Важно, что линейность по первому аргументу присутствует и в \mathbb{R} , и в \mathbb{C} , то есть $(\lambda x, y) \stackrel{\mathbb{R}, C}{=} \lambda(x, y)$ Однако:

- $(x, \lambda y) = \lambda(x, y)$ в \mathbb{R}
- $(x, \lambda y) = \overline{\lambda}(x, y) \in C$

Def. 1. Оператор \mathcal{A}^* называется сопряженным для $\mathcal{A}: V \to V$, если $(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$

Def. 2. \mathcal{A}^* сопряженный для \mathcal{A} , если $A^* = A^T$ в любом ортонормированном базисе

Def. 1. \iff Def. 2.

$$(\mathcal{A}X, y) \stackrel{\text{на языке матриц}}{=\!=\!=\!=} (AX, Y) = (AX)^T \cdot Y = X^T \cdot A^T \cdot Y$$

$$(x, \mathcal{A}^* y) = X^T \cdot (A^* Y) = (X^T A^*) \cdot Y = X^T \cdot A^T \cdot Y \Longrightarrow A^* = A^T$$

<u>Lab.</u> Очевидно существование \mathcal{A}^* для всякого \mathcal{A} (определяется в ортонормированном базисе действием \mathcal{A}^T). Доказать единственность \mathcal{A}^* рассмотреть от противного $(x, \mathcal{A}_1^* y) \neq (x, \mathcal{A}_2^* y)$ Свойства:

- 1. $I = I^* \quad \Box(Ix, y) = (x, y) = (x, Iy) \quad \Box$
- 2. $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$
- 3. $(\lambda \mathcal{A})^* = \lambda \mathcal{A}^*$
- 4. $(\mathcal{A}^*)^* = \mathcal{A}$
- 5. $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$ (св-во транспонирования матриц) или $((\mathcal{AB})x, y) = (\mathcal{A}(\mathcal{B}x), y) = (\mathcal{B}x, \mathcal{A}^*y) = (x, \mathcal{B}^*\mathcal{A}^*y)$
- 6. \mathcal{A}^* линейный оператор ($\mathcal{A}x = x', \mathcal{A}y = y' \Longrightarrow \mathcal{A}(\lambda x + \mu y) = \lambda x' + \mu y'$) Можно использовать линейные свойства умножения матриц $A^*(\lambda X + \mu Y) = \lambda \mathcal{A}^*X + \mu \mathcal{A}^*Y$

2* Самосопряженный оператор

Def. \mathcal{A} называется самосопряженным, если $\mathcal{A} = \mathcal{A}^*$

Следствие: $A^T = A \Longrightarrow$ матрица A симметричная

Свойства самосопряженных операторов:

1. $\mathcal{A} = \mathcal{A}^*$, $\lambda : \mathcal{A}x = \lambda x (x \neq 0)$. Тогда, $\lambda \in \mathbb{R}$

$$(\mathcal{A}x, y) = (\lambda x, y) = \lambda(x, y) \quad (x, \mathcal{A}^*y) = (x, \mathcal{A}y) = (x, \lambda y) \stackrel{\text{B}}{=} \overline{\lambda}(x, y)$$
$$(\mathcal{A}x, y) = (x, \mathcal{A}y) \Longrightarrow \lambda(x, y) = \overline{\lambda}(x, y) \Longrightarrow \lambda = \overline{\lambda} \Longrightarrow \lambda \in \mathbb{R}$$

2. $\mathcal{A} = \mathcal{A}^*$, $\mathcal{A}x_1 = \lambda_1 x_1$, $\mathcal{A}x_2 = \lambda_2 x_2$ и $\lambda_1 \neq \lambda_2$. Тогда $x_1 \perp x_2$

Хотим доказать, что $(x_1,x_2)=0$, при том, что $x_{1,2}\neq 0$ $\lambda_1(x_1,x_2)=(\lambda_1x_1,x_2)=(\mathcal{A}x_1,x_2)=(x_1,\mathcal{A}x_2)=(x_1,\lambda_2x_2)=(x_1,\lambda_2x_2)=(x_1,x_2)\lambda_2$ Так как $\lambda_1\neq\lambda_2$, то $(\lambda_1-\lambda_2)(x_1,x_2)=0\Longrightarrow (x_1,x_2)=0$

Th. Лемма. $\mathcal{A} = \mathcal{A}^*$, e - собственный вектор ($l_{\{e\}}$ - линейная оболочка e - инвариантное подпространство для \mathcal{A})

 $V_1 = \{x \in V \mid x \perp e\}$

Тогда V_1 - инвариантное для $\mathcal A$

Нужно доказать, что $\forall x \in V_1$ $\mathcal{A}x \in V_1$ и так как $x \in V_1 \mid x \perp e$, то покажем, что $\mathcal{A}x \perp e$ $(\mathcal{A}x, e) = (x, \mathcal{A}e) = (x, \lambda e) = \lambda(x, e) \stackrel{x \perp e}{=} 0$

Th. $\mathcal{A}=\mathcal{A}^*$ $(\mathcal{A}:V^n\to V^n)$, тогда $\exists e_1,\dots,e_n$ - набор собственных векторов \mathcal{A} и $\{e_i\}$ - ортонормированный базис

Другими словами: \mathcal{A} - диагонализируем

Наводящие соображения:

$$Ex. \ 1. \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

 $Ix = x = 1 \cdot x$, $\lambda_{1,2,3} = 1$

Здесь $U_{\lambda_{1,2,3}}=V^3,\ \{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ - базис из собственных векторов, ортонормированный

$$Ex. \ 2. \ A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O$$

Ox = 0, $\lambda_{1,2,3} = 0$

И здесь $U_{\lambda_{1,2,3}} = V^3$, так как $0 \in U_{\lambda}$ и $\forall x \ Ox = 0 \in U_{\lambda}$

Ex.~3.~Поворот \mathbb{R}^2 на $\frac{\pi}{4}$

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{vmatrix} \frac{1}{\sqrt{2}} - \lambda & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} - \lambda \end{vmatrix} = \left(\frac{1}{\sqrt{2}} - \lambda\right)^2 + \frac{1}{2} = 0$$
 - вещественных корней нет