Assignment OpenMP Intel i7 10700 งานเดี๋ยว ส่งวันที่ 30 ตุลาคม เวลา 24.00 น คิดเป็น 10% ของเกรด

- 1. จัดตารางการทดลองว่าใครจะทดลองก่อนหลัง
- 2. Log in ด้วย secure shell ดังนี้ ssh <u>hpc@161.246.5.86</u> -p 22 password = hpc948323
- 3. ตรวจสอบว่ามีผู้ใช้คนอื่นใช้เครื่องพร้อมกันหรือไม่ โดยใช้คำสั่ง top ดังนี้

- 4. copy Mattson_OMP_exercises/solutions/pi_spmd_padded.c ไปยังโฟลเดอร์ของตนเอง ด้วยคำสั่ง \$ cp Documents/Mattson_OMP_exercises/solutions/pi_spmd_padded.c /Documents/ชื่อโฟลเดอร์
- 5. ย้าย current directory ไปยัง ชื่อโฟลเดอร์ ของตนเอง
- \$ cd /Documents/ชื่อโฟลเดอร์
- 6. ปรับแก้ num_steps ใน pi_spmd_padded.c เป็น 1000 ล้าน และ PAD=1, 2, 4, 7, 8, 16 ตามตารางผลการ ทดลอง โดยใช้ nano หรือ vi \$ nano pi_spmd_paddes.c
- แล้ว Ctrl+W เพื่อ Save และ Ctrl+X เพื่อ Exit ออกจาก nano
- 7. คอมไพล์และรันการทดลองจำนวน 3 รอบเพื่อหาค่าเฉลี่ย
- \$ gcc -fopenmp pi_spmd_padded.c -o pi_padded_1b
- \$./pi_padded_1b

บันทึกผลในตาราง ต่อไปนี้

เวลาเฉลี่ย	PAD=1	PAD=2	PAD=7	PAD=8	PAD=16
1 Thread num_steps=1000 ล้าน	3.0188613	3.065446	3.044077	3.064897	3.064848
8 Thread num_steps=1000 ล้าน	2.727004	3.743682	1.2882975	1.2617195	2 .68 924 45
16 Thread num_steps=1000 ล้าน	4.547021	2.663148	1.700568	0.874894	0.800001
32 Thread num_steps=1000 ล้าน	3.033241	4.902353	1.543863	0.474003	0.437670

- 8. วนกลับไปทำข้อ 6 เพื่อเปลี่ยนค่า PAD จนครบ
- 9. วิเคราะห์และสรุปผลการทดลอง โดยไม่ลอก นศ สามารถถกเถียงกันได้ว่าเกิดอะไรขึ้น แต่ให้เขียนวิเคราะห์และ สรุปผลการทดลองด้วยตัวเอง

ผลภารทดลองวิเคราะห์และสรุปผลภารทดลองมีดังนี้

1. ภารเปลี่ยนแปลงจำนวน Thread

เมื่อจำนวน Thread เพิ่มขึ้น ส่งผลให้งานถูกแบ่งให้กับ Thread มากขึ้น ทำให้แต่ละ Thread ทำงานน้อยลง และเสร็จเร็วขึ้น ส่งผลให้เวลาที่ใช้ลดลง

2. การเปลี่ยนแปลง Pad

Pad คือ ช่องว่างที่เพิ่มเข้าไประหว่างข้อมูลแต่ละตัวในหน่วยความจำ การเพิ่ม Pad เข้าไปจะช่วยป้องกันปัญหา False Sharing ได้

False Sharing เกิดขึ้นเมื่อ Thread สองตัวกำลังเข้าถึงข้อมูลที่อยู่ติดกัน ถึงแม้ว่าข้อมูลเหล่านั้นจะไม่ได้เกี่ยวข้องกันก็ตาม หาก Thread ทั้งสองตัวกำลังเขียนข้อมูลในเวลาเดียวกัน ข้อมูลทั้งสองตัวอาจถูกเขียนทับกัน ซึ่งอาจทำให้เกิดข้อผิดพลาดได้

ภารเพิ่ม Pad เข้าไปจะช่วยป้องกันปัญหา False Sharing ได้ โดยทำให้ Thread ไม่สามารถเข้าถึงข้อมูล ที่อยู่ติดกันได้โดยตรง

ในการทดลองนี้ การเพิ่ม Pad เข้าไปทำให้เวลาที่ใช้ลดลง เนื่องจากช่วยลดปัญหา False Sharing ได้

<u>สรุปผล</u>

จากการทดลองพบว่า การเพิ่มจำนวน Thread และการเพิ่ม Pad เข้าไป ทำให้เวลาที่ใช้ลดลง เนื่องจากทำให้แต่ละ Thread ทำงานน้อยลง และช่วยลดปัญหา False Sharing ได้

อย่างไรก็ตาม การเพิ่มจำนวน Thread และการเพิ่ม Pad เข้าไปก็มีข้อจำกัดเช่นกัน การเพิ่มจำนวน Thread มากเกินไปอาจทำให้ประสิทธิภาพลดลง เนื่องจากทำให้หน่วยความจำถูกให้มากขึ้น จึงควรเลือกใช้จำนวน Thread และขนาดของ Pad ให้เหมาะสมกับงานที่ทำ