《基础物理实验》实验报告

分组号: 01-9

实验名称	RLC 电路	的谐振与暂态	过程			尹倩青
姓 名_	王华强	学号_2016K	8009929035 专	业 计	算机科学与技术	
同组人员_	无					
实验日期_	2017 年	11 月 20	日实验地点	教 709	_成绩评定	

实验名称 RLC 电路的谐振与暂态过程

实验简介

同时具有电感和电容两类元件的电路,在一定条件下会发生谐振现象。谐振时电路的阻抗、 电压与电流以及它们之间的相位差、电路与外界之间的能量交换等均处于某种特殊状态,因而 在实际中有着重要的应用,如在放大器、振荡器、滤波器电路中常用作选频等。本实验的第一部 分,将通过 RLC 电路的相频特性、幅频特性的测量,着重研究 LC 电路的谐振现象。 在阶跃电压作用下,RLC 串联电路由一个平衡态跳变到另一个平衡态,这一转变过程称为 暂态过程。在此期间电路中的电流及电容、电感上的电压呈现出规律性的变化,称为暂态特性。 RLC 电路的暂态特性在实际工作中十分重要,例如在脉冲电路中经常遇到元件的开关特性和电 容充放电的问题;在电子技术中常利用暂态特性来改善波形或者产生特定波形。但是在某些情况,暂态特性也会造成危害,例如在接通、切断电源的瞬间,暂态特性会引起电路中电流、电压 过大,造成电器设备和元器件的损坏,这是需要防止的。本实验的第二部分是要观察和分析 RLC 串联电路暂态过程中电压及电流的变化规律。

实验目的

- 1. 研究 RLC 电路的谐振现象。
- 2. 了解 RLC 电路的相频特性和幅频特性。
- 3. 用数字存储示波器观察 RLC 串联电路的暂态过程,理解阻尼振动规律。

实验仪器

标准电感,标准电容,100 Ω 标准电阻,电阻箱,电感箱,电容箱,函数发生器,示波器,数字多用表,导线等。

实验原理, 实验内容

同讲义, 见附件1

数据处理

1. 测 RLC 串联电路的相频特性和幅频特性曲线

取 L=0.1 H,C=0.05 μ F, R=100 Ω ,用示波器 CH1、CH2 通 道分别观测 RLC 串联电路的总电压 u 和电阻两端电压 R u 。

(1) 调谐振, 改变函数发生器的输出频率, 找到谐振频率 ${\mathfrak f}0$ 。在谐振时, 用数字多用表测量 ${\mathfrak u}$, ${\mathfrak u}_{{\mathbb L}}$, ${\mathfrak u}_{{\mathbb C}}$ 。计算 ${\mathbb Q}$ 值。

测得:

f0 计算值	2250Hz
f0 测量值	2251Hz
u	0.472V
uL	5.47V
uC	5.50V
Q 的测量值	Q=ur/u=uc/u=11.65
	Q 测量值=11.65

f0 实际测量值几乎与计算值相同,**但是实验中测出的** u_L , u_C 略有不同,这样使用两者分别算出的 Q 也略有 差距,取平均值为 11.65.

Q 的测量值与用电路中各元件属性所计算出的 Q 理论有较大偏差,Q 理论约为 14 左右. 究其原因,可能是由于电路中各个接触点电阻,示波器内阻等产生的.

(2) 测相频特性曲线和幅频特性曲线: 在总电压 upp = $2.0\,\mathrm{V}$ 保持不变的条件下,用示波器 (在双踪显示下)测出电压、电流间相位差 ϕ ,以及相应的 Ru 。信号频率在大约 $1.50\sim3.30\,\mathrm{kHz}$ 范围内,选择相位差约 0° , \pm 15° , \pm 30° , \pm 45° , \pm 60° , \pm 72° , \pm 80° 所对应的频率进行测量。 参考频率 (单位 kHz): 1.88、2.00、2.08、2.15、2.19、2.22、2.24、2.25、2.26、2.275、2.30、2.36、2.43、2.62、3.18。作 RLC 串联电路的 ϕ – f 曲线和 i – f 曲线。利用式(6)估算出 Q 值。

测量结果如下:

相位差 (degree)	参考 f(kHZ)	实际 f(kHZ)	UR 峰 值(mV)	IR 峰值 (mV)
-80	1.88	1.882	160	1.6
-72	2	2.005	224	2.24
-60	2.08	2.08	288	2.88
-45	2.15	2.15	417	4.17
-30	2.19	2.181	466	4.66
-15	2.22	2.22	487	4.87
0	2.25	2.251	509	5.09
15	2.275	2.275	520	5.2
30	2.3	2.295	470	4.7
45	2.36	2.35	404	4.04
60	2.43	2.43	299	2.99
72	2.62	2.628	192	1.92
80	3.18	3.18	104	1.04

作 RLC 串联电路的 φ -f 曲线和 i-f 曲线:

实际 f(kHZ)	1.88	2.00	2.0	2.1	2.18	2.2	2.25	2.27	2.29	2.3	2.4	2.62	3.1
	2	5	8	5	1	2	1	5	5	5	3	8	8
相位差	-80	-72	-60	-45	-30	-15	0	15	30	45	60	72	80
(degree)													

实际	1.88	2.00	2.0	2.1	2.18	2.2	2.25	2.27	2.29	2.3	2.4	2.62	3.1
f(kHZ)	2	5	8	5	1	2	1	5	5	5	3	8	8
IR 峰值	1.6	2.24	2.8	4.1	4.66	4.8	5.09	5.2	4.7	4.0	2.9	1.92	1.0
(mV)			8	7		7				4	9		4

选取峰值为 520mV,计算得 f2, f1 处的 U 峰应为 370mV, 落在 45-60 度,-45~-60 度之间.

测得 f1=2.135kHZ, f2=2.370kHZ

Q=9.579, 计算值小于实际测量值. 误差分析见实验结论部分.

- 2. 测 RLC 并联电路的相频特性和幅频特性曲线。取 L=0.1 H,C=0.05 μ F, R'=5 k Ω (电阻 R' 是为监测总电流 i 而串入的)。为观测电感与电容并联部分的电压和相位,用 CH1 测量总电压,用 CH2 测量 R' 两 端电压,(注意共地点在 b 点),两通道测量电压值相减 CH1-CH2 就是并联部分的电压 u 。可通过示波器面板上的"MATH"键实现两通道波形相减。
- (1)调谐振。改变函数发生器的输出频率,观测并联部分的电压 \mathbf{u} (CH1-CH2)与总电流 (CH2)的幅度和相位的变化。找到谐振频率 \mathbf{p} \mathbf{f} 。

	谐振频率 fp												
计算值	计算值 2250kHZ 测量值 2250kHZ												
	RI=10-	20 欧姆											

其中经计算得知, RI 的值太小, 对于 fp 的贡献几乎可以忽略不计.

(2) 测相频特性曲线和幅频特性曲线: 固定总电压(Ru+u')的峰峰值 2.0V 保持不变, 测量并联部分电压 u (CH1-CH2)与总电流(CH2)的相位差以及二者的幅度值。可用光标(Cursor) 功能读取电压值。频率范围大约在 $1.70\sim2.80~kHz$ 。

参考频率(单位 kHz): 2.05、2.15、2.20、 2.231、2.24、2.247、2.25、2.253、2.256、2.265、2.275、2.32、2.40、2.60。

原始数据:

频率	Uch2 峰值(反 映 I)	U 并联 峰值	峰值时 间差 (us)	相位差 绝对值 (degree)	相位差
2.05	532	750	114	84.132	-84.132
2.15	300	830	95	73.53	-73.53
2.2	164	870	81	64.152	-64.152
2.231	100	880	43	34.53588	34.5359
2.24	92	900	19	15.3216	- 15.3216
2.247	84	990	15	12.1338	- 12.1338
2.25	68	1010	5	4.05	-4.05
2.253	73	990	12	9.73296	9.73296
2.256	83	970	20	16.2432	16.2432
2.265	89	870	41	33.4314	33.4314
2.275	112	860	52	42.588	42.588
2.32	222	830	88	73.4976	73.4976
2.4	400	810	99	85.536	85.536
2.6	708	760	146	136.656	136.656

测量时遇到的问题见结论部分.

作 RLC 并联电路的 φ -f 曲线和 u-f、i-f 曲线:

频率	2.05	2.15	2.2	2.231	2.24	2.247	2.25	2.253	2.256	2.265	2.275	2.32	2.4	2.6
Uch2 峰值(反映 I)	532	300	164	100	92	84	68	73	83	89	112	222	400	708

频率	2.05	2.15	2.2	2.231	2.24	2.247	2.25	2.253	2.256	2.265	2.275	2.32	2.4	2.6
U并联峰值	750	830	870	880	900	990	1010	990	970	870	860	830	810	760

频率	2.05	2.15	2.2	2.231	2.24	2.247	2.25	2.253	2.256	2.265	2.275	2.32	2.4	2.6
相位	-	-	-	-	-	-	-	9.7329	16.243	33.431	42.58	73.497	85.53	136.65
差	84.132	73.53	64.152	34.535	15.321	12.133	4.05	6	2	4	8	6	6	6
				9	6	8								

可以看出,以上结果基本是理论结果所预言的形状,但在某些位置也存在差异,比如电压峰值就并没有落在2250Hz处,与其他同学交流后发现其他人也有存在此问题的,怀疑为系统误差.

3. 观测 RLC 串联电路的暂态过程。

由函数发生器产生方波。为便于观察,要求将方波的低电平调整与示波器的扫描基线一致。由低电平到高电平相当于充电,由高电平到低 电平相当于放电。函数发生器各参数可设为: 频率 $50\,\mathrm{Hz}$,电压峰峰值 pp u=2.0 V,偏移 $1\mathrm{V}$ 。示波器 CH1 通道用来测量总电压,CH2 用来测量电容两端电压uC,注意两个 通道必须共地。实验中 L=0.1 H,C=0.2 $\mu\mathrm{F}$ 。

(1) R=0 Ω, 测量*uC*波形。

放大后得:

(2) 调节 R 测得临界电阻RC, 并与理论值比较。

理论值为 1414Ω , 实际测量值为 1160Ω

测量时的示波器图形如下图所示:

可见此时恰好没有之前图像中所示的波动, 此时的电阻值即为所求.

(3) 记录 R=2 KΩ, 20 KΩ 的uC波形。函数发生器频率可分别选为 250 Hz (R=2 KΩ), 和 20 Hz (R=20 KΩ)。

两次实验中示波器的波形 分别如下所示:

实验结论与思考

- 实验中应当注意,在使用示波器测量分压时,应使得示波器的接地端与函数发生器的接地端连在一起.
 这样就要求必须严格按照电路图来连接电路.
- 2. 在串联谐振时,如果设置不当,电感和电容两端将出现有危险的高电压(超过 36V),原因是 Q 的≫1, 而 Q 代表 Uc, UI 与 U 的比值.按此实验中的数据,可以达到 10x 以上.
- 3. 实验第一部分 f0 实际测量值几乎与计算值相同, 但是实验中测出的u_L, u_C略有不同, 这样使用两者分别算出的 Q 也略有差距, 取平均值为 11.65.
- 4. Q 的测量值与用电路中各元件属性所计算出的 Q 理论有较大偏差, Q 理论约为 14 左右. 究其原因, 可能是由于电路中各个接触点电阻, 示波器内阻等产生的.
- 5. 万用表测量电感,电容两端的电压 u_L 和 u_c 和电源的路端电压 u 用以计算 Q 值时. 所测得的数值要远小于函数发生器所提供的电压, 原理同上.
- 6. 注意此实验中测量电压的极值点不要使用峰峰值, 以避免毛刺所导致的误差, 使用幅度或最大值来进

行计算.计算后的结果还要再化成有效值再参与计算.由于电路结构使得某一电压与电流成正比关系, 所以作曲线时可以直接使用 U 的值来反映 I 的趋势.

- 7. 完成相频曲线和幅频曲线时, 应保持 CH1 幅度值 2V 不变(不同频率点需要调节函数发生器, 1.99~2.01 之间即可), 在实验进行到第一部分时, 没有注意到此项要求, 导致所测数值可能有一定的偏差.
- 8. 读取相位差时, 当改变信号频率或幅度后, 要先关闭"统计功能", 再打开, 从而清零统计值然后读取数据,否则统计值显示的是从开始统计开始到当前时刻所有数据的平均。
- 9. 在此实验中,由于器材的原因,导致曲线波动底噪很大,此时使用极值-统计-平均来取得一个比较准确的值.在并联测并联部分分压时此点尤其重要.实验中由于没有使用此法读数,而是用光标读取最大值,导致读数偏差较大.
- 10. 从最后的几张波形图中, 我们可以验证 RLC 电路在电流突变时满足阻尼振动的规律: 存在三种情况: 欠阻尼, 过阻尼, 临界阻尼.

2017. 11. 21

发送至:

尹倩青

yinqianqing0129@163.com

IHEP