CM302: Cálculo em Várias Variáveis Reias (Prova 2)

Prof. Alberto Ramos Maio de 2019

Nome:

Q:	1	2	3	4	5	Total
P:	30	30	20	20	20	120
N:						

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Encontre o plano tangente à superfície $z = \frac{1}{2}x^2 - 3xy + y^2$ paralelo ao plano $\mathcal{P}: 5 = 2y + 2z - 10x$. Para isso:

- (a) 20 Encontre o vetor normal ao plano, e um ponto do plano tangente requerido
- (b) 10 Use a informação anterior para encontrar o plano tangente.

Calcule, se existe, os seguintes limites

(a)
$$\lim_{(x,y)\to(\sqrt{3},0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$
.

(b)
$$\lim_{(x,y)\to(1,1)} \frac{x-1}{x^2+y^2-2}$$
.

(c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} \sin(\frac{x-y}{x^2+y^2}).$$

Seja $f: \mathbb{R} \to \mathbb{R}$ função duas vezes derivável em \mathbb{R} . Se z = xf(x+y) + yg(x+y), mostre que

$$\frac{\partial^2 z}{\partial^2 x} + \frac{\partial^2 z}{\partial^2 y} = 2 \frac{\partial^2 z}{\partial x \partial y}.$$

- (a) 10 Para isso calcule $\frac{\partial^2 z}{\partial^2 x}$ e $\frac{\partial^2 z}{\partial^2 y}$;
- (b) 10 Calcule $\frac{\partial^2 z}{\partial x \partial y}$ e compare.

Suponha que a água está fluindo numa piscina de plástico na forma de um cilindro circular reto, à razão de $(4/5)\pi m^3/min$. A piscina se enche de tal forma que, embora mantendo a forma cilíndrica, seu raio cresce à razão de 0.002m/min. Calcule a velocidade que estará subindo o nível da água quando o raio for 2m e o volume de água for $20\pi m^3$.