Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики N 4.2.3

Интерферометр Релея

Автор:

Лепарский Роман Б01-003

Долгопрудный, 2022

1 Аннотация

Цель работы: ознакомление с интерференцией на двух щелях, устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

Приборы и материалы: технический интерферометр ИТР-1, светофильтр, баллон с углекислым газом, сильфон, манометр, краны.

2 Теоретические сведения

2.1 Зависимость показателя преломления газа от давления

Воспользуемся известной формулой диэлектрической проницаемости ε для газа невза-имодействующих диполей:

$$\varepsilon = n^2 = 1 + 4\pi N\alpha$$

Тогда для связи разности показателей преломления δn и давлений δP имеем

$$\delta n = \frac{\alpha}{2k_B T} \delta P$$

3 Экспериментальная установка

Рис. 1: Интерферометр Релея

Свет от источника, прошедший через тонкую щель S, разделяется на 2 когерентных луча. Нижняя их часть беспрепятственно проходит до линзы O_2 и образует в её фокальной плоскости неподвижную интерференционную картину. Верхняя же часть проходит через кювету, содержимое которой имеет другой показатель преломления, а затем через компенсатор Жамена, что позволяет подстроить интерференционную картину.

При малых дифракционных углах расстояние между соседними максимумами δy зависит от длины волны λ , фокусного расстояния линзы O_2 - f и расстояния между щелями d следующим образом:

$$\delta y = f \frac{\lambda}{d}$$

При заполнении кюветы газом, с отличным от воздуха при атмосферном давлении показателем преломления, возникает дополнительная разность хода. Смещение верхней интерференционной картины относительно нижней на одну полосу означает изменение разности хода на λ . Таким образом

$$\delta n = m \frac{\lambda}{L}$$

Или в более общем виде

$$n=n_{ ext{возд}}+rac{\Delta}{L}$$

4 Обработка результатов

4.1 Калибровка компенсатора Жамена

Запишем в таблицу данные установки:

T, K	P , к Π а	l, cm	λ , HM
295	99,3	25	670 ± 50

Данные для построения калибровочного графика:

т, ед	Δ , дел
-7	0,05
-6	0,41
-5	0,76
-4	1,09
-3	1,45
-2	1,84
-1	2,16
0	2,5
1	2,86
2	3,21
3	3,56
4	3,92
5	4,27
6	4,6
7	4,95

Построим калибровочный график

Рис. 2: Калибровочный график

Обратный коэффициент наклона $k=2.855\pm0,004~\lambda/{\rm дел}.$

4.2 Зависимость показателя преломления от давления воздуха

Найдем зависимость показателя преломления δn от разности давлений $\delta P.$ Запишем результаты измерений в таблицу

δP , mmH2O	δP , Πa	Δ , дел	$\delta n \cdot 10^{-6}$
-1000	-9800	6,22	28,46
-900	-8800	5,74	24,79
-800	-7800	5,35	21,80
-700	-6800	5,03	19,35
-600	-5800	4,66	16,52
-500	-4900	4,28	13,61
-400	-3900	3,91	10,78
-300	-2900	3,57	8,18
-200	-1900	3,17	5,12
-100	-900	2,83	2,52
0	0	2,5	0
100	900	1,83	-5,12
200	1900	1,5	-7,65
300	2900	1,19	-10,02
400	3900	0,87	-12,47
500	4900	0,6	-14,53
600	5800	0,19	-17,67
700	6800	-0,23	-20,88

Отложим измерения на графике

Рис. 3: Зависимость $\delta n(\delta P)$

Коэффициент наклона $b=(-239\pm2)\cdot10^{-11}$ 1/Па. Откуда средняя поляризуемость $\alpha=(1,946\pm0,016)\cdot10^{-30}$. Табличное значение $\alpha=1,7\cdot10^{-30}$.

Отсюда показатель преломления в условиях эксперимента

$$n = 1,00002372 \pm 0,00000019$$

И в нормальных условиях

$$n_0 = 1,0000260 \pm 0,0000002$$

Табличное значение $n_0 = 1,0002926$

4.3 Зависимость показателя преломления от концентрации СО2

Запишем в таблицу отклонение компенсатора Жамена в зависимости от времени. И пересчитаем его в разность показателей преломления.

t , M Δ , μ en $\ln \Delta$ 0 $20,68$ $3,0291$ 1 $19,47$ $2,9688$ 2 $18,52$ $2,9188$ 3 $17,48$ $2,8610$ 4 $16,84$ $2,8237$ 5 $16,02$ $2,7738$ 6 $15,32$ $2,7291$ 7 $14,17$ $2,6511$ 8 $13,93$ $2,6340$ 9 $13,30$ $2,5877$ 10 $12,73$ $2,5439$ 11 $12,25$ $2,5055$ 12 $11,71$ $2,4604$ 13 $11,22$ $2,4176$ 14 $10,85$ $2,3841$ 15 $10,44$ $2,3456$ 16 $10,08$ $2,3105$ 17 $9,72$ $2,2741$ 18 $9,35$ $2,2353$ 19 $9,03$ $2,2005$ 20 $8,70$ $2,1633$			
1 19,47 2,9688 2 18,52 2,9188 3 17,48 2,8610 4 16,84 2,8237 5 16,02 2,7738 6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	t, M	Δ , дел	$\ln \Delta$
2 18,52 2,9188 3 17,48 2,8610 4 16,84 2,8237 5 16,02 2,7738 6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	0	20,68	3,0291
3 17,48 2,8610 4 16,84 2,8237 5 16,02 2,7738 6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	1	19,47	2,9688
4 16,84 2,8237 5 16,02 2,7738 6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	2	18,52	2,9188
5 16,02 2,7738 6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	3	17,48	2,8610
6 15,32 2,7291 7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	4	16,84	2,8237
7 14,17 2,6511 8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	5	16,02	2,7738
8 13,93 2,6340 9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	6	15,32	2,7291
9 13,30 2,5877 10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	7	14,17	2,6511
10 12,73 2,5439 11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	8	13,93	2,6340
11 12,25 2,5055 12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	9	13,30	2,5877
12 11,71 2,4604 13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	10	12,73	2,5439
13 11,22 2,4176 14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	11	12,25	2,5055
14 10,85 2,3841 15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	12	11,71	2,4604
15 10,44 2,3456 16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	13	11,22	2,4176
16 10,08 2,3105 17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	14	10,85	2,3841
17 9,72 2,2741 18 9,35 2,2353 19 9,03 2,2005	15	10,44	2,3456
18 9,35 2,2353 19 9,03 2,2005	16	10,08	2,3105
19 9,03 2,2005	17	9,72	2,2741
	18	9,35	2,2353
20 8.70 2.1633	19	9,03	2,2005
	20	8,70	2,1633

Построим график данной зависимости в логарифмическом масштабе.

Поскольку график практически линейный, можно говорить об экспоненциальном характере зависимости.

Пользуясь нулевым измерением, найдем коэффициент преломления углекислого газа. $n_{CO2}=n+rac{\Delta}{L}=1{,}0001836\pm0{,}0000004$. И при пересчете к нормальным условиям

$$n_{CO2_0} = 1,0002017 \pm 0,00000005$$

Табличное значение данной величины: 1,000450

5 Вывод

В данной работе мы ознакомились с устройством и принципом действия интерферометра Релея. А так же нашли коэффициенты преломления воздуха и углекислого газа в условиях эксперимента и в нормальных условиях.