BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 17-22

We wish to show $\phi_1, \phi_2, ..., \phi_n \models \psi$ holds i.e. $\phi_1, \phi_2, ..., \phi_n \models \psi_1 \land \psi_2$ holds. From (1) and (2), we have that for each valuation for which $\phi_1, \phi_2, ..., \phi_n$ is true ψ_1 is true also ψ_2 is true.

 \therefore for each valuation $\psi_1 \wedge \psi_2$ is true. \therefore we have,

$$\phi_1, \phi_2, ..\phi_n \vDash \psi$$

Case 2: When last rule applied is \vee_e . We must have proved on have as a premise $\eta_1 \vee \eta_2$.

This means that the sequent $\phi_1, \phi_2, ..., \phi_n \vdash \eta_1 \lor \eta_2$ is valid.

The first 'box' $\begin{array}{c|c} \eta_1 \\ \cdot \\ \cdot \\ \psi \end{array} \ \ \text{gives us a proof of the sequent}$

$$\phi_1, \phi_2, ..., \phi_n, \eta_1 \vdash \psi \qquad 4$$

likewise, the second 'boxes' gives us

$$\phi_1, \phi_2, ..., \phi_n, \eta_2 \vdash \psi$$
 5

By induction hypothesis, the corresponding semantic entailment relations for (3),(4) and (5) holds. We shall call semantic entailment relations as (6),(7) and (8).

Consider an arbitrary evaluation for which $\phi_1,...\phi_n$ are true.

By (6), we have that $\eta_1 \vee \eta_2$ is true for this valuation. This means that for this valuation at least η_1, η_2 is true.

Case(2a) η_1 is true.

By (7) we have that ψ is true.

Case (2b) η_2 is true.

By (8), we have that ψ is true.

Therefore in both the cases ψ is true.

 \therefore wehave $\phi_1, \phi_2, ..., \phi_n \vDash \psi$ holds.

Rest of the cases can be shown similarly.

13.2 Contrapositive of The Soundness Theorem

If $\phi_1, ..., \phi_n \vDash \psi$ does not hold then, $\phi_1, ..., \phi_n \vdash \psi$ is not valid.

This implies that in order to show that a sequent is not valid, it suffices to find a valuation for which $\phi_1, ..., \phi_n$ are true but ψ is false.

14 Completeness of Propositional Logic

Whenever $\phi_1, ..., \phi_n \vDash \psi(1)$ holds then there exists a natural deduction proof for the sequent $\phi_1, ..., \phi_n \vdash \psi$.

Proof Sketch

- 1. Assuming (1), we show that $\vDash \phi_1 \to (\phi_2 \to (..(\phi_n \to \psi)))$ holds.
- 2. We show that $\vdash \phi_1 \to (\phi_2 \to (..(\phi_n \to \psi)))$ is valid.
- 3. $\phi_1, ..., \phi_n \vdash \psi$ is valid.

Please refer the textbook for the proof.

14.1 Corollary[Soundness and Completeness of Propositional Logic]

Let $\phi_1,...,\phi_n$ and ψ be formulae of propositional logic. Then, $\phi_1,...\phi_n \vdash \psi$ is valid.

14.2 Semantic Equivalence

Let ϕ and ψ be formulas in propositional logic. We say that, ϕ an ψ are semantically equivalent iff $\psi \vDash \psi$ holds and $\psi \vDash \phi$ holds as well.

We write $\phi \equiv \psi$

We call ϕ valid iff \vDash holds. Semantic equivalence is identical to provable equivalence.

e.g.
$$p \to \equiv \neg q \to \neg p$$

 $p \to q \equiv \neg p \lor q$

We want to transform formulaes into forms in which validity checks are easy. $\phi \to \psi \equiv \neg \phi \lor \psi$.

Definition: A literal L is either an atom or negation of atom.

A formula C in Conjunctive Normal Form (CNF) if it is a conjunction of the

clauses where each clause is a disjunction of literals. e.g.

$$(1) (p \lor q) \land (\neg p \lor r)(2)(\neg (q \lor \neg p) \lor r) \land (p \lor q)$$

(2) is not in CNF form as it has negation of clause.

Definition of CNF in Backus Norm Form (BNF)

 $\begin{array}{ll} \text{Literal} & L ::= p | \neg p \\ & \text{Clause} & D ::\neq L | L \vee D \\ \text{CNF Formula} & C ::= D | D \wedge C \end{array}$

Observations:

1. A CNF is a conjunction of clauses $C_1, C_2, ..., C_n$

i.e. $C \equiv C_1 \wedge C_2 \wedge ... \wedge C_n$.

For C to be true it must be the case that each one of $C_1, C_2, ..., C_n$ are true.

Suppose C_i is not a valid formula then C is not valid. Now there may be a single clause featuring all n atoms.

Lemma: A disjunction of literals $L_1 \vee L_2 \vee \vee L_m$ is valid iff there are i,j such that $1 \leq i,j \leq m$, so that L_i is $\neg L_j$

Proof:Consider i,j so that L_i is $\neg L_j$.

Now,

$$L_1 \lor L_2 \lor ... \lor L_m \equiv (L_1 \lor ...) \lor (L_i \lor \neg L_i)$$
 (1)

Now, $(L_i \vee \neg L_i)$ is always true.

Suppose L_i is an atom P. In any valuations, p is either true or false.

Case 1: p is true

Then L_i is true.

 $\therefore (L_i \vee \neg L_i)$ is true.

 \therefore (1) is true.

Case 2: p is false.

 L_i is false, $\neg L_i$ is true.

 $\therefore (L_i \vee \neg L_i)$ is true.

 \therefore (1) is true.

Suppose L_i is $\neg p$, the formula is valid for similar reasons.

To prove the converse, suppose for all i,j $1 \le i, j \le m$. L_i is not $\neg L_j$ then The formula is $L_1 \lor L_2 \lor ... \lor L_m$.

Now, consider a valuation where each literal is made false. Suppose a literal L_i is P_k . Then set P_k false in the valuation.

Suppose L_i is $\neg P_l$. Then set P_l to true in the valuation.

This procedure will not make any literal evaluate to false because that would imply that such a literal is a negation of a literal that had previously been made false.

Definition: Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it has a validation in which it evaluates to true.

e.g.

$$(1)p \lor q \to p$$
 is satisfiable $(2)(p \lor q) \land (\neg p) \land (\neg q)$

Proposition: Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff $\neg \phi$ is not valid.

Proof: Suppose ϕ is satisfiable.

Then there exist a valuation of ϕ , in which ϕ evaluates to true. In this valuation $\neg \phi$ evaluates to false.

 $\therefore \neg \phi$ is not valid.

To prove the converse, suppose $\neg \phi$ is not valid. Then, there exists a valuation for which $\neg \phi$ is false.

For the same valuation, we have ϕ evaluates to True.

Since $\phi \equiv \neg \neg \phi$.

 $\therefore \phi$ is satisfiable.

Please read sec 1.5.2 from textbook regarding the conversion of any formula in CNF (Page 57).

The logical constants ('bottom') \bot and ('top') \top denote respectively unsatisfiable formula and tautology.

15 Horn Formula

A Horn formula is a formula ϕ in propositional logic, if it can be generated as instance of the following grammar.

$$P::=\bot|\top|P$$

$$A::=P|P\wedge A$$
 Horn Clause,
$$C::=A\rightarrow P$$
 Horn Formula,
$$H::=C|C\wedge H$$

Formula	Explanation
$1.(p \land q \land r \to p) \land (q \land s \to p) \land (\top \to s) \land (r \land s \to p) \land (\neg s \to$	Horn Formula
$(\bot) \land (\bot \land p \rightarrow r)$	
$2.(p \land q \land r \to \neg p) \land (q \land r \to q)$	Not Horn Formula due to $\neg p$
3. $(p \land r \land r \to \bot) \land (\neg q \land r \to p)$	Not Horn Formula due to $\neg q$
$4. (p_1 \land p_2 \land p_3 \to (p_4 \land p_5)) \land (\top \to p_5)$	Not Horn Formula due to $p_4 \wedge p_5$
$5. \ (p \land q \to r) \land (p \land q) \land (r \lor s \to p)$	Not Horn Formula due to \lor and
	$p \wedge q$

15.1 Deciding Satisfiability of Horn Formula

- $\bullet\,$ Maintain a list of all occurrences of type P in your formula.
 - 1. It marks \top , if it occurs in that list.
 - 2. If there is a conjunct $p_1 \wedge p_2 \wedge ... \wedge p_k \to p'$ of ϕ such that all p_j with $1 \leq j < k$ is marked, then mark p' as well and go to step 2. Otherwise if there is no such conjunct go to step 3.
 - 3. If \bot is marked, print 'Unsatisfiable' and Stop. Otherwise go to step 4.
 - 4. Print 'Satisfiable'.

Example

$$1.(p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (u \to s)$$

Solution:

- Mark all occurrences of \top .
- Mark r, q, u.
- Mark p.

- Mark S.
- Print Satisfiable.

Example

$$2.(p_5 \rightarrow p_{11}) \land (p_2 \land p_3 \land p_5 \rightarrow p_{13}) \land (\top \rightarrow p_5) \land (p_5 \land p_{11} \rightarrow \bot)$$

Solution:

- Mark all occurrences of \top .
- Mark $p_5, p_1 1, \bot$
- Print 'Unsatisfiable'.

Example: 1(a). Construct a proposition for the given truth table.

p	q	ϕ
F	F	Т
F	Τ	Γ
Τ	F	F
Т	Т	F

- The disjunctive normal form formula can be constructed as $(\neg p \land \neg q) \lor (\neg p \land q)$
- In this example, we have considered all the cases for which the proposition is true and created set of clauses by anding them.
- Later all the clauses are combined using disjunction.

Example: 1(b). Prove the converse of the previous example.

- The DNF clause consists of set of clauses combined using disjunction.
- All these clauses have set of atoms which are combined using conjunction.
- If the truth table is true then there is at least one clause with all atoms true.
- Now, for all the cases where the proposition evaluates to false there is at least one atom which differs to the evaluation where the formula is true.
- : the corresponding DNF clauses also evaluates to false as at least one of the atom in the clause evaluates to false.
- Thus, DNF becomes disjunction of all clauses which evaluates to false and thus formula evaluates to false.

Example: 2.Convert given truth table to CNF formula.

Solution:

- Consider truth table for $\neg \phi$.
- \bullet Construct proposition in DNF for $\neg \phi$
- \bullet Take negation of DNF formula and apply Demorgan's Law to convert it into CNF.

р	q	$\neg \phi$
F	F	F
F	Τ	F
Т	F	Т
Т	Т	Т

$$\neg \phi \equiv (p \land \neg q) \lor (p \land q)$$
$$\phi \equiv \neg (p \land \neg q) \land \neg (p \land q)$$
$$\phi \equiv (\neg p \lor q) \land (\neg p \lor \neg q)$$