

Kai Huang, Xiangyu Yin, Heng Huang, Wei Gao December 2024

MobiCom' 25

汇报人: 刘佳伟 2025年1月10日



| 1 | Introduction |  |
|---|--------------|--|
| 2 | Background   |  |
| 3 | Design       |  |
| 4 | Evaluation   |  |
| 5 | Conclusion   |  |



| 1 | Introduction |  |
|---|--------------|--|
| 2 | Background   |  |
| 3 | Design       |  |
| 4 | Evaluation   |  |
| 5 | Conclusion   |  |









■ 基于Transformer的编码器(如ViT)通常

尺寸很大

□ 输入数据模态日益多样化



将所有模态合并到LLM中的**训练与运行成本都很高。** 







希望运行时**自适应地只选取有用的模态** 

直观方法

所有相关模态的编码器都参与LLM的联合训练,使每个模

态与自然语言域对齐

成本高!



优化方案

投射层全接入LLM输入层,冻结编码器和 LLM,只训练中间插入的投射层,以此通过微调来提高精度



仍然需要在整个LLM中使用反向传播,成本高!





那就用更轻量的投射层?

并没有减少LLM反向传播的代价, 杯水车薪!

### 总结一下不足之处:

投射的多模态特征全部与LLM输入层的文本嵌入对齐



弥合不同模态之间的语义差距方面可能效率低下

### 希望做到的效果:

在LLM中实现弹性、自动化和快速模态自适应的新技术

在整个LLM中进行反向传播



训练成本比较高

自适应地调整连接的LLM块的数量,以在精度和训练成本之间进行权衡



| 1 | Background |  |
|---|------------|--|
| 2 | Background |  |
| 3 | Design     |  |
| 4 | Evaluation |  |
| 5 | Conclusion |  |

# **Background**



### ➤ Transformer Blocks的接入点

方 案 1 作为cross-MHA中的K-V对进行接入

仅在编码器-解码器架构的 大型语言模型中可用

方案 2

提示调优:在输入文本或中间K-V对前,添加可训练的token (拼接到K、V)

目前只适用于文本域





# **Background**



#### > 有效插入外部模态







FiLM-Like Weighting Schemes

在中间层中将一个模态与其他模态相结合,但只硬编码两个模态,并且需要从头开始进行特定于领域的结构设计。

Cross-MHA Mechanisms

不能应用于仅解码器的大型语言模型。

#### Multimodal Tokens Concatenation

多模态tokens以硬编码方式接入大型语言模型块,并没有针对训练精度或速度进行优化。

# **Background**



#### ▶ 模态适应的FLOPs模型



冻结的层,仍会计算loss并反向传播





接入LLM输入层

接入LLM后面的层



| 1 | Background |  |
|---|------------|--|
| 2 | Background |  |
| 3 | Design     |  |
| 4 | Evaluation |  |
| 5 | Conclusion |  |



### > 单模态编码器的选择



其他编码器 (MLP、CNN、LSTM)

需要额外的工作,来将编码的结果与文本域的token对齐



#### ▶ 特征表示

大多数基于Transformer的编码器将特征提取到[CLS] token序列中。

遵循 [51], 从多个编码器的中间层提取[CLS]



非分类任务的Transformer模型,使用"averaged-pooled tokens"作为特征表示。

nn.Parameter([torch.tensor])



- 特殊的标记
- 位于输入序列的开始位置
- 用作整个序列的表示,进而用于分类



### ▶ 键与值对齐器



将来自单模编码器的多模态token投射到K-V对中,这些token应该与LLM块中的文本K-V对对齐。

$$Aligner(x) = GELU(xW_1 + b_1)W_2 + b_2,$$



As shown in Figure 3, we use a fully-connected (FC) layer to linearly project the output query embeddings Z into the same dimension as the text embedding of the LLM. The

BLIP-2[35]



Gaussian Error Linear Unit
Transformer架构中的首选激活函数



### > 可训练的潜在连接





#### > 确定连接数量



#### 反向传播FLOPs可以计算为:

$$T_{
m backprop}(N) = rac{T_{
m dw}^{
m Aligners}}{+} + rac{T_{
m dy}^{
m Emb}}{L} + rac{N}{L} T_{
m dy}^{
m LLM},$$

- 用于计算Aligner权重更新的FLOPs
- 通过LLM的输出嵌入层传递激活梯度的FLOPs
- 通过所有LLM块传递激活梯度的FLOPs

#### 观察到:

$$T_{\mathrm{dw}}^{\mathrm{Aligners}} + T_{\mathrm{dy}}^{\mathrm{Emb}} \ll T_{\mathrm{dy}}^{\mathrm{LLM}}$$

### 训练成本取决于N



Transformer Decoder Layer



#### 模态自适应完整流程

#### Algorithm 1 Modality Adaptation in mPnP-LLM

**Require:** : A set of pre-trained encoders  $\mathbf{E} = \{E_1, E_2, ...\}$  and the corresponding aligners  $\mathbf{A} = \{A_1, A_2, ...\}$  stored on local external storage; a pre-trained LLM loaded in memory; trainable latent connections  $\alpha_{1,...,N}$ 

```
/* Offline preparation */
\mathbf{E}_0, \mathbf{A}_0 \leftarrow \mathrm{Select}(\mathbf{E}, \mathbf{A})
\mathbf{LLM} \leftarrow \mathrm{Reconnect}(\mathbf{E}_0, \mathbf{A}_0)
\mathrm{Train}(\mathrm{LLM}_{k,v}, \mathbf{A}_0, \alpha_{1,\dots,N})
/* Runtime modality adaptation */
while t < T_{\mathrm{end}} do
\mathbf{E}_t, \mathbf{A}_t \leftarrow \mathrm{Select}(\mathbf{E}, \mathbf{A})
\mathbf{LLM} \leftarrow \mathrm{Reconnect}(\mathbf{E}_t, \mathbf{A}_t)
\mathrm{Train}(\mathrm{LLM}_{k_1,\dots,N}, v_{1,\dots,N}, \mathbf{A}_t, \alpha_{1,\dots,N})
end while
```

▶ Load initial encoders
 ▶ Connect to LLM
 ▶ Offline training

▷ Reload encoders▷ Reconnect▷ Adapt

离线小数据集初训练, 获得基本的QA能力



在线大数据集模态自适应训练

- 系统默认从RGB相机视图的模态开始
- 用户手动将对应模态的编码器和对齐器连接到LLM
- 系统最终能够在夜间自动适应LiDAR点云的形态





| 1 | Background |  |
|---|------------|--|
| 2 | Background |  |
| 3 | Design     |  |
| 4 | Evaluation |  |
| 5 | Conclusion |  |



### > 数据集准备



Question: How many parked trucks are to the back of the construction vehicle? Answer: 4

nuScenes-QA数据集太大(~ 460k QA对)

- 以nuScenes-mini数据集为参考,在nuScenes-QA数据集中选出nuScenes-QA-mini数据集
- 4458 day samples & 1138 night samples
- Train : Test = 1 : 1

运行时模态适应评估场景:模型从白天的RGB相机视图切换到夜间的激光雷达点云。

### > 基线方案

- Full LLM: 将**多模态编码器**与LLM**输入层**连接, 训练投射层并微调整个LLM进行模态适应。
- **PromptFuse**: 将**多模态编码器**与LLM**输入层**连接,采用**提示调优**实现模态自适应。
- eP-ALM: 将编码器的[CLS] token与LLM中间块硬编码连接,使用提示调优实现模态自适应。





#### > 模态适应成本与准确性

在day-train-split (C+L) 训练, 其他情况测试

| Method            | Accuracy (%) w.r.t Scene & Modality |           |                                                                     |                                                   |        | Cost w.r.t Night (C $\rightarrow$ L) |  |
|-------------------|-------------------------------------|-----------|---------------------------------------------------------------------|---------------------------------------------------|--------|--------------------------------------|--|
|                   | Day (C)                             | Night (C) | $\textbf{Night} \ (\textbf{C} \rightarrow \textbf{C} + \textbf{L})$ | $\textbf{Night}(\textbf{C}\rightarrow\textbf{L})$ | PFLOPs | Memory (GB)                          |  |
| Full LLM          | 32.5                                | 30.2      | 3.5                                                                 | 3.5                                               | 1.58   | 29.9                                 |  |
| PromptFuse        | 33.3                                | 26.9      | 24.9                                                                | 39.2                                              | 1.09   | 26.0                                 |  |
| eP-ALM            | 34.7                                | 24.6      | 36.0                                                                | 44.7                                              | 1.11   | 27.6                                 |  |
| mPnP-LLM (N=4)    | 25.2                                | 21.1      | 22.3                                                                | 24.9                                              | 0.68   | 23.2                                 |  |
| mPnP-LLM (N = 7)  | 40.1                                | 34.1      | 25.6                                                                | 26.3                                              | 0.74   | 23.9                                 |  |
| mPnP-LLM (N = 10) | 49.1                                | 41.1      | 27.0                                                                | 41.9                                              | 0.81   | 24.5                                 |  |
| mPnP-LLM (N = 13) | 49.2                                | 40.1      | 38.5                                                                | 46.4                                              | 0.87   | 23.1                                 |  |
| mPnP-LLM (N = 16) | 50.3                                | 43.4      | 41.7                                                                | 46.9                                              | 0.93   | 25.9                                 |  |
| mPnP-LLM (N = 19) | 50.7                                | 41.0      | 44.0                                                                | 46.1                                              | 0.99   | 23.9                                 |  |
| mPnP-LLM (N=22)   | 47.8                                | 39.2      | 41.7                                                                | 47.5                                              | 1.05   | 26.0                                 |  |

Table 1: Performance of mPnP-LLM vs. baseline schemes w.r.t scenes (Day/Night) and modalities (C: 6 RGB camera views, L: LiDAR point cloud) using OPT-1.3B by connecting with different numbers of LLM blocks (N). The OPT-1.3B model has 24 LLM blocks in total.





在更大的LLM中,eP-ALM想与mPnP-LLM达到同样的准确性,需要更大的FLOPs



### ▶ 消融实验

| Ablated module                     | Accuracy $(N=13)$ | Accuracy $(N=17)$ |
|------------------------------------|-------------------|-------------------|
| None                               | 42.2              | 46.0              |
| Offline train K,V proj.            | 37.8              | 42.9              |
| Aligner: MLP→Linear                | 37.3              | 43.8              |
| Conn.: trained $\rightarrow$ fixed | 39.5              | 44.7              |
| LoRA on K,V proj.                  | 33.8              | 35.4              |

禁用LoRA会导致最大的准确性下降,因为模式适应需要更新K、V投射层,以正确区分新插入的 token和现有token。



### ➤ LLM大小的影响

| LLM                 | Accuracy (%) w.r.t Scene & Modality |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | Cost w.r.t Night $(C \to L)$ |             |
|---------------------|-------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|-------------|
| & Method            | Day (C)                             | Night (C) | $\textbf{Night}(\textbf{C} \rightarrow \textbf{C} + \textbf{L})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\textbf{Night}(\textbf{C}\to\textbf{L})$ | PFLOPs                       | Memory (GB) |
| OPT-350M            |                                     |           | A to the second of the second |                                           |                              |             |
| PromptFuse          | 27.7                                | 18.8      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.9                                      | 0.32                         | 21.1        |
| eP-ALM              | 25.3                                | 13.5      | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.9                                      | 0.33                         | 20.0        |
| mPnP-LLM (N = 10)   | 44.0                                | 37.5      | 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.5                                      | 0.25                         | 19.8        |
| mPnP-LLM (N = 13)   | 45.4                                | 36.6      | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.7                                      | 0.26                         | 20.0        |
| mPnP-LLM ( $N=16$ ) | 45.9                                | 37.8      | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.5                                      | 0.28                         | 21.0        |
| OPT-1.3B            |                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                              |             |
| PromptFuse          | 33.3                                | 26.9      | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.2                                      | 1.09                         | 26.0        |
| eP-ALM              | 34.7                                | 24.6      | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.7                                      | 1.11                         | 27.6        |
| mPnP-LLM (N = 10)   | 49.1                                | 41.1      | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.9                                      | 0.81                         | 24.5        |
| mPnP-LLM (N = 13)   | 49.2                                | 40.1      | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.4                                      | 0.87                         | 23.1        |
| mPnP-LLM ( $N=16$ ) | 50.3                                | 43.4      | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.9                                      | 0.93                         | 25.9        |
| OPT-2.7B            |                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                              |             |
| PromptFuse          | 35.7                                | 26.1      | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.8                                      | 2.16                         | 36.4        |
| eP-ALM              | 37.3                                | 24.7      | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.9                                      | 2.13                         | 36.4        |
| mPnP-LLM (N = 13)   | 50.2                                | 36.9      | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.2                                      | 1.56                         | 28.4        |
| mPnP-LLM (N = 17)   | 51.2                                | 37.2      | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.0                                      | 1.67                         | 30.1        |
| mPnP-LLM (N = 21)   | 52.3                                | 42.2      | 44.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.4                                      | 1.81                         | 28.9        |

mPnP-LLM通过其可训练连接和轻量级训练成本,在不同大小的语言模型上表现出色,并且在处理大容量点云数据时,能够有效节省GPU内存。



### ➤ 不同LLM下的表现

预训练更侧重自然语 言处理任务



推理能力不同



预训练更侧重跨语言 文本生成

| LLM<br>& Method   | Day (C)<br>Acc. (%) | Night (C $\rightarrow$ L)<br>Acc. (%) / PFLOPs / Mem. (GB) |
|-------------------|---------------------|------------------------------------------------------------|
| OPT-1.3B          |                     |                                                            |
| Full LLM          | 32.5                | 3.5 / 1.58 / 29.9                                          |
| PromptFuse        | 33.3                | 39.2 / 1.09 / 26.0                                         |
| eP-ALM            | 34.7                | 44.7 / 1.11 / 27.6                                         |
| mPnP-LLM (n = 10) | 49.1                | 41.9 / 0.81 / 24.5                                         |
| mPnP-LLM (n = 13) | 49.2                | 46.4 / 0.87 / 23.1                                         |
| BLOOMZ-1.1B       |                     |                                                            |
| Full LLM          | 34.0                | 0.0 / 1.16 / 32.2                                          |
| PromptFuse        | 35.4                | 26.6 / 0.90 / 25.7                                         |
| eP-ALM            | 27.1                | 26.0 / 0.91 / 28.7                                         |
| mPnP-LLM (n = 10) | 39.4                | 25.8 / 0.73 / 22.7                                         |
| mPnP-LLM (n = 13) | 44.0                | 27.0 / 0.76 / 25.8                                         |



### ▶ 训练样本量的影响

| Method                    | zero-sh       | ot      | # sample = 395 (60%)  |        |
|---------------------------|---------------|---------|-----------------------|--------|
|                           | Accuracy (%)  | PFLOPs  | Accuracy (%)          | PFLOPs |
| PromptFuse                | 26.9          | -       | 37.3                  | 0.65   |
| eP-ALM                    | 24.6          | -       | 41.5                  | 0.67   |
| mPnP-LLM (N = 13)         | 40.1          | -       | 41.0                  | 0.52   |
| mPnP-LLM (N = 16)         | 43.4          | -       | 43.9                  | 0.56   |
| Method                    | # sample = 52 | 7 (80%) | # sample = 659 (100%) |        |
|                           | Accuracy (%)  | PFLOPs  | Accuracy (%)          | PFLOPs |
| PromptFuse                | 39.0          | 0.87    | 39.2                  | 1.09   |
| eP-ALM                    | 43.7          | 0.89    | 44.7                  | 1.11   |
| $mPnP\text{-LLM}\ (N=13)$ | _44.0         | 0.70    | 46.4                  | 0.87   |
| mPnP-LLM (N = 16)         | 44.2          | 0.74    | 46.9                  | 0.93   |

量变没有引发质变,因此可以在准确性与计算量中做权衡



> 边缘设备上的模态自适应

| Device setup                 | GPU Freq.        | mPnP-LLM ( $N=13$ )           |
|------------------------------|------------------|-------------------------------|
| RTX A6000 300W               | 1.9GHz           | 9.40 samples/s                |
| AGX Orin 30W<br>AGX Orin 50W | 612MHz<br>816MHz | 0.33 samples/s 0.92 samples/s |
| AGX Orin MAXN                | 1.3GHz           | 1.41 samples/s                |

边缘设备的性能虽不如工作站级GPU,但也能用



| 1 | Background |  |
|---|------------|--|
| 2 | Background |  |
| 3 | Design     |  |
| 4 | Evaluation |  |
| 5 | Conclusion |  |

### Conclusion



在本文中,我们提出了mPnP-LLM,这是一种新的技术,允许在嵌入式AI中对LLM进行动态运行时模态自适应。mPnP-LLM在保持与现有方案相同精度的情况下,还实现了FLOPs的降低。在相同的计算预算下, mPnP-LLM的任务精度优于现有的最佳方案。





#### ▶ 能否用到我们的场景?

未来可能可以用上。目前,我们使用大模型,还停留在调用API的程度,没有涉及触动LLM模型本身的程度。但是,未来如果多模态大模型的能力更强后,我们可以尝试在本地部署大模型,然后可以借助这种方式,将感知等任务也交由LLM完成,而不是再让LLM帮我们调用外部模型。

#### ▶ 能否进一步提高?

很显然,本文任务的准确性普遍不超过50%,仍有很大提升空间。第一个,就是他用的LLM不够好,而LLM本身能力的瓶颈,是可以使用更强的LLM来提升的。第二个,就是他的模态适应性不太"真适应",可以试试复制N份,然后每一份中的每个模态提供一个可学习参数,用于决定"拼接程度",如果不放心,在连接LLM块的时候,也可以再额外添加本文的这种参数(总体类似于输入门和输出门)。

#### ▶ 能否泛化?

这种"加权"的方法,其实是比较常见的,比如GRU和LSTM的门控机制,也是一种加权。在后续研究中,对于输入存在"选择"或者"侧重"的场景,都可以尝试用这种添加可学习参数的方式。