Практические задания

Задачи линейного программирования

Задание 1

Задача №1. Найти решение задачи линейного программирования.

- 1) Геометрически для "а, в, с" на тах и тіп.
- 2) Симплекс методом (для "a, c" на *max*, для ",в" на *max* и *min*)
- 3) Для "а" составить и решить геометрически и симплекс методом задачу двойственную данной.

	войственную данной.		
	$a)F=x_1+x_2 \rightarrow max \ (min)$	$eF=x_1+2x_2 \rightarrow max \ (min)$	$c)F=x_1+2x_2 \rightarrow max \ (min)$
	$\int x_1 + 2 \cdot x_2 \le 8$	$\begin{cases} x_1 + x_2 \ge 6 \\ 5 \cdot x_1 - 10 \cdot x_2 \le 10 \end{cases}$	$\begin{cases} 2 \cdot x_1 - x_2 \ge 6 \\ 2 \cdot x_1 + x_2 \le 1 \end{cases}$
r.N <u>e</u> 1	$\int 6 \cdot x_1 - x_2 \le 3$	$\int 5 \cdot x_1 - 10 \cdot x_2 \le 10$	$2 \cdot x_1 + x_2 \le 1$
вариант№1	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
B8)F 2 ())
	$a)F = x_1 + x_2 \rightarrow max \ (min)$ $\left\{ x_1 + 2 \cdot x_2 \le 14 \right\}$	$e)F = 6x_1 - 2x_2 \longrightarrow max \ (min)$	$c)F = x_1 + 3x_2 \rightarrow max(min)$ $(-x_1 + x_2 > 6$
	$\begin{cases} x_1 + 2 & x_2 = 1 \\ -5 \cdot x_1 + 3 \cdot x_2 \le 15 \end{cases}$	$\int_{1}^{1} \cdot x_1 - 4 \cdot x_2 \le 4$	$\begin{cases} -x_1 + x_2 \ge 6 \\ x_1 - 2 \cdot x_2 \ge 10 \end{cases}$
N <u>è</u> 2	$\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 \le 13 \\ 2 \cdot x_1 - 3 \cdot x_2 \le 12 \end{cases}$	$x_1 + x_2 \ge 4$	$x_1 \ge 0, x_2 \ge 0$
вариант №2	$\begin{vmatrix} (2 & x_1 & 3 & x_2 & -12 \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 = \emptyset$, $x_2 = \emptyset$
вар			
	$a)F=3x_1+2x_2 \rightarrow max \ (min)$	$e)F = -x_1 + 2x_2 \longrightarrow max \ (min)$	$c)F = x_1 + x_2 \longrightarrow max \ (min)$
	$ (x_1 + x_2 \le 6)$	$\left(x_1 - 4 \cdot x_2 \le 4\right)$	$\int x_1 - 2 \cdot x_2 \ge 14$
	'		1 - 1
<u>63</u>	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \end{cases}$	$\begin{cases} x_1 + x_2 \ge 5 \end{cases}$	$\int -5 \cdot x_1 + 3 \cdot x_2 \ge 15$
1HTN <u>9</u> 3	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$	$-3 \cdot x_1 + x_2 \le 6$	$\begin{cases} -5 \cdot x_1 + 3 \cdot x_2 \ge 15 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$
вариант№3	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \end{cases}$	_	
вариант№3	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$	$-3 \cdot x_1 + x_2 \le 6$	
вариант№3	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $a)F = x_1 + 3x_2 \longrightarrow max \ (min)$ $\left[2 \cdot x_1 - x_2 \le 6 \right]$	$ \begin{aligned} -3 \cdot x_1 + x_2 &\leq 6 \\ x_1 &\geq 0, x_2 &\geq 0 \end{aligned} $ $ \epsilon)F = 3x_1 + 2x_2 \longrightarrow max \ (min) $	$x_1 \ge 0, x_2 \ge 0$ $c)F = 5x_1 + 7x_2 \longrightarrow max(min)$
	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $a)F = x_1 + 3x_2 \longrightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 - x_2 \le 6 \\ -x_1 + 3 \cdot x_2 \le 6 \end{cases}$	$ \begin{aligned} -3 \cdot x_1 + x_2 &\leq 6 \\ x_1 &\geq 0, x_2 &\geq 0 \end{aligned} $ $ \epsilon)F = 3x_1 + 2x_2 \longrightarrow max \ (min) $	$x_1 \ge 0, x_2 \ge 0$ $c)F = 5x_1 + 7x_2 \longrightarrow max(min)$
	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $a)F = x_1 + 3x_2 \longrightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 - x_2 \le 6 \\ -x_1 + 3 \cdot x_2 \le 6 \end{cases}$ $x_1 + 2 \cdot x_2 \le 8$	$\begin{cases} -3 \cdot x_1 + x_2 \le 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$ $s)F = 3x_1 + 2x_2 \longrightarrow max \ (min)$ $\begin{cases} -2 \cdot x_1 + x_2 \le 2 \\ x_1 + x_2 \ge 1 \end{cases}$	$x_1 \ge 0, x_2 \ge 0$ $c)F = 5x_1 + 7x_2 \longrightarrow max(min)$ $\begin{cases} 5 \cdot x_1 - 6 \cdot x_2 \le 30 \\ x_1 - 4 \cdot x_2 \ge 28 \end{cases}$
вариант№4 вариант№3	$\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + -3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$ $a)F = x_1 + 3x_2 \longrightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 - x_2 \le 6 \\ -x_1 + 3 \cdot x_2 \le 6 \end{cases}$	$ \begin{aligned} -3 \cdot x_1 + x_2 &\leq 6 \\ x_1 &\geq 0, x_2 &\geq 0 \end{aligned} $ $ \epsilon)F = 3x_1 + 2x_2 \longrightarrow max \ (min) $	$x_1 \ge 0, x_2 \ge 0$ $c)F = 5x_1 + 7x_2 \longrightarrow max(min)$

вариант№5	$a)F = 2x_1 + 3x_2 \rightarrow max(min)$ $\begin{cases} -4 \cdot x_1 + 2 \cdot x_2 \le 4 \\ x_1 + x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 3x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \ge 8 \\ -2 \cdot x_1 + x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 12 \\ x_1 + x_2 \le 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант№6	$\begin{cases} a)F = x_1 + 4x_2 \rightarrow max \ (min) \\ -x_1 + 5 \cdot x_2 \le 20 \\ 3 \cdot x_1 - x_2 \le 15 \\ x_1 + x_2 \le 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	e) $F=-2x_1-3x_2 \to max \ (min)$ $\begin{cases} -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 3 \cdot x_2 \le 6 \\ x_1 + x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 - 2 \cdot x_2 \ge 8 \\ -2 \cdot x_1 + x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант.№7	$a)F = 5x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} 5 \cdot x_1 - 6 \cdot x_2 \le 30 \\ -3 \cdot x_1 + 14 \cdot x_2 \le 42 \\ x_1 + 4 \cdot x_2 \le 28 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	6) $F=3x_1+2x_2 \to max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \le 6 \\ -x_1 + x_2 \le 8 \end{cases}$ $x_1 + x_2 \ge 3$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 6x_1 + 2x_2 \longrightarrow max \ (min)$ $\begin{cases} -3 \cdot x_1 + x_2 \ge 6 \\ -x_1 + x_2 \le 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант №8	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + x_2 \le 16 \\ x_1 + x_2 \le 11 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 5x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 10 \\ -2 \cdot x_1 + 3 \cdot x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = -2x_1 - 3x_2 \longrightarrow max \ (min)$ $\begin{cases} -4 \cdot x_1 + 2 \cdot x_2 \ge 4 \\ x_1 - x_2 \ge 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант№9	a) $F=3x_1-2x_2 \to max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 8 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 + x_2 \le 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = x_1 - 2x_2 \longrightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 - x_2 \le 15 \\ x_1 + x_2 \ge 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + x_2 \longrightarrow max \ (min)$ $\begin{cases} -2 \cdot x_1 - x_2 \ge 6 \\ -x_1 + 3 \cdot x_2 \le 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	-		
вариант № 10	$a)F = 5x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \le 6 \\ -x_1 + x_2 \le 8 \\ x_1 + x_2 \le 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 5x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} 5 \cdot x_1 - 6 \cdot x_2 \le 30 \\ x_1 + 2 \cdot x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -7 \cdot x_1 + 4 \cdot x_2 \ge 28 \\ x_1 - 3 \cdot x_2 \ge 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 11	$\begin{cases} a)F = 5x_1 + 4x_2 \rightarrow max \ (min) \\ \begin{cases} x_1 + x_2 \le 18 \\ 5 \cdot x_1 - x_2 \le 20 \\ x_1 - x_2 \le 8 \end{cases} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$e)F = x_1 - 2x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 13 \\ x_1 + x_2 \le 11 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \ge 1 \\ x_1 - 2 \cdot x_2 \ge 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 12	$a)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 10 \\ -2 \cdot x_1 + 3 \cdot x_2 \le 6 \end{cases}$ $\begin{cases} x_1 + x_2 \le 8 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$6)F = -2x_1 + 3x_2 \rightarrow max(min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 6 \\ -x_1 + 3 \cdot x_2 \le 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + 3x_2 \longrightarrow max \ (min)$ $\begin{cases} x_1 - 4 \cdot x_2 \ge 12 \\ -4 \cdot x_1 + x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 13	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 3 \\ x_1 - 2 \cdot x_2 \le 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \ge 3 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 8 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -7 \cdot x_1 + 3 \cdot x_2 \ge 21 \\ x_1 - 5 \cdot x_2 \ge 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 14	a) $F = 6x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - x_2 \le 4 \\ -x_1 + 3 \cdot x_2 \le 6 \end{cases}$ $x_1 + x_2 \le 3$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 5x_1 - x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + 7 \cdot x_2 \le 14 \\ x_1 + 5 \cdot x_2 \ge 20 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \ge 6 \\ -x_1 + x_2 \ge 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	$a)F=x_1+4x_2 \rightarrow max \ (min)$	$e)F = x_1 + 3x_2 \longrightarrow max \ (min)$	$c)F = 2x_1 + x_2 \longrightarrow max \ (min)$
15	$\int 2 \cdot x_1 + x_2 \le 6$	$\begin{cases} 3 \cdot x_1 - x_2 \le 15 \\ x_1 + x_2 \ge 2 \end{cases}$	$\begin{cases} -2 \cdot x_1 + x_2 \ge 10 \\ x_1 - x_2 \ge 8 \end{cases}$
r No	$\int x_1 + 3 \cdot x_2 \le 9$	$x_1 + x_2 \ge 2$	$x_1 - x_2 \ge 8$
вариант № 15	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F=2x_1+3x_2 \rightarrow max \ (min)$	$e)F = x_1 + 3x_2 \longrightarrow max \ (min)$	$c)F=5x_1+4x_2 \rightarrow max \ (min)$
91	$\int x_1 + 4 \cdot x_2 \le 12$	$\int 4 \cdot x_1 - x_2 \le 16$	$\int x_1 - 5 \cdot x_2 \ge 20$
§ 5	$\begin{cases} x_1 + x_2 \le 4 \end{cases}$	$\begin{cases} 4 \cdot x_1 - x_2 \le 16 \\ x_1 + x_2 \ge 3 \end{cases}$	$\begin{cases} x_1 - 5 \cdot x_2 \ge 20 \\ -x_1 + x_2 \ge 9 \end{cases}$
вариант № 16	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F=x_1+2x_2 \rightarrow max \ (min)$	$\varepsilon)F = -5x_1 + 4x_2 \longrightarrow max(min)$	$c)F=2x_1+x_2 \rightarrow max \ (min)$
7	$\begin{cases} x_1 + 3 \cdot x_2 \le 6 \\ -x_1 + x_2 \le 1 \end{cases}$	$\left(x_1 + x_2 \ge 2\right)$	$\left(x_1 + x_2 \ge 2\right)$
вариант № 17	$\begin{vmatrix} -x_1 + x_2 \le 1 \\ 3 \cdot x_1 - x_2 \le 6 \end{vmatrix}$	$\begin{cases} x_1 + x_2 \ge 2 \\ -x_1 + x_2 \le 9 \end{cases}$	$\begin{cases} x_1 + x_2 \ge 2 \\ x_1 + 2 \cdot x_2 \ge 8 \end{cases}$
	$\begin{vmatrix} x_1 & x_2 & 0 \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар	$N_1 = \emptyset$, $N_2 = \emptyset$		
	$a)F=2x_1+3x_2 \rightarrow max \ (min)$	$e)F = 4x_1 + x_2 \longrightarrow max \ (min)$	$c)F=x_1+x_2 \rightarrow max \ (min)$
∞ .	$\begin{cases} x_1 + x_2 \le 10 \\ -2 \cdot x_1 + 3 \cdot x_2 \le 6 \end{cases}$		$\left(3 \cdot x_1 - 4 \cdot x_2 \ge 12\right)$
Nº 18	$\begin{cases} -2 \cdot x_1 + 3 \cdot x_2 \le 0 \\ x_1 - x_2 \le 4 \end{cases}$	$\begin{cases} x_1 - 2 \cdot x_2 \le 1 \\ x_1 + x_2 \ge 3 \end{cases}$	$\begin{cases} 3 \cdot x_1 - 4 \cdot x_2 \ge 12 \\ x_1 + x_2 \le 1 \end{cases}$
пант	$\begin{vmatrix} x_1 & x_2 & \exists \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариан	$x_1 = 0, x_2 = 0$	$x_1 = 0, x_2 = 0$	
	$a)F = 2x_1 + x_2 \longrightarrow max \ (min)$	$e)F=x_1+4x_2 \rightarrow max \ (min)$	$c)F=x_1+3x_2 \rightarrow max \ (min)$
6	$\begin{cases} x_1 + 2 \cdot x_2 \le 10 \\ 2 \cdot x_1 + x_2 \le 2 \end{cases}$	$\left(4 \cdot x_1 + 3 \cdot x_2 \ge 8\right)$	$\left(3 \cdot x_1 + 4 \cdot x_2 \le 12\right)$
вариант № 19	$\begin{cases} -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 8 \cdot x_2 \le 8 \end{cases}$	$\begin{cases} 4 \cdot x_1 + 3 \cdot x_2 \ge 8 \\ 4 \cdot x_1 + x_2 \ge 6 \end{cases}$	$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \le 12 \\ 2 \cdot x_1 - x_2 \ge 10 \end{cases}$
пант	$\begin{vmatrix} x_1 - \delta & x_2 \le \delta \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
варі	$\lambda_1 = 0, \lambda_2 = 0$		
	l .		

вариант № 20	a) $F = x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \le 12 \\ 4 \cdot x_1 - x_2 \le 8 \\ 2 \cdot x_2 \le 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F=2x_1+3x_2 \to max(min)$ $\begin{cases} x_1 + x_2 \ge 5 \\ -3 \cdot x_1 + 2 \cdot x_2 \le 6 \\ x_1 - x_2 \le 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=5x_1+2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 3 \cdot x_2 \ge 9 \\ 3 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 21	$a)F = 3x_1 + 2x_2 \longrightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 8 \\ x_1 + 3 \cdot x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 6 \cdot x_2 \ge 6 \\ -2 \cdot x_1 + x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 22	$\begin{cases} a)F = x_1 + 6x_2 \to max \ (min) \\ x_1 + x_2 \le 10 \\ x_1 \le 8 \\ -x_1 + x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	e) $F=x_1+5x_2 \to max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \ge 12 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 8 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=x_1+5x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 - x_2 \ge 12 \\ x_1 - 4 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 23	a) $F=x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \le 12 \\ 2 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = -x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 8 \\ 2 \le x_1 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \ge 10 \\ 2 \cdot x_1 + x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 24	$a)F = x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} 5 \cdot x_1 + 4 \cdot x_2 \le 20 \\ 3 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F=x_1+3x_2 \to max \ (min)$ $\begin{cases} x_1 - 3 \cdot x_2 \le 6 \\ 3 \cdot x_1 + x_2 \ge 9 \\ -x_1 + x_2 \le 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + 2x_2 \longrightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + 3 \cdot x_2 \le 8 \\ x_1 + x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	r = r + 5 r	a = a + b =	o)E An America (min)
	$a)F=x_1+5x_2 \rightarrow max \ (min)$	$e)F = x_1 + 6x_2 \longrightarrow max \ (min)$	$c)F=x_1+4x_2 \longrightarrow max \ (min)$
25	$\int 2 \cdot x_1 + x_2 \le 24$	$\int x_1 + 2 \cdot x_2 \ge 14$	$\begin{cases} x_1 - 2 \cdot x_2 \ge 14 \\ -x_1 - x_2 \ge 6 \end{cases}$
вариант № 25	$-x_1 + x_2 \le 12$	$\begin{cases} 2 \cdot x_1 + x_2 \ge 10 \end{cases}$	$-x_1 - x_2 \ge 6$
пан	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F=6x_1+x_2 \rightarrow max \ (min)$	$eF=2x_1+3x_2 \rightarrow max \ (min)$	$c)F=x_1+3x_2 \rightarrow max \ (min)$
وا	$\left \left x_1 + x_2 \right \le 20 \right $	$(x_1 + x_2 \ge 10)$	$(x_1 - 2 \cdot x_2 \ge 6)$
Nº 20	$\left \left\{ -x_1 + x_2 \le 15 \right\} \right $	$\begin{cases} x_1 + x_2 \ge 10 \\ -x_1 + x_2 \le 3 \end{cases}$	$\begin{cases} x_1 - 2 \cdot x_2 \ge 6 \\ -x_1 + 3 \cdot x_2 \ge 6 \end{cases}$
ант	$\left \left(x_1 - 3 \cdot x_2 \le 9 \right) \right $	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариант № 26	$x_1 \ge 0, x_2 \ge 0$	1 / 2	1 / 2
	$a)F=x_1+4x_2 \rightarrow max \ (min)$	$e)F = 5x_1 + 2x_2 \rightarrow max(min)$	$c)F=x_1-x_2 \rightarrow max \ (min)$
	$\int x_1 - 3 \cdot x_2 \le 6$	(5 4 . > 20	(2 2 > 12
<u>•</u> 27	$\left \left\{ x_1 + x_2 \le 9 \right. \right $	$\begin{cases} 5 \cdot x_1 + 4 \cdot x_2 \ge 20 \\ 3 \cdot x_1 - x_2 \ge 6 \end{cases}$	$\begin{cases} 2 \cdot x_1 - 3 \cdot x_2 \ge 12 \\ x_1 + x_2 \le 1 \end{cases}$
L TH	$\left -x_1 + x_2 \le 4 \right $		
вариант № 27	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
Ba			
	$a)F=x_1+x_2 \rightarrow max \ (min)$	$e)F = -2x_1 - x_2 \rightarrow max \ (min)$	$c)F = 6x_1 + x_2 \longrightarrow max \ (min)$
82	$\int x_1 + 2 \cdot x_2 \le 14$	$\int 2 \cdot x_1 + 3 \cdot x_2 \ge 6$	$\int -x_1 + x_2 \ge 15$
Nº 28	$\begin{cases} 2 \cdot x_1 + x_2 \le 10 \end{cases}$	$\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 \ge 6 \\ -x_1 + 2 \cdot x_2 \le 8 \end{cases}$	$\begin{cases} -x_1 + x_2 \ge 15 \\ x_1 - 3 \cdot x_2 \ge 9 \end{cases}$
	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариа			
	$a)F=x_1+x_2 \rightarrow max \ (min)$	$e)F = x_1 + 3x_2 \rightarrow max \ (min)$	$c)F=4x_1+x_2 \rightarrow max \ (min)$
6	$\left \left(x_1 + 2 \cdot x_2 \right) \right \le 14$	$\begin{cases} x_1 - 3 \cdot x_2 \le 6 \\ x_1 + x_2 \ge 5 \\ -x_1 + x_2 \le 4 \end{cases}$	$[-6 \cdot x_1 + x_2 \ge 12]$
Nº 29	$\begin{cases} x_1 + 2 \cdot x_2 \le 14 \\ -5 \cdot x_1 + 3 \cdot x_2 \le 15 \end{cases}$	$\begin{cases} x_1 + x_2 \ge 5 \end{cases}$	$\begin{cases} -6 \cdot x_1 + x_2 \ge 12 \\ x_1 + 2 \cdot x_2 \le 10 \end{cases}$
ант.	$\begin{vmatrix} x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$		$x_1 \ge 0, x_2 \ge 0$
вариант № 29		$x_1 \ge 0, x_2 \ge 0$	
B			

вариант № 30	$\begin{cases} a)F = x_1 + 2x_2 \rightarrow max \ (min) \\ 2 \cdot x_1 - x_2 \le 6 \\ -x_1 + 3 \cdot x_2 \le 6 \\ x_1 + x_2 \le 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	e) $F = 6x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \ge 10 \\ -x_1 + x_2 \le 15 \\ x_1 - 3 \cdot x_2 \le 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=2x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 5 \cdot x_2 \ge 10 \\ x_1 - 2 \cdot x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 31	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 - 2 \cdot x_2 \le 12 \\ -x_1 + 2 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 3x_1 + x_2 \to max \ (min)$ $\begin{cases} -2 \cdot x_1 + x_2 \le 0 \\ x_1 - 2 \cdot x_2 \le 5 \\ x_1 + x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 3 \cdot x_2 \ge 6 \\ -x_1 + x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 32	$\begin{cases} a)F = 4x_1 + x_2 \to max \ (min) \\ \begin{cases} 10 \cdot x_1 + x_2 \le 5 \\ x_1 - x_2 \le 1 \\ x_1 + x_2 \le 7 \end{cases} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	e) $F = x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - x_2 - 5 \le 0 \\ x_1 + 2 \cdot x_2 \ge 10 \\ 2 \cdot x_1 - x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 6x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 14 \\ x_1 - x_2 \ge 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 33	a) $F = x_1 + 6x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 \le 18 \\ -2 \cdot x_1 + x_2 \le 4 \\ x_1 - 7 \cdot x_2 \le 7 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	6) $F = x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \ge 14 \\ -5 \cdot x_1 + 3 \cdot x_2 \le 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 - x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \ge 2 \\ -2 \cdot x_1 + x_2 \ge 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 34	a) $F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 4 \\ x_1 + 2 \cdot x_2 \le 8 \\ x_1 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F = x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \le 6 \\ 3 \cdot x_1 - 2 \cdot x_2 \le 12 \\ x_1 + x_2 \ge 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=8x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 3 \\ x_1 \ge 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

вариант № 35	$a)F = 4x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -4 \cdot x_1 + 3 \cdot x_2 \le 12 \\ x_1 + 2 \cdot x_2 \le 10 \\ x_1 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 4x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \ge 3 \\ -x_1 + 2 \cdot x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + 3x_2 \longrightarrow max \ (min)$ $\begin{cases} -5 \cdot x_1 + x_2 \ge 5 \\ x_1 - x_2 \ge 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 36	a) $F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -2 \cdot x_1 + x_2 \le 10 \\ x_1 + 2 \cdot x_2 \le 10 \\ x_1 - 2 \cdot x_2 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 4 \cdot x_2 \ge 8 \\ x_1 - 6 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 6x_2 \rightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + x_2 \le 8 \\ x_1 - 7 \cdot x_2 \ge 7 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 37	$\begin{cases} a)F = 3x_1 + x_2 \to max \ (min) \\ \begin{cases} x_1 - x_2 - 5 \le 0 \\ x_1 + 2 \cdot x_2 \le 10 \\ x_2 \le 2 \end{cases} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$e)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ -2 \cdot x_1 + x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \ge 4 \\ x_1 - 2 \cdot x_2 \ge 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 38	$a)F = 2x_1 - x_2 \longrightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 10 \\ x_1 - 2 \cdot x_2 \le 2 \\ x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F=x_1+3x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + x_2 \ge 6 \\ -x_1 + x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 - 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 4 \cdot x_2 \le 8 \\ x_1 - 3 \cdot x_2 \ge 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 39	a) $F = x_1 + 2x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 2 \cdot x_2 \le 6 \\ 3 \cdot x_1 - 2 \cdot x_2 \le 12 \\ x_1 + x_2 \le 10 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	6) $F = x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 \ge 18 \\ -4 \cdot x_1 + x_2 \le 8 \\ x_1 - 7 \cdot x_2 \le 14 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = -5x_1 + 3x_2 \rightarrow max(min)$ $\begin{cases} -x_1 - x_2 \ge 3 \\ -x_1 + 2 \cdot x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

-			
вариант № 40	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 6 \\ -x_1 + 3 \cdot x_2 \le 3 \end{cases}$ $x_1 \le 2$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + 2 \cdot x_2 \le 4 \\ x_1 - 2 \cdot x_2 \le 8 \\ x_1 + x_2 \ge 1 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \ge 4 \\ x_1 - 2 \cdot x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 41	$a)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 4 \cdot x_2 \le 8 \\ x_1 - 6 \cdot x_2 \le 3 \\ x_1 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = -2x_1 + 3x_2 \rightarrow max(min)$ $\begin{cases} x_1 - 7 \cdot x_2 \le 14 \\ x_1 + x_2 \ge 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 - x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 - x_2 \ge 6 \\ -x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 42	$\begin{cases} a)F = -5x_1 + x_2 \to max \ (min) \\ \begin{cases} x_1 + x_2 \le 3 \\ -x_1 + 2 \cdot x_2 \le 2 \end{cases} \\ x_1 - 2 \le 0 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$e)F = 2x_1 - x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 10 \\ x_1 - 2 \cdot x_2 \le 2 \\ -2 \cdot x_1 + x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=x_1-4x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 - x_2 \ge 8 \\ -x_1 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 43	$a)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + 5 \cdot x_2 \le 5 \\ x_1 + x_2 \le 6 \\ x_1 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \ge 12 \\ x_1 - x_2 \le 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = -2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 - 7 \cdot x_2 \ge 14 \\ x_1 + x_2 \ge 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 44	a) $F=4x_1+7x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \le 12 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 - x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \le 1 \\ 3 \cdot x_1 + x_2 \ge 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ -2 \cdot x_1 - x_2 \ge 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	•		
вариант № 45	a) $F = x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + x_2 \le 6 \\ -x_1 + x_2 \le 4 \\ 2 \cdot x_1 - x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариант № 46	$a)F = 3x_1 + x_2 \longrightarrow max \ (min)$ $\begin{cases} 6 \cdot x_1 + x_2 \le 6 \\ x_2 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + 5 \cdot x_2 \le 5 \\ x_1 + x_2 \ge 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 - 5x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 - x_2 \ge 4 \\ 3 \cdot x_1 - x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 47	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 7 \cdot x_2 \le 14 \\ x_1 + x_2 \le 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 6x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 2 \\ -x_1 + 3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -2 \cdot x_1 - x_2 \ge 2 \\ -x_1 + 3 \cdot x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 48	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 12 \\ x_1 - x_2 \le 4 \\ x_1 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F=4x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ x_1 - x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 3x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 9 \\ x_1 - 5 \cdot x_2 \ge 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 49	$a)F = 5x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \le 1 \\ 3 \cdot x_1 + x_2 \le 9 \\ x_1 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	e) $F=6x_1-5x_2 \to max \ (min)$ $\begin{cases} x_1 + x_2 \ge 4 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 3 \cdot x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 - 3 \cdot x_2 \ge 3 \\ -4 \cdot x_1 + x_2 \ge 4 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	$a)F = x_1 + 8x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 6 \end{cases}$	$e)F = 6x_1 + x_2 \longrightarrow max \ (min)$	$c)F=x_1+4x_2 \rightarrow max \ (min)$
20	$\begin{cases} x_1 + x_2 = 0 \\ 3 \cdot x_1 - x_2 \le 6 \end{cases}$	$\begin{cases} 3 \cdot x_1 + x_2 \ge 6 \\ 2 \cdot x_1 - x_2 \ge 2 \end{cases}$	$\begin{cases} -x_1 - x_2 \ge 9 \\ -x_1 + x_2 \ge 4 \end{cases}$
	$\left -x_1 + 4 \cdot x_2 \le 4 \right $	$\left(2 \cdot x_1 - x_2 \ge 2\right)$	$\left(-x_1 + x_2 \ge 4\right)$
танд	$\begin{vmatrix} x_1 & x_2 \\ x_1 & x_2 & x_2 \end{vmatrix} = 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариант №	$\lambda_1 \geq 0, \lambda_2 \geq 0$		
	$a)F=3x_1+x_2 \rightarrow max \ (min)$	$e)F=3x_1+x_2 \rightarrow max \ (min)$	$c)F = 3x_1 + x_2 \longrightarrow max \ (min)$
51	$\int 2 \cdot x_1 + x_2 \le 2$	$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \ge 10 \end{cases}$	$\begin{cases} -x_1 + x_2 \ge 11 \\ x_1 - 4 \cdot x_2 \ge 8 \end{cases}$
2	$\left \left\{ -x_1 + 3 \cdot x_2 \le 3 \right. \right $	$x_1 + x_2 \ge 10$	$(x_1 - 4 \cdot x_2 \ge 8)$
ант	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариант №			
	$a)F=6x_1-5x_2 \rightarrow max \ (min)$	$e)F=x_1+x_2 \rightarrow max \ (min)$	$c)F=2x_1+3x_2 \rightarrow max \ (min)$
	$\int 5 \cdot x_1 + 4 \cdot x_2 \le 20$	(2 + 2 > 12	(
52	$\left \left\{ -3 \cdot x_1 + 5 \cdot x_2 \le 15 \right. \right $	$\begin{cases} 3 \cdot x_1 + 2 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \end{cases}$	$\begin{cases} x_1 + x_2 \le 12 \\ x_1 - 2 \cdot x_2 \ge 14 \end{cases}$
	$3 \cdot x_1 - x_2 \le 6$		· ·
вариант № 52	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар	1 / 2		
	$a)F = 6x_1 - 5x_2 \longrightarrow max \ (min)$	$e)F=2x_1+x_2 \longrightarrow max \ (min)$	$c)F=3x_1+x_2 \rightarrow max \ (min)$
_	$\left \left x_1 + x_2 \right \le 4 \right $	$(x_1 + x_2 > 12)$	$(x_1 + x_2 < 2)$
№ 53	$\left \left\{ -x_1 + x_2 \le 2 \right. \right.$	$\begin{cases} x_1 + x_2 \ge 12 \\ x_1 - x_2 \ge 4 \end{cases}$	$\begin{cases} x_1 + x_2 \le 2 \\ 3 \cdot x_1 + x_2 \ge 9 \end{cases}$
HT J	$\int \left[3 \cdot x_1 - x_2 \le 3 \right]$		
вариа	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
Ba			
	$a)F = 3x_1 + 4x_2 \longrightarrow max \ (min)$	$e)F=x_1+8x_2 \rightarrow max \ (min)$	$c)F=2x_1+3x_2 \rightarrow max \ (min)$
2	a) $F=3x_1+4x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 9 \\ -x_1 + x_2 \le 4 \\ 3 \cdot x_1 - x_2 \le 15 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$\int x_1 + x_2 \ge 6$	$\int x_1 + 2 \cdot x_2 \le 10$
%	$\begin{vmatrix} \lambda_1 & \lambda_2 & \Delta \\ 3 & \gamma & -\gamma & < 15 \end{vmatrix}$	$\begin{cases} x_1 + x_2 \ge 6 \\ 3 \cdot x_1 - x_2 \le 6 \end{cases}$	$\begin{cases} x_1 + 2 \cdot x_2 \le 10 \\ x_1 - 3 \cdot x_2 \ge 15 \end{cases}$
ант	$\begin{bmatrix} 3 & \lambda_1 & \lambda_2 & \exists 13 \\ \dots & \ddots & \ddots & \ddots \end{bmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
зари	$X_1 \leq 0, X_2 \leq 0$		· ~
Ħ			

	_		
вариант № 55	$\begin{cases} a)F = 3x_1 + 4x_2 \rightarrow max \ (min) \\ \begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \end{cases} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$6)F = x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 - x_2 \ge 9 \\ x_1 + x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 56	$a)F = x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 14 \\ -x_1 + 5 \cdot x_2 \le 10 \\ x_1 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = x_1 + 5x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 2 \\ -x_1 + 3 \cdot x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 8x_2 \rightarrow max \ (min)$ $\begin{cases} 6 \cdot x_1 + x_2 \ge 12 \\ x_1 - x_2 \ge 7 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 57	$a)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \le 2 \\ 4 \cdot x_1 - x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 2x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 6 \\ 3 \cdot x_1 - x_2 \le 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = -2x_1 + 5x_2 \rightarrow max(min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 4 \\ x_1 - 4 \cdot x_2 \ge 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 58	a) $F = -8x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + 2 \cdot x_2 \le 14 \\ -4 \cdot x_1 + 3 \cdot x_2 \le 12 \\ x_1 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 10 \\ -4 \cdot x_1 + x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 2x_1 - x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 - x_2 \ge 21 \\ x_1 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант № 60	a) $F=x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \le 12 \\ 2 \cdot x_1 - x_2 \le 6 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$6)F = 6x_1 + 7x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 22 \\ x_1 - 4 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = -5x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 6 \\ 3 \cdot x_1 - x_2 \ge 21 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

	$a)F=3x_1-2x_2 \rightarrow max \ (min)$	$e)F = 5x_1 + 2x_2 \rightarrow max \ (min)$	$c)F = x_1 + 7x_2 \longrightarrow max \ (min)$
61	$\int 4 \cdot x_1 + 8 \cdot x_2 \le 8$	$\int x_1 + x_2 \ge 10$	$\begin{cases} 5 \cdot x_1 + x_2 \le 15 \\ 3 \cdot x_1 - x_2 \ge 12 \end{cases}$
r No	$2 \cdot x_1 + 0.5 \cdot x_2 \le 3$	$\begin{cases} x_1 + x_2 \ge 10 \\ -x_1 + 4 \cdot x_2 \ge 4 \end{cases}$	$3 \cdot x_1 - x_2 \ge 12$
вариант № 61	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F = 2x_1 + x_2 \longrightarrow max \ (min)$	$e)F = x_1 + 3x_2 \longrightarrow max \ (min)$	$c)F = x_1 + 8x_2 \longrightarrow max \ (min)$
25	$\begin{vmatrix} 2 \cdot x_1 + x_2 \le 10 \\ 2 \cdot x_1 + x_2 \le 0 \end{vmatrix}$	$\left(x_1 + 2 \cdot x_2 \ge 14\right)$	$\left(2 \cdot x_1 + x_2 \le 14\right)$
N. 6	$\begin{cases} 3 \cdot x_1 - x_2 \le 9 \\ -x_1 + x_2 \le 4 \end{cases}$	$\begin{cases} x_1 + 2 \cdot x_2 \ge 14 \\ -x_1 + 5 \cdot x_2 \ge 10 \end{cases}$	$\begin{cases} 2 \cdot x_1 + x_2 \le 14 \\ 4 \cdot x_1 - x_2 \ge 32 \end{cases}$
вариант № 62	$\begin{vmatrix} x_1 & x_2 & \exists \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
варі	$\lambda_1 \leq 0, \lambda_2 \leq 0$		
	$a)F = -2x_1 + x_2 \longrightarrow max \ (min)$	$e)F=x_1+3x_2 \rightarrow max \ (min)$	$c)F=x_1+6x_2 \longrightarrow max \ (min)$
ا ا	$\left \begin{array}{c} 2 \cdot x_1 + x_2 \leq 10 \\ 2 \end{array} \right $	$\int x_1 + 3 \cdot x_2 \ge 12$	$(2 \cdot x_1 - x_2 \ge 6)$
вариант № 63	$\begin{cases} 3 \cdot x_1 - x_2 \le 9 \\ -x_1 + x_2 \le 6 \end{cases}$	$\begin{cases} x_1 + 3 \cdot x_2 \ge 12 \\ -x_1 + 7 \cdot x_2 \ge 14 \end{cases}$	$\begin{cases} 2 \cdot x_1 - x_2 \ge 6 \\ x_1 \le 1 \end{cases}$
пант	$\begin{vmatrix} -x_1 + x_2 \le 0 \\ x_1 \ge 0, x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вари	$\lambda_1 \geq 0, \lambda_2 \geq 0$		
	$a)F=5x_1+x_2 \rightarrow max \ (min)$	$e)F=x_1+7x_2 \rightarrow max \ (min)$	$c)F=2x_1+x_2 \longrightarrow max \ (min)$
4		$(x_1 + 2 \cdot x_2 \ge 10)$	$\left[4 \cdot x_1 + x_2 \ge 16\right]$
№ 64	$\begin{cases} x_1 - x_2 \le 9 \\ x_1 \le 2 \end{cases}$	$\begin{cases} x_1 + 2 \cdot x_2 \ge 10 \\ -x_1 + x_2 \le 2 \end{cases}$	$\begin{cases} 4 \cdot x_1 + x_2 \ge 16 \\ x_1 + x_2 \le 3 \end{cases}$
пант	$\begin{cases} x_2 \le 2 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариан	$\lambda_1 \geq 0, \lambda_2 \geq 0$		
	$a)F=x_1+3x_2 \rightarrow max \ (min)$	$e)F=x_1+5x_2 \rightarrow max \ (min)$	$c)F=x_1+3x_2 \longrightarrow max \ (min)$
S.	$\begin{cases} 2 \cdot x_1 + x_2 \le 10 \\ -x_1 + x_2 \le 9 \\ x_1 \le 4 \end{cases}$	$[10 \cdot x_1 + x_2 \ge 5]$	$\int x_1 + 2 \cdot x_2 \ge 14$
вариант № 65	$\begin{cases} -x_1 + x_2 \le 9 \\ x \le 4 \end{cases}$	$\begin{cases} 10 \cdot x_1 + x_2 \ge 5 \\ x_1 + x_2 \ge 9 \end{cases}$	$\begin{cases} x_1 + 2 \cdot x_2 \ge 14 \\ -4 \cdot x_1 - 3 \cdot x_2 \ge 12 \end{cases}$
гант	$\begin{vmatrix} x_1 \le 4 \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вары	$\lambda_1 \leq 0, \lambda_2 \leq 0$		
<u> </u>			

	$a)F=x_1+x_2 \rightarrow max \ (min)$	$e)F = 4x_1 + x_2 \longrightarrow max \ (min)$	$c)F=x_1+6x_2 \rightarrow max \ (min)$
99	$\int -4 \cdot x_1 + 7 \cdot x_2 \le 28$	$\begin{cases} x_1 + 2 \cdot x_2 \ge 16 \\ -x_1 + 5 \cdot x_2 \ge 15 \end{cases}$	$\int -x_1 + x_2 \ge 7$
вариант № 66	$3 \cdot x_1 - x_2 \le 15$	$-x_1 + 5 \cdot x_2 \ge 15$	$\int x_1 - 3 \cdot x_2 \ge 18$
пан	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F=3x_1+2x_2 \rightarrow max \ (min)$	$e)F = 7x_1 + 3x_2 \rightarrow max \ (min)$	$c)F=6x_1+x_2 \rightarrow max \ (min)$
	$\int 4 \cdot x_1 + x_2 \le 16$	$\int x_1 + x_2 \ge 19$	$\left[-x_1 + x_2 \ge 1\right]$
.Nº67	$\begin{cases} 4 \cdot x_1 + x_2 \le 16 \\ x_1 + x_2 \le 8 \end{cases}$	$\begin{cases} x_1 + x_2 \ge 19 \\ -x_1 + x_2 \le 3 \end{cases}$	$\begin{cases} -x_1 + x_2 \ge 1 \\ x_1 - 3 \cdot x_2 \ge 9 \end{cases}$
вариант№67	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар			
	$a)F = -x_1 + 2x_2 \longrightarrow max \ (min)$	$e)F=2x_1+3x_2 \rightarrow max \ (min)$	$c)F = 7x_1 + x_2 \longrightarrow max \ (min)$
 	$\begin{cases} x_1 - x_2 \le 4 \\ -x_1 + 3 \cdot x_2 \le 6 \end{cases}$	$\left(x_1 + 2 \cdot x_2 \ge 14\right)$	$x_1 \ge 9$
вариант№ 68	$\begin{vmatrix} -x_1 + 3 \cdot x_2 \le 0 \\ -x_1 + x_2 \le 1 \end{vmatrix}$	$\begin{cases} x_1 + 2 \cdot x_2 \ge 14 \\ -4 \cdot x_1 + 3 \cdot x_2 \le 12 \end{cases}$	$\left(-x_1 - x_2 \ge 3\right)$
пант	$\begin{cases} x_1 + x_2 = 1 \\ x_1 \ge 0, & x_2 \ge 0 \end{cases}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вар	$N_1 = 0$, $N_2 = 0$		
	$a)F=2x_1+7x_2 \rightarrow max \ (min)$	$e)F=-5x_1-2x_2 \longrightarrow max \ (min)$	$c)F=2x_1+x_2 \rightarrow max \ (min)$
69	$4 \cdot x_1 + x_2 \le 20$	$\left[-x_1 + x_2 \ge 1\right]$	$\left[-2 \cdot x_1 + x_2 \ge 10\right]$
. № 69	$\begin{cases} 4 \cdot x_1 + x_2 \le 20 \\ x_1 + x_2 \le 6 \end{cases}$	$\begin{cases} -x_1 + x_2 \ge 1 \\ x_1 - x_2 \le 7 \end{cases}$	$\begin{cases} -2 \cdot x_1 + x_2 \ge 10 \\ x_1 - 3 \cdot x_2 \ge 18 \end{cases}$
пант	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
вариан			
	$a)F = 3x_1 + x_2 \longrightarrow max \ (min)$	$ebta)F = -x_1 + 2x_2 \rightarrow max \ (min)$	$c)F=x_1+2x_2 \rightarrow max \ (min)$
0	$\begin{cases} x_1 + 4 \cdot x_2 \le 12 \\ x_1 + x_2 \le 4 \\ 4 \cdot x_1 - x_2 \le 13 \end{cases}$	$(x_1 + x_2 \ge 4)$	$\int x_1 - 2 \cdot x_2 \ge 10$
вариант № 70	$\begin{cases} x_1 + x_2 \le 4 \\ 4 \cdot x = x < 13 \end{cases}$	$\begin{cases} x_1 + x_2 \ge 4 \\ -6 \cdot x_1 + x_2 \le 6 \end{cases}$	$\begin{cases} x_1 - 2 \cdot x_2 \ge 10 \\ -x_1 + x_2 \ge 8 \end{cases}$
пант	$\begin{vmatrix} x_1 - x_2 \le 13 \\ x_1 \ge 0, & x_2 \ge 0 \end{vmatrix}$	$x_1 \ge 0, x_2 \ge 0$	$x_1 \ge 0, x_2 \ge 0$
варі	$n_1 = 0, n_2 = 0$		

вариант № 71	$\begin{cases} a)F = x_1 + 4x_2 \longrightarrow max \ (min) \\ \begin{cases} x_1 + 2 \cdot x_2 \le 10 \\ -2 \cdot x_1 + x_2 \le 2 \\ x_1 - 5 \cdot x_2 \le 5 \end{cases} \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$	$e)F = 2x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + x_2 \ge 16 \\ x_1 + x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	c) $F=2x_1+7x_2 \rightarrow max \ (min)$ $\begin{cases} -4 \cdot x_1 + x_2 \ge 16 \\ x_1 - x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант №72	a) $F = 7x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} x_1 + x_2 \le 10 \\ x_1 \le 9 \\ -x_1 + x_2 \le 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \ge 10 \\ -x_1 + x_2 \le 7 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -4 \cdot x_1 + x_2 \ge 16 \\ x_1 - 3 \cdot x_2 \ge 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант №73	a) $F = 6x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} 2 \cdot x_1 + x_2 \le 22 \\ -x_1 + x_2 \le 12 \\ x_1 - 4 \cdot x_2 \le 8 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = -2x_1 - 3x_2 \rightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + x_2 \ge 16 \\ x_1 + x_2 \ge 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 6x_1 + 5x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \ge 10 \\ x_1 - 4 \cdot x_2 \ge 16 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант №74	a) $F=x_1+5x_2 \to max \ (min)$ $\begin{cases} -10 \cdot x_1 + x_2 \le 5 \\ x_1 - x_2 \le 2 \\ x_1 + x_2 \le 9 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = 2x_1 + 3x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \le 2 \\ x_1 - x_2 \ge 10 \\ x_2 \ge 3 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = x_1 + x_2 \longrightarrow max \ (min)$ $\begin{cases} -x_1 + 3 \cdot x_2 \ge 12 \\ -x_1 + 2 \cdot x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$
вариант №75	a) $F=2x_1+x_2 \rightarrow max \ (min)$ $\begin{cases} 4 \cdot x_1 + x_2 \le 16 \\ x_1 + x_2 \le 5 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$e)F = x_1 + 4x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \le 1 \\ x_1 - x_2 \ge 9 \\ x_2 \ge 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$	$c)F = 7x_1 + x_2 \rightarrow max \ (min)$ $\begin{cases} -x_1 + x_2 \ge 7 \\ -x_1 + 2 \cdot x_2 \le 2 \end{cases}$ $x_1 \ge 0, x_2 \ge 0$