Einführung in die Stochastik - Mitschrieb

$Vor lesung \ im \ Wintersemester \ 2011/2012$

Sarah Lutteropp

20. Oktober 2011

Inhaltsverzeichnis

1	\mathbf{Des}	skriptive Statistik
	1.1	Der Grundraum
	1.2	Absolute und relative Häufigkeit
	1.3	Histogramm
	1.4	Lagemaße
	1.5	Streuungsmaße
	1.6	Empirischer Korrelationskoeffizient
2		ignisse und Zufallsvariablen
	2.1	Definition
	2.2	Beispiele
	2.3	Bemerkung (Mengentheoretische Operationen)
	2.4	Definition
	2.5	Definition
	2.6	Definition
	2.7	Bemerkungen (Rechenregeln für Indikatorfunktionen)
	2.8	Definition

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Stochastik" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Günther Last gehalten wird.

Kapitel 1

Deskriptive Statistik

1.1 Der Grundraum

 $\emptyset \neq \Omega = \text{Grundraum (Grundgesamtheit, Merkmalsraum, Stichprobenraum)}$ Annahme: Ω ist diskret(endlich oder abzählbar unendlich) (Häufig $\Omega \subseteq \mathbb{R}$)

1.2 Absolute und relative Häufigkeit

$$x_1,\ldots,x_n\in\Omega$$
 ("Daten") $h(\omega)=card\left\{j\in\{1,\ldots,n\}\colon x_j=\omega\right\},\omega\in\Omega$, absolute Häufigkeit von ω

Bemerkung
$$\sum_{\omega \in \Omega} h(\omega) = n$$

Definition $\frac{1}{n}h(\omega)$ = relative Häufigkeit von ω $h(A) = card\{j \in \{1, \dots, n\}: x_j \in A\}, A \subset \Omega$ = absolute Häufigkeit von A, $\frac{1}{n}h(A)$ = relative Häufigkeit von A

1.3 Histogramm

$$x_1, \dots, x_n \in \mathbb{R}, b_1 < b_2 < \dots < b_s \text{ mit } b_1 \leq \min_{1 \leq i \leq n} x_i, b_s > \max_{1 \leq i \leq n} x_i$$

TODO: BILD
 $d_j(b_{j+1} - b_j) = h([b_j, b_{j+1})) = card\{i \in \{1, \dots, n\} : b_j \leq x_i < b_{j+1}\}$

1.4 Lagemaße

Definition Ein **Lagemaß** ist eine Abbildung $l : \mathbb{R}^n \to \mathbb{R}$ mit

$$l(x_1 + a, \dots, x_n + a) = l(x_1, \dots, x_n) + a$$

[&]quot;Verschiebungskovarianz". $x_1, \ldots, x_n, a \in \mathbb{R}$

1.4 Lagemaße 4

1.4.1 Arithmetisches Mittel

$$x_1, \ldots, x_n \in \mathbb{R}, \bar{x} := \frac{1}{n} \sum_{j=1}^n x_j$$
 "Schwerpunkt der Daten"

Fakt
$$\sum_{i=1}^{n} (x_i - t)^2 \xrightarrow{t} \text{Min}$$

Lösung: $t = \bar{x}$

"Prinzip der kleinsten Quadrate"

Beweis
$$\frac{1}{n}\sum_{j=1}^{n}(x_j-t)^2=t^2-2\bar{x}t+\frac{1}{n}\sum_{j=1}^{n}x_j^2=(t-\bar{x})^2+\frac{1}{n}\sum_{j=1}^{n}x_j^2-(\bar{x})^2$$

1.4.2 Median, Quantile

$$x_1, \ldots, x_n \in \mathbb{R} \Rightarrow x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$
 geordnete Stichprobe

Definition

$$x_{1/2} := \begin{cases} x_{(\frac{n+1}{2})} & \text{, falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & \text{, falls } n \text{ gerade} \end{cases}$$

heißt **Median** von x_1, \ldots, x_n .

Fakt
$$\sum_{j=1}^{n} |x_j - x_{1/2}| = \min_{t} \sum_{j=1}^{n} |x_j - t| Übungsaufgabe$$

Bemerkung Der Median ist "robust" gegenüber "Ausreißern". Ist etwa $x_1 = \ldots = x_9 = 1$ und $x_{10} = 1000(n = 10)$, so gilt $\bar{x} = 100, 9, x_{1/2} = 1$

Definition Für 0 heißt

$$x_p := \begin{cases} x_{(\lfloor n \cdot p + 1 \rfloor)} & \text{, falls } n \cdot p \notin \mathbb{N} \\ \frac{1}{2} (x_{(n \cdot p)} + x_{(n \cdot p + 1)}) & \text{, falls } n \cdot p \in \mathbb{N} \end{cases}$$

p-Quantil von x_1, \ldots, x_n .

Interpretation Mindestens $p \cdot 100\%$ der Daten liegen links von x_p und mindestens $(1-p) \cdot 100\%$ liegen rechts von x_p . $x_{1/4}$ = unteres Quartil, $x_{3/4}$ = oberes Quartil

1.5Streuungsmaße

Definition Eine Abbildung $\sigma: \mathbb{R}^n \to \mathbb{R}$ mit

$$\sigma(x_1 + a, \dots, x_n + a) = \sigma(x_1, \dots, x_n)$$
 (Translationsinvarianz)

heißt Streuungsmaß.

1.5.1Empirische Varianz

$$s^2 := \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2 =$$
 empirische Varianz von x_1, \dots, x_n

1.5.2 Empirische Standardabweichung

 $s := +\sqrt{s^2} =$ empirische Standardabweichung von x_1, \ldots, x_n

1.5.3Spannweite

$$x_{(n)}-x_{(1)}=$$
 Spannweite von x_1,\ldots,x_n

1.5.4 Quartilsabstand

 $x_{(3/4)-x_{(1/4)}} = \mathbf{Quartilsabstand} \text{ von } x_1, \dots, x_n$

Empirischer Korrelationskoeffizient

$$(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$$
 TODO: BILD
Gesucht: Gerade $y = a + b \cdot x$ so, dass

$$(*)$$
 $\sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{a,b}{\to} \text{Min}$

Definition
$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \ \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$\sigma_{xy} = \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})$$
 empirische Kovarianz $\sigma_x^2 > 0, \sigma_y^2 > 0.$

Lösung von (*):
$$b^* = \frac{\sigma_{xy}}{\sigma_{x^2}}, a^* = \bar{y} - b^* \cdot \bar{x}$$

$$\min_{\substack{a,b \ a,b}} \sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{!}{=} \min_{\substack{b \ b}} \sum_{j=1}^{n} (y_i - \bar{y} - b(x_j - \bar{x}))^2 = \dots$$

"lineare Regression"

Einsetzen von a^* und b^* in die Zielfunktion:

$$0 \le \sum_{j=1}^{n} (y_j - a^* - b^* x_j)^2 = \dots = n\sigma_y^2 (1 - (\frac{\sigma_{xy}}{\sigma_x \sigma_y})^2)$$

Definition $r_{xy}:=rac{\sigma_{xy}}{\sigma_x\sigma_y}$ heißt empirischer Korrelationskoeffizient (Pearson).

Folgerung $|r_{xy}| \le 1$ Es gilt $r_{xy} = \pm 1 \Leftrightarrow$ Punktewolke liegt exakt auf der Geraden $y = a^* + b^*x$. Dabei ist $b^* > 0$, falls $r_{xy} = 1$ und $b^* < 0$, falls $r_{xy} = -1$.

Dieser empirische Korrelationskoeffizient ist ein Maß für die (affin) lineare $Abh \ddot{a}ngigkeit zwischen den x_j und den y_j$.

Kapitel 2

Ereignisse und Zufallsvariablen

2.1 Definition

Gegeben sei eine Grundmenge Ω . Die Elemente von Ω heißen **Elementarereignisse**. Teilmengen von Ω heißen **Ereignisse**. (Idee: $\omega \in \Omega$ ist Ausgang eines zufälligen Versuchs.)

Interpretation Ein Ereignis $A \subset \Omega$ "tritt ein", wenn $\omega \in A$.

2.2 Beispiele

- (i) (Münzwurf) $\Omega = \{0, 1\} (\text{oder } \Omega = \{W, Z\})$
- (ii) (m Münzwürfe) $\Omega = \{0,1\}^m (A = \{\omega = (\omega_1,\ldots,\omega_m): \sum_{j=1}^m \omega_j \geq k\} \text{ Ereignis })$
- (iii) Werfen von 2 Würfeln $\Omega = \{1, \dots, 6\}^2$
- (iv) Brownsche Bewegung (TODO: BILD) Bewegung eines Blütenpollens in einer Flüssigkeit \Rightarrow Zukunftsmusik $\Omega = C([0,1], \mathbb{R}^2)$

2.3 Bemerkung (Mengentheoretische Operationen)

```
Seien A, B, A_1, A_2, \ldots \subset \Omega.

A \cap B = \{\omega \in \Omega : \omega \in A \text{ und } \omega \in B\} = \text{"A und B treten ein"}

A \cup B = \text{"A oder B treten ein"}

\bar{A} \equiv A^c := \Omega \setminus A = \{\omega \in \Omega : \omega \notin A\} = \text{"A tritt nicht ein"}
```

2.4 Definition 8

 $A \backslash B = A \cap B^c \hat{=}$ "A tritt ein, aber nicht B" $A \subset B \hat{=}$ "wenn A, dann B" $\emptyset \hat{=}$ "unmögliches Ereignis" $\Omega \hat{=}$ "sicheres Ereignis"

Abkürzung $AB = A \cap B$

2.4 Definition

Eine Abbildung $X: \Omega \to \mathbb{R}$ heißt (reelle) **Zufallsvariable**. Für $\omega \in \Omega$ heißt $X(\omega)$ **Realisierung** der Zufallsvariable zu ω .

Idee Mit $\omega \in \Omega$ bekommt auch $X(\omega)$ einen zufälligen Charakter.

Definition
$$X^{-1} \colon \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\Omega) = \{A \colon A \in \Omega\}$$
 ist definiert durch $X^{-1}(A) = \{\omega \in \Omega \colon X(\omega) \in A\}$ ("Urbild von A unter X")

Bemerkung

•
$$X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B), A, B \subset \mathbb{R}$$

•
$$X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$$

•
$$X^{-1}(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} X^{-1}(A_j)$$

•
$$X^{-1}(\bigcap_{j=1}^{\infty} A_j) = \bigcap_{j=1}^{\infty} X^{-1}(A_j)$$

Vereinbarung Es sei X eine Zufallsvariable und $t \in \mathbb{R}$. Wir setzen

- $\{X = t\} := \{\omega \colon X(\omega) = t\} (= X^{-1}(t))$
- $\{X \ge t\} := \{\omega \colon X(\omega) \ge t\}$

2.5 Definition

Sind X, Y Zufallsvariablen, so definiert man

•
$$(X + Y)(\omega) = X(\omega) + Y(\omega)$$

•
$$(X - Y)(\omega) = X(\omega) - Y(\omega)$$

•
$$(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$$

2.6 Definition 9

 $\omega \in \Omega,$ neue Zufallsvariablen $X+Y, X-Y, X\cdot Y$ analog für $a \in \mathbb{R}$

- $aX(\omega) = a \cdot (X(\omega))$
- $\min(X, Y) = (X \wedge Y)(\omega) := \min\{X(\omega), Y(\omega)\}\dots$

2.6 Definition

Sei $A \subset \Omega$. Die Funktion $1_A : \Omega \to \mathbb{R}$ ist definiert durch

$$1_A(\omega) = \begin{cases} 1 & \text{, falls } \omega \in A \\ 0 & \text{, falls } \omega \notin A \end{cases}$$

und heißt Indikatorfunktion von A.

2.7 Bemerkungen (Rechenregeln für Indikatorfunktionen)

- $1_{\emptyset} \equiv 0$
- $1_{\Omega} \equiv 1$
- $(1_A)^2 = 1_A$
- $1_{A^c} = 1 1_A$
- $1_{A \cap B} = 1_A \cdot 1_B$
- $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$
- $A \subset B \Leftrightarrow 1_A \leq 1_B$
- $1_{A \wedge B} = |1_A 1_B|$

2.8 Definition

Seien $A_1, \ldots, A_n \subset \Omega$. Die Zufallsvariable

$$X := \sum_{j=1}^{n} 1_{A_j}$$

heißt Zählvariable oder Indikatorsumme.

2.8 Definition 10

Bemerkung

- $\{X = 0\} = \{\omega \colon X(\omega) = 0\} = A_1^c \cap \dots A_n^c$
- $\{X=n\}=A_1\cap\ldots\cap A_n$
- $\{X=k\}$ = "genau k der Ereignisse A_1,\ldots,A_n treten ein" = $\bigcup_{T\subset\{1,\ldots,n\},|T|=k} (\bigcap_{j\in T} A_j\cap\bigcap_{j\notin T} A_j^c) (T\subset\{1,\ldots,n\},|T|=\mathrm{card}\ T=k)$