MEMORY BOUNDED HEURISTIC SEARCH

Threshold = 6

A's f-score is

8 > threshold

so change the threshold

Threshold = 7

A's f-score is 8 > threshold

so change the threshold

still,

Threshold = 8

A's f-score is 8 <= threshold

equal is fine, lets expand A

Threshold = 8
c's f-score is

6 <= threshold expand C

Threshold = 8

c's f-score is 6 <= threshold

now the small f(n) value G, expand that

Threshold = 8

c's f-score is 6 <= threshold

lessgoooo we reached K from A

(AK's path, haha)

SMA* Algorithm

- Optimizes A* to work within reduced memory
- Key Idea:
 - IF memory full for extra node (C)
 - Remove highest f-value leaf (A)
 Remember best-forgotten child in each parent node (15 in S)

 E.g. Memory of 3 nodes only

 C 18

Image 1: Idea of how SMA* works

SMA* Algorithm

- Generate Children 1 by 1
 - Expanding: add 1 child at the time to QUEUE
 - Avoids memory overflow
 - Allows monitoring if nodes need deletion

Image 2: Generating Children in SMA* Algorithm

SMA* Algorithm

- Too long paths: Give up
 - Extending path cannot fit in memory
 - give up (C)
 - Set f-value node (C) to ∞
 - Remembers: path cannot be found here

E.g. Memory of 3 nodes only

Image 3: Handling Long Paths i.e. Too Many Nodes In The Memory

SMA* Algorithm

- Adjust f-values
 - IF all children Mi of node N have been explored
 - AND \forall i: $f(S...M_i) > f(S...N)$
 - **THEN reset** (through $N \implies$ through children)
 - f(S...N) = min{f(S...M_i) | M_i child of N}

Image 4: Adjusting The f Value

SMA* by Example

 Perform SMA* (memory: 3 nodes) on the following figure.

Image 5: The Problem of Simplified Memory Bounded A*

heuristic

SMA* by Example

Generate children (One by one)

SMA* by Example

Image 7: Full Memory While Evaluation

SMA* by Example

Image 8: Adjusting The f Value

SMA* by Example

Image 9: Memory Full Evaluate Through The Lowest f Value Child

SMA* by Example

Image 10: Update The Root Value ("S" node) To The Remembered Value

SMA* by Example

Image 11: Remove The Goal Leading Node

SMA* by Example

Image 12: Reaching The Goal For The Lowest Total Cost

bye