Devátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK)

Zimní semestr 2024

Devátá přednáška

Program

- Löwenheim-Skolemova věta
- věta o kompaktnosti
- hilbertovský kalkulus.
- úvod do rezoluce v predikátové logice
- skolemizace

Materiály

Zápisky z přednášky, Sekce 7.5-7.6 z Kapitoly 7, Sekce 8.1-8.2 z Kapitoly 8

7.5 Důsledky korektnosti a úplnosti

$$\vdash = \models$$

Syntaktickou analogií důsledků jsou teorémy:

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $T \models \varphi$ právě když $T \models \varphi$
- $\mathsf{Thm}_L(T) = \mathsf{Csq}_L(T)$

Všude můžeme nahradit 'platnost' pojmem 'dokazatelnost'. Např:

- T je sporná, je-li v ní dokazatelný spor (tj. $T \vdash \bot$)
- T je kompletní, je-li pro každou sentenci buď $T \models \varphi$ nebo $T \models \neg \varphi$, ale ne obojí (jinak by byla sporná)

Věta (O dedukci): $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$.

Důkaz: Stačí dokázat: $T, \varphi \models \psi \Leftrightarrow T \models \varphi \to \psi$. To je snadné. \square

Löwenheim-Skolemova věta & Věta o kompaktnosti

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta o kompaktnosti, vč. důkazu, je stejná jako ve výrokové logice:

Věta (O kompaktnosti): Teorie má model, právě když každá její konečná část má model.

Důkaz: Model teorie je modelem každé části. Naopak, pokud T nemá model, je sporná, tedy $T \models \bot$. Vezměme nějaký konečný tablo důkaz \bot z T. K jeho konstrukci stačí konečně mnoho axiomů T, ty tvoří konečnou podteorii $T' \subseteq T$, která nemá model.

Nestandardní model přirozených čísel

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

Přidáme nový konstantní symbol c a vyjádříme, že je ostře větší než každý n-tý numerál:

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model
- říkáme mu nestandardní model (označme A)
- platí v něm tytéž sentence, které platí ve standardním modelu
- ale zároveň obsahuje prvek $c^{\mathcal{A}}$, který je větší než každé $n \in \mathbb{N}$ (tzn. větší než hodnota termu \underline{n} v nestandardním modelu \mathcal{A})

7.6 Hilbertovský kalkulus v

predikátové logice

Hilbertovský kalkulus v predikátové logice

- používá jen \neg a \rightarrow , dokazuje lib. formule (nejen sentence)
- schémata log. axiomů (φ, ψ, χ) formule, t term, x proměnná)
 - (i) $\varphi \to (\psi \to \varphi)$

(ii)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

(iv)
$$(\forall x)\varphi \rightarrow \varphi(x/t)$$

je-li t substituovatelný za x do φ

(iiv)
$$(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$$

není-li x volná ve φ

a navíc axiomy rovnosti, je-li jazyk s rovností

odvozovací pravidla:

$$\frac{\varphi, \varphi \to \psi}{\psi} \text{ (modus ponens)} \qquad \frac{\varphi}{(\forall x) \varphi} \text{ (generalizace)}$$

$$\frac{\varphi}{(\forall x)\varphi}$$
 (generalizace)

- hilbertovský důkaz formule φ z T je konečná posloupnost $\varphi_0, \dots, \varphi_n = \varphi$, kde φ_i je logický axiom (vč. axiomů rovnosti), axiom teorie, nebo lze odvodit z předchozích pomocí pravidel
- existuje-li, píšeme T ⊢_H φ

Korektnost a úplnost

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Důkaz: Indukcí dle délky důkazu: každá φ_i (vč. $\varphi_n = \varphi$) platí v T

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:
 - je-li $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, potom $T \models \psi$
 - je-li $T \models \varphi$, potom $T \models (\forall x)\varphi$

Věta (o úplnosti hilbertovského kalkulu): $T \models \varphi \Rightarrow T \vdash_H \varphi$ Důkaz vynecháme.

Kapitola 8: Rezoluce v predikátové logice

8.1 Úvod

Rezoluce v predikátové logice

 $T \models \varphi ? \leadsto T \cup \{ \neg \varphi \} \leadsto \mathsf{CNF} \text{ formule } S \leadsto \mathsf{rezolu\check{c}ni} \text{ zamitnuti}$ $(\mathsf{pozor:} \ \varphi \text{ musi b\'yt } \mathsf{\underline{sentence!}})$

- literál je atomická formule $R(t_1,\ldots,t_n)$ nebo její negace
- klauzule je konečná množina literálů, formule množina klauzulí
- otevřenou formuli snadno převedeme do CNF, i univerzální kvantifikátor na začátku: $(\forall x)(P(x) \lor \neg Q(x)) \sim \{P(x), \neg Q(x)\}$
- co s existenčními kvantifikátory? nové symboly pro 'svědky' $(\exists x)(P(x) \lor \neg Q(x)) \leadsto \{P(c), \neg Q(c)\}$ "skolemizace"
- není ekvivalentní, ale zachovává [ne]splnitelnost, to nám stačí
- rezoluční krok? literály nemusí být stejné, stačí unifikovatelné z klauzulí $\{P(x), \neg Q(x)\}$ a $\{Q(f(c))\}$ odvodíme $\{P(f(c))\}$
- unifikace je substituce $\{x/f(c)\}$

Příklady

1.
$$T = \{(\forall x)P(x), (\forall x)(P(x) \to Q(x))\}, \ \varphi = (\exists x)Q(x)$$

$$\neg \varphi = \neg(\exists x)Q(x) \sim (\forall x)\neg Q(x) \sim \neg Q(x)$$

 $T \cup \{\neg \varphi\}$ je ekvivalentní $S = \{\{P(x)\}, \{\neg P(x), Q(x)\}, \{\neg Q(x)\}\}$ rezoluční zamítnutí: představte si p místo P(x), q místo Q(x)

2.
$$T = \{(\forall x)(\exists y)R(x,y), R(x,y) \to Q(x)\}, \ \varphi = (\exists x)Q(x)$$
$$T \cup \{\neg \varphi\} \sim \{(\forall x)(\exists y)R(x,y), \neg R(x,y) \lor Q(x), \neg Q(x)\}$$

formuli $(\forall x)(\exists y)R(x,y)$ nahradíme R(x,f(x)), kde f je nový unární funkční symbol (reprezentuje výběr svědka):

$$S = \{\{R(x, f(x))\}, \{\neg R(x, y), Q(x)\}, \{\neg Q(x)\}\}\$$

není ekvivalentní, ale ekvisplnitelná (zde obě nesplnitelné), vidíme po substituci y/f(x), která unifikuje R(x, f(x)) a R(x, y)

Unifikace

$$S = \{\{R(x, f(x))\}, \{\neg R(x, y), Q(x)\}, \{\neg Q(x)\}\}\$$

- na úrovni výrokové logiky (ground level):
 - $\{\{r\}, \{\neg p, q\}, \{\neg q, p\}, \{\neg q\}\}$ není nesplnitelné! musíme využít, že R(x, f(x)) a R(x, y) mají 'podobnou strukturu' (jsou unifikovatelné)
- klauzule $\{\neg R(x,y), Q(x)\}$ platí i po provedení libovolné substituce: $\{\neg R(x/t), Q(x/t)\}$ je důsledek S pro lib. term t
- představme si 'přidání' všech takto získaných klauzulí do S: potom už je na ground level nesplnitelné (ale nekonečné)
- unifikační algoritmus nám dá správnou substituci y/f(x)
- zahrneme už do rezolučního pravidla, tedy rezolventou klauzulí $\{P(c)\}$ a $\{\neg P(x), Q(x)\}$ bude klauzule $\{Q(c)\}$.

Rezoluční pravidlo

- zahrnuje aplikaci unifikace
- Ize vybrat více literálů najednou, ale musí být unifikovatelné:

```
např. z \{R(x, f(x)), R(g(y), z)\}, \{\neg R(g(c), u), P(u)\}
odvodíme rezolventu \{P(f(g(c)))\} za použití unifikace \{x/g(c), y/c, z/f(g(c)), u/f(g(c))\}
```

 budeme vyžadovat disjunktní množiny proměnných v klauzulích; lze přejmenovat, proměnné mají lokální význam:

$$\models (\forall x)(\psi \wedge \chi) \leftrightarrow (\forall x)\psi \wedge (\forall x)\chi$$

8.2 Skolemizace

Ekvisplnitelná otevřená teorie

- teorie T v jazyce L a T' v (ne nutně stejném) jazyce L' jsou ekvisplnitelné, pokud platí: T má model ⇔ T' má model
- zajímá nás jen [ne]splnitelnost (dokazujeme sporem)
- pro převod do CNF a rezoluci potřebujeme otevřené formule

Cíl: Ke každé teorii T sestrojíme ekvisplnitelnou, otevřenou T'.

- 1. převod do prenexní normální formy (vytkneme kvantifikátory)
- 2. nahradíme generálními uzávěry (potřebujeme sentence!)
- 3. nahradíme sentence Skolemovými variantami (odstranění ∃)
- 4. odstraníme zbývající ∀, máme otevřené formule

Prenexní normální forma

Formule φ je v prenexní normální formě (PNF), je-li následujícího tvaru, kde $Q_i \in \{\forall, \exists\}$ a formule φ' je otevřená:

$$(Q_1x_1)\dots(Q_nx_n)\varphi'$$

- $(Q_1x_1)...(Q_nx_n)$ je kvantifikátorový prefix, φ' otevřené jádro
- univerzální formule: v PNF a všechny kvantifikátory jsou ∀

Tvrzení: Ke každé formuli φ existuje ekvivalentní formule v PNF.

Důkaz: nahrazujeme podformule ekvivalentními s cílem posunout kvantifikátory blíž kořeni $Tree(\varphi)$, dle pravidel z násl. Lemmatu. \square

Důsledek: Existuje i ekvivalentní PNF sentence (generální uzávěr).

Pravidla vytýkání kvantifikátorů

Lemma: Označme \overline{Q} opačný kvantifikátor ke Q. Jsou-li φ a ψ formule, kde \mathbf{x} není volná v ψ , potom:

$$\neg (Qx)\varphi \sim (\overline{Q}x)\neg \varphi
(Qx)\varphi \wedge \psi \sim (Qx)(\varphi \wedge \psi)
(Qx)\varphi \vee \psi \sim (Qx)(\varphi \vee \psi)
(Qx)\varphi \rightarrow \psi \sim (\overline{Q}x)(\varphi \rightarrow \psi)
\psi \rightarrow (Qx)\varphi \sim (Qx)(\psi \rightarrow \varphi)$$

Důkaz: snadno ověříme sémanticky, nebo tablo metodou (potom ale nejsou-li sentence, musíme nahradit generálními uzávěry)

Pozorování: Nahradíme-li ve φ podformuli ψ ekvivalentní ψ' , je i výsledná formule φ' ekvivalentní φ . (Připomeňme: $\varphi \sim \varphi'$ právě když mají stejné modely, tj. $\models \varphi \leftrightarrow \varphi'$)

Převod do PNF: příklad

$$(\forall z)P(x,z) \wedge P(y,z) \rightarrow \neg(\exists x)P(x,y)$$

$$\sim (\forall u)P(x,u) \wedge P(y,z) \rightarrow (\forall x)\neg P(x,y)$$

$$\sim (\forall u)(P(x,u) \wedge P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$\sim (\exists u)(P(x,u) \wedge P(y,z) \rightarrow (\forall v)\neg P(v,y))$$

$$\sim (\exists u)(\forall v)(P(x,u) \wedge P(y,z) \rightarrow \neg P(v,y))$$

- v prvním kroku přejmenujeme z na u, nesmí být volná v
 P(y, z)
- podobně ve druhém kroku x na v
- která pravidla používáme? sledujte postup na stromu formule
- chceme-li sentenci:

$$(\forall x)(\forall y)(\forall z)(\exists u)(\forall v)(P(x,u) \land P(y,z) \rightarrow \neg P(v,y))$$

Poznámky

1. proč se při vytýkání z antecedentu mění kvantifikátor?

$$(Qx)\varphi \to \psi \sim \neg (Qx)\varphi \lor \psi$$
$$\sim (\overline{Q}x)(\neg \varphi) \lor \psi$$
$$\sim (\overline{Q}x)(\neg \varphi \lor \psi) \sim (\overline{Q}x)(\varphi \to \psi)$$

2. proč nesmí být x volná v ψ ? neplatilo by, např:

$$(\exists x) P(x) \land Q(x) \not\sim (\exists x) (P(x) \land Q(x))$$
 musíme přejmenovat vázanou proměnnou x na novou:
$$(\exists x) P(x) \land Q(x) \sim (\exists y) P(y) \land Q(x) \sim (\exists y) (P(y) \land Q(x))$$

 PNF není jednoznačná, lze vytýkat v různém pořadí; lepší je nejprve vytknout ty, ze kterých se nakonec stanou existenční:

$$(\exists y)(\forall x)\varphi(x,y)$$
 je lepší než $(\forall x)(\exists y)\varphi(x,y)$ (protože " y nezávisí na x ")

Skolemova varianta

Je-li PNF sentence univerzální, tvaru $(\forall x_1) \dots (\forall x_n) \psi(x_1, \dots, x_n)$, nahradíme otevřeným jádrem ψ . Jinak musíme provést skolemizaci:

Buď φ *L*-sentence v PNF, všechny vázané proměnné různé. Nechť

- existenční kvantifikátory jsou $(\exists y_1), \ldots, (\exists y_n)$ (v tom pořadí)
- pro každé i jsou $(\forall x_1), \ldots, (\forall x_{n_i})$ právě všechny univerzální kvantifikátory předcházející $(\exists y_i)$ v prefixu φ

Buď L' rozšíření L o nové funkční symboly f_1, \ldots, f_n , kde f_i je n_i -ární. Skolemova varianta φ je L'-sentence φ_S vzniklá odstraněním $(\exists y_i)$ a substitucí termu $f_i(x_1, \ldots, x_{n_i})$ za y_i , postupně pro $i = 1, \ldots, n$.

$$\varphi = (\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3) \ R(y_1, x_1, x_2, y_2, x_3)$$
$$\varphi_S = (\forall x_1)(\forall x_2)(\forall x_3) \ R(f_1, x_1, x_2, f_2(x_1, x_2), x_3)$$

- musí být sentence! pro $(\exists y)E(x,y)$ ne E(x,c) ale E(x,f(x))
- nové symboly! (jedinou rolí je reprezentovat 'svědky' ve φ)

Je to konzervativní extenze

Lemma: Buď φ *L*-sentence $(\forall x_1) \dots (\forall x_n)(\exists y)\psi$, f nový funkční symbol, a φ' sentence $(\forall x_1) \dots (\forall x_n)\psi(y/f(x_1,\dots,x_n))$. Potom:

- (i) L-redukt každého modelu φ' je modelem φ , a
- (ii) každý model φ lze expandovat na model φ' .

Důkaz: (i) Buď \mathcal{A}' model φ' , \mathcal{A} jeho L-redukt, $e: \mathsf{Var} \to \mathcal{A}$. $\mathcal{A} \models \varphi[e]$ platí neboť $\mathcal{A} \models \psi[e(y/a)]$ pro $a = (f(x_1, \ldots, x_n))^{\mathcal{A}'}[e]$.

- (ii) Protože $\mathcal{A} \models \varphi$, existuje funkce $f^A : A^n \to A$, že pro každé ohodnocení e platí $\mathcal{A} \models \psi[e(y/a)]$ pro $a = f^A(e(x_1), \dots, e(x_n))$. To znamená, že expanze o funkci f^A splňuje φ' .
 - říká, že $\{\varphi'\}$ je konzervativní extenze $\{\varphi\}$, opakovaná aplikace dává Skolemovu větu (výsledek skolemizace je otevřená konzervativní extenze, speciálně je ekvisplnitelná)
 - expanze v (ii) není jednoznačná (na rozdíl od extenze o definici nového funkčního symbolu)

Skolemova věta (shrnutí postupu)

Věta: Každá teorie má otevřenou konzervativní extenzi.

Důkaz Mějme L-teorii T. Axiomy nahradíme generálními uzávěry a převedeme do PNF, máme ekvivalentní L-teorii T'. V ní každý axiom nahradíme jeho Skolemovou variantou.

Tím získáme teorii T'' v rozšířeném jazyce L'. Lemma říká:

- L-redukt každého modelu T" je model T'
- každý model T' lze expandovat do L' na model T"

Neboli T'' je konzervativní extenzí T', tedy i T. Je axiomatizovaná univerzálními sentencemi, odstraníme kvantifikátorové prefixy (vezmeme jádra) a máme ekvivalentní otevřenou teorii T'''.

Důsledek: Ke každé teorii můžeme pomocí skolemizace najít ekvisplnitelnou otevřenou teorii. (A tu už snadno převedeme do CNF.)