

SARLR: Self-adaptive Recommendation of Learning Resources

Authors: Liping Liu, Wenjun Wu and Jiankun Huang

Institution: State Key Lab of Software Development Environment

Department of Computer Science, Beihang University

01 Introduction

O2 Self-Adaptive Recommendation

03 Experiments

04 Conclusions

▶ Introduction

▶ 1. Introduction

Rule-based Recommendation

- Require domain experts to evaluate learning scenarios
- Define extensive recommendation rules
- Only be applied in specific learning domains

Data-driven Recommendation

- Compare similarity among students and learning objects
- Be more scalable and general
- Fail to consider the impact of difficulty of learning objects and dynamic change

▶ 1. Introduction

Contributions

- SARLR, a novel learning recommendation algorithm
- T-BMIRT, a temporal, multidimensional IRT-based model, incorporates the parameter of video learning
- An evaluation strategy for recommendation algorithms in terms of rationality and effectiveness

➤ The Overall architecture of the SARLR algorithm

> IRT

$$p_{sq} = \frac{1}{1 + exp[-(\alpha_q(\theta_s - \beta_q))]}$$

- α : question discrimination
- β : question difficulty
- θ : student's ability

Item Characteristic Curve(ICC)

> T-IRT

The Temporal IRT extend IRT model by modeling the student's knowledge state over time as a Wiener process

$$\theta_{t+\tau} - \theta_t \sim N(\theta_t, v_2 \tau)$$

$$P(\theta_{t+\tau}|\theta_t) = \phi_{\theta_t, v^2\tau}(\theta_{t+\tau})$$

> T-BMIRT

We use vector projection method to get the value that student's ability exceed the video requirements.

$$P(\vec{\theta}_{s,t+\tau}|\vec{\theta}_{s,t},\vec{l}_{s,t}) = \phi_{\vec{\theta}_{s,t}+\vec{l}_{s,t},\upsilon^2\tau}(\vec{\theta}_{s,t+\tau})$$

$$\vec{l}_{s,t} = \frac{d_{s_t}}{d_t} \cdot \vec{g}_t \cdot \frac{1}{1 + exp\left(-\left(\frac{\vec{\theta}_{s,t} \cdot \vec{h}_t}{\left\|\vec{h}_t\right\|} - \left\|\vec{h}_t\right\|\right)\right)}$$

 $\vec{l}_{s,t}$: the knowledge that student s gains from the video t

 \vec{g}_t : the knowledge of the video t

 \vec{h}_t : is the prerequisites of video t

 d_{s_t} is the duration in which student s watches video t

 d_t is the total length of the video t

Search and Extraction

SARLR Phase 1: Search and Extraction

• INPUT:

- Set of students $S = \{s_1, s_2, ..., s_n\}$, target student $s_X \in S$
- Matrix of abilities $A = [\theta_{s,t}]$, where $\theta_{s,t}$ is the ability value of student s at time t
- Set of learning resources $E = \{e_1, e_2, ..., e_m\}$
- **OUTPUT**: learning path *p*
- **1: search for** similar students MS, where $s_k \in MS$ and θ_{S_k,t_0} is similar to θ_{S_X,t_0}
 - **2:** for each $s_i \in MS$ do
- 3: find $s_b = argmax(distance(\theta_{s_i,T_{s_i}} \theta_{s_i,t_0}))$, where T_{s_i} is the time of s_i completing learning

4: end for

5: extract the learning path $p = (e_{i_1}, e_{i_2}, \dots e_{i_T})$ of s_b

6: return *p*

> Adaptive Adjustment

SARLR Phase 2: Adaptive Re-planning

- INPUT:
- Target student s_X , recommended learning path $p = (e_{i_1}, e_{i_2}, \dots e_{i_T})$
- Result of s_X interacted with learning resources in p

• OUTPUT: new learning path

1: for each $e \in p$ do

2: **if** e is a video **and** $p_{se} < C_{se}$ **do**

3: **return** *SARLR Phase 1* to re-plan path *p*

4: **else if** e is an exercise **and** s_X failed it **and** $p_{sq} < C_{sq}$ **do**

5: **return** *SARLR Phase 1* to re-plan path p

6: end if

7: end for

$$p_{sq} = \frac{1}{1 + exp\left(-\left(\vec{\theta}_{s,i} \cdot \vec{\alpha}_q - b_q\right)\right)}$$

$$p_{se} = \frac{1}{1 + exp\left(-\left(\frac{\vec{\theta}_{s,i} \cdot \vec{h}_e}{\|\vec{h}_e\|} - \|\vec{h}_e\|\right)\right)}$$

 p_{sq} : the probability of student s correctly answering exercise q

 p_{se} : the degree of knowledge that student s can acquire from the video e

Datasets

- A publicly accessible data set
 - Assistments Math 2004-2005
 - From *Assistment* online platform
 - Including 224,076 interactions, 860 students, 1,427 assessments and 106 skills
- A proprietary data set
 - blended learning data
 - From our blending learning analysis platform
 - Including 14,037,146 learning behavior data from 140 schools and 9 online educational companies

> Experiments for T-BMIRT

Models	Assistments				Blended learning data			
	One-dimensional		Multidimensional		One-dimensional		Multidimensional	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC
Frequency method	0.694	N/A	0.683	N/A	0.702	N/A	0.688	N/A
IRT	0.716	0.779	0.701	0.758	0.721	0.784	0.706	0.752
MIRT	0.714	0.771	0.721	0.786	0.718	0.775	0.722	0.783
T-IRT	0.738	0.805	0.712	0.769	0.744	0.801	0.717	0.764
T-BMIRT	0.743	0.815	0.738	0.803	0.757	0.820	0.748	0.816

- **Frequency method**: predict the student correctly answer the assessment when his history correct rate is greater than 50%.
- **IRT**: two-parameter ogive model.
- **MIRT**: multidimensional item response.
- **T-IRT**: temporal IRT with v = 0.5, which were selected in exploratory experiments.
- **T-BMIRT**: temporal blended multidimensional IRT with v = 0.15 and $\alpha = 10^{-4}$.

> Rationality Evaluation

$$RC_{s_x} = \frac{\sum_{e_i}^{p} similarity(h_{e_i}, KC_{s_x})}{m}$$

$$DC_{s_{x}} = \frac{\sum_{e_{i}}^{p} similarity(h_{e_{i}}, \theta_{s_{x,i}})}{m}$$

- $e_i \in p$: the learning resources in a recommended path, m is the length of the path
- KC_{s_x} : the knowledge components which s_x is learning in the current chapter
- *similarity()*: the adjusted cosine similarity of the two vectors in the parentheses.

Model	Relevance accuracy	Difficulty accuracy		
UCF	0.86	0.77		
ICF	0.71	0.83		
LFM	0.87	0.84		
SARLR	0.97	0.92		

Effectiveness Evaluation

$$G = \frac{E(R_{S'}) - E(R_S)}{E(R_S)}$$

- S': the students whose learning paths are strictly recommended
- S the students whose learning path are randomly selected
- $E(R_{S'})$ and $E(R_S)$: the students' average score in the last online assessment.

Model -	Expected gain							
	1	2	3	4	5	6		
UCF	-0.04	-0.06	0.07	-0.03	0.08	0.01		
ICF	0.05	0.04	-0.03	0.07	-0.02	0.05		
LFM	0.04	0.12	0.09	0.10	0.03	-0.05		
SARLR	0.11	0.27	0.24	0.23	0.17	0.06		

▶ 4. Conclusions

Establishes conditions to adaptively adjust recommendations towards the dynamic needs of the students **Adaptively Evaluation T-BMIRT Strategy** criteria For personalized learning recommendation Performs well on the prediction task of multi-dimensional skills assessments in terms of rationality and effectiveness

THANKS