Egzamin 2014, t1 + rozwiązania

ZAD 1

Dla zadania:

$$\min F(x_1, x_2) = \min \{ 2x_1^3 - 3x_1^2 - 6x_1x_2(x_1 - x_2 - 2) \}$$
$$(x_1, x_2) \in \mathbb{R}^2$$

a)znaleźć punkty spełniające warunki	2 pkt
konieczne optymalności,	
b) na podstawie warunków	1 pkt
wystarczających, określić charakter	
tych punktów, tzn. że jest to	
minimum, maksimum lub punkt	
siodłowy.	
sidulowy.	

ZAD 2

Dla zadania

$$\min(-x_1 - x_2)$$

$$x_1 + x_2^2 - 5 \le 0$$

$$x_1 - 2 \le 0$$

$$(x_1, x_2) \in \mathbb{R}^2$$

a) Podać warunki konieczne	2 pkt
optymalności i znaleźć punkty, które je	
spełniają. Który z tych punktów jest	
rozwiązaniem?	
a) Pokazać, że w tym punkcie są	1 pkt
spełnione warunki regularności.	

b) $\frac{\partial h_1}{\partial x} = \begin{bmatrix} 1 & 2x_2 \end{bmatrix}^T$; $\frac{\partial h_2}{\partial x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, $x \in \mathbb{R}^2$, w obu pkt. stacjonarnych są liniowo niezależne

ZAD 3

Metoda kierunków sprzężonych zastosowana dla znalezienia minimum funkcji:

$$F(x) = \frac{1}{2} \cdot x^{T} A x + b^{T} x + c$$
$$A > 0, x \in \mathbb{R}^{3}$$

zakończy poszukiwania w co najwyżej *n* krokach. Podać *n* i uzasadnić.

1 pkt.

Co najwyżej 3 krokach.

Tw. 5.2:

Jeżeli $u^1, u^2, ..., u^n$ są kierunkami wzajemnie sprzężonymi względem ściśle dodatnio określonej macierzy A, to minimum formy kwadratowej:

$$F(x) = \frac{1}{2} \cdot x^T A x + b^T x + c$$

może być wyznaczone w skończonej liczbie kroków, w wyniku jednokrotnej minimalizacji wzdłuż każdego z kierunków sprzężonych.

ZAD 4

$$\min F(x)$$

$$x \in X_0$$

$$X_0 = \{x : h_i(x) \le 0, i = 1..m\}, x \in \mathbb{R}^n$$

t odstęp dualności? 1 pkt	a) Co to jest of
	równy zero
ro? Zacytuj nie twierdzenie.	•

•••••

Tw 8. 3: Funkcja dualna spełnia warunek

$$L_D(\lambda) \le F(x)$$
 dla $\forall x \in X$ i $\lambda \in D$

tzn. funkcja dualna jest dolnym oszacowaniem funkcji celu we wszystkich punktach dopuszczalnych zadania pierwotnego i dualnego.

Jeśli w punkcie rozwiązania optymalnego jest $L_D(\hat{\lambda}) < F(\hat{x})$ to mamy do czynienia z tzw. odstępem dualności $(F(\hat{x}) - L_D(\hat{\lambda}))$.

Tw.8. 4: (silne twierdzenie o dualności)

Para $(x, \hat{\lambda})$ jest punktem siodłowym funkcji Lagrange'a związanej z zadaniem (8.1) wtedy i tylko wtedy gdy:

- 1^{0} . \hat{x} rozwiązuje problem pierwotny,
- 2^{0} . $\hat{\lambda}$ rozwiązuje problem dualny,

$$3^0. F(x) = L_D(\hat{\lambda}).$$