#### Sinais e Sistemas

ET45A

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná



Slides adaptados do material gentilmente cedido pelo <u>Prof. José C. M. Bermudez</u> do Departamento de Engenharia Elétrica da Universidade Federal de Santa Catarina.

# Análise no domínio do tempo de sinais e sistemas de tempo discreto

Sinal Analógico: Amplitude pode assumir qualquer valor

Sinal Digital: Amplitude restrita a valores discretos

Sinal Contínuo: Definido para qualquer valor da variável

independente

<u>Sinal Discreto:</u> Definido apenas para valores discretos da

variável independente

Agora, focamos o nosso estudo sobre sinais e sistemas de tempo discreto...



Contínuo Amostrado Discreto

- Um sinal de tempo discreto é basicamente uma sequência de números.
- Na prática, sinais de tempo discreto são comumente encontrados em
  - Estudos populacionais
  - Mercado financeiro
  - Dentre outras aplicações...
- Sinais de tempo discreto s\(\tilde{a}\) tamb\(\tilde{m}\) obtidos como resultado da amostragem de sinais de tempo cont\(\tilde{n}\)uo.
- Com respeito a notação, adota-se  $x(n) \ \forall n \in \mathbb{Z}$
- Na literatura, é usual expressar a variável independente entre colchetes (i.e., x[n]) no caso de sinais discretos.

#### Exemplo do processo de amostragem:

- Sinal contínuo  $x(t) = \cos^2(2\pi t)$
- Sinal discreto (amostrado)  $x(n) = \cos^2(2\pi nT_s)$
- Período de amostragem  $T_s = 0.10 \, \mathrm{s} \, (f_s = 10 \, \mathrm{Hz})$



#### Exemplo do processo de amostragem:

- Sinal contínuo  $x(t) = \cos^2(2\pi t)$
- Sinal discreto (amostrado)  $x(n) = \cos^2(2\pi nT_s)$
- Período de amostragem  $T_s = 0.05 \, \mathrm{s} \, (f_s = 20 \, \mathrm{Hz})$



# **Objetivos**

- Revisar as formas de classificação de sinais, modelos úteis de sinais e operações envolvendo sinais.
- Discutir sobre a periodicidade de uma senoide de tempo discreto.
- Revisitar a classificação de sistemas a partir da relação de entrada e saída bem como da resposta ao impulso.
- Adaptar a operação de convolução para sinais e sistemas de tempo discreto.
- Relembrar aspectos relacionados a interconexão de sistemas.

Adequar o ferramental desenvolvido até aqui para lidar com sinais e sistemas de tempo contínuo para o caso de tempo discreto.

#### Sinais periódicos ou aperiódicos:

ullet Um sinal é dito periódico (com período fundamental  $N_0$ ) se

$$x(n) = x(n+N_0), \quad \forall n \text{ e } N_0 \in \mathbb{Z}^+$$

• Um sinal é dito aperiódico quando não existe um valor de  $N_0 \in \mathbb{Z}^+$  que satisfaça a definição.





**Exemplo:** Determine se os seguintes sinais são periódicos ou aperiódicos, especificando o período fundamental  $N_0$ :

- i) Periódico  $[x(n) = x(n+N_0), \forall n \text{ e } N_0 \in \mathbb{Z}]$
- ii) Aperiódico  $[x(n) \neq x(n+N_0), \forall n \text{ e } N_0 \in \mathbb{Z}]$





O caso de exponenciais complexas será discutido à frente.

**Exemplo:** Determine se os seguintes sinais são periódicos ou aperiódicos, especificando o período fundamental  $N_0$ :

- i) Periódico  $[x(n) = x(n + N_0), \forall n \text{ e } N_0 \in \mathbb{Z}]$
- ii) Aperiódico  $[x(n) \neq x(n+N_0), \forall n \text{ e } N_0 \in \mathbb{Z}]$



**Resposta:** Periódico  $(N_0 = 4)$ .



Resposta: Aperiódico.

O caso de exponenciais complexas será discutido à frente.

#### Sinais causais, não causais e anti-causais:

• Um sinal é dito causal se

$$x(n) = 0, \quad n < 0$$

• Um sinal é dito não causal se

$$x(n) \neq 0, \quad n < 0 \quad \mathrm{e} \quad n \geq 0$$

• Um sinal é dito anti-causal se

$$x(n) \neq 0, \quad n < 0 \quad \text{e} \quad x(n) = 0, \quad n \ge 0$$

#### **Exemplo:** Classifique os seguintes sinais como:

- i) Causal [x(n) = 0, n < 0]
- ii) Não causal  $[x(n) \neq 0, n < 0 \text{ e } n \geq 0]$
- iii) Anti-causal  $[x(n) \neq 0, \quad n < 0 \quad \text{e} \quad x(n) = 0, \quad n \geq 0]$
- (a) x(n) = u(n)

(b) 
$$x(n) = u(-n-5)$$

(c) 
$$x(n) = e^{-|n|}$$

(d) 
$$x(n) = e^n u(n+1)$$

(e) 
$$x(n) = u(n-10) - u(n-15)$$

#### **Exemplo:** Classifique os seguintes sinais como:

- i) Causal [x(n) = 0, n < 0]
- ii) Não causal  $[x(n) \neq 0, n < 0 \text{ e } n \geq 0]$
- iii) Anti-causal  $[x(n) \neq 0, \quad n < 0 \quad \text{e} \quad x(n) = 0, \quad n \geq 0]$
- (a) x(n) = u(n)

# Resposta: Causal

- (b) x(n) = u(-n-5)
  - Resposta: Anti-causal
- (c)  $x(n) = e^{-|n|}$ Resposta: Não causal
- (d)  $x(n) = e^n u(n+1)$ 
  - Resposta: Não causal
- (e) x(n) = u(n 10) u(n 15)**Resposta:** Causal

#### Sinais pares e ímpares:

• Um sinal é dito par se

$$x(n) = x(-n)$$

• Um sinal é dito ímpar se

$$x(n) = -x(-n)$$





#### Componentes par e ímpar de um sinal:

Qualquer sinal pode ser decomposto em parte par e ímpar, i.e.,

$$x(n) = x_{\text{par}}(n) + x_{\text{impar}}(n)$$

onde

$$x_{\mathrm{par}}(n) = \frac{x(n) + x(-n)}{2}$$

е

$$x_{\text{impar}}(n) = \frac{x(n) - x(-n)}{2}$$

Exemplo:  $x(n) = e^{-n}u(n)$ 





#### Sinais de energia e de potência:

Um sinal é dito de energia se

$$E_x = \sum_{n = -\infty}^{\infty} |x(n)|^2 < \infty$$

**Exemplos:** Sinais determinísticos e/ou aperiódicos.

• Um sinal é dito de potência se

$$P_x = \lim_{N \to \infty} \frac{1}{N} \sum_{n = \langle N \rangle} |x(n)|^2 < \infty$$

**Exemplos:** Sinais aleatórios e/ou periódicos.

Para sinais periódicos,  $P_x$  é calculada apenas em um período.

### Exemplo: Verifique se os seguintes sinais são de

- i) Energia  $[E_x < \infty]$
- ii) Potência  $[P_x < \infty]$





# Exemplo: Verifique se os seguintes sinais são de

i) Energia  $[E_x < \infty]$ 

$$[E_x < \infty]$$

ii) Potência 
$$[P_x < \infty]$$

Amostra

Resposta:  $E_x = 55$ 



Resposta:  $P_x = 55/6$ 

Deslocamento no tempo: Para tal, faz-se

$$y(n) = x(n - N)$$

#### **Exemplo:**







**Reversão no tempo:** Tal operação é realizada sobre a variável independente fazendo

$$y(n) = x(-n)$$





Na reversão temporal, o eixo y (vertical) é fixo.

**Reversão no tempo com deslocamento:** Essa operação é dada por

$$y(n) = x(k-n)$$

Para determinar x(k-n), considera-se

- $1^{\underline{a}}$  forma (k > 0):
  - i) Desloca-se x(n) para a esquerda por k unidades (avanço), obtendo z(n) = x(n+k).
  - ii) Faz-se a reversão no tempo, produzindo z(-n)=x(-n+k)
- $2^{\underline{a}}$  forma (k > 0):
  - i) Faz-se a reversão no tempo, obtendo z(n) = x(-n).
  - ii) Desloca-se z(n) para direita k unidades (atraso), produzindo z(n-k)=x(-n+k).

Operação muito utilizada no cálculo da convolução discreta.

Exemplo: Reversão no tempo com deslocamento

$$y(n) = x(5-n)$$

#### 1<sup>a</sup> forma:







#### **Exemplo:** Reversão no tempo com deslocamento

$$y(n) = x(5-n)$$

#### 2ª forma:







#### Alteração da taxa de amostragem:

$$y(n) = x(Kn), \quad K \in \mathbb{Z}$$

• Decimação (K > 1):

$$y(n) = x(Kn) \quad \longrightarrow \quad x(0), \; x(K), \; x(2K), \; x(3K), \ldots$$

A decimação equivale a reduzir a taxa de amostragem.

• Interpolação (K < 1):

$$y(n) = x(Kn) \longrightarrow \begin{cases} x(n/L), & n = 0, \pm L, \pm 2L, \dots \\ 0, & \text{caso contrário.} \end{cases}$$

A interpolação equivale a aumentar a taxa de amostragem.

#### Exemplo: Decimação de um sinal

$$y(n) = x(5n)$$





#### Observações:

- A decimação do sinal equivale a aumentar o período de amostragem, i.e.,  $T_{\rm s}=0,01~{\rm s}\longrightarrow T_{\rm s}'=5T_{\rm s}=0,05~{\rm s}.$
- ullet Note que aumentando  $T_{
  m s}$ , o número total de amostras produzidas em um dado intervalo reduz pelo mesmo fator.

#### Exemplo: Interpolação de um sinal

$$y(n) = x(n/4)$$







#### Exemplo: Interpolação de um sinal

$$y(n) = x(n/4)$$





#### Observações:

- A interpolação do sinal equivale a reduzir o período de amostragem, i.e.,  $T_{\rm s}=0,1\,{\rm s}\longrightarrow T_{\rm s}'=T_{\rm s}/L=0,025\,{\rm s}$
- ullet Note que reduzindo  $T_{
  m s}$ , o número total de amostras produzidas em um dado intervalo aumenta pelo mesmo fator.
- Observe o erro de estimação devido à interpolação.

#### 1) Degrau unitário

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$



#### Observações:

- Útil quando deseja-se que um sinal comece em n=0 (causal).
- O que ocorre quando x(n) = u(-n)?

#### 2) Função impulso

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$



#### Observações:

- $\bullet\,$  Função delta de Dirac  $\delta(t)$
- ullet Função delta de Kronecker  $\delta(n)$

# 3) Exponencial discreta

$$x(n) = \alpha^n, \quad \alpha \in \mathbb{R}$$







**Exemplo:** Esboce 
$$x(n) = \alpha^n u(n)$$
 para  $\alpha = e^{a+jb}$ 

(a) 
$$a < 0 \ e \ b \neq 0$$

(b) 
$$a > 0$$
 e  $b \neq 0$ 

(c) 
$$a = 0 \ e \ b \neq 0$$

# **Exemplo:** Esboce $x(n) = \alpha^n u(n)$ para $\alpha = e^{a+jb}$

(a) 
$$a < 0$$
 e  $b \neq 0$   $\Longrightarrow$ 

(b) 
$$a > 0$$
 e  $b \neq 0$   $\Longrightarrow$ 

(c) 
$$a = 0$$
 e  $b \neq 0$   $\Longrightarrow$ 



#### Modelos úteis de sinais

#### 4) Senóide discreta

$$x(n) = C\cos(\omega_0 n + \theta), \quad \omega_0 \in \mathbb{R}$$

onde

- ullet Amplitude C
- Frequência discreta  $\omega_0$  (rad/amostra)
- $\omega_0/2\pi = m/N_0$  (ciclos/amostra)  $\leftarrow$  com m e  $N_0 \in \mathbb{Z}$
- Fase inicial  $\theta$  (rad)

**Exemplo:** 
$$x(n) = \cos[2\pi(m/N_0)n]$$





#### Modelos úteis de sinais

**Demonstração #1:** Para verificar a periodicidade de senóides discretas, considere inicialmente que

$$x(n) = e^{+j\omega_0 n}$$

Então, assumindo que x(n) é periódico (com período  $N_0$ ), tem-se

$$x(n) = x(n \pm N_0)$$

$$= e^{+j\omega_0(n\pm N_0)}$$

$$= e^{+j\omega_0n}e^{\pm j\frac{2\pi m}{N_0}N_0}$$

$$= e^{+j\omega_0n}\underbrace{e^{\pm j2\pi m}}_{=1 \forall m \in \mathbb{Z}}$$

$$= e^{+j\omega_0n}$$

Portanto, é possível concluir que x(n) é periódico se m e  $N_0 \in \mathbb{Z}$ .

(Apresentar exemplos no MATLAB!)

#### Modelos úteis de sinais

**Demonstração #2:** Para verificar a não unicidade de senoides discretas, considere inicialmente que

$$x(n) = e^{+j\omega_0 n}$$

Em seguida, fazendo  $\omega_0 = \omega_0 \pm 2\pi m$ , verifica-se que

$$e^{+j\omega_0 n} = e^{+j(\omega_0 \pm 2\pi m)n}$$

$$= e^{+j\omega_0 n} \underbrace{\pm j2\pi mn}_{=1 \forall \{m,n\} \in \mathbb{Z}}$$

$$= e^{+j\omega_0 n}$$

Portanto, em contraste com senoides de tempo contínuo, uma senoide discreta com frequência  $\omega_0$  é idêntica a outras com frequência  $\omega_0 \pm 2\pi m$  com  $m \in \mathbb{Z}$ .

(Discutir sobre as implicações na TZ e na TFTD!)



#### **Sistemas**



#### **Observações:**

- Entrada x(n) e saída y(n) são sinais de tempo discreto.
- A resposta ao impulso h(n) é de tempo discreto.
- Realiza operações sobre a entrada para produzir a saída desejada.
- Os sistemas podem ser
  - Recursivos
  - Não-recursivos
- Sistemas de tempo discreto ou sistemas discretos!

Assim como no caso de sistemas de tempo contínuo, sistemas de tempo discreto podem ser classificados como

- 1) Linear ou não linear
- 2) Variante ou invariante no tempo
- 3) Causal ou não causal
- 4) Estável ou instável
- 5) Com ou sem memória
- 6) Inversível ou não inversível

Tais classificações baseiam-se no comportamento observado na entrada x(n) e na saída y(n) do sistema, i.e., na relação entrada x(n) e saída y(n) do sistema.

1) Linearidade: Um sistema é dito linear quando ele respeita o princípio da superposição, i.e., satisfaz as propriedades da aditividade e homogeneidade.

Para exemplificar, considere que



Então, se o sistema é linear, tem-se

$$Ax_1(n) + Bx_2(n)$$
Sistema discreto
$$h(n)$$

$$Ay_1(n) + By_2(n)$$

2) Invariância no tempo: Um sistema é considerado invariante no tempo quando um deslocamento sobre x(n) resulta em um deslocamento (igual) em y(n).

Para exemplificar, considere que



Então, se o sistema é invariante no tempo, tem-se

$$x(n-n_0)$$
 Sistema discreto 
$$y(n-n_0)$$
 
$$h(n)$$

Em contraste, sistemas variantes no tempo não obedecem a relação discutida.

3) Causalidade: Um sistema é dito ser causal quando sua saída y(n), em um dado instante  $n_0$ , depende apenas de amostras do sinal de entrada no instante  $n_0$  e/ou em instantes passados.

Para exemplificar, considere que



Então, verifica-se que

- o sistema **é causal (não antecipativo)** quando y(n) depende apenas de x(n), x(n-1), x(n-2), ...  $\leftarrow$  (instantes passados) ou
- o sistema é não causal (antecipativo) quando y(n) depende apenas de x(n+1), x(n+2), ...  $\leftarrow$  (instantes futuros)

4) Estabilidade: Um sistema é estável se, para uma entrada limitada, a saída do sistema também é limitada (finita).

Para exemplificar, considere que



Então, fazendo  $x(n) = B \operatorname{com} |B| < \infty$ , tem-se

$$\lim_{n \to \infty} |y(n)| \to |K| \, |B| < \infty$$

Logo, o sistema é estável do ponto de vista entrada-saída (BIBO estável). Em contraste, quando  $\lim_{n \to \infty} |y(n)| \to \infty$ , o sistema é dito instável.

5) Memória: Um sistema é dito sem memória se sua saída y(n), para qualquer instante de tempo  $n=n_0$ , depende apenas de entradas no mesmo instante  $n_0$ .

Para exemplificar, considere que



Então, fazendo  $n=n_0$ , um sistema é

- sem memória se  $y(n_0) = F[K, x(n_0)]$ ; e
- com memória se  $y(n_0) = F[x(n), y(n)] \text{ com } n \neq n_0.$

Em sistemas sem memória, y(n) depende apenas de K e/ou x(n).

6) Invertibilidade: Um sistema é dito inversível quando existe um sistema inverso que pode ser colocado em cascata a fim de se obter um sistema identidade.

Para exemplificar, considere que



Então, se



o sistema é inversível. Em contraste, se x(n) não pode ser obtido a partir de y(n), tem-se que o sistema é não inversível.

**Exemplo:** Classifique os sistemas descritos pelas seguintes relações de entrada x(n) e saída y(n).

(a) 
$$y(n) = 0.5[x(n-1) + x(-n+1)]$$

(b) 
$$y(n) = 0,5x(n)$$

**Exemplo:** Classifique os sistemas descritos pelas seguintes relações de entrada x(n) e saída y(n).

- (a) y(n) = 0.5[x(n-1) + x(-n+1)]
  - i) Linear
  - ii) Variante no tempo
  - iii) Não causal
  - iv) Estável
  - v) Com memória
  - vi) Inversível (???)
- (b) y(n) = 0.5x(n)
  - i) Linear
  - ii) Invariante no tempo
  - iii) Causal
  - iv) Estável
  - v) Sem memória
  - vi) Inversível

Como descrever <u>matematicamente</u> a relação de entrada x(n) e saída y(n) de um sistema discreto?

$$x(n)$$
 Sistema discreto  $y(n)$   $h(n)$ 

• Equação linear de diferenças

$$a_N y(n+N) + \dots + a_0 y(n) = b_N x(n+N) + \dots + b_0 x(n)$$

• Resposta ao impulso h(n)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

• Função de transferência H(z)

$$H(z) = \frac{Y(z)}{X(z)}$$

Estabelecer paralelo com sistemas contínuos.

#### Forma geral de uma equação linear de diferenças:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

Então, manipulando a expressão acima, tem-se

$$a_N y(n+N) + a_{N-1} y(n+N-1) + \dots + a_1 y(n+1) + a_0 y(n) =$$
  
 $b_M x(n+M) + b_{M-1} x(n+M-1) + \dots + b_1 x(n+1) + b_0 x(n)$ 

Logo,

$$y(n) = \frac{1}{a_0} \left[ \sum_{k=0}^{M} b_k x(n-k) - \sum_{k=1}^{N} a_k y(n-k) \right]$$

É importante enfatizar que equações de diferenças possibilitam descrever sistemas discretos lineares!

#### Forma geral de uma equação linear de diferenças:

$$y(n) = \frac{1}{a_0} \left[ \sum_{k=0}^{M} b_k x(n-k) - \sum_{k=1}^{N} a_k y(n-k) \right]$$

#### Observações:

- A saída y(n) é obtida como uma combinação linear de
  - entradas em diferentes instantes de tempo x(n), x(n-1),... e
  - ullet saídas em diferentes instantes de tempo y(n-1), y(n-2),....
- A ordem da equação de diferenças é dada por max(N, M).
- Essas equações de diferenças são facilmente implementáveis como algoritmos computacionais.
- Tais algoritmos podem ser executados em computadores, microcontroladores e/ou DSPs.

**Exemplo:** Calcule y(n) para

$$y(n) - 0,5y(n - 1) = x(n)$$

com 
$$y(-1) = 0$$
 e  $x(n) = u(n)$ .

**Exemplo:** Calcule y(n) para

$$y(n) - 0,5y(n - 1) = x(n)$$

com y(-1) = 0 e x(n) = u(n).

**Resposta:** Visto que y(n) = x(n) + 0.5y(n-1), tem-se

$$n = 0$$
  $\Rightarrow$   $y(0) = x(0) + 0.5y(-1) = 1$   
 $n = 1$   $\Rightarrow$   $y(1) = x(1) + 0.5y(0) = 1, 5$   
 $n = 2$   $\Rightarrow$   $y(2) = x(2) + 0.5y(1) = 1, 75$ 





Como já discutido, a **resposta de sistemas lineares** pode ser expressa como

$$y(n) = y_{\rm zs}(n) + y_{\rm zi}(n)$$

onde

$$y_{\mathrm{zi}}(n) \longrightarrow \mathsf{Resposta}$$
 à entrada zero

$$y_{\rm zs}(n) \longrightarrow {\sf Resposta}$$
 ao estado zero

i) Resposta à entrada zero:



**Exemplo:** 
$$y(n) = x(n) + a_1 y(n-1)$$

#### i) Resposta à entrada zero:



Exemplo: 
$$y(n) = x(n) + a_1 y(n-1)$$
  
 $n = 0 \implies y_{zi}(0) = a_1 y_{zi}(-1)$   
 $n = 1 \implies y_{zi}(1) = a_1 y_{zi}(0) = a_1^2 y_{zi}(-1)$   
 $n = 2 \implies y_{zi}(2) = a_1 y_{zi}(1) = a_1^3 y_{zi}(-1)$   
:

Note que a resposta do sistema a entrada zero depende apenas de condições internas (condições iniciais).

#### ii) Resposta ao estado zero:



**Exemplo:** 
$$y(n) = x(n) + a_1 y(n-1)$$

#### ii) Resposta ao estado zero:

Sistema discreto 
$$y_{zs}(n)$$

$$y(-1) = y(-2) = \cdots = y(-N) = 0$$

Exemplo: 
$$y(n) = x(n) + a_1 y(n-1)$$
  
 $n = 0 \implies y_{zs}(0) = x(0) + a_1 y_{zs}(-1) = x(0)$   
 $n = 1 \implies y_{zs}(1) = x(1) + a_1 y_{zs}(0) = x(1) + a_1 x(0)$   
 $n = 2 \implies y_{zs}(2) = x(2) + a_1 y_{zs}(1) = x(2) + a_1 x(1) + a_1^2 x(0)$   
:

Note que a resposta do sistema a entrada externa depende apenas de x(n), isto é,  $y(-1) = y(-2) = \cdots = 0$ .

#### iii) Resposta completa:

$$y(n) = y_{\mathrm{zi}}(n) + y_{\mathrm{zs}}(n)$$

Então, substituindo  $y_{zi}(n)$  e  $y_{zs}(n)$ , obtém-se

$$n = 0 \implies y(0) = y_{zi}(0) + y_{zs}(0)$$

$$= a_1 y_{zi}(-1) + x(0)$$

$$n = 1 \implies y(1) = y_{zi}(1) + y_{zs}(1)$$

$$= a_1^2 y_{zi}(-1) + x(1) + a_1 x(0)$$

$$n = 2 \implies y(2) = y_{zi}(2) + y_{zs}(2)$$

$$= a_1^3 y_{zi}(-1) + x(2) + a_1 x(1) + a_1^2 x(0)$$

$$\vdots$$

Embora a solução iterativa seja útil em certas situações, é interessante obter uma solução analítica para y(n) dado x(n).

$$x(n) = \delta(n)$$
 Sistema discreto  $h(n)$ 

A resposta ao impulso h(n) é obtida aplicando um impulso  $\delta(n)$  a entrada do sistema e considerando condições iniciais nulas [i.e.,  $h(-1) = \cdots = h(-N) = 0$ ].

$$x(n) = \delta(n) \implies h(n) = \frac{b_0}{a_0}\delta(n) + h_c(n)u(n)$$

- Se o sistema é causal, então h(n) = 0 para n < 0!
- Para n = 0, h(n) pode ter um valor não nulo.
- Para n > 0, a resposta do sistema é constituída apenas pelos modos característicos.

**Exemplo:** Considerando o método iterativo, obtenha h(n) para

$$y(n) = x(n) + a_1 y(n-1)$$

**Exemplo:** Considerando o método iterativo, obtenha h(n) para

$$y(n) = x(n) + a_1 y(n-1)$$

**Resposta:** Para  $x(n) = \delta(n)$ , tem-se

$$h(n) = \delta(n) + a_1 h(n-1)$$

Logo, lembrando que  $h(-1) = \cdots = h(-N) = 0$ ,

$$n = 0 \implies h(0) = \delta(0) + a_1 h(-1) \implies h(0) = 1$$

$$n = 1 \implies h(1) = \delta(1) + a_1 h(0) \implies h(1) = a_1$$

$$n = 2 \implies h(2) = \delta(2) + a_1 h(1) \implies h(2) = a_1^2$$
:

Portanto, por inspeção verifica-se que

$$h(n) = a_1^n u(n)$$

**Exemplo:** Considerando o método iterativo, obtenha h(n) para

$$y(n) - 0.6y(n-1) - 0.16y(n-2) = 5x(n)$$

**Exemplo:** Considerando o método iterativo, obtenha h(n) para

$$y(n) - 0.6y(n-1) - 0.16y(n-2) = 5x(n)$$

**Resposta:** Para  $x(n) = \delta(n)$ , tem-se

$$n = 0 \implies h(0) = 5\delta(0) + 0, 6h(-1) + 0, 16h(-2)$$

$$= 5$$

$$n = 1 \implies h(1) = 5\delta(1) + 0, 6h(0) + 0, 16h(-1)$$

$$= 3$$

$$n = 2 \implies h(2) = 5\delta(2) + 0, 6h(1) + 0, 16h(0)$$

$$= 2, 6$$

Contudo, o método iterativo nem sempre resulta em uma solução fechada para h(n).

#### Como obter uma solução fechada para h(n)?

Primeiramente, a expressão que descreve a relação de entrada x(n) e saída y(n) é reescrita utilizando o operador de avanço E como

$$y(n+2) - 0.6y(n+1) - 0.16y(n) = 5x(n+2)$$
$$(E^2 - 0.6E - 0.16)y(n) = 5E^2x(n)$$

Logo, o polinômio característico pode ser escrito como

$$E^{2} - 0.6E - 0.16 = (E + 0.2)(E - 0.8)$$

Então,

$$h(n) = [c_1(-0,2)^n + c_2(0,8)^n]u(n)$$

restando apenas determinar  $c_1$  e  $c_2$  em h(n).

Para determinar  $c_1$  e  $c_2$ , faz-se

$$\begin{cases} n=0 & \Longrightarrow & h(0) = 5 \\ n=1 & \Longrightarrow & h(1) = 3 \end{cases} \implies \begin{cases} c_1+c_2 = 5 \\ c_1(-0,2)+c_2(0,8) = 3 \end{cases}$$

Portanto,

$$h(n) = [(-0,2)^n + 4(0,8)^n]u(n)$$

#### **Graficamente:**





#### Como determinar y(n) para uma entrada arbitrária?

Primeiramente, considere que

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

Então, devido a linearidade e invariância no tempo de h(n), tem-se

$$\sum_{k=-\infty}^{\infty} x(k) \delta(n-k) \implies \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

Logo, o somatório de convolução é obtido como

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

1) Para um sistema LIT,



2) Então, devido a invariância no tempo, tem-se



3) Agora, devido a linearidade,



4) Novamente, devido a linearidade, obtém-se

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
Sistema discreto
$$h(n)$$



Portanto, a partir da resposta ao impulso h(n) do sistema, é possível determinar a saída y(n) para uma entrada arbitraria x(n) através de

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

É importante destacar que o somatório de convolução é usualmente expresso utilizando a notação compacta, i.e.,

$$x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

### Propriedades da convolução:

1) Comutatividade:

$$x_1(n) * x_2(n) = x_2(n) * x_1(n)$$

Distributividade:

$$x_1(n) * [x_2(n) + x_3(n)] = x_1(n) * x_2(n) + x_1(n) * x_3(n)$$

3) Associatividade:

$$x_1(n) * [x_2(n) * x_3(n)] = [x_1(n) * x_2(n)] * x_3(n)$$

### Propriedades da convolução:

4) Deslocamento:

$$x_1(n) * x_2(n) = c(n) \implies x_1(n-p) * x_2(n-q) = c(n-p-q)$$

5) Convolução com um impulso:

$$x(n) * \delta(n) = x(n)$$

6) Comprimento:

$$\underbrace{x_1(n)}_{L_1} * \underbrace{x_2(n)}_{L_2} = \underbrace{c(n)}_{L_1 + L_2 - 1}$$

Demonstração: Considere inicialmente que

$$c(n) = x_1(n) * x_2(n)$$

Então, para

$$y(n) = x_1(n-p) * x_2(n-q)$$

é possível verificar que

$$y(n) = \sum_{k=-\infty}^{\infty} x_1(k-p)x_2(n-k-q) \quad \longleftarrow \quad l = k-p$$
$$= \sum_{l=-\infty}^{\infty} x_1(l)x_2(n-l-p-q)$$

Portanto,

$$y(n) = c(n - p - q)$$

Créditos: Oclécio Monaco Torrilhas Junior (2019/1).

**Exemplo:** Determine y(n) = x(n) \* h(n) para

$$x(n) = (0,8)^n u(n)$$
 e  $h(n) = (0,3)^n u(n)$ 

**Exemplo:** Determine y(n) = x(n) \* h(n) para

$$x(n) = (0,8)^n u(n)$$
 e  $h(n) = (0,3)^n u(n)$ 

**Resposta:** Substituindo x(n) e h(n) no somatório de convolução, obtém-se

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \sum_{k=-\infty}^{\infty} \underbrace{(0,8)^k u(k)}_{\neq 0, k \ge 0} \underbrace{(0,3)^{n-k} u(n-k)}_{\neq 0, n-k \ge 0 \to k \le n}, \quad n \ge 0$$

$$= (0,3)^n \sum_{k=0}^n \left(\frac{0,8}{0,3}\right)^k, \quad n \ge 0$$

$$\Rightarrow y(n) = 2[(0,8)^{n+1} - (0,3)^{n+1}]u(n)$$

#### Somatório de convolução:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

#### Procedimento gráfico da convolução:

- 1) Inverta h(k) para produzir h(-k).
- 2) Desloque h(-k) por n unidades para obter h(n-k), lembrando que
  - Para n > 0, o deslocamento é para a direita (atraso).
  - Para n < 0, o deslocamento é para a esquerda (avanço).
- 3) Então, multiplique x(k) por h(n-k) e some todos os produtos para obter y(n), repetindo para cada valor de n na faixa de  $-\infty$  a  $\infty$ .

## Procedimento gráfico:



**Exemplo:** Determine y(n) = x(n) \* h(n) para

$$x(n) = u(n)$$
 e  $h(n) = u(n)$ 

**Exemplo:** Determine y(n) = x(n) \* h(n) para

$$x(n) = u(n)$$
 e  $h(n) = u(n)$ 

**Resposta:** Substituindo x(n) e h(n) no somatório de convolução, obtém-se

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \sum_{k=-\infty}^{\infty} \underbrace{u(k)}_{k \ge 0} \underbrace{u(n-k)}_{k \le n}, \quad n \ge 0$$

$$= \sum_{k=0}^{n} 1, \quad n \ge 0$$

$$\Rightarrow y(n) = (n+1)u(n)$$

### Procedimento gráfico:



### 1) Causalidade: Dado que

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$= \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

um sistema é dito causal se

$$y(n) = 0, \quad n < 0$$

Então, considerando

$$x(n) = 0, \quad n < 0$$

verifica-se que

$$h(n) = 0, \quad n < 0$$

### 2) Estabilidade (BIBO): Dado que

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

é possível inferir que

$$|y(n)| = \left| \sum_{k=-\infty}^{\infty} h(k)x(n-k) \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h(k)||x(n-k)|$$

Então, assumindo que  $|x(n-k)| < \infty$ , verifica-se que o sistema é BIBO estável se

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

### 3) Memória: Partindo de

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

e assumindo que

$$h(n) = K\delta(n)$$

é possível verificar que o sistema é sem memória

$$y(n) = Kx(n) \sum_{k=-\infty}^{\infty} \delta(k)$$
$$= Kx(n).$$

Caso a resposta ao impulso tenha um formato diferente, é possível demonstrar que o sistema tem memória.

**Exemplo:** A partir de h(n), determine se o sistema é

- i) Causal
- ii) Estável
- iii) Sem memória

(a) 
$$h(n) = (0,8)^n u(n)$$

(b) 
$$h(n) = 2^n u(-n)$$

(c) 
$$h(n) = nu(n)$$

(d) 
$$h(n) = 2^n[u(n) - u(n-1)]$$

**Exemplo:** A partir de h(n), determine se o sistema é

- i) Causal
- ii) Estável
- iii) Sem memória
- (a)  $h(n) = (0,8)^n u(n)$ Resposta: Causal, estável, com memória
- (1) 1 ( ) 200 ( )
- (b)  $h(n) = 2^n u(-n)$ Resposta: Anti-causal, estável, com memória
- (c) h(n) = nu(n)Resposta: Causal, instável, com memória
- (d)  $h(n) = 2^n[u(n) u(n-1)]$ 
  - Resposta: Causal, estável, sem memória

#### Interconexão de sistemas em cascata/série:



Assim,

$$z(n) = x(n) * h_1(n) \iff y(n) = z(n) * h_2(n)$$

Portanto, pela propriedade associativa, tem-se

$$y(n) = x(n) * [h_1(n) * h_2(n)]$$

ou ainda

$$h(n) = h_1(n) * h_2(n)$$

#### Interconexão de sistemas em paralelo:



Assim,

$$y_1(n) = x(n) * h_1(n) \iff y_2(n) = x(n) * h_2(n)$$

Portanto, pela propriedade distributiva, tem-se

$$y(n) = y_1(n) + y_2(n) = x(n) * [h_1(n) + h_2(n)]$$

ou ainda

$$h(n) = h_1(n) + h_2(n)$$

#### Interconexão com sistema inverso:



Assim,

$$z(n) = x(n) * h(n) \iff y(n) = z(n) * h_{inv}(n)$$

Portanto, pela propriedade associativa, tem-se

$$y(n) = z(n) * h_{inv}(n) = x(n) * [h(n) * h_{inv}(n)]$$

ou ainda

$$h(n) * h_{inv}(n) = \delta(n)$$

Exemplo: Considerando que



determine a resposta do sistema completo dado que

$$z(n) = \sum_{k=-\infty}^{n} x(k)$$
 e  $y(n) = z(n) - z(n-1)$ 

**Exemplo:** Considerando que

Sistema discreto 
$$b_1(n)$$
 Sistema discreto  $b_2(n)$  Sistema discreto  $b_2(n)$ 

determine a resposta do sistema completo dado que

$$z(n) = \sum_{k=-\infty}^{n} x(k)$$
 e  $y(n) = z(n) - z(n-1)$ 

**Resposta:** Primeiramente, determina-se  $h_1(n)$  e  $h_2(n)$ , i.e.,

$$z(n) = \sum_{k=-\infty}^{n} x(k) \implies h_1(n) = u(n)$$

е

$$y(n) = x(n) - x(n-1)$$
  $\Longrightarrow$   $h_2(n) = \delta(n) - \delta(n-1)$ 

Logo, visto que

$$y(n) = z(n) * h_2(n)$$
  
=  $[x(n) * h_1(n)] * h_2(n)$   
=  $x(n) * [h_1(n) * h_2(n)]$ 

tem-se

$$h(n) = h_1(n) * h_2(n)$$

$$= u(n) * [\delta(n) - \delta(n-1)]$$

$$= u(n) - u(n-1) \Rightarrow h(n) = \delta(n)$$

Consequentemente,

$$y(n) = x(n) * h(n) \Rightarrow y(n) = x(n)$$

Portanto, o sistema inverso de  $h_1(n)$  ("integrador") é  $h_2(n)$  ("diferenciador") e vice-versa.

Resumo e discussão

#### Resumo e discussão

- Classificação de sinais: Energia, potência, periódico, causal...
- Modelos úteis de sinais: Impulso, degrau unitário, exponencial discreta...
- Operações elementares: Atraso, reversão, alteração de taxa de amostragem...
- Uma senoide discreta é periódica caso  $m/N_0$  seja racional, i.e., m e  $N_0 \in \mathbb{Z}$ .
- Classificação de sistemas: Linear, invariante no tempo, causal, estável e sem memória
- Resposta ao impulso: Causalidade, estabilidade, memória
- Convolução discreta
- Interconexão de sistemas: Cascata/série e paralelo

### Para a próxima aula

Para revisar e fixar os conceitos apresentados até então, recomenda-se a seguinte leitura:

B.P. Lathi, Sinais e Sistemas Lineares,  $2^{\underline{a}}$  ed., Porto Alegre, RS: Bookman,  $2008 \longrightarrow (pp. 287)$ 

Para a próxima aula, favor realizar a leitura do seguinte material:

B.P. Lathi, Sinais e Sistemas Lineares,  $2^{\underline{a}}$  ed., Porto Alegre, RS: Bookman,  $2008 \longrightarrow (Capítulo 5)$ 

Até a próxima aula... =)