Homework 8/9 Fundamentals of Electronics EECE2412/3

Michael Brodskiy Brodskiy.M@Northeastern.edu

November 21, 2024

Instructor: Professor Onabajo

Abstract

The purpose of this document is to outline the design process for a commonemitter bipolar junction transistor (BJT) amplifier with specified characteristics. The design process involved creating a viable circuit, calculating expected results, and simulating to confirm expectations.

Keywords: common-emitter, BJT, amplifier

Contents

1	Intr	oduction	4
2	Circ	ruit Design	4
	2.1	Given Parameters	5
	2.2	DC Analysis	5
		2.2.1 Worst-Case Assumption	6
		2.2.2 Finding Applicable R_B and R_C Values	6
	2.3	Small-Signal Analysis	6
		2.3.1 Input Impedance Calculation	7
		2.3.2 Gain Calculation	8
		2.3.3 Output Impedance Calculation	9
3	Sim	ulation	10
	3.1	Bias Point Performance	10
	3.2	AC Sweep	10
	3.3	Input Resistance Sweep	11
	3.4	Output Resistance Sweep	11
	3.5	Transient Sweep	12
4	clusion	12	
5	Refe	erences	12
Li	ist c	of Figures	
	1	Standard Common-Emitter Amplifier	4
	2	DC Equivalent Circuit	5
	3	Small-Signal Equivalent Circuit	7
	4	Small-Signal Equivalent with Values	8
	5	Final Common-Emitter Amplifier	9
	6	Bias Point Performance	10
	7	AC Sweep Gain Plot, Gain (A_{vs}) at 130	10
	8	AC Sweep Input Impedance Plot, Approximately $Z_i = .44[k\Omega]$	11
	9	AC Sweep Output Impedance Plot, Approximately $Z_0 = .53[k\Omega]$	11
	10	Transient Sweep, Peak-to-Peak Output: $V_o = 6.2[V]$	12

1 Introduction

Common-emitter amplifiers are some of the most ubiquitous components of radio-frequency (RF) circuitry. These components, which rely on bipolar junction transistors (BJTs) involve the amplification of a source signal, passed through the base of the BJT. The base is connected to the collector branch via a resistor. To improve stability of such circuits, capacitors are added after the input and before the output, which allows for better direct-current (DC) filtration. Such amplification is crucial in audio-based circuits, like speakers, and radios, specifically antennas.

2 Circuit Design

We may begin with our provided model:

Figure 1: Standard Common-Emitter Amplifier

This, in tandem with the provided circuit example, will be the basis for our design.

2.1 Given Parameters

We are given the following parameters as a requirement for our amplifier:

$$\begin{cases} \text{Assume:} & T = 300 [\text{K}] \\ |A_{VS}| = \frac{V_o}{V_{in}} & \geq 80 \\ I_C & \leq 8 [\text{mA}] \\ V_{CC} & = 12 [\text{V}] \\ R_S & = 500 [\Omega] \\ R_L & = 15 [\text{k}\Omega] \\ R_i & \approx R_S \\ V_{FB} & = .7 [\text{V}] \\ \beta & = 200 \end{cases}$$

Finally, we want to ensure that there is a 7[V] peak-to-peak output signal swing without distortion. We begin by performing a DC analysis of the given circuit.

2.2 DC Analysis

The DC equivalent circuit may be constructing by taking all capacitors as open circuits. This gives us an equivalent circuit of:

Figure 2: DC Equivalent Circuit

From this, we may use Kirchoff's voltage laws to write:

$$12 - (I_B + I_C)R_C - R_B I_B - V_{BE} = 0$$

We know β , which allows us to say:

$$200 = \frac{I_C}{I_B}$$
$$I_C = 200I_B$$

Substituting this into the above, we get:

$$12 - I_B(201R_C + R_B) - .7 = 0$$

2.2.1 Worst-Case Assumption

Since $I_C \leq 8[\text{mA}]$, we know that:

$$I_B \le \frac{I_C}{200}$$

$$I_B \le 40[\mu A]$$

2.2.2 Finding Applicable R_B and R_C Values

Assuming worst-case (*i.e.* highest) values of the currents, we get $I_C = 8[\text{mA}]$ and $I_B = 40[\mu\text{A}]$. Plugging this in, we get:

$$11.3 = (40 \cdot 10^{-6})(201R_C + R_B)$$
$$282500 = 201R_C + R_B$$
$$R_C = \frac{282500 - R_B}{201}$$

We need R_B to be positive, which means $201R_C < 282500$. Let us take R_C as an arbitrary $R_C = .9[k\Omega]$, which gives us:

$$R_B = 101.6[k\Omega]$$

2.3 Small-Signal Analysis

We may redraw the circuit using the Hybrid- π Model to obtain the small-signal equivalent:

Figure 3: Small-Signal Equivalent Circuit

First and foremost, we must note that R'_L may be expressed as $R_C||R_L$. We can begin by finding:

$$g_m = \frac{I_C^{max}}{2V_T}$$

We take our quiescent collector current from the DC analysis to get:

$$g_m = \frac{8}{2(26)}$$
$$g_m = .1538$$

We then calculate R_{π} to get:

$$R_{\pi} = \frac{\beta}{g_m}$$

$$R_{\pi} = \frac{200}{.1538}$$

$$R_{\pi} = 1.3[k\Omega]$$

2.3.1 Input Impedance Calculation

Let us stop to verify that the input impedance is roughly equal to R_s . From our equivalent circuit, we may obtain:

$$R_{i} = \frac{(R_{B} + R'_{L})R_{\pi}}{R_{\pi} + R_{B} + (\beta + 1)R'_{L}}$$

Let us get R'_L first:

$$R_L' = \frac{R_C R_L}{R_C + R_L}$$

$$R_L' = 849.06[\Omega]$$

We return to find the input impedance:

$$R_i = \frac{(101600 + 849.06)(1.3k)}{1.3k + 101600 + 849.06(201)}$$

$$R_i = 486.85[\Omega]$$

We see that, as intended, this is within 3% of the given value of R_S , and, thus, we may say that $R_i \approx R_S$.

2.3.2 Gain Calculation

From our equivalent circuit, we may conclude that the gain is:

$$|A_v| = \frac{R'_L(R_{\pi} - \beta R_B)}{R_{\pi}(R'_L + R_B)}$$

We substitute our values to get:

$$A_{\nu} = \frac{849.06(1300 - (200)(101600))}{1300(849.06 + 101600)}$$

$$A_{\nu} = -129.53$$

This meets the minimal gain requirement of $|A_v| \ge 80$. As such, our equivalent circuit becomes:

Figure 4: Small-Signal Equivalent with Values

This gives us our final circuit as:

Figure 5: Final Common-Emitter Amplifier

2.3.3 Output Impedance Calculation

The final step is to calculate the expected output resistance. Based on the equivalent circuit in Figure 4, we get:

$$R_o = R_C || \left(\frac{R_B R_S + R_B R_{\pi} + R_S R_{\pi}}{(\beta + 1) R_S + R_{\pi}} \right)$$

We plug in known values to get:

$$\left(\frac{R_B R_S + R_B R_\pi + R_S R_\pi}{(\beta + 1) R_S + R_\pi} \right) = \frac{(101600)(500) + (101600)(1300) + (500)(1300)}{(201)(500) + 1300}$$

$$\left(\frac{R_B R_S + R_B R_\pi + R_S R_\pi}{(\beta + 1) R_S + R_\pi} \right) = 1802.8[\Omega]$$

Then, we calculate R_C ||1802.8:

$$R_o = \frac{(1802.8)(900)}{900 + 1802.8}$$

$$R_o = 600.32[\Omega]$$

3 Simulation

3.1 Bias Point Performance

Simulating in PSPICE, we obtain the following Bias Point Performance:

Figure 6: Bias Point Performance

We may observe, that, as calculated, the collector current, $I_C = 7.198 [\text{mA}] \leq 8 [\text{mA}]$.

3.2 AC Sweep

Figure 7: AC Sweep Gain Plot, Gain (A_{vs}) at 130

We may observe that the gain is right at the expected value, or approximately at a magnitude of 130 at midband values.

3.3 Input Resistance Sweep

Figure 8: AC Sweep Input Impedance Plot, Approximately $Z_i = .44[k\Omega]$

The resulting input impedance is very close to the calculated one. We may observe that the calculated impedance was .486[k Ω], while the simulated one is a bit less. These values are still quite similar, and, as such, close enough to the expected one at midband values.

3.4 Output Resistance Sweep

Figure 9: AC Sweep Output Impedance Plot, Approximately $Z_o = .53[k\Omega]$

Once again, we see that the simulated value is a bit less than the calculated value. The calculated output impedance is $.6[k\Omega]$, while the one observed above is $.53[k\Omega]$ at midband values.

3.5 Transient Sweep

Figure 10: Transient Sweep, Peak-to-Peak Output: $V_o = 6.2[V]$

We may calculate the voltage gain as:

$$A_{vs} = \frac{6.2}{.04} = 155$$

We see that the transient simulation has a slightly higher gain than the AC sweep and the calculated one. Again, the values are close enough that nothing is too out of the ordinary.

4 Conclusion

We may observe the following obtained values:

Value	Specified	Calculated	Simulated	Requirement Met?
Gain (A _{vs})	≥ 80	129.53	130/155	✓
Input Z_i	$\approx 500[\Omega]$	486.85[Ω]	440[Ω]	✓
Collector Current (I_C)	≤ 8[mA]	≤ 8[mA]	7.198[mA]	√

As such, we see that we were able to successfully meet and even exceed the given requirements.

5 References

Allan R. Hambley, Electronics, 2nd edition, Prentice Hall, 1999 1999