Taller 4 – Regresión Logística

Cartografía Geotécnica Asignatura

Dubán Uribe Góez Autor

Edier Vicente Aristizábal Giraldo

Docente

Universidad Nacional de Colombia – Sede Medellín Facultad de Minas

2025-1

Semestre

Análisis Comparativo de Modelos de Regresión Logística para la Susceptibilidad a Movimientos en Masa

Introducción

Con el objetivo de modelar la susceptibilidad a movimientos en masa, se construyeron y evaluaron tres modelos de regresión logística, cada uno con diferentes combinaciones de variables explicativas. A continuación, se presenta un análisis comparativo de estos modelos para determinar cuál ofrece un mejor ajuste y mayor capacidad explicativa de la realidad.

Descripción de los Modelos Evaluados

Modelo	Variables Incluidas	Tipo de Variables	
Modelo 1	Pendiente, Aspectos, Elevación, Flujo	Continuas	
Modelo 2	Cobertura del suelo (categórica), Pendiente, Aspectos, Elevación	Categórica + Continuas	
Modelo 3	Pendiente, Aspectos, Elevación	Continuas	

Resultados estadísticos

Indicador	Modelo 1	Modelo 2	Modelo 3
Log-Likelihood	-5,934,800	-5,907,300	-5,937,900
Pseudo R²	0.03999	0.04444	0.03948
Número de Observaciones	36,180,897	36,180,897	36,180,897
Convergencia	Sí	Sí	Sí

Todas las variables significativas (p < 0.05)	Sí	Sí	Sí
---	----	----	----

Interpretación de resultados

El **Modelo 2** muestra el mejor desempeño estadístico y explicativo, por las siguientes razones:

Mayor valor de Pseudo R² (0.04444), lo que indica una mayor proporción de la variabilidad explicada por el modelo.

Mejor Log-Likelihood (-5,907,300), que representa un mejor ajuste general del modelo a los datos observados.

La inclusión de la **variable categórica de Cobertura del Suelo** proporciona una interpretación más rica del fenómeno, incorporando factores ecológicos y antrópicos, además de los geofísicos.

Todas las variables son estadísticamente significativas, lo que respalda la validez del modelo.

Sin embargo, al ejecutar el modelo, se encontraron varias inconsistencias con respecto a la distribución de los movimientos en masa, como lo muestra el mapa a continuación.

Figura 1. Modelo 2 regresión logística

Se observó que con los demás modelos ocurría algo similar, excepto con el número 3, quizá porque usaba 3 variables en lugar de 4, tal vez el uso de más de tres variables hizo que los modelos 1 y 2 no funcionaran, por esa razón se eligió el 3.

Figura 2 Modelo 3 regresión logística

Conclusión

Con base en los resultados anteriores, se concluye que el **Modelo 3** es el más adecuado para representar la susceptibilidad a movimientos en masa en el área de estudio ya que representa mejor la disposición que tienen los movimientos en masa ya documentados.