Computer Architecture & Compilation Process

Michael R. Nowak

Basic Architecture

- Majority of modern computers use the Von Neumann architecture
- \bullet Store the program's instructions alongside its data in the memory unit
- Partition the computer into two components: Central Processing Unit (CPU) and Memory Unit

 The computational power resides in the CPU

 The memory unit stores program code and data

 The two are connected by a "bus"

Basic Architecture

- \bullet During each computation cycle, the machine retrieves the next instruction from the memory unit
- Subsequently executes the computation associated with the retrieved instruction
- This process continues until the machine is told to 'halt'

	1
Memory	
The smallest unit of memory is the 'bit', which can be in one of two states	-
Computers use transistor circuits known as 'flip-flops' to store bits	
It can either be on (1) or off (0)Will stay in this state until it is reset	
vviii stay iii tiils state alitii le is reset	
M. R. Nossak	
Memory	
 Most computers offer 'byte addressability' Instead of interacting with bits individually, computers group eight bits 	
together into a byte • Memory organizes these bytes into an array of bytes	
 Each byte in this array has a unique address 	
 The CPU uses a byte's address to read or update values encoded in its eight-bit pattern 	
 The byte is the smallest addressable unit of memory in such a computer To get a particular bit within a byte, shifting and masking can be used 	
To get a particular bit within a byte, sinting and masking can be used	
M. R. Nowak	
]
Memory	
Wellioty	
Most computers support reading of and writing to larger units of memory	
 Words (4-bytes) and half-words (2-bytes) are such units and span consecutive bytes in memory 	
 A half-word provides 2¹⁶ = 65536 patterns This number is known as "64k", where 1 "k" of something is 2¹⁰ = 	
1024	

A word provides 2³² = 4294967296 patterns (about 4 billion)
 The base-address of these units is that of its byte with the lowest address

M	len	าด	r۱
	\sim		1 9

- Programming languages provide abstractions of these memory cells through
 - A variable is a named memory cell: we bind an identifier (i.e., give a name) to a memory cell by associating that identifier with the base-address of the
 - respective memory cell
 It's easier to reference a memory cell by its declared name opposed to having to remember its address
 - When we name a memory cell, we must always specify its type: the type determines the number of units of memory (i.e., bytes) composing it and how its bit-pattern is to be interpreted

Central Processing Unit

- The components that we will concern ourselves with are the registers and Arithmetic Logic Unit (ALU) $\,$
- Registers store values used in, and results of, computations by ALU
- The number of registers in the CPU is small compared to the size of • There are a number of specialized registers too, such as the Program
 - Counter (PC) which holds the address of the instruction being executed
- \bullet ALU performs the actual computations, including arithmetic and logical operations

Instruction sets

- The actual things that the computer hardware can do is specified in the instruction set
- A Reduced Instruction Set Computer (RISC) processor provides limited and primitive facilities, such as
 - Loading a register from memory
 - \bullet Storing the contents of a register to memory
 - Moving to a different part of the program
 - Arithmetic operations
 - Logical operations

Machine language

- CPU instructions are stored in memory in sequential order; processing proceeds word by word from
- Each instruction is encoded as a binary sequence of numbers; the language of these instructions is known as machine language
- For instance, using the MIPs machine language, we could write the equation wage = rate \star hours as:

Assembly language

- \bullet Assembly language has an assembly instruction for each machine language instruction
- \bullet Unlike machine language, assembly language is entered as mnemonics (i.e., words) that describe what they do
- \bullet For instance, we could write the equation wage = rate * hours as:

lw \$s0, \$s2, 0 lw \$s1, \$s3, 0 mult \$s2, \$s3, \$s4 sw \$s4, \$s5, 0

 In order for the assembly language to be understood by the computer, we use an assembler to translate from assembly language to machine language

Higher-level languages

- \bullet It is hard for a programmer to express ideas in machine language and assembly language
- \bullet Higher-level languages use more complete mnemonics and allow more complex organization of ideas
- In C++, provided that wage had been declared, and rate and hours had been defined, we could simply write the following statement in our program:

wage = rate * hours;

Compilation

- The compiler translates high-level programming language statements into an appropriate sequence of instructions in machine language
- Several low-level instructions are typically required to express a single high-level statement
- The C++ compiler process proceeds by
 Preprocessing the source file
 Translating the source code to assembly code
 Translating the assembly code to machine language (object code)
 Linking necessary object code together into an executable file

5