Bell man - Ford

Dijkstra:

- each time you burn vertex, the distance computed is

-) But it negative edges allowed, not true anymore as $d(s,x) \in d(s,x) + x - y$

y(z)x) Brown

The so Digkstra fails if negative edge weights

However if no negative angles, shortest path still makes

sense. Need alternative algorithm

Observations

no visiting same vertex twice in shortest path

so if n vertice, shortest path $\leq n-1$ if i-j shortest path =) i-kare

k j also

shortest

paths

Digkstra

when j burnt Dist $(s,k) = min \left[Dist (s,k), Dist (s,b) + j-k \right]$ Plat (s,b) + j-kPlat (s,b) + j-k

_____ Update operation + nbms ob j when j burnt

D

- Distance dist (s, 1) is
 guaranteed to be correct
 when you burn vertex
- -> Digk stoa: chooses "smallest"
 un bushe vertex
- -) Greedy stealegy to who where down only to nece updates

if you do update ; Te Dist (s,k) =

cet Dist (s, g) be adual shortest dust.

guaranteed that
Dist (s,j) < Dist (s,j)

V

then Dist (5, k) = Dist (5, k) as

-) cart use greedy approach here...

want to exploit this.

- Initialize

Dist (s,s) = 0 [Chrrect]

Dist (s,i) = w # i #s

(I) (Do update Disk (S, 1) & edges in graph

men cill

Dist (s, i) = kth updak.

Disk n-1 (s, i) = correct answer!

O(IVIIEI) = if adjacency (ist

0 (|V|3) = if adjacency matrix.