On dit qu'une poutre travaille en extension simple (ou en compression simple) quand elle est soumise à deux forces axiales directement opposées, appliquées au centre de surface des sections extrêmes qui tendent à l'allonger (ou à la raccourcir).

Contrainte Normale

$$\sigma = \frac{N}{S}$$

en MPa dans la section droite S

 $N/mm^2 = MPa$

Condition de Résistance

$$\sigma = \frac{F}{S} \leq R_{pe}$$

Propriété mécanique du matériau

Courbe contraintes/déformations

Le point A est la limite d'élasticité apparente

De A à C: une déformation permanente homogène appelée aussi déformation plastique répartie.

Le point C correspond à la charge maximale et correspond à la résistance mécanique du matériau.

De C à D: la déformation plastique se localise dans une portion de l'éprouvette et n'est plus homogène, c'est la striction et on aboutit à la rupture en D.

Déformation

Allongement relatif

$$\varepsilon = \frac{L - L_0}{L_0}$$

$$\varepsilon = \frac{\Delta L}{L_0}$$

 ΔL : allongement de la poutre

 L_0 : longueur avant déformation

L: longueur après déformation

Déformation

Allongement relatif

$$\varepsilon = \frac{\Delta L}{L_0}$$

Loi de Hook

$$\sigma = E * \varepsilon$$

E : Module d'élasticité longitudinale en N/mm^2

Module de Young

Déformation

Contraction des dimensions transversales

$$\varepsilon_d = \frac{d_f - d_0}{d_0}$$

Coefficient de poisson

$$v = -\frac{\varepsilon_d}{\varepsilon}$$

v : Coefficient de Poisson

Déformation

 $oldsymbol{L_u}$: la longueur ultime, longueur de la barre juste avant la rupture

Condition de Résistance

$$\sigma = \frac{F}{S} \le R_{pe}$$

$$R_{pe} = \frac{R_e}{s}$$

1,5 à 2	Hypothèses de charges surévaluées
2 à 3	Hypothèses de calcul la plus défavorable (charpente avec vent ou neige)
3 à 4	Bonne construction, calcul soignés
4 à 5	Construction courante (légers efforts dynamiques non pris en compte)
5à8	Calcul sommaires, efforts difficiles à évaluer (cas de chocs, mouvements

Condition de Résistance

$$\sigma = \frac{F}{S} \le R_{pe}$$

$$R_{pe} = \frac{R_e}{s}$$

Condition de rigidité

$$\sigma = E * \varepsilon \qquad \varepsilon = \frac{\Delta L}{L_0}$$

$$\sigma = E * \frac{\Delta L}{L_0} = \frac{F}{S}$$

$$\Delta L = \frac{F. Lo}{E. S}$$

Tableau des propriétés mécaniques des matériaux usuels

Matière	Nuance	Re (Mpa)	E (Mpa)	v
Acier non allié	S235 à S355	236 à 356	210 000	0,27-0,30
Acier au carbone trempé	30CrNiMo16(30CND8)	700 à 1450	210 000	0,33
Acier inoxydable	X2CrNiMoN	500	203 000	0,30-0,31
Fonte à graphite	FGL200	200	80 000	0,21-0,26
Fonte à graphite sphéroïdal	FGS600.3	370	170 000	0,275
Alliage Aluminium	sèrie1000 à 7000	90 à 440	69 000	0,345
contrainte $\sigma = \frac{F}{S}$	250	122 500	0,32.5.6	
R _r C	390	100 000	0,34	
R _r		2500	80 000	
R _e	rupture	3200	181 000	(1)0,28 et (2)0,42
pente de	i i	28	2 450	
la droite OA E= tan Y		11	400	0,46
Ψ	į	35	2 450	0,5
0		69	124 000	0,33
	350	120 000	0,37	

RÉSUMÉ:

$$\sigma = \frac{N}{S}$$

Allongement relatif

$$\varepsilon = \frac{\Delta L}{L_0}$$

Condition de résistance $\sigma \leq R_{ps}$ R_{ps} :

$$\sigma \leq R_{pe}$$

$$R_{ps} = \frac{R_s}{S}$$

Loi de Hook

$$\sigma = E * \varepsilon$$

Condition de rigidité
$$\Delta l = \frac{N \cdot l}{E \cdot S} \le \Delta l_{lim}$$