Le composant FPGA

1.1. Le transistor NMOS

- ⇒ En logique, le transistor est utilisé en interrupteur commandé.
- L'interrupteur se situe entre le drain et la source.
- La commande le l'interrupteur se fait par la tension VGS (entre Grille et Substrat).

1.2. Le transistor PMOS

- Comme son dual, le transistor PMOS est aussi utilisé en interrupteur commandé.
- Il y a une complémentarité entre les deux types, que ce soit au niveau de la structure ou au niveau du fonctionnement.
- La technologie CMOS (Complementary MOS) exploite cette complémentarité.

1.3. Technologie microélectronique

1.4. L'inverseur

Illustration du temps de propagation quand e passe de 0 à 1Structure

Double inversion

Schémas équivalents v(t)Changement d'état de s(t) à v(t)=Vdd/2Il y a un temps de propagation quand e passe de 0 à 1 v(t) v(t)

connaissance permet d'adapter la fréquence de travail.

1.5. La porte NAND

- ⇒ La porte NAND à 2 entrées, en technologie CMOS est constituée de 4 transistors.
- Toute fonction logique combinatoire peut être réalisée à partir de portes NAND. Ce qui en fait une porte universelle.
- ⇒ La porte NAND est choisie comme unité de mesure pour évaluer la densité d'un circuit logique programmable.
- Exemple : un composant de densité 1000 portes peut embarquer une logique équivalente à 1000 portes NAND.

1.6. L'interrupteur analogique

- Commande = OL : les deux transistors présentent une impédance quasi infinie entre le drain et la source, le circuit se comporte comme un interrupteur ouvert
- Commande = 1L : les deux transistors présentent une faible résistance RON entre le drain et la source, le circuit se comporte comme un <u>interrupteur fermé</u> (parfaitement symétrique)

1.7. La bascule D

- La bascule D recopie l'entrée D sur la sortie Q sur front montant d'horloge clk.
- C'est un composant qui fige une situation comme le ferait un appareil photo.

2.1. Tension et niveaux logiques

- Les fourchettes des niveaux logiques fixent les règles de dialogue entre les circuits tout en garantissant une immunité au bruit.
- → Pour réduire la puissance consommée, on diminue la tension d'alimentation. Jusqu'à quelle valeur ?

9

2.2. Les boitiers BGA (Ball Grid Array)

CS144 Chip-Scale BGA

- ⇒ La boitiers de type BGA ont révolutionné la micro électronique en faisant exploser le nombre de broches.
- Le montage en surface de ces boitiers permet des économies non négligeables.
- La taille des composants se trouve réduite par la même occasion.

FF1517 Flip-Chip Fine-Pitch BGA

2.3. Les types de circuits logiques

2.4. Technique de programmation

□ La technique de programmation s'inspire de celle des mémoires : elle consiste à connecter des lignes horizontales avec des lignes verticales

12

2.5. Technologie de programmation

- La programmation d'un composant revient à fermer ou ouvrir l'interrupteur qui relie les 2 lignes.
- Différentes technologies sont mises en œuvre pour commander ou réaliser l'interrupteur.

Remarque : la technique la plus ancienne utilisait des fusibles !

13

3.1. Synthèse logique

➤ Les composants programmables exploitent tous la même technique d'implantation de fonctions combinatoires ou séquentielles : un bloc logique combinatoire + une bascule (mémoire). La bascule D suffit amplement.

Les sorties dépendent uniquement de l'état présent!

3.2. Synthèse dans les PAL

- Toute fonction combinatoire peut être décrite comme une somme de produits (min termes). $f = \sum \Pi$
- Dans les composants de première génération, on traduisait l'équation précédente par des portes ET suivies de portes OU dans le composant (somme de produits).

⇒ A l'usage, cette technique gaspille énormément de ressources dans le composant

15

3.3. Synthèse dans les FPGA

- Les composants FPGA utilisent la technique de la table de consultation (LUT).
- Cette technique utilise des petites mémoires pour réaliser des fonctions combinatoires.

Fonction combinatoire à 2 entrées

Réalisation dans une LUT à 4 adresses

4.1. Architecture des PAL

- ⇒ Les circuits PAL ont une architecture qui convient très bien à l'implantation de fonctions combinatoires.
- les réseaux de ET logiques suivis de OU logiques qui constituent le PAL, correspondent parfaitement à la réalisation de fonctions combinatoires : $f = \sum \Pi$
- Les croix représentent les jonctions réalisées (programmées).

4.2. Architecture des CPLD

- ⇒ Un CPLD (Complex Programmable Logic Device) embarque plusieurs circuits PAL et un réseau d'interconnections complètement programmable.
- Un composant CPLD peut être considéré comme un gros circuit PAL.

Zoom sur une section du CPLD

4.3. Architecture des FPGA

- Un circuit FPGA est une matrice symétrique comportant des ressources pour la logique, les entrées-sorties, les interconnexions et bien plus encore.
- ⇒ Son architecture n'a rien à voir avec celles des PAL et des CPLD.

19

4.4. Marché des FPGA

Rank 2007	Rank 2008	Company	Revenue (\$M) 2007	Revenue (\$M) 2008	Revenue Change 2007-2008	Market Share 2008
1	1	Xilinx	1,809	1.906	5.4%	51.2%
2	2	Altera	1,216	1,323	8.8%	35.5%
3	3	Lattice Semiconductor	229	222	-3.1%	6.0
4	4	Actel	196	218	11.2%	5.9%
6	5	QuickLogic	28	23	-17.9%	0.6%
5	6	Cypress Semiconductor	32	21	-34.4%	0.6%
7	7	Atmel	14	9	-35.7%	0.2%
8	8	Chengdu Sino (Chine) Microelectronics System	4	3	-25.0%	0.1%
		Others	0	0	NM	0.0%
		Total Market	3,528	3,725	5.6%	100.0%

4.5. Comparaison FPGA /ASIC

Backend = travail en arrière plan avant le résultat

- Temps de développement :

 Avantage FPGA
- Coût:

Faible volume : Avantage FPGA Fort volume : Avantage ASIC

- Performances, densité, consommation:
 Avantage ASIC
- Evolution maintenance: Avantage FPGA

4.6. Les différents FPGA Xilinx

- · XA Spartan-6 FPGAs
- XA Spartan-3A FPGAs
- XA Spartan-3A DSP FPGAs
- XA Spartan-3E FPGAs

Defense-grade Device Families

- Defense-grade Artix-7Q FPGAs
- Defense-grade Kintex-7Q FPGAs
- Defense-grade Virtex-7Q FPGAs
- Defense-grade Virtex-6Q FPGAs
- Defense-grade Spartan-6Q FPGAs
- Defense-grade Virtex-5Q FPGAs
- Defense-grade Virtex-4Q FPGAs

Space-grade Device Families

- Space-grade Virtex-5QV FPGAs
- Space-grade Virtex-4QV FPGAs

5.1.1. Le bloc logique CLB

- Chaque CLB comporte 2 tranches (SLICE).
- Un slice contient 2 paires de (LUT + bascule + Retenue).
- 2 buffers 3 états (BUFT) sont associés à chaque CLB.

23

5.1.2. La retenue anticipée

- Dans le cas de l'additionneur complet, la somme est calculée dans une LUT
- ⇒ La retenue est calculée par anticipation par un circuit câblé et optimisé pour raccourcir les temps de calcul sur des mots à plusieurs bits

5.2. Le bloc d'entrée-sortie (IOB)

5.3. Les ressources de routage

- ⇒ Les ressources de routage sont abondantes dans un FPGA car le routage est un point névralgique dans la compilation d'un design.
- C'est grâce à ces ressources qu'on atteint un taux de remplissage proche de 80%.

5.4. Les matrices d'aiguillage

5.5. Routage de l'horloge

Un réseau de routage est spécialement dédié à l'horloge pour lui permettre d'atteindre sans délai toutes les bascules du composants.

Générateur d'horloge 'DLL'

- Boucle à verrouillage.
- Elimine le délai .
- Permet des déphasages.
- Peut diviser la fréquence d'entrée.
- Permet aussi une multiplication.

29

6. Bloc RAM et mémoire distribuée

Mémoire distribuée

Bloc RAM

Dans une mémoire simple port, on ne peut accéder qu'à une donnée à la fois, alors que dans une mémoire à double port, on peut accéder à 2 données en même temps,

7. Le test 'Boundary Scan'

- ⇒ Boundary Scan est un standard 'JTAG' pour les test physique (cout-circuits, coupures), et le test fonctionnel de cartes électroniques denses comportant des boîtiers de type'BGA'.
- Il utilise 4 signaux (TDI : entrée, TDO : sortie, TCK : horloge, TMS : sélection du mode).

Exemple de test physique

Carte avec une variété de composants

8.1. Les familles de la série 7

	ARTIX,7	KINTEX.	VIRTEX,7
Maximum Capability	Lowest Power and Cost	Industry's Best Price/Performance	Industry's Highest System Performance
Logic Cells	20K – 355K	70K – 480K	285K – 2,000K
Block RAM	12 Mb	34 Mb	65 Mb
DSP Slices	40 – 700	240 – 1,920	700 – 3,960
Peak DSP Perf.	504 GMACS	2,450 GMACs	5,053 GMACS
Transceivers	4	32	88
Transceiver Performance	3.75Gbps	6.6Gbps and 12.5Gbps	12.5Gbps, 13.1Gbps and 28Gbps
Memory Performance	1066Mbps	1866Mbps	1866Mbps
I/O Pins	450	500	1,200
I/O Voltages	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

33

8.2. Une architecture alignée

- Common elements enable easy IP reuse for quick design portability across all 7 series families
 - Design scalability from low-cost to high-performance
 - Expanded eco-system support
 - Quickest TTM

8.3. Le bloc logique

- Two side-by-side slices per CLB
 - Slice_M are memory-capable
 - Slice_L are logic and carry only
- Four 6-input LUTs per slice
 - Consistent with previous architectures
 - Single LUT in Slice_M can be a 32-bit shift register or 64 x 1 RAM
- Two flip-flops per LUT
 - Excellent for heavily pipelined designs

35

8.4. Le bloc DSP

- All 7 series FPGAs share the same DSP slice
 - 25x18 multiplier
 - 25-bit pre-adder
 - Flexible pipeline
 - Cascade in and out
 - Carry in and out
 - 96-bit MACC
 - 48-bit ALU
 - 17-bit shifter
 - Dynamic operation (cycle by cycle)

8.5. Le convertisseur « ADC »

37

8.6. Le bloc d'entrée/sortie

- Two distinct I/O types
 - High range: Supports standards up to 3.3V
 - High performance: Higher performance with more I/O delay capability
 - Supports I/O standards up to 1.8V
- Extension of logic layer functionality
 - Wider input/output SERDES (sérialise)
 - Addition of independent ODELAY
- New hardware blocks to address highest I/O performance
 - Phaser, IO FIFO, IO PLL

8.7. Générateur d'horloge

- Based on the established Virtex-6 FPGA clocking structure
 - All 7 series FPGAs use the same unified architecture
- Low-skew clock distribution
 - Combination of paths for driving clock signals to and from different locations
- Clock buffers
 - High fanout buffers for connecting clock signals to the various routing resources
- Clock regions
 - Device divided into clock regions with dedicated resources
- Clock management tile (CMT)
 - One MMCM and one PLL per CMT
 - Up to 24 CMTs per device

39

9. La famille Zync 7000

Le composant embarque un processeur ARM9 à 2 cœurs, des contrôleurs de différents types de mémoires, divers interfaces d'un côté, et de l'autre côté, de la logique programmable.

Ces 2 parties communiquent via un bus AXI. Circuit idéal pour les SOC (System On Chip)

10.1. Développement

41

Développement (suite)

10.2. Implémentation « mapping »

Implémentation « placement »

Implémentation « routage »

10.3. Le « timing »

- Chemin critique = chemin reliant deux bascules et ayant le plus long délai.
- C'est de lui que dépendra la fréquence maximale de l'horloge.

- Période minimale d'horloge = délai du chemin critique.
- Celle-ci est calculée automatiquement par les outils de développement IDE.

10.4. La programmation

