Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа №1 Часть 2 По дискретной математике Вариант 71

Выполнил: Студент группы Р3110 Бармичев Григорий Андреевич Преподаватель: Поляков Владимир Иван

Задание

Построить комбинационную схему реализующую функцию $C=(A\pm 1)_{mod15}$. При t=0 сложение, при t=1 вычитание. При переносе/заеме устанавливается бит е.

Таблица истинности

№	t	$\mathbf{a_1}$	\mathbf{a}_2	a ₃	a 4	e	$\mathbf{c_1}$	c_2	c ₃	C 4
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	1	0
2	0	0	0	1	0	0	0	0	1	1
3	0	0	0	1	1	0	0	1	0	0
4	0	0	1	0	0	0	0	1	0	1
5	0	0	1	0	1	0	0	1	1	0
6	0	0	1	1	0	0	0	1	1	1
7	0	0	1	1	1	0	1	0	0	0
8	0	1	0	0	0	0	1	0	0	1
9	0	1	0	0	1	0	1	0	1	0
10	0	1	0	1	0	0	1	0	1	1
11	0	1	0	1	1	0	1	1	0	0
12	0	1	1	0	0	0	1	1	0	1
13	0	1	1	0	1	0	1	1	1	0
14	0	1	1	1	0	1	0	0	0	0
15	0	1	1	1	1	d	d	d	d	d
16	1	0	0	0	0	1	1	1	1	0
17	1	0	0	0	1	0	0	0	0	0
18	1	0	0	1	0	0	0	0	0	1
19	1	0	0	1	1	0	0	0	1	0
20	1	0	1	0	0	0	0	0	1	1
21	1	0	1	0	1	0	0	1	0	0
22	1	0	1	1	0	0	0	1	0	1
23	1	0	1	1	1	0	0	1	1	0
24	1	1	0	0	0	0	0	1	1	1
25	1	1	0	0	1	0	1	0	0	0
26	1	1	0	1	0	0	1	0	0	1
27	1	1	0	1	1	0	1	0	1	0
28	1	1	1	0	0	0	1	0	1	1
29	1	1	1	0	1	0	1	1	0	0
30	1	1	1	1	0	0	1	1	0	1
31	1	1	1	1	1	d	d	d	d	d

Минимизация булевых функций на картах Карно

<u>E</u> a_1, a_2 a_1, a_2 a₃, a₄ a₃, a₄ d t = 0

e =

$= \bar{t}a1a2a3 \vee ta1a2a3a4 (Sq = 11)$												
<u>C</u> ₁			a ₁ ,	\mathbf{a}_2			$\mathbf{a_{1}},\mathbf{a_{2}}$					
		00	01	11	10	a 3, a 4		00	01	11	10	
	00			1	1		00	1		1		
92 94	01			1	1		01			1	1	
a ₃ , a ₄	11		1	d	1		11			d	1	
	10				1		10			1	1	
		t = 0					t = 1					

 $C1 = \overline{t}a1\overline{a2} \vee a1a2\overline{a3} \vee \overline{t}a2a3a4 \vee \overline{t}a1a2a3a4 \vee ta1a3 \vee a1a4 (Sq = 33)$

$\underline{\mathbf{C}_2}$			a _{1,}		$\mathbf{a_1}, \mathbf{a_2}$						
		00	01	11	10			00	01	11	10
a3, a4	00		1	1		a 3, a 4	00	1			
	01		1	1			01				
	11	1		d	1		11			d	
	10		1				10				
			t = 0	_	•	'	t = 1				

 $C2 = \overline{t}a2\overline{a3} \lor \overline{ta2}a3a4 \lor \overline{ta1}a2\overline{a4} \lor \overline{ta2}a3a4 \lor \overline{ta2}a3 \ (Sq = 27)$

 $C3 = \overline{ta3}a4 \vee \overline{ta2}a3\overline{a4} \vee \overline{ta1}a3\overline{a4} \vee \overline{ta3}a4 \vee \overline{ta3$

 $C4 = \overline{ta3a4} \vee \overline{ta2a4} \vee ta3\overline{a4} \vee ta1\overline{a4} \vee \overline{a1}a2\overline{a4}$ (Sq = 20)

Преобразование системы булевых функций

```
e = \overline{t}a1a2a3 \vee t\overline{a1a2a3a4} \quad (Sq = 11)
                       C1 = \overline{t}a1\overline{a2} \vee a1a2\overline{a3} \vee \overline{t}a2a3a4 \vee \overline{t}a1a2a3a4 \vee ta1a3 \vee a1a4 (Sq = 33)
                         C2 = \overline{t}a2\overline{a3} \vee \overline{ta2}a3a4 \vee \overline{ta1}a2\overline{a4} \vee \overline{ta2}a3a4 \vee \overline{ta2}a
                                                                                                     C3 = \overline{ta3}a4 \vee \overline{ta2}a3\overline{a4} \vee \overline{ta1}a3\overline{a4} \vee \overline{ta3a4} \vee \overline{ta3
                                                                                                                  C4 = \overline{ta3a4} \vee \overline{ta2a4} \vee ta3\overline{a4} \vee ta1\overline{a4} \vee \overline{a1}a2\overline{a4} (Sq = 20)
                                                                                                                                                                                                                                                                                                                                      \varphi = t\overline{a2a3a4} (Sq = 4)
                                                                                                                                                                                                                                                                                      e = \overline{t}a1a2a3 \vee \varphi \overline{a1} \quad (Sq = 8)
                     C1 = \overline{t}a1\overline{a2} \vee a1a2\overline{a3} \vee \overline{t}a2a3a4 \vee \varphi \overline{a1} \vee ta1a3 \vee a1a4 \quad (Sq = 24)
                                 C2 = \overline{t}a2\overline{a3} \vee \overline{ta2}a3a4 \vee \overline{ta1}a2\overline{a4} \vee \varphi \vee ta2(a3 \vee a4) (Sq = 21)
                                                                                C3 = \overline{ta3}a4 \vee \overline{ta3}\overline{a4}(\overline{a2} \vee \overline{a1}) \vee \overline{ta3}\overline{a4} \vee \overline{ta3}a4 \quad (Sq = 19)
                                                                                           C4 = \overline{ta4}(\overline{a3} \vee \overline{a2}) \vee \overline{ta4}(a3 \vee a1) \vee \overline{a1}a2\overline{a4} \quad (Sq = 16)
S_{q} = 92
```

Синтез многовыходной комбинационной схемы в булевом базисе

Будем анализировать схему на следующем наборе аргументов: $a_1=0,\ a_2=0,\ a_3=0,\ a_4=0$ Выходы схемы из таблицы истинности: $e=0,\ c_1=0,\ c_2=0,\ c_3=0,\ c_4=1$

 $T_{e}=3\tau ; \\$ $T_{c1}=4\tau;$ $T_{c2}=4\tau;$ $T_{c3}=3\tau;$ $T_{c4}\!\!=\!\!3\tau$

 $T=\max \; (T_{v},\, T_{c1},\, T_{c2},\, T_{c3},\, T_{c4})=4 \tau$ Цена схемы $S_q=92;$ Задерж

3адержка схемы $T = 4\tau$.