Lab 5 Report

Name: Alex Ma

UT EID: am74874

Section:

Checklist:

Part 1 -

i. Design file (.v) for the Ripple Carry Adder

ii. Test-bench

iii. Complete Table 1 from the simulation

A[3:0]	B[3:0]	Cin	Sum[3:0]	Cout
0001	0101	0	0110	0
0111	0111	0	1110	0
1000	0111	1	0000	1
1100	0100	0	0000	1
1000	1000	1	0001	1
1001	1010	1	0100	1
1111	1111	0	1110	1

 Table 1. Testcases for Ripple Carry Adder Verification

- iv. Constraints File (Just the uncommented portion)
- v. Simulation waveform for the above test-cases

Part 2 -

- vi. All the equations for C_i's and S_i's
 - C[0] = Cin
 - C[1] = G[0] + (P[0]C[0])
 - C[2] = G[1] + (P[1]G[0]) + (P[1]P[0]C[0])
 - C[3] = G[2] + (P[2]G[1]) + (P[2]P[1]G[0]) + (P[2]P[1]P[0]C[0])
 - C[4] = G[3] + (P[3]G[2]) + (P[3]P[2]G[1]) + (P[3]P[2]P[1]G[0]) + (P[3]P[2]P[1]P[0]C[0])
- vii. Design files (.v) for the Carry Lookahead Adder and Register Logic
- viii. Test-bench
 - ix. Complete Table 2 from the simulation

A[3:0]	B[3:0]	Cin	Sum[3:0]	Cout
0000	0101	0	0101	0
0101	0111	0	1100	0
1000	0111	1	0000	1
1001	0100	0	1101	0
1000	1000	1	0001	1
1101	1010	1	1000	1
1110	1111	0	1101	1

 Table 2. Testcases for Carry Lookahead Adder Verification

- x. Constraints File (Just the uncommented portion)
- xi. Simulation waveform for the above test-cases

Part 3 -

xii. Screenshots of the gate-level schematics for both the adder techniques

xiii. Delay and area for both the adder techniques showing all the work

- Ripple Carry Adder
 - Delay = 28 ns (By following Cin to Cout) Each full adder has a critical path going from 2^{nd} AND -> 1^{st} OR -> 1^{st} OR (3+2+2 = 7ns)*4 = 28 ns
 - Each full adder contains 3 ANDs, 2 ORs, 2 XORs. Using the table and the given areas for each logic gate, we can calculate the area: 3(4) + 2(4) + 2(6) = 12 + 8 + 12 = 32 (for 1 full adder)

- Carry Look-ahead Adder
 - Delay = 23 ns (By following the red-dotted path) (3+3+3+3+3+2+2+2+2 = 23 ns)
 - The above RTL design of the CLA contains 20 ANDs, 10 ORs, 8 XORs.
 - 4 bit CLA area = 4(20) + 4(10) + 6(8) = 168

xiv. Brief conclusion regarding the pros and cons of each of the techniques

- RCA
 - Pros
 - Small area = less logic gates, which means that production costs will be cheaper
 - Cons
 - Relatively slow; each Cin is an output from a previous adder (other than the LSB), therefore calculating the sum will take some time in a "ripple" manner
- CLA
 - Pros
 - More efficient; since each carry signal is calculated in advance based on input signals.
 - Cons
 - 1. As we have higher bit CLAs, the logic blocks get more and more complex, thus having to implement more logic gates than the RCA