1.14 1) Quel que soit $x \in \mathbb{R}$, on a $f(x) = x^2 \ge 0$.

Si y < 0, il n'existe ainsi aucun $x \in \mathbb{R}$ tel que $f(x) = x^2 = y$. C'est la raison pour laquelle la fonction f n'est pas surjective.

Si l'ensemble d'arrivée est $E = \mathbb{R}_+$, alors la fonction f est surjective. En effet, pour tout $y \in \mathbb{R}_+$, on constate que $f(\sqrt{y}) = (\sqrt{y})^2 = y$, c'est-à-dire qu'il existe $x = \sqrt{y}$ tel que f(x) = y.

2) Soient x_1 et x_2 tels que $f(x_1) = f(x_2)$, c'est-à-dire $x_1^2 = x_2^2$. On en déduit $0 = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$. Cela implique non seulement $x_1 = x_2$, mais aussi $x_1 = -x_2$. Mais, sauf s'ils sont nuls, deux nombres opposés ne sont pas égaux. C'est pourquoi la fonction f n'est pas injective.

La fonction f devient injective si l'on exige que x_1 et x_2 soient de même signe. Cette condition est satisfaite lorsque l'ensemble de départ D est \mathbb{R}_+ ou bien \mathbb{R}_- .

3) Puisque la fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ est bijective, elle admet une fonction $x \longmapsto x^2$

réciproque.

La fonction réciproque s'obtient en résolvant l'équation $f(x) = x^2 = y$. Cette équation admet deux solutions $x = \sqrt{y} \in \mathbb{R}_+$ ou $x = -\sqrt{y} \in \mathbb{R}_-$. Vu le choix de l'ensemble de départ de la fonction f, on conclut que la fonction réciproque de f est donnée par f: $\mathbb{R}_+ \longrightarrow \mathbb{R}_+$

$$y \longmapsto \sqrt{y}$$