Homework 5

Dec. 10, 2020

NOTE: Homework 5 is due next Thursday (Dec. 17, 2020). The questions started with * are for Exercise only, and you are not required to submit the answers.

- 1. Suppose that X_1, \dots, X_m i.i.d. $\sim N(a+c, \sigma_1^2), Y_1, \dots, Y_n$ i.i.d. $\sim N(a, \sigma_2^2)$, where $c, \sigma_1^2, \sigma_2^2$ are known, a is unknown. Suppose that X_i 's and Y_j 's are independent.
 - Derive the UMVUE of a;
 - Construct a confidence interval for a with confidence level 1α .
- 2. Let $X = (X_1, \dots, X_n)$ be a random sample from the population with p.d.f. $f(x, \theta) = e^{-(x-\theta)}, x > \theta$.
 - Show that the distribution of $X_{(1)} \theta$ does not depend on θ ;
 - Construct a confidence interval for θ with confidence level 1α .
- 3. Let $X = (X_1, \dots, X_n)$ be a random sample from a distribution with unknown (finite) mean μ and known (finite) variance σ^2 , and suppose that n is large. Then:
 - (i) Construct a confidence interval for μ with confidence level approximately $1-\alpha$.
 - (ii) Provide the form of the interval in part (i) for n = 100, $\sigma = 1$, and $\alpha = 0.05$.
 - (iii) Refer to part (i) and suppose that $\sigma = 1$ and $\alpha = 0.05$. Then determine the sample size n, so that the length of the confidence interval is less than 0.1.
 - (iv) Show that the length of the interval in part (i) tends to 0 in probability as $n \to \infty$.
- 4. Consider the data set "data.csv" in Homework 4. There are 1475 houses which have central air-conditioner (Central_Air = Y) and 123 houses which don't have air-conditioner (Central_Air = N). Compare the mean SalePrice and the variance of SalePrice of the houses with central air-conditioner (Central_Air = Y) and those without central air-conditioner (Central_Air = N). More specifically, let X_1, \dots, X_{1475} denote the SalePrice of the houses with central air-conditioner and suppose that they are i.i.d. r.v.'s. Let Y_1, \dots, Y_{123} denote the SalePrice of the houses without central air-conditioner and suppose that they are i.i.d. r.v.'s too. Suppose that X_i 's and Y_j 's are independent.
 - (i) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma^2)$, Y_j i.i.d. $\sim N(\mu_2, \sigma^2)$, $\sigma = 79400$. Construct a 95% confidence interval for $\mu_1 \mu_2$.
 - (ii) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma^2)$, Y_j i.i.d. $\sim N(\mu_2, \sigma^2)$, σ is unknown. Construct a 95% confidence interval for $\mu_1 \mu_2$.
 - (iii) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma_1^2)$, Y_j i.i.d. $\sim N(\mu_2, \sigma_2^2)$, $\sigma_1^2 \neq \sigma_2^2$ are unknown. Construct a 95% confidence interval for σ_1/σ_2 .
 - (iv) Refer to part (iii), construct approximately 95% confidence intervals for $\mu_1 \mu_2$ by using central limit theory.
 - (v) Construct 95% confidence region for (μ_1, μ_2) .
- 5. In the following examples, indicate which statements constitute a simple and which a composite hypothesis:

- When tossing a coin, let X be the r.v. taking value 1 if the head appears and 0 if the tail appears.
 The statement is: The coin is biased.
- -X is a r.v. whose expectation is equal to 5.
- 6. Let $X = (X_1, \dots, X_n)$ be a random sample from a binomial distribution B(1, p) where p is unknown and n = 20. To test: $H_0: p = 0.1 \leftrightarrow H_1: p \neq 0.1$, we use the following test function:

$$\varphi(\boldsymbol{X}) = \begin{cases} 1, & \sum_{i=1}^{20} X_i \ge 6 \text{ or } \sum_{i=1}^{20} X_i \le 2, \\ 0, & \text{otherwise }. \end{cases}$$

- Calculate the power function of the test at $p = 0, 0.1, 0.2, \dots, 0.9, 1$.
- Determine the level of significance α and the probability of type II error.
- 7. Let $X = (X_1, \dots, X_n)$ be a random sample from normal distribution $N(\mu, 4)$ where μ is unknown. Let \bar{X} be the sample mean. To test: $H_0: \mu = \mu_0 \leftrightarrow H_1: \mu \neq \mu_0$, the rejection region is

$$D = \{ \boldsymbol{X} = (X_1, \cdots, X_n) : |\bar{X} - \mu_0| \ge c \}.$$

- Determine c such that the level of significance $\alpha = 0.05$.
- Determine the power function of the test.
- How does the power function change with sample size n?
- 8. Let $X = (X_1, \dots, X_n)$ be a random sample from uniform distribution $U(0, \theta)$, where θ is unknown. Let $X_{(n)} = \max\{X_1, \dots, X_n\}$. For the hypothesis testing problem $H_0 : \theta \leq \theta_0, \leftrightarrow H_1 : \theta > \theta_0$, consider the following test function:

$$\varphi(\boldsymbol{x}) = \begin{cases} 1, & X_{(n)} \ge c, \\ 0, & \text{otherwise} \end{cases}$$
 (1)

- (i) Calculate the power function of the test $\varphi(x)$, and show that it is an increasing function of θ .
- (ii) If $\theta_0 = 1/2$, determine the critical value c such that the level of significance $\alpha = 0.05$.
- (iii) Refer to (ii), determine the sample size n such that the power of the test at $\theta = 3/4$ is at least 0.98.
- (iv) Refer to (ii), determine the sample size n such that the type II error of the test is no more than 0.02 at $\theta = 3/4$.
- 9. A manufacturer claims that packages of certain goods contain 18 ounces. In order to check his claim, 100 packages are chosen at random from a large lot and it is found that $\sum_{i=1}^{100} x_i = 1570$ and $\sum_{i=1}^{100} x_i^2 = 32000$. Assume that the observations are Normally distributed, and formulate the manufacturer's claim as a testing hypothesis problem. Carry out the test at level of significance $\alpha = 0.01$ and compute the p-value.
- *1. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from the Uniform distribution $U(\theta 1/2, \theta + 1/2)$, construct a confidence interval for θ with confidence level 1α .
- *2. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from Normal distribution $N(\mu, \sigma^2)$. To make $\left[\sum_{i=1}^n (X_i \bar{X})^2\right]^{1/2}/4$ be a 95% upper confidence limit of σ , how large sample size n should be?