EPC2361 – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}\,,\,\,1.0\,m\Omega$ typical I_D, 101 A

Revised January 10, 2025

Description

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Questions:
Ask a GaN
Evnort

Maximum Ratings						
	PARAMETER VALUE					
	Drain-to-Source Voltage (Continuous)		V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C)	120	V			
	Continuous (T _A = 25°C)	101	۸			
ID	Pulsed (25°C, T _{PULSE} = 300 μs)	519	Α			
	Gate-to-Source Voltage	6	V			
V _{GS}	Gate-to-Source Voltage	-4	 			
TJ	Operating Temperature	-40 to 150	-40 to 150			
T _{STG}	Storage Temperature	-40 to 150	°C			

Thermal Characteristics				
PARAMETER TYP UNIT				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Case TOP)	0.2		
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board (Case BOTTOM) 1.5		°C/W	
$R_{\theta JA_JEDEC}$			C/VV	
R _{0JA_EVB}	Thermal Resistance, Junction-to-Ambient (using EPC9097 EVB)	21		

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, I_D = \text{TBD}$	100			٧
I _{DSS}	Drain-Source Leakage	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$		0.03		
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.06		
	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.15		mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.02		
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 15 \text{ mA}$	0.8	1.1	2.5	٧
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 50 \text{ A}$		1.0		mΩ
V _{SD}	Source-to-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.6		V

Defined by design. Not subject to production test.

Applications

Package size: 3 x 5 mm

EPC2361

- High Power PSU AC-DC Synchronous Rectification
- High Frequency DC-DC Conversion up to 80 V input (Buck, Boost, Buck-Boost and LLC)
- 24 V-60 V Motor Drives
- High Power Density DC-DC modules from 40 V-60 V to 5 V-12 V
- · Synchronous Rectification
- Solar MPPT

Benefits

- Ultra High Efficiency
- · No Reverse Recovery
- Ultra Low Q_G
- · Small Footprint
- · Excellent Thermal

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2361

EPC2361 eGaN® FET DATASHEET

Dynamic Characteristics# (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			4094		
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		12		
Coss	Output Capacitance			1147		рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	d (Note 1) 139		1398		
$C_{OSS(TR)}$	Effective Output Capacitance, Time Related (Note 2)	$V_{DS} = 0 \text{ to } 50 \text{ V}, V_{GS} = 0 \text{ V}$		1726		
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 50 \text{ A}$		28		
Q_GS	Gate-to-Source Charge			7.2		
Q_{GD}	Gate-to-Drain Charge $V_{DS} = 50 \text{ V}, I_D = 50 \text{ A}$			2.5		,,C
Q _{G(TH)}	Gate Charge at Threshold	4.9		nC		
Q _{OSS}	Output Charge	V _{DS} = 50 V, V _{GS} = 0 V 86				
Q_{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

All measurements were done with substrate shorted to source.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: R_{DS(on)} vs. V_{GS} for Various Drain Currents

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

Note 1: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50 V. Note 2: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50 V.

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Safe Operating Area Limited by R_{DS(on)} I_D - Drain Current (A) Pulse Width **-** 100 μs **-** 10 μs 0.1 1000 V_{DS} – Drain-Source Voltage (V)

 $T_{i} = Max Rated, T_{c} = +25^{\circ}C, Single Pulse$

Figure 12: Transient Thermal Response Curves

TYPICAL THERMAL CONCEPT

The EPC2361 can take advantage of dual sided cooling to maximize its heat dissipation capabilities in high power density designs. Note that the top of EPC FETs are connected to source potential, so for half-bridge topologies the Thermal Interface Material (TIM) needs to provide electrical isolation to the heatsink.

Recommended best practice thermal solutions are covered in detail in How2AppNote012 - How to Get More Power Out of an eGaN Converter.pdf.

Figure 13: Exploded view of heatsink assembly using screws

Figure 14: A cross-section image of dual sided thermal solution

Note: Connecting the heatsink to ground is recommended and can significantly improve radiated EMI

The thermal design can be optimized by using the **GaN FET Thermal Calculator** on EPC's website.

LAYOUT CONSIDERATIONS

GaN transistors generally behave like power MOSFETs, but at much higher switching speeds and power densities, therefore layout considerations are very important, and care must be taken to minimize layout parasitic inductances. The recommended design utilizes the first inner layer as a power loop return path. This return path is located directly beneath the top layer's power loop allowing for the smallest physical loop size. This method is also commonly referred to as flux cancellation. Variations of this concept can be implemented by placing the bus capacitors either next to the high side device, next to the low side device, or between the low and high side devices, but in all cases the loop is closed using the first inner layer right beneath the devices.

A similar concept is also used for the gate loop, with the return gate loop located directly under the turn ON and OFF gate resistors.

Furthermore, to minimize the common source inductance between power and gate loops, the power and gate loops are laid out perpendicular to each other, and a via next to the source pad closest to the gate pad is used as Kelvin connection for the gate driver return path.

The EPC90156 Half-Bridge Development Board Using EPC2361 implements our recommended vertical inner layout.

Figure 13: Inner Vertical Layout for Power and Gate Loops from EPC90156

Detailed recommendations on layout can be found on EPC's website: Optimizing PCB Layout with eGaN FETs.pdf

EPC2361 eGaN® FET DATASHEET

SYMBOL	Dimension (mm)				
STMDUL	MIN	Nominal	MAX	Note	
Α	0.60	0.65	0.70		
A1	0.00	0.02	0.05		
А3		0.20 Ref			
b	0.20	0.25	0.30	4	
b1	0.30	0.35	0.40	4	
b2	0.20	0.25	0.30	4	
D		3.00 BSC			
E		5.00 BSC			
e		0.85 BSC			
e1		0.90 BSC			
L1	0.625	0.725	0.825		
L2	1.775	1.875	1.975		

SYMBOL	Dimension (mm)					
SYMBUL	MIN	Nominal	MAX	Note		
K	0.35	0.40	0.45			
K1	0.10	0.15	0.20			
K2	0.55	0.60	0.65			
К3	0.35	0.40	0.45			
K4	0.25	0.30	0.35			
aaa		0.05				
bbb		0.10				
ccc		0.10				
ddd		0.05				
eee		0.08				
N		15		3		
NE		6				

Notes:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009
- 2. All dimensions are in millimeters
- 3. **N** is the total number of terminals
- 4. Dimension **b** applies to the metallized terminal. If the terminal has a radius on the other end of it, dimension **b** should not be measured in that radius area.
- 5. Coplanarity applies to the terminals and all the other bottom surface metallization.

TRANSPARENT VIEW

PIN	Description
1	Gate
2	Source
3	Drain
4	Source
5	Drain
6	Source
7	Drain

RECOMMENDED

Legend:

Part outline Mask Opening

Radius = 0.05

Land pattern is solder mask defined

RECOMMENDED

Legend:

Part outline

Stencil opening

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

The corner has a radius of R60.

EPC has tested this stencil design and not found any scooping issues.

EPC2361 eGaN® FET DATASHEET

RECOMMENDED COPPER DRAWING

(units in mm)

Legend: **Part outline** Copper

Radius = 0.05

3D COMPOSITE

ADDITIONAL RESOURCES AVAILABLE

Solder mask defined pads are recommended for best reliability.

Figure 15: Solder mask defined versus non-solder mask defined pad

Figure 16: Effect of solder mask design on the solder ball symmetry

- $\bullet \ Assembly \ resources https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote_GaNassembly.pdf$
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents