System Properties (Z-Transform)
Causality	ROC is the exterior of a circle
	including infinity
Causality	ROC is the exterior of a circle outside
(Rational $H(s)$)	the outermost pole + 分子 z 阶数不
	能比分母大
Stability	ROC includes the unit circle
Caucal ITI cyctom w	gith rational $H(s)$, all poles lies incide the

Causal LTI system with rational H(s): all poles lies inside the unit circle + 分子 z 阶数不能比分母大

和差化积公式与积化和差公式

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

Hilbert Transform

 $\frac{1}{\pi t} \overset{\mathcal{F}}{\leftrightarrow} -j \cdot \operatorname{sign} \omega , \cos \omega_0 t \overset{h(t)}{\longrightarrow} \sin \omega_0 t$

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原 点为界, 记得写成u[n]u(t)的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后, 原点为t

Sinc Function

$$\operatorname{sinc} \theta = \frac{\sin \pi \theta}{\pi \theta}$$

2N-Point DFT using a single N-Point DFT

 $v[n] \not \in 2N, \ g[n] = v[2n], h[n] = v[2n+1]$ 则 $V[k] = G[\langle k \rangle_N] + W_{2N}^k H[\langle k \rangle_N]$

Nyquist Sampling Theorem

Let x(t) be a band-limited signal within $\pm \omega_{\scriptscriptstyle M}$, then x(t) is uniquely determined by its samples x(nT) if $\omega_s > 2\omega_M$, where $\omega_s = \frac{2\pi}{T}$. Nyquist rate: $2\omega_M$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos \theta + j \sin \theta$$
$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Z变换特殊峰的判断 信号为正, 零点有峰

信号为负, 无穷有峰

诱导公式

 $\sin(2k\pi + \alpha) = \sin\alpha$ $\cos(2k\pi + \alpha) = \cos\alpha$ $\sin(-\alpha) = -\sin\alpha$ $\cos(-\alpha) = \cos \alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos \alpha$ $\sin(\pi + \alpha) = -\sin \alpha$ $\cos(\pi + \alpha) = -\cos\alpha$ $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ $tg(k\pi + \alpha) = tg\,\alpha$ $tg(-\alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi + \alpha) = tg \alpha$ $tg\left(\frac{\pi}{2} - \alpha\right) = ctg \alpha$ $tg\left(\frac{\pi}{2} + \alpha\right) = -ctg \alpha$

Group Delay, Phase Delay
$$\begin{array}{l} \text{Phase Delay}, \text{Phase Delay} \\ \text{Phase delay:} \ \tau_p(\omega_0) = -\frac{\theta(\omega_0)}{\omega_0} \\ \text{Group delay:} \ \tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega} \\ y_a(t) = a\left(t - \tau_g(\Omega_{\mathcal{C}})\right)\cos\Omega_{\mathcal{C}}\left(t - \tau_p(\Omega_{\mathcal{C}})\right) \end{array}$$

补 0 法: 两序列都补到M + N - 1长, 算圆周卷积即可 Overlap-add: 将x[n]切段, 每段与h[n]用补 0 法算圆周 卷积,最后相加时要有N-1长度的 overlap

Overlap-save: 相加时不重叠,而是切断时重叠N-1长 度;最前面补N-1个0,相加时每段舍去前N-1

系统性质的判据	输入输出关系	单位冲激响应
Memoryless	Output at $t = t_0$ depends only on the value of input at $t = t_0$	$h(t) = 0 \text{ for } t \neq 0$
Invertible	There exist an inverse system	$\exists h_1[n] \ s.t. h[n] * h_1[n] = \delta[n]$
Causality	Output at this time only depends on values of the input at the present time and in the past	h[n] = 0 for n < 0
Stability	BIBO	$\int_{-\infty}^{\infty} h(\tau) d\tau < \infty$
Time-invariance	Let $x_1(t) = x(t - t_0)$ Check $y_1(t) = ?y(t - t_0)$	Must satisfy
Linearity	Let $x_1(t), x_2(t), x_3(t) = x_1(t) + x_2(t)$ Check $y_3(t) = ?ay_1(t) + by_2(t)$	Must satisfy

Time-Domain Sampling 时域采样

 $x_a(t) \overset{CTFT}{\longleftrightarrow} X_a(j\Omega), \ \ x(t) = x_a(t)p(t) \overset{CTFT}{\longleftrightarrow} X(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a \big(j(\Omega - k\Omega_s) \big)$ $x[n] = x(t)|_{t=nT} \stackrel{F}{\leftrightarrow} X(e^{j\omega}) = X(j\Omega)|_{\Omega = \frac{\omega}{T}} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{\alpha} \left(j \frac{\omega - 2k\pi}{T} \right)$ 采样后信号的频率响应幅值变为1/T倍,因此恢复信号时要通过一个增益 为T的 BPF,BPF 的截止频率最好为 $\frac{\omega_s}{2}$; Ω 轴上的 Ω_s 对应 ω 轴上的 2π

连续离散公式:时域t=nT,频域 $\omega = \Omega T$,任何地方f=1/T时域采样导致频域周期化: $F_{out} = F_{in} \pm kF_{s}$, $\Omega_{out} = \Omega_{in} \pm k\Omega_{s}$

带通采样

 $\Omega_H = M(\Delta\Omega) \Rightarrow$ $\Omega_T = 2(\Delta\Omega) = \frac{2\Omega_H}{\Omega_T}$ 恢复使用 gain 为T的 $\Omega_L \leq |\Omega| \leq \Omega_H$ 的 BPF

Z-变换对快速检查单

圆周卷积算线性卷积

Signal	Transform	ROC	Pole
$a^nu[n]$	1	z > a	а
	$1 - az^{-1}$		
$a^nu[-n-1]$	_ 1	z < a	а
	$1 - az^{-1}$		
$(-a)^n u[n]$	1	z > a	-a
	$1 + az^{-1}$		
$(-a)^n u[-n-1]$	_ 1	z < a	-a
	$1 + az^{-1}$		
$na^nu[n]$	1	z > a	$a(\times 2)$
	$(1-az^{-1})^2$		

Geometric Series 等比数列

信号的分解 奇偶 $x_{ev}(t) = \frac{1}{2} \left(x(t) + x(-t) \right)$ $X_{ev}[k] = \frac{1}{2}(X[k] + X[\langle -k \rangle_N])$ 分解 $X_{od}[k] = \frac{1}{2}(X[k] - X[\langle -k \rangle_N])$ $x_{od}(t) = \frac{1}{2} \left(x(t) - x(-t) \right)$ 实虚 $x_{re}(t) = \frac{1}{2}(x(t) + x^*(t))$ $x_{im}(t) = \frac{1}{2j}(x(t) - x^*(t))$ $X_{re}[k] = \frac{1}{2}(X[k] + X^*[k])$ $X_{im}[k] = \frac{1}{2}(X[k] - X^*[k])$ 分解 $x_{cs}(t) = \frac{1}{2}(x(t) + x^*(-t))$ 共轭 $X_{cs}[k] = \frac{1}{2}(X[k] + X^*[(-k)_N])$ $x_{ca}(t) = \frac{1}{2}(x(t) - x^*(-t))$ $X_{ca}[k] = \frac{1}{2}(X[k] - X^*[\langle -k \rangle_N])$ 分解

DFT Matrix Relation

$$x = D_N^{-1} X, \ X = D_N x$$

$$D_N = \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^1 & W_N^2 \\ W_N^0 & W_N^2 & W_N^4 \end{bmatrix}, \ D_N^{-1} = \frac{1}{N} \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^{-1} & W_N^{-2} \\ W_N^0 & W_N^{-2} & W_N^{-4} \end{bmatrix}, \ D_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

通项公式: $a_n = a_1 q^{n-1}$ 两项关系: $a_n = a_m q^{n-m}$ 求和公式: $S_n = a_1 \frac{a-q^n}{1-q} = \frac{a_1-a_nq}{1-q}$

Fourier-Domain Sampling 频域采样

频域采N个样(不关心x[n]周期是不是 N), 时域信号就以N为周期

 $y[n] = \sum x[n+mN], 0 \le n \le N-1$ $n=-\infty$ 多画几个周期找规律!

信号的范数、能量、功率

$$\|x\|_p = (\sum_{n=-\infty}^{\infty} |x[n]|^p)^{\frac{1}{p}}, \ \|x\|_{\infty} = |x|_{max}$$

$$\|X\|_p = \left(\frac{1}{2\pi}\int_{-\pi}^{\pi} |X(e^{j\omega})|^p\right)^{\frac{1}{p}}, \ \|X\|_{\infty} = \max|X(e^{j\omega})|$$

$$MSE = \frac{1}{N}\sum_{i=0}^{N-1} (|y[n] - x[n]|)^2 = \frac{1}{N} (\|y[n] - x[n]\|_2)^2$$

$$\text{Total energy: } \epsilon_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 \text{ (Energy signal: finite energy)}$$

$$\text{Average power: } P_x = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{k=-K}^K |x[n]|^2 \text{ (Power signal: finite power)}$$

$$\text{Passive system: } \epsilon_y \leq \epsilon_x < \infty, \text{ lossless system: } \epsilon_y = \epsilon_x < \infty$$

Circular Time-Shift/Reversal

原: 01234

离散三角信号的周期性

$$\omega N = 2k\pi \Rightarrow N = \frac{2k\pi}{3}$$

离散三角信号的周期性小结论

- 1. 周期N必须是整数
- 角频率相差 $2k\pi$ 的信号完全相同
- 任 何 数 列 的 最 大 频 率 为 π (folding frequency), 且对称频 率 (0.6π 和1.4π) 信号相同

DFT Geometric Symmetry

Geometric symmetry: $x[n] = x[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \beta$ (type1 odd, type2 even) Geometric anti-symmetry: $x[n] = -[N-1-n], \theta(\omega) = -\frac{N-1}{2}\omega + \frac{\pi}{2} + \beta$ (type3 odd, type4 even), 中心系数为 0

变换			
CTFT	DTFT	DFT	Z-transform
时域连续非周期 频域连续非周期	时域离散非周期 频域连续周期	时域离散周期 频域离散周期	
$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt$	$X(e^{j\omega}) = \sum_{i=1}^{\infty} x[n]e^{-j\omega n}$	$X[k] = \sum_{N=1}^{N-1} x[n] W_N^{kn}$	$G(z) = \sum_{n=0}^{\infty} g[n]z^{-n}$
$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{n=0} X[k] W_N^{-kn}$	$g[n] = \frac{1}{2\pi j} \oint_{C} G(z) z^{n-1} dz$
$\int_{-\infty}^{\infty} x_a(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) ^2 d\Omega$	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}[k] ^2$	
	$x[-n] \leftrightarrow X(e^{-j\omega})$	$x[\langle -n\rangle_N] \leftrightarrow X[\langle -k\rangle_N]$	$x[-n] \leftrightarrow X(z^{-1})$ with inverted R
	$x^*[-n] \leftrightarrow X^*(e^{j\omega})$	$x[\langle -n\rangle_N] \leftrightarrow X^*[k]$	
	$x^*[n] \leftrightarrow X^*(e^{-j\omega})$	$x^*[n] \leftrightarrow X^*[\langle -k \rangle_N]$	

Property	Signal	DTFT	DFT	Z-Transform	ROC
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	aX[k] + bY[k]	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$
Time Shifting	$x[n-n_0], x[\langle n-n_0\rangle_N]$	$e^{-j\omega n_0}X(e^{j\omega})$	$W_N^{kn_0}X[k]$	$z^{-n_0}X(z)$	R except for possible origin
Frequency Shifting (Z-Domain Scaling)	$e^{j\omega_0n}x[n],W_N^{-k_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$	$X[\langle k-k_0 \rangle_N]$	$X(e^{-j\omega_0}z)$	R
Time Expansion	$x_{(k)}[n] = x \left[\frac{n}{k} \right] \text{ if } n = mk \text{ else } 0$	$X(e^{jk\omega})$		$X(Z^k)$	$R^{\frac{1}{k}}$
Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	X[k]Y[k]	X(z)Y(z)	At least $R_1 \cap R_2$
Multiplication	x[n]y[n]	$\theta p(_{(heta}$	$\frac{1}{N} \sum_{m=0}^{N-1} X[m]Y[(k-m)_N]$	$\frac{1}{2\pi j} \oint_C X(v) H\left(\frac{z}{v}\right) v^{-1} dv$	At least R_1R_2
Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$		$(1-z^{-1})X(z)$	At least $R \cap \{ z > 0\}$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$		$\frac{1}{1-z^{-1}}X(z)$	At least $R \cap \{ z > 1\}$
Differentiation in Frequency	[u]xu	$j \frac{dX(e^{j\omega})}{d\omega}$		$-z \frac{dX(z)}{dz}$	R

Signal	Transform
$\delta[n]$	1
$\mu[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
1	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)$
$\alpha^n \mu[n], (\alpha < 1)$	$\frac{1}{1-\alpha e^{-j\omega}}$
$(n+1)\alpha^n\mu[n], (\alpha <1)$	$\frac{1}{(1-\alpha e^{-j\omega})^2}$
$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}$	$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$
$\sin \omega_0 n$	$\frac{\pi}{i} \sum_{l=\infty}^{l=\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$

Signal	Transform	ROC
$\delta[n]$	1	All z
u[n]	1	z > -1
	$\frac{1-z^{-1}}{1}$	
-u[-n-1]	-	z < -1
	$\frac{1-z^{-1}}{z^{-m}}$	
$\delta[n-m]$	z^{-m}	All z , except
		0 or ∞
$a^nu[n]$	1	z > a
	$\frac{1 - az^{-1}}{1}$	
$-a^nu[-n-1]$		z < a
	$\frac{1-az^{-1}}{az^{-1}}$	
$na^nu[n]$		z > a
	$(1-az^{-1})^2$	
$-na^nu[-n-1]$	az^{-1}	z < a
	$(1-az^{-1})^2$	
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$	z > 1
	$1-[2\cos\omega_0]z^{-1}+z^{-2}$	
$[\sin \omega_0 n]u[n]$	$[\sin \omega_0]z^{-1}$	z > 1
[n1[1	$1-[2\cos\omega_0]z^{-1}+z^{-2}$ $1-[r\cos\omega_0]z^{-1}$	1-1 >
$[r^n\cos\omega_0 n]u[n]$	$\frac{1 - [r \cos \omega_0]z}{1 - [2r \cos \omega_0]z^{-1} + r^2z^{-2}}$	z > r
$[r^n \sin \omega_0 n] u[n]$	$[r \sin \omega_0]z^{-1}$	z > r
	$1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}$	121 / /

P-Series Test	$\lambda_{n=1}^{n} \frac{1}{n^p}$ converges for $p \ge 1$
nitial Value Theorem	$x[n] = 0 \text{ for } n < 0, \ x[0] = \lim_{z \to \infty} X(z).$

$ \text{DFT * *(e^{-j})$} \text{DFT * *(e^{-j})$} \text{DFT * *(e^{-j})$} $ $ \text{DFT * *(e^{-j})$} \text{DFT * *(e^{-j})$$

1	1	$1 - \alpha e^{j\omega}$	
$1 - \alpha e^{-j\omega}$ 1	$-\alpha e^{-j\omega}$	$1 - \alpha e^{j\omega}$	
$\frac{1 - \alpha e^{-j\omega}}{1 - \alpha \cos \omega} - \frac{1}{1 - \alpha \cos \omega}$	$-i\alpha\sin\omega$		
$1-2\alpha\cos$	$\omega + \alpha^2$		
1			sinω \
=		arctan (– 1 –	$\frac{\alpha \cos \omega}{\alpha}$
$\sqrt{1-2\alpha\cos\alpha}$	$\omega + \alpha^2$	\ 1 -	$\alpha \cos \omega$

Signal	Transform
$\delta[n]$	1
$\delta[n-m]$	W_N^{km}
$\cos\left(\frac{2\pi}{N}rn\right)$	$\begin{cases} \frac{N}{2}, & k = r \text{ or } N - r \\ 0, & \text{otherwise} \end{cases}$

