전자회로실험2

Lab5. Interrupt

Interrupt Vector: 인터럽트 발생시 이동할 주소를 가지고 있음

Table 23. Reset and Interrupt Vectors

Vector	Program						
No.	Address ⁽²⁾	Source	Interrupt Definition				
1	\$0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset				
2	\$0002	INT0	External Interrupt Request 0				
3	\$0004	INT1	External Interrupt Request 1				
4	\$0006	INT2	External Interrupt Request 2				
5	\$0008	INT3	External Interrupt Request 3				
6	\$000A	INT4	External Interrupt Request 4				
7	\$000C	INT5	External Interrupt Request 5				
8	\$000E	INT6	External Interrupt Request 6				
9	\$0010	INT7	External Interrupt Request 7				
10	\$0012	TIMER2 COMP	Timer/Counter2 Compare Match				
11	\$0014	TIMER2 OVF	Timer/Counter2 Overflow				
12	\$0016	TIMER1 CAPT	Timer/Counter1 Capture Event				
13	\$0018	TIMER1 COMPA	Timer/Counter1 Compare Match A				
14	\$001A	TIMER1 COMPB	Timer/Counter1 Compare Match B				
15	\$001C	TIMER1 OVF	Timer/Counter1 Overflow				
16	\$001E	TIMER0 COMP	Timer/Counter0 Compare Match				
17	\$0020	TIMER0 OVF	Timer/Counter0 Overflow				
18	\$0022	SPI, STC	SPI Serial Transfer Complete				

19	\$0024	USARTO, RX	USART0, Rx Complete			
20	\$0026	USARTO, UDRE	USART0 Data Register Empty			
21	\$0028	USARTO, TX	USART0, Tx Complete			
22	\$002A	ADC	ADC Conversion Complete			
23	\$002C	EE READY	EEPROM Ready			
24	\$002E	ANALOG COMP	Analog Comparator			
25	\$0030 ⁽³⁾	TIMER1 COMPC	Timer/Countre1 Compare Match C			
26	\$0032 ⁽³⁾	TIMER3 CAPT	Timer/Counter3 Capture Event			
27	\$0034 ⁽³⁾	TIMER3 COMPA	Timer/Counter3 Compare Match A			
28	\$0036 ⁽³⁾	TIMER3 COMPB	Timer/Counter3 Compare Match B			
29	\$0038 ⁽³⁾	TIMER3 COMPC	Timer/Counter3 Compare Match C			
30	\$003A ⁽³⁾	TIMER3 OVF	Timer/Counter3 Overflow			
31	\$003C ⁽³⁾	USART1, RX	USART1, Rx Complete			
32	\$003E ⁽³⁾	USART1, UDRE	USART1 Data Register Empty			
33	\$0040 ⁽³⁾	USART1, TX	USART1, Tx Complete			
34	\$0042 ⁽³⁾	TWI	Two-wire Serial Interface			
35	\$0044 ⁽³⁾	SPM READY	Store Program Memory Ready			

```
/* Interrupt vectors */
/* External Interrupt Request 0 */
#define INTO_vect
                             _YECTOR(1)
#define SIG_INTERRUPTO
                                _VECTOR(1)
/* External Interrupt Request 1 */
                             _YECTOR(2)
#define INT1_vect
#define SIG_INTERRUPT1
                                 LVECTOR(2)
/* External Interrupt Request 2 */
#define INT2_vect
                             _VECTOR(3)
                                _VECTOR(3)
#define SIG_INTERRUPT2
/* External Interrupt Request 3 */
#define INT3_vect
                             _YECTOR(4)
#define SIG_INTERRUPT3
                                _YECTOR(4)
/* External Interrupt Request 4 */
                            _VECTOR(5)
#define INT4_vect
                                _YECTOR(5)
#define SIG_INTERRUPT4
/* External Interrupt Request 5 */
#define INT5_vect
                             _YECTOR(6)
#define SIG_INTERRUPT5
                                _VECTOR(6)
/* External Interrupt Request 6 */
#define INT6_vect
                            _VECTOR(7)
#define SIG_INTERRUPT6
                                _YECTOR(7)
/* External Interrupt Request 7 */
#define INT7_vect
                             _YECTOR(8)
                                _VECTOR(8)
#define SIG_INTERRUPT7
```



```
(ADC4/TCK)
/* Timer/Counter2 Compare Match */
#define TIMER2_COMP_vect
                                    _VECTOR(9)
#define SIG_OUTPUT_COMPARE2
                                    _VECTOR(9)
                                                                                                                   PA0 (AD0)
                                                                                                                      PA1 (AD1)
                                                                                  GND
/* Timer/Counter2 Overflow */
#define TIMER2_OVF_vect
                                    _VECTOR(10)
                                    _YECTOR(10)
#define SIG_OVERFLOW2
                                                                      PEN [
                                                                                                                          48 🗆 PA3 (AD3)
                                                                               0
/* Timer/Counter1 Capture Event */
                                                           RXD0/(PDI) PE0 ☐
                                                                            2
                                                                                                                          47 PA4 (AD4)
#define TIMER1_CAPT_vect
                                    _YECTOR(11)
                                                          (TXD0/PDO) PE1 ☐ 3
                                                                                                                          46 PA5 (AD5)
#define SIG_INPUT_CAPTURE1
                                    _VECTOR(11)
                                                          (XCK0/AIN0) PE2 4
                                                                                                                          45 PA6 (AD6)
                                                          (OC3A/AIN1) PE3 ☐ 5
                                                                                                                          44 PA7 (AD7)
/* Timer/Counter1 Compare Match A */
                                                          (OC3B/INT4) PE4 ☐ 6
                                                                                                                          43 PG2(ALE)
                                    LVECTOR(12)
#define TIMER1_COMPA_vect
                                                          (OC3C/INT5) PE5 7
                                                                                                                          42 PC7 (A15)
#define SIG_OUTPUT_COMPARE1A
                                         LVECTOR(12)
                                                             (T3/INT6) PE6 ☐ 8
                                                                                                                          41 PC6 (A14)
                                                           (ICP3/INT7) PE7 ☐ 9
                                                                                                                          40 PC5 (A13)
/* Timer/Counter Compare Match B */
                                    LVECTOR(13)
                                                                  (SS) PB0 ☐ 10
#define TIMER1_COMPB_vect
                                                                                                                          39 PC4 (A12)
#define SIG_OUTPUT_COMPARE1B
                                         _VECTOR(13)
                                                                (SCK) PB1 ☐ 11
                                                                                                                          38 PC3 (A11)
                                                               (MOSI) PB2 12
                                                                                                                          37 PC2 (A10)
/* Timer/Counter1 Overflow */
                                                               (MISO) PB3 13
                                                                                                                          36 PC1 (A9)
#define TIMER1_OVF_vect
                                    _VECTOR(14)
                                                                (OC0) PB4 4 14
                                                                                                                          35 PC0 (A8)
#define SIG_OVERFLOW1
                                    _VECTOR(14)
                                                                                                                          34 PG1(RD)
                                                               (OC1A) PB5 🗆
                                                                                                                        33 □ PG0(WR)
                                                               (OC1B) PB6 [
/* Timer/CounterO Compare Match */
#define TIMERO_COMP_vect
                                    _VECTOR(15)
                                                                                       RESET
                                                                                          8
                                                                                            GND
                                                                                               XTAL2
                                                                                  TOSC2/PG3
                                                                                    TOSC1/PG4
                                                                                                  XTAL1
                                                                                                                 PD4
                                                                                                                      (T1) PD6
                                                                               (OC2/OC1C) PB7
                                                                                                     SCL/INT0) PD0
                                                                                                           (RXD1/INT2) PD2
                                                                                                              (TXD1/INT3) PD3
                                                                                                                   (XCK1) PD5
#define SIG_OUTPUT_COMPAREO
                                    _VECTOR(15)
                                                                                                        SDA/INT1) PD1
/* Timer/CounterO Overflow */
#define TIMERO_OVF_vect
                                    _VECTOR(16)
#define SIG_OVERFLOWO
                                    _VECTOR(16)
```

```
/* SPI Serial Transfer Complete */
#define SPI_STC_vect
                                 _YECTOR(17)
                            _VECTOR(17)
#define SIG_SPI
/* USARTO, Rx Complete */
#define nzwkinTk%TAect
                                 _YECTUR(18)
#define SIG_USARTO_RECV
                                 LVECTOR(18)
#define SIG_UARTO_RECV
                                 _VECTOR(18)
/* USARTO Data Register Empty */
#define USARTO_UDRE_vect
                                 LYECTOR(19)
#define SIG_USARTO_DATA
                                 _YECTOR(19)
#define SIG_UARTO_DATA
                                 LVECTOR(19)
/* USARTO, Tx Complete */
#define USARTO_TX_vect
                                 _VECTOR(20)
#define SIG_USARTO_TRANS
                                 _YECTOR(20)
#define SIG_UARTO_TRANS
                                 LYECTOR(20)
```


UCSRnB

- > Bits 7:RX Complete Interrupt Enable
- > Bits 6:TX Complete Interrupt Enable

```
ISR(Interrupts_vector)
{
    ISR code...
}
```

```
ISR(TIMERO_COMP_vect)
   msec++;
    if(msec == 1000)
       msec = 0;
       sec++;
    if(sec == 100)
       sec = 0;
ISR(INTO_vect)
    PORTC = OxFF;
```

Control Register

- 외부 인터럽트 상태 레지스터 A EICRA
 - 외부 인터럽트 0~3의 트리거 동작 모드를 설정하는 레지스터
 - 비동기 방식으로 동작하며, 외부인터럽트의 펄스폭이 최소 50 ns 이상이어야 함

Bit	7	6	5	4	3	2	1	0	
	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R/W	NG .							
Initial Value	0	0	0	0	0	0	0	0	

ISCn1	ISCn0	설명
0	0	외부 핀 INTn의 논리 '0'일 때 인터럽트를 요청
0	1	예약됨
1	0	외부 핀 INTn이 하강 에지(논리 '1'에서 논리 '0'으로 변할 때)일 때 비동기 인터럽트를 요청
1	1	외부 핀 INTn이 상승 에지(논리 '0'에서 논리 '1'로 변할 때)일 때 비동기 인터럽트를 요청

- 외부 인터럽트 상태 레지스터 B EICRB
 - 외부 인터럽트 4~7의 트리거 동작 모드를 설정하는 레지스터
 - 동기 방식으로 동작하며, 외부인터럽트의 펄스폭이 최소 1클록 사이클 이상이어야 함

Bit	7	6	5	4	3	2	1	0	
	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	EICRB
Read/Write	R/W								
Initial Value	0	0	0	0	0	o	0	0	

ISCn1	ISCn0	설 명
0	0	외부 핀 NTn의 논리 '0'일 때 인터럽트를 요청
0	1	외부 핀 INTn이 하강에지 또는 상승에지 일 때 인터럽트를 요청
1	0	외부 핀 INTn이 하강 에지(논리 '1'에서 논리 '0'으로 변할 때)일 때 인터럽트를 요청
1	1	외부 핀 INTn이 상승 에지(논리 '0'에서 논리 '1'로 변할 때)일 때 인터럽트를 요청

Control Register

External Interrupt Mask Register – EIMSK

➢ Bits 7..0 – INT7 – INT0: External Interrupt Request 7 - 0 Enable

- 외부 인터럽트 마스크 레지스터 EIMSK
 - 외부 인터럽트의 인터럽트 마스크 레지스터(개별적인 인터럽트 허용)
 - 1로 세트 되면 해당 외부 인터럽트 허용
 - 0으로 클리어 되면 해당 외부 인터럽트 금지

Control Register

External Interrupt Flag Register – EIFR

Bits 7..0 – INTF7 - INTF0: External Interrupt Flags 7 - 0

- 외부 인터럽트 플래그 레지스터 EIFR
 - 외부 인터럽트의 발생 상황을 알 수 있는 플래그 레지스터
 - 인터럽트 트리거 발생시 1로 세트
 - 인터럽트 서브 루틴 진입시 0으로 자동 클리어
 - 프로그램에서 클리어 하기 위해서는 해당 비트를 1로 쓰기
 - ex) 외부 인터럽트0 플래그의 클리어
 - ; // EIFR == 0X01 (외부 인터럽트 0의 요청이 있음)
 - EIFR |= 0X01; // EIFR == 0X00 (외부 인터럽트 0의 요청이 없음)

Control Register

Status Register

- 전역 인터럽트 허용 (SREG. I = 1), SREG는 AVR의 상태 레지스터, I 는 7번 비트
- AVR 상태 레지스터
 - - Bit 7 -> I: 전역 인터럽트 허용
 - 인터럽트 요청시 인터럽트 벡터로 점프하도록 허용하는 전역 인터럽트 허용 비트
 - 인터럽트 루틴 진입시 0 으로 클리어
 - 인터럽트 루틴에서 빠져 나갈 때 다시 1로 세트


```
#include <avr/io.h>
#include <util/delav.h>
#include <avr/interrupt.h>
int msec = 0, sec = 0;
void USART_Init(unsigned int ubrr){
   /*
     * Baud Rate 9600, Stop Bit 1
     * Character Size: 8-Bit
     * No Parity
   UBRROH = (unsigned char)(ubrr >> 8);
   UBRROL = (unsigned char)ubrr;
   UCSROB = (1 << RXENO) | (1 << TXENO);
   UCSROC = (3 << UCSZO);
void USART_Transmit(char data){
    while(!((UCSROA) & (1<<UDREO)));</pre>
                                       //Data Register Not Empty: Wait
   UDRO = data;
                                        //Data Register Empty: Transmit
void USART_Transmit_String(char *str){
   while(*str != '\0')
   USART_Transmit(*str++);
char USART_Receive(){
   while(!(UCSROA & (1<<RXCO))); //Receive Not complete: Wait</pre>
   return UDRO:
                                    //Receive Complete : Receive
```

```
void Timer_Init(){
   TCCRO = ( 3 << CSO );
   TIMSK = (1 << OCIEO);
   00R0 = 249
void Interrupt_Init(){
   EIMSK = (1 << INTO ) | (1 << INT1 );
   EICRA = ( 1 << ISCO1 ) | ( 1 << ISC11 );
ISR(TIMERO_COMP_vect){
    msec++;
    if(msec == 1000){
        msec = 0:
        sec++)
    if(sec == 100){
       sec = 0:
ISR( INTO_vect ) {
   TIMSK = 0;
   PORTA = Oxff;
ISR( INT1_vect ){
   TIMSK = (1 << OCIEO);
   PORTA = 0x00;
```

스위치(D0)를 누르면 타이머 스톱, 스위치(D1)을 누르면 타이머 재개

```
int main(void)
    int a, b;
    DDRA = OxFF
    DDRD = 0x000
   USART_Init(MYUBRR);
    Timer_Init();
    Interrupt_Init();
   USART_Transmit_String("Timer: ");
    _de/ay_ms(10):
    SREG = 0x80;
    while (1)
        a = sec/10 + 48;
        b = sec %10 + 48;
        USART_Transmit_String("Timer : ");
        USART_Transmit(a);
        USART_Transmit(b);
        USART_Transmit('\r');
        _de/ay_ms(100):
```

> 스위치(D0)를 누르면 타이머 스톱, 스위치(D1)을 누르면 타이머 재개

과제

- 1. USART Interrupt를 이용하여 LED On/Off
- 2. 스위치를 사용하여 interrupt를 통해서 스위치를 누르면 LED가 왕복 하면서 움직이고, 다시 스위치를 누르면 LED가 멈추는 프로그램 작 성
- 3. 2번의 프로그램을 ISR 내부에서 작동하도록하고 ISR 내부에서 interrupt가 동작하는지 확인해보고, 동작한다면 어떤 문제가 있는지, 동작하지 않는다면 왜 동작하지 않는지 생각해보기