МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Отчёт о выполнении лабораторной работы 1.1.3

Статистическая обработка результатов многократных измерений

Автор: Говорухин Матвей Сергеевич Б03-201

1 Введение

Цель работы: применение методов обработки экспериментальных данных при измерении сопротивлений.

В работе используются: набор резисторов (270 штук); универсальный цифровой вольтметр GDM-8145, работающий в режиме «Измерение сопротивление постоянному току».

2 Теоретические сведения

Производство резисторов на заводе – сложный технологический процесс. Поэтому измеренное сопротивление может отличаться от номинала. Погрешности могут быть как систематическими, так и случайными.

Для измерения сопротивления мы будем пользоваться прибором, погрешность которого мала $(\pm 0.5 \text{ Om})$ по сравнению с отклонениями от номинала, полученными при производстве. Поэтому систематической погрешностью можно пренебречь.

В работе измеряем сопротивление 270 резисторов. По полученным данным вычисляем среднее значение:

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i. \tag{1}$$

Чтобы охарактеризовать случайные погрешности при изготовлении набора резисторов, необходимо построить гистограмму.

3 Ход работы

Результаты измерения 270 резисторов представлены в таблице 1. По этой таблице построим гистограммы для m=20 и m=10. Для удобства сравнения с нормальным распределением по оси ординат будем откладывать не число результатов Δn , попадающих в каждый интервал, а это число делённое на полное число результатов N и величину интервала ΔR . В таблицах 2 и 3 в зависимости от номера группы к приведены значения Δn и $\omega = \Delta n/(N\Delta R)$. На рис. 1 и 2 представлены гистограммы. Среднее значение сопротивлений находим по формуле (1):

$$\langle R \rangle = \frac{1}{N} \sum_{i=1}^{N} R_i = 500,1 \text{ Om.}$$

Среднеквадратичное отклонение находим по формуле:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (R_i - \langle R \rangle)^2} \approx 1.33 \text{ Om}$$

При этом в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ попадает 68% результатов, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно – 97%.

Табл.1. Результаты измерения сопротивления резисторов

502.5	500.6	499.1	502.0	499.5	500.6	499.8	499.5	499.4	500.2	500.2	500.4	500.4	500.3	500.4
501.4	499.6	500.3	499.9	499.1	497.0	499.3	499.8	501.0	501.3	499.0	500.1	498.8	500.2	499.7
500.0	500.1	500.0	497.9	498.5	498.0	501.3	498.6	498.5	498.3	499.3	499.4	499.4	500.5	499.7
500.5	499.8	501.0	499.0	499.5	500.5	502.0	501.8	500.2	500.7	498.6	500.0	499.4	499.7	501.1
499.5	503.7	498.0	500.0	501.5	501.1	501.0	500.0	499.5	498.6	502.5	498.3	502.1	498.5	504.1
499.5	500.1	499.6	498.0	499.7	502.0	500.5	499.3	501.5	502.4	498.8	499.3	502.3	500.0	501.3
500.7	502.0	498.7	498.1	499.3	499.3	500.3	499.9	499.4	500.6	499.9	500.3	500.5	501.0	500.6
499.4	499.6	502.4	500.0	499.8	499.2	499.9	501.2	500.4	500.0	498.9	498.0	499.1	500.4	498.6
498.4	502.0	499.4	500.0	500.3	498.2	500.7	499.0	498.3	498.9	500.6	500.9	500.0	502.0	498.6
499.7	500.0	500.3	499.8	498.3	498.7	498.7	500.1	499.7	500.4	499.7	499.2	500.5	497.9	499.8
500.6	500.3	501.5	498.4	501.7	500.1	500.4	500.5	499.8	501.1	501.0	501.0	502.2	499.4	501.4
500.7	502.1	497.4	501.1	497.5	500.0	499.8	499.8	500.0	499.3	500.4	500.2	499.0	497.6	502.1
499.6	500.0	501.0	499.8	500.8	499.3	501.6	500.3	498.3	500.3	499.4	498.8	499.8	500.0	499.5
498.5	499.0	498.3	499.8	501.4	499.5	501.4	499.8	502.7	502.9	498.1	498.8	500.2	498.2	500.8
502.1	500.6	500.5	501.0	502.5	500.1	502.1	501.1	500.1	502.3	501.5	500.3	499.0	498.8	500.4
500.2	497.7	499.0	498.3	498.5	500.0	497.5	498.8	499.3	502.6	503.9	499.4	500.3	501.8	499.9
500.2	500.1	501.1	500.5	499.7	506.7	499.2	500.0	500.0	503.2	501.9	500.3	498.2	499.3	500.0
500.1	498.8	501.2	500.0	502.1	500.0	500.4	502.0	501.8	497.2	500.7	499.9	498.7	498.7	498.7

 ${
m Ta}$ бл.2 ${
m m}$ =20

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
δn	3	6	19	25	32	39	50	33	20	13	17	7	2	1	2	0	0	0	0	1
ω^*1000	2	4	14	19	24	29	38	25	15	9	12	5	1	0	1	0	0	0	0	0

Табл.3. m=10

k	1	2	3	4	5	6	7	8	9	10
δn	9	44	71	83	33	24	3	2	0	1
ω^*1000	3	16	27	31	12	9	1	0	0	0

Табл.4. измерение одного резистора 15 раз на одном мультиметре

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R, Ом	501.64	501.63	501.62	501.61	501.60	501.59	501.60	501.60	501.59	501.61	501.63	501.60	501.61	501.60	501.60

Табл.5. Измерение одного резистора на 7 мультиметрах

$N_{\overline{0}}$	1	2	3	4	5	6	7
R, Om	500.84	500.83	500.97	500.85	501.03	500.84	501.01

Рис.1. Гистограмма для m=10

Нормальное распределение описывается следующей формулой:

$$y = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R - \langle R \rangle)^2}{2\sigma^2}}$$

Эта функция также изображена на рис. 1 и 2. Видно, что гистограмма практически соответствует этой зависимости. Теоретическая вероятность попадания измерений в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ равна 68%, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно – 95%.

4 Обсуждение результатов и выводы

В ходе работы мы получили, что величина сопротивления резистора, наугад выбранного из данного набора, попадает в интервал 500.1 ± 1.33 Ом с вероятностью 68%, в интервал 500.1 ± 2.66 Ом с вероятностью 97%, в интервал 500.1 ± 3.99 Ом с вероятностью 99%.

В ходе анализа Табл.4. становится ясно, что показания при последовательном измерении одного резистора меняются на величину, в 50 раз меньшую чем погрешность прибора на данном режиме измерения (δ =0.5 Ом), а значит снятая величина мало зависит от способа снятия (показания снимались в разных положениях рук и щупов) при условии, что экспериментаторы будут дожидаться установившихся значений

Из анализа значений сопротивления в Табл.5. видно, что разность между показаниями приборов существует, но укладывается в погрешность одного прибора

Дополнительно, проведены измерения сопротивления человека в положении, аналогичном подобному при снятии показаний сопротивления резисторов. Сопротивление человека $R\approx 0.8$ МОм. Отсюда по формуле параллельного соединения находим общее сопротивление человека и резистора, а из этого находим погрешность, которую вносит человек: $\varepsilon\approx 0.06\%$, что совершенно незначительный вклад, которым можно пренебречь.

Таким образом, величины всех сопротивлений укладываются в 5-процентный интервал ($\langle R \rangle \pm 3\sigma$).

Однако, как можно заметить, измеренные результаты неидеально описываются нормальным распределением. Это можно объяснить неточностью метода измерения, в том числе окислением контактов резисторов и/или измерительных приборов.