日本国特許庁 JAPAN PATENT OFFICE

09. 7. 2004

REC'D 02 SEP 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月12日

出 願 番 号 Application Number:

人

特願2003-168343 -

[ST. 10/C]:

[JP2003-168343]

出 願 Applicant(s):

キヤノン電子株式会社 キヤノン株式会社

PRIORITY DOCUMENTS
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月19日

1) 11]

【書類名】

特許願

【整理番号】

253905

【提出日】

平成15年 6月12日

【あて先】

特許庁長官 殿

【国際特許分類】

GO1N 33/34

G03G 15/00

【発明の名称】

シート材識別装置及びシート材処理装置及びシート材識

別方法

【請求項の数】

6

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

川崎 岳彦

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

金子 典夫

【発明者】

【住所又は居所】

埼玉県秩父市大字下影森1248番地 キヤノン電子株

式会社内

【氏名】

丸山 直昭

【特許出願人】

【識別番号】

000104652

【氏名又は名称】

キヤノン電子株式会社

【特許出願人】

【識別番号】

000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】

100082337

【弁理士】

【氏名又は名称】

近島 一夫

【選任した代理人】

【識別番号】

100083138

【弁理士】

【氏名又は名称】 相田伸二

【手数料の表示】

【予納台帳番号】

033558

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9902252

【包括委任状番号】 0103599

【プルーフの要否】

要

【曹類名】 明細書

【発明の名称】 シート材識別装置及びシート材処理装置及びシート材識別方法 【特許請求の範囲】

【請求項1】 シート材の種類を識別するシート材識別装置であって、

前記シート材の所定領域に対して除湿あるいは加湿を行って前記所定領域の含水率を調整する調整部と、

前記含水率が調整されたシート材の所定領域に外力を印加する外力印加手段と

前記シートを介して伝わる外力を検知する検知手段と、

前記検知手段により検知した結果に基づいてシート材の種類を識別する識別手段と、

を備えることを特徴とするシート材識別装置。

【請求項2】 前記識別手段は、前記検知手段により検知した外力と、予め外力及び前記外力に対応するシート材の種類を記憶したテーブルとを比較することにより前記シート材の種類を識別することを特徴とする請求項1記載のシート材識別装置。

【請求項3】 前記シート材の含水率を検知する含水率検知手段を備え、 前記含水率検知手段の含水率検知結果に基づいて前記シート材の所定領域の含 水率を調整することを特徴とする請求項1又は2記載のシート材識別装置。

【請求項4】 前記外力印加手段により前記所定領域に印加する外力は、衝撃力、或いは振動であることを特徴とする請求項1乃至3のいずれか1項に記載のシート材識別装置。

【請求項5】 前記請求項1乃至4のいずれか1項に記載のシート材識別装置を備え、前記シート材識別装置により識別されたシート材の種類に応じて該シートの処理を行うことを特徴とするシート材処理装置。

【請求項6】 シート材の種類を識別するシート材識別方法であって、

前記シート材の所定領域に対して除湿あるいは加湿を行って前記所定領域の含 水率を調整する含水率調整工程と、

前記含水率が調整されたシート材の所定領域に外力を印加する外力印加工程と

前記シートを介して伝わる外力を検知する外力検知工程と、

前記外力検知工程により検知した外力に基づいてシート材の種類を識別する識別工程と、

を備えたことを特徴とするシート材識別方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、シート材識別装置及びシート材処理装置及びシート材識別方法に関し、特にシート材に外力を印加することによりシート材の種類を識別するものに関する。

[0002]

【従来の技術】

従来、シート材に画像を形成する画像形成装置、シート材上の画像を読み取る画像読取装置、あるいは紙幣などの印刷物を区分処理する印刷物処理装置等、シート材に対してさまざまな処理を行うシート材処理装置がある。なお、このようなシート材処理装置により処理されるシート材としては、画像形成装置に用いられる普通紙、光沢紙、コート紙、フィルム状の透明樹脂シートの他、紙幣などの印刷物、各種カード等が含まれる。

[0003]

ここで、このようなシート材処理装置においては、シート材識別装置を備え、このシート材識別装置によりシート材の種類を識別した後、シート材に応じた処理を行うようにしたものがある。例えば、画像形成装置においては、シート材識別装置によりシート材の種類を識別した後、このシート材に応じて搬送速度や定着温度を制御するようにしている。

[0004]

ところで、このようなシート材の種類の識別は、一般にシート材の電気特性や接触摩擦による力の違いを利用して行われているが、シート材は湿度によってその特性が変化するので、このような方法によりシート材の種類を識別する場合に

は、シート材識別装置本体内の湿度を測定し、この測定値に基づき、検出した電 気特性や接触摩擦に関する値を補正する方法がとられている(特許文献1参照)

[0005]

【特許文献1】

特開2002-139392号公報(第6頁、図1)

[0006]

【発明が解決しようとする課題】

ところが、このような従来のシート材識別装置及びシート材識別方法においては、シート材識別装置本体内の湿度とシート材自体の湿度(即ち、含水率)との間にズレが生じていることがあり、このズレが大きい場合、シート材識別装置本体内の湿度に応じて行った補正が適切でない場合が想定される。

[0007]

そして、このように検知された電気特性や接触摩擦に関する値に対する補正が 適切に行われない場合には、シート材の種類の識別が正確に行われないためシー ト材に対する処理を適切に行うことができない。例えば、画像形成装置において は、シート材の種類に応じた搬送速度、定着温度の設定を行うことができず、適 切な画像形成を行うことができないという問題点がある。

[0008]

そこで、本発明は、このような現状に鑑みてなされたものであり、シート材の 種類の識別を正確に行うことのできるシート材識別装置及びシート材処理装置及 びシート材識別方法を提供することを目的とするものである。

[0009]

【課題を解決するための手段】

本発明は、シート材の種類を識別するシート材識別装置であって、前記シート 材の所定領域に対して除湿あるいは加湿を行って前記所定領域の含水率を調整す る調整部と、前記含水率が調整されたシート材の所定領域に外力を印加する外力 印加手段と、前記シートを介して伝わる外力を検知する検知手段と、前記検知手 段により検知した結果に基づいてシート材の種類を識別する識別手段と、を備え

ることを特徴とするものである。

[0010]

また本発明は、前記識別手段は、前記検知手段により検知した外力と、予め外力及び前記外力に対応するシート材の種類を記憶したテーブルとを比較することにより前記シート材の種類を識別することを特徴とするものである。

[0011]

また本発明は、前記シート材の含水率を検知する含水率検知手段を備え、前記 含水率検知手段の含水率検知結果に基づいて前記シート材の所定領域の含水率を 調整することを特徴とするものである。

[0012]

また本発明は、前記外力印加手段により前記所定領域に印加する外力は、衝撃力、或いは振動であることを特徴とするものである。

[0013]

また本発明は、シート材処理装置であって、上記のいずれかに記載のシート材 識別装置を備え、前記シート材識別装置により識別されたシート材の種類に応じ て該シートの処理を行うことを特徴とするものである。

[0014]

また本発明は、シート材の種類を識別するシート材識別方法であって、前記シート材の所定領域に対して除湿あるいは加湿を行って前記所定領域の含水率を調整する含水率調整工程と、前記含水率が調整されたシート材の所定領域に外力を印加する外力印加工程と、前記シートを介して伝わる外力を検知する外力検知工程と、前記外力検知工程により検知した外力に基づいてシート材の種類を識別する識別工程と、を備えたことを特徴とするものである。

[0015]

【発明の実施の形態】

以下、本発明の実施の形態を、図面を用いて詳細に説明する。

$[0\ 0\ 1\ 6]$

図1は、本発明の実施の形態に係るシート材識別装置の構成を説明する図である。

[0017]

同図において、Sはシート材、2はシート材Sの含水率を検知する含水率検知 手段である含水率検知センサ、3はシート材Sの含水率を調節する調節部である 含水率調節部、4はシート材Sに外力として衝撃を印加する外力印加手段である 衝撃材、5は衝撃材4により印加された外力(衝撃力)を、シート材Sを介して 検知する検知手段である検知センサ、7は衝撃材4による衝撃印加動作を制御す る衝撃制御部である。

[0018]

また、1は検知センサ5からの信号を検出すると共に、検出した検知センサ5からの信号を処理する信号検出/処理部8を備えた制御部であり、この制御部1は信号検出/処理部8により処理した信号とメモリ部6に設けられたデータと比較し、シート材Sの種類の識別を行う識別手段を構成するものである。

[0019]

なお、本実施の形態においては、不図示のシート材搬送機構により、シート材 の所定領域が含水率検知センサ2、含水率調整部3、及び衝撃材4を順に通過す る構成としている。

[0020]

次に、このような構成のシート材識別装置におけるシート材識別方法を同図及 び図2に示すフローチャートを用いて説明する。

[0021]

シート材Sの識別を行う場合には、まずシート材Sを含水率検出センサ2と接触させ、シート材Sの含水率を検出する。ここで、この含水率が所望の値でない場合、所望の値になるよう、含水率調節装置3を用いて、一般に%で表されるシート材Sの含水率を所定範囲になるように制御する(S1)。

[0022]

このため、例えば、検出した含水率が低い場合は加湿し、高い場合は除湿する。また、調整後、再度含水率を検出して所望の値になっていることを確認しても良い。さらに含水率に応じてどのような調整を行うかをテーブルとして予め持っておき、このテーブルを参照して含水率の調整を行う方法もある。また含水率を

[0023]

なお、この所定範囲とは、例えば気温 23 \mathbb{C} 、湿度 50 %時の平均的なシート材の含水率である 7.0 8.0 %等であるが、結露せずシート材 \mathbb{S} の識別が可能であれば特に限定されるものではない。

[0024]

また、制御部1はシート材Sの含水率が所定範囲になるように含水率調節装置3を制御してシート材Sに対する除湿、或いは加湿を行うが、この除湿、加湿の方法は特に限定されるものではなく、シート材Sを除湿する場合は、例えばシート材Sの一定領域に熱を与えて加熱して水分を蒸発させたり、水分を吸湿材により吸着させる方法がある。また、加湿の場合は、例えばシート材Sの一定領域に水を空気と共に噴霧する方法がある。

[0025]

好ましい態様として、この含水率調整装置3として、後述するシート材処理装置の本体機能を利用する方法がある。

[0026]

一例として、シート材処理装置に熱源をもつ場合(例:複写機やレーザービームプリンタ等の電子写真装置の定着機構、画像読取装置の光源等)は、シート材 S を熱源の近傍を通過させることで加熱して除湿を行ったり、別途用意した水を 該熱源で加熱して蒸散或いは噴霧させることでシート材に加湿を行うことができる。

[0027]

別の例として、シート材処理装置に換気機構をもつ場合は、シート材Sを換気機構の近傍(気流内)を通過させることで含水率調節を行うこともできる。また、このような熱源や換気機構の近傍に外力印加手段ならびに検知手段を配することで同様の調節を行うこともできる。

[0028]

なお、この含水率の調節制御は、シート全体に対して行う必要はなく、後述す

る外力印加工程において外力を印加する領域の含水率が、所定範囲になるように 制御されていればよい。勿論、シート全体に対して制御を行ってもよい。

[0029]

また、シート材Sの含水率の検知を行う含水率検知センサ2としては、含水率によって変化する電気抵抗を測定して含水率を検出する電気抵抗式湿度計などを用いることができる。なお、この含水率検知は、加湿等を行う前に行ってもよいし、加湿等の後に行ってもよい。勿論、加湿等の前後で行うことも可能である。また、シート材Sの含水率の検知は、含水率を15~20%と非常に高い値、あるいは0~3%と低い値に制御するようにしておけば、特に行う必要はない。

[0030]

次に、このような含水率調整工程の後、含水率の調整制御が行われたシート材 Sに外力を印加する(S2)。ここで、シート材Sに印加する外力とは、例えば 衝撃や振動であり、振動を外力として印加する場合は、例えば圧電素子を利用し て所望の周波数で発生させた力学的変異をシート材Sに伝達することにより行う 。また、衝撃を外力として印加する場合は、例えば衝撃印加部を自由落下やばね を利用してシート材Sに衝突させることにより行う。なお、本実施の形態におい ては、衝撃材4を落下させてシート材Sに外力を印加するようにしている。

[0031]

また、シート材Sへの外力の印加はシート材Sへの除湿あるいは加湿を行った 直後に、即ち含水率調整工程の直後に行うことが好ましい。具体的には、含水率 調整工程の後、10秒以内に、好ましくは5秒以内に、より好ましくは1秒以内 に外力印加を行うことが好ましい。

[0032]

次に、このような外力印加工程の後、シート材Sを介してその外力を検知センサ5により検知する(S3)。ここで、この検知センサ5としては、金属酸化物を用いた圧力センサなどが用いられる。そして、この圧力センサが、例えば金属酸化物が強誘電体、焦電体、圧電体のいずれかである圧電素子を用いたものであれば、外力が印加された際、シート材を介して伝達される外力により発生する電圧や発生する電圧の周波数成分などを検出することにより外力の大きさを検知す

ることが可能である。

[0033]

なお、これ以外にも、外力として衝撃力を用いる場合は、シート材に対する衝撃印加に際して衝撃材4がシート材からの反発力を受けて反跳し、続いて重力やばね力により再度シート材に衝突する構成とすることにより、1回の衝撃により数回の繰り返し衝撃が自然発生するので、この繰り返し衝撃の間隔時間(反跳時間)より力学的性質を検出することも可能である。

[0034]

この場合、間隔時間は、最初の衝撃を1回目の衝撃としたとき、第n(nは1以上)回目の衝撃時から第m(mは2以上の整数であって、且つm>nである)回目の衝撃までの間、所定のパルスを発生させ、各パルスと既知周波数の外部クロックパルスとのAND回路で生じるクロックパルス数から間隔時間(反跳時間)を計測することもできる。

[0035]

なお、本実施の形態では、図1に示すように衝撃材4に検知センサ5を直接取り付けることにより外力を検知しているが、シート材5に直接または間接的に接触するように検知センサ5を配置すると共に、検知センサ配置側と反対側から外力を印加することにより、外力を検知するようにしても良い。

[0036]

次に、このような外力検知工程の後、制御部1は、検知センサ5により検出した値を信号検出/処理部8より処理した後、予め計測した所定の含水率における各種シート材Sの、シート材Sを介して検知センサ5から出力される信号を記憶したデータテーブルと、実際に出力された信号との対比することによりシート材Sの種類を識別する(S4)。

[0037]

ここで、このような識別工程により検出される値は、シート材Sが単一材料であっても複数の材料が積層された複合体であっても、そのヤング率、坪量、密度、紙厚、表面粗さに関する情報の全て、またはいずれかを反映しており、それによりシート材Sを識別することができる。

[0038]

このように、含水率が調整されたシート材Sの所定領域に外力を印加した後、 シートを介して伝わる外力を検知センサ5により検知し、検知した外力に基づい てシート材Sの種類を識別することにより、シート材識別装置内の湿度ではなく 、シート材自体の含水率依存性をも加味したシート材の識別が可能となり、シー ト材の種類の識別を正確に行うことができる。

[0039]

次に、このような各工程を有するシート材識別方法によりシート材を識別する 本実施の形態に係るシート材識別装置の実施例について説明する。

[0040]

図3は、本実施の形態に係るシート材識別装置の第1実施例に係るシート材識 別装置の構成を示す図である。

[0041]

同図において、10は、シート材Sに衝撃を印加するときに用いる重さ6.6 4gの軟鋼製の衝撃材であり、本実施例では、この衝撃材10を2.5mmの高 さからシート材上に落下させて衝撃を与えるようにしている。なお、この衝撃材 10の先端形状はR3.5mmである。

[0042]

18は衝撃を検知する検知センサである金属酸化物を用いた圧力センサであり、ここでは金属酸化物としてPZTを用いた。また、19は圧力センサ18が衝撃材10を落下させることにより印加される衝撃以外の信号を拾わないように圧力センサ18の下部に設けられた防振ゴム、17は衝撃材10の落下の衝撃で圧力センサ18が割れるのを防止するため、圧力センサ18の衝撃を受ける上面側に設置した真鍮製の衝撃受け材である。

[0043]

11は電気抵抗式の含水率検出センサ、12はシート材Sの除湿時に用いる電 熱線であり、この電熱線12で熱した空気をファン13によって、種別を検知す るようシート材Sに衝撃を印加する一定領域に当てることにより、シート材Sの 含水率を調節するようにしている。16は、信号検出/処理部14及びメモリ部

15を備えた制御部である。

[0044]

次に、このような構成のシート材識別装置によるシート材識別動作について説明する。なお、本実施例においては、異なる環境に保管されていた2枚のシート材 S が同じ種類であるかを識別する識別動作について説明する。

[0045]

まず、シート材Sとして異なる環境に保管されていた同じ種類のシート材Sを2枚用意し、これらシート材Sの含水率を含水率検出センサ11により検出した。ここで、それぞれのシート材Sの含水率は7.1%と9.3%であり、このままの状態で外力を印加し、この印加した外力を、シート材Sを介して検出しても含水率が異なるためそれぞれ異なる値が検出される。

[0046]

このため、本実施例においては、双方を所定の含水率である1.0~2.0% の含水率に調節するため、それぞれ電熱線12及びファン13により構成される 除湿装置を用いて含水率を1.0~2.0%の範囲に調節した。

[0047]

この後、それぞれに衝撃材10を2.5mmの高さから落下させた。このときのシート材Sを介して伝わる衝撃力により圧力センサ18に発生する電圧は、それぞれ177mVと、176mVであった。

[0048]

そして、制御部16は、信号検出/処理部14により圧力センサ18の発生電圧を検知すると共に、この発生電圧を処理した後、メモリ部15のデータとを比較することにより2枚のシート材Sが同じ種類のシート材、CLC用紙(81.4g) (キヤノン株式会社製)であることを識別することができた。

[0049]

図4は、本実施の形態の第2実施例に係るシート材識別装置の構成概念図を示した。

[0050]

同図において、28は、シート材Sに衝撃を印加するときに用いる重さ6.6

4 gの軟鋼製の衝撃材であり、本実施例では、この衝撃材28を2.5 mmの高さから落下させて衝撃を与えるようにしている。なお、この衝撃材28の先端形状はR3.5 mmである。

[0051]

26は衝撃を検知する検知センサである金属酸化物を用いた圧力センサであり、ここでは金属酸化物としてPZTを用いた。また、27は圧力センサ26が衝撃材28を落下させることにより印加される衝撃以外の信号を拾わないように圧力センサ26の下部に設けられた防振ゴム、25は衝撃材28の落下の衝撃で圧力センサ26が割れることを防止するため、圧力センサ26の衝撃を受ける上面側に設置した真鍮製の衝撃受け材である。

[0052]

29は電気抵抗式の含水率検出センサ、20はシート材Sの除湿時に用いる電 熱線であり、本実施例においては、シート材Sを移動させると共に、電熱線20 で熱した空気をファン21によって、シート材Sの全領域に当てることにより、 シート材Sの含水率を調節するようにしている。

[0053]

22は加湿時に用いる噴霧型加湿器であり、シート材Sを移動させてシート材 Sの全領域に水蒸気を噴霧することにより、シート材Sの含水率を調節するよう にしている。32は、信号検出/処理部30及びメモリ部31を備えた制御部で ある。

[0054]

次に、このような構成のシート材識別装置によるシート材識別動作について説明する。なお、本実施例においては、異なる環境に保管されていた異なる種類の2枚のシート材Sを識別する識別動作について説明する。

[0055]

まず、シート材Sとして異なる環境に保管されていた異なる種類のシート材S を2枚用意し、これらシート材Sの含水率を含水率検出センサ29により検出し た。この結果、それぞれのシート材Sの含水率は、9.4%と4.5%であった

ここで、それぞれのシート材Sの含水率を予め測定して識別可能且つ、その後の画像形成に適している含水率である7.0~8.0%の含水率に調節するため、含水率の多いシート材Sは電熱線20及びファン21により構成される除湿装置を用いて、また含水率が少ないシート材Sは、加湿装置22を用いて画像形成を行う部分の含水率をそれぞれ7.0~8.0%の範囲に調節した。

[0057]

そして、このように画像形成を行う部分の含水率を調節したのち、シート材Sの含水率が7.0~8.0%の範囲になっているかを再び含水率検出センサ29により検出する。この時点で含水率が7.0~8.0%の範囲になっていなかった場合、加湿もしくは除湿を再度行う。

[0058]

次に、このような加湿もしくは除湿により含水率が7.0~8.0%の範囲になった2枚のシート材Sに、衝撃材28を2.5mmの高さから落下させた。

[0059]

このときのシート材 S を介して伝わる衝撃力により圧力センサ 2 9 に発生する電圧は $147 \,\mathrm{m\,V}$ と、 $99 \,\mathrm{m\,V}$ であった。そして、信号検出/処理部 $30 \,\mathrm{d}$ 、この発生電圧を処理した後、メモリ部 $31 \,\mathrm{o}$ データと比較することにより、 $2 \,\mathrm{d}$ のシート材の一方が C L C 用紙(81.4g)(キヤノン株式会社製)、他方が C L C 用 最厚口用紙(209g)(キヤノン株式会社製)であることを識別することができた。

[0060]

なお、このように2枚のシート材Sの種類を識別した後、このシート材識別装置が設けられた不図示の画像形成装置は、これら2枚のシート材のそれぞれに最適な画像形成を行うための設定条件、例えばトナーの定着温度等にしたがって画像形成を行う。

[0061]

なお、このような構成のシート材識別装置は、画像形成装置や画像読取装置の 他、現金自動預出金機、紙幣などの印刷物を区分処理する印刷物処理装置、券売

機などの物品自動販売機、プリペイドカードなどの各種カードを処理するカード 処理装置などのシート材処理装置に搭載することができる。

[0062]

【発明の効果】

以上説明したように本発明によれば、含水率が所定範囲になるように調整されたシート材の所定領域に外力を印加し、この後、シートを介して伝わる外力を検知し、この検知した外力に基づいてシート材を識別することにより、装置内の湿度ではなく、シート材自体の含水率を直接把握できるようにする。これにより、含水率依存性をも加味したシート材の識別が可能となり、シート材の識別を正確に行うことができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態に係るシート材識別装置の構成を示す図。

【図2】

上記シート材識別装置のシート材識別動作を説明するフローチャート。

【図3】

本実施の形態に係るシート材識別装置の第1実施例に係るシート材識別装置の 構成を示す図。

【図4】

本実施の形態に係るシート材識別装置の第2実施例に係るシート材識別装置の 構成を示す図。

【符号の説明】

- 制御部
 含水率検出センサ
 含水率調節部
 衝撃材
- 5 検知センサ
- 6 メモリ部
- 7 衝擊制御部

8	信亏快四/处理部
1 0	衝撃材
1 1	含水率検出センサ
1 2	電熱線
1 3	ファン
1 4	信号検出/処理部
1 5	メモリ部
1 6	制御部
1 8	圧力センサ
2 0	電熱線
2 1	ファン
2 6	圧力センサ
2 8	衝撃材
2 9	含水率検出センサ
3 0	信号検出/処理部
3 1	メモリ部
3 2	制御部
S	シート材

【書類名】

図面

【図1】

【図2】

【図3】

要約書

【要約】

【課題】 シート材の種類の識別を正確に行うことのできるシート材識別装置及びシート材処理装置及びシート材識別方法を提供する。

【解決手段】 シート材Sの所定領域に対して含水率調節部3により除湿あるいは加湿を行って所定領域の含水率を調整すると共に、含水率が調整されたシート材Sの所定領域に、外力印加手段4により外力を印加する。そして、外力印加手段4によって外力が印加された状態で、シートSを介して伝わる外力を検知手段5により検知し、検知手段5により検知した外力に基づいてシート材Sの種類を識別するようにする。

【選択図】 図1

特願2003-168343

出願人履歴情報

識別番号

[000104652]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

发更理田」 住 所

埼玉県秩父市大字下影森1248番地

氏名

キヤノン電子株式会社

特願2003-168343

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked.

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.