Модуль 1 «Имитационное моделирование на языке GPSS»

Практическая работа № 3

Целью практической работы является изучение построения имитационных моделей в среде GPSS World. В работе №3 изучаются действия операторов и описателей языка, изучаются методы и особенности структур моделей с семействами процессов. В ходе работы необходимо выполнить все задания для получения навыков построения моделей, анализа результатов моделирования. Все задания должны быть выполнены студентом самостоятельно в компьютерном классе. По итогам занятия студенты должны представить преподавателю в виде отчета рабочие модели и все основные результаты в соответствии с заданием.

При разработке моделей полезно использовать отладчик, который встроен в среду моделирования GPSS World (Blocks window, Блоки). В режиме отладки можно проверить работоспособность модели и выполнить поиск ошибок самого разного характера. Отладчик позволяет проследить ход (по шагам) выполнения модели и одновременно получить текущие значения всех переменных (через Expression window, Выражения) и объектов модели (через Facility window, Устройства и Storage window, Памяти), что позволяет установить моменты времени и операторы, в которых происходят коллизии, логические ошибки, зацикливания и устранить их.

Порядок выполнения работы

Открыть GPSS Studio. Открыть каталог моделей Архив - Samples.

1) Изучите работу модели клиентского обслуживания в банке – SCHR7A1.GPS и SCHR7A2.GPS

Необходимо открыть обе модели; получите результат моделирования за 10 смен; оцените статистику по времени ожидания в очереди Line (среднее время и дисперсию); сравните время ожидания в варианте с общей очередью и в варианте с очередями к каждому операционисту; найдите сведения о загрузке операционистов; разберитесь в способе выборки значения параметра в блоке SELECT.

2) Изучите работу модели сборки насосов – **ASSEMBLY.GPS**

В модели представлено описание работы сборочного участка. На фабрике выпускают центробежные насосные агрегаты штучно по заказам клиентов. Заказы поступают в среднем каждые 5 часов. При получении заказа начинаются три процесса: - получения и подготовки двигателя, - поиска и подгонки насоса, - изготовления станины. Когда станина готова, производится пробный монтаж насоса. Затем делают пробную сборку агрегата из всех 3 компонентов. После проверочных работ, агрегат разбирается, насос и двигатель окрашиваются, а станина оцинковывается. По завершении все компоненты собираются в агрегат. Необходимо открыть модель; провести моделирование 100 заказов; исследовать коэффициенты использования сборочных участков; определить время выполнения заказов; отобразить время ожидания заказов до начала сборки.

3) Изучите работу матричной модели производственного участка – **SCHR5C. GPS**

Производственный участок имеет 5 типов станков: токарный, фрезерный, сверлильный, шлифовальный, резьбонарезной. На участке обрабатываются детали трёх типов. Каждый тип детали требует выполнения операций на определённых типах станков в последовательности, которая задаётся маршрутной картой (см.диаграмму). Количество этапов обработки, последовательность прохождения и среднее время обработки для всех типов деталей приведены в маршрутной карте деталей.

Тип детали	Кол-во участков	Маршрут обработки	Время обработки		
1 (30%)	4	3 1 2 5	0.50 0.60 0.85 0.50	Номер участка	Кол-во станков
2 (50%)	3	4 1 3	1.10 0.80 0.75	1 2 3	3 2 4
3 (20%)	5	2 5 1 4 3	1.20 0.25 0.70 0.90 1.00	5	3

Целью моделирования производственного участка является определение управленческих решений усовершенствования технологического участка по критерию увеличения дохода от выполненных работ. Проведите моделирование и зафиксируйте состояние матриц и таблиц модели.

4) Изучите работу модели обслуживания оборудования с заменой запчасти **SCHR6C.GPS**

На сверлильном станке сверло периодически выходит из строя (тупится).

Оператор-станочник меняет его на запасное, если оно есть, и передаёт слесарю-инструментальщику для восстановления (заточки). Слесарь в основном занят в процессе изготовления техоснастки и выполняет заточку сверла в свободное от основной нагрузки время.

Промоделируйте работу в течение квартала (3 месяца). Найдите полезную загрузку слесаря, станка, количество замен сверла. Постройте график «ожидания» сверлом операции по заточке.

5) Изучите работу модели автозаправки **SCHR5D.GPS**

В модели представлено описание работы АЗС. На заправку приезжают автомобили в интервале от 0 до 600 с (функция IAT). Длительность заправки от 100 до 700 с. Размер очереди не больше количества заправочных колонок. Через 12 ч приезжает инкассация, обслуживание клиентов прекращается, дообслуживаются все приехавшие, и фиксируется финансовый результат.

Промоделируйте для количества колонок -1-2-3-4, сравните результаты.

6) Изучите работу модели **BICYCLE.GPS**

В модели представлено описание работы велосипедной мастерской. В мастерской собирают велосипеды индивидуально по заказам клиентов. Заказы поступают в среднем каждые 50 минут.

При получении заказа начинается 6 процессов: оформление договора и подготовка узлов — рамы, руля, колёс, седла, педалей. По завершении подготовки все узлы собираются. При завершении оформления и сборки велосипед передаётся на упаковку, а затем клиенту. Обратите внимание на коэффициенты использования специалистов на участках. Усовершенствуйте процесс, передав работу по упаковке на наименее загруженных специалистов. Постройте гистограмму времени выполнения заказов за 25 дней работы.

7) Изучите модель на основе данных из примера ремонтной мастерской **TVREPAIR.GPS**

В модели представлено описание работы ремонтника электроприборов. На основе примера tvrepair сделайте модель работы мастерской по ремонту ноутбуков с двумя мастерами — программистом-системщиком и специалистом по электронике. Основная часть ремонтов — исправление системщиком софтверных проблем (BIOS, upgrade OS, антивирусы).

Работы по ремонту электроники появляются в 35% случаев ремонта (сложный ремонт) и их выполняют оба мастера совместно. Диагностику проводит системщик, и по ее итогам отсеивается 7% ноутбуков как «неремонтируемые».

Постройте график очереди работ. Смоделируйте месяц работы мастерской и получите гистограмму распределения транзитного времени ремонтов.

Результаты выполнения и тексты моделей сохраните в файле отчета по практической работе. Отчёт подготавливается в текстовом редакторе (типа Word) с включением необходимых иллюстраций.

Отчёт пришлите для проверки на почту преподавателя seminar5@list.ru