Classification based on heart.csv

```
In [32]:
```

```
#import
import numpy as np
import pandas as pd
import seaborn as sn
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
from sklearn import metrics
# to plot fusion matrix

plt.rcParams["figure.figsize"] = (10,6)
df=pd.read_csv("heart.csv")
```

In [33]:

df.head()

Out[33]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

In [34]:

df.describe()

Out[34]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000000
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336585
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.472772
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000000
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	0.000000
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000000
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	1.000000
4									F

```
In [35]:
```

```
df.isna().sum()
```

Out[35]:

```
      age
      0

      sex
      0

      cp
      0

      trestbps
      0

      chol
      0

      fbs
      0
```

```
thalach
              0
exang
              0
oldpeak
              0
              0
slope
са
              0
thal
              0
target
             0
dtype: int64
In [36]:
df.nunique()
Out[36]:
age
               41
sex
                2
ср
                4
               49
trestbps
              152
chol
fbs
                2
                3
restecq
thalach
               91
                2
exang
               40
oldpeak
slope
                3
                5
са
thal
                4
                2
target
dtype: int64
correlation matrix
In [37]:
#correlation matrix
corrMatrix = df.corr()
sn.heatmap(corrMatrix, annot=True)
plt.show()
                                                                                                  - 1.0
                -0.1 -0.072 0.27 0.22 0.12 -0.13 -0.39 0.088 0.21 -0.17 0.27 0.072 -0.23
                     -0.041-0.079 -0.2 0.027 -0.055-0.049 0.14 0.085 -0.027 0.11 0.2 -0.28
     sex - -0.1
                                                                                                 - 0.8
      cp -0.072-0.041 1 0.038-0.082 0.079 0.044 0.31 -0.4 -0.17 0.13 -0.18 -0.16 0.43
 trestbps - 0.27 -0.079 0.038 1
                                 0.13  0.18  -0.12  -0.039  0.061  0.19  -0.12  0.1  0.059  -0.14
                                                                                                 - 0.6
     chol - 0.22 -0.2 -0.082 0.13 1 0.027 -0.15 -0.022 0.067 0.065 -0.014 0.074 0.1 -0.1
                                                                                                 - 0.4
     fbs - 0.12 0.027 0.079 0.18 0.027 1
                                             -0.1 -0.00890.049 0.011 -0.062 0.14 -0.042-0.041
  restecg - -0.13 -0.055 0.044 -0.12 -0.15 -0.1
                                                 - 0.2
  thalach - -0.39 -0.049 0.31 -0.039-0.0220.00890.048 1
                                                       -0.38 -0.35
                                                                    0.4 -0.21 -0.098 0.42
   exang - 0.088 0.14 -0.4 0.061 0.067 0.049 -0.066 -0.38
                                                              0.31
                                                                  -0.27 0.11 0.2
                                                                                   -0.44
                                                                                                 - 0.0
 oldpeak - 0.21 0.085 -0.17 0.19 0.065 0.011 -0.05 -0.35 0.31
                                                                   -0.58
                                                                              0.2
                                                                                    -0.44
                                                                         0.22
   slope - -0.17 -0.027 0.13 -0.12 -0.014-0.062 0.086 0.4
                                                                        -0.073-0.094 0.35
                                                       -0.27 -0.58
                                                                   1
                                                                                                 - -0.2
      ca - 0.27 0.11 -0.18 0.1 0.074 0.14 -0.078 -0.21 0.11 0.22 -0.073
                                                                               0.15 -0.38
     thal -0.072 0.2 -0.16 0.059 0.1 -0.042-0.021-0.098 0.2
                                                              0.2 -0.094 0.15
                                                                                                 -0.4
                                                                                     -0.34
   target - -0.23 -0.28 0.43 -0.14 -0.1 -0.041 0.13 0.42
                                                       -0.44 -0.44
                                                                   0.35 -0.38 -0.34
                                                                                      1
                                                         exang
                                        fbs
                                                   thalach
                                                                           S
                                              estecg
                                                                                thal
```

0

restecg

PREPROCESSING

```
duplicates....
In [38]:
#dropping duplicate rows...
df.drop(axis="rows", labels=df.index[df.duplicated()], inplace=True)
In [39]:
df.duplicated().sum()
len(df)
Out[39]:
302
Fuction to calculate f1 score
In [40]:
#function for caluculating fl score, accuracy , precision , recall
def f1(actual, predicted, label):
   tp = np.sum((actual==label) & (predicted==label)) # true - true
    fp = np.sum((actual!=label) & (predicted==label)) #
    fn = np.sum((predicted!=label) & (actual==label))
    tn = np.sum((predicted!=label) & (actual!=label))
    accu= (tp+tn) / (tp+fp+tn+fn)
```

In [41]:

Out[41]:

```
df.info()
df.describe()
df.shape[1]
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 302 entries, 0 to 878
Data columns (total 14 columns):
#
  Column Non-Null Count Dtype
            _____
0
           302 non-null int64
   age
        302 non-null int64
302 non-null int64
1
  sex
2 cp
3 trestbps 302 non-null int64
4 chol
           302 non-null int64
5 fbs
           302 non-null int64
6 restecg 302 non-null int64
7 thalach 302 non-null int64
           302 non-null int64
8 exang
9 oldpeak 302 non-null
                         float64
10 slope
           302 non-null
                         int64
11 ca
           302 non-null
                         int64
12 thal
           302 non-null
                          int64
13 target 302 non-null
                          int64
dtypes: float64(1), int64(13)
memory usage: 35.4 KB
```

print("accuracy:",accu)
precision = tp/(tp+fp)

recall = tp/(tp+fn)
print("recall:", recall)

print("f1 score:", f1)

print("Precision:", precision)

f1 = 2 * (precision * recall) / (precision + recall)

Splitting data.... standardizzzzzee.....

X as set of features..... Y as target column......

```
In [42]:
```

```
from random import random
df.apply(pd.to numeric, errors='ignore')
X = df.iloc[:,0:df.shape[1]-1]
Y = df.iloc[:,df.shape[1]-1]
# standardize the data
X=(X-X.mean())/X.std()
# add a columns of 1 at the end
X.insert(df.shape[1]-1, "Const", [1]*len(X), True)
arr rand = np.random.rand(X.shape[0])
split = arr rand < np.percentile(arr rand, 85)</pre>
# spliting data into train and split
X_{train} = X[split]
Y_{train} = Y[split]
X_{test} = X[\sim split]
Y test = Y[~split]
#print(X test)
```

In [43]:

```
#sigmoid function...
def sigmoid(x):
    return 1/(1+np.exp(-x))
```

Logistic Regression : univariate

preparing data for univariate

```
In [44]:
```

```
lr=0.01
W=np.random.uniform(low=0,high=1,size=2)
X_uni = df.iloc[:,[0]]
X_uni = (X_uni - X_uni.mean())/X_uni.std()
X_uni.insert(1, "Const", [1]*len(X_uni), True)
#print(X_uni)

X_uni_tr=X_uni[split]
X_uni_te=X_uni[~split]
```

Using gradient descent, calculating best probable graph..

In [45]:

```
#gradient descent
#decreasing the error gradualy
for i in range(5000):
    p=sigmoid(X_uni_tr@W)
    grad=X_uni_tr.T@(Y_train-p)
    W+=lr*grad

break_point=np.array(sigmoid(X_uni_te@W))
c0=0
c1=0
```

above 0.5 probability as 1....

In [46]:

```
# margin probability as 0.5
for i in range(len(break_point)):
    if(break_point[i]>=0.5):
        c1=c1+1
        break_point[i]=1
    else:
        c0=c0+1
        break_point[i]=0
```

In [47]:

```
f1(Y_test, break_point, 1)
```

accuracy: 0.6086956521739131 Precision: 0.6896551724137931 recall: 0.6896551724137931 fl score: 0.6896551724137931

In [48]:

```
#fusion
confusion_matrix = metrics.confusion_matrix(Y_test,break_point)
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display
_labels = [False, True])
cm_display.plot()
```

Out[48]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1ce27d43be0>

Logistic Regression: Multivariate

```
#learning rate and generating a matrix of size based on the size.
lr=0.01
W=np.random.uniform(low=0,high=1,size=df.shape[1])

for i in range(5000):
    pa=sigmoid(X_train@W)
    grad=X_train.T@(Y_train-pa)
    W+=lr*grad

break_point=np.array(sigmoid(X_test@W))
c0=0
c1=0
```

In [50]:

```
for i in range(len(break_point)):
    if(break_point[i]>=0.5):
        c1=c1+1
        break_point[i]=1
    else:
        c0=c0+1
        break_point[i]=0
#print(c0)
#print(c1)
```

In [51]:

```
f1(Y_test, break_point, 1)
```

accuracy: 0.8913043478260869 Precision: 0.9285714285714286 recall: 0.896551724137931 fl score: 0.912280701754386

In [52]:

Out[52]:

<sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x1ce2a19f1c0>

Naive Bayes

def for calculating probablity...

```
In [53]:
#definition to calculate probability using mean and std
def calc_prob(mu, sigma, x):
    return 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (x - mu)**2 / (2 * sigma**2))
```

Modifying data

#df.shape[0]

```
In [54]:
```

```
#one hot encoding fot target column
df2=pd.get_dummies(df, columns=["target"])
X = df2.iloc[:,]
#X=(X-X.mean())/X.std()

arr_rand = np.random.rand(X.shape[0])
split = arr_rand < np.percentile(arr_rand, 90)
#split data
X_train = X[split]
Y_train = Y[split]
X_test = X[~split]
Y_test = Y[~split]
#splitting rows into 2 set of rows based on the value of target column
Y_1=X_train.loc[X_train.iloc[:,14]==1]
Y_0=X_train.loc[X_train.iloc[:,14]==0]
print(len(Y_test))
#print(X_test)</pre>
```

31

Naive Bayes:Univariate

```
In [55]:
```

```
#mean and std of both the sets
mean_0=np.mean(Y_0.iloc[:,0])
std_0=np.std(Y_0.iloc[:,0])
std_1=np.std(Y_1.iloc[:,0])
mean_1=np.mean(Y_1.iloc[:,0])
#print(mean_0)
#print(mean_1)

#predicted probability set
pre_prob=np.zeros(Y_test.shape[0])
```

```
In [56]:
```

```
for i in range(X_test.shape[0]):
    p_0=mean_0
    p_1=mean_1
    x=X.iat[i,0]
```

```
p_0=calc_prob(mean_0, std_0, x)
p_1=calc_prob(mean_1, std_1, x)
if(p_0>p_1):
    pre_prob[i]=1
else:
    pre_prob[i]=0
```

In [57]:

```
#accuracy and fusion matrix
f1(Y_test,pre_prob,1)
```

accuracy: 0.41935483870967744
Precision: 0.47619047619047616
recall: 0.5882352941176471
f1 score: 0.5263157894736842

In [58]:

Out[58]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1ce2ad5f430>

Naive bayes: multivariate

In [59]:

```
#set of all columns mean and std
mean_00=[]
mean_11=[]
std_00=[]
std_11=[]
```

```
#mean of all features
for i in range(Y_0.shape[1]):
    mean_00.append(np.mean(Y_0.iloc[:,i]))
    std_00.append(np.std(Y_0.iloc[:,i]))

#std of all features
for i in range(Y_1.shape[1]):
    mean_11.append(np.mean(Y_1.iloc[:,i]))
    std_11.append(np.std(Y_1.iloc[:,i]))
```

In [60]:

```
#Assuming that all features are independent to each other

y_pred=np.zeros(Y_test.shape[0])
for i in range(X_test.shape[0]):
    p_0=mean_0
    p_1=mean_1

#for a particular row, caluclate probability of both 0 and 1. select the max one
for j in range(X_test.shape[1]-2):
        x=X_test.iat[i,j]
        p_0*=calc_prob(mean_00[j],std_00[j],x)
        p_1*=calc_prob(mean_11[j],std_11[j],x)

if(p_0>p_1):
        y_pred[i]=0
else:
        y_pred[i]=1
```

In [61]:

```
f1(Y_test,y_pred,1)
```

accuracy: 0.8709677419354839 Precision: 1.0 recall: 0.7647058823529411 fl score: 0.866666666666666

In [62]:

```
confusion_matrix = metrics.confusion_matrix(Y_test, y_pred)
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display
_labels = [False, True])
cm_display.plot()
```

Out[62]:

<sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x1ce2a31abc0>

If the features are dependent... then we have to use some columns which have good correaltion between that column and target..

for this data set..! choose ["cp","thalach","exchang","oldpeak"] these columns as they have co-relation>0.4. (plotted correlation matrix above)