Kompaktheit

Def Sei (X, d) ein metrischer Raum und $K \subset X$. K heißt kompakt, falls jede Folge in K eine in K konvergente Teilfolge besitzt.

Def Eine Teilmenge M eines metrischen Raums X heißt beschränkt, falls es ein $a \in X$ und ein R > 0 mit $M \subset B_R(a)$ gibt.

Satz 1.10 Sei (X, d) ein metrischer Raum. Ist K kompakt, so ist K beschränkt und abgeschlossen.

Satz 1.11(Charakterisierung kompakter Mengen im \mathbb{R}^n) Sei $M \subset \mathbb{R}^n$.

M ist kompakt $\Leftrightarrow M$ ist beschränkt und abgeschlossen.

Satz 1.12 Seien (X, d_X) und (Y, d_Y) metrische Räume und $f: X \to Y$ sei stetig. Ist K kompakt, so ist f(K) kompakt.

Satz 1.13(Satz vom Maximum und Minimum) Sei (X, d) ein metrischer Raum, $\emptyset \neq K \subset X$ kompakt und $f: K \to \mathbb{R}$ eine stetige Funktion. Dann nimmt f auf K sein Maximum und Minimum an.

Def (Eine äquivalente Definition der Kompaktheit) Sei (X, d) ein metrischer Raum und $K \subset X$.

- 1) Unter einer offenen Überdeckung von K versteht man eine Familie $\{U_i : i \in I\}$ von offenen Teilmengen $U_i \subset X$ mit $K \subset \bigcup_{i \in I} U_i$.
- 2) K heißt kompakt, falls zu jeder offenen Überdeckung $\{U_i : i \in I\}$ von K endlich viele Indizes $i_1, ..., i_k$ existieren, sodass

$$K \subset \bigcup_{j=1}^k U_{i_j}.$$