7.3. The frequency which, under the sampling theorem, must be exceeded by the sampling frequency is called the *Nyquist rate*. Determine the Nyquist rate corresponding to each of the following signals:

(a)
$$x(t) = 1 + \cos(2,000\pi t) + \sin(4,000\pi t)$$

(b)
$$x(t) = \frac{\sin(4,000\pi t)}{\pi t}$$

(c)
$$x(t) = \left(\frac{\sin(4,000\pi t)}{\pi t}\right)^2$$

(C) let
$$\chi_1(t) = \frac{\sin(4000\chi t)}{\pi t}$$
 $\chi(t) = \chi_1(t) \cdot \chi_1(t)$

$$\frac{\pi t}{\pi t}$$

7.5. Let x(t) be a signal with Nyquist rate ω_0 . Also, let

$$y(t) = x(t)p(t-1),$$

where

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$
, and $T < \frac{2\pi}{\omega_0}$.

Specify the constraints on the magnitude and phase of the frequency response of a filter that gives x(t) as its output when y(t) is the input.

It is clear that if
$$H(\hat{J}W) = GT$$
 $|W| < Wc$
 0 otherwise where $\frac{Wo}{2} < Wc < \frac{2Z}{4} - \frac{Wo}{2}$

7.7. A signal x(t) undergoes a zero-order hold operation with an effective sampling period T to produce a signal $x_0(t)$. Let $x_1(t)$ denote the result of a first-order hold operation on the samples of x(t); i.e.,

$$x_1(t) = \sum_{n=-\infty}^{\infty} x(nT)h_1(t-nT),$$

Figure P7.7

$$xitt) = \lim_{n \to \infty} x(n\tau) h_1(t-n\tau) = h_1(t) \cdot * \left\{ \lim_{n \to \infty} x(n\tau) \cdot 8(t-n\tau) \right\}$$

Taking the Former Transform: $X_1(jW) = H_1(jW) \cdot X_p(jW)$

Taking the Fourier Transform: Xo(jw)= Holjw)· Xp(jw)

We know that: $H_1(j_1) = \frac{1}{T} \left[\frac{\sin(\frac{MT}{2})}{w/2} \right]^2$, $H_0(j_1) = e^{j_1} \left[\frac{w}{2\sin(\frac{MT}{2})} \right]$

$$H(jw) = \left(\frac{\pm \sin^2(\frac{wT}{2})}{w^2/4}\right) \cdot e^{j\frac{\omega T}{2}} \left[\frac{w}{2\sin(\frac{wT}{2})}\right]$$

$$= \pm e^{j\frac{\omega T}{2}} \frac{2\sin(\frac{wT}{2})}{w}$$

7.8. Consider a real, odd, and periodic signal x(t) whose Fourier series representation may be expressed as

$$x(t) = \sum_{k=0}^{5} \left(\frac{1}{2}\right)^k \sin(k\pi t).$$

Let $\hat{x}(t)$ represent the signal obtained by performing impulse-train sampling on x(t) using a sampling period of T = 0.2.

- (a) Does aliasing occur when this impulse-train sampling is performed on x(t)?
- (b) If $\hat{x}(t)$ is passed through an ideal lowpass filter with cutoff frequency π/T and passband gain T, determine the Fourier series representation of the output signal g(t).

(a)
$$\chi(t) = \sin(0) + (\frac{1}{2})\sin(\pi t) + \cdots + (\frac{1}{2})^5 \sin(5\pi t)$$

 $W_{max} = 5\pi$ $W_{s} > 2W_{max} = 10\pi$

Yes, aliasing does occur in this case

(b) Since aliasing has already resulted in the loss of the (\$)5 sin (57tt)

the output will be:
$$y(t) = (\pm)^k \sin(k\pi t) = (\pm)^k G_k e^{-\frac{1}{2}}$$

$$(C_k = \frac{1}{2}(a_k - jb_k) = -\frac{1}{2}j(\frac{1}{2})^k = -j(\frac{1}{2})^{k+1}$$
 $1 \le k \le 4$
 $C_k = \frac{1}{2}(a_k + jb_k) = \frac{1}{2}j(\frac{1}{2})^k = -j(\frac{1}{2})^{k+1}$ $1 \le k \le 4$
 $C_0 = 0$

$$x(t) = \left(\frac{\sin 50\pi t}{\pi t}\right)^2,$$

which we wish to sample with a sampling frequency of $\omega_s = 150\pi$ to obtain a signal g(t) with Fourier transform $G(j\omega)$. Determine the maximum value of ω_0 for which it is guaranteed that

$$G(j\omega) = 75X(j\omega) \text{ for } |\omega| \le \omega_0$$

where $X(j\omega)$ is the Fourier transform of x(t).

$$X(t) = x_1(t) \cdot x_1(t) \qquad x_1(t) = \underbrace{x_1 x_2(j_w)}_{\pi t} \underbrace{F}_{\pi t} x_1(j_w) = \begin{cases} 1 & |w| < s_0 \pi \\ 0 & |w| > s_0 \pi \end{cases}$$

$$\Rightarrow X(j_w) = \underbrace{\frac{1}{2\pi}}_{\pi t} X_1(j_w) + \underbrace{x_1(j_w)}_{\pi t} \underbrace{x_1(j_w)}_{\pi t} = \underbrace{x_1(j_w)}_{\pi t} \underbrace{x_1(j_w)}_{\pi t} + \underbrace{x_1(j_w)}_{\pi t} = \underbrace{x_1(j_w)}_{\pi t} \underbrace{x_1(j_w)}_{\pi t} + \underbrace{x_1(j_w)}_{\pi t} = \underbrace{x_1(j_w)}_{\pi t} + \underbrace{x_1(j_w)}_$$

