招待 (Invitation)

JOI 春合宿 2012 Day 4

解説: 保坂 和宏

- A 匹の犬と B 匹の猫
- N 個の仲良しグループ
 - 犬 P_i から犬 Q_i まで,猫 R_i から 猫 S_i まで
 - 一仲良し度 T_i

- みんなをパーティーに招待する
 - 問題文に招待のアルゴリズムが書かれている

- 1. 犬 C を招待
- 2. 幸せ値最大の動物を招待することを繰り返す
 - 幸せ値:既に招待した動物と一緒に所属する 仲良しグループのうちの仲良し度の最大値
 - 同じときは犬, 番号小さい方を優先
 - 幸せ値 0 の動物しかいないときは失敗
- 幸せ値の和を答える

制約

- $N \le 100,000$
- $A, B \leq 1,000,000,000$

- 50 点 ··· N ≤ 2,000
- 30 点 ··· N ≤ 2,000, A, B ≤ 1,000

- 問題文に書かれた通りにシミュレーションする
 - 実装の指針はいろいろ
 - 繰り返しは A + B 回, O(A + B) 匹のうち最大を求める

- $O(N(A + B)^3)$ or $O(N(A + B)^2)$
 - -0点~10点?

シミュレーションを効率よくしたい

- 誘われていない動物の幸せ値は減らない
- 幸せ値が更新されるのは高々 N 回

- A + B 回の繰り返しに対して,
 - 幸せ値最大を選ぶ (O(A + B))
 - 各仲良しグループに対して (O(N)),
 - 新しい仲良しグループなら,幸せ度を更新する (O(A + B))

- $O(N(A + B) + (A + B)^2)$
 - 30 点

- 制約は A, B の値が大きい
- 仲良しグループへの入り方が同じな犬 or 猫は番号が連続している

- 座標圧縮
 - 結構大変?
- $O(N^2)$
 - 50 点?

- さらに列に対するデータ構造を使ってが んばる
 - Segment tree ?
 - 超大変?

- O(N log N)
 - 100 点?

• 誰のおかげで招待できたか?

• 誰のおかげで招待できたか?

誰のおかげで招待できたか?

- 全域木ができている
 - コストが対称なので無向グラフ

- 問題文のアルゴリズム: 1 頂点から始めて,現在最大コストでとれる頂点を次々と繋げていく
- これは Prim 法そのまま
 - →最大全域木が求まっている

- C は関係ない
- 番号の小さい方を優先, も関係ない

最大全域木

最大全域木のコストは Kruskal 法でも同 じ答が求まる

- Kruskal 法
 - 辺をコストの大きい方からソート
 - 辺を順番に見ていき,異なる連結成分を繋いでいれば使う

最大全域木

- 仲良しグループを T_i の降順にソート
- グループには O((動物の数)²) 本の辺があるが, それらを結ぶ O(動物の数) 本の辺だけを使えばよい
 - 犬 *P_i* と猫 *R_i*
 - 犬 P_i と犬 $X(P_i + 1 \le X \le Q_i)$
 - $-猫 R_i$ と猫 $y(R_i + 1 \leq y \leq S_i)$

最大全域木

・ 辺を繋ぐ処理は Union-Find を使う

- O(N(A + B) a(A + B))
 - a: Ackermann 関数の逆
 - 定数と思ってよい
 - 30 点

座標圧縮

• この方針なら座標圧縮は比較的容易

- 犬と猫を O(N) 個の区間にわける
- 区間たちを Union-Find で繋いでいく
- 各区間は、最初に触れたときに内部を全部結ぶ
- $O(N^2)$
 - 50 点

各グループの辺を繋ぐのに O(N) かかる のが無駄

- ・ 犬と猫の間の辺は 1 本でよいので実際に 繋ぐ
- ・ 犬どうし,猫どうしの辺で実際に繋ぐ必要がある辺は全部の合計は O(N)本

区間を繋げていくとき,すでに繋がっている部分はどんどんスキップしたい

- 実現方法
 - 線形リストを使う
 - ちょっと複雑だが高速
 - std∷set を使う
 - ・実装は簡単
 - どうせ O(N log N) はかかるので

- 全体で O(N log N)
 - 線形リストを使った場合は最初のソート以外 は O(N)
 - 100 点

得点分布

