Naive Bayes Classifier Spam E-mail Detection

25 de agosto de 2025

Introducción

Manejo de datos

Desarrollo del clasificador

Aplicación

Nuevos mensajes

Conclusiones

Situación problema

El problema consiste en clasificar automáticamente emails como spam o no spam y poder alivianar la bandeja de entrada de usuarios de correo electrónico, usando clasificadores ingenuos de Bayes.

Figura: Correo spam físico

Segreti		Stanga: Any Stanua	
Subject	Sender	Date .	- 1
(A) check this out man	Nelda Romano	Thursday 14:50:37	
€ià Help mel	Osvaldo MANNING	Thursday 12:47:59	
6/8 Have Arthritis pains? There is help for you.	Oras	Thursday 03:45:36	
Cill down on her, and	Reginald Stubbs	Wednesday 06:02:05	
City natural enlargement	diane george	Tuesday 16:37:15	
City No Subject	fabian dickhaut	Monday 10:30:59	
(iii) only Youngest have Shocking sexuality other	Kristie Sapp	Monday 01:07:32	
C/A Reduces stress	frankie kirn	06.02.2005 16.27	
E/IN PERSONAL	eses(2006	06.02.2005.04.56	
We need to render the delight of having the Snest	Clatikia Gadrungt	06.02.2005.02.10	
Find more sawings online	kennith draper	05.02.2005.22.30	
Ciù faster cheaper meds	Lidia White	05.02.2005 16:37	_
C/A Breaking News	Dee H. Edwarded	05.02.2005 14:40	
Ella We have your wanted meds at low prices only.	lucien hyatt	04.02.2005.06.59	
6/8 100% zum einladen 1679438	Isel Rico	03.02.2005.03.34	
Elik Enjoy your wanted meds.	tracey uliano	03.02.2005.02.28	
Confirm Your Washington Mutual Online Banking	Washington Mutual Cn.,	02.02.2006 22.03	
OIL OUR PINNACCLE SYSTEM, MACROOMEDIA, SYMANTEEC, PC GAMES,	Valetie Been	02 02 2005 19 11	
6/h Firished	Cecilia Fuller	02.02.2006.06:57	
(iii) You can save more thru orderno meds on our site.	mel sevick	02.02.2005.01:21	
Dill The most insene action	Katrina Souza	31.01.2005 08.19	[4
pilk You don't have to be fat. Noel	Kristin	28.01.2005.03.22	
4			4 3

Figura: Correo spam electrónico

Preprocesamiento

El conjunto de datos trabajado puede encontrarse en el siguiente hipervínculo: **Mail Dataset** Para el procesamiento se realizó lo siguiente

- Limpieza del detaset
 - 1. Eliminación de columnas innecesarias.
 - 2. Renombrado de columnas.
 - 3. Codificación de etiquetas.
- Preprocesamiento de texto (NLP)
 - 1. Estandarizar a minúsculas los strings .lower().
 - 2. Remoción de caracteres especiales.
 - 3. Remoción de stopwords.
 - 4. Stemming y lemmatization.
- División de datos para entrenamiento y evaluación.

Funciones implementadas

Se construyeron las siguientes funciones como bloques en el diseño del clasificador.

- flatten_list (list[list] -> list):
 Esa función toma una lista de palabras y las aplana en una sola lista concatenando todas las palabras de todos los emails.
- bag_of_words (pd.Dataframe -> dict):
 Retorna la tabla de frecuencias para las palabras de un conjunto de mails.
- probability_words (pd.Dataframe -> dict): Retorna la tabla de frecuencias relativas para las palabras de un conjunto de mails.
- clasiffy_email (list -> int): returna entre 1, 0 para clasificar un email en spam

Construcción de Bolsa de Palabras

Algorithm 1 Construcción de Bolsa de Palabras

Require: corpus: conjunto de emails tokenizados

Ensure: diccionario { palabra : frecuencia}

1: $lista_palabras \leftarrow \emptyset$

2: for cada email en corpus do

3: **for** cada palabra en email **do**

4: agregar palabra a *lista_palabras*

5: agrega 1 al contador de la palabra

6: end for

7: end for

8: calcular frecuencia de cada palabra única en *lista_palabras*

9: return diccionario con palabras y sus frecuencias

Cálculo de Probabilidades de Palabras

Algorithm 2 Probabilidades de Palabras

Require: df: conjunto de emails (spam o no-spam) procesados

Ensure: diccionario { palabra : probabilidad }

- 1: *lista_palabras* ← aplanar todas las palabras de df
- 2: tamaño_total ← longitud de lista_palabras
- 3: frecuencias ← bag_of_words(df)
- 4: probabilidades $\leftarrow \emptyset$
- 5: **for** cada (*palabra*, *frecuencia*) en *frecuencias* **do**
- 6: $probabilidades[palabra] \leftarrow \frac{frecuencia}{tama\~no_total}$
- 7: end for
- 8: return probabilidades

Clasificador de correos

Algorithm 3 Clasificar correo

```
Require: email: lista de palabras procesadas del correo
```

Require: p_{spam}: probabilidad a priori de spam

Require: p_{no_spam} : probabilidad a priori de no-spam **Ensure:** 1 si el email es spam, 0 en caso contrario

1: $spam_prob \leftarrow \log(p_{spam})$

2: $not_spam_prob \leftarrow log(p_{no_spam})$

3: for cada palabra en email do

4: $spam_word_prob \leftarrow probability_spam_words.get(palabra, 10^{-6})$

5: $not_spam_word_prob \leftarrow probability_ham_words.get(palabra, 10^{-6})$

6: $spam_prob \leftarrow spam_prob + log(spam_word_prob)$

7: $not_spam_prob \leftarrow not_spam_prob + log(not_spam_word_prob)$

8: end for

9: **return** 1 if *spam_prob* > *not_spam_prob* else 0

Funcionamiento del clasificador

Para implementar la solución computacionalmente, se utilizó el suavizamiento de Laplace, que asigna una probabilidad muy pequeña $(1e^{-6})$, pero no cero, a las palabras no encontradas en la bolsa de palabras. De esta manera, se evitan ceros cuando hay una palabra no vista antes.

Además, trabajamos en el espacio logarítmico para evitar el underflow numérico y convertir productos en sumas.

$$\log \Big(P(c) \prod_{i=1}^{n} P(w_i \mid c) \Big) = \log P(c) + \sum_{i=1}^{n} \log P(w_i \mid c)$$

Funcionamiento del clasificador

Por último, usamos un treshold (o umbral) de 0.5 para disminuir la cantidad de falsos positivos.

Evaluación del modelo

Al construir el modelo clasificador Naive Bayes y entrenarlo se empleó para la evaluación del desempeño la matriz de confusión y las 4 métricas derivadas de la matriz, **accuracy, precision, recall, F1 score**

Aplicación

Estas fueron las métricas finales del modelo:

	Predicted			
	positives	negatives		
actual positives	131	13		
actual negatives	5	965		
Metrics				
Accuracy	0.983842			
Precision	0.963235			
Recall	0.909722			
F1 Score	0.935714			

Ejemplos

idx	email (tokens)	spam	prediction
3	<pre>[u, dun, say, earli, hor, u, c, alreadi, say]</pre>	0	0
4	[nah, think, goe, usf, live, around, though]	0	0
7	<pre>[per, request, mell, mell, oru, minnaminingt]</pre>	0	0
8	[winner, valu, network, custom, select, receiv]	1	1
10	[gon, na, home, soon, want, talk, stuff, anymo]	0	0
5551	[wen, get, spiritu, deep, great]	0	0
5555	[yeh, indian, nice, tho, kane, bit, shud, go,]	0	0

Generación de mensajes

A partir del modelo anterior, se generaron mensajes de spam y no spam con palabras aleatorias que son probables de encontrar en ambas bags of words. El resultado fue el siguiente:

Clase	Mensaje (tokens)
No spam	sleep sm salam wait gim ah love hand librari thought usc hungri lot watch sian hundr what cheap mornin school
Spam	ur 1 xxx today com frnd 18p winner activ 69911 4 stop life get mind 2 capit 2optout xma phone

Cuadro: Ejemplos de mensajes clasificados por el modelo.

Conclusiones

- ► El clasificador Naive Bayes resultó ser altamente efectivo para identificar correos spam con alta **precisión** y **recall**.
- ► El preprocesamiento de los emails, desde la limpieza, tokenizacion, el uso de stopwords y stemming fueron clave para la implementación y éxito del modelo.
- Para poder generar un email coherente se tendría que implementar procesos extra para aprender la relación de cada palabra con las demás, es decir, un bloque de atención, haciéndolo más parecido a un modelo de arquitectura transformer. En este caso unicamente se generaron aleatoriamente palabras de la clase spam o no spam sin ninguna relación una con la otra.
- Se experimentó con técnicas para mejorar el modelo como el suavizamiento de laplace y probabilidad logaritmica.