'Family Risk Sharing'

'When the Shock Hits the Knot: Individual Consumption Insurance Among Spouses'

'When the Shock Hits the Knot: bargaining and family risk sharing'

B-C-V

May 23, 2025

1 Summary statistics and life-cycle behavior

Table 1: Summary statistics

	Household assets (1)	Household earnings (2)	Wife, Private consumption (3)	Husband, Private consumption (4)	Home good expenditure (5)
Mean	2.336	1.059	0.091	0.185	1.196
Gini	0.725	0.380	0.511	0.268	0.222
Top 1% share	0.078	0.040	0.051	0.028	0.023

Notes: assets and earnings are measure across the population regardless of marital status, while other variables are measured among married households.

Figure 1: Life-cycle behavior of different types of household, averages

2 Log consumption and income growth

Table 2: Moments of the log growth of the variables reported in the rows

	Mean	Variance	Skeweness	Kurtosis
Wife, private consumption	0.014	0.049	1.247	69.827
Husband, private consumption	0.010	0.032	-0.056	8.574
Wife share of private consumption	0.004	0.028	1.911	333.728
Home good expenditure	0.011	0.014	0.530	8.660
Total consumption	0.011	0.017	0.507	8.574
Wife, earnings	0.004	0.046	-0.014	7.141
Husband, earnings	0.004	0.036	-0.008	0.712

Notes: sample of those who stay married over two consecutive periods.

Figure 2: Variance of log earnings and consumption by age

3 Marital surplus, renegotiation and divorce

Figure 3: Marital surplus, renegotiation and divorce

Figure 4: Share or divorces and renegotiations given relative earnings and match quality

Figure 5: M and W income shocks, renegotiation and divorce

Figure 6: Marital surplus distribution (value of staying married - value of divorce)

Figure 7: Marital surplus distribution

Figure 8: Marital surplus distribution at meeting

Something we have learned

- The match surplus at meeting is higher for women (Figure 8): this is an implication of the (close to) symmetric nash bargaining (SNB) and women earning less than men. SNB allocates a higher share of the surplus to the spouse having lower earnings.
- Women are more likely to hit the participation constraint than men (Figure 7). Since, again, women's marginal utility is higher than for men, the same shock implies a larger change in reservation utilities for women than for men.
- If we impose a non-symmetric nash bargaining, the gender who gets a higher weight will be less likely to hit participation constraints.
- If we close the gender wage gap, the patterns in renegotiation and surplus share distribution become gender symmetric
- To be checked with the policy experiment how labor supply is reacting. If, when outside option for women improve, labor supply goes down, our model cannot replicate it.
- Excess kurtosis of women consumption seems to be driven by renegotiations

4 Consumption insurance regressions

Table 3: Pass-through of changes in income on consumption and consumption shares, using changes in...

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)	Wife share (5)
total income	0.247	0.228			
wife income	0.097	0.095	0.085	0.148	0.063
husband income	0.110	0.107	0.130	0.094	-0.036

NOTES: Coefficient interpretation: 1% change in income leads to X% change in expenditure. Coefficients associated to changes in the wife income are computed using women working in two consecutive periods.

Table 4: Pass-through of changes in income on consumption and consumption shares, using **transitory** changes in...

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)	Wife share (5)
total income	0.064	0.059			
wife income	0.020	0.020	0.011	0.039	$\boldsymbol{0.028}$
husband income	0.059	0.058	$\boldsymbol{0.072}$	0.040	-0.031

NOTES: Coefficient interpretation: 1% change in income leads to X% change in expenditure. Coefficients associated to changes in the wife income are computed using women working in two consecutive periods.

Table 5: Pass-through of changes in income on consumption and consumption shares, using **persistent** changes in

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)	Wife share (5)
total income	0.241	0.231			
wife income	0.342	0.335	0.320	0.502	0.181
husband income	0.203	0.197	0.231	0.203	-0.029

NOTES: Coefficient interpretation: 1% change in income leads to X% change in expenditure. Coefficients associated to changes in the wife income are computed using women working in two consecutive periods.

Table 6: MPC calculated as in BPP, using transitory changes in...

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)
husband income	0.071	0.069	0.088	0.042
wife income	0.029	0.029	0.013	0.065
total income	0.190	0.172	0.264	0.273

 Notes : the consumption insurance parameters displayed in the table are computed as

$$\frac{E\left(\Delta c_{t}\Delta y_{t+1}\right)}{E\left(\Delta y_{t}\Delta y_{t+1}\right)},$$

where y_t can the income of the husband, wife or the sum of the two (total). Variables c_t can be the total, common, husband or wife' expenditures. Coefficients associated to changes in the wife income are computed using women working in two consecutive periods.

Table 7: Consumption insurance to persistent income shocks, calculated as in BPP, using persistent changes in...

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)
husband income	0.364	0.352	0.426	0.346
wife income	0.341	0.334	0.310	0.499
total income	0.440	0.418	0.507	0.619

Notes: the consumption insurance parameters displayed in the table are computed as

$$\frac{E\left(\Delta c_{t}\left(\Delta y_{t-1}+\Delta y_{t}+\Delta y_{t}\right)\right)}{E\left(\Delta y_{t}\left(\Delta y_{t-1}+\Delta y_{t}+\Delta y_{t}\right)\right)},$$

where y_t can the income of the husband, wife or the sum of the two (total). Variables c_t can be the total, common, husband or wife' expenditures. Coefficients associated to changes in the wife income are computed using women working in two consecutive periods.

Table 8: Women's employment response (in percentage points) to different types of income shocks

Transitory shocks		Persistent shocks		Transitory+persistent shocks	
Wife	Husband	Wife	Husband	Wife	Husband
(1)	(2)	(3)	(4)	(5)	(6)
0.337	-0.033	0.403	-0.055	0.358	-0.042

NOTES: the income shocks relate to potential $log\ income\ y$. In the case of women, a positive potential income shocks does not translate in more earnings if the women does not work. The numbers displayed in the table are OLS coefficients:

$$\frac{E(\Delta y_t \ \Delta W L P_t)}{E(\Delta y_t)},$$

where ΔWLP is the change in women's employment over two consecutive periods.

Table 9: Pass-through of changes in income on consumption and consumption shares, using changes in...

	Total Exp (1)	Common Exp (2)	Husband Exp (3)	Wife Exp (4)	Wife share (5)
total income	0.177	0.132			
wife income	0.278	0.201	0.053	0.023	0.050
husband income	0.097	0.076	0.017	0.004	-0.017

Notes: Coefficient interpretation: 1 yea change in income leads to X yea change in expenditure.