An Architecture for Distributed Source Localization in Wireless Sensor Network

Problem: Estimate the location of a moving

source using sensor networks

Solution:

Algorithms: Collaborative signal processing (CSP)

Recent advancements: Incremental non-linear Optimization for

use with distributed/ decentralized CSP

(1996, 2004)

Architecture: Topic of this presentation

Literature: Numerous <u>incoherent</u> protocols

Objective: Estimate the source/ target location

Objective: Estimate the source/ target location using

Node-1 back to Node-1: thatz one cycle

Components

Requirements (of the algorithm) to be met (by the architecture):

- Ad-hoc network
- Self-organizing MAC
- Scalable
- Node insertion (new node)
- Node deletion (node out-of-range)
- Directed graph (cyclical communication)

Pessimist's take!

Conserve energy

- Bad nodes
- node mobility
- refresh a static network

NO SINGLE SOLUTION SATISFIES ALL

Assumptions:

- Absolute time synchronization
- Nodes aware of their locations
- Can simultaneously receive two frames operating in two bands

Risk factors:

- Absolute time synchronization: difficult in practice. As an example, USA's patriot missiles could not detect the Scud missiles launched by Iraq during Gulf-war just because the clocks were off by 1/3s which further resulted in estimating the target off by 600m
- The network formed may collapse if the initial link formed is too bad a guess
- If the source is moving too fast, latency in network formation may be counter-productive in the distributed CSP setting

Types of frames

Broadcast

- TYPE-a (ta)
- TYPE-b (tb)
- TYPE-c (tc)
- Beacon-a (ba)
- Beacon-b (bb)

Message

- message-a (ma)
- message-b (mb)

Parameters/ Variables

N: current number of sensors in the network

T Tx: Transmisstion time

T_Rx: Reception time

T_rand_backoff_max: maximum backoff time

t bkoff: random back-ff time

Counter_cycle: current cycle number

Counter_total_cycles: log2(N)

T_alg: algorithm time

T_initiaze: Initialization listening time

Frequency bands

f_d: delete a node (used in ta)

f_i: insert a node (used in ta, tb and tc)

f_b: beacon frame

f_m: messege frame (used in ma,mb)

Very Initial Link formation

- node number, intended receiver location and total number of nodes are transmitted
- Logical indeces are formed at the end of this cycle which helps in defining the TDMA slots

Network management phase begins to check for inserting new nodes or deleting nodes

- At the end of beacon interval, nodes can send ta type frames
- The routing table is exactly like a linked-list except that it is maitained in pieces by all the nodes

Addition and Deletion of a node

Adding a node

Deleting a node

Time-Diagram

Conclusions:

- meets "requirements"
- works under "assumptions"
- · has "risks" associated with
- still evolving far away from implementation

Future course:

- define a software architecture for implementation
- and implement

Acknowledgements:

- Dr. Chang, Instructor, ee543x, ISU
- Bernard Lwakabamba, Grad. Student, ECpE Dept, ISU
- WWW
- and patient audience

References:

Soma Sekhar Dhavala, ee543x project report