A GLOBAL PINCHING THEOREM OF COMPLETE λ -HYPERSURFACES

SHIHO OGATA

ABSTRACT. In this paper, the pinching problems of complete λ -hypersurfaces in a Euclidean space \mathbb{R}^{n+1} are studied. By making use of the Sobolev inequality, we prove a global pinching theorem of complete λ -hypersurfaces in a Euclidean space \mathbb{R}^{n+1} .

1. Introduction

Let M^n be an *n*-dimensional manifold, and $X:M^n\to\mathbb{R}^{n+1}$ an immersed hypersurface in a Euclidean space \mathbb{R}^{n+1} . If $X:M^n\to\mathbb{R}^{n+1}$ satisfies

$$H + \langle X, N \rangle = 0,$$

one calls that $X: M^n \to \mathbb{R}^{n+1}$ is a self-shrinker of mean curvature flow, where H and N are the mean curvature and the unit normal vector of $X: M^n \to \mathbb{R}^{n+1}$, respectively, and $\langle \cdot, \cdot \rangle$ is the standard inner product of \mathbb{R}^{n+1} .

Remark 1.1. If $X: M^n \to \mathbb{R}^{n+1}$ is a self-shrinker of mean curvature flow, then $X(t) = \sqrt{1-2t}X$ is a self-similar solution of mean curvature flow.

It is well-known that the *n*-dimensional Euclidean space \mathbb{R}^n , the *n*-dimensional sphere $S^n(\sqrt{n})$ and the *n*-dimensional cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$, for $1 \le k \le n-1$, are the standard self-shrinkers of mean curvature flow. For the other examples of self-shrinkers of mean curvature flow, see [1], [8], [9], [10] and [13].

 $X(t): M^n \to \mathbb{R}^{n+1}$ is called a variation of $X: M^n \to \mathbb{R}^{n+1}$ if $X(t): M^n \to \mathbb{R}^{n+1}$, $t \in (-\varepsilon, \varepsilon)$, are a family of immersions with X(0) = X. We define a weighted area functional $A: (-\varepsilon, \varepsilon) \to \mathbb{R}$ as follows:

$$A(t) = \int_{M} e^{-\frac{|X(t)|^2}{2}} d\mu_t,$$

where $d\mu_t$ is the area element of $X(t): M^n \to \mathbb{R}^{n+1}$. In [6], Colding and Minicozzi have proved that that $X: M^n \to \mathbb{R}^{n+1}$ is a critical point of the weighted area functional A(t) if and only if $X: M^n \to \mathbb{R}^{n+1}$ is a self-shrinker of mean curvature flow.

In [2], Cao and Li (cf. [6], [4] [11] and [14]) have proved a gap theorem of complete self-shrinkers of mean curvature flow as follows:

Key words and phrases: self-shrinkers, λ -hypersurfaces, the weighted volume-preserving mean curvature flow.

²⁰¹⁰ Mathematics Subject Classification: 53C40, 53C42.

Theorem 1.1. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional complete proper self-shrinker in \mathbb{R}^{n+1} . If the squared norm S of the second fundamental form of $X: M^n \to \mathbb{R}^{n+1}$ satisfies $S \leq 1$, then $X: M^n \to \mathbb{R}^{n+1}$ is isometric to one of the following:

- (1) the sphere $S^n(\sqrt{n})$,
- (2) the Euclidean space \mathbb{R}^n
- (3) the cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$ for $1 \le k \le n-1$.

By using the following Sobolev inequality for n-dimensional complete hypersurfaces:

$$\kappa^{-1} \left(\int_{M} g^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \leq \int_{M} |\nabla g|^{2} d\mu + \frac{1}{2} \int_{M} H^{2} g^{2} d\mu, \ \forall g \in C_{c}^{\infty}(M),$$

where $\kappa > 0$ is a constant, Ding and Xin [7] have proved a rigidity theorem of complete self-shrinkers of mean curvature flow as follows:

Theorem 1.2. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional complete immersed self-shrinker of mean curvature flow in \mathbb{R}^{n+1} . If $X: M^n \to \mathbb{R}^{n+1}$ satisfies

$$\left(\int_{M} S^{\frac{n}{2}} d\mu\right)^{\frac{2}{n}} < \frac{4}{3n\kappa},$$

then $X: M^n \to \mathbb{R}^{n+1}$ is isometric to the Euclidean space \mathbb{R}^n , where S denotes the squared norm of the second fundamental form of $X: M^n \to \mathbb{R}^{n+1}$.

In [5], Cheng and Wei have introduced a notation of so-called λ -hypersurfaces of the weighted volume-preserving mean curvature as follows:

Definition 1.1. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional immersed hypersurface in \mathbb{R}^{n+1} . If

$$H + \langle X, N \rangle = \lambda$$

is satisfied, where λ is constant, then $X:M^n\to\mathbb{R}^{n+1}$ is called a λ -hypersurface of the weighted volume-preserving mean curvature. For simple, we call it a λ -hypersurface.

Remark 1.2. From definition, we know that if $\lambda = 0$, $X : M^n \to \mathbb{R}^{n+1}$ is a self-shrinker of mean curvature flow.

Example 1.1. All of self-shrinkers of mean curvature flow is λ -hypersurfaces with $\lambda = 0$.

Example 1.2. The n-dimensional sphere $S^n(r)$ with r > 0 is a compact λ -hypersurface with $\lambda = \frac{n}{r} - r$. We should notice that only the n-dimensional sphere $S^n(\sqrt{n})$ is the self-shrinker of mean curvature flow.

Example 1.3. The n-dimensional cylinder $S^k(r) \times \mathbb{R}^{n-k}$ with r > 0 for $1 \le k \le n-1$ is a complete and non-compact λ -hypersurface with $\lambda = \frac{k}{r} - r$. We remark that only the n-dimensional cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$, for $1 \le k \le n-1$, is the self-shrinker of mean curvature flow.

Let $X(t): M^n \times (-\varepsilon, \varepsilon) \to \mathbb{R}^{n+1}$ be a variation of $X: M^n \to \mathbb{R}^{n+1}$. The weighted volume $V: (-\varepsilon, \varepsilon) \to \mathbb{R}$ is defined in [5] as follows:

$$V(t) = \int_{M} \langle X(t), N \rangle e^{-\frac{|X|}{2}} d\mu.$$

In [5], Cheng and Wei have proved that $X:M^n\to\mathbb{R}^{n+1}$ is a critical point of the weighted area functional A(t) for the weighted volume-preserving variations if and only if $X:M^n\to\mathbb{R}^{n+1}$ is a λ -hypersurface. For further properties of λ -hypersurfaces in details, see [5].

In [3], Cheng, Ogata and Wei have studied the rigidity theorem of complete λ -hypersurfaces with a pointwise pinching condition. The following theorem is proved:

Theorem 1.3. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional complete proper λ -hypersurface in the Euclidean space \mathbb{R}^{n+1} . If the squared norm S of the second fundamental form and the mean curvature H of $X: M^n \to \mathbb{R}^{n+1}$ satisfies

(1.1)
$$\left(\sqrt{S - \frac{H^2}{n}} + |\lambda| \frac{n-2}{2\sqrt{n(n-1)}}\right)^2 + \frac{1}{n}(H - \lambda)^2 \le 1 + \frac{n\lambda^2}{4(n-1)},$$

then $X: M^n \to \mathbb{R}^{n+1}$ is isometric to one of the following:

- (1) the sphere $S^n(r)$ with radius $0 < r \le \sqrt{n}$,
- (2) the Euclidean space \mathbb{R}^n ,
- (3) the cylinder $S^1(r) \times \mathbb{R}^{n-1}$ with radius r > 0 and n = 2 or with radius $r \ge 1$ and n > 2,
- (4) the cylinder $S^{n-1}(r) \times \mathbb{R}$ with radius r > 0 and n = 2 or with radius $r \leq \sqrt{n-1}$ and n > 2,
- (5) the cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$ for $2 \le k \le n-2$.

In this paper, we study a global pinching theorem of complete λ -hypersurfaces in \mathbb{R}^{n+1} . We prove the following:

Theorem 1.4. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional complete proper λ -hypersurface in \mathbb{R}^{n+1} with $n \geq 3$. If $X: M^n \to \mathbb{R}^{n+1}$ satisfies

(1.2)
$$\left(\int_{M} \left| \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{\frac{1}{2}} + \frac{n}{2} B + \frac{n^{2} - 2n + 2}{2n(n-1)} H^{2} - \frac{n+2}{2n} \lambda H \right|^{\frac{n}{2}} d\mu \right)^{\frac{2}{n}}$$

$$< \frac{n-2}{n} k(n)^{-1},$$

then $X: M^n \to \mathbb{R}^{n+1}$ is isometric to the Euclidean space \mathbb{R}^n or the sphere $S^n(r)$ with

$$(1.3) \left| r^2 - \frac{(3n-4)n}{(n-1)(n+2)} \right| < \frac{(n-2)^3}{4^{2(n+1)}n^{\frac{2}{n}+1}(n-1)(3n-4)(n+2)} \left(\frac{\omega_{n-1}}{\omega_n} \right)^{\frac{2}{n}},$$

where $B = S - \frac{H^2}{n}$, $k(n) = \frac{2 \cdot 4^{2(n+1)}(n-1)(3n-4)}{(n-2)^2} \left(\frac{n}{\omega_{n-1}}\right)^{\frac{2}{n}}$, and ω_k denotes the area of the k-dimensional unit sphere $S^k(1)$.

Acknowledgement. I would like to thank my adviser professor Qing-Ming Cheng for continuous guidance and support.

2. The Sobolev inequality

In order to prove our theorem, the following Sobolev inequality in [12] plays a very important rule.

Theorem 2.1. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional hypersurface in \mathbb{R}^{n+1} . For any Lipschitz function $f \geq 0$ with compact support on M,

$$\left(\int_{M} f^{\frac{n}{n-1}} d\mu\right)^{\frac{n-1}{n}} \leq C_n \int_{M} \left\{ |\nabla f| + |H|f \right\} d\mu$$

holds, where

$$C_n = 4^{n+1} \left(\frac{n}{\omega_{n-1}} \right)^{\frac{1}{n}}.$$

From the above theorem, we have the following corollary:

Corollary 2.1. Let $X: M^n \to \mathbb{R}^{n+1}$ be an n-dimensional hypersurface in \mathbb{R}^{n+1} . For any Lipschitz function $f \geq 0$ with compact support on M,

$$(2.2) k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \le \int_{M} |\nabla f|^{2} d\mu + \frac{n-2}{2(n-1)} \int_{M} H^{2} f^{2} d\mu$$

holds, where

$$k(n) = \frac{2 \cdot 4^{2(n+1)}(n-1)(3n-4)}{(n-2)^2} \left(\frac{n}{\omega_{n-1}}\right)^{\frac{2}{n}}.$$

Proof. Replacing f in the theorem 2.1 with $f^{\frac{2(n-1)}{n-2}}$, we get

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu\right)^{\frac{n-1}{n}} \leq C_{n} \int_{M} \left\{ |\nabla f^{\frac{2(n-1)}{n-2}}| + |H| f^{\frac{2(n-1)}{n-2}} \right\} d\mu$$

$$= C_{n} \int_{M} \left\{ \frac{2(n-1)}{n-2} f^{\frac{n}{n-2}} |\nabla f| + |H| f^{\frac{2(n-1)}{n-2}} \right\} d\mu.$$

By Hölder's inequality, we have

$$\int_{M} f^{\frac{n}{n-2}} |\nabla f| d\mu \leq \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{1}{2}} \left(\int_{M} |\nabla f|^{2} d\mu \right)^{\frac{1}{2}},
\int_{M} |H| f^{\frac{2(n-1)}{n-2}} d\mu \leq \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{1}{2}} \left(\int_{M} H^{2} f^{2} d\mu \right)^{\frac{1}{2}}.$$

Hence,

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-1}{n}} \leq C_{n} \frac{2(n-1)}{n-2} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{1}{2}} \left(\int_{M} |\nabla f|^{2} d\mu \right)^{\frac{1}{2}} + C_{n} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{1}{2}} \left(\int_{M} H^{2} f^{2} d\mu \right)^{\frac{1}{2}}.$$

Therefore

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{2n}} \leq C_{n} \left\{ \frac{2(n-1)}{n-2} \left(\int_{M} |\nabla f|^{2} d\mu \right)^{\frac{1}{2}} + \left(\int_{M} H^{2} f^{2} d\mu \right)^{\frac{1}{2}} \right\}.$$

According to $\left(\int_M f^{\frac{2n}{n-2}} d\mu\right)^{\frac{n-2}{2n}} \ge 0$, we have

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu\right)^{\frac{n-2}{n}} \leq C_{n}^{2} \left\{ \frac{4(n-1)^{2}}{(n-2)^{2}} \int_{M} |\nabla f|^{2} d\mu + \int_{M} H^{2} f^{2} d\mu + \frac{4(n-1)}{n-2} \left(\int_{M} |\nabla f|^{2} d\mu\right)^{\frac{1}{2}} \left(\int_{M} H^{2} f^{2} d\mu\right)^{\frac{1}{2}} \right\}.$$

Because of $\int_M |\nabla f|^2 d\mu \ge 0$ and $\int_M H^2 f^2 d\mu \ge 0$, we get

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu\right)^{\frac{n-2}{n}} \\
\leq C_{n}^{2} \left\{ \frac{4(n-1)^{2}}{(n-2)^{2}} \int_{M} |\nabla f|^{2} d\mu + \int_{M} H^{2} f^{2} d\mu \right. \\
\left. + \frac{2(n-1)}{n-2} \left(\int_{M} |\nabla f|^{2} d\mu + \int_{M} H^{2} f^{2} d\mu \right) \right\} \\
= C_{n}^{2} \frac{2(n-1)}{n-2} \left(\frac{2(n-1)}{n-2} + 1 \right) \left\{ \int_{M} |\nabla f|^{2} d\mu + \frac{n-2}{2(n-1)} \int_{M} H^{2} f^{2} d\mu \right\}.$$

Let $k(n) = C_n^2 \frac{2(n-1)}{n-2} \left(\frac{2(n-1)}{n-2} + 1 \right)$, then we get

$$k(n)^{-1} \left(\int_M f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \le \int_M |\nabla f|^2 d\mu + \frac{n-2}{2(n-1)} \int_M H^2 f^2 d\mu.$$

3. Proof of our global pinching theorem

In order to prove the theorem 1.4, we prepare several lemmas. For the differential operator \mathcal{L} defined by

$$\mathcal{L}f = \Delta f - \langle \nabla f, X \rangle = div(e^{-\frac{|X|^2}{2}} \nabla f)e^{\frac{|X|^2}{2}},$$

where Δ and ∇ denote the Laplace operator and the gradient operator. In [3], we have proved the following lemma.

Lemma 3.1. For $B = S - \frac{H^2}{n}$, we have

(3.1)
$$\frac{1}{2}\mathcal{L}B \ge -\frac{|\lambda|(n-2)}{\sqrt{n(n-1)}}B^{\frac{3}{2}} + B - B^2 - \frac{1}{n}H^2B + \frac{2\lambda}{n}HB.$$

Define a function ρ by

$$\rho = e^{-\frac{|X|^2}{2}}.$$

Lemma 3.2. For any smooth function η with compact support on M and an arbitrary positive constant ε , we have

(3.2)
$$\int_{M} \left\{ \frac{|\lambda|(n-2)}{\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho - B^{n} \eta^{2} \rho + B^{n+1} \eta^{2} \rho + \frac{1}{n} H^{2} B^{n} \eta^{2} \rho - \frac{2\lambda}{n} H B^{n} \eta^{2} \rho + \frac{1}{2\varepsilon} B^{n} |\nabla \eta|^{2} \rho \right\} d\mu$$

$$\geq \frac{n-1-\varepsilon}{2} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu.$$

Proof. Multiplying $B^{n-1}\eta^2\rho$ on both sides of (3.1) and taking integral, we obtain

$$0 \geq \int_{M} \left\{ -\frac{|\lambda|(n-2)}{\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho + B^{n} \eta^{2} \rho - B^{n+1} \eta^{2} \rho - \frac{1}{n} H^{2} B^{n} \eta^{2} \rho + \frac{2\lambda}{n} H B^{n} \eta^{2} \rho - \frac{1}{2} \mathcal{L} B \cdot B^{n-1} \eta^{2} \rho \right\} d\mu.$$

Since η has compact support on M, according to Stokes theorem, we get

$$\begin{split} &-\frac{1}{2}\int_{M}\mathcal{L}B\cdot B^{n-1}\eta^{2}\rho\ d\mu\\ &=\ -\frac{1}{2}\int_{M}div(\rho\nabla B)\cdot B^{n-1}\eta^{2}d\mu\\ &=\ \frac{1}{2}\int_{M}\left\langle \rho\nabla B,\ \nabla(B^{n-1}\eta^{2})\right\rangle d\mu\\ &=\ \frac{n-1}{2}\int_{M}B^{n-2}\eta^{2}|\nabla B|^{2}\rho\ d\mu+\int_{M}B^{n-1}\eta\left\langle \nabla B,\ \nabla\eta\right\rangle \rho\ d\mu. \end{split}$$

Moreover, for an arbitrary constant $\varepsilon > 0$, we have

$$\int_M B^{n-1} \eta \left\langle \nabla B, \ \nabla \eta \right\rangle \rho \ d\mu \ge -\frac{\varepsilon}{2} \int_M B^{n-2} \eta^2 |\nabla B|^2 \rho \ d\mu - \frac{1}{2\varepsilon} \int_M B^n |\nabla \eta|^2 \rho \ d\mu.$$

Hence, we obtain

$$\int_{M} \left\{ \frac{|\lambda|(n-2)}{\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho - B^{n} \eta^{2} \rho + B^{n+1} \eta^{2} \rho + \frac{1}{n} H^{2} B^{n} \eta^{2} \rho - \frac{2\lambda}{n} H B^{n} \eta^{2} \rho + \frac{1}{2\varepsilon} B^{n} |\nabla \eta|^{2} \rho \right\} d\mu$$

$$\geq \frac{n-1-\varepsilon}{2} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu.$$

Lemma 3.3. Putting $f := B^{\frac{n}{2}} \eta \rho^{\frac{1}{2}}$, we know that

$$(3.3) \int_{M} |\nabla f|^{2} d\mu$$

$$= \frac{n^{2}}{4} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu + \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu + n \int_{M} B^{n-1} \eta \left\langle \nabla B, \ \nabla \eta \right\rangle \rho \ d\mu$$

$$- \frac{1}{4} \int_{M} |X^{\top}|^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{\lambda}{2} \int_{M} \left\langle X, \ N \right\rangle B^{n} \eta^{2} \rho \ d\mu - \frac{1}{2} |X^{\perp}|^{2} B^{n} \eta^{2} \rho \ d\mu$$

$$+ \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu$$

and

(3.4)
$$\frac{1}{2} \int_{M} H^{2} f^{2} d\mu$$

$$= \frac{\lambda^{2}}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu - \lambda \int_{M} \langle X, N \rangle B^{n} \eta^{2} \rho \ d\mu + \frac{1}{2} \int_{M} |X^{\perp}|^{2} B^{n} \eta^{2} \rho \ d\mu.$$

hold.

Proof. Calculating the left hand side of (3.3), we know

$$\int_{M} |\nabla f|^{2} d\mu = \int_{M} |\nabla (B^{\frac{n}{2}} \eta)|^{2} \rho \ d\mu + \int_{M} B^{n} \eta^{2} |\nabla \rho^{\frac{1}{2}}|^{2} d\mu
+ 2 \int_{M} B^{\frac{n}{2}} \eta \rho^{\frac{1}{2}} \left\langle \nabla (B^{\frac{n}{2}} \eta), \nabla \rho^{\frac{1}{2}} \right\rangle d\mu.$$

Putting

$$T_{1} := \int_{M} |\nabla(B^{\frac{n}{2}}\eta)|^{2} \rho \ d\mu,$$

$$T_{2} := \int_{M} B^{n} \eta^{2} |\nabla \rho^{\frac{1}{2}}|^{2} d\mu,$$

$$T_{3} := 2 \int_{M} B^{\frac{n}{2}} \eta \rho^{\frac{1}{2}} \left\langle \nabla(B^{\frac{n}{2}}\eta), \nabla \rho^{\frac{1}{2}} \right\rangle d\mu.$$

$$T_{1} = \frac{n^{2}}{4} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu + \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu + n \int_{M} B^{n-1} \eta \left\langle \nabla B, \nabla \eta \right\rangle \rho \ d\mu.$$

Because of $|\nabla \rho^{\frac{1}{2}}|^2 = \frac{1}{4}|X^{\top}|^2 \rho$ and $\Delta X = HN$, we have

$$T_2 = \frac{1}{4} \int_M |X^{\top}|^2 B^n \eta^2 \rho \ d\mu$$

and

$$\Delta \rho = |X^{\top}|^2 \rho - \langle \Delta X, X \rangle \rho - n\rho$$

= $|X^{\top}|^2 \rho - \lambda \langle X, N \rangle \rho + |X^{\perp}|^2 \rho - n\rho.$

Hence,

$$T_{3} = \frac{1}{2} \int_{M} \langle \nabla(B^{n} \eta^{2}), \nabla \rho \rangle d\mu$$

$$= -\frac{1}{2} \int_{M} B^{n} \eta^{2} \cdot \Delta \rho \ d\mu$$

$$= -\frac{1}{2} \int_{M} |X^{\top}|^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{\lambda}{2} \int_{M} \langle X, N \rangle B^{n} \eta^{2} \rho \ d\mu$$

$$-\frac{1}{2} \int_{M} |X^{\perp}|^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu.$$

Therefore, we get

$$\begin{split} & \int_{M} |\nabla f|^{2} d\mu \\ & = \frac{n^{2}}{4} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu + \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu + n \int_{M} B^{n-1} \eta \left\langle \nabla B, \ \nabla \eta \right\rangle \rho \ d\mu \\ & - \frac{1}{4} \int_{M} |X^{\top}|^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{\lambda}{2} \int_{M} \left\langle X, \ N \right\rangle B^{n} \eta^{2} \rho \ d\mu - \frac{1}{2} |X^{\perp}|^{2} B^{n} \eta^{2} \rho \ d\mu \\ & + \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu. \end{split}$$

From $H = \lambda - \langle X, N \rangle$, we get

$$\begin{split} \frac{1}{2} \int_M H^2 f^2 d\mu &= \frac{1}{2} \int_M (\lambda - \langle X, \ N \rangle)^2 B^n \eta^2 \rho \ d\mu \\ &= \frac{\lambda^2}{2} \int_M B^n \eta^2 \rho \ d\mu - \lambda \int_M \langle X, \ N \rangle \, B^n \eta^2 \rho \ d\mu \\ &+ \frac{1}{2} \int_M |X^\perp|^2 B^n \eta^2 \rho \ d\mu. \end{split}$$

Lemma 3.4. For an arbitrary constant $\delta > 0$, we have

$$(3.5) k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}$$

$$\leq \frac{(1+\delta)n^{2}}{4} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu + \left(1 + \frac{1}{\delta}\right) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu$$

$$- \frac{1}{2(n-1)} \int_{M} H^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{\lambda}{2} \int_{M} H B^{n} \eta^{2} \rho \ d\mu + \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu,$$

where k(n) is the assertion of the Corollary 2.1.

Proof. From Corollary 2.1, we have, for any function f with compact support on M,

$$k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \leq \int_{M} |\nabla f|^{2} d\mu + \frac{n-2}{2(n-1)} \int_{M} H^{2} f^{2} d\mu$$

$$= \int_{M} |\nabla f|^{2} d\mu + \frac{1}{2} \int_{M} H^{2} f^{2} d\mu - \frac{1}{2(n-1)} \int_{M} H^{2} f^{2} d\mu.$$

Taking $f = B^{\frac{n}{2}} \eta \rho^{\frac{1}{2}}$, from Lemma 3.3, we infer

$$\begin{split} &k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \\ &\leq \frac{n^2}{4} \int_{M} B^{n-2} \eta^2 |\nabla B|^2 \rho \ d\mu + \int_{M} B^n |\nabla \eta|^2 \rho \ d\mu + n \int_{M} B^{n-1} \eta \ \langle \nabla B, \ \nabla \eta \rangle \ \rho \ d\mu \\ &- \frac{1}{4} \int_{M} |X^\top|^2 B^n \eta^2 \rho \ d\mu + \frac{\lambda}{2} \int_{M} \langle X, \ N \rangle \ B^n \eta^2 \rho \ d\mu - \frac{1}{2} |X^\perp|^2 B^n \eta^2 \rho \ d\mu \\ &+ \frac{n}{2} \int_{M} B^n \eta^2 \rho \ d\mu + \frac{\lambda^2}{2} \int_{M} B^n \eta^2 \rho \ d\mu - \lambda \int_{M} \langle X, \ N \rangle \ B^n \eta^2 \rho \ d\mu \\ &+ \frac{1}{2} \int_{M} |X^\perp|^2 B^n \eta^2 \rho \ d\mu - \frac{1}{2(n-1)} \int_{M} H^2 B^n \eta^2 \rho \ d\mu \\ &\leq \frac{n^2}{4} \int_{M} B^{n-2} \eta^2 |\nabla B|^2 \rho \ d\mu + \int_{M} B^n |\nabla \eta|^2 \rho \ d\mu + n \int_{M} B^{n-1} \eta \ \langle \nabla B, \ \nabla \eta \rangle \ \rho \ d\mu \\ &- \frac{\lambda}{2} \int_{M} \langle X, \ N \rangle \ B^n \eta^2 \rho \ d\mu - \frac{1}{2(n-1)} \int_{M} H^2 B^n \eta^2 \rho \ d\mu + \left(\frac{n}{2} + \frac{\lambda^2}{2}\right) \int_{M} B^n \eta^2 \rho \ d\mu \\ &= \frac{n^2}{4} \int_{M} B^{n-2} \eta^2 |\nabla B|^2 \rho \ d\mu + \int_{M} B^n |\nabla \eta|^2 \rho \ d\mu + n \int_{M} B^{n-1} \eta \ \langle \nabla B, \ \nabla \eta \rangle \ \rho \ d\mu \\ &+ \frac{\lambda}{2} \int_{M} H B^n \eta^2 \rho \ d\mu - \frac{1}{2(n-1)} \int_{M} H^2 B^n \eta^2 \rho \ d\mu + \frac{n}{2} \int_{M} B^n \eta^2 \rho \ d\mu. \end{split}$$

For an arbitrary constant $\delta > 0$, we have

$$n \int_M B^{n-1} \eta \left\langle \nabla B, \ \nabla \eta \right\rangle \rho \ d\mu \le \frac{\delta n^2}{4} \int_M B^{n-2} \eta^2 |\nabla B|^2 \rho \ d\mu + \frac{1}{\delta} \int_M B^n |\nabla \eta|^2 \rho \ d\mu.$$

Hence, we get

$$\begin{split} k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}} \\ & \leq \frac{(1+\delta)n^{2}}{4} \int_{M} B^{n-2} \eta^{2} |\nabla B|^{2} \rho \ d\mu + \left(1 + \frac{1}{\delta}\right) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu \\ & - \frac{1}{2(n-1)} \int_{M} H^{2} B^{n} \eta^{2} \rho \ d\mu + \frac{\lambda}{2} \int_{M} H B^{n} \eta^{2} \rho \ d\mu + \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu. \end{split}$$

Proof of Theorem 1.4. If $B \not\equiv 0$ holds, we can choose η such that, for $f = B^{\frac{1}{2}} \eta \rho^{\frac{1}{2}}$,

$$\left(\int_{M} f^{\frac{2n}{n-2}} d\mu\right)^{\frac{n-2}{n}} \neq 0.$$

From Lemma 3.2 and Lemma 3.4, then for arbitrary constants $\varepsilon > 0$ and $\delta > 0$,

$$k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}$$

$$\leq \frac{(1+\delta)n^{2}}{2} \frac{1}{n-1-\varepsilon} \int_{M} \left\{ \frac{|\lambda|(n-2)}{\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho - B^{n} \eta^{2} \rho + B^{n+1} \eta^{2} \rho \right.$$

$$\left. + \frac{1}{n} H^{2} B^{n} \eta^{2} \rho - \frac{2\lambda}{n} H B^{n} \eta^{2} \rho + \frac{1}{2\varepsilon} B^{n} |\nabla \eta|^{2} \rho \right\} d\mu$$

$$\left. + \left(1 + \frac{1}{\delta} \right) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu - \frac{1}{2(n-1)} \int_{M} H^{2} B^{n} \eta^{2} \rho \ d\mu \right.$$

$$\left. + \frac{\lambda}{2} \int_{M} H B^{n} \eta^{2} \rho \ d\mu + \frac{n}{2} \int_{M} B^{n} \eta^{2} \rho \ d\mu.$$

Letting $1 + \delta = \frac{n - 1 + \varepsilon}{n}$, then, we derive

$$k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}$$

$$\leq \frac{n-1+\varepsilon}{n-1-\varepsilon} \int_{M} \left\{ \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho + \frac{n}{2} B^{n+1} \eta^{2} \rho \right.$$

$$\left. + \frac{1}{2} \left(1 - \frac{1}{(n-1)} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) H^{2} B^{n} \eta^{2} \rho + \left(-1 + \frac{1}{2} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) \lambda H B^{n} \eta^{2} \rho \right\} d\mu$$

$$\left. + \frac{n}{2} \left(-\frac{n-1+\varepsilon}{n-1-\varepsilon} + 1 \right) \int_{M} B^{n} \eta^{2} \rho \ d\mu + C(n,\varepsilon) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu$$

$$\leq \frac{n-1+\varepsilon}{n-1-\varepsilon} \int_{M} \left\{ \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{n+\frac{1}{2}} \eta^{2} \rho + \frac{n}{2} B^{n+1} \eta^{2} \rho \right.$$

$$\left. + \frac{1}{2} \left(1 - \frac{1}{(n-1)} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) H^{2} B^{n} \eta^{2} \rho + \left(-1 + \frac{1}{2} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) \lambda H B^{n} \eta^{2} \rho \right\} d\mu$$

$$\left. + C(n,\varepsilon) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu, \right.$$

where $C(n,\varepsilon)$ is a positive constant only depending on n and ε . From $f^2 = B^n \eta^2 \rho$ and using Hölder's inequality, we obtain

$$k(n)^{-1} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}$$

$$\leq \frac{n-1+\varepsilon}{n-1-\varepsilon} \left(\int_{M} \left| \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{\frac{1}{2}} + \frac{n}{2} B + \frac{1}{2} \left(1 - \frac{1}{(n-1)} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) H^{2} \right.$$

$$\left. + \left(-1 + \frac{1}{2} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) \lambda H \right|^{\frac{n}{2}} d\mu \right)^{\frac{2}{n}} \left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}$$

$$\left. + C(n,\varepsilon) \int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu. \right.$$

Therefore, we have

$$\frac{k(n)^{-1}}{\leq \frac{n-1+\varepsilon}{n-1-\varepsilon} \left(\int_{M} \left| \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{\frac{1}{2}} + \frac{n}{2} B + \frac{1}{2} \left(1 - \frac{1}{(n-1)} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) H^{2} \right. \\
\left. + \left(-1 + \frac{1}{2} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) \lambda H \right|^{\frac{n}{2}} d\mu \right)^{\frac{2}{n}} \\
+ C(n,\varepsilon) \frac{\int_{M} B^{n} |\nabla \eta|^{2} \rho \ d\mu}{\left(\int_{M} f^{\frac{2n}{n-2}} d\mu \right)^{\frac{n-2}{n}}}.$$

Since $X:M^n\to\mathbb{R}^{n+1}$ is proper, it is proved by Cheng and Wei in [5] that $X:M^n\to\mathbb{R}^{n+1}$ has at most polynomial area growth. Hence, we know that

$$\int_M B^n \rho \ d\mu < \infty.$$

Taking $\eta = \phi(\frac{|X|}{r})$ for any r > 0, where ϕ is a nonnegative function on $[0, \infty)$ such that

$$\phi(t) = \begin{cases} 1, & \text{if } t \in [0, 1] \\ 0, & \text{if } t \in [2, \infty) \end{cases}$$

and $|\phi'| \leq c$ for some absolute constant. Taking $r \to \infty$, we have

$$\int_M B^n |\nabla \eta|^2 \rho \ d\mu \to 0.$$

Therefore, we get

$$\begin{aligned}
&k(n)^{-1} \\
&\leq \frac{n-1+\varepsilon}{n-1-\varepsilon} \left(\int_{M} \left| \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{\frac{1}{2}} + \frac{n}{2} B + \frac{1}{2} \left(1 - \frac{1}{(n-1)} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) H^{2} \right. \\
&+ \left(-1 + \frac{1}{2} \frac{n-1-\varepsilon}{n-1+\varepsilon} \right) \lambda H \right|^{\frac{n}{2}} d\mu \right)^{\frac{2}{n}}.
\end{aligned}$$

Letting $\varepsilon \to 1$, we obtain

$$k(n)^{-1} \le \frac{n}{n-2} \left(\int_{M} \left| \frac{n|\lambda|(n-2)}{2\sqrt{n(n-1)}} B^{\frac{1}{2}} + \frac{n}{2} B + \frac{n^{2}-2n+2}{2n(n-1)} H^{2} - \frac{n+2}{2n} \lambda H \right|^{\frac{n}{2}} d\mu \right)^{\frac{2}{n}} < \frac{n}{n-2} \cdot \frac{n-2}{n} k(n)^{-1} = k(n)^{-1}.$$

It is a contradiction. Thus, we have $B = S - \frac{H^2}{n} \equiv 0$, that is, $X : M^n \to \mathbb{R}^{n+1}$ is totally umbilical. Hence, we know that $X : M^n \to \mathbb{R}^{n+1}$ is isomeric to \mathbb{R}^n or a sphere $S^n(r)$ with radius r, which satisfies (1.3) from (1.2).

REFERENCES

- [1] S. Angenent, *Shrinking doughnuts*, In nonlinear diffusion equations and their equilibrium states, Birkhaüser, Boston-Basel-Berlin, 7, 21-38, 1992.
- [2] H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations, 46 (2013), 879-889.
- [3] Q.-M. Cheng, S. Ogata and G. Wei, Rigidity theorems of λ -hypersurfaces, to appear in Comm. Analy. Geom. 2015.
- [4] Q.-M. Cheng and Y. Peng, Complete self-shrinkers of the mean curvature flow, Calc. Var. PDEs., 52 (2015), 497-506.
- [5] Q.-M. Cheng and G. Wei, Complete λ -hypersurfaces of the weighted volume-preserving mean curvature flow, arXiv:1403.3177.
- [6] T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; Generic singularities, Ann. of Math., 175 (2012), 755-833.
- [7] Q. Ding and Y. L. Xin, The rigidity theorems of self shrinkers, Trans. Amer. Math. Soc. **366** (2014), no. 10, 5067-5085.
- [8] G. Drugan, An immersed S^2 self-shrinker, to appear in Trans. Amer. Math. Soc.
- [9] N. Kapouleas, S.J. Kleene, N.M. Møller, Mean curvature self-shrinkers of high genus: non-compact examples, to appear in J. Reine Angew. Math.
- [10] S. Kleene and N. M. Møller, Self-shrinkers with a rotation symmetry, to appear in Trans. Amer. Math. Soc..
- [11] H. Li and Y. Wei, Classification and rigidity of self-shrinkers in the mean curvature flow, Journal of the Mathematical Society, **66** (2014), 709-734.

- [12] J. H. Michael and L. M. Simon, Sobolev and Mean-Value Inequalities on Generalized Submanifolds of \mathbb{R}^n , Comm. Pure Appl. Math., 26 (1973), 361-379.
- [13] N. M. Møller, Closed self-shrinking surfaces in \mathbb{R}^3 via the torus, arXiv:1111.318.
- [14] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Notices, 48 (2005), 2983-3004.

Shiho Ogata

Department of Applied Mathematics, Graduate School of Sciences, Fukuoka University, Fukuoka 814-0180, Japan