ЛАБОРАТОРНАЯ РАБОТА №**8** Целочисленная арифметика многократной точности

В данной работе рассмотрим алгоритмы для выполнения арифметических операций с большими целыми числами. Будем считать, что число записано в b-ичной системе счисления, b — натуральное число, $b \ge 2$. Натуральное b-разрядное число будем записывать в виде:

 $u = u_1 u_2 ... u_n$.

Алгоритм 1 (сложение неотрицательных целых чисел)

Вход. Два неотрицательных числа $\mathbf{u} = \mathbf{u}_1 \mathbf{u}_2 ... \mathbf{u}_n$ и $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 ... \mathbf{v}_n$; разрядность чисел n; основание системы счисления b.

Выход. Сумма $w = w_0 w_1 ... w_n$, где $w_0 - u_0 w_0$ переноса — всегда равная 0 либо 1.

- 1. Присвоить $\mathbf{j} := \mathbf{n}, \mathbf{k} := \mathbf{0}$ (ј идет по разрядам, \mathbf{k} следит за переносом).
- 2. Присвоить $\mathbf{w_j} = (\mathbf{u_j} + \mathbf{v_j} + \mathbf{k})$ (mod b), где $\mathbf{w_j}$ наименьший неотрицательный вычет в данном классе вычетов; $\mathbf{k} = |(\mathbf{u_i} + \mathbf{v_i} + \mathbf{k}) / \mathbf{b}|$.
- 3. Присвоить $\mathbf{j} := \mathbf{j} \mathbf{1}$. Если $\mathbf{j} > \mathbf{0}$, то возвращаемся на шаг 2; если $\mathbf{j} = \mathbf{0}$, то присвоить $\mathbf{w}_0 := \mathbf{k}$ и результат: \mathbf{w} .

Алгоритм 2 (вычитание неотрицательных целых чисел)

Вход. Два неотрицательных числа $\mathbf{u} = \mathbf{u}_1 \mathbf{u}_2 ... \mathbf{u}_n$ и $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 ... \mathbf{v}_n$, $\mathbf{u} > \mathbf{v}$; разрядность чисел n; основание системы счисления b.

Выход. Разность $w = w_1w_2...w_n = u - v$.

- 1. Присвоить $\mathbf{j} := \mathbf{n}, \mathbf{k} := \mathbf{0}$ ($\mathbf{k} \mathbf{3}$ аем из старшего разряда).
- 2. Присвоить $\mathbf{w_j} = (\mathbf{u_j} \mathbf{v_j} + \mathbf{k})$ (mod b), где $\mathbf{w_j}$ наименьший неотрицательный вычет в данном классе вычетов; $\mathbf{k} = \lfloor (\mathbf{u_i} \mathbf{v_i} + \mathbf{k}) / \mathbf{b} \rfloor$.
- 3. Присвоить $\mathbf{j} := \mathbf{j} \mathbf{1}$. Если $\mathbf{j} > \mathbf{0}$, то возвращаемся на шаг 2; если $\mathbf{j} = \mathbf{0}$, то результат: \mathbf{w} .

Алгоритм 3 (умножение неотрицательных целых чисел столбиком)

Вход. Числа $\mathbf{u} = \mathbf{u}_1 \mathbf{u}_2 ... \mathbf{u}_n$, $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 ... \mathbf{v}_m$; основание системы счисления b. Выход. Произведение $\mathbf{w} = \mathbf{u} \mathbf{v} = \mathbf{w}_1 \mathbf{w}_2 ... \mathbf{w}_{n+m}$.

1. Выполнить присвоения:

$$\mathbf{w}_{\mathsf{m}+1} := \mathbf{0}, \mathbf{w}_{\mathsf{m}} := \mathbf{0}, ..., \mathbf{w}_1 := \mathbf{0}, \mathbf{j} := \mathbf{m}$$
 (j перемещается по номерам разрядов числа \mathbf{v} от младших к старшим).

- 2. Если $\mathbf{v_j} = \mathbf{0}$, то присвоить $\mathbf{w_j} := \mathbf{0}$ и перейти на шаг 6.
- 3. Присвоить $\mathbf{i} := \mathbf{n}, \mathbf{k} := \mathbf{0}$ (Значение \mathbf{i} идет по номерам разрядов числа \mathbf{u}, \mathbf{k} отвечает за перенос).
- 4. Присвоить

$$\mathbf{t} := \mathbf{u_i} \cdot \mathbf{v_j} + \mathbf{w_{i+j}} + \mathbf{k}, \mathbf{w_{i+j}} := \mathbf{t} \pmod{\mathbf{b}}, \mathbf{k} := \lfloor \mathbf{t} / \mathbf{b} \rfloor,$$
где $\mathbf{w_{i+j}}$ — наименьший неотрицательный вычет в данном классе вычетов.

- 5. Присвоить **i := i 1**. Если **i > 0**, то возвращаемся на шаг 4, иначе присвоить **w**_j := **k**.
- 6. Присвоить $\mathbf{j} := \mathbf{j} \mathbf{1}$. Если $\mathbf{j} > \mathbf{0}$, то вернуться на шаг 2. Если $\mathbf{j} = \mathbf{0}$, то результат: \mathbf{w} .

Алгоритм 4 (быстрый столбик)

Вход. Числа $\mathbf{u} = \mathbf{u}_1 \mathbf{u}_2 ... \mathbf{u}_n$, $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 ... \mathbf{v}_m$; основание системы счисления b. Выход. Произведение $\mathbf{w} = \mathbf{u} \mathbf{v} = \mathbf{w}_1 \mathbf{w}_2 ... \mathbf{w}_{n+m}$.

- 1. Присвоить **t := 0**.
- 2. Для **s от 0 до n + m 1 с шагом 1** выполнить шаги 3 и 4.
- 3. Для $\mathbf{t} = \mathbf{0}$ до \mathbf{n} выполнить присвоение $\mathbf{t} := \mathbf{t} + \mathbf{u}_{\mathbf{n}-\mathbf{s}+\mathbf{t}} \cdot \mathbf{v}_{\mathbf{m}-\mathbf{t}+\mathbf{s}}.$
- 4. Вычислить

$$W_{s+1} := t \pmod{b}, t := [t / b],$$

где $\mathbf{w_{s+1}}$ — наименьший неотрицательный вычет по модулю b. Результат: \mathbf{w} .

Алгоритм **5** (деление многоразрядных целых чисел)

Вход. Числа $\mathbf{u} = \mathbf{u}_{\mathbf{n}}...\mathbf{u}_{1}\mathbf{u}_{0}, \mathbf{v} = \mathbf{v}_{t}...\mathbf{v}_{1}\mathbf{v}_{0}, \mathbf{n} \ge \mathbf{t} \ge \mathbf{1}, \mathbf{v}_{t} ≠ \mathbf{0}$, разрядность чисел соответственно \mathbf{n} и \mathbf{t} .

Выход. Частное $q = q_{n-t}...q_0$, остаток $r = r_t...r_0$.

- 1. Для **j** от 0 до **n t** присвоить $q_j := 0$.
- 2. Пока $\mathbf{u} \ge \mathbf{v} \, \mathbf{b}^{n-t}$, выполнять: $\mathbf{q}_{n-t} := \mathbf{q}_{n-t} + \mathbf{1}, \, \mathbf{u} := \mathbf{u} \mathbf{v} \, \mathbf{b}^{n-t}$.
- 3. Для **i := n, n 1, ..., t + 1** выполнять пункты 3.1 3.4:
 - **3.1.** Если $u_i \ge v_t$, то присвоить

$$q_{i-t-1} := b - 1$$

иначе присвоить

$$q_{i-t-1} := [(u_ib + u_{i-1}) / v_t].$$

3.2. Пока

$$q_{i-t-1}(v_tb + v_{t-1}) > u_ib^2 + u_{i-1}b + u_{i-2}$$

выполнять

$$q_{i-t-1} := q_{i-t-1} - 1$$
.

3.3. Присвоить

$$u := u - q_{i-t-1}v b^{i-t-1}$$
.

3.4. Если **u < 0**, то присвоить

$$u := u + v b^{i-t-1}, q_{i-t-1} := q_{i-t-1} - 1.$$

4. r := u.

Примеры результатов вычисления:

Сложение:

u = 123456789012345

v = 987654321098765

Вычитание:

u = 987654321098765

v = 123456789012345

w = 864197532086420

Умножение столбиком:

u = 123456789012345

v = 678901234567890

w = 838102341346165530864197532086050

Быстрое умножение:

u = 123456789012345

v = 678901234567890

w = 838102341346165530864197532086050

Деление:

v = 250000000000000

q = 4

r = 0

Деление (Дополнительный Пример):

u = 1234567890123456789012345

v = 123456789012345

q = 100000000100000000

r = 12345

Выводы

В ходе данной лабораторной работы было рассмотрено 5 алгоритмов, обспечивающих более высокую производительность машинного сложения, вычитание, умножения и деления больших чисел. Данные алгоритмы были программно реализованы на языке *Julia*. Данные программы могут быть использованы для работы с числами любой счетной системы (в частности десятичной) и превышающими размер стандартных типов данных.