ITYM 2021 - Problem 7: Proper Numberings of Graphs

Presented by Achille De Ridder France

Exposition of the problem

•
$$G = (V, E, \lambda)$$

•
$$|\nu(u) - \nu(v)| \geq \lambda(e)$$

•
$$s(v) = \sum_{(u,v)\in E} \lambda(e)$$

Greedy Algorithm

In a arbitrary order, give to each vertex the least possible number for which the required condition for a proper k-numbering will not be violated.

Greedy Algorithm

Graph labelled with the Greedy Algorithm

Greedy Algorithm

Graph labelled with the Greedy Algorithm

Greedy algorithm

For a vertex v of a graph G with at least 2 edges, there is an integer between 1 and 2S(G)-1 which can be used to label v without violating the required condition for a proper vertex k-numbering.

Colouring graphs

The smaller integer k for which G has a proper vertex k-numbering is equal to $\lambda(e) + 1$.

Graphs which are c-colorable

If G is c-colorable, then it has a proper vertex $(1 + \sum_{i=1}^{c-1} \lambda(e_i))$ -numbering.

3-Colorable graph

For $\max(\lambda(e)) < M$, if for each $v \in V_2$, w(v,1) + w(v,3)c < M then there exists a proper vertex M-numbering of G.

Odd cycle

If there exists an edge e such that $\lambda(e) \neq \frac{S(G)}{2}$, then G has a proper vertex S(G)-numbering.

Reciprocal of coloration

Proposition 10:

If a graph G has a proper vertex k-numbering, then it is k-colorable.

Graphs which are labelled with the same integers

Proposition 11:

A graph G which is labelled with 1 has a proper vertex S(G)-numbering if and only if it is not a complete graph or an odd cycle.

Thanks for listening!