Heart Disease Diagnosis Analysis

By Melchor Ronquillo, Shrdha Shrestha, and Sophie Srisak

Introduction

Purpose

For our project we decided to analyze factors that could potentially predict the possibility of having a diagnosis of heart disease.

Our dataset consists of 14 variables from 303 individuals. The variables given are both categorical and numerical. They include variables that are easily accessible to the normal everyday person, like one's blood sugar, and also variables that require specialized medical equipment and procedures, like an ECG and Fluoroscopy through X-ray.

Our goal is to provide knowledge and resources to those who cannot easily access medical professionals and guide them to understanding their potential risk of heart disease through the utilization of the accessible variables in this dataset and performing an analysis on them. Through that they can assess their potential risk and seek help from a medical professional, if needed.

Background On Heart Disease

Risk Factors

- Certain risk factors can contribute to fatty plaque buildup inside of narrow arteries and can lead to the risk of a heart attack, angina, or stroke
- Risk factors include: older age, high blood pressure, high blood cholesterol, obesity, and lack
 of physical activity
- Shortness of breath, chest pain, and racing heartbeat are some symptoms of heart disease

Variables

Categorical Variables

- sex **
 - \circ (1 = male, 0 = female)
- cp chest pain type **
 - (1 = typical angina, 2 = atypical angina, 3
 = non-anginal pain, 0 = asymptomatic)
- fbs fasting blood sugar > 120 mg/dl
 - \circ (1 = true, 0 = false)
- restecg resting electrocardiographic results
 - (1 = normal, 2 = having ST-T wave abnormality, 0 = hypertrophy)

- exng exercise induced angina
 - \circ (1 = yes, 0 = no)
- slp the slope of the peak exercise ST segment
 - (2 = upsloping, 1 = flat, 0 = downsloping)
- thall thall rate
 - (2 = normal, 1 = fixed defect, 3 = reversible defect)
- output the predicted attribute diagnosis of heart disease (angiographic disease status) **
 - (Value 0 = < 50% diameter narrowing,
 Value 1 = > 50% diameter narrowing)

Variables

Numerical Variables

- age age in years
- trtbps resting blood pressure **
 - (in mm Hg on admission to the hospital)
- chol serum cholesterol **
 - o (in mg/dl)
- thalachh maximum heart rate achieved **
- oldpeak ST depression induced by exercise relative to rest
- caa number of major vessels (0-3) colored by fluoroscopy

Analysis primarily focuses on seven of the 14 variables: age, sex, type of chest pain, resting blood pressure, cholesterol levels, fasting blood sugar exceeding 120 mg/dl, and maximum heart rate achieved.

We thought these are these variables were more easily accessible for the regular person who does not work in the medical field and based on our outside research, these were the reasons most listed on articles such as the CDC article referenced in our paper.

Hypothesis Test Statement

Cholesterol level and chest pain type are the most important and significant variables in predicting the chance of heart disease out of the seven variables that we thought were most easily accessible.

First Analysis: Vertical Bar Graph

Second Analysis: Frequency Tables

Analyzing Variables

Categorical Variables: Frequency Tables

- 207 males and 96 females in the study
- For high chance of heart disease:
 - o **56.36%** male and **43.64%** female
 - 41.82% had non-anginal chest pain, 24.85%
 had atypical, 23.64% had typical, and 9.7%
 had asymptomatic chest pain
 - 86.06% did not have a high fasting blood sugar
- **138** individuals had a low chance of having heart disease (45.54%) and **165** individuals had a high chance of having heart disease(54.46%)

Numerical Variables: Proc Means

Low Chance of Heart Disease:

Mean Age:56.60

Mean Resting BP: 134.3985507 mm Hg

Mean Cholesterol: 251.0869565 mg/dl,

Mean Max. Heart Rate: 139.1014493 bpm

High Chance of Heart Disease:

Mean Age: 52.49

Mean Resting BP: 129.3030303mm Hg

Mean Cholesterol: 242.2303030mg/dl,

Mean Max. Heart Rate: 158.466667 bpm

Conclusion from First Analysis

We found that the sex variable was not equal in occurances and thought that it may skew the analysis.

Third Analysis: Scatterplot

- Plot the numerical variables on output
- Looking for complete separation

Fourth Analysis: First Logistic Model

- Ran a logistic model with all of our variables of interest
- AUC = 0.8265
- AIC = 324.534
- Some variables not statistically significant

proc logistic data = heart plots(only)=roc;
model output = age cp trtbps chol fbs thalachh;
run;

Model Fit Statistics						
Criterion Intercept Only Intercept and Covariate						
AIC	419.638	324.534				
sc	423.352	350.530				
-2 Log L	417.638	310.534				

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	2.0420	1.8022	1.2837	0.2572
age	1	0.0103	0.0179	0.3352	0.5626
ср	1	-0.8878	0.1482	35.8689	<.0001
trtbps	1	0.0217	0.00882	6.0447	0.0139
chol	1	0.00209	0.00275	0.5773	0.4474
fbs	1	0.2751	0.4006	0.4717	0.4922
thalachh	1	-0.0361	0.00753	22.9371	<.0001

Conclusion from First Logistic Model

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	2.0420	1.8022	1.2837	0.2572
age	1	0.0103	0.0179	0.3352	0.5626
ср	1	-0.8878	0.1482	35.8689	<.0001
trtbps	1	0.0217	0.00882	6.0447	0.0139
chol	1	0.00209	0.00275	0.5773	0.4474
fbs	1	0.2751	0.4006	0.4717	0.4922
thalachh	1	-0.0361	0.00753	22.9371	<.0001

Removed age, chol, and fbs because the p-valued were not statistically significant at alpha = 0.05.

Fifth Analysis: First Reduced Logistic Model

- Logistic regression of significant variables
- AUC = 0.8240
- AIC = 320.199
- Both improved a little bit

proc logistic data = heart plots(only)=roc; model output = cp trtbps thalachh / selection = stepwise Risklimits lackfit ctable; run;

	Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	2.9928	1.4565	4.2220	0.0399	
ср	1	-0.8796	0.1462	36.2050	<.0001	
trtbps	1	0.0246	0.00839	8.5869	0.0034	
thalachh	1	-0.0375	0.00696	28.9875	<.0001	

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	419.638	320.199			
sc	423.352	335.054			
-2 Log L	417.638	312.199			

Fifth Analysis: First Reduced Logistic Model

- <u>Likelihood ratio = <.0001</u>
 - Overall model is significant
- Goodness-of-Fit-Test = 0.4068
 - No statistical difference between observed and expected

proc logistic data = heart plots(only)=roc; model output = cp trtbps thalachh / selection = stepwise Risklimits lackfit ctable; run;

Testing Globa	al Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	105.4387	3	<.0001
Score	92.1135	3	<.0001
Wald	69.5089	3	<.0001

Hosmer and Lemeshow Goodness-of-Fit Test					
Chi-Square DF Pr > ChiSo					
8.2783	8	0.4068			

Partition for the Hosmer and Lemeshow Test						
		outp	ut = 0	outpu	ut = 1	
Group	Total	Observed	Expected	Observed	Expected	
1	30	4	2.25	26	27.75	
2	30	4	4.09	26	25.91	
3	30	5	5.99	25	24.01	
4	30	7	8.00	23	22.00	
5	30	10	11.04	20	18.96	
6	30	17	14.06	13	15.94	
7	30	13	17.81	17	12.19	
8	30	21	20.95	9	9.05	
9	30	27	23.97	3	6.03	
10	33	30	29.84	3	3.16	

Sixth Analysis: Second Logistic Model

- Variables not significant
 - Age
 - Resting Blood Pressure
 - Cholesterol
 - Fasting Blood Sugar
 - Resting ECG

```
proc logistic data = heart plots(only)=roc;
model output = age trtbps chol thalachh oldpeak cp fbs restecg exng slp caa thall;
run;
```

	Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-1.5766	2.3308	0.4575	0.4988	
age	1	-0.00617	0.0216	0.0813	0.7756	
trtbps	1	0.0165	0.0100	2.7149	0.0994	
chol	1	0.000259	0.00337	0.0059	0.9387	
thalachh	1	-0.0192	0.00968	3.9251	0.0476	
oldpeak	1	0.6534	0.2111	9.5785	0.0020	
ср	1	-0.8030	0.1805	19.7829	<.0001	
fbs	1	0.1842	0.5188	0.1260	0.7226	
restecg	1	-0.5768	0.3351	2.9638	0.0851	
exng	1	0.9613	0.3906	6.0569	0.0139	
slp	1	-0.4421	0.3362	1.7296	0.1885	
caa	1	0.8200	0.1839	19.8816	<.0001	
thall	1	1.1158	0.2854	15.2825	<.0001	

Seventh Analysis: Second Reduced Logistic Model

- Logistic regression of significant variables
- AUC = 0.8980
- AIC = 250.236
- Drastic improvements compared to our previous reduced model

proc logistic data = heart plots(only)=roc; model output = thalachh oldpeak cp exng caa thall / selection = stepwise Risklimits lackfit ctable; run;

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-0.5341	1.3936	0.1469	0.7015
thalachh	1	-0.0197	0.00822	5.7474	0.0165
oldpeak	1	0.7844	0.1844	18.0922	<.0001
ср	1	-0.7402	0.1712	18.6937	<.0001
exng	1	1.0604	0.3767	7.9235	0.0049
caa	1	0.7744	0.1728	20.0849	<.0001
thall	1	1.0427	0.2739	14.4945	0.0001

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	419.638	250.236			
sc	423.352	276.232			
-2 Log L	417.638	236.236			

Seventh Analysis: Second Reduced Model

- <u>Likelihood ratio = <.0001</u>
 - Model is significant
- Goodness-of-Fit-Test = 0.4068
 - No statistical difference between observed and expected

proc logistic data = heart plots(only)=roc; model output = thalachh oldpeak cp exng caa thall / selection = stepwise Risklimits lackfit ctable; run;

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	181.4023	6	<.0001		
Score	143.7917	6	<.0001		
Wald	81.0070	6	<.0001		

Hosmer and Lemeshow Goodness-of-Fit Test					
Chi-Square	DF	Pr > ChiSq			
8.8549	8	0.3547			

Partition for the Hosmer and Lemeshow Test						
Group	Total	output = 0		output = 1		
		Observed	Expected	Observed	Expected	
1	30	3	1.12	27	28.88	
2	30	2	2.37	28	27.63	
3	30	3	3.74	27	26.26	
4	30	6	5.73	24	24.27	
5	30	8	8.48	22	21.52	
6	30	8	11.89	22	18.11	
7	30	22	18.72	8	11.28	
8	30	26	25.19	4	4.81	
9	30	27	28.26	3	1.74	
10	33	33	32.50	0	0.50	

Conclusion

From our regression analysis of the 13 variables we found that exercise-induced angina, the number of major blood vessels, old peak, chest pain type, thallic defect level, and maximum heart rate achieved were the best predictors for determining the output of whether or not an individual has a high or low chance of developing heart disease. Therefore our hypothesis that cholesterol level and chest pain type were the best predicting variables was incorrect.

Possible Error: excluding sex variable from regression model and not including all variables in our original logistic regression model

Confounding: medication taken by participants, pre-existing conditions/comorbidities

Importance

- Help medical professionals focus on the most important factors (ex: exercise induced angina, number of major blood vessels, and old peak) since these are the strongest predictors
- We can extend research by repeating study with a new cohort and see if we get the same results