

Arbres de Décision avec SciKit Learn

Fichiers sur

https://github.com/mkirschpin/CoursPython

Arbres de Décision

Bases

- Méthode de classification simple
- Méthode supervisée
 (données étiquetées)
- Comparable à un enchainement de « questions » (conditions) if — else

La méthode cherche l'ordre des « questions » de manière à minimiser la taille de l'arbre

Arbres de Décision en Python

https://scikit-learn.org

Bibliothèque SciKit Learn

- Principale bibliothèque de Machine Learning en Python
- Nombreuses méthodes supervisées et non-supervisées
 - Arbres de décision, régression linéaire, K-means...

from sklearn.tree import DecisionTreeClassifier

- Nombreux outils d'aide
 - Exemples de datasets, prétraitement et manipulation des datasets, métriques d'évaluation...

```
from sklearn import datasets
from sklearn.model_selection import ...
from sklearn.metrics import ...
```


Arbres de Décision en Python

Méthode de classification

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

Création de **l'objet** qui contiendra notre **arbre de décision**.

C'est lui qu'on va manipuler pour créer l'arbre et l'utiliser.

L'opération « fit » réalise l'entraînement du modèle (« training » ou « fitting »)

clf.fit (x_train[feature_names], y_train[target])

Pour l'entrainement, l'opération « **fit** » a besoin de deux **DataFrames** ...

Données d'entrainement (training features)

Classes (target) pour les données de training

y_pred = clf.predict(x_test[feature_names])

Données de test (**testing features** Une fois entraîné, le modèle peut être **testé**, puis utilisé pour la **classification**...

Premier exemple

On n'oublie pas la bibliothèque **Pandas**

- Créer un nouveau Notebook Jupyter...

import pandas as pnd

Créer le DataFrame de training

Identifier dans deux variables les features et le target

```
feature_names = ['Chance Rain', 'UV Index']
target = 'Umbrella'
```

Créer le DataFrame de test

Premier exemple

- Créer son objet **DecisionTreeClassifier**

On n'oublie pas la bibliothèque sklearn.tree

```
from sklearn.tree import DecisionTreeClassifier **

clf = DecisionTreeClassifier()
```

- Entrainer son modèle

```
clf.fit ( dfUmbrella[feature_names] , dfUmbrella[target] )
```

-Tester son modèle

```
y_pred = clf.predict(x_test)
print (y_pred)
```


Arbres de Décision en Python

Comment visualiser son modèle ?

- L'arbre de décision créé peut être visualisé

```
Mode texte export_text
```

```
Mode graphique (MatPlot) plot_tree
```

```
from sklearn.tree import plot_tree
plot tree(clf,
     feature_names=feature_names,
     class names=
                                         Chance Rain <= 0.55
                                            gini = 0.48
            ['Non','Oui'],
                                            samples = 5
                                           value = [2, 3]
                                            class = Oui
     fontsize=10)
                            UV Index \leq 7.0
                                                           gini = 0.0
                             aini = 0.444
                                                           samples = 2
                             samples = 3
                                                          value = [0, 2]
                             value = [2, 1]
                             class = Non
                                            gini = 0.0
              samples = 2
                                            samples = 1
```

value = [0, 1]

class = Oui

value = [2, 0]

class = Non

Arbres de Décision en Python

- Quelle est l'importance de chaque feature ?
 - Certains *features* peuvent **contribuer plus** à la décision que d'autres
 - On peut connaitre le niveau d'importance des features dans un l'arbre entrainé

Création d'un DataFrame avec les **features** et leur **importance** (juste pour **visualiser** plus facilement)

	feature_names	importance
0	Chance Rain	0.444444
1	UV Index	0.55556

bibliothèque sklearn.tree

• Exercice : visualisation d'arbre de décision

- Utiliser export_text pour visualiser
 l'arbre de décision réalisé
 from sklearn.tree import export_text
 from sklearn.tree import plot_tree
- Utiliser plot_tree pour produire une image de l'arbre
- Afficher l'importance des features utilisées

Suggestions:

```
print ( clf.feature_importances_ )
```


Arbres de Décision en Python

- Etapes de traitement avec les arbres de décision
 - 1) Préparer les données (nettoyage)
 - Uniquement des données numériques (limitation Sklearn)
 - 2) Séparer les données en 2 ensembles : training et test
 - Training: ± 70 % / Test: ± 30 %
 - 3) Choisir les *features* (X set) et le target (Y set)
 - 4) Création du modèle
 - Entrainement avec l'opération fit
 - 5) Tester & évaluer le modèle
 - Tester avec l'opération predict et les données de test
 - Comparer les valeurs obtenues et les targets réels
 - Choisir la métrique appropriée (accuracy, precision, recall...)

Préparer les données

- Préparer les données (nettoyage)
 - Il faut s'assurer que les données sont propres
 - Éviter les valeurs vides (NA)
 - Uniquement des données numériques

- Encoders (LabelEncoder, OrdinalEncoder, OneHotEncoder)
 - Transformation des catégories en valeurs numériques

```
['approves', 'disaproves'] — [ 0 1 ]
```

- Différents encoders disponibles sur sklearn.preprocessing
- LabelEncoder: Transformation des labels (target) en valeurs entières (0 à n-1)
- OrdinalEncoder : Transformation des données (features) en valeurs entières (de 0 à n-1)
- OneHotEncoder: Transformation des données (features) en valeurs binaires

Données « symboliques » Catégories

20.009							
	sex	region	browser	vote			
0	male	from US	uses Safari	approves			
1	female	from Europe	uses Firefox	disaproves			
2	female	from US	uses Safari	approves			
3	male	from Europe	uses Safari	approves			
4	female	from US	uses Firefox	disaproves			
5	male	from Europe	uses Chrome	disaproves			
6	female	from Asia	uses Chrome	approves			
7	male	from Asia	uses Chrome	approves			

Target (classes)
« Y set »

Y = labEnc.inverse_transform(Yenc)

Transformation inverse (des valeurs aux labels)

Encoders

LabelEncoder

Conversion des targets en valeurs numériques

```
from sklearn.preprocessing import LabelEncoder

labEnc = LabelEncoder()
labEnc.fit( Y_set )

Création et entrainement de l'encoder
```

```
labEnc.classes_ —— Classes retrouvées
['approves' 'disaproves']
```

```
['approves' 'disaproves' 'approves' 'disaproves' 'disaproves' 'approves' 'approves' 'approves' 'approves' 'approves' 'approves' 'approves' 'disaproves' 'disapro
```

[0 1 0 0 1 1 0 0] ——— Y_enc : valeurs encodées

Données « symboliques » Catégories

		careg	000	
	sex	region	browser	vote
0	male	from US	uses Safari	approves
1	female	from Europe	uses Firefox	disaproves
2	female	from US	uses Safari	approves
3	male	from Europe	uses Safari	approves
4	female	from US	uses Firefox	disaproves
5	male	from Europe	uses Chrome	disaproves
6	female	from Asia	uses Chrome	approves
7	male	from Asia	uses Chrome	approves

Features (variables)

« X_set »

X_set : valeurs originales

['male' 'from Europe' 'uses Safari']
['female' 'from US' 'uses Firefox']
['male' 'from Europe' 'uses Chrome']
['female' 'from Asia' 'uses Chrome']

Xord: valeurs encodées

Encoders

OrdinalEncoder

Conversion des features en valeurs entiers

from sklearn.preprocessing import OrdinalEncoder

ordEnc = OrdinalEncoder()
ordEnc.fit(X_set)

Création et
entrainement de
l'encoder

Xord = ordEnc.transform(X_set)

Transformation des valeurs

valeurs

X = ordEnc.inverse_transform(Xord)

[1. 1. 2.] Transformation inverse (des valeurs aux données)

[0. 2. 1.]

[1. 1. 0.] ordEnc.categories_ Liste des catégories

Données « symboliques » Catégories

	sex	region	browser	vote
0	male	from US	uses Safari	approves
1	female	from Europe	uses Firefox	disaproves
2	female	from US	uses Safari	approves

from US from Europe from Asia

1^{er} Binaire 2^{ème} Binaire 3^{ème} Binaire

001 010 100

Chaque **colonne** sera « éclatée » en **plusieurs**, en fonction du nombre de **catégories** présentes.

Encoders

OneHotEncoder

Conversion des features en valeurs binaires

from sklearn.preprocessing import OneHotEncoder

ohEnc = OneHotEncoder()
ohEnc.fit(X_set)

Création et
entrainement de
l'encoder

Xoh = ohEnc.transform(X_set)
Transformation
 des valeurs

X = ohEnc.inverse_transform(Xoh)

Transformation inverse (des valeurs aux données)

ohEnc.get_feature_names() Liste des catégories

Séparer les données

- Séparer les données en 2 ensembles : training et test
 - Répartir l'ensemble des données en deux jeux de données
 - Training : données qui seront utilisées pour entraîner le modèle
 - Test : données qui seront utilisées pour évaluer le modèle
 - Proportion habituelle: 70/80 % vs 30/20 %
 - Opération train_test_split
 - Sépare de manière « aléatoire » les données en deux ensembles

```
from sklearn.model_selection import train_test_split
```

df_train , df_test = train_test_split (df, test_size=0.3)

Point Python: **affectation multiple**L'opération retourne **2 valeurs**, chaque **variable** en reçoit une (**dans l'ordre**)

Dataset complet

Proportion des données à réserver pour les tests

Séparer les données

from sklearn.model_selection import train_test_split

On n'oublie pas l'import

iris_train , iris_test = train_test_split (df_iris, test_size=0.3)

Int64Index: 105 entries, 54 to 148
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	105 non-null	float64
1	sepal width (cm)	105 non-null	float64
2	petal length (cm)	105 non-null	float64
3	petal width (cm)	105 non-null	float64

iris_train.info()
iris_train.head(5)

sep	al length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_name
54	6.5	2.8	4.6	1.5	1	versicolor
1	4.9	3.0	1.4	0.2	0	setosa
146	6.3	2.5	5.0	1.9	2	virginica
16	5.4	3.9	1.3	0.4	0	setosa
102	7.1	3.0	5.9	2.1	2	virginica

Chaque ensemble contient une partie des données

<class 'pandas.core.rrame.DataFrame'>
Int64Index: 45 entries, 61 to 95
Data columns (tetal 6 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	45 non-null	float64
1	sepal width (cm)	45 non-null	float64
2	petal length (cm)	45 non-null	float64
3	petal width (cm)	45 non-null	float64

iris_test.info()
iris test.head(5)

train_test_split définit deux **vues distinctes** sur les données

	sep	oal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_name
61	1	5.9	3.0	4.2	1.5	1	versicolor
19		5.1	3.8	1.5	0.3	0	setosa
12		4.8	3.0	1.4	0.1	0	setosa
8		4.4	2.9	1.4	0.2	0	setosa
123		6.3	2.7	4.9	1.8	2	virginica

Dataset Iris

Exercice : Préparation dataset Iris

Pour nos prochains exercices, on utilisera le dataset Iris fourni avec SciKit Learn

- Créer un nouveau Notebook
- Importer les datasets de SciKit Learn
 - from sklearn import datasets
- Charger le dataset Iris dans une variable
 - iris = datasets.load_iris()
- Utiliser la fonction « dir » pour voir les attributs de l'objet iris
 - dir(iris)
- Afficher à l'écran le description de l'objet iris (iris.DESCR)
 - print (iris.DESCR)
- Afficher sur l'écran les noms des features et des targets contenues dans le dataset (iris.feature_names et iris.target_names).

['DESCR',

'data',

'frame',

'target',

'feature_names',

'target_names']

'filename',


```
from sklearn import datasets
iris = datasets.load_iris()
dir(iris)
```

Iris plants dataset

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

Attribut **DESCR** de l'objet

« iris »

```
print (iris.DESCR)
print (iris.feature_names)
print (iris.target_names)
```

```
['sepal length (cm)', 'sepal width (cm)',
'petal length (cm)', 'petal width (cm)']
```

feature_names

Attributs de

l'objet « iris »

:Summary Statistics:

==========	====	====	======	=====	=========	
	Min	Max	Mean	SD	Class Cor	relation
==========	====	====	======	=====		
sepal length:	4.3	7.9	5.84	0.83	0.7826	
sepal width:	2.0	4.4	3.05	0.43	-0.4194	
petal length:	1.0	6.9	3.76	1.76	0.9490	(high!)
petal width:	0.1	2.5	1.20	0.76	0.9565	(high!)
	====	====				

['setosa' 'versicolor' 'virginica']

- Exercice : Préparation du dataset Iris
 - Construire un nouveau DataFrame df_iris avec les données issues du dataset lris (iris.data).

- Ajouter une colonne « target » au DataFrame avec les valeurs de targets du dataset (iris.target).
 - df_iris['target'] = iris.target
- Afficher les premières lignes du nouveau DataFrame


```
import pandas as pnd
```

<pre>df_iris.head()</pre>	:	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2

```
df_iris['target'] = iris.target
```

Si on veut ajouter aussi le target_name

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa

- Exercice : Séparation données training et test
 - Séparer le DataFrame df_iris en deux ensembles
 - iris_train : DF pour le training
 - iris_test : DF pour les tests
 - Regarder avec « info » les informations de chaque ensemble
 - Afficher les premières lignes de chaque ensemble

iris_train, iris_test = train_test_split (df_iris, test_size=0.3)

iris_train.info()
iris_train.head(5)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_name
54	6.5	2.8	4.6	1.5	1	versicolor
1	4.9	3.0	1.4	0.2	0	setosa
146	6.3	2.5	5.0	1.9	2	virginica
16	5.4	3.9	1.3	0.4	0	setosa
102	7.1	3.0	5.9	2.1	2	virginica

Int64Index: 105 entries, 54 to 148				
Data columns (total 6 columns):				
#	Column	Non-Null Count	Dtype	
0	sepal length (cm)	105 non-null	float64	
1	sepal width (cm)	105 non-null	float64	
2	petal length (cm)	105 non-null	float64	
3	petal width (cm)	105 non-null	float64	
4	target	105 non-null	int64	
5	target_name	105 non-null	object	
<pre>dtypes: float64(4), int64(1), object(1)</pre>				

memory usage: 5.7+ KB

Choisir les features et du target

 Choisir les colonnes qui seront utilisées en tant que feature (X set) et celle qui contient le target (Y set).

```
vue partielle sur les données
(uniquement les features à utiliser)
Liste de features (features names)
qui seront utilisées
```

y_train = df_train['target']

vue partielle sur les données

(uniquement les targets)

Colonne avec les valeurs
de target associées aux
données

 On fait la même chose pour l'ensemble de test

Construire le modèle

• Construire le modèle - arbre de décision

feature_names=feature_names,

spacing=3, decimals=2)

 Une fois les données préparées et séparées, on peut entraîner le modèle

```
Création du modèle
       clf = DecisionTreeClassifier()
                                                     Entraînement (fitting)
                                                           du modèle
       clf.fit ( x_train, y_train )
                    Données de training
                                                                   Visualisation de
           features de training targets de training
                                                                   l'arbre entrainé
                                                                     (optionnel)
                                                 plot_tree ( clf,
export text ( clf,
```

feature_names=feature_names,

class_names=target_names,

fontsize=10)

Exercice : Choix des features et du target

- On va utiliser toutes les **features** du dataset **Iris** pour l'analyse
- Préparer deux variables x_train et y_train avec les données d'entraînement (respectivement features et target)
- Faire la même chose avec les données de test (x_test et y_test)

```
x_train = iris_train[iris.feature_names]
y_train = iris_train['target']

x_test = iris_test[iris.feature_names]
y_test = iris_test['target']

21      0
49      0
35      0
11      0
17      0
Name: target, dtype: int64
```


	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (
21	5.1	3.7	1.5	
49	5.0	3.3	1.4	
35	5.0	3.2	1.2	
11	4.8	3.4	1.6	

Exercice : Entraînement du modèle

- Créer un arbre de décision
- Entraîner le modèle avec les variables de training qu'on vient de créer

```
Afficher l'arbre entrainé

                                                          --- petal width (cm) <= 0.80
                                                             I--- class: 0
                                                          --- petal width (cm) > 0.80
                                                             --- petal width (cm) <= 1.65
from sklearn.tree import DecisionTreeClassifier
                                                                 |--- class: 1
                                                                 petal width (cm) > 1.65
clf = DecisionTreeClassifier()
                                                                 |--- petal width (cm) <= 1.75
clf.fit (x train, y train)
                                                                    |--- sepal width (cm) <= 2.75
                                                                        |--- class: 2
                                                                    |--- sepal width (cm) > 2.75
                                                                        |--- class: 1
                                                                 |--- petal width (cm) > 1.75
                                                                    |--- petal length (cm) <= 4.85
texte = export_text(clf,
                                                                        |--- sepal length (cm) <= 5.95
               feature_names=iris.feature_names,
                                                                           |--- class: 1
               spacing=3, decimals=2)
                                                                        --- sepal length (cm) > 5.95
print (texte)
                                                                           |--- class: 2
                                                                    |--- petal length (cm) > 4.85
                                                                         --- class: 2
```


- Tout modèle doit être testé
 - Vérification / validation des résultats
- Usage des données de test (test set)
 - Comparaison entre les résultats obtenus avec le modèle et les valeur de target identifiés dans les données

- Pour évaluer le modèle, on utilise des métriques
- Différentes métriques connues
 - Accuracy : proportion (ou nb) de prévisions correctes
 - Precision : proportion des corrects sur l'ensemble des réponses
 - Recall : proportion des corrects sur ce qu'on devrait retrouver
 - Confusion matrix : matrice croisant les valeurs observées et les valeurs prédites

— ...

- Plusieurs métriques disponibles dans la bibliothèque
 - Bibliothèque sklearn.metrics
 - accuracy_score
 - precision_score
 - recall_score
 - confusion_matrix


```
from sklearn.metrics import accuracy_score
        Résultat : proportion entre 0 et 1
 acc = accuracy_score ( y_test , y_pred )
        Ce qu'on avait sur les
                                            Ce qu'on a obtenu avec
          données (Y true)
                                            le modèle (Y predicted)
                                        print(acc)
                                                     → 0.9555555555555
acc = accuracy_score ( y_test, y_pred, normalize=False )
       Résultat : nombre de prévisions correctes
                            print(acc, "/" , y_test.count())
```



```
from sklearn.metrics import precision_score, recall score
            Ce qu'on avait sur les
                                                 Ce qu'on a obtenu avec
              données (Y true)
                                                 le modèle (Y predicted)
  prec = precision_score ( y_test, y_pred, average='weighted' )
 Si plusieurs labels, on peut calculer une valeur de précision
 en tenant compte du nombre d'instances de chaque label
 ou calculer la précision pour chaque label
                                                  average=None
                                                  average='binary'
           Si labels binaires (True / False)
Même chose pour le recall...
rec = recall_score ( y_test, y_pred, average='weighted' )
                    average='weighted'
                                               average=None
precision score
                     0.9611111111111111
                                            [1.
                                                   1.
                                                         0.8751
 recall score
                     0.95555555555556
                                            [1.
                                                        0.84615385 1.
```


from sklearn.metrics import confusion_matrix

```
Ce qu'on avait sur les
données (Y true)

Ce qu'on a obtenu avec
le modèle (Y predicted)

mc = confusion_matrix ( y_test ,y_pred )
```

Classe prédite par le modèle

<pre>print (mc)</pre>	0)		0 (setosa)	1 (versicolor)	2 (virginica)
[[14 0 0]	éelle	0 (setosa)	14	0	0
[0 16 0]	asse r	1 (versicolor)	0	16	0
[0 3 12]]	Clas	2 (virginica)	0	3	12

- Exercice : Tester & évaluer le modèle
 - Utiliser le modèle avec les données de test
 - Afficher les valeurs obtenues
 - Utiliser la métrique « accuracy » afin d'évaluer les résultats
 - Utiliser la métrique « precision » afin d'évaluer les résultats par label
 - Afficher la « confusion matrix »

Suggestion: Si on veut afficher les target names for val in y_pred: label = iris.target_names[val] print (val, label)

Validation croisée

Important :

- -Le modèle peut varier à chaque exécution
- La qualité et la taille du dataset ont une influence importante sur la qualité du modèle

Validation croisée :

- Objectif :

 Minimiser les problèmes liés au dataset (pas ou peu équilibré, trop petit...)

- Principe:

- Réaliser **plusieurs itérations** (c.a.d. plusieurs modèles) avec différents ensembles de training et de test
- Multiples divisions aléatoires training / test

Validation croisée

0.977777777777777

- Illustration du principe avec ShuffleSplit
 - -ShuffleSplit produit une liste d'index pour les splits

```
from sklearn.model_selection import ShuffleSplit
    rs = ShuffleSplit ( n_splits=5 , test_size=0.3 )
  Nombre d'itérations à faire
                                                 Proportion ensemble de test
    —— On garde les scores obtenus dans une liste
                                                                   À chaque itération,
    for train_index, test_index in rs.split(df_iris) :
                                                                    split fournit deux
                                                                   indexes: un pour le
        x_train = df_iris.loc[train_index, iris.feature names]
                                                                    training set et un
        x_test = df_iris.loc[test_index, iris.feature_names]
                                                                      pour test set
        clf = DecisionTreeClassifier()
                                             On fait un nouveau modèle
        clf.fit(x train, y train)
        y pred = clf.predict(x test)
                                             avec ces sets et on le test
        accuracy_scores.append( accuracy_score(y_test, y_pred) )
À la fin, les ≠ valeurs d'accuracy sont disponibles
                                                 [0.9333333333333333, 0.955555555555555
```


- Exercice : Tester le principe d'évaluations multiples
 - Construire et évaluer plusieurs modèles
 - Utiliser ShuffleSplit pour la division training/test du dataset

```
rs = ShuffleSplit(n_splits=5 , test_size=0.3)
accuracy_scores = []
```

•1^{er} bloc : préparer le **SuffleSplit** et la liste pour les **évaluations**

```
2<sup>eme</sup> bloc : préparer X et Y sets de training et de tests
```

3^{eme} bloc : entrainer et tester un nouveau modèle

```
for train_index, test_index in rs.split(df_iris) :
    x_train = df_iris.loc[train_index, iris.feature_names]
    x_test = df_iris.loc[test_index, iris.feature_names]

    y_train = df_iris.loc[train_index, 'target']
    y_test = df_iris.loc[test_index, 'target']

    clf = DecisionTreeClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    accuracy_scores.append(accuracy_score(y_test, y_pred))
```


Validation croisée

Opération cross_validate automatise le processus

Objet **modèle** qui sera entraîné plusieurs fois

Ensemble des données (X set et Y set), sans séparation entre training et test.

Metrique choisie pour **l'évaluation** des **tests** Objet **ShuffleSplit** qui sera utilisé pour **diviser** les données à **chaque itération**

Résultat : un dictionnaire avec les **temps d'exécution** et les **métriques**

Option return_estimator=True pour récupérer les arbres générées

scores = pnd.DataFrame (results)

	fit_time	score_time	test_score
0	0.002809	0.003653	0.955556
1	0.005952	0.003189	0.955556
2	0.002753	0.002373	0.955556
3	0.002047	0.001394	0.977778
4	0.002096	0.002007	0.955556
5	0.005273	0.003410	0.955556

• Exercice : Réaliser une validation croisée

- Toujours avec le dataset Iris, réaliser une validation croisée
- Construire un DataFrame avec les résultats
- Afficher les résultats obtenus

```
clf = DecisionTreeClassifier()
rs = ShuffleSplit (n_splits=10, test_size=0.3)
```

1^{er} bloc : préparer les objets **DecisionTreeClassifier** et **SuffleSplit**

```
x_set = df_iris[iris.feature_names]
y_set = df_iris['target']
```

2^{ème} bloc : préparer le **X set (features)** et **Y set (target**) avec l'ensemble des données

```
results = cross_validate ( clf , x_set , y_set , cv=rs, scoring='accuracy' )
```

3^{ème} bloc : utiliser l'opération cross_validate pour réaliser la validation croisée

```
scores = pnd.DataFrame (results)
scores['test_score'].plot(figsize=(10,4))
```

4^{ème} bloc : **visualiser** les résultats (à l'aide d'un **DataFrame**)