On Building A Data Fitting System Using Ad Hoc Models

Amy Briggs abbr5@mst.edu

Andrew Fallgren ajffk6@mst.edu

George Rush gdr34b@mst.edu

ABSTRACT

One class of data is measured or simulated data with error estimation. This data can consist of many continuous dimensions for which values are available only at discrete points. Increasing the number of discrete points at which the data is available can be expensive or even impossible to obtain, but it can still be useful for predicting data trends. Unfortunately, this is difficult when the various dimensions do not follow the same type of fit (linear, logarithmic, polynomial, etc.). Our approach focuses on building decision trees and using them to interpolate new data points that follow existing trends. This is in contrast to previous methods which focused on extrapolating data for specific applications or using purely numerical regression models. By using this approach, sparse data sets or those that exhibit unusual patterns can be analyzed effectively.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—data mining

General Terms

Algorithms

Keywords

data mining, sparse data, interpolation

1. INTRODUCTION

Outline goes here.

- The first item
- The second item
- The third etc ...

1.1 Stuff

This is a subsection.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...\$15.00.

1.1.1 More Stuff

This is a subsubsection.

2. RELATED WORK

Another section. I am citing something random [1].

3. METHODOLOGY

3.1 Decision Tree Interpolation

Decision Tree Interpolation follows this process:

- 1. Build a decision tree from the original data.
- 2. For each leaf node in the tree:
 - (a) Obtain all attribute values for associated data instances.
 - (b) Define ranges for attribute values.
 - For numeric attributes, define the range using minimum and maximum values.
 - For discrete attributes, define the range as all distinct values.
 - (c) Calculate the distribution of all associated data instances.
 - (d) Create new data points within the ranges that match the statistical distribution.

Note that the number of data points created per leaf node is proportional to the number of data points already classified by that leaf node. This ensures that any interpolated data will follow the overall data distribution, at least relative to the data density per leaf node.

3.2 Interpolated Data Validation

All interpolated data is validated through this process:

- 1. A new decision tree is built based on the interpolated data. Note that the original data is *not* included here.
- 2. Both the new and original decision trees are compared for accuracy against the new and original data sets.

Note that any decision tree with an arbitrarily large maximum depth can classify data with perfect accuracy. Defining a low maximum depth means that classification is imperfect, and it is under these conditions that differences in the quality of different decision trees become apparent.

Table 1: Experiment Result Summary

Data Set	Max Tree Depth	$OT \rightarrow OD$	OT -> ND	NT -> OD	NT -> ND
adult_sample	1	0.805527123849	0.780737704918	0.804503582395	0.782786885246
$adult_sample$	2	0.808597748209	0.809426229508	0.249744114637	0.813524590164
$adult_sample$	3	0.816786079836	0.850102669405	0.801432958035	0.852156057495
adult_sample	4	0.822927328557	0.794661190965	0.787103377687	0.784394250513
$adult_sample$	5	0.822927328557	0.84052532833	0.792221084954	0.84052532833
car	1	0.700231481481	0.710648148148	0.700231481481	0.710648148148
car	2	0.77777777778	0.783564814815	0.774305555556	0.789351851852
car	3	0.824074074074	0.80902777778	0.824074074074	0.815972222222
car	4	0.894097222222	0.903935185185	0.889467592593	0.915509259259
car	5	0.96412037037	0.966981132075	0.938078703704	0.982311320755
iris	1	0.666666666667	0.6933333333333	0.666666666667	0.693333333333
iris	2	0.96	0.9733333333333	0.9466666666667	0.9866666666667
iris	3	0.9733333333333	0.959459459459	0.9533333333333	0.972972972973
iris	4	0.98	0.959459459459	0.9466666666667	1.0
iris	5	1.0	1.0	0.966666666667	1.0
lung-cancer	1	0.59375	0.6	0.375	0.6666666666667
lung-cancer	2	0.625	0.571428571429	0.4375	0.714285714286
lung-cancer	3	0.625	0.642857142857	0.5625	1.0
lung-cancer	4	0.6875	0.428571428571	0.53125	1.0
lung-cancer	5	0.78125	0.538461538462	0.53125	1.0
tic_tac_toe	1	0.699373695198	0.68267223382	0.699373695198	0.68267223382
tic_tac_toe	2	0.705636743215	0.690376569038	0.703549060543	0.696652719665
tic_tac_toe	3	0.769311064718	0.779874213836	0.755741127349	0.758909853249
tic_tac_toe	4	0.831941544885	0.82264957265	0.745302713987	0.856837606838
tic_tac_toe	5	0.918580375783	0.907284768212	0.83611691023	0.933774834437
voting	1	0.95632183908	0.923766816143	0.95632183908	0.923766816143
voting	2	0.95632183908	0.956896551724	0.95632183908	0.956896551724
voting	3	0.963218390805	0.913357400722	0.95632183908	0.927797833935
voting	4	0.963218390805	0.892156862745	0.928735632184	0.90522875817
voting	5	0.972413793103	0.866071428571	0.937931034483	0.8958333333333

3.3 Experiment Parameters

We completed 30 experiments based on two variables: data source and maximum depth of the decision tree. The maximum depth ranged from one to five, and there were six data sources pulled from Orange's documentation data sets.

4. RESULTS

Describe data in table 1.

5. DISCUSSION

Another section.

6. CONCLUSION AND FUTURE WORK

Last section.

7. REFERENCES

 M. Bowman, S. K. Debray, and L. L. Peterson. Reasoning about naming systems. ACM Trans. Program. Lang. Syst., 15(5):795–825, November 1993.