

Incidence functions MATH 8xyz – Lecture 12

Julien Arino
Department of Mathematics @ University of Manitoba
Maud Menten Institute @ PIMS
julien.arino@umanitoba.ca

Winter 20XX

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis.

We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Outline

Incidence Functions

A Bestiary of Functions

Example of a Problem Related to Incidence Functions

A Bit More on Changes in Incidence

Incidence Functions

A Bestiary of Functions

Example of a Problem Related to Incidence Functions

A Bit More on Changes in Incidence

Introduction to Incidence Functions

▶ Before continuing, let's discuss incidence functions, which describe how contacts between individuals occur and how they result in disease transmission

► See in particular McCallum, Barlow & Hone, How should pathogen transmission be modelled?, Trends in Ecology & Evolution 16 (2001)

Incidence Function versus Force of Infection

ightharpoonup Two different forms of the function representing the rate at which individuals move from compartment S to infected compartments:

$$ightharpoonup S' = -f(S, I, N)$$
 is an incidence function

►
$$S' = -\lambda(S, I, N)S$$
 is a force of infection

▶ The two are equivalent; the context usually determines which form is used. For example, PDE models structured by age of infection must integrate I(t, a) over age and therefore often use the force of infection.

Interactions - Infection

► The rate at which new cases appear is the incidence function

$$f(S,I,N) \tag{1}$$

ightharpoonup Depends on the number S of susceptibles, I of infectious individuals, and sometimes the total population N

- ► An incidence function includes two components:
 - ▶ a count of the number of contacts occurring
 - a description of the probability that such a contact, when it occurs, leads to pathogen transmission

p. 3 – Incidence Functions

Difficulty of the Choice

► Choosing a good function is difficult and is probably one of the most "unstable" parts of modelling the spread of infectious diseases

The Two Most Common Incidence Functions

► The two most commonly used incidence functions are the mass action incidence

$$f(S,I) = \beta SI \tag{2}$$

and the standard incidence (or proportional incidence)

$$f(S,I) = \beta \frac{SI}{S+I} \tag{3}$$

▶ In both cases, β is the disease transmission coefficient, although its exact interpretation varies

Units of β

▶ If X(t) is the population of compartment X at time t, then X' has units number/time

► In a differential equation, the terms on the left and right sides of the "=" sign must have the same units

▶ The incidence function therefore has units number/time

► (And if a force of infection is used, the units are 1/time)

Units - Mass Action Incidence

► Mass action incidence

$$\beta SI \propto \beta \times \text{number} \times \text{number}$$

has units number/time if β has units $1/(\text{number} \times \text{time})$

► Standard incidence

$$\beta SI/N \propto \beta \times \text{number} \times \text{number}/\text{number} \propto \beta \times \text{number}$$

has units number/time if β has units 1/time

Mass Action Incidence

$$f(S,I) = \beta SI \tag{2}$$

- ► The mixing of susceptibles and infectious individuals is homogeneous
- ▶ This is a strong assumption: the number of contacts is the product of the number of susceptibles and the number of infectious individuals, so each susceptible individual can potentially meet each infectious individual
- ▶ (hence the name, by analogy with gas dynamics in chemistry/physics)
- ▶ When the population is large, this assumption becomes unrealistic

Incidence Functions

Standard Incidence (Proportional)

► Another widely used form of the incidence function

$$f(S, I, N) = \beta \frac{SI}{N} \tag{3}$$

► Each susceptible meets a fraction of the infectious individuals

► Or vice-versa! See, e.g., Hethcote, Qualitative analyses of communicable disease models, *Mathematical Biosciences* (1976)

► Case of a larger population

Constant Population \implies Equivalence of Incidences

- ▶ When the total population is constant, many incidence functions are qualitatively equivalent
- ► Suppose that $N(t) \equiv N_0$, then

$$\beta SI = \tilde{\beta} \frac{SI}{N} \iff \tilde{\beta} = N_0 \beta$$

with this $\tilde{\beta}$, (2) and (3) are identical

► Remember that the units differ, however

Incidence Functions

A Bestiary of Functions

Example of a Problem Related to Incidence Functions

A Bit More on Changes in Incidence

General Incidence

$$f(S, I, N) = \beta S^q I^p \tag{4}$$

▶ These functions were introduced with the aim of fitting data: for fitting, this adds two parameters p, q. We will see, however, that much theoretical work uses this incidence

p. 11 - A Bestiary of Functions

Refuge Incidence

ightharpoonup Refuge effect; a proportion 0 < q < 1 of the population is truly susceptible, for example due to spatial heterogeneities

$$f(S, I, N) = \begin{cases} \beta I \left(N - \frac{I}{q} \right), & \text{if } I < qN \\ 0, & \text{if } I \ge qN \end{cases}$$
 (5)

Negative Binomial Incidence

$$f(S, I, N) = kS \ln \left(1 + \beta \frac{I}{k} \right) \tag{6}$$

▶ For small values of k, this describes a highly concentrated infection process, while as $k \to \infty$, we tend towards a mass action incidence

. 13 - A Bestiary of Functions

Asymptotic Contact

$$f(S, I, N) = \frac{N}{1 - \varepsilon + \varepsilon N} \frac{F(S, I)}{N}$$
(7)

where F is one of the functions already described

▶ When $\varepsilon=0$, contacts are proportional to N, while when $\varepsilon=1$, contacts are independent of N

Asymptomatic Transmission

$$f(S, I, N) = \beta \frac{SI}{c + S + I} \tag{8}$$

where c is a constant. For example,

$$\frac{C(N)}{N}F(S,I)$$

with $C(N) = N/(1 - \varepsilon + \varepsilon N)$ the function describing the contact rate and F(S, I) the function describing disease spread, which is assumed here to be a negative binomial incidence

Changing Incidence

$$F(S, I, N) = \begin{cases} \beta SI & \text{if } N \leq \hat{N} \\ \beta \frac{SI}{N} & \text{if } N > \hat{N} \end{cases}$$
 (9)

► Arino & McCluskey, Effect of a sharp change of the incidence function on the dynamics of a simple disease, *Journal of Biological Dynamics* (2010)

o. 16 - A Bestiary of Functions

Incidence Functions

A Bestiary of Functions

Example of a Problem Related to Incidence Functions

A Bit More on Changes in Incidence

Change Shape or Saturate?

► C. Kribs-Zaleta. To switch or taper off: the dynamics of saturation, *Mathematical* Biosciences (2004)

Two Different Incidence Functions

▶ We will consider the role of two different functions: a continuous and differentiable function

$$\beta_{sm}(N) = \beta_0 \frac{N}{N+A} \tag{10}$$

and a continuous but with a switch (abrupt transition?)

$$\beta_{sw}(N) = \begin{cases} \beta_0 \frac{N}{A}, & N < A \\ \beta_0, & N \ge A \end{cases}$$
 (11)

► These functions represent saturation in different ways

The Model

► SIS model in non-constant population

$$I' = \beta(N)(N - I)\frac{I}{N} - (d + \gamma + \delta)I$$
 (1)

$$N' = bN\left(1 - \frac{N}{K}\right) - dN - \delta I \tag{2}$$

Non-dimensionalization of the Model

▶ Let
$$\bar{N} = (1 - \frac{d}{b})K$$
, $i = I/N$ and $n = N/\bar{N}$. Then

$$i' = (\beta(\bar{N}n) - \delta)i(1-i) - (b+\gamma)i + (b-d)in$$

$$n' = (b-d)n(1-n) - \delta in$$
 (12b)

(12a)

The Basic Reproduction Number

► Whatever incidence function is used

$$\mathcal{R}_0 = rac{eta(ar{N})}{d+\gamma+\delta}$$

Analysis with $\beta = \beta_{sw}$

- ▶ With $\beta = \beta_{sw}$, there are 2 sub-models
- ► Case I $\beta(N) = \beta_0 N/A$; 3 equilibria (i^*, n^*) in $[0, 1]^2$:
 - ▶ the origin, always unstable
 - ▶ the ESMP (0,1), GAS when $\mathcal{R}_0 < 1$
 - ightharpoonup a unique EE that exists and is LAS when $\mathcal{R}_0 > 1$
- ▶ Case II $\beta(N) = \beta_0$. We have 4 equilibria (i^*, n^*) :
 - ▶ the origin, always unstable
 - ▶ the ESMP, GAS when $\mathcal{R}_0 < 1$
 - ightharpoonup a unique EE that exists and is LAS when $\mathcal{R}_0 > 1$
 - ▶ an extinction PE that exists when $\beta \geq b + \gamma + \delta$ and is LAS iff, i.e., when $\mathcal{R}_0 > 1$ but the EE does not exist

Detailed Analysis

- ▶ Let $a = A/\bar{N}$
- \blacktriangleright If a > 1, all equilibria are below the switching point and the model reduces to Case I (model without saturation)
- \blacktriangleright If a < 1, there is a single ESMP (as well as the unstable trivial equilibrium) and there is a unique EE which is the EE of Case I iff

$$a>1-rac{1}{k}\left(1-rac{d+\gamma+\delta}{eta_0}
ight)$$

and the FF of Case II otherwise

▶ The model with switch does not have the extinction PE of Case II

Example of a Problem Related to Incidence Functions

$$\mathcal{R}_0$$
 in the Model with Switch

► In the model with switch

$$\mathcal{R}_0 = rac{eta_0}{d+\gamma+\delta} \; rac{1}{\mathsf{max}(\pmb{a},1)}$$

\mathcal{R}_0 in the Model with Differentiable Saturation

▶ In the model with differentiable saturation (10)

$$\mathcal{R}_0 = \frac{\beta_0}{d + \gamma + \delta} \; \frac{1}{a + 1}$$

▶ We have the trivial PE (unstable), the ESMP (GAS when $\mathcal{R}_0 < 1$) and a unique EE that exists and is LAS when $\mathcal{R}_0 > 1$

Main Differences Between the Models

- ▶ The main difference between the models is quantitative: the point where $\mathcal{R}_0 < 1$ changes; this reflects that $\beta_{sm} < \beta_{sw}$
- ▶ Both models predict the eradication of the disease for a large region of the parameter space and exclude the possibility of extinction that the classical model with standard incidence allows
- ► Also, in both cases, the EE is such that

$$\lim_{\mathcal{R}_0 \to \infty} i^* = \min(k, 1)$$

i.e., for k < 1 (i.e., $r < d + \delta$), the prevalence at the EE never approaches 100% because the reproductive resilience of the population is so low that the population becomes too small for the disease to spread to all, regardless of the value of \mathcal{R}_0

26 - Example of a Problem Related to Incidence Functions

Incidence Functions

A Bestiary of Functions

Example of a Problem Related to Incidence Functions

A Bit More on Changes in Incidence

A Bit More on Changes in Incidence

The Basic Model

- **Density-Dependent Incidence**
- Cases Where Infection Exceeds Treatment Capacities

The Basic Model

$$S' = bN - dS - F(S, I) + \gamma I$$

$$I' = F(S, I) - (d + \delta + \gamma)I$$
(13a)
(13b)

► So the dynamics of the total population are

$$N' = (b - d)N - \delta I$$

and the system has EEs iff $d < b < d + \delta$

System in Proportions

▶ We switch to the system in proportions s = S/N and i = I/N. The total population is not constant and we therefore consider

$$i' = f(i, N) - (b + \delta + \gamma)i + \delta i^2$$
(14a)

$$N' = (b - d - \delta i)N \tag{14b}$$

with

$$f(i,N) = \frac{F(S,I)}{N}$$

► We define

$$f(i,0) = \lim_{N \to 0} f(i,N)$$

and we assume that this limit exists (we exclude, for example, that $F(\alpha S, \alpha I)$ is sub-linear in α near 0)

Existence of Solutions

Theorem 1

The solutions of (14a)-(14b) in the positively invariant band

$$\mathcal{D} = \{(i, N): 0 \le i \le 1, N \ge 0\}$$

exist for all t > 0

- The Basic Model
- **Density-Dependent Incidence**
- Cases Where Infection Exceeds Treatment Capacities

Density-Dependent Incidence

▶ The first case we consider is one with an incidence of the form we have already seen

$$F(S, I, N) = \begin{cases} \beta SI & \text{if } N \leq \hat{N} \\ \beta \frac{SI}{N} & \text{if } N > \hat{N} \end{cases}$$
 (9)

where we normalize so that $\hat{N}=1$

 \blacktriangleright We denote by \mathcal{D}_I the part of \mathcal{D} where N < 1 and by \mathcal{D}_H where N > 1

Explicit Solution in \mathcal{D}_H

Theorem 2

Suppose that at time $t = \tau \geq 0$, we have $(i_{\tau}, N_{\tau}) := (i(\tau), N(\tau)) \in \mathcal{D}_H$. Then there exists a potentially infinite interval \mathcal{I} with left endpoint the point $t = \tau$, such that for all $t \in \mathcal{I}$, we have $(i(t), N(t)) \in \mathcal{D}_H$ with

$$i(t) = \frac{Ki_{\tau}}{\Psi(t - \tau)} \tag{3}$$

$$N(t) = N_{\tau} e^{(b-d)(t-\tau)} \exp\left(-\delta K i_{\tau} \int_{\tau}^{t} \frac{du}{\Psi(u-\tau)}\right)$$
(4)

where $K = \beta - (d + \gamma + \delta)$ and

$$\Psi(u) = i_{\tau}(\beta - \delta)(1 - e^{-Ku}) + Ke^{-Ku}$$

Equilibria of the System

Theorem 3

Let

$$N_{\Delta} = \frac{\delta(d+\delta+\gamma)}{\beta(d+\delta-b)}$$

For all parameter values, the ESMP is

$$e_0 := (i_0, N_0) = (0, 0)$$

- ▶ If b < d. there is no other PE and e_0 is GAS
- ightharpoonup If d < b, e_0 is unstable
- ▶ If $d < b < d + \delta$, then the presence of EE $e_{\star} = (i_{\star}, N_{\star})$, $i_{\star} = (b d)/\delta$ depends on
 - \blacktriangleright If $N_{\wedge} < 1$, $e_{\star} = (i_{\star}, N_{\wedge})$ LAS \blacktriangleright If $N_{\Lambda} = 1$, $e_{\star} = (i_{\star}, N)$ for all $N \geq 1$
- If $N_{\Delta} > 1$, e_{\star} does not exist A Bit More on Changes in Incidence

- The Basic Model
- Density-Dependent Incidence
- Cases Where Infection Exceeds Treatment Capacities

Incidence with Exceeding Capacities

Suppose

$$F(S, I, N) = \begin{cases} \beta_1 \frac{SI}{N} & \text{if } I \leq \hat{I} \\ \beta_1 \frac{SI}{N} + \beta_2 S(I - \hat{I}) & \text{if } I > \hat{I} \end{cases}$$
(15)

or, in proportions, f(i, N) is of the form

$$\begin{cases} \beta_1(1-i)i & \text{if } iN \leq \hat{I} \\ \beta_1(1-i)i + \beta_2(1-i)(iN-\hat{I}) & \text{if } iN > \hat{I} \end{cases}$$
 (16)

The Regions in the Plane

▶ Here, the change does not occur for a value of N but along the hyperbola $N = \hat{I}/i$, for $i \in]0,1]$, and we adapt the regions \mathcal{D}_L and \mathcal{D}_H

Equilibria

► We potentially have 3 PEs

$$e_0 = (0,0)$$
 $\bar{e} = (i_{LS},0)$ $e_{\star} = (i_{N}, N_{HS}(i_{N}))$

with

$$i_{LS} = 1 - \frac{b + \gamma}{\beta_1 - \delta},\tag{5}$$

$$i_{N} = \frac{b - d}{\delta} \tag{6}$$

and

$$N_{HS}(i) = \frac{\hat{I}}{i} + \frac{b+\gamma}{\beta_2(1-i)} - \frac{\beta_1 - \delta}{\beta_2}$$

Stability of the Equilibria

Theorem 4

The system (14a)-(14b) with incidence (16) has, potentially, 3 PEs, whose stability is given by the following table, in which we use

$$\mathcal{E} = \frac{\beta_1}{b + \delta + \gamma}$$

and

$$S_N = \frac{(b+\gamma)(b-d)}{d+\delta-b} + \frac{\beta_2 \hat{I}(d+\delta-b)}{d-b}$$

Stability Table

	e_0	ē	e_{\star}
$b < d, \mathcal{E} < 1$	GAS	Does not exist	Does not exist
$b < d, \mathcal{E} > 1$	Unstable	GAS	Does not exist
$d < b < d + \delta$, $i_{LS} < i_N$, $S_N > 0$	Unstable	Unstable	LAS
$d < b < d + \delta$, $i_{LS} < i_N$, $S_N < 0$	Unstable	Unstable	Unstable
$d < b < d + \delta, i_{LS} > i_{N}$	Unstable	GAS	Does not exist
$d + \delta < b$	Unstable	Unstable	Does not exist

▶ The SAG is obtained using an extension of Dulac's Theorem taking into account the existence, in a C^1 field, of a curve on which the field is C^0

p. 37 - A Bit More on Changes in Incidence

Periodic Solutions

- ► This system admits periodic solutions
- ► We consider the case

$d < b < d + \delta$, $i_{LS} < i_N$, $S_N > 0$			
$d < b < d + \delta$, $i_{LS} < i_N$, $S_N < 0$	Unstable	Unstable	Unstable

Theorem 5

For all $\varepsilon > 0$ and all $\mathcal{S}_N^0 > 0$, there exists $\bar{\mathcal{S}}_N \in]-\mathcal{S}_N^0, 0[$ such that the system (14a)–(14b) with incidence (16) has a non-trivial periodic orbit in $\mathcal{B}_{\varepsilon}(e_{\star})$ (open ball centered at e_{\star} and radius ε) for $\mathcal{S}_N = \bar{\mathcal{S}}_N$

Bibliography I

- Arino, J. and McCluskey, C. C. (2010). Effect of a sharp change of the incidence function on the dynamics of a simple disease. Journal of Biological Dynamics, 4(5):490-505.
- McCallum, H., Barlow, N., and Hone, J. (2001). How should pathogen transmission be modelled? Trends in Ecology & Evolution, 16(6):295-300.