SEST AVAILABLE COP

(19) BUNDESREPUBLIK DEUTSCHLAND

PATENTSCHRIFT

(12) Ausschließungspatent

(11) **DD 284 226**

Erteilt gemäß § 17 Absatz 1 Patentgesetz der DDR vom 27.10.1983

in Übereinstimmung mit den en sprechenden Festlegungen im Einigungsvertrag 5(51) C 07 D 239/64

DEUTSCHES PATENTAMT

In der vom Anmelder eingereichten Fessung veröffentlicht

(21)	DD C 07 D / 329 357 5	(22)	07.06.89	(44)	07.11.90
(71)	Akudemie der Wissenschaften der DDR, Otto-Nuschke-Straße 22/23, Berlin, 1080, DD				
(72)	Guertnor, Klaus; Schildt, Jürgen; von Janta-Lipinski, Martin, Dr. rer. nat. DiplCham.; Langen, Peter, Prof. Dr. habil. DiplBiol., DD				
(73)	Akademie der Wissenschaften der DDR, Zentralinstitut für Molokularbiologie, Robert-Rössle-Straße 10, Ber- lin, 1115, DD				
(74)	siehe (73)				
(54)	Verfakren zur Herstellung vo	on 6-aminosub	stituierten 5-Methy	·luracilen	

(55) Herstellung; 6-anninosubstituierte 5-Methyluracile; Umsetzung; antivirale Mittel; Anti-HCMV-Mittel
(57) Die Erfindung betrifft ein Verfahren zur Herstellung von 6-aminosubstituierten 5-Methyluracilen.
Anwendungsgebiet ist die chemische oder pharmazeutische Industrie. Erfindungsgemäß werden aus 6-Fluorthymin mit primären Aminen Produkte der Formel I erhalten. Die erfindungsgemäß e:hältlichen Verbindungen sind gegen das humane Cytomegalie-Virus (HCMV) wirksam. Formel i

BEST AVAILABLE COP

Patentansprüche:

1. Verrahren zur Herstellung von 6-aminosubstituierten 5-Methyluracilen der allgemeinen Formel I,

worin R die Aminogruppe, eine aliphatische offenkettige C₁–C₈-Alkylaminogruppe, deren Wasserstoffatome durch einen oder mehrere, gegebenenfalls unterschiedliche Substituenten, wie Halogen, eine Azido , Nitro- bzw. Aminogruppe bzw. eine Arylaminogruppe, in der das Aromatensystem Substituenten, wie Halogen, die Nitro-, die Amino-, eine Alkoxy-, eine /·lkyl- bzw. eine Alkylaminogruppe besitzt, wobei ein Kohlenstoffatom des aromatischen Ringes gegebenenfalls durch Stickstoff oder Sauerstoff ersetzt ist, bedeutet, dadurch gekennzeichnet, daß man 6-Fluorthymin, gegebenenfalls in einem organischen Lösungsmittel mit einem primären Amin der allgameinen Formel II, III oder IV,

$$H_2N - R'$$

$$R^1 - R^2$$

$$H_2N - R^3$$
III

$$H_2N-(CH_2)_n$$
 R^1
 R^2
 R^3
 R^3

worin R Wasserstoff, eine aliphatische offenkettige C₁–C₈-Alkylgruppe, deren Wasserstoffatome durch einen oder mehrere, gegebenenfalls unterschiedliche Substituenten, wie Halogen, die Azido-, Nitro- bzw. Aminogruppe ersetzt sind, eine cyclische Alkylaminogruppe, R¹, R², R³ Wasserstoff, Halogen, die Nitro-, die Amino-, eine Alkoxy-, eine Alkyl- bzw. eine Alkylaminogruppe und n einen Zahlenwert von 1 bis 6 bedeuten, umsetzt.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Umsetzung unter Erhitzen innerhalb von 1 bis 6 Stunden durchführt.
- 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Reaktion mit einem primären An in der allgemeinen Formel III oder IV in N-Methylpyrrolidon arfolgt.

Anwendungsgablet der Erfindung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 6-aminosubstituierten 5-Methyluracilen der allgemeinen Formel I,

BEST AVAILABLE COM

-2- 284 226

in der R die Aminogruppe, eine aliphatische offenkeitige C₁-C₆-Alkylaminogruppe, deren H-Atome durch einen oder mehrere gegebonenfalls unterschiedliche Substituenten, wie Halogen, die Azido-, Nitro- bzw. Aminogruppe ersetzt sind, eine cyclische Alkylaminogruppe bzw. eine Arylaminogruppe darstellt, in der das Aramatensystem solche Substituenten wie Halogen, die Nitro-, die Amino-, eine Alkoxy-, eine Alkyl-bzw. eine Alkylaminogruppe besitzt, wobel gegebenenfalls ein Kohlenstoffatom des aromatischen Rings durch Stickstoff und Sauerstoff ersetzt ist.

Cherakteristik des bekannten Standes der Technik

McCalfrey et al. beschreiben im US-Patent 4576948 die Darstellung von aubstituierten 6-Ärylaminouracilen, die in p-Stellung eine Amino- bzw. Methoxygruppe besitzen und sich als Inhibitoren der Aktivität dar terminalen Desoxyribonucleotidyl Transferase erwiesen.

Weiterhin haben sich 6-Arylhydrazino- bzw. 6-Aryluminouracil als potente Inhibitoren einer replikativen DNA-Polymerase, einer bakteriellen DNA-Polymerase III, erwiesen (BROWN, N.C. and WRIGHT, G.I.., Pharmac. Ther. 1977, 1, 437–458.

Jedoch wird nur eine geringe Anzahl von Enzymen, des Polymerase III-Typs von gram-positiven Bakterien durch diese Uracilderivate in ihrer Aktivität gehemmt. Hemmstoffe, die in der 5-Position des Uracils einen die elektronenabhängigen Eigenschaften des Heterocyclus beeinflussenden Substituenten besitzen, sind bighei unbekannt.

Ziel der Erfindung

Die Erfindung hat das Ziel, ein geei, netes, technisch anwendbares Verfahren zur Herstellung von 6-aminosubstituierten 5-Methyluracilen der allgemeinen Formel I zu entwickeln.

Darlegung des Wesens der Erfindung

Aufgabe der Erfindung ist es, Verbindungen der allgemeinen Formel I als potentielle Kemmstoffe von Polymerasen bereitzustellen.

Erfindungsgemäß werden Verbindungen der allgemeinen Formal I dadurch hergestellt, indem 6-Fluorthymin mit einem primären Amin der allgemeinen Formal II,

worin R' elnen aliphatischen Kohlenwasserstoffrest mit 1 bis 8 C-Atomen, dessen Wasserstoffatome durch einen oder mehrere Substituenten, wie Halogen, die Azido-, Nitro- bzw. Aminogruppe substituiert sind, bzw. einen cyclischen Kohlenwasserstoffrest darstellt, bzw. mit einem primären Amin der allgemeinen Formel III,

$$H_2 N \xrightarrow{R^1} R^2$$

worin R¹, R² und R³ gleich oder verschieden sein können und ein Wasserstoffatom, Halogen (F, CI, Br), eine Hydroxy-, Nitro-, Amino-, Alkylamino-, Alkoxy- oder Alkylgruppe bedeuten, wobei ein Kohlenstoffatom des aromatischen Ringsystems durch Stickstoff bzw. Sauerstoff ersetzt sein kann, bzw. mit einem primären Amin der allgemeinen Formel IV

worin R¹, R² und R³ die oben genannte Bedeutung haben und n einen Wert von 1 bis 6 annimmt, zur Reaktion gebracht wird. Die Reaktion wird im allgemeinen in der Weise ausgeführt, indem 3–5 mMol des entsprechenden Amins der allgemeinen Formel II, III bzw. IV mit 1 mMol 6-Fluorthymin für 1 bis 6 Std. erhitzt werden. Nach dem Abkühlen der Reaktionslösung wird das überschüssige Amin bzw. das Lösungsmittel im Vakuum ontfernt und die jeweilige Verbindung der Formel I aus dem Rückstand kristallin erhalten. Kristalline Aminoverbindungen I mit Verbindungen der allgemeinen Formel III bzw. IV werden bevorzugt durch Erhitzen in N-Mot? "Ipyrroliden als Lösungsmittel mit 6-Fluorthymin erhalten. Die erfindungsgemäß hergestellten Verbindungen sind nou. Sie sind Hemmstoffe von bakteriellen und viralen DNA-Polymerasen. Sie sind wirksam gegen das humane Cytomegalie-Virus (HCMV). Die Erfindung wird in den folgenden Beispielen näher beschrieben.

3NSDOCID: <DD 284226A5 1 >

1 284 226

Ausführungsbeispiele

Beispiel 1

6-n-Butylamino-5-methyluracii

144 mg (1 mMol) 6-Fluorthymin und 300 mg (4 mMol) n-Butylamin werden für 2 Stunden unter Rückfluß erhitzt. Die flüchtigen Stoffe werden anschließend i. Vak. entfernt. Aus dem Rückstand wird mit heißem Wasser die Titelverbindung erhalten.

MS: m/z 197 (C₀H₁₅N₂O₂, M*).

Beispiel 2

6-Methyl-6-n-propylamino-uracil

Ein Gemisch aus 300 mg (5 mMol) n-Propylamin und 144 mg (1 mMol) 8-Fluorthymin wird 5 Stunden unter Rückfluß erhitzt. Nach dem Entfernen der flüchtigen Bestandteile i. Vak. wird aus Ethanol die gewünschte Verbindung gewonnen. F. 262°C (Zers.).

MS: m/z 183 (CaH12N3O2, M*).

Beispiel 3

C-(2,4-Dimethylanilino)-5-methyluracii

144 mg 8-Fluorthymin werden mit 600 mg (5 mMol) 2,4-Dimethylanllin für 4 Stunden auf 150°C erhitzt. Die flüchtigen Substanzen werden I. Vak, entfernt. Der Rückstand wird über eine kurze Kieselgelsäule filtriert (CHCl₃/5% Methanol – CHCL₃/15% Methanol), wobei des gewünschte Produkt erhalten wird, das aus Essigester umkristallisiert wird.
F. 253°C.

MS: m/z 245 (C₁₃H₁₆N₃O₂, M*).

Beispiel 4

6-(2-Methoxyanllino)-5-methyluracil Analog dem Beispiel 3 wird die Titelverbindung erhalten. F. 240~241°C (Essigester). MS: m/z 247 (C₁₂H₁₂N₂O₃, M*).

Beispiel 5

6-(2-Chloranllino)-5-methyluracil Die Verbindung wird analog Beispiel 3 gewonnen. F. 278–279°C (Essigester). MS: m/z 251 (C₁₁H₁₀N₃O₂Cl, M°).

Belapiel 6

5-Methyl-6-(pyridin-2yl-amino)uracii

470 mg (5 mMol) 2-Aminopyridin und 144 mg (1 mMol) 8-Fluorthymin werden in 2 ml N-Methyl-pyrrolidon suspendiert und für 4 Stunden auf 150°C erhitzt. Der nach dem Entfernen des Lösungsmittels i. Vak. erhaltene Rückstand wird über eine kurze Kiessigelsäule filtriert (CHCl₃/Methanol: 9/1). Die Titelverbindung wird aus Essigester umkristellisiert. F. 333–335°C.

MS: m/z 218 (C10H40N4Oz, M*).

Balspiel 7

5-Methyl-8-(2-phenylethylamino)-uracil

Aus 3-Phenylethylamin und 6-Fluorthymin wird analog dem Beispiel 6 ein Rohpro ikt erhalten, das aus Aceton umkristallisiert wird.

F. 220°C.

MS: m/z 245 ($C_{13}H_{16}N_3O_2$, M^*).