Homework Assignment 0

Statistical Methods for Analysis with Missing Data, Winter 2019

Instructor: Mauricio Sadinle, Department of Biostatistics, U. of Washington – Seattle

Submit your solutions via Canvas. Feel free to hand-write your solutions and submit a scanned copy. Due by 12:00pm (noon) on Jan 16, 2019.

The grade for this assignment will be either 1 (satisfactory) or 0. This assignment contains four problems, each of which contains subproblems, totaling 17 of them. Your solutions will be graded as 1 if you have at least 10 correct subproblems, including one correct subproblem from each problem.

1. Let the random variables X, Y, Z, W have a joint distribution with density p, such that

$$p(x, y, z, w) = p_X(x)p_{Y|X}(y \mid x)p_{Z|X}(z \mid x)p_{W|X,Z}(w \mid x, z),$$

where p_X , $p_{Y|X}$, $p_{Z|X}$, and $p_{W|X,Z}$ are the densities of the distributions of X, $(Y \mid X)$, $(Z \mid X)$, and $(W \mid X, Z)$, respectively.

(a) Determine which of the following independence statements are true, and provide proofs for the true statements:

i.
$$Y \perp\!\!\!\perp W$$
; ii. $Y \perp\!\!\!\perp W \mid X$; iii. $W \perp\!\!\!\perp (X,Z)$; iv. $Z \perp\!\!\!\perp Y \mid X$; v. $Z \perp\!\!\!\perp (Y,W) \mid X$.

(b) Write down the conditional density of:

i.
$$X \mid Y, Z, W$$
; ii. $X \mid Y, Z$; iii. $X \mid Y, W$

- (c) Write down the expression for the expected value of XW, E(XW), in terms of the density p.
- (d) Say we use the simpler notation

$$p(x, y, z, w) = p(x)p(y \mid x)p(z \mid x)p(w \mid x, z)$$

to denote the p density above. Why is this notation inaccurate?

- 2. Let $X_1, \ldots, X_K \stackrel{i.i.d.}{\sim} \text{Bernoulli}(\pi)$.
 - (a) Write down the probability mass function of the random vector $X = (X_1, \dots, X_K)$, denoted $p(x \mid \pi)$, where x is a generic realization of X
 - (b) Write down the likelihood function of π . What is the difference between the likelihood function and the probability mass function derived in (a)?
 - (c) Derive the maximum likelihood estimator of π , and call it $\hat{\pi}$
 - (d) Compute the expected value of $\hat{\pi}$
 - (e) Compute the expectation $E_X[\log p(X \mid \pi')], \pi' \neq \pi$
 - (f) Find the value that maximizes $E_X[\log p(X \mid \pi')]$ as a function of π'
 - (g) Suppose that K is an even number. Let $Y_1 = (X_1, \dots, X_{K/2})$ and $Y_2 = (X_{K/2+1}, \dots, X_K)$. Derive the distribution of $W = Y_1 Y_2^T$. T denotes the transpose operator.
 - (h) Derive the conditional distribution of X given XX^T
- 3. Let $X = (X_1, ..., X_K) \sim \text{MultivariateNormal}(\mu, \Sigma)$. Let A be a $K \times B$ matrix, $B \leq K$, such that its (i, j)th entry $a_{ij} \in \{0, 1\}$, $\sum_{j=1}^{B} a_{ij} \leq 1$ for all i = 1, ..., K, and $\sum_{i=1}^{K} a_{ij} \geq 1$ for all j = 1, ..., B. For this problem you can use commonly known facts about the multivariate normal distribution.
 - (a) What is the distribution of Y = XA? Explain.
 - (b) What is the distribution of $(Y_1, Y_2) \mid (Y_3, \dots, Y_B)$. Explain.
- 4. Let $X = (X_1, \dots, X_K) \sim \text{Multinomial}(N, (\pi_1, \dots, \pi_K))$.
 - (a) Derive the distribution of $(X_1 + X_2, X_3, \dots, X_K)$.
 - (b) What is the distribution of Y = XA, where A is a matrix as in problem 3., except that here $\sum_{j=1}^{B} a_{ij} = 1$ for all i = 1, ..., K. No need to write down the proof.
 - (c) Suppose that K is an even number. Let $Y_1 = (X_1, \ldots, X_{K/2})$ and $Y_2 = (X_{K/2+1}, \ldots, X_K)$. Derive the distribution of $X = (Y_1, Y_2)$ given $Y_1 Y_1^T$ and $Y_2 Y_2^T$. T denotes the transpose operator.

Note: 4(c) is complicated in general. Acceptable solutions include (in order of difficulty): i. solve for N=1; ii. simply write generic expression for the conditional distribution for generic N. iii. solve for K=4 and generic N.