Beberapa peubah acak diskret dan kontinu

	Peubah acak	Fmp/fkp	Nilai harapan	Ragam	Fungsi pembangkit momen
1.	Bernoulli(p)	$f(x p) = p^{x}(1-p)^{1-x}$, utk $x = 0, 1; 0 \le p \le 1$	E(X) = p	var(X) = p(1-p)	$M_X(t) = (1-p) + pe^t$
2.	Binomial(n,p)	$f(x) = C(n,x)p^{x}(1-p)^{n-x}$, utk $x = 0,1,2,,n$; $0 \le p \le 1$	E(X) = np	var(X) = np(1-p)	$M_X(t) = [pe^t + (1-p)]^n$
3.	Uniform diskret	f(x N) = 1/N, utk $x = 1,2,3,,N$; N = 1,2,3,	E(X) = (N+1)/2	var(X) = (N+1)(N-1)/12	$M_X(t) = \left(\sum_{x=1}^{N} e^{tx}\right)/N$
4.	Geometrik(p)	$f(x p) = p(1-p)^{x-1}$, utk $x = 1,2,3,$; $0 \le p \le 1$	E(X) = 1/p	$var(X) = (1-p)/p^2$	$M_X(t) = pe^t/[1-(1-p)e^t],$ $utk\ t < -ln(1-p)$
5.	Binomial negatif(r,p)	$f(x r,p) = C(r+x-1,x)p^{r}(1-p)^{x}, \text{ utk } x = 0,1,2,;$ $0 \le p \le 1 \binom{n_{2}-1}{r-1} p^{r} (1-p^{r})^{\frac{n_{2}-r}{n_{2}}} \frac{1}{r} p^{r} = 0$	E(X) = r(1-p)/p	$var(X) = r(1-p)/p^2$	$M_X(t) = [pe^t/\{1-(1-p)e^t\}]^r$, utk t < -ln(1-p)
6.	Poisson(λ)	$f(x \mid \lambda) = e^{-\lambda} \lambda^x / x!$, utk $x = 0, 1, 2,$; $0 \le \lambda < \infty$	$E(X) \Rightarrow \lambda$	$var(X) = \lambda$	$M_X(t) = \exp[\lambda(e^t-1)]$
7.	Beta(α,β)	$f(x \mid \alpha, \beta) = [B(\alpha, \beta)]^{-1} x^{\alpha-1} (1-x)^{\beta-1}, \text{ uth } 0 \le x \le 1,$ $\alpha > 0, \beta > 0. \ B(\alpha, \beta) = [\Gamma(\alpha)\Gamma(\beta)]/\Gamma(\alpha+\beta)$	$E(X) = \alpha/(\alpha+\beta)$	$var(X) = \alpha \beta / [(\alpha + \beta)^2 (\alpha + \beta + 1)]$	- Avi
8.	Cauchy(θ,σ)	$f(x \mid \theta, \sigma) = (\pi \sigma)^{-1} [1 + \{(x - \theta)/\sigma\}^2]^{-1}, \text{ utk } -\infty < x < \infty, \\ -\infty < \theta < \infty, \sigma > 0$	Tidak ada	Tidak ada	Tidak ada
9.	Khi-kuadrat	$f(x \mid p) = [\Gamma(p/2)2^{p/2}]^{-1}x^{(p/2)-1}e^{-x/2}, \text{ utk } 0 \le x < \infty;$ $p = 1, 2, 3, \dots$	E(X) = p	var(X) = 2p	$M_X(t) = (1-2t)^{-p/2},$ $utk\ t < 1/2$
10.	Eksponensial ganda(μ,σ)	$f(x \mid \mu, \sigma) = (2\sigma)^{-1} e^{- x-\mu /\sigma}, \text{ utk } -\infty < x < \infty,$ $-\infty < \mu < \infty, \sigma > 0$	E(X) = μ	$var(X) = 2\sigma^2$	$M_X(t) = e^{\mu t}/[1-(\sigma t)^2],$ $utk t < 1/\sigma$
11.	Eksponensial (β)	$f(x \mid \beta) = (1/\beta)e^{-\sqrt{\beta}}$, utk $0 \le x < \infty$, $\beta > 0$	E(X) = β	$var(X) = \beta^2$	$M_X(t) = 1/(1-\beta t),$ $utk \ t < 1/\beta$

Beberapa peubah acak diskret dan kontinu (lanjutan)

No.	Peubah acak	Fmp/fkp	Nilai harapan	Ragam	Fungsi pembangkit momen (fpm)
12.	F-Snedecor(ν,ω)	$\begin{split} f(x \mid v, \omega) &= \Gamma[(v + \omega)/2] \left[\Gamma(v/2) \Gamma(\omega/2) \right]^{-1} \\ & (v/\omega)^{v/2} x^{(v-2)/2} \left[1 + (v/\omega) x \right]^{-(v+\omega)/2}, \\ & \text{utk } 0 \leq x < \infty; \ v, \ \omega = 1, 2, 3, \dots \end{split}$	$E(X) = \omega/(\omega-2), \omega>2$	$var(X) = 2[\omega/(\omega-2)]^2$ $[(v+\omega-2)][v(\omega-4)]^{-1},$ $utk \omega > 4$	fpm tidak ada.
13.	$Gamma(\alpha, \beta)$	$f(x \mid \alpha, \beta) = [\Gamma(\alpha)\beta^{\alpha}]^{-1}x^{\alpha-1}e^{-x/\beta},$ utk $0 \le x < \infty$; $\alpha > 0$, $\beta > 0$	$E(X) = \alpha \beta$	$var(X) = \alpha \beta^2$	$M_X(t) = (1 - \beta t)^{-\alpha}$, utk $t < 1/\beta$
14.	Logistik(μ,β)	$f(x \mid \mu, \beta) = \beta^{-1} e^{-(x - \mu y \beta)} [1 + e^{-(x - \mu y \beta)}]^{-2},$ $utk - \infty < x < \infty; -\infty < \mu < \infty, \beta > 0$	$E(X) = \mu$	$var(X) = \pi^2 \beta^2 / 3$	$M_X(t) = e^{\mu t} \Gamma(1-\beta t) \Gamma(1+\beta t),$ $utk \mid t \mid < 1/\beta$
15.	Lognormal(μ,σ²)	$f(x \mu, \sigma^2) = [\sigma \sqrt{(2\pi)}]^{-1} \exp\{-[(\ln x) - \mu]^2/(2\sigma^2)\},$ $\text{utk } 0 \le x < \infty; -\infty < \mu < \infty, \sigma > 0$	$E(X) = \exp(\mu + \sigma^2/2)$	$var(X) = exp[2(\mu + \sigma^2)]$ $- exp(2\mu + \sigma^2)$	fpm tidak ada. Tetapi momen ke-n adalah $E(X^n) = exp[n\mu + (n^2\sigma^2)/2]$
16.	Normal(μ , σ^2)	$f(x \mid \mu, \sigma^2) = [\sigma \sqrt{(2\pi)}]^{-1} \exp[-(x-\mu)^2/(2\sigma^2)],$ $\text{utk } -\infty < x < \infty; -\infty < \mu < \infty, \sigma > 0$	E(X) = μ	$Var(X) = \sigma^2$	$M_X(t) = \exp[\mu t + (\sigma^2 t^2)/2]$
17.	Pareto(α,β)	$f(x \mid \alpha, \beta) = \beta \alpha^{\beta} / (x^{\beta+1}), \text{ uth } \alpha < x < \infty;$ $\alpha > 0, \beta > 0$	$E(X) = \beta \alpha / (\beta - 1),$ $\text{with } \beta \ge 1$	$var(X) = \beta \alpha^{2} [(\beta-1)^{2} (\beta-2)],$ $utk \beta \ge 2$	fpm tidak ada.
18.	t-Student(v)	$f(x v) = \{\Gamma[(v+1)/2]/[\Gamma(v/2)]\}[(v\pi)^{-1/2}]$ $[1+x^2/v]^{-(v+1)/2}, \text{ utk } -\infty < x < \infty; v=1,2,$	E(X) = 0, utk v > 1	$var(X) = v/(v-2),$ $utk \ v > 2$	fpm tidak ada. Momen ke-n ada (lihat di buku).
19.	Uniform(a,b)	$f(x a,b) = 1/(b-a)$, utk $a \le x \le b$	E(X) = (b + a)/2	$var(X) = (b - a)^2/12$	$M_X(t) = (e^{bt} - e^{at})/[(b-a)t]$
20.	Weibull(γ,β)	$f(x \mid \gamma, \beta) = (\gamma/\beta)x^{\gamma-1} \exp[-x^{\gamma}/\beta],$ $\text{utk } 0 < x < \infty; \ \gamma > 0, \ \beta > 0$	$E(X) = \beta^{1/\gamma} \Gamma(1 + 1/\gamma)$	$var(X) = \beta^{2\gamma} \{ \Gamma(1 + 2/\gamma) - [\Gamma(1 + 1/\gamma)]^2 \}$	$\begin{array}{l} \text{fpm ada hanya untuk } \gamma \geq 1. \\ \text{Momen ke-n adalah} \\ \text{E}(X^n) = \beta^{n \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$

Ringkasan Beberapa Conjugate Prior

$f(x \theta)$	$\pi(\theta)$	$\pi(\theta x)$			
Normal $\mathcal{N}(\theta, \sigma^2)$	Normal $\mathcal{N}(\mu, \tau^2)$	$\mathcal{N}(\varrho(\sigma^2\mu + \tau^2x), \varrho\sigma^2\tau^2)$ $\varrho^{-1} = \sigma^2 + \tau^2$			
Poisson $\mathcal{P}(\theta)$	Gamma $\mathcal{G}(\alpha, \beta)$	$G(\alpha + x, \beta + 1)$			
Gamma $\mathcal{G}(\nu, \theta)$	Gamma $G(\alpha, \beta)$	$G(\alpha + \nu, \beta + x)$			
Binomial $\mathcal{B}(n, \theta)$	Beta $\mathcal{B}e(\alpha, \beta)$	$\mathcal{B}e(\alpha+x,\beta+n-x)$			
Negative Binomial $\mathcal{N}eg(m, \theta)$	Beta $\mathcal{B}e(\alpha, \beta)$	$\mathcal{B}e(\alpha+m,\beta+x)$			
Multinomial $\mathcal{M}_k(\theta_1, \dots, \theta_k)$	Dirichlet $\mathcal{D}(\alpha_1, \dots, \alpha_k)$	$\mathcal{D}(\alpha_1 + x_1, \dots, \alpha_k + x_k)$			
Normal $\mathcal{N}(\mu, 1/\theta)$	Gamma $Ga(\alpha, \beta)$	$G(\alpha + 0.5, \beta + (\mu - x)^2/2)$			

(1). Conjugate Prior: Beta-Binomial

(Binomial Bayes estimation) Let X_1,\dots,X_n be iid Bernoulli(p). Then $Y=\sum X_i$ is binomial (n,p). We assume the prior distribution on p is $\mathrm{beta}(\alpha,\beta)$. The joint distribution of Y and p is

$$\begin{split} f(y,p) &= \left[\binom{n}{y} p^y (1-p)^{n-y} \right] \!\! \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1} \right] \; \begin{pmatrix} \text{conditional} \times \text{marginal} \\ f(y|p) \times \pi(p) \end{pmatrix} \\ &= \binom{n}{y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{y+\alpha-1} (1-p)^{n-y+\beta-1}. \end{split}$$

The marginal pdf of Y is

$$f(y) = \int_0^1 f(y,p) dp = \binom{n}{y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)}$$

(2). Conjugate Prior: Poisson-Gamma

The number of diseased trees per acre can be modeled by a Poisson distribution with mean θ . Since θ changes from area to area, the forester believes that $\theta \sim \text{Exp}(\lambda)$. Thus,

$$p(\theta) = (1/\lambda)e^{-\theta/\lambda}$$
, if $\theta > 0$, and 0 elsewhere

The forester takes a random sample of size n from n different one-acre plots.

Note: $Exp(\lambda) = Gamma(1, 1/\lambda)$

$$X \sim \Gamma(lpha,eta) \equiv \mathrm{Gamma}(lpha,eta)$$

$$f(x;lpha,eta)=rac{x^{lpha-1}e^{-eta x}eta^lpha}{\Gamma(lpha)}\quad ext{ for }x>0\quadlpha,eta>0,$$

posterior distribution, the distribution of p given y, is

$$f(p|y) = \frac{f(y,p)}{f(y)} = \frac{\Gamma(n+\alpha+\beta)}{\Gamma(y+\alpha)\Gamma(n-y+\beta)} p^{y+\alpha-1} (1-p)^{n-y+\beta-1},$$

which is beta $(y+\alpha,n-y+\beta)$. (Remember that p is the variable and y is treated as fixed.) A natural estimate for p is the mean of the posterior distribution, which would give us as the Bayes estimator of p,

$$\hat{p}_{\mathrm{B}} = \frac{y + \alpha}{\alpha + \beta + n}. \quad \begin{array}{|c|} \mathbf{Catatan:} \\ \mathbf{X} \sim beta(\alpha, \beta) \rightarrow E(\mathbf{X}) = \frac{\alpha}{\alpha + \beta} \end{array}$$

The number of diseased trees per acre can be modeled by a Poisson distribution with mean θ . Since θ changes from area to area, the forester believes that $\theta \sim \text{Exp}(\lambda)$. Thus,

Let $y=(y_1,...y_n)$ be a sample from $\operatorname{Poi}(\theta).$ Then the likelihood is

$$p(y|\theta) = \prod_{i=1}^n \frac{\theta^{y_i} e^{-\theta}}{y_i!} \propto \theta^{\sum y_i} e^{-n\theta}.$$

prior $\longrightarrow p(\theta) = (1/\lambda)e^{-\theta/\lambda}$, if $\theta > 0$, and 0 elsewhere

The likelihood function is

$$p(y|\theta) = \prod_{i=1}^n \frac{\theta^{y_i}}{y_i!} e^{-\theta} = \frac{\theta^{\sum_{i=1}^n y_i}}{\prod y_i!} e^{-n\theta}.$$

Consequently, the posterior distribution is

$$p(\theta|y) = \frac{\theta^{\sum_{i=1}^{n} y_i} e^{-\theta(n+1/\lambda)}}{\int_0^\infty \theta^{\sum_{i=1}^{n} y_i} e^{-\theta(n+1/\lambda)}}.$$

We see that this is a Gamma-distribution with parameters $\alpha = \sum_{i=1}^{n} y_i + 1$ and $\beta = n + 1/\lambda$. Thus,