QUANTUM COMPUTING

ADVANCED TOPICS IN CYBERSECURITY CRYPTOGRAPHY (7CCSMATC)

Martin R. Albrecht

OUTLINE

Qubits

Many Qubits

Grover's Algorithm

Shor's Algorithm

Commitment Schemes

REFERENCES

- Thomas Debris-Alazard. Lecture 1: Introduction to Quantum Computing. INF587
 Quantum computer science and applications https://tdalazard.io/S1.pdf
- Noson S Yanofsky and Mirco A Mannucci. Quantum Computing for Computer Scientists. Cambridge University Press, 2008, esp. Chapters 1, 2, 3 and 6
- Fermi Ma's talk Quantum Secure Commitments and Collapsing Hash Functions delivered as part of the *Quantum Cryptography for Dummies* reading group at the *Lattices: Algorithms, Complexity, and Cryptography* special semester at the Simons Institute, 2020

CLASSICAL BIT

$$b\in\{0,1\}$$

PROBABILISTIC BIT

- Probabilistic bit: $\begin{pmatrix} p \\ q \end{pmatrix}$ where $p := \Pr(b = 0)$ and $q := \Pr(b = 1)$
- · Computing on probabilistic bits

$$\begin{pmatrix} p \\ q \end{pmatrix} \rightarrow \begin{pmatrix} p' \\ q' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} \text{ where } \begin{cases} a+c=1 \\ b+d=1 \end{cases} \text{ and } a,b,c,d \ge 0$$

Example: $b \rightarrow b \oplus b$

$$\left(\begin{array}{c}p\\q\end{array}\right)\to\left(\begin{array}{c}1\\0\end{array}\right)=\left(\begin{array}{cc}1&1\\0&0\end{array}\right)\cdot\left(\begin{array}{c}p\\q\end{array}\right)$$

Example: $b \rightarrow b \oplus 1$

$$\left(\begin{array}{c}p\\q\end{array}\right)\to\left(\begin{array}{c}q\\p\end{array}\right)=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)\cdot\left(\begin{array}{c}p\\q\end{array}\right)$$

COMPLEX NUMBERS

$$\cdot i := \sqrt{-1}$$

$$\cdot z := x + iy$$

•
$$Re(z) := x$$

·
$$Im(z) := y$$

$$\cdot |z| = \sqrt{x^2 + y^2}$$

QUANTUM BIT (QUBIT): "PROBABILISTIC BITS WITH COMPLEX PROBABILITIES"

• A qubit $|\psi\rangle$ is an element of \mathbb{C}^2 with Euclidean norm 1:

$$|\psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$$
 with $\alpha, \beta \in \mathbb{C}$ (called amplitude) and $|\alpha|^2 + |\beta|^2 = 1$

 $\cdot |0\rangle, |1\rangle$ is an orthonormal basis of \mathbb{C}^2 . Usually defined as

$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ which then implies $\alpha \cdot |0\rangle + \beta \cdot |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

• We call this a superposition of $|0\rangle$ and $|1\rangle$.

MEASUREMENTS

We cannot "see" gubits, we can only measure in their classical states.

Measurement: probabilistic orthogonal projection. Given $|0\rangle$, $|1\rangle \in \mathbb{C}^2$:

$$|\psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle \xrightarrow{\text{measure}} \left\{ \begin{array}{ll} |0\rangle & \text{with probability } |\alpha|^2 \\ |1\rangle & \text{with probability } |\beta|^2 \end{array} \right.$$

COMPUTATION

• A unitary matrix in $\mathbb{C}^{2\times 2}$ is any matrix such that $\mathbf{U} \cdot \mathbf{U}^{\dagger} = \mathbf{U}^{\dagger} \cdot \mathbf{U} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ where \mathbf{U}^{\dagger} is the conjugate transpose of \mathbf{U} :

$$\mathbf{U} = \begin{pmatrix} u_{00} + v_{00} \cdot i & u_{01} + v_{01} \cdot i \\ u_{10} + v_{10} \cdot i & u_{11} + v_{11} \cdot i \end{pmatrix}, \quad \mathbf{U}^{\dagger} := \begin{pmatrix} u_{00} - v_{00} \cdot i & u_{10} - v_{10} \cdot i \\ u_{01} - v_{01} \cdot i & u_{11} - v_{11} \cdot i \end{pmatrix}$$

- Computation: $|\psi\rangle \to \mathsf{U} \cdot |\psi\rangle$
 - · All quantum computations are reversible:

$$|\psi\rangle \xrightarrow{\mathsf{U}} \mathsf{U} \cdot |\psi\rangle \xrightarrow{\mathsf{U}^\dagger} \mathsf{U}^\dagger \cdot \mathsf{U} \cdot |\psi\rangle = |\psi\rangle$$

We call U quantum gates

QUANTUM COMPUTERS ...

... are linear-algebra machines.

QUANTUM COMPUTERS ...

... are linear-algebra machines.

Mathematics is the art of reducing any problem to linear algebra.

— William Stein

EXAMPLES OF QUANTUM GATES

Example NOT-gate $b \rightarrow "b \oplus 1"$

$$|\psi\rangle = \alpha \, |0\rangle + \beta \cdot |1\rangle = \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) \longrightarrow \left(\begin{array}{c} \beta \\ \alpha \end{array}\right) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) \cdot |\psi\rangle$$

EXAMPLES OF QUANTUM GATES

Example NOT-gate $b \rightarrow "b \oplus 1"$

$$|\psi\rangle = \alpha \, |0\rangle + \beta \cdot |1\rangle = \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) \longrightarrow \left(\begin{array}{c} \beta \\ \alpha \end{array}\right) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) \cdot |\psi\rangle$$

Example $b \rightarrow b \oplus b$

Computation is not reversible!

HADAMARD-GATE H I

$$\mathbf{H} \cdot |\psi\rangle = \mathbf{H} \cdot (\alpha |0\rangle + \beta \cdot |1\rangle) = \mathbf{H} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix}$$

HADAMARD-GATE H I

$$\mathbf{H} \cdot |\psi\rangle = \mathbf{H} \cdot (\alpha |0\rangle + \beta \cdot |1\rangle) = \mathbf{H} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix}$$

$$\cdot \mathbf{H} \cdot |0\rangle = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1+0 \\ 1-0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

- measure $|0\rangle$ or $|1\rangle$ with probability 1/2!

HADAMARD-GATE H I

$$\mathbf{H} \cdot |\psi\rangle = \mathbf{H} \cdot (\alpha |0\rangle + \beta \cdot |1\rangle) = \mathbf{H} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix}$$

$$\cdot \mathbf{H} \cdot |0\rangle = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1+0 \\ 1-0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

• measure |0\) or |1\) with probability 1/2!

$$\cdot \mathbf{H} \cdot \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1/\sqrt{2} + 1/\sqrt{2} \\ 1/\sqrt{2} - 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

· and we're back!

HADAMARD-GATE H II

The outputs of the Hadamard gate applied to $|0\rangle$ and $|1\rangle$ are so important we give them names:

$$|+\rangle := \frac{1}{\sqrt{2}} \cdot \left(|0\rangle + |1\rangle \right) = \frac{1}{\sqrt{2}} \cdot \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$
$$|-\rangle := \frac{1}{\sqrt{2}} \cdot \left(|0\rangle - |1\rangle \right) = \frac{1}{\sqrt{2}} \cdot \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$$

We cannot achieve the Hardmard gate with probabilistic bits ⇒ quantum advantage

MANY QUBITS

TENSOR PRODUCTS

Let $\mathbf{v} \in \mathbb{C}^n$ and $\mathbf{w} \in \mathbb{C}^m$, their tensor product is $\mathbf{v} \otimes \mathbf{w} := (\mathbf{v}_0 \cdot \mathbf{w}, \dots, \mathbf{v}_{n-1} \cdot \mathbf{w})$

· This is the same as the rows of:

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix} \cdot \begin{pmatrix} w_0 & w_1 & \cdots & w_{m-1} \end{pmatrix} = \begin{pmatrix} v_0 \cdot w_0 & v_0 \cdot w_1 & \cdots & v_0 \cdot w_{m-1} \\ v_1 \cdot w_0 & v_1 \cdot w_1 & \cdots & v_1 \cdot w_{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n-1} \cdot w_0 & v_{n-1} \cdot w_1 & \cdots & v_{n-1} \cdot w_{m-1} \end{pmatrix}$$

TENSOR PRODUCTS

Let $\mathbf{v} \in \mathbb{C}^n$ and $\mathbf{w} \in \mathbb{C}^m$, their tensor product is $\mathbf{v} \otimes \mathbf{w} := (\mathbf{v}_0 \cdot \mathbf{w}, \dots, \mathbf{v}_{n-1} \cdot \mathbf{w})$

· This is the same as the rows of:

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix} \cdot \begin{pmatrix} w_0 & w_1 & \cdots & w_{m-1} \end{pmatrix} = \begin{pmatrix} v_0 \cdot w_0 & v_0 \cdot w_1 & \cdots & v_0 \cdot w_{m-1} \\ v_1 \cdot w_0 & v_1 \cdot w_1 & \cdots & v_1 \cdot w_{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n-1} \cdot w_0 & v_{n-1} \cdot w_1 & \cdots & v_{n-1} \cdot w_{m-1} \end{pmatrix}$$

- For any scalar z, we have $z \cdot (\mathbf{v} \otimes \mathbf{w}) = (z \cdot \mathbf{v}) \otimes \mathbf{w} = \mathbf{v} \otimes (z \cdot \mathbf{w})$
- For any $\mathbf{v}_0,\mathbf{v}_1\in\mathbb{C}^n$, we have $(\mathbf{v}_0+\mathbf{v}_1)\otimes\mathbf{w}=\mathbf{v}_0\otimes\mathbf{w}+\mathbf{v}_1\otimes\mathbf{w}$
- For any $\mathbf{w}_0, \mathbf{w}_1 \in \mathbb{C}^m$, we have $\mathbf{v} \otimes (\mathbf{w}_0 + \mathbf{w}_1) = \mathbf{v} \otimes \mathbf{w}_0 + \mathbf{v} \otimes \mathbf{w}_1$

TENSOR PRODUCTS OF SPACES

Consider

- $\mathbb{C}^n = \operatorname{Span}_{\mathbb{C}}(\mathbf{v}_0, \dots \mathbf{v}_{n-1})$ where e.g. $\mathbf{v}_0 := (1, 0 \dots, 0)$ etc, or some other basis of \mathbb{C}^n
- $\mathbb{C}^m = \operatorname{Span}_{\mathbb{C}}(\mathbf{w}_0, \dots \mathbf{w}_{m-1})$ where e.g. $\mathbf{w}_0 := (1, 0 \dots, 0)$ etc, or some other basis of \mathbb{C}^m

We have:

- $\cdot \mathbb{C}^n \otimes \mathbb{C}^m := \operatorname{Span}_{\mathbb{C}}(\mathbf{v}_i \otimes \mathbf{w}_j : 0 \le i < n; 0 \le j < m)$
- $\mathbb{C}^n \otimes \mathbb{C}^m$ has dimension $n \times m$
- $\mathbf{x} \in \mathbb{C}^n \otimes \mathbb{C}^m \Longleftrightarrow \exists \, \alpha_{i,j} : \sum_{0 \leq i < n, 0 \leq j < m} \alpha_{i,j} \cdot \mathbf{v}_i \otimes \mathbf{w}_j$

TENSOR PRODUCTS OF MATRICES

$$\mathbf{A} := \begin{pmatrix} a_{0,0} & \dots & a_{0,n-1} \\ \vdots & \ddots & \vdots \\ a_{m-1,0} & \dots & a_{m-1,n-1} \end{pmatrix}, \quad \mathbf{B} := \begin{pmatrix} b_{0,0} & \dots & b_{0,q-1} \\ \vdots & \ddots & \vdots \\ b_{p-1,0} & \dots & b_{p-1,q-1} \end{pmatrix}$$
$$\mathbf{A} \otimes \mathbf{B} := \begin{pmatrix} a_{0,0} \cdot \mathbf{B} & \dots & a_{0,m-1} \cdot \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n-1,0} \cdot \mathbf{B} & \dots & a_{n-1,m-1} \cdot \mathbf{B} \end{pmatrix} \in \mathbb{C}^{mp \times nq}$$

EXAMPLES

1.
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 \\ 1 \cdot 3 \\ 2 \cdot 2 \\ 2 \cdot 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 6 \end{pmatrix}$$

2.
$$\mathbf{X} \otimes \mathbf{H} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

n Qubit States

- Recall that a qubit $|\psi\rangle$ is an element in \mathbb{C}^2 with norm 1.
- A register of n qubits $|\psi\rangle$ is an element in $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}$.
- Let $|0\rangle$, $|1\rangle$ be an orthonormal basis of \mathbb{C}^2 , then

$$(|b_0\rangle\otimes|b_1\rangle\otimes\cdots\otimes|b_{n-1}\rangle:b_0,\ldots,b_{n-1}\in\{0,1\})$$

is an orthonormal basis of $\underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n \text{ times}} = \mathbb{C}^{2^n}$.

```
ket0 = matrix(2, 1, [1,0])
ket1 = matrix(2, 1, [0,1])
ket0.tensor_product(ket0), \
ket0.tensor_product(ket1), \
ket1.tensor_product(ket0), \
ket1.tensor_product(ket1)
```

```
(

[1] [0] [0] [0]

[0] [1] [0] [0]

[-] [-] [-] [-] [-]

[0] [0] [1] [0]

[0], [0], [0], [1]
```

NOTATION

• For $b_0, ..., b_{n-1} \in \{0, 1\}$ we write

$$|b_0 b_1 \ldots b_{n-1}\rangle := |b_0\rangle \otimes |b_1\rangle \otimes \ldots \otimes |b_{n-1}\rangle$$

• For $|\psi_0\rangle$, $|\psi_1\rangle$, ..., $|\psi_{n-1}\rangle \in \mathbb{C}^2$, we write

$$|\psi_0\rangle |\psi_1\rangle \dots |\psi_{n-1}\rangle := |\psi_0\rangle \otimes |\psi_1\rangle \otimes \dots \otimes |\psi_{n-1}\rangle$$

• Any $|\psi\rangle \in \mathbb{C}^{2^n}$ of n qubits can be written as

$$|\psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^n} \alpha_{\mathbf{x}} |\mathbf{x}\rangle$$
 where $\alpha_{\mathbf{x}} \in \mathbb{C}$ (called amplitude) and $\sum_{\mathbf{x} \in \{0,1\}^n} |\alpha_{\mathbf{x}}|^2 = 1$

SEPARABLE STATES

Definition

An *n*-qubit state $|\psi\rangle$ is called **separable** if it can be decomposed as $|\psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle$.

Examples

- $\cdot |00\rangle = |0\rangle \otimes |0\rangle$
- $\cdot \frac{1}{2} \cdot (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$

```
ket0 = matrix(2, 1, [1,0]); ket1 = matrix(2, 1, [0,1])
(1/sqrt(2)*ket0 + 1/sqrt(2)*ket1).tensor product(1/sqrt(2)*ket0 + 1/sqrt(2)*ket1)
```

- [1/2] [1/2]
- [---]
- [1/2]
- [1/2]

ENTANGLED STATES

Definition

An *n*-qubit state $|\psi\rangle$ is called **entangled** if it cannot be decomposed as $|\psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle$.

Example

$$\frac{1}{\sqrt{2}}\cdot(|00\rangle+|11\rangle)$$

```
ket0 = matrix(2, 1, [1,0]); ket1 = matrix(2, 1, [0,1])
(1/sqrt(2)) * (ket0.tensor_product(ket0) + ket1.tensor_product(ket1))
```

```
[1/2*sqrt(2)]
[ 0]
[ 0]
[1/2*sqrt(2)]
```

MEASURING *n* QUBIT STATES

Measuring the state:

$$|\psi\rangle = \sum_{i_0,\dots,i_{n-1}\in\{0,1\}^n} \alpha_{i_0\dots i_{-n}} \left| e_{i_0}\cdots e_{i_{n-1}} \right\rangle \xrightarrow{\mathsf{measure}} \left| e_{j_0}\dots e_{j_{n-1}} \right\rangle \text{ with probability } \left| \alpha_{j_0\dots j_{n-1}} \right|^2$$

Measuring the first register:

$$\left|\psi\right\rangle = \alpha_{0} \cdot \left|e_{0}\right\rangle \left|\psi_{0}\right\rangle + \alpha_{1} \cdot \left|e_{1}\right\rangle \left|\psi_{1}\right\rangle \xrightarrow{\text{measure}} \begin{cases} \left|e_{0}\right\rangle \left|\psi_{0}\right\rangle & \text{with prob. } \left|\alpha_{0}\right|^{2} \\ \left|e_{1}\right\rangle \left|\psi_{1}\right\rangle & \text{with prob. } \left|\alpha_{1}\right|^{2} \end{cases}$$

We necessarily have $|\alpha_0|^2 + |\alpha_1|^2 = 1$

QUANTUM COMPUTATION

- A unitary matrix $U \in \mathbb{C}^{2^n \times 2^n}$, i.e. $U^\dagger \cdot U = I_{2^n}$ is called a quantum circuit
- Any classical circuit f on n-bits can be written as a unitary \mathbf{U}_f on 2n-qubits

$$U_f \cdot |\psi\rangle |0\rangle = |\psi\rangle |f(\psi)\rangle$$

MEASURING ENTANGLED REGISTERS

Consider $U_f \cdot |\mathbf{x}, y\rangle = |\mathbf{x}, f(\mathbf{x}) \oplus y\rangle$ for some $f : \{0, 1\}^n \to \{0, 1\}$.

- Measure the last register $|f(\mathbf{x}) \oplus y\rangle$ to obtain v
- The first register $|\mathbf{x}\rangle$ collapses to those $\mathbf{x}\in\{0,1\}^n$ s.t. $f(\mathbf{x})\oplus y=v$.
- The first n registers hold a superposition of the preimages of v under f.
- · Measurements must stay consistent. Turns out this is quite powerful!

NO-CLONING THEOREM

Cannot copy a quantum state

- We can "cut" and "paste" a quantum state, but we cannot "copy" and "paste".
- "Move is possible. Copy is impossible."

Proof Sketch:

- There is no linear map C from $|\psi\rangle\otimes|0\rangle$ to $|\psi\rangle\otimes|\psi\rangle$.
- It would need to map $\frac{|x\rangle+|y\rangle}{\sqrt{2}}\otimes|0\rangle$ to $\frac{|x\rangle+|y\rangle}{\sqrt{2}}\otimes\frac{|x\rangle+|y\rangle}{\sqrt{2}}$
- By linearity, we'd need: $C\left(\frac{|x\rangle+|y\rangle}{\sqrt{2}}\otimes|0\rangle\right)=$
 - $\cdot \frac{1}{\sqrt{2}} \cdot C((|x\rangle + |y\rangle) \otimes |0\rangle)$
 - $\cdot \frac{1}{\sqrt{2}} \cdot (C(|x\rangle \otimes |0\rangle) + C(|y\rangle \otimes |0\rangle))$
 - $\cdot \frac{\sqrt{1}}{\sqrt{2}} \cdot (|x\rangle \otimes |x\rangle + |y\rangle \otimes |y\rangle)$
 - $\cdot \neq \frac{|x\rangle + |y\rangle}{\sqrt{2}} \otimes \frac{|x\rangle + |y\rangle}{\sqrt{2}}$

PROBLEM STATEMENT

Given some function $f:\{0,1\}^n \to \{0,1\}$, we want to find some special element x_0 .

- For example, given an plaintext-ciphertext pair (p,c) for AES, we might write $f: k \to AES(k,p) \stackrel{?}{=} c$.
- Classically, we'd need to call f about 2^n times to find x_0
- Grover's algorithm only needs $\sqrt{2^n} = 2^{n/2}$ queries

EXAMPLE

•
$$n = 2$$
; $x_0 = 10$; $U_f \cdot |\mathbf{x}, y\rangle = |\mathbf{x}, f(\mathbf{x}) \oplus y\rangle$

$$\mathbf{U}_f := \begin{array}{c} 00,0 & 00,1 & 01,0 & 01,1 & 10,0 & 10,1 & 11,0 & 11,1 \\ 00,0 & & & & & & & & & \\ 00,1 & & & & & & & & \\ 01,0 & & & & & & & & \\ 01,1 & & & & & & & & \\ 10,0 & & & & & & & & \\ 10,1 & & & & & & & & \\ 11,0 & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

FIRST ATTEMPT

Let's apply the Hadamard gate on the first n registers, apply \mathbf{U}_f and measure

$$|\psi_{0}\rangle = |\mathbf{0}, 0\rangle$$

$$|\psi_{1}\rangle = (\mathbf{H}^{\otimes n} \otimes \mathbf{I}) \cdot |\mathbf{0}, 0\rangle = \left[\frac{\sum_{\mathbf{x} \in \{0,1\}^{n}} |\mathbf{x}\rangle}{\sqrt{2^{n}}}\right] |0\rangle$$

$$|\psi_{2}\rangle = \mathbf{U}_{f} \cdot \left[\frac{\sum_{\mathbf{x} \in \{0,1\}^{n}} |\mathbf{x}\rangle}{\sqrt{2^{n}}}\right] |0\rangle = \frac{\sum_{\mathbf{x} \in \{0,1\}^{n}} |\mathbf{x}, f(\mathbf{x})\rangle}{\sqrt{2^{n}}}$$

Measuring the last qubit will produce 1 with probability $1/2^n$. If that event happens, then measuring the first n qubits will output the correct answer x_0 .

TRICK 1: PHASE INVERSION I

Apply the Hadamard gate on the last register and apply \mathbf{U}_f

$$\begin{split} |\psi_{0}\rangle &= |\mathbf{x}, \mathbf{1}\rangle \\ |\psi_{1}\rangle &= (\mathbf{I}_{n} \otimes \mathbf{H}) \cdot |\mathbf{x}, \mathbf{1}\rangle = |\mathbf{x}\rangle \left[\frac{|0\rangle - |\mathbf{1}\rangle}{\sqrt{2}}\right] = \left[\frac{|\mathbf{x}, 0\rangle - |\mathbf{x}, \mathbf{1}\rangle}{\sqrt{2}}\right] \\ |\psi_{2}\rangle &= \mathbf{U}_{f} \cdot \left(|\mathbf{x}\rangle \left[\frac{|0\rangle - |\mathbf{1}\rangle}{\sqrt{2}}\right]\right) = |\mathbf{x}\rangle \left[\frac{|f(\mathbf{x}) \oplus 0\rangle - |f(\mathbf{x}) \oplus \mathbf{1}\rangle}{\sqrt{2}}\right] = |\mathbf{x}\rangle \left[\frac{|f(\mathbf{x})\rangle - |\overline{f(\mathbf{x})}\rangle}{\sqrt{2}}\right] \\ &= (-1)^{f(\mathbf{x})} \cdot |\mathbf{x}\rangle \left[\frac{|0\rangle - |\mathbf{1}\rangle}{\sqrt{2}}\right] = \begin{cases} -1 |\mathbf{x}\rangle \left[\frac{|0\rangle - |\mathbf{1}\rangle}{\sqrt{2}}\right], & \text{if } \mathbf{x} = \mathbf{x}_{0} \\ +1 |\mathbf{x}\rangle \left[\frac{|0\rangle - |\mathbf{1}\rangle}{\sqrt{2}}\right], & \text{if } \mathbf{x} \neq \mathbf{x}_{0} \end{cases} \end{split}$$

TRICK 1: PHASE INVERSION II

Applying:

$$\mathbf{U}_f \cdot (\mathbf{I}_n \otimes \mathbf{H}) \cdot \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{pmatrix}$$

Useless?

$$|(-1/2)|^2 = |1/2|^2$$

TRICK 2: INVERSION ABOUT THE MEAN (EXAMPLE)

$$y = \mu + (\mu - x) = -x + 2\mu$$

TRICK 2: INVERSION ABOUT THE MEAN (EXAMPLE)

$$y = \mu + (\mu - x) = -x + 2\mu$$

TRICK 2: INVERSION ABOUT THE MEAN I

Computing the mean:

$$\mathbf{M} = \begin{pmatrix} 1/2^{n} & 1/2^{n} & \dots & 1/2^{n} & 1/2^{n} \\ 1/2^{n} & 1/2^{n} & \dots & 1/2^{n} & 1/2^{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1/2^{n} & 1/2^{n} & \dots & 1/2^{n} & 1/2^{n} \\ 1/2^{n} & 1/2^{n} & \dots & 1/2^{n} & 1/2^{n} \end{pmatrix} \qquad \mathbf{M} \cdot \mathbf{v} = \begin{pmatrix} 1/2^{n} \cdot \sum_{i=0}^{2} v_{i} \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} v_{i} \\ \vdots \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} v_{i} \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} v_{i} \end{pmatrix}$$

$$\mathbf{I} \cdot \mathbf{v} = \begin{pmatrix} 1/2^{n} \cdot \sum_{i=0}^{n} V_{i} \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} V_{i} \\ \vdots \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} V_{i} \\ 1/2^{n} \cdot \sum_{i=0}^{2^{n}} V_{i} \end{pmatrix}$$

TRICK 2: INVERSION ABOUT THE MEAN II

Inversion about the mean:

$$-\mathbf{I} + 2\mathbf{M} = \begin{pmatrix} (-1 + \frac{2}{2^{n}}) & \frac{2}{2^{n}} & \dots & \frac{2}{2^{n}} & \frac{2}{2^{n}} \\ \frac{2}{2^{n}} & (-1 + \frac{2}{2^{n}}) & \dots & \frac{2}{2^{n}} & \frac{2}{2^{n}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{2}{2^{n}} & \dots & \frac{2}{2^{n}} & (-1 + \frac{2}{2^{n}}) & \frac{2}{2^{n}} \\ \frac{2}{2^{n}} & \dots & \frac{2}{2^{n}} & \frac{2}{2^{n}} & (-1 + \frac{2}{2^{n}}) \end{pmatrix}$$

$$(-\mathbf{I} + 2\mathbf{M}) \cdot \mathbf{v} = \begin{pmatrix} \mathbf{v}_{0} + \frac{2}{2^{n}} \cdot \sum_{i=0}^{2^{n}-1} \mathbf{v}_{i} \\ \mathbf{v}_{1} + \frac{2}{2^{n}} \cdot \sum_{i=0}^{2^{n}-1} \mathbf{v}_{i} \\ \vdots \\ \mathbf{v}_{2^{n}-2} + \frac{2}{2^{n}} \cdot \sum_{i=0}^{2^{n}-1} \mathbf{v}_{i} \\ \mathbf{v}_{2^{n}-1} + \frac{2}{2^{n}} \cdot \sum_{i=0}^{2^{n}-1} \mathbf{v}_{i} \end{pmatrix}$$

TRICK 2: INVERSION ABOUT THE MEAN III

A straight-forward calculation shows that $-\mathbf{I}+2\,\mathbf{M}$ is indeed unitary an thus a quantum circuit!

COMBINING THE TWO TRICKS

(31, 46, 67, 61, 5)

```
def phasef(v, i):
   v = enumerate(v)
   v = [v_ * (-1)**int(i==j) for j, v_ in v]
    return vector(v)
phasef(vector(ZZ, 4, [1,1,1,1]), 2)
(1, 1, -1, 1)
def imeanf(v):
   N = ZZ(len(v))
   M = matrix(QQ, len(v), len(v), [1/N]*N**2)
   I = identity_matrix(N)
    return (-I + 2*M)*v
imeanf(vector(ZZ, 5, [53,38,17,23,79]))
```

COMBINING THE TWO TRICKS

```
def phasef(v, i):
    v = enumerate(v)
    v = [v_ * (-1)**int(i==j) for j,v_ in v]
    return vector(v)

phasef(vector(ZZ, 4, [1,1,1,1]), 2)
```

```
(1, 1, -1, 1)
```

(31, 46, 67, 61, 5)

```
def imeanf(v):
    N = ZZ(len(v))
    M = matrix(QQ, len(v), len(v), [1/N]*N**2)
    I = identity_matrix(N)
    return (-I + 2*M)*v

imeanf(vector(ZZ, 5, [53,38,17,23,79]))
```

```
v = vector(RealField(prec=12), 5, [10]*5)
print(f" input: {v}")
v = phasef(v, i=3); print(f"step 1a: {v}")
v = imeanf(v); print(f"step 1b: {v}, Δ: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 2a: {v}")
v = imeanf(v); print(f"step 2b: {v}, Δ: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 3a: {v}")
v = imeanf(v); print(f"step 3b: {v}, Δ: {max(v)-min(v)}")
```

```
input: (10.0, 10.0, 10.0, 10.0, 10.0)
step 1a: (10.0, 10.0, 10.0, -10.0, 10.0)
step 1b: (2.00, 2.00, 2.00, 22.0, 2.00), \Delta: 20.0
step 2a: (2.00, 2.00, 2.00, -22.0, 2.00)
step 2b: (-7.60, -7.60, -7.60, 16.4, -7.60), \Delta: 24.0
step 3a: (-7.60, -7.60, -7.60, -16.4, -7.60)
step 3b: (-11.1, -11.1, -11.1, -2.33, -11.1), \Delta: 8.80
```

```
def phasef(v, i):
    v = enumerate(v)
    v = [v_ * (-1)**int(i==j) for j, v_ in v]
    return vector(v)

phasef(vector(ZZ, 4, [1,1,1,1]), 2)
```

```
(1, 1, -1, 1)
```

```
def imeanf(v):
    N = ZZ(len(v))
    M = matrix(QQ, len(v), len(v), [1/N]*N**2)
    I = identity_matrix(N)
    return (-I + 2*M)*v

imeanf(vector(ZZ, 5, [53,38,17,23,79]))
```

```
(31, 46, 67, 61, 5)
```

```
v = vector(RealField(prec=12), 5, [10]*5)
print(f" input: {v}")
v = phasef(v, i=3); print(f"step 1a: {v}")
v = imeanf(v); print(f"step 1b: {v}, \Delta: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 2a: {v}")
v = imeanf(v); print(f"step 2b: {v}, \Delta: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 3a: {v}")
v = imeanf(v); print(f"step 3b: {v}, \Delta: {max(v)-min(v)}")
```

```
input: (10.0, 10.0, 10.0, 10.0, 10.0)
step 1a: (10.0, 10.0, 10.0, -10.0, 10.0)
step 1b: (2.00, 2.00, 2.00, 22.0, 2.00), Δ: 20.0
step 2a: (2.00, 2.00, 2.00, -22.0, 2.00)
step 2b: (-7.60, -7.60, -7.60, 16.4, -7.60), Δ: 24.0
step 3a: (-7.60, -7.60, -7.60, -16.4, -7.60)
step 3b: (-11.1, -11.1, -11.1, -2.33, -11.1), Δ: 8.80
```

The optimal number of repetitions is $\sqrt{\dim(v)}$

GROVER'S ALGORITHM

- 1. Start with $|\mathbf{0}\rangle$
- 2. Apply $\mathbf{H}^{\otimes n}$
- 3. Repeat $\sqrt{2^n}$ times:
 - 3.1 Apply phase inversion $U_f \cdot (I \otimes H)$
 - 3.2 Apply inversion about the mean -I + 2M
- 4. Measure the qubits

RECAP: GROVER VS AES

Best known quantum algorithms for attacking symmetric cryptography are based on Grover's algorithm.

- Search key space of size 2^n in $2^{n/2}$ operations: AES-256 \rightarrow 128 "quantum bits of security".
- Taking all costs into account: > 2¹⁵² classical operations for AES-256.¹
- Assuming a max depth of 2^{96} for a quantum circuit: overall AES-256 cost is $\approx 2^{190}$.
- Does not parallelise: have to wait for 2^X steps, cannot buy 2^{32} quantum computers and wait $2^X/2^{32}$ steps.

¹Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In: EUROCRYPT 2020, Part II. ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer, Cham, May 2020, pp. 280–310. DOI: 10.1007/978-3-030-45724-2_10.

SHOR'S ALGORITHM

TASK

Given $N = p \cdot q$ for p, q prime find p or q.

A MAGICAL NEW OPERATION

Consider a function $f_{a,N}(x)$ for any 0 < a < N, which computes $f_{a,N}(x) := a^x \mod N$ **Example:**

```
p, q = 13, 15
N = p*q
a = 2

def f(x):
    return power_mod(a, x, N)

f(13)
```

```
p, q = 3, 5
N = p*q
a = 2

[list(range(N)), None, [f(i) for i in range(N)]]
```

2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	4	8	1	2	4	8	1	2	4	8	1	2	4

A MAGICAL NEW OPERATION

Theorem (Euler's Theorem)

For any modulus N and any coprime integer a, it holds that

$$a^{\phi(n)} \equiv 1 \mod N$$

where $\phi(n)$, Euler's totient function, counts the integers up to n relatively prime to n.

- So $f_{a,N}(\cdot)$ should have some period $r: f_{a,N}(x) \equiv f_{a,N}(x+r)$.
- We can implement $f_{a,N}(\cdot)$ efficiently on classical and on quantum computers
- On a quantum computer, we can find this period efficiently but this assumed hard on classical computers.

A Magical New Operation

Let $\mathcal{P}(a, N)$ be an oracle that outputs r s.t. $f_{a,N}(x) \equiv f_{a,N}(x+r)$.

FACTORING WITH THAT MAGICAL NEW OPERATION

- 1. Pick a random $2 \le a < N$.
- 2. If $gcd(a, N) \neq 1$, output a as a factor of N.
- 3. Call $\mathcal{P}(a, N)$ and retrieve r.
- 4. If r is not even, start over.
- 5. We have $a^r \equiv 1 \mod N$ and thus $N \mid (a^r 1)$.
- 6. Write $a^r 1 = (\sqrt{a^r} + 1) \cdot (\sqrt{a^r} 1)^2$
- 7. So we get $N \mid (a^{r/2} 1) \cdot (a^{r/2} + 1)$, i.e. any factor of N is a factor of $(a^{r/2} 1)$, $(a^{r/2} + 1)$ or both
 - 7.1 It can't be that $N \mid a^{r/2} 1$ because the period is r and not r/2
 - 7.2 It could be that $N \mid a^{r/2} + 1$ and then the algorithm fails
- 8. Compute $d := \gcd(N, a^{r/2} + 1)$

 $^{^{2}}x^{2} - y^{2} = (x - y) \cdot (x + y)$

THE MAGICAL NEW OPERATION

- 1. We can implement $f_{a,N}(\cdot)$ as a quantum circuit $U_{f_{a,N}(\cdot)}$ acting on $m := \lceil \log N^2 \rceil$ qubits
- 2. We can apply Hadamard gates on the inputs before applying $\mathbf{U}_{f_{a,N}(\cdot)}$
- 3. This gives us a state³

$$|\phi_2\rangle := \frac{\sum_{\mathbf{x} \in \{0,1\}^m} |\mathbf{x}, f_{a,N}(\mathbf{x})\rangle}{\sqrt{2^m}} = \frac{\sum_{\mathbf{x} \in \{0,1\}^m} |\mathbf{x}, a^{\mathbf{x}} \bmod N\rangle}{\sqrt{2^m}}.$$

4. The final ingredient is a **Quantum Fourier Transform** (QFT) which more or less extracts the period from such a state.⁴

 $^{^{3}}$ I'm identifying the binary representation **x** of *x* with *x* here.

⁴I have yet to find a simple way of explaining it :(

RECAP: SHOR VS RSA, DH, ...

COMMITMENT SCHEMES

Alice Bob $r \leftrightarrow \{0,1\}^{\lambda} \qquad \qquad k \\ m \in \{0,1\}^{\lambda} \qquad \qquad \begin{matrix} c \\ \\ com_k(m,r) = c \end{matrix} \qquad \begin{matrix} (commitment) \\ \\ m,r \\ \hline \\ (opening) \end{matrix}$

Statistically Hiding:

$$\Pr\left[\begin{array}{c|c} (\mathbf{m}_0,\mathbf{m}_1) \leftarrow \mathcal{A}(\mathbf{k}) \\ b \leftarrow \{0,1\} \\ \mathbf{r} \leftarrow \$ \{0,1\}^{\lambda} \\ \mathbf{c} \leftarrow \mathrm{com}_k(\mathbf{m}_b,\mathbf{r}) \\ b' \leftarrow \mathcal{A}(\mathbf{c}) \end{array}\right] = \frac{1}{2}$$
for any \mathcal{A} .

Computationally Binding: "PPT adversary cannot change its mind after sending c"

COMMITMENT SCHEMES

Alice Bob $r \leftrightarrow \{0,1\}^{\lambda} \qquad \qquad k \\ m \in \{0,1\}^{\lambda} \qquad \qquad \begin{matrix} c \\ \\ com_k(m,r) = c \end{matrix} \qquad \begin{matrix} (commitment) \\ \\ \hline \end{matrix} \qquad \begin{matrix} m,r \\ \\ (opening) \end{matrix}$

Statistically Hiding:

$$\Pr\left[\begin{array}{c|c} b'=b & (m_0,m_1) \leftarrow \mathcal{A}(k) \\ b \leftarrow \{0,1\} \\ r \leftarrow \sharp \{0,1\}^{\lambda} \\ c \leftarrow \text{com}_k(m_b,r) \\ b' \leftarrow \mathcal{A}(c) \end{array}\right] = \frac{1}{2}$$
for any \mathcal{A} .

Computationally Binding: "PPT adversary cannot change its mind after sending c"

How should we formalise this?

CLASSICAL DEFINITION

"PPT adversary cannot change its mind after sending c"

Classical Definition

PPT \mathcal{A} cannot find $(\mathbf{m}, \mathbf{r}, \mathbf{m}', \mathbf{r}')$ where $\mathbf{m} \neq \mathbf{m}'$ and

$$\text{com}_k(m,r) = \text{com}_k(m',r').$$

In particular, any collision-resistant hash function implies a binding commitment scheme.

INTERLUDE

- A commitment scheme cannot be statistically hiding and statistically binding at the same time
 - If it is statistically hiding this means that for any $c = com_k(m, r)$ there exists some r' such that $c = com_k(m', r')$ for any m'.
 - · If it is statistically binding this means that for any $c=\text{com}_k(m,r)$ there exists no r' such that $c=\text{com}_k(m',r)$ for any $m'\neq m$.
- · Any IND-CPA secure encryption scheme is a hiding commitment scheme
- Any perfectly-correct encryption scheme is a binding commitment scheme, otherwise decryption might fail

CLASSICAL DEFINITION

"PPT adversary cannot change its mind after sending c"

Classical Definition

PPT ${\mathcal A}$ cannot find (m,r,m',r') where $m\neq m'$ and

$$\text{com}_k(m,r) = \text{com}_k(m',r').$$

In particular, any collision-resistant hash function implies a binding commitment scheme.

Punchline

This is not true if A is a quantum adversary.

ATTACK ON CLASSICAL DEFINITION I

There exists a quantum-secure collision-resistant hash function H where \mathcal{A} can open $com_k(m,r) \coloneqq H(m,r)$ to any $m.^5$

- Quantum adversary cannot find two pairs (m,r), (m',r') that agree on $\mathsf{com}_k(m,r) = \mathsf{com}_k(m,r)$
- But it can open to some message **m** even if it learns it after sending **c**.

Caveat

The attack depends on an oracle that we do not know how to build. But even with this oracle collision resistance holds.

⁵Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In: 55th FOCS. IEEE Computer Society Press, Oct. 2014, pp. 474–483. DOI: 10.1109/FOCS.2014.57; Dominique Unruh. Computationally Binding Quantum Commitments. In: EUROCRYPT 2016, Part II. ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016, pp. 497–527. DOI: 10.1007/978-3-662-49896-5_18.

ATTACK ON CLASSICAL DEFINITION II

1. Prepare a quantum state

$$|\phi\rangle := \left[\frac{\sum_{\mathsf{m},\mathsf{r}\in\{0,1\}^{\lambda}\times\{0,1\}^{\lambda}} |\mathsf{m}\rangle |\mathsf{r}\rangle}{\sqrt{2^{2\lambda}}} \right] \quad |0\rangle$$

2. Apply H on the first two registers and add result to the third

$$|\phi\rangle \coloneqq \frac{\sum_{\mathsf{m},\mathsf{r}\in\{0,1\}^{\lambda}\times\{0,1\}^{\lambda}}|\mathsf{m}\rangle\,|\mathsf{r}\rangle\,|\mathsf{H}(\mathsf{m},\mathsf{r})\rangle}{\sqrt{2^{2\,\lambda}}}$$

3. Measure the third register to obtain some value **h**

$$|\phi\rangle := \frac{\sum_{(\mathsf{m},\mathsf{r})\,|\,\mathsf{h}=H(\mathsf{m},\mathsf{r})}|\mathsf{m}\rangle\,|\mathsf{r}\rangle}{\sqrt{|\{(\mathsf{m},\mathsf{r})\,|\,\mathsf{h}=H(\mathsf{m},\mathsf{r})\}\,|}}\,|\mathsf{h}\rangle}$$

The first register now contains all preimages of h.

ATTACK ON CLASSICAL DEFINITION III

4. Use the magic oracle 6 to filter $\left\{ (m,\,r)\mid h=\textit{H}(m,\,r)\right\}$ to

$$\left\{(m,\,r)\mid h=\mathit{H}(m,\,r)\wedge m=m_0\right\}$$

for any chosen \mathbf{m}_0 .

5. Measure the first register to obtain (m_0, r) and submit as an opening.

Collision Resistance

This does not violate collision resistance because we are "using up" our state, i.e. we can only measure once, still.

⁶This is a variant of Grover's algorithm but we don't know how to implement the required steps.

CORRECTED DEFINITION: FORMALISING THE ATTACKER

Can write down our attacker like this:

Alice		Bob
	k	
$ S,M,R\rangle$	$\frac{C}{(commitment)}$	
S, M, R⟩ measure S, M, R⟩ obtain m, r	m, r (opening)	

CORRECTED DEFINITION: WHAT DOES IDEAL LOOK LIKE?

Collapse-binding Commitment

- 1: $b \leftarrow \{0,1\}; k \leftarrow \{0,1\}^{\lambda}$
- 2: $\mathbf{c}, |\mathbf{S}, \mathbf{M}, \mathbf{R}\rangle \leftarrow \mathcal{A}(k)$
- 3: compute $|S,M,R,{\it V}_c(M,R)\rangle$ // ${\it V}_c(M,R)=$ 1 iff ${\it com}_k(M,R)=c$
- 4: measure $|V_c(M, R)\rangle = v$
- 5: $/\!\!/$ measurement has no effect if $|\mathbf{M}\rangle = |\mathbf{m}\rangle$, i.e. "collapsed"
- 6: if $v = 1 \land b = 0$ then measure $|\mathbf{M}\rangle$
- 7: $b' \leftarrow \mathcal{A}(|S, M, R, V_c(M, R)\rangle)$
- 8: return b = b'

Dominique Unruh. **Computationally Binding Quantum Commitments.** In: EUROCRYPT 2016, Part II. ed. by Marc Fischlin and lean-Sébastien Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016. pp. 497-527. DOI: 10.1007/978-3-662-49896-5 18

COLLAPSING HASH FUNCTIONS

Collapsing Hash Function H

- 1: $b \leftarrow \$ \{0,1\}$
- 2: $|\psi\rangle_0 := |\mathsf{S}\rangle \sum_{\mathsf{x}} |\mathsf{x}, \mathsf{0}\rangle \leftarrow \mathcal{A}(\mathsf{H})$
- 3: $|\psi\rangle_1 \coloneqq |\mathsf{S}\rangle \sum_{\mathsf{x}} |\mathsf{x}, \mathsf{H}(\mathsf{x})\rangle$
- 4: **if** b = 0 **then**
- 5: measure $|\mathbf{x}\rangle \in |\psi\rangle_1 \to |\psi\rangle_2$
- 6: else
- 7: measure $|H(\mathbf{x})\rangle \in |\psi\rangle_1 \to |\psi\rangle_2$
- 8: $b' \leftarrow \mathcal{A}(|\psi\rangle_2)$
- 9: return b = b'

Figure 1: Collapsing Hash Function

Game indeed differs:

- \cdot b=0: collapses to a single input-output pair
- b = 1: collapses to all preimages of measured value H(x)

[Unr16]: This implies collapse-binding commitments.

Any somewhere statistically binding hash function is collapsing.

SOMEWHERE STATISTICALLY BINDING (SSB)

- Consider $H(\mathbf{x}_0 \mid \mathbf{x}_1 \mid \ldots \mid \mathbf{x}_{\ell-1})$
- There are "modes" $H^{(i)}(\mathbf{x}_0 \mid \mathbf{x}_1)$ that are **statistically binding** to block \mathbf{x}_i
- We also have "index hiding": $H \approx_c H^{(i)} \approx_c H^{(j)}$ for any i, j.

- \cdot Since H() is compressing it it cannot be statistically binding to its input
- · But it can be be statistically binding for one small block
- · If cannot tell which block it is statistically binding to, have an SSB hash function
- · Can build this from a perfectly correct fully-homomorphic encryption scheme

FII

IF YOU TAKE NOTHING ELSE FROM THIS LECTURE: QUANTUM COMPUTERS WON'T SOLVE HARD PROBLEMS INSTANTLY BY JUST TRYING ALL SOLUTIONS IN PARALLEL.

CREDIT: https://scottaaronson.blog/

REFERENCES I

- [ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In: 55th FOCS. IEEE Computer Society Press, Oct. 2014, pp. 474–483. DOI: 10.1109/FOCS.2014.57.
- [JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.

 Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In:

 EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS.

 Springer, Cham, May 2020, pp. 280–310. DOI: 10.1007/978-3-030-45724-2_10.
- [Unr16] Dominique Unruh. Computationally Binding Quantum Commitments. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016, pp. 497–527. DOI: 10.1007/978-3-662-49896-5_18.

REFERENCES II

[YM08] Noson S Yanofsky and Mirco A Mannucci. Quantum Computing for Computer Scientists. Cambridge University Press, 2008.