

Artelys: optimization & analytics

△ Some figures

- Founded in 2000
- + 65% turnover growth between 2006 and 2012
- Team of 40 experts in optimization (engineers and PhDs)

△ Artelys

- optimization, statistics and decision-support to solve large complex business problems
- Our core competences
 - Numerical optimization and decision-support
 - Consulting services and software

Expertise in optimization & complex systems modeling

4 Artelys experts support its clients in handling their complex problems:

- Support in the usage of our optimization tools
 - Solver tuning to get the best performance
 - Bugs fixing

- Audit of optimization codes
- Modeling support
- Trainings in
 - Numerical optimization
 - Statistical analysis
 - Modeling

The most efficient **Optimization Tools**

4 AMPL

Powerful algebraic modeling language for linear and nonlinear optimization problems, with discrete or continuous variables

- Ideal for rapid prototyping and efficient use in production
- Best-in-class model presolver and automatic differentiator

4 KNITRO

- Nonlinear programming and much more...
- Active-set and interior-point/barrier algorithms for continuous optimization
- MINLP algorithms and complementary constraints for discrete optimization
- Parallel multi-start method for global optimization of nonconvex problems

FICO Xpress Optimization Suite

△ Xpress is used in virtually all business sectors

- Energy / Oil & Gas
- Mining
- Industry / Manufacturing
- Transportation / Logistics
- Marketing
- Finance / Banking
- Computational Economics
- Healthcare

Xpress: short introduction

△ Developed by Dash Optimization, acquired by FICO in 2008

- Full-featured, complete and versatile suite of tool for optimization practitioners and optimization application builders
- State-of-the-art modeling and programming language: Mosel
- Three complementary solvers: Optimizer, NonLinear, Kalis
- Deployment facilities: Insight business platform and FICO Cloud

4 Many supported interfaces asides from Mosel

- C/C++, Java, .NET, Visual Basic, Fortran
- I AMPL
- | MATLAB

4 Supported platforms

- Windows 32-bit, 64-bit
- | Linux 32-bit, 64-bit
- | Mac OS X 32-bit, 64-bit
- **Solaris**

Widely used in academia and industry

Xpress technologies and services

Access world-class professionals of optimization

- Ongoing development of solver and modeling engines by FICO's and Artelys' experts
- Addition of many extra features based on **customer feedbacks** or project requirements
- Supported by Artelys' consultants (PhD-level) who are used to solving the most difficult problems and deploying enterprise-wide optimization solutions

2 Combines efficiency and robustness for all problem classes

- Optimizer solves problems of the following classes: LP, QP, QCQP, MIP, MIQP, MIQCQP
- NonLinear solves problems of the following classes: LP, QP, QCQP, SOCP, NLP
- Kalis solves problems of the following classes: CP, scheduling, hybrid MIP/LP/CP

- Concise and efficient programming language for optimization
- Enabled for distributed competing

Provides connectors to ODBC databases, Oracle, Excel,

Access, XML

- **△** Editor
- □ Debugger
- **△** Profiler
- Process graphs

Project Explorer

—──

Seq.ipj

· f₂ Peg_Sequencing.mos

Model Explorer Project Explorer

· f_x Sequencing.mos ★ Shelf Sequencing.mos

- **4** Visualization

- 4 Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- G(V, E) being the complete graph, c_e is the cost of each edge e = (i, j), i < j, the TSP can be formulated as:

$$\min \quad \sum_{e} c_{e} x_{e}$$

$$\mid (1) \quad x(\delta(v)) = 2 \qquad \forall v \in V$$

$$(2) \quad x(\delta(S)) \ge 2 \quad \forall S \subset V, \emptyset \ne S \ne V$$

$$\mid x_{e} \in \{0; 1\}$$

 \triangle There is n! constraints (2), we will add them iteratively

△ Compile the code

```
git clone <a href="https://github.com/klorel/eps2016.git">https://github.com/klorel/eps2016.git</a>
go to the eps2016 directory
mkdir build and go to build
cmake ..
make
cd bin
eps2016_mip ../../data/eil51.txt 0
```

△ Launch eclipse and follow me

Optimization technics with FICO Optimizer

4 What is a linear problem?

4 How to build it efficiently?

Rows and then columns

Columns and then rows

Problem construction

4 Right Hand Side and row sense definition (see XPRSchgrhsrange)

Value of r	Row type	Effect
$r \ge 0$	$= b, \leq b$	$b - r \le \sum a_j x_j \le b$
$r \ge 0$	≥ b	$b \le \sum a_j x_j \le b + r$
r < 0	= b, ≤ b	$b \le \sum a_j x_j \le b - r$
$\mathbf{r} < 0$	≥ b	$b+r \leq \sum a_j x_j \leq b$

4 Always try to mutualize call to the XPRS API function

- XPRSaddCols(...), XPRSaddRows(...), XPRSaddCuts(...)
- XPRSchgbounds(), XPRSchgcoltype(), XPRSchgobj(), XPRSchgcoeff(...)

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows							
values							
colind							
rowstart							

By Cols							
values							
rowind							
colstart							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows													
values	1	-1	-3	-2	5	4	6	-4	4	2	7	8	-5
colind	0	1	3	0	1	2	3	4	0	2	3	1	4
rowstart	0	3	5	8	11	13							

By Cols							
values							
rowind							
colstart							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows													
values	1	-1	-3	-2	5	4	6	-4	4	2	7	8	-5
colind	0	1	3	0	1	2	3	4	0	2	3	1	4
rowstart	0	3	5	8	11	13							

By Cols													
values	1	-2	-4	-1	5	8	4	2	-3	6	7	4	-5
rowind	0	1	3	0	1	4	2	3	0	2	3	2	4
colstart	0	3	6	8	11	13							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

■ The XPRESS presolve is very efficient and reduces a lot the problem

- Detection of redundant constraints
- Bounds tightening using constraint propagation
- Other options available: XPRS_PRESOLVEOPS

△ How to get the presolved problem?

- Solve a problem limiting the number of iteration and ask for bounds
- Useful to identify variables are fixed or to get tightened bounds

△ How to force XPRESS to keep variables in the presolved problem

Use XPRSIoadsecurevecs, useful for cutting plane or Benders algorithms

■ Get the C++ material and provide a, implementation of the formulation of the TSP

$$\begin{array}{ll} & \min & \sum_{i,j} c_{ij} x_{ij} \\ | & (outFlow) & \sum_{j \neq v} x_{vj} = 1 & \forall v \in V \\ & (inFlow) & \sum_{i \neq v} x_{iv} = 1 & \forall v \in V \\ | & x_{ij} \geq 0 \end{array}$$

- **△** Build the problem using the C API of XPRESS
 - XPRSIoadlp, XPRSaddcols, XPRSaddrows
- Give a name to columns and rows, export the problem to a .lp formatted file
 - XPRSaddnames, XPRSwriteprob
- **△** Export the presolved problem to a .lp file
 - XPRS_LPITERLIMIT=0, XPRS_DEFAULTALG=2

Continuous Linear Programs

4 XPRESS provides two algorithms for continuous Linear Programs

- Simplex PRIMAL/DUAL (and the parallel dual simplex)
- Barrierand CROSSOVER (why using crossover ?)

△ How to run the optimization ? XPRSminim(...) or XPRSmaxim(...)

△ How to get the optimal solution?

Use XPRSgetIptol(...) to get the primal solution, the rows activity, the dual solution and the reduced cost

4 Efficient warmstart procedure for the simplex algorithm

- XPRSgetbasis(...), XPRSloadbasis(...)
 - Warmstart is efficient when using
 - · primal and only modifying the objective
 - · dual and only modifying the right hand side
- Warmstart in dual might also be useful when adding constraint to the problem

4 XPRSloadbasis documentation:

- If the problem has been altered since saving an advanced basis, you may want to alter the basis as follows before loading it
 - Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has an infinite lower bound and a finite upper bound, in which case make the variable non-basic at its upper bound
 - Make new constraints basic
 - Try not to delete basic variables, or non-basic constraints.

△ Callbacks available for continuous optimization are only related to log

XPRSaddcbmessage, XPRSaddcbbariteration, XPRSaddcbbarlog, XPRSaddcblplog

- Solve the problem, and get the solution, do you have an integer solution? Try different LP algorithm
 - XPRS_DEFAULTALG
- Extract the basis, is it degenerated?
 - XPRSgetbasis
- Swap variables in (but zero) and out of the basis and solve it again with the primal or dual algorithm, how many iterations are made?
 - XPRSIoadbasis, XPRS_SIMPLEXITER
- Is there sub tours in the solution?

A MIP is defined by using in the problem columns which are not continuous

- C indicates a continuous column
- B indicates a binary column
- I indicates an integer column

△ Advanced presolve available for MIP problems

- SYMMETRY: try to detect symmetry in the problem and break them. Why is it useful?
- MIPPRESOLVE : additional presolve used at each nodes
- PREPROBING: additional presolve fixing integer at values and see implications (constraint programming technics)

4 Resolution if launch using XPRSminim or XPRSmipoptimize

- Each integer solution can be retrieved looping over the solution pool
- Sensitive analysis: no dual variables available!
 - fixGlobals and then get dual values for the fixed problem.

△ Stopping criterion, numerical parameters

- MIPTOL: tolerance used to declare a value is an integer
- MIPRELGAP, MIPABSGAP: relative and absolute MIP gap (ub-lb)
- MIPCUTOFF: artificial lower bound provided by the user
- NODELIMIT, MAXTIME (CPUTIME), :

- 4 Change the column types to have them binary and solve the MIP relaxation with no sub tour constraint
 - Get the number of nodes, the final gap.
- Implement the sub tour breaking constraint for the new formulation

$$|\sum_{i \in S, j \in S} x_{ij} \le |S| - 1, \forall \emptyset \ne S \ne V$$

Use the iterative algorithm of TSAlgo to solve the new TSP formulation

- The treatment of each node is basically a loop
 - Presolve
 - Resolution of the relaxation
 - Cut generation
 - Heuristics to obtain a feasible solution
- 4 When ending this, a variable is selected, two nodes are created and added to the tree
- Dedicated parameters allow the user to tune the XPRESS behavior at the root node and within the B&B tree
 - HEURSEARCHROOTSELECT and HEURSEARCHTREESELECT
 - CUTSELECT and TREECUTSELECT
 - PRESOLVE and MIPPRESOLVE, TREEPRESOLVE
- Several combination can be automatically determined by the XPRESS tuner (only on windows)

Disable the cutting phase or the heuristic phase, increase their effort?

Look at the number of nodes (XPRS_NODES) performed during the optimization process

■ Try several values for the root and tree parameters of OPTIMIZER

- HEURSEARCHROOTSELECT and HEURSEARCHTREESELECT
- CUTSELECT and TREECUTSELECT
- PRESOLVE and MIPPRESOLVE, TREEPRESOLVE

- MIP callback ban be use to interact with the solver within the B&B, the most useful are
 - optnode : after the relaxation has been solved
 preIntsol : each time an integer solution is found
 Intsol : each time an integer solution is accepted
- Other callbacks:
 - Nodecutoff, Chgbranch, Infnode, Chgbounds, Prenode, Newnode, Chgnode, cutmgr
- △ A callback is a function with a given prototype, see XPRSaddcbXXX to see detailed information of callback XXX.

- 2 XPRSaddcboptnode allows the user to define the a callback that will be called after each relaxation resolution
 - my_object can be used to pass user defined data structure, it will be available at each call of the callback function

- Use the run_callback method of the TSPAlgo to launch a resolution where cuts are added within the optnode callback
 - Use XPRSgetlpsol() to get the optimal solution
 - The MIPINFEAS attribute returns the number of integer infeasibilities at the current nodes
 - Need to store the already added cuts
- △ Observe that this time the B&B converge to a solution without sub tours. How many cuts are added?
- 4 Modify the code to only add cuts associated with the smallest sub tour

Use the intsol to use a local search algorithm performing all possible inversion a tour

- 1-2-3 gives 2-1-3, 1-3-2, 3-1-2, etc.
- Any improved solution can be transfer to XPRESS using XPRSaddmipsol
- $v_1-v_2-v_3-v_4$ can be improved in $v_1-v_3-v_2-v_4$ iff

•
$$e_{v_1v_2} + e_{v_3v_4} > e_{v_1v_3} + e_{v_2v_4}$$

△ Try other moves

Use your MIP solver to implement a VNS based heuristic with XPRESS optimizer

- Given a integer solution, chose a node v_0 and solve the TSP induced by optimizing the k neighbors of v_0
- If the solution is improved k = 0 else k += 1
- If k exceeds kMax, k=1

■ How to fix variables?

- fixGlobal can be used to fix all integer variables and then to optimize the resulting continuous integer programming
- A subset of integer variables can be fixed/unfixed using the XPRSchgbounds (with binary bounds values)

4 Advanced selection of a nodes ?

Get the dual values of the degree constraints and try to use them within the node selection processus