Sample Problems from Past 125 Midterms

(some were assigned as homework)

In the following, you must prove that your answers are correct.

1. Give an example of an element of \mathcal{L}_0 which has at least ten symbols. Prove that your example belongs to \mathcal{L}_0 .

The sequence $(\neg(\neg(\neg A_1)))$ is such an example. To show that it is an element of \mathcal{L}_0 , consider the sequence of formulas

$$A_1, (\neg A_1), (\neg (\neg A_1)), (\neg (\neg (\neg A_1))).$$

Since it is a propositional symbol, A_1 is an element of \mathcal{L}_0 . Each of the other elements the sequence is of the form $(\neg \psi)$, where ψ is its immediate predecessor. Since, $(\neg \psi)$ belongs to \mathcal{L}_0 whenever ψ does, by induction on the sequence, all of its elements belong to \mathcal{L}_0 .

- 2. Consider the set of symbols * and #. Let \mathcal{L}^* be the smallest set L of sequences of these symbols with the following properties.
 - 1. The length one sequences $\langle * \rangle$ and $\langle \# \rangle$ belong to L.
 - 2. If σ and τ belong to L, then so do $\langle * \rangle + \sigma + \langle \# \rangle$ and $\langle * \rangle + \sigma + \tau + \langle \# \rangle$.

State Readability and Unique Readability for \mathcal{L}^* and determine for each whether it holds.

Readability of \mathcal{L}^* is the following assertion.

Suppose that φ is a formula in \mathcal{L}^* . Then exactly one of the following conditions applies.

- 1. $\varphi = \langle * \rangle$ or $\varphi = \langle \# \rangle$ or
- 2. There is a $\sigma \in \mathcal{L}^*$ such that $\varphi = \langle * \rangle + \sigma + \langle \# \rangle$.
- 3. There are σ and τ in \mathcal{L}^* such that $\varphi = \langle * \rangle + \sigma + \tau + \langle \# \rangle$.

Unique Readability extends Readability by further asserting that in cases (1) and (2), the formulas σ , and σ and τ are unique, respectively.

Both assertions are false for \mathcal{L}^* . Consider the following formula.

Since $\sigma = **\#\#$ is a formula by clauses (1) and (3), there is a $\sigma \in \mathcal{L}^*$ such that $***\#\#\# = \langle * \rangle + \sigma + \langle \# \rangle$. Since, **# is a formula by clauses (1) and (2) and # is a formula by clause (1), there are σ and τ in \mathcal{L}^* such that $***\#\#\# = \langle * \rangle + \sigma + \tau + \langle \# \rangle$. Thus, ***### satisfies more than one of the three clauses in the statement of Readability, which contradicts the asserted condition that elements of \mathcal{L}^* should satisfy exactly one clause. Since Unique Readability includes Readability, it also fails for \mathcal{L}^* .

3. (Prove the Inference Lemma.) Suppose that φ and ψ are in \mathcal{L}_0 and $\Gamma \subseteq \mathcal{L}_0$. Use the logical axioms to show the following:

$$\Gamma \cup \{\varphi\} \vdash \psi \text{ if and only if } \Gamma \vdash (\varphi \rightarrow \psi)$$

The proof of the Inference Lemma is available in the lecture notes.

4. Show that the set of logical consequences of

$$\{A_i: i \neq 1 \text{ and } i \in \mathbb{N}\}$$

is consistent but not maximally consistent. Show that the set of logical consequences of

$${A_i: i \in \mathbb{N}}$$

is maximally consistent.

Let Γ denote the set of logical consequences of $\{A_i : i \neq 1 \text{ and } i \in \mathbb{N}\}$. In other words, Γ is the set of formulas φ in \mathcal{L}_0 such that for any truth assignment ν , if for all $i \neq 1$, $\nu(A_i) = T$ then $\overline{\nu}(\varphi) = T$. Then, Gamma is satisfied by the truth assignment that assigns every propositional symbol the value T. By the soundness theorem, since Γ is satisfiable, so is every one of its logical consequences. Thus, Γ is consistent.

 Γ is not maximally consistent since $\Gamma \cup \{A_1\}$ and $\Gamma \cup \{(negA_1)\}$ are satisfied by the constantly T truth assignment and be the F for A_1 and T elsewhere truth assignment, respectively. Thus both sets

are consistent, and $\Gamma \cup \{A_1\}$ is a consistent proper extension of Γ , as required.

- 5. Let $A = \{F_1\}$ be the alphabet with one unary function symbol. Give an examples of different infinite \mathcal{L}_A -structures $\mathcal{M} = (M, I)$ with the following properties.
 - 1. \mathcal{M} has no nontrivial automorphisms.
 - 2. M has a countably infinite set of automorphisms.
 - 3. For each element a of M there are only finitely many b's in M such that there is an automorphism f of M with f(a) = b. However, there are uncountably many automorphisms of M.
- For (1), consider the natural numbers $\{0, 1, 2, ...\}$ with the unary function F $n \mapsto n+1$. Any automorphism π of this structure must map 0 to itself, since 0 is the unique point which is not in the range of F. If $\pi(n) = n$, then, since π commutes with F, $\pi(n+1) = \pi(F(n)) = F(\pi(n)) = n+1$. By induction π is the identity.
- For (2), consider the integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ with the unary function F. Suppose π is an automorphism, then by the same argument π must be the function $n \mapsto n + \pi(0)$. Since there are only countably many possibilities for $\pi(0)$, there are only countably many automorphisms.
- For (3), define an F-cycle to be a finite set $\{a_1, a_2, \ldots, a_n\}$ with the unary function $F(a_j) = a_{j+1}$, when j < n, and $F(a_n) = a_1$. Consider the structure \mathcal{M} consisting of the disjoint union of F-cycles, with exactly one cycle of each length. For every subset A of we can define an automorphism of π_A of \mathcal{M} by letting $\pi_A(a) = a$, if a belongs to an F-cycle of length n and $n \in A$, and letting $\pi_A(a) = F(a)$ otherwise. If $A \neq B$, then $pi_A \neq \pi_B$. Since the set of subsets of $\{1, 2, \ldots\}$ is not countable, neither is the set of automorphisms of \mathcal{M} .
- 6. Let $A = \{P_1\}$ be the alphabet with one unary predicate symbol. For each of i equal to 1 or 2, suppose that $\mathcal{M}_i = (M_i, I_i)$ is an A structure such that M_i , $I_i(P_1)$, and $M_i \setminus I_i(P_1)$ are all infinite. Here $M_i \setminus I_i(P_1)$ consists of those elements of M_i which are not in $I_i(P_1)$.

Show that $\mathcal{M}_1 \equiv \mathcal{M}_2$.

By the Lowenheim-Skolem Theorem, there are countable substructures $\mathcal{M}_i^* \preceq \mathcal{M}_i$. Each \mathcal{M}_i^* consists of a countable set M_i^* and a predicate which divides that set into two infinite pieces. For any two infinite countable sets, there is a bijection between them. Thus, there is a bijection between the set of elements of M_1^* that satisfy P_1 in \mathcal{M}_1^* and the the set of elements of M_2^* that satisfy P_1 in \mathcal{M}_2^* . Similarly, there is a bijection between the set of elements of M_1^* that do not satisfy P_1 in \mathcal{M}_1^* and the the set of elements of M_2^* that do not satisfy P_1 in \mathcal{M}_2^* . The union of these two functions is a bijection between M_1^* and M_2^* that respects P_1 , hence is an isomorphism. Since isomorphic structures are elementarily equivalent, $\mathcal{M}_1^* \equiv \mathcal{M}_2^*$. In summary, $\mathcal{M}_1 \equiv \mathcal{M}_1^* \equiv \mathcal{M}_2^* \equiv \mathcal{M}_2$. So $\mathcal{M}_1 \equiv \mathcal{M}_2$.