תרגילים 1: שדות

 \mathbb{Z}_3 -ב לוח החיבור של איברים ב \mathbb{Z}_3 : כוח הרכפל של איברים ב

 $\bar{2}$ $\bar{2}$ $\bar{0}$ $\bar{1}$

	\mathbb{Z}_5 -לוח הכפל של איברים ב							$:\mathbb{Z}_{5}$	- ⊐	רים	איו	של	יבור	לוח הח	
			$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$-\bar{0}=\bar{0}$		+	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{1}^{-1} = \bar{1}$	$\overline{0}$		$\bar{0}$	Ō	Ō	Ō	$\bar{0}$	$-0 = 0$ $-\overline{1} = \overline{4}$		$\bar{0}$	Ō	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\overline{4}$
$\bar{2}^{-1} = \bar{3}$	1		$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$-1 = 4$ $-\bar{2} = \bar{3}$		$\bar{1}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$
$\bar{3}^{-1} = \bar{2}$	$\bar{2}$		$\bar{0}$	$\bar{2}$	$\bar{4}$	1	$\bar{3}$	$-2 = 3$ $-\bar{3} = \bar{2}$		$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$
$\bar{4}^{-1} = \bar{4}$	$\bar{3}$		$\bar{0}$	$\bar{3}$	$\bar{1}$	$\bar{4}$	$\bar{2}$	$-3 = 2$ $-\overline{4} = \overline{1}$		$\bar{3}$	3	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
	$\bar{4}$		$\bar{0}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	$\bar{1}$	-4 = 1		$\bar{4}$	$\bar{4}$	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$

לוח החיבור של איברים ב- \mathbb{Z}_7 : כוח הכפל של איברים ב- \mathbb{Z}_7 ים

		$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$-\bar{0}=\bar{0}$	+	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{1}^{-1} = \bar{1}$	$\bar{0}$	Ō	Ō	Ō	Ō	Ō	Ō	Ō	$-0 = 0$ $-\bar{1} = \bar{6}$	$\bar{0}$	Ō	Ī	$\bar{2}$	3	$\bar{4}$	5	<u></u> 6
$\bar{2}^{-1} = \bar{4}$	Ī	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$-1 = 0$ $-\overline{2} = \overline{5}$	$\bar{1}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$
$\bar{3}^{-1} = \bar{5}$	$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{1}$	$\bar{3}$	$\bar{5}$	$-2 = 3$ $-\bar{3} = \bar{4}$	$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$
$\bar{4}^{-1} = \bar{2}$	$\bar{3}$	$\bar{0}$	$\bar{3}$	$\bar{6}$	$\bar{2}$	$\bar{5}$	$\bar{1}$	$\bar{4}$	$-3 = 4$ $-\bar{4} = \bar{3}$	$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
$\bar{5}^{-1} = \bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{4}$	$\bar{1}$	$\bar{5}$	$\bar{2}$	$\bar{6}$	$\bar{3}$	$-4 = 3$ $-\bar{5} = \bar{2}$	$\bar{4}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$
$\bar{6}^{-1} = \bar{6}$	$\bar{5}$	$\bar{0}$	$\bar{5}$	$\bar{3}$	$\bar{1}$	$\bar{6}$	$\bar{4}$	$\bar{2}$	$-5 = 2$ $-\overline{6} = \overline{1}$	$\bar{5}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
	$\bar{6}$	$\bar{0}$	$\bar{6}$	$\bar{5}$	$\bar{4}$	$\bar{3}$	$\bar{6}$	Ī	-0 = 1	$\bar{6}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$

 \mathbb{Z}_3 -ב רשמו את האיברים הבאים רשמו את שאלה 1

,,,,,	, -	•
(N	12	
(2	$\overline{23}$	
()	57	
(7	$\overline{46}$	
(ก	1 9	
(1	$\overline{-7}$	
7)	$\bar{2} + \bar{1}$	
(n	$\bar{2} + \bar{2}$	
(७	$\bar{1} + \bar{1}$	

- $\bar{2}\cdot\bar{2}$ ()
- $ar{2}\cdotar{0}$ (אי
- $ar{2}\cdotar{1}$ (ع

 \mathbb{Z}_5 -רשמו את האיברים הבאים ב- רשמו

- $\overline{11}$ (x
- $\overline{24}$ (2
- $\overline{56}$ ()
- <u>98</u> (7
- $\overline{22}$ (a
- $\overline{-8}$ (1)
- $\bar{2}+\bar{2}$ (1
- $\bar{2}+\bar{3}$ (n
- $\bar{1}+\bar{4}$ (v
- $\bar{2}\cdot \bar{4}$ (*
- $ar{3}\cdotar{2}$ (אי
- $ar{4}\cdotar{3}$ (2)

 \mathbb{Z}_7 -רשמו את האיברים הבאים ב-

- $\overline{13}$ (x
- <u>33</u> (2
- $\overline{74}$ ()
- $\overline{16}$ (7
- $\overline{12}$ (n
- $\overline{-9}$ (1)
- $\bar{2}+\bar{6}$
- $\bar{3} + \bar{5}$ (n

$$\bar{6} + \bar{3}$$
 (v

$$\bar{2}\cdot\bar{6}$$
 (*

$$ar{3}\cdotar{5}$$
 (אי

$$ar{4}\cdotar{6}$$
 (2)

- \mathbb{Z}_7 רשמו את טבלאות הכפל וחיבור של
- \mathbb{Z}_{11} -בי \mathbb{Z}_7 ב- 2,3,4,5,6 וב- בי וב- בי

שאלה 5

$$-3x=2$$
 (2) $3x=2$ (1) מצאו הפתרונות של המשוואות של

- \mathbb{Z}_5 בשדה (1
- \mathbb{Z}_7 בשדה (2
- \mathbb{Z}_{11} בשדה (3
- בא. ישנו פתרון יחיד. ax=b למשוואה $a\neq 0$ כך ש $a,b\in \mathbb{F}$ ישנו פתרון יחיד.

שאלה $oldsymbol{6}$ יהי $oldsymbol{\mathbb{F}}$ שדה. הוכיחו את הטענות הבאות:

מתקיים $a_1,\ldots,a_k,b\in\mathbb{F}$ מתקיים לכל מספר טבעי

$$(a_1 + \ldots + a_k) b = a_1 b + \ldots a_k b \in \mathbb{F} .$$

 $\cdot k$ רמז: אינדוקציה על

$$ab=1$$
 -פרט ל- $b\in\mathbb{F}$ יש $a\in\mathbb{F}$ כך ש $a\in\mathbb{F}$ לכל

$$.a=0$$
 אז $a+a=a$ אז $.a\in\mathbb{F}$ אז (ג)

$$.b=0$$
 או $a=0$ או $ab=0$ או $a,b\in\mathbb{F}$ אוי

$$a,b \in \mathbb{F}$$
 מתקיים $a,b \in \mathbb{F}$ לכל

שאלה **7** הוכיחו או הפריכו את הטענות הבאות ע"י דוגמה נגדית:

א) קבוצת המספרים השלמים $\mathbb Z$ עם פעולות החיבור והכפל הרגילות שדה.

. שדה
$$a\cdot b=3ab$$
 -ו $a+b=rac{a-b}{3}$ עם פעולות $\mathbb Q$ עם הרציונליים פרים הרציונליים

, כלומר, והכפל הרגילות, ביחס ביחס לפעולות ביחס למעולות, כלומר, ל $\left\{a+b\sqrt{2}|a,b\in\mathbb{Z}
ight\}$

$$(a + b\sqrt{2}) \oplus (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$$

 $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$

שדה.

. ביחס החיבור והכפל הרגילות, שדה $\left\{a+b\sqrt{2}|a,b\in\mathbb{Q}
ight\}$ הקבוצה (ד

שאלה 8

- \mathbb{Z}_7 רשמו את טבלאות הכפל וחיבור של
- \mathbb{Z}_{11} -ב- \mathbb{Z}_7 ב- 2,3,4,5,6 ב- וב- ב) וב- גוברים את האיברים של
- היהי היהי (ע"י כתיבת טבלאות הכפל והחיבור) פעולות כפל וחיבור (ע"י כתיבת טבלאות הכפל הקבוצה $\{0,1,a,b\}$ פעולות כפל וחיבור שדה.

a+1=b -שי קבעו הדרכה:

 \mathbb{Z}_3 פתרו את המערכת משוואות הבאה מעל 9 שאלה 9

$$x + \bar{2}y = \bar{2}$$
$$\bar{2}x - y = \bar{1}$$

 \mathbb{Z}_3 פתרו את המערכת משוואות הבאה מעל פתרו שאלה 10

$$\bar{2}x + \bar{2}y = \bar{2}$$
$$x + y = \bar{1}$$

שאלה 11 פתרו את המערכת משוואות פתרו פתרו פתרו שאלה 11 שאלה שאלה שאלה פתרו פתרו את המערכת פתרו שאלה שאלה שאלה שאלה שאלה שאלה באה מעל

$$\bar{4}x + \bar{2}y = \bar{3}$$
$$\bar{3}x - y = \bar{2}$$

 \mathbb{Z}_5 פתרו את המערכת משוואות הבאה מעל 12

$$\bar{3}x + y = \bar{2}$$
$$\bar{3}x + \bar{4}y = \bar{3}$$

 \mathbb{Z}_5 שאלה 13 פתרו את המערכת משוואות הבאה מעל

$$\bar{2}x + \bar{3}y = \bar{0}$$
$$x - \bar{3}y = \bar{4}$$

 \mathbb{Z}_7 פתרו את המערכת משוואות הבאה מעל פתרו שאלה

$$\bar{5}x + \bar{2}y = \bar{3}$$
$$\bar{4}x - \bar{3}y = \bar{4}$$

שאלה 15 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות יש למערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{4}z = \overline{2}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

שאלה 16 נתונה המערכת הבאה:

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

פתרו את המערכת הבאה מעל \mathbb{Z}_5 . רשמו את כל הפתרונות בצורה מפורשת. כמה פתרונות יש למערכת?

שאלה 17 פתרונות של למערכת הבאה מעל \mathbb{Z}_7 . כמה פתרונות של למערכת?

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

שאלה 18 פתרונות של למערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות של למערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

 \mathbb{Z}_5 פתרו את מערכת המשואות הבאה מעל שדה 19 שאלה

$$\begin{cases} \bar{3}x + \bar{2}y + z &= \bar{4} \\ \bar{4}x + \bar{2}y + z &= \bar{1} \\ x + y + \bar{3}z &= \bar{1} \end{cases}$$

רשמו את כל הפתרונות שלה.

 \mathbb{Z}_7 שאלה 20 פתרו את המערכת הבאה מעל

$$\bar{3}x + \bar{3}y + \bar{3}z = \bar{5}$$
$$\bar{3}x + \bar{4}y + z = \bar{1}$$
$$x + y + \bar{6}z = \bar{2}$$

 \mathbb{Z}_5 שאלה 21 פתרו את המערכת הבאה מעל

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

. מספר אשוני. $p \geq 7$ מספר עם פתרון יחיד עם $p \geq 7$ מספר ראשוני.

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

שאלה 23

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$(1+i)z_1 + (1-i)z_2 = 1+i$$

$$(1-i)z_1 + (1+i)z_2 = 1+3i$$

שאלה 24

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$2z_1 - (2+i)z_2 = -i$$
$$(4-2i)z_1 - 5z_2 = -1 - 2i$$

שאלה 25

 ${\mathbb C}$ פתרו את המערכת משוואות הבאה מעל

$$(1-i)z_1 - 3z_2 = -i$$
$$2z_1 - (3+3i)z_2 = 3-i$$

שאלה 26

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$iz_1 + (1-i)z_2 = 2i$$
,
 $(1+2i)z_1 - 2z_2 = 1$.

שאלה 27

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$3iz_1 + (6 - 6i)z_2 = 6i,$$

$$(1 + i)z_1 - 2z_2 = 1.$$

שאלה 28

 ${\mathbb C}$ פתרו את המערכת הבאה מעל

$$\begin{array}{rrr} 4z_1 + 4z_2 & = 4i \ , \\ (5+10i)z_1 - 5z_2 & = 5 \ . \end{array}$$

פתרונות

שאלה 1

(N

$$\overline{12} = \overline{\text{rem}(12,3)} = \overline{0}$$

$$\overline{23} = \overline{\text{rem}(23,3)} = \overline{2}$$

$$\overline{57} = \overline{\text{rem}(57,3)} = \overline{0}$$

$$\overline{46} = \overline{\text{rem}(46,3)} = \overline{1}$$

$$\overline{19} = \overline{\mathrm{rem}(19,3)} = \overline{1}$$

$$\bar{2}+\bar{7}=\bar{9}=\bar{0}$$
 \Rightarrow $-\bar{7}=\bar{2}$.

$$\bar{2}+\bar{1}=\bar{3}=\bar{0}$$

$$ar{2}+ar{2}=ar{4}=ar{1}$$

$$ar{1}+ar{1}=ar{2}$$

$$ar{2}\cdotar{2}=ar{4}=ar{1}$$

יא)
$$ar{2}\cdotar{0}=ar{0}$$

$$\bar{2}\cdot\bar{1}=\bar{2}$$

(2)

$$\overline{11} = \overline{\operatorname{rem}(11, 5)} = \overline{1}$$

(N

$$\overline{24} = \overline{\operatorname{rem}(24, 5)} = \overline{4}$$

(1

$$\overline{56} = \overline{\text{rem}(56, 5)} = \overline{1}$$

()

$$\overline{98} = \overline{\text{rem}(98, 5)} = \overline{3}$$

(†

$$\overline{22} = \overline{\mathrm{rem}(22,5)} = \bar{2}$$

(1

$$\bar{8} + \bar{2} = \overline{10} = \bar{0} \quad \Rightarrow \quad -\bar{8} = \bar{2} \ .$$

(1

$$\bar{2} + \bar{2} = \bar{4} .$$

1)

$$\bar{2} + \bar{3} = \bar{5} = \bar{0}$$

(h

$$\bar{1} + \bar{4} = \bar{5} = \bar{0}$$

(0

$$\bar{2}\cdot\bar{4}=\bar{8}=\bar{3}$$

()

$$\bar{3}\cdot\bar{2}=\bar{6}=\bar{1}$$

(と)

$$\bar{4}\cdot\bar{3}=\overline{12}=\bar{2}\ .$$

(2)

$$\overline{13} = \overline{\operatorname{rem}(13,7)} = \overline{6}$$

(N

$$\overline{33} = \overline{\mathrm{rem}(33,7)} = \bar{5}$$

(1

$$\overline{74} = \overline{\text{rem}(74,7)} = \overline{4}$$

()

$$\overline{16} = \overline{\mathrm{rem}(16,7)} = \bar{2}$$

(†

$$\overline{12} = \overline{\mathrm{rem}(12,7)} = \bar{5}$$

(n

$$\bar{9} + \bar{5} = \overline{14} = \bar{0} \quad \Rightarrow \quad -\bar{9} = \bar{5} \ .$$

(1

$$\bar{2} + \bar{6} = \bar{8} = \bar{1} .$$

7)

$$\bar{3} + \bar{5} = \bar{8} = \bar{1}$$

(n

$$\bar{6} + \bar{3} = \bar{9} = \bar{2}$$

(0

$$\bar{2} \cdot \bar{6} = \overline{12} = \bar{5}$$

()

$$\bar{3} \cdot \bar{5} = \overline{15} = \bar{1}$$

(と)

יב)

 $\bar{4}\cdot\bar{6}=\overline{24}=\bar{3}\ .$

שאלה 4

(N

+	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{0}$	Ō	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u></u> 6
Ī	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u></u> 6	$\bar{0}$
$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	Ī
$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
$\bar{4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$
$\bar{5}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{6}$	$\bar{6}$	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$

	$\bar{0}$	ī	$\bar{2}$	$ \begin{array}{c} \bar{3} \\ \bar{0} \\ \bar{3} \\ \bar{6} \\ \bar{2} \\ \bar{5} \\ \bar{1} \\ \bar{4} \end{array} $	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{0}$	$\bar{0}$	Ō	Ō	Ō	Ō	Ō	Ō
Ī	$\bar{0}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$\bar{6}$	$\bar{1}$	$\bar{3}$	$\bar{5}$
$\bar{3}$	$\bar{0}$	$\bar{3}$	$\bar{6}$	$\bar{2}$	$\bar{5}$	$\bar{1}$	$\bar{4}$
$\bar{4}$	$\bar{0}$	$\bar{4}$	$\bar{1}$	$\bar{5}$	$\bar{2}$	$\bar{6}$	$\bar{3}$
$\bar{5}$	$\bar{0}$	$\bar{5}$	$\bar{3}$	$\bar{1}$	$\bar{6}$	$\bar{4}$	$\bar{2}$
$\bar{6}$	$\bar{0}$	$\bar{6}$	$\bar{5}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	Ī

 $\underline{\mathbb{Z}_7}$ (2

 $-\bar{1} = \bar{6} \; , \qquad -\bar{2} = \bar{5} \; , \qquad -\bar{3} = \bar{4} \; , \qquad -\bar{4} = \bar{3} \; , \qquad -\bar{5} = \bar{2} \; , \qquad -\bar{6} = \bar{1} \; .$

 \mathbb{Z}_{11}

 $-\bar{1} = \overline{10} \; , \quad -\bar{2} = \bar{9} \; , \quad -\bar{3} = \bar{8} \; , \quad -\bar{4} = \bar{7} \; , \quad -\bar{5} = \bar{6} \; , \quad -\bar{6} = \bar{5} \; , \quad -\bar{7} = \bar{4} \; , \quad -\bar{8} = \bar{3} \; , \quad -\bar{9} = \bar{2} \; ,$

$$-\overline{10} = \overline{1}$$
.

(1 (x

$$-\bar{3}x = \bar{2} \quad \Rightarrow \quad \bar{2}x = \bar{2} \quad \Rightarrow \quad x = \bar{1} .$$

(2

$$-\bar{3}x = \bar{2} \quad \Rightarrow \quad \bar{4}x = \bar{2} \quad \Rightarrow \quad \bar{2} \cdot \bar{4}x = \bar{2} \cdot \bar{2} \quad \Rightarrow \quad \bar{8}x = \bar{4} \quad \Rightarrow \quad x = \bar{4} \ .$$

(3

$$-\bar{3}x = \bar{2} \quad \Rightarrow \quad \bar{8}x = \bar{2} \quad \Rightarrow \quad \bar{7} \cdot \bar{8}x = \bar{7} \cdot \bar{2} \quad \Rightarrow \quad \bar{5}\bar{6}x = \overline{14} \quad \Rightarrow \quad x = \bar{4}$$

ב) קיום

עדה לכן קיים $a\cdot a^{-1}=1$ כך ש- $a^{-1}\in\mathbb{F}$ לכן \mathbb{F}

$$a^{-1} \cdot a \cdot x = a^{-1} \cdot b \implies x = a^{-1} \cdot b$$
.

 $\mathbb F$ לכן פתרון פתרון לכן $a^{-1} \cdot b \in \mathbb F$ לכן לכן $a^{-1}, b \in \mathbb F$

יחידות

נניח שקיים יותר מפתרון אחד, כלומר קיימים $\mathbb F$. $ax_2=b$ ו- $ax_1=b$ כך ש- $x_1,x_2\in\mathbb F$ כלומר קיימים אדה לכן הערד מפתרון אחד, כלומר הנגדי $-ax_2=b$ ו- איבר הנגדי $-ax_2=b$

$$ax_1 + (-ax_2) = b + (-b) = 0 \implies ax_1 - ax_2 = 0 \implies a \cdot (x_1 - x_2) = 0$$
.

לכך בסתירה $x_1=x_2$ לכן $x_1-x_2=-x_1$ לכן של האיבר הנגדי של $x_1-x_2=0$ לכן לכן $a\neq 0$ שקיים יותר מפתרון אחד.

שאלה 6

:שלב הבסיס

 $.a_1 \cdot b \in \mathbb{F}$ אז $a_1, b \in \mathbb{F}$ לכן אם \mathbb{F}

שלב האינדוקציה:

נסמן $(a_1+\ldots+a_k)\,b=a_1b+\ldots a_kb\in\mathbb F$ ומתקיים $a_1,\ldots,a_k,b\in\mathbb F$ נסמן נניח כי $a_1+\ldots+a_k$ (שדה סגורה ביחס לכפל) ו- $a_{k+1}b\in\mathbb F$ נניח כי $a_{k+1}\in\mathbb F$ גם $a_{k+1}b\in\mathbb F$ (שדה סגורה ביחס לחיבור). לכן $c=a_1b+\ldots a_kb$

$$c + a_{k+1}b = a_1b + \dots a_kb + a_{k+1}b \in \mathbb{F} .$$

ab=1 -שדה לכן לכל $a\in\mathbb{F}$ קיים איבר ההופכי B כך ש \mathbb{F}

-ט כך $b_1 \neq b_2$, $b_1,b_2 \in \mathbb{F}$ כיים כי קיים מלומר לכל $a \in \mathbb{F}$ כל אחד לכל $a \in \mathbb{F}$ כל אחד לכל $ab_2 = -1$ ו- $ab_2 = -1$ לכן קיים איבר ההגדי $ab_2 = 1$ ו- $ab_2 = 1$

$$ab_1 + (-ab_2) = 1 + (-1) = 0 \quad \Rightarrow \quad ab_1 + (-ab_2) = 0 \quad \Rightarrow \quad ab_1 + (-ab_2) + ab_2 = 0 + ab_2 \quad \Rightarrow \quad ab_1 = ab_2$$

ונקבל a^{-1} -ב לכן קיים איבר ההופכי a^{-1} כך ש- a^{-1} כך ש- a^{-1} ונקבל $a\in\mathbb{F}$

$$b_1 = b_2$$

 $b_1 \neq b_2$ -בסתירה לכך

$$a+(-a)=0$$
 -כך ש- כך ש- מיבר הנגדי $a\in\mathbb{F}$

$$a+a=a \Rightarrow a+a+(-a)=a+(-a) \Rightarrow a+0=0 \Rightarrow a=0$$
.

לכן $a\cdot a^{-1}=1$ -פך ש- $a^{-1}\in\mathbb{F}$ כך שיבר הופכי $a,b\in\mathbb{F}$ כך ש- $a,b\in\mathbb{F}$ לכן (ניח ש- $a,b\in\mathbb{F}$

$$ab = 0$$
 \Rightarrow $a^{-1}ab = a^{-1} \cdot 0$ \Rightarrow $1 \cdot b = 0$ \Rightarrow $b = 0$.

נניח ש- $b
eq b^{-1} = 1$ אז קיים איבר הופכי $b^{-1} \in \mathbb{F}$ כך ש- $b \neq 0$ לכן נניח

$$ab=0 \qquad \Rightarrow \qquad b^{-1}ab=a^{-1}\cdot 0 \qquad \Rightarrow \qquad ab^{-1}b=a^{-1}\cdot 0 \qquad \Rightarrow \qquad a\cdot 1=0 \qquad \Rightarrow \qquad a=0\;.$$

נניח ש- $a^{-1}a=1$ כך ש- $a^{-1}a=1$ כך ש- $a^{-1}a=1$ ואיבר ההופכי $a^{-1}\in\mathbb{F}$ כך ש- $a^{-1}a=1$ ו- $a^{-1}a=1$

$$ab = 0 \implies a^{-1}ab = a^{-1}0 \implies b = 0$$

 $.b \neq 0$ בסתירה לכך ש-

קיים a+(-a)=0 -כך ש- $a\in\mathbb{F}$ לפי חוק הפילוג. $a,b\in\mathbb{F}$

$$(-a)b + ab = ((-a) + a)b = 0 \cdot b = 0$$

ab איבר הנגדי של האיבר (-a)b

שאלה 7

א) לא שדה

 $aa^{-1}=1$ -כך ש- $a^{-1}\in\mathbb{Z}$ בינמה נגדית: $a=2\in\mathbb{Z}$ אבל לא קיים

לא שדה (ב

חוק החילוף לא מתקיים: $a\oplus b \neq b\oplus a$, $b\oplus a=\dfrac{b-a}{3}$, $a\oplus b=\dfrac{a-b}{3}$. לכן $a\oplus b \neq b\oplus a$. חוק החילוף לא מתקיים: נכונות, משום שכל התוצאות שיתקבלו שייכות למספרים הרציונליים.

ג) לא שדה

-ע כך $a+b\sqrt{2}$ כך שקיים לב שלאיבר $\mathbb F$ - אכן, אין הופכי אין הופכי 3 למשל,

$$3\odot(a+b\sqrt{2})=1.$$

$$a\in\mathbb{Z}$$
 - מכאן בסתירה $a=rac{1}{3},b=0$ מכאן

שדה **(ד**

. נסמן והכפל החיבור ביחס לפעולות ביחס $\mathbb{F}=\{a+b\sqrt{2}|a,b\in\mathbb{Q}\}$ נסמן

יהיו $x,y,z\in\mathbb{F}$ אכן

$$x = a + b\sqrt{2}$$
, $y = c + d\sqrt{2}$, $z = e + f\sqrt{2}$, $a, b, c, d, e, f \in \mathbb{Q}$.

:סגורה תחת חיבור \mathbb{F} (1

$$x + y = (a + c) + (b + d)\sqrt{2}$$
.

$$.x+y\in\mathbb{F}$$
 לכך $b+d\in\mathbb{Q}$, $a+c\in\mathbb{Q}$

2) סגורה תחת כפל:

$$x \cdot y = (a + b\sqrt{2})(c + d\sqrt{2}) = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd$$
.

$$x\cdot y\in\mathbb{F}$$
 לכן, $ad+bc\in\mathbb{Q}$, $ac+2bd\in\mathbb{Q}$

I: חוק החילוף (3

$$x + y = y + x$$

II: חוק החילוף (4

$$x \cdot y = y \cdot x$$

I: חוק הקיבוץ (5

$$(x+y) + z = x + (y+z)$$
.

II: חוק הקיבוץ (6

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

7) חוק הפילוג:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
.

8) קיום איבר ניוטרלי:

$$x+ar{0}=x$$
 -קיים איבר $ar{0}\in\mathbb{F}$ כך ש

$$\bar{0} = 0 + 0 \cdot \sqrt{2} \ .$$

(6) קיום איבר יחיד (האיבר ניוטרל לגבי כפל):

$$x\cdot ar{1}=x$$
 -פך ש- $ar{1}\in\mathbb{F}$ קיים איבר

$$\bar{1} = 1 + 0 \cdot \sqrt{2} .$$

:קיום איבר נגדי (10

$$x+(-x)=ar{0}$$
 כך ש- כך ער ($-x)\in\mathbb{F}$ לכל $x\in\mathbb{F}$ לכל $-x=-a-b\sqrt{2}$.

:קיום איבר הופכי (11

 $x\cdot x^{-1}=1$ כך ש $x\in\mathbb{F}$ המקיים איבר קיים איבר כך כל כל $x\in\mathbb{F}$

$$x^{-1} = \frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2} .$$
$$.x^{-1} \in \mathbb{Q} \text{ לכך } \frac{a}{a^2 - 2b^2} \in \mathbb{Q} \text{ , } \frac{a}{a^2 - 2b^2} \in \mathbb{Q}$$

שאלה 8

(N

+	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
<u></u>	Ō	1	$\bar{2}$	3	$\bar{4}$	5	<u>-</u> 6
Ī	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	<u>-</u> 6	$\bar{0}$
$\bar{2}$	$\bar{2}$	3	$\bar{4}$	5	<u></u> 6	Ō	1
$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{0}$	Ī	$\bar{2}$
$\bar{4}$	$\bar{4}$	5	<u>6</u>	Ō	Ī	$\bar{2}$	3
5	5	<u></u> 6	Ō	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
<u>-</u> 6	<u>6</u>	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	5

•	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
Ō	Ō	Ō	Ō	Ō	Ō	Ō	$\bar{0}$
Ī	$\bar{0}$	Ī	$\bar{2}$	3	$\bar{4}$	5	<u>6</u>
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	<u></u>	Ī	3	5
3	Ō	3	<u>-</u> 6	$\bar{2}$	5	Ī	$\bar{4}$
$\bar{4}$	$\bar{0}$	$\bar{4}$	Ī	5	$\bar{2}$	<u></u>	3
5	Ō	5	3	Ī	<u></u>	$\bar{4}$	$\bar{2}$
<u>6</u>	$\bar{0}$	<u>-</u> 6	$\bar{5}$	$\bar{4}$	3	$\bar{2}$	$\bar{1}$

 $\underline{\mathbb{Z}_7}$ (2

$$-\bar{2} = \bar{5}$$
, $-\bar{3} = \bar{4}$, $-\bar{4} = \bar{3}$, $-\bar{5} = \bar{2}$, $-\bar{6} = \bar{1}$.

 \mathbb{Z}_{11}

$$-\bar{2} = \bar{9}$$
, $-\bar{3} = \bar{8}$, $-\bar{4} = \bar{7}$, $-\bar{5} = \bar{6}$, $-\bar{6} = \bar{5}$.

$$\begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{2} & -\bar{1} & | \bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{2} & \bar{2} & | \bar{1} \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{3} & \bar{4} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{0} \end{pmatrix}$$

פתרון:

$$(x,y) = (\bar{2},\bar{0}) .$$

שאלה 10

$$\begin{pmatrix}
\bar{2} & \bar{2} & | \bar{2} \\
\bar{1} & \bar{1} & | \bar{1}
\end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix}
\bar{1} & \bar{1} & | \bar{1} \\
\bar{2} & \bar{2} & | \bar{2}
\end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{2} \cdot R_1} \begin{pmatrix}
\bar{1} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{0} & | \bar{0}
\end{pmatrix}$$

יש משתנה חופשי ואין שורת סתירה לכן יהיו 3 פתרונות:

$$x + y = \overline{1} \quad \Rightarrow \quad x = \overline{1} - \overline{1} \cdot y = \overline{1} + \overline{2} \cdot y$$
.

לפיכך הפתרון הכללי הינו

$$(x,y) = (\bar{1} + \bar{2}y, y)$$
.

יש 3 פתרונות:

$$.(x,y) = (\bar{1},\bar{0})$$
 $:y = \bar{0}$

$$.(x,y) = (\bar{3},\bar{1}) = (\bar{0},\bar{1})$$
 $:y = \bar{1}$

$$.(x,y) = (\bar{5},\bar{2}) = (\bar{2},\bar{2})$$
 $:y = \bar{2}$

שאלה 11

$$\begin{pmatrix} \bar{4} & \bar{2} & | \bar{3} \\ \bar{3} & -\bar{1} & | \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{4} & \bar{2} & | \bar{3} \\ \bar{3} & \bar{4} & | \bar{2} \end{pmatrix} \xrightarrow{R_1 \to \bar{4}R_1} \begin{pmatrix} \bar{1}\bar{6} & \bar{8} & | \bar{1}\bar{2} \\ \bar{3} & \bar{4} & | \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & -\bar{5} & | -\bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & | \bar{2} \\ \bar{0} & \bar{0} & | \bar{1} \end{pmatrix}$$

קיבלנו שרות סתירה לכן למערכת אין פתרון.

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ה סמסטר א'

$$\begin{pmatrix} \frac{3}{3} & \frac{1}{4} & \frac{2}{3} \\ \frac{3}{3} & \frac{1}{4} & \frac{2}{3} \end{pmatrix} \xrightarrow{R_1 \to \bar{2} \cdot R_1} \begin{pmatrix} \frac{\bar{6}}{3} & \frac{\bar{2}}{4} & \frac{\bar{4}}{3} \\ \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{\bar{2}}{4} & \frac{\bar{4}}{3} \\ \frac{\bar{7}}{3} & -\bar{2} & -\bar{2} & -\bar{9} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{\bar{2}}{4} & \frac{\bar{4}}{3} \\ \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} & \frac{\bar{7}}{4} \end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{2}R_2} \begin{pmatrix} \frac{1}{3} & \frac{\bar{2}}{4} & \frac{\bar{4}}{3} \\ \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} & \frac{\bar{7}}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{\bar{2}}{4} & \frac{\bar{4}}{3} \\ \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} & \frac{\bar{7}}{4} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2} \cdot R_2} \begin{pmatrix} \frac{1}{3} & \frac{\bar{0}}{4} & \frac{\bar{0}}{3} \\ \frac{\bar{7}}{3} & \frac{\bar{7}}{4} & \frac{\bar{7}}{3} & \frac{\bar{7}}{4} \end{pmatrix}$$

פתרון:

$$(x,y) = (\bar{0},\bar{2}) .$$

<u>שאלה 13</u>

$$\begin{pmatrix} \bar{2} & \bar{3} & | \bar{0} \\ \bar{1} & -\bar{3} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{2} & \bar{3} & | \bar{0} \\ \bar{1} & \bar{2} & | \bar{4} \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{2} & \bar{3} & | \bar{0} \end{pmatrix}$$

$$\frac{R_2 \to R_2 - \bar{2} \cdot R_1}{\hat{0} - 1} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & -\bar{1} & | -\bar{8} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & \bar{4} & | \bar{2} \end{pmatrix}$$

$$\frac{R_2 \to \bar{4} \cdot R_2}{\hat{0} - 1} \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & 1 & | \bar{8} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & | \bar{4} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$\frac{R_1 \to R_1 - \bar{2} \cdot R_2}{\hat{0} - 1} \begin{pmatrix} \bar{1} & \bar{0} & | -\bar{2} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{3} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$(x, y) = (\bar{3}, \bar{3}) .$$

$$\begin{pmatrix} \bar{5} & \bar{2} & | \bar{3} \\ \bar{4} & -\bar{3} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{5} & \bar{2} & | \bar{3} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix} \xrightarrow{R_1 \to \bar{3} \cdot R_1} \begin{pmatrix} \bar{15} & \bar{6} & | \bar{9} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{4} & \bar{4} & | \bar{4} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{0} & -2\bar{0} & | -\bar{4} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{6} & | \bar{2} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} \xrightarrow{R_1 \to R_1 - \bar{6} \cdot R_1} \begin{pmatrix} \bar{1} & \bar{0} & | -\bar{14} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & | \bar{0} \\ \bar{0} & \bar{1} & | \bar{3} \end{pmatrix}$$

$$excert: (x, y) = (\bar{0}, \bar{3}) .$$

$$\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{3} & \bar{1} & 4 & | \bar{2} \\
\bar{2} & 4 & 4 & | \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & -\bar{8} & \bar{1} & | -\bar{1} \\
\bar{2} & 4 & 4 & | \bar{3}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{2} & 4 & 4 & | \bar{3}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_1}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & -\bar{2} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{2} & \bar{1} & | \bar{4} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{3} & \bar{2} & | \bar{1}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{4} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{4} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{4} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{0}
\end{pmatrix}$$

תשובה סופית:

$$(x, y, z) = (\bar{0}, \bar{2}, \bar{0})$$
.

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

$$\begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{3} & \bar{1} & \bar{2} & | & \bar{2} \\ \bar{2} & \bar{2} & \bar{3} & | & \bar{4} \end{pmatrix} \xrightarrow{R_{2} \to R_{2} - 3R_{1}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & -\bar{8} & -\bar{1} & | & -\bar{1} \\ \bar{0} & -\bar{4} & \bar{1} & | & \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_{2} \leftrightarrow R_{3}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \end{pmatrix}$$

$$\xrightarrow{R_{3} \to R_{3} - \bar{2}R_{2}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_{3} \to \bar{3} \cdot R_{3}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{6} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_{1} \to R_{1} - R_{3}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_{2} \to R_{2} - R_{3}} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_{1} \to R_{1} - \bar{3} \cdot R_{2}} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{0} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$(x, y, z) = (\bar{0}, \bar{2}, \bar{0})$$

פתרון יחיד.

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ה סמסטר א'

$$\begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{3} & \bar{1} & \bar{4} & | & \bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3 \cdot R_1} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & -\bar{5} & \bar{1} & | & -\bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2 \cdot R_1} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & -\bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{4}R_2} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{8} & \bar{4} & | & \bar{1}6 \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{8} & | & \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{(x, y, z) = (\bar{5}, \bar{4}, \bar{3})} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & -\bar{9} \\ \bar{0} & \bar{1} & \bar{3} & | & \bar{1} & \bar{3} \end{pmatrix}$$

פתרון יחיד.

שאלה 18 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות יש למערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

$$\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{3} & \bar{1} & | & \bar{2} \\
\bar{2} & \bar{2} & \bar{3} & | & \bar{4}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + 2R_1}
\xrightarrow{R_3 \to R_3 + 3R_1}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{7} & \bar{4} & | & \bar{4}
\end{pmatrix}
= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{2} & \bar{4} & | & \bar{4}
\end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{3} \cdot R_2}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | & \bar{2}
\end{pmatrix}
= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{1} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - \cdot R_2}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | & \bar{2}
\end{pmatrix}
= \begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{1} & \bar{0} & | & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3}R_2 - R_3}$$

תשובה סופית:

$$(x,y,z) = (\bar{0},\bar{2},\bar{0})$$

פתרון יחיד.

שאלה 19

שיטה 1

$$\begin{pmatrix} \bar{3} & \bar{2} & \bar{1} & \bar{4} \\ \bar{4} & \bar{2} & \bar{1} & \bar{1} \\ \bar{1} & \bar{1} & \bar{3} & \bar{1} \end{pmatrix} \qquad \xrightarrow{R_1 \leftrightarrow R_3} \qquad \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & \bar{1} \\ \bar{4} & \bar{2} & \bar{1} & \bar{1} \\ \bar{3} & \bar{2} & \bar{1} & \bar{4} \end{pmatrix} \qquad \xrightarrow{R_2 \to R_2 - \bar{4} \cdot R_1} \qquad \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & \bar{1} \\ \bar{0} & -\bar{2} & -\bar{1}\bar{1} & -\bar{3} \\ \bar{0} & -\bar{1} & -\bar{8} & \bar{1} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{3} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad \xrightarrow{R_2 \to \bar{2} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{6} & \bar{8} & | & \bar{4} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad = \begin{pmatrix} \bar{1} & \bar{1} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{3} & | & \bar{4} \\ \bar{0} & \bar{4} & \bar{2} & | & \bar{1} \end{pmatrix}$$

$$\left(egin{array}{c|cccc} ar{1} & ar{0} & ar{0} & ar{2} \ ar{0} & ar{1} & ar{3} & ar{4} \ ar{0} & ar{0} & ar{0} & ar{0} \end{array}
ight)$$

פתרון:

יש 5 פתרונות למערכת:

$$\begin{pmatrix} \overline{2} \\ \overline{4} \\ \overline{0} \end{pmatrix} , \qquad \begin{pmatrix} \overline{2} \\ \overline{1} \\ \overline{1} \end{pmatrix} , \qquad \begin{pmatrix} \overline{2} \\ \overline{3} \\ \overline{2} \end{pmatrix} , \qquad \begin{pmatrix} \overline{2} \\ \overline{0} \\ \overline{3} \end{pmatrix} , \qquad \begin{pmatrix} \overline{2} \\ \overline{2} \\ \overline{4} \end{pmatrix} .$$

שיטה 2

$$\begin{pmatrix} \bar{3} & \bar{2} & \bar{1} & \bar{4} \\ \bar{4} & \bar{2} & \bar{1} & \bar{1} \\ \bar{1} & \bar{1} & \bar{3} & \bar{1} \end{pmatrix} \xrightarrow{R_2 \to \bar{2}R_1 + R_2 \atop R_3 \to R_1 + \bar{2}R_3} \begin{pmatrix} \bar{3} & \bar{2} & \bar{1} & \bar{4} \\ \bar{0} & \bar{1} & \bar{3} & \bar{4} \\ \bar{0} & \bar{4} & \bar{2} & \bar{1} \end{pmatrix} \xrightarrow{R_3 \to R_2 + R_3} \begin{pmatrix} \bar{3} & \bar{2} & \bar{1} & \bar{4} \\ \bar{0} & \bar{1} & \bar{3} & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + \overline{3} \cdot R_2} \quad \begin{pmatrix} \overline{3} & \overline{0} & \overline{0} & \overline{1} \\ \overline{0} & \overline{1} & \overline{3} & \overline{4} \\ \overline{0} & \overline{0} & \overline{0} & \overline{0} \end{pmatrix}$$

פתרון:

יש 5 פתרונות למערכת:

$$\begin{pmatrix} \bar{2} \\ \bar{4} \\ \bar{0} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{1} \\ \bar{1} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{3} \\ \bar{2} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{0} \\ \bar{3} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{2} \\ \bar{4} \end{pmatrix} .$$

שאלה 20

$$\begin{pmatrix}
\bar{2} & \bar{3} & \bar{3} & | & \bar{5} \\
\bar{3} & \bar{4} & \bar{1} & | & \bar{1} \\
\bar{1} & \bar{1} & \bar{6} & | & \bar{2}
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{3} & \bar{4} & \bar{1} & | & \bar{1} \\
\bar{2} & \bar{3} & \bar{3} & | & \bar{5}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & -\bar{17} & | & -\bar{5} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{4} \\
\bar{0} & \bar{1} & \bar{1} & \bar{6}
\end{pmatrix}$$

$$= \begin{pmatrix}
\bar{1} & \bar{1} & \bar{6} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{4} \\
\bar{0} & \bar{0} & \bar{1}$$

פתרון:

$$(x, y, z) = (\bar{2}, \bar{6}, \bar{6})$$
.

שאלה 21

שיטה 1

$$\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{3} & \bar{1} & \bar{4} & | & \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - \bar{3} \cdot R_1 \atop R_3 \to R_3 - \bar{2} \cdot R_1}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & -\bar{5} & \bar{1} & | & -\bar{3} \\
\bar{0} & \bar{0} & \bar{2} & | & -\bar{1}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{2} & | & \bar{4}
\end{pmatrix}$$

$$\frac{R_3 \to R_3 - \bar{2}R_2}{\bar{0} = \bar{0} - \bar{0}}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{0} & | & \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}$$

פתרון:

$$(x, y, z) = (-\bar{2}y, y, \bar{2}) = (\bar{3}y, y, \bar{2}) , \qquad y \in \mathbb{Z}_5 .$$

למערכת יש 5 פתרונות:

$$(\bar{0},\bar{0},\bar{2})\ ,\quad (\bar{3},\bar{1},\bar{2})\ ,\quad (\bar{1},\bar{2},\bar{2})\ ,\quad (\bar{4},\bar{3},\bar{2})\ ,\quad (\bar{2},\bar{4},\bar{2})\ .$$

שיטה 2

$$\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{3} & \bar{1} & \bar{4} & | & \bar{3}
\end{pmatrix}
\xrightarrow{R_2 \to \bar{2} \cdot R_1 + R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{5} & \bar{5} & \bar{6} & | & \bar{7} \\
\bar{5} & 10 & \bar{7} & | & \bar{9}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{2} & | & \bar{4}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{3} \cdot R_2 + R_3}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{2} & \bar{0} & | & \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{0} & | & \bar{0}
\end{pmatrix}$$

פתרון:

$$(x, y, z) = (-\overline{2}y, y, \overline{2}) = (\overline{3}y, y, \overline{2}), \quad y \in \mathbb{Z}_5.$$

למערכת יש 5 פתרונות:

$$(\bar{0},\bar{0},\bar{2})$$
 , $(\bar{3},\bar{1},\bar{2})$, $(\bar{1},\bar{2},\bar{2})$, $(\bar{4},\bar{3},\bar{2})$, $(\bar{2},\bar{4},\bar{2})$.

שאלה 23

$$\begin{pmatrix} 1+i & 1-i & 1+i \\ 1-i & 1+i & 1+3i \end{pmatrix} \xrightarrow{R_1 \to (1-i)R_1} \begin{pmatrix} 2 & -2i & 2 \\ 1-i & 1+i & 1+3i \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{pmatrix} 1 & -i & 1 \\ 1-i & 1+i & 1+3i \end{pmatrix} \xrightarrow{R_2 \to R_2 - (1-i)R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 2+2i & 4i \end{pmatrix}$$

$$\xrightarrow{R_2 \to (2-2i)R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 8 & 8+8i \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{8}R_2} \begin{pmatrix} 1 & -i & 1 \\ 0 & 1 & 1+i \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + iR_2} \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 1+i \end{pmatrix}$$

 $z_1, z_2 = (i, 1+i)$:פתרון

שאלה 24

$$\begin{pmatrix} 2 & -2-i & -i \\ 4-2i & -5 & -1-2i \end{pmatrix} \xrightarrow{R_2 \to R_2 - (2-i)R_1} \begin{pmatrix} 2 & -2-i & -i \\ 0 & 0 & 0 \end{pmatrix}$$

. פתרונות. אינסוף פתרונות. $(z_1,z_2)=\left(-rac{i}{2}+\left(1+rac{i}{2}
ight)\cdot z_2,z_2
ight),z_2\in\mathbb{C}$ פתרון:

$$\begin{pmatrix} 1-i & -3 & | & -i \\ 2 & -3-3i & | & 3-i \end{pmatrix} \xrightarrow{R_1 \to (1+i)R_1} \begin{pmatrix} 2 & -3-3i & | & 1-i \\ 2 & -3-3i & | & 3-i \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 2 & -3-3i & | & 1-i \\ 0 & 0 & | & 2 \end{pmatrix}$$

קיבלנו שורת סתירה לכן למערכת אין פתרון.

שאלה 26

$$\begin{pmatrix} i & 1-i & | & 2i \\ 1+2i & -2 & | & 1 \end{pmatrix} \qquad \xrightarrow{\underline{R_1 \to (-i)R_1}} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 1+2i & -2 & | & 1 \end{pmatrix}$$

$$\xrightarrow{\underline{R_1 \to R_1 - (1+2i)R_2}} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & -3+3i & | & -1-4i \end{pmatrix} \qquad \xrightarrow{\underline{R_2 \to (-3-3i) \cdot R_2}} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & 18 & | & -9+15i \end{pmatrix}$$

$$\xrightarrow{\underline{R_2 \to \frac{1}{18} \cdot R_2}} \qquad \begin{pmatrix} 1 & -i-1 & | & 2 \\ 0 & 1 & | & \frac{2}{3} + \frac{i}{3} \\ 0 & 1 & | & \frac{1}{2} - \frac{5}{6}i \end{pmatrix} \qquad x = \frac{2+i}{3} , \qquad y = \frac{-3+5i}{6}$$

$$x = \frac{3+i}{5} , \qquad y = \frac{-3+4i}{10}$$

 $x = \frac{1}{2}$, $y = \frac{-1}{2} + i$