.57873	0.03271	0.04144	0.00231	0.537287	0.0304023
0.85	0.61146	0.03175	0.04381	0.00224	0.567653	0.02951
0.9	0.64334	0.03083	0.04611	0.00217	0.597229	0.0286511
0.95	0.675	0.02994	0.0484	0.00211	0.626598	0.0278258
1	0.70581	0.02908	0.05063	0.00205	0.655178	0.027032
1.05	0.73584	0.02826	0.05281	0.00199	0.683032	0.0262679
1.1	0.76504	0.02747	0.05493	0.00194	0.710115	0.0255318
1.15	0.79338	0.02671	0.05698	0.00188	0.7364	0.0248236
1.2	0.8209	0.02599	0.05898	0.00183	0.761922	0.0241524
1.25	0.84752	0.02529	0.06091	0.00178	0.78661	0.0235102
1.3	0.87328	0.02463	0.06278	0.00174	0.810498	0.0228893
1.35	0.89808	0.02398	0.06458	0.00169	0.833496	0.022287
1.4	0.92204	0.02337	0.06633	0.00165	0.855713	0.0217191
1.45	0.94512	0.02278	0.06801	0.00161	0.877114	0.0211763
1.5	0.9673	0.02222	0.06962	0.00157	0.89768	0.0206566
1.6	1.0091	0.02118	0.07267	0.00149	0.936434	0.0196881
1.7	1.0477	0.02023	0.07548	0.00143	0.972223	0.018807
1.8	1.0831	0.01937	0.07805	0.00137	1.005046	0.0180048
1.9	1.1154	0.01859	0.08042	0.00131	1.034984	0.0172771
2	1.1451	0.01789	0.08258	0.00126	1.062523	0.0166273
2.1	1.1717	0.01724	0.08452	0.00122	1.087179	0.0160269
2.2	1.1962	0.01666	0.08631	0.00118	1.109889	0.015485
2.3	1.2185	0.01613	0.08794	0.00114	1.130561	0.0149943
2.4	1.2388	0.01566	0.08942	0.0011	1.149381	0.0145509
2.5	1.2571	0.01522	0.09076	0.00107	1.166338	0.0141493
2.6	1.2737	0.01483	0.09198	0.00105	1.181725	0.0137868
2.7	1.2887	0.01448	0.09307	0.00102	1.195635	0.0134587
2.8	1.3023	0.01416	0.09406	0.001	1.208239	0.0131641
2.9	1.3145	0.01388	0.09496	0.00098	1.219544	0.0128973
3	1.3255	0.01361	0.09576	0.00096	1.22974	0.0126538

3.1	1.3355	0.01338	0.09649	0.00094	1.239009	0.0124372
3.2	1.3445	0.01317	0.09715	0.00093	1.247353	0.0122411
3.3	1.3526	0.01298	0.09774	0.00092	1.25486	0.0120645
3.4	1.3598	0.01281	0.09827	0.0009	1.261534	0.0119037
3.5	1.3653	0.01264	0.09867	0.00089	1.266634	0.0117513
3.6	1.3713	0.01251	0.09911	0.00088	1.272194	0.011623
3.7	1.3768	0.01238	0.0995	0.00087	1.277296	0.0115068
3.8	1.3816	0.01227	0.09986	0.00087	1.281739	0.0114027
3.9	1.386	0.01217	0.10018	0.00086	1.28582	0.0113089
4	1.39	0.01208	0.10047	0.00085	1.28953	0.0112243

Tabela 2 - Variação dos Modos TE e TM e Profundidade de Modulação em função da espessura do dielétrico Al2O3 com energia de Fermi de 0 eV e 0,5 eV para largura do capacitor fixa em 10 um.

Espessura		Modos (dB/mm)		Modu	idade de Ilação	
(nm)	0 (eV	0.5	eV	(dB/mm)		
	TE	TM	TE	TM	TE	TM	
10	0.1022	0.05253	0.00726	0.0037	0.09494	0.04883	
20	0.11128	0.0527	0.00791	0.00372	0.10337	0.04899	
30	0.12139	0.05294	0.00863	0.00373	0.11276	0.0492	
40	0.13267	0.05324	0.00944	0.00375	0.12323	0.04948	
50	0.14528	0.0536	0.01034	0.00378	0.13494	0.04982	
60	0.15941	0.05404	0.01135	0.00381	0.14806	0.05023	
70	0.17532	0.05456	0.01249	0.00385	0.16283	0.05071	
80	0.19327	0.05516	0.01377	0.00389	0.1795	0.05127	
90	0.21363	0.05585	0.01523	0.00394	0.1984	0.05191	
100	0.23682	0.05665	0.0169	0.004	0.21992	0.05265	
110	0.26336	0.05756	0.0188	0.00406	0.24456	0.0535	
120	0.29393	0.05859	0.021	0.00413	0.27293	0.05446	
130	0.32934	0.05976	0.02355	0.00422	0.30579	0.05555	
140	0.37068	0.06109	0.02654	0.00431	0.34415	0.05678	
150	0.41929	0.0626	0.03005	0.00442	0.38924	0.05818	
160	0.47698	0.06431	0.03423	0.00454	0.44275	0.05977	
170	0.5461	0.06624	0.03925	0.00467	0.50685	0.06157	
180	0.62984	0.06844	0.04534	0.00483	0.5845	0.06361	
190	0.73254	0.07095	0.05284	0.00501	0.6797	0.06594	
200	0.86031	0.07381	0.06221	0.00521	0.7981	0.0686	
210	1.0218	0.07709	0.0741	0.00544	0.9477	0.07165	
220	1.2297	0.08086	0.0895	0.00571	1.1402	0.07515	
230	1.5029	0.08521	0.10986	0.00601	1.39304	0.0792	
240	1.8708	0.09027	0.13749	0.00637	1.73331	0.08389	
250	2.3798	0.09617	0.17609	0.00679	2.20371	0.08938	

260	3.1077	0.1031	0.23191	0.00728	2.87579	0.09582
270	4.1867	0.1113	0.31573	0.00786	3.87097	0.10344

Tabela 3 - Variação dos Modos TE e TM e Profundidade de Modulação em função da espessura do dielétrico h - BN com energia de Fermi de 0 eV e 0,5 eV para largura do capacitor fixa em 10 um.

Espessura		Modos (dB/mm)		Profundidade de Modulação		
(nm)	0 (eV	0.5	eV	(dB/mm)		
	TE	TM	TE	TM	TE	TM	
10	0.11263	0.05293	0.00801	0.00373	0.10462	0.04919	
20	0.1368	0.05364	0.00974	0.00378	0.12706	0.04986	
30	0.16892	0.05459	0.01204	0.00385	0.15689	0.05074	
40	0.21283	0.05582	0.01519	0.00394	0.19764	0.05188	
50	0.27499	0.05735	0.01966	0.00405	0.25533	0.05331	
60	0.36698	0.05928	0.0263	0.00418	0.34068	0.05509	
70	0.51114	0.06166	0.03678	0.00435	0.47436	0.05731	
80	0.75518	0.06463	0.05466	0.00456	0.70052	0.06007	
90	1.215	0.06833	0.08881	0.00482	1.12619	0.06351	
100	2.2296 0.07299		0.16597	0.00515	2.06363	0.06784	
110	5.0852	0.0789	0.39306	0.00557	4.69214	0.07334	

Fonte: Elaborado pelo autor.

Tabela 4 - Variação dos Modos TE e TM e Profundidade de Modulação em função da espessura do dielétrico Si3N4 com energia de Fermi de 0 eV e 0,5 eV para largura do capacitor fixa em 10 um.

espessura		Modos (dB/mm)		Profundidade de Modulação	
(nm)	0 (eV	0.5 eV		(dB/	mm)
	TE	TM	TE	TM	TE	TM
10	0.11321	0.05294	0.00805	0.00373	0.10516	0.0492
20	0.13835	0.05368	0.00985	0.00379	0.1285	0.04989
30	0.17211	0.05466	0.01226	0.00385	0.15985	0.0508
40	0.21884	0.05592	0.01562	0.00394	0.20322	0.05198
50	0.28605	0.05752	0.02046	0.00406	0.26559	0.05346
60	0.38753	0.05952	0.02779	0.0042	0.35974	0.05532
70	0.55094	0.06201	0.03968	0.00437	0.51126	0.05763
80	0.83805	0.06512	0.06077	0.00459	0.77728	0.06053
90	1.4093	0.06902	0.10342	0.00487	1.30588	0.06415
100	2.7809	0.07395	0.20887	0.00522	2.57203	0.06874
110	7.2147	0.08027	0.56866	0.00567	6.64604	0.07461

MEDIDAS EM LARGURA PARA CALIBRAÇÃO DO DISPOSITIVO

Tabela 5 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0 eV e espessura do dielétrico Si3N4 fixa em 100 nm.

_			$E_f =$	= 0 eV				
Largura	Т	E (dB/mm)	Т	TM (dB/mm)			
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP		
6	1.9526	1.9538	1.9472	0.06105	0.061143	0.060873		
7	2.2657	2.267	2.2596	0.066225	0.066331	0.06604		
8	2.4993	2.5007	2.4928	0.069858	0.069977	0.069672		
9	2.6658	2.6674	2.6592	0.072324	0.072455	0.072141		
10	2.7809	2.7828	2.7743	0.073954	0.074097	0.073777		
11	2.8585	2.8607	2.852	0.075009	0.075164	0.074839		
12	2.91	2.9124	2.9037	0.075679	0.075845	0.075518		
13	2.9436	2.9465	2.9376	0.076098	0.076276	0.075947		
14	2.9652	2.9684	2.9595	0.076355	0.076546	0.076216		
15	2.9791	2.9827	2.9738	0.076511	0.076714	0.076383		
16	2.9876	2.9916	2.9827	0.076603	0.076817	0.076486		
17	2.9929	2.9975	2.9886	0.076655	0.076881	0.07655		
18	2.9959	3.001	2.9921	0.076683	0.076921	0.076589		

Fonte: Elaborado pelo autor.

Tabela 6 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0,5 eV e espessura do dielétrico Si3N4 fixa em 100 nm.

_		$E_f=$ 0,5 eV								
Largura	T	E (dB/mm)	•	TM (dB/mm)					
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP				
6	0.14563	0.14571	0.14522	0.0043079	0.0043144	0.0042954				
7	0.1695	0.16959	0.16905	0.004673	0.0046805	0.00466				
8	0.18733	0.18744	0.18686	0.0049293	0.0049377	0.0049162				
9	0.20006	0.20017	0.19957	0.0051033	0.0051125	0.0050903				
10	0.20887	0.209	0.20838	0.0052182	0.0052283	0.0052057				
11	0.21481	0.21496	0.21433	0.0052926	0.0053036	0.0052806				
12	0.21876	0.21893	0.21829	0.0053399	0.0053516	0.0053285				
13	0.22134	0.22154	0.2209	0.0053694	0.005382	0.0053588				
14	0.223	0.22323	0.22258	0.0053876	0.0054011	0.0053778				
15	0.22407	0.22433	0.22368	0.0053985	0.0054129	0.0053895				
16	0.22473	0.22502	0.22437	0.005405	0.0054202	0.0053968				
17	0.22514	0.22547	0.22482	0.0054087	0.0054247	0.0054013				
18	0.22538	0.22574	0.22509	0.0054107	0.0054275	0.0054041				

Tabela 7 - Profundidade de modulação em função da largura do capacitor para dielétrico Si3N4.

Lawarina		Profur	ndidade de	Modulação	(dB/mm)	
Largura (um)	Horiz	ontal	Ve	rtical	Se	m SAP
(am)	TE	TM	TE	TM	TE	TM
6	1.80697	0.0567	1.80809	0.056829	1.80198	0.056578
7	2.0962	0.0616	2.09741	0.061651	2.09055	0.06138
8	2.31197	0.0649	2.31326	0.065039	2.30594	0.064756
9	2.46574	0.0672	2.46723	0.067343	2.45963	0.067051
10	2.57203	0.0687	2.5738	0.068869	2.56592	0.068571
11	2.64369	0.0697	2.64574	0.06986	2.63767	0.069558
12	2.69124	0.0703	2.69347	0.070493	2.68541	0.07019
13	2.72226	0.0707	2.72496	0.070894	2.7167	0.070588
14	2.7422	0.071	2.74517	0.071145	2.73692	0.070838
15	2.75503	0.0711	2.75837	0.071301	2.75012	0.070994
16	2.76287	0.0712	2.76658	0.071397	2.75833	0.071089
17	2.76776	0.0712	2.77203	0.071456	2.76378	0.071149
18	2.77052	0.0713	2.77526	0.071494	2.76701	0.071185

Tabela 8 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0 eV e espessura do dielétrico Al2O3 fixa em 240 nm.

		$E_f=$ 0 eV								
Largura	1	E (dB/mm)	T	M (dB/mm)					
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP				
6	1.6292	1.6301	1.6245	0.075724	0.075821	0.075506				
7	1.9093	1.9105	1.9043	0.083753	0.083866	0.083523				
8	2.1213	2.1225	2.1158	0.08951	0.089636	0.089273				
9	2.2738	2.2752	2.2681	0.09349	0.09363	0.093254				
10	2.3798	2.3813	2.3741	0.096165	0.096318	0.095933				
11	2.4523	2.4541	2.4467	0.097923	0.09809	0.097699				
12	2.4999	2.5019	2.4945	0.099059	0.09924	0.098846				
13	2.5322	2.5345	2.527	0.099779	0.099974	0.099577				
14	2.5524	2.555	2.5474	0.10023	0.10044	0.10004				
15	2.5657	2.5687	2.5612	0.10051	0.10073	0.10033				
16	2.5742	2.5776	2.57	0.10067	0.10092	0.10052				
17	2.5789	2.5828	2.5752	0.10077	0.10103	0.10063				
18	2.582	2.5864	2.5789	0.10083	0.1011	0.1007				

Tabela 9 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0,5 eV e espessura do dielétrico Al2O3 fixa em 240 nm.

	$E_f=$ 0,5 eV					
Largura	TE (dB/mm)			TM (dB/mm)		
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP

6	0.11985	0.11992	0.11951	0.005344	0.005351	0.005329
7	0.14081	0.14089	0.14044	0.005911	0.005919	0.005895
8	0.1567	0.15678	0.15629	0.006318	0.006326	0.006301
9	0.16813	0.16823	0.16772	0.006599	0.006608	0.006582
10	0.17609	0.1762	0.17567	0.006787	0.006798	0.006771
11	0.18154	0.18166	0.18113	0.006911	0.006923	0.006896
12	0.18512	0.18526	0.18472	0.006992	0.007004	0.006977
13	0.18755	0.18771	0.18717	0.007042	0.007056	0.007028
14	0.18907	0.18925	0.18871	0.007074	0.007089	0.007061
15	0.19008	0.19029	0.18974	0.007094	0.00711	0.007082
16	0.19072	0.19096	0.19041	0.007106	0.007123	0.007094
17	0.19108	0.19136	0.19081	0.007113	0.007131	0.007103
18	0.19132	0.19163	0.19108	0.007116	0.007136	0.007108

Tabela 10 - Profundidade de modulação em função da largura do capacitor para dielétrico Al2O3.

1		Profur	ndidade de	Modulação	(dB/mm)	
Largura	Horiz	ontal	Ve	rtical	Se	m SAP
(um)	TE	TM	TE	TM	TE	TM
6	1.50935	0.07038	1.51018	0.07047	1.50499	0.070177
7	1.76849	0.077842	1.76961	0.077947	1.76386	0.077628
8	1.9646	0.083193	1.96572	0.08331	1.95951	0.082972
9	2.10567	0.086892	2.10697	0.087022	2.10038	0.086672
10	2.20371	0.089378	2.2051	0.08952	2.19843	0.089162
11	2.27076	0.091012	2.27244	0.091167	2.26557	0.090803
12	2.31478	0.092068	2.31664	0.092236	2.30978	0.09187
13	2.34465	0.092737	2.34679	0.092918	2.33983	0.092549
14	2.36333	0.093156	2.36575	0.093351	2.35869	0.092979
15	2.37562	0.093416	2.37841	0.09362	2.37146	0.093249
16	2.38348	0.093565	2.38664	0.093797	2.37959	0.093426
17	2.38782	0.093658	2.39144	0.093899	2.38439	0.093528
18	2.39068	0.093714	2.39477	0.093964	2.38782	0.093593

Tabela 11 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0 eV e espessura do dielétrico h-BN fixa em 100 nm.

		$E_f=$ 0 eV													
Largura (um)	Т	E (dB/mm)	TM (dB/mm)											
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP									
6	1.592	1.5931	1.5874	0.060273	0.060365	0.060098									
7	1.8339	1.8352	1.8289	0.065371	0.065476	0.065189									
8	2.0137	2.0151	2.0084	0.06895	0.069068	0.068767									
9	2.1414	2.143	2.136	0.071381	0.071511	0.0712									

10	2.2296	2.2314	2.2242	0.072987	0.073129	0.072812
		_				
11	2.2888	2.2909	2.2835	0.074026	0.07418	0.073858
12	2.328	2.3303	2.3229	0.074686	0.074851	0.074527
13	2.3535	2.3561	2.3487	0.075099	0.075276	0.07495
14	2.3698	2.3727	2.3652	0.075353	0.075542	0.075215
15	2.3802	2.3835	2.376	0.075506	0.075707	0.07538
16	2.3866	2.3902	2.3827	0.075596	0.075809	0.075482
17	2.3905	2.3946	2.3871	0.075648	0.075872	0.075544
18	2.3928	2.3973	2.3897	0.075675	0.075911	0.075583

Tabela 12 - Variação dos Modos TE e TM em função da largura do capacitor com energia de Fermi de 0,5 eV e espessura do dielétrico hBN fixa em 100 nm.

_			$E_f =$	= 0,5 eV		
Largura	T	E (dB/mm)		TM (dB/mm)	
(um)	Horizontal	Vertical	Sem SAP	Horizontal	Vertical	Sem SAP
6	0.11782	0.1179	0.11749	0.0042529	0.0042594	0.0042405
7	0.13607	0.13616	0.1357	0.0046126	0.00462	0.0045997
8	0.14965	0.14975	0.14926	0.0048651	0.0048734	0.0048521
9	0.15931	0.15942	0.15891	0.0050366	0.0050457	0.0050238
10	0.16597	0.1661	0.16558	0.0051499	0.0051599	0.0051375
11	0.17046	0.17061	0.17007	0.0052232	0.005234	0.0052113
12	0.17343	0.1736	0.17306	0.0052697	0.0052814	0.0052585
13	0.17537	0.17556	0.17501	0.0052988	0.0053113	0.0052884
14	0.17661	0.17682	0.17627	0.0053167	0.0053301	0.005307
15	0.1774	0.17764	0.17709	0.0053275	0.0053417	0.0053186
16	0.17789	0.17815	0.1776	0.0053339	0.0053489	0.0053258
17	0.17819	0.17848	0.17793	0.0053375	0.0053534	0.0053302
18	0.17836	0.17869	0.17814	0.0053395	0.0053561	0.005333

Tabela 13 - Profundidade de modulação em função da largura do capacitor para dielétrico h-BN.

Lawarina		Profur	ndidade de	Modulação	(dB/mm)	
Largura	Horiz	ontal	Ve	rtical	Se	m SAP
(um)	TE	TM	TE	TM	TE	TM
6	1.47418	0.056	1.4752	0.056106	1.46991	0.055858
7	1.69783	0.0608	1.69904	0.060856	1.6932	0.060589
8	1.86405	0.0641	1.86535	0.064195	1.85914	0.063915
9	1.98209	0.0663	1.98358	0.066465	1.97709	0.066176
10	2.06363	0.0678	2.0653	0.067969	2.05862	0.067675
11	2.11834	0.0688	2.12029	0.068946	2.11343	0.068647
12	2.15457	0.0694	2.1567	0.06957	2.14984	0.069269
13	2.17813	0.0698	2.18054	0.069965	2.17369	0.069662

14	2.19319	0.07	2.19588	0.070212	2.18893	0.069908
15	2.2028	0.0702	2.20586	0.070365	2.19891	0.070061
16	2.20871	0.0703	2.21205	0.07046	2.2051	0.070156
17	2.21231	0.0703	2.21612	0.070519	2.20917	0.070214
18	2.21444	0.0703	2.21861	0.070555	2.21156	0.07025

CALIBRAÇÃO EM ESPESSURA E LARGURA PARA DISPOSITIVO COM PMMA

Tabela 14 - Variação dos Modos TE em função da espessura do dielétrico Si3N4 e espessura do PMMA com energia de Fermi de 0,15 eV e largura de 13 nm.

										Diel	étrico	(nm)						
		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	40	0.21	0.23	0.27	0.31	0.35	0.41	0.49	0.59	0.72	0.89	1.14	1.50	2.05	2.94	4.51	7.54	14.08
	50	0.23	0.26	0.29	0.34	0.39	0.46	0.55	0.67	0.83	1.05	1.36	1.83	2.58	3.86	6.23	11.15	22.43
	60	0.25	0.28	0.32	0.37	0.44	0.52	0.63	0.77	0.96	1.23	1.64	2.26	3.29	5.14	8.81	16.91	35.70
	70	0.27	0.31	0.35	0.41	0.49	0.58	0.71	0.88	1.12	1.46	1.98	2.81	4.25	6.98	12.73	26.09	53.17
	80	0.29	0.33	0.39	0.46	0.54	0.65	0.80	1.01	1.30	1.73	2.40	3.52	5.56	9.63	18.76	39.71	71.00
	90	0.31	0.36	0.42	0.50	0.60	0.73	0.91	1.15	1.51	2.05	2.93	4.46	7.36	13.54	27.97	56.32	86.99
	100	0.34	0.40	0.46	0.55	0.67	0.82	1.03	1.32	1.77	2.46	3.61	5.70	9.91	19.35	40.98	72.71	8.10
РММА	110	0.37	0.43	0.51	0.61	0.74	0.92	1.16	1.52	2.07	2.95	4.48	7.38	13.53	27.88	56.38	87.40	111.04
(nm)	120	0.40	0.47	0.55	0.67	0.82	1.02	1.32	1.75	2.43	3.56	5.60	9.66	18.71	39.64	71.55	8.43	5.26
(,	130	0.43	0.50	0.60	0.73	0.91	1.15	1.50	2.03	2.87	4.32	7.06	12.78	26.08	53.64	85.25	109.21	4.35
	140	0.46	0.55	0.66	0.80	1.00	1.29	1.70	2.34	3.40	5.29	8.99	17.11	36.13	67.75	9.13	5.62	3.64
	150	0.49	0.59	0.71	0.88	1.11	1.44	1.94	2.72	4.05	6.50	11.55	23.08	48.45	80.72	105.04	4.72	3.09
	160	0.53	0.64	0.78	0.97	1.23	1.62	2.21	3.16	4.84	8.06	14.96	31.16	61.49	92.29	115.91	4.00	2.66
	170	0.57	0.69	0.84	1.06	1.36	1.82	2.52	3.69	5.82	10.06	19.54	41.41	73.87	8.41	5.25	3.42	2.33
	180	0.61	0.74	0.92	1.16	1.51	2.04	2.88	4.33	7.03	12.64	25.63	53.04	85.08	109.24	4.50	2.96	2.07
	190	0.66	0.80	1.00	1.27	1.68	2.30	3.31	5.09	8.54	16.00	33.51	64.75	95.11	5.99	3.88	2.61	1.86
	200	0.70	0.86	1.08	1.40	1.86	2.59	3.80	6.01	10.43	20.35	43.08	75.69	8.27	5.18	3.38	2.32	1.68

Tabela 15 - Variação dos Modos TE em função da espessura do dielétrico Si3N4 e espessura do PMMA com energia de Fermi de 0,5 eV e largura de 13 nm.

										Dielé	trico (nm)						
		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	40	0.01	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.06	0.08	0.11	0.15	0.22	0.35	0.60	1.15
	50	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.05	0.06	0.08	0.10	0.14	0.19	0.29	0.49	0.90	1.82
	60	0.02	0.02	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.09	0.12	0.17	0.25	0.40	0.71	1.39	2.78
	70	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.06	0.08	0.11	0.15	0.21	0.33	0.55	1.04	2.11	3.94
	80	0.02	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.10	0.13	0.18	0.27	0.43	0.78	1.54	3.07	5.13
	90	0.02	0.03	0.03	0.04	0.04	0.05	0.07	0.08	0.11	0.15	0.22	0.34	0.59	1.11	2.26	4.16	6.22
	100	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.10	0.13	0.18	0.28	0.45	0.80	1.60	3.16	5.25	6.89
РММА	110	0.03	0.03	0.04	0.04	0.05	0.07	0.09	0.11	0.15	0.22	0.35	0.59	1.11	2.26	4.17	6.25	7.89
(nm)	120	0.03	0.03	0.04	0.05	0.06	0.07	0.10	0.13	0.18	0.27	0.44	0.78	1.55	3.08	5.17	6.83	8.73
(,	130	0.03	0.04	0.04	0.05	0.07	0.08	0.11	0.15	0.22	0.33	0.56	1.05	2.13	4.00	6.11	7.76	9.26
	140	0.03	0.04	0.05	0.06	0.07	0.09	0.13	0.18	0.26	0.41	0.73	1.42	2.85	4.92	6.57	8.55	10.01
	150	0.04	0.04	0.05	0.06	0.08	0.11	0.14	0.21	0.31	0.52	0.95	1.91	3.67	5.80	7.46	9.24	10.60
	160	0.04	0.05	0.06	0.07	0.09	0.12	0.17	0.24	0.38	0.65	1.24	2.51	4.51	6.59	8.23	9.73	11.09
	170	0.04	0.05	0.06	0.08	0.10	0.13	0.19	0.28	0.46	0.82	1.63	3.21	5.33	7.00	8.89	10.30	10.97
	180	0.04	0.05	0.07	0.09	0.11	0.15	0.22	0.34	0.56	1.05	2.11	3.97	6.10	7.76	9.21	10.79	11.43
	190	0.05	0.06	0.07	0.09	0.12	0.17	0.25	0.40	0.69	1.33	2.68	4.73	6.79	8.41	9.89	11.21	11.83
	200	0.05	0.06	0.08	0.10	0.14	0.20	0.29	0.48	0.86	1.70	3.33	5.46	7.13	8.99	10.38	11.02	12.18

Tabela 16 – Profundidade de Modulação em função da espessura do dielétrico Si3N4 e espessura do PMMA e largura de 13 nm.

		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	40	0.19	0.22	0.25	0.28	0.33	0.38	0.45	0.54	0.66	0.83	1.05	1.39	1.89	2.72	4.16	6.94	12.93
	50	0.21	0.24	0.27	0.31	0.37	0.43	0.51	0.62	0.77	0.97	1.26	1.70	2.39	3.56	5.74	10.24	20.61
	60	0.23	0.26	0.30	0.35	0.41	0.48	0.58	0.71	0.89	1.14	1.52	2.09	3.04	4.74	8.10	15.52	32.91
	70	0.25	0.28	0.33	0.38	0.45	0.54	0.66	0.81	1.03	1.35	1.83	2.60	3.92	6.42	11.69	23.98	49.23
	80	0.27	0.31	0.36	0.42	0.50	0.61	0.74	0.93	1.20	1.60	2.22	3.25	5.12	8.85	17.22	36.65	65.87
	90	0.29	0.34	0.39	0.47	0.56	0.68	0.84	1.07	1.40	1.90	2.71	4.11	6.78	12.43	25.72	52.17	80.77
<u>ج</u>	100	0.32	0.37	0.43	0.51	0.62	0.76	0.95	1.23	1.63	2.27	3.33	5.26	9.10	17.76	37.82	67.47	1.21
(mm)	110	0.34	0.40	0.47	0.56	0.68	0.85	1.08	1.41	1.91	2.73	4.13	6.79	12.41	25.63	52.21	81.14	103.15
MMA	120	0.37	0.43	0.51	0.62	0.76	0.95	1.22	1.62	2.25	3.29	5.16	8.87	17.16	36.56	66.38	1.60	-3.48
M	130	0.40	0.47	0.56	0.68	0.84	1.06	1.39	1.87	2.65	3.99	6.50	11.73	23.95	49.64	79.15	101.45	-4.90
_	140	0.43	0.51	0.61	0.74	0.93	1.19	1.58	2.17	3.14	4.87	8.26	15.69	33.28	62.83	2.56	-2.94	-6.37
	150	0.46	0.55	0.66	0.82	1.03	1.34	1.79	2.51	3.74	5.99	10.60	21.18	44.79	74.92	97.58	-4.52	-7.51
	160	0.49	0.59	0.72	0.90	1.14	1.50	2.04	2.92	4.46	7.41	13.72	28.65	56.98	85.70	107.68	-5.73	-8.43
	170	0.53	0.64	0.78	0.98	1.26	1.68	2.33	3.41	5.36	9.24	17.91	38.20	68.53	1.41	-3.64	-6.89	-8.63
	180	0.57	0.69	0.85	1.08	1.40	1.89	2.67	3.99	6.47	11.60	23.52	49.07	78.98	101.48	-4.71	-7.82	-9.36
	190	0.61	0.74	0.92	1.18	1.55	2.12	3.06	4.69	7.85	14.66	30.82	60.02	88.32	-2.42	-6.00	-8.60	-9.98
	200	0.65	0.80	1.00	1.29	1.72	2.39	3.51	5.53	9.57	18.65	39.75	70.24	1.14	-3.81	-6.99	-8.71	-10.50

Tabela 17 - Profundidade de modulação em função da largura do capacitor.

		dB/mm	
Largura (um)	me	eV	PM
	150	500	PIVI
3	0.87547	0.06461	0.81
4	1.55421	0.11651	1.44
5	2.25458	0.17097	2.08
6	2.87787	0.21991	2.66
7	3.37942	0.25947	3.12
8	3.75633	0.28925	3.47
9	4.02666	0.31063	3.72
10	4.21442	0.32548	3.89
11	4.34189	0.33558	4.01
12	4.42696	0.34232	4.08
13	4.48302	0.34678	4.14
14	4.5196	0.34969	4.17
15	4.54329	0.35158	4.19