# Named Entity Recognition Chapter 22

# Named Entity

Anything that can be referred to with a proper name

• People (PER):

• Organization (ORG):

• Location (LOC):

Geo-political entity (GPE):

• Facility (FAC):

• Vehicles (VEH):

Individuals, fiction characters, ...

Companies, Agencies, ...

Physical extents, mountain ranges, seas, ....

Countries, states, ...

Bridges, airports, buildings

Planes, trains and automobiles



## Goal of NER

**Turing** is often considered to be the father of modern computer science.

NER: identifying *Turing* is a <u>Person</u> (PER)

#### Generic NER

Focuses on: person, location, and organization

- Specialized applications:
  - Weapons
  - De-identification
  - Drug-drug interactions
  - Nano-particle characteristics
  - Works of art
  - Proteins
  - Genes

## Extended NER

 The notion of NER is commonly extended to include things that are not entities per se

- Temporal expressions
  - dates, times, named events
- Numerical expressions
  - Measurements, prices, counts

## **Example of Annotated NER Text**

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said, a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

#### **Text Contains**

- 12 mentions
  - 4 organizations (ORG)
  - 4 locations (LOC)
  - 2 times (TIME)
  - 1 person (PER)
  - 1 money (MONEY)

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower cost carriers. ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said, a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

# Ambiguity in NER

- Two types of ambiguity
  - The mention can refer to different entities of the same type
    - JFK could refer to the former president or his son
  - The mention can refer to more than one entity type
    - JFK could be a person (PER) or an airport (LOC)

#### **Christopher Manning**



## Sequence problems

- Many problems in NLP have data which is a sequence of characters, words, phrases, lines, or sentences ...
- We can think of our task as one of labeling each item

| VBG     | NN          | IN | DT | NN  | IN | NN       |
|---------|-------------|----|----|-----|----|----------|
| Chasing | opportunity | in | an | age | of | upheaval |

#### **POS tagging**

| PERS    | 0         | 0      | 0  | ORG  | ORG   |
|---------|-----------|--------|----|------|-------|
| Murdoch | discusses | future | of | News | Corp. |

#### Named entity recognition



#### **Christopher Manning**



## **Encoding classes for sequence labeling**

| IO encoding | IOB encoding |
|-------------|--------------|
|-------------|--------------|

Fred PER B-PER

showed O C

Sue PER B-PER

Mengqiu PER B-PER

Huang PER I-PER

's O O

new O O

painting O O

# NER as Sequence Labeling

- Standard approach to NER:
  - Word-by-word labeling task
  - <u>Classifiers</u> are trained to label the tokens in a text with tags that indicate the presence of a particular kind of name entity

[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Time Wagner] said.

| Words       | Label |
|-------------|-------|
| American    | Borg  |
| Airlines    | lorg  |
| ,           | O     |
| a           | O     |
| unit        | O     |
| of          | 0     |
| AMR         | Borg  |
| Corp.       | lorg  |
| ,           | O     |
| immediately | 0     |
| matched     | 0     |
| the         | O     |
| move        | O     |
| ,           | O     |
| spokesman   | Ο     |
| Tim         | Bper  |
| Wagner      | Iper  |
| said        | 0     |
| •           | 0     |

# Supervised Learning NER System



#### Christopher Manning



## The ML sequence model approach to NER

#### Training

- Collect a set of representative training documents
- Label each token for its entity class or other (O)
- 3. Design feature extractors appropriate to the text and classes
- 4. Train a sequence classifier to predict the labels from the data

#### Testing

- 1. Receive a set of testing documents
- 2. Run sequence model inference to label each token
- 3. Appropriately output the recognized entities

# Supervised Learning Algorithms

- Commonly used:
  - Sequence prediction algorithms:
    - CRFs
      - Conditional Random Field (CRF) model -> 1st-order linear-chain Markov
      - Eg., **Stanford NER** (Developed in Java)
    - HMMs

```
Estimating: P(y_i|x_{i-k} ... x_{i+l}, y_{i-m} ... y_{i-1})
where:
X = (x_1, ..., x_N) \text{ is an } input \text{ sequence (your sentence)}Y = (y_1, ..., y_N) \text{ is the } output \text{ sequence (NER tags)}
```

# Features

| Feature                      | Explanation                                                 |
|------------------------------|-------------------------------------------------------------|
| Lexical items                | The token to be labeled                                     |
| Stemmed Lexical Item         | The stem of the token to be labeled                         |
| Shape                        | Orthographic pattern of the target word                     |
| Character affixes            | Character-level affixes of the target and surrounding words |
| Syntactic chunk label        | Base-phrase chunk label                                     |
| Gazetteer                    | Presence of word in one or more named entity lists          |
| Predictive token(s)          | Presence of predictive words in surrounding text            |
| Bag of word / Bag of n-grams | Words and/or n-grams of the surrounding context             |

# **Shape Features**

| Shape Feature                     | Example    |
|-----------------------------------|------------|
| Lower                             | cummings   |
| Capitalized                       | Washington |
| All caps                          | IRA        |
| Mixed case                        | eBay       |
| Capitalized character with period | H.         |
| Ends in digit                     | A9         |
| Contains hyphen                   | H-P        |

## **Predictive Words**

| Predictive Feature | Entity       |
|--------------------|--------------|
| Mr.                | Person       |
| Rev.               | Person       |
| MD                 | Person       |
| Inc.               | Organization |
| Corp.              | Organization |

#### Gazeteers

- Where do these Gazeteers come from:
  - Previously:
    - Census data
    - Lists of companies
  - Now: Wikipedia
    - Artwork: novels, books, paintings, operas, plays
    - Named Objects: aircraft tanks, rifles, weapons
    - Events: playoffs, championships, races

# Available NER Systems

- Apache OpenNLP
  - https://opennlp.apache.org
- NameFinder module (OpenNLP NER)
  - <a href="https://opennlp.apache.org/docs/1.5.3/manual/opennlp.html#tools.namefind">https://opennlp.apache.org/docs/1.5.3/manual/opennlp.html#tools.namefind</a>
- Stanford NER
  - https://nlp.stanford.edu/software/CRF-NER.html
- UIUC NET
  - http://cogcomp.org/page/demo\_view/ner

# Next Up

- Rest of today:
  - Applications of NER: De-identification
- Coming up:
  - Information Retrieval (read Chapter 23)