Геометрия

Содержание

1	Бинарное отношение. Векторы.	2
2	Метод координат	4
	2.1 Нормаль и направляющий вектор	5
	2.2 Расстояние от точки до прямой	5
3	Кривые второго порядка	6
	3.1 Свойства кривых второго порядка	6
	3.2 Свойства параболы	
	3.3 Прямая Симсона	
4	Гомотетия	14
	4.1 Композиция гомотетий	14
5	Инверсия	14

1 Бинарное отношение. Векторы.

Определение 1. Пусть множество $a,b\in M$. Множество $R\subset \{(a,b)|a,b\in M\}$ упорядоченных пар. Если $(\hat{a},\hat{b})\subset R$, пишут $\hat{a}\underset{p}{\sim}\hat{b}$.

Определение 2. Отношение \sim на M называется:

- 1. Рефлексивным: $\forall a \in M : a \sim a$
- 2. Симметричным: $\forall a, b \in M : a \sim b \iff b \sim a$
- 3. Транзитивным: $\forall a, b \in M : a \sim b, b \sim c \Longrightarrow a \sim c$

Определение 3. Отношение \sim на M называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Как только на M задано отношение эквивалентности, появляется M/\sim классов эквивалентности.

Определение 4. Вектор – класс эквивалентности параллельных переносов.

Свойства сложения векторов:

- Коммутативно: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- Ассоциативно: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

Определение 5. \vec{a} коллинеарен \vec{b} , если $\exists \lambda \in \mathbb{R} : \lambda \vec{a} = \vec{b}$.

Определение 6. Базисом на плоскости называется пара неколлинеарных векторов $(\vec{a}; \vec{b})$.

Теорема 1.1. $\forall \vec{v} \in V_{\mathbb{R}^2} \exists ! (x; y); x, y \in \mathbb{R} : \vec{v} = x\vec{a} + y\vec{b}$, где $(\vec{a}; \vec{b})$ – базис $V_{\mathbb{R}^2}$. То есть (x; y) – координаты \vec{v} в базисе $(\vec{a}; \vec{b})$.

Определение 7. Углом между векторами \vec{a} и \vec{b} называется: $\phi = \arccos\left(\frac{(\vec{a}; \vec{b})}{|\vec{a}||\vec{b}|}\right) \Longleftrightarrow \cos\phi = \frac{(\vec{a}; \vec{b})}{|\vec{a}||\vec{b}|}$, где $|\vec{a}| = \sqrt{(a, a)}$.

Теорема 1.2.
$$C \in AB \iff \forall O : \exists \lambda \in \mathbb{R} : \lambda \overrightarrow{OA} + (1 - \lambda) \overrightarrow{OB} = \overrightarrow{OC}$$

Обозначим $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$. Тогда $\vec{c} - \vec{b} = \overrightarrow{BC}; \vec{a} - \vec{b} = \overrightarrow{BA}$. Тогда обозначим $\frac{|\vec{c} - \vec{b}|}{|\vec{a} - \vec{b}|} = x$, откуда $\vec{c} - \vec{b} = x(\vec{a} - \vec{b})$, то есть $\vec{c} = x\vec{a} - (1 - x)\vec{b}$.

Теорема 1.3. Пусть O и H – центр описанной окружности и ортоцентр $\triangle ABC$ соответственно. Тогда $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.

Доказательство.

Рассмотрим сумму $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OK}$, $|\overrightarrow{OA}| = |\overrightarrow{OC}|$, как радиусы описанной окружности, следовательно, \overrightarrow{AOCK} — ромб, а значит $\overrightarrow{AC} \perp \overrightarrow{OK}$ как диагонали. Тогда $\overrightarrow{OK} \parallel BH$, а значит точка M вектора $\overrightarrow{OM} = \overrightarrow{OK} + \overrightarrow{OB}$ лежит на BH, но аналогично эта точка лежит на всех высотах $\triangle ABC$, а значит является ортоцентром.

Теорема 1.4. Пусть \overrightarrow{OK} и \overrightarrow{OL} – базис в $\triangle ABC$, а M – его центроид. Тогда $\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$.

Обозначим \overrightarrow{OA} как \overrightarrow{a} , \overrightarrow{OB} как \overrightarrow{b} , \overrightarrow{OC} как \overrightarrow{c} , \overrightarrow{OM} как \overrightarrow{m} . Представим \overrightarrow{OM} в виде суммы векторов: $\overrightarrow{b} + \overrightarrow{BM} = \overrightarrow{b} + \frac{2}{3} \left(\overline{\overrightarrow{BA} + \overrightarrow{BC}} \right) = \overrightarrow{b} + \frac{1}{3} \overrightarrow{BA} + \frac{1}{3} \overrightarrow{BC} = \overrightarrow{b} + \frac{1}{3} (\overrightarrow{a} - \overrightarrow{b}) + \frac{1}{3} (\overrightarrow{c} - \overrightarrow{b}) = \frac{1}{3} (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$.

Теорема 1.5. Пусть O – центр описанной окружности, H – ортоцентр, а M – центроид $\triangle ABC$ соответственно. Тогда O, H и M – коллинеарны.

Определение 8. Скалярным произведением векторов \vec{a} и \vec{b} называется величина $|\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$, где ϕ – угол между векторами \vec{a} и \vec{b} .

Теорема 1.6. В прямоугольной системе Декарта скалярное произведение двух векторов $\vec{a}(x_1; y_1)$ и $\vec{b}(x_2; y_2)$ равно сумме произведений их соответствующих координат:

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Доказательство.

По теореме косинусов $AB^2 = OA^2 + OB^2 - 2 \cdot OA \cdot OB \cdot \cos \phi$, но по теореме Пифагора $OA^2 = (x_1)^2 + (y_1)^2$, $OB^2 = (x_2)^2 + (y_2)^2$, $AB^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$. Тогда если подставить в первое выражение и упростить получим $x_1 \cdot x_2 + y_1 \cdot y_2 = OA \cdot OB \cdot \cos \phi$.

2 Метод координат

Определение 9. Общим уравнением прямой называется уравнение вида ax + by + c = 0, в котором a и b не равны нулю:

$$l_{1}: a_{1}x + b_{1}y + c_{1} = 0$$

$$l_{2}: a_{2}x + b_{2}y + c_{2} = 0$$

$$l_{1} \| l_{2} \overset{b_{1} \cdot b_{2} \neq 0}{\Longleftrightarrow} \frac{-a_{1}}{b_{1}} = \frac{-a_{2}}{b_{2}} \Longleftrightarrow a_{1}b_{2} = a_{2}b_{1}$$

$$l_{1} \perp l_{2} \overset{b_{1} \cdot b_{2} \neq 0}{\Longleftrightarrow} \frac{-a_{1}}{b_{1}} \cdot \frac{-a_{2}}{b_{2}} = -1 \Longleftrightarrow a_{1}a_{2} + b_{1}b_{2} = 0$$

2.1 Нормаль и направляющий вектор

Определение 10. Вектор \vec{v} называется направляющим для прямой l, если его начало и конец лежат на l.

Определение 11. Любой вектор $\vec{n_l}$: $\vec{n_l} \perp l$, называется ее нормалью.

Теорема 2.1. Вектор $\vec{n}(a;b)$ является вектором нормали к прямой l, заданной уравнением ax + by + c = 0.

Доказательство.

Возьмем произвольные точки $A(x_1; y_1)$ и $B(x_2; y_2)$. Тогда $\overrightarrow{AB}(x_2 - x_1; y_2 - y_1)$. При этом $ax_1 + by_1 + c = ax_2 + by_2 + c = 0$, следовательно, если вычесть одно из другого, получим $a(x_2 - x_1) + b(y_2 - y_1) = 0$. Рассмотрим $\overrightarrow{AB} \cdot \overrightarrow{n} = a \cdot (x_2 - x_1) + b \cdot (y_2 - y_1) = 0 \Longrightarrow \overrightarrow{AB} \perp \overrightarrow{n}$.

2.2 Расстояние от точки до прямой

Теорема 2.2. $\rho(A;l)$: $A(x_0;y_0),\ l$: ax+by+c=0: $\rho(A;l)=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$

Пусть $A(x_0; y_0)$, тогда $ax_0 + by_0 + c = f \Longrightarrow y_0 = \frac{f-c}{b} - \frac{ax_0}{b}$. Проведем через точку A перпендикуляр к l, а также прямую, параллельную l. Отметим найденные ранее координаты на OY, а также найдем расстояние между ними. Пусть угол наклона l относительно OX равен α , тогда $\operatorname{tg} \alpha = -\frac{a}{b}$. Из основного тригонометрического тождества:

$$\sin^2 \alpha + \cos^2 \alpha = 1 \mid : \cos^2 \alpha$$

$$tg^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

$$\cos^2 \alpha = \frac{1}{\frac{a^2}{b^2} + 1}$$

$$\cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}$$

Тогда чтобы найти $\rho(A;l)$ умножим косинус на гипотенузу и получим: $\frac{b}{\sqrt{a^2+b^2}}\cdot\frac{|f|}{b}=\frac{|ax_0+by_0+c|}{\sqrt{a^2+\underline{b}^2}}.$

3 Кривые второго порядка

3.1 Свойства кривых второго порядка

Определение 12. Углом между кривыми называется угол между их касательными в данной точке.

Определение 13. Эллипсом называется ГМТ, сумма расстояний от которых до двух фиксированных точек, называющихся фокусами, постоянна.

Определение 14. Параболой называется ГМТ, равноудаленных от фиксированной точки F, называемой ее фокусом, и прямой l, называемой директрисой данной параболы.

Определение 15. Гиперболой называется ГМТ, модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, постоянен.

Теорема 3.1 (Оптическое свойство эллипса). Пусть l касается элипса с фокусами F_1 и F_2 в точке P, тогда l – биссектриса угла, смежного $\angle F_1PF_2$.

Доказательство.

Пусть $X, Y \in l$, тогда по определению касательной $XF_1 + XF_2 \geqslant PF_1 + PF_2$. Следовательно, P – точка на l, сумма расстояний от которой до фокусов минимальна, откуда $\angle F_2 PX = \angle F_1 PY$.

Теорема 3.2 (Оптическое свойство параболы). Пусть l касается параболы в точке P, P' проекция точки P на директрису. Тогда l – биссектриса $\angle FPP'$.

Пусть биссектриса не касается параболы, то есть пересекает ее в точке T. По определению параболы $PP' = PF \Longrightarrow \triangle P'PT = \triangle PFT$ по двум сторонам и углу между ними. Отсюда P'T = TF, но тогда если T' – проекция T на директрису, то TT' = TF, то есть TP' = TT', противоречие.

Теорема 3.3 (Оптическое свойство гиперболы). Пусть l касается гиперболы с фокусами F_1 и F_2 в точке P, тогда l – биссектриса $\angle F_1F_2P$.

Доказательство.

Пусть биссектриса не касается гиперболы, то есть пересекает ее в точке T. Обозначим через F_2 ′ точку, симметричную F_2 относительно l. Тогда $F_2T=F_2{}'T$, а также $F_2P=F_2{}'P$. Кроме того, F_1 , $F_2{}'$ и P коллинеарны по определению биссектрисы. По определению гиперболы $F_1P-F_2P=F_1T-F_2T$. Тогда получаем, что $F_1F_2{}'=F_1P-F_2{}'P=F_1T-F_2{}'T$, но по неравенству треугольника $F_1F_2{}'>F_1T-F_2{}'T$, противоречие.

Теорема 3.4 (Изогональное свойство эллипса). Пусть PX и PY – касательные к эллипсу с фокусами F_1 и F_2 . Тогда $\angle F_1PX = \angle F_2PY$.

Доказательство.

Пусть F_1 ' и F_2 ' — точки, симметричные F_1 и F_2 относительно PX и PY соотвественно. Тогда $PF_1 = PF_1$ ' и $PF_2 = PF_2$ ', при этом F_1 , Y и F_2 ', а также F_2 , X и F_1 ' коллинеарны по оптическому свойству эллипса. Получаем, что F_2F_1 ' = $F_2X + XF_1 = F_2Y + YF_1 = F_1F_2$ '. То есть $\triangle F_1PF_2$ ' = $\triangle F_2PF_1$ ' по трем сторонам. Тогда $\angle F_1PF_2 + 2\angle F_1PX = \angle F_2PF_1$ ' = $\angle F_1PF_2$ ' = $\angle F_1PF_2 + 2\angle F_2PY \Longrightarrow \angle F_1PX = \angle F_2PY$.

Теорема 3.5. В обозначениях теоремы 3.4 прямая F_1P суть биссектриса $\angle XF_1Y$.

Доказательство. В силу оптических свойств $\angle PF_1'X = \angle PF_1X$, при этом из теоремы 3.4 известно, что $\angle PF_1'F_2 = \angle PF_1F_2'$, так как $\triangle F_1PF_2' = \triangle F_1'PF_2$. Тогда $\angle PF_1F_2' = \angle PF_1'X = \angle PF_1X$.

Теорема 3.6. Геометрическим местом точек, из которых данный эллипс виден под прямым углом, является окружность с центром в центре эллипса.

Доказательство.

Пусть F_1 ' — образ F_1 относительно прямой PX. Из теоремы 3.4 следует, что $\angle F_1$ ' $PF_2 = \angle XPY = 90^\circ$. По теореме Пифагора F_1 ' $P^2 + F_2P^2 = F_1$ ' F_2 2, то есть получаем уравнение окружности с центром в середине F_1F_2 .

3.2 Свойства параболы

Лемма 3.7. Если фокус параболы отразить относительно касательной, то его образ попадет на директрису. Получившаяся точка будет проекцией точки, в которой касательная касается параболы.

Пусть прямая l касается параболы в точке P, P' – проекция P на директрису параболы. l – биссектриса $\angle FPP'$, но $\triangle FPP'$ – равнобедренный по определению параболы, а значит l в нем медиана и высота, откуда P' – образ F.

Следствие 3.7.1. Проекции фокуса параболы на его касательные лежат на прямой, касающейся параболы в ее вершине.

Лемма 3.8. Пусть PX и PY – касательные к параболе. Тогда P является центром описанной около $\triangle FX'Y'$ окружности, где X' и Y' – проекции X и Y на директрису параболы соответственно.

Доказательство.

Из леммы 3.8 следует, что PX и PY являются серединными перпендикулярами к FX' и FY' соответственно. Тогда их точка пересечения будет являться центром окружности, описанной около $\triangle FX'Y'$.

Следствие 3.8.1. Если PX и PY – касательные к параболе, то P' будет серединой X'Y', где P', X' и Y' – проекции P, X и Y на директрису параболы соответственно.

Теорема 3.9. Множество таких точек P, из которых парабола видна под прямым углом, суть директриса этой параболы. Кроме того, если PX и PY – касательные к этой параболе, то XY содержит F и PF – высота $\triangle PXY$.

Пусть P лежит на директрисе, тогда если X' и Y' – проекции X и Y на директрису соответственно, то $\triangle PXX' = \triangle PXF$, а значит $\angle PFX = \angle PX'X = 90^\circ$. Аналогично $\angle PFY = 90^\circ$. То есть X, F и Y коллинеарны. При этом $\angle XPX' = \angle XPF$, $\angle YPF = \angle YPY'$, следовательно, $\angle XPY = \frac{1}{2}(\angle FPX' + \angle FPY') = 90^\circ$.

Теорема 3.10. Пусть PX и PY – касательные к параболе, а l – прямая, проходящая через P параллельно оси параболы. Тогда угол между прямыми PY и l равен $\angle XPF$, $\triangle XFP \sim \triangle PFY$ и FP – биссектриса $\angle XFY$.

Доказательство.

Пусть X' и Y' – проекции X и Y на директрису соответственно. Угол между PY и l равен $\angle X'Y'F$, так как $l \perp X'Y'$ и $PY \perp Y'F$. При этом по лемме 3.8 F, X' и Y' лежат на окружности с центром в P. Тогда $\angle X'Y'F = \frac{1}{2}\angle X'PF = \angle XPF$. Поскольку $l \parallel YY'$, угол между PY и l равен $\angle PYY'$, который в силу оптического свойства параболы равен $\angle PYF$. То есть $\angle PYF = \angle XPF$, аналогично $\angle FXP = \angle YPF$. Тогда $\triangle XFP \sim \triangle PFY$ по двум углам и PF – биссектриса $\angle XFY$.

3.3 Прямая Симсона

Теорема 3.11 (Прямая Симсона). Проекции точки P на стороны $\triangle ABC$ лежат на одной прямой тогда и только тогда, когда точка P лежит на описанной окружности треугольника.

Пусть P_a , P_b и P_c – проекции точки P на BC, AC и AB соответственно. AP_cP_bP вписанный, так как $\angle AP_cP = \angle AP_bP$. Тогда $\angle APP_c = \angle AP_bP_C$. Аналогично $\angle CP_bP_a = \angle CPP_a$. В силу вписанности ABCP $\angle PCP_a = 180^\circ - \angle BCP = \angle BAP$. При этом $\angle PCP_a = 90^\circ - \angle CPP_a = 90^\circ - \angle CPP_a = 90^\circ - \angle CP_bP_a$. То есть $\angle AP_cP = 90^\circ - \angle APP_c = 90^\circ - \angle AP_bP_c = 90^\circ - \angle CP_bP_a$, а значит $\angle AP_bP_c = \angle CP_bP_a$. В таком случае они вертикальные, следовательно, P_a , P_b и P_c коллинеарны. Обратное утверждение доказывается аналогично.

Теорема 3.12. Пусть $\triangle ABC$ описан около параболы, тогда фокус этой параболы лежит на описанной окружности этого треугольника.

Доказательство.

Пусть F_a , F_b и F_c — проекции фокуса параболы на стороны треугольника. По лемме 3.7 они коллинеарны. Тогда по теореме о прямой Симсона F принадлежит окружности, описанной около $\triangle ABC$.

Теорема 3.13. Пусть P и B' лежат на окружности, описанной около $\triangle ABC$, при чем $PB' \perp AC$. Тогда BB' параллельная прямой Симсона точки P.

Пусть P_b и P_c – проекции P на AC и AB соответственно. $\angle ABB' = \angle APB'$ как вписанные. AP_cP_bP – вписанный, так как $\angle AP_cP = \angle AP_bP$, следовательно, $\angle APP_b = \angle P_bP_cB$. То есть $\angle P_cBB' = \angle P_bP_cB$, а значит $BB' \parallel P_bP_c$.

Следствие 3.13.1. При вращении точки P по окружности прямая Симсона вращается в противоположную сторону, причем скорость ее вращения в два раза меньше, чем скорость изменения дуги PA.

Следствие 3.13.2. Прямая Симсона точки P относительно $\triangle ABC$ делит отрезок PH пополам, где H – ортоцентр $\triangle ABC$.

Доказательство.

Пусть H' и P' – образы H и P относительно AC соответственно. Поскольку $PB' \parallel H'B$, PB'BH' – равнобокая трапеция. Тогда отрезок, симметричный PH' относительно AC должен быть параллелен BB', то есть $P'H \parallel B'B \parallel P_cP_b$. Поскольку P_b – середина PP' и $P_cP_b \parallel P'H$, прямая Симсона – средняя линия $\triangle HPP'$, а значит делит HP пополам.

Теорема 3.14. Ортоцентр треугольника, описанного около параболы, лежит на ее директрисе. Доказательство.

Пусть F_a и F_b – проекции F на BC и AC соотвественно. Тогда по следствию 3.7.1 F_bF_a – прямая, касающаяся параболы в ее вершине и параллелльная директрисе этой параболы. Пусть O – точка пересечения FH и F_bF_a , тогда по следствию 3.13.2 FO = OH, при этом $\angle HOF_b = \angle FOF_a$ как вертикальные, в таком случае равны по двум углам и стороне треугольники, образованные F, O, H и проекциями F и H на F_bF_a . Следовательно, расстояние от F до прямой, проходящей через вершину параболы и параллельной ее директрисе, равно расстоянию от этой прямой до H, а значит H лежит на директрисе параболы.

4 Гомотетия

Определение 16. Гомотетия с центром O и коэффициентом k суть преобразование плоскости, при котором $\forall A \in \mathbb{R}^2 : H_O^k(A) = A' : \overrightarrow{OA} \cdot k = \overrightarrow{OA'}, \overrightarrow{OA} \uparrow \uparrow \overrightarrow{OA'}.$

4.1 Композиция гомотетий

Определение 17. Композиция гомотетий H_O^k и H_P^l при $k, l \neq 1$ – это параллельный перенос при $k \cdot l = 1$ или $H_Q^{kl}: Q \in OP, \overrightarrow{OQ} \cdot (k-1) = \overrightarrow{QP} \cdot \left(1 - \frac{1}{l}\right)$.

5 Инверсия

Определение 18. Точки A и B называются симметричными относительно окружности $\omega(O; R)$, если $OA \cdot OB = R^2$, а $B \in OA$.

Для точек, симметричных относительно окружности $\omega(O; R)$, выполняются условия:

- 1. $\forall X \in \mathbb{R}^2 : X \neq 0 \ \exists ! Y : X, Y$ симметричны относительно ω
- 2. Если X внутри ω , то Y снаружи и наоборот
- 3. Нет точки, симметричной O
- 4. $\forall C \in \omega$: C симметрична сама себе

Определение 19. Пусть на плоскости дана окружность $\omega(O; R)$. Отображение $\phi: \mathbb{R}^2/\{0\} \longrightarrow \mathbb{R}^2/\{0\}$, при котором точки переходят в симметричные им относительно ω , называется инверсией.

Лемма 5.1 (Основная лемма). Любые две пары точек, симметричных относительно одной окружности, лежат на одной окружности.

Пусть A и \hat{A} , B и \hat{B} – пары точек, симметричных около окружности $\omega(O;R)$. Тогда:

$$OA \cdot O\hat{A} = R^2 = OB \cdot O\hat{B} \Longleftrightarrow \frac{OA}{OB} = \frac{O\hat{B}}{O\hat{A}}$$

Следовательно, по двум сторонам, а также по общему углу $\triangle AOB \sim \triangle \hat{B}O\hat{A}$. Отсюда $\angle ABO = \angle O\hat{A}\hat{B}$ и $\angle OAB = \angle O\hat{B}\hat{A}$, а значит $\hat{A}AB\hat{B}$ – вписанный, так как сумма его противоположных углов равна 180° .

Теорема 5.2. Прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.

Доказательство.

Пусть M — основание серединного перпенидкуляра, опущенного из O на l, D — произвольная точка вне окружности, а \hat{M} и \hat{D} — точки, симметричные M и D соответственно относительно ω , T — точка пересечения l и $\hat{D}\hat{M}$. Из построения инверсии, AM — касательная к ω . Тогда $\angle OA\hat{M} = 90^\circ$. По основной лемме $D\hat{D}M\hat{M}$ — вписанный. Тогда $\angle D\hat{D}\hat{M} = \angle DM\hat{M} = 90^\circ = \angle OA\hat{M}$. А значит $O\hat{D}A\hat{M}$ — вписанный по признаку.