COMPUTATION TREE LOGIC (CTL)

Slides by Alessandro Artale http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani.

– p. 1/35

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Computation Tree logic Vs. LTL

LTL implicitly quantifies universally over paths.

 $\langle \mathcal{KM}, s \rangle \models \phi$ iff for every path π starting at $s \langle \mathcal{KM}, \pi \rangle \models \phi$

- Properties that assert the existence of a path cannot be expressed. In particular, properties which mix existential and universal path quantifiers cannot be expressed.
- The Computation Tree Logic, CTL, solves these problems!
 - CTL explicitly introduces path quantifiers!
 - CTL is the natural temporal logic interpreted over Branching Time Structures.

- n 3/35

CTL at a glance

- CTL is evaluated over branching-time structures (Trees).
- CTL explicitly introduces path quantifiers:

All Paths: A

Exists a Path: **E**.

- Every temporal operator $-\Box(G), \diamondsuit(F), \bigcirc(X), \ \mathcal{U}(U)$ preceded by a path quantifier (A or E).
- Universal modalities: AF, AG, AX, AU The temporal formula is true in all the paths starting in the current state.
- Existential modalities: EF, EG, EX, EU
 The temporal formula is true in some path starting in
 the current state.

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- n 5/35

CTL: Syntax

Countable set Σ of *atomic propositions*: p,q,... the set FORM of formulas is:

Intuition:

- E there Exists a path
- A in All paths
- F sometime in the Future
- Gobally in the future

CTL: Semantics

We interpret our CTL temporal formulas over Kripke Models linearized as trees (e.g. AFdone).

- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

– p. 7/35

CTL: Semantics (Cont.)

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulas over Kripke Models:

$$\mathcal{KM} = \langle S, I, R, \Sigma, L \rangle$$

The semantics of a temporal formula is provided by the *satisfaction* relation:

$$\models$$
: $(\mathcal{KM} \times S \times FORM) \rightarrow \{true, false\}$

CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a state/time " s_i "

$$\mathcal{KM}, s_i \models p$$
 iff $p \in L(s_i)$ (for $p \in \Sigma$)

The semantics for the classical operators is as expected:

$$\mathcal{K}\mathcal{M}, s_i \models \neg \varphi$$
 iff $\mathcal{K}\mathcal{M}, s_i \not\models \varphi$
 $\mathcal{K}\mathcal{M}, s_i \models \varphi \land \psi$ iff $\mathcal{K}\mathcal{M}, s_i \models \varphi$ and $\mathcal{K}\mathcal{M}, s_i \models \psi$
 $\mathcal{K}\mathcal{M}, s_i \models \varphi \lor \psi$ iff $\mathcal{K}\mathcal{M}, s_i \models \varphi$ or $\mathcal{K}\mathcal{M}, s_i \models \psi$
 $\mathcal{K}\mathcal{M}, s_i \models \varphi \Rightarrow \psi$ iff if $\mathcal{K}\mathcal{M}, s_i \models \varphi$ then $\mathcal{K}\mathcal{M}, s_i \models \psi$
 $\mathcal{K}\mathcal{M}, s_i \models \top$
 $\mathcal{K}\mathcal{M}, s_i \not\models \bot$

- n 9/35

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where $\pi = (s_i, s_{i+1}, ...)$ is a generic path outgoing from state $s_i \text{in } \mathcal{KM}$.

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{AX} \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \qquad \mathcal{K}\mathcal{M}, s_{i+1} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{EX} \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \qquad \mathcal{K}\mathcal{M}, s_{i+1} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{AG} \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \qquad \forall j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{EG} \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \qquad \forall j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{EF} \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \qquad \exists j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbf{EF} \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \qquad \exists j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models (\varphi \mathbf{AU} \psi) \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \qquad \exists j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{M}, s_{k} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \varphi \mathbf{EU} \psi) \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \qquad \exists j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{M}, s_{k} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \varphi \mathbf{EU} \psi) \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \qquad \exists j \geq i. \mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{K}\mathcal{M}, s_{k} \models \varphi$$

CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with temporal operators.

- > "Necessarily Next". $\mathbf{A}\mathbf{X}\varphi$ is true in s_t iff φ is true in every successor state s_{t+1}
- > "Possibly Next". **EX** φ is true in s_t iff φ is true in one successor state s_{t+1}
- > "Necessarily in the future" (or "Inevitably"). **AF** φ is true in s_t iff φ is inevitably true in some $s_{t'}$ with $t' \geq t$
- > "Possibly in the future" (or "Possibly"). EF φ is true in s_t iff φ may be true in some $s_{t'}$ with $t' \ge t$

– p. 11/35

CTL Semantics: Intuitions (Cont.)

- > "Globally" (or "always"). **AG** φ is true in s_t iff φ is true in **all** $s_{t'}$ with t' > t
- > "Possibly henceforth". **EG** φ is true in s_t iff φ is possibly true henceforth
- > "Necessarily Until". $(\phi \mathbf{A} \mathbf{U} \psi)$ is true in s_t iff necessarily ϕ holds until ψ holds.
- > "Possibly Until". $(\phi \mathbf{E} \mathbf{U} \psi)$ is true in s_t iff possibly ϕ holds until ψ holds.

CTL Semantics: Intuitions (Cont.)

- n 13/34

A Complete Set of CTL Operators

All CTL operators can be expressed via: EX,EG,EU

- $\mathbf{AX} \varphi \equiv \neg \mathbf{EX} \neg \varphi$
- $\mathbf{AF}\phi \equiv \neg \mathbf{EG} \neg \phi$
- $\mathbf{EF} \varphi \equiv (\top \mathbf{EU} \varphi)$
- $\mathbf{AG}\varphi \equiv \neg \mathbf{EF} \neg \varphi \equiv \neg (\top \mathbf{EU} \neg \varphi)$

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

– р. 15/35

Safety Properties

Safety:

"something bad will not happen"

Typical examples:

$$\mathbf{AG} \neg (reactor_temp > 1000)$$

 $\mathbf{AG} \neg (one_way \land \mathbf{AX} other_way)$
 $\mathbf{AG} \neg ((x = 0) \land \mathbf{AXAXAX}(y = z/x))$
and so on.....

Usually: AG¬....

Liveness Properties

Liveness:

"something good will happen"

Typical examples:

```
AFrich
```

$$\mathbf{AF}(x > 5)$$

 $\mathbf{AG}(start \Rightarrow \mathbf{AF}terminate)$

and so on.....

Usually: AF...

– р. 17/35

Fairness Properties

Often only really useful when scheduling processes, responding to messages, etc.

Fairness:

"something is successful/allocated infinitely often"

Typical example:

AG(**AF**enabled)

Usually: AGAF...

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- р. 19/35

The CTL Model Checking Problem

The CTL Model Checking Problem is formulated as:

$$\mathcal{KM} \models \phi$$

Check if \mathcal{KM} , $s_0 \models \phi$, for **every initial state**, s_0 , of the Kripke structure \mathcal{KM} .

Example 1: Mutual Exclusion (Safety)

- p. 21/35

Example 1: Mutual Exclusion (Safety)

YES: There is no reachable state in which $(C_1 \wedge C_2)$ holds! (Same as the $\square \neg (C_1 \wedge C_2)$ in LTL.)

Example 2: Liveness

- р. 22/35

Example 2: Liveness

YES: every path starting from each state where T_1 holds passes through a state where C_1 holds.

(Same as $\square(T_1 \Rightarrow \lozenge C_1)$ in LTL)

Example 3: Fairness

- n 23/35

Example 3: Fairness

NO: e.g., in the initial state, there is the blue cyclic path in which C_1 never holds! (Same as $\Box \diamondsuit C_1$ in LTL)

Example 4: Non-Blocking

- р. 24/35

Example 4: Non-Blocking

YES: from each state where N_1 holds there is a path leading to a state where T_1 holds. (No corresponding LTL formulas)

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- p. 25/35

LTL Vs. CTL: Expressiveness

- > Many CTL formulas cannot be expressed in LTL (e.g., those containing paths quantified existentially) E.g., $\mathbf{AG}(N_1 \Rightarrow \mathbf{EF}T_1)$
- > Many LTL formulas cannot be expressed in CTL E.g., $\Box \diamondsuit T_1 \Rightarrow \Box \diamondsuit C_1$ (Strong Fairness in LTL) i.e, formulas that select a range of paths with a property $(\diamondsuit p \Rightarrow \diamondsuit q \text{ Vs. } \mathbf{AG}(p \Rightarrow \mathbf{AF}q))$
- > Some formluas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1) E.g., $\Box \neg (C_1 \land C_2)$, $\diamondsuit C_1$, $\Box (T_1 \Rightarrow \diamondsuit C_1)$, $\Box \diamondsuit C_1$

LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the application and the personal preferences.

- р. 27/35

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The Computation Tree Logic CTL*

- CTL* is a logic that combines the expressive power of LTL and CTL.
- Temporal operators can be applied without any constraints.
- A(Xφ ∨ XXφ).
 Along all paths, φ is true in the next state or the next two steps.
- $E(GF\phi)$. There is a path along which ϕ is infinitely often true.

- n 29/35

CTL*: Syntax

Countable set Σ of atomic propositions: p, q, ... we distinguish between *States Formulas* (evaluated on states):

$$\varphi, \psi \rightarrow p \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid$$

$$A\alpha \mid \mathbf{E}\alpha$$

and *Path Formulas* (evaluated on paths):

The set of CTL* formulas FORM is the set of state formulas.

CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a state " s_0 "

$$\mathcal{KM}, s_0 \models p$$
 iff $p \in L(s_0)$ (for $p \in \Sigma$)

The semantics for *State Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 :

$$\mathcal{K}\mathcal{M}, s_0 \models \neg \varphi$$
 iff $\mathcal{K}\mathcal{M}, s_0 \not\models \varphi$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \land \psi$ iff $\mathcal{K}\mathcal{M}, s_0 \models \varphi$ and $\mathcal{K}\mathcal{M}, s_0 \models \psi$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \lor \psi$ iff $\mathcal{K}\mathcal{M}, s_0 \models \varphi$ or $\mathcal{K}\mathcal{M}, s_0 \models \psi$
 $\mathcal{K}\mathcal{M}, s_0 \models \mathbf{E}\alpha$ iff $\exists \pi = (s_0, s_1, \ldots)$ such that $\mathcal{K}\mathcal{M}, \pi \models \alpha$
 $\mathcal{K}\mathcal{M}, s_0 \models \mathbf{A}\alpha$ iff $\forall \pi = (s_0, s_1, \ldots)$ then $\mathcal{K}\mathcal{M}, \pi \models \alpha$

- n 31/35

CTL* Semantics: Path Formulas

The semantics for *Path Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 and π^i denotes the suffix path $(s_i, s_{i+1}, ...)$:

$$\begin{array}{lll} \mathcal{KM}\,, \pi \models \varphi & \quad \text{iff} \quad \mathcal{KM}\,, s_0 \models \varphi \\ \\ \mathcal{KM}\,, \pi \models \neg \alpha & \quad \text{iff} \quad \mathcal{KM}\,, \pi \not\models \alpha \\ \\ \mathcal{KM}\,, \pi \models \alpha \land \beta & \quad \text{iff} \quad \mathcal{KM}\,, \pi \models \alpha \text{ and } \mathcal{KM}\,, \pi \models \beta \\ \\ \mathcal{KM}\,, \pi \models \alpha \lor \beta & \quad \text{iff} \quad \mathcal{KM}\,, \pi \models \alpha \text{ or } \mathcal{KM}\,, \pi \models \beta \\ \\ \mathcal{KM}\,, \pi \models \mathbf{F}\alpha & \quad \text{iff} \quad \exists i \geq 0 \, \text{such that } \mathcal{KM}\,, \pi^i \models \alpha \\ \\ \mathcal{KM}\,, \pi \models \mathbf{G}\alpha & \quad \text{iff} \quad \forall i \geq 0 \, \text{then } \mathcal{KM}\,, \pi^i \models \alpha \\ \\ \mathcal{KM}\,, \pi \models \mathbf{X}\alpha & \quad \text{iff} \quad \mathcal{KM}\,, \pi^1 \models \alpha \\ \\ \mathcal{KM}\,, \pi \models \alpha \mathbf{U}\beta & \quad \text{iff} \quad \exists i \geq 0 \, \text{such that } \mathcal{KM}\,, \pi^i \models \beta \, \text{and} \\ \forall j.(0 \leq j \leq i) \, \text{then } \mathcal{KM}\,, \pi^j \models \alpha \\ \end{array}$$

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

```
> \varphi in CTL \Longrightarrow \varphi in CTL* (e.g., \mathbf{AG}(N_1 \Rightarrow \mathbf{EF}T_1))
> \varphi in LTL \Longrightarrow \mathbf{A}\varphi in CTL* (e.g., \mathbf{A}(\mathbf{GF}T_1 \Rightarrow \mathbf{GF}C_1))
> LTL \cup CTL \subset CTL* (e.g., \mathbf{E}(\mathbf{GF}p \Rightarrow \mathbf{GF}q))
```


- n 33/34

CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of checking *Satisbiability*

Logic	Complexity
LTL	PSpace-Complete
CTL	ExpTime-Complete
CTL*	2ExpTime-Complete

CTL* Vs LTL Vs CTL: Complexity (Cont.)

The following Table shows the Computational Complexity of *Model Checking* (M.C.)

• Since M.C. has 2 inputs – the model, $\mathcal M$, and the formula, ϕ – we give two complexity measures.

Logic	Complexity w.r.t.	$ \varphi $ Complexity w.r.t. $ \mathcal{M} $
LTL	PSpace-Complete	P (linear)
CTL	P-Complete	P (linear)
CTL*	PSpace-Complete	P (linear)

– p. 35/35