Lecture 6b: Search Based Planning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

Week	30000D	30282R	Topics	Chapters
1	1/7	1/8	Intelligent Agents	[Ch 1.1-1.4 and 2.1-2.4]
	1/9	1/10	Problem Solving and Search	[Ch 3.1-3.3]
2	1/14	1/15	Uninformed Search	[Ch 3.3-3.4]
	1/16	1/17	Heuristic Search (A*)	[Ch 3.5]
3	1/21	1/22	Heuristic Functions	[Ch 3.6]
	1/23	1/24	Local Search	[Ch 4.1-4.2]
	1/25		Project 1 Out	
4	1/28	1/29	Adversarial Search	[Ch 5.1-5.3]
	1/30	1/31	Knowledge Based Agents	[Ch 7.1-7.3]
5	2/4	2/5	Propositional Logic Inference	[Ch 7.4-7.5]
	2/6	2/7	First-Order Logic	[Ch 8.1-8.4]
	2/8		Project 1 Due	
	2/8		Homework 1 Out	
6	2/11	2/12	Rule-Based Systems	[Ch 9.3-9.4]
•	2/13	2/14	Search-Based Planning	[Ch 10.1-10.3]
	2/15		Homework I Due	
7	2/18	2/19	SAT-Based Planning	[Ch 10.4]
	2/20	2/21	Knowledge Representation	[Ch 12.1-12.5]
8	2/25	2/26	Midterm Review	
	2/27	2/28	Midterm Exam	

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Automated Reasoning in FOL
 - Substitution
 - Unification (GMP)
 - Chaining (forward and backward)
 - Resolution

Resolution (a simple example)

KB:

```
(1) father (art, jon)(2) father (bob, kim)
```

(3) father $(X, Y) \Rightarrow parent (X, Y)$

Goal: parent (art, jon)?

(KB) ∧ (¬ Goal) is "Unsatisfiable"

Resolution (a simple example)

```
KB:
      (1) father (art, jon)
      (2) father (bob, kim)
      (3) father (X, Y) \Rightarrow parent(X, Y)
Goal:
      parent (art, jon)?
          ¬ parent(art, jon)
                                          father(X, Y) => parent(X, Y)
          \neg parent(art, jon) \neg father(X, Y) \lor parent(X, Y)
                 ¬ father (art, jon) father (art, jon)
```

FOL resolution rule

UNIFY $(\ell_i, \neg m_j) = \theta$.

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\operatorname{SUBST}(\theta, \ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n)}$$

Example:

$$[Animal(F(x)) \lor Loves(G(x), x)] \quad \text{and} \quad [\neg Loves(u, v) \lor \neg Kills(u, v)]$$

$$\theta = \{u/G(x), v/x\}$$

$$[Animal(F(x)) \lor \neg Kills(G(x), x)]$$

FOL resolution (example)

```
\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Me)}\frac{Unhappy(Me)}{}
```

```
with \theta = \{x/Me\}
```

FOL Conjunctive normal form (CNF)

Steps:

- 1
- 2
- 3.
- 4
- 5.
- 6.
- 1

FOL Conjunctive normal form (CNF)

Steps:

- 1. Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- 2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
- 3. Standardize variables apart, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x P \lor \exists y Q$
- 4. Move quantifiers left in order, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x \exists y P \lor Q$
- 5. Eliminate ∃ by Skolemization (next slide)
- 6. Drop universal quantifiers
- 7. Distribute \land over \lor , e.g., $(P \land Q) \lor R$ becomes $(P \lor Q) \land (P \lor R)$

Skolemization

Why can't (y) be replaced by a constant symbol?

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

Everyone loves the same animal (F), and the same (G) loves everyone

$$\forall x \ [Animal(F) \land \neg Loves(x, F)] \lor Loves(G , x)$$

• Each person loves a different animal F(x), and a different G(x) loves each person

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

Distribution

$$\forall x \ [Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Converting to CNF

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

Eliminate implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

Move negation inwards

```
\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \ Loves(y,x)] .
\forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] .
\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] .
```

Standardize variables

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

Skolemization

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

A. $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$

Transform to CNF

```
A. \forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]
```


Transform to CNF

```
\exists y \neg (Animal(y) \rightarrow Loves(x,y)) \lor (\exists y \ Loves(y,x))
\exists y \neg (Animal(y) \lor Loves(x,y)) \lor (\exists y \ Loves(y,x))
\neg (Animal(F(x)) \lor Loves(x,F(x))) \lor (Loves(G(x),x))
(\neg Animal(F(x)) \land \neg Loves(x,F(x))) \lor (Loves(G(x),x))
(\neg Animal(F(x)) \lor Loves(G(x),x)) \land (\neg Loves(x,F(x)) \lor Loves(G(x),x))
```

```
A. \forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]
```

B.
$$\forall x \ [\exists z \ Animal(z) \land Kills(x,z)] \Rightarrow [\forall y \ \neg Loves(y,x)]$$

C. $\forall x \ Animal(x) \Rightarrow Loves(Jack, x)$


```
¬(\exists z \ Animal(z) \land Kills(x, z)) ∨ (\forall y \neg Loves(y, x))

(\forall z \neg Animal(z) \lor \neg Kills(x, z)) ∨ (\forall y \neg Loves(y, x))

\forall y \forall z (\neg Animal(z) \lor \neg Kills(x, z) \lor \neg Loves(y, x))
```

- A. $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$
- B. $\forall x \ [\exists z \ Animal(z) \land Kills(x,z)] \Rightarrow [\forall y \ \neg Loves(y,x)]$
- C. $\forall x \ Animal(x) \Rightarrow Loves(Jack, x)$
- D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
- E. Cat(Tuna)
- F. $\forall x \ Cat(x) \Rightarrow Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

- A1. $Animal(F(x)) \vee Loves(G(x), x)$
- A2. $\neg Loves(x, F(x)) \lor Loves(G(x), x)$
 - B. $\neg Loves(y, x) \lor \neg Animal(z) \lor \neg Kills(x, z)$
 - C. $\neg Animal(x) \lor Loves(Jack, x)$
 - D. $Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)$
 - E. Cat(Tuna)
 - F. $\neg Cat(x) \lor Animal(x)$
- $\neg G. \quad \neg Kills(Curiosity, Tuna)$

Outline

- What is Al?
- Problem-solving agent
 - Uninformed (DFS), informed (A*), and local search
 - Adversarial search (minimax, alpha-beta pruning)

Knowledge-based agent

- Propositional Logic
- First Order Logic (FOL)
- Search Based Planning

What we have so far

- Can TELL (KB) about new percepts about the world
- (KB) maintains model of the current world state
- Can ASK (KB) about any fact that can be inferred from KB

How to use these components to build a planning agent?

i.e., an agent that constructs a plan to achieve a goal

Example: Robot Manipulators

- Example: (courtesy of Martin Rohrmeier)

Difference: "search" vs "planning"

- Problem-solving agent can find a sequence of actions that result in a goal state
 - it deals with "atomic" representations of states
 - Needs "domain-specific" heuristics to perform well in search
- Planning agent can also find a sequence of actions that result in a goal state
 - But it uses a "factored" representations of states
 - Can have "generic" heuristics for search

Logic formulas in a restricted format

Search vs. planning (example)

 Consider the task buy milk, bananas, and a cordless drill, existing search algorithms may fail miserably...

Search vs. planning (example)

 Consider the task buy milk, bananas, and a cordless drill, existing search algorithms may fail miserably...

Search vs. planning (example)

 Consider the task buy milk, bananas, and a cordless drill, existing search algorithms may fail miserably...

Search vs. planning

• Planning opens up action and goal representations

	Search	Planning
States		
Actions		
\mathbf{Goal}		
Plan		

Search vs. planning

Planning opens up action and goal representations

	Search	Planning
States	data structures	Logical sentences
Actions	code	Preconditions/outcomes
\mathbf{Goal}	code	Logical sentence (conjunction)
Plan	Sequence from S_0	Constraints on actions

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

```
Poor \wedge Unknown At(Truck_1, Melbourne) \wedge At(Truck_2, Sydney) At(x,y) \bigcirc \text{ cannot have variables (x,y)} At(Father(Fred), Sydney) \bigcirc \text{ cannot have function symbol}
```

Goal: a conjunction of literals, but may have variables

$$At(Home) \land Have(Milk) \land Have(Bananas) \land Have(Drill)$$

 $At(x) \land Sells(x, Milk)$

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

Action name

Conjunction of **positive** literals

```
Action(Fly(p, from, to),

PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)

EFFECT: \neg At(p, from) \land At(p, to))
```

Conjunction of literals (positive or negative)

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

Action(Fly(p, from, to),

 $\mathsf{PRECOND} : At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$

Effect: $\neg At(p, from) \wedge At(p, to)$

Negative literal

DEL this lieteral from the new state

Negative literal

ADD this lieteral into the new state

 It uses a restricted subset of first-order logic (FOL) to make planning efficiently solvable

State: a conjunction of functionless ground literals

Actions:

Action(Fly(p, from, to),

 $\mathsf{PRECOND} : At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)$

Effect: $\neg At(p, from) \land At(p, to)$)

Transition model:

$$\operatorname{RESULT}(s,a) = (s - \operatorname{DEL}(a)) \cup \operatorname{ADD}(a)$$


```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK)
    \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(c, p, a),
  PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
  PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
  EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
  PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
  EFFECT: \neg At(p, from) \land At(p, to)
```

```
Init(At(C_1, SFO) \wedge At(C_2, JFK) \wedge At(P_1, SFO) \wedge At(P_2, JFK)
    \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge Plane(P_1) \wedge Plane(P_2)
    \land Airport(JFK) \land Airport(SFO)
 Goal(At(C_1, JFK) \wedge At(C_2, SFO))
Action(Load(0, p, a), \_
   PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
   EFFECT: \neg At(c, a) \land In(c, p)
 Action(Unload(c, p, a),
   PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
   EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly)(p, from, to),
   PRECOND: At(p, from) \wedge Plane(p) \wedge Airport(from) \wedge Airport(to)
   EFFECT: \neg At(p, from) \land At(p, to)
                                                                                    Unload
The following plan is a solution to the problem:
         [Load(C_1, P_1, SFO), Fly(P_1, SFO, JFK), Unload(C_1, P_1, JFK),
          Load(C_2, P_2, JFK), Fly(P_2, JFK, SFO), Unload(C_2, P_2, SFO).
```

Example: Changing the spare tire


```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
PRECOND: At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle),
PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle)
EFFECT: \neg At(t, Ground) \land At(t, Axle))
Action(Leave Overnight,
PRECOND:
EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)
\land \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc), \\ PRECOND: At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle), \\ PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle)
EFFECT: \neg At(t, Ground) \land At(t, Axle))
Action(LeaveOvernight, \\ PRECOND: \\ EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk) \\ \land \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc), \\ PRECOND: At(obj, loc) \\ EFFECT: \neg At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle), \\ PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle) \\ EFFECT: \neg At(t, Ground) \land At(t, Axle))
Action(LeaveOvernight, \\ PRECOND: \\ EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk) \\ \land \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
PRECOND: At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle),
PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle)
EFFECT: \neg At(t, Ground) \land At(t, Axle))
Action(LeaveOvernight,
PRECOND:
EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)
\land \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
PRECOND: At(obj, loc) \land At(obj, Ground))
Action(PutOn(t, Axle),
PRECOND: Tire(t) \land At(t, Ground) \land \neg At(Flat, Axle)
Effect: \neg At(t, Ground) \land At(t, Axle))
Action(LeaveOvernight,
PRECOND:
Effect: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)
\land \neg At(Flat, Ground) \land \neg At(Flat, Axle) \land \neg At(Flat, Trunk))
```

Bad neighborhood

```
Init(Tire(Flat) \land Tire(Spare) \land At(Flat, Axle) \land At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
  PRECOND: At(obj, loc)
  EFFECT: \neg At(obj, loc) \land At(obj, Ground)
Action(PutOn(t, Axle),
   PRECOND: Tire(t) \wedge At(t, Ground) \wedge \neg At(Flat, Axle)
   EFFECT: \neg At(t, Ground) \land At(t, Axle)
Action(LeaveOvernight,
   PRECOND:
   EFFECT: \neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)
                                                                                            Remove
            \wedge \neg At(Flat, Ground) \wedge \neg At(Flat, Axle) \wedge \neg At(Flat, Trunk))
                                                                                              PutOn
```

A solution to the problem is [Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)].

Relations

Block (A), Block (B), Block (C)


```
Init(On(A, Table) \land On(B, Table) \land On(C, A)
 \land Block(A) \land Block(B) \land Block(C) \land Clear(B) \land Clear(C))
```

 $Goal(On(A, B) \land On(B, C))$

Action(Move(b, x, y),

PRECOND: $On(b,x) \wedge Clear(b) \wedge Clear(y) \wedge Block(b) \wedge Block(y) \wedge (b \neq x) \wedge (b \neq y) \wedge (x \neq y),$

Effect: $On(b,y) \wedge Clear(x) \wedge \neg On(b,x) \wedge \neg Clear(y)$

Action(MoveToTable(b, x),

PRECOND: $On(b,x) \wedge Clear(b) \wedge Block(b) \wedge (b\neq x)$,

Effect: $On(b, Table) \wedge Clear(x) \wedge \neg On(b, x)$

Complexity of classic planning

- PSPACE, a complexity class that is larger/harder than NP
 - Planner: ask for a sequence of actions that, if executed from a state, will make goal become true in a future state
 - PSPACE
 - Theorem prover: ask if a sentence is true given KB (does not have the notion of state transition)
 - NP

Planning as state-space search (forward)

 $At(P_1, A)$

 $At(P_2, A)$

Planning as state-space search (forward)

Planning as state-space search (forward)

Planning as state-space search (backward)

 $\begin{array}{c}
At(P_1, B) \\
At(P_2, B)
\end{array}$

Planning as state-space search (backward)

Planning as state-space search (backward)

Heuristics for planning

- Neither forward nor backward search is efficient without a good heuristic function
 - Need an admissible heuristic
 - i.e., never overestimate the distance from a state (s) to the goal

Planning graph

- It is a data structure used to give heuristic estimates
 - Can be applied to any of the search techniques
 - Will never overestimate; and often very accurate

```
Init(Have(Cake))
Goal(Have(Cake) \land Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT: \neg Have(Cake) \land Eaten(Cake))
Action(Bake(Cake)

PRECOND: \neg Have(Cake)

EFFECT: Have(Cake)
```

Planning graph

- S0, S1, S2 states
 - May be reachable at each level
 - Mutual exclusion (mutex) links
- A0, A1 actions
 - Mutual exclusion (mutex) links

 S_1

Have(Cake)

 S_0

¬ Eaten(Cake)

Init(Have(Cake)) $Goal(Have(Cake) \land Eaten(Cake))$ Action(Eat(Cake)) PRECOND: Have(Cake) $EFFECT: \neg Have(Cake) \land Eaten(Cake))$ Action(Bake(Cake)) $PRECOND: \neg Have(Cake)$ EFFECT: Have(Cake))

 A_1 S

Planning graph

Planning graph: mutex actions

- Effects contradict each other
 - Eat(Cake).effect vs. Have(Cake).effect
- Preconditions contradict each other
 - Bake(Cake).precond vs Eat(Cake).precond
- Interference (one action's effect contradicts the other action's precond)
 - Eat(Cake).effect vs Have(Cake).precond

```
Init(Have(Cake)) \\ Goal(Have(Cake) \land Eaten(Cake)) \\ Action(Eat(Cake) \\ PRECOND: Have(Cake) \\ Effect: \neg Have(Cake) \land Eaten(Cake)) \\ Action(Bake(Cake) \\ PRECOND: \neg Have(Cake) \\ Effect: Have(Cake))
```


Properties of a planning graph

- Polynomial in the size of the planning problem
 - Instead of being "exponential" in size
- If any goal literal fails to appear in the final level of the graph, then the problem is unsolvable
- The cost of achieving any goal (g) can be estimated as the level at which (g) first appears in the planning graph constructed from (s) as the initial state

Graph planning algorithm

```
function Graph (problem) returns solution or failure  graph \leftarrow \text{Initial-Planning-Graph}(problem) \\ goals \leftarrow \text{Conjuncts}(problem.\text{Goal}) \\ nogoods \leftarrow \text{an empty hash table} \\ \text{for } tl = 0 \text{ to } \infty \text{ do} \\ \text{if } goals \text{ all non-mutex in } S_t \text{ of } graph \text{ then} \\ \hline solution \leftarrow \text{Extract-Solution}(graph, goals, \text{NumLevels}(graph), nogoods)} \\ \text{if } solution \neq failure \text{ then return } solution \\ \text{if } graph \text{ and } nogoods \text{ have both leveled off then return } failure \\ graph \leftarrow \text{Expand-Graph}(graph, problem)
```

Example planning graph (spare tire)

Example planning graph (spare tire)

