Econometrics

Maqsood Aslam

2024

Wishing you all the prosperous New Year!

May your residuals be minimal,

P-values be small,

Confidence intervals be narrow,

Regression coefficients be significant

R-squared of success be maximized,

Knowledge curve always be upward sloping

and increasing returns to scales of all good things in 2025

Instrumental Variables

Introduction

Suppose that the true model is:

$$wage = \beta_0 + \beta_1 education + \beta_2 motivation + u$$

But because motivation is impossible to observe, you estimate instead:

wage =
$$\beta_0 + \beta_1$$
 education + ε

- ► Because motivation and level of schooling are correlated, the estimated effect is biased and inconsistent
- \Rightarrow Endogeneity: $E(\varepsilon|education) \neq 0$
- \Rightarrow Endogeneity bias: The estimate of the effect of education on wage partly captures the effect of motivation on education (upward bias if corr(education, motivation) > 0)

Introduction

- ► The aim of instrumental variables is to try and correct for endogeneity bias
- ► How?
- ▶ By using a third variable that will capture only the part of the effect that is due to education
- ► The idea is to re-create exogeneity

Definition

Consider the more general regression model:

$$y = \beta_0 + \beta_1 x + u$$

where x is endogenous (correlated with u)

Instrumental variable

An instrumental variable (or instrument) is a variable, denoted z, such that

- ightharpoonup z is correlated with the endogenous variable x : $cov(z,x) \neq 0$
- ightharpoonup z is not correlated with the error term u : cov(z,u)=0

- ightharpoonup cov(z, u) = 0 is called the exclusion restriction
- $ightharpoonup cov(z,x) \neq 0$ is called the relevance condition

Instrumental variable

- What would be a good instrumental variable for education in the wage equation?
- ► It would have to be uncorrelated with all unobserved factors that affect wages
- ▶ It would have to be correlated with the level of education
- ► The three last digits of individuals' social security number would satisfy the first condition (it is determined randomly)
- But it is not correlated with the the level of education
- Individual's IQ (if recorded) is correlated with education
- ▶ But also with other unobserved factors that affect wages

Identification

 β_1 is identified by:

$$cov(z, y) = \beta_1 cov(z, x) + cov(z, u)$$

Using the exclusion restriction:

$$\beta_1 = \frac{cov(z, y)}{cov(z, x)}$$

The sample analog is the instrumental variable estimator of β_1 :

$$\hat{\beta}_{1/V} = \frac{\sum_{i=1}^{N} (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{N} (z_i - \bar{z})(x_i - \bar{x})}$$

Wald Estimator

When the instrumental variable is binary: $z \in 0, 1$

$$E(y|z=1) = \beta_0 + \beta_1 E(x|z=1)$$

$$E(y|z=0) = \beta_0 + \beta_1 E(x|z=0)$$

so that

$$\beta_1 = \frac{E(y|z=1) - E(y|z=0)}{E(x|z=1) - E(x|z=0)}$$

Taking sample analogues gives the Wald estimator:

$$\hat{\beta}_1 = \frac{\bar{y}_{z=1} - \bar{y}_{z=0}}{\bar{x}_{z=1} - \bar{x}_{z=0}}$$

In the MLR setting

This extends to the multiple linear regression case

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$$

with x_1 an endogenous variable, and x_2, \ldots, x_K exogenous variables

- ▶ Then the OLS estimator of β (vector of parameters) is biased and inconsistent
- ▶ If there exists an instrumental variable z such that
 - $ightharpoonup cov(z,x_1) \neq 0$
 - and cov(z, u) = 0
- The IV estimator of the vector β solves the sample analogs of cov(z, u) = 0, cov(1, u) = 0, $cov(x_2, u) = 0$, ..., $cov(x_K, u) = 0$
- ▶ The IV estimator consistently estimates β

In the MLR setting

- ▶ Note that the exclusion restriction cannot be tested, since *u* is not observed
- The relevance condition can and should always be tested
- By estimating:

$$x_1 = \pi_0 + \pi_1 z + \pi_2 x_2 \cdots + \pi_K x_K + v$$

- \blacktriangleright π_1 has to be different from zero for the relevance condition to hold
- \Rightarrow One need to test: $H_0: \pi_1 = 0$

Properties of the IV estimator

- ▶ The IV estimator is consistent, but not unbiased
- ► The IV estimator's variance is always larger than the OLS estimator's variance
- ▶ Under H_1 to H_5 , the IV estimator is normally asymptotically distributed
- One can thus define and use t-statistics

NB The R-squared from IV estimation cannot be interpreted as the fraction of the sample variation in *y* that is explained by the regressors, because SST cannot be decomposed as the sum of SSR and SSE

The R-squared can even be negative (the SSR can be larger than the SST)

$$(y) = \beta_0 + \beta_1 (x_1) + \beta_2 x_2 + \dots + \beta_K x_K + (u)$$
Endogeneity

Effect of x_1 + effect of $corr(x_1, u)$ $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$ Endogeneity

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$$

Effect of x_1 that is due to z_1

Two-stage least square

The IV estimator is equivalent to the two-stage least square estimator:

1) 1st stage: regress the endogenous variable on the instrument and all the exogenous variables:

$$x_1 = \pi_0 + \pi_1 z + \pi_2 x_2 \cdots + \pi_K x_K + v$$

⇒ get the OLS estimation

$$\hat{x}_1 = \hat{\pi}_0 + \hat{\pi}_1 z + \hat{\pi}_2 x_2 \cdots + \hat{\pi}_K x_K$$

2) 2nd stage: estimate the model by OLS, replacing x_1 endogenous by $\hat{x_1}$ exogenous:

$$y = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$$

 \Rightarrow The OLS estimator $\hat{\beta}_{2SLS} = \hat{\beta}_{IV}$ is constistent

Testing for endogeneity

- Suppose that all explanatory variables are exogenous
- ► Then both the OLS and IV/2SLS estimator are consistent
- But the IV estimator is less efficient than the OLS estimator (higher variance)
- ► Thus when the variable that is supposed to be endogenous is not, the use of IV comes at a price: the variance of the IV estimator is larger than the variance of the OLS estimator

- → You may want to test for the endogeneity of the variable
- ⇒ To know whether IV is necessary

Hausman test

One want to test:

$$H_0 : cov(x_1u) = 0$$

$$H_1 : cov(x_1, u) \neq 0$$

Hausman test

1) Estimate the first stage equation by OLS:

$$x_1 = \pi_0 + \pi_1 z + \pi_2 x_2 \cdots + \pi_K x_K + v$$

- \Rightarrow get the estimated residuals \hat{v}
- 2) Estimate the model, adding \hat{v} as a covariate:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + \gamma \hat{v} + w$$

 \Rightarrow Test for $H_0: \gamma = 0$ with a t-test

Multiple instruments

- ▶ It is possible to use more than one instrument
- You need to have at least one instrument for one endogenous variable

- ▶ Suppose that you have two instruments z_1 and z_2 for x_1
- ▶ In this case, you can test that:

$$H_0: E(z_1u) = E(z_2u) = 0$$

NB You can never formally test the exculsion restriction

► This is an over-identification test

Sargan test

Sargan test

1) Estimate the model by 2SLS

$$x_1 = \pi_0 + \pi_1 z + \pi_2 x_2 \cdots + \pi_K x_K + v$$
$$y = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 x_2 + \cdots + \beta_K x_K + u$$

- \Rightarrow get the 2SLS residuals \hat{u}
- 2) Regress \hat{u} on a constant and all exogenous variables:

$$\hat{u} = \lambda_0 + \lambda_1 z + \lambda_2 x_2 + \dots + \lambda_K x_K + \omega$$

 \Rightarrow get the R-squared from the regression $R_{\hat{u}}^2$

$$NR_{\hat{u}}^2 \sim_{H_0} \chi^2(1)$$

⇒ If the null is rejected, then at least one of the instrument is not exogenous