OSEMN-Obtain

The data process is possible thanks to both open power systems data, a free to access database on renewable energy, and the National Aeronautics and Space Administration, which has kept detailed weather data for the past several decades.

Comparing energy production and weather data, both individually and separately, we took a look at any patterns present, what they could mean, and how we can use them to an advantage, which becomes much more feasible when comparing the two datasets across from each other. We will be comparing these two datasets across three separate countries to find any distinct advantages or disadvantages those countries may hold: Germany, Italy, and France.

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
In [2]: weather = pd.read_csv("weather_data.csv")
```

In [3]: weather.head()

Out[3]:

	utc_timestamp	AT_temperature	AT_radiation_direct_horizontal	AT_radiation_diffuse_horizontal	BE_
0	1980-01- 01T00:00:00Z	-3.640	0.0	0.0	
1	1980-01- 01T01:00:00Z	-3.803	0.0	0.0	
2	1980-01- 01T02:00:00Z	-3.969	0.0	0.0	
3	1980-01- 01T03:00:00Z	-4.076	0.0	0.0	
4	1980-01- 01T04:00:00Z	-4.248	0.0	0.0	

5 rows × 85 columns

In [4]: | weather.tail()

Out[4]:

	utc_timestamp	AT_temperature	AT_radiation_direct_horizontal	AT_radiation_diffuse_horizonta
350635	2019-12- 31T19:00:00Z	-1.386	0.0	0.0
350636	2019-12- 31T20:00:00Z	-1.661	0.0	0.0
350637	2019-12- 31T21:00:00Z	-1.986	0.0	0.0
350638	2019-12- 31T22:00:00Z	-2.184	0.0	0.0
350639	2019-12- 31T23:00:00Z	-2.271	0.0	0.0

5 rows × 85 columns

In [5]: weather.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 350640 entries, 0 to 350639
Data columns (total 85 columns):

	columns (total 85 columns):		
#	Column	Non-Null Count	Dtype
0	utc_timestamp	350640 non-null	object
1	AT_temperature	350640 non-null	float64
2	AT_radiation_direct_horizontal	350640 non-null	float64
3	AT_radiation_diffuse_horizontal	350640 non-null	float64
4	BE_temperature	350640 non-null	float64
5	BE radiation direct horizontal	350640 non-null	float64
6	BE radiation diffuse horizontal	350640 non-null	float64
7	BG temperature	350640 non-null	float64
8	BG radiation direct horizontal	350640 non-null	float64
9	BG_radiation_diffuse_horizontal	350640 non-null	float64
10	CH temperature	350640 non-null	float64
11	CH radiation direct horizontal	350640 non-null	float64
12	CH_radiation_diffuse_horizontal	350640 non-null	float64
13	CZ temperature	350640 non-null	float64
14	CZ radiation direct horizontal	350640 non-null	float64
15	CZ radiation diffuse horizontal	350640 non-null	float64
16	DE temperature	350640 non-null	float64
17	DE radiation direct horizontal	350640 non-null	float64
18	DE radiation diffuse horizontal	350640 non-null	float64
19	DK temperature	350640 non-null	float64
20	DK_radiation_direct_horizontal	350640 non-null	float64
21	DK radiation diffuse horizontal	350640 non-null	float64
22	EE temperature	350640 non-null	float64
23	_ -	350640 non-null	float64
	<pre>EE_radiation_direct_horizontal EE radiation diffuse horizontal</pre>	350640 non-null	float64
24			
25	ES_temperature	350640 non-null	float64
26	ES_radiation_direct_horizontal	350640 non-null	float64
27	ES_radiation_diffuse_horizontal	350640 non-null	float64
28	FI_temperature	350640 non-null	float64
29	FI_radiation_direct_horizontal	350640 non-null	float64
30	FI_radiation_diffuse_horizontal	350640 non-null	float64
31	FR_temperature	350640 non-null	float64
32	FR_radiation_direct_horizontal	350640 non-null	float64
33	FR_radiation_diffuse_horizontal	350640 non-null	float64
34	GB_temperature	350640 non-null	float64
35	GB_radiation_direct_horizontal	350640 non-null	float64
36	GB_radiation_diffuse_horizontal	350640 non-null	float64
37	GR_temperature	350640 non-null	float64
38	GR_radiation_direct_horizontal	350640 non-null	float64
39	<pre>GR_radiation_diffuse_horizontal</pre>	350640 non-null	float64
40	HR_temperature	350640 non-null	float64
41	<pre>HR_radiation_direct_horizontal</pre>	350640 non-null	float64
42	<pre>HR_radiation_diffuse_horizontal</pre>	350640 non-null	float64
43	HU_temperature	350640 non-null	float64
44	<pre>HU_radiation_direct_horizontal</pre>	350640 non-null	float64
45	<pre>HU_radiation_diffuse_horizontal</pre>	350640 non-null	float64
46	<pre>IE_temperature</pre>	350640 non-null	float64
47	<pre>IE_radiation_direct_horizontal</pre>	350640 non-null	float64
48	<pre>IE_radiation_diffuse_horizontal</pre>	350640 non-null	float64
49	IT_temperature	350640 non-null	float64

```
IT radiation direct horizontal
 50
                                       350640 non-null
                                                        float64
 51
     IT radiation diffuse horizontal
                                       350640 non-null
                                                        float64
52
    LT temperature
                                       350640 non-null
                                                        float64
    LT radiation direct horizontal
53
                                       350640 non-null
                                                        float64
 54
    LT radiation diffuse horizontal
                                                        float64
                                       350640 non-null
 55
    LU_temperature
                                       350640 non-null
                                                        float64
    LU radiation direct horizontal
 56
                                       350640 non-null
                                                        float64
 57
    LU radiation diffuse horizontal
                                       350640 non-null
                                                        float64
 58
    LV temperature
                                       350640 non-null
                                                        float64
59
    LV radiation direct horizontal
                                       350640 non-null
                                                        float64
    LV radiation diffuse horizontal
60
                                       350640 non-null
                                                        float64
 61
    NL temperature
                                       350640 non-null
                                                        float64
    NL radiation direct horizontal
 62
                                       350640 non-null
                                                        float64
 63
    NL radiation diffuse horizontal
                                       350640 non-null
                                                        float64
 64
    NO temperature
                                       350640 non-null
                                                        float64
    NO_radiation_direct_horizontal
 65
                                       350640 non-null
                                                        float64
    NO radiation diffuse horizontal
 66
                                       350640 non-null
                                                        float64
 67
    PL_temperature
                                       350640 non-null
                                                        float64
    PL_radiation_direct_horizontal
 68
                                       350640 non-null
                                                        float64
 69
    PL radiation diffuse horizontal
                                       350640 non-null
                                                        float64
     PT temperature
 70
                                       350640 non-null
                                                        float64
71
    PT_radiation_direct_horizontal
                                       350640 non-null
                                                        float64
 72
    PT radiation diffuse horizontal
                                       350640 non-null
                                                        float64
 73
    RO temperature
                                       350640 non-null
                                                        float64
 74
    RO_radiation_direct_horizontal
                                       350640 non-null
                                                        float64
    RO radiation diffuse horizontal
 75
                                       350640 non-null
                                                        float64
76
     SE temperature
                                       350640 non-null
                                                        float64
 77
     SE radiation direct horizontal
                                       350640 non-null
                                                        float64
 78
    SE radiation diffuse horizontal
                                       350640 non-null
                                                        float64
 79
                                       350640 non-null
                                                        float64
    SI temperature
     SI_radiation_direct_horizontal
 80
                                       350640 non-null
                                                        float64
    SI radiation diffuse horizontal
                                       350640 non-null
                                                        float64
82
    SK temperature
                                       350640 non-null
                                                        float64
83
     SK radiation direct horizontal
                                       350640 non-null
                                                        float64
     SK radiation diffuse horizontal
                                       350640 non-null
                                                        float64
dtypes: float64(84), object(1)
memory usage: 227.4+ MB
```

```
In [6]: timeseries = pd.read_csv("time_series_60min_singleindex.csv")
```

```
In [7]: timeseries.head()
```

Out[7]:

	utc_timestamp	cet_cest_timestamp	AT_load_actual_entsoe_transparency	AT_load_forecast_entsoe_
0	2014-12- 31T23:00:00Z	2015-01- 01T00:00:00+0100	NaN	
1	2015-01- 01T00:00:00Z	2015-01- 01T01:00:00+0100	5946.0	
2	2015-01- 01T01:00:00Z	2015-01- 01T02:00:00+0100	5726.0	
3	2015-01- 01T02:00:00Z	2015-01- 01T03:00:00+0100	5347.0	
4	2015-01- 01T03:00:00Z	2015-01- 01T04:00:00+0100	5249.0	

5 rows × 300 columns

In [8]: timeseries.tail()

Out[8]:

	utc_timestamp	cet_cest_timestamp	AT_load_actual_entsoe_transparency	AT_load_forecast_en
50396	2020-09- 30T19:00:00Z	2020-09- 30T21:00:00+0200	6661.0	
50397	2020-09- 30T20:00:00Z	2020-09- 30T22:00:00+0200	6336.0	
50398	2020-09- 30T21:00:00Z	2020-09- 30T23:00:00+0200	5932.0	
50399	2020-09- 30T22:00:00Z	2020-10- 01T00:00:00+0200	5628.0	
50400	2020-09- 30T23:00:00Z	2020-10- 01T01:00:00+0200	5395.0	

5 rows × 300 columns

In [9]: timeseries.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50401 entries, 0 to 50400
```

Columns: 300 entries, utc_timestamp to UA_load_forecast_entsoe_transparen

су

dtypes: float64(298), object(2)

memory usage: 115.4+ MB

OSEMN-Scrub

Let's take a look at our columns, we can see that there are quite a few countries in there! While that's certainly useful, we can probably set them aside for now.

The data cleaning process will involve dropping irrelevant columns, then splitting and recombining data by country (from our three countries), for later analysis.

```
In [10]: for col in timeseries.columns:
    print(col)
```

```
utc timestamp
cet cest timestamp
AT load actual entsoe transparency
AT load forecast entsoe transparency
AT price day ahead
AT_solar_generation_actual
AT wind onshore generation actual
BE load actual entsoe transparency
BE load forecast entsoe transparency
BE_solar_generation_actual
BE wind generation actual
BE wind offshore generation actual
BE wind onshore generation actual
BG load actual entsoe transparency
BG load forecast entsoe transparency
BG_solar_generation_actual
BG wind onshore generation actual
CH_load_actual_entsoe_transparency
CH load forecast entsoe transparency
```

We'll be looking at three key countries, to explore differences across different locations, temperatures, and wind strength (the latter two should vary seasonally). The three chosen countries will be Germany, Italy, and France.

In [12]: Germany_RE.tail()

Out[12]:

DE_load_actual_entsoe_transparency DE_l	ad_forecast_entsoe_transparency	DE_solar
---	---------------------------------	----------

utc_timestamp		
2020-09-30 19:00:00+00:00	57559.0	56708.0
2020-09-30 20:00:00+00:00	54108.0	53270.0
2020-09-30 21:00:00+00:00	49845.0	49239.0
2020-09-30 22:00:00+00:00	46886.0	46620.0
2020-09-30 23:00:00+00:00	45461.0	44986.0

5 rows × 41 columns

In [13]: Italy_RE.tail()

Out[13]:

 $IT_load_actual_entsoe_transparency \quad IT_load_forecast_entsoe_transparency \quad IT_solar_ge$

utc_timestamp		
2020-09-30 19:00:00+00:00	35217.0	37048.0
2020-09-30 20:00:00+00:00	31537.0	33255.0
2020-09-30 21:00:00+00:00	28730.0	29573.0
2020-09-30 22:00:00+00:00	26269.0	26251.0
2020-09-30 23:00:00+00:00	NaN	NaN

5 rows × 52 columns

```
In [14]: France_RE.tail()
```

Out[14]:

FR_load_actual_entsoe_transparency FR_load_forecast_entsoe_transparency FR_solar_

utc_timestamp		
2020-09-30 19:00:00+00:00	48210.0	50050.0
2020-09-30 20:00:00+00:00	48210.0	48150.0
2020-09-30 21:00:00+00:00	48058.0	50600.0
2020-09-30 22:00:00+00:00	44869.0	45350.0
2020-09-30 23:00:00+00:00	NaN	NaN

Let's compare a specific year for our countries, they are all fairly close to each other, so we'll be sure to watch out for any variations in production patterns, rather than amouns.

```
In [15]: France_RE_2018 = France_RE.loc[France_RE.index.year == 2018, :]
    France_RE_2019 = France_RE.loc[France_RE.index.year == 2019, :]
    Italy_RE_2018 = Italy_RE.loc[Italy_RE.index.year == 2018, :]
    Italy_RE_2019 = Italy_RE.loc[Italy_RE.index.year == 2019, :]
    Germany_RE_2018 = Germany_RE.loc[Germany_RE.index.year == 2018, :]
    Germany_RE_2019 = Germany_RE.loc[Germany_RE.index.year == 2019, :]
```

In [16]: France_RE_2018.head()

Out[16]:

$\label{lem:fr_load_actual_entsoe_transparency} \ \ \mathsf{FR}_\mathsf{load}_\mathsf{forecast_entsoe}_\mathsf{transparency} \ \ \mathsf{FR}_\mathsf{solar}_\mathsf{forecast}$

utc_timestamp		
2018-01-01 00:00:00+00:00	56036.0	54300.0
2018-01-01 01:00:00+00:00	54494.0	53600.0
2018-01-01 02:00:00+00:00	51574.0	50000.0
2018-01-01 03:00:00+00:00	49370.0	47100.0
2018-01-01 04:00:00+00:00	49000.0	45850.0

OSEMN-Explore

Exploring the data, we can begin to see patterns that we can use to make some recommendations. We can see seasonal patterns in both the wind and solar production, which supports the idea that there are reliable predictors for renewable energy production.

```
In [17]: plt.plot(France_RE_2018.index, France_RE_2018['FR_wind_onshore_generation_a
    plt.title('FR Wind Generation 2018')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 12000)
```

```
Out[17]: (0.0, 12000.0)
```



```
In [18]: plt.plot(France_RE_2018.index, France_RE_2018['FR_solar_generation_actual']
    plt.title('Solar Output France 2018')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 10000)
```

Out[18]: (0.0, 10000.0)

Unsurprisingly, it looks like there is a dip in wind production during summer months, balanced out by more sunlight, which of course positively correlates with solar energy production. Let's see if there is a comparable drop/bump in the other countries we will be examining.

```
In [19]: plt.plot(Germany_RE_2018.index, Germany_RE_2018['DE_wind_generation_actual'
    plt.title('Germany Wind Generation 2018')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 50000)
```

```
Out[19]: (0.0, 50000.0)
```



```
In [20]: plt.plot(Germany_RE_2018.index, Germany_RE_2018['DE_solar_generation_actual
    plt.title('Solar Output Germany 2018')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 50000)
```

Out[20]: (0.0, 50000.0)

Very similar patterns, albeit with much higher production, which is also unsuprising considering Germany's extensive renewable energy laws.

Since we'll be comparing all three countries, let's check Italy out!

```
In [21]: plt.plot(Italy_RE_2018.index, Italy_RE_2018['IT_wind_onshore_generation_act
    plt.title('Italy Wind Generation 2017')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 8000)
```

Out[21]: (0.0, 8000.0)

Less Seasonal variation than our previous two countries, but this can be accounted for if we consider Italy's exposure to the Mediterranean Ocean as a pensinsula. While France and Germany are by no means land locked, they have less terriory bordering the ocean, which would increase seasonal efficacy for wind turbines.

Let's perform the same exploration for solar power, and see how it stacks up.

```
In [22]: plt.plot(Italy_RE_2018.index, Italy_RE_2018['IT_solar_generation_actual'],
    plt.title('Solar Output Italy 2018')
    plt.xlim(pd.Timestamp('2018-01-01'), pd.Timestamp('2019-01-01'))
    plt.ylim(0, 15000)
```

Out[22]: (0.0, 15000.0)

Much less variation across the board for Italy, probably due to comparable reasons as the wind variation. Both wind and solar energy production is aided due to its' proximity to the ocean, wind due to surface water's friction with the air, creating additional wind to power turbines, and solar due to the reflective properties of the ocean's surface, creating additional sunlight. Of course Italy is the southernmost of our three countries, and as such receives more sunlight year round.

This is a very promising and fascinating situation. Italy seems to have to best location for consistent energy output, yet still lags behind Germany in producion of both Solar and Wind energy. Additional funding could greatly impact their economy, and the comfort of living of its' citizens.

```
In [23]: Italy_production = Italy_RE_2018[['IT_wind_onshore_generation_actual', 'IT_
    Germany_production = Germany_RE_2018[['DE_wind_generation_actual', 'DE_sola
    France_production = France_RE_2018[['FR_wind_onshore_generation_actual', 'F
```

```
In [24]: Italy_production.head()
    France_production.head()
    Germany_production.head()
```

Out[24]:

DE_wind_generation_actual DE_solar_generation_actual

utc_timestamp		
2018-01-01 00:00:00+00:00	33105.0	0.0
2018-01-01 01:00:00+00:00	33868.0	0.0
2018-01-01 02:00:00+00:00	34778.0	0.0
2018-01-01 03:00:00+00:00	34741.0	0.0
2018-01-01 04:00:00+00:00	35345.0	0.0

In [25]: weather = weather.iloc[333120:]

In [26]: weather.tail()

Out[26]:

	utc_timestamp	AT_temperature	AT_radiation_direct_horizontal	AT_radiation_diffuse_horizonta
350635	2019-12- 31T19:00:00Z	-1.386	0.0	0.0
350636	2019-12- 31T20:00:00Z	-1.661	0.0	0.C
350637	2019-12- 31T21:00:00Z	-1.986	0.0	0.C
350638	2019-12- 31T22:00:00Z	-2.184	0.0	0.0
350639	2019-12- 31T23:00:00Z	-2.271	0.0	0.0

5 rows × 85 columns

Our weather data goes quite a bit further back than necessary, let's limit our rows by dropping any outside of the year 2018. Doing some math, we can see that the rows are seperated by the hour, and with 365 days in a year (2018 was not a leap year) we can calculate exactly where our cutoff needs to be.

In [27]: weather = weather.iloc[:-8760]

In [28]: weather.tail()

Out[28]:

	utc_timestamp	AT_temperature	AT_radiation_direct_horizontal	AT_radiation_diffuse_horizonta
341875	2018-12- 31T19:00:00Z	-1.205	0.0	0.0
341876	2018-12- 31T20:00:00Z	-1.408	0.0	0.0
341877	2018-12- 31T21:00:00Z	-1.614	0.0	0.0
341878	2018-12- 31T22:00:00Z	-1.688	0.0	0.0
341879	2018-12- 31T23:00:00Z	-1.666	0.0	0.0

5 rows × 85 columns

In [29]: weather.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8760 entries, 333120 to 341879
Data columns (total 85 columns):

Dala	COTUMINS (COCAT 65 COTUMINS):			
#	Column	Non-l	Null Count	Dtype
0	utc_timestamp	8760	non-null	object
1	AT_temperature	8760	non-null	float64
2	AT_radiation_direct_horizontal	8760	non-null	float64
3	AT_radiation_diffuse_horizontal	8760	non-null	float64
4	BE_temperature	8760	non-null	float64
5	BE_radiation_direct_horizontal	8760	non-null	float64
6	BE_radiation_diffuse_horizontal	8760	non-null	float64
7	BG_temperature	8760	non-null	float64
8	BG_radiation_direct_horizontal	8760	non-null	float64
9	BG_radiation_diffuse_horizontal	8760	non-null	float64
10	CH_temperature	8760	non-null	float64
11	<pre>CH_radiation_direct_horizontal</pre>	8760	non-null	float64
12	CH_radiation_diffuse_horizontal	8760	non-null	float64
13	CZ_temperature	8760	non-null	float64
14	CZ_radiation_direct_horizontal	8760	non-null	float64
15	CZ_radiation_diffuse_horizontal	8760	non-null	float64
16	DE temperature	8760	non-null	float64
17	DE radiation direct horizontal	8760	non-null	float64
18	DE radiation diffuse horizontal	8760	non-null	float64
19	DK temperature	8760	non-null	float64
20	DK radiation direct horizontal	8760	non-null	float64
21	DK radiation diffuse horizontal	8760	non-null	float64
22	EE temperature	8760	non-null	float64
23	EE radiation direct horizontal	8760	non-null	float64
24	EE radiation diffuse horizontal	8760	non-null	float64
25	ES temperature		non-null	float64
26	ES radiation direct horizontal		non-null	float64
27	ES radiation diffuse horizontal		non-null	float64
28	FI temperature		non-null	float64
29	FI radiation direct horizontal	8760	non-null	float64
30	FI radiation diffuse horizontal		non-null	float64
31	FR temperature		non-null	float64
32	FR radiation direct horizontal		non-null	float64
33	FR radiation diffuse horizontal		non-null	float64
34	GB temperature		non-null	float64
35	GB radiation direct horizontal		non-null	float64
36	GB radiation diffuse horizontal		non-null	float64
37	GR temperature		non-null	float64
38	GR radiation direct horizontal		non-null	float64
39	GR radiation diffuse horizontal		non-null	float64
40	HR temperature		non-null	float64
41	HR radiation direct horizontal		non-null	float64
42	HR radiation diffuse horizontal		non-null	float64
43	HU temperature		non-null	float64
44	HU radiation direct horizontal		non-null	float64
45	HU radiation diffuse horizontal		non-null	float64
46	IE temperature		non-null	float64
47	IE radiation direct horizontal		non-null	float64
48	IE radiation diffuse horizontal		non-null	float64
49	IT temperature		non-null	float64
	e invnh#OSEMN-Internet	0,00		
s/L anetor	ie invun#UNEIVIN-iniernet			

```
IT radiation direct horizontal
                                       8760 non-null
                                                       float64
 51
    IT radiation diffuse horizontal
                                       8760 non-null
                                                       float64
52
    LT temperature
                                       8760 non-null
                                                       float64
    LT radiation direct horizontal
                                       8760 non-null
                                                       float64
    LT radiation diffuse horizontal
                                       8760 non-null
                                                       float64
    LU_temperature
                                                       float64
                                       8760 non-null
    LU radiation direct horizontal
 56
                                       8760 non-null
                                                       float64
    LU radiation diffuse horizontal
                                       8760 non-null
                                                       float64
 58
    LV temperature
                                       8760 non-null
                                                       float64
    LV radiation direct horizontal
                                       8760 non-null
                                                       float64
    LV radiation diffuse horizontal
60
                                       8760 non-null
                                                       float64
 61
    NL_temperature
                                       8760 non-null
                                                       float64
    NL radiation direct horizontal
 62
                                       8760 non-null
                                                       float64
 63
    NL radiation diffuse horizontal
                                       8760 non-null
                                                       float64
 64
    NO temperature
                                       8760 non-null
                                                       float64
    NO_radiation_direct_horizontal
 65
                                       8760 non-null
                                                       float64
    NO radiation diffuse horizontal
 66
                                       8760 non-null
                                                       float64
 67
    PL_temperature
                                       8760 non-null
                                                       float64
    PL_radiation_direct_horizontal
 68
                                       8760 non-null
                                                       float64
    PL radiation diffuse horizontal
                                       8760 non-null
                                                       float64
    PT temperature
 70
                                       8760 non-null
                                                       float64
71
    PT_radiation_direct_horizontal
                                       8760 non-null
                                                       float64
 72
    PT radiation diffuse horizontal
                                       8760 non-null
                                                       float64
 73
    RO temperature
                                       8760 non-null
                                                       float64
    RO_radiation_direct_horizontal
                                       8760 non-null
                                                       float64
    RO radiation diffuse horizontal
 75
                                       8760 non-null
                                                       float64
76
    SE temperature
                                       8760 non-null
                                                       float64
 77
    SE radiation direct horizontal
                                       8760 non-null
                                                       float64
 78
    SE radiation diffuse horizontal
                                       8760 non-null
                                                       float64
 79
                                       8760 non-null
                                                       float64
    SI temperature
    SI radiation direct horizontal
 80
                                       8760 non-null
                                                       float64
    SI radiation diffuse horizontal
                                       8760 non-null
                                                       float64
82
    SK temperature
                                       8760 non-null
                                                       float64
     SK radiation direct horizontal
                                       8760 non-null
                                                       float64
     SK radiation diffuse horizontal
                                       8760 non-null
                                                       float64
dtypes: float64(84), object(1)
memory usage: 5.7+ MB
```

```
In [31]: France_weather.head()
    Italy_weather.head()
    Germany_weather.head()
```

Out[31]:

	DE_temperature	DE_radiation_direct_horizontal	DE_radiation_diffuse_horizontal
333120	6.494	0.0	0.0
333121	6.171	0.0	0.0
333122	5.880	0.0	0.0
333123	5.637	0.0	0.0
333124	5.440	0.0	0.0

Neat! now our data is seperated by country, this will mke calculating linear regression quite a bit easier for us.

```
In [35]: Germany_weather.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8760 entries, 333120 to 341879
Data columns (total 3 columns):
```

#	Column	Non-Null Count	Dtype
0	DE_temperature	8760 non-null	float64
1	<pre>DE_radiation_direct_horizontal</pre>	8760 non-null	float64
2	<pre>DE_radiation_diffuse_horizontal</pre>	8760 non-null	float64
dtyp	es: float64(3)		
memo	ery usage: 205.4 KB		

In [36]: pd.concat([Germany_production,Germany_weather], axis=0, ignore_index=True)

Out[36]:

	DE_wind_generation_actual	DE_solar_generation_actual	DE_temperature	DE_radiation_direct_l
0	33105.0	0.0	NaN	
1	33868.0	0.0	NaN	
2	34778.0	0.0	NaN	
3	34741.0	0.0	NaN	
4	35345.0	0.0	NaN	
17515	NaN	NaN	4.963	
17516	NaN	NaN	5.005	
17517	NaN	NaN	4.992	
17518	NaN	NaN	4.905	
17519	NaN	NaN	4.843	

17520 rows × 5 columns

Our two data tables aren't compatible, so we'll have to find some more creative ways of modeling our linear regression.

OSEMN-Model

For our model we tested the relationships between the weather data and our production data, and graphed the most favorable results. After testing it was found that shortwave radiation was the best indicator, so let's check how applicable that is!

```
In [37]: Germany_temperature_correlation = sns.regplot(x=Germany_production['DE_sola
    sns.set_theme()
    plt.title('Relationship Between Groud Radiation and Solar Production')
    plt.xlabel('Production')
    plt.ylabel('Radiation')
```

Out[37]: Text(0, 0.5, 'Radiation')


```
In [38]: France_temperature_correlation = sns.regplot(x=France_production['FR_solar_sns.set_theme()
    plt.title('Relationship Between Ground Radiation and solar production')
    plt.xlabel('Production')
    plt.ylabel('Radiation')
```

Out[38]: Text(0, 0.5, 'Radiation')

Out[39]: Text(0, 0.5, 'Radiation')

Out[40]: Text(0, 0.5, 'Temp')

Well it looks like temperature certainly isn't a very reliable for wind, which is surprising due to wind production's peak during colder months. While there is certainly a NEGATIVE correlation (as graphed above), it's not very directional, and probably wouldn't be accurate enough to yield actionable results.

Let's try solar energy, and see where that takes us!

```
In [41]: Germany_weather.reset_index(drop=True, inplace=True)
    Germany_production.reset_index(drop=True, inplace=True)
    France_weather.reset_index(drop=True, inplace=True)
    France_production.reset_index(drop=True, inplace=True)
    Italy_weather.reset_index(drop=True, inplace=True)
    Italy_production.reset_index(drop=True, inplace=True)
```

```
In [42]: sns.jointplot(x=Germany_production['DE_solar_generation_actual'],
    y=Germany_weather['DE_radiation_direct_horizontal'], kind='reg')

sns.jointplot(x=France_production['FR_solar_generation_actual'],
    y=France_weather['FR_radiation_direct_horizontal'], kind='reg')

sns.jointplot(x=Italy_production['IT_solar_generation_actual'],
    y=Italy_weather['IT_radiation_direct_horizontal'], kind='reg')
```

Out[42]: <seaborn.axisgrid.JointGrid at 0x7faf5cedd1f0>

IT_solar_generation_actual

Looks quite a bit more accurate! There is definitely SOME correlation here, let's use linear regression to see if we're right, if our scores for each country are high enough, we can use them to make our predictions!

```
In [43]: from sklearn.linear_model import LinearRegression
         from sklearn.model selection import cross val score
         lr = LinearRegression()
In [44]: X_solar = Germany weather[['DE_temperature', 'DE_radiation_direct_horizonta
         y solar = Germany production['DE solar generation actual']
In [45]: scores_solar = cross_val_score(lr, X_solar, y_solar, cv=5)
         print(scores_solar, "\naverage =", np.mean(scores_solar))
         [0.93530772 0.9708968 0.94691825 0.94086074 0.8758698 ]
         average = 0.9339706614086379
In [46]: FR X solar = France_weather[['FR temperature', 'FR radiation_direct_horizon
         FR y solar = France production['FR solar generation actual']
In [47]: FR scores_solar = cross_val_score(lr, FR X solar, FR y solar, cv=5)
         print(FR scores solar, "\naverage =", np.mean(FR scores solar))
         [0.9233064 0.94767226 0.93783295 0.93191536 0.85084134]
         average = 0.9183136612015425
In [48]: Italy production['IT wind onshore generation actual'].fillna(value=Italy pr
         Italy production['IT solar generation actual'].fillna(value=Italy productio
         /Users/lucacaruccio/opt/anaconda3/envs/learn-env/lib/python3.8/site-packa
         ges/pandas/core/series.py:4517: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-do
         cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (http
         s://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returni
         ng-a-view-versus-a-copy)
           return super().fillna(
In [49]: IT X solar = Italy weather[['IT temperature', 'IT radiation direct horizont
         IT y solar = Italy production['IT solar generation actual']
In [50]: |IT_scores_solar = cross_val_score(lr, IT_X_solar, IT y solar, cv=5)
         print(IT_scores_solar, "\naverage =", np.mean(IT_scores_solar))
         [0.93383258 0.94929228 0.96177289 0.95823815 0.91169799]
         average = 0.9429667770143929
```

Next we will take a look at energy source production and carbon emissions in the United States, and work on some more advanced models to see if we can use what we know about historical

production to help predict carbon emissions.

195313 12.277746

```
In [51]: Energy_production = pd.read_csv('MER_T01_02.csv')
In [52]: Energy production.head()
```

Out[52]:

	MSN	YYYYMM	Value	Column_Order	Description	Unit
0	CLPRBUS	194913	11.973882	1	Coal Production	Quadrillion Btu
1	CLPRBUS	195013	14.060135	1	Coal Production	Quadrillion Btu
2	CLPRBUS	195113	14.419325	1	Coal Production	Quadrillion Btu
3	CLPRBUS	195213	12.734313	1	Coal Production	Quadrillion Btu

In [53]: CO2 = pd.read_csv('co2-data.csv')

In [54]: CO2.head()

4 CLPRBUS

Out[54]:

	iso_code	country	year	co2	co2_growth_prct	co2_growth_abs	consumption_co2	trade_cc
0	AFG	Afghanistan	1949	0.015	NaN	NaN	NaN	Na
1	AFG	Afghanistan	1950	0.084	475.000	0.070	NaN	Na
2	AFG	Afghanistan	1951	0.092	8.696	0.007	NaN	Na
3	AFG	Afghanistan	1952	0.092	NaN	NaN	NaN	Na
4	AFG	Afghanistan	1953	0.106	16.000	0.015	NaN	Na

1 Coal Production Quadrillion Btu

5 rows × 55 columns

In [55]: CO2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23708 entries, 0 to 23707
Data columns (total 55 columns):

Data	columns (total 55 columns):		
#	Column	Non-Null Count	Dtype
0	iso_code	20930 non-null	object
1	country	23708 non-null	object
2	year	23708 non-null	int64
3	co2	23170 non-null	float64
4	co2 growth prct	21910 non-null	float64
5	co2 growth abs	22017 non-null	float64
6	consumption co2	3350 non-null	float64
7	trade co2	3318 non-null	float64
8	trade co2 share	3318 non-null	float64
9	co2 per capita	22383 non-null	float64
10	consumption_co2_per_capita	3350 non-null	float64
11	share_global_co2	23103 non-null	
12	cumulative co2	23578 non-null	float64
13	share global cumulative co2	23578 non-null	float64
14	co2 per gdp	14918 non-null	float64
15	consumption co2 per gdp	3088 non-null	float64
16	co2 per unit energy	6743 non-null	float64
17	cement co2	12182 non-null	float64
18	coal co2	16991 non-null	float64
19	flaring co2	4302 non-null	float64
20	gas co2	8693 non-null	float64
21	oil co2	19711 non-null	float64
22	other_industry_co2	1563 non-null	float64
23	cement co2 per capita	12153 non-null	float64
24	coal_co2_per_capita	16471 non-null	float64
25	flaring co2 per capita	4301 non-null	float64
26	gas_co2_per_capita	8665 non-null	float64
27	oil_co2_per_capita	19393 non-null	float64
28	other co2 per capita	1563 non-null	float64
29	share global coal co2	16991 non-null	float64
30	share global oil co2	19711 non-null	float64
31	share global gas co2	8693 non-null	float64
32	share_global_flaring_co2	4302 non-null	
33	share global cement co2	12182 non-null	float64
34	cumulative coal_co2	18552 non-null	float64
35	cumulative oil co2	19963 non-null	float64
36	cumulative gas co2	9187 non-null	float64
37	cumulative flaring co2	4933 non-null	float64
38	cumulative cement co2	12563 non-null	float64
39	share global cumulative coal co2	18552 non-null	float64
40	share global cumulative oil co2	19963 non-null	float64
41	share_global_cumulative_gas_co2	9187 non-null	float64
42	share global cumulative flaring co2	4933 non-null	float64
43	share global cumulative cement co2	12563 non-null	float64
44	total_ghg	5208 non-null	float64
45	ghg_per_capita	5155 non-null	float64
46	methane	5211 non-null	float64
47	methane per capita	5157 non-null	float64
48	nitrous oxide	5211 non-null	float64
49	nitrous oxide per capita	5157 non-null	float64
			1

```
50 primary_energy_consumption
                                        6044 non-null
                                                        float64
51 energy_per_capita
                                        6044 non-null
                                                        float64
52 energy_per_gdp
                                        6044 non-null
                                                        float64
53 population
                                        21071 non-null
                                                        float64
54
                                        13002 non-null
                                                        float64
   gdp
```

dtypes: float64(52), int64(1), object(2)

memory usage: 9.9+ MB

```
In [56]: CO2['country'].unique()
Out[56]: array(['Afghanistan', 'Africa', 'Albania', 'Algeria', 'Andorra', 'Angol
         a',
                 'Anguilla', 'Antiqua and Barbuda', 'Argentina', 'Armenia', 'Arub
         a',
                 'Asia', 'Asia (excl. China & India)', 'Australia', 'Austria',
                 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados',
                 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bermuda', 'Bhutan',
                 'Bolivia', 'Bonaire Sint Eustatius and Saba',
                 'Bosnia and Herzegovina', 'Botswana', 'Brazil',
                 'British Virgin Islands', 'Brunei', 'Bulgaria', 'Burkina Faso',
                 'Burundi', 'Cambodia', 'Cameroon', 'Canada', 'Cape Verde', 'Central African Republic', 'Chad', 'Chile', 'China',
                 'Christmas Island', 'Colombia', 'Comoros', 'Congo', 'Cook Island
         s',
                 'Costa Rica', "Cote d'Ivoire", 'Croatia', 'Cuba', 'Cyprus',
                 'Czechia', 'Democratic Republic of Congo', 'Denmark', 'Djibouti',
                 'Dominica', 'Dominican Republic', 'EU-27', 'EU-28', 'Ecuador',
                 'Egypt', 'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia',
                 'Eswatini', 'Ethiopia', 'Europe', 'Europe (excl. EU-27)',
                 'Europe (excl. EU-28)', 'Faeroe Islands', 'Fiji', 'Finland',
                 'France', 'French Equatorial Africa', 'French Polynesia',
                 'French West Africa', 'Gabon', 'Gambia', 'Georgia', 'Germany',
                 'Ghana', 'Greece', 'Greenland', 'Grenada', 'Guatemala', 'Guinea',
                 'Guinea-Bissau', 'Guyana', 'Haiti', 'Honduras', 'Hong Kong',
                 'Hungary', 'Iceland', 'India', 'Indonesia',
                 'International transport', 'Iran', 'Iraq', 'Ireland', 'Israel',
                 'Italy', 'Jamaica', 'Japan', 'Jordan', 'Kazakhstan', 'Kenya',
                 'Kiribati', 'Kosovo', 'Kuwait', 'Kuwaiti Oil Fires', 'Kyrgyzstan',
                 'Laos', 'Latvia', 'Lebanon', 'Leeward Islands', 'Lesotho',
                 'Liberia', 'Libya', 'Liechtenstein', 'Lithuania', 'Luxembourg',
                 'Macao', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives', 'Mali',
                 'Malta', 'Marshall Islands', 'Mauritania', 'Mauritius', 'Mexico',
                 'Micronesia', 'Moldova', 'Mongolia', 'Montenegro', 'Montserrat',
                 'Morocco', 'Mozambique', 'Myanmar', 'Namibia', 'Nauru', 'Nepal',
                 'Netherlands', 'New Caledonia', 'New Zealand', 'Nicaragua',
                 'Niger', 'Nigeria', 'Niue', 'North America',
                 'North America (excl. USA)', 'North Korea', 'North Macedonia',
                 'Norway', 'Oceania', 'Oman', 'Pakistan', 'Palau', 'Palestine',
                 'Panama', 'Panama Canal Zone', 'Papua New Guinea', 'Paraquay',
                 'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto Rico',
                 'Qatar', 'Romania', 'Russia', 'Rwanda', 'Ryukyu Islands',
                 'Saint Helena', 'Saint Kitts and Nevis', 'Saint Lucia',
                 'Saint Pierre and Miquelon', 'Saint Vincent and the Grenadines',
                 'Samoa', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal',
                 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore',
                 'Sint Maarten (Dutch part)', 'Slovakia', 'Slovenia',
                 'Solomon Islands', 'Somalia', 'South Africa', 'South America', 'South Korea', 'South Sudan', 'Spain', 'Sri Lanka',
                 'St. Kitts-Nevis-Anguilla', 'Sudan', 'Suriname', 'Sweden',
                 'Switzerland', 'Syria', 'Taiwan', 'Tajikistan', 'Tanzania',
                 'Thailand', 'Timor', 'Togo', 'Tonga', 'Trinidad and Tobago',
                 'Tunisia', 'Turkey', 'Turkmenistan', 'Turks and Caicos Islands',
                 'Tuvalu', 'Uganda', 'Ukraine', 'United Arab Emirates',
                 'United Kingdom', 'United States', 'Uruguay', 'Uzbekistan',
```

'Vanuatu', 'Venezuela', 'Vietnam', 'Wallis and Futuna Islands', 'World', 'Yemen', 'Zambia', 'Zimbabwe'], dtype=object)

Let's drop the countries we don't need, for the sake of simplicity.

Out[57]:

	iso_code	country	year	co2	co2_growth_prct	co2_growth_abs	consumption_co2	trade_c
22369	USA	United States	1800	0.253	NaN	NaN	NaN	Ν
22370	USA	United States	1801	0.267	5.797	0.015	NaN	٨
22371	USA	United States	1802	0.289	8.219	0.022	NaN	Λ
22372	USA	United States	1803	0.297	2.532	0.007	NaN	٨
22373	USA	United States	1804	0.333	12.346	0.037	NaN	٨

5 rows × 55 columns

Unsurprisingly, we can see a general uptrend in the carbon emissions for the united states, which supports our final recommendation of moving towards renewable energy sources.

```
In [59]: Energy production.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 8424 entries, 0 to 8423
          Data columns (total 6 columns):
           #
               Column
                              Non-Null Count
                                               Dtype
          ___
                                               ____
                              8424 non-null
           0
               MSN
                                               object
           1
               YYYYMM
                              8424 non-null
                                               int64
               Value
                              8424 non-null
                                               object
           2
           3
               Column_Order
                              8424 non-null
                                               int64
               Description
                              8424 non-null
                                               object
           4
           5
               Unit
                              8424 non-null
                                               object
          dtypes: int64(2), object(4)
          memory usage: 395.0+ KB
In [60]: CO2_dated = Energy production[(Energy production['YYYYMM'] > 199999)]
In [61]: CO2 dated.head()
Out[61]:
                  MSN YYYYMM
                                  Value Column_Order
                                                       Description
                                                                        Unit
           375 CLPRBUS
                                                  1 Coal Production Quadrillion Btu
                         200001
                               1.855655
          376 CLPRBUS
                                                  1 Coal Production Quadrillion Btu
                         200002 1.846984
          377 CLPRBUS
                         200003 2.106475
                                                  1 Coal Production Quadrillion Btu
          378 CLPRBUS
                         200004 1.732611
                                                  1 Coal Production Quadrillion Btu
          379 CLPRBUS
                         200005 1.879543
                                                  1 Coal Production Quadrillion Btu
In [62]: del Energy production['MSN']
In [63]: del Energy production['Column Order']
In [64]: Energy production['Description'].unique()
Out[64]: array(['Coal Production', 'Natural Gas (Dry) Production',
                  'Crude Oil Production', 'Natural Gas Plant Liquids Production',
                 'Total Fossil Fuels Production',
                  'Nuclear Electric Power Production',
                  'Hydroelectric Power Production', 'Geothermal Energy Production',
                  'Solar Energy Production', 'Wind Energy Production',
                  'Biomass Energy Production', 'Total Renewable Energy Production',
                 'Total Primary Energy Production'], dtype=object)
```

```
In [65]: Coal = Energy production[(Energy production['Description'] == 'Coal Product
         L_Natural_Gas = Energy_production[(Energy_production['Description'] == 'Nat
         D Natural Gas = Energy production[(Energy production['Description'] == 'Nat
         Crude_Oil = Energy production[(Energy production['Description'] == 'Crude O
         Nuclear = Energy production[(Energy production['Description'] == 'Nuclear E
         Solar = Energy production[(Energy production['Description'] == 'Solar Energ'
         Hydroelectric = Energy_production[(Energy_production['Description'] == 'Hyd
         Wind = Energy production[(Energy production['Description'] == 'Wind Energy
         Geothermal = Energy production[(Energy production['Description'] == 'Geothe
In [66]: Geothermal.tail()
         Geothermal.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 648 entries, 4536 to 5183
         Data columns (total 4 columns):
              Column
                           Non-Null Count Dtype
              _____
                           -----
          0
              MMYYYY
                           648 non-null
                                           int64
                           648 non-null
                                           object
          1
              Value
              Description 648 non-null
          2
                                           object
          3
              Unit
                           648 non-null
                                           object
         dtypes: int64(1), object(3)
         memory usage: 25.3+ KB
In [67]: Coal = Coal[(Coal['YYYYMM'] > 199999)]
         L Natural Gas = L Natural Gas[(L Natural Gas['YYYYMM'] > 199999)]
         D_Natural_Gas = D_Natural_Gas[(D_Natural_Gas['YYYYMM'] > 199999)]
         Crude Oil = Crude Oil[(Crude Oil['YYYYMM'] > 199999)]
         Nuclear = Nuclear[(Nuclear['YYYYMM'] > 199999)]
         Solar = Solar[(Solar['YYYYMM'] > 199999)]
         Hydroelectric = Hydroelectric[(Hydroelectric['YYYYMM'] > 199999)]
         Wind = Wind[(Wind['YYYYMM'] > 199999)]
         Geothermal = Geothermal[(Geothermal['YYYYMM'] > 199999)]
In [68]: Coal = Coal.astype('str')
         L_Natural_Gas = Coal.astype('str')
         D_Natural_Gas = Coal.astype('str')
         Crude Oil = Crude Oil.astype('str')
         Nuclear = Nuclear.astype('str')
         Solar = Solar.astype('str')
         Hydroelectric = Hydroelectric.astype('str')
         Wind = Wind.astype('str')
```

Geothermal = Geothermal.astype('str')

```
In [69]: Coal = Coal[Coal['YYYYMM'].str.endswith('13')]
    L_Natural_Gas = L_Natural_Gas[L_Natural_Gas['YYYYMM'].str.endswith('13')]
    D_Natural_Gas = D_Natural_Gas[D_Natural_Gas['YYYYMM'].str.endswith('13')]
    Crude_Oil = Crude_Oil[Crude_Oil['YYYYMM'].str.endswith('13')]
    Nuclear = Nuclear[Nuclear['YYYYMM'].str.endswith('13')]
    Solar = Solar[Solar['YYYYMM'].str.endswith('13')]
    Hydroelectric = Hydroelectric[Hydroelectric['YYYYMM'].str.endswith('13')]
    Wind = Wind[Wind['YYYYMM'].str.endswith('13')]
    Geothermal = Geothermal[Geothermal['YYYYMM'].str.endswith('13')]
```

In [70]: Coal.head(25)

Out[70]:

	YYYYMM	Value	Description	Unit
387	200013	22.735478	Coal Production	Quadrillion Btu
400	200113	23.54708	Coal Production	Quadrillion Btu
413	200213	22.732237	Coal Production	Quadrillion Btu
426	200313	22.093652	Coal Production	Quadrillion Btu
439	200413	22.852099	Coal Production	Quadrillion Btu
452	200513	23.185189	Coal Production	Quadrillion Btu
465	200613	23.78951	Coal Production	Quadrillion Btu
478	200713	23.492742	Coal Production	Quadrillion Btu
491	200813	23.851368	Coal Production	Quadrillion Btu
504	200913	21.623721	Coal Production	Quadrillion Btu
517	201013	22.038226	Coal Production	Quadrillion Btu
530	201113	22.221407	Coal Production	Quadrillion Btu
543	201213	20.676893	Coal Production	Quadrillion Btu
556	201313	20.001304	Coal Production	Quadrillion Btu
569	201413	20.285705	Coal Production	Quadrillion Btu
582	201513	17.946095	Coal Production	Quadrillion Btu
595	201613	14.667089	Coal Production	Quadrillion Btu
608	201713	15.625377	Coal Production	Quadrillion Btu
621	201813	15.363442	Coal Production	Quadrillion Btu
634	201913	14.255763	Coal Production	Quadrillion Btu
647	202013	10.802494	Coal Production	Quadrillion Btu

In [71]: Coal.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21 entries, 387 to 647
Data columns (total 4 columns):
     Column
                  Non-Null Count Dtype
                  21 non-null
 0
    YYYYMM
                                  object
 1
     Value
                                  object
                  21 non-null
 2
     Description 21 non-null
                                  object
                                  object
     Unit
                  21 non-null
dtypes: object(4)
memory usage: 840.0+ bytes
```

In [72]: Coal.head(30)

Out[72]:

	YYYYMM	Value	Description	Unit
387	200013	22.735478	Coal Production	Quadrillion Btu
400	200113	23.54708	Coal Production	Quadrillion Btu
413	200213	22.732237	Coal Production	Quadrillion Btu
426	200313	22.093652	Coal Production	Quadrillion Btu
439	200413	22.852099	Coal Production	Quadrillion Btu
452	200513	23.185189	Coal Production	Quadrillion Btu
465	200613	23.78951	Coal Production	Quadrillion Btu
478	200713	23.492742	Coal Production	Quadrillion Btu
491	200813	23.851368	Coal Production	Quadrillion Btu
504	200913	21.623721	Coal Production	Quadrillion Btu
517	201013	22.038226	Coal Production	Quadrillion Btu
530	201113	22.221407	Coal Production	Quadrillion Btu
543	201213	20.676893	Coal Production	Quadrillion Btu
556	201313	20.001304	Coal Production	Quadrillion Btu
569	201413	20.285705	Coal Production	Quadrillion Btu
582	201513	17.946095	Coal Production	Quadrillion Btu
595	201613	14.667089	Coal Production	Quadrillion Btu
608	201713	15.625377	Coal Production	Quadrillion Btu
621	201813	15.363442	Coal Production	Quadrillion Btu
634	201913	14.255763	Coal Production	Quadrillion Btu
647	202013	10.802494	Coal Production	Quadrillion Btu

```
In [73]: X_train = (Coal.merge(Solar, on="YYYYMM").merge(Wind, on='YYYYMM').merge(L_
```

In [74]: X_train

Out[74]:

YMM	Value_x	Description_x	Unit_x	Value_y	Description_y	Unit_y	Value_x	Description_
)0013	22.735478	Coal Production	Quadrillion Btu	0.063469	Solar Energy Production	Quadrillion Btu	0.057057	Wind Enerç Production
)0113	23.54708	Coal Production	Quadrillion Btu	0.061674	Solar Energy Production	Quadrillion Btu	0.069617	Wind Enerç Productic
)0213	22.732237	Coal Production	Quadrillion Btu	0.05998	Solar Energy Production	Quadrillion Btu	0.105334	Wind Enerç Productic
)0313	22.093652	Coal Production	Quadrillion Btu	0.058432	Solar Energy Production	Quadrillion Btu	0.113273	Wind Enerç Productic
)0413	22.852099	Coal Production	Quadrillion Btu	0.058376	Solar Energy Production	Quadrillion Btu	0.141664	Wind Enerç Productic
)0513	23.185189	Coal Production	Quadrillion Btu	0.057893	Solar Energy Production	Quadrillion Btu	0.178088	Wind Enerç Production
)0613	23.78951	Coal Production	Quadrillion Btu	0.060755	Solar Energy Production	Quadrillion Btu	0.263738	Wind Enerç Productic
)0713	23.492742	Coal Production	Quadrillion Btu	0.065621	Solar Energy Production	Quadrillion Btu	0.340503	Wind Enerç Productic
)0813	23.851368	Coal Production	Quadrillion Btu	0.074207	Solar Energy Production	Quadrillion Btu	0.545548	Wind Enerç Productic
)0913	21.623721	Coal Production	Quadrillion Btu	0.078178	Solar Energy Production	Quadrillion Btu	0.721129	Wind Enerç Productic
)1013	22.038226	Coal Production	Quadrillion Btu	0.091282	Solar Energy Production	Quadrillion Btu	0.923427	Wind Enerç Productic
)1113	22.221407	Coal Production	Quadrillion Btu	0.112429	Solar Energy Production	Quadrillion Btu	1.167636	Wind Enerç Productic
)1213	20.676893	Coal Production	Quadrillion Btu	0.158961	Solar Energy Production	Quadrillion Btu	1.340059	Wind Enerç Productic
)1313	20.001304	Coal Production	Quadrillion Btu	0.224524	Solar Energy Production	Quadrillion Btu	1.601359	Wind Enerç Productic
)1413	20.285705	Coal Production	Quadrillion Btu	0.337421	Solar Energy Production	Quadrillion Btu	1.727542	Wind Enerç Productic
)1513	17.946095	Coal Production	Quadrillion Btu	0.426734	Solar Energy Production	Quadrillion Btu	1.777306	Wind Enerç Productic

YMM	Value_x	Description_x	Unit_x	Value_y	Description_y	Unit_y	Value_x	Description_
)1613	14.667089	Coal Production	Quadrillion Btu	0.570218	Solar Energy Production	Quadrillion Btu	2.095595	Wind Enerç Productic
)1713	15.625377	Coal Production	Quadrillion Btu	0.776925	Solar Energy Production	Quadrillion Btu	2.342891	Wind Enerç Productic
)1813	15.363442	Coal Production	Quadrillion Btu	0.915105	Solar Energy Production	Quadrillion Btu	2.482364	Wind Enerç Productic
)1913	14.255763	Coal Production	Quadrillion Btu	1.017004	Solar Energy Production	Quadrillion Btu	2.634538	Wind Enerç Productic
)2013	10.802494	Coal Production	Quadrillion Btu	1.24558	Solar Energy Production	Quadrillion Btu	3.005187	Wind Enerç Productic

× 28 columns

```
In [87]: Coal.rename(columns = {'Value':'Coal Value'}, inplace = True)
L_Natural_Gas.rename(columns = {'Value':'L_Gas Value'}, inplace = True)
D_Natural_Gas.rename(columns = {'Value':'D_Gas Value'}, inplace = True)
Crude_Oil.rename(columns = {'Value':'Oil Value'}, inplace = True)
Nuclear.rename(columns = {'Value':'Nuclear Value'}, inplace = True)
Hydroelectric.rename(columns = {'Value':'Hydro Value'}, inplace = True)
Geothermal.rename(columns = {'Value':'Geothermal Value'}, inplace = True)
Wind.rename(columns = {'Value':'Wind Value'}, inplace = True)
Solar.rename(columns = {'Value':'Solar Value'}, inplace = True)
```

```
In [88]: US_Energy_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 220 entries, 22369 to 22588
Data columns (total 55 columns):

Data	columns (total 55 columns):		
#	Column	Non-Null Count	Dtype
0	iso code	220 non-null	object
1	country	220 non-null	object
2	year	220 non-null	int64
3	co2	220 non-null	float64
4	co2_growth_prct	219 non-null	float64
5	co2 growth abs	219 non-null	float64
6	consumption co2	29 non-null	float64
7	trade co2	29 non-null	float64
8	trade_co2_share	29 non-null	float64
9	co2 per capita	220 non-null	float64
10	consumption_co2_per_capita	29 non-null	float64
11	share global co2	220 non-null	float64
12	cumulative co2	220 non-null	float64
13	share global cumulative co2	220 non-null	float64
14	co2 per gdp	197 non-null	float64
15	consumption co2 per gdp	27 non-null	float64
16	co2 per unit energy	57 non-null	float64
17	cement co2	120 non-null	float64
18	coal_co2	220 non-null	float64
19	flaring co2	70 non-null	float64
20	gas co2	138 non-null	float64
21	oil co2	160 non-null	float64
22	other_industry_co2	30 non-null	float64
23	cement co2 per capita	120 non-null	float64
24	coal co2 per capita	220 non-null	float64
25	flaring co2 per capita	70 non-null	float64
26	gas co2 per capita	138 non-null	float64
27	oil co2 per capita	160 non-null	float64
28	other_co2_per_capita	30 non-null	float64
29	share_global_coal_co2	220 non-null	float64
30	share global oil co2	160 non-null	float64
31	share global gas co2	138 non-null	float64
32	share global flaring co2	70 non-null	float64
33	share_global_cement_co2	120 non-null	float64
34	cumulative coal co2	220 non-null	float64
35	cumulative oil co2	160 non-null	float64
36	cumulative gas co2	138 non-null	float64
37	cumulative flaring co2	70 non-null	float64
38	cumulative cement co2	120 non-null	float64
39	share global cumulative coal co2	220 non-null	float64
40	share global cumulative oil co2	160 non-null	float64
41	share global cumulative gas co2	138 non-null	float64
42	share global cumulative flaring co2	70 non-null	float64
43	share global cumulative cement co2	120 non-null	float64
44	total_ghg	27 non-null	float64
45	ghg per capita	27 non-null	float64
46	methane	27 non-null	float64
47		27 non-null	float64
	methane_per_capita	27 non-null	
48	nitrous_oxide		float64
49	nitrous_oxide_per_capita	27 non-null	float64

```
50 primary_energy_consumption
                                                        57 non-null
                                                                         float64
           51 energy_per_capita
                                                        57 non-null
                                                                         float64
           52 energy per gdp
                                                        57 non-null
                                                                         float64
                                                        220 non-null
           53 population
                                                                         float64
           54
               gdp
                                                        197 non-null
                                                                         float64
          dtypes: float64(52), int64(1), object(2)
          memory usage: 96.2+ KB
In [89]: CO2_dated = US_Energy_df[(US_Energy_df['year'] > 1999)]
In [90]: CO2_dated = CO2_dated[['co2']]
In [91]: CO2 dated.head(20)
Out[91]:
                     co2
           22569 5998.070
           22570 5900.437
           22571 5942.652
           22572 5991.960
           22573 6107.618
           22574 6131.893
           22575 6051.051
           22576 6128.430
           22577 5930.540
           22578 5491.036
           22579 5698.056
           22580 5565.294
           22581 5367.569
           22582 5514.029
           22583 5561.719
           22584 5412.432
           22585 5292.268
           22586 5253.606
           22587 5424.882
           22588 5284.697
In [93]: X_train = (Coal.merge(Solar, on="YYYYMM").merge(Wind, on='YYYYMM').merge(L_
```

```
In [94]: X_train.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 21 entries, 0 to 20
          Data columns (total 28 columns):
           #
               Column
                                  Non-Null Count
                                                  Dtype
          ___
                                                  ____
           0
               YYYYMM
                                  21 non-null
                                                  object
           1
               Coal Value
                                  21 non-null
                                                  object
           2
                                  21 non-null
               Description x
                                                  object
           3
               Unit x
                                  21 non-null
                                                  object
           4
               Solar Value
                                                  object
                                  21 non-null
           5
               Description y
                                  21 non-null
                                                  object
           6
               Unit_y
                                  21 non-null
                                                  object
           7
               Wind Value
                                  21 non-null
                                                  object
               Description x
                                  21 non-null
                                                  object
           8
           9
               Unit x
                                  21 non-null
                                                  object
           10
               L Gas Value
                                  21 non-null
                                                  object
           11
                                  21 non-null
               Description y
                                                  object
           12
               Unit y
                                  21 non-null
                                                  object
           13
               D_Gas Value
                                  21 non-null
                                                  object
                                                  object
               Description x
                                  21 non-null
           14
           15
               Unit x
                                  21 non-null
                                                  object
           16
               Oil Value
                                  21 non-null
                                                  object
                                  21 non-null
           17
               Description y
                                                  object
                                                  object
           18
               Unit y
                                  21 non-null
           19
               Nuclear Value
                                  21 non-null
                                                  object
           20 Description x
                                  21 non-null
                                                  object
           21 Unit x
                                  21 non-null
                                                  object
               Hydro Value
           22
                                  21 non-null
                                                  object
           23 Description y
                                  21 non-null
                                                  object
           24 Unit y
                                  21 non-null
                                                  object
           25
               Geothermal Value
                                  21 non-null
                                                  object
           26 Description
                                  21 non-null
                                                  object
           27
               Unit
                                  21 non-null
                                                  object
          dtypes: object(28)
          memory usage: 4.8+ KB
In [95]: del X_train['Description_x']
In [96]: del X train['Unit x']
          del X train['Description y']
In [98]:
          del X train['Unit y']
In [99]: del X train['Description']
In [100]: | del X_train['Unit']
```

```
In [101]: CO2_dated
```

Out[101]:

	co2
22569	5998.070
22570	5900.437
22571	5942.652
22572	5991.960
22573	6107.618
22574	6131.893
22575	6051.051
22576	6128.430
22577	5930.540
22578	5491.036
22579	5698.056
22580	5565.294
22581	5367.569
22582	5514.029
22583	5561.719
22584	5412.432
22585	5292.268
22586	5253.606
22587	5424.882
22588	5284.697

```
In [102]: y = CO2_dated['co2']
```

```
In [103]: |y
Out[103]: 22569
                     5998.070
           22570
                     5900.437
           22571
                     5942.652
           22572
                     5991.960
           22573
                     6107.618
           22574
                     6131.893
           22575
                     6051.051
           22576
                     6128.430
           22577
                     5930.540
           22578
                     5491.036
           22579
                     5698.056
           22580
                     5565.294
           22581
                     5367.569
           22582
                     5514.029
           22583
                     5561.719
           22584
                     5412.432
           22585
                     5292.268
           22586
                     5253.606
           22587
                     5424.882
           22588
                     5284.697
           Name: co2, dtype: float64
In [104]: X train = X train.sort values('YYYYMM')
In [105]: X train = X train[:-1]
In [106]: y
Out[106]: 22569
                     5998.070
           22570
                     5900.437
           22571
                     5942.652
           22572
                     5991.960
           22573
                     6107.618
           22574
                     6131.893
           22575
                     6051.051
           22576
                     6128.430
           22577
                     5930.540
           22578
                     5491.036
           22579
                     5698.056
           22580
                     5565.294
           22581
                     5367.569
           22582
                     5514.029
           22583
                     5561.719
           22584
                     5412.432
           22585
                     5292.268
           22586
                     5253.606
           22587
                     5424.882
           22588
                     5284.697
           Name: co2, dtype: float64
```

In [107]: X_train

Out[107]:

	YYYYMM	Coal Value	Solar Value	Wind Value	L_Gas Value	D_Gas Value	Oil Value	Nuclear Value	Hydro Value
0	200013	22.735478	0.063469	0.057057	22.735478	22.735478	12.358101	7.862349	2.811116
1	200113	23.54708	0.061674	0.069617	23.54708	23.54708	12.281566	8.028853	2.241858
2	200213	22.732237	0.05998	0.105334	22.732237	22.732237	12.160213	8.145429	2.689017
3	200313	22.093652	0.058432	0.113273	22.093652	22.093652	11.959568	7.959622	2.792539
4	200413	22.852099	0.058376	0.141664	22.852099	22.852099	11.550086	8.222774	2.688468
5	200513	23.185189	0.057893	0.178088	23.185189	23.185189	10.974152	8.16081	2.702942
6	200613	23.78951	0.060755	0.263738	23.78951	23.78951	10.766775	8.214626	2.869035
7	200713	23.492742	0.065621	0.340503	23.492742	23.492742	10.741447	8.458589	2.446389
8	200813	23.851368	0.074207	0.545548	23.851368	23.851368	10.613302	8.426491	2.511108
9	200913	21.623721	0.078178	0.721129	21.623721	21.623721	11.340126	8.35522	2.668824
10	201013	22.038226	0.091282	0.923427	22.038226	22.038226	11.610472	8.434433	2.538541
11	201113	22.221407	0.112429	1.167636	22.221407	22.221407	11.99753	8.268698	3.102852
12	201213	20.676893	0.158961	1.340059	20.676893	20.676893	13.8419	8.061822	2.628702
13	201313	20.001304	0.224524	1.601359	20.001304	20.001304	15.865054	8.244433	2.562382
14	201413	20.285705	0.337421	1.727542	20.285705	20.285705	18.607136	8.337559	2.466577
15	201513	17.946095	0.426734	1.777306	17.946095	17.946095	19.712044	8.336886	2.321177
16	201613	14.667089	0.570218	2.095595	14.667089	14.667089	18.537316	8.426753	2.472442
17	201713	15.625377	0.776925	2.342891	15.625377	15.625377	19.575779	8.418968	2.766967
18	201813	15.363442	0.915105	2.482364	15.363442	15.363442	22.834796	8.438068	2.663138
19	201913	14.255763	1.017004	2.634538	14.255763	14.255763	25.473071	8.451852	2.563228

In [108]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_train, y, test_size=0)

In [115]: X_train.head(25)

Out[115]:

	YYYYMM	Coal Value	Solar Value	Wind Value	L_Gas Value	D_Gas Value	Oil Value	Nuclear Value	Hydro Value
5	200513	23.185189	0.057893	0.178088	23.185189	23.185189	10.974152	8.16081	2.702942
11	201113	22.221407	0.112429	1.167636	22.221407	22.221407	11.99753	8.268698	3.102852
3	200313	22.093652	0.058432	0.113273	22.093652	22.093652	11.959568	7.959622	2.792539
18	201813	15.363442	0.915105	2.482364	15.363442	15.363442	22.834796	8.438068	2.663138
16	201613	14.667089	0.570218	2.095595	14.667089	14.667089	18.537316	8.426753	2.472442
13	201313	20.001304	0.224524	1.601359	20.001304	20.001304	15.865054	8.244433	2.562382
2	200213	22.732237	0.05998	0.105334	22.732237	22.732237	12.160213	8.145429	2.689017
9	200913	21.623721	0.078178	0.721129	21.623721	21.623721	11.340126	8.35522	2.668824
19	201913	14.255763	1.017004	2.634538	14.255763	14.255763	25.473071	8.451852	2.563228
4	200413	22.852099	0.058376	0.141664	22.852099	22.852099	11.550086	8.222774	2.688468
12	201213	20.676893	0.158961	1.340059	20.676893	20.676893	13.8419	8.061822	2.628702
7	200713	23.492742	0.065621	0.340503	23.492742	23.492742	10.741447	8.458589	2.446389
10	201013	22.038226	0.091282	0.923427	22.038226	22.038226	11.610472	8.434433	2.538541
14	201413	20.285705	0.337421	1.727542	20.285705	20.285705	18.607136	8.337559	2.466577
6	200613	23.78951	0.060755	0.263738	23.78951	23.78951	10.766775	8.214626	2.869035

```
In [116]: X_train = X_train.sort_values('YYYYMM')
```

In [117]: import numpy as np from sklearn import metrics, svm from sklearn.linear_model import LogisticRegression from sklearn import preprocessing

from sklearn import utils

```
In [160]: X_train
```

Out[160]:

	Coal Value	Solar Value	Wind Value	L_Gas Value	D_Gas Value	Oil Value	Nuclear Value	Hydro Value	Geotherma Value
0	22.732237	0.059980	0.105334	22.732237	22.732237	12.160213	8.145429	2.689017	0.17116
1	22.093652	0.058432	0.113273	22.093652	22.093652	11.959568	7.959622	2.792539	0.17344
2	22.852099	0.058376	0.141664	22.852099	22.852099	11.550086	8.222774	2.688468	0.17814
3	23.185189	0.057893	0.178088	23.185189	23.185189	10.974152	8.160810	2.702942	0.18070
4	23.789510	0.060755	0.263738	23.789510	23.789510	10.766775	8.214626	2.869035	0.18120
5	23.492742	0.065621	0.340503	23.492742	23.492742	10.741447	8.458589	2.446389	0.18577
6	21.623721	0.078178	0.721129	21.623721	21.623721	11.340126	8.355220	2.668824	0.20018
7	22.038226	0.091282	0.923427	22.038226	22.038226	11.610472	8.434433	2.538541	0.20797
8	22.221407	0.112429	1.167636	22.221407	22.221407	11.997530	8.268698	3.102852	0.21231
9	20.676893	0.158961	1.340059	20.676893	20.676893	13.841900	8.061822	2.628702	0.21159:
10	20.001304	0.224524	1.601359	20.001304	20.001304	15.865054	8.244433	2.562382	0.21400
11	20.285705	0.337421	1.727542	20.285705	20.285705	18.607136	8.337559	2.466577	0.21449
12	14.667089	0.570218	2.095595	14.667089	14.667089	18.537316	8.426753	2.472442	0.20960
13	15.363442	0.915105	2.482364	15.363442	15.363442	22.834796	8.438068	2.663138	0.20886
14	14.255763	1.017004	2.634538	14.255763	14.255763	25.473071	8.451852	2.563228	0.20126

All right looks like we have everything where it needs to go! let's fit our datasets so they can be measured usig random forest regressor, and then test for feature importance with XGBoost

```
In [134]: AS = RandomForestRegressor(n_estimators=250,min_samples_leaf=3 ,n_jobs=-1,m
%time AS.fit(X_train, y_train)
y_pred= AS.predict(X_test)
rfr.score(X_test, y_test)
CPU times: user 375 ms, sys: 70.1 ms, total: 445 ms
```

Out[134]: 0.9061844189317136

Wall time: 419 ms

```
In [144]: X_train['YYYYMM'] = (X_train['YYYYMM'].astype(float))
    X_train['Coal Value'] = (X_train['Coal Value'].astype(float))
    X_train['Solar Value'] = (X_train['Solar Value'].astype(float))
    X_train['Wind Value'] = (X_train['Wind Value'].astype(float))
    X_train['L_Gas Value'] = (X_train['L_Gas Value'].astype(float))
    X_train['D_Gas Value'] = (X_train['D_Gas Value'].astype(float))
    X_train['Oil Value'] = (X_train['Oil Value'].astype(float))
    X_train['Nuclear Value'] = (X_train['Nuclear Value'].astype(float))
    X_train['Geothermal Value'] = (X_train['Geothermal Value'].astype(float))
```

In [150]: X_train.isnull()

Out[150]:

	YYYYMM	Coal Value	Solar Value	Wind Value	L_Gas Value	D_Gas Value	Oil Value	Nuclear Value	Hydro Value	Geothermal Value
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False	False	False
10	False	False	False	False	False	False	False	False	False	False
11	False	False	False	False	False	False	False	False	False	False
12	False	False	False	False	False	False	False	False	False	False
13	False	False	False	False	False	False	False	False	False	False
14	False	False	False	False	False	False	False	False	False	False

```
In [164]: from xgboost import XGBRegressor
    from xgboost import plot_importance

xgb = XGBRegressor()
    xgb.fit(X_train, y)

im=pd.DataFrame({'importance':xgb.feature_importances_,'var':X_train.column
im=im.sort_values(by='importance',ascending=False)
```

```
In [165]: fig,ax = plt.subplots(figsize=(8,8))
    plot_importance(xgb,max_num_features=10,ax=ax)
    plt.show()
```



```
In [171]: from surprise.prediction_algorithms import SVD
    from surprise import Reader, Dataset
    reader = Reader()
    from surprise.model_selection import cross_validate
```

```
In [172]:
          data = Dataset.load_from_df(X_train[['Coal Value', 'Nuclear Value', 'Geothe']
          svd = SVD()
          cross_validate(svd, data, measures=['RMSE', 'MAE'], cv=10, verbose=True)
          Evaluating RMSE, MAE of algorithm SVD on 10 split(s).
                                     Fold 2 Fold 3
                                                     Fold 4 Fold 5
                                                                      Fold 6
                                                                              Fold 7
                             Fold 1
          Fold 8 Fold 9
                          Fold 10 Mean
                                           Std
                                             0.7993
                                                                      0.7884
                                     0.8095
                                                     0.8066
                                                             0.8011
                                                                              0.8193
          RMSE (testset)
                             0.8026
          0.7855
                 0.7904
                          0.8288
                                   0.8031
                                          0.0130
          MAE (testset)
                             0.8024
                                     0.8093
                                             0.7993
                                                     0.8065
                                                             0.8010
                                                                      0.7884
                                                                              0.8193
          0.7855
                  0.7904
                          0.8288
                                   0.8031
                                           0.0130
          Fit time
                             0.01
                                     0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                      0.00
                                                                              0.00
          0.00
                  0.00
                          0.00
                                   0.00
                                           0.00
                                     0.00
                                                     0.00
                                                             0.00
                                                                      0.00
                                                                              0.00
          Test time
                             0.00
                                             0.00
                                           0.00
          0.00
                  0.00
                          0.00
                                   0.00
Out[172]: {'test_rmse': array([0.80256464, 0.80947218, 0.79927318, 0.80664024, 0.80
          106739,
                  0.788408 , 0.819297 , 0.78551
                                                     , 0.790396 , 0.828836
           'test_mae': array([0.802397 , 0.809288 , 0.799273 , 0.806494 , 0.800957
          5, 0.788408 ,
                  0.819297 , 0.78551 , 0.790396 , 0.828836 ]),
           'fit time': (0.0076389312744140625,
            0.0016126632690429688,
            0.0009551048278808594,
            0.0010819435119628906,
            0.0008447170257568359,
            0.0009279251098632812,
            0.0009770393371582031,
            0.0010519027709960938,
            0.0009191036224365234,
            0.0009129047393798828),
            'test time': (9.608268737792969e-05,
            4.6253204345703125e-05,
            3.695487976074219e-05,
            3.1948089599609375e-05,
            2.4080276489257812e-05,
            1.7881393432617188e-05,
            1.6689300537109375e-05,
            2.4080276489257812e-05,
            2.47955322265625e-05,
            2.2172927856445312e-05)}
```

OSEMN-Interpret

Our accuracy scores are looking pretty great! All above 90%, we can see that shortwave radiation is a very good indicator for solar energy production.

Using radiation to be able to predict the amount of solar energy produced on a given day has fantastic real world applications, and not just financially! This can help plan around clean and useful energy for citizens, which is a rare win/win/win. Saving money, helping people, and protecting the

environment are all possible with data like this, which can allow governments and energy companies to tailor their energy plants to create consistently profitable outputs of energy.

We can also see relative trends in CO2 production, and the relationship that different energy sources have on carbon emissions. Looking at our models, we can see relatively low RMSE and MAE scores for our RandomForest and XGBoost, which raises our confidence in their accuracy.

Using this new information, power plants can accurately predict the output of renewable energy based on weather patterns, and carbon emissions of whichever energy they decide to utilize when constructing a powerplant. This should take some of the guesswork out of predicting the impacts of different energy sources.

In []: