Part II – Galois Theory

Based on lectures by Dr C. Brookes Notes taken by Bhavik Mehta

Michaelmas 2017

- 0 Introduction
- 0.1 Course overview

1 Field Extensions

Theorem 1.1 (Tower law). Suppose $K \leq L \leq M$ are field extensions. Then |M:K| = |M:L| |L:K|.

1.1 Motivatory Example

1.2 Review of GRM

Lemma 1.2. Let $K \leq L$ be a finite field extension. Then L is algebraic over K.

Lemma 1.3. Suppose $K \leq L$ is a field extension, $\alpha \in L$ and α is algebraic over K. Then the minimal polynomial $f_{\alpha}(t)$ of α over K is irreducible in K[t] and I_{α} is a prime ideal.

Theorem 1.4. Suppose $K \leq L$ is a field extension and $\alpha \in L$ is algebraic over K. Then

- (i) $K(\alpha) = K[\alpha]$
- (ii) $|K(\alpha):K| = \deg f_{\alpha}(t)$ where $f_{\alpha}(t)$ is the minimal polynomial of α over K.

Corollary 1.5. If $K \leq L$ is a field extension and $\alpha \in L$, then α is algebraic over K if and only if $K \leq K(\alpha)$ is finite.

Corollary 1.6. Let $K \leq L$ be a field extension with |L:K| = n. Let $\alpha \in L$, then $\deg f_{\alpha}(t) \mid n$.

1.3 Digression on (Non-)Constructibility

Lemma 1.7. x_i, y_i are both roots in K_i of quadratic polynomials in $K_{i-1}[t]$.

Theorem 1.8. If $\mathbf{r} = (x, y)$ is constructible from a set P_0 of points in \mathbb{R}^2 and if K_0 is the subfield of \mathbb{R} generated by \mathbb{Q} and the coordinates of the points in P_0 , then the degrees $|K_0(x):K_0|$ and $|K_0(y):K_0|$ are powers of two.

Theorem 1.9. Let f(t) be a primitive integral polynomial. Then f(t) is irreducible in $\mathbb{Q}[t]$ if and only if it is irreducible in $\mathbb{Z}[t]$.

Theorem 1.10 (Eisenstein's criterion). Let $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_0 \in \mathbb{Z}[t]$. Suppose there is a prime p such that

- (i) $p \nmid a_n$
- (ii) $p \mid a_{n-1}, p \mid a_{n-2}, \dots, p \mid a_0$
- (iii) $p^2 \nmid a_0$

Then f(t) is irreducible in $\mathbb{Z}[t]$

Theorem 1.11. The cube cannot be duplicated by ruler and compasses.

Theorem 1.12. The circle cannot be squared using ruler and compasses.

1.4 Return to theory development

Lemma 1.13. Let $K \leq L$ be a field extension. Then

- (i) $\alpha_1, \ldots, \alpha_n \in L$ are algebraic over K if and only if $K \leq K(\alpha_1, \ldots, \alpha_n)$ is a finite field extension.
- (ii) If $K \leq M \leq L$ such that $K \leq M$ is finite, then there exist $\alpha_1, \ldots, \alpha_n \in L$ such that $K(\alpha_1, \ldots, \alpha_n) = M$.

Lemma 1.14. Suppose $K \leq L$, $K \leq L'$ are field extensions. Then

- (i) Any K-homomorphism $\phi: L \to L'$ is injective and $K \leq \phi(L)$ is a field extension.
- (ii) If $|L:K| = |L':K| < \infty$ then any K-homomorphism $\phi: L \to L'$ is a K-isomorphism.

Theorem 1.15 (Existence of splitting fields). Let K be a field and $f(t) \in K[t]$. Then there exists a splitting field for f over K.

Theorem 1.16 (Uniqueness of splitting fields). If K is a field and $f(t) \in K[t]$, then the splitting field for f over K is unique up to K-isomorphism, that is, if there are two such splitting fields L and L', there is a K-isomorphism $\phi: L \to L'$.

Theorem 1.17. Let $K \leq L$ be a finite field extension. Then $K \leq L$ is normal $\iff L$ is the splitting field for some $f(t) \in K[t]$.

Theorem 1.18. Let G be a finite subgroup of the multiplicative group of a field K. Then G is cyclic. In particular, the multiplicative group of a finite field is cyclic.

2 Separable, normal and Galois extensions

Lemma 2.1. Let K be a field and $f(t), g(t) \in K[t]$. Then:

- (a) D(f(t)g(t)) = f'(t)g(t) + f(t)g'(t) (Leibniz' rule)
- (b) Assume $f(t) \neq 0$. Then f(t) has a repeated root in a splitting field L if and only if f(t) and f'(t) have a common irreducible factor in K[t].

Corollary 2.2. If K is a field and $f(t) \in K[t]$ is irreducible:

- (i) If the characteristic of K is 0, then f(t) is separable over K.
- (ii) If the characteristic of K is p > 0, then f(t) is not separable if and only if $f(t) \in K[t^p]$.

Lemma 2.3. Let $M = K(\alpha)$, where α is algebraic over K and let $f_{\alpha}(t)$ be the minimal polynomial of α over K.

Then, for any field extension $K \leq L$, the number of K-homomorphisms of M to L is equal to the number of distinct roots of $f_{\alpha}(t)$ in L. Thus this number is $\leq \deg f_{\alpha}(t) = |K(\alpha):K| = |M:K|$.

Corollary 2.4. The number of K-homomorphisms $K(\alpha) \to L = \deg f_{\alpha}(t) \iff L$ is large enough, in particular L contains a splitting field for $f_{\alpha}(t)$ and α is separable over K.

Lemma 2.5. Let $K \leq M$ be a field extension and $M_1 = M(\alpha_1)$ (where α_1 is algebraic over M). Let f(t) be the minimal polynomial of α_1 over M and let $K \leq L$. Let $\phi: M \to L$ be a K-homomorphism. Then there is a correspondence

{Extensions $\phi_1: M_1 \to L \text{ of } \phi$ } \longleftrightarrow {roots of $\phi(f(t)) \in L$ }.

Corollary 2.6. If L is large enough, the number of ϕ_1 which extend ϕ is equal to the number of distinct roots of f(t) in L. This is equal to $|M_i:M|\iff \alpha$ is separable over M

Corollary 2.7. Let $K \leq M \leq N$ be finite field extensions, $K \leq L$. Let $\phi: M \to L$ be a K-homomorphism. Then the number of extensions of ϕ to maps $\theta: N \to L$ is $\leq |N:M|$. Moreover, such a θ exists if L is large enough.

Lemma 2.8. Let $K \leq N$ be a field extension with |N:K| = n and $N = K(\alpha_1, \ldots, \alpha_r)$ say. Then the following are equivalent:

- (i) N is separable over K.
- (ii) Each α_i is separable over $K(\alpha_1, \ldots, \alpha_{i-1})$.
- (iii) If $K \leq L$ is large enough there are exactly n distinct K-homomorphisms $N \to L$.

Corollary 2.9. A finite extension is separable \iff it is separably generated.

Lemma 2.10. If $K \leq M \leq L$ finite field extensions, $M \leq L$, then

$$K \leq M$$
, $M \leq L$ are both separable $\iff K \leq L$ is separable

Theorem 2.11 (Primitive Element Theorem). Any finite separable extension $K \leq M$ is a simple extension, that is, $M = K(\alpha)$ for some α , called a primitive element.

2.1 Trace and Norm

Theorem 2.12. With the above notation, suppose $f_{\alpha}(t) = t^s + a_{s-1}t^{s-1} + \cdots + a_0$ is the minimal polynomial for α over K. Let $r = |M: K(\alpha)|$, then the characteristic polynomial of θ_{α} is $(f_{\alpha}(t))^r$.

Note

$$|M : K| = |M : K(\alpha)| |K(\alpha) : K| = rs.$$

Then $\text{Tr}_{M/K}(\alpha) = -ra_{s-1}$ and $N_{M/K} = ((-1)^s a_0)^r$.

Theorem 2.13. Let $K \leq M$ be a finite separable field extension and |M:K| = n, $\alpha \in M$. Let $K \leq L$ be large enough so that there are n distinct K-homomorphisms

$$\sigma_1, \sigma_2, \ldots, \sigma_n : M \longrightarrow L.$$

Then the characteristic polynomial of $\theta_{\alpha}: M \to M$ (the multiplication map) is

$$\prod_{i=1}^{n} (t - \sigma_i(\alpha))$$

hence

$$\operatorname{Tr}_{M/K}(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha)$$
 and $N_{M/K}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha)$.

Theorem 2.14. Let $K \leq M$ be a finite separable extension. Then we define a K-bilinear form

$$T: M \times M \to K$$
$$(x,y) \longmapsto \mathrm{Tr}_{M/K}(xy).$$

Then this is non-degenerate and in particular the K-linear map $\operatorname{Tr}_{M/K}: M \to K$ is non-zero, and hence surjective.

2.2 Normal extensions

Lemma 2.15.

$$\operatorname{Aut}_K(M) \leq |M:K|$$
.

Theorem 2.16. Let $K \leq M$ be a finite field extension. Then $|\mathrm{Aut}_K(M)| = |M:K|$ iff the extension is both normal and separable.

3 Fundamental Theorem of Galois Theory

3.1 Artin's Theorem

Theorem 3.1 (Fundamental Theorem of Galois Theory). Let $K \leq L$ be a finite Galois extension. Then

(i) there is a 1 to 1 correspondence

$$\{\text{intermediate subfields } K \leq M \leq L\} \longleftrightarrow \{\text{subgroups } H \text{ of } \operatorname{Gal}(L/K)\}$$

$$M \longmapsto \operatorname{Aut}_M(L)$$

$$L^H \longleftrightarrow H$$

This is called the Galois correspondence.

- (ii) H is a normal subgroup of $\operatorname{Gal}(L/K)$ iff $K \leq L^H$ is normal iff $K \leq L^H$ is Galois.
- (iii) If $H \triangleleft \operatorname{Gal}(L/K)$ then the map

$$\theta: \operatorname{Gal}(L/K) \longrightarrow \operatorname{Gal}(L^H/K)$$

given by restriction to L^H is a surjective group homomorphism with kernel H.

Theorem 3.2 (Artin's Theorem). Let $K \leq L$ be a field extension and H a finite subgroup of $\operatorname{Aut}_K(L)$. Let $M = L^H$. Then $M \leq L$ is a finite Galois extension, and $H = \operatorname{Gal}(L/M)$.

Theorem 3.3. Let $K \leq L$ be a finite field extension. Then the following are equivalent:

- (i) $K \leq L$ is Galois
- (ii) $L^H = K$ when $H = Aut_K(L)$

3.2 Galois groups of polynomials

Lemma 3.4. Suppose f(t) is separable, $f(t) = g_1(t) \cdots g_s(t)$ with $g_i(t)$ irreducible in K[t] is a factorisation in K[t]. Then the orbits of Gal(f) on the roots of f(t) correspond to the factors $g_j(t)$.

Two roots are in the same orbit \iff they are roots of the same $g_i(t)$.

In particular, if f(t) is irreducible in K[t] there is one orbit, i.e., Gal(f) acts transitively on the roots of f(t).

Lemma 3.5. The transitive subgroups of S_n for $n \leq 5$ are

$$\begin{array}{ll} n=2 \colon & S_2 \ (\cong C_2) \\ n=3 \colon & A_3 \ (\cong C_3), \ S_3 \\ n=4 \colon & C_4, \ V_4, \ D_8, \ A_4, \ S_4 \\ n=5 \colon & C_5, \ D_{10}, \ H_{20}, \ A_5, \ S_5 \end{array}$$

where H_{20} is generated by a 5-cycle and a 4-cycle.

Theorem 3.6. Let p be a prime, and f(t) irreducible $\in \mathbb{Q}[t]$ of degree p. Suppose f(t) has exactly 2 non-real roots in \mathbb{C} . Then $\mathrm{Gal}(f)$ over $\mathbb{Q} \cong S_p$.

Lemma 3.7. Let f(t) be separable $\in K[t]$ of degree n with char $K \neq 2$. Then

$$Gal(f) \le A_n \iff D(f)$$
 is a square in K .

Theorem 3.8 (Mod p reduction). Let $f(t) \in \mathbb{Z}[t]$ be monic of degree n with n distinct roots in a splitting field. Let p be a prime such that $\overline{f}(t)$, the reduction of f(t) mod p also has n distinct roots in a splitting field. Let $\overline{f}(t) = \overline{g_1}(t) \cdots \overline{g_s}(t)$ be the factorisation into irreducibles in $\mathbb{F}_p[t]$ with $n_j = \deg \overline{g_j}(t)$. Then $\operatorname{Gal}(\overline{f}) \hookrightarrow \operatorname{Gal}(f)$ and has an element of cycle type (n_1, n_2, \ldots, n_s) .

3.3 Galois Theory of Finite Fields

Theorem 3.9 (Galois groups of finite fields). Let \mathbb{F} be a finite field with $|\mathbb{F}| = p^r$. Then $\mathbb{F}_p \leq \mathbb{F}$ is a Galois extension with $\operatorname{Gal}(\mathbb{F}/\mathbb{F}_p) = G$, a cyclic group with the Frobenius automorphism as generator.

Corollary 3.10. Let $\mathbb{F}_p \leq M \leq \mathbb{F}$ be finite fields. Then $Gal(\mathbb{F}/M)$ is cyclic, generated by ϕ^u , where ϕ is the Frobenius automorphism and $|M| = p^u$ and M is the fixed field of $\langle \phi^u \rangle$.

Theorem 3.11 (Existence of finite fields). Let p be a prime and $u \ge 1$. Then there is a field of order p^u , unique up to isomorphism.

4 Cyclotomic and Kummer extensions

4.1 Cyclotomic extensions

Lemma 4.1. $\Phi_m(t) \in \mathbb{Z}[t]$ if char K = 0 (with $\mathbb{Q} \hookrightarrow K$, prime subfield). $\Phi_m(t) \in \mathbb{F}_p[t]$ if char K = p (with $\mathbb{F}_p \hookrightarrow K$, prime subfield).

Lemma 4.2. The homomorphism $\theta: G \to (\mathbb{Z}/m\mathbb{Z})^{\times}$ defined in ?? is an isomorphism iff $\Phi_m(t)$ is irreducible.

Theorem 4.3. Let L be the mth cyclotomic extension of finite field $\mathbb{F} = \mathbb{F}_q$ where $q = p^n$. Then the Galois group $G = \operatorname{Gal}(L/\mathbb{F})$ is isomorphic to the cyclic subgroup of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ generated by q.

Theorem 4.4. For all m > 0, $\Phi_m(t)$ is irreducible in $\mathbb{Z}[t]$ and hence in $\mathbb{Q}[t]$. Thus θ in ?? is an isomorphism and thus $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$ where $\xi = \text{primitive } m \text{th root of unity.}$

4.2 Kummer Theory

Theorem 4.5. Let $f(t) = t^m - \lambda \in K[t]$ and char $K \nmid m$. Then the splitting field L of f(t) over K contains a primitive mth root of unity ξ and $Gal(L/K(\xi))$ is cyclic of order dividing m. Moreover f(t) is irreducible over $K(\xi)$ iff $|L:K(\xi)| = m$.

Theorem 4.6. Suppose $K \leq M$ is a cyclic extension with |L:K| = m, where char $K \nmid m$ and that K contains a primitive mth root of unity. Then $\exists \lambda \in K$ such that $t^m - \lambda$ is irreducible over K and K is the splitting field of $t^m - \lambda$ over K. If β is a root of $t^m - \lambda$ in L, then $L = K(\beta)$.

Lemma 4.7. Let ϕ_1, \ldots, ϕ_n be embeddings of a field K into a field L. Then there do not exist $\lambda_1, \ldots, \lambda_n$ not all zero such that $\lambda_1 \phi_1(x) + \cdots + \lambda_n \phi_n(x) = 0 \ \forall x \in K$.

4.3 Cubics

4.4 Quartics

4.5 Solubility by radicals

Lemma 4.8. A finite group G is soluble if and only if we have

$$\{e\} = G_m \triangleleft G_{m-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

with G_i/G_{i+1} cyclic.

Lemma 4.9. Let $K \triangleleft G$. Then G/K abelian $\iff G' \leq K$.

Lemma 4.10. For G finite, G is soluble \iff $G^{(m)} = \{e\}$ for some m.

Lemma 4.11.

- (i) Let $H \leq G$, G soluble. Then H soluble.
- (ii) Let $H \triangleleft G$, then G soluble \iff H and G/H both soluble.

Theorem 4.12. Let K be a field and $f(t) \in K[t]$. Assume char K = 0. Then f(t) is soluble by radicals over $K \iff \operatorname{Gal} f$ over K is soluble.

Corollary 4.13. If f(t) is a monic irreducible polynomial $\in K[t]$ with $Gal(f) \cong A_5$ or S_5 then f(t) is not soluble by radicals (with char K=0).

Lemma 4.14. If $K \leq N$ is an extension by radicals then $\exists N'$ with $N \leq N'$ with $K \leq N'$ is an extension by radicals, with $K \leq N'$ a Galois extension.

5 Final Thoughts

5.1 Algebraic closure

Lemma 5.1. If $K \leq L$ is algebraic and every polynomial in K[t] splits completely over L, then L is an algebraic closure of K.

Lemma 5.2 (Zorn's Lemma). Let (S, \leq) be a non-empty partially ordered set. Suppose that any chain has an upper bound in S. Then S has a maximal element.

Lemma 5.3. Let R be a ring. Then R has a maximal ideal.

Theorem 5.4 (Existence of algebraic closures). For any field K there is an algebraic closure.

Theorem 5.5. Suppose $\theta: K \to L$ is a ring homomorphism and L is algebraically closed. Suppose $K \leq M$ is an algebraic extension. Then θ can be extended to a homomorphism $\theta: M \to L$ (i.e. $\phi|_K = \theta$).

Theorem 5.6 (Uniquness of algebraic closures). If $K \leq L_1$, $L \leq L_2$ are two algebraic closures of K then there exists an isomorphism $\phi: L_1 \to L_2$.

5.2 Symmetric polynomials and invariant theory

Theorem 5.7. The fixed field $M = L^{s_n} = K(s_1, \ldots, s_n)$ and the s_1, \ldots, s_n are algebraically independent over K (in L).