Low-Rank Factorizations for Fast Inference in Structured Models

Justin Chiu* ¹ Yuntian Deng* ² Alexander Rush ¹

¹Cornell Tech

²Harvard University

October 19, 2021

Structured Models

- Explicitly model output associations
 - Directly or through latent variables
- Focus on combinatorially large latent <u>discrete structures</u>
 - ► Complementary to continuous, deterministic representations
- ▶ More difficult to scale than alternative representations
 - Bottlenecked by time and space complexity of inference

Scaling Structured Models

- Scaling (to the point of overparameterization) is key
- ► Target tractable models
 - Admit dynamic programs for exact inference
- Impose a low-rank model constraint
 - Trades off model expressivity for cheaper inference
- Only constrain parameters used in key steps of inference

Inference in Structured Models

- ▶ Model an observation $x = (x_1, ..., x_T)$ via latent structure z
 - Latent nodes z_i
 - ▶ Nodes have discrete label set [*L*]
- ▶ Perform training and evaluation via marginalization

$$p(x) = \sum_{z} p(x, z)$$

Hidden Markov models

Probabilistic context-free grammars

Hypergraphs for Inference

- Represent dynamic programs for inference as hypergraphs
- Hypergraphs consist of nodes and hyperedges
 - Hyperedge consists of a head node and set of tail nodes
- Perform inference by traversing hypergraph
 - Aggregate marginals from tails to head via a matrix-vector product

Hyperedge representations for HMMs and PCFGs

Hypergraph Marginalization

For each hyperedge e in topological order,

- lacktriangle Combine tail marginals α_1, α_2 into joint tail marginal β_{ν}
- lacktriangle Apply score matrix Ψ_e and aggregate in head marginal $lpha_u$
 - Multiple hyperedges may have the same head node

Scaling with Low-rank Factorizations

▶ Factor matrices $\Psi = UV^{\top}$, $U \in \mathbb{R}^{L \times R}$, $V \in \mathbb{R}^{L^{|e|} \times R}$

$$\boxed{ \qquad \qquad } \times \boxed{\beta} = \boxed{U} \times \left(\boxed{V^\top} \times \boxed{\beta} \right)$$

- ▶ Two matrix-vector products of cost O(LR) and $O(L^{|e|}R)$
 - ▶ Reduced from $O(L^{|e|+1})$
- ▶ Potentially large speedups for inference
 - ▶ HMM from $O(L^2)$ to O(LR)
 - ▶ PCFG from $O(L^3)$ to $O(L^2R)$

Low-rank Hypergraph Marginalization

Algorithm 2 Low-rank marginalization	
for $u \leftarrow v_1, v_2$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v_1}} \alpha_{\mathbf{v_2}}^{\top}$	$\triangleright O(L^{ e })$
$\gamma \leftarrow V_e^{ op} eta_v$	$\triangleright O(L^{ e }R)$
$\alpha_{\it u} \stackrel{+}{\leftarrow} U_{\it e} \gamma$	$\triangleright O(LR)$
return $lpha_{\mathcal{S}}^{ op}1$	

Expressivity of Rank-constrained Models

- ► Rank constraints limit expressivity
- Only apply to a subset of parameters
 - Transition matrix for HMMs
 - Subset of the transition matrix for PCFGs
- Is it more expressive than a smaller model?
 - An L-state HMM with rank R (< L) is more expressive than an unconstrained R-state HMM

Experiments

- ► Language modeling on PENN TREEBANK¹
- Compare size vs speed and accuracy
 - ► Size = 1k to 16k state HMM, 90 to 300 state PCFG
 - ▶ Speed = Sec/Batch
 - Accuracy = Perplexity (function of likelihood)
- Unconstrained softmax HMM, PCFG vs low-rank versions

¹Marcus, Santorini, and Marcinkiewicz, 'Building a Large Annotated Corpus of English: The Penn Treebank'.

HMM Results

HMM Speed vs Accuracy Frontier

PCFG Speed vs Accuracy Frontier

Conclusion

Introduce a low-rank factorization to speed up inference in hypergraph models

- Constrain only parameters used in inference bottlenecks
- Most effective with large models

Please see the paper for more experiments and analysis!

Citations I

Marcus, Mitchell P., Beatrice Santorini, and

Mary Ann Marcinkiewicz. 'Building a Large Annotated Corpus of English: The Penn Treebank'. In: *Computational Linguistics* 19.2 (1993), pp. 313–330. URL:

https://www.aclweb.org/anthology/J93-2004.