Quantum Breakthrough: Factoring with Shors Algorithm

How Quantum Computing Breaks Classical Cryptography

Taslim Haroun

April 2025

The Problem: Integer Factorization

- RSA encryption relies on the difficulty of factoring large numbers
- Example: $15 = 3 \times 5$, but $221 = 13 \times 17$ takes effort
- Best classical algorithm: Number Field Sieve sub-exponential time
- For 2048-bit numbers: millions of years on classical computers
- **Challenge**: Can quantum computing do better?

Enter Peter Shor (1994)

- Peter Shor, Bell Labs, 1994
- Idea: Use quantum superposition and interference to find periods of functions
- **Reduction**: Factoring \rightarrow Order-finding \rightarrow Period of $f(x) = a^x \mod N$
- **Result**: Polynomial-time quantum algorithm
- Impact: Threatens RSA, ECC, and modern public-key cryptography

Classical vs Quantum Approach

	Classical	Quantum
Factor 15	Fast	Same
Factor 2048-bit N	Infeasible ($\sim 10^{300}$ years)	Hours/Days (theoretically
Core Idea	Try divisors	Find period using QFT
Complexity	Sub-exponential	$O((\log N)^3)$

 $Quantum\ advantage\ grows\ with\ number\ size$

The Math Behind Shor

Given N, pick random a < N with $\gcd(a, N) = 1$ Define: $f(x) = a^x \mod N \to \text{periodic with period } r \text{ (order of } a \mod N)$ If r is even and $a^{r/2} \not\equiv -1 \mod N$, then:

$$p = \gcd(a^{r/2} + 1, N), \quad q = \gcd(a^{r/2} - 1, N)$$

are nontrivial factors.

Example:
$$N = 15$$
, $a = 7$

$$7^{1} \mod 15 = 7$$
 $7^{2} = 49 \mod 15 = 4$
 $7^{3} = 28 \mod 15 = 13$
 $7^{4} = 91 \mod 15 = 1 \rightarrow r = 4$

Then:
$$7^2 = 4$$
, so $gcd(4 + 1, 15) = 5$, $gcd(4 - 1, 15) = 3$

Quantum Circuit Overview

Registers:

- Input: t qubits → superposition of x
- Output: $\log_2(N)$ qubits \to store $f(x) = a^x \mod N$

Steps:

- $\bullet \ \mathsf{Prepare} \ |0\rangle |0\rangle$
- **2** Apply H gates $\rightarrow \sum |x\rangle |0\rangle$
- **3** Apply U^{2^j} controlled gates $\to \sum |x\rangle |f(x)\rangle$
- **4** Measure output \rightarrow collapse to periodic x
- **o** Apply Inverse QFT on input \rightarrow peaks at multiples of $2^t/r$
- **1** Measure \rightarrow estimate r

Uses quantum parallelism and interference

Quantum Fourier Transform (QFT)

- QFT: Quantum analog of FFT
- ullet Transforms time o frequency domain
- Turns periodic states into sharp peaks
- Enables efficient period extraction

QFT Circuit:

- Hadamards + controlled phase rotations
- Depth: $O(n^2)$

Simulation Results (N=15)

Implementation:

- Qiskit on quantum simulator
- a = 7, N = 15, t = 3 qubits
- Measured: $y = 0, 2, 4, 6 \rightarrow$ multiples of 2
- Estimate: r = 4

Output:

- Measurement counts: {'000': 240, '010': 260, '100': 255, '110': 270}
- Estimated period r = 4
- Factors: $gcd(7^2 \pm 1, 15) = 3$ and 5 \checkmark

Even on simulator, correct period found with high probability

Challenges & Real-World Status

Current Limitations:

- Requires fault-tolerant quantum computers
- Needs thousands of logical qubits
- NISQ devices cannot run full Shor yet

Progress:

- 2001: IBM factored 15 on 7-qubit NMR quantum computer
- 2012: 21 factored using photonic chip
- Today: Simulations dominate; real factorization still limited

Crypto Impact: Future quantum computers will break RSA unless we migrate to post-quantum cryptography (PQC)

Conclusion & Future

Key Takeaways:

- Shors algorithm is a killer app for quantum computing
- Proves quantum advantage in computational complexity
- Demonstrates power of superposition, entanglement, and interference

Future:

- Hybrid algorithms
- Error-corrected quantum processors
- Migration to lattice-based crypto

Call to Action:

 Start learning quantum programming today the future is superpositional!

Qiskit Code: github.com/tahslim/shor-algorithm-demo