PSALTer results panel $\mathcal{S} = \iiint \Biggl(\frac{1}{6} \left(-4\,t_{3}\,\mathcal{A}^{\alpha_{1}}_{\alpha}\,\mathcal{A}^{\theta}_{\beta} + 6\,\mathcal{A}^{\alpha\beta\chi}_{\alpha}\,\sigma_{\alpha\beta\chi} + 6\,f^{\alpha\beta}_{\alpha}\,\tau_{(\Delta+\mathcal{K})_{\alpha\beta}} + 8\,t_{3}\,\mathcal{A}^{\theta}_{\alpha\theta}\,\partial_{\beta}f^{\alpha_{1}}_{\alpha} - 3\,r_{3}\,\partial_{\beta}\mathcal{A}^{\theta}_{\beta}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 3\,r_{3}\,\partial_{\beta}\mathcal{A}^{\theta}_{\beta\theta}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 8\,t_{3}\,\mathcal{A}^{\theta}_{\beta\theta}\,\partial_{\beta}f^{\alpha}_{\alpha} + 4\,t_{3}\,\partial_{\beta}f^{\theta}_{\theta}\,\partial_{\beta}f^{\alpha}_{\alpha} - 2\,r_{3}\,\partial_{\beta}\mathcal{A}^{\theta}_{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta} + 2\,r_{3}\,\partial_{\beta}\mathcal{A}^{\beta}_{\beta}\partial$ $3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\theta}_{\beta} + 6r_{\cdot 3}\partial_{\alpha}^{\prime}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\theta}_{\beta} - 3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\alpha\beta}\partial_{\theta}\mathcal{A}^{\theta}_{\beta} + 6r_{\cdot 3}\partial_{\beta}^{\prime}\mathcal{A}^{\alpha\beta}_{\alpha}\partial_{\theta}\mathcal{A}^{\theta}_{\beta} + 4t_{\cdot 3}\partial_{\beta}f^{\alpha}\partial_{\theta}f^{\alpha}_{\alpha} - 8t_{\cdot 3}\partial_{\beta}f^{\alpha}_{\alpha}\partial_{\theta}f^{\theta}_{\beta} + 8r_{\cdot 3}\partial_{\beta}\mathcal{A}_{\alpha\beta}\partial_{\theta}\mathcal{A}^{\beta\beta}_{\beta} - 3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\beta}\partial_{\theta}\mathcal{A}^{\beta\beta}_{\beta} - 3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\alpha\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta} - 3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta} - 3r_{\cdot 3}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}\mathcal{A}^{\beta\beta}_{\beta}\partial_{\alpha}$ $4r_{2}^{*}\partial_{\beta}\mathcal{A}_{\alpha\theta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} + 4r_{2}^{*}\partial_{\beta}\mathcal{A}_{1\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 24r_{3}^{*}\partial_{\beta}\mathcal{A}_{1\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 2r_{2}^{*}\partial_{\beta}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} + 2r_{2}^{*}\partial_{\theta}\mathcal{A}_{\alpha\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{2}^{*}\partial_{\theta}\mathcal{A}_{\alpha_{1}\beta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} + 6r_{3}^{*}\partial_{\beta}\mathcal{A}_{\alpha_{1}\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{3}^{*}\partial_{\theta}\mathcal{A}_{\alpha_{1}\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} + 6r_{3}^{*}\partial_{\beta}\mathcal{A}_{\alpha_{1}\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{3}^{*}\partial_{\theta}\mathcal{A}_{\alpha_{1}\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{3}^{*}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{3}^{*}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}} - 4r_{3}^{*}\partial_{\theta}\mathcal{A}^{\alpha\beta_{1}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{1}}$ $6r_{5}^{}\partial_{\theta}\mathcal{R}_{,\ \kappa}^{}\partial^{\theta}\mathcal{R}_{\alpha}^{\prime} + 4t_{2}^{}\mathcal{R}_{,\theta\alpha}^{}\partial^{\theta}f_{\alpha}^{\prime} + 2t_{2}^{}\partial_{\alpha}f_{,\theta}^{}\partial^{\theta}f_{\alpha}^{\prime} - t_{2}^{}\partial_{\alpha}f_{\theta}^{}\partial^{\theta}f_{\alpha}^{\prime} + t_{2}^{}\partial_{\theta}f_{\alpha}^{\prime} - t_{2}^{}\partial_{\theta$ $2t \cdot \mathcal{A}_{\alpha \mid \theta} \left(\mathcal{A}^{\alpha \mid \theta} + 2 \partial^{\theta} f^{\alpha \mid} \right) - 6r \cdot \partial_{\alpha} \mathcal{A}^{\alpha \mid \theta} \partial_{\kappa} \mathcal{A}_{\alpha \mid \theta}^{\kappa} + 12r \cdot \partial^{\theta} \mathcal{A}^{\alpha \mid \theta} \partial_{\kappa} \mathcal{A}_{\alpha \mid \theta}^{\kappa} + 6r \cdot \partial_{\alpha} \mathcal{A}^{\alpha \mid \theta} \partial_{\kappa} \mathcal{A}_{\theta \mid \theta}^{\kappa} - 12r \cdot \partial_{\alpha} \mathcal{A}^{\alpha \mid \theta} \partial_{\kappa} \mathcal{A}_{\theta \mid \theta}^{\kappa} \right) \left[t \cdot x \cdot y \cdot z \right] dz dy dx dt$ **Wave operator**

		3	3													
${\stackrel{0^+}{\cdot}}f^\perp$ †	0		0	0	0											
^{⊙⁻} ℋ [∥] †	Θ		0	0	$k^2 r_{\bullet} + t_{\bullet}$	$\left. \stackrel{1^{+}}{\cdot} \mathcal{A} \right _{lpha eta}$	${}^{1^+}_{\boldsymbol{\cdot}}\mathcal{A}^{\perp}{}_{\alpha\beta}$	$\left. \stackrel{1^{+}}{\cdot} f \right _{\alpha\beta}$	${\stackrel{1^-}{\cdot}}\mathscr{R}^{\parallel}{}_{\alpha}$	${}^{1^{-}}_{\bullet}\mathcal{H}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$^{1}_{\bullet}f^{\perp}_{\alpha}$				
-						$k^2 \left(2r_{\cdot 3} + r_{\cdot 5}\right) + \frac{2t_{\cdot 2}}{3}$	$\frac{\sqrt{2} \ t_{\frac{2}{2}}}{3}$	$\frac{1}{3} i \sqrt{2} kt.$	0	0	0	0				
					$^{1^{+}}_{\bullet}\mathcal{A}^{\perp}$ † lphaeta	3	$\frac{t}{2}$	$\frac{i kt}{2}$	0	0	0	0				
					$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{1}{3} i \sqrt{2} kt.$	$-\frac{1}{3}ikt$	$\frac{k^2 t}{\frac{2}{3}}$	0	0	0	0				
					$^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}$ †	0	Θ	0	$k^2 \left(\frac{r_{\frac{3}{2}}}{2} + r_{\frac{5}{5}} \right) + \frac{2t_{\frac{3}{3}}}{3}$	$-\frac{\sqrt{2} t_{\frac{1}{3}}}{3}$		$-\frac{2}{3}ikt_{3}$				
					1 \mathcal{A}^{\perp} \dagger^{α}		Θ	0	$-\frac{\sqrt{2} t_{3}}{3}$	$\frac{t}{3}$	0	$\frac{1}{3} i \sqrt{2} kt.$				
					$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	Θ				
					$f^{\perp}f^{\perp}$	0	Θ	0	$\frac{2ikt_{3}}{3}$	$-\frac{1}{3} i \sqrt{2} kt_{3}$	0		$2^{+}_{\alpha\beta}^{\parallel}_{\alpha\beta}^{2}$	$f^{2^+}f^{\parallel}_{\alpha\beta}$	$^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
												$\mathcal{A}^{\parallel} \uparrow^{\alpha \beta}$	$-\frac{3\kappa}{2}$	0	0	
												${\stackrel{2^+}{\cdot}}f^{\parallel} + {^{\alpha\beta}}$	0	0	0	
												${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}$ † ${}^{lphaeta\chi}$	0	0	0	
Sati	urat	ed	prop	aga	ator											

0-				1								
^{⊙⁻} σ [∥] †	0	0	0	$\frac{1}{k^2 r_{\cdot} + t_{\cdot}}$	${}^{1^+}_{ullet}\sigma^{\parallel}{}_{lphaeta}$	${}^{1^+}_{ullet}\sigma^{\!\scriptscriptstyle\perp}_{lphaeta}$	$\left. \stackrel{1^{+}}{\cdot}_{\tau} \right _{\alpha\beta}$	${}^{1^{-}}\sigma^{\parallel}{}_{\alpha}$	1 $^{-}$ σ^{\perp}_{α}	$^{1^{-}}\tau^{\parallel}_{\alpha}$	${\stackrel{1^{-}}{\cdot}} {\tau^{\perp}}_{\alpha}$	
				$\cdot \sigma^{\parallel} + \alpha^{\alpha\beta}$	$\frac{1}{k^2\left(2r_{3}+r_{5}\right)}$	$-\frac{\sqrt{2}}{k^2 (1+k^2) \left(2 r_3 + r_5\right)}$	$-\frac{i\sqrt{2}}{k\left(1+k^2\right)\left(2r.+r.\atop3}\right)}$	0	0	Θ	0	
				$^{1^{+}}_{\cdot}\sigma^{\perp}$ $^{+}$			$\frac{i\left(3 k^{2} \left(2 r_{3} + r_{5}\right) + 2 t_{2}\right)}{k\left(1 + k^{2}\right)^{2} \left(2 r_{3} + r_{5}\right) t_{2}}$	0	0	Θ	0	
				$^{1^{+}}_{\bullet}\tau^{\parallel}$ † $^{\alpha\beta}$	$\frac{i \sqrt{2}}{k (1+k^2) \left(2 r_1 + r_5\right)}$	$-\frac{i\left(3k^2\left(2r_{3}+r_{5}\right)+2t_{2}\right)}{k\left(1+k^2\right)^2\left(2r_{3}+r_{5}\right)t_{2}}$	$\frac{3 k^2 \left(2 r_1 + r_5\right) + 2 t_2}{\left(1 + k^2\right)^2 \left(2 r_1 + r_5\right) t_2}$	0	0	Θ	0	
				$^{1^{-}}\sigma^{\parallel}$ †	0	0	0	$\frac{2}{k^2 \left(r_{3} + 2 r_{5}\right)}$	$\frac{2 \sqrt{2}}{k^2 \left(1+2 k^2\right) \left(r_{3}+2 r_{5}\right)}$	0	$\frac{4 i}{k \left(1+2 k^2\right) \left(r_3+2 r_5\right)}$	
				$\frac{1}{\cdot}\sigma^{\perp}$ †	0	Θ	0	$\frac{2 \sqrt{2}}{k^2 (1+2 k^2) (r_3 + 2 r_5)}$	$\frac{3 k^{2} (r_{3} + 2 r_{5}) + 4 t_{3}}{(k+2 k^{3})^{2} (r_{3} + 2 r_{5}) t_{3}}$	Θ	$\frac{i \sqrt{2} \left(3 k^2 \left(r_{3} + 2 r_{5}\right) + 4 t_{3}\right)}{k \left(1 + 2 k^2\right)^2 \left(r_{3} + 2 r_{5}\right) t_{3}^{2}}$	
				$1^{-}_{\bullet}\tau^{\parallel}+^{\alpha}$	Θ	0	0	0	0	0	0	
				$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_1+2r_5)}$	$-\frac{i\sqrt{2}\left(3k^{2}\left(r_{3}+2r_{5}\right)+4t_{3}\right)}{k\left(1+2k^{2}\right)^{2}\left(r_{3}+2r_{5}\right)t_{3}}$	0	$\frac{6 k^{2} \left(r_{3} + 2 r_{5}\right) + 8 t_{3}}{\left(1 + 2 k^{2}\right)^{2} \left(r_{3} + 2 r_{5}\right) t_{3}}$	$2^{+}_{\bullet}\sigma^{\parallel}_{\alpha\beta}$
				'							$\overset{2^{+}}{\cdot}\sigma^{\parallel} + \overset{\alpha\beta}{\cdot}$	$-\frac{2}{3 k^2 r_{\cdot 3}}$
											$^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{\alpha\beta}$	0
											$^{2^{-}}\sigma^{\parallel}$ † $^{lphaeta\chi}$	0
Sou	ırce c	onstra	int	S								

Spin-parity form	Covariant form	Multiplicities		
0^+ $\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1		
$-2 i k \cdot \sigma^{\parallel} + \cdot \tau^{\parallel} = 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}{}^{\beta}$	1		
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
1- _τ α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$i k \frac{1}{\bullet} \sigma^{\perp} \alpha^{\beta} + \frac{1}{\bullet} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\alpha}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\alpha}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\alpha}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3		
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$ 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + \\ $	5		
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{ \delta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{ \delta} = 0$			
	$3 \ \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \ \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \ \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\lambda} \partial^{\lambda}$			
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta} \partial^{\epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \beta}_{\delta}$			
2 ⁺ _τ ^{αβ} == 0	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5		
	$ 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}{}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} $			
Total expected gauge generators:				

0

Massive spectrum

Massive particle

Po	ole residue:	$-\frac{1}{r_{.2}}$ >
S	quare mass:	$\frac{\frac{t}{2}}{\frac{r}{2}} >$
S	pin:	0
Pa	arity:	Odd

Massless spectrum

?
$$k^{\mu} = (p, 0, 0, p)$$
?

Massless particle

$\left| -\frac{14}{r_{3}} + \frac{57}{2r_{1} + r_{5}} - \frac{216}{r_{3} + 2r_{5}} > 0 \right|$ Pole residue:

	rity cond	
Polarisa	ations: 2	

 $r. < 0 & & t. > 0 & & \left(\left(r. < 0 & & \left(r. < -\frac{r.}{3} \parallel r. > -2 r. \right) \right) \parallel \left(r. > 0 & & -2 r. < \frac{r.}{3} < r. < -\frac{r.}{3} \right) \right)$