1) Consider a floating point representation that uses a 32-bit word, with one bit for the sign, 7 bits for the exponent (e) in excess-64 notation, and 24 bits for the mantissa, $x = \pm (\sum_{i=1}^{6} \frac{d_i}{16^i}) 16^{e^{-64}}$ where $0 \le d_i \le 15$. Carry out the following floating-point operations by hand. Show the intermediate and final values of all variables in hexadecimal.

$$A = -462.3$$

$$B = 2.0/16.0$$

$$C = 5.0/16.0^7 + 1.0/16.0^8$$

$$D = B - C$$

$$E = 2.0/16.0 + 11.0/16.0^4$$

$$F = 7.0/16.0^2 + 12.0/16.0^5$$

$$G = E * F$$

$$R = 5.0/16.0 + 3.0/16.0^5$$

$$P = 5.0/16.0$$

$$Q = R/P$$

- 2) Perform the following calculations: a) $\frac{4}{5} + \frac{1}{3}$, b) $\frac{4}{5} \times \frac{1}{3}$ c) $(\frac{1}{3} \frac{3}{11}) + \frac{3}{20}$ d) $(\frac{1}{3} + \frac{3}{11}) \frac{3}{20}$
 - Exactly,
 - Using 3-digit arithmetic with chopping of the exact final value,
 - Using 3-digit arithmetic with rounding of the exact final value,
 - Compute the relative errors.
- 3) Let $f(x) = x \exp(x^2)$.
 - a) Find the fourth Taylor polynomial $P_4(x)$ for f(x) near $x_0 = 0$.
 - b) Find an upper bound for $|f(x) P_4(x)|$ for $x \in [0, 0.4]$.
 - c) Approximate $\int_0^{0.4} f(x)dx$ using $\int_0^{0.4} P_4(x)dx$.
 - d) Find an upper bound for in the computation of part a) by using your answer to part b).
 - e) Approximate f'(0.2) by computing $P'_4(0.2)$. Use the correct answer to f'(0.2) to 5 decimal places to compute the relative error in your computation.

- 4) Let $X = (X_1, \ldots, X_d)$ be a random vector with i.i.d. components and let $||X||_p = (\sum_{i=1}^d |X_i|^p)^{1/p}$ be its p-norm, for p > 0. The behavior of p-norm as d tends to infinity is of interest in many high dimensional applications, including analysis of nearest neighbor search algorithms, data mining, pattern recognition, and fraud detection. Let p = 2 and $||X||_2 = \sqrt{\sum_{i=1}^d X_i^2}$ be its Euclidean norm. Using the following sampling experiment show that the coefficient of variation $CV(||X||_2) = \sqrt{\text{Var}(||X||_2)/E(||X||_2)}$ tends to zero as d tends to infinity. Generate n = 10 vectors from a d-variate (i.i.d. components) normal distribution and report estimates of $E(||X||_2)$, $Var(||X||_2)$) and $CV(||X||_2)$. Obtain 10 replications of the experiment for each $d \in \{50, 500, 5000, 50000, 50000, 500000\}$.
- 5) Let n and m be positive integers and consider the binary floating point system F of the form $\pm 1.a_1a_2...a_n2^e$ where $e \in \{0, -1, -2, ..., -m\}$ and $a_k \in \{0.1\}$ for all k.
 - \bullet a) In terms of n and m, how many numbers are in this system?
 - b) Let m = 2 and n = 5. What is the machine epsilon if we approximate all numbers by rounding to the closest number in F?
 - c) Let m = 2. Find the smallest value of n that will ensure that some number in F is greater that 1.8.
- 6) Consider the finite Taylor series for computing $e^x = \sum_{i=0}^{\infty} x^i/i!$. Write a function to compute e^x and evaluate it at $x = \pm 1, \pm 10, \pm 20$, and ± 30 . Compare your computing values to the built-in function $\exp(x)$. If the values do not agree, explain the cause and suggest a remedy.