MTH 375 Fall 2022 Hw 7 – due 3/17/2020

Key Concepts: Pivotal quantities, confidence intervals. Read Sec 5.3.

- #1. Let X_1, \dots, X_{10} be a sample of iid $N(0, \theta)$ random variables. (θ is the variance, not the standard deviation.)
 - a) Show that $T = \frac{1}{\theta} \sum_{i=1}^{n} X_i^2$ is a pivotal quantity and find its distribution.
 - b) Determine a 99% confidence interval for θ based on T.
 - c) Suppose that $\sum_{i=1}^{10} x_i^2 = 27.3$. What is the 99% confidence interval for θ ?
- d) Determine a 99% confidence interval for $\mathrm{SD}(X) = \sqrt{\theta}$. (Hint: You have already done almost all of the necessary work.)
 - #2. Let X_1, \dots, X_6 be a sample of iid $U[\theta, 1]$ random variables.
 - a) Show that $T = \frac{1 X_{(1)}}{1 \theta}$ is a pivotal quantity and find its cdf.
 - b) Determine a 85% confidence interval for θ based on T.
- c) Suppose $\vec{x} = \{0.527, 0.803, 0.842, 0.880, 0.474, 0.558\}$. Find the 85% confidence interval for θ .
 - #3. Let X_1, \dots, X_8 be a sample of iid Gamma $(4, \theta)$ random variables.
 - a) Show that $\frac{2}{\theta} \sum_{i=1}^{n} X_i$ is a pivotal quantity and find its distribution.
 - b) Determine a 95% confidence interval for θ based on T.
- c) Suppose that $\vec{x} = \{17.40, 15.95, 15.17, 7.92, 11.54, 10.46, 8.47, 15.54\}$. Find a 95% confidence interval for θ .
- #4. Let X_1, \dots, X_6 be a sample of iid $N(\mu, \theta)$ random variables. (μ, θ) are both unknown. θ is the variance, not the standard deviation.)
 - a) Why is $T = (n-1)S^2/\theta$ a pivotal quantity? What is the distribution of $(n-1)S^2/\theta$?
 - b) Determine a 93% confidence interval for θ based on T.
- c) Suppose that $\vec{x} = \{0.71, 0.62, 2.28, 1.01, 10.01, 7.64\}$. Find a 95% confidence interval for θ .
- #5. A pollster chooses 500 citizens at random, and asks whether each plans to vote 'yes' or 'no' on proposition X. In the sample, 375 indicate a 'yes' vote.

Find a 95% confidence interval for the proportion of the total population who plan to vote 'yes.' (Hint: Use the Central Limit Theorem. Where you need a variance, replace it by its greatest possible value.)