Syntax and Semantics: Exercise Session 6

Exercise 1.

Give context-free grammars that generate the following languages with the alphabet $\Sigma = \{0, 1\}.$

 $L_1 = \{ w \in \Sigma^* \mid w \text{ contains at least three occurrences of } 1 \}$

 $L_2 = \{ w \in \Sigma^* \mid w \text{ starts and ends with the same symbol} \}$

 $L_3 = \{ w \in \Sigma^* \mid \text{the length of } w \text{ is odd and its middle symbol is } 0 \}$

 $L_4 = \emptyset$

 $L_5 = \{\varepsilon\}$

Solution 1.

1. L_1 is recognized by a CFG with the following rules

$$S \rightarrow A 1 A 1 A 1 A$$

$$A \to \varepsilon \mid \Sigma A$$

$$\Sigma \to 0 \mid 1$$

2. L_2 is recognized by a CFG with the following rules

$$S \rightarrow 0 \mid 1 \mid 1 A 1 \mid 0 A 0$$
 $A \rightarrow \varepsilon \mid \Sigma A$

$$A \to \varepsilon \mid \Sigma A$$

$$\Sigma \to 0 \mid 1$$

3. L_3 is recognized by a CFG with the following rules

$$S \to 0 \mid \Sigma S \Sigma$$

$$\Sigma \to 0 \mid 1$$

4. Remember that words recognized by a CFG have to be formed only by terminals. Therefore, L_4 can be recognized by a CFG with the following rule $S \to S$.

5. L_5 is recognized by a CFG with the following rule $S \to \varepsilon$

Exercise 2.

Consider the following CFG G with start variable A.

$$A \rightarrow X \, A \, X \mid S \quad S \rightarrow a \, T \, b \mid b \, T \, a \quad T \rightarrow X \, T \, X \mid X \mid \varepsilon \quad X \rightarrow a \mid b$$

- 1. Describe G formally by giving all its components.
- 2. Give five strings in $\mathcal{L}(G)$.
- 3. Give five strings not in $\mathcal{L}(G)$.
- 4. Which of the following derivations is allowed in G?

$$T \Rightarrow aba \qquad \qquad T \Rightarrow^* aba \qquad \qquad XXX \Rightarrow^* aba$$

$$T \Rightarrow^* XX \qquad \qquad T \Rightarrow^* XXX \qquad \qquad S \Rightarrow^* \varepsilon$$

Solution 2.

- 1. $V = \{A, X, S, T\}; \Sigma = \{a, b\};$ start variable A; rules as given.
- 2. $\{ab, aaabb, abaa, ba, bbab\} \subseteq \mathcal{L}(G)$.
- 3. Let $\Sigma = \{a, b\}$. One can note that

$$\mathcal{L}(G) = \{ \Sigma^n x \Sigma^* y \Sigma^n \mid x \neq y, n \in \mathbb{N} \} \subseteq \Sigma^*$$

therefore, $\{\varepsilon, a, b, aa, bb\} \cap \mathcal{L}(G) = \emptyset$.

- 4. (a) $T \not\Rightarrow aba$
 - (b) $T \Rightarrow X T X \Rightarrow a T X \Rightarrow a X X \Rightarrow a b X \Rightarrow a b a$.
 - (c) $X X X \Rightarrow a X X \Rightarrow a b X \Rightarrow a b a$
 - (d) $T \Rightarrow X T X \Rightarrow X X$
 - (e) $T \Rightarrow XTX \Rightarrow XXX$
 - (f) $S \not\Rightarrow^* \varepsilon$

Exercise 3.

Provide a CFG equivalent to the following NFAs

Solution 3.

• N_1 recognizes the language $(0 \cup 1)^*1(0 \cup 1)(0 \cup \varepsilon)$; a CFG for it can be

$$S \rightarrow 0 \, S \mid 1 \, S \mid 1 \, A$$
 $A \rightarrow 0 \, B \mid 1 \, B$ $B \rightarrow 0 \mid \varepsilon$

$$A \rightarrow 0B \mid 1B$$

$$B \to 0 \mid \varepsilon$$

• N_2 recognizes the language $0*1(0 \cup 1)*$; a CFG for it can be

$$S \to Z1A$$

$$S \rightarrow Z1A \hspace{1cm} Z \rightarrow \varepsilon \mid 0 \, Z \hspace{1cm} A \rightarrow \varepsilon \mid \Sigma \, A \hspace{1cm} \Sigma \rightarrow 0 \mid 1$$

$$A \to \varepsilon \mid \Sigma A$$

$$\Sigma \to 0 \mid 1$$

Exercise 4.

Provide CFGs equivalent to each of the following regular expressions:

$$0*10*$$

$$1 \cup 0^* \emptyset^*$$

$$(01^+)^+$$

Solution 4.

• A CFG for 0*10* can be

$$S \to Z 1 Z$$

$$Z \to \varepsilon \mid 0 Z$$

• A CFG for $1 \cup 0^* \emptyset^* = 1 \cup 0^*$ can be

$$S \to 1 \mid Z$$

$$Z \to \varepsilon \mid 0 Z$$

• A CFG for $(01^+)^+$ can be

$$S \to A \mid AS$$

$$A \rightarrow 0 E$$

$$A \rightarrow 0 B$$
 $B \rightarrow 1 \mid 1 B$