由题可知, To时刻的资源分配情况:

资源情况	Max			Allocation				Need		Available		
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P ₁	5	5	9	2	1	2	3	4	7			
P ₂	5	3	6	4	0	2	1	3	4			
P ₃	4	0	11	4	0	5	0	0	6	2	3	3
P ₄	4	2	5	2	0	4	2	2	1			
P ₅	4	2	4	3	1	4	1	1	0			

(1) 利用安全性算法对 To 时刻的资源分配情况进行分析:

资源情况	Max			Need			Allocation			Wor	k+Alloc	E	
进程	А	В	С	Α	В	С	Α	В	С	Α	В	С	Finish
P ₃	2	3	3	0	0	6	4	0	5	6	3	8	true
P ₄	6	3	8	2	2	1	2	0	4	8	3	12	true
P ₅	8	3	12	1	1	0	3	1	4	11	4	16	true
P ₁	11	4	16	3	4	7	2	1	2	13	5	18	true
P ₂	13	5	18	1	3	4	4	0	2	17	5	20	true

可知,在 To时刻存在一个安全序列{P3,P4,P5,P1,P2},所以系统是安全的。

(2) P_2 发出请求向量 Request₂(0,3,4),系统按银行家算法进行检查:

Request₂(0,3,4) \leq Need₂(1,3,4)

Request₂(0,3,4)>Available₂(2,3,3)

不予分配, 让 P2 等待。

(3) P4发出请求向量 Request4(2,0,1), 系统按银行家算法进行检查:

Request₄(2,0,1) \leq Need₄(2,2,1)

Request₄(2,0,1) \leq Available₄(2,3,3)

系统先假定可为 P_4 分配资源,并修改 Available,Allocation $_4$ 和 Need $_4$ 向量,由此形成的资源变化情况如图所示:

资源情况	Max			Allocation				Need		Available		
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P ₁	5	5	9	2	1	2	3	4	7			
P ₂	5	3	6	4	0	2	1	3	4			
P ₃	4	0	11	4	0	5	0	0	6	0	3	2
P ₄	4	2	5	4	0	5	0	2	0			
P ₅	4	2	4	3	1	4	1	1	0			

再利用安全性算法检查此时系统是否安全:

资源情况	Max			Need			Allocation			Wor	k+Alloc	Finial	
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Finish
P ₃	0	3	2	0	0	6	4	0	5	4	3	7	true
P ₄	4	3	7	0	2	0	4	0	5	8	3	12	true
P ₅	8	3	12	1	1	0	3	1	4	11	4	16	true
P ₁	11	4	16	3	4	7	2	1	2	13	5	18	true
P ₂	13	5	18	1	3	4	4	0	2	17	5	20	true

可以找到一个安全序列 $\{P_3,P_4,P_5,P_1,P_2\}$ 。因此系统是安全的,可以立即将 P_4 所申请的资源分配给它。

(4) P_1 发出请求向量 Request₁(0,2,0), 系统按银行家算法进行检查:

Request₁(0,2,0) \leq Need₁(3,4,7)

Request₁(0,2,0) \leq Available₁(0,3,2)

系统先假定可为 P_1 分配资源,并修改 Available,Allocation₁ 和 Need₁ 向量,由此形成的资源变化情况如图所示:

资源情况	Max			Allocation				Need		Available			
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
P ₁	5	5	9	2	3	2	3	2	7				
P ₂	5	3	6	4	0	2	1	3	4				
P ₃	4	0	11	4	0	5	0	0	6	0	1	2	
P ₄	4	2	5	4	0	5	0	2	0				
P ₅	4	2	4	3	1	4	1	1	0				

可知,可用资源 Available(0,1,2)已不能满足任何进程的需要,所以系统进入不安全状态,此时系统不分配资源。