Estimação pontual e intervalo de confiança

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

 Tabela 1: Encontrar o valor do parâmetro dos modelos de probabilidade.

Seja x_1, \ldots, x_m os valores observados de uma variável quantitativa X em uma amostra, então:

Amostra	Distribuição	Parâmetros	Estimador
X_1,\ldots,X_m	$U_D[j,k]$	j	$\hat{j} = \min\{x_1, x_2, \dots, x_m\}$
	$f(x)=\frac{1}{k-j+1}, x=j,\ldots,k$	k	$\hat{k} = \max\{x_1, x_2, \dots, x_m\}$
X_1, \ldots, X_m	b(n, p)	р	$\hat{p} = \frac{\bar{x}}{n} = \frac{x_1 + x_2 + \dots + x_m}{n \cdot m}$
	$f(x) = \binom{n}{x} p^{x} \cdot (1-p)^{n-x}, x = 0, 1, \dots, n$	n conhecido	n n·m
X_1, \ldots, X_m	Bernoulli(p)	р	$\hat{p} = \bar{x} = \frac{x_1 + x_2 + \dots + x_m}{m}$
	$f(x) = p^{X} \cdot (1 - p)^{1 - X}, x = 0, 1$		m
X_1, \ldots, X_m	$Poison(\lambda)$	λ	$\hat{\lambda} = \bar{x} = \frac{x_1 + x_2 + \dots + x_m}{}$
	$f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, 3, \cdots$		m
X_1, \ldots, X_m	<i>U</i> [a, b]	а	$\hat{\mathbf{a}} = \min\{x_1, x_2, \dots, x_m\}$
	$f(x) = \frac{U[a, b]}{b-a}, x \in [a, b]$	b	$\hat{b} = \max\{x_1, x_2, \dots, x_m\}$
X_1, \ldots, X_m	Exponencial($lpha$)	α	$\hat{\alpha} = \frac{1}{\bar{x}} = \frac{m}{x_1 + x_2 + \dots + x_m}$
	$f(x) = \alpha \exp(-\alpha x), x \ge 0$		\bar{x} $x_1 + x_2 + \cdots + x_m$
X_1, \ldots, X_m	Normal(μ , σ^2)	μ, σ^2	$\hat{\mu} = \frac{x_1 + x_2 + \cdots + x_m}{\dots}$
	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$		$\hat{\mu} = \frac{x_1 + x_2 + \dots + x_m}{m}$ $\hat{\sigma}^2 = \frac{(x_1 - \hat{\mu})^2 + (x_2 - \hat{\mu})^2 + \dots + (x_m - \hat{\mu})^2}{m - 1}$
			7 D L 4 D L 4 T L 7 T L T L

Exemplo - Bernoulli

Um pesquisador está interessado em estudar a prevalência de um certa patologia. Para isso, ele coletou uma amostra em três etapas:

- Na primeira etapa, ele coletou 5 pacientes e dois estavam infectados;
- Na segunda etapa, ele coletou 8 pacientes e 4 estavam infectados;
- Na terceira etapa, ele coletou 10 pacientes e 3 estavam infectados.

Qual a prevalência desta patologia na população?

Solução: Nesse caso, temos que

- Sucesso: o paciente estar infectado;
- Probabilidade de sucesso: é a prevalência e precisamos estimar.

Neste caso, temos uma variável aleatória com Distribuição Bernoulli. O tamanho final da amostra é n=5+8+10=23 e número de sucessos foi 2+4+3=9, então a prevalência é aproximada por

$$\hat{p} = \frac{9}{23} = 0,39.$$

Exemplo - Exponencial

Um profissional de saúde acompanhou 15 pacientes com certa patologia em estado avançado e observou o tempo em dias até o óbito obtendo os valores da tabela 2.

Tempo até o óbito 8	30	327	95	146	3	82	4	1152	226	173
-----------------------	----	-----	----	-----	---	----	---	------	-----	-----

Tabela 2: Tempo (em dias) até óbito.

Qual o modelo de probabilidade adequado neste contexto? Qual o parâmetro da distribuição que você escolheu? Qual um paciente em estado crítico com esta patologia viver mais de 180 dias? **Solução:** O tempo até um evento (o óbito nesse caso) é modelado usando a distribuição exponencial. O tempo médio até o óbito é

$$\bar{x} = \frac{80 + 327 + 95 + 146 + 3 + 82 + 4 + 1152 + 226 + 173}{10} = 228, 8,$$

e a taxa do modelo exponencial é aproximada por $\hat{\alpha}=\frac{1}{\bar{x}}=\frac{1}{228,8}=0,004.$

A probabilidade de um paciente em estado crítico sobreviver mais de 180 dias é

$$P(X \ge 180) = 1 - P(X < 180)$$

$$= 1 - \left(1 - \exp(-0.004 \cdot 180)\right)$$

$$= \exp(-0,004 \cdot 180)$$

$$= 0,49.$$

Organização dos intervalos de confiança

- Distribuição normal:
 - Intervalo de confiança para média quando variância é conhecida (intervalos Z);
 - 2 Intervalo de confiança para média quando variância é desconhecida (intervalos t);
 - Intervalo de confiança para variância;

- Distribuição exponencial:
 - Intervalo de confiança para o tempo médio de vida ou duração;

- Grandes amostras (tamanho da amostra ≥ 40):
 - 1 Intervalo de confiança para proporção para distribuição Bernoulli;
 - 2 Intervalo de confiança para outras distribuições.

Objetivo

Agora queremos encontrar um intervalo de valores plausíveis para o parâmetro μ , ou seja, queremos encontrar a e b tal que $a < \mu < b$ com uma medida de precaução ou prudência γ , ou seja, se repetirmos o experimento ou a amostragem, 95% das amostras produziriam um intervalo que contém o parâmetro.

Chamamos (a, b) de intervalo de confiança e acreditamos que este intervalo está correto com uma medida de *precaução ou prudência* γ . Chamamos γ de coeficiente de confiança.

Suponha que você conhece o desvio padrão σ populacional da variável aleatória contínua X com distribuição normal. Seja x_1,\ldots,x_n uma amostra de tamanho n da variável X, então o intervalo de confiança para a média populacional μ com coeficiente de confiança $\gamma=1-\alpha$ é dado por

$$IC(\mu; \gamma) = \left(-z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} + \bar{x}; z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} + \bar{x}\right)$$

em que $\Phi(z_{1-\frac{\alpha}{2}})=\frac{\gamma+1}{2}=1-\frac{\alpha}{2}.$ Algumas vezes, usamos a notação $\bar{x}\pm z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}.$

◆□▶◆□▶◆≣▶◆≣▶ ■ 釣९@

Interpretação do coeficiente de confiança

Gostaríamos de reforçar que o intervalo de confiança é um processo de generalização de uma amostra para toda população. Existe uma possibilidade dessa generalização estar errada como ilustrado na Tabela 3.

Tabela 3: Intervalos de confiança e amostras de uma população com distribuição normal com média populacional $\mu=1,75$ e desvio padrão $\sigma=0,1$.

μ				Amostra	а	b	$a < \mu < b$?		
	Amostra 1	2,050	1,909	1,893	1,858	1,651	1,785	1,960	Não
1,75	Amostra 2	1,667	1,909	1,958	1,771	2,028	1,779	1,954	Nao
	Amostra 3	1,835	1,905	1,995	1,805	1,820	1,784	1,960	Não
σ	Amostra 4	1,824	1,870	1,965	1,637	1,711	1,714	1,889	Sim
0,1	Amostra 5	1,773	1,796	1,895	1,872	1,812	1,742	1,917	Sim
0,1	Amostra 6	1,741	1,885	1,896	1,629	1,664	1,675	1,851	Sim

Na Tabela 3, o intervalo de confiança com coeficiente de confiança $\gamma=0,95$ pode ou não conter a média populacional. O importante é que 95% dos intervalos de confiança vão conter a média populacional já que $\gamma=0,95$. Ou seja, de 100 intervalos de confianças de distintas amostras, aproximadamente 95 intervalos vão conter a média populacional. Ilustramos esta ideia na Figura 1.

7/29

Interpretação do coeficiente de confiança

Figura 1: Interpretação do coeficiente de confiança.

Exemplo

Suponha que os comprimentos de jacarés de um certa raça tenham variância $\sigma^2=0,01m^2$. Uma amostra de dez animais foi coletada e forneceu uma média de 1,69m. Construa um intervalo de confiança com coeficiente de confiança $\gamma=0,95$. Construa um intervalo de confiança para a média da população de jacarés com coeficiente de confiança $\gamma=99\%$.

Solução:

• Para $\gamma=95\%$. Primeiramente precisamos encontrar $z_{1-\frac{\alpha}{2}}$, ou seja, $\Phi(z_{1-\frac{\alpha}{2}})=1-\frac{\alpha}{2}=0,975$. Logo $z_{1-\frac{\alpha}{2}}=1,96$. Então, o intervalo de confiança para a altura média do jacaré é

$$IC(\mu, 95\%) = \left(-1, 96 \cdot \sqrt{\frac{0,01}{10}} + 1, 69; 1, 96 \cdot \sqrt{\frac{0,01}{10}} + 1, 69\right) = (1,63; 1,75).$$

Ou seja, com coeficiente de confiança 95%, a altura média do jacaré está entre 1,63m e 1,75m.

• Para $\gamma=99\%$. Primeiramente precisamos encontrar $z_{1-\frac{\alpha}{2}}$, ou seja, $\Phi(z_{1-\frac{\alpha}{2}})=\frac{1+\gamma}{2}=0$, 995 e $z_{1-\frac{\alpha}{2}}=2$, 58. Então, o intervalo de confiança para a altura média do jacaré é

$$IC(\mu, 95\%) = \left(-2, 58 \cdot \sqrt{\frac{0,01}{10}} + 1, 69; 2, 58 \cdot \sqrt{\frac{0,01}{10}} + 1, 69\right) = (1,60; 1,77).$$

Ou seja, com coeficiente de confiança 99%, a altura média do jacaré está entre 1,60m e 1,77m.

Escolha do tamanho da amostra

Precisão da estimativa

Quando usamos $\bar{x} = \frac{x_1 \cdots + x_n}{n}$ para aproximar μ , o erro $E = |\bar{x} - \mu|$ é menor ou igual a $\frac{z_1 - \frac{x_2}{2}\sigma}{\sqrt{n}}$ com coeficiente de confiança $\gamma = 100(1 - \alpha)\%$.conforme ilustrado na Figura 2.

Figura 2: Erro quando usamos \bar{x} para aproximar μ

$$I = \bar{x} - \frac{z_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}} \qquad u = \bar{x} + \frac{z_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}}$$

Note que $\frac{z_1 - \frac{\alpha}{2} \sigma}{\sqrt{n}}$ aumenta quando aumentamos γ (ou diminuímos α). Dizemos que $\frac{z_1 - \frac{\alpha}{2} \sigma}{\sqrt{n}}$ é a precisão da estimativa de μ .

Tamanho da amostra

Quando conhecemos o desvio padrão σ da população de distribuição normal e fixamos $\gamma=1-\alpha$, então, para ter um erro máximo de E ao aproximar μ por \bar{x} , o tamanho da amostra precisa ter no mínimo

$$n = \left\lceil \left(\frac{z_{1-\frac{\alpha}{2}} \sigma}{E} \right)^2 \right\rceil,$$

em que $\lceil x \rceil$ é "x é o primeiro inteiro depois de x" e E é o erro máximo tolerável especificado pelo pesquisador.

Gilberto Sassi (IME – UFBA) Estimação 10/29

Escolha do tamanho da amostra

Exemplo

Uma fábrica de automóveis tem uma linha de produção que produz pistões com diâmetro que tem distribuição normal com desvio padrão $\sigma=3cm$. Qual o tamanho da amostra para termos um erro máximo de 0.5cm com coeficiente de confiança $\gamma=99\%$ ao aproximarmos μ ?

Solução

Primeiro encontramos o quantil da distribuição normal $\Phi(z_{1-\frac{\alpha}{2}})=\frac{1+\gamma}{2}=1-\frac{\alpha}{2}=0,995,$ ou seja, $z_{1-\frac{\alpha}{2}}=2,58,$ então

$$n = \left\lceil \left(\frac{z_{1-\frac{\alpha}{2}}\sigma}{E} \right)^2 \right\rceil$$
$$= \left\lceil \left(\frac{2,58 \cdot 3}{1} \right)^2 \right\rceil$$
$$= 240$$

Gilberto Sassi (IME - UFBA)

Suponha que você sabe que a variável contínua X com distribuição normal e não conhecemos o desvio padrão σ . Seja x_1, \ldots, x_n uma amostra de tamanho α n da variável X com média

 $\bar{x}=rac{x_1+\cdots+x_n}{n}$ e variância amostral $s^2=rac{(x_1-ar{x})^2+\cdots+(x_n-ar{x})^2}{n-1}$, então a distribuição amostral de

$$T=\frac{(\bar{X}-\mu)\sqrt{n}}{S},$$

segue um modelo probabilidade que chamamos t-Student com k=n-1 graus de liberdade, em que a função densidade é dada por

$$f(x) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)\sqrt{\pi k}} \cdot \frac{1}{\left[\Gamma\left(\left(\frac{x^2}{k}\right)^2 + 1\right)\right]^{\frac{k+1}{2}}}, \quad x \in \mathbb{R}.$$

A ideia é que, ao substituirmos σ por s, precisamos considerar a incerteza de usar s ao invés de σ e valores mais afastados de μ são mais prováveis para $T=\frac{(\bar{X}-\mu)\sqrt{n}}{S}$ do que para $\frac{(\bar{X}-\mu)\sqrt{n}}{\sigma}$.

Figura 3: Distribuição t-Student e normal.

Suponha que você sabe que a variável contínua X com distribuição normal e não conhecemos o desvio padrão σ . Seja x_1,\ldots,x_n uma amostra de tamanho n da variável X com média $\bar{x}=\frac{x_1+\cdots+x_n}{n}$ e variância $s^2=\frac{(x_1-\bar{x})^2+\cdots+(x_n-\bar{x})^2}{n-1}$, então o intervalo de confiança com coeficiente de confiança $\gamma=1-\alpha$ é dada por

$$IC(\mu,\gamma) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \cdot \frac{s}{\sqrt{n}}; \bar{x} + t_{1-\frac{\alpha}{2};n-1} \cdot \frac{s}{\sqrt{n}}\right),$$

em que $P\left(t_{n-1} \le t_{1-\frac{\alpha}{2};n-1}\right) = 1 - \frac{\alpha}{2}$, em que t_{n-1} é a distribuição t-Student com n-1 graus de liberdade.

Exemplo

A força de compressão de um concreto é normalmente distribuída e um engenheiro civil precisa encontrar um intervalo de confiança para a força de compressão média e para isso coletou uma amostra com 12 espécimes de concreto e obteve a seguinte amostra: 2216, 2237, 2249, 2204, 2225, 2301, 2281, 2263, 2318, 2255, 2275, 2295. Use o coeficiente de confiança $\gamma=0.99$.

Solução

Primeiro calculamos o quantil da distribuição t-Student com n-1 com graus de liberdade através de $P(t_{n-1} \le t_{1-\frac{\alpha}{2};n-1}) = P(t_{11} \le t_{0,995;11}) = 0,995$, então $t_{0,995;11} = 3,106$. A média e o desvio padrão são dadas por

$$\bar{x} = 2259,917 \text{ e } s = 35,56929.$$

E o intervalo de confiança com coeficiente de confiança $\gamma=$ 0.99 é

$$IC(\mu, 99\%) = \left(\bar{x} - t_{0,995;11} \frac{s}{\sqrt{n}}; \bar{x} + t_{0,995;11} \frac{s}{\sqrt{n}}\right)$$

$$= \left(2259, 917 - 3, 106 \cdot \frac{35, 56929}{\sqrt{12}}; 2259, 917 + 3, 106 \cdot \frac{35, 56929}{\sqrt{12}}\right)$$

$$= (2228, 024; 2291, 809)$$

Ou seja, com coeficiente de confiança $\gamma=99\%$, a média populacional da força compressiva está entre 2228, 024psi e 2291, 809psi.

Estimação intervalar para σ^2 Distribuição normal

Distribuição Qui-quadrado

Imagine que temos uma amostra x_1,\ldots,x_n de uma variável aleatória contínua X com distribuição normal com média μ e variância σ^2 , e considere a variância amostral $s^2=\frac{(x_1-\bar{x})^2+\cdots+(x_n-\bar{x})^2}{n-1}$. Então a quantidade

$$X^2=\frac{(n-1)s^2}{\sigma^2},$$

tem distribuição amostral que chamamos de *qui-quadrado* com k=n-1>0 graus de liberdade. Função densidade de probabilidade da distribuição qui-quadrado com k>0 graus de liberdade:

$$f(x) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} \exp\left(-\frac{x}{2}\right), \qquad x > 0.$$

$$\mu = k e \sigma^2 = 2k$$
.

Estimação intervalar para σ^2 Distribuição normal

Figura 4: Função de densidade.

Estimação intervalar para σ^2 Distribuição normal

Suponha que você sabe que a variável aleatória contínua X com distribuição normal e não conhecemos o desvio padrão σ . Seja x_1,\ldots,x_n uma amostra de tamanho n da variável X com média $\bar{x}=\frac{x_1+\cdots+x_n}{n}$ e variância $s^2=\frac{(x_1-\bar{x})^2+\cdots+(x_n-\bar{x})^2}{n-1}$, então o intervalo de confiança para σ^2 com coeficiente de confiança $\gamma=1-\alpha$ é dada por

$$IC(\sigma^2, \gamma) = \left(\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2};n-1}}; \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2};n-1}}\right)$$

em que $P\left(\chi_{n-1}^2 \leq \chi_{\frac{\alpha}{2};n-1}^2\right) = \frac{\alpha}{2}$ e $P\left(\chi_{n-1}^2 \leq \chi_{\frac{1-\alpha}{2};n-1}^2\right) = 1 - \frac{\alpha}{2}$, em que χ_{n-1}^2 é a distribuição qui-quadrado com n-1 graus de liberdade.

Intervalo de confiança para σ^2

Exemplo

Um rebite está sendo construído para ser inserido em um buraco. Uma amostra aleatória com n=15 peças é selecionada, e o diâmetros dos buracos foram medidos. O desvio padrão amostral é dado por s=0,008 ml. Construa o intervalo de confiança para σ^2 com coeficiente de confiança $\gamma=99\%$.

Solução

Primeiro encontramos os quantis da distribuição qui-quadrado $\chi^2_{n-1}=\chi^2_{15-1}=\chi^2_{14}$

•
$$P\left(\chi_{14}^2 \le \chi_{\frac{\alpha}{2};14}^2\right) = \frac{\alpha}{2} = \frac{0.01}{2} = 0,005 \text{ e } \chi_{0.005;14}^2 = 4,075;$$

•
$$P\left(\chi_{14}^2 \le \chi_{1-\frac{\alpha}{2};14}^2\right) = 1 - \frac{\alpha}{2} = 1 - \frac{0.01}{2} = 0,995 \text{ e } \chi_{0,995;14}^2 = 31,319.$$

Então.

$$IC(\sigma^{2}; \gamma) = \left(\frac{(n-1)s^{2}}{\chi_{1-\frac{\alpha}{2};14}^{2}}; \frac{(n-1)s^{2}}{\chi_{\frac{\alpha}{2};14}^{2}}\right)$$

$$= \left(\frac{(15-1)0,008^{2}}{31,319}; \frac{(15-1)0,008^{2}}{4,075}\right)$$

$$= (0.00003; 0.00022).$$

Ou seja, com coeficiente de confiança $\gamma=99\%$, então a variância está entre 0,00003 e 0,00022.

Estimação intervalar para μ

Suponha que você sabe que a variável contínua X com distribuição exponencial e não conhecemos a média μ nem a taxa de decaimento $\lambda = \frac{1}{\mu}$. Seja x_1, \ldots, x_n uma amostra de tamanho n da variável X com média $\bar{x} = \frac{x_1 + \cdots + x_n}{n}$, é possível provar que a distribuição da quantidade $2\frac{1}{\mu}n\bar{x}$ tem distribuição qui-quadrado com 2n graus de liberdade. Então, o intervalo de confiança para μ com coeficiente de confiança $\gamma = (1-\alpha)100$, é dado por

$$IC(\mu;\gamma) = \left(\frac{2n\bar{x}}{\chi^2_{1-\frac{\alpha}{2};2n}}; \frac{2n\bar{x}}{\chi^2_{\frac{\alpha}{2};2n}}\right),\,$$

em que $P\left(\chi_{2n}^2 \leq \chi_{\frac{\alpha}{2};2n}^2\right) = \frac{\alpha}{2}$ e $P\left(\chi_{2n}^2 \leq \chi_{\frac{1-\alpha}{2};2n}^2\right) = 1 - \frac{\alpha}{2}$, em que χ_{2n}^2 tem distribuição qui-quadrado com 2n graus de liberdade.

Estimação intervalar para μ

Exemplo

Um fabricante de lâmpadas afirma que a duração média, pelo menos, 20000 horas. Um consumidor cético comprou 10 lâmpadas e verificou o tempo de vida de cada lâmpada. Os dados obtidos foram: $4272,61;1464,02;9765,54;3308,58;3237,83;987,60;4094,58;17491,86;4908,06 e 9403,13. Com coeficiente de confiança <math>\gamma=99\%$, este consumidor deve acreditar no fabricante de lâmpadas?

Solução

Primeiro calculamos a média $\bar{x} = 5893, 381.$

Em seguida, calculamos os quantis da distribuição qui-quadrado:

•
$$P\left(\chi_{2n}^2 \le \chi_{\frac{\alpha}{2},2n}^2\right) = P\left(\chi_{20}^2 \le \chi_{\frac{0,01}{2},20}^2\right) = \frac{0.01}{2} \text{ e } \chi_{0,005;20}^2 = 7,434;$$

$$\bullet \ P\left(\chi_{2n}^2 \le \chi_{1-\frac{\alpha}{2};2n}^2\right) = P\left(\chi_{20}^2 \le \chi_{1-\frac{0.01}{2};20}^2\right) = 1 - \frac{0.01}{2} = 0,995 \text{ e } \chi_{0,995;20}^2 = 39,997.$$

Então, o intervalo de confiança para μ com coeficiente de confiança $\gamma=99\%$ é dada por

$$IC(\mu, \gamma) = \left(\frac{2n\bar{x}}{\chi_{0,995;20}^2}; \frac{2n\bar{x}}{\chi_{0,005;20}^2}\right)$$

$$= \left(\frac{2 \cdot 10 \cdot 5893, 381}{39,997}; \frac{2 \cdot 10 \cdot 5893, 381}{7,434}\right)$$

$$= (2.946, 91; 15855, 21)$$

Ou seja, com coeficiente de confiança $\gamma=99\%$, o tempo médio de duração da lâmpada está entre 2.946, 91 e 15855, 21 horas.

Intervalo de confiança para proporção *p* Amostras grandes e distribuição Bernoulli

Seja x_1,\ldots,x_n uma amostra de uma distribuição Bernoulli em que $n\geq 40$. Podemos aproximar a proporção p por $\hat{p}=\frac{x_1+\cdots+x_n}{n}$. Usando o teorema central do limite, temos que a quantidade $\frac{\sqrt{n}(\hat{p}-p)}{p\cdot(1-p)}$ tem distribuição normal padrão N(0,1). Então o intervalo de confiança com coeficiente de confiança $\gamma=(1-\alpha)100\%$ seria dado por

$$IC(p;\gamma) = \left(-z_{1-\frac{\alpha}{2}}\frac{p\cdot(1-p)}{\sqrt{n}} + \hat{p}; z_{1-\frac{\alpha}{2}}\frac{p\cdot(1-p)}{\sqrt{n}} + \hat{p}\right).$$

em que $\Phi(z_{1-\frac{\alpha}{2}})=1-\frac{\alpha}{2}$. Note que $p\cdot(1-p)\leq \frac{1}{4}$, conforme ilustrado na Figura 5, e então

$$IC(p;\gamma) = \left(-z_{1-\frac{\alpha}{2}}\frac{1}{2\sqrt{n}} + \hat{p}; z_{1-\frac{\alpha}{2}}\frac{1}{2\sqrt{n}} + \hat{p}\right).$$

Figura 5: Ilustração da desigualdade $p \cdot (1 - p) \leq \frac{1}{4}$.

Intervalo de confiança para proporção p Amostras grandes e distribuição Bernoulli

Exemplo

Uma equipe de qualidade quer determinar a proporção de circuitos integrados defeituosos produzidos por uma linha de produção. Uma amostra com 300 circuitos é testada com 13 circuitos defeituosos. Construa um intervalo de confianca para a proporção de circuitos defeituosos usando coeficiente de confianca $\gamma = 90\%$.

Solução

Primeiramente, calculamos a proporção de circuitos defeituosos: $\hat{p}=\frac{13}{300}=0,043$. Em seguida, encontramos o quantil da distribuição normal: $\Phi(z_{1-\frac{\alpha}{2}})=1-\frac{\alpha}{2}=0,95$ e $z_{1-\frac{\alpha}{2}}=1,65$. Então, temos que

$$IC(p; \gamma) = \left(-z_{1-\frac{\alpha}{2}} \frac{1}{2\sqrt{n}} + \hat{p}; z_{1-\frac{\alpha}{2}} \frac{1}{2\sqrt{n}} + \hat{p}\right)$$

$$= \left(-1, 65 \frac{1}{2\sqrt{300}} + 0,043; 1, 65 \frac{1}{2\sqrt{300}} + 0,043\right)$$

$$= (-0,005; 0,091) = (0; 0,091).$$

Ou seja, com coeficiente de confiança 90%, a proporção de circuitos integrados defeituosos está entre 0 e 0.091.

Estimação

<ロ > → □ → → □ → → □ → □ □ Gilberto Sassi (IMF - UFBA) 23/29

Escolha do tamanho da amostra

Precisão da estimativa

Quando usamos $\hat{p} = \bar{x} = \frac{x_1 \cdots + x_n}{n}$ para aproximar p, o erro $E = |\hat{p} - p|$ é menor ou igual a $\frac{x_1 - \frac{x_2}{2}}{2\sqrt{n}}$ com coeficiente de confiança $\gamma = 100(1 - \alpha)\%$.conforme ilustrado na Figura 6.

Figura 6: Erro quando usamos \hat{p} para aproximar p

Note que $z_{\frac{\alpha}{2}} \frac{1}{2\sqrt{n}}$ aumenta quando aumentamos γ (ou diminuímos α). Dizemos que $z_{\frac{\alpha}{2}} \frac{1}{2\sqrt{n}}$ é a precisão da estimativa de p.

Tamanho da amostra

Quando fixamos $\gamma=1-\alpha$, então, para ter um erro máximo de E ao aproximar p por \hat{p} , o tamanho da amostra precisa ter no mínimo

$$n = \left\lceil \left(\frac{z_{1-\frac{\alpha}{2}}}{2E} \right)^{2} \right\rceil,$$

em que $\lceil x \rceil$ é "x é o primeiro inteiro depois de x" e E é o erro máximo tolerável especificado pelo pesquisador. Note que $\Phi\left(z_{1-\frac{\alpha}{2}}\right)=1-\frac{\alpha}{2}$.

Escolha do tamanho da amostra

Exemplo

Um revendedor afirma que, em um pacote de sementes de alface, 95% das sementes germinarão. Com coeficiente de confiança 99%, qual o número mínimo de sementes que um órgão regulador precisa plantar para checar essa afirmação com erro máximo E=1%?

Solução

Primeiro calculamos o quantil da distribuição normal padrão

 $\Phi\left(z_{1-\frac{\alpha}{2}}\right) = \Phi\left(z_{0,995}\right) = 1 - \frac{\alpha}{2} = 0,995$ e $z_{0,995} = 2,58$. Então, o tamanho mínimo da amostra é dada por:

$$n = \left\lceil \left(\frac{z_{1-\frac{\alpha}{2}}}{2E} \right)^2 \right\rceil$$
$$= \left\lceil \left(\frac{2,58}{2 \cdot 0,01} \right)^2 \right\rceil$$
$$= \left\lceil 16,641 \right\rceil = 17.$$

Com coeficiente de confiança 95% e erro máximo E=0,01, o tamanho mínimo de amostra é $\max(17,40)=40$ sementes.

Intervalo de confiança para μ Amostras grandes e outras distribuições

Seja x_1,\ldots,x_n uma amostra de tamanho n de uma variável aleatória X com média $\bar{x}=\frac{x_1+\cdots+x_n}{n}$ e $s^2=\frac{(x_1-\bar{x})^2+\cdots+(x_1-\bar{x})^2}{n-1}$, em que $n\geq 40$. Então, o intervalo de confiança para μ com coeficiente de confiança $\gamma=(1-\alpha)100\%$ é dado por

$$IC(\mu;\gamma) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \frac{s}{\sqrt{n}}; \bar{x} + t_{1-\frac{\alpha}{2};n-1} \frac{s}{\sqrt{n}}\right),\,$$

em que $P\left(t_{n-1} \le t_{1-\frac{\alpha}{2};n-1}\right) = 1 - \frac{\alpha}{2}$, em que t_{n-1} tem distribuição t-Student com n-1 graus de liberdade.

Intervalo de confiança para μ Amostras grandes e outras distribuições

Exemplo

Imagine uma variável aleatória discreta com suporte $\chi=\{0,1,2,3,4,5\}$ e coletamos uma amostra com 15 valores: 1, 5, 5, 0, 1, 5, 5, 0, 1, 1, 1, 1, 1, 1, 4, 0 e 2. Construa um intervalo de confiança para média μ com coeficiente de confiança $\gamma=95\%$.

Solução

Primeiro calculamos a média e o desvio padrão amostral: $\bar{x}=2,13$ e s=2,03. Em seguida, encontramos o quantil da distribuição t-Student com n-1=15-1=14 graus de liberdade:

 $\dot{P}(t_{14} \le t_{0,975;14}) = 1 - \frac{\alpha}{2} = 0,975$ e $t_{0,975;14} = 2,145$. Então o intervalo de confiança para μ é dado por

$$IC(\mu, \gamma) = \left(-t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} + \bar{x}; t_{1-\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} + \bar{x}\right)$$

$$= \left(-t_{0,975;14} \frac{s}{\sqrt{n}} + \bar{x}; t_{0,975;14} \frac{s}{\sqrt{n}} + \bar{x}\right)$$

$$= \left(-2, 145 \frac{2,03}{\sqrt{15}} + 2, 13; 2, 145 \frac{2,03}{\sqrt{15}} + 2, 13\right)$$

$$= (1.01; 3, 25).$$

Ou seja, com coeficiente de confiança $\gamma=95\%$, a média μ está entre 1,01 e 3,25.

◆ロ > ◆部 > ◆注 > ◆注 > 注 の < (

Resumo para construir intervalo de confiança

Distribuição	Parâmetro	Intervalo	Quantil
Normal σ^2 conhecido	μ	$IC(\mu, 1 - \alpha) = \left(-z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} + \bar{x}; z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} + \bar{x}\right)$	$\Phi\left(z_{1-\frac{\alpha}{2}}\right) = 1 - \frac{\alpha}{2}$
Normal	μ		$ P\left(t_{n-1} \leq t_{1-\frac{\alpha}{2};n-1}\right) = 1 - \frac{\alpha}{2} $
Normal	σ2	$IC(\sigma^{2}; 1 - \alpha) = \left(\frac{(n-1)s^{2}}{\chi^{2}_{1-\frac{\alpha}{2}; n-1}}; \frac{(n-1)s^{2}}{\chi^{\frac{\alpha}{2}}_{\underline{\alpha}; n-1}}\right)$	Vide ii.

n é o tamanho da amostra;

Resumo para construir intervalo de confiança

Distribuição	Parâmetro	Intervalo	Quantil	
Exponencial	μ	$IC(\mu, 1 - \alpha) = \left(\frac{2n\bar{x}}{\chi_{1-\frac{\alpha}{2}, 2n}^2}; \frac{2n\bar{x}}{\chi_{\frac{\alpha}{2}; 2n}^2}\right)$	Vide ii.	
Bernoulli $n \ge 40$	р	$ C(p, 1 - \alpha) = \left(-z_{1-\frac{\alpha}{2}} \frac{1}{2\sqrt{n}} + \hat{p}; z_{1-\frac{\alpha}{2}} \frac{1}{2\sqrt{n}} + \hat{p}\right)$	$\Phi\left(z_{1-\frac{\alpha}{2}}\right) = 1 - \frac{\alpha}{2}$	
Outras distribuições n ≥ 40	μ	$IC(\mu; 1 - \alpha) = \left(-t_{\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} + \bar{x}; t_{\frac{\alpha}{2}; n-1} \frac{s}{\sqrt{n}} + \bar{x}\right)$	$P\left(t_{n-1} \le t_{\frac{\alpha}{2};n-1}\right) = 1 - \frac{\alpha}{2}$	

- n é o tamanho da amostra;