Objetivos de aprendizaje Tema 5

Análisis Matemático II

Javier Gómez López

9 de mayo de 2022

- 1. Conocer y comprender las siguientes definiciones:
 - a) Función real medible y función medible positiva

Dado un espacio topológico Y, diremos que $f: \Omega \to Y$ es una **función medible**, cuando la imagen inversa por f de todo subconjunto abierto de Y, sea un conjunto medible, es decir:

$$G = G^{\circ} \subset Y \Rightarrow f^{-1}(G) \in \mathcal{M}$$

Denotaremos por $\mathcal{L}(\Omega)$ al conjunto de todas las funciones medibles de Ω en \mathbb{R} , a las que llamaremos **funciones reales medibles**. Sin embargo, las propiedades fundamentales de la integral adoptan una forma mucho más sencilla y elegante, si permitimos que dichas funciones tomen el valor ∞ . Por ello, considerando $[0,\infty]$ la topología usual estudiada en su momento, vamos a trabajar con funciones medibles de Ω en $[0,\infty]$, a las que llamaremos **funciones medibles positivas**. Denotaremos por $\mathcal{L}^+(\Omega)$ al conjunto de tales funciones.

b) Función simple positiva

Partimos de las funciones que sólo toman los valores 0 y 1. Concretamente, denotamos por $\chi_B : \mathbb{R}^N \to \{0,1\}$ a la **función característica** de un conjunto $B \subset \mathbb{R}^N$, definida por

$$\chi_B(x) = 1 \quad \forall x \in B \qquad y \qquad \chi_B(x) = 0 \quad \forall x \in \mathbb{R}^N \setminus B$$

A partir de las funciones características de conjuntos medibles, podemos ahora construir fácilmente nuevas funciones medibles positivas.

Llamaremos función simple positiva a toda combinación lineal de funciones características de conjuntos medibles, cuyos coeficientes sean número reales no negativos, es decir, a toda función de la forma

$$s = \sum_{i=1}^{m} \rho_i \chi_{c_i}$$
 donde $m \in \mathbb{N}$, $\rho_1, \dots, \rho_m \in \mathbb{R}_0^+$ y $C_1, \dots, C_m \in \mathcal{M}$

- 2. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Estabilidad de las funciones reales medibles por operaciones algebraicas y operaciones relacionadas con el orden entre funciones

1

Empecemos recordando que el conjunto $\mathcal{F}(\Omega)$, de todas las funciones de Ω en \mathbb{R} , es un anillo conmutativo, y también un espacio vectorial sobre \mathbb{R} , con las operaciones

definidas de la manera natural. Concretamente, para cualesquiera $f, g \in \mathcal{F}(\Omega), \alpha \in \mathbb{R}$ y $x \in \Omega$, se tiene

$$(f+g)(x) = f(x) + g(x), \qquad (fg)(x) = f(x)g(x), \qquad (\alpha f)(x) = \alpha f(x)$$

De aquí, extraemos el siguiente resultado:

■ La suma y el producto de funciones reales medibles también son funciones medibles.

Veamos ahora la estabilidad por operaciones que tienen que ver con la relación de orden natural entre funciones. Concretamente, para $f, g \in \mathcal{F}(\Omega)$ se define

$$f \le g \Leftrightarrow f(x) \le g(x) \qquad \forall x \in \Omega$$

y es obvio que así se obtiene una relación de orden en $\mathcal{F}(\Omega)$. A cada función $f \in \mathcal{F}(\Omega)$ podemos asociar la función |f|, valor absoluto de f, dada por

$$|f|(x) = |f(x)| = \max\{f(x), -f(x)\}$$
 $\forall x \in \Omega$

y es claro que, en el conjunto ordenado $\mathcal{F}(\Omega)$, se tiene $|f| = \sup\{f, -f\}$. Nótese que el conjunto $\{f, -f\}$ puede no tener máximo. Definimos ahora dos funciones $f^+, f^-: \Omega \to \mathbb{R}^+$ escribiendo, para todo $x \in \Omega$,

$$f^+(x) = \max\{f(x), 0\}$$
 y $f^-(x) = \max\{-f(x), 0\}$

de forma que $f^+ = \sup\{f, 0\}$ y $f^- = \sup\{-f, 0\}$. Se dice que f^+ es la **parte positiva** de f, mientras que f^- es la **parte negativa** de f. Pues bien, veamos el siguiente resultado:

- El valor absoluto, la parte positiva y la parte negativa de una función real medible, son también funciones medibles.
- b) Estabilidad de las funciones medibles positivas por operaciones analíticas: supremo e ínfimo, límite superior e inferior, y límite puntual

Veamos una útil caracterización de las funciones medibles positivas:

- Para una función $f: \Omega \to [0, \infty]$, las siguientes afirmaciones son equivalentes:
 - (i) f es medible
 - (ii) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) < \alpha\}$ es medible
- (iii) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \geq \alpha\}$ es medible
- (iv) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) > \alpha\}$ es medible
- (v) Para todo $\alpha \in \mathbb{R}^+$, el conjunto $\{x \in \Omega : f(x) \leq \alpha\}$ es medible

De aquí extraemos el siguiente resultado:

• $\{f_n\}$ es una sucesión de funciones medibles positivas, también son medibles las cuatro funciones definidas como sigue:

$$g = \sup\{f_n : n \in \mathbb{N}\}, \qquad g(x) = \sup\{f_n(x) : n \in \mathbb{N}\} \qquad \forall x \in \Omega$$

$$h = \inf\{f_n : n \in \mathbb{N}\}, \qquad h(x) = \inf\{f_n(x) : n \in \mathbb{N}\} \qquad \forall x \in \Omega$$

$$\varphi = \limsup_{n \to \infty} f_n, \qquad \varphi(x) = \limsup_{n \to \infty} f_n(x) \qquad \forall x \in \Omega$$

$$\Psi = \liminf_{n \to \infty} f_n, \qquad \Psi(x) = \liminf_{n \to \infty} f_n(x) \qquad \forall x \in \Omega$$

En particular, cuando $\{f_n\}$ converge puntualmente en Ω a una función $f:\Omega \to [0,\infty]$, se tiene que f es medible.

3. Conocer y comprender la demostración del teorema de aproximación de Lebesgue, incluyendo el caso de aproximación uniforme.

Teorema (Aproximación de Lebesgue). Toda función medible positiva es el límite puntual en Ω de una sucesión creciente de funciones simples positivas.

Demostración. Si $f:\Omega\to [0,\infty]$ es medible, para $n,k\in\mathbb{N}$ con $1\leq k\leq n2^n$ definimos

$$F_n = \{ x \in \Omega : f(x) \ge n \}$$
 y $E_{n,k} = \left\{ x \in \Omega : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}$

y vemos claramente que, tanto F_n como $E_{n,k}$ son conjuntos medibles. Definimos ahora

$$s_n = n\chi_{F_n} + \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{E_{n,k}} \qquad \forall n \in \mathbb{N}$$
 (1)

Evidentemente, $\{s_n\}$ es una sucesión de funciones simples positivas, y la demostración se concluirá probando que $\{s_n\} \nearrow f$. Se tiene $s_n(x) = 0$ para cualesquiera $x \in \mathbb{R}^N \setminus \Omega$ y $n \in \mathbb{N}$, pero sólo nos interesa lo que ocurre en Ω . Para que se comprenda mejor el razonamiento, conviene hacer una sencilla observación acerca de la igualdad (1). Fijado $n \in \mathbb{N}$, tenemos

$$[0,\infty] = [n,\infty] \biguplus \left(\biguplus_{k=1}^{n2^n} \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] \right), \quad \text{luego} \quad \Omega = F_n \biguplus \left(\biguplus_{k=1}^{n2^n} E_{n,k} \right)$$

Por tanto, dado $x \in \Omega$, al usar (1) para calcular $s_n(x)$, aparece a lo sumo un sumando no nulo. Así pues, si $x \in F_n$ tendremos $s_n(x) = n$, y en otro caso existe un único $k \in \{1, 2, ..., n2^n\}$ tal que $x \in E_{n,k}$, con lo que $s_n(x) = (k-1)2^{-n}$.

Fijados $x \in \Omega$ y $n \in \mathbb{N}$, para comprobar que $s_n(x) \leq s_{n+1}(x)$, cabe distinguir tres casos, dependiendo del valor de f(x). Empezamos por el más sencillo:

$$n+1 \le f(x) \Rightarrow x \in F_{n+1} \subset F_n \Rightarrow s_n(x) = n < n+1 = s_{n+1}(x)$$

Si $n \le f(x) < n+1$, existe un único $k \in \mathbb{N}$, con $1 \le k \le (n+1)2^{n+1}$, tal que $x \in E_{n+1,k}$. Entonces $k > 2^{n+1}f(x) \ge 2^{n+1}$, luego $k-1 \ge 2^{n+1}n$, y deducimos que

$$s_n(x) = n \le \frac{k-1}{2^{n+1}} = s_{n+1}(x)$$

Supongamos por último que f(x) < n y sea $k \in \mathbb{N}$, con $1 \le k \le n2^n$, tal que $x \in E_{n,k}$. Entonces $2k - 2 \le 2^{n+1} f(x) < 2k$, es decir, $j - 1 \le 2^{n+1} f(x) < j + 1$, donde j = 2k - 1 verifica que $1 \le j \le n2^{n+1} - 1 < (n+1)2^{n+1}$, con lo que caben dos posibilidades:

$$j-1 \le 2^{n+1} f(x) < j \Longrightarrow s_n(x) = \frac{k-1}{2^n} = \frac{j-1}{2^{n+1}} = s_{n+1}(x)$$

$$j \le 2^{n+1} f(x) < j+1 \Longrightarrow s_n(x) = \frac{k-1}{2^n} < \frac{j}{2^{n+1}} = s_{n+1}(x)$$

Comprobado que $\{s_n\}$ es creciente, fijamos $x \in \Omega$ para ver que $\{s_n(x)\} \to f(x)$. Esto es evidente si $f(x) = \infty$, pues entonces $s_n(x) = n$ para todo $n \in \mathbb{N}$. En otro caso, para n > f(x) se tiene que $x \notin F_n$, luego $x \in E_{n,k}$ con $1 \le k \le n2^n$. Por tanto:

$$n \in \mathbb{N}, \quad n > f(x) \implies 0 \le f(x) - s_n(x) \le 1/2^n$$
 (2)

lo que claramente implica que $\{s_n(x)\} \to f(x)$.

En un caso particular importante, la demostración anterior contiene una información que merece ser destacada:

Teorema (Aproximación uniforme). Si f es una función medible positiva, verificando que sup $f(\Omega) < \infty$, entonces existe una sucesión creciente de funciones simples positivas que converge uniformemente a f en Ω .

Demostraci'on. Nótese que las funciones simples positivas nunca toman el valor ∞ , y por hipótesis se tiene $f(x) < \infty$ para todo $x \in \Omega$, luego tiene sentido decir que $\{s_n\}$ converge uniformemente a f en Ω . Definiendo $\{s_n\}$ como en (1), comprobaremos enseguida dicha convergencia uniforme. Basta para ello tomar $m \in \mathbb{N}$ tal que $m > \sup f(\Omega)$, con lo cual, para todo $n \in \mathbb{N}$ con $n \geq m$, vemos en (2) que

$$0 \le f(x) - s_n(x) \le 1/2^n \quad \forall x \in \Omega$$

y esto prueba que $\{s_n\}$ converge uniformemente a f en Ω .