- 1. (30 pts) Sea x_1, \ldots, x_n una muestra aleatoria desde una distribución $N_p(\mu, \lambda \Sigma_0)$, con Σ_0 matriz conocida. Obtenga los estimadores ML de μ y λ .
- **2.** (30 pts) Considere $\boldsymbol{x} \sim \mathsf{N}_p(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$, donde $\boldsymbol{\mu}$ satisface que $\boldsymbol{\mu}^\top \boldsymbol{\mu} = 1$. Muestre que el estimador ML basado en esta única observación es $\boldsymbol{x}/\|\boldsymbol{x}\|$.
 - 3. Suponga el modelo lineal $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{B} + \boldsymbol{U}$, donde $\boldsymbol{X}\boldsymbol{B} = \mathbf{1}_n\boldsymbol{\beta}_1^\top + \boldsymbol{X}_2\boldsymbol{B}_2$, con $\boldsymbol{X} = (\mathbf{1}_n,\boldsymbol{X}_2)$ matriz $n \times p$ de rango $p, \boldsymbol{X}_2^\top \mathbf{1}_n = \mathbf{0}$ y las filas de \boldsymbol{U} son IID $\mathsf{N}_p(\mathbf{0},\boldsymbol{\Sigma})$.
 - **a.** (20 pts) Muestre que los estimadores ML de $\boldsymbol{\beta}_1$ y \boldsymbol{B}_2 son $\overline{\boldsymbol{y}}$ y $(\boldsymbol{X}_2^{\top}\boldsymbol{X}_2)^{-1}\boldsymbol{X}_2^{\top}\widetilde{\boldsymbol{Y}}$, respectivamente, donde $\widetilde{\boldsymbol{Y}} = (\boldsymbol{y}_1 \overline{\boldsymbol{y}}, \boldsymbol{y}_2 \overline{\boldsymbol{y}}, \dots, \boldsymbol{y}_n \overline{\boldsymbol{y}})^{\top}$.
 - $\mathbf{b.}\,(20~\mathrm{pts})$ Obtenga el test de razón de verosimilitudes para probar $H_0: \boldsymbol{B}_2 = \mathbf{0}$