Det" and Enamples. Consider a semple win tossing experiment superited for a number of times. The possible outcomes at each trial are two: head and with probability say & and tail with probability q, p. 19=1. Let us denote head by I and tail by 0 and the rantom variable denoting the rusult of the n+1,2,3,...

Pro{xn=1}= p Pro{xn=0}=9

Thus we have a seq. of random variables X1, X2, ...
The trains are independent and the result of the nth trials does not depends on in any way on the previous trials numbered 1,2,., (n-1). The r, 20. are independent

Consider now me v. v. given by the partial sum values are 0,1,.,n

Ne howe, Sn+1 = Sn + Xn+1

green that Su=j(j=0,1,...,n) the D.V Sn+1 can assume only two possible values: Short i j with prob. 9 and Sn+1= 1+1 with prob. p; These probabilities are not at all affected by the values of the variables 51, 19

Prof Sn+1 = j+1 | Sn = j } = p Pr (Sn+1) | Sw=) } = 9 the have here an enample of a Markov chain, a can't simple dependence that the outcome of (nor) and trial depends directly on the with trial and only on the conditional prob. of Su+1 gives She depends on the value of She and the manner in which the value of She way reached of is of no consequence.

Dot" The stochastic process of Xn' n=c,1,2, for called a Markov chain of for j, K, j,,..., jn., CN (or any subset of I)

 $P_{\delta} \left\{ X_{n} = k \mid X_{n+1} = j, X_{n+2} = j_{1}, \dots, X_{\delta} = j_{n-1} \right\}$ $= P_{\delta} \left\{ X_{n} = k \mid X_{n-1} = j_{j} = p_{jk} \right\}$

achenerer The first number is defined.

Markov chain; if Xn has the outcome j (10, Xn-1)
The process is said to be at state j at not trial.
To a pair of states (j,k) at the two successive trials (n.10 and (n+1)+h) there is an associated conditional probability tjk. It is the probability of transition from the state j at not trials do lie state x at (n+1) the trials. The transition probabilities tjk are basic to study of the structure of the Markov chain.

probability space. A collection of r.v. (X(t), t), of defind on the probability space is called stochastic process.

3	State Transition Matrix and Diagram:
14	le often list the transition probabilities in a matrix. The
1 1.	ative is called the state to writion matrix or transform
P-	robability matrix and is usually shown by P. Issuming The States are 1,2,, rl, then the state transition ratrix is given by
A	Essuming The States are 1,2,, rd, then the state transition
N	natrix is given by
	$P = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{13} \\ P_{21} & P_{22} & \cdots & P_{23} \end{bmatrix}$
	p21 p25 p22
	Note tij > c and for all i, we have
	NOW TO
	$\frac{\sum_{i=1}^{k} F(X_{m+1} = K \mid X_{m} = i)}{\sum_{i=1}^{k} F(X_{m+1} = K \mid X_{m} = i)} = 1$
	Kal Kal
	This is because, given that we are in state i, the
	next state must be one of the possible states
	Thus the rows of any state transition matrix
	nent state must be one of the possible spaces. Thus the rows of any state townsition matrix must sum to one.
	State rausition Diagramo
	A Harkov chain is usually shown by a state
	transition diagram. Consider a Markov chain
	with 1/2 1/4 1/2
	P = 1/3 0 7/3
	1/2 0 1/2

-	
	the can to rewip rewrite the above result in the form of matrix multiplication
	J Weeday Wassington
	$\chi(1) = \chi(0) P$
njaci me	
_	where P is the state transition matrix.
-	Similarly
	V .
	$\chi(2) = \chi(1) P = \chi(0) P^2$
	Morro generally
	More generally,
-	$\pi^{(n+1)} = \pi^{(n)} P$, -for $n=0,1,2,$
	$T(n) = T(0) p^n$, for $n = 0, 1, 2,$
	, Ja 1-0,1)-1
_	
	Example.
_	
	Consider the system that can be in one of two
	possible states, & 5=10,15. In perficular, supposes
	Consider the system that can be in one of two possible states, & 5= {0,1}. In perticular, supposes the transition matrix is given by
,	P = 2 2
	$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$
	Suppose that the system is in state 0. at time n=0 ir, X=0
	N=0 il, X=0
	a. Draw the state transition diagram.
	a. Draw the state transition diagram. b. Find the probability that the system is in
	state 1 at time n=3.
_	

d. $P(X_0 = 1, X_1 = 2, X_2 = 3) = P(X_0 = 1) P(X_1 = 2 | X_0 = 1)$ $P(X_2 = 3) | X_1 = 2, X_0 = 1)$ = 3 P12 P(x2=3 | X1=2) by Markov Prop. $=\frac{1}{3}\cdot P_{12}P_{23}=\frac{1}{3}\cdot \frac{1}{2}\cdot \frac{2}{3}=\frac{1}{3}\cdot \frac{1}{3}$ Probability Distribution: State Robability Distribution: Consider a Markov chain &Xn, n=0,1,2, ... I when Xn E S = {1,2,...,n} Suppose we know the probability distribution of Xo. More specifically, define the $\pi^{(0)} = \left[P(x_0 = 1) \quad P(x_0 = 2) - P(x_0 = r) \right]$ How can we obtain the probability distribution of X1, X2, - ? We can a use the kw of total probability. More specifically, for any j E 3, we can write. P(x,=j) = \(\sum_{K=1} \) P(x_1=j| \times_0 = \kappa_1) \\
\kappa_1 = j \quad \times_1 \quad \q = \(\begin{array}{c} \ It we generally define $x^{(n)} = [P(x_n=1) P(x_n=2)...P(x_n=2)]$

(b) Here.
$$\Pi^{(0)} = [P(X_0 - 0) P(X_0 - 1)]$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}^3 = \begin{bmatrix} 2q & 43 \\ \hline 43 & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{72} & \frac{72}{72} \end{bmatrix}$$

Thus The probability that the system is in state 1 at time n=3 is 43

n-slep transition Probabilities:

Consider a Markov chain of Xn, n=0,1, I when Xn ES Ib Xz=i, then Xj=j with probability pij ie, pij gives us the probability of going from state it of state j in one step. Now suppose that we are interested in finding the probability of going from i the state to jth state in two steps.

$$P_{ij}^{(0)} = P(X_2 = j \mid X_0 = i)$$

We can find this probability by applying the law of total probability. In fartherman, we argue that XI can take one of the possible values in 5. Thus we can

write
$P_{ij} = P(x_2 = j x_0 = i) = \sum P(x_2 = j x_1 = k, x_0 = i)$ $K \notin S \qquad P(x_1 = k x_0 = i)$
= \(\P(\chi_2=\) \Rightarrow \P(\chi_1=\chi \chi_0=\) \\ \(\text{K}\) \(\text{by Mankov Prop} \)
= Spripri
:. pij = P(X2=j X=i) = [pkj pki kes
In order to get to state j, we need to pass through some intermidiate state K. The probability of this event is Pix Pxj. To obtain Pi; (2), we sum over all possible intermidiate states. Accordingly, we can define the two-slep tonusition matrix as follows:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Clearly, $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

_	More generally we an define the n-step transition		
_	More generally we an define the n-step transition probabilities (p; n) as		
	^		
_	$P_{ij}^{(n)} = P(x_n = j x_0 = i)$ for $n = 0, 1, 2,$		
	and n-slep transition matrix.		
_	$p(n) = \begin{cases} p(n) & p(n) \\ p(n) & p(n) \\ p(n) & p(n) \\ p(n) & p(n) \\ p(n) & p(n) \end{cases}$		
	,		
	p_{n} p_{r2} p_{r2}		
_	Pm Prz · Frr		
	1. I ch D let min he two positive		
	We can generalized eq. U. Let my see to get to		
	clet i duti d'assume no la chain will be at some		
	We can generalized Eq. D. Let m,n be two positive integers and assume Xo=i. In order to get to state j in (m+n) slips., The chain will be at some intermidiate state k after m slips. To obtain pij		
	we sum over all possible intermidiate states:		
	$\frac{P(m+n)}{P(j)} = P(X_{m+n} = j \mid X_0 = i)$		
	(m)		
	= DeRG I pin pry KES		
	The above equation is called the Chapman-Kolmogorov		
	Equation. Similar to the case of two step		
	transition probabilities, we can show.		
	$p(n) = p^{(n)} n = 1,2,$		
	·		

The Chapman-Kolmogorov Equation can be written as
$p_{ij}(m+n) = P\left(X_{m+n} = j \mid X_0 = i\right)$
$= \sum_{k \in S} \binom{m}{k} \binom{n}{k}$
The n-step transition matrix is given by $P^{(n)} = P^{n}, \text{ for } n=1,2,3,$
Examples!
A me Markov chain of Xng on the state 0,1,2 has the probability matrix
$P = \begin{bmatrix} 0.1 & 0.2 & 0.7 \\ 0.2 & 0.2 & 0.6 \\ 0.6 & 0.1 & 0.3 \end{bmatrix}$
a. Compute the two-slep transition matrix P^2 . b. What is $P(X_3 = 1 \mid X_1 = 0)$? c. What is $P(X_3 = 1 \mid X_0 = 0)$?
0 02 [01] 02 07 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.47 0.13 0.4
0.26 0.17 0.57

A				
b. P(x3-1/x1-0) = Pc1 = 0.13				
C. $P(X_3=1 X_0=0) = p_0^3$				
Now first calculating P3 = P'. P				
`	-			
= 0:47 0:13 0.4				
0:42 0.14 0.4-1	1			
0.26 0.17 0.57	[0.6 0.1 0.3]			
= 0.313 0.4 0.527	8			
0.334 0.156 0.51	- Po			
0 402 0.143 0.455				
$P(x_{2}=1 \mid x_{0}=0) = P_{01} = 0.16.$				
Desitiones & States:				
To Accerible				
The state is accessible from the sto	ate i, written as			
The state j's accessible from the state i, written as $i \rightarrow j$ if $p_{ij}^{(n)} > 0$ for some n . He assume every state is accessible from itself since $p_{ij}^{(n)} = 1$.				
State is accessible from itself since Pi = 1				
Communicate				
The states i and i we said to co	mmunicate.			
written as it i if they are arees	sible born earl			
Two states i and j we said to communicate, written as its; if they are accessible from each				
other. ie, it means i - j and j - i				
	J			
Commente de contrata de contra	A'. TIL			
Communication is an equivalence relation. That means & Every state communicates with itself, iti				
* every state communically with 1	rsey, ()			
* I it it then jet it				
* 1 (-1) * 1 (-1)	,			

__/_/

Note:

state j is accessible from state 1 4/5, Starling on state i, it is possible that the process will ever enter state j.

It j's not accessible from i, then

Polever be in jestant in i jez Politine je Nozije

 $=\frac{\sum_{n=0}^{\infty} \binom{n}{n}}{n^2} = 0$