ECEn 220 Chapter 8 Homework Solutions

8.1 Implement an 8:1 MUX out of 4:1 MUX blocks.

One example is shown below. Other solutions are possible.

8.2 For the following few problems consider the following function:

$$F(A,B,C,D) = \sum_{m(2,5,6,7,11,13,14,15)}$$

Use a 2:1 MUX (A as the MUX select signal) to implement the function this function.

When
$$A = 0$$
 $F = BD + BC + CD' = BD + CD'$ (Consensus theorem)
When $A = 1$ $F = BD + BC + CD$

Use a 2:1 MUX (D as the MUX select signal) to implement the function from above.

$$F = BD + BC + ACD + A'CD'$$

When
$$D = 0$$
 $F = BC + A'C$
When $D = 1$ $F = B + BC + AC = B + AC$

Use a 4:1 MUX (AD as the MUX select signals) to implement the function from above.

$$F = BD + BC + ACD + A'CD'$$

When
$$AD = 00$$
 $F = BC + C = C$
When $AD = 01$ $F = B + BC = B$

When
$$AD = 10$$
 $F = BC$

When
$$AD = 11$$
 $F = B + BC + C = B + C$

8.6 Use a 4:16 decoder and some gates to implement the function from above.

$$F = BD + BC + ACD + A'CD'$$

8.8 Draw the gate level schematic for a 3:8 decoder.

8.10 Show how to build an 8:1 MUX out of a 3:8 decoder, some AND gates, and a single OR gate.

