OSI Model

Layer Function

Application Layer

Provision of interfaces to applications

Presentation Layer

Format conversion

such as encryption and compression,

Session Layer

Provision of session management

for individual application

Transport Layer

Provision of data transfer service (TCP/UDP)

Network Layer

Decision of communication path across the network (IP Address)

2. Data Link Layer

Decision of communication path between adjacent nodes and data transfer (MAC Address)

Physical Layer

Electrical connection

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example	Central Devi			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access Directory services • Network management	Applicat	User Applications SMTP		Process
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the	Syntax layer encrypt & decrypt (if needed	JPEG/AS	JPEG/ASCII EBDIC/TIFF/GIF PICT		
"Translator" for the network.	Data encryption • Character Set Translation	PICT			
Session (5)	Synch & send to ports (logical ports)	Logical F	Logical Ports		
Allows session establishment between processes running on different stations.	Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.		RPC/SQL/NFS NetBIOS names		
Transport (4)	TCP Host to Host, Flow Control	F.		E	Host to
Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	T TCP/SPX	/UDP	A	Host
Network (3)			Routers		
Controls the operations of the subnet, deciding which physical path the data takes.	Bouting a Cubact troffic control a Frame fragmentation a	G IP/IPX/IC	СМР	Can be used	Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	WAP	Bridge WAP		Network
Physical (1)	Physical structure Cables, hubs, etc.	Hub	Layers		HOLHOIR
Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts				

OSI vs. TCP/IP

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

APPLICATION

TRANSPORT

INTERNET

NETWORK ACCESS

TCP/IP Stack

Protocol Stack Standards/Specs application application OSI 5-7 TCP OSI 4 **UDP** RFC 768, 793 etc. RFC 791 etc. IΡ OSI 3 Ethernet: RFC 826, 894, 895, 1029, 1972... h/w interface OSI 1-2 Wireless 802.11*: IEEE 802.11*

TCP/IP Reference Model—The Internet Architecture

- **♦** The Internet Architecture (Section 1 of RFC 1122)
 - Necessity of the network layer

Layer Encapsulation

Protocol Demultiplexing

Multiple choices at each layer

Chapter 1: roadmap

- ◆What *is* the Internet?
- ◆What *is* a protocol?
- ◆ Network edge: hosts, access network, physical media
- ◆ Network core: packet/circuit switching, internet structure
- ◆ Performance: loss, delay, throughput
- **♦** Security
- ◆ Protocol layers, service models
- **♦** History

Chapter 1: introduction

our goal:

- get "feel" and terminology
- more depth, detail *later* in course
- approach:
 - use Internet as example

overview.

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

TCP/IP Stack

TCP/IP Stack Components

The Internet: a "nuts and bolts" view

Billions of connected computing devices:

- hosts = end systems
- running network apps at Interne t's "edge"

Packet switches: forward pack ets (chunks of data)

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

collection of devices, routers, link
 s: managed by an organization

"Fun" Internet-connected devices

Pacemaker & Monitor

Tweet-a-watt: monitor energy use

control cable TV

Web-enabled toaster + weather forecaster

sensorized, bed mattress

Others?

Connected car

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs

- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: a "service" view

- Infrastructure that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, e-commerce, social media, inter-connected appliances, ...

- provides programming interface to distributed applications:
 - "hooks" allowing sending/receiving a pps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

A human protocol and a computer network protocol:

Q: other human protocols?

Chapter 1: roadmap

- ◆ What *is* the Internet?
- ◆What *is* a protocol?
- ◆ Network edge: hosts, access network, physical media
- ◆ Network core: packet/circuit switching, internet structure
- ◆ Performance: loss, delay, throughput
- **♦** Security
- Protocol layers, service models
- History

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

What to look for:

- transmission rate (bits per second) of access network?
- shared or dedicated access among users?

Access networks: cable-based access

frequency division multiplexing (FDM): different channels transmitted in different frequency bands

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbs downstream transmission rate, 30-100 M bps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Review

- Protocol graph
- Reliable data transfer (rdt) in Ch. 3
- ◆ IEEE 802.11, .11b, .11a, .11n, .11ac, .11ax, .11be
- ◆ ATM
- ♦ FDDI
- Network core
- Network edge
- ◆ SAP
- **♦** Ethernet
- Network layers

Quiz 1 will be... in March