Assignment-2 (to be submitted offline)

Q1. Suppose given $x[n] = \delta[n] + 2\delta[n-1] - \delta[n-3]$ and $h[n] = 2\delta[n+1] + 2\delta[n-1]$. Evaluate the following convolutions:

(a)
$$y[n] = x[n] * h[n]$$

(b) $y[n] = x[n+2] * h[n]$
(c) $y[n] = x[n] * h[n+2]$

Q2. Compute the output of the a LTI system where $x[n] = \begin{cases} 1, & 3 \le n \le 8 \\ 0, & \text{otherwise} \end{cases}$ $h[n] = \begin{cases} 1, & 4 \le n \le 15 \\ 0, & \text{otherwise} \end{cases}$

Q3. Show that
$$(a) \ \delta(n) = u(n) - u(n-1)$$

$$(b) \ u(n) \ = \sum_{k=-\infty}^n \delta(k) = \sum_{k=0}^\infty \delta(n-k)$$

Q4. Compute the convolution y(n) = x(n) * h(n)

(a)
$$x(n) = \begin{cases} 1, & n = -2, 0, 1 \\ 2, & n = -1 \\ 0, & else \end{cases}$$

 $h(n) = \delta(n) - \delta(n-1) + \delta(n-4) + \delta(n-5)$ (b) $x(n)$

Q5. Justify whether following systems related by input -output are memoryless, time invariant, linear, Causal, Stable

(a)
$$y(t) = x(t-4)$$

(b) $y[n] = n x[n]$
(c) $y[n] = x[1-n]$
(d) $y[n] = \begin{cases} x\left[\frac{n}{2}\right], & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$