THE MAP OF MATHEMATICS

"All Ye Know On Earth"

Sarah Kate Sweeney Lecture 1

WHO AM I, AND WHAT IS THIS?

- Sarah Kate Sweeney (just Sarah's fine)
- Graduate of UCC Astrophysics
- Currently in Research Masters in Macroscopic Quantum Matter
- Student Email (I monitor this one)- <u>120317406@umail.ucc.ie</u>
- Feel free to reach out to me!
- Lecture 1 of CEIA Leaving Certificate Mathematics Tutorials
- "Map of Mathematics" (Introductory Lecture)
- Other Lectures given by me: Algebra 2, Complex Numbers

I have a question for you...

THE MAP OF MATHEMATICS

Concepts	Properties of Models	Arithmetic	Algebra	Techniques	Applications
Conceptual models of the world	Numeric properties: Natural, Integer, Rational, Real,	Numerical Operations: +, -, x, /, log, exp, mod	Dealing with missing data	Boolean Calculus	AI Chemistry
'A framework	Imaginary,		Solving	Cryptography	Economics
in which we	Complex,	Boolean	Equations:	Geometry	Engineering
allow	Hyper Complex	Operations:	a = b + 2	Linear Algebra	Finance
something to be		And, Or, Not	b = 2a	Matrices	Genomics
true'	Boolean			Set Theory	IT
	Properties:			Statistics	Medicine
	True, False			Trigonometry	Physics
		Set		Vectors	Social Science
At the end of	Set Properties:	Operations:	Dealing with		
'why' is	Elements	Union,	functions:		
'Eureka!'		Intersection	$y = f(x) = x^2 - 1$		

WELCOME TO THE PLATONIC ACADEMY

CONCEPTS AND MODELS

- A framework in which we allow something to be true.
- Example: coins
- Concepts/models have properties

THE MONK'S JOURNEY

I got this puzzle from Sarah Flannery's autobiography "In Code", where she gets it from Arthur Koestler's "Art of Creation"

THE MAP OF MATHEMATICS THINKING

Concepts	Properties of Models	Arithmetic	Algebra	Techniques	Applications
Conceptual models of the world	Numeric properties: Natural, Integer, Rational, Real,	Numerical Operations: +, -, x, /, log, exp, mod	Dealing with missing data	Boolean Calculus	AI Chemistry
'A framework in which we allow something to be true'	Imaginary, Complex, Hyper Complex Boolean Properties: True, False	Boolean Operations: And, Or, Not	Solving Equations: $a = b + 2$ $b = 2a$	Cryptography Geometry Linear Algebra Matrices Set Theory Statistics Trigonometry Vectors	Economics Engineering Finance Genomics IT Medicine Physics Social Science
At the end of 'why' is 'Eureka!'	Set Properties: Elements	Operations: Union, Intersection	Dealing with functions: $y = f(x) = x^2 - 1$		

PROPERTIES OF CONCEPTS

What properties does this image have?

THE MAP OF MATHEMATICS THINKING

Concepts	Properties of Models	Arithmetic	Algebra	Techniques	Applications
Conceptual models of the world	Numeric properties: Natural, Integer, Rational, Real,	Numerical Operations: +, -, x, /, log, exp, mod	Dealing with missing data	Boolean Calculus	AI Chemistry
'A framework in which we allow something to be true'	Imaginary, Complex, Hyper Complex Boolean Properties: True, False	Boolean Operations: And, Or, Not	Solving Equations: $a = b + 2$ $b = 2a$	Cryptography Geometry Linear Algebra Matrices Set Theory Statistics Trigonometry Vectors	Economics Engineering Finance Genomics IT Medicine Physics Social Science
At the end of 'why' is 'Eureka!'	Set Properties: Elements	Operations: Union, Intersection	Dealing with functions: $y = f(x) = x^2 - 1$		

MESOPOTAMIAN MATHEMATICS

1 Y	11 ≪ ₹	21 ≪₹	31 ⋘ ₹	41 ÆY	51 AT
2	12 < TY	22 KY	32 ⋘™	42 XY	52 XY
3 PPP	13 < ???	23 《 TYY	33 ((()))	43 AYYY	53 XYYY
4	14 🗸 👺	24	34 444 197	44	
5	15 ◀₩		35 ₩₩	45 🏕 ₩	54 A
6 ***	16 ∢₹₹ ₹	26 ⋘₩	36 ₩₩	46 4 ***	56 A
7	17 ₹₹	27 🕊 🐯	37 444 🐯	47	2000
8	18 ∢₩	28 ⋘₩	38 ₩₩₩	48 🗱	57 🛠 🐯
9 🗰	19 ∢ ₩	29 餐 🇱	39 ₩₩	49 🛠 🎆	58 Æ
10 🗸	20 🕊	30 ₩	40	50 🍂	59 Æ

BRAHMAGUPTA & THE EXPANSION OF THE NUMBER LINE

ALGEBRA

'Al-jabr' - broken parts/ bone setting

How can we deal with missing information?

PAST PAPER EXAMPLE: 2019 PAPER 1, Q9

(a)(i) What is the perimeter P of the window, in terms of x & y?

PAST PAPER EXAMPLE: 2019 PAPER 1, Q9

(ii) What if we know the perimeter is 12m?

Show that in this case, y = (12 - (2+pi)x)/2 for $0 < x < 12/(2+\pi)$.

COGITO, ERGO SUM - CARTESIAN COORDINATES

Plotting functions as graphs - the bridge between

Algebra and Geometry

GEROLAMO CARDANO & COMPLEX NUMBERS

THE NUMBER PLANE (Numbers are now <u>2D</u>)

THE MAP OF MATHEMATICS THINKING

Concepts	Properties of Models	Arithmetic	Algebra	Techniques	Applications
Conceptual models of the world	Numeric properties: Natural, Integer, Rational, Real,	Numerical Operations: +, -, x, /, log, exp, mod	Dealing with missing data	Boolean Calculus	AI Chemistry
'A framework in which we allow something to be true'	Imaginary, Complex, Hyper Complex Boolean Properties: True, False	Boolean Operations: And, Or, Not	Solving Equations: $a = b + 2$ $b = 2a$	Cryptography Geometry Linear Algebra Matrices Set Theory Statistics Trigonometry Vectors	Economics Engineering Finance Genomics IT Medicine Physics Social Science
At the end of 'why' is 'Eureka!'	Set Properties: Elements	Operations: Union, Intersection	Dealing with functions: $y = f(x) = x^2 - 1$		

"Algebra is like sheet music. The important thing isn't can you read the music, but can you hear it? Can you hear the music?"

- Niels Bohr's Character in Christopher Nolan's *Oppenheimer*

STORYTIME: PAUL DIRAC & ANTIMATTER

'A theory with mathematical beauty is far more likely to be correct than an ugly one that fits some experimental data.'

ANTIMATTER FACTORY, CERN, GENEVA

"Beauty is truth, truth beauty,—that is all Ye know on earth, and all ye need to know."

- John Keats, "Ode on a Grecian Urn"

I have a question for you (again)...