Assignment 4 of MATP6610/4820

(Due on March-06-2020 in class)

Problem 1

Consider the unconstrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}$$
 (QuadMin)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$.

- 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand three iterations of the BB method. Your first iteration should be steepest gradient descent with exact line search, and the second and third iterations should use Option-I BB stepsize.
- 2. Write a solver for (QuadMin) by the BB method. Use the instructor's provided file quadMin_BB.m to write a Matlab function quadMin_BB with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, and tolerance tol, and with stopping condition $\|\nabla f(\mathbf{x}^k)\| \leq \text{tol}$. Also test your function by running the provided test file test_BB.m and compare to the instructor's function. Print your code and the results you get.

Problem 2

In class, we derived the proximal gradient method for solving the Lasso problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1, \tag{Lasso}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a sensing matrix, \mathbf{b} is the measurement vector, and $\lambda > 0$ is the regularization parameter.

- 1. Write a solver for (Lasso) by the proximal gradient method. Use the instructor's provided file PG_Lasso.m to write a Matlab function PG_Lasso with input A, b, initial vector x0, parameter lam, and tolerance tol, and with a provided stopping condition.
- 2. Write a solver for (Lasso) by the accelerated proximal gradient method. Use the instructor's provided file APG_Lasso.m to write a Matlab function APG_Lasso with input A, b, initial vector x0, parameter lam, and tolerance tol, and with a provided stopping condition.
- 3. Test your two solvers by running the provided test file test_Lasso.m and compare to the instructor's function. Print your code and the results you get.