Comparing the Growth of Functions as Inputs $(x \text{ or } n) \rightarrow \infty$

Suppose f and g are real-valued functions on a domain that includes nonnegative real numbers. We say that

• *f* is of order at most *g*, written f(x) is O(g(x)), iff there exists C > 0 and $k \ge 0$ such that $|f(x)| \le C|g(x)|$, for all real numbers x > k.

We call *C*, *k* **witnesses** to this **Big-***O* relationship.

• *f* is of order at least *g*, written f(x) is $\Omega(g(x))$, iff there exists C > 0 and $k \ge 0$ such that

$$|f(x)| \ge C|g(x)|$$
, for all real numbers $x > k$.

• f is of order g, written f(x) is $\Theta(g(x))$, iff f is simultaneously of order at most g and of order at least g.

Note: Similar definitions hold for sequences (functions from \mathbb{N} to \mathbb{R}).

Examples:

1. Find witnesses that demonstrate $f(x) = 3x^3 + 2x + 7$ is $O(x^3)$.

From graph, it appears $|3x^3 + 2x + 7| \le 4|x^3|$ when x > 3Or, without anaphims: Dr, without graphing:

2. Show that $f(x) = \frac{15\sqrt{x}(2x+9)}{x+1}$ is $\Theta(x^{1/2})$.

To show
$$O(\sqrt{x})$$
, want a series of \leq starting w, $\frac{15\sqrt{x}/2x+9}{x+1}$

$$\frac{15\sqrt{x}(2x+9)}{x+1} \leq \frac{15\sqrt{x}(3x)}{x+1} \leq \frac{15\sqrt{x}(3x)}{x} = 45\sqrt{x}$$

$$\frac{15\sqrt{x}(2x+9)}{x+1} \leq \frac{15\sqrt{x}(3x)}{x} = 45\sqrt{x}$$

=> left for is
$$O(\sqrt{x})$$
 with withesses $C=45$ $k=9$

Now show f is
$$\Omega(\sqrt{x})$$
. Start

$$\frac{15\sqrt{x}(2x+9)}{x+1} \geq \frac{15\sqrt{x}(2x)}{x+1} \geq \frac{15\sqrt{x}(2x)}{2x} = 15\sqrt{x}$$

$$5. \quad f \text{ is } \Omega(\sqrt{x}) \text{ with witnesses} : C=15, k=1$$

f is O(g(x)) since withesses C, k, say so ? f is $\Omega(g(x))$ since withesses C_2 , k_2 say so }

> C, C, max(k, k2) are vitnesses to f being $\Theta(g(x))$

There is, therefore, this increasing sequence of orders: 1, $\log_b n$, $(\log_b n)^2$, $(\log_b n)^3$, ..., n, $n \log_b n$, $n(\log_b n)^2$, ..., n^2 , $n^2 \log_b n$, n^3 , ..., n^n , ..., n^n .

Theorem 1: Let f(x) be a polynomial of degree n—that is,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

with $a_n \neq 0$. Then

- f(x) is $O(x^s)$ for all integers $s \ge n$.
- f(x) is not $O(x^r)$ for all integers r < n.
- f(x) is $\Omega(x^r)$ for all integers $r \le n$.
- f(x) is not $\Omega(x^s)$ for all integers s > n.
- f(x) is $\Theta(x^n)$.

MATH 251 Notes	Comparing the Growth of Functions as Inputs $(x \text{ or } n) \to \infty$