Gamma fr. :

Recall the notion of factorial:
$$n! = n(n-1) - \cdots 3 \cdot 2 \cdot 1$$

$$n! = n(n-1) - 3.2.1$$

$$\int x^n e^{-x} dx = n! \quad \forall n \neq 1$$

We need to generalize this concept!

$$f'(\mathbf{x}) := \int t^{x-1} e^{-t} dt \cdot \psi \times \mathbf{x} = 0$$

Eulen's gamma for on
$$(0,\infty)$$
.

$$\Gamma(x) \quad \text{Converges} \quad \forall \quad x \neq 0.$$

$$\Gamma(x) \quad \text{Converges} \quad \forall \quad x \neq 0.$$

$$\Gamma(x) \quad = \quad \int t^{x-1} e^{-t} dt \quad \text{Two issues};$$

Two issues: 0 & 0.

Type I Type II

$$= \int_{-1}^{1} t^{x-1} e^{-t} dt + \int_{-1}^{\infty} t^{x-1} e^{-t} dt$$

$$:=\gamma_1(n)$$
 $:=\gamma_2(n)$

For
$$Y_1(t) = \int_0^t t^{x-1} e^{-t} dt$$
, we observe: For any $n \ge 0$,
$$0 < t^{x-1} e^{-t} < t^{x-1}$$

$$\forall t \in (0,1]$$

[:xe-t <1]

": $\int t^{n-1} dt = \frac{1}{x}$, by Companison test, it follows that Vi(x) Converges.

For
$$\gamma_2(x) = \int_0^x t^{x-1} e^{-t} dt$$
, $\chi_{>0}$,

We note
$$\lim_{t\to\infty} \left(\frac{1}{t} + e^{-t} \right) = 0$$

We note $\lim_{t\to\infty} \left(\frac{1}{t} + \log \left($

$$\Rightarrow$$
 $t^{n-1}e^{t} \leqslant \frac{1}{t}$ \forall $t \geqslant M$

But
$$\int_{1}^{\infty} \frac{1}{t^2} dt$$
 Converges ($b = 2$ Case).

=>
$$\Gamma(\alpha)$$
 Converges $+ 200$.

Thm:
$$\Gamma(n+1) = \pi \Gamma(n) + \pi \geq 0$$
.

Prof:
$$t = -t^{n-1}e^{-t}dt = -t^{n-2}e^{-t}dt$$

$$= (a^{n-1}e^{-a} - b^{n-1}e^{-b}) + (24)^{b} + n^{-2}e^{-b}de.$$

Japaeb Sankar

Now
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

$$= \rangle \Gamma(a+1) = \alpha \Gamma(\alpha) \quad \forall \quad \alpha \neq 0.$$

$$\Gamma(nH) = n \Gamma(n)$$

$$= n (n-1) \Gamma(n-1)$$

$$= \cdots =$$

$$= n \cdot (n-1) \cdot \cdots - 2 \cdot 1 \cdot \Gamma(1)$$

$$Now \Gamma(1) = \int_{0}^{\infty} e^{-t} dt = 1$$

$$\Rightarrow \Gamma(n+1) = n! \quad \forall n \geq 1.$$

Tis a Cont. analy of factorial fu!

S.L. T | 1N =!

Cauchy posinciple Value:

(Recall: if f: (-00,00) -- IR & if I cell s.t.

both 1. 7:s

If & If exist, then

we say If Converges of write

 $\int_{-\infty}^{\infty} f = \int_{-\infty}^{\infty} f + \int_{-\infty}^{\infty} f$

In this case, RHS is indep. at the choice of C.

... $\int_{-\infty}^{\infty} f$ Converges $\langle = \rangle$ $\lim_{R_1, R_2 \to \infty} \int_{-R}^{R_2} f$ exists

Moreover, in this case. $\int_{-\infty}^{\infty} f = \lim_{\substack{R \to \infty \\ R_2 \to \infty}} \int_{\infty}^{\infty} f.$

Thered: If = If + If - or a c $=\lim_{R_1 \to +\infty} \int_{-R_1}^{R_2} f + \lim_{R_2 \to +\infty} \int_{-R_1}^{R_2} f$

Therefore,
$$\int_{-\infty}^{\infty} f = \lim_{R_1, R_2 \to \infty} \int_{-R_1}^{R_2} exists & the$$

limit converg exists it independently of how R, & R2 approach o.

i. limit of the fr.
$$\gamma(R_1, R_2) = \int_{R_1}^{R_2}$$
as $R_1, R_2 \rightarrow \infty$.

Clearly, a strong assumption. In many cases, this fails to evist.

Instead:

Def: The Cauchy principle value (CPV) of If is

defined by: $CPV - \int_{-\infty}^{\infty} f = \lim_{R \to \infty} \int_{-\infty}^{R} \left(if exists \right).$

Fact: 9f $\int_{-\infty}^{\infty} f$ exists, then $CPV - \int_{-\infty}^{\infty} f$ exists $\int_{-\infty}^{R} f = \int_{-\infty}^{R} f =$

If The Converse is NOT true:

Eq:
$$CPV \int_{-\infty}^{\infty} f$$
 exists but $\int_{-\infty}^{\infty} f$ does not converge, where

$$f(x) = \frac{x}{1+x^{2}} \cdot x \in \mathbb{R}$$

Indeed, $\int_{-R}^{R} \frac{x}{1+x^{2}} dx = 0$

$$= \int_{-R}^{R} \frac{x}{1+x^{2}} dx = 0$$

$$= \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx = 0$$

$$= \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx = 0$$

$$= \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{R} \frac{x}{1+x^{2}} dx + \int_{-\infty}^{$$

 $=\lim_{R\to\infty}\frac{1}{2}\int_{-\frac{1}{L}}^{1}dL=\infty$ => ff - does not converge.

Sequence & servier of functions.

Recau: A legn. fant & IR is convengent if FXEIR S.t. for E>0] NEIN - 3.

| n- n | < E + n 7 N.

12-6

For 870 7 N+W-9.

| xn- xm | < E 7 n, m 7 NT.

Even an algebra

Goal : Replace an by for (:5-) 1R, 5 = 1R) & talk about closeness, limit, etc. ! 1

Setting: 1) SEIR.

2) F(3) = {f:3-)1R} A <u>Vector space</u> over 11R.

3) {fn} or simply of fn} will refer a Seyn of fais: 3->112. i.e. ffn C F(S)

Groat (again): To talk about (" | fn - fm | < E

Anim> N"

How to do it?

Def: Let $\{f_n\} \subseteq \mathcal{F}(S)$ & $f \in \mathcal{F}(S)$. We say that f_n Converges to f pointwise $(x, f_n) = f$ of f

We also write: fn -) f printwise.

$f_n \stackrel{p}{\longrightarrow} f \iff For x \in S & E > 0 \exists N \in INT S.E.$ $|f_n(n) - f(n)| \leq E + n / N$

ANGER!! ANGER!! N(n,E).

N depends on # & is acceptable (like xn-) x Case),
but the dependence on x is Slightly less desirable!!

Will be fixed in the

"uniform" point.

or identify the trouble!

(2)
$$f_n(x) = \frac{1}{x+n}$$
 $\forall n > 1 , x \in [0, \infty)$.

...
$$\forall x \in [0,\infty)$$
, $f_n(x) \longrightarrow 0$. $[\frac{1}{n+n} \times \frac{1}{n} \longrightarrow 0]$.

$$\Rightarrow f_n \xrightarrow{p} f \text{ where } f(x) = 0 \ \forall x \in [0,\infty).$$

i.e. fn b

But Something more: For Eyo, & we have: $|f_n(x) - 0| = \frac{1}{n+n} \leqslant \frac{1}{n}$

 $|f_n(n) - 0| \langle \epsilon | + n \rangle \frac{1}{\epsilon}.$ $n = does not de pend on <math>\pi(1)$

det fing = F(3) & f & F(3). We say that In Converges to funiformly (x) write for us f, or fn-) + unif.) if for EYO I NEIN S.E. | fn(x) - f(x) | < E + n7 N & x & S.

 $f_n \xrightarrow{u} 0$, where $f_n(x) = \frac{1}{x+n} + x \in [0,\infty)$

 \Leftrightarrow $f(x) - \varepsilon < f_m(x) < f(x) + \varepsilon$ Remark: A n N, x E 3. y= f(x1-2 y=fin NONY

Y= f(n)-E